(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-353594 (P2000-353594A)

(43)公開日 平成12年12月19日(2000.12.19)

(51) Int.Cl. ⁷		識別記号		FΙ			テー	-73-h*(参考)
H05B	33/22			H0!	5 B 33/22		Z	
G 0 2 B	5/20	101		G 0 2	2 B 5/20		101	
G09F	9/00	338		G 0 9	9 F 9/00		338	
	9/30	310			9/30		310	
		365					365Z	
			審査請求	未簡求	耐水項の数80	OL	(全 33 頁)	最終頁に続く

(21)出願番号 特額2000-76979(P2000-76979) (62)分割の表示 特額平11-546858の分割 (22)出顧日 平成11年3月17日(1999.3.17) (31)優先権主張番号 特額平10-67508 平成10年3月17日(1998.3.17) (33)優先相主張国 日本(JP) (31)優先権主張番号 特額平11-32123

(32)優先日 平成11年2月10日(1999.2.10) (33)優先権主張国 日本(JP) (71)出願人 000002369

セイコーエプソン株式会社

東京都新宿区西新宿2丁目4番1号

(72)発明者 関 俊一

長野県諏訪市大和三丁目3番5号 セイコ

ーエプソン株式会社内

(72)発明者 木口 浩史

長野県諏訪市大和三丁目3番5号 セイコ

ーエブソン株式会社内

(74)代理人 100079108

弁理士 稲葉 良幸 (外2名)

最終頁に続く

(54) 【発明の名称】 帯膜パターニング用基板

(57)【要約】 (修正有)

【課題】 有機半導体膜や着色樹脂等の薄膜を形成する際、画素毎での膜厚のばらつきが著しく少ないEL素子やLED素子などの表示装置あるいはカラーフィルタなどを提供する。

【解決手段】 基板上に、所定高さのバンクにより区切られた被塗布領域にインクジェット法により形成された薄膜層を有する薄膜素子において、バンクの幅をa、高さをc、被塗布領域の幅をb、薄膜層を形成する液体材料の液滴径をdとするとき、バンクを、a>d/4、d/2<b<5d、c>to(to)は薄膜層の膜厚、c>d/(2b)の条件を満足するように基板上に形成する。また、無機材料で構成されるバンク形成面に有機材料でバンクを形成し、導入ガスをフッ素系としフッ素過多の条件下でプラズマ処理を行い、バンクで囲まれる領域に薄膜材料液を充填して薄膜層を形成する。さらに、有機物で形成したバンクを有する基板に、酸素ガスプラズマ処理後、フッ素系ガスプラズマ処理を行う。

【特許請求の範囲】

【請求項1】 インクジェット法により薄膜をパターニング形成するために用いられる、所定の高さのバンクおよび該バンクにより区切られた被塗布領域が面上に形成された薄膜パターニング用基板において、

1

前記バンクの幅を a (μm)、その高さを c (μm)とし、前記被塗布領域の幅を b (μm)とし、かつ、薄膜層を形成する液体材料のインクジェット液滴径を d (μm)とするとき、前記バンクが、(d/2)

を満足するように形成されていることを特徴とする薄膜 10パターニング用基板。

【請求項2】 前記バンクが、更にa>(d/4)を満足するように形成されていることを請求項1記載の薄膜パターニング用基板。

【請求項3】 前記バンクが、更にc>to 〔to(μm)は薄膜層の膜厚〕を満足するように形成されていることを特徴とする請求項1又は2記載の薄膜パターニング用基板。

【請求項4】 前記バンクが、更にc>d/(2b)を 満足するように形成されていることを特徴とする請求項 20 1乃至3のいずれか一項記載の薄膜パターニング用基 板。

【請求項5】 前記バンクの少なくとも上面が有機物で 形成されていることを特徴とする請求項1乃至4のいず れか一項記載の薄膜パターニング用基板。

【請求項6】 前記バンクの上面および側面が有機物で 形成されていることを特徴とする請求項1乃至4のいず れか一項記載の薄膜パターニング用基板。

【請求項7】 前記バンクは下層の無機物と上層の有機物との2層で形成されていることを特徴とする請求項1 30 乃至4のいずれか一項記載の薄膜パターニング用基板。

【請求項8】 前記バンクは下層の無機物と上層の有機 物との2層で形成され、該無機物の少なくとも側面は該 有機物で覆っていないことを特徴とする請求項7記載の 薄膜パターニング用基板。

【請求項9】 前記被塗布領域が無機物であることを特 徴とする請求項1乃至8のいずれか一項記載の薄膜パタ ーニング用基板。

【請求項10】 前記バンクの上部上面に液滴溜構造を 有する請求項1乃至9のいずれか一項記載の薄膜パター 40 ニング用基板。

【請求項11】 前記バンクを形成する有機物表面の接触角が50°以上、該バンクを形成する無機物表面に対する接触角が20°~50°、かつ前記薄膜液体材料に対する前記被塗布領域の表面の接触角が30°以下になるように表面処理を施した請求項5乃至10のいずれか一項記載の薄膜パターニング用基板。

【請求項12】 前記表面改質がプラズマ処理によって 行われることを特徴とする請求項11記載の薄膜パター ニング用基板。 【請求項13】 請求項1乃至12のいずれか一項に記載の薄膜パターニング用基板を用いてインクジェット法により薄膜をパターニング形成する薄膜形成方法。

【請求項14】 請求項13に記載の薄膜形成方法により形成される薄膜素子。

【請求項15】 赤色、緑色または青色から選択された 発光色を有する有機薄膜が独立してパターニングされた 有機EL素子である請求項14記載の薄膜素子。

【請求項16】 赤色、緑色または青色から選択された 発光色だけを透過する有機薄膜が独立してパターニング されたカラーフィルタである請求項14記載の薄膜素 子。

【請求項17】 請求項14乃至16のいずれか一項記載の薄膜素子を備える表示装置。

【請求項18】 請求項17記載の表示装置と、この表示装置に対する回路装置とを備えてなる表示用電子機器。

【請求項19】 ディップ法またはスピンコート法により薄膜をパターニング形成するために用いられる、所定の高さのバンクおよび該バンクにより区切られた被塗布領域が面上に形成された薄膜パターニング用基板において、

少なくとも該バンクの表面が有機物で形成され、前記被 塗布領域が無機物で形成されていることを特徴とする薄 膜パターニング用基板。

【請求項20】 ディップ法またはスピンコート法により薄膜をパターニング形成するために用いられる、所定の高さのバンクおよび該バンクにより区切られた被塗布領域が面上に形成された薄膜パターニング用基板において、

前記バンクの上面および側面が有機物で形成され、前記 被塗布領域が無機物で形成されていることを特徴とする 薄膜パターニング用基板。

【請求項21】 ディップ法またはスピンコート法により薄膜をパターニング形成するために用いられる、所定の高さのバンクおよび該バンクにより区切られた被塗布領域が面上に形成された薄膜パターニング用基板において、

前記バンクは下層の無機物と上層の有機物との2層で形 が成され、前記被塗布領域が無機物で形成されていること を特徴とする薄膜パターニング用基板。

【請求項22】 前記バンクにおける下層の無機物の少なくとも側面は前記有機物で覆っていないことを特徴とする請求項21記載の薄膜パターニング用基板。

【請求項23】 前記バンクを形成する有機物表面の接触角が50°以上、該バンクを形成する無機物表面に対する接触角が20°~50°、かつ前記薄膜液体材料に対する前記被塗布領域の表面の接触角が30°以下になるように表面処理を施した請求項19乃至22のいずれ50 か一項記載の薄膜パターニング用基板。

【請求項24】 前記表面処理がプラズマ処理によって 行われることを特徴とする請求項23記載の薄膜パター ニング用基板。

【請求項25】 請求項19乃至24のいずれか一項に 記載の薄膜パターニング用基板を用いてディップ法また はスピンコート法により薄膜をパターニング形成する薄 膜形成方法。

【請求項26】 前記ディップ法またはスピンコート法 に用いる液体材料の表面張力が30dyne/cm以下の値である請求項25記載の薄膜形成方法。

【請求項27】 請求項25または26に記載の薄膜形成方法により形成される薄膜素子。

【請求項28】 請求項27記載の薄膜素子を備えてなる表示装置。

【請求項29】 請求項28記載の表示装置と、この表示装置に対する電子回路とを備えてなる表示用電子機器。

【請求項30】 バンクで囲まれた領域に薄膜材料液を 充填して薄膜層を形成する薄膜形成方法であって、

無機材料で構成されるバンク形成面に有機材料で前記バ 20 ンクを形成するバンク形成工程と、

所定の表面処理を行った場合に、前記有機材料が前記無機材料に比べて前記薄膜材料液に対する非親和性の程度がより高くなるような一定条件下で前記バンクおよび前記バンク形成面に対して前記表面処理を施す表面処理工程と、

前記表面処理がされたバンクで囲まれる領域に前記薄膜 材料液を充填して薄膜層を形成する薄膜層形成工程と、 を備えたことを特徴とする薄膜形成方法。

【請求項31】 前記表面処理は、導入ガスにフッ素ま 30 たはフッ素化合物を含んだガスを使用し、減圧雰囲気下でプラズマ照射をする減圧プラズマ処理である請求項3 0に記載の薄膜形成方法。

【請求項32】 前記表面処理は、導入ガスにフッ素またはフッ素化合物を含んだガスを使用し、大気圧雰囲気下でプラズマ照射をする大気圧プラズマ処理である請求項30に記載の薄膜形成方法。

【請求項33】 前記一定条件は、フッ素系化合物が酸素よりも多いことを条件とする請求項31または請求項32に記載の薄膜形成方法。

【請求項34】 前記一定条件は、フッ素系化合物および酸素の総量に対するフッ素系化合物の含有量が60%以上に設定されている請求項33に記載の薄膜形成方法

【請求項35】 前記フッ素またはフッ素化合物を含んだガスはCF4、SF6、CHF3等のハロゲンガスを用いる請求項31または32に記載の薄膜形成方法。

【請求項36】 前記薄膜材料液の前記バンク形成面に 対する接触角が20度以下になるように前記表面処理の 条件が設定される請求項30に記載の薄膜形成方法。 【請求項37】 前記薄膜材料液の前記バンク形成面に 対する接触角が50度以上になるように前記表面処理の 条件が設定される請求項30に記載の薄膜形成方法。

【請求項38】 前記バンク形成工程は、前記バンクを 上層および下層の二層で形成する請求項30に記載の薄 膜形成方法。

【請求項39】 前記バンク形成工程は、前記バンク形成面に下層膜を形成する下層膜形成工程と、前記下層膜上で前記バンクの形成領域に合わせて上層を形成する上 個形成工程と、前記上層をマスクとして当該上層が設けられていない領域の前記下層膜をエッチングして除去する除去工程と、を備える請求項38に記載の薄膜形成方法。

【請求項40】 前記バンク形成工程は、前記バンク形成面に下層膜を形成する下層膜形成工程と、当該下層膜を前記バンク下層の形成領域に合わせて露光・現像する工程と、前記下層を覆って上層膜を形成する上層膜形成工程と、当該上層膜を前記バンク上層の形成領域に合わせて露光・現像する工程と、を備える請求項38に記載の薄膜形成方法。

【請求項41】 前記表面処理は、前記バンク下層の前記薄膜材料液に対する親和性が前記画素電極のそれ以下であって前記バンク上層のそれ以上に設定するものである請求項38に記載の薄膜形成方法。

【請求項42】 前記バンク上層の表面が前記薄膜材料 液に対し接触角が50度以上になるように前記表面処理 の条件が設定される請求項38に記載の薄膜形成方法。

【請求項43】 前記バンク下層の表面が前記薄膜材料 液に対し接触角が20度乃至40度の範囲になるように 前記表面処理の条件が設定される請求項38に記載の薄 膜形成方法。

【請求項44】 前記バンクで囲まれる領域には画素電極が設けられ、前記薄膜材料液は薄膜発光素子を形成するための有機半導体材料である請求項30乃至請求項43に記載の薄膜形成方法。

【請求項45】 前記画素電極はITO電極膜である請求項44に記載の薄膜形成方法。

【請求項46】 前記バンクは絶縁有機材料である請求 項30に記載の薄膜形成方法。

40 【請求項47】 前記バンク下層はシリコン酸化膜、シ リコン窒化膜またはアモルファスシリコンのいずれかで ある請求項38に記載の薄膜形成方法。

【請求項48】 請求項30乃至請求項47のいずれか 一項に記載された薄膜形成方法で製造された表示装置。

【請求項49】 基板上に形成されたバンクで囲まれた 領域に薄膜材料液を充填するための基板の表面改質方法 であって、バンクが形成された基板に、酸素ガスプラズ マ処理を行う第一工程と、前記第一工程後、これに続け てフッ素系ガスプラズマ処理を行う第二工程とを備えた

50 表面改質方法。

1

【請求項50】 少なくとも前記第一工程および第二 工程のいずれかのプラズマ処理が、大気圧下で処理され る大気圧プラズマであることを特徴とする請求項49記 載の表面改質方法。

【請求項51】 少なくとも前記第一工程および第二工程のいずれかのプラズマ処理が、減圧下で処理される減圧プラズマであることを特徴とする請求項49記載の表面改質方法。

【請求項52】 基板上に形成されたバンクで囲まれた 領域に薄膜材料液を充填するための表面改質方法であっ 10 て、バンクが形成された基板に、フッ素系ガスプラズマ 処理を行う工程を備えた表面改質方法。

【請求項53】 前記プラズマ処理が、減圧下で処理される減圧プラズマであることを特徴とする請求項52記載の表面改質方法。

【請求項54】 前記基板が無機物であることを特徴と する請求項49乃至53のいずれか一項に記載の表面改 質方法。

【請求項55】 前記基板上に形成されたバンクにおいて、少なくとも該バンクの上面が有機物で形成されてい 20 ることを特徴とする請求項49乃至53のいずれか一項に記載の表面改質方法。

【請求項56】 前記基板上に形成されたバンクにおいて、該バンクの上面および側面が有機物で形成されていることを特徴とする請求項49乃至53のいずれか一項に記載の表面改質方法。

【請求項57】 前記基板上に形成されたバンクにおいて、該バンクは下層の無機物と上層の有機物の2層で形成さていることを特徴とする請求項49乃至53のいずれか一項に記載の表面改質方法。

【請求項58】 前記基板上に形成されたバンクにおいて、該バンクは下層の無機物と上層の有機物の2層で形成され、該無機物の少なくとも側面は該有機物で覆われていないことを特徴とする請求項49乃至53のいずれか一項に記載の表面改質方法。

【請求項59】 前記無機物からなる基板表面を前記薄膜材料液に対して親液化する請求項54記載の表面改質方法。

【請求項60】 前記バンクを形成する有機物表面を前 記薄膜材料液に対して発液化する請求項55乃至58の 40 いずれか一項に記載の表面改質方法。

【請求項61】 前記バンクを形成する有機物表面をテフロン (登録商標) 化する請求項60記載の表面改質方法。

【請求項62】 前記バンクを形成する有機物表面を前記薄膜材料液に対して挽液化し、かつ前記無機物からなる基板表面を前記薄膜材料液に対して親液化する請求項49乃至61のいずれか一項に記載の表面改質方法。

【請求項63】 前記薄膜材料液の前記基板表面に対する接触角が、30度以下である請求項59に記載の表面 50

改質方法。

【請求項64】 前記薄膜材料液の前記バンクを形成する有機物表面に対する接触角が、50度以上である請求項60に記載の表面改質方法。

【請求項65】 前記薄膜材料液の前記基板表面に対する接触角が、30度以下であり、かつ前記バンクを形成する有機物表面に対する接触角が、50度以上である請求項62に記載の表面改質方法。

【請求項66】 前記薄膜材料液の前記基板表面に対する接触角が、30度以下、前記バンクを形成する下層表面に対する接触角が、20度から50度、前記バンク上層を形成する有機物表面に対する接触角が、50度以上である請求項49乃至65のいずれか一項に記載の表面改質方法。

【請求項67】 基板上に形成されたバンクで囲まれた 領域に薄膜材料液を充填し、薄膜を形成する方法であっ て、請求項49乃至66のいずれか一項に記載の表面改 質方法が施された基板のバンクで囲まれた領域に、当該 表面改質後直ちにインクジェット方式によって前記薄膜 材料液を充填する工程を備えた薄膜形成方法。

【請求項68】 基板上に形成されたバンクで囲まれた 領域に薄膜材料液を充填し、薄膜を形成する方法であっ て、請求項49乃至66のいずれか一項に記載の表面改 質方法が施された基板のバンクで囲まれた領域に、当該 表面改質後直ちにスピンコート法あるいはディップ法等 によって前記薄膜材料液を充填する工程を備えた薄膜形 成方法。

【請求項69】 請求項67または68に記載の薄膜形成方法により形成した薄膜を備えた薄膜素子。

30 【請求項70】 請求項67または68に記載の薄膜形成方法により形成した薄膜を有する構造をカラーフィルターとして備えた表示装置。

【請求項71】 請求項67または68に記載の薄膜形成方法により形成した薄膜を有する構造を有機EL素子として備えた表示装置。

【請求項72】 請求項67または68に記載の薄膜形成方法により薄膜を形成する薄膜素子の製造方法。

【請求項73】 請求項67または68に記載の薄膜形成方法により薄膜を形成し、これをカラーフィルターとする請求項69記載の薄膜素子の製造方法。

【請求項74】 前記薄膜素子が有機EL素子である請求項72記載の薄膜素子の製造方法。

【請求項75】 前記バンクで囲まれた部分の平面形状が円形又は楕円形である請求項1記載の薄膜パターニング用基板。

【請求項76】 基板と、この基板上に所定のパターンの形状のバンクを有する薄膜パターニング用基板において、該バンクにより形成された開口部の形状が環状である薄膜パターニング基板。

0 【請求項77】 前記環状の開口部の形状が円形又は楕

6

円形である請求項76記載のパターニング用基板。

【請求項78】 基板と、該基板上に所定のパターンの 形状のバンクと、該バンクに囲まれた領域に発光材料薄 膜を有するEL素子において、該バンクにより形成され た開口部の形状が環状であるEL素子。

【請求項79】 前記環状の開口部の形状が円形又は楕円形である請求項78記載のEL素子。

【請求項80】 基板上に設けられたバンクで囲まれた 領域に薄膜形成材料を充填するための基板の表面改質方 法であって、バンクが形成された基板全表面に一連の表 10 面改質処理を均一に行い、この一連の処理によりバンク 部表面の薄膜形成材料に対する非親和性を、バンク間部 分の表面のそれに対して高める工程を有する基板の表面 改質方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】薄膜パターニング用基板およびその表面処理

本発明は、有機半導体膜を用いたEL(エレクトロルミネッセンス)素子やLED(発光ダイオード)素子など 20の表示装置あるいはカラーフィルタの製造に適した薄膜形成技術に係わる。

【0002】特に、フルカラー有機EL(エレクトロルミネッセンス)素子、カラーフィルタなど、特性の異なる薄膜を同一基板上にパターニング成膜するための基板、薄膜形成方法、および薄膜素子に関する。また、インクジェット方式によって薄膜層を形成しやすく、かつ平坦な薄膜層が形成可能で、微細パターニングを必要とする薄膜形成方法に関する。さらに、基板上に形成したバンクで囲まれた領域に薄膜材料液をインクジェット法30あるいはスピンコート等で高精細にパターニング充填するための表面改質方法、及びこの表面改質方法を利用して薄膜を形成する方法、並びにこの薄膜を備えた表示装置およびその製造方法に関する。

[0003]

【従来の技術及び発明が解決しようとする課題】近年、同一基板に特性の異なる薄膜を塗布により所定のパターンで形成して、機能素子を得ようとする技術が開発されている。その有力な方法としてインクジェット方式により、同一基板上に異なる薄膜パターンの形成がなされている。しかしながら、インクジェット方式を用いる場合では、基板上で異なる薄膜材料が混合するといったプロセス面での問題が生じる。具体的には、インクジェット方式を利用してEL素子などの表示装置における有機半導体材料やカラーフィルタにおける着色樹脂等の薄膜材料を塗設する技術が用いられているが、インクジェット方式を利用して液体材料を充填し薄膜のパターンを形成する場合、吐出された液体材料が隣接する画素に流出する等の問題が生じている。

【0004】このような問題に対して、通常、異なる薄 50 が被塗布領域に正確に充填されず、精度の高いパターニ

膜領域を仕切る凸状の仕切部材(「バンク」または「凸部」とも呼ばれる)を設け、該仕切部材で囲まれた領域に異なる薄膜となる液体材料を充填する方法が採られている。上記表示素子の例では、各色素領域を仕切る仕切

部材を設け、各仕切領域で囲まれた領域に画素を構成す

る材料を充填する方法が採られる。

【0005】最近の機能素子、特に表示装置では一般に 薄さが要求され、仕切部材の高さがそれに従い制限され るにもかかわらず、仕切部材で囲まれる領域には、製膜 後の体積に比較してはるかに大量の液体材料が充填され ている。

【0006】このため、仕切部材に囲まれた領域に吐出される液滴の大きさと仕切部材表面やこれに囲まれる領域の面積とのバランスのまずさから問題が生じる。この問題を以下に説明する。

【0007】仕切部材が、充填すべき薄膜材料である液体材料に対して親液性、或いは濡れ性を有すると場合、 仕切り部材があっても仕切り部材に引っ張られ、最終的な薄膜では所望の膜厚を得ることができず、また、液体材料の量を多くすれば、液体材料は容易に隣接する領域に流出してしまう。

【0008】一方、仕切り部材で囲まれた領域の表面は、液体材料がこれに均一に濡れ拡がるように、液体材料に対して高い親和性、濡れ性を有する必要がある。さもなくば、液体材料が仕切部材で囲まれた領域に濡れ拡がらず、特にEL素子のような表示素子では画素における色抜けや色むらが生じてしまう。

【0009】このような問題に対して、例えば、特開平 9-203803号公報、特開平9-230129号公 報には、仕切部材の上部を発液性にし、それ以外の部分 が親液性となるように表面処理をする技術が提案されて いる。

【0010】これらの従来例はともに、仕切部材の上面に発液性の材料からなる層(フッ素化合物からなる層)を形成するもので、特開平9-203803号公報には、非親和性を示す層を仕切部材の上部に塗布し、仕切部材で囲まれた領域の表面を親水性基界面活性剤で処理する技術が記載されており、特開平9-230129号公報には、更に紫外線照射により仕切部材で囲まれた凹部を親和性にする技術が記載されている。その論理的考察については、International Display ResearchConference 1997,pp238-241に記載されている。

【0011】しかしながら、前記従来技術におけるように、仕切部材上面の発液性及び仕切部材で囲まれる領域の親液性がある程度実現されたとしても、例えば、インクジェット方式を用いて液体材料を塗布する場合は、吐出される液滴の大きさと、上記仕切部材表面やこれに囲まれる領域の面積に対して極端に大きいあるいは小さいなど、これらのバランスが著しく悪い場合は、液体材料が速流布領域に正確に充填されば、整度の高いパターニ

ングが不可能となることがわかった。例えば、上記液滴 の大きさが仕切部材に囲まれる領域よりも大きく成り過 ぎると液滴が仕切部材上に乗り上げ、更に仕切部材上部 表面が狭い場合は液滴が目的とする被塗布領域に隣接す る領域に溢れ出てしまう。

9

【0012】このように、液滴の大きさと、仕切部材や これに囲まれる領域の面積との関係が適性でない場合 は、上記のような問題に起因して仕切部材で囲まれた領 域間での薄膜材料液の混合や形成する薄膜毎に膜厚のば らつきを生じることとなる。

【0013】また、仕切部材で区画された領域に薄膜材 料を充填する際には仕切り部材の薄膜材料液に対する親 和性に関して更に問題も生じる。

【0014】仕切部材や仕切部材で囲まれた領域が、薄 膜材料液に対してどのような濡れ性(親和性)を示すか で充填された薄膜材料液の挙動が異なる。既述したよう に、仕切部材の表面が薄膜材料液に対し親和性(親水 性)を示すと、仕切部材の高さを超える量の材料を充填 した場合に、仕切部材があっても薄膜材料液は容易に隣 接する仕切部材で囲まれた領域に流出してしまう。逆に 仕切部材の表面が薄膜材料液に対し適度に非親和性(挽 水性)を示すと、仕切部材の高さを超える量の材料を充 填しても材料の表面張力により隣の仕切部材で囲まれた 領域に薄膜材料液が流れ出すことはない。

【0015】そしてより具体的な基板表面の改質法とし て特定の性質を得るため当該表面のカラーフィルターの 製造、例えば、既述した特開平9-203803号公 報、特開平9-230129号公報、更には特開平9-230127号公報に記載されているもの、すなわち、 バンク表面をフッ素系化合物で挽インク処理する方法で 30 あって、バンクで囲まれる領域を親水性基を有する界面 活性剤等で処理する技術 (特開平9-203803号公 報)、エッチングにより処理する方法(特開平9-23 0127号公報)、あるいはエネルギー照射(特開平9 -230129号公報)により親インク処理があげられ

【0016】しかしながら、特に、フッ素系化合物材料 を用いて部材表面を挽インク性にする場合、あるいはフ ッ素系化合物材料を用いて部材を形成する場合、前記フ ッ素系材料と部材を形成する下地層あるいは下地基板と の密着性が悪くなり基板上にバンクを形成する技術へ応 用を考えると問題がある。また、部材、特にバンク自体 を挽インク性のフッ素系化合物材料等で形成できたとし てもフォトリソグラフィーによるパターニング後、バン ク領域に残さが生じバンク表面の親インク性が損なわれ るおそれがある。

【0017】また、上記公知技術では仕切部材上部を非 親和性にするためだけに非親和性を示す材料の塗布、乾 燥、除去等が必要となり、工程数が多くならざるを得な かった。また、紫外線照射を行う場合には多くの材料で 50 れた仕切部材(バンク)で囲まれた領域に薄膜材料液を

親和性となる傾向がある。材料が非親和性材料であって も紫外線照射により若干親和性を生ずるようになり、折 角の非親和性処理が無駄になる傾向があった。特に、特 開平9-230129号公報には紫外線を表裏の両面か ら照射することで親和性の程度を制御する旨が規定され ているが、非親和性と親和性との親和性の制御、例えば 薄膜材料液に対する接触角をそれぞれどのように設定す るかについては不明であった。

【0018】また、仕切部材の쁐液性が強い場合、仕切 10 部材の側壁で薄膜材料の液がはじかれるため、成膜後の 厚みが仕切部材で囲まれた領域の中央部で厚く周辺部で 薄くなる。これでは、表示素子に画素での色むらが生じ る。特に、EL素子においてはショートが生じ易く信頼 性の低下につながる。

【0019】仕切部材の表面に飛液処理を施して、その 側面に親和性(親液性)を付与した場合には、薄膜材料 を提供して成膜後の厚みが仕切部材で囲まれた領域の周 辺で薄くなることはないが、薄膜材料の液の大部分が仕 切部材の側面に引っ張られるため、薄膜の裾部分、即 ち、基板と接する部分で膜厚がより大きくなるだけでは なく、膜厚の制御が困難となることもない。

【0020】有機物質の表面エネルギー(濡れ性)の改 質方法として、プラズマ処理を行うことはよく知られて いる。このような表面改質方法としては、例えば、特開 昭63-308920号公報に記載されているものがあ る。この公報に記載された表面改質方法は、フッ素系ガ スと酸素ガスを含む混合ガスプラズマを用いて有機物質 表面を処理し、前記混合ガスの混合比を変えることによ り、前記有機物質の表面エネルギーを制御するものであ る。

【0021】また、ガラスやITO (Indium Tin Oxid e) などの無機物表面を親水化するためにUV照射や酸 素プラズマ処理をする方法も良く知られた手法である。 【0022】しかしながら、同一基板上に有機物或いは 無機物からなる層のパターンを設ける場合、この基板に おいてプラズマ処理やUV照射により各々の材料の濡れ 性を簡便かつ厳密に制御する技術は報告されていない。 混合ガスプラズマ処理により有機物質表面あるいは有機 物で形成される部材表面に挽インク性を付与する方法で は、効率よく飛インク性を付与することができなかった り、表面の飛インク性が一過性であり、熱工程を経た り、時間が経過すると飛インク性が劣化するという問題 がある。

【0023】また、エネルギー照射により、親インク処 理を行う場合、バンク表面の飛インク性を損なうおそれ があり、バンク表面の搬インク性とバンク表面の親イン ク性を同時に達成することは困難である。

【0024】このように異なる薄膜材料を供給し、所定 のパターンの薄膜を形成する方法、特に基板上に形成さ

充填し、薄膜を形成する方法においては、バンク、凹部の濡れ性 (挽インク性と親インク性) を適切に制御することが重要である。バンクに挽インク性がなければ、バンク上にインク残さを生じるだけでなく、バンクを挟んで隣接する凹部に異なる薄膜材料液を充填する場合、該バンクを乗り越えて異なる薄膜材料液が互いに混合してしまうことになる。このような場合が生じると、所望の特性を有する薄膜を形成することができない。

【0025】一方、バンクを挟んで隣接する凹部に異なる薄膜材料液を用いて薄膜を形成する例として、カラー 10 有機E L素子や、液晶表示装置に用いられるカラーフィルターなどが挙げられるが、これらを製造する場合、バンクは挽インク性でありかつバンクで囲まれる領域つまり I T Oやガラス基板表面上は親インク性でなければならない。凹部に親インク性がなければ画素内での濡れ広がりが悪く色抜けや膜厚ムラの原因となる。

【0026】さらに上記方法では挽インク処理に加え、 さらに画素領域つまり凹部の親インク処理工程が必要と なり、供給するインクの制御が困難であることや工程が 多くなってしまうという難点を有する。

【0027】本発明はこのような状況下で、成し遂げられたものである。本発明は、特性の異なる薄膜を同一基板上にパターニング成膜する場合、薄膜材料液体がバンクを超えて流れ出るという事態を防止し、平坦且つ均一厚みの色むらなどの無い安定した特性の薄膜層を確実に高精度に比較的簡単に歩留まり良く形成でき、高精細な微細パターニングを可能とすることを主要な目的とする

【0028】本発明の第1の目的は、有機半導体材料や 着色樹脂等の薄膜をインクジェット方式やバブルジェッ 30 ト (登録商標) 方式などの吐出方式により形成する際 に、薄膜領域毎での混合が起こらず膜厚のばらつきが著 しく少なく高精度にパターニングされた、有機EL素 子、カラーフィルタ等の薄膜素子を提供することにあ る。また、この目的に付随して、本発明は、この薄膜素 子を製造することに供される薄膜パターニング用基板、 この薄膜素子を備えた表示装置、さらにこの薄膜素子を 得るための薄膜形成方法を提供することも目的とする。 【0029】さらに、本発明の第2の目的は、半導体素 子、電子デバイスなどの配線などの導電薄膜をスピンコ 40 ート法やディップ法で形成する際に、更に微細なパター ニングを可能にする基板薄膜素子、薄膜形成方法、この 方法で形成した薄膜素子、この薄膜素子を備えた表示装 置、および、この表示装置を備えた電子機器をそれぞれ 提供することにある。

【0030】本発明の第3の目的は、簡便かつ適切な濡れ性の制御を目的としたバンクを形成した基板の表面改質方法、及びこの表面改質方法を利用して薄膜を形成する方法、並びにこの薄膜を備えた表示素子・表示装置及びこれらの製造方法を提供することである。

【0031】本発明の第4の目的は、プラズマ処理を一定条件で管理することで、バンク自体はバンク形成面との高い密着性を保ちながら、親和性制御のために多数の工程を経ることなくバンクとバンク形成面との親和性を確実に制御することができる薄膜形成方法を提供することである。これにより、薄膜材料液がバンクを超えて流れ出ることを防止し、歩留まりを向上させ、製造コストを減少させることである。

【0032】本発明の第5の目的は、プラズマ処理を一定条件で管理することでバンクとバンク形成面との親和性を確実に設定することにより、薄膜材料液がバンクを超えて流れ出ることが防止でき、かつ均一な厚みの薄膜層を有する表示装置を提供することである。これにより、明るさや色にむらが生じない画像表示が行え、信頼性を向上させることである。

[0033]

20

【課題を解決するための手段】本発明者らは、前記第1目的を達成するために鋭意研究を重ねた結果、既述の吐出方式を用いた薄膜形成において、液体材料に対する上記仕切部材表面の発液性及び仕切部材で囲まれる領域の親液性を調節するのみならず、更に、吐出される液体材料の液滴の大きさと、仕切部材及び該仕切部材で囲まれる領域の面積との関係を最適化することにより、上記本発明の第1の目的を達成しうることを見出したものである。

【0034】また、スピンコート法やディップ法を用いた薄膜形成においては、液体材料に対する前記仕切り部材及び仕切り部材で囲まれる領域の濡れ性の制御に加え、この液体材料の表面張力を特定の値に調整することにより、上記本発明の第2の目的を達成しうることを見出したものである。本発明はかかる知見に基づいて完成したものである。

【0035】すなわち、本発明は前記第1目的を達成するために、基板上に、所定の高さのバンク、及び該バンクにより区切られた被塗布領域にインクジェット法により薄膜層のパターンを形成する薄膜パターニング基板或いはこのパターニング基板に形成された表示素子であって、上記バンクの幅をa(μm)、その高さをc(μm)とし、被塗布領域の幅をb(μm)とし、かつ、薄膜層を形成する液体材料の液滴径をd(μm)とするとき、上記バンクが、次の特性を持つことを特徴とするものである。

【0036】(1) バンクが、d/2<b<5dを満足するように基板上に形成されてなる。この特性範囲を満たすことによって、液体材料がバンクに乗り上げず、画素内の混色が防止される。さらに、次の特性の少なくとも一つがこの特性に付加される。

【0037】(2) a>d/4: bが小さい場合、 a>d/4ならば、液体材料はバンクに乗り上げること 50 があるが、被塗布領域内の薄膜材料の混合が防止され

る。

【0038】(3) c>to (to(µm)は薄膜 層の膜厚〕

13

(4) c>d/(2b)

なお、ストライプまたは四角形の被塗布領域の場合、上 記パラメータa、cは一定になるが、画素がサークルの 場合、パラメータaは画素間最短距離であり、パラメー 夕cは直径になる。

【0039】前記第2目的を達成するための本発明は、 によって区切られた被塗布領域と、この領域に、ディッ プ法又はスピンコート法により形成される薄膜層と、を 有するように構成されてなる薄膜素子において、所定の 表面処理(濡れ性の制御)がなされた基板を用い、前記 薄膜層を、表面張力が30 d y n e/c m以下の液体材 料を用いて、形成してなることを特徴とする。

【0040】液体材料の表面張力をこの範囲にすること により、数ミクロン以下の幅でパターニング薄膜の形成 がスピンコート法やディップ法で可能になる。

【0041】本発明では、これらの薄膜素子を得るため 20 の薄膜形成方法、この薄膜素子を表示素子として備える 表示装置、さらに、この表示装置を備える電子機器が提 案される。

【0042】前記第3以降の目的を達成するものとし て、本発明者がなし得た後述する発明に共通する発明機 念は、基板においてバンクで囲まれた領域に薄膜形成材 料を充填するための表面改質方法であって、バンクが形 成された基板全表面に一連の表面改質処理を均一に行 い、この一連の処理によりバンク部分表面の薄膜形成材 料に対する非親和性を、バンク間部分の表面のそれに対 30 して高める工程を有する表面改質技術、又はこの表面改 質技術を利用した薄膜形成技術、又はこれを利用した薄 膜パターニング基板、又はこれを利用したEL素子等の 表示素子、又はこの素子を利用した表示装置である。

【0043】既述の従来例が、例えばパターニングの前 のフォトレジスト上全面に廃水処理を行った後パターニ ングして表面処理されたバンクパターンを得たり、バン ク形成後マスクを施して表面処理を行うのに対して、こ の本発明によれば、予め形成されたバンクを有する基板 理等表面処理の途中で表面処理とは異種の工程が関与し ないようにして、一気に目的とする表面処理を行うこと ができる。ここで、一連の表面改質処理とは、後述のよ うに、好適には、無機材料で構成されたバンク形成面に 有機材料からなるバンクが形成された基板に後述のプラ ズマ処理を一気に適用する処理である。

【0044】そこで、前記第3の目的を達成する発明 は、基板においてバンクで囲まれた領域に薄膜形成材料 を充填するための表面改質方法であって、無機材料で構 成されるバンク形成面に有機材料でバンクを形成するバ 50 と無機材料との間で流動体に対する接触角が大きく異な

ンク形成工程と、所定の表面処理を行った場合に、バン クがバンク形成面に比べて薄膜材料液に対する非親和性 の程度がより高くなるような一定条件下でバンクおよび バンク形成面に対して表面処理を施す表面処理工程と、 を備えることを特徴とする。

【0045】さらに、この発明の他の形態は、バンクで 囲まれた領域に薄膜材料液を充填して薄膜層を形成する 薄膜形成方法であって、無機材料で構成されるバンク形 成面に有機材料でバンクを形成するバンク形成工程と、 基板上に形成された所定の高さのバンクと、このバンク 10 所定の表面処理を行った場合に、バンクがバンク形成面 に比べて薄膜材料液に対する非親和性の程度がより高く なるような一定条件下でバンクおよびバンク形成面に対 して表面処理を施す表面処理工程と、表面処理がされた バンクで囲まれる領域に薄膜材料液を充填して薄膜層を 形成する薄膜層形成工程と、を備えることを特徴とす

> 【0046】ここでパンクとは、既述のとおり、例えば 有機半導体薄膜素子を利用した表示装置の画素を仕切る ために設けたり、カラーフィルタの画素領域を仕切るた めに設けたりする仕切部材のことをいう。バンク形成面 とはこのバンクを設ける面のことで、表示装置等の駆動 基板であってもカラーフィルタ等の透明基板等であって もよい。

【0047】表面処理としては、例えば導入ガスにフッ 素またはフッ素化合物を含んだガスを使用し、減圧雰囲 気下や大気圧雰囲気下でプラズマ照射をする減圧プラズ マ処理や大気圧プラズマ処理を行う。一定条件として は、フッ素系化合物および酸素を含んだガス中でプラズ マ処理が行われることが挙げられる。この条件下では無 機材料の表面にはプラズマ放電により未反応基が発生 し、酸素により未反応基が酸化されてカルボニル基や水 酸基等の極性基が発生する。極性基は水等の極性分子を 含んだ流動体に対して親和性を示し、非極性分子を含ん だ流動体に対し非親和性を示す。有機材料表面において も上記のような反応と並行してフッ素系化合物分子が有 機材料表面に入り込む現象も生ずる。特にフッ素系化合 物が酸素よりも多い場合、例えばフッ素系化合物および 酸素の総量に対するフッ素系化合物の含有量が60%以 上に設定されていると、フッ素系化合物の量が過多のガ 表面のほぼ全面に一律に一連の処理を行い、プラズマ処 40 ス雰囲気化では酸素による酸化反応よりも、フッ素系化 合物の混入化現象の方が盛んになるため、酸化反応によ る影響よりも混入化現象により表面が非極性化される。 したがって有機材料をフッ素系化合物が過多の条件でプ ラズマ処理すると、極性分子を含んだ流動体に対して非 親和性を示し、非極性分子を含んだ流動体に対して親和 性を示すようになる。

> 【0048】フッ素またはフッ素化合物を含んだガスと しては、例えばCF4、SF6、CHF3等のハロゲン ガスを用いる。この条件下で表面処理を施すと有機材料

るようにその表面の親和性が調整される。上記表面処理 により薄膜材料液のバンク形成面に対する接触角が20 度以下になるように表面処理の条件が設定される。また 薄膜材料液のバンク形成面に対する接触角が50度以上 になるように表面処理の条件が設定される。バンクが二 層で形成される場合、表面処理により、バンク下層の薄 膜材料液に対する親和性が画素電極のそれ以下であって バンク上層のそれ以上に設定される。例えばバンク上層 の表面が薄膜材料液に対し接触角が50度以下になるよ うに表面処理の条件が設定される。バンク下層の表面が 10 薄膜材料液に対し接触角が20度乃至40度の範囲にな るように表面処理の条件が設定される。

【0049】ここで親和性であるか非親和性であるか は、充填する薄膜材料液がどのような性質を備えている かで決まる。例えば親水性のある薄膜材料液であれば、 極性基を有する表面が親和性を示し、非極性基を有する 表面が非親和性を示す。逆に親油性のある薄膜材料液で あれば、極性基を有する表面が非親和性を示し、非極性 基を有する表面が親和性を示す。薄膜材料を何にするか は、製造対象によって種々に変更して適用することにな 20

【0050】好ましくは、バンク形成工程は、バンクを 上層および下層の二層で形成する。具体例としてこのバ ンク形成工程は、バンク形成面に下層膜を形成する下層 膜形成工程と、下層膜上でバンクの形成領域に合わせて 上層を形成する上層形成工程と、上層をマスクとして当 該上層が設けられていない領域の下層膜をエッチングし て除去する除去工程と、を備える。

【0051】また別の具体例としてバンク形成工程は、 バンク形成面に下層膜を形成する下層膜形成工程と、当 30 該下層膜をバンク下層の形成領域に合わせて露光・現像 する工程と、下層を覆って上層膜を形成する上層膜形成 工程と、当該上層膜をバンク上層の形成領域に合わせて 露光・現像する工程と、を備える。

【0052】適用例としてバンクで囲まれる領域には画 素電極が設けられ、薄膜材料液は薄膜発光素子を形成す るための有機半導体材料である場合が挙げられる。これ は有機半導体表示装置である。このとき例えば画素電極 はITO電極膜である。具体的には、バンクはポリイミ ドなどの絶縁有機材料であることが好ましい。またバン 40 ク下層を設ける場合には、シリコン酸化膜、シリコン窒 化膜またはアモルファスシリコンを用いる。

【0053】さらに前記第4の目的を達成する本発明 は、基板上に形成されたバンクで囲まれた領域に薄膜材 料液を充填するための表面改質方法であって、バンクが 形成された基板に、酸素プラズマ処理を行う第一工程と これに続けてフッ素系ガスプラズマ処理を行う第二工程 とを備えた表面改質方法を提供するものである。

【0054】この方法によれば、酸素ガスプラズマ処理

前記薄膜材料液に対して親液性(親和性)にすることが できる。

【0055】前記第一工程で行う酸素プラズマ処理は、 基板上にバンクを有機物で形成した場合の残さをアッシ ングするだけでなく有機物表面を活性化することによ り、続けて行われるフッ素系ガスプラズマ処理による挽 液化を効率よく行うために有効である。

【0056】前記第二工程でフッ素系ガスプラズマ処理 を行うことにより有機物表面がフッ素化(テフロン化) され半永久的な飛液性を有機物に付与することができ る。このフッ素系ガスプラズマ処理により基板上の親液 性は損なわれることはなく、簡便な方法で同一基板上に 選択的に親液性、発液性の表面を形成することができ る.

【0057】また、少なくとも前記第一工程及び第二工 程のいずれかのプラズマ処理は、大気圧下で処理される 大気圧プラズマとすることができる。 あるいは、 少なく とも前記第一工程および第二工程のいずれかのプラズマ 処理は、減圧下で処理される減圧プラズマとすることが できる。

【0058】また、基板上の汚染の程度が低ければ、フ ッ素プラズマ処理だけでもよい。特に、減圧プラズマで は、基板表面は洗浄され、バンクを形成する有機物をテ フロン化することができる。

【0059】前記基板は、無機物から構成することがで きる。この無機物からなる基板表面を親液化することも できる。

【0060】前記基板上に形成されたバンクにおいて、 少なくとも該バンクの上面を有機物で形成することがで きる。あるいは、前記基板上に形成されたバンクにおい て、該バンクの上面および側面を有機物で形成すること もできる。さらにまた、前記基板上に形成されたバンク において、当該バンクを下層の無機物と上層の有機物の 2層で形成することもできる。また、前記基板上に形成 されたバンクにおいて、当該バンクを下層の無機物と上 層の有機物の2層で形成し、当該無機物の少なくとも関 面を該有機物で覆われていないようにすることもでき

【0061】また、前記バンクを形成する有機物表面 た、前記バンクを形成する有機物表面は、テフロン化す ることもできる。さらにまた、前記バンクを形成する有 機物表面を発液化し、かつ前記無機物からなる基板表面 を親液化することもできる。

【0062】バンクを形成する有機材料にはもともと発 液性の材料を使う必要がないので材料選択の幅が広が

【0063】また、処理時間、ガスの種類、ガス流量、 プラズマ強度、プラズマ電極と基板距離等の条件により により、まずガラス、ITOなどの無機物基板の表面を 50 容易に表面エネルギー (親液性、発液性)を制御でき

る。

【0064】前記薄膜材料液の前記基板表面に対する接触角を30度以下に、前記バンク表面に対する接触角を50度以上にすることができる。

【0065】前記薄膜材料液の基板表面に対する接触角が30度を超えると、薄膜材料液がバンクで囲まれた基板上に全面濡れ広がらない或いは均一に濡れ広がらず膜厚ムラを生じる。一方、前記薄膜材料液の前記バンク表面に対する接触角が50度より低いと、薄膜材料液がバンク上部にも付着したり、あるいはバンク側に引っ張ら 10れバンクを超えて隣接する基板内に流出してしまうことになる。つまり前記薄膜材料液の所望の場所へのパターニングができなくなってしまう。

【0066】また、バンクを2層から形成し、下層に無機材料を用い、接触角で20度~50度になるように制御することにより、バンク裾で膜がついてない或いは薄くなってしまう問題を解決することができる。

【0067】よって上記表面改質方法によりバンクで囲まれた領域にインクジェット法あるいはスピンコート等の塗膜方法により薄膜材料液を高精度にパターニングす 20 ることが可能となる。上記表面改質を行った基板とインクジェット法による薄膜形成法を用いれば簡便かつ低コストで高精細なカラーフィルターならびにフルカラー有機EL素子を製造することが可能となる。

【0068】またさらに第5の目的を達成する本発明は、基板上に形成されたバンクで囲まれた領域に薄膜材料液を充填し、薄膜を形成する方法であって、前述した表面改質が施された基板のバンクで囲まれた領域に、当該表面改質後直ちにインクジェット方式によって前記薄膜材料液を充填する工程を備えた薄膜形成方法を提供す 30 るものである。

【0069】また、第5の目的を達成するめ、本発明は、基板上に形成されたバンクで囲まれた領域に薄膜材料液を充填し、薄膜を形成する方法であって、前述した表面改質が施された基板のバンクで囲まれた領域に、当該表面改質後直ちにスピンコート法あるいはディップ法等によって前記薄膜材料液を充填する工程を備えた薄膜形成方法を提供するものである。

【0070】さらにまた、第5の目的を達成するため、本発明は、前述した薄膜形成方法により形成した薄膜を 40 備えた表示装置を提供するものである。この表示装置 は、カラーフィルターや、有機EL素子からなることができる。

【0071】また、本発明は、第5の目的を達成するため、前述した薄膜形成方法により薄膜を形成する表示装置の製造方法を提供するものである。

[0072]

【発明の実施の形態】以下に、特許請求の範囲の請求項 1~29に記載の発明を実施した第1~第3の実施例お よびその変形例を説明する。 【0073】(1):第1の実施例(インクジェット法を用いる態様)

本発明の表示装置は、基板上に、所定の高さのバンク、及び該バンクにより区切られた基板表面にインクジェット法により形成される薄膜層を有する表示装置において、上記バンクの幅をa(μm)、その高さをc(μm)とし、上記バンクに区切られる被塗布領域の幅をb(μm)とし、かつ、薄膜層を形成する液体材料の液滴径をd(μm)とするとき、上記バンクが、a>d/4、d/2<b<5d、c>to 〔to (μm)は薄膜層の膜厚〕、及びc>(1/2)×(d/b)の各々の式を満足するように基板上に形成されたものである

【0074】図1はインクジェット法により本発明の表示装置を形成する際の基板に設けられたバンクと液滴の関係を説明するための模式図である。

【0075】(a)バンクの構成

本発明の表示装置に用いた基板上に設けられたバンク (凸部または仕切り部材とも呼ばれる)は、例えばフルカラー有機EL素子を利用した表示装置の画素、或いは、カラーフィルタの画素領域を仕切るために設けられる仕切部材をいう。図1に示すように、上記バンクの幅をa(μm)とすると、その値はインクジェット法における吐出液の液滴径d(μm)に対してa>d/4、すなわち、液滴径の4分の1より大きい値であることが、液体材料が隣接する画素領域に溢れることなく均一な塗布を行う上で必要である。

【0076】バンクは基板上にその高さがc (μm)として設けられるが、その値は形成しようとする薄膜層の厚みto (μm)より大きく、後述の被塗布領域の幅をb (μm)としたときに、c>(1/2)×(d/b)、すなわち、液滴径と被塗布領域の幅との比の2分の1より大きい値、となるように設けることが、本発明の目的を達成する上で好ましい。表面素子はなるべく薄い方が好ましいことを考慮すると、cは、2ミクロン以下である。

【0077】本発明においては、インクジェット法における塗布に際して、例えば、赤、緑、青の3色の色素あるいは有機半導体発光材料を同時に塗布する場合に隣接する画素領域へ液体材料が溢れることにより、混色が生じるのを避けるためバンク表面に所定の液滴溜を設けることが好ましい。液滴溜は、例えば、バンクの上部表面の、好ましくは中央部分に溝状に設けることが好ましく、その形状としては、図2に示すようなものが例示される。すなわち、図2A~2Cは、上記液滴溜を有するバンクの断面図であるが、図2Aはその断面がV字形状のものであり、図2Bは凹形状のものであり、図2CはU形状あるいは半球形状のものである。

【0078】このような液滴溜を設けることにより、イ 50 ンクジェット法により塗布する際、液体材料が目的とす る画素から溢れ出たとしても、液滴溜に捉えられ、また 液滴がバンク上に乗り上げたとしても同様に液滴溜に捉 えられる。この結果、表示素子の混色を避けることがで きる。

19

【0079】バンクは、仕切部材として機能する部材であり、液体材料に対して発液性を示す材料でも良いし、後述するように、プラズマ処理による発液化(テフロン化)が可能で下地基板との密着性が良くフォトリソグラフィによるパターニングがし易いポリイミドなどの絶縁有機材料が好ましい。カラーフィルタ等では、仕切部材 10 は遮蔽機能を兼用させてもよい。遮蔽部材として形成するためには、ブラックマトリックス用の材料はクロム等の金属や酸化物を用いる。

【0080】バンクの形成はリソグラフィ法や印刷法等、任意の方法で行うことができる。例えば、リソグラフィ法を使用する場合は、スピンコート、スプレーコート、ロールコート、ダイコート、ディップコート等所定の方法でバンクの高さに合わせて有機材料を塗布し、その上にレジスト層を塗布する。そして、バンク形状に合わせてマスクを施しレジストを露光・現像することによりバンク形状に合わせたレジストを残す。最後にエッチングしてマスク以外の部分のバンク材料を除去する。また、下層が無機物で上層が有機物で構成された2層以上でバンク(凸部)を形成してもよい。

【0081】(b)基板の構成

バンクは基板上に形成される。基板としては、表示装置に使用する薄膜トランジスタ(TFT: Thin Film Transistor)が形成された駆動基板であっても、カラーフィルタに使用する透明基板であってもよいが、その表面がバンクとの密着性の高い部材で形成されていることが好るもしい。特に、無機材料で構成されていることが、後述の表面処理において好適な親和性を得る点で好ましい。このようなものとして、例えば、表示装置であれば透明電極であるITOなどが、カラーフィルタであればガラスや石英等でが挙げられる。

【0082】(c)被塗布領域及び薄膜層の構成本発明の表示装置は、上記バンクにより区切られた基板表面、すなわち被塗布領域にインクジェット法により液体材料を用いて形成された薄膜層を有する。上記被塗布領域を形成する基板については上述の通りである。本発明においては、薄膜層を形成する液体材料のインクジェット液滴径をd(μm)とするとき、被塗布領域の幅b(μm)をd/2

(μm)をd/2

とするとき、被塗布領域の幅b(μm)をd/2

(μm)以下であるときは液滴が被塗布領域に溢れ、バンクを介して隣接する画素領域に流出してしまったり、たとえバンクに発液性があったとしても、液滴がバンクの上に乗り上げてしまう等の問題が生じる。また、bの値が5d(μm)以上であるときは液滴は被塗布領域に広がるが膜厚が薄くなり、所望の膜厚を得るためには複数回の重ね打ちが必要となり50

不経済である。また場合によっては、均一に濡れ広がら ないこともある。

【0083】本発明においては、上記被塗布領域は上記 の大きさを有するものであれば、その形状については特 に制限はなく、四角形(長方形,正方形,菱形を含 む)、多角形(5角形、6角形等)、円形(真円形, 楕 円形を含む)等の環状形状、十字形、その他これに類す る形状等いかなる形状も可能であるが、インクジェット 法による塗布方式においては、液滴が濡れ易い形状であ ることが好ましいことから、特に、エッジ部(例えば、 四角形における角部や頂点部)を有する形状のものにお いては、該エッジ部を曲面としたものが好ましい。この ようにすることで、液体材料が被塗布領域に充填された 時に、上記エッジ部分をぬれやすくすることができる。 【0084】上記被塗布領域には液体材料が塗布され薄 膜層が設けられるが、その適用例としては、有機EL表 示装置があり、ここにおいては、薄膜層は画素電極であ り、液体材料は薄膜発光素子を形成するための有機半導 体材料である。この際、例えば、上記画素電極はITO 電極膜である。

【0085】(d)表面処理

本発明においては、バンク表面が被塗布領域に比べて液体材料に対する非親和性の程度がより高くなるように、バンク及び被塗布領域の基板材料に表面処理を施しておくことが好ましい。このような表面処理により液体材料のバンク表面に対する接触角を50度以上とし、また被塗布領域の基板材料に対する接触角を20度以下とすることが好ましい。このようにすることにより、薄膜層の厚さに比べて多量の液体材料を吐出しても、液体材料がバンクを乗り越え溢れでることもなく、所定の被塗布領域のみに充填される。

【0086】上記表面処理としては、例えば導入ガスにフッ素またはフッ素化合物を含むガスを使用し、フッ素化合物及び酸素を含む減圧雰囲気下あるいは大気圧雰囲気下でプラズマ照射をする減圧プラズマ処理や大気圧プラズマ処理が挙げられる。フッ素またはフッ素化合物を含むガスとしては、CF4, SF6, CHF3等が挙げられる。

【0087】(e)薄膜形成

・本発明においては、上記バンクで仕切られた被塗布領域に、インクジェット法により液体材料を塗布し薄膜層を形成する。インクジェット法を用いることにより、任意の被塗布領域に任意の量で液体材料を充填することができ、また、家庭用プリンタに使用されるような小型の装置で充填が可能となる。本発明においては、吐出される液滴の径d(µm)に対して、バンク及び該バンクに仕切られる被塗布領域の形状、大きさを最適化することにより、隣の画素との混色が起こらず、各画素毎の膜厚のばらつきのない薄膜層が得られるのである。

50 【0088】インクジェット法における吐出量は、塗布

後の加熱処理により体積が減少した際に、所望の厚みに なるような量とする。場合によっては所望の厚みになる ように乾燥後の重ね合わせ処理をしても良い。インクジ ェット式記録ヘッドから吐出させるには通常粘度が数c Pである。

【0089】本発明においては、吐出された液滴の大き さに対し、バンクの大きさ及び被塗布領域の幅を規定す ることにより、薄膜層の厚さに比べて多量の液体材料を 吐出しても、液体材料がバンクを乗り越え溢れでること なく、所定の被塗布領域に充填されることとなる。液体 10 材料を充填した後、溶媒を含む材料の場合は加熱処理お よび/または減圧処理を行い溶媒成分を除去することに より、液体材料の体積が減少し、被塗布領域に薄膜層が 形成される。この時、被塗布領域の表面、すなわち基板 表面は前述のように親液性を示すように表面処理されて いるので薄膜層が好適に密着する。使用しうる液体材料 としては、表示装置の場合は有機半導体材料が、またカ ラーフィルタの場合は着色材料等が使用できる。有機半 導体材料としては、例えば、赤、緑、青より選択された 発光を有する有機発光材料が用いられる。

【0090】なお、インクジェット方式としては、ピエ ゾジェット方式であっても熱による気泡発生により吐出 する方法のいずれも使用できるが、加熱による流動体の 変質がない点でピエゾジェット方式が好ましい。

【0091】(2):第2の実施例(ディップ法又はス ピンコート法を用いる態様)

本発明者らは、基板上に、所定の高さのバンク、及び該 バンクにより区切られ被塗布領域を設け、所望の表面処 理を行い、ディップ法又はスピンコート法により形成さ れる薄膜層を有する表示装置において、上記薄膜層が表 30 面張力が30 d y n e/c mの液体材料を用いて形成さ れたことを特徴とする薄膜形成方法によっても、本発明 の目的が達成されることを見出した。特に、上記表示装 置は、インクジェット方式を用いた塗布の場合と異な り、バンクあるいは被塗布領域の形状あるいは大きさに 何ら限定を加えることなく、バンク、基板の表面エネル ギに加え、液体材料の表面エネルギを制御することによ り、上記目的を達成し、上記インクジェット法に比較し ても更に微細なパターニングを可能とするものである。 特に、上記表面張力の範囲に制御することにより、金属 40 セリン,ジエチレングリコールで希釈しインク化したも 配線等の微細パターニングに有効に用いられることとな り、数μm幅でのパターニングが可能となる。また、有 機EL素子製造に用いられる正孔注入層がR、G、Bで 共通の材料を用いる場合にも有効である。

【0092】ここに用いる基板、バンク、被塗布領域材 料については、その材質は前記インクジェット法を用い た塗布の場合と同様である。また、バンク表面及び被塗 布領域にインクジェット法の場合と同様の表面処理を行 うことが好ましい。従って、バンク及び被塗布領域であ る基板は、各々、液体材料に対して50度以上、30度 50 素子40を備える。導通制御回路50は、第1のTFT

以下の接触角を有するものであることが好ましい。ディ ップ法及びスピンコート法の各々は、通常当業界で行わ れる方法で行うことができる。

【0093】(3):第3の実施例(表示装置の具体的 実施形態)

本発明の表示装置の具体的構成について以下に説明す る.

【0094】(構成)図3は本実施形態におけるアクテ ィブマトリックス型表示装置の全体のレイアウトを模式 的に示すブロック図である。図4は図3における画素の -つを示す平面図、図5A~5Cはそれぞれ図4の切断 面A-Aにおける断面図、切断面B-Bにおける断面 図、切断面C-Cにおける断面図である。

【0095】本実施形態のアクティブマトリックス型表 示装置は、透明基板10の中央部分に表示部11を備え ている。透明基板10の外周部分には、データ側駆動回 路3および走査側駆動回路4が設けられており、データ 側駆動回路3からはデータ線sigが表示部11に配線 され、走査側駆動回路4からは走査線gateが配線さ 20 れている。これらの駆動回路3、4では、図示しないN 型のTFTとP型のTFTとによって相補型TFTが構 成されている。この相補型TFTは、シフトレジスタ回 路、レベルシフタ回路、アナログスイッチ回路などを構 成しており、外部から供給されるデータ信号及び走査信 号を電力増幅可能に構成している。

【0096】表示部11には、液晶アクティブマトリッ クス型表示装置のアクティブマトリックス基板と同様、 透明基板10上に複数の画素7が配置されている。 駆動 回路3及び4かちは、複数の走査線gateと複数のデ ータ線sigが交差して配線されており、各画素7には 一組のデータ線sigと走査線gateが配されてい る。マトリックス状に交差しているデータ線 s i g及び 走査線gateの他に、共通給電線comが各画素の近 傍を通って配線されている。

【0097】各々の画素7は、バンク(bank) 層で囲ま れた例えば直径50μmの円形の凹部に形成されてい る。 画素を区切るバンク層はその幅aが10 μmであ り、高さが2µmであり、その材料は前述の通りであ る。また、液体材料(PPV前駆体溶液をDMF,グリ の) としては、ポリ (パラーフェニレンビニレン) (P PV) 前駆体溶液などの有機半導体材料溶液が用いられ る。この液体材料をインクジェット法によりバンクで囲 まれた被塗布領域に吐出し、加熱することにより有機半 導体膜43が形成される。また、正孔注入輸送層とし て、ポリエチレンジオキシチオフェンなどの導電性材料 をインクジェット法あるいはスピンコート法より形成し た積層構造であってもよい。

【0098】各画素7は導通制御回路50及び薄膜発光

20、保持容量cap及び第2のTFT30を備えてい る。第1のTFT20は、そのゲート電極に走査線ga teを介して走査信号が供給されている。保持容量ca pは、第1のTFT20を介してデータ線sigから供 給される画像信号を保持可能に構成されている。第2の TFT30は、保持容量capによって保持された画像 信号がゲート電極に供給されている。第2のTFT30 と薄膜発光素子40とは対向電極のpと共通給電線co mとの間で直列接続されている。

【0099】第1のTFT20及び第2のTFT30 は、図4及び図5A~5Cに示すように島状の半導体膜 により形成されている。第1のTFT20はゲート電極 21が走査線gateの一部として構成されている。第 1のTFT20はそのソース・ドレイン領域の一方には 第1層間絶縁膜51のコンタクトホールを介してデータ 線sigが電気的に接続され、他方には、ドレイン電極 22が電気的に接続されている。ドレイン電極22は第 2のTFT30のゲート電極31が第1層間絶縁膜51 のコンタクトホールを介して電気的に接続されている。 第2のTFT30はそのソース・ドレイン領域の一方に 20 は第1層間絶縁膜51のコンタクトホールを介してデー タ線sigと同時形成された中継電極35が電気的に接 続されている。中継電極35には第2層間絶縁膜52の コンタクトホールを介して薄膜発光素子40の透明電極 41が電気的に接続されている。透明電極としては例え ばITOが用いられる。

【0100】第2のTFT30はそのソース・ドレイン 領域のもう一方に第1層間絶縁膜51のコンタクトホー ルを介して共通給電線comが電気的に接続されてい る。共通給電線comの延設部分39は、第2のTFT 30 走査線gateも形成する。 30のゲート電極31の延設部分36に対して、第1層 間絶縁膜51を誘電体膜として挟んで対向し、保持容量 capを構成している。なお、保持容量capについて は共通給電線comとの間に形成した上記構造の他、走 査線gateと並列に形成した容量線との間に形成して もよい。また、第1のTFT20のドレイン領域と第2 のTFT30のゲート電極31とを利用して保持容量 c apを構成してもよい。

【0101】バンク層で囲まれた薄膜発光素子40は、 各画素7ごとに独立して形成されている。薄膜発光素子 40 40は画素電極41の上層側に、発光薄膜として有機半 導体膜43、及び対向電極0pを順に積層して形成され ている。有機半導体膜43としては、電界の印加により 発光する材料、例えばポリ(パラーフェニレン)(PP V) が用いられる。なお、有機半導体膜43は画素毎に 設けられる他、複数の画素7にまたがるストライプ形状 に形成されていてもよい。対向電極opには光を反射す る導電性材料、例えばリチウム含有アルミニウム、カル シウム等の金属膜が用いられる。対向電極opは表示部 11全体及び少なくとも端子12が形成されている領域 50 する。絶縁膜62は、その幅及び厚みとして、前述のよ

を除いた領域に形成されている。

【0102】なお、上記薄膜発光素子40としては、上 述のように正孔注入層を設けて発光効率(正孔注入効 率)を高めた構造や、電子注入層を設けて発光効率(電 子注入効率)を高めた構造、正孔注入層及び電子注入層 の双方を形成した構造を採用してもよい。

【0103】 (表示装置の製造方法)次に、上記構成の アクティブマトリックス型表示装置の製造方法について 説明する。

10 【0104】半導体層形成工程: まず、透明基板10 に対して、必要に応じて、TEOS (テトラエトキシシ ラン)や酸素ガスなどを原料ガスとしてプラズマCVD 法により厚さが約2000~5000オングストローム のシリコン酸化膜からなる下地保護膜を形成したのち、 下地保護膜の表面にプラズマCVD法により厚さが約3 00~700オングストロームのアモルファスのシリコ ン膜からなる半導体膜を形成する。次に、アモルファス のシリコン膜からなる半導体膜に対して、レーザアニー ルまたは固定成長法などの結晶化工程を行い、半導体膜 をポリシリコン膜に結晶化する。次に、半導体膜をパタ ーニングして島状の半導体膜とし、その表面に対してT EOS (テトラエトキシシラン)や酸素ガスなどを原料 ガスとしてプラズマCVD法により厚さが約600~1 500オングストロームのシリコン酸化膜または窒化膜 からなるゲート絶縁膜37を形成する。次に、アルミニ ウム、タンタル、モリブデン、チタン、タングステンな どの金属膜からなる導電膜をスパッタ法により形成した 後パターニングし、ゲート電極21、31及びゲート電 極31の延設部分36を形成する。この工程においては

【0105】この状態で、高濃度のリンイオンを打ち込 んで、ゲート電極21、31に対して自己整合的にソー ス・ドレイン領域を形成する。なお不純物が導入されな かった部分がチャネル領域となる。次に、第1層間絶縁 膜51を形成した後、各コンタクトホールを形成し、デ ータ線sig、ドレイン電極22、共通給電線com、 共通給電線 c o m の延設部分39、及び中継電極35を 形成する。その結果、第1のTFT20、第2のTFT 30、及び保持容量capが形成される。

【0106】次に、第2層間絶縁膜52を形成し、この 層間絶縁膜に中継電極35に相当する部分にコンタクト ホールを形成する。次に、第2層間絶縁膜52の表面全 体にITO膜を形成した後パターニングし、コンタクト ホールを介して第2のTFT30のソース・ドレイン領 域に電気的に接続して画素電極42を画素7毎に形成す る。

【0107】絶縁膜形成工程: 次に、走査線gate 及びデータ線sigに沿って絶縁膜62を形成する。絶 縁膜62は、前記のポリイミド等の有機絶縁材料で構成 25 うに液体材料をインクジェット法で塗布する際の液滴径 に対し、最適化した値を選択する。

【0108】表面処理工程: 次いで、画素電極41の 表面を液体材料に対して親和性(液体材料が水分を含む ときは親水性)、例えば接触角で20以下に、絶縁膜6 2を液体材料に対して非親和性、例えば接触角で50以 上に設定すべくフッ素を含むガスを使用して前述のよう にプラズマ処理を施す。

【0109】有機半導体(有機EL素子)膜形成工程: 上記表面処理後、バンクにより円形状に区画された被塗 10 布領域内にインクジエット法を利用してR, G, Bに対 応する各有機半導体膜43を形成する。すなわち、バン ク層に囲まれた円形状の被塗布領域に対してインクジエット式記録へッドから、有機半導体膜43を構成するための材料である液体材料を吐出する。具体例として、赤色発光層材料としては、上記PPV前駆体をインク化したものにローダミン、ベリレンなどの色素をドープしたもの、あるいはPPV前駆体(MHE-PPV)をインク化したものを用いた。青色発光層のための材料としては、ボリフルオレン誘導体をキシレン等の芳香族系溶媒 20 に溶解しインク化したものを用いた。その液滴径は30 μmφであった。

【0110】次いで、PPV前駆体溶液(PPV前駆体溶液をDMF希釈し、インク化したもの)の場合は、減圧下で溶媒を除去し、摂氏150度の加熱処理により共役化させ、被塗布領域に定着させて有機半導体膜43を形成する。ここで、バンク層及び被塗布領域の大きさ及び形状は吐出される液体材料の液滴径30μmφに対して最適化された値に設定されているため、有機半導体膜43の塗布領域はバンク層により確実に規定され、隣接30する画素7にはみでることはない。しかも、バンク層は液体材料に対し非親和性を有し、被塗布領域が液体材料に対し親和性を有するため、液体材料がバンク側壁に付着することもない。この結果、熱処理後に形成される有機半導体膜43は、各画素電極毎及び画素電極上で均一な厚みを保持する。

【0111】なお、有機半導体膜として、発光層、正孔注入層、電子注入層などを積層して形成する場合など多層構造素子を形成する場合には、インクジエット方式による液体材料の充填と乾燥を各層毎に繰り返せばよい。あるいは、正孔注入層、電子注入層がR, G、Bで共通の材料を使える場合には、スピンコート処理、ディップ処理においても液体材料の表面張力を30dyn/cm以下にして調整すれば画素領域にのみパターン形成することが可能である。具体例として有機EL素子に用いる正孔注入材料(例えば、ポリエチレンジオキシチオフェンなどのポリチオフェン誘導体)にポリスチレンスルフォン酸を添加したものの水分散液を表面張力の低い、セルソルブ系溶剤あるいはメタノールなどの表面張力の低いアルコール系あるいはその他の水溶系溶剤で希釈し、

表面張力が30dyne/cm以下になるように調製した。

【0112】かかるスピンコート用溶液は、表面処理 (プラズマ処理) したバンクに対して60°以上、IT O表面では20°以上の接触角を示した。

【0113】有機半導体膜43が形成されたら、透明基板10のほぼ全面に対向電極opを形成してアクティブマトリクス型表示装置が完成する。

【0114】上記のような製造方法によれば、インクジェット法を利用して所定の領域にR, G, Bに対応する各有機半導体膜43を形成できるので、フルカラーのアクティブマトリクス型表示装置を高い生産性で製造できる。しかも有機半導体膜を各画素毎に均一な厚みで形成できるので、明るさにむらが生じない。また、有機半導体膜の厚みが均一なので、薄膜発光素子40の駆動電流が一部に集中することがなく、薄膜発光素子40の信頼性の低下を防止できる。

【0115】なお、データ側駆動回路3や走査側駆動回路4にもTFTが形成されるが、これらのTFTは画素7にTFTを形成していく工程の全部あるいは一部を援用して行われる。それ故、駆動回路を構成するTFTも、画素7のTFTと同一の層間に形成されることになる。また、第1のTFT20、及び第2のTFT30については、双方がN型、双方がP型、一方がN型で他方がP型のいずれでもよいが、このようないずれの組合せであっても周知の方法でTFTを形成することができる。

【0116】(その他の変形例)なお、本発明は上記実施態様に限定されることなく、本発明の範囲内において、種々変更して実施することができる。

【0117】例えば、本発明はカラーフィルタに適用することができる。図6は本発明に適用したカラーフィルタの一例の断面図である。この場合、基板にガラスや石英からなる透明基板300を、バンクとして樹脂等の黒色材料で形成した仕切部材301を、液体材料として着色樹脂302を使用する。仕切部材301としては、黒色顔料・染料や酸化クロム、クロム金属膜等を適用してブラックマトリクスを形成してもよい。透明基板300上に仕切部材301を形成した後、インクジェット法に40より仕切部材301に囲まれた凹部被塗布領域303に着色樹脂302を充填する。その他、仕切り状の部材に囲まれた凹部に任意の流動体を充填して得られたもの、及びその製造方法であれば、本発明の適用は可能である。

【0118】具体例としてバンクの幅a及び被塗布領域の幅bを第1表に示すように変え、バンクの高さcを2μmとして図6に示すような表示装置を作製し、インクジェット法により液滴径dが30μmφの塗布液を用いて、被塗布領域に塗布した。結果を下記のような評価基50準で評価し第1表に示す。但し、その他の条件は以下の

通りであった。

バンク材料: ポリイミド (SiO2 +ポリイミドの積 層構造バンクでも良い。)

27

基板材料 : ITO

バンク表面接触角:60度(プラズマ処理)

被塗布領域接触角:10度(プラズマ処理)

液体材料:ポリパラフェニレンビニレン前駆体溶液 (P PV前駆体をDMFを主成分とする溶液に溶かし、グリ セリン、ジエチレングリコールを少量添加し、インク化 したもの)

評価基準

◎: バンク上に残渣が残ることなく液滴は完全に凹部 に収まる(図7D)R,G,Bの同時吐出が可能であ る。

[0119]

〇: 液滴は凹部に収まるが、若干バンクに残渣が残る (図7C)

△: 液滴がパンク上に乗り上げてしまう。(図7B) 乾燥後バンク上に材料が残る。R、G、Bの同時吐出は 不可能である。

【0120】×: 液体材料が隣接する凹部に溢れ出す (図7A)

ぬれが凹部に完全に広がらない(図7日)、ぬれが広が ったとしても膜厚が薄いので数回の重ね打ちが必要とな る。

[0121]

【表1】

		a (µm)					
		5	10	20	30		
	1 0	×	×	Δ	Δ		
ь	1 5	×	0	0	0		
to	20	0	0	0	0		
	3 0	0	0	0	0		
	50	0	0	0	0		
	160	×	×	×	×		

以上、第1~第3の実施例およびその変形例に詳細に述 べたように、インクジェット法においては、液体材料の することにより、画素間での混色がなく、画素毎の膜厚 のばらつきの極めて少ない表示装置が得られる。また、 R, G, Bの同時パターニングも可能となる。

【0122】また、スピンコート法やディッピング法に おいては、液体材料の表面張力を規定することにより、 更に微細なパターニングが可能となる。

【0123】なお、本発明は、表示装置や表示装置以外 であっても、これらに用いられる配線を有する基板に電 子デバイス、例えばTFT素子の形成においても有効で 10 あるし、有機EL素子、表示装置あるいはカラーフィル タなどに有効に適用される。

【0124】続いて、特許請求の範囲の請求項30~4 8に記載の発明を実施した第4~第7の実施例およびそ の変形例を説明する。

【0125】(4): 第4の実施例

本発明の第4の実施例は単一材料でバンクを形成した際 の薄膜形成方法に関する。図8A~8Dに本実施例の製 造工程断面図を示す。本実施例はバンク形成面に任意の 形状でバンクを設け、バンクで仕切られた領域に所定の 20 流動体を充填するようなあらゆる用途に適用されるもの である。例えば有機半導体薄膜素子を利用した表示素子 で有機半導体材料を画素領域に充填する場合やカラーフ ィルタで着色樹脂を画素領域に充填する場合に適用可能 である。

【0126】バンク形成工程(図8A): バンク形成 工程は、バンク形成面にバンクを形成する工程である。 バンク形成面は、表示装置に使用する薄膜トランジスタ (TFT: Thin Film Transistor) が形成された駆動基 板であってもカラーフィルタに使用する透明基板であっ 30 てもよい。仕切部材たるバンクで囲まれる領域に流動体 を充填して薄膜を形成する目的であればバンク形成面の 構造に限定はない。 ただしバンクとの密着性の高い部材 でその表面が形成されていることが好ましい。特に無機 材料で構成されていることが後の表面処理で好適な親和 性を得るために好ましい。表示装置であれば透明電極で あるITOなど、カラーフィルタであればガラスや石英 等で構成される。

【0127】バンクは仕切部材として機能する部材であ り、例えばポリイミド等の絶縁有機材料で構成されてい 40 ることが好ましく、その材料が絶縁性、半導体としての 性質、導電性のいずれを有していてもよい。特に有機材 料で構成されていることが後の表面処理で好適な非親和 性を得るために好ましい。カラーフィルタ等では仕切部 材は遮蔽機能を兼用させてもよい。遮蔽部材として形成 するためには、ブラックマトリクス用の材料はクロム等 の金属や酸化物を用いる。バンクの形成は、リソグラフ ィ法や印刷法等、任意の方法を選択できる。リソグラフ ィ法を使用する場合は、スピンコート、スプレーコー ド、ロールコート、ダイコート、ディップコート等所定 液滴径に対するバンク及び被塗布領域の大きさを適性化 50 の方法でバンクの高さに合わせて有機材料を塗布し、そ

の上にレジスト層を塗布する。そしてバンク形状に合わ せてマスクを施しレジストを露光・現像することにより バンク形状に合わせたレジストを残す。最後にエッチン グしてマスク以外の部分のバンク材料を除去する。印刷 法を使用する場合は、凹版、平版、凸版等任意の方法で バンク形状に有機材料を直接塗布する。バンク110の 高さは、バンクで囲まれる凹部101に薄膜材料液を充 填しても表面張力により隣接する凹部に薄膜材料液があ ふれ出ない程度の高さに形成する。例えば、加熱処理後 の薄膜層204を0.05μm~0.2μmの厚みで形 10 成するなら、バンク110を1μm~2μm程度の高さ に形成する。

29

【0128】表面処理工程(図8B): 表面処理工程 は一定条件下でプラズマ処理を行ってバンク形成面10 0とバンク110との薄膜材料液に対する親和性を調整 する工程である。本発明のプラズマ処理では、導入ガス としてフッ素を含むガスを用いる。減圧雰囲気下での減 圧プラズマ処理であっても大気圧雰囲気下での大気圧プ ラズマ処理であってもよい。反応ガス中に一定量の酸素 が含まれることが好ましい。フッ素系化合物としてはC 20 F4、SF6、CHF3等のハロゲンガスを用いる。

【0129】薄膜材料液等の任意の流動体に対して表面 が濡れやすいや濡れ難いか、すなわち親和性を示すか非 親和性を示すかは、材料表面の流動体に対する接触角を 測定することで知ることができる。 図9に、有機材料と 無機材料とをプラズマ処理した際に、フッ素化合物と酸 素との混合比によって接触角がどのようにして変わるか を測定した図を示す。この測定は、ポリイミド、IT O、又はS i O2 を一面に形成した基板の表面に既述の プラズマ処理を施し、下記インクについての接触角を測 30 定することにより行った。

【0130】ポリイミド膜を形成した基板については、 PPV前駆体インク(前駆体溶液をDMFを主成分とし グリセリン、ジエチレングリコールを少量添加し混合溶 媒で希釈してインク化したもの)を用いた。

【0131】ITO、又はSiO2を形成した基板につ いては、正孔注入材料(ポリエチレンジオキシチオフェ ンにポリスチレンスルフォン酸を添加したもの)の水分 散液にメタノール、グリセリン、エトキシエタノールを 添加し、インク化したものを用いた。

【0132】接触角はインク等の親水性のある流動体に 対する接触角である。ここではフッ素系化合物としてC F4を使用し、有機材料としてポリイミド、無機材料と してSiO2 とITO(Indium-Tin- Oxide)を使用し ている。図9に示すように酸素が過多の雰囲気下では、 有機材料、無機材料とも接触角の程度に大きな差異がな い。ところがフッ素系化合物が過多にすると有機材料の 接触角が大きくなる(非親和性になる)。これに対し無 機材料の接触角の変化は小さい。酸素が反応ガスに含ま れると酸素による酸化作用により無機材料および有機材 50 体積が減少し、凹部101の底に薄膜層204が形成さ

料ともに極性基が発生する。しかしフッ素系化合物が過 多であると有機材料中にフッ素化合物分子が入り込むよ うになるため、極性基の影響が相対的に少なくなると考 えられる。したがってフッ素系化合物が酸素に比べ過多 の条件で制御しながらプラズマ処理することにより、有 機材料および無機材料それぞれを図9に従って所望の接 触角 (親和性) に設定することができる。特に図9の最 良混合比 (CF₄ / CF₄ + O₂ = 75%) を使用した り大気圧中でCF4とHe混合ガスを導入したりするこ とは両者の接触角の差を最大とするために好ましい。

【0133】以上の事実より、フッ素系化合物を導入ガ スとし一定の割合で酸素が混合されるように減圧プラズ マ処理または大気圧プラズマ処理を行う。例えば図88 に示すように、容量結合型のプラズマ処理では上記ガス を反応室に流し一方の電極上にバンク形成面100を有 する基板を載置し、他方の電極201との間に電源20 0から電界を加える。反応室へのエネルギーの加え方に は公知の方法、例えば直流法、高周波法、誘導結合形、 容量結合形、マイクロ波法、電界と磁界とを供に加える 方法等を種々に適用可能である。プラズマ処理によりそ のフッ素系化合物と酸素との混合比により図9に従って 任意の接触角にする表面処理が行われる。

【0134】当該表面処理により、バンク形成面100 (凹部101の底面)とバンク110との薄膜材料液に 対する親和度が、「バンク形成面>>バンク表面」とい う順番になるように表面処理される。

【0135】薄膜形成工程(図8C、8D)): 薄膜 形成工程はバンク110で囲まれた凹部101に薄膜材 料液203を充填して薄膜層を形成する工程である。薄 膜材料液203の充填後は加熱処理等により溶媒成分を 蒸発させて薄膜層204を形成する。薄膜材料液を充填 する方法としてはインクジェット方式によることが好ま しい。インクジェット方式によれば任意の位置に任意の 量で流動体を充填することができ、家庭用プリンタに使 用されるような小型の装置で充填が可能だからである。 【0136】図8Cに示すように、インクジェット式記 録ヘッド202から薄膜材料液203をバンク110で 囲まれた凹部101に吐出する。吐出量は加熱処理によ り体積が減少した際に、所望の厚みになるような量とす 40 る。インクジェット式記録ヘッドから吐出させるには通 常粘度が数pc以下である。表面処理によりバンク11 0の上面および側面は薄膜材料液203に対し適度な非 親和性を示す。このため充填時には図8Dに示すように 薄膜層204の厚さに比べて多量の薄膜材料液203を 吐出しても、表面張力が作用して薄膜材料液203がバ ンク110を乗り越えることなく、81の位置に盛り上 がるほどに充填される。薄膜材料液を充填したら加熱処 理等を行って溶媒成分を蒸発させる。溶媒成分が蒸発す

ることにより、図8Dに示すように薄膜材料液203の

れる。このときバンク形成面100である凹部101の 底は親和性を示すように表面処理されているので薄膜層 204が好適に密着する。またバンク110の接触角を 図9において極端に接触角が大きくならないように条件 を選択しておけば、薄膜材料液203がバンク110の 側壁で極端にはじかれることなくほぼ均一な膜厚で薄膜 層204を形成できる。吐出される薄膜材料液203の 量は形成後の薄膜層204の厚みが例えば0.1μm~ 2μm程度になるように調整される。

【0137】なおインクジェット方式としてはピエゾジ 10 ェット方式でも熱による気泡発生による吐出する方法で あってもよい。ピエゾジェット方式では圧力室にノズル と圧電体素子とが備えられて構成されている。圧力室に 流動体が充填されている圧電体素子に電圧を印加すると 圧力室に体積変化が生じノズルから流動体の液滴が吐出 される。気泡発生により吐出する方式では、ノズルに通 ずる圧力室に発熱体が設けられている。発熱体を発熱さ せてノズル近辺の流動体を沸騰させ気泡を発生させてそ の体積膨張により流動体を吐出するものである。加熱に よる流動体の変質が無い点でピエゾジェット方式が好ま 20 しい。

【0138】上記したように本実施例によれば、フッ素 系化合物に酸素が混入している条件でプラズマ処理を行 うことにより、薄膜材料液に対しバンク表面を非親和性 に、バンク形成面を親和性に一気に表面処理できる。し かも図9に示すような特性にしたがって親和性の度合い を示す接触角を容易に設定できる。すなわち、バンク自 体はバンク形成面との高い密着性を保ちながら、親和性 制御のために従来のように多数の工程を経ることなくバ ンクとバンク形成面との親和性を確実に制御することが 30 できる。これにより、薄膜材料液がバンクを超えて流れ 出ることを防止し、歩留まりを向上させ、製造コストを 減少させることができる。

【0139】(5): 第5の実施例

本発明の第5の実施例は二層構造でバンクを形成した際 の薄膜形成方法に関する。特に無機材料で下層を有機材 料で上層を形成する点に特徴がある。

【0140】図10A~10Fに本実施例の製造工程断 面図を示す。本実施例は上記第4の実施例と同様に、バ ンク形成面に任意の形状でバンクを設け、バンクで仕切 40 られた領域に所定の流動体を充填するようなあらゆる用 途に適用されるものである。例えば有機半導体薄膜素子 を利用した表示素子で有機半導体材料を画素領域に充填 する場合やカラーフィルタで着色樹脂を画素領域に充填 する場合に適用可能である。

【0141】下層膜形成工程(図10A): 下層膜形 成工程は、バンク形成面100に下層膜120を形成す る工程である。バンク形成面に関しては上記第4の実施 例と同様である。下層膜の材料としては無機材料で構成 されていることが後の表面処理で好適な非親和性を得る 50 を予め予定の厚みより厚く形成し、下層膜と一緒に全体

ために好ましい。またバンク形成面100と密着性のよ い材料であることが好ましい。例えばバンク形成面が I TO等により形成されている場合、下層膜120に絶縁 膜として一般的なシリコン酸化膜 (SiO2) やシリコ ン窒化膜、アモルファスシリコンを利用することが可能 である。このような材料を使用した場合、プラズマ処理 により凹部101の底面の親和性とバンク上層121の 親和性との間の親和性が得られる。この親和性は薄膜材 料液を平坦に凹部101底面に定着させるために有効で ある。下層膜の形成は、上記無機材料を例えばスピンコ ート、スプレーコード、ロールコート、ダイコート、デ ィップコート等所定の方法で所望の高さに合わせて塗布 することによって行われる。下層膜120の高さは薄膜 層204の高さにほぼ等しい程度が好ましい。下層膜1 20は薄膜材料液203とある程度の親和性があるた め、薄膜材料液203が加熱処理される過程で下層膜1 20の壁面と薄膜材料液203とが密着する。最終的な 薄膜材料液203の厚みと下層膜120の高さとをほぼ 等しくしておけば、下層膜120の壁面に薄膜材料液2 03が密着することにより生ずる薄膜層204の表面の ゆがみをなくすることができるからである。

【0142】上層形成工程(図10B): 上層形成工 程は下層膜120の上にバンク上層121を形成する工 程である。バンク上層121の材料としては上記第4の 実施例で挙げた有機材料を使用する。遮蔽部材と兼用す ることも可能である。バンク上層121はバンクを形成 したい領域に選択的に形成する。印刷法やリソグラフィ 法等、任意の方法を選択できる。印刷法を使用する場合 は、凹版、平版、凸版等任意の方法でバンク形状に有機 材料を直接塗布する。リソグラフィ法を使用する場合 は、スピンコート、スプレーコード、ロールコート、ダ イコート、ディップコート等所定の方法でバンク上層1 21の高さに合わせて有機材料を塗布し、その上にレジ スト層を塗布する。そしてバンク形状に合わせてマスク を施しレジストを露光・現像することによりバンク形状 に合わせたレジストを残す。最後にエッチングしてマス ク以外の部分のバンク上層の材料を除去する。 バンク1 10の高さは、バンクで囲まれる凹部101に薄膜材料 液を充填しても表面張力により隣接する凹部に薄膜材料 液があふれ出ない程度の高さに形成する。例えば、加熱 処理後の薄膜層204を0.05μm~0.2μmの厚 みで形成するなら、下層膜120とバンク上層121と の合わせた高さを $1 \mu m \sim 2 \mu m$ 程度に形成する。

【0143】除去工程(図100): 除去工程はバン ク上層121をマスクとして下層膜120をエッチング する工程である。バンク上層121は有機材料であって レジストとして作用可能である。したがってエッチング 材料を選択することにより下層膜120のみを選択的に エッチングすることができる。例えばバンク上層121

をドライエッチングしたり、下層膜120がSiO2で 形成されている場合にはエッチング液にフッ酸を用いて ウェットエッチングしたりする。この処理によりバンク 上層121でマスクされているバンク形成領域以外の下 層膜120が除去される。

【0144】表面処理工程(図10D): 表面処理工 程は一定条件下でプラズマ処理を行ってバンク形成面1 00と下層膜120およびバンク上層121の薄膜材料 液に対する親和性を調整する工程である。本発明のプラ ズマ処理も上記実施形態1と同様の条件とガスによって 10 行われる。特にバンク形成面100と下層膜120とを それぞれITOとSiO2に選ぶと、この表面処理によ り好適な親和性設定が行える。すなわち図9に示すよう に、ITOとSiO2はともに無機材料であるためフッ 素系化合物と酸素の混合比による変化特性は類似する が、SiO2の方が親和性の程度が高い傾向にある。こ のため上記表面処理により、バンク形成面100、下層 膜(バンク下層)120およびバンク上層121の親和 性の程度を、「バンク形成面>=バンク下層表面>バン ク上層表面」という順番になるように表面処理すること 20 ができる。

【0145】薄膜形成工程(図10E, 10F): 薄 膜形成工程はバンク下層120および上層121で囲ま れた凹部101に薄膜材料液203を充填して薄膜層を 形成する工程である。その詳細は上記第4の実施例と同 様である。薄膜材料液203の充填後は加熱処理等によ り溶媒成分を蒸発させて薄膜層204を形成する。

【0146】図10Eに示すように、インクジェット式 記録ヘッド202から薄膜材料液203をバンクで囲ま れた凹部101に吐出する。吐出量は加熱処理により体 30 積が減少した際に、所望の厚みになるような量とする。 この厚みは上記理由によりバンク下層120の厚みにほ ば等しいことが好ましい。 充填時には図10 Eに示すよ うに薄膜層204の厚さに比べて多量の薄膜材料液20 3を吐出しても、パンク上層121の表面張力が作用し て薄膜材料液203がパンクを乗り越えることなく、S 3の位置に盛り上がるほどに充填される。薄膜材料液を 充填したら加熱処理等を行って溶媒成分を蒸発させる。 溶媒成分が蒸発することにより、 図10 Fに示すように 薄膜材料液203の体積が減少し、凹部101の底の表 40 面S4における厚みでバンク下層120と同程度の厚み の薄膜層204が形成される。このときバンク形成面1 00である凹部101の底は親和性を示すように表面処 理されているので薄膜層204が好適に濡れる。またバ ンク下層120の接触角はバンク上層121より小さ く、適度な親和性で薄膜材料液203と密着する。この ため薄膜材料液203がバンク下層120の側壁ではじ かれることがない。またバンク下層120と薄膜層20 4とがほぼ同一の厚みなので、薄膜材料液203がバン ク下層120の側壁に引きずられることがない。このた 50 より公知の方法を用いて行う。

めほぼ均一な膜厚で薄膜層204を形成できる。吐出さ れる薄膜材料液203の量は形成後の薄膜層204の厚 みが例えば 0.1μ m~ 2μ m程度になるように調整さ na.

【0147】上記したように本実施例によれば、無機材 料と有機材料とを積層したバンクにフッ素系化合物に酸 素が混入している条件でプラズマ処理を行うことによ り、バンク上層、バンク下層およびバンク形成面の順で 親和性が上がるように設定できる。 すなわち、 バンク自 体はバンク形成面との高い密着性を保ちながら、親和性 制御のために従来のように多数の工程を経ることなく簡 単なプラズマ処理の制御により表面処理を一時に終了さ せることができる。これにより、薄膜材料液がバンクを 超えて流れ出ることを防止し、歩留まりを向上させ、製 造コストを減少させることができる。特に均一な薄膜層 を形成できるという効果を奏する。

【0148】(6): 第6の実施例 本発明の第6の実施例は上記第5の実施例とは異なる方 法で二層構造でバンクを形成するものである。

【0149】図11A~11Fおよび図12A~12C に本実施例の製造工程断面図を示す。本実施形態は上記 第4の実施例と同様に、バンク形成面に任意の形状でバ ンクを設け、バンクで仕切られた領域に所定の流動体を 充填するようなあらゆる用途に適用されるものである。 例えば有機半導体薄膜素子を利用した表示素子で有機半 導体材料を画素領域に充填する場合やカラーフィルタで 着色樹脂を画素領域に充填する場合に適用可能である。 バンク形成面、下層膜、バンク上層についての材料や厚 みについては上記第4および第5の実施例と同様なので 説明を省略する。

【0150】下層膜形成工程(図11A): 下層膜形 成工程は、バンク形成面100に下層膜130を形成す る工程である。上記第5の実施例と同様の方法により下 層膜130を形成する。

【0151】露光工程(図11B): 露光工程は下層 膜130をバンク形状に合わせて露光現像する工程であ る。下層膜130の上部にバンク形状に合わせてマスク 132を設ける。下層膜130がエネルギー付与により 硬化する材料の場合はバンク形成領域に光を透過させ、

除去領域に光を透過させないようにマスクする。下層膜 130がエネルギー付与により除去可能に変質する材料 の場合はバンク形成領域の光を遮断し、除去領域に光を 透過させるようにマスクする。本実施例ではバンク上層 をマスクとして下層をエッチングするものではなく、下 層と上層とを独立してエッチング可能なため、下層にお けるバンク形状と上層におけるバンク形状とを異ならせ ることが可能である。このバンク下層の形状を適当なも のに選ぶことにより、薄膜層を好適に設けることができ るようになる。なお露光はレーザ光等のエネルギー源に

【0152】エッチング工程(図11C): エッチン グ工程は、露光して硬化した領域を残して下層膜130 を除去する工程である。露光後、マスクおよび除去領域 の下層膜130を溶剤を用いて除去する。 エッチング は、下層膜130としてSiO2やポリシラザンを用い た場合には、エッチング液としてフッ酸を用いる。また ドライエッチングを用いてもよい。

【0153】上層膜形成工程(図11D): 上層膜形 成工程は、バンク下層130を覆って上層膜130を形 成する工程である。上記下層膜130と同様の方法によ 10 り上層膜131を形成する。

【0154】露光工程(図11E): 露光工程は上層 膜131を上層のバンク形状に合わせて露光する工程で ある。上層膜131上にバンク上層の形状に合わせてマ スク134を設ける。上層膜131がエネルギー付与に より硬化する材料の場合はバンク形成領域に光を透過さ せ、除去領域に光を透過させないようにマスクする。上 層膜131がエネルギー付与により除去可能に変質する 材料の場合はバンク形成領域の光を遮断し、除去領域に 光を透過させるようにマスクする。上述したように本実 20 等であるが、以下の点で相違する。 施形態ではバンク上層131の形状を下層と異ならせて もよい。なお露光はレーザ光等のエネルギー源により公 知の方法を用いて行う。

【0155】エッチング工程(図11F): エッチン グ工程は、露光して硬化した領域を残して上層膜131 を除去する工程である。露光後、マスクおよび除去領域 の上層膜131を溶剤を用いて除去する。 エッチング は、上層膜131としてポリイミドを用いた場合には、 エッチング液としてフッ酸を用いる。またドライエッチ ングを用いてもよい。

【0156】表面処理工程(図12A): 表面処理工 程については上記第5の実施例と同様なので説明を省略 する。この表面処理により、バンク形成面100、バン ク下層130およびバンク上層131の親和性の程度 を、「バンク形成面>=バンク下層表面>バンク上層表 面」という順番になるように表面処理することができ る。

【0157】薄膜形成工程(図12B, 12C): 薄 膜形成工程はバンク下層130および上層131で囲ま れた凹部101に薄膜材料液203を充填して薄膜層を 40 形成する工程である。薄膜形成工程については上記第5 の実施例と同様なので説明を省略する。

【0158】上記したように本実施例によれば、無機材 料と有機材料とを積層したバンクにフッ素系化合物に酸 素が混入している条件でプラズマ処理を行うことによ り、バンク上層、バンク下層およびバンク形成面の順で 親和性が上がるように設定できる。すなわち、バンク自 体はバンク形成面との高い密着性を保ちながら、親和性 制御のために従来のように多数の工程を経ることなく簡 せることができる。これにより、薄膜材料液がバンクを 超えて流れ出ることを防止し、歩留まりを向上させ、製 造コストを減少させることができる。特に均一な薄膜層 を形成でき、かつバンク下層と上層とを異なる形状に形 成できるという効果を奏する。

【0159】(7): 第7の実施例 第7の実施例は、実際の表示装置に前述した第5の実施 例を適用して製造された表示装置に関する。

【0160】 (全体構成) この表示装置は、アクティブ マトリクス型表示装置で成り、その全体構成は、前述し た図3で説明したのと同一である(このため、構成要素 の符号は、図3と同一のものを用い、その重複部分の説 明を省略する)。図13はそれに構成されている画素の 1つを抜き出して示す平面図、図14A~14Cはそれ ぞれ図13の切断面A-A'における断面図、切断面B -B'における断面図、および切断面C-C'における 断面図である。

【0161】このアクティブマトリクス型表示装置1 は、その全体構成は前述した図3のものと同じまたは同

【0162】すなわち、各々の画素7は、バンク層ba nkで囲まれた凹部に形成されている。このバンク層 は、下層側絶縁膜61および上層側絶縁膜62を積層し て構成されている。このバンク層bankの製造に実施 形態3が適用される。その材料や高さ等の条件について は実施形態3と同様である。薄膜材料液としては、有機 半導体材料が用いられる。この材料をバンク層bank で囲まれた領域に吐出し加熱することにより有機半導体 膜43が形成される。例えば、有機半導体膜43が0.

30 05μm~0.2μmであるなら、下層関絶縁膜61と 上層側絶縁膜62とをそれぞれ0.2 μ m \sim 1.0 μ m 程度、1μm~2μm程度になるように形成される。

【0163】また、第1のTFT20および第2のTF T30は、図7および図8に示すように、島状の半導体 膜により形成されている。有機半導体膜43としては、 電界の印加により発光する材料、例えばポリフェニレン ビニレン (PPV) が用いられる。

【0164】 (バンク層の作用) 上記構成において、バ ンク層bankは有機半導体材料203をインクジェッ ト方式により充填する前に、上記実施形態と同様にフッ 素またはフッ素化合物を導入ガスとしたプラズマ処理が される。このため画素電極41>=下層随絶縁層62> 上層側絶縁層62という順番で有機半導体材料に対する 親和性が形成される。このため有機半導体材料を含んだ 薄膜材料液をバンク層bankで囲まれた画素領域一杯 に充填しても、下層側絶縁層62の高さに有機半導体膜 43が落ち着き、有機半導体膜43が凹字状に固化する ことを防止でき、平坦な有機半導体膜43を形成するこ とができる。 有機半導体膜43に膜厚の薄い部分がある 単なプラズマ処理の制御により表面処理を一時に終了さ 50 と、そこに薄膜発光素子40の駆動電流が集中し、薄膜

37 発光素子40の信頼性が低下することになるが、そのよ うな問題を排除することができる。

【0165】また本実施例では、画素電極41の形成領 域のうち、導通制御回路50の中継電極35と重なる領 域にもバンク層bankが形成され、中継電極35と重 なる領域には有機半導体膜43が形成されていない。す なわち、画素電極41の形成領域のうち、平坦な部分の みに有機半導体膜43が形成される。これも有機半導体 膜43を一定の膜厚に維持する要因になっている。

【0166】さらに、中椎電極35と重なる領域にバン 10 ク層bankがないと、この部分でも対向電極opとの 間に駆動電流が流れて有機半導体膜43が発光する。し かしこの光は中継電極35と対向電極0pとの間に挟ま れて外に出射されず表示に寄与しない。かかる表示に奇 与しない部分で流れる駆動電流は、表示という面からみ て無効電流といえる。しかるに本形態では、従来ならこ のような無効電流が流れるはずの部分にバンク層ban kを形成した。このため、共通給電線comに無駄な電 流が流れることが防止でき、共通給電線comの幅はそ の分狭くてよくなる。その結果として、発光面積を増す 20 ことができ、輝度、コントラスト比などの表示性能を向 上させることができる。

【0167】またインクジェット方式を用いることによ り原色ごとに打ち分けて有機半導体膜を形成可能である ため、フォトリソグラフィ法などの複雑な工程を用いる ことなくパターニングが可能になる。

【0168】なお、バンク層bankを黒色のレジスト によって形成してもよい。バンク層bankはブラック マトリクスとして機能し、コントラスト比などの表示品 位が向上する。すなわち、本形態に係るアクティブマト 30 は表示動作の高速化を図ることができる。 リクス型表示装置1では、対向電極opが透明基板10 の表面側において画素7の全面に形成されるため、対向 電極opでの反射光がコントラスト比を低下させる。し かるに寄生容量を少なくする機能を担うパンク層ban kを黒色のレジストで構成すれば、バンク層bankを ブラックマトリクスとして機能させることができ、対向 電極opからの反射光を遮るので、コントラスト比を向 上させることができる。

【0169】バンク層bankがデータ線sigおよび 走査線gateに沿って、有機半導体膜41よりも厚く 40 構成され、これに対向電極opが形成されている。した がってバンク層bankが存在することにより、データ 線sigには大きな容量が寄生することが防止される。 すなわち、データ線sigと対向電極opどの間にも、 厚いバンク層bankが介在しているのでデータ線si gに寄生する容童が極めて小さい。それ故、駆動回路 3、4の負荷を低減でき、低消費電力化および/または 表示動作の高速化を図ることができる。

【0170】またバンク層bankは無機材料および有

みで厚みの厚いバンク層を形成しようとすれば、長い時 間をかけて無機材料からなる膜をPECVD法などで成 膜する必要がある。これに対しレジストやポリイミド膜 等の有機材料は比較的厚い膜を形成するのが容易であ る。本実施形態のバンク層bankは上層側絶縁膜62 を厚膜化が容易な有機材料から構成しているので、バン ク層形成が短時間で済むため生産性を高めることができ る。

【0171】またかかる二層構造であれば、有機半導体 膜41は無機材料からなる下層側絶縁膜61とは接して いるが、有機材料からなる上層側絶縁膜62とは接しな い。それ故、有機半導体膜41は有機材料から構成され ている上層側絶縁膜62の影響を受けて劣化することが ないので、薄膜発光素子40では、発光効率の低下や信 頼性の低下が起きない。

【0172】また、本実施例によれば、透明基板10の 周辺領域 (表示部11の外側領域) にもバンク層ban kが形成されているので、データ側駆動回路3および走 査関駆動回路4もバンク層bankによって覆われてい る。対向電極opは、少なくとも表示部11に形成され ていれば十分であり、駆動回路領域にまで形成する必要 がない。しかし対向電極opをマスクスパッタ法で形成 した場合は合わせ精度が悪いため、駆動回路領域にまで 対向電極opが形成されることがある。本実施例ではこ れらの駆動回路領域にまで対向電極opが形成されたと しても、駆動回路の配線層と対向電極のpとの間にバン ク層bankが介在することになる。このため駆動回路 3、4に容量が寄生することを防止できるため、駆動回 路3、4の負荷を低減でき、低消費電力化および/また

【0173】 (表示装置の作用) 上記のように構成した アクティブマトリクス型表示装置1において、走査信号 によって選択されて第1のTFT20がオン状態になる と、データ線sigからの画像信号が第1のTFT20 を介して第2のTFT30のゲート電極31に印加され る。同時に画像信号が第1のTFT20を介して保持容 量capに書き込まれる。その結果、第2のTFT30 がオン状態になると、対向電極0 p および画素電極41 をそれぞれ負極および正極として電圧が印加され、印加 電圧がしきい値電圧を越えた領域で有機半導体膜43に 流れる電流(駆動電流)が急激に増大する。従って発光 素子40はエレクトロルミネッセンス素子あるいはLE D素子として発光する。発光素子40の光は、対向電極 opに反射されて透明な画素電極41および透明基板1 0を透過して射出される。このような発光を行うための 駆動電流は、対向電極op、有機半導体膜43、画素電 極41、第2のTFT30、および共通給電線comか ら構成される電流経路を流れるため、第2のTFT30 がオフ状態になると流れなくなる。但し第2のTFT3 機材料からなる二層構造で構成されている。無機材料の 50 0のゲート電極は、第1のTFT20がオフ状態になっ

ても、保持容量 capによって画像信号に相当する電位 に保持されるので、第2のTFT30はオン状態のまま である。それ故、発光素子40には駆動電流が流れ続 け、この画素は点灯状態のままである。この状態は、新 たな画像データが保持容童capに書き込まれて、第2 のTFT30がオフ状態になるまで維持される。

【0174】 (表示装置の製造方法)次に上記構成のア クティブマトリクス型表示装置の製造方法について図1 5A~15C乃至図20A~20Cを参照しながら説明 する。本製造方法は表示装置に第5の実施例の製造方法 を適用したものである。

【0175】半導体層形成工程(図15A~15C): まず、透明基板10に対して、必要に応じて、TEO S (テトラエトキシシラン) や酸素ガスなどを原料ガス としてプラズマCVD法により厚さが約2000~50 00オングストロームのシリコン酸化膜からなる下地保 護膜(図示せず。)を形成した後、下地保護膜の表面に プラズマCVD法により厚さが約300~700オング ストロームのアモルファスのシリコン膜からなる半導体 膜を形成する。次にアモルファスのシリコン膜からなる 20 半導体膜に対して、レーザアニールまたは固相成長法な どの結晶化工程を行い、半導体膜をポリシリコン膜に結 晶化する。次に、半導体膜をパターニングして島状の半 導体膜とし、その表面に対してTEOS (テトラエトキ シシラン) や酸素ガスなどを原料ガスとしてプラズマC VD法により厚さが約600-1500オングストロー ムのシリコン酸化膜または窒化膜からなるゲート絶縁膜 37を形成する。次に、アルミニウム、タンタル、モリ ブデン、チタン、タングステンなどの金属膜からなる導 電膜をスパッタ法により形成した後パターニングし、ゲ 30 ート電極21、31、およびゲート電極31の延設部分 36を形成する。この工程では走査線gateも形成す る。

【0176】この状態で、高濃度のリンイオンを打ち込 んで、ゲート電極21、31に対して自己整合的にソー ス・ドレイン領域を形成する。なお不純物が導入されな かった部分がチャネル領域となる。次に、第1層間絶縁 膜51を形成した後、各コンタクトホールを形成し、デ ータ線sig、ドレイン電極22、共通給電線com、 共通給電線 c o m の延設部分39、および中継電極35 40 を形成する。その結果、第1のTFT20、第2のTF T30、および保持容量capが形成される。

【0177】次に第2層間絶縁膜52を形成し、この層 **間絶縁膜に中継電極35に相当する部分にコンタクトホ** ール形成する。次に第2層間絶縁膜52の表面全体に I TO膜を形成した後パターニングし、コンタクトホール を介して第2のTFT30のソース・ドレイン領域に電 気的に接続して画素電極41を画素7毎に形成する。

【0178】下層側絶縁膜形成工程(図16A~16

D法などで無機材料からなる膜(下層側絶縁膜61を形 成するための無機膜)を形成する。この膜は上記実施形 態で説明した無機材料および厚みで形成する。膜の厚み は有機半導体膜41よりも厚く形成されている。例え ば、有機半導体膜41を0.05μm~0.2μmの厚 みに形成するなら、無機材料の膜を0.2μm~1.0 μm程度の厚みに形成する。

40

【0179】上層側絶縁膜形成工程(図17A~17 C): 次いで走査線gateおよびデータ線sigに 沿ってレジスト(上層関絶縁膜62)を形成する。上層 側絶録膜62は、上記実施形態の有機材料で構成する。 上層側絶縁膜62の厚みは、画素領域に薄膜材料液料を 充填しても隣接する画素領域に薄膜材料液があふれ出な い程度の防波堤になりうる高さに形成する。例えば、有 機半導体膜41を0.05μm~0.2μmの厚みで形 成するなら、上層側絶縁膜62を1µm~2µm程度の 高さに形成する。

【0180】除去工程(図18A~18C): 次に、 上層側絶縁膜62をマスクとして無機材料から成る膜に パターニングを施す。その結果、無機材料からなる膜は 走査線gateおよびデータ線sigに沿って残り、下 層側絶縁膜61が形成される。このようにして下層側絶 縁膜61と上層側絶縁膜62とからなる2層構造のバン ク層bankが形成される。このときには、データ線s igに沿って残すレジスト部分は共通給電線comを覆 うように幅広とする。その結果、発光素子40の有機半 導体膜43を形成すべき領域はバンク層bankに囲ま

【0181】表面処理工程(図19A~19C): 次 に画素電極41の表面を薄膜材料液に対して親和性(薄 膜材料液が水分を含むときは親水性)に、上層傾絶縁膜 62を薄膜材料液に対して非親和性に、下層側絶縁膜6 1をその間の親和性に設定するべくフッ素を使用してプ ラズマ処理を施す。具体的な方法は第4および第5の実 施例と同様である。

【0182】以上により、画素電極41、下層傾絶縁膜 61 (無機材料) および上層側絶縁膜62 (有機材料) の薄膜材料液に対する親和度が、「画素電極表面>=下 層側絶縁膜表面>上層側絶縁膜表面」という順番になる ように表面処理される。

【0183】有機半導体膜形成工程(図20A~20 C): 上記表面処理が終わったら、バンク層bank でマトリクス状に区画された領域内にインクジェツト法 を利用してR、G、Bに対応する各有機半導体膜43を 形成していく。それには、バンク層bankの内側領域 に対してインクジェット式記録ヘッド202から、有機 半導体膜43を構成するための液状の材料(前駆体/吐 出液)である薄膜材料液203を吐出する。次いで10 0℃~150℃の熱処理を施して薄膜材料液中の溶剤成 C): 次に、第2層間絶縁膜52の表面側にPECV 50 分を蒸発させバンク層bankの内側領域で定着させて

有機半導体膜43を形成する。ここでバンク層bank は上記表面処理がされているため飛水性を示す。これに 対して有機半導体膜43の前駆体である薄膜材料液は親 水性の溶媒を用いているため、有機半導体膜43の塗布 領域はバンク層bankによって確実に規定され、隣接 する画素7にはみ出ることがない。しかもバンク層ba nkの側壁も飛水性があるため熱処理で薄膜材料液の溶 媒成分が蒸発していって薄膜材料液の嵩が減っていって も、薄膜材料液が側壁に付着することなく、より親水性 を示す画素電極41および無機材料の領域まで薄膜材料 10 液と個壁との接触面が移動する。したがって熱処理後に 形成される有機半導体膜43は、周囲が厚くなることな く、画素電極上で均一な厚みを保持する。なお多層構造 素子を形成する場合には、インクジェット方式による薄 膜材料液の充填と乾燥とを各層ごとに繰り返していけば よい。例えば有機半導体層として、発光膜、正孔注入 層、電子注入層などを積層して形成する場合である。

【0184】なお、上記工程において正孔輸送層をイン クジェット方式で形成してもよい。例えば、正孔輸送層 の元となる薄膜材料液をバンク層で囲まれた画素領域に 20 3~4 µmの厚みで充填することができる。この薄膜材 料液に熱処理を施すと、厚み0.05 \mu m~0.1 \mu m 程度の正孔輸送層を形成することができる。正孔輸送層 が形成されたら、さらに再度インクジェット方式により 上記した有機半導体材料を同様の厚みに充填する。

【0185】有機半導体層43が形成されたら、透明基 板10の略全面に対向電極0 pを形成してアクティブマ トリクス型表示装置1が完成する(図14A~14C参 照)。

【0186】上記のような製造方法によれば、インクジ 30 ェット法を利用して所定の領域にR、G、Bに対応する 各有機半導体膜43を形成していけるので、フルカラー のアクティブマトリクス型表示装置 1 を高い生産性で製 造できる。しかも有機半導体層を均一な厚みで形成でき るので、明るさにムラが生じない。また、有機半導体膜 の厚みが均一なので、薄膜発光素子40の駆動電流が一 部に集中することがないので、薄膜発光素子40の信頼 性が低下することを防止できる。

【0187】なお、図13に示すデータ側駆動回路3や 走査側駆動回路4にもTFTが形成されるが、これらの 40 TFTはの画素7にTFTを形成していく工程の全部あ るいは一部を援用して行われる。それ故、駆動回路を構 成するTFTも、画素7のTFTと同一の層間に形成さ れることになる。また、第1のTFT20、および第2 のTFT30については、双方がN型、双方がP型、一 方がN型で他方がP型のいずれでもよいが、このような いずれの組合せであっても周知の方法でTFTを形成し ていけるので、その説明を省略する。

【0188】(その他の変形例)なお、請求項31~4

とはなく、その発明の趣旨の範囲で種々に変更して適用 することが可能である。

【0189】例えば第7の実施例は発明を表示装置に適 用した具体例であったが、図21に示すようにカラーフ ィルタに適用してもよい。この場合、バンク形成面とし てガラスや石英からなる透明基板300を、バンクとし て樹脂等の黒色材料で形成した仕切部材301を、薄膜 材料液として着色樹脂302を使用する。仕切部材30 1としては黒色顔料・染料や酸化クロム、クロム金属膜 等を適用してブラックマトリクスを形成してもよい。透 明基板300上に仕切部材301を形成してからインク ジェット方式により仕切部材301によって囲まれた凹 部303に着色樹脂302を充填する。その他、仕切り 状の部材に囲まれた凹部に任意の流動体を充填する製造 方法であれば、かかる発明を適用可能である。

【0190】また表面処理はプラズマ処理に限られるも のではなく、図9に示すように同一の表面処理条件下で 異なる親和性に加工できる表面処理方法であれば適用が 可能である。かかる発明の主旨は一回の表面加工により 複数の親和性を一時に設定できる点にあるからである。 したがって親和性を設定する材料は無機材料と有機材料 との間に限られるものではなく、特定の材料間において 図9に示す親和性の特性を示すものであれば、その特定 材料間において、かかる発明の表面処理を適用可能であ る。

【0191】以上のように、第4~第7の実施例および その変形例によれば、プラズマ処理を一定条件で管理し たので、バンク自体はバンク形成面との高い密着性を保 ちながら、親和性制御のために多数の工程を経ることな くバンクとバンク形成面との親和性を確実に制御するこ とができる。これにより、歩留まりを向上させ、製造コ ストを減少させることができる。

【0192】また、表示装置によれば、プラズマ処理を 一定条件で管理することでバンクとバンク形成面との親 和性を確実に設定したので、薄膜材料液がバンクを超え て流れ出ることが防止でき、かつ均一な厚みの薄膜層を 有する表示装置を提供できる。これにより、明るさや色 にむらが生じない画像表示が行え、信頼性を向上させる ことができる。

【0193】さらに、薄膜材料液の充填をインクジェッ ト方式で行えば、色彩の別に応じて薄膜層を打ち分けて 形成できるので、フォトリソグラフィ法等にくらべパタ ーニングに要する工程が少なくて済むという効果を奏す る。続いて、特許請求の範囲の請求項49~74に記載 の発明を実施した第8~第11の実施例を図面に基づい て説明する。

【0194】(8):第8の実施例

本発明の実施の形態1に係わる表面改質法について図面 を用いて説明する。図22は、酸素プラズマとCF4プ 9に記載の発明は上記第4〜第7実施例に限定されるこ 50 ラズマ処理を続けて行った場合の、水系インク(表面張

カ30mN/m)のITO基板表面およびポリイミド膜 表面上での接触角変化を示したものである。この測定 は、ポリイミド、ITOを一面に形成した基板の表面に 既述のプラズマ処理を施し、下記インクについての接触 角を測定することにより行った。

【0195】ポリイミド膜、ITOを形成した基板につ いては、正孔注入材料(ポリエチレンジオキシチオフェ ンにポリスチレンスルフォン酸を添加したもの)の水分 散液にメタノール、グリセリン、エトキシエタノールを 添加し、インク化したものを用いた。

【0196】酸素プラズマ処理は、酸素ガス流量が、5 00SCCM、パワー1. OW/cm²、圧力1tor rで、CF4 プラズマ処理はCF4 ガス流量が、900 SCCM、パワー1. OW/cm²、圧力1torrと いう条件で行った。

*【0197】未処理の段階では、ITO表面、ポリイミ ド表面ともむしろ挠水性を示すが、酸素プラズマ処理に よりともに親水化され、さらにCF4 プラズマ処理によ りITO表面の親水性は保持されたまま、ポリイミド表 面は飛水化されることがわかる。またガラス基板にを同 様な処理をした場合、CF4プラズマ処理後では20~ 30度の接触角を示した。

44

【0198】一般的に表面張力の低いキシレン等の有機 溶剤系インクに対しても同様の連続プラズマ処理により 10 I TO表面上で10度以下、ポリイミド表面上でも50 度の接触角を示した。

【0199】表2に、上記プラズマ処理を行ったポリイ ミド膜表面のESCA分析を行った結果を示す。

[0200]

【表2】

	C(%)	N(96)	0(%)	F(%)
一	72.7	9.8	17.6	0
02プラズマ	63.6	9.5	27	0
CF4ノラスマ	33.3	3.1	6,8	51.8

表2から、酸素プラズマ処理により酸素原子が増え、C F4 プラズマ処理によりフッ素原子量が劇的に増加され フッ素化されることが明らかである。結合形態から、酸 素プラズマ処理により一旦、-COOH, -COHが形 成され、CF4プラズマ処理によりテフロン化(-CF 2 一) が起こっていることがわかった。

【0201】上記プラズマ処理によるテフロン化はアク リル骨格からなるネガレジストを用いた場合でも確認し ており、フォトリソグラフィーによりパターン形成が可 能な有機物の表面改質に大変有効である。

【0202】さらに大気圧下で、パワー300W、電極 -基板間距離1mm、酸素ガスプラズマは酸素ガス流量 80ccm、ヘリウムガス流量10l/min、搬送速 度10mm/sで、CF4プラズマはCF4ガス流量1 00ccm、ヘリウムガス流量101/min、搬送速 度5mm/sの条件下で連続プラズマ処理を行った場合 にも同様の結果を得ることができた。大気圧プラズマで は処理室内を真空にひく手間がなく簡便に同様の表面改 質ができる点で大変有効である。

に、CF4ガスを用いた場合について説明したが、これ に限らず、例えばNF3、SF6等のフッ素系ガスを用 いることもできる。

【0204】濡れ性(表面エネルギー)は処理時間だけ でなく、ガス流量、パワー、電極-基板間距離等のパラ メーターにより制御可能である。

【0205】このように同じ酸素-CF4連続プラズマ 処理により無機物表面は親液性に、有機物表面は発液性 に表面改質することが可能である。

【0206】(9): 第9の実施例

※本発明の第9の実施例に係わる薄膜形成方法ならびに有 機半導体薄膜を備えた有機EL素子の製造方法について 図面を用いて説明する。

【0207】図23A~23Bは有機EL素子の製造方 法を示す工程断面図である。

【0208】図23Aに示す工程では、ITO基板30 1上にポリイミドからなるバンク302をフォトリソ法 により形成する。パターンはストライプであっても良い し、円形に抜けたパターンでも良い。バンクを形成する 30 材料はポリイミドに限らずフォトリソ法によるパターン 加工が可能な有機材料が使える。

【0209】図23日に示す工程では、酸素ガス流量が 500SCCM、パワー1.0W/cm²、圧力1to rrという条件で酸素プラズマ処理を1分行う。パワー 300W、電極-基板間距離1mm、酸素ガス流量80 ccm、ヘリウムガス流量101/min、搬送速度1 Omm/sで大気圧プラズマ処理を行っても良い。酸素 プラズマ処理により親水性のITO表面3ならびに活性 化された (親水化された) ポリイミド層304が形成さ 【0203】また、フッ素系ガスプラズマ処理を行う際 40 れる。酸素プラズマ処理はITO上のポリイミド残さを アッシングするという効果も有する。

> 【0210】続いて図23Cに示す工程では、CF4ガ ス流量が900SCCM、パワー1.0W/cm²、圧 力1torrという条件でCF4プラズマ処理を30分 行う。パワー300W、電極一基板間距離1mm、CF 4 ガス流量100ccm、ヘリウムガス流量101/m in、機送速度5mm/sの条件下で大気圧プラズマ処 理を行ってもよい。親水性のITO表面303を保持し たままでポリイミド表面をテフロン化された発液性表面 ※50 305に改質することができる。

【0211】基板表面の汚染の程度が軽い場合は、酸素 プラズマ処理を行わず、CF4ガス流量が900SCC M、パワー1. OW/cm²、圧力1torrという条 件でCF4プラズマ処理を30~60分行っても同様の 効果が得られた。

【0212】図23Dに示す工程では、スピンコートに より正孔注入層306を形成する。正孔注入層材料液の 表面張力を調節することによりITO画素内だけに正孔 注入層材料をパターニングすることができる。ポリエチ レンジオキシチオフェンとポリスチレンスルフォン酸の 10 性化(親水化)された樹脂BM層314が形成される。 水分散液をエトキシエタノール及びメタノール(合計7 5パーセント)で希釈し、表面張力30dyne/cm としたものをスピンコート溶液として用いた。正孔注入 層材料液に対し、プラズマ処理 I TO表面は、10度以 下の接触角を示すため均一に塗膜される。 また、 プラズ マ処理ポリイミド表面では、60度以上の接触角を示す ためバンク上に塗膜されず、クロストークを起こすこと もない。また、正孔注入層材料インクをインクジェット 方式によりITO画素内にパターニング成膜しても良 とができる。

【0213】図23Eでは、赤色発光層材料インク30 7、緑色発光層材料インク308、青色発光層材料イン ク309をそれぞれ所定の画素にインクジェットヘッド 310より吐出することによりR, G, B, 3色の発光 層を形成する。緑色発光層材料には、PPV前駆体用液 をDMF、グリセリン、ジエチレングリコールの混合液 で希釈してインク化したものを用いた。赤色発光層材料 インクには、このPPVを用いた緑色インクに赤色色素 ローダミン101をPPVに対して1.5wt%加えた インクを用いた。青色発光層材料インクには、ポリジオ クチルスルフルオレンをキシレンに溶解したものをイン クとして用いた。発光材料層インク307、308、3 09のプラズマ処理ポリイミド表面上での接触角は60 度以上であるため、混色の生じない高精細なパターニン グが可能となる。モノクロ有機EL素子を形成する場合 にはスピンコート法により発光層を形成しても良い。

【0214】また、前記プラズマ処理により正孔注入層 材料液あるいは発光層インクとの接触角が20度~30 度になるようなガラス層を下層にした2層からなるバン 40 クを形成した基板を用いてもよい。バンク裾で短絡する 恐れを回避することができる。

【0215】(10): 第10の実施例 本発明の第10の実施例に係わる薄膜形成方法ならびに 着色薄膜を備えたカラーフィルターの製造方法について 図面を用いて説明する。

【0216】図24A~24Dはカラーフィルターの製 造方法を示す工程断面図である。

【0217】図24Aに示す工程では、ガラス基板31

トリソ法により形成する。パターンはストライプであっ ても良いし、円形に抜けたパターンでも良い。

【0218】図24Bに示す工程では、酸素ガス流量が 500SCCM、パワー1. OW/cm²、圧力1to rrという条件で酸素プラズマ処理を1分行う。パワー 300W、電極-基板間距離1mm、酸素ガス流量80 ccm、ヘリウムガス流量101/min、搬送速度1 Omm/sで大気圧プラズマ処理を行っても良い。酸素 プラズマ処理により親水性のガラス表面13ならびに活 酸素プラズマ処理はガラス上の樹脂残さをアッシングす るという効果も有する。

【0219】続いて図24Cに示す工程では、CF4ガ ス流量が900SCCM、パワー1.0W/cm²、圧 力1torrという条件でCF4プラズマ処理を30分 行う。パワー300W、電極-基板間距離1mm、CF 4 ガス流量100ccm、ヘリウムガス流量101/m in、搬送速度5mm/sの条件下で大気圧プラズマ処 理を行ってもよい。親水性のガラス表面313を保持し い。インクジェット方式の法が材料を格段に節約するこ 20 たままで樹脂BM表面をテフロン化された操インク件表 面315に改質することができる。

> 【0220】基板表面の汚染の程度が軽い場合は、酸素 プラズマ処理を行わず、CF4ガス流量が900SCC M、パワー1. OW/cm²、圧力1torrという条 件でCF4プラズマ処理を30~60分行っても同様の 効果が得られた。

【0221】図24Dに示す工程では、赤色光透過顔料 インク316、緑色光透過顔料インク317、青色光透 過顔料インク318をそれぞれ所定の画素にインクジェ ットヘッド319より吐出することによりR,G,B, 3色のフィルター層を形成する。顔料インク317、3 18、319のプラズマ処理樹脂BM表面上での接触角 は60度以上であるため、混色のない高精細なパターニ ングが可能となる。

【0222】また、前記プラズマ処理により顔料インク との接触角が20度~50度になるような材料を下層に した2層からなるバンクを形成した基板を用いてもよ い。色抜け膜厚むらの恐れを回避することができる。 【0223】(11): 第11の実施例

本発明の第11の実施例に係わる表面改質法ならびに薄

膜形成法について図面を用いて説明する。

【0224】図25A~25Dは、バンクを無機物およ び有機物の2層で形成した場合の効果を示した図であ

【0225】図25Aに示す工程では、ITO基3板2 0上に下層がガラス321、上層がポリイミド322か らなる積層バンクをフォトリソ法により形成する。

【0226】図25Bに示す工程では、第8~第10の 実施例で示したような酸素プラズマ、フッ素プラズマ処 1上に樹脂BM(ブラックマトリックス)312をフォ 50 理を連続しておこなう。ITO基板表面、バンク下層ガ

ラス表面は親水化され、バンク上層ポリイミドは**発液化** される。

【0227】図25Cに示す工程では、インクジェットへッド326より薄膜材料インクA;327および薄膜材料インクB;328を吐出することにより隣接する凹部に異なる特性の薄膜材料液を塗布する。プラズマ処理後、薄膜材料インクに対するITO表面323での接触角は20度以下、バンク下層ガラス表面324では30~40度、バンク上層ポリイミド表面325では90度の接触角を示す。

【0228】ベイク後、図25Dに示すように、薄膜A;329および薄膜B;330を得る。プラズマ処理ポリイミド表面325は強い挽インク性を示すため、図に示すようにポリイミドからなるバンク裾周辺では平坦に成膜されないことがある。しかし、ITO表面323およびガラス表面324はともに親インク性のため、ガラスで形成された下層バンク裾周辺も成膜されITO表面上では平坦な膜が形成される。有機EL素子などITOと電極で有機薄膜を挟む構造を有する素子の場合、ITO上に膜が形成されていないために起こる短絡を防ぐ20ことができる。また、カラーフィルターの製造においては膜厚ムラによる色ムラを防ぐために大変有効である。

【0229】以上のように、第8~第11の実施例によれば、同一基板上に有機物で形成したバンクを有する基板に、酸素ガスプラズマ処理を行った後、これに続けてフッ素系ガスプラズマ処理を行うことで、基板表面の親液性を保持したままで、バンクに半永久的な挽液性を付与することができる。

【0230】また、上記方法によれば、簡便な方法で、同一基板上に表面エネルギーが制御されたパターンを形 30 成することができ、従来のスピンコート等の途布法だけでなく、インクジェット方式による塗膜方法で、薄膜材料液を精密にパターニング成膜することが可能となる。よってカラーフィルターやフルカラー有機EL装置の製造を混色、色ムラ、クロストークなく、低コストかつ簡便に製造することが可能となる。

【図面の簡単な説明】

【図1】図1は、本発明の表示装置と液滴の関係を示す 概略説明図である。

【図2】図2A~2Cは本発明の表示装置において、液 40 滴溜を有するバンクの形状の例を示す断面図である。

【図3】図3は、本発明の表示装置に係るアクティブマトリクス型表示装置の一例の全体レイアウトを模式的に示すブロック図である。

【図4】図4は、図3に示すアクティブマトリクス型表示装置に構成される画素の一つを示す平面図である。

【図5】図5A~5Cはそれぞれ図4のA−A断面図, B−B断面図, C−C断面図である。

【図6】図6は、本発明を適用したカラーフィルタの一

例の断面図である。

【図7】図7A~7E参考実施例における各評価を示す 断面図である。

【図8】図8A~8Dは、本発明の第4の実施例に係る 薄膜形成方法の製造工程断面図である。

【図9】図9は、本発明の表面処理の原理に係るフッ素 系化合物と酸素との混合比と接触角との関係を説明する 特性図である。

【図10】図10A~10Fは、本発明の第5の実施例 10 に係る薄膜形成方法の製造工程断面図である。

【図11】図11A~11Fは、本発明の第6の実施形に係る薄膜形成方法の製造工程断面図である。

【図12】図12A~12Cは、本発明の第6の実施例に係る薄膜形成方法の製造工程断面図(続き)である。 【図13】図13は、本発明の第7の実施例に係るアクティブマトリクス型表示装置に構成されている画素の1つを抜き出して示す平面図である。

【図14】図14A~14Cは、図13のA-A'断面図、B-B'断面図、およびC-C'断面図である。

【図15】図15A~15Cは、半導体層形成工程を説明する、それぞれ図13のA-A'断面図、B-B'断面図、およびC-C'断面図である。

【図16】図16A〜16Cは、下層側絶縁層形成工程を説明する、それぞれ図13のA-A、断面図、B-B、断面図、およびC-C、断面図である。

【図17】図17A~17Cは、上層側絶縁層形成工程を説明する、それぞれ図13のA-A'断面図、B-B'断面図、およびC-C'断面図である。

【図18】図 $18A\sim18C$ は、バンク層形成工程を説明する、それぞれ図130A-A、断面図、B-B、断面図、およびC-C、断面図である。

【図19】図19A~19Cは、表面処理工程を説明する、それぞれ図13のA-A'断面図、B-B'断面図、およびC-C'断面図である。

【図20】図20A~20Cは、有機半導体膜形成工程を説明する、それぞれ図13のA-A'断面図、B-B'断面図、およびC-C'断面図である。

【図21】図21は、本発明を適用したカラーフィルタの断面図である。

【図22】図22は、本発明の第8の実施例に係るプラズマ処理によるITO基板表面およびポリイミド膜表面上での接触角変化を示す図である。

【図23】図23は、本発明の第9の実施例に係る有機 EL素子の製造方法を示す工程断面図である。

【図24】図24は、本発明の第10の実施例に係るカラーフィルターの製造方法を示す工程断面図である。

【図25】図25は、本発明の第11の実施例に係るバンクを無機物および有機物の2層で形成する製造方法を示す工程断面図である。

【図3】

【図4】

【図7】

【図10】

【図11】

【図14】

【図15】

【図16】

【図17】

【図18】

【図20】

【図19】

【図24】 【図25】

フロントページの続き

*)

(72)発明者 湯田坂 一夫

長野県諏訪市大和三丁目3番5号 セイコ ーエプソン株式会社内 (72)発明者 宮島 弘夫

長野県諏訪市大和三丁目3番5号 セイコ

ーエプソン株式会社内