Problem 1.1. (30 points total)

(a) (20 points) Clearly documenting your extremely careful work, compute the reduced row-echelon form of the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 & 3 & 0 \\ 2 & 4 & 4 & 10 & -2 \\ 1 & 2 & 5 & 11 & -4 \end{bmatrix}$$

(b) (1 points) Which columns of A have pivots? (list column numbers)

(c) (9 points) If possible, find the solution of the linear system below in parametric vector form.

$$\begin{cases} & x_1 + 2x_2 + x_3 + 3x_4 = 0 \\ & 2x_1 + 4x_2 + 4x_3 + 10x_4 = -2 \\ & x_1 + 2x_2 + 5x_3 + 11x_4 = -4 \end{cases}$$

Problem 1.2. (6 points) Carefully simplify each valid expression. For any invalid expression, explain why it is invalid.

$$\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1
\end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 3 & 1 \\ 4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 3 & 1 \\ 4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 \\ 4 & 2 & 3 \end{bmatrix}^{T} - \begin{bmatrix} 1 & 3 & 1 \\ 4 & 2 & 3 \end{bmatrix}^{T} \begin{bmatrix} 1 & 3 & 1 \\ 4 & 2 & 3 \end{bmatrix}$$

$$(d) \qquad \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$(e) \qquad \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}^T$$

$$(f) \qquad \begin{bmatrix} \sqrt{3} & -1 \\ 3 & -\sqrt{3} \end{bmatrix}^2$$

Problem 1.3. (6 points) For each matrix below, compute the matrix inverse, if it exists. If it fails to exist explain why.

$$A_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A_4 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$A_5 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{bmatrix}$$

$$A_6 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 \end{bmatrix}$$

Problem 1.4. (4 points) If possible, find the LU factorization of each matrix below:

$$A_1 = \begin{bmatrix} 0 & 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 4 & 0 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$A_4 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 \end{bmatrix}$$

Problem 1.5. (4 points) If possible, find the CR factorization of each matrix below:

$$A_1 = \begin{bmatrix} 0 & 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 4 & 0 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$A_4 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 \end{bmatrix}$$

true write T	in the box preceding the statment. Otherwise, write F .
(a)	A homogeneous linear system must have infinitely many solutions.
(b)	If A is 3×3 and B is 3×3 then it must be that $AB \neq BA$.
(c)	A sum of two symmetric 3×3 matrices is symmetric.
(d)	The product of two invertible 3×3 matrices is invertible.
(e)	

Problem 2. (10 points) Evaluate the truth of each statement below. If the statement is

(a)	A linear system with one or more free variables has infinitely many solutions.
(b)	Two different matrices cannot have the same reduced row-echelon form.
(c)	An inconsistent system must have more equations than unknowns.
(d)	The linear combination of two solutions of a homogeneous linear system is also a solution.
(e)	If A and B are 2×2 matrices and $AB=\begin{bmatrix}0&0\\0&0\end{bmatrix}$. then either A or B must be equal to $\begin{bmatrix}0&0\\0&0\end{bmatrix}$.

Problem 3.	(10 points)	[Sample Problem	A] What is	the result of	of the MATLAB	commands
below.						

ans =

1 0 -1 0 1 2

>> rref([2 2; 0 2]*A)

222			
ans =			
			
	I .		
	I .		
	I .		
	I .		
	I .		
	I .		
	I .		

Problem 3. (10 points) [Sample Problem B] Suppose that the MATLAB function initialzeros is defined by

Assuming initialzeros is in the current MATLAB search path, what is the output obtained by entering the following MATLAB commands:

```
>> A = [ 0 0 2 3 4; 0 0 0 0 0; 1 2 3 4 5; 0 0 2 0 0; 0 1 2 3 2; 0 0 0 0 0]; >> initialzeros(A)
```

ans =

Problem 4. (15 points) [Sample Problem A] The matrices listed below constitute all possible 3×3 reduced row-echelon matrices. Note that some of these matrices contain parameters which are aribitrary scalar values.

$$A_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A_2 = \begin{bmatrix} 1 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A_3 = \begin{bmatrix} 0 & 1 & a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A_4 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A_5 = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 0 \end{bmatrix} \qquad A_6 = \begin{bmatrix} 1 & a & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad A_7 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad A_8 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- (a) Determine the rank of each matrix above.
- (b) For each matrix above, give the inverse, if possible.
- (c) Which of the matrices above, considered as augmented matrices, represent an inconsistent system of linear equations?
- (d) For each matrix above that represents a linear system having multiple solutions, provide the solution set in parametric vector form.

Problem 4. (15 points) [Sample Problem B] Suppose

$$A = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 3 & 2 & 1 & 1 \\ 1 & 3 & 3 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix}, \quad A^{-1} = \begin{bmatrix} 1 & 1 & 0 & -3 \\ -2 & -1 & 0 & 5 \\ 3 & 2 & 1 & -10 \\ -2 & -2 & -1 & 9 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}.$$

(a) Solve the linear system

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 3 & 2 & 1 & 1 \\ 1 & 3 & 3 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

(b) Solve the linear system

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 3 & 2 & 1 & 1 \\ 1 & 3 & 3 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

(c) Simplify

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}^{-1} \left(\begin{bmatrix} 1 & 1 & 2 & 2 \\ 3 & 2 & 1 & 1 \\ 1 & 3 & 3 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}^{-1} \right)^{-1} \begin{bmatrix} 1 & 1 & 2 & 2 \\ 3 & 2 & 1 & 1 \\ 1 & 3 & 3 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix}^{-1}$$

Problem 4. (15 points) [Sample Problem C]

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{bmatrix}$$
. Fully explain your responses.

(a) Determine the rank (number of pivots) of the matrix A.

(b) Determine the rank of the matrix A^TA .

(c) Determine the rank of the matrix AA^T .

Problem 5. (15 points) [Sample Problem A] An $n \times n$ matrix A is congruent to an $n \times n$ matrix B if and only if there is a nonsingular $n \times n$ matrix S such that

$$SAS^T = B.$$

(a) Explain why every $n \times n$ matrix is congruent to itself.

(b) Explain why if A is congruent to B then B is congruent to A.

(c) Explain why if A is congruent to B and B is congruent to C then A is congruent to C.

Problem 5. (15 points) [Sample Problem B]

(a) Suppose that $\mathbf{a} \in \mathbb{R}^m$ and $\mathbf{b} \in \mathbb{R}^n$ what is the rank of $\mathbf{a}^T \mathbf{b}$? Explain why.

(b) Consider the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 8 & 12 \\ -3 & -6 & -9 \end{bmatrix}$. Find $\mathbf{a} \in \mathbb{R}^3$ and $\mathbf{b} \in \mathbb{R}^3$ such that $A = \mathbf{a}^T \mathbf{b}$.

(c) Consider the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$. Find vectors $\mathbf{a}_1, \mathbf{a}_2, \mathbf{b}_1, \mathbf{b}_2$ such that $A = \mathbf{a}_1^T \mathbf{b}_1 + \mathbf{a}_2^T \mathbf{b}_2.$

Problem 5. (15 points) [Sample Problem C] Carefully explain your answers to each part of this question.

(a) How many 2×2 real symmetric matrices are square roots of $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$?

(b) How many 2×2 real antisymmetric matrices are square roots of $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$?

(c) How many 2×2 real antisymmetric matrices are fourth roots of $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$?

Problem 5. (15 points) [Sample Problem D] Consider Gauss-Jordan applied to $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$:

(a) Find a lower unitriangular matrix L, a diagonal matrix D and an upper unitriangular matrix U such that

$$A = L \operatorname{pref}(A), \quad \operatorname{pref}(A) = D \operatorname{nref}(A), \quad \operatorname{and} \quad \operatorname{nref}(A) = U \operatorname{rref}(A).$$

$$L=igg[D=igg[U=igg[U=igg[V=V]]]$$

(b) Find a matrix C such that $A = C \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}$.

$$C =$$

(c) Find all matrices S such that $A = S \operatorname{rref}(A)$.

Extra Credit. (5 points) Showing your work, find the smallest positive integers x_1 , x_2 , x_3 and x_4 that balances the chemical equation for the combustion of ethanol:

$$(x_1) C_2 H_6 O + (x_2) O_2 \rightarrow (x_3) CO_2 + (x_4) H_2 O.$$

$$C_2H_6O+$$
 CO_2+ $H_2O.$