Задачи для практических занятий

Математический анализ (базовый уровень) — 1 семестр

Занятие 3. Предел последовательности

І. последовательность

II. предел по определению

III. исследование сходимости последовательности

Составила: Рванова А.С.

Редакторы: Лебедева А.Д., Правдин К.В.

В аудитории

І. Последовательность

Задача 1. Написать первые пять членов последовательности.

1.
$$x_n = 1 + (-1)^n \frac{1}{n}$$

2.
$$x_n = n(1 - (-1)^n)$$

Задача 2. Написать формулу общего члена последовательности.

1.
$$-\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, \dots$$

- 2. 0, 2, 0, 2, ...
- 3. $1, 0, -3, 0, 5, 0, -7, 0, \dots$

II. Предел по определению

Задача 3. Доказать по определению предела, что число 1 является пределом последовательности $x_n = \frac{n}{n+1} \quad \left(\text{т. e. } \lim_{n \to \infty} \frac{n}{n+1} = 1 \right)$

Задача 4. Доказать, что $\lim_{n \to \infty} \frac{2 \ln n - 1}{3 \ln n + 1} = \frac{2}{3}$, используя определение предела последовательности.

Задача 5. Доказать, что $\lim_{n \to \infty} \frac{1}{n + \sqrt[3]{n^2 - 26n + 24}} = 0$, используя определение предела последовательности.

Задача 6. Доказать, что последовательность $x_n = (-1)^n + 1/n$ не имеет предела.

Задача 7. Доказать, что $\lim_{n\to\infty} \frac{4n^2-3n}{3n+6} = +\infty$.

III. Исследование сходимости последовательности

Задача 8. Дана последовательность a_n . Число A является пределом последовательности при $n \to \infty$. Проведите исследование по плану:

- 1) Постройте график общего члена последовательности в зависимости от номера n.
- 2) Проиллюстрируйте сходимость (расходимость) последовательности:
 - а. вспомните определение предела последовательности, запишите его через $\, \varepsilon, \, \, n_0 \,$ и неравенство;
 - b. выберите три различных положительных числа $\varepsilon_1 > \varepsilon_2 > \varepsilon_3$;
 - с. для каждого такого числа изобразите на графике соответствующую ε -окрестность предела A (« ε -трубу»);
 - d. для каждого выбранного ε найдите на графике номер $n_0=n_0(\varepsilon)$, после которого все члены последовательности попадают в ε -окрестность, или установите, что такого номера нет.

Задачи для практических занятий

(!) Обратите внимание, что для качественной иллюстрации сгущения элементов последовательности a_n вокруг предела A (при $n \to \infty$) значения для ε следует выбирать так, чтобы соответствующие номера $n_0 = n_0(\varepsilon)$ получались действительно большими (например, $n_0(\varepsilon_1) > 10$, $n_0(\varepsilon_2) > 100$, $n_0(\varepsilon_3) > 1000$).

10(-1)1 10(-2)01 10(-3)001 /		
Nº	a_n	A
1.	$a_n = \frac{3n^2 + 2}{4n^2 - 1}$	$A = \frac{3}{4}$
2.	$a_n = \frac{2n^3}{n^3 - 2}$	A = 2
3.	$a_n = \frac{3n^2}{2 - n^2}$	A = -3
4.	$a_n = \frac{5n+1}{10n-3}$	$A = \frac{1}{2}$
5.	$a_n = \frac{4n-3}{2n+1}$	A = 2
6.	$a_n = \frac{2 - 3n^2}{4 + 5n^2}$	$A = -\frac{3}{5}$
7.	$a_n = \frac{3n^2 + n}{2n^2}$	$A = \frac{3}{2}$
8.	$a_n = \frac{3n-1}{5n+1}$	$A = \frac{3}{5}$

Консультация

Разбор задачи 8 на исследование сходимости последовательности.

Самостоятельно

І. Последовательность

Задача 9. Написать первые пять членов последовательности.

1.
$$x_n = \frac{3n+5}{2n-3}$$
.

2.
$$x_n = (-1)^n \arcsin\left(\frac{\sqrt{3}}{2}\right) + \pi n$$

Задача 10. Написать формулу общего члена последовательности.

1. 2,
$$\frac{4}{3}$$
, $\frac{6}{5}$, $\frac{8}{7}$, ...

2.
$$-3, \frac{5}{3}, -\frac{7}{5}, \frac{9}{7}, -\frac{11}{9}, \dots$$

3.
$$0, \frac{\sqrt{2}}{2}, 1, \frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2}, -1, -\frac{\sqrt{2}}{2}, 0, \dots$$

Задачи для практических занятий

II. Предел по определению

Задача 11. Доказать по определению предела, что число 4 является пределом последовательности $x_n = \frac{4n-1}{n+5}$.

Задача 12. Доказать, что $\lim_{n \to \infty} \frac{5 \cdot 3^n}{3^n - 2} = 5$, используя определение предела последовательности.

Задача 13. Доказать, что $\lim_{n \to \infty} \frac{4n^2 + 3n}{3n^2 + 6} = \frac{4}{3}$, используя определение предела последовательности.

Задача 14. Доказать, что последовательность $x_n = \sin \frac{\pi n}{2}$ не имеет предела.

Задача 15. Доказать, что $\lim_{n \to \infty} \frac{2n - 5n^2}{3n + 6} = -\infty$.