Step-1

Schwarz inequality: a, b are any vectors in \mathbf{R}^n , then $\left|a^Tb\right| \le ||a|| ||b||$

(a) Given that x and y are positive numbers.

$$b = \begin{pmatrix} \sqrt{x} \\ \sqrt{y} \end{pmatrix} \text{ and } a = \begin{pmatrix} \sqrt{y} \\ \sqrt{x} \end{pmatrix}$$

In view of Schwarz inequality, we consider $\left| a^T b \right|$

$$\left| \left(\sqrt{y}, \sqrt{x} \right) \left(\frac{\sqrt{x}}{\sqrt{y}} \right) \right| = \left| \sqrt{xy} + \sqrt{xy} \right|$$

$$=2\left|\sqrt{xy}\right|_{\hat{\mathbf{a}}\in[\hat{\mathbf{a}}\in1}$$

Step-2

On the other hand, we consider $||a|| ||b|| = ||(\sqrt{y}, \sqrt{x})|| ||(\sqrt{x}, \sqrt{y})||$

$$=\sqrt{\left(\sqrt{y}\right)^2+\left(\sqrt{x}\right)^2}\sqrt{\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2}$$

$$=\sqrt{(x+y)^2}$$

$$= x + y \hat{a} \in \hat{a} \in \hat{a} \in (2)$$

Applying Schwarz inequality on (1) and (2), we get $2\left|\sqrt{xy}\right| \le x + y$

Or,
$$\sqrt{xy} \le \frac{1}{2}(x+y)$$

Therefore, geometric mean ≤ arithmetic mean

Step-3

(b) We consider $||x+y||^2$

By definition, we get $= (x+y)^T (x+y)$

$$= (x^{T} + y^{T})(x + y)$$

$$= (x^{T}x + x^{T}y + y^{T}x + y^{T}y)$$

$$= ||x||^{2} + x^{T}y + y^{T}x + ||y||^{2}$$

$$= ||x||^{2} + 2|x^{T}y| + ||y||^{2} \text{ in } \mathbf{R}^{2}$$

$$\leq \left(\left\| x \right\| + \left\| y \right\| \right)^2$$

While norm is a non negative quantity, we apply the square root on both sides, we get

$$||x + y|| \le ||x|| + ||y||$$

This is the required triangular inequality.