# Juego de la Vida y Analizador

Frías Mercado Carlos Elliot September 23, 2017

 $3\mathrm{CM}6$ 

Computing Selected Topics

Prof: Genaro Juárez Martínez

# Contents

| 1 | $\mathbf{Jue}$ | go de la Vida              | 3  |
|---|----------------|----------------------------|----|
|   | 1.1            | Descripción del programa   | 3  |
|   | 1.2            | Pruebas del funcionamiento | 3  |
|   | 1.3            | Codigo fuente              | 6  |
|   |                | 1.3.1 Clase Universo       | 6  |
|   |                | 1.3.2 Clase Dios           | 11 |
|   |                | 1.3.3 Clase Escritor       | 12 |
|   |                | 1.3.4 Clase Vida           | 14 |
| 2 | Ana            | alizador 1                 | 6  |
|   | 2.1            | Descripción del programa   | 16 |
|   | 2.2            | Pruebas del funcionamiento | 16 |
|   | 2.3            | Codigo fuente              | 18 |
|   |                | <del>-</del>               | 18 |
|   |                | 2.3.2 Clase Divisor        | 20 |
|   |                | 2.3.3 Clase Analiza        | 22 |

# 1 Juego de la Vida

# 1.1 Descripción del programa

Este programa permite simular el algoritmo conocido como Juego de la Vida de Conway. Contiene células las cuales se representan en el tablero a través de un cuadrito de un color a elegir, estando algunas vivas y otras muertas, además se puede controlar la velocidad con la que

cada iteración va cambiando. Se puede iniciar la simulación desde un archivo precargado, dibujada por el usuario o aleatoriamente. El tamaño máximo del tablero (o cantidad máxima de células) es de 1000 y el mínimo es de 10.

# 1.2 Pruebas del funcionamiento



Figura 1: Inicialización del simulador con valores aleatorios



Figura 2: Cambio de colores del programa



Figura 3: Patrón introducido por el usuario



Figura 4: Patrón del usuario tras 1800 Iteraciones



Figura 5: Formato guardado en un archivo y luego recargado



Figura 6: Aspecto del archivo guardado

# 1.3 Codigo fuente

#### 1.3.1 Clase Universo

```
/* * To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor. */
package gol;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.Point;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.awt.event.MouseWheelEvent;
import java.awt.event.MouseWheelListener;
import javax.swing.JPanel;
import logica.Dios;
import logica.Vida;
/** * * @author Maku */
class Universo extends JPanel {
 int[][] m;
   int tam, click, tamCelula = 10, tiempo; //tam = num de celulas
```

```
private Graphics2D g2d;
 Color viva, muerta;
int[] regla = new int[4];
Dios gg = new Dios();
private int zoom = 0;
private static final double ZOOM_AMOUNT = 1.1;
    Universo ()
Universo(int[] regla, int tam, int tiempo, Color vi, Color mu)
  this.regla = regla;
     this.tam = tam;
          setPreferredSize(new Dimension(tam*tamCelula,tam*tamCelula)); //x, y
          m = gg.creaVida(tam);
     this.tiempo = tiempo;
 viva = vi;
  muerta = mu;
  this .addMouseListener(new MouseListener()
  @Override
                       public void mouseClicked(MouseEvent e)
                       int x, y;
Point p = e.getPoint();
y = (int) Math.floor((float)p.getX()/tamCelula);
x = (int) Math.floor((float)p.getY()/tamCelula);
if(x < tam \&\& y < tam)
if(m[x][y] == 1)
m[x][y] = 0;
}
else
{
m[x][y] = 1;
click = 1;
repaint();
}
}
@Override
public void mousePressed(MouseEvent e) {
//throw new UnsupportedOperationException("Not supported yet.");
//To change body of generated methods, choose Tools | Templates.
}
```

```
@Override
public void mouseReleased(MouseEvent e) {
// throw new UnsupportedOperationException("Not supported yet.");
//To change body of generated methods, choose Tools | Templates.
@Override
public void mouseEntered(MouseEvent e) {
// throw new UnsupportedOperationException("Not supported yet.");
//To change body of generated methods, choose Tools | Templates.
@Override
public void mouseExited(MouseEvent e) {
// throw new UnsupportedOperationException("Not supported yet.");
//To change body of generated methods, choose Tools | Templates.
}
                                                       });
Universo(int[] regla, int tam, int tiempo, int cero, Color vi, Color mu)
this.regla = regla;
this.tam = tam;
setPreferredSize(new Dimension(tam*tamCelula,tam*tamCelula)); //x, y
m = gg.destruyeVida(tam);
this.tiempo = tiempo;
viva = vi;
muerta = mu;
this .addMouseListener(new MouseListener() {
@Override
public void mouseClicked(MouseEvent e)
{
int x, y;
Point p = e.getPoint();
y = (int) Math.floor((float)p.getX()/tamCelula);
x = (int) Math.floor((float)p.getY()/tamCelula);
if(x < tam \&\& y < tam)
if(m[x][y] == 1)
m[x][y] = 0;
}
else
m[x][y] = 1;
click = 1;
```

```
repaint();
}
}
@Override
public void mousePressed(MouseEvent e) {
//throw new UnsupportedOperationException("Not supported yet."); //To change body of ge
@Override
public void mouseReleased(MouseEvent e) {
// throw new UnsupportedOperationException("Not supported yet."); //To change body of g
@Override
public void mouseEntered(MouseEvent e) {
// throw new UnsupportedOperationException("Not supported yet."); //To change body of
@Override
public void mouseExited(MouseEvent e) {
throw new UnsupportedOperationException("Not supported yet."); //To change body of gene
Universo(int[] regla, int tam, int tiempo, int[][] car, Color vi, Color mu)
this.regla = regla;
this.tam = tam-2;
System.out.println(this.tam);
setPreferredSize(new Dimension(tam*tamCelula,tam*tamCelula)); //x, y
m = car;
this.tiempo = tiempo;
viva = vi;
click = 1;
muerta = mu;
this .addMouseListener(new MouseListener() {
public void mouseClicked(MouseEvent e)
int x, y;
Point p = e.getPoint();
y = (int) Math.floor((float)p.getX()/tamCelula);
x = (int) Math.floor((float)p.getY()/tamCelula);
if(x < tam \&\& y < tam)
if(m[x][y] == 1)
m[x][y] = 0;
```

```
}
else
{
m[x][y] = 1;
}
click = 1;
repaint();
}
@Override
public void mousePressed(MouseEvent e) {
//throw new UnsupportedOperationException("Not supported yet."); //To change body of ge
@Override
public void mouseReleased(MouseEvent e) {
// throw new UnsupportedOperationException("Not supported yet."); //To change body of g
@Override
public void mouseEntered(MouseEvent e) {
// throw new UnsupportedOperationException("Not supported yet."); //To change body of
@Override
public void mouseExited(MouseEvent e) {
// throw new UnsupportedOperationException("Not supported yet.");
//To change body of generated methods, choose Tools | Templates.
});
}
@Override
public void paintComponent(Graphics g)
              super.paintComponent(g);
if(click == 1)
click = 0;
// repaint();
}
else
m = analiza(m, regla);
g2d = (Graphics2D) g;
for(int i = 1; i <= tam; i++)
for(int j = 1; j \le tam; j++)
```

```
if(m[i][j] == 1)
    g2d.setColor(viva);
    g2d.fillRect(tamCelula*j, tamCelula*i, tamCelula, tamCelula); //x, y, tamx, tamy
    g2d.drawRect(tamCelula*j, tamCelula*i, tamCelula, tamCelula); //x, y, tamx, tamy //x, y
                                   else
    g2d.setColor(muerta);
    g2d.fillRect(tamCelula*j, tamCelula*i, tamCelula, tamCelula); //x, y, tamx, tamy
    g2d.drawRect(tamCelula*j, tamCelula*i, tamCelula, tamCelula); //x, y, tamx, tamy //x, y
    }
    }
                              // repaint();
    try
    //System.out.println("tiempo " +tiempo);
    Thread.sleep(tiempo);
    catch (Exception e) {}
         } //paint component
    public int[][] analiza(int[][]m, int[] regla)
            {
    Vida v = new Vida();
    //System.out.println("hay"+regla[0]);
    return v.existe(m,regla, tam);
     public int[][] getMatriz()
    return m;
    }//class
1.3.2 Clase Dios
    /* * To change this license header, choose License Headers in Project Properties. * T
    import java.util.Random;
    /** * * @author Maku */
    public class Dios
    public Dios(){}
    public int[][] creaVida(int tam)
    int[][] inicio = new int[tam + 2][tam + 2];
    Random r = new Random();
    for(int i = 1; i <= tam; i++)
```

```
for(int j = 1; j <= tam; j++)</pre>
inicio[i][j] = r.nextInt(3);
}
}
return inicio;
public int[][] destruyeVida(int tam)
        {
int[][] fin = new int[tam + 2][tam + 2];
              for(int i = 1; i <= tam; i++)
                                   for(int j = 1; j \le tam; j++)
                                          fin[i][j] = 0;
               {
            }
           }
    return fin;
 }
```

#### 1.3.3 Clase Escritor

```
/* * To change this license header, choose License Headers in Project Properties. * T
\mid Templates * and open the template in the editor. */ package logica;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.PrintWriter;
import static java.lang.Character.getNumericValue;
/** * * @author Maku */
public class Escritor
public Escritor()
public int escribe(int[][] m)
 {
try
                        {
PrintWriter writer = new PrintWriter("1.txt", "UTF-8");
for(int i = 0; i < m.length; i++)</pre>
```

```
for(int j = 0; j < m.length; j++)
writer.print(m[i][j]);
writer.println("");
 writer.close();
   return 1;
 catch (IOException e)
return 0;
}
}
public int[][] lee(File f) throws FileNotFoundException, IOException
int[][] x;
int i = 0, j = 0, tam = 0;
String c = "", d;
if(f!=null)
FileReader archivos=new FileReader(f);
BufferedReader lee=new BufferedReader(archivos);
//c+= lee.readLine();
while((d = lee.readLine()) !=null)
tam++;
c += d;
                                        /
/System.out.println("c es "+c);
lee.close();
x = new int[tam][tam];
for(int k = 0; k < c.length(); k++)
String car = "";
car += c.charAt(k);
System.out.print("["+car+"]");
if(j == tam)
System.out.println("");
i++;
j = 0;
k--;
```

```
else
x[i][j] = Integer.parseInt(car);
j++;
}//while2
return x;
}
  //if
  else
x = new int[10][10];
for(i = 0; i < 10; i++)
for(j = 0; j < 10; j++)
x[i][j] = 0;
}
}
return x;
}
}//funcion lee
```

#### 1.3.4 Clase Vida

```
/* * To change this license header, choose License Headers in Project Properties. *
/** * * @author Maku */
   import java.io.*; import java.util.*; public class Vida
                                                                    }
public Vida()
public int[][] existe (int[][] m, int[] regla, int tam)
{
                                  int fila, colum, vec;
fila = tam;
                                            colum = fila;
//Random vida = new Random();
//Integer[][] m = new Integer[fila+2][colum+2];
int[][] aux = new int[fila+2][colum+2];
// Integer[][][] saves = new Integer[fila+2][colum+2][10]; //[fila][columna][indice]
    Integer[][] saves2 = new Integer[fila+2][colum+2]; //[fila][columna][indice]
for(int i = 1; i <= fila; i++) //analizar vida</pre>
for(int j = 1; j \le colum; j++)
```

```
vec = 0;
vec += m[i-1][j-1] + m[i-1][j] + m[i-1][j+1]; //las de arriba
\label{eq:vec += m[i][j-1] + m[i][j+1]; //las de al lado} \\
\mbox{vec += } m[\mbox{i+1}][\mbox{j-1}] \ + \ m[\mbox{i+1}][\mbox{j}] \ + \ m[\mbox{i+1}][\mbox{j+1}]; \ // \mbox{las de abajo}
if(m[i][j] == 1) //[fila][columna] Si está viva entonces:
if(vec < regla[0]) //morir de aislamiento :c Smin</pre>
aux[i][j] = 0;
if(vec > regla[2]) //morir de sobrepoblacion
Smax
aux[i][j] = 0;
if(vec >= regla[1] && vec <= regla[2]) //sobrevivir :3</pre>
aux[i][j] = 1;
}
}
else //si está muerta
if(vec == regla[3]) //nacer *3* //Tiene 3 vecinos B
aux[i][j] = 1;
else
aux[i][j] = 0;
  }
} //else muerta
}//for columa
} //for fila analizar vida
return aux;
}//main
                  }//clase
```

# 2 Analizador

# 2.1 Descripción del programa

Este programa se encarga de meterse dentro del juego de la vida (únicamente con 10 iteraciones) y trata de encontrar dentro de él los 3 tipos principales de elementos que se pueden formar (Glider, Still Life o Flip Flop). Lo eraliza diviendo todo el universo de células vivas y muertas en pequeñas secciones de 3x3 dentro de las cuales analiza el patrón de comportamiento obtenido al sumar un arreglo tridimensional de cada iteración de células vivas.

# 2.2 Pruebas del funcionamiento



Figura 7: Inicio del simulador y analizador aleatoriamente.



Figura 8: Análisis final generado tras las 10 iteraciones.



Figura 9: Archivo generado en el programa anterior, cargado dentro de éste y con nuevos colores.



Figura 10: Sistema configurado por el usuario.



Figura 11: Archivo generado al guardar el analizador.

### 2.3 Codigo fuente

#### 2.3.1 Clase Escritor

```
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
package logica;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.PrintWriter;
import static java.lang.Character.getNumericValue;
/** * *
@author Maku */
public class Escritor
 public Escritor()
     {
   public int escribe(int[][] m, int ff, int gl, int sl)
```

```
try
                    {
                            PrintWriter writer = new PrintWriter("Bitacora.txt", "UTF-8
                            for(int i = 0; i < m.length; i++)</pre>
                                 {
                                     for(int j = 0; j < m.length; j++)
                                             if(m[i][j] == 1
)
                                                     writer.print(m[i][j]);
                                             else
                                             {
                                                 writer.print(0);
                                     writer.println("");
                                 }
                      writer.println("Con 10 iteraciones existen");
                     writer.println("" + ff + " posibles Flip Flops");
                            writer.println(" " + gl + " posibles Gliders");
                            writer.println(" " + sl + " posibles Still Lifes");
                            writer.close();
                     return 1;
                 catch (IOException e)
                          return 0;
                        }
        public int[][] lee(File f) throws FileNotFoundException, IOException
                int[][] x;
                int i = 0, j = 0, tam = 0;
                String c = "", d;
                if(f!=null)
                    {
                             FileReader archivos=new FileReader(f);
                       BufferedReader lee=new BufferedReader(archivos);
                       //c+= lee.readLine();
                       while((d = lee.readLine()) !=null)
                           tam++;
                            c += d;
                                 //System.out.println("c es "+c);
```

```
lee.close();
                       x = new int[tam][tam];
                           for(int k = 0; k < c.length(); k++)
                    {
                           String car = "";
                        car += c.charAt(k);
                        System.out.print("["+car+"]");
                        if(j == tam)
                            System.out.println("");
                             i++;
                             j = 0;
                            k--;
                        }
                       else
                        {
                            x[i][j] = Integer.parseInt(car);
                            j++;
                        }
                    }//while2
                                                   return x;
                 }
                      //if
            else
                {
                    x = new int[10][10];
                    for(i = 0; i < 10; i++)
                        {
                            for(j = 0; j < 10; j++)
                                    x[i][j] = 0;
                        }
                    return x;
                }
                        }//funcion lee
}
```

#### 2.3.2 Clase Divisor

```
/* * To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
package logica;
import analizador.biatcora;
```

```
/** * * @author Maku */
public class Divisor
{
int[][][] saves;
int[][] saves2, ini; int sl = 0, gl = 0, ff = 0;
int[][] mini = new int[3][3];
int i0 = 1, i, j0 = 1, j, fil = 1, col = 1, tamSecc = 3, x = 0, y = 0, tam, gens; //mm
Analiza an = new Analiza();
public Divisor(int[][][] saves, int tam, int gens, int[][] in)
{
this.saves = saves;
this.tam = tam;
this.gens = gens;
this.ini = in;
saves2 = new int[saves.length][saves.length];
public void analisis() {
for(int ii = 1; ii <= tam; ii++)
for(int jj = 1; jj <= tam; jj++)</pre>
saves2[ii][jj] = 0; //inicializo matriz de analisis
}
for(int ii = 1; ii <= tam; ii++) {
for(int jj = 1; jj <= tam; jj++) {</pre>
for(int kk = 0; kk < gens; kk++) {</pre>
saves2[ii][jj] += saves[ii][jj][kk]; //lleno mi matriz de analisis
}
}
for(int li = 1; li <= tam; li++)</pre>
{ for(int lj = 1; lj <= tam; lj++)
System.out.print(saves2[li][lj]);
System.out.print("\n"); } //imprimo matriz de analisis
while(j0 <= tam)</pre>
if(i0 \le tam + 1) {
for(i = i0; i < (fil*tamSecc+1); i++) //dividiendo la matriz</pre>
if(i > tam) { break; }
for(j = j0; j < (col*tamSecc+1); j++)
{ if(j > tam) { break; } //
System.out.print(i +","+ j +" "+ saves2[i][j]+" ");
```

```
mini[x][y] = saves2[i][j];
y++;//columnas } //
System.out.print("|\n");
y = 0;
x++;
if(x > 2) { // }
System.out.println("Mini tiene: \n");
/* for(int a = 0; a < 3; a++)
for(int b = 0; b < 3; b++)
System.out.print(mini[a][b]);
System.out.print("\n"); }*/
if(an.FF(mini) == 1)
ff++;
System.out.println("POSIBLE FLIP FLOP ENCONTRADO\n");
if(an.SL(mini) == 1)
System.out.println("POSIBLE STILL LIFE ENCONTRADO\n");
if(an.GL(mini) == 1)
{
gl++;
System.out.println("POSIBLE GLIDER ENCONTRADO\n");
x = 0;
}
}
i0 = fil*tamSecc+1;
j0 = 1;
fil++; //
System.out.println("----");
} else { i0 = 1; j0 = col*tamSecc+1; col++; }
}//while analisis
biatcora b = new biatcora(ff, gl, sl, ini);
b.setVisible(true);
}//metodo analisis
}
```

### 2.3.3 Clase Analiza

```
/* * To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
```

```
\ast and open the template in the editor. \ast/
package logica;
/** * * @author Maku */
public class Analiza
              public Analiza()
        }
              public int FF(int[][] matriz)
                                 int[] FFC = {0, 0, 0}; //{valor, i, j}
                                 int max = 0;
                                 int[] maxes = {0, 0, 0, 0};
                                while(\max < 3)
                                             for(int i = 0; i < 3; i++)
                                                              for(int j = 0; j < 3; j++)
{</pre>
                                                                               if(matriz[i
                                                                                        }
                                                      } //for de encontrar centro
                                              if(FFC[0] < 4)
                                                  {
                                                      return 0;
                                                      if(FFC[1] == FFC[2]) //esta en el o
                                                                       if(FFC[0] > matriz[
                                                                               }
                                                              }
                                                      else //está en los lados
                                                               {
                                                                   if(FFC[1] == 1 && FFC[2
                                                                                    if((mat
```

if(FFC[1] == 1 && FFC[2
 {

```
if(matri
                                                                  if(FFC[1] == 0 \&\& FFC[2]
                                                                                   if(matr
//evaluo lados
                                                                  if(FFC[2] == 1 && FFC[1
                                                                      {
                                                                               if(matriz[2
evaluo lados
                                                                                       }
                                                             }//else
                                                              max++;
                                                             maxes[max] = FFC[0];
                                     return 0;
              public int SL(int[][] m)
                         int vida = 3;
                             if(m[0][0] > vida) // esquinita de arriba izr //cuadrado y
                                             if((m[0][1] > vida && m[1][0] > vida && m[1
                                                              return 1;
                                                      }
                             if(m[0][2] > vida) // esquinita de arriba dere
                                   {
                                             if(m[0][1] > vida && m[1][2] > vida && m[1]
                                                              return 1;
                             if(m[2][0] > vida) // esquinita de abajo izr
                                             if(m[1][0] > vida && m[2][1] > vida && m[1]
                                                              return 1;
```

```
}
              if(m[2][2] > vida) // esquinita de abajo der
                               if((m[2][1] > vida && m[1][2] > vida && m[1
                                                return 1;
                                      }
              return 0;
      }//still life
public int GL(int[][] m)
          int tam = 2;
              if(m[0][0] >= tam) // esquinita de arriba izr
                               if(m[1][0] >= m[0][0] \&\& m[0][1] >= m[0][0]
                                                if(m[2][1] >= m[1][0] \&\& m[
                                                               return 1;
             if(m[0][2] >= tam) // esquinita de arriba der
                               if(m[0][1] >= m[0][2] \&\& m[1][2] >= m[0][2]
                                               if(m[1][0] >= m[0][1] && m[2]
                                                               return 1;
                                                    }
                                      }
              if(m[2][0] >= tam) // esquinita de abajo izq
                                       if(m[1][0] >= m[2][0] \&\& m[2][1] >=
                                                      if(m[0][1] >= m[1][0]
                                                                         ret
                                               }
         if(m[2][2] >= tam) // esquinita de abajo der
```