Équations différentielles – Partie 4 : y' = ay + b et y' = ay + f

Exercice 1.

Pour chacune des équations différentielles (E) suivantes,

- déterminer l'équation homogène associée,
- trouver les solutions $y_h(x)$ de cette équation homogène,
- vérifier que la fonction $y_p(x)$ est bien solution de l'équation différentielle (*E*),
- en déduire toutes les solutions de (E).

1.
$$y' = -y + x^2 + 1$$
, $y_p(x) = x^2 - 2x + 3$

2.
$$y' = y + 2\cos(x)$$
, $y_p(x) = \sin(x) - \cos(x)$

3.
$$y' = 3y + xe^{2x}$$
, $y_p(x) = -(x+1)e^{2x}$

Exercice 2.

Pour chacune des équations différentielles (E) suivantes,

- déterminer l'équation homogène associée,
- trouver les solutions $y_h(x)$ de cette équation homogène,
- trouver une solution particulière $y_p(x)$ en vous aidant des indications,
- en déduire toutes les solutions de (E).
- 1. y' + 2y = 5, chercher une solution particulière sous la forme d'une fonction constante.
- 2. $2y' 3y = e^{-x}$, chercher une solution particulière sous la forme ke^{-x} où k est une constante à déterminer.
- 3. $y' = y + x^2$, chercher une solution particulière sous la forme $ax^2 + bx + c$.

Exercice 3.

Le dessin représente quelques solutions de l'équation différentielle (E) : $y' = 2y + x^2e^x$.

- 1. Tracer la tangente à la courbe solution qui passe par le point (0,0). Retrouver son équation par le calcul grâce à l'équation différentielle.
- 2. Tracer la tangente à la courbe solution qui passe par le point (0,1). Retrouver son équation par le calcul grâce à l'équation différentielle.
- 3. Tracer la tangente à la courbe solution qui passe par le point (1,-1). Retrouver son équation par le calcul grâce à l'équation différentielle.
- 4. Déterminer les solutions $y_h(x)$ de l'équation homogène.
- 5. Déterminer une solution particulière $y_p(x)$ sous la forme $(ax^2 + bx + c)e^x$.
- 6. En déduire toutes les solutions de (E).