1.2 Complétion au carré et forme canonique

Théorème 1.2 — au programme. Pour tout x et $m \in \mathbb{R}$ on a l'identité :

$$x^{2} + mx = x(x+m) = \left(x + \frac{m}{2}\right)^{2} - \left(\frac{m}{2}\right)^{2}$$

La fonction quadratique donnée par $f(x) = x^2 + mx$:

- admet pour racines x = 0 et -m.
- atteint son extremum en $x = -\frac{m}{2}$ d'après la forme canonique.

Conséquence La fonction quadratique de forme réduite

$$f(x) = ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

- $f(0) = f(-\frac{b}{a}) = c$
- atteint son extremum en $x = \alpha = -\frac{b}{2a}$.
- l'extremum $\beta = f(\alpha)$ est un maximum si a > 0, et un minimum si a < 0.

Théorème 1.3 — forme canonique. ⁵ Pour tout fonction quadratique définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, il existe deux réels α et $\beta \in \mathbb{R}$ tel que :

pour tout
$$x \in \mathbb{R}$$
 $f(x) = a(x - \alpha)^2 + \beta$

De plus
$$\alpha = -\frac{b}{2a}$$
 et $\beta = f(\alpha)$.

 5 non exigible

Exercices : Compléter au carré

La complétion au carré est une technique qui permet d'obtenir la forme canonique à partir de la forme réduite d'une fonction quadratique.

■ Exemple 1.6 — complétion au carré cas a = 1. (les – sont parfois à transformer en +)

$$f(x) = x^2 + 10$$
 $f(x) = x^2 + 10x$ $f(x) = x^2 - 4x$
 $= x(x+10)$ $= (x + \dots - \dots)(x+5+5)$ $= (x - \dots + \dots)(x - \dots - \dots)$
 $= (x + \dots - \dots)(x+5+5)$ $= (x - \dots + \dots)(x - \dots - \dots)$

$$f(x) = x^2 + 5x$$
 $f(x) = x^2 - 3x$
= $x(x - ...)$ = $(x - ...)(x - ...)$ = $(x - ...)(x - ...)$

$$f(x) = x^{2} - 7x + 5$$

$$= x(x - ...) + 5$$

$$= (x - ...)(x - ...) + 2$$

Exercice 1 Retrouvez par complétion au carré la forme quadratique des fonctions suivantes :

$$f_1(x) = x^2 + 4x$$
 $\left| f_2(x) = x^2 - 10x \right| \left| f_3(x) = x^2 + 3x + 1 \right| \left| f_4(x) = x^2 - 5x - 3 \right|$

■ Exemple 1.7 (les – sont parfois à transformer en +)

$$f(x) = 2x^{2} + 3x - 5$$

$$= 2\left[x^{2} + \frac{3}{2}x - \frac{5}{2}\right]$$

$$f(x) = -x^{2} + 12x - 2$$

$$= -\left[x^{2} \dots 12x \dots 2\right]$$

$$f(x) = -x^{2} + 10x - 25$$

$$= -\left[x^{2} \dots 10x \dots 25\right]$$

Exercice 2 Retrouvez par complétion au carré la forme quadratique des fonctions suivantes :

$$f_1(x) = 3x^2 + 9x + 5$$
 $\left| f_2(x) = -2x^2 + 2x + 2 \right| f_3(x) = -x^2 - 8x + 7 \quad \left| f_4(x) = -x^2 + 2x - 3 \right|$

Exercice 3 Pour chaque fonction quadratique :

- a) Déterminez la forme canonique par complétion au carré.
- b) Complétez le tableau de variation.
- c) Justifiez le sens de variation sur l'intervalle [1; 2].
- d) Donner selon les valeurs de k le nombre de solutions de l'équation f(x) = k d'inconnue x.

$$f_1(x) = x^2 - \frac{4}{3}x$$

$$f_2(x) = -x^2 + 5x + 2$$

$$f_3(x) = 2x^2 + 9x + 11$$

x	$-\infty$	$+\infty$
$f_1(x)$		

x	$-\infty$	$+\infty$
$f_1(x)$		

Exercice 4

a) Complétez pour retrouver l'identité illustrée par la figure ci-contre.

$$x^2 + \dots = \left(\dots\right)^2 - \left(\dots\right)^2$$

- b) Démontrer algébriquement cette identité.
- c) Retrouver la forme canonique de $ax^2 + bx$.

Exercice 5 Suivre la démarche proposée pour trouver la forme réduite de la fonction quadratique f dont la représentation graphique est une parabole de sommet S(-2;3) et passant par A(5,8).

- a) On pose $f(x) = a(x \alpha)^2 + \beta$ la forme canonique de f. Préciser les valeurs de α et β .
- b) Donner une équation vérifiée par a et la résoudre.
- c) Développer la forme canonique et conclure.

Problème 1

Dans le repère orthonormé (O; I, J), soit la droite d: y = 2x + 3 et $M(x; y) \in d$.

- a) Démontrer que $OM^2 = 5x^2 + 12x + 9$. (1)
- b) Déterminer la forme canonique par une complétion au carré.
- c) Quelle est la distance minimale qui sépare la droite d de l'origine du repère ?

 $solution \ de \ l'exercice \ 1 \ . \ f_1(x) = (x+2)^2 - 4; \ f_2(x) = (x-5)^2 - 25; \ f_3(x) = \left(x+\frac{3}{2}\right)^2 - \frac{5}{4}; \ f_4(x) = \left(x-\frac{5}{2}\right)^2 - \frac{37}{4}; \\ \blacksquare$

 $solution \ de \ l'exercice \ \mathcal{2} \ . \ f_1(x) = 3\left(x + \frac{3}{2}\right)^2 - \frac{7}{4}; \ f_2(x) = \frac{5}{2} - 2\left(x - \frac{1}{2}\right)^2; \ f_3(x) = 23 - (x+4)^2; \ f_4(x) = -(x-1)^2 - 2; \quad \blacksquare$

 $solution \ partielle \ de \ l'exercice \ \mathcal{J} \ . \ f_1(x) = \left(x - \frac{1}{3}\right)^2 - \frac{1}{9}; \ f_2(x) = (x - 7)^2 - 58; \ f_3(x) = \frac{33}{4} - \left(x - \frac{5}{2}\right)^2; \\ \blacksquare$

1. On rappelle que dans un repère orthonormé $AB^2 = (x_A - x_B)^2 + (y_A - y_B)^2$.