Introducción a los algoritmos de ordenamiento

Jesús Alejandro Ku Delgado

May 10, 2024

Algoritmos de ordenamiento

Burbuja

El algoritmo de ordenamiento burbuja compara pares de elementos adyacentes y los intercambia si están en el orden incorrecto. Repite este proceso hasta que la lista esté ordenada.

Selección

El algoritmo de ordenamiento por selección busca el elemento más pequeño de la lista y lo coloca al principio. Luego, busca el segundo elemento más pequeño y lo coloca en la segunda posición, y así sucesivamente.

Inserción

El algoritmo de ordenamiento por inserción construye una lista ordenada uno por uno, tomando un elemento de la lista de entrada en cada iteración y colocándolo en la posición correcta en la lista ordenada.

Eficiencia de los algoritmos

El algoritmo de ordenamiento más eficiente depende del contexto y del tamaño de los datos. En general, el algoritmo de inserción es más eficiente en el mejor caso, pero para grandes conjuntos de datos, los algoritmos más avanzados como QuickSort o MergeSort son preferibles.

Tabla comparativa: Burbuja y Selección

Table: Comparación de algoritmos de ordenamiento

Método	Descripción	Características
Burbuja	El algoritmo de orde-	- Fácil de entender e imple-
	namiento burbuja compara	mentar
	pares de elementos adya-	- Ineficiente para grandes
	centes y los intercambia si	conjuntos de datos
	están en el orden incorrecto.	- Útil en situaciones donde
	Repite este proceso hasta	los datos están casi ordena-
	que la lista esté ordenada.	dos

Tabla comparativa: Inserción

Table: Comparación de algoritmos de ordenamiento (continuación)

Método	Descripción	Características
Selección	El algoritmo de orde-	- Simple y fácil de implemen-
	namiento por selección	tar
	busca el elemento más	- Ineficiente para grandes
	pequeño de la lista y lo	conjuntos de datos
	coloca al principio. Luego,	- No adaptativo, no importa
	busca el segundo elemento	si la lista ya está parcial-
	más pequeño y lo coloca en	mente ordenada
	la segunda posición, y así	
	sucesivamente.	

Tabla comparativa: Inserción

Table: Comparación de algoritmos de ordenamiento (continuación)

Método	Descripción	Características
Inserción	El algoritmo de orde-	- Eficiente para listas
	namiento por inserción	pequeñas y casi ordenadas
	construye una lista orde-	- Más eficiente en el mejor
	nada uno por uno, tomando	caso en comparación con
	un elemento de la lista de	burbuja y selección
	entrada en cada iteración y	- Puede ser menos eficiente
	colocándolo en la posición	que los algoritmos de orde-
	correcta en la lista orde-	namiento más avanzados
	nada.	

Ejemplos de uso

- Ordenar una lista de nombres alfabéticamente.
- Ordenar una lista de números de teléfono por su código de área.
- Ordenar cartas de un juego de cartas (poker, bridge, etc.).

Conclusiones

Los algoritmos de ordenamiento son herramientas fundamentales en la informática y se utilizan en una amplia variedad de aplicaciones. Aunque los algoritmos simples como burbuja, selección y inserción son fáciles de entender e implementar, pueden ser ineficientes para grandes conjuntos de datos. Es importante considerar el contexto y las características específicas de los datos al elegir un algoritmo de ordenamiento adecuado.