Urodynamics

Uroflowmetry

Spinning disc or weight-based uroflow machines

Spinning disc susceptible to directional influences (wag artefact)

Must be above 150 mls to be worth interpreting

Second flow shown to be more representative of normal voiding Males

Uroflow may give an indication of likelihood of obstruction but not diagnostic (Reynard and Chapple)

>20 ml/s Almost never obstructed

15-20 ml/s 30% obstructed 10-14 ml/s 60% obstructed < 10ml/s 90% obstructed

Maximum flow age-dependent – declines by 1-2 ml/s every 5 years No specified 'abnormal' voiding time

Females

Maximum flow typically > 25 ml/s Voiding time reduced cf. men

Cystometry

<u>Indications</u>

Prior to invasive Rx in SUI (see NICE guidelines)

Elderly males

Young males ~ 50 yrs

Children

Previous bladder outflow surgery

Flow > 15ml/s

Neuropaths

Low flow and suspected detrusor failure

Contraindications

Absolute

UTI (postpone study)

Relative

Indwelling catheter

Pharmacotherapy for bladder dysfunction (stop 48 hours before)

Known autonomic dysreflexia

Technique

Uroflowmetry and post-void residual

Filling phase

Tilt table largely historical. No doubt that bladder overactivity may be missed when filling in supine position. Recommended that men are filled in standing position and women filled sitting (means that transducers need not be moved). Important to record 4 Cs:

Comfort

First sensation of bladder filling

First desire to void Strong desire to void

Contractions

Any amplitude significant provided a/w symptoms Are they associated with urge symptoms Remember IDO vs. NDO

Compliance

Change in volume per unit change in pressure
No defined urodynamic value – Paul Abrams lower limit
of normal 20-30ml/cm water (personal communication).
Campbells quotes 1979 value of 12.5 ml/cm water
NB. Law of Laplace: T = ½ Pressure x radius

Capacity

Empty PVR at time of catheterisation unless low compliance suspected (useful rule of thumb ~40% functional bladder capacity/voided volume – Chris Chapple))

Filling phase historically described as having 4 phases:

- 1. initial fill (unfolding, viscoelastic)
- 2. tonus phase (viscoelastic)
- 3. limit of compliance (viscoelastic properties exhausted)
- 4. voiding (now considered to be in voiding phase!)

Voiding phase

Important to take note of following

Opening pressure

Pdet at Qmax

Qmax

Voiding time

Shape of voiding curve

Intermittent flow

(i) Poorly sustained bladder contraction (voiding curve follows Pdet with slight delay)

- (ii) DSD (reciprocal relationship between voiding curve and Pdet secondary to isometric contraction)
- (iii) Dysfunctional voiding (as for DSD but no urological disease)

Quality control

Calibration of pressure transducer, urine flow meter and water pump

Zero transducers at atmospheric pressure

Reference level at superior edge of symphysis pubis

Flush to exclude bubbles (otherwise cause damping)

Check for subtraction (cough, valsalva, fine detail)

If Pdet negative, either due to overly high rectal line pressure (ensure

hole in rectal balloon), or air bubble in vesical line

Check feasible pressure values

Pves and Pabd

Supine 5-20 cm water Sitting 15-40 cm water Standing 30-60 cm water

Pdet 0-6 cm water in ~80% (artefactually occ. negative)

ICS defined fill-rates

Slow ("physiologic") fill < 10 mL/min

Medium fill 10 to 100 mL/min

Rapid fill > 100 mL/min

New ICS definitions of filling rate (weight in kg / 4 = x)

If rate <= x physiological If rate > x non-physiological

Standard fill 50ml/m in warm saline. Slow fill if poor compliance

suspected (neuropaths, high pressure chronic retention)

Avoid acidic and cold fluids – provoke unstable contractions

Regular coughs every minute

Empty PVR at time of catheterisation unless low

compliance suspected (useful rule of thumb ~40%

functional bladder capacity/voided volume – Chapple)

Always perform cough at end of voiding curve to ensure that line has not been voided into urethra

Diagnosis

Depends on state of detrusor and urethra during filling and voiding '4 diagnoses of urodynamics'

Filling

Detrusor overactivity Urethral incompetence

Voiding

Detrusor underactivity Urethral obstruction

Reporting (3)

Describe filling phase (state of detrusor and urethra)

Describe voiding phase (state of detrusor and urethra)

Always describe whether symptoms were reproduced, partially reproduced, or not reproduced (failure to reproduce symptoms is not consistent with a diagnostic UDS study)

Complications

Urinary tract infection rates should be < 5% Otherwise bleeding and discomfort – mild

Definitions (ICS)

Abdominal leak point pressure (ALPP)

The intravesical pressure at which urine leakage occurs because of increased abdominal pressure in the absence of a detrusor contraction.

Also known as valsalva leak point pressure (VLPP)

Measure of sphincter complex function (internal and external sphincter) Patient upright, bladder filled with ~250ml; measured pressure is Pves. Gives no information about detrusor function

Important in the investigation of stress urinary incontinence VLPP

< 60 cm water significant ISD

60 – 90 cm water urethral hypermobility and ISD > 90 cm water urethral hypermobility alone

Conflicting evidence that a low VLPP predicts failure after mid-urethral tape surgery however

Detrusor leak point pressure

The lowest detrusor pressure at which urine leakage occurs in the absence of either a detrusor contraction or increased abdominal pressure

Originally described by McGuire in myelodysplasia patients with low compliance bladders

Gives an indication of fixed outlet resistance

DLPP > 40cm water a/w increased risk of upper tract dilatation and deterioration

ICS nomogram

^{*} NB continent women do not have a VLPP

Alternative nomogram by Werner Schafer, but ICS almost universally accepted

AG number

Pdet Qmax - 2Qmax

>40 obstructed 20-40 equivocal <20 non-obstructed

NB. Specialised nomograms produced for women but not widely used (Blaivas and Groutz 2000)

Bladder contractility index

PdetQmax + 5Qmax

>150 strong contractility 100-150 normal contractility <100 weak contractility

Adjunctive procedures

1. Provocation studies

Bethanecol test

Largely historical

Patients injected with subcutaneous bethanecol (parasympathomimetic); patients with intact pontine control show only mild Pdet increase cf. neuropaths

Only 76% sensitive and 50% specific

Ice-water test

Much more accurate

Ice water stimulates a strong spinal reflex, normally inhibited by higher control – causes raised Pdet and bladder emptying cf. normal patients

Sensitivity 97% for complete suprasacral spinal cord lesions, 91% for incomplete suprasacral lesions. Specificity ~100%

2. Video urodynamics

Determines the presence and location of obstruction Determines significance of open bladder neck Suggests DSD

Identifies VUR

Documents degree of bladder neck descent

3. Electromyography (EMG)

Co-ordination between external sphincter and bladder 50-75mm through perineum towards apex of prostate in men Smaller needle advanced 10-20mm parallel to urethra in females Confirmation of DSD in neuropathic patients; in the absence of neurologic disease, findings termed dysfunctional voiding

4. Urethral pressure profiling

UP = fluid pressure required to just open a closed urethraUPP = graph indicating changes in the intraluminal pressure along the length of the urethra

Thin water-filled catheter with side holes; mechanical puller at 0.5cm/s May be performed static or during voiding. Voiding pressure profilometry performed to identify location of obstruction (pressure drop indicates level of obstruction – normal pressure drop 20-30cm along urethra in males. Females should be isobaric up to distal 1cm urethra

5. Ambulatory UDS

Physiological filling pressures reduced cf. conventional UDS Increased sensitivity cf. conventional UDS for bladder overactivity Difficult to determine true magnitude as incidence of asymptomatic phasic contractions higher (significance unknown)