AUTO-PYTORCH

Adam Frej, Łukasz Tomaszewski, Marcel Witas

Założenia ogólne

- Połączenie neural architecture search i optymalizacji hiperparametrów.
- Auto Deep Learning
- Dane tabelaryczne klasyfikacja i regresja
- Klasyfikacja obrazów
- Popularność 1.6k gwiazdek na GitHub, 55 cytowań artykułu

Opcje preprocessingu

- Imputation
- Encoding
 - Choice of *OneHotEncoder* or no encoding.
- Scaling
 - Choice of MinMaxScaler, Normalizer, StandardScaler and no scaling.
- Feature preprocessing
 - Choice
 of FastICA, KernelPCA, RandomKitchenSinks, Nystroem, PolynomialFeatures, PowerTransf
 ormer, TruncatedSVD,

Dostępne modele

- Sieci neuronowe
- Tradycyjne modele ML

AutoPyTorch

- Oparty na PyTorchu oraz Deep Learningu
- Optymalizacja parametrów i hiperparametrów sieci neuronowej
- Implementacja i automatyczne strojenie pełnego pipeline'u Deep Learningowego
- Warmstart optymalizacji, dzięki próbkowaniu konfiguracji z portfolio
- Ensemble selection

AUTOPYTORCH

Multi-Fidelity Optimalization

- BOHB połączenie optymalizacji bayesowskiej (BO) i hyperbandu (HB)
- BOHB lepszy niż BO i HB
- Nawet 55 razy szybszy niż Random Search
- Dwie pętle podobnie jak w HB (SuccessiveHalving)
- Identyfikowanie obiecujących obszarów w przestrzeni konfiguracyjnej

Optymalizacja równoległa

- Architektura master-worker
- Wykorzystanie dodatkowych zasobów

Wybór modelu

- Podziały:
 - Zdefiniowane przez użytkownika
 - Automatyczne podziały
 - Kroswalidacja (scikit-learn)
- Metryka:
 - Predefiniowana
 - Wybrana przez użytkownika
- Wcześniejsze zatrzymanie

Łączenie modeli

- Trenowanie wielu modeli, a następnie ich łączenie
- Łączenie modeli inspirowane auto-sklearnem
- Podawanie modeli do zbioru i wyznaczanie ich wag

Portfolia

- Warmstart optymalizacji
- Pierwsza iteracja BOHB z przygotowanym zestawem konfiguracji

LCBench

- Nowy benchmark
- 2000 konfiguracji na 35 zbiorach danych
- 7 hiperparametrów
- 12 / 25 / 50 epok
- Zbierano wiele różnych metryk

TABLE 1 Hyperparameters and ranges of our Configuration Space 1.

	Name	Range	log	Туре
Architecture	number of layers max. number of units	[1, 5] [64, 512]	- <	int int
Hyper- parameters	batch size learning rate (SGD) L2 regularization momentum max. dropout rate	[16, 512] [1e-4, 1e-1] [1e-5, 1e-1] [0.1, 0.99] [0,1.0]	· · - -	int float float float float

Wyniki pomiędzy zbiorami danych

- Te same konfiguracje na różnych zbiorach danych.
- Wyróżniono 22 dobre unikalne konfiguracje.

 Transfer konfiguracji ma obiecujące wyniki – portfolio.

mean relative regret

Wielkość portfolio

• 10 konfiguracji – mniej niż 1% average accuracy regret

Korelacje budżetów

Znaczenie hiperparametrów

Fig. 6. Boxplots on the hyperparameter importance according to fANOVA (left) and LPI (right) on LCBench.

Ocena Auto-PyTorcha

- Duża przestrzeń konfiguracji i zbiorów danych.
- Rozszerza wyniki LCBench na więcej przypadków.
- Zarówno dobór architektury jak i hiperparametrów ma duże znaczenie.

Korelacje budżetów

Znaczenie hiperparametrów

BO vs BOHB

• Bayesian optimization vs Bayesian optimization with Hyperband

Portfolio

Ensembling

Wielowątkowość

Porównanie do innych AutoML

- Accuracy w porównaniu do innych frameworków.
- 1h runtime
- '-': crash

	Auto-PyTorch Tabular	AutoNet2.0 [22]	AutoKeras [6]	Auto-Sklearn [5]	hyperopt. [3]	Auto-PyTorch w/ ens.	AutoGluon w/ stack.	Auto-PyTorch w/o ens.	AutoGluon w/o stack.
covertype	96.86 ± 0.41	68.22 ± 2.46	61.61 ± 3.52	-	-	$ $ 96.86 \pm 0.41	-	93.35 ± 0.02	-
volkert	70.52 ± 0.51	60.90 ± 3.89	44.25 ± 2.38	67.32 ± 0.46	-	70.52 ± 0.51	72.16 ± 0.00	$\textbf{70.74} \pm \textbf{0.01}$	68.34 ± 0.10
higgs	73.01 ± 0.09	71.36 ± 0.55	71.25 ± 0.29	72.03 ± 0.33	-	73.01 ± 0.09	73.26 ± 0.00	$\textbf{72.64} \pm \textbf{0.02}$	72.60 ± 0.00
car	96.41 ± 1.47	96.14 ± 0.35	93.39 ± 2.82	$\textbf{98.42} \pm \textbf{0.62}$	$\textbf{98.95} \pm \textbf{0.96}$	96.41 ± 1.47	99.12 ± 0.50	98.59 ± 0.01	97.16 ± 0.35
mfeat-fact.	99.10 ± 0.18	$\textbf{98.97} \pm \textbf{0.21}$	97.73 ± 0.23	98.64 ± 0.39	97.88 ± 38.48	99.10 \pm 0.18	98.79 ± 0.15	98.78 ± 0.01	98.03 ± 0.23
apsfailure	99.41 ± 0.05	98.83 ± 0.03	-	$\textbf{99.43} \pm \textbf{0.04}$	-	99.41 ± 0.05	99.57 ± 0.01	99.38 ± 0.00	99.50 ± 0.03
pĥoneme	90.55 ± 0.14	86.61 ± 0.19	86.76 ± 0.12	89.26 ± 0.14	89.79 ± 4.54	90.55 ± 0.14	90.63 ± 0.08	90.40 ± 0.01	89.62 ± 0.06
dilbert	98.70 ± 0.15	97.43 ± 0.46	96.51 ± 0.62	98.14 ± 0.47	-	98.70 ± 0.15	99.33 \pm 0.00	98.54 ± 0.00	98.17 ± 0.05

Image classification

Kierunki rozwoju

- Ensembling jest znany z overfittingu generalizacja.
- Połączenie Auto-PytTorcha i Auto-Sklearna, aby stroić parametry pozostałych modeli w ensemblingu.
- Użycie wyników z analizy znaczenia hiperparametrów do polepszenia frameworka.
- Rozszerzenie danych tabelarycznych na dowolne zadania (image, text, time series).

Instalacja

System requirements

Auto-PyTorch has the following system requirements:

- Linux operating system (for example Ubuntu) (get Linux here),
- Python (>=3.6) (get Python here).
- C++ compiler (with C++11 supports) (get GCC here) and
- SWIG (version 3.0.* is required; >=4.0.0 is not supported) (get SWIG here).

Pierwsze doświadczenia z kodem

```
# initialise Auto-PyTorch api
api = TabularClassificationTask()
```

```
api.search(
    X train=X train,
    y_train=y_train,
    X test=X test,
    y_test=y_test,
    optimize metric='accuracy',
    total walltime limit=300,
    func eval time limit secs=50
[WARNING] [2022-04-05 17:57:07,320:Client-Validation] AutoPyTorch previously received features of type <class 'numpy.ndarra
y'> yet the current features have type <class 'pandas.core.frame.DataFrame'>. Changing the dtype of inputs to an estimator m
[WARNING] [2022-04-05 17:57:07,355:Client-Validation] AutoPyTorch previously received features of type <class 'numpy.ndarra
y'> yet the current features have type <class 'pandas.core.frame.DataFrame'>. Changing the dtype of inputs to an estimator m
[ERROR] [2022-04-05 17:57:14,904:Client-AutoPyTorch:0a12ddf8-b4f9-11ec-8060-00155d61704c:1] Traditional prediction for lgb f
ailed with run state StatusType.CRASHED.
Additional info:
traceback: Traceback (most recent call last):
 File "/home/witasm/.local/lib/python3.8/site-packages/autoPyTorch/evaluation/tae.py", line 39, in fit_predict_try_except_d
  File "/home/witasm/.local/lib/python3.8/site-packages/autoPyTorch/evaluation/train evaluator.py", line 485, in eval functi
    evaluator.fit predict and loss()
  File "/home/witasm/.local/lib/python3.8/site-packages/autoPyTorch/evaluation/train_evaluator.py", line 163, in fit_predict
    y_train_pred, y_opt_pred, y_valid_pred, y_test_pred = self._fit_and_predict(pipeline, split_id,
  File "/home/witasm/.local/lib/python3.8/site-packages/autoPyTorch/evaluation/train evaluator.py", line 337, in fit and pr
    fit and suppress warnings(self.logger, pipeline, X, y)
  File "/home/witasm/.local/lib/python3.8/site-packages/autoPyTorch/evaluation/abstract_evaluator.py", line 321, in fit_and_
suppress warnings
    pipeline.fit(X, y)
  File "/home/witasm/.local/lib/python3.8/site-packages/autoPyTorch/evaluation/abstract evaluator.py", line 94, in fit
   return self.pipeline.fit(X, y)
  File "/home/witasm/.local/lib/python3.8/site-packages/autoPyTorch/pipeline/base_pipeline.py", line 155, in fit
   self.fit_estimator(X, y, **fit_params)
  File "/home/witasm/.local/lib/python3.8/site-packages/autoPyTorch/pipeline/base_pipeline.py", line 174, in fit_estimator
   self._final_estimator.fit(X, y, **fit_params)
  File "/home/witasm/ local/lih/nython3 8/site_nackages/autoDyTorch/nineline/components/hase choice ny" line 217 in fit
```

Statystyki

```
print(api.sprint_statistics())

autoPyTorch results:
    Dataset name: 0a12ddf8-b4f9-11ec-8060-00155d61704c
    Optimisation Metric: accuracy
    Best validation score: 0.9842696629213483
    Number of target algorithm runs: 23
    Number of successful target algorithm runs: 19
    Number of crashed target algorithm runs: 2
    Number of target algorithms that exceeded the time limit: 2
    Number of target algorithms that exceeded the memory limit: 0
```

Funkcja show_models()

	Preprocessing	Estimator	Weight
0	SimpleImputer,NoEncoder,Normalizer,KitchenSink	no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential	0.14
1	SimpleImputer,NoEncoder,NoScaler,Nystroem	$no\ embedding, Shaped Res Net Backbone, Fully Connected Head, nn. Sequential$	0.14
2	SimpleImputer,NoEncoder,Normalizer,KernelPCA	$no\ embedding, Shaped MLPBackbone, Fully Connected Head, nn. Sequential$	0.14
3	SimpleImputer,NoEncoder,Normalizer,KernelPCA	no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential	0.1
4	SimpleImputer, No Encoder, Standard Scaler, No Feature Preprocessing	$no\ embedding, Shaped MLPBackbone, Fully Connected Head, nn. Sequential$	0.1
5	None	ETLearner	0.08
6	SimpleImputer,NoEncoder,MinMaxScaler,KitchenSink	no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential	0.06
7	SimpleImputer, No Encoder, Standard Scaler, No Feature Preprocessing	$no\ embedding, Shaped MLPBackbone, Fully Connected Head, nn. Sequential$	0.06
8	SimpleImputer, No Encoder, Min Max Scaler, Power Transformer	no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential	0.04
9	SimpleImputer, No Encoder, Standard Scaler, No Feature Preprocessing	$no\ embedding, Shaped MLPBackbone, Fully Connected Head, nn. Sequential$	0.04
10	SimpleImputer, No Encoder, Normalizer, Power Transformer	$no\ embedding, Shaped Res Net Backbone, Fully Connected Head, nn. Sequential$	0.02
11	SimpleImputer,NoEncoder,Normalizer,TruncSVD	no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential	0.02
12	None	CBLearner	0.02
13	None	SVMLearner	0.02
14	None	KNNLearner	0.02

Inne parametry

Bibliografia

- Lucas Zimmer, Marius Lindauer and Frank Hutter Auto-Pytorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL
- https://automl.github.io/Auto-PyTorch/development

Dziękujemy za uwagę

