

Angewandte Stochastik

Prof. Dr. Evgeny Spodarev | Vorlesungskurs |

6. Thema

Heutiges Thema

► Einfache lineare Regression

Seite 3

Einfache lineare Regression

Wenn man den Zusammenhang von Merkmalen X und Y mit Hilfe von Streudiagrammen visualisiert, wird oft ein linearer Trend erkennbar, obwohl der Bravais-Pearson-Korrelationskoeffizient einen Wert kleiner als 1 liefert, z.B. $\rho_{xy} \approx 0.6$ (vgl. Abb. auf der nächsten Folie).

Einfache lineare Regression

- ▶ Dies ist der Fall, weil die Datenpunkte (x_i, y_i) , i = 1, ..., noff um eine Gerade streuen und nicht exakt auf einer Geraden liegen.
- Um solche Situationen stochastisch modellieren zu können, nimmt man den Zusammenhang der Form

$$Y = f(X) + \varepsilon$$

an.

- \triangleright ε ist die sogenannte Störgröße, die auf mehrere Ursachen wie z.B. Beobachtungsfehler (Messfehler, Berechnungsfehler, usw.) zurückzuführen sein kann.
- ▶ Dabei nennt man die Zufallsvariable Y Zielgröße oder Regressand, die Zufallsvariable X Einflussfaktor, Regressor oder Ausgangsvariable.

Einfache lineare Regression

- ▶ Der Zusammenhang $Y = f(X) + \varepsilon$ wird *Regression* genannt, wobei man oft über ε voraussetzt, dass $\mathsf{E}\varepsilon=\mathsf{0}$ (kein systematischer Beobachtungsfehler).
- ▶ Wenn $f(x) = \alpha + \beta x$ eine lineare Funktion ist, so spricht man von der einfachen linearen Regression.
- ► Es sind aber durchaus andere Arten der Zusammenhänge denkbar, wie z.B.

$$f(x) = \sum_{i=0}^{n} \alpha_i x^i$$

(polynomiale Regression), usw. Beispiele für mögliche Ausgangs- bzw. Zielgrößen sind in der folgenden Tabelle zusammengefasst, einige Beispiele in der darauffolgenden Abbildung.

Ś		е	

Υ				
Länge des Bremswegs				
Körpergröße des Sohnes				
Qualität des Produktes				
Ozongehalt der Atmosphäre				
Noten im Master-Studium				

Table: Beispiele möglicher Ausgangs- und Zielgrößen

► Auf Modellebene ist folgende Fragestellung gegeben:

- Es gebe Zufallsstichproben von Ziel- bzw. Ausgangsvariablen (Y_1, \ldots, Y_n) und (X_1, \ldots, X_n) , zwischen denen ein verrauschter linearer Zusammenhang $Y_i = \alpha + \beta X_i + \varepsilon_i$ besteht, wobei ε_i Störgrößen sind, die nicht direkt beobachtbar und uns somit unbekannt sind.
- ▶ Annahme: $\mathsf{E}\,\varepsilon_i = 0 \quad \forall \, i = 1, \ldots, n \, \mathsf{und} \, \mathsf{Cov} \, (\varepsilon_i, \varepsilon_j) = \sigma^2 \delta_{ij}, \, \mathsf{d.h.} \, \varepsilon_1 \ldots \varepsilon_n \, \mathsf{sind} \, \mathsf{unkorreliert} \, \mathsf{mit} \, \mathsf{Var} \, \, \varepsilon_i = \sigma^2.$
- ▶ Wenn wir über die Eigenschaften der Schätzer für α , β und σ^2 reden, gehen wir davon aus, dass die X-Werte nicht zufällig sind, also $X_i = x_i \quad \forall i = 1, \dots, n$.

Einfache lineare Regression

- ▶ Wenn man von einer konkreten Stichprobe $(y_1, ..., y_n)$ für (Y_1, \ldots, Y_n) ausgeht, so sollen anhand von den Stichproben (x_1, \ldots, x_n) und (y_1, \ldots, y_n) Regressionsparameter α (*Regressionskonstante*) und β (Regressionskoeffizient) sowie die Regressionsvarianz σ^2 geschätzt werden.
- Dabei verwendet man die sogenannte Methode der kleinsten Quadrate, die den mittleren guadratischen Fehler von den Datenpunkten $(x_i, y_i)_{i=1,\dots,n}$ des Streudiagramms zur *Regressionsgeraden* $y = \alpha + \beta x$ minimiert:

$$(\hat{\alpha}, \hat{\beta}) = \operatorname{argmin}_{\alpha, \beta \in \mathbb{R}} \mathbf{e}(\alpha, \beta) \quad \text{mit} \quad \mathbf{e}(\alpha, \beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2.$$

Figure: Methode kleinster Quadrate

Seite 12

Diese Methode wurde 1809 von C.F. Gauß in seinem Werk "Theoria motus corporum coelestium" verwendet, um die Laufbahnen der Himmelskörper an Hand von Beobachtungen zu bestimmen.

- ▶ Die Bezeichnung "Methode der kleinsten Quadrate" stammt allerdings vom französischen Mathematiker A.M. Legendre (1752-1832), der sie unabhängig von Gauß entdeckt hat.
- ▶ Da die Darstellung $y_i = \alpha + \beta x_i + \varepsilon_i$ gilt, kann man $e(\alpha, \beta) = 1/n \sum_{i=1}^{n} \varepsilon_i^2$ schreiben. Es ist der vertikale mittlere quadratische Abstand von den Datenpunkten (x_i, y_i) zur Geraden $y = \alpha + \beta x$ (vgl. Abb. auf der letzten Folie).

Einfache lineare Regression

Das Minimierungsproblem $e(\alpha, \beta) \mapsto \min$ löst man durch das zweifache Differenzieren von $e(\alpha, \beta)$. Somit erhält man $\hat{\alpha} = \bar{y}_n - \hat{\beta}\bar{x}_n$, wobei

$$\hat{\beta} = \frac{S_{xy}^2}{S_{xx}^2}, \quad \bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i, \quad \bar{y}_n = \frac{1}{n} \sum_{i=1}^n y_i,$$

$$S_{xy}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}_n)(y_i - \bar{y}_n), \quad S_{xx}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}_n)^2.$$

Einfache lineare Regression

Seite 14

- ▶ Die Varianz σ^2 schätzt man durch $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{\varepsilon}_i^2$, wobei $\hat{\varepsilon}_i = y_i \hat{\alpha} \hat{\beta} x_i$, i = 1, ..., n die sogenannten Residuen sind.
- ▶ Die Gründe, warum $\hat{\sigma}^2$ diese Gestalt hat, können an dieser Stelle nicht angegeben werden, weil wir noch nicht die Maximum-Likelihood-Methode kennen.

Bemerkung

Seite 15

- ▶ Die angegebenen Schätzer für α und β sind nicht symmetrisch bzgl. Variablen x_i und y_i .
- Wenn man also die *horizontalen* Abstände (statt vertikaler) zur Bildung des mittleren quadratischen Fehlers nimmt (was dem Rollentausch $x \leftrightarrow y$ entspricht), so bekommt man andere Schätzer für α und β , die mit $\hat{\alpha}$ und $\hat{\beta}$ nicht übereinstimmen müssen:

$$d_i = y_i - \alpha - \beta x_i \mapsto d'_i = x_i - \frac{(y_i - \alpha)}{\beta}.$$

Ein Ausweg aus dieser asymmetrischen Situation wäre es, die orthogonalen Abstände o_i von (x_i, y_i) zur Geraden $y = \alpha + \beta x$ zu betrachten (vgl. Abb. auf der nächsten Folie).

Figure: Orthogonale Abstände

- Diese Art der Regression, die "errors-in-variables regression" genannt wird, hat aber eine Reihe von Eigenschaften, die sie zur Prognose von Zielvariablen y_i durch die Ausgangsvariablen x_i unbrauchbar machen.
- ► Sie sollte zum Beispiel nur dann verwendet werden, wenn die Standardabweichungen für X und Y etwa gleich groß sind.

Beispiel

- Ein Kinderpsychologe vermutet, dass sich häufiges Fernsehen negativ auf das Schlafverhalten von Kindern auswirkt.
- Um diese Hypothese zu überprüfen, wurden 9 Kinder im gleichen Alter befragt, wie lange sie pro Tag fernsehen dürfen, und zusätzlich die Dauer ihrer Tiefschlafphase gemessen.
- So ergibt sich der Datensatz in folgender Tabelle und die Regressionsgerade aus der darauffolgenden Abbildung.

Kind i									
Fernsehzeit x _i	0,3	2,2	0,5	0,7	1,0	1,8	3,0	0,2	2,3
Fernsehzeit <i>x_i</i> Tiefschlafdauer	5,8	4,4	6,5	5,8	5,6	5,0	4,8	6,0	6,1
<i>y_i</i>									

Table: Daten von Fernsehzeit und korrespondierender Tiefschlafdauer

Figure: Streudiagramm und Ausgleichsgerade zur Regression der Dauer des Tiefschlafs auf die Fernsehzeit

Beispiel

Seite 21

Es ergibt sich für die oben genannten Stichproben (x_1, \ldots, x_9) und (y_1, \ldots, y_9)

$$\bar{x}_9 = 1,33, \quad \bar{y}_9 = 5,56, \quad \hat{\beta} = -0,45, \quad \hat{\alpha} = 6,16.$$

Somit ist

$$y = 6, 16 - 0, 45x$$

die Regressionsgerade, die eine negative Steigung hat, was die Vermutung des Kinderpsychologen bestätigt.

- Außerdem ist es mit Hilfe dieser Geraden möglich, Prognosen für die Dauer des Tiefschlafs für vorgegebene Fernsehzeiten anzugeben.
- So wäre z.B. für die Fernsehzeit von 1 Stunde der Tiefschlaf von 6, 16 − 0, 45 · 1 = 5, 71 Stunden plausibel.

- 1. Es gilt sgn $(\hat{\beta}) = \text{sgn } (\rho_{xy})$, was aus $\hat{\beta} = \frac{s_{xy}^2}{s^2}$ folgt. Dies bedeutet (falls $s_{vv}^2 > 0$):
 - (a) Die Regressionsgerade $y = \hat{\alpha} + \hat{\beta}x$ steigt an, falls die Stichproben (x_1, \ldots, x_n) und (y_1, \ldots, y_n) positiv korreliert sind.
 - (b) Die Regressionsgerade fällt ab, falls sie negativ korreliert sind.
 - (c) Die Regressionsgerade ist konstant, falls die Stichproben unkorreliert sind.

Falls $s_{\nu\nu}^2 = 0$, dann ist die Regressionsgerade konstant $(v=\bar{V}_n).$

Bemerkung

- 2. Die Regressionsgerade $y = \hat{\alpha} + \hat{\beta}x$ verläuft immer durch den Punkt (\bar{x}_n, \bar{y}_n) : $\hat{\alpha} + \hat{\beta}\bar{x}_n = \bar{y}_n$.
- 3. Seien $\hat{v}_i = \hat{\alpha} + \hat{\beta}x_i$, i = 1, ..., n. Dann gilt

$$\overline{\hat{y}_n} = \frac{1}{n} \sum_{i=1}^n \hat{y}_i = \overline{y}_n$$
 und somit $\sum_{i=1}^n (\underline{y_i - \hat{y}_i}) = 0$.

Dabei sind $\hat{\varepsilon}_i$ die schon vorher eingeführten Residuen. Mit ihrer Hilfe ist es möglich, die Güte der Regressionsprognose zu beurteilen.

Residualanalyse und Bestimmtheitsmaß

Definition

Der relative Anteil der Streuungsreduktion an der Gesamtstreuung S_{vv}^2 heißt das Bestimmtheitsmaß der Regressionsgeraden:

$$R^2 = \frac{S_{yy}^2 - \frac{1}{n-1} \sum_{i=1}^n \hat{\varepsilon}_i^2}{S_{yy}^2} = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \bar{y}_n)^2}.$$

Es ist nur im Fall $S_{xx}^2 > 0$, $S_{yy}^2 > 0$ definiert, d.h., wenn nicht alle Werte x_i bzw. y_i übereinstimmen.

Warum R^2 in dieser Form eingeführt wird, zeigt folgende Überlegung, die *Streuungszerlegung* genannt wird:

Lemma

Die Gesamtstreuung ("sum of squares total")

$$SQT = (n-1)S_{yy}^2 = \sum_{i=1}^n (y_i - \bar{y}_n)^2$$
 lässt sich in die Summe

- der sogenannten erklärten Streuung "sum of squares explained" $SQE = \sum_{i=1}^{n} (\hat{y}_i \bar{y}_n)^2$ und
- der Residualstreuung "sum of squared residuals"

$$SQR = \sum_{i=1}^{n} \hat{\varepsilon}_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 zerlegen:

$$SQT = SQE + SQR$$

bzw.

$$\sum_{i=1}^{n} (y_i - \bar{y}_n)^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y}_n)^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2.$$

Die erklärte Streuung gibt die Streuung der Regressionsgeradenwerte um \bar{y}_n an. Sie stellt damit die auf den linearen Zusammenhang zwischen X und Y zurückgeführende Variation der y-Werte dar. Das oben eingeführte Bestimmtheitsmaß ist somit der Anteil dieser Streuung an der Gesamtstreuung:

$$R^{2} = \frac{SQE}{SQT} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y}_{n})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{n})^{2}} = \frac{SQT - SQR}{SQT} = 1 - \frac{SQR}{SQT}.$$

Es folgt aus dieser Darstellung, dass $R^2 \in [0, 1]$ ist.

Seite 27

1. $R^2 = 0$ bedeutet $SQE = \sum_{i=1}^{n} (\hat{y}_i - \bar{y}_n)^2 = 0$ und somit $\hat{y}_i = \bar{y}_n \ \forall i$. Dies weist darauf hin, dass das lineare Modell in diesem Fall schlecht ist, denn aus $\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i = \bar{y}_n$ folgt $\hat{eta}=rac{S_{xy}^2}{S_{xy}^2}=0$ und somit $S_{xy}^2=0.$ Also sind die Merkmale Xund Y unkorreliert.

2. $R^2 = 1$ bedingt $SQR = \sum_{i=1}^{n} \hat{\varepsilon}_i^2 = 0$. Somit liegen alle (x_i, y_i) perfekt auf der Regressionsgeraden. Dies bedeutet, dass die Daten x_i und y_i , i = 1, ..., n perfekt linear abhängig sind.

Faustregel zur Beurteilung der Güte der Anpassung eines linearen Modells an Hand von Bestimmtheitsmaß R²: R² ist deutlich von Null verschieden (d.h. es besteht noch ein linearer Zusammenhang), falls $R^2 > \frac{4}{n+2}$, wobei n der Stichprobenumfang ist.

Allgemein gilt folgender Zusammenhang zwischen dem Bestimmtheitsmaß R² und dem Bravais-Pearson-Korrelationskoeffizienten ρ_{XY} :

$$R^2 = \varrho_{xy}^2$$

Folgerung

- 1 Der Wert von R² ändert sich bei einer Lineartransformation der Daten (x_1, \ldots, x_n) und (y_1, \ldots, y_n) nicht.
- 2. Da $R^2 = \varrho_{xy}^2$, ist der Wert von R^2 symmetrisch bzgl. der Stichproben (x_1, \ldots, x_n) und (y_1, \ldots, y_n) :

$$\varrho_{xy}^2 = R^2 = \varrho_{yx}^2$$
 bzw. $R_{xy}^2 = R_{yx}^2$,

wobei R_{xy}^2 das Bestimmtheitsmaß bezeichnet, das sich aus der normalen Regression ergibt und R_{vx}^2 das mit vertauschten Achsen.

Güte der Modellanpassung

Grafisch kann man die Güte der Modellanpassung bei der linearen Regression folgendermaßen überprüfen:

- Man zeichnet Punktepaare $(\hat{y}_i, \hat{\varepsilon}_i)_{i=1,\dots,n}$ als Streudiagramm (der sogenannte Residualplot).
- ► Falls diese Punktewolke gleichmäßig um Null streut, so ist das lineare Modell gut gewählt worden.
- Falls das Streudiagramm einen erkennbaren Trend aufweist, bedeutet das, dass die Annahme des linearen Modells für diese Daten ungeeigenet sei (vgl. folgende Abb.)

Güte der Modellanpassung

Figure: Gute Übereinstimmung mit dem linearen Modell

Figure: Schlechte Übereinstimmung mit dem linearen Modell