

Online 3D Deformable Object Classification for Mobile Cobot Manipulation

Khang Nguyen, Tuan Dang, Manfred Huber Learning and Adaptive Robotics Laboratory

Assistive Mobile Cobots Can Be Used to Grasp Various Everyday Objects for Service Tasks

Courtesy: Frank, Barbara, et al, 2011

Courtesy: Google's robotics lab

Image: Our case

Some Objects Are Easily Deformed Due to Grasping Forces from Robots or from Human Factors

and machine learning (ML) models for vision are highly sensitive to input changes ⇒ misclassification problem

3D Deformable Object Classification for Mobile Cobots

Key Contributions:

- Generation pipeline for deformed objects from 3D scan.
- Lightweight ML model to classify objects with deformation artifacts.
- Guarantee online inference for mobile cobots.

Our Pipeline:

Scanning Real-World Deformable Objects

- The MakerBot Digitizer 3D scanner (right) is used to scan real-world objects.
- Our raw scans (*left*) include various-sized deformable objects (*e.g.*, tin cans, foam balls, and paper cups).

Deformable Object Generation Procedure

- Downsampling scanned objects
- Identifying graspable region
- Sampling handle points
- Taking handle points for multiple deformations
- Slicing the object for position of opposite handle point
- Defining inward orientation and deformation intensity for deformation
- Generating deformed meshes

(a) Scan Real-World Object

(b) Downsample Point Cloud

(c) Identify Graspable Region

(d) Sample Handle Points

(e) Slice Point Cloud

(f) Deform based on Handle Points

(g) Generate Deformed Mesh 6

As-Rigid-As-Possible (ARAP) Deformation with Smooth-Regularization

- Denote a mesh of n vertices as: M := (E, V, F)
 with E, V, and F are sets of edges, vertices, and
 faces in M, respectively.
- We would like a deformed mesh, as follows:

$$\mathcal{M}^{'} \coloneqq (E^{'}, V^{'}, F^{'})$$

with E', V', and F' are sets of edges, vertices, and faces in M', respectively.

As-Rigid-As-Possible (ARAP) Deformation with Smooth-Regularization

Without loss of generality, arrange vertices in the deformed mesh as follows:

$$\begin{cases} \mathbf{v}_{i}^{'} = \mathbf{c}_{i} = \mathbf{v}_{i}, & \text{for } i = 1, 2, ..., m \\ \mathbf{v}_{i}^{'} = T_{i}(\mathbf{v}_{i}), & \text{for } i = m + 1, m + 2, ..., n \end{cases}$$

where:

- $T_i(\cdot)$ represents the transformation from the original vertex,
- \mathbf{v}'_{i} is the transformed vertex of \mathbf{v}_{i} , and
- \mathbf{c}_i denotes a constraint point in M' that is invariant to vertex \mathbf{v}_i in M.

As-Rigid-As-Possible (ARAP) Deformation with Smooth-Regularization

• The formula for ARAP deformation with smooth regularization is written as:

and
$$\omega_{\rm cot} = (\cot \alpha_{ij} + \cot \beta_{ij})/2$$

Demonstration of A Subset of the Auto-Generated 3D Deformable Object Dataset

The objects are viewed using Open3D.

How Well the Dataset Distributes In Terms of Deformation Loss?

Well-distribute across the domain.

- The deformation loss is computed as weighted losses of:
 - Chamfer distance loss
 - Mesh edge loss
 - Mesh normal loss
 - Laplacian smoothing loss
- Intensity represents the inward displacement of handle points during the ARAP deformation.

Classification Network for 3D Deformable Objects

- Takes sampling points with deformation artifact as input.
- Passes through a spatial transformer, two convolutional layers, and one fully-connected (dense) layer.
- **Spatial transformer** is used to find the representation that is invariant to *permutations, rotations,* and *translations* in point clouds.
- Returns probabilities among classes at the output layer.

Training Performances of Designed Networks

E.g., 64-feature model means the neural network having F equals 64.

- The training stage converges relatively fast on the NVIDIA RTX 4090 (24 GB) GPU:
 - batch size of 256
 - o 50 epochs
 - 10 minutes of training time
 - approx. 90% of accuracy on validation set

Testing Performances of Designed Networks

The more features the network learned, the better accuracy it achieves.

Trainable Parameters and Model Sizes

- The best model from our observation:
 - 80 features are learned
 - about 100 KB
 - about 5,500 trainable parameters

Suitable for on-robot deployment!

GitHub Repository

Link: https://github.com/mkhangg/deformable-cobot

Demonstration Video

Click to see the demo video.

Thank you for listening!

