Backtracking II

Clase 14

IIC 2133 - Sección 1

Prof. Sebastián Bugedo

Sumario

Introducción

Extensiones del Backtracking

Backtracking: idea de pseudocódigo

```
input: Conjunto de variables sin asignar X, dominios D,
            restricciones R
  isSolvable(X, D, R):
      if X = \emptyset: return true
      x \leftarrow \text{alguna variable de } X
2
3
      for v \in D_x:
          if x = v no rompe R:
              x \leftarrow v
5
              if isSolvable(X - \{x\}, D, R):
                   return true
7
               x \leftarrow \emptyset
8
      return false
9
```

Esto es solo una orientación: las variables, argumentos y estructura dependerá del problema particular

Problema de las 8 reinas

5

6

7

A continuación, un algoritmo para determinar si una asignación parcial de las 8 reinas puede dar lugar a una solución válida

```
input: Arreglo T[0...7],
                                               input: Arreglo T[0...7],
          indice 0 < i < 8
                                                        índices 0 ≤ i, j ≤ 7
  output: true ssi hay solución
                                               output: false ssi es ilegal
  Queens(T, i):
                                               Check(T, i, v):
     if i = 8: return true
                                                   for i = 0 ... i - 1:
   for v = 0...7:
2
                                                      if v = T[i]:
                                             2
         if Check(T, i, v):
3
                                             3
                                                          return false
             T[i] \leftarrow v
4
                                                      if |(v-T[j])/(i-j)| = 1:
                                             4
            if Queens(T, i+1):
                                                          return false
                return true
                                                   return true
                                             6
     return false
```

¿Cómo podemos modificar el algoritmo para obtener una solución?

Complejidad

El análisis de complejidad del *backtracking* involucra el conteo de tuplas posibles

- En un conjunto de *n* variables $X = \{x_1, ..., x_n\}$
- con valores posibles en dominios $D = \{D_1, \ldots, D_n\}$
- tenemos $|D_1| \times |D_2| \times \cdots \times |D_n|$ tuplas posibles

Luego, en el caso particular de que $|D_i| = K$ para todo i,

revisar todas las tuplas es $\mathcal{O}(K^n)$

Complejidad

La complejidad de las posibles soluciones para CSP cumplen,

- lacktriangleright la estrategia de fuerza bruta revisa **todas las tuplas** $\mathcal{O}(K^n)$
- \blacksquare el backtracking puede revisar menos tuplas, pero sigue siendo proporcional $\mathcal{O}(K^n)$

Es decir, asintóticamente estas estrategias tienen la misma complejidad

¿Cuál es más rápido en la práctica?

No olvidar: Backtracking es igual o más rápido que la fuerza bruta

Otra interpretación del backtracking

Podemos pensar en la estrategia de backtracking como **búsqueda en un grafo implícito**

Los CSP generan muchas tuplas posibles como asignaciones para las variables de \boldsymbol{X}

- Cada posible asignación genera un camino
- Las nuevas asignaciones abren nuevos caminos
- A la colección de todas estas alternativas le llamamos grafo implícito

El ejemplo por excelencia para visualizar el grafo implícito es el **problema de recorrer un laberinto**

Supongamos que nos interesa salir de un laberinto dado que estamos en Θ

Podemos resolver este problema con backtracking

Planteamos el problema como un CSP

- Variables?
- Dominios?
- Restricciones?
- Qué define el éxito?

Caracterizamos por Θ la posición actual

En cada nueva posición Θ solo podemos elegir dar un paso en las direcciones libres y distintas de aquella de la cual venimos

Debemos hacer backtrack cuando llegamos a un camino sin salida: solo muros y celdas ya visitadas

No hay más opciones: ¿hasta dónde nos arrepentimos con el backtrack?

Sabemos que ir al norte no funcionó. Probamos otra opción yendo al sur.

En este caso, logramos llegar a una solución que encuentra la salida

Le agregamos etiquetas a las posiciones, de modo que sabemos cuáles hemos visitado (visited). Todas comienzan como nonvisited y la salida se marca como exit

```
input: Conjunto de variables sin asignar X, posición x, dominios D,
            restricciones R
   isSolvable(X, x, D, R):
      if x = exit: return true
1
2
      if visited: return false
     x \leftarrow visited
3
      for v \in \{N, E, S, W\}:
4
           if x + v \neq wall:
5
              x \leftarrow x + v
6
              if isSolvable(X, x, D, R):
7
                   return true
8
               x \leftarrow nonvisited
9
       return false
10
```

Otros problemas habituales

Hay varios problemas clásicos que se resuelven mediante backtracking

- Recorrido del caballo de ajedrez (Knight's tour problem)
- Problema de la mochila (capacidad versus número de items)
- Balance de carga
- Coloreo de mapas (Sudoku es un caso particular)

En general, puzzles NP-completos podemos atacarlos con alguna idea de backtracking

Objetivos de la clase

- ☐ Identificar pseudocódigo base para backtracking y sus partes
- ☐ Reconocer necesidad de modificaciones al esquema de backtracking
- ☐ Comprender el concepto de poda
- ☐ Comprender el concepto de propagación
- ☐ Comprender el concepto de heurística

Conversemos de la tarea

Sumario

Introducción

Extensiones del Backtracking

Primera extensión de Backtracking

Consideremos ahora el problema de determinar **todas** las soluciones a un CSP

- Nos interesan las soluciones explícitamente
- O solo queremos contarlas

En ambos casos, necesitamos que el algoritmo **no se detenga** al encontrar la primera solución

Encontrar todas las soluciones

```
input: Conjunto de variables sin asignar X, dominios D,
            restricciones R
  isSolvable(X, D, R):
      if X = \emptyset: return true
      x \leftarrow \text{alguna variable de } X
2
      for v \in D_x:
3
          if x = v no rompe R:
              x \leftarrow v
5
              if isSolvable(X - \{x\}, D, R):
6
                   return true
7
              x \leftarrow \emptyset
8
      return false
9
```

¿Cómo modificar el algoritmo genérico para encontrar todas las soluciones?

Encontrar todas las soluciones

```
input: Conjunto de variables sin asignar X, dominios D,
            restricciones R
  isSolvableAll(X, D, R):
      if X = \emptyset: return true
      x \leftarrow \text{alguna variable de } X
2
      for v \in D_x:
3
          if x = v no rompe R:
              x \leftarrow v
5
              if isSolvableAll(X - \{x\}, D, R):
6
                   Se marca x \leftarrow v como solución
7
              x \leftarrow \emptyset
8
      return false
9
```

Incluso en este escenario, Backtracking es mejor que fuerza bruta

Mejoras de desempeño de Backtracking

Ahora, nos interesa poder informar mejor al Backtracking

- Gracias a las características del problema, sabemos que hay caminos que ya no es necesario revisar
- El dominio para x_i quizás no es D_i completo
- \blacksquare Puede haber *mejores* elementos de D_i para elegir primero

Estos casos nos permiten proponer las siguientes mejoras que detallaremos

- Podas
- Propagación
- Heurísticas

Podas

Backtracking es capaz de determinar si una asignación puede terminar en solución

- Las soluciones inviables se descartan según las restricciones R del CSP
- Requiere llamados recursivos
- Posiblemente, muchos llamados

¿Podemos hacerlo mejor?

Agregaremos nuevas restricciones que se deducen de las iniciales

Podas

Llamaremos podas a estas nuevas restricciones y se revisan junto a las originales

```
isSolvable(X, D, R):
      if X = \emptyset: return true
      x \leftarrow \text{alguna variable de } X
2
      for v \in D_x:
3
           if x = v no rompe R:
               x \leftarrow v
               if isSolvable(X - \{x\}, D, R):
6
                    return true
7
8
               x \leftarrow \emptyset
       return false
9
```

Podas

Llamaremos podas a estas nuevas restricciones y se revisan junto a las originales

```
isSolvable(X, D, R):
      if X = \emptyset: return true
1
      x \leftarrow \text{alguna variable de } X
2
     for v \in D_x:
3
           if x = v no rompe R:
               x \leftarrow v
5
               if isSolvable(X - \{x\}, D, R):
6
                    return true
7
               x \leftarrow \emptyset
       return false
9
```

Pueden ser más costosas de checkear, pero vale la pena en la práctica

Dominios

Consideremos el siguiente tablero de Sudoku parcialmente completado

					9
7				6	8
				1	4
		3			2
	1		5	3	7
5					3
			9		5

Dominios

Si asignamos el valor 1 a la posición (0,0), ¿cambió el dominio válido para alguna variable?

1						
						9
	7				6	8
					1	4
			3			2
		1		5	3	7
	5					3
				9		5

Propagación

Backtracking chequea todos los valores posibles en el dominio D_i de la variable x_i

- Existen restricciones que invalidan ciertos valores de Di
- Backtracking clásico los revisa igual
- Esas soluciones parciales nunca serán válidas

¿Podemos hacerlo mejor?

Cambiaremos los dominios de las demás variables luego de una asignación

Propagación

Llamaremos propagación a la acción de modificar dominios luego de una asignación

```
isSolvable(X, D, R):
      if X = \emptyset: return true
      x \leftarrow \text{alguna variable de } X
2
      for v \in D_x:
3
           if x = v no rompe R:
               x \leftarrow v
               if isSolvable(X - \{x\}, D, R):
6
                    return true
7
               x \leftarrow \emptyset
8
       return false
9
```

Propagación

Llamaremos propagación a la acción de modificar dominios luego de una asignación

```
isSolvable(X, D, R):
      if X = \emptyset: return true
1
      x \leftarrow \text{alguna variable de } X
2
3
      for v \in D_x:
           if x = v no rompe R:
               x \leftarrow v, propagar
5
               if isSolvable(X - \{x\}, D, R):
6
                    return true
7
               x \leftarrow \emptyset, propagar
      return false
9
```

Ojo al deshacer asignaciones, pues hay que reestablecer dominios propagados

Consideremos el siguiente tablero de Sudoku parcialmente completado: ¿por qué celda partimos llenando?

Nos interesa minimizar la posibilidad de fracasar

¿Será mejor la (0,8)?

1						
						9
	7				6	8
					1	4
			3			2
		1		5	3	7
	5					3
				9		5

¿Ahora cuál sería razonable escoger?

					1
					9
7				6	8
				1	4
		3			2
	1		5	3	7
5					3
			9		5

¿Ahora cuál sería razonable escoger?

					1
					9
7				6	8
				1	4
		3			2
	1		5	3	7
5					3
					6
			9		5

Backtracking chequea los valores válidos en el dominio D_i de la variable x_i en un orden arbitrario

- No solo puede afectar el orden en que se asignan valores
- También puede afectar el orden en que se itera sobre las variables disponibles

De hecho, si dispusiéramos de un **oráculo** que nos dice el mejor orden de asignación, el problema se vuelve **lineal**!

Guiaremos la búsqueda según algunos criterios (falibles)

Llamaremos heurísticas a las estrategias para catalogar variables y valores según *qué tan buenos son*

```
isSolvable(X, D, R):
      if X = \emptyset: return true
      x \leftarrow \text{alguna variable de } X
2
      for v \in D_x:
3
           if x = v no rompe R:
               x \leftarrow v
               if isSolvable(X - \{x\}, D, R):
6
                    return true
7
               x \leftarrow \emptyset
8
       return false
9
```

Llamaremos heurísticas a las estrategias para catalogar variables y valores según *qué tan buenos son*

```
isSolvable(X, D, R):
      if X = \emptyset: return true
1
  x \leftarrow \text{la mejor variable de } X
2
      for v \in D_x de mejor a peor :
           if x = v no rompe R:
5
               x \leftarrow v
               if isSolvable(X - \{x\}, D, R):
6
                   return true
7
               x \leftarrow \emptyset
8
      return false
g
```

Las heurísticas tratan de aproximar la realidad, pueden equivocarse

Posible heurística: partir por la variable con dominio más pequeño

					1
					9
7				6	8
				1	4
		3			2
	1		5	3	7
5					3
					16
			9		5

Posible heurística: partir por el valor con menos apariciones

4			2				
8						1	
7		4					
325							
3 2				5			
35	8						2
1					3		
9		5					
6							

Backtracking mejorado

Podemos incorporar estas mejoras según convenga en un problema particular

```
isSolvable(X, D, R):
      if X = \emptyset: return true
1
      x \leftarrow \text{la mejor variable de } X
2
      for v \in D_x de mejor a peor :
3
           if x = v no rompe R:
               x \leftarrow v, propagar
               if isSolvable(X - \{x\}, D, R):
6
                   return true
7
8
               x \leftarrow \emptyset, propagar
      return false
9
```