```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
a = pd.read csv("/home/mmcoe/Downloads/StudentsPerformance m.csv")
a.isnull().sum()
                               0
gender
race/ethnicity
                               0
parental level of education
                               0
lunch
                               0
test preparation course
                               0
math score
                               2
reading score
                               4
writing score
                               2
dtype: int64
a.isnull().values.sum()
8
a['math score'].fillna(value=a['math score'].mean(),inplace=True)
a.isnull().values.sum()
6
a['reading score'].fillna(value=a['reading
score'].mean(),inplace=True)
a.isnull().values.sum()
2
a['writing score'].fillna(value=a['writing
score'].mean(),inplace=True)
a.isnull().values.sum()
0
sns.boxplot(x=a['math score'])
<AxesSubplot:xlabel='math score'>
```


sns.boxplot(x=a['writing score'])

<AxesSubplot:xlabel='writing score'>

sns.boxplot(x=a['reading score'])

<AxesSubplot:xlabel='reading score'>

a.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	gender	1000 non-null	object
1	race/ethnicity	1000 non-null	object
2	parental level of education	1000 non-null	object
3	lunch	1000 non-null	object
4	test preparation course	1000 non-null	object
5	math score	1000 non-null	float64
6	reading score	1000 non-null	float64
7	writing score	1000 non-null	float64

dtypes: float64(3), object(5)

memory usage: 62.6+ KB

```
sns.scatterplot(data=a, x="math score", y = "reading score")
```

<AxesSubplot:xlabel='math score', ylabel='reading score'>

а

	parental level of education	race/ethnicity	gender h \	lunc
standard	bachelor's degree	group B	female	0
standard	some college	group C	female	1
standard	master's degree	group B	female	2
free/reduced	associate's degree	group A	male	3
standard	some college	group C	male	4
standard	master's degree	group E	female	995
free/reduced	high school	group C	male	996
free/reduced	high school	group C	female	997
standard	some college	group D	female	998

999 female	group D		some college	free/reduced	
test prepa	ration course	math score	reading score	writing score	
0	none	72.0	72.0	74.0	
1	completed	69.0	90.0	88.0	
2	none	90.0	95.0	93.0	
3	none	47.0	57.0	44.0	
4	none	76.0	78.0	75.0	
995	completed	88.0	99.0	95.0	
996	none	62.0	55.0	55.0	
997	completed	59.0	71.0	65.0	
998	completed	68.0	78.0	77.0	
999	none	77.0	86.0	86.0	
[1000 rows x 8 columns]					
<pre># it will calculate the Q1 q1 = a['math score'].quantile(0.25)</pre>					
<pre># It will calculate the Q3 q3 = a['math score'].quantile(0.75)</pre>					
<pre># IQR is Inter Quatile range. IQR = q3-q1</pre>					
print(IQR)					
20.0					

It will return the values less than the Q1
a['math score']<(q1-1.5*IQR)</pre>

0

1 2

3

False False

False

False

```
4
       False
995
       False
996
       False
       False
997
998
       False
999
       False
Name: math score, Length: 1000, dtype: bool
# It will return the values less than the Q3
a['math score']>(q3-1.5*IQR)
0
        True
1
        True
2
        True
3
       False
        True
       . . .
995
        True
996
        True
997
        True
998
        True
999
        True
Name: math score, Length: 1000, dtype: bool
# It will store all the values without outliners in a2 of all columns.
a2 = a[(a['math score'] < (q1-1.5*IQR))] | (a['math score'] > (q3-1.5*IQR))
1.5*IQR))]
a2
     gender race/ethnicity parental level of education
lunch \
     female
                                      bachelor's degree
                   group B
                                                               standard
0
1
     female
                   group C
                                            some college
                                                               standard
2
     female
                   group B
                                        master's degree
                                                               standard
4
       male
                   group C
                                            some college
                                                              standard
5
     female
                   group B
                                     associate's degree
                                                               standard
. .
       . . .
                        . . .
                                                     . . .
                                                                    . . .
995
     female
                                                               standard
                   group E
                                        master's degree
996
                   group C
                                             high school free/reduced
       male
```

997	female g	group C		high school	free/reduced
998	female g	group D		some college	standard
999	female g	group D		some college	free/reduced
	test preparation	n course	math score	reading score	writing score
0		none	72.0	72.0	74.0
1	CC	ompleted	69.0	90.0	88.0
2		none	90.0	95.0	93.0
4		none	76.0	78.0	75.0
5		none	71.0	83.0	78.0
995	CC	ompleted	88.0	99.0	95.0
996		none	62.0	55.0	55.0
997	CC	ompleted	59.0	71.0	65.0
998	CC	ompleted	68.0	78.0	77.0
999		none	77.0	86.0	86.0

[901 rows x 8 columns]

a2.shape

(901, 8)

import scipy.stats as stats

calculating value of z using stats function of scipy library. Here, abs is a absolute function which will return the positive value. abs is a function presesnt in numpt library.

```
z = np.abs(stats.zscore(a['writing score']))
con = np.where(z<3)
a3 = a.iloc[con]</pre>
```

_		race/ethnicity p	arental level	of education	
lunc 0	n \ female	group B	bach	elor's degree	standard
1	female	group C		some college	standard
2	female	group B	ma	ster's degree	standard
3	male	group A	assoc	iate's degree	free/reduced
4	male	group C		some college	standard
995	female	group E	ma	ster's degree	standard
996	male	group C		high school	free/reduced
997	female	group C		high school	free/reduced
998	female	group D		some college	standard
999	female	group D		some college	free/reduced
	test pre	paration course	math score	reading score	writing score
0	·	none	72.0	72.0	74.0
1		completed	69.0	90.0	88.0
2		none	90.0	95.0	93.0
3		none	47.0	57.0	44.0
4		none	76.0	78.0	75.0
995					
		completed	88.0	99.0	95.0
996		completed none	88.0 62.0	99.0 55.0	95.0 55.0
996 997		·			
		none	62.0	55.0	55.0

```
[1000 rows x 8 columns]
Ζ
0
       0.392081
1
       1.314021
2
       1.643285
3
       1.583502
       0.457934
995
       1.774990
996
       0.859122
997
       0.200594
998
       0.589640
999
       1.182315
Name: writing score, Length: 1000, dtype: float64
a3.shape
(996, 8)
sns.boxplot(x=a2['math score'])
<AxesSubplot:xlabel='math score'>
```



```
sns.boxplot(x=a['math score'])
<AxesSubplot:xlabel='math score'>
```


from sklearn.preprocessing import MinMaxScaler

```
scaler = MinMaxScaler()
a[['reading score']] = scaler.fit_transform(a[['reading score']])
a['reading score'] = a['reading score'].round(1)
a.head()
   gender race/ethnicity parental level of education
                                                              lunch \
                                                           standard
  female
                                   bachelor's degree
0
                 group B
  female
                                         some college
1
                 group C
                                                           standard
2
   female
                 group B
                                     master's degree
                                                           standard
3
                                  associate's degree free/reduced
     male
                 group A
4
     male
                                         some college
                                                           standard
                 group C
  test preparation course math score reading score writing score
0
                                 72.0
                     none
                                                  0.7
                                                                74.0
1
                completed
                                 69.0
                                                  0.9
                                                                88.0
2
                                 90.0
                                                  0.9
                                                                93.0
                     none
```

```
3
                                 47.0
                                                  0.5
                                                                44.0
                     none
4
                     none
                                 76.0
                                                  0.7
                                                                75.0
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature range=(1,3))
a[['reading score']] = scaler.fit_transform(a[['reading score']])
a['reading score'] = a['reading score'].round(1)
a['reading score']
       2.4
0
       2.8
1
2
       2.8
3
       2.0
4
       2.4
995
       3.0
996
       2.0
       2.4
997
998
       2.4
999
       2.6
Name: reading score, Length: 1000, dtype: float64
```