Deep Learning

Image Classification
Object Detection
Natural Language Modeling

Agenda I

- Introduction Machine Learning
- Neural Networks (NN)
- Overview Deep Learning frameworks
- Introduction PyTorch
- Introduction Convolutional Neural Networks (CNN)
- LeNet
- Introduction ImageNet Challenge
- Various CNN architectures

Agenda II

- Object detection
- Faster R-CNN
- Yolo
- Natural Language Modeling
- Recurrent Neural Networks (RNN)
- Long short-term memory (LSTM)

Introduction Machine Learning I

Supervised Learning	Unsupervised Learning	Reinforcement Learning
Linear Regression Support Vector Machine Decision Tree Neural Network	K-means clustering 	Q-learning

Supervised Learning

- 1. Goal: find mapping/function from input X to output Y
- 2. Examples of X/Y pairs are given to train your model

Introduction Machine Learning II

$$egin{pmatrix} x1 \ x2 \ x3 \ x4 \end{pmatrix} = X$$
 Unknown computation $y1 \ y2 \end{pmatrix} = Y$

Unknown computation

- 1. Linear: Linear Regression, Linear Classification
- 2. Non-linear: Decision Tree, Random Forest, Neural Network

more powerful: map complex X/Y pairs

Introduction Machine Learning III

Non-Linear function

Neural Network: Introduction

- Non-linear function approximator
- Can approximate any function arbitrarily close
- Classification and regression

Walter Pitts (1943); Neural Network pioneer

Neural Network: Universal Approximation Theorem I

"A feed-forward network with a single hidden layer containing a finite number of neurons, can approximate continuous functions on compact subsets of Rn" - Wikipedia

Neural Network: Universal Approximation Theorem II

$$y = \sqrt{x1} + x2 + e^{x1} * x2$$
 $y = \sqrt{x1 * x2} + \frac{x2}{x1} + x1 * x2$

Neural Network: Universal Approximation Theorem III

A feedforward network with a single layer is sufficient to represent any function, but the layer may be infeasibly large and may fail to learn and generalize correctly.

Ian Goodfellow

We want our function to generalize well thus we will use more complex architectures containing several hidden layers

Neural Network: How to find ideal weights?

Neural Network: Backpropagation

Loss $L = |\hat{y} - y|$

Neural Network: Backpropagation

Neural Network: Gradient Descent

Neural Network: Different activation functions

- Why do we need non-linear activation functions?
- Hidden Layer:
 - Sigmoid function
 - Rectified Linear Unit (ReLu)
 - Leaky Rectified Linear Unit (Leaky ReLu)
- Output Layer:
 - Softmax function

Neural Network: Sigmoid

Neural Network: ReLu

Neural Network: Leaky ReLu

Overview Deep Learning Frameworks

theano

Typical Features of Deep Learning frameworks

- Compute gradients of the cost function with respect to the weights automatically
- Predefined activation functions
- Predefined cost functions
- Predefined optimizers
- Dataloading utilities
- Option to move all computations to the GPU

How do Deep Learning frameworks differ?

- Low level vs high level framework
- Static/dynamic computational graph
- More or less user friendly API
- Help from Community
- Speed of adopting new techniques

Overview Deep Learning Frameworks

theano

Introduction: Deep Learning in the cloud

Introduction to PyTorch

Notebook: Introduction_to_PyTorch.ipynb

Exercise I: Linear Regression with PyTorch

Notebook: Exercise_1.ipynb

Humans use forms to classify image

Part of an image

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

Matrix of part of an image

Filter

Part	οf	an	image
ган	Οı	an	iiiiage

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

Matrix of part of an image

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Filter

Multiply + Add =
$$(50*30) + (50*30) + (50*30) + (50*30) + (20*30) + (50*30) = 6600$$

i di t di dii ii lage	Part	of	an	image
-----------------------	------	----	----	-------

0	0	0	0	0	0	0
0	40	0	0	0	0	0
40	0	40	0	0	0	0
40	20	0	0	0	0	0
0	50	0	0	0	0	0
0	0	50	0	0	0	0
25	25	0	50	0	0	0

Matrix of part of an image

Filter

Multiply + Add = 0

Image

Convolved

Filter operation is performed by a new layer: Convolutional Layer

Convolutional Layer

- Kernel-size (aka filter size): size of the filter matrix (always quadratic)
- Stride (aka step size): step size of filter movement
- Padding: adds pixel around the border of an image (0s most often)

Max Pooling Layer subsamples feature map

Feature Map

Max Pooling Layer

Convolutional Layer

- Kernel-size/filter size: 3x3, 5x5, 7x7,...
- Stride: step size of the convolution
- Padding: adds pixel around the border of an image (0s most often)

Calculate output size:

$$\frac{height/width + 2*padding - filtersize}{stride} + 1$$

Number of weights:

filter size * filter size * # channels + 1 bias

Batch Normalization Layer

- Same idea as input normalization
- Reduces dependency on initialization
- Useful side effect: added regularization
- Two step calculation:
 - Calculate mean over batch and subtract it
 - Calculate standard deviation over batch and divide by it
- two learnable parameters enable the network switch off BN

$$\hat{x} = \frac{x - \mu}{\sigma}$$

 $y = \gamma \hat{x} + \beta$

Common layers of a CNN

- Conv (convolutional layer): extracts features from input/feature map
- Pool (max pooling layer): subsamples feature map
- FC (fully connected layer): combines features
- ReLu: adds non-linear relationship
- Softmax: output layer for multiclass classification
- BN (batch normalization layer): helps the gradient to flow better

LeNet (1998)

- Input -> Conv -> Sigm -> Pool -> Conv -> Sigm -> Pool -> FC -> Sigm -> Output
- Task: recognize handwritten digits for banks

Yann LeCun, first author of LeNet paper; now at facebook

Next Notebook: LeNet

Notebook: LeNet.ipynb

History of CNN architectures

LeNet (1998) ImageNet challenge (2010) AlexNet (2012) VGGNet (2014) Inception (2014) ResNet (2015) Xeption (2016)

Introduction ImageNet Classification Challenge (ILSVRC)

- started in 2006 with the help of Amazon Mechanical Turk
- 3.2 Mio labelled images; 5,247 categories
- ended in 2017
- > 13 Mio labelled images; > 1000 categories
- **free** to download

Winning architectures became deeper every year

AlexNet (2012)

Architecture of AlexNet

AlexNet (2012) - BEGIN OF DEEP LEARNING

- 60 Mio. parameters, 650,000 neurons
- Top 5 error rate of 15,3% on ImageNet challenge
- 1.2 Mio. trainings images => training took 5-6 days on 2 GPUs (90 Epochs)
- Key contribution: kick off deep learning interest + data augmentation

Next notebook: AlexNet.ipynb

Alex Krizhevsky, now at google

VGGNet (2014)

- Invented by Visual Geometry Group at Oxford
- VGG16 => 16 layer; VGG19 => 19 layer
- 138 Mio. parameters
- Top 5 error rate of 7,3% on ImageNet challenge
- Training for ImageNet took two to three weeks using four Nvidia Titan Black GPUs
- Easy to understand => good baseline
- Available in most libraries
- Key contribution: Deeper networks perform better

VGGNet (2014)

Architecture of VGG

InceptionNet/GoogLeNet (2014)

- 22 layers/100 layers (depending on how you count)
- Main advantage: only 5 Mio. parameters (no FC layers)
- Top 5 error rate of 6.7% on ImageNet challenge
- Key contribution: Inception module

Christian Szegedy, now at google

InceptionNet/GoogLeNet (2014)

Inception module aka "network in network"

ResNet (2015)

- ResNet50 -> 50 layers; ResNet152 -> 152 layers
- Microsoft Research team
- Top 5 error rate of 3.6% on ImageNet challenge
- Key contribution: Residual block (enables us to make network deeper)

Kaiming He, now at facebook

ResNet - degradation problem

Thought experiment

10 layers

90 % accuracy

10 layers

10 layers

This problem is called the degradation problem.

Deeper layers struggle to even find an identity mapping.

How can we do depper?

Residual block

ResNet

Architecture of ResNet

New releases of ResNet

New Hypothesis why ResNet works so well

(a) Conventional 3-block residual network

(b) Unraveled view of (a)

Transfer Learning

Next notebook: Transfer Learning

Mittagspause

Introduction Object detection

mean average precision - mAP

https://stackoverflow.com/questions/48461855/understanding-and-tracking-of-met rics-in-object-detection

Regional-based CNN (R-CNN; 2014)

Overview

- 1. Generate ~ 2000 region proposals by using selective search algorithm
- 2. Transform each region to a 227x227 image
- 3. Use CNN to extract a fixed-length feature vector from each region
- 4. Use SVM + feature vector to classify regions
- 5. Discard all regions when there is a "close" region with a higher prediction score
- 6. Adjust size of proposed region with correction factor found by linear classifier

Disadvantage

~47s/image for a single prediction on a GPU

R-CNN visualized

Fast R-CNN (2015)

Overview

- 1. Generate regions of interest (ROI) by using selective search algorithm
- 2. Use one CNN to extract features of the whole input image
- 3. ROI Pooling: Get extracted features from ROIs
- 4. Feed ROI features into softmax layer for classification
- Feed ROI features into another layer and get back four values for the bounding box

Advantage

All parameters are part of one network

all weights can be adjusted in one step

Fast R-CNN visualized

Faster R-CNN (2015)

Overview

- Use one CNN to extract features of the whole input image
- 2. Generate a fixed number of anchor boxes
- Each anchor box gets a score (object or no object)
- 4. Depending on the score some anchor boxes will be discarded right away
- 5. Use the CNN to classify the content of anchor boxes

Advantage

Fully differentiable module all weights can be adjusted in one step

Faster R-CNN visualized

Faster R-CNN

1. Extract features using a standard CNN

Faster R-CNN

1. Extract features using a standard CNN

Faster R-CNN

Faster R-CNN

- New center point every 16 pixels
- 9 anchor boxes per center point
- 600 x 800 pic: 17901 anchor boxes

Regional Proposal Network (RPN)

Classify ROI

Final prediction

Training

- Four different losses
 - object score for RPN
 - correction factor for RPN
 - Softmax for final classification
 - correction factor for final bounding box regression
- Researchers found a way to combine these four losses in one loss function

Comparison

R-CNN: 50 secs/image

Fast R-CNN: 2 sec/image

Faster R-CNN: 0.2sec/image

Single Shot Detection

- BEFORE: Region proposal + classification = two steps
- NOW: Regression = one step

Yolo v2

- Divides image in S x S grid
- Each grid cell predicts
 - B bounding boxes
 - a confidence score for each bounding box
 - One set of class predictions

Bsp: Pascal VOC: S=7, B=2

=> 7x7x(2x(4+1)+20 classes) = 7x7x30 output

Yolo v2

Yolo v2

30 infos per grid cell = 2 bounding boxes (x,y,w.h) + 2 confident scores + 20 object classes

Hyperparameter

- Number of grid cells
- Number of bounding boxes per grid cell
- Threshold at which bounding box is considered valid

Comparison Object detection algorithms

Name	backbone	AP_small	AP_medium	AP_large
Faster RCNN	ResNet-101	15.6	38.7	50.9
Yolo v2	Darknet-19	5.0	22.4	35.5
Yolo v3	Darknet-53	18.3	35.4	41.9
RetinaNet	ResNeXt-101	24.1	44.2	51.2

Natural Language Modeling

The Georgetown experiment in 1954 involved fully automatic translation of more than sixty Russian sentences into English. The authors claimed that within three or five years, machine translation would be a solved problem.

Natural Language Modeling - Tasks

- Semantic analysis
- Translation
- Speech2Text
- Text2Speech
- Text generation
- Chat bots
- Spam detection

Word embeddings - Why and What?

- Machine Learning Algorithms can usually only work with numbers not strings
- We could convert every word to a one-hot encoded vector
 - => But relationships between words will be lost

Example

Monday	0	0001
Tuesday	1	0010
Wednesday	2	0100
Thursday	3	1000

Word embeddings - Why and What?

- Machine Learning Algorithms usually can only work with numbers not strings
- We could convert every word to a one-hot encoded vector
 - => But relationship between words will be lost

Example

Word embeddings - Why and What?

- Machine Learning Algorithms usually can only work with numbers not strings
- We could convert every word to a one-hot encoded vector
 - => But relationship between words will be lost

Word embeddings

```
V("Italy") - V("Pizza") = V("Germany") - ("Bratwurst")

V("King") - V("Queen") = V("Man") - V("Woman")

V("King") - V("Man") + V("Woman") = V("Queen")
```


Equations with word vectors actually make sense

Word2Vec

Word2Vec describes a family of algorithms which can generate word embeddings.

- CBOW (Continuous Bag of words)
 - Predict a word given its context words
 - Works well with small amount of the training data,
 represents well even rare words or phrases
- Skip Gram model
 - Predict the context words of a given word
 - Several times faster to train than the skip-gram,
 slightly better accuracy for the frequent words

Tomas Mikolov, currently at Facebook

Tomas Mikolov et al managed to speed up the computation of both algorithms tremendously

Word2Vec - Skip gram

Donald Trump really likes watching Fox News and being on the Times cover.

target: watching context: really, liked, Fox News

In the paper a vocabulary size of 3 millionen words and a training corpus of 100 billionen words were used.

|v|: vocabulary size

onehot encoded input layer size |v|

softmax output layer of size |v|

Global vectors for word representations (GloVe)

GloVe is also an algorithm to build word representations.

- Build a co-occurrence matrix X
- 2. Find vectors for the words i and j so that: $ec{w}_i^T ec{w}_j + b_i + b_j = \log X_{ij}$

3.
$$J = \sum_{i=1}^{V} \sum_{j=1}^{V} f(X_{ij}) \left(\vec{w}_i^T \vec{w}_j + b_i + b_j - \log X_{ij} \right)^2$$

$$f(X_{ij}) = \begin{cases} \left(\frac{X_{ij}}{x_{\max}}\right)^{\alpha} & \text{if } X_{ij} < x_{\max} \\ 1 & \text{otherwise.} \end{cases}$$

The function prevents common word pairs to skewing the result

spaCy

spaCy is a free, open-source library for Natural Language Processing (NLP) in Python.

Main features

- Tokenization
- Lemmatization
- Part-of-Speech tagging
- Entity Recognition
- Word vectors

Matt Honnibal, currently at ExplosionAl

Next Notebook: Word Embeddings.ipynb

Recurrent Neural Network (RNN)

- One RNN consists of several RNN cells
- Useful when data at several timesteps t is available (speech, music, video)

Recurrent Neural Network Cell (RNN)

RNN - combining several cells

Generate text with RNNs

Long short-term memory (LSTM)

- RNNs have problems storing a state in a_t over a long period of time.
- LSTMs ~ RNNs on steroids
- LSTMs are much more complicated than RNNs
- LSTMs are quite old (1997)

Juergen Schmidhuber, SWISS AI LAB

Long short-term memory (LSTM)

Final Exercise

- 1. Plant seedling competition (image classification)
- 2. Rebuild Yolo v2
- 3. Play around with RNN/LSTMs

