Matematicas Cinvestav

Generaciòn 2014

September 18, 2014

Contents

Ι	Algebra abstracta	3
1	Grupos 1.1 Definiciòn de grupo	4 4 6 7
2	Homorfismos de grupo 2.1 Definición	8 9
3	Anillos	10
4	Dominios	11
II 5		$egin{array}{c} 12 \\ 13 \end{array}$
6		14
		15
8	Espacios duales	16
9	Teorema de Caley Hamilton	17
10	Diagolizacion	18
11	Forma canonica de Jordan	19

12 Vectores propios Generalizados	
III Ecuaciones difereciales	21
13 Resolucion de Ec. diferenciales	22
14 Existencia de unidad de solucion de E.D.	23
15 Solucion aproximada	2 4
16 Relacion entre soluciones Aproximadas y exactas	25

Part I Algebra abstracta

Grupos

1.1 Definición de grupo

Definiciò Un conjunto no vacio G en el que esta definida una operacion * tal que va a mapear el producto cartesiano y los va amandar.

$$*: G \times G \to G$$

_

$$(a,b) \to (a*b)$$

Propiedad

- $1. \ a*b \in G \forall a,b \in G$
- $2. \ a*b(b*c) = (a*b)*c \forall a,b,c \in G$
- 3. $\exists e \in G \mathrel{\dot{.}.} a * e = e * a = a \forall e \in G$ "e" se le llama identidad o identidad de a

Ejemplo

- $1. \mathbb{Z}$
- 2. Los racionales $\mathbb Q$ con la suma
- 3. $\mathbb{Q}^* = \mathbb{Q}\{0\}$ con la multiplicación

- 4. $G = \{e\}$ con la opercaion $e*e = e \in G$
- 5.
- 6. El conjunto de Matrices $G(n,\mathbb{R})$ es un grupo NO CONMUTATIVO $A,b\in G(n,\mathbb{R})$
- 7. Son las matrices

1.2 Grupos abelinos

Definicion Se dice que un grupo G es abeliano si solo si a * b = b * a

Ejemplo El conjunto \mathbb{Z}/\mathbb{Z}_n (clase de equivalencia)

Ejercicios

- 1. Considere a \mathbb{Z} con el producto usual Es \mathbb{Z} un grupo?
- 2. Considere a $\mathbb{Z}^*(incluye0)$ con el producto usual es \mathbb{Z}^* ?
- 3. Sea $G = \mathbb{R} \setminus \{0\}$ si definimos $a \times b = a^2b$ G es un Grupo?

Definiciones Orden de un grupo es el numero de elementos que tiene dicho Grupo y se denota |G| Un Grupo G sera finito si tiene elementos finitos de elementos sea infinito

Ejemplos

Proposicion Si G es un grupo entonces

- 1. El elemento identidad es uinico
- 2. $\forall a \in Ga^{-1}$ es unico
- 3. $\forall a, b \in G(ab)^{-1} = b^{-1}a^{-1}$
- 4. En general $(a_1 \cdot a_2 \cdot \dots \cdot a_n)^{-1} = (a_n^{-1} \cdot a_{n-1}^{-1} \cdot \dots \cdot a_2^{-1} \cdot a_1^{-1}) \forall a \in G$

Proposicion Sea G un grupo $\forall a, b, c \in G$

- 1. $ab = ac \Rightarrow b = c$
- 2. $ba = ca \Rightarrow b = c$

Verificacion

1.
$$b = eb = (aa^{-1})b = a^{-1}(ab) = a^{-1}(ac) = (a^{-1}a)c = ec = c$$

2.
$$b = be = b(aa^{-1}) = (ba)a^{-1} = (ca)a^{-1} = c(aa^{-1}) = ce = c$$

1.3 Subgrupo

Definición Conjunto no vacio H de un grupo G, se llama Subgrupo si H mismo forma un grupo respecto a la operació de G. Cuando H es subgrupo de G se denota H < G ò G > H.

Observación Todo grupo tiene autômaticamente dos subgrupos tribiales $G\&\{e\}$

Propociòn Un subconjunto no vaio $H\subset G$ es un subgrupo de G ssi H es cerrado respecto a la operaciòn G & $a\in H\Rightarrow a^{-1}\in a^{-1}\in H$ \Rightarrow

 $\bf Necesidad$ Como H es un subgrupo de G, H es un grupo y tiene inversa \Leftarrow

Suficiencia H es cerrado, no vacio & y el inverso esta en $H \forall a \in H = aa^{-1}(Hescerrado) \Rightarrow aa^{-1} = e \in H$

Ademas para $a, b, c \in H$ a(bc) = (ab)c $H \in G$

Ejercicio Sea $G=\mathbb{Z}$ con la suma usual & sea H el conjunto de enteros pares.

$$H = \{2n/n \in \mathbb{Z}\}$$

H es un subgrupo?

Sean a,b
$$\in$$
H $a=2q$, $q\in\mathbb{Z}$ $b=2\acute{q}$ $\acute{q}\in\mathbb{Z}$

$$a + b = 2q + 2q = 2(q + q') = 2q''$$

Chapter 2 Homorfismos de grupo

2.1 Definición

Un mape
o ϕ de un grupo G en un grupo \bar{G} se dice ser un homomorfismo si para todo
 $a,b\in G, \phi(a,b)=\phi(a)\phi(b)$

Proposiciòn Sea $\varepsilon:G\to\acute{G}$ homomorfismo. Entonces ε es un monomorfismo ssi $ker\varepsilon=\{0\}(e=0\in G)$

$Verificaci`on \ \ \, \Leftarrow \ \,$

Supongamos que $\mathrm{Ker}\varepsilon=\{0\}$ por verificar que ε es monomorfismo

Supongamos que $\varepsilon(x_1) = \varepsilon(x_2)$

Anillos

Dominios

Part II Algebra Lineal

Espacios Vectoriales ,Isomorfismos

Chapter 6 Operadores lineales

Chapter 7 Funciones Lineales

Chapter 8
Espacios duales

Chapter 9 Teorema de Caley Hamilton

Chapter 10
Diagolizacion

Forma canonica de Jordan

Vectores propios Generalizados

Part III Ecuaciones difereciales

Resolucion de Ec. diferenciales

Existencia de unidad de solucion de E.D.

Chapter 15
Solucion aproximada

Relacion entre soluciones Aproximadas y exactas