QCL-based Ammonia Slip Sensor in Thermal Power Plant DeNOx Process

Peng Kang Ph.D., Ting-Jung Lin Ph.D., Yin Wang Ph.D. Healthy Photon Co., Ltd., Ningbo, Zhejiang, P.R. China

Email: yin.wang@healthyphoton.com Website: www.healthyphoton.com

Introduction

- 1. Ammonia (NH₃) plays a key role in thermal power plant DeNOx process.
 - Excessive NH₃ (ammonia slip) results in higher costs and air pollution.
- 2. Limitations of current NH₃ slip monitor products (NIR laser based):
 - Low resolution & unstability due to high dust and high temperature, etc.
- 3. HealthyPhoton's ultra-sensitive, portable NH₃ analyzer based on MIR QCL spectroscopy:
 - Targeting fundamental transition at 9μm.
 - Resolution up to 0.01 ppmv*m/Hz^{1/2}.
 - Improved system stability and robustness.
 - Possible simultaneous Nitric Oxide (NO) detection with an additional QCL.

Ammonia Slip in DeNOx Process

- 1. NOx in flue gas emissions from fossil fule combustion
 - DeNOx process is needed to meet government regulations
- 2. Selective Catalytic Reduction (SCR) process
 - NH₃ slip and NO emision determines process efficiency

Limitations of Current NIR based Products

1. **Accuracy** lower than required NH₃:3ppm; NOx: 25ppm

2. In-situ cross-duct spectrometer **Dust**: laser beam cannot penetrate Thermal deformation: beam walk-off

3. Extractive spectrometer using multi-pass cell compensating the weak absorption: **system unstable** under severe working conditions (mirror degradation due to salt&dust)

Our Solution: NH₃+NO Sensor

- Target fundamental transition at $9\mu m \rightarrow resolution up to 0.01 ppmv*m/Hz^{1/2}$
- Simultaneous Nitric Oxide (NO) detection with QCL2 from the same sample

L: Lens; D:Detector; OAPM: Off-Axis Parabolic Mirror; BS: Beam Splitter

- Hot wet gas sampled from the duct
- Pipe length < 3 meters ensures real-time data
- Getting real-time multi-point concentration

System Performance

Absorption lines selection and 2f demodulation results

- 1. Spectrum at a known concentraion was simulated and saved.
- 2. Using least-square fitting of acquired spectrum to retrieve the unknown concentration.

Comparison against Axetris' NIR Ammonia Analyzer

- Showing the same trend
- Better accuracy and faster response time

Conclusions and Future Work

- 1. A QCL based NH₃/NO sensor was developed for DeNOx process monitoring
 - NH₃: 0.1ppmv/s; (NO: 0.4ppmv/s)
- 2. Compared with traditional NIR sensors:
 - Better accuracy/robustness/reliability in real field condition.
- 3. The system ensures real-time monitoring and optimization for DeNOx process.
- 4. Collaborations with power plants all over China and worldwide.

QCL-based spectrometer modules for the NH₃/NO sensor prototype,

References

OPEN FOR COLLABORATIONS!

[1] Institute of Clean Air Companies (ICAC). White Paper. Selective Catalytic Reduction (SCR) Control of NOx Emissions from Fossil Fuel-Fired Electric Power Plants. May 2009.

- [2] United States Environmental Protection Agency. EPA Air Pollution Control Cost Manual. 2016.
- [3] National Energy Administration, China. Electric Power Industry Standard. DL/T 296-2011 The Thermal Power Plant Flue Gas Denitrification Technology Guidelines. 2011.