# RandomForestRegressor v1 seg 3

November 24, 2022

## 1 Random Forest regressor

```
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split, RandomizedSearchCV from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.neural_network import MLPRegressor from sklearn.feature_selection import SelectFromModel from sklearn.metrics import r2_score, mean_absolute_percentage_error,u_mean_absolute_error, mean_squared_error from sklearn.ensemble import RandomForestRegressor
```

### 1.1 Read the etl info results

## 1.2 Read the dataset

```
[]: df = pd.read_csv('../dataset_clean/PlatteRiverWeir_features_v1_clean.csv')
```

| []: |       | Se                               | ensorTime |       | Capt     | ureTime | e Sta | age :  | Discharg | е   | grayMean   | \ |
|-----|-------|----------------------------------|-----------|-------|----------|---------|-------|--------|----------|-----|------------|---|
|     | 0     | 2012-06-09                       | 13:15:00  | 2012- | -06-09T1 | 3:09:0  | 7 2   | .99    | 916.     | 0   | 97.405096  |   |
|     | 1     | 2012-06-09                       | 13:15:00  | 2012- | -06-09T1 | 3:10:29 | 9 2   | .99    | 916.     | 0 : | 104.066757 |   |
|     | 2     | 2012-06-09                       | 13:45:00  | 2012- | -06-09T1 | 3:44:0  | 1 2   | 96     | 873.     | 0 1 | 105.636831 |   |
|     | 3     | 2012-06-09                       | 14:45:00  | 2012- | -06-09T1 | 4:44:30 | 0 2   | .94    | 846.     | 0 1 | 104.418949 |   |
|     | 4     | 2012-06-09                       | 15:45:00  | 2012- | -06-09T1 | 5:44:59 | 9 2   | 94     | 846.     | 0 1 | 106.763541 |   |
|     | •••   |                                  | •••       |       |          |         |       | •••    |          | ••• |            |   |
|     | 42054 | 2019-10-11                       | 09:00:00  | 2019- | -10-11TC | 8:59:53 | 3 2   | 54     | 434.     | 0   | 82.872720  |   |
|     | 42055 | 2019-10-11                       | 10:00:00  | 2019- | -10-11TC | 9:59:5  | 2 2   | 54     | 434.     | 0   | 89.028383  |   |
|     | 42056 | 2019-10-11                       | 11:00:00  | 2019- | -10-11T1 | 0:59:5  | 2 2   | 54     | 434.     | 0   | 94.722097  |   |
|     | 42057 | 2019-10-11                       | 12:00:00  | 2019- | -10-11T1 | 1:59:5  | 3 2   | 54     | 434.     | 0   | 96.693270  |   |
|     | 42058 | 2019-10-11                       | 12:45:00  | 2019- | -10-11T1 | 2:59:5  | 2 2   | .54    | 434.     | 0   | 98.738399  |   |
|     |       | graySigma                        | hMea      | n     | hSigma   | grayl   | Mean0 |        | hMean0   | ent | tropyMean1 | \ |
|     | 0     | 39.623303                        | 105.36837 | 5 41  | .572939  | 97.08   | 84576 | 106    | .047217  |     | 0.092532   |   |
|     | 1     | 40.179745                        | 112.39945 | 8 41  | .795584  | 105.6   | 68610 | 114    | .886049  |     | 0.090279   |   |
|     | 2     | 40.533218                        | 114.02152 | 6 42  | . 145582 | 106.78  | 86307 | 116    | .053131  |     | 0.090561   |   |
|     | 3     | 41.752678                        | 112.61283 | 0 43  | .575351  | 107.6   | 74299 | 117    | .005027  |     | 0.095616   |   |
|     | 4     | 44.442097                        | 114.83942 | 4 46  | .302008  | 114.8   | 58589 | 124    | .519271  |     | 0.101601   |   |
|     |       |                                  | •••       | •••   |          | •••     | •••   |        | •••      |     |            |   |
|     | 42054 | 57.702652                        | 87.26057  |       | .485334  |         | 37485 |        | .616662  |     | 0.120668   |   |
|     | 42055 | 55.840861                        | 94.17590  |       | .006132  |         | 68458 | 49     | .716207  |     | 0.113951   |   |
|     | 42056 | 54.355753                        | 100.53457 |       | .921028  | 49.84   | 41325 | 53     | .984763  |     | 0.110346   |   |
|     | 42057 | 52.787629                        | 102.89115 |       | .083532  |         | 12185 | 58     | .857575  |     | 0.112571   |   |
|     | 42058 | 52.025453                        | 105.29206 | 7 53  | .994155  | 59.6    | 11803 | 65     | . 697745 |     | 0.110247   |   |
|     |       | entropySign                      | na1 h     | Mean1 | WwRawL   | ineMea  | n WwF | RawLi: | neSigma  | \   |            |   |
|     | 0     | 0.6323                           | 319 169.9 | 63345 | C        | .00000  | 0     | 0      | .000000  |     |            |   |
|     | 1     | 0.6200                           | 077 175.2 | 20945 | C        | .00000  | 0     | 0      | .000000  |     |            |   |
|     | 2     | 0.6208                           | 353 179.5 | 54842 | C        | .00000  | 0     | 0      | .000000  |     |            |   |
|     | 3     | 0.6516                           | 642 180.9 | 21521 | C        | .00000  | 0     | 0      | .000000  |     |            |   |
|     | 4     | 0.6880                           | 024 183.1 | 31779 | C        | .00000  | 0     | 0      | .000000  |     |            |   |
|     |       |                                  | •••       |       |          |         |       | •••    |          |     |            |   |
|     | 42054 | 0.8241                           | 195 126.1 | 81417 | 38385    | .37006  | 6 1   | 15952  | .029728  |     |            |   |
|     | 42055 | 0.7834                           | 131.7     | 54200 | 40162    | .98929  | 2 1   | L5467  | .708856  |     |            |   |
|     | 42056 | 0.7660                           | 074 138.0 | 14068 | 42095    | .94659  | 0 1   | L6770  | .357949  |     |            |   |
|     | 42057 | 0.7773                           | 376 146.4 | 70365 | 45345    | .490954 | 4 1   | 17498  | .432849  |     |            |   |
|     | 42058 | 0.7602                           | 248 156.9 | 57374 | 47877    | .87078  | 2 1   | 19963  | . 166359 |     |            |   |
|     |       | WwCurveLineMean WwCurveLineSigma |           |       |          |         |       |        |          |     |            |   |
|     | 0     | 0.00000                          |           |       | 0.000000 |         |       |        |          |     |            |   |
|     | 1     | 0.00                             | 00000     |       | 0.00000  |         |       |        |          |     |            |   |

|   | WwCurveLineMean | WwCurveLineSigma |
|---|-----------------|------------------|
| 0 | 0.000000        | 0.000000         |
| 1 | 0.00000         | 0.000000         |

```
2
                    0.000000
                                       0.000000
     3
                    0.000000
                                       0.000000
     4
                    0.000000
                                       0.000000
     42054
               37550.894823
                                   16444.401209
     42055
               39397.339095
                                   16009.008049
     42056
               41350.006568
                                   17489.374617
     42057
                                   18268.294896
               44553.920296
     42058
               47280.270559
                                  20559.358767
     [42059 \text{ rows x } 17 \text{ columns}]
[]: df['SensorTime'] = pd.to_datetime(df['SensorTime'])
     df['Year'] = df['SensorTime'].dt.year
     df['Month'] = df['SensorTime'].dt.month
[]: df.dtypes
[]: SensorTime
                          datetime64[ns]
     CaptureTime
                                  object
                                 float64
     Stage
                                 float64
     Discharge
     grayMean
                                 float64
     graySigma
                                 float64
    hMean
                                 float64
     hSigma
                                 float64
     grayMean0
                                 float64
    hMean0
                                 float64
     entropyMean1
                                 float64
     entropySigma1
                                 float64
     hMean1
                                 float64
     WwRawLineMean
                                 float64
     WwRawLineSigma
                                 float64
     WwCurveLineMean
                                 float64
     WwCurveLineSigma
                                 float64
     Year
                                   int64
                                   int64
     Month
     dtype: object
[]: df = df[(df.Stage > 0) & (df.Discharge > 0)]
[]: df.isna().sum()
[]: SensorTime
                          0
                          0
     CaptureTime
     Stage
                          0
     Discharge
                          0
```

```
grayMean
                     0
                     0
graySigma
hMean
                     0
hSigma
                     0
grayMean0
                     0
hMean0
                     0
entropyMean1
                     0
entropySigma1
                     0
                     0
hMean1
WwRawLineMean
                     0
WwRawLineSigma
                     0
WwCurveLineMean
                     0
WwCurveLineSigma
Year
                     0
Month
                     0
dtype: int64
```

### 1.3 Divide dataset to X and Y

```
[]: np.random.seed(0)
     df_train = df[(df.Year >= 2012) & (df.Year <= 2017)]</pre>
     df_train = df_train.iloc[np.random.permutation(len(df_train))]
     df_test = df[(df.Year >= 2018) & (df.Year <= 2019)]</pre>
[]: df_train = df_train.drop(columns=["Year", "SensorTime", "CaptureTime"])
     #df_val = df_val.drop(columns=["Year", "SensorTime", "CaptureTime"])
     df_test = df_test.drop(columns=["Year", "SensorTime", "CaptureTime"])
[]: y_train = df_train["Stage"]
     X_train = df_train.drop(columns=["Stage", "Discharge"])
     y_test = df_test["Stage"]
     X test = df test.drop(columns=["Stage", "Discharge"])
[]: print(X_train.shape)
     print(y_train.shape)
    (27421, 14)
    (27421,)
[]: input_shape = X_train.shape
     output_shape = y_train.shape
     print(input_shape, output_shape)
```

#### 1.4 Train model

### []: clf.fit(X\_train, y\_train)

```
Fitting 5 folds for each of 20 candidates, totalling 100 fits
[CV 3/5] END clf max features=log2, clf n estimators=193;, score=-0.122 total
time= 12.4s
[CV 1/5] END clf max features=log2, clf n estimators=193;, score=-0.115 total
time= 12.6s
[CV 4/5] END clf max features=log2, clf n estimators=193;, score=-0.120 total
time= 12.5s
[CV 2/5] END clf__max_features=log2, clf__n_estimators=193;, score=-0.120 total
time= 12.6s
[CV 5/5] END clf max features=log2, clf n estimators=193;, score=-0.113 total
time= 12.6s
[CV 1/5] END clf__max_features=log2, clf__n_estimators=206;, score=-0.115 total
time= 13.3s
[CV 3/5] END clf max features=log2, clf n estimators=206;, score=-0.123 total
time= 13.4s
[CV 2/5] END clf__max_features=log2, clf__n_estimators=206;, score=-0.120 total
time= 13.4s
[CV 2/5] END clf__max_features=log2, clf__n_estimators=118;, score=-0.121 total
      7.5s
[CV 1/5] END clf__max_features=log2, clf__n_estimators=118;, score=-0.115 total
time=
      7.6s
[CV 3/5] END clf__max_features=log2, clf__n_estimators=118;, score=-0.122 total
[CV 4/5] END clf_max_features=log2, clf_n_estimators=118;, score=-0.120 total
time=
      7.7s
[CV 5/5] END clf_max_features=log2, clf_n_estimators=118;, score=-0.113 total
      7.8s
[CV 4/5] END clf__max_features=log2, clf__n_estimators=206;, score=-0.120 total
time= 13.3s
[CV 5/5] END clf max features=log2, clf n estimators=206;, score=-0.113 total
time= 13.2s
```

```
[CV 1/5] END clf__max_features=log2, clf__n_estimators=91;, score=-0.115 total
time=
       5.9s
[CV 2/5] END clf__max_features=log2, clf__n_estimators=91;, score=-0.121 total
[CV 3/5] END clf__max_features=log2, clf__n_estimators=91;, score=-0.122 total
       6.0s
[CV 4/5] END clf max features=log2, clf n estimators=91;, score=-0.121 total
       5.9s
[CV 5/5] END clf__max_features=log2, clf__n_estimators=91;, score=-0.114 total
time=
      6.0s
[CV 1/5] END clf max features=sqrt, clf n estimators=187;, score=-0.115 total
time= 12.8s
[CV 2/5] END clf__max_features=sqrt, clf__n_estimators=187;, score=-0.120 total
time= 12.9s
[CV 3/5] END clf__max_features=sqrt, clf__n_estimators=187;, score=-0.123 total
time= 13.3s
[CV 4/5] END clf__max_features=sqrt, clf__n_estimators=187;, score=-0.120 total
time= 12.1s
[CV 1/5] END clf__max_features=1.0, clf__n_estimators=162;, score=-0.110 total
time= 43.7s
[CV 5/5] END clf__max_features=sqrt, clf__n_estimators=187;, score=-0.113 total
time= 12.1s
[CV 3/5] END clf__max_features=1.0, clf__n_estimators=162;, score=-0.111 total
time= 41.9s
[CV 4/5] END clf__max_features=1.0, clf__n_estimators=162;, score=-0.108 total
time= 42.2s
[CV 5/5] END clf max features=1.0, clf n estimators=162;, score=-0.109 total
time= 41.6s
[CV 2/5] END clf max features=1.0, clf n estimators=162;, score=-0.113 total
time= 42.8s
[CV 1/5] END clf_max_features=1.0, clf_n_estimators=150;, score=-0.110 total
time= 36.1s
[CV 1/5] END clf max features=1.0, clf n estimators=118;, score=-0.110 total
time= 28.3s
[CV 3/5] END clf__max_features=1.0, clf__n_estimators=118;, score=-0.111 total
time= 28.2s
[CV 2/5] END clf max features=1.0, clf n estimators=118;, score=-0.113 total
time= 29.0s
[CV 4/5] END clf__max_features=1.0, clf__n_estimators=150;, score=-0.108 total
time= 35.3s
[CV 2/5] END clf__max_features=1.0, clf__n_estimators=150;, score=-0.113 total
time= 37.1s
[CV 3/5] END clf__max_features=1.0, clf__n_estimators=150;, score=-0.111 total
time= 37.1s
[CV 5/5] END clf__max_features=1.0, clf__n_estimators=150;, score=-0.109 total
time= 35.0s
[CV 1/5] END clf__max_features=log2, clf__n_estimators=166;, score=-0.115 total
time=
      9.2s
```

```
[CV 2/5] END clf max features=log2, clf n estimators=166;, score=-0.120 total
time= 10.2s
[CV 3/5] END clf max features=log2, clf n estimators=166;, score=-0.122 total
time= 10.2s
[CV 5/5] END clf__max_features=log2, clf__n_estimators=166;, score=-0.113 total
       9.5s
[CV 4/5] END clf max features=log2, clf n estimators=166;, score=-0.121 total
time= 10.4s
[CV 1/5] END clf__max_features=sqrt, clf__n_estimators=209;, score=-0.115 total
time= 12.3s
[CV 2/5] END clf max features=sqrt, clf n estimators=209;, score=-0.120 total
time= 11.7s
[CV 1/5] END clf__max_features=log2, clf__n_estimators=145;, score=-0.115 total
       9.0s
[CV 3/5] END clf__max_features=sqrt, clf__n_estimators=209;, score=-0.122 total
time= 12.9s
[CV 4/5] END clf__max_features=1.0, clf__n_estimators=118;, score=-0.109 total
time= 29.0s
[CV 4/5] END clf__max_features=sqrt, clf__n_estimators=209;, score=-0.120 total
time= 12.7s
[CV 5/5] END clf__max_features=sqrt, clf__n_estimators=209;, score=-0.113 total
time= 12.7s
[CV 5/5] END clf_max_features=1.0, clf_n_estimators=118;, score=-0.109 total
time= 26.1s
[CV 2/5] END clf__max_features=log2, clf__n_estimators=145;, score=-0.121 total
       8.7s
[CV 3/5] END clf max features=log2, clf n estimators=145;, score=-0.122 total
       8.4s
[CV 4/5] END clf max features=log2, clf n estimators=145;, score=-0.120 total
       8.2s
[CV 5/5] END clf__max_features=log2, clf__n_estimators=145;, score=-0.113 total
       8.8s
[CV 1/5] END clf max features=sqrt, clf n estimators=68;, score=-0.115 total
      4.0s
[CV 2/5] END clf__max_features=sqrt, clf__n_estimators=68;, score=-0.122 total
time=
[CV 3/5] END clf_max_features=sqrt, clf_n_estimators=68;, score=-0.123 total
       4.3s
[CV 4/5] END clf__max_features=sqrt, clf__n_estimators=68;, score=-0.121 total
       3.8s
[CV 5/5] END clf_max_features=sqrt, clf_n_estimators=68;, score=-0.114 total
time=
       3.8s
[CV 1/5] END clf_max_features=sqrt, clf_n_estimators=52;, score=-0.117 total
[CV 2/5] END clf_max_features=sqrt, clf_n_estimators=52;, score=-0.123 total
[CV 3/5] END clf__max_features=sqrt, clf__n_estimators=52;, score=-0.123 total
time=
      3.0s
```

```
[CV 2/5] END clf max features=log2, clf n estimators=290;, score=-0.120 total
time= 16.9s
[CV 3/5] END clf max features=log2, clf n estimators=290;, score=-0.122 total
time= 16.9s
[CV 1/5] END clf__max_features=log2, clf__n_estimators=290;, score=-0.116 total
time= 17.9s
[CV 5/5] END clf max features=sqrt, clf n estimators=52;, score=-0.116 total
       3.1s
[CV 4/5] END clf__max_features=sqrt, clf__n_estimators=52;, score=-0.121 total
time=
       3.3s
[CV 4/5] END clf max features=log2, clf n estimators=290;, score=-0.120 total
time= 18.0s
[CV 5/5] END clf__max_features=log2, clf__n_estimators=290;, score=-0.113 total
time= 17.0s
[CV 1/5] END clf_max_features=sqrt, clf_n_estimators=97;, score=-0.115 total
      5.8s
[CV 2/5] END clf_max_features=sqrt, clf_n_estimators=97;, score=-0.122 total
time=
       6.1s
[CV 3/5] END clf__max_features=sqrt, clf__n_estimators=97;, score=-0.123 total
time=
      6.0s
[CV 4/5] END clf__max_features=sqrt, clf__n_estimators=97;, score=-0.120 total
time=
       5.8s
[CV 5/5] END clf__max_features=sqrt, clf__n_estimators=97;, score=-0.113 total
time=
       5.8s
[CV 1/5] END clf__max_features=log2, clf__n_estimators=88;, score=-0.115 total
       5.2s
[CV 2/5] END clf max features=log2, clf n estimators=88;, score=-0.122 total
       5.6s
[CV 3/5] END clf max features=log2, clf n estimators=88;, score=-0.122 total
       5.6s
[CV 4/5] END clf__max_features=log2, clf__n_estimators=88;, score=-0.120 total
[CV 5/5] END clf max features=log2, clf n estimators=88;, score=-0.114 total
time=
      5.5s
[CV 1/5] END clf__max_features=sqrt, clf__n_estimators=146;, score=-0.115 total
time=
       9.0s
[CV 2/5] END clf__max_features=sqrt, clf__n_estimators=146;, score=-0.121 total
time=
       8.9s
[CV 3/5] END clf__max_features=sqrt, clf__n_estimators=146;, score=-0.122 total
       8.6s
[CV 4/5] END clf__max_features=sqrt, clf__n_estimators=146;, score=-0.120 total
time=
      8.9s
[CV 5/5] END clf__max_features=sqrt, clf__n_estimators=146;, score=-0.113 total
       8.7s
[CV 1/5] END clf__max_features=1.0, clf__n_estimators=177;, score=-0.110 total
time= 43.1s
[CV 3/5] END clf__max_features=1.0, clf__n_estimators=177;, score=-0.111 total
time= 42.8s
```

```
time= 43.8s
    [CV 4/5] END clf max features=1.0, clf n estimators=177;, score=-0.108 total
    time= 42.8s
    [CV 5/5] END clf__max_features=1.0, clf__n_estimators=177;, score=-0.109 total
    time= 42.9s
    [CV 1/5] END clf max features=sqrt, clf n estimators=62;, score=-0.116 total
            3.8s
    [CV 2/5] END clf max features=sqrt, clf n estimators=62;, score=-0.122 total
    time=
           3.8s
    [CV 3/5] END clf max features=sqrt, clf n estimators=62;, score=-0.124 total
           3.3s
    [CV 4/5] END clf__max_features=sqrt, clf__n_estimators=62;, score=-0.121 total
    [CV 5/5] END clf_max_features=sqrt, clf_n_estimators=62;, score=-0.115 total
           3.6s
    [CV 1/5] END clf__max_features=1.0, clf__n_estimators=163;, score=-0.110 total
    time= 38.2s
    [CV 2/5] END clf__max_features=1.0, clf__n_estimators=163;, score=-0.113 total
    time= 37.4s
    [CV 3/5] END clf__max_features=1.0, clf__n_estimators=163;, score=-0.111 total
    time= 37.3s
    [CV 4/5] END clf_max_features=1.0, clf_n_estimators=163;, score=-0.108 total
    time= 35.2s
    [CV 5/5] END clf__max_features=1.0, clf__n_estimators=163;, score=-0.109 total
    time= 35.0s
[]: RandomizedSearchCV(estimator=Pipeline(steps=[('scaler', StandardScaler()),
                                                 ('clf',
    RandomForestRegressor(random_state=0))]),
                       n_iter=20, n_jobs=8,
                       param_distributions={'clf_max_features': ['sqrt', 1.0,
                                                                  'log2'],
                                            'clf__n_estimators': array([ 50, 51,
    52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
            63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
            76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,
            89, 90...
           219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231,
           232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
           245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257,
           258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270,
           271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283,
           284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296,
           297, 298, 299])},
                       scoring='neg_mean_squared_error', verbose=3)
```

[CV 2/5] END clf max features=1.0, clf n estimators=177;, score=-0.113 total

#### 1.5 Test model

```
[]: clf.best score
[]: -0.11015483464061511
[]: clf.best_params_
[]: {'clf_n_estimators': 177, 'clf_max_features': 1.0}
[]: clf.score(X_test, y_test)
[]: -0.2208339851992373
[]: y_pred = clf.predict(X_test)
[]: print("R^2: ", r2_score(y_test, y_pred))
    print("mse: ", mean_squared_error(y_test, y_pred))
    print("rmse: ", mean_squared_error(y_test, y_pred, squared=False))
    print("mae: ", mean_absolute_error(y_test, y_pred))
    print("mape: ", mean_absolute_percentage_error(y_test, y_pred))
    print("Error estandar: ", stde(y_test.squeeze(),
          y_pred.squeeze(), ddof=2))
    R^2: 0.4345404446266534
    mse: 0.2208339851992373
    rmse: 0.46992976624091104
    mae: 0.27238347762819287
    mape: 0.10475067280748779
    Error estandar: 0.45078652358584226
[]: residuals = y_test - y_pred
    residuals_std = residuals / residuals.std()
    y_real_stage = y_test
    residual_stage = residuals
    #y_real_discharge = np.array([i[-1] for i in y_test])
    \#residual\_discharge = np.array([i[-1] for i in residuals])
    figure, ax = plt.subplots(ncols=2, figsize=(20, 8), dpi=80)
    ax[1].scatter(y_real_stage, residual_stage / residual_stage.std(), label="stage_u
     →residuals")
     #ax[0].scatter(y_real_discharge, residual_discharge / residual_discharge.std(), ا
     → label="discharge residuals")
    ax[1].axhline(y=0.0, color='r', linestyle='-')
```

```
ax[0].axhline(y=0.0, color='r', linestyle='-')
ax[1].set_title("Stage residuals")
ax[0].set_title("Discharge residuals")
ax[1].set_xlabel("Fitted values")
ax[0].set_xlabel("Fitted values")
ax[1].set_ylabel("Standarized residuals")
ax[0].set_ylabel("Standarized residuals")
plt.legend()
plt.show()
```







```
[]: plt.hist(residual_stage / residual_stage.std(), density=True, bins = 60)
plt.ylabel('Count')
plt.xlabel('Residual stage');
plt.show()
```



```
[]: """plt.hist(residual_discharge / residual_discharge.std(), density=True, bins =

→60)

plt.ylabel('Count')

plt.xlabel('Residual discharge');

plt.show()"""
```

[]: "plt.hist(residual\_discharge / residual\_discharge.std(), density=True, bins =
 60)\nplt.ylabel('Count')\nplt.xlabel('Residual discharge');\nplt.show()"

```
[]: stat, pval = normal_ad(residual_stage / residual_stage.std())
print("p-value:", pval)

if pval < 0.05:
    print("Hay evidencia de que los residuos no provienen de una distribución
    →normal.")
else:
    print("No hay evidencia para rechazar la hipótesis de que los residuos
    →vienen de una distribución normal.")
```

p-value: 0.0

Hay evidencia de que los residuos no provienen de una distribución normal.

```
[]: plt.figure(figsize=(8, 6), dpi=80)
plt.plot(np.arange(len(y_test)), y_test, label="Stage real")
```

### []: [<matplotlib.lines.Line2D at 0x7f7bc2b747c0>]



```
[]: figure, ax = plt.subplots(ncols=2, figsize=(20, 8), dpi=80)

ax[0].plot(np.arange(len(y_test)), y_test, label="Stage real")
ax[0].plot(np.arange(len(y_test)), y_pred, label="Stage pred")

ax[0].set_title("Stage predictions")
ax[1].set_title("Discharge predictions")

ax[1].set_ylabel("Values")
ax[0].set_ylabel("Values")
ax[1].set_xlabel("Time")
ax[0].set_xlabel("Time")
```

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.



