Содержание

Введение	2
1 Проблема происхождения обойденных элементов	4
2 SkyNet	6
3 Столкновительный β-распад	7
4 Постановка задачи r-процесса	9
5 Аппроксимация	10
6 Анализ результатов	13
Заключение	14
Список используемой литературы	16

Введение

В данной работе рассматривается синтез ядер в астрофизических процессах. Процессы, приводящие к появлению легких элементов (с массовым числом меньше массового числа Fe) относительно известны и изучены. Однако распространенности элементов, тяжелее железа, относительно слабо зависят от массового числа А, что свидетельствует о ином механизме образования этих элементов. Образование такие ядер в результате взаимодействия заряженных частиц сильно подавлено из-за кулоновского барьера. Также большинство тяжелых элементов являются β -радиоактивными. На данный момент считается, что тяжелые элементы образуются в реакциях захвата нейтронов. Обычно различают быстрый (r) и медленный (s) процессы захвата нейтронов (от английских слов rapid и slow). Эти два механизма различаются отношением скорости захвата нейтронов (реакция (n, γ)) к скорости бетараспада. Предполагается, что примерно половина наблюдаемого количества элементов с A > 60 образуется в результате s-процесса. В настоящее время общепризнанно, что многие ядра тяжелее железа, включая все ядра тяжелее ^{209}Bi , образуются в r-процессе путем быстрого последовательного захвата большого количества нейтронов. Как было сказано выше, для r-процесса характерна высокая скорость захвата нейтронов. Это возможно только при определенных условиях, которые являются экстремальными и встречаются крайне редко. Считается, что такие условия наблюдаются при коллапсировании ядра сверхновых звезд, слиянии нейтронных звезд и при нейтронной звезды черной дырой.

Однако, образование некоторых изотопов не может быть объяснено в рамках указанных выше процессов, эти элементы принято называть обойденными или р-изотопами. Их название обусловлено тем, что они являются изотопами с относительным избытком протонов, и, если рассмотреть картину s-процесса и r-процесса, то можно увидеть, что эти стабильные элементы не могут быть получены путем β -распада, так как в данных условиях, он не является разрешенным.

Несмотря на то, что распространенности обойденных ядер, как правило, на два-три порядка меньше, чем у ядер, полученных в s- и r-процессах, удовлетворительные количественные результаты для распространенностей p-ядер, образованных различными способами в условиях квазиравновесных

этапов эволюции звезды, получить не удалось. Поэтому в последнее время стали активно разрабатывать модели образования р-изотопов в условиях г-процесса.

В данной работе моделируются реакции образования химических элементов в процессе поглощения нейтронной звезды черной дырой [1] с учетом столкновительного β-распада как процесса, приводящего к появлению обойденных ядер. Вычисление сечений реакций производится с использованием данных открытой библиотеки REACLIB, в основе которой лежит аппроксимация температурной зависимости сечения специальной функцией, включающей 7 уникальных для каждой реакции параметров [2].

Столкновительный бета-распад был впервые предложен в работе [3], объяснение образования обойденных элементов на основе СБР - в работе [4].

В настоящей работе вычислены сечения СБР, индуцированно столкновениями с протонами для ряда изотопов, а также найдены параметры температурной аппроксимации в формате библиотеки REACLIB. Полученные результаты включены в набор реакций, возникающих при поглощении нейтронной звезды черной дырой, и в дальнейшем выполнено моделирование синтеза химических элементов с помощью открытой библиотеки SkyNet [5], написанной Jonas Lippuner, с дополнением ее своим набором реакций.

1 Проблема происхождения обойденных элементов

Процессы, приводящие к образованию элементов можно разделить на несколько видов. Большой взрыв привел к появлению водорода ($\sim 75\%$ общей массы) и гелия ($\sim 25\%$) в промежутке от первых десяти секунд до минуты после большого взрыва, а также некоторое количество дейтерия, 3He и 7Li [6].

Далее, звезды проходят через несколько стадий горения, которые в конечном счете могут произвести более тяжелые элементы, таке как ^{20}Ne , ^{24}Mg , ^{28}Si и т. д., вплоть до массового числа A=56 (когда энергия связи на нуклон (протоны и нейтроны) достигает максимума) [7, 8, 9]. Поэтому более тяжелые нуклиды связаны слабее, что означает, нужно добавить энергию, для обеспечения слияние за пределами A=56 [7, 10, 11]. Из-за кулоновского барьера распространенность элементов до пика железа намного выше распространенности более тяжелых нуклидов [12].

Процессы приводящие к появлению элементов за железным пиком - за-хват нейтронов [7] и β -распад ядер-продуктов этого распада. В зависимости от того, является ли время τ_{β} для β -распада короче или длиннее чем время τ_{n} для захвата нейтронов, выделяют r-процесс и s-процесс.

Протекание s-процесса возможно на квазиравновесной стадии эволюции звезды.

R-процесс приводит к появлению элементов с большим массовым числом, однако требует экстремальных условий и места его протекания до сих пор исследуются. Поскольку сечение захвата нейтронов должно быть велико, требуется очень богатая нейтронами среда [13]. Недавние исследования показывают, что коллапс ядра сверхновых, слияние нейтронных, слияние черной дыры - нейтронной звезд являются единственными жизнеспособными кандидатами на места протекания r-процесса [14, 15, 16, 1].

Совсем недавно, был обнаружен коллапсар, который также является местом протекания r-процесса [17].

Однако ни r-процесс, ни s-процесс не объясняют происхождение некоторых ядер, так как после нейтронного захвата обычно идет цепочка последовательных β -распадов, заканчивающихся стабильным изотопом (A, Z). Его стабильность обусловлена тем, что для последующего β -перехода $(A,Z) \to (A,Z+1)$ возникает энергетический порог высотой до 3 МэВ, а иногда и выше. Последующих захват нейтронов также не может дать ядро (A, Z + 2)

с увеличенным числом протонов. Такие ядра называют обойденными или рядрами. Обойдённые ядра - устойчивые атомные ядра, лежащие в стороне от всех возможных путей образования тяжёлых ядер из более лёгких в процессе последовательного захвата последними нейтронов [18]. Распространённость обойденных ядер, как правило, примерно на два порядка величины ниже, чем у близких к ним ядер, лежащих на пути нейтронного захвата. К таковым относятся: ^{74}Se , ^{78}Kr , ^{80}Kr , ^{84}Sr , ^{92}Mo , 94 , ^{96}Ru , ^{98}Ru , ^{102}Pd , ^{106}Cd , ^{108}Cd , ^{113}In , ^{112}Sn , ^{114}Sn , ^{115}Sn , ^{120}Te , ^{124}Xe , ^{126}Xe , ^{130}Ba , ^{132}Ba , ^{136}Ce , ^{138}Ce , ^{144}Sm , ^{152}Gd , ^{152}Dy , ^{158}Dy , ^{162}Er , ^{164}Er , ^{168}Yb , ^{174}Hf , ^{180}W , ^{184}Os , ^{190}Pt , ^{196}Hg [19]. Их происхождение до сих пор до конца не изучено [20].

2 SkyNet

Программный пакет SkyNet представляет собой бесплатную современную сеть ядерных реакций с открытым исходным кодом [5]. Первоначально SkyNet разрабатывался с целью моделирования синтеза ядер в моделях г-процесса, включающих тысячи изотопов и более 100000 реакций, однако благодаря модульной архитектуре и гибкости, данное программное обеспечение может быть использовано для более общих задач астрофизики.

SkyNet имеет возможность моделировать эволюцию системы из произвольного набора изотопов под действием любых ядерных реакций. В качестве библиотеки ядерных реакций в данном программном обеспечении используются данные формата открытой базы реакций JINA REACLIB. Данная база хранит параметры реакций, такие как зависимость от температуры через семи-параметрическое приближение [2], тип реакции (резонирующая, нерезонирующая, слабая, спонтанный распад), значение температуры, переданное среде, а также параметр v, указывающий, являются ли показатели $a_0, ..., a_6$ обратными. В подавляющем большинстве реакций показатели представляют из себя параметризацию сечения в зависимости от температуры:

$$\left. \begin{array}{l} N_A \langle \sigma v \rangle \\ \lambda_\gamma \end{array} \right\} = \exp(a_0 + a_1 T_9^{-1} + a_2 T_9^{-1/3} + a_3 T_9^{1/3} + a_4 T_9 + a_5 T_9^{5/3} + a_6 \ln T_9) \tag{1}$$

При моделировании ядерных процессов SkyNet может моделировать систему в ядерном статистическом равновесии (NSE) и изменять способ моделирования системы между NSE и полным набором реакций автоматически. Включенные в SkyNet поправки для экранирований электронов и уравнение состояния, учитывающее общую картину эволюции.

В результате работы программного пакета, можно получить обширную информацию о составе исследуемой модели, а именно: температуру, центральную плотность, энтропию, относительные распространенности изотопов и элементарных частиц, их массовые доли и т д.

3 Столкновительный β-распад

Столкновительный β -распад является одним из процессов, приводящих к появлению обойденных ядер. Впервые он был предложен в работе [3].

Столкновительный β —распад стабильных ядер, инициируемый их кулоновскими столкновениями с другими ядерными частицами звездной среды, может быть основой модели процесса синтеза обойденных ядер. Проблема их синтеза на основе физического механизма захвата нейтронов (s- или r-процесса) состоит в прерывании цепочки последовательных $\beta-$ распадов на $\beta-$ стабильном ядре (A,Z).

Процесс СБР стабильных ядер, о котором говорилось выше, для нуклидов главной последовательности предоставляет еще одну возможность преодолеть энергетический порог и осуществить переход

$$(A,Z) \xrightarrow{\beta^-} (A,Z+1),$$

открывая путь к последующему естественному β -переходу

$$(A, Z+1) \xrightarrow{\beta^-} (A, Z+2).$$

Расчеты показывают, что модель синтеза обойденных элементов в звездном веществе на этапе квазиравновесной стадии, основанная на явлении СБР стабильных ядер главной последовательности, качественно способна воспроизвести нерегулярный ход кривой относительной распространенности обойденных ядер. Этот факт можно расценивать как косвенное свидетельство в пользу реальности явления столкновительного β -распада стабильных ядер [4].

В случае столкновительного β -распада возможно несколько видов процессов, а именно: протон-ядерные, ядро-ядерные и процесс, стимулированный нейтронами. Мы рассмотрим β -распад, стимулированных столкновением с протонами. Рассчитанные сечения для протон-ядерных и ядро-ядерных оказались невелики (менее $10^{-50}cm^2$), и процесс пока не доступен для прямого наблюдения, но при помощи программного обеспечения, позволяющего моделировать данные процессы мы можем оценить влияние их на конечные распространенности элементов в звездном веществе [21].

Сечение для столкновительного β -распада при столкновении частицы с

протоном или другой частицей имеет вид:

$$\langle \sigma \cdot v \rangle = \left(\frac{8}{\pi \mu T^3}\right)^{1/2} \int_{\Delta + \Delta_f + 1} \sigma_{\beta}^{(col)}(\beta_f) \exp(-\varepsilon/T) d\varepsilon, \tag{2}$$

где

$$\sigma_{\beta}^{(col)}(\beta_{f}) = \frac{4\sqrt{2}}{\pi} \frac{g_{v}^{2} \alpha_{e}^{4} Z(Z+1) Z^{\prime 4} \mu^{9/2}}{\varepsilon_{i}^{3/2} (1 - exp(-2\pi\lambda_{i}))} \xi_{\beta}(\beta_{f}) \times \\ \times \int_{0}^{\varepsilon_{i} - \Delta - \Delta_{f}} \frac{\Phi(E_{f}) d\varepsilon_{f}}{(exp(2\pi\lambda_{f}) - 1) k_{f} (k_{i} - k_{f})^{4} (k_{i} + k_{f})^{2}} \times \\ \times \int_{0}^{0} \frac{|F(-i\lambda_{i}, -i\lambda_{f}, 1; x)|^{2}}{(1 - x)^{2}} dx, \quad (3)$$

$$x_{0} = -4k_{i} k_{f} / (k_{i} - k_{f})^{2},$$

$$\Phi(E) = \frac{1}{60} (E^{2} - 1)^{1/2} (2E^{4} - 9E^{2} - 8) + \frac{1}{4} E \ln(E + (E^{2} - 1)^{1/2}),$$

$$E_{f} = \varepsilon_{i} - \varepsilon_{f} - \Delta - \Delta_{f},$$

$$\lambda_{i} = \frac{ZZ' e^{2} \mu}{D^{2} k_{f}}, \lambda_{f} = \frac{(Z + 1)Z' e^{2} \mu}{D^{2} k_{f}}.$$

Индекс i соответствует начальному состоянию столкновительной системы, f - конечному. k_s - относительный импульс в s-м состоянии, μ - приведенная масса системы. Δ -пороговая энергия, определяемая разностью энергий связи дочернего и материнского ядер, Δ_f - ???, α_e - постоянная тонкой структуры, g_v - постоянная слабого взаимодействия, ε_s - ???,

4 Постановка задачи г-процесса

Целью данной работы является оценка вклада столкновительного β -распада на происхождение обойденных элементов. Для этого смоделируем при помощи SkyNet слияние черной дыры и нейтронной звезды (BHNS) с использование заранее известных параметров системы [22].

Начальный состав представляет из себя $T=6.1\Gamma {\rm K},$ $\rho=7.4\times 10^9 {\rm rcm}^{-3},$ и $Y_e=0.07$ (T — температура, ρ — центральная плотность, Y_e — относительная концентрация электронов). В данной работе мы выбрали именно эту систему для моделирования образования обойденных элементов в процессе столкновительного β -распада, индуцированного столкновениями с протонами. Эволюция данного процесса протекает на отрезке времени от $10^{-3}{\rm c}$ до $5\times 10^8{\rm c}$.

Для непосредственной оценки влияний СБР рассчитаем сечения реакций, приводящий к появлению обойденных элементов, параметризуем их для приведения к формату JINA REACLIB и добавим в сеть.

В конечном итоге сравним распространенности обойденных элементов с учетом СБР и без его учета.

Таблица 1 Характеристики праматеринских ядер.

Праматеринское	Материнское	Обойденное	$\Delta + \Delta_f$,	$\lg f_0 t$
ядро	ядро	ядро	МэВ	
7^4Ge	^{74}As	74Se	2,766	
7^4Ge	^{74}As	^{74}Se	2,982	
78Se	^{78}Br	^{78}Kr	3,5737	4,8
^{80}Se	^{80}Br	^{80}Kr	1,8703	4,6
84Kr	^{84}Rb	^{84}Sr	2,68	9,6
^{106}Pd	^{106}Ag	^{106}Cd	2,983	4,9
^{106}Pd	^{106}Ag	^{106}Cd	2,471	5,3
^{108}Pd	^{108}Ag	^{108}Cd	1,921	4,8
^{108}Pd	^{108}Ag	^{108}Cd	1,487	5,5
112Cd	^{112}In	^{112}Sn	2,578	4,7
112Cd	^{112}In	^{112}Sn	1,961	5,3
114Cd	^{114}In	^{114}Sn	1,9846	4,8
114Cd	^{114}In	^{114}Sn	1,4266	5,3
^{120}Sn	^{120}Sb	^{120}Te	2,681	4,5
124Te	^{124}I	^{124}Xe	3,157	9,3
124Te	^{124}I	^{124}Xe	2,555	7,5
126Te	^{126}I	^{126}Xe	2,156	9,2
126Te	^{126}I	^{126}Xe	1,49	7,4
^{130}Xe	^{130}Cs	^{130}Ba	3,019	5,1
^{130}Xe	^{130}Cs	^{130}Ba	2,483	6,4
132Xe	^{132}Cs	^{132}Ba	1,443	6,0
^{136}Ba	^{136}La	^{136}Hf	2,87	4,6
164Dy	$^{164} Ho$	^{164}Er	1,0292	4,6
164Dy	^{164}Ho	^{164}Er	0,9558	4,9

5 Аппроксимация

Были рассчитаны сечения столкновительного β -распада некоторых элементов с протоном. Для мы этого воспользовались параметрами из таблицы 1.

Полученные сечения для переходов можно видеть на рисунке 1.

Сечение каждой реакции были посчитаны для набора из 24 температур: T_9 = 0.1,0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 ($T = T_9 \times 10^9 \mathrm{K}$). Так как данный набор является избыточным для параметризации вида 1, был использован метод наименьших квадратов.

Далее, был составлен необходимый для REACLIB файл библиотеки ре-

Рисунок 1 — Сечение столкновительного β -распада при столкновении ядер ($^{136}Ba,\ ^{112}Cd,\ ^{164}Dy,\ ^{84}Kr,\ ^{106}Pd$) с протоном

акций. Для перехода $^{130}Xe \rightarrow \ ^{130}Cs$ получаем строки вида:

Рисунок 2 — Сравнение решения методом наименьших квадратов с рассчитанным сечением

6 Анализ результатов

Рисунок 3 — Конечные распространенности обойденных ядер с исходной библиотекой (синий график), и библиотекой, включающей СБР (розовой график)

Самым важным на данном графике является то, что, несмотря на ожидание увидеть меньшие распространенности всех элементов, мы наблюдаем то, что для некоторых ядер это разница несущественна ^{114}Sn . Более того, наблюдается относительный избыток ядер ^{78}Kr и ^{80}Kr .

Заключение

В данной работе было рассмотрено влияние столкновительного бета-распада на синтез тяжелых изотопов в звездном веществе.

Были вычислены сечения столкновительного β -распада для химических элементов из таблицы 1, а именно, рассматривались столкновения праматеринских ядер с протоном.

Полученные сечения были параметризированны через 7 параметров $a_0, ..., a_6$, определяющих зависимость от температуры, чтобы иметь возможность дополнить реакциями библиотеку JINA REACLIB. Из полученных наборов параметров, был построен файл, содержащий сеть реакций столкновительного β -распада, индуцированного столкновением с протоном для последующего использования в пакете SkyNet.

Далее, при помощи пакета SkyNet было проведено моделирование слияние черной дыры-нейтронной звезды, чтобы оценить влияние СБР на общую картину распространенностей элементов. Моделирование проводилось дважды, сначала - с немодифицированной библиотекой JINA REACLIB, затем - с модифицированной, в которую были включены реакции

праматеринское ядро \rightarrow материнское ядро.

Было выполнено сравнение полученных картин распространенностей элементов. Сравнение производилось для обойденных элементов, так как именно их происхождения является целью данной работы. Было подтверждено, что СБР может являться источником обойденных ядер и при больших концентрациях протонов (в условиях рассматриваемого процесса) это влияние суще-ственно, более того, мы можем получить даже избыток некоторых элементов.

В данной работе рассматривалось образование материнских ядер только при столкновениях с протонами.

СБР, индуцированный столкновением с нейтронами, представляет особый интерес, так отсутствие кулоновского барьера существенно увеличивает сечение процесса. Учитывая также, что в рассматриваемых условиях большую часть вещества составляют нейтроны ($\sim 79\%$), окончательный результат может существенно увеличиться, если рассчитать суммарный выход обойденных ядер в модели, основанной на физическом механизме СБР. Поэтому

дальнейшее развитие предложенной модели является персп	іективным.

Список использованных источников

- 1 Foucart, Francois. Neutron star-black hole mergers with a nuclear equation of state and neutrino cooling: Dependence in the binary parameters [Text] / Francois Foucart, M. Brett Deaton // Phys. Rev. D. 2014. Vol. 90.
- 2 The jina reaclib database: Its recent updates and impact on type-I X-ray bursts [Text] / R. H. Cyburt, A. M. Amthor, Z. Meisei, S. Warren // The Astrophysical Journal Supplement Series. 2010.
- 3 Баткин И.С. Копытин И.В., Пенионжкевич Ю. Э. [Text] / Пенионжкевич Ю. Э. Баткин И.С., Копытин И.В. // ЭЧАЯ. 1991. Vol. 22. P. 512.
- 4 Крыловецкая, Т. А. Столкновительный бета-распад ядер и проблема происхождения обойденных изотопов [Text] : Ph. D. thesis / Т. А. Крыловецкая ; ВГУ. [S. l. : s. n.], 1998.
- 5 Lippuner, Jonas. r-Process Nucleosynthesis in Neutron Star Mergers with the New Nuclear Reaction Network SkyNet [Text]: Ph. D. thesis / Jonas Lippuner; California Institute of Technology. [S. l.: s. n.], 2018.
- 6 Tytler D., J. M. O'Meara N. Suzuki. Review Of Big Bang Nucleosynthesis And Primordial Abundances [Text] / J. M. O'Meara N. Suzuki Tytler, D., D. Lubin // Physica Scripta. 2000. Vol. 85. P. 12.
- 7 Rolfs, C. E. Cauldrons in the cosmos: Nuclear astrophysics [Text] / C. E. Rolfs, W. S. Rodney. Chicago IL, United States: University of Chicago Press, 1988.
- 8 Bethe, H. A. Energy Production in Stars [Text] / H. A. Bethe // Physical Review. 1939. Vol. 55. P. 434.
- 9 Hansen C. J., S. D. Kawaler. Stellar interiors: physical principles, structure, and evolution [Text] / S. D. Kawaler Hansen, C. J., V. Trimble. [S. 1.]: Springer-Verlag, 2004.
- 10 Bodansky D., D. D. Clayton. Nuclear Quasi-Equilibrium during Silicon Burning [Text] / D. D. Clayton Bodansky, D., W. A. Fowler // Astrophysical Journal. 1968. Vol. Supplement 16. P. 299.

- 11 Woosley S. E., A. Heger. The evolution and explosion of massive stars [Text] / A. Heger Woosley, S. E., T. A. Weaver // Reviews of Modern Physics. 2002. Vol. 74. P. 1015.
- 12 Iwamoto K., F. Brachwitz K. Nomoto N. Kishimoto H. Umeda W. R. Hix. Nucleosynthesis in Chandrasekhar Mass Models for Type IA Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation [Text] / F. Brachwitz K. Nomoto N. Kishimoto H. Umeda W. R. Hix Iwamoto, K., F.-K. Thielemann // Astrophysical Journal. 1999. Vol. Supplement 125. P. 439.
- 13 Mathews, G. J. New insights into the astrophysical r-process [Text] / G. J. Mathews, J. J. Cowan // Nature. 1990. Vol. 345. P. 491.
- 14 Thielemann, F.-K. What are the astrophysical sites for the r-process and the production of heavy elements? [Text] / F.-K. Thielemann, R. Käppeli A. Arcones, T. Rauscher M. Liebendörfer // Progress in Particle and Nuclear Physics. 2011. Vol. 66. P. 346.
- 15 Qian, Y.-Z. Nucleosynthesis in Neutrino-driven Winds.I. The Physical Conditions [Text] / Y.-Z. Qian, S. E. Woosley // Astrophysical Journal. 1996. Vol. 471. P. 331.
- 16 Mass ejection from the merger of binary neutron stars [Text] / K. Hotokezaka, K. Shibata, K. Kiuchi [et al.] // Physical Review D. 2013. Vol. 87.2. P. 024001.
- 17 Siegel, Daniel M. Collapsars as a major source of r-process elements [Text] / Daniel M. Siegel, Jennifer Barnes, Brian D. Metzger // Nature. 2019. Vol. 569.
- 18 Франк-Каменецкий, Д. А. Реакции (p, n) и (p, 2n) и происхождение обойдённых ядер [Text] / Д. А. Франк-Каменецкий // Астрономический журнал. 1961. Vol. 38, no. 1. Р. 91.
- 19 Role of core-collapse supernovae in explaining solar system abundances of p nuclides [Text] / C. Travaglio, T. Rauscher, A. Heger [et al.] // Astrophysical Journal. 2018. Vol. 18, no. 854.

- 20 Arnould, M. The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status [Text] / M. Arnould, S. Goriely // Physics Reports. 2003. Vol. 384. P. 1.
- 21 Копытин И. В., Крыловецкая Т. А. Столкновительный β-распад ядер в кулоновском поле и проблема происхождения обойденных элементов [Text] / Крыловецкая Т. А. Копытин И. В. // Ядерная физика. 1998. Vol. 61, no. 9. Р. 1589.
- 22 The influence of neutrinos on r-process nucleosynthesis in the ejecta of black hole-neutron star mergers [Text] / L. F. Roberts, J. Lippuner, M. D. Duez [et al.] // Monthly Notices of the RAS. 2017. Vol. 464.