The	1
1	0-1
	Unit 5

Review

y MIC

- 1. Sketch a Maxwell Boltzmann Curve. Show the curve for a sample at 345K. Label it A. Show the curve for the same sample at 490K. Label it B.
- 2. True or False: The relationship between the average kinetic energy of the particles in a sample is indirectly proportional to the temperature.

3. Given $w = 0$, an endothermic reaction has the following. A) $+\Delta H$ and $-\Delta E$ B) - ΔH and $+\Delta E$ C) $+\Delta H$ and $+\Delta E$ D) - ΔH and $-\Delta E$ (+) = (+) + 0
 ΔH and -ΔΕ 4. Calculate the E for a system that has 13J of work done on it and releases 33J of heat.
5. Define the Δheat of formation. Why are the Δheat of formation for elements zero? The change in enthalpy from the formation of the mole a pure substance formed from its element to because they are a reference point 6. The internal energy can be increased by
(a) transferring heat from the surroundings to the system (absorb energy g=(+)) (b) transferring heat from the system to the surroundings (release energy g=(-)) (c) doing work on the system (absorbs work) (+) T A) a only B) b only C) c only D a and c E) b and c
7.) Which of the following processes is endothermic? A) the freezing of water B) the combustion of butane C) C) a hot cup of coffee (system) cools on a countertop D) the chemical reaction in a "hot pack" often used to treat sore muscles E) the vaporization of rubbing alcohol
8. The value of ΔE for a system that performs 111 kJ of work on its surroundings and gains 89 kJ of heat is kJ,

9. An 8.29 g sample of calcium carbonate [CaCO3 (s)] absorbs 50.3 J of heat, upon which the temperature of the sample increases from 21.1 °C to 28.5 °C. What is the specific heat of calcium carbonate? 50.3 = (8.29)(x)(28,5-21.1)

X=, 820 J/goc

10. In the reaction below,
$$\Delta Hf^{\circ}$$
 is zero for _____. Ni_(s) + 2CO (g) + 2PF₃ (g) \rightarrow Ni(CO)₂ (PF₃)₂ (l)

11. Given the data in the table below, ΔH° rxn for the reaction $3NO_2(g) + H_2O(l) \rightarrow 2HNO_3(aq) + NO(g)$

Substance	ΔH_f° (kJ/mol)	AH= [(2207)+90]-[(3x34)+-286]	Santana Santana
H ₂ O (l)	-286	(-324) - (-184)	
NO (g)	90		
NO_2 (g)	34		
HNO ₃ (aq)	-207		
NH_3 (g)	-46		

- A) 64
- B) 140
- (C) -140
- D) -508
- E) -64

12. In the presence of excess oxygen, methane gas burns in a constant-pressure system to yield carbon dioxide and water:

CH4 (g) + 2O2 (g)
$$\rightarrow$$
 CO2 (g) + 2H2O (l) \triangle H = -890.0 kJ

Calculate the value of q (kJ) in this exothermic reaction when 1.70 g of methane is combusted at constant pressure.

- A) -94.6
- B) 0.0306

mol CH4 = 1.70 g X 1mol/16 g = .106 mol.890kJ/1mole = x kJ/.106 mole = -94.6 kJ

- C) -0.0106
- D) 32.7
- E) -9.46×104

- 13. Which one of the following conditions would always result in an increase in the internal energy of a system?
- A) The system loses heat and does work on the surroundings.
- B) The system gains heat and has work done on it by the surroundings.
- C) The system loses heat and has work done on it by the surroundings.
- D) The system gains heat and does work on the surroundings.
- E) None of the above is correct.
- 14. Energy that is associated with the temperature of an object and is dependent of its mass is called
- A) kinetic energy
- B) thermal energy
- C) potential energy
- D) chemical energy
- 15. How much energy is evolved during the formation of 197 g of Fe, according to the reaction below?

$$Fe2O3(s) + 2 Al(s) \rightarrow Al2O3(s) + 2 Fe(s) \Delta H^{\circ}rxn = -852 \text{ kJ}$$

- A) 1.52 x 103 kJ
- B) 3.02 x 103 kJ
- C) 8.40 x 103 kJ
- D) 964 kJ
- E) 482 kJ