Supplementary material for International Journal of Hydrogen Energy

Supplementary material:

"Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion" by Junichiro Otomo, Mitsuo Koshi, Teruo Mitsumori, Hiroshi Iwasaki, Koichi Yamada

In Fig. S1, laminar flame speed was plotted as a function of fuel-air equivalence ratio using previous experimental [19, 48–51] and numerical calculation values [18, 21, 37, 40, 52, 53] in previous studies. The relevant references are listed in the main text. The fuel-air equivalence ratio was defined by overall of reaction, $NH_3 + 3/4O_2 \rightarrow 1/2N_2 + 3/2H_2O$.

Fig. S1. Laminar flame speed vs. equivalence ratio at atmospheric pressure.

In Fig. S2, we also compared the shock tube ignition delay times of experimental value (Mathieu and Petersen [18]) and calculated values (Song et.al [40], Tian et.al [21], Dagaut [52], Klippenstein [53], and Mathieu and Petersen [18]).

Fig. S2. Shock tube ignition delay time vs. equivalence ratio at atmospheric pressure.

Table S1 shows the sensitivity coefficients of laminar flame speed in ammonia combustion with equivalence ratio of 1.1 at 1 atm using the model reported in ref. [S1] (ref. [40] in the main text).

Table S1. Sensitivity coefficients (S_i) of laminar flame speed.

3	(3)	
1. H+O2=O+OH	0.5279	
3. O+H2=OH+H	0.0382	
4. OH+H2=H+H2O	0.0305	
5. OH+OH=O+H2O	0.0360	
33. NH2+H=NH+H2	-0.0762	
34. NH2+O=HNO+H	-0.0662	
49. NH2+NO=N2+H2O	-0.0588	
50. NH2+NO=N2+H2O	0.0285	
51. NH2+NO=NNH+OH	0.0883	
116. NO+H(+M)=HNO(+M)	0.0640	
117. HNO+H=NO+H2	-0.0616	
154. N2O(+M)=N2+O(+M)	0.0281	
164. NH2+NH=N2H2+H	0.0627	
173. N2H3=N2H2+H	-0.0441	
186. N2H2+M=NNH+H+M	0.0820	

Ref. [S1] (ref.40 in the main text) Y. Song, H. Hashemi, J. M. Christensen, C. Zou, P. Marshall, P. Glaborg, "Ammonia oxidation at high pressure and intermediate temperatures", Fuel, 181, 358-365, 2016. (32 species, 204 reactions)

The sensitivity analysis for temperature has been performed. An example is shown in Fig. S3. Reactions (1) $NH_2 + H = NH + H_2$, (7) $NH_2 + NH = N_2H_2 + H$, (9) $N_2H_2 = NNH + H$, and (11) $NH + H = N + H_2$ in Table 1 (see main text) are sensitive to temperature.

Fig. S3. Normalized temperature sensitivity. $T_0 = 2000 \text{ K}$, $P_0 = 1.4 \text{ atm}$, NH₃/O₂/Ar = 0.00572/0.00429/0.99 ($\phi = 1$).

Simulations of atmospheric stagnation flame structures were performed, based on the experimental work of Brackmann et al. [46]. Experimental temperature profiles are included in the simulations, and (a) NH, (b) OH, and (c) NO profiles are compared (Fig. 3.1).

Fig. S4. (a) NH mole fraction profiles. Filled circle: experimental value [46], solid line: UT-LCS model, broken line: base model (Song et al., [40]).

Fig. S4. (b) OH mole fraction profiles. Filled circle: experimental value [46], solid line: UT-LCS model, broken line: base model (Song et al., [40]).

0.2

0.4

0.6

Fig. S4. (c) NO mole fraction profiles. Filled circle: experimental value [46], solid line: UT-LCS model, broken line: base model (Song et al., [40]).

0.8

Distance (cm)

1

1.2

1.4