PATENT ABSTRACTS OF JAPAN

(11)Publication number:

(43)Date of publication of application: 01.02.1988

(51)Int.CI.

C08F 2/50 G03C 1/68 G03F 7/10

(21)Application number: 61-166590

17.07.1986

(71)Applicant:

NIPPON KAYAKU CO LTD

63-023901

(72)Inventor: YAMAOKA TSUGIO

KOSEKI KENICHI SHIROSAKI TSUTOMU

(54) PHOTPOLYMER COMPOSITION

(57)Abstract:

(22)Date of filing:

PURPOSE: To form a photopolymer composition which is highly sensitive to visible light and excellent in stability as a light-sensitive layer, by using a combination of a specified coumarin compound with an organic peroxide as a photopolymerization initiator.

CONSTITUTION: This photopolymer composition is formed by using a photopolymerizable or photocrosslinkable compound having at least one ethylenically unsaturated double bond in the molecule and a combination of the following coumarin compound with an organic peroxide as essential components. The coumarin compound is one represented by formula I, wherein R1, R2 and R3, which are independent of each other, are each H, chlorine, lower alkoxy, lower dialkylamino, lower dialkenylamino or alicyclic amino, X is a heterocyclic ring having the total number of carbon and hetero atoms of 5W9 or a group of formula II (wherein Y is a 1W6C (substituted) alkyl group, lower alkoxy, (substituted) phenyl, (substituted) styryl or (substituted) 3'-coumarin group, and Z is H or cyano).

-ç-±

Ú

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

®日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭63-23901

⑤Int Cl.・ 識別記号 庁内整理番号 ④公開 昭和63年(1988)2月1日 C 08 F 2/50 MDN 2102-4 J G 03 C 1/68 3 3 1 7267-2H G 03 F 7/10 審査請求 未請求 発明の数 1 (全6頁)

図発明の名称 感光性樹脂組成物

②特 願 昭61-166590

20出 願昭61(1986)7月17日

 砂発 明 者 山 岡 亜 夫 千葉県船橋市本中山3-22-7

 砂発 明 者 小 関 健 ー 千葉県千葉市小中台町824

70発 明 者 城 崎 勉 東京都北区志茂3-26-8

①出 願 人 日本化薬株式会社 東京都千代田区富士見1丁目11番2号

の代 理 人 弁理士 竹田 和彦

明 細 書

1. 発明の名称

感光性樹脂組成物

2. 特許請求の範囲

1. エチレン性不飽和二重結合を分子中に少なくとも1個有する光重合又は光架橋可能な化合物かよび光重合開始剤を必須の構成成分とする感光性樹脂組成物にかいて、該光重合開始剤が式([)で表されるクマリン化合物と、有機過酸化物との組合せであることを特徴とする感光性樹脂組成物。式([)

〔式(I)中、R₁,R₂,R₃はそれぞれ独立して... 水素原子;クロル原子;低級アルコキシ基; 低級ジアルキルアミノ基;低級ジアルケニルア ミノ基又は脂環式アミノ基を表す。

Iは炭素及びヘテロ原子の総数が5~9個の複

5. 発明の詳細な説明

産業上の利用分野

本発明は光重合性徴脂組成物に関する。更に詳しくは光重合開始剤に特徴を有する感光性樹脂組成物に関する。

従来の技術

近年、情報記録の分野において従来から広く使用されている紫外線に代えて可視レーザー光の利用が盛に検討されている。例えばアルゴンの可視レーザー光を使用して、PS版あるいはドライフィルム等に画像を直接描画する方法が検討されている。

従来、紫外部に比較的、高感度に感応する光重 合開始剤系は多くあるが、可視光に高感度に感応 ししかもその感光層が長期間安定なものは少ない。

特開昭 63-23901 (2)

例をはベンゾインアルキルエーテル、ベンジルジメチルケタール等の従来の光重合開始剤は紫外部領域に於いては比較的高感度に感応するが可視部領域に於いては殆んど開始剤能を有しない。
又、ビリリニウム塩又はチアビリリニウム塩類は500mm近傍の光に対して比較的高感度に感応するが、その感光層経時安定性がよくない。

発明が解決しようとする問題点

紫外線のみならず可視光線に対しても高感度に 感応しかつ感光層の保存安定性にすぐれた感光性 樹脂組成物の開発が望まれている。

問題点を解決するための手段

本発明者らは前記したような問題点を解決すべく級意研究を重ねた結果本発明に至った。即ち本発明はエチレン性不認和二重結合を分子中に少なくとも「個有する光重合又は光架橋可能な化合物なよび光重合開始剤を必須の構成成分とする感光性対脂組成物において、該光重合開始剤が式(1)で表されるクマリン化合物と、有機過酸化物との組合せであることを特徴とする感光性樹脂組成物

ープロピルアミノなどの低級ジアルキルアミノ基; N ーモルホリノ、N ーピベリジノなどの脂環式アミノ基;ジブロベニルアミノ、ジ(αーメチルブロベニル) アミノ基などの低級ジアルケニルアミノ基などが挙げられる。

* は炭素及びヘテ・原子の総数が 5 ~9 個の複素 環及び -C-Y を表すが複素環の具体例としてい 2 ーイミダゾール、2 ード・メナルイミダゾール、 2 ーペンメイミダゾール、2 ー(4 ーフェニル) ーイミダゾール、2 ーオキサゾール、2 ーペンズ オキサゾール、2 ー(4 ーフェニル)オキサゾー ル、2 ーチ アゾール、2 ーペンズチ アゾール、 2 ー(4 ーフェニル)チ アゾール、2 ー(5 ー フェニル)チ アジアノール、2 ー(5 ー トリル)チ アジアゾール、2 ー(5 ー ヒフェニル)チ アゾール、 2 ー(5 ー P ー クロルフェニル)オキサジアゾール、2 ー(5 ー P ー クロルフェニル)オキサジアゾール、9 の 受益が挙げられる。

又式 (!) の -- C-Y にかける Y の具体例としては

$$R_2 \xrightarrow{R_1 \cdot 5} Z \times X$$

$$R_2 \xrightarrow{R_2 \cdot 6} 0 \qquad \dots \qquad (1)$$

[式(I)中、R₁,R₂,R₃はそれぞれ独立して

又は非量換のスチリル基又は置換又は非置換の (又Zは水素原子又はシアノ基を表す。) 3'-クマリノ基を表す。)

を提供する。

本発明において光重合開始剤の一成分として使用されるクマリン化合物は前配式(1)で表される。ものであるが、式(1)においてR₁,R₂,R₅の具体例としては水業原子;クロル原子;メトキシ、エトキシ、プトキシなどの低級 アルコキシ基;ジメチルアミノ、ジエチルアミノ、ドーメチルード

メチル、エチル、プロビル、ヘキシル、β-シT ノエチル、エトキシカルボニルメチル、プトキシ カルボニルメチルなどの置換又は非體換の C₁ ~ C₆ のTルキル基;フエニル、D-シTノフエニル、 D-メチルフエニル、D-メトキシフエニル、田 -とドロキシカルボニルフエニルなどの健換又は 非體液のフエニル葢;スチ

特開昭 63-23901 (3)

$$R_2 \xrightarrow[R_1]{R_5} \stackrel{?}{\underset{}} \qquad \cdots \qquad \qquad (1)$$

〔式中 R₁, R₂, R₃, は前記式(I) に かけるのと 同じ。〕

などが挙げられる。

前記式(I)のクマリン化合物の线基として特に 好ましい具体例としては以下のものが挙げられる。 3 - ナセチル - 1 - ジメチル アミノクマリン、 3 - ペンソイル - 1 - ジメチルアミノクマリン、

3 - ベンゾイル - 5,7, - ジメトキシクマリン、 メチル、 7 - ジエチルアミノ - 3 - クマリノイ ルアセテート、

3 -シンナモイル・7 -ジエチルアミノクマリン、

3,3'-カルポニルピス(1-ジエチルアミノ)クマリン、

3,3'-カルポニルビス(1-ジアリルアミノ)クマリン、

キャベンソエート、 3,3,4,4'ーテトラー(t ープ チルパーオキシカルボニル)ベンソフエノン。 2,5 ージメチル、 2,5 ー(ジベンソイルパーオキ シ)へキサンなど。これらの中で特に好ましいも のとしてはジ(t ープチルパーオキシ) イソフタ レート、ジ(t ープチルパーオキシ) フタレート、 3,5;4,4'ーテトラ(t ープチルパーオキシカルポ ニル)ベンソフエノンが挙げられる。

式(1)のクマリン化合物に添加される有出過酸化物の割合は前者 1部に対して70.5~2.0部であり、これらの混合系から成る光重合開始剤は後述する感光性樹脂 1 0 0部に対して0.5~ 5 0部、好ましくは1~25部の割合で使用される。

本発明の感光性樹脂組成物は前記の光重合開始剤かよび感光性樹脂から構成されるが、ことで感光性樹脂は1分子中に少なくともエテレン性不飽和二重結合を1個有する光重合、光架橋可能なモノマー、オリゴマー、ブレポリマー及びそれらの混合物から構成され、必要に応じて、パインダー

3,3'-カルボニルビス(5,7-ジメトキシ)クマリン、
1-ジェチルアミノー5,7'-ジメトキシー5,3'-ビスクマリン、
3-(2'-ベンズイミダゾイル)-7-ジェチルアミノクマリン、
3-(2'-ベンズオキサゾイル)-7-ジェチルアミノクマリン、
3-(5'-フェニルチアジアゾイルー2')-7-ジェチルアミノクマリン、
クマリン、5-(2'-ベンズチアゾイル)-7-ジェチルアミン
3,3'-カルボニルビス(4-シアノ-7-ジェチルアミノ)クマリン。

又本発明において式(1)のクマリン化合物と組合せて使用される有缺過酸化物の好ましいものとしては以下のものが挙げられる。

メチルケトンパーオキサイド、シクロヘキサノンーパーオキサイド、アセチルアセトンパーオキサイド、クメンヘイドロパーオキサイド、グイソブロビルベンゼンーパーオキサイド、セーブチルクミルパーオキサイド、ジクミルパーオキサイド、ロ, a'ービス(ローブチルーパーオキシイソブロビル) ベンゼン、セーブチル、パーオキシイソブロビル) ベンゼン、インブテル・パーオキサイド、ジ(ローブテルパーオ

ポリマー、概重合禁止剤、可塑剤等を添加して調 製される。

特開昭 63-23901 (4)

-c-cH=CH-CH=CH-C-基 を主領に有するポ

リエステル;シンナミリデン基を、 須鎖又は末端 に有するポリマーなど通常の光重合性樹脂が用い られる。

又パインダーを用いる場合にはポリメタアクリル 酸エステル又はその部分加水分解物;ポリ酢酸ビ ニル又はその加水分解物;ポリスチレン;ポリビ ニルプチラール;ポリクロロブレン;ポリ塩化ビ ニル;塩素化ポリエチレン;塩素化ポリプロピレ ン;ポリピニルピロリドン;スチレンと無水マレ イン酸の共重合体又はそのハーフェステル;アク リル酸、アクリル酸エステル、メタアクリル酸、 メタアクリル酸エステル、アクリルアミド、アク リルニトリルなどの共重合可能なモノマー群から 退ばれた、ガラス転放点が35℃以上である共重 合体などが用いられる。そしてとれらのパインダ ーは光重合又は光架橋可能なモノマ - 1 部 に 対 して 0.1 - 3部より好ましくは0.3~1.5部 0·7部の範囲で使用するの が好都合である。

(a) フージェチル アミノー プーメトキシー 5,5° ーカルボニルビスクマリン。

上記(1) のクマリン化合物 3 1 9 、 4 ーメトキシサリチルアルデヒド 2 0 9 、ピペリジン 1 0 al 、エタノール 3 0 0 al を憑施下、 5 時間反応させて下記の構造式 (2) の黄色結晶を得る。

(1) 3-(4-エトキンシンナモイル)-1-ジエチルアミノクマリン。

エタノール 1 0 0 ml 中に 3 ー アセチルー 7 ージェチル アミノクマリン 2・6 9、4 ー エトキシベンメアルデヒド 1・8 9、ピベリジン 3 ml を加え遠流下に 6 時間 反応させて下記 の構造式 (5) の黄色結

上記の感光性樹脂組成物を塗布して得られる感光被膜は感度かよびその経時安定性に秀れてかり 特に可視レーザー光を光顔とするレーザー製版、 (拡大投影環光用等に通している。) レーザートライフィルム用に最適である。

以下実施例によって本発明を更に具体的に説明する。

参考例 クマリン化合物の合成例

クマリン化合物の合成は

Chemical Reviews. 36, 1, (1945) かよび Heterocyclic Conpounds (Elderfield) Vol.2. 記載の方法による。

(1) メチルーフージエテルアミノー3ークマリノイルアセテートエタノール100 起、4ージエテルアミノサリテルアルデヒド19.39、ジメテルー1、3 ー アセトンジカルボキンレート199 に触 佐としてピペリジン1 起を加え還流下に3時間反応させて、下記の構造式(1)で扱される黄色結晶269を得る。

晶を得る。

(中) 5 - (2'-ベンダイミダゾイル)-1-ジェチルアミノクマリン

エタノール 5 0 配中に 2 ーメトキシカルボニルメチルベンズイミダゾール 2・0 9、 4 ージエチルアミノサリチルアルデヒド 2・0 9、 ピベリジン 1 配を加え遺硫下に 5 時間反応させて下記の審造式(4) の 安色結晶を得る。

以下同様にして表 1 のクマリン化合物を得た。 なお Amex はメタノール中での測定値である。

特開昭 63-23901 (5)

表1 クマリン化合物

		<u> </u>
化合物 番 号	クマリン化合物	入max(nm) (メタノール)
5	3ーアセチルー1ージメチルアミノクマリン	4 3 0
6	3 ーペンゾイルー 7 ージメテル Tミノクマリン	4 4 0
7	3ーベンゾイルー 5,7ージメキシクマリン	3 9 0
8	5 ーシンナモイルー1 ージエチルブミノクマリン	4 4 5
9	5,3'-カルボニルビス(1-ジエチルTミノ) クマリン	4 5 6
1 0	3,3'ーカルボニルビス(5ークロルー1ージエチ ルアミノ)クマリン	4 5 5
1 1	3,3'ーカルボニルビス(1-ジアリルアミノ) クマリン	4 5 7
1 2	メチル, 7-N ーモルホリノー3ークマリノイル アセテート	4 4 4
1 3	3,5'-カルボニルビス(7-N-ビベリジノ) クマリン	4 5 9
1.4	3 ーメトキシカルポニルー 7 ージエテルアミノ クマリン	5 7 0
15	5 - (2'-ベンズイミダゾイル) - 7 -ジメチル アミノクマリン	4 3 6
1 6	5 ー(2'ーペンズオキサゾイル)-7 ージエチル アミノクマリン	4 3 3
17	3 − (2′−ペンズチアゾイル) − 7 −ジエチル アミノクマリン	4 3 8
18	5-(2'-チアジアゾイルー5'-フエニル)-7- ジエテルアミノクマリン	4 3 9
19	5 − (2'−オキサジアゾイル−5'−フエニル)−7 −ジエチルアミノクマリン	4 3 5
2 0	3 - (2'-N-メナルペンゾイミダゾイル) - 7 - ジエテルアミノクマリン	4 1 0
2 1	3, 3′ ーカルボニルビス(4 ーシアノー 7 ージエチルアミノ)クマリン	5 1 9

をメチルブルー/ エタノール器液で染色すること により硬化の有無を判定した。

登膜が光硬化するに必要な最低照射エネルギーに より感度を判定した。表 2 に於いて感度の数値の 小さいものを形成が高いことを示す。

表 2 感度評価

※ 1 ※ 1,2 ※ 2 ※ 2 ※ 2

寒 施	クマリン系	有過化物	パインダー	多官能アクリレー・モノマールと	現像液	感 (m1/ ケミカル (Y-43)	
91	系 号 9 (6)	提切 BBP (8)	PVP	PETA	nx E	0.0 64	0.027
2	,	,	5 2 6	,	В	0.99	0.26
3	,	,	5 2 5	,	,	0.99	0.12
4	,	,	X L - 2 7	,	,	0.99	0.076
5	•	,	X L —	,	,	1-16	0.025
6	,	8PH (8)	PVP	,	E	1-0	0.24
7	21 (6)	BBP . (8)	,	,	,	1.34	0.77
В	1 (6)	8BP (8)	•	,	,	0-0077	0.002
9	,	,	5 2 5	,	8	1.5 4	1 - 4
10	,	,	5 2 6	'	,	1.54	1 - 2

夹 施 例

感光液组成:

 パインダーボリマー
 1 0 0 部

 多官能アクリレート(モノマー)
 1 0 0 部

 クマリン化合物
 4 ~ 6 部

 有機過酸化物
 2 ~ 6 部

 メテルセルソルブ
 1 0 0 0 部

上記の感光液を関極酸化したアルミ板上に乾燥 膜厚さ 1 μm となるようにスピンナーを用いて途 布した。

これらの感光液組成の具体例を表 2 に記載した。 〔硬化試験〕

次いで可視光及び可視レーザー光を用いて、上 記の感光層について、感度試験を行った。

可視光は 袋光ケミカル ランブに シャーブカットフィルター、 ギー4 3 (東芝製)を用い、レーザー光は 5 平の アルゴンレーザーの 4 8 8 nm のシングルラインビーム (ビーム径 1・2 5 mm)を用いて行った。 露光後、エタノール又は ケィ酸ソーダ 裕被 (0・1 多)を用いて未認光部を 密出し、画像 部

				_		_	
11	(6)	BBP (8)	X L - 2 7	PETA	8	1-34	0.53
1 2	,	,	X L		,	1.9	0.86
1 3	4 (6)	,	PVP	,	E	0.0077	0-0039
1 4	,	,	X L — 4 4	,	8	1 - 8	0.65
1 5	(5)	BBP (5)	•	PEA	•	2.0	0.9
1 6	4 (8)	BBP (6)	•	,	•	1.7	0.7
17	1 B (6)	,	PVP	PETA	E	0.09	0-065
18	,	,	X L -	•	8	0.73	0.3
1 9	15	,	PVP	,	E	0.009	0.005
2 0	17 (6)	,	,	,	,	0.15	0.020
2 1	16	• .	X L -	•	ន	1.8	0.65
2 2	2 (6)	BBP (8)	PVP	,	. •	0.1	0.5
2 3	10 (6)	,	,	•	′	0.1	0.5
2 4	11	,	,	,	,	0.09	0.03
2 5	13 (6)	,	. ,	,	,	0.08	0.03
2 6	·19 (6)	,	,	,	,	0 - 1	0.03
2 7	20	,	,	,	,	1.5	0.4
2 8	1 2 (6)	,	5 2 5	,	,	1.3	1.2
2 9	3 (6)	,	PVP	,	E	0.1	0.05

特開昭 63-23901 (6)

3 0	5 (6)	BPH (8)	X L -	PEA	9	1 - 7	0.7
3 1	6 (6)	,	1.	,	,	1.5	0.5
3 2	7 (6)	BBP (8)	PVP	PETA	E	2.0	5.0
3 3	8 (6)	,	,	,	,	0.1	0.05
3 4	14 (6)	BTP	X L -	,	9	2.5	1.5
3 5	9 (6)	,	,	PETT	E	0.07	0.03
3 6	9 (6)	,	5 2 6	PEA	s	1.0	0.3
3 7	1 (6)	BIPH (8)	PVP	PETA	,	0.02	0.01
3 8	1 (5)	BBP (5)	PVP	,	,	0.009	0.003
3 9	(8)	BBP (6)	,	,	,	0-0070	0.003
4.0	(6)	BBP (8)	5 2 6	PEA	,	2.0	0.9
参考 例 (1)	9 (6)	左 し、	PVP	PETA	E	5 6 - 7	30.0
(2)	4 (6)	なし	,	•	•	55.0	40.0

※1 ()内の数値は感光液組成中のクマリン化合物、有機過酸化物の部数を表す。

※ 2 略号は以下の通り。

現像液

E; エタノール

S; 0.1 多ケイ酸ソーダ

表 2 の実施例 かよび 参考例の評価結果から有機 過酸化物を添加することにより、著しい感度の向 上が認められる。

経時安定性試験

表 2 の 実施例 1,5,8,11,15 の 感光液をコート (70℃で5時間53~は)した アルミ 板を 2 5 ℃で 3 カ月間 放置 した後ケミカルランブ (Y - 4 3 フィルター)。Ar レーザー (4 8 8 nm)を照射したところ 感度の低下及び カブリ 現象は 認められなかった。

発明の効果

可視光線に対して高感度に感応しかつ感光層の保存安定性にすぐれた感光性樹脂組成物がえられ

た。 特許出願人 日本化薬株式会社

有機過激化物

B.B.P; [3,3, 4,4'-テトラー(ヒープテルバーオキ

シカルポニル)ペングフエノン〕

B.H.P; [ジー(ヒープチルバーオキシ) - フタレート]

BIPH; [ジー(ヒーブチルパーオキシ)ーイソフタレ

- ト)

BTP;[ジー(tープチルパーオキシ)ーテレフタレ

- F)

パインダーポリマー

PVP; ポリピニルピロリドン

5 2 5 ; アルカリ可溶性ポリマー

(Goodrich 社製)

5 2 6 ; 同

XL-27; 同 」

XL-44; 同上

多官能アクリレート(モノマー)

PETA; ペンタエリスリトールトリアクリレート

PETT; ペンタエリスリトールテトラアクリレート