МОДУЛ

СУМАТОРИ

TEMA 4

ОСОБЕНОСТИ ПРИ ПОСТРОЯВАНЕТО НА ДЕСЕТИЧНИ СУМАТОРИ. СУБТРАКТОРИ, УПРАВЛЯЕМИ СУМАТОРИ

Ключови думи:

Десетичен суматор Код 8421 Код с излишък 3 Субтрактор Управляем суматор АЛУ SN74181

Забележка: За да усвоите този материал, е необходимо да сте предварително запознат(а) с темата "Двоично кодирани бройни системи".

Цели:

След запознаване с материала Вие трябва да можете:

- ✓ да обясните принципа на работа на десетичен суматор в код 8421;
- ✓ да обясните принципа на работа на десетичен суматор в код с излишък 3;
- ✓ да дадете определение за субтрактор;
- ✓ да изведете функциите на разликата и заема на субтрактора;
- ✓ да обясните накратко работата на АЛУ SN74181.

1. Едноразряден десетичен суматор в код 8421

В този случай (фиг.1), за да се получи кодът на сумата, е необходимо да се прибави корекция (+6) към всички тетради на сумата на кодовете, които са по-големи от 9 или, от които е възникнал пренос, като корекцията се прави последователно от младшата към старшата тетрада, тъй като е необходимо да се отчита преносът, който може да възникне при внасяне на корекцията.

Фиг.1. Схема на едноразряден десетичен суматор в код 8421

C ₅	S' ₄	S' ₃	S'2	S' ₁	К
C ₅	0	0	0	0	0
					-
0	1	0	0	1	0
0	1	0	1	0	1
		•	•		-
-			•		-
0	1	1	1	1	1
0	0	0	0	0	1
-		-			-
1	0		1		1

$$K = CДH\Phi = \{ cлед oпростяване \} = c_5 \lor S'_4 S'_2 \lor S'_4 S'_3$$

Показаното на горната схема свързване на изходите за преносите (чрез елемент ИЛИ) е допустимо, тъй като е възможно да възникне само единият от двата преноса.

2. Едноразряден десетичен суматор в код с излишък 3

В този случай (фиг.2), за да се получи кодът на сумата, е необходимо да се прибави корекция (+13) към всички тетради на сумата на кодовете, от които не е възникнал пренос и корекция (+3) към тетрадите, от които е възникнал пренос, като корекцията се прави едновременно във всички тетради, тъй като възникващият при корекцията пренос не се отчита.

Фиг.2. Схема на едноразряден десетичен суматор в код 8421+3

Забележка: В горните две схеми вместо полусуматори могат да се използват пълни суматори, като на свободните им входове се подава "0".

3. Субтрактори

Субтракторите са устройства, изпълняващи операцията изваждане на числата, т.е. те реализират функцията $a_i - b_i - z_i$, където a_i и b_i са $i^{-\text{тите}}$ разряди на умаляемото и умалителя, а z_i — заемът, получен при изваждането на $(i-1)^{-\text{вите}}$ разряди (единицата, взета на заем от $i^{-\text{тия}}$ разряд при изваждането на $(i-1)^{-\text{вия}}$). По-долу е показана таблицата на истинността и съвършените дизюнктивни нормални форми на разликата R_i и заема z_{i+1} .

a _i	bı	Zi	Ri	Z _{i+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$R_{i} = \overline{a_{i}} \overline{b_{i}} z_{i} \vee \overline{a_{i}} b_{i} \overline{z_{i}} \vee a_{i} \overline{b_{i}} \overline{z_{i}} \vee a_{i} b_{i} z_{i} = S_{i}$$

$$z_{i+1} = \overline{a_{i}} \overline{b_{i}} z_{i} \vee \overline{a_{i}} b_{i} \overline{z_{i}} \vee \overline{a_{i}} b_{i} z_{i} \vee a_{i} b_{i} z_{i}$$

Ако в АЛУ освен суматор има и субтрактор, отпада необходимостта от използване на обратен и допълнителен код при извършване на операцията "изваждане", т.е. "алгебрическо събиране".

Като се използва това, че при $z_i = c_i$, $R_i = S_i$ може да се синтезира схема, която да изпълнява едновременно функциите на суматор и субтрактор. Една такава схема ще има три входа a_i , b_i , $c_i(z_i)$ и три изхода - $S_i(R_i)$, c_{i+1} , z_{i+1} .

Фиг.3. Условно графично означение на суматор/субтрактор

4. Управляеми суматори

Тези суматори могат да изпълняват множество аритметически и логически операции. Поради това някои автори ги наричат аритметико-логически устройства (АЛУ). По-долу е дадено кратко описание на АЛУ SN74181.

Условното графично означение на това АЛУ е показано на фиг.4, а чрез табл.1 са пояснени изпълняваните от него функции. АЛУ е комбинационна логическа схема, която може да изпълнява всичките 16 основни логически операции, а също и 16 аритметични операции с два четириразрядни операнда $A = A_3 \ A_2 \ A_1 \ A_0$ и $B = B_3 \ B_2 \ B_1 \ B_0$. Резултатът от операцията се появява на изходите $F_3 \ F_2 \ F_1 \ F_0$. Изборът на една от двете групи операции става чрез подаване на съответен сигнал на входа M, а изборът на конкретна операция от тази група чрез сигналите на входовете $S_3 \ S_2 \ S_1 \ S_0$. При изпълнение на аритметичните операции се отчита и сигналът подаден на входа \overline{C}_0 . Инверсната стойност на преноса, получен в резултат на дадена аритметична операция, се появява на изхода \overline{C}_4 . При M = 1, $\overline{C}_0 = 1$ и код на операцията S = 0110 на изхода A = B се получава сигнал "1" при равенство на двата кода.

Фиг.4. Условно графично означение на АЛУ SN74181

СУМАТОРИ

При използване на тази схема за построяване на паралелен суматор с разрядност по-голяма от 4 и с ускорен пренос се работи с инверсните стойности на операндите A и B, на резултата F и на функциите G и P и с правите стойности на преносите C_0 и C_4 . Условното графично означение на схемата при работа в този режим е показано на фиг.4-б.

Табл. 1. Функции на АЛУ SN74181

	M=1	M=0		
		Аритметически операции		
$S_3S_2S_1S_0$	Логически	$\overline{C}_0 = 1$	$\overline{C}_0 = 0$	
	операции	<u> </u>	ű	
0000	$F = \overline{A}$	F = A	F = A+1	
0001	$F = \overline{A \lor B}$	$F = A \lor B$	$F = (A \lor B) + 1$	
0010	$F = \overline{A} \wedge B$	$F = A \lor \overline{B}$	$F = (A \lor \overline{B}) + 1$	
0011	F = 0	F = -1	F = 0	
0100	$F = \overline{A \wedge B}$	$F = A + (A \wedge \overline{B})$	$F = A + (A \wedge \overline{B}) + 1$	
0101	$F = \overline{B}$	$F = (A \lor B) + (A \land \overline{B})$	$F = (A \lor B) + (A \land \overline{B}) + 1$	
0110	$F = A \oplus B$	F = A - B - 1	F = A - B	
0111	$F = A \wedge \overline{B}$	$F = (A \wedge \overline{B}) - 1$	$F = A \wedge \overline{B}$	
1000	$F = \overline{A} \vee B$	$F = A + (A \wedge B)$	$F = A + (A \wedge B) + 1$	
1001	$F = \overline{A \oplus B}$	F = A + B	F = A + B + 1	
1010	F = B	$F = (A \lor \overline{B}) + (A \land B)$	$F = (A \lor \overline{B}) + (A \land B) + 1$	
1011	$F = A \wedge B$	$F = (A \wedge B) - 1$	$F = A \wedge B$	
1100	F = 1	F = A + A	F = A + A + 1	
1101	$F = A \lor \overline{B}$	$F = (A \lor B) + A$	$F = (A \lor B) + A + 1$	
1110	$F = A \lor B$	$F = (A \lor \overline{B}) + A$	$F = (A \lor \overline{B}) + A + 1$	
1111	F = A	F = A-1	F = A	

Контролни въпроси:

- 1. Как се реализират десетични суматори в код 8421?
- 2. Как се реализират десетични суматори в код с излишък 3?
- 3. Каква функция изпълнява субтракторът и коя аритметическа операция ще се опрости ако в АЛУ освен суматор има и субтрактор?
- 4. Кои са аргументите на функциите на разликата и заема на субтрактора?
 - 5. Какви операции изпълнява АЛУ SN74181?