Question 1: Level sign: Recurire call! Tree. T(n) $T(1)=1, 1=\frac{n^2}{(2^i)^2}$ Base case =2log n = 2; =n, : o(n)

Question 2
Base case, $n=1$, $\kappa=1$
let's say LHS= x^n , RHJ = $\exp(x, n)$
LHS= 1'=1, RHS= reform x = 1
LHS=RMS: base case trane
As each recursive call @ line 4, we need a longe are here
as nell.
Sy x=2, LHS= 2=4
RHS: y= exp(2,2/2):2 @ line 6: yxy:4
LHS = RHS True
 We can observe that line 4 will each a base case, if the algorithm terminates
Induction step: assume the algorithm is correct for a value == 1
(f we have then line 4 is.
(Assume y is a multiple of 2). Then $y = y_2 + y_2$ Then $y = y_2 + y_2$ $y = \exp(x, z) + y_2$ $y = \exp(x, z) + y_2$ $y = \exp(x, z) + y_2 + x_2$
Then $j_1 = j_2 * j_2$ or $\exp(x, \frac{z}{2}) * j_2 * x$
As $\exp(x, z)$ is the definition of $\exp(x, z)$, we can conclude that
$\exp(n, n) = r$ for all $n = 1$
·

Onlytion 3 a) Let P be prehases P = \$ 100, 90, 803, discount = \$90 = d, P2 = 2 70,60,503, d= 850 P3: { 40, 30, 20} d3=120 P = 3 603 Buying in one Transmition = 550-10 = 540 with the above method, we save d, +dz+dz = \$150 and spend b) The greedy choice is to proclase in loss of 3 items where each lot is the maximal possible set. This would result in the maximal disjount as the disjount for each transaction would be the smallest item in each maximal set.

_____/

	Qu	ext10	n 4									
	a)		4	1	3	6	7	8				
		0	1	2	3	4	5	6				
	4	1	0	1	2	3	4	5				
	4	2	1	1	2	3	4	5				
	9	3	2	2	2	3	4	5				
	4	4	3	5	3	3	4	5				
	8	5	4	4	4	4	4	4				·
	9	6	5	5	5	5	5	5				
	5	7	6	6	۵	6	6	6				
	6	8	7	7	7	7	7	7				
						4		- Co.				
	b)	4	4	9	4	8	9	5	6			
			4		l	3	6	7	B			
		4	4	9	4	8	9	5	6			
		4			1	3	6	7	8			
		4	4	9	4	8	9	5	6			
			4	1		3	6	7	8			
		4	U	9	4	8	9	5	6			
		4		1		3	6	7	8			
		4	4	9	4	8	9	5	6			
		4	1			3	6	7	8			
		4	4	9	4	8	9	5	6			
			4	(3	97	6	7	8			
		4	4	9	4	8	9	5	6			
		4	,	l	3	69	6	7	8			
		4	4	9	4	8	9	5	6			
		4	. 1		3	a	6	3	8			
		4	4	9	4	8	9	5	8			
		4	1	3		27	6	7				-
<u> </u>		4	4	9	4	8	9	5	8		1	
			4	1	3	6	k.	7	8			
				-								
								-				
										-		