4.3.3 Iterative reweighted least squares

In the case of the linear regression models discussed in Chapter 3, the maximum likelihood solution, on the assumption of a Gaussian noise model, leads to a closed-form solution. This was a consequence of the quadratic dependence of the log likelihood function on the parameter vector w. For logistic regression, there is no longer a closed-form solution, due to the nonlinearity of the logistic sigmoid function. However, the departure from a quadratic form is not substantial. To be precise, the error function is concave, as we shall see shortly, and hence has a unique minimum. Furthermore, the error function can be minimized by an efficient iterative technique based on the Newton-Raphson iterative optimization scheme, which uses a local quadratic approximation to the log likelihood function. The Newton-Raphson update, for minimizing a function $E(\mathbf{w})$, takes the form (Fletcher, 1987; Bishop and Nabney, 2008)

 $\mathbf{w}^{(\text{new})} = \mathbf{w}^{(\text{old})} - \mathbf{H}^{-1} \nabla E(\mathbf{w}).$ (4.92)

where H is the Hessian matrix whose elements comprise the second derivatives of $E(\mathbf{w})$ with respect to the components of \mathbf{w} .

Let us first of all apply the Newton-Raphson method to the linear regression model (3.3) with the sum-of-squares error function (3.12). The gradient and Hessian of this error function are given by

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}_{n} - t_{n}) \boldsymbol{\phi}_{n} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \mathbf{w} - \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}$$
 (4.93)

$$\mathbf{H} = \nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{N} \boldsymbol{\phi}_n \boldsymbol{\phi}_n^{\mathrm{T}} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}$$
 (4.94)

where Φ is the $N \times M$ design matrix, whose n^{th} row is given by ϕ_n^{T} . The Newton-Raphson update then takes the form

$$\mathbf{w}^{(\text{new})} = \mathbf{w}^{(\text{old})} - (\mathbf{\Phi}^{T}\mathbf{\Phi})^{-1} \left\{ \mathbf{\Phi}^{T}\mathbf{\Phi}\mathbf{w}^{(\text{old})} - \mathbf{\Phi}^{T}\mathbf{t} \right\}$$
$$= (\mathbf{\Phi}^{T}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{T}\mathbf{t}$$
(4.95)

which we recognize as the standard least-squares solution. Note that the error function in this case is quadratic and hence the Newton-Raphson formula gives the exact solution in one step.

Now let us apply the Newton-Raphson update to the cross-entropy error function (4.90) for the logistic regression model. From (4.91) we see that the gradient and Hessian of this error function are given by

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \boldsymbol{\phi}_n = \boldsymbol{\Phi}^{\mathrm{T}}(\mathbf{y} - \mathbf{t})$$
 (4.96)

$$\mathbf{H} = \nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{N} y_n (1 - y_n) \boldsymbol{\phi}_n \boldsymbol{\phi}_n^{\mathrm{T}} = \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{R} \boldsymbol{\Phi}$$
 (4.97)

Section 3.1.1

where we have made use of (4.88). Also, we have introduced the $N \times N$ diagonal matrix ${\bf R}$ with elements

$$R_{nn} = y_n(1 - y_n). (4.98)$$

We see that the Hessian is no longer constant but depends on \mathbf{w} through the weighting matrix \mathbf{R} , corresponding to the fact that the error function is no longer quadratic. Using the property $0 < y_n < 1$, which follows from the form of the logistic sigmoid function, we see that $\mathbf{u}^T \mathbf{H} \mathbf{u} > 0$ for an arbitrary vector \mathbf{u} , and so the Hessian matrix \mathbf{H} is positive definite. It follows that the error function is a concave function of \mathbf{w} and hence has a unique minimum.

The Newton-Raphson update formula for the logistic regression model then becomes

$$\mathbf{w}^{(\text{new})} = \mathbf{w}^{(\text{old})} - (\mathbf{\Phi}^{T} \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{T} (\mathbf{y} - \mathbf{t})$$

$$= (\mathbf{\Phi}^{T} \mathbf{R} \mathbf{\Phi})^{-1} \left\{ \mathbf{\Phi}^{T} \mathbf{R} \mathbf{\Phi} \mathbf{w}^{(\text{old})} - \mathbf{\Phi}^{T} (\mathbf{y} - \mathbf{t}) \right\}$$

$$= (\mathbf{\Phi}^{T} \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{T} \mathbf{R} \mathbf{z}$$
(4.99)

where z is an N-dimensional vector with elements

$$\mathbf{z} = \mathbf{\Phi} \mathbf{w}^{(\text{old})} - \mathbf{R}^{-1} (\mathbf{y} - \mathbf{t}). \tag{4.100}$$

We see that the update formula (4.99) takes the form of a set of normal equations for a weighted least-squares problem. Because the weighing matrix \mathbf{R} is not constant but depends on the parameter vector \mathbf{w} , we must apply the normal equations iteratively, each time using the new weight vector \mathbf{w} to compute a revised weighing matrix \mathbf{R} . For this reason, the algorithm is known as *iterative reweighted least squares*, or *IRLS* (Rubin, 1983). As in the weighted least-squares problem, the elements of the diagonal weighting matrix \mathbf{R} can be interpreted as variances because the mean and variance of t in the logistic regression model are given by

$$\mathbb{E}[t] = \sigma(\mathbf{x}) = y \tag{4.101}$$

$$var[t] = \mathbb{E}[t^2] - \mathbb{E}[t]^2 = \sigma(\mathbf{x}) - \sigma(\mathbf{x})^2 = y(1 - y)$$
 (4.102)

where we have used the property $t^2=t$ for $t\in\{0,1\}$. In fact, we can interpret IRLS as the solution to a linearized problem in the space of the variable $a=\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}$. The quantity z_n , which corresponds to the n^{th} element of \mathbf{z} , can then be given a simple interpretation as an effective target value in this space obtained by making a local linear approximation to the logistic sigmoid function around the current operating point $\mathbf{w}^{(\mathrm{old})}$

$$a_n(\mathbf{w}) \simeq a_n(\mathbf{w}^{(\text{old})}) + \frac{\mathrm{d}a_n}{\mathrm{d}y_n} \Big|_{\mathbf{w}^{(\text{old})}} (t_n - y_n)$$

$$= \phi_n^{\mathrm{T}} \mathbf{w}^{(\text{old})} - \frac{(y_n - t_n)}{y_n (1 - y_n)} = z_n. \tag{4.103}$$

Exercise 4.15

4.3.4 Multiclass logistic regression

Section 4.2

In our discussion of generative models for multiclass classification, we have seen that for a large class of distributions, the posterior probabilities are given by a softmax transformation of linear functions of the feature variables, so that

$$p(\mathcal{C}_k|\phi) = y_k(\phi) = \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$
(4.104)

where the 'activations' a_k are given by

$$a_k = \mathbf{w}_k^{\mathrm{T}} \boldsymbol{\phi}. \tag{4.105}$$

There we used maximum likelihood to determine separately the class-conditional densities and the class priors and then found the corresponding posterior probabilities using Bayes' theorem, thereby implicitly determining the parameters $\{\mathbf{w}_k\}$. Here we consider the use of maximum likelihood to determine the parameters $\{\mathbf{w}_k\}$ of this model directly. To do this, we will require the derivatives of y_k with respect to all of the activations a_j . These are given by

Exercise 4.17

$$\frac{\partial y_k}{\partial a_j} = y_k (I_{kj} - y_j) \tag{4.106}$$

where I_{kj} are the elements of the identity matrix.

Next we write down the likelihood function. This is most easily done using the 1-of-K coding scheme in which the target vector \mathbf{t}_n for a feature vector $\boldsymbol{\phi}_n$ belonging to class \mathcal{C}_k is a binary vector with all elements zero except for element k, which equals one. The likelihood function is then given by

$$p(\mathbf{T}|\mathbf{w}_1, \dots, \mathbf{w}_K) = \prod_{n=1}^{N} \prod_{k=1}^{K} p(\mathcal{C}_k | \boldsymbol{\phi}_n)^{t_{nk}} = \prod_{n=1}^{N} \prod_{k=1}^{K} y_{nk}^{t_{nk}}$$
(4.107)

where $y_{nk} = y_k(\phi_n)$, and **T** is an $N \times K$ matrix of target variables with elements t_{nk} . Taking the negative logarithm then gives

$$E(\mathbf{w}_1, \dots, \mathbf{w}_K) = -\ln p(\mathbf{T}|\mathbf{w}_1, \dots, \mathbf{w}_K) = -\sum_{n=1}^N \sum_{k=1}^K t_{nk} \ln y_{nk}$$
(4.108)

which is known as the *cross-entropy* error function for the multiclass classification problem.

We now take the gradient of the error function with respect to one of the parameter vectors \mathbf{w}_j . Making use of the result (4.106) for the derivatives of the softmax function, we obtain

Exercise 4.18

$$\nabla_{\mathbf{w}_j} E(\mathbf{w}_1, \dots, \mathbf{w}_K) = \sum_{n=1}^N (y_{nj} - t_{nj}) \, \boldsymbol{\phi}_n$$
 (4.109)

where we have made use of $\sum_k t_{nk} = 1$. Once again, we see the same form arising for the gradient as was found for the sum-of-squares error function with the linear model and the cross-entropy error for the logistic regression model, namely the product of the error $(y_{nj} - t_{nj})$ times the basis function ϕ_n . Again, we could use this to formulate a sequential algorithm in which patterns are presented one at a time, in which each of the weight vectors is updated using (3.22).

We have seen that the derivative of the log likelihood function for a linear regression model with respect to the parameter vector \mathbf{w} for a data point n took the form of the 'error' $y_n - t_n$ times the feature vector ϕ_n . Similarly, for the combination of logistic sigmoid activation function and cross-entropy error function (4.90), and for the softmax activation function with the multiclass cross-entropy error function (4.108), we again obtain this same simple form. This is an example of a more general result, as we shall see in Section 4.3.6.

To find a batch algorithm, we again appeal to the Newton-Raphson update to obtain the corresponding IRLS algorithm for the multiclass problem. This requires evaluation of the Hessian matrix that comprises blocks of size $M \times M$ in which block j,k is given by

$$\nabla_{\mathbf{w}_k} \nabla_{\mathbf{w}_j} E(\mathbf{w}_1, \dots, \mathbf{w}_K) = -\sum_{n=1}^N y_{nk} (I_{kj} - y_{nj}) \phi_n \phi_n^{\mathrm{T}}.$$
 (4.110)

As with the two-class problem, the Hessian matrix for the multiclass logistic regression model is positive definite and so the error function again has a unique minimum. Practical details of IRLS for the multiclass case can be found in Bishop and Nabney (2008).

4.3.5 Probit regression

We have seen that, for a broad range of class-conditional distributions, described by the exponential family, the resulting posterior class probabilities are given by a logistic (or softmax) transformation acting on a linear function of the feature variables. However, not all choices of class-conditional density give rise to such a simple form for the posterior probabilities (for instance, if the class-conditional densities are modelled using Gaussian mixtures). This suggests that it might be worth exploring other types of discriminative probabilistic model. For the purposes of this chapter, however, we shall return to the two-class case, and again remain within the framework of generalized linear models so that

$$p(t = 1|a) = f(a) (4.111)$$

where $a = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}$, and $f(\cdot)$ is the activation function.

One way to motivate an alternative choice for the link function is to consider a noisy threshold model, as follows. For each input ϕ_n , we evaluate $a_n = \mathbf{w}^T \phi_n$ and then we set the target value according to

$$\begin{cases} t_n = 1 & \text{if } a_n \geqslant \theta \\ t_n = 0 & \text{otherwise.} \end{cases}$$
 (4.112)

Exercise 4.20