# Ship or iceberg?

Kaggle Statoil/C-CORE Iceberg Classifier Challenge

ODS: @azzy

Azat Akhtyamov

| #  | △pub        | Team Name               | Kernel | Team Members | Score @ |
|----|-------------|-------------------------|--------|--------------|---------|
| 1  | _           | David & Weimin          |        | <b>S</b>     | 0.0822  |
| 2  | <b>^</b> 3  | beluga                  |        | <u></u>      | 0.0855  |
| 3  | <b>A</b> 3  | Evgeny Nekrasov         |        | <u>.</u>     | 0.0857  |
| 4  | _           | Mark Rippetoe witnesses |        |              | 0.0868  |
| 5  | <b>▼</b> 3  | Kohei and Medrr         |        | <u>a = </u>  | 0.0888  |
| 6  | <b>A</b> 3  | AzAkhtyamov             |        |              | 0.0910  |
| 7  | <b>~</b> 7  | Juan Zhai 卷宅            |        |              | 0.0930  |
| 8  | <b>A</b> 3  | alijs                   |        | 3            | 0.0981  |
| 9  | ▲ 529       | Troy Retter             |        | 9            | 0.1046  |
| 10 | <b>2</b> 9  | ubik                    |        | 3            | 0.1051  |
| 11 | <b>^</b> 20 | VictorHBD               |        | 1980         | 0.1075  |
| 12 | <b>▲</b> 13 | Overfitter              |        |              | 0.1075  |
| 13 | <b>▼</b> 6  | Pavel Pleskov           |        |              | 0.1081  |
| 14 | <b>137</b>  | Vladimír Kunc           |        |              | 0.1082  |
| 15 | <b>^</b> 7  | Go! Go! Manta Mans      |        |              | 0.1084  |
| 16 | <b>~</b> 33 | ya_bulochko             |        | 🔊 🎑 🙆        | 0.1137  |

/3343

## Description

- 2 bands 75x75 + incidence angle
- Binary classification
- 1604 samples in train, 133 with NaN incidence angle
- 8424 samples in test, 5000 generated, no NaN incidence angle
- Evaluation metric: logloss
- Generated images excluded from private/public scoring
- Only 2 submission per day

# Examples

#### Ship:



#### Iceberg:



#### Hard case:



#### Generated:



## Leak or feature?

Idea: icebergs with icebergs, ships with ships (remember Titanic?)



# Leaky features

#### For every unique angle:

- Mean target
- Total count (include test set)
- Mean target in the neighborhood

Public 0.2106 Private **0.1965** 



## MORE LEAKS



#### MORE LEAKS

 $\Delta = 1.6741$ , real step:  $\frac{\Delta}{2} = 0.83705$ 

#### For every angle a:

- Mean target over  $\beta \in [a 10\Delta \pm \epsilon, a 9\Delta \pm \epsilon, ..., a + 9\Delta \pm \epsilon, a + 10\Delta \pm \epsilon]$
- Count samples over  $\beta \in [a 10\Delta \pm \epsilon, a 9\Delta \pm \epsilon, ..., a + 9\Delta \pm \epsilon, a + 10\Delta \pm \epsilon]$
- Mean target over area with center in  $\beta \in [a-10\Delta, a-9\Delta, ..., a+9\Delta, a+10\Delta]$ Here  $\varepsilon = 0.00005$

# 2D model and pseudo-labeling

- Label images with p < 0.01 or p > 0.99 (nearly 3000 images)
- Train also on train images (ships with NaN angle)
- Augmentation: rotations, flips
- Trained 200 models, median prediction of top 100 models
- If previous model predicts  $p \in [0.1, 0.9]$  then average, else use previous model

• Better strategy: if the mean target for the angle is near 0.5 then average, else use previous model

Public 0.0940 Private **0.0910** 

Public 0.0984 Private **0.0873**  But this didn't work...

### 5D CNN Architecture



- Total parameters: 203,137
- 5 channels: 2 bands and 3 leaky features (mean, count, mean over area)
- Global Average Pooling on top
- No preprocessing for data
- No augmentation
- Trained 200 models, median prediction of top 100 models

Public 0.1065 Private **0.0946** 

#### First place (Weimin Wang and David), 0.0822:

- 1) Found groups
- Different models for group 1 and group 2
- 3) Ensembling and stacking



#### Second place (beluga), 0.0855:

- 1) "Hundreds of CNN with different random parameters" + augmentation + pseudo
- 2) Xgboost over group features and previous models

#### Averaging:

- 95% model average of the 100 best xgb models.
- 5% model average of the 100 best xgb model without using inc\_angle

#### Third place (Evgeny Nekrasov), 0.0857:

- 1) 7 NNs, 5 folds and 30 repeats no angle information
- 2) Mixed NNs with XGBoost, 7 folds and 1000 repeats.
- 3) Spatial model using neighborhood mean target variable
- 4) Mixing model without spatial information with the spatial model
- 5) Retraining models with pseudo-labeling
- 6) Mixing again

#### Fourth place (Kirill Zhdanovich, Andrii Sydorchuk), 0.0868:

- 1) 5 NN with incidence angle
- 2) Take NNs with best validation score
- For each angle calculate mean prediction, median prediction, total number of samples in each group
- 4) Stacking KNN, LightGBM

### Conclusions

- Do not use public kernels at least for the first time
- Do not stack public kernels
- Do not stack stacked public kernels
- Make EDA before training
- Try to connect samples with each other if possible
- Do not spend to much time on hyperparameter tuning
- Clip if the metric is logloss
- Hardware is not always the key

# Thank you!