I Questions de cours

- 1 Exercice 25 banque CCINP :
- a) Démontrer que, pour tout entier naturel n, la fonction $f_n: t \longmapsto \frac{1}{1+t^2+t^ne^{-t}}$ est intégrable sur $[0; +\infty[$.
 - b) Pour tout $n \in \mathbb{N}$, on pose $u_n = \int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^2 + t^n e^{-t}}$. Calculer $\lim_{n \to +\infty} u_n$.
 - 2 Exercice 26 banque CCINP:

Pour tout entier $n \ge 1$, on pose $I_n = \int_0^{+\infty} \frac{1}{(1+t^2)^n} dt$.

- a) Justifier que I_n est bien définie.
- b) Étudier la monotonie de la suite $(I_n)_{n\in\mathbb{N}^*}$.
- c) Déterminer la limite de la suite $(I_n)_{n\in\mathbb{N}^*}$.
- d) La série $\sum_{n\geq 1} (-1)^n I_n$ est-elle convergente?
- 3 Exercice 27 banque CCINP :

Pour tout $n \in \mathbb{N}^*$, on pose $f_n(x) = \frac{e^{-x}}{1 + n^2 x^2}$ et $u_n = \int_0^1 f_n(t) dt$.

- a) Étudier la convergence simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ sur [0;1].
- b) Soit $a \in]0; 1[$.

La suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément sur [a;1]?

- c) La suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément sur [0;1]?
- d) Trouver la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$.

II Exercices

Exercice 1:

Soit f la fonction d'une variable réelle définie par :

$$f: x \longmapsto \int_0^{+\infty} \frac{\operatorname{th}(\sqrt{x} - t)}{1 + t^2} dt.$$

- 1 Montrer que f est continue sur \mathbb{R}^+ .
- 2 Montrer que f est bornée sur \mathbb{R}^+ .
- 3 Montrer que f est monotone sur \mathbb{R}^+ .
- 4 Montrer que f admet une limite réelle en $+\infty$ et calculer $\lim_{x\to +\infty} f(x)$.

Exercice 2:

Soit f la fonction d'une variable réelle définie par :

$$f: x \longmapsto \int_1^{+\infty} \frac{1}{(1+t)t^x} \mathrm{d}t.$$

- 1 Montrer que f est continue sur $]0; +\infty[$.
- 2 Pour x > 0, calculer f(x+1) + f(x) et en déduire :

$$f(x) \underset{x \to 0^+}{\sim} \frac{1}{x}.$$

Exercice 3:

Soit f la fonction d'une variable réelle définie par :

$$f: a \longmapsto \int_0^{+\infty} e^{-x^2} e^{-\frac{a^2}{x^2}} \mathrm{d}x.$$

On admettra que $f(0) = \frac{\sqrt{\pi}}{2}$.

- 1 Montrer que f est définie sur $\mathbb R$ et est paire.
- 2 Montrer que f est continue sur \mathbb{R} .
- 3 Montrer que f est de classe C^1 sur $]0; +\infty[$.
- 4 Soit a > 0. En utilisant le changement de variable $x = \frac{a}{t}$, montrer que :

$$f'(a) = -2f(a).$$

5 - Pour tout $a \in \mathbb{R}$, préciser f(a) en fonction de a.

Exercice 4

Pour $n \in \mathbb{N}^*$, on note sous réserve d'existence :

$$u_n = \int_0^{+\infty} \frac{1}{\operatorname{ch}^n(x)} \mathrm{d}x.$$

- 1 Montrer que pour tout $n \in \mathbb{N}^*$, u_n existe.
- 2 Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers une limite que l'on précisera.

$\underline{Exercice~5~:}$

Pour $n \in \mathbb{N}^*$, on note sous réserve d'existence :

$$I_n = \int_0^{+\infty} \frac{e^{-x^n}}{\sqrt{x}} \mathrm{d}x.$$

- 1 Montrer que pour tout $n \in \mathbb{N}^*$, u_n existe.
- 2 Déterminer $\lim_{n\to+\infty} I_n$.