Równania Różniczkowe i Różnicowe Zadanie domowe

1 Zadanie

Proszę rozwiązać metodą elementów skończonych następujące równanie różniczkowe

$$(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x)$$
(1)

Dokładne równanie do policzenia jest podane poniżej. Rozwiązanie składa się z następujących etapów:

- 1. Proszę wyprowadzić sformułowanie wariacyjne dla przedstawionego układu równań liniowych
- 2. Proszę napisać procedurę generującą układ równań liniowych, rozwiązującą wygenerowany układ równań liniowych oraz rysujący wykres rozwiązania

2 Wymagania funkcjonalne

Proszę przyjąć zmienną n (ilość elementów) jako parametr uruchomieniowy aplikacji (nie dotyczy studentów wybierających opcję na ocenę 3.0). Dodatkowo proszę rysować wykres wyliczonego przybliżenia funkcji u - dopuszczalne jest wysowanie przez zewnętrzną aplikację - np. gnuplot, Excel.

3 Sposób oceny

Maksymalną oceną za zadanie domowe jest 50 pkt. Zaplanowane są 3 poziomy trudnoci oddawanego zadania domowego:

- **50 pkt.** dowolne *n*, dowolny język programowania różny od Python. Całki liczone numerycznie.
- **39 pkt.** dowolne *n*, dowolny język programowania różny od Python. Całki mogą być wcześniej wyliczone na kartce papieru.
- 29 pkt. stałe n=3, dowolny język programowania różny od Python.

Dozwolone jest używanie dowolnych bibliotek. Za błędy będą odbierane punkty od maksymalnej oceny proporcjonalnie do istotności błędu bądź braku zrozumienia własnego programu.

Proszę przynieść kod programu oraz sformułowanie wariacyjne napisane na kartce.

4 Problemy obliczeniowe

4.1 Równanie transportu ciepła

$$-k(x)\frac{d^{2}u(x)}{dx^{2}} = 0$$

$$u(2) = 0$$

$$\frac{du(0)}{dx} + u(0) = 20$$

$$k(x) = \begin{cases} 1 & \text{dla } x \in [0, 1] \\ 2 & \text{dla } x \in (1, 2] \end{cases}$$

Gdzie *u* to poszukiwana funkcja

$$[0,2] \ni x \to u(x) \in \mathbb{R}$$

4.2 Wibracje akustyczne warstwy materiału

$$-\frac{d^2u(x)}{dx^2} - u = 0$$
$$u(0) = 0$$
$$\frac{du(2)}{dx} - u(2) = 0$$

Gdzie u to poszukiwana funkcja

$$[0,2] \ni x \to u(x) \in \mathbb{R}$$

4.3 Odkształcenie sprężyste

$$-\frac{d}{dx}\left(E(x)\frac{du(x)}{dx}\right) = 0$$

$$u(2) = 0$$

$$\frac{du(0)}{dx} + u(0) = 10$$

$$E(x) = \begin{cases} 3 & \text{dla } x \in [0, 1] \\ 5 & \text{dla } x \in (1, 2] \end{cases}$$

Gdzie *u* to poszukiwana funkcja

$$[0,2] \ni x \to u(x) \in \mathbb{R}$$

5 Algorytm wyboru problemu

Każdy student ma przypisany swój problem obliczeniowy według następującego algorytmu.

- 1. Problem determinuje pierwsza litera nazwiska
- 2. Polskie znaki takie jak Ą, Ę itp. są rzutowane na podobne znaki z alfabetu łacińskiego (odpowiednio A, E, itp.)
- 3. Litera rzutowana jest na liczbę, A-0, B-1, C-2, D-3, itd.
- 4. Finalnie uzyskana wcześniej liczba dzielona jest modulo ilość problemów a następnie dodawana jest liczba 1.

Przykład:

Edward Acki

Pierwsza litera nazwiska \rightarrow A \rightarrow A \rightarrow 0 \rightarrow 0 mod 3 = 0 \rightarrow 0 + 1 = 1

Damian Ćwikła

Pierwsza litera nazwiska \rightarrow Ć \rightarrow C \rightarrow 2 \rightarrow 2 mod 3 = 2 \rightarrow 2 + 1 = 3

6 Termin oddania

Terminem oddawania są ostatnie zajęcia w semestrze zimowym 2019/2020. Do tygodnia spóźnienia nie będą odejmowane punkty. Następnie za każdy kolejny dzień spóźnienia odejmowane będzie 5 punktów. Zadanie należy oddać osobiście.

7 Całkowanie numeryczne

Preferowaną metodą całkowania numerycznego są kwadratury Gauss-Legendre https://en.wikipedia.org/wiki/Gaussian_quadrature. Dla celów zadania obliczeniowego wystarczą dwa punkty kwadratury - punkty i wagi do odczytania z Wikipedii (na dzień 2020.01.08 wartości podane na angielskiej wersji strony są poprawne). **UWAGA** kwadratura domyślnie działa na przedziale [-1,1].