Computer Graphics Final Project: My Parthenon

Submitted to Prof. Haim Levkowitz Submitted by Yaolung Su(Student ID: 01695005)

04/25/2018

outline

1.	Introduction	3
2.	Week1	4
3.	Week2	5
4.	Week3	6
5.	Week4	7
6.	Week5	8
7.	What did I learn	9
8.	Unexpected Events	10
9.	Conclusion	11

1.Introduction

I take my project named "My Parthenon", because I draw the building referencing it as picture below. I used SVG and THREE.js to implement my project. I began with 2D elevations, and extent it to 3D. Later I add some 3D functions in building, for example, rotate, skew, and translate...etc. I also put textures to make it look like a real one.

More details in

http://www.cs.uml.edu/~slung/427546s2018/finalProject/finalProject.html

I completed drawing three 2D "elevations" (front, top, side).

I made some transform objects: apply 3D (Translate/Rotate/Scale/SHear)

```
And I used jQuery to pass my parameters.
 $("#tra").click(function(){
      translate($("#trasx").val(), $("#trasy").val(), $("#ele").val());
  });
function translate(valuex, valuey, ele)
  if(ele == 'Front'){
    document.getElementById('tl').style.transform="translate(" + valuex +"px," + valuey + "px)";
Elevations: Front •
Rotate:
Rotate Degree: 7
                      (-360 \sim 360)
     Let's Rotate!
Translate:
Translate X: 200
Translate Y: 10
     Let's Translate!
SHear:
SHear Degree(X): 30
                         (-360 \sim 360)
SHear Degree(Y): 20
                         (-360 \sim 360)
     Let's SHear!
Scale:
Scale Degree(X): 1.5
Scale Degree(Y): 1.2
     Let's Scale!
```

I combined 2D elevations to 3D and make it spin, so that I can view my created object from multiple views. And add a new button "Go to Camera/Light", which can link to transform camera/viewer/light sources. I put a cylinder in the side and a cube in the middle, user can click mouse and drag content to view effects of different light sources. The shadow will change according to light direction.

Take a cube as a building, I draw "1 point perspective" in left-up side, "2 points perspective" in right-up side, and "3 points perspective" in left-down side. In addition, I added the Isometric of my Parthenon in right-down side.

According to my 3D objection, I added texture mapping in my objection, and used a nature scene for environmental mapping.

7. What did I learn

Issue	Description	
How to control	I learned how to use jQuery to implement	
variances what you	the parameters change, for example, angle	
want to change?	degrees, heights or sizesetc.	
Html, CSS, JavaScript	Before this class, they are strangers to me.	
	But I am more familiar with them, due to I	
	use them a lot of time in this semester.	
Draw a graphic	I learned how to use SVG to draw a scalable	
	vector graphic, it includes many functions	
	that I can use to draw different shapes, and	
	do transform functions.	
Perform a 3D model	Compared to SVG, THREE.js is a better	
	choice. Because it creates and displays	
	animated 3D computer graphics in a web	
	browser. More over, it has	
	PerspectiveCamera function, that is why I	
	choose THREE.js to solve camera and light	
	part.	

8.Unexpected Events

Description	·				
	Impact				
Access to Image at	Cannot use	Tried to bypass			
'file:///Users/XXX.png' from	image file from	CORS, but it still			
origin 'null' has been	out source	failed.			
blocked by CORS policy:					
Invalid response. Origin					
'null' is therefore not					
allowed access.					
Three.js cannot apply	The 3D	I downloaded the			
	functions cannot	three.js library			
	implement	documents and			
		put in my			
		project's folder.			
		The problem			
		solved.			
Objection location is not I	Objection was	To figure out the			
want	almost gone in	relative distant			
	the view	with other			
	the view	objections, and			
		find out which			
		one is causing the			
		problem. Make			
		fixation and solve			
		it.			

9.Conclusion

Based on real Parthenon picture, I try to draw it or other objects by following methods:

- 1.(a) Draw three 2D "elevations" (front, top, side) (b) Enter coordinates: choose your model format(s)
- 2. Transform object: apply 3D (Translate/Rotate/Scale/SHear) transformations to the created object.
- 3. Viewing: view your created object from multiple views.(in 3d part)
- 4. Transform camera/viewer/light sources(s).
- 5. Generate different projections of the objects (refer to class discussions about different projections, see projection "tree" see figure).
- 6. Edit/Change perspective projection vanishing points (1, 2, 3).
- 7. Create texture/bump/environmental mappings for the object.

I learned a lot from this class. It helped me get into front-end quickly. And I will keep learning in this field.