Case: 4:11-cv-00077-RWS Doc. #: 147-8 Filed: 08/16/13 Page: 1 of 4 PageID #: 3123

EXHIBIT H

OCT 18 1985

Inspection Report - Northern States Power - Riverside Generating Station Minneapolis, Minnesota

David Schulz, Environmental Engineer Air Compliance Branch, Section I

F11es

Inspection Date:

September 4, 1985

Personnel Participating:

David Schulz, U.S. EPA
Steve Kurkowski, NSP, Production Engineer
Ross Hammond - NSP, Acting Superintendent

Plant Description:

Northern State Power Company's Riverside Generating Station is comprised of 3 coal-fired boilers. Boilers 6 & 7 are tied into an integrated system with 3 turbines, with a combined generating capacity of 110 MW. Boilers 6 & 7 are equipped with a combined Joy-Noiro dry scrubbing control system. This control system consists of a single rotary atomizer absorber chamber followed by a 12 compartment baghouse. Flue gas from the boilers enters the absorber chamber in a cyclonic fashion, where it reacts with the slaked line scrubbing slurry which is atomized by a single rotary atomizer. The spray dryer absorber operates about 25°-35°F above the adiabatic saturation temperature (145°-160°F), at a pressure drop of about 11". The system operates with about 80% recycled slurry from the absorber. A grinder has been installed at the bottom of the absorber chamber to grind any large deposits of material which fall off the absorber walls. The baghouse is of reverse-air design, with 250 teflon coated fiberglass bags per compartment, and operates at a pressure drop of 3"-6". Boilers 6 & 7 are vented through separate 220' stacks equipped with Lear-Siegler RM-41 opacity monitors, and a combined Lear-Siegler SM 810 SO2 monitor.

Unit 8 is a 223 MW Babcock & Wilcox cyclone coal-fired unit (5-10' diameter cyclones), with a rated capacity of 1,600,000 lb. steam/hr. Unit 8 is equipped with 2 electrostatic precipitators operating in series. A Research Cottrell ESP built in 1963, with 6 sections and a design SCA of 117 ft²/1000acfm, is followed by a Buell ESP built in 1970, with 6 sections and a design SCA of 223 ft²/1000 acfm. Unit 8 is vented through a 485' stack equipped with a Lear-Siegler RM-41 opacity monitor and a Lear-Siegler SM 810 SO₂ monitor EPA5ORCB09461

SOWEND ST

The Riverside Station receives coal by rail from the Westmoreland and Colstrip mines in Montana. The coal is blended with petroleum coke (10% blend), which is delivered by truck into the station. The coal dumper house and transfer points are evacuated to baghouse control systems. A water wagon is used for wetting of the coal piles as needed. Sides of the coal piles are sealed with a surfactant.

Following is a summary of station design data:

_		MM	Control Equipment	CEM	Stack Height
P-C	570,000	110 (combined)	Joy-NIRO Spray dryer/baghouse (combined)	L-S RM41 SM 810 (cor	220'
B&W P-C	570,000	÷ .	::	C-3-M41	220'
		223	R-C ESP, Buell ESP	L-S RM 41 SM 810	4851
	B&W P-C B&W P-C B&W	B&W 570,000 P-C B&W 570,000 P-C B&W cyclone 1,600,000	B&W 570,000 B&W 570,000 P-C B&W cyclone 1,600,000 223	B&W 570,000 B&W 570,000 B&W 570,000 P-C 110 (combined) B&W 570,000 P-C B&W cyclone 1,600,000 223 R-C ESP,	### Equipment CEM ### Equipment CEM ### S70,000 P-C

F

During the time of inspection only unit 8 was operating at 225 MW (load was increased gradually over past several hours). A review of CEM data showed unit 8 opacity between 12-20% with brief spikes up to 70% (only instantaneous opacity values recorded). A review of the opacity strip chart showed a gradual rise in opacity throughout the day from 2-3% in the early morning. The 50_2 monitor showed SO₂ concentrations between 1,050 -1,150 ppm.

A review of unit 8 ESP operating parameters showed the following:

Section	Primary Voltage (volts)	Primary Current (amps)	Secondary Voltage (KV)	Secondary Current
	<u>R</u>	esearch Cottrell	ESP	
81 inlet 81 center 81 outlet 92 inlet 32 center 32 outlet	100 100 300 300 260 250	20 105 90 70 80 95	0 0 0 0 0	30 520 400 280 380 460
		Buell ESP		
A 3 C	200 230 Out of Servic	20 29 :e (since 6/25/35	ე ე	129 170
D E F	250 120 160	60 30 25	, 0 2 0	300 60 100 EPA5ORCB09462

In response to concerns expressed about high opacity on unit 8 plant personnel immediately took steps to reduce unit load (to 195 MW) and to check operation of the ESP's. They determined that the Buell ESP had been taken off automatic voltage control during some maintenance checks the previous day and never returned. They felt that this was the cause of the higher opacity readings. A later check of the COM recorder showed that opacity had dropped to 6-7%, with brief spikes up to 20%.

Plant personnel indicated that boilers 6 & 7 would be out of service for an extended outage (til April 1987), for major work aimed at upgrading and extending the operating life of these boilers. This project, estimated to cost \$50 million, includes boiler modifications, new air heater installation, and installation of a new turbine with higher generating capacity (130-150 MW). Some minor work to the pollution control system is also planned, including coating of the baghouse internals where corrosion has been a problem.

A review of coal sampling and analysis (CSA) data for July 1985 on unit 8 showed individual analyses ranging from 1.89 - 2.93 lb. $SO_2/MMBTU$ (See attached).

bcc: Czerniak/Kertcher/Kee Penson/Pak

McCoy

DASCHULZ:MDJenkins #3-2088 Disk #1 10-08-85

10-16-85

Plan