jp09086967/pn

L8 ANSWER 1 OF 1 JAPIO (C) 2004 JPO on STN

ACCESSION NUMBER: 1997-086967 JAPIO

TITLE: TRANSPARENT CONDUCTIVE FILM AND ITS PRODUCTION

INVENTOR: TOFUKU JUNJI; ISHII CHIGUSA; ADACHI KENJI

PATENT ASSIGNEE(S): SUMITOMO METAL MINING CO LTD

PATENT INFORMATION:

PATENT NO KIND DATE ERA MAIN IPC

JP 09086967 A 19970331 Heisei C03C017-42

APPLICATION INFORMATION

STN FORMAT: JP 1995-276809 19950929
ORIGINAL: JP07276809 Heisei
PRIORITY APPLN. INFO.: JP 1995-276809 19950929

PRIORITY APPLN. INFO.: JP 1995-276809 19950929
SOURCE: PATENT ABSTRACTS OF JAPAN (CD-ROM), Unexamined

Applications, Vol. 1997

INT. PATENT CLASSIF.:

MAIN: C03C017-42

SECONDARY: C03C017-30; H01B005-14; H01B013-00; H01J009-20;

H01J009-24; H01J029-88; H05K009-00

ABSTRACT:

PROBLEM TO BE SOLVED: To simply obtain a transparent conductive film having a function for reducing the light reflection of a CRT display surface, having more excellent conductivity than those of conventional transparent conductive films and suitable for shielding electromagnetic fields at a low cost by a coating method.

SOLUTION: This transparent conductive film formed on a glass substrate and having a film thickness of 0.31-0.62μm. The main part of the film comprises a layer wherein ITO particles having particle diameters of <=80nm are dispersed in a silicate matrix, and the ITO layer and the silicate layer do not have a clear boundary therebetween in the main part of the film. The formation of the transparent conductive film formed on the glass substrate by the method enables to obtain the film low in the surface electric resistance and in the surface reflection of light at a low cost by a low temperature baking method.

COPYRIGHT: (C) 1997, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-86967

(43)公開日 平成9年(1997)3月31日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FI				技術表示箇所
C 0 3 C 17/42			C 0 3 C				
17/30				17/30		Z	
H01B 5/14			H 0 1 B	5/14		Α	
13/00	503			13/00		503B	
H O 1 J 9/20			H01J	9/20		Α	
		審査請求	朱龍 朱龍朱	項の数2	FD	(全 6 頁)	最終頁に続く
(21)出願番号	特願平7-276809	•	(71)出願人				
	4					株式会社	
(22)出顧日	平成7年(1995)9月	29日				橋5丁目11番	3号
			(72)発明者	東福 洋	享可		
				千葉県下	市川市	中国分 3 -18-	- 5 住友金属
			j	鉱山株式	式会社中	中央研究所内	
			(72)発明者	新石井 =	千草		
				千葉県市	市川市	中国分3-18-	- 5 住友金属
				鉱山株式	式会社	中央研究所内	
			(72)発明者	足立 化	建治		
				千葉県下	も川市!	中国分3-18-	- 5 住友金属
				鉱山株式	式会社	中央研究所内	
			(74)代理人				

(54) 【発明の名称】 透明導電膜およびその製造方法

(57) 【要約】

【課題】 CRT画面の表示反射を抑制する機能を持ち、かつ従来よりも優れた導電性を有することにより電界シールドに適切な膜を、塗布法を用いて簡便かつ低コストに提供する。

【解決手段】 ガラス基板上に形成された透明導電膜であって、膜厚が 0.31μ m以上 0.62μ m以下であり、膜主要部が粒径80nm以下のITO微粒子がシリケートマトリックス中に分散した層であり、膜主要部においてITO層とシリケート層との間に明確な境界がないよう形成した透明導電膜。

【効果】 本発明により得られた透明導電膜をガラス基板上に形成することにより、低い表面抵抗をもってかつ表面反射の低い膜を、低コスト、低温度焼成で得ることが可能である。

【特許請求の範囲】

【請求項1】 ガラス基板上に形成された透明導電膜で あって、膜厚が 0. 3 1 μ m 以上 0. 6 2 μ m 以下であ り、膜主要部が粒径80nm以下のITO微粒子がシリ ケートマトリックス中に分散した層であり、膜主要部に おいてITO層とシリケート層との間に明確な境界がな いよう形成されたことを特徴とする透明導電膜。

1

【請求項2】 ガラス基板上に塗布法により、粒径80 nm以下のITO微粒子を分散するITO分散液、アル キルシリケート部分加水分解重合物を含有する処理液の 10 順に塗布して焼成することにより透明導電膜を形成する 方法であって、該処理液のシリケート濃度が、濃度を順 に大きくして成膜した時に製造された膜のヘイズ値が初 めて最小値に達する近傍の大きさの濃度であることを特 徴とする透明導電膜を製造する方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、〇A機器のディス プレイ、テレビジョンのブラウン管などの陰極線管の前 面ガラスに電界シールド効果を付与するための透明導電 20 膜およびその製造方法に関するものである。

[0002]

【従来の技術】近年のオフィスオートメーション(O A) 化により、オフィスに多くのOA機器が導入され、 OA機器のディスプレイと向き合って終日作業を行うと いう環境が珍しくないが、コンピュータの陰極線管(C RT)に接して仕事を行う場合には、表示画面が見易 く、視覚疲労を感じさせないことのほかに、CRT表面 の帯電によるホコリの付着や電撃ショックがないことが 要求されている。さらにこれに加えて最近では、CRT 30 から発生する低周波電磁波の人体に対する悪影響が懸念 され、このような電磁波が外部に漏洩しないことがCR Tに対して望まれている。

【0003】電磁波は、偏向コイルやフライバックトラ ンスから発生し、TVの大型化に伴って益々大きな電磁 波が周囲に漏洩する傾向にある。磁界の漏洩は偏向コイ ルの形状を変える等の工夫で大部分を防止することがで きる。一方電界の漏洩に対しては、CTRの前面ガラス 表面に導電性の透明導電膜を形成することにより防止で きる。このような防止方法は、近年帯電防止のために取 40 られてきた対策と原理的には同一であるが、この場合の 導電性被膜の導電性は、帯電防止用に形成されていた導 電性被膜の導電性よりもはるかに高い値が求められてお り、帯電防止には表面抵抗で10°Ω/口程度で十分と されているが、漏洩電界を防ぐためには少なくとも10 ⁶Ω/□以下、好ましくは10³Ω/□台の低抵抗の透 明膜を形成する必要がある。

[0004]

【発明が解決しようとする課題】上記の要求に対応する ため、従来よりいくつかの提案がなされているが、その 50 することにより電界シールドに適切な膜を、塗布法を用

中でも低コストで低い表面抵抗を実現できるものとし て、極微細なインジウム錫酸化物(ITO)粉末をアル キルシリケートの結合剤と共に塗布液中に分散したイン・ クを、CRT前面ガラスに塗布・乾燥後、200℃以下 の温度で焼成する方法がある。このインク塗布法によれ ば、膜厚に応じて103~105Ω/□の表面抵抗値が 得られる上に、真空蒸着やスパッタ法などの他の透明導 電膜の形成方法に比べてはるかに簡便であって製造コス トも低く、CRT完成球に処置可能な電界シールドへの 対応として極めて有利な方法である。

【0005】一方表示画面を見易くするために、フェイ スパネル表面に防眩処理を施して画面の反射を抑えるこ とが行われている。防眩処理は微細な凹凸を付けて表面 の拡散反射を増加する方法によってもなされるが、この 方法は解像度が低下して画質が落ちるためにあまり好ま しいものとはいえず、むしろ反射光が入射光に対して破 壊的干渉を生ずるように被膜の屈折率と膜厚を制御する 干渉法によって行うことが好ましい。このような干渉法 により低反射効果を生むには、一般的に高屈折率の膜の 上に低屈折率の膜が被膜した状態が好ましく、屈折率の 差が大きいほどその効果は大きい。例えば、ITO分散 液とシリケート液を順次塗布して焼成した従来の2層膜 の場合、ITO分散層とオーバーコート層の可視光中心 (波長550nm) 屈折率はそれぞれほぼ1.55~ 1.65程度、および1.4程度となる。したがって、 屈折率約1.5のCRTパネルガラス上では膜厚がそれ ぞれ89~83nmおよび98nmにおいて垂直入射光 の一次無反射条件を満足する。この場合には波長550 nm付近で極小値を持つ反射率プロファイルが得られ、 低反射効果が生まれるが、 ITO分散層の膜厚が83~ 89 nmのような薄い膜厚では電界シールド効果に十分 な導電性を持たせることは困難であった。

【0006】これに対して導電性を向上するため膜を厚 くすることが考えられるが、膜が厚ければ無反射条件を 満足することが困難となり、低反射効果を犠牲にしなけ ればならなかった。さらに上記に示した反射プロファイ ルは可視波長領域において比較的切り立った下に凸の曲 線となるため、反射率と視感度の積を波長380nmか ら780 nmに亘って積分した値で定義される「視感反 射率」としては必ずしも十分に低い値をもたらすもので はなく、したがって可視波長領域全体に亘って低い反射 率を持つようなプロファイルとなる膜が求められてい た。このようにインク塗布法は、多くの利点を有してい るが、スパッタ法や蒸着法等のITOが結晶粒界のみで 連続的に連結した膜を形成できるものに比べて、膜導電 性および低反射効果が不十分であるという問題があっ た。

【0007】本発明の目的は、CRT画面の表示反射を 抑制する機能を持ち、かつ従来よりも優れた導電性を有

20

いて簡便かつ低コストに製造できる透明導電膜およびそ の製造方法を提供することにある。

[8000]

【課題を解決しようとする手段】上記課題を達成するた めに本発明の第1の実施態様は、ガラス基板上に形成さ れた透明導電膜であって、膜厚が 0. 31μm以上 0. 62μm以下であり、膜主要部が粒径80nm以下のI T〇微粒子がシリケートマトリックス中に分散した層で あり、膜主要部においてITO層とシリケート層との間 に明確な境界がないよう形成された透明導電膜を特徴と 10 する。また本発明の第2の実施態様は、ガラス基板上に 塗布法により、粒径80nm以下のIT〇微粒子を分散 するITO分散液、アルキルシリケート部分加水分解重 合物を含有する処理液の順に塗布して焼成することによ り透明導電膜を形成する方法であって、該処理液のシリ ケート濃度が、濃度を順に大きくして成膜した時に製造 された膜のヘイズ値が初めて最小値に達する近傍の大き さの濃度である透明導電膜を製造する方法を特徴とする ものである。

[0009]

【発明の実施の形態】本発明において、ITO微粒子は 透明性と導電性を付与する材料として用いられるもので あり、ITOの一部を、アンチモン添加酸化錫(AT O)、アルミニウム添加酸化亜鉛(AZO)、フッ素添 加酸化インジウム、フッ素添加酸化錫、フッ素添加酸化 亜鉛、フッ素添加ITO、フッ素添加ATO等で代替し てもよい。これらの代替物質は全て透明で導電性を有す る物質であり、またフッ素添加はキャリア濃度を上げて 導電性改良を意図してなされるものである。 ITO微粒 子の粒径は大きすぎると散乱の原因となってヘイズが大 30 きくなるので、通常は80nm以下であることが必要で ある。この値を越えるとヘイズの大幅な上昇と共に反射 率特性が悪化する。なお前記粒径は一般的には小さい方 が好ましいが、粒度分布の広がりが5 nmを下回るよう なIT〇超微粉は現在の工業的レベルでは作製が非常に 困難であるため、本発明における膜を構成するITO微 粒子の粒径下限としては、TEMで観察される最小粒径 として2nmと規定した。

【0010】また本発明で使用されるITO微粒子を分散する処理液(以下ITO分散液という)であるシリケ 40 ートとはポリシロキサン結合によって構成される化合物をいい、シラノール(Si-OH)の脱水縮重合によって得られる。シロキサン結合のSiの一部は、屈折率調整や強度補強のためにTi、Zr、Al等で置換することもでき、またコントラスト向上のために有機色素や顔料が添加されたものであってもかまわない。

[0011]次にITO微粒子が分散する処理液上に塗布するアルキルシリケート部分加水分解重合物を含有する処理液(以下シリケート処理液という)とは、オルトアルキルシリケート或いはこれを加水分解してある程度 50

脱水縮重合を進行させたものを主成分とする溶液である。アルキルシリケート部分加水分解重合物としては、オルトアルキルシリケートに水や酸触媒を加えて加水分解し脱水縮重合を進行させた形のもの、または既に4~5 量体まで加水分解縮重合を進ませた市販のアルキルシリケート溶液を、さらに加水分解と脱水縮重合を進行させた形のもの等を用いることができる。縮重合が進行すると溶液粘度が上昇して最終的には固化するので、溶液の縮重合度合いは溶液が基板に塗布できる粘度以下のレベの縮重合度合いは溶液が基板に塗布できる粘度以下のレベルであれば特に指定されない。アルキルシリケート部分加水分解重合物は、膜塗布後の焼成加熱時に縮重合反応がほぼ完結して、硬いシリケートになる。

【0012】前記2つの処理液を順に塗布した後に焼成して膜を完成させるが、その焼成温度は、CRT完成球の限界加熱温度を考慮して通常200℃以下で行う。それ以上でもCRT完成球の状態を十分考慮すればもちろん焼成可能であり、加熱温度が高いほどオーバーコートに用いるシリケートの重合収縮がより完全なものへ近付くために低抵抗性も反射特性も向上するのでむしろ好ましいといえるが、約300℃を超えるとITOの再酸化等のため抵抗値は再び上昇傾向になるので好ましくない

【0013】本発明による膜においては、膜厚が 0.31μ m以上 0.62μ m以下と限定したが、これはITO分散層の十分な導電性と低反射性の両者を考慮したものである。ITO分散層の実測屈折率1.63の場合には低反射のための光学膜厚 $3\lambda/4$ と $5\lambda/4$ に対応する膜厚はそれぞれ $0.23\sim0.29\mu$ mおよび $0.39\sim0.48\mu$ mになる。これに約 0.1μ mの薄いシリケート層が被さるために低反射効果が生ずる。

【0014】また本発明の膜では膜主要部においてITO層と上のシリケート層との境界が明確でないことを特徴としており、このことによって膜の反射率プロファルは従来の切り立ったものから広範に開いたものとなるが、同時に上記の膜厚条件は、ITO層とシリケート層との境界面の粗雑さに応じて、実際の測定値とは異なってくる。実際に成膜された膜の膜厚を分光反射率計とエリプソメータにより光学的に読み取ると、0.31~0.62 μ mの範囲にある場合に低反射効果が得られたので、膜厚を上記の範囲に限定した。膜厚が0.31より薄い場合には視感反射率が上昇するのみならず、10 $^3\Omega$ / \Box 台の表面抵抗を得ることができず、逆に0.62を超える場合にはヘイズ値も無視できない大きさになるばかりか、視感反射率が高すぎて低反射膜としての機能を果たさなくなる。

【0015】膜主要部はITOが密に充填した間をシリケートが埋めた構造となっているためシリケート層よりも屈折率が高く、結果として低い視感反射率が得られる。このような膜構造を得るには、ITO分散液とシリ

ケート処理液の塗布条件における工夫が必要である。す なわち、まずJTO分散液の濃度や塗布条件を変えて上 記の膜厚になるように制御する必要がある。さらに、シ リケート処理液のシリケート固形分濃度が形成されたI TO膜の微粒子間を滲み込んで、丁度ITO層の膜厚を 埋めてやや余る程度であることが要求される。シリケー ト処理液中のシロキサン粒子の大きさは2~4 n m以下 の程度であるから、粒径80nm以下のITO微粒子の 堆積した間隙をぬって容易に滲み込むが、シリケート処 理液の固形分濃度が低いと滲み込みが不十分で低反射効 10 果は全く現われなくなり、逆に固形分濃度が高すぎると ITO層を滲み込み埋めつくした後でもさらに上に厚い シリケート層が形成され、膜の表面抵抗が急激に増加 し、また反射率も増加する。シリケート処理液の固形分 濃度は本発明の透明導電膜の形成に微妙な影響を及ぼす が、この最適点はヘイズ値に着目すれば容易に決定で き、この点が本発明の1つの要旨となる。すなわち、成 膜された膜のヘイズ値は、シリケート処理液の固形分濃 度の上昇と共に低下し、シリケートがITO層を埋めつ くした時に最小値を取り、以後シリケート膜厚が増加し 20 ても殆ど不変である。そこで、試作膜においてシリケー ト処理液の固形分を徐々に増加させてヘイズ値を測定 し、これが最小値に落ち着いた時の固形分濃度またはそ の近傍値を用いることにより、上記の膜を容易に製造す ることが可能となる。このシリケート処理液の固形分濃 度は塗布方法や塗布条件に応じて変化するので、数値的 に一元化は難しいが、逆にどのような塗布条件であって も予め測定ヘイズ値を用いた上記の方法により明確に決 定することができる。

[0016]

【実施例】以下に、本発明の実施例を示す。

【0017】(実施例1)住友金属鉱山(株)製の平均粒径20nmのITOを固形分で6wt%含み、希釈溶液をエタノールとするITO微粒子分散液10gを、160rpmで回転する200×150×3mmの板ガラス基板上にピーカから滴下した。そのまま8分間回転させたまま乾燥し回転を止めた後、この板ガラスを防爆型乾燥機中で160℃で30分間焼成して単層膜とした。次に2層膜としては、ITO微粒子分散液を滴下して8分間回転させたまま乾燥した後、続けてシリケート処理40液10gを滴下して、1分後に回転を止め、この板ガラ*

$$Ref_{1m}(\%) =$$

*スを防爆型乾燥機中で、160℃で30分焼成して作製した。なおシリケート処理液は、多摩化学工業製工チルシリケート40を10部、エタノール48部、5%塩酸水溶液26部、蒸留水16部を用いてSiO₂固形分濃度が4%のものを調製し、最終的にSiO₂固形分が1.30、1.50、1.75、1.90、2.00、2.20、2.50、3.00、4.00%になるようにエタノールで希釈して、9種類の異なる濃度のものを作製した。

【0018】(実施例2) ITO微粒子分散液のITO を固形分で7wt%含むとした以外は、実施例1と全く 同様にして10種類の膜を作製した。

【0019】(比較例1) ITO微粒子分散液のITO を固形分で2wt%含むとした以外は、実施例1と全く同様にして10種類の膜を作製した。

【0020】(比較例2) ITO微粒子として平均粒径 100nmの粗粒ITOを用いた以外は、実施例1と全 く同様にして10種類の膜を作製した。

【0021】実施例1と2および比較例1と2で得られ た膜について、表面抵抗値、ヘイズ、膜厚、反射率の測 定を行い、その結果を表1および図1~5に示した。な お比較例1と2の結果については視感反射率が最小にな ったものだけを示した。表面抵抗は三菱油化(株)製表 面抵抗計ロレスタMCP-T200を用い、ヘイズは村 上色材技術研究所製ヘイズメータHR-200を用いて 測定した。反射率は島津製作所製分光光度計を用いて測 定した。膜厚は、まずITO層のみを成膜した時の屈折 率nを溝尻光学工業所製エリプソメータによって測定 し、反射率プロファイルの極大位置から、nd=(奇 30 数) 入/4の式を用いて膜厚概算値を求めた。シリケー ト被膜をつけたものについては、反射率プロファイルの 3 A/4位置に極小値が来るように上記のnを用いてシ ミュレーション計算して得られるdを全膜厚とした。 【0022】視感反射率(luminous refl ectance) Refim, については1924CI E、1933CIPM (国際度量衡委員会) 採用データ (光学技術ハンドブック、pp387-421、朝倉書 店) に準拠して、下記数式1より算出した。

[0023]

【数1】

 $\int_{0.07}^{0.07} \int_{0.07}^{0.07} \int_{0.07}^{0.$

【0024】ここで、 $S(\lambda):CIE$ が定める標準照明の分光分布。ここではB光源を使用。

ρ (λ): 実測分光反射率。

V (λ):1924CIEに準拠した標準比視感度 (s 50

pectral luminous efficien cy).

[0025]

【表1】

_							
	固形分	漫度%	表面抵抗	ヘイズ	膜厚	極大極小反射率(%/nm)	視感反射率
L	110	シリケート	×10 ³ Ω/□	· %	μm	51/4位置 31/4位置	%
	6. 0	ナシ	211. 20	0. 9	0. 25	4. 9/385. 9 4. 9/532. 9	
実	6. 0	1. 30	11. 38	0. 8	-	2. 3/393. 7 3. 6/555. 1	4. 204
		1. 50	6. 78	0. 6	_	0. 9/405. 7 2. 4/551. 1	2. 918
旋		L 75	4. 88	0. 5	0. 37	0. 8/454. 8 1. 1/604. 9	1.508
1.		1. 90	4. 14	0. ∢	0. 39	1. 7/498. 5 1. 0/651. 5	1. 933
9		2. 00	4. 87	0. 4	_	1. 1/463. 9 1. 0/625. 9	2. 035
		2. 20	54, 30	8. 5	_	3. 6/524. 7 1. 5/705. 1	3. 938
1		2. 50	9460.0	0. 5	_	4. 4/526. 9 2. 2/750. 0	5. 001
		3. 00	30600.0	0.4		2. 3/540. 3 >900	3. 336
	1	4. 00	162000. D	0.4	_	1. 1/691. 9 />900	4. 421
	7. 0	ナシ	144. 10	1. 2	9. 29	5. 3/440. 9 4. 8/626. 1	_
筷	7. 0	1. 30	9, 98	1, 2	_	4. 0/449. 1 4. 6/625. 3	5, 495
		1. 50	7. 12	0.8	-	2, 8/447, 7 3, 9/616, 1	4. 632
趀		1. 75	4. 12	0.7	-	0. 8/476. 7 2. 3/638. 7	2. 495
		1. 90	4. 02	0.5	9. 40	9. 8/521. 5 1. 5/668. 5	1. 430
15	4	2. 00	3. 89	0.5	0.41	0. 7/511. 9 1. 7/682. 3	1. 571
		2. 20	4. 03	0.5	_	1. 8/\$65. 1 1. 8/713. 3	2. 591
2	:	2. 50	4730. 0	0. 5	_	3. 1/591. 5 1. 1/185. 1	4. 380
		3. 00	19800.0	0. 5	-	3. 9/597. 1 />900	4. 630
		4. 00	385000.0	0.4		1. 6/695. 5 />900	3. 713
H	2. 0	ナシ	3450. 0	0. 8	0. 01	4.3/449.9 (1/4 位置)	-
2	2. 0	1. 30	81. 6	0. 5	0.17	0.8/576.1 (1/4 位置)	1. 251
3	4						
1		l					
E	δ. 0	ナシ	896. 10	3. 5	0. 25	3. 2/357, 3 3. 1/524, 5	_
Þ		2. 20	34. 90	1. 8	0. 42	2. 3/492. 5 1. 8/684. 1	2. 705
3	1						
2	2		<u> </u>				

【0026】表1および図3からわかるように、表面抵抗はITO分散液の固形分が6%の時はシリケート処理液の固形分が7%の時はシリケート処理液の固形分が7%の時はシリケート処理液の固形分が1.3~2.2の範囲で、それぞれ10 $^3\Omega$ / \Box 台の値を示しており、ITO分散液の固形分が2wt%と少ない場合の比較例1の膜が膜厚0.17 μ mで8.2×10 $^4\Omega$ / \Box 台と10 $^3\Omega$ / \Box 台の差は、電界シールド効果としては大きな差となって現われてくる。

【0027】また視感反射率としては、表1および図5からわかるように、表面抵抗値の低いシリケート濃度の付近で極小値を取っており、例えばITO分散液の固形分6%ではシリケート処理液の固形分濃度1.75%の時には1.508、ITO分散液の固形分7%ではシリ 40ケート処理液の固形分濃度1.90の時には1.430の値となり、比較例1の膜の視感反射率1.251にはやや及ばないが、それ以外のシリケート処理液の固形分濃度を用いた場合の視感反射率 $2\sim6$ よりははるかに低い値となり、十分に低反射効果を持つ値となっている。

【0028】さらに、このように表面抵抗と視感反射率 分:7wt%)を示す図での極小値をとるようなシリケート処理液の固形分濃度 【図3】シリケートインがは、図4より膜のヘイズ値が最小値に落ち着く近傍であ 化を示すグラフ図である。ることが分かる。ヘイズの変化は単調であって、1TO 【図4】シリケートインを層へのシリケートの滲み込み量の増加と共に低下し、1*50 化を示すグラフ図である。

* TO層に滲み込みつくして新たにシリケート膜を形成する厚さになると実質的に変化しなくなる。従って最適なシリケート処理液の固形分濃度は、ヘイズ値が下がりきった近傍の濃度を用いることによって決定でき、その値30 は例えばITO分散液の固形分6%の場合には1.75%、ITO分散液の固形分7%の場合には1.90%である。

【0029】比較例2のように用いるITO微粒子の粒径が100nmと大きい場合には、表面抵抗も3.49× 10^4 Ω /口と高く、またヘイズも視感反射率も上昇して特性の悪い膜となる。

[0030]

【発明の効果】以上述べた通り、本発明にかかる透明導電膜をガラス基板上に形成することにより、低い表面抵抗をもってかつ表面反射の低い膜を、低コスト、低温度焼成で得ることが可能である。

【図面の簡単な説明】

【図1】試作膜の実測反射率プロファイル (ITO固形分:6wt%)を示す図である。

【図2】試作膜の実測反射率プロファイル (ITO固形分: 7wt%)を示す図である。

【図3】シリケートインク濃度による二層膜面抵抗の変化を示すグラフ図である。

【図4】シリケートインク濃度による二層膜ヘイズの変化を示すグラフ図である。

【図5】シリケートインク濃度による二層膜視感反射率**の変化を示すグラフ図である。

【図1】

【図2】

10

[図3]

【図4】

[図5]

フロントページの続き

(51) Int. Cl. ⁶	識別記号	庁内整理番号	FI	技術表示箇所
H O 1 J 9/24			H 0 1 J 9/24	Α
29/88			29/88	
H 0 5 K 9/00			H05K 9/00	S ·