Regulación Económica

Regulación: práctica

Leandro Zipitría

Departamento de Economía Facultad de Ciencias Sociales - UdelaR

Maestría en Economía Internacional

Presentación

Flexibilidad de precio

Costos y beneficios

Formas de flexibilidad de precio

Flexibilidad de precio y entrada

Dinámica

Ajuste de precio sin transferencia

Ajuste de precio con transferencias

Frecuencia de la revisión regulatoria

Credibilidad de las políticas

Modelo básico

Compromisos creíbles

Renegociación

- 1. Presentar las principales prácticas regulatorias
- 2. Analizar los contextos donde una u otra son preferibles
- 3. Estudiar la dinámica regulatoria:
 - 3.1 credibilidad de las políticas
 - 3.2 captura regulatoria
- 4. Analizar los efectos de la regulación sobre la calidad

Bibliografía

- Armstrong y Sappington (2007): Recent developments in the Theory of Regulation
- Presentación: capítulo 3 hasta 3.1
- Flexibilidad de precio: capítulo 3.1
- Dinámica regulatoria: capítulo 3.2
- Credibilidad de las políticas: capítulos 2.3.1, 2.5 y 3.4
- Captura regulatoria: capítulos 2.4.2 y 3.4.2
- Calidad: capítulo 9.2.1 de Belleflamme y Peltz (Industrial Organization) y 3.5.1

Presentación

Flexibilidad de precio

Costos y beneficios

procio

Flexibilidad de precio y entrada

Dinámica

Ajuste de precio si

transferencias

Frecuencia de la revisión
regulatoria

Credibilidad de las políticas

Compromisos creíbles

Kenegociación

Lecciones

Captura regulatori

Introducción

- Limitaciones de los instrumentos regulatorios:
 - asimetrías de información relevantes pueden ser difíciles de caracterizar
 - la forma óptima de la política regulatoria es desconocida cuando las asimetrías de información son grandes y multi dimensionales
 - 3. especificar todas las restricciones relevantes del regulador y la empresa pueden ser difíciles de formular
 - 4. los instrumentos relevante -ej. transferencias- no siempre están disponibles en la práctica
 - los objetivos del regulador, a veces, pueden ser difíciles de especificar

• Estas dificultades llevan a reglas simples que tengan propiedades deseables -aunque no siempre óptimas

- Principales reglas: regulación de la tasa de retorno, precio techo (price caps)
- Tasa de retorno: tasa de retorno fija; ajusta precios a cambios en costos
- Precio techo: los precios siguen una tasa prefijada por un período dado; el movimiento está atado a la inflación

- Precio = costos eficientes de producción + tasa de retorno (de mercado) sobre k
- Regulador: analiza costos y determina ingresos para cubrirlos
- Ingresos = K.r + GO + D + T; donde K es el capital y activos requeridos; r tasa de retorno; GO gastos operativos de corto plazo; D depreciación del capital y T impuestos
- Beneficios: mantiene retorno sobre la inversión (seguridad)
- Costos: ineficiencia
 - en uso de los recursos (GO)
 - mix K/L (efecto Averch Johnson)

economía

Ajusta los precios de los servicios en base a la inflación de la

- Incentiva la ganancia de eficiencia en relación a la empresa "media" de la economía
- También se la conoce como "IPC-X", donde X es el % de eficiencia respecto a la economía
- X es la eficiencia competitiva buscada

• Dimensiones de evaluación:

- 1. grado de flexibilidad de precio de la empresa regulada
- 2. forma en la que la política regulatoria se implementa y revisa en el tiempo
- 3. vínculo entre precios regulados y costos
- 4. discreción de los reguladores en la formación de las políticas

Comparación

	Precio techo	Tasa de retorno
Flexibilidad de la empresa sobre los precios	Si	No
Demora regulatoria	Larga	Corta
Sensibilidad de precios a costos	Bajo	Alta
Discreción regulatoria	Sustancial	Limitada
Incentivos a reducción de costos	Fuerte	Limitada
Incentivos a la realización de inversión hundidas	Limitada	Fuerte

Explicación: precio techo

- 1. Sólo se controla el precio promedio (la empresa determina la canasta de precios individuales)
- 2. La tasa de crecimiento está fija y no está atada a los costos
- 3. Los precios no están vinculados a los costos corrientes
- 4. El regulador tiene discrecionalidad sobre la política futura
- ⇒ empresa tiene fuertes incentivos a ser costo eficiente

- 1. El regulador fija precios individuales
- Los precios ajustan para garantizar los retornos sobre la inversión
- 3. Los precios ajustan para reflejar cambios en los costos
- El regulador garantiza obtener el retorno sobre la inversión hundida
- ⇒ menores incentivos a ser costo eficiente, pero permite la inversión en infraestructura

Precio techo vs. Tasa de retorno

- La elección de cada uno depende de la importancia relativa de las inversiones vs. los costos operativos
- ⇒ Si se busca inducir costo eficiencia sobre una infraestructura existente ⇒ Precio techo
- \Rightarrow Si se busca inducir a la inversión \Rightarrow Tasa de retorno

Presentación

Flexibilidad de precio

Costos y beneficios

Formas de flexibilidad d

precio

Flexibilidad de precio y

entrada

Dinámica

Ajuste de precio sir

transferencias
Frecuencia de la revisión
regulatoria
redibilidad de las políticas
Modelo básico
Compromisos creíbles

Captura regulator

15 / 114

- Flexibilidad de precio deseable cuando la empresa está mejor informada que el regulador respecto a sus costos (¿demanda?)
- No es deseable cuando:
 - puede usarse contra empresas rivales
 - existen objetivos distributivos o políticos (ej. servicio universal)

Presentación

Flexibilidad de precio

Costos y beneficios

recio Iexibilidad de precio y

Dinámica

Ajuste de precio sin

Ajuste de precio con transferencias Frecuencia de la revisión regulatoria

Credibilidad de las políticas

Compromisos creíbles

Largo plazo: expreniación

Lecciones

Captura regulatori

- Empresa conoce su estructura de costos; empresa y regulador conocen demanda
- Vector de precios para n productos $\mathbf{p} = (p_1,...,p_n)$
- $EC(\mathbf{p}) = v(\mathbf{p})$ y beneficios $\pi(\mathbf{p})$; el regulador no conoce $\pi(.)$, dado que no conoce costos
- Política de flexibilidad de precios a la empresa siempre es beneficiosa para el regulador

- $\mathbf{p}^0 = (p_1^0, ..., p_n^0)$ precio fijado por regulador $\Rightarrow W(\mathbf{p}^0) = v(\mathbf{p}^0) + \alpha \pi(\mathbf{p}^0)$
- Alternativa: empresa fija p tal que consumidores obtienen al menos igual excedente

$$\mathbf{p} \in \mathcal{P} = \left\{ \mathbf{p} | v\left(\mathbf{p}\right) \ge v\left(\mathbf{p}^{0}\right) \right\}$$

 Regulador conoce v() ⇒ cuando la empresa elije el vector de precio p, el regulador se asegura que los consumidores no están peor que si el lo fijara

Asimetría de demanda

- Poco clara ventajas de la flexibilidad de precio
- Sea $\mathbf{c} = \{c_1, ..., c_n\}$ costos marginales de los n productos, $\nexists F$
- \Rightarrow independientemente de la demanda, el resultado de información perfecta $\mathbf{p}=\mathbf{c}$ se obtiene si el regulador fija precio
 - Si la empresa eligiera $\mathbf{p} \Rightarrow$ fijaría $\mathbf{p} > \mathbf{c}$ (no tengo restricción como antes)

Asimetría de demanda (cont.)

- Problema entre incentivos privados y bienestar
- Incentivo privado: si ↑ demanda ⇒ empresa ↑ precios
- Bienestar social: ↑ precios si demanda inelástica (bienestar social)
- \Rightarrow si \uparrow demanda y elasticidad cae \Rightarrow incentivo privado y bienestar social alineados, sino no
 - Si hay alineación de incentivos ⇒ se puede dar flexibilidad a la empresa para fijar precio

Presentación

Flexibilidad de precio

Costos y beneficios

Formas de flexibilidad de precio

Flexibilidad de precio y

Dinámica

Ajuste de precio sin

transferencias
Frecuencia de la revisión
regulatoria
edibilidad de las políticas
Modelo básico
Compromisos creíbles

Captura regulatoria

- El tipo de flexibilidad de precio elegida determina el resultado
- Dos tipos de regulación:
 - 1. ingreso medio (average revenue regulation)
 - canasta de tarifas

• El $EC = V(\mathbf{p})$ es una función convexa

• Una variable: $EC = \int\limits_{p}^{\overline{p}} Q(p) \, dp \Rightarrow rac{\partial EC}{\partial p} = -Q(p) < 0$ y

 $\frac{\partial^{2} \textit{EC}}{\partial p^{2}} = -Q^{'}(p) > 0 \Rightarrow \text{es convexa por derivada segunda} > 0$

- Si la función es convexa ⇒ todas las tangentes están por debajo de la función
 - Def. recta tangente: f(x) = f'(a)(x-a) + f(a), (tangente es la derivada en el punto) $\Rightarrow f'(a) = \frac{f(x) f(a)}{x-a}$
 - $\Rightarrow f(x) \geq f'(a)(x-a) + f(a)$
- Multivariado $\Rightarrow v\left(\mathbf{p}^{2}\right) \geq v\left(\mathbf{p}^{1}\right) \sum\limits_{i=1}^{n}\left(p_{i}^{2} p_{i}^{1}\right)Q_{i}\left(\mathbf{p}^{1}\right)$

- Sea V = m + u(q); m cantidad de dinero (o el gasto en los demás bienes, o bien numerario), q mercado estudiado
- $L = m + u(q) + \lambda(I pq m)$
- CPO: $\frac{\partial L}{\partial q} = \frac{\partial u(q)}{\partial q} \lambda p = 0$; $\frac{\partial L}{\partial m} = 1 \lambda = 0 \Rightarrow \lambda = 1$
- \Rightarrow p=lpha-eta q, ó q=a-bp, con $a=rac{lpha}{eta}$ y $b=rac{1}{eta}$

Otra forma de ver el FC

- Sea Q(p) demanda marshalliana de una función cuasi lineal (no depende de v)
- Sea V(p, y) función de utilidad indirecta (recordar $V({\bf p}, v) = U(Q^*({\bf p}))$
- \Rightarrow si $V(\mathbf{p}, y)$ cuasi lineal $\Rightarrow V(\mathbf{p}, y) = v(\mathbf{p}) + y$
 - $\Rightarrow EC(\mathbf{p}) = U(\mathbf{X}(\mathbf{p})) = V(\mathbf{p}, y) = v(\mathbf{p}) + y$
 - $\Rightarrow \frac{\partial V(\mathbf{p}, y)}{\partial \mathbf{p}} = Dv(\mathbf{p}) = -Q(\mathbf{p})$ por identidad de Roy $\left(\frac{\partial V(\mathbf{p},y)}{\partial y}=1\right)$

Regulación ingreso medio

• Limita ingreso promedio que recibe la empresa a un nivel \overline{p}

$$\mathbf{p} \in \mathcal{P}^{AR} = \left\{ \mathbf{p} \middle| \frac{\sum_{i=1}^{n} p_{i} Q_{i}(\mathbf{p})}{\sum_{i=1}^{n} Q_{i}(\mathbf{p})} \leq \overline{p} \right\}$$

- es decir, regulador fija precio \overline{p} para cada producto
- $\Rightarrow \sum_{i=1}^{n} p_{i} Q_{i}(\mathbf{p}) \leq \overline{p} \sum_{i=1}^{n} Q_{i}(\mathbf{p}) \Rightarrow \sum_{i=1}^{n} (p_{i} \overline{p}) Q_{i}(\mathbf{p}) \leq 0$
 - Recordando que $v(\mathbf{p}^2) \ge v(\mathbf{p}^1) \sum_{i=1}^n (p_i^2 p_i^1) Q_i(\mathbf{p}^1) \Rightarrow v(\overline{\mathbf{p}}) \ge v(\mathbf{p}) \sum_{i=1}^n (p_i \overline{p}) Q_i(\mathbf{p})$
- $\Rightarrow v(\overline{\mathbf{p}}) > v(\mathbf{p}) \text{ si empresa elige } p_i / \sum_{i=1}^n (p_i \overline{p}) Q_i(\mathbf{p}) = 0$
- ⇒ los consumidores están **peor** si la empresa fija el precio

Regulación ingreso medio (cont.)

- Ejemplo: un bien y tarifa en dos partes: $p + \frac{A}{Q(p)} \le \overline{p}$
- Si empresa $\downarrow p \Rightarrow Q(p) \uparrow \Rightarrow \uparrow A$
- La empresa reduce p y gana a través de $A \Rightarrow \downarrow EC$
- El bienestar total puede aumentar o disminuir con esta política
- Reducción en el bienestar se da porque la empresa puede elegir p < c en el óptimo

Regulación canasta de tarifas

• La empresa puede elegir precios menores al precio de referencia \mathbf{p}^0

$$\mathbf{p} \in \mathcal{P}^{TB} = \left\{ \mathbf{p} \middle| \sum_{i=1}^{n} p_{i} Q_{i} \left(\mathbf{p}^{0} \right) \leq \sum_{i=1}^{n} p_{i}^{0} Q_{i} \left(\mathbf{p}^{0} \right) \right\}$$

- Cantidades -pesos relativos- son exógenos a la empresa
- operando $\sum_{i=1}^{n} (p_i p_i^0) Q_i(\mathbf{p^0}) \leq 0$
- Recordando que $v\left(\mathbf{p}^{2}\right) \geq v\left(\mathbf{p}^{1}\right) \sum_{i=1}^{n}\left(p_{i}^{2} p_{i}^{1}\right)Q_{i}\left(\mathbf{p}^{1}\right)$ $\Rightarrow v\left(\mathbf{p}\right) \geq v\left(\overline{\mathbf{p}}\right) - \sum_{i=1}^{n}\left(p_{i} - p_{i}^{0}\right)Q_{i}\left(\mathbf{p}^{0}\right) \Rightarrow v\left(\mathbf{p}\right) > v\left(\mathbf{p}^{0}\right)$
- \Rightarrow los consumidores están **mejor** si la empresa fija los precios

Regulación canasta de tarifas (cont.)

 Ejemplo: un bien y tarifa en dos partes: $A + pQ(p^0) < p^0Q(p^0)$ (con igualdad)

Beneficios:

$$\pi = (p-c) Q(p) + A = (p-c) Q(p) + (p^0-p) Q(p^0)$$

•
$$\frac{\partial \pi}{\partial p} = 0 = Q(p) - Q(p^{0}) + Q'(p)(p-c)$$

• si
$$p = c \Rightarrow \frac{\partial \pi}{\partial p} > 0$$
; si $p = p^0 \Rightarrow \frac{\partial \pi}{\partial p} < 0 \Rightarrow c < p < p^0$

 Requisito: regulador tiene que conocer la demanda para calcular $v(\mathbf{p}^0)$, sujeto a $\pi(\mathbf{p}^0) \geq 0$

00 000000 0000000

0000000

otura regulatoria

Índice

Presentación

Flexibilidad de precio

Costos y beneficios

Formas de flexibilidad de

Flexibilidad de precio y entrada

Dinámica

Ajuste de precio sin

transferencias
Frecuencia de la revisión
regulatoria
edibilidad de las políticas
Modelo básico

Largo plazo: expropiació Lecciones

Captura regulatori

< **■** ► ■ 990

Flexibilidad de precio y entrada

- Instalado opera en dos mercados (1, 2): potencial entrada en 1 (con pago de F); mercado 2 cautivo
- Políticas regulatorias
 - Prohibición de discriminación de precio ⇒ instalado acomoda la entrada (si $\downarrow p_1 \Rightarrow \downarrow p_2$)
 - Precios techo diferenciados por mercado \Rightarrow el instalado $\downarrow p_1$ reacciona pero en menor grado al siguiente
 - Precio promedio techo ⇒ pone límite al precio promedio entre mercado ⇒ puede reducir el precio en el mercado con entrada (aún $p_1 < c$) y recuperar en el mercado $2 \Rightarrow$ el instalado disuade agresivamente la entrada
- ⇒ Diseño de política regulatoria incide en la respuesta del 4 D > 4 B > 4 B > 4 B > 9 Q P instalado

М	re			

Flexibilidad de precio

Costos y beneficios

precio

Flexibilidad de precio

Dinámica

Ajuste de precio si

Ajuste de precio con transferencias

regulatoria

Credibilidad de las políticas

Compromisos creíbles

Kenegociacion

Largo plazo: expropiacion

Captura regulatori

- Políticas regulatorias pueden variar en el tiempo
- La implementación inicial puede no generar un importante EC
- La regulación puede mejorar la política inicial con el tiempo
- Análisis
- 1. Políticas de precio **sin** transferencias
- 2. Políticas de precio **con** transferencias
- 3. Efecto de los cambios tecnológicos -exógenos- sobre los precios

Dinámica

Ajuste de precio sin transferencia

4 D > 4 A > 4 B > 4 B >

Sin transferencias

- Si las transferencias del gobierno no son posibles (F)⇒ precios de Ramsey
- Versión dinámica de regulación de canasta de tarifas
- Sea $\mathbf{p}^t = (p_1^t, ..., p_n^t) \vee \mathbf{q}^t = (q_1^t, ..., q_n^t), \text{ con } q_i^t = Q_i(\mathbf{p}^t)$ precios y cantidades en el período t de los i = 1,...n productos
- La nueva regla de precio es

$$\mathbf{p} \in \mathcal{P}^t = \left\{ \mathbf{p}^t \middle| \sum_{i=1}^n p_i^t q_i^{t-1} \leq \sum_{i=1}^n p_i^{t-1} q_i^{t-1}
ight\}$$

⇒ regulador no necesita conocer la demanda, sino las ventas del período anterior

Sin transferencias (cont.)

• Alternativa: definiendo $R_i^{t-1} = p_i^{t-1} q_i^{t-1}$, el ingreso en t-1del producto i

$$\mathbf{p} \in \mathcal{P}^t = \left\{ \mathbf{p}^t \middle| \sum_{i=1}^n \frac{R_i^{t-1}}{R^{t-1}} \left[\frac{p_i^t - p_i^{t-1}}{p_i^{t-1}} \right] \le 0 \right\}$$

- ⇒ el incremento de precios promedio -usando los pesos relativostiene que ser no positivo en cada período
 - Esta política genera mayor EC (visto anteriormente)
 - Si empresa cambia $p_i^t \Rightarrow$ es porque maximiza π
 - Proceso dinámico converge a un vector de precios de estado estacionario de Ramsey: max π sujeto a $EC \ge EC$

Sin transferencias (cont.)

- El regulador puede fijar \mathbf{p}^0 o que lo elija la empresa
- Problema: si la demanda o los costos cambian en el tiempo ⇒ la empresa puede distorsionar la política de precios
- Ejemplo: si $\uparrow q_i \Rightarrow$ empresa $\uparrow p_i$, pero como referencia es q_i^{t-1} hay un rezago que la empresa usa a su favor
- Resultado: regulación no penaliza a la empresa
- Si bien el $\triangle EC^t > 0$, el nivel de EC puede ser pequeño

Alternativa: si demanda crece -exógena- o costos caen
 -exógenos ⇒ puedo imponer que precios caigan en el tiempo

$$\mathbf{p} \in \mathcal{P}^t = \left\{ \mathbf{p}^t \middle| \sum_{i=1}^n \frac{R_i^{t-1}}{R^{t-1}} \left[\frac{p_i^t - p_i^{t-1}}{p_i^{t-1}} \right] \le -X \right\}$$

- Problema: definir X
- Problema: en un entorno estacionario X > 0 implica que la empresa hace pérdidas !

Atar precios a gastos

• Alternativa: si los gastos totales son observables (E^{t-1}) , atar precios a gastos

$$\mathbf{p} \in \mathcal{P}^t = \left\{ \mathbf{p}^t \middle| \sum_{i=1}^n p_i^t q_i^{t-1} \le E^{t-1} \right\}$$

• Sea $\prod^t = \sum_{i=1}^n p_i^t q_i^t - E^t$, \Rightarrow

$$\mathbf{p} \in \mathcal{P}^t = \left\{ \mathbf{p}^t \middle| \sum_{i=1}^n p_i^t q_i^{t-1} \leq p_i^{t-1} q_i^{t-1} - \prod^{t-1}
ight\}$$

• Cualquier beneficio de la empresa en t=1 se transfiere a los consumidores en t

- Política de gastos rezagados:
 - requiere conocer ingresos y costos realizados por la empresa
 - no requiere conocer demanda ni función de costos
 - requiere que la demanda y los costos sean estables en el tiempo: si cambian puede haber problemas financieros para la empresa
 - los precios convergen a los de Ramsey

- Otro problema: la empresa puede aumentar sus costos de producción en forma estratégica
- Al ser una política que reconoce costos, induce comportamiento estratégico de la empresa
- En particular, la empresa puede inflar sus costos

Índice

Presentación

Flexibilidad de precie

Costos y beneficios

precio

Flexibilidad de precio y

Dinámica

Ajuste de precio si

Ajuste de precio con transferencias

Frecuencia de la revisión regulatoria

Credibilidad de las políticas

Viodelo basico

Renegociación

Largo plazo: expropiación

LCCCIOTICS

Captura regulatoria

Transferencias

- Si son posibles las transferencias \Rightarrow la política regulatoria es fijar p = CMg y ajustar los F con transferencias
- Si regulador conoce la demanda, pero no los costos \Rightarrow puede inducir p = c con T = v(p) (Loeb y Magat)
- Empresa: renta $R = \pi + T$
- Problema: los consumidores no tienen excedente
- Alternativa: T = v(p) k, con el problema de cuál es el k óptimo

- Dinámica: mecanismo para mantener p = CMg y devolver EC
 - En cada t empresa fija p^t, obtiene beneficios ∏^t, y transferencia T^t es fija como

$$T^{t} = \left[v\left(p^{t}\right) - v\left(p^{t-1}\right)\right] - \prod^{t-1}$$

- Política de subsidio del excedente incremental (incremental surplus subsidy)
- Supuesto: gobierno **no** conoce función π pero observa $\prod^t = \pi(p^t)$
- Al fijar el precio \Rightarrow empresa determina $\pi(p^t)$, la transferencia \mathcal{T}^t y la transferencia \mathcal{T}^{t+1}

- p^t afecta $R(p^t) = \pi(p^t) + T^t$ y $T^{t+1} \Rightarrow \pi(p^t) + T^t + \delta T^{t+1}$ = $(1 - \delta)[\pi(p^t) + v(p^t)] + B$, B no depende de p^t
- $\Rightarrow \max_{p^t} (1-\delta)[\pi(p^t)+v(p^t)] \Rightarrow p^t=c$ para todo t=1,2... y a partir de t=2,3... se cumple que $\pi^t=0$
 - Esta política no distorsiona costo y garantiza renta 0 (demostrar)
 - Desventajas:
 - puede provocar problemas financieros a la empresa si sus costos suben en el tiempo
 - el pago inicial puede ser costoso en término sociales
 - el regulador tiene que conocer la demanda
 - la política protege del desperdicio, pero no del abuso

Transferencias (cont.)

- Si se observa la demanda, pero se desconoce su forma funcional, reemplazo $\left[v\left(p^{t}\right)-v\left(p^{t-1}\right)\right]$ con $q^{t-1}\left[p^{t-1}-p^{t}\right]$
- El pago $T^t = q^{t-1} [p^{t-1} p^t] \prod^{t-1}$
- Si la demanda y costos no varían en el tiempo, el resultado de la política es igual al de información completa
- Problema: la convergencia de p a CMg, y de π a 0 puede ser lenta

Índice

Presentación

Flexibilidad de precio

Costos y beneficios

Formas de flexibilidad d

Flexibilidad de precio y

Dinámica

Ajuste de precio si

transferencias

Frecuencia de la revisión

regulatoria
Credibilidad de las políticas

redibilidad de las políticas

Compromisos creíbles

Kenegociacion

Lecciones

Captura regulatori

- Frecuencia de actualización regulatoria impacta, aún si no vincula precio a costo en forma explícita
- Precio techo ⇒ revisión de X
 - periódica $(\pi = 0) \Rightarrow$ pocos incentivos a disminuir costos
 - si revisión poco frecuente ⇒ los precios pueden despegarse mucho de costos
- La clave es la capacidad de generar compromisos creíbles por parte del regulador

Elección de X

- Producción y consumo ocurren en t = 0, 1, ...
- Sean p_t , $v_t(p_t)$ y $Q_t(p_t)$, el precio, EC y cantidad consumida en t
- capacidad K_t , depreciación d, costo de capacidad β_t
- I_t es la inversión en $t \Rightarrow K_t = rac{I_t}{eta_t}$
- ley de movimiento: $K_{t+1} = (1-d) K_t + \frac{I_{t+1}}{\beta_{t+1}}$

Elección de X (cont.)

- ¿Costo del capital en t? \Rightarrow notar que si $\uparrow K_t$ en una unidad $\Rightarrow \uparrow K_{t+1} \Rightarrow$ parte del costo pasa a los períodos siguientes
- \Rightarrow si $\uparrow K_t$ en $1 \Rightarrow$ tengo que $\downarrow I_{t+1}$ de forma que K_{t+1} quede constante (aíslo C_t)
 - $K_{t+1} = (1-d)(K_t+1) + \frac{I'_{t+1}}{\beta_{t+1}} = (1-d)K_t + \frac{I_{t+1}}{\beta_{t+1}} \Rightarrow (I_{t+1} I'_{t+1}) = (1-d)\beta_{t+1}$
- \Rightarrow I_{t+1} tiene que caer en $(1-d)\beta_{t+1}$

Elección de X (cont.)

- Sea $\delta = \frac{1}{1+r}$ el factor de descuento
- \Rightarrow el costo neto en t es $C_t = \beta_t \frac{1-d}{1-r}\beta_{t+1}$; si la tasa de progreso técnico -exógena- es γ tal que $\beta_{t+1} = (1-\gamma)\beta_t$

$$\Rightarrow$$
 $C_t = \beta_t \left(1 - \frac{(1-d)(1-\gamma)}{1+r} \right)$

La elección de X (cont.)

- El costo marginal C_t cae a la tasa γ
- Si $p_t = C_t + c_t$, costo de capacidad mas costo de producción
- Si C_t y c_t caen a la tasa $\gamma \Rightarrow p_t$ debe caer a la tasa γ

$$\Rightarrow X = \gamma$$

• Problema: γ no tiene porqué ser de conocimiento del regulador ⇒ tiene que hacer un buen juicio

Índice

Presentación

Flexibilidad de preci-

Costos y beneficios

precio

Flexibilidad de precio y

Dinámica

Ajuste de precio si

transferencias
Frecuencia de la revisión
regulatoria

Credibilidad de las políticas

Modelo básico

Renegociación

Largo piazo: expropiación

Captura rogulatori

Captura regulatoria

Presentación

- Mercados servicios públicos ⇒ importantes inversiones hundidas
- Incentivos a renegociar o incumplir el contrato
- Expropiación (I): no compensar las inversiones ⇒ bajar precios en el futuro
- Expropiación (II): permitir el ingreso a la industria ⇒ más posible si hay regulación de precio techo

Índice

Presentación

Flexibilidad de precie

Costos y beneficios

precio

Flexibilidad de precio y entrada

Dinámica

Ajuste de precio sir

Ajuste de precio con transferencias Frecuencia de la revisión regulatoria

Credibilidad de las políticas

Modelo básico

Compromisos creíbles

Largo plazo: expropiación

Lecciones

Captura regulatori

56 / 114

Se analiza en el contexto de un modelo Baron y Myerson

- (Sección 2.3.1 de Armstrong y Sappington)
- Modelo básico en la sección 2.5 de Armstrong y Sappington: Interacción dinámica

- Regulador max $S + \alpha R$, $\alpha \in [0, 1]$ (1 unidad de EC = S vale > 1 unidad de renta empresa)
- $S_i = v(p_i) T_i$, con $v(p_i) = \int_p^{\overline{p}} q(q) dp$ el EC (sin considerar transferencias)
- $CMg \in \{c_L, c_H\}$, y $\triangle^C = c_H c_L > 0$, observado sólo por la empresa; F > 0 costo fijo de conocimiento común
- Regulador: CMg es una v.a.; $P(c = c_L) = \phi \in (0, 1)$
- Demanda: $Q(p_i)$, con $Q'(p_i) < 0$
- Esquema: regulador ofrece contrato (p_i, T_i) ; p_i precio unitario, T_i transferencia, para la empresa i = L, H
- Rentas = Beneficio empresa mas transferencia:

$$R = \pi + T = Q(p)(p-c) - F + T$$

Planteo

- $W = S + \alpha R = v_i(p_i) T_i + \alpha(\pi_i(p_i) + T_i)$ = $w_i(p_i) - (1 - \alpha)R_i$, con $w_i(p_i) = v_i(p) + \pi_i(p)$
- Función objetivo \Rightarrow $W = \phi \{ w_L(p_L) (1 \alpha) R_L \} + (1 \phi) \{ w_H(p_H) (1 \alpha) R_H \}$
- Restricciones de participación $\Rightarrow R_i \ge 0$ para $i = L, H(RP_i)$
- Restricción de compatibilidad de incentivos $L \Rightarrow R_L \geq R_H + \triangle^C Q(p_H)$ (RCI_H)
- Restricción de compatibilidad de incentivos $H \Rightarrow R_H \geq R_L \triangle^C Q(p_L) (RCI_L)$

RCI

• Empresa $L \Rightarrow$

$$R_{L} = Q(p_{L})(p_{L} - c_{L}) - F + T_{L} \ge Q(p_{H})(p_{H} - c_{L}) - F + T_{H}$$

$$\Rightarrow R_{L} \ge Q(p_{H})(p_{H} - c_{H} + (c_{H} - c_{L})) - F + T_{H} \Rightarrow$$
reordenando

$$R_L \geq R_H + \triangle^C Q(p_H)$$

• Empresa $H \Rightarrow$ $R_H = Q(p_H)(p_H - c_H) - F + T_H \ge Q(p_L)(p_L - c_H) - F + T_L$ $\Rightarrow R_H \ge Q(p_L)(p_L - c_L + (c_L - c_H)) - F + T_L \Rightarrow \text{reordenando}$

$$R_H \geq R_L - \triangle^C Q(p_L)$$

Restricciones

- El programa de optimización implica que:
 - la restricción de participación del tipo H se cumple con igualdad $\Rightarrow R_H = 0$
 - la restricción de compatibilidad de incentivos del tipo L se cumple con igualdad $\Rightarrow R_L = R_H + \triangle^C Q(p_H)$
- Las otras dos restricciones se cumplen con desigualdad estricta en el óptimo (no están activas) y, por tanto, no se toman en cuenta
 - la restricción de participación del tipo $L \Rightarrow R_L > 0$
 - la restricción de compatibilidad de incentivos del tipo $H \Rightarrow R_H > R_L \triangle^C Q(p_L)$

. 1000

- 1. Función objetivo $W = \phi \left\{ w_L(p_L) (1 \alpha) \triangle^C Q(p_H) \right\} + (1 \phi) \left\{ w_H(p_H) \right\}$
- 2. El óptimo de información perfecta $(R_L = R_H = 0)$ no es implementable (se viola RCI_L)
- 3. $p_L = c_L \Rightarrow$ no se distorsiona a la empresa eficiente
- 4. $p_H = c_H + \frac{\phi}{1-\phi} (1-\alpha) \triangle^C \Rightarrow$ se distorsiona -al alza- el precio de la ineficiente
- 5. La distorsión reduce la demanda del tipo $H \Rightarrow$ reduce la renta de la empresa L por hacerse pasar por la H
- 6. $R_L = \triangle^C Q(p_H)$ y $R_H = 0 \Rightarrow$ sólo la empresa eficiente obtiene rentas

Índice

Presentación

Flexibilidad de precio

Costos y beneficios

Formas de flexibilidad de

Precio Flexibilidad de precio y

Dinámica

Ajuste de precio sin

Ajuste de precio con transferencias Frecuencia de la revisión regulatoria

Credibilidad de las políticas

Modelo básico

Compromisos creíbles

Renegociación

Largo plazo: expropiación

Lecciones

Captura regulatoria

00000

Modelo general

- Modelo igual al anterior, con las siguientes modificaciones:
 - 2 períodos, $\delta > 0$ tasa de descuento
 - CMg es información privada de la empresa en todo período
 - Q(p) igual en cada período y de conocimiento común
 - Regulador max $\delta^{i-1} \sum_{t=1}^{t=2} [S + \alpha R]$
 - Empresa: produce en t = 1 si espera R > 0 en t = 2; produce en t = 2 si R > 0 en t = 2

Principales ideas

- Si existe compromiso perfecto intertemporal ⇒ regulado puede comprometerse a cualquier contrato de largo plazo
- La política regulatoria: $\{(p_L, T_L), (p_H, T_H)\}$ para que empresa elija
- Si los costos no varían ⇒ el contrato ofrecido no varía entre períodos
- Resultado: mismo contrato que en un período $\Rightarrow p_L = c_L$ $p_H = c_H + \frac{\phi}{1-\phi} (1-\alpha) \triangle^C$
- El compromiso implica que el regulador no utiliza en t=2 la información que la empresa revela de sus acciones en t=1

- El compromiso perfecto ⇒ regulador se compromete a mantener su política
- $W = S + \alpha R + \delta (S + \alpha R) \Rightarrow W = (1 + \delta)(S + \alpha R)$
- La política óptima en un período es idéntica a dos períodos
- No cambian las restricciones de participación ni de compatibilidad de incentivos de los agentes

Incentivos del regulador

- Solución de compromiso perfecto incorpora dos ineficiencias
 - p_H > c_H
 - $R_L > 0$
- En primer caso, el regulador quiere bajar p_H y alcanzar un precio eficiente ⇒ renegociación
- En el segundo caso, el regulador quiere mantener p_L pero llevar $R_L = 0 \Rightarrow \text{expropiación}$
- ⇒ hay dos problemas de compromiso distintos

•00000000000

Índice

Presentación

Flexibilidad de precio

Costos y beneficios

Formas de flexibilidad d

precio
Flexibilidad de precio y
entrada

Dinámica

Ajuste de precio si

Ajuste de precio con transferencias Frecuencia de la revisión regulatoria

Credibilidad de las políticas

Modelo básico

Renegociación

Largo plazo: expropiación

LCCCIOTICS

Captura regulatoria

Presentación

- Regulador con poderes "moderados" de compromiso ⇒
 redacta contratos de L/P que se renegocian si es de beneficio
 mutuo
- El regulador no puede usar su información para eliminar rentas, sí para alterarlas (ej. el mix (p_i, T_i))
- No cambian los incentivos de la empresa H, en cualquier caso gana $R_H=0$
- Cambian los incentivos de L a revelar su tipo en t=1

0000000000

Etapas

- Primero: el regulador anuncia (p_i, T_i) para t = 1 y, si no se renegocia, para t=2
- Segundo: la empresa elige el contrato (p_i, T_i) que más le conviene
- Tercero: el regulador revisa sus creencias y puede proponer un cambio
- Cuarto: si propone un cambio, la empresa decide si lo acepta
- Quinto: si no lo acepta se mantiene el contrato original
- Sexto: si lo acepta se implementa el nuevo contrato

Equilibrios

- Existen dos equilibrios: separador, pooling
- ¿Puede predecir los resultados de cada uno en términos de bienestar respecto al compromiso perfecto?

- Contratos que revelan los tipos de cada empresa
- Regulador ofrece a empresa i contrato que establece: en t=1 p_i y T_i ; en t=2 una renta R_i^2
- En t = 2 cualquier cambio en p se compensa a través de T
- Beneficio total de empresa i en ambos períodos ⇒

$$R_i = R_i^1 + \delta R_i^2 = \underbrace{Q(p_i)(p_i - c_i) - F + T_i}_{t=1} + \delta \underbrace{R_i^2}_{t=2}$$

- En t=2 regulador fija $p_i=c_i$ y garantiza renta R_i^2 a la empresa i
- Recordar que $w_i(p) = v_i(p) + \pi_i(p)$

0000000000000

ES: bienestar

- Bienestar $W = \underbrace{S_i + \alpha R_i^1}_{t=1} + \underbrace{\delta\left(S_i + \alpha R_i^2\right)}_{t=2} = v_i(p_i) T_i + \alpha\left(\pi_i(p_i) + T_i\right) + \delta\left[v_i(p_i) T_i + \alpha\left(\pi_i(p_i) + T_i\right)\right]$
- Recordando que $w_i(p) = v_i(p) + \pi_i(p)$ que indica el excedente no ponderado en el estado i = L, H
- $\Rightarrow S_{i} + \alpha R_{i} = v_{i}(p_{i}) T_{i} + \alpha(\pi_{i}(p_{i}) + T_{i})$ $= v_{i}(p_{i}) + \pi_{i}(p_{i}) \pi_{i}(p_{i}) T_{i} + \alpha(\pi_{i}(p_{i}) + T_{i})$ $= w_{i}(p_{i}) (1 \alpha)(\pi_{i}(p_{i}) + T_{i}) = w_{i}(p_{i}) (1 \alpha)R_{i}^{1}$
 - Igual para t = 2 y recordar que $R_i = R_i^1 + \delta R_i^2 \Rightarrow$ $W = S_i + \alpha R_i^1 + \delta \left(S_i + \alpha R_i^2 \right)$ $= w_i (p_i) (1 \alpha) \left(R_i^1 + \delta R_i^2 \right) + \delta w_i (p_i) \Rightarrow$

ES: restricciones

$$\Rightarrow W = w_{i}(p_{i}) - (1 - \alpha)R_{i} + \delta[w_{i}(p_{i})]$$

$$= \phi\{w_{L}(p_{L}) - (1 - \alpha)R_{L} + \delta[w_{L}(p_{L})]\} + (1 - \phi)\{w_{H}(p_{H}) - (1 - \alpha)R_{H} + \delta[w_{H}(p_{H})]\}$$

- Recordar que están activas sólo las RPH y la RCIL y que en t=2 $p_i=c_i \vee p_H=c_H$
- $R_H = 0$ en el óptimo
- $R_I \ge Q(p_H)[p_H c_I] F + T_H + \delta\{Q(c_H)(c_H c_I) + R_H^2\}$ ⇒ operando en el primer sumando $Q(p_H)[p_H - c_H(c_H - c_I)] - F + T_H \text{ si agrego } \delta R_H^2 \Rightarrow$ $Q(p_H)[p_H - c_H] - F + T_H + \delta R_H^2 + (c_H - c_I)Q(p_H) =$ $R_H + \triangle^C Q(p_H) \Rightarrow R_I = R_H + \triangle^C [Q(p_H) + \delta Q(c_H)]$

0000000000000

ES: nueva W

- Usando $R_L = \triangle^C [Q(p_H) + \delta Q(c_H)]$ y $R_H = 0$, y que en t = 2 $p_L = c_L$ y $p_H = c_H$ y sustituyendo en W
- $W = \phi \{ w_L(p_L) (1 \alpha) R_L + \delta [w_L(c_L)] \} + (1 \phi) \{ w_H(p_H) (1 \alpha) R_H + \delta [w_H(c_H)] \} \Rightarrow W = \phi \{ w_L(p_L) (1 \alpha) R_L + \delta [w_L(c_L)] \} + (1 \phi) \{ w_H(p_H) + \delta w_H(c_H) \}$
- $W = \phi \{ w_L(p_L) + \delta w_L(c_L) (1 \alpha)[R_L] \} + (1 \phi) \{ w_H(p_H) + \delta w_H(c_H) \}$

$$W = \phi \left\{ w_L(p_L) + \delta w_L(c_L) - (1 - \alpha) \triangle^C \left[Q(p_H) + \delta Q(c_H) \right] \right\} +$$

$$(1 - \phi) \left\{ w_H(p_H) + \delta w_H(c_H) \right\}$$

ES: solución

0000000000000

- Maximizando $W \Rightarrow$ obtengo la misma solución que en un período $p_L = c_L$ y $p_H = c_H + \frac{\phi}{1-\phi} (1-\alpha) \triangle^C$, mientras que en el segundo período $p_I = c_I$ y $p_H = c_H$ (implícito en la función de bienestar)
- \Rightarrow lo único que hace la política es aumentar R_L respecto al caso de compromiso perfecto!
 - El bienestar general se reduce: buscar la eficiencia en el período 2 para la empresa H, manteniendo el compromiso respecto a la L provoca una pérdida de bienestar
 - La pérdida de bienestar es el costo de la imposibilidad del regulador de no renegociar el contrato

000000000000

ES: demostración

• Bienestar con compromiso perfecto $W^{CP} =$ $(1+\delta)\left[\phi\left\{w_L(p_L)-(1-\alpha)\triangle^CQ(p_H)\right\}+(1-\phi)\left\{w_H(p_H)\right\}\right]$ ⇒ reordenando

$$W^{CP} = (1+\delta)[\phi\{w_L(p_L)\} + (1-\phi)\{w_H(p_H)\}]$$
$$-\phi(1-\alpha)\triangle^C[Q(p_H) + \delta \mathbf{Q}(\mathbf{p_H})]$$

Bienestar con compromiso parcial (reordenando)

$$W^{parcial} = (1+\delta) \left[\phi \left\{w_L(p_L)\right\} + (1-\phi) \left\{w_H(p_H)\right\}\right]$$

$$-\phi (1-\alpha) \triangle^C \left[Q(p_H) + \delta \frac{Q(c_H)}{Q(c_H)}\right]$$

Equilibrio pooling

- Los contratos en t = 1 no revelan los tipos de cada empresa: se fija $p_H = p_I = \widetilde{p}$
- Como el regulador no aprende el tipo, no puede renegociar
- en t = 1 la política no es óptima
- en t=2 se implementa el equilibrio $p_L=c_L$ y $p_H = c_H + \frac{\phi}{1-\phi} (1-\alpha) \triangle^C$
- Bienestar

$$W = \phi \left\{ w_L(\widetilde{p}) - (1 - \alpha) \triangle^C Q(\widetilde{p}) \right\} + (1 + \phi) w_H(\widetilde{p}) + \delta \left[\phi \left\{ w_L(c_L) - (1 - \alpha) \triangle^C Q(p_H) \right\} + (1 + \phi) w_H(p_H) \right]$$

Comparación ES - EP

- Si δ es lo suficientemente alto \Rightarrow las ganancias del segundo período por pooling compensan las pérdidas del primer período
- Si δ es lo suficientemente alto el regulador implementará el pooling
- Una política de pooling en el primer período es un mecanismo costoso que tiene el regulador para aumentar su poder de compromiso y no renegociar

Índice

Presentación

Flexibilidad de precio

Costos y beneficios

ormas de flexibilidad de

Flexibilidad de pre

entrada

Dinámica

Ajuste de precio si transferencia

Ajuste de precio con transferencias

Frecuencia de la revisión regulatoria

Credibilidad de las políticas

Modelo básico Compromisos creíbles

Largo plazo: expropiación

Lecciones

Captura regulatoria

Presentación

- El regulador no puede comprometerse en forma creíble a dar una renta específica en t = 2
- \Rightarrow en t=1 el regulador no puede determinar la renta de t=2
 - Problema 1: la empresa L no querrá revelar su tipo ya que no obtendrá renta en t=2
 - No hay contrato posible que proteja a la empresa de esta expropiación

Problema 1

- Política óptima sin compromiso: equilibrio separador (?¿)
- Regulador ofrece (p_L, T_L) y (p_H, T_H) en t = 1 y cada empresa revela su tipo
- \Rightarrow la empresa no recibe renta en $t = 2 \Rightarrow$ $R_i = Q(p_i)(p_i c_i) F + T_i$ para ambos períodos
- RCI_L es $R_L \ge Q(p_H)(p_H c_L) F + T_H + \delta \triangle^C Q(c_H) = R_H + [Q(p_H) + \delta Q(c_H)] \triangle^C$
- La restricción es la misma que en el caso anterior !
- ⇒ la solución es la misma que en el caso anterior. Sin embargo ...

Problema 2

- Surge problema con H: no se puede ignorar RCI_H si no hay compromiso intertemporal
- Se puede violar si no hay penalidad por no producir en t=2
- En el caso anterior (renegociación) la renta de L se recibe en t = 1 y t = 2; ahora la renta de L se recibe toda en t = 1
- H dice que es L, en t = 1 recibe toda la transferencia de la empresa L y en t = 2 no produce
- $RCI_H \Rightarrow$ $0 \ge Q(c_L)(c_L - c_H) - F + T_L = [Q(p_H) + \delta Q(c_H) - Q(c_L)] \triangle^C$
- Si $p_H = c_H + \frac{\phi}{1-\phi} (1-\alpha) \triangle^C \Rightarrow RCI_H$ se cumple si δ es chico

Solución I

- 1. Si δ chico \Rightarrow la política de precios es igual al caso anterior de poderes de compromiso limitados
 - El compromiso limitado fuerza al regulador a compensar a la empresa L por las rentas que pierde en t = 2
- 2. Si δ intermedio $\Rightarrow RCI_H = [Q(p_H) + \delta Q(c_H) Q(c_L)] \triangle^C$ puede cumplirse con igualdad
 - \Rightarrow para que se cumpla el regulador $\downarrow p_L$ tal que $p_L < c_L$ y $\uparrow p_H$ tal que $p_H > c_H + \frac{\phi}{1-\phi} (1-\alpha) \triangle^C \Rightarrow \uparrow (Q(p_L) Q(p_H))$ y compensar a la H en $(c_L p_L)$
 - \Rightarrow el equilibrio sigue separando a los tipos y se implementa el equilibrio de información completa en t=2
 - Estas medidas reducen el excedente total

- 3. Si δ es suficientemente alto \Rightarrow hay pooling parcial en el primer período
 - Si la reducción en el excedente total es alta ⇒ al regulador le conviene que las empresas no se diferencien

Índice

Credibilidad de las políticas

Lecciones

86 / 114

Lecciones

- 1. La posibilidad de generar compromisos creíbles por parte de los reguladores impacta sobre el bienestar
- 2. Mayor bienestar si se niega al regulador información!
- 3. Si el regulador no puede abstenerse de igualar precios a los costos de producción, el bienestar se incrementa si la posibilidad del regulador de monitorear los costos disminuye
- 4. La empresa L se beneficia de los poderes limitados de compromiso: $R_{I}^{exp} \geq [Q(p_{H}) + \delta Q(c_{H})] \triangle^{C}$; $R_L^{\sin exp} \geq [Q(p_H) + \delta Q(p_H)] \triangle^C \Rightarrow \text{como } p_H > c_H \Rightarrow \text{la}$ renta es mayor con renegociación!

Mecanismos

- Imponer restricciones legales a las libertades del regulador de reducir p
- Políticas de compromiso a una tasa de retorno (regulacion de tasa de retorno)
- Interacción dinámica entre regulador y empresa -amenazas mutuas-
- División de responsabilidades entre distintos reguladores
- Diseñar contratos de largo plazo entre empresa y regulador
 - Problema 1: si existe captura del regulador
 - Problema 2: si el regulador es miope -mira el corto plazopuede cargar el costo de las políticas a generaciones futuras

Índice

Presentación

Flexibilidad de precio

Costos y beneficios

precio

Flexibilidad de precio y entrada

Dinámica

Ajuste de precio si

transferencias
Frecuencia de la revisión
regulatoria
edibilidad de las políticas
Modelo básico
Compromisos creíbles

Captura regulatoria

Presentación

- Modelo base igual al anterior
- El regulador no necesariamente actúa en beneficio de la sociedad
- Regulador busca maximizar su ingreso personal
- Existe un principal que delega en el regulador el control de la empresa
- La empresa puede sobornar al regulador para que no revele información sobre su tipo

Modelo

- Empresa: costo marginal puede ser bajo c_L o alto c_H;
 P(c = c_L) = φ
- Si $c=c_L\Rightarrow$ el regulador puede obtener esta información con $P=\zeta$
- Si $c = c_H \Rightarrow$ la empresa no tiene interés en sobornar al regulador
- \Rightarrow probabilidad de que el regulador se informe y la empresa sea de costo bajo $\psi=\phi\zeta$ (psi = phi por zeta); probabilidad de no estar informado $1-\psi$

- Teorema de Bayes: $P(A/B) = \frac{P(B/A)P(A)}{P(B)}$
- Sea A: empresa es de costo bajo, y B: regulador no está informado
- $P(A) = \phi$; $P(B) = (1 \psi) = (1 \phi\zeta)$; $P(B/A) = (1 \zeta)$
- Probabilidad de que la empresa sea de costo bajo y el regulador no esté informado es

$$\phi^U = \frac{\phi(1-\zeta)}{1-\phi\zeta} < \phi$$

Discusión

- Si el regulador dice que tiene información de que la empresa es eficiente ⇒ la regulación es de información simétrica y no tiene rentas
- Si el regulador dice que no tiene información de que sea eficiente ⇒ el principal no puede confirmarlo
- Principal tiene que pagar al menos 0 al regulador en cualquier estado
- Principal paga s extra al regulador si dice que está informado
- ⇒ principal quiere implementar mecanismo "collusion proof" que induce al regulador a revelar que verdaderamente está informado

Restricción contra colusión

- Costo de la empresa de pagar al regulador \$1 es $(1+\theta)$ -ej. costos de hacer pagos subrepticios
- En el óptimo $p_L = c_L$, $p_H > c_H$, $R_H = 0$ y RCI_L es $R_L \ge \triangle^C Q(p_H)$ (igual a modelo de juego anterior de transparencias)
- \Rightarrow restricción contra colusión $(1+\theta)s \ge \triangle^C Q(p_H)$
 - El pago de la empresa como soborno es mayor o igual a la renta que obtiene por revelar su tipo
 - Restricción asegura que sea creíble que el regulador diga que no tiene información sobre el costo de la empresa

Bienestar

- Principal asigna peso $\alpha_R \leq 1$ al bienestar del regulador y α al de la empresa
- Los tipos en sí mismo no importan, el regulador puede descubrirlos
- Bienestar

$$W = \underbrace{\psi \left[w_L \left(c_L \right) - \left(1 - \alpha_R \right) s \right]}_{costo \ bajo \ descubre} + \left(1 - \psi \right) \underbrace{\left[\underbrace{\phi^U \left\{ w_L \left(c_L \right) - \left(1 - \alpha \right) R_L \right\}}_{costo \ bajo \ no \ descubre} \right]}_{costo \ bajo \ no \ descubre}$$

$$+\underbrace{\left(1-\phi^{U}\right)w_{H}\left(p_{H}\right)}_{\text{es costo alto}}$$

Bienestar (cont.)

- Notar 1: $(1 \psi)\phi^U = \theta(1 \zeta)$ = prob. que sea costo bajo y no este informado
- Notar 2:

$$(1-\psi)\left(1-\phi^U\right)=(1-\psi)\left(\frac{1-\phi}{1-\theta\zeta}\right)=(1-\psi)\left(\frac{1-\phi}{1-\psi}\right)=1-\theta=$$
 prob. de que sea de costo bajo

• Sustituyendo restricción contra colusión $\left((1+\theta)s = \triangle^C Q(p_H)\right)$ y RCI_L en bienestar

$$W = \psi \left[w_L(c_L) - \frac{(1 - \alpha_R)}{1 + \theta} \triangle^C Q(p_H) \right]$$

$$+(1-\psi)\left[\phi^{U}\left\{w_{L}(c_{L})-(1-\alpha)\triangle^{C}Q(p_{H})\right\}+\left(1-\phi^{U}\right)w_{H}(p_{H})\right]$$

Solución

- Sabemos que $p_L = c_L$
- Recordar que $w_i^{'} = (p_i c_i) Q_i^{'}$

•
$$\frac{\partial W}{\partial p_H} = 0 = \psi \frac{(1-\alpha_R)}{1+\theta} \triangle^C Q'(p_H) + (1-\psi) \left[-(1-\alpha)\phi^U \triangle^C Q'(p_H) + (1-\phi^U)(p_H-c_H)Q'(p_H) \right]$$

Reordenando (mucho)

$$p_{H} = \underbrace{c_{H} + \frac{\phi^{U}}{1 - \phi^{U}} (1 - \alpha) \triangle^{C}}_{\text{distorsi \'on a simetria info}} + \underbrace{\frac{\psi}{(1 - \psi)(1 + \theta)(1 - \phi^{U})} (1 - \alpha_{R}) \triangle^{C}}_{\text{extra dist. colusi \'on}}$$

Interpretación

- Nueva distorsión al precio -al alza- para reducir rentas y reducir posibilidad de soborno
- Los peligros de la colusión desaparecen cuando:
 - los pagos al regulador tienen costo $0 \Rightarrow \alpha_R = 1$
 - es muy costoso para la empresa sobornar al regulador $\Rightarrow \theta = \infty$
- La posibilidad de captura deja a la empresa con menor renta que sin captura

Discusión

- La respuesta óptima a la colusión es:
 - dar incentivos al regulador que los contrarresten y actúe en beneficio de la sociedad (pago s)
 - reducir los beneficios de la empresa por capturar al regulador
- Son soluciones de contratos completos que pueden ser difíciles de implementar
- Si el regulador está capturado
 - si hay transferencias ⇒ el regulador puede inflar los costos fijos a través de la transferencia ⇒ como los consumidores no observan la transferencia no se nota
 - si no hay transferencias ⇒ el regulador tiene que pasar rentas vía precio ⇒ es más difícil engañar a los consumidores

Índice

Presentación

Flexibilidad de precio

Costos y beneficios

precio

Flexibilidad de precio y

Dinámica

Ajuste de precio si

transferencias
Frecuencia de la revisión
regulatoria
redibilidad de las políticas
Modelo básico
Compromisos creíbles

Largo plazo: expropiació Lecciones

Captura regulatori

Calidad

100 / 114

- Calidad del servicio es relevante en la regulación de monopolio
- Selección adversa, monopolista no observa tipo de individuos $(\theta_2 > \theta_1)$ y puede elegir la calidad $(s_1 \ y \ s_2)$
- Solución: se distorsiona la calidad del tipo bajo para que los de tipo alto paguen más (ver sección 9.2.1 Belleflamme y Peltz: Industrial Organization)
- ⇒ monopolista no regulado tiene incentivos a distorsionar la calidad

Modelo

- Utilidad del consumidor $v = U(\theta, s) p$, si compra una unidad de calidad $s \ge 0$ al precio p
- $\frac{\partial U}{\partial c} > 0$; 2 tipos de consumidores: $\theta_2 > \theta_1$; proporción $\theta_2 = \lambda$
- se cumple que, dado s: $U(\theta_2, s) > U(\theta_1, s)$
- Restricción de cruce único: el tipo alto valora mas cualquier incremento en la calidad que el tipo bajo \Rightarrow para cualquier $s_2 > s_1$

$$U(\theta_2, s_2) - U(\theta_2, s_1) > U(\theta_1, s_2) - U(\theta_1, s_1)$$

• Supuesto inicial: calidad (s_1, s_2) exógenas con $s_2 > s_1$; costos unitarios de producción $c_2 > c_1$ 4 D > 4 B > 4 B > 4 B > 9 Q P

Restricciones

- $RP_1 \Rightarrow U(heta_1,s_1) p_1 \geq 0 \Rightarrow$ en el óptimo $U(heta_1,s_1) = p_1^*$
- $RP_2 \Rightarrow U(\theta_2, s_2) p_2 \ge 0 \ (>0)$ en el óptimo
- $RCI_1 \Rightarrow U(\theta_1, s_1) p_1 \geq U(\theta_1, s_2) p_2$ (>) en el óptimo
- $RCI_2 \Rightarrow U(\theta_2, s_2) p_2 \geq U(\theta_2, s_1) p_1 \Rightarrow \text{ en el óptimo}$ $p_2^* = U(\theta_2, s_2) - [U(\theta_2, s_1) - U(\theta_1, s_1)]$

- ¿Cuando conviene al monopolista discriminar calidades, en vez de vender una sola?
- Supuesto: si vende una sola, vende la calidad alta $(s_2) \Rightarrow$ se tiene que cumplir

$$U(\theta_1, s_2) - U(\theta_1, s_1) > c_2 - c_1$$

- Monopolista vende a los de valoración alta $\Rightarrow p = U(\theta_2, s_2)$ ó
- 2. Monopolista vende a todos los consumidores $\Rightarrow p = U(\theta_1, s_2)$
- ⇒ Prefiere vender a tipo alto si su proporción es alta

$$\lambda > \frac{U(\theta_1, s_2) - c_2}{U(\theta_2, s_2) - c_2} \equiv \lambda_0$$

1. Vende sólo calidad alta (lo necesitamos luego) ⇒

$$\Pi_s = \begin{cases} \lambda \left(U(\theta_2, s_2) - c_2 \right) & \text{si } \lambda \ge \lambda_0 \\ U(\theta_1, s_2) - c_2 & \text{si } \lambda < \lambda_0 \end{cases}$$

Por discriminar a los consumidores (ofrecer menú de 2 calidades) ⇒

$$\Pi_m = (1 - \lambda)(p_1(s_1) - c_1) + \lambda(p_2(s_2) - c_2)$$

• Utilizando las RP₁, RP₂, RCI₁ y RCI₂

$$\Pi_m = (1-\lambda)[U(\theta_1,s_1)-c_1] + \lambda[U(\theta_2,s_2)$$

$$-(U(\theta_2,s_1)-U(\theta_1,s_1)) - c_2] + \varepsilon = 0$$

¿Cuando discrimina?

- Discriminará si $\Pi_m > \Pi_S$
- Dos casos: $\lambda \geq \lambda_0$ y $\lambda < \lambda_0$

Caso 1: discrimina (y $\lambda > \lambda_0$)

- Discrimina vs. vende sólo a los de calidad alta \Rightarrow

$$\triangle \Pi = \Pi_m - \Pi_s = \Pi_m - \lambda \left(U(\theta_2, s_2) - c_2 \right) =$$

$$\triangle \Pi = \underbrace{(1-\lambda)[U(\theta_1,s_1)-c_1]}_{1} - \underbrace{\lambda(U(\theta_2,s_1)-U(\theta_1,s_1))}_{2}$$

- Ofrecer un menú de precios involucra dos efectos opuestos
 - Expansión del mercado (aumenta beneficios): consumidores de menor calidad ingresan al mercado
 - 2. Canibalización (reduce beneficios): consumidores de mayor calidad pagan un precio menor (*RP* > 0)
- \Rightarrow el efecto neto es positivo $\triangle\Pi > 0 \iff \lambda < \frac{U(\theta_1,s_1)-c_1}{U(\theta_2,s_1)-c_1} \equiv \overline{\lambda}$; ie, los consumidores 2 no son muy numerosos

• Discrimina vs vende a todos la misma calidad \Rightarrow $\triangle \Pi = \Pi_m - \Pi_s = \Pi_m - U(\theta_1, s_2) - c_2 =$

$$\triangle \Pi = (1 - \lambda) [(U(\theta_1, s_1) - c_1) - (U(\theta_1, s_2) - c_2)]$$
$$+ \lambda [(U(\theta_2, s_2) - U(\theta_2, s_1)) - (U(\theta_1, s_2) - U(\theta_1, s_1))]$$

- Ofrecer un menú de precios involucra -de nuevo- dos efectos opuestos
 - 1. Mayores precios (aumenta beneficios): ahora los consumidores de mayor calidad pagan un precio mayor por el producto $U(\theta_1, s_2) U(\theta_1, s_1) > c_2 c_1$
 - 2. Consumidores de menor calidad compran bien de menor calidad (reduce beneficios):

 $II(\theta_0, \varsigma_0) = II(\theta_0, \varsigma_1) \times II(\theta_1, \varsigma_0) = II(\theta_1, \varsigma_1)$

 \Rightarrow el efecto neto es positivo $\triangle \Pi > 0 \iff$

$$\lambda > \frac{U(\theta_1, s_2) - U(\theta_1, s_1) - (c_2 - c_1)}{U(\theta_2, s_2) - U(\theta_2, s_1) - (c_2 - c_1)} \equiv \underline{\lambda}$$

• Este caso implicaba que $\lambda_0 > \lambda$, con $\lambda_0 = \frac{U(\theta_1, s_2) - c_2}{U(\theta_2, s_2) - c_2}$

- $\Rightarrow \text{ se cumple que } \lambda_0 > \lambda > \underline{\lambda} \Rightarrow \\ \frac{U(\theta_1, s_2) c_2}{U(\theta_2, s_2) c_2} > \frac{U(\theta_1, s_2) U(\theta_1, s_1) (c_2 c_1)}{U(\theta_2, s_2) U(\theta_2, s_1) (c_2 c_1)} \text{ y, reordenando} \\ \frac{U(\theta_1, s_2) c_2}{U(\theta_2, s_2) c_2} > \frac{[U(\theta_1, s_2) c_2] [U(\theta_1, s_1) c_1]}{[U(\theta_2, s_2) c_2] [U(\theta_2, s_1) c_1]}$
- ⇒ el lado derecho de la desigualdad es menor al izquierdo ⇔ (transformaciones engorrosas)

$$\frac{U(\theta_2, s_2) - c_2}{U(\theta_2, s_1) - c_1} > \frac{U(\theta_1, s_2) - c_2}{U(\theta_1, s_1) - c_1}$$

• De ecuaciones anteriores $\underline{\lambda} < \lambda < \overline{\lambda}$;

$$\frac{U(\theta_2,s_2)-c_2}{U(\theta_2,s_1)-c_1} > \frac{U(\theta_1,s_2)-c_2}{U(\theta_1,s_1)-c_1}$$

El menú de precios es óptimo \iff

- 1. proporción de consumidores tipo 2 (λ) es intermedia
- pasar de calidad baja a alta aumenta el beneficio proporcionalmente más para los consumidores de tipo alto que de tipo bajo

- Ahora la calidad es endógena y el monopolista discrimina consumidores
- Sea c(s) el costo unitario de producir la calidad s, c'(s) > 0 y c''(s) > 0
- $p_1^* = U(\theta_1, s_1)$ y $p_2^* = U(\theta_2, s_2) [U(\theta_2, s_1) U(\theta_1, s_1)] \Rightarrow$

$$\Pi = (1 - \lambda) \left[U(\theta_1, s_1) - c(s_1) \right] +$$

$$\lambda [U(\theta_2, s_2) - (U(\theta_2, s_1) - U(\theta_1, s_1)) - c(s_2)]$$

• Si se cumple la condición anterior para discriminar

$$\frac{U(\theta_2, s_2) - c(s_2)}{U(\theta_2, s_1) - c(s_1)} > \frac{U(\theta_1, s_2) - c(s_2)}{U(\theta_1, s_1) - c(s_1)}$$

$$\begin{array}{l} \bullet \ \ \frac{\partial \Pi}{\partial s_{1}} = (1 - \lambda) \left(\frac{\partial U(\theta_{1}, s_{1})}{\partial s_{1}} - c^{'}(s_{1}) \right) - \lambda \left(\frac{\partial U(\theta_{2}, s_{1})}{\partial s_{1}} - \frac{\partial U(\theta_{1}, s_{1})}{\partial s_{1}} \right) = 0 \\ \Leftrightarrow \end{array}$$

$$c^{'}(s_1) = \frac{\partial \textit{U}(\theta_1, s_1)}{\partial s_1} - \frac{\lambda}{1 - \lambda} \left(\frac{\partial \textit{U}(\theta_2, s_1)}{\partial s_1} - \frac{\partial \textit{U}(\theta_1, s_1)}{\partial s_1} \right)$$

•
$$\frac{\partial \Pi}{\partial s_2} = \frac{\partial U(\theta_2, s_2)}{\partial s_2} - c'(s_2) = 0 \Leftrightarrow$$

$$c'(s_2) = \frac{\partial U(\theta_2, s_2)}{\partial s_2}$$

Problema: monopolista distorsiona a la baja la calidad baja

- 1. Requerimiento de calidad mínima
- Precio máximo: evita extraer excedente a clientes con valoración alta
- 3. Importantes impuestos a las ganancias
- Regulación de precio techo por sí misma no genera incentivos a proveer calidad
 - la empresa corre con los costos de aumentar la calidad del producto
 - precio techo impide recuperar beneficios de mejor calidad
 - se requieren incentivos -y castigos- adicionales a las empresas

