A= {(1,0.5), (2,0.6),(3,0.5),(4, 0.7),(5,0.9)}

 $B=\{(1,0.9),(2,0.7),(3,0.5),(4,0.7),(5,0.1)\}$

 $C = \{(1,0.8),(2,0.1),(3,0.4),(4,0.2),(5,0.3)\}$

Rules) Not: $1-\mu(x)$, And: $\mu a(x)*\mu b(x)$, or: min(1, $\mu a(x)+\mu b(x)$)

$NOT((A \ AND \ B)OR \ C) = (NOT(A) \ OR \ NOT(B)) \ AND \ NOT(C)$

 \rightarrow Not((μa (x)*μb(x))or C) = Not(min(1,(μa (x)*μb(x)) + μc (x))) =1 - (min(1,(μa (x)*μb(x))+ μc (x)))

Product of red = $\{(1, 1-\min(1,0.5*0.9+0.8)),(2,1-\min(1,0.6*0.7+0.1)),(3,1-\min(0.5*0.5+0.4)),(4,1-\min(1,0.7*0.7+0.2)),(5, 1-\min(1,0.9*0.1+0.3)) = \{(1,0),(2,0.48),(3,0.35),(4,0.31),(5,0.61)\}$

 \rightarrow (Not(a) or Not(b)) and not(c) = (1- μ a(x) or 1- μ b(x)) and(1- μ c(x)) = $\min(1,2-(\mu a(x) + \mu b(x)))*(1-\mu c(x))$

Product of blue = $\{(1, \min(1, 2-(0.9+0.5))*(0.2), (2, \min(1, 0.7))*(0.9)), (3, \min(1, 1)*0.6), (4, \min(1,0.0.6)*0.8), (5, \min(1,0.1+0.9)*0.7) = \{(1,0.12), (2,0.63), (3,60), (4,0.48), 5(0.7)\}$

NOT((A OR B) AND C) = (NOT(A) AND NOT(B)) OR NOT(C)

 \rightarrow Not(min(1, μ a(x) + μ b(x)) * μ c(x)) = 1- (min(1, μ a(x) + μ b(x)) * μ c(x))

Red part : $(1, 1-(\min(1,1.4)*0.8)),(2, 1-(\min(1,1.3)*0.1)),(3,1-(\min(1,1)*0.4)),(4,1-(\min(1,1.4)*0.2)),$ $(5,1-(\min(1,0.9+0.1)*0.3)) = \{(1,0.2), (2,0.9),(3,0.6),(4,0.9),(5,0.7)\}$

 \rightarrow min(1,((1- μ a(x))*(1- μ b(x)) + (1- μ c(x))) = {(1,0.25),(2,1), (3, 0.85),(4,0.89),(5,0.79)}

همانطور که مشخص است ، قاعده ی دمور گان با این قواعد فازی برقرار نیست. اما الگوی مشخص در هر دو طرف حفظ میشود.

- Boundary: S(1, 1) = 1, S(a, 0) = S(0, a) = a
- Monotonicity: S(a, b) < S(c, d) if a < c and b < d
- Commutativity: S(a, b) = S(b, a)
- Associativity: S(a, S(b, c)) = S(S(a, b), c)

سوال 2) (جدول اول را برای حجم و دوم را برای فشار در نظر گرفتم) اگر حجم خیلی کم باشد، آنگاه فشار خیلی زیاد است.

R(volume, pressure) = if volume is A then pressure is B.

$$R(v,p) = A(v) \rightarrow B(p)$$

$$R(v,p) = A(v) \rightarrow B(p);$$
 $A(v): v \text{ is } A;$ $B(p): p \text{ is } B.$

همچنین توابع عضویت برای ترم **کم** متغیر زبانی حجم و ترم **زیاد** متغیر زبانی فشار به ترتیب به صورت زیر میباشند:

p	۲٠	٣٠	۴٠	۵۰
$\mu_A(p)$	۲.٠	٠.۴	٠.٧	٠.٩

v	٣٠	۵٠	٨٠	٩.
$\mu_B(v)$	٠.١	٠.٣	٨.٠	١

Very low volume: $\mu_{very true}(v) = (\mu_{true}(v))^2$

V	20	30	40	50
$(\mu A(v))^2$	0.04	0.16	0.49	0.81

Very High pressure:

р	30	50	80	90
$(\mu B(P))^2$	0.01	0.09	0.81	1

Implement implication function:

-Min operation rule of fuzzy implication (Mamdani)

$$R_C = A \times B = \int \mu_A(x) \wedge \mu_B(y) / (x, y)$$

 $X \times Y$ where \wedge is the min operator

V / p	30	50	80	90
20	0.01	0.04	0.04	0.04
30	0.01	0.09	0.16	0.16
40	0.01	0.09	0.49	0.49
50	0.01	0.09	0.81	0.81

NOT Fairly less volume : $\mu_{fairly true}(v) = (\mu_{true}(v))^{1/2} \quad \mu_{false}(v) = 1 - \mu_{true}(v)$

V	20	30	40	50
$(\mu A(v))^{1/2}$	(1-0.1)^0.5=0.948	(1-0.4)^0.5=0.774	(1-0.7)^0.5=0.547	(1-0.9)^0.5=0.316

$$\widetilde{R}(y) = \widetilde{A} \circ \widetilde{B}$$

Applying the max-min composition, we obtain:

$$\widetilde{R}(y) = \max_{x} \min \left\{ \mu_{\widetilde{A}}(x), \mu_{\widetilde{R}}(x, y) \right\}$$

R(x,y):

V/p	30	50	80	90
20	0.01	0.04	0.04	0.04
30	0.01	0.09	0.16	0.16
40	0.01	0.09	0.49	0.49
50	0.01	0.09	0.81	0.81

A(x):

V	20	30	40	50
$(\mu A(v))^{1/2}$	0.948	0.774	0.547	0.316

Composition : B(y) => very high pressure

р	30	50	80	90
$(\mu B(P))^2$	Max(0.01,0.01,0.0	Max(0.04,0.09,0.09,	Max(0.04,0.16,0.49,0	Max(0.04,0.16,0.316,
(102 (17)	1,0.01) = 0.01	0.09) = 0.09	.547) =	0.316) = 0.316 =
			0.547=(0.3)^0.5	(0.1)^0.5

High pressure: it should be powered by 0.5 to be high instead of very high

P	30	50	80	90
$(\mu B(P))^1$	(0.01)^0.5 = 0.1	(0.09)^0.5=0.3	(0.3)^0.25 = 0.74	(0.1)^0.25 = 0.56

سوال 3)

الف) مراحل سيستم كنترل

- fuzzification-1 : تبدیل عدد و شواهد به یک لاجیک خاص و تبدیل آن به حالت فازی
 - Rule Base -2: قواعد خاصى كه توسط expert تعيين شده باشد.
- Interface engine $\,$ -3: با استفاده از شواهد و منطق یک مجموعه ی فازی به دست آورد.
 - deffuzification -4: تبدیل حالت فازی به عدد

ب)

If x1 = 0.65
$$\rightarrow$$
 متوسط $\mu_{midX1(0.65)} = 0.83$

If
$$x2 = 0.5$$
 $\rightarrow \mu_midX2(0.5) = 2/3 = 0.66$

بے مسویت میران نسار واردہ پر پنان در ۱۹

همچنین قوانین فازی این سیستم در جدول زیر داده شده است:

		فاصله از ماشین جلویی(X1)			
		کم	متوسط	زياد	
ميزان لغ	کم	پایین	پایین	خیلی پایین	
لغزندگی جا	متوسط	متوسط	متوسط	پایین	
Jco (5%)	زياد	خيلى بالا	کال	متوسط	

Min(0.41,0.47) = 0.66 or 2/3 کری، مقادیر حدودی بین \bullet 0.00 قرار دارد. \bullet 0.66 مطبق نمودار تابع عضویت فشار گازی، مقادیر حدودی بین \bullet

طبق حدول ارائه شده ، فشار وارده در حالت متوسط است. در نتیجه طبق نمودار فازی کشیده شده و متوسط بودن هر دو فاز فشار گاز در حالت متوسط و حدود 0.07 قرار دارد.

Larsen method with input $u_0 = 3$, $v_0 = 4$

معیار های انتخاب: 1- معقول بودن 2- سادگی محاسبات 3- پیوستگی

Defuzzification ، خروجی فازی یک سیستم به یک مقدار عددی تبدیل می شود.

Center of Sums Method (COS) : در مکان هایی که ذوذنقه افتاده اند دو بار حساب می کند. مزیت آن نسبت به روش COG محساسبه ی قسمت هایی است که اشتراک دارند. این روش پیوستگی دارد و معقول است اما محاسباتش سنگین است.

/ Center of gravity (COG) : انتخاب مرکز ثقل. مساحت وزن دار تقسیم بر کل ، از لحاظ محاسبات سنگین است اما پیوستگی دار د و معقول است.

$$u^{COG} = \frac{\int_{U} u.\mu^{conseq}(u)du}{\int_{U} \mu^{conseq}(u)du}$$

Centered Average /Weighted Average Method : برای خروجی های مثلثی بسیار پرکاربرد است و یک متوسط وزنی از مثلث ها میگیرد. از لحاظ محساباتی معقول است(انتگرال ندارد) و بیوستگی دارد و معقول است.

$$y^* = \frac{\sum_{l=1}^{M} \bar{y}^l w_l}{\sum_{l=1}^{M} w_l} \qquad w_1$$

Maxima Methods

در بین ذوذنقه ها مقدار بزرگ تر را انتخای میکند و نقاط max, min یک مقدار وسط پیدا می کند. معقول است و محاسباتش کم است اما پیوستگی ندار د.

Considers only the part of the consequence ruzzy set with maximal degree of membership

$$u^{\min} = \inf_{u} \{ u \in U : \mu^{conseq}(u) = \max_{u} \{ \mu^{conseq}(u) \} \}$$

$$u^{\max} = \sup_{u} \{ u \in U : \mu^{conseq}(u) = \max_{u} \{ \mu^{conseq}(u) \} \}$$

$$u^{MOM} = \frac{u^{\min} + u^{\max}}{2}$$

	COG	cos	CA	MOM
plausability	yes	yes	yes	yes
Simplicity of calculation	no	yes	yes	yes
continuity	yes	yes	yes	no

منابع همه سوال ها : اسلاید های درسی