

Agenda

- Contexto
- Explicación del Data Set
- Reto: ¿Qué construir?
- ¿Qué enviar?
- Criterios para evaluación
- ¿Cómo debo entregar mi solución?

Contexto

En AB InBev queremos encontrar territorios óptimos de distribución de nuestros productos, donde cada zona o territorio será un día especifico de entrega que concentrará toda la capacidad logística disponible, buscando una reducción de kilómetros recorridos, mejorando los tiempos de entrega y potencializando los niveles de servicio.

Explicación del dataset

- clientes
- agencia
- Frecuencia de reparto por cliente por semana
- La georreferenciación de cada cliente.
- Volúmenes de entrega por visita por cliente.

Data Características								
Cliente	id_Agencia	Frecuencia	Vol_Entrega	Longitud	Latitud			
1	A1	1	17	20.506052	-98.21238			
2	A1	2	15	20.458128	-98.22125			
3	A1	1	19	20.530427	-98.23686			
4	A1	2	200	20.488655	-98.20294			
5	A1	3	700	20.533253	-98.21967			

Reto: ¿Qué construir?

El objetivo es dividir un centro de distribución en 6 territorios óptimos, donde cada territorio debe garantizar que la distancia recorrida sea mínima, que no se exceda la capacidad de reparto por día (Zonas balanceadas por volumen), Los territorios deben estar en función de la frecuencia de visita al cliente, Todos los territorios deben tener una misma cantidad de clientes (Zonas balanceadas por número de paradas).

➤ Para esto deberás crear **Un modelo** para encontrar **territorios óptimos** de reparto donde: la **distancia** recorrida sea **mínima**, el reparto sea viable con la **capacidad logística** actual, y el numero de clientes por territorio sea exactamente el mismo garantizando la mejora de los niveles de servicio.

	Balanceado en	Balanceado en	Distancia km
Day	clientes (paradas)	volumen	mínima
Zona 1	100	200	300
Zona 2	100	200	300
Zona 3	100	200	280
Zona 4	100	200	250
Zona 5	100	200	300
Zona 6	100	200	180
Total	600	1.400	1.610

- El output requerido completo (Csv con 7 columnas según formato)
- 2. Código completo de la construcción de la solución (únicamente R o Python no evaluaremos códigos en *software* comerciales).
- 3. Una presentación a detalle de la metodología usada para resolver el problema, el modelo aplicado, consideraciones y resultados obtenidos. (Máximo 5 diapositivas).
- ✓ Tabla output (.csv)
- √ Link GitHub
- ✓ Presentación (.ppt

¿Cuáles son los criterios de evaluación?

✓ Evaluación de modelo	50%
✓ Estructura de presentación	15%
✓ Metodología y evaluación de código	15%
✓ Estrategia - originalidad de la idea	10%

✓ Implementación y escalamiento10%

IMPORTANTE

- Los equipos participantes podrán subir su output al sitio web y conocer su score y su puesto en el ranking, los intentos son ilimitados. Los 5 mejores equipos pasarán a la evaluación final para definir el ganador. DEADLINE - Domingo 29 de noviembre 13h00.
- La "ENTREGA FINAL" se hará desde el sitio web y deberán subir 3 cosas:
 - 1) un .csv
 - 2) un .PPT
 - 3) un link a GitHub

¿Evaluación del modelo?

Distancia recorrida en kilómetros (Peso: 50%)

Zonas balanceadas por volumen (Peso 25%)

Zonas balanceadas por número de paradas (Peso 25%)

¿Cómo debo entregar mi solución?

Data Data								
El output								
Id_Cliente	D1	D2	D3	D4	D5	D6		
1	1	1	1	1	1	1		
2	1	0	0	0	0	0		
3	0	1	1	1	0	0		
4	1	1	1	1	0	1		
5	0	0	0	0	1	1		

- D1...D6 son variables binarias que representan los territorios (días) asignados por el modelo para cada cliente
- La suma de los territorios (días: D1...D6) debe ser igual a la frecuencia por cliente

