Homework 2 / 02-13-2022

Renjie Wei UNI:rw2844

library(tidyverse)

Problem 1

Develop two Monte Carlo methods for the estimation of $\theta = \int_0^1 e^{x^2} dx$ and implement in **R**.

Answer:

Method 1: simple Monte Carlo integration

$$\theta = \int_0^1 e^{x^2} dx = \int_0^1 e^{x^2} \cdot 1 dx = E\{g(U)\}, U \sim U(0, 1)$$

So we can get the estimation of θ by estimating the $E\{g(U)\}$

$$E\{g(U)\} \approx \frac{1}{n} \sum_{i=1}^{n} g(U_i) = \hat{\theta}$$

```
set.seed(2022)
N = 1e5
u \leftarrow runif(N)
theta_hat_1 = mean(exp(u^2))
```

From simple Monte Carlo integration, the estimated $\hat{\theta}_1 = 1.4632808$

Method 2: Importance Sampling

Suppose X is a r.v. with density f(x), such that f(x) > 0 on the set x : g(x) > 0. Let Y be r.v. g(X)/f(X). Then we can transform the integration to the following form:

$$\theta = \int_0^1 e^{x^2} dx = \int_0^1 \frac{e^{x^2}}{f(x)} \cdot f(x) dx = E[Y]$$

Then we can estimate the integration by estimating E[Y]:

$$E[Y] = \frac{1}{m} \sum_{i=1}^{m} Y_i = \frac{1}{m} \sum_{i=1}^{m} \frac{e^{X_i^2}}{f(X_i)}$$

Where $X_i \stackrel{i.i.d}{\sim} f(x)$, and in this case, I chose $f(x) = \frac{e^{-x}}{1-e^{-1}}, 0 < x < 1$, and using inverse CDF to sample from this distribution.

```
set.seed(2022)
# invCDF of fx
fx <- -log(1-u*(1-exp(-1)))
fg = exp(fx^2)/(exp(-fx)/(1-exp(-1)));
theta_hat_2 = mean(fg)
```

From Importance Sampling, the estimated $\hat{\theta}_2 = 1.4630146$

Problem 2

Show that in estimating $\theta = E\{\sqrt{1-U^2}\}\$ it is better to use U^2 rather than U as the control variate, where $U \sim U(0,1)$. To do this, use simulation to approximate the necessary covariances. In addition, implement your algorithms in \mathbf{R} .

Answer:

Since $E[f_1(x)] = E[U^2] = \int_0^1 x^2 dx = \frac{1}{3}, E[f_2(x)] = E[U] = 0.5$, so we can estimate θ by $E[g(x)] = E\{\sqrt{1-U^2}\} = E\{\sqrt{1-U^2} + c_1 \times (U-0.5)\} = E\{\sqrt{1-U^2} + c_2 \times (U^2 - \frac{1}{3})\}$. And we choose

$$c_i = -\frac{Cov(g(X), f_i(X))}{Var(f_i(X))}, X \sim U(0, 1)$$

To get c_i , we need $Cov(g(U), f_i(U))$ and $Var(f_i(U))$. In this case, these can be estimated from a preliminary Monte Carlo experiment.

```
set.seed(2022)
gfun <- function(x) sqrt(1-x^2)
# f_1_x
ffun_1 <- function(x) x^2
# f_2 x
ffun_2 <- function(x) x
# generating X from Unif(0,1)
n_2 = 1e6
u_2 = runif(n_2)
gx = gfun(u_2)
fx_1 = ffun_1(u_2)
fx_2 = ffun_2(u_2)
# Calculate cov and var
cov_gf1 = cov(gx,fx_1)
cov_gf2 = cov(gx,fx_2)
var_f1 = var(fx_1)
var_f2 = var(fx_2)
# compute the constant c_i's
c1 = -cov_gf1/var_f1
c2 = -cov_gf2/var_f2
# get the estimates of theta
T_c1 = gx+c1*(fx_1 - 1/3)
T_c2 = gx+c2*(fx_2 - 1/2)
# compare the estimated theta and their variance
theta_c1 = mean(T_c1)
```

```
theta_c2 = mean(T_c2)
var_reduce_1 = cov_gf1^2/var_f1
var_reduce_2 = cov_gf2^2/var_f2
imp_pct = (var(T_c2)-var(T_c1))/var(T_c2)
```

Since we set $f_1(U) = U^2$, $f_2(U) = U$, and from Monte Carlo simulation, we got $Cov(g(U), f_1(U)) = Cov(\sqrt{1-U^2}, U^2) = -0.065$, $Cov(g(U), f_2(U)) = Cov(\sqrt{1-U^2}, U) = -0.059$. The Var(g(U)) is reduced by $\frac{[Cov(g(U), f_1(U))]^2}{Var(f_1(U))} = 0.048$ and $\frac{[Cov(g(U), f_2(U))]^2}{Var(f_2(U))} = 0.042$, so we can see that $f_1(U) = U^2$ is a better control variate than $f_2(U) = U$, and the percent of improvement in variance reduction is 78.41 %. The estimated θ_{ci} is $\theta_{c1} = 0.785$ and $\theta_{c2} = 0.786$.

Problem 3

Obtain a Monte Carlo estimate of

$$\int_{1}^{\infty} \frac{x^2}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

by importance sampling and evaluate its variance. Write a ${f R}$ function to implement your procedure.

Answer:

Let $g(x) = \frac{x^2}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx$, x > 1 I use the pdf of Exp(1), that is $f(x) = e^{-x}$, x > 1 \$ as my importance function. The integration can be written as $\theta = \int_1^\infty \frac{x^2}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx = \int_1^\infty \frac{g(x)}{f(x)}f(x)dx = E[\frac{g(x)}{f(x)}]$, and we can estimate this integration by estimating $E[\frac{g(x)}{f(x)}]$.

```
set.seed(2022)

g <- function(x) {
    x ^ 2 / sqrt(2*pi) * exp(-x^2/2) * (x > 1)
}

f_imp <- function(x) {
    exp(-x)
}

r_imp <- function(N) {
    rexp(N)
}

# function of importance sampling, given g(x), f(x), and sampling function from f(x)
imp_sampling <- function(gfun, ffun, rffun, N = 1e7) {
    xs <- rffun(N)
    T_x <- gfun(xs)/ffun(xs)
    return(c(mean(T_x),var(T_x)))
}

imp_result <- imp_sampling(g,f_imp,r_imp,1e7)</pre>
```

The result shows that the estimated $\hat{\theta} = 0.4006$, and the $Var(\hat{\theta}) = 0.3432$. The true value of θ can be derived by the following code:

```
integrate(g, 1, Inf)
```

0.400626 with absolute error < 5.7e-07

We can see that our Monte Carlo estimator is very close to the true parameter.

Problem 4:

Design an optimization algorithm to find the minimum of the continuously differential function

$$f(x) = -e^{-x}\sin(x)$$

on the closed interval [0, 1.5]. Write out your algorithm and implement it into R.

Answer:

I'd like to use Newton's method as the optimization algorithm. The Newton algorithm involves doing this iteratively:

$$\theta_i = \theta_{i-1} - \frac{f(\theta_{i-1})}{f'(\theta_{i-1})}$$

Until $|f(\theta_i)|$ is sufficiently close to zero. Applying Newton's method to this problem, we got the local minimum when f'(x) = 0

$$f'(x) = e^{-x}\sin(x) - e^{-x}\cos(x) = e^{-x}(\sin(x) - \cos(x))$$
$$f''(x) = 2e^{-x}\cos(x)$$

so each time we update the x_i by the following equation:

$$x_i = x_{i-1} - \frac{e^{-x}(\sin(x) - \cos(x))}{2e^{-x}\cos(x)}$$

```
#R codes:
ffunc <- function(a){
    return(-exp(-a)*sin(a))
d_func <- function(a){</pre>
    return(exp(-a)*(sin(a)-cos(a)))
d2_func <- function(a){</pre>
    return(2*exp(-a)*cos(a))
}
i = 0
tol = 1e-10
cur <- start <- 0 # start from 0
resnewton <- c(i, cur, d_func(cur))
while(abs(d_func(cur)) > tol){
    i < -i+1
    renew <- cur - d_func(cur)/d2_func(cur)
    cur <- renew
    resnewton <- rbind(resnewton, c(i, cur, d_func(cur)))
}
min_x = resnewton[nrow(resnewton), 2]
```

From the Newton's method, we got the minimum of $f(x) = -e^{-x}\sin(x)$ in [0, 1.5]. When x = 0.7853982, the minimum of $f(x) = -e^{-x}\sin(x)$ in [0, 1.5] is -0.3223969.

Problem 5:

The Poisson distribution, written as

$$P(Y = y) = \frac{\lambda^y e^{-\lambda}}{y!}$$

for $\lambda > 0$, is often used to model "count" data — e.g., the number of events in a given time period.

A Poisson regression model states that

$$Y_i \sim Poisson(\lambda_i),$$

where

$$\log \lambda_i = \alpha + \beta x_i$$

for some explanatory variable x_i . The question is how to estimate α and β given a set of independent data $(x_1, Y_1), (x_2, Y_2), \ldots, (x_n, Y_n)$.

- 1. Generate a random sample (x_i, Y_i) with n = 500 from the Possion regression model above. You can choose the true parameters (α, β) and the distribution of X.
- 2. Write out the likelihood of your simulated data, and its Gradient and Hessian functions.
- 3. Develop a modify Newton-Raphson algorithm that allows the step-halving and re-direction steps to ensure ascent directions and monotone-increasing properties.
- 4. Write down your algorithm and implement it in R to estimate α and β from your simulated data.

Answer:

1. Generate a random sample (x_i, Y_i) with n = 500 from the Poisson regression model above.

Suppose the true parameters are $\alpha = 2, \beta = 0.8$. And $x_i \sim N(0,1)$. The generated data are displayed in the following plot.

2. Write out the likelihood of your simulated data, and its Gradient and Hessian functions.

Since $Y_i \sim Pois(\lambda_i)$. So the likelihood function of the data is:

$$L(\alpha, \beta | \{x_i, Y_i\}) = \prod_{i=1}^n \frac{e^{y_i(\alpha + \beta x_i)} e^{-e^{\alpha + \beta x_i}}}{y_i!}$$

Maximizing the likelihood is equivalent to maximizing the log-likelihood:

$$\ell(\alpha, \beta) = \sum_{i=1}^{n} \left(y_i(\alpha + \beta x_i) - e^{\alpha + \beta x_i} - \log y_i! \right)$$

So the gradient of this function is:

$$\nabla \ell(\alpha, \beta) = \begin{bmatrix} \frac{\partial \ell}{\partial \alpha} \\ \frac{\partial \ell}{\partial \beta} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} (y_i - e^{\alpha + \beta x_i}) \\ \sum_{i=1}^{n} x_i (y_i - e^{\alpha + \beta x_i}) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} (y_i - \lambda_i) \\ \sum_{i=1}^{n} x_i (y_i - \lambda_i) \end{bmatrix}$$

The Hessian is given by:

$$\nabla^2 \ell(\alpha, \beta) = - \left[\begin{array}{c} \sum_{i=1}^n e^{\alpha + \beta x_i}, \sum_{i=1}^n x_i e^{\alpha + \beta x_i} \\ \sum_{i=1}^n x_i e^{\alpha + \beta x_i}, \sum_{i=1}^n x_i^2 e^{\alpha + \beta x_i} \end{array} \right] = - \left[\begin{array}{c} \sum_{i=1}^n \lambda_i, \sum_{i=1}^n x_i \lambda \\ \sum_{i=1}^n x_i \lambda_i, \sum_{i=1}^n x_i^2 \lambda_i \end{array} \right]$$

3. Develop a modify Newton-Raphson algorithm that allows the step-halving and re-direction steps

To allow the step-halving to ensure monotone-increasing properties, we modified the Newton-Raphson at each step with a check-function:

$$\theta_i(\gamma) = \theta_{i-1} - \gamma [\nabla^2 \ell(\theta_{i-1})]^{-1} \nabla \ell(\theta_{i-1})$$

if $f(\theta_i(1)) > f(\theta_{i-1})$, then set $\theta_i = \theta_{i-1}$. Otherwise, search for a value $\gamma \in (0,1)$ for which $f(\theta_i(\gamma)) > f(\theta_{i-1})$ and set $\theta_i = \theta_i(\gamma)$. In step-halving, we search $\gamma \in \{1/2, 1/4, 1/8, \ldots\}$.

To allow re-direction steps and ensure we get ascent direction in each step, we have to make sure the Hessian matrix is negative definite. We can ensure that by changing the Newton-Raphson algorithm direction $\mathbf{d} = -[\nabla^2 \ell(\theta_{\mathbf{i-1}})]^{-1} \nabla \ell(\theta_{\mathbf{i-1}})$ to $\mathbf{d}' = -[\nabla^2 \ell(\theta_{\mathbf{i-1}}) - \eta \mathbf{I}]^{-1} \nabla \ell(\theta_{\mathbf{i-1}})$, where η is large enough to make sure the modified Hessian is negative definite, that is, forced all eigenvalue of modified Hessian to less than zero. A simple choice of η is the largest positive eigenvalue of Hessian then plus one.

4. Write down your algorithm and implement it in R to estimate α and β from your simulated data.

The code of the modified Newton-Raphson algorithm is in the following trunk.

```
# function giving gradient and Hessian
poissonstuff <- function(dat, betavec){</pre>
    u \leftarrow betavec[1] + betavec[2]*dat$x
    lambda \leftarrow exp(u)
    # loglik at betavec
    loglik \leftarrow sum(dat\$y * u - exp(u) - log(factorial(dat\$y)))
    # get the gradient at betavec
    grad \leftarrow c(sum(dat\$y - lambda), sum(dat\$x*(dat\$y - lambda)))
    # hessian matrix at betavec
    Hess <- -matrix(</pre>
        c(sum(lambda), sum(dat$x*lambda), sum(dat$x*lambda), sum((dat$x)^2*lambda)), ncol = 2
    )
    return(list(loglik = loglik, grad = grad, Hess = Hess))
}
ModifiedNewtonRaphson <- function(dat, func, start, tol = 1e-10, maxiter = 1000){
    i <- 0
    cur <- start
    stuff <- func(dat, cur)
    res \leftarrow (c(0, stuff$loglik, cur))
    prevloglik <- -Inf
    while (i < maxiter & abs(stuff\$loglik - prevloglik) > tol) {
        i < -i + 1
        prevloglik <- stuff$loglik</pre>
        prev <- cur
        Hess <- stuff$Hess
        e_hess <- eigen(Hess)$values
        # modified algorithm 1: re-direction
        # check if the hess is negative definite
        if (sum(e_hess) > 0){
             eta \leftarrow max(e hess) + 1
             Hess \leftarrow Hess - eta*diag(x = 1, dim(Hess))
        # modified algorithm 2: step-halving
        cur <- prev - solve(Hess) %*% stuff$qrad
        j <- 0
        while (func(dat, cur)$loglik < func(dat, prev)$loglik) {
```

```
    j <- j + 1
        Gamma <- 0.5^(j)
        cur <- prev - Gamma * solve(Hess) %*% stuff$grad
}

# modification procedure ends
    stuff <- func(dat, cur)
    res <- rbind(res, c(i, stuff$loglik, cur))
}

return(res)
}</pre>
```

I choose a extreme combination of $\{\alpha, \beta\}$ at the start value to test the robustness of my algorithm.

```
ans <- ModifiedNewtonRaphson(samples, poissonstuff, c(-47, -54))
ans <- data.frame(ans)
colnames(ans) <- c("iterations", "loglik", "alpha", "beta")
plot(ans$iterations, ans$loglik, type = "b", xlab = "Number of iterations", ylab = "log-likelihood")
```



```
alpha.hat <- ans[nrow(ans),]$alpha
beta.hat <- ans[nrow(ans),]$beta
```

We can show the trace of the log-likelihood of the optimization procedure.

There are total 140 iterations, and the estimated parameters are $\hat{\alpha} = 1.9966463$ and $\hat{\beta} = 0.7897409$. Remembering the true values are $\alpha = 2, \beta = 0.8$, which means that our algorithm has a high accuracy in estimating the parameters of the model.

```
i <- 1
alg_result <- c()</pre>
for (i in 1:100) {
    set.seed(i)
    i < -i + 1
    a \leftarrow rnorm(1, runif(1, 1, 2), 2) * 0.5 + 0.5
   b \leftarrow rpois(1, runif(1, 1, 2)) * 2 + 2
   startvec \leftarrow c(a,b)
    ans <- ModifiedNewtonRaphson(samples, poissonstuff, startvec)</pre>
    final <- ans[nrow(ans),]</pre>
    final <- append(final, startvec)</pre>
    alg_result <- rbind(alg_result, final)</pre>
}
alg_result <- data.frame(alg_result)</pre>
colnames(alg_result) <- c("number of iterations", "loglik", "alpha_hat", "beta_hat", "alpha_start", "be
alg_result %>% head() %>% knitr::kable(digit =4)
```

	$number\ of\ iterations$	log lik	$alpha_hat$	$beta_hat$	$alpha_start$	$beta_start$
final	14	-1171.789	1.9966	0.7897	0.8065	4
final.1	30	-1171.789	1.9966	0.7897	1.6237	8
final.2	15	-1171.789	1.9966	0.7897	1.9528	4
final.3	20	-1171.789	1.9966	0.7897	-1.0750	6
final.4	8	-1171.789	1.9966	0.7897	1.5824	2
final.5	24	-1171.789	1.9966	0.7897	2.8384	6

boxplot(alg_result[,3:4])

I repeated the algorithm for 100 times from different starting values, all of them can reach a close estimate.