Task 1:

- a) π SID (σ Class = 1 or Class = 2 ((Courses \bowtie Gradebook) \bowtie Students))
- b) π SID (σ (Class = 1) or (Surname = "Valdez") (Students \bowtie (Courses \bowtie Gradebook)))
- c) π SID (σ Class = 1 and Class = 2 ((Courses \bowtie Gradebook) \bowtie Students))
- d) π SID ((Students \bowtie Gradebook) $^(Courses)$)
- e) π SID (σ Class = 3 (Courses \bowtie (Gradebook^(Courses))))
- f) {(SID1, SID2) | SID1 \neq SID2 and exists CID (SID1, CID, A) \land (SID2, CID, B) \land A > B}
- g) π CID (σ count (SID) >= 2 (Gradebook)group by CID)

Task 2:

A)

SID	Name	
1	Warren	

B)

SID	Name
1	Warren

- C) there is no student who meets these conditions, so the result would be an empty set.
- D) there is no student who meets these conditions, so the result would be an empty set.