PREDICCIÓN DE VENTAS PARA PRODUCTOS ALIMENTICIOS DE UNA CADENATIENDAS

Presenta: Mariana Arismendi

B Е

S

GENERAL

Desarrollar diferentes modelos de machine learning que permitan predecir el volumen de ventas para productos alimenticios que se venden en distintas tiendas

ESPECÍFIC®S

Presentar las características del dataset

Realizar una predicción de las ventas con diferentes modelos

Ajustar los modelos

Evaluar los modelos y determinar el que mejor se ajusta

DATOS DEL CONJUNTO DE DATOS

Nombre de la variable	Descripción
Item_Identifier	Identificación única del producto
Item_Weight	Peso del producto
Item_Fat_Content	Si el producto es bajo en grasa o regular
Item_Visibility	El porcentaje de la superficie total de exposición de todos los productos de una tienda asignada al producto concreto
Item_Type	La categoría a la que el producto pertenece
Item_MRP	Precio máximo de venta al público (precio de catálogo) del producto
Outlet_Identifier	Identificación única de la tienda
Outlet_Establishment_Year	El año cuando se estableció la tienda
Outlet_Size	El tamaño de la tienda con respecto a la superficie
Outlet_Location_Type	El tipo de área donde está ubicada la tienda
Outlet_Type	Si el marcado es un almacén o algún tipo de supermercado
Item_Outlet_Sales	Ventas del producto en la tienda particular Es la variable objetivo a predecir

El tamaño del dataset a modelar después del preprocesamiento es de (6392, 39).

La semilla para ambos modelos se fijó en 42

Las métricas de regresión analizadas son las del error cuadrático medio

Para el modelo de árbol de regresión se realiza un gráfico que nos ayude a mostrar para qué profundidad tenemos un mejor R2 y así ajustar el modelo a este para hacerlo más óptimo.

EVALUACIÓN COMPARATIVA DE LOS MODELOS

REGRESIÓN LINEAL

ÁRBOL DE REGRESIÓN

- BAJA VARIANZA DE LOS R2 :
 - DATOS DEL TEST : 0.567
 - DATOS DEL TRAIN: 0.561

- MODELO SOBREAJUSTADO
- •SE AJUSTA HALLANDO GRÁFICAMENTE EL MAX_DEPTH PARA EL R2 ÓPTIMO :
- DATOS DEL TEST : 0.604
- DATOS DEL TRAIN: 0.595

- RMSE TRAIN: 1139.12
 - RMSE TEST: 1092.86

- RMSE TRAIN: 4.93 E-15
- RMSE TEST: 1058.33

DATOS GRÁFICOS RELEVANTES

CONCLUSIONES

MEJOR MODELO

ERROR CUADRÁTICO MEDIO MUY ALTO Baja capacidad de predcción

DECISIONES DE NEGOCIO SESGADAS MUCHA
ALEATORIEDAD
EN LOS DATOS

LAS
PREDICCIONES
NO SON
OBJETIVAS

Mejorar los datos para garantizar mejores resultados

Realizar análisis MÁS PROFUNDO y por segmentos