Dictionary Learning & Compressed Sensing

Hadi Daneshmand, Xinrui Lyu

June 01/02, 2017

Overcomplete Dictionaries: Recap

Sparse coding with a complete dictionary:

$$\begin{bmatrix} \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{U} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{z} \end{bmatrix}$$

Sparse coding with an over-complete dictionary (L > D):

$$\begin{bmatrix} \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{U} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{z} \end{bmatrix}$$

Why over-complete? 1D example

Consider the following collection of pulses:

We need three bases of $\sin(\alpha t)\exp\left(-(t-\beta)^2/\gamma\right)$ family (Gabor bases) to reconstruct the above signal.

Why over-complete? 2D example

A collection of over-complete Gabor bases obtain a sparse representation for the following image.

Figure: Original Image

Figure: Gabor Basis

Why over-complete? 2D example

A collection of over-complete Gabor bases obtain a sparse representation for the following image.

Figure: Original Image

Figure: Gabor Basis

Signal Reconstruction (General Dictionary)

$$\mathbf{U} \in \mathbb{R}^{D \times L}$$
 is overcomplete $(L > D)$:

- ▶ III-posed problem: more unknowns than equations.
- lacktriangle add constraint: find sparsest $\mathbf{z} \in \Re^L$ such that $\mathbf{x} = \mathbf{U}\mathbf{z}$

Solve mathematical program

$$\mathbf{z}^{\star} \in \arg\min_{\mathbf{z}} \|\mathbf{z}\|_{0}$$

s.t. $\mathbf{x} = \mathbf{U}\mathbf{z}$

 $\|\mathbf{z}\|_0$ counts the number of non-zero elements in \mathbf{z} .

Roadmap to Solution

Original Problem is NP-Hard: How to Proceed?

1. Use a greedy algorithm (Matching Pursuit)

Roadmap to Solution

Original Problem is NP-Hard: How to Proceed?

- 1. Use a greedy algorithm (Matching Pursuit)
- 2. Relax the $\|\mathbf{z}\|_0$ "norm" so that it becomes a convex optimization problem

Roadmap to Solution

Original Problem is NP-Hard: How to Proceed?

- 1. Use a greedy algorithm (Matching Pursuit)
- 2. Relax the $\|\mathbf{z}\|_0$ "norm" so that it becomes a convex optimization problem

Now we learn the details!

MP Algorithm

Objective:

$$\begin{array}{lll} \mathbf{z}^* & = & \displaystyle \operatorname*{argmin}_{\mathbf{z}} \|\mathbf{x} - \mathbf{U}\mathbf{z}\|_2 \\ \text{s.t.} & \|\mathbf{z}\|_0 & \leq K \end{array}$$

Algorithm:

- 1: $\mathbf{z} \leftarrow \mathbf{0}$, $\mathbf{r} \leftarrow \mathbf{x}$
- 2: while $\|\mathbf{z}\|_0 < K$ do
- 3: Select atom with maximum absolute correlation to residual:

$$d^* \leftarrow \operatorname*{argmax}_{d} \left| \mathbf{u}_d^{\top} \mathbf{r} \right|$$

4: Update coefficient vector and residual:

$$z_{d^*} \leftarrow z_{d^*} + \mathbf{u}_{d^*}^{\top} \mathbf{r}$$

 $\mathbf{r} \leftarrow \mathbf{r} - \left(\mathbf{u}_{d^*}^{\top} \mathbf{r}\right) \mathbf{u}_{d^*}$

5: end while

Matching Pursuit - Minimizing the Residual

Atom selection at iteration t:

$$d^*(t) = \underset{d}{\operatorname{argmax}} \left| \left\langle \mathbf{r}^t, \mathbf{u}_d \right\rangle \right|$$

Proof for first iteration:

• Project $\mathbf{r}^0 = \mathbf{x}$ on atom \mathbf{u}_d , to get

$$\mathbf{x} = \langle \mathbf{x}, \mathbf{u}_d \rangle \, \mathbf{u}_d + \mathbf{r}^1$$

▶ Since \mathbf{r}^1 is orthogonal to \mathbf{u}_d , and $\mathbf{u}_d^{\top}\mathbf{u}_d = 1$,

$$\|\mathbf{x}\|_2^2 = |\langle \mathbf{x}, \mathbf{u}_d \rangle|^2 + \|\mathbf{r}^1\|_2^2$$

▶ Therefore, $\|\mathbf{r}^1\|_2^2$ is minimized by maximizing $|\langle \mathbf{r}^0, \mathbf{u}_d \rangle|^2$.

Bach et al. (2009)

$$\mathbf{z} = (0, 0, 0)$$

Bach et al. (2009)

$$\mathbf{z} = (0, 0, 0)$$

Bach et al. (2009)

$$\mathbf{z} = (0, 0, 0.75)$$

Bach et al. (2009)

$$\mathbf{z} = (0, 0, 0.75)$$

Bach et al. (2009)

$$\mathbf{z} = (0, 0, 0.75)$$

Bach et al. (2009)

$$\mathbf{z} = (0, 0.24, 0.75)$$

Bach et al. (2009)

$$\mathbf{z} = (0, 0.24, 0.75)$$

Bach et al. (2009)

$$\mathbf{z} = (0, 0.24, 0.65)$$

Bach et al. (2009)

$$\mathbf{z} = (0, 0.24, 0.65)$$

Pen&Paper - I

$$\mathbf{x} = \langle \mathbf{x}, \mathbf{u}_{d(1)} \rangle \mathbf{u}_{d(1)} + \mathbf{r}^1$$

 ${f r}^1$ is orthogonal to ${f u}_{d(1)}$

For the next step we have

$$\mathbf{r}^1 = \left\langle \mathbf{r}^1, \mathbf{u}_{d(2)} \right\rangle \mathbf{u}_{d(2)} + \mathbf{r}^2$$

 ${f r}^2$ is orthogonal to ${f u}_{d(2)}$

Question: Is \mathbf{r}^2 orthogonal to $\mathbf{u}_{d(1)}$? When is it true?

Pen&Paper - I

$$\mathbf{x} = \langle \mathbf{x}, \mathbf{u}_{d(1)} \rangle \mathbf{u}_{d(1)} + \mathbf{r}^1$$

 ${f r}^1$ is orthogonal to ${f u}_{d(1)}$

For the next step we have

$$\mathbf{r}^1 = \left\langle \mathbf{r}^1, \mathbf{u}_{d(2)} \right\rangle \mathbf{u}_{d(2)} + \mathbf{r}^2$$

 ${f r}^2$ is orthogonal to ${f u}_{d(2)}$

Question: Is \mathbf{r}^2 orthogonal to $\mathbf{u}_{d(1)}$? When is it true? **Solution:**

$$\langle \mathbf{r}^2, \mathbf{u}_{d(1)} \rangle = -\langle \mathbf{r}^1, \mathbf{u}_{d(2)} \rangle \langle \mathbf{u}_{d(2)}, \mathbf{u}_{d(1)} \rangle$$

Pen&Paper - II

This is projection given that $\langle \mathbf{u}_d, \mathbf{u}_d \rangle = 1$ for every d:

$$\mathbf{x} = \langle \mathbf{x}, \mathbf{u}_{d(1)} \rangle \mathbf{u}_{d(1)} + \mathbf{r}^1$$

 ${f r}^1$ is orthogonal to ${f u}_{d(1)}$

Question: What is different when $\langle \mathbf{u}_{d(1)}, \mathbf{u}_{d(1)} \rangle \neq 1$?

Pen&Paper - II

This is projection given that $\langle \mathbf{u}_d, \mathbf{u}_d \rangle = 1$ for every d:

$$\mathbf{x} = \left\langle \mathbf{x}, \mathbf{u}_{d(1)} \right\rangle \mathbf{u}_{d(1)} + \mathbf{r}^1$$

 ${f r}^1$ is orthogonal to ${f u}_{d(1)}$

Question: What is different when $\langle \mathbf{u}_{d(1)}, \mathbf{u}_{d(1)} \rangle \neq 1$? Solution:

$$\begin{aligned} \left\langle \mathbf{u}_{d(1)}, \mathbf{r}^{1} \right\rangle &= \left\langle \mathbf{u}_{d(1)}, \mathbf{x} - \left\langle \mathbf{x}, \mathbf{u}_{d(1)} \right\rangle \mathbf{u}_{d(1)} \right\rangle \\ &= \left\langle \mathbf{u}_{d(1)}, \mathbf{x} \right\rangle - \left\langle \mathbf{u}_{d(1)}, \mathbf{x} \right\rangle \left\langle \mathbf{u}_{d(1)}, \mathbf{u}_{d(1)} \right\rangle \end{aligned}$$

 ${f r}^1$ is no longer orthogonal to ${f u}_{d(1)}$

Compressive Sensing

$$\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{U}\mathbf{z} =: \Theta \mathbf{z}, \text{ with } \Theta = \mathbf{W}\mathbf{U} \in \mathbb{R}^{M \times D}$$

- Surprisingly given any orthonormal basis U we can obtain a stable reconstruction for any K-sparse, compressible signal.
- This is true under two conditions:
 - 1. All elements $w_{i,j}$ of matrix \mathbf{W} are i.i.d. random variables with a Gaussian distribution with zero mean and variance $\frac{1}{D}$.
 - 2. $M: M \ge cK \log \left(\frac{D}{K}\right)$, where c is some constant.

Compressive Sensing: Signal Reconstruction

▶ To recover initial signal $\mathbf{x} \in \mathbb{R}^D$ from measured signal $\mathbf{y} \in \mathbb{R}^M$ we need to find a sparse representation \mathbf{z} :

$$\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{U}\mathbf{z} = \Theta\mathbf{z}, \text{ with } \Theta \in \mathbb{R}^{M \times D}$$

lacktriangle Given ${f z}$ we can easily reconstruct ${f x}$ by

$$x = Uz$$

- ▶ The problem of finding \mathbf{z} appears to be ill-posed as $M \ll D$: many more unknowns than equations.
- ▶ Look for the sparsest solution such that equation holds:

$$\mathbf{z}^* \in \underset{\mathbf{z}}{\operatorname{argmin}} \|\mathbf{z}\|_0, \text{ s.t. } \mathbf{y} = \Theta \mathbf{z}$$

▶ NP hard problem; approximation: Matching Pursuit

Signal Reconstruction using Convex Optimization

Sparsest solution, under the equality constraint:

$$\mathbf{z}^* \in \operatorname*{argmin}_{\mathbf{z}} \|\mathbf{z}\|_0, \text{ s.t. } \mathbf{y} = \Theta \mathbf{z}$$

- ▶ NP hard problem; approximation: matching Pursuit
- ▶ Minimum ℓ_1 -norm solution, under the equality constraint:

$$\mathbf{z}^* \in \underset{\mathbf{z}}{\operatorname{argmin}} \|\mathbf{z}\|_1, \quad \text{s.t.} \quad \mathbf{y} = \Theta \mathbf{z}$$

convex Optimization Problem

Under suitable conditions on Θ , the solutions of the two problems are equivalent! \Rightarrow can use standard convex optimization methods.

Geometry of Compressive sensing

A signal is k-sparse when it has at most k non zeros $\|\mathbf{z}\|_0 \leq k$. Let

$$\Sigma_k = \{ \mathbf{z} : \|\mathbf{z}\|_0 \le k \}$$

Figure: Union of subspaces defined by $\Sigma_2 \subset \mathbb{R}^3$

Pen&Paper

What are the geometrical solutions to the following problem for p=0,1,2?

$$\underset{\mathbf{x} \in \mathbb{R}^2}{\operatorname{argmin}} \ \|\mathbf{x}\|_p \ \text{s.t.} \ \langle \mathbf{w}, \mathbf{x} \rangle = 1$$

where $\mathbf{w} = [0.5, 1]$.

Pen&Paper: Answer

SC Code

```
from sklearn.decomposition import sparse_encode
import matplotlib.pyplot as plt

#plot an image
plt.imshow(image)

# sparse coding
z = sparse_encode(x, U, algorithm='lasso_cd', alpha = 100.0, max_iter=1000)
```