Multi-layer Perception

Activation and Initialization

Quang-Vinh Dinh Ph.D. in Computer Science

Outline

- > Pipeline Recommendation
- Data Normalization
- > Activation Functions
- > MLP Examples
- > Initialization Methods

To-do List for Training

Data

Loss function Selection

Data Normalization

Data Preparation

Data Normalization

Model (Network) Construction

Parameter Initialization

Optimizer Metric Selection

Loss function Selection

In Theory

 $X \in [0, 255]$

Convert to the range [0,1]

$$Image = \frac{Image}{255}$$

Convert to the range [-1,1]

$$Image = \frac{Image}{127.5} - 1$$

Z-score normalization

$$Image = \frac{Image - \mu}{\sigma}$$

In Pytorch

 $X \in [0, 1]$

Normalize(*mean*, std)

$$Image = \frac{Image - mean}{std}$$

[0,1] mean = 0; std = 1

[-1,1] mean = 0.5; std = 0.5

Compute mean and std from data

```
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
trainset = torchvision.datasets.FashionMNIST(root='data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=1024, num_workers=10, shuffle=True)
testset = torchvision.datasets.FashionMNIST(root='data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch size=1024, num workers=10, shuffle=False)
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0,), (1.0,))])
trainset = torchvision.datasets.FashionMNIST(root='data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=1024, num_workers=10, shuffle=True)
testset = torchvision.datasets.FashionMNIST(root='data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=1024, num_workers=10, shuffle=False)
# computed mean and std in advance
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((mean,), (std,))])
trainset = torchvision.datasets.FashionMNIST(root='data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=1024, num_workers=10, shuffle=True)
testset = torchvision.datasets.FashionMNIST(root='data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=1024, num_workers=10, shuffle=False)
                               (b) [-1, 1] Normalization
          (a) [0, 1] Normalization
                                                                   (c) z-score Normalization
```

Data Normalization

Training Pipeline

Multi-layer Perceptron

- 1) #Hidden Layers?
- 2) #Nodes in a Hidden Layers?

- 3) Which activation functions?
- 4) Which Initializers?

Data Preparation

Data Normalization

Model (Network) Construction

Parameter Initialization

Optimizer Selection

Loss function Selection

Metric Selection

Training Pipeline

Model (Network) Construction

Hidden Layers

How many hidden layers? How many nodes in a hidden layer? Which activation function? Which network components?

How many nodes?

Model (Network) Construction

How many nodes?

Model (Network) Construction

How many nodes?

```
[-1, 1] Normalization

Cross-entropy Loss

SGD with lr=0.01
```


Model (Network) Construction

Which activation function?

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

$$\tanh(x) = \frac{2}{1 + e^{-2x}} - 1$$

softplus(
$$x$$
) = log(1 + e^x)

$$ReLU(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

$$\tanh(x) = \frac{2}{1 + e^{-2x}} - 1 \qquad \text{ELU}(x) = \begin{cases} \alpha(e^x - 1) & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

2015

$$PReLU(x) = \begin{cases} \alpha x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

2017

sigmoid(x) =
$$\frac{1}{1 + e^{-x}}$$
 ReLU(x) = $\begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$ SELU(x) = $\begin{cases} \lambda x & \text{if } x \ge 0 \\ \lambda \alpha (e^x - 1) & \text{if } x < 0 \end{cases}$ tanh(x) = $\frac{2}{1 + e^{-2x}} - 1$ ELU(x) = $\begin{cases} \alpha (e^x - 1) & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$ $\alpha \approx 1.0507$

2017

$$swish(x) = x * \frac{1}{1 + e^{-x}}$$

dendrites nucleus cell body

Step function

10 Nodes

Output layer

-10

-5

Input layer

$$f(x) = \begin{cases} 0 & if \ x < 0 \\ 1 & if \ x \ge 0 \end{cases}$$

Sigmoid function

 $\underline{data}\underline{a} = \underline{sigmoid}(\underline{data})$

sigmoid'(x) = sigmoid(x) (1 - sigmoid(x))

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

sigmoid'(x) =
$$\left(\frac{1}{1+e^{-x}}\right)' = \frac{-1}{(1+e^{-x})^2}(-e^{-x})$$

= $\frac{e^{-x}}{(1+e^{-x})^2} = \frac{e^{-x}+1-1}{(1+e^{-x})^2}$
= $\frac{1}{1+e^{-x}} - \frac{1}{(1+e^{-x})^2}$
= $\frac{1}{1+e^{-x}}\left(1 - \frac{1}{1+e^{-x}}\right)$
= sigmoid(x) (1 - sigmoid(x))

***** Tanh function

$$data_a = tanh(data)$$

$$tanh'(x) = 1 - tanh^2(x)$$

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 1 - \frac{2}{e^{2x} + 1} = \frac{2}{e^{-2x} + 1} - 1$$

$$\tanh'(x) = \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)' = \frac{(e^x + e^{-x})(e^x + e^{-x}) - (e^x - e^{-x})(e^x - e^{-x})}{(e^x + e^{-x})^2}$$

$$= \frac{(e^x + e^{-x})^2 - (e^x - e^{-x})^2}{(e^x + e^{-x})^2}$$

$$= 1 - \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)^2 = 1 - \tanh^2(x)$$

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 1 - \frac{2}{e^{2x} + 1} = \frac{2}{e^{-2x} + 1} - 1$$

$$tanh'(x) = \left(\frac{2}{e^{-2x} + 1} - 1\right)' = \frac{4e^{-2x}}{(e^{-2x} + 1)^2} = 4\left(\frac{e^{-2x} + 1 - 1}{(e^{-2x} + 1)^2}\right)$$

$$= 4\left(\frac{1}{e^{-2x} + 1} - \frac{1}{(e^{-2x} + 1)^2}\right) = -\left(\frac{4}{(e^{-2x} + 1)^2} - \frac{4}{e^{-2x} + 1}\right)$$

$$= -\left(\frac{4}{(e^{-2x} + 1)^2} - \frac{4}{e^{-2x} + 1} + 1 - 1\right) = 1 - \left(\frac{2}{e^{-2x} + 1} - 1\right)^2 = 1 - tanh^2(x)$$

Softplus function

softplus'(x) =
$$\frac{1}{1 + e^{-x}}$$

ReLU function

LeakyReLU function

LeakyReLU(
$$x$$
) =
$$\begin{cases} 0.01x & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$$

data_a = leakyrelu(data)

LeakyReLU'(x) =
$$\begin{cases} 0.01 & \text{if } x \le 0 \\ 1 & \text{if } x > 0 \end{cases}$$

ELU function

 $\underline{data}\underline{a} = \underline{ELU}(\underline{data})$

ELU'(x) =
$$\begin{cases} \alpha e^x & \text{if } x \le 0 \\ 1 & \text{if } x > 0 \end{cases}$$

PReLU function

$$PReLU(x) = \begin{cases} \alpha x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

$$\alpha = 0.1$$

 $\underline{data}\underline{a} = \underline{PRELU}(\underline{data})$

$$PReLU'(x) = \begin{cases} \alpha & \text{if } x \le 0 \\ 1 & \text{if } x > 0 \end{cases}$$

Swish function

 $data_a = swish(data)$

 $swish'(x) = swish(x) + \sigma(x) (1 - swish(x))$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$swish(x) = \frac{x}{1 + e^{-x}} = x \sigma(x)$$

$$swish'(x) = (x \sigma(x))' = (x)' \sigma(x) + x(\sigma(x))'$$

$$= \sigma(x) + x \sigma(x) (1 - \sigma(x))$$

$$= \sigma(x) + x \sigma(x) - x \sigma(x)^{2}$$

$$= x \sigma(x) + \sigma(x) (1 - x \sigma(x))$$

$$= swish(x) + \sigma(x) (1 - swish(x))$$

Outline

- > Pipeline Recommendation
- Data Normalization
- > Activation Functions
- > MLP Examples
- > Initialization Methods

To-do List for Training

Train a model

MLP Example 1

Feature		Label
Petal Length	Petal Width	Label
1.5	0.2	0
1.4	0.2	0
1.6	0.2	0
4.7	1.6	1
3.3	1.1	1
4.6	1.3	1
5.6	2.2	2
5.1	1.5	2
5.6	1.4	2

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \\ \mathbf{x}^{(3)} \end{bmatrix} = \begin{bmatrix} 1.5 & 0.2 \\ 4.7 & 1.6 \\ 5.6 & 2.2 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

$$\mathbf{h} = \mathbf{x}\mathbf{W}_h = \begin{bmatrix} 1 & 1.5 & 0.2 \\ 1 & 4.7 & 1.6 \\ 1 & 5.6 & 2.2 \end{bmatrix} \begin{bmatrix} 0.0 & 0.0 \\ 0.86 & -1.04 \\ 0.41 & -0.65 \end{bmatrix} = \begin{bmatrix} 1.373 & -1.696 \\ 4.708 & -5.951 \\ 5.731 & -7.281 \end{bmatrix}$$

$$ReLU(\mathbf{h}) = \begin{bmatrix} 1.373 & 0 \\ 4.708 & 0 \\ 5.731 & 0 \end{bmatrix}$$

Feature		Label
Petal Length	Petal Width	Label
1.5	0.2	0
1.4	0.2	0
1.6	0.2	0
4.7	1.6	1
3.3	1.1	1
4.6	1.3	1
5.6	2.2	2
5.1	1.5	2
5.6	1.4	2

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \\ \mathbf{x}^{(3)} \end{bmatrix} = \begin{bmatrix} 1 & 1.5 & 0.2 \\ 1 & 4.7 & 1.6 \\ 1 & 5.6 & 2.2 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

$$\begin{aligned} \boldsymbol{W}_h &= \begin{bmatrix} \boldsymbol{W}_{h1} & \boldsymbol{W}_{h2} \end{bmatrix} & \boldsymbol{W}_z &= \begin{bmatrix} \boldsymbol{W}_{z1} & \boldsymbol{W}_{z2} & \boldsymbol{W}_{z3} \end{bmatrix} \\ &= \begin{bmatrix} 0.0 & 0.0 \\ 0.86 & -1.04 \\ 0.41 & -0.65 \end{bmatrix} & = \begin{bmatrix} 0.0 & 0.0 & 0.0 \\ 0.32 & 0.25 & 0.14 \\ -0.47 & -1.06 & 0.063 \end{bmatrix} \end{aligned}$$

$$ReLU(\mathbf{h}) = \begin{bmatrix} 1.373 & 0 \\ 4.708 & 0 \\ 5.731 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{1} & \text{ReLU}(\mathbf{h}) \end{bmatrix} = \begin{bmatrix} 1 & 1.373 & 0 \\ 1 & 4.708 & 0 \\ 1 & 5.731 & 0 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \\ \mathbf{x}^{(3)} \end{bmatrix} = \begin{bmatrix} 1 & 1.5 & 0.2 \\ 1 & 4.7 & 1.6 \\ 1 & 5.6 & 2.2 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

$$\mathbf{z} = \begin{bmatrix} \mathbf{1} & \text{ReLU}(\mathbf{h}) \end{bmatrix} \mathbf{W}_z = \begin{bmatrix} 1 & 1.373 & 0 \\ 1 & 4.708 & 0 \\ 1 & 5.731 & 0 \end{bmatrix} \begin{bmatrix} 0.0 & 0.0 & 0.0 \\ 0.32 & 0.25 & 0.14 \\ -0.47 & -1.06 & 0.063 \end{bmatrix}$$
$$= \begin{bmatrix} 0.439 & 0.356 & 0.195 \\ 1.507 & 1.220 & 0.670 \\ 1.835 & 1.485 & 0.816 \end{bmatrix}$$

$$W_h = [W_{h1} \quad W_{h2}] \qquad W_z = [W_{z1} \quad W_{z2} \quad W_{z3}]$$

$$= \begin{bmatrix} 0.0 & 0.0 \\ 0.86 & -1.04 \\ 0.41 & -0.65 \end{bmatrix} \qquad = \begin{bmatrix} 0.0 & 0.0 & 0.0 \\ 0.32 & 0.25 & 0.14 \\ -0.47 & -1.06 & 0.063 \end{bmatrix}$$

$$\mathbf{z} = \begin{bmatrix} 0.439 & 0.356 & 0.195 \\ 1.507 & 1.220 & 0.670 \\ 1.835 & 1.485 & 0.816 \end{bmatrix}$$

$$\hat{\mathbf{y}} = \text{softmax}(\mathbf{z}) = \begin{bmatrix} \hat{\mathbf{y}}^{(1)} \\ \hat{\mathbf{y}}^{(2)} \\ \hat{\mathbf{y}}^{(3)} \end{bmatrix} = \begin{bmatrix} 0.369 & 0.340 & 0.289 \\ 0.458 & 0.343 & 0.198 \\ 0.484 & 0.341 & 0.174 \end{bmatrix}$$

loss = 1.269

Feat	Feature	
Petal Length	Petal Width	Label
1.5	0.2	0
1.4	0.2	0
1.6	0.2	0
4.7	1.6	1
3.3	1.1	1
4.6	1.3	1
5.6	2.2	2
5.1	1.5	2
5.6	1.4	2

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \\ \mathbf{x}^{(3)} \end{bmatrix} = \begin{bmatrix} 1 & 1.5 & 0.2 \\ 1 & 4.7 & 1.6 \\ 1 & 5.6 & 2.2 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

$$\begin{aligned} \boldsymbol{W}_h &= \begin{bmatrix} \boldsymbol{W}_{h1} & \boldsymbol{W}_{h2} \end{bmatrix} & \boldsymbol{W}_z &= \begin{bmatrix} \boldsymbol{W}_{z1} & \boldsymbol{W}_{z2} & \boldsymbol{W}_{z3} \end{bmatrix} \\ &= \begin{bmatrix} 0.0 & 0.0 \\ 0.86 & -1.04 \\ 0.41 & -0.65 \end{bmatrix} & = \begin{bmatrix} 0.0 & 0.0 & 0.0 \\ 0.32 & 0.25 & 0.14 \\ -0.47 & -1.06 & 0.063 \end{bmatrix} \end{aligned}$$

Example 2 - Dying ReLU

Feature

Label

D 4 1 T 41	D 4 1 337 141	
Petal Length	Petal Width	Label
1.5	0.2	0
1.4	0.2	0
1.6	0.2	0
4.7	1.6	1
3.3	1.1	1
4.6	1.3	1
5.6	2.2	2
5.1	1.5	2
5.6	1.4	2

$$x = \begin{bmatrix} 1.5 \\ 0.2 \end{bmatrix} \qquad y = 0$$

$$m = [m_1 \ m_2]$$
 $w = [w_1 \ w_2 \ w_3]$

$$= \begin{bmatrix} 0.86 & -1.04 \\ 0.41 & -0.65 \end{bmatrix} = \begin{bmatrix} 0.32 & 0.25 \\ -0.47 & -1.06 \end{bmatrix}$$

$$= \begin{bmatrix} 0.86 & -1.04 \\ 0.41 & -0.65 \end{bmatrix} = \begin{bmatrix} 0.32 & 0.25 & 0.14 \\ -0.47 & -1.06 & 0.063 \end{bmatrix}$$

$$\boldsymbol{bm} = \begin{bmatrix} 0.0 \\ 0.0 \end{bmatrix}$$

$$\boldsymbol{bw} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$

$$x = \begin{bmatrix} 1.5 \\ 0.2 \end{bmatrix}$$

$$m = [m_1 m_2]$$

$$= \begin{bmatrix} 0.86 & -1.04 \\ 0.41 & -0.65 \end{bmatrix}$$

$$m = [m_1 m_2] w = [w_1 w_2 w_3]$$

$$= \begin{bmatrix} 0.86 & -1.04 \\ 0.41 & -0.65 \end{bmatrix} = \begin{bmatrix} 0.32 & 0.25 & 0.14 \\ -0.47 & -1.06 & 0.063 \end{bmatrix}$$

$$\boldsymbol{bm} = \begin{bmatrix} 0.0 \\ 0.0 \end{bmatrix} \qquad \boldsymbol{bw} = \begin{bmatrix} 0.0 \\ 0.0 \end{bmatrix}$$

Forward pass zero value $h = \begin{bmatrix} 1.372 \\ -1.68 \end{bmatrix}$ $\mathbf{z} = \begin{bmatrix} 0.439 \\ 0.343 \\ 0.192 \end{bmatrix}$ $\hat{y} = \begin{bmatrix} 0.372 \\ 0.338 \\ 0.290 \end{bmatrix}$ $ReLU = \begin{bmatrix} 1.372 \\ 0.0 \end{bmatrix}$ $x = \begin{bmatrix} 1.5 \\ 0.2 \end{bmatrix}$ $loss = -log\hat{y}_1 = 0.989$ \hat{y}_1 m_{11} ReLU W_{12} m_{12} Loss **Function** \hat{y}_2 W_{21} $W_{\underline{22}}$ Softmax ReLU $\overline{m_{22}}$ bw_2 bm_2 W_{31} \hat{y}_3 W_{32} $\overline{bw_3}$ $m = [m_1]$ m_2

$$m = [m_1 m_2] bm = \begin{bmatrix} 0.0 \\ 0.0 \end{bmatrix} w = [w_1 w_2 w_3] bw = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.41 -0.65 \end{bmatrix}$$

$$= \begin{bmatrix} 0.86 & -1.04 \\ 0.41 & -0.65 \end{bmatrix} bw = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$

$$\frac{\partial L}{\partial m_{jk}} = x_k \frac{\partial L}{\partial h_j}$$

$$\frac{\partial L}{\partial b m_j} = \frac{\partial L}{\partial h_j}$$

$$\frac{\partial L}{\partial relu_j} = \sum_{i} w_{ij} \frac{\partial L}{\partial z_i}$$

$$ReLU'(h_j) = \begin{cases} 0 & \text{if } h_j \le 0 \\ 1 & \text{if } h_j > 0 \end{cases}$$

$$\frac{\partial L}{\partial h_j} = \begin{cases} 0 & \text{if } h_j \le 0 \\ \frac{\partial L}{\partial relu_j} & \text{if } h_j > 0 \end{cases}$$

$$\frac{\partial L}{\partial z_i} = \hat{y}_i - y_i$$

$$\frac{\partial L}{\partial w_{ij}} = x_j \frac{\partial L}{\partial z_i}$$

$$\frac{\partial L}{\partial bw_i} = \frac{\partial L}{\partial z_i}$$

$$x = \begin{bmatrix} 1.5 \\ 0.2 \end{bmatrix}$$
 $h = \begin{bmatrix} 1.372 \\ -1.68 \end{bmatrix}$ $\text{ReLU} = \begin{bmatrix} 1.372 \\ 0.0 \end{bmatrix}$ $z = \begin{bmatrix} 0.439 \\ 0.343 \\ 0.192 \end{bmatrix}$ $\widehat{y} = \begin{bmatrix} 0.372 \\ 0.338 \\ 0.290 \end{bmatrix}$ Backward pass

$$m = \begin{bmatrix} 0.86 & -1.04 \\ 0.41 & -0.65 \end{bmatrix}$$
 $bm = \begin{bmatrix} 0.0 \\ 0.0 \end{bmatrix}$ $w = \begin{bmatrix} 0.32 & 0.25 & 0.14 \\ -0.47 & -1.06 & 0.063 \end{bmatrix}$ $bw = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$

$$\frac{\partial L}{\partial relu_j} = \sum_{i} w_{ij} \frac{\partial L}{\partial z_i}$$

$$\nabla_{\mathbf{ReLU}} L = \begin{bmatrix} -0.0759 \\ -0.0445 \end{bmatrix}$$

$$\frac{\partial L}{\partial w_{ij}} = x_j \frac{\partial L}{\partial z_i}$$

$$\nabla_{w}L = \begin{bmatrix} -0.628 & 0.338 & 0.29 \\ 0.0 & 0.0 & 0.0 \end{bmatrix} \qquad \nabla_{bw}L = \begin{bmatrix} -0.628 \\ 0.338 \\ 0.290 \end{bmatrix} \qquad \nabla_{z}L = \begin{bmatrix} -0.628 \\ 0.338 \\ 0.290 \end{bmatrix}$$

$$\frac{\partial L}{\partial bw}$$

$$\nabla_{bw} L = \begin{bmatrix} -0.628 \\ 0.338 \\ 0.290 \end{bmatrix}$$

$$\frac{\partial L}{\partial b w_i} = \frac{\partial L}{\partial z_i} \qquad \frac{\partial L}{\partial z_i} = \hat{y}_i - y_i$$

$$\nabla_{\mathbf{z}}L = \begin{bmatrix} -0.628 \\ 0.338 \\ 0.290 \end{bmatrix}$$

$$x = \begin{bmatrix} 1.5 \\ 0.2 \end{bmatrix}$$
 $h = \begin{bmatrix} 1.372 \\ -1.68 \end{bmatrix}$ ReLU = $\begin{bmatrix} 1.372 \\ 0.0 \end{bmatrix}$ $z = \begin{bmatrix} 0.439 \\ 0.343 \\ 0.192 \end{bmatrix}$ $\hat{y} = \begin{bmatrix} 0.372 \\ 0.338 \\ 0.290 \end{bmatrix}$ Backward pass

$$m = \begin{bmatrix} 0.86 & -1.04 \\ 0.41 & -0.65 \end{bmatrix}$$
 $bm = \begin{bmatrix} 0.0 \\ 0.0 \end{bmatrix}$ $w = \begin{bmatrix} 0.32 & 0.25 & 0.14 \\ -0.47 & -1.06 & 0.063 \end{bmatrix}$ $bw = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$

$$\frac{\partial L}{\partial m_{jk}} = x_k \frac{\partial L}{\partial h_j}$$

$$\nabla_m L = \begin{bmatrix} -0.114 & 0.0 \\ -0.015 & 0.0 \end{bmatrix}$$

$$\frac{\partial L}{\partial b m_j} = \frac{\partial L}{\partial h_j}$$

$$\nabla_{bm} L = \begin{bmatrix} -0.0759 \\ 0.0 \end{bmatrix}$$

$$\frac{\partial L}{\partial h_j} = \begin{cases}
0 & \text{if } h_j \le 0 \\
\frac{\partial L}{\partial relu_j} & \text{if } h_j > 0
\end{cases}$$

$$\nabla_{\mathbf{h}} L = \begin{bmatrix} -0.0759 \\ 0.0 \end{bmatrix}$$

$$\frac{\partial L}{\partial relu_j} = \sum_{i} w_{ij} \frac{\partial L}{\partial z_i}$$

$$\nabla_{\text{ReLU}} L = \begin{bmatrix} -0.0759 \\ -0.0445 \end{bmatrix}$$

$$m = \begin{bmatrix} 0.86 & -1.04 \\ 0.41 & -0.65 \end{bmatrix} \qquad bm = \begin{bmatrix} 0.0 \\ 0.0 \end{bmatrix} \qquad w = \begin{bmatrix} 0.32 & 0.25 & 0.14 \\ -0.47 & -1.06 & 0.063 \end{bmatrix} \qquad bw = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$

$$\nabla_{m}L = \begin{bmatrix} -0.114 & 0.0 \\ -0.015 & 0.0 \end{bmatrix} \qquad \nabla_{bm}L = \begin{bmatrix} -0.0759 \\ 0.0 \end{bmatrix} \qquad \nabla_{w}L = \begin{bmatrix} -0.628 & 0.338 & 0.29 \\ 0.0 & 0.0 & 0.0 \end{bmatrix} \qquad \nabla_{bw}L = \begin{bmatrix} -0.628 \\ 0.338 \\ 0.290 \end{bmatrix}$$

Update the parameters with $\eta = 0.01$

$$m = \begin{bmatrix} 0.861 & -1.04 \\ 0.4105 & -0.65 \end{bmatrix}$$
 $bm = \begin{bmatrix} 0.000759 \\ 0.0 \end{bmatrix}$ $w = \begin{bmatrix} 0.328 & 0.245 & 0.136 \\ -0.47 & -1.06 & 0.063 \end{bmatrix}$ $bw = \begin{bmatrix} 0.0062 \\ -0.0033 \\ -0.0029 \end{bmatrix}$

Forward pass again

$$\mathbf{h} = \begin{bmatrix} 1.374 \\ -1.68 \end{bmatrix}$$

$$= \begin{bmatrix} 1.374 \\ 1.60 \end{bmatrix}$$
 still zero value

$$x = \begin{bmatrix} 1.5 \\ 0.2 \end{bmatrix}$$

$$\mathbf{ReLU} = \begin{bmatrix} 1.374 \\ 0.0 \end{bmatrix}$$

$$\mathbf{z} = \begin{bmatrix} 0.458 \\ 0.334 \\ 0.184 \end{bmatrix}$$

$$\hat{y} = \begin{bmatrix} 0.378 \\ 0.334 \\ 0.287 \end{bmatrix}$$

$$m = [m_1 m_2]$$

$$= \begin{bmatrix} 0.861 & -1.04 \\ 0.4105 & -0.65 \end{bmatrix}$$

$$bm = \begin{bmatrix} 0.000759 \\ 0.0 \end{bmatrix}$$

$$bm = \begin{bmatrix} 0.000759 \\ 0.0 \end{bmatrix} \qquad w = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \\ = \begin{bmatrix} 0.328 & 0.245 & 0.136 \\ -0.47 & -1.06 & 0.063 \end{bmatrix}$$

$$\boldsymbol{bw} = \begin{bmatrix} 0.0062 \\ -0.0033 \\ -0.0029 \end{bmatrix}$$

***** Linear regression

Diagram

Cheat sheet

Compute the output \hat{y}

$$\hat{y} = wx + b$$

Compute the loss

$$L = (\hat{y} - y)^2$$

Compute derivative

$$L'_{w} = 2x(\hat{y} - y) \qquad w = w - \eta L'_{w}$$

$$L_b' = 2(\hat{y} - y)$$

Update parameters

$$w = w - \eta L_w'$$

$$b = b - \eta L_b'$$

x = 0.67Input

Backpropagation

Model

Parameters

$$b = 0.0$$
 $w = 0.0$

$$b = b - \eta L'_{b}$$
 $w = w - \eta L'_{w}$

$$\hat{y} = xw + b = 0.0$$

$$L'_{w} = 2x(\hat{y} - y) \\ = -121.94$$

$$L_b' = 2(\hat{y} - y)$$
$$= -18.2$$

 $\eta = 0.01$

Label

$$y = 9.1$$

$$(\hat{y} - y)^2 = 82.81$$

Loss

$$b = b - \eta L'_{b} = 0.182$$

 $w = w - \eta L'_{w} = 1.2194$

x = 0.67Input

Forward propagation

Model

Parameters

$$b = 0.182$$

$$b = b - \eta L'_{b}$$
 $w = w - \eta L'_{w}$

w = 1.2194

$$\hat{y} = xw + b = 8.351$$

New w and b help the loss reduce

Label

y = 9.1

Loss

$$(\hat{y} - y)^2 = 0.559$$

***** Logistic regression

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$z = \boldsymbol{\theta}^T \boldsymbol{x}$$

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

3) Compute loss

$$L(\boldsymbol{\theta}) = (-y\log\hat{y} - (1-y)\log(1-\hat{y}))$$

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} L = \mathbf{x}(\hat{\mathbf{y}} - \mathbf{y})$$

5) Update parameters

$$\theta = \theta - \eta L_{\theta}'$$

 η is learning rate

Dataset

Petal_Length	Petal_Width	Label
1.4	0.2	0
1.5	0.2	0
3	1.1	1
4.1	1.3	1

$$x = \begin{bmatrix} 1 \\ 1.4 \\ 0.2 \end{bmatrix} \qquad y = [0]$$

Dataset

Petal_Length	Petal_Width	Label
1.4	0.2	0
1.5	0.2	0
3	1.1	1
4.1	1.3	1

$$\mathbf{x} = \begin{bmatrix} 1 \\ 1.4 \\ 0.2 \end{bmatrix} \qquad \mathbf{y} = [0]$$

$$\eta = 0.01$$

$$b = 0.005$$

 $w_1 = 0.007$
 $w_2 = 0.001$

$$L'_{\theta} = \mathbf{x}(\hat{\mathbf{y}} - \mathbf{y})$$

$$= \begin{bmatrix} 1\\1.4\\0.2 \end{bmatrix} [0.5]$$

$$= \begin{bmatrix} 0.5\\0.7\\0.1 \end{bmatrix} = \begin{bmatrix} L'_{b}\\L'_{w_{1}}\\L'_{w_{2}} \end{bmatrix}$$

Dataset

Petal_Length	Petal_Width	Label
1.4	0.2	0
1.5	0.2	0
3	1.1	1
4.1	1.3	1

$$\boldsymbol{x} = \begin{bmatrix} 1 \\ 1.4 \\ 0.2 \end{bmatrix} \qquad \boldsymbol{y} = [0]$$

$$\eta = 0.01$$

$$b = -0.005$$

$$w_1 = -0.007$$

$$w_2 = -0.001$$

$$L'_{\theta} = \mathbf{x}(\hat{\mathbf{y}} - \mathbf{y})$$

$$= \begin{bmatrix} 1\\1.4\\0.2 \end{bmatrix} [0.5]$$

$$= \begin{bmatrix} 0.5\\0.7\\0.1 \end{bmatrix} = \begin{bmatrix} L'_{b}\\L'_{w_{1}}\\L'_{w_{2}} \end{bmatrix}$$

Dataset

Petal_Length	Petal_Width	Label
1.4	0.2	0
1.5	0.2	0
3	1.1	1
4.1	1.3	1

$$x = \begin{bmatrix} 1 \\ 1.4 \\ 0.2 \end{bmatrix} \qquad y = [0]$$

 $\hat{y} = 0.49$

Softmax regression

Feature

Training data

Petal_Length	Label	
1.4	0	
1.3	0	Category A
1.5	0	
4.5	1	
4.1	1	Category B
4.6	1	

Label

One-hot encoding for labels

$$y = 0 \rightarrow \mathbf{y}^T = [1, 0]$$

$$y = 1 \rightarrow \mathbf{y}^T = [0, 1]$$

Training data

Feature Label

Petal_Length	Label	
1.4	0	#class=2
1.3	0	
1.5	0	II.C.
4.5	1	#feature=1
4.1	1	
4.6	1	

One-hot encoding for label

$$y = 0 \rightarrow \mathbf{y}^T = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
$$y = 1 \rightarrow \mathbf{y}^T = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Training example

$$(x, y) = (1.4, 0)$$

Training data

Feature Label

Petal_Length	Label	
1.4	0	
1.3	0	
1.5	0	
4.5	1	
4.1	1	
4.6	1	

#class=2

#feature=1

One-hot encoding for label

$$y = 0 \rightarrow \mathbf{y}^T = \begin{bmatrix} y_0 & y_1 \\ 1 & 0 \end{bmatrix}$$
$$y = 1 \rightarrow \mathbf{y}^T = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Training example

$$(x, y) = (1.4, 0)$$

Derivative

$$\frac{\partial L}{\partial z_i} = \hat{y}_i - y_i$$

$$\frac{\partial L}{\partial w_i} = x(\hat{y}_i - y_i)$$

$$\frac{\partial L}{\partial b_i} = \hat{y}_i - y_i$$

$$y = 0 \rightarrow \mathbf{y}^T = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
$$y = 1 \rightarrow \mathbf{y}^T = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$\frac{\partial L}{\partial \mathbf{z}_0} = \hat{y}_0 - 1$$

$$= 0.5 - 1 = -0.5$$

$$\frac{\partial L}{\partial \mathbf{z}_1} = \hat{y}_1 - 0 = 0.5$$

Derivative

$$\frac{\partial L}{\partial z_i} = \hat{y}_i - y_i$$

$$\frac{\partial L}{\partial w_i} = x(\hat{y}_i - y_i)$$

$$\frac{\partial L}{\partial b_i} = \hat{y}_i - y_i$$

$$y = 0 \rightarrow \mathbf{y}^T = \begin{bmatrix} y_0 & y_1 \\ 1 & 0 \end{bmatrix}$$
$$y = 1 \rightarrow \mathbf{y}^T = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$\frac{\partial L}{\partial b_0} = (\hat{y}_0 - 1) = -0.5$$

$$\frac{\partial L}{\partial b_1} = (\hat{y}_1 - 0) = 0.5$$

Derivative

$$\frac{\partial L}{\partial z_i} = \hat{y}_i - y_i$$

$$\frac{\partial L}{\partial w_i} = x(\hat{y}_i - y_i)$$

$$\frac{\partial L}{\partial b_i} = \hat{y}_i - y_i$$

$$y = 0 \rightarrow \mathbf{y}^T = \begin{bmatrix} y_0 & y_1 \\ 1 & 0 \end{bmatrix}$$
$$y = 1 \rightarrow \mathbf{y}^T = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$\frac{\partial \mathbf{L}}{\partial w_0} = x(\hat{y}_0 - 1)$$

$$= -0.5 * 1.4 = -0.7$$

$$\frac{\partial \mathbf{L}}{\partial w_1} = x(\hat{y}_1 - 0)$$

$$= 0.5 * 1.4 = 0.7$$

Update parameters

$$\theta = \theta - \eta L'_{\theta}$$

 η is learning rate

$$\boldsymbol{\theta} = \begin{bmatrix} b_0 & b_1 \\ w_0 & w_1 \end{bmatrix}$$

$$\eta = 0.1$$

$$L'_{\boldsymbol{\theta}} = \begin{bmatrix} \frac{\partial L}{\partial b_0} & \frac{\partial L}{\partial b_1} \\ \frac{\partial L}{\partial w_0} & \frac{\partial L}{\partial w_1} \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} 0.0 & 0.0 \\ 0.0 & 0.0 \end{bmatrix} - 0.01 \begin{bmatrix} -0.5 & 0.5 \\ -0.7 & 0.7 \end{bmatrix}$$
$$= \begin{bmatrix} -0.005 & 0.005 \\ -0.007 & 0.007 \end{bmatrix}$$

Training data

Feature Label

		L
Petal_Length	Label	
1.4	0	
1.3	0	
1.5	0	
4.5	1	
4.1	1	Г
4.6	1	

One-hot encoding for label

$$y = 0 \rightarrow \mathbf{y}^T = \begin{bmatrix} y_0 & y_1 \\ 1 & 0 \end{bmatrix}$$
$$y = 1 \rightarrow \mathbf{y}^T = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Training example

$$(x, y) = (1.4, 0)$$

Feature

Label

Peta	l Length	Petal Width	Label
	1.5	0.2	0
	1.4	0.2	0
	1.6	0.2	0
	4.7	1.6	1
	3.3	1.1	1
	4.6	1.3	1
	5.6	2.2	2
	5.1	1.5	2
	5.6	1.4	2

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \\ \mathbf{x}^{(3)} \end{bmatrix} = \begin{bmatrix} 1.5 & 0.2 \\ 4.7 & 1.6 \\ 5.6 & 2.2 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

Input layer

Hidden layer

Output layer

$$\mathbf{h} = \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 \end{bmatrix}$$
$$= \begin{bmatrix} 0.0 & 0.0 \\ 0.0 & 0.0 \end{bmatrix}$$

$$\boldsymbol{b_h} = \begin{bmatrix} 0.0\\0.0 \end{bmatrix}$$

$$\mathbf{w} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \mathbf{w}_3 \end{bmatrix}$$
$$= \begin{bmatrix} 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 \end{bmatrix}$$

$$\boldsymbol{b}_{\boldsymbol{w}} = \begin{bmatrix} 0.0\\0.0\\0.0 \end{bmatrix}$$

Initialization

Optimizers

Optimizer Selection Data Preparation Define a way to update parameters Data Normalization **Optimizer Selection Model (Network) Loss function** Construction **Selection Metric Selection Parameter**

https://www.kdnuggets.com/2019/06/gradient-descent-algorithms-cheat-sheet.html

Summary

Recommendation

- **Sigmoid and SGD**
- **W**/o using normalization

- **Sigmoid and SGD**
- ***** W/o using normalization


```
import tensorflow as tf
                                                                                  2.325
    import tensorflow.keras as keras
 3
                                                               Tensorflow
                                                                                  2.320
    tf.random.set seed(1234)
                                                                                  2.315
    initializer = tf.keras.initializers.RandomNormal()
                                                                                  2.310
    model = keras.Sequential()
                                                                                  2.305
    model.add(keras.Input(shape=(784,)))
    model.add(keras.layers.Dense(128, activation='sigmoid',
                                  kernel initializer=initializer))
12
                                                                                                 20
                                                                                                                 60
                                                                                                           iteration
    model.add(keras.layers.Dense(128, activation='sigmoid',
                                  kernel initializer=initializer))
14
    model.add(keras.layers.Dense(128, activation='sigmoid',
                                                                                  0.100
                                  kernel initializer=initializer))
16
                                                                                  0.099
    model.add(keras.layers.Dense(128, activation='sigmoid',
                                  kernel_initializer=initializer))
18
                                                                                  0.098
    model.add(keras.layers.Dense(128, activation='sigmoid',
20
                                  kernel initializer=initializer))
                                                                                  0.097
    model.add(keras.layers.Dense(128, activation='sigmoid',
21
                                  kernel_initializer=initializer))
22
                                                                                            train accuracy
                                                                                  0.096
    model.add(keras.layers.Dense(128, activation='sigmoid',
23
                                                                                            val_accuracy
24
                                   kernel initializer=initializer))
                                                                                                20
    model.add(keras.layers.Dense(10, activation='softmax'))
                                                                                                           iteration
```

100

loss

80

80

val loss

100

Further Reading

Dying ReLU

https://towardsdatascience.com/the-dying-relu-problem-clearly-explained-42d0c54e0d24

Initialization

https://www.deeplearning.ai/ai-notes/initialization/index.html

