KONGU ENGINEERING COLLEGE, PERUNDURAI – 638060 DEPARTMENT OF INFORMATION TECHNOLOGY DATABASE MANAGEMENT SYSTEM

Roll No:	Date:	Marks: 20		
1. Consider the following log sequence	ce of two transaction	s on a bank account, with	initial balance 12000, that	
transfer 2000 to a mortgage payment a	and then apply a 5% i	nterest.		
1. T1 start				
2. T1 B old=12000 new=10000				
3. T1 M old=0 new=2000				
4. T1 commit				
5. T2 start				
6. T2 B old=10000 new=10500				
7. T2 commit	1 . 6 . 1 1	7: 3371	1 111	
Suppose the database system crashes j	_	/ is written. When the syst	tem is restarted, which one	
statement is true of the recovery proced. We must redo log record 6 to set B				
B. We must undo log record 6 to set B		n rado log records 2 and 3	1	
C. We need not redo log records 2 and		S)•	
D. We can apply redo and undo opera			tent	
b. We can apply fedo and ando opera	dons in arounary ora	n because they are idempo	tont	
2. Which of the following scenarios m	av lead to an irrecov	erable error in a database s	vstem?	
A. A transaction writes a data item after it is read by an uncommitted transaction				
B. A transaction reads a data item afte				
C. A transaction reads a data item after	=			
D. A transaction reads a data item a	fter it is written by	an uncommitted transact	ion	
3. Consider the following transaction	_	-		
read(x); $x := x - 50$; $write(x)$; $read(y)$				
y should remain constant is that of A.	Atomicity B. Co	onsistency C. Isolation	n D. Durability	
1 Consider a simple sheetmainting pr	otogol and the fallow	ing sat of anamations in the	100	
4. Consider a simple checkpointing pr (start, T4); (write, T4, y, 2, 3); (start,		-	_	
(start, 14), (write, 14, y, 2, 3), (start, x, 1, 9); (commit, T2); (start, T3); (w				
using both undo and redo operations,				
A. Undo: T3, T1; Redo: T2	what are the contents	B. Undo: T3, T1; Redo: T		
C. Undo: none; Redo: T2, T4, T3; T1		D. Undo: T3, T1, T4; Red		
c. chao. none, read. 12, 11, 13, 11		D. Olido. 13, 11, 11, 100	.0. 12	
5. Which of the following concurr	ency protocol ensur	res both conflict serializa	ability and freedom from	
deadlock? (a)2 phase Locking (b)Time	e stamp - ordering			
A.Both (a) and (b) B.(a) on	C.(b)	only D.Neither	(a) nor (b)	
6. Which of the following is correct w		<u>*</u>		
A. Ensures serializability B. Preve	ents Deadlock	C. Detects Deadlock D.	Recover from Deadlock	
7 William of the Callerian and increase	1.4			
7. Which of the following contains co	mpiete record of all a	ctivity that affected the co	ntents of a database during	
a certain period of time?	ooo C Donout www.	ton D Doto moninulat	ion language	
A. Transaction log B. Query langu	age C. Report will	ter D. Data manipulat	ion language	
8 rules used to limit the	e volume of log info	rmation that has to be har	ndled and processed in the	
event of system failure involving the l			idica dia processed il tile	
•	eck-pointing	(C) Log buffer	(D) Thomas	
(12)	k	(2) 208 001101	(2) 110111110	

9. Let us assume that transaction T1 has arrived before transaction T2. Consider the schedule

```
S=r1(A); r2(B); w2(A); w1(B);
                                    Which of the following is true?
A. Allowed under basic timestamp protocol. B. Not allowed under basic timestamp protocols because T1 is
               C. Not allowed under basic timestamp protocols because T2 is rolled back
rolled back
                                                                                           D. None of these
10. Consider the following sequence of log records in the log file before the system crashed:
(Start T1), W1 (A, 3, 4), W1 (B, 1, 2), (commit T1), (start T2), W2 (B, 2, 7), W2 (A, 4, 8), system crash
Which of the following would be the recovery sequence in the immediate database modification scheme?
A. Undo T2 {A: =4, B: =2}, Redo T1 {A: =4, B: =2}
B. Redo T1 {A: =4, B: =2}, Undo T2 {A: =4, B: =2}
C. Redo T1 {A: =4, B: =2}, Redo T2 {B: =7, A: =8}
D. Undo T2 {A: =4, B: =2}, Undo T1 {B: =1, A: =3}
11. Consider the following log file, created in a basic check pointing recovery protocol environment:
(start T1); (W1,A,2,3); (start T2); (W2,B,4,5); (W1,B,5,6); (start T3); (commit T1); (W3,A,3,6);
(Checkpoint, T3,T2); (start T4); (W4,A,6,7); (W3,A,7,9); (W4,B,6,7); (commit T4); (start T5); (W5,A,9,4);
If the system crashes now, what is the correct order of recovery operations using undo-list and redo-list?
A. Redo: \{(T4,A:=7); (T4,B:=7)\}; Undo: \{(T5,A:=9); (T3,A:=7); (T2,no op)\}
B. Redo:{(T4,A:=7);(T3,A:=9);(T4,B:=7);(T5,A:=4)}
C. Undo: {(T5,A:=9);(T3,A:=7);(T2,no op)}; Redo:{(T4,A:=7);(T4,B:=7)}
D. Undo:{(T5,A:=9);(T4,B:=6);(T3,A:=7);(T4,A:=6)}
12. Which of the following is true?
A. Blind writes appear in any schedule that is view serializable but not conflict serializable
B. Blind writes appear in all view serializable schedules that are also conflict serializable
C. Blind writes appear only in conflict serializable schedules that are not view serializable
D. Blind writes not appear in non conflict serializable schedules
13. Assume a basic checkpointing recovery protocol. Suppose the following schedule is being run:
(start, T1); (W1, A, 1200, 1000); (commit, T1); (checkpoint); (start, T2); (W2, B, 1500, 1800); (start, T3); (W3,
A,1000, 500); (start, T4); (W4, C, 3000, 4000); (W3, D, 3000, 2000); (commit, T3); (W2, A, 500, 1500);
Suppose the schedule crashes at this point. What are the undo and redo lists in the correct order?
A. Undo List: T4, T2; Redo List: T1
                                                   B. Undo List: T2, T4; Redo List: T3
C. Undo List: T4, T2; Redo List: T1, T3
                                                   D. Undo List: T4, T2; Redo List: T3
14. Which of the following transaction(s) follow 2-phase locking protocol?
1. lock1(a)read1(a)lock2(b)write2(b)lock1(c)unlock2(b)unclock1(c)lock2(c)unlock1(a)
2. lock1(a)lock1(b)unlock1(a)lock2(a)write2(a)unlock2(a)unlock1(b)
3. lock1(a)lock2(b)lock1(c)lock3(d)unlock2(b)lock3(b)unlock1(a)unlock3(d)unlock1(c)lock3(c)
A. Only 1
              B. Only 2
                                            C. Only 1 and 3
                                                                                D. None of them
15. In wait-die scheme, transactions T1 and T2 have timestamps 10 and 15 respectively. If T2 requests a data
item held by T1 then
A. T2 will be rolled back
                             B. T2 will wait
                                                   C. T1 will be rolled back
                                                                                D. T1 will wait
16. Consider the following schedule. All the locks are exclusive, and between the lock L and unlock U
operations, the corresponding data item is first read and then written.
S: L1(A); L3(D); L1(B); U1(A); L2(C); L2(B); L1(D); L2(B); L3(C); L4(A); L4(C); L5(A); The schedule will
result in a deadlock.
                                                                         B. False
                                                A. True
```

17. Consider the following schedule S. S: L1(A); L3(D); L1(B); U1(A); L2(C); L2(B); L1(D); L2(B); L3(C); L4(A); L4(C); L5(A); Which of the following is a valid set of transactions that are potential victims?

A. {T1; T2; T3; T5}	B. {T1; T2}	C. {T1; T2; T3; T4}	D. {T1; T2; T3}		
Answer: Transactions {T	1; T2; T3} are involved in	cycle of wait-for graph	of the schedule.		
18. Suppose a deadlock o	ccurs in the schedule S gir	ven below.			
S: L1(A); L3(D); L1(B);	U1(A); L2(C); L2(B); L1((D); L2(B); L3(C); L4(A	A); L4(C); L5(A); A transaction that		
causes the least number of cascading rollbacks is decided to be chosen as victim, then which of the following					
transaction cannot be cho	sen as a victim?				
A. T3 B.	T2 C. T1	D. Cannot be decided			
Answer: T1 will cause cascading rollback, if aborted as T4 is reading item A which was written by T1.					
19. Consider three data it	ems $D1,D2$, and $D3$, and t	the following execution	schedule of transactions T1, T2, and		
T3. In this, R(D) and W(I	O) denote the actions read:	ing and writing the data	item D respectively.		
S: R2(D3); R2(D2); W	/2(D2); R3(D2); R3(D3); R1(D1); W1(D1); W	73(D2); W3(D3); R2(D1); R1(D2);		
W1(D2); W2(D1); Check	this schedule is conflict	serializable or not.			

This schedule is not conflict serializable.

20. Find the given schedule is Conflict serializable or view serializable or both.

S: R1(A); R2(A); R3(A); R4(A); W1(B); W2(B); W3(B); W4(B)

This schedule is View serializable only.