We claim:

1. A compound of formula (I)

$$R^{1}$$
 N
 $CR^{3}R^{3}$
 X_{1}
 X_{2}
 X_{3}
 X_{8}
 X_{10}
 X_{10}

wherein

each of X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_9 and X_{10} is C, CH, or N; provided that each of rings A or B has no more than 2 nitrogen atoms;

E is O or NH;

v is 1, 2, or 3;

R¹ and R² are independently selected from hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, aryl, C₃-C₈ cycloalkyl, -C₁-C₁₀ alkylaryl, heterocyclyl, -C₁-C₁₀ alkylheterocyclic, -arylheterocyclyl, -C₃-C₈ cycloalkylheterocyclyl, -C₁-C₈ alkylC(O)C₁-C₈ alkyl, aryl C(O)C₁-C₈ alkyl-, C₃-C₈ cycloalkylC(O)(CH₂)_n-, -C₂-C₈ alkylCH(OH)aryl, -C₂-C₈alkylCH(OH)cycloalkyl, -C₂-C₈ alkylCH(OH)heterocyclyl C₂-C₈ alkylCH(OH)aryl, - C_1 - C_8 alkylC(O)heterocyclic, - C_1 - C_8 alkylC(O)aryl, aryloxy C_1 - C_8 alkyl-, benzhydryl, fused bicyclic, C₁-C₈ alkylfused bicyclic, phenylC(O)-, phenylC(O) C₁-C₈ alkyl-, C₁-C₈ $alkoxyC_1-C_8\ alkyl-,-CO(O)C_1-C_8 alkyl,\ -SO_2C_1-C_8 alkyl,\ -SO_2C_1-C_{10}\ alkylaryl,\ -SO_2C_1-C_8 alkyl,\ -SO_2C_1-C_8 alkyl$ alkylheterocyclic, $-C_1-C_8$ alkylcycloalkyl, $-(CH_2)_nC(O)OR^8$, $-(CH_2)_nC(O)R^8$, -(CH₂)_mC(O)NR⁸R⁸, and -(CH₂)_mNSO₂R⁸; wherein each of the alkyl, alkenyl, cycloalkyl, heterocyclic, and aryl groups are optionally substituted with one to five groups independently selected from halo, C₁-C₈ haloalkyl, C₁-C₈ thioalkyl, C₁-C₈ alkyl, C₂-C₈ alkenyl, aryl, $-C_1-C_8$ alkylaryl, $-C(O)C_1-C_8$ alkyl, $-CO(O)C_1-C_8$ alkyl, $-SO_2C_1-C_8$ alkyl, $-SO_2C_1-C_8$ SO₂C₁-C₈ alkylaryl, -SO₂C₁-C₈ alkylheterocyclic, -C₁-C₈ alkylcycloalkyl, - $(CH_2)_nC(O)OR^8$, $-(CH_2)_nC(O)R^8$; and wherein R^1 and R^2 may optionally combine with each other, or with 1, or 2 atoms adjacent to the nitrogen atom to form a 4, 5, 6, or 7membered nitrogen-containing heterocycle which nitrogen -containing heterocycle may further have substituents selected from the group consisting of amino, C₁-C₈ alkyl, C₂-C₈

alkenyl, C2-C8 alkynyl, aryl, C1-C8 alkylaryl, -C(O)C1-C8 alkyl, -CO(O)C1-C8 alkyl, halo,

oxo. C₁-C₈ haloalkyl; and wherein R¹ and R² may independently attach to the A ring to form a 4, 5, 6, or 7-member nitrogen-containing bicyclic heterocycle which nitrogencontaining bicyclic heterocycle may further have substituents selected from the group consisting of oxo, amino, -C₁-C₈ alkyl, -C₂-C₈ alkenyl, -C₂-C₈ alkynyl, aryl, -C₁-C₈ alkylaryl, $-C(O)C_1-C_8$ alkyl, $-CO(O)C_1-C_8$ alkyl, halo, and C_1-C_8 haloalkyl; and wherein R^1 and R^2 are not simultaneously hydrogen; and provided that when v is 2, and R^3 and R^3 are both hydrogen or CH₃, and both A and B rings are phenyl, then the group -NR¹R² is not equal to -NHCH₂Phenyl; and further provided that when one of R¹ or R² is -CH₂CH₂optionally substituted phenyl or -CH₂CH₂-optionally substituted naphthyl, or -CH₂CH₂optionally substituted 5 or 6 member monocyclic heterocyclic aromatic, and v is 1, and both A and B rings are phenyl, then R⁶ and R⁷ are not simultaneously hydrogen; R³ and R³ are each independently selected from hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, aryl, -C₁-C₈ alkylcycloalkyl, and -C₁-C₈ alkylaryl; R⁴ and R⁵ are each independently selected from hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, -C₂-C₈ alkynyl, -C₁-C₈ alkoxyalkyl, C₁-C₈ thioalkyl, halo, C₁-C₈ haloalkyl, -C₁-C₈ alkoxyhaloalkyl, aryl, -C₁-C₈ alkylaryl, -C(O)C₁-C₈ alkyl, or -C(O)OC₁-C₈ alkyl, -C₁-C₈ alkylamino, -C₁-C₈ alkylcycloalkyl, -(CH₂)_mC(O)C₁-C₈ alkyl, and (CH₂)_nNR⁸R⁸, wherein each R⁴ or R⁵ is attached to its respective ring only at carbon atoms, and wherein y is 0, 1, 2, or 3; and wherein z is 0, 1, 2, or 3; R⁶ and R⁷ are each independently selected from hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, -C(O)C₁-C₈ alkyl, hydroxy, C₁-C₈ alkoxy, -SO₂C₁-C₈ alkyl, SO₂C₁-C₈ alkylaryl, -SO₂C₁-C₈ alkylheterocyclic, aryl, -C₁-C₈ alkylaryl, C₃-C₇ cycloalkyl, -C₁-C₆ alkylcycloalkyl, -(CH₂)_nC(O)R⁸, -(CH₂)_mC(O)NR⁸R⁸, and -(CH₂)_mNSO₂R⁸; wherein each of the alkyl, alkenyl, and aryl groups are optionally substituted with one to five groups independently selected from C₁-C₈ alkyl, C₂-C₈ alkenyl, aryl, and C₁-C₈ alkylaryl; and wherein R⁶ and R⁷ may independently combine with each other, and with the nitrogen atom to which they are attached or with 1, or 2 atoms adjacent to the nitrogen atom to form a 4, 5, 6, or 7-membered nitrogen containing heterocycle which nitrogen containing

heterocycle may optionally have substituents selected from the group consisting of oxo,

 C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, aryl, $-C_1$ - C_8 alkylaryl, $-C(O)C_1$ - C_8 alkyl, $-C_1$ - C_1 - C_2 - C_2 - C_2 - C_3 - C_1 - C_2 - C_2 - C_3 - C_1 - C_2 - C_2 - C_3 - C_1 - C_2 - C_2 - C_3 - C_2 - C_3 - C_1 - C_2 - C_3 - C_2 - C_3 - C_3 - C_3 - C_3 - C_3 - C_4 - C_3 - C_4 - C_3 - C_4 - C_5

PCT/US2003/026300

 $CO(O)C_1$ - C_8 alkyl, hydroxy, C_1 - C_8 alkoxy, - C_1 - C_8 alkylamine, amino, halo, and haloalkyl;

WO 2004/026305

 R^8 is hydrogen, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_1 - C_8 alkylaryl, - $C(O)C_1$ - C_8 alkyl, or - $C(O)OC_1$ - C_8 alkyl; and wherein n is 0, 1, 2, 3 or 4 and m is 1, 2, or 3; or a pharmaceutically acceptable salt, solvate, enantiomer, racemate, diastereomer or mixture of diastereomers thereof.

- 2. The compound according to claim 1 wherein the A-ring is selected from the group consisting of phenyl, pyridine, pyrimidine, pyrazine, and pyridazine.
- 3. A compound according to Claim 1 wherein the B-ring is selected from the group consisting of phenyl, pyridine, pyrimidine, pyrazine, and pyridazine.
- 4. A compound according to Claim 1 wherein the A-ring is phenyl and the B ring is pyridinyl.
- 5. A compound according to Claim 1 wherein the A ring is phenyl and the B ring is pyrazinyl.
- 6. A compound according to Claim 1 wherein the A-ring is pyridinyl and the B-ring is phenyl.
- 7. A compound according to Claim 1 wherein both rings A and B are pyridinyl.
 - 8. A compound according to Claim 1 wherein both rings A and B are phenyl.
- 9. A compound according to any one of Claims 1 to 8 wherein E is an oxygen atom.
- 10. A compound according to Claim 1 wherein y is 0, 1, or 2, and R⁴ is independently selected from the group consisting of hydrogen, fluoro, chloro, bromo.

WO 2004/026305 PCT/US2003/026300

methoxy, ethoxy, methyl, ethyl, isopropyl, trifluoromethyl, trifluoromethoxy, phenyl, and benzyl.

- 11. A compound according to Claim 1 wherein z is 0, 1, or 2, and R⁵ is independently selected from the group consisting of hydrogen, fluoro, chloro, bromo, methoxy, ethoxy, methyl, ethyl, isopropyl, trifluoromethyl, trifluoromethoxy, phenyl, and benzyl.
- 12. A compound according to Claim 1 wherein R¹ and R² are each independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, phenyl,

$$(CH_2)_n$$

and wherein n is 1, 2, or 3.

13. The compound according to any one of Claims 1 to 12 wherein R^6 and R^7 are each independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, phenyl, provided that when one of R^1 or R^2 is $-CH_2CH_2$ -optionally substituted phenyl or $-CH_2CH_2$ -optionally substituted naphthyl, or $-CH_2CH_2$ -optionally substituted 5 or 6 member monocyclic heterocyclic aromatic, and v is 1, and the B ring is phenyl, then R^6 and R^7 are not simultaneously hydrogen.

- 14. A compound according to any one of Claims 1 to 12 wherein E is an oxygen atom, R^6 and R^7 are each hydrogen provided that R^1 and R^2 are not simultaneously hydrogen and further provided that when one of R^1 or R^2 is -CH₂CH₂-optionally substituted phenyl or -CH₂CH₂-optionally substituted naphthyl, or -CH₂CH₂-optionally substituted 5 or 6 member monocyclic heterocyclic aromatic, and v is 1, the B ring is not phenyl.
 - 15. A compound according to any one of Claims 1 to 12 wherein v is 1 or 2.
 - 16. A compound according to any one of Claims 1 to 12 wherein v is 1.
- 17. A compound according to any one of Claims 1 to 12 wherein vis 2, m is 1, n is 1, y is 0 or 1 and z is 0 or 1.
- 18. A compound selected from the group consisting of: 6-{4-[(3-Methyl-butylamino)-methyl]-phenoxy}-nicotinamide

5-{2-Fluoro-4-[(3-methyl-butylamino)-methyl]-phenoxy}-pyrazine-2-carboxamide

5-(2-Methoxy-4-pentylaminomethyl-phenoxy)-pyrazine-2-carboxamide

6-(2-Fluoro-4-{[2-(tetrahydro-pyran-4-yl)-ethylamino]-methyl}-phenoxy)-nicotinamide

$$\bigcup_{N \to \infty} \bigcup_{N \to \infty} \bigcup_{N \to \infty} NH_2$$

6-(2,3-Difluoro-4-pentylaminomethyl-phenoxy)-nicotinamide

5-(4-{[2-(4-Fluoro-phenyl)-ethylamino]-methyl}-2-methoxy-phenoxy)-pyrazine-2-carboxamide

$$\begin{array}{c} \text{F} \\ \\ \text{N} \\ \\ \text{O} \\ \text{CH}_3 \end{array}$$

5-{4-[(4,4-Dimethyl-pentylamino)-methyl]-2-methoxy-phenoxy}-pyrazine-2-carboxamide

$$H_3C \xrightarrow[N_3]{N} N \xrightarrow[N_3]{N} NH_2$$

5-(2-Methoxy-4-{[2-(tetrahydro-pyran-4-yl)-ethylamino]-methyl}-phenoxy)-pyrazine-2-carboxamide

5-{4-[(3,3-Dimethyl-butylamino)-methyl]-2-fluoro-phenoxy}-pyrazine-2-carboxamide

5-(2-Fluoro-4-{[2-(tetrahydro-pyran-4-yl)-ethylamino]-methyl}-phenoxy)-pyrazine-2-carboxamide

$$\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}$$

6-{2-Methyl-4-[(3-methyl-butylamino)-methyl]-phenoxy}-nicotinamide; methanesulfonic acid salt

5-(2-Methyl-4-{[2-(tetrahydro-pyran-4-yl)-ethylamino]-methyl}-phenoxy)-pyrazine-2-carboxamide

$$\bigcap_{N \to \infty} \bigcap_{CH_3} \bigcap_{N \to \infty} \bigcap_{NH_2}$$

6-{4-[(3,3-Dimethyl-butylamino)-methyl]-2-fluoro-6-methoxy-phenoxy}-nicotinamide

5-(2-Fluoro-4-pentylaminomethyl-phenoxy)-pyrazine-2-carboxamide

3-Chloro-4-{4-[(3,3-dimethyl-butylamino)-methyl]-phenoxy}-benzamide

$$\begin{array}{c} H_3C \\ \\ H_3C \\ \\ \end{array}$$

6-(4-{[2-(Tetrahydro-pyran-4-yl)-ethylamino]-methyl}-phenoxy)-nicotinamide

6-{4-[2-(3,3-Dimethyl-butylamino)-ethyl]-2,6-difluoro-phenoxy}-nicotinamide

$$H_3C$$
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3

6-{2-Chloro-4-[(3-methyl-butylamino)-methyl]-phenoxy}-nicotinamide

3,5-Difluoro-4-{4-[(3-methyl-butylamino)-methyl]-phenoxy}-benzamide

6-{2,3,6-Trifluoro-4-[(3-methyl-butylamino)-methyl]-phenoxy}-nicotinamide

$$H_3C$$
 H_3
 H_3C
 H_3
 $H_$

6-{2,6-Difluoro-4-[(3-methyl-butylamino)-methyl]-phenoxy}-nicotinamide

3-Fluoro-4-{4-[(3-methyl-butylamino)-methyl]-phenoxy}-benzamide

and a pharmaceutically acceptable salt, or solvate thereof.

19. The compound 6-{4-[(3-Methyl-butylamino)-methyl]-phenoxy}-nicotinamide

$$\mathsf{H_3C} \overset{\mathsf{CH_3}}{\longleftrightarrow} \mathsf{N} \overset{\mathsf{O}}{\longleftrightarrow} \mathsf{NH_2}$$

or a pharmaceutically acceptable salt, or solvate thereof.

20. The hydrochloric acid salt of the compound 6-{4-[(3-Methyl-butylamino)-methyl]-phenoxy}-nicotinamide

21. The compound 5-(4-{[2-(4-Fluoro-phenyl)-ethylamino]-methyl}-2-methoxy-phenoxy)-pyrazine-2-carboxamide

or a pharmaceutically acceptable salt, or solvate thereof.

22. The compound 5-(2-Methoxy-4-pentylaminomethyl-phenoxy)-pyrazine-2-carboxylic acid amide

or a pharmaceutically acceptable salt, or solvate thereof.

23. The compound 5-(2-Methoxy-4-{[2-(tetrahydro-pyran-4-yl)-ethylamino]-methyl}-phenoxy)-pyrazine-2-carboxamide

or a pharmaceutically acceptable salt, or solvate thereof.

24. The compound 6-(2-Fluoro-4-{[2-(tetrahydro-pyran-4-yl)-ethylamino]-methyl}-phenoxy)-nicotinamide; methanesulfonic acid salt

$$N_{3}C-\frac{1}{9}$$

- 25. A compound according to any one of Claims 1 to 18 wherein the pharmaceutically acceptable salt is the hydrochloric acid salt, the methanesulfonic acid salt, hydrobromide salt, the bisulfate salt or tartaric acid salt.
- 26. A pharmaceutical composition comprising a therapeutically effective amount of a compound according to any one of Claims 1 to 24 in association with a carrier, diluent and/or excipient.
- 27. A method for blocking a mu, kappa, delta or receptor combination (heterodimer) thereof in mammals comprising administering to a mammal requiring blocking of a mu, kappa, delta or receptor combination (heterodimer) thereof, a receptor blocking dose of a compound according to any one of Claims 1 to 24, or a pharmaceutically acceptable salt, enantiomer, racemate, mixture of diastereomers, or solvate thereof.

28. A method of treating or preventing obesity and Related Diseases comprising administering a therapeutically effective amount of a compound of formula II wherein formula II is represented by the structure

$$R^{1'}$$
 N
 $(CR^{3a}R^{3b})$
 $X_{5'}$
 $X_{4'}$
 $X_{7'}$
 $X_{8'}$
 $X_{10'}$
 $X_{9'}$
 $X_{10'}$
 $X_{10'}$
 $X_{10'}$
 $X_{10'}$

wherein

each of $X_{1'}$, $X_{2'}$, $X_{3'}$, $X_{4'}$, $X_{5'}$, $X_{6'}$, $X_{7'}$, $X_{8'}$, $X_{9'}$ and $X_{10'}$ is C, CH, or N; provided that each of rings A' or B' has no more than 2 nitrogen atoms;

E' is O or NH;

v is 0, 1, 2 or 3;

 $R^{1'}$ and $R^{2'}$ are independently selected from hydrogen, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, aryl, C_3 - C_8 cycloalkyl, $-C_1$ - C_{10} alkylaryl, heterocyclyl, $-C_1$ - C_{10} alkylheterocyclic, -arylheterocyclyl, -C₃-C₈ cycloalkylheterocyclyl, -C₁-C₈ alkylC(O)C₁-C₈ alkyl, aryl $C(O)C_1-C_8$ alkyl-, C_3-C_8 cycloalkyl $C(O)(CH_2)_n$ -, $-C_2-C_8$ alkylCH(OH)aryl, $-C_2-C_8$ alkyl-, $-C_3-C_8$ alkyl-, C₈alkylCH(OH)cycloalkyl, -C₂-C₈ alkylCH(OH)heterocyclyl C₂-C₈ alkylCH(OH)aryl, -C₁-C₈ alkylC(O)heterocyclic, -C₁-C₈ alkylC(O)aryl, aryloxyC₁-C₈ alkyl-, benzhydryl, fused bicyclic, C_1 - C_8 alkylfused bicyclic, phenylC(O)-, p $alkoxyC_1-C_8\ alkyl-,-CO(O)C_1-C_8alkyl,\ -SO_2C_1-C_8alkyl,\ -SO_2C_1-C_{10}\ alkylaryl,\ -SO_2C_1-C_8alkyl,\ -SO_2C_1-C_8$ alkylheterocyclic, $-C_1-C_8$ alkylcycloalkyl, $-(CH_2)_nC(O)OR^8$, $-(CH_2)_nC(O)R^8$, -(CH₂)_mC(O)NR⁸R⁸, and -(CH₂)_mNSO₂R⁸; wherein each of the alkyl, alkenyl, cycloalkyl, heterocyclic, and aryl groups are optionally substituted with one to five groups independently selected from halo, C1-C8 haloalkyl, C1-C8 thioalkyl, C1-C8 alkyl, C2-C8 alkenyl, aryl, - C_1 - C_8 alkylaryl, - $C(O)C_1$ - C_8 alkyl, - $CO(O)C_1$ - C_8 alkyl, - SO_2C_1 - C_8 alkyl, -SO₂C₁-C₈ alkylaryl, -SO₂C₁-C₈ alkylheterocyclic, -C₁-C₈ alkylcycloalkyl, -(CH₂)_nC(O)OR⁸, -(CH₂)_nC(O)R⁸; and wherein R¹ and R² may optionally combine with each other, or with 1, or 2 atoms adjacent to the nitrogen atom to form a 4, 5, 6, or 7membered nitrogen-containing heterocycle which nitrogen -containing heterocycle may further have substituents selected from the group consisting of amino, C1-C8 alkyl, C2-C8

alkenyl, C_2 - C_8 alkynyl, aryl, C_1 - C_8 alkylaryl, - $C(O)C_1$ - C_8 alkyl, - $CO(O)C_1$ - C_8 alkyl, halo, oxo, C_1 - C_8 haloalkyl; and wherein R^1 ' and R^2 ' may independently attach to the A' ring to form a 4, 5, 6, or 7-member nitrogen-containing bicyclic heterocycle which nitrogen-containing bicyclic heterocycle may further have substituents selected from the group consisting of oxo, amino, - C_1 - C_8 alkyl, - C_2 - C_8 alkenyl, - C_2 - C_8 alkynyl, aryl, - C_1 - C_8 alkylaryl, - $C(O)C_1$ - C_8 alkyl, - $CO(O)C_1$ - C_8 alkyl, halo, and C_1 - C_8 haloalkyl; provided that R^1 ' and R^2 ' are not simultaneously hydrogen; and provided that when V is 2, and R^{3a} and R^{3b} are both hydrogen or CH_3 , and both A' and B' rings are phenyl, then the group - $NR^{1}R^{2}$ ' is not equal to - $NHCH_2$ Phenyl; and further provided that when one of R^{1} ' or R^{2} ' is - CH_2 -optionally substituted phenyl or - CH_2CH_2 -optionally substituted naphthyl, or - CH_2CH_2 -optionally substituted 5 or 6 member monocyclic heterocyclic aromatic, and V is 1, and both A' and B' rings are phenyl, then R^{6} ' and R^{7} ' are not simultaneously hydrogen;

 R^{3a} and R^{3b} are each independently selected from hydrogen, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkyloyl, aryl, aryl, aryl, and - C_1 - C_8 alkylaryl; $R^{4'}$ and $R^{5'}$ are each independently selected from hydrogen, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, - C_2 - C_8 alkynyl, - C_1 - C_8 alkoxyalkyl, C_1 - C_8 thioalkyl, halo, C_1 - C_8 haloalkyl, - C_1 - C_8 alkoxyhaloalkyl, aryl, - C_1 - C_8 alkylaryl, - $C(O)C_1$ - C_8 alkyl, or - $C(O)OC_1$ - C_8 alkyl, - C_1 - C_8 alkylamino, - C_1 - C_8 alkylcycloalkyl, - $(CH_2)_mC(O)C_1$ - C_8 alkyl, and - $(CH_2)_nNR^8R^8$, wherein each $R^{4'}$ and $R^{5'}$ is attached to its respective ring only at carbon atoms, and wherein y is 0, 1, 2, or 3; and wherein z is 0, 1, 2, or 3;

 $R^{6'}$ and $R^{7'}$ are each independently selected from hydrogen, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, $-C(O)C_1$ - C_8 alkyl, hydroxy, C_1 - C_8 alkoxy, $-SO_2C_1$ - C_8 alkyl, SO_2C_1 - C_8 alkylaryl, $-SO_2C_1$ - $-S_8$ alkylaryl, and $-SO_2C_1$ - $-S_8$ alkylaryl, and $-SO_2C_1$ - $-S_8$ alkylaryl, and aryl groups are optionally substituted with one to five groups independently selected from $-S_8$ alkylaryl, $-S_8$ alkenyl, aryl, and $-S_8$ alkylaryl; and wherein $-S_8$ and $-S_8$ alkylaryl combine together, and with the nitrogen atom to which they are attached or with 1, or 2 atoms adjacent to the nitrogen atom to form a 4, 5, 6, or 7-membered nitrogen containing heterocycle which nitrogen containing heterocycle may further have substituents selected from the group consisting of $-S_8$ alkyl, $-S_8$ - $-S_8$

2. 6

alkenyl, C_2 - C_8 alkynyl, phenyl, $-C_1$ - C_8 alkylaryl, $-C(O)C_1$ - C_8 alkyl, $-CO(O)C_1$ - C_8 alkyl, hydroxy, $-C_1$ - C_8 alkoxy, halo, and haloalkyl; R^8 is hydrogen, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_1 - C_8 alkylaryl, $-C(O)C_1$ - C_8 alkyl, or $-C(O)OC_1$ - C_8 alkyl; wherein n is 0, 1, 2, 3 or 4 and wherein m is 1, 2 or 3; or a pharmaceutically acceptable salt, solvate, enantiomer, racemate, diastereomers or mixtures thereof.

- 29. A method according to Claim 28 wherein the Related Diseases is selected from the group consisting of diabetes, diabetic complications, diabetic retinopathy, atherosclerosis, hyperlipidemia, hypertriglycemia, hyperglycemia, and hyperlipoproteinemia.
- 30. A method of treating and/or preventing diseases related to obesity including irritable bowel syndrome, nausea, vomiting, obesity-related depression, obesity-related anxiety, smoking and alcohol addiction, sexual dysfunction, substance abuse, drug overdose, addictive behavior disorders, compulsive behaviors and stroke, comprising administering a therapeutically effective amount of a compound of formula I or II.
- 31. Use of a compound of formula I according to any one of Claims 1 to 24 or a compound of formula II according to Claim 28 in the manufacture of a medicament for the treatment and/or amelioration of the symptoms associated with obesity and Related Diseases.
- 32. A method of treating and/or preventing obesity and Related Diseases comprising administering a therapeutically effective amount of a compound of formula I or II to a patient in need thereof.
- 33. A method of suppressing appetite in a patient in need thereof, comprising administering a therapeutically effective amount of a compound of formula I or II.

WO 2004/026305 PCT/US2003/026300

552

- 34. A method of effecting weight loss in an obese patient comprising administering an effective amount of a compound of formula I or pharmaceutically acceptable salt, solvate, racemate or enantiomer thereof.
- 35. Use of a compound according to Claim 18 for the treatment of obesity comprising administering an effective dose of said compound to a person in need thereof.
- 36. Use of a compound according to Claim 18 for the treatment of weight loss comprising administering an effective dose of said compound to a person in need thereof.
- 37. Use of a compound according to Claim 19 or 20 or 21 or 22 or 23 or 24 for the treatment of obesity comprising administering an effective dose of said compound to a person in need thereof.
- 38. A pharmaceutical composition for the treatment and/or amelioration of the symptoms associated with obesity and Related Diseases, containing as an active ingredient a compound of formula I according to any one of Claims 1 to 24 or a compound of formula II according to Claim 28.