eNoze V2

Второй релиз аппаратной (HW) и программной (SW/FW) части проекта графен – электронный нос

20-May-2024

Igor Bocharov

1
2
4
5
6
6
7
10
11
12
13
14
15
16
18
19
20

Цель

- 1. Изготовление HW и соответствующей прошивки FW, совместимой с первой версией V1 платы и верхнего ПО
- 2. Добавление периферии: датчиков температуры, 3х ходовой клапан, мотор, датчик положения мотора
- 3. Софт верхнего уровня

Проблемы V1

- 1. Нагрев дисбаланс каналов нагревателя, неясна точность нагрева и температура на кристалле
- 2. Нет сенсоров температуры и влажности, выхода на мотор
- 3. Верхний софт не убедителен

Доработка нагрева

Перепутаны (перекрещены) земли накала и сенсора, перекос земель достаточна для ощутимой разницы в mV в напряжении на термо сенсоре и неправильного измерения сопротивления единиц ом. В новой ревизии поменять земли или на плате, но логичнее на плате датчика. Также сильнее соединить земли - занизить R118 до 0.2 Ом.

Очень маленькое и шумное напряжение на термо сенсоре датчика, 20-50mV. Поставить R84/R103 на 82Ω . Это при +Utemp 1.090V даст: $50\text{mV}/13\text{ma}@4\Omega/25^{\circ}\text{C}$ и $250\text{mV}/10\text{mA}@24\Omega@100^{\circ}\text{C}$. При Vref=2.5V это как раз полный размах оцифровки для Ku=10 предусилителя.

На V3 схему усиления Rsens в целом надо проинспектировать и пересмотреть, сейчас точность сомнительна. Все задающие резисторы поставить 1% точности, и так уже в софте подогнаны коэффициенты. Изготовителям датчика надо улучшать серийность, такой разброс сопротивлений накала вынуждает использовать шим на 5В.

Ноль-перемычки на разъёме и резисторы подачи напряжения на Rsens

Программная реализация ШИМ на накале излишня и вредна, PWM уже есть в DC/DC. Из-за лёгкой подложки редкий ШИМ нагрева модулирует сигнал. В V2 накал занижен до 3В через подбор резисторов FB DC/DC и сделан обход нижнего резистора закорачиванием через mosfet дискретным сигналом с MCU PC14. Это даёт два напряжения 1.8-2.4 и 2.1-4.9В, можно регулировать подстроечником, что должно давать примерно 45 и 95 на графене. Нижнее плечо выбрано что бы случайно при обрыве не подать Vin на графен. Можно заменить R119 для LED2 на 300Ом, будет ярче.

Алгоритм. По умолчанию — старый алгоритм, в котором при Ts>60 включается V2_Cmd_Heat_Boost. Установка V2_Cmd_Heat_Still>0 *выключает* софт алгоритм и на накале будет постоянное напряжение от DC/DC, которое вручную можно ставить больше/меньше через V2_Cmd_Heat_Boost. Катушка V2_Cmd_HEAT также запускает 301h старого алгоритма, равно как V2_Cmd_START запускает измерение 300h. Тест режим всё выключает.

На V3 переделать накал на DC/DC управляемый с DAC с MCU через FB с учётом низких напряжений порядка 1-3B. Сделать по одному DC/DC на каждый канал т.к. они сильно разные (см прил.2).

Подпайка к свободным ногам контроллера

PC14 – активация boost_mode для DC/DC через 100R

PC15 – однопроводной интерфейс датчика 5 с подтяжкой на 3V3s, разъём впаять отдельно

Подтяжка линии данных наверх для датчиков HMDT

Занижение питания датчика BME для линии RX/TX Screen, переход в режим i2c и подключение 2x датчиков.

Плата датчиков ВМЕ может быть толерантна к 5V и тогда занижение не обязательно. Инициализация этих датчиков при старте и при выходе из Test.

Периферия и датчики

Всего реализовано девять каналов измерения погоды в виде температура/влажность/давление. Дискретные входы для датчиков положения вала. Дискретные выходы на мотор и клапан 24V.

Temp0 — V2_PCB_Temp0, аналоговый наплатный датчик LM60, низкой точности. В SW вручную откорректирован на -2C.

TempR1/R2 — V2_Heat_T1/T2. Rsens от графена уже обсуждены выше. Датчики в виде золотой напылённой полосы на графене, подача измерительного напряжения, отдельный буфер и усилитель. (SW — сделать в основном алгоритме поддержку R1/R2 двух номиналов сопротивлений для двух каналов, иначе не нагреть ровно. Уточнить параметры полинома для преобразования R в T для золота.)

Temp1/2 – V2_1Wire_Sens1/2 однопроводные цифровые датчики, два типа: чисто температура DS18 и датчик температуры-влажности DHT, автоопределение типа, 0xFFFF если нет датчика.

Temp3/4 — V2_1Wire_Sens3/4 однопроводные цифровые датчики аналогично предыдущим, отмечены как HMDT1/2 на плате. (Сделать подтяжку линии данных на + через 4.5К, включение питания через $PWR_{-}HMDT$)

Temp5 — V2_1Wire_Sens5 доп канал однопроводного датчика для красивого выравнивания регистров modbus на 0430h, впаян отдельно, включен на PC15 (как вариант подклеен на КТП8 на фторопластовый задник графена). Сюда же подключается датчик вращения, который активируется при регистре Rotat>0.

Temp6/7 — V2_I2C_Sens1/2 датчик BME280 вставлен на место TX0/RX0 в режиме I2C. При этом FU4 перекинут с 5V на 3.3V если будет прямое подключение без LDO на плате BME. На один физический i2c можно адресовать два BME280 перемычкой на нём. В коде сделана поддержка нескольких датчиков с разным i2c адресом. Исходя из сложной логики загрузки калибровки, эти датчики инициализируются при старте платы или выходе из Test.

Motor – X2, 12V, V2 Cmd Motor

Valve - X5, 24V, V2_Cmd_Valve

Датчик положения двигателя

Двигатель обычный, не шаговый, оборотов много, положение точно выставить нельзя, поэтому реализован *счётный алгоритм* останова по количеству оборотов.

- По умолчанию значение регистра Rot=0 и доп разъём Temp5 работает в режиме датчика температуры, при этом катушка V2_Cmd_Motor вручную запускает и останавливает двигатель обычным способом на постоянное вращение.
- При установке в регистр Rot значения отличного от нуля, после запуска двигателя отсчитывается установленное значение *срабатывания* датчиков положения и двигатель останавливается сбросом регистра V2_Cmd_Motor. При этом схемотехнически датчики положения можно параллелить (open drain) и увеличивать точность позиционирования по количеству датчиков на один оборот оси двигателя.

Готовый датчик имеет включённый режим при открытом опто зазоре, при этом выходной транзистор открыт, что не даёт включать параллельно несколько датчиков (но схема подсчёта работоспособна). Для параллельного включения сразу нескольких датчиков надо инвертировать сигнал, при этом плата датчика дорабатывается следующим образом, используя свободный второй компаратор.

2DO – т.к. не было свободных ног MCU, задействована нога PC15 OSC в которой нет ALT режима связки с TIMER и подсчёт идёт вручную опросом с периодом 50ms. Потом надо навесить на нормальную ногу и делать подсчёт аппаратным таймером. И вообще поставить шаговый двигатель.

Консольный клиент

Для отладки обмена с платой написан консольный клиент на питоне. Функции:

- Получение и парсинг регистров V1, с учётом swap байтов
 - 1-8h номера каналов и состояние термо сенсора
 - 300-301h управление
 - o 302-312h установки термостата
 - 30h измеренная матрица
- Управление V2
 - o Однобитные Coil, по всем трём функциям-командам modbus 03-05-10
 - o 16 битные регистры записи, установка командой 06h значений Ro для двух каналов, V1Ts и Rot
 - 16 битные регистры чтения, регулярное чтение и парсинг регистров сенсоров

```
PS D:\dev\eNose> py .\v2enose.py
Ioffe inst. Graphene eNose V2 client, modbus-COM16, z/q-quit, h-help
Ver b'20052024' Ts:66.00 Ro:8.80 Rot:7 CoilsON: h-boost
Help: z,q-exit,
get: p-toggle poll regs (+/- speed), c,a-coils, s-sets, v-V1 regs,
set: 0...9?-coils, w-Ro, t-Ts, r-Rot
O=start, 1=heat, 2=h-boost, Ts:66.00 Ro:8.80 Rot:7
                               3=h-still, 4=motor, 5=valve, 15=test,
V1 MeasN.Ch.dT:45.10.940 Tr:21.66/37.08 Rt:9.39/11.03 Vref:3.310
V1 Start=1, Heat=0
V1 Ts:66.00 Rs:10.60 Ro:8.80 A:0.0031 B:0 Kp:0.30 Ki:0.01 M1:0xfffff0xffff
0x030(R) resp error
Regs:
        HeartB:5711
                        Rt:9.3/11.0
                                         Tr:21.2/37.0
                                                         Tb: 27.9
Sens:
        1:27.5
                        2:empty
                                         3:27.6/40.4
                                                         4:30.2
                                                                          5:rot
        1:25.34/37.78/1009.76
Sen2:
                                         2:empty
                                         Tr:21.0/36.7
Regs:
        HeartB:5712
                        Rt:9.3/11.0
                                                          Tb: 27.8
                                         3:27.6/40.4
Sens:
        1:27.5
                        2:empty
                                                          4:30.2
                                                                          5:rot
        1:25.36/38.04/1009.76
Sen2:
                                         2:empty
```

Алгоритм

- 1. Подача питания, инициализация периферии, загрузка параметров Ts Ro A Msk 0Rv2 из flash
- 2. Постоянно измерение девяти датчиков температуры, 50ms канал, полный цикл примерно 1s.
- 3. Постоянный обмен по modbus по прерыванию USART
- 4. Если Start то запуск измерения каналов, 100ms канал
- 5. Если Heat то включение Heat DC/DC примерно 1s цикл термостат, если Still постоянно нагрев
- 6. Если Motor − то подача 12V на X2 "Vent ", если Rot>0 то счёт оборотов по разъёму Temp5
- 7. Если Valve то включение 24V DC/DC и подача напряжения на X5
- 8. Если Test то останов измерения каналов, термодатчиков, двигателя и генерация Rand

Индикаторы

Интерфейсы

Предлагаемый прототип интерфейса

Общая часть

Слева — закладки и управление процессом. Все остальные параметры или прописаны в плату, но доступны по modbus, или вынесены в конфиг. Сейчас понятны два интерфейса - 2Д графики с таблицей, и лепестковая диаграмма. Следующие интерфейсы будут добавляться в закладки.

Слева Control: запуск измерения, запуск нагревателя с установкой температуры, запуск мотора с установкой оборотов, включение клапана. В середине снизу Conn: выбор ком порта, выбор Ro датчика *из conf файла*, вывод релиза платы.

- Алгоритм термостата реализован в плате, достаточно установленной температуры.
- Сопротивления термосенсоров чипа вынести в конфиг файл, тут выбирать чип из списка по названию.
- Всё остальное что есть конфигурационного в плате в этом интерфейсе не реализовывать

Конфигурация платы и текущее значение сенсоров

(не делать, приведено для справки)

Подумать где разместить Connect и BoardName, отдельной вкладки недостойно. Остальные параметры скрыты т.к. известные константы, доступны через modbus редактор или скрипт. Точнее:

- RL RR выбирается по названию чипа из вкладки Control и хранится в конфиге под каждый чип,
- параметр А для золота фиксирован и прописан в плату, параметр В не нужен в диапазоне до 100 градусов,
- маску ставят через лепестковую диаграмму
- список и значения датчиков температуры есть на вкладке с таблицей и 2Д графике.

Остаётся: выбор порта, (опционально - слейв адрес,) кнопка "connect", выбор Rol Ror датчика по имени, и вывод версии платы (опционально), это можно в Control вкладку на основной экран.

Регистр modbus, название регистра, контрол ввода значения, единица измерения, валидация, тултип-подсказка.

Измерение в виде плоских графиков и таблицы.

Термодатчики опрашиваются софтом перед стартом, на всё измерение фиксируется их количество и измеряемые ими величины (Т, ТН, ТНР) . Привязку названий датчиков к номерам прописать в конфиг. Датчики *появляются* в графике и таблице под своими названиями.

Новая точка в графике и строка в таблице появляются каждое полное измерение примерно 5-20 секунд. В каждой строке таблицы проставляются: время с начала измерения hh.mm.ss (DateTime yбрать), текстовая метка (плохое решение, убрать?), показания термодатчиков, значения сопротивлений активных каналов датчика. Кнопка Export выкидывает таблицу в CSV. Для графиков R и лепестковой решить задачу отображаемого диапазона.

Модель температуры от сопротивления

Задача коэффициентов полинома термосопротивления на чипе графена. Чтобы понимать, что измерение температуры графен чипа примерно верное, надо иметь модель зависимости сопротивление золотых напылённых дорожек от температуры.

Для этого необходимо составить таблицу и график сопротивлений левый/правый для температур: 0(лёд), 22(комната), 50(термофен, режим измерения), 100(термофен, очистка чипа) градусов,

- взять все чипы что есть, т.к. большой разброс номиналов,
- накал подавать через два лабораторных БП одновременно на обе полосы, пропорционально их сопротивлениям, выравнивая температуру на каналах накала так, что бы в среднем по подложке вышел градиент не видимый тестером, это ∓0.5°C
- в табличку занести оба напряжения накала, так удобнее будет для платы
- как термопоинт (точка измерения температуры) назначить точку в середине каждой накальной полосы (см картинку); если не жалко ткнуть в центр графена, понять градиент по подложке
- точность измерения и установки температуры принять например 5° C ($\mp 2.5^{\circ}$ C), на шкале $20\text{-}100^{\circ}$ C
- измерять термопарой тестера, например через каплю термопасты КТП8
- далее по табличке составить график температура от сопротивления, парами каналов для каждого чипа
- попробовать привязать к ГОСТ 6651, к полиному для платины и никеля

- вычислить и усреднить коэффициенты A и B из полинома термопар металлов платина-никель (Ro сопротивление на нуле градусов мы измеряли в начале), возможно коэффициент B будет лишний в нашем диапазоне измерений
- записать их в регистры платы и запустить старый алгоритм поддержания температуры с контролем термопарой

Сделать выводы:

- -- если мы убираемся в 5% точности *измерения* температуры по сопротивлению, то принять что мы победили, можно временно оставить алгоритм регулировки термостата на плате V2, но затем на V3 DC/DC переделать на статику (см ниже)
- -- если очень большой технологический разброс, низкая точность, то признать что измеряем что-то при непонятной температуре, предусмотреть на плате чипа термодатчик и снимать примерную температуру с него, можно реализовать жестко закодированную таблицу температур под каждый датчик

Выводы: для термосенсора графен чипов актуальна формула $Rt = Ro(1 + A \cdot t)$, где A = 0,0031

Статический накал V3

Убрать регулировку термостата через алгоритм ПО и оставить одну регулировку через DC/DC: он точнее, быстрее, плавнее и без программного кода

- учесть большой диапазон разброса сопротивлений накала 5-20 Ω
- предусмотреть контроль обрыва и КЗ накала
- сделать два DC/DC, по одному на каждый накал накала
- выбрать DC/DC у которого нормальный режим вход 12V, а на выход ~1.5V 0.5A, т.е. впритык под его Vref;
- прикинуть теплоотвод решения, возможно будет греться на таких Vin/Vout
- для установки напряжения в цепь ОС DC/DC поставить DAC со стороны MCU, 8-12 bit хватит
- без работы DAC и кода MCU должно быть приемлемое напряжение накала
- завести *измерение напряжения* накала на два ADC MCU
- схему с ОУ измерения сопротивления накала оставить
- подумать над схемой измерения накала, сейчас шумит, и кажется не очень грамотная схема, двуполярная, сначала буфер, непонятная, потом Ки усилитель.
- поднять ток сенсора температуры до 2`500mV сигнала в полном размахе для полного нагрева для самого высокоомного датчика
- я бы поставил на плату чипа любой полупроводниковый термосенсор, цифровой однопроводной или аналоговый без разницы, или сразу погодную станцию BME280 впаять
- как супер-вариант, посмотреть как бы на подложку с каждого бока разварить и опустить на подложку каноническую термопару
- на плате чипа можно оставить место на два светодиода, твердотельщики любят облучать всё

Сделано на V2

всей командой инженеров

HW

- изучение темы, анализ старой схемы, платы, софта контроллера и верхнего софта
- выработка совместного решения по доработке железа
- разработка механической части пробоотборника
- разработка V2 платы полностью совместимой с ПО V1
- добавление датчиков температуры/влажности/давления
- переделка схемы для линейного нагрева на два порога для 40 и 100

FW

- глубокий рефакторинг кода с полной совместимостью с V1
- переделка и доработка Modbus протокола
 - -- согласование нового поля регистров 0х400 для новой верхней софты
 - -- проработка маппинга старых регистров на новые
 - -- добавление команд для новых регистров
 - -- добавление поддержки дискретных modbus команд 05h 06h
 - -- проблема переворота сетевой последовательности битов Msb-Lsb
- подключение датчиков аппаратно и написание драйвера
 - -- термо LM60C
 - -- термо DS18B20
 - -- термо/влажность DHT22-AM2302
 - -- термо/влажность/давление ВМЕ280
 - -- hot-swap для однопроводных датчиков с автоопределением типа на лету
 - -- датчик положения вала двигателя, счётный режим
 - тест режим, для удобства программиста верхнего софта, генерация тестовых данных

SW

- полностью новый верхний софт на qt
- питон скрипт теста modbus V2

Вопросы к V1 и V2

- о Точность измерения сопротивления каналов сенсора,
- Влияние большого количества ключей на входе на измерения в статике и динамике
- Необходимость параллельного измерения каналов
- Накал, точность измерения R и через него T на графене
- Точность и линейность поддержания Т графена с алгоритмом термостата
- о Вход для датчика положения оси и его алгоритм

Планы на V3

Концепция – понять что делаем

- а исследовательское устройство в рамках науки и для отчётов, это версия что сейчас
- б штучный лабораторный дорогой прибор, надо понять кому и что надо
- в серийный дешёвый датчик газа, это к графенщикам сначала, пусть дадут дешёвый простой датчик

Мажорные вопросы

- У нас уже вышел графен с нужными характеристиками?
- Сколько надо каналов на датчике (38 нормально для исследований)?
- Нужно ли их в параллель цифровать и зачем, для чего скорость?
- Измерение ёмкости, временные характеристики графена
- Освещение датчика

Технические миноры

- Оставить блочную компоновку Analogue-MCU-PC
- Аналоговую часть переработать
 - о Аккуратное усиление сигнала с каналов датчика в широком диапазоне токов сопротивления
 - Форм фактор датчика, поставить усилитель, коммутацию и ADC на плату датчика
 - Режим измерения ёмкости
 - Линейный накал с управлением через DAC
 - о Свободные дискретные входы-выходы для внешней периферии
- MCU поставить в виде готовой платы <u>STM Nucleo</u>
 - o Соединение с хостом можно USB можно Eth
 - о Протокол можно modbus можно json подобный
- Верхний софт можно сделать консольным на питоне для удобства работы экспериментатора
- Красивый GUI софт для инвесторов

20-May-24

Addr	FuncCmd	Dev Cmd	Desc	Remark
Func 10h -	- write single - also write a	e individual coil, addr 400-40 as <i>multiply</i> registers start fro start from 400h		
400		V2_Cmd_START	Start measurements	Sets 300h
401		V2_Cmd_HEAT	Start heating	Sets 301h
402		V2_Cmd_Heat_Boost	Boost heater voltage	
403	03h V2_Cmd_Heat_Still Linear heater		Linear heater	
404	05h 10h	V2_Cmd_Motor	Start motor rotation	
405	1011	V2_Cmd_Valve	Turn valve on (?)	
406-40E	-	Reserved		
40F		V2_Cmd_Test	Test data generation	
Func 10h -	- write as $m\iota$	reg, addr 410h, 411h, 412h ultiply registers start from 41 eg start from 410h		
410		V2_Heat_0R0_OHM	Heater sens R0 and R1 values in	Set value = (uint16_t) 67 as
411	03h	V2_Heat_0R1_OHM	Ω at 0 deg. °C	6.7 Ω Sets 306h
412	06h 10h	V2_Rotat	Set rotation count	If 0, then TEMP5 is T sens
413-41F	1011	Reserved		
	registers 4 read multis	start from 420h		
420	03h	V2_HeartBeat	1 sec continuously incrementing watchdog timer	To check if device alive, an uptime in sec (uint16)
421		V2_Heat_R1	Heater sens R value,	Resistance 123 = 12.3 Ω
422		V2_Heat_R2	Smeasured in Ohms	Same as 03-04h
423	TEMP1	V2_Heat_Temp1	Heater T value in deg. °C	Temp 567 = 56.7 °C
424	TEMP2	V2_Heat_Temp2	calculated from Ohms value	Same as 05-06h
425	TEMP0	V2_PCB_Temp0	PCB semi analogue T sensor (LM60, accuracy ±2.0°C)	Temp 234 = 23.4 °C
426-427	TEMP3	V2_1Wire_Sens1		Temp 234 = 23.4 °C OxFFFF – empty sens OxFFFE – rotat sens Humidity 789 = 78.9%
428-429	TEMP4	V2_1Wire_Sens2	Single wire temperature and	
42A-42B	HMDT1	V2_1Wire_Sens3	humidity sensors (AM2303), or	
42C-42D	HMDT2	V2_1Wire_Sens4	only temperature (DS1820), type autodetect	
42E-42F	TEMP5 V2_1Wire_Sens5			0xFFFF – sens w/o humi
430-432	RX/TX0	V2_I2C_Sens1	I2C temperature, humidity and	Temp 2345 = 23.45 °C
433-435	RX/TX0	V2_I2C_Sens2	pressure sensor (BME280)	OxFFFF – empty sens Humidity 4567= 45.67% Press. 56789+50000= 1067.89 hPa

Modbus function codes

Code	Hex	DataType	In/Out	Semantic	Modicon name	Payload
01	0x01	1byte *X	DO	Read discrete output	Read Coil Status	> CoilsQuantity[16] < CoilsData[8*x%q]
02	0x02	1byte *X	DI	Read discrete input	Read Input Status	> CoilsQuantity[16] < CoilsData[8*x%q]
03	0x03	16bytes *X	AO	Read analogue output	Read Holding Registers	> RegsQuantity[16] < RegsData[16*x]
04	0x04	16bytes	AI	Read single analogue input	Read Input Register	> RegQuantity[16] < RegData[16]
05	0x05	1byte	DO	Write single discrete output	Force Single Coil	> CoilData[16, 0 FF] < CoilData[16]
06	0x06	16bytes	AO	Write single analogue output	Preset Single Register	> RegData[16] < RegData[16]
15	0x0F	1byte *X	DOx	Write multiply discrete output	Force Multiple Coils	> CoilsQuantity[16] BytesCount[8] CoilsData[16*x%q] < CoilsQuantity[16]
16	0x10	16bytes *X	AOx	Write multiply analogue output	Preset Multiple Registers	> RegsQuantity[16] BytesCount[8] RegsData[16*x] < RegsQuantity[16]

Request: SlaveAddr[8b] – FuncCmd[8b] - Coil/Reg Addr[16b] – {payload} – CRC16[16b]

 $Response: SlaveAddr[8b] - FuncCmd[8b] - \underline{Bytes}Count[8b] - \{payload\} - CRC16[16b]$

coil payload: Rd: 01010101 110000 ... Wr: 00FF=setOn

reg payload: Rd: Hi-Lo Hi-Lo Hi-Lo ... Wr: Hi-Lo Hi-Lo Hi-Lo ...

Example Func03

(Hex)	Field name	(Hex)	Field name
11	Device address	11	Device address
03	Functional code	03	Functional code
00	Address of the first register Hi bytes	06	Number of bytes more
6B	Address of the first register Lo bytes	AE	Register value Hi #40108
00	Number of registers Hi bytes	41	Register value Lo #40108
03	Number of registers Lo bytes	56	Register value Hi #40109
76	Checksum CRC	52	Register value Lo #40109
87	Checksum CRC	43	Register value Hi #40110
		40	Register value Lo #40110
		49	Checksum CRC
		AD	Checksum CRC

El Noze - Modbus - V1

Reg Dec	Reg Hex	Desc	Read	Write	Value range	Rem.
	, -	1				1
0001	00h 01	Номер измерения		-	0000hFFFFh	При каждом измерении всех датчиков - инкремент See V2 5Dh
0002	00h 02	Время измерения	03h	-	0000hFFFFh	Время затраченное на измерение всех датчиков See V2 5Fh
0003	00h 03	Температура датчика Т1	03h	-	0000hFFFFh	коэф. x100, °C V2 421h
0004	00h 04	Температура датчика Т2	03h	-	0000hFFFFh	коэф. х100, °С
0005	00h 05	Сопротивление датчика Т1	03h	-	0000hFFFFh	коэф. x100, Ом V2 423h
0006	00h 06	Сопротивление датчика Т2	03h	-	0000hFFFFh	коэф. х100, Ом
0007	00h 07	Опорное напряжение	03h	-	0000hFFFFh	коэф. х100 <mark>0, мВ</mark>
0008	00h 08	Номер текущего канала	03h	-	0000hFFFFh	See V2 5Eh
00768	03h 00	Команды управления — старт/стоп измерения	03h	10h	0000h0001h	0 — стоп V2 400h 1 — старт
00769	03h 01	Команды управления — старт/стоп подготовка	03h	10h	0000h0001h	0 – стоп V2 401h 1— старт 0100h=256
00770	03h 02	Задание для нагрева	03h	10h	0000hFFFFh	float, °C
00771	03h 03	нагревателей, t			0000hFFFFh	
00772	03h 04	Задание для нагрева	03h	10h	0000hFFFFh	float, Ом
00773	03h 05	нагревателей, Rt			0000hFFFFh	_
00774	03h 06	Сопротивление датчика	03h	10h	0000hFFFFh	float, Om. 6.66 def
00775	03h 07	при нулевой темп-ре, R0			0000hFFFFh	V2 421h
00776	03h 08	., .,	03h	10h	0000hFFFFh	float
00777	03h 09	Коэффициент А			0000hFFFFh	
00778	03h 0A		03h	10h	0000hFFFFh	float
00779	03h 0B	Коэффициент В			0000hFFFFh	
00780	03h 0C	W	03h	10h	0000hFFFFh	float
00781	03h 0D	Коэффициент Кр			0000hFFFFh	
00782	03h 0E	V 11 V	03h	10h	0000hFFFFh	float
00783	03h 0F	Коэффициент Кі			0000hFFFFh	
				•		
00784	03h 10	Маска измеряемых каналов 116	03h	10h	0000hFFFFh	измерение 1 – производится,
00785	03h 11	Маска измеряемых каналов 1732	03h	10h	0000hFFFFh	0 – не производится
00786	03h 12	Маска измеряемых каналов 3338	03h	10h	0000hFFFFh	

Все данные имеют перепутанные (swap) октеты в ushort слове modbus. При этом сетевая последовательность полуслов верная, lsb. Это означает что: IEEE754-float 6.66= 0x msb(40D5) lsb(1EB8) -> saved as D540 B81E

uint16_t SetCoil_ON = msb(00) lsb(FF) -> saved as FF 00 (65 280)

00256	01h 00h		03h	-	0000hFFFFh	Чтение имени модуля
00257	01h 01h		03h	-	0000hFFFFh	осуществлять начиная с
00258	01h 02h		03h	-	0000hFFFFh	регистра 01h 00h.
00259	01h 03h	1414 110 1110	03h	-	0000hFFFFh	Значение закодировано
00260	01h 04h	Имя модуля	03h	-	0000hFFFFh	согласно ASCII (см. п.5).
00261	01h 05h		03h	-	0000hFFFFh	
00262	01h 06h		03h	-	0000hFFFFh	
00263	01h 07h		03h	-	0000hFFFFh	
00512	02h 00		03h	-	0000hFFFFh	Чтение версии
00513	02h 01		03h	-	0000hFFFFh	осуществлять начиная с
00514	02h 02	Версия ПО	03h	-	0000hFFFFh	регистра 02h 00h.
00515	02h 03		03h	-	0000hFFFFh	Значение закодировано
						согласно ASCII (см. п.5).
00516	02h 04		03h	-	0000hFFFFh	Чтение версии
00517	02h 05		03h	-	0000hFFFFh	осуществлять начиная с
00518	02h 06	Серийный номер	03h	-	0000hFFFFh	регистра 02h 05h.
00519	02h 07		03h	-	0000hFFFFh	Значение закодировано
						согласно ASCII (см. п.5).

		·	·
1E	00h 30h	Comportant action P1	38 пар регистров для 38 каналов
1F	00h 31h	Сопротивление R1	сопротивлений
			Начало с <mark>30h</mark> и 56h (R20)
			по 0х30(48) регистров (96 байт)
91	00h 5Bh	6 220	Значение в swap float, Омы
92	00h 5Ch	Сопротивление R38	
93	00 5Dh	V2_REG_MEAS_NUM_COPY	Мар to 0001h, Номер измерения
94	00 5Eh	V2_REG_MEAS_CH_COPY	Map to 0008h, Номер тек. канала
95	00 6Fh	V2_REG_MEAS_TIME_COPY	Map to 0002h, Время измерения

Err codes	Desc.			
0x01	Устройство не поддерживает запрашиваемую функцию			
0x02	Ошибка запроса регистра(ов)			
0x03	Записываемые данные находятся вне диапазона			
	допустимых значений для данного регистра			
0x07	Попытка записи нового адреса или скорости при отсутствии			
	перемычки между клеммами «INIT» и «GND»			
0x15	Ошибка проверочного кода CRC-16			

Режимы считывания и записи

- 1.Регистры 0х0001..0х0008 считывать одним запросом начиная с 0х0001
- 2.Регистры 0x0030..0x004B считывать двумя запросами начиная с 0x0030h и 0x0056h по 0x30(48) регистров
- 3.Регистры 0х0100..0х0107 считывать одним запросом начиная с 0х0100
- 4.Регистры 0x0200..0x0207 считывать одним запросом начиная с 0x0200
- 5.Регистры 0х0300..0х0301 считывать одним запросом начиная с 0х0300
- 6.Регистры 0х0302..0х0312 считывать одним запросом начиная с 0х0302
- 7. Регистры 0x0300..0x0301 записывать одним запросом начиная с 0x0300
- 8. Регистры 0х0302..0х030В записывать одним запросом начиная с 0х0302
- 9. Регистры 0х030С..0х030Г записывать одним запросом начиная с 0х030С
- 8. Регистры 0x0310..0x0312 записывать одним запросом начиная с 0x0310

Сборка MCU проекта

Плата версии ElNos_rev2_Scheme-23Feb24

- Процессор GD32F103VBT корпус LQFP100
- Среда Keil5 uVision v5.38.0.0 2022, проект в папке KEIL5 PRJ
- Компилятор ARMCC v5.06 upd 7 build 960
- GD32 SPL V2.2.0 2020-09-30, каталог GD32F10x SPL включая it и libopt файлы
- Отключить ссылки на встроенные пакеты Target options: C/C++ -> No auto includes
- CMSIS Cortex-M3 Core V3.30 17.Feb.2014, каталог CMSIS
- Debug = ST-LinkV2
- F7-compile, F8-upload

Проект собирается без бубна, и даже без warning

Выборочно схема платы V2

