传感器原理与应用

第4章 电容式传感器

主要内容:

- 4.1 电容传感器工作原理
- 4.2 电容传感器输出特性
- 4.3 电容传感器测量电路
- 4.4 电容式传感器的应用举例

概述

- ▶ 传统电容式传感器主要用于位移、角度、振动、加速度等机械量精密测量。
- > 现代电容式传感器逐渐应用于压力、压差、液面、成份含量等 方面的测量。
- > 应用实例(电容测深度、角度)

角度测量

> 电容式传感器的特点

- ・电容器容量小(几十~几百微法),輸出阻抗高;
- · 极板静电引力小,工作所需作用力很小;
- · 可动质量小, 固有频率高, 动态响应特性好;
- ・ 功率小, 本身发热影响小;
- ・可以进行非接触测量。

电容式差压传感器

电容式接近开关

电容式压力变送器

《 传感器原理与应用 》 - 4/29页 -

雨课堂

4.1 电容传感器工作原理

❖ 电容式传感器是将被测非电量变化成电容量的变化。

通常,电容传感器指以空气为介质的两个平行金属板组成的可变电容器。

电容传感器工作原理可以用平板电容说明:

4.1 电容传感器工作原理和类型

$$C = \frac{\varepsilon s}{\delta} = \frac{\varepsilon_0 \varepsilon_r s}{\delta}$$

电容式传感器

面积型

介质型

改变式中:

- $S \mathbf{W}$ 极板面积,称变面积型电容传感器
- δ 极板距离,称变极距型电容传感器
- ε 介电常数, 称变介质型电容传感器

其中:

- ϵ_0 真空介电常数
- ε, 一 空气介质的相对介电常数近似为

$$\varepsilon_r = \frac{\varepsilon}{\varepsilon_0} \approx 1$$

极距型

应用举例

- 1) 电容式压力传感器
- > 结构: 球型、平面型差动电容传感器

弹性膜片(动电极)

固定电极

电容传感器盒膜片结构

《传感器原理与应用》 - 7/29页 -

CHENCOLL INVERSITY OF THE

- ・1) 电容式压力传感器
- 球型结构: 金属弹性膜片—动片(测量膜);两个玻璃球面上 镀有金属—定片;膜片左 右两侧充满硅油。
- ightharpoonup 工作过程:
 两室分别承受低压 P_L 和高压 P_H ,硅油能将压差传递到测量膜片。

电容传感器盒膜片结构

・1) 电容式压力传感器

$$\Delta P = P_H - P_L \qquad \Delta C \propto \Delta P$$

$$\Delta C \propto \Delta P$$

- $P_H = P_I \text{ 时} C_I = C_2$; 膜片处于中间位置,
- ・当有差压作用时,测量膜片产生形变: $P_H > P_L$ 时,膜片向 P_L 弯曲, $C_1 < C_2$, $P_H < P_L$ 时,膜片向 P_H 弯曲, $C_1 > C_2$;

· 前极电路将这种电容变化通过电路转换, 变为电压或电流的变化

CHANGERSITY OF THE CHANGE OF T

・2) 电容板材在线测厚仪

电容测厚仪

东方仿真COPYRIGHT

《 传感器原理与应用 》 - 10/29页 -

• 3) 收音机调频

电容式传感器在收音机中,用于改变谐振频率,从而调整收听电台。

《传感器原理与应用》 - 11/29页 -

SE WAY

• 4) 电容式物位计

变极距型电容传感器

变面积型电容传感器

雨课堂 Rain Classroom

变介质型电容传感器

《传感器原理与应用》

4.2 电容传感器输出特性

1. 变极距型 (δ)

初始电容 $C_0 = \varepsilon s / \delta_0$, 极距减小 $\Delta \delta$ 时,

电容量增加
$$\triangle C$$
 $C = C_0 + \triangle C$

$$\Delta C = C - C_0 = \frac{\varepsilon s}{\delta_0 - \Delta \delta} - \frac{\varepsilon s}{\delta_0}$$

$$\frac{\Delta C}{C_0} = \frac{\Delta \delta / \delta_0}{1 - \Delta \delta / \delta_0}$$

当分母 $\Delta \delta/\delta_0$ 时,用泰勒级数展开

$$\frac{\Delta C}{C_0} = \frac{\Delta \delta}{\delta_0} \left[1 + \frac{\Delta \delta}{\delta_0} + \left(\frac{\Delta \delta}{\delta_0} \right)^2 + \left(\frac{\Delta \delta}{\delta_0} \right)^3 + \cdots \right]$$

1. 变极距型 (δ)

$$\frac{\Delta C}{C_0} = \frac{\Delta \delta}{\delta_0} \left[1 + \frac{\Delta \delta}{\delta_0} + \left(\frac{\Delta \delta}{\delta_0} \right)^2 + \left(\frac{\Delta \delta}{\delta_0} \right)^3 + \cdots \right]$$

做线性处理(忽略高次项)后,电容相对变化量与电容极板的极 距变化成正比

$$\frac{\Delta C}{C_0} \approx \frac{\Delta \delta}{\delta_0}$$

理想

定义电容传感器灵敏度为

$$k_0 = \frac{\Delta C / C_0}{\Delta \delta} = \frac{1}{\delta_0}$$

● 讨论:

• 变极距型电容传感器灵敏度与初始极距有关

$$k_0 = \frac{\Delta C / C_0}{\Delta \delta} = \frac{1}{\delta_0}$$

- 要提高传感器灵敏度 k_0 应减小初始极距 δ_0 ,但初始极距受电容击穿电压限制;
- · 另外,初始极距 δ_0 与灵敏度相矛盾,变极距型电容传感器适合测小位移;
- 非线性误差随相对的位移 $\Delta \delta/\delta$ 的增加而增加,为保证线性度应限制相对位移,限制了测量范围; $\frac{\Delta C}{C_o} = \frac{\Delta \delta}{\delta_o} [1 + \frac{\Delta \delta}{\delta_o} + (\frac{\Delta \delta}{\delta_o})^2 + (\frac{\Delta \delta}{\delta_o})^3 + \cdots]$
- · 为提高灵敏度和改善非线性,一般采用差动结构。

CHINAGH INVERSITY OF TELL

4.2 电容传感器输出特性

❖ 差动结构的平板电容

设电容的动极板移动时 C_1 增加, C_2 减小,且 $^{\triangle}C_1 = ^{\triangle}C_2$

> 差动结构的电容特征方程式为:

$$C_1 = C_0 \left[1 + \frac{\Delta \delta}{\delta_0} + \left(\frac{\Delta \delta}{\delta_0}\right)^2 + \cdots\right]$$

$$C_2 = C_0 \left[1 - \frac{\Delta \delta}{\delta_0} + \left(\frac{\Delta \delta}{\delta_0}\right)^2 + \cdots\right]$$

电容的总的变化量

$$\Delta C = C_1 - C_2 = 2C_0 \left[\frac{\Delta \delta}{\delta_0} + \left(\frac{\Delta \delta}{\delta_0} \right)^3 + \cdots \right]$$

差动结构的平板电容

电容相对变化量
$$\frac{\Delta C}{C_0} = 2\frac{\Delta \delta}{\delta_0} [1 + (\frac{\Delta \delta}{\delta_0})^2 + (\frac{\Delta \delta}{\delta_0})^4 + \cdots]$$

忽略高次项,电容相对变化量为 $\frac{\Delta C}{C_0} = 2 \frac{\Delta \delta}{\delta_0}$

$$\frac{\Delta C}{C_0} = 2 \frac{\Delta \delta}{\delta_0}$$

・传感器(差动式)灵敏度・相对非线性误差为

$$k_0 = \frac{\Delta C / C_0}{\Delta \delta} = 2\frac{1}{\delta_0}$$

$$\gamma_L \approx (\frac{\Delta \delta}{\delta_0})^2 \times 100\%$$

- 结论:
 - 差动式电容传感器比单个电容灵敏度提高一倍;
 - 非线性误差减小(多乘 △δ因子)。

基本的变间隙型电容传感器

$$\frac{\Delta C}{C_{\rm o}} = \frac{\Delta \delta}{\delta_{\rm o}}$$

差动结构的变间隙型电容传感器

$$\frac{\Delta C}{C_0} = 2 \frac{\Delta \delta}{\delta_0}$$

基本变间隙型电容传感器和差动变间隙型电容传感器的工作原理

东方仿真COPYRIGHT

2. **变面积型 (**S)

平板电容的初始电容值为 $C_0 = \frac{\varepsilon ab}{\delta}$

$$C_0 = \frac{\varepsilon ab}{\delta}$$

当动极板移动∆x 后, 两极板间电容量为

$$C = \frac{\varepsilon b(a - \Delta x)}{\delta} = C_0 - \frac{\varepsilon b}{\delta} \Delta x = C_0 - C_0 \frac{\Delta x}{a}$$

$$\frac{\Delta C}{C_0} = -\frac{\Delta x}{a}$$

平板变面积型电容传感器灵敏度

$$k_0 = \frac{\Delta C}{\Delta x} = -\frac{\varepsilon b}{\delta}$$

注: 变面积型和变极距型灵敏度定义不同!

2. **变面积型 (S)**

❷讨论:

(平板) 变面积式电容传感器灵敏度k₀为常数;

$$k_0 = \frac{\Delta C}{\Delta x} = -\frac{\varepsilon b}{\delta}$$

- 输出特性为线性关系
- 适合大位移测量
- 可实现直线位移、
- 角位移测量。

3. 变介电常数式 (ε)

- 空介电常数式电容传感器与传感器结构有关,
 分以下几种情况:
- · 测介质厚度 (纸张、薄膜厚度) 图a
- 测介质<u>位移</u>(介质位置变化) 图b
- · 测介质材料 (介电常数,如介质材料、液位)_图c
- · 测温、湿度、容量 (粮仓、木材湿度) _图d

> 测厚度

- 介质不变,极板面积S和极距 δ 一定,改变介质厚度d,可设计为测厚仪器;
- 电容与介质参数之间关系与极距的几何尺寸有关:
- 介电常数包括被测介质和空气介质

$$C_a = \frac{s}{\left(\delta - d\right)/\varepsilon_0 + d/\varepsilon_r}$$

> 测位移

介质的厚度和材料不变,电容与介质参数之间的关系与 介质在极板中的位置有关:

$$C_{b} = \frac{bl}{\left(\delta - d\right)/\varepsilon_{0} + d/\varepsilon_{r}} + \frac{b(a-l)}{\delta/\varepsilon_{0}}$$

式中: a、b 分别为平板电容的边长

> 测介电常数ε (液位检测)

通常根据容器的形状计算

- · 无介质时,容器C₀为传感器静电容,
- 中心检测电极为电容器的一个极板,
- 外侧是电容器的另一个极板。

$$C = \frac{2\pi\varepsilon h_x}{\ln(D/d)} + \frac{2\pi\varepsilon_0(h - h_x)}{\ln(D/d)} = C_0 + \frac{2\pi h_x(\varepsilon - \varepsilon_0)}{\ln(D/d)}$$

可见,传感器电容的增量是正比于液位高度h_x。

▶测液位——油量测量

$$C_C = C_0 + \Delta C = \frac{2\pi\varepsilon_0}{\ln\left(r_2/r_1\right)}h + \frac{2\pi(\varepsilon_r - \varepsilon_0)}{\ln\left(r_2/r_1\right)}h_x$$

- ・ 燃油增加, h_x增大, △C也增大;
- ・燃油减少,h_x减少,△C也减小。
- · 通过测量电容的大小就能知道油量的多少。

> 测液位

电容式油量表原理

东方仿真COPYRIGHT