RESEARCH TRACK

EMMETT: Extreme Meta-Classification for Large-Scale Zero-Shot Retrieval

Sachin Yadav*, Deepak Saini*, Anirudh Buvanesh*, Bhawna Paliwal, Kunal Dahiya, Siddarth Asokan, Yashoteja Prabhu, Jian Jiao, Manik Varma

Microsoft Research India

Large-Scale Retrieval

• Retrieval of items relevant to a user query from a pool of hundreds of millions.

Product Recommendation

"latest wireless bluetooth earbuds"

Novel (Zero-Shot) Items

• Goal: Efficient and Accurate Solutions for handling zero-shot items.

What we want in an ideal solution:

- 2. [Efficiency] 💋 Low Retrieval Time
- 3. [Efficiency] 💋 Low Representation time for new items

Previous Approaches

Accuracy for Observed Items

Accuracy for Novel Items

Retrieval Time

Representation Time

Extreme Classification

What we want!

EMMETT: ExtreMe MEta-ClassificaTion

A pipeline built with two modules:

- Classifier Selector (S): Takes a novel-item as input and shortlists a few observed item classifiers most informative for it.
- Meta-classifier Generator (g): Combines these shortlisted classifiers and auxiliary information about the novel item to synthesize a novel item's classifier.

NOVEL ITEMS MADE AVAILABLE AT INFERENCE TIME

Classifier Selector

Selected classifiers of seen items

Meta-classifier Generator

Generalization Performance of EMMETT

Theorem: Let R and \hat{R} be the true and empirical risk, and \hat{R}_s be the empirical Rademacher complexity over the set S of query-item pairs. Let $p \ll 1$ be the probability of a positively related query-item pair, and q be the probability that S(|S| = M) has at most κ positive pairs. Then, $w.p.(1 - \delta)$:

$$R \le \hat{R} + \hat{\mathcal{R}}_S + 3\left(q + \frac{\sqrt{\ln\left(\frac{2}{\delta - 2q}\right)}}{2M}\right)$$
, where $q = \exp\left\{-2M\left(1 - p - \frac{\kappa}{M}\right)\right\}$

- Insights:
 - The generalization gap is inversely related to the dataset size (i.e., # of items).
 - The large-scale setting improves zero-shot learning.
 - Simpler meta-classifiers (smaller $\hat{\mathcal{R}}_{s}$) yield superior generalization.

IRENE Algorithm

- IRENE: Instance of EMMETT, designed for large-scale zero-shot performance.
 - ANNS-based Classifier Selector (\mathcal{S}): Uses an Approximate Nearest Neighbor Search (ANNS) index built atop the item encoder-representations.
 - Transformer-based Meta-classifier Generator (G): The module combines a shortlist of item classifiers to generate the meta-classifier.

Rademacher Complexity of IRENE

Lemma: Let \mathcal{F} be the class of functions defined in the IRENE algorithm, comprising pre-determined encoder representations and classifiers, a given classifier selector that outputs K classifiers, and G, the meta-classifier generator. Let M be the weight matrix of the linear layer and $\max_{x} \left(\left| |x| \right|_{2} \right) = B$. Then, the Rademacher complexity of \mathcal{F} can be bounded as follow:

$$\hat{\mathcal{R}}_{S}(\mathcal{F}) \leq \mathcal{O}\left(\mathbf{B}||\mathbf{M}||_{2}\sqrt{d\ln(K+1)}\right)$$

- Rademacher complexity of IRENE meta-classifier improves with smaller K:
 - Combining $K \approx 3$ seen classifiers yields better generalization!
- Analysis for XC classifiers and IRENE with trainable classifier in the paper!

Evaluation on Benchmark Datasets

 Up to 39% improvement in zero-shot and 29% improvement in the generalized setting.

Additional Results

- IRENE can be Adapted seamlessly to one-shot or few-shot.
- Baseline NGAME-OneShot is retrained on the revealed data.
- IRENE out-performs baseline NGAME-OneShot by 1-2% without any additional training overhead.

Ablations

- Ablation carried out on
 - The depth D of the generator G.
 - The number of classifiers K =shortlisted by the selector S.
 - Architecture of the generator \mathcal{G} .
- Setting D=1 and K=3 works well in practice, balancing the performance and computational overhead in learning meta-classier generators.

	Ablations	P@1↑	P@5↑	R@10↑
IRENE ($D = 1, K = 3$)		69.29	38.81	80.40
Selector (S) Generator (G)	D = 2, K = 3 D = 4, K = 3	70.36 70.71	39.06 39.11	80.39 80.27
	\mathcal{G} as Sum, $K=3$	45.49	25.46	59.01
	G as wt. Sum, $K = 3$ $D = 1, K = 1$	68.98	25.88 ———————————————————————————————————	59.29 80.11
	D = 1, K = 1 D = 1, K = 2	69.34	38.74	80.25
	D = 1, K = 6 D = 1, K = 20	69.99 69.07	39.12 38.57	80.79 79.80

Real-world Deployment

- We conducted A/B testing on Microsoft Bing to match user queries with advertisement keywords.
- IRENE boosted the click-through rate by **4.2**% and improved prediction quality by **9**%, according to expert evaluations.
- IRENE encodes a novel keyword in under 1 millisecond!

Conclusions

- We studied large-scale zero-shot retrieval and developed techniques to efficiently and accurately represent novel items.
- We proposed **EMMETT**, a generic algorithmic framework for learning accurate meta-classifiers for novel items that ellucidates accuracy versus efficiency trade-offs.
- We proposed **IRENE**, a novel, practically deployable algorithm to boost the zero-shot performance of any Siamese encoder.
- IRENE atop leading encoders improves the zero-shot retrieval accuracy by up to 15% points, and improves the ad click-through rate by 4.2%.

RESEARCH TRACK

EMMETT: Extreme Meta-Classification for Large-Scale Zero-Shot Retrieval

Scan for more details!

