

Areas of Parallelograms and Triangles Ex 15.3 Q20 Answer:

Given:

- (1) CD||AE
- (2) CY||BA

To find:

- (i) Name a triangle equal in area of ΔCBX
- (ii) $ar(\Delta ZDE) = ar(\Delta CZA)$
- (iii) $ar(BCZY) = ar(\Delta EDZ)$

Proof:

(i) Since triangle BCY and triangle YCA are on the same base and between same parallel, so their area should be equal. Therefore

$$ar(\Delta BCY) = ar(\Delta YCA)$$

$$\Rightarrow$$
 ar($\triangle CBX$) + ar($\triangle XYC$) = ar($\triangle XYC$) + ar($\triangle AXY$)

$$\Rightarrow ar(\Delta CBX) = ar(\Delta AXY)$$

Therefore area of triangle CBX is equal to area of triangle AXY

(ii) Triangle ADE and triangle ACE are on the same base AE and between the same parallels AE and CD.

$$\Rightarrow$$
 ar($\triangle ADE$)= ar($\triangle ACE$)

$$\Rightarrow$$
 $ar(\Delta ADE) - ar(\Delta AZE) = ar(\Delta ACE) - ar(\Delta AZE)$

$$\Rightarrow$$
 $ar(\Delta ZDE) = ar(\Delta ACZ)$

(iii) Triangle ACY and BCY are on the same base CY and between same parallels CY and BA. So we have

$$ar(\Delta ACY) = ar(\Delta BCY)$$

Now we know that

$$ar(\Delta ACZ) = ar(\Delta ZDE)$$

$$\Rightarrow$$
 $ar(\Delta ACY) + ar(\Delta CYZ) = ar(\Delta EDZ)$

$$\Rightarrow$$
 $ar(\Delta BCY) + ar(\Delta CYZ) = ar(\Delta EDZ)$

$$\Rightarrow$$
 $ar(\Delta BCY) = ar(\Delta EDZ)$

Areas of Parallelograms and Triangles Ex 15.3 Q21

Answer:

Given:

- (i) PSDA is a parallelogram.
- (ii) PQ = QR = RS.
- (iii) AP || BQ || CR.

To find:

$$ar(\Delta PQE) = ar(\Delta CFD)$$

Proof:

since AP || BQ || CR || DS.

Since AP||BQ||CR||DS and AD||PS

So
$$PQ = CD \dots (1)$$

In ΔBED , C is the mid point of BD and CF||BE

This implies that F is the mid point of ED. So

$$EF = FD \dots (2)$$

In $\triangle PQE$ and $\triangle CFD$, we have

$$PE = FD$$

 $\angle EPQ = \angle FDC$, and [Alternate angles]

$$PQ = CD$$
.

So, by SAS congruence criterion, we have

$$\Delta PQE = \Delta DCF$$

$$\Rightarrow$$
 ar (ΔPQE) = ar (ΔDCF)

Hence proved that

$$ar(\Delta PQE) = ar(\Delta DCF)$$

******* END ******