

Arquitetura de Computadores 3º Trabalho Prático

Memória e Portos

49470 Ana Carolina Pereira

50499 Bruno Ferreira

Licenciatura em Engenharia Informática e de Computadores Semestre de Verão 2022/2023

1. Definição do mapa de endereçamento

1.1. Caracterização dos módulos de memória

	Dispositivo #1	Dispositivos #2 e #3		
Tipo	Trata-se de uma ROM uma vez que não tem um sinal de controlo para ativar a saída de escrita (sinal WE).	Tratam-se de RAMs uma vez que possuem os sinais de controlo para ativar escrita e leitura (sinais OE e WE).		
Organização	Uma vez que este módulo tem 13 bits de endereço e 16 bits de dados então, temos uma organização de 2^13 * 16	Uma vez que este módulo tem 12 bits de endereço e 8 bits de dados então, temos uma organização de 2^12 * 8		
Capacidade	2^13 = 8KB	Cada RAM tem 2^12 = 4KB de capacidade. No conjunto têm 8KB		

Tabela 1: Tabela respetiva à caracterização dos módulos de memória

1.2. Caracterização dos portos

Tipo: O módulo #4 trata-se de um porto de saída.

Dimensão: Tem uma dimensão de 2 bytes, uma vez que se liga aos bits 0-15 do barramento de dados.

Modo de acesso suportado: Word-wise uma vez que é possível escrever 2 bytes no porto. Ainda assim, o porto também suporta byte-wise uma vez que consegue escrever só 1 byte também.

1.3. Mapa de endereçamento

Figura 1: Mapa de memória

1.4. Comentário

A afirmação: "A capacidade de memória instalada no sistema é plenamente acessível." é falsa uma vez que o bit A12 não é utilizado para codificar o chip-select e desta forma não é possivel aceder a toda a memória.

2. Caracterização da atividade dos barramentos

Instrução		Controlo		Endereço	Dados
IIIStrução			Г		
	nRD	nWRH	nWRL	A15A0	D15D0
ldr r0, sym	L	Н	Н	0000	0C60
	L	Н	Н	0010	4321
strb r2, [r1, r4]	L	Н	Н	0002	3A12
	Н	Н	L	1003	conf
push r1	L	Н	Н	0004	2401
	Η	L	L	A000	1000
push r2	L	Н	Н	0006	2402
	Η	L	L	9FFE	0155
mov r0, r15	L	Н	Н	8000	B780
ldr r5, [r0, #0]	L	Н	Н	000A	0005
	L	Н	Н	0101	000E
pop r3	L	Н	Н	000C	0403
	L	Н	Н	9FFE	0155

Tabela 2: Tabela para o registo da atividade nos barramentos do processador.

Considerando os valores iniciais como sendo:

R1=0x1000

R2=0x0155

R4=0x0003

SP=0xA002

PC=0x0000

3. Evolução da arquitetura

3.1. Mapa de endereçamento

Figura 2: Mapa de memória com o porto de entrada adicionado

3.2. Expressões lógicas

As expressões lógicas obtidas são as seguintes:

ROM CS: <u>A15</u>. <u>A14</u>. <u>A13</u> RAM CS: <u>A15</u>. <u>A14</u>. A13

Porto de entrada CS: A15. A14. A13. A12. A11

Porto de saída CS: <u>A15</u>. <u>A14</u>. <u>A13</u>. A12

3.3. Logigrama relativo ao novo porto

A Figura 3 representa o logigrama do novo porto de entrada.

Figura 3: Logigrama do novo porto de entrada

4. Programa em Assembly

```
loop:
         ldr\ r2 , PORT_INPORT_ADDR
         ldrb r0, [r2,#0] ;Loads value of inport address
         mov r1,#1
         and r2, r0, r1 ; Tests bit 0
         cmp r1, r2
         bne loop ;If its 0 repeat loop
         sub r0, r0 , #1 ;subtract bit 0 because he won't be extended
         lsl r2, r0, #8
         orr r0 , r0 , r2 ;extends r0 to 16 bits
         add r0, r0, #1; add again the bit 0 after extending
         ldr r2 , PORT_OUTPORT_ADDR
         str r0, [r2,#0] ;Stores the result in outport addr
         b loop
20
     PORT INPORT ADDR:
         .word 0xF000
     PORT_OUTPORT_ADDR:
         .word 0xE000
```

5. Conclusão

Com este trabalho foi possivel consolidar os nossos conhecimentos em memórias e portos.