Dans tout le document, on considère \mathcal{L} un langage du premier ordre. On note $\mathcal{F}_{\mathcal{L}}$ l'ensemble des formules du premier ordre sur \mathcal{L} .

1 Interprétations et modèles

Définition 1.1

On appelle **interprétation** de \mathcal{L} un ensemble \mathcal{M} constitué de :

- un ensemble non vide \mathcal{D} appelé **domaine** de \mathcal{M} ;
- pour chaque symbole de constante c, un élément $c_{\mathcal{M}} \in \mathcal{D}$;
- pour chaque symbole de fonction n-aire f, une fonction $f_{\mathcal{M}}: \mathcal{D}^n \to \mathcal{D}$;
- pour chaque symbole de relation n-aire R, un sous-ensemble $R_{\mathcal{M}} \subseteq \mathcal{D}^n$.

On suppose que = est une relation binaire du langage à qui on associe le sous-ensemble $\{(a, a) \mid a \in \mathcal{D}\}$. Par convention, $\mathcal{D}^0 = \{\emptyset\}$.

Définition 1.2

Soit \mathcal{M} une interprétation de \mathcal{L} et \mathcal{X} l'ensemble des variables. On appelle **environnement** une fonction $e: \mathcal{X} \to \mathcal{D}$.

Si e est un environnement, $a \in \mathcal{D}$ et $x \in \mathcal{X}$, on définit e[x := a] comme l'environnement e' tel que e'(x) = a et e'(y) = e(y) si $y \neq x$.

On étend la définition de e à l'ensemble des termes $\mathcal T$ du langage $\mathcal L$ par induction de la manière suivante :

- si c est un symbole de constante, $e(c) = c_{\mathcal{M}}$;
- si $t_1, ..., t_n$ sont des termes et f un symbole de fonction n-aire, $e(f(t_1, ..., t_n)) = f_{\mathcal{M}}(e(t_1), ..., e(t_n)).$

Exemple 1.3

On considère le langage de la théorie des groupes $\mathcal{L} = \{1, *, ^{-1}\}$. On peut considérer l'interprétation \mathcal{M} définie par : $\mathcal{D} = \mathbb{Z}$, $1_{\mathcal{M}} = 0$, $*_{\mathcal{M}} = +$, $\frac{-1}{\mathcal{M}} = n \mapsto -n$.

On aurait également pu considérer une interprétation moins « naturelle », par exemple avec $\mathcal{D} = \mathbb{R}$, $1_{\mathcal{M}} = \pi$ et $_{\mathcal{M}}^{-1} = x \mapsto \ln x$: même si on l'appelle le langage de la théorie des groupes, rien n'oblige à respecter les axiomes de groupes dans l'interprétation.

On peut maintenant donner une valeur de vérité aux formules du premier ordre.

Définition 1.4

Soit \mathcal{M} une interprétation de \mathcal{L} , \mathcal{X} un ensemble de variables et e un environnement. L'évaluation d'une formule du premier ordre $\varphi \in \mathcal{F}_{\mathcal{L}}$, notée $e(\varphi)$, est une valeur dans $\{0,1\}$. On la définit par induction par :

- $-e(\bot) = 0, e(\top) = 1;$
- $-e(R(t_1,...,t_n))=1$ si et seulement si $(e(t_1),...,e(t_n))\in R_{\mathcal{M}};$
- $-e(\neg \varphi) = 1 e(\varphi);$
- $e(\varphi \wedge \psi) = \min(e(\varphi), e(\psi));$
- $-e(\varphi \vee \psi) = \max(e(\varphi), e(\psi));$
- $-e(\varphi \to \psi) = \max(1 e(\varphi), e(\psi));$
- $-e(\exists x \varphi) = 1$ si et seulement s'il existe $a \in \mathcal{D}$ tel que $e[x := a](\varphi) = 1$;
- $-e(\forall x \varphi) = 1$ si et seulement si pour tout $a \in \mathcal{D}$, $e[x := a](\varphi) = 1$.

Remarque 1.5

Si $e(\varphi) = 1$, on note $\mathcal{M}, e \models \varphi$, ou $\mathcal{M} \models \varphi$ s'il n'y a pas d'ambiguïté sur l'environnement. On dit que \mathcal{M} est un **modèle** de φ .

On note $\vDash \varphi$ si toute interprétation est un modèle de φ .

Lemme 1.6

 $e(\varphi)$ ne dépend que de la valeur de e sur les variables libres de φ . En particulier, si φ est une formule close, l'évaluation de φ ne dépend pas de l'environnement.

Preuve

Par induction sur φ , en remarquant entre autre que pour un terme t, e(t) ne dépend que des variables de t.

Exercice 1

On considère $\mathcal{L} = \{<, =\}$ et les interprétations $\mathcal{M}_{\mathbb{N}}$ et $\mathcal{M}_{\mathbb{R}}$ définie par $\mathcal{D} = \mathbb{N}$ (resp. \mathbb{R}) et $<_{\mathcal{M}} = \{(x,y) \in \mathcal{D}^2 \mid x < y\}$.

- 1. Exprimer sous forme de formules closes les caractéristiques suivantes :
 - être dense;
 - avoir un plus petit élément.
- 2. Quelles interprétations sont des modèles pour ces formules?

2 Correction et cohérence

Dans toute cette partie, on travaille avec le système déductif de la logique classique. On suppose l'existence de deux règles particulières liées à l'égalité, relation binaire qu'on supposera toujours présente :

$$\frac{\Gamma \vdash \varphi[x := t] \quad \Gamma \vdash t = u}{\Gamma \vdash \varphi[x := u]} =_e$$

Définition 2.1

On appelle **théorie** un ensemble (fini ou non) de formules closes de $\mathcal{F}_{\mathcal{L}}$.

On dit qu'une interprétation \mathcal{M} satisfait une théorie T, noté $\mathcal{M} \models T$, si $\mathcal{M} \models \varphi$ pour tout $\varphi \in T$. On dit également que \mathcal{M} est un modèle de T.

Si T n'a pas de modèle, on dit que T est **contradictoire**.

Pour $\varphi \in \mathcal{F}_{\mathcal{L}}$, on dit que φ est **valide** dans T, noté $T \vDash \varphi$, si et seulement si $\mathcal{M} \vDash \varphi$ pour tout modèle \mathcal{M} de T.

Définition 2.2

Soit T une théorie et $\varphi \in \mathcal{F}_{\mathcal{L}}$.

On dit que φ est **prouvable** dans T, et on note $T \vdash \varphi$, s'il existe un sous-ensemble fini $T' \subseteq T$ tel que $T' \vdash \varphi$ est prouvable.

On dit que T est **cohérente** si $T \not\vdash \bot$.

On dit que T est **complète** si et seulement si T est cohérente et pour toute formule close φ , on a $T \vdash \varphi$ ou $T \vdash \neg \varphi$.

La preuve du théorème suivant fera l'objet des parties qui suivent :

Théorème 2.3

Une théorie est cohérente si et seulement si elle est non contradictoire.

Corolaire 2.4

Soit T une théorie et φ une formule close. Alors $T \vdash \varphi$ si et seulement si $T \vDash \varphi$.

Preuve

Par une suite d'équivalences. Ici, ⇔ signifie « si et seulement si » (ce n'est pas un connecteur syntaxique):

$$\begin{array}{lll} T \vdash \varphi & \Leftrightarrow & T, \neg \varphi \vdash \bot \\ & \Leftrightarrow & T \cup \{\neg \varphi\} \text{ n'est pas cohérente} \\ & \Leftrightarrow & T \cup \{\neg \varphi\} \text{ est contradictoire} \\ & \Leftrightarrow & \text{aucun modèle de } T \text{ ne satisfait } \neg \varphi \\ & \Leftrightarrow & \text{tout modèle de } T \text{ satisfait } \varphi \\ & \Leftrightarrow & T \vDash \varphi \end{array}$$

La première équivalence est due à $\frac{T \vdash \varphi}{T, \neg \varphi \vdash \varphi}$ aff $\frac{T}{T, \neg \varphi \vdash \neg \varphi}$ ax dans un sens et $\frac{T, \neg \varphi \vdash \bot}{T \vdash \varphi}$ raa $\frac{T, \neg \varphi \vdash \bot}{T, \neg \varphi \vdash \bot}$ raa cinquième équivalence est due

dans l'autre. La troisième équivalence est due au théorème précédent. La cinquième équivalence est due au fait que pour un modèle \mathcal{M} de T, $\mathcal{M} \models \varphi$ ou $\mathcal{M} \models \neg \varphi$.

Non contradictoire implique cohérent 2.1

Lemme 2.5

Soient t, u des termes, x une variable et e un environnement. On note v = u[x := t] et e' = e[x := t]e(t)]. Alors e(v) = e'(u).

Preuve

Par induction sur u.

Lemme 2.6

Soient $\varphi \in \mathcal{F}_{\mathcal{L}}$, t un terme, x une variable et e un environnement. On note $\psi = \varphi[x := t]$ et e' = e[x := e(t)]. Alors $e(\psi) = e'(\varphi)$.

Preuve

Par induction sur φ avec le lemme précédent.

Proposition 2.7

Soit Γ un ensemble fini de formules, φ une formule, \mathcal{M} une interprétation et e un environnement.

Si
$$\Gamma \vdash \varphi$$
 et $\mathcal{M}, e \vDash \Gamma$, alors $\mathcal{M}, e \vDash \varphi$.

Preuve

Par induction sur la preuve de $\Gamma \vdash \varphi$. On traite certains cas de règles ici, les autres sont laissées à votre discrétion.

- règle
$$(\rightarrow_i)$$
: $\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \rightarrow \psi} \rightarrow_i$

Supposons que si $\mathcal{M}, e \models \Gamma, \varphi$, alors $\mathcal{M}, e \models \psi$. Soit alors \mathcal{M}, e tels que $\mathcal{M}, e \models \Gamma$. Distinguons :

- * si $e(\varphi) = 0$, alors $e(\varphi \rightarrow \psi) = \max(1 e(\varphi), e(\psi)) = 1$;
- * si $e(\varphi) = 1$, alors $\mathcal{M}, e \models \varphi$, donc $\mathcal{M}, e \models \Gamma, \varphi$, donc $\mathcal{M}, e \models \psi$. On a donc $e(\psi) = 1$ et $e(\varphi \rightarrow \psi) = 1$.

– règle
$$(\forall_i)$$
 :
$$\frac{\Gamma \vdash \varphi \quad x \notin V_F(\Gamma)}{\Gamma \vdash \forall x \varphi} \ \forall_i$$

Soit \mathcal{M}, e tels que $\mathcal{M}, e \models \Gamma$. Soit $a \in \mathcal{D}$. Puisque x n'est pas libre dans $\Gamma, \mathcal{M}, e[x := a] \models \Gamma$, donc par hypothèse d'induction $\mathcal{M}, e[x := a](\varphi)$. Ce résultat étant vrai pour tout $a \in \mathcal{D}$, on en déduit $e(\forall x \varphi) = 1$.

– règle
$$(\forall_e): \frac{\Gamma \vdash \forall x \, \varphi}{\Gamma \vdash \varphi[x := t]} \, \forall_e$$

Soit \mathcal{M}, e tels que $\mathcal{M}, e \models \Gamma$. Soit a = e(t). Par hypothèse d'induction, $e(\forall x \varphi) = 1$, donc $e[x := a](\varphi) = 1$. On conclut avec le lemme.

2.2 Cohérent implique non contradictoire

La preuve est longue et difficile. On en donne ici le schéma général. On considère T une théorie cohérente. On construit un modèle de T en deux temps :

- 1. on construit une théorie $T' \supseteq T$ sur un langage $\mathcal{L}' \supseteq \mathcal{L}$ telle que :
 - (a) pour toute formule $\varphi(x) \in \mathcal{F}_{\mathcal{L}'}$ ayant x comme seule variable libre, il existe un symbole de constante c_{φ} de \mathcal{L}' tel que $T' \vdash (\exists x \varphi(x)) \rightarrow \varphi(c_{\varphi})$;
 - (b) T' est complète;
- 2. on construit un modèle \mathcal{M} de T', qui sera donc un modèle de T.

2.2.1 Construction de T'

La construction de T' se fait en deux temps : d'abord on s'assure de vérifier la première propriété voulue, puis on complète la théorie. On définit pour cela deux suites (\mathcal{L}_n) et (T_n) par :

- $-\mathcal{L}_0 = \mathcal{L} \text{ et } T_0 = T;$
- \mathcal{L}_{n+1} = \mathcal{L}_n ∪ { $c_{\varphi} \mid \varphi \in \mathcal{F}_{\mathcal{L}_n}$ est une formule à une variable libre};
- $-T_{n+1} = T_n \cup \{(\exists x \, \varphi(x)) \rightarrow \varphi(c_\varphi) \mid \varphi \in \mathcal{F}_{\mathcal{L}_n} \text{ est une formule à une variable libre}\}.$

On pose alors $\mathcal{L}' = \bigcup_{n \in \mathbb{N}} \mathcal{L}_n$ et $\tilde{T} = \bigcup_{n \in \mathbb{N}} T_n$.

Lemme 2.8

Soit $\varphi \in \mathcal{F}_{\mathcal{L}'}$ à une variable libre. Alors $\tilde{T} \vdash (\exists x \varphi(x)) \rightarrow \varphi(c_{\varphi})$.

Preuve

Si $\varphi \in \mathcal{F}_{\mathcal{L}'}$, il existe un n tel que $\varphi \in \mathcal{F}_{\mathcal{L}_n}$. Le séquent voulu est prouvable dans T_{n+1} par construction.

Lemme 2.9

 \tilde{T} est cohérente.

Preuve

Il suffit de montrer que pour tout n, T_n est cohérente (car une preuve n'utilise qu'un nombre fini d'axiomes). Montrons ce résultat par récurrence sur n:

- pour n = 0, $T_0 = T$ qui est cohérente;
- supposons le résultat établi pour $n \in \mathbb{N}$ fixé. Supposons par l'absurde que $T_{n+1} \vdash \bot$. Alors, cette preuve étant finie, il existe $\varphi_1, \ldots, \varphi_k \in \mathcal{F}_{\mathcal{L}_n}$ à une variable libre telles que :

$$T_n \cup \{(\exists x \, \varphi_i(x)) \rightarrow \varphi_i(c_{\varphi_i}) \mid i \in [1, k]\} \vdash \bot$$

Par des preuves successives, on arrive à montrer que :

$$T_n \vdash \bigwedge_{i=1}^k ((\exists x \, \varphi_i(x)) \to (\exists y_i \, \varphi_i(y_i)) \to \bot$$

Soit $T_n \vdash \bot$, ce qui contredit l'hypothèse de récurrence.

Il reste maintenant à étendre la théorie pour la rendre complète, c'est-à-dire faire en sorte que si φ est une formule close, alors $T' \vdash \varphi$ ou $T' \vdash \neg \varphi$. On le fait dans le cas où \mathcal{L} est au plus dénombrable. La preuve générale est similaire, mais il faut utiliser le lemme de Zorn.

On suppose une énumération $(\varphi_n)_{n\in\mathbb{N}}$ des formules closes sur \mathcal{L}' . On définit par récurrence une suite (\tilde{T}_n) par :

- $-\tilde{T}_0 = \tilde{T}$;
- si \tilde{T}_n est complète, alors $\tilde{T}_{n+1} = \tilde{T}_n$;
- sinon, soit p le plus petit entier tel que $\tilde{T}_n \not\vdash \varphi_p$ et $\tilde{T}_n \not\vdash \neg \varphi_p$. On pose $\tilde{T}_{n+1} = \tilde{T}_n \cup \{\varphi_p\}$.

Finalement, on pose $T' = \bigcup_{n \in \mathbb{N}} \tilde{T}_n$.

Lemme 2.10

La théorie T' a les propriétés voulues.

Preuve

- $-T \subseteq T'$ par construction;
- le point a) est vérifié car $\tilde{T} \subseteq T'$;
- -T' est cohérente : par récurrence, on peut montrer que \tilde{T}_n est cohérente ;
- -T' est complète : par construction.

2.3 Construction de \mathcal{M}

L'idée est de considérer les termes clos du langage, quotientés par la relation d'égalité. Formellement :

On pose $\mathcal C$ l'ensemble des termes clos de $\mathcal L'$. On définit la relation \sim sur $\mathcal C$ par $t \sim u$ si et seulement si $T' \vdash t = u$. C'est une relation d'équivalence (exercice 9 du TD). On pose alors $\mathcal D = \mathcal C/\sim$, c'est-à-dire l'ensemble des classes d'équivalence de $\mathcal C$ modulo \sim . Pour $t \in \mathcal C$, on note $\overline t$ sa classe d'équivalence.

Dès lors, l'interprétation de \mathcal{L}' est la suivante :

- pour c une constante, on pose $c_{\mathcal{M}} = \overline{c}$;
- pour f un symbole de fonction n-aire, on pose $f_{\mathcal{M}}(\overline{t_1}, \ldots, \overline{t_n}) = \overline{f(t_1, \ldots, t_n)}$;
- pour R un symbole de relation n-aire, on pose $(\overline{t_1}, \ldots, \overline{t_n}) \in R_{\mathcal{M}}$ si et seulement si $T' \vdash R(t_1, \ldots, t_n)$.

Ces fonctions et relations sont bien définies, par les règles $(=_i)$ et $(=_e)$.

Lemme 2.11

Soit $\varphi \in \mathcal{F}_{\mathcal{L}'}$ et t_1, \ldots, t_n des termes clos de \mathcal{L}' . Alors :

$$\mathcal{M} \vDash \varphi(\overline{t_1}, \dots, \overline{t_n})$$
 si et seulement si $T' \vdash \varphi(t_1, \dots, t_n)$

Preuve

Par induction sur φ . On ne traite que certains connecteurs ici, les autres sont laissés à votre discrétion.

- $\operatorname{si} \varphi = \bot$, le résultat est garanti par la cohérence de T';
- si $\varphi = \top$, le résultat est garanti par \top_i (les deux côtés de l'équivalence sont toujours vrais);
- si $\varphi = R(u_1, \ldots, u_m)$, soit $v_i = u_i(t_1, \ldots, t_n)$. Alors par définition, $(\overline{v_1}, \ldots, \overline{v_m}) \in R_{\mathcal{M}}$ si et seulement si $T' \vdash R(v_1, \ldots, v_n)$.
- si $\varphi = \psi \vee \sigma$:

$$\mathcal{M} \vDash \varphi(\overline{t_1}, ..., \overline{t_n}) \quad \Leftrightarrow \quad \mathcal{M} \vDash \psi(\overline{t_1}, ..., \overline{t_n}) \text{ ou } \mathcal{M} \vDash \sigma(\overline{t_1}, ..., \overline{t_n})$$

$$\Leftrightarrow \quad T' \vDash \psi(t_1, ..., t_n) \text{ ou } T' \vDash \sigma(t_1, ..., t_n)$$

$$\Leftrightarrow \quad T' \vDash \psi(t_1, ..., t_n) \lor \sigma(t_1, ..., t_n) = \varphi(t_1, ..., t_n)$$

La deuxième équivalence est l'hypothèse d'induction, la troisième équivalence est dû à la complétude de T': l'un des sens peut se faire par (\vee_i) , l'autre par contraposée : si $T \not\vdash \psi$ et $T \not\vdash \sigma$, alors par complétude, $T \vdash \neg \psi$ et $T \vdash \neg \sigma$, donc par (\wedge_i) et loi de de Morgan, $T \vdash \neg(\psi \vee \sigma)$, donc par cohérence, $T \not\vdash \psi \vee \sigma$.

- $\operatorname{si} \varphi = \exists x \psi :$
 - * (\Rightarrow): il existe $t \in \mathcal{C}$ tel que $\mathcal{M} \models \psi(\overline{t_1}, ..., \overline{t_n}, \overline{t})$, donc $T' \vdash \psi(t_1, ..., t_n, t)$, donc $T' \vdash \exists x \, \psi(t_1, ..., t_n)$;
 - * (\Leftarrow): par hypothèse sur T', il existe une constante c_{ψ} telle que $T' \vdash (\exists x \, \psi(t_1, \ldots, t_n)) \rightarrow \psi(t_1, \ldots, t_n, c_{\psi})$. On a donc, par $(\to_e) T' \vdash \psi(t_1, \ldots, t_n, c_{\psi})$. Par hypothèse d'induction, $\mathcal{M} \vDash \psi(\overline{t_1}, \ldots, \overline{t_n}, \overline{t})$, donc $\mathcal{M} \vdash \varphi(\overline{t_1}, \ldots, \overline{t_n})$.

Corolaire 2.12

 $\mathcal{M} \models T'$.

Preuve

Pour $\varphi \in T'$, $T' \vdash \varphi$, donc $\mathcal{M} \vDash \varphi$ par le lemme.