Programmazione Funzionale

Esercitazione 3 – Ricorsione sugli Interi

Esercizio 1. Dato una funzione $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ definiamo iter(f, e) l'iterazione di f con elemento neutro $e \in \mathbb{N}$, per induzione:

$$iter(f, e)(0) = e$$
 and $iter(f, e)(n) = f(n, iter(f, e)(n-1)).$

- 1. Scrivere in Ocami una funzione ricorsiva iter che prende una funzione f e un intero e e restituisce la funzione iter(f,e).
- 2. Scrivere in Ocami una versione ricorsiva di coda della funzione precedente.
- 3. Quali paremetri dobbiamo dare a iter per ottenere la funzione $sum: n \mapsto \sum_{0 \le i \le n} i$.
- 4. Quali paremetri dobbiamo dare a iter per ottenere la funzione $fact: n \mapsto \prod_{1 \le i \le n} i$.

Esercizio 2. La successione di fibonacci e la funzione $u: \mathbb{N}^* \to \mathbb{N}$ definita per induzione tale che;

$$u_1 = 1$$
 $u_2 = 1$ $u_{n+2} = u_{n+1} + u_n$.

- 1. Definire la funzione fibonacci che calcola per ogni intero positivo n l'intero u_n .
- 2. Definire la versione tail recursive di fibonacci.

Esercizio 3. Considerate le funzione definite per mutua ricorsione

$$f(0) = 1$$
 $f(n) = 1 + g(n-1)$ $g(0) = 0$ $g(n) = 0 + f(n-1)$.

- 1. Definire le funzioni f e g in OCAML.
- 2. Cosa calcolano f e q?
- 3. Definire queste funzioni in modo tail recursive.

Esercizio 4. Dare una versione definita per mutua ricorsione delle funzione odd e even. odd n ritorna true quando n e dispari e false quando n e pari, invece, even n ritorna true quando n e pari e false quando n e dispari.

Esercizio 5. Usando la mutua ricorsione definire la funzione che rappresenta la sequenza $(u_n)_{n\in\mathbb{N}}$ definita per induzione:

$$u_0 = 1$$
 $u_{2n} = u_{2n-1} + 3$ $u_{2n+1} = u_{2n} * 2$.