

Quenching of spectroscopic factors in ^{10,12}Be transfer reactions

M. Lozano-González, A. Matta, B. Fernández-Domínguez, F. Delaunay, J. Lois-Fuentes

USC-IGFAE and LPC-Caen

ASTRANUCAP and CPAN Days 2024

A recap on spectroscopic factors

Spectroscopic factors shed light on the occupancy of single-particle states:

$$\left. \frac{d\sigma}{d\Omega} \right|_{\mathrm{exp}} = C^2 S \cdot \left. \frac{d\sigma}{d\Omega} \right|_{\mathrm{SD}}, \quad \sum C^2 S = (2j+1) \ \mathrm{in} \ \mathrm{IPSM}$$

Experimentally:

Reduction of $\sim 65 \%$!

- Short-range correlations: tensor forces,...
- Long-range: vibrations, giant resonances,...

CPAN | SF quenching

A long-standing puzzle

A trend with asymmetry energy $\Delta S \equiv \pm \left(S_p - S_n\right)$ is found depending on the experimental **probe!**

T. Aumann et al. Prog. Part. Nucl. Phys. 118 (2021)

 \Rightarrow measure towards more exotic nuclei: $|\Delta S| \uparrow$

Importance of GMF

Towards exotic nuclei (loosely bound or halo), a **geometrical mismatch factor** emerges from the very different w.f. in the overlap:

N. K. Timofeyuk, private communication (in E748 proposal)

 \Rightarrow Need to correct C^2S by its value!

Physics case of E748

E748 @ GANIL back in 2017. Using ^{10,12}Be(d,t|³He) reactions to:

Experimental technique

Tradional solid target experiment @ LISE

CPAN | SF quenching

Results: Elastic ^{10,12}Be(d,d)^{10,12}Be

The **ground state** sets our normalization!

First 2⁺ is seen in both cases but not exploited yet!

Results: Elastic ^{10,12}Be(d,d)^{10,12}Be

Experimental cross-section formula:

$$\frac{d\sigma}{d\Omega} = \frac{N}{N_{\mathsf{beam}} N_{\mathsf{targets}} \epsilon \Delta \Omega} = \frac{N}{N_{\mathsf{beam}} \alpha \epsilon_{\mathsf{sim}} \Delta \Omega}$$

Target thickness not measured during experiment

2 Missing intrinsic ZDD ϵ $\sim 20\text{--}30\,\%$

Agglutination of unknown factors: $\alpha = N_{\mathrm{targets}} \cdot \epsilon_{\mathrm{instrinsic, ZDD}}$

 α is determined from fits of theoretical cross-sections to data

Results: Elastic ^{10,12}Be(d,d)^{10,12}Be

The best OMP potentials can also be deduced from the fit quality.

Results: transfer

The **ground states** of the heavy recoils are populated.

First state at 2.7 MeV of ⁹Li is seen too! ••

Results: transfer

Fresco is employed to perform the **DWBA** calculations.

ОМР

- In: set from elastic
- Out: HT1p

D. Y. Pang et al., PRC 91 (2015)

Light overlap

 $\langle \mathsf{t}, {}^{\overline{\mathsf{3}}}\mathsf{He}|\mathsf{d}\otimes\mathsf{n},\mathsf{p}\rangle$

Accurate GFMC

I. Brida et al., PRC 84 (2011)

Heavy overlap

 $\langle ^{10,12}\text{Be}|^{9,11}\text{Be}, \text{Li}\otimes \text{n}, \text{p}\rangle$

WS of Standard Potential Model (SPM)

 $r_0 = 1.25\,{
m fm}$, $a = 0.65\,{
m fm}$

Heavy overlap

 $\langle ^{10,12}\text{Be}|^{9,11}\text{Be}, \text{Li}\otimes \text{n}, \text{p}\rangle$

WS from novel Source Term Approach (STA)

N. Timofeyuk PRC 81 (2010)

Results: transfer

Angular distributions for all the states

Results: quenching factor

The reduction factor $R_S = C^2 S_{\rm exp}/C^2 S_{\rm theo}$ is computed:

SFO-tls interaction T. Suzuki, T. Otsuka PRC 78 (2008) Compatible with current systematics 4

¹¹Li requires GMF correction (pending)

Results: quenching factor

The reduction factor $R_S = C^2 S_{\text{exp}}/C^2 S_{\text{theo}}$ is computed:

 $\label{eq:RS} \mathbf{R}_{\mathrm{S}} = 1$ is expected now

Falls short in modelling SRCs

Needs to be extended to ¹¹Li

Conclusions

Angular distributions for ⁹Be, ⁹Li and ¹¹Li have been extracted and compared with DWBA

R_S for SPM agrees with literature, while STA still understimates NN correlations

¹¹Li needs correction for a major geometrical mismatch value

STA requires further developments to reach ¹¹Li

Acknowledgments

- Santiago:
 B. Fernández
 M. Caamaño
 I Lois
- LPC-Caen: A Matta F. Delaunay N. L. Achouri F. Flavigny J. Gibelin M. Marques N Orr IJCLab: D Beaumel M Assié Y. Blumenfeld S Franchoo A. Georgiadou V Girard-Alcindor F Hammache N. de Séreville A. Meyer

I Stefan

- GANIL:
 B. Jacquot
 O. Kamalou
 A. Lemasson
 M. Rejmund
 T. Roger
 O. Sorlin
 J.C. Thomas
 - M. Vandebrouck B. Bastin F. de Oliveira C. Stodel
- RIKEN: S. Koyama D. Suzuki
- Surrey:N. Timofeyuk

Status with light isotopes

Several experiments allowed for the extraction of C^2S with Li-induced (d, 3 He) reactions:

Several challenges in this region:

Dealing with **unbound** nuclei (¹⁰He)

2 Many-body dynamics and/or core excitations

A glance at the analysis

3 E_x from missing mass technique $E_{\mathrm{beam}} + (E,\theta)_{\mathrm{Lab}} \to E_x$

What happens with ¹¹Be?

It shows a strong inhibition of the ground state.

Impossible to disentangle excited states 😕

Results: ¹⁰Be(d,t)⁹Be

SM calculation using **SFO-tls** interaction

T. Suzuki, T. Otsuka PRC 78 (2008)

STA yields $40\,\%$ of SM value. Better accord with exp values

Results: 10Be(d, 3He) Li

Same significant differences SM-STA

Worse agreement within STA data $\sim 40\,\%$ discrepancies

Results: ¹²Be(d, ³He)¹¹Li

Gigantic quenching, signature of **GMF** playing a role

No STA predictions yet 😕

Kinematical lines

