DMA Přednáška – Relace

Definice.

Nechť A, B jsou množiny. Libovolná podmnožina $R \subseteq A \times B$ se nazývá **relace** z A do B.

Jestliže $(a, b) \in R$, pak to značíme aRb a řekneme, že a **je v relaci** k b vzhledem k R.

Definice.

Nechť A je množina. Řekneme, že R je relace na A, jestliže je to relace z A do A.

Příklad: Uvažujme malou školu se studenty **F**rodo, **M**erry, **P**ippin a **S**am, škola nabízí kursy **c**estování, **d**iskrétní matiky, **e**lfštiny a frodologie.

Frodo si zapsal cestování a elfštinu, Merry a Pippin si zapsali cestování a diskrétku, Sam si zapsal elfštinu a frodologii.

Definice.

Nechť $A=\{a_1,a_2,\ldots,a_m\}$ a $B=\{b_1,b_2,\ldots,b_n\}$ jsou množiny. Pro relaci R z A do B definujeme **matici relace** $M_R=(m_{ij})_{i,j=1}^{m,n}$ předpisem

$$m_{ij} = \begin{cases} 1, & (a_i, b_j) \in R; \\ 0, & (a_i, b_j) \notin R. \end{cases}$$

Příklad: Nechť je A množina všech měst (v České republice, aby jich nebylo tolik). Nechť R_1 je relace na A definovaná tak, že aR_1b právě tehdy, jestli se dá z a do b dostat autobusem, a R_2 je relace na A definovaná tak, že aR_2b právě tehdy, jestli se dá z a do b dostat vlakem.

Definice.

Nechť R je relace z nějaké množiny A do nějaké množiny B. Definujeme **relaci inverzní k** R, značeno R^{-1} , jako relaci z B do A předpisem

$$R^{-1} = \{(b, a) : (a, b) \in R\}.$$

Tedy

 $bR^{-1}a$ právě tehdy, když aRb.

Definice.

Nechť R je relace z nějaké množiny A do nějaké množiny B a S je relace z B do nějaké množiny C. Definujeme jejich složení $S \circ R$ jako relaci z A do C definovanou

$$S \circ R = \{(a,c) \in A \times C : \exists b \in B \colon [(a,b) \in R \land (b,c) \in S]\}.$$

Příklad: Připomeňme, že $A = \{F, M, P, S\}$ jsou studenti, $B = \{b, c, d, e\}$ kursy a relace $R = \{(F, c), (F, e), (M, c), (M, d), (P, c), (P, d), (S, e), (S, f)\}$ říká, který student si zapsal jaký kurs. Množina učitelů $C = \{\mathcal{E}\text{Irond}, \mathcal{G}\text{andalf}, \mathcal{T}\text{om Bombadil}\}$, relace který kurs je učen kterým učitelem: $S = \{(c, \mathcal{G}), (d, \mathcal{T}), (e, \mathcal{E}), (f, \mathcal{G})\}$.

Fakt.

Nechť R je relace z nějaké množiny A do nějaké množiny B, S je relace z B do nějaké množiny C a T je relace z C do nějaké množiny D. Pak $(T \circ S) \circ R = T \circ (S \circ R)$.

Definice.

Nechť R je relace na nějaké množině A. Pak definujeme její **mocninu** rekurzivně jako

- (0) $R^1 = R$;
- (1) $R^{n+1} = R \circ R^n$ pro $n \in \mathbb{N}$.

Definice.

Nechť R je relace na množině A.

Řekneme, že R je **reflexivní**, jestliže pro všechna $a \in A$ platí aRa.

Řekneme, že R je **symetrická**, jestliže pro všechna $a,b\in A$ platí $aRb\implies bRa$.

Řekneme, že R je **antisymetrická**, jestliže pro všechna $a,b \in A$ platí $(aRb \wedge bRa) \implies a = b$.

Řekneme, že R je **tranzitivní**, jestliže pro všechna $a,b,c\in A$ platí $(aRb\wedge bRc)\implies aRc.$