Mathematical Biosciences

an international journal

Volume 110 June 1992

MONIQUE VASSEUR, GUY VAN MELLE, REGINE FRANGNE,	
AND FRANCISCO ALVARADO (Meudon, France)	
A Four-Proton-Families Model for pH-Dependent	
Enzyme Activation: Application to Intestinal	
Brush Border Sucrase	. 1
JIA LI (Los Alamos, New Mexico)	
Periodic Solutions of Population Models in a	
Periodically Fluctuating Environment	17
DAGAN FENG (Sydney, Australia) AND	
JOSEPH J. DISTEFANO III (Los Angeles, California)	
Decomposition-Based Qualitative Experiment	
Design Algorithms for a Class of	
Compartmental Models	27
MICHAEL G. NEUBERT AND MARK KOT (Seattle, Washington)	
The Subcritical Collapse of Predator Populations	
in Discrete-Time Predator-Prey Models	45
JACQUES A. L. SILVA AND THOMAS G. HALLAM	
(Knoxville, Tennessee)	
Compensation and Stability in Nonlinear	
Matrix Models	67
GILA FRUCHTER AND SHLOMO BEN-HAIM (Haifa, Israel)	
Dynamic Properties of Cardiovascular Systems	03
Notes	
JIAO ZHAORONG, KENAN M. MATAWIE, AND	
CLYDE A. McGilchrist (New South Wales, Australia)	
Variance Components for Discordances	19
L. Turyn (Dayton, Ohio)	
Remarks on "Persistence in Models of Three	
Interacting Predator-Prey Populations'	25
EDWARD H. KAPLAN (New Haven, Connecticut)	
R ₀ Bounds for Worst-Case Endemic Mixing Models	31
BOOK REVIEWS	
RICHARD GOMULKIEWICZ (Lawrence, Kansas)	
Statistical Genetics (Prem Narain)	33

SPIRO E. STEFANOU (University Park, Pennsylvania)	
Mathematical Bioeconomics: The Optimal	
Management of Renewable Resources (Colin W. Clark)	137
JONATHAN BELL (Buffalo, New York)	
AND MARK HOLMES (Troy, New York)	
Model of the Dynamics of Receptor Potential in	
a Mechanoreceptor	139
GERHARD CZIHAK AND JOHANN LINHART	
(Salzburg, Austria)	
Computer Modeling of Pole Formation in Cell Division	175
R. C. YADAVA (Varanasi, India), A. PANDEY	
(Bombay, India), AND N. C. SAXENA (New Delhi, India)	
Estimation of Parity Progression Ratios from the Truncated	
Distribution of Closed and Open Birth Intervals	181
JONI A. TORSELLA (Charleston, South Carolina),	
KENNETH M. PRUITT (Birmingham, Alabama), AND	
CHAN F. LAM (Charleston, South Carolina)	
A Method for the Analysis of Biological	
Transduction Phenomena	191
R. B. MARTIN, M. E. FISHER, R. F. MINCHIN, AND	
K. L. TEO (Nedlands, Australia)	
Optimal Control of Tumor Size Used to Maximize Survival	
Time When Cells Are Resistant to Chemotherapy	201
R. B. MARTIN, M. E. FISHER, R. F. MINCHIN, AND	
K. L. TEO (Nedlands, Australia)	
Low-Intensity Combination Chemotherapy Maximizes Host	
Survival Time for Tumors Containing Drug-Resistant Cells	221
ROGER ARDITI AND BERNARD DACOROGNA (Lausanne, Switzerland)	
Maximum Sustainable Yield of Populations with	
Continuous Age-Structure	253
VOLUME CONTENTS	

