Problem 1.67. Let the rotational closure of language A be $RC(A) = \{yx \mid xy \in A\}$.

Part a. Show that for any language A, we have RC(A) = RC(RC(A)).

Proof. To show that for any language A, RC(A) = RC(RC(A)), we show that all possible rotations of a string and all possible rotations of a rotation generate the same set of strings.

Let A be any language, and w be any member of A. Let n be the length of w, then RC(A) contains all of the n possible rotations of the string w, which are:

```
w_1 w_2 w_3 \cdots w_{n-1} w_n,

w_2 w_3 \cdots w_{n-1} w_n w_1,

w_3 \cdots w_{n-1} w_n w_1 w_2,

\vdots

w_n w_1 w_2 w_3 \cdots w_{n-1}
```

Every w_i in above strings is the i^{th} symbol of w. All of these strings share the same set of rotations.

Part b. Show that the class of regular languages is closed under rotational closure.

Proof Idea. Let $\Sigma = \{0, 1\}$, and define

 $A = \{w \mid w \text{ contains at least one 1 and an even number of 0s follow the last 1}\}.$

State diagram of DFA M that recognizes A.

Take for example the string 100, which is a member of A, and M accepts 100 by transitioning through the sequence of states q_1, q_2, q_3, q_2 . The string $010 \in RC(A)$, because it is a rotation of 100 by letting y = 0, and x = 10.

Comparison of state transitions between the DFA M for A on input string 100 (left), and how a finite automaton, say M' that recognizes RC(A) would compute on 010, which is a rotation of 100 (right).

Now, let's simulate how a finite automaton M' that recognizes RC(A) would compute in above case:

- 1. M' starts at state q_3 , and keeps on computing on the input like M until an accept state is reached.
- 2. When an accept state is reached, which in this case is q_2 , it keeps on computing like M, but also takes an ϵ -transition to the start state q_1 .
- 3. After taking an ϵ -transition to the start state q_1 , the automaton keeps on computing as M, and accepts if it finishes at state q_3 .

In general, a finite automaton M' can be constructed, which recognizes RC(A) by implementing above 3 points for every state in M.

State diagram of DFA M' that recognizes RC(A). M' uses two copies of M, which are modified to implement points 1 and 3 for each state in M, and the ϵ -transitions implement point 2.

Proof. Let $M = (Q, \Sigma, \delta, q_0, F)$ be the DFA that recognizes A. Construct the NFA $M' = (Q', \Sigma, \delta', q'_0, F')$ to recognize RC(A).

1. $Q' = \{q_s\} \cup Q_x \cup Q_y$, where

$$Q_x = \bigcup_{i=1}^{|Q|} X_{q_i} , \ Q_y = \bigcup_{i=1}^{|Q|} Y_{q_i}$$

For each $q_i \in Q$

$$X_{q_i} = \bigcup_{j=1}^{|Q|} (q_i, x, q_j) , Y_{q_i} = \bigcup_{j=1}^{|Q|} (q_i, y, q_j), \text{ and each } q_i, q_j \in Q$$

The set X_{q_i} is the set of states that implement point 1 for state $q_i \in Q$, and Y_{q_i} is the set of states that implement point 3 for state $q_i \in Q$. The state q_s is the new start state.

- 2. $q_0' = q_s$
- 3. $F' = \{(q_1, x, q_1), (q_2, x, q_2), \dots, (q_n, x, q_n)\}, \text{ where each } q_i \in Q.$
- 4. Define $\delta'(q, a)$ so that for any $q \in Q'$ and any $a \in \Sigma_{\epsilon}$:

$$\delta'(q, a) = \begin{cases} \{(q_1, y, q_1), (q_2, y, q_2), \cdots, (q_n, y, q_n)\} & q = q_s \text{ and } a = \epsilon \\ \{(q_i, x, \delta(q_j, a))\} & q \in Q_x \end{cases}$$

$$\{(q_i, y, \delta(q_j, a))\} & q \in Q_y \text{ and } q_j \notin F$$

$$\{(q_i, y, \delta(q_j, a))\} & q \in Q_y, q_j \in F \text{ and } a \neq \epsilon \}$$

$$\{(q_i, x, q_0)\} & q \in Q_y, q_j \in F \text{ and } a = \epsilon \}$$