LAB ASSIGNMENT-2

NAME : S.NADHIYA

ROLL NO : 2403A510C6

BRANCH : CSE

SUB : AI ASSISTED CODING

SCHOOL OF COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE			DEPARTMENT OF COMPUTER SCIENCE ENGINEERING	
Program Name: B. Tech		Assignment Type: Lab Academ		Academic Year:2025-2026
Course Coordinator Name		Venkataramana Veeramsetty		
Instructor(s) Name				
		Dr. V. Venkataramana (Co-Ordinator)		
		Dr. T. Sampath Kumar		
		Dr. Pramoda Patro		
		Dr. Brij Kishor Tiwari		
		Dr.J.Ravichan	der	
		Dr. Mohamma	nd Ali Shaik	
		Dr. Anirodh Kumar		
		Mr. S.Naresh Kumar		
		Dr. RAJESH VELPULA		
		Mr. Kundhan Kumar		
		Ms. Ch.Rajitha		
		Mr. M Prakash		
		Mr. B.Raju		
		Intern 1 (Dharma teja)		
		Intem 2 (Sai Prasad)		
		Intem 3 (Sowmya)		
		NS_2 (Mounika)		
Course Code	24CS002PC215	Course Title	AI Assisted Cod	ling
Year/Sem	II/I	Regulation	R24	
Date and Day	Week1 - Monday	Time(s)		
of Assignment		illie(s)		
Duration	2 Hours	Applicable to		
		Batches	24CSBTB01 To	24CSBTB39
Assignment Nu	mber: 2.1(Present as	ssignment numb	er)/ 24 (Total numb	per of assignments)

Screen shots:

• Use Google Gemini in Colab to write a Python function that reads a list of numbers and calculates the mean, minimum, and maximum values.

Expected Output #1

Functional code with correct output and screenshot

• Compare Gemini and Copilot outputs for a Python function that checks whether a number is an Armstrong number. Document the steps, prompts, and outputs.

Expected Output #2

Side-by-side comparison table with observations and screenshots

Gemini Al

```
CO 🛆 2.1.ipynb 🕁 🛆
         File Edit View Insert Runtime Tools Help
Q Commands + Code + Text ► Run all ▼
         write a python code to check whether a number is armstrong or not using function
\equiv
Checks if a number is an Armstrong number.
<>
                  Args:
number: An integer.
\neg
                 # Convert the number to a string to find the number of digits num_str = str(number) num_digits = len(num_str) sum_of_powers = 8
                  # Calculate the sum of the digits raised to the power of the number of digits
for digit in num_str:
    sum_of_powers += int(digit) ** num_digits
                  # Check if the sum is equal to the original number return sum_of_powers == number
                 Example usage:
um_to_check = 153  # Example Armstrong number
f is_armstrong(num_to_check):
print(f"{num_to_check} is an Armstrong number.")
                  print(f"{num_to_check} is not an Armstrong number.")
               num_to_check = 10 # Example non-Armstrong number
if is_armstrong(num_to_check):
    print(f"{num_to_check} is an Armstrong number.")
    also:
                  print(f"{num_to_check} is not an Armstrong number.")
```

```
File Edit View Insert Runtime Tools Help
€ Commands
              + Code + Text
                                 ▶ Run all 🔻
          # Example usage:
         num_to_check = 153  # Example Armstrong number
          if is_armstrong(num_to_check):
            print(f"{num_to_check} is an Armstrong number.")
Ì
          else:
            print(f"{num_to_check} is not an Armstrong number.")
>
          num_to_check = 10 # Example non-Armstrong number
          if is_armstrong(num_to_check):
ø
            print(f"{num_to_check} is an Armstrong number.")
          else:
J
            print(f"{num_to_check} is not an Armstrong number.")

→ 153 is an Armstrong number.

          10 is not an Armstrong number.
```

Copilot Code:

```
EXPLORER

*** **STAVANLHTML

**> python.py

**O nature.html*

**O
```

```
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS

PS C:\Users\nadhi\sravani.html> & C:/Users/nadhi/anaconda3/python.exe c:/Users/nadhi/0neDrive/Documents/python.py

• Enter a number: 14
14 is not an Armstrong number.
```

- Ask Gemini to explain a Python function (e.g., is_prime(n) or is_palindrome(s)) line by line.
- Choose either a prime-checking or palindrome-checking function and document the explanation provided by Gemini.
 Expected Output #3
- Detailed explanation with the code snippet and Gemini's response


```
△ 2.1.ipynb ☆
File Edit View Insert Runtime Tools Help
```

```
Q Commands
             + Code + Text ▶ Run all ▼
            # Check for prime numbers greater than 5
             # We can skip numbers divisible by 2 or 3, so we check from 5 with a step of 6
            i = 5
            while i * i <= number:
<u>a</u>
              if number % i == 0 or number % (i + 2) == 0:
                return False
:>
              i += 6
            return True
ℷ
          # Example usage:
num_to_check = 11 # Example prime number
          if is_prime(num_to_check):
            print(f"{num_to_check} is a prime number.")
            print(f"{num_to_check} is not a prime number.")
          num_to_check = 15 # Example non-prime number
          if is_prime(num_to_check):
             print(f"{num_to_check} is a prime number.")
            print(f"{num_to_check} is not a prime number.")

→ 11 is a prime number.

           15 is not a prime number.
```

- Install and configure Cursor AI. Use it to generate a Python function (e.g., sum of the first N natural numbers) and test its output.
- Optionally, compare Cursor Al's generated code with Gemini's output.

Expected Output #4

 Screenshots of Cursor AI setup, prompts used, and generated code with output

Cursor Al:

```
** pythonapy >--

** pythonapy
```

```
PS C:\Users\nadhi\OneDrive\Desktop\AI> & C:/Users/nadhi/anaconda3/python.exe c:/Users/nadhi/OneDrive/Desktop/AI/python.py

Enter a positive integer N: 2
Sum of first 2 natural numbers = 3

PS C:\Users\nadhi\OneDrive\Desktop\AI> []
```

Gemini Al:

```
△ 2.1.ipynb 🖈 🖎
       File Edit View Insert Runtime Tools Help
Q Commands + Code + Text ▶ Run all ▼
≣
       write a python code to calculate sum of N natural numbers using functions
ຝ
       def sum_of_natural_numbers(n):
\langle \rangle
              Calculates the sum of the first N natural numbers.
37
              Args:
               n: An integer representing the number of natural numbers.
Returns:
              The sum of the first N natural numbers. """
             if n < 0:
               return "Input should be a non-negative integer"
             else:
               return n * (n + 1) // 2
            # Example usage:
            n = 10
            sum_n = sum_of_natural_numbers(n)
            print(f"The sum of the first {n} natural numbers is: {sum_n}")
            n = 5
            sum n = sum of natural numbers(n)
            print(f"The \ sum \ of \ the \ first \ \{n\} \ natural \ numbers \ is: \ \{sum\_n\}")
            sum_n = sum_of_natural_numbers(n)
            print(f"The sum of the first {n} natural numbers is: {sum_n}")
       The sum of the first 10 natural numbers is: 55
```

```
The sum of the first 10 natural numbers is: 55

The sum of the first 5 natural numbers is: 15

The sum of the first -2 natural numbers is: Input should be a non-negative integer
```

- Students need to write a Python program to calculate the sum of odd numbers and even numbers in a given tuple.
- Refactor the code to improve logic and readability.
 Expected Output #5
- Student-written refactored code with explanations and output screenshots.

```
ÿ
     write a Python program to calculate the sum of odd numbers and even numbers in a given tuple
                                                                                            + Code + Text
  def sum_odd_even(numbers_tuple):
1
           Calculates the sum of odd and even numbers in a tuple.
             numbers_tuple: A tuple of numbers.
           A tuple containing the sum of odd numbers and the sum of even numbers.
           sum_odd = 0
            for number in numbers_tuple:
             if number % 2 == 0:
               sum_even += number
               sum_odd += number
           return sum_odd, sum_even
          # Example usage:
          my_tuple = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
         odd_sum, even_sum = sum_odd_even(my_tuple)
          print(f"Tuple: {my_tuple}")
         print(f"Sum of odd numbers: {odd_sum}")
```

```
print(f"Sum of odd numbers: {odd_sum}")
print(f"Sum of even numbers: {even_sum}")
```

Tuple: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
Sum of odd numbers: 25

Sum of odd numbers: 25 Sum of even numbers: 30