2425-MA140 Engineering Calculus

Week 04, Lecture 2 Differentiation Rules

Dr Niall Madden

School of Maths, University of Galway

Wednesday, 9 October, 2024

Calcalas			Calculus
Diorthaigh			Derivatives
f(x)	f'(x)		
x" ln x	$\frac{nx^{n-1}}{\frac{1}{x}}$	Riail an toraidh $y = uv$ $\Rightarrow \frac{dy}{dx} = u \frac{d}{d}$	Product rule $\frac{dy}{dx} + y \frac{du}{dx}$
ex exx ax cos x sin x	e^x ae^{ax} $a^x \ln a$ $-\sin x$ $\cos x$	Riail an lín $y = \frac{u}{v}$ $\Rightarrow \frac{dy}{dx} = \frac{v^{\frac{d}{d}}}{v^{\frac{d}{dx}}}$	Quotient rule $\frac{du}{dx} - u \frac{dv}{dx}$ $\frac{dv}{v^2}$
$\cos^{-1} \frac{x}{a}$ $\sin^{-1} \frac{x}{a}$	$-\frac{\sec^2 x}{\sqrt{a^2 - x^2}}$ $\frac{1}{\sqrt{a^2 - x^2}}$	Cuingriail $f(x) =$ $\Rightarrow f'(x) =$	$u(v(x))$ Chain rule $\frac{du}{dv} \frac{dv}{dx}$
$\tan^{-1}\frac{x}{a}$	$\frac{a}{a^2 + x^2}$		

Assignments, etc

Assignment 2

- ► Assignment 2 is open. See
 https://universityofgalway.instructure.com/
 courses/35693/assignments/96620.
 Deadline is 5pm, Friday, 11 October.
- ► The associated tutorial sheet is at https://universityofgalway.instructure.com/ courses/35693/files/2065926

In today's class...

- 1 Differentiation by rule
- 2 The Basic Rules
 - 1. The Constant Rule
 - 2. The Power Rule
 - 3. The constant multiple rule

- 4. The Sum and Difference Rules
- 3 The Product Rule
- 4 The Quotient Rule
- 5 Page 16 of the "log tables"
- 6 Exercises

See also:

- Sections 3.3 of Calculus by Strang & Herman: https://math. libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)
- Section 8.2 of Modern Engineering Mathematics: https://search.library.nuigalway.ie/permalink/f/3b1kce/TN_cdi_askewsholts_vlebooks_9780273742517

Differentiation by rule

Yesterday, we computed derivatives of some functions using the "limit" definition (i.e., **differentiation from first principles**). However, that approach is tedious, and unnecessary in many case.

Instead we can use a set of "rules" which makes the process much more efficient. These rules are themselves derived from the "limit" definition – but we don't have to use that every time.

Notation

In today's class we'll make use of various notations for the derivative of a function: e.g., f'(x), $\frac{df}{dx}$, $\frac{d}{dx}(f)$

The Constant Rule

If f is a constant function, i.e. f(x) = c for all x, then:

$$\frac{df}{dx} = \frac{d}{dx}(c) = 0.$$

Why:

We've already deduced that

- ► The derivative of $f(x) = x^2$ is f'(x) = 2x
- The derivative of $f(x) = x^{1/2}$ is $f'(x) = \frac{1}{2}x^{-1/2}$

These are particular examples of the Power Rules

The Power Rule

If n is any real number, then

$$\frac{d}{dx}(x^n) = nx^{n-1}.$$

Examples Calculate the derivatives of the following functions

- 1. $f(x) = x^6$
- 2. $f(x) = \sqrt[3]{x}$

The constant multiple rule

Let f(x) be any differentiable function, and let k be constant, then

$$\frac{d}{dx}(kf(x)) = k\frac{d}{dx}(f(x)).$$

Example: Find the derivative of $f(x) = 5x^4$.

The Sum and Difference Rules

Let u(x) and v(x) be any differentiable functions. Then

$$\frac{d}{dx}\big(u(x)+v(x)\big)=\frac{d}{dx}\big(u(x)\big)+\frac{d}{dx}\big(v(x)\big).$$

Similarly,
$$\frac{d}{dx}(u(x) - v(x)) = \frac{d}{dx}(u(x)) - \frac{d}{dx}(v(x))$$
.

Example: Find the derivative of $f(x) = 1 + x + x^2$.

Actually, the "Difference Rule", which states that

$$\left[\frac{d}{dx}(u(x)-v(x))=\frac{d}{dx}(u(x))-\frac{d}{dx}(v(x)).\right]$$

can be combined by combining the **Sum Rule** and the **Constant Multiple Rule**.

Example

Suppose that $f(x) = -5x^3 + 3x^2 - 9x + 7$, then find:

- (a) The derivative of f(x);
- (b) The slope of the tangent line at x = 2;
- (c) The equation of the tangent at x = 2.
- (a) $f'(x) = -15x^2 + 6x 9$
- (b) The slope of the tangent line at x = 2 is f'(2):

$$f'(2) = -15(2)^2 + 6(2) - 9 = -15(4) + 12 - 9 = -60 + 12 - 9 = -57.$$

(c) The equation of the line with slope M and passing through a point (x_1, y_1) is

$$y - y_1 = M(x - x_1)$$

The y coordinate at x = 2 is

$$f(2) = -5(2)^{3} + 3(2)^{2} - 9(2) + 7$$

$$= -5(8) + 3(4) - 18 + 7$$

$$= -40 + 12 - 18 + 7$$

$$= -39.$$

So the tangent line passes through the point (2, -39) and the slope of the line is -57.

Therefore, the equation of this line is y + 39 = -57(x - 2)

Ans: The equation of the tangent line is x = 2 is y = 75 - 57x.

The Product Rule

We now consider some advanced rules, which are a little more complicated and, I think, less obvious.

The first concerns the derivative of the **product** of two functions.

The Product Rule

Let u(x) and v(x) be any differentiable functions. Then

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$

First, let's convince ourselves that the following "product rule" is misinformation:

$$\frac{d}{dx}(uv) \stackrel{???}{=} \frac{du}{dx} \frac{dv}{dx}.$$

The Product Rule

The Product Rule

Let u(x) and v(x) be any differentiable functions. Then

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

Example Use the **product rule** to find the derivative of $f(x) = x^3(x^2 + 1)$.

The Product Rule

Example: use the product rule to show that, if $f(x) = x \sin(x)$, then $f'(x) = x \cos(x) + \sin(x)$.

The Quotient Rule

The Quotient Rule

If u and v are differentiable at x and if $v(x) \neq 0$, then $f(x) = \frac{u(x)}{v(x)}$ is differentiable at x, and

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Example: Use this rule to find the derivative of $f(x) = \frac{x+1}{x^2}$

The Quotient Rule

Example

We know that

- $\blacktriangleright \ \tan(x) = \frac{\sin(x)}{\cos(x)},$
- $ightharpoonup \sin^2(x) + \cos^2(x) = 1$
- \blacktriangleright $\sin'(x) = \cos(x)$ and $\cos'(x) = -\sin(x)$.

Use these facts, and the Quotient Rule to show that

$$\frac{d}{dx}(\tan(x)) = \left(\frac{1}{\cos(x)}\right)^2.$$

The Quotient Rule

Page 16 of the "log tables"

Calcalas				Calculus
Díorthaigh				Derivatives
f(x)	f'(x)			
x^n	nx^{n-1}	Riail an toraidh	y = uv	Product rule
ln x	$\frac{1}{x}$		$\Rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	
e^x	e^x	D'-11 1'		0 - 4 - 1
e ^{ax}	ae ^{ax}	Riail an lín	$y = \frac{u}{v}$	Quotient rule
a^{x}	$a^x \ln a$		du dv	
$\cos x$ $\sin x$	$-\sin x$ $\cos x$		$\Rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
tan x	sec ² x	Cuingriail	f(x) = u(v(x))	Chain rule
$\cos^{-1}\frac{x}{a}$	$-\frac{1}{\sqrt{a^2-x^2}}$	Cunigrian	$\Rightarrow f'(x) = \frac{du}{dv} \frac{dv}{dx}$	Chain ruic
$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2-x^2}}$		av ax	
$\tan^{-1}\frac{x}{a}$	$\frac{a}{a^2 + x^2}$			

Exercises

Exercises 4.2.1 (Based on Q2(a), 2023/2024)

Find the derivative of $f(x) = \frac{\sin(x)}{\sqrt{x}}$.

Exercise 4.2.2 (Based on Q2(b), 2019/2020

Find the derivative of $f(x) = \frac{x^2 + x - 2}{x^3 + 6}$.