Exercise 10.

Theorem. Let J and C be well-ordered sets; assume that there is no surjective function mapping a section of J onto C. Then there exists a unique function $h: J \to C$ satisfying the equation:

$$h(x) = smallest \ of \left[C - h(S_x)\right] \tag{1}$$

for each $x \in J$, where S_x is the section of J by x. Proof.

- (a) If h and k map sections of J, or all of J, into C and satisfy (1) for all x in their respective domains, show that h(x) = k(x) for all x in both domains.
- (b) If there exists a function $h: S_{\alpha} \to C$ satisfying (1), show that there is a function $k: S_{\alpha} \cup \{\alpha\} \to C$ satisfying (1).
- (c) If $K \subset J$ and for all $\alpha \in K$ there exists a function $h_{\alpha} : S_{\alpha} \to C$ satisfying (1), show that there exists a function

$$k: \bigcup_{\alpha \in K} S_{\alpha} \to C$$

satisfying (1).

- (d) Show by transfinite induction that for every $\beta \in J$, there exists a function $h_{\beta}: S_{\beta} \to C$ satisfying (1). [Hint: If β has an immediate predecessor α , then $S_{\beta} = S_{\alpha} \cup \{\alpha\}$. If not, S_{β} is the union of all S_{α} with $\alpha < \beta$.]
- (e) Prove the theorem.

Proof.

If $C = \emptyset$, there is no function from J to C, so we assume that C is nonempty.

(a) Let \mathcal{D}_h and \mathcal{D}_k be the respective domains of h and k, and suppose there exists and element $x \in \mathcal{D}_h \cap \mathcal{D}_k$ such that $h(x) \neq k(x)$. Since J is well-ordered, there exists a smallest such element m. For all x < m, we have h(x) = k(x), so that $h(S_m) = k(S_m)$. Since there is no surjection of J onto C, the set $C - h(S_m)$ is nonempty, and, as a subset of the well-ordered set C, has a smallest element x_0 , which is also the smallest element of $C - k(S_m)$. From (1), we deduce that $h(m) = x_0 = k(m)$, which contradicts the existence of m.

Therefore, for all $x \in \mathcal{D}_h \cap \mathcal{D}_k$ we have h(x) = k(x).

(b) Since there is no surjection from J onto C and $S_{\alpha} \subset J$, h is not surjective and therefore $C - h(S_{\alpha})$ is a nonempty subset of the well-ordered set C. From this we deduce that the smallest element m of $C - h(S_{\alpha})$ exists. Let

$$k: S_\alpha \cup \{\alpha\} \to C$$

$$x \mapsto \begin{cases} h(x) & \text{if } x \in S_\alpha \\ m & \text{otherwise} \end{cases}$$

For all $x \in S_{\alpha}$, h(x) = k(x), so $C - k(S_{\alpha}) = C - h(S_{\alpha})$ and k satisfies (1) on S_{α} . Since $m = k(\alpha)$ is the smallest element of $C - k(S_{\alpha})$, we conclude that k satisfies (1) on $S_{\alpha} \cup \{\alpha\}$.

(c) Let $R \subset \bigcup_{\alpha \in K} S_{\alpha} \times C$ consist of all the tuples $(x, h_{\alpha}(x))$ for $\alpha \in K$ and $x \in S_{\alpha}$. Then R is the rule of a function: let $x \in \bigcup_{\alpha \in K} S_{\alpha}$, there exists $\beta \in K$ such that $x \in S_{\beta}$, and for all $\gamma \in K$ such that $\beta < \gamma$, we deduce from point (a) that $h_{\beta} = h_{\gamma}$ on S_{β} . Therefore there is a unique element $(a, b) \in R$ such that a = x. Let

$$k: \bigcup_{\alpha \in K} S_{\alpha} \to C$$

 $x \mapsto h_{\alpha}(x) \text{ for } x \in S_{\alpha}$

The function k satisfies (1): let $x \in \bigcup_{\alpha \in K} S_{\alpha}$, there exists $\alpha \in K$ such that $x \in S_{\alpha}$. The function h_{α} satisfies (1) on its domain S_{α} , so that

$$k(x) = h_{\alpha}(x) = \min \left(C - h_{\alpha}(S_x) \right) = \min \left(C - k(S_x) \right)$$

The last equality comes from the fact that $x \in S_{\alpha}$ implies $x < \alpha$, so that for all $y \in S_x$ we have $k(y) = h_x(y) = h_{\alpha}(y)$.

(d) Let J_0 be the subset of J such that for all $\beta \in J_0$, there exists a function $h_{\beta}: S_{\beta} \to C$ which satisfies (1). Suppose that $J - J_0$ is nonempty and let β be its smallest element.

If β has an immediate predecessor α , then $\alpha \in J_0$. There exists a function $h_{\alpha}: S_{\alpha} \to C$ satisfying (1), and from point (b), we deduce that there exists a function h_{β} from $S_{\beta} = S_{\alpha} \cup \{\alpha\}$ to C satisfying (1), which is a contradiction with the definition of β .

Therefore β does not have an immediate predecessor. For all $x < \beta$, we have $S_x \subset J_0$, and since $S_\beta = \bigcup_{x < \beta} S_x$, we deduce from (c) that $\beta \in J_0$, again a contradiction.

Therefore β does not exist, and for all $\alpha \in J$, there exists $h_{\alpha}: S_{\alpha} \to C$ which satisfies (1).

(e) Suppose that J has a largest element M, then $J = S_M \cup \{M\}$. From (d), we deduce the existence of a function $h_M : S_M \to C$ that satisfies (1). Then from (b), we deduce the existence of a function $h: J \to C$ which satisfies (1).

Suppose otherwise that J does not have a largest element. For all $\alpha \in J$, we deduce from (d) the existence of a function $h_{\alpha}: S_{\alpha} \to C$ satisfying (1). Let $x \in J$; since J does not have a largest element, there exists $y \in J$ such that x < y. From this we deduce that $J = \bigcup_{x \in J} S_x$.

Let R the subset of $\bigcup_{x\in J} S_x \times C$ consisting of all the tuples $(y, h_x(y))$ for $x\in J$ and $y\in S_x$, and let $\alpha\in J$. There exists $\beta\in J$ such that $\alpha<\beta$, so $\alpha\in S_\beta$; from (d) we deduce the existence of $h_\alpha:S_\alpha\to C$ and $h_\beta:S_\beta\to C$ satisfying (1). Then from (a), we deduce that for all $x\in S_\alpha$, $h_\alpha(x)=h_\beta(x)$, so that there is only one tuple $(a,b)\in R$ such that a=x. Let $h:J\to C$ be the function with rule R. Then h satisfies (1): let $x\in J$, there exists $\alpha>x$. We have:

$$h(x) = h_{\alpha}(x)$$

= $\min (C - h_{\alpha}(S_x))$ since h_{α} satisfies (1)
= $\min (C - h(S_x))$ since $h_{\alpha} = h$ on S_x

Suppose that there are 2 functions h and k from J to C that satisfy (1), and suppose that there exists $x \in J$ such that h(x) = k(x). Let $\alpha \in J$ be the smallest such element; we have h(y) = k(y) for all $y \in S_x$. From (1) we deduce that h(x) = k(x), which is a contradiction with the existence of x. Therefore such an x does not exist and h is unique.