1.Félév8. Szeminárium

Dr. Varga Balázs

DE ÁOK Farmakológia és Farmakoterápia tanszék

15-16-os Tételek

15.

- Az első passzázs effektus (first pass effect)
- Az acetilkolin (Ach) szintézis, tárolás, kiürülés és elimináció. Dale-féle kísérlet bemutatása
- Vérképzésre ható szerek
- Fülcseppek

16.

- A gyógyszerek eliminációja: I. átalakulás (biotranszformáció)
- Non-adrenerg, non-kolinerg transzmisszió
- Véralvadásra ható szerek
- Orrcseppek

Farmakokinetika

- "Szervezet hatása a gyógyszerre"
- A gyógyszer sorsa 4 szakaszra bontható, amelyet az 'ADME' betűszó jelöl:
- Abszorpció az alkalmazás helyéről
- Disztribúció a szervezetben
- Metabolizmus
- Exkréció

Invázió

Elimináció

Az első passzázs effektus (first pass effect)

First pass effect

- A first-pass effect a metabolizmus egy jelensége:
 - A gyógyszer koncentrációja jelentősen csökken mielőtt elérné a szisztémás keringést ("preszisztémás metabolizmus")
- Útvonal: Per os bevitel → abszorpció a máj kapuér rendszerébe (portalis véna) → gyógyszer a májba → A máj számos gyógyszert metabolizál. → gyógyszer bekerül a szisztémás keringésbe

Más mechanizmusok is szerepet játszanak:

- A first-pass effect négy fő meghatározó rendszere
 - A gasztrointesztinális lumen enzimei
 - Bélfali enzimek,
 - Bakteriális enzimek és
 - Máj enzimek

A First pass effect következményei

- A gyógyszer biohasznosulása lecsökken
- Magasabb dózis kell orálisan, mint parenterálisan
- Jelentős egyéni különbségek vannak a first-pass metabolism mértékében

Példák: jelentős first-pass metabolizmus

Table 9.2 Examples of drugs that undergo substantial first-pass elimination

Aspirin Metoprolol

Glyceryl trinitrate Morphine

Isosorbide dinitrate Propranolol

Levodopa Salbutamol

Lidocaine Verapamil

A gyógyszerek eliminációja: I. átalakulás (biotranszformáció)

Definíció

"A gyógyszerek biotranszformációja egy kémiai formából egy másikba való átalakítás."

szinoníma: *metabolzimus*

Biotranszformáció - alapok

- A lipid-oldékony gyógyszerek gyengén választódnak ki a vizeletbe
- Hajlamosak raktározódni zsírban és/vagy addig cirkulálni, amíg átalakítódnak
 - Vízoldékonyabb metabolitokká, (I. fázis biotranszformáció) vagy
 - Olyan metabolitokká, amik vízoldékony anyagokkal konjugálódnak (II. fázis biotranszformáció).
- A vízoldékony gyógyszerek könnyebben választódnak ki a vizeletbe.
 - (Metabolizálódhatnak, de általában nem a CYP enzim rendszer által.)

A biotranszformáció eredményezheti:

A gyógyszer farmakológiai inaktivációját

Aktív gyógyszer Inaktív gyógyszer

Pl: Szalicil-sav szalicilur-sav

Aktív metabolit egy inaktív gyógyszerből

Inaktív (Prodrug) Aktív

Pl. Captoprilat

Nincs változás a farmakológiai aktivitásban

Aktív

Aktív gyógyszer

Pl. kodein morfin

Gyógyszermetabolizáló szervek

- A metabolizmus központja a máj
 - Mert igen gazdag enzimekben.
- A metabolizáló szervek (csökkenő sorrendben):
- Máj > Tüdő > Vese > Belek > Placenta > Bőr > Agy > Herék
 > Izom > Lép

I. Fázis reakciók (katabolikus)

- 1. Mikroszomális (P450-függő) oxidáció
- 2. Nem-mikroszomális oxidáció
- 3. Redukció
- 4. Hidrolízis
- 5. Hidratáció
- 6. Izomerizáció
- 7. Kevert reakciók
- I. Fázis reakciók gyakran végződnek reaktív funkciós csoport beépülésével (='funkcionalizáció')
- Ez a csoport támadási felületet jelent a II. fázis reakciók számára.
- A termékek gyakran kémiailag reaktívabbak, és így, paradox módon néha toxikusabbak vagy karcinogénebbek, mint az alap vegyület.

I. Fázis reakciók

1. Mikroszomális oxidáció.

- Az ER-ban zajlik
- Az enzimek egy elektron-transzport lánc tagjai:
 - ► Flavoprotein, vagy NADPH:P450-reduktáz
 - Hemoprotein vagy cytochrome P450 (ezek kevert funkciójú oxidázok)
- ► Redukált NADPH és O₂ szükséges a működésükhöz
- A leggyakrabban katalizált mikroszomális oxidációs folyamat az ún. monoxigenáz reakció (cytochrome P450-rendszer = monooxigenáz rendszer)
- Egyéb reakciók: aromás/alifás oxidációk, epoxid képződés, N-, O- S- dealkilizáció, oxidatív dezamináció, S-, N- oxidáció, dehalogenizáció, alkohol-oxidáció

A monooxigenáz reakció

A nettó hatás egész egyszerű = beépül 1 oxigén atom (oxigén molekulából) a gyógyszerbe úgy, hogy egy hidroxil csoport jön létre (termék, 'DOH'), a másik oxigén atom vízzé alakul

$$DH + O_2 + NADPH + H^+ \rightarrow DOH + H_2O + NADP^+$$

A CYP-ek

- CYP = CYtochrome P450
 - Cyto = sejt; chrome = színes; P = pink → 450= 450nm spektrális elnyelés
- Ezek hemoproteinek = heme kofaktort tartalmaznak (ebben pedig egy vas atomot: Fe^{2/3+})
- A CYP-ek kulcsfontosságúak a metabolizmusban
 - Mind endogén szubsztrátok metabolizmusában
 - (pl. zsír savak, eicosanoidok, szerolok és szteroidok, epe savak, D-vitamin, retinoidok és uroporphyrogének)
 - pl. a szteroid szintézis enzimei mind CYP-ek
 - Mind idegen vegyszerek/gyógyszerek metabolizmusában (= detoxifikáció)
- Számok:
 - ► Több, mint 21000 különböző CYP fehérje ismert
 - Emberben 18 CYP-család létezik
- Legfontosabbak a gyógyszer metabolizmusban a CYP 1, 2 és 3 alcsaládok:

CYP3A4 - A gyógyszerek 60%-ának a metbolizmusában vesz részt.

CYP2D6 - (20-25%)

CYP2C19 - (kisebb százalék, de néhány fontos interakció)

CYP1A2 - dohányzás (benzpirének) akutan gátolják (lefoglalják), krónikus indukálja

CYP2E1 - akut alkohol-fogyasztás inhibítor, krónikus alkohol-fogyasztás indukálja

I. Fázis reakciók

- 2. Nem mikroszomális oxidáció.
 - Mitokondriumban és sejtplazmában található NAD-kofaktorú enzimek végzik
 - (alkoholdehidrogenáz, aldehid-oxidáz, aromatáz, amin-oxidáz)
- 3. Redukciós átalakítások
 - mikroszómákban, citoplazmában vagy bélbaktériumok által
 - (azo-reduktáz, nitro-reduktáz, epoxid redukció, heterociklikus vegyületek redukciója)
- 4. Hidrolízis
 - Ászterázok végzik
 - (észter, amid-, azid-hidrolízis)
- 5. Hidratáció
 - ► H2O beépításe a molekulákba
- 6. Izomerizáció
 - Egyik izomerből egy másikba alakítás
- 7. Kevert reakciók
 - Gyűrűzáródások, gyűrű felnyílások, N-karboxiláció, dimerizáció, transzamináció, dekarboxiláció

II. Fázis reakciók (anabolikus)

- 1. Glükuronid konjugáció
- 2. Metilálás
- 3. Acetilálás
- 4. Szulfát konjugáció
- 5. Aminosavakkal történő konjugáció (főleg glicin)
- 6. Glutation konjugáció
- 7. Cianid konjugáció
- A II. fázis reakciókban a szer funkciós csoportjaihoz endogén szubsztrátok kapcsolódnak (='konjugáció')
 - Ez gyakran az I. fázis reakciókban képződött új oldalcsoportokon történik
- A végtermék mindig nagyobb molekulatömegű
- ► A termékeke általában nagyon hidrofilek vízoldékonyság nő → kiválasztás nő
- Az I. fázissal szemben a II. fázisban mindig csökken a gyógyszer-hatás
- Néha a konjugátumok tovább alakulhatnak (III. fázis)

II. Fázis reakciók

1. Glükuronid konjugáció (=glükuronidáció)

- ► UDP-glükuronil-transzferáz által; UDP-glükuronsav szükséges
- A béta-glükuronidáz ellene dolgozik
 - Ilyen található a belekben (lásd enterohepatikus körforgás köv. szeminárium),
 - És az anyatejben (ami hozzájárul az újszülöttkori sárgasághoz)
- A molekulatömeg annyit nőhet, hogy a termék a glomerulusokon keresztül nem képes ürülni → bekerül az enterohepatikus körforgásba
- Endogén példák:
 - Mellékvese kortikoszteroidjai
 - bilirubin
 - A bilirubin-specifikus glükuronil-transzferáz hiány lehet az oka a Gilbert-kórnak, amire nem-konjugált hyperbilirubinaemia jellemző
 - A Crigler-Najjar szindróma egy még súlyosabb változat, amikor egyáltalán nincs enzimaktivitás (I. típ. Crigler-Najjar szindróma), vagy csak 10%-a a normálisnak (II. típ.)
- Exogén példák:
 - glükuronil-transzferáz enzim nincs a Felis fajokban, ezért egy sor szokatlan toxicitást képesek produkálni a macskák.
 - Újszülötteknél a glükuronil-transzferáz enzim alulműködhet, így májuk nem képes metabolizálni pl. az kloramfenikol antibiotikumot, ami az ún. grey baby szindrómához vezet

II. Fázis reakciók

- 2. Metiláció (vagy metilezés)
 - Metiltranszferázok végzik (az ER-ban és a citoplazmában),
 - ► A metil-donor a S-adenozil-metionin (SAM)
 - Tüdőkben, vesékben jellemző.
- 3. Acetiláció (vagy acetilálás)
 - N-acetiltranszferáz,
 - Kofaktor: AcCoA
 - Máj, tüdpk, vesék, belek.
- 4. Szulfát konjugáció
 - Szulfotranszeráz enzimek végzik (citoplazmában),
 - ► Kofaktor: 3'-phosphoadenosine-5'-phosphosulphate (PAPS).
 - Nagyon oldékony, gyorsan kiválasztódó vegyületek keletkeznek
 - Telíthető folyamat
- 5. Aminosav-konjugáció (főleg glicin)
 - Glicin a leggyakoribb, de taurin-, glutamin- ornitin-konjugátumok is képződhetnek
- 6. Glutation-konjugáció
 - Glutation-S-transzferázok végzik

NAPQI = N-acetyl-p-benzoquinone imine

Fülcseppek, orrcseppek

Cseppek

Cseppszámra adagolt gyógyszerkészítmények:

- bevételre szánt/perorális cseppek gutta
- orrcseppek- nasogutta
- fülcseppek otogutta
- szemcseppek oculogutta

Fülcseppek - Otogutta

- Def.: A külső hallójáratnak, esetleg a középfülnek a kezelésére szolgáló oldatok, emulziók vagy ritkán szuszpenziók.
- lzotónia, izohidria általában nem követelmény.
- De középfül kezelése esetén izotonizálásra, sterilezésre és konzerválásra van szükség.
- Készítmények (FoNo VII.):
 - ▶ Otogutta borica (antisepticum) (acidum boricum, 70%-os alkohol)
 - Otogutta hydrogencarbonici (cerumen lágyító) (NaHCO3, glicerin)
 - Otogutta peroxydi (antisepticum, desodorans) (gyakorlatilag 1,5%-os hidrogénperoxid oldat)

Alkalmazás (antisepticus fülcseppek):

- Váldékos fület megtisztítjuk
- ► Fülcseppet testhőmérsékletre melegítjük
- Fülbecseppentés (oldalfekvésben lévő vagy fejét oldalra hajtó beteg külső
- ▶ 10 perces nyugalom (változatlan fejtartás)
- Felesleg kitörlése
- Száraz vatta hallójáratba (ha átnedvesedik, cserélni kell)
- Egyéb fülben alkalmazott gyógyszerkészítmények:
 Gyógyszertartalmú zselatincsík, gyógyszerrel átitatott gézcsík, mikronizált por,

Fülcseppek - gyári készítmények

 Gyulladáscsökkentő és fájdalomcsillapító hatású fülcsepp.

Bizonyos fajta fülgyulladások okozta fájdalom helyi kezelésére, **ép dobhártya** mellett:

- pangásos heveny középfülgyulladás,
- vírusos influenza okozta fülgyulladás,
- légnyomásbántalom okozta fülgyulladás esetén.
- FENAZON, LIDOKAIN

- A Ciloxan a szem külső felszíne és a szemkörnyék fertőzéseinek kezelésére, valamint akut külsőfül gyulladás (úszók fülbetegsége), és timpanosztómiás tubuson (a dobhártyába behelyezett szellőző tubuson) keresztül távozó, váladékozással járó középfülgyulladás akut fellángolásának gyógyítására alkalmas.
- CIPROFLOXACIN

Fülcseppek - gyári készítmények

A BORAMID fülcsepp tisztítja és fenntartja a külső hallójáratok átjárhatóságát, regenerálja és beforrasztja a hegeket. Használható a külső fülben lévő szennyeződések eltávolítására, továbbá a száraz hegek és a fülzsír maradványainak eltávolítására a külső hallójárat faláról. Ez előnyös mechanikai sérülések esetén, a külső fül ekcémás megbetegedésekor, külső fülgyulladás vagy felülfertőződéssel, vagy a nélkül járó fülirritáció esetében. Bórsav, glicerin és fűzfakéreg kivonat

Orrcseppek - Nasogutta

- Def.: Az orrnyálkahártya kezelésére szánt oldatok, esetleg emulziók vagy szuszpenziók.
 Nagyobb mennyiségben alkalmazott oldatok az orröblítők.
- Készítésüknél izotónia és izohidria elérésére törekszünk, de a tűréshatár nagyobb mint a szemöblítők esetében.
- Keserű ízű anyagok használatát kerülni kell.
- Készítmények (FoNo VII.):
 - Nasogutta ephedrini 1% és 2% (Vasoconstrictor, Decongestivum)
 - Nasogutta ephedrini pro infante (0,5%-os) (szoptatás előtt becseppénteni)
 - Nasogutta natrii chlorati (nyákoldásra, decongestivum (1,2%-os sóoldat))
 - Nasogutta natrii chlorati prof infante
- Alkalmazás: fekve, hátrahajtott (lógatott) fejjel becseppenteni (5p-ig így maradni)
- Ezen kívül az orrgyógyászatban használnak még: orrkenőcsöt, orrspray-t, tampont.

5-6 nap után néhány napos kihagyás ajánlott

Orrcseppek - gyári készítmények Decongestansok

Orrspray-k - gyári készítmények Decongestansok

Orrcsepp, spray - nem alfaagonista ("tengervizes")

Orrcseppek, spray-k - gyári készítmények - - <u>ALLERGIA</u>

Orrcseppek, spray-k - gyári készítmények - - <u>Egyéb indikáció</u>

Regeneráló hatással van az irritált, akutan vagy krónikusan károsodott orrnyálkahártyára. Kimutatható a hegesedés és varképződés csökkenése, a természetes váladékfilm megjelenése az orrnyálkahártyán, és a nyálkaáramlás szállító működésének a visszatérte

váladékoldás