

Foundation Model Driven Robotic Embodied Navigation

- SARHANA ADHIKARI
- PROFESSOR YI FANG

Robotic Navigation in Outdoor Environment

Autonomous Vehicles and Drones

- Mapless Navigation
- Being able to decipher the environment outdoor
- Localization of the robot

Overview of the Foundation Model (LLM and LVM)

Key Features of Large Language Model (LLM):

- Natural language understanding
- Contextual text generation
- Answering questions
- spatial functional reasoning

Key Features of Language Vision Model(LVM):

- Object recognition
- Scene understanding
- Text generation [description of scene/ image]

Transformer Network Structure

How the LVM contributes the Environmental scene understanding to help make decision

Integration of LVM and LLM

Integration of LVM and LLM

LVM and LLM in every step

Left Camera

ComputationalT: 1.043898582458496 seco

Goal Found? No

Score: 1

ComputationalT: 0.663470983505249 seco

Right Camera

Score: 3

Goal Found? No

ComputationalT: 0.6795487403869629 sec

Goal Found? No

Demonstration-Find the fountain

Demonstration of a failed Simulation and plot of the graph

Results

- Drone Simulation capable of performing simple goal: "find an object"
- Similar function maybe implemented on Cars, or more accessible robots
- Successful integration of LLM and LVM
- Learned Unreal Engine, AirSim, Prompt Engineering

References

- Reasoning about the Unseen for Efficient Outdoor Object Navigation, 18 Sep 2023 · Quanting Xie, Tianyi Zhang, Kedi Xu, Matthew Johnson-Roberson, Yonatan Bisk
- OpenAI. (2023). *ChatGPT-4V* (Sept 25 version) [Large language model]. https://chat.openai.com
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ...
 Polosukhin, I. (2017). Attention is All you Need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), *Advances in Neural Information Processing Systems* (Vol. 30). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c
 4a845aa-Paper.pdf