Linear Models

Li, Jia

DSAA 5002

The Hong Kong of Science and Technology (Guangzhou)

2025 Fall

Sep 15

Overview

- Instance-based classifiers, k-NN
- Perceptron Learning
- Linear Models

Instance-Based Classifiers

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

K Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - weight factor, $w = 1/d^2$

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Nearest Neighbor Classification

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

The KNN Algorithm

Algorithm 6.2 The k-nearest neighbor classifier.

- Let k be the number of nearest neighbors and D be the set of training examples.
- 2: for each test instance $z = (\mathbf{x}', y')$ do
- Compute d(x', x), the distance between z and every example, (x, y) ∈ D.
- Select D_z ⊆ D, the set of k closest training examples to z.
- 5: $y' = \underset{v}{\operatorname{argmax}} \sum_{(\mathbf{x}_i, y_i) \in D_z} I(v = y_i)$
- 6: end for
- Here, v is a class lebel, y_i is the class label for one of the nearest neighbors, and I(.) is an indicator function that returns 1 if its argument is true and 0 otherwise.

Nearest Neighbor Classification

- Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

The Impacts of Distance functions

- $D_{sum}(A,B) = D_{gender}(A,B) + D_{age}(A,B) + D_{salary}(A,B)$
- $D_{norm}(A,B) = D_{sum}(A,B)/max(D_{sum})$
- $D_{\text{euclid}}(A,B) = \text{sqrt}(D_{\text{gender}}(A,B)^2 + D_{\text{age}}(A,B)^2 + D_{\text{salary}}(A,B)^2$

Table 9.9 New Customer

Recnum	Gender	Age	Salary
new	female	45	\$100,000

Table 9.10 Set of Nearest Neighbors for New Customer

	1	2	3	4	5	Neighbors
d _{sum}	1.662	1.659	1.338	1.003	1.640	4,3,5,2,1
d _{norm}	0.554	0.553	0.446	0.334	0.547	4,3,5,2,1
d _{euclid}	0.781	1.052	1.251	0.494	1.000	4,1,5,2,3

Table 9.11 Customers with Attrition History

Recnum	Gender	Age	Salary	Attriter
1	female	27	\$19,000	no
2	male	51	\$64,000	yes
3	male	52	\$105,000	yes
4	female	33	\$55,000	yes
5	male	45	\$45,000	no
new	female	45	\$100,000	?

Table 9.12 Using MBR to Determine if the New Customer Will Attrite

- Control of the Cont	Neighbors	Neighbor Attrition	k = 1	k = 2	k = 3	k = 4	k = 5
d _{sum}	4,3,5,2,1	Y,Y,N,Y,N	yes	yes	yes	yes	yes
\mathbf{d}_{Euclid}	4,1,5,2,3	Y,N,N,Y,Y	yes	?	no	?	yes

Table 9.13 Attrition Prediction with Confidence

	k = 1	k = 2	k = 3	k = 4	k = 5
d _{sum}	yes, 100%	yes, 100%	yes, 67%	yes, 75%	yes, 60%
\mathbf{d}_{Euclid}	yes, 100%	yes, 50%	no, 67%	yes, 50%	yes, 60%

Remarks on Lazy vs. Eager Learning

- Instance-based learning: lazy evaluation
- Decision-tree and Bayesian classification: eager evaluation
- Key differences
 - Lazy method may consider query instance xq when deciding how to generalize beyond the training data D
 - Eager method cannot since they have already chosen global approximation when seeing the query
- Efficiency: Lazy less time training but more time predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form its implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

Artificial Neural Networks (ANN)

- Basic Idea: A complex non-linear function can be learned as a composition of simple processing units.
- ANN is a collection of simple processing units (nodes) that are connected by directed links (edges)
 - Every node receives signals from incoming edges, performs computations, and transmits signals to outgoing edges
 - Analogous to *human brain* where nodes are neurons and signals are electrical impulses
 - Weight of an edge determines the strength of connection between the nodes
- Simplest ANN: Perceptron (single neuron)

Why Do We Discuss Perceptron?

- We have discussed decision tree and k-NN.
- For decision tree, we use some of its attributes (features) to build the model.
- For k-NN, we use all its attributes/features/dimensions to clacify.
- Are there other ones?
- Perceptron is to learn weights for features, and is to find a linear decision boundary.

Basic Architecture of Perceptron

$$y = \begin{cases} 1, & \text{if } \mathbf{w}^T \mathbf{x} + b > 0. \\ -1, & \text{otherwise.} \end{cases}$$

$$\hat{y} = sign(\tilde{\mathbf{w}}^T \tilde{\mathbf{x}})$$
Activation Function
 $\tilde{\mathbf{w}} = (\mathbf{w}^T \ b)^T \quad \tilde{\mathbf{x}} = (\mathbf{x}^T \ 1)^T$

- Learns linear decision boundaries
- Related to logistic regression (activation function is sign instead of sigmoid)

Perceptron Example

X ₁	X_2	X_3	Υ
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

Output Y is 1 if at least two of the three inputs are equal to 1.

Perceptron Example

X ₁	X_2	X_3	Υ
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

$$Y = sign(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4)$$
where $sign(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$

Perceptron Learning Rule

- Initialize the weights (w₀, w₁, ···, w_d)
- Repeat
 - For each training example (x_i, y_i)
 - Compute \hat{y}_i
 - Update the weights:

$$w_j^{(k+1)} = w_j^{(k)} + \lambda (y_i - \hat{y}_i^{(k)}) x_{ij}$$

- Until stopping condition is met
- k: iteration number; λ : learning rate

Perceptron Learning Rule

• Weight update formula:

$$w_j^{(k+1)} = w_j^{(k)} + \lambda (y_i - \hat{y}_i^{(k)}) x_{ij}$$

- Intuition:
 - Update weight based on error: e = $(y_i \hat{y}_i)$
 - If $y = \hat{y}$, e=0: no update needed
 - If $y > \hat{y}$, e=2: weight must be increased (assuming Xij is positive) so that \hat{y} will increase
 - If $y < \hat{y}$, e=-2: weight must be decreased (assuming Xij is positive) so that \hat{y} will decrease

The Algorithm

Algorithm 6.3 Perceptron learning algorithm.

```
1: Let D.train = \{(\tilde{\mathbf{x}}_i, y_i) \mid i = 1, 2, ..., n\} be the set of training instances.
 2: Set k \leftarrow 0.
 3: Initialize the weight vector \tilde{\mathbf{w}}^{(0)} with random values.
 4: repeat
        for each training instance (\tilde{\mathbf{x}}_i, y_i) \in D.train do
           Compute the predicted output \hat{y}_i^{(k)} using \tilde{\mathbf{w}}^{(k)}.
           for each weight component w_j do
              Update the weight, w_i^{(k+1)} = w_i^{(k)} + \lambda (y_i - \hat{y}_i^{(k)}) x_{ij}.
           end for
           Update k \leftarrow k + 1.
10:
        end for
11:
12: until \sum_{i=1}^{n} |y_i - \hat{y}_i^{(k)}|/n is less than a threshold \gamma
```

Example of Perceptron Learning

$$\lambda = 0.1$$

X ₁	X_2	X_3	Υ
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

	\mathbf{w}_0	W ₁	W ₂	W ₃
0	0	0	0	0
1	-0.2	-0.2	0	0
2	0	0	0	0.2
3	0	0	0	0.2
4	0	0	0	0.2
5	-0.2	0	0	0
6	-0.2	0	0	0
7	0	0	0.2	0.2
8	-0.2	0	0.2	0.2

Weight updates over first epoch

Epoch	\mathbf{w}_0	W_1	W_2	W_3
0	0	0	0	0
1	-0.2	0	0.2	0.2
2	-0.2	0	0.4	0.2
3	-0.4	0	0.4	0.2
4	-0.4	0.2	0.4	0.4
5	-0.6	0.2	0.4	0.2
6	-0.6	0.4	0.4	0.2

Weight updates over all epochs

Perceptron Learning

 Here, y is a linear combination of input variables, decision boundary is linear.

Overview

- Linear models
 - Perceptron: model (linear classifier) and learning algorithm (updating rules) combined as one.
 - Is there a better way to learn linear models?
- To separate models and learning algorithms
 - Learning as optimization
 - Surrogate loss function
 - Regularization

model design

- Gradient descent
- Batch and online gradients > optimization
- Support vector machines

Learning as Optimization

$$\min_{\mathbf{w}} \sum_{n} \mathbf{1} [y_n \mathbf{w}^T \mathbf{x}_n < 0]$$
fewest mistakes

- The perceptron algorithm will find an optimal **w** if the data is separable
 - efficiency depends on the margin and norm of the data
- However, if the data is not separable, optimizing this is NP-hard
 - i.e., there is no efficient way to minimize this unless **P=NP**

Learning as Optimization

- In addition to minimizing training error, we want a simpler model
 - Remember our goal is to minimize generalization error
- We can add a regularization term R(w) that prefers simpler models
 - For example we may prefer decision trees of shallow depth
- Here λ is a hyperparameter of optimization problem

Learning as Optimization

- The questions that remain are:
 - What are good ways to adjust the optimization problem so that there are efficient algorithms for solving it?
 - What are good regularizations R(w) for hyperplanes?
 - Assuming that the optimization problem can be adjusted appropriately, what algorithms exist for solving the regularized optimization problem?

Convex Surrogate Loss Functions

- Zero/one loss is hard to optimize
 - Small changes in w can cause large changes in the loss

- Surrogate loss: replace Zero/one loss by a smooth function
 - Easier to optimize if the surrogate loss is convex

$$y = +1$$
 $\hat{y} \leftarrow \mathbf{w}^T \mathbf{x}$

Zero/one:
$$\ell^{(0/1)}(y, \hat{y}) = \mathbf{1}[y\hat{y} \le 0]$$

Hinge:
$$\ell^{(hin)}(y, \hat{y}) = \max\{0, 1 - y\hat{y}\}\$$

Logistic:
$$\ell^{(\log)}(y, \hat{y}) = \frac{1}{\log 2} \log (1 + \exp[-y\hat{y}])$$

Exponential:
$$\ell^{(\exp)}(y, \hat{y}) = \exp[-y\hat{y}]$$

Squared:
$$\ell^{(\text{sqr})}(y, \hat{y}) = (y - \hat{y})^2$$

Weight Regularization

- What are good regularization functions R(w) for hyperplanes?
- We would like the weights
 - To be small
 - Change in the features cause small change to the score
 - Robustness to noise
 - To be sparse
 - Use as few features as possible
 - Similar to controlling the depth of a decision tree
- This is a form of inductive bias

Weight Regularization

- Just like the surrogate loss function, we would like *R(w)* to be convex.
- Small weights regularization

$$R^{(\mathrm{norm})}(\mathbf{w}) = \sqrt{\sum_d w_d^2}$$

$$R^{(\text{sqrd})}(\mathbf{w}) = \sum_{d} w_d^2$$

Sparsity regularization

$$R^{(\text{count})}(\mathbf{w}) = \sum_{d} \mathbf{1}[|w_d| > 0]$$

not convex

Family of "p-norm" regularization

$$R^{(\text{p-norm})}(\mathbf{w}) = \left(\sum_{d} |w_d|^p\right)^{1/p}$$

Contours of p-norms

$$||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}$$

convex for
$$p \geq 1$$

$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$$

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

http://en.wikipedia.org/wiki/Lp_space

Contours of p-norms

$$||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}$$
 not convex for $0 \le p < 1$

$$p = \frac{2}{3}$$

Counting non-zeros:

$$p = 0$$

http://en.wikipedia.org/wiki/Lp_space

General Optimization Framework $\min_{\mathbf{w}} \sum_{n} \ell\left(y_{n}, \mathbf{w}^{T} \mathbf{x}_{n}\right) + \lambda R(\mathbf{w})$ surrogate loss regularization

- Select a suitable:
 - convex surrogate loss
 - convex regularization
- Select the hyperparameter λ
- Minimize the regularized objective with respect to w
- This framework for optimization is called Tikhonov regularization or
- generally Structural Risk Minimization (SRM)

http://en.wikipedia.org/wiki/Tikhonov_regularization

The Gradient-based Approaches

- It is like blindfolded mountain climbing.
- To find the max of a function f(x), the optimizer keeps the current estimation about x, measures the gradient of the parameters of x, and take a step along the direction of the gradient as $x \leftarrow x + \eta g$, where η is the step size.

Gradient Descent

- A gradient is a multidimensional generalization of a derivative.
- Consider a function $f: \mathbb{R}^D \to \mathbb{R}$ with a vector input $x = \langle x_1, x_2, ..., x_D \rangle$ process a scalar value output y.
- To differentiate f with one of the input, x_i using $\frac{\partial f}{\partial x_i}$.
- The gradient of f is the vector with the derivate f with respect to every x_i .

The Gradient Descent Algorithm

Algorithm 21 Gradient Descent $(\mathcal{F}, K, \eta_1, ...)$

1:
$$z^{(0)} \leftarrow \langle 0, 0, \ldots, 0 \rangle$$

2: **for**
$$k = 1 ... K$$
 do

3:
$$g^{(k)} \leftarrow \nabla_z \mathcal{F}|_{z^{(k-1)}}$$

$$z^{(k)} \leftarrow z^{(k-1)} - \eta^{(k)} g^{(k)}$$

- 5: end for
- 6: return $z^{(K)}$

// initialize variable we are optimizing

// compute gradient at current location
// take a step down the gradient

An Example (1)

• Here, let the exponential loss $\ell^{(exp)}(y,\hat{y}) = \exp(-y\hat{y})$ be a loss function , and the 2-norm $R(w) = \frac{1}{2} (\sum_d |w_d|^2)^{1/2}$ be a regularizer.

$$\mathcal{L}(\boldsymbol{w},b) = \sum_{n} \exp\left[-y_n(\boldsymbol{w}\cdot\boldsymbol{x}_n+b)\right] + \frac{\lambda}{2} ||\boldsymbol{w}||^2$$

An Example (2)

$$\mathcal{L}(\boldsymbol{w},b) = \sum_{n} \exp\left[-y_n(\boldsymbol{w}\cdot\boldsymbol{x}_n+b)\right] + \frac{\lambda}{2} ||\boldsymbol{w}||^2$$

• The derivatives with respect to b is as follows, and update $b \leftarrow b - \eta \frac{\partial \mathcal{L}}{\partial b}$.

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial}{\partial b} \sum_{n} \exp\left[-y_{n}(\boldsymbol{w} \cdot \boldsymbol{x}_{n} + b)\right] + \frac{\partial}{\partial b} \frac{\lambda}{2} ||\boldsymbol{w}||^{2}$$

$$= \sum_{n} \frac{\partial}{\partial b} \exp\left[-y_{n}(\boldsymbol{w} \cdot \boldsymbol{x}_{n} + b)\right] + 0$$

$$= \sum_{n} \left(\frac{\partial}{\partial b} - y_{n}(\boldsymbol{w} \cdot \boldsymbol{x}_{n} + b)\right) \exp\left[-y_{n}(\boldsymbol{w} \cdot \boldsymbol{x}_{n} + b)\right]$$

$$= -\sum_{n} y_{n} \exp\left[-y_{n}(\boldsymbol{w} \cdot \boldsymbol{x}_{n} + b)\right]$$

An Example (3)

$$\mathcal{L}(\boldsymbol{w},b) = \sum_{n} \exp\left[-y_n(\boldsymbol{w}\cdot\boldsymbol{x}_n+b)\right] + \frac{\lambda}{2} ||\boldsymbol{w}||^2$$

• The derivatives with respect to w is as follows, and update $w \leftarrow w - \eta \nabla_w \mathcal{L}$.

$$\nabla_{\boldsymbol{w}} \mathcal{L} = \nabla_{\boldsymbol{w}} \sum_{n} \exp \left[-y_{n}(\boldsymbol{w} \cdot \boldsymbol{x}_{n} + b) \right] + \nabla_{\boldsymbol{w}} \frac{\lambda}{2} ||\boldsymbol{w}||^{2}$$

$$= \sum_{n} (\nabla_{\boldsymbol{w}} - y_{n}(\boldsymbol{w} \cdot \boldsymbol{x}_{n} + b)) \exp \left[-y_{n}(\boldsymbol{w} \cdot \boldsymbol{x}_{n} + b) \right] + \lambda \boldsymbol{w}$$

$$= -\sum_{n} y_{n} x_{n} \exp \left[-y_{n}(\boldsymbol{w} \cdot \boldsymbol{x}_{n} + b)\right] + \lambda \boldsymbol{w}$$

• For poorly classified points, the gradient points is in the direction $-y_nx_n$, so the update is $w \leftarrow w + cy_nx_n$ where c is a scalar value, the update for the part of the gradient related to the regularizer is $w \leftarrow (1 - \lambda)w$.

Optimization by Gradient Descent

Choice of Step Size

- The step size is important
 - too small: slow convergence
 - too large: no convergence
- A strategy is to use large step sizes initially and small step sizes later:

$$\eta_t \leftarrow \eta_0/(t_0+t)$$

- There are methods that converge faster by adapting step size to the curvature of the function
 - Field of convex optimization

http://stanford.edu/~boyd/cvxbook/

Exponential Loss

$$\mathcal{L}(\mathbf{w}) = \sum_{n} \exp(-y_n \mathbf{w}^T \mathbf{x}_n) + \frac{\lambda}{2} ||\mathbf{w}||^2$$
 objective

$$\frac{d\mathcal{L}}{d\mathbf{w}} = \sum -y_n \mathbf{x}_n \exp(-y_n \mathbf{w}^T \mathbf{x}_n) + \lambda \mathbf{w} \qquad \text{gradient}$$

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \left(\sum_{n} -y_n \mathbf{x}_n \exp(-y_n \mathbf{w}^T \mathbf{x}_n) + \lambda \mathbf{w} \right)$$
 update

loss term

$$\mathbf{w} \leftarrow \mathbf{w} + cy_n \mathbf{x}_n$$

high for misclassified points

regularization term

$$\mathbf{w} \leftarrow (1 - \eta \lambda) \mathbf{w}$$

shrinks weights towards zero

Batch and Online Gradients

$$\mathcal{L}(\mathbf{w}) = \sum_n \mathcal{L}_n(\mathbf{w})$$
 objective

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \frac{d\mathcal{L}}{d\mathbf{w}}$$
 gradient descent

batch gradient

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \left(\sum_{n} \frac{d\mathcal{L}_n}{d\mathbf{w}} \right)$$

sum of n gradients

update weight after you see all points

online gradient

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \left(\frac{d\mathcal{L}_n}{d\mathbf{w}} \right)$$

gradient at nth point

update weights after you see each point

Online gradients are the default method for multi-layer perceptrons

Subgradient

- The hinge loss is not differentiable at z=1
- Subgradient is any direction that is below the function
- For the hinge loss a possible subgradient is:

$$\frac{d\ell^{\text{hinge}}}{d\mathbf{w}} = \begin{cases} 0 & \text{if } y\mathbf{w}^T\mathbf{x} > 1\\ -y\mathbf{x} & \text{otherwise} \end{cases}$$

Closed-form Optimization for Squared loss

- Gradient descent is a good, generic optimization algorithm.
- There are cases where we can do better than gradient descent.
- One such case is squared error loss function and 2-norm regularizer.
- We can get a closed-form solution!
- Let training data be a matrix X of size $N \times D$, where $x_{n,d}$ is the value of the dth feature on the nth record, label as a vector Y of dimension N, and weight as a column vector W of size D.
- We have a = Xw, which has dimension N. That is $a_n = [Xw]_n = \sum_d X_{n,d} w_d$.
- \bullet Here, we can take a as Y.
- We should minimize $\frac{1}{2}\sum_n(\widehat{Y}_n-Y_n)^2$ following squared error. In vector form, it is $\frac{1}{2}\|\widehat{Y}-Y\|^2$

Closed-form Optimization for Squared loss

$$\mathcal{L}(\mathbf{w}) = \sum_{n} \left(y_{n} - \mathbf{w}^{T} \mathbf{x}_{n}\right)^{2} + \frac{\lambda}{2} ||\mathbf{w}||^{2} \quad \text{objective}$$

$$\downarrow \text{matrix notation}$$

$$\begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,D} \\ x_{2,1} & x_{2,2} & \dots & x_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N,1} & x_{N,2} & \dots & x_{N,D} \end{bmatrix} \begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{D} \end{bmatrix} = \begin{bmatrix} \sum_{d} x_{1,d} w_{d} \\ \sum_{d} x_{2,d} w_{d} \\ \vdots \\ \sum_{d} x_{N,d} w_{d} \end{bmatrix} \approx \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{N} \end{bmatrix}$$

$$\downarrow \text{equivalent loss}$$

$$\min_{w} \quad \mathcal{L}(w) = \frac{1}{2} ||\mathbf{X}w - \mathbf{Y}||^{2} + \frac{\lambda}{2} ||\mathbf{w}||^{2}$$

Closed-form Optimization for Squared loss

$$\min_{oldsymbol{w}} \left| \mathcal{L}(oldsymbol{w}) = rac{1}{2} \left| \left| \mathbf{X} oldsymbol{w} - \mathbf{Y}
ight|^2 + rac{\lambda}{2} \left| \left| oldsymbol{w}
ight|^2 \quad ext{ objective }$$

$$\nabla_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}) = \mathbf{X}^{\top} (\mathbf{X} \boldsymbol{w} - \mathbf{Y}) + \lambda \boldsymbol{w}$$
$$= \mathbf{X}^{\top} \mathbf{X} \boldsymbol{w} - \mathbf{X}^{\top} \mathbf{Y} + \lambda \boldsymbol{w}$$
$$= (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}) \boldsymbol{w} - \mathbf{X}^{\top} \mathbf{Y}$$

gradient

At optima the gradient = 0

$$(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}) \boldsymbol{w} - \mathbf{X}^{\top}\mathbf{Y} = 0$$

$$\iff (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{D}) \boldsymbol{w} = \mathbf{X}^{\top}\mathbf{Y}$$

$$\iff \boldsymbol{w} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{D})^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

exact closed-form solution

Matrix inversion vs. gradient descent

- Assume, we have D features and N points
- Overall time via matrix inversion
 - The closed form solution involves computing:

$$\boldsymbol{w} = \left(\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}_{D}\right)^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

- ► Total time is $O(D^2N + D^3 + DN)$, assuming $O(D^3)$ matrix inversion
- If N > D, then total time is $O(D^2N)$
- Overall time via gradient descent
 - Gradient: $\frac{d\mathcal{L}}{d\mathbf{w}} = \sum -2(y_n \mathbf{w}^T \mathbf{x}_n) \mathbf{x}_n + \lambda \mathbf{w}$
 - Each iteration: $O(N^nD)$; T iterations: O(TND)
- Which one is faster?
 - Small problems D < 100: probably faster to run matrix inversion
 - ► Large problems D > 10,000: probably faster to run gradient descent

• Find a linear hyperplane (decision boundary) that will separate the data

• One Possible Solution

Another possible solution

• Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

- For evert separating hyperplane B_i , there is a pair of margin hyperplanes, b_{i1} and b_{i2} such that they touch the closest instances of classes.
- The margin is the distance between the pair of margin hyperplanes.
- Find the hyperplane that maximizes the margin => B1 is better than B2.
- A larger margin tends to have abetter generalization error.

- The distance of any point x from the hyperplane is $D(x) = \frac{|w \cdot x + b|}{\|w\|}$
- Let the closest points from the hyperplane be k_+ and k_- .
- We have the constraints

$$\frac{\mathbf{w}^T \mathbf{x}_i + b}{||\mathbf{w}||} \ge k_+ \quad \text{if } y_i = 1,$$

$$\frac{\mathbf{w}^T \mathbf{x}_i + b}{||\mathbf{w}||} \le -k_- \quad \text{if } y_i = -1.$$

$$Margin = \frac{2}{\|\vec{w}\|}$$

- Then, we have the product of y_i and $(w^Tx_i + b)$ as $y_i(w^Tx_i + b) \ge M\|w\|$ where M is a parameter.
- If $k_+ = M$ and $k_- = M$, then margin = $k_+ - k_- = w \cdot x + b = -1$ 2M.
- The optimization problem is:

$$\max_{\mathbf{w},b} M$$
subject to
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge M||\mathbf{w}||.$$

$$Margin = \frac{2}{\|\vec{w}\|}$$

Linear SVM

- We measure the distance as follows, $k_+ = \frac{1}{\|w\|} w \cdot x_+ + b 1$, and $k_- = \frac{1}{\|w\|} w \cdot x_- + b 1$.
- $M = \frac{1}{2}[k_{+} k_{-}] = \frac{1}{2}\left[\frac{1}{\|w\|}w \cdot x_{+} + b 1 \frac{1}{\|w\|}w \cdot x_{-} b + 1\right] = \frac{1}{2}\left[\frac{1}{\|w\|}w \cdot x_{+} \frac{1}{\|w\|}w \cdot x_{-}\right] = \frac{1}{2}\left[\frac{1}{\|w\|}(1-b) \frac{1}{\|w\|}(-1-b)\right] = \frac{1}{\|w\|}$
- The size of the margin M is inversely proportional to the norm of the weight vector ||w||.
- Maximize M amounts to minimizing $||w||^2$. The SVM is commonly represented as

$$\min_{\mathbf{w}, b} \frac{||\mathbf{w}||^2}{2}$$
subject to
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1.$$

Learning Model Parameters

$$\min_{\mathbf{w}, b} \frac{||\mathbf{w}||^2}{2}$$
subject to
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1.$$

- The equation above represents a constrained optimization problem with linear inequalities. And the objective function is convex and quadratic with respect to w.
- We can rewrite the objective function, which is known Lagrangian primal problem $L_P = \frac{1}{2} ||w||^2 \sum_i \lambda_i [y_i(w^Tx_i + b) 1]$, where the parameters $\lambda_i \geq 0$ correspond to the constraints and are called the Lagrange multipliers.

SVM Target

• Optimization (Quadratic Programming):

$$\min_{\substack{w,b \\ y_i(w^T x_i + b) \ge 1, \forall i}} \frac{\|w\|^2}{2}$$

Solved by Lagrange multiplier method:

$$L_P = \frac{1}{2} \|w\|^2 - \sum_i \lambda_i [y_i(w^T x_i + b) - 1]$$

where λ is the Lagrange multiplier

Lagrangian

• Consider optimization problem:

$$\min_{w} f(w)$$

$$h_i(w) = 0, \forall 1 \le i \le l$$

• Lagrangian:

$$\mathcal{L}(w, \boldsymbol{\beta}) = f(w) + \sum_{i} \beta_{i} h_{i}(w)$$

where β_i 's are called Lagrange multipliers

Lagrangian

• Consider optimization problem:

$$\min_{w} f(w)$$

$$h_i(w) = 0, \forall 1 \le i \le l$$

Solved by setting derivatives of Lagrangian to 0

$$\frac{\partial \mathcal{L}}{\partial w_i} = 0; \quad \frac{\partial \mathcal{L}}{\partial \beta_i} = 0$$

Generalized Lagrangian

Consider optimization problem:

$$\min_{w} f(w)$$

$$g_i(w) \le 0, \forall 1 \le i \le k$$

$$h_j(w) = 0, \forall 1 \le j \le l$$

• Generalized Lagrangian:

$$\mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(w) + \sum_{i} \alpha_{i} g_{i}(w) + \sum_{j} \beta_{j} h_{j}(w)$$

where α_i , β_i 's are called Lagrange multipliers

Lagrange Duality

The primal problem

$$p^* \coloneqq \min_{w} f(w) = \min_{w} \max_{\alpha, \beta: \alpha_i \ge 0} \mathcal{L}(w, \alpha, \beta)$$

The dual problem

$$d^* \coloneqq \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \ge 0} \min_{w} \mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

• Always true:

$$d^* \le p^*$$

Lagrange Duality

• Theorem: under proper conditions, there exists (w^*, α^*, β^*) such that

$$d^* = \mathcal{L}(w^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = p^*$$

Moreover, (w^*, α^*, β^*) satisfy Karush-Kuhn-Tucker (KKT) conditions:

$$\frac{\partial \mathcal{L}}{\partial w_i} = 0, \qquad \alpha_i g_i(w) = 0$$

$$g_i(w) \le 0$$
, $h_j(w) = 0$, $\alpha_i \ge 0$

Learning Model Parameters

$$\min_{\mathbf{w}, b} \frac{||\mathbf{w}||^2}{2}$$
subject to
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1.$$

Given $L_P = \frac{1}{2} ||w||^2 - \sum_i \lambda_i [y_i(w^T x_i + b) - 1]$, where the parameters $\lambda_i \geq 0$ correspond to the constraints and are called the Lagrange multipliers, to minimize the Lagrangian, we have,

$$\frac{\partial L_P}{\partial w} = 0, \Rightarrow w = \sum_i \lambda_i y_i x_i$$
$$\frac{\partial L_P}{\partial b} = 0, \Rightarrow 0 = \sum_i \alpha_i y_i$$

With the Karash-Kuhn-Tucker (KKT) conditions between (w,b) and λ_i , we also have $\lambda_i[y_i(w^Tx_i+b)-1]=0$.

Learning Model Parameters

$$\min_{\mathbf{w}, b} \frac{||\mathbf{w}||^2}{2}$$
subject to
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1.$$

With all together, we have

$$\max_{\lambda_i} \qquad \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
subject to
$$\sum_{i=1}^n \lambda_i y_i = 0,$$

$$\lambda_i \ge 0.$$

An Example of Linear SVM

	Support vectors			
x1	>	(2	У	λ
0.385	58 C	.4687	1	65.5261
0.487	'1	0.611	-1	65.5261
0.921	8 0	.4103	-1	0
0.738	32 0	.8936	-1	0
0.176	3 0	.0579	1	0
0.405	57 C	.3529	1	0
0.935	55 0	.8132	-1	0
0.214	6 0	.0099	1	0

Nonlinear Support Vector Machines

• What if decision boundary is not linear?

$$y(x_1, x_2) = \begin{cases} 1 & \text{if } \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.5 \\ -1 & \text{otherwise} \end{cases}$$

Nonlinear Support Vector Machines

Transform data into higher dimensional space

$$x_1^2 - x_1 + x_2^2 - x_2 = -0.46.$$

$$\Phi: (x_1, x_2) \longrightarrow (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, 1).$$

$$w_4x_1^2 + w_3x_2^2 + w_2\sqrt{2}x_1 + w_1\sqrt{2}x_2 + w_0 = 0.$$

Decision boundary:

$$\vec{w} \bullet \Phi(\vec{x}) + b = 0$$

Characteristics of SVM

- The learning problem is formulated as a convex optimization problem
 - Efficient algorithms are available to find the global minima
 - Many of the other methods use greedy approaches and find locally optimal solutions
 - High computational complexity for building the model
- Robust to noise
- Overfitting is handled by maximizing the margin of the decision boundary,
- SVM can handle irrelevant and redundant attributes better than many other techniques
- The user needs to provide the type of kernel function and cost function
- Difficult to handle missing values
- What about categorical variables?

Slides Credit

- [1] Subhransu Maji. Linear model in CMPSCI689.
- [2] Yingyu Liang. SVM II in COS495
- [3] Introduction to Machine Learning 2nd edition, Pang-Ning Tan, Michael Steinbach, Vipin Kumar, and Anuj Karpatne
- [4] A Course in Machine Learning, Hal Daume III.