Typical Single-Supply Applications $(V^+ = 5.0 V_{DC})$

Non-Inverting DC Gain (0V Output)

*R not needed due to temperature independent $I_{\mbox{\footnotesize{IN}}}$

+5V Vo (VOLTS) = 101 (AS SHOWN) 0 $V_{1N} \ (mV)$ 00778707

DC Summing Amplifier (V_{IN'S} \geq 0 V_{DC} and V_O \geq 0 V_{DC})

Where: $V_0 = V_1 + V_2 + V_3 + V_4$ $(V_1 + V_2) \ge (V_3 + V_4)$ to keep $V_O > 0 V_{DC}$

Power Amplifier

 V_O = 0 V_{DC} for V_{IN} = 0 V_{DC} A_V = 10

Typical Single-Supply Applications (V+ = 5.0 V_{DC}) (Continued)

"BI-QUAD" RC Active Bandpass Filter

 $f_0 = 1 \text{ kHz}$ Q = 50 $A_v = 100 (40 \text{ dB})$

Fixed Current Sources

Lamp Driver

 $V_O = \frac{1V (I_L)}{1}$

*(Increase R1 for I_L small) $V_L \leq V^+ - 2V$

Voltage Follower

 $V_O = V_{\boldsymbol{I}N}$

13

www.national.com

High Compliance Current Sink

Comparator with Hysteresis

 $I_O = 1$ amp/volt V_{IN} (Increase R_E for I_O small)

Voltage Controlled Oscillator (VCO)

WIDE CONTROL VOLTAGE RANGE: 0 $V_{DC} \le V_{C} \le 2$ (V –1.5V $_{DC}$)

Typical Single-Supply Applications (V⁺ = 5.0 V_{DC}) (Continued)

AC Coupled Inverting Amplifier

 $A_V = \frac{R_f}{R1}$ (As shown, $A_V = 10$)

Ground Referencing a Differential Input Signal

AC Coupled Non-Inverting Amplifier

00778726

$$A_V = 1 + \frac{R2}{R1}$$

 $A_V = 11$ (As Shown)

DC Coupled Low-Pass RC Active Filter

 $f_0 = 1 \text{ kHz}$

Q = 1

 $A_V = 2$

Bandpass Active Filter

 $f_0 = 1 \text{ kHz}$ Q = 25

High Input Z, DC Differential Amplifier

$$\begin{split} &\text{For} \ \ \, \frac{R1}{R2} = \frac{R4}{R3} \ \ \, &\text{(CMRR depends on this resistor ratio match)} \\ &\text{$V_O = 1 + \frac{R4}{R3} \ (V_2 - V_1)$} \end{split}$$

$$V_0 = 1 + \frac{R4}{R3} (V_2 - V_1)$$

As Shown: $V_0 = 2 (V_2 - V_1)$

Typical Single-Supply Applications (V⁺ = 5.0 V_{DC}) (Continued)

Photo Voltaic-Cell Amplifier

Bridge Current Amplifier

For $\delta <<$ 1 and R_f >> R

$$V_{O} \cong V_{REF} \left(\frac{\delta}{2}\right) \frac{R_{f}}{R}$$

High Input Z Adjustable-Gain DC Instrumentation Amplifier

If R1 = R5 & R3 = R4 = R6 = R7 (CMRR depends on match)

$$V_0 = 1 + \frac{2R1}{R2} (V_2 - V_1)$$

As shown $V_0 = 101 (V_2 - V_1)$

Typical Single-Supply Applications (V⁺ = 5.0 V_{DC}) (Continued)

Using Symmetrical Amplifiers to Reduce Input Current (General Concept)

Schematic Diagram (Each Amplifier)

www.national.com 20