Machine Learning in High Dimension IA317 Locally Sensitive Hashing

Thomas Bonald

2023 - 2024

Nearest neighbors

A set of methods for

- Classification
- Regression
- Clustering
- Anomaly detection

Advantages

- Simple
- Explainable

Issues

- Choice of distance
- Complexity

Exact search:

- Exhaustive search
- ► Tree search

- O(n)
- $O(\log n) \to O(n)$

Exact search:

- \triangleright Exhaustive search O(n)
- ► Tree search $O(\log n) \rightarrow O(n)$

Approximate search:

▶ Locally sensitive hashing O(1)

Exact search:

- \triangleright Exhaustive search O(n)
- ► Tree search $O(\log n) \rightarrow O(n)$

Approximate search:

ightharpoonup Locally sensitive hashing O(1)

Note: Both can be combined.

For instance, **exact** search of k nearest neighbors among K **approximate** nearest neighbors, with k < K << n

Hash table

Outline

- 1. Locally sensitive hashing
- 2. Nearest neighbor search
- 3. Hash functions
- 4. Parameter setting

Locally Sensitive Hashing

Locally Sensitive Hashing

Let $\mathcal{H} = \{h : \mathbb{R}^d \to \{1, \dots, m\}\}$ be a set of hash functions.

Definition

The hashing \mathcal{H} is said to be **locally sensitive** if there exist $d_1 < d_2$ and $p_1 > p_2$ such that for all $x, y \in \mathbb{R}^d$:

$$d(x,y) \le d_1 \implies P(h(x) = h(y)) \ge p_1$$

 $d(x,y) \ge d_2 \implies P(h(x) = h(y)) \le p_2$

where h is chosen **uniformly at random** in \mathcal{H} .

Locally Sensitive Hashing

Let $\mathcal{H} = \{h : \mathbb{R}^d \to \{1, \dots, m\}\}$ be a set of hash functions.

Definition

The hashing \mathcal{H} is said to be **locally sensitive** if there exist $d_1 < d_2$ and $p_1 > p_2$ such that for all $x, y \in \mathbb{R}^d$:

$$d(x,y) \le d_1 \implies P(h(x) = h(y)) \ge p_1$$

 $d(x,y) \ge d_2 \implies P(h(x) = h(y)) \le p_2$

where h is chosen **uniformly at random** in \mathcal{H} .

Note: It is sufficient that P(h(x) = h(y)) decreases with d(x, y).

For **binary** features, $x \in \{0,1\}^d$.

For **binary** features, $x \in \{0,1\}^d$.

Bit sampling

Hashing
$$\mathcal{H} = \{h^{(1)}, \dots, h^{(d)} : \{0,1\}^d \to \{0,1\}\}$$
 where

$$\forall j=1,\ldots,d,\quad h^{(j)}(x)=x_j$$

For **binary** features, $x \in \{0,1\}^d$.

Bit sampling

Hashing
$$\mathcal{H} = \{h^{(1)}, \dots, h^{(d)}: \{0,1\}^d o \{0,1\}\}$$
 where

$$\forall j=1,\ldots,d,\quad h^{(j)}(x)=x_j$$

Locally sensitive for the Hamming distance

$$\forall x, y \in \{0, 1\}^d$$
, $P(h(x) = h(y)) = 1 - \frac{d(x, y)}{d}$

Concatenation

Concatenation

Property

If \mathcal{H} is a locally sensitive hashing, then for any $N < \text{card}(\mathcal{H})$, $\mathcal{H}' = \{(h_1, \dots, h_N) \in \mathcal{H}^N\}$ is a locally sensitive hashing.

Concatenation

Property

If \mathcal{H} is a locally sensitive hashing, then for any $N < \text{card}(\mathcal{H})$, $\mathcal{H}' = \{(h_1, \dots, h_N) \in \mathcal{H}^N\}$ is a locally sensitive hashing.

Proof: For any $x, y \in \mathbb{R}^d$ and $(h_1, \dots, h_N) \in \mathcal{H}'$:

$$P((h_1,...,h_N)(x) = (h_1,...,h_N)(y))$$

$$= P(h_1(x) = h_1(y)) ... P(h_N(x) = h_N(y))$$

$$= P(h(x) = h(y))^N.$$

MNIST dataset in black & white (28 \times 28 images, d=784) Selection of N=10 random pixels

Application

MNIST dataset in black & white (28 \times 28 images, d = 784) Selection of N = 10 random pixels

Signature	Bucket	Count
0001001000	50	2
0001100000	4	1
000001000	1121	4

Hash table

Data $x_1, \ldots, x_n \in \mathbb{R}^d$

Definition

Given some **hash function** $h: \mathbb{R}^d \to \{1, \dots, m\}$, table H with

$$H: j \to \text{set of samples } i \text{ such that } h(x_i) = j$$

for each entry $j \in \{1, \dots, m\}$.

Hash table

Data $x_1, \ldots, x_n \in \mathbb{R}^d$

Definition

Given some hash function $h: \mathbb{R}^d \to \{1, \dots, m\}$, table H with

$$H: j \rightarrow \text{set of samples } i \text{ such that } h(x_i) = j$$

for each entry $j \in \{1, \dots, m\}$.

Note: Use a dictionary in Python!

Multiple hash tables

Data $x_1, \ldots, x_n \in \mathbb{R}^d$

Principle

Given some hash functions h_1, \ldots, h_L chosen **uniformly at random**, we build L hash tables:

```
H_1: j \to \text{set of samples } i \text{ such that } h_1(x_i) = j
H_2: j \to \text{set of samples } i \text{ such that } h_2(x_i) = j
\vdots
H_L: j \to \text{set of samples } i \text{ such that } h_L(x_i) = j
```

MNIST dataset in black & white (28 \times 28 images, d = 784) L = 6 hash tables, each based on N = 10 random pixels

Outline

- 1. Locally sensitive hashing
- 2. Nearest neighbor search
- 3. Hash functions
- 4. Parameter setting

Query $x \in \mathbb{R}^d$

Algorithm

- ▶ $j_1, ..., j_L \leftarrow \text{index of } x \text{ in each table } H_1, ..., H_L$
- $\blacktriangleright S \leftarrow H_1(j_1) \cup \ldots \cup H_L(j_L)$
- ▶ Return the *k* nearest neighbors of *x* in *S*

MNIST dataset in black & white (28 \times 28 images, d=784) L=3 hash tables, each based on N=10 random pixels

Table	Signature of x	Bucket (samples)				Count
1	0000001110	Ч	/	9	4	2178
2	0001010000	7	7	7	7	42
3	0001001000	1	/	2	1	300

Opportunistic nearest neighbor search

Query $x \in \mathbb{R}^d$

Algorithm

Parameter = K, target search size

- ▶ $j_1, ..., j_L \leftarrow \text{index of } x \text{ in each table } H_1, ..., H_L$
- \triangleright $S \leftarrow \emptyset$
- Add buckets $H_1(j_1), \ldots, H_L(j_L)$ to S in increasing order of size until |S| > K
- ightharpoonup Return the k nearest neighbors of x in S

MNIST dataset in black & white (28 \times 28 images, d=784) L=3 hash tables, each based on N=10 random pixels 5-nearest neighbor search, target K=20

Table	Signature of x	Bucket (samples)				Count
1	0000001110	Ч	/	9	4	2178
2	0001010000	7	7	7	7	42
3	0001001000	1	/	2	1	300

Outline

- 1. Locally sensitive hashing
- 2. Nearest neighbor search
- 3. Hash functions
- 4. Parameter setting

Hash functions

MinHash (binary features)

Sample $x \in \{0,1\}^d$

MinHash (binary features)

Sample $x \in \{0,1\}^d$

MinHash

- ▶ Let σ be a **permutation** of $\{1, \ldots, d\}$
- ▶ Hash function $h_{\sigma}: \{0,1\}^d \rightarrow \{1,\ldots,d\}$ defined by:

$$h_{\sigma}(x) = \min_{j:x_i=1} \sigma(j)$$

Viewing x as a **set**, this is the rank of the **first element** of x, when the d items are read in the order given by σ .

MinHash (binary features)

Sample $x \in \{0,1\}^d$

MinHash

- ▶ Let σ be a **permutation** of $\{1, ..., d\}$
- ▶ Hash function $h_{\sigma}: \{0,1\}^d \rightarrow \{1,\ldots,d\}$ defined by:

$$h_{\sigma}(x) = \min_{j:x_i=1} \sigma(j)$$

Viewing x as a **set**, this is the rank of the **first element** of x, when the d items are read in the order given by σ .

Example: For d = 5 and $\sigma : \{1, 2, 3, 4, 5\} \mapsto \{3, 5, 1, 2, 4\}$ For x = (0, 1, 0, 1, 0), then $h_{\sigma}(x) = \min\{5, 2\} = 2$. Bits are read in the following order: 3, 4, 1, 5, 2.

MNIST dataset in black & white (28 \times 28 images, d = 784)

Analysis of MinHash

Proposition

For all $x, y \in \{0, 1\}^d$,

$$P(h_{\sigma}(x) = h_{\sigma}(y)) = s(x, y)$$

where s(x, y) is **Jaccard similarity** between x and y

Locally sensitive for the Jaccard distance

1-bit MinHash

Parity bit of $h_{\sigma}(x) \in \{0,1\}$

Proposition

For all $x, y \in \{0, 1\}^d$,

$$P(h_{\sigma}(x) = h_{\sigma}(y) \mod 2) = \frac{1 + s(x, y)}{2}$$

where s(x, y) is **Jaccard similarity** between x and y

Random projection (numerical features)

Sample $x \in \mathbb{R}^d$

Sign Random Projection

- Let z be some **standard gaussian** vector of dimension d
- ▶ Hash function $h_z : \mathbb{R}^d \to \{0,1\}$ defined by:

$$h_z(x) = 1_{\{z^T x > 0\}}$$

MNIST dataset (28 \times 28 images, d = 784)

Analysis of sign random projection

Proposition

For all $x, y \in \mathbb{R}^d$,

$$P(h_z(x) = h_z(y)) = s(x,y)$$

where $s(x,y)=1-\frac{\widehat{xy}}{\pi}$ is the **angular similarity** between x and y, with $\widehat{xy}\in[0,\pi]$ the angle between x and y

Analysis of sign random projection

Proposition

For all $x, y \in \mathbb{R}^d$,

$$P(h_z(x) = h_z(y)) = s(x, y)$$

where $s(x,y)=1-\frac{\widehat{xy}}{\pi}$ is the **angular similarity** between x and y, with $\widehat{xy}\in[0,\pi]$ the angle between x and y

Note: Locally sensitive for **cosine similarity**

Summary

Outline

- 1. Locally sensitive hashing
- 2. Nearest neighbor search
- 3. Hash functions
- 4. Parameter setting

Signature length

MNIST dataset (28 \times 28 images, d = 784) 10,000 samples Concatenation of N binary hash functions

Ν	1	2	5	10	20	100
Bit sampling	5400	3100		125	11	1
1-bit MinHash	5000	2500	315	17	2	1
Sign RandProj	5000	2500	317	18	2	1
Perfect split	5000	2500	312	10	1	1

Table: Average size of non-empty buckets with respect to N

Number of hash tables

Consider two samples x, y with P(h(x) = h(y)) = s

Proposition

The matching probability in at least one Hash table H_1, \dots, H_L is

$$1-(1-s^N)^L$$

Number of hash tables

Consider two samples x, y with P(h(x) = h(y)) = s

Proposition

The matching probability in at least one Hash table H_1, \ldots, H_L is

$$1-(1-s^N)^L$$

Example: Match probability w.r.t. s for N = 10

Summary

Locally sensitive hashing

- An approach to approximate nearest neighbor search through hash tables
 Construction in O(n)
 Search in O(1)
- ▶ Bit sampling / (1-bit) MinHash / Sign RandProj
- ▶ Parameters: signature length N and number of tables L

