

Embedded Systems Kapitel 7: Watchdog, Energiesparmodi, analoge Eingabe

Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

Sommersemester 2020

Inhalt

- Watchdog Timer
- Energiesparmodus
- Reset
- Nachtrag: Auswerten von Sensordaten

Motivation

Was ist das Problem beim folgenden Programm?

```
uint8_t x;
x = 10;

while (x >= 0)
{
    // do something
    x--;
}
// do critical task
```

- Programmierfehler lassen sich nie ganz vermeiden!
- Gesucht: Mechanismus, der Mikrocontroller neu startet oder Interrupt auslöst, falls sich Programm "aufhängt".

Watchdog

Definition:

- Komponente, die die Funktion anderer Komponenten überwacht.
- Erkennen von Fehlfunktion
 - "Etwas dauert zu lange"
- Reaktion
 - Auslösen eines Interrupts oder
 - Neustart (=Reset) des Mikrocontrollers.

Funktionsweise

- Timer, der *unabhängig* von SW und restlicher Mikrocontroller-Hardware arbeitet.
- Nach Aktivieren der Watchdog-Funktion wird Timer kontinuierlich in- bzw. dekrementiert
- Wird Timer nicht rechtzeitig vor Überlauf durch SW zurückgesetzt ("Kick the dog")
 - Reset oder Interrupt

```
uint8 t x;
void setup() {
  start watchdog
  x = 10;
void loop() {
  while (x >= 0) {
    // do something
    X--;
  reset watchdog
  // critical task
```

Aufgabe von Watchdogs

Überprüfung

- Dauert Ausführung bestimmter Codestellen zu lange?
- Ist SW noch aktiv und nicht bereits abgestürzt?
- Führen HW-Probleme dazu, dass SW nicht mehr ausgeführt wird?

Bei Watchdog Timeout

- Ziel: Überführen in wohl-definierten Zustand
- Auslösen eines Neustarts oder Interrupts

Watchdog keine Allzweckwaffe gegen SW-Fehler!

- Watchdog erkennt Probleme, löst sie aber nicht.
- Probleme können nach Reset wieder auftreten.
- Beispiel: Pathfinder-Marssonde, 1997

Watchdog beim ATmega2560

- Eigener, unabhängiger Zähler!
- Handbuch, Seite 61

Konfiguration beim ATmega2560

- Mögliche Reaktionen bei Auslaufen:
 - Nichts, Funktionalität abgeschaltet.
 - Auslösen eines Neustarts (=System Reset)
 - Auslösen eines Interrupts
 - Auslösen eines Interrupts UND eines Neustarts.
- 2 Register
 - WDTCSR: Konfiguration des Watchdogs
 - MCUSR: Informationen über Ursache des Resets, nach Neustart abrufbar
- Zurücksetzen des Watchdog Timers
 - Assembler-Befehl WDT oder wdt_reset() in C
- Vorkehrung, damit man Watchdog nicht versehentlich abschaltet:
 - Spezielles Vorgehen beim Beschreiben des Registers WDTCSR, siehe Handbuch Seite 61.

Inhalt

- Watchdog Timer
- Energiesparmodus
- Reset
- Nachtrag: Auswerten von Sensordaten

Energieverbrauch von Mikrocontrollern

- Leistungsaufnahme: Wichtiger Aspekte für viele Anwendungen.
 - Beispiel: Mikrocontroller wird an Batterie betrieben
- Verlustleistung P: $P = V_{cc}^2 \cdot f \cdot C$

$$P = V_{cc}^2 \cdot f \cdot C$$

C: Parasitäre Kapazität

- **Reduktion des Energieverbrauchs** durch
 - Verlangsamung des Systemtaktes f
 - Leistungsaufnahme proportional zu f
 - Verringerung der Betriebsspannung V_{cc}
 - Leistungsaufnahme proportional zu V_{cc}²
 - Aber: Minimalspannung in der Regel notwendig
 - Abschalten nicht benötigter Module
 - Verschiedene Energiespar-Modi

Exkurs: Stromverbrauch Arduino

- Stromverbrauch typischer Mikrocontroller bzw. Arduinos
 - https://www.mikrocontroller.net/articles/Leistungsau fnahme_von_Mikrocontrollern
 - https://arduino-projekte.info/stromverbraucharduino-wemos-boards/
- ATmega2560: Benötigter Versorgungsstrom
 - Datenblatt: S. 373 / 374
 - 5,0V und 16 MHz: 21,0mA
 - 4,5V und 16 MHz: 17,5 mA
 - Nur für Mikrocontroller, nicht für Entwicklungsboard!
- <u>Frage:</u> Wie lange könnte man den ATmega2560 (16 MHz) mit der rechten Batterie betreiben?

4,5V, 6100 mAh 4,79 €

Energiesparmodus

- Energiespar-Modi unterscheiden sich bzgl.
 - der abschaltbaren Komponenten und
 - der aufweckenden Ereignisse.
- Abschaltbare Komponenten
 - Flash CPU, Oszillator, ...
- Aufweckende Ereignisse
 - Externe Interrupts, Watchdog Interrupt, Speicherzugriff beendet, Timer
- Zu beachten:
 - Anderes Zeitverhalten während eines Energiesparmodus.
 - Aufwachen kann einige Zeit dauern.
 - Manche Module müssen vor Aktivieren eines Energiesparmodus ggfs. deaktiviert werden.

Energiesparmodi beim ATmega2560

	Ac	Active Clock Domains Oscillators				Wake-up Sources								
Sleep Mode	сІК _{СРU}	CIK _{FLASH}	cIK _{lO}	clk _{ADC}	clk _{ASY}	Main Clock Source Enabled	Timer Osc Enabled	INT7:0 and Pin Change	TWI Address Match	Timer2	SPM/ EEPROM Ready	ADC	WDT Interrupt	Other I/O
Idle			Χ	Χ	Х	Х	X ⁽²⁾	Х	Χ	X	Х	Х	Х	Х
ADCNRM				Χ	X	X	X ⁽²⁾	X ⁽³⁾	Χ	X ⁽²⁾	Χ	Х	Х	
Power-down								X ⁽³⁾	Χ				Х	
Power-save					X		X ⁽²⁾	X ⁽³⁾	Χ	X			Х	
Standby ⁽¹⁾						X		X ⁽³⁾	Χ				Χ	
Extended Standby					X ⁽²⁾	X	X ⁽²⁾	X ⁽³⁾	X	X			X	

Note:

- 1. Only recommended with external crystal or resonator selected as clock source.
- 2. If Timer/Counter2 is running in asynchronous mode.
- 3. For INT7:4, only level interrupt.

Quelle: [2]

Konfiguration: Energiesparmodus

- Auswahl des Energiesparmodus
 - Register SMCR, Handbuch, Seite 54
- Aktivieren des Energiesparmodus
 - Assembler:
 - SE-Bits im SMCR-Register muss gesetzt sein.
 - Anschließend SLEEP-Instruktion
 - o C: Aufruf von sleep mode () der Bibliothek <avr/sleep.h>
 - https://www.nongnu.org/avr-libc/user-manual/group__avr__sleep.html
- Rückkehr aus Energiesparmodus
 - Externer Interrupt: Leere Interruptroutine genügt.
 - Timer Overflow Interrupt
 - Watchdog Interrupts

Inhalt

- Watchdog Timer
- Energiesparmodus
- Reset
- Nachtrag: Auswerten von Sensordaten

Reset

Definition

 Asynchrones Ereignis, das ein eingebettetes System dazu veranlasst, die CPU und die meisten Komponenten eines Mikrocontrollers von einem wohldefinierten, bekannten Zustand zu starten.

Bei Reset

- Initialisieren aller Register und I/O Ports auf Default-Werte
- Künstliches Delay → Spannungswerte sollen sich stabilisieren
- Ausführen der ersten Instruktion an der Adresse 0x0000, wo üblicherweise ein JMP zur Reset-Routine abgelegt ist.
- Reset-Routine initialisiert Stack Pointer etc. und enthält als letzte Anweisung Sprung auf Main-Routine (Arduino Sketch: setup).

Arten von Resets

Power-On Reset

Auslösung falls Versorgungsspannung einen bestimmten Schwellwert überschreitet.

Brown-Out Reset

- Auslösung falls während des Betriebs die Versorgungsspannung unter einen bestimmten Wert fällt.
- Oft abschaltbar, Schwellwert teils konfigurierbar.

External Reset

- Auslösung Eingangspin (RESET) auf LOW gezogen wird.
- Möglich durch Drücken des roten Tasters auf Arduino-Board.

Watchdog Reset

Internal Reset

Reset kann durch SW Instruktion in Mikrocontroller-Programms ausgelöst werden.

Resets beim ATmega2560

Inhalt

- Watchdog Timer
- Energiesparmodus
- Reset
- Nachtrag: Auswerten von Sensordaten

Nachtrag: Auswerten von Sensordaten

- Fast jeder Sensor liefert Ausgangsspannung bzw. ändert Widerstand in Abhängigkeit der Messgröße (°C, Feuchtigkeit, Helligkeit, ...).
- Meist linearer Zusammenhang zwischen Ausgangsspannung und Messgröße.
- A/D Wandler in Mikrocontroller wandelt
 Ausgangsspannung in binäre Zahl um.
- Wie schließt man dann im Mikrocontroller-Programm von binärer Zahl auf Messgröße?

Beispiel: Sensor TMP36 von Analog Devices

- Temperatursensor
 - Ausgangsspannung proportional zur Umgebungstemperatur in °C
 - http://www.analog.com/media/en/technicaldocumentation/data-sheets/TMP35_36_37.pdf
- Beschaltung beachten!
 - Sicht von unten
 - Wenn er heißt wird, umstecken!
- Ziel: Verdeutlichung wie man Sensordaten innerhalb eines Mikrocontroller-Programms auswertet.

Quelle:

http://www.learningaboutelectronics.com/i mages/TMP36-pinout.png (abgerufen am 17.05.2016)

Quelle: Datenblatt TMP36

Schritt 1: Wertebereich der Ausgangsspannung

- Arbeitsbereich des Sensor
 - In welchem Bereich besteht ein linearer Zusammenhang zwischen Messgröße und Ausgangsspannung?
 - In welchem Bereich ist die Abweichung hinreichend klein?
 - Ist dieser Bereich im Einklang mit der Anwendung?
 - Beispiel TMP36: -40°C bis 125°C (Abweichung ist max. 1°C)

- Was ist bei diesen Randbedingungen die minimale und maximale Ausgangsspannung des Sensor?
 - TMP36: 750 mV bei 25°C, Output Scale Factor von 10 mV/°C
 - Minimale Ausgangsspannung:
 - 750 mV + 10 mV/°C * (125°C 25°) = 1750 mV = 1,75 V
 - Maximale Ausgangsspannung:
 - 750 mV + 10mV/°C * (-40°C -25°) = 100 mV = 0,1 V

Schritt 2: Wertebereich der binären Zahl

- Wahl einer geeigneten Referenzspannung
 - Maximaler Wert der Ausgangsspannung sollte möglichst knapp unter Referenzspannung liegen, um gute Genauigkeit zu erzielen.
 - Welche Referenzspannungen gibt es beim ATmega2560?
 - Hier: Referenzspannung, S. 281 2,56 V

- Maximum und Minimum der binären Zahl (=Ergebnis des A/D Wandlers), S. 280
 - Maximum: 1,750 V * 1024 / 2,56 V = 700
 - Minimum: 0,100V * 1024 / 2,56 V = 40

Schritt 3: Umrechnung in Messgröße

	Minimum	Maximum
Messgröße	-40°C	125°C
Ausgangsspannung	100mV	1750mV
"Binäre" Zahl	40	700 Annahme: Referenzs

Gesucht:

- Formel, die zu binärer Zahl direkt die entsprechende Messgröße liefert.
- Zwischen binärer Zahl und Messgröße besteht auch linearer Zusammenhang!
- lacksquare **Ansatz**: y = mx + t
 - y: Messgröße, hier °C
 - x: binäre Zahl, in Mikrocontrollerprogramm verfügbar
 - o m: "Steigung" der Geraden, t: "Achsenabschnitt"
 - 2 Punkte gegeben, m und t bestimmen!
- □ **Lösung**: y=0,25x − 50

Auswerten von Sensordaten

Allgemeingültiges Rezept zum Auslesen von Sensordaten

Arduino-Hilfsfunktion

- o map(value, fromLow, fromHigh, toLow, toHigh)
- https://www.arduino.cc/en/Refer ence/Map
- Aber auch hier muss man sich die Werte fromLow, ... toHigh selbst überlegen!

Quellenverzeichnis

- [1] G. Gridling und B. Weiss. *Introduction to Microcontrollers*, Version 1.4, 26. Februar 2007, Kapitel 2.7, verfügbar online:

 https://ti.tuwien.ac.at/ecs/teaching/courses/mclu/theory-material/Microcontroller.pdf
 (abgerufen am 08.03.2017)
- [2] Datenblatt ATmega2560, http://www.atmel.com/lmages/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf, (abgerufen am 19.03.2017)
- [3] https://www5.in.tum.de/lehre/seminare/semsoft/unterlagen_02/marssojourner/website/mars/zusammen.htm (abgerufen am 08.05.2017)
- [4] https://de.wikipedia.org/wiki/Priorit%C3%A4tsinversion (abgerufen am 08.05.2017)