VIGIWHEELS

Your autonomous sentine

Table of contents

00 - Introduction

01 - Sprint 3 summary

02 - Demonstrations

03 - Sprint 4 planification

What makes Vigiwheels so Amazing?

A connected autonomous vehicle that **ensures the security** of your industrial building

16 000

Fire incidents on average in industrial areas a year

71300

Attempts of break-in in industrial areas
In 2018

Tahani team

Moad

Johann

Raphael

Oysho

Axel

Aïssatou

Eduardo

Sprint 3 summary

- Objectives
- What we have done
- Planning management

Objectives

User Interface

Create a web page

Communication User - Vehicle

Fire Detection

The car must be able to detect smoke

Instrument reading

Integration of AI model in ROS Start intruder detection with QR code

Following manometers with camera

What we have done

Start de user interface

✓ Integrate the AI to the car

✓ Tracking manometers with the camera

✓ Integrate the smoke sensor to the car

Planning management

Ideal connection between the two cards

Real connection to use GPU inference

- Implementation of a local server.
- Communicate Docker as a client with Jetson's local workspace as a server.
- Resolution of hardware compatibility issues.
- Predictions made by the **GPU** on Jetson.
- The disadvantage is the use of asynchronous functions within synchronous environments.

I - Al integration in ROS

II - Follow manometer

Demonstration

- When the tracking mode is active, the camera follow a manometer while the car move at maximum speed
- If a manometer enter in the field of view of the camera, the camera center it

Not yet fully functional, because of the inference speed

Explanation

Car Dashboard

How the connection works

- Rosbridge_suite is a collection of packages that implement the rosbridge protocol and provides a WebSocket transport layer
- The Web Interface is built with html, javascript, and css files that use images for design and user comprehension

Done & To-Do

Car Dashboard

What is already done?

What will be done in next sprint?

Approval tests

Web development

Demonstration

Car Dashboard

Recap from the last sprint

Raspberry Pl Software Architecture Improvement

Connect and reconnect the USB communication between the Raspberry Pi and the STM32

Verify the successful resumption of communication

Integration of Smoke Detectors

Integration of Sensors into the Software and Hardware Architecture

It works for dry steam but not for wet steam

How to test this?

Burning paper with a lighter (Dangerous?)

Improvements for the Next Sprint

- Find a solution to <u>convert multiple sensors</u> (currently done with different ADCs)
- Conduct experiments and create a measurement table

Identify patterns <u>for setting fire detection thresholds</u> on infrared sensors and smoke detectors

Organization for sprint 4

Sprint 4

User Interface

Connection Car-WebsiteCommunication User - Vehicle

02

Fire Detection

The car must be able to detect a fire

03

Instrument reading

- Integration of Al model in ROS
 - Intruder detection with QR code

04

Car navigation

- Implement SLAM for location
 - Create recording and replay mode for path planning

Intruder detection

Sprint 4

Story:

The car can detect non authorized employees within a building. The car should trigger an alarm if a non authorized person is detected.

State of the art communication

~2 days

Develop the model

~2 days

- Setup of qr code reading functionality for employee identification ~3 days
- Perform the approval test and resolve bug

~4 days

Approval test:

When an intruder is detected in the building, the an alarm is triggered.

Car Dashboard

Sprint 4

Story

As a user, I want the web page to connect with the car and see real-time information

Connection Car <-> Webpage: Connect our user-friendly interface to the car.

Manometer Reading: Show when a manometer is detected and show the value

Filtering and Sorting: Include options for filtering or sorting the information based on user preferences or specific criteria

Approval Tests

- All information is available and accessible
- Car values are updated within a maximum of 3 seconds after the change.

Demonstration

> The web page is functional, the user can navigate between the different data received

Fire detection

Sprint 4

Story

The car must be able to detect fire along its path

Implement a solution to convert multiple sensors

~2 days

~4 days

- Verify each value converted by the ADC and compare the results against a reference ~2 days
- Conducting tests under actual conditions to validate smoke and infrared sensor ~5 days
- Establishing a threshold for each sensor, substantiated by test data

Demonstration

- A video showing me simulating outdoor flames and triggering alarms
- Being able to use an ADC to convert my 4 analog sensors (simulating fire with a lighter).

Car Location and Mapping

Sprint 4

Story

As an user, I want to know exactly where the car is and the map of the environment it moving in. Appropriate for places where external signals like GPS are not readily available.

- Process Lidar data and IMU to simultaneously build a map of the environment
- Determine the car's position within that map
- Continuously update the car's estimated position as it moves

Approval test & Demonstration

- > The map is shown on the virtual dashboard
- The position of the car is known on the map.

Recording and replay mode

Sprint 4

Story

As a user, I want to record a path that the car can redo exactly

Create a mode to register a path using the joystick in a text file

~7 days

Read the text file to replay the path

~5 days

Add camera position control to read manometers

~4 days (bonus)

Approval Tests

The register and replay path are the same

Demonstration

Play a recorded path inside the GEI corridor

Next Demonstrations!

Sprint 3

Path recording

The car plays a path previously recorded in the GEI corridor.

QR code recognition for intruder

The car recognizes intruders or unauthorized individuals on-site using the value from a QR code.

Virtual Dashboard

The website summarizes information and states of the car in **real-time**.

Read values from manometer

The can reads the value from manometer, to check if everything is fine

Alarm triggering & notification

Any abnormal activity should trigger the car's alarm and generate an alert on the website.

