Remark: If the Jacobian matrix $Jac(\varphi)(v) = ((\partial \varphi_i/\partial x_j)(v))$ has rank m for all $v \in U$ (which is equivalent to the linear independence of the linear forms $d\varphi_i(v)$), then we say that $0 \in \mathbb{R}^m$ is a regular value of φ . In this case, it is known that

$$U = \{ v \in \Omega \mid \varphi(v) = 0 \}$$

is a smooth submanifold of dimension n-m of \mathbb{R}^n . Furthermore, the set

$$T_v U = \{ w \in \mathbb{R}^n \mid d\varphi_i(v)(w) = 0, \ 1 \le i \le m \} = \bigcap_{i=1}^m \operatorname{Ker} d\varphi_i(v)$$

is the tangent space to U at v (a vector space of dimension n-m). Then, the condition

$$dJ(v) + \mu_1 d\varphi_1(v) + \dots + \mu_m d\varphi_m(v) = 0$$

implies that dJ(v) vanishes on the tangent space T_vU . Conversely, if dJ(v)(w) = 0 for all $w \in T_vU$, this means that dJ(v) is orthogonal (in the sense of Definition 11.3) to T_vU . Since (by Theorem 11.4 (b)) the orthogonal of T_vU is the space of linear forms spanned by $d\varphi_1(v), \ldots, d\varphi_m(v)$, it follows that dJ(v) must be a linear combination of the $d\varphi_i(v)$. Therefore, when 0 is a regular value of φ , Theorem 40.2 asserts that if $u \in U$ is a local extremum of J, then dJ(u) must vanish on the tangent space T_uU . We can say even more. The subset Z(J) of Ω given by

$$Z(J) = \{ v \in \Omega \mid J(v) = J(u) \}$$

(the level set of level J(u)) is a hypersurface in Ω , and if $dJ(u) \neq 0$, the zero locus of dJ(u) is the tangent space $T_uZ(J)$ to Z(J) at u (a vector space of dimension n-1), where

$$T_u Z(J) = \{ w \in \mathbb{R}^n \mid dJ(u)(w) = 0 \}.$$

Consequently, Theorem 40.2 asserts that

$$T_uU \subseteq T_uZ(J);$$

this is a geometric condition.

We now return to the general situation where E_1 and E_2 may be infinite-dimensional normed vector spaces (with E_1 a Banach space) and we state and prove the following general result about the method of Lagrange multipliers.

Theorem 40.4. (Necessary condition for a constrained extremum) Let $\Omega \subseteq E_1 \times E_2$ be an open subset of a product of normed vector spaces, with E_1 a Banach space (E_1 is complete), let $\varphi \colon \Omega \to E_2$ be a C^1 -function (which means that $d\varphi(\omega)$ exists and is continuous for all $\omega \in \Omega$), and let

$$U = \{(u_1, u_2) \in \Omega \mid \varphi(u_1, u_2) = 0\}.$$