

LEP in Data Science Group 1

Company Analysis and Industry Outlook

Customer Profiling: AGL

Largest generator in National Electricity Market (NEM)

Largest privately-owned portfolio of renewable generation asset

10,246MW of electricity generation assets (1890 MW is renewable)

22% of total capacity in NEM

25% of wind

67% of utilitysolar capacity

80% in NSW & VIC

Electricity Industry Outlook

Traditional Centralised generation model

Distributed and integrated energy supply chain

Transformation in Energy Industry driven by:

- New emerging technologies
- Evolving government policy
- Changing customers' demands
- Pressure to Reduce greenhouse gas emissions

Increase in Wholesale Electricity Price driven by:

- Retirement of old coal-fired generation from the market
- Increasing cost of gas
- Cost of new capital to replace aging generation fleet within NEM

New investment can bring electricity prices down

-agl

Rolling 12-month average wholesale electricity prices and forward wholesale electricity price, Victoria

Daily Telegraph

Sharri Markson, The Daily October 6, 2017 12:00am

AGL

breal

By Peter Rya

Subscriber only

NSW

Friday October 6, 2017

BREAKING NEWS NEWSLOCAL NATIONAL WORLD. Turnbull and gas giants seal supply deal

AGL sending \$2b of gas overseas while Aussin

News | Local News

Aa Larger / Smaller Night Mode

Muswellbrook power station tour shows why AGL set 2022 deadline

Implications for AGL

- **Government Pressure** to reduce the wholesale price of electricity
- **Economic Pressure** to close uneconomic fossil-fuel generators
- **Societal Pressure** to reduce Greenhouse Gas emissions
- **Customer Pressure** to reduce their cost of electricity

PANY

pressure

ap

taxpaycı Turiucu Solar at triple the price

Will AGL give PM coal comfort?

Paul Osborne. Herald Sun September 7, 2017 12:00am

Subscriber only

KYLAR LOUSSIKIAN, NATIONAL POLITICAL REPORTER, The Daily Telegraph September 27, 2017 12:00am

Subscriber only

A Way Forward

- AGL has committed to exit its coalfired generation assets by 2050 and remain as an innovator in renewable investment.
- Some of the investments include:
 - Powering Australian Renewable Fund
 - World largest Virtual Power Plant (VPP)
 - Funded a project to investigate blockchain distributed ledger technology
 - Drive uptake of electric vehicles in Australia

Which Renewables to Invest in?

Wind

Positives:

- 1. Cost-effective, lowest priced energy sources available today
- 2. Sustainable source of energy 24 hours energy generation
- 3. Ability to generate up to 13,000 MW a year using a turbine with a capacity 3.6 MW

Negatives:

- 1. Depends heavily on location
- 2. Strong variance at hourly, daily or seasonal timescales
- 3. Higher initial investment than fossil-fueled generators
- 4. Noise and aesthetic pollution

A single offshore turbine can power more than 3,300 Australian households.

Wind

Example: South Australia Wind Production

Pumped Hydro

Positives:

- 1. Generating electricity at lower cost during high demand
- 2. No flowing water supply is required
- 3. Pumped storage plants can be operated all year
- 4. Very reliable and little fluctuation in energy output

Negatives:

- 1. High initial capital cost to build and install required hardware
- 2. Limited reservoirs to install due to demanding site requirements
- 3. Require large availability of water droughts can affect this

Pumped Storage Hydroelectricity:

The conventional solution to over-supply of electricity generated by wind at times when it is not needed, is to store the electricity generated during the off-peak times using pumped-hydro.

Using this system 'as a battery', by pumping water uphill and then releasing it later, will provide better storage and revenue generation

Pumped Hydro

Solar

State/territory	Total installed capacity (systems under 100kW)	Penetration among dwellings	New installations (as of April 2017)	Same time April 2016	Rate of increase
ACT	59,000	13%	2024	1841	10%
NSW	1,216,000	14%	51,096	34,956	46%
NT	41,000	10%	2777	1871	48%
QLD	1,718,000	31%	61,581	39,823	55%
SA	727,000	32%	22,618	15,482	46%
TAS	105,000	15%	3155	2596	22%
VIC	1,060,000	15%	41,021	32,878	25%
WA	706,000	15%	43,515	25,422	71%
Total	5,633,000		1		

- Large-scale: in NSW, the 102 MW Nyngan Solar Plant provide enough energy to power more than 40,000 average Australian homes in financial year 2017.
- **S**mall-scale: 1.67million PV installation in Australia (April 2017) which can generate 8,400 GW hours of electricity each year.

Positives:

- Renewable energy resource that is available every day and can be used in remote locations
- **2.** Save on electricity bills during middle of the day
- **3.** Easy to install and low maintenance cost

Negatives:

- 1. High initial capital cost
- **2.** Not 100% reliable due to intermittency and unpredictability
- **3.** Associated with pollution during production of solar panels

Solar

Residential PV Generation

State Contribution on 1st September 2017

Comparison of Renewable Energy Types

Characteristic	Solar with Storage	Wind	CC Gas Turbine	Pumped-Hydro	Biofuels
On-demand	Yes	No	Yes	Yes	Yes
Operating Cost	Low	Low	Medium-High	Medium	Medium-High
Fuel Cost	None	None	High	None	Medium
Limitations	Weather dependent	Weather dependent	High cost of fuel	Affected by drought	Availability of fuel
LCOE (\$/MWh) 2020 Avg	138	92	83 + fuel cost (~\$12/GJ)	161	No data

How to evaluate Regional Generation Requirements?

Australia's National Energy Market (NEM)

The Australian NEM is a wholesale electricity market providing electricity to retailers and wholesale customers in Queensland, NSW, Victoria, South Australia and Tasmania.

Exchange between electricity producers and electricity consumers is facilitated through a pool where the output from all generators is aggregated and scheduled to meet demand.

Australia's National Energy Market (NEM)

Generators 'bid' to supply the market with specific amounts of electricity at particular prices. 'Bids' are submitted every five minutes of every day. From all 'bids', the generators required to produce electricity are selected.

THE GENERATOR DISPATCH CYCLE

Selected generators are dispatched into production. All dispatched generators receive the 30 min averaged price for production during this period In this way, the sale of power is matched to the available energy and performance of the generating unit.

Strategy for Regional Generator Analysis

Electricity Generation solutions need to be designed to meet the needs of the regions.

New Generators should supplement or replace the most **Significant generators** in each Region in order to:

- Diversify
- Distribute

the electricity generation

Significant generators = most significant indicators of the Dispatch Price (Regional Reference Price, RRP)

Regional Analysis

Queensland

OLD Gen Types

Electricity in QLD is generated from a wide range of fuel sources, including: coal, gas, oil, biomass, hydro, wind, geothermal and solar.

Queensland's resources sector creates a strong demand for electricity at mines, smelters and refineries

Queensland has high penetration of solar PV installations, but currently only one large operational solar farm.

The NEM interconnected grid does not extend to every city, town or community in Queensland. These areas rely on fossil-fuel generators operating outside the NEM to send out electricity into isolated networks Maximum demand is expected to remain flat due to solar installations.

Queensland is more subject to extreme weather events (cyclones, flooding) than other regions.

Electricity Generators by Fuel Type

Queensland Analysis

\$16/17 Peak occurred on January 18th

Main predictors of RRP in Jan '17 were:

Generator	Generator Type	AGL
Mackay Gas Turbine	Diesel	X
Barcaldine Power Station	Natural Gas	Х
Rocky Point Cogeneration Plant	Biomass	X
German Creek Power Station	Waste Coal Mine Gas	Х
Braemar 2 Power Station	Coal Seam Methane	X
Braemar 2 Power Station	Coal Seam Methane	X
Oakey Power Station	Natural Gas	Х
Callide B Power Station	Black Coal	X
Gladstone Power Station	Black Coal	Х
Barron Gorge Power Station	Hydro	Х
Oakey Power Station	Natural Gas	Х
Condamine Power Station A	Natural Gas	Х
Wivenhoe Power Station	Hydro	Х
Townsville Gas Turbine	Natural Gas	Х
Callide B Power Station	Black Coal	Х

Planned Power Generation projects:

Solar: 1200 MW Wind: 675 MW Biomass: 1.2 MW

Significant QLD Generators

Significant Generators:

Black Coal provides base load. Hydro also contributes to base load. Gas Turbines and Coal Seam Methane provide Peaking Power.

Recommendations:

- **1. S**olar Generation with Battery firming to provide Base Load power
- 2. **H**ydro generation for peak load generation
- 3. **B**io Renewables to supplement Gas as a fuel for peaking generation
- 4. **A**ddition of renewable generation to off-grid regions

New South Wales

Electricity in NSW is generated from a wide range of fuel sources.

NSW has interconnectors to both Victoria and Queensland

Maximum demand is expected to remain constant, offset by increases in installed PV capacity.

Maximum demand is currently summer peaking but is forecast to move to winter peaking due to solar installations.

Maximum demand is also expected to move later in the day (sunset) for the same reason. **D**ecommissioning of black coal generators will remove significant base load capacity.

Electricity Generators by Fuel Type

New South Wales Analysis

\$16/17 Peak occurred on February 10th

Main predictors of RRP in Feb '17 were:

Generator	Generator Type	AGL
Hunter Valley Gas Turbine	Kerosene	٧
Broken Hill Gas Turbines	Diesel	Х
Colongra Power Station	Natural Gas	Х
Guthega Power Station	Hydro	X
Tumut 3 Power Station	Hydro	Х
Murray Power Station	Hydro	Х
Interconnector	Interconnector	Х
Boco Rock Wind Farm	Wind	Х

Planned Power Generation projects:

Solar: 340 MW Wind: 850 MW

10 Feb 10 AM

Date [February 2017]

Significant Generators:

Gas & **K**erosene Turbines provide Peaking Power.

Hydro, Interconnector and Wind provide Base load power

Recommendations:

- 1. Solar and Wind with Battery firming to provide Base Load power
- 2. Bio Renewables to supplement Gas as a fuel for peaking generation
- 3. Pumped Hydro to provide additional peaking generation

South Australia

South Australia Generators

Electricity in South Australia is generated in the most part from wind and natural gas. Small scale generators exist for Biogas and Hydro.

Diesel-fired power stations are used for peak demand and also used to service off-grid remote communities. **M**aximum demand is expected to remain flat due to solar installations and increased energy efficiencies. **M**aximum demand is expected to become negative in the middle of the day ie the state will become a net producer.

Barker Inlet Power Station (AGL), will replace two of the four Torrens Island A Natural Gas turbines.

Two Interconnectors connect SA to the eastern states. Planned Battery Storage projects include 30 MW battery storage on Yorke Peninsula, west of Adelaide and 100MW storage battery adjacent to the Hornsdale wind farm.

Electricity Generators by Fuel Type

\$16/17 Peak occurred on February 9th.

Main predictors of RRP were:

Generator	Generator Type	AGL
Dry Creek Gas Turbine Station	Natural Gas	Х
Dry Creek Gas Turbine Station	Natural Gas	Х
Port Lincoln Gas Turbine	Diesel	Х
Snuggery Power Station	Diesel	Х
Hornsdale Wind Farm 2	Wind	Х
Hallett 2 Wind Farm	Wind	٧
Lake Bonney Wind Farm	Wind	Х
Torrens Island Power Station "A"	Fossil	٧
Pelican Point Power Station	Fossil	Х
V-S-MNSP1	Interconnector	Х
V-SA	Interconnector	Х
Osborne Power Station	Fossil	Х

Planned Power Generation projects:

Solar: 480 MW Wind: 427 MW

South Australia Analysis

SA Significant Generator Profile

Date [February 2017]

Significant Generators:

Wind and Interconnector provide the Base load Natural Gas and Diesel provide Peaking Power.

Recommendations:

- Solar and Wind Generation with Battery firming to provide Base Load power
- 2. **B**io Renewables to supplement Gas as a fuel for peaking generation.

Victoria

VIC Generators

Generator Fuel Type

Fossil

Electricity in Victoria is generated from coal, natural gas, hydro and wind.

Maximum demand in the short-term is expected to remain flat due to solar installations, with later increases due to increasing population and gas-to-electricity conversions.

Victoria is connected via interconnectors to NSW, SA and Tasmania.

Basslink, one Tasmania interconnector, is unregulated, deriving revenue by trading in the spot market.

Electricity Generators by Fuel Type

Victoria Analysis

\$16/17 Peak occurred on February 9th

Main predictors of RRP were:

Generator	Generator Type	AGL
Jeeralang "A" Power Station	Natural Gas	Х
Jeeralang "A" Power Station	Natural Gas	х
Jeeralang "B" Power Station	Natural Gas	х
Jeeralang "B" Power Station	Natural Gas	х
Mortons Lane Wind Farm	Wind	Х
Loy Yang A Power Station	Brown Coal	٧
Yallourn W Power Station	Brown Coal	Х
Bogong / Mckay Power Station	Hydro	٧
Interconnector	Interconnector	Х
Loy Yang A Power Station	Brown Coal	٧
Laverton North Power Station	Brown Coal	Х
Mt Mercer Wind Farm	Wind	Х

Planned Power Generation projects:

Solar: 71 MW Wind: 900 MW Significant Victorian Generators

9 Feb 10 AM 9 Feb 10 PM

Significant Generators:

provide base load.

Hydro and Wind (when available) contribute to base load.

Natural Gas provides Peaking Power.

Brown Coal and Interconnector

Recommendations:

- Solar and Wind Generation with Battery firming to provide Base Load power
- 2. **B**io Renewables to supplement Gas as a fuel for peaking power.
- 3. **H**ydro reserved for peaking power

Tasmania

Tasmania Generators

Hydro Fossil **E**lectricity in Tasmania is generated from hydro, natural gas, and wind.

Hydro Tasmania, a State-owned company, operates and maintains an integrated system of 29 hydro power stations.

Natural gas is delivered from Victoria through an undersea pipeline across the Bass Strait from Victoria.

Interconnectors to Victoria are used to import or export electricity according to demand.

Tasmania is a winter-peaking system driven by heating load and is projected to have a slower solar uptake than other regions.

Maximum demand occurs in early evening. In 2016, the Basslink Interconnector failed, requiring the state to rely on diesel generators and a gas-fired power station Electricity Generators by Fuel Type

\$16/17 Peak occurred on November 8th

Main predictors of RRP were:

Generator	Generator Type	AGL
Bell Bay Three Power Station	Gas Thermal	X
Tamar Valley Peaking Power Sta	Gas Turbine	Х
Gordon Power Station	Hydroelectric	X
Rowallan Power Station	Hydroelectric	Х
Poatina Power Station	Hydroelectric	X
Mackintosh Power Station	Hydroelectric	X
Tribute Power Station	Hydroelectric	Х
Fisher Power Station	Hydroelectric	Х
Trevallyn Power Station	Hydroelectric	Х
Bastyan Power Station	Hydroelectric	Х
Reece Power Station	Hydroelectric	X
Lake Echo Power Station	Hydroelectric	X
John Butters Power Station	Hydroelectric	х
Devils Gate Power Station	Hydroelectric	Х
Tarraleah Power Station	Hydroelectric	X

There are no Planned Power Generation projects registered for Tasmania.

Tasmania Analysis

Significant Tasmania Generators

Significant Generators:

Hydro generation provides both Base Load and Peaking Power Natural Gas provides Peaking Power when required.

Recommendations:

- 1. **W**ind Generation with Battery firming for Base Load power
- 2. **B**iofuels to provide an alternative to Natural Gas

Conclusion

Conclusion : Future of Energy is Diverse and Distributed

- -> Reduce Wholesale Cost by reducing the need for Gas generation through (Pumped)Hydro generation
- -> Reduce Economic Cost by using lower cost Wind and Solar Generation
- -> Address Societal Pressure by increasing proportion of Renewable generation
- -> Reduce Customer Pressure by using Biofuels to supplement Fossil fuel generation

Reference

- Demcapitalismorg. (2016). Democratic Capitalism. Retrieved 6 October, 2017, from http://www.demcapitalism.org/2016/12/26/pumped-hydro-climate-change-fix/
- AEMO Energy Supply Outlook for Eastern and South-Eastern Australia, June 2017. Retrieved 7 October, 2017, from https://www.aemo.com.au/-

 AEMO Energy Supply Outlook for Eastern and South-Eastern Australia, June 2017. Retrieved 7 October, 2017, from https://www.aemo.com.au/-

 AEMO Energy Supply Outlook for Eastern and South-Eastern Australia, June 2017. Retrieved 7 October, 2017, from https://www.aemo.com.au/-
 - /media/Files/Electricity/NEM/Planning_and_Forecasting/NEM_ESOO/2017/2017-Energy-Supply-Outlook.pdf
- Blueprint for the Future: Independent Review into the Future Security of the National Electricity Market. Retrieved 7 October, 2017, from http://www.environment.gov.au/energy/publications/electricity-market-final-report
- AEMO Actual Generation and Load Data, Retrieved 25 August, 2017, from https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data/Market-Management-System-MMS/Generation-and-Load
- AEMO Dispatch Data, Retrieved 25 August, 2017, from https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data/Market-Management-System-MMS/Dispatch
- AEMO Dispatch Data, Retrieved 25 August, 2017, from https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data/Market-Management-System-MMS/Dispatch
- Aggregated Price and Demand Data Historical, Retrieved 25 August, 2017, from https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard#aggregated-data
- Australian Energy Regulator Peak Energy Demand by Region, Retrieved 27 August, 2017, from https://www.aer.gov.au/wholesale-markets/wholesale-statistics/seasonal-peak-demand-occurrence-region
- Australian Renewable Energy Mapping Infrastructure, Retrieved 29 August, 2017, from https://nationalmap.gov.au/renewables/
- 'Australia's National Energy Market' Image, Retrieved 28 September, from https://theconversation.imgix.net/files/187146/original/file-20170922-21005-1rvyowi.jpg?ixlib=rb-1.1.0&q=45&auto=format&w=754
- AGL Energy. (2017). AGL Energy FY17 Full-Year Results. Retrieved 29 August 2017, from https://www.agl.com.au/-/media/AGL/About-AGL/Documents/Investor-Centre/170814-FY17-results-presentation.pdf?la=en.
- AGL. Environment: Renewable energy, Retrieved 25 September 2017, from http://agl2017.report/online.com.au/sustainabilityreport/environment/renewable-energy.
- AGL. Sustainable business strategy: Energy market evolution, Retrieved 25 September 2017, from http://agl2017.reportonline.com.au/sustainabilityreport/sustainable-business-strategy/energy-market-evolution
- AGL Energy. (2017). 2017 Annual General Meeting. Retrieved 7 October, 2017, from https://www.agl.com.au/-/media/AGL/About-AGL/Documents/Investor-Centre/20170927-2017-AGM-Presentations.pdf?la=en.
- AGL. Economic performance: Electricity generation. Retrieved 1 October, 2017, from http://agl2017.reportonline.com.au/sustainabilityreport/economic-performance/electricity-generation.
- AGL. Customers: Distributed energy services & energy efficiency. Retrieved 1 October, 2017, from http://agl2017.reportonline.com.au/sustainabilityreport/customers/distributed-energy-services-energy-efficiency.
- Australian Energy Council. (2017). Solar Report. Retrieved 5 October 2017, from https://www.energycouncil.com.au/media/9932/australian-energy-council-solar-report_september-2017.pdf
- Australian PV Institute. Image. Retrieved 4 October 2017, from http://pv-map.apvi.org.au/live#2017-09-01
- Boyle, R. (2012). The advantages and disadvantages of solar energy. Retrieved 5 October 2017, from https://www.solarchoice.net.au/blog/the-advantages-and-disadvantages-of-solar-energy/.
- Parkinson, G. (2017). Australian solar capacity now 6GW, to double again by 2020. Retrieved 30 September 2017, from http://reneweconomy.com.au/australian-solar-capacity-now-6gw-to-double-again-by-2020-2020/.
- Rinkesh. What is Solar Energy. Retrieved 7 October 2017, from https://www.conserve-energy-future.com/advantages_solarenergy.php

Any questions?

