Table 1: Function and protein content of left ventricle tissue from rat hearts subjected to ischemia and ischemia/reperfusion

Exp	eriment	al Protocol	Experimental Protocol® Sklaned Fiber	er Experiment ^b		Quantity of Protein Present in Tissue ^e	Protein Pres	ent in Tissu	<u>ق</u>	Pro	Quantity of Protein in Effluent ^d
រីវ 🕝	chemia niautes)	ischemia reperfusion (minutes) (minutes)	pCass	maximum force (mg/mg)	Troponin I	α-actinin	M	MLC1	MLC1 OSC protein	MLC2	relative peak area at 23 min
₽	0	45¢	5.82±0.01	5190±72	0.28±0.05	0.28±0.05 0.16±0.01		0.29±0.05 0.13±0.03 ND	Ð	0.11±0.02	
7	15	0	5.92±0.01	5830±21	0.28±0.02	0.17 ± 0.02	0.24±0.01	0.24±0.01 0.13±0.01	Q	0.05±0.01	X A
3	15	45	5.93±0.02	2790±36	0.37±0.02	0.10 ± 0.04	0.24 ± 0.01	0.18±0.01 0.05±0.01 0.09±0.01	0.05±0.0	1 0.09±0.01	+
₹	09	0	5.86±0.02	2860±52	0.33±0.03	0.12 ± 0.01	0.24 ± 0.03	0.23±0.05	0.05±0.0	0.23±0.05 0.05±0.01 0.10±0.03	N A
2)	9	45	6.03±0.01	1670±12	0.51±0.07	0.10±0.02	0.29±0.02	0.30±0.4	0.09±0.02	0.09±0.02 0.19±0.05	‡

All rat hearts underwent 15 minutes of equilibration prior to starting the experimental protocol. When required, isoproterenol was added to the perfusated during the final 5 minutes of the equilibrium period.

 $^{^{}b}$ The pCa $_{50}$ (-log concentration of calcium required to induce half of the Ca $^{2+}$ -dependent change in force) and maximum force (mg/mg) corresponding skinned fiber (mg) with respect to changing calcium concentrations is plotted. This quantifies the amount of force was determined from curve fitting the data in Figure 1. Force produced by a skinned fiber (mg) per total protein content of the exhibited by each fiber taking into account the size of the fiber.

^e Quantity of Tnl and α-actinin determined from densiometry measurements (± STD) from 12.5% SDS-PAGE. ND = not detected ⁴ The quantity of protein present in the effluent was assigned a grading system (+++ most, ++ intermediate and + least) based on HPLC analysis of effluent samples. NA stands for not applicable, protocols were reperfusion was not done.

Control conditions which are 0 minutes ischemia followed by 45 minutes perfusion.

OSC = ATP synthase oligomycin sensitivity conferring protein.

Table 2: Identification of proteins affected by ischemia and ischemia/reperfusion by amino acid sequencing

Amino Acid Sequence	Protein	Residue Number	First Identified Amino Acid (pmole)	Tissue Sampled
XXKKPE(P/A)KADDA myosin	myosin light chain1	1-12	2.6	global ischemia myoffbrils & 601/45RP tissue
XPAPAAAPAAAP	myosin light chainl	20-31	0.9	global ischemia myofibrils
XKVALGAXGGI	malate dehydrogenase	1-11	3.2	60I/45 RP tissue
XXLKDITRRLKSI	ATP g synthase chain	1-13	4.5	601/45RP tissue
XXKLVRPPVQ	ATP synthase oligomycin conferting protein	1-10	2.3	601/45RP tissue
XAHKSEIAHR	serum albumin	1-10	12.4	601/45RP essuent
XPS(R/L)KFFVGGN	triose phosphate isomerase	1-11	6.6	601/45RP effluent

DOTIES DE LECE

Table 3: Progressive Alteration of TnI with Increasing Severity of Ischemia. A. Left Ventricle Tissue B. An

)		A. Left Ventricle Tissue	de Tissue		B. Anti-Tnl Affini	B. Anti-Tnl Affinity Chromatography
Tschemia/Renerfusion Indused	ր Լումութվ	Percen	Percentage of Total TnI	al Tnľ	Percentage of Total ToIt	f Total ToI
Tal Product	t t	0/45	15/45	60/45	Peak 2	Peak 3
Covalent Complexes [§]		0	16.9%	3.1%	"Q/N	N/D
rcTnJ		94.4%	\$2.2%	35.3%	71.7%	91.4%
rcTnI Degradation	~22 kDa	2.6%	24.1%	21.3%	25.5%	6.4%
Froducts	~16 kDa	0	0	15.1%	2.8%	2.2%
	-15 kDa	0	0	17.2%	N/D	N/D

tissue (Figure 11) were quantified from 81-7 MAb Western blots (Figure 11B), and the amount of each TnI component determined as a [†] The ischemia/reperfusion-induced modified Tnl products observed from 81-7 MAb affinity chromatography of 60/45 left ventricular underwent either 0/45, 15/45, or 60/45 (Figure 9) were quantified from 81-7 MAb Western blots (Figure 9A). The quantity of each InI component was determined as a percentage of the total InI (intact and modified) present in each tissue sample. Only those products which are positively identified in Table 4 are included here, identified by their apparent molecular weight (Figure 9A). * The ischemia/reperfusion-induced modified InI products observed in urea T-PAGE separated left ventricular tissue which percentage of the total in each sample.

[‡] Control tissue, which experienced no ischemic episode, but 45 minutes of reperfusion.

[§] The quantity of the two TnI-containing covalent complexes combined.

[&]quot;Quantities less than 2% of total TnI could not be accurately determined.

Table 4: Identification of Ischemia-Induced TnI Products by Mass Spectrometry.

				lmmund	Immunoreactivity					
				with	with MAb's		AIK.		Observed	
Ischemia/Reperfusion- Induced TnI Product	perfusion- Product	Source 1	8I-7	31-35	81-7 31-35 AM-IN TuT		Urea PAGE ‡	Putative Identification [§]	Mass (Da ± S.E.)	Theoretical Mass (Da)"
Covalent Complexes	~66 kDa	peak 3	+	+1	+	+	1	rcTnl(1-193) /TnT(191-298)	32 872 ± 9 *	32 871
	~55 kDa	peak 2	+	#1	+	ŧ	+	rcTnl(1-193) /TnC(1-94)	32 734 ± 14 "	32 730
rcTul	~22 kDa	peak 2	+	#	+		1	rcTnI 1-193	22 144 ± 8 *	22 148
Degradation Products	~16 kDa	peak 2	+	#1	+	ı	ı	rcTnl 63-193	15 348 ± 15"	15 337
	~15 kDa	peak 2	+	ı	ı	·	ı	rcTnI 73-193	14 130 **. 11	14 096

TrI products identified by their apparent molecular weights (Figure 9A).

Immunological analysis (Western blots, Figures 9A, 11C) of protein products bound to Mabs: strong (+), weak (±), or no binding (-).

Electrophoretic mobility in alkaline urea PAGE (Figure 11): mobile (+, TnC containing), non-mobile (-, not containing TnC).

⁴ The amino acid sequence(s) of proteins which are the theoretical best match to the observed masses.

[&]quot; Best match to the observed masses was determined by calculating the mass of rcTnI, rcTnT, and mouse cTnC, sequentially clipped from the N- and C-termini using the PeptideMass tool from the Swiss Institute for Bioinformatics website.

⁴ The source of the TnI products indicates the peak from RP-HPLC analyzed 81-7 affinity column fractions of 60/45 tissue (Fig 4).

Mass determined by electrospray mass spectrometry.

^{••} Mass determined by matrix assisted laser desorption/ionization mass spectrometry.

^{**} The difference between the observed and theoretical masses is equal to that of a sodium ion (MW 35 Da), which is commonly found associated with mass spectrometrically analyzed proteins (as a result of the ionization process).