Lattice Quantum Field Theory Lectures

Lecture 2: 1+1 dimensional quantum field theory

Xiangdong Ji

outline

- N-coupled oscillators
- Normal mode expansion and solutions
- Continuum limit
- 1+1 dimensional quantum field theory
- Mass and dispersion relation
- Soliton solution of phi-4 theory

N coupled oscillators

1D chain (ring)

- We label oscillators by i = 1, 2,, N, with periodic condition such that i=0 and N are identical.
- Each oscillator has 1D coordinate $x_i = ia$, where a can be viewed as the basic length unit.
- The total kinetic energy,

$$T = \frac{1}{2} m \sum_{i=1,N} \dot{q}^2(ia)$$
 where dot is the t-derivative

The total potential energy ([N+1]=1)

$$V = \frac{1}{2} \kappa \sum_{n=1}^{N_{a}} (q(na) - q([n+1]a))^{2},$$

Equations of motion (E.O.M)

The EOM are coupled linear differential equations

$$m\ddot{q}(na) = -\frac{\partial V}{\partial q(na)}$$
$$= -\kappa \left(2q(na) - q([n-1]a) - q([n+1]a)\right).$$

 We can diagonalize these Eqs by introducing the normal coordinates,

$$q(na) = \frac{1}{\sqrt{N_a}} \sum_{k_l} e^{ik_l na} u_{k_l},$$

$$k_l = \frac{2\pi}{N_{\rm a}a}l \text{ with } l = 0, \pm 1, \pm 2, \cdots, \frac{N_{\rm a}}{2}.$$

 ℓ must be integer $\ell=0$ is zero — mode

Zero mode etc

- The periodic boundary condition is satisfied.
- There is always one zero mode. Zero-mode l=0 corresponds all coordinates move together. The potential energy is zero. It is a free motion.
- For N=3, there are two additional modes corresponds to $l=\pm 1$.
- For N=4, there are three additional modes, correspond to $l=\pm 1$, 2. The mode l=-2 is the same as l=2.
- Positive and negative I's are complex conjugate of each other, with opposite chirality.

Normal mode dynamics

The lagrangian of the normal modes are

$$L = \frac{m}{2} \sum_{k_l} \dot{u}_{k_l} \dot{u}_{-k_l} - \frac{\kappa}{2} \sum_{k_l} 2 \left(1 - \cos(k_l a) \right) u_{k_l} u_{-k_l}$$

Introduce the canonical coordinates,

$$p_{k_l} = \frac{\partial L}{\partial \dot{u}_{k_l}} = m\dot{u}_{-k_l}$$
$$p_{-k_l} = \frac{\partial L}{\partial \dot{u}_{-k_l}} = m\dot{u}_{k_l}.$$

 New Hamiltonian is a sum of non-interacting normal modes

$$\mathsf{H} = \sum_{k_l} \left(\frac{1}{2m} p_{k_l} p_{-k_l} + \frac{1}{2} m \omega_{k_l}^2 u_{k_l} u_{-k_l} \right),$$

Dispersion relation and quantization

Dispersion relation: Frequency related to different k

$$\omega_{k_l} = \sqrt{\frac{2\kappa \left(1 - \cos(k_l a)\right)}{m}} = 2\sqrt{\frac{\kappa}{m}} \sin(\frac{k_l a}{2})$$
 1st Brillouin Zone

Introduce creation and annihilation operators

$$\hat{a}_{k_l} = \sqrt{\frac{m\omega_{k_l}}{2\hbar}} \left(\hat{u}_{-k_l} + \frac{i}{m\omega_{k_l}} \hat{p}_{k_l} \right)$$

$$\hat{a}_{k_l}^{\dagger} = \sqrt{\frac{m\omega_{k_l}}{2\hbar}} \left(\hat{u}_{k_l} - \frac{i}{m\omega_{k_l}} \hat{p}_{-k_l} \right).$$

Now we have N-non-interacting harmonic oscillators,

$$H = \sum_{k_l} \mathcal{H}_{k_l} \qquad \mathcal{H}_{k_l} = \hbar \omega_{k_l} \left(\hat{a}_{k_l}^{\dagger} \hat{a}_{k_l} + \frac{1}{2} \right)$$

• It is interesting to note that even though every term of pot. energy seems to support an oscillator with angular frequency ω , the normal modes can have a range of angular frequency, going from 0 to 2ω .

Quantum states

 The ground state of the system is when all oscillators are the ground state

$$|0,0,...,0\rangle$$
 with $E_0=\frac{\hbar}{2}\sum \omega_{k_l}$ (vacuum energy)

The w. f. is $\Pi_{kl} \phi_0(u_{kl})$ which is a complicated function of the original coordinates.

• The first excited state is a set of states with one quantum in one of the oscillators (kı)

$$|0,1,...,0\rangle$$
 with energy $E(k_l)=E_0+\hbar\omega_{k_l}$

which has the excitation energy $\Delta E(k_l) = \hbar \omega_{k_l}$.

Only the excitation energy is measurable experimentally!

Taking continuum limit

 Let a→0 and N→∞, Na=L finite, we have infinite number of quantum mechanical degrees of freedom (field theory!)

we define a field through

$$q(x,t) = \lim_{\substack{a \to 0 \\ N_a \to \infty}} \frac{q_n(t)}{\sqrt{a}} = \lim_{\substack{a \to 0 \\ N_a \to \infty}} \frac{1}{\sqrt{N_a a}} \sum_k u_k(t) e^{ikx} = \frac{1}{\sqrt{L}} \sum_k u_k(t) e^{ikx}$$

$$p(x,t) = \lim_{\substack{a \to 0 \\ N_a \to \infty}} \frac{p_n(t)}{\sqrt{a}} = \lim_{\substack{a \to 0 \\ N_a \to \infty}} \frac{1}{\sqrt{N_a a}} \sum_k p_k(t) e^{-ikx} = \frac{1}{\sqrt{L}} \sum_k p_k(t) e^{-ikx}.$$

More on the limit

- In the a→0, we pack ∞ number of dof in the finite line segment L.
- Correspondingly, there are infinite number of noninteracting normal modes corresponding to

$$k = \frac{2\pi}{L} l$$
 with $l = 0, \pm 1, \pm 2, ..., \infty$

Now $\omega = \omega_0 a$ k (k is still discrete)

now ω_0 a has a unit of velocity, v_s it is the sound speed in this one dimensional medium.

Thus
$$\omega = v_s k$$
,

Wave equation

• The classical e.o.m now becomes the wave equation

$$\left(\frac{1}{v_s^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}\right)q(x,t) = 0,$$

whereas $k=\frac{\omega}{v_s}=2\pi/\lambda$ where λ is the wavelength.

• Thus in this finite-length L, 1D system (a string), with ∞ number of h.o., one equivalently can represent the system by infinite number of waves with variable k.

q is the wave field. Large k means small w.l. (UV mode), small k means large w.l. (IR mode), smallest are $\pm \frac{2\pi}{L}$ and 0.

Single oscillator and continuous wave (classical)

1D field theory

- 1D field theory deals with this 1D systems of waves.
- In the above example, we have free waves, i.e., the waves do not interact.
- However, more meaningful examples deals with waves that interact.
- We can easily add interactions when using Lagrangian dynamics for the field theory.

Relativistic waves

 When we are dealing with fundamental theories, we know that relativity is important. Therefore, the wave equation must be invariant under relativity transformation.

$$x' = \frac{x - vt}{\sqrt{1 - v^2/c^2}}$$
$$t' = \frac{t - vx/c^2}{\sqrt{1 - v^2/c^2}}$$

• This is the case if $v_s = c$,

$$\left[\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}\right] \phi(x, t) = \left[\frac{\partial^2}{\partial t'^2} - \frac{\partial^2}{\partial x'^2}\right] \phi(x', t') = 0$$

Quantum mechanical wave

- In QM, particles are described by QM waves, just like that the electron is described by electron wave. For non-relativistic particles, they are described by waves satisfying Schrodinger eq. which corresponds to $E = p^2/2m$
- For a relativistic QM particle, it shall satisfy the relativistic wave equation.
- For a free particle, relativistic w.e. shall be derived from $E^2 = p^2c^2 + c^4m^2$, where m is the rest mass.

Klein-Gordon equation

For the relativistic energy-momentum relation, one can derive the following wave equation

$$rac{1}{c^2}rac{\partial^2}{\partial t^2}\psi-
abla^2\psi+rac{m^2c^2}{\hbar^2}\psi=0.$$

This is famous Klein-Gordon equation. Comparing to our earlier example, one has an extra mass term

$$\frac{m^2c^2}{\hbar^2}$$

which has the Planck constant \hbar , indicating it is a Quantum w.e.

It reduced to the Schrodinger eq. in small velocity limit.

Natural unit in relativistic theory

• In dealing with relativistic problem. It is quite common to use the so-called natural unit.

$$\hbar = c = 1$$

- Usually, there are three different units in SI systems, mass in kg, time in sec and length in m.
- After choosing this natural unit, [second] and [kg] can be expressed in term of [m].
- c = 1, $3x10^{23}$ fm/sec=1, 1 sec = 3 x 10^{23} fm, 1fm = 3.3×10^{-24} s

Natural unit and mass dimension

And also,

$$\hbar c = 1 = 197 \ \mathrm{fm} \ \mathrm{MeV}$$
 thus, 197 MeV = 1 fm⁻¹

- That means [E]=[p]=[1/x]=[1/t]= MeV
- All physical quantity can have eV or keV or MeV as dimension, or mass dimension.
- The mass dimension of the action S is 0.
- Lagrangian has mass dimension 1, [L]=1.

Quantum field theory

- In relativistic theories, the mass and energy can convert into each other.
- Thus, particles can disappear into energy, and reversely energy can create particles.
- Thus the single particle quantum mechanics as described by Klein-Gordon eq. is useless. One needs a theory which can create and annihilate particles.
- For this, one needs to discuss the quantized wave systems (coupled h.o.) or quantum ∞ dof systems or quantum field theory.

Quantization of 1+1 wave system

- One needs to quantize 1+1 dimensional wave system, which is in a sense already quantum mechanical (it contains Planck const).
- One can quantize by assuming the field $\phi(x,t)$ is an operator and find the conjugate field operator $\pi(x,t)$ and postulate commutation relations among quantum field
- However, for a numerical approach, the above strategy is of little use. One can again, however, use Feynman's path integral approach. To do this, we need to start with a lagrangian.

Lagrangian for a field

The lagrangian is a sum over all modes, thus

$$L = \int L dx$$

where the lagrangian density can be written as

$$L = \frac{1}{2}\phi_t^2 - \frac{1}{2}\phi_x^2 - \frac{1}{2}m^2\phi^2.$$

One can verify that EL eq. reproduces KG eq.

When quantized, the first excited state of the system with a set of h.o. angular frequency,

$$\omega^2 = k^2 + m^2$$

describes a particle of mass m and momentum k.

Introducing interactions

- 1D interaction-free field theory is very simple and not interesting.
- To make a non-trivial field theory, we can introduce an interaction term

$$L = -\frac{\lambda}{4!} \phi^4$$

with λ >0, so that the total energy has a lower bound.

• We will try to focus on solving this so-called ϕ^4 theory next.

Dimensional analysis

- In 1+1 D field theory, the mass dimension of the field is zero. $[\phi]=0$
- The lagrangian density has mass-dim 2.
- The coupling constant λ >0 also has mass dimension 2.
- It can be shown that the system still supports a free propagating wave as the first excited state of the system, corresponding to a "physical particle" with non-trivial internal structure.

Calculations to do

1. Calculate the physical mass M of the free propagating wave as a function of bare mass m_0 and λ , which also will depend on the momentum cut-off Λ or lattice spacing a. Show it logarithmically depends a.

$$M(m_0, \lambda, a) \sim \ln a$$

2. Calculate the dispersion relation of the particle satisfying the relativistic relation, i.c.

$$E^2 = k^2 + M^2$$

which is the relationship between momentum and energy of a relativistic particle!

Euclidean time

- Again to make numerical calculation possible, one has to use Euclidean time
- One needs to consider evolution in imaginary time.

Ground state and filtering

 Again label the exact ground state of 1+1 field theory as

 $|0\rangle$

 A quantum wave with momentum k=0 can be generated by

$$\hat{\phi}_{k=0}(\tau=0) |0\rangle$$

which can be expanded into a set of exact eigenstates. After long "time" T,

$$e^{-TH}\hat{\phi}_{k=0}(\tau=0)|0\rangle \sim e^{-TM}|k=0\rangle$$

Only the first excited with k=0 remains.

Two-point correlation function

Now define the two-point correlation function

$$\langle 0 | \hat{\phi}(x, T) \hat{\phi}_{k=0}(\tau=0) | 0 \rangle$$

which reduces to at large T,

$$C_2(T,M) \sim ce^{-TM}$$

Thus by studying the large-T behavior of the of the two-point correlation function, one can get the physical mass M.

Calculating "dispersion" relation

 To find the dispersion relation, E(k), one can calculate the two-point correlation function

$$C_2(k,T) = \langle 0 | \hat{\phi}(x,\tau=T) \hat{\phi}_k(\tau=0) | 0 \rangle$$

 At large T, the first excited state with momentum k dominates, which produces the following exponential

$$C_2(k,T,E) \sim e^{-E(k)T}$$

one can get the E(k) by checking the leading large-T behavior

Lattice implementation

Two-point function as a functional integral

$$C_2(k,T) = \int [D\phi(x,\tau)]\phi(x,T) \int dy\phi(y,0)e^{-S_E}$$

where the action is

$$S_E = \int dx d\tau \left[\frac{1}{2} \phi_t^2 + \frac{1}{2} \phi_x^2 + \frac{1}{2} m^2 \phi^2 + \frac{1}{4!} \lambda \phi^4 \right]$$

where again λ is positive and dimension-2.

Lattice calculation

- We consider field configurations in 2-D lattice, with N points in "time" as well as space directions, N².
- Assume the lattice spacing is a in both directions.
 Thus, the size of the box is L=Na.
- To simulate the theory well, one needs to have

$$\frac{1}{L} \ll m, \ \sqrt{\lambda} \ll \frac{1}{a}$$

where 1/a is the UV cut-off and 1/L is IR cutoff.

Lattice implementation

• On the lattice, one has ϕ_{ij} degrees of freedom with I, j = 1,, N with periodic boundary condition

$$\phi_{i+N,j+N} = \phi_{ij}$$

• One generate configuration $\{\phi_{ij}\}$ using Monte Carlo method

$$C_2(k, m, T) = \sum \phi(x, T) \sum_{v} e^{iky} \phi(y, 0)$$

Actual consideration

- For 2D simulation, a reasonable choice is N=100. If we one choose, m=1, λ =1, a=0.1, L=10.
- Finite-volume effect one can do the same simulation, but with N=500, L=50 with the same a, m, λ .
- Finite-a effect: one can do the same simulation with a=0.05, N=200, or a=0.02, N=500.

Thus mass M will have Ina-dependence, which can be computed in pert. theory.

• The continuum limit exists when all physical observables are expressed in terms of M and λ .

Calculating the mass as a function of a.

- Calculate the C₂ for several different T.
- Plot InC₂ as a function of T.
- Find the mass.
- For several different a, plot the relation between M² and Ina.
- This is the famous UV divergence in the field theory. However, this divergence does not affect the physical observables in terms of physical mass and coupling.

Sine-Gordon eq.

- Sin-Gordon equation has a solition solution.
- One can calculate the mass of a quantum soliton.