

Data Mining Project - Sephora Website

Name: Kurnia Anwar Ra'if

Bootcamp Data Science batch - 4

Feature	Туре	Description	
id	int	The product ID at Sephora's website	
brand	object	The brand of the product at Sephora's website	Data Dictionary
category	Object	The category of the product at Sephora's website	
name	Object	The name of the product at Sephora's website	This dataset is explain sephora, sephora is
size	Object	The size of the product	a visionary beauty-retail concept founded
rating	float	The rating of the product	
numberofreviews	int	The number of reviews of the product	in France by Dominique Mandonnaud in
love	int	The number of people loving the product	1970. Sephora's unique, open-sell
price	float	The price of the product	environment features an ever-increasing
value_price	float	The value price of the product (for discounted products	amount of classic and emerging brands
URL	object	The URL link of the product	across a broad range of product
MarketingFlags	bool	The Marketing Flags of the product from the website if they were exclusive or sold online only	categories including skincare, makeup,
MarketingFlags_content	object	The kinds of Marketing Flags of the product	fragrance, body and hair care. Sephora
options	object	The options available on the website for the product like colors and sizes	operates approximately 1,900 stores in 29 countries worldwide, with an expanding
details	object	The details of the product available on the website	base of over 200 stores across the Asia
howtouse	object	The instructions of the product if available	Pacific region including Australia, China,
ingredients	object	The ingredients of the product if available	Singapore, Malaysia, Thailand, Indonesia
online_only	int	If the product is sold online only	& India.
exclusive	int	If the product is sold exclusively on Sephora's website	
limited_edition	int	If the product is limited edition	dibimbing
limitedtimeoffer	int	If the product has a limited time offer	Cylolifiching

CRISP-DM Methodology

Cross-industry standard process for data mining, known as CRISP-DM, is an open standard process model that describes common approaches used by data mining experts. It is the most widely-used analytics model.

Business Questions Guideline:

- What is category with the highest income price value?
- What is brand with the highest Income price value?
- What is Category with the highest sales from the highest income value for brand?
- What is brand with the most exclusive ?
- What is category with the most Exclusive?

What is category with the highest income price value?

Building perception

Perfume Category has the highest income price value > \$ 70000, more another category which Perfume > 2x price value compared another category. To gain the income from face wash cleaners and face mask can combine with face serums in advertisement which has face category, it hopes can gain face mask and face wash cleaners 2x income with 2x height bar char.

What is brand with the highest Income price value?

Building perception

Perfume Category has the highest income price value > \$ 17500, more than another brand which Perfume > 2x price value compared another brand except Dior and Sephora Collection.

What is Category with the highest sales from the highest income value for brand?

Building perception

From Tom Ford brand, we can see clearly that cologne and perfume have the highest total price near \$200 for each category. If we see before, the highest category is perfume so, for all brand perfume is dominated in selling.

What is brand with the most exclusive?

Building perception

From the brand, sephora collction has the most exclusive bran which the number of exclusive is 500, it wins from TOM Ford brand who has highest income. For gain the income, sephora can do promotions which the target is lowest seling category in Tom Ford. It hopes can gain sephora the income by the category who has lowest selling product in Tom Ford

What is category with the most Exclusive?

Building perception

From the category with the most exclusive is perfume with the value of exclusive more than 600. Both the highest income and most exclusive, perfume is favorite product to buy than another product.

Regression Modelling

	OL:	S Regress:	ion Results							
Dep. Variable:	value_price		R-squared:		0.975					
Model:	OLS		Adj. R-squared:		0.975					
Method:	Least :	Squares	F-statistic:		1.581e+0	4				
Date:	Tue, 28 S	ep 2021	Prob (F-stati	istic):	0.0	0				
Time:	08:48:43		Log-Likelihood:		-4504.0					
No. Observations:	2063		AIC:		9020.					
Df Residuals:	2057 BIC:			9054.						
Df Model:		5	5							
Covariance Type:	no	nrobust								
				- 1.1						
	coef	std en	r t	P> t	[0.025	0.975]				
const	0.0630	0.45	0 120	0 000	0.055	0.020				
			5 -0.139							
rating			3 1.077							
number_of_reviews										
			5.022							
•			4 273.520							
			nan			0				
exclusive										
_	0		a nan	nan	0	0				
limited_time_offer			a nan	nan	0	0				
Omnibus:			Durbin-Watsor		1.87					
Prob(Omnibus):			Jarque-Bera (_				
Skew:			Prob(JB):	(30).	0.0					
Kurtosis:			Cond. No.		in	_				
Kurtosis.										

Regression Modelling which has 97,5% but P > | t | that has not significant value are rating, exclusive, and has nan are online only, limited edition, and limited time offer. For this reason, remove and do the regression modelling again. Before to do that, it's good for check classical assumption.

Notes:

[2] The smallest eigenvalue is 0. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The next step is to analyze the column 'value_price', because the target variable is numeric then look at the histogram whether distributed normally or not. in the column, in the 'value_price' column, we can see a positive skewed because the tail of the distribution is to the right of the most value. That is, most distributions are in low value. So, the target variable is right skewed. As (linear) models love normally distributed data, we need to transform this variable and make it more normally distributed. We will apply log transformation to the feature to make the distribution close to gaussian. We will apply log(1+x) transformation to avoid 0 values (if present)

Do the Regression model again

Linear Regression Explanation (DF3)

 $R^2 = 0.892$

1. Linear Regression Formula:

$$\hat{y} = \beta_0 + \beta_1 X_1 + \ldots + \beta_n X_n$$

2. We have 3 features of X, lets take them: $number_of_reviews = -0.0004$, $love = 6.424e^-06$, price = 0.034, love = 0.03

$$\hat{y} = 2.3040 - 0.0004X_1 + 6.424e^-06X_2 + 0.034X_3$$

Interpretation

- constant = 2.3040 , contribution to value_price with value is 2.3040 when another variables are 0.
- 2. number_of_reviews = -0.0004 contributes to value_price of a number_of_reviews.
- 3. love = 6.424e^-06 means that when the love is appear, the value price would be increased by 6.424e^-06, assuming the other variables remain constant.
- 4. price = 0.0340 means that price would be increased by 0.034, assuming the other Variables remain constant.

Linearity: Before (left) and after (right) regression

Normality of Residual is better than before

Because in probability plot, each dot at the red line dominated so we can do the Regression Model with df2 new that apply log(1+x)

A linear horizontal pattern -> it means nonheteroscedasticity

Normality of Residual is better than before

- A. Non Autocorrelation
- B. VIF Value < 10 means *Non-Multicollinearity*
 - Durbin-Watson: 1.5424818948135521
 - Little to non autocorrelation
 - Assumption satisfied

	number_of_reviews	love	price
vif	1.482279	1.482288	1.000016

Allowed when VIF <10

Thank you ©

