

Asignatura: Ciencias Naturales

Docente tutor: Georgina Ivoneth Castro Gómez

fecha de entrega: Del 24 de abril al 04 de Junio de 2023

Secciones: A,B,C,D Ponderación: 20%

ESTUDIANTE: Rubén Isaac Montoya Aguilar

OBJETIVOS:

- Indagar, representar y analizar con seguridad situaciones de producción de trabajo realizado por una fuerza.
- Indagar, experimentar, analizar y resolver con responsabilidad problemas para calcular la energía mecánica total.
- Explicar con precisión y valor científico las leyes de la termodinámica, las transformaciones de la energía y las relaciones entre las propiedades físicas de las sustancias afectadas por dichas transformaciones; mediante el estudio de calor, temperatura y las leyes correspondientes; para comprender su importancia y utilidad en el desarrollo económico, social y científico de los países.

INDICACIONES:

- Une con una linea de color diferente el proceso del recuadro con el respectivo ejemplo que le represente.

II. Arrastra el proceso termodinámico al gráfico correspondiente.

III. Une con una línea el proceso del que se trate el recuadro de la izquierda y posteriormente arrastra el ejemplo según corresponda.

IV- coloca la ley respecto a la imagen.

V- coloca los siguientes conceptos, en el lugar donde consideres que corresponde.

	Sistema abierto	Sistema cerrado	Sistema aislado
Definición	SISTEMA TERMODINAMICO DONDEHAY INTERCAMBIO DE ENERGIA Y MATERIA CON LOS ALREDEDORES	EL SISTEMA TERMODINAMICO DONDE HAY INTERCAMBIO DE ENERGIA CON LOS AREDEDORES	SISTEMA TERMODINAMICO DONDE NO HAY INTERCAMBIO DE ENERGÍA O MATERIA CON LOS ALREDEDORES
Energía	HAY INTERCAMBIO DE ENERGÍA CON LOS ALREDEDORES	HAY INTERCAMBIO DE ENERGÍA CON LOS ALREDEDORES	NO HAY INTERCAMBIO DE ENERGÍA CON LOS ALREDEDORES
Materia	HAY INTERCAMBIO DE MATERIA CON LOS ALREDEDORES	NO HAY INTERCAMBIO DE MATERIA CON LOS ALREDEDORES.	NO HAY INTERCAMBIO DE MATERIA CON LOS ALREDEDORES.
Ejemplo	UNA OLLA DESCUBIERTA CON LA TAPA PUESTA	UNA BOTELLA CON AGUA DENTRO DEL FRIGORIFICO	UN TERMO CERRADO
	ENTRA O SALE MATERIA Y ENERGÍA	ENTRA O SALE MATERIA	NI ENTRA NI SALE MATERIA O ENERGÍA

VI- Resuelva los siguientes ejercicios de energía cinética.

Problema 1. Calcular la energía cinética que lleva una bala de 0.006 kg si su velocidad posee una magnitud de 510 m/s

Problema 2. ¿Cuál es la energía cinética de un balón de basquetbol de 0.92 Kg y lleva una velocidad de magnitud de 24 m/s?

Problema 3. Calcular la energía cinética de una rueda cuya velocidad tiene una magnitud de 19 m/s y su masa es de 5.54 Kg.

5.54 Kg

Ejemplo: Calcular el trabajo que realiza la fuerza F = 15 N sobre la distancia d = 2m y un ángulo de $\theta = 35^\circ$,

Datos F = 15 N, θ = 35°, d = 2 m.

Solución

$$W = |F| \cdot |d| \cdot Cos(\theta)$$

$$W = |15 N| \cdot |2 m| \cdot Cos(35^{\circ}) = 24,57 J$$

Problema 4: Calcular el trabajo que realiza la fuerza F = 15 N sobre la distancia d = 2m y un ángulo de $\theta = 35^{\circ}$,

Problema 1:

La fórmula para calcular la energía cinética (Ec) es:

$$Ec = (1/2) * m * v^2$$

Donde: m = masa del objeto en kg v = velocidad del objeto en m/s

En este caso, la masa de la bala (m) es de 0.006 kg y su velocidad (v) es de 510 m/s. Podemos sustituir estos valores en la fórmula para calcular la energía cinética:

$$Ec = (1/2) * 0.006 kg * (510 m/s)^2$$

$$Ec = (1/2) * 0.006 kg * 260,100 m^2/s^2$$

Por lo tanto, la energía cinética de la bala es aproximadamente 780.3 joules.

Problema 2:

Para calcular la energía cinética del balón de baloncesto, utilizamos la misma fórmula:

Energía cinética (K) = 1/2 * masa * velocidad^2

Dado que la masa del balón es de 0.92 kg y la velocidad es de 24 m/s, podemos sustituir estos valores en la fórmula:

$$K = 1/2 * 0.92 kg * (24 m/s)^2$$

$$K = 0.5 * 0.92 kg * (576 m^2/s^2)$$

$$K = 265.344 \text{ kg} * \text{m}^2/\text{s}^2$$

La energía cinética del balón de baloncesto es de aproximadamente 265.344 julios (J).

Problema 3:

Para calcular la energía cinética de la rueda, nuevamente utilizamos la fórmula:

Energía cinética (K) = 1/2 * masa * velocidad^2

Dado que la masa de la rueda es de 5.54 kg y la velocidad es de 19 m/s, podemos sustituir estos valores en la fórmula:

$$K = 1/2 * 5.54 kg * (19 m/s)^2$$

$$K = 0.5 * 5.54 kg * (361 m^2/s^2)$$

$$K = 3520.87 \text{ kg} * \text{m}^2/\text{s}^2$$

La energía cinética de la rueda es de aproximadamente 3520.87 julios (J).

Problema 4:

Para calcular el trabajo realizado por una fuerza en un desplazamiento, utilizamos la fórmula:

Trabajo (W) = $F * d * cos(\theta)$

Dado que la fuerza es de 15 N, la distancia es de 2 m y el ángulo θ es de 35°, podemos sustituir estos valores en la fórmula:

$$W = 15 N * 2 m * cos(35°)$$

Antes de calcular el resultado, debemos asegurarnos de que el ángulo esté en radianes. Para convertir de grados a radianes, utilizamos la siguiente fórmula:

Ángulo (rad) = Ángulo (°) *
$$\pi$$
 / 180

$$\theta = 35^{\circ} * \pi / 180$$

$$\theta \approx 0.6109 \text{ rad}$$

Sustituyendo este valor en la fórmula del trabajo:

$$W = 15 N * 2 m * cos(0.6109 rad)$$

$$W \approx 24.57 \text{ J}$$

El trabajo realizado por la fuerza F sobre una distancia de 2 m y un ángulo de 35° es aproximadamente 24.57 julios (J).

RUBRICA DE EVALUACIÓN

Secciones: A,B,C Y D Grado: 1° año de bachillerato

Asignatura: <u>Ciencias Naturales</u> Fecha: <u>Del 24 de abril al 04 de Junio de 2023</u>

Docente tutor responsable: <u>Georgina Ivoneth Castro Gómez</u> N ° de Unidad: <u>1</u>

Nombre de la actividad: <u>Guía de trabajo de termodinámica y movimiento</u> Porcentaje: <u>20%</u>

CRITERIOS DE EVALUACIÓN	EXCELENTE 4.0 puntos	BUENO 3 puntos	REGULAR 2 puntos	DEFICIENTE 1 punto
Entrega de guía de trabajo.	Presenta la totalidad de actividades a resolver.	Entrega más del 80% de las actividades a resolver.	Presenta más del 60% de las actividades a resolver.	Presenta menos del 50% de las actividades a resolver.
Elabora el procedimiento de cada ejercicio.	Refleja un razonamiento detallado y ordenado, utilizando el proceso adecuado, siguiendo los pasos para resolver los ejercicios de manera correcta.	Refleja un razonamiento sin orden, puede hacer los ejercicios pero no explica la manera en que los resolvió. Cuando los hace utiliza el proceso adecuado, siguiendo los pasos para resolver los ejercicios de manera correcta.	los ejercicios pero no	No refleja ningún razonamiento, resuelve los ejercicios de manera mecánica.
Presenta los resultados en cada ejercicios y actividad propuesta.	Presenta el resultado obtenido de los ejercicios y actividad propuesta, es correcto. Puede corroborarlo dándole sentido	Presenta 80% ó más resultados correctos, comete algunos errores debido a cálculos erróneos, utiliza el proceso adecuado y sigue los pasos para resolverlo.	Presenta 60 % ó más resultados correctos, comete algunos errores debido a cálculos erróneos, y un proceso inadecuado, se salta los pasos para resolverlo.	
Total				