Android Multimedia Power Debugging Guidelines

QUALCOMM°

Qualcomm Technologies, Inc.

80-NT615-1 C

 ${\bf Confidential\ and\ Proprietary-Qualcomm\ Technologies, Inc.}$

Restricted Distribution: Not to be distributed to anyone who is not an employee of either Qualcomm Technologies, Inc. or its affiliated companies without the express approval of Qualcomm Configuration Management.

Confidential and Proprietary – Qualcomm Technologies, Inc.

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: DocCtrlAgent@qualcomm.com.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies, Inc.

Other Qualcomm products referenced herein are products of Qualcomm Technologies, Inc. or its subsidiaries.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. All Qualcomm Incorporated trademarks are used with permission. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 U.S.A.

© 2014 Qualcomm Technologies, Inc. and/or its affiliated companies. All rights reserved.

Revision History

Revision	Date	Description
А	Oct 2014	Initial release
В	Oct 2014	Updated title, added Camera Use Case section and added reference 80-N4717-1, Snapdragon Performance Visualizer 9.0 User Guide
С	Dec 2014	Added MSM Bus Voting slide and Filing a Power Case slide; updated Tuning Parameters and MP3 Playback Use Case slides

Contents

- Power Tools
- Debugging Approach
- Tuning Parameters
- Camera Use Case
- References
- Questions?

Power Tools

Environment Setup to Debug

Tools	Precondition	Install	Location
PowerTop	adb root adb shell mount -t debugfs none /sys/kernel/debug	adb shell su -c setenforce 0 adb push <powertop location="">\powertop /data/ adb shell chmod 777 /data/powertop</powertop>	In the source file
Тор	NA	Does not require installation	Linux default
Perf top	adb root adb shell mount -t debugfs none /sys/kernel/debug	adb shell su -c setenforce 0 adb push <perf location="">\perf /data/ adb shell chmod 777 /data/perf</perf>	From POC
Pytime chart	Pythonxy tool Ensure ETS and pythonxy are selected for installation	https://code.google.com/p/pythonxy/wiki/Downloads Once installed, open a command prompt in C:\ and run easy_install pytimechart	https://code.google.com/p/pythonxy/wiki/Downloads
Systrace	SDK tool	http://developer.android.com/tools/sdk/tools- notes.html	Android SDK toolkit
Clock dump	adb root adb shell mount -t debugfs none /sys/kernel/debug	Adb command – Does not require installation Systrace – Refer to systrace row Trace 32 – Install Trace 32	
SPV	Install Cygwin, version 1.7.15 is recommended	Go to folder SPVInstallPackage Only have to run *.bat files	Download document HK11-N8928-1

Tools and Logging Methodologies for Debugging

Tools	Output	When to use	How to use
Power Top	Cmd line output shows CPU residency information for each frequency and interrupt information	To verify CPU residency for each frequency and interrupt	adb shell /data/powertop -t (time)
Тор	Cmd line text output shows CPU load for each process or thread	To identify the CPU load for each process or thread	adb shell top adb shell top –t
Perf top	Text output shows the instructions per second of the specific process or thread	To identify the usage of specific process or thread	adb shell perf top –p pid adb shell perf top –t tid
Pytime chart	Pytime Chart shows the kernel function calls and interrupt information	To identify the cause of the interrupts	Open a command prompt in C:\ and run —pytimechart
systrace	Systrace shows clock information of each clock (CPU, GPU, etc), SurfaceFlinger, eventcontrol, work queue, etc	To identify the frequency of each clock, frame drop, execution time of each function, thread migration, init clock, etc.	sdk/tools/monitor
msmbusvoting	Text output shows active clock frequency for each clock	To identify current clock frequency for each use case	msmbusvoting.exeoption
NPA Dump	Text output showing subsystem bandwidth request	Useful in identifying subsystems voting for high bandwidth	Trace 32

Confidential and Proprietary – Qualcomm Technologies, Inc.

Tools and Logging Methodologies for Debugging (cont.)

Tools	Output	When to use	How to use	
Clock residency	Text output shows some active clock residency data	To identify residency data for CPU/GPU and BIMC	Frequency_distribution.exe	
Wave form	Graphic output shows wave of current consumption for each use case	To measure the current consumption and analyze the pattern or base current	Use the power measurement tool	
SPV	Graphic output shows CPU/GPU- related information as clock frequency, state, utilization and interrupt, thermal, memory usage, etc.	To visualize, analyze, and correlate the impact of detailed CPU and system data on application performance	Download document Snapdragon Performance Visualizer 9.0 User Guide 80-N4717-1	

ADB Commands for Debugging

ADB command	Output	When to use	How to use
SurfaceFlinger	Text output shows each layer-related information as size, rectangle, used pipe, allocated buffer, layer count, display panel type, etc.	To identify layer count, used pipe, updated rectangle per each layer	adb shell dumpsys SurfaceFlinger
LPM stats	Provides time statistics of each CPU Core/Cluster/L2 Cache spent in each low power mode such as WFI, standalone-PC, Idle PC	Useful for CPU side debugging; helpful to check expected low power states during use cases such as mp3, static display use cases	adb shell cd /d/lpm_stats cat stats > /data/lpmstats_before && sleep 40 && cat stats > /data/lpmstats_after
Dumpsys power	Output will show Suspend Blockers wakelock	Useful for debugging power issues that uses third-party application; helpful to debug mp3 playback power issue if third-party application is being used	adb shell dumpsys power
Wakeup_source	Check for wakelock which is under active_since	Useful for debugging power issues that uses third-party application; helpful to debug mp3 playback power issue if third-party application is being used	adb shell cat sys/kernel/debug/wakeup_ sources

ADB Commands for Debugging (cont.)

ADB command	Output	When to use	How to use
Clock Dump	Text output showing active clock frequencies	Useful in identifying subsystems running at higher frequencies causing higher current	adb command
MSM Bus Requests	Text output shows bus voting value as ab/ib and caller/callee	To identify voting value and caller/callee by master and slave id	adb shell cat /d/msm-bus- dbg/client-data/(subsystem name)
kmsg	Text output shows kernel logs	To identify MP Decision, migration, MDSSP, SurfaceFlinger, etc.	adb shell cat /proc/kmsg grep "keyword"

Top

Process Id, Thread Id, Priority, CPU Load, Process status
 (D: Uninterruptible sleep, R: Running, S: Sleeping, Z: Zombie), Virtual memory, Real memory, Policy, User Id, Thread and Process name

Purpose	To identify CPU load per process and thread
Pros	Easy to use
Cons	No other information excluding CPU load for each process and thread
Usage	sleep 5 && while true; do echo \=\=\=\=\=\=\=\=; cat /proc/uptime; top -m 25 -d 1 -n 1 -t; done > /data/dumptop.txt &

Confidential and Proprietary - Qualcomm Technologies, Inc.

Top (cont.)

```
User 2%, System 18%, IOW 0%, IRQ 0% 2% from user apps and 18% from system apps; total CPU usage is 20%
User 9 + \text{Nice } 0 + \text{Sys } 79 + \text{Idle } 326 + \text{IOW } 4 + \text{IRQ } 1 + \text{SIRQ } 1 = 420
        TID PR CPU% S
                                    RSS PCY UID
  PID
                           VSS
                                                      Thread
                                                                       Proc
 2084
       2084
                            0 K
                                                      irq/341-synapti
                                             root
15126 15126 1
                  5% R
                         1736K
                                   980K
                                                      top
                                             root
 1384
       1402
                         6612K
                                   872K
                                                      mpdecision
                                                                        /svetem/bin/mpdecision
                                             root
                                                                       syst m server
  865
        974
                  1% S 579796K
                                 55336K
                                         fq system
                                                      UEventObserver |
                       579796K
                                 55336K
                                         fq system
                                                      ActivityManager system server
  140
        140
             Π
                            0 K
                                     0ĸ
                                                      kworker/0:3
                                             root
 1029
       1029
                  0% S 491776K
                                 48880K
                                         fg u0 a60
                                                      ndroid.systemui com.andrid.systemui
                  ០៖ ន
    3
          3
             0
                            0 K
                                     0K
                                             root
                                                      ksoftirqd/0
                  ០% ៩
                        69824K 10620K
                                         fq system
                                                      EventThread
/system/bin/surfaceflinger
 2195 2195 0
                  0% 8
                                                      kworker/0:0
                                     0 K
                                             root
                                                                             The time spent in each service, 3260 ms for
                                                                              idle service, 790 ms for system service, 90 ms
                                                                             for user service, 40 ms for IOW(I/O wait), 10 ms
                                                                             for IRQ(hardware Interrupt Requests), 10 ms
User 0%, System 24%, IOW 0%, IRQ 1%
User 0 + \text{Nice } 0 + \text{Sys } 83 + \text{Idle } 250 + \text{IOW } 0 + \text{IRQ } 5 + \text{SIRQ } 0 = 338
                                                                             for SIRQ(software Interrupt Requests)
  PID
        TID PR CPU% S
                            VSS
                                    RSS PCY UID
                                                      Thread
                                                                       Proc
 2084
       2084
                            0 K
                                     0ĸ
                                            root
                                                      irq/341-synapti
15126 15126
                  6% R
                         1744K
                                   992K
             0
                                            root
                                                      top
       1402
                          6612K
                                                                       /system/bin/mpdecision
 1384
             0
                  3% 8
                                   872K
                                            root
                                                      mpdecision
    3
          3
             0
                  0% 3
                            0 K
                                     0 K
                                            root
                                                      ksoftirqd/0
  140
        140
                  0% 8
                                                      kworker/0:3
                                            root
  19
         19
             0
                  0% 8
                            0 K
                                     0ĸ
                                                      kworker/0:1H
                                            root
  126
        126
                  0% ន
                            0 K
                                     0 K
                                             root
                                                      mmcqd/0
                                 55336K
  865
        974
             0
                  0% S 579796K
                                         fq system
                                                      UEventObserver
                                                                       system server
15094 15094
             0
                                     0 K
                                                      kworker/u:2
                                             root
  413
        413
             0
                  0% ន
                         1180K
                                   624K
                                                                       /system/bin/grngd
                                             system
                                                      grngd
```

Confidential and Proprietary - Qualcomm Technologies, Inc.

PowerTop

Provides information on CPU residency, low power state, and interrupts and timer

Purpose	To identify CPU residency, low power state, and interrupts			
Pros	Easy to see the residency of interrupt and timer			
Cons	No information about the interrupt source			
Usage	sleep 5 && while true; do echo \=\=\=\=\=\=\=\=\=; /data/powertop -r -d -t 30; done > data/dumptop.txt &			

Low Power state

C-State	Name	Description
C0	Clock Gating or Wait For Interrupt (WFI)	CPU fully turned on Processor to sleep until an interrupt occurs.
C1	Retention	Stops CPU main internal clocks via software (Clock gating at lower voltage)
C2	Standalone Power Collapse (SPC)	Stops CPU main internal clocks via hardware
C3	Power Collapse (PC)	Stops all CPU internal clocks

PowerTop (cont.)

```
Avg residency
                                                                           Top causes for wakeups:
                                                                                                                            Interrupt
                                                                             43.3% (327.2)
C0 (cpu running)
                        (31.0%) (34.9%)
                                             (100.0%)
                                                          (100.0%)
                                                                                                <interrupt> : arch timer
          0.1ms ( 0.0%) 0.1ms ( 0.0%)
                                                                             18.2% (138.0)
                                          0.0ms ( 0.0%)
                                                          0.0ms ( 0.0%)
                                                                                                 <interrupt> : qcom,smd-rpm
C1
          0.3ms ( 0.9%)
                          0.4ms ( 0.4%)
                                          0.0ms ( 0.0%)
                                                          0.0ms ( 0.0%)
                                                                             14.4% (108.6)
                                                                                                <interrupt> : arch mem timer
C2
                                                                             10.4% (78.4)
          0.6ms ( 0.5%)
                          0.9ms ( 0.4%)
                                          0.0ms ( 0.0%)
                                                          0.0ms ( 0.0%)
                                                                                                 <interrupt> : MDSS
                                                                              4.4% ( 33.4)
          2.7ms (67.6%)
                          3.3ms (64.3%)
                                          0.0ms ( 0.0%)
                                                          0.0ms (0.0%)
                                                                                                <interrupt> : qup err intr
P-states (frequencies) Running state
                                                                              3.7% ( 28.0)
                                                                                                <interrupt> : kgsl-3d0
                                                                              1.7% ( 13.0)
                                                                                                <interrupt> : cpubw hwmon
   300 Mhz
              33.4% 36.8%
                             0.0%
                                                                              1.5% ( 11.6)
   422 Mhz
                     5.6% 0.0%
                                                                                                <interrupt> : fts touch
               4.4%
                                   റ റെ
                                                                              1.5% (11.6)
                                                                                                <interrupt> : msmgpio
   653 Mhz
               4.0%
                      6.4%
                            0.0%
                                    0.0%
                                                                              0.9% ( 6.6)
                                                                                                <interrupt> : mmc0
   730 Mhz
               1.6%
                     1.8%
   883 Mhz
              1.2%
                     0.8% 0.0%
                                                                           Timer breakdown (dg_timer or gp_timer): Timer
   960 Mhz
              7.0%
                     7.4% 0.0%
                                    0.0%
                                                                                                  swapper/0 : hrtimer start range ns (tick sched timer)
  1037 Mhz
              1.4%
                      0.0%
                           0.0%
                                                                             15.6% ( 46.4)
                                                                                                  swapper/1 : hrtimer start range ns (tick sched timer)
  1190 Mhz
             2.8%
                     2.2% 0.0%
                                                                             11.9% (35.6)
                                                                                                   DispSync : hrtimer start range ns (hrtimer wakeup)
  1267 Mhz
              0.8%
                     0.4% 0.0%
                                                                                               boost sync/0 : queue delayed work on (delayed work timer fn)
  1498 Mhz
              30.8% 37.2%
                           0.0%
                                    0.0%
                                                                              6.8% (20.4)
                                                                                               boost sync/1 : queue delayed work on (delayed work timer fn)
  1.58 Ghz
             0.0%
                    0.0% 0.0%
                                   0.0%
                                                                                                rcu preempt : rcu gp kthread (process timeout)
                                                                              6.6% (19.6)
  1 73 Ghz
             0.0%
                     0.4% 0.0%
                                                                              4.9% ( 14.6)
                                                                                                   immvibed : hrtimer start range ns (hrtimer wakeup)
  1.96 Ghz
            0.0%
                    0.4% 0.0%
                                                                              4.2% (12.4)
                                                                                                   mdss fb0 : hrtimer start range ns (hrtimer wakeup)
  2.27 Ghz
               0.4% 0.8%
                            0.0%
                                                                              4.1% (12.2)
                                                                                                   mdss fb0 : hrtimer start (event hrtimer cb)
  2.46 Ghz
              12.3% 0.0% 0.0%
                                                                                                   immvibed : hrtimer start (tsp timer interrupt)
                                                                              2.8% (8.2)
                                                                                                  swapper/0 : hrtimer start (lpm hrtimer cb)
MSM PM idle stats:
                                          PM Idle stats
                                                                                            oid.inputmethod : hrtimer start range ns (hrtimer wakeup)
                                                                              2.6% (7.6)
idle-wfi (count = 153) : 0.133975476s
                                                                              1.2% ( 3.6)
                                                                                             oid.inputmethod : kgsl pwrctrl wake (kgsl timer)
idle-power-collapse (count = 888) : 2.993514408s
                                                                                                  swapper/1 : hrtimer start (tick sched timer)
                                                                              1.2% ( 3.6)
idle-failed-power-collapse (count = 106) : 0.42916095s
                                                                              1.2% ( 3.6)
                                                                                              system server : hrtimer start range ns (hrtimer wakeup)
suspend (count = 0) : 0.0s
                                                                                                       SSRM : Handler Th hrtimer start range ns (hrtimer wakeup)
                                                                              1.0% ( 3.0)
idle-power-collapse (count = 862) : 3.100373579s
                                                                                                  swapper/0 : hrtimer_start (tick_sched_timer)
                                                                              0.9% ( 2.6)
idle-failed-power-collapse (count = 125) : 0.47944420s
                                                                              0.8% ( 2.4)
                                                                                              WindowManager: hrtimer start range ns (hrtimer wakeup)
suspend (count = 0) : 0.0s
                                                                              0.7% ( 2.2)
                                                                                            irq/441-fts tou : queue delayed work on (delayed work timer fn)
suspend (count = 0) : 0.0s
                                                                              0.5% ( 1.4)
                                                                                            com.android.mms : hrtimer start range ns (hrtimer wakeup)
                                                                              0.4% ( 1.2)
                                                                                                kworker/1:2 : kgsl pwrctrl wake (kgsl timer)
Wakeups-from-idle per second : 378.2
                                        interval: 5.0s
                                                                                                 Thread-443 : hrtimer_start_range_ns (hrtimer_wakeup)
                                                                              0.4% ( 1.2)
                                                                              0.3% ( 1.0)
                                                                                                   edmaudit : hrtimer_start_range_ns (hrtimer_wakeup)
Power usage (ACPI estimate): 76019032327757.1W (0.0 hours)
                                                                              0.3% ( 1.0)
                                                                                                  swapper/0 : start bandwidth timer (sched rt period timer)
```

MSM BUS VOTING

- This tool is for monitoring the current clock frequency for each use case.
- Msmbusvoting.exe Clock <clock name>, for example:
 - msmbusvoting.exe Lock bimc_clk camss_vfe_cpp_clk camss_csi_vfe0_clk
 - camss_csi_vfe1_clk mdss_mdp_clk

bimc	c	amss_vfe_cpp	car	mss_csi_vfe0	car	mss_csi_vfe1	mdss_mdp	1
384000036	1	320000036		320002453	1	319998864	150000741	ī
384002966	1	320002526	1	320000036	1	320000036	150001180	I
383998645	1	320002526	1	320002453	1	320000109	150000668	I
384001501	1	320000036	1	319998791	1	319998864	150001180	1
384002966	1	320002526	1 6	319998791	1	320000109	150000082	1
384002966	1	320002526		320000109	1	320000036	149999496	1
384002819	1	320002526	TO K	320000109	1	320002526	150000668	1
454587013	1	319998864 (ZIW.	320000036	1	319998791	149999496	1
384001501	1	319998864	Ť	320000109	1	320001281	149999496	1
383998571	1	320001281	1	319998864	1	320001281	149999496	1
392812432	1	320000036	1	319998864	1	319998791	150000082	1
384001501	1	320000036	1	320000109	1	320002526	150000668	1
384001574	1	319998791	1	319998791	1	320001281	150000082	1
384001501	1	319998791	1	319998864	1	320002526	150000668	1
384001574	1	319998791	1	320002526	1	320002526	150001180	1
384001501	1	319998864	1	320000109	1	320001281	149999496	1
384000036	1	320000109	1	320000036	1	319998864	150001180	1
384002966	1	320001281	1	319998864	1	319998864	150000082	1
383998645	1	319998864	1	319998791	1	320002526	149999569	1
460798352	1	320000109	1	320001281	1	320002453	149999496	1
383998571	1	319998864	1	320001281	1	320002526	150000082	1
406894321	1	320000109	1	319998864	1	320002453	150000668	1
384000036	1	320002526	1	319998791	1	320002526	150001180	1

Systrace

Purpose	To identify CPU/GPU clock and state, other clock information, frame drop, execution time, CPU migration
Pros	There is a lot of information to check
Cons	Need to install SDK toolkit
Usage	Monitor

Clock Residency

- This is very useful data to check residency of each frequency based on systrace.
- If you provide systrace log, we will provide this residency data.

Purpose	To identify clock residency
Pros	Easy to see the residency of each clock
Cons	Need systrace data as an input data
Usage	Clock residency tool

Clock Residency (cont.)

BIMC_CLK					
-1	0%				
0	0%				
19.2	0%				
37.5	0%				
50	0%				
75	0%				
100	0%				
150	0%				
200	0%				
259.2	79%				
307.2	13%				
393.6	8%				
460.8	0%				
528	0%				
662.4	0%				
796.8	0%				

BIMC_MSMBUS_A_CLK					
-1	0%				
0	0%				
248.57732	70%				
256	10%				
258.99827	2%				
261.07732	12%				
306.97062	0%				
366.1875	5%				

	KRAIT0	KRAIT1	KRAIT2	KRAIT3
-1	0%	0%	0%	0%
0	37%	43%	46%	45%
300	0%	35%	39%	40%
345.6	0%	0%	0%	0%
422.4	0%	9%	6%	7%
499.2	0%	0%	0%	0%
576	0%	0%	0%	0%
652.8	48%	6%	3%	3%
729.6	7%	0%	1%	0%
806.4	0%	0%	0%	0%
883.2	3%	0%	0%	0%
960	0%	0%	0%	0%
1036.8	4%	4%	3%	3%
1113.6	0%	0%	0%	0%
1190.4	0%	0%	0%	1%
1267.2	0%	0%	1%	0%
1344	0%	0%	0%	0%
1420.8	0%	0%	0%	0%
1497.6	1%	1%	1%	0%
1574.4	0%	0%	0%	0%
1651.2	0%	0%	0%	0%
1728	0%	0%	0%	0%
1804.8	0%	0%	0%	0%
1881.6	0%	0%	0%	0%
1958.4	0%	0%	0%	0%
2035.2	0%	0%	0%	0%
2112	0%	0%	0%	0%
2188.8	0%	0%	0%	0%
2265.6	0%	0%	0%	0%
2342.4	0%	0%	0%	0%
2419.2	0%	0%	0%	0%

L2_0	CLK
-1	0%
0	0%
499.2	60%
576	13%
960	0%
1036.8	20%
1267.2	7%

OXILI_GFX3D_CLK				
-1 0%				
0	0%			
27	77%			
240	13%			
300	10%			

OXILI_GFX3D_CLK_SRC					
-1 0%					
0	0%				
27	77%				
240	13%				
300	10%				

Oxili_3D				
-1	0%			
0	77%			
19.2	0%			
37.5	0%			
50	0%			
75	0%			
100	0%			
200	0%			
240	13%			
300	10%			
400	0%			
466.8	0%			
500	0%			
600	0%			

SurfaceFlinger

- SurfaceFlinger is the only service that can modify the content of the display.
- SurfaceFlinger uses OpenGL and Hardware Composer to compose a group of surfaces.
- As per SurfaceFlinger dump, there are 3 layers and 3 pipes used. The layers are updated every time as it is not cached.
- Provide information about total layer, used pipes, allocated buffer size, composition type, display panel type, etc.

Confidential and Proprietary – Qualcomm Technologies, Inc.

PAGE 19

SurfaceFlinger (cont.)

```
handle | hints | flags | tr | blend | format |
                                                                                frame
                                                        source crop
                                                                                            name
   HWC | b727e818 | 00000002 | 00000000 | 00 | 00100 | 00000001 | [ 0.0, 50.0, 1080.0, 1920.0] | [ 0, 50, 1080, 1920] com.android.mms/com.android.mms.ui.ComposeMessageActivity
   HWC | b7266e98 | 00000002 | 00000000 | 00 | 00105 | 00000001 | [ 0.0, 0.0, 1080.0, 1525.0] | [ 0, 395, 1080, 1920] InputMethod
   HWC | b7269d78 | 00000002 | 00000000 | 00 | 00105 | 00000001 | [ 0.0, 0.0, 1080.0, 75.0] | [ 0, 0, 1080, 75] StatusBar
FB TARGET | b72c5d50 | 00000000 | 00000000 | 00 | 00105 | 00000001 | [ 0.0, 0.0, 1080.0, 1920.0] | [ 0, 0, 1080, 1920] HWC_FRAMEBUFFER_TARGET
```

Confidential and Proprietary - Qualcomm Technologies, Inc.

Qualcomm HWC state: MDPVersion=500 DisplayPanel=8 HWC Map for Dpy: "PRIMARY" CURR FRAME: layerCount: 3 mdpCount: 3 fbCount: 0 needsFBRedraw: NO pipesUsed: 3 MaxPipesPerMixer: 4 listIdx | cached? | mdpIndex | comptype $MDP \mid 0$ MDP | 1 MDP | 2

kmsg

- Provides information about kernel
- To see any specific event, configure using the following command
 - adb shell cat /proc/kmsg | grep "keyword"

```
tblteatt:/ # cat /proc/kmsg ; grep mpdecision
proc/kmsg | grep mpdecision
395.150563] [0: mpdecision: 5776] dwc3_c
                                                        mpdecision: 5776] dwc3_cpu_notifier_cb: cpu online:1 irq:163
                                                      mpdecision: 57761 dwc3_cpu_notifier_cb: cpu online:1 irq:163
mpdecision: 57771 dwc3_cpu_notifier_cb: cpu online:1 irq:163
                                                       mpdecision: 57771 dwc3_cpu_notifier_cb: cpu online:1
                                                       mpdecision: 57771 dwc3_cpu_notifier_cb: cpu online:1 irq:163
                                                        mpdecision: 57771 dwc3_cpu_notifier_cb: cpu online:1
oot@tblteatt:/ # cat /proc/kmsg ; grep migration
     /proc/kmsg | grep migration
                                                     migration/1:
                                                                                      131 migrate_irqs: 10 callbacks suppressed
                                                                                               IRQ163 no longer affine to CPU1
                                                     migration/1:
                                                     migration/1:
                                                                                               IRQ163 no
                                                                                                                    longer affine to CPU1
                                                                                                                     longer affine to CPU1
                                                     migration/1:
                                                                                               IRQ163 no
                                                                                                                     longer affine to CPU1
                                                     migration/1:
                                                                                                                    longer affine to CPU1
```

```
root@tblteatt:/ # cat /proc/kmsq ; grep mdss
cat /proc/kmsg | grep mdss
                  [0: surfaceflinger:
                                       3531 mdss_fb_blank_sub: FB_NUM:0, MDSS_FB_UNBLANK ++ on=0
                  [0: surfaceflinger:
                                       3531 mdss_dsi_event_handler : MDSS_EVENT_UNBLANK
                  [0: surfaceflinger:
                                       3531 mdss_dsi_panel_power_on : disp_en_gpio = 669
                                       3531 mdss_dsi_panel_power_on : Set High LCD Enable disp_en GPIO
                  [0: surfaceflinger:
                                       3531 mdss_dsi_ctr1_setup+: ctr1=f0833490 ndx=0
                  [0: surfaceflinger:
                                       3531 mdss_dsi_host_init: Broadcast mode enabled.
                  [0: surfaceflinger:
                   [0: surfaceflinger:
                                       3531 mdss_dsi_unblank+:
                  [0: surfaceflinger:
                                       3531 mdss_dsi_ctrl_setup+: ctrl=f0833490 ndx=0
                                       3531 mdss_dsi_host_init: Broadcast mode enabled.
                  [0: surfaceflinger:
                  [0: surfaceflinger:
                                       3531 mdss_dsi_panel_on : ++
                  [0: surfaceflinger:
                                       3531 mdss_dsi_panel_on: ctrl=f0833490 ndx=0
                                       3531 mdss_dsi_panel_on: Broadcast mode. 1st ctrl(0). return..
                   [0: surfaceflinger:
                                       3531 mdss_dsi_panel_on :
                   [0: surfaceflinger:
                   [0: surfaceflinger:
                                       3531 mdss_dsi_event_handler : MDSS_EVENT_UNBLANK
                      surfaceflinger:
                                            mdss_dsi_panel_power_on : disp_en_gpio = 669
```

Pytime Chart

- Pytime chart is a visual tool to analyze Ftrace logs.
- The screenshot shown on the next slide is of the Pytime chart; the UI is mainly composed of the process list pane:
 - 1 Time chart pane
 - 2 Tool bar
- To use Pytime chart:
 - 1. Open the Pytime chart from the command line (pytime chart) or from the GUI.
 - 2. Select File→Open Trace File, which gives you a collected trace file.
 - 3. Press **7** to select events→press **8**→select all your events.

Note: All the processes are shown in one page.

- 4. Press Page Down/Page Up or mouse scroll to set the time chart via zoom/unzoom.
- 5. Right-click the event from where you want to measure (see **3** in the picture) and drag it to the next event then right-click again (see **4**); the time interval is displayed at **5** if you want to see time interval between two events.
- 6. Select the event as described in step 5, and press **6** to see text trace when you want to know more details of the event, i.e., text trace.

Note: All user space events show up in the process list pane in yellow color, starts with usr-<event-groupname>:<event-name> keep event-groupname and event-name very short, so that you can see them in the Pytime chart without any truncation.

Pytime Chart (cont.)

Pytime Chart (cont.)

- Pytime chart is a visual tool to analyze Ftrace logs.
- It is easy to figure out the root cause of the specific interrupt.

Clock Dump by ADB Command

- Provides information about currently active clocks and their frequencies
- If you want to compare to the data of MTP and your target, you can request Qualcomm Technologies, Inc. (QTI) to provide this data or you can provide QTI with your data to verify
- When you check the clock frequency, you also need to check clock plan and voltage plan for the correct voltage level; usually, higher clock frequency on the component causes higher power consumption

Clock Dump by ADB Command (cont.)

Active

```
bb_clk2_pin => enable:1 rate:1000 Clock freq
bimc a clk => enable:1 rate:99942400
bimc clk => enable:1 measure:100000457
bimc msmbus a clk => enable:1 rate:503500000
bimc msmbus clk => enable:1 rate:50000000
dsi vco clk => enable:1 rate:512000000
esc1 clk src => enable:1 rate:19200000
gcc blsp2 ahb clk => enable:1 measure:4800073
gcc blsp2 qup4 i2c apps clk => enable:1 measure:50000320
gcc sdcc1 ahb clk => enable:1 measure:25000141
gcc sdcc1 apps clk => enable:0 measure:0 INACTIVE
gcc usb2a phy sleep clk => enable:1 measure:34605
gcc_usb30_sleep_clk => enable:1 measure:0
gcc_usb_hsic_io_cal_sleep_clk => enable:1 measure:34605
gfx3d clk src => enable:1 rate:240000000
gpl10 ao clk src => enable:1 rate:600000000
gpl10 clk src => enable:1 rate:600000000
hfp110 clk => enable:1 rate:1497600000
hfpl12_clk => enable:0 rate:1497600000
hfpl1 12 clk => enable:1 rate:960000000
hfpll_src_clk => enable:1 rate:19200000
krait0 clk => enable:1 measure:739375404
krait0 pri mux clk => enable:1 rate:960000000
krait1 clk => enable:1 measure:883196920
krait2 clk => enable:1 measure:253891176
krait2 pri mux clk => enable:1 rate:1036800000
krait3 clk => enable:0 measure:682341536
krait3 pri mux clk => enable:1 rate:1497600000
12 clk => enable:1 measure:1267200144
12 pri mux clk => enable:1 rate:1267200000
mdp clk src => enable:1 rate:150000000
mdss ahb clk => enable:1 measure:2500098
mdss axi clk => enable:1 measure:150000668
mdss byte0 clk => enable:1 measure:127996814
mdss byte1 clk => enable:0 measure:0
ocmemgx clk => enable:1 rate:200000000
ocmemgx core clk => enable:1 rate:1000
ocmemgx msmbus clk => enable:1 rate:200000000
pixel clk src => enable:1 rate:170666666
pnoc a clk => enable:1 rate:19200000
```

```
bb clk2 pin => enable:1 rate:1000
bimc a clk => enable:1 rate:50000000
bimc clk => enable:1 measure:307201135
bimc msmbus a clk => enable:1 rate:366187500
bimc msmbus clk => enable:1 rate:50000000
dsi vco clk => enable:1 rate:512000000
esc0 clk src => enable:1 rate:19200000
esc1_clk_src => enable:1 rate:19200000
gcc blsp2 ahb clk => enable:1 measure:4800073
gcc blsp2 qup4 i2c apps clk => enable:1 measure:49999954
gcc_usb2a_phy_sleep_clk => enable:1 measure:32627
gcc usb30 sleep clk => enable:1 measure:0
gcc usb hsic io cal sleep clk => enable:1 measure:32627
gfx3d clk src => enable:1 rate:300000000
gpll0 ao clk src => enable:1 rate:600000000
gpl10 clk src => enable:1 rate:600000000
hfp110_clk => enable:1 rate:2457600000
hfpll1 clk => enable:1 rate:2457600000
hfp112 clk => enable:1 rate:2457600000
hfp113 clk => enable:1 rate:2457600000
hfpl1 12 clk => enable:1 rate:1728000000
hfpll src clk => enable:1 rate:19200000
krait0 clk => enable:1 measure:2004527076
krait0_pri_mux_clk => enable:1 rate:2457600000
krait1 clk => enable:1 measure:2572819772
krait1 pri mux clk => enable:1 rate:2649600000
krait2 clk => enable:1 measure:2457590768
krait2_pri_mux_clk => enable:1 rate:2265600000
krait3 clk => enable:1 measure:2106959592
krait3_pri_mux_clk => enable:1 rate:2496000000
12_clk => enable:1 measure:1727993700
12 pri mux clk => enable:1 rate:1728000000
mdp clk src => enable:1 rate:150000000
mdss ahb clk => enable:1 measure:2743762
mdss axi clk => enable:1 measure:333429885
mdss byte0 clk => enable:1 measure:127997766
mdss byte1 clk => enable:1 measure:127997766
mdss_esc0_clk => enable:1 measure:19200183
mdss_esc1_clk => enable:1 measure:19200256
mdss mdp clk => enable:1 measure:150000082
```

Clock Dump by Trace 32

Purpose	To identify clock information
Pros	Capture every clock and easy to check for each clock
Cons	Need to install Trace 32 and data can be captured at a particular moment
Usage	Trace 2 command

Clock	State	Frequency (MHz)	CBCR Addr : Value	CBCR Type	Clock	State	Frequency (MHz)	CBCR <u>Addr</u> : Value	CBCR Type
gcc_bam_dma_ahb_clk	OFF	0	0xFC400D44 : 0x8000CFF0	am pacbo	goo_bam_dma_ahb_clk	OFF	0	OxFC400D44 : Ox8000CFF0	am_pacbc
goc bam dma_inactivity_timers_clk	OFF	0	0xFC400D48 : 0x80000000	sm_cbc	goo bam dma inactivity timers clk	OFF	0	0xFC400D48 : 0x80000000	sm_cbc
gcc_bimc_cfg_ahb_clk	ON	37.500974	0xFC40110C : 0x20008001	sm_cbc	goc_bimc_cfg_ahb_clk	ON	19.201171	0xFC40110C : 0x20008001	am_cbc
gcc_bimc_clk	ON	200.001586	0xFC401118 : 0x00000001	an_cbc	goc_bimc_clk	ON	100.001525	0xFC401118 : 0x000000001	sm_cbc
goc_bimc_kpss_axi_clk	OFF	0	0xFC40111C : 0x80000000	sm_cbc	goc_bimo_kpss_axi_clk	OFF	0	0xFC40111C : 0x80000000	sm_cbc
goc_bimc_sleep_clk	ON	0.033687	0xFC401110 : 0x00000001	sm_cbc	gcc bimc sleep clk	ON	0.033687	0xFC401110 : 0x00000001	sm_cbc
goc_bimc_sysnoc_axi_clk	ON	150.000677	0xFC401114 : 0x20008001	am_ccc	goc bimc syshoc axi clk	ON	19.200585	0xFC401114 : 0x20008001	sm_cbc
goc_bimc_xo_clk	ON	19.200585	0xFC401108 : 0x00000001	sm_cbc.	gcc bimc xo clk	ON	19.200585	0xFC401108 : 0x00000001	am_cbc
goc_blspl_ahb_clk	ON	19.200585	0xFC4005C4 : 0x2000CFF0	am_pactoc	gco_blsp1_ahb_clk	ON	19.200585	0xFC4005C4 : 0x2000CFF0	am_pacbc
gcc_blspl_sleep_clk	OFF	0	0xFC4005C8 : 0x80000000	sm_tbc	gcc_blsp1_sleep_clk	OFF	0	0xFC4005C8 : 0x80000000	sm_cbc
goc_blsp1_qup1_i2c_apps_clk	OFF	0	0xFC400648 : 0x80000000	sm_cbc	gcc_blsp1_qup1_i2c_apps_clk	OFF	0	0xFC400648 : 0x80000000	sm_cbc
goc_blspl_qupl_spi_apps_clk	OFF	0	0xFC400644 : 0x80000000	sm_cbc	gcc_blsp1_qup1_spi_apps_clk	OFF	0	0xFC400644 : 0x80000000	sm_cbc
goc_blsp1_qup2_i2c_apps_clk	OFF	0	0xFC4006C8 : 0x80000000	sm_cbc	gcc_blsp1_qup2_i2c_apps_clk	OFF	0	0xFC4006C8 : 0x80000000	am_cbc
goc_blsp1_qup2_spi_apps_clk	OFF	0	0xFC4006C4 : 0x80000000	sm_cbc	gcc_blsp1_qup2_spi_apps_clk	OFF	0	0xFC4006C4 : 0x80000000	am_cbc
goc_blsp1_qup3_i2c_apps_clk	OFF	0	0xFC400748 : 0x80000000	sm_cbc	gcc_blsp1_qup3_i2c_apps_clk	OFF	0	0xFC400748 : 0x80000000	am_cbc
goc_blsp1_qup3_spi_apps_clk	OFF	0	0xFC400744 : 0x80000000	sm_cbc	gcc blsp1 qup3 spi apps clk	OFF	0	0xFC400744 : 0x80000000	am cbc
goc_blsp1_qup4_i2c_apps_clk	OFF	0	0xFC4007C8 : 0x80000000	am_cbc	gcc blsp1 qup4 i2c apps clk	OFF	0	0xFC4007C8 : 0x80000000	am cbc
gcc_blsp1_qup4_spi_apps_clk	OFF	0	0xFC4007C4 : 0x80000000	sm_cbc	gcc_blspl_qup4_spi_apps_clk	OFF	0	0xFC4007C4 : 0x80000000	am_cbc
goc_blsp1_qup5_i2c_apps_clk	OFF	0	0xFC400848 : 0x80000000	sm_cbc	gcc blsp1 gup5 i2c apps clk	OFF	0	0xFC400848 : 0x80000000	sm cbc
goc_blsp1_qup5_spi_apps_clk	OFF	0	0xFC400844 : 0x80000000	sm_cbc	gcc blsp1 gup5 spi apps clk	OFF	0	0xFC400844 : 0x80000000	sm cbc
goc_blsp1_qup6_i2c_apps_clk	OFF	0	0xFC4008C8 : 0x80000000	am_cbc	gcc blsp1 gup6 i2c apps clk	OFF	0	0xFC4008C8 : 0x80000000	sm cbc
gcc_blsp1_qup6_spi_apps_clk	OFF	0	0xFC4008C4 : 0x80000000	sm_cbc	gcc blsp1 qup6 spi apps clk	OFF	0	0xFC4008C4 : 0x80000000	sm cbc
goc_blsp1_uart1_apps_clk	OFF	0	0xFC400684 : 0x80000000	sm_cbc	gcc_blspl_uart1_apps_clk	OFF	0	0xFC400684 : 0x80000000	sm_cbc
goc_blsp1_uart1_sim_clk	OFF	0	0xFC400688 : 0x80000000	sm_cbc	gcc blspl wartl sim clk	OFF	0	0xFC400688 : 0x80000000	sm cbc
goc_blsp1_uart2_apps_clk	Oli	7.373528	0xFC400704 : 0x00000001	sm_cbc	gcc blsp1 uart2 apps clk	ON	7.374114	0xFC400704 : 0x00000001	sm cbc
gcc_blsp1_uart2_sim_clk	OFF	0	0xFC400708 : 0x80000000	sm_cbc	gcc blsp1 uart2 sim clk	OFF	0	0xFC400708 : 0x80000000	sm cbc
goc_blspl_uart3_apps_clk	OFF	0	0xFC400784 : 0x80000000	sm_cbc	gcc blsp1 uart3 apps clk	OFF	0	0xFC400784 : 0x80000000	am cbc
goc_blsp1_uart3_sim_clk	OFF	0	0xFC400788 : 0x80000000	am_cbc	goc blsp1 wart3 sim clk	OFF	0	0xFC400788 : 0x80000000	am cbc
gcc_blsp1_uart4_apps_clk	OFF	0	0xFC400804 : 0x80000000	sm_cbc	ass blast world sees all	OFF		0-PC400001 . 0-00000000	on obe

NPA Dumps

- Provides information on subsystems voting for shared resources
- This is very useful information to know which subsystem is requesting higher bandwidth and hence causing higher power for that particular power domain/rail
- Real bandwidth will be decided by the maximum requested bandwidth

```
npa resource (name: "/sleep/uber") (handle: 0x196b78) (units: on/off) (resource max: 7) (active max: 7) (active state: 7) (active headroom: -8) (request state:
  4294967295)
          npa client (name: sleep) (handle: 0x196da8) (resource: 0x196b78) (type: NPA CLIENT REQUIRED) (request: 4294967295)
          npa client (name: yddmx) (handle: 0x196de0) (resource: 0x196b78) (type: NPA CLIENT REQUIRED) (request: 4)
          npa client (name: vddcx) (handle: 0x196e18) (resource: 0x196b78) (type: NPA CLIENT REQUIRED) (request: 2)
          end npa resource (handle: 0x196b78)
  npa resource (name: "/clk/gdss") (handle: 0x199318) (units: STATE) (resource max: 3) (active max: 3) (active state: 0) (active headroom: -3) (request state: 0)
          npa client (name: MPSS) (handle: 0x19c8b0) (resource: 0x199318) (type: NPA CLIENT LIMIT MAX) (request: 4294967295)
          npa client (name: MPSS) (handle: 0x19c870) (resource: 0x199318) (type: NPA CLIENT REQUIRED) (request: 0)
          npa client (name: WCSS) (handle: 0x19c430) (resource: 0x199318) (type: NPA CLIENT LIMIT MAX) (request: 4294967295)
          npa client (name: WCSS) (handle: 0x19c3f0) (resource: 0x199318) (type: NPA CLIENT REQUIRED) (request: 0)
          npa client (name: LPASS) (handle: 0x19be38) (resource: 0x199318) (type: NPA CLIENT LIMIT MAX) (request: 4294967295)
          npa client (name: LPASS) (handle: 0x19bdf8) (resource: 0x199318) (type: NPA CLIENT REQUIRED) (request: 0)
          npa client (name: gdssrpm) (handle: 0x196d70) (resource: 0x199318) (type: NPA CLIENT REQUIRED) (request: 0)
          npa client (name: debugger) (handle: 0x196e50) (resource: 0x199318) (type: NPA CLIENT REQUIRED) (request: 0)
          end npa resource (handle: 0x199318)
  npa resource (name: "/clk/mmnoc ahb") (handle: 0x1992c8) (units: KHz) (resource max: 80000) (active max: 80000) (active state: 40000) (active headroom: -40000)
  (request state: 40000)
          npa client (name: APSS) (handle: 0x196c58) (resource: 0x1992c8) (type: NPA CLIENT LIMIT MAX) (request: 4294967295)
          npa client (name: APSS) (handle: 0x196c90) (resource: 0x1992c8) (type: NPA CLIENT REQUIRED) (request: 40000)
          end npa resource (handle: 0x1992c8)
  npa resource (name: "/clk/bimc" (handle: 0x199278) (units: RHz) (resource max: 333333) (active max: 333333) (active state: 333333) (active headroom: -35833) (request
  state: 297500)
Real bandwidth MPSS) (handle: 0x19c650) (resource: 0x199278) (type: NPA_CLIENT_REQUIRED) (request: 200000)
                        ame: MPSS) (handle: 0x19c690) (resource: 0x199278) (type: NPA CLIENT LIMIT MAX) (request: 4294967295)
          npa_client (name: WCSS) (handle: 0x19c3a8) (resource: 0x199278) (type: NPA_CLIENT_LIMIT_MAX) (request: 4294967295)
          npa_client (name: WCSS) (handle: 0x19c368) (resource: 0x199278) (type: NPA_CLIENT REQUIRED) (request: 0)
          npa client (name: LPASS) (handle: 0x19c058) (resource: 0x199278) (type: NPA CLIENT LIMIT MAX) (request: 4294967295)
          npa client (name: LPASS) (handle: 0x19c018) (resource: 0x199278) (type: NPA CLIENT REQUIRED) (request: 0)
          npa client (name: APSS) (handle: 0x19b8d0) (resource: 0x199278) (type: NPA CLIENT LIMIT MAX) (request: 4294967295
          npa_client (name: APSS) (handle: 0x19b890) (resource: 0x199278) (type: NPA_CLIENT_REQUIRED) (request: 297500) Maximum request
          npa client (name: ICB Driver) (handle: 0x196f68) (resource: 0x199278) (type: NPA CLIENT REQUIRED) (request: 177648)
          end npa resource (handle: 0x199278)
  npa resource (name: "/clk/pnoc") (handle: 0x196980) (units: KHz) (resource max: 10000) (active max: 10000) (active state: 5000) (active headroom: -50000) (request
```

MSM Bus Requests

- Provides information about the latest bus bandwidth request as ab and ib.
- Masters ID is a caller and slaves ID is a callee.
- You can check masters ID and slaves ID in arch/arm/mach-msm/include/ mach/msm_bus_board.h.

```
cat mdss_mdp
157306.118032626
curr : 1
masters: 22
slaves : 512
ab : 890265600
ib : 3200000000
```

157306.127250803 curr : 2 masters: 22 slaves : 512

ab : 1335398400 ib : 3200000000

157308.351429170

curr : 1

masters: 22 Caller slaves: 512 Callee

slaves : 512 ab : 445132800 ib : 333849600

Purpose	To identify voting value for each subsystem in the apps processor
Pros	Easy to check the bus bandwidth for each subsystem
Cons	Apps processor only
Usage	Cat /d/msm-bus-dbg/client-data/ <subsystem name=""></subsystem>

Snapdragon™ Performance Visualizer

 SPV provides a web interface to a suite of performance analysis, debug, system overview, power, and monitoring tools for Android and other Linux-based platforms providing rich graphical and command line views.

Waveform

 To measure the current consumption and analyze the pattern or base current

Power Rail Breakdown

Compare power rail data and figure out the difference in power gap of power rail

Customer device

	RCM channel	Regulator	Volts	I (mA)	Cal battery @ 4v (mA)
	35	PWR_WLED	3.83 V	90.59	90.59
	36	PWR_HRLED	3.85 V	0.01	0.01
Display	63	PWR_DISP	3.84 V	29.75	29.75
	53	eMMC_1P8 [LDO,L5,SUB SMPS,S4]	1.79 V	0.9	0.53
	129	LCD1_MIPI [LDO,L6,SUB SMPS,S4]	1.77 V	20.23	11.84
Touch	60	Cap TS_2P85 [LDO,L17]	2.84 V	0.86	0.86
Touch	25	Cap TS_1P8 [LDO,L6,SUB SMPS,S4]	1.78 V	1.04	0.61
LCD		22 110			134.19
	3	S1_OUTPUT [MSS, SMPS,S1]	1.00 V	3.79	1.1
	8	S2_OUTPUT [CX, GFX, MDSP, CDC, SMPS, S 2]	1.24 V	687.47	267.57

MTP

	RCM channel	Regulator	Volts	I (mA)	Cal battery @ 4v (mA)
	35	PWR_WLED	3.85 V	89.97	89.97
	36	PWR_HRLED	3.87 V	0	0
Display	63	PWR_DISP	3.85 V	29.75	29.75
	53	eMMC_1P8 [LDO,L5,SUB SMPS,S4]	1.79 V	0.08	0.04
	129	LCD1_MIPI [LDO,L6,SUB SMPS,S4]	1.77 V	20.29	11.86
Touch	25	Cap TS_1P8 [LDO,L6,SUB SMPS,S4]	1.78 V	0.72 mA	0.42
Touch	60	Cap TS_2P85 [LDO,L17]	2.84 V	0.64 mA	0.64
LCD					132.68
	3	S1_OUTPUT [MSS, SMPS,S1]	0.99 V	0.27	0.14
	8	S2_OUTPUT [CX, GFX, MDSP, CDC, SMPS, S2]	1.23 V	640.02	242.64

Debugging Approach

Checking Point for Multimedia Use Case

No.	Use case	Checking point		
1	MP3 Playback	 Any customized audio post-processing to improve audio-quality Audio off-load/Non off-load mode Need to make sure LPASS bandwidth voting CPU, BIMC clocks 		
2	Camera	 Make sure what customization or enhancement made for camera features on top of QTI default camera implementation Power impact by camera features (ZSL, FD, AF, HDR, AWB) Panel type (Video mode/Command mode) Software setting (Mime-type, resolution, fps, scaling, etc.) hardware setting (VFE (single, dual), sensor size, OIS, etc.) 		
3	Video	 Panel type (Video mode/Command mode) Display resolution DDR (RAM size) LCD/LED/AMOLED panel Audio Off-load/Non off-load mode Video core clock (Venus) 		
4	Static Image Display	 Panel type (Video mode/Command mode) Display resolution DDR (RAM size) LCD/LED/AMOLED panel XO shutdown/VDDmin Idle PC check Baseline power is high/current consumption is high because of frequent wakeup 		
5	Graphics	 Panel type (Video mode/Command mode) Display resolution DDR (RAM size) LCD/LED/AMOLED panel Check number of layers Composition is done by MDP or GPU Check GPU, BIMC, CPU clocks 		

Video Playback Use Case

No.	STEP	Reference
1	Compare the power of your device with the QTI reference power data.	 MSM8994 Linux Android Current Consumption Data (80-NJ051-7) MSM8936/MSM8939 Linux Android Current Consumption Data (80-NM683-7)
2	Capture the full breakdown and compare it with the video playback breakdown.	
3	Identify which power rail is higher than the QTI power data and determine what subsystems are using it.	
4	Capture a clock dump to analyze the subsystems.	Trace 32 Systrace ADB command
5	Compare the captured data with the video playback clock plan to determine which clock is high.	
5-1	If CPU clock is high, capture CPU-related information by PowerTop and top.	
5-1-1	Determine which process is consuming the most CPU usage and look for any processes that should not be running and interrupt. If there is unexpected process or thread, talk with the correct engineer for the process or thread. If there is no unexpected process or thread, look into the high CPU usage process or thread using perf top. If you find out the module with high usage rate by perf top, talk with the proper engineer. If there is unexpected interrupt, check the pytime chart to find out the source of the interrupt. If there is no special thing, you need to tune the CPU clock by scaling_min_freq or the parameters of interactive governor.	
5-2	If MDP clock is high, capture the SurfaceFlinger information by dumpsys and compare with MTP. Compare the clock voting in the d/msm-bus-dbg/client-data/mdss_mdp path with the MTP.	adb shell dumpsys SurfaceFlinger adb shell cat /d/ msm-bus-dbg/ client-data/ mdss_mdp
5-3	If other clock is high, file a case with the debugging information Clock dump, Waveform, PowerTop, top, Systrace data, power rail breakdown data.	

MP3 Playback Use Case

No.	Step	Reference
1	Compare the power of your device with the QTI reference power data.	 MSM8994 Linux Android Current Consumption Data (80-NJ051-7) MSM8936/MSM8939 Linux Android Current Consumption Data (80-NM683-7)
2	We recommend the use of Tunnel mode. If Tunnel mode playback is not working, it will result in high current consumption. To identify if Tunnel mode playback is enabled, use the command adb logcat > c:\ <your directory="">\logcat.txt. If you can see the following log, Tunnel mode is not enabled. D/AudioPolicyManager(227): copl: offload disabled by audio.offload.disable=1 In this case, you can enable Tunnel mode using the following command. adb pull /system/build.prop <your directory="" name="" on="" pc=""> Add audio.offload.disable=0 to the build.prop file adb push <yourdirectory name="" on="" pc="">\build.prop /system Even though you enable the offload, you may not play in offload because of offload minimum duration. It has to be less than total duration time. Please check the current value by the command below. adb shell getprop audio.offload.min.duration.secs You can set the duration by the command below. adb shell setprop audio.offload.min.duration.secs xx (seconds)</yourdirectory></your></your>	
3	Check your waveform and look for frequent wakeups or a high baseline current.	
3-1	If frequent wakeups, frequent interrupts can prevent a device from going into idle power collapse. To debug this further, debug logs such as PowerTop, Top, Ftrace, and interrupts are necessary.	Refer to Power Tools
3-2	If high baseline current, capture the full breakdown and compare it with the mp3 breakdown. Determine if a major power rail, e.g., CX, MX, DDR, or CPU, is consuming more current than the reference mp3 breakdown. Check the MX and CX voltage levels. If DDR/MX is consuming more current, read-write or extra logging may be occurring. Using the clock dump, determine if the level of clocks is too high, e.g., if the MSS Q6 clock is running higher than expected, bump up the digital core voltage (VDDCX) to the next voltage level, which will result in high current consumption. Determine if any extra audio postprocessing is enabled. This results in an increase in CX voltage and hence an increase in the baseline current. Extra audio postprocessing also results in a higher Q6 core clock frequency. Disable audio postprocessing and rerun the test.	 MSM8994 Linux Android Current Consumption Data (80-NJ051-7) MSM8936/MSM8939 Linux Android Current Consumption Data (80-NM683-7)
4	If mp3 power issues are still unresolved, file a case with the debugging information Waveform, PowerTop, Top, Ftrace, captured power rail breakdown, clock dump	

Camera Use Case

No.	Step	Reference
1	Need to check the camera-related new feature with internal engineer first. Compare the power of your device with the QTI reference power data.	 MSM8994 Linux Android
2	Differences in hardware and software configuration will result in a difference in power. File a case if your device configuration is different from the QTI reference.	Current Consumption
3	If your device configuration is the same as the QTI reference and you still see a power difference, capture the rail level breakdown and compare it against QTI reference breakdown available in the document of the reference column. If there is no data for the breakdown, you can file a case and request the data. Check which rail the major power delta is coming from, e.g., CPU, CX (digital core), or DDR.	Data (80-NJ051-7) • MSM8936/MS
3-1	CPU power is high. Compare the interactive governor, CPU-related parameters (Thread migration setting, CPU Bus DCVS) from your target and the QTI default parameters. Determine if any software algorithm changes have been made, e.g., the 3A (AF, AEC, AWB) algorithm, as modification of software algorithms will result in a power difference. Capture CPU-related information by PowerTop and Top. Determine which process is consuming the most CPU usage and look for any processes that should not be running and interrupt. If there is unexpected process or thread, talk with the correct engineer for the process or thread. If there is no unexpected process or thread, look into the high CPU usage process or thread using Perftop. If you find out the module with high usage rate by Perftop, talk with the proper engineer. If there is unexpected interrupt, check the pytime chart to find out the source of interrupt. If there is no special thing, tune the CPU clock by scaling_min_freq or the parameters of the interactive governor.	M8939 Linux Android Current Consumption Data (80-NM683-7)
3-2	Digital core power is high. Compare the CX rail voltage and current with the QTI reference rail level breakdown data available for the 1080p encode use case in the document of the reference column. Capture the clock dump and ensure all major clocks are aligned with the reference clock plan. Clock dumps can be captured via JTAG, adb command, or systrace. If any of the clocks are relatively high, file a case and attach the clock dump. Capture dumpsys SurfaceFlinger logs to determine the number of hardware layers and the composition type used.	
4	If power is still high, file a case and provide the hardware specification, software algorithm changes compared to QTI. Debug logs (PowerTop, Top, systrace, Ftrace, clock dump, rail level power breakdown, etc.).	

Graphics Use Case

No.	Step	Reference
1	Compare the power of your device with the QTI reference power data.	 MSM8994 Linux Android Current Consumption Data (80-NJ051-7) MSM8936/MSM8939 Linux Android Current Consumption Data (80-NM683-7)
2	Capture a clock dump and ensure all major clocks are aligned with the QTI clock plan in the document of the reference column. Clock dumps can be captured via JTAG, ADB command, or systrace. Note: When comparing device measurements with the QTI measurements, take into account hardware factors, e.g., display size, display type, and DDR, that may potentially impact graphics power consumption. File a case if your device configuration is different from QTI's reference device.	 MSM8994 Windows Phone Modem/Multimedia Use Case Component-Level Power Breakdown and Clk Plan Details (80-NM328-701) MSM8994 Modem/Multimedia Use Case Details (80-NM328-704) MSM8936/MSM8939 Clock Plan (80-NM846-3)
3	Check the following properties under the /system/build.prop file. Alternatively, use the adb getprop command as shown below. Modification of the two following parameters as compared to the QTI reference device can result in high current consumption. Composition type – adb shell getprop grep debug.composition.type Composition bypass enable/disable – adb shell getprop grep persist.hwc.mdpcomp	
4	Use the ADB command adb shell cat /proc/interrupts grep kgsl to check the QTI Adreno Kernel Driver (KGSL) interrupts count. While running the use case, print it for multiple instances and get the difference.	
5	Check the number of hardware layers. While capturing dumpsys, ensure that none of the layers are being updated. If the status bar is being updated because of USB charging, the wrong information will be seen. To avoid this, run the command in the background after a device sleep of 10 to 15 sec using adb shell dumpsys SurfaceFlinger.	
6	GPU clock capture. Get the following data while running the use case with the following ADB command and compare it with QTI reference data. adb shell cat /sys/kernel/debug/clk/oxili_gfx3d_clk/measure	
7	Check each GPU parameter using the following ADB command, i.e., gpu_available_frequencies, idle_timer, gpubusy, gputop, gpu governor, etc. adb shell cat /sys/class/kgsl/kgsl-3d0/< parameters as mentioned above >	
8	Check and compare GPU power level under file chipsetname-gpu.dtsi. Modifying this can result in high GPU frequency, which can result in high power consumption.	
9	If power is still high, file a case and provide the debugging information (Top, SurfaceFlinger, systrace, clock dump)	

Static Image Use Case

No.	Step	Reference
1	Compare the power of your device with the QTI reference power data in the document of reference column.	MSM8994 Linux Android Current
2	Check the following properties under the /system/build.prop file. Alternatively, use the adb getprop command as shown below. Modification of the two following parameters as compared to the QTI reference device can result in high current consumption. Composition type – adb shell getprop grep debug.composition.type Composition bypass enable/disable – adb shell getprop grep persist.hwc.mdpcomp	Consumption Data (80-NJ051-7) MSM8936/MSM893 9 Linux Android Current
3	Use the ADB command adb shell cat /proc/interrupts grep kgsl to check the QTI Adreno Kernel Driver (KGSL) interrupts count. While running the use case, print it for multiple instances for a 10-sec period and get the difference. KGSL interrupts should not increase if the device is idle and there is no UI update.	Consumption Data (80-NM683-7)
4	In the case of the static image display use case, check the number of layers and compare with QTI reference data. To check the number of hardware layers while capturing dumpsys SurfaceFlinger logs, ensure that none of the layers are being updated. adb shell dumpsys SurfaceFlinger	
5	If the static image display current consumption is still high after the above checks, this is due either to frequent wakeups or high baseline current. Check for both conditions.	
6	If frequent wakeups, frequent interrupts can prevent a device from going into idle power collapse. To debug this further, debug logs such as PowerTop, Top, msmpmstats, Ftrace, and interrupts are necessary.	
7	High base current. Baseline power can be high because of many reasons, e.g., the CPU not going to idle power collapse. To determine why baseline current is high, capture a clock dump and ensure all the major clocks are aligned with the reference clock plan. Capture the full breakdown and compare with the static image display use case breakdown in the document of reference column. Check whether a major power rail, e.g., CX, MX, DDR, or CPU, is consuming more current. Also, check MX and CX voltage level. Increased DDR/MX current consumption may be due to increased read/writes or to extra logging that is occurring in the background. You need to check xo shutdown and Vdd min also.	
8	If power is still high, file a case and provide the debugging information (Top, SurfaceFlinger, systrace, clock dump)	

Filing a Power Case

- If the suggested debugging methodologies and case studies do not resolve the issue, file a case with the following information:
 - Problem description
 - Details of the use case if different from QTI standard use case
 - Steps to reproduce the issue
 - All information about the debugging performed up until point of filing the case
 - Logs suggested in debugging:

 - PowerTop
 - Rail level breakdown
 - Clock dump
 - SurfaceFlinger
 - **Ftrace**
 - **Systrace**
 - Waveforms
 - NPA dumps
 - Any other logs captured

Tuning Parameters

Locating Tuning Parameters

VDD APC/VDD CX/VDD GFX Interactive governor parameters **Thread migration parameters** above_hispeed_delay, go_hispeed_load, **CPU** target_loads, timer_rate, hispeed_freq, scaling_min_freq, min_sample_time, sampling down factor, sync threashold, io_percent **GPU** init clock **GPU** Idle timer **Fudge factor MDP** Mdpcomp.idletime BIMC min lock **BIMC** Static mapping with GPU clock and BIMC clock

Confidential and Proprietary - Qualcomm Technologies, Inc.

PAGE 42

Tools for Analyzing Tuning Parameters

Tuning Parameters

System	Parameter	Example	Description	Impact
	Init clock (Init level)	3 (300 MHz) 4 (240 MHz)	Initial clock of GPU /sys/class/kgsl/kgsl-3d0/default_pwrlevel (* not all chipsets support this sysfs node)	In dependent upon use case, can see power saving.
GPU	Idle_timer	80 ms	Interval to go to Slumber state from Idle state /sys/class/kgsl/kgsl-3d0/idle_timer	In dependent upon use case, can see power saving. * Need performance and stability verification on this change.
ВІМС	min_freq	1575	Minimum frequency of BIMC /sys/class/devfreq/0.qcom,cpubw/min_freq	Need performance verification on this change
	Fudge_factor	AB 2 1 IB 6 5	Extra margin for MDP AB and IB voting /kernel/arch/arm/boot/dts/chipset-mdss.dtsi	Need to make sure MDP underrun with this change.
MDP	debug.mdpcomp. idletime	70 ms	 This is valid only for Video mode panel This one will decide when to fallback to GPU composition from MDP composition in case there is no updated layer for composition adb shell setprop debug.mdpcomp.idletime 80 	In general, the longer idle time will cause more power, and shorter idle time will impact performance degradation

Tuning Parameters (cont.)

System	Parameter	Example	Description	Impact
	above_hispeed_ delay	20000 1400000:40000 1700000:20000	This is a waiting time for specific frequency; uses delay 20 ms until 1.4 GHz, 40 ms between 1.4 GHz and 1.7 GHz, 20 ms above 1.7 GHz /sys/devices/system/cpu/cpufreq/interactive/ above_hispeed_delay	May impact performance. Performance verification is required on this
	go_hispeed_ load	90	The CPU load at which to jump to hispeed_freq /sys/devices/system/cpu/cpufreq/interactive/ go_hispeed_load	change.
CPU	target_loads	85 1500000:90 1800000:95	We can adjust the load by CPU frequency; target CPU load is 85% below speed 1.5 GHz, target CPU load is 90% between 1.5 GHz and 1.8 GHz, target CPU load is 95% over 1.8 GHz /sys/devices/system/cpu/cpufreq/interactive/ target_loads	
	timer_rate	20000	This is sampling time; CPU load or frequency is calculated per every timer_rate /sys/devices/system/cpu/cpufreq/interactive/ timer_rate	
	tispeed_freq	1497600	When CPU load goes over go_hisped_load, CPU frequency will be set to hispeed_freq /sys/devices/system/cpu/cpufreq/interactive/ hispeed_freq	
	scaling_min_ freq	-1	Minimum frequency of CPU /sys/devices/system/cpu/cpufreq/interactive/ scaling_min_freq	

PAGE 45

Tuning Parameters (cont.)

System	Parameter	Example	Description	Impact
	min_sample_time	80000	The minimum amount of time to spend at the current frequency before ramping down /sys/devices/system/cpu/cpufreq/interactive/min_sample_time	May impact performance. Performance verification is
	sampling_ down_factor	100000	min_sample_time at max frequency /sys/devices/system/cpu/cpufreq/interactive/sampling_ down_factor	required on this change.
CPU	sync_ threashold	88300	sync_threshold determines the frequency of the destination core when a thread migrates from a source core to the destination core; if the source core frequency is higher than the sync_threshold, the destination core frequency will be ramped up to the sync_threshold frequency; if the source core frequency is lower than the sync_threshold, the destination core frequency will match the source core frequency /sys/module/cpu_boost/parameters/sync_threshold	
	lo_percent	16	The percentage of the CPU time that can be spent waiting on memory I/O /sys/class/devfreq/0.qcom,cpubw/cpubw_hwmon/io_percent	

Camera Use Case

Camera Software Architecture - MSM8084

ISP Hardware and MSM8084 Camera Data Flow

Define Problem

Problem area	Modules	OEM dependency	Debugging tool kit
Camera app issue	OEM APK	OEM application	 Check enabled-camera app options TOP and PowerTOP analysis CPU residency SurfaceFlinger dump Systrace analysis
Multimedia framework	mediaserver and OEM software codec (audio)	OEM can use their own software codec (audio)	 TOP and PowerTOP analysis CPU residency SurfaceFlinger dump Systrace analysis SPV analysis
3A/ISP/AFD/FD issue	mm-qcamera-daemon and third-party algorithm library	OEM can use third-party algorithms	 Check enabled-processing modules TOP and PowerTOP analysis CPU residency Check hardware IRQ Bus voting analysis Perf analysis Check DSP clock for FD
ISP hardware	QTIC ISP module/ kernel events and third-party external ISP	OEM can use third-party external ISP	 Powertop-check HW IRQ @ 30 fps Check hardware system clock Ftrace analysis Power rail breakdown

Case 1 – Camera Application Issue – Recording

 OEM camera application is using RGB format for their own image processing on every frame. In addition, YUV to RGB conversion should be done by GPU.

```
OEM using RGB format
Ctrl id=64 z=0 fg=0 alpha=255 mask=-1 flags=0x44200 H.Deci=0,V.Deci=0
    src w=1664 h=2560 format=13 MDP RGBA 8888
    src_rect x=0 y=0 w=720 h=2560
    dst_rect x=0 y=0 w=720 h=2560
Data id=64
    data offset=0 memid=40 id=0 flags=0x0
Display=0
Ctrl id=128 z=0 fg=0 alpha=255 mask=-1 flags=0x44300 H.Deci=0, V.Deci=0
    src w=1440 h=2560 format=13 MDP_RGBA_8888
    src_rect x=720 y=0 w=720 h=2560
    dst_rect x=0 y=0 w=720 h=2560
Data id=128
    data offset=0 memid=40 id=0 flags=0x0
Display=0
Pipes=2
                                                                                                                     Normal case
Ctrl id=64 z=0 fg=0 alpha=255 mask=-1 flags=0x44200 H.Deci=0,V.Deci=0
    src w=1664 h=2560 format=13 MDP RGBA 8888
    src_rect x=0 y=0 w=720 h=2560
     dst_rect x=0 y=0 w=720 h=2560
Data id=64
     data offset=0 memid=40 id=0 flags=0x0
Display=0
Ctrl id=128 z=0 fg=0 alpha=255 mask=-1 flags=0x44300 H.Deci=0, V.Deci=0
    src w=1440 h=2560 format=13 MDP_Y_CRCB_H2V
    src rect x=720 v=0 w=720 h=2560
    dst_rect x=0 y=0 w=720 h=2560
Data id=128
    data offset=0 memid=40 id=0 flags=0x0
Display=0
Pipes=2
```

Case 1 – Camera Application Issue

 There are more GPU-related interrupts on customer device than MTP during camera scenario.

Confidential and Proprietary - Qualcomm Technologies, Inc.

MTP

```
Top causes for wakeups:
 41.0% (826.2)
                  <interrupt> : arch_timer
 14.0% (289.5)
                  <interrupt> : cci
 13.0% (262.3)
                  <interrupt> : qcom,smd-adsp
 10.0% (199.4)
                  <interrupt> : arch mem timer
 7.0% (138.2)
                  <interrupt> : vfe
 5.0% (101.4)
                  <interrupt> : msm vidc
 3.0% (58.9)
                 <interrupt> : qcom,smd-rpm
 3.0% (56.1)
                 <interrupt> : cpp
 1.0% (29.2)
                 <interrupt> : MDSS
 1.0% (27.5)
                 <interrupt> : ispif
 1.0% (11.6)
                 <interrupt> : mmc0
 1.0% (10.7)
                 <interrupt> : cpubw hwmon
                 <interrupt> : kgsl-3d0
 0.0% (3.6)
```

Customer device

```
Top causes for wakeups:
 37.9% (764.4)
                  <interrupt> : arch timer
 14.9% (300.2)
                  <interrupt> : cci
 14.1% (283.8)
                  <interrupt> : qcom,smd-adsp
 10.4% (208.8)
                  <interrupt> : arch mem timer
 6.1% (122.2)
                  <interrupt> : vfe
 5.2% (103.8)
                  <interrupt> : msm vidc
 3.0% (60.2)
                 <interrupt> : gcom,smd-rpm
 2.9% (58.8)
                 <interrupt> : cpp
 1.6% (31.4)
                 <interrupt> : MDSS
 1.5% ( 29.6)
                 <interrupt> : kgsl-3d0
                 <interrupt> : ispif
 1.5% ( 29.4)
 0.6% (11.6)
                 <interrupt> : cpubw_hwmon
 0.5% (10.4)
                 <interrupt> : mmc0
```

Case 1 – Camera Application Issue (cont.)

- Com.xxx.camera is calling eglSwapBuffers on every frame.
- We expected to update timer area, but every frame is updated in RGB.

Case 2 – Camera 3A Algorithm Issue

- KRAIT power rail on Device B is more higher than Device A.
- We need to check KRAIT power rail.

Device A		Input voltage	Input current	Vbat
	VDD_MEM	0.965	185.04	46.261
	VDD_EBI0_PLL	0.965	16.77	4.05
	VDD_CORE	0.933	814.78	190.0
	VDD_PLL1	0.933	58.04	13.54
AP	VDD_MIPI_CSI_ 1V8	1.799	6.13	2.76
	VDD_DDR_ CORE_1P2	1.227	162.26	49.78
	KRAIT	0.842	247.04	52.00

	Device B	Input voltage	Input current	Vbat
3280	VDD_MEM VDD_EBI0_PLL	1.01	204.03	51.5176
OM	VDD_CORE	1.03	760.98	195.01
АР	VDD_PLL1 VDD_MIPI_CSI_ 1V8	1.79	34	15.22
	VDD_DDR_ CORE_1P2	1.22	171.26	52.38
	KRAIT	0.84	370.16	77.86

Case 2 – Camera 3A Algorithm Issue (cont.)

 Based on perf profiling information, mm-qcamera-daemon working heavily in Device B (over 10%) compared to Device A (5%) and AWB/AE working in the thread as shown below.

TOP profiling On Device A	PID TID PR CPU% S VSS RSS PCY UID Thread Proc 440 16055 0 5% S 161408K 10868K camera mm-qcamera-daem /system/bin/mm-qcamera-daemon 15413 15413 1 4% S 1094956K 111264K fg u0_a17 com.xxx.camera com.xxx.camera 440 15579 1 2% S 161408K 10868K camera mm-qcamera-daem /system/bin/mm-qcamera-daemon 294 16077 1 2% S 292112K 22440K fg media VideoEncMsgThre /system/bin/mediaserver 16124 16124 3 1% R 2016K 1172K root top top 290 290 1 1% S 174600K 11312K fg system surfaceflinger /system/bin/surfaceflinger 440 15458 0 1% S 161408K 10868K camera mm-qcamera-daem /system/bin/mm-qcamera-daemon 440 15581 0 1% S 161408K 10868K camera mm-qcamera-daem /system/bin/mm-qcamera-daemon 294 16062 0 0% S 292112K 22440K fg media Binder_2 /system/bin/mediaserver 1455 1458 3 0% S 3816K 584K media_rw sdcard /system/bin/sdcard 440 16056 0 0% S 161408K 10868K camera mm-qcamera-daem /system/bin/mm-qcamera-daemon 294 16064 2 0% S 292112K 22440K fg media Binder_2 /system/bin/mediaserver 429 691 0 0% S 30888K 1324K nobody sensors.qcom /system/bin/sensors.qcom
Perf analysis On Device A	PerfTop: 134 irqs/sec kernel:10.4% exact: 0.0% [1000Hz cycles], (target_tid: 16055) 17.68% libXXXisLib.so [.]udivsi3 17.40% libXXXisLib.so [.]udivsi3 13.21% libmmcamera2_stats_modules.so [.] ais_convert_stats_awb_data 12.54% libmmcamera2_stats_modules.so [.] ais_convert_stats_ae_data_gb 7.98% libXXXisLib.so [.] AlFixMul 5.06% libmmcamera2_stats_modules.so [.] backlight_detect_by_CTO 3.65% libmmcamera2_stats_modules.so [.] ais_process_core 2.52% libXXXisLib.so [.] 0x000137f4 2.23% libXXXisLib.so [.]divdi3 2.17% [kernel] [k]raw_spin_unlock_irqrestore 1.91% libmmcamera2_stats_modules.so [.] ais_resize_stats_awb_data 1.76% libc.so [.]udivsi3 1.71% libmmcamera2_stats_modules.so [.] 0x00005ce2 1.25% libXXXisLib.so [.] XXXwbSetBlockLineStatistics 1.14% libc.so [.]memcpy_base

Confidential and Proprietary – Qualcomm Technologies, Inc.

Case 2 – Camera 3A Algorithm Issue (cont.)

TOP profiling on Device B	PID TID PR CPU% S VSS RSS PCY UID Thread Proc 491 21404 0 10% S 397344K 85100K camera mm-qcamera-daem /system/bin/mm-qcamera-daemon 21711 21711 1 4% R 2124K 1160K root top top 491 21255 0 4% S 397344K 85100K camera mm-qcamera-daem /system/bin/mm-qcamera-daemon 6313 6313 2 4% S 1101420K 114148K fg u0_a16 com.xxx.camera com.xxx.camera 491 21286 3 3% S 397344K 85100K camera mm-qcamera-daem /system/bin/mm-qcamera-daemon 491 21247 2 2% S 397344K 85100K camera mm-qcamera-daem /system/bin/mm-qcamera-daemon 338 21411 3 1% S 439564K 20252K fg media mm_cam_poll_th /system/bin/surfaceflinger 487 510 3 1% S 3848K 740K media_rw sdcard /system/bin/sdcard 491 21241 3 1% S 397344K 85100K camera mm-qcamera-daem /system/bin/mm-qcamera-daemon 487 509 3 1% S 3848K 740K media_rw sdcard /system/bin/sdcard 574 627 0 0% S 40180K 1364K nobody sensors.qcom /system/bin/sensors.qcom 338 21413 3 0% S 439564K 20252K fg media Binder_3 /system/bin/mediaserver 338 21412 3 0% S 439564K 20252K fg media Binder_3 /system/bin/mediaserver 4545 4545 2 0% S 1884K 1208K bg system logcat logcat 12280 12280 2 0% S 0K 0K root kworker/u8:24
Perf analysis on Device B PerfTop: 306 irqs/sec kernel: 5.9% exact: 0.0% [1000Hz cycles], (target_tid: 21404) 24.95% libmmcamera2_stats_algorithm.so [.] 0x0001908c 24.77% libmmcamera2_stats_algorithm.so [.] 0x0001908c 21.82% libc.so [.]udivsi3 11.08% libmmcamera2_stats_algorithm.so [.] awb_bayer_algo_execute 10.91% libmmcamera2_stats_algorithm.so [.] aec_process 3.39% libc.so [.]memcpy_base 3.14% libmmcamera2_stats_algorithm.so [.] awb_bayer_illuminant_probability 3.08% libc.so [.]udivdi3 1.95% [kernel] [k] _raw_spin_unlock_irqrestore 1.56% libc.so [.]aeabi_uidivmod 1.49% libc.so [.]aeabi_uidivmod 1.49% libc.so [.] 0x00029ac2 1.20% libmmcamera2_stats_algorithm.so [.] awb_process_pack_output 1.12% libc.so [.]vfprintf	

Case 3 – MDP Bus Voting Issue

 TOP/PowerTOP analysis, Krait CPU clock speed in Device B seem to be higher than Device A and qcom, smd-rpm event happens more frequently in Device B.

	Device A	Device B
PowerTOP P-states (frequencies)	300 Mhz	300 Mhz
PowerTOP Top causes for wakeups	47.9% (1061.4)	47.9% (1111.8) <interrupt> : arch_timer 8.9% (206.2) <interrupt> : vfe 7.8% (180.2) <interrupt> : cci 5.5% (126.8) <interrupt> : dcom,smd-rpm 5.3% (122.2) <interrupt> : MDSS 4.8% (110.4) <interrupt> : msm_vidc 4.6% (106.0) <interrupt> : gp23000.spi 2.6% (60.2) <interrupt> : cpp 2.2% (50.4) <interrupt> : gcom,smd-adsp 1.5% (35.2) <interrupt> : msmgpio 1.3% (30.2) <interrupt> : companion 1.3% (30.2) <interrupt> : sps 1.3% (30.2) <interrupt> : ispif 0.5% (11.0) <interrupt> : gp927000.spi 0.3% (6.8) <interrupt> : cpubw_hwmon 0.2% (5.2) <interrupt> : SSP_Int 0.1% (2.6) <interrupt> : mmc0</interrupt></interrupt></interrupt></interrupt></interrupt></interrupt></interrupt></interrupt></interrupt></interrupt></interrupt></interrupt></interrupt></interrupt></interrupt></interrupt></interrupt>

Confidential and Proprietary – Qualcomm Technologies, Inc.

PAGE 57

Case 3 – MDP Bus Voting Issue (cont.)

Ftrace analysis of Device A

Case 3 – MDP Bus Voting Issue (cont.)

Ftrace analysis of Device B

kworker/0:1-18236 [000] ...1 8870.435425: bus_update_request: time= 8870.400527553 name=mdss_mdp index=1 src=22 dest=512 ab=373248000 ib=373248000 kworker/0:1-18236 [000] ...1 8870.435428: bus_update_request: time= 8870.400527553 name=mdss_mdp index=1 src=23 dest=512 ab=373248000 ib=373248000

Case 3 – MDP Bus Voting Issue (cont.)

 MDSS bus voting during camera preview/video decording, mdss_mdp bus voting value frequently changes only in Device B

Case 4 – Venus Bus Voting Issue

- Camera recording current increased by around 100 mA
- TEST scenario 1080p single 16 M rear camera Recording→Pause→Recording (Resume)

Case 4 – Venus Bus Voting Issue (cont.)

• We can see venc-ocmem is voting higher and it makes higher mmssnoc clock (Turbo level).

Scenario	Profiling information				
Start	CPU0 CPU1 CPU2 CPU3 bimc mmss_mmssnoc_axi venus0_vcodec0 oxili_gtx3d msm_camera_isp(masters/slaves/ab/ib) venc-ocmem(masters/slaves/ab/ib)				
camera preview	2457600 2457600 2457600 2457600 82560036 150001254 0 300002398 29/512/450000000 / 675000000 68/604/0/0 652800 1190400 300000 883200 825596887 333428640 0 0 29/512/3728813024/5209219536 68/604/0/0 1497600 300000 1190400 729600 825596887 333429885 0 0 29/512/3728813024/5209219536 68/604/0/0 652800 1190400 300000 652800 825606261 333429985 0 0 29/512/3728813024/5209219536 68/604/0/0 652800 1190400 652800 652800 3834002966 333429885 0 0 29/512/3728813024/5209219536 68/604/0/0 652800 652800 1497600 652800 383498571 333427395 0 0 29/512/3728813024/5209219536 68/604/0/0 652800 652800 652800 652800 652800 652800 652800 652800 652800 652800 652800 652800 3834029885 0 0 29/512/3728813024/5209219536 68/604/0/0 652800 652800 652800 652800 652800 383402036 333427322 0 0 29/512/3728813024/5209219536 68/604/0/0 652800 2457600 245				
Start	CPU0 CPU1 CPU2 CPU3 bimc mmss_mmssnoc_axi venus0_vcodec0 oxili_gfx3d msm_camera_isp(masters/slaves/ab/ib) venc-ocmem(masters/slaves/ab/ib)				
first camera recording then pause	2457600 2457600 2457600 2457600 2457600 307198938 33429585 133333394 75000718 29 /512 / 2860000000 / 390600000 68 /604 / 940000000 / 1034000000 729600 625800 422400 300000 307702483 333428640 133333467 75000425 29 /512 / 2860000000 / 390600000 68 /604 / 940000000 / 1034000000 119400 422400 1497600 652800 307702483 333431204 133333467 75000425 29 /512 / 2860000000 / 390600000 68 /604 / 940000000 / 1034000000 652800 320000 652800 320000 652800 422400 307198938 333431204 33333467 75000425 29 /512 / 2860000000 / 3906000000 68 /604 / 940000000 / 1034000000 652800 422400 1038600 652800 422400 1038600 652800 422400 1038600 652800 422400 1038600 652800 422400 1038600 652800 422400 1038600 652800 422400 1038600 652800 422400 1038600 652800 422400 1038600 622800 422400 1038600 622800 422400 1038600 622800 422400 1038600 1038				

Confidential and Proprietary - Qualcomm Technologies, Inc.

Case 4 – Venus Bus Voting Issue (cont.)

Venus bus voting algorithm was changed properly when client votes.

Scenario	Profiling information				
Second camera	CPU0 CPU1 CPU2 CPU3 bimc mmss_mmssnoc_axi venus0_vcodec0 oxili_gfx3d msm_camera_isp(masters/slaves/ab/ib) venc-ocmem(masters/slaves/ab/ib)				
ecording					
hen pause	1497600 300000 1036800 422400 383998571				
	729600 422400 1036800 1497600 384001501 333427395 133334419 200001611 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	652800 1036800 1190400 729600 383998645 333431204 133333467 200000073 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	1190400 1036800 300000 300000 384002966 333431204 133334419 200000878 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	652800 652800 1036800 300000 384001501 333431130 133334492 199999340 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	729600 300000 652800 300000 384000036 333427395 133333467 200000073 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	652800 652800 300000 300000 384001501 333427322 133333907 200000878 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	1190400 1267200 652800 1036800 384000036 333431204 133334419 300002398 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	729600 1036800 422400 422400 384002966 333427395 0 300000054 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	1036800 1036800 652800 422400 384002966 333431130 133333907 300000054 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	1190400 422400 1036800 300000 384001501 333429959 0 200001611 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	960000 1036800 1036800 300000 383998571 333428640 133333907 199999340 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	652800 652800 1497600 422400 384002966 333431204 0 200001611 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	652800 883200 422400 652800 384002966 333429885 133332881 199999340 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	652800 422400 422400 652800 383998571 333429959 0 200000878 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	729600 1036800 300000 1728000 691205236 333429885 0 299998883 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	1036800 300000 300000 300000 384001501 333431130 0 200000805 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	729600 422400 300000 300000 384001501 333429885 0 200000073 29 / 512 / 2860000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	1036800 300000 300000 300000 300000 384002966 333431204 0 199999267 29 / 512 / 286000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	652800 300000 1036800 300000 383998571 333429885 0 200001611 29 / 512 / 2860000000 3906000000 68 / 604 / 1880000000				
	1036800 300000 300000 300000 303998571 333428640 0 20000878 29 / 512 / 286000000 / 3906000000 68 / 604 / 1880000000 / 2068000000				
	652800 300000 1497600 1036800 384000036 333429885 0 20000805 29 / 512 / 2860000000 / 3996000000 68 / 604 / 1880000000 / 2068000000				
	729600 300000 1036800 300000 384001501 333427322 0 200000878 29/512/286000000 3906000000 68/604/1880000000				
	1267200 1036800 652800 300000 384000036 333431204 0 200000878 29 / 512 / 2860000000 03 / 604 / 1880000000 2068000000				
	1201200 1030800 1032800 300000 304000030 333431204 0 200000878 29751272860000000 3906000000 10876047180000000 200000000 10876047180000000 10876047180000000 10876047180000000 10876047180000000 10876047180000000 108760471800000000 108760471800000000 108760471800000000 108760471800000000 108760471800000000 108760471800000000 108760471800000000 108760471800000000 108760471800000000 108760471800000000 108760471800000000 1087604718000000000 1087604718000000000 1087604718000000000 10876047180000000000 1087604718000000000 1087604718000000000 1087604718000000000 108760471800000000000000000 108760471800000000000000000000000000000000000				
	652800 300000 1036800 307201281 333421204 0 19200163 297312 / 2860000000 / 3906000000 6876047070 6876047070 6876047070				
	652800 300000 300000 300000 307202453 333429959 0 19200036 29/512/286000000 68/604/0/0 68/604/0/0				
	1190400 1728000 300000 422400 307201281 333427395 0 19200183 29 / 512 / 2860000000 / 3906000000 68 / 604 / 0 / 0				
	652800 1036800 300000 300000 307202453 333428640 0 19200183 29 / 512 / 2860000000 / 396000000 68 / 604 / 0 / 0				
	652800 300000 883200 1036800 307201281 333427395 0 19200256 29 / 512 / 2860000000 68 / 604 / 0 / 0				
	[652800 1036800 422400 300000 307202380 333431130 0 19200109 29 / 512 / 2860000000 / 3906000000 68 / 604 / 0 / 0				
	1190400 300000 300000 960000 307198864 333427322 0 19200036 29 / 512 / 2860000000 / 3906000000 68 / 604 / 0 / 0				
	1036800 1036800 1036800 300000 307200036 333428640 0 19200036 29 / 512 / 2860000000 / 3906000000 68 / 604 / 0 / 0				
nird camera	CPU0 CPU1 CPU2 CPU3 bimc mmss_mmssnoc_axi venus0_vcodec0 oxili_gfx3d msm_camera_isp(masters/slaves/ab/ib) venc-ocmem(masters/slaves/ab/ib)				
cording					
	652800 422400 300000 1036800 <mark>460798278</mark> 399998498 133332954 299998883 29 / 512 / 2860000000 / 3906000000 68 / 604 / 4468000000 / 2457000000				
	729600 1497600 422400 652800 460803552 400000036 133332881 200001611 29 / 512 / 2860000000 / 3906000000 68 / 604 / 4468000000 / 2457000000				
	[652800 1036800 1036800 422400 460798278 400001574 133333980 200000878 29 / 512 / 2860000000 / 3906000000 68 / 604 / 4468000000 / 2457000000				
	[652800 300000 652800 300000 460803552 400003112 133333907 199999267 29 / 512 / 2860000000 / 3906000000 68 / 604 / 4468000000 / 2457000000				
	[652800 300000 300000 652800 460803552 399998571 133334492 200000805 29 / 512 / 2860000000 / 3906000000 68 / 604 / 4468000000 / 2457000000				
	883200 1036800 883200 300000 460803552				
	1497600 300000 1497600 1190400 460803552 399998498 133334492 199999340 29 / 512 / 2860000000 / 3906000000 68 / 604 / 4468000000 / 2457000000				
	652800 729600 300000 300000 460803552 400001574 133334419 200000805 29 / 512 / 2860000000 / 3906000000 68 / 604 / 4468000000 / 2457000000				
	652800 300000 300000 422400 460800036 400000036 133333907 199999340 29 / 512 / 2860000000 / 3906000000 68 / 604 / 4468000000 / 2457000000				
	652800 422400 300000 422400 460803552 400000036 133332954 200001611 29 / 512 / 2860000000 / 3906000000 68 / 604 / 4468000000 / 2457000000				

Filing Cases Related to Issues

- If all the suggested debugging methodologies/case studies do not resolve customer issues, we request them to file a CASE with the following information:
 - Correct chipset AMSS build ID, and Operating System (OS)
 - Initial problem type Software
 - Problem Area 1 Multimedia
 - Problems related to audio, video, graphics, browsing, sensors, etc.
 - Problem Area 2 Power
 - Problem Area 3 Use case specific
 - Audio, video, graphics, browsing, sensors, etc.
 - Problem Description field
 - Detailed information about the problem
 - Details of the use case if different from QTI standard use case
 - Steps to reproduce the issue.
 - All information about the debugging done by customer till that point
 - All logs suggested in debugging
 - Top, PowerTop, Rail level breakdown, Clock dump, SurfaceFlinger, Ftrace, Systrace,
 - Waveforms, NPA dumps, and any other logs captured

References

Document				
Qualcomm Technologies				
Hexagon™ Multimedia: LPASS Bus/Clock/Voltage Control and Debugging for ADSP.BF.2.0, ADSP.BF.2.4	80-NF768-19			
MSM8974 Linux Android™ Power Debugging and Optimization Guide	80-NA157-246			
MSM8994 Linux Android™ Current Consumption Data	80-NJ051-7			
MSM8936/MSM8939 Linux Android™ Current Consumption Data	80-NM683-7			
MSM8994 Windows Phone Modem/Multimedia Use Case Component-Level Power Breakdown and Clk Plan Details	80-NM328-701			
MSM8994 Modem/Multimedia Use Case Details	80-NM328-704			
MSM8936/MSM8939 Clock Plan	80-NM846-3			
Snapdragon™ Performance Visualizer 9.0 User Guide	80-N4717-1			

Acronyms

Term	Definition
PC	Power Collapse
SPC	Standalone Power Collapse
WFI	Wait for Interrupt

Questions?

https://support.cdmatech.com

