

Robustness of quantum algorithms against coherent control errors

International Conference on Data-Integrated Simulation Science

October 6th, 2023

Daniel Fink

Julian

Berberich

joint work with Prof. Christian Holm

Quantum Computing

Nature isn't classical, [...] and if you want to make a simulation of nature, you'd better make it quantum mechanical [...].

- Richard Feynman, 1981

Quantum Computing

Nature isn't classical, [...] and if you want to make a simulation of nature, you'd better make it quantum mechanical [...].

- Richard Feynman, 1981

Quantum Computing

Main problem: current quantum computers are small-scale and noisy

Agenda

computational basis states

computational basis states

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

Bloch Sphere

Quantum Operations

Unitary operator $U: \mathbb{C}^d \to \mathbb{C}^d$, $U|\psi_{in}\rangle = |\psi_{out}\rangle$

 $U = e^{-iH}$, with Hermitian generator $H = H^{\dagger}$

Common gates:

Pauli X (or NOT): |0> -

Pauli X Rotation: $|0\rangle = \frac{RX}{\theta} = \cos \frac{\theta}{2} |0\rangle - i \sin \frac{\theta}{2} |1\rangle$

|1>

Hadamard: $|0\rangle - H - \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

Common gates:

Pauli X (or NOT): $|0\rangle$

Pauli X Rotation:

|0>

$$-\frac{\mathsf{RX}}{\theta} - \cos\frac{\theta}{2}|0\rangle - i\sin\frac{\theta}{2}|1\rangle$$

Hadamard:
$$|0\rangle - H - \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

Common gates:

Pauli X (or NOT): $|0\rangle$ +-- $|1\rangle$

Pauli X Rotation: $|0\rangle = \frac{RX}{\theta} = \cos \frac{\theta}{2} |0\rangle - i \sin \frac{\theta}{2} |1\rangle$

Hadamard: $|0\rangle$ H $-\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

Quantum Measurements

Measurements

Observable $\mathcal{O}: \mathbb{C}^d \to \mathbb{C}^d$, $\mathcal{O} = \mathcal{O}^{\dagger}$

Quantum Algorithms

Quantum Circuits

Running
Quantum
Algorithms

Running Quantum Algorithms

Running Quantum Algorithms

Coherent Control Errors

Coherent Control Errors

Coherent Control Errors

Problem setup

Ideal quantum algorithm

$$|\widehat{\psi}\rangle = \widehat{U}_1 \cdots \widehat{U}_N |\psi_0\rangle$$
 with $\widehat{U}_j = e^{-iH_j}$

- They are related via $|\hat{\psi}\rangle = |\psi(0)\rangle$
- **Assumption:** ε is bounded, i.e., $\|\varepsilon\| \leq \bar{\varepsilon}$

Noisy quantum algorithm

$$|\psi(\varepsilon)\rangle = U_1(\varepsilon_1)\cdots U_N(\varepsilon_N)|\psi_0\rangle$$
 with $U_j(\varepsilon_j) = e^{-i(1+\varepsilon_j)H_j}$ and $\varepsilon_j \in \mathbb{R}$

$$|\psi_0\rangle$$
— $U_N(\varepsilon_N)$ —...— $U_1(\varepsilon_1)$ — $|\psi(\varepsilon)\rangle$

Problem setup

Ideal quantum algorithm

$$|\widehat{\psi}\rangle = \widehat{U}_1 \cdots \widehat{U}_N |\psi_0\rangle$$
 with $\widehat{U}_j = e^{-iH_j}$

$$|\psi_0\rangle - \hat{U}_N - \cdots - \hat{U}_1 - |\hat{\psi}\rangle$$

- They are related via $|\hat{\psi}\rangle = |\psi(0)\rangle$
- **Assumption:** ε is bounded, i.e., $\|\varepsilon\| \leq \bar{\varepsilon}$

Noisy quantum algorithm

$$|\psi(\varepsilon)\rangle = U_1(\varepsilon_1)\cdots U_N(\varepsilon_N)|\psi_0\rangle$$
 with $U_j(\varepsilon_j) = e^{-i(1+\varepsilon_j)H_j}$ and $\varepsilon_j \in \mathbb{R}$

$$|\psi_0\rangle$$
— $U_N(\varepsilon_N)$ —...— $U_1(\varepsilon_1)$ — $|\psi(\varepsilon)\rangle$

Problem: Robustness analysis

Find fidelity lower bound: $|\langle \psi(\varepsilon)|\hat{\psi}\rangle| \ge 1 - c\bar{\varepsilon}^2$ for some c > 0.

Definition: L > 0 is a **Lipschitz bound** of $|\psi\rangle$ if

$$\||\psi(\varepsilon)\rangle - |\psi(\varepsilon')\rangle\| \le L\|\varepsilon - \varepsilon'\|$$
 for all $\varepsilon, \varepsilon' \in \mathbb{R}^N$.

Theorem

$$L = \sum_{j=1}^{N} ||H_j||$$
 is a Lipschitz bound of $|\psi\rangle$.

Definition: L > 0 is a **Lipschitz bound** of $|\psi\rangle$ if

$$\||\psi(\varepsilon)\rangle - |\psi(\varepsilon')\rangle\| \le L\|\varepsilon - \varepsilon'\|$$
 for all $\varepsilon, \varepsilon' \in \mathbb{R}^N$.

Theorem

 $L = \sum_{j=1}^{N} ||H_j||$ is a Lipschitz bound of $|\psi\rangle$.

Example:
$$L = ||H_1|| + \cdots + ||H_5||$$

Corollary

For any ε with $\|\varepsilon\| \leq \bar{\varepsilon}$ and any initial state $|\psi_0\rangle$, it holds that

$$|\langle \psi(\varepsilon)|\hat{\psi}\rangle| \geq 1 - (\sum_{j=1}^{N} ||H_j||)^2 \frac{\overline{\varepsilon}^2}{2}.$$

- Fidelity loss bounded by $||H_j||$ and noise bound $\bar{\varepsilon}$
- Smaller $||H_i|| \rightarrow$ better robustness

Corollary

For any ε with $\|\varepsilon\| \leq \bar{\varepsilon}$ and any initial state $|\psi_0\rangle$, it holds that

$$\left|\left\langle \psi(\varepsilon)\middle|\hat{\psi}\right\rangle\right| \geq 1 - \left(\sum_{j=1}^{N} \left\|H_{j}\right\|\right)^{2} \frac{\overline{\varepsilon}^{2}}{2}.$$

- Fidelity loss bounded by $||H_j||$ and noise bound $\bar{\varepsilon}$
- Smaller $||H_i|| \rightarrow$ better robustness

Design of the algorithm influences its robustness!

Application: Quantum Fourier Transform

Problem

We study the robustness of the **transpiled circuit** with different elementary gate sets.

Problem

We study the robustness of the **transpiled circuit** with different elementary gate sets.

• Gate set A: \sqrt{X} , X, R_z , CX (IBM)

Problem

- Gate set A: \sqrt{X} , X, R_Z , CX (IBM)
- Gate set B: $R_x\left(\pm\frac{\pi}{2}\right)$, $R_x(\pm\pi)$, R_z , CZ (Rigetti)

Problem

- Gate set A: \sqrt{X} , X, R_z , CX (IBM)
- Gate set B: $R_{\chi}\left(\pm\frac{\pi}{2}\right)$, $R_{\chi}(\pm\pi)$, R_{Z} , CZ (Rigetti)
- **Gate set C**: *U*₁, *U*₂, *U*₃, *CX* (IBM old)

Problem

- Gate set A: \sqrt{X} , X, R_Z , CX (IBM)
- Gate set B: $R_x\left(\pm\frac{\pi}{2}\right)$, $R_x(\pm\pi)$, R_z , CZ (Rigetti)
- **Gate set C**: *U*₁, *U*₂, *U*₃, *CX* (IBM old)
- Gate set D: \sqrt{iSWAP} , FSIM, PhasedXZ, X, Y, Z (Google)

Problem

- Gate set A: \sqrt{X} , X, R_z , CX (IBM)
- Gate set B: $R_{\chi}\left(\pm\frac{\pi}{2}\right)$, $R_{\chi}(\pm\pi)$, R_{Z} , CZ (Rigetti)
- Gate set C: U_1 , U_2 , U_3 , CX (IBM old)
- Gate set D: \sqrt{iSWAP} , FSIM, PhasedXZ, X, Y, Z (Google)
- Gate set E: $R_{xy}\left(\frac{\pi}{2}\right)$, $R_{xy}(\pi)$, R_z , U_{zz} (Honeywell)

For each gate set A-E, we

- compute the Lipschitz bound $\sum_{j=1}^{N} ||H_j||$
- **simulate** the circuit with coherent control errors $|\varepsilon_i| \le 0.05$ affecting each gate

Discussion

- Perfect (inverse) correlation between Lipschitz bound & fidelity
- Existing metrics such as gate count (left) or depth (right) do not explain the outcome

For each gate set A-E, we

- compute the Lipschitz bound $\sum_{j=1}^{N} ||H_j||$
- **simulate** the circuit with coherent control errors $|\varepsilon_i| \le 0.05$ affecting each gate

Discussion

- Perfect (inverse) correlation between Lipschitz bound & fidelity
- Existing metrics such as gate count (left) or depth (right) do not explain the outcome

Our framework provides a priori robustness guarantees!

Validation on a quantum computer

Analogous results for smaller algorithm on a real quantum computer!

Variational quantum algorithms

Variational quantum algorithms (VQAs)

Parametrized unitaries $\widehat{U}(\theta) = \widehat{U}_1(\theta_1) \cdots \widehat{U}_N(\theta_N)$ with $\widehat{U}_j(\theta_j) = e^{-i\theta_j H_j}$.

$$|\psi_0\rangle$$
 — $\widehat{U}_1(\theta_1)$ — $\widehat{U}_N(\theta_N)$ —

Variational quantum algorithms (VQAs)

Parametrized unitaries $\widehat{U}(\theta) = \widehat{U}_1(\theta_1) \cdots \widehat{U}_N(\theta_N)$ with $\widehat{U}_j(\theta_j) = e^{-i\theta_j H_j}$.

Key idea

Iteratively adapt parameter vector θ to minimize $f(\theta)$

Variational quantum algorithms (VQAs)

Parametrized unitaries $\widehat{U}(\theta) = \widehat{U}_1(\theta_1) \cdots \widehat{U}_N(\theta_N)$ with $\widehat{U}_j(\theta_j) = e^{-i\theta_j H_j}$.

Key idea

Iteratively adapt parameter vector θ to minimize $f(\theta)$

- Promising approach for near-term quantum computing
- Examples: variational quantum eigensolver (VQE), quantum approximate optimization algorithm (QAOA), ...

Regularization in VQAs

Coherent control errors

Suppose the ideal unitaries $\widehat{U}_i(\theta_i)$ are affected by **coherent control errors** ε_i

 \rightarrow noisy algorithm $U(\theta, \varepsilon) = e^{-i\theta_1(1+\varepsilon_1)H_1} \cdots e^{-i\theta_N(1+\varepsilon_N)H_N}$.

Our analysis implies: $\sum_{j=1}^{N} |\theta_j| ||H_j||$ is a Lipschitz bound of $\varepsilon \mapsto U(\theta, \varepsilon) |\psi_0\rangle$

 \rightarrow Smaller $|\theta_i|$ implies better robustness

Regularization in VQAs

Coherent control errors

Suppose the ideal unitaries $\widehat{U}_i(\theta_i)$ are affected by coherent control errors ε_i

 \rightarrow noisy algorithm $U(\theta, \varepsilon) = e^{-i\theta_1(1+\varepsilon_1)H_1} \cdots e^{-i\theta_N(1+\varepsilon_N)H_N}$.

Our analysis implies: $\sum_{j=1}^{N} |\theta_j| ||H_j||$ is a Lipschitz bound of $\varepsilon \mapsto U(\theta, \varepsilon) |\psi_0\rangle$

 \rightarrow Smaller $|\theta_i|$ implies better robustness

Regularization in VQAs

Solving the optimization problem $\min_{\theta} f(\theta) + \lambda \|\theta\|^2$ robustifies the VQA against coherent control errors!

 $\lambda > 0$... tuning parameter

Implementation

Regularized VQA: Implementation for a simple example

Conclusion & Outlook

Conclusion

Summary

- Coherent control errors are a major obstacle for reliable quantum computing
- Our contribution: Framework for robustness analysis of quantum algorithms against coherent control errors
- Applications:
 - Robust algorithm design
 - Variational quantum algorithms

Conclusion

Summary

- Coherent control errors are a major obstacle for reliable quantum computing
- Our contribution: Framework for robustness analysis of quantum algorithms against coherent control errors
- Applications:
 - Robust algorithm design
 - Variational quantum algorithms

Outlook:

- Application in circuit optimization
- Extension to different error classes
- Robust quantum machine learning

Conclusion

Summary

- Coherent control errors are a major obstacle for reliable quantum computing
- Our contribution: Framework for robustness analysis of quantum algorithms against coherent control errors
- Applications:
 - Robust algorithm design
 - Variational quantum algorithms

Outlook:

- Application in circuit optimization
- Extension to different error classes
- Robust quantum machine learning

Further details: arXiv:2303.00618

Robustness of quantum algorithms against coherent control errors

Julian Berberich¹, Daniel Fink², and Christian Holm²