Grupos e Corpos

Prof. Lucas Calixto

Aula 2 - Grupos cíclicos e de permutações

Grupos cíclicos

Ideia: Estudar grupos gerados por um único elemento

Exemplos:

- $3\mathbb{Z}=\{3n\mid n\in\mathbb{Z}\}$ é um subgrupo de $(\mathbb{Z},+)$ completamente determinado pelo número 3
- • $H=\{2^n\mid n\in\mathbb{Z}\}$ é um subgrupo de $(\mathbb{Q}^*,+)$ completamente determinado pelo número 2

Em geral, temos

Proposição Se G é um grupo, então

$$\langle a \rangle = \{ a^n \mid n \in \mathbb{Z} \} \quad a^0 = e \text{ por definição}$$

 \acute{e} o menor subgrupo de G que contem a.

Prova: $\langle a \rangle \neq \emptyset$ pois $e = a^0 \in \langle a \rangle$. Por outro lado,

$$g,h\in\langle a\rangle\Rightarrow g=a^m,\ h=a^n\Rightarrow h^{-1}=a^{-n}\Rightarrow gh^{-1}=a^ma^{-n}=a^{m-n}\in\langle a\rangle$$

Logo $\langle a \rangle$ é subgrupo de G.

Se
$$H \subset G$$
 é subgrupo e $a \in H$, então $a^m \in H$, $\forall m \in \mathbb{Z}$ e portanto $\langle a \rangle \subset H$

O grupo $\langle a \rangle$ é chamado grupo cíclico gerado por a

Note: Se estivermos usando + em vez de \cdot , então

$$\langle a \rangle = \{ na \mid n \in \mathbb{Z} \}$$
 $0a = 0$ por definição

G é um grupo cíclico, se existe $a \in G$ tal que $G = \langle a \rangle$

Note: Todo grupo cíclico é abeliano

A ordem de um elemento $a \in G$ é o menor $n \in \mathbb{Z}_{\geq 0}$ tal que $a^n = e$. Nesse caso, escrevemos |a| = n. O elemento a tem ordem infinita se tal n não existe, e escrevemos $|a| = \infty$. Note: se $0 \leq k, \ell < |a|$ e $k \neq \ell$, então $a^k \neq a^\ell$

Logo,
$$G = \langle a \rangle \Rightarrow |G| = |a|$$

Prof. Lucas Calixto Grupos e Corpos - Aula 2 3 / 26

Exemplos

- $\bullet \mathbb{Z} = \langle 1 \rangle$
- $\mathbb{Z}_n = \langle 1 \rangle$
- Um grupo cíclico pode ter mais de um gerador:

$$\mathbb{Z}_6 = \langle 1 \rangle = \langle 5 \rangle, \quad \mathbb{Z}_6 \neq \langle 2 \rangle = \{0,2,4\}$$

• O grupo D_3 (simetrias do Δ) não é cíclico. Contudo, todo subgrupo próprio de D_3 é cíclico (lembrem: $\rho_1=120^\circ$, $\rho_2=240^\circ$ e μ_i são reflexões)

0	id	$ ho_1$	ρ_2	μ_1	μ_2	μ_3
id	id	$ ho_1$	$ ho_2$	μ_1	μ_2	μ_3
$ ho_1$	ρ_1	$ ho_2$	id	μ_3	μ_1	μ_2
$ ho_2$	ρ_2	id	$ ho_1$	μ_2	μ_3	μ_1
μ_1	μ_1	μ_2	μ_3	id	$ ho_1$	ρ_2
μ_2	μ_2	μ_3	μ_1	ρ_2	id	ρ_1
μ_3	μ_3	μ_1	μ_2	μ_1 μ_3 μ_2 id ρ_2 ρ_1	$ ho_2$	id

Subgrupos de grupos cíclicos

Proposição Se G é grupo cíclico $(G = \langle a \rangle)$ e $H \leq G$ então H é cíclico

Prova: Se $H = \{e\}$, OK.

Suponha $\exists \ g \in H, \ g \neq e$. Como $g = a^n$ para algum $n \in \mathbb{Z}$ e $a^{-n} = g^{-1} \in H$, podemos assumir que n > 0

Afirmação: se $m \in \mathbb{Z}_{>0}$ é minimal tal que $a^m \in H$, então $H = \langle h = a^m \rangle$

Se $g \in H$, então $g = a^k$ e k = mq + r para algum $q \in \mathbb{Z}$ e $0 \le r < m$ (algoritmo da divisão). Assim,

$$a^k = a^{mq+r} = a^{mq}a^r = h^qa^r \Rightarrow a^r = a^kh^{-q} \in H$$

Como m é minimal em $\mathbb{Z}_{>0}$ tal que $a^m \in H \Rightarrow r = 0$

Logo
$$g = a^k = a^{mq} = h^q \in \langle h \rangle \Rightarrow H = \langle h \rangle$$

Prof. Lucas Calixto

Corolário: Se $H \leq \mathbb{Z} = \langle 1 \rangle$, então $H = n\mathbb{Z}$ para algum $n \in \mathbb{Z}_{\geq 0}$

Proposição: Se $G=\langle a \rangle$ é grupo cíclico de ordem n, então $a^k=e$ se e só se n|k

Prova: Note que $G = \langle a \rangle \Rightarrow |G| = |a| \Rightarrow |a| = n \Rightarrow n$ é mínimo tal que $a^n = e$

 (\Rightarrow) Escreva k = nq + r com $q \in \mathbb{Z}$ e $0 \le r < n$. Assim

$$e = a^k = a^{nq+r} = a^{nq}a^r = a^r$$

Como n é mínimo tal que $a^n = e$, segue que r = 0 e $n \mid k$

$$(\Rightarrow)$$
 Se $k=qn$, então $a^k=a^{nq}=(a^n)^q=e^q=e$

Proposição: Seja $G = \langle a \rangle$ tal que |G| = n. Se $b = a^k$, então |b| = n/d, onde d = mdc(n, k)

Prova: Seja |b|=m. Dai, $m\in\mathbb{Z}_{>0}$ é minimal tal que

$$e = b^m = a^{km} \Leftrightarrow n | km$$
 (Proposição anterior)

Logo, $m\in\mathbb{Z}_{>0}$ é minimal tal que n|km, ou equivalentemente, $m\in\mathbb{Z}_{>0}$ é minimal tal que $\frac{n}{d}|m(\frac{k}{d})$

Obviamente, $\frac{n}{d} | \frac{n}{d} (\frac{k}{d})$ e assim $m \leq \frac{n}{d}$

Por outro lado, $d = mdc(n, k) \Leftrightarrow mdc(\frac{n}{d}, \frac{k}{d}) = 1$, e

$$\frac{n}{d}|m(\frac{k}{d})\Rightarrow \frac{n}{d}|m\Rightarrow \frac{n}{d}\leq m$$

Logo $m = \frac{n}{d}$

Prof. Lucas Calixto

Corolário: Os geradores de \mathbb{Z}_n são exatamente elementos $b \in \mathbb{Z}_n$ tais que mdc(b,n)=1

Prova: Sabemos que $\mathbb{Z}_n = \langle 1 \rangle$ e que $\mathbb{Z}_n = \langle b \rangle \Leftrightarrow n = |\mathbb{Z}_n| = |b|$

Como $b = b1 = 1^b$ (na notação usual), a Proposição anterior implica |b| = n/d, onde d = mdc(n, b). Então,

$$n = |b| \Leftrightarrow n = n/d \Leftrightarrow d = 1$$

Exemplo: Os geradores de \mathbb{Z}_{16} são 1, 3, 5, 7, 9, 11, 13, 15

O grupo \mathbb{C}^* e seus subgrupos

Diferentemente dos grupos \mathbb{R}^* e \mathbb{Q}^* , o grupo $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ possui vários subgrupos interessantes

Podemos pensar nos elementos de \mathbb{C} no plano xy em coordenadas cartesianas ou polares. (**Lembrem:** $e^{i\theta} = \cos(\theta) + i\sin(\theta)$)

$$z = a + bi = r(\cos(\theta) + i\sin(\theta)) = re^{i\theta}$$
$$r = \sqrt{a^2 + b^2}, \quad a = r\cos(\theta), \quad b = r\sin(\theta), \quad 0 \le \theta < 2\pi$$

Prof. Lucas Calixto Grupos e Corpos - Aula 2 9 / 26

Proposição: Se $z = re^{i\theta}$ e $w = se^{i\phi}$, então

- **1** $zw = rse^{i(\theta + \phi)}$ (grande vantagem de coordenadas polares)
- 2 $z^{-1} = r^{-1}e^{(-\theta)}$
- $z^n = r^n e^{(n\theta)}$

Proposição: O círculo de raio 1, $T=\{z\in\mathbb{C}\mid ||z||=1\}$ é um subgrupo de (\mathbb{C}^*,\cdot)

Um número $z \in \mathbb{C}$ tal que $z^n = 1$ é uma raiz n-ésima da unidade

Proposição: As raízes *n*-ésimas da unidade são $e^{\frac{2k\pi}{n}}$, $k=0,\ldots,n-1$. Além disso, o conjunto

$$\{e^{\frac{2k\pi}{n}}\mid k=0,\ldots,n-1\}$$

é um subgrupo cíclico de \mathbb{C}^* de T de ordem n

Os geradores de $\{e^{\frac{2k\pi}{n}}\mid k=0,\dots,n-1\}$ são chamados raízes *n*-ésimas primitivas da unidade

Exemplo: As raízes 8-ésimas primitivas da unidade são: $w=e^{\frac{\pi}{4}}$, $w^3=e^{\frac{2\pi}{4}}$, $w^5=e^{\frac{4\pi}{4}}$, $w^7=e^{\frac{7\pi}{4}}$

Grupos de permutações

Definição: Uma permutação de um conjunto X é uma função bijetora $f:X\to X$

Note: o conjunto das permutações de X, $S_X = \{f : X \to X \mid f \text{ \'e permutação}\}$ $\acute{\text{um}}$ grupo munido da composição de funções

- $S_X \times S_X \to S_X$, $(f,g) \mapsto f \circ g$ é bem definida e é associativa
- Elemento neutro: $id \in S_X$
- Elemento inverso: $f \in S_X \Rightarrow f^{-1} \in S_X$

Se |X|=n, podemos supor $X=\{1,\ldots,n\}$ e escrevemos S_n em vez de S_X

 S_n é chamado de grupo simétrico de n elementos

Observe: $|S_n| = n!$ e portanto S_n tem ordem n!

Um subgrupo de S_n é chamado um grupo de permutações

Prof. Lucas Calixto Grupos e Corpos - Aula 2 12 / 26

Exemplo: O conjunto $G = \{id, \sigma, \tau, \mu\} \subset S_5$, onde

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{pmatrix}, \ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix}, \ \mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$$

é um subgrupo de S_5 :

Note: Nesse caso G é abeliano. Isso não é sempre o caso

Exemplo: Em
$$S_4$$
, se $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$ e $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$, então

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 1 \end{pmatrix} \neq \tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

ciclos

Definição: Uma permutação $\sigma \in S_X$ é um ciclo de comprimento k, se existem $a_1, \ldots, a_k \in X$ tais que

$$a_1 \stackrel{\sigma}{\longmapsto} a_2 \quad a_2 \stackrel{\sigma}{\longmapsto} a_3 \quad \cdots \quad a_k \stackrel{\sigma}{\longmapsto} a_1$$

e $\sigma(x) = x$ para todos outros elementos de X. Nesse caso, escrevemos

$$\sigma = (a_1 a_2 \cdots a_k)$$

Fato: qualquer permutação pode ser escrita em termos de ciclos

•
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 3 & 5 & 1 & 4 & 2 & 7 \end{pmatrix} = (162354)$$

•
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix} = (1243)(56) \Rightarrow$$
 nem toda permutação é um ciclo

Obs: o processo termina quando todos elementos de X que não são fixados por σ aparecem em algum ciclo

Prof. Lucas Calixto Grupos e Corpos - Aula 2 14 / 26

Dois ciclos $\sigma=(a_1\cdots a_k)$ e $\tau=(b_1\cdots b_l)$ são disjuntos se $a_i\neq b_j$ para todos i,j

Exemplo • (135) e (347) não são disjuntos e

$$(135)(347) = (13475)$$
 (simplificado!)

• (135) e (27) são disjuntos e o produto (135)(27) não pode ser simplificado

Proposição: Se $\sigma, \tau \in S_X$ são ciclos disjuntos, então $\sigma \tau = \tau \sigma$

Prova: Suponha $\sigma = (a_1 \cdots a_k)$ e $\tau = (b_1 \cdots b_l)$ e que $a_i \neq b_j$ para todos os índices

Se
$$x \in X \setminus \{a_1, \dots, a_k, b_1, \dots, b_l\}$$
, então $\sigma(x) = \tau(x) = x \Rightarrow \sigma\tau(x) = \tau\sigma(x) = x$

Se
$$x=a_i$$
, então $\tau(x)=x$ e $\tau\sigma(x)=\sigma(x)\Rightarrow\sigma\tau(x)=\sigma(x)=\tau\sigma(x)$

Se
$$x = b_i$$
, então $\sigma(x) = x$ e $\sigma\tau(x) = \tau(x) \Rightarrow \sigma\tau(x) = \tau(x) = \tau\sigma(x)$

Prof. Lucas Calixto Grupos e Corpos - Aula 2 15 / 26

Proposição: Toda permutação $\sigma \in S_n$ é produto de ciclos disjuntos

Prova: Lembre $S_n = S_X$ onde $X = \{1, ..., n\}$

Defina
$$X_1 = \{1, \sigma(1), \dots, \sigma^{n_1}(1)\} \subset X$$
 com n_1 minimal tal que $\sigma^{n_1+1}(1) = 1$

Se
$$X_1 \neq X$$
, tome $i_2 \in X \setminus X_1$ minimal e defina $X_2 = \{i_2, \sigma(i_2), \dots, \sigma^{n_2}(i_2)\}$

Se
$$X_1 \cup X_2 \neq X$$
, tome $i_3 \in X \setminus X_1 \cup X_2$ minimal, $X_3 = \{i_3, \sigma(i_3), \dots, \sigma^{n_3}(i_3)\}$

:

$$X = X_1 \cup \cdots \cup X_r$$
.

Se
$$x \in X_j \cap X_k$$
 para $j \neq k$ (assuma $j < k$), então

$$x = \sigma^{m_k}(i_k) = \sigma^{m_j}(i_j) \Rightarrow i_k = \sigma^{m_k + \ell}(i_k) = \sigma^{m_j + \ell}(i_j) \in X_j$$
 tal ℓ existe

Contradição, pois $i_k \notin X_p$ para $1 \le p < k$

Prof. Lucas Calixto

Grupos e Corpos - Aula 2

16 / 26

Defina: $\sigma_j: X \to X$, $\sigma_j(x) = x$ se $x \notin X_j$ e $\sigma_j(x) = \sigma(x)$ se $x \in X_j$

- $\sigma_j = (i_j \sigma(i_j) \cdots \sigma^{n_j}(i_j)) \Rightarrow \sigma_j$ é ciclo
- σ_j, σ_k são disjuntos
- $\sigma = \sigma_1 \cdots \sigma_r$

Exemplo:
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix} = (1243)(56)$$

Transposições

Uma transposição é um ciclo de comprimento 2

Note: Todo ciclo é produto de transposições

$$(a_1a_2\cdots a_k)=(a_1a_k)(a_1a_{k-1})\cdots(a_1a_3)(a_1a_2)$$

Proposição: Toda permutação de S_n (n > 1) é produto de transposições

Note: em geral existe mais de uma forma de fazer isso

•
$$(16)(253) = (16)(23)(25) = (16)(45)(23)(45)(25)$$

$$\bullet$$
 (1) = (12)(12) = (23)(23)

Vamos ver que a paridade do número de transposições é preservada

18 / 26

Lema: Se $id = \tau_1 \cdots \tau_r$ onde τ_i são transposições, então $r \in 2\mathbb{Z}$.

Prova: Indução em r. O menor valor possível para r é r=2 ($r=1 \Rightarrow id$ é transposição, o que não é verdade)

Se r = 2, ok

Assuma r > 2 e note que uma das possibilidades para o produto $\tau_{r-1}\tau_r$ vale:

$$(ab)(ab) = id$$

$$(ac)(ab) = (ab)(bc)$$

$$(bc)(ab) = (ac)(bc)$$

$$(cd)(ab) = (ab)(cd)$$

com a, b, c, d distintos.

Denote o lado direito das ultimas 3 equações acima por $(a*)t_r$

Se $\tau_{r-1}\tau_r=id$, então $id=\tau_1\cdots\tau_{r-2}$. Por indução r-2 é par, e portanto r é par

Se algum dos 3 últimos casos ocorre, então

$$id = \tau_1 \cdots \tau_r = \tau_1 \cdots \tau_{r-2}(a*)t_r$$

e a última ocorrência de a em id é em (a*)

Repita o argumento para $\tau_{r-2}(a*)$: $\tau_{r-2}(a*) = id$ ou $\tau_{r-2}(a*) = (a*)t_{r-1}$. Se $\tau_{r-2}(a*) = id$ aplique indução. Caso contrário, substitua $\tau_{r-2}(a*)$ por $(a*)t_{r-1}$

$$id = \tau_1 \cdots \tau_{r-2} \tau_{r-1} \tau_r = \tau_1 \cdots (a*) t_{r-1} t_r$$

e note que última ocorrência de a em id é em (a*)

Se id nunca ocorre nesse processo, teremos $id = (a*)t_2 \cdots t_r$ e a só ocorre na primeira transposição $\Rightarrow id(a) = * \neq a$

Logo id deve aparecer em algum passo e podemos aplicar indução em r-2

Teorema: Se $\sigma \in S_X$ e $\sigma = \tau_1 \cdots \tau_p = \gamma_1 \cdots \gamma_q$ onde τ_i e γ_i são transposições, então p e q tem a mesma paridade

Prova: Note que $\gamma_q \cdots \gamma_1 = \sigma^{-1}$, pois $\tau^2 = id$ para qualquer transposição

Daí

$$\mathit{id} = au_1 \cdots au_p \gamma_q \cdots \gamma_1 \Rightarrow p+q \in 2\mathbb{Z} \Rightarrow p+q$$
 tem a mesma paridade

Teorema: $A_n = \{\tau_1 \cdots \tau_n \mid \tau_i \text{ \'e transposiç\~ao e } n \in 2\mathbb{Z}_{>0}\}$ é um subgrupo de S_n

O grupo A_n é chamado grupo alternado de S_n

Proposição: Se n > 1, então $|A_n| = |B_n = \{\tau_1 \cdots \tau_n \mid \tau_i \text{ \'e transp. e } n \text{ \'e impar}\}|$

Prova: $\tau \in S_n$ transposição $\Rightarrow f_\tau : A_n \to B_n$, $\sigma \mapsto \tau \sigma$ é bijeção $(f_\tau^{-1} = f_\tau)$

Prof. Lucas Calixto Grupos e Corpos - Aula 2 21 / 26

Grupos diedrais

Lembrem: um movimento rígido de um objeto geométrico é uma combinação (composição) de rotações e reflexões que preservam tal objeto

Defina, para $n \ge 3$, o *n*-ésimo grupo diedral D_n como sendo o grupo dos movimentos rígidos de um polígono regular de n lados

Note: o vértice 1 de D_n pode ser enviado para n vértices de duas formas diferentes (movimento rígido \Rightarrow escolha de onde enviar o par de vértices (1,2) determina tudo):

$$(n,1,2) \mapsto (k-1,k,k+1) \text{ ou } (n,1,2) \mapsto (k+1,k,k-1)$$

Se k=n, pense em k+1=1, se k=1, pense em k-1=n, ou seja, a conta nos vértices é feita em \mathbb{Z}_n

Logo: $|D_n| = 2n$

Teorema: O grupo D_n $(n \ge 3)$ consiste de todos os produtos de elementos $r, s \in D_n$ tais que

$$r^n = 1$$
, $s^2 = 1$, $srs = r^{-1}$

Prova: Existem *n* rotações

$$id, \frac{360^{\circ}}{n}, 2\frac{360^{\circ}}{n}, \dots, (n-1)\frac{360^{\circ}}{n}$$

todas são composições de $r = \frac{360^{\circ}}{n}$, e $r^n = id$

Seja s_i a reflexão que deixa o vértice i fixo (referente a reta bissetriz ao vértice i)

n par \Rightarrow o vértice *i* e seu antipodal n/2 + i são fixados por $s_i \Rightarrow s_i = s_{n/2+i}$

n impar \Rightarrow somente o vértice i é fixado por $s_i \Rightarrow s_i \neq s_j$ se $i \neq j$

Seja $s = s_1$ (óbvio que $s^2 = s$)

Se t é um movimento rígido do polígono, então

$$\bullet (n,1,2) \mapsto (k-1,k,k+1) \Rightarrow t = r^k$$

•
$$(n,1,2) \mapsto (k+1,k,k-1) \Rightarrow t = r^k s$$

Logo D_n é gerado por r, s, já que

$$D_n = \{1, r, \dots, r^{n-1}, s, rs, \dots, r^{n-1}s\}$$

Finalmente, $srs = r^{-1}$ pois (destacando a posição fixada por s)

$$(n-1, n, \frac{1}{2}, 2, 3) \stackrel{s}{\mapsto} (3, 2, \frac{1}{2}, n, n-1) \stackrel{r}{\mapsto} (4, 3, \frac{2}{2}, 1, n) \stackrel{s}{\mapsto} (n, 1, \frac{2}{2}, 3, 4)$$

е

$$(n-1, n, 1, 2, 3) \xrightarrow{r^{-1}} (n, 1, 2, 3, 4)$$

Exemplo: No quadrado com vértices 1, 2, 3, 4, temos D_4 com rotações

$$r = (1234), \quad r^2 = (13)(24), \quad r^3 = (1432), \quad r^4 = id$$

e reflexões $s_1 = (24)$, $s_2 = (13)$. Temos ainda as composições $rs_1 = (12)(34)$ e $r^3s_1 = (14)(23)$. Em particular, $|D_4| = 2.4 = 8$

