PRUEBAS DE CONOCIMIENTO CERO Y SUS APLICACIONES

JOSÉ LUIS CÁNOVAS SÁNCHEZ

Tutores LEANDRO MARÍN MUÑOZ ANTONIO JOSÉ PALLARÉS RUIZ

Facultad de Matemáticas Universidad de Murcia

RESUMEN

TODO

Short summary of the contents in -English- Spanish...a great guide by Kent Beck how to write good abstracts can be found here:

https://plg.uwaterloo.ca/~migod/research/beck00PSLA.html

ABSTRACT

1500 words of Introduction in English...

ÍNDICE GENERAL

```
1 INTRODUCCIÓN
2 PRELIMINARES
  2.1 Preliminares de Álgebra
  2.2 Preliminares de Criptografía
                                   5
3 RESIDUOS CUADRÁTICOS
  3.1 Primeras propiedades
  3.2 Símbolo de Legendre
                             8
  3.3 Símbolo de Jacobi
4 PRUEBAS DE CONOCIMIENTO CERO
                                     11
  4.1 Definición
  4.2 Estudio de ZKPs
                        11
5 APLICACIONES DE ZKP
                          13
6 IMPLEMENTACIONES
                         15
Appendix
            17
A CÓDIGO FUENTE
                     19
BIBLIOGRAFÍA
```

ÍNDICE DE FIGURAS

ÍNDICE DE TABLAS

LISTINGS

Listing 1 A floating example (listings manual) 19

ACRONYMS

INTRODUCCIÓN

Para poder comprender los resultados de los siguientes capítulos necesitaremos recordar ciertas definiciones y propiedades de álgebra que se cursan durante el grado, e introducir otros preliminares de algoritmia que formalizan el estudio. No incluiremos demostraciones, pues son los conceptos básicos de donde partiremos para desarrollar el resto del trabajo, pero el lector que quiera conocerlas puede consultar las referencias en **TODO: cite**.

2.1 PRELIMINARES DE ÁLGEBRA

ARITMÉTICA ELEMENTAL

Definición 2.1. Un entero d se dice que es el **máximo común divisor** de dos enteros a y b si es el mayor entero que divide a ambos. Lo denotaremos d = mcd(a, b).

Euclides describió en su obra *Los Elementos* un método para calcular el mcd de dos enteros, que hoy en día se conoce como *Algoritmo de Euclides*. La propiedad que utiliza el algoritmo para calcular el mcd es la siguiente:

Proposición 2.2. Sean $a, b \in \mathbb{Z}$. Entonces, para todo $\alpha \in \mathbb{Z}$ se tiene:

$$mcd(a, b) = mcd(a, b - \alpha a) = mcd(a - \alpha b, b).$$

En particular, cuando $b \neq 0$ y la división entera de a entre b es a = bq + r, tenemos que mcd(a,b) = mcd(b,r).

Algoritmo 2.3 (Euclides). Encuentra el mcd de $a, b \in \mathbb{Z}$:

- 1. Inicializa $r_0 = a$ y $r_1 = b$.
- 2. Calcula las siguientes divisiones euclídeas

$$\begin{array}{rcl} r_0 & = & q_1r_1 + r_2 \\ r_1 & = & q_2r_2 + r_3 \\ & & \cdots \\ \\ r_{n-3} & = & q_{n-2}r_{n-2} + r_{n-1} \\ r_{n-2} & = & q_{n-1}r_{n-1} + r_n \end{array}$$

hasta que se obtenga un $r_n = 0$, con $r_{n-1} \neq 0$.

A partir del *Algoritmo de Euclides* se puede expresar d como una "combinación \mathbb{Z} -lineal" de \mathfrak{a} y b:

$$d = as + bt$$

conocida como la Identidad de Bézout.

El algoritmo se conoce como Algoritmo de Euclides extendido:

Algoritmo 2.4 (Euclides extendido). Encuentra el d = mcd de α , $b \in \mathbb{Z}$ y valores s, $t \in \mathbb{Z}$ tal que $d = \alpha s + bt$.

- 1. Inicializa $r_0 \leftarrow \alpha, r_1 \leftarrow b, s_0 \leftarrow 1, t_0 \leftarrow 0, s_1 \leftarrow 0, t_1 \leftarrow 1$ $i \leftarrow 1$
- 2. Mientras $r_i \neq 0$:

Calcule la división euclídea $r_{i-1} = q_i r_i + r_{i+1}$

$$s_{i+1} \leftarrow s_{i-1} - q_i s_i$$

$$t_{i+1} \leftarrow t_{i-1} - q_i t_i$$

$$i \leftarrow i+1$$

3.
$$d = r_{i-1}$$
 $s = s_{i-1}$ $t = t_{i-1}$

Observación. Los valores de s y t no tienen por qué ser únicos:

$$a(s-kb) + b(t+ka) = as - kba + bt + kba = as + bt = d$$

Utilizaremos la Identidad de Bézout para calcular los inversos en aritmética modular.

GRUPOS Y ANILLOS

CONGRUENCIAS

Definición 2.5. Sean a, b, $n \in \mathbb{Z}$, $n \neq 0$, diremos que a y b son **congruentes módulo** n, y lo escribiremos $a \equiv b \mod n$, si la diferencia a - b es múltiplo de n.

Cuando $a \equiv b \mod n$ decimos que b es un *residuo* de a *módulo* n.

Proposición 2.6. La relación de **congruencia módulo** n es una relación de equivalencia, es decir, es reflexiva, simétrica y transitiva.

Esto establece una relación de equivalencia en \mathbb{Z} , en la que la **clase** de un entero a módulo n es $\overline{a} = \{a + kn\}_{k \in \mathbb{Z}}$. Cuando no exista confusión, escribiremos la clase de equivalencia \overline{a} como a. El correspondiente conjunto cociente, de las *clases de resto módulo* n, es $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots \overline{n-1}\}$, y hereda la suma y producto de \mathbb{Z} convirtiéndose en un anillo conmutativo con neutros $\overline{0}$ para la suma y $\overline{1}$ para el producto.

Teorema 2.7. El anillo \mathbb{Z}_n es un cuerpo cuando n es un número primo.

Teorema 2.8 (Euler). *Si* x *es coprimo con*

Si tenemos ahora dos enteros a y b coprimos, es decir, mcd(a, b) = 1, usando el *algoritmo de Euclides extendido* podemos encontrar r y s de la *Identidad de Bézout* tales que:

$$as + bt = 1$$

Si a esta igualdad le aplicamos módulo b, obtenemos el inverso de a en \mathbb{Z}_b :

$$(as + bt) \mod b \equiv as \mod b \equiv 1 \mod b$$

 $\overline{as + bt} = \overline{as} = \overline{1}$

Así hemos demostrado el siguiente resultado:

Proposición 2.9. Si mcd(a, n) = 1, entonces el elemento inverso a^{-1} , $0 < a^{-1} < n$, existe $y \ aa^{-1} \equiv 1 \ mod \ n$.

2.2 PRELIMINARES DE CRIPTOGRAFÍA

Teoría de complejidad algorítmica, problema de P NP, problema RSA de factorizar N, problemas de decisión, estadística usada en el estudio de los ZKP (ensembles), probabilistic computations, ...

La mayor parte está en los primeros capítulos de Fundamentals of Computer Security, y de sus referencias se podrá sacar más detallado.

3

TODO: Párrafo de introducción al capítulo y referencias

Teoría de símbolos de Lebesgue, ..., residuos cuadráticos, cálculo de raíz discreta?

3.1 PRIMERAS PROPIEDADES

Definición 3.1. Sea $a \in \mathbb{Z}_n^*$. Se dice que a es un *residuo cuadrático* módulo n, o un *cuadrado* módulo n, si existe un $x \in \mathbb{Z}_n^*$ tal que $x^2 \equiv a \mod n$. Si no existe dicho x, entonces a se llama un *no-residuo cuadrático* módulo n.

El conjunto de todos los residuos cuadráticos módulo n de \mathbb{Z}_n^* los denotaremos como Q_n o bien como $\mathbb{Z}_n^{Q^+}$. Al conjunto de los noresiduos cuadráticos lo denotamos como $\overline{Q_n}$.

Observación. Por definición $0 \notin \mathbb{Z}_n^*$, y por tanto $0 \notin \mathbb{Q}_n$ y $0 \notin \overline{\mathbb{Q}_n}$.

Definición 3.2. Sea $a \in Q_n$. Si $x \in \mathbb{Z}_n^*$ satisface $x^2 \equiv a \mod n$, entonces x se llama *raíz cuadrada* módulo n de a.

Proposición 3.3. Sea p un primo impar. Se cumple que $|Q_p| = \frac{p-1}{2} y$ $|\overline{Q_p}| = \frac{p-1}{2}$, es decir, la mitad de los elementos de \mathbb{Z}_p^* son residuos cuadráticos, y la otra mitad no-residuos cuadráticos.

Demostración. Sea $\alpha \in \mathbb{Z}_p^*$ un generador de \mathbb{Z}_p^* . Un elemento $a \in \mathbb{Z}_p^*$ es un residuo cuadrático módulo p sii $a \equiv \alpha^i \mod p$ donde i es un entero par. Como p es primo, $\varphi(p) = p - 1 = |\mathbb{Z}_p^*|$, que es un entero par, p de ahí se sigue el enunciado.

Ejemplo 3.4. Para p=13 tenemos que $\alpha=6$ es un generador de \mathbb{Z}_{13}^* . Las potencias de α módulo 13 son:

i	1	2	3	4	5	6	7	8	9	10	11	12
6 ⁱ mod 13	6	10	8	9	2	12	7	3	5	4	11	1

Lo que nos da $Q_{13} = \{1, 3, 4, 9, 10, 12\}$ y $\overline{Q_{13}} = \{2, 5, 6, 7, 8, 11\}$.

Proposición 3.5. Sea n un producto de dos primos impares p y q, n = pq. Entonces $\alpha \in \mathbb{Z}_p^*$ es un residuo cuadrático módulo n, $\alpha \in Q_n$ si y solo si $\alpha \in Q_p$ y $\alpha \in Q_q$. Se sigue que $|Q_n| = |Q_p| \cdot |Q_q| = \frac{(p-1)(q-1)}{4}$, y por tanto $\overline{|Q_n|} = |\mathbb{Z}_n^*| - |Q_n| = \frac{3(p-1)(q-1)}{4}$.

Demostración. Si a es un residuo cuadrático módulo n = pq, $a \equiv x^2 \mod n$, es inmediato que en módulos p y q se cumple $a \equiv x^2 \mod p$, $a \equiv x^2 \mod q$.

Si tenemos que a es un residuo cuadrático módulo p, a $\equiv x_p^2 \mod p$, y también módulo q, $a \equiv x_q^2 \mod q$, por el Teorema Chino de los Restos existe un x tal que:

 $x \equiv x_p \mod p$

 $x \equiv x_q \mod q$

De modo que, elevando al cuadrado:

 $x^2 \equiv x_p^2 \equiv a \mod p$ $x^2 \equiv x_q^2 \equiv a \mod q$ Por lo que $x^2 \equiv a \mod n$.

SÍMBOLO DE LEGENDRE

Para identificar los residuos cuadráticos disponemos de una herramienta muy útil:

Definición 3.6. Dados un primo impar p y un entero a, se define el símbolo de Lebesgue $\left(\frac{a}{p}\right)$ como

$$\left(\frac{a}{p}\right) = \begin{cases}
0, & \text{si } a \equiv 0 \mod p \\
1, & \text{si } a \in Q_p \\
-1, & \text{si } a \in \overline{Q_p}
\end{cases}$$

Veamos ahora algunas propiedades del símbolo de Legendre:

Teorema 3.7 (Criterio de Euler). *Sea* p *un primo impar. Sea* $a \not\equiv 0 \mod p$. **Entonces:**

$$a^{(p-1)/2} \equiv \left(\frac{a}{p}\right) \bmod p$$

Demostración. Observemos primero que las raíces de 1 módulo p son 1 y -1 mod p. También que por el Teorema de Euler, $\mathfrak{a}^{\varphi(\mathfrak{p})} \equiv \mathfrak{a}^{\mathfrak{p}-1} \equiv$

. De este modo, tenemos que $a^{\frac{p-1}{2}} \equiv 16 - 1 \mod p$.

Ahora demostrar el teorema es equivalente a demostrar que $a^{(p-1)/2} \equiv$ 1 mod p sii a es un residuo cuadrático.

Supongamos que a es un residuo cuadrático módulo p. Sea x tal que $x^2 \equiv a \mod p$. Entonces, $a^{\frac{p-1}{2}} \equiv x^{(p-1)} \equiv 1 \mod p$, de nuevo por el Teorema de Euler.

Sea ahora $a^{\frac{p-1}{2}} \equiv 1 \mod p$.

Tomamos g un generador de \mathbb{Z}_p^* , de modo que $\mathfrak{a} \equiv \mathfrak{g}^r \mod \mathfrak{p}$. Sustituyendo: $g^{r\frac{p-1}{2}} \equiv 1 \mod p$, y como g tiene orden p-1, queda

 $g^{\frac{r}{2}}\equiv 1 \ \text{mod} \ p$, de donde deducimos que necesariamente r es un entero par, r=2s.

Construimos $x \equiv g^s \mod p$, que cumple: $x^2 \equiv g^{2s} \equiv g^r \equiv a \mod p$, de modo que a es un residuo cuadrático módulo p.

Proposición 3.8 (Propiedad multiplicativa del símbolo de Lebesgue). *Sean* a *y* b *enteros coprimos con* p*, un primo impar. Entonces:*

$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right).$$

En particular, el producto de dos no-residuos cuadráticos es un residuo cuadrático.

Demostración. Utilizando el Criterio de Euler:

$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = a^{(p-1)/2} \cdot b^{(p-1)/2} = (ab)^{(p-1)/2} = \left(\frac{ab}{p}\right)$$

Teorema 3.9 (Ley de reciprocidad cuadrática). *Sean* p y q primos impares distintos, se cumple:

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4}.$$

O de otro modo:

$$\left(\frac{p}{q}\right) = \begin{cases} \left(\frac{q}{p}\right) & \text{Si } p \equiv 1 \mod 4 & \text{o} \quad q \equiv 1 \mod 4 \\ -\left(\frac{q}{p}\right) & \text{Si } p \equiv q \equiv 3 \mod 4 \end{cases} .$$

3.3 SÍMBOLO DE JACOBI

El símbolo de Legendre está definido para módulos un primo impar p. Ahora vamos a ver una generalización del concepto para cualquier módulo N .

Definición 3.10. Sean a, $N \in \mathbb{Z}$, con $N = p_1p_2 \cdots p_r$, donde los p_i son primos, no necesariamente distintos, incluyendo el 2 y el -1 para el signo.

Definimos el *Símbolo de Jacobi* $\left(\frac{a}{N}\right)$ como

$$\left(\frac{\alpha}{N}\right) = \prod_{i=1}^{r} \left(\frac{\alpha}{p_i}\right)$$

donde $\left(\frac{\alpha}{p_i}\right)$ es el Símbolo de Legendre para los $p_i>2$, y para los casos p=2 y p=-1 definimos:

$$\left(\frac{\alpha}{2}\right) = \begin{cases} 0, & \text{si a es par.} \\ (-1)^{(\alpha^2-1)/8}, & \text{si a es impar.} \end{cases}$$

y

$$\left(\frac{\alpha}{2}\right) = \begin{cases} 1, & \text{si } \alpha \geqslant 0\\ -1, & \text{si } \alpha < 0. \end{cases}$$

Igual que antes, veamos algunas propiedades del Símbolo de Jacobi:

Teorema 3.11. Propiedades del Símbolo de Jacobi:

- (i) $\left(\frac{\alpha}{N}\right) = 0$ si y sólo si $mcd(\alpha, N) = 1$.
- (ii) Para cada a, b y c enteros, tenemos:

$$\left(\frac{ab}{c}\right) = \left(\frac{a}{c}\right)\left(\frac{b}{c}\right), \quad \left(\frac{a}{bc}\right) = \left(\frac{a}{b}\right)\left(\frac{a}{c}\right) \quad \text{si bc} \neq 0.$$

- (iii) Fijado N > 0, el símbolo $\left(\frac{\alpha}{N}\right)$ es periódico en α con periodo N si $N \not\equiv 2 \mod 4$, en otro caso, es periódico con periodo 4N.
- (iv) Fijado $\alpha \neq 0$, el símbolo $\left(\frac{\alpha}{N}\right)$ es periódico en N con periodo $|\alpha|$ si $\alpha \equiv 0$ ó $1 \mod 4$, en otro caso, es periódico con periodo $4|\alpha|$.
- (v) Las fórmulas del Teorema 3.9 se siguen verificando si p y q son enteros impares positivos, ya no necesitan ser primos.

4

PRUEBAS DE CONOCIMIENTO CERO

- 4.1 DEFINICIÓN
- 4.2 ESTUDIO DE ZKPS

Una subsección por cada ZKP analizado.

APLICACIONES DE ZKP

?

Aplicación de ZKP en los certificados de Idemix. Analizar cómo realizan pruebas de Y, O, etc.

6

IMPLEMENTACIONES

Implementaciones de símbolos, raíz discreta, ZKPs, ...

APPENDIX

Listing 1: A floating example (listings manual)

```
for i:=maxint downto 0 do
begin
{ do nothing }
end;
```

DECLARACIÓN DE ORIGINALIDAD

Yo, José Luis Cánovas Sánchez, autor del TFG PRUEBAS DE CONOCIMIENTO CERO Y SUS APLICACIONES, bajo la tutela de los profesores Leandro Marín Muñoz y Antonio José Pallarés Ruiz, declaro que el trabajo que presento es original, en el sentido de que ha puesto el mayor empeño en citar debidamente todas las fuentes utilizadas.

Murcia, Junio 2017	
	José Luis Cánovas Sánchez