Chapter 20

Degradation Modeling and Destructive Degradation Data Analysis

W. Q. Meeker, L. A. Escobar, and F. G. Pascual Iowa State University, Louisiana State University, and Washington State University.

Copyright 2021 W. Q. Meeker, L. A. Escobar, and F. G. Pas-

Based on Meeker, Escobar, and Pascual (2021): Statistical Methods for Reliability Data, Second Edition, John Wiley & Sons Inc.

May 24, 2021 11h 6min

20-1

Chapter 20 Accelerated Destructive Degradation Tests Data, Models, and Data Analysis Objectives and Overview

Topics discussed in this chapter are:

- Degradation data and degradation path models.
- Mechanistic motivation for degradation path models and parameter interpretation.
- **Destructive** degradation background and an example of destructive degradation field data analysis.
- Failure-time distributions induced from degradation models and failure-time inferences.
- Background and an example of accelerated destructive degradation testing (ADDT) and model building.
- Fitting an acceleration model to ADDT data.
- ADDT model checking.
- ADDT failure-time inferences.
- ADDT using an asymptotic model.

20-2

Chapter 20

Degradation Modeling and Destructive Degradation Data Analysis

Segment 1

Degradation Reliability Data and Degradation Path Models Introduction and Background 20-3

Degradation Leading to Failure

- Most failures can be traced to an underlying degradation process.
- Degradation curves can have different shapes.
- A **soft failure** occurs when the observed degradation level crosses a threshold.
- Some applications have more than one degradation variable or more than one underlying degradation process.
- Examples here have only one degradation variable and underlying degradation process.

20-4

Degradation Data

- Degradation is natural response for some reliability applications.
- Degradation data can provide considerably more reliability information than censored failure-time data (especially with few or no failures). Reduction of degradation data to failure-time data loses information.
- There can be useful reliability inferences even with 0 fail-
- Direct observation of the degradation process allows direct modeling of the failure-causing mechanism.
- Degradation data provides better justification and credibility for extrapolative acceleration models. (Modeling is closer to the physics-of-failure.)

Degradation data may be difficult or impossible to obtain.

Limitations of Degradation Data

- Obtaining degradation data may have an effect on future product degradation (e.g., taking apart a motor to measure wear).
- Substantial measurement error can diminish the information in degradation data.
- In some applications the degradation level may not correlate well with failure.

Types of Degradation Data

Percent Increase in Operating Current

for GaAs Lasers Tested at 80°C

Destructive degradation data (Chapter 20).

٩l

١0

Percent Increase in Operating Current

9

- Repeated-measures degradation data (Chapter 21).
- The underlying paths models will be the same for both types of data.
- In models for repeated measures degradation data, one or more of the parameters in assumed paths model will typically have random-parameter unit-to-unit variability.

20-7

20-8

4000

3000

1000

2000 Hours

Plot of Laser Operating Current as a Function of Time

Laser Repeated Measures Degradation Data

- . Percentage increase in operating current for GaAs lasers tested at $80\,^{\circ}\mathrm{C}.$
- Fifteen (15) devices each measured every 250 hours up to 4000 hours of operation.
- For these devices and the corresponding application, a $\mathcal{D}_f=10\%$ increase in current was the specified failure level.

20-10

General Degradation Path Models

When there are no explanatory variables, the general degradation path models has the form

$$f = h_d[\mathcal{D}(t)] = \xi(t) + \epsilon.$$

- Transformations are often used to linearize or otherwise simplify the form of a degradation model and may be suggested by physics of failure or from the data.
- \bullet $h_d[\mathcal{D}(t)]$ is a monotone increasing transformation of the observed degradation $\mathcal{D}(t).$
 - $\xi(t)$ is a monotone function (either increasing or decreasing) of (possibly transformed) time $\tau=h_t(t)$.
- The error term ϵ will be described by a location-scale distribution (e.g., a normal distribution) with parameters ($\mu=0$ and σ_{ϵ} (although technically, other distributions could also be used).

20-11

General Degradation Path Regression Models

- ullet Explanatory variables x arise from
- ▶ Accelerating variables (e.g., temperature, voltage, or pressure) in accelerated tests.
 - ► Covariates from field data.

The regression model for degradation will be

$$Y = h_d[\mathcal{D}(t)] = \xi(t, x) + \epsilon.$$

- For a fixed value of x, $\xi(t,x)$ is a monotone increasing function of (possibly transformed) time $\tau=h_t(t)$.
- The transformation for the x could be suggested from physics of failure (e.g., the Arrhenius and Power-rule models described in Chapters 18 and 19) or from the data.

Chapter 20

Univariate Increasing Degradation Curves

Possible Shapes for

Degradation Modeling and Destructive Degradation Data Analysis

Segment 2

Mechanistic Motivation for Degradation Path Models and Parameter Interpretation

20-13

20-14

80000

00009

20000 40000 Time or Measure of Usage

0.0

Convex

Concave

0.4

Amount of Degradation

0.2

Failure Level

9.0

0.8

Possible Shapes for Univariate Decreasing Degradation Curves

Possible Shapes for Univariate Degradation Curves

• Linear degradation: Degradation rate

$$\frac{d\,\xi(t)}{d\,t} = \beta_1$$

is constant over time. Degradation **level** at time t, $\xi(t)=\beta_0+\beta_1t$, is linear in t. Examples include the amount of automobile tire tread wear, mechanical wear of a bearing, or a zero-order chemical reaction.

- Concave degradation: Degradation rate decreasing in time. Degradation level increasing at a decreasing rate. Examples include chemical processes with a limited amount of material to react (e.g., a first-order chemical reaction).
- Convex degradation: Degradation rate increasing in time.
 Degradation level increasing at an increasing rate. Examples include the Paris-law crack growth model.

20-16

Motivation for the Asymptotic Degradation Path Model Simple One-Step Chemical Reaction Leading to Failure

- \bullet $A_1(t)$ is the amount of harmful material at time t that is available for reaction to failure-causing $A_2.$
- $A_2(t)$ is observable or proportional to an observable performance degradation $\mathcal{D}(t)$ at time t.
- Consider the chemical reaction:

$$A_1 \stackrel{k_1}{\longrightarrow} A_2$$

- ullet A soft failure occurs when $\mathcal{D}(t)$ exceeds the threshold \mathcal{D}_f
- The rate equations for this reaction are

$$\frac{dA_1}{dt} = -k_1 A_1 \quad \text{and} \quad \frac{dA_2}{dt} = k_1 A_1$$

at where k_1 is the **reaction rate constant**.

Asymptotic Degradation Path Model

• The solution to the system of differential equations is:

$$A_1(t) = A_1(0) \exp(-k_1 t)$$

$$A_2(t) = A_2(0) + A_1(0)[1 - \exp(-k_1 t)]$$
 (1)

where $A_1(0)$ and $A_2(0)$ are initial conditions.

The asymptote for A_2 is

$$\mathcal{D}_{\infty} = \lim_{t \to \infty} A_2(t) = A_2(0) + A_1(0).$$

ullet The expression in (1) is the basis for the statistical model

$$Y = \xi(t) + \epsilon = \beta_0 + \beta_3 [1 - \exp(-\beta_1 \tau)] + \epsilon$$

where $au=h_t(t)$ is (possibly) transformed time.

Note that if $\mathcal{D}_f > \mathcal{D}_\infty$, there will never be a failure. A simple one-step diffusion process can be modeled in the same way.

20-17

,

Some Common Degradation Path Models

Description	↑ Linear	↓ Linear	\uparrow Asymptotic	\downarrow Asymptotic
$\xi(t)$	$\beta_0 + \beta_1 \tau$	$\beta_0 - \beta_1 \tau$	$\beta_0 + \beta_3[1 - \exp(-\beta_1 \tau)]$	$\beta_0 - \beta_3[1 - \exp(-\beta_1\tau)]$
Model	1	7	т	4

- Note that $\tau=h_t(t)$. Transformed time τ is a positive power transformation of t. Consequently, τ is a monotone increasing function of t.
- \bullet Note that $\beta_1>0$ and $\beta_3>0$ but β_0 is unrestricted in sign and may be constrained to be equal to 0 or some other value.
- Models 1 and 2 describe degradation that is **linear** in τ .
- Models 3 and 4 describe degradation that is asymptotic

20-19

Degradation Model Parameter Interpretation

- $\beta_0 = \xi(0)$ is the y intercept for all of the models.
- the linear models and the differential equation reaction rate ullet eta_1 is the absolute value of the degradation rate (slope) for constant for the asymptotic models.
- The asymptote of the increasing asymptotic degradation path Model 3 for large t is

$$\xi(\infty) = \lim_{t \to \infty} \xi(t) = \beta_0 + \beta_3.$$

• The asymptote of the decreasing asymptotic degradation path Model 4 for large t is

$$\xi(\infty) = \lim_{t \to \infty} \xi(t) = \beta_0 - \beta_3.$$

20-20

Some Common Degradation Path Regression Models

Model	$\xi(t,x,x_0)$	Description
2	$\beta_0 + \beta_1 \exp[-\beta_2(x-x_0)]\tau$	↑ Linear
9	$\beta_0 - \beta_1 \exp[-\beta_2(x-x_0)]\tau$	↓ Linear
7	$\beta_0 + \beta_3 (1 - \exp\{-\beta_1 \exp[-\beta_2 (x - x_0)]\tau\}) \uparrow Asymptotic$	\uparrow Asymptotic
œ	$\beta_0 - \beta_3 (1 - \exp\{-\beta_1 \exp[-\beta_2 (x - x_0)]\tau\}) \downarrow \lambda$	\downarrow Asymptotic

- Note that $\tau=h_t(t)$. Transformed time τ is a positive power transformation of t. Consequently, au is a monotone increasing function of t.
- Models 5 and 6 describe linear degradation in au.
- Models 7 and 8 describe **asymptotic** degradation in τ .
- The factor $AF=\exp[-\beta_2(x-x_0)]$ is a time-scaling acceleration factor (scaling transformed time τ) and $\beta_2>0$.
- If there are p>1 explanatory variables, the factor $\exp[-\beta_2(x-x_0)]$ is replaced by

$$\exp\left[-\beta_2'(x-\bar{x})\right] = \exp\left[-\sum_{i=1}^p \beta_{2i}(x_i - x_{0,i})\right].$$

20-21

Degradation Regression Model Parameter Interpretation

- $\beta_0=\xi(0,x,x_0)$ is the y intercept for all of the models, is unrestricted in sign and may be constrained to be equal to 0 or some other value.
- $eta_1>0$ is the absolute value of the degradation rate (slope) at x_{0} for the linear models and the differential equation reaction rate constant at x_0 for the asymptotic models.
- Note that instead of $x_{0},$ one can use any other value of \boldsymbol{x} for this baseline value.
- For fixed x, the asymptote of the increasing asymptotic degradation path Model 7 for large t is

$$\xi(\infty, x, x_0) = \lim_{t \to \infty} \xi(t, x, x_0) = \beta_0 + \beta_3.$$

 \bullet For fixed x, the asymptote of the ${\bf decreasing}$ asymptotic degradation path Model 8 for large t is

$$\xi(\infty, x, x_0) = \lim_{t \to \infty} \xi(t, x, x_0) = \beta_0 - \beta_3.$$

20-22

Chapter 20

and Destructive Degradation Data Analysis **Degradation Modeling**

Segment 3

Destructive Degradation Background and an Example of Destructive Degradation Field Data Analysis

Destructive Degradation Data

- Some degradation measurements are destructive.
- Examples include testing materials and components such as
- ▶ Adhesive strength.
- ▶ Dielectric strength of an insulating material.
- ▼ Tensile strength of a polymer.
- ► Strength of a seal.

Adhesive Bond A Strength Field Data

- An accelerated test estimated that the 0.01 quantile of the failure time distribution of **Adhesive Bond A** would be at least 20 years
- Over the next 15 years, tens of thousands of the systems using Adhesive Bond A had been deployed in the field.
- There was concern that the large amount of extrapolation (in both the time and temperature dimension) might have provided overly optimistic lifetime estimates.
- Could the systems (originally designed for 15-year life) safely stay in service for 20 or 30 years?
- Three units were randomly selected from each of $11\,$ age groups of the deployed systems having ages between 5 and 15 years, returned to the laboratory, and strengths of the 33 adhesive bonds were measured destructively.
- Want an estimate of the fraction failing (strength falling below 40 Newtons) after both 20 and 30 years.

20-25

Linear-Linear Axes

Adhesive Bond A Strength Field Data

Adhesive Bond A Strength Field Data Square Root-Log Axes

e is an error term that describes unit-to-unit variability (and probably some measurement errors and model uncertainty

that may not be independently estimable).

The degradation distribution is:

Time t can be viewed as a special kind of explanatory vari-

Other forms could be used for $\xi(t)$.

Degradation model: $Y = \xi(t) + \epsilon$ where the path function $\xi(t)$ is monotone in t and ϵ has a location-scale distribution.

General Structure of Destructive Degradation Models

For given value of t the p quantile of the distribution of Y is

 $y_p(t) = \xi(t) + \Phi^{-1}(p) \sigma.$

 $G(y;t) = \Pr(Y \le y) = \Phi\left[\frac{y - \xi(t)}{}\right]$

20-27

Likelihood with No Explanatory Variables Degradation Model

For the data with exact observations and right-censored observations, the likelihood is •

$$L(\theta|\mathsf{DATA}) = \prod_{i=1}^n \left[\frac{1}{\sigma} \phi \left(\frac{y_i - \xi(t_i)}{\sigma} \right) \right]^{\delta_i} \times \left[1 - \Phi \left(\frac{y_i - \xi(t_i)}{\sigma} \right) \right]^{1 - \delta_i}.$$

- \boldsymbol{n} is the number of observations.
- $\xi(t)$ is the chosen path model (say one of Models 1-4).
 - The censoring indicator

$$\delta_i = egin{cases} 1 & \text{if } y_i \text{ is an exact observation} \\ 0 & \text{if } y_i \text{ is a right-censored observation.} \end{cases}$$

- $\theta = (\beta_0, \beta_1, \sigma)$ for the linear models.
- $=(\beta_0,\beta_1,\beta_3,\sigma)$ for the asymptotic models. θ

20-28

Adhesive Bond A Strength Field Data Log/Square Root Transformation Weakly Informative Prior Distribution Posterior Pairs Plot $\hat{\xi}(t) = \hat{\beta}_0 - \hat{\beta}_1 \tau$

Adhesive Bond A Strength Field Data and Fitted Model Normal Distribution Linear Path $\hat{\xi}(t) = \hat{\beta}_0 - \hat{\beta}_{1\tau}$

Adhesive Bond A Strength Field Data Bayesian Parameter Estimates Normal Distribution Linear Path Model

		Standard	95% Cred	Standard 95% Credible Interval
Parameter	Estimate	Error	Lower	Upper
β_0	4.49	0.01	4.46	4.51
β_1	0.37	0.02	0.33	0.40
σ	0.05	0.005	0.04	90.0

20-32

Adhesive Bond A Strength Field Data Residuals Versus Fitted Values

Adhesive Bond A Strength Field Data Normal Distribution Residual Probability Plot

Chapter 20

Degradation Modeling and Destructive Degradation Data Analysis

Segment 4

Failure-Time Distributions Induced from Destructive Degradation Models and Failure-Time Inferences

A General Approach to Obtaining the Failure Time Distribution for Increasing Destructive Degradation Models

For increasing degradation, the failure time T of a unit is defined to be the time that its observed degradation exceeds a critical value \mathcal{D}_{f} . The event $T \leq t$ is equivalent to observed degradation being greater than or equal to \mathcal{D}_{f} [i.e., $Y \geq h_{d}(\mathcal{D}_{f})$]. Then,

$$F(t,x) = \Pr(T \le t) = 1 - \Phi\left[\frac{h_d(\mathcal{D}_{\mathfrak{f}}) - \xi(t,x)}{\sigma}\right], \text{ for } t \ge 0.$$

$$t_p = \begin{cases} 0 & \text{if } p \le F(0,x) \\ \xi^{-1} \left[h_d(\mathcal{D}_{\mathfrak{f}}) - \sigma \Phi^{-1}(1-p)\right] & \text{if } F(0,x)
$$\text{if } F(\infty,x) < p,$$$$

where for given $x,\,\xi^{-1}(w)$ is the unique solution for t in the equation $\xi(t,x)=w.$ That is, $\xi[\xi^{-1}(w),x]=w.$

A General Approach to Obtaining the Failure Time Distribution for Decreasing Destructive Degradation Models

For decreasing degradation, $T \le t$ is equivalent to observed degradation being less than or equal to $\mathcal{D}_{\mathbf{f}}$ [i.e., $Y \le h_d(\mathcal{D}_{\mathbf{f}})$]. Then,

$$F(t,x) = \Pr(T \le t) = \Phi\left[\frac{h_d(\mathcal{D}_f) - \xi(t,x)}{\sigma}\right], \text{ for } t \ge 0.$$

$$t_p = \begin{cases} 0 & \text{if } p \le F(0,x) \\ \xi^{-1} \left[h_d(\mathcal{D}_f) - \sigma \Phi^{-1}(p)\right] & \text{if } F(0,x)
$$\text{if } F(\infty,x) < p.$$$$

20-37

Induced Failure Time Distribution for the Linear Degradation Model 2 (Decreasing Degradation)

• For Model 2 $T \le t$ is equivalent to observed degradation being less than or equal to \mathcal{D}_f [i.e., $Y \le h_d(\mathcal{D}_f)$]. Then

$$F(t) = \Pr[Y \le h_d(\mathcal{D}_{\mathfrak{f}})] = \Phi \begin{bmatrix} h_d(\mathcal{D}_{\mathfrak{f}}) - \xi(t) \\ \sigma \end{bmatrix}, \text{ for } t \ge 0.$$

 \bullet This failure time distribution is a mixed distribution with a probability ${\bf atom}$ at t=0 and probability

$$\Pr(T=0) = F(0) = \Phi \left[\frac{h_d(\mathcal{D}_{\mathbf{f}}) - \beta_0}{\sigma} \right]$$

20-38

Adhesive Bond A Estimate of Fraction Failing as a Function of Time $\hat{y}_p = \hat{\beta}_0 - \hat{\beta}_1 \tau + \hat{\sigma} \Phi_{\mathrm{norm}}^{-1}(p)$

Adhesive Bond A Lognormal Probability Plot of the Failure-Time cdf Estimate and 95% Credible Intervals

Quantiles for the Failure Time Distribution at Fixed Values of $\mathcal{D}_{\mathbf{f}}$ for Model 2

For Model 2, the p quantile is $t_p = h_t^{-1}(\tau_p),$ where

$$\tau_p = \begin{cases} 0 & \text{if } p \leq F(0) \\ \frac{1}{\beta_1} \Big[\beta_0 - h_d(\mathcal{D}_{\mathrm{f}}) + \Phi^{-1}(p) \sigma \Big] & \text{if } p > F(0), \end{cases}$$

where $F(0) = \Phi\left[\frac{h_d(\mathcal{D}_{\mathbf{f}}) - \beta_0}{\sigma}\right]$

Chapter 20

Degradation Modeling and Destructive Degradation Data Analysis

Segment 5

Background and an Example of Accelerated Destructive Degradation Testing (ADDT) and Model Building.

Accelerated Destructive Degradation Test of Adhesive Bond B

- Objective: Assess the strength of an adhesive bond as a function of time. Estimate the fraction of devices with a strength below 40 Newtons after 5 years of operation (approximately 260 weeks) at 25°C.
- The test is destructive; each unit can be measured only once.
- There were 6 right-censored observations.
- 8 units with no aging were measured at the start of the experiment.
- A total of 80 additional units were aged and measured according to a temperatures and time schedule.

20-43

Adhesive Bond B ADDT Test Plan

Number of Specimens Tested

Totals		00	31	24	25	88
	16		7	9	0	13
ped	12		∞	9	6	23
Weeks Aged	9		∞	9	4	18 23
/eek	4		0	0	9	9
>	2		∞	9	9	20
	0	∞				
Temp	O _°	1	20	09	20	Totals 8

20-44

Adhesive Bond B ADDT Data Linear-Linear Axes Scatter Plot

Adhesive Bond B ADDT Data Square Root-Log Axes Scatter Plot

20-46

Overlay of Individual Normal Distribution Fits Adhesive Bond B ADDT Data Square Root-Log Axes

$$\hat{\xi}^{[j]}(t) = \hat{\beta}_0^{[j]} + \hat{\beta}_1^{[j]}\tau, \quad j = 50, 60, 70$$

General Structure of Destructive Degradation Regression Models

- Degradation model: $Y=\xi(t,x)+\epsilon$, where for fixed x, path $\xi(t,x)$ is monotone in t and ϵ has location-scale distribution with parameters $\mu=0$ and σ .
- Other forms could be used for $\xi(t,x)$.
- Time t can be viewed as a special kind of explanatory variable for Y
- ϵ is an error term that describes unit-to-unit variability (and probably some measurement errors and model uncertainty that may not be independently estimable).
- The degradation distribution and its quantile:

$$G(y;t,x) = \Pr(Y \le y) = \Phi\left[\frac{y - \xi(t,x)}{\sigma}\right]$$

For given (t,x), the p quantile for the cdf G(y;t,x) is

$$y_p(t,x) = \xi(t,x) + \Phi^{-1}(p) \sigma.$$

20-47

Adhesive Bond B ADDT Data

Bayesian Estimates

Linear Path Normal Distribution Individual Line Fits

- For each temperature level j three individual estimates are obtained: $\hat{\beta}^{[j]}_0,\,\hat{\beta}^{[j]}_1,$ and $\hat{\sigma}^{[j]}.$
- A summary of the linear path normal distribution estimates for individual temperatures for the Adhesive Bond B data is

0.40	0.32	4.40 0.36 0.15 0.32	0.36	4.40	20°C
0.26	0.17	4.50 0.21 0.17 0.17	0.21	4.50	O°09
0.14	0.08	4.50 0.11 0.14 0.08	0.11	4.50	20° C
$\widetilde{\beta}_1^{[j]}$	$\widetilde{\beta}_1^{[j]}$	$\hat{\sigma}[j]$	$\widehat{\beta}_1^{[j]}$	$\widehat{\beta}_0^{[j]}$	Temperature
for $\widehat{eta}_{1}^{[j]}$		es	Estimates	Ш	
95% Credible Interval	95%				

20-49

Individual Degradation Rate Estimates

- The estimates $\hat{\beta}_1^{[j]}$ (slopes of the individual lines at test condition j) can be used to identify the relationship between the degradation rate and the accelerating variables.
- Taking the log of the slope in Model 6 gives

$$\log(\beta_1^{[j]}) = \log(\beta_1) - \beta_2'(x_j - \bar{x}_j)$$

the surface $\log(\hat{eta}_1^{[j]})$ versus x_j should be approximately linear in the \boldsymbol{x}_{j} if the model relating degradation rate and the accelerating variables is adequate. Then

- For a single accelerating variable x, the plot of $\log(\widehat{\beta}_1^{[J]})$ versus $x_j,$ for all values of j should be approximately
- For a vector x the plot of $\log(\hat{eta}_1^{[j]})$ versus any of the acmaining accelerating variables, should be approximately celerating variables, conditional on fixed values of the re- \blacktriangle

20-50

Adhesive Bond B ADDT Data Arrhenius Plot of Individual Degradation Rate Estimates $\beta_1^{[j]}$ versus °C Normal Distribution Estimates

20-51

Linear-Path Acceleration Model for the Adhesive Bond B Data

For the Adhesive Bond B data, the strength of the adhesive as a function of time and temperature is modeled by

$$Y_i = \xi(t_i, x_i) + \epsilon_i$$

= $\beta_0 - \beta_1 \exp[-\beta_2(x_i - x_0)]\tau_i + \epsilon_i$

where

$$Y_i = \log(\mathrm{Newtons}_i)$$

 $\tau_i = \sqrt{t_i} = \sqrt{\mathrm{Neeks}_i}$
 $x_i = 11604.52/(^{\circ}C_i + 273.15)$
 $x_0 = 50^{\circ}C$
 $\epsilon_i \sim \mathrm{NORM}(0, \sigma), \quad i = 1, \dots, n.$

Chapter 20

and Destructive Degradation Data Analysis **Degradation Modeling**

Segment 6

Fitting an Acceleration Model to ADDT Data

20-52

Likelihood for the ADDT Model with Right Censored Data

 \bullet For a sample of \boldsymbol{n} units consisting of exact failure times and right-censored observations, the likelihood can be expressed as

$$L(\theta|\mathsf{DATA}) = \prod_{i=1}^n \left[\frac{1}{\sigma} \phi \left(\frac{y_i - \xi(t_i, x_i)}{\sigma} \right) \right]^{\delta_i} \times \left[1 - \phi \left(\frac{y_i - \xi(t_i, x_i)}{\sigma} \right) \right]^{1 - \delta_i}.$$

- n is the number of observations.
- $\xi(t,x_i)$ is the chosen path model (say one of Models 5–8).
- The censoring indicator

$$\delta_i = egin{cases} 1 & ext{if } y_i ext{ is an exact observation} \ 0 & ext{if } y_i ext{ is a right-censored observation}. \end{cases}$$

- $\theta = (\beta_0, \beta_1, \beta_2, \sigma)$ for the linear models.
- $\theta = (\beta_0, \beta_1, \beta_2, \beta_3, \sigma)$ for the asymptotic models.

Adhesive Bond B Strength Data Log/Square Root Transformation Weakly Informative Prior Distribution Posterior Pairs Plot

Adhesive Bond B ADDT Data Bayesian Parameter Estimates Normal Distribution Linear Path Arrhenius Model

		Standard	95% Cred	Standard 95% Credible Interval
Parameter Estimate	Estimate	Error	Lower	Upper
β_0	4.47	0.04	4.39	4.55
β_1	0.10	0.01	0.08	0.13
β_2	0.64	90.0	0.54	0.77
σ	0.16	0.01	0.14	0.19

Estimates for the slopes (degradation rates) at each temperature are obtained from $\hat{\beta}_1^{[J]}=\hat{\beta}_1\exp\left[-\hat{\beta}_2(x-x_0)\right]$ where $x=11604.52/(^{\circ}\text{C}+273.15)$ and $x_0=50^{\circ}\text{C}$. In this case for the four temperatures of interest, the estimates are

$$\begin{array}{l} \hat{\beta}_1^{[25]} = 0.015, \quad \hat{\beta}_1^{[50]} = 0.101 \\ \hat{\beta}_1^{[60]} = 0.202, \quad \hat{\beta}_1^{[70]} = 0.388 \end{array}$$

20 - 56

Adhesive Bond B ADDT Data and Fitted Model Normal Distribution Linear Path Arrhenius Model

$$\hat{\xi}(t,x) = \hat{\beta}_0 - \hat{\beta}_1 \exp[-\hat{\beta}_2(x-x_0)]\tau$$

Adhesive Bond B ADDT Data and Fitted Model Normal Distribution Linear Path Arrhenius Model $\hat{\xi}(t,x)=\beta_0-\hat{\beta}_1\exp[-\hat{\beta}_2(x-x_0)]\tau$

Chapter 20

Degradation Modeling and Destructive Degradation Data Analysis

Segment 7

ADDT Model Checking

ADDT Model Checking Residual Plots

- Residuals versus fitted values.
- Residuals versus accelerating variables.
- Residuals versus time of exposure.
- Residuals versus observation order is useful when observations are taken sequentially in time.
- Residual probability plot.

Adhesive Bond B ADDT Data Residuals Versus Fitted Values

Adhesive Bond B ADDT Data Residuals Versus Temperature Conditions

Adhesive Bond B ADDT Data Residual Normal Distribution Probability Plot

Some Comments on the Adhesive Bond B Residuals

- The standardized residuals look approximately like a random sample from a NORM(0, 1) distribution.
- The horizontal line at 0 in the plot versus fitted values and versus temperature indicate the median of the standardized distribution under the fitted model. Then approximately 50% of the residuals should be above that line.
- There appears to be some evidence of nonconstant variance, but it is not systematic with temperature or times.

20-64

Chapter 20

Degradation Modeling and Destructive Degradation Data Analysis

Segment 8

ADDT Failure-Time Distribution Inferences

Induced Failure Time Distribution for the Linear Degradation Model 6 (Decreasing Degradation)

• For Model 6, $T \le t$ is equivalent to degradation being less than or equal to \mathcal{D}_f [i.e., $Y \le h_d(\mathcal{D}_f)$]. Then

$$F(t,x) = \Pr(T \le t) = \Pr[Y \le h_d(\mathcal{D}_t)]$$

$$= \Phi \left[\frac{h_d(\mathcal{D}_t) - \xi(t,x)}{\sigma} \right], \text{ for } t \ge 0.$$

 \bullet This failure time distribution is a mixed distribution with a probability ${\bf atom}$ at $t=0~{\rm so}$

$$\Pr(T=0,x) = F(0,x) = \Pr(Y \le h_d(\mathcal{D}_f))$$

$$= \Phi \left[\frac{h_d(\mathcal{D}_f) - \beta_0}{\sigma} \right].$$

Adhesive Bond B Estimates of Fraction Failing as a Function of Time at 25° C $\hat{y}_p = \hat{\beta}_0 - \hat{\beta}_1^{[25]}\tau + \hat{\sigma}\Phi_{\text{norm}}(p)$

Adhesive Bond B Weibull Multiple Probability Plot cdf Estimates at Test Temperatures and Use Conditions

Quantiles for the Failure Time Distribution at Fixed Values of x and $\mathcal{D}_{\mathbf{f}}$ for Model 6

For Model 6, the p quantile is $t_p=h_t^{-1}(\tau_p),$ where

$$\tau_p = \begin{cases} 0 & \text{if } p \leq F(0,x) \\ \frac{1}{\beta_1 A F} \left[\beta_0 - h_d(\mathcal{D}_{\mathfrak{f}}) + \Phi^{-1}(p)\sigma\right] & \text{if } p > F(0,x), \end{cases}$$

where

 $AF = \exp[-\beta_2(x - x_0)]$

$$F(0, x) = \Pr[Y \le h_d(\mathcal{D}_f)]$$
$$= \Phi \left[\frac{h_d(\mathcal{D}_f) - \beta_0}{\sigma} \right]$$

20-69

Adhesive Bond B Data Model Plot Estimates of Failure-Time Distribution as a Function of Temperature

Chapter 20

Degradation Modeling and Destructive Degradation Data Analysis

Segment 9

ADDT with an Asymptotic Model Adhesive Formulation K

Accelerated Destructive Degradation Test of Adhesive Formulation K

- Formulation K was a newly developed adhesive using a special additive compound that enhances performance.
- The additive degrades over time, through a diffusion process, reducing adhesive strength.
- Objective: Assess the strength of the adhesive as a function of time. Estimate the fraction of devices with a strength below 45 Newtons after 2 and 5 years of operation (approximately 104 and 260 weeks, respectively) at 25°C.
- 30 specimens were put into temperature-controlled chambers at 40, 50, and $60^{\circ}\mathrm{C}$ (total of 90 specimens).
- A specified number of units were removed and tested destructively after 3, 6, 12, 18 and 24 weeks of exposure.
- An additional 10 units with no aging were measured at the start of the experiment.

Adhesive Formulation K Test Plan

Number of Specimens Tested

ed Totals	18 24	10	6 6 30	6 6 30	9 0 30	21 12 106
Age	12		9	9	6	21
Weeks Aged	9		9	9	9	18
>	3		9	9	9	18
	0	10				10
Temp	o		40	20	09	Totals

Adhesive Formulation K ADDT Data as a Function of Temperature Linear-Linear Axes

Adhesive Formulation K ADDT Data as a Function of Temperature Square Root-Log Axes

20-73

Overlay of Individual Normal Distribution Fits Adhesive Formulation K ADDT Data Square Root-Log Axes

Adhesive Formulation K ADDT Data Asymptotic Path Normal Distribution Bayesian Parameter Estimates Individual Line Fits

- For each temperature level three individual estimates are obtained: $\hat{\beta}_0^{[j]},\,\hat{\beta}_1^{[j]},\,\hat{\beta}_3^{[j]},$ and $\hat{\sigma}^{[j]}.$
- A summary of the asymptotic path normal distribution estimates for individual temperatures for the Adhesive Formulation K ADDT data is

Interval		$\widetilde{eta}_1^{[j]}$	0.27	0.56	1.06	
95% Credible Interval	for $\widehat{eta}_{1}^{[j]}$	$\widetilde{eta}_1^{[j]}$	0.081	0.36	0.32	
		$\widehat{\sigma}[j]$	4.49 0.15 1.01 0.056 0.081	4.48 0.45 0.93 0.052	4.48 0.90 1.00 0.054 0.32	
	Estimates	$\hat{\beta}_3^{[j]}$	1.01	0.93	1.00	
	Estir	$\widehat{\beta}_1^{[j]}$	0.15	0.45	0.90	
		$\hat{\beta}_0^{[j]}$	4.49	4.48	4.48	
		Temperature	40°C	50°C	2°09	

Adhesive Formulation K ADDT Data Arrhenius Plot Individual Degradation Rate Estimates $\hat{\beta}_1^{[j]}$ versus $^\circ$ C Arrhenius Plot

20-76

Adhesive Formulation K ADDT Data Log/Square Root Transformation Weakly Informative Prior Distribution Posterior Pairs Plot

Adhesive Formulation K ADDT Data Bayesian Parameter Estimates Normal Distribution Asymptotic Path Arrhenius Model

$$Y = \beta_0 - \beta_3 [1 - \exp(-\beta_1 \exp[-\beta_2 (x - x_0)]\tau)] + \epsilon$$

90.0	0.04	0.005	0.05	σ
1.02	0.94	0.02	0.98	β_3
0.93	0.79	0.03	0.86	β_2
0.45	0.37	0.02	0.41	β_1
4.51	4.46	0.01	4.49	β_0
Upper	Lower	Error	Estimate	Parameter
95%Credible Interval	95%Cre	Standard		

Estimates for the slopes (degradation rates) at each temperature are obtained from $\hat{\beta}_1^{[j]} = \hat{\beta}_1 \exp\left[-\hat{\beta}_2(x-x_0)\right]$ where $x=11604.52/(^{\circ}\text{C}+273.15)$. In this case for the four temperatures of interest, the estimates are

$$\begin{array}{l} \hat{\beta}_1^{[25]} = 0.031, \quad \hat{\beta}_1^{[40]} = 0.154 \\ \hat{\beta}_1^{[50]} = 0.412, \quad \hat{\beta}_1^{[60]} = 1.037 \end{array}$$

20 - 80

Adhesive Formulation K ADDT Data and Fitted Model Normal Distribution Asymptotic Path Arrhenius Model $\hat{\boldsymbol{\xi}}(t) = \hat{\beta}_0 - \hat{\beta}_3 \big[1 - \exp \left(-\hat{\beta}_1 \exp [-\hat{\beta}_2 (x - x_0)] \tau \right) \big]$

Adhesive Formulation K ADDT Data Residuals Versus Fitted Values

Adhesive Formulation K ADDT Data Normal Distribution Residual Probability Plot

Induced Failure Time Distribution for the Asymptotic Model 8 (Decreasing Degradation)

For Model 8, $T \le t$ is equivalent to observed degradation less than $\mathcal{D}_{\mathbf{f}}$ [i.e., $Y \le h_d(\mathcal{D}_{\mathbf{f}})$]. Then

$$F(t,x) = \Pr[Y \le h_d(\mathcal{D}_{\mathfrak{f}})] = \Phi \left[\frac{h_d(\mathcal{D}_{\mathfrak{f}}) - \xi(t,x)}{\sigma} \right], \text{ for } t \ge 0.$$

This failure time distribution is a mixed distribution with probability ${\bf atoms}$ at t=0 and $t=\infty$ with probabilities

$$\Pr(T=0,x) = F(0,x) = \Phi \begin{bmatrix} h_d(\mathcal{D}_{\mathbf{f}}) - \xi(0,x) \\ \sigma \end{bmatrix} = \Phi \begin{bmatrix} h_d(\mathcal{D}_{\mathbf{f}}) - \beta_0 \\ \sigma \end{bmatrix}$$

$$\Pr(T=\infty,x) = 1 - F(\infty,x) = 1 - \Phi\left[\frac{h_d(\mathcal{D}_{\mathfrak{f}}) - (\beta_0 - \beta_3)}{\pi}\right].$$

Adhesive Formulation K Estimate of Fraction Failing as a Function of Time $\begin{array}{l} \textbf{a} & \textbf{Eulo} \\ \textbf{b} \\ \textbf{b} \\ \textbf{e} \\ \textbf$

Adhesive Formulation K Lognormal Multiple Probability Plot cdf Estimates at Test Temperatures and Use Conditions

Quantiles for the Failure Time Distribution at Fixed Values of x and $\mathcal{D}_{\mathbf{f}}$ for Model 8

 \bullet For Model 8, the p quantile is $t_p = h_t^{-1}(\tau_p),$ where

$$\tau_p = \begin{cases} 0 & \text{if } p \leq F(0,x) \\ \frac{1}{\beta_1 A F} \log \left[\frac{\beta_3}{h_d(D_{\mathfrak{f}}) - \Phi^{-1}(p)\sigma - (\beta_0 - \beta_3)} \right] & \text{if } F(0,x) F(\infty,x), \end{cases}$$

where

and

$$AF = \exp[-\beta_2(x - x_0)]$$

$$F(0, x) = \Phi\begin{bmatrix} h_d(\mathcal{D}_t) - \beta_0 \\ \sigma \end{bmatrix}$$

$$F(\emptyset, x) = \Phi \begin{bmatrix} \sigma \\ \sigma \end{bmatrix}$$

$$F(\infty, x) = \Phi \begin{bmatrix} h_d(\mathcal{D}_t) - (\beta_0 - \beta_3) \\ \sigma \end{bmatrix}$$

20-87

Adhesive Formulation K Model Plot Estimates of Failure Time Distribution as a Function of Temperature

References

Meeker, W. Q., L. A. Escobar, and F. G. Pascual (2021). Statistical Methods for Reliability Data (Second Edition). Wiley. [1]