《数字信号处理》自测题

秦舒雅

2019年12月30日

一、填空题(每空 2 分, 共 40 分)

	已知 A/D 转换器的抽样周期 $T = 0.1 \mathrm{s}$,那么要使得信号可以复原,模拟信号的最高截止频率为 (s) ;如果以该抽样周期得到的数字信号的数字频率为 π ,那么对应的模拟信号的频率是 (Hz) .
	虚信号满足 $x(-n) = -x(n)$,那么其傅里叶变换 $X(e^{j\omega})$ 的虚部等于
	信号 $x(n) = 7\sin\left(\frac{5}{4n} + \frac{\pi}{2}\right)$ (填周期或非周期) 信号. 如果是周期信号,则最小周期是 (非周期信号请填没有).
	第一类线性相位 FIR 滤波器的 h(n) 应满足; 第二类线性相位 FIR 滤波器的 h(n) 应足
	信号 $x(n) = \{1, \underline{1}, 5, 2\}$ 的能量是 左序列(填"是"或"否")为反因言号.
6.	信号 $x(n) = \{5, 7, 11\}$ 用单位脉冲信号及其加权为 $x(n) =$
	系统的输入输出满足 $y(n)=T[x(n)]=\sum_{k=-\infty}^n 3x(k)$,那么系统是(填因果与非因果)充,(填稳定与不稳定)系统.
8.	已知因果信号 $h(n)$ 的共轭对称部分 $h_e(n) = \{3, 2, \underline{3}, 2, 3\}$,那么 $h(n) = \underline{\hspace{1cm}}$.
9.	$\left(\frac{1}{11}\right)^n u(n)$ 的 z 变换为
	. 已知一个因果系统 $h(n)$ 如图 1 所示,若需要设计 FIR 滤波器,其阶数 $N = $; 延迟
	$x_1(n) = \{2, 3, 7, 1\}, x_2(n) = \{\underline{1}, 4, 3, 2\}, 则 x_1(n) ④ x_2(n) =$ 当 $L =$ 时, $n), x_2(n)$ 的循环卷积与其卷积相等.
	系统的输入输出满足 $y(n) = T[x(n)] = 5x(n) + 3$,那么系统是(填线性与非线性)系(填时变与时不变)系统.

图 1:

二、(15分)

图 2 为 8 点 DIT--FFT 的示意图,输入 $x(n) = \{0,1,0,1,0,1,0,1\}$,请填写 (1)-(18) 的数字,并将答案填入相对应表格的空里.(可不写计算过程)

1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18

三、(15分)

设计一个巴特沃斯高通滤波器,要求通带截止频率 $f_{\rm p}=24\,{\rm kHz}$,通带最大衰减 $a_{\rm p}=3\,{\rm dB}$,阻带截止 频率 $f_{\rm s}=8\,{\rm kHz}$,阻带最小衰减 $a_{\rm s}=25\,{\rm dB}$.求出滤波器阶数以及实际滤波器的 $H_{\rm a}(s)$.已知:巴特沃斯归一化函数 $G(p)=\frac{1}{B(p)}$,

$$B(p) = \begin{cases} p+1, & N=1\\ p^2 + 1.414p + 1, & N=2\\ (p+1)(p^2 + p + 1), & N=3\\ \dots & \dots \end{cases}$$

四、讨论(15分)

有一线性非时变系统, 其系统函数为:

$$H(z) = \frac{1}{(1 - 0.5z^{-1})(1 - 0.8z)},$$

讨论系统的因果性和稳定性、并求出相应的单位取样响应 h(n).

五、(15分)

某一线性时不变因果系统满足以下条件:

- (1) 输入信号 $x_1(n) = 6^n$,系统的零状态响应为零;
- (2) 输入信号 $x_2(n) = u(n)$,系统的零状态响应 $y_2(n) = nu(n) + \alpha u(n)$.

求系统的单位响应 h(n) 及 α .