Synthesis of Digital Systems COL 719

Part 8: Static Timing Analysis

Instructor: Preeti Ranjan Panda

Department of Computer Science and Engineering
Indian Institute of Technology Delhi

What is Timing Analysis?

- Compute the delay of a combinational circuit
 - Worst case
- Why?
 - So we can decide clock rate
- Why not just simulate?

Timing Analysis

- Simulation
 - High Accuracy
 - Functional Verification
 - Limited Coverage
 - Slow
 - Limited Capacity
 - Needs Test Patterns

- Timing Analysis
 - Reasonable Accuracy
 - No Functional Verification
 - High Coverage
 - Fast
 - High Capacity
 - No Test Pattern

Simple Timing Model: Unit Delay

- Gate delay = 1 unit
- Same gate delay from all input pins
- Same delay for up and down transitions
- Same delay for all loads
- No wire delay
- All inputs ready at t=0

Delay Graph

Levelising Algorithm

while all nodes not yet labelled for all nodes v If PRED(v) are assigned level < L Level (v) = L L = L + 1

Scheduling

Similar to ASAP

Level is Estimate of Signal Arrival Time

Critical Path found by Backtracking

Longest delay from any input to any output (on a sensitisable path)

Longest delay from primary inputs to each node is known Find critical path by tracing back

Start at output

Recursively visit predecessor with highest level

Relaxing Assumptions: Fixed Delay for Gates

Signal Arrival Times

Use same algorithm add delay (edge-wt) instead of incrementing level Use latest input transition

Other Extensions

- Different pin-to-pin delays within a gate
 - use same graph, but different edges representing same gate have different delays
- Finding earliest arrival times
 - same algorithm, use MIN instead of MAX
- Finding shortest path
 - backtrace on delay graph using min. arrival times
- Non-zero arrival times at primary inputs
 - initialise appropriately

Required Arrival Times

- Also relevant to discuss required arrival times
 - Earliest time when a signal is required to arrive at a node
- Algorithm
 - start at output node
 - traverse delay graph backwards

Slack

Slack = (Earliest Required Arrival Time) - (Latest Arrival Time)

Slack indicates Sensitivity of Circuit to Signal

- If positive Slack T at node V
 - Signal at V can be delayed by T without affecting critical path of circuit
- If Slack = 0, V is on critical path
- If negative Slack at V
 - Signal will not meet requirement: will arrive too late
 - Indicates desired speed-up

False Paths

- Longest path is A-C-E-F-G
 - delay = 1+1+3+3 = 8
- Can this path be sensitised?
 - keep other inputs constant
 - change in A should cause change in G

Path Sensitisation

Path Sensitisation

False Paths

- Longest path A-C-E-F-G is a FALSE PATH
 - It can never be sensitised
- Critical Path is B-D-F-G
 - delay = 1 + 3 + 3 = 7
- Necessary to examine the logic!
 - cannot treat the gates as black boxes

Sequential Circuit Timing

- Earlier analysis valid for combinational logic part
- Flip-flop timing has to be considered

Flip-flop Timing

- D-Flip-flop operation
 - On rising edge of clock, D propagates to Q after a delay T_{clk→q}
- Timing constraints
 - D must stabilise T_{setup} before clock edge
 - D must remain stable for T_{hold} after clock edge

Sequential Circuit Timing: Max. Delay Constraint

 $T_{clk\rightarrow q}$ + Critical Path + T_{setup} < Clock Period

Sequential Circuit Timing: Min. Delay Constraint

 $T_{clk \rightarrow q}$ + Shortest Path Delay > T_{hold}

Delay Modeling: Extensions

- Variable gate delays
 - depends on output load
 - depends on input slew
- Unequal rising and falling transitions
 - depends on transistor types
- Significant wire delays
 - wire capacitance needs to be modelled