Adversarial Search: Playing Games

CS3243: Introduction to Artificial Intelligence – Lecture 7

Contents

- 1. Administrative Matters
- 2. Reviewing Search Problems
- 3. Adversarial Search Problems (i.e., Games)
- 4. Optimal Decisions via Minimax
- 5. α - β Pruning
- 6. Heuristic Minimax

Administrative Matters

Graded Assessments

- Marks on Gradebook
 - 7 diagnostic quizzes (up to 7%)
 - DQ0 DQ6
 - 4 tutorial assignments (4%)
 - TA1 TA4
 - Requires tutorial attendance
 - 1 project (10%)
 - Project 1
- Issues with marks
 - Check with your tutor

Midterm & Project 2

- Midterm Examination
 - Midterm Examination Review in this week's tutorial
 - No tutorial assignment due this week
 - Refer to LumiNUS > Module Details > Schedule
- Project 2 FAQ session
 - Today (7 March)
 - 1600-1700 hrs
 - LumiNUS > Conferencing > CS3243 Project 2 Consultation
 - Consultation will include discussion on general problem formulation

Upcoming...

- Deadlines
 - DQ7 (released today)
 - Two attempts
 - Due this Sunday (13 March), 2359 hrs
 - TA6 (released today)
 - Due next Sunday (20 March), 2359 hrs
 - Project 2
 - Due next Sunday (20 March), 2359 hrs

Reviewing Search Problems

So Far...

- Path search (path planning)
 - Search for a path from start to goal
 - Complete: finds a solution or says when there isn't one
 - Optimal: path cost of path found is minimal
 - Uninformed
 - Systematically search all paths via general search problem formulation
 - Informed
 - Uses a heuristic to estimate cost from any state to state goal
- Goal search
 - Focus on goal and ignore path
 - Completeness consideration only
 - Local search
 - Uses heuristic to guide search to goal (uses restarts; many variants)
 - Constraint satisfaction problem
 - Uses specific search problem formulation and shrinks search space via inference

Games

Games and Search

- Can we solve games using existing methods?
 - In our searching thus far, we control all actions
 - All actions taken are determined by our agent
 - With games, your opponent decides actions too...
 - Multi-agent problem
 - Conventional planning ⇒ wasted computation since opponent can spoil your plans

Games and Search

- What is a game anyway?
 - Assume two players
 - Zero-sum game
 - Winner gets paid, and loser pays
 - We define
 - MAX player player 1, who wants to maximise value (agent)
 - MIN player player 2, who want to minimise value (opponent who wants agent to lose)
- General idea behind the search problem
 - Simulate play against utility maximising opponent
 - Find a strategy i.e., define a move for every possible opponent response

Search Problem Formulation for Games

Formulating Games

- State representation
 - As per general formulation

- TO-MOVE(s)
 - Returns p, the player to move in state s
- ACTIONS(s)
 - Legal moves in state s

- RESULT(s, a)
 - The transition model; returns resultant state when taking action a at state s
- IS-TERMINAL(s)
 - Returns TRUE when game is over and FALSE otherwise
 - States where game has ended are called terminal states
- UTILITY(s, p)
 - Defines the final numeric value to player p when the game ends in terminal state s

Note on Utility

- Given zero-sum games
 - At terminal state s
 - UTILITY(MAX,s) + UTILITY(MIN,s) = 0
- Tic-Tac-Toe example
 - X (agent) wins
 - UTILITY(s_i , MAX) = 1
 - UTILITY(s_i, MIN) = -1
- O (opponent) wins
 - UTILITY(s_i , MAX) = -1
 - UTILITY(s_j , MIN) = 1

- Draw
 - UTILITY(s_k , MAX) = 0
 - UTILITY(s_k , MIN) = 0

XOX

Game Trees

Example Game Tree

- More on environment characteristics
 - 2-player
 - Deterministic
 - Turn-taking
- Zero-sum implications
 - Loser for every winner
 - Agent utilises sum to zero
 - Also considered constant-sum game
 - Completely adversarial game

Another Example: Game of NIM

- Several piles of sticks are given
 - Represent the configuration of piles by a monotone sequence of integers
 - Example: (1,3,5)
 - With each turn, a player may remove any number of sticks from ONE pile
 - Example:
 - Remove 4 sticks from last pile (of 5 sticks) ⇒ (1,3,5) becomes (1,1,3)
 - The player who takes the last stick loses
- Let's try...
 - Represent the NIM game (1,2,2) as a game tree

Game of NIM: (1,2,2) Game Tree

DFS Traversal with Backwards induction on utility

Strategies

Player Strategies

- A strategy s for player i:
 - What will *player i* do at every node of the game tree that they make a move in?
 - Need to specify behaviour in states that may never be reached!
- Winning strategy

A strategy s_1^* for Player 1 is called winning if for any strategy s_2 by Player 2, the game ends with Player 1 as the winner.

Non-losing strategy

A strategy t_1^* for Player 1 is called non-losing if for any strategy s_2 by Player 2, the game ends in either a tie or a win for Player 1.

Optimal Strategy at Node - Minimax

```
Minimax(s) = \begin{cases} Utility(s, \text{To-Move}(s)) \text{ if Is-Terminal}(s) \\ \max_{a \in \text{Actions}(s)} \text{Minimax}(\text{Result}(s, a)) \text{ if To-Move}(s) = \text{MAX} \\ \min_{a \in \text{Actions}(s)} \text{Minimax}(\text{Result}(s, a)) \text{ if To-Move}(s) = \text{MIN} \end{cases}
```

Intuitively

- MAX chooses move to maximise the minimum payoff
 - MIN chooses at successors
- MIN chooses move to minimise the maximum payoff
 - MAX chooses at successors

Questions on the Lecture so far?

- Was anything unclear?
- Do you need to clarify anything?

- Channels
 - Verbally on Zoom
 - On Archipelago
 - Via Zoom Chat

DR <u>https://archipelago.rocks/app/resend-invite/29374922712</u>

Minimax Algorithm Properties

- Complete?
 - Yes (if game tree is finite)
- Optimal?
 - Yes (optimal gameplay)
- Time
 - O(bm)
- Space
 - O(bm)

- Minimax runs in time polynomial in tree size
- Returns a subgame perfect Nash Equilibrium
 - I.e., the best action at every node

Are we done?

Backwards Induction

- Game trees are massive
 - Chess has a massive game tree
 - 10¹²³ nodes
 - In comparison, planet Earth has about 10⁵⁰ atoms ...
- Impossible to expand the entire tree
- Have to find ways to shrink the search tree
 - We've seen this before
 - Common theme in search

α - β Pruning

α - β Pruning - General Idea

- Basic idea
 - Don't explore moves that would never be considered
- Maintain bounds on values seen thus far while searching
 - Lower bound α of MAX's values
 - Upper bound β of MIN's values
- Prune subtrees that will never affect Minimax decision

α - β Pruning – Example Trace

α - β Pruning – Example Trace

α - β Pruning – Tic-Tac-Toe Example

α - β Pruning

MAX node n

- $\alpha(n)$ = highest observed value found on path from n
- Initially $\alpha(n) = -\infty$

- MIN node n

- $\beta(n)$ = lowest observed value found on path from n
- Initially $\beta(n) = +\infty$

Pruning rules

- Given a MIN node n, stop searching below n if
 - Some MAX ancestor i (of n) with $\alpha(i) \ge \beta(n)$
- Given a MAX node n, stop searching below n if
 - Some MIN ancestor i (of n) with β (i) $\leq \alpha$ (n)

MIN will choose β (n) or lower at n, but ancestor MAX will NEVER choose the subtree at n since at i, there is a better option with higher value α (i)

MAX will choose $\alpha(n)$ or higher at n, but ancestor MIN will NEVER choose the subtree at n since at i, there is a better option with lower value $\beta(i)$

α - β Pruning Analysis

- Pruning a branch never affects the final outcome
- Good move ordering improves effectiveness of pruning
 - "Perfect" ordering
 - Time complexity O(b^{m/2})
 - Good pruning strategies allow us to search twice as deep!
 - Example: Chess
 - Simple ordering gets you close to best-case result
 - Checks
 - Take pieces
 - Forward moves
 - Backwards move
- Expansion-order heuristics will improve the search
- Random ordering gives complexity O(b^{3m/4}) for b < 1000

Issue with α - β Pruning

Original Problem

Most games have very large game trees

Solution

 $-\alpha$ - β pruning can remove large parts of search trees

Unresolved Issue

- Maximum depth of tree
 - Backwards induction works backwards from terminal states
 - Still have to traverse to a terminal states
- Standard solution Heuristic Minimax
 - Cutoff test e.g., depth limit (DLS)
 - Evaluation function estimates expected utility of state

Heuristic Minimax

Heuristic Minimax Value

```
Minimax(s) = \begin{cases} Utility(s, To-Move(s)) \text{ if Is-Terminal}(s) \\ \max_{a \in Actions(s)} Minimax(Result(s, a)) \text{ if To-Move}(s) = MAX \\ \min_{a \in Actions(s)} Minimax(Result(s, a)) \text{ if To-Move}(s) = MIN \end{cases}
H-Minimax(s, d) = \begin{cases} Eval(s, To-Move(s)) \text{ if Cutoff-Test}(s, d) \\ \max_{a \in Actions(s)} H-Minimax(Result(s, a), d + 1) \text{ if To-Move}(s) = MAX \\ \min_{a \in Actions(s)} H-Minimax(Result(s, a), d + 1) \text{ if To-Move}(s) = MIN \end{cases}
```

Run Minimax until depth d; then start using the evaluation function to choose nodes

Evaluation Functions – Checkers Example

Evaluation Functions – Checkers Example

Evaluation Functions – Checkers Example

Pretend these are terminal nodes with values given by f(.)

Evaluation Functions

- An evaluation function is a mapping from game states to real values
 f: S → R
- Default evaluation function:

$$f(s) = \begin{cases} Utility(s, MAX) & \text{if } Is - Terminal(s) \\ 0 & \text{otherwise} \end{cases}$$

No information on quality of non-terminal nodes

- Determine a function to estimate value that is strongly correlated to actual chances of winning
 - Modelling problem (similar to heuristic design problem from informed/local search)

Evaluation Functions

- Determine important features/variables
- Chess example
 - # of pieces (NPcs)
 - # of queens (NQns)
 - # of controlled squares (CtlSqs)
 - # of threatened opponent pieces (ThrPcs)

– ...

• $f(n) = w_1 \times (NPcs) + w_2 \times (NQns) + w_3 \times (CtlSqs) + w_4 \times (ThrPcs)$

Determine values for w₁, ..., w₄

Cutting Off Search

- Modify Minimax or α - β Pruning algorithms by replacing
 - Is-Terminal(s) with Cutoff-Test(s, d)
 - Utility(s, p) with Eval(s, p)
- Can replace DLS strategy with IDS

Stochastic Games

- Many games have randomisation
 - Settlers of Catan
 - Poker
- How do we deal with uncertainty?
 - Can still use Minimax
 - Search tree is larger

Calculate expected value of a state (MUCH harder than deterministic games)

Questions on the Lecture?

- Was anything unclear?
- Do you need to clarify anything?

- Channels
 - Verbally on Zoom
 - On Archipelago
 - Via Zoom Chat

OR https://archipelago.rocks/app/resend-invite/29374922712