```
In [1]: dna <- read.table("hcmv.txt", header = T)
head(dna)</pre>
```

location
177
1321
1433
1477
3248
3255

Random Scatter

Warning message:

"package 'ggplot2' was built under R version 3.6.2"

Palindrome locations

1st Generation

• • •	
	<u> </u>
2nd Generation	
-#####################################	
	•

3rd Generation

4th Generation

5th Generation

Location and Spacing

I used sample 2 (two) and dna\$location to compare. Feel free to change the variable and use other samples.

```
In [8]: #Spacing between consecutive palindromes: data 1
          all <- dna$location
          spaces <- list()</pre>
          for (i in seq(length(all) - 1)) {
              spaces[[i]] <- (all[[i + 1]] - all[[i]])</pre>
 In [9]: #Sum of consecutive pairs: data 1
          pairs <- list()</pre>
          for (i in seq(length(all) - 1)) {
              pairs[[i]] <- (all[[i]] + all[[i + 1]])</pre>
          }
In [10]: #Sum of consecutive triplets: data 1
          trip <- list()</pre>
          for (i in seq(length(all) - 2)) {
              trip[[i]] <- (all[[i]] + all[[i + 1]] + all[[i + 2]])</pre>
 In [ ]:
In [11]: #Spacing between consecutive palindromes: sample 2
          two <- sort(two)
          spaces2 <- list()</pre>
          for (i in seq(length(two) - 1)) {
              spaces2[[i]] <- (two[[i + 1]] - two[[i]])</pre>
In [12]: #Sum of consecutive pairs: sample 2
          pairs2 <- list()</pre>
          for (i in seq(length(two) - 1)) {
              pairs2[[i]] <- (two[[i]] + two[[i + 1]])</pre>
```

```
In [14]: #Spacing between consecutive palindromes: sample 1 and 2 compare
    hist(unlist(spaces, use.names=F), breaks=85, col=rgb(1,1,0,0.7), main="Histogram hist(unlist(spaces2, use.names=F), breaks=85, col=rgb(0,1,1,0.4), add=T)
    legend("topright", c("data", "sample2"), col=c(rgb(1,1,0,0.7), rgb(0,1,1,0.4)), ]
```

Histogram of data and sample 2


```
In [15]: #Sum of consecutive pairs: sample 1 and 2 compare

hist(unlist(pairs, use.names=F), breaks=85, col=rgb(1,1,0,0.7), main="Histogram of hist(unlist(pairs2, use.names=F), breaks=85, col=rgb(0,1,1,0.4), add=T)
legend("topright", c("data", "sample2"), col=c(rgb(1,1,0,0.7), rgb(0,1,1,0.4)), ]
```

Histogram of data and sample 2


```
In [16]: #Sum of consecutive triplets: sample 1 and 2 compare

hist(unlist(trip, use.names=F), breaks=85, col=rgb(1,1,0,0.7), main="Histogram of hist(unlist(trip2, use.names=F), breaks=85, col=rgb(0,1,1,0.4), add=T)
legend("topright", c("data", "sample2"), col=c(rgb(1,1,0,0.7), rgb(0,1,1,0.4)), ]
```

Histogram of data and sample 2

Count

with 10 equal bins of palindrome locations constructed.

Distribution of DNA location data

Since there are 296 palindromes, and I divided into 10 bins, we would expect to see 29.6 palindromes per bin. Looking at the population and the sample data, we can conclude that the expected value is close to the actual values for both.

```
In [18]: #Group by each bin: DNA data
breaks <- seq(0, 229354, by=229354/10)
  tags <- c('1', '2', '3', '4', '5', '6', '7', '8', '9', '10')
  group <- cut(dna$location, breaks, include.lowest=T, right=F, labels=tags)
  table_dna <- as.matrix(table(group))
  colnames(table_dna) <- 'observed'
  rep <- c(rep(29.6, 10))
  expected = rep
  table_dna <- cbind(table_dna, expected)</pre>
```

```
In [19]: #Distribution of DNA location data sample 2 by counts

hist(two, breaks = seq(0, 229354, by=229354/10),
    main = 'Distribution of DNA location data sample 2',
    xlab = "Palindrome Locations",
    xlim=c(0, 250000),
    ylim=c(0,40))
```

Distribution of DNA location data sample 2

As did in the lecture, we divide the CMV DNA into nonoverlapping regions of length 3000/4000/4500/6000 bases, with the CMV DNA 229354 letters long.

```
In [20]: homog_pois_process <- function(length,df){
    interval <- 229354 %/% length #number of intervals
    x <- 294/interval # Lambda of pois

    value_counts <- as.data.frame(table(cut(df$location,breaks=seq(1,229354,by=46)))
    res = as.data.frame(value_counts)
    res1 = as.data.frame(table(res$Freq))

    expected <- (interval*dpois((as.integer(res1$Var1)),lambda=x)))
    res1$exp <- expected

    names(res1) <- c('Palindrome_Counts','Number_Observed','Number_Expected')
    return (list(x,res,res1))
}</pre>
```

In [21]: homog_pois_process(3000,dna)[3]

1.	Palindrome_Counts	Number_Observed	Number_Expected
	1	5	6.1420509
	2	2	11.8800196
	3	8	15.3189726
	4	10	14.8150590
	5	9	11.4621772
	6	8	7.3900880
	7	5	4.0839960
	8	4	1.9748270
	9	4	0.8488292
	11	1	0.3283629
	14	1	0.1154769

In [22]: homog_pois_process(4000,dna)[3]

1.	Palindrome_Counts	Number_Observed	Number_Expected
	1	5	1.6916173
	2	2	4.3625919
	3	8	7.5005966
	4	10	9.6718219
	5	9	9.9772478
	6	8	8.5769324
	7	5	6.3198449
	8	4	4.0746368
	9	4	2.3351720
	11	1	1.2044571
	14	1	0.5647694

In [23]: homog_pois_process(4500,dna)[3]

1.	Palindrome_Counts	Number_Observed	Number_Expected
	1	5	0.8216669
	2	2	2.4157006
	3	8	4.7347732
	4	10	6.9601166
	5	9	8.1850971
	6	8	8.0213951
	7	5	6.7379719
	8	4	4.9524094
	9	4	3.2355741
	11	1	1.9025176
	14	1	1.0169821

```
In [24]: homog_pois_process(6000,dna)[3]
```

1.	Palindrome_Counts	Number_Observed	Number_Expected
	1	5	0.1283156
	2	2	0.4963788
	3	8	1.2801348
	4	10	2.4760503
	5	9	3.8313620
	6	8	4.9404405
	7	5	5.4604868
	8	4	5.2808655
	9	4	4.5396914
	11	1	3.5122876
	14	1	2.4703649

Perform chi square test on each case

```
In [25]: | chi_sq_test <- function(result){</pre>
             lambda = as.numeric(result[1])
             obj = as.data.frame(result[3])
             p=c( dpois(0:9,lambda), 1-sum(dpois(0:9,lambda)))
             return (chisq.test(obj$Number_Observed,p=p))
In [26]: chi_sq_test(homog_pois_process(3000,dna))
         Warning message in chisq.test(obj$Number_Observed, p = p):
         "Chi-squared approximation may be incorrect"
                 Chi-squared test for given probabilities
         data: obj$Number Observed
         X-squared = 20.278, df = 10, p-value = 0.02673
In [27]: | chi_sq_test(homog_pois_process(4000,dna))
         Warning message in chisq.test(obj$Number_Observed, p = p):
         "Chi-squared approximation may be incorrect"
                 Chi-squared test for given probabilities
         data: obj$Number Observed
         X-squared = 74.648, df = 10, p-value = 5.571e-12
```

```
In [28]: chi sq test(homog pois process(4500,dna))
         Warning message in chisq.test(obj$Number Observed, p = p):
          "Chi-squared approximation may be incorrect"
                  Chi-squared test for given probabilities
         data: obj$Number Observed
         X-squared = 171.19, df = 10, p-value < 2.2e-16
In [29]: chi_sq_test(homog_pois_process(6000,dna))
         Warning message in chisq.test(obj$Number Observed, p = p):
          "Chi-squared approximation may be incorrect"
                  Chi-squared test for given probabilities
         data: obj$Number Observed
         X-squared = 1147.2, df = 10, p-value < 2.2e-16
         Perform same test on random samples
In [39]:
         sp1 = data.frame('location' = one)
         sp2 = data.frame('location' = two)
         sp3 = data.frame('location' = three)
In [40]: homog_pois_process(4000,sp1)[3]
           1 Palindrome_Counts Number_Observed
                                               Number_Expected
                             0
                                             1
                                                      1.6916173
                             1
                                             2
                                                      4.3625919
                             2
                                             4
                                                      7.5005966
                             3
                                             6
                                                      9.6718219
                             4
                                            11
                                                      9.9772478
                             5
                                             8
                                                      8.5769324
```

8

10

2

2

6.3198449

4.0746368

2.3351720

1.2044571

0.5647694

6 7

8

9

10

In [41]: homog_pois_process(6000,sp2)[3]

1.	Palindrome_Counts	Number_Observed	Number_Expected
	0	1	0.1283156
	1	1	0.4963788
	2	4	1.2801348
	3	8	2.4760503
	4	7	3.8313620
	5	14	4.9404405
	6	8	5.4604868
	7	4	5.2808655
	8	6	4.5396914
	9	1	3.5122876
	10	2	2.4703649
	11	1	1.5927353

In [42]: homog_pois_process(6000,sp3)[3]
 chi_sq_test(homog_pois_process(6000,sp3))

1.	Palindrome_Counts	Number_Observed	Number_Expected
	1	2	0.1283156
	2	3	0.4963788
	3	8	1.2801348
	4	11	2.4760503
	5	13	3.8313620
	6	4	4.9404405
	7	8	5.4604868
	8	5	5.2808655
	9	1	4.5396914
	11	1	3.5122876
	12	1	2.4703649

Warning message in chisq.test(obj\$Number_Observed, p = p):
"Chi-squared approximation may be incorrect"

Chi-squared test for given probabilities

data: obj\$Number_Observed
X-squared = 359.84, df = 10, p-value < 2.2e-16</pre>

Cluster

```
In [43]: df = as.data.frame(homog_pois_process(4500,dna)[2])
           df
                                    2
               (4.4e+04,4.8e+04]
               (4.8e+04,5.2e+04]
                                    5
               (5.2e+04,5.6e+04]
                                    8
                (5.6e+04,6e+04]
                                    2
                (6e+04,6.4e+04]
                                    9
               (6.4e+04,6.8e+04]
                                    6
               (6.8e+04,7.2e+04]
                                    4
               (7.2e+04,7.6e+04]
                                    9
                (7.6e+04,8e+04]
                (8e+04,8.4e+04]
                                    1
               (8.4e+04,8.8e+04]
                                    7
               (8.8e+04,9.2e+04]
                                    7
               (9.2e+04,9.6e+04]
                                   14
```

In [49]: barplot(df\$Freq, ylab='Freq', main='Palindrome Counts', xlab='Base Pairs')

Base Pairs

In [47]: df3 = as.data.frame(homog_pois_process(6000,sp3)[2])
df3

Var1	Freq
(1,4e+03]	4
(4e+03,8e+03]	5
(8e+03,1.2e+04]	4
(1.2e+04,1.6e+04]	7
(1.6e+04,2e+04]	3
(2e+04,2.4e+04]	5
(2.4e+04,2.8e+04]	11
(2.8e+04,3.2e+04]	6
(3.2e+04,3.6e+04]	4
(3.6e+04,4e+04]	6
(4e+04,4.4e+04]	4
(4.4e+04,4.8e+04]	8
(4.8e+04,5.2e+04]	4
(5.2e+04,5.6e+04]	3
(5.6e+04,6e+04]	5
(6e+04,6.4e+04]	7
(6.4e+04,6.8e+04]	7
(6.8e+04,7.2e+04]	2
(7.2e+04,7.6e+04]	4
(7.6e+04,8e+04]	5
(8e+04,8.4e+04]	5
(8.4e+04,8.8e+04]	8
(8.8e+04,9.2e+04]	3
(9.2e+04,9.6e+04]	8
(9.6e+04,1e+05]	3
(1e+05,1.04e+05]	12
(1.04e+05,1.08e+05]	5
(1.08e+05,1.12e+05]	4
(1.12e+05,1.16e+05]	5
(1.16e+05,1.2e+05]	5
(1.2e+05,1.24e+05]	9
(1.24e+05,1.28e+05]	6
(1.28e+05,1.32e+05]	3
(1.32e+05,1.36e+05]	4

Var1	Freq
(1.36e+05,1.4e+05]	2
(1.4e+05,1.44e+05]	3
(1.44e+05,1.48e+05]	4
(1.48e+05,1.52e+05]	7
(1.52e+05,1.56e+05]	5
(1.56e+05,1.6e+05]	5
(1.6e+05,1.64e+05]	5
(1.64e+05,1.68e+05]	7
(1.68e+05,1.72e+05]	8
(1.72e+05,1.76e+05]	1
(1.76e+05,1.8e+05]	3
(1.8e+05,1.84e+05]	7
(1.84e+05,1.88e+05]	4
(1.88e+05,1.92e+05]	8
(1.92e+05,1.96e+05]	7
(1.96e+05,2e+05]	4
(2e+05,2.04e+05]	5
(2.04e+05,2.08e+05]	5
(2.08e+05,2.12e+05]	6
(2.12e+05,2.16e+05]	3
(2.16e+05,2.2e+05]	2
(2.2e+05,2.24e+05]	7
(2.24e+05,2.28e+05]	1

In [51]: barplot(df3\$Freq, ylab='Freq', main='Palindrome Counts Sample 3', xlab='Base Pair

Palindrome Counts Sample 3

Base Pairs

In [53]: as.data.frame(homog_pois_process(4000,dna)[2])

Var1	Freq
(1,4e+03]	7
(4e+03,8e+03]	1
(8e+03,1.2e+04]	5
(1.2e+04,1.6e+04]	3
(1.6e+04,2e+04]	8
(2e+04,2.4e+04]	6
(2.4e+04,2.8e+04]	1
(2.8e+04,3.2e+04]	4
(3.2e+04,3.6e+04]	5
(3.6e+04,4e+04]	3
(4e+04,4.4e+04]	6
(4.4e+04,4.8e+04]	2
(4.8e+04,5.2e+04]	5
(5.2e+04,5.6e+04]	8
(5.6e+04,6e+04]	2
(6e+04,6.4e+04]	9
(6.4e+04,6.8e+04]	6
(6.8e+04,7.2e+04]	4
(7.2e+04,7.6e+04]	9
(7.6e+04,8e+04]	4
(8e+04,8.4e+04]	1
(8.4e+04,8.8e+04]	7
(8.8e+04,9.2e+04]	7
(9.2e+04,9.6e+04]	14
(9.6e+04,1e+05]	4
(1e+05,1.04e+05]	4
(1.04e+05,1.08e+05]	4
(1.08e+05,1.12e+05]	3
(1.12e+05,1.16e+05]	5
(1.16e+05,1.2e+05]	5
(1.2e+05,1.24e+05]	3
(1.24e+05,1.28e+05]	6
(1.28e+05,1.32e+05]	5
(1.32e+05,1.36e+05]	3
(1.36e+05,1.4e+05]	9

Var1	Freq
(1.4e+05,1.44e+05]	9
(1.44e+05,1.48e+05]	4
(1.48e+05,1.52e+05]	5
(1.52e+05,1.56e+05]	6
(1.56e+05,1.6e+05]	1
(1.6e+05,1.64e+05]	7
(1.64e+05,1.68e+05]	6
(1.68e+05,1.72e+05]	7
(1.72e+05,1.76e+05]	5
(1.76e+05,1.8e+05]	3
(1.8e+05,1.84e+05]	4
(1.84e+05,1.88e+05]	4
(1.88e+05,1.92e+05]	8
(1.92e+05,1.96e+05]	11
(1.96e+05,2e+05]	5
(2e+05,2.04e+05]	3
(2.04e+05,2.08e+05]	6
(2.08e+05,2.12e+05]	3
(2.12e+05,2.16e+05]	1
(2.16e+05,2.2e+05]	4
(2.2e+05,2.24e+05]	8
(2.24e+05,2.28e+05]	6

In [54]: | as.data.frame(homog_pois_process(3000,dna)[2])

<u> </u>	0_1
Var1	Freq
(1,4e+03]	7
(4e+03,8e+03]	1
(8e+03,1.2e+04]	5
(1.2e+04,1.6e+04]	3
(1.6e+04,2e+04]	8
(2e+04,2.4e+04]	6
(2.4e+04,2.8e+04]	1
(2.8e+04,3.2e+04]	4
(3.2e+04,3.6e+04]	5
(3.6e+04,4e+04]	3
(4e+04,4.4e+04]	6
(4.4e+04,4.8e+04]	2
(4.8e+04,5.2e+04]	5
(5.2e+04,5.6e+04]	8
(5.6e+04,6e+04]	2
(6e+04,6.4e+04]	9
(6.4e+04,6.8e+04]	6
(6.8e+04,7.2e+04]	4
(7.2e+04,7.6e+04]	9
(7.6e+04,8e+04]	4
(8e+04,8.4e+04]	1
(8.4e+04,8.8e+04]	7
(8.8e+04,9.2e+04]	7
(9.2e+04,9.6e+04]	14
(9.6e+04,1e+05]	4
(1e+05,1.04e+05]	4
(1.04e+05,1.08e+05]	4
(1.08e+05,1.12e+05]	3
(1.12e+05,1.16e+05]	5
(1.16e+05,1.2e+05]	5
(1.2e+05,1.24e+05]	3
(1.24e+05,1.28e+05]	6
(1.28e+05,1.32e+05]	5
(1.32e+05,1.36e+05]	3
(1.36e+05,1.4e+05]	9

Var1	Freq
(1.4e+05,1.44e+05]	9
(1.44e+05,1.48e+05]	4
(1.48e+05,1.52e+05]	5
(1.52e+05,1.56e+05]	6
(1.56e+05,1.6e+05]	1
(1.6e+05,1.64e+05]	7
(1.64e+05,1.68e+05]	6
(1.68e+05,1.72e+05]	7
(1.72e+05,1.76e+05]	5
(1.76e+05,1.8e+05]	3
(1.8e+05,1.84e+05]	4
(1.84e+05,1.88e+05]	4
(1.88e+05,1.92e+05]	8
(1.92e+05,1.96e+05]	11
(1.96e+05,2e+05]	5
(2e+05,2.04e+05]	3
(2.04e+05,2.08e+05]	6
(2.08e+05,2.12e+05]	3
(2.12e+05,2.16e+05]	1
(2.16e+05,2.2e+05]	4
(2.2e+05,2.24e+05]	8
(2.24e+05,2.28e+05]	6

In [55]: as.data.frame(homog_pois_process(6000,dna)[2])

<u> </u>	0_,
Var1	Freq
(1,4e+03]	7
(4e+03,8e+03]	1
(8e+03,1.2e+04]	5
(1.2e+04,1.6e+04]	3
(1.6e+04,2e+04]	8
(2e+04,2.4e+04]	6
(2.4e+04,2.8e+04]	1
(2.8e+04,3.2e+04]	4
(3.2e+04,3.6e+04]	5
(3.6e+04,4e+04]	3
(4e+04,4.4e+04]	6
(4.4e+04,4.8e+04]	2
(4.8e+04,5.2e+04]	5
(5.2e+04,5.6e+04]	8
(5.6e+04,6e+04]	2
(6e+04,6.4e+04]	9
(6.4e+04,6.8e+04]	6
(6.8e+04,7.2e+04]	4
(7.2e+04,7.6e+04]	9
(7.6e+04,8e+04]	4
(8e+04,8.4e+04]	1
(8.4e+04,8.8e+04]	7
(8.8e+04,9.2e+04]	7
(9.2e+04,9.6e+04]	14
(9.6e+04,1e+05]	4
(1e+05,1.04e+05]	4
(1.04e+05,1.08e+05]	4
(1.08e+05,1.12e+05]	3
(1.12e+05,1.16e+05]	5
(1.16e+05,1.2e+05]	5
(1.2e+05,1.24e+05]	3
(1.24e+05,1.28e+05]	6
(1.28e+05,1.32e+05]	5
(1.32e+05,1.36e+05]	3
(1.36e+05,1.4e+05]	9

Var1	Freq
(1.4e+05,1.44e+05]	9
(1.44e+05,1.48e+05]	4
(1.48e+05,1.52e+05]	5
(1.52e+05,1.56e+05]	6
(1.56e+05,1.6e+05]	1
(1.6e+05,1.64e+05]	7
(1.64e+05,1.68e+05]	6
(1.68e+05,1.72e+05]	7
(1.72e+05,1.76e+05]	5
(1.76e+05,1.8e+05]	3
(1.8e+05,1.84e+05]	4
(1.84e+05,1.88e+05]	4
(1.88e+05,1.92e+05]	8
(1.92e+05,1.96e+05]	11
(1.96e+05,2e+05]	5
(2e+05,2.04e+05]	3
(2.04e+05,2.08e+05]	6
(2.08e+05,2.12e+05]	3
(2.12e+05,2.16e+05]	1
(2.16e+05,2.2e+05]	4
(2.2e+05,2.24e+05]	8
(2.24e+05,2.28e+05]	6

In []: