Phân Hiệu Trường Đại Học Giao Thông Vận Tải tại TP. HCM Bộ Môn Toán

Chương 1: Ma Trận và Định Thức

Giảng viên: Ths. Nguyễn Thị Thái Hà

NỘI DUNG

I. Ma Trận

- 1. Các khái niệm cơ bản
- 2. Các phép toán đối với ma trận
- II. Định Thức
- III. Ma trận nghịch đảo
- IV. Hạng của ma trận

1. Các khái niệm cơ bản

Định nghĩa

Ma trận cỡ $m \times n$ là một bảng hình chữ nhật có m hàng và n cột gồm các số thực (hoặc phức)

Ký hiệu
$$A = (a_{ij})_{m \times n}$$

 a_{ij} là phần tử nằm trên hàng i và cột j của A

1. Các khái niệm cơ bản

$$A = \begin{pmatrix} -3 & 2 \\ 5 & 9 \\ \hline -8 & 0 \end{pmatrix}$$

A là ma trận (thực) cỡ 3x2.

Các phần tử của A:
$$a_{11} = -3$$

$$a_{32} = 0$$

$$a_{12} = 2$$

$$a_{22} = 9$$

 $a_{21} = 5$

$$a_{31} = -8$$

Ví dụ:

$$B = \begin{pmatrix} -1 & i-2 & 4 \\ 8 & 0 & 3 & B \text{ là ma trận (phức) cỡ } 3x3. \\ 2i+3 & 2 & -9 \end{pmatrix}$$

$$(2i+3)$$
 2 -9

$$b_1$$

1. Các khái niệm cơ bản

Ma trận A có tất cả phần tử bằng 0, được gọi là ma trận không. Ký hiệu 0

<u>Ví dụ</u>: ma trận O cỡ 2×3

$$\mathbf{O} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Định nghĩa ma trận vuông

Nếu số hàng = số cột = n thì A được gọi là ma trận vuông cấp n ký hiệu A_n

- Đường chéo chính
- Ma trân tam giác trên, ma trận tam giác dưới.
- Ma tran đơn vị

1. Các khái niệm cơ bản

Trong ma trận vuông A, các phần tử a_{11} ; a_{22} ; a_{33} ; ... a_{nn} ; tạo nên đường chéo chính của ma trận vuông A

$$A_4 = \begin{pmatrix} -3 & 2 & 1 & 3 \\ 9 & 4 & 0 & 1 \\ 2 & -3 & 3 & 2 \\ 0 & 2 & 4 & 0 \end{pmatrix}$$

1. Các khái niệm cơ bản

Ma trận vuông $A = (a_{ij})_n$ được gọi là ma trận tam giác trên nếu tất cả phần tử nằm dưới đường chéo chính bằng 0

$$A = \begin{pmatrix} 1 & 3 & -5 \\ 0 & 2 & 3 \\ 0 & 0 & -3 \end{pmatrix}$$

Ma trận vuông $A = (a_{ij})_n$ được gọi là ma trận tam giác dưới nếu tất cả các phần tử nằm trên đường chéo chính bằng 0

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ 5 & 0 & -3 \end{pmatrix}$$

1. Các khái niệm cơ bản

Ma trận vuông A được gọi là ma trận chéo nếu các phần tử nằm ngoài đường chéo chính đều bằng 0; nghĩa là $a_{ij} = 0 \ \forall \ i \neq j$. Ký hiệu : D

$$Vi du: D = \begin{pmatrix} 7 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 9 \end{pmatrix}$$

Ma trận vuông cấp n có tất cả phần tử trên đường chéo chính bằng 1; các phần tử còn lại bằng 0 được gọi là ma trận đơn vị cấp n. Ký hiệu I_n

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$

2. Các phép toán đối với ma trận

Hai ma trận bằng nhau

Hai ma trận bằng nhau nếu
$$\begin{cases} 1. cùng \ cấp \\ 2. các \ vị \ trí \ tương \ ứng \ bằng \ nhau \end{cases}$$

Phép cộng hai ma trận

$$\mathbf{T\hat{o}ng}$$
 A+B :
$$\begin{cases} c ung \ c \tilde{a}p \\ c ac \ vi \ tr i \ twong \ ung \ c \tilde{o}ng \ lai \end{cases}$$

Ví dụ: Tính A + B với
$$A = \begin{pmatrix} 2 & 4 \\ -8 & 5 \\ 1 & 0 \end{pmatrix} B = \begin{pmatrix} 1 & 3 \\ 8 & 0 \\ 2 & -1 \end{pmatrix}$$

$$\rightarrow A + B = \begin{pmatrix} 3 & 7 \\ 0 & 5 \\ 3 & -1 \end{pmatrix}$$

2. Các phép toán đối với ma trận

Phép nhân ma trận với một số

Khi nhân ma trận với một số, ta lấy số đó nhân với tất cả các phần tử của ma trận đó.

$$\underline{\text{Ví du}} : A = \begin{pmatrix} 3 & -4 \\ -1 & 2 \\ 0 & 3 \end{pmatrix} \longrightarrow -\mathbf{3}. \mathbf{A} = \begin{pmatrix} -9 & 12 \\ 3 & -6 \\ 0 & -9 \end{pmatrix}$$

Tính chất

1.
$$A + B = B + A$$

2.
$$(A+B) + C = (A+B) + C$$

3.
$$A+0=A$$

4.
$$k(A+B) = kA + kB$$

5.
$$k(hA) = h(kA) = (kh)A$$

6.
$$(k +h)A = kA +hA$$
.

2. Các phép toán đối với ma trận

Phép nhân 2 ma trận

Cho
$$A=(a_{ij})_{m\times p}$$
 và $B=(b_{ij})_{p\times n}$.
Khi đó A.B = C = $(c_{ij})_{m\times n}$
với $c_{ij}=a_{i1}.b_{1j}+a_{i2}.b_{2j}+\cdots+a_{ip}.b_{pj}$

$$c_{ij} = \begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{ip} \end{pmatrix} \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{pj} \end{pmatrix}$$

$$A_{m \times p}.B_{p \times n} = C_{m \times n}$$

$$A_{3\times 2}.B_{2\times 4}=C_{3\times 4}$$

$$B_{2 imes 4}.A_{3 imes 2}$$
 Không tồn tại

2. Các phép toán đối với ma trận

Ví dụ: Tính AB biết
$$A = (1 -3 4)$$
; $B = \begin{pmatrix} 3 & 0 \\ 2 & -1 \\ -2 & 6 \end{pmatrix}$

A.B =
$$\begin{pmatrix} 1 & -3 & 4 \end{pmatrix}$$
 . $\begin{pmatrix} 3 & 0 \\ 2 & -1 \\ -2 & 6 \end{pmatrix}$ = $\begin{pmatrix} c_{11} & c_{12} \end{pmatrix}$
 $c_{11} = \begin{pmatrix} 1 & -3 & 4 \end{pmatrix}$. $\begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}$ = $1 \times 3 + (-3) \times 2 + 4 \times (-2) = -11$
 $c_{12} = \begin{pmatrix} 1 & -3 & 4 \end{pmatrix}$. $\begin{pmatrix} 0 \\ -1 \\ 6 \end{pmatrix}$ = $1 \times 0 + (-3) \times (-1) + 4 \times 6 = 27$

$$V_{AB} = (-11 \ 27)$$

2. Các phép toán đối với ma trận

Tính chất của phép nhân 2 ma trận

1.
$$(AB)C = A(BC)$$

4.
$$IA = AI = A$$

2.
$$A(B+C) = AB + AC$$

2.
$$A(B+C) = AB + AC$$
 $5.k(AB) = A(kB) = (kA)B$

3.
$$(B+C)A = BA + CA$$

<u>Chú ý</u>:

- 1. Nói chung AB $\neq BA$.
- 2. AB + BC $\neq B(A + C)$

2. Các phép toán đối với ma trận

Lũy Thừa của ma trận

Quy ước :
$$A^0 = I$$

$$A^2 = A.A$$

$$A^3 = A.A.A$$

Quy ước :
$$A^0 = I$$

$$A^2 = A.A \qquad A$$

$$A^n = A.A \dots A \text{ (n lần)}$$

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$\rightarrow f(A) = a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0.$$

2. Các phép toán đối với ma trận

Cho
$$A = \begin{pmatrix} 2 & 1 \\ -2 & 1 \end{pmatrix}$$
. Hãy tính $f(A)$ biết $f(x) = x^2 + 3x - 4$

Giải:

Ta có
$$A^2 = \begin{pmatrix} 2 & 1 \\ -2 & 1 \end{pmatrix}$$
. $\begin{pmatrix} 2 & 1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ -6 & -1 \end{pmatrix}$

$$c_{11} = \begin{pmatrix} 2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \end{pmatrix} = 2.2 + 1.(-2) = 2$$

Do đó
$$f(A) = A^2 + 3A - 4.I$$

$$f(A) = \begin{pmatrix} 2 & 3 \\ -6 & -1 \end{pmatrix} + 3 \begin{pmatrix} 2 & 1 \\ -2 & 1 \end{pmatrix} - 4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$V\hat{a}y f(A) = \begin{pmatrix} 4 & 6 \\ -12 & -2 \end{pmatrix}$$

2. Các phép toán đối với ma trân

$$\frac{\text{Ví du}}{\text{Cho } A} = \begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix}. \text{ Hãy tính } A^{235}.$$

Giải:

Ta có
$$A^2 = \begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix}$$
. $\begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = -I$

$$A^{234} = (A^2)^{117} = (-1)^{117} = -I$$

Ta có
$$A^{235} = A^{234}$$
. $A = (-I) A = -A = -\begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix}$

Vậy
$$A^{235} = \begin{pmatrix} -2 & 1 \\ -5 & 2 \end{pmatrix}$$

3. Phép chuyển vị và biến đổi sơ cấp

Phép chuyển vị:

Chuyển vị của $A = (a_{ij})_{m \times n}$ là ma trận A^T hay A' cỡ $n \times m$ thu được từ A bằng cách chuyển hàng thành cột (hoặc ngược lai)

$$A = \begin{pmatrix} 8 & 1 \\ 2 & -3 \\ 2 & -5 \end{pmatrix} \longrightarrow A^T = \begin{pmatrix} 8 & 2 & 2 \\ 1 & -3 & -5 \end{pmatrix}$$

3. Phép chuyển vị và biến đổi sơ cấp

Các phép biến đổi sơ cấp trên hàng

- 1. Đổi chỗ hai hàng $h_i \leftrightarrow h_i$
- 2. Nhân một hàng với một số khác không $\alpha . h_i \rightarrow h_i \ \forall \ \alpha \neq 0$
- 3. Cộng vào một hàng, một hàng khác đã được nhân với một số

tùy ý
$$h_i + \beta h_j \rightarrow h_i$$
; $\forall i \neq j$

Tương tự: ta có các phép biến đổi sơ cấp trên cột

Chú ý: Các phép biến đổi sơ cấp thường dùng nhất

Phần tử **khác không** đầu tiên của một hàng kể từ bên trái được gọi là **phần tử cơ sở** của hàng đó

Ma trận bậc thang là ma trận thỏa 2 điều sau:

- 1. Hàng không có phần tử cơ sở (nếu tồn tại) thì nằm dưới cùng
- 2. Phần tử cơ sở của hàng dưới nằm bên phải (không cùng cột) so với phần tử cở sở của hàng trên.

Ví dụ: Nhận diện ma trận bậc thang

$$A = \begin{pmatrix} -2 & 5 & 8 & 9 \\ 0 & 0 & 5 & -3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

là ma trận bậc thang

$$B = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 3 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

là ma trận bậc thang

VI. Hạng của ma trận

$$C = \begin{pmatrix} -2 & 3 & 3 \\ 0 & 5 & 9 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Không phải là ma trận bậc thang

$$\begin{bmatrix} -3 & 1 & 2 & 0 \\ 0 & 0 & 4 & 7 \\ 0 & -2 & 0 & 8 \end{bmatrix}$$

Không phải là ma trận bậc thang

Định lý

Mọi ma trận đều có thể đưa về ma trận bậc thang bằng các phép biến đổi sơ cấp trên hàng

Chú ý

Khi dùng các phép biến đổi sơ cấp ta thu được nhiều ma trận bậc thang khác nhau.

Các phép biến đổi sơ cấp trên hàng

- 1. $h_i \leftrightarrow h_j$
- 2. $\alpha . h_i \rightarrow h_i \quad \forall \ \alpha \neq 0$
- 3. $h_i + \beta h_i \rightarrow h_i$; $\forall i \neq j$

$$\propto h_i + \beta h_i \rightarrow h_i; \propto \neq 0$$

Ví dụ: Dùng các phép biến đổi sơ cấp trên hàng đưa ma trận sau về ma trận hình thang

$$A = \begin{pmatrix} 1 & 1 & 2 & 2 & 1 \\ 2 & 3 & 1 & 2 & 3 \\ 3 & 5 & 5 & 1 & 2 \\ 4 & 5 & 2 & 1 & 7 \end{pmatrix}$$

Giải

$$A = \begin{vmatrix} 3 & 1 & 2 & 3 \\ 3 & 5 & 5 & 1 & 2 \end{vmatrix}$$

$$A = \begin{pmatrix} 1 & 1 & 2 & 2 & 1 \\ 2 & 3 & 1 & 2 & 3 \\ 3 & 5 & 5 & 1 & 2 \\ 4 & 5 & 2 & 1 & 7 \end{pmatrix} \xrightarrow{2h_1 - h_2 \to h_2 \atop 3h_1 - h_3 \to h_3 \atop 4h_1 - h_4 \to h_4} \begin{pmatrix} 1 & 1 & 2 & 2 & 1 \\ 0 & -1 & 3 & 2 & -1 \\ 0 & -2 & 1 & 5 & 1 \\ 0 & -1 & 6 & 7 & -3 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 2 & 2 & 1 \\
0 & -1 & 3 & 2 & -1 \\
0 & > 2 & 1 & 5 & 1 \\
0 & > 4 & 6 & 7 & -3
\end{pmatrix}
\xrightarrow{2h_2 - h_3 \to h_3 \atop h_2 - h_4 \to h_4}
\begin{pmatrix}
1 & 1 & 2 & 2 & 1 \\
0 & -1 & 3 & 2 & -1 \\
0 & 0 & 5 & -1 & -3 \\
0 & 0 & > 5 & -5 & 2
\end{pmatrix}$$

1. Định nghĩa và ví dụ

Cho ma trận $A = (a_{ij})_n$ vuông cấp n.

- Định thức của A là một số, ký hiệu là $\det A = |A|$
- M_{ij} là định thức của ma trận cấp (n-1). Ma trận cấp (n -1) thu được từ A bằng bỏ đi hàng i và cột j của A
 - Phần bù đại số của phần tử a_{ij} là A_{ij}

$$A_{ij} = (-1)^{i+j}.M_{ij}$$

$$A = \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix} \longrightarrow A_{13} = (-1)^{1+3} \cdot M_{13} = \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix}$$

1. Định nghĩa và ví dụ

Định nghĩa định thức theo quy nạp:

$$\triangleright$$
 n=1 : $A = (a_{11}) \rightarrow detA = a_{11}$

$$ightharpoonup$$
 n=2: $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \longrightarrow det A = a_{11}. a_{22} - a_{21}. a_{12}$

$$\geqslant n \ge 3 : A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \cdots & \vdots \end{pmatrix}$$

$$\xrightarrow{\text{Hàng 1}} det A = a_{11}A_{11} + a_{12}A_{12} + \dots + a_{1n}A_{1n}$$

1. Định nghĩa và ví dụ

$$\underline{\text{Ví dụ:}} \text{ Tính định thức } A = \begin{pmatrix} 4 & 3 & 0 \\ 1 & -2 & 3 \\ 1 & 1 & 5 \end{pmatrix}$$

$$detA = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = 4.A_{11} + 3.A_{12} + 0.A_{13}$$

Với
$$A_{11} = (-1)^{1+1}$$

$$\begin{vmatrix} -2 & 3 \\ 1 & 5 \end{vmatrix} = \begin{vmatrix} -2 & 3 \\ 1 & 5 \end{vmatrix} = -10 - 3 = -13$$

Với
$$A_{12} = (-1)^{1+2} \begin{vmatrix} 1 & 3 \\ 1 & 5 \end{vmatrix} = -\begin{vmatrix} 1 & 3 \\ 1 & 5 \end{vmatrix} = -2$$

Vậy
$$\det A = 4$$
. $(-13) + 3$. $(-2) = -58$

1. Định nghĩa và ví dụ

Quy tắc Sarrus

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = (a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13}) - (a_{13}a_{22}a_{31} + a_{21}a_{12}a_{33} + a_{32}a_{23}a_{11})$$

1. Định nghĩa và ví dụ

Ví dụ: Dùng quy tắc sarrus tính định thức ma trận sau

$$A = \begin{pmatrix} 4 & 3 & 0 \\ 1 & -2 & 3 \\ 1 & 1 & 5 \end{pmatrix}$$

Giải:

$$\det A = \begin{vmatrix} 4 & 3 & 0 \\ 1 & -2 & 3 \\ 1 & 1 & 5 \end{vmatrix}$$

$$\det A = [4.(-2).5 + 3.3.1 + 1.1.0] - [1.(-2).0 + 1.3.5 + 1.3.4]$$

$$\det A = [-40 + 9] - [15 + 12] = -58$$

2. Tính chất của định thức

+Khi tính giá trị định thức ta có thể khai triển theo **một hàng(cột) bất kỳ**

$$\det A = \begin{vmatrix} a_{1j} \\ * & a_{2j} \\ \vdots \\ * & a_{nj} \end{vmatrix} * \begin{bmatrix} \text{Cột j} \\ & & \\ &$$

$$+ \det A = \det(A^T)$$

+Nếu A, B vuông cùng cấp thì det (A.B) = det A. det B

2. Tính chất của định thức

- + Nếu đổi chỗ 2 hàng của định thức thì giá trị định thức đổi dấu.
- + Có thể rút thừa số chung của một hàng trong một định thức ra ngoài.
- + Định thức không đối nếu thay thế một hàng bởi chính hàng đó cộng với β lần hàng khác

Nếu A
$$h_i + \beta h_j \rightarrow h_i \quad \forall i \neq j$$
B thì det(A) = det (B)

11. Dinn I nuc

2. Tính chất của định thức

Ví dụ: Tính định thức bằng các phép biến đổi sơ cấp.

$$A = \begin{pmatrix} x & x & 1 & 1 \\ 1 & x & x & 1 \\ 1 & 1 & x & x \\ x & 1 & 1 & x \end{pmatrix}$$

$$\det A = \begin{vmatrix} x & x & 1 & 1 \\ 1 & x & x & 1 \\ 1 & 1 & x & x \end{vmatrix} \begin{vmatrix} h_1 - h_4 \to h_1 \\ h_3 - h_2 \to h_3 \\ h_4 - xh_2 \to h_4 \end{vmatrix} \begin{vmatrix} 0 & x - 1 & 0 & 1 - x \\ 1 & x & x & 1 \\ 0 & 1 - x & 0 & x - 1 \\ 0 & 1 - x^2 & 1 - x^2 & 0 \end{vmatrix}$$

Hàng 1: rút thừa số chung (x-1)

Hàng 3: rút thừa số chung (x-1)

Hàng 4: rút thừa số chung $1-x^2$

2. Tính chất của định thức

$$\det A = (x-1)^{2} (1-x^{2}) \begin{vmatrix} 0 & 1 & 0 & -1 \\ 1 & x & x & 1 \\ 0 & -1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{vmatrix}$$

Khai triển theo cột 1 ta được $\det A = (x-1)^2(1-x^2)1.A_{21}$

$$V_{A}^{2}y \det A = 0 \ \forall x$$

2. Tính chất của định thức

Hệ quả:

- Định thức có một hàng bằng 0 thì định thức bằng 0.
- Nếu định thức có hai hàng bằng nhau hoặc tỉ lệ thì định thức có giá trị bằng 0.
- Nếu A_1, A_2, \cdots, A_m vuông cùng cấp thì

$$\det(A_1.A_2...A_m) = \det(A_1).\det(A_2)...\det(A_m)$$

- Nếu A là ma trận vuông cấp n và $k \in \mathbb{N}^*$ thì $\det(A^k) = (\det A)^k$
- Định thức ma trận tam giác bằng tích các phần tử nằm trên đường chéo chính.
- -Trong tính toán định thức, công thức hay tính chất áp dụng được trên hàng thì nó cũng áp dụng được trên cột.

2. Tính chất của định thức

Ví dụ: Tính

$$D = \begin{bmatrix} 4 & 3 & 1 & 0 \\ 0 & -5 & 2 & 1 \\ 0 & 0 & 6 & 9 \\ 0 & 0 & 0 & 7 \end{bmatrix}$$

$$D = 4.(-5).6.7 = -840$$

2. Tính chất của định thức

Phương pháp tính định thức

Bước 1: Chọn một hàng (hoặc một cột) bất kỳ

Bước 2: Chọn một phần tử khác không của hàng (hoặc cột) ở bước 1.

Dùng biến đổi sơ cấp khử tất cả các phần tử khác.

$$h_i + \beta h_j \rightarrow h_i \quad \forall \ i \neq j$$

Bước 3: Khai triển theo hàng (hoặc) cột đã chọn.

2. Tính chất của định thức

Ví dụ 1

Bài 1.7. Cho hai ma trận

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 \\ -1 & 3 \\ 3 & 4 \end{pmatrix}.$$

a) Tính det(AB) và det(BA).

Ví dụ 2

Bài 1.8. Cho hai ma trận
$$A = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 & 1 \\ 2 & 3 \end{pmatrix}$$
.

- a) Tính $\det(A^3B^2 + 4A^2B^3)$.
- b) Tính $(A+2B)^2 19(A+2B)$.

2. Tính chất của định thức

Ví dụ 3

 ${\bf Bài~1.10.}$ Cho các ma trận vuông cấp ba

$$A = \begin{pmatrix} 3 & 5 & 7 \\ 2 & 3 & -2 \\ 2 & -2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 4 & -5 \\ -2 & 2 & 3 \\ 4 & -1 & 2 \end{pmatrix}$$

Hãy xác định giá trị của $\det(A^2B - 3AB^2)$.

Ví dụ 4:

Bài 1.16. Cho ma trận
$$A = \begin{pmatrix} x & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 5 & 8 \end{pmatrix}$$
. Hãy tìm x để $A^4 - 3A^3$ là một ma trận khả nghịch.