Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию N1

«Методы сортировки»

Вариант $2 \ / \ 3 \ / \ 2 \ / \ 3$

Выполнил: студент 104 группы Воробьев С. Ю.

Преподаватель: Сенюкова О. В.

Содержание

Постановка задачи	2
Результаты экспериментов	3
Структура программы и спецификация функций	4
Отладка программы, тестирование функций	5
Анализ допущенных ошибок	6
Список цитируемой литературы	7

Постановка задачи

В дайнной задаче нужно реализовать два метода сортировки массива чисел и провести их экспериментальное сравнение. В моем варианте нужно реализовать сортировку выбором и сортировку Шелла для 64-битных целых чисел. После сортировки массивы должны быть упорядочены по неубыванию модулей элементов. Для каждого из реализуемых методов необходимо предусмотреть возможность работы с массивами длины от 1 до N (N \geq 1). Значение N пробегает числа 10, 100, 1000, 10000. При реализации каждого метода нужно вычислить число сравнений элементов и число перемещений (обменов) элементов. Сравнение методов сортировки необходимо проводить на одних и тех же исходных массивах, при этом следует рассмотреть массивы разной длины. Генерация исходных массивов для сортировки реализуется отдельной функцией, создающей в зависимости от заданного параметра и заданной длины конкретный массив, в котором:

- 1. элементы уже упорядочены
- 2. элементы упорядочены в обратном порядке
- 3. расстановка элементов случайна

Все полученные данные необходимо занести в таблицы, представленные на следующей странице.

Результаты экспериментов

n	Параметр	Номер сгенерированного массива				Среднее
n		1	2	3	4	значение
10	Сравнения	45	45	45	45	-
	Перемещения	0	5	6	6	4.25
100	Сравнения	4950	4959	4950	4950	-
	Перемещения	0	50	96	92	59.5
1000	Сравнения	499500	499500	499500	499500	-
	Перемещения	0	500	992	994	865.75
10000	Сравнения	49995000	49995000	49995000	49995000	-
	Перемещения	0	5000	9989	9995	6246

Таблица 1: Результаты работы сортировки выбором

n	Параметр	Номер о	Среднее			
11		1	2	3	4	значение
10	Сравнения	22	35	29	36	30.5
	Перемещения	0	13	7	14	8.5
100	Сравнения	503	763	818	758	710.5
	Перемещения	0	260	315	255	207.5
1000	Сравнения	8006	12706	14431	14390	12383.25
	Перемещения	0	4700	6425	6384	4377.25
10000	Сравнения	120005	182565	265588	258141	206574.75
	Перемещения	0	62560	145583	138136	86569.75

Таблица 2: Результаты работы сортировки методом Шелла

Теоретичесие оценки:

Оценка работы сортировки простым выбором [1]:

Число сравнений всегда одно и то же из-за специфики алгоритма и равняется

 $\frac{n(n-1)}{2} = O(n^2)$ Число перемещений зависит от изначального порядка в массиве. Наилучший случай -0, наихудший -n-1

Итого: $O(n^2) + O(n) = O(n^2)$

Оценка работы сортировки Шелла [2]:

В наилучшем случае сортировка работает за n.

B наихудщем за $n(logn)^2$

B среднем $n(log n)^2$

Структура программы и спецификация функций

- 1. int abs64(int64_t a);
- 2. void check_array(int64_t *arr, int n)
- 3. void print_arr(int64_t *arr, int n)
- 4. int64_t *generate_array(int n, int type)
- 5. void selection_sort(int64_t *arr, int n, int *comps, int *swaps)
- 6. void shell_sort (int64_t *arr, int n, int *comps, int *swaps)
- 7. void cmp (int n, int type)
- 1. int abs64(int64_t a) a -64 битное число, функция возвращает его модуль
- 2. void check_array(int64_t *arr, int n) arr указатель на массив, n его размерность. Функция проверяет массив на корректность сортировки и выдает ошибку в случае неверного ответа.
- 3. void print_arr(int64_t *arr, int n) arr указатель на массив, n его размерность. Функция печатает массив.
- 4. int64_t *generate_array(int n, int type) n pазмерность запрашиваемого массива, type его тип. Функция возвращает указатель на начало массива.
- 5. void selection_sort(int64_t *arr, int n, int *comps, int *swaps) arr указатель на массив, n количество элементов, comps указатель на переменную с количеством сравнений, swaps на переменную с количеством обменов. Функция сортирует массив методом простого выбора.
- 6. void shell_sort (int64_t *arr, int n, int *comps, int *swaps) аргументы аналогичные, функция сортирует массив методом Шелла.
- 7. void cmp (int n, int type) n количество элементов в массиве, type его тип. Функция согласует работу всей программы, генерируя и сортируя массивы, и выводя результаты в консоль.

Отладка программы, тестирование функций

Tестирование и отладка производились с помощью функций check_array(int64_t *arr, int n) и print_arr(int64_t *arr, int n).

 ${f 0} \ {f 1} \ {f 2} \ {f 3} \ {f 4} \ {f 5} \ {f 6} \ {f 7} \ {f 8} \ {f 9}$ - Исходный массив

 $0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9$ - Shell sort

0 1 2 3 4 5 6 7 8 9 - Selection sort

9 8 7 6 5 4 3 2 1 0 - Исходный массив

 $0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9$ - Shell sort

0 1 2 3 4 5 6 7 8 9 - Selection sort

Далее значения разделены на 10^6

Исходный:

 $753.2 \; \hbox{-}63.8 \; 53.2 \; \hbox{-}798.2 \; \hbox{-}846.7 \; 2.0 \; 1357.8 \; 1057.2 \; \hbox{-}1134.9 \; 525.8$

Результаты у обоих сортировок:

2.0 53.2 -63.8 525.8 753.2 -798.2 -846.7 1057.2 -1134.9 1357.8

Анализ допущенных ошибок

Для генерации чисел методом rand() не учитывалось, что такие числа не являются 64-битными, а помещаются в 32 бита, исправлено это было перемножением 5 таких получаемых чисел.

Список литературы

- [1] Кормен Т., Лейзерсон Ч., Ривест Р, Штайн К. Алгоритмы: построение и анализ. Второе издание. М.:«Вильямс», 2005.
- [2] Д. Кнут. Искусство программирования. Том 3. Сортировка и поиск 2-е изд.