1 Grundlagen

1.1 Komplexe Zahlen

Komplexe Zahlen (S. 7)

Imaginäre Einheit:

$$i^2 = -1$$
 (1.1)

Alle Zahlen der Form

$$z = x + iy, \quad x, y \in \mathbb{R} \tag{1.2}$$

bilden die Menge

$$\mathbb{C} := \{z = x + i \cdot y: \ x, y \in \mathbb{R}\} \tag{1.3}$$

Realteil von z:

$$Re(z) := x \in \mathbb{R}$$
 (1.4)

Imaginärteil von z:

$$Im(z) := y \in \mathbb{R} \tag{1.5}$$

Addition (S. 8)

Sei $z = x + i y \in \mathbb{C}$ und $w = u + i v \in \mathbb{C}$.

$$z + w := (x + u) + i(y + v) \in \mathbb{C}$$
(1.6)

Inverses Element bzgl. Addition (S. 8)

Sei $z = x + i y \in \mathbb{C}$.

$$-z = (-x) + i(-y) = -x - iy \in \mathbb{C}$$
 (1.7)

Multiplikation (S. 8)

Sei $z = x + i y \in \mathbb{C}$ und $w = u + i v \in \mathbb{C}$.

$$z \cdot w \coloneqq (x + iy) \cdot (u + iv) = (xu - yv) + i(xv + yu) \in \mathbb{C}$$
 (1.8)

Inverses Element bzgl. Multiplikation $(S.\ 8)$

Sei $z=x+i\,y\in\mathbb{C},z\neq0.$

$$\begin{split} &\frac{1}{z} = \frac{1}{(x+iy)} = \frac{x-iy}{(x+iy)(x-iy)} = \frac{x-iy}{x^2-i^2y^2} = \frac{x-iy}{x^2+y^2} \\ &= \frac{x}{x^2+y^2} - i \cdot \frac{y}{x^2+y^2} \in \mathbb{C} \end{split} \tag{1.9}$$

Satz 1.1: Körpereigenschaften von C (S. 8)

Die Menge $\mathbb C$ der komplexen Zahlen bilden mit oben definierter Addition (1.6) bzw. Multiplikation (1.8) einen Körper. Das Einselement dieses Körpers ist

$$1 + 0 \cdot i = 1 \in \mathbb{C} \tag{1.10}$$

und das Nullelement ist

$$z = 0 + 0 \cdot i = 0 \in \mathbb{C}. \tag{1.11}$$

Es gelten somit die Rechenregeln (für $z,v,w\in\mathbb{C};\,z=x+i\cdot y)$:

a) (z + v) + w = z + (v + w) Assioziativgesetz

b) z + 0 = z neutrales Element

c) z + (-z) = 0 inverses Element; wobei (1.7) gilt

d) z + w = w + z Kommutativgesetz

e) $(z \cdot v) \cdot w = z \cdot (v \cdot v)$ Assoziativgesetz

f) $z \cdot 1 = z$ neutrales Element

g) $z \cdot \frac{1}{z} = 1$ für $z \neq 0$ inverses Element; wobei (1.9) gilt

h) $z \cdot w = w \cdot z$ Kommutativgesetz

i) $z \cdot (v + w) = z \cdot v + z \cdot w$ Distributivgesetz

Binomische Formel (S. 10)

Mit $z, w \in \mathbb{C}$ und $n \in \mathbb{N}$:

$$(z+w)^n = \sum_{k=0}^n \binom{n}{k} \cdot z^k \cdot w^{n-k} = \sum_{k=0}^n \frac{n!}{k! (n-k)!} \cdot z^k \cdot w^{n-k}$$
 (1.12)

Definition 1.1: Absolutbetrag, konjugiert komplexe Zahl (S. 10)

Es sei $z = x + i \cdot y = (x, y) \in \mathbb{C}$. Dann ist

$$|z| \coloneqq \sqrt{x^2 + y^2} \ge 0 \in \mathbb{R}$$

der Absolutbetrag von z und

$$\overline{z} \coloneqq x - i \cdot y$$

die zu z konjugiert komplexe Zahl.

Absolutbetrag mit konjugiert komplexer Zahl $(S.\ 11)$

Wegen $z\cdot\overline{z}=(x+i\,y)\,(x-i\,y)=x^2-i^2y^2=x^2+y^2=|z|^2$ folgt:

$$|z| = \sqrt{z \cdot \overline{z}} \tag{1.13}$$

Abstand komplexer Zahlen (S. 11)

Sei $z=x+i\,y\in\mathbb{C}$ und $w=u+i\,v\in\mathbb{C}.$ Dann ist ihr Abstand:

$$|z - w| = |(x - u) + i(y - v)| \stackrel{\text{Def. 1.1}}{=} \sqrt{(x - u)^2 + (y - v)^2}$$
 (1.14)

Satz 1.2: Rechenregeln (S. 11)

Für $z=x+i\,y,\,w=u+i\,v$ gelten folgende Rechenregeln:

- 1. $\overline{z \pm w} = \overline{z} \pm \overline{w}$
- $2. \ \overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- $3. \ \overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}} \ (w \neq 0)$
- $4. \ \overline{(\overline{z})} = \overline{z}$
- $5. \ |\overline{z}| = |z|$
- 6. $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ $\operatorname{Im}(z) = \frac{z \overline{z}}{2}$
- 7. $\operatorname{Re}(z_1 + \dots + z_n) = \operatorname{Re}(z_1) + \dots + \operatorname{Re}(z_n)$ $\operatorname{Im}(z_1 + \dots + z_n) = \operatorname{Im}(z_1) + \dots + \operatorname{Im}(z_n)$
- 8. $\operatorname{Re}(z) \le |z|$ $\operatorname{Im}(z) \le |z|$
- 9. $|z \cdot w| = |z| \cdot |w|$ $\left|\frac{z}{w}\right| = \frac{|z|}{|w|} \ (w \neq 0)$

Dreiecksungleichung (S. 12)

Sei $z,w\in\mathbb{C}$. Dann gilt (wie im Reellen) für den Betrag im Komplexen die **Dreiecksungleichung**:

$$|z \pm w| \le |z| + |w| \tag{1.15}$$

Allgemein gilt:

$$\left| \sum_{k=1}^{n} z_k \right| \le \sum_{k=1}^{n} z_k |z_k| \tag{1.16}$$

Definition 1.2: Kreisscheibe, r-Umgebung einer komplexen Zahl (S. 12)

Es sei $a \in \mathbb{C}$ und $r \in \mathbb{R}$, r > 0. Dann ist die Menge

$$K_r(a) := \{ z \in \mathbb{C} : |z - a| < r \}$$
 (1.17)

die (offene) Kreisscheibe um a mit Radius r>0 (oder r-Umgebung von a)

Polarkoordinatendarstellung komplexer Zahlen (S. 14)

Eine komplexe Zahl $z=x+i\,y,z=0,$ ist eindeutig bestimmt durch den Betrag

$$r := |z| = \sqrt{x^2 + y^2} \tag{1.18}$$

und durch das Argument

$$\arg(z) := \varphi, \ (0 \le \varphi < 2\pi). \tag{1.19}$$

Es gilt:

$$x = |z| \cdot \cos \varphi \text{ und } y = |z| \cdot \sin \varphi.$$
 (1.20)

Man nennt

$$z = r \cdot (\cos \varphi + i \cdot \sin \varphi) \tag{1.21}$$

die Polarkoordinatendarstellung von $z \neq 0$. Es gilt auch:

$$z = r \cdot \left[\cos(\varphi + 2k\pi) + i \cdot \sin(\varphi + 2k\pi)\right], \ k \in \mathbb{Z}. \tag{1.22}$$

Umrechnung zwischen Darstellungen (S. 15)

Für die Umrechnung zwischen den Darstellungen $z=x+i\,y$ und $z=r\cdot(\cos\varphi+i\cdot\sin\varphi)$ gelten folgende Regeln:

1. Gegeben sei $z=x+i\,y\neq 0.$ Mit

$$r := |z| = \sqrt{x^2 + y^2} \text{ und} \tag{1.23}$$

$$\arg(z) = \varphi \coloneqq \begin{cases} \arccos\frac{x}{r} & \text{für } y \ge 0\\ 2\pi - \arccos\frac{x}{r} & \text{für } y < 0 \end{cases}$$
 (1.24)

gilt

$$z = r \cdot (\cos \varphi + i \cdot \sin \varphi). \tag{1.25}$$

2. Gegeben sei $z=r\cdot(\cos\varphi+i\cdot\sin\varphi)$ mit $r>0,\,\varphi\in[o,2\pi).$ Mit

$$x := r \cdot \cos \varphi \text{ und}$$
 (1.26)

$$y \coloneqq r \cdot \sin \varphi \tag{1.27}$$

gilt

$$z = x + i y. (1.28)$$

Satz 1.3 (S. 16)

Sind $z, w \in \mathbb{C} \setminus \{0\}$ mit

$$z = |z| \cdot (\cos \varphi + i \cdot \sin \varphi), \quad w = |w| \cdot (\cos \psi + i \cdot \sin \psi), \quad (1.29)$$

so gilt

$$z \cdot w = |z| \cdot |w| \cdot \left[\cos(\varphi + \psi) + i \cdot \sin(\varphi + \psi)\right], \tag{1.30}$$

$$\frac{z}{w} = \frac{|z|}{|w|} \cdot \left[\cos(\varphi - \psi) + i \cdot \sin(\varphi - \psi)\right]. \tag{1.31}$$

Folgerung (S. 16)

Aus Satz 1.3 folgt:

$$\arg(z \cdot w) = \arg(z) + \arg(w) \pmod{2\pi} \tag{1.32}$$

$$\arg\left(\frac{z}{w}\right) = \arg(z) - \arg(w) \pmod{2\pi} \tag{1.33}$$

1.2 Die komplexe Exponentialfunktion (Teil 1)

Reelle Exponentialfunktion (S. 17)

Bekannte reelle Exponentialfunktion $(x, y \in \mathbb{R})$:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!},\tag{1.34}$$

$$e^{x+y} = e^x \cdot e^y \tag{1.35}$$

Komplexe Exponentialfunktion (S. 17)

Bekannte Komplexe Exponential
funktion $(z,w\in\mathbb{C})$

$$e^z \coloneqq \sum_{n=0}^{\infty} \frac{z^n}{n!},\tag{1.36}$$

$$e^{z+w} = e^z \cdot e^w \tag{1.37}$$

Eulersche Gleichung (S. 18)

Für $x, y \in \mathbb{R}$ und $z \coloneqq x + i y$ gilt:

$$e^{iy} = \cos(y) + i\sin(y)$$
 Eulersche Gleichung (1.38)

$$e^z = e^x \cdot e^{iy} = e^x \cdot e^{iy} = e^x \cdot [\cos(y) + i \sin(y)]$$
 (1.39)

Eulersche Identität (S. 18)

Aus der Eulerschen Gleichung folgt sofort die Eulersche Identität:

$$e^{i\pi} + 1 = 0$$

Satz 1.4 (S. 19)

1. Es gilt für $y \in \mathbb{R}$:

$$\cos y = \text{Re}\left(e^{iy}\right) = \frac{e^{iy} + e^{-iy}}{2},$$
 (1.40)

$$\sin y = \operatorname{Im}\left(e^{iy}\right) = \frac{e^{iy} - e^{-iy}}{2i} \tag{1.41}$$

2. Jede komplexe Zahl $c \in \mathbb{C} \setminus \{0\}$ lässt sich in der Form

$$z = r \cdot e^{i\varphi} \tag{1.42}$$

mit r = |z| und $\varphi = \arg(z)$ schreiben.

3. Für $z \cdot r \cdot e^{i\varphi}$, $w = s \cdot e^{i\psi}$ gilt:

$$z \cdot w = r \cdot s \cdot e^{\varphi + \psi} \tag{1.43}$$

$$\frac{z}{w} = \frac{r}{s} \cdot e^{\varphi - \psi} \quad (w \neq 0). \tag{1.44}$$

Satz 1.5: Formel von Moivre (S. 19)

Für $n \in \mathbb{N}_0$ gilt:

$$(\cos \varphi + i \sin \varphi)^n = \cos(n \varphi) + i \sin(n \varphi)$$
 (1.45)

1.3 Punktmengen in der komplexen Ebene

Definition 1.3: Gebiet (S.20)

Eine Teilmenge $G\subseteq \mathbb{C}$ heißt Gebiet, wenn Goffen und zusammenhängen ist.

Definition 1.4: einfach zusammenhängend (S.21)

Ein Gebiet $G\subseteq\mathbb{C}$ heißt einfach zusammenhängend, wenn das Innere jedes in G verlaufenden geschlossenen Streckenzuges ganz zu G gehört, d.h. wenn G keine Löcher hat.

Randpunkt, Rand von D (S. 21)

Ist $D \subseteq \mathbb{C}$ eine beliebige Menge, so heißt ein Punkt $z \in \mathbb{C}$ ein Randpunkt von D, wenn in jeder r-Umgebung (Def. 1.2 S. 1) von z sowohl Punkte aus D liegen, als auch Punkte, die nicht zu D gehören. Der Rand von D ist die Menge aller Randpunkte; er wird mit

$$\partial D$$
 (1.46)

bezeichnet.

abgeschlossen (S. 22)

Eine Menge $D\subseteq\mathbb{C}$ heißt abgeschlossen, wenn der Rand von D zu D gehört: $\partial D\subseteq D$. Man nennt $\overline{D}\coloneqq D\cup\partial D$ den Abschluss von D.

beschränkt, unbeschränkt (S. 22)

Eine Menge $D \subseteq \mathbb{C}$ kann beschränkt oder unbeschränkt sein. Wir nennen D beschränkt, wenn es eine (hinreichend große) Kreisscheibe $K_r(0)$ gibt, die D umfasst. Andernfalls heißt D unbeschränkt.

1.4 Zahlenfolgen in der komplexen Ebene

Definition 1.5: konvergente Folge (S. 22)

Man sagt, eine komplexe Zahlenfolge $(z_n)_{n\geq 0}$ konvergiert gegen den Grenzwert $z\in\mathbb{C}$, und man schreibt

$$\lim_{n \to \infty} z_n = z \quad \text{oder} \quad z_n \to z, \tag{1.47}$$

wenn es zu jedem $\varepsilon > 0$ einen Index $N(\varepsilon) \in \mathbb{N}_0$ gibt, so dass gilt:

$$|z_n - z| < \varepsilon$$
 für alle $n \in N(\varepsilon)$. (1.48)

Konvergiert die Folge nicht, so nennt man sie divergent.

$z_n o \infty$ (S. 23)

Wir schreiben $\lim z_n = \infty$, falls für die **reelle** Folge $(|z_n|)$ gilt:

$$\lim_{n\to\infty}|z_n|=+\infty.$$

Rechenregeln konvergenter komplexer Folgen (S. 23)

Wie bei reellen Folgen ist der Grenzwert einer konvergenten komplexen Folge eindeutig bestimmt und es gelten die bekannten Rechenregeln für $z, w \in \mathbb{C}$:

$$\lim_{n \to \infty} z_n = z \\
\lim_{n \to \infty} w_n = w$$

$$\Rightarrow \begin{cases}
\lim_{n \to \infty} (z_n \pm w_n) = z \pm w \\
\lim_{n \to \infty} (z_n \cdot w_n) = z \cdot w \\
\lim_{n \to \infty} \frac{z_n}{w_n} = \frac{z}{w} (w_n, w \neq 0) \\
\lim_{n \to \infty} |z_n| = |z|
\end{cases}$$
(1.49)

2 Elementare Funktionen

2.1 Grundlagen

2.2 Grenzwerte und Stetigkeit

Definition 2.1: Grenzwert, Stetigkeit (S. 27)

1. Die Funktion f sei definiert in einer r-Umgebung (Kreisscheibe) um einen Punkt $z_0 \in \mathbb{C}$, mit der Einschränkung, dass f am Punkt z_0 eventuell undefiniert ist. Die Zahl w_0 heißt Grenzwert fon f für

$$\lim_{z \to z_0} = w_0, \tag{2.1}$$

wenn für jedes (beliebig kleine) $\varepsilon>0$ eine Zahl $\delta>0$ existiert mit

$$|f(z) - w_0| < \varepsilon$$
 für alle z mit $0 < |z - z_0| < \delta$. (2.2)

Bei beliebiger Annäherung von z an z_0 müssen sich die Funktionswerte f(z) also dem Wert w_0 annähern; anderfalls existiert der Grenzwert nicht!

2. f heißt stetig in z_0 , wenn f in z_0 definiert ist und wenn gilt:

$$\lim_{z \to z_0} f(z) = f(z_0). \tag{2.3}$$

$\lim f(z) = \infty \text{ (S. 27)}$

Man schreibt $\lim_{z \to z_0} f(z) = \infty$, falls gilt: $\lim_{z \to z_0} |f(z)| = \infty$.

2.3 Die komplexe Exponentialfunktion (Teil 2)

Die komplexe e-Funktion (S. 27)

Es sei $f: \mathbb{C} \to \mathbb{C}$ mit

$$f(z) = e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y),$$
 (2.4)

für z = x + iy. Man schreibt auch

$$f(z) = \exp(z). \tag{2.5}$$

- 1. Gerade $x = x_0$ wird auf Kreis abgebildet.
- 2. Gerade $y = y_0$ wird auf Halbgerade von 0 mit Winkel y_0 abgebildet.
- 3. Der Fundamentalstreifen:

$$F := \{ z \in \mathbb{C} : -\pi < y = \operatorname{Im}(z) \le \pi \}$$
 (2.6)

Satz 2.1 (S. 29)

Die Exponentialfunktion $f(z) = e^z$ ist eine bijektive Abbildung von Fauf $\mathbb{C} \setminus \{0\}$.

Periodizität (S. 30)

Die Funktion $f(z) = e^z$ hat die **Periode** $2k\pi i$, denn es gilt

$$f(z + 2k\pi i) = e^{z + 2k\pi i} = e^z \cdot e^{2k\pi i} = e^z = f(z).$$
 (2.7)

Jeder Streifen der Form

$$S = \{ z \in \mathbb{C} : (2k - 1) \pi < y = \operatorname{Im}(z) \le (2k + 1) \pi \} \ (k \in \mathbb{Z})$$
 (2.8)

wird bijektiv auf $\mathbb{C} \setminus \{0\}$ abgebildet, da S durch Verschiebung um $2k\pi i$ aus F (2.6) entsteht.

2.4 Der komplexe Logarithmus und allgemeine Potenzen

Umkehrfunktion von e^z (S. 30)

 $f(z) = e^z$ ist eine bijektive Abbildung von F(2.6) auf $\mathbb{C} \setminus \{0\}$, daher existiert die Umkehrfunktion

$$f^{-1}: \mathbb{C} \setminus \{0\} \to F, \quad w \mapsto z = f^{-1}(w)$$
 (2.9)

Komplexer Logarithmus (S. 30)

Zu gegebenem $w \in \mathbb{C} \setminus \{0\}$ definieren wir

$$\operatorname{Ln}(w) := \ln|w| + i \operatorname{arg}(w) \tag{2.10}$$

mit $arg(w) \in (-\pi, \pi]$, wobei lander natürliche Logarithmus für reelle Zahlen ist. Man nennt dies den Hauptwert des komplexen Logarithmus. Wegen $e^{z+2k\pi i}=e^z$ gilt auch

$$\operatorname{Ln}_{k}(w) := \ln|w| + i \operatorname{arg}(w) + 2k\pi i \quad (k \in \mathbb{Z}). \tag{2.11}$$

Für $k \neq 0$ nennt man dies die Nebenzweige des komplexen Logarithmus.

Vorsicht (S. 31)

Die Regel $Ln(z \cdot w) = Ln(z) + Ln(w)$ gilt **nicht** im Allgemeinen!

Allgemeine Potenzen in $\mathbb C$ (S. 31)

Für $a, z \in \mathbb{C}$, $a \neq 0$ definiert man wie im Reellen:

$$a^z \coloneqq e^{z \cdot \operatorname{Ln}(a)} \tag{2.12}$$

Rechenregeln (S. 31)

Für $z, w \in \mathbb{C}, n \in \mathbb{Z}$ gilt:

$$a^{z} \cdot a^{w} = a^{z+w}$$
 (2.13)
 $(a^{z})^{n} = a^{n \cdot z}$ (2.14)

$$\left(a^{z}\right)^{n} = a^{n \cdot z} \tag{2.14}$$

2.5 Die trigonometrischen Funktionen

Definition 2.2 (S. 31)

Für $z \in \mathbb{C}$ definieren wir:

$$\cos z := \frac{1}{2} \left(e^{iz} + e^{-iz} \right),$$
 (2.15)

$$\sin z := \frac{1}{2i} \left(e^{iz} - e^{-iz} \right), \tag{2.16}$$

$$\tan z := \frac{\sin z}{2}, \text{ falls } \cos z \neq 0, \tag{2.17}$$

$$\sin z := \frac{1}{2i} \left(e^{iz} - e^{-iz} \right), \tag{2.16}$$

$$\tan z := \frac{\sin z}{\cos z}, \text{ falls } \cos z \neq 0, \tag{2.17}$$

$$\cot z := \frac{\cos z}{\sin z}, \text{ falls } \sin z \neq 0. \tag{2.18}$$

Sinus und Kosinus hyperbolicus (Formelsammlung)

Sinus hyperbolicus:

$$\sinh x = \frac{1}{2} \left(e^x - e^{-x} \right) = -i \sin(ix) \tag{2.19}$$

Kosinus hyperbolicus:

$$\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right) = \cos(ix) \tag{2.20}$$

Eigenschaften trigonometrischer Funktionen (S. 32)

1. Symmetrien:

$$\cos(-z) = \cos(z) \tag{2.21}$$

$$\sin(-z) = -\sin(z) \tag{2.22}$$

2. Additions theoreme:

$$\cos(z+w) = \cos z \cdot \cos w - \sin z \cdot \sin w \tag{2.23}$$

$$\sin(z+w) = \sin z \cdot \cos w + \cos z \cdot \sin w \tag{2.24}$$

3. Eulersche Gleichung:

$$e^{i \cdot z} = \cos z + i \sin z \tag{2.25}$$

Dies stellt nicht die Zerlegung in Real- und Imaginärteil dar, die

$$e^{iz} = e^{i(x+iy)} = e^{-y+ix} = e^{-y} (\cos x + i \sin x)$$
 (2.26)

$$Re(iz) = e^{-y} \cos x \tag{2.27}$$

$$Im(iz) = e^{-y} \sin x \tag{2.28}$$

Mit Definition 2.2 gilt:

$$\cos z = \cos x \cdot \cosh y + i \left(-\sin x \cdot \sinh y \right) \tag{2.29}$$

$$\sin z = \sin x \cdot \cosh y + i \left(-\cos x \cdot \sinh y \right) \tag{2.30}$$

4. Periodizität:

 $\cos z$ und $\sin z$ sind 2π -periodisch.

5. Nullstellen:

$$\cos z = 0 \quad \Leftrightarrow \quad z = \frac{(2k+1)\pi}{2}, \ k \in \mathbb{Z}$$
 (2.31)

$$\sin z = 0 \quad \Leftrightarrow \quad z = k\pi, \ k \in \mathbb{Z}$$
 (2.32)

$$\sin z = 0 \quad \Leftrightarrow \quad z = k \,\pi, \ k \in \mathbb{Z} \tag{2.32}$$

6. Keine Beschränktheit:

Es gilt **nicht**: $|\sin z| \le 1$ und $|\cos z| \le 1$

7. Stetigkeit:

Die trigonometrischen Funktionen sind auf ihrem Definitionsbereich jeweils stetig.

2.6 Wurzeln

Satz 2.2: *n*-te Wurzeln (S. 32)

Ist $a \in \mathbb{C} \setminus \{0\}$, $a = r \cdot e^{i\varphi}$, $\varphi \in [0, 2\pi)$, so ist jede der Zahlen

$$z_k := \sqrt[n]{r} \cdot e^{i\frac{\varphi + 2k\pi}{n}}, \quad k \in \{0, 1, \dots, n-1\}$$

$$(2.33)$$

eine n-te Wurzel von a.

$\sqrt[n]{0}$ (S. 33)

Für a = 0 setzt man $\sqrt[n]{0} := 0$.

Einheitswurzeln (S. 33)

Für a=1 spricht man von den **Einheitswurzeln**. Wegen $a=1=1\cdot e^{i\cdot 0}$ laten die Einheitswurzeln nach Satz 2.2:

$$z_k = e^{i\frac{2k\pi}{n}}, \quad k \in \{0, 1, \dots, n-1\}$$
 (2.34)

$$z_0 = 1 \tag{2.35}$$

Die n-ten Einheitswurzeln sind die Nullstellen des Polynoms

$$p(z) = z^n - 1. (2.36)$$

Hauptwert der n-ten Wurzel (S. 33)

Um für $z \in \mathbb{C} \setminus \{0\}$ die Funktion $f(z) = \sqrt[n]{z}$ definieren zu können, muss man einen der n Werte z_0, \ldots, z_{n-1} auswählen und definiert daher die

$$\sqrt[n]{z} \coloneqq z_0 = \sqrt[n]{r} \cdot e^{i\frac{\varphi}{n}}, \quad \varphi \in [0, 2\pi)$$
 (2.37)

und spricht vom Hauptwert der n-ten Wurzel

2.7 Möbius-Transformationen

Möbius-Transformation (S. 34)

Die gebrochen-linearen Funktionen oder $M\ddot{o}$ bius-Transformationen haben die Form

$$f(z) = \frac{az+b}{cz+d}, \quad a,b,c,d \in \mathbb{C}, \ ad-bc \neq 0. \tag{2.38}$$

Erweiterung der komplexen Zahlen (S. 34)

Um Fallunterscheidungen zu vermeiden, erweitert man die komplexen Zahlen $\mathbb C$ zur abgeschlossenen komplexen Ebene

$$\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}. \tag{2.39}$$

Erweiterung der Möbius-Transformation mit Ĉ (S. 34)

$$f\left(-\frac{d}{c}\right) := \infty \tag{2.40}$$

$$f(\infty) := \frac{a}{c} \tag{2.41}$$

Umkehrabbildung der Möbius-Transformation (S. 34)

Durch (2.38), (2.40) und (2.41) ist eine bijektive Abbildung $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ definiert. Die Umkehrabbildung ist ebenfalls eine Möbius-Transformation:

$$f(z) = w = \frac{az+b}{cz+d}$$

$$\Leftrightarrow f^{-1}(w) = z = \frac{dw-b}{-cw+a}, \ ad-bc \neq 0$$
(2.42)

Verknüpfung zweier Möbius-Transformationen (S. 34)

Die Verknüpfung $w = (f \circ g)(z)$ zweier Möbius-Transformationen vom Typ (2.38) ergibt wieder eine Möbius-Transformation.

Satz 2.3 (S. 34)

Jede Möbius-Transformation entsteht durch Hintereinanderausführung von Abbildungen der folgenden Art:

Drehstreckung:

$$z \mapsto u \cdot z \tag{2.43}$$

Translation:

$$z \mapsto z + v \tag{2.44}$$

Inversion:

$$z \mapsto \frac{1}{z} \tag{2.45}$$

Satz 2.4 (S. 35)

Die Möbius-Transformation ist kreis-, winkel- und orientierungstreu, d.h.:

- a) Kreise in $\mathbb C$ werden auf Kreise oder Geraden in $\mathbb C$ abgebildet. Geraden in $\mathbb C$ werden auf Kreise oder Geraden in $\mathbb C$ abgebildet.
- b) Zwei Kurven in der z-Ebene schneiden sich unter dem gleichen Winkel wie ihre Bildkurven in der w-Ebene.
- c) Die linke Seite eines orientierten Kreises (bzw. einer orientierten Gerade) wird auf die linke Seite des Bildkreises bzw. der Bildgeraden abgebildet.

Kreisgleichung (S. 35)

$$\left(\frac{x-x_0}{r}\right)^2 + \left(\frac{y-y_0}{r}\right)^2 = 1$$
 (2.46)

Satz 2.5 (S. 36)

Zu je drei beliebig vorgegebenen paarweise verschiedenen Punkten $z_1, z_2, z_3 \in \hat{\mathbb{C}}$ und drei weiteren paarweise verschiedenen Punkten $w_1, w_2, w_3 \in \hat{\mathbb{C}}$ gibt es genau eine Möbius-Transformation f mit der Eigenschaft $f(z_1) =$ $w_1 \text{ und } f(z_2) = w_2 \text{ und } f(z_3) = w_3.$

3 Potenzreihen

3.1 Unendliche Reihen

Unendliche Reihe (S. 39)

Die mit einer komplexen Zahlenfolge $(z_n)_{n\geq 0}$ gebildete Partialsummenfolge

$$s_n := \sum_{k=0}^n z_k = z_0 + z_1 + \dots + z_n, \quad n \ge 0,$$
 (3.1)

heißt $\mathbf{unendliche}$ \mathbf{Reihe} , sie wird mit

$$\sum_{k=0}^{\infty} z_k \quad \text{oder} \quad z_0 + z_1 + z_2 + \dots$$
 (3.2)

bezeichnet

Konvergenz, Divergenz (S. 39)

Man sagt, die Reihe konvergiert gegen $s\in\mathbb{C}$, bzw. sie hat die Summe $s\in\mathbb{C}$, und man schreibt

$$\sum_{k=0}^{\infty} z_k = s,\tag{3.3}$$

wenn

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} (z_0 + z_1 + z_2 + \dots) = s.$$
 (3.4)

Die Reihe ("Summe") divergiert, wenn sie nicht konvergiert.

Absolute Konvergenz (S. 39)

Die Reihe $\sum_{k=0} z_k = z_0 + z_1 + z_2 + \cdots$ heißt absolut konvergent, wenn

die reelle Reihe der Beträge $\sum_{k=0}^{\infty} |z_k|$ konvergiert.

Satz 3.1 (S. 39)

Eine absolut konvergente Reihe ist auch konvergent:

$$\sum_{k=0}^{\infty} |z_k| \quad \text{konvergiert} \qquad \Rightarrow \qquad \sum_{k=0}^{\infty} z_k \quad \text{konvergiert.} \tag{3.5}$$

Satz 3.2: Majorantenkriterium (S. 40)

Es gelte $|z_k| \leq b_k$ für $k \in \mathbb{N}_0$. Dann gilt:

$$\sum_{k=0}^{\infty} bk \quad \text{konvergent} \qquad \Rightarrow \qquad \sum_{k=0}^{\infty} z_k \quad \text{absolut konvergent.} \tag{3.6}$$

Satz 3.3: Quotientenkriterium (S. 40)

Es gelte $z_k \neq 0$ für $k \geq k_0$. Dann folgt:

a)
$$\lim_{k \to \infty} \left| \frac{z_{k+1}}{z_k} \right| < 1$$
 \Rightarrow $\sum_{k=0}^{\infty} z_k$ absolut konvergent,

$$\text{b)} \ \lim_{k \to \infty} \left| \frac{z_{k+1}}{z_k} \right| > 1 \qquad \Rightarrow \qquad \sum_{k=0}^{\infty} z_k \quad \text{divergent.}$$

Geometrische Reihe (S. 40)

Wie im Reellen gilt für $q \in \mathbb{C}$ mit |q| < 1:

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q} \tag{3.7}$$

und damit

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q} \tag{3.8}$$

3.2 Potenzreihen

Potenzreihe (S. 40)

Eine Reihe der Form

$$\sum_{k=0}^{\infty} a_k \cdot (z - z_0)^k \tag{3.9}$$

mit $a_k, z_0, z \in \mathbb{C}$ heißt Potenzreihe mit Zentrum z_0 oder Entwicklungspunkt z_0 und Koeffizienten a_k .

Achtung: Es dürfen nur nichtnegative Potenzen von $z-z_0$ auftreten!

Konvergenzrdius (S. 40)

Wie im Reellen zeigt man, dass für eine Potenzreihe (3.9) nur die folgenden drei Fälle auftreten:

- 1. Die Potenzreihe konvergiert absolut für alle $z\in\mathbb{C}.$
- 2. Die Potenzreihe konvergiert nur für $z=z_0$.
- 3. Es gibt eine positive Zahl R, so dass die Potenzreihe für alle z mit
 - $|z z_0| < R$ absolut konvergiert,
 - $|z z_0| > R$ divergiert,
 - $|z-z_0|=R$ konvergiert oder divergiert (auch gemischt möglich)

Die Zahl R heißt Konvergenzradius der Reihe und $\{z \in \mathbb{C} : |z - z_0| = R\}$ der Konvergenzkreis. Zur Vermeidung von Fallunterscheidungen definiert man im Fall 1 den Konvergenzradius $R = \infty$ und im Fall 2 den Konvergenzradius R = 0.

Berechnung Konvergenzrdius (S. 41)

Zur Berechnung des Konvergenzradius R ist häufig das Quotienten oder Wurzelkriterium anwendbar:

$$R = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| \in [0, \infty], \tag{3.10}$$

$$R = \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|a_k|}} \in [0, \infty]. \tag{3.11}$$

Der Grenzwert (3.10) existiert nicht immer. Der größte Häufungswert (3.11) einer Folge existiert jedoch immer.

3.3 Gleichmäßige Konvergenz

Gleichmäßige Konvergenz (S. 42)

 $(f_n(z))$ konvergiert auf $D\subseteq \mathbb{C}$ gleichmäßig gegen die Grenzfunktion f(z), wenn es zu jedem beliebig kleinen Radius $\varepsilon>0$ einen für alle $z\in D$ gemeinsamen Index $N(\varepsilon)$ gibt, so dass für $n\geq N(\varepsilon)$ sämtliche Funktionswerte $f_n(z)$ in die ε -Umgebung von f(z) fallen:

$$|f_n(z) - f(z)| \le \varepsilon$$
 für alle $z \in D, \ n \ge N(\varepsilon)$. (3.12)

Punktweise Konvergenz (S. 42)

Bei **punktweiser Konvergenz** ist die "Konvergenzgeschwindigkeit" evtl. von Punkt zu Punkt verschieden. Bei punktweiser Konvergenz gilt:

$$|f_n(z) - f(z)| \le \varepsilon$$
 für alle $z \in D, \ n \ge N(\varepsilon, z).$ (3.13)

Sätzle: Gleichmäßige Konvergenz einer Potenzreihe (S. 42)

Eine Potenzreihe (3.9) mit Konvergenzradius R > 0 ist in jeder abgeschlossenen Kreisscheibe D innerhalb ihres Konvergenzkreises ($D := \{z : |z - z_0| \le r < R\}$) gleichmäßig konvergent.

Eigenschaften bei gleichmäßiger Konvergenz einer Potenzreihe (S. 42)

Für
$$s_n(z) \coloneqq \sum_{k=0}^\infty a_k \, (z-z_0)^k$$
 und $s(z) \coloneqq \sum_{k=0}^\infty a_k \, (z-z_0)^k$ gilt:

$$|s_n(z) - s(z)| \le \varepsilon$$
 für alle $z \in D, \ n \ge N(\varepsilon)$. (3.14)

Gleichmäßige Konvergenz garantiert die Eigenschaften der Grenzfunktion:

$$s(z) := \sum_{k=0}^{\infty} a_k (z - z_0)^k, \quad |z - z_0| < R.$$
 (3.15)

Insbesondere ist deshalb s(z) in der Menge $\{z: |z-z_0| < R\}$ stetig. Die Stetigkeit einer Potenzreihe in z^* können wir auch wie folgt schreiben:

$$\lim_{z \to z^*} s(z) = s(z) = \sum_{n=0}^{\infty} a_n (z^* - z_0)^n.$$
 (3.16)

Alle komplexen Funktionen, die über Potenzreihen definiert sind, sind stetig.

4 Differentiation, analytische Funktionen

4.1 Definition und Rechenregeln

Definition 4.1 (S. 43)

Sei $G\subseteq\mathbb{C}$ ein Gebiet und $f:G\to\mathbb{C}$. f heißt in $z_0\in G$ komplex differenzierbar, wenn der Grenzwert

$$\frac{df}{dz}(z_0) := f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
(4.1)

im Sinne von Definition 2.1 existiert. $f'(z_0)$ heißt Ableitung von f an der Stelle z_0 . $f:g\to\mathbb{C}$ heißt analytisch (oder holomorph), wenn f'(z) für jedes $z\in G$ existiert.

Bemerkungen, Rechenregeln (S. 43)

- 1. Der Grenzwert des Differenzenquotienten muss bei jeder Annäherung von z an z_0 existieren und gleich $f'(z_0)$ sein. Andernfalls ist die Funktion an z_0 nicht differenzierbar.
- $2. \ \, {\rm Differenzierbare} \,\, {\rm Funktionen} \,\, {\rm sind} \,\, {\rm stetig}.$
- 3. Sind f und g differenzierbar (bzw. analytisch), so sind auch die Funktionen $f\pm g,\ f\cdot g,\ \frac{f}{g}$ (für $g(z)\neq 0$) und $f\circ g$ differenzierbar (bzw. analytisch), und es gelten die folgenden Rechenregeln:
 - a) Linearität:

$$(a f + b g)' = a f' + b g'$$
(4.2)

b) Produktregel:

$$(f \cdot g)' = f' \cdot g + f \cdot g' \tag{4.3}$$

c) Quotientenregel:

$$\left(\frac{f}{a}\right)' = \frac{f' \cdot g - f \cdot g'}{a^2} \tag{4.4}$$

insbesondere

$$\left(\frac{1}{q}\right)' = -\frac{g'}{q^2} \tag{4.5}$$

d) Kettenregel:

$$(f(g))' = f'(g) \cdot g' \tag{4.6}$$

Satz 4.1: Potenzreihen sind analytisch und unendlich oft diff.bar (S. 45)

Eine Potenzreihe $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ mit Konvergenzradius R > 0 stellt im Inneren des Konvergenzkreises eine analytische Funktion dar.

tent ini finieren des Konvergenzkreises eine anarytische Funktion da

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
 (4.7)

ist analytisch in $K_R(z_0)=\{z: |z-z_0|< R\}$. Die Ableitung erhält man durch gliedweise Differentiation:

$$f'(z) = \sum_{k=1}^{\infty} k a_k (z - z_0)^{k-1}$$
 (4.8)

Die abgeleitete Reihe ist wieder eine Potenzreihe und hat denselben Konvergenzradius R. Das Ableiten kann also beliebig oft wiederholt werden. Die Koeffizienten lassen sich aus der Funktion f berechnen und sind daher durch f eindeutig bestimmt:

$$a_n = \frac{1}{n!} f^{(n)}(z_0), \quad n = 0, 1, 2, \dots$$
 (4.9)

4.2 Die Cauchy-Riemann-Differentialgleichungen

Satz 4.2: Cauchy-Riemann-Differentialgleichungen (S. 47)

Ist $f: \mathbb{C} \to \mathbb{C}$ differenzierbar an $z_0 = x_0 + i y_0$ und gilt

$$f(z) = f(x,y) = u(x,y) + iv(x,y), \tag{4.10}$$

so erfüllen u und v die Cauchy-Riemann-Differentialgleichungen an der Stelle (x_0, y_0) :

$$u_x(x_0, y_0) = v_y(x_0, y_0),$$
 (4.11)

$$u_y(x_0, y_0) = -v_x(x_0, y_0).$$
 (4.12)

Ist f differenzierbar für alle $z \in G$, wobei G eine offene Menge in $\mathbb C$ ist, so gelten diese Differentialgleichungen in ganz G.

Folgerung aus Satz 4.2: Funktionen mit Ableitung 0 sind konstant (S. 47)

Es sei $f:G\to\mathbb{C}$ ein in dem Gebiet $G\subseteq\mathbb{C}$ analytische Funktion mit f'(z)=0 für alle $z\in G$. Dann gilt: $f(z)=\mathrm{const.}$

4.3 Geometrische Deutung der Ableitung

Satz 4.3 (S. 47)

Ist $f:G\to\mathbb{C}$ eine analytische Funktion mit $f'(z)\neq 0$ in dem Gebiet G, dann ist die Abbildung $f:G\to\mathbb{C}$ in allen Punkten $z_0\in G$ lokal konform (d.h. winkeltreu und orientierungstreu), d.h. der Schnittwinkel zwischen zwei glatten Kurven durch $z_0\in G$ ist samt Drehsinn der gleiche wie für die beiden Bildkurven durch $f(z_0)$.

4.4 Das komplexe Potenzial

4.5 Harmonische Funktionen

Harmonische Funktionen (S. 50)

Ist $f(z)=u(x,y)+i\,v(x,y)$ eine analytische Funktion, so gilt aufgrund der Cauchy-Riemann-Differentialgleichungen

$$u_x = v_y \tag{4.13}$$

$$u_y = -v_x. (4.14)$$

Es folgt $u_{xx}=v_{yx}$ und $u_{yy}=-v_{xy}.$ Wegen $v_{xy}=v_{yx}$ haben wir: $u_{xx}+u_{yy}=0.$ Man schreibt dafür auch

$$\Delta u = u_{xx} + u_{yy} = 0 \tag{4.15}$$

und nennt Funktionen dieser Eigenschaft harmonisch. Es gilt auch

$$\Delta v = v_{xx} + v_{yy} = 0. {(4.16)}$$

(S.50)

Es sei nun $G\subseteq\mathbb{C}$ einfach zusammenhängend und es sei nur die Funktion u(x,y) vorgegeben. Gesucht ist die Funktion v(x,y), sodass

$$f(z) = u(x, y) + i v(x, y)$$
(4.17)

eine analytische Funktion ist. Wir gehen wie folgt vor:

- 1. u_x und u_y berechnen
- 2. Aus dem Ansatz $v_y = u_x$ durch unbestimmte Integration nach y

$$v = \int u_x \, dy + c(x) \tag{4.18}$$

bestimmen.

- 3. Nach x differenzieren, $v_x = \frac{\partial}{\partial x} \left(\int u_x \, dy \right) + c'(x)$, dies mit $-u_y$ gleichsetzen und daraus c(x) berechnen.
- 4. Zur analytischen Funktion (4.17) zusammensetzen.

5 Integration

5.1 Grundlagen

Kurve / Weg (S. 52)

Eine Kurve (oder ein Weg) ${\cal C}$ in der komplexen Ebene wird in der Form

$$z(t) = x(t) + i y(t)$$
 mit $t \in [a; b] \subseteq \mathbb{R}$ (5.1)

dargestellt. Stetigkeit und Differenzierbarkeit beziehen sich dabei auf die Funktionen x(t) und y(t). Es gilt

$$z'(t) = x'(t) + i y'(t). (5.2)$$

Definition 5.1: Kurvenintegral (S. 52)

Es sei $G\subseteq\mathbb{C}$ ein Gebiet, $f:G\to\mathbb{C}$ stetig und durch $z(t),\,t\in[a,b]$ sei eine stetig differenzierbare Kurve C gegeben. Dann heißt

$$\int_{C} f(z) dz := \int_{a}^{b} \underbrace{f(z(t)) \cdot z'(t)}_{\in \mathbb{C}} dt$$

$$:= \int_{a}^{b} \operatorname{Re}(f(z(t)) \cdot z'(t)) dt + i \int_{a}^{b} \operatorname{Im}(f(z(t)) \cdot z'(t)) dt$$
(5.4)

das Kurvenintegral von f längs C. Für eine Kurve C, die aus endlich vielen stetig differenzierbaren Kurvenstücken C_1, \ldots, C_n besteht, definiert man

$$\int_{C} f(z) dz := \int_{C_{1}} f(z) dz + \dots + \int_{C_{n}} f(z) dz.$$
 (5.5)

Kurvenintegral, einfach geschlossene Kurve $(S.\ 52)$

Ist C eine geschlossene Kurve ohne Doppelpunkte, die im mathematisch positiven Sinn durchlaufen wird (das Innere liegt links in Durchlaufrichtung), so nennt man C einfach geschlossen und schreibt

$$\oint_C f(z) dz \tag{5.6}$$

für das Kurvenintegral. Bei einem Kreis mit $z(t)=a+r\,e^{it},\,t\in[0,2\pi)$ schreibt man

$$\oint_{|z-a|=r} f(z) dz.$$
(5.7)

Das Fundematalintegral (S. 52)

Ein zentraler Baustein der Funktionentheorie ist das Fundamentalintegral, das wichtigste Integral der Analysis! Für $a \in \mathbb{C}$, r > 0 gilt:

$$\oint_{|z-a|=r} (z-a)^m dz = 0, \qquad \text{falls } m \in \mathbb{Z}, m \neq -1 \tag{5.8}$$

$$\oint_{|z| = 1-\pi} \frac{1}{z-a} dz = 2\pi i \qquad (m = -1) \tag{5.9}$$

Berechnung des Integrals im Skript, Seiten 52-53.

Satz 5.1 (S. 54)

Aus Definition 5.1 ergeben sich die folgenden Regeln:

a) Linearität: Mit $a,b\in\mathbb{C}$ gilt

$$\int_{C} [a f(z) + b g(z)] dz = a \int_{C} f(z) dz + b \int_{C} g(z) dz$$
 (5.10)

b) Additivität bei zusammengesetzten Wegen: $C = C_1 \cup \cdots \cup C_n$

$$\int_{C} f(z) dz = \sum_{k=1}^{n} \int_{C_{k}} f(z) dz$$
 (5.11)

c) Abhängigkeit der Orientierung: Für die zu C entgegengesetzt durchlaufende Kurve C* gilt

$$\int_{C*} f(z) \, dz = -\int_{C} f(z) \, dz \tag{5.12}$$

d) Abschätzung:

$$\left| \int_{C} f(z) dz \right| = \leq \max_{z \in \mathbb{C}} |f(z)| \cdot (\text{Länge von } C)$$
 (5.13)

5.2 Der Cauchy-Integralsatz

Satz 5.2: Cauchy-Integralsatz, Hauptsatz der Funktionentheorie (S. 55)

Für jede analytische Funktion $f:G\to\mathbb{C}$ auf einem einfach zusammenhängenden Gebiet G und für jede stückweise stetig differenzierbar einfach geschlossene Kurve C in G gilt

$$\oint_C f(z) dz = 0 \tag{5.14}$$

Satz 5.3: Wegunabhängigkeit des Integrals (S. 57)

Es sei $G\subseteq\mathbb{C}$ einfach zusammenhängend, $f:G\to\mathbb{C}$ analytisch. Dann gilt für zwei Punkte $z_0,z_1\in G$ und zwei beliebige (stückweise stetig differenzierbare) Kurven C_1 und C_2 in G, die von z_0 nach z_1 führen:

$$\int_{C_1} f(z) dz = \int_{C_2} f(z) dz$$
 (5.15)

Satz 5.4: Stammfunktion mittels Integral (S. 58)

Es sei $G\subseteq\mathbb{C}$ ein einfach zusammenhängendes Gebiet, $f:G\to\mathbb{C}$ analytisch, $Z_0\in G$ fest gewählt und $z\in G$ beliebig. Ist C irgendeine (stückweise stetig differenzierbare) Kurve von z_0 nach z in G, so ist das wegunabhängige Integral

$$I(z) := \int_{z_0}^{z} f(w) dw := \int_{C} f(w) dw$$
 (5.16)

eine Stammfunktion von f:I'(z)=f(z) für alle $z\in G.$

Bemerkung (S. 58)

Wie im Reellen gilt: zwei Stammfunktionen F_1 und F_2 von f unterscheiden sich nur durch eine Konstante, also:

$$F_1'(z) = F_2'(z) = f(z) \implies F_1(z) = F_2(z) + c, \quad c \in \mathbb{C}$$
 (5.17)

Damit ergibt sich: Ist F eine **beliebige** Stammfunktion von f, so folgt:

$$\int_{z_0}^{z} f(w) dw = I(z) = F(z) + c.$$
 (5.18)

Wegen $0 = \int_{z_0}^{z_0} f(w) dw = F(z_0) + c \text{ folgt } c = -F(z_0), \text{ d.h.}$:

$$\int_{z_0}^{z} f(w) dw = F(z) - F(z_0)$$
(5.19)

5.3 Die Cauchy-Integralformel

Satz 5.5 (S. 59)

Ist G nicht einfach zusammenhängend (mit "Löchern") und f analytisch auf G, dann gilt für je zweifach geschlossene Kurven C_1 und C_2 aus G, die dieselbe Ausnahmemenge ("Löcher") in gleicher Richtung einmal umlaufen:

$$\oint_{C_1} f(z) dz = \oint_{C_2} f(z) dz.$$
 (5.20)

Satz 5.6 (Cauchy-Integralformel)

S. 60 Es sei $G\subseteq\mathbb{C}$ ein Gebiet, $F:G\to\mathbb{C}$ analytisch, C eine einfach geschlossene Kurve in G, deren Inneres danz in G liegt. Dann gilt für alle z im Innern von C:

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(w)}{w - z} dw \tag{5.21}$$

6 Anwendungen der Cauchy-Integralformel

6.1 Die Taylor-Reihe

Satz 6.1 (S. 61)

Es sei $a \in \mathbb{C}$ und $w \neq a$. Dann gilt

$$|w-a| > |z-a| \Rightarrow \frac{1}{w-z} = \sum_{k=0}^{\infty} \frac{(z-a)^k}{(w-a)^{k-1}},$$
 (6.1)

(Potenzreihe bzgl. z)

$$|w-a| < |z-a| \implies \frac{1}{w-z} = -\sum_{k=0}^{\infty} \frac{(w-a)^k}{(z-a)^{k+1}}.$$
 (6.2)

(keine Potenzreihe bzgl. z)

Bemerkung (S. 61)

Eine analytische Funktion f ist beliebig oft differenzierbar und (lokal) immer durch eine Taylor-Reihe darstellbar.

Satz 6.2: Taylor-Reihe (S. 62)

Jede im Gebiet G analytische Funktion f besitzt innerhalb jeder r-Umgebung $K_r(a)$ (vgl. Def. 1.2, S. 1), die ganz in G liegt, die Potenzreihendarstelleng (Taylor-Entwicklung)

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (z - a)^k, \qquad z \in K_r(a);$$
 (6.3)

insbesondere ist f in G beliebig oft differenzierbar mit den Ableitungen (verallgemeinerte Cauchy-Integralformeln)

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_{|w-a|=\rho} \frac{f(w)}{(w-z)^{n+1}} dw, \qquad |w-a| < \rho < r, n \in \mathbb{N}_0.$$
(6.4)

Folgerung (S. 62)

Ist f in ganz $\mathbb C$ analytisch (also $G=\mathbb C$), so hat die Taylor-Reihe den Konvergenzradius $R=\infty.$

Regel von l'Hospital (S. 63)

Sind f und g analytische Funktionen mit $f(z_0)=g(z_0)=0$ und gilt $g'(z_0)\neq 0,$ so folgt

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g(z_0)}.$$
 (6.5)

Bemerkung (S. 63)

Ist R der Konvergenzradius der Taylor-Reihe von f, so befindet sich auf dem Rand des Konvergenzkreises immer eine Stelle, an der f nicht differenzierbar ist ("Singularität"). Für die Funktion $\operatorname{Ln}(1+z)$ ist diese Singularität bei -1.

Definition 6.1 (S. 64)

Man sagt, eine analytische Funktion habe eine Nullstelle a der Ordnung m, wenn gilt

$$f(z) = (z - a)^m \cdot f_1(z)$$
 in einer Umgebung $K_r(a)$ (6.6)

mit einer analytischen Funktion f_1 , für die gilt $f_1(a) \neq 0$. Dies ist gleichbedeutend mit

$$f(a) = f'(a) = \dots = f^{(m-1)}(a) = 0, \quad f^{(m)}(a) \neq 0.$$
 (6.7)

Satz 6.3: Identitätssatz (S. 64)

Für analytische Funktionen $f,g:G\to \mathbb{C}$ auf einem Gebiet G sind äquivalent:

- a) f(z) = g(z) für alle $z \in G$
- b) $f(z_n)=g(z_n)$ für alle Punkte (z_n) einer unendlichen Folge mit verschiedenen Folgengliedern und Häufungswert a in G.

6.2 Der Fundamentalsatz der Algebra

Satz 6.4: Satz von Liouville (S. 65)

Ist f auf ganz $\mathbb C$ analytisch und beschränkt ($|f(z)| \leq M$ für alle $z \in \mathbb C$), so ist f eine konstante Funktion: $f(z) = \mathrm{const.}$

Satz 6.5: Fundamentalsatz der Algebra (S. 66)

Jedes nichtkonstante Poylnom

$$p(z) = a_m z^n + \dots + a_1 z + a_0, \quad n \ge 1, a_n \ne 0$$
 (6.8)

hat in $\mathbb C$ genau n Nullstellen, wobei wir eine Nullstelle der Ordnung m (vgl. Def. 6.1) m-malzählen.

6.3 Mittelwerteigenschaft und Maximumprinzip

Mittelwerteigenschaft (S. 66)

Ist $f:G\to\mathbb{C}$ analytisch, G ein Gebiet, so gilt gemäß Cauchy-Integralformel (Satz 5.6):

$$f(z) = \frac{1}{2\pi i} \oint_{|w-z|=\rho} \frac{f(w)}{w-z} \, dw. \tag{6.9}$$

Schreiben wir den Kreis $|w-z|=\rho$ in der Form $C=\{w: w=z+\rho\,e^{it},\,t\in[0,2\pi)\}$, so folgt:

$$f(z) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f\left(z + \rho e^{it}\right)}{z + \rho e^{it} - z} \cdot i \cdot \rho e^{it} dw \tag{6.10}$$

$$=\frac{1}{2\pi}\int_{0}^{2\pi}f\left(z+\rho\,e^{it}\right)\,dt\tag{6.11}$$

Der Funktionswert f(z) ist der mittlere Wert aller Funktionswerte $f(z + \rho e^{it})$ auf der Kreislinie C (Mittelwerteigenschaft).

Satz 6.6: Maximumprinzip (S. 67)

Ist G ein beschränktes Gebiet, $f:G\cup\partial G\to\mathbb{C}$ analytisch und nicht konstant, dann liegt jede Maximalstelle z_0 der Funktion |f(z)| auf dem Rand von G (und nicht im Innern von G), d.h. die Betragsfläche $z\to|f(z)|$ hat keine Gipfel im Innern des Gebiets.

6.4 Folgen analytischer Funktionen

Lemma 6.1 (S. 68)

Es sei $f:G\to\mathbb{C}$ stetig, und für jede im Gebiet G verlaufende einfach geschlossene (stückweise stetig differenzierbare) Kurve C, sie samt ihres Innern in G liegt, gelte $\oint_C f(z)\,dz=0$. Dann ist f analytisch in G.

Satz 6.7: Weierstraß (S. 68)

Ist (f_n) eine gleichmäßig konvergente Folge analytischer Funktionen in dem Gebiet G, so ist auch die Grenzfunktion f analytisch in G. Es gilt dann

$$\lim_{n \to \infty} f'_n(z) = f'(z). \tag{6.12}$$

8.5 Meromorphe Funktionen

Satz 6.8 (S. 69)

Ist (f_n) eine gleichmäßig konvergente Folge analytischer Funktionen mit Grenzfunktion f in dem Gebiet G, so gilt

$$\lim_{n \to \infty} \int_C f_n(z) dz = \int_C f(z) dz \qquad (n \to \infty)$$
 (6.13)

für jede st
pckweise differenzierbare Kurve ${\cal C}$ in
 ${\cal G}.$

Bemerkung (S. 69)

Da in Satz 6.8 $f(z) = \lim_{n \to \infty} f_n(z)$ gilt, können wir auch schreiben:

$$\lim_{n \to \infty} \int_C f_n(z) dz = \int_C \lim_{n \to \infty} f_n(z) dz, \tag{6.14}$$

falls die Funktionenfolge gleichmäßig konvergiert.

6.5 Eigenschaften analytischer Funktionen (Zusammenfassung)

Eigenschaften analytischer Funktionen (S. 70)

Es sei $f:G\to\mathbb{C}$ analytisch, G ein einfach zusammenhängendes Gebiet in \mathbb{C} und G eine einfach geschlossene Kurve in G. Dann gilt:

1. Cauchy-Integralsatz (Satz 5.2):

$$\oint_C f(z) dz = 0. \tag{6.15}$$

2.
$$F(z) := \int_{z_0}^z f(w) \, dw$$
 ist wegunabhängig (Satz 5.3); $F'(z) = f(z)$.

3. Cauchy-Integralformeln (Sätze 5.6, 6.2):

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(w)}{(w-z)^{n+1}} dw, \qquad n \in \mathbb{N}_0$$
 (6.16)

für alle z aus dem Inneren von C.

4. Taylor-Entwicklung um $a \in G$ (Satz 6.2):

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^n$$
 (6.17)

in jeder offenen Kreisscheibe |z - a| < r, die ganz in G liegt.

- 5. Im Fall $G=\mathbb{C}$ gilt der Satz von Liouville (Satz 6.4) für beschränkte, analytische Funktionen.
- 6. Identitätssatz (Satz 6.3)
- 7. Mittelwerteigenschaft:

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f\left(z + \rho e^{it}\right) dt \qquad z \in G.$$
 (6.18)

- 8. Maximumprinzip (Satz 6.6): Ist f nicht konstant, so nimmt |f| das Maximum auf ∂G an (falls G beschränkt).
- 9. Identitätssatz (Satz 6.3)
- 10. Konvergenzsätze (Sätze 6.7, 6.8): Ist (f_n) eine gleichmäßig gegen f konvergierende Folge analytische Funktionen, so konvergieren auch die ersten Ableitungen und die Kurvenintegrale der Funktionen f_n gegen die erste Ableitung bzw. das Kurvenintegral von f.

7 Laurent-Reihen und Singularitäten

- 7.1 Laurent-Reihen
- 7.2 Isolierte Singularitäten
- 8 Residuentheorie
- 8.1 Der Residuensatz
- 8.2 Methoden der Residuenberechnung
- 8.3 Beispiele zum Residuensatz
- 8.4 Berechnung reeller Integrale mit dem Residuensatz