Bendix

SEMICONDUCTORS

AVAILABLE IMMEDIATELY AT INDUSTRIAL ELECTRONIC PARTS CENTER 916 MAIN ST. - BUFFALO 2, N. Y.

TT 4-3450

YOUR GUIDE to

SEMICONDUCTOR DEVICES MEETING YOUR MOST CRITICAL DESIGN REQUIREMENT

HIGH FREQUENCY-HIGH POWER	
BIG Leaf TM SILICON PLANAR EPITAXIAL NPN TRANSISTO ft = 200 mc minimum, > 25 watts at 50 mc, IC = 2.5 A to 10 A, VCBO = 50	0 V to 100 V, SOAR specified.
SILICON DIFFUSED MESA NPN POWER TRANSISTORS	pages 1 and 2
DAP® DIFFUSED ALLOY POWER μSEC SWITCHING TRANSISTO IC to 50°A, VCE to 350 V, switch up to 4500 W, SOAR specified.	RS pages 2 and 3
HIGH POWER PNP ALLOY TRANSISTORS IC to 25 A, VCE to 100 V, Pc to 150 W, SOAR specified.	pages 3 and 4
PNP ALLOY POWER TRANSISTORS IC to 7 A, VCE to 100 V, SOAR specified.	pages 4 thru 6
Low VCE(s) = 0.45 V at 0.5 A, ft = 220 mc minimum, VCBO = 40 V to 150 V	
HIGH FREQUENCY Leaf-Let TM SILICON PLANAR EPITAXIAL NPN ft = 400 mc typical, low VCE(s) = 0.25 V at 150 mA, VCBO = 60 V, IC = 0.8	
SILICON DIFFUSED POWER RECTIFIERS lo to 12 A, PRV to 1000 V, single junction construction provides low forward	
MILITARY SEMICONDUCTORS Silicon rectifiers, silicon NPN and germanium PNP transistors.	pages 9 and 10
IGNISTORS™	
A transistor with a matched zener diode together in one package. The zener voltage transients. The transistor is SOAR specified for secondary breakdown	
TRANSISTOR MOUNTING KITS	page 10
SEMICONDUCTOR OUTLINES	page 11

AVOID SECONDARY BREAKDOWN WITH BENDIX SOAR SPECIFIED TRANSISTORS

The new SOAR (<u>Safe Operating ARea</u>) principle now makes it easy for you to specify the exact transistor for switching or DC applications.

Safe switching is now a reality as the transistor operates within the SOAR envelope. This envelope defines the region which encloses all of the points representing the simultaneous values of the collector current and the collector-to-emitter voltage which the transistor can safely handle during switching into any load. Exact conditions are specified for base current, switching time, junction temperature and average power dissipation.

BENDIX BIG Leaf ™ RF SILICON PLANAR EPITAXIAL NPN TRANSISTORS

TYPE	CASE TYPE	VCBO V	VCEO V	VEBC V) IC A	SO V1 V	AR V2 V	Pc @ 25°C Case W	CURRI hFE● -	ENT G IC A	AIN VCE V	SATURAT VCE(s)● V		DLTAGE IB A		OLLECTOR FOFF RENT VCBO V	θ J - C °C/W	θJ-A °C/W
2N2657 2N2658 2N3016 2N3017 2N3018 2N3619 2N3620 2N3621 2N3622 2N3623	TO-5 TO-5 MT-27 TO-61 TO-5 MT-27 TO-61 TO-61 TO-5	80 100 100 100 100 75 75 75 75	60 80 50 50 50 40 40 40 40	8 8 4 4 4 4 4 4 4	5 5 2.5 5 10 2.5 5 10 10 2.5	- 40 40 40 30 30 30 30 30 30	- 90 90 90 65 65 65 65 65	4 4 5 10 25 7.5 7.5 15 15	40-120 40-120 60-150 60-150 40 min 30 min 40 min 40 min	1 1 1 1 1 5 5	2 5 5 5 5 10 10 10	0.5 0.5 0.75 1 1 0.75 1 1.25 1.25 0.75	1 1 3 5 1 3 5 1	0.1 0.1 0.3 0.5 0.1 0.3 0.5 0.5	0. 1 0. 1 0. 1 0. 1 0. 1 25 25 25 25 1	60 60 30 30 30 15 15 15	35 35 20 20 5 20 20 5 5	165 165 165 120 45 165 120 45 45 165
2N3624 2N3625 2N3626 2N3627 2N3628 2N3629 2N3630	MT-27 TO-61 TO-61 TO-5 MT-27 TO-61 TO-61	75 75 75 100 100 100 100	40 40 40 50 50 50 50	4 4 4 4 4 4	5 10 10 2.5 5 10	30 30 30 40 40 40 40	65 65 65 90 90 90	7.5 15 15 7.5 7.5 20 20	30 min 40 min 40 min 40 min 30 min 40 min	5 5 5 1 5 5 5	10 10 10 5 10 10	1 1.25 1.25 0.75 1 1.25 1.25	3 5 5 1 3 5 5	0.3 0.5 0.5 0.1 0.3 0.5	1 1 1 1 1 1	15 15 15 30 30 30	20 5 5 20 20 5 5	120 45 45 165 120 45 45

[•]Pulse Width = $300 \,\mu$ sec, duty cycle 2%. Tj = $200 \,^{\circ}$ C maximum. $Tc = 40 \,\text{msec}$ typical. Cob = $50 \,\text{pf}$ maximum at VCBO = $30 \,^{\circ}$ V.

BENDIX SILICON DIFFUSED MESA NPN POWER TRANSISTORS

TYP NUMB	- Children	CASE TYPE	VCB0 V	VCEO V	IC A	SO V1 V	AR V2 V	Pc @ 25°C CASE W	CUR hFE –	RENT GA	AIN VCE V	SATURA VCE(s) V	MAX ATION VO IC A	DLTAGE IB A	MAX COL CUTC CURR ICBO μΑ	DFF	θ J-C ° C/W
2N/ 2N/ 2N/ 2N/ 2N/ 2N/ 2N/ 2N/	389A	TO-53 TO-53 TO-53 TO-53 TO-53 MT-1 MT-1 MT-1 MT-1 MT-1	60 60 80 80 30 60 100 150 200 30		2 3 2 3 7.5 7.5 7.5 7.5 7.5			85 85 85 85 175 175 175 175 175	12-60 12-60 12-60 12-60 10 min 10 min 10 min 10 min 10 min	1 1 1 2 2 2 2 2 2 2 5	15 4 15 15 4 4 4 4 4	1 0.75 2 0.75 1.5 1.5 1.5 2.5	1 1 1 2 2 2 2 2 2 5	0. 2 0. 2 0. 2 0. 2 0. 3 0. 3 0. 3 0. 3 0. 3	10 mA • 10 mA • 10 mA • 20 mA = 20 mA	60 60 60 60 30 60 100 150 200 30	2 2 2 2 0.7 0.7 0.7 0.7 0.7 0.7
2N 2N 2N 2N 2N 2N 2N 2N 2N	1016A 1016B 1016C 1016D 1067 1068 1069 1070 1208 1209	MT-1 MT-1 MT-1 TO-8 TO-8 TO-3 TO-3 TO-61 TO-61	60 100 150 200 60 60 60 60 60 45	30 30 45 45 60 45	7.5 7.5 7.5 7.5 3 3 7.5 7.5 5	- - 25 25 40 40 -	 60 60 60 60 	175 175 175 175 10 10 50 50 85 85	10 min 10 min 10 min 10 min 15-75 15-75 10-50 10-50 15 min 20-80	5 5 5 0.2 0.75 1.5 1.5 2	4 4 4 4 4 4 12 12	2.5 2.5 2.5 2.5 2 2 3 1	5 5 5 5 0.2 0.75 1.5 1.5 2	0. 75 0. 75 0. 75 0. 75 0. 02 0. 1 0. 3 0. 3 0. 25 0. 25	20 mA	60 100 150 200 60 60 60 60 45	0.7 0.7 0.7 0.7 5 5 1.5 2.06 2.06
2N 2N 2N 2N 2N 2N 2N 2N	1210 1211 1212 1250 1483 1484 1485 1486 1487 1487	TO-53 TO-53 TO-61 TO-53 TO-8 TO-8 TO-8 TO-8 TO-8 TO-3 TO-3	60 80 60 60 60 100 60 100 60	60 80 60 60 40 55 40 55 40	5 5 5 5 3 3 3 6 6	- - - 35 50 35 50 - -	- - - 60 100 60 100 -	30 30 85 85 25 25 25 25 75	15-75 15-75 12-36 15 min 20-60 20-60 35-100 35-100 15-45 15-45	2 1 1 2 0.75 0.75 0.75 0.75 1.5	12 12 15 12 4 4 4 4 4	2 2 5 5 2 2 0.75 0.75 3	2 2 1 2 0.75 0.75 0.75 0.75 1.5	0. 25 0. 25 0. 2 0. 25 0. 075 0. 075 0. 04 0. 04 0. 3 0. 3	1000 1000 10 mA ♦ 10 mA 15 15 15 15 25	60 80 60 60 30 30 30 30 30 30	2. 5 2. 5 2. 06 2. 06 7 7 7 7 7 2. 33 2. 33
USA2N 2N USA2N 2N USA2N 2N 2N 2N 2N	1489 1489 1490	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-36 TO-36 TO-36	100 100 60 60 100 100 60 100 60	55 55 40 40 55 55 40 55 40 55	6 6 6 6 6 6 6 6	-	-	75 75 75 75 75 75 75 75 75 75	15-45 15-45 25-75 25-75 25-75 25-75 15-45 15-45 25-75 25-75	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	4 4 4 4 4 4 4 4 4	3 3 1 1 1 3 3 1	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	0. 3 0. 3 0. 1 0. 1 0. 1 0. 1 0. 3 0. 3 0. 1 0. 1	25 25 25 25 25 25 25 25 25 25 25 25 25 2	30 30 30 30 30 30 30 30 30 30	2. 33 2. 33
2N 2	1616 1616A 1617 1617A 1618	TO-61 TO-61 TO-61 TO-61 TO-61	60 60 80 80 100	60 60 80 70 100	5 7.5 5 7.5 5	- - - - -	- - -	60 85 60 85 60	15-75 20-60 15-75 20-60 15-75	2 2 2 2 2 2	12 4 12 4 12	2 1 2 1 2	2 2 2 2 2 2	0. 25 0. 2 0. 25 0. 2 0. 25	1000 200 1000 200 1000	60 60 80 80 100	2. 5 2 2. 5 2 2. 5

TYPE NUMBER	CASE TYPE	VCBO V	VCEO V	IC A	SO V1 V	AR V2 V	Pc @ 25°C CASE W	CURI hFE -	RENT GA IC A	VCE V	SATUR VCE(s) V	MAX ATION VO IC A	DLTAGE IB A	MAX COL CUTC CURR ICBO μΑ	DEF 7	θ J-C ° C/W
2N1618A 2N1620 2N1701 2N1702 2N1722 2N1723 2N1724 2N1725 2N2032 2N2035	TO-61 TO-53 TO-8 TO-53 TO-53 TO-61 TO-61 TO-53 TO-8	100 60 60 120 120 120 120 45 80	80 100 40 40 80 80 80 80 45	7.5 5 2.5 5 7.5 7.5 7.5 7.5 7.5	- - - 70 70 70 70 - -	 120 120 120 120 	85 30 25 75 100 100 100 100 85 25	20-60 15-75 20-80 11-60 20-90 50-150 20-90 50-150 20 min 20-60	2 2 0.3 0.8 2 2 2 2 2 2 1.5	4 12 4 4 15 15 15 15 12 4	1 2 1.5 3.2 1 1 1 1 5 0.45	2 2 0.3 0.8 2 2 2 2 2 2 1.5	0. 2 0. 25 0. 03 0. 08 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. 25 0. 15	200 1000 750 200 500 100 500 100 20 mA 150	100 100 60 30 3 3 3 3 45	2 2.5 7 2.33 1.5 1.5 1.5 2.06
2N2101 2N2304 2N2305 2N2338 2N3055 2N3232 2N3235	TO-61 TO-8 TO-3 TO-36 TO-3 TO-3 TO-3	60 60 60 60 100 80 65	40 40 40 40 60 60 55	3 3 6 7.5 15 7.5		-	75 25 75 150 115 117	15-60 20-80 15-60 15-60 20-70 18-55 20-70	1 0.3 0.8 3 4 3	15 4 4 4 4 10 4	1. 5 0. 9 1. 2 1. 5 1. 1 2. 5	1 0.3 0.6 3 4 3 4	0. 2 0. 06 0. 16 0. 3 0. 4 0. 2 0. 4	30 100 200 200 5000 5000 5000	1 30 30 30 30 100 80 90	2. 33. 1. 17. 1. 5. 1. 5. 1. 5. 1. 5.

♦ICER, R = 33 ohms, Tc = 100°C. ■ICEX, VBE = 1.5V, Tc = 150°C. ♦ICES, Tc = 150°C. Tj = 200°C maximum. 7j = 50 msec typical. fae = 20 kc typical except for 2N1722–2N1725 where ft = 10 mc minimum; 3 mc minimum for 2N1616–2N1618 and 2N1620.

BENDIX DAP® DIFFUSED ALLOY POWER ## SEC SWITCHING TRANSISTORS

TYPE NUMBER	CASE TYPE	VCB0 V	IC A	V1 V	SOAR V2 V	Pc @ 25° C CASE W	CURREN hFE -	T GAIN IC A	SATURAT VCE(s) V	MAX TON VO IC A	DLTAGE IB A	MAX COLI CUTO CURR ICBO μΑ	FF	θJ-C °C/W	TYPICAL fae▲ kc
2N1073 2N1073A 2N1073B 2N1430 2N1651 USA2N1651 2N1652 USA2N1652 2N1653 USA2N1653	T0-41 T0-41 T0-41 T0-41 T0-41 T0-41 T0-41 T0-41 T0-41	40 80 120 80 60 60 100 100 120 120	10 10 10 10 25 25 25 25 25 25 25	30 50 70 80 20 - 40 - 60	70 90 110 120 60 - 80 - 100	60 60 50 100 100 100 100	20-60 20-60 20-60 30-100 20 min 35-100 20 min 35-100 20 min 35-100	5 5 5 5 25 10 25 10 25 10	0. 5 0. 5 0. 5 0. 4 0. 65 0. 65 0. 65 0. 65 0. 65	5 5 5 10 25 25 25 25 25 25 25	0.5 0.5 0.5 1.0 2.5 2.5 2.5 2.5 2.5 2.5	200 200 200 200 300 300 300 300 300 300	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.8 0.8 0.8 1.2 0.8 0.8 0.8 0.8	5 5 5 5 10 10 10 10 10
2N1751 2N2212 2N2282 2N2283 2N2284 2N2285 2N2286 2N2287 2N2288 2N2288	TO-3 TO-41 TO-37 TO-37 TO-37 TO-3 TO-3 TO-3 TO-3 TO-3	80 120 60 100 200 60 100 120 40 80	25 10 3 3 3 25 25 25 10	40 70 30 50 70 20 40 60 30 50	80 110 70 90 110 60 80 100 70	90 60 5 5 5 100 100 100 60 60	30-90 50-120 30-90 30-90 30-90 20 min 20 min 20-60 20-60	20 5 0.5 0.5 0.5 25 25 25 5 5	0.5 0.4 0.4 0.4 0.65 0.65 0.65 0.5 0.5	20 5 1 1 25 25 25 25 5 5	2.5 0.5 0.05 0.05 0.05 2.5 2.5 2.5 0.5	300 200 50 50 300 300 300 200	2 2 1 1 2 2 2 2 2	0.8 0.8 15 15 15 0.8 0.8 0.8 0.8	10 5 20 20 20 10 10 10 5 5
2N2290 2N2291 2N2292 2N2293 2N2294 2N2295 2N2296 2N2357 2N2358 2N2359	TO-3 TO-3 TO-3 TO-3 TO-41 TO-41 TO-41 TO-41 TO-41	120 40 80 120 40 80 120 60 100	10 10 10 10 10 10 10 50 50	70 30 50 70 30 50 70 15 30 50	110 70 90 110 70 90 110 55 70	60 60 60 60 60 60 170 170	20-60 50-120 50-120 50-120 50-120 50-120 50-120 15 min 15 min	5 5 5 5 5 5 5 5 5 5 5 5 5	0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 9 0. 9	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 5	200 200 200 200 200 200 200 200 300 300	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.8 0.8 0.8 0.8 0.8 0.8 0.5 0.5	5 5 5 5 5 5 10 10
2N2467 2N2468 2N2469 2N2636 2N2637 2N2638 2N3461 B-10142 B-10142A B-10142B	TO-5 TO-5 TO-5 TO-41 TO-41 TO-41 TO-5 TO-3 TO-3	60 100 200 100 100 100 60 350 290 225	3 3 25 25 25 25 3 10 10	30 50 70 40 60 80 - 100 85 70	70 90 110 80 100 120 150/300★ 125/250★ 100/200★	5 5 5 100 100 100 5 30 30 30	30-90 30-90 30-90 20 min 20 min 20 min 20 min 20 min 20 min	0.5 0.5 0.5 25 25 25 1 6 6	0. 4 0. 4 0. 4 0. 65 0. 65 0. 65 0. 4 0. 5 0. 5	1 1 25 25 25 25 1 6 6	0.05 0.05 0.05 2.5 2.5 2.5 0.05 0.5 0.5	50 50 50 300 300 300 50 200 200 200	1 1 2 2 2 2 1 2 2 2 2	15 15 0.8 0.8 0.8 15 1.5	20 20 20 10 10 10 10 8 8 8
B-10143 B-10143A B-10143B B-10474 B-10475	TO-3 TO-3 TO-3 TO-3 TO-3	290 225 165 60 60	15 15 15 10 10	85 70 55 45 45	125/250* 100/200* 75/150* 60 100/150*	40 40 40 40 40	25 min 25 min 25 min 50-400 50-400	9 9 9 0.4 0.4	0. 75 0. 75 0. 75 - 0. 7	9 9 9 - 3	0.5 0.5 0.5 - 0.1	200 200 200 200 2000 2000	2 2 2 60 100	1. 5 1. 5 1. 5 2 2. 5	8 8 8 8

 \star V2 and V3 SOAR values respectively. \triangle fae at 1 kc with IC = -0.5 A, VCE = -10 V. Tj = 110°C maximum. Emitter lead diameter is 0.060 inch for all 25 A and 50 A TO-3 types.

TYPICAL DAP® SWITCHING TIMES

TYPE IC MAX	tr	ts	$_{\mu ext{sec}}^{ ext{tf}}$
NUMBER IN A	μsec	μsec	
2N2283 3 B-10142 6 B-10143 9 2N1073 10 *2N1653 25 *2N2359 50	7.0 3.0 3.5 6.5 8.0	1.0 2.5 2.0 4.0 2.2 3.5	1.75 1.2 1.5 4.5 7

BENDIX HIGH POWER PNP ALLOY TRANSISTORS

TYPE NUMBER	CASE TYPE	VCBO V	29-2	VEBO V	IC A	\$(V1 V	DAR V2 V	Pc @ 25° C CASE W	CURREI hFE -	NT GAIN IC A	SATURA VCE(s V	MAX TION VO) IC A	LTAGE IB A		LECTOR OFF RENT VCBO V	θ J - C °C/W
2N511 2N511A 2N511B 2N512 2N512 2N512B 2N512B 2N513A 2N513A 2N513B 2N514	T0-41 T0-41 T0-41 T0-41 T0-41 T0-41 T0-41 T0-41 T0-41	40 60 80 40 60 80 40 60 80 40	30 40 45 30 40 45 30 40 45 30	30 30 30 30 30 30 30 30 30 30	25 25 25 25 25 25 25 25 25 25 25	30 40 45 30 40 45 30 40 45 30	40 60 70 40 60 70 40 60 70 40	150 150 150 150 150 150 150 150 150	20-60 20-60 20-60 20-60 20-60 20-60 20-60 20-60 20-60	10 10 10 15 15 15 20 20 20 25	0.5 0.5 0.5 1 1 1.5 1.5	10 10 10 15 15 15 20 20 20 25	1.5 1.5 1.5 2.25 2.25 2.25 3 3 3 3.75	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 30 40 20 30 40 20 30 40 20	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
2N514A 2N514B 2N627 2N628 2N629 2N630 2N677 2N677A 2N677B 2N677C	TO-41 TO-41 TO-41 TO-41 TO-41 TO-3 TO-3 TO-3 TO-3	60 80 40 60 80 100 50 60 90 100	40 45 - - 20 30 60 70	30 30 12 12 12 12 10 15 15	25 25 10 10 10 10 25 25 25 25	40 45 - - - 20 30 50 60	60 70 - - - 40 50 70 80	150 150 90 90 90 90 90 90 90	20-60 20-60 10-30 10-30 10-30 20-60 20-60 20-60 20-60	25 25 10 10 10 10 10 10	2 2 1 1 1 1 1 1 1 1 1 1 1 1	25 25 10 10 10 10 10 10 10	3.75 3.75 1 1 1 1 1 1	2 2 0. 2 0. 2 0. 2 0. 2 2 2 2	30 40 2 2 2 2 2 15 25 60	0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8
2N678 2N678A 2N678B 2N678C 2N1031 2N1031A 2N1031B 2N1031C 2N1032 2N1032A	TO-3 TO-3 TO-3 TO-3 TO-41 TO-41 TO-41 TO-41 TO-41 TO-41	50 60 90 100 50 60 90 100 50 60	20 30 60 70 20 30 60 70 20 30	10 15 15 15 10 15 15 15 15 15	25 25 25 25 25 25 25 25 25 25 25 25	20 30 50 60 20 30 50 60 20 30	40 50 70 80 40 50 70 80 40 50	90 90 90 90 90 90 90 90 90	50-100 50-100 50-100 50-100 20-60 20-60 20-60 20-60 50-100	10 10 10 10 10 10 10 10 10	1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10	1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15 25 60 60 15 25 60 60 15 25	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
2N1032B 2N1032C 2N1120 USA 2N1120 2N1146 2N1146A 2N1146B 2N1146C 2N1147 2N1147	TO-41 TO-41 TO-41 TO-41 TO-3 TO-3 TO-3 TO-3 TO-41 TO-41	90 100 80 80 40 60 80 100 40 60	60 70 40 40 20 30 40 50 20 30	15 15 40 40 30 30 30 30 30 30 30	25 25 15 15 20 20 20 20 20 20	50 60 35 - 15 25 35 45 15 25	70 80 60 - 35 50 60 70 35 50	90 90 45 45 90 90 90 90 90	50-100 50-100 20-50 20-50 60-150 60-150 60-150 60-150	10 10 10 10 5 5 5 5		10 10 10 10 15 15 15 15 15	1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 0.3 0.3 4 4 4 4 4 4	60 60 2 2 2 20 30 40 50 20 30	0.8 0.8 1.5 1.5 0.8 0.8 0.8 0.8
2N1147B 2N1147C 2N1162 2N1162 2N1163 2N1163 2N1164 2N1164 2N1164 2N1165 USN2N1165	TO-41 TO-41 TO-3 TO-3 TO-41 TO-41 TO-3 TO-41 TO-41 TO-41	80 100 50 50 50 50 80 80 80	40 50 25 20 25 20 35 40 35 40	30 30 20 25 20 25 25 25 40 25 40	20 20 25 25 25 25 25 25 25 25 25 25	35 45 25 20 25 20 30 35 30	60 70 35 35 35 35 35 55 60 55	90 90 90 90 90 90 90 90 90	60-150 60-150 15-65 15-65 15-65 15-65 15-65 15-65 15-65	5 5 25 25 25 25 25 25 25 25 25	1 0.8 0.8 0.8 0.8 0.8 0.8 0.8	15 15 25 25 25 25 25 25 25 25 25 25	1 1.6 1.6 1.6 1.6 1.6 1.6	4 4 0, 225 0, 225 0, 225 0, 225 0, 225 0, 225 0, 225 0, 225 0, 225	40 50 2 2 2 2 2 2 2 2 2 2	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
2N1165A 2N1166 2N1166A 2N1167 2N1167A 2N1549 2N1549A 2N1550 2N1550A 2N1551	T0-41 T0-3 T0-3 T0-41 T0-41 T0-3 T0-3 T0-3 T0-3 T0-3	80 100 100 100 100 40 40 60 60 80	40 45 50 45 50 20 20 30 30 40	40 30 50 30 50 20 20 30 30 40	25 25 25 25 25 25 15 15 15 15	35 40 45 40 45 30 30 40 40 50	60 65 75 65 75 50 40 60 60	90 90 90 90 90 90 90 90 90	15-65 15-65 15-65 15-65 15-65 10-30 10-30 10-30 10-30	25 25 25 25 25 25 10 10 10 10	0.8 0.8 0.8 0.8 1 1 1	25 25 25 25 25 25 10 10 10 10	1. 6 1. 6 1. 6 1. 6 1. 6 1 1	0. 225 0. 225 0. 225 0. 225 0. 225 0. 2 0. 2 0. 2 0. 2 0. 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

^{*}Measurement made with low duty cycle. $IB = \pm 0.1 @ IC max$.

TYPE NUMBER	CASE TYPE	VCB0 V	VCEO V	VEBO V	IC A	V 1 V	DAR V2 V	Pc @ 25°C CASE W	CURREN hFE -	NT GAIN IC A	SATURAT VCE(s) V	MAX TION VO IC A	LTAGE IB A	CU.	DLLECTO TOFF RENT VCBO V	?
2N1551A 2N1552 2N1552A 2N1553 2N1553A 2N1554 2N1554A 2N1555 2N1555A 2N1555A	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3	80 100 100 40 40 60 60 80 80	40 50 50 20 20 30 30 40 40 50	40 50 50 20 20 30 30 40 40 50	15 15 15 15 15 15 15 15 15	50 60 60 - - - -	70 80 80 - - - - -	90 90 90 90 90 90 90 90 90	10-30 10-30 10-30 30-60 30-60 30-60 30-60 30-60 30-60 30-60	10 10 10 10 10 10 10 10 10	1 1 0.7 0.7 0.7 0.7 0.7 0.7 0.7	10 10 10 10 10 10 10 10 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
2N1556A 2N1557 2N1557A 2N1558 2N1558A 2N1559 2N1559 2N1560 2N1560A 2N2445	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3	100 40 40 60 60 80 80 100 100	50 20 20 30 30 40 40 50 50	50 20 20 30 30 40 40 50 50	15 15 15 15 15 15 15 15 15	11111111	- - - - - - - - - - - - - - - - - - -	90 90 90 90 90 90 90 90 90	30-60 50-100 50-100 50-100 50-100 50-100 50-100 50-100 30-60	10 10 10 10 10 10 10 10	0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5	10 10 10 10 10 10 10 10 10	1 1 1 1 1 1	0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

 $T_i = 100$ °C. $\tau_i = 300 \,\mu sec$ typical. fae = 4 kc typical. Emitter lead diameter is 0.060 inch for all 20 A and 25 A TO-3 types.

BENDIX PNP ALLOY POWER TRANSISTORS

TYPE NUMBER	CASE TYPE	VCBO V	VCEO V	VEBO V	IC A	\$0 V1 V	DAR V2 V	Pc @ 25°C CASE W	CURRENT hFE	Γ GAIN IC A	SATURAT VCE(s) V	MAX TON VOL IC A	TAGE IB A	CU	DLLECTOR TOFF RENT VCBO V	θJ-C °C/W
2N155 2N176 2N234A 2N235A 2N235B 2N236A 2N236B 2N242 2N250 2N250A	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3	30 30 25 35 35 35 35 45 30	- - - - - - - - - - - - - - - - - - -	15 10 - 15 15 15 15 15 - 15 20	3 3 3 3 3 3 3 2 7			50 25 25 25 25 25 25 25 25 50 12 90	24 min 25-90 25\$ 30-40\$ 34-40\$ 34-40\$ 33-39\$ 30 min 25-100	0.5 0.5 0.42 0.76 0.42 0.76 0.76 0.5 0.5	0.65 - 0.8 0.8 1 1 0.8 0.7	1 - 1 1 3 3 2 1 3	0. 1 - 0. 1 0. 1 0. 3 0. 3 0. 2 0. 1 0. 15	10 3 5 1 1 1 1 3 1 1	30 30 25 25 25 25 25 25 45 30 30	1. 2 1. 5 2 2 2 2 2 2 2 1. 5 1
2N251 2N251A 2N255 2N255A 2N256 2N256A 2N257 2N268 2N268A 2N268A 2N285A	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3	60 60 15 15 30 25 40 80 80	- 35 - - - - - - -	15 20 15 - 30 - 6 6 6	2 7 3 4 3 4 3 3 3 3			12 90 25 20 25 20 25 20 25 25 25 25 25	30 min 25-100 20 min 25♦ 22♦ 25♦ 20♦ 28♦ 20 min 38♦	0.5 3 0.5 0.42 0.5 0.42 0.5 2 0.42	0.8 0.7 1 - 1 - 1 0.5	1 2 - 2 1	0. 1 0. 15 0. 2 - 0. 1 - - 0. 2 0. 1	2 2 3 5 3 5 2 2 2	60 60 14 15 28 25 40 80 80	1 0.8 3 3 3 3 2 1.5 1.5
2N285B 2N296 2N297A JAN2N297A USA2N297A 2N301 2N301A 2N307 2N307A 2N350	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3	35 60 60 80 60 40 60 35 35	- 40 40 40 - - - -	15 15 40 40 40 10 10 -	3 2 5 5 5 3 3 1	 40 	 60 	25 20 35 50 35 25 25 25 25 65	38♦ 19 min 40-100 40-100 40-100 30♦ 20 min 20 min 30-33♦	0.42 1 0.5 0.5 0.5 0.5 0.5 0.5 0.7	0.5 1 0.7 1 - 1 0.8	1 1 2 2 2 2 2 - 0.2	0. 1 0. 1 0. 2 0. 2 0. 2 	0.08 1.5 0.2 0.15 0.2 5 5 15 7	15 60 2 2 2 2 40 60 35 35 30	2 2 2 1.5 2 2 1.5 5 3
2N350A 2N351 2N351A 2N375 2N376 2N376A 2N378 2N379 2N380 2N399	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3	50 40 50 80 40 50 40 80 60 35	- - - - - 40 30	10 10 10 20 10 10 12 12 12 12	3 3 4 5 3 5 5 5 5 3	40	70 	60 65 60 90 65 60 50 50 50 25	30-33♦ 32-35♦ 32-35♦ 35-90 34-37♦ 15-45 20-70 30-70 36-40♦	0.7 0.7 0.7 1 0.7 0.7 2 2 2 0.42	1.75 1.75 1 1.75 1 1	3 - 4 2 - 5 2 2 2 1. 2	0.3 - 0.4 0.2 - 0.5 0.2 0.2 0.2 0.2	3 3 3 3 3 0.5 0.5 0.5	30 30 30 60 30 30 25 25 25 25	1. 2 1 1. 2 0. 8 1 1. 2 1. 2 1. 2 1. 2

BENDIX PNP ALLOY POWER TRANSISTORS (CONT.)

TYPE NUMBER	CASE TYPE	VCB0 V	VCEO V	VEBO V	IC A	\$(V1 V	DAR V2 V	Pc @ 25°C CASE W	CURREN' hFE -	T GAIN IC A	SATURAT VCE(s) V	MAX ION VOL IC A	_TAGE IB A	MAX COL CUT CURF ICBO mA		θJ•C °C/W
2N400 2N401 2N418 2N419 2N420 2N4204 2N456 2N456A USA 2N456A 2N456B	TO-3 TO-3 TO-3 TO-3	35 35 75 40 40 65 40 50 40 50	- - - - - 30 20 30	15 15 15 15 15 15 15 20 20 10 20	3 5 3 5 5 5 5 7 7 7	- 50 - 20 40 - - -	- 80 - 40 70 - - -	35 25 25 25 25 25 25 50 150 150	30-40 \$\left(31-36 \left(40 \text{ min} \) 35 \$\left(40 \text{ min} \) 40 min 40 min 10 min 30-90 11-33 30-90	1. 3 0. 42 4 0. 42 4 5 5 5	1 1 2 - 2 2 2 1 0.5 0.5 0.5	3 1.2 4 - 4 4 5 5 5	0.3 0.12 0.4 	2 1 2 1 1 2 0.5 2 0.5 2	25 25 60 25 25 60 20 40 20 40	2 2 2 2 2 2 1. 1 0. 5 0. 5 0. 5
2N457 2N457A USA2N457A 2N457B 2N458 2N458A USA2N458A 2N458B 2N553 2N554	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3	60 60 60 80 80 80 80 80 80	40 30 40 - 45 40 45 40 -	20 20 20 20 20 20 20 10 20 40	5 7 7 7 5 7 7 7 4 3			50 150 150 150 50 150 150 150 25 25	10 min 30-90 11-33 30-90 10 min 30-90 11-33 30-90 45 min 25♦	5 5 5 5 5 5 5 5 0.5 0.42	1 0.5 0.5 0.5 1 0.5 0.5 0.5 0.9	5 5 5 5 5 5 5 5 5 5 3 3	1 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 7	30 30 30 30 40 40 40 40 2 30	1. 1 0. 5 0. 5 0. 5 1. 1 0. 5 0. 5 0. 5
2N555 2N561 2N618 2N637 2N637A 2N637B 2N638 2N638A 2N638B 2N665	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3	30 80 60 60 90 100 60 90 100 80	- 50 - 30 55 65 30 55 60 40	10 12 12 15 15 15 15 15 15 15 40	3 5 5 5 5 5 5 5 5 5 5 5	 40 25 50 60 25 50 60	- 70 50 80 90 50 80 90	65 50 90 90 90 90 90 90 90 90	20 min 20-50 60-140 30-60 30-60 20-40 20-40 20-40 40-80	0.5 4 1 3 3 3 3 3 3 0.5	0.8 0.8 1.5 1.5 1.5 2 2 2 0.9	-4 2 3 3 3 3 3 3 3 3 3	- 0. 4 0. 2 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3	7 0.15 3 0.2 0.2 0.2 0.2 0.2 0.2 0.2	30 0.5 60 2 2 2 2 2 2 2 2	1 1.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8
2N669 2N1011 USA2N1011 2N1021 USA2N1021 2N1021A 2N1022 USA2N1022 2N1022A 2N1038	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3	40 80 80 100 100 100 120 120 120 40	40 40 50 50 50 55 50 55 30	10 40 40 20 10 30 20 10 30 20	3 5 7 7 7 7 7 7 7	- 40 - 45 - 45 50 - 50 30	- 70 - 60 - 60 65 - 65 60	40 35 45 150 150 150 150 150 150 20	250 max 30-75 30-75 30-90 11-33 30-90 30-90 11-33 30-90 20-60	0.5 3 3 5 5 5 5 5	1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	- 3 3 5 5 5 5 5 5	0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5	3 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5	30 2 2 50 50 50 60 60 60	0.7 2 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
2N1038-1 2N1038-2 2N1039 JAN2N1039 USN2N1039 2N1039-1 2N1039-2 2N1040 2N1040-1 2N1040-2	MT-27 MT-28 TO-5 TO-5 MT-27 MT-28 TO-5 MT-27 MT-28	40 40 60 60 60 60 60 80 80	30 30 40 40 40 40 40 50 50	20 20 20 20 20 20 20 20 20 20 20	3 3 3 3 3 3 3 3 3	30 30 40 - - 40 40 50 50	60 60 70 - 70 70 70 80 80 80	20 20 20 20 20 20 20 20 20 20 20 20	20-60 20-60 20-60 20-60 20-60 20-60 20-60 20-60 20-60 20-60	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0. 25 0. 25	1 1 1 1 1 1 1	0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1	0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125	20 20 30 30 30 30 30 30 40 40 40	3. 75 3. 75
2N1041 JAN2N1041 USN2N1041 2N1041-1 2N1041-2 2N1042 USA2N1042 2N1042-1 2N1042-2 2N1043	TO-5 TO-5 TO-5 MT-27 MT-28 MT-28 MT-28 MT-27 TO-5 MT-28	100 100 100 100 100 40 40 40 40 40	60 60 60 60 30 30 30 30 40	20 20 20 20 20 20 20 20 20 20 20	3 3 3 3 3.5 3.5 3.5 3.5	60 - - 60 60 30 - 30 30 40	90 90 90 60 60 60 70	20 20 20 20 20 20 20 20 20 20 20	20-60 20-60 20-60 20-60 20-60 20-60 20-60 20-60 20-60 20-60	1 1 1 1 3 0.5 3 3	0. 25 0. 25 0. 25 0. 25 0. 25 0. 75 0. 75 0. 75 0. 75	1 1 1 1 3 3 3 3 3	0. 1 0. 1 0. 1 0. 1 0. 1 0. 3 0. 3 0. 3 0. 3	0. 125 0. 070 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125	50 50 50 50 50 20 20 20 20 20 30	3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 5 3. 75 3. 75 3. 75 3. 75
USA 2N 1043 2N 1043-1 2N 1043-2 2N 1044 USA 2N 1044-1 2N 1044-1 2N 1044-2 2N 1045 USA 2N 1045 2N 1045-1	MT-28 MT-27 TO-5 MT-28 MT-28 MT-27 TO-5 MT-28 MT-28 MT-28	60 60 80 80 80 80 100 100	40 40 40 50 50 50 50 60 60	20 20 20 20 20 20 20 20 20 20 20	3 3.5 3.5 3.5 3.5 3.5 3.5 3.5	- 40 40 50 - 50 50 60	- 70 70 80 - 80 80 90 -	20 20 20 20 20 20 20 20 20 20 20	20-60 20-60 20-60 20-60 20-60 20-60 20-60 20-60 20-60	0.5 3 3 0.5 3 0.5 3 0.5 3	0. 75 0. 75 0. 75 0. 75 0. 75 0. 75 0. 75 0. 75 0. 75 0. 75	3 3 3 3 3 3 3 3	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125	30 30 30 40 40 40 40 50 50	3. 5 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75
2N 1045-2 2N 1136 2N 1136A 2N 1136B 2N 1137	TO-5 TO-3 TO-3 TO-3	100 60 90 100 60	60 30 55 65 30	20 15 15 15 15	3.5 5 5 5 5	60 20 40 50 20	90 40 70 80 40	20 90 90 90 90	20-60 50-100 50-100 50-100 75-150	3 3 3 3 3	0.75 1 1 1 1	3 3 3 3 3	0.3 0.3 0.3 0.3 0.3	0. 125 0. 2 0. 2 0. 2 0. 2 0. 2	50 2 2 2 2 2	3.75 0.8 0.8 0.8 0.8

BENDIX PNP ALLOY POWER TRANSISTORS (CONT.)

TYPE NUMBER	CASE TYPE	VCB0 V	VCEO V	VEBO V	IC A	\$(V1 V	DAR V2 V	Pc @ 25°C CASE W	CURREN' hFE –	T GAIN IC A	SATURA VCE(s) V		TAGE IB A	MAX COI CUT CURI ICBO mA	OFF	
2N1137A 2N1137B 2N1138 2N1138A 2N1138B 2N1159 2N1160 2N1168 2N1227 2N1359	TO-3 TO-3 TO-3 TO-3 TO-3 TO-41 TO-41 TO-3 TO-3	90 100 60 90 100 80 80 50 40	55 65 30 55 65 60 60 -	15 15 15 15 15 20 20 20 10 25	5 5 5 5 5 7 5 3	40 50 20 40 50 - - - 25	70 80 40 70 80 - - - 50	90 90 90 90 90 90 90 90 90	75-150 75-150 100-200 100-200 100-200 30-75 20-50 70 min 25-320 35-90	3 3 3 3 3 5 1 0.5	1 1 1 1 1 1 0.75 0.8	3 3 3 3 3 3 5 3 1.5 2	0.3 0.3 0.3 0.3 0.2 0.5 0.1 0.05	0.2 0.2 0.2 0.2 0.2 0.2 8 8	2 2 2 2 2 80 80 50 -	0.8 0.8 0.8 0.8 1.2 1.2 0.8 1.5
2N1360 2N1362 2N1363 2N1364 2N1365 2N1529 2N1529 2N1530 2N1530 2N1530A	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3	50 100 100 120 120 40 40 60 60 80	- - - 20 20 30 30 40	25 50 50 60 60 20 20 30 30 40	3 3 3 3 5 5 5 5	25 50 50 70 70 — — —	50 80 80 100 100 - - -	90 90 90 90 90 90 90 90 90	60-150 35-90 60-150 35-90 60-150 20-40 20-40 20-40 20-40 20-40	1 1 1 1 3 3 3 3 3	0.8 1 0.8 1 0.8 1.5 1.5 1.5	2 2 2 2 2 3 3 3 3 3 3 3 3	0. 2 0. 2 0. 2 0. 2 0. 3 0. 3 0. 3 0. 3	3 3 3 3 0.2 0.2 0.2 0.2	40 75 75 100 100 2 2 2 2	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
2N 1531A 2N 1532 2N 1532A 2N 1533 2N 1534 2N 1534 2N 1535 2N 1535 2N 1536 2N 1536	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3	80 100 100 120 40 40 60 60 80	40 50 50 60 20 20 30 30 40	40 50 50 60 30 30 30 30 40 40	5 5 5 5 5 5 5 5	111111		90 90 90 90 90 90 90 90 90	20-40 20-40 20-40 35-70 35-70 35-70 35-70 35-70 35-70	3 3 3 3 3 3 3 3 3	1.5 1.5 1.5 1.5 1.2 1.2 1.2 1.2	3 3 3 3 3 3 3 3 3 3	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
2N 1537 2N 1537A 2N 1538 2N 1539 2N 1539A 2N 1540 2N 1540A 2N 1541A 2N 1541A 2N 1541A	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3	100 100 120 40 40 60 60 80 80 100	50 50 60 20 20 30 30 40 40 50	50 50 60 20 20 30 30 40 40 50	5 5 3 3 3 3 3 3 3 3	11111111		90 90 90 90 90 90 90 90 90	35-70 35-70 35-70 50-100 50-100 50-100 50-100 50-100 50-100	3 3 3 3 3 3 3 3 3	1. 2 1. 2 1. 2 0. 6 0. 6 0. 6 0. 6 0. 6 0. 6 0. 6	3 3 3 3 3 3 3 3 3 3	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
2N1542A 2N1543 2N1544 2N1544A 2N1545 2N1545 2N1546A 2N1546A 2N1547 2N1547A	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3	100 120 40 40 60 60 80 80 100	50 60 20 20 30 30 40 40 50	50 60 20 20 30 30 40 40 50	3 3 3 3 3 3 3 3 3	-	- - - - - - - - - -	90 90 90 90 90 90 90 90 90	50-100 50-100 75-150 75-150 75-150 75-150 75-150 75-150 75-150 75-150	3 3 3 3 3 3 3 3 3	0.6 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	3 3 3 3 3 3 3 3 3 3	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.8 0.8 0.8 0.8 0.8 0.8 0.8
2N 1548 2N 2552 2N 2553 2N 2554 2N 2555 2N 2556 2N 2557 2N 2557 2N 2558 2N 2559 2N 2560	TO-3 MT-27 MT-27 MT-27 MT-27 MT-28 MT-28 MT-28 MT-28 MT-28	120 40 60 80 100 40 60 80 100 40	60 30 40 50 60 30 40 50 60 30	60 20 20 20 20 20 20 20 20 20 20	3 3 3 3 3 3 3 3 3	- 30 40 50 60 30 40 50 60 30	- 60 70 80 90 60 70 80 90 60	90 20 20 20 20 20 20 20 20 20 20 20	75-150 20-60 20-60 20-60 20-60 20-60 20-60 20-60 20-60 20-60	3 1 1 1 1 1 1 1 1 1 1 1 3	0. 2 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25	3 1 1 1 1 1 1 1 1 1 1 1	0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0. 2 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125	2 20 30 40 50 20 30 40 50 20	0.8 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75
2N 2561 2N 2562 2N 2563 2N 2564 2N 2565 2N 2566 2N 2567 2N 3611 2N 3612 2N 3613	MT-27 MT-27 MT-27 TO-5 TO-5 TO-5 TO-5 TO-3 TO-3 TO-3	60 80 100 40 60 80 100 40 60 40	40 50 60 30 40 50 60 25 35 25	20 20 20 20 20 20 20 20 20 30 20	3.5 3.5 3.5 3.5 3.5 3.5 3.5 7	40 50 60 30 40 50 60 -	70 80 90 60 70 80 90 -	20 20 20 20 20 20 20 20 85 85 85	20-60 20-60 20-60 20-60 20-60 20-60 20-60 35-70 35-70 60-120	3 3 3 3 3 3 3 3	0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 20 0. 20	1 1 1 1 1 1 3 3 3	0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 3 0. 3	0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 125 0. 5 0. 5	30 40 50 20 30 40 50 25 40 25	3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 1
2N3614 2N3615 2N3616 2N3617 2N3618	TO-3 TO-3 TO-3 TO-3 TO-3	60 80 100 80 100	35 50 60 50 60	30 40 50 40 50	7 7 7 7 7	- - - -		85 85 85 85 85	60-120 30-60 30-60 45-90 45-90	3 3 3 3 3	0. 15 0. 25 0. 25 0. 20 0. 20	3 3 3 3 3	0.3 0.3 0.3 0.3 0.3	0.5 1 1 1	40 55 65 55 65	1 1 1 1

BENDIX Leaf™ SILICON PLANAR EPITAXIAL NPN TRANSISTORS

TYPE NUMBER	CASE TYPE	VCBO V	VCEO V	VEBO V	IC A	Pc @ 25°C CASE W	CURR hFE —	ENT G	AIN VCE V	SATURA VCE(s) V	MAX ATION VC IC mA	LTAGE IB mA	MAX COL CUT CURF ICBO μΑ	OFF
2N656 2N656A 2N657 2N657A 2N697 2N698 2N699 2N699A 2N699B 2N730	TO-5 TO-5 TO-5 TO-5 TO-5 TO-5 TO-5 TO-5	60 60 100 100 60 120 120 120 120 120 60	60 60 100 100 40 ¶ 60 80 ¶ 80 ¶ 80	8 8 8 8 5 7 5 5 7 5	0.5 0.5 0.5 0.5 0.5 	4 4 4 4 2 3 0.8\$ 5 0.8\$	30-90 30-90 30-90 30-90 40-120⊙ 20-60 40-120⊙ 40-120⊙ 20-60⊙	200 200 200 200 150 150 150 150 150	10 10 10 10 10 10 10 10 10	5 2 5 2 1.5△ 5△ 5△ 5 5 1.5△	200 200 200 200 150 150 150 150 150	40 40 40 40 15 15 15 15	10 10 10 10 1 1 5 2 0.5 10 m μ	30 30 30 30 30 75 60 60 90 30
2N731 2N870 2N871 2N910 2N911 2N912 2N1253 2N1505 2N1506 2N1506 A	TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-5 TO-5 TO-5	60 100 100 100 100 100 30 50 60 80	40 ¶ 60 60 60 60 60 20 ¶ 20 20 50	5 7 7 7 7 7 5 3 4 5	1 - - - - 0.5 0.5 0.5	1.5 1.8 1.8 1.8 1.8 2 3 3 3.5	40-120 ⊙ 40-120 ⊙ 100-300 ⊙ 75 min ⊙ 35 min ⊙ 15 min ⊙ 30-90 ⊙ 7-100 ⊙ 10-100 ⊙ 10-100 ⊙	150 150 150 10 10 10 10 150 100 100	10 10 10 10 10 10 10 28 28 28	1.5\(\triangle 5\) 5\(\triangle 0.4\) 0.4\(\triangle 0.4\) 1.5 2 1.5 0.6	150 150 150 10 10 10 150 150 150	15 15 15 1 1 1 1 15 50 50	1 10 m μ 10 m μ 25 m μ 25 m μ 25 m μ 10 50 10 50 m μ	30 75 75 75 75 75 75 20 28 28 28
USA2N1506A 2N1507 2N1564 2N1565 2N1566 2N1572 2N1573 2N1574 2N1613 2N1711	TO-5 TO-5 TO-5 TO-5 TO-5 TO-5 TO-5 TO-5	80 60 80 80 125 125 125 75 75	80¶ 25 60 60 60 80 80 80 50¶ 50¶	5 5 5 5 5 5 5 5 7 7	0. 5 1 0. 05 0. 05 0. 05 0. 05 0. 05 0. 05 1	3.5 2 0.6\$ 0.6\$ 0.6\$ 0.6\$ 0.6\$	20-100 ⊙ 100-300 ⊙ 15-50 30-100 60-200 15-50 30-100 60-200 40-120 ⊙ 100-300 ⊙	100 150 5 5 5 5 5 5 5 150 150	28 10 5 5 5 5 5 5 10	0.6 1.5△ 1 1 1 1 1 1 1.5△ 1.5△	150 150 10 10 10 10 10 10 150 150	15 15 2 2 2 2 2 2 2 2 2 15	50 mμ 1 1 1 1 1 1 1 10 mμ 10 mμ	28 30 40 40 40 40 40 40 60
2N1711A 2N1711B 2N1714 2N1715 2N1716 2N1717 2N1718 2N1719 2N1720 2N1721	TO-5 TO-5 TO-5 TO-5 TO-5 TO-5 MT-13 MT-13 MT-13	75 120 90 150 90 150 90 150 90	50¶ 50 60 100 60 100 60 100 60 100	7 7 6 6 6 6 6 6 6	1 2 1 1 1 1 1 1	5 5 20 20 20 20 20 20 20 20 20	100-300 © 100-300 © 20-60 © 20-60 © 40-120 © 20-60 © 20-60 © 40-120 © 40-120 © 40-120 ©	150 150 200 200 200 200 200 200 200 200 200	10 10 5 5 5 5 5 5 5	1\(\triangle \) 0. 2\(\triangle \)	150 150 200 200 200 200 200 200 200 200 200	15 15 20 20 20 20 20 20 20 20 20 20	2 m µ 2 m µ 1 1 1 1 1 1	60 60 3 3 3 3 3 3 3 3
2N1889 2N1890 2N1893 2N1893A 2N1973 2N1975 2N1975 2N1983 2N1984 2N1985	TO-5 TO-5 TO-5 TO-5 TO-5 TO-5 TO-5 TO-5	100 100 120 140 100 100 50 50	80 80 80 60 60 60 25 25 25	7 7 7 7 7 7 7 5 5	- 0.5 0.5 - - - 1	3 3 3 3 3 3 2 2 2	40-120 ⊚ 100-300 ⊚ 40-120 ⊚ 40-120 ⊚ 75 min ⊚ 35 min ⊚ 15 min ⊚ 70-210 ⊕ 35-100 ⊕ 10 min	150 150 150 150 10 10 10 10 1 1 1	10 10 10 10 10 10 10 5 5 0.25	5 5 5 2△ 0.4 0.4 0.25 0.25 0.25	150 150 150 150 150 10 10 10 5 5	15 15 15 15 1 1 1 0.5 0.5	10 m μ 10 m μ 10 m μ 10 m μ 25 m μ 25 m μ 25 m μ 5	75 75 90 90 75 75 75 30 30
2N1986 2N1987 2N1988 2N1988 2N1990 2N2017 2N2102 2N2102A 2N2107 2N2108	T0-5 T0-5 T0-5 T0-5 T0-5 T0-5 T0-5 T0-5	50 50 100 100 100 60 120 120 60 60	25 25 45 45 — 60 65 65 60 △ 60 △	5 5 5 3 8 7 7 8 8	- 1 1 1 1 1 0.5 0.5	2 2 2 2 2 5 5 5 1	60-240 © 20-80 © 35-120 20-60 © 20 min © 50-200 © 40-120 © 30-90 © 75-200 ©	150 150 30 30 30 200 150 150 200 200	10 10 10 10 10 10 10 10 10	1.5 1.5 2 2 0.5 2 0.5 0.3 2△ 2△	150 150 30 30 2 200 150 150 200 200	15 15 3 0.2 40 15 15 10	5 5 5 10 10 2 m μ 2 m μ 10	30 30 50 50 75 30 60 60 30 30
2N2192 2N2192A 2N2192B 2N2193 2N2193A 2N2194 2N2194A 2N2195 2N2195A 2N2243	TO-5 TO-5 TO-5 TO-5 TO-5 TO-5 TO-5 TO-5	60 60 80 80 60 60 45 45 120	40 40 50 50 40 40 25 25	5 5 5 8 8 5 5 5 5 7	1 1 1 1 1 1 1 1	2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	100-300 © 100-300 © 100-300 © 40-120 © 40-120 © 20-60 © 20 min © 20 min © 40-120*	150 150 150 150 150 150 150 150 150 150	10 10 10 10 10 10 10 10	0.35 0.25 0.18 0.35 0.25 0.35 0.25 0.35	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	15 15 15 15 15 15 15 15	10 m μ 10 m μ 10 m μ 10 m μ 10 m μ 10 m μ 10 m μ 100 m μ 100 m μ 10 m μ	30 30 30 60 60 30 30 30 30 60
2N2270 2N2297 2N2939 2N2940 2N2941	TO-5 TO-5 TO-5 TO-5 TO-5	60 80 75 120 150	45 35 60 80 100	7 7 7 7	1 1 1 1 1	5 5 0.8\$ 0.8\$	50-200* 40-120* 60-240 60-240 60-240	150 150 150 150 150	10 10 10 10 10	0.9 0.2 0.75 0.75 0.75	150 150 150 150 150	15 15 15 15 15	50 mμ 10 mμ 25 mμ 25 mμ 25 mμ	60 60 60 90 100

¶VCER @RBE $\leq 10 \Omega$. \triangle VCER @RBE $\leq 1 K \Omega$. \$TA = 25°C. \odot Pulse width $\leq 300~\mu$ sec, duty cycle $\leq 2\%$. \oplus hFE @1 kc. Cob = 8 pf typical. Tj = 200°C maximum. θ J-C = 23°C/W maximum (All case types). θ J-A = 165°C/W typical (T0-5 case), 250°C/W typical (T0-18 case).

TYPE NUMBER	CASE TYPE	VCBO V	VCEO V	Pc @ 25°C CASE W	hFE⊡ —	MAX VCE(s)ð V	CUT	LLECTOR FOFF RENT @ VCBO V	θJ-C 🔏	<i>θ</i> J•A °C/W
2N2217	TO-5	60	30	3	20-60	0.4	0.01	50	30	175 175
2N2218	TO-5	60	30	3	40-120	0.4	0.01	50	30 30	175
USA2N2218	TO-5	60	30	3	40-120	0.4	0.01	50	30	175
2N2218A	* TO-5	75	40	3	40-120	0.3	0.01	50	30	175
2N2219	TO-5	60	30	3	100-300	0.4	0.01	50	30	175
USA2N2219	TO-5	60	30	3	100-300	0.4.	0.01	50,	30	175
2N2219A	TO-5	75	40	3	100-300	0.3	0.01	50	30	175
2N2220	TO-18	60	30	1.8	20-60	0.4	0.01	50°	40.	260
2N2221	TO-18	60	30	1.8	40-120	0.4	0.01	50	40	260
2N2221A	TO-18	75	40	1.8	40-120	0.3	0.01	50	40	260
2N2222	TO-18	60	30	1.8	100-300	0, 4	0.01	50	40	260
USA2N2222	TO-18	60	30	1.8	100-300	0.4	0.01	50	40	260
2N2222A	5 TO-18	75	40	1.8	100-300	0.3	0.01	50	40	260
2N2845	TO-18	60	30⊚	1.2	30-120	0.4	0.2	30	40	260
2N2846	TO-5	60	30⊙	3	30-120	0.4	0.2	30	. 30	175
2N2847	TO-18	60	20⊙	1. 2	40-140	0.4	0. 2	30	40	260
2N 28 48	TO-5	60	20⊙	3	40-140	0.4	0.2	30	30	175

□Pulse width \leq 300 μ sec, duty cycle \leq 2%, IC = 150 mA, VCE = 10 V. $_{\odot}$ Pulse width \leq 300 μ sec, duty cycle \leq 2%, IC = 150 mA, IB = 15 mA. ft = 400 mc typical. T_i = 200 $^{\circ}$ C maximum. IC = 800 mA. Cob = 6 pf typical at VCBO = 10 V. τ_{i} = 150 msec typical. VEBO = 5 V.

BENDIX SILICON SINGLE-JUNCTION DIFFUSED POWER RECTIFIERS

TYPE NUMBER	lo A 150°C	MAX RMS V 150°C	PRV V 150°C	IR mA 150°C	VF V 25°C	TYPE NUMBER	lo A 150°C	MAX RMS V 150°C	PRV V 150°C	IR mA 150°C	VF V 25°C
1N607, R 1N607A, RA 1N608, R 1N608A, RA 1N609, R 1N609A, RA 1N612, R 1N612A, RA 1N613A, RA	†0.8 †0.8 †0.8 †0.8 †0.8 †0.8 †0.8 †0.8	35 35 70 70 105 105 280 280 350 350	†50 †50 †100 †100 †150 †150 †400 †500	†0. 025 †0. 001 †0. 025 †0. 001 †0. 025 †0. 001 †0. 025 †0. 0015 †0. 025 †0. 0025	1.5 @ 0.2A 1.5 @ 0.4A 1.5 @ 0.2A 1.5 @ 0.4A 1.5 @ 0.4A 1.5 @ 0.4A 1.5 @ 0.4A 1.5 @ 0.4A 1.5 @ 0.4A	USAF1N1206 JAN1N1206, R 1N1206A, RA 1N1341, R 1N1341A, RA 1N1342, RA 1N1342A, RA 1N1343A, RA 1N1343A, RA 1N1343, R	12 12 12 6 6 6 6 6 6	420 420 420 35 35 70 70 140 105	600 600 600 50 50 100 100 200 150	10 6 3 10 10 10 7.5 10 6.75	1. 25 @ 12A 1. 2 @ 12A 1. 35 @ 12A 1. 15 @ 6A 1. 1 @ 6A 1. 1 @ 6A 1. 15 @ 6A 1. 1 @ 6A 1. 15 @ 6A
1N614, R 1N614A, RA 1N1115, R 1N1118, R 1N1119, R 1N1120, R 1N1124, R 1N1124A, RA USN1N1124A 1N1125, R	†0.8 †0.8 0.6 0.6 0.6 0.6 3 1	420 420 70 280 350 420 140 140 140	†600 †600 100 400 500 600 200 200 200 300	†0.025 †0.0025 1 1 1 1 0.5 0.2 0.25 0.5	1.5 @ 0.2A 1.5 @ 0.4A +1 @ 0.6A +1 @ 0.6A +1 @ 0.6A 1.1 @ 6A 1.1 @ 1A 1.1 @ 1A	1N1344A, RA 1N1345, R 1N1345A, RA 1N1346, R 1N1346A, RA 1N1347, R 1N1347A, RA 1N1348A, R 1N1348A, RA 1N1537, R	6 6 6 6 6 6 6 6 6	140 210 210 280 280 350 350 420 420 35	200 300 300 400 400 500 500 600 600 50	6 10 10 10 4.5 10 3.75 10 3 0.5	1.1 @ 6A 1.15 @ 6A 1.1 @ 6A 1.15 @ 6A 1.15 @ 6A 1.1 @ 6A 1.15 @ 6A 1.15 @ 6A 1.1 @ 6A
1N1126, R 1N1126A, RA USN1N1126A 1N1127, R 1N1128, R 1N1128A, RA USN1N1128A 1N1199, R USAF1N1199 1N1200, R	3 1 1 3 3 1 1 1 12 12 12	280 280 280 350 420 420 420 35 35 70	400 400 400 500 600 600 600 50 50	0. 5 0. 25 0. 25 0. 25 0. 5 0. 5 0. 35 0. 25 10	1.1 @ 6A 1.1 @ 1A 1.1 @ 1A 1.1 @ 6A 1.1 @ 6A 1.1 @ 1A 1.1 @ 1A 1.25 @12A 1.25 @12A 1.25 @12A	1N1538, R 1N1539, R 1N1540, R 1N1541, R 1N1542, R 1N1543, R 1N1544, R 1N1581, R 1N1582, R 1N1583, R	2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 3 3	40 105 140 210 280 350 420 35 70	100 150 200 300 400 500 600 50 100 200	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 @ 1.6A 1 .5 @ 6A 1.5 @ 6A
USAF1N1200 1N1200A, RA 1N1201, R USAF1N1201 1N1201A, RA 1N1202, R USAF1N1202 JAN1N1202, R 1N1202A, RA 1N1203, R	12 12 12 12 12 12 12 12 12 12 12	70 70 105 105 105 140 140 140 140 210	100 100 150 150 150 200 200 200 200 200 300	10 10 10 10 10 10 10 10 6 10	1. 25 @ 12 A 1. 25 @ 12 A	1N1584, R 1N1585, R 1N1586, R 1N1587, R 1N1612, R 1N1612A, RA 1N1613, R 1N1613A, RA 1N1614, R USA1N1614, R	3 3 3 5 5 5 5 5	210 280 350 420 35 35 35 70 70 140 168	300 400 500 600 50 50 100 100 200 240	0.5 0.5 0.5 0.5 1 0.5 1 0.5	1.5 @ 6A 1.5 @ 6A 1.5 @ 6A 1.5 @ 6A 1.5 @ 10A 1.1 @ 5A 1.5 @ 10A 1.1 @ 5A 1.5 @ 10A
USAF1N1203 1N1203A, RA 1N1204, R USAF1N1204 JAN1N1204A, RA 1N1204A, RA 1N1205, R USAF1N1205 1N1205A, RA 1N1206, R	12 12 12 12 12 12 12 12 12 12 12	210 210 280 280 280 280 350 350 350 350 420	300 300 400 400 400 400 500 500 500 600	10 5 10 10 6 5 10 10 3.5	1. 25 @ 12A 1. 35 @ 12A 1. 25 @ 12A 1. 35 @ 12A 1. 35 @ 12A 1. 25 @ 12A	JAN1N1614, R 1N1614A, RA 1N1615, R USA1N1615, R JAN1N1615, R 1N1615A, RA 1N1616, R USA1N1616, R JAN1N1616, R 1N1616A, RA	5 5 5 5 5 5 5 5 5 5 5	168 140 280 336 336 280 420 504 504 420	240 200 400 480 480 400 600 720 720 600	0.5 0.5 1 0.5 0.5 0.5 1 0.5 0.5	1.5 @15A 1.1 @ 5A 1.5 @10A 1.5 @15A 1.1 @ 5A 1.5 @10A 1.5 @10A 1.5 @15A 1.1 @ 5A

BENDIX SILICON SINGLE-JUNCTION DIFFUSED POWER RECTIFIERS (CONT.)

TYPE	lo A 150°C	MAX RMS V 150°C	PRV V 150°C	IR mA 150°C	VF V 25°C	TYPE NUMBER	lo A 150°C	MAX RMS V 150°C	PRV V 150°C	IR mA 150°C	VF V 25°C
1N2218, R 1N2220, R 1N2222, R 1N2224, R 1N2224A, RA 1N2228A, RA 1N2238A, RA 1N2230A, RA 1N2230A, RA 1N2232, R	0.4 0.4 0.3 0.3 0.3 1 1.6	350 420 560 700 700 35 35 140 140 210	500 600 800 1000 1000 50 50 200 200 300	1.5 1.5 2.25 2.25 1.15 1.5 1 1.5	1. 2 @ 1. 5A 1. 2 @ 1. 5A 1. 2 @ 1A 1. 2 @ 1A 1. 2 @ 5A 1. 2 @ 5A 1. 2 @ 5A 1. 2 @ 5A 1. 2 @ 5A	1N2274, R 1N2276, R 1N2278, R 1N2491, R 1N2492, R 1N2493, R 1N2494, R 1N2495, R 1N2496, R 1N2497, R	6 6 6 6 6 6 6	140 280 420 35 70 140 210 280 350 420	200 400 600 50 100 200 300 400 500 600	1 1 2 2 2 2 2 2 2 2 2	1.2 @ 20 A 1.2 @ 20 A 1.2 @ 20 A 1.1 @ 6 A
1N2232A, RA 1N2234, R 1N2234A, RA 1N2236, R 1N2236A, RA 1N2238, R 1N2238A, RA 1N2240, R 1N2240A, RA 1N2242, R	1.6 1 1.6 1 1.6 1.5 1.6	210 280 280 350 350 420 420 560 560 700	300 400 400 500 500 600 600 800 800 1000	1 1.5 1 1.5 1 1.5 1 2.25 1 2.25	1. 2 @ 5A 1. 2 @ 1. 5A 1. 2 @ 1. 5A 1. 2 @ 1. 5A	1N2512, R 1N2513, R 1N2514, R 1N2515, R 1N2516, R 1N2517, R 1N3571, R 1N3572, R 1N3573, R 1N3574, R	1 1 1 1 1 1 1, 25 1, 25 1, 25 1, 25	70 140 210 280 350 420 210 280 350 420	100 200 300 400 500 600 300 400 500 600	†2 †2 †2 †2 †2 †2 †2 0.4 0.4 0.4	1.1 @ 1A 1.1 @ 1A 1.1 @ 1A 1.1 @ 1A 1.1 @ 1A 1.1 @ 1A 1.3 @ 3.5A 1.3 @ 3.5A 1.3 @ 3.5A
1N2242A, RA 1N2246, R 1N2246A, RA 1N2248, R 1N2248A, RA 1N2250, R 1N2250, R 1N2252, R 1N2252A, RA 1N2254, RA	1.6 3 3 3 3 3 3 3 3	700 35 35 70 70 140 140 210 210 280	1000 50 50 100 100 200 200 300 300 400	1 3 1.5 3 1.5 3 1.5 3 1.5 3	1.2 @ 1.6A 1.2 @ 10A 1.2 @ 10A	1N3649, R 1N3650, R 1N3670, R 1N3670A, RA 1N3671, R 1N3671A, RA 1N3672A, RA 1N3672A, RA 1N3673A, RA	1 11 112 112 112 112 112 112 112	560 700 490 490 560 560 630 630 700 700	800 1000 700 700 800 800 900 900 1000	0.2 0.2 3 0.9 3 0.8 3 0.7 2	1.1 @ 1A 1.1 @ 1A 2.05 @ 12A 1.35 @ 12A 2.05 @ 12A 2.05 @ 12A 2.05 @ 12A 1.35 @ 12A 2.05 @ 12A 1.35 @ 12A
1N2254A, RA 1N2256, R 1N2256A, RA 1N2258, R 1N2258A, RA 1N2260, R 1N2260A, RA 1N2262, R 1N2262A, RA 1N2262A, RA 1N2272, R	3 3 3 3 3 3 3 3	280 350 350 420 420 560 560 700 700 35	400 500 500 600 600 800 800 1000 1000	1.5 3 1.5 3 1.5 15 3 15 3	1.2 @ 10A 1.2 @ 10A	1N3987, R 1N3989, R 1N3990, R 1N4458, R JAN1N4458, R 1N4459, R JAN1N4459, R 0J-C = 4°C/W typic All types packaged			700 900 1000 800 960 1000 1200	0.9 0.7 0.6 0.5 0.5 0.5	1.4 @ 6A 1.4 @ 6A 1.4 @ 6A + 1.5 @ 5A 1.5 @ 15A + 1.5 @ 5A 1.5 @ 15A

BENDIX MILITARY TYPE SEMICONDUCTORS RECTIFIERS

TYPE NUMBER	lo A 150°C	PRV V 150°C	VF V 25°C	MEETING MILITARY SPECIFICATION	TYPE NUMBER	lo A 150°C	PRV V 150°C	VF V 25°C	MEETING MILITARY SPECIFICATION
USN1N1124A USN1N1126A USN1N1128A USAF1N1199 USAF1N1200 USAF1N1201 USAF1N1202 JAN1N1202, R USAF1N1203 USAF1N1204 JAN1N1204, R	1 1 1 12 12 12 12 12 12 12 12	200- 400 600 50 100 150 200 200 300 400	1.1 @ 1A 1.1 @ 1A 1.1 @ 1A 1.25 @ 12A 1.25 @ 12A 1.25 @ 12A 1.25 @ 12A 1.25 @ 12A 1.25 @ 12A 1.25 @ 12A	MIL-S-19500/104B MIL-S-19500/104B MIL-S-19500/104B MIL-E-1/1108 MIL-E-1/1108 MIL-E-1/1108 MIL-E-1/1108 MIL-E-1/1108 MIL-S-19500/260 MIL-E-1/1108 MIL-S-19500/260	USAF IN 1205 USAF IN 1206 JAN 1N 1206, R USA 1N 1614, R JAN 1N 1614, R USA 1N 1615, R JAN 1N 1615, R USA 1N 1616, R JAN 1N 14158, R JAN 1N 14459, R	12 12 12 5 5 5 5 5	500 600 600 240 240 480 480 720 7 20 960 1200	1. 25 @ 12A 1. 25 @ 12A 1. 2 @ 12A 1. 5 @ 10A 1. 5 @ 10A 1. 5 @ 15A 1. 5 @ 10A 1. 5 @ 15A 1. 5 @ 15A 1. 5 @ 15A	MIL-E-1/1108 MIL-E-1/1108 MIL-S-19500/260 MIL-S-19500/162A MIL-S-19500/162B MIL-S-19500/162B MIL-S-19500/162B MIL-S-19500/162B MIL-S-19500/162B MIL-S-19500/162B

Packaged to JEDEC DO-4 outline.

TRANSISTORS

2001					Pc @ 25°C	CURREN'	T GAIN	CU ⁻	LLECTOR FOFF RENT	MEETING
TYPE NUMBER	CASE TYPE	VCB0 V	VCEO V	IC A	CASE	hFE -	IC A	ICBO μA	VCB0 V	MILITARY SPECIFICATION
USA2N297A	TO-3	60	40		35	40-100	0,5	200		MIL-T-19500/36A
JAN2N297A	TO-3	80	40	5	50	40-100	0.5	150	2	MIL-S-19500/36B
USA2N456A	TO-3	40	20	7	150	30-90	5	500	20	MIL-S-19500/217
JSA2N457A	₩ TO-3	60	30	7	150	30-90	5	500	30	MIL-S-19500/217
USA2N458A	₹ TO-3	80	40	7	150	30-90	5	500	40	MIL-S-19500/217

TYPE NUMBER	CASE TYPE	VCBO V	VCEO V	IC A	Pc @ 25°C CASE W	CURREN hFE -	T GAIN IC A	MAX COLI CUTC CURR ICBO μA)FF	MEETING MILITARY SPECIFICATION
USA 2N 1011 USA 2N 1021 USA 2N 1022 USN 2N 1039 JAN 2N 1039 USN 2N 1041 JAN 2N 1041 USA 2N 1042 USA 2N 1043 USA 2N 1044	TO-3 TO-3 TO-5 TO-5 TO-5 TO-5 MT-28 MT-28 MT-28	80 100 120 60 60 100 100 40 60 80	40 50 50 40 40 60 60 30 40	5 7 7 3 3 3 3 3 3 3	10 150 150 20 20 20 20 20 20 20 20	30-75 30-90 30-90 20-60 20-60 20-60 20-60 20-60 20-60	3 5 5 1 1 1 1 3 3 3	200 500 500 70 70 70 70 125 125	2 50 60 30 30 50 50 20 30 40	MIL-T-19500/67 MIL-S-19500/217 MIL-S-19500/217 MIL-S-19500/89 MIL-S-19500/89C MIL-S-19500/89C MIL-S-19500/137A MIL-S-19500/137A MIL-S-19500/137A
USA2N1045 USA2N1120 USN2N1165 USA2N1487 USA2N1488 USA2N1489 USA2N1490 USA2N1506A USA2N1651 USA2N1651	MT-28 TO-41 TO-41 TO-3 TO-3 TO-3 TO-3 TO-5 TO-41 TO-41	100 80 80 60 100 60 100 80 60	60 40 40 40 55 40 55 50 30 60	3 15 25 6 6 6 6 0.5 25 25	20 45 90 75 75 75 75 3.5 100	20-60 20-50 15-65 15-45 15-45 25-75 25-75 20-100 35-100	3 10 25 1.5 1.5 1.5 0.1	125 300 225 25 25 25 25 25 300 300	50 2 2 30 30 30 30 30 28 2	MIL-S-19500/137A MIL-T-19500/68 MIL-S-19500/178A MIL-S-19500/208 MIL-S-19500/208 MIL-S-19500/208 MIL-S-19500/208 MIL-S-19500/208 MIL-S-19500/219A MIL-S-19500/219A
USA2N1653 USA2N2218 USA2N2219 USA2N2222	TO-41 TO-5 TO-5 TO-18	120 60 60 60	80 30 30 30	25 0.8 0.8 0.8	100 3 3 1.8	35-100 40-120 100-300 100-300	10 0. 15 0. 15 0. 15	300 0.01 0.01 0.01	2 50 50 50	MIL-S-19500/219A MIL-S-19500/251C MIL-S-19500/251C MIL-S-19500/255C

BENDIX Ignistors [™]

TYPE NUMBER	CASE TYPE	VCE(sus) V	@ IC A	MIN hFE	e IC A	MAX VCE(s) V	@ IC 8	B IB	TYPE NUMBER	CASE TYPE	VCE(sus) V	@ IC A	MIN hFE @	P IC	MAX VCE(s) V	@ IC 8	k IB
B-10060	T0-3	80	6	25	12	0.7	12	0.6	B-10065	TO-41	80	6	25	12	0.7	12	0.6
B-10061	T0-3	80	6	15	12	0.7	12	1.2	B-10066	TO-41	80	6	15	12	0.7	12	1.2
B-10062	T0-3	80	3	25	12	0.7	12	0.6	B-10067	TO-41	80	3	25	12	0.7	12	0.6
B-10063	T0-3	80	3	15	12	0.7	12	1.2	B-10068	TO-41	80	3	15	12	0.7	12	1.2

BENDIX TRANSISTOR MOUNTING KITS

MOUNTING	FOR	EMITTER		INSUL	ATOR _	
KIT NUMBER	CASE TYPE	LEAD DIAMETER	SOCKET	ANODIZED ALUMINUM	TEFLON FIBERGLASS	NYLON BUSHINGS
	COPPER					
210-6500	PLATFORM TO-3	0, 040"	210-6400	210-6103	_	210-6300
210-6501	TO-3	0.060"	210-6401	210-6103		210-6300
210-6502	TO-3	0.040"	210-6400		210-6112	210-6300
210-6503	TO-3	0.060"	210-6401	l _	210-6112	210-6300
210-6504	TO-41			210-6103	_ :	210-6300
210-6505	TO-41			_	210-6112	210-6300
	STEEL					
	PLATFORM					
210-6517	TO-3	0.040"	210-6400	210-6103	- 1	210-6307
210-6518	₹ TO-3	0.040"	210-6400	I	210-6112	210-6307
210-6521	₹ TO-41	_	-	210-6103	-	210-6307
210-6522	TO-41	_		-	210-6112	210-6307

SEMICONDUCTOR OUTLINES

t get

APPLICATIONS

2N3629, 2N3630

APPLICATIONS

DISTRIBUTOR:

SALES OFFICES

MAIN OFFICE: South Street, Holmdel, New Jersey 07733

Phone (201) 747-5400 - TWX: 201-946-8780

NEW ENGLAND OFFICE: 235 Bear Hill Road, Waltham, Mass. 02154

Phone: (617) 899-0770

SYRACUSE OFFICE: 1054 James Street, Syracuse, N. Y. 13203

Phone: (315) 474-7531

BALTIMORE OFFICE: 306 Chesapeake Ave., Baltimore (Towson), Md. 21225

Phone: (301) 828-6877

FLORIDA OFFICE: 4471 N.W. 36th St., Miami Springs, Fla. 33166

Phone: (305) 887-5521 - TWX: 305-821-8270

DETROIT OFFICE: 12950 W. Eight Mile Road, Oak Park, Mich. 48237

Phone: (313) JOrdan 6-1420 - TWX: 313-357-4606

MIDWEST OFFICE: 1915 N. Harlem Ave., Chicago, III. 60635

Phone: (312) 637-6929 - TWX: 312-265-1003

MINNEAPOLIS OFFICE: 7710 Computer Ave., Minneapolis, Minn. 55424

Phone: (612) 926-4633 - TWX: 612-321-0803

SOUTHWEST OFFICE: 2626 W. Mockingbird Lane, Dallas, Texas 75235

Phone: (214) 357-1972 - TWX: 214-899-9371

WEST COAST OFFICE: 6151 W. Century Blvd., Los Angeles, Calif. 90045

Phone: (213) 776-4100 - TWX: 910-328-6115

SEATTLE OFFICE: Ray Johnston Co., Inc., 1011 N.E. 69th St.,

Seattle, Wash. 98115

Phone: (206) LA 4-5170

EXPORT OFFICE: Bendix International Operations, 605 Third Ave.,

New York 16, N. Y.

Phone: (212) 973-2121 - Cable: BENDIXINT

CANADIAN AFFILIATE: Computing Devices of Canada, P.O. Box 508,

Ottawa 4, Ontario

Phone (613) TAlbot 8-2711

FRANCHISED STOCKING DISTRIBUTORS: Contact nearest sales office

Bendix Semiconductor Division

HOLMDEL, NEW JERSEY

