

Characterization of exosomes based on their unique dielectric properties by a novel electrical impedance measurement system

Leyla Esfandiari, Ph.D.

Assistant professor of Biomedical Engineering Assistant professor of Electrical Engineering and Computer Science College of Engineering & Applied Science University of Cincinnati, USA

Characterization of Exosomes

Conventional characterization methods:

• <u>Proteomics</u>: enzyme-linked immunosorbent assay (ELISA), western blot, flow cytometry, and chromatography

Genomics: qRT-PCR, microarrays, and next-generation sequencing (NGS)

Shortcomings: <u>break the structure of the exosomes</u> in labelling and lysing steps

Characterization of biophysical properties of exosomes:

- Size
- Density
- Shape

Non-invasive characterization of exosomes based on their unique dielectric properties

Impedance cytometry

Single-shell model

Foster and Schwan's circuit model

Maxwell's Mixing Theory is applied to analyze the dielectric properties of cells in suspension under an AC field over a wide range of frequencies.

$$Z_{mix} = \frac{1}{j\omega\tilde{\varepsilon}_{mix}G}$$

Could we characterize exosomes based on their unique dielectric properties and classify them based on their biogenesis?

Characterization of cells' dielectric properties at different frequencies

Cell Type	Dielectric properties	Frequency Range	Ref
Human leukocytes	Membrane capacitance	1.7MHz for membrane	Holmes et al.
Stem cells	Membrane capacitance	1MHz for membrane	Song et al.
Parasite infected RBCs	Membrane permittivity	8.7MHz for membrane	Küttel et al.
Tumor cells (MCF7)	Membrane capacitance	2MHz for membrane	Spencer et al.
Erythrocytes	Membrane capacitance and plasm conductivity	Multifrequency measurement from 500kHz to 20MHz; >10MHz for cytoplasm conductivity	Cheung et al.
Schwann cell	Membrane potential and intracellular free calcium	4MHz for membrane 6MHz for intracellular free calcium	Pierzchalski et al.
Yeast cell	Intercellular fluid	>50MHz for cytoplasm	Pierzchalski et al.
Leukocytes	Cell membrane	2MHz for cell membrane	Haandbæk et al.
Parasitic Protozoa	Interior fluid conductivity	25MHz	Spencer et al.

Single Cell Impedance cytometry

Impedance micro-cytometer used for single cell analysis

<u>Transfer the cell impedance cytometry for exosomes:</u>

- Challenges in nano-sized channel fabrication
- Needs high pressure pump
- Low signal-to-noise ratio
- Requires high sampling rate and thus, high resolution data acquisition

New nanopipette Dielectrophoretic Isolation Device

50 nm

Integrated Impedance Spectroscopy for Exosomes characterization

The effect of membrane capacitance

The effect of cytosolic conductance

 C_m : medium capacitance

 R_m : medium resistance

 C_{mem} : membrane capacitance

 R_{Cyt} : Cytosolic Resistance

$$R_{Cyt+tRNA} < R_{Cyt}$$
 \downarrow
 $Opacity_{cyt+tRNA} > Opacity_{cyt}$

Impedance measurement of exosomes with different biogenesis

Comparison of immune response with electrical impedance measurements

Conclusion and future direction

- ✓ Electrical impedance sensor for characterization of exosomes based on their unique dielectric properties
- ✓ Both membrane capacitance and cytosolic conductance of exosomes influence the impedance signal at frequency > 1MHz
- > Classification of exosomes based on their cell of origin
- > A diagnostic tool for detection of pathogenic exosomes

Members of IBL:

Yuqian Zhang

EECS Ph.D. student

Leilei Shi

EECS Ph.D. Student

Ankit Rana

EECS MSc. Student

Collaborators:

Takahasi Nakamura, Ph.D.

Assistant Professor, Department of Pediatrics Cincinnati Children's hospital

Scott M. Langevin, MHA, Ph.D.

Assistant Professor of Environmental Health University of Cincinnati College of Medicine