WHAT IS CLAIMED IS:

1. A compound of formula (I):

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{8}
 R^{10}
 R^{10}
 R^{13}
 R^{12}

(I)

5 wherein:

15

25

each of R¹-R⁵ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, and R^a;

or R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , or R^4 and R^5 are joined together to form a group selected from the group consisting of $-C(R^d)=C(R^d)C(=O)NR^d$ -,

 $-CR^{d}R^{d}-CR^{d}R^{d}-C(=O)NR^{d}-, -NR^{d}C(=O)C(R^{d})=C(R^{d})-, -NR^{d}C(=O)CR^{d}R^{d}-CR^{d}R^{d}-, \\ -NR^{d}C(=O)S-, -SC(=O)NR^{d}-, -(CR^{d}R^{d})_{p}-, -S(CR^{d}R^{d})_{q}-, -(CR^{d}R^{d})_{q}S-, -S(CR^{d}R^{d})_{r}O-, \\ -O(CR^{d}R^{d})_{r}S-, \text{ and } -NHC(R^{j})=C(R^{k})-;$

R⁶ is hydrogen, alkyl, or alkoxy;

R⁷ is hydrogen or alkyl;

R⁸ is hydrogen or alkyl; or R⁸ together with R⁹ is -CH₂- or -CH₂CH₂-;

R⁹ is independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, and R^a, or R⁹ together with R⁸ is -CH₂- or -CH₂CH₂-;

R¹⁰ is hydrogen or alkyl;

each R^{11} , R^{12} , and R^{13} is independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclyl, -NO₂, halo, -NR^dR^e, -C(=O)R^d, -CO₂R^d, -OC(=O)R^d, -CN, -C(=O)NR^dR^e, -NR^dC(=O)R^e, -OC(=O)NR^dR^e, -NR^dC(=O)OR^e, -NR^dC(=O)NR^dR^e, -OR^d, -S(O)_mR^d, -NR^d-NR^d-C(=O)R^d, -NR^d-N=CR^dR^d, -N(NR^dR^e)R^d, and -S(O)₂NR^dR^e;

or R¹¹ and R¹² together with the atoms to which they are attached form a fused benzo ring, which benzo ring can optionally be substituted with 1, 2, 3, or 4 R^c;

or R¹¹ and R¹² together with the atoms to which they are attached form a heterocyclic ring;

10

15

20

25

30

wherein for R¹-R⁶, R⁹, and R¹¹-R¹³, each alkyl, alkenyl, and alkynyl is optionally substituted with R^m, or with 1, 2, 3, or 4 substituents independently selected from R^b; for R¹-R⁶, R⁹, and R¹¹-R¹³, each aryl and heteroaryl is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R^c, and for R¹-R⁶, R⁹, and R¹¹-R¹³ each cycloalkyl and heterocyclyl is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R^b and R^c;

each R^a is independently $-OR^d$, $-NO_2$, halo, $-S(O)_mR^d$, $-S(O)_2OR^d$, $-S(O)_mNR^dR^e$, $-NR^dR^e$, $-O(CR^fR^g)_nNR^dR^e$, $-C(=O)R^d$, $-CO_2R^d$, $-CO_2(CR^fR^g)_nCONR^dR^e$, $-OC(=O)R^d$, -CN, $-C(=O)NR^dR^e$, $-NR^dC(=O)R^e$, $-OC(=O)NR^dR^e$, $-NR^dC(=O)NR^dR^e$, $-CR^d(=N-OR^e)$, $-CF_3$, or $-OCF_3$;

each R^b is independently R^a, oxo, or =N-OR^e;

each R^c is independently R^a , alkyl, alkenyl, or alkynyl; wherein each alkyl, alkenyl and alkynyl is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R^b ;

each R^d and R^e is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R^h; or R^d and R^e together with the atoms to which they are attached form a heterocyclic ring having from 5 to 7 ring atoms, wherein the heterocyclic ring optionally contains 1 or 2 additional heteroatoms independently selected from oxygen, sulfur or nitrogen;

each R^f and R^g is independently hydrogen, alkyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R^h; or R^f and R^g together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms independently selected from oxygen, sulfur or nitrogen;

each R^h is independently halo, C_{1-8} alkyl, C_{1-8} alkoxy, -S- C_{1-8} alkyl, aryl, (aryl)- C_{1-6} alkyl, (aryl)- C_{1-8} alkoxy, heteroaryl, (heteroaryl)- C_{1-6} alkyl, (heteroaryl)- C_{1-8} alkoxy, hydroxy, amino, -NHC₁₋₆alkyl, -N(C_{1-6} alkyl)₂, -OC(=O)C₁₋₆alkyl, -C(=O)C₁₋₆alkyl, -C(=O)NHC₁₋₆alkyl, carboxy, nitro, -CN, or -CF₃;

 R^{j} and R^{k} together with the carbon atoms to which they are attached form a phenyl ring that is optionally substituted with 1, 2, 3, or 4 R^{c} ;

each R^m is independently aryl, heteroaryl, cycloalkyl or heterocyclyl; wherein each aryl or heteroaryl is optionally substituted with 1, 2, 3, or 4 substituents selected from the group consisting of R^c , and wherein each cycloalkyl and heterocyclyl is optionally substituted with 1, 2, 3, or 4 substituents selected from R^b ;

m is 0, 1, or 2; n is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10; p is 3, 4, or 5; 10 q is 2, 3, or 4; r is 1, 2, or 3; and w is 0, 1, 2, 3, or 4; or a pharmaceutically-acceptable salt or solvate or stereoisomer thereof.

- 15 2. The compound of claim 1 wherein R⁶, R⁸, and R¹⁰ are each hydrogen; and w is 0, 1, or 2.
 - 3. The compound of claim 1 wherein
- each of R¹-R⁴ is independently selected from the group consisting of hydrogen, fluoro, chloro, amino, hydroxy, *N*,*N*-dimethylaminocarbonyloxy, -CH₂OH, and -NHCHO, and R⁵ is hydrogen; or

R¹ is hydrogen, R² is hydrogen, R³ is hydroxy, and R⁴ and R⁵ together are -NHC(=0)CH=CH- or -SC(=0)NH-.

25

- 4. The compound of claim 1 wherein R^1 is hydrogen; R^2 is hydrogen; R^3 is hydroxy; R^4 is -CH₂OH; and R^5 is hydrogen.
- 5. The compound of claim 1 wherein R¹ is hydrogen; R² is hydrogen; R³ is hydroxy; R⁴ is -NHCHO; and R⁵ is hydrogen.
 - 6. The compound of claim 1 wherein R¹ is hydrogen; R² is hydrogen; R³ is hydroxy; and R⁴ and R⁵ together are -NHC(=O)CH=CH-.

10

15

20

25

7. The compound of claim 1 wherein each of R¹-R⁵ is independently selected from the group consisting of hydrogen, alkyl, and R^a; wherein each R^a is independently -OR^d, halo, -NR^dR^e, -NR^dC(=O)R^e, or -OC(=O)NR^dR^e;

or R^1 and R^2 , or R^4 and R^5 , are joined together to form a group selected from the group consisting of $-C(R^d)=C(R^d)C(=O)NR^d$ -, $-CR^dR^d-CR^dR^d-C(=O)NR^d$ -, $-NR^dC(=O)C(R^d)=C(R^d)$ -, $-NR^dC(=O)CR^dR^d-CR^dR^d$ -, $-NR^dC(=O)S$ -, and $-SC(=O)NR^d$ -; R^6 , R^8 , and R^{10} are each hydrogen;

each of R^{11} and R^{12} is independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclyl, -NO₂, halo, -NR^dR^e, -CO₂R^d, -OC(=O)R^d, -CN, -C(=O)NR^dR^e, -NR^dC(=O)R^e, -OR^d, -S(O)_mR^d, -NR^d-NR^d-C(=O)R^d, -NR^d-N=CR^dR^d, -N(NR^dR^e)R^d, and -S(O)₂NR^dR^e;

wherein for R^1 - R^5 , R^{11} , and R^{12} , each alkyl is optionally substituted with R^m , or with 1, 2, 3, or 4 substituents independently selected from R^b ; for R^{11} and R^{12} , each aryl and heteroaryl is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R^c , and for R^{11} and R^{12} , each cycloalkyl and heterocyclyl is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R^b and R^c ;

 R^{13} is hydrogen; the group comprising -NR¹⁰ is meta or para to the group comprising R^7 ; and w is 0, 1, or 2.

- 8. The compound of claim 7 wherein each of R^{11} and R^{12} is independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, heterocyclyl, $-OR^d$, $-S(O)_mR^d$, and $-S(O)_2NR^dR^e$; wherein each alkyl is optionally substituted with 1 or 2 substituents independently selected from R^b , each aryl is optionally substituted with 1 or 2 substituted with 1 or
- 309. The compound of claim 8 wherein:R⁷ is hydrogen;

each of R¹¹ and R¹² is independently selected from the group consisting of hydrogen, C₁₋₆alkyl, cyclohexyl, phenyl, pyrazolinyl, -OR^d, -S(O)_mR^d, and -S(O)₂NR^dR^e;

w is 0; and

15

30

 R^d and R^e are independently selected from the group consisting of hydrogen, C_{1-6} alkyl, phenyl, -CF₃, and C_{1-3} alkyl, pyridyl, thiazolyl, pyrimidinyl, and pyrazolinyl, wherein each phenyl is optionally substituted with 1 or 2 substitutents independently selected from halo, -CF₃, and C_{1-3} alkyl, each pyrimidinyl is optionally substituted with 1 or 2 substitutents independently selected from C_{1-3} alkyl and OC_{1-3} alkyl, and each pyrazolinyl is optionally substituted with 1 or 2 substitutents independently selected from C_{1-3} alkyl and carboxy; or

R^d and R^e, together with the nitrogen atom to which they are attached are morpholino or piperidino.

10. The compound of claim 8 wherein R¹¹ is -SR^d and R¹² is hydrogen, or R¹¹ is hydrogen and R¹² is -SR^d, wherein:

 R^d is selected from the group consisting of alkyl, aryl, and heteroaryl; wherein each alkyl, aryl, or heteroaryl, is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R^h .

- 11. The compound of claim 9 wherein R¹¹ is -SR^d and R¹² is hydrogen, or R¹¹ is hydrogen and R¹² is -SR^d, wherein:
- R^d is selected from the group consisting of C_{1-3} alkyl, phenyl, and pyrimidinyl, wherein each phenyl is optionally substituted with 1 or 2 substitutents independently selected from halo and C_{1-3} alkyl, and each pyrimidinyl is optionally substituted with C_{1-3} alkyl.
- 25 12. The compound of claim 8 wherein R¹¹ is -S(O)₂NR^dR^e and R¹² is hydrogen or alkyl, or R¹¹ is hydrogen or alkyl and R¹² is -S(O)₂NR^dR^e, wherein:

R^d is alkyl, aryl, or heteroaryl; and R^e is hydrogen, alkyl, aryl, or heteroaryl; wherein each alkyl, aryl, or heteroaryl, is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R^h;

or R^d and R^e together with the nitrogen atom to which they are attached form a heterocyclic ring having from 5 to 7 ring atoms, wherein the heterocyclic ring optionally contains 1 or 2 additional heteroatoms independently selected from oxygen, sulfur and nitrogen.

The compound of claim 9 wherein R¹¹ is -S(O)₂NR^dR^e and R¹² is hydrogen 13. or alkyl, or R¹¹ is hydrogen or alkyl and R¹² is -S(O)₂NR^dR^e, wherein:

R^d and R^e are independently selected from the group consisting of hydrogen. C₁₋₃alkyl, phenyl, pyridyl, thiazolyl, and pyrimidinyl, wherein each phenyl is optionally substituted with 1 substitutent selected from halo and C₁₋₃alkyl, and each pyrimidinyl is optionally substituted with 1 substitutent selected from C₁₋₃alkyl and OC₁₋₃alkyl; or

R^d and R^e, together with the nitrogen atom to which they are attached are morpholino or piperidino.

10

5

The compound of claim 8 wherein R¹¹ is -SO₂R^d and R¹² is hydrogen or alkyl, or R¹¹ is hydrogen or alkyl and R¹² is -SO₂R^d, wherein R^d is alkyl, aryl, or heteroaryl, wherein each alkyl, aryl, or heteroaryl, is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R^h.

15

The compound of claim 9 wherein R¹¹ is -SO₂R^d and R¹² is hydrogen, or 15. R^{11} is hydrogen and R^{12} is $-SO_2R^d$, wherein R^d is C_{1-3} alkyl or phenyl, wherein each phenyl is optionally substituted with 1 substituent selected from halo and C₁₋₃alkyl.

20

The compound of claim 8 wherein R¹¹ is -OR^d and R¹² is hydrogen, or R¹¹ 16. is hydrogen and R¹² is -OR^d wherein R^d is alkyl, optionally substituted with 1, 2, 3, or 4 halo substituents and also optionally substituted with 1 or 2 phenyl substituents.

30

17.

-OR d ; or R^{11} is hydrogen and R^{12} is -OR d , wherein R^d is C_{1-3} alkyl.

The compound of claim 9 wherein R¹¹ is -OR^d and R¹² is hydrogen or

- The compound of claim 8 wherein one of R¹¹ and R¹² is alkyl and the other 18. of R¹¹ and R¹² is selected from the group consisting of hydrogen, alkyl, cycloalkyl, and hydroxy, wherein each alkyl is optionally substituted with aryl, with 1, 2, 3, or 4 halo, or with 1 or 2 -O-alkyl substituents.
- The compound of claim 9 wherein R¹¹ is C₁₋₃alkyl and R¹² is hydrogen or 19. C₁₋₃alkyl; or R¹¹ is cyclohexane and R¹² is hydroxy.

- 20. The compound of claim 7 wherein R¹¹ is phenyl, optionally substituted with 1, 2, 3, or 4 alkyl, -OR^d, -NO₂, halo, -NR^dR^e, -C(=O)R^d, -CO₂R^d, -OC(=O)R^d, -CN, -C(=O)NR^dR^e, -NR^dC(=O)R^e, -OC(=O)NR^dR^e, -NR^dC(=O)OR^e, -NR^dC(=O)NR^dR^e, -CR^d(=N-OR^e), -CF₃, or -OCF₃; and R¹² is selected from the group consisting of hydrogen and -O-alkyl, optionally substituted with aryl, or with 1, 2, 3, or 4 halo.
- 21. The compound of claim 9 wherein R^{11} is hydrogen or phenyl and R^{12} is -OC₁₋₃alkyl; or R^{11} is phenyl and R^{12} is hydrogen.
 - 22. A compound of formula (II):

HO
$$\mathbb{R}^4$$
 \mathbb{R}^5
 \mathbb{R}^{12}
 \mathbb{R}^{11}
(II)

wherein:

5

10

20

R⁴ is -CH₂OH or -NHCHO and R⁵ is hydrogen; or R⁴ and R⁵ taken together are -NHC(=O)CH=CH-;

 R^{11} is phenyl or heteroaryl, wherein each phenyl is optionally substituted with 1 or 2 substituents selected from halo, $-OR^d$, -CN, $-NO_2$, $-SO_2R^d$, $-C(=O)R^d$, $-C(=O)NR^dR^e$, and C_{1-3} alkyl, wherein C_{1-3} alkyl is optionally substituted with 1 or 2 substituents selected from carboxy, hydroxy, and amino, and each R^d and R^e is independently hydrogen or C_{1-3} alkyl; and wherein each heteroaryl is optionally substituted with 1 or 2 C_{1-3} alkyl substituents; and

R¹² is hydrogen or -OC₁₋₆alkyl; or a pharmaceutically-acceptable salt or solvate or stereoisomer thereof.

23. The compound of claim 22 wherein R¹¹ is phenyl, optionally substituted with 1 substituent selected from halo, -OR^d, -CN, -NO₂, -SO₂R^d, -C(=O)R^d, and C₁₋₃alkyl, wherein C₁₋₃alkyl is optionally substituted with 1 or 2 substituents selected from carboxy, hydroxy, and amino, and R^d is hydrogen or C₁₋₃alkyl.

- 24. The compound of claim 22 wherein R^{11} is pyridyl, thiophenyl, furanyl, pyrrolyl, isoxazolyl, or indolyl, each of which is optionally substituted with 1 or 2 C_{1-3} alkyl substituents.
- The compound of claim 22 wherein R¹¹ is phenyl, pyridyl, or thiophenyl, wherein each phenyl is optionally substituted with 1 substituent selected from the group consisting of chloro, -OCH₃, -CN, and -CH₂NH₂; and R¹² is hydrogen, -OCH₃, or -OC₂H₅.
- 10 26. The compound of claim 25 wherein R⁴ and R⁵ taken together are -NHC(=O)CH=CH-; R¹¹ is phenyl or pyridyl, wherein each phenyl is optionally substituted with 1 substituent selected from the group consisting of chloro, -OCH₃, -CN, and -CH₂NH₂; and R¹² is -OCH₃.
- 15 27. The compound of claim 22 wherein the compound is a mixture of stereosiomers wherein the amount of the stereoisomer having the (R) orientation at the chiral center to which the hydroxy group is attached is greater than the amount of the stereoisomer having the (S) orientation at the chiral center to which the hydroxy group is attached.

- 28. The compound of claim 22 wherein the compound is the stereoisomer having the (R) orientation at the chiral center to which the hydroxy group is attached.
 - 29. A compound selected from the group consisting of:
- 25 *N*-{2-[4-(3-phenyl-4-methoxyphenyl)aminophenyl]ethyl}-(*R*)-2-hydroxy-2-(3-hydroxymethyl-4-hydroxyphenyl)ethylamine;
 - N-{2-[4-(4-ethoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(3-hydroxymethyl-4-hydroxyphenyl)ethylamine;
- N-{2-[4-(3-phenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(3-hydroxymethyl-4-30 hydroxyphenyl)ethylamine;
 - N-{2-[4-(3-phenyl-4-methoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(8-hydroxy-2(1H)-quinolinon-5-yl)ethylamine;

- N-{2-[4-(4-methoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(3-hydroxymethyl-4-hydroxyphenyl)ethylamine;
- N-{2-[4-(3-phenyl-4-ethoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(3-hydroxymethyl-4-hydroxyphenyl)ethylamine;
- 5 N-{2-[4-(3-phenyl-4-methoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(3-formamido-4-hydroxyphenyl)ethylamine;
 - N-{2-[4-(4-ethoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(3-formamido-4-hydroxyphenyl)ethylamine;
- N-{2-[4-(3-phenylphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(3-formamido-4-hydroxyphenyl)ethylamine;
 - N-{2-[4-(3-phenyl-4-ethoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(3-formamido-4-hydroxyphenyl)ethylamine;
 - N-{2-[4-(4-methoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(3-formamido-4-hydroxyphenyl)ethylamine;
- $N-\{2-[4-(4-\text{ethoxyphenyl})]\}$ aminophenyl]ethyl-(R)-2-hydroxy quinolinon-5-yl)ethylamine;
 - N-{2-[4-(3-phenylphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(8-hydroxy-2(1H)-quinolinon-5-yl)ethylamine;
- N-{2-[4-(3-phenyl-4-ethoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(8-20 hydroxy-2(1H)-quinolinon-5-yl)ethylamine;
 - N-{2-[4-(4-methoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(8-hydroxy-2(1H)-quinolinon-5-yl)ethylamine;
 - N-{2-[4-(3-(2-chlorophenyl)phenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(8-hydroxy-2(1H)-quinolinon-5-yl)ethylamine;
- 25 *N*-{2-[4-(3-(2-methoxyphenyl)phenyl)aminophenyl]ethyl}-(*R*)-2-hydroxy-2-(8-hydroxy-2(1*H*)-quinolinon-5-yl)ethylamine;
 - N-{2-[4-(3-(3-cyanophenyl)phenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(8-hydroxy-2(1H)-quinolinon-5-yl)ethylamine;
- N-{2-[4-(3-(4-aminomethylphenyl)phenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-30 (8-hydroxy-2(1H)-quinolinon-5-yl)ethylamine;
 - N-{2-[4-(3-(3-chlorophenyl)phenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(8-hydroxy-2(1H)-quinolinon-5-yl)ethylamine;

- N-{2-[4-(3-(4-aminomethylphenyl)-4-methoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(8-hydroxy-2(1H)-quinolinon-5-yl)ethylamine;
- N-{2-[4-(3-(3-cyanophenyl)-4-methoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(8-hydroxy-2(1H)-quinolinon-5-yl)ethylamine;
- N-{2-[4-(3-(4-hydroxyphenyl)-4-methoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(8-hydroxy-2(1H)-quinolinon-5-yl)ethylamine;
 - N-{2-[4-(3-(3-pyridyl)phenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(8-hydroxy-2(1H)-quinolinon-5-yl)ethylamine;
- N-{2-[4-(3-(3-pyridyl)-4-methoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(8-10 hydroxy-2(1H)-quinolinon-5-yl)ethylamine;
 - N-{2-[4-(3-(4-pyridyl)-4-methoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(8-hydroxy-2(1H)-quinolinon-5-yl)ethylamine;
 - N-{2-[4-(3-(thiophen-3-yl)-4-methoxyphenyl)aminophenyl]ethyl}-(R)-2-hydroxy-2-(8-hydroxy-2(1H)-quinolinon-5-yl)ethylamine; and
- $N-\{2-[4-(3-(3-chlorophenyl)-4-methoxyphenyl)aminophenyl]ethyl\}-(R)-2-hydroxy-2-(8-hydroxy-2(1H)-quinolinon-5-yl)ethylamine;$
 - or a pharmaceutically-acceptable salt or solvate or stereoisomer thereof.
- 30. A pharmaceutical composition comprising a therapeutically effective amount of a compound of claims 1, 7, 22, or 25 and a pharmaceutically-acceptable carrier.
 - 31. The pharmaceutical composition of claim 30, wherein the composition is formulated for administration by inhalation.
- 25 32. The pharmaceutical composition of claim 30, wherein the composition further comprises a therapeutically effective amount of a steroidal anti-inflammatory agent.
- 33. The pharmaceutical composition of claim 30, wherein the composition further comprises a therapeutically effective amount of a compound selected from the group consisting of a muscarinic receptor antagonist agent, a phosphodiesterase inhibitor agent, an immunoglobulin antibody, a leukotriene antagonist agent, a cytokine antagonist

agent, a protease inhibitor, cromolyn sodium, nedocromil sodium, and sodium cromoglycate.

- 34. A method of treating a disease or condition in a mammal associated with β₂ adrenergic receptor activity, the method comprising administering to the mammal, a therapeutically effective amount of a pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically-acceptable carrier.
- 35. The method of claim 34 wherein the disease or condition is a pulmonary 10 disease.
 - 36. The method of claim 35 wherein the pulmonary disease is asthma or chronic obstructive pulmonary disease.
- 15 37. The method of claim 34 wherein the disease or condition is selected from the group consisting of pre-term labor, neurological disorders, cardiac disorders, and inflammation.
- 38. The method of claim 34 further comprising administering a therapeutically effective amount of a steroidal anti-inflammatory agent.
 - 39. The method of claim 34 further comprising administering a therapeutically effective amount of a compound selected from the group consisting of a muscarinic receptor antagonist agent, a phosphodiesterase inhibitor agent, an immunoglobulin antibody, a leukotriene antagonist agent, a cytokine antagonist agent, a protease inhibitor, cromolyn sodium, nedocromil sodium, and sodium cromoglycate.
- 40. A method of modulating the activity of a β₂ adrenergic receptor, the method comprising contacting a β₂ adrenergic receptor with a modulating amount of a
 30 compound as described in claim 1.