Control computarizado - Modelos en espacio de estado

Kjartan Halvorsen

July 24, 2020

PMSM - Motor síncrono de imán permanente

Permanent Magnet Synchronous Motor Construction

PMSM - Motor síncrono de imán permanente

Fig. 1. Block diagram of the PMSM control system.

De Liu and Li "Speed control for PMSM servo system", IEEE Transactions on Industrial Electronics, 2012.

Modelo identificado

Dos polos, dos ceros, un retraso

Model ARX

Dado señales u(k), k = 1, 2, ..., N y y(k), k = 1, 2, ..., N, el modelo ARX $A(q)y(k) = B(q)u(k-d) + q^n e(k)$ con n polos, m ceros y retraso de d pasos.

Predictor

$$\hat{y}(k+1) = -a_1 y(k) - \dots - a_n y(k-n+1) + b_0 u(k+m-n-d+1) + \dots + b_m u(k-n-d+1)$$

Objetivo Estimar los parametro $a_1, a_2, \ldots, n, b_0, b_1, \ldots, b_m$.

Modelo del PMSM n = 2, m = 2, d = 1

$$\hat{y}(k+1) = -a_1y(k) - a_2y(k-1) + b_0u(k) + b_1u(k-1) + b_2u(k-2)d + 1$$

Modelo identificado

$$H(z) = \frac{6.91z^2 + 16.48z - 17.87}{z(z^2 - 1.766z + 0.7665)} = \frac{6.91(z + 3.19)(z - 0.81)}{z(z - 0.998)(z - 0.768)}$$

De función de transferencia a modelo en espacio de estados

$$\frac{u(k)}{H(z) = \frac{b_0 z^2 + b_1 z + b_2}{z(z^2 + a_1 z + a_2)}} \xrightarrow{y(k)}$$

$$\begin{array}{c}
u(k) \\
\hline
y(k) = Cx(k)
\end{array}$$

Formas canónicas

Dado función de transferencia

$$H(z) = \frac{b_1 z^2 + b_2 z + b_3}{z^3 + a_1 z^2 + a_2 z + a_3}.$$

Encuentra una representación en espacio de estado.

$$x(k+1) = \Phi x(k) + \Gamma u(k)$$
$$y(k) = Cx(k)$$

- Forma canónica de control
- ► Forma canónica de observador

Forma canónica de control

Dado función de transferencia

$$H(z) = \frac{b_1 z^2 + b_2 z + b_3}{z^3 + a_1 z^2 + a_2 z + a_3}.$$

$$x(k+1) = \begin{bmatrix} -a_1 & -a_2 & -a_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} x(k)$$

Forma canónica de observador

Dado función de transferencia

$$H(z) = \frac{b_1 z^2 + b_2 z + b_3}{z^3 + a_1 z^2 + a_2 z + a_3}.$$

$$x(k+1) = \begin{bmatrix} -a_1 & 1 & 0 \\ -a_2 & 0 & 1 \\ -a_3 & 0 & 0 \end{bmatrix} x(k) + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x(k)$$

Formas canónicas - ejercicio

Actividad Encuentra las formas canónicas de control y de observador para la función de transferencia del motor

$$H(z) = \frac{6.91z^2 + 16.48z - 17.87}{z(z^2 - 1.766z + 0.7665)} = \frac{6.91(z + 3.19)(z - 0.81)}{z(z - 0.998)(z - 0.768)}$$

Formas canónicas - solución

Modelación en espacio de estado

Actividad ¿ Cuál es la función de transferencia del sistema?

1:
$$G(s) = \frac{k_1 k_2}{s^2}$$
 2: $G(s) = \frac{k_1 k_2}{s(s^2 + 1)}$ 3: $G(s) = \frac{k_1 k_2}{s^3}$

$$3: G(s) = \frac{\kappa_1 \kappa_2}{s^3}$$

Actividad ¿Que sensores relevantes se puede usar para el control?

Variables del estado: $x = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T = \begin{bmatrix} \dot{\theta} & \theta & \dot{z} \end{bmatrix}^T$. Con dinamica

$$\begin{cases} \dot{x}_1 = \ddot{\theta} = k_1 u \\ \dot{x}_2 = \dot{\theta} = x_1 \\ \dot{x}_3 = \ddot{z} = k_2 \theta = k_2 x_2 \end{cases}$$

Variables del estado: $x = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T = \begin{bmatrix} \dot{\theta} & \theta & \dot{z} \end{bmatrix}^T$. Con dinamica

$$\begin{cases} \dot{x}_1 = \ddot{\theta} = k_1 u \\ \dot{x}_2 = \dot{\theta} = x_1 \\ \dot{x}_3 = \ddot{z} = k_2 \theta = k_2 x_2 \end{cases}$$

Actividad Llena las matriz A y vector B en el modelo de espacio de estado

$$\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}} + \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}} = \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}} + \underbrace{\begin{bmatrix} x_$$

Ejemplo - El módulo lunar de Apollo - Solución

Modelación - ejercicio

Actividad Las siguientes diapositivas enseñan tres ejemplos de modelos en espacio de estado. A cada breakout room se asigna un modelo

Modelo \ Breakout room	1	2	3	4	5	6	7	8	9
A	✓	✓	✓						
В				1	1	1			
С							✓	✓	✓

Interpreta el modelo ¿Cuales son los variables de estado, que significan y que unidad tienen? ¿Cuál es la señal de entrada y la señal de salida? ¿Qué unidad tienen esas señales? ¿De dónde viene el modelo (leyes físicas, ecuaciones diferenciales)?

Prepara un breve explicación con ayuda a los recursos dados.

Modelación - Modelo A

Movimiento vertical de una masa. En la posición relajada, $X=0, \dot{X}=0$, la fuerza en el resorte es igual a la fuerza de gravedad.

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{f}{m} \end{bmatrix} x + \begin{bmatrix} 0 \\ \frac{k}{m} \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

Liga a recurso

Modelación - Modelo B

Tip:
$$x_1(t) = i(t)$$

$$\dot{x} = \begin{bmatrix} -\frac{R}{L} & -\frac{1}{L} \\ \frac{1}{C} & 0 \end{bmatrix} x + \begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} x$$

Liga a recurso

Modelación - Modelo C

From Mathworks

$$\dot{x} = \begin{bmatrix} -\frac{a}{A}\sqrt{2gx_1} \\ \frac{a}{A}\sqrt{2gx_1} - \frac{a}{A}\sqrt{2gx_2} \end{bmatrix} + \begin{bmatrix} \frac{k}{A} \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} x$$

Liga a recurso

Discretización

Discretización

Solución general de un sistema lineal en espacio de estado

$$x(t_k + \tau) = e^{A(\tau)}x(t_k) + \int_0^{\tau} e^{As} Bu((t_k + \tau) - s)ds$$

$$u(t)$$

$$t_k = kh \qquad t_{k+1} = kh + h \qquad kh + 2h$$

$$x(kh+h) = e^{Ah}x(kh) + \int_0^h e^{As}Bu(kh+h-s)ds$$
$$= \underbrace{e^{Ah}}_{\Phi(h)}x(kh) + \underbrace{\left(\int_0^h e^{As}Bds\right)}_{\Gamma(h)}u(kh)$$

Discretización - La exponencial de una matriz

Matriz A cuadrada. Variable t escalar.

$$e^{At} = 1 + At + \frac{t^2}{2!}A^2 + \frac{t^3}{3!}A^3 + \cdots$$

Transformada de Laplace:

$$\mathcal{L}\left\{\mathrm{e}^{At}\right\} = (sI - A)^{-1}$$

Discretización - ejemplo

$$x(kh+h) = e^{Ah}x(kh) + \int_0^h e^{As}Bu(kh+h-s)ds$$
$$= \underbrace{e^{Ah}}_{\Phi(h)}x(kh) + \underbrace{\left(\int_0^h e^{As}Bds\right)}_{\Gamma(h)}u(kh)$$

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & k_2 & 0 \end{bmatrix}, \quad A^2 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & k_2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & k_2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ k_2 & 0 & 0 \end{bmatrix}, \quad A^3 = 0$$

Entonces,

$$\Phi(h) = e^{Ah} = 1 + Ah + A^{2}h^{2}/2 + \cdots
= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & k_{2} & 0 \end{bmatrix} h + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ k_{2} & 0 & 0 \end{bmatrix} \frac{h^{2}}{2} = \begin{bmatrix} 1 & 0 & 0 \\ h & 1 & 0 \\ \frac{h^{2}k_{2}}{2} & hk_{2} & 1 \end{bmatrix}$$

Discretización - ejemplo

$$x(kh+h) = e^{Ah}x(kh) + \int_0^h e^{As}Bu(kh+h-s)ds$$
$$= \underbrace{e^{Ah}}_{\Phi(h)}x(kh) + \underbrace{\left(\int_0^h e^{As}Bds\right)}_{\Gamma(h)}u(kh)$$

$$e^{As}B = \begin{bmatrix} 1 & 0 & 0 \\ h & 1 & 0 \\ \frac{s^2k_2}{2} & sk_2 & 1 \end{bmatrix} \begin{bmatrix} k_1 \\ 0 \\ 0 \end{bmatrix} = k_1 \begin{bmatrix} 1 \\ s \\ \frac{k_2s^2}{2} \end{bmatrix}$$

$$\Gamma(h) = \int_0^h e^{As} B ds = k_1 \int_0^h \begin{bmatrix} 1 \\ s \\ \frac{k_2 s^2}{2} \end{bmatrix} ds = k_1 \begin{bmatrix} h \\ \frac{h^2}{2} \\ \frac{k_2 h^3}{6} \end{bmatrix}$$

Discretización - ejemplo

$$x(kh+h) = e^{Ah}x(kh) + \int_0^h e^{As}Bu(kh+h-s)ds$$

$$= \underbrace{e^{Ah}}_{\Phi(h)}x(kh) + \underbrace{\left(\int_0^h e^{As}Bds\right)}_{\Gamma(h)}u(kh)$$

$$= \begin{bmatrix} 1 & 0 & 0\\ h & 1 & 0\\ \frac{h^2k_2}{2} & hk_2 & 1 \end{bmatrix}x(kh) + k_1\begin{bmatrix} h\\ \frac{h^2}{2}\\ \frac{k_2h^3}{6} \end{bmatrix}u(kh)$$

Discretización - ejercicio

Actividad Discretizar el sistema

$$\dot{x}(x) = Ax + Bu = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$