Sea $T: \mathbb{R}^n \to \mathbb{R}^n$ y sea A_T la representación matricial de T. Ahora bien, T es 1-1 si y sólo si nu $T = \{0\}$, lo que se cumple si y sólo si $\nu(A_T) = 0$ si y sólo si det $A_T \neq 0$. Por ello, se puede extender el teorema de resumen en otra dirección.

Teorema 7.4.4 Teorema de resumen (punto de vista 8)

Sea A una matriz de $n \times n$; entonces las 11 afirmaciones siguientes son equivalentes, es decir, cada una implica a las otras 10 (de manera que si una es cierta, todas son ciertas):

- i) Es invertible.
- ii) La única solución al sistema homogéneo Ax = 0 es la solución trivial (x = 0).
- iii) El sistema $A\mathbf{x} = \mathbf{b}$ tiene una solución única para cada vector de dimensión n **b**.
- iv) A es equivalente por renglones a la matriz identidad, I_n , de $n \times n$.
- v) A se puede expresar como el producto de matrices elementales.
- vi) La forma escalonada por renglones de A tiene n pivotes.
- vii) Las columnas (y renglones) de A son linealmente independientes.
- viii) det $A \neq 0$.
- **ix**) $\nu(A) = 0$.
- \mathbf{x}) $\rho(A) = n$.
- xi) La transformación lineal T de \mathbb{R}^n en \mathbb{R}^n definida por $T\mathbf{x} = A\mathbf{x}$ es un isomorfismo.

Ahora se verán algunos ejemplos de isomorfismos entre otros pares de espacios vectoriales.

EJEMPLO 7.4.6 Un isomorfismo entre \mathbb{R}^3 y \mathbb{P}_2

Defina $T: \mathbb{R}^3 \to \mathbb{P}_2$ por $T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = a + bx + cx^2$. Es sencillo verificar que T es lineal. Suponga que $T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \mathbf{0} = 0 + 0x + 0x^2$. Entonces a = b = c = 0. Es decir, nu $T = [\mathbf{0}]$ y T es 1-1. Si $p(x) = a_0 + a_1x + a_2x^2$, entonces $p(x) = T \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix}$. Esto significa que im $T = \mathbb{P}_2$ y T es sobre. Por tanto, $\mathbb{R}^3 \cong \mathbb{P}_2$.

Nota. dim \mathbb{R}^3 = dim \mathbb{P}_2 = 3. Entonces por el teorema 7.4.2, una vez que se sabe que T es 1-1, también se sabe que es sobre. Esto ya se verificó, aunque no era necesario hacerlo.

Un isomorfismo entre dos espacios vectoriales de dimensión infinita

Sea $V = \{f \in C^1[0, 1]: f(0) = 0\}$ y $W = C^1[0, 1]$. Sea $D: V \to W$ dado por Df = f'. Suponga que Df = Dg. Entonces f' = g' o (f - g)' = 0 y f(x) - g(x) = c, una constante. Pero f(0) = g(0) = 0, de manera que c = 0 y f = g. Entonces D es 1-1. Sea $g \in C^1[0, 1]$ y sea $f(x) = \int_0^x g(t) dt$. Entonces, por el teorema fundamental de cálculo, $f \in C^1[0, 1]$ y f'(x) = g(x) para todo $x \in [0, 1]$.