Physik 1 (PH1-B-REE1)

Michael Erhard

Themen heute

7. Newtonsche Axiome (Fortsetzung)

- 7.5 Beispiel: Atwoodsche Fallmaschine
- 7.6 Kinetische Energie
- 7.7 Zentripetalkraft bei Bewegung auf Kreisbahn

8. Kräfte

Wiederholung Newtonsche Axiome

1. Axiom (Trägheitsgesetz)

Ein Körper behält seinen Zustand der Ruhe oder seine Geschwindigkeit in Betrag und Richtung bei, solange keine äußeren Kräfte auf ihn wirken.

2. Axiom (Aktionsgesetz, Grundgesetz der Mechanik)

Für die zeitliche Änderung der Bewegungsgröße gilt bei einwirkender Kraft

$$\underline{F} = m \, \underline{a}$$

3. Axiom (Wechselwirkungsgesetz)

"Kraft = Gegenkraft" (Actio=Reactio)

Wiederholung D'Alembertsches Prinzip

D'Alembertsches Prinzip: *Trägheitskraft* ist Gegenkraft zur Beschleunigungskraft

$$\underline{F}_{\mathrm{T}} = -m \, a$$

Ein beschleunigter Körper "generiert" eine Trägheitskraft.

7.5 Atwoodsche Fallmaschine

Skizze

Für linke Masse $(m_0 + m)$ gilt:

$$F_{g,1} = (m_0 + m)g_0$$

 $F_{t,1} = (m_0 + m)a$
 $F_s - F_{g,1} + F_{t,1} = 0$
 $\Rightarrow F_s = F_{g,1} - F_{t,1} = (m_0 + m)(g_0 - a)$

Für die rechte Masse m_0 entsprechend

$$F_{g,2} = m_0 g_0$$

 $F_{t,2} = m_0 a$
 $F_s - F_{g,2} - F_{t,2} = 0$
 $\Rightarrow F_s = F_{g,2} + F_{t,2} = m_0 (g_0 + a)$

Gleichsetzen über die Seilkraft $F_{\rm s}$ liefert

$$(m_0 + m)(g_0 - a) = m_0(g_0 + a)$$

 $m g_0 = (2m_0 + m)a \Rightarrow a = \frac{m}{2m_0 + m} g_0$

$$a = \frac{m}{2m_0 + m} g_0$$

7

7.5 Atwoodsche Fallmaschine

Frage: nach welcher Zeit ist das linke Gewicht um Höhe h gefallen (Start mit ruhenden Massen)?

Hier können wir jetzt die einfache skalare Formel für konstante Beschleunigung anwenden

$$h = \frac{a}{2}t^2$$
 \Rightarrow $t = \sqrt{\frac{2h}{a}} = \sqrt{\frac{2h}{g_0} \frac{(2m_0 + m)}{m}}$

Für die Geschwindigkeit nach Fallhöhe h gilt

$$v = a t = \sqrt{2h a} = \sqrt{2h g_0 \frac{m}{(2m_0 + m)}}$$

7.6 Kinetische Energie

Die kinetische Energie einer bewegten Masse ist

$$E_{\rm kin} = \frac{m \, v^2}{2}$$

$$E_{\rm kin} = \frac{m \, |\underline{v}|^2}{2}$$
 (es gilt: $|\underline{v}| = v$)

Diese Relation folgt sofort aus den Newtonsche Axiomen.

Beweis (für die Spezialist*innen)

Berechne die Arbeit des Beschleunigungsvorgangs (aus gehend von $|\underline{v}|=0,\ E_{\rm kin}(0)=0$)

$$E_{\rm kin}(t) = \int_{0}^{t} \underline{F} \cdot d\underline{s} = \int_{0}^{t} \underline{F} \cdot \underbrace{\frac{d\underline{s}}{d\tau}}_{\underline{v}(\tau)} d\tau = \int_{0}^{t} \underline{F}(\tau) \cdot \underline{v}(\tau) d\tau \stackrel{\rm (Newton)}{=} m \int_{0}^{t} \underline{a}(\tau) \cdot \underline{v}(\tau) d\tau$$

$$= m \int_{0}^{t} \underline{\dot{v}}(\tau) \cdot \underline{v}(\tau) d\tau = m \int_{0}^{t} \left(\frac{d}{d\tau} \left(\frac{|\underline{v}|^{2}}{2} \right) \right) d\tau = \frac{m |\underline{v}(t)|^{2}}{2} - \underbrace{\frac{m |\underline{v}(0)|^{2}}{2}}_{=0}$$
10

7.7 Zentripetalkraft

Für die **Zentripetalbeschleunigung** hatten wir $a_{\rm zp} = \frac{v^2}{r} = \omega^2 \, r$

Das 2. Newtonsche Axiom gilt auch auf der Kreisbahn:

Auf eine Masse auf einer Kreisbahn mit konstantem Radius muss folgende **Zentripetalkraft** wirken

$$F_{\rm zp} = \frac{m \, v^2}{r} = m \, \omega^2 \, r$$

Nach D'Alembert kann der Zentripetalkraft eine Trägheitskraft entgegengesetzt werden

$$\underline{F}_{\mathrm{zf}} = -\underline{F}_{\mathrm{zp}}$$
 (Zentrifugalkraft)

8. Kräfte

8. Nomenklatur Vektoren

Als **Vektoren** (Koordinatendarstellung)

Skalare (Vektorlängen)

Beispiel: Vektor-Addition von parallelen Kräften

$$\underline{F}_{ges} = \underline{F}_1 + \underline{F}_2 + \underline{F}_3
= \begin{pmatrix} F_1 \\ 0 \end{pmatrix} + \begin{pmatrix} -F_2 \\ 0 \end{pmatrix} + \begin{pmatrix} -F_3 \\ 0 \end{pmatrix}$$

$$F_2 = 5 \,\mathrm{N} \qquad F_1 = 10 \,\mathrm{N}$$

$$F_3 = 5 \,\mathrm{N}$$

...oder direkt die Skalare, dann aber Vorzeichen beachten (ergeben sich aus Pfeilrichtungen)

$$F_{\text{ges}} = F_1 - F_2 - F_3$$

8. Addition von Kräften

Mehrere Kräfte an einem Angriffspunkt

Im *statischen Gleichgewicht* (in Ruhe bzw. keine Bewegungsänderung), muss nach Newton gelten

$$\sum_{i=1}^{N} \underline{F}_i = 0$$

Berechnung über Vektoren oder trigonometrisch über Dreieck (Polygon).

8. Addition von Kräften

An Tafel und Experimente:

- Beispiel 1: Drei Kraftvektoren
- Beispiel 2: Kraft und Seildurchhang
- Beispiel 3: Hangabtriebskraft

