DM Nº 9: Étude de fonction et nombres premiers

Lucas Tabary

Exercice 1: Étude d'une fonction

On considère la fonction à étudier suivante. On cherchera finalement à représenter avec le plus d'informations sa courbe représentative. Ses tracés sont en annexe (annexe A, page 5).

$$f \colon x \mapsto (x^2 + 2x) \ln \left| \frac{x+2}{x} \right|, f \colon I \to \mathbb{R}$$

Étude des variations

Déterminons l'ensemble sur lequel f est définie. $x \in \mathbb{R}$, f(x) existe pour :

$$\frac{x+2}{x} \neq 0 \text{ et } x \neq 0 \iff x \neq -2 \text{ et } x \neq 0 \ \therefore I = \mathbb{R} \setminus \{-2; 0\}$$

On remarque de même que f est dotée d'une symétrie centrale (possible car I est symétrique autour de -1). En effet :

$$f(-2-x) = ((-2-x)^2 + 2(-2-x)) \ln \left| \frac{-2-x+2}{-2-x} \right| = (x^2 + 4x + 4 - 4 - 2x) \ln \left| \frac{x}{x+2} \right|$$
$$= (x^2 + 2x) \ln \left| \frac{x+2}{x} \right| (-1) = -f(x) \Longrightarrow f(2(-1)-x) + f(x) = 2 \times 0$$

Ce qui correspond à une relation de symétrie centrale autour du point (-1,0). On pourra donc par la suite se restreindre à une étude sur $[-1; +\infty] \setminus \{0\}$. f est de plus continue et dérivable sur I par opération sur les fonctions usuelles. On note f' sa fonction dérivée associée sur I est on a :

$$\forall x \in I, \ f'(x) = (2x+2) \ln \left| \frac{x+2}{x} \right| + (x^2 + 2x) \frac{-\frac{2}{x^2}}{\frac{x+2}{x}} = 2(x+1) \ln \left| \frac{x+2}{x} \right| + x(x+2) \left(-\frac{2}{x^2} \right) \frac{x}{x+2}$$
$$f'(x) = 2(x+1) \ln \left| \frac{x+2}{x} \right| - 2 \Rightarrow \forall x \in I, \ x \neq -1, \ f'(x) = 2(x+1)g(x)$$

Avec $\forall x \in I \setminus \{-1\}$, $g(x) = \ln \left| \frac{x+2}{x} \right| - \frac{1}{x+1}$. Cette fonction est aussi continue, dérivable par opération sur les fonctions usuelles. On établit alors :

$$\forall x \in I \setminus \{-1\}, \ g'(x) = \frac{-\frac{2}{x^2}}{\frac{x+2}{x}} + \frac{1}{(x+1)^2} = \frac{1}{(x+1)^2} - \frac{2}{x(x+2)} = \frac{x(x+2) - (x+1)^2}{x(x+2)(x+1)^2} = \frac{x^2 + 2x - x^2 - 2x - 1}{x(x+2)(x+1)^2}$$
$$g'(x) = -\frac{1}{x(x+2)(x+1)^2}$$

On détermine maintenant les limites de g aux bornes de son intervalle de définition, qui ne présentent pas de forme indéterminée.

$$\lim_{-1^+}g=-\infty\,;\,\lim_{+\infty}=+\infty\,;\,$$
 etc., par opération sur les limites.

g étant continue et monotone sur]-1; 0[, on a d'après le théorème de la bijection :

$$\forall y \in g(]-1; 0[) = \mathbb{R}, \exists !x \in]-1; 0[, g(x) = y$$

On notera donc α_2 la valeur correspondant à cette propriété pour y=0 sur cet intervalle et α_1 son équivalent sur l'intervalle]-2;-1[qui présente les même propriétés, $mutatis\ mutandis^1$. On peut maintenant déterminer le signe de g puis trouver ensuite les variations de f sur I. Toute l'étude est représentée dans le tableau, figure 1.

Limites et valeurs spécifiques de f. La limite en 0 de f est obtenue en faisant apparaître une croissance comparée. On exploite la symétrie pour obtenir alors la limite en -2 (resp. en $+\infty$ et $-\infty$). On déterminera par ailleurs la valeur de α_1 par dichotomie, voir annexe B, page 5.

$$\lim_{x \to 0} f = \lim_{x \to 0} \left(\underbrace{(x^2 + 2x)}_{x \to 0} \ln(x+2) - (x+2) \underbrace{x \ln x}_{x \to 0} \right) = 0$$

$$\ln\left(\frac{x+2}{x}\right) = \ln\left(1 + \frac{2}{x}\right) \underset{+\infty}{\sim} \frac{2}{x} \Longrightarrow f \underset{+\infty}{\sim} x^2 \cdot \frac{2}{x} = 2x \Longrightarrow \lim_{x \to +\infty} f = \lim_{x \to +\infty} 2x = +\infty$$

x	$-\infty$ –	α_1	_	1	α_2	()	$+\infty$
-x	+	+			+	() —	
x+2	- () +			+		+	
g'(x)	_	+			+		_	
g	0	$-\infty$	+∞	$-\infty$	_0_	+∞	+∞	` 0
g(x)	_	- 0	+	_	0	+	+	
2(x+1)	_	-	- 0) +		+	+	
f'(x)	+	+ 0	_	-	0	+	+	
f	-∞	$f(\alpha_1)$			$f(\alpha_2)$	0	0	$+\infty$

Figure 1 – Tableau de variations de f

Études locale et en l'infini

Déterminons un $DL_3(-1)$ de f. Au voisinage de ce point, on peut écrire f ainsi : $f(x) = (x^2 + 2x) \ln(-1 - \frac{2}{x})$. On posera par la suite h = x + 1 pour se ramener à une étude en 0. Travaillons sur la partie logarithmique de f:

$$l(x) = \ln\left(-1 - \frac{2}{h-1}\right) = \ln\left(1 - 2 - \frac{2}{h-1}\right) = \ln\left[1 + 2\left(\frac{1}{1-h} - 1\right)\right] \text{ avec } 2\left(\frac{1}{1-h} - 1\right) \underset{h \to 0}{\longrightarrow} 0$$

^{1.} Désolé, il fallait bien que je le fasse.

Écrivons un développement limité de cette première expression. On a :

$$\frac{1}{1-h} = 1 + h + h^2 + h^3 + o(h^3) \Longrightarrow 2\left(\frac{1}{1-h} - 1\right) = 2h + 2h^2 + 2h^3 + o(h^3)$$

De plus on sait que $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$. On peut à présent composer les deux développements limités car les limites sont compatibles. Alors :

$$l(h-1) = \ln\left[1 + 2\left(\frac{1}{1-h} - 1\right)\right] = \left[2h + 2h^2 + 2h^3\right] - \frac{1}{2}\left[2h + 2h^2 + 2h^3\right]^2 + \frac{1}{3}\left[2h + 2h^2 + 2h^3\right]^3 + o(h^3)$$
$$l(h-1) = 2h + \left[2 - 2\right]h^2 + \left[2 - 4 + \frac{8}{3}\right]h^3 + o(h^3) = 2h + \frac{2}{3}h^3 + o(h^3)$$

On cherche maintenant un développement limité en x=-1 de la partie polynomiale de f, $P(x)=x^2+2x$. On peut remarquer 2 que : $x^2+2x=x^2+2x+1-1=(x+1)^2-1 \Longrightarrow P(h-1)=h^2-1$. On réalise donc maintenant le produit de P(h-1) et l(h-1):

$$f(x) = P(x)l(x) = P(h-1)l(h-1) = (h^2 - 1)\left(2h + \frac{2}{3}h^3\right) + o(h^3) = -2h + \left[2 - \frac{2}{3}\right]h^3 + o(h^3)$$

$$\therefore f(x) = -2(x+1) + \frac{4}{3}(x+1)^3 + o((x+1)^3)$$

On en conclut que la position relative de la courbe par rapport à la tangente est déterminée par le terme d'ordre 3. Celui-ci étant strictement positif, on en conclut que la courbe représentative de la fonction présente un point d'inflexion en x = -1.

Étudions maintenant le comportement en $+\infty$ de la fonction en en déterminant un $DA_3(+\infty)$. On a, en reprenant le développement limité donné précédemment de la fonction logarithme népérien :

$$\ln\left(1 + \frac{2}{x}\right) = \frac{2}{x} - \frac{2}{x^2} + \frac{8}{3x^3} + o\left(\frac{1}{x^3}\right) \Longrightarrow f(x) = (x^2 + 2x)\left(\frac{2}{x} - \frac{2}{x^2} + \frac{8}{3x^3}\right) + o\left(\frac{1}{x}\right)$$
$$\therefore f(x) = [-1 + 2 \times 2] + 2x + \left[\frac{8}{3} - 4\right] \frac{1}{x} + o\left(\frac{1}{x}\right) = 2 + 2x - \frac{4}{3x} + o\left(\frac{1}{x}\right)$$

On conclut de cette expression que la droite d'équation $\mathcal{T}\colon y=2x+2$ est asymptote oblique à la courbe représentative de f, notée \mathcal{C} , en $+\infty$, et que celle-ci est en dessous de cette droite, car le terme d'ordre supérieur est négatif pour x tendant vers l'infini. L'étude en $-\infty$ est strictement identique et l'asymptote est par conséquent la même. Par symétrie la courbe est néanmoins au-dessus d'elle.

Recherche des points d'inflexion

Les points d'inflexion correspondant à des points où s'annulent la dérivée seconde, ils correspondent à des extrema de la dérivée première : ils n'existent donc pas sur les intervalles de monotonie de f'. Pour $x \neq -1$ (on peut l'exclure car on sait déjà qu'il s'agit d'un point d'inflexion), on a f'(x) = 2(x+1)g(x). $x \mapsto 2(x+1)$ étant croissante et positive sur I =]-1; $+\infty[$, on en déduit que f' dispose des variations de g sur I. Les changements de monotonie étant uniquement situés en x = 0 sur I, il s'agit du seul point à étudier. Néanmoins on peut le considérer comme exclu car f n'est pas défini en ce point. Par symétrie on en conclut qu'il n'y a pas de point d'inflexion sur l'intervalle opposé. Le seul point d'inflexion est donc celui en x = -1.

Exercice 2 : Nombre premiers d'une progression arithmétique

On considère au cours de l'exercice les ensembles suivants :

- P l'ensemble des nombres premiers;
- $A = \{p \in \mathbb{P} \mid p \equiv 5 \ [6]\} = \{p_1, p_2, \ldots\}$. dans le contexte de l'exercice on supposera cet ensemble fini et on aura $A = \{p_1, p_2, \ldots, p_n\}$, avec n un entier naturel;
- $--\mathbb{P}_N = \{d \in \mathbb{P}, d \mid N\}.$

Le but de l'exercice est de montrer que A est infini, c'est-à-dire qu'il existe une infinité de nombres premiers congrus à 5 modulo 6. On fera donc l'hypothèse par l'absurde que A est fini.

^{2.} On aurait pu utiliser la méthode des coefficients indéterminés

- 1. On remarque que $5 = 6 \cdot 0 + 5 \in A \Rightarrow p_1 = 5$. De même $p_2 = 11$. En se référant à l'annexe C, page 5, on constate que le premier nombre congru à 5 modulo 6 et non premier est 35. Cela peut justifier la question d'une infinité ou non d'éléments premiers de cette forme.
- 2. On considère le nombre N défini par (N est bien un entier fini car il est le résultat d'une opération sur un nombre fini d'éléments) :

$$N = 6 \prod_{p \in A} p - 1 = 6 \prod_{k=1}^{n} p_k - 1 = 6P - 1 = 6 \cdot p_1 p_2 \cdots p_n - 1$$

Étant un entier, il possède au moins un diviseur premier qu'on notera p. On notera de même q le reste dans la division euclidienne de p par 6, c'est-à-dire que $p \equiv q$ [6] et $q \in [0, 5]$.

a. Étudions la congruence modulo 3 de N.

$$N = 6P - 1 = 3 \cdot 2P - 1 \equiv -1 [3] \Longrightarrow 3 \nmid N$$

On suppose donc que 3 divise p, or p divise N, donc 3 divise N par transitivité de la divisibilité. Ce qui est contradictoire, donc 3 ne divise pas p. Nécessairement, on a donc $q \neq 0$ et $q \neq 3$ (puisque dans le cas contraire, p serait divisible par 3). $q \in \{1, 2, 4, 5\}$.

- **b.** On a $p \equiv q$ [6] $\iff p-q=6k=2\cdot 3k, k\in\mathbb{N} \iff p\equiv q$ [2]. Supposons que q est pair. p l'est donc aussi, or N est un multiple de p, donc N est pair. Néanmoins $N\equiv 2\cdot 3P-1\equiv -1\equiv 1$ [2], N est impair. Ce qui est encore absurde, on en conclut que q est impair. $q\in\{1,5\}$.
- 3. Des questions précédentes on a conclu que tout diviseur premier de N est congru soit à 1, soit à 5 modulo 6. Supposons alors que N n'admette pas de diviseur premier congru à 5 modulo 6, c'est-à-dire, $\forall d \in \mathbb{P}_N, d \equiv 1$ [6]. D'après le théorème fondamentale de l'arithmétique (décomposition d'un nombre en facteurs premiers), on a :

$$N = \prod_{d \in \mathbb{P}_N} d^{\nu_d(N)} \text{ or } \forall d \in \mathbb{P}_N, d \equiv 1 \ [6] \Longrightarrow \forall n \in \mathbb{N}, d^n \equiv 1^n \equiv 1 \ [6]$$

En particulier, $d^{\nu_d(N)} \equiv 1$ [6]. On en conclut : $N \equiv \overbrace{1 \times 1 \times \cdots \times 1} \equiv 1$ [6]. Néanmoins $N = 6P - 1 \equiv -1$ [6]. À nouveau, cela est absurde. La supposition est donc fausse : il existe au moins un diviseur premier de N, qu'on notera p_* , tel que $p_* \equiv 5$ [6].

4. On reconsidère maintenant la définition de N, en notant par ailleurs $N = kp_*, k \in \mathbb{N}$.

$$N = 6P - 1 = kp_* \iff 6 \cdot P + (-k) \cdot p_* = 1$$

D'après le théorème de Bézout, on en conclut que $P=p_1p_2\cdots p_n$ et p_* sont premiers entre eux, donc $p_* \nmid P$. Cependant, $p_* \in A \Rightarrow P=p_1p_2\cdots p_*\cdots p_n \Rightarrow p_* \mid P$. Par la contraposée, on en conclut que $p_* \notin A$. Ce qui est absurde, car $p_* \in \mathbb{P}$ et $p_* \equiv 5$ [6]. On en conclut que l'hypothèse initiale est fausse, et donc A possède une infinité d'éléments.

Représentations de la courbe de f

(b) Représentation des points d'inflexion de $\mathscr C$

(a) Représentation de $\mathscr C$ et $\mathscr T$

Calcul de α_1 par dichotomie \mathbf{B}

On détermine une valeur approchée à 10^{-1} de α_1 par dichotomie en cherchant un zéro de la fonction g sur]-2;-1[. On démarre avec $(a_1,b_1)=(-1,9;-1,1)$. On rappelle que $m_n=\frac{a_n+b_n}{2}$.

Étape	a_n	b_n	m_n	$f(m_n)$	$b_n - a_n$
1	-1,90	-1,10	-1,50	0,90	0,80
2	-1,90	-1,50	-1,70	-0,31	0,40
3	-1,70	-1,50	-1,60	0,28	0,20
4	-1,70	-1,60	-1,65	-0,01	0,10
5	-1,65	-1,60	-1,63	0,13	0,05

On a donc pour une précision à 10^{-1} , $\alpha_1 \approx -1.6$.

Premiers nombres premiers \mathbf{C}

73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, $163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, \ldots$