

Data Acquisition, Sensor Filtering and Fusion Techniques

https://github.com/as-budi/Embedded Al.git

Embedded System Architecture

Embedded AI Data Flow

- **Sensor** Berfungsi untuk mengumpulkan data dari lingkungan, seperti suhu, kelembaban, akselerasi, atau sinyal biometrik.
- Main Controller bertanggung jawab untuk memproses data dari sensor dan meneruskannya ke modul Al.

- AI (Artificial Intelligence) Berada dalam Main Controller untuk menganalisis data yang diterima dari sensor menggunakan model Machine Learning atau Deep Learning untuk melakukan klasifikasi, deteksi pola, atau pengambilan keputusan.
- Setelah diproses oleh Al, data digunakan untuk berbagai keperluan, seperti kontrol otomatis, prediksi, atau pemantauan kondisi tertentu.
- Output dapat dikirim ke aktor (motor, alarm, tampilan layar),
 cloud, atau sistem lain untuk tindakan lebih lanjut.

Contoh Implementasi

- Sistem IoT untuk pemantauan lingkungan: Sensor suhu mengirim data ke controller, Al memprediksi tren suhu, dan sistem memberikan peringatan jika suhu terlalu tinggi.
- Embedde System untuk kesehatan: Sensor detak jantung mengirim data ke Al dalam microcontroller, lalu Al menganalisis apakah detak jantung normal atau ada indikasi penyakit.

Mengakses Data dari Sensor

- Menggunakan protokol komunikasi seperti I2C, SPI, UART, atau
 ADC untuk membaca data dari sensor.
- Memanfaatkan microcontroller (Arduino, ESP32, STM32) atau single-board computer (Raspberry Pi) untuk menangkap data.
- Menyimpan data ke dalam format CSV, JSON, atau database untuk analisis lebih lanjut.

Membangun Dataset

- **Preprocessing**: Membersihkan data dari noise dan outlier.
- Normalisasi: Menyesuaikan skala data agar lebih mudah diproses.
- Labeling: Jika diperlukan untuk supervised learning.

Data Cleaning

Normalisasi

Temperature (°C)	Humidity (%)	Pressure (hPa)	Acceleration (m/s²)
25	60	1000	0.5
30	65	1012	1.2
35	70	1025	0.8
40	75	1030	2.5
45	80	1045	3.0

Kenapa Perlu Normalisasi?

Data ini memiliki rentang nilai yang berbeda-beda (**Temperature** vs. **Pressure** vs. **Acceleration**). Jika langsung digunakan dalam model Machine Learning, fitur dengan skala lebih besar (seperti **Pressure**) bisa mendominasi hasil prediksi.

Metode Normalisasi yang Bisa Digunakan

- Min-Max Scaling (Skala [0,1]):
- $ullet X_{
 m scaled} = rac{X X_{
 m min}}{X_{
 m max} X_{
 m min}}$
- Standardization (Z-Score Normalization) (Distribusi normal dengan mean = 0, std = 1):
- $X_{\text{standardized}} = \frac{X \mu}{\sigma}$
- Gunakan Min-Max Scaling jika algoritma yang digunakan sensitif terhadap skala fitur.
- Gunakan Z-Score Standardization jika data perlu didistribusikan secara


```
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(42)
time = np.linspace(0, 10, 500) # 10 detik, 500 sampel
true_temperature = 25 + 2 * np.sin(2 * np.pi * 0.1 * time) # Suhu sebenarnya
sensor_temperature = true_temperature + np.random.normal(0, 1, size=len(time)) # Noise ±1°C
X_min = np.min(sensor_temperature)
X_max = np.max(sensor_temperature)
sensor_temperature_minmax = (sensor_temperature - X_min) / (X_max - X_min)
X_mean = np.mean(sensor_temperature)
X_std = np.std(sensor_temperature)
sensor_temperature_zscore = (sensor_temperature - X_mean) / X_std
plt.figure(figsize=(12, 6))
plt.subplot(3, 1, 1)
plt.plot(time, sensor_temperature, 'r-', label="Original Sensor Data")
plt.ylabel("Temperature (°C)")
plt.legend()
plt.grid(True)
plt.subplot(3, 1, 2)
plt.plot(time, sensor_temperature_minmax, 'b-', label="Min-Max Normalized")
plt.title("Min-Max Normalization (Range 0 to 1)")
plt.ylabel("Normalized Value")
plt.legend()
plt.grid(True)
plt.subplot(3, 1, 3)
plt.plot(time, sensor_temperature_zscore, 'g-', label="Z-Score Standardized")
plt.ylabel("Standardized Value")
plt.xlabel("Time (s)")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
```


Labeling

Temperature (°C)	Humidity (%)	Pressure (hPa)	Acceleration (m/s²)	Label
25	60	1000	0.5	Safe
30	65	1012	1.2	Safe
35	70	1025	0.8	Safe
40	75	1030	2.5	High Risk
45	80	1045	3.0	Extreme Condition

Introduction to Sensor Filtering

Sensor filtering digunakan untuk mengurangi noise dan memperbaiki keakuratan data sensor sebelum diproses lebih lanjut.

Kalman Filter

- Algoritma berbasis probabilistic estimation yang digunakan untuk prediksi dan koreksi nilai sensor berdasarkan model sistem dan pengukuran aktual.
- Contoh penggunaan: Estimasi posisi drone menggunakan data dari IMU (gyroscope & accelerometer).


```
from pykalman import KalmanFilter
import numpy as np
from matplotlib import pyplot as plt
# Simulasi data noisy suhu (misalnya dari sensor)
np.random.seed(42)
days = np.arange(1, 51) # 50 hari
true_temperature = 30 + 0.1 * days # Tren suhu meningkat
noisy_temperature = true_temperature + np.random.normal(0, 2, size=len(days)) # Tambahkan noise
# Inisialisasi Kalman Filter
kf = KalmanFilter(initial_state_mean=noisy_temperature[0],
                  n_dim_obs=1,
                  transition_matrices=[1],
                  observation_matrices=[1],
                  observation_covariance=4, # Variance of observation noise (sigma^2)
                  transition_covariance=0.1) # Model system noise
filtered_temperature, _ = kf.filter(noisy_temperature)
plt.figure(figsize=(10, 5))
plt.plot(days, noisy_temperature, 'r.', alpha=0.5, label="Noisy Measurements")
plt.plot(days, true_temperature, 'g--', label="True Temperature")
plt.plot(days, filtered_temperature, 'b-', label="Kalman Filter Output")
plt.xlabel("Days")
plt.ylabel("Temperature (°C)")
plt.title("Kalman Filter for Temperature Data Smoothing")
plt.legend()
plt.grid(True)
plt.show()
```


- Noisy Measurements (Titik Merah): Data suhu yang dikumpulkan dari sensor memiliki noise yang cukup besar.
- True Temperature (Garis Putus-Putus Hijau): Nilai suhu sebenarnya yang mengikuti tren kenaikan.
- Kalman Filter Output (Garis Biru): Estimasi suhu hasil filtering menggunakan Kalman Filter, yang lebih halus dan mendekati suhu sebenarnya.

1. Tahap Prediksi (Prediction Step)

Pada tahap ini, Kalman Filter memprediksi keadaan sistem berdasarkan model sebelumnya.

• Prediksi keadaan (state estimate):

$$\hat{x}_k^- = A\hat{x}_{k-1} + Bu_k$$

- $\circ \hat{x}_{k}^{-}$ = prediksi keadaan pada waktu k
- \circ A= matriks transisi keadaan
- \hat{x}_{k-1} = keadaan sebelumnya
- \circ B= matriks kontrol (jika ada kontrol input)
- $\circ u_k$ = kontrol input (jika ada)

• Prediksi kovarians error:

$$P_k^- = AP_{k-1}A^T + Q$$

- \circ P_k^- = prediksi kovarians error
- $\circ P_{k-1}$ = kovarians error sebelumnya
- \circ Q= kovarians noise proses

2. Tahap Update (Correction Step)

Setelah prediksi, Kalman Filter memperbarui estimasi berdasarkan pengukuran baru.

Menghitung Kalman Gain:

$$K_k = P_k^- H^T (H P_k^- H^T + R)^{-1}$$

- $\circ K_k$ = Kalman Gain
- \circ H= matriks observasi
- \circ R= kovarians noise pengukuran

• Memperbarui estimasi keadaan:

$$\hat{x}_k=\hat{x}_k^-+K_k(z_k-H\hat{x}_k^-)$$

- \circ z_k = pengukuran baru
- Memperbarui kovarians error:

$$P_k = (I - K_k H) P_k^-$$

 \circ I= matriks identitas


```
import numpy as np
 import matplotlib.pyplot as plt
np.random.seed(42)
time = np.linspace(0, 10, 500) # 10 detik, 500 sampel
true_temperature = 25 + 2 * np.sin(2 * np.pi * 0.1 * time)
sensor_temperature = true_temperature + np.random.normal(0, 1, size=len(time)) # noise ±1°C
x_est = np.zeros_like(time) # Estimasi suhu
P = np.zeros_like(time)  # Kovarians error
x_est[0] = sensor_temperature[0] # Inisialisasi dengan nilai sensor pertama
Q = 0.01 # Variansi noise proses (tuning parameter)
R = 1.0 # Variansi noise pengukuran (tuning parameter)
for k in range(1, len(time)):
   x_pred = x_est[k-1] # Asumsi suhu berubah perlahan (tanpa model kecepatan)
   P_pred = P[k-1] + Q # Prediksi kovarians error
   K = P_pred / (P_pred + R) # Kalman Gain
    x_{est}[k] = x_{pred} + K * (sensor_temperature[k] - x_{pred}) # Update estimasi suhu
    P[k] = (1 - K) * P_pred # Update kovarians error
plt.figure(figsize=(10, 6))
plt.plot(time, true_temperature, 'k-', label='True Temperature', linewidth=2)
plt.plot(time, sensor_temperature, 'r.', alpha=0.5, label='Sensor Measurement (Noisy)')
plt.plot(time, x_est, 'b-', label='Kalman Filter')
plt.xlabel("Time (s)")
plt.ylabel("Temperature (°C)")
plt.legend()
plt.grid(True)
plt.show()
```


Kalman Filter on Temperature Sensor Data


```
import numpy as np
 import matplotlib.pyplot as plt
np.random.seed(42)
dt = time[1] - time[0]
true_pitch = 10 * np.sin(2 * np.pi * 0.5 * time)
true_gyro_rate = np.gradient(true_pitch, dt)
gyro_rate_noisy = true_gyro_rate + np.random.normal(0, 5, size=len(time)) # noise ±5 deg/s
acc_pitch_noisy = true_pitch + np.random.normal(0, 2, size=len(time)) # noise ±2 deg
x_est = np.zeros_like(time) # Estimasi sudut
P = np.zeros_like(time) # Kovarians error
x_est[0] = acc_pitch_noisy[0] # Inisialisasi dengan sudut dari accelerometer
 for k in range(1, len(time)):
   x_pred = x_est[k-1] + gyro_rate_noisy[k] * dt # Prediksi sudut dengan gyro
    P_pred = P[k-1] + Q # Prediksi kovarians error
    K = P_pred / (P_pred + R) # Kalman Gain
    x_est[k] = x_pred + K * (acc_pitch_noisy[k] - x_pred) # Update estimasi sudut
    P[k] = (1 - K) * P_pred # Update kovarians error
plt.plot(time, acc_pitch_noisy, 'g. , alpha=0.5, label='Accelerometer (Noisy)')
plt.plot(time, gyro_rate_noisy.cumsum() * dt, 'r--', alpha=0.7, label='Gyro Integration (Noisy)')
plt.plot(time, x_est, 'b-', label='Kalman Filter')
plt.title("Kalman Filter on Simulated IMU Data (Pitch)")
plt.xlabel("Time (s)")
plt.ylabel("Pitch Angle (degrees)")
plt.legend()
plt.grid(True)
plt.show()
```


b. Complementary Filter

- Metode filtering sederhana yang menggabungkan sinyal frekuensi rendah dari satu sensor dan sinyal frekuensi tinggi dari sensor lain.
- Sering digunakan untuk **sensor IMU** (accelerometer dan gyroscope) dalam pelacakan orientasi.
- **Keunggulan**: Lebih ringan dibandingkan Kalman Filter dan cocok untuk sistem real-time.
- Contoh penggunaan: Meningkatkan akurasi sensor IMU.

Complementary Filter memanfaatkan karakteristik **gyroscope** (akurat pada frekuensi tinggi, tetapi rentan *drift* jangka panjang) dan **accelerometer** (akurat pada frekuensi rendah, tetapi sangat sensitif terhadap getaran dan noise dinamis).

- Komponen **gyroscope** di-*integrasi*kan secara terus-menerus untuk mendapatkan perubahan sudut (*angular rate integration*).
- Komponen accelerometer digunakan sebagai baseline yang lebih stabil untuk sudut statis.

• Kedua sinyal ini dikombinasikan secara komplementer dengan weighting tertentu, misalnya menggunakan konstanta α untuk gyroscope dan $(1-\alpha)$ untuk accelerometer.

Formula complementary filter untuk sudut θ adalah:

$$\theta_{\text{combined}}(t) = \alpha \left[\theta_{\text{combined}}(t-1) + \omega_{\text{gyro}}(t) \cdot \Delta t \right] + (1-\alpha) \theta_{\text{acc}}(t)$$

- $\theta_{\text{combined}}(t)$ = sudut hasil filter pada waktu t.
- $\omega_{\rm gyro}(t)$ = laju rotasi (rate) dari gyroscope pada waktu t.
- $\theta_{\rm acc}(t)$ = sudut hasil perhitungan dari data akselerometer (misalnya pitch) pada waktu t.
- α = konstanta yang menentukan bobot gyroscope vs. accelerometer.
- Δt = selang waktu pembacaan sensor.


```
import numpy as np
 import matplotlib.pyplot as plt
np.random.seed(42)
dt = time[1] - time[0]
true_pitch = 10 * np.sin(2 * np.pi * 0.5 * time) # amplitudo 10 derajat, freq 0.5 Hz
true_gyro_rate = np.gradient(true_pitch, dt)
gyro_rate_noisy = true_gyro_rate + np.random.normal(0, 5, size=len(time)) # noise ±5 deg/s
acc_pitch_noisy = true_pitch + np.random.normal(0, 2, size=len(time)) # noise ±2 deg
gyro_angle = np.zeros_like(time)
gyro\_angle[0] = acc\_pitch\_noisy[0] # inisialisasi sudut awal sama dengan accelerometer
 for i in range(1, len(time)):
   gyro_angle[i] = gyro_angle[i-1] + gyro_rate_noisy[i] * dt
comp_angle = np.zeros_like(time)
comp_angle[0] = acc_pitch_noisy[0]
    gyro_integration = comp_angle[i-1] + gyro_rate_noisy[i] * dt
    acc_angle = acc_pitch_noisy[i]
    comp_angle[i] = alpha * gyro_integration + (1 - alpha) * acc_angle
plt.figure(figsize=(10, 6))
plt.plot(time, true_pitch, 'k-', label='True Pitch', linewidth=2)
plt.plot(time, acc_pitch_noisy, 'g.', alpha=0.5, label= Accelerometer (Noisy)')
plt.plot(time, gyro_angle, 'r--', alpha=0.7, label='Gyro Integration (Noisy)')
plt.plot(time, comp_angle, 'b-', label='Complementary Filter')
plt.title("Complementary Filter on Simulated IMU Data (Pitch)")
plt.xlabel("Time (s)")
plt.ylabel("Pitch Angle (degrees)")
plt.legend()
plt.grid(True)
plt.show()
```


Techniques for Sensor Fusion

Sensor fusion adalah teknik menggabungkan data dari beberapa sensor untuk mendapatkan informasi yang lebih akurat dan andal.

1. Weighted Averaging:

- Kombinasi linear dari beberapa sumber data dengan bobot tertentu.
- Contoh: Menggabungkan suhu dari beberapa sensor untuk meningkatkan akurasi.

Konsep Sensor Fusion dengan Weighted Average

- Jika kita memiliki dua sensor yang mengukur variabel yang sama (misalnya, suhu atau sudut), kita dapat menggabungkan keduanya menggunakan rata-rata berbobot:
- $x_{\text{fused}} = w_1 x_1 + w_2 x_2$
- $w_1 + w_2 = 1$
- x_1 dan x_2 adalah nilai dari masing-masing sensor.
- w_1 dan w_2 adalah bobot berdasarkan tingkat kepercayaan sensor.

Contoh Kasus Weighted Average: Sensor Fusion untuk Suhu

Misalkan kita memiliki:

- Sensor A (akurasi lebih tinggi, noise lebih kecil)
- Sensor B (akurasi lebih rendah, lebih banyak noise)


```
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(42)
time = np.linspace(0, 10, 500) # 10 detik, 500 sampel
true_temperature = 25 + 2 * np.sin(2 * np.pi * 0.1 * time) # Suhu sebenarnya berubah perlahan
# 2. Sensor A (akurasi tinggi, noise rendah)
sensor_A = true_temperature + np.random.normal(0, 0.5, size=len(time)) # noise \pm 0.5°C
sensor_B = true_temperature + np.random.normal(0, 2, size=len(time)) # noise ±2°C
w_A = 0.8 # Sensor A lebih akurat
w_B = 0.2 # Sensor B kurang akurat
# 5. Sensor Fusion menggunakan weighted average
fused_temperature = w_A * sensor_A + w_B * sensor_B
plt.figure(figsize=(10, 6))
plt.plot(time, true_temperature, 'k-', label='True Temperature', linewidth=2)
plt.plot(time, sensor_A, 'g.', alpha=0.5, label='Sensor A (Low Noise)')
plt.plot(time, sensor_B, 'r.', alpha=0.5, label='Sensor B (High Noise)')
plt.plot(time, fused_temperature, 'b-', label='Fused Temperature (Weighted Average)')
plt.title("Sensor Fusion using Weighted Average")
plt.xlabel("Time (s)")
plt.ylabel("Temperature (°C)")
plt.legend()
plt.grid(True)
plt.show()
```


2. Bayesian Filtering:

- Digunakan untuk estimasi probabilistik, termasuk Kalman Filter dan Particle Filter.
- Cocok untuk lokalisasi dan tracking objek.

3. Deep Learning-Based Fusion:

- CNN atau LSTM dapat digunakan untuk menyatukan data sensor dalam analisis kompleks.
- Contoh: Multi-modal sensor fusion pada self-driving cars.

Use Cases: Posture Tracking & Wearable Devices

a. Posture Tracking

• **Sensor yang digunakan**: IMU (accelerometer + gyroscope), kamera depth seperti Kinect atau LiDAR.

Metode:

- Menggunakan complementary filter untuk menyaring data IMU.
- Kalman Filter untuk estimasi postur secara real-time.
- Deep learning (LSTM) untuk analisis pola gerakan tubuh.
- Aplikasi: Pemantauan postur kerja, fisioterapi, game berbasis gerakan.

b. Wearable Devices

- Sensor yang digunakan: ECG, PPG, IMU, SpO2, suhu tubuh.
- Metode:
 - Sensor fusion untuk mendapatkan detak jantung yang lebih akurat dari PPG & ECG.
 - Noise filtering pada data biosignal dengan Kalman filter.
- Aplikasi: Smartwatch, pelacakan kebugaran, deteksi dini penyakit.