# Базы данных

Гаврилова Юлия Михайловна

2019

# Оглавление

| 1        | Вве | едение                                                                                                    |                                         |  |  |  |  |  |  |
|----------|-----|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|--|
|          | 1.1 | Реляп                                                                                                     | ионная модель                           |  |  |  |  |  |  |
|          |     | 1.1.1                                                                                                     | Структурная часть                       |  |  |  |  |  |  |
|          |     | 1.1.2                                                                                                     | Целостная часть                         |  |  |  |  |  |  |
|          |     | 1.1.3                                                                                                     | Манипуляционная часть                   |  |  |  |  |  |  |
|          | 1.2 | Реляп                                                                                                     | ионная алгебра                          |  |  |  |  |  |  |
|          |     | 1.2.1                                                                                                     | GROUP                                   |  |  |  |  |  |  |
|          |     | 1.2.2                                                                                                     | Summarize                               |  |  |  |  |  |  |
|          |     | 1.2.3                                                                                                     | UNGROUP                                 |  |  |  |  |  |  |
|          | 1.3 | Реляп                                                                                                     | ионное сравнение                        |  |  |  |  |  |  |
|          |     | 1.3.1                                                                                                     | Агрегатные сравнения                    |  |  |  |  |  |  |
|          | 1.4 | Исчис                                                                                                     | ление доменов                           |  |  |  |  |  |  |
|          |     |                                                                                                           |                                         |  |  |  |  |  |  |
| <b>2</b> |     | Теория проектирования реляционных баз данных         1           2.1 Функциональная зависимость         1 |                                         |  |  |  |  |  |  |
|          | 2.1 | Функ                                                                                                      | циональная зависимость                  |  |  |  |  |  |  |
|          |     |                                                                                                           | Правила для функциональных зависимостей |  |  |  |  |  |  |
|          | 2.2 | Норма                                                                                                     | лизация                                 |  |  |  |  |  |  |
|          |     | 2.2.1                                                                                                     |                                         |  |  |  |  |  |  |
|          |     | 2.2.2                                                                                                     | Первая нормальная форма                 |  |  |  |  |  |  |
|          |     | Z.Z.Z                                                                                                     | Первая нормальная форма                 |  |  |  |  |  |  |
|          |     | 2.2.2 $2.2.3$                                                                                             | Вторая нормальная форма                 |  |  |  |  |  |  |
|          |     |                                                                                                           | Вторая нормальная форма                 |  |  |  |  |  |  |
|          |     | 2.2.3                                                                                                     | Вторая нормальная форма                 |  |  |  |  |  |  |
|          |     | 2.2.3<br>2.2.4                                                                                            | Вторая нормальная форма                 |  |  |  |  |  |  |
|          | 2.3 | 2.2.3<br>2.2.4<br>2.2.5<br>2.2.6                                                                          | Вторая нормальная форма                 |  |  |  |  |  |  |

# Глава 1

# Введение

| Способы организации              |                                            |  |  |
|----------------------------------|--------------------------------------------|--|--|
| OLAP (online analytic processor) | <b>OLTP</b> (jnline transaction processor) |  |  |
| Время отклика                    | Быстрая вставка                            |  |  |
| 3NF                              | 1NF                                        |  |  |
| Нормальная форма                 | Для сбора статистики                       |  |  |



# 1.1 Реляционная модель

- 1. Стректурная часть: как построена модель
- 2. Целостная часть: какие ограничения, как должны быть организованы данные
- 3. Манипуляционная: обработка данных

#### 1.1.1 Структурная часть

- Тип int, char
- домен надстройка над типом, набор ограничений/правил (положительные четные для int), можно объявить над типом или над доменом
- атрибут упорядоченная пара (<имя, тип или домен>)
- заголовок (схема) отношения множество всех пар атрибутов {<имя атрибута $_1$ , значение $_1$ >,..., <имя атрибута $_N$ , значение $_N$ >}

$$\{ \langle a_1, \text{ int} \rangle, \langle a_2, \text{ float} \rangle, \langle a_3, \text{ char} \rangle, \langle a_4, \text{ varchar} \rangle \}$$

• кортеж над схемой

$$\{ \langle a_1, 1 \rangle, \langle a_2, 1.4 \rangle, \langle a_3, a' \rangle, \langle a_4, aaa' \rangle \}$$

• отношение

| $a_1$ | $a_2$ | $a_3$ | $a_4$ |
|-------|-------|-------|-------|
| 1     | 1.4   | 'a'   | 'aaa' |

#### ER-модель

• отношение/сущность



Здесь студент сущность сильная. Если студент зависит, то студент - слабая сущность

- связь 1 1 (Студент → зачетка)
- связь 1 ко многим (Студенты → группа)
- многие ко многим (Студенты курс)

#### Лабораторная работа 1 -

- Подобрать предметную область на весь семестр
- ER модель (не менее 3ч самостоятельных сущностей)
- Создать свою БД (не менее 1000 записей на таблицу)

#### Защита:

- Добавить связь/атрибут
- Создать ссылку

#### 1.1.2 Целостная часть

- целостность сущностей/отношений
- целостность ссылок

| id | ФИО    | Age |
|----|--------|-----|
| 1  | Иванов | 10  |
| 2  | Петров | 15  |
| 3  | Иванов | 45  |

Потенциальный ключ:

- однозначная идентификация записи
- никаких подмножеств не должно быть под ключом

| id        | ΦИ  | Ю   | id гру  | ппы |
|-----------|-----|-----|---------|-----|
| 1         | Пет | ров | 1       |     |
|           |     |     |         |     |
| ↓ Внешня: |     |     | я ссылк | a   |
|           | id  | Has | ввание  |     |
|           | 1   | И   | У7-53   |     |
|           |     |     |         |     |

Ссылочная целостность - нельзя ссылаться на несуществующий объект

#### 1.1.3 Манипуляционная часть

- Реляционная алгебра
- Реляционные исчисления

# 1.2 Реляционная алгебра

| id   | name      |  |
|------|-----------|--|
| 1    | a         |  |
| 2    | b         |  |
|      |           |  |
| id   | name      |  |
| id 2 | name<br>b |  |

1. Традиционные - работа с множеством

• Объединение (UNION)

|   | id | name |
|---|----|------|
|   | 1  | a    |
|   | 2  | b    |
| Ì | 3  | c    |

• Пересечение (INTERSECT)

| id | name |
|----|------|
| 2  | b    |

• Вычитание (MINUS)

| id | name |  |
|----|------|--|
| 1  | a    |  |
| id | name |  |
| 3  | c    |  |

• Декартово произведение (ТІМЕЅ) - все возможные комбинации атрибутов

#### 2. Специальные

• Соединение (JOIN)

| id | name1 | name2 |
|----|-------|-------|
| 2  | b     | b     |

- Ограничение (WHERE)
- Проекция (PROJECT)
- Деление (DIVIDE BY)

Реляционное выражение = унарное выражение (бинарное выражение)

#### Унарные выражения

• Проекция

терм | терм[список атрибутов]

• Ограничение

терм WHERE логическое выражение

• Переименование

терм RENAME old\_name TO new\_name

терм - имя\_отношения | (реляционное\_выражение)

#### Бинарные выражения

- Объединение
- Пересечение
- Вычитание
- Декартово произведение

#### • Соединение

бинарные операции = проекция бинарная\_операция реляцонное\_выажение S JOIN P[P..,S..]

Поставщик S

↓ Многие ко многим SP

Детали Р

S(Sno:integer, Sname:string, Status:integer, City:string)

P(Pno:integer, Pname:string, Color:string, Weight:real, City:string)

SP(Sno:integer, Pno:integer, Quantity:integer)

 $\mathbf{S}$ 

| Sno | Sname  | Status | City     |
|-----|--------|--------|----------|
| 1   | Алмаз  | 20     | Смоленск |
| 2   | Дельта | 10     | Владимир |
| 3   | Орион  | 30     | Смоленск |

 $\mathbf{P}$ 

| Pno | Pname | Color | Weight | City     |
|-----|-------|-------|--------|----------|
| 1   | Гайка | K     | 12.0   | Смоленск |
| 2   | Болт  | C     | 17.1   | Рязань   |
| 3   | Винт  | 3     | 15.47  | Владимир |
| 4   | Винт  | K     | 18     | Москва   |
| 5   | Шайба | 3     | 25     | Смоленск |

 $SP_{-}$ 

|   | Sno | Pno | Quantity |
|---|-----|-----|----------|
| ĺ | 1   | 1   | 25       |
|   | 1   | 2   | 14       |
|   | 2   | 4   | 2        |

1. Имена всех поставщиков детали под номером 2

$$((\underbrace{\mathrm{SP\ join\ S})}_{\mathrm{peл.\ Bыр.}})$$
 where  $\underbrace{\mathrm{Pno}=2}_{\mathrm{лог.\ Bыр.}})$  [Sname]

select Sname

from SP inner join S on SP.Sno = S.Sno

where SP.Pno = 2

2. Вывести все имена поставщиков, которые поставляюк как минимум одну красную деталь

3. Получить имена поставщиков, которые поставляют все детали

$$A(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$$

$$B(Y_1,\ldots,Y_n)$$

A divide by 
$$B = (X_1, \dots, X_n)$$

| Sno | Pno |
|-----|-----|
| 1   | 1   |
| 1   | 2   |
| 1   | 3   |
| 2   | 2   |
| 2   | 3   |
| 3   | 1   |
|     |     |

P[Pno]

SP divide by P[Pno]

((SP divide by P[Pno]) join S)[Sname]

4. Все поставщики, которые поставляют только красные детали

 $(Sp ext{divide by } (P ext{ where Color} = 'K')[Pno])[Sname]$ 

5. Переименовать города из первой таблицы во вторые

(S rename Sno to firstName)[firstName, City] join

(S rename Sno to secondName)[secondName, City]) where secondName > firstName join S

| firstName | С |
|-----------|---|
| 1         | С |
| 2         | В |
| 3         | С |

| secondName | С |
|------------|---|
| 1          | С |
| 2          | В |
| 3          | С |

| firstName | secondName | С            |
|-----------|------------|--------------|
| 1         | 1          | С            |
| 1         | 3          | $\mathbf{C}$ |
| 2         | 2          | В            |
| 3         | 1          | $\mathbf{C}$ |
| 3         | 3          | $\mathbf{C}$ |

6. Поставщики, которые не поставляют деталь номер 2

((S[Sno] minus (SP where Pno = 2)[Sno]) join S)[Sname]

#### 1.2.1 GROUP

SP group (Pno, Qty) as PQ - группирует

| Sno | Pno | Qty |
|-----|-----|-----|
| 1   | 1   | 10  |
| 1   | 2   | 15  |
| 2   | 1   | 5   |
| T   |     |     |

| Sno | PQ        |
|-----|-----------|
| 1   | 1-10 2-15 |
| 2   | 1-5       |

#### 1.2.2 Summarize

summarize SP per SP {Pno} add sum(Qty) as sQty

| Pno | sQty |
|-----|------|
| 1   | 15   |
| 1   | 16   |

extend S add 'Поставщик' as Sname2 extend SP add Qty\*100 as Qty2

#### 1.2.3 UNGROUP

# 1.3 Реляционное сравнение

S(Sno) = SP(Sno)

is\_epmty(реляционное выражение)

t in R  $\Leftrightarrow$  RELATION $\{t\} \le R$ 

t - Кортеж

R - отношение



```
объявление = range of переменная із список
область = отношение | реляционное выражение
реляционное выражение = (список целевых элементов) [where(wff)]
целевой элемент = переменная | переменная атрибут [as имя]
wff = условие | not условие | условие and (or) wff | if условие then(wff)
```

#### Примеры

range of SX is S

range of SPX is SP

range of SY is (SX) where SX.City = 'Смоленск', (SX) where exists SPX(SPX.Sno=SX.Sno and SPX.Pno=1)

Задачи как в реляционной алгебре

- 1. range of SX is S (SPX.Sno) where SPX.Pno = 2 (SX.Sname) where exists SPX(SPX.Sno = SX.Sno and SPX.Pno = 2)
- 2. range of SX os P (SX.Sname) where exists SPX(SPX.Sno = SX.Sno and exists PX(SPX.Pno = PS.Pno and PX.Color = 'K'))

(SX.Sname) where exists  $SPX(where exists PX(SPX.Sno = SX.Sno and SPX.Pno = SX.Pno and <math>PX.Color = '\kappa'))$ 

range of PX is (Pno) where P.Color = 'K'

- 3. (SX.Sname) where forall PX(exists SPX(SPX.Pno = SX.Pno and SPX.Sno = SX.Sno))
- 4.  $\langle S_1, S_2 \rangle$

range of SY is S (SX.Sname as FirstName, SY.Sname as SecondName) SX.City = SY.City and SX.Sno > SY.Sno

5. (SX.Sname) where not exists SPX(SPX.Sno = SX.Sno and SPX.Pno = 2)

#### 1.3.1 Агрегатные сравнения

```
(sum(SPX.Qty) as Total) агрегатная функция((атрибуты) where f[атрибуты])
```

## 1.4 Исчисление доменов

R(pair, pair...) - условие принадлежности в общем виде

R - имя отношения, pair = A:v, где A - атрибут отношения R, v - или переменная домена, или литерал

SP(Sno:1, Pno:1) - истина если есть кортеж с Sno=1 и Pno=1 SP(Sno:SX, Pno:PX) - только если в отношении SP есть кортеж

- 1. (SX) множество всех номеров поставщиков
- 2. (SX) where S(Sno : SX) множество всех номеров поставщиков в отношении S
- 3. (SX) where S(Sno : SX, City : 'Смоленск') подмножество номеров поставщиков из города Смоленска 7

- 4. (SX,CityX) where S(Sno : SX, City : CityX) and SP(Sno : SX, Pno : 2) запрос на получение номера поставщиков поставляющих деталь под номером 2
- 5. (SX, PX) where S(Sno:Sx, City:CityX) and P(Pno:PX, City:CityY) and CityX <> CityY получение пар номер поставщика и детали где поставщики и детали находятся не в одном городе
- 1. Получить номера поставщиков из Смоленска у которых статус больше 20 SX where exists StatusX (StatusX > 20 and S(Sno : SX, Status : StatusX, City : 'Смоленск'))
- 2. Получить все пары поставщиков, что два поставщика размещаются в одном городе (SX as FirstSno, SY as SecondSnno) where exists CityZ(S(Sno:SX, City:CityZ) and S(Sno:SY, City:CityZ) and SX < SY)
- 3. Получить имена поставщиков которые поставляют как минимум одну красную деталь NameX where exists SX exists PX (S(Sno : SY, Sname : NameX) and SP(Sno : SX, Pno : PX) and P(Pno : PX, Color = 'Красный'))
- 4. Получить имена поставщиков которые поставляют хотя бы одну деталь поставляемую поставщиком под номером 2

NameX where exists SX exists PX (S(Sno : SX, Sname : NameX) and SP(Sno : SX, Pno : PX) and SP(Sno : 2, Pno : PX))

- 5. Получить имена поставщиков которые поставляют все типы деталей NameX where exists  $SX(S(Sno:SXm\ Sname:NameX)$  and forall  $PX(if\ P(Pno:PX))$  then (Sno:SX, Pno:PX)))
- 6. Получить имена поставщиков которые не поставляют деталь с номером 2 NameX where exists SX(S(Sno: SX, Sname: NameX) and not SP(Sno: SX, Pno: 2))
- 7. Получить номера поставщиков которые поставляют как минимум все типы деталей поставляемыми поставщиком с номером 2

SX where for all PX(if SP(Sno: 2, Pno: PX) then SP(Sno: SX, Pno: PX))

8. Получить номера деталей которые не весят больше 16 фунтов или поставляются с поставщиком под номером 2, или и то и другое

PX where exists WeightX(P(Pno: PX, WeightX) and WeightX > 16) or SP(Sno: 2, Pno: PX))

#### Поставщики (S)

| Sno | Sname  | Status | City        |
|-----|--------|--------|-------------|
| 1   | Алмаз  | 20     | Смоленск    |
| 2   | Циклон | 10     | Владивосток |
| - i |        |        |             |

#### Детали (Р)

| Pno | Pname | Color   | Weight | City     |
|-----|-------|---------|--------|----------|
| 1   | Гайка | Красный | 12     | Смоленск |
| 2   | Болт  | Зеленый | 17     | Владимир |
| :   |       |         |        |          |

#### Проекты (J)

| Jno | Jname  | City     |
|-----|--------|----------|
| 1   | Ангара | Владимир |
| 2   | Алтай  | Рязань   |
| :   |        |          |

#### Поставки (SPJ)

| $\operatorname{Sno}$ | Pno | $_{ m Jno}$ | Qty |
|----------------------|-----|-------------|-----|
| 1                    | 1   | 1           | 200 |
| 1                    | 1   | 4           | 700 |
| :                    |     |             |     |

1. (SX,Name, SX.City) where exists JX for all PX exists PSJX (JX.City = 'Ярославль' and JX.Jno = SPJX.Jno and PX.Pno = SPJX.Pno and SX.Sno = SPJX and SPJX.Qty >= 50)

SX : все кортежи отношения S (5 шт)

РХ: все кортежи отношения Р (6 шт)

JX : все кортежи отношения J, в которых City = 'Ярославль' (2шт)

SPJX: все кортежи отношения SPJ, d которых  $Qty >= 50 \ (24 \ mt)$ 

- 2. JX.JN = SPJX.Jno and PX.Pno = SPJX.Ono and SX.Xno = SPJX.Sno
- 3. exists RX, forall RX
- 4. exists JX forall PX exists SPJX
- 1. exists SPJX исключая SPJ (SPJ.Sno, SPJ.Pno, SPJ.Jno и SPJ.Qty)

| Sn | Ю | Sname | City | Pno | Pname | Color | weight | City | Jno | Jname | City |
|----|---|-------|------|-----|-------|-------|--------|------|-----|-------|------|
|    |   |       |      |     |       |       |        |      |     |       |      |

2. forall РХ Делим на Р

| Sno | Sname | Status | City | Jno | Jname | City |
|-----|-------|--------|------|-----|-------|------|
|     |       |        |      |     |       |      |

3. exists JX исключаем J(J.Jno, J.Jname, J.City)

| Sno | Sname | Status | City |
|-----|-------|--------|------|
|     |       |        |      |

5. SX.Sname, SX.City

# Глава 2

# Теория проектирования реляционных баз данных

Есть две проблемы: как повсить эффективность и как представить реальные объекты. Классический подход это выделение решений и их реализация. Нормальные формы. каждая НФ

- набор ограничений. Каждая следующая НФ лучше предыдущей.

Следующие нормальные формы:

- 1. 1 NF
- 2. 2 NF
- 3. 3 NF
- 4. 4 NF
- 5. PSNF форма проекций соединения

#### Свойства НФ

- 1. Каждая следующая НФ лучше предыдущей
- 2. При переходе к следующей НФ, свойства предыдущей сохраняются

#### $\mathbf{PK}$

- 1. ЕК модель
- 2. Рел. алг., MK, SQL
- 3. Функц. зависимости

Доп задача на 3 балла Есть столбец с id с числами. Нужно вычислить произведение SQL

# 2.1 Функциональная зависимость

| $x \to y$ |       |       |
|-----------|-------|-------|
| Pno       | Pname | Color |
|           |       |       |
| Pno →     | Pname |       |
| Pno →     | Color |       |

#### 2.1.1 Правила для функциональных зависимостей

- 1.  $(B \subset A) \Rightarrow A \rightarrow B$
- 2.  $A \rightarrow B \Rightarrow AC \rightarrow BC$
- 3.  $A \to B$  и  $B \to C \Rightarrow A \to C$

4.  $A \rightarrow A$ 

5. 
$$A \to BC \Rightarrow A \to B$$
 и  $A \to C$ 

6. 
$$A \rightarrow B$$
 и  $A \rightarrow C \Rightarrow A \rightarrow BC$ 

7. 
$$A \rightarrow B$$
 и  $C \rightarrow B \Rightarrow AC \rightarrow BD$ 

8. 
$$A \to B \times C \to D \Rightarrow A(C - B) \to BD$$

R – переменная отношения

R(A,B,C,D,E,F)

 $\mathbf{S} = \{A \to BC, B \to E, CD \to EF\}$  – набор функциональных зависимостей  $AD \to F?$ 

 $\{AD\}^{+}$  – замыкание атрибутов

|                     | $\mathrm{Jold} = \mathrm{Jnew} = \{A, D\}$ | $\text{Jold=Jnew} = \{A, B, C, D, E, F\}$ |
|---------------------|--------------------------------------------|-------------------------------------------|
| $A \to BC$          | A, B, C, D                                 | //                                        |
| $B \to E$           | A, B, C, D, E                              | //                                        |
| $CD \rightarrow EF$ | A, B, C, D, E, F = Jnew                    | //                                        |

1. 
$$A \rightarrow BC \Rightarrow A \rightarrow B \bowtie A \rightarrow C$$

2. 
$$AD \rightarrow CD$$

3. 
$$AD \rightarrow CD$$
 и  $CD \rightarrow EF \Rightarrow AD \rightarrow EF$ 

4. 
$$AD \rightarrow EF \Rightarrow AD \rightarrow E$$
 и  $AD \rightarrow F$ 

$$F = \begin{cases} A \to C, \\ AC \to D, \\ E \to AD, \\ E \to H \end{cases}$$
$$G = \begin{cases} A \to CD, \\ E \to AH \end{cases}$$

F?G

Детерминант 
$$F$$
 По  $F$ 
1.  $\{A\}^+$  =  $\{A, C, D\}$  =  $A \rightarrow CD$  (из  $G$ )
$$\{AC\}^{-1} = \{A, C, D\} = A \rightarrow CD$$

$$\{E\}^+ = \{E, A, D, H, C\} = E \rightarrow AH$$
 (из  $G$ )
2.  $\{A\}^+ = \{A, C, D\} = AC \rightarrow D$ 

$$\{E\}^+ = \{A, C, D, E, H\} = E \rightarrow AD$$
 и  $E \rightarrow H$ 

$$F = G$$

Поиск минимального покрытия R(A, B, C, D)

$$S = \begin{cases} A \to BC, \\ B \to C, \\ A \to B, \\ AB \to C, \\ AC \to D \end{cases}$$

- Справа 1 элемент
- Нет транзитивных, тривиальных, выводимых зависимостей
- Слева все детерминанты приведены к минимальному виду

$$A o B$$
  $A o C$  транзитивность  $B o C$   $A o B$  дубль  $AB o C$  выводима  $AC o D$ 

$$A \to B, B \to C, A \to D$$

# 2.2 Нормализация

- Избавление от аномалий
  - обновление
  - удаление
  - вставка
- Минимизировать объем данных

## 2.2.1 Первая нормальная форма

• Атрибуты атамарны

| ФИО    | Город  | Телефон |
|--------|--------|---------|
| Иванов | Москва | 8-916   |
|        |        | 8-925   |

| ФИО    | Город  | Телефон |
|--------|--------|---------|
| Иванов | Москва | 8-916   |
| Иванов | Москва | 8-925   |



| ФИО    | Город  |
|--------|--------|
| Иванов | Москва |
|        |        |

| 1d | Номер |
|----|-------|
| 1  | 8-916 |
| 1  | 8-925 |

## 2.2.2 Вторая нормальная форма

- 1NF
- Каждый неключевой атрибут зависит от ключа

| Код поставки | Город           | Страна города | Код товара | Кол-во |
|--------------|-----------------|---------------|------------|--------|
| 1            | M               | 20            | 1          | 300    |
| 1            | M               | 20            | 2          | 400    |
| 1            | M               | 20            | 3          | 100    |
| 2            | R               | 10            | 4          | 200    |
| 3            | $^{\mathrm{C}}$ | 30            | 5          | 300    |
| 3            | С               | 30            | 6          | 400    |
| 4            | П               | 15            | 7          | 100    |

$$\{\text{K}\Pi,\,\text{K}T\} \rightarrow \{\text{Кол-во}\}$$

 $K\Pi \rightarrow \Gamma$ ород

 $\mathrm{K}\Pi$   $\rightarrow$  Статус

Город → Статус

| ΚП                                        | KT | Кол-во |
|-------------------------------------------|----|--------|
| 1                                         |    |        |
| 1                                         |    |        |
| 2                                         |    |        |
| $\begin{bmatrix} 2\\ 3\\ 3 \end{bmatrix}$ |    |        |
| 3                                         |    |        |
| 4                                         |    |        |

#### 2.2.3 Третья нормальная форма

- 2HΦ
- Не должно быть транзитивных зависимостей

| Сотрудник | Отдел       | Номер телефона |
|-----------|-------------|----------------|
| Иванов    | ИТ          | 900            |
| Петров    | ИТ          | 900            |
| Сидоров   | Бехгалтерия | 901            |

$${ {Сотрудник}} \rightarrow { {Отдел}}$$
  
 ${ {Сотрудник}} \rightarrow { {Телефон}}$   
 ${ {Отдел}} \rightarrow { {Телефон}}$ 

## 2.2.4 НФ Бойса-Кодда

Каждая функциональная зависимость имеет в качестве своего детерминанта некий потенциальный ключ.

| № Корта | Начало | Конец | Тариф |
|---------|--------|-------|-------|
| 1       | 9:00   | 10:30 | +     |
| 1       | 10:00  | 11:30 | +     |
| 1       | 11:00  | 12:30 | -     |
| 2       | 10:00  | 11:30 | +     |
| 2       | 11:00  | 12:30 | +     |
| 2       | 15:00  | 16:30 | -     |

Потенциальные ключи:

- {№, начало}
- {№, конец}
- {Тариф, начало}
- {Тариф, конец}
- $\Rightarrow \{N_{\underline{0}},\} \rightarrow \{\text{тариф}\}$

| № I | Корта | Ha  | ало | Ko | нец |
|-----|-------|-----|-----|----|-----|
|     |       |     |     |    |     |
|     | № Ko  | рта | Tap | иф |     |
|     |       |     |     |    |     |

#### 2.2.5 Четвертая нормальная форма

Отношение находится в четвертой нормальной форме тогда и только тогда, когда все нетривиальные многозадачные зависимости представляют собой функциональные зависимости от ее ключей.

| Kypc | Книга | Лектор  |
|------|-------|---------|
| Инф  | K1    | Иванов  |
| Инф  | K2    | Петров  |
| Инф  | K3    | Сидоров |

#### 2.2.6 Пятая нормальная форма

Отношение находится в  $5~{\rm H\Phi}$  (проекционно-соед.) тогда и только тогда, когда каждая нетривиальная зависимость определяется потенциальным ключом этой зависимости.

# 2.3 Методы физического хранения данных на диске

Данные можно хранить построчно, тогда важна именно строка

## 2.3.1 MPP (GreenPlum)