Machine Learning (CS31002) Lesson Plan

Course: CS31002 (Machine Learning)

Credits: 4

Session: December-2024 to May-2025

Faculty: Rajdeep Chatterjee, Ph.D. (rajdeepfcs@kiit.ac.in)

Course Objective

- 1. To provide a broad survey of different machine-learning approaches and techniques
- 2.To understand the principles and concepts of machine learning
- 3. To learn regression and classification models
- 4. To learn different clustering models
- 5. To understand artificial neural networks (ANN) and Convolutional neural networks (CNN) concepts
- 6.To develop programming skills that help to build realworld applications based on machine learning

Course Outcomes

Upon completion of the course, the students will be able to:

CO1: Solve typical machine learning problems

CO2: Compare and contrast different data representations to facilitate learning

CO3: Apply the concept of regression methods, classification methods, and clustering methods.

CO4: Suggest supervised /unsupervised machine learning approaches for any application

CO5: Implement algorithms using machine learning tools

CO6: Design and implement various machine learning algorithms in a range of real-world applications.

Total Lectures ≈ 48
Before Mid-Sem ≈ 24
After Mid-Sem ≈ 24

Module 1

Lecture	Topics
1	Introduction to Machine Learning, definition, and real-world applications.
2	Types of machine learning - Supervised, Unsupervised, Semi supervised learning, Definitions and examples.
3	Regression - Linear Regression, Intuition, Cost Function
4	Linear Regression - Gradient Descent
5	Multiple Linear regression
6	Closed-form Equation, Type of Gradient Descent (Batch, Stochastic, Mini-batch) - Definition, properties.
7	Normalization and Standardization (definition and why), Overfitting and Underfitting
8	Bias, Variance, Bias and Variance tradeoff
9	Regularization - Lasso Regularization, Ridge Regularization
10	ACTIVITY-1

Module 2

Lecture	Topics
11	Classification, Logistic Regression - 1 (binary)
12	Logistic Regression - 2 (binary)

13	Nearest neighbor and K Nearest Neighbour	
14	Error Analysis - Train/Test Split, validation set, Accuracy, Precision, Recall, F-measure, ROC curve, Confusion Matrix	
15	Naive Bayes Classifier - 1	
16	Naive Bayes Classifier - 2	
17	Decision Tree: Introduction, Id3 Algorithm - 1	
18	Decision Tree - Id3 Algorithm - 2	
19	Decision Tree - Problem of Overfitting, Pre- pruning/post-pruning Decision Tree, Examples.	
20	Support Vector Machine - Terminologies, Intuition, Learning, Derivation - 1	
21	Support Vector Machine - Terminologies, Intuition, Learning, Derivation - 2	
22	Support Vector Machine - KKT Condition - 3	
23	Support Vector Machine - Kernel, Nonlinear Classification, and multi-class (Basic concept) - 4	
24	ACTIVITY-2	

Mid Semester

25	Principal Component Analysis - Steps, merits, demerits, Intuition - 1
26	Principal Component Analysis - Steps, merits, demerits, Intuition - 2
27	Understanding and Implementing PCA using SVD for dimensionality reduction

Module 3

Lecture	Topics	
28	Clustering: Introduction, K-means Clustering - 1	
29	K-Median Clustering - 2	
30	K-Means Clustering - 3 (Numerical)	
31	DBSCAN Clustering - Why we use?, parameters, characterization of points, steps, determining parameters, time/space complexities	
32	Mean Shift Clustering	
33	Hierarchical Clustering - Agglomerative Clustering, Single/Complete/Average/Centroid Linkage	
34	Hierarchical Clustering - Divisive hierarchical clustering	
35	ACTIVITY-3	

Module 4

Lecture	Topics	
36	Introduction Neural networks, McCulloch-Pitts Neuron	
37	Least Mean Square (LMS) Algorithm	
38	Perceptron Model	
39	Multilayer Perceptron (MLP) and Hidden layer representation	
40	Non-linear problem solving, Activation Functions	
41	Backpropagation Algorithm - 1	
42	Backpropagation Algorithm - 2	
43	Exploding Gradient Problem and Vanishing Gradient Problem, why and how to avoid	
44	Introduction to Convolutional Neural Network (CNN)	
45	Basic idea about their working and structure	

46	Data Augmentation, Batch Normalization, Dropout	
47	ACTIVITY-4	

Module 5

Lecture	Topics	
48	Introduce machine learning tools like Scikit Learn, PyTorch, TensorFlow, Kaggle competitions, etc.	
	Case Study (Any Two)	
Case Study - 1: Classification using Iris Dataset Case Study - 2: Feature Extraction using PCA for Wine Dataset		
Case Study - 3: Implement linear regression to predict house prices based on features like size, location, and number of rooms.		
	dy - 4: Clustering using Iris Dataset dy - 5: Classification of MNIST Dataset using CNN	

Activities

Task	Marks	
Before Mid-semester		
Quiz	5	
Assignment / Coding Assignment	10	
After Mid-semester		
Quiz	5	
Assignment / Coding Assignment	10	

Textbooks:

- 1. Madan Gopal, "Applied Machine Learning", TMH Publication
- 2. Kevin P. Murphy, "Probabilistic Machine Learning", MIT Press, 2023.

3. Ethem Alpaydin, "Introduction to Machine Learning", Fourth Edition, MIT Press, 2010.

Reference Books:

- 1. Laurene Fausett, "Fundamentals of Neural Networks, Architectures, Algorithms and Applications", PearsonEducation, 2008.
- 2. C. M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2007.
- 3. Simon Haykin, "Neural Networks and Learning Machines", Pearson 2008