Chapter 1

2024-04-21 — Cyclotomic Polynomials

1.1 Explicit construction

Definition 1.1.1. Call a polynomial $f = \sum_i a_i X^i \in \mathbb{Z}[X]$ irreducible if f = gh for $g, h \in \mathbb{Z}[X]$ implies $g = \pm 1$ or $h \pm 1$.

Proposition 1.1.2. A polynomial $f = \sum_i a_i X^i \in \mathbb{Z}[X]$ is irreducible if and only if any and hence all of its translates $f_z(X) := f(X - z)$ $z \in \mathbb{Z}$ are irreducible.

Proof. If $f_z(X)$ were decomposable non-trivially as $f_z(X) = g(X)h(X)$, then get f(X-z) = g(X)h(X), hence f(X) = g(X+z)h(X+z) decomposes f. \square

Proposition 1.1.3. If $f = \sum_i a_i X^i$ is irreducible, then so is each of the polynomials given by inserting a power of X: $f_n(X) := f(X^n)$ with $n \ge 2$.

Proof. Assume we had a decomposition in $\mathbb{Z}[X]$ of f_n : $\sum_i a_i X^{ni} = f(X^n) = f_n(X) = g(X)h(X)$. Show that g, h each area also of the form $\bar{g}(X^n)$ and $\bar{h}(X^n)$, hence $Z = X^n$ gives a decomposition f(Z) = g(Z)h(Z).

By the decomposition get at each X^k with k not a multiple of n:

$$\sum_{i+j=k,k \mod n \neq 0} g_i h_j = 0$$

and

$$\sum_{i+j=ln} g_i h_j X^l n = a_l.$$

Since $n \geq 2$, get in particular:

$$a_0 = g_0 h_0$$

0 = $g_1 h_0 + g_0 h_1$.

Since f is irreducible by assumption, it is not divible by X in particular, so $a_0 \neq 0$, and hence $g_0, h_0 \neq 0$.

For the cyclotomic polynomials there is always a coefficient which is exactly $1 \in \mathbb{Z}$ and maps to the relevant $1 \in R$ for any commutative unital zero-divisor-free factorial ring over which we consider the cyclotomic polynomial. Hence recall the famous Eisenstein's criterion to look up in your favourite algebra reference, with simplification to \mathbb{Z} and \mathbb{Q} .

Proposition 1.1.4. Let $f = \sum_i a_i X^i \in \mathbb{Z}[X]$ be a polynomial with coefficients in \mathbb{Z} of degree N which is monic, i.e. a polynomial of degree N such that $a_N = 1$. Assume $a_0 = \pm p$ for $p \in \mathbb{N}$ a prime number, and assume in addition $p|a_i$ for each a_i with $i = 1, \ldots, N-1$. Then f is irreducible in $\mathbb{Z}[X]$ and $\mathbb{Q}[X]$.

Proof. Let f = gh in $\mathbb{Q}[X]$. In fact the factors can be chosen as $g, h \in \mathbb{Z}[X]$ with both degrees strictly smaller than f's.

For $p \in \mathbb{Z}$ prime the ideal $(p) \subset \mathbb{Z}$ is a prime ideal, with quotient $\mathbb{Z}/(p) = \mathbb{F}_p$. On coefficients this induces a reduction ring homomorphism:

$$\pi \colon \mathbb{Z}[X] \to \mathbb{Z}/p[X].$$

By the assumptions on f get $\pi(f) = X^N$, but also $\pi(g)\pi(h) = X^N$ because f = gh by the assumption before. Since $\mathbb{F}_p[X]$ is a euclidean domain it is also factorial, so $\pi(g) = a_i X^i$ and $\pi(h) = b_j X^j$ such that i + j = N and $a_i b_j = 1 \in \mathbb{Z}/p$.

Hence we get for the integral g, h: $p|g_0$ and $p|h_0$, hence follows $p^2|a_0$, but we assumed $a_0 = p$ prime, which is a contradiction. So f was in fact irreducible in $\mathbb{Z}[X]$ and $\mathbb{Q}[X]$.