Diskrete Packungsstrukturen als Randbedingung für die Feinstrukturkonstante

Kurzpapier

Marco Gerodetti

2025-09-19

Inhaltsverzeichnis

1	Abs	tract	2
2	Einl	eitung	3
	2.1	Begriffe & Abgrenzungen	3
	2.2	Scope & Roadmap	4
	2.3	Historischer Kontext: frühere numerologische Ansätze	4
3	Geg	enstand	5
	3.1	Geometrische Teilungsdichten	5
	3.2	Herleitung der Frustrationskorrektur Δ_{η}	6
	3.3	Exakter Wert der Feinstrukturkonstante	6
4	Vali	dierung	7
	4.1	Querverifikation (ρ -Modell, blind)	7
	4.2	Vergleich mit Experiment (Modellwert: eq. 7)	7
	4.3	Datenverfügbarkeit / Reproduzierbarkeit & Code (Notebook)	8
	4.4	Integritätsnachweise	8
	4.5	Effektive Lorentzinvarianz (Plausibilitätsgrenzen)	8
	4.6	Robustheitssatz (Diophantische Einzigkeit & Stabilität von $n_0=1+1+n_3)$	9
	4.7	Stochastische Formelraumsuche – Ausblick	9
	4.8	Permutationstest – Ausblick	9
5	Disk	xussion	10
	5.1	Kernbefund und Geltungsbereich	10
	5.2	Struktur der Herleitung: Trennung von Geometrie und Projektion	10
	5.3	Grafik: Pipeline der Herleitung	11
	5.4	Topologie der Frühphase: die Rolle der "11"	12

Inhaltsverzeichnis Rev. 1.0.0

	5.5	Sensitivität und Robustheit	12
	5.6	Axiome (A–D) – Kurzliste	12
	5.7	Falsifizierbarkeit (Kurzfassung; Volltext im Anhang)	12
	5.8	Reproduzierbarkeit	12
	5.9	Ausblick	12
	5.10	Hypothese (abgeleitet aus den Verhältniszahlen)	13
6	Anh	ang	13
	6.1	Anhang A – Notation & Symbole (erweitert)	13
	6.2	B — Orientierungsprojektor: Definition, Herleitung & Eindeutigkeit	14
	6.3	C — Nichtlokaler Minimalzyklus "11" — Beweis & Zertifikate	15
	6.4	D — Ergänzende Validierung aus dem ρ -Modell	16
	6.5	E — Satz "11" — Minimalität & Unabhängigkeit	17
	6.6	F — Orientierungsprojektor als D ₆ -invariantes Zählmass (formal)	19
	6.7	G — EFT-Randbedingung & Thomson-Matching	20
	6.8	H — Background-Field-Herleitung (stärkere Ableitung)	22
	6.9	I — Threats to Validity (Checkliste)	25
	6.10	J – Notebook-Artefakte (Auszug)	25
	6.11	K — Integritätsnachweise	26
		Y — Urheberschaft	26
		Z – Literatur	26

Inhaltsverzeichnis Rev. 1.0.0

1 Abstract

Wir stellen eine phänomenologische, fitfreie Randbedingung im Thomson-Limit für die Feinstrukturkonstante $\alpha(0)$ vor, abgeleitet aus diskreten Packungsstrukturen (Tetra/BCC/FCC) und einem Orientierungsprojektor. Analytisch ergibt sich

$$\alpha_{\text{Theo}}^{-1}(0) = n_0 + \Delta_{\eta}, \qquad \Delta_{\eta} = \left(1 - \frac{1}{3 \cdot 5 \cdot 11}\right) \frac{9\sqrt{3}}{\pi n_0}, \quad n_0 = 1 + 1 + n_3, \quad n_3 = \text{round}(n_8) = 135.$$

Damit erhält man den Zahlenwert

$$\alpha_{\text{Theo}}^{-1}(0) = 137.035999179,$$

konsistent mit CODATA 2022 und dem PDG-World-Average 2024. Ein blinder Dichte-Cross-Check bestimmt n_3 über das ρ -Modell

$$\frac{\rho_P}{\rho_{\text{ref}} \eta_{\text{eff}}} = 12 \cdot 8^{n_8}, \qquad n_3 = \text{round}(n_8),$$

ohne Zugriff auf α .

Motivation. Ausgehend von der Annahme, dass auf Planck-Skalen diskrete Packungsprobleme relevant sein können, verfolgt dieses Papier nicht deren vollständige Lösung, sondern untersucht, ob einfache Packungsstrukturen im Zuge von Symmetriebildung Randbedingungen für fundamentale Konstanten wie die Feinstrukturkonstante nahelegen.

Kerndefinitionen (Kurz)

- $\eta_1 = \frac{1}{2} \frac{1}{2 \cdot 3 \cdot 5 \cdot 11}$, $\eta_2 = \frac{\pi \sqrt{3}}{8}$, $\eta_{FCC} = \frac{\pi}{3\sqrt{2}}$.
- **Projektor**: Faktor 2^k mit k = 3 (drei Achsenklassen × zwei Orientierungen).
- Frustrationskorrektur: $\Delta_{\eta} = \left(1 \frac{1}{165}\right) \frac{9\sqrt{3}}{\pi n_0}$.
- ρ -Pfad (blind): $\frac{\rho_P}{\rho_{\text{ref}}\eta_{\text{eff}}} = 12 \cdot 8^{n_8}, n_3 = \text{round}(n_8), n_0 = 1 + 1 + n_3.$
- Effektive Dichte: $\eta_{\text{eff}} = \frac{1}{2} \eta_{\text{FCC}}^{4/3} + \frac{1}{2} \eta_{\text{FCC}}^2$. Details siehe Anhang A

2 Einleitung

Die inverse Feinstrukturkonstante $\alpha^{-1}(0)$ wird hier als Konsequenz einer diskreten Packungsstruktur betrachtet. Ausgangspunkt ist

$$n_0 = n_1 + n_2 + n_3 = 1 + 1 + n_3$$

wobei $n_3 \equiv n_{\text{FCC}} = \text{round}(n_8)$ aus einem dichtebasierten Modell bestimmt wird (Anhang D).

Ziel ist nicht, n_0 aus ersten Prinzipien zu berechnen, sondern die Abweichung als geometrische Frustrationskorrektur Δ_{η} analytisch herzuleiten – ausschliesslich aus wohldefinierten Packungsdichten, ohne Fits.

Physikalisch ergibt sich so eine fitfreie Randbedingung für $\alpha^{-1}(0)$ im Thomson-Limit; die QED-Running bleibt Standard. Wir verwenden diskrete Packungsstrukturen (FCC/BCC) als Modellannahme. Mikroskopisch sind feste diskrete Belegungen nicht rotationsinvariant; makroskopisch ergibt eine isotrope Orientierungsmittelung eine isotrope effektive Antwort (Thomson-Limit; vgl. *Effektive Lorentzinvarianz* und Anhang H).

Alle Grössen sind analytisch, reproduzierbar und falsifizierbar. Präzisere Messungen von $\alpha^{-1}(0)$ können die Hypothese direkt bestätigen oder widerlegen. Integritätsnachweise gegen a-posteriori-Anpassungen siehe Validierung.

Kurzüberblick.

Wäre die frühe Raumteilung perfekt dicht, ergäbe sich $\alpha^{-1}(0) = n_0$. Die ersten beiden Teilungen sind jedoch minimal ineffizient; die Frustration summiert sich zu $\Delta_{\eta} \approx 0.036$, sodass $\alpha^{-1}(0) = n_0 + \Delta_n$ entsteht – fitfrei aus Geometrie und projektiver Zählung.

2.1 Begriffe & Abgrenzungen

- Geltungsbereich (Thomson-Limit): Aussage nur für $Q^2 \to 0$; die QED-Running bleibt Standard.
- Kanäle (nur Randbedingung): *Phasenraum* (E-Feld, tangential, isotrop) und *Magnetfluss* (B-Feld, normalorientiert; magnetische Flussdichte). Gleichgewichtung im Nullimpuls; Begründung und Ableitung siehe Anhang H sowie H.1.
- Projektorfaktor (rein projektiv): 2^k als Orientierungs-Zählmass mit k=3 (D₆-Isotropie; drei ungerichtete Achsenklassen). Dieser Faktor ist **getrennt** von geometrischen Dichten.
- Geometrische Dichten (rein geometrisch): η_1 , $\eta_2 = \pi\sqrt{3}/8$ (BCC), $\eta_{FCC} = \pi/(3\sqrt{2})$ (FCC-Referenz). Die "8" in η_2 ist geometrisch und nicht der Projektorfaktor.

Scope & Roadmap Rev. 1.0.0

• Effektive Dichte: $\eta_{\rm eff} = \frac{1}{2} \, \eta_{\rm FCC}^{4/3} + \frac{1}{2} \, \eta_{\rm FCC}^2$ (Thomson-Matching, isotrope Mode-Mittelung; Herleitung in Anhang H).

- $\rho_{\rm ref}$ (kosmologische Referenzdichte): elektromagnetische Energiedichte (Photonen/CMB) als Anteil der kritischen Dichte; numerische Werte gemäss Planck 2018; Einheiten konsistent mit ρ_P . Zweck: definiert den Referenzmassstab im ρ -Pfad; die absolute Skala kürzt sich im Verhältnis $\rho_P/(\rho_{\rm ref}\eta_{\rm eff})$.
- "12" im ρ-Pfad (Normierung): fester Vorfaktor 12; Definition & Begründung siehe Anhang G.

Leserführung: Projektorfaktor: Anhang B / Anhang F; Rolle der "11": Anhang E.

2.2 Scope & Roadmap

- Fitfreie Randbedingung im Thomson-Limit; "11 *mod* (3,5)" als Arbeitshypothese mit BFS-Evidenz; QED-Running unverändert.
- Fahrplan: (1) n_3 blind aus dem ρ -Pfad, (2) Δ_{η} aus Packungsdichten + 2^k mit k=3, (3) $\alpha^{-1}(0)=n_0+\Delta_{\eta}$, Vergleich mit CODATA/PDG und Zertifikaten.
- Reproduzierbarkeit: Rechengang, Zahlen und Gleichungen im Notebook automatisch generiert; Referenzen CODATA 2022, PDG 2024, Planck 2018 (CODATA Task Group on Fundamental Constants 2022; Particle Data Group 2024; Planck Collaboration 2020).

2.3 Historischer Kontext: frühere numerologische Ansätze

Es gab zahlreiche Versuche, die Feinstrukturkonstante α rein mathematisch zu bestimmen. Arthur Eddington postulierte in den 1920er Jahren eine "kosmische Zahl" und kam zunächst auf 1/136, später auf 1/137.

Armand Wyler (1969/71) leitete eine Formel aus Volumina symmetrischer Räume her; sie traf damals ppm-genau, erwies sich jedoch als formal problematisch und blieb physikalisch unklar.

Der vorliegende Ansatz unterscheidet sich grundlegend: Er verwendet keine a-posteriori-Justage und keine Fits, sondern quantifiziert eine geometrisch definierte Frustrationsstruktur als Korrektur zu $n_0 = 1 + 1 + n_3$ (mit n_3 dichtebasiert).

3 Gegenstand

Eine systematische Analyse der geometrischen Packungsdichten der frühesten Raumteilungen liefert eine exakt berechenbare Korrektur zur idealisierten Zahl

$$n_0 = 1 + 1 + n_3 \tag{1}$$

(bei $n_3 = 135$ also 1 + 1 + 135). Der resultierende Wert ist vollständig aus kleinen natürlichen Zahlen, π , $\sqrt{2}$ und $\sqrt{3}$ aufgebaut.

3.1 Geometrische Teilungsdichten

Drei aufeinanderfolgende Raumteilungen bestimmen die Frustration:

Teilung	Struktur	Dichte η	Exakter Ausdruck
1	teträdrische Teilstruktur	η_1	$\frac{1}{2} - \frac{1}{2 \cdot 3 \cdot 5 \cdot 11}$
2	BCC (körperzentriert kubisch)	η_2	$\frac{\pi\cdot\sqrt{3}}{8}$
3	FCC (flächenzentriert kubisch)	$\eta_{ ext{FCC}}$	$\frac{\pi}{3\cdot\sqrt{2}}$

Referenz zu Standard-Packungsdichten (BCC/FCC/Tetra): (Ashcroft und Mermin 1976; Purdue University 2023).

Hinweis (Faktoren 8 vs. Projektor): Der Nenner $8=2^3$ in der BCC-Dichte $\eta_2=\pi\sqrt{3}/8$ ist rein geometrisch (Packungsgeometrie) und nicht der projektive Faktor. Die projektive Zählung (Orientierungstrennung) wird separat als 2^k mit k=3 geführt. Siehe Definitionskasten.

Hinweis (Status von η_1): Die exakte geometrisch-topologische Ableitung von $\eta_1 = \frac{1}{2} - \frac{1}{2 \cdot 3 \cdot 5 \cdot 11}$ (insbesondere die Identifikation des ersten homologisch unabhängigen Rückkehrzyklus der Länge 11) wird in Anhang E ausgeführt; ergänzende Evidenz im Notebook.

3.1.1 n_0 -Bestimmung (dichtebasiert)

Wir schreiben

$$n_0 = n_1 + n_2 + n_3, \qquad n_1 = n_2 = 1, \qquad n_3 \equiv n_{FCC} := \text{round}(n_8).$$
 (2)

3.2 Herleitung der Frustrationskorrektur Δ_n

Kompakte Form: (mit expliziter Projektion) Wir normieren die Frühphasen-Dichten gegen $\eta_{\text{ref}} = \eta_{\text{FCC}}$; die projektive Zählung erfolgt über den Orientierungsprojektor 2^k (hier k = 3):

$$\Delta_{\eta} = \frac{\left(\frac{\eta_1}{\eta_{FCC}}\right) \left(\frac{\eta_2}{\eta_{FCC}}\right) (2^k)}{n_1 + n_2 + n_{FCC}}, \quad k = 3, \qquad n_0 = n_1 + n_2 + n_{FCC}.$$
 (3)

Entfaltet:

$$\Delta_{\eta} = \left(\frac{\left(\frac{1}{2} - \frac{1}{2 \cdot 3 \cdot 5 \cdot 11}\right)}{\left(\frac{\pi}{3 \cdot \sqrt{2}}\right)} \cdot \frac{\left(\frac{\pi \cdot \sqrt{3}}{8}\right)}{\left(\frac{\pi}{3 \cdot \sqrt{2}}\right)}\right) \cdot 2^{3} \cdot \left(\frac{1}{1 + 1 + n_{3}}\right). \tag{4}$$

Kurzform (Spezialfall k = 3):

$$\Delta_{\eta} = \left(1 - \frac{1}{3 \cdot 5 \cdot 11}\right) \frac{9\sqrt{3}}{\pi \cdot n_0} \tag{5}$$

Notationseindeutigkeit: Δ_{η} ist linear in $1/n_0$ und $1/\pi$; der Faktor 9 resultiert rein aus den Dichteverhältnissen (inkl. 2^3).

3.3 Exakter Wert der Feinstrukturkonstante

Mit $n_0 = 1 + 1 + n_3$ (mit $n_3 = 135$ aus dem ρ -Modell) und k = 3:

$$\Delta_{\eta} = 0.035\,999\,179\,369 \qquad \Rightarrow \qquad \boxed{\alpha_{\text{Theo}}^{-1}(0) = 137.035\,999\,179}$$
(6)

und daraus

$$\alpha_{\text{Theo}}(0) = 0.007\ 297\ 352\ 564\ 205\ 256$$
 (7)

Hinweis (Notebook-Kernzahlen, automatisch generiert):

 α^{-1} (16 signifikante Stellen): 137.0359991793693 ⇒ α: 0.007297352564205256...

4 Validierung

- Synthetik: A₂-Torus (isotrop) → min nichtlokal = 11 (mod 3/5); Patches → nur 3er. Siehe Anhang C.
- Konsequenz: keine nachträglichen Parameteranpassungen; "11" nicht austauschbar.
- Formelraum (Hinweis): Die systematische Prüfung des Formelraums wird separat dokumentiert; diese Fassung konzentriert sich auf Herleitung und Kernzahlen.

4.1 Querverifikation (ρ-Modell, blind)

Pfad (ohne Zugriff auf α): siehe Gleichung 16; daraus $n_3 = \text{round}(n_8) \Rightarrow n_0 = 1 + 1 + n_3 \Rightarrow \alpha^{-1}(0) = n_0 + \Delta_{\eta}$.

Eigenschaften: deterministisch; keine Fit-Parameter; blinder Pfad. Notebook: notebooks/Al-pha.ipynb (Abschnitt ρ -Modell).

Aus den gefreezten Dichten (**Planck 2018**) ergibt sich $n_8=135.0001\pm0.0071$, gerundet $n_3=135$. Rundungsschwellen: 134.5/135.5. **Robustheit**: Distanz zur unteren Rundungsschwelle: 0.5001 bei $\sigma_{n_8}=0.0071 \rightarrow 70.1 \, \sigma$; die Rundung $n_3=135$ ist damit **extrem stabil**.

4.1.1 Sensitivität (Projektor-Exponent)

Setzt man k=2 (statt 3), ergibt sich $\alpha^{-1}(0)\approx 137.0179996$; bei k=4 erhält man $\alpha^{-1}(0)\approx 137.0719984$. Beide Werte liegen **weit** neben den Präzisionsdaten. Daher ist k=3 (und damit 2^3) entscheidend.

4.2 Vergleich mit Experiment (Modellwert: eq. 7)

Quelle	$lpha_0$	σ_{lpha_0}	relative Abw. $\Delta \alpha_0/\alpha_0$
(CODATA Task Group on Fundamental Constants 2022)	0.0072973525643(11	1.1×10^{-12}	$\approx -1.30 \times 10^{-9} \%$
(Particle Data Group 2024) aus $\alpha_0^{-1} = 137.035999178(8)$	0.007297352564278	4.26×10^{-13}	$\approx -9.99 \times 10^{-10} \%$

4.2.1 Abweichung $\alpha_{\text{Theo}}(0)$ relativ zur Messgenauigkeit der 1- σ -Bandbreite

		Anteil der
Quelle	$\mathbf{z}(\alpha_0)$	1- σ-Bandbreite [%]
(CODATA Task Group on Fundamental Constants 2022)	0.086 σ	8.61 %
(Particle Data Group 2024)	0.171 σ	17.1 %

4.3 Datenverfügbarkeit / Reproduzierbarkeit & Code (Notebook)

Alle Daten, Quellcode und Notebooks sind im GitHub-Repository *alpha0* frei zugänglich und auf Zenodo archiviert. Details zur Reproduzierbarkeit, Software-Umgebung und Zitierrichtlinien siehe README.md.

• Repository: https://github.com/geronimo66/alpha0

• Lizenz: CC BY 4.0

Hinweis. Der vollständige Rechengang, Referenzen und die numerische Einordnung gegenüber den aktuellen Standards (CODATA 2022, PDG 2024, Planck 2018) sind im begleitenden Notebook dokumentiert; alle in diesem Papier aufgeführten Zahlenwerte und Gleichungen werden dort automatisch erzeugt.

4.4 Integritätsnachweise

Ziel: Transparente Absicherung gegen A-posteriori-Fits (Feynman-Check) und reproduzierbare Builds.

Hinweis (Integrität & Reproduzierbarkeit): Reproduzierbarkeit und Freeze-Schritte (Axiome/Konstanten, Build-Protokoll) sind **geplant** und werden – soweit sinnvoll – **nachgereicht**. Diese Fassung fokussiert auf die topologische Herleitung und Kernzahlen; operative Details werden **gegebenenfalls** in Begleitunterlagen dokumentiert.

4.5 Effektive Lorentzinvarianz (Plausibilitätsgrenzen)

- Randbedingung statt Dynamik. Δ_{η} verschiebt nur $\alpha^{-1}(0)(Q^2 \to 0)$; die Running bleibt QED-standard.
- Kohärente Propagation. Für $\lambda \gg \ell_P$ mitteln Mikrodiskretheiten aus; keine zusätzliche Dispersion.
- Isotropie. Orientierungsprojektor 2^k (hier k=3) als diskrete Trennung; keine Raumrichtung.
- EFT-Einordnung. Siehe Anhang G (Thomson-Matching, Ward-Identitäten, Schema-Invarianz).
- Gauge-Invarianz. Unabhängigkeit vom *R_ξ*-Gaugeparameter; formal

$$\frac{\partial \alpha^{-1}(0)}{\partial \xi} = 0 \tag{8}$$

(Nachweis in Anhang G).

Hinweis Isotrope Orientierungsmittelung entspricht formal dem Haar-Mittel $\int_{SO(3)} RAR^{\top} dR = \frac{Tr(A)}{3} I$ und liefert so eine isotrope makroskopische Antwort.

4.6 Robustheitssatz (Diophantische Einzigkeit & Stabilität von $n_0 = 1 + 1 + n_3$)

Axiome (A-D):

 A_2 /Isotropie; lokale 3/5-Zyklen; erster nichtlokaler Generator = 11; **Orientierungsprojektor** k = 3.

Kompaktformel:

$$K = \left(1 - \frac{1}{165}\right) \frac{9\sqrt{3}}{\pi}, \qquad \alpha^{-1}(0) = n_0 + \frac{K}{n_0} \quad \text{(fitfrei)}.$$
 (9)

Monotonie:

$$f(n+1) - f(n) = 1 - \frac{K}{n(n+1)} > 0.9995, \qquad n \ge 100.$$
 (10)

Folgerung:

Im ppm-Messfenster ist nur $n_0=137$ möglich; Dichte-Cross-Check impliziert $n_8\approx 135$.

4.7 Stochastische Formelraumsuche – Ausblick

Die systematische Prüfung des Formelraums wird separat dokumentiert; diese Fassung konzentriert sich auf Herleitung und Kernzahlen. Ergebnisse und Methodik werden im Supplement/-Repo nachvollziehbar bereitgestellt.

4.8 Permutationstest – Ausblick

Permutationstests (Prime-Swaps, Grammar-Shuffles) werden separat dokumentiert; diese Fassung berichtet bewusst keine Testergebnisse. Veröffentlichte Resultate werden im Repository-/Supplement referenziert.

5 Diskussion

5.1 Kernbefund und Geltungsbereich

Die Arbeit liefert eine fitfreie, analytisch definierte Randbedingung für die inverse Feinstrukturkonstante im Thomson-Limit. Die QED-Running bleibt unverändert (Ward-Identitäten, schemainvariantes Matching); die Aussage betrifft explizit $Q^2 \rightarrow 0$ (Peskin und Schroeder 1995). Der Modellwert ist ppm-konsistent mit CODATA 2022 und PDG 2024 und Planck-kompatibel im Dichteabgleich (CODATA Task Group on Fundamental Constants 2022; Particle Data Group 2024; Planck Collaboration 2020).

5.2 Struktur der Herleitung: Trennung von Geometrie und Projektion

Zentral ist die strikte Trennung zwischen

- 1. **Geometrisch**: Packungsdichten, u. a. $\eta_2 = \pi \sqrt{3}/8$ (BCC) und $\eta_{FCC} = \pi/(3\sqrt{2})$ (FCC-Referenz; Basispositionen z. B. in (Purdue University 2023)).
- 2. **Projektiv**: ein **rein projektives** Orientierungs-Zählmass 2^k mit k=3 (D₆-isotrope Achsenklassen).

Die Frustrationskorrektur besitzt die Kompaktform

$$\Delta_{\eta} = \left(1 - \frac{1}{3 \cdot 5 \cdot 11}\right) \frac{9\sqrt{3}}{\pi n_0}, \quad n_0 = 1 + 1 + n_3, \tag{11}$$

wobei die BCC-"8" rein geometrisch ist und nicht zum Projektorfaktor zählt.

Diese Trennung minimiert die Gefahr versteckter Freiheitsgrade und macht den Ansatz innerhalb der gewählten Axiome präzise falsifizierbar.

Satz (Projektor – Kurzfassung). Unter D_6 -Isotropie und $v \sim -v$ verbleiben drei ungerichtete Achsenklassen. Jede D_6 -invariante Projektivierung, die Orientierungs-Doppelzählungen entfernt, erzwingt k=3 und damit $2^k=8$; dieser Projektorfaktor ist unabhängig vom geometrischen Nenner 8 in $\eta_2=\pi\sqrt{3}/8$. (Begründung: Anhang B, Anhang F.)

Hinweis (Analogie-Quellen). PSG/Projektionsliteratur (Sonnenschein u. a. 2020) sowie die klassischen QCD- β -Funktionsarbeiten (Gross und Wilczek 1973; Politzer 1973; Caswell 1974; Jones 1974) dienen nur als Motivation/Kontext, nicht als Beweis. Die Herleitung von 2^k (hier k=3) erfolgt eigenständig aus D₆-Isotropie; die Kompaktform von Δ_{η} basiert ausschliesslich auf analytischen Packungsdichten und der separaten projektiven Zählung (vgl. Anhang B).

5.3 Grafik: Pipeline der Herleitung

Abb. fig. 1 zeigt den Rechengang (Topologie \rightarrow Geometrie \rightarrow Projektion \rightarrow Normalisierung); Details: B/C/D/G.

Figure 1: Pipeline der fitfreien Herleitung: Topologie $(\eta_1) \to$ Geometrie (BCC, $\eta_2) \to$ Projektor $(2^3) \to$ Normalisierung $(1/n_0)$.

5.4 Topologie der Frühphase: die Rolle der "11"

Die "11" tritt als **erste nichtlokale Rückkehrlänge** in der homologischen Struktur eines isotropen A_2 -Torus auf (Quotient *mod* lokale 3/5-Zyklen). Formal liefert Anhang C bzw. Anhang E die Minimalitätsaussage und die kohomologische Trennung; **Zertifikat**: siehe Anhang C.

5.5 Sensitivität und Robustheit

- Projektor-Exponent: k = 2 oder k = 4 verfehlen die Präzisionsdaten deutlich; k = 3 ist notwendig.
- Minimalzyklus "11": Ersetzungen (7/13/17 ...) verschieben α^{-1} um $\mathcal{O}(10^{-4})$ und zerstören ppm-Konsistenz.
- Robustheitssatz (Kompaktform): f(n) = n + K/n ist im ppm-Fenster nur mit $n_0 = 137$ konsistent; die Dichte-Spur liefert $n_8 \approx 135$.

5.6 Axiome (A-D) - Kurzliste

A: A₂-Isotropie; projektive Trennung 2^k mit k = 3.

B: Lokale 3/5-Zyklen; erster nichtlokaler Generator = 11 (ab $L \ge 11$). Siehe Anhang C.

C: Strikte Trennung Geometrie (Dichten) vs. Projektion (2^k) .

D:
$$n_0 = 1 + 1 + n_3$$
 (dichtebasiert); $\Delta_{\eta} = K/n_0$, $K = \left(1 - \frac{1}{165}\right) \frac{9\sqrt{3}}{\pi}$.

5.7 Falsifizierbarkeit (Kurzfassung; Volltext im Anhang)

- 1) k-Test $(k \neq 3) \Rightarrow$ ppm-Konsistenz bricht. $(\rightarrow Anhang F)$
- 2) "11"-Minimalität ⇒ kürzere nichtlokale Länge widerlegt. (→ Anhang E; Anhang C)
- 3) Thomson-Grenze ⇒ Schema-/Gauge-Abhängigkeit widerlegt. (→ Anhang G)
- 4) ρ -Cross-Check $\Rightarrow n_8 \approx 135$ widerlegt. (\rightarrow Anhang D)

5.8 Reproduzierbarkeit

Quellcode/Notebooks (inkl. Rechenpfad, Zahlen, Tabellen) im Repo/Zenodo; Build/Freeze/Artefakte siehe J/K. Messstandards: CODATA 2022, PDG 2024 (CODATA Task Group on Fundamental Constants 2022; Particle Data Group 2024).

5.9 Ausblick

(i) Kohärenz-/Dekohärenz-Regime, (ii) weitere Topologie-Settings zur "11", (iii) EFT jenseits $q^2 = 0$, (iv) auditierbare Formelraumsuche. Verweise: $\mathbf{C/E/G}$.

5.10 Hypothese (abgeleitet aus den Verhältniszahlen)

Die im Verhältnisabdruck $E_{\rm ph}/E_{\rm mag}\approx 0.9879$ sichtbar werdende Asymmetrie könnte darauf hindeuten, dass das Magnetfeld als **lokal gebundene Struktur** einer Packungsgeometrie folgt, während das elektrische Feld eine eher **holographisch-phasenartige Struktur** aufweist.

Ergänzend lässt sich vermuten, dass oberhalb der Planckdichte das Universum nur im **Phasenraum** und ausschliesslich **kohärent** war, während erst mit der 3. Teilung als stabile kohärente Raumstrukturen bestehen konnten (FCC). Die ineffizienten ersten beiden Teilungen wären dann als Übergangsphasen interpretierbar.

Zusatzannahme: Alle heute als isotrop und invariant gemessenen Grössen und Verhältniszahlen könnten aus dieser kohärenten Frühzeit stammen. Kleine **Anisotropien und Frustrationen** (wie Δ_n) wären dann die direkten Spuren der ersten instabilen Dekohärenzprozesse.

Offene Perspektive: Diese Deutung ist eine mögliche Hypothese; die Verhältniszahl selbst lädt dazu ein, weitere alternative Erklärungen zu untersuchen. Ob die Asymmetrie fundamental mit Packungs- oder Phasenstrukturen verknüpft ist, oder auf andere Mechanismen zurückgeht, bleibt eine offene Forschungsfrage.

6 Anhang

6.1 Anhang A – Notation & Symbole (erweitert)

Notation & Symbole (erweitert) - A₂-Gitter: $\Lambda_{A2}=\{xe_1+ye_2:x,y\in\mathbb{Z}\}$: - Kantenrichtungen $\{\pm e_1,\pm e_2,\pm (e_1-e_2)\}$;

- orientierter Kantenkomplex $\Gamma = (V, E)$.
- **Zyklenräume**: $C_1(\Gamma; \mathbb{Z})$, $Z_1 = \ker \partial$; **orientierte** Kanten, Länge $\ell(C)$.
- Lokaler Unterraum: $L_{3.5} = \langle \partial \triangle, \partial P_5 \rangle \subseteq Z_1$.
- Quotient: $Q = Z_1/L_{3.5}$ (nichtlokale Klassen mod 3/5).
- **Torus**: $T_{W,H}$; isotrop: W = H = L.
- Projektor (Verweis): D_6 -Isotropie; wir verwenden 2^k mit k=3. Definition & Herleitung siehe Anhang B.
- Weiterführend: Grundlagen zu Gittern und Kugelpackungen: (Conway und Sloane 1999).
- Konvention Wir setzen $\alpha_0 \equiv \alpha(0)$ für das Thomson-Limit.

6.1.1 A.1 — Parameter & Herkunft

Grösse	Wert(e)	Kategorie	Herkunft/Begründung
n_0	$1+1+n_3$	dichtebasiert	$n_1 + n_2 + \mathbf{n}_3$; $\mathbf{n}_3 \equiv \mathbf{n}_{FCC} = \text{round}(\mathbf{n}_8)$
n_1	1	empirisch	erste Teilung
n_2	1	empirisch	zweite Teilung
n_{FCC}	135	dichtebasiert	aus ρ -Modell
2^k	$2^3 = 8$	projektiv	Orientierungsprojektor (D_6 : $k = 3$)

Grösse	Wert(e)	Kategorie	Herkunft/Begründung
$\overline{\eta_1}$	$\frac{\frac{1}{2}}{\frac{1}{2\cdot 3\cdot 5\cdot 11}}$	geomtopolog.	bipartite Grundzerlegung; lokale/nichtlokale Zyklen
η_2	$\pi\sqrt{3}/8$	geometrisch	BCC-Dichte
$\eta_{ ext{FCC}}$	$\pi/(3\sqrt{2})$	geometrisch	FCC (Referenz)
${3,5}$	_	lokal/topolog.	lokale Zyklen am Tetraederrand
11	_	topolog.	erste nichtlokale Rückkehrlänge (mod 3/5)
2	_	topolog.	bipartite Grundzerlegung (Basisterm 1/2)

6.1.2 A.2 — Notationskasten

Term	
$n_0 = 1 + 1 + n_3$	integernaher Anteil der Randbedingung
$n_3 = \text{round}(n_8)$	blind aus dem $ ho$ -Pfad
n_8	log-basierte Tiefenzahl
$ \eta_1 = \frac{1}{2} - \frac{1}{330} \eta_2 = \frac{\pi\sqrt{3}}{8} $	Tetra-Dichte (mit "11")
$\eta_2 = \frac{\pi\sqrt{3}}{8}$	BCC-Dichte (geometrisch; "8" nicht Projektor)
$ \eta_{\text{FCC}} = \frac{\pi}{3\sqrt{2}} $	FCC-Referenz
$ \eta_{\text{eff}} = \frac{1}{2} \eta_{\text{FCC}}^{4/3} + \frac{1}{2} \eta_{\text{FCC}}^{2} $	Effektive Dichte (Begründung in Anhang G)
$2^k, k=3$	projektiver Faktor (D ₆ -Isotropie)
$\Delta_{\eta} = \left(1 - \frac{1}{3 \cdot 5 \cdot 11}\right) \frac{9\sqrt{3}}{\pi n_0}$	Frustrationskorrektur
$\alpha^{-1}(0) = n_0 + \Delta_{\eta}$	Randbedingung im Thomson-Limit

6.2 B — Orientierungsprojektor: Definition, Herleitung & Eindeutigkeit

6.2.1 B.0 – Definitionskasten (separate Zählung)

Definition A1. Sei $\mathscr C$ die Menge mikroskopischer Belegungen pro Zelle. Der **Orientierungs-projektor** identifiziert Konfigurationen, die sich nur durch die Wahl einer der k globalen Orientierungsachsen und deren Richtungsumkehr unterscheiden. Pro Achse existieren zwei Richtungen; die **Zählmultiplikität ist** 2^k .

Annahme A1 (hier verwendet). D₆-Isotropie impliziert k=3 äquivalente Achsenklassen $\Rightarrow 2^k=2^3=8$. Dieser 2^3 -Faktor ist projektiv und unabhängig vom geometrischen 8 in $\eta_2=\pi\sqrt{3}/8$.

6.2.2 B.1 – Herleitung von k = 3; $2^k = 8$

Die gerichteten Kantenrichtungen des A₂-Gitters sind $\{\pm e_1, \pm e_2, \pm (e_1 - e_2)\}$. Nach Identifikation $v \sim -v$ verbleiben **drei** ungerichtete Achsenklassen $\{[e_1], [e_2], [e_1 - e_2]\} \Rightarrow$ k = 3.

Pro Achse zwei Richtungen \Rightarrow Zählmultiplikität $2^k = 8$.

6.2.3 B.2 – D₆-invariante Projektivierungen (Eindeutigkeit)

Jede D₆-invariante Projektivierung, die (i) Orientierungspaarungen $\nu \sim -\nu$ vollzieht und (ii) Achsenklassen nicht vermischt, induziert genau k=3 Achsenklassen und damit den projektiven Faktor $2^k=8$. Eindeutigkeit: Unter den Arbeitsannahmen A–D ist k=3 erzwungen.

Counting-Mass.

$$\mu_k(A) = \frac{1}{2^k} \# q^{-1}(A), \qquad k = \# \text{ Achsenklassen } (A_2: k = 3).$$
 (12)

6.2.4 B.3 – Drei verschiedene "8"

- 1. **Geometrische 8** Nenner in $\eta_2 = \pi \sqrt{3}/8$ (Packungsgeometrie).
- 2. **Projektor-8** Orientierungszählung 2^k mit $k = 3 \Rightarrow 8$ (projektiv).
- 3. Oktale 8 Basis der Tiefenzahl n_8 im ρ -Modell (8^{n_8} , $\ln 8$). Alle drei sind getrennt (Geometrie, Projektion, Arithmetik).

6.3 C — Nichtlokaler Minimalzyklus "11" — Beweis & Zertifikate

6.3.1 C.1 — Rahmen & Definitionen

(Notation siehe Anhang A). Isotropieannahme; Koeffizientenring \mathbb{Z} ; orientierte Kanten; Zyklenlänge $\ell(C)$ zählt Kanten mit Multiplizität.

Nichtlokal (Hinweis). $\bar{C} \neq 0$ in $Q = Z_1/L_{3,5}$; präzise Definition und die Minimallänge siehe Anhang E, Gleichung 18.

6.3.2 C.2 — Reduktion & Terminierung (Lemma)

- (a) Dreiecksabzug $C \mapsto C \oplus \partial \triangle$ senkt ℓ um 3.
- (b) Fünfecksausgleich $C \mapsto C \oplus \partial P_5$ senkt ℓ um 5.
- (c) Die Massfunktion $\Phi(C) = (\ell(C), n_5(C))$ fällt strikt \Rightarrow Terminierung.

6.3.3 C.3 — Exhaustion ≤ 10 und explizite Kokette

Lemma. Auf $T_{L,L}$ mit $L \geq 11$ ist jeder geschlossene 1-Zyklus mit $\ell \leq 10$ lokal. Kokette φ mit

$$\varphi(\nu \to w) := \text{Koeffizient von } e_1 \text{ in } (w - \nu) \in \{-1, 0, +1\}$$
(13)

erfüllt $\langle \varphi, \partial \triangle \rangle = 0$ sowie $\langle \varphi, \partial P_5 \rangle = 0$; damit annihiliert $\varphi L_{3,5}$ und liefert $\langle \varphi, G_x \rangle = L$.

6.3.4 C.4 — Satz & Beweis (Minimalität & Unabhängigkeit)

$$\ell_{\min}^{\text{nonloc}} = \begin{cases} L, & L \ge 11, \\ \text{nicht definiert}, & L \le 10, \end{cases}$$
 (14)

Insbesondere besitzt $T_{11,11}$ nichtlokale Klassen der Minimallänge 11.

6.3.5 C.5 — Zertifikate & synthetische Validierung

Für $W, H \le 10$: $Z_1/L_{3,5}$ trivial; bei (11, 11): Dimension 2, kürzester Repräsentant Länge 11. **Zertifikat**: siehe Datei anc/certificate_alpha11.csv.

Hinweis (Begriffsabgleich BFS \leftrightarrow Homologie): Das BFS-Zertifikat belegt die erste nichtlokale Rückkehrlänge in der Zustandsgraph-Exhaustion. Die formale Nichtlokalität meint $\bar{C} \neq 0$ im Quotienten $Q = Z_1/L_{3,5}$; die Reduktion $mod\ L_{3,5}$ wird in Lemma E.1–E.3 geführt (siehe Anhang E).

6.3.6 C.6 – Primzahlen im Modell – Struktur & Falsifizierbarkeit

Primzahl	Rolle	Status	Alternative
2	bipartite Grundzerlegung (Basisterm 1/2)	fix	-
3,5	lokale Zyklen	fix	Austausch widerspricht Topologie
11	erste nichtlokale Rückkehrlänge	fix (Mini- malität)	$7/9/13/17 \Rightarrow \mathcal{O}(10^{-4}) \text{ in } \alpha^{-1}$

6.4 D — Ergänzende Validierung aus dem ρ -Modell

Deterministischer Pfad.

$$\eta_{\text{eff}} = \frac{1}{2} \eta_{\text{FCC}}^{4/3} + \frac{1}{2} \eta_{\text{FCC}}^2, \qquad \frac{\rho_P}{\rho_{\text{ref}} \eta_{\text{eff}}} = 12 \cdot 8^{n_8}.$$
(15)

$$n_8 = \frac{\ln(\rho_P/(\rho_{\text{ref}}\eta_{\text{eff}})) - \ln 12}{\ln 8}, \quad n_3 := \text{round}(n_8), \quad n_0 = 1 + 1 + n_3.$$
 (16)

Fehlerbudget.

$$(\Delta n_8)^2 \approx \frac{1}{(\ln 8)^2} \left[\left(\frac{\Delta \rho_P}{\rho_P} \right)^2 + \left(\frac{\Delta \rho_{\text{ref}}}{\rho_{\text{ref}}} \right)^2 + \left(\frac{\Delta \eta_{\text{eff}}}{\eta_{\text{eff}}} \right)^2 \right]. \tag{17}$$

6.5 E — Satz "11" — Minimalität & Unabhängigkeit

Hinweis: Die knappe, referenzierte Darstellung zur "11" wird in C — Minimaler nichtlokaler Zyklus (Zertifikat) als *kanonische* Stelle geführt.

Voraussetzungen.

(Notation siehe Anhang A: A_2 -Gitter, Z_1 , lokaler Unterraum $L_{3,5} = \langle \partial \triangle, \partial P_5 \rangle$, Quotient $Q = Z_1/L_{3,5}$, Torus $T_{W,H}$; isotrop: W = H = L.)

Isotropieannahme; Koeffizientenring \mathbb{Z} ; orientierte Kanten; Zyklenlänge $\ell(C)$ zählt Kanten mit Multiplizität.

Definition. Ein Zyklus $C \in Z_1$ heisst **lokal**, wenn $\bar{C} = 0$ in $Q = Z_1/L_{3,5}$; andernfalls **nichtlokal**. Die **nichtlokale Minimallänge** ist

$$\ell_{\min}^{\text{nonloc}} := \min\{\ell(C) : \bar{C} \neq 0\}. \tag{18}$$

Lemma E.1 (Reduktion & Terminierung).

- (a) *Dreiecksabzug*: Enthält C ein elementares Dreieck \triangle , so ist $C \sim C \oplus \partial \triangle$ und ℓ sinkt um 3.
- (b) Fünfecksausgleich: Enthält C ein eingebettetes 5-Gon P_5 , so ist $C \sim C \oplus \partial P_5$ und ℓ sinkt um 5.
- (c) Terminierung: Die lexikographische Massfunktion $\Phi(C) = (\ell(C), n_5(C))$ fällt unter (a)/(b) strikt; der Prozess terminiert.

Lemma E.2 (Exhaustion ≤ 10 auf $T_{L,L}$; vollständiger Beweis).

Sei $T_{L,L}$ mit $L \ge 11$. Jeder geschlossene 1-Zyklus C mit $\ell(C) \le 10$ ist lokal, d. h. $C \in L_{3,5}$ und $\bar{C} = 0$ in Q.

Beweis.

- (1) Überlagerung: Hebe C via $\pi: \mathbb{R}^2 \to T_{L,L}$ zu \widetilde{C} an. Die Nettoverschiebung ist $k_1(Le_1)+k_2(Le_2)$, $k_i \in \mathbb{Z}$. Da pro Schritt die $e_{1/2}$ -Koordinate höchstens um 1 ändert, gilt $|k_i|L \leq \ell(C) \leq 10$. Mit $L \geq 11$ folgt $k_1 = k_2 = 0$.
- (2) $Planarit\ddot{a}t$: \widetilde{C} ist kontraktibel und begrenzt eine endliche Vereinigung elementarer Dreiecke U. Damit $\widetilde{C} = \bigoplus_{\triangle \subset U} \partial_{\triangle}$; nach Projektion $C \in L_{3,5}$.
- (3) Nicht-einfache Zyklen: Zerlege in einfache; wende (1)–(2) an.

Lemma E.3 (Explizite 1-Kokette φ ; Trennung lokal/nichtlokal).

Es existiert $\varphi \in Z^1(T_{L,L}; \mathbb{Z})$ mit (i) $\langle \varphi, \partial_{\triangle} \rangle = 0$ und $\langle \varphi, \partial P_5 \rangle = 0$, (ii) $\langle \varphi, G_x \rangle = L$ für den geodätischen Fundamentalzyklus G_x in e_1 -Richtung.

Konstruktion.

Für eine orientierte Kante $v \rightarrow w$ setze

$$\varphi(\nu \to w) := \text{Koeffizient von } e_1 \text{ in } (w - \nu) \in \{-1, 0, +1\}. \tag{19}$$

Somit $\varphi(e_1) = +1$, $\varphi(-e_1) = -1$, $\varphi(e_2) = \varphi(-e_2) = 0$, $\varphi(e_1 - e_2) = +1$, $\varphi(-(e_1 - e_2)) = -1$. Eigenschaften: Auf jedem Dreieck summiert 1 + 0 - 1 = 0 und auf ∂P_5 ist die Nettosumme ebenfalls 0 (kontraktibel) \Rightarrow (i); entlang G_x addieren sich L Stücke mit $+1 \Rightarrow$ (ii). Also annihiliert $\varphi L_{3.5}$ und definiert $\bar{\varphi} : Q \to \mathbb{Z}$ mit $|\langle \bar{\varphi}, \bar{C} \rangle| \leq \ell(C)$.

Satz E.1 (Minimalität & Unabhängigkeit).

$$\ell_{\min}^{\text{nonloc}} = \begin{cases} L, & L \ge 11, \\ \text{nicht definiert}, & L \le 10, \end{cases}$$
 (20)

insbesondere besitzt $T_{11,11}$ nichtlokale Klassen der Minimallänge 11; jede nichtlokale Klasse hat einen Repräsentanten mit $\ell \geq L$.

Beweis.

Existenz durch G_x (Lemma E.3(ii)); Minimalität durch Lemma E.2 und die Schranke aus Lemma E.3.

Unabhängigkeit folgt aus D₆-Isotropie und kohomologischer Trennung.

6.5.1 E.1 – Begründungsskizze (η_1) und Arbeitsannahmen

Ziel.

$$\eta_1 = \frac{1}{2} - \frac{1}{2 \cdot 3 \cdot 5 \cdot 11}.\tag{21}$$

Sensitivität (Rückkehrzyklus). Ersetzt man testweise $11 \rightarrow 7$, verschiebt sich $\alpha^{-1}(0)$ um $\Delta \alpha^{-1}(0) \approx -1.25 \times 10^{-4}$, entsprechend $\sim 1.6 \times 10^4 \sigma$ (Particle Data Group 2024). Die Zykluslänge 11 ist innerhalb der Konstruktion nicht austauschbar; Varianten führen zu signifikanten Abweichungen.

Rahmen: Orientierter Kantenkomplex Γ der Tetraederrand-Struktur in der ersten Teilungsschicht. Die Grundzuteilung ist zweifärbbar (A/B) \Rightarrow Basisterm 1/2. Der Kontaktgraph selbst kann lokale 3- und 5-Zyklen besitzen; dies widerspricht der Zweifärbbarkeit der Belegung nicht, da sie eine Zählvorschrift ist (nicht eine Aussage über die Zyklusstruktur von Γ).

- Lemma 1 (bipartite Grundzerlegung). Die Grundbesetzung ist zweifärbbar ⇒ Basisterm 1/2.
- Lemma 2 (lokale Zyklen). 3- und 5-Zyklen erzwingen Ausschlussklassen im Kontaktgraphen; im ersten Ordnungsansatz faktorisiert ihr Beitrag lokal.
- Lemma 3 (erster unabhängiger Rückkehrzyklus). Der erste homologisch unabhängige geschlossene Weg auf Γ/\sim hat Länge 11.

Tip *Homologie-Deutung*:

Die "11" als erste nichtlokale Rückkehrlänge erzeugt in H_1 einen Generator, zu dem in H^1 ein dualer Kofluss existiert. Das cap-/cup-Pairing liefert eine bilineare Erhaltungsrelation: Das Defizit im einen Kanal paart sich mit der Überfüllung im komplementären Kanal zu einer invarianten Summe (Energieerhaltung); der beobachtbare Abdruck ist das Verhältnis $E_{\rm ph}/E_{\rm mag}$.

Hinweis Geltungsbereich:

Nichtlokaler Minimalzyklus = 11. Auf dem A_2 -Torus (isotrop) erscheint der erste nichtkontraktible Generator bei W = H = 11 (synthetische Validierung).

Randbedingung. In kohärenter Ausbreitung (Thomson-Limit, effektive Lorentzinvarianz) mitteln sich lokale Schiefstände aus; übrig bleibt die dimensionslose Randbedingung in $1/\alpha$. Zertifikat: siehe Anhang C.

6.5.2 E.2 – Primzahlen im Modell – Struktur & Falsifizierbarkeit

Primzahl	Herkunft / Rolle	Status im Modell	Hypothetische Alternative
2	bipartite Grundzerlegung (Basisterm 1/2)	strukturell fix	nicht ersetzbar
3	lokaler Zyklus an Tetra-Rand	strukturell fix	Austausch widerspricht Topologie
5	lokaler Zyklus an Tetra-Rand	strukturell fix	Austausch widerspricht Topologie
11	erste nichtlokale Rückkehrlänge im isotropen A_2 -Quotienten ($mod\ 3/5$)	strukturell fix (Minimalität)	Austausch (7, 9, 13, 17) \Rightarrow verschiebt $\alpha^{-1}(0)$ um $\mathcal{O}(10^{-4})$, zerstört ppm-Konsistenz

6.6 F — Orientierungsprojektor als D₆-invariantes Zählmass (formal)

Hinweis: Die zusammengefasste Darstellung zum Projektor wird in ${\bf B}$ — Orientierungsprojektor als *kanonische* Stelle geführt.

Orbitstruktur (Lemma F.1).

Die gerichteten Kantenrichtungen des A₂-Gitters sind $\{\pm e_1, \pm e_2, \pm (e_1 - e_2)\}$. Nach Identifikation $\nu \sim -\nu$ verbleiben **drei** ungerichtete Achsenklassen $\{[e_1], [e_2], [e_1 - e_2]\}$. D₆ operiert transitiv auf diesen Klassen.

D₆-invariante Projektivierungen (Lemma F.2).

Jede D₆-invariante Projektivierung, die (i) Orientierungspaarungen $\nu \sim -\nu$ vollzieht und (ii)

Achsenklassen **nicht** vermischt, induziert genau k = 3 Achsenklassen und damit den projektiven Faktor $2^k = 8$.

Eindeutigkeit (Satz F.1).

Unter den Arbeitsannahmen A–D ist k = 3 erzwungen.

Jede alternative D_6 -invariante Zählvorschrift, die Orientierungsdoppelzählungen entfernt, liefert denselben Projektorfaktor 2^3 .

Der projektive Faktor ist **unabhängig** vom geometrischen Nenner "8" in $\eta_2 = \pi \sqrt{3}/8$ (Trennung von Geometrie und Projektor).

Quotient/Counting-Mass.

$$\mu_k(A) = \frac{1}{2^k} \# q^{-1}(A), \qquad k = \# \text{ Achsenklassen } (A_2: k = 3).$$
 (22)

 μ_k ist D₆-invariant und **unabhängig** von geometrischen Dichten; die BCC-"8" bleibt rein geometrisch \Rightarrow **Trennung** von 2^k und η .

6.7 G — EFT-Randbedingung & Thomson-Matching

6.7.1 G.1 — Ward/BFM-Identität und Thomson-Matching

QED-Ward-Identitäten $Z_1 = Z_2 \Rightarrow$ Ladungserhaltung.

Thomson-Matching:

$$\Gamma^{\mu}(p,p)|_{q^2=0} = e_R \gamma^{\mu}, \qquad \alpha(0) = \frac{e_R^2}{4\pi}.$$
 (23)

Formfaktor-Zerlegung (Vertex).

$$\Gamma^{\mu}(p',p) = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m} F_2(q^2), \qquad F_1(0) = 1.$$
 (24)

6.7.2 G.2 – BFM-Lagrangedichte & schemainvariante Randbedingung

$$\mathcal{L}_{\rm EFT} = -\frac{1}{4g_R^2(\mu)} F_{\mu\nu} F^{\mu\nu} - \frac{c_0}{4} F_{\mu\nu} F^{\mu\nu} + \sum_{d>4} \frac{c_d}{\Lambda^{d-4}} \mathcal{O}_d. \tag{25}$$

Matching am Nullimpuls liefert

$$\alpha^{-1}(0) = \alpha^{-1} * \text{QED}(0) + \Delta * \text{geom}, \qquad \Delta * \text{geom} \equiv c_0 \cdot \frac{4\pi}{e^2} = \frac{K}{n_0},$$
 (26)

und

$$\mu \frac{d}{d\mu} \Delta_{\text{geom}} = 0, \qquad \frac{\partial \alpha^{-1}(0)}{\partial \xi} = 0.$$
 (27)

Damit bleibt die Running unverändert,

$$\beta_{\text{EFT}}(g) = \beta_{\text{OED}}(g).$$
 (28)

mit

$$\Delta_{\text{geom}} = \frac{K}{n_0}, \quad K = \left(1 - \frac{1}{165}\right) \frac{9\sqrt{3}}{\pi}, \quad n_0 = 1 + 1 + n_3.$$
(29)

6.7.3 G.3 — Maxwell-Stress \Rightarrow Thomson-Limit (dreiteilige Ableitung)

Tensor.

$$F^{\mu\nu} := \frac{1}{2} \, \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}, \qquad T^{\mu\nu} = \frac{1}{2} (F^{\mu\alpha} F^{\nu} * \alpha + F^{\mu\alpha} F^{\nu} * \alpha).$$

Äquivalente Standardform:

$$T^{\mu\nu} = F^{\mu\alpha} F^{\nu}{}_{\alpha} - \frac{1}{4} \eta^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta}.$$

Energiedichte/Spannung:

$$T^{00} = \frac{1}{2}(E^2 + B^2), \qquad T^{ij} = -E^i E^j - B^i B^j + \frac{1}{2}\Delta^{ij}(E^2 + B^2).$$

Packungsskala. $a \propto \eta^{-1/3}$; Projektion/Arealdichte. $\rho_{\rm 3D} \propto \eta, \, \rho_{\rm 2D} \propto \eta^{2/3}$. Isotrope Mode-Mittelung. Für $q^\mu \to 0$ gilt

$$\langle E^2 \rangle_{\rm iso} = \langle B^2 \rangle_{\rm iso}.$$

6.7.4 G.4 — Exponenten & Gewichte (Ende der Linearität)

Tangential/Phasenraum koppelt an $\rho_{\rm 2D} \propto \eta^{2/3}$ (quadratisch $\sim \eta^{4/3}$), normal/Magnetfluss volumetrisch an $\rho_{\rm 3D} \propto \eta$ (quadratisch $\sim \eta^2$).

Isotropie \Rightarrow 1/2-Gewichtung:

$$\eta_{\rm eff} = \frac{1}{2} \, \eta_{\rm FCC}^{4/3} + \frac{1}{2} \, \eta_{\rm FCC}^2.$$

6.7.5 G.5 – E/M-Kopplung \rightarrow Phasenraum & FCC-Raum

- (1) E-Kanal (tangential, isotrop): $\rho_{2D} \propto \eta^{2/3} \Rightarrow \text{Beitrag} \propto \eta^{4/3}$.
- (2) **B-Kanal (normal, volumetrisch)**: Beitrag $\propto \eta^2$. Normierung auf $\eta_{FCC} = \pi/(3\sqrt{2})$ trennt Geometrie und Projektion.

6.7.6 G.6 – Symmetrische Gegenwirkung (Energieverhältnisse)

$$E_{\rm ph} = \left(\frac{1}{2} - \Delta\right) E_{\rm tot}, \quad E_{\rm mag} = \left(\frac{1}{2} + \Delta\right) E_{\rm tot}, \quad \Delta = \frac{1}{2 \cdot 3 \cdot 5 \cdot 11} = \frac{1}{330}.$$

$$\frac{E_{\rm ph}}{E_{\rm mag}} = \frac{1 - 2\Delta}{1 + 2\Delta} \approx 1 - 4\Delta + \mathcal{O}(\Delta^2) \approx 0.9879.$$

6.7.7 G.7 — Normierungsfaktor "12" im ρ -Modell (Definition & Begründung)

Definition. $12 \equiv z_{\text{FCC}}$ (Koordinationszahl) als fester Vorfaktor in Gleichung 15-eq. 16. **Stabilität**. $12 \rightarrow c$ verschiebt n_8 um $\Delta n_8 = \log_8(c/12)$; $n_3 = \text{round}(n_8)$ bleibt robust in realistischen Variationen.

6.8 H — Background-Field-Herleitung (stärkere Ableitung)

Hinweis: Die zusammengefasste EFT-Darstellung inkl. Thomson-Matching wird in **G** — **EFT-Randbedingung (Thomson-Limit)** als *kanonische* Stelle geführt.

EFT-Ansatz (BFM).

$$\mathcal{L}_{EFT} = -\frac{1}{4g_R^2(\mu)} F_{\mu\nu} F^{\mu\nu} - \frac{c_0}{4} F_{\mu\nu} F^{\mu\nu} + \sum_{d>4} \frac{c_d}{\Lambda^{d-4}} \mathcal{O}_d$$
 (30)

wobei c_0 dimensions
los ist und höhere Operatoren \mathcal{O}_d für $q^2 \to 0$ unterdrückt sind.

Ward/BFM-Identität. Im Background-Field-Gauge gilt $Z_e = Z_A^{-1/2}$, somit $F_1(0) = 1$; die geladene Vertizestruktur am Nullimpuls ist **gauge- und schemainvariant**.

Thomson-Matching.

$$\Gamma^{\mu}(p',p) = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m} F_2(q^2), \quad F_1(0) = 1.$$
(31)

Das Matching am Nullimpuls liefert

$$\alpha^{-1}(0) = \alpha_{\text{QED}}^{-1}(0) + \Delta * \text{geom}, \qquad \Delta_{\text{geom}} \equiv c_0 \cdot \frac{4\pi}{e^2} = \frac{K}{n_0}.$$
 (32)

mit

$$\mu \frac{d}{d\mu} \Delta_{\text{geom}} = 0, \qquad \frac{\partial \alpha^{-1}(0)}{\partial \xi} = 0.$$
 (33)

Running unverändert: Die β -Funktion wird durch die q^2 -Ableitung der Photonenselbstenergie bei $q^2 > 0$ bestimmt.

Da c_0 eine konstante (dimensionslose) Randbedingung ist, ändert Δ_{geom} die Running nicht:

$$\beta_{\text{EFT}}(g) = \beta_{\text{OED}}(g).$$
 (34)

Physikalische Identifikation: Die Geometrie/Topologie der Frühphase bestimmt c_0 fitfrei über

$$\Delta_{\text{geom}} = \frac{K}{n_0}, \qquad K = \left(1 - \frac{1}{165}\right) \frac{9\sqrt{3}}{\pi}, \qquad n_0 = 1 + 1 + n_3.$$
(35)

Dies ist eine Randbedingung im Thomson-Limit, keine neue Dynamik.

6.8.1 $H - Maxwell-Stress-Tensor \Rightarrow Thomson-Limit (dreiteilige Ableitung)$

Der Maxwell-Stress-Energie-Tensor und der Hodge-Dual sind gegeben durch

$$F^{\mu\nu} \,:= \tfrac{1}{2}\, \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}, \qquad T^{\mu\nu} = \tfrac{1}{2} (F^{\mu\alpha} F^{\nu}{}_{\alpha} + F^{\mu\alpha} \,\, F^{\nu}{}_{\alpha}) \,. \label{eq:Fmunu}$$

Äquivalente Standardform:

$$T^{\mu\nu} = F^{\mu\alpha}F^{\nu}_{\alpha} - \frac{1}{4}\eta^{\mu\nu}F_{\alpha\beta}F^{\alpha\beta}.$$

mit Energiedichte und Spannung

$$T^{00} = \frac{1}{2} (E^2 + B^2), \qquad T^{ij} = -E^i E^j - B^i B^j + \frac{1}{2} \Delta^{ij} (E^2 + B^2).$$

Lemma H.1 (Packungsskala). $a \propto \eta^{-1/3}$.

Lemma H.2 (Projektion/Arealdichte). $\rho_{\rm 3D} \propto \eta$ und $\rho_{\rm 2D} \propto \eta^{2/3}$.

Lemma H.3 (isotrope Mode-Mittelung). Im Grenzfall $q^\mu \to 0$ gilt

$$\langle T^{00}\rangle_{\rm iso} = \tfrac{1}{2}(\langle E^2\rangle_{\rm iso} + \langle B^2\rangle_{\rm iso}), \quad \langle E^2\rangle_{\rm iso} = \langle B^2\rangle_{\rm iso}.$$

Damit tragen elektrische und magnetische Anteile gleich gewichtet bei.

Satz H (Exponenten & Gewichte; Ende der Linearität): Tangential/Phasenraum koppelt an $\rho_{\rm 2D} \propto \eta^{2/3}$ (quadratisch $\sim \eta^{4/3}$), normal/Magnetfluss volumetrisch an $\rho_{\rm 3D} \propto \eta$ (quadratisch $\sim \eta^2$). Isotrope Mittelung \Rightarrow 1/2-Gewichtung:

$$\eta_{\text{eff}} = \frac{1}{2} \eta_{\text{FCC}}^{4/3} + \frac{1}{2} \eta_{\text{FCC}}^{2}.$$

Ende der Linearität: gültig für $qa \ll 1$, isotrope Moden, lineare Maxwell-Antwort; Korrekturen $\mathcal{O}((a/\lambda)^2, \Delta^2)$ bei $qa \gtrsim 1$, Anisotropie oder Nichtlinearität.

6.8.2 H.1 — Exponentenbegründung in $\eta_{\rm eff}$

- M1 (Skalenregel). Für die FCC-Packung skaliert die Zelllänge wie $a \propto \eta^{-1/3}$ bei fixem Teilchenradius.
- M2 (Projektion in B^{\perp}). Die planare Arealdichte entlang einer Feldlinie ergibt sich als Linienintegration über eine Zellhöhe $\sim a$: $\rho_{\rm 2D} \propto \rho_{\rm 3D} \, a \propto \eta \, \eta^{-1/3} = \eta^{2/3}$.
- M3 (Quadratische Antwort, Thomson-Limit). Die relevante EM-Antwort ist quadratisch: transversal $(B^{\perp}) \propto \eta^{4/3}$, longitudinal/volumenbasiert $\propto \eta^2$.
- Isotropie & Gewichtung. D₆-Isotropie und Nullimpuls-Matching rechtfertigen eine Gleichgewichtung der zwei Kanäle, somit

$$\eta_{\text{eff}} = \frac{1}{2} \eta_{\text{FCC}}^{4/3} + \frac{1}{2} \eta_{\text{FCC}}^2.$$

- *Kontext*. Dies begründet die in Gleichung 3 verwendete Form von η_{eff} fitfrei; die QED-Running bleibt unverändert (Thomson-Randbedingung, vgl. Anhang G).
- Mapping (Auszug Alpha): tangential/Phasenraum (E) ↔ Exponent 4/3; normal/Magnet-fluss ↔ Exponent 2.
- Formale Ableitung über $T^{\mu\nu}$, isotrope Mode-Mittelung und Thomson-Matching siehe Abschnitt H.

6.8.3 H.2 − E/M-Kopplung → Phasenraum & FCC-Raum

Im Thomson-Limit $(q^{\mu} \rightarrow 0)$ mit isotroper Mittelung koppeln zwei Kanäle:

- 1. Phasenraum (E-Kanal, tangential, isotrop): Die relevante Dichte ist areal. Mit der FCC-Referenzzelle skaliert $a \propto \eta^{-1/3}$, also $\rho_{\rm 2D} \propto \eta^{2/3}$; quadratische EM-Antwort \Rightarrow Beitrag $\propto \eta^{4/3}$.
- 2. Magnetfluss (B-Kanal, normal, volumetrisch): Beitrag $\propto \eta^2$.

Isotropie erzwingt die Gleichgewichtung:

$$\eta_{\text{eff}} = \frac{1}{2} \eta_{\text{FCC}}^{4/3} + \frac{1}{2} \eta_{\text{FCC}}^{2}.$$

Die formale Ableitung erfolgt über Maxwell-Stress und Background-Field-Matching (Anhang H).

FCC-Referenz. Normierung auf $\eta_{FCC} = \pi/(3\sqrt{2})$ trennt Geometrie (Packungsdichten) strikt von Projektion; dadurch bleibt die Herleitung fitfrei und falsifizierbar.

Oktale Tiefenzahl & Koordination. Die log-basierte Tiefenzahl n_8 misst Diskretisierung in Oktalschritten (Basis 8). Der Vorfaktor 12 ist die Koordinationszahl der FCC-Zelle (12 Nachbarn). Beide sind unabhängig vom Orientierungs-Projektor 2^k und von der geometrischen "8" in $\eta_2 = \pi \sqrt{3}/8$. Hinweis: Das "8" in 8^{n_8} bezeichnet ausschliesslich die Oktal-Skalierung der Tiefenzahl und ist nicht identisch mit dem Projektorfaktor 2^k .

6.8.4 H.3 – Symmetrische Gegenwirkung (Energieverhältnisse)

Interpretation (Auszug Alpha). Der elektrische Feldkanal ph bezeichnet den Phasenraumanteil der Wellenfunktion Ψ . Der komplementäre Kanal ist der Magnetflusskanal mag.

Wir modellieren die erste Teilung mit

$$E_{\rm ph} = \left(\frac{1}{2} - \Delta\right) E_{\rm tot}, \qquad E_{\rm mag} = \left(\frac{1}{2} + \Delta\right) E_{\rm tot}, \qquad \Delta = \frac{1}{2 \cdot 3 \cdot 5 \cdot 11} = \frac{1}{330} \approx 3.03 \times 10^{-3}.$$
 (36)

Damit ist die Gegenwirkung per Konstruktion symmetrisch: das Defizit $(-\Delta)$ in einem Kanal erscheint als $+\Delta$ im komplementären Kanal, und

$$E_{\rm ph} + E_{\rm mag} = E_{\rm tot}. (37)$$

Verhältnisabdruck.

$$\frac{E_{\rm ph}}{E_{\rm mag}} = \frac{\frac{1}{2} - \Delta}{\frac{1}{2} + \Delta} = \frac{1 - 2\Delta}{1 + 2\Delta} \approx 1 - 4\Delta + \mathcal{O}(\Delta^2) \approx 0.9879. \tag{38}$$

Einbettung in der kompakten Korrektur

$$\Delta_{\eta} = \left(1 - \frac{1}{3 \cdot 5 \cdot 11}\right) \frac{9\sqrt{3}}{\pi n_0},\tag{39}$$

manifestiert sich die "11" multiplikativ als **Residualfaktor**; sie steuert **nicht** die spätere Running (Thomson-Limit, fitfrei).

6.8.5 H.4 — Normierungsfaktor "12" — Verweis

Die ausführliche Definition und Begründung des festen Vorfaktors $12 \equiv z_{FCC}$ im ρ -Pfad findet sich in Abschnitt G.7.

Definition H.0.1 (Feste Normierung). Im ρ-Pfad Gleichung 15-eq. 16 setzen wir den konstanten Vorfaktor auf

 $12 \equiv z_{FCC}$, die Koordinationszahl der FCC-Packung.

Motivation (kurz):

- (i) Geometrisch. In der dichtesten Kugelpackung (FCC/HCP) besitzt jeder Punkt $z_{\rm FCC}=12$ nächste Nachbarn. Diese Zahl charakterisiert die minimalen Kontakt-/Flussrichtungen und liefert eine natürliche, gitterunabhängige Normierungsskala für die dichtebasierte Tiefe n_8 .
- (ii) Feldtheoretisch verträglich. Im Background-Field-Formalismus verschiebt eine konstante, dimensionslose Normierung die endliche Randbedingung am Nullimpuls, nicht aber die Running (vgl. Anhang G). Die Wahl 12 ist damit eine festgelegte Referenznormierung und kein Fit.
- (iii) Separationsprinzip. Der Vorfaktor 12 (geometrische Normierung) ist unabhängig vom projektiven Faktor 2^k (Orientierungszählung) und von η_2 's geometrischer "8".
- (iv) Stabilität. Eine hypothetische Änderung $12 \to c$ würde n_8 um $\Delta n_8 = \log_8(c/12)$ verschieben; für c in der Nähe von 12 bleibt $n_3 = \text{round}(n_8)$ robust (vgl. Abschnitt Fehlerbudget im ρ -Pfad).

Hinweis. Diese Normierung wird im Notebook konsistent verwendet; sie bestimmt lediglich die additive Konstante in n_8 und ist durch die FCC-Referenz motiviert, ohne zusätzliche Freiheitsgrade einzuführen.

6.9 I - Threats to Validity (Checkliste)

- Isotropieannahme
- Lokalfaktorisierung 3/5
- Minimalität/Unabhängigkeit 11
- Strikte Trennung Orientierungsprojektor vs. Geometriedichten

6.10 J — Notebook-Artefakte (Auszug)

Notebook: notebooks/Alpha.ipynb.

Erzeugte Dateien (Build-Pfad): - anc/certificate_alpha11.csv — BFS-Minimalitätszertifikat (L=3..15) - (weitere Logs/Artefakte je nach Lauf)

6.11 K – Integritätsnachweise

Axiom-Freeze, Daten-Freeze, deterministische Pipeline, Repro-Artefakte (mit Preprint-Release dokumentiert).

6.12 Y — Urheberschaft

Offenlegung von KI-Hilfe: ChatGPT (OpenAI; GPT-5 Pro; 08/2025) wurde unterstützend eingesetzt als intelligente Bibliothek, Rechner und "Plausibilisierer" – insbesondere für Literaturrecherche, Zitationsaufbereitung, anschlussfähige Formulierungen sowie zur Validierung und Implementierung von Code und Teilen der Prüf-Formeln.

Alle neuen Ideen – einschliesslich der Kernformel zu α , des Bezugs zur Dichte und der Packungsproblematik im Magnetfluss im Vergleich zum Phasenraum sowie des Anschlusses zu Primzahlen der QCD – stammen vom Autor; die Inhalte und Ergebnisse wurden vom Autor verifiziert. Die KI war nicht Urheberin wissenschaftlicher Resultate.

6.13 Z — Literatur

Bibliographie:

Ashcroft, N. W., und N. D. Mermin. 1976. Solid State Physics. Holt, Rinehart and Winston.

Caswell, W. E. 1974. «Asymptotic Behavior of Non-Abelian Gauge Theories to Two-Loop Order». *Physical Review Letters* 33: 244–46. https://doi.org/10.1103/PhysRevLett.33.244.

CODATA Task Group on Fundamental Constants. 2022. «Recommended Values of the Fundamental Physical Constants: 2022».

Conway, J. H., und N. J. A. Sloane. 1999. Sphere Packings, Lattices and Groups. Springer.

Gross, D. J., und F. Wilczek. 1973. «Ultraviolet Behavior of Non-Abelian Gauge Theories». *Physical Review Letters* 30: 1343–46. https://doi.org/10.1103/PhysRevLett.30.1343.

Jones, D. R. T. 1974. «Two-loop Diagrams in Yang–Mills Theory». *Nuclear Physics B* 75: 531–40. https://doi.org/10.1016/0550-3213(74)90093-5.

Particle Data Group. 2024. «Review of Particle Physics (2024)».

Peskin, Michael E., und Daniel V. Schroeder. 1995. *An Introduction to Quantum Field Theory*. Addison-Wesley.

Planck Collaboration. 2020. «Planck 2018 results. VI. Cosmological parameters». *Astronomy & Astrophysics* 641: A6. https://doi.org/10.1051/0004-6361/201833910.

Politzer, H. D. 1973. «Reliable Perturbative Results for Strong Interactions?» *Physical Review Letters* 30: 1346–49. https://doi.org/10.1103/PhysRevLett.30.1346.

Purdue University. 2023. «Unit Cells – FCC Basispositionen». 2023. https://www.chem.purdue.edu/gchelp/cchem/Unit_Cell/FCC.html.

Sonnenschein, J., A. Chauhan, Y. Iqbal, und J. Reuther. 2020. «Projective symmetry group classifications of quantum spin liquids on cubic, bcc, and fcc lattices». *Phys. Rev. B* 102: 125140. https://doi.org/10.1103/PhysRevB.102.125140.