(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-71325

(43)公開日 平成9年(1997)3月18日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	F I	技術表示箇所
B65G	53/28			B 6 5 G 53/28	
B01J	4/00	105		B 0 1 J 4/00	105D
B65G	53/52			B 6 5 G 53/52	

		家情查審	未請求 請求項の数7 書面 (全 16 頁)
(21)出願番号	特願平7-264608	(71)出顧人	591256435 小川 和利
(22) 出願日	平成7年(1995)9月6日	(72)発明者	静岡県静岡市横田町7番19号 小川 和利 静岡県静岡市横田町7番19号

(54) 【発明の名称】 粉体空気輸送装置

(57)【要約】

【目的】小型軽量で、取り付け条件が自由な、保守に関 わる作業性が良く、双方向輸送も可能な粉体空気輸送装 置とすることを目的とした。

【構成】ボディとフィルターエレメントとの両端の開口部に空気アクチュエーター作動バルブを取り付けて構成された粉体ポンプ本体の空気出入口(1 a b)に粉体ポンプ駆動部の粉体ポンプ本体駆動に関わるポートを取り付ける。粉体ポンプ駆動部は空気出入口に対して空気の吸引と圧縮空気の供給を交互に行う都度空気アクチュエーター作動バルブ相互の開閉も制御し、フィルターエレメントの中心側の粉体チャンバーでは粉体の吸引と圧送が交互に行われる。

【特許請求の範囲】

【請求項1】(イ)外側に空気出入口(1ab)を設け た筒状のボディ(2)の内側に筒状のフィルターエレメ ント(31または32)を通すことで両端に形成された 両者の開口部に於いて片方の開口部には粉体入口側逆止 弁(4a1)を、残りの開口部には粉体出口側逆止弁 (4 b 1)を取り付けて、ボディの外側で空気出入口に 始まる穴がボディの内側で空気室(7)に連絡するよう に組み立てた粉体ポンプ本体(91)に於いて、粉体入 口側逆止弁の一次側は粉体入口(5a1)を、粉体出口 側逆止弁の二次側は粉体出口(5b1)を、相互の逆止 弁が終端となってフィルターエレメントの中心側に形成 された空間は粉体チャンバー(6)を、またその外周側 に形成された空間は空気室(7)を構成する。当該粉体 ポンプ本体(91)に於いてフィルターエレメントが柔 軟な膜状であるもの(31)が用いられるものに対して は、フィルターエレメントと空気室との間に多数の通気 孔またはスリットなどを有するスペーサー(81または 82)を挟んだうえで同様に組み立て、それをもって両 者間の通気性を確保すると共にフィルターエレメントの 空気室方向への移動端を限定する手段とする。

(ロ)ポート(x1)に於いて空気が吸引される工程と 圧縮空気が供給される工程とが交互に入れ替わるように 構成された粉体ポンプ駆動部。以上述べた粉体ポンプ本 体(91)の空気出入口(1ab)が粉体ポンプ駆動部 のポート(x1)に接続されたものに於いて空気は、ポ ート(x1)に於いて空気吸引工程のとき粉体入口→粉 体入口側逆止弁→粉体チャンバー→フィルターエレメン ト→空気室→空気出入口→ポート(x1)の順に流れ、 このとき粉体入口から吸引する粉体を粉体チャンバーに 溜め、ポート(x1)に於いて圧縮空気供給工程のとき ポート(x1)→空気出入口→空気室→フィルターエレ メント→粉体チャンバー→粉体出口側逆止弁→粉体出口 の順に流れ、このとき空気は空気吸引工程のときに吸引 された粉体により目詰まりしたフィルターエレメントの 再生を行いそのまま粉体チャンバー側に通り抜けて粉体 を粉体出口方向に送り出す媒体となる。以上述べた粉体 輸送方向が固定である1筒式粉体空気輸送装置。

[図 1]

【請求項2】(イ)[請求項1]記載の粉体ポンプ本体(91)に於いて粉体入口側逆止弁(4a1)の二次側と当該逆止弁側のフィルターエレメント固定部との中間位置に空気入口(1a)を設けたものとして改めた粉体ポンプ本体(92)。

(ロ)ボート(x1)に於いて空気が吸引される工程と 圧縮空気が供給される工程とが交互に入れ替わり、ボート(x2)に於いてボート(x1)が圧縮空気供給工程 のときに圧縮空気供給工程となるように構成された粉体 ボンプ駆動部。以上述べた粉体ボンプ本体(92)の空 気出入口(1ab)が粉体ボンプ駆動部のボート(x

1)に接続され、同様に空気入口(1a)がポート(x 2) に接続されたものに於いて空気は、ポート(x1) に於いて空気吸引工程のとき粉体入口→粉体入口側逆止 弁→粉体チャンバー→フィルターエレメント→空気室→ 空気出入口→ポート(×1)の順に流れ、このとき粉体 入口から吸引する粉体を粉体チャンバーに溜め、ポート (x1) に於いて圧縮空気供給工程のときポート (x 1)→空気出入口→空気室→フィルターエレメント→粉 体チャンバー→粉体出口側逆止弁→粉体出口の順に流 れ、当該空気は主として空気吸引工程のとき吸引された 粉体により目詰まりしたフィルターエレメントの再生を 行い、同時にポート(x2)→空気入口→粉体チャンバ ―→粉体出口側逆止弁→粉体出口の順に流れ、当該空気 は直接的なパージ空気として粉体を粉体出口方向に送り 出す媒体となる。以上述べた粉体輸送方向が固定である [図 2] 1 筒式粉体空気輸送装置。

【請求項3】(イ)[請求項1]記載の粉体ポンプ本体(91)に於いて取り付けた粉体入口側逆止弁(4a1)と粉体出口側逆止弁(4b1)の代りにそれぞれ空気アクチュエーター作動バルブ(4abL)(4abR)を取り付けたものとして改められ、両端には粉体出入口(5abL)(5abR)が構成された粉体ポンプ本体(93)。

- (ロ)ポート(x1)に於いて空気吸引工程と圧縮空気 供給工程とが交互に入れ替わり、バルブ制御空気信号の 出力ポートに於いてその入れ替わりと同調するバルブ制 御空気信号が出力される粉体ポンプ駆動部。
- (ハ) 粉体ポンプ本体 (93) の空気出入口 (1ab) が粉体ポンプ駆動部のボート (x1) に接続され、空気 アクチュエーター作動バルブを構成する空気アクチュエーター部とそれと結合するバルブ部とを分けて説明する とき、バルブ部相互は一方のバルブ部が開くとき他方の バルブ部が閉じるという相反する開閉動作となるように 空気アクチュエーター部相互のバルブ制御空気信号の入力ボートが粉体ポンプ駆動部のバルブ制御空気信号の出力ボートに接続されることにより完成する、粉体輸送方向が固定の1筒式粉体空気輸送装置の範囲。
- (二)以上述べた範囲に於いて、ポート(x1)に於ける何れか一つの工程をとったときその工程は変えないままにバルブ部相互の開閉動作を入れ替えうるバルブ制御空気信号切り換え弁(19b)を設ける。以上述べた粉体輸送方向がリバーシブルな1筒式粉体空気輸送装置。 [図 5]

【請求項4】 [請求項3] 記載の1筒式粉体空気輸送装置に於いて粉体ボンプ本体(93)を、空気アクチュエーター作動バルブ(4abL)(4abR)それぞれとフィルターエレメント両端の固定部との中間位置にそれぞれ空気入口(1a)を設けた粉体ボンプ本体(94)として改めたものに於いて、ボート(x1)に於いて圧縮空気供給工程であるとき、少なくともその工程を通し

てバルブ部が閉じる側の空気入口(1a)にだけはパージ空気が供給されるものとする。以上述べた粉体輸送方向がリバーシブルな1筒式粉体空気輸送装置。[図6]

【請求項5】[請求項3または4]記載の1筒式粉体空気輸送装置に於いて、ボート(x1)に於ける空気吸引工程または圧縮空気供給工程と空気アクチュエーター作動バルブ(4abL)(4abR)相互のバルブ部の開閉動作との関係を、

(イ)ポート(x1)に於いて空気吸引工程のとき バルブ部が開く側は(4abR)であるとき閉じる側は (4abL)である関係をケース1とし、開く側は(4 abL)であるとき閉じる側は(4abR)である関係 をケース2としたとき、

(ロ)ポート(x1)に於いて圧縮空気供給の前工程の とき

ケース1と2との双方に於いて(4abRと4abL) の両方のバルブ部が閉じ、

(ハ)ポート(x1)に於いて圧縮空気供給の後工程の とき

ケース1に於いてバルブ部が開く側は(4abL)であり閉じる側は(4abR)であり、ケース2に於いて開く側は(4abL)であり閉じる側は(4abL)である関係となるように改める。以上述べた、ボート(x1)に於いて空気吸引工程のときと圧縮空気供給の後工程のときに空気アクチュエーター作動バルブ相互のバルブ部は一方が開くとき他方が閉じる関係の開閉動作となるように制御され、圧縮空気供給の前工程のとき双方が閉じる動作となるように制御される。以上述べた圧縮空気供給の前工程の間は空気室と粉体チャンバーが一時的に空気蓄圧タンクを構成することを特徴とする、粉体輸送方向がリバーシブルな1筒式粉体空気輸送装置。

[図 6]

【請求項6】[請求項1または2または3または4または5]記載の粉体ポンプ本体を2筒並列に用いたものに 於いて、

- (イ)当該粉体ポンプ本体2筒とその粉体入口(5a1)同士を共通の粉体入口(5a2)に統合する粉体入口マニホールド(10a)との組み合わせ、または、
- (ロ) 当該粉体ポンプ本体2筒とその粉体出口(5b
- 1)同士を共通の粉体出口(5b2)に統合する粉体出口マニホールド(10b)との組み合わせ、または、
- (ハ)当該粉体ポンプ本体2筒と粉体入口マニホールド(10a)と粉体出口マニホールド(10b)の両者との組み合わせの何れかの選択的な組み合わせによる2筒式粉体ポンプ本体。
- (ニ)ポート(x1)に於いて空気吸引工程のとき、ポート(x1)に於いて圧縮空気供給工程となりポート(x1)に於いて圧縮空気供給工程のときポート(x1)に於いて圧縮空気供給工程のときポート(x1)に於いて空気吸引工程となるといった、ポート

(×1)と(×1')に於いて相互に異なる工程が交互に入れ替わるように構成された粉体ポンプ駆動部と2筒式粉体ポンプ本体との関係に於いて、少なくとも一方の空気出入口(1ab)がポート(×1)に接続され、他方の空気出入口(1ab)がポート(×1')に接続されることにより粉体ポンプ本体2筒に於いて相互に異なる工程となるように駆動される2筒式粉体空気輸送装置、[図 3]または、

(ホ)ポート(x1)に於いて空気吸引または圧縮空気 供給の工程が交互に入れ替わるように構成された粉体ポンプ駆動部と2筒式粉体ポンプ本体との関係に於いて、 少なくとも双方の空気出入口(1ab)がポート(x 1)に接続されることにより粉体ポンプ本体2筒に於い て相互に同一の工程となるように駆動される2筒式粉体 空気輸送装置。

[図 4]

【請求項7】[請求項1または2]記載の粉体輸送方向が固定である1筒式粉体空気輸送装置に於いて、または [請求項6]記載の2筒式粉体空気輸送装置に於いて粉体輸送方向が固定であるものに於いて、粉体入口(5a1または5a2)と接続関係をもつ粉体吸引側配管(5a3)の粉体吸引口(5a4)付近に逆止弁(4a2)を取り付けた、空気吸引工程のときに一旦粉体入口まで吸引された粉体が圧縮空気供給工程となる間に粉体吸引口側に落下することを防止するもの。[図 4]

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は粉体空気輸送装置に関するものである。

[0002]

【従来の技術】ここでは、様々な粉体空気輸送装置のな かで本発明に最も近いと考えられるものとしてエジェク ター式粉体吸引排出装置を取り挙げこれについて述べ る。当該装置は [図 7] に簡略化して示すような構造 である。これは最上部に図の右上に一点鎖線枠内に示す ような範囲の空気回路(167)、即ちポート(P)が 圧縮空気供給手段(14)と接続される通常(P→A) 接続の3方弁(15b)、空気パルス発生器(18 b)、3方弁(15b)が(P→A)接続のとき圧縮空 気が供給され真空発生ポート(U)に真空を発生する空 気吸引手段(13)であるエジェクター、同様に(P→ A)接続のとき急速排気弁(20)を経由して圧縮空気 を蓄えるための空気蓄圧タンク(21)で構成される範 囲が位置し、その下側にポート(x1)と接続する空気 室(7)、フィルターエレメント(32)、粉体チャン バー(6)、粉体入口側逆止弁(4a1)が取り付けら れて構成された粉体入口(5a1)、粉体出口側逆止弁 (4 b 1) に相当する排出弁の順で構成され、その作用 は次のようなものである。初めに圧縮空気供給手段(1 4)と接続されると、空気は (P→A)接続である3方 弁を通ってエジェクターと空気蓄圧タンクに供給され る。このとき粉体チャンバーが負圧となることにより排 出弁が閉じる結果、開放型粉体容器(111)から空気 混じりの粉体が粉体吸引側配管(5a3)を通り粉体入 口から吸引され粉体チャンバーに入るが、フィルターエ レメントが粉体を空気室側に通すことを阻む一方で粉体 に混じって吸引される空気は空気室側に通し続けるので 粉体チャンバーには徐々に粉体が溜められる。フィルタ ーエレメントの沪過作用によりエジェクターの排気ポー トから大気に放出される粉塵は作業環境に支障ない程度 に少なく保ち続けられる。粉体チャンバーに粉体が満た される頃空気パルス発生器が3方弁(15b)の制御ポ ートに空気信号(y1)を与えると3方弁は(A→R) 接続となり、エジェクターへの圧縮空気供給が停止され ると同時に空気蓄圧タンクの空気が急速排気弁を通って 空気室側に供給される際に生ずる空気パルスがフィルタ ーエレメントの粉体チャンバーに面する側に付着した粉 体のふるい落としを行い、またこのとき排出弁が開き粉 体チャンバーのなかの粉体を下側の供給相手であるタン ク(113)に排出する。以上が1サイクルの働きであ る。以上述べたエジェクター式粉体吸引排出装置に於い て問題となることは次のような点である。

(イ)設置スペースと重量

タンクの粉体投入口におおいかぶせるように取り付ける べく設計されているので、天井ギリギリの高さで既に設 置されている室内タンクに後からこれを取り付ける場合 は、天井をくり抜いて設置せざるをえない。また、装置 は重いので一旦据付けた後の移動は容易ではない。

(ロ)限定された設置条件

粉体吸引側配管の末端に設置されるべく設計されており、その働きは吸引した粉体を一定時間ごと間歇的に専ら下側に排出するものであり、これを中継点として吸引した粉体をさらにどこか別のところへ輸送出来るものではない。したがって装置に関わる保守作業も供給相手のタンクの(113)上で行わざるを得ず高所作業の困難と危険が伴う、もしくは重い装置を床面に降ろさなければならない。

(ハ)限定された輸送方向

粉体の輸送方向が固定であり、双方向輸送が出来ない。 供給相手であるタンクに過剰に輸送してしまったら過剰 分を元の容器に戻す手立てがない。

(二) バッチ式粉体輸送装置

粉体チャンバーが相対的に大きな容積を有する設計であることは当該装置の粉体吸引工程と粉体排出工程とで構成される1サイクルは前者に費やす時間を長く、後者のそれを短く設定するバッチ式粉体輸送装置であることを示す。即ち長い時間を掛けて粉体の吸引を行い短時間で粉体チャンバー容積分の大量の粉体を一挙に排出するタイプの装置であり、少しずつ連続的に輸送する用途には不向きである。また、もしそのような用途に使用された

としたら粉体チャンバーの大きな容積に見合うだけの膨大な空気が消費されるという効率問題が生じ、さらに粉体吸引工程の都度粉体入口(5a1)まで吸引した粉体を粉体排出工程の都度開放型粉体容器(111)に落としてしまう無駄という問題も生ずる。

[0003]

【発明が解決しようとする課題】以上述べた問題を解決 することを課題とした。

[0004]

【課題を解決するための手段】

(イ)設置スペースと重量を改善する手段

本発明に於いてはフィルターエレメントの内面側空間自 体が粉体チャンバー容積の大半を形成するような構造と した。これを[図 1]により説明する。筒状のフィル ターエレメント(31)を筒状のボディ(2)の内側に 通して両者の両端の開口部を粉体入口側逆止弁(4a 1)と粉体出口側逆止弁(4a1)とで固定した結果あ たかもボディとフィルターエレメントとの2重管が形成 されたフィルターエレメントの内面側空間に粉体チャン バー(6)を構成し、その外周側空間に空気室(7)を 構成する。その結果、[図 7] に示すエジェクター式 粉体吸引排出装置における粉体チャンバーの高さのなか にフィルターエレメントと空気室との高さを含み入れる ことが出来る。さらに、ボディ(2)の筒部分に空気出 入口(1ab)を設けたことにより、粉体ポンプ駆動部 をボディの横から空気出入口に直結して搭載出来るので 高さを低くすることが可能となる。また寸法を圧縮した 分は軽量化を果たすことが出来る。

(ロ)限定された設置条件を改善する手段

液体輸送に用いられる往復ポンプの動作と似た手法を取 り入れ、吸引のみならず圧送にも適した構造とすること により当該粉体輸送装置を粉体輸送配管のどこにでも設 置出来るようにする。即ち、空気吸引工程は空気出入口 (1ab)が空気吸引手段(13)と接続し、[図 1]他に於いては粉体入口側逆止弁(4a1)が開く、 また[図 5または6]に於いてそれと同じ役割である ように制御される側の空気アクチュエーター作動バルブ (4abLまたは4abR)のバルブ部が開き、[図 1]他に於いて粉体出口側逆止弁(4b1)が閉じるま たは「図 5または6]に於いてそれと同じ役割である ように制御される側の空気アクチュエーター作動バルブ (4abLまたは4abR)のバルブ部が閉じることで 行う。このとき空気混じりの粉体が [図 1または2ま たは4]に於いて粉体入口(5a1)から、また[図 3] に於いて粉体入口(5a2)から、また[図5また は6]に於いてバルブ部が開いた側の粉体出入口(5a bLまたは5abR)から吸引され粉体チャンバー

(6)に入るが、粉体を粉体チャンバーの内部に取り残 したまま、空気だけはフィルターエレメントから空気室

(7)を通り空気出入口(1ab)から吸引される。こ

れと逆に圧送工程は空気出入口(1ab)が圧縮空気供給手段(14)と接続し、空気吸引工程で開いた側の粉体入口側逆止弁またはそれと同じ役割であるように制御された側のバルブ部が閉じ、同様に閉じた側の逆止弁またはバルブ部が開くことで行う。このとき圧縮空気がフィルターエレメント内面に付着した粉体のふるい落としを行うことでフィルターエレメントの再生を行い、[図1または3または5]に於いてフィルターエレメントの外面側から内面側に通過した圧縮空気がそのまま粉体輸送媒体となって粉体の圧送を行い[図2または4または6]に於いてフィルターエレメントの外面側から内面側に与えられる圧縮空気は主としてフィルターエレメントの沪過効率の再生を行うことに供され、空気入口(1a)に供給されるパージ空気が主体となり粉体の圧送を行う。

(ハ)限定された輸送方向を改善する手段 粉体ポンプ本体を「図 5まかけら]にデ

粉体ポンプ本体を [図 5または6] に示すように空気 アクチュエーター部相互の制御次第で任意の逆流防止方 向が可能となる空気アクチュエーター作動バルブ (4a bL) (4abR)を取り付けたもの(93)(94) としたものに於いて、空気出入口(1ab)に於ける工 程が入れ替わるときこれと同調して一方のバルブ部が開 くとき他方のバルブ部が閉じる関係を基調として空気ア クチュエーター部の作動を制御することにより行う。即 ち、空気出入口(1ab)が空気吸引工程であるとき仮 りに (4abL) のバルプ部が開き (4abR) のバル ブ部が閉じるとしたとき、圧縮空気供給工程であるとき には(4abL)が閉じ(4abR)が開く関係となる ように空気アクチュエーター部の作動を制御することで 粉体出入口(5abL)側から入り(5abR)側へ出 る固定の粉体輸送方向が叶えられる。さらに空気出入口 (1ab) に於ける当該工程を変えないまま開く側のバ ルブ部と閉じる側のバルブ部との開閉動作関係を逆転す ることが出来るように、空気アクチュエーター制御空気 信号通路の途中にバルブ制御空気信号切り換え弁(19 b)を取り付けてこれを操作することにより、粉体出入 口で示すとき(5abL)側から入り(5abR)側へ 出る方向と(5abR)側から入り(5abL)側へ出 る双方向の粉体輸送方向が叶えられる。以上は空気アク チュエーター作動バルブ相互のバルブ部の開閉動作が空 気出入口(1 a b) に於ける空気吸引または圧縮空気供 給工程が入れ替わるときと同調する点では[図 1]な どの粉体ボンプ本体(91)に於ける逆止弁(4a1) (4 b 1)と同じような開閉動作となる関係であるが、 これに対して [請求項5] のように空気アクチュエータ 一作動バルブ相互のバルブ部が圧縮空気供給の前工程に 於いては双方共閉じるように制御すれば空気室と粉体チ ャンバーが一時的に空気蓄圧タンクを構成することとな り、その結果、[図 7]に示すエジェクター式粉体吸 引排出装置における空気蓄圧タンク(21)を省くこと

が可能となる意味で [0004]の (イ) に述べた軽量 化を果たす手段にも貢献する。

(二) バッチ式粉体輸送装置であることを改善する手段 エジェクター式粉体吸引排出装置の粉体チャンバー容積 との相対的な関係に於いて、本発明に於いてはむしろ容 積を小さくする。これは[0004]の(イ)に述べた 軽量化を果たす手段にも貢献する。エジェクター式粉体 吸引排出装置に於いて粉体吸引工程と粉体排出工程との 1サイクルで輸送する粉体の量と同じ量を輸送するため に本発明に於いてはサイクル数を多くすることにより補 う。即ち、エジェクター式粉体吸引排出装置が仮りに粉 体吸引工程所要時間:粉体排出工程所要時間との割合が 20:1である1サイクルを5分間として輸送する粉体 の量を本発明に於いては例えば1サイクルの割合を2: 1として5分間に60サイクルで輸送する。そのために 固定方向に粉体輸送を行う粉体空気輸送装置に於いては 粉体入口(5a1または5a2)と接続関係をもつ粉体 吸引側配管(5a3)の粉体吸引口(5a4)付近に逆 止弁(4a2)を取り付けることにより一旦粉体入口ま で吸引された粉体が圧縮空気供給工程の間に粉体吸引口 側に落下することを防止し、粉体入口にはいつも粉体が 存在する状況を作る。さらに、[図 3]に示すような 2筒式粉体空気輸送装置として2筒から交互に粉体を送 り出すことにより輸送を高速化することが出来る。

[0005]

【作用】以下に各図の作用をそれぞれ表にあらわして説 明する。各表は、粉体ポンプ駆動部に外部から与えられ るまたは粉体ポンプ駆動部自体が内部的に生ずる空気信 号(y1)が無い状態の始まりから有る状態の終わりま でで完結する、粉体ポンプ本体を駆動させる1サイクル 分に関するものである。表中、空気信号に関する「無」 とは空気信号が排気接続され出力側に残圧がない状態を 指す。また、空気入口(1a)が接続する手段に関する (-)とは圧縮空気供給手段または空気吸引手段のど ちらとも接続しないことを指す。また、[図 5及び 6] に於いて空気アクチュエーター作動バルブ(4ab L) (4abR) は空気アクチュエーター部は単動型ア クチュエーターであり、それと結合されるバルブ部は通 常閉型バルブであるものとして示す。 [図 1]の一点 鎖線枠(161)内に粉体ボンプ駆動部として示すもの は、[請求項1]の粉体ポンプ本体(91)を駆動する ための典型的な空気回路の一例である。 [表 1]は、 当該粉体ポンプ駆動部と粉体ポンプ本体(91)との関 係に於いて外部から与えられる空気信号(y1)の有無 に伴い空気出入口(1 a b)が外部の圧縮空気供給手段 (14) または空気吸引手段(13) のどちらと接続す るか、逆止弁(4a1)(4b1)がどのような開閉動 作となるか、その結果として粉体ポンプ本体がどのよう に作用するかを示したものである。1サイクルのうち空 気信号(y1)の非出力時間の長さが粉体ポンプ本体に

於ける粉体吸引工程の継続時間を決定し、出力時間の長さが粉体圧送工程の継続時間を決定する。

【0006】 [図 2]の一点鎖線枠(162)内に粉体ポンプ駆動部として示すものは、[請求項2]の粉体ポンプ本体(92)を駆動するための典型的な空気回路の一例である。 [表 2]は、当該粉体ポンプ駆動部と粉体ポンプ本体(92)との関係に於いて外部から与えられる空気信号(y1)の有無に伴い空気出入口(1ab)が外部の圧縮空気供給手段(14)または空気吸引手段(13)のどちらと接続するか、空気入口(1a)が圧縮空気供給手段(14)と接続するかしないか、逆止弁(4a1)(4b1)がどのような開閉動作となるか、その結果として粉体ポンプ本体がどのように作用するかを示したものである。

【0007】[図 3]の一点鎖線枠(163)内に粉体ポンプ駆動部として示すものは、[請求項6]の粉体ポンプ本体を駆動するための典型的な空気回路の一例である。[表 3]は、当該粉体ポンプ駆動部と相互の粉体ポンプ本体との関係に於いて内部的に生ずる空気信号(y1)の有無に伴い相互の空気出入口(1ab)が外部の圧縮空気供給手段(14)または空気吸引手段(13)のどちらと接続するか、それぞれの粉体ポンプ本体(91)に於いて実行される工程、その結果として2筒式粉体ポンプ全体としてどのように作用するかを示したものである。当該粉体ポンプ駆動部に於いて点線枠(18a)内に示す空気パルス発生回路は空気信号(y1)の非出力時間の長さと出力時間の長さを2つの遅延回路により任意に調整することを可能にする。

【0008】 [図 4]の一点鎖線枠(164)内に粉体ボンプ駆動部として示すものは、[請求項6]の粉体ボンプ本体を駆動するための典型的な空気回路の一例である。 [表 4]は、当該粉体ボンプ駆動部と相互の粉体ボンプ本体との関係に於いて内部的に生ずる空気信号(y1)の有無に伴い相互の空気出入口(1ab)が外部の圧縮空気供給手段(14)と接続されたことにより内部的な圧縮空気供給手段としての性格を持つものとなる空気蓄圧タンク(21)または同様に内部的な空気吸引手段(13)としての性格を持つものとなるエジェクターのどちらと接続するか、空気入口(1a)が圧縮空気供給手段(14)と接続するかしないか、それぞれの粉体ボンプ本体(91)に於いて実行される工程、その

結果として2筒式粉体ポンプ全体としてどのように作用するかを示したものである。また、[図 4]に示す粉体ポンプ本体に於いて左側に示す粉体ポンプ本体は[請求項7]の粉体が粉体吸引口(5a4)側に落下することを防止するための逆止弁(4a2)が取り付けられたものとして示している。

【0009】[図 5]の一点鎖線枠(165)内に粉 体ポンプ駆動部として示すものは、[請求項3]の粉体 ポンプ本体を駆動するための典型的な空気回路の一例で ある。 [表 5] は、図の例に於いてバルブ制御空気信 号切り換え弁(19b)の接続ごとに粉体ポンプ駆動部 に外部から与えられる空気信号 (y1)の有無に伴い空 気出入口(1ab)が圧縮空気供給手段(14)または 空気吸引手段(13)のどちらと接続するか、空気アク チュエーター作動バルブ (4abL) (4abR)相互 がどのような開閉動作となるか、その結果として粉体ポ ンプ本体がどのように作用するかを示したものである。 ここで、表の上半分は表中述べた(19b)の接続の一 つにより実行される粉体輸送方向の1サイクル分であ り、下半分は(19b)の接続の他の一つにより実行さ れるそれとは逆の粉体輸送方向の1サイクル分である。 【0010】 [図 6] の一点鎖線枠(166) 内に粉 体ポンプ駆動部として示すものは、[請求項4]の粉体 ポンプ本体を [請求項5] の制御を満足するように駆動 するための典型的な空気回路の一例である。 「表 6] は、図の例に於いてバルブ制御空気信号切り換え弁(1 9 b) の接続ごとに粉体ポンプ駆動部に外部から与えら れる空気信号(y1)の有無に伴い空気出入口(1a b)が圧縮空気供給手段(14)または空気吸引手段 (13)のどちらと接続するか、空気入口(1a)が圧 縮空気供給手段(14)と接続するかしないか、空気ア クチュエーター作動バルブ (4abL) (4abR)相 互がどのような開閉動作となるか、その結果として粉体 ポンプ本体がどのように作用するかを示したものであ る。ここで、表の上半分は表中述べた(19b)の接続 の一つにより実行される粉体輸送方向の1サイクル分で あり、下半分は(19b)の接続の他の一つにより実行 されるそれとは逆の粉体輸送方向の1サイクル分であ 3.

【表1】

空気信号 (y 1) の有無	無	有
(1ab)が接続する手段	(13)	(14)
逆止弁(4 a 1)の開閉動作	開く	閉じる
逆止弁(4 b 1)の開閉動作	関じる	関く
粉体ポンプ本体(91)の作用	(5 a 1)から吸引	(5 b 1) に吐出

空気侵号 (y1) の有無	無	有
(1gb) が接続する手段	(13)	(14)
(1 a) が接続する手段	(~)	(14)
逆止弁(4 a 1)の開閉動作	関く	関じる
逆止弁 (4 b 1) の開閉動作	閉じる	関く
粉体ポンプ本体(92)の作用	(5 a 1) から吸引	(5 b 1) に吐出

【表3】

空気信号 (y1) の有無	無	有
図左側の(1 a b)が接続する手段	(14)	(13)
図左側の(91)に於ける工程	(5 b 1) に吐出	(5 a 1) から吸引
図右側の(1 a b)が接続する手段	(13)	(14)
図右側の(91)に於ける工程	(5 a 1) から吸引	(5 b 1) に吐出
2 筒式粉体ポンプ本体全体の作用	(5 a 2) から吸引し	て (5 b 2) に吐出

【表4】

空気信号 (y 1) の有無	無	有
図左右の(1 a b)が接続する手段	(13)	(21)
図左右の(1 a)が接続する手段	(-)	(21)
図左右の(92)に於ける工程	(5 a 1) から吸引	(5 b 1) に吐出
2 留式粉体ポンプ本体全体の作用	両方の(5 a 1)から吸引	(5 b 2) に吐出

【表5】

(19b) が (P→A) (1	B→R)接続のとき		
空気信号 (y1) の有無	無	有	
バルブ制御空気信号(y 2)の有無	有	無	
パルブ制御空気信号(y3)の有無	無	有	
バルブ制御空気信号(y 4)の有無	有	無	
バルブ側御空気信号(y 5)の有無	無	有	
(4abL) のバルブ部期閉動作	閉じる	関く	
(4 a b R) のバルブ部開閉動作	開く	閉じる	
(1ab)が接続する手段	(13)	(14)	
粉体ポンプ本体(93)の作用	(5abR) から吸引	(5 a b L) に吐出	
(19b)が(P→B)(A→R)接続のとき			
空気信号(y1)の有無	無	有	
バルブ制御空気信号(y 2)の有無	有	無	
バルブ制御空気信号 (y 3) の有無	無	有	
パルプ制御空気信号(y4)の有無	無	有	
バルブ制御空気信号 (y 5) の有無	有	無	
(4abL) のバルブ部開閉動作	課く	閉じる	
(4abR) のバルブ部開閉動作	閉じる	題<	
(1ab)が接続する手段	(13)	(14)	
粉体ポンプ本体(93)の作用	(5abL) から吸引	(5abR) に吐出	

【表6】

(19b) が (P→A) (B-	(19b)が(P→A)(B→R)接続のとき				
空気信号(y1)の有無	無	無	有		
バルブ制御空気付号(y 2)の有無	有	有	無		
バルブ餌御空気信号(y 3)の有無	無	無	有		
パルブ制御空気信号(y 6)の有無	有	無	無		
パルブ創御空気信号(y 7)の有無	有	無	無		
パルブ制御空気信号(y 8)の有無	無	無	有·		
(4 a b L) 側 (1 a) の接続する手段	(-)	(-)	(-)		
(4 a b R) 倜 (1 a) の接続する手段	(-)	(-)	(14)		
(4abL) のバルブ部開閉動作	閉じる	閉じる	関く		
(4abR) のパルブ部開閉動作	58 <	閉じる	閉じる		
(1ab)が接続する手段	(13)	(14)	(14)		
粉体ポンプ本体(93)の作用	(5 a b R)	空気警圧	(5abL)		
	から吸引		に吐出		
(19b) が (P→B) (A-	→R) 接続のと	ŧ			
空気信号 (y1) の有無	無	無	有		
バルブ制御空気信号(y 2)の有無	有	有	無		
バルブ制御空気信号(y 3)の有無	無	無	有		
バルブ制御空気信号 (y 6) の有無	有	無	無		
パルブ制御空気信号(y 7)の有無	無	無	有		
バルブ制御空気信号(y 8)の有無	有	無	無		
(4 a b L) 側 (1 a) の接続する手段	(-)	(-)	(14)		
(4 a b R) 側(1 a)の接続する手段	(-)	(-)	(-)		
(4 a b L) のバルブ部関閉動作	開く	閉じる	閉じる		
(4 a b R) のバルブ部開閉動作	閉じる	閉じる	関く		
(1ab) が接続する手段	(13)	(14)	(14)		
粉体ポンプ本体(93)の作用	(5 a b L)	空気番圧	(5 a b R)		
	から吸引		に吐出		

[0011]

【実施例】柔軟な膜状の素材であるフィルターエレメント(31)が用いられる場合に取り付けるスペーサーは [図 1または2]では格子状の筒(81)を、また [図3]ではスパイラルスプリング(82)を用いている。これはパンチングメタル製の筒などでもよい。 [図 5または6]に於いてフィルターエレメント(32)は空気吸引工程で空気出入口(1ab)に吸いつけられることが、また粉体ポンプ本体(93または94)が水平に取り付けられるとき粉体チャンバー(6)に吸引される粉体の重量によって形状が重力方向に反り返ることがないだけの剛性を有しスペーサーが不要であるものとして示している。

【0012】(イ)[請求項1または2]記載の1筒式粉体空気輸送装置。

(ロ) 一端に粉体吸引口(5a4)、反対側の一端に粉体空気輸送装置の粉体入口(5a1)との接続口を構成する内側の管と、内側の管の粉体吸引口側の一端に空気吹き出し口、反対側の一端に空気供給口(1b)を構成する外側の管との2重管で作られた[図 4]に示す2重管式粉体吸引ノズル(12)。

以上が組み合わされたものに於いて、図では空気供給口 (1b)が空気吸引手段(13)であるエジェクターの 排気空気量を流量調整弁(22)により加減した粉体ボ ンプ駆動部の排気ボート(z1)との接続である例として示す、空気供給口(1b)が空気供給源と接続されたことを特徴とし、密閉された袋(112)のなかの粉体を吸引する用途に於いて2重管式粉体吸引ノズルの内側の管の粉体吸引口(5a4)から空気混じりの粉体を吸引する一方、外側の管の空気吹き出し口からはそれによって容積が減少する袋に減少分の容積を補う程度に空気を吹き出すことにより袋の密着を防止する方法。

【0013】[請求項1または2]記載の1筒式粉体空気輸送装置に於いて粉体ポンプ本体(91または92)を次のように改める。外側に空気出入口(1ab)を設けた筒状のボディ(2)の内側に筒状のフィルターエレメント(31または32)を通すことで両端に形成された両者の開口部に於いて片方の開口部にはめくら蓋を取り付け、残りの開口部には入口側逆止弁(4a1)と出口側逆止弁(4b1)を取り付けて、ボディの外側で空気出入口に始まる穴がボディの内側で空気室(7)に連絡するように組み立てた粉体ポンプ本体に於いて、入口側逆止弁の一次側は粉体入口(5a1)を、出口側逆止弁の二次側は粉体出口(5b1)を、相互の逆止弁が終端となって形成された空間は粉体チャンバー(6)を、またその外周側に形成された空間は空気室(7)を構成する。以上述べた1筒式粉体空気輸送装置。

【0014】[請求項1または2]記載の1筒式粉体空

気輸送装置に於いて粉体ポンプ本体(91または92)を構成する逆止弁(4a1または4b1)を[図 1]などに示すデュアルプレート逆止弁または[図 3]に示すボール逆止弁としたもの。

【0015】[請求項3または4または5] 記載の1筒 式粉体空気輸送装置に於いて粉体ポンプ本体(93または94)を構成する空気アクチュエーター作動バルブ (4abL)(4abR)に於いて粉体通路に関わるバルブ部の方式をボールまたはバタフライまたはゲートとしたもの。

【0016】[請求項1または2]記載の1筒式粉体空 気輸送装置の粉体ポンプ本体(91または92)に於い てボディ(2)がエルボー型であるもの。

【0017】(イ)[請求項1または2]記載の1筒式 粉体空気輸送装置。

(ロ)ー端に粉体ポンプ本体(91または92)の粉体入口(5a1)との接続口を構成し、残りの一端にくさび状の粉体吸引口(5a4)を構成するパイプ。

以上が組み合わされた、タンクに満たされた粉体の下層 の粉体をサンプリングする用途に於いてパイプ先端の粉体吸引口(5a4)を粉体の表層に突き刺した状態から 駆動を開始することにより自己掘削を行い、掘削した粉体を表層に排出しながらパイプ先端が粉体の下層に達するものである自己掘削型粉体サンプラー。

[0018]

【発明の効果】

(イ) 小型軽量

長時間掛けて大量の粉体を装置内部に吸引し一辺にこれを排出することで1サイクルが完了する装置は少なくとも粉体チャンバーが大型にならざるを得ないが、本発明は粉体吸引工程と粉体圧送工程とで構成される1サイクルを何度も繰り返すことにより同じ量を輸送する種類の装置であるため小型化が可能となる。さらにフィルターエレメントの内面側空間そのものが粉体チャンバーを構成し、その内面側空間容積の大半を占める構造により寸法を圧縮することが出来同時に軽量化を果たした。

(ロ)良好な粉体輸送条件

本発明の粉体ポンプ本体に於いて粉体チャンバーの内径 は粉体吸引側配管や粉体吐出側配管の内径と同一もしく はそれ以下にすることさえ可能であり、さらに粉体が粉 体チャンバーの中を直線的に通る構造により圧力損失や 摩擦を小さくすることが出来る。

(ハ)良好な設置条件

粉体の物性や輸送距離などの輸送条件を満足するかぎり に於いて粉体輸送配管のなかに於ける取り付け場所を選 ばず、末端から末端までの粉体輸送配管のどこに取り付 けることもできる。取り付け方向も自由度が高く、入口 側または出口側逆止弁の開閉動作に問題がない範囲でれ ば縦配管であっても水平配管であっても構わない。さら に空気アクチュエーター作動バルブを用いた粉体ポンプ 本体の場合は縦配管に用いられたとしても粉体の切り出しが良好となる。

(二)良好な保守性

相対的に重い粉体ボンプ本体は構造が単純であるので不 具合発生時にはその箇所を特定し易い。粉体ボンプ本体 側に問題がない場合は、軽い粉体ボンプ駆動部を取り外 して保守作業を行えば済む。

(ホ)双方向輸送

空気アクチュエーター作動バルブを用いた粉体ボンプ本 体を用いて可能となる。

(へ)多様な組み合わせ

粉体出口マニホールドを取り付けた2筒式とすることにより異種粉体の混合輸送を行うことが出来る、粉体入口マニホールドと粉体出口マニホールドを取り付けた2筒式とすることにより連続輸送が出来る、自己掘削型粉体サンプラーとすることが出来るなどの融通性が高い。

(ト)周辺設備の簡素化

一般的な粉体空気輸送装置では必要とされるサイクロン やバックフィルターなどの集塵設備が不要となる。

【図面の簡単な説明】

【図 1】は本発明[請求項1]の1筒式粉体空気輸送装置に於いて粉体ポンプ本体の部分断面図と粉体ポンプ 駆動部の空気回路例図である。

【図 2】は本発明[請求項2]の1筒式粉体空気輸送装置に於いて粉体ポンプ本体の部分断面図と粉体ポンプ 駆動部の空気回路例図である。

【図 3】は本発明[請求項6]の2筒式粉体空気輸送装置に於いて粉体ボンプ本体(91)を2筒用いて[請求項6]記載の(ハ)の組み合わせの粉体ボンプ本体としたものの部分断面図と粉体ボンプ駆動部の空気回路例図である。

【図 4】は本発明[請求項6]の2筒式粉体空気輸送装置に於いて粉体ボンプ本体(92)を2筒用いて[請求項6]記載の(ロ)の組み合わせの粉体ボンプ本体としたものの実施例図と粉体ボンプ駆動部の空気回路例図である。

【図 5】は本発明[請求項3]の1筒式粉体空気輸送装置に於いて粉体ポンプ本体の部分断面図と粉体ポンプ 駆動部の空気回路例図である。

【図 6】は本発明[請求項4または5]の1筒式粉体 空気輸送装置に於いて粉体ボンプ本体の部分断面図と粉 体ボンプ駆動部の空気回路例図である。

【図 7】はエジェクター式粉体吸引排出装置の実施例略図と駆動部(167)の空気回路図である。

【符号の説明】

(1ab) は空気出入口

(1a)は空気入口

(1b) は空気出口

(2)はボディ

(31)は膜状である筒状フィルターエレメント

(32)は剛性の高い筒状フィルターエレメント	(162)は粉体ポンプ駆動部の空気回路例
(4a1)は粉体入口側逆止弁	(163)は粉体ポンプ駆動部の空気回路例
(4a2)は粉体吸引口付近の逆止弁	(164)は粉体ポンプ駆動部の空気回路例
(4abL)は空気アクチュエーター作動バルブ	(165)は粉体ポンプ駆動部の空気回路例
(4abR)は空気アクチュエーター作動バルブ	(166)は粉体ポンプ駆動部の空気回路例
(4b1)は粉体出口側逆止弁	(167) はエジェクター式粉体吸引排出装置駆動部
(5a1) は粉体入口	の空気回路
(5a2)は統合された粉体入口	(17)は空気回路の逆止弁
(5a3)は粉体吸引側配管	(18a)は出力時間と非出力時間とが調整可能な空
(5a4)は粉体吸引口	気パルス発生回路
(5abL)は粉体出入口	(18b)は空気パルス発生器
(5abR)は粉体出入口	(19a)は通常(P→A)接続の4方弁
(5b1)は粉体出口	(19b)はバルブ制御空気信号切り換え弁
(5b2)は統合された粉体出口	(20)は急速排気弁
(5b3)は粉体吐出側配管	(21)は空気蓄圧タンク
(6))は粉体チャンバー	(22)は流量調整弁
(7)は空気室	(23)はアンド素子
(81)は格子状スペーサー	(U)はエジェクターの真空発生ポート
(82)はスパイラルスプリングであるスペーサー	(x1)は粉体ポンプ駆動部の粉体ポンプ本体駆動
(91)は1筒式粉体ポンプ本体	に関わるポート
(92)は空気入口が設けられた1筒式粉体ポンプ	(x1')は粉体ポンプ駆動部の粉体ポンプ本体駆動
本体	に関わるポート
(93)は1筒式粉体ポンプ本体	(x2) は粉体ポンプ駆動部のパージ空気供給に関
(94)は空気入口が設けられた1筒式粉体ポンプ	わるポート
本体	(x2')は粉体ポンプー駆動部のパージ空気供給に
(10a)は粉体入口マニホールド	関わるポート
(10a)は粉体入口マニホールド (10b)は粉体出口マニホールド	
(10b)は粉体出口マニホールド (111)は粉体入り開放容器	関わるポート (y1)は空気信号 (y2)はバルブ制御空気信号
(10b)は粉体出口マニホールド	関わるポート (y1)は空気信号 (y2)はバルブ制御空気信号 (y3)はバルブ制御空気信号
(10b) は粉体出口マニホールド(111) は粉体入り開放容器(112) は粉体入り袋(113) はタンク	関わるポート (y1)は空気信号 (y2)はバルブ制御空気信号 (y3)はバルブ制御空気信号 (y4)はバルブ制御空気信号
(10b)は粉体出口マニホールド (111)は粉体入り開放容器 (112)は粉体入り袋	関わるボート (y1)は空気信号 (y2)はバルブ制御空気信号 (y3)はバルブ制御空気信号 (y4)はバルブ制御空気信号 (y5)はバルブ制御空気信号
 (10b)は粉体出口マニホールド (111)は粉体入り開放容器 (112)は粉体入り袋 (113)はタンク (12)はノズル (13)は空気吸引手段 	関わるポート (y1)は空気信号 (y2)はバルブ制御空気信号 (y3)はバルブ制御空気信号 (y4)はバルブ制御空気信号 (y5)はバルブ制御空気信号 (y6)はバルブ制御空気信号
 (10b)は粉体出口マニホールド (111)は粉体入り開放容器 (112)は粉体入り袋 (113)はタンク (12)はノズル (13)は空気吸引手段 (14)は圧縮空気供給手段 	関わるポート (y1)は空気信号 (y2)はバルブ制御空気信号 (y3)はバルブ制御空気信号 (y4)はバルブ制御空気信号 (y5)はバルブ制御空気信号 (y6)はバルブ制御空気信号 (y7)はバルブ制御空気信号
 (10b)は粉体出口マニホールド (111)は粉体入り開放容器 (112)は粉体入り袋 (113)はタンク (12)はノズル (13)は空気吸引手段 (14)は圧縮空気供給手段 (15a)は通常(A→R)接続の3方弁 	関わるポート (y1)は空気信号 (y2)はバルブ制御空気信号 (y3)はバルブ制御空気信号 (y4)はバルブ制御空気信号 (y5)はバルブ制御空気信号 (y5)はバルブ制御空気信号 (y6)はバルブ制御空気信号 (y7)はバルブ制御空気信号 (y8)はバルブ制御空気信号
 (10b)は粉体出口マニホールド (111)は粉体入り開放容器 (112)は粉体入り袋 (113)はタンク (12)はノズル (13)は空気吸引手段 (14)は圧縮空気供給手段 (15a)は通常(A→R)接続の3方弁 (15b)は通常(P→A)接続の3方弁 	関わるボート (y1)は空気信号 (y2)はバルブ制御空気信号 (y3)はバルブ制御空気信号 (y4)はバルブ制御空気信号 (y5)はバルブ制御空気信号 (y6)はバルブ制御空気信号 (y7)はバルブ制御空気信号 (y7)はバルブ制御空気信号 (y8)はバルブ制御空気信号 (z1)はノズル (12)に対するパージ空気
 (10b)は粉体出口マニホールド (111)は粉体入り開放容器 (112)は粉体入り袋 (113)はタンク (12)はノズル (13)は空気吸引手段 (14)は圧縮空気供給手段 (15a)は通常(A→R)接続の3方弁 (15b)は通常(P→A)接続の3方弁 (15c)は通常開型の3方弁 	関わるボート (y1)は空気信号 (y2)はバルブ制御空気信号 (y3)はバルブ制御空気信号 (y4)はバルブ制御空気信号 (y5)はバルブ制御空気信号 (y5)はバルブ制御空気信号 (y6)はバルブ制御空気信号 (y7)はバルブ制御空気信号 (y8)はバルブ制御空気信号
 (10b)は粉体出口マニホールド (111)は粉体入り開放容器 (112)は粉体入り袋 (113)はタンク (12)はノズル (13)は空気吸引手段 (14)は圧縮空気供給手段 (15a)は通常(A→R)接続の3方弁 (15b)は通常(P→A)接続の3方弁 	関わるボート (y1)は空気信号 (y2)はバルブ制御空気信号 (y3)はバルブ制御空気信号 (y4)はバルブ制御空気信号 (y5)はバルブ制御空気信号 (y6)はバルブ制御空気信号 (y7)はバルブ制御空気信号 (y7)はバルブ制御空気信号 (y8)はバルブ制御空気信号 (z1)はノズル (12)に対するパージ空気

【図1】

【図2】

【図3】

【図4】

【図6】

【図7】

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開

特開平9一

(43)公開日 平成9年(.

(51) Int.CL ⁶ B 6 5 G 53/28 B 0 1 J 4/00 B 6 5 G 53/52	發別 <u>紀</u> 号 片内整理器号	PI B65G 53/28 B01J 4/00 105D B65G 53/52
		密査請求 京請求 茵求項の数7 吉面
(21)出願番号	特顯平7-264608	(71)出廢人 591256:135 小川 和利
(22)出版日	平成7年(1995)9月6日	静岡駅静岡小横田町7番19号 (72)発明者 小川 和利 静岡県静岡市横田町7番19号

(54) 【発明の名称】 粉体空気輸送装置

(57)【要約】

【目的】小型軽量で、取り付け条件が自由な、保守に関わる作業性が良く、双方向輸送も可能な粉体空気輸送装置とすることを目的とした。

【構成】ボディとフィルターエレメントとの両端の関口部に空気アクチェエーター作動バルブを取り付けて構成された粉体ボンブ本体の空気出入口(1ab)に紛体ボンブ駆動部の紛体ボンブ本体駆動に関わるボートを取り付ける。粉体ボンブ駆動部は空気出入口に対して空気の吸引と圧縮空気の供給を交互に行う報度空気アクチュエ

(2)

特開平9

【特許請求の範囲】

【請求項1】(イ)外側に空気出入口(1ab)を設け た筒状のボディ(2)の内側に筒状のフィルターエレメ ント(3]または32)を通すことで両端に形成された 両者の関口部に於いて片方の関口部には粉体入口側逆止 弁(4 a 1)を、残りの開口部には紛体出口側逆止弁 (4 b 1)を取り付けて、ボディの外側で空気出入口に 始まる穴がボディの内側で空気室(7)に連絡するよう に組み立てた紛体ポンプ本体 (91) に於いて、紛体入 口側道止弁の一次側は粉体入口(5al)を、粉体出口 側道止弁の二次側は粉体出口(5 b 1)を、相互の逆止 弁が終端となってフィルターエレメントの中心側に形成 された空間は紛体チャンバー(6)を、またその外周側 に形成された空間は空気室(7)を構成する。当該粉体 ポンプ零体 (91) に於いてフィルターエレメントが柔 款な膜状であるもの (31) が用いられるものに対して は、フィルターエレメントと空気室との間に多数の運気 孔またはスリットなどを有するスペーサー(81または 82)を挟んだろえで同様に組み立て、それをもって両 者間の通気性を確保すると共にフィルターエレメントの 空気室方向への移動端を限定する手段とする。

1

(ロ) ポート (x1) に於いて空気が吸引される工程と 圧縮空気が供給される工程とが交互に入れ替わるように 構成された粉体ポンプ駆動部。以上述べた粉体ポンプ本 体(91)の空気出入口(1ab)が紛体ポンプ駆動部 のボート(x))に接続されたものに於いて空気は、ボ ート (x 1) に於いて空気吸引工程のとき粉体入□→粉 体入□側逆止弁→粉体チャンバー→フィルターエレメン ト→空気室→空気出入口→ボート(x))の順に流れ、 このとき粉体入口から吸引する粉体を粉体チャンパーに 褶め、ボート(xl)に於いて圧縮空気供給工程のとき ポート(x1)→空気出入□→空気室→フィルターエレ メント→粉体チャンパー→紛体出口側逆止弁→紛体出口 の順に流れ、このとき空気は空気吸引工程のときに吸引 された粉体により目詰まりしたフィルターエレメントの 再生を行いそのまま粉体チャンバー側に通り抜けて粉体 を紛体出口方向に送り出す媒体となる。以上述べた粉体 輸送方向が固定である1筒式粉体空気輸送装置。

[図 1]

1) に接続され、同様に空気入口(1a 2) に接続されたものに於いて空気は、: に於いて空気吸引工程のとき粉体入□→ 弁→紛体チャンバー→フィルターエレメ 空気出入口→ポート (x1)の順に流れ 入口から吸引する粉体を粉体チャンバー (x1) に於いて圧縮空気供給工程のと 1)→空気出入□→空気室→フィルター。 体チャンバー→紛体出口側道止弁→紛体目 16 れ、当該空気は主として空気吸引工程の 粉体により目詰まりしたフィルターエレ 行い。同時にポート (x2)→空気入口: →→紛体出口側道止弁→紛体出口の順に は直接的なパージ空気として粉体を紛停し 出す媒体となる。以上述べた粉体輸送方I 1 筒式粉体空気輸送装置。 【語求項3】(イ) 「請求項1]記載の (91) に於いて取り付けた粉体入口側: 1) と粉体出口側逆止弁(4)1)の代 20 気アクチュエーター作動バルブ (4 a b R) を取り付けたものとして改められ、i 入口 (5abL) (5abR) が構成さ: 本体 (93)。

(ロ) ポート (x 1) に於いて空気吸引: 供給工程とが交互に入れ替わり、バルブ 出力ポートに於いてその入れ替わりと同 御空気信号が出力される紛体ポンプ駆動 (ハ) 粉体ポンプ本体 (93) の空気出, が紛体ポンプ駆動部のボート(x1)に 30 アクチュエーター作動バルブを構成する! ーター部とそれと結合するバルブ部とを: とき、バルブ部組互は一方のバルブ部が バルブ部が閉じるという相反する関閉跡に 空気アクチュエーター部相互のバルブ部 カポートが粉体ポンプ駆動部のバルブ部 カポートに接続されることにより完成す。 向が固定の1筒式粉体空気輸送装置の筒 (ニ)以上述べた範囲に於いて、ポート る何れか一つの工程をとったときその工具 【註求項2】(イ)「諸求項1】記載の粉体ポンプ家体 46 支にバルブ部組写の関関的作を入れ替え

3

てバルブ部が閉じる側の空気入口(1a)にだけはパージ空気が供給されるものとする。以上述べた粉体輸送方向がリバーシブルな1筒式粉体空気輸送装置。[図6]

【請求項5】 [請求項3または4] 記載の1筒式粉体空気輸送装置に於いて、ボート(x1)に於ける空気吸引工程または圧縮空気供給工程と空気アクチュエーター作動バルブ(4abL)(4abR)相互のバルブ部の関閉動作との関係を、

(イ)ボート(x1)に於いて空気吸引工程のとき バルブ部が関く側は(4abR)であるとき閉じる側は (4abL)である関係をケース1とし、関く側は(4 abL)であるとき閉じる側は(4abR)である関係 をケース2としたとき、

(ロ)ボート(x1)に於いて圧縮空気供給の前工程のとき

ケース1と2との双方に於いて(4abRと4abL) の両方のバルブ部が閉じ

(ハ)ボート(x 1) に於いて圧縮空気供給の後工程の とき

ケース1に於いてバルブ部が関く側は(4 a b L)であり閉じる側は(4 a b R)であり閉じる側は(4 a b L)である関係となるように改める。以上述べた、ボート(x 1)に於いて空気吸引工程のときと圧偏空気供給の後工程のときに空気アクチュエーター作動バルブ相互のバルブ部は一方が開くとき他方が閉じる関係の関閉動作となるように制御され、圧縮空気供給の前工程のとき双方が閉じる動作となるように制御される。以上述べた圧縮空気供給の前工程の間は空気室と粉体チャンバーが一時的 30 に空気蓄圧タンクを構成することを特徴とする。粉体輸送方向がリバーシブルな1筒式粉体空気輸送装置。

[図 6]

【請求項6】 [請求項1または2または3または4または5] 記載の紛体ポンプ本体を2筒並列に用いたものに 於いて、

(イ) 当該粉体ポンプ本体2筒とその粉体入口(5 a 1) 同士を共通の粉体入口(5 a 2) に統合する粉体入

□マニホールド(10a)との組み合わせ、または、 (ロ)当該粉体ポンプ本体2筒とその粉体出口(5b) (x1)と(x1)に於いて相互に異に入れ替わるように構成された粉体ボン式粉体ボンブ本体との関係に於いて、少に空気出入口(1ab)がボート(x1)がの空気出入口(1ab)がボート(x れることにより粉体ボンブ本体2筒に於る工程となるように駆動される2筒式粉に置。 [図 3]または、

(ホ)ボート(xl)に於いて空気吸引 10 供給の工程が交互に入れ替わるように標 ンプ駆動部と2筒式粉体ポンプを体とのい 少なくとも双方の空気出入口(lab): l)に接続されることにより粉体ポンプ て相互に同一の工程となるように駆動さ 空気輸送装置。

[2 4]

【請求項7】 [請求項1または2] 記載が固定である1 筒式粉体空気輸送装置に [請求項6] 記載の2 筒式粉体空気輸送 20 体輸送方向が固定であるものに於いて、 1または5 a 2) と接続関係をもつ紛体 a 3) の粉体吸引口(5 a 4) 付近に進 を取り付けた、空気吸引工程のときに一、吸引された粉体が圧縮空気供給工程とない間に落下することを防止するもの。[1] 【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は粉体空: するものである。

0 [0002]

【従来の技術】ここでは、様々な粉体空かで本発明に最も近いと考えられるものター式粉体吸引排出装置を取り挙げこれる。当該装置は【図 7】に簡略化してである。これは最上部に図の右上に一点ような範囲の空気回路(167)、即ち圧縮空気供給手段(14)と接続される接続の3方弁(15b)、空気パルス発動)、3方弁(15b)が(P→A)接続の気が供給され真空発生ポート(U)に真に

特開平9

5

5

弁を通ってエジェクターと空気蓄圧タンクに供給され る。このとき紛体チャンバーが負圧となることにより排 出弁が閉じる結果、関放型紛体容器(111)から空気 振じりの粉体が紛体吸引側配管(5a3)を通り粉体入 口から吸引され紛体チャンバーに入るが、フィルターエ レメントが粉体を空気室側に通すことを阻む一方で粉体 に混じって吸引される空気は空気空側に通し続けるので 粉体チャンバーには徐々に紛体が溜められる。フィルタ ーエレメントの濾過作用によりエジェクターの排気ボー トから大気に放出される紛扈は作業環境に支障ない程度 に少なく保ち続けられる。紛体チャンバーに粉体が満た される頃空気バルス発生器が3方弁(15b)の制御ボ ートに空気信号(y 1) を与えると3方弁は(A→R) 接続となり、エジェクターへの圧縮空気供給が停止され ると同時に空気整圧タンクの空気が急速排気弁を通って 空気室側に供給される際に生ずる空気パルスがフィルタ ーエレメントの紛体チャンバーに面する側に付着した粉 体のふるい落としを行い、またこのとき排出弁が開き粉 体チャンバーのなかの粉体を下側の供給相手であるタン ク(113)に排出する。以上が1サイクルの働きであ る。以上述べたエジェクター式粉体吸引排出装置に於い て問題となることは次のような点である。

(イ)設置スペースと重量

タンクの粉体投入口におおいかぶせるように取り付ける べく設計されているので、天弁ギリギリの高さで既に設 置されている室内タンクに後からこれを取り付ける場合 は、天弁をくり接いて設置せざるをえない。また、装置 は重いので一旦据付けた後の移動は容易ではない。

(ロ)限定された設置条件

粉体吸引側配管の未纏に設置されるべく設計されており、その働きは吸引した紛体を一定時間ごと間歇的に専 ち下側に排出するものであり、これを中継点として吸引 した紛体をさらにどこか別のところへ輸送出来るもので はない。したがって装置に関わる保守作業も供給相手の タンクの(113)上で行わざるを得ず高所作業の困難 と危険が伴う。もしくは重い装置を床面に降ろさなけれ ばならない。

(ハ) 限定された輸送方向

粉体の輸送方向が固定であり、双方向輸送が出来ない。 1]他に於いて粉体出口側道止弁(4b)供給相手であるタンクに過剰に輸送してしまったら過剰 40 たは「図 5または6]に於いてそれと

としたら粉体チャンバーの大きな容績に 大な空気が消費されるという効率問題が 体吸引工程の都度粉体入口(5 a l)まで を粉体排出工程の都度関放型粉体容器(してしまう無駄という問題も生ずる。

[0003]

【発明が解決しようとする課題】以上述 することを課題とした。

[0004]

【課題を解決するための手段】

(イ)設置スペースと重量を改善する手 本発明に於いてはフィルターエレメント 体が紛体チャンバー容荷の大半を形成する した。これを [図 1] により説明する。 ターエレメント(31)を筒状のボディ 通して両者の両端の関口部を粉体入口側 1)と粉体出口側逆止弁(4 a 1)とで たかもボディとフィルターエレメントとい されたフィルターエレメントの内面側空 バー(6)を構成し、その外周側空間に 機成する。その結果、 [図 7] に示す. 粉体吸引排出装置における粉体チャンバー にフィルターエレメントと空気室との高 ことが出来る。さらに、ボディ(2)の 入口(1ab)を設けたことにより、谺 をボディの構から空気出入口に直結して: 高さを低くすることが可能となる。また 分は軽量化を果たすことが出来る。

(ロ)限定された設置条件を改善する手 30 液体輸送に用いられる往復ポンプの動作 り入れ、吸引のみならず圧送にも適した。 により当該粉体輸送装置を粉体輸送配管 置出来るようにする。即ち、空気吸引工。 (1ab)が空気吸引手段(13)と接 1]他に於いては粉体入口側逆止弁(4 また[図 5または6]に於いてそれとしように制御される側の空気アクチュエー (4abLまたは4abR)のバルブ部 1]他に於いて粉体出口側逆止弁(4b たは「図 5または6]に於いてそれとし

特開平9

7

れと逆に圧送工程は空気出入口(1ab)が圧縮空気供給手段(14)と接続し、空気吸引工程で関いた側の粉体入口側逆止弁またはそれと同じ役割であるように制御された側のバルブ部が閉じ、同様に閉じた側の逆止弁またはバルブ部が開くことで行う。このとき圧縮空気がフィルターエレメント内面に付着した紛体のふるい落としを行うことでフィルターエレメントの再生を行い、[図

1または3または5]に於いてフィルターエレメントの外面側から内面側に通過した圧縮空気がそのまま粉体輸送媒体となって粉体の圧送を行い [図 2または4または6]に於いてフィルターエレメントの外面側から内面側に与えられる圧縮空気は主としてフィルターエレメントの途過効率の再生を行うことに供され、空気入口(1a)に供給されるパージ空気が主体となり紛体の圧送を行う。

(ハ) 限定された輸送方向を改善する手段 粉体ポンプ本体を [図 5または6] に示すように空気 アクチュエーター部相互の副御次第で任意の逆流防止方 向が可能となる空気アクチュエーター作動バルブ(4.a bし) (4abR) を取り付けたもの(93)(94) としたものに於いて、空気出入口(1 a b)に於ける工 程が入れ替わるときこれと同調して一方のバルブ部が開 くとき他方のバルブ部が閉じる関係を基調として空気ア クチュエーター部の作動を副御することにより行う。即 ち、空気出入口(1ab)が空気吸引工程であるとき仮 りに(4abL)のバルブ部が開き(4abR)のバル プ部が閉じるとしたとき、圧縮空気供給工程であるとき には(4abL)が閉じ(4abR)が開く関係となる よろに空気アクチュエーター部の作動を制御することで 粉体出入口(5abL)側から入り(5abR)側へ出 る固定の粉体輸送方向が叶えられる。さらに空気出入口 (lab) に於ける当該工程を変えないまま聞く側のバ ルブ部と閉じる側のバルブ部との関閉動作関係を逆転す ることが出来るように、空気アクチュエーター制御空気 信号通路の途中にバルブ制御空気信号切り換え弁(19 b) を取り付けてこれを操作することにより、紛体出入 口で示すとき(5abL)側から入り(5abR)側へ 出る方向と(5abR)側から入り(5abL)側へ出 る双方向の粉体輸送方向が叶えられる。以上は空気アク チェエーター作動バルブ相互のバルブ部の開閉動作が李 が可能となる意味で [0004]の(イ 化を果たす手段にも貢献する。

(ニ) バッチ式紛体輸送装置であること・ エジェクター式紛体吸引排出装置の紛体 との組対的な関係に於いて、本発明に於 満を小さくする。これは〔0004〕の 軽量化を果たす手段にも貢献する。エジ 吸引排出装置に於いて粉体吸引工程と紛 1サイクルで輸送する粉体の置と同じ量・ に本発明に於いてはサイクル数を多くす。 ろ。即ち、エジェクター式紛体吸引排出: 体吸引工程所要時間:粉体排出工程所要 20:1である1サイクルを5分間として の量を本発明に於いては例えば1サイク. 1として5分間に60サイクルで輸送す。 固定方向に粉体輸送を行う粉体空気輸送 粉体入口(5alまたは5a2)と接続 吸引側配管(5 a 3)の紛体吸引口(5 止弁(4 a 2)を取り付けることにより・ で吸引された紛体が圧縮空気供給工程の 側に落下することを防止し、粉体入口に 存在する状況を作る。さらに、 [図 3 2筒式粉体空気輸送装置として2筒から り出すことにより輸送を高速化すること: [0005]

【作用】以下に各図の作用をそれぞれ表明する。各表は、粉体ポンプ駆動部に外るまたは粉体ポンプ駆動部自体が内部的号(yl)が無い状態の始まりから有る。で完結する、粉体ポンプ本体を駆動さいたで完結するものである。表中、空気信号が排気接続され出力側に強った。また、空気入口(la)が接続するとは圧縮空気供給手段またにを1に於いて空気アクチュエーター作動し)(4abR)は空気アクチュエーターをあり、それと結合された。1に4の関連がよった。1に粉をボンブを動きを表して示す。114の解析を表しているものとして示す。114の解析を表しているものというない。114の解析を表しているものというない。114の解析を表しているものというない。114の解析を表しているものというない。114の解析を表している。114の解析を表している。114の解析を表している。114の解析を表している。114の解析を表している。114の解析を表している。114の解析を表している。114の解析を表している。114の解析を表している。114の解析を表している。114の解析を表している。114の解析を表している。114の解析を表している。114の解析を表している。114の作品を表している。114の解析を表している。114のののではなる。114ののでは

於ける粉体吸引工程の継続時間を決定し、出力時間の長さが紛体圧送工程の継続時間を決定する。

【0006】 [図 2] の一点鎖線枠(162) 内に粉体ポンプ駆動部として示すものは、[請求項2] の粉体ポンプ本体(92) を駆動するための典型的な空気回路の一例である。 [表 2] は、当該粉体ポンプ駆動部と粉体ポンプ本体(92) との関係に於いて外部から与えられる空気信号(y1)の有無に伴い空気出入口(1a)が外部の圧縮空気供給手段(14)または空気吸引手段(13)のどちらと接続するか、空気入口(1a)が圧縮空気供給手段(14)と接続するかしないか、逆止弁(4a1)(4)1)がどのような関閉動作となるか、その結果として粉体ポンプ本体がどのように作用するかを示したものである。

【0007】[図 3]の一点鎖線枠(163)内に粉体ポンプ駆動部として示するのは、[請求項6]の粉体ポンプ本体を駆動するための典型的な空気回路の一例である。[表 3]は、当該筋体ポンプ駆動部と相互の粉体ポンプ本体との関係に於いて内部的に生ずる空気信号(y1)の有無に伴い相互の空気出入口(1ab)が外部の圧縮空気供給手段(14)または空気吸引手段(13)のどちらと接続するか。それぞれの粉体ポンプ本体(91)に於いて実行される工程、その結果として2筒式粉体ポンプ全体としてどのように作用するかを示したものである。当該粉体ポンプ駆動部に於いて点線枠(18a)内に示す空気パルス発生回路は空気信号(y1)の非出力時間の長さと出力時間の長さを2つの遅延回路により任意に調整することを可能にする。

[0008] [図 4]の一点鎖線枠(164)内に粉体ポンプ駆動部として示するのは、[請求項6]の粉体 30ポンプ本体を駆動するための典型的な空気回路の一例である。[表 4]は、当該紛体ポンプ駆動部と相互の粉体ポンプ本体との関係に於いて内部的に生ずる空気信号(y1)の有無に伴い相互の空気出入口(1ab)が外部の圧縮空気供給手段(14)と接続されたことにより内部的な圧縮空気供給手段としての性格を持つものとなる空気蓄圧タンク(21)または同様に内部的な空気吸引手段(13)としての性格を持つものとなるエジェクターのどちらと接続するか、空気入口(1a)が圧縮空気供給手段(14)と接続するかしないか、それぞれの 40

* 結果として2筒式粉体ボンプ全体としてするかを示したものである。また、 [図体ボンプ本体に於いて左側に示す粉体ボ 求項?] の粉体が粉体吸引口(5 a 4) 1 とを防止するための逆止弁(4 a 2) が ものとして示している。

【0009】[図 5]の一点鎖線幹(体ポンプ駆動部として示すものは、〔語 ポンプ本体を駆動するための典型的な空! ある。[表 5]は、図の例に於いてバ 号切り換え弁(19h)の接続ごとに紛 に外部から与えられる空気信号 (y 1) (気出入口(1ab)が圧縮空気供給手段 空気吸引手段(13)のどちらと接続する チェエーター作動バルブ(48りL)(がどのような開閉動作となるか、その結: ンプ本体がどのように作用するかを示し、 ことで、表の上半分は表中述べた(19 つにより実行される粉体輸送方向の1サ 20 り、下半分は(19))の接続の他の一 れるそれとは逆の粉体輸送方向の1サイ 【0010】 [図 6]の一点鎖線幹(体ポンプ駆動部として示すものは、〔語 ボンブ本体を [詰求項5] の制御を満足 するための典型的な空気回路の一例であ は、図の例に於いてバルブ制御空気信号 9 b) の接続どとに粉体ポンプ駆動部に! れる空気信号(y1)の有無に伴い空気 b) が圧縮空気供給手段(14)またば (13) のどちらと接続するか、空気入 縮空気供給手段(14)と接続するかし: クチュエーター作動バルブ (4 a b し) 互がどのような開閉動作となるか、その ポンプを体がどのように作用するかを示 る。とこで、表の上半分は表中述べた(の一つにより実行される紛体輸送方向の あり 下半分は (19)) の接続の他の されるそれとは逆の粉体輸送方向の1サ る。

[表]

特開平9

12

<u>11</u>

A-1-44- (4) A-44-44		有
空気信号(31)の有触	.TG,	H
(lob) が接続する手段	(13)	(14)
(1 a) が接続する手段	(-)	(14)
逆止弁 (4 a 1) の陽閉動作	98 <	閉じる
選止弁(4 b 1)の閉閉動作	間じる	1948 <
粉休ポンプ本体(82)の作用	(5 a l) から吸引	(561)に独出

[表3]

空気信号(y 1)の有無	無	有
国左側の(1 a b)が接続する手段	(14)	(13)
図左側の(21)に於ける工程	(5 b 1) に吐出	(501) から受引
関右側の (lab) が接続する手段	{13}	(14)
図右側の(91)に放ける工程	(5 a 1) から吸引	(561) に性間
2 博式粉体ポンプ本体金体の作用	(5 a 2) から吸引し	て (5 b 2) に吐出

【表4】

空気信号 (y 1) の有触	無	有
岡左右の(Lab)が投載する手段	(13)	(21)
固定右の(1 a)が接続する手段	(-)	(21)
因左右の(92)に於ける工程	(5 a 1) から吸り	(561) 化吐出
2 協式粉体ポンプ本体全体の作用	魔方の(5 e 1)から吸引	(562) に吐出

【表5】

•		
(19b) Ø (P→A) (I	3 → R 〉接続のとき	
空気信号(y 1)の有無	無	有
バルブ制御空気信号 (y 2) の有無	有	無
パルブ制御空気信号(y 3)の有熱	無	有
バルブ解仰空気信号(y 4)の有無	有	無
バルブ制御空気信号(y 5)の有無	無	有
(4 a b L)のバルブ部間関動作	関じる	いない。
(4 a b R) のパルブ部間頭動作	開く	関じる
(lab) が接続する手段	(13)	(14)
粉体ポンプ本体(93)の作用	(5 a b R) か多吸引	(SabL) に独街
(19ь)が(Р→В) (A→R)接続のとき	
空気信号 (y 1) の有性	無	有
バルブ制御空気信号(g2)の育無	有	**
パルブ伽柳空気信号(ょう)の有無	騺	有
パルブ伽舞空気団号(y 4)の有無	無	有
パルブ新御空気信号(y 5)の有無	有	煮
(4 a b L) のバルブ部関語動作	関く	関じる
(4abR) のパルブ部期間動作	87 8 8	関く
(lab) が鉄崎する手段	(13)	(14)
粉鉢ポンプ本体(93)の作用	(5 a b L) から吸引	(5abR) に吐出

14

13

D			*-
(19b) が (P→A) (B→	R)接続のと	.	
空気質号 (y 1) の有無	無	無	有
パルブ郁御空気包⇒(y 2)の有無	有	存	無
パルブ制御空気信号(ょ3)の育無	無	急	有
パルブ飢饉空気信号(y6)の有無	有	無	炁
バルブ制御空気包号(y7)の有無	有	無	無
パルブ制御空気信号(y 8)の有無	無	癥	有
[4 m b L) 例 (la) の扱続する手段	(-)	(-)	(-)
(4 a b R) 側 (1 a) の接続する手段	(-)	(-)	(14)
(4 a b L) のバルブ密開閉動作	罰じる	領じる	閉く
(4gbR) のパルブ部間朝鮮作	歸く	思じる	閉じる
(1 a b) が接続する手段	(13)	(14)	(14)
粉体ポンプ本体(93)の作用	(5 a b R)	空気養圧	(5 a b L)
	から吸引		に吐出
(19b) M (P→B) (A-	→R)接続のと	9	
空気信号(y1)の有無	無	無	有
バルブ制御空気情号 (y 2) の有無	奪	有	無
メルブ制御空気信号(y 9)の有無	無	無	有
パルプ制御空気信号(y 6)の有無	有	無	無
パルプ制御空気気号(ァ?)の有無	無	無	有
パルブ制舞空気信号(y 8)の有無	有	無	無
(くabl) 側 (1 a) の接続する手段	(-)	(-)	(14)
(4abR) 側(1a)の壁続する手段	(-)	(-)	(-)
(4 a b L) のパルブ部関策動作	題く	閉じる	関じる
(4 a b R) のベルブ部開閉動作	閉じる	閉じる	(現く
(1ab) が接続する手段	(19)	(14)	(14)
粉体ポンプ本体 (98) の作用	(BebL)	空気装圧	(5 A b R)
	から吸引		に発出

[0011]

【実能例】柔軟な膜状の素材であるフィルターエレメント(31)が用いられる場合に取り付けるスペーサーは [図 1または2]では格子状の筒(81)を、また [図3]ではスパイラルスプリング(82)を用いている。これはパンチングメタル製の筒などでもよい。 [図5または6]に於いてフィルターエレメント(32)は空気吸引工程で空気出入口(1ab)に吸いつけられるととが、また粉体ボンプ本体(93または94)が水平に取り付けられるとき粉体チャンパー(6)に吸引される粉体の重量によって形状が重力方向に反り返ることがないだけの剛性を有しスペーサーが不要であるものとして示している。

[0012](イ) 「請求項1または2]記載の1箇式 46 た両者の関门部に於いて旨方の関门部にi

ンプ駆動部の排気ボート(21)との接て示す、空気供給口(1b)が空気供給ことを特徴とし、密閉された袋(112 を吸引する用途に於いて2重管式粉体吸の管の粉体吸引口(5 a 4)から空気混引する一方、外側の管の空気吹き出し口って容積が減少する袋に減少分の容積をでき出すことにより袋の密音を防止す【0013】[請求項1または2]記載気輸送装置に於いて粉体ボンプを体(9を次のように改める。外側に空気出入口けた筒状のボディ(2)の内側に筒状のメント(31または32)を通ずことではあるの脚口部に於いて骨方の関口部に

16

<u>15</u>

気輸送装置に於いて粉体ポンプ本体(91または92) を構成する逆止弁(4 a l または4 b l)を [図 l] などに示すデュアルプレート逆止弁または [図 3] に 示すボール逆止弁としたもの。

[10015] [請求項3または4または5]記載の1筒 式紛体空気輸送装置に於いて粉体ポンプ本体(93また は94)を構成する空気アクチュエーター作動バルブ (4abL) (4abR) に於いて紛体通路に関わるバ ルブ部の方式をボールまたはバタフライまたはゲートと したもの。

【①①16】「請求項1または2]記載の1筒式紛体空 気輸送装置の鉛体ポンプ本体(91または92)に於い てボディ (2) がエルボー型であるもの。

【0017】(イ) 「請求項1または2] 記載の1筒式 粉体空気輸送装置。

(ロ) - 鑑に紛体ポンプ本体 (91または92) の粉体 入□ (5 a 1) との接続□を構成し、残りの一端にくさ び状の粉体吸引口(5a4)を構成するパイプ。

以上が組み合わされた、タンクに満たされた粉体の下層 の紛体をサンプリングする用途に於いてパイプ先端の粉 20 体吸引口(5 a 4)を粉体の表層に突き刺した状態から 駆動を開始することにより自己繊削を行い、繊削した粉 体を表層に排出しながらバイブ先端が紛体の下層に達す るものである自己繊削型紛体サンプラー。

[0018]

【発明の効果】

(イ) 小型軽量

長時間掛けて大量の粉体を装置内部に吸引し一辺にこれ を排出することで!サイクルが完了する装置は少なくと も紛体チャンバーが大型にならざるを得ないが、本発明 30 したものの部分断面図と紛体ボンブ駆動 は紛体吸引工程と粉体圧送工程とで構成される1サイク ルを何度も繰り返すことにより同じ量を輸送する種類の 装置であるため小型化が可能となる。さらにフィルター エレメントの内面側空間そのものが紛体チャンバーを標 成し、その内面側空間容積の大半を占める標準により寸。 法を圧縮することが出来同時に軽置化を果たした。

(ロ)良好な紛体輸送条件

本発明の粉体ポンプ本体に於いて粉体チャンバーの内径 は紛体吸引側配管や粉体吐出側配管の内径と同一もしく はそれ以下にすることさえ可能であり。さらに舒体が粉。40

本体の場合は縦配管に用いられたとして しが良好となる。

(ニ) 良好な保守性

相対的に重い紛体ポンプ本体は標準が単 具合発生時にはその箇所を特定し易い。』 側に問題がない場合は、軽い粉体ポンプ して保守作業を行えば済む。

(水) 双方向输送

空気アクチュエーター作動バルブを用い、 10 体を用いて可能となる。

(へ)多様な組み合わせ

粉体出口マニホールドを取り付けた2階 より異種粉体の混合輸送を行うことが出 マニホールドと紛体出口マニホールドを) 式とすることにより連続輸送が出来る。

サンプラーとすることが出来るなどの融 (ト) 周辺設備の簡素化

一般的な粉体空気輸送装置では必要とさ やバックフィルターなどの集座設備が不 【図面の簡単な説明】

【図 1】は本発明[請求項1]の1篇: 装置に於いて紛体ポンプ本体の部分断面 駆動部の空気回路例図である。

【図 2】は本発明[請求項2]の1篇 装置に於いて紛体ポンプ本体の部分断面 駆動部の空気回路例図である。

【図 3】は本発明[請求項6]の2筒 装置に於いて紛体ポンプ本体(91)を 図である。

【図 4】は本発明[請求項6]の2篇 装置に於いて紛棒ポンプ本体 (92)を 永項6]記載の(ロ)の組み合わせの統 したものの実施例図と粉体ポンプ駆動部 である。

【図 5】は本発明[請求項3]の1筒: 装置に於いて紛体ポンプ本体の部分断面 駆動部の空気回路例図である。

【図 6】は本楽明「諸求項4または5

	(10)		特開平9
17	` '		18
(32) は剛性の高い筒状フィルターエレメント		(162)は紛体ポンプ駆動部の空気
(4 a 1) は紛体入口側道止弁		(163)は紛体ポンプ駆動部の空気
(4 a 2) は紛体吸引口付近の逆止弁		(164)は紛体ポンプ駆動部の空気
(4 a b L) は空気アクチュエーター作動パルブ		(165)は紛体ポンプ駆動部の空気
(4 a b R) は空気アクチュエーター作動バルブ		(166	〉は紛体ポンプ駆動部の空気
(4 b 1) は紛体出口側道止弁		(167)はエジェクター式粉体吸引!
(5 a l) は紛体入口		の空気回路	{
(5 a 2) は統合された紛体入口		(17)は空気回路の逆止弁
(5 a 3) は紛体吸引側配管		(18a)は出力時間と非出力時間と:
(5 a 4) は紛体吸引□	16	気パルス発	生回路
(5 a b L) は紛体出入口		(18b)は空気パルス発生器
(5ahR) は紛体出入口		(19a) は通常 (P→A) 接続の4°
(5 b 1) は紛体出口		(19b) はバルブ制御空気信号切り!
(5 b 2) は統合された紛体出口		(20)は急速排気弁
(5 b 3) は紛体吐出側配管		(21)は空気菩圧タンク
(6) は紛体チャンバー		(22)は流置調整弁
(?)は空気室		(23)はアンド素子
(81) は格子状スペーサー		(U) はエジェクターの真空発生:
(82)はスパイラルスプリングであるスペーサー	•	(x1) は紛体ポンプ駆動部の紛体:
(91)は1筒式粉体ポンプ本体	20	に関わるが	← ト
(92)は空気入口が設けられた1筒式粉体ポンプ	•	(x1 ⁻)は紛体ポンプ駆動部の紛体:
本体		に関わるが	〈ート
(93)は1筒式粉体ポンプ本体		(x2)は紛体ポンプ駆動部のバー
(94)は空気入口が設けられた1筒式粉体ボンブ	•	わるボート	
本体		(x2)は紛体ポンプ-駆動部のバー
(10a) は紛体入口マニホールド		関わるボー	^ F
(10b)は紛体出口マニホールド		(y l)は空気信号
(111)は紛体入り開放容器		{y2)はバルブ制御空気信号
(112)は紛体入り袋		(y3)はバルブ制御空気信号
(113) はタンク	30	(y4)はバルブ制御空気信号
(12) はノズル		(y5)はバルブ制御空気信号
(13)は空気吸引手段		(y6)はバルブ制御空気信号
(14)は圧縮空気供給手段		(y 7)はバルブ制御空気信号
(15a)は通常(A→R)接続の3方弁		{y8)はバルブ制御空気信号
(15b)は通篤 (P→A)接続の3方弁		(z 1) はノズル (12) に対
(15c)は通信関型の3方弁		供給に関す	つるボート
(15d) は通原関型の3方弁		{ z 2)は排気ポート
(161)は紛体ポンプ駆動部の空気回路例			

(11) 特開平9

[図1]

(12) 特開平9

[図3]

(13) 特開平9

[図4]

(14) 特開平9 [図5]

(15) 特開平9

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-071325

(43) Date of publication of application: 18.03.1997

(51)Int.CI.

B65G 53/28 B01J 4/00 B65G 53/52

(21)Application number: 07-264608

(71)Applicant: OGAWA KAZUTOSHI

(22)Date of filing:

06.09.1995

(72)Inventor: OGAWA KAZUTOSHI

(54) PNEUMATIC POWDER MATERIAL TRANSPORTING DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To miniaturize a pneumatic powder material transporting device so as to reduce the weight thereof by inserting a filter element inside of a body, and fixing each opening part of both ends thereof with a powder material inlet side check valve and a powder material outlet side check valve, and providing an air port at a barrel part of a body.

SOLUTION: A primary side of a powder material inlet side check valve 4a1 forms a powder material inlet 5a1, a secondary side of a powder material outlet side check valve 4b1 forms a powder material outlet 5b1, a space formed by the ends of both the check valves in the center side of a filter element 31 forms a powder material chamber 6, and a space formed outside thereof forms an air chamber 7. In a powder material pump main body 91 using a filter element 31 made of the thin film, a hole, which is started outside of a body 2 at an air port 1ab, is communicated with the air chamber 7 inside of the body 2 through a spacer 81 having multiple ventilation holes. A powder material pump driving unit 161 is formed so

that a process for sucking the air with a pump x1 and a process for supplying the compressed air are switched each other.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

Searching PAJ Page 2 of 2

[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

- (19) Japanese Patent Office (JP)
- (12) Kokai Patent Gazette (A)

(11) Kokai No.: 9[1997]-71,325

(43) Kokai Date: March 18, 1997

EARLY DISCLOSURE [Unexamined Patent Application]

(51) Intl. Cl. ⁶ :	Identification Code:	Office Ref:		FI	Technology Display Location
B 65 G 53/28 B 01 J 4/00 B 65 G 53/52	105		B 65 G B 01 J B 65 G	53/28 4/00 53/52	105D
No Examinations Re	quested	Num	ber of Cla	ims: 7;	document (total: 16 pages)
(21) Application No.	:	7[199	95]-264,60	08	
(22) Application Dat	e:	September 6, 1995			
(71) Applicant:		591256435 K. Ogawa 7-19 Yokota-machi Shizuoka City, Shizuoka Prefecture			
(72) Inventor:		7-19	gawa Yokota-n uoka City,		ka Prefecture

(54) [Title of the Invention]

POWDER AND AIR CONVEYING APPARATUS

(57) [Abstract]

[Object] To provide a powder and air conveying apparatus that is small and lightweight, flexible with regard to installation conditions, easy to maintain, and that enables two-way conveying.

[Constitution] A port involved in driving the powder pump main body of a powder pump driving unit is attached to an air in-and-out opening (1ab) of the powder pump main body constructed by attaching air actuated operating valves to the openings at both ends of a body and a filter element. The powder pump driving unit controls the opening and closing of the air actuated operating valves every time the suction of air and the feeding of compressed air are performed alternately by the air in-and-out opening, and performs the suction and pressure-conveying of a powder alternately in a powder chamber at the center of the filter element.

[Scope of the Patent Claim(s)]

[Claim 1]

(a) In a powder pump main body (91) assembled by inserting a cylindrical filter element (31 or 32) inside a cylindrical body (2) provided with an air in-and-out opening (1ab) to the outside, and attaching a powder inlet-side check valve (4a1) to one opening and a powder outletside check valve (4b1) to the remaining opening in the openings of said two members formed at both ends, thus arranging for a hole starting in the air in-and-out opening to the outside of the body to communicate with an air chamber (7) inside the body, the primary side of the powder inlet check valve constitutes a powder inlet (5a1), the secondary side of the powder outlet check valve constitutes a powder outlet (5b1), the space formed at the center of the filter element constitutes a powder chamber (6) with the two check valves as closing ends, and the space formed on the outer circumference thereof constitutes the air chamber (7). When a flexible-film filter element (31) is used in said powder pump main body (91), the main body is assembled in a similar manner after placing a spacer (81 or 82) with a large number of air through-holes or slits between the filter element and the air chamber, to be used as a means of ensuring air permeability between the two as well as limiting the moving edge of the filter element toward the air chamber.

(b) A powder pump driving unit arranged in such a manner that the step of air being sucked in and the step of compressed air being fed are alternated at a port (x1). In a system where the air in-and-out opening (1ab) of the powder pump main body (91) described above is connected to the port (x1) of the powder pump driving unit, the air flows in the order: powder inlet \rightarrow powder inlet check valve \rightarrow powder chamber \rightarrow filter element \rightarrow air chamber \rightarrow air inand-out opening \rightarrow port (x1) when the step of sucking air is underway at the port (x1), at which time the powder sucked in from the powder inlet is collected in the powder chamber; and when the step of feeding compressed air is underway at the port (x1), the air flows in the order: port $(x1) \rightarrow air in-and-out opening \rightarrow air chamber \rightarrow filter element \rightarrow powder chamber \rightarrow powder$ outlet check valve → powder outlet, at which time the air regenerates the filter element which has been clogged by the powder sucked in during the air suction step, and passes through the powder chamber as-is, working as a medium that directs the powder toward the powder outlet. A one-cylinder-type powder and air conveying apparatus installed in the powder conveying direction as described above. [Figure 1]

[Claim 2]

- (a) A powder pump main body (92) modified by providing an air inlet (1a) in the middle between the secondary side of the powder inlet check valve (4a1) and the filter element fixing part on said check valve side in the powder pump main body (91) of [Claim 1].
- (b) A powder pump driving unit arranged in such a manner that the step of air being sucked in and the step of compressed air being fed are alternated at a port (x1), and that the compressed air feeding step is performed at a port (x2) when the compressed air feeding step is underway at the port (x1). In a system where the air in-and-out opening (1ab) of the powder pump main body (92) described above is connected to the port (x1) of the powder pump driving

unit, and similarly the air inlet (1a) is connected to the port (x2), the air flows in the order: powder inlet \rightarrow powder inlet check valve \rightarrow powder chamber \rightarrow filter element \rightarrow air chamber \rightarrow air in-and-out opening \rightarrow port (x1) when the air suction step is underway at the port (x1), at which time the powder sucked in from the powder inlet is collected in the powder chamber; and when the compressed air feeding step is underway at the port (x1), the air flows in the order: port (x1) \rightarrow air in-and-out opening \rightarrow air chamber \rightarrow filter element \rightarrow powder chamber \rightarrow powder outlet check valve \rightarrow powder outlet, and said air mainly regenerates the filter element which has been clogged by the powder sucked in during the air suction step, and at the same time flows in the order: port (x2) \rightarrow air inlet \rightarrow powder chamber \rightarrow powder outlet check valve \rightarrow powder outlet, working as direct purge air to serve as a medium that directs the powder toward the powder outlet. A powder and air conveying apparatus installed in the powder conveying direction as described above. [Figure 2]

[Claim 3]

- (a) A powder pump main body (93) modified with the attachment of air actuated operating valves (4abL) and (4abR), respectively, in place of the powder inlet check valve (4a1) and powder outlet check valve (4b1) in the powder pump main body (91) of [Claim 1], and provided with powder in-and-out openings (5abL) and (5abR) at both ends.
- (b) A powder pump driving unit in which the air suction step and the compressed air feeding step are alternated at a port (x1), and a valve control air signal that correlates with the alternation is outputted at the output port of the valve control air signal.
- (c) The scope of a one-cylinder-type powder and air conveying apparatus installed in the powder conveying direction, completed in that the air in-and-out opening (lab) of the powder pump main body (93) is connected to the port (x1) of the powder pump driving unit, and in that,

when the air actuated operating valve is described by dividing it into the air actuator part and the valve part coupling therewith, the input ports of the valve control air signals of both air actuated parts are connected to the output ports of the valve control air signals of the powder pump driving unit so that both valve parts will perform mutually opposing opening and closing operations, such that when one valve part opens, the other valve part closes.

(d) In the above-mentioned scope, a valve control air signal switchover valve (19b) that can switch-over the opening and closing operations of both valve parts without changing the step when one of the steps at the port (x1) is being taken, is provided. A one-cylinder-type powder and air conveying apparatus that is reversible in the powder conveying direction as described above. [Figure 5]

[Claim 4] When the compressed air feed step is underway at port (x1) in a powder pump main body (94) modified from the powder pump main body (93) in the one-cylinder-type powder and air conveying apparatus of [Claim 3] with the provision of air inlets (1a), respectively, in the middle sections between each of the air actuated operating valves (4abL) and (4abR) and the affixing parts at both ends of the filter element, purge air is to be fed only to the air inlet (1a) on the valve closing side, at least throughout said step. A one-cylinder powder and air conveying apparatus that is reversible in the powder conveying direction as described above. [Figure 6]

[Claim 5] In the one-cylinder-type powder and air conveying apparatus of [Claim 3 or Claim 4], the relationship between the air suction step or compressed air feeding step at the port (x1) and the opening and closing operations of the valve parts of the air actuated operating valves (4abL) and (4abR) is modified as follows:

(a) when the relationship that the valve part of (4abL) closes when the valve part of (4abR) opens during the air suction step at the port (x1) is referred to as case 1, and the

خار خمر relationship that the opening side is (4abL) and the closing side (4abR) is referred to as case 2,

- (b) the valve parts of both (4abR) and (4abL) close in both case 1 and case 2 when the early stage of the compressed air feeding step is underway at the port (x1), and
- (c) the valve opening side is (4abL) and the closing side is (4abR) in case 1, and the opening side is (4abR) and the closing side is (4abL) in case 2, when the later stage of the compressed air feeding step is underway at the port (x1). When the air suction step is underway and when the later stage of the compressed air feeding step is underway at the port (x1), as mentioned above, the valve parts of both air actuated operating valves are controlled so as to operate in the relationship that when one opens, the other closes, and when the early stage of the compressed air feeding step is underway, they are controlled such that both valves close. A one-cylinder-type powder and air conveying apparatus that is reversible in the powder conveying direction, characterized in that during the early stage of the compressed air feeding step, as mentioned above, the air chamber and powder chamber temporarily constitute an air repressurization tank. [Figure 6]

[Claim 6] A two-cylinder-type powder pump main body using two units of the powder pump main body of [Claim 1, Claim 2, Claim 3, Claim 4, or Claim 5] arranged in parallel, which is based on one combination selected from among:

- (a) a combination of two of said powder pump main bodies and a powder inlet manifold (10a) that integrates their powder inlets (5a1) into a common powder inlet (5a2),
- (b) a combination of two of said powder pump main bodies and a powder outlet manifold (10b) that integrates their powder outlets (5b1) into a common powder outlet (5b2), and
- (c) a combination of two of said powder pump main bodies and both the powder inlet manifold (10a) and powder outlet manifold (10b).

- (d) A two-cylinder-type powder and air conveying apparatus that is operated so as to run mutually differing steps in the two powder pump main bodies with at least one of the air in-and-out openings (1ab) connected to a port (x1), and the other air in-and-out opening (1ab) connected to a port (x1') in the relationship between the two-cylinder-type powder pump main body and a powder pump driving unit arranged in such a way that mutually differing steps are alternated at the ports (x1) and (x1'), i.e., the compressed air feeding step at the port (x1') when the air suction step is underway at the port (x1) and the air suction step at the port (x1') when the compressed air feeding step is underway at the port (x1) [Figure 3], or
- (e) A two-cylinder-type powder and air conveying apparatus that is operated so as to run the same step in the two powder pump main bodies with both of the air in-and-out openings (1ab) connected to a port (x1) in the relationship between the two-cylinder-type powder pump main body and a powder pump driving unit arranged in such a way that the air suction step and compressed air feeding step are alternated at the port (x1). [Figure 4]

[Claim 7] In the one-cylinder-type powder and air conveying apparatus of [Claim 1 or Claim 2] wherein the powder conveying direction is fixed, or in the two-cylinder-type powder and air conveying apparatus of [Claim 6] wherein the powder conveying direction is fixed, a system wherein a check valve (4a2) is attached near a powder intake opening (5a4) of a powder suction tube (5a3) connected to the powder inlet (5a1 or 5a2), which prevents the powder sucked each time into the powder inlet during the air suction step from dropping toward the powder intake opening in a transition period to the compressed air feeding step. [Figure 4]

[Detailed Description of the Invention]

[0001]

[Area of Industrial Application] The present invention pertains to a powder and air

conveying apparatus.

[0002]

[Conventional Techniques] Here, an ejector-type powder suction and discharge apparatus has been chosen as the type thought to be closest to the present invention among the various powder and air conveying apparatuses that are currently available, and this apparatus will be described below. Said apparatus has the structure shown in simplified form in [Figure 7]. In this apparatus, an air circuit (167) of the scope shown in the dot-and-dash frame at the top right of the figure, i.e., a scope made up of a three-way valve (15b) usually in $(P \rightarrow A)$ connection which connects a port (P) to a compressed air feed means (14), an air pulse generator (18b), an ejector that is an air suction means (13) that feeds compressed air when the three-way valve (15b) is in $(P \rightarrow A)$ connection, and generates a vacuum in a vacuum generating port (U), and an air repressurization tank (21) to store the compressed air via a quick exhaust valve (20) during (P \rightarrow A) connection, is located at the top; its under-portion is made up of an air chamber (7) to be connected with a port (x1), a filter element (32), a powder chamber (6), a powder inlet (5a1) with an attached powder inlet check valve (4a1), and a discharge valve corresponding to a powder outlet check valve (4b1) in this order; and this system works as follows. When the system is initially connected to the compressed air feed means (14), the air is fed to the ejector and the air repressurization tank through the three-way valve in $(P \rightarrow A)$ connection. At that time, a negative pressure is created in the powder chamber which closes the discharge valve and, as a result, powder mixed with air is sucked from an open powder vessel (111) and enters the powder chamber from the powder inlet through a powder intake tube (5a3), but the air being sucked in that is mixed with the powder continues to pass into the air chamber while the filter element keeps the powder from passing into the air chamber, thus the powder gradually accumulates in

the powder chamber. The filtering action of the filter element continues to keep the dust emitted into the atmosphere from the exhaust port of the ejector at a low level that is not detrimental to the working environment. If the air pulse generator feeds the control port of the three-way valve (15b) an air signal (y1) around the time the powder is being filled into the powder chamber, the three-way valve is brought into $(A \rightarrow R)$ connection; the compressed air being fed into the ejector is stopped and at the same time the air pulses that are generated when the air in the air repressurization tank is fed into the air chamber through the quick exhaust valve, shake off the powder stuck to the side of the filter element facing the powder chamber, and at that time the discharge valve opens and discharges the powder in the powder chamber into a tank (113) that is a "feed partner" located beneath it. The operation mentioned above is one cycle of action. The problems that may arise in the above-mentioned ejector-type powder suction and discharge apparatus are as follows:

(a) Installation Space and Weight

When the apparatus is to be attached to an indoor tank already installed with a height that almost reaches the ceiling, it must be installed after removing part of the ceiling, because it is designed to be attached to cover the powder-charging inlet of the tank. Furthermore, the apparatus is heavy, and hence not easy to move once installed.

(b) Limited Installation Conditions

It is designed to be installed at the end of the powder intake pipe, and its function is to discharge the sucked powder in an intermittent manner solely to the lower side after a particular

time; hence, the sucked powder cannot be conveyed somewhere else with this site as a relay point. Accordingly, maintenance work on the apparatus must be performed on the feed partner tank (113), and is thus fraught with the difficulty and danger of work at a high place, or the heavy apparatus must be brought down to the floor.

(c) Limited Conveying Direction

The powder conveying direction is fixed, and two-way conveying is impossible. When the powder is transferred in excess to the feed partner tank, there is no means of returning the excess to the original vessel.

(d) Batch-Mode Powder Conveying Apparatus

The fact that the powder chamber is designed with a relatively large volume indicates a batch-mode powder conveying apparatus where one cycle comprised of the powder intake step and powder discharge step of said apparatus is set up so as to take more time on the former and less time on the latter. This means that the apparatus is of a type that takes a long time to carry out the suction of the powder and discharges a large amount of powder which corresponds to the volume of the powder chamber all at once in a short time, and is thus unsuitable for use in continuously conveying the powder little by little. Moreover, if it is used for such a purpose, an efficiency problem arises in that a huge amount of air corresponding to the large volume of the powder chamber is consumed, and furthermore there is a problem concerning waste in that the powder sucked into the powder inlet (5a1) in every powder suction step is dropped into the open powder vessel (111) in every powder discharge step.

[0003]

[Problems to be Solved by the Invention] The objective of the present invention is to solve the problems mentioned above.

[0004]

[Approach to Solving the Problems]

(a) Approach to Reducing Weight and Installation Space

In the present invention, a structure is designed such that the space itself on the inner side of a filter element forms most of the powder chamber volume. This will be explained with reference to [Figure 1]. A cylindrical filter element (31) is inserted inside a cylindrical body (2), and a powder inlet check valve (4a1) and a powder outlet check valve (4b1) are installed in the openings at both ends of the two, which means that the body and filter element comprise only a double tube; a powder chamber (6) is constructed in the space on the inner side of the filter element, and an air chamber (7) is constructed in the space on the outer periphery of the filter element. As a result, the height of the filter element and air chamber can be incorporated in the height of the powder chamber in the ejector-type powder suction and discharge apparatus shown in [Figure 7]. Furthermore, because an air in-and-out opening (1ab) is provided in the cylinder part of the body (2), a powder pump driving unit can be mounted by connecting it directly from the side of the body to the air in-and-out opening, and thus the height can be reduced. Moreover, the weight can be reduced because of the portion that is compressed in size.

(b) Approach to Improving the Limited Installation Conditions

A technique similar to the operation of a reciprocating pump of the type used for liquid

transport is adopted, and a structure is designed that is suitable not only for suction but also for pressure-conveying, thereby enabling said powder conveying apparatus to be installed anywhere in a powder conveying pipe. This means that the air suction step is carried out in the arrangement where the air in-and-out opening (1ab) is connected to the air suction means (13); the powder inlet check valve (4a1) opens in [Figure 1], etc., or the valve part of the air actuated operating valve (4abL or 4abR), to be controlled to play the same role as said check valve, opens in [Figure 5 or Figure 6]; and the powder outlet check valve (4b1) closes in [Figure 1], etc., or the valve part of the air actuated operating valve (4abL or 4abR), to be controlled to play the same role as said check valve, closes in [Figure 5 or 6]. In this case, a powder mixed with air is sucked from the powder inlet (5a1) in [Figure 1, Figure 2, or Figure 4] or from the powder inlet (5a2) in [Figure 3] or from the powder in-and-out opening (5abL or 5abR) on the valve open side in [Figure 5 or Figure 6], and enters the powder chamber (6), but only the air passes through the filter element and then the air chamber (7) and is sucked out from the air in-and-out opening (1ab), while leaving the powder in the powder chamber. As opposed to this, the pressureconveying step is carried out in the arrangement where the air in-and-out opening (1ab) is connected to the compressed air feeding means (14); the powder inlet check valve opened in the air suction step or the valve part controlled to play the same role thereof, closes; and similarly the check valve or valve part that is closed, opens. In this case, the compressed air shakes off the powder stuck to the inner surface of the filter element and thereby regenerates the filter element, and the compressed air that passes from the outside to the inside of the filter element works directly as a powder conveying medium and conveys the powder under pressure in [Figure 1, Figure 3, or Figure 5]; and the compressed air directed from the outside of the filter element to the inside is mainly provided for regenerating the filtering efficiency of the filter element, and the

أبر

purge air fed to the air inlet (1a) plays a major role in pressure-conveying the powder in [Figure 2, Figure 4, or Figure 6].

(c) Approach to Improving the Limited Conveying Direction

This is achieved by controlling the operation of the air actuated part, based on the relationship that when one of the valve parts opens in correlation with the step switchover at the air in-and-out opening (1ab), the other valve part closes in the powder pump main body, shown as (93) or (94), with the attached air actuated operating valves (4abL) and (4abR) that can prevent counterflow in any desired direction, depending on the control of the two air actuated parts with respect to each other, as shown in [Figure 5 or Figure 6]. This means that a fixed direction of powder conveying from the powder in-and-out opening (5abL) to (5abR) can be realized by controlling the operation of the air actuated parts so as to establish the relationship that (4abL) closes and (4abR) opens in the compressed air feed step, when it is assumed that the valve part of (4abL) opens and the valve part of (4abR) closes when the air suction step is underway at the air in-and-out opening (1ab). Furthermore, two powder-conveying directions from (5abL) to (5abR) and from (5abR) to (5abL), when shown in terms of the powder in-and-out openings, can be realized by installing the valve control air signal switchover valve (19b) in the middle of the air actuated control air signal passage and operating it in such a way that the open and close relationship between the opening valve and closing valve can be reversed, while the step in progress at the air in-and-out opening (1ab) is kept unchanged. The above-mentioned relationships are open and close relationships similar to those of the check valves (4a1) and (4b1) in the powder pump main body (91), such as in [Figure 1], in that the opening and closing operation of the valve parts of the mutual air actuated operating valves takes place in correlation

with a switchover between the air suction step and compressed air feed step at the air in-and-out opening (1ab), but, as opposed to this, if the valve parts of the air actuated operating valves are controlled such that both of them close at the early stage of compressed air feeding, as in [Claim 5], the air chamber and powder chamber temporarily constitute an air repressurization tank and, as a result, this contributes to the approach to achieving the weight reduction mentioned in (a) of [0004] in the sense that the air repressurization tank (21) in the ejector-type powder suction and discharge apparatus shown in [Figure 7] can be omitted.

(d) Approach to Improving the Batch-Mode Powder Conveying Apparatus

In comparison with the powder chamber volume of the ejector-type powder suction and discharge apparatus, the volume is instead reduced in the present invention. This also contributes to the approach to achieving the weight reduction mentioned in (a) of [0004]. To convey the same amount as the amount of powder conveyed in one cycle of the powder suction step and powder discharging step in the ejector-type powder suction and discharge apparatus, the number of cycles is increased in the present invention to make up for the reduced volume. In other words, the amount of powder to be conveyed in the ejector-type powder suction and discharge apparatus, where one cycle with the ratio of time required for powder suction /time required for powder discharge is 20/1, is supposed to take 5 minutes, is instead conveyed in 60 cycles in 5 minutes in the present invention, for example, supposing the ratio of one cycle is 2/1. To accomplish this, the check valve (4a2) is installed near the powder intake opening (5a4) of the powder intake pipe (5a3) connected to the powder inlet (5a1 or 5a2) in the powder and air conveying apparatuses that convey the powder in a fixed direction, thereby preventing the

ì

powder that is sucked in all at once into the powder inlet from falling toward the powder intake opening in a transition period to the compressed air feed step, and to create a state where the powder is always present at the powder inlet. Furthermore, a higher conveying speed can be achieved by forwarding the powder alternately from two cylinders by designing the two-cylinder powder and air conveying apparatus as shown in [Figure 3].

[0005]

[Action] The action of each figure will be tabulated, respectively, in tables and explained below. Each table pertains to one cycle for operating the powder pump main body, which is completed by starting with no air signal (y1) being fed to the powder pump driving unit from outside or produced internally by the powder pump driving unit itself, and ending with the presence of an air signal. In the tables, "no" pertaining to the air signal indicates the state that the air signal is vent-connected and there is no residual pressure on the output side. Furthermore, "(-)" pertaining to the system to be connected with the air inlet (1a) indicates that it is connected to neither the compressed air feed means nor the air suction means. Furthermore, in [Figure 5 and Figure 6], the air actuated operating valves (4abL) and (4abR) are individually running-type actuators, and the valve parts to be coupled with them are usually shown as closed valves. The system shown as a powder pump drive unit in the dash-and-dot frame (161) of [Figure 1] is a typical example of an air circuit to run the powder pump main body (91) of [Claim 1]. [Table 1] shows the result of the connection of the air in-and-out opening (1ab) to the external compressed air feed means (14) or air suction means (13) depending on the "yes" or "no" of the air signal (y1) given from outside in the relationship of said powder pump driving unit with the powder pump main body (91), the open or close operation of the check valves (4a1) and (4b1), and the action of the powder pump main body. For one cycle, the length of the non-output time of air signal (y1)

determines the duration of the powder intake step in the powder pump main body, and the length of output time determines the duration of the powder pressure-conveying step.

[0006] The system shown as a powder pump driving unit in the dot-and-dash frame (162) of [Figure 2] is a typical example of an air circuit used to run the powder pump main body (92) of [Claim 2]. [Table 2] shows the result of the connection of the air in-and-out opening (1ab) to the external compressed air feed means (14) or air suction means (13), and the connection or non-connection of the air inlet (1a) to the external compressed air feed system (14) depending on the "yes" or "no" of the air signal (y1) given from outside in the relationship of said powder pump driving unit with the powder pump main body (92), the open or close operation of the check valves (4a1) and (4b1), and the action of the powder pump main body.

[0007] The system shown as a powder pump driving unit in the dot-and-dash frame (163) of [Figure 3] is a typical example of an air circuit used to run the powder pump main body of [Claim 6]. [Table 3] shows the result of the connection of the mutual air in-and-out openings (1ab) to the external compressed air feed means (14) or air suction means (13) depending on the "yes" or "no" of the air signal (y1) generated internally in the relationship of said powder pump driving unit with the mutual powder pump main bodies, the step performed in the respective powder pump main bodies (91), and the action of the two-cylinder powder pump in its entirety. The air pulse-generating circuit shown in the dotted-line frame (18a) in said powder pump driving unit enables the length of non-output time and the length of output time of air signal (y1) to be regulated as desired by two delay circuits.

[0008] The system shown as a powder pump driving unit in the dot-and-dash frame (164) of [Figure 4] is a typical example of an air circuit used to run the powder pump main body of [Claim 6]. [Table 4] shows the result of the connection of the mutual air in-and-out openings

(1ab) to the air repressurization tank (21) that takes on the character of an internal compressed air feed means by being connected to the external compressed air feed means (14) or to the ejector that takes on the character of the internal air suction means (13) in a similar manner, and the connection or non-connection of the air inlet (1a) to the compressed air feed system (14), depending on the "yes" or "no" of the air signal (y1) generated internally in the relationship of said powder pump driving unit with the mutual powder pump main bodies, the step performed in the respective powder pump main bodies (91) [sic; should be "(92)" as shown in the Table and Figure], and the action of the two-cylinder powder pump in its entirety. Furthermore, the powder pump main body shown at the left in the powder pump main body shown in [Figure 4] is shown as the system of [Claim 7] with the check valve (4a2) installed to prevent the powder from falling into the powder intake opening (5a4).

[0009] The system shown as a powder pump driving unit in the dot-and-dash frame (165) of [Figure 5] is a typical example of an air circuit used to run the powder pump main body of [Claim 3]. [Table 5] shows the result of the connection of the air in-and-out openings (1ab) to the compressed air feed means (14) or air suction means (13) depending on the "yes" or "no" of the air signal (y1) fed to the powder pump driving unit from the outside for each connection of the valve control air signal switchover valve (19b), the open or close operation of the air actuated operating valves (4abL) and (4abR), and the action of the powder pump main body, for the example shown in the figure. Here, the upper half of the table corresponds to one cycle in the powder conveying direction, which is executed according to one of the connections of (19b) mentioned in the table, and the lower half corresponds to one cycle in the opposite powder conveying direction, which is executed according to the other connection of (19b).

[0010] The system shown as a powder pump driving unit in the dot-and-dash frame (166)

of [Figure 6] is a typical example of an air circuit used to run the powder pump main body of [Claim 4] so as to satisfy the control of [Claim 5]. [Table 6] shows the result of the connection of the air in-and-out openings (1ab) to the compressed air feed means (14) or air suction means (13) depending on the "yes" or "no" of the air signal (y1) fed to the powder pump driving unit from the outside for each connection of the valve control air signal switchover valve (19b), the connection or non-connection of the air inlets (1a) to the compressed air feed means (14), the open or close operation of the air actuated operating valves (4abL) and (4abR), and the action of the powder pump main body, for the example shown in the figure. Here, the upper half of the table corresponds to one cycle in the powder conveying direction, which is executed according to one of the connections of (19b) mentioned in the table, and the lower half corresponds to one cycle in the opposite powder conveying direction, which is executed according to the other connection of (19b).

[Table 1] KEY to Table 1: (a) presence of air signal (y1); (b) no; (c) yes; (d) system to which (1ab) is connected; (e) opening or closing operation of check valve (4a1); (f) open; (g) close; (h) opening or closing operation of check valve (4b1); (i) close; (j) open; (k) action of powder pump main body (91); (l) suction from (5a1); and (m) discharging to (5b1).

(4) 空気信号(71)の有数	(6)雅	(c) 有
(d)(1=b) が接続する手段	(18)	(14)
(e) 逆止弁 (4 = 1) の開閉動作	(f) m <	(4)閉じる
(A) 逆止弁 (4 b 1) の関節製作	(じ)雨じる	(分) 關(
(k) 松体ポンプ本体 (91) の作用	(L)(5 a 1) から吸引	(株 (561) に吐出

[Table 2] KEY to Table 2: (a) presence of air signal (y1); (b) no; (c) yes; (d) system to which (1ab) is connected; (e) system to which (1a) is connected; (f) opening or closeing operation of check valve (4a1); (g) open; (h) close; (i) opening or closing operation of check

valve (4b1); (j) close; (k) open; (l) action of powder pump main body (92); (m) suction from (5a1); and (n) discharging to (5b1).

(4) 空気信号(y 1)の有無	(b)無	(c)有
(d) (1 m b) が接続する手段	(13)	(14)
(e)(1a) が接続する手段 ·	(-)	(14)
(f) 逆止弁 (4 m 1) の質問業作	(g) n <	(ん)国じる
(i) 逆止弁 (4 b 1) の関関動作	(分)面にる	(た)調く
(化) 粉体ポンプ本体(92)の作用(M)(5a1) から吸引	ル)(5 b 1) に吐出

[Table 3] KEY to Table 3: (a) presence of air signal (y1); (b) no; (c) yes; (d) system to which (1ab) on the left side of the figure is connected; (e) process in (91) on the left side of the figure; (f) discharging to (5b1); (g) suction from (5a1); (h) system to which (1ab) on the right side of the figure is connected; (i) process in (91) on the right side of the figure; (j) suction from (5a1); (k) discharging to (5b1); (l) action of two-cylinder powder pump main body in its entirety; (m) suction from (5a2) and discharge to (5b2).

(0) 空気(2号(y 1)の有無	(b) 淮	(c)有
	の(1 a b)が接続する手数		(13)
(e) 同左	間の(81)に於ける工程。(-)(661) に吐出	(5=1) から吸引 (4)
	見の(1 a b)が接続する手段		(14)
(1)结 國右	10 (91) に於ける工程 (分)(5 a 1) から吸引	(561) に吐出(化)
(え) 2貫	ななイボンプ本体全体の作用(P	L)(5 a 2) から吸引し	て (5 b 2) に吐出一

[Table 4] KEY to Table 4: (a) presence of air signal (y1); (b) no; (c) yes; (d) system to which both openings (1ab) are connected; (e) system to which both inlets (1a) are connected; (f) process in both (92); (g) suction from (5a1); (h) discharging to (5b1); (i) action of two-cylinder powder pump main body in its entirety; (j) suction from both (5a1); and (k) discharging to (5b2).

(a)	空気信号(y 1)の有能	(b) 無	(4)有
	国左右の(1 a b)が接続する手段	(13)	(21)
(e)	配左右の(1 a)が接続する手段	(-)	(21)
(f)	麗左右の(92)に於ける工器	(5 a 1) から吸引(4)	(561) に吐出(化
(i)	2個式操体ポンプ本体全体の作用(能方の (5 a 1) から吸引	(562) 比杜氏()

[Table 5] KEY to Table 5: (a) (19b) in $(P \to A)$ (B $\to R$) connection; (b) presence of air signal (y1); (c) no; (d) yes; (e) presence of valve control air signal (y2); (f) presence of valve control air signal (y3); (g) presence of valve control air signal (y4); (h) presence of valve control air signal (y5); (i) opening or closing operation of valve part of (4abL); (j) close; (k) open; (l) opening or closing operation of valve part of (4abR); (m) system to which (1ab) is connected; (n) action of powder pump main body (93); (o) suction from (5abR); (p) discharging to (5abL); (q) (19b) in $(P \to B)$ (A $\to R$) connection; (r) suction from (5abL); and (s) discharging to (5abR).

million and the second of the	Constant of the second of the second	50、150数50、3、65000000000000000000000000000000000
(4) (18b) # (P→A) (1	→R)授銭のとき	主传统中国被政策的支
(b) 空氣信号 (y 1) の有能	(C)無	(d)有意。
(2) パルブ制算空気信号(y 2)の有無	(d)有	(c) h
(F) バルブ開資空気信号(y3)の有無	(c)無	(4)有
(タ) パルブ制御空気信号(y 4)の有無	(d)有	(c)無
(ん)パルブ教育空気信号(y 5)の有無	(c)雅	(d)有
(4)(4 = b L)のパルブ部員函数作	(4) 田じる	(た)関く
(人)(4 = 6 及)のパルブ部南京動作	(k) 疑く	(j) MCS
(PC/(1 a b) が接続する手段	(18)	(14)
(ル) 粉体ポンプ本体 (93) の作用 (0)	(ちょひR) から吸引	(5 a b L) に吐出 ()
(%)(19b) \$ (P→B) (1	↓→R)技術のとき	
(b) 空気信号(y 1)の有無	· (c)無	(d)#
(e) バルブ制御空気信号(y 2)の有無	(d)有	(c) 無
(f) バルブ振舞空気信号(y 3)の有無	(c) 無	(d)有
(分) パルブ制御空気信号(y4)の有無	(c)無	(d)#
(h) バルブ制御空気信号(y 5)の有無	(d)有	(c)#e
(ルズ4mbL)のバルブ部間団動作	(人)医人	(多)超比多
(L)(4 a b R) のパルブ部質問動作	(4) 面じる	(尼) 拥く
(M)(1ab) が推論する手段 兄	(13)	(14) 3
·	(ちゅりし) から吸引	(5abR) K吐出 (5

[Table 6] KEY to Table 6: (a) (19b) in $(P \rightarrow A)$ (B $\rightarrow R$) connection; (b) presence of air signal

1

(y1); (c) no; (d) yes; (e) presence of valve control air signal (y2); (f) presence of valve control air signal (y3); (g) presence of valve control air signal (y6); (h) presence of valve control air signal (y7); (i) presence of valve control air signal (y8); (j) system to which (1a) on the (4abL) side is connected; (k) system to which (1a) on the (4abR) side is connected; (l) opening or closing operation of valve part of (4abL); (m) close; (n) open; (o) opening or closing operation of valve part of (4abR); (p) system to which (1ab) is connected; (q) action of powder pump main body (93); (r) suction from (5abR); (s) air repressurization; (t) discharging to (5abL); (u) (19b) in (P → B) (A → R) connection; (v) suction from (5abL); and (w) discharging to (5abR).

enderge de <u>de la companya de la comp</u>	erenan e e e	THE BOOK STREET	का करवा संदर्भ सहित्यक विभिन्न है । हा पूर्
(a) (19b) # (P→A) (B-	→R)接続のと		CAN BUYER
(b) 空氣質等 (y 1) の有数 () 多年 ()	(c)#	(c)#	(d)#
(C) パルブ製御空気信号(y 2)の有無	(d) #	(d)有	(c) 🙀
(广、パルブ賞賞空気信号(y 3)の有無	(c) 🛣	(c)#	(d)#
(分)パルブ範賀空見信号(y B)の有無	(d)有	(c)#	(c) x
(ルノバルブ装御空気信号(メイ)の存無	(d)#	(c)無機	(c)#
(に)パルブ領海空気信号(y 8)の有量	(c)無	(c)	(d)用
(g)(4 a b L) 質 (1 a) の接続する手種	<u> </u>	(-)	(-)
(k)(4 a b R) 何 (1 a) の接続する手限	(-)	(-)	(14)
	1_1	·) 閉じる	(元) 四人
(4)(4=6円)のパルプ部質医動作		の間にる	が、居じる
(P)(1 a b) が接続する手段	(13)	(14)	(14)
(タ)整件ポンプ本件(93)の作用(グ) (5 . b R)	" /空氣藥圧(に入るabL)
	から長引		た吐出
(4)(19b) \$ (F→B) (A	→艮〉接続のと		
(b) 空氣信号 (y 1) の有無	(c) 发	(c)誤	(人)有
(e) バルブ製鋼空気信号(y 2)の有能	(d)#	(d)#	(c)#
(f) バルブ制制空気信号(y 3)の有効	(c)無	(c)無	(d)有
(分) パルブ飼育空気信号(76)の有無	(d)有	(c)加	(c) 🗮
(ル)パルブ制御空気信号(ァ?)の有無	(c) #	(c)無	(d)#
(4) パルブ制算空気信号(y 8)の有無	(d)有	(c)無	(c)無
(分(4mbL)質(1m)の接続する手段	(-)	(-)	(14)
(た)(4 s b R) 何 (1 s) の接続する手段	(-)	(-)	(-)
(人)(4 a b L) のバルブ部関節動作		L	作用じる
(0)(446日)のベルブ部関節動作	ļ)留じる	(ル) 関く
(P水(1 a b) が被続する手段	(13)		(14)
(4)粉体ポンプ本体(98)の作用	(5 a b L)	2/空気管圧((Sabe)
	か6原引	l	に吐出

[0011]

[Actual Examples] For the spacer to be installed when the filter element (31) made of a soft film-like material is used, a latticed cylinder (81) is used in [Figure 1 or Figure 2], and a spiral spring (82) in [Figure 3]. These may be cylinders made of a punching metal. In [Figure 5 or Figure 6], the filter element (32) is shown as being stiff enough not to be drawn into the air in-and-out opening (1ab) in the air suction step, and not to become warped in shape in the direction of gravity on account of the weight of the powder sucked into the powder chamber (6) when the powder pump main body (93 or 94) is installed horizontally, thus no spacer is required.

[0012]

)

- (a) A one-cylinder powder and air conveying apparatus as described in [Claim 1 or 2].
- (b) A double-tube powder suction nozzle (12) as shown in [Figure 4] consisting of two tubes, i.e., an inner tube which forms a powder intake opening (5a4) at one end and a connection with a powder inlet (5a1) of the powder and air conveying apparatus at the other opposite end, and an outer tube which forms an air blow-out opening at one end on the powder suction side of the inner tube and an air feed opening (1b) at the other (opposite) end.

In a combination of the two arrangements mentioned above, a method for preventing the bag walls from sticking together by blowing air out of the air blow-out opening of the outer tube into the bag, which is decreasing in volume, to the extent of making up for the decrease in volume while sucking the powder mixed with air from the powder intake opening (5a4) of the inner tube of the double tube powder suction nozzle, in the use that is shown in the figure as an example where the air feed opening (1b) is connected to an exhaust port (z1) of a powder pump driving unit where the amount of exhaust air of an ejector as the air suction means (13) is adjusted by a flow rate control valve (22); characterized in that the air feed opening (1b) is

connected to an air feed source; and in that the powder is sucked into a sealed bag (112).

[0013] In the one-cylinder powder and air conveying apparatus described in [Claim 1 or 2], the powder pump main body (91 or 92) is modified as follows: In a powder pump main body assembled by inserting a cylindrical filter element (31 or 32) inside a cylindrical body (2) provided with an air in-and-out opening (1ab) to the outside, and attaching a blind cover to one opening [This is presumably the exterior opening between the cylindrical body and filter element, judging from Figure 1 or Figure 2 - Tr. Ed.] and an inlet-side check valve (4a1) and an outlet-side check valve (4b1) to the remaining openings in the openings of said two members formed at both ends, thus arranging a hole starting in the air in-and-out opening to the outside of the body that communicates with an air chamber (7) inside the body, the primary side of the inlet-side check valve constitutes a powder inlet (5a1), the secondary side of the outlet-side check valve constitutes a powder outlet (5b1), the space formed constitutes a powder chamber (6) with both of the check valves as closing ends, and the space formed on the outer circumference thereof constitutes an air chamber (7). A one-cylinder powder and air conveying apparatus as mentioned above.

[0014] The one-cylinder powder and air conveying apparatus as described in [Claim 1 or Claim 2], wherein the check valve (4a1 or 4b1) that constitutes the power pump main body (91 or 92) is a dual plate check valve such as shown in [Figure 1] or a ball check valve as shown in [Figure 3].

[0015] The one-cylinder powder and air conveying apparatus as described in [Claim 3, Claim 4, or Claim 5], wherein the valve part associated with the powder passage in the air actuated operating valves (4abL) and (4abR) that constitute the powder pump main body (93 or 94) is of the ball, butterfly, or gate type.

j

[0016] The powder pump main body (91 or 92) of the one-cylinder powder and air conveying apparatus as described in [Claim 1 or Claim 2], wherein the body (2) is of the elbow type.

[0017]

- (a) A one-cylinder powder and air conveying apparatus as described in [Claim 1 or 2].
- (b) A pipe that forms a connection with the powder inlet (5a1) of the powder pump main body (91 or 92) at one end and a wedge-shaped powder intake opening (5a4) at the other end.

In an application where the above-mentioned two are combined and the powder in the lower layer of the powder filled in a tank is sampled, a self-digging powder sampler that performs self-digging by starting the operation with the powder intake opening (5a4) at the leading end of the pipe stuck into the surface layer of the powder, and brings the leading end of the pipe to the lower layer of the powder while discharging the dug-up powder to the surface layer.

[0018]

)

[Advantages of the Invention]

(a) Small and Lightweight

An apparatus that completes one cycle by sucking a large volume of powder over a long time and then discharging this powder all at once cannot avoid having at least a large powder chamber, but the present invention is an apparatus of the type that conveys the same volume by repeating one cycle consisting of a powder suction step and a powder pressure-conveying step many times, and thus enables scale-down. Furthermore, the very space inside the filter element constitutes a powder chamber, and the size can be compressed by adopting a structure that

occupies most of the volume of the inner space, and at the same time the weight can be reduced.

(b) Favorable Powder Conveying Conditions

In the powder pump main body of the present invention, the inner diameter of the powder chamber can be made equal to or even less than the inner diameter of the pipe on the powder suction side or the pipe on the powder discharging side, and furthermore the pressure loss and friction can be reduced by the use of a structure where the powder passes linearly through the powder chamber.

(c) Favorable Installation Conditions

As long as the conveying conditions such as the physical properties and conveying distance of the powder are satisfied, any place in a powder conveying pipe can be chosen to install the apparatus, and said apparatus can be installed anywhere from one end to the other end of the powder conveying pipe. The installation direction is also highly flexible, and it does not matter whether the pipe arrangement is vertical or horizontal as long as there are no problems with respect to the opening and closing operation of the inlet or outlet check valves. Moreover, in the case of a powder pump main body using air actuated operating valves, the powder can be handled well even if the apparatus is used in a vertical pipe arrangement.

(d) Ease of Maintenance

The relatively heavy powder pump main body has a simple structure, hence, when any problems occur, they are easy to pinpoint. When there are no problems with the powder pump

main body, maintenance work can be carried out by removing the light powder pump driving unit.

(e) Two-Way Transfer

Two-way transfer is enabled with the use of a powder pump main body using air actuated operating valves.

(f) Many Different Combinations are Possible

Flexibility is great, for example, a mixture of different powders can be conveyed by constructing a two-cylinder-type arrangement with an attached powder outlet manifold; continuous transfer can be achieved by constructing a two-cylinder-type arrangement with an attached powder inlet manifold and a powder outlet manifold; and a self-digging powder sampler can be constructed.

(g) Simplification of Peripheral Facilities

Dust collectors such as cyclones and back filters required for general powder and air conveying apparatuses are no longer necessary.

[Brief Description of the Figures]

[Figure 1] Figure 1 shows a partial sectional view of the powder pump main body and a diagram of an air circuit example of the powder pump driving unit in the one-cylinder powder and air conveying apparatus of [Claim 1] of the present invention.

[Figure 2] Figure 2 shows a partial sectional view of the powder pump main body and a diagram of an air circuit example of the powder pump driving unit in the one-cylinder powder

and air conveying apparatus of [Claim 2] of the present invention.

[Figure 3] Figure 3 shows a partial sectional view of a powder pump main body of combination (c) as described in [Claim 6] constructed with the use of two powder pump main bodies (91) and a diagram of an air circuit example of the powder pump driving unit in the two-cylinder powder and air conveying apparatus of [Claim 6] of the present invention.

[Figure 4] Figure 4 shows a diagram of an actual example where a powder pump main body of combination (b) as described in [Claim 6] is constructed with the use of two powder pump main bodies (92) and a diagram of an air circuit example of the powder pump driving unit in the two-cylinder powder and air conveying apparatus of [Claim 6] of the present invention.

[Figure 5] Figure 5 shows a partial sectional view of the powder pump main body and a diagram of an air circuit example of the powder pump driving unit in the one-cylinder powder and air conveying apparatus of [Claim 3] of the present invention.

[Figure 6] Figure 6 shows a partial sectional view of the powder pump main body and a diagram of an air circuit example of the powder pump driving unit in the one-cylinder powder and air conveying apparatus of [Claim 4 or Claim 5] of the present invention.

[Figure 7] Figure 7 shows a schematic diagram of an actual example of an ejector-type powder suction and discharge apparatus and a diagram of the air circuit of the driving unit (167).

[Description of the Symbols]

(1ab): air in-and-out opening

(1a): air inlet

(1b): air outlet

(2): body

(31): cylindrical filter element in the form of a film

· 【図1】

【図2】

GID 4.1P 4090713254 13

[23]

אבריזרוסחז שי חורת

[24]

)=[

CID - 10 1000313011

[26]

........

[27]

1:::

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.