1 Mathematics

1.1 Useful Data

n	Primes less than n	Maximal Prime Gap	$\max_{0 < i < n} (d(i))$
1e2	25	8	12
1e3	168	20	32
1e4	1229	36	64
1e5	9592	72	128
1e6	78.498	114	240
1e7	664.579	154	448
1e8	5.761.455	220	768
1e9	50.487.534	282	1344

1.2 Modular Arithmetic

1.2.1 Chinese Remainder Theorem

```
1 #include "../../headers/headers.h"
   ll inline mod(ll x, ll m) { return ((x %= m) < 0) ? x + m : x; }
   | 11 inline mul(11 x, 11 y, 11 m) { return (x * y) % m; }
   ll inline add(ll x, ll y, ll m) { return (x + y) % m; }
    // extended euclidean algorithm
    // finds g, x, y such that
   // a * x + b * y = g = GCD(a,b)
   ll gcdext(ll a, ll b, ll &x, ll &y)
11
       11 r2, x2, y2, r1, x1, y1, r0, x0, y0, q;
12
       r2 = a, x2 = 1, y2 = 0;
13
       r1 = b, x1 = 0, y1 = 1;
14
       while (r1)
15
       {
           q = r2 / r1;
17
           r0 = r2 \% r1;
18
           x0 = x2 - q * x1;
19
           y0 = y2 - q * y1;
20
           r2 = r1, x2 = x1, y2 = y1;
21
           r1 = r0, x1 = x0, y1 = y0;
22
       }
23
       11 g = r2;
24
25
       x = x2, y = y2;
       if (g < 0)
26
27
           g = -g, x = -x, y = -y; // make sure g > 0
       // for debugging (in case you think you might have bugs)
28
       // assert (g == a * x + b * y);
29
       // assert (g == __gcd(abs(a),abs(b)));
       return g;
31
32
```

```
// CRT for a system of 2 modular linear equations
   // ========
37 // We want to find X such that:
   // 1) x = r1 (mod m1)
   // 2) x = r2 (mod m2)
   // The solution is given by:
  // sol = r1 + m1 * (r2-r1)/g * x' (mod LCM(m1,m2))
42 // where x' comes from
43 // m1 * x' + m2 * y' = g = GCD(m1,m2)
44 // where x' and y' are the values found by extended euclidean
        algorithm (gcdext)
45 // Useful references:
46 // https://codeforces.com/blog/entry/61290
47 // https://forthright48.com/chinese-remainder-theorem-part-1-coprime-
48 // https://forthright48.com/chinese-remainder-theorem-part-2-non-
        coprime-moduli
   // ** Note: this solution works if lcm(m1,m2) fits in a long long (64
   pair<11, 11> CRT(11 r1, 11 m1, 11 r2, 11 m2)
50
51
       11 g, x, y;
52
       g = gcdext(m1, m2, x, y);
53
       if ((r1 - r2) % g != 0)
           return {-1, -1}; // no solution
55
       11 z = m2 / g:
56
57
       11 lcm = m1 * z;
       ll sol = add(mod(r1, lcm), m1 * mul(mod(x, z), mod((r2 - r1) / g, z)
58
       // for debugging (in case you think you might have bugs)
       // assert (0 <= sol and sol < lcm);</pre>
       // assert (sol % m1 == r1 % m1);
61
       // assert (sol % m2 == r2 % m2);
62
       return {sol, lcm}; // solution + lcm(m1,m2)
   1 }
64
65
    // CRT for a system of N modular linear equations
          r = array of remainders
           m = array of modules
          n = length of both arrays
73
   // Output:
   //
          a pair {X, lcm} where X is the solution of the sytemm
74
   //
              X = r[i] \pmod{m[i]} for i = 0 \dots n-1
75
76 //
           and lcm = LCM(m[0], m[1], ..., m[n-1])
   1//
           if there is no solution, the output is {-1, -1}
   // ** Note: this solution works if LCM(m[0],...,m[n-1]) fits in a long
        long (64 bits)
   pair<11, 11> CRT(11 *r, 11 *m, int n)
80
       11 r1 = r[0], m1 = m[0];
81
       repx(i, 1, n)
82
       {
83
```

```
11 r2 = r[i], m2 = m[i];
84
            11 g, x, y;
85
            g = gcdext(m1, m2, x, y);
86
            if ((r1 - r2) % g != 0)
87
                return {-1, -1}; // no solution
88
            11 z = m2 / g;
89
            11 lcm = m1 * z;
            ll sol = add(mod(r1, lcm), m1 * mul(mod(x, z), mod((r2 - r1) / g
91
            r1 = sol;
92
93
            m1 = 1cm;
94
        // for debugging (in case you think you might have bugs)
95
        // assert (0 <= r1 and r1 < m1);</pre>
96
        // rep(i, n) assert (r1 % m[i] == r[i]);
97
        return {r1, m1};
98
99 }
```

Primality Checks

1.3.1 Miller Rabin

```
#include "../../headers/headers.h"
    ll mulmod(ull a, ull b, ull c)
        ull x = 0, y = a % c;
6
        while (b)
            if (b & 1)
9
                x = (x + y) \% c;
            y = (y << 1) \% c;
10
            b >>= 1;
11
        }
12
13
        return x % c;
14
15
    11 fastPow(11 x, 11 n, 11 MOD)
16
17
        ll ret = 1;
18
        while (n)
19
20
            if (n & 1)
21
22
                ret = mulmod(ret, x, MOD);
23
            x = mulmod(x, x, MOD);
^{24}
            n >>= 1;
        }
25
26
        return ret;
27
28
    bool isPrime(ll n)
30
        vi a = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37\};
31
32
        if (binary_search(a.begin(), a.end(), n))
33
```

```
34
            return true;
35
        if ((n \& 1) == 0)
36
            return false;
37
38
        int s = 0;
39
        for (11 m = n - 1; !(m & 1); ++s, m >>= 1)
40
41
42
        int d = (n - 1) / (1 << s);
43
44
        for (int i = 0; i < 7; i++)
45
46
47
            ll fp = fastPow(a[i], d, n);
            bool comp = (fp != 1);
48
            if (comp)
49
50
                for (int j = 0; j < s; j++)
51
                    if (fp == n - 1)
52
53
                        comp = false;
54
                        break;
55
56
57
                    fp = mulmod(fp, fp, n);
58
               }
59
            if (comp)
60
                return false;
61
62
63
        return true;
64 }
       Sieve of Eratosthenes
```

```
#include "../../headers/headers.h"
2
   // O(n log log n)
3
   vi sieve(int n)
4
5
   |{
6
       vi primes;
7
8
        vector<bool> is_prime(n + 1, true);
9
        int limit = (int)floor(sqrt(n));
10
       repx(i, 2, limit + 1) if (is_prime[i]) for (int j = i * i; j \le n; j
11
           is_prime[j] = false;
12
       repx(i, 2, n + 1) if (is_prime[i]) primes.eb(i);
13
14
15
        return primes;
16 }
```

1.3.3trialDivision

1 | #include "../../headers/headers.h"

```
// O(sqrt(n)/log(sqrt(n))+log(n))
    vi trialDivision(int n, vi &primes)
        vi factors:
        for (auto p : primes)
            if (p * p > n)
9
                break;
10
            while (n \% p == 0)
11
12
                primes.pb(p);
13
                if ((n /= p) == 1)
14
15
                    return factors;
16
        }
17
18
        if (n > 1)
            factors.pb(n);
19
20
        return factors;
^{21}
22 }
```

1.4 Others

1.4.1 Polynomials

```
1 #include "../../headers/headers.h"
    template <class T>
    class Pol
5
    private:
        vector<T> cofs;
        int n;
9
    public:
10
        Pol(vector<T> cofs) : cofs(cofs)
11
        {
12
            this->n = cofs.size() - 1;
13
14
15
        Pol<T> operator+(const Pol<T> &o)
16
17
            vector<T> n_cofs;
18
            if (n > o.n)
19
20
                n_cofs = cofs;
21
22
                rep(i, o.n + 1)
23
                    n_cofs[i] += o.cofs[i];
24
25
            }
26
            else
27
29
                n cofs = o.cofs:
```

```
rep(i, n + 1)
30
31
                    n_cofs[i] += cofs[i];
32
33
34
            return Pol(n_cofs);
35
       }
36
37
        Pol<T> operator-(const Pol<T> &o)
38
39
40
            vector<T> n_cofs;
            if (n > o.n)
41
42
43
                n_cofs = cofs;
                rep(i, o.n + 1)
44
45
46
                    n_cofs[i] -= o.cofs[i];
47
48
            }
            else
49
50
                n_cofs = o.cofs;
51
                rep(i, n + 1)
52
53
                    n_cofs[i] *= -1;
54
                    n_cofs[i] += cofs[i];
55
56
57
            return Pol(n_cofs);
58
59
60
        Pol<T> operator*(const Pol<T> &o) //Use Fast Fourier Transform when
61
             we implement it
62
            vector<T> n_cofs(n + o.n + 1);
63
            rep(i, n + 1)
64
65
                rep(j, o.n + 1)
66
67
                    n_{cofs[i + j]} += cofs[i] * o.cofs[j];
68
69
70
            return Pol(n_cofs);
71
72
73
        Pol<T> operator*(const T &o)
74
75
            vector<T> n_cofs = cofs;
76
            for (auto &cof : n_cofs)
77
78
79
                cof *= o;
80
            return Pol(n_cofs);
81
82
83
```

```
double operator()(double x)
 84
 85
             double ans = 0;
 86
             double temp = 1;
 87
             for (auto cof : cofs)
 88
 89
                  ans += (double)cof * temp;
 90
                  temp *= x;
 91
 92
             return ans;
 93
 94
 95
         Pol<T> integrate()
 96
 97
             vector<T> n_cofs(n + 2);
 98
             repx(i, 1, n_cofs.size())
 99
100
                 n_cofs[i] = cofs[i - 1] / T(i);
101
102
             return Pol<T>(n_cofs);
103
         }
104
105
         double integrate(T a, T b)
106
107
             Pol<T> temp = integrate();
108
             return temp(b) - temp(a);
109
         }
110
111
         friend ostream &operator<<(ostream &str, const Pol &a);</pre>
112
113
     };
114
     ostream &operator<<(ostream &strm, const Pol<double> &a)
115
116
117
         bool flag = false;
         rep(i, a.n + 1)
118
         {
119
             if (a.cofs[i] == 0)
120
                 continue;
121
122
             if (flag)
123
                  if (a.cofs[i] > 0)
124
                      strm << " + ":
125
                 else
126
                      strm << " - ";
127
             else
128
                 flag = true;
129
             if (i > 1)
130
             {
131
                 if (abs(a.cofs[i]) != 1)
132
                      strm << abs(a.cofs[i]);</pre>
133
                  strm << "x^" << i;
134
135
             else if (i == 1)
136
137
                 if (abs(a.cofs[i]) != 1)
138
```

```
strm << abs(a.cofs[i]);</pre>
139
                  strm << "x";
140
              }
141
              else
142
              {
143
                   strm << a.cofs[i];
144
             }
145
146
147
         return strm;
148 }
```

1.4.2 Factorial Factorization

```
#include "../../headers/headers.h"
1
2
3
    // O(n)
4
    umap<int, int> factorialFactorization(int n, vi &primes)
5
        umap<int, int> p2e;
6
        for (auto p : primes)
7
8
            if (p > n)
9
                break;
10
            int e = 0;
11
            int tmp = n;
12
            while ((tmp /= p) > 0)
13
14
                e += tmp;
15
            if (e > 0)
                p2e[p] = e;
16
17
18
        return p2e;
19 }
```