AE646: SCIENTIFIC MACHINE LEARNING FOR FLUID MECHANICS

Course Website: https://hello.iitk.ac.in/studio/ae646sem12425

FIRST COURSE HANDOUT (FCH)

The aim of AE646 is to familiarize graduate and upper-level undergraduate students with the evolving field of scientific machine learning and to initiate them into research in physics informed machine learning surrogates as alternative flow prediction tools and for the possible construction of digital twins of engineered systems. The course will be project based requiring programming in python and evolving machine learning platforms to explore the frontier of AI as a complement to computational continuum mechanics.

Background Knowledge:

Mathematics: Linear Algebra, Probability, Optimization
Fluid Mechanics (Aerodynamics/Hydrodynamics), Programming Skills (Python)
and interest in exploring the potential of machine learning for continuum mechanics.

Instructors:

Principal Lecturer: Prof. Murali Damodaran (dmurali@iitk.ac.in)

Teaching assistants:

None

Classroom: Helicopter Building Class hours: Mondays and Fridays (1200 hrs-1300 hrs)

Classroom: Tutorial Block TB264: Class Hours: Tuesdays (1400 hrs-1600 hrs)

Office hours: To be arranged; Contact instructor via e-mail.

1. Course Modus Operandi

Mixture of Lectures, Self-Study, Review of Basic Concepts via Flipped Classes followed by Class Discussions. Group and Individual projects. Student Presentations of their projects. Invited Application Lectures.

2.Course Grade will be based on student effort in the following components.

Continual Assessment: Review Exercises at the end of each sub-Module and Quizzes: 20%

Group Projects and Presentations: 35%

Synopsis and Comments on Industrial Application Lectures: 5%

Individual Final Project and Presentation: 40% No mid-term or final examinations for this course.

3. Student Effort towards learning via project work

As AE646 is a project-based course, students are expected to deliver on the Review Exercises, Group and Individual Projects as these components are geared towards grasping the essence of scientific machine learning for flow prediction and hone your skills in scientific machine learning. Review Exercises are to be wrapped up within a week by 2359 hrs Friday. Group Projects to be wrapped up on the date the group presentations are made. Individual Projects must be defined early and carried out as early as possible and presented during the 16th week before 14 Nov 2024. A brief synopsis must be submitted after attending the Invited Application Lectures delivered by practitioners in the field. Submission of all exercises, group projects and individual projects will be via *Jupyter* Notebooks or equivalent. IITK's code of conduct on academic integrity and honesty must be respected for this course.

4.Tentative Course Content:

Introduction to Scientific Machine Learning; Essential computational resources for developing Scientific Machine Learning Surrogates; Review of Basic Fluid Mechanics; Review of Essential Linear Algebra, Probability and Optimization; Shallow and Deep Neural Networks; Physics Informed Neural Networks (PINNs); Neural Networks with Delays; LSTM for Predicting Time-dependent Flows; Model Order Reduction; New developments in PINN/MOR- Operator Learning

5. REFERENCE BOOKS AND MATERIALS

• Relevant References in this field include:

- 1. Gil Strang's book on *Linear Algebra and Learning from Data* sets the tone for the development of Al in Applied Mathematics and provides motivation for the current effort.
- 2. Steven L. Brunton and J. Nathan Kutz, "Data-Driven Science and Engineering: Machine Learning, Dynamics and Control," Cambridge University Press, 2019,2022 http://databookuw.com/
- 3. Mark Asch, "A Toolbox for Digital Twins: From Model-Based to Data-Driven", SIAM 2022, https://markasch.github.io/DT-tbx-v1/
- 4. N. Thuerey, P. Holl, M. Mueller, P. Schnell, F. Trost, K. Um, "Physics-based Deep Learning", (2021) https://physicsbaseddeeplearning.org
- 5. A. Zhang, Z.C. Lipton, M. Li and A. J. Smola," *Dive into Deep Learning*", An Interactive deep learning book with code, math, and discussions; *Implemented with PyTorch, NumPy/MXNet, JAX, and TensorFlow*; https://d2l.ai/index.html

• Relevant Internet Resources

- NPTEL-NOC-IITM Online Course on "Machine Learning for Engineering and Science
 <u>Applications</u>" by Balaji Srinivasan and Ganapathy Krishnamurthy. You can view these
 lectures in the YouTube Channel: https://www.youtube.com/playlist?list=PLyqSpQzTE6M-SISTunGRBRiZk7opYBf K
- 2. Repository of Research Papers on Physics Informed Neural Networks, https://github.com/idrl-lab/PINNpapers
- 3. Resources on PINN at SISSA, Italy: https://mathlab.sissa.it/pina
- 4. R. Milk, S. Rave, F. Schindler, "pyMOR Generic Algorithms and Interfaces for Model Order Reduction", SIAM J. Sci. Comput., 38(5), pp. S194--S216, 2016; Website: pyMOR: Model Order Reduction with Python https://pymor.org/

6. Outcomes of this Course

- 1. To introduce students to the evolving field of Scientific Machine Learning which is an essential driver of AI in the development of a computational method which is trained to make predictions leveraging on computational physics and computer science.
- 2. To develop an understanding of scientific machine learning and its potential application problems in applied aerodynamics and hydrodynamics. In the process students are expected to be motivated to learn, appreciate and hone their programming skills in a variety of enabling software and hardware platforms.
- 3. Develop a cohort of young researchers to explore the potential of building machine learning surrogates and digital twins and push this research frontier at IITK.

7. Course Audience:

PhD, MTech and MS students contemplating using elements of scientific machine learning for their research problems in computational aerodynamics and hydrodynamics.

Dual- BTech-MTech students and Senior BTech students looking to learn scientific machine learning for their academic development and to use it in their project work in continuum mechanics.

AE 646: SCIENTIFIC MACHINE LEARNING FOR FLUID MECHANICS

L T P A
2 0 3 0 -9 Credits
TENTATIVE COURSE SYLLABUS

S/No.	Broad Title	Topics	No. of Lectures		
1	Introduction to Scientific Machine Learning	L01: History, Motivation and Basic Ideas; Scientific Machine Learning; Forward and Inverse Problems in Fluid Mechanics; Model Order Reduction; Data Driven and Physics Informed Neural Networks and Neural Operator Learning.	1		
2	Essential computational resources for developing Scientific Machine Learning Surrogates	Crash Course in <i>Python</i> on <i>Anaconda Platform</i> and/or <i>Julia</i> ; <i>Jupyter</i> Notebook Interface. Machine Learning Tools using <i>TensorFlow, Keras, PyTorch, Sci-ML, Matlab, Julia</i> ; <i>DeepXDE</i> Library, <i>Nvidia Modulus</i> for Scientific Machine Learning	3 hrs(Lab) Self- Exploration		
3	Review of Basic Fluid Mechanics	FM01: Governing Equations for Potential, Euler, Boundary Layer and Navier-Stokes Equations; Notions of Scaling; Compressible & Incompressible flows; CFD Models as the Forward Problem in Fluid Mechanics; FM02: Boundary Conditions	2 Self- Study		
4	Review of Essential Linear Algebra, Probability and Optimization	ntial Linear Algebra, LA01: Vectors; Span, Linear Dependence; Matrix algebra,			
5	Shallow and Deep Neural Networks	NN01: Extreme Learning Machine (ELM) and Deep Neural Networks (DNN); Network Hyperparameters and Activation Functions. Regression. NN02: Loss Functions; Automatic Differentiation; NN03: Backpropagation Gradient Descent; Stochastic Gradient Descent	3		
6	Physics Informed Neural Networks (PINN)	PINN01: Neural Differential Equations PINN02: Predicting Flow fields using PIELM and PINNS PINN03: Data and PINN driven Optimal Shape Designs	3		
7	Neural Networks with Delays- RNN/LSTM for Flow Predictions	PINN04-05: RNN/LSTM/GRU/Physics Informed LSTM PINN05-06Unsteady flow prediction with LSTM and LSTM-PINN	3		
8	Autoencoders	PINN07: Autoencoders and relationship to MOR PINN08: Variational Autoencoders			
9	Model Order Reduction	MOR01: POD/SVD/Gappy POD/SPOD MOR02-03: DMD or DEIM for Nonlinear Systems MOR04: SiNDY	4		
10	New developments in PINN/MOR: Operator Learning	OL01-02: Operator Learning: <i>DeepONet, Fourier Numerical Operator (FNO)</i> and <i>Physics Informed Neural Operator</i> (PINO)	2		
11	Invited Industrial/Application Lectures on the State of the Art SciML/DT	Topics in Scientific Machine Learning/Digital Twins	2		
		Total	26		

TENTATIVE AE646 COURSE SCHEDULE

AE646:SCIENTIFIC M <i>I</i> S1:AY2024-2025	ACTITIVE EEARIN	III OKTEOII	J WILCHAM	CJ	SciML4FM		
WEEK\HRS	1	1	1	1	1		LEG
Week 01: 29.07.2024	1	X			x	HRS	X: C
Week 02: 05.08.2024	L01-Intro	L02_CR(1)	L03_LA-01	CL	L04_FM-01	4	CL:
Week 03: 12.08.2024	L05_FM-02	L06_LA-02	CL	CL	L07_OPT-01	3	
Week 04: 19.08.2024	L08_P-01	CL	CL	CL	L09_NN-01	2	IAL:
Week 05: 26.08.2024	L10_PINN-01	L11_PINN-02	CL	CL	L12_PINN-03	3	1 11116
Week 06: 02.09.2024	L13_NN-02	CL	CL	CL	L14_NN-03	2	LXX
Week 07:09.09.2024	L15_PINN-04	L16_PINN-05	CL	CL	L17_PINN-06	3	LA:
Week 08:16.09.2024	Mid-Semester Exam (17-22 Sep)						FM: OPT
Week 09:23.09.2024	L18_PINN-07	CL	CL	CL	L19_OL-1	2	P: P
Week 10:30.09.2024	L20_MOR-01	CL	CL	CL	L21_MOR-2	2	NN:
Week 11:07.10.2024	Mid-Term Break(05-13 Oct)						PIN
Week 12:14.10.2024	L22_MOR-03	CL	CL	CL	L23_MOR-04	2	PIEL
Week 13:21.10.2024	L24_PINN-08	L25_IAL01	CL	CL	L26_IAL02	3	OL:
Week 14:28.10.2024	CL	CL	CL	CL	CL		RON
Week 15:04.11.2024	CL	CL	CL	CL	CL		
Week 16:11.11.2024	CL	CL	CL	CL	CL		
Week 17:18.11.2024	End-Semeste	r Examination	(17-26 Nov	1)			

d tational Lab Hours for Student Activities in n Solving and Projects in SciML4FM Application Lecture lual Project Presentation during Week 16.

Number lgebra echanics zation Probability

n Probability
Networks
ics Informed Neural Networks
sics Informed Extreme Learning Machine
or Learning
Il Order Reduction
ced Order Models

1	L01	Introduction to the course
2	L02 CR(1)	Introduction to Computational Resources
3	L03 LA01	Linear Algebra Review 01-Basics- Given as Flipped Class
4	L04 FM01	Fluid Mechanics Models for the Direct Problem
5	L05 FM02	Boundary Conditions for Modelling Fluid Flows
6	L06 LA02	Linear Algebra 02 - Eigenvalues/Eigenvectors/Covariance/Eigen Decomposition/PCA/SVD
7	L07 OPT01	Optimization/Chain Rules/Backpropagation/Automatic Differentiation/
	_	Steepest Descent and Variants
8	L08 P01	Essential Concepts of Probability for Machine Learning
9	L09 NN01	Shallow Neural Networks and ELM
10	L10 PINN01	PINNs and PIELM
11	L11 PINN02	DeepXDE
12	L12_PINN03	Methods to Improve Accuracy of PINNs
13	L13 NN02	Networks with Memory: RNN
14	L14_NN03	Networks with Memory: LSTM/GRU
15	L15_PINN04	Stacked and Bidirectional RNN;LSTM-PINN and Applications in Fluid Mechanics
16	L16 PINN05	Nvidia Modulus
17	L17_PINN06	Autoencoders
18	L18_PINN07	Convolutional Neural Networks and Applications in Fluid Mechanics
19	L19_OL-01	Operator Learning/DeepONet and FNO
20	L20_MOR01	Nonlinear Dynamical Systems and MOR
21	L21_MOR02	Proper Orthogonal Decompositions-POD
22	L22_MOR03	Dynamic Mode Decomposition-DMD
23	L23_MOR04	Nonlinear ROMs: SINDy&DEIM
24	L24_PINN08	Alternative ML Approaches/Digital Twins
25	L25_IAL01	Invited Application Lecture
26	L26_IAL02	Invited Application Lecture
	_	

Note: All individual project presentation will be scheduled during Week 16 before or by 14 November 2024