Finite-temperature critical behavior of long-range quantum Ising models

arXiv:2104.15070

Collaborators: Adriano Angelone Marcello Dalmonte Markus Heyl

Long Range(LR) interacting quantum systems

- □ Power-law-decaying interactions($r^{-\alpha}$) can be engineered in experiments
- ☐ Analytically and numerically challenging to study
- ☐ Raise fundamental questions

Quantum simulation of Ising or Heisenberg models with power law decaying interactions

Long Range(LR) interacting quantum systems

- \square Power-law-decaying interactions($r^{-\alpha}$) can be engineered in experiments
- ☐ Analytically and numerically challenging to study
- ☐ Raise fundamental questions

Long Range(LR) interacting quantum systems

- □ Power-law-decaying interactions($r^{-\alpha}$) can be engineered in experiments
- ☐ Analytically and numerically challenging to study
- ☐ Raise fundamental questions

1D LR Ising model in a transverse field

How interaction range influences

- ☐ the critical behavior?
- □ thermalization?

1D LR Ising model in a transverse field

$$\hat{H} = -\sum_{ij} J_{ij} \sigma_i^z \sigma_j^z - \Gamma \sum_i \sigma_i^x$$
 $J_{ij} = \frac{J}{r_{ij}^{1+\sigma}}, \ \alpha = 1 + \sigma$

$$T=0$$

$$\square$$
 1 < α < 5/3

□
$$5/3 < \alpha < 3$$

$$\square$$
 $\alpha \geq 3$

$$\square$$
 1 < $\alpha \le 3/2$

$$\square$$
 3/2 < $\alpha \le 2$

$$\square$$
 $\alpha > 2$

$$Mean-Field(MF)$$

Nontrivial

Short Range (SR)

1D LR Ising model in a transverse field

$$\hat{H} = -\sum_{ij} J_{ij} \sigma_i^z \sigma_j^z - \Gamma \sum_i \sigma_i^x$$
 $J_{ij} = \frac{J}{r_{ij}^{1+\sigma}}, \ \alpha = 1 + \sigma$

- \square 1 < $\alpha \leq 5/3$
- □ $5/3 < \alpha < 3$
- \square $\alpha \geq 3$

- T>0
- \square 1 < $\alpha \leq 3/2$
- \square 3/2 < $\alpha \le 2$
- \square $\alpha > 2$

Mean-Field(MF)

Nontrivial

Short Range (SR)

1D LR Ising model in a transverse field

$$\hat{H} = -\sum_{ij} J_{ij} \sigma_i^z \sigma_j^z - \Gamma \sum_i \sigma_i^x$$
 $J_{ij} = \frac{J}{r_{ij}^{1+\sigma}}, \ \alpha = 1 + \sigma$

$$J_{ij} = rac{J}{r_{ij}^{1+\sigma}}, \ lpha = 1 + \sigma$$

Classical and quantum fluctuations

The critical behavior close to the transition is entirely classical

Our work aims to

- \square Study the 1D LR Ising model in a transverse field
- ☐ Answer whether quantum fluctuations change the nature of the thermal phase transition
- □ Determine universal and non-universal details
 - value of critical exponents
 - position of the critical points
- ☐ Use ab initio, non-perturbative solutions of the problem
- $\hfill\Box$ Study different α regimes
 - lacktriangledown $\alpha = 0.05$, within the extremely long-range region $\alpha < 1$
 - lacktriangledown lpha= 1.5, at the boundary between MF and nontrivial behavior

The model

System Hamiltonian

$$\hat{H} = -\frac{V}{K} \sum_{i < j} \frac{\hat{S}_i^z \hat{S}_j^z}{r_{ij}^{\alpha}} - h \sum_i \hat{S}_i^x.$$

$$K \equiv (L-1)^{-1} \sum_{i \neq j} r_{ij}^{-\alpha}$$
 $\hat{S}_i^x = \frac{\hbar}{2} \sigma_i^x$

The Kać renormalization factor

- $\ \square$ Ensures the existence of a proper thermodynamic limit
- \square Do not affect the universal features of the model

Reduced units Hamiltonian

$$\hat{H} = -\sum_{i < j} \frac{V}{K} \frac{\hat{S}_i^z \hat{S}_j^z}{r_{ij}^{\alpha}} - \sum_i \hat{S}_i^x$$

Path Integral Monte Carlo

☐ The model maps to a classical, anisotropic, 2D Ising model

The mapping is exact up to $O(\beta/M)$ corrections

 β up to 1024 L up to 8192 M up to 65536

□ Properties of the quantum system are accessed via conventional Monte Carlo simulations

Path Integral Monte Carlo

 $\hfill\Box$ The model maps to a classical, anisotropic, 2D Ising model

□ Properties of the quantum system are accessed via conventional Monte Carlo simulations

Path Integral Monte Carlo

☐ The model maps to a classical, anisotropic, 2D Ising model

□ Properties of the quantum system are accessed via conventional Monte Carlo simulations

Criticality and finite-size systems

PIMC gives direct access to observables like

Binder cumulant

$$U = \frac{1}{2} \left[3 - \frac{\langle m_z^4 \rangle}{\langle m_z^2 \rangle^2} \right]$$

For $d \geq d_{uc}$

$$\chi = \beta L(\langle m_z^2 \rangle - \langle |m_z| \rangle^2)$$

The finite-size scaling hypothesis (FSS)

$$Q(t,L) = L^{-k\theta_t} g\left(tL^{\theta_t}\right)$$

$$egin{aligned} rac{1}{
u} &= rac{d_{uc}(lpha)}{d} heta_t \ T &= 0 \quad d_{uc} &= rac{3(lpha-1)}{2} \ V & o \infty \quad d_{uc} &= 2(lpha-1) \end{aligned}$$

$$\hat{H} = -\sum_{i < j} \frac{V}{K} \frac{\hat{S}_z^z \hat{S}_j^z}{r_{ij}^{\alpha}} - \sum_i \hat{S}_i^x$$

$$U = \frac{1}{2} \left[3 - \frac{\langle m_z^4 \rangle}{\langle m_z^2 \rangle^2} \right] \quad \alpha = 0.05, 1.5$$

FSS
$$V_U(L) = V_c \left(1 + aL^{-\omega - \theta_t}\right)$$

$$U(L, V_U(L)) = b + cL^{-\omega}$$
 [Angelini et al., 2014]

Curves U(V, L) for system sizes L and 2L cross at size-dependent points $V = V_U(L)$

$$\hat{H} = -\sum_{i < j} \frac{V}{K} \frac{\hat{S}_i^z \hat{S}_j^z}{r_{ij}^{\alpha}} - \sum_i \hat{S}_i^x$$

$$\alpha = 0.05, 1.5$$

Data collapse

$$m_{z}^{2} \sim L^{-2\beta_{m}\theta_{t}} \cdot f\left[L^{+\theta_{t}}\left(V_{c}-V\right)\right]$$

$$y_L^m \equiv m_z^2(L) L^{+2\beta_m \theta_t}$$

 $x_L^V \equiv (V_c - V) L^{\theta_t}$

$$\mathbf{x}_{L}^{V} \equiv (V_{c} - V) L^{\theta_{t}}$$

[Sandvik, 2010]

α	V_c (BC)	V_c (DC)	θ_t (BC)	θ_t (DC)	$2\beta_m\theta_t$ (DC)
0.05	1.9997(4)	1.9999	0.50(7)	0.688	0.68
1.50	2.1972(7)	2.1981	0.39(6)	0.64	0.715

Comparison of the results

$$\Box \ \ \mathsf{SSE^1} \ \ \mathsf{predictions} \ \mathsf{in} \ \ \mathsf{[Koziol\ et\ al.,\ 2021]}$$

$$\frac{\alpha \quad \ \ \theta_t \quad \ \ 2\beta\theta_t}{1.5 \quad \ \sim 0.667 \quad \ \sim 0.667} \ \ \to \ \mathsf{MF}$$

 \square MF predictions in [Botet and Jullien, 1983] $\alpha \mid \theta_t \mid 2\beta\theta_t$

$$\begin{array}{c|cccc} \alpha & \theta_t & 2\beta\theta_t \\ \hline 0 & 2/3 & 2/3 \end{array}$$

¹Stochastic Series Expansion (Monte Carlo)

α	V_c (BC)	V_c (DC)	θ_t (BC)	θ_t (DC)	$2\beta\theta_t$ (DC)
0.05	1.9997(4)	1.9999	0.50(7)	0.688	0.68
1.50	2.1972(7)	2.1981	0.39(6)	0.64	0.715

Comparison of the results

$$\square SSE^1 \text{ predictions in [Koziol et al., 2021]}$$

$$\frac{\alpha}{} \frac{\theta_t}{} \frac{2\beta\theta_t}{} \rightarrow ME$$

$$\begin{array}{c|cccc} \alpha & \theta_t & 2\beta\theta_t \\ \hline 1.5 & \sim 0.667 & \sim 0.667 \end{array} \rightarrow \mathsf{MF}$$

¹Stochastic Series Expansion (Monte Carlo)

	V_c (BC)	` ,	` ,	` ,	$2\beta\theta_t$ (DC)
0.05	1.9997(4)	1.9999	0.50(7)	0.688	0.68
1.50	2.1972(7)	2.1981	0.39(6)	0.64	0.715

Comparison of the results

$$\square$$
 SSE¹ predictions in [Koziol et al., 2021]

$$\begin{array}{c|cccc} \alpha & \theta_t & 2\beta\theta_t \\ \hline 1.5 & \sim 0.667 & \sim 0.667 \end{array} \rightarrow \mathsf{MF}$$

$$\begin{array}{c|cccc} \alpha & \theta_t & 2\beta\theta_t \\ \hline 0 & 2/3 & 2/3 \end{array}$$

¹Stochastic Series Expansion (Monte Carlo)

	V_c (BC)	` ,	` ,	` ,	. ,
0.05	1.9997(4)	1.9999	0.50(7)	0.688	0.68
1.50	2.1972(7)	2.1981	0.39(6)	0.64	0.715

Comparison of the results

$$\begin{array}{c|cccc} \alpha & \theta_t & 2\beta\theta_t \\ \hline 1.5 & \sim 0.667 & \sim 0.667 \end{array} \rightarrow \mathsf{MF}$$

$$\begin{array}{c|cc} \alpha & \theta_t & 2\beta\theta_t \\ \hline 0 & 2/3 & 2/3 \end{array}$$

¹Stochastic Series Expansion (Monte Carlo)

$$\hat{H} = -\sum_{i < j} \frac{V}{K} \frac{\hat{S}_{i}^{z} \hat{S}_{j}^{z}}{r_{ij}^{\alpha}} - \sum_{i} \hat{S}_{i}^{x}$$

$$U = \frac{1}{2} \left[3 - \frac{\langle m_{z}^{4} \rangle}{\langle m_{z}^{2} \rangle^{2}} \right]$$

$$\alpha = 0.05, 1.5 \quad | \quad V = 2.5, 3, 3.5, 5$$

FSS
$$\beta_U(L, V) = \beta_c \left(1 + aL^{-\omega - \theta_t} \right)$$

$$U(L, \beta_U(L, V)) = b + cL^{-\omega}$$
[Angelini et al., 2014]

$$\hat{H} = -\sum_{i < j} \frac{V}{K} \frac{\hat{S}_{i}^{z} \hat{S}_{j}^{z}}{r_{ij}^{\alpha}} - \sum_{i} \hat{S}_{i}^{x}$$

$$\chi = \beta L(\langle m_{z}^{2} \rangle - \langle |m_{z}| \rangle^{2})$$

FSS
$$\beta_{\chi}(\textit{L},\textit{V}) = \beta_{\textit{c}} + \textit{fL}^{-\theta_{\textit{t}}}$$
 [Sandvik, 2010]

 χ is expected to display peaks at size-dependent temperatures $eta_\chi(L,V)$

			β_c			$ heta_t$		$\gamma heta_t$
	V	U	χ	χ_{dc}	U	χ	Χdc	χ_{dc}
$\alpha = 0.05$	V = 2.5	2.2007(4)	2.23(1)	2.20	/	0.72(4)*	0.51	0.505
	V = 3.0	1.6120(7)	1.61(1)	1.612	/	0.54(3)	0.485	0.515
	V = 3.5	1.299(1)	1.303(3)	1.303	/	0.54(2)	0.49	0.523
	V = 5.0	0.8474(2)*	0.844(2)	0.8491	0.5(1)	0.47(2)	0.50	0.524
$\alpha = 1.50$	V = 2.5	3.21(1)	3.351(9)	3.229	0.49(7)	0.75(1)*	0.50	0.516
	V = 3.0	2.109(1)*	2.12(1)	2.115	0.50(2)	0.48(3)	0.52	0.538
	V = 3.5	1.647(6)	1.646(5)	1.650	0.5(2)	0.46(2)	0.52	0.545
	V = 5.0	1.039(1)	1.035(1)	1.041	0.44(7)	0.41(1)	0.530	0.550

Comparison of the results

ш	IVIC-	predict	ions in [L	uijten and	Blote, 1997]
	α	V	θ_t	$\gamma \theta_t$	$\rightarrow MF$
	1.5	∞	~ 0.5	~ 0.5	→ IVII

☐ MF predictions in [Botet and Jullien, 1983]

α	V	θ_t	$\gamma \theta_t$
0	∞	~ 0.5	~ 0.5

²Classical Monte Carlo

			eta_c			$ heta_t$		$\gamma heta_t$
	V	U	χ	χ_{dc}	U	χ	Χdc	χ_{dc}
$\alpha = 0.05$	V = 2.5	2.2007(4)	2.23(1)	2.20	/	0.72(4)*	0.51	0.505
	V = 3.0	1.6120(7)	1.61(1)	1.612	/	0.54(3)	0.485	0.515
	V = 3.5	1.299(1)	1.303(3)	1.303	/	0.54(2)	0.49	0.523
	V = 5.0	0.8474(2)*	0.844(2)	0.8491	0.5(1)	0.47(2)	0.50	0.524
$\alpha = 1.50$	V = 2.5	3.21(1)	3.351(9)	3.229	0.49(7)	0.75(1)*	0.50	0.516
	V = 3.0	2.109(1)*	2.12(1)	2.115	0.50(2)	0.48(3)	0.52	0.538
	V = 3.5	1.647(6)	1.646(5)	1.650	0.5(2)	0.46(2)	0.52	0.545
	V = 5.0	1.039(1)	1.035(1)	1.041	0.44(7)	0.41(1)	0.530	0.550

Comparison of the results

 \square MF predictions in [Botet and Jullien, 1983]

α	V	θ_t	$\gamma \theta_t$
0	∞	~ 0.5	~ 0.5

²Classical Monte Carlo

			eta_c			$ heta_t$		$\gamma heta_t$
	V	U	χ	χ_{dc}	U	χ	Χdc	χ_{dc}
$\alpha = 0.05$	V = 2.5	2.2007(4)	2.23(1)	2.20	/	0.72(4)*	0.51	0.505
	V = 3.0	1.6120(7)	1.61(1)	1.612	/	0.54(3)	0.485	0.515
	V = 3.5	1.299(1)	1.303(3)	1.303	/	0.54(2)	0.49	0.523
	V = 5.0	0.8474(2)*	0.844(2)	0.8491	0.5(1)	0.47(2)	0.50	0.524
$\alpha = 1.50$	V = 2.5	3.21(1)	3.351(9)	3.229	0.49(7)	0.75(1)*	0.50	0.516
	V = 3.0	2.109(1)*	2.12(1)	2.115	0.50(2)	0.48(3)	0.52	0.538
	V = 3.5	1.647(6)	1.646(5)	1.650	0.5(2)	0.46(2)	0.52	0.545
	V = 5.0	1.039(1)	1.035(1)	1.041	0.44(7)	0.41(1)	0.530	0.550

$Comparison\ of\ the\ results$

ш	IVIC-	predict	ions in [i	_uijten and	Biote, 1991
	α	V	θ_t	$\gamma \theta_t$	$\rightarrow MF$
	1.5	∞	~ 0.5	~ 0.5	→ IVII

²Classical Monte Carlo

Criticality and phase diagram

$$\hat{H} = -\sum_{i < j} \frac{V}{K} \frac{\hat{S}_i^z \hat{S}_j^z}{r_{ij}^u} - \sum_i \hat{S}_i^x$$

Conclusions

- $\hfill\square$ We study the long-range quantum Ising chain
 - ☐ Characterising the phase diagram and critical behavior
- \square We find essential agreement with existing predictions when possible
 - We find compatibility of our $\alpha = 0.05$ results with the fully-connected universal properties
 - $lue{}$ The non-zero T transition follows the classical prediction

Acknowledgements

Adriano Angelone

Marcello Dalmonte

Markus Heyl

Thank you for your attention

Give feedback:

Download:

Bibliography

