데이터 기반의 최적 냉매량 예측 모델 개발 (전자 제조 산학 프로젝트) |

데이터사이언스학과

김민찬, 신호준, 이성수

CONTENTS

- 1 Introduction
- 2 EDA
- 3 Experiments
- 4 Conclusion

SEOUL NATIONAL UNIVERSITY OF SCIENCE & TECHNOLOGY

1

- 냉매의 특성
 - 냉매란?
 - 냉동 시스템에서 열을 전달하거나 전송하기 위해 사용되는 물질
 - 압축과 팽창 과정을 통해 기체와 액체로 변환
 - 냉매 상태 변화
 - 압축을 통해 액체로 변하고, 팽창을 통해 기체로 변하는 주기 반복
 - 냉동 및 냉장 시스템에서 열을 이동
 - 증발열과 응축열
 - 냉매의 증발 과정에서 열을 흡수, 응축 과정에서 열을 방출
 - 냉장고 및 냉동고 내부 온도를 낮추고 열을 외부로 방출
 - 냉매의 온도와 압력 관계
 - 특정 압력과 온도에서 기체 혹은 액체 상태로 존재
 - 온도와 압력 간의 관계는 냉매 상태를 결정하는데 중요한 역할
 - 열전도 및 열전달
 - 냉매는 열을 효과적으로 전달하고, 냉장고 및 냉동고내에서 원활하게 순환해야 함

- 냉매와 모세관
 - 모세관이란?
 - 냉동 및 냉장 시스템에서 냉매를 운반하는 파이프 또는 튜브
 - 저항이 커지는 조건 : 직경이 작고, 길이가 길다
 - 저항이 작아지는 조건 : 직경이 크고, 길이가 짧다
 - 냉매가 지나가는 모세관의 저항이 큼
 - 압력 강하가 많아짐
 - 냉매 압력이 하강
 - 냉매 온도가 떨어지면서 냉매 순환력 감소
 - 냉동 능력 감소
 - 냉매가 지나가는 관의 저항이 작음
 - 압력 강하가 적어짐
 - 냉매 압력 상승
 - 냉매 온도가 상승하면서 냉매 순환력 증가
 - 냉동 능력 상승

- 냉장 냉동 작동 원리
 - 압축
 - 냉매가 압축되어 고압가스로 변환
 - 냉매의 온도와 압력을 높이는 작업
 - 응축
 - 냉매가 외부 공기나 물과 열 교환이 일어나면서 가스가 액체로 응축
 - 열이 방출되고, 냉매는 내부 열을 흡수할 준비
 - 팽창
 - 팽창 장비를 통과하여 저압으로 변환
 - 냉매가 팽창되면서 저온으로 변환
 - 증발
 - 주변 공기나 식품으로부터 열을 흡수하여 다시 가스 상태로 변환
 - 냉장고 내부의 온도가 낮아져 식품이나 음료를 신선하게 보존하거나 냉동

- 냉동 기기 성능 평가 및 비교
 - 에너지 효율 등급
 - 냉동 기기의 에너지 소비 효율성을 나타내는 지표
 - 에너지 스타 등급 및 유럽 에너지 효율 등급으로 기기 간의 성능 비교
 - 전력 소비
 - 에너지 라벨 또는 제품 사양서를 통해 확인
 - 전력 소비가 낮을수록 효율성이 높음
 - 추가적인 성능 평가 요소
 - 냉동 및 냉장 능력
 - 소음 수준
 - 유지 보수 및 수리 용이성
 - 부가적인 기능 및 기술
 - 비용과 예산

- ASHRAE Handbook: Refrigeration
 - ASHRAE는 냉동 및 냉장 기술에 대한 자료 제공
 - 'Refrigeration' 부분은 냉동 기기의 성능 평가 정보를 제공
- Refrigeration and Air Conditioning Technology by Bill Whitman, Bill Johnson, John Tomczyk
 - 냉장 및 냉동 기기의 성능 평가 및 유지 보수 정보 제공
- Energy Star Program Requirements for Refrigerators
 - 미국 환경보호국(EPA)이 운영하는 Energy Star 프로그램의 요구 사항 문서
 - 냉장고 및 냉동기에 대한 성능 및 에너지 효율성 표준 정보 제공

표 1: 미국 환경보호국에서 제공하는 냉동 기기 성능 및 에너지 효율성 표준 정보

Product Type	Current Criteria Levels
Refrigerators and Refrigerator-Freezers (7.75 cubic feet or larger)	10% less measured energy use than the minimum federal efficiency standards
Freezer (7.75 cubic feet or larger)	10% less measured energy use than the minimum federal efficiency standards
Compact Refrigerators, Refrigerator-Freezers, and Freezers (Less than 7.75 cubic feet)	10% less measured energy use than the minimum federal efficiency standards
Built-In Compact Coolers	30% less measured energy use than minimum federal efficiency standards
Built-In Coolers	30% less measured energy use than minimum federal efficiency standards
Freestanding Compact Coolers	20% less measured energy use than minimum federal efficiency standards
Freestanding Coolers	10% less measured energy use than minimum federal efficiency standards

- 수집 데이터 주요 정보
 - 냉장고 및 냉동고 15개 센서로 내부 온도 측정
 - 냉장고 목표 온도 : 0℃
 - 냉동고 목표 온도 : -20℃
 - 냉매가 이동하는 모세관 정보
 - 모세관 직경
 - 모세관 길이
 - 냉매
 - 실험마다 상이한 냉매량
 - 냉장 및 냉동 냉매 유형
 - 냉장(R600a), 냉동(R290)
 - 냉장고 및 냉동고가 위치한 방 온도
 - 35℃, 30℃
- 냉장고/냉동고로서 기능하기 위한 냉각 성능 요건
 - 방온도 35℃: 24시간 내에 냉동 -20℃, 냉장 0℃ 도달
 - 방 온도 30℃: 3시간 내에 냉동 -20℃, 냉장 0℃ 도달

- 본 프로젝트 최종 목적
 - 신규 개발 중인 냉장고와 냉동고의 필요 성능을 달성
 - 최적의 냉매량 예측 모델 개발
 - 실험 환경 조건에 따른 목표 온도 달성 성공/실패 예측 및 그에 따른 최적 냉매량 예측

- 냉장/냉동고의 냉각 성능 평가 기준
 - 방온도 35℃: 24시간 내에 목표온도에 도달하는 것이 필요
 - 방 온도 30℃: 3시간 내에 목표온도에 도달하는 것이 필요
 - * 목표온도: 냉장고 0℃, 냉동고 -20℃

SEOUL NATIONAL UNIVERSITY OF SCIENCE & TECHNOLOGY

2

EDA

2. EDA

- 목표 온도 도달 실험 분포
 - 냉장 성공/실패 : 92개/18개
 - 냉동 성공/실패: 49개/7개

그림 3 : 냉장고 목표 온도 도달 성공/실패 실험 수

Distribution of Target Temperature Reach in Refrigerator

그림 4 : 냉동고 목표 온도 도달 성공/실패 실험 수 Distribution of Target Temperature Reach in Freezer

2. EDA

- 방 온도에 따른 냉장고 실험 분포도
 - x축 : 냉매량, y축 : 목표 온도 도달 시간
 - 30°C: 빨간색, 35°C: 초록색
 - 냉매량이 60g 부근에서는 냉매량이 증가할수록 소요시간이 감소하나, 냉매량이 80g보다 증가할 경우에는 냉각 필요시 간이 오히려 증가하는 추세가 일부 존재

2. EDA

- 방 온도에 따른 냉동고 실험 분포도
 - x축 : 냉매량, y축 : 목표 온도 도달 시간
 - 30°C: 빨간색, 35°C: 파란색
 - 냉장고 보다는 비교적 경향성을 명확히 나타나지 않으나, 냉동소요시간과 냉매량간에 일부 비선형 관계 존재

SEOUL NATIONAL UNIVERSITY OF SCIENCE & TECHNOLOGY

3

SEOUL NATIONAL UNIVERSITY OF SCIENCE & TECHNOLOGY

3.1

Polynomial regression

- 3.1 Polynomial Regression
 - 냉장고의 목표 온도에 도달하기 위한 냉각 소요시간 예측 모델 개발
 - 2차 polynomial regression model 적용

그림8: 추정된 회귀식에서 실내온도가 35도일 때의 시각화 결과(냉장고)

- 3.1 Polynomial Regression
 - 냉동고의 목표 온도에 도달하기 위한 냉각 소요시간 예측 모델 개발
 - 2차 polynomial regression model 적용

그림10: 추정된 회귀식에서 실내온도가 35도일 때의 시각화 결과(냉동고)

- 3.1 Polynomial regression
 - 냉장고의 목표 온도에 도달하기 위한 냉각 소요시간 예측 모델
 - 결정계수: 0.34, RMSE: 130.51
 - 냉각성능과 냉매량간의 비선형 관계가 존재, 즉 냉매량이 일정량을 넘어서면 필요 냉각시간이 오히려 증가
 - 냉각시간 = 0.45×냉매량² 69.64×냉매량 + 13.25×실내온도 + 0.09×냉매량×실내온도 + 2148

표2: 추정된 회귀계수 및 p-value

변수명	회귀 계수	p_value
Const	2148.00	0.06
Cooler_amnt^2	0.45	0.00
Cooler_amnt	-69.64	0.00
Room_temp	13.25	0.71
Room_temp * Cooler_amnt	0.09	0.85

- 3.1 Polynomial regression
 - 추정된 회귀식을 바탕으로 냉장고 최적 냉매량 예측
 - 실내온도: 30도
 - ✓ 시간 기준 : 73.70g (냉각 시간: 약 82분 소요 예상)
 - ✓ 냉매량 기준 : 59.01g

그림11: 추정된 회귀식에서 실내온도가 30도일 때의 시각화 결과

- 3.1 Polynomial regression
 - 냉동고의 목표 온도에 도달하기 위한 냉동 소요시간 예측 모델
 - 결정 계수: 0.58, RMSE: 36.26
 - 냉장고와 유사하게 냉각성능과 냉매량간의 비선형 관계가 존재, 즉 냉매량이 일정수준을 넘어서면 필요 냉각시간이 오히려 증가
 - 냉각시간 = -7.98×냉매량² + 1402.55×냉매량 + 2130.08×실내온도 48.33×냉매량×실내온도 + 0.27 ×냉매량²×실내온도 61635.86

표3: 추정된 회귀계수 및 p-value 값

변수명	회귀 계수	p_value	
Const	-61635.86	0.16	
Cooler_amnt^2	-7.98	0.19	
Cooler_amnt	1402.55	0.17	
Room_temp	2130.08	0.11	
Room_temp * Cooler_amnt	-48.33	0.12	
Room_temp * Cooler_amnt^2	0.27	0.14	

- 3.1 Polynomial regression
 - 도출된 회귀식을 바탕으로 냉동고 관련 최적 냉매량 예측
 - 실내온도: 30도
 - ✓ 시간 기준 : 89.10g (약 152분 소요)
 - ✓ 냉매량 기준 : 78.77g

그림12: 추정된 회귀식에서 실내온도가 30도일 때의 시각화 결과

SEOUL NATIONAL UNIVERSITY OF SCIENCE & TECHNOLOGY

3.2

Machine learning

- 성공/실패 여부 예측 모형 개발
 - 통합 냉각 예측 모델
 - 하나의 모델을 활용하여 학습
 - 냉장/냉동 결합 냉각 예측 모델
 - 냉장고 모델과 냉동고 모델을 각각 학습한 뒤 결합
- 모델 평가 방식 및 지표
 - Train/Test Split (StratifiedShuffleSplit, test_size=0.2)
 - 전체 실험 수: 166개
 - Train: 132개 (성공: 112개, 실패: 20개)
 - Test: 34개 (성공: 29개, 실패: 5개)
 - F1 score 활용
 - F1 score는 정밀도(Precision)와 재현율(Recall)의 조화 평균을 사용하여 계산
 - 데이터 불균형이 있는 경우에는 정확도(Accuracy)보다 더 유용한 지표
 - 2TP/(2TP+FP+FN)

낮을 수록 좋음

- 데이터 불균형
 - 데이터에서 서로 다른 클래스의 샘플 수 차이가 큼
 - 소수 클래스의 샘플을 늘리면 모델이 두 클래스를 더 공정하게 학습
 - 현재 학습 데이터 중 실패 데이터(20개)가 성공 데이터(112개)에 비해 적음
 - Oversampling 기법 활용
 - RandomOverSampler
 - 소수 클래스의 샘플을 무작위로 복제하여 데이터 세트 내의 클래스 불균형을 줄임

표4: Oversampling 후 성공/실패 샘플 수 변화

	성공 (냉장, 냉동)	실패 (냉장, 냉동)
Before	112 (76, 36)	20 (15, 5)
After	112 (76, 36)	112 (87, 25)

- 사용 변수 목록
 - Cooler_machine : 냉장 및 냉동 기기
 - Compressor : 압축기
 - Start_temp : 시작 온도
 - Room_temp : 방 온도
 - Cooler_type: 냉매 유형
 - Pipe_diameter : 모세관 직경
 - Pipe_length : 모세관 길이
 - Cooler_amnt : 냉매량
- 다양한 머신 러닝 알고리즘을 데이터에 맞게 자동적으로 수행해주는 AutoML 활용(14가지 모델)
 - LightGBM, LightGBMXT, LightGBMLarge
 - NeuralNetFastAl, NeuralNetTorch
 - XGBoost, CatBoost
 - KNeighborsDist, KNeighborsUnif
 - RandomForestGini, RandomForestEntr
 - ExtraTreesEntr, ExtraTreesGini
 - WeightedEnsemble_L2
- NeuralNetFastAl 모델
 - FastAl 기반의 기본적인 Neural Network
 - 총 4개의 층으로 구성 (입력층 1개, 은닉층 2개 (200, 100) , 출력층 1개)
 - 실험의 base model로 활용

- 냉장고/냉동고 냉각 예측 모델
 - Cooler_machine 변수에 "R"이 포함되어 있으면 냉장고 데이터, "F"가 포함되어 있으면 냉동고 데이터로 분리
 - 기기에 따라 2개의 모델을 따로 학습하여 예측
 - 냉장고 예측 모델
 - Validation score를 기반으로 LightGBM 선택
 - 과적합 가능성 있음
 - 냉장 테스트 결과
 - F1 score = 0.9090
 - Recall = 0.9375
 - Precision = 0.8823
 - 냉동고 예측 모델
 - Validation score를 기반으로 LightGBMLarge 선택
 - Inference time 가장 빠름
 - 냉동 테스트 결과
 - F1 score = 0.8695
 - Recall = 0.7692
 - Precision = 1.000

표5: 냉장고 예측 모델 validation score

Model	Validation_score
LightGBM	1.000
NeuralNetFastAl	0.9333

표6: 냉동고 예측 모델 validation score

Model	Validation_score
LightGBMLarge	0.9333
NeuralNetFastAl	0.9333

- 통합 냉각 예측 모델
 - 통합 모델의 경우 냉장고 데이터와 냉장고 데이터를 합쳐 1개의 모델을 학습 및 생성
 - Validation score를 기반으로 XGBoost 선택

표7: 통합 냉각 예측 모델 validation score

Model	Validation_score
XGBoost	0.9767
NeuralNetFastAl	0.8837

- 냉장 테스트 결과
 - F1 score = 0.9090
 - Recall = 0.9375
 - Precision = 0.8823
- 냉동 테스트 결과
 - F1 score = 0.8799
 - Recall = 0.8461
 - Precision = 0.9166

- 냉장고
 - 냉장고 모델
 - F1 score = 0.9090
 - 통합 모델
 - F1 score = 0.909
 - ▶ 두 모델의 성능이 같음
- 냉동고
 - 냉동고 모델
 - F1 score = 0.8695
 - 통합 모델
 - F1 score = 0.8800
 - ▶ 통합 모델의 성능이 높음
- 최종 결론
 - 통합 모델의 성능이 냉장고에선 같고 냉동고에서 더 좋기 때문에 통합 모델 활용

- 냉장고 최적 냉매량 예측 예시
 - 실내 온도 30도일 때 (3시간 내에 0℃에 도달할 것으로 예측되는 냉매량)

표8: 냉장고 냉매량 예측(실내 온도 30℃)

Cooler_machine	Compressor	Start_temp	Room_temp	Cooler_type	Pipe_diameter	Pipe_length	Is_reached	Cooler_amnt
400R	BMK140	28.6	30	R600a	2.4	1.1	1	<u>45</u>
400R	BSA057	28.6	30	R600a	2.4	1.1	1	<u>60</u>
400R	BSA057	28.6	30	R600a	2.4	2.1	1	<u>60</u>
620R	BSA057	28.6	30	R600a	2.4	1.3	1	80
620R	BSA075	28.6	30	R600a	2.4	1.1	1	<u>45</u>

• 실내 온도 35도일 때 (24시간 내에 0℃에 도달할 것으로 예측되는 냉매량)

표9: 냉장고 냉매량 예측(실내 온도 35℃)

Cooler_machine	Compressor	Start_temp	Room_temp	Cooler_type	Pipe_diameter	Pipe_length	Is_reached	Cooler_amnt
400R	BMK140	29.9	35	R600a	2.4	1.1	1	<u>45</u>
400R	BSA057	29.9	35	R600a	2.4	1.3	1	<u>45</u>
620R	BSA057	29.9	35	R600a	2.4	1.3	1	<u>80</u>
620R	BSA057	29.9	35	R600a	2.4	1.4	1	<u>60</u>
620R	BSA075	29.9	35	R600a	2.4	1.1	1	<u>45</u>

SEOULTECH

- 냉동고 최적 냉매량 예측 예시
 - 실내 온도 30도일 때 (3시간 내에 0℃에 도달할 것으로 예측되는 냉매량)

표10 : 냉동고 냉매량 예측(실내 온도 30℃)

Cooler_machine	Compressor	Start_temp	Room_temp	Cooler_type	Pipe_diameter	Pipe_length	Is_reached	Cooler amnt
620F	LG075	28.6	30	R290	2.4	2.1	1	<u>70</u>
620F	LG075	28.6	30	R290	2.4	2.3	1	<u>70</u>
620F	LG075	28.6	30	R290	2.4	2.5	1	<u>70</u>
620F	LG075	28.6	30	R290	2.4	2.7	1	<u>83</u>
620F	LG075	28.6	30	R290	2.4	2.9	1	90
620F	LG075	28.6	30	R290	2.4	3.1	1	90

• 실내 온도 35도일 때 (데이터가 부족하여 주어진 조합을 모두 성공으로 예측)

표11 : 냉동고 냉매량 예측(실내 온도 35℃)

Cooler_machine	Compressor	Start_temp	Room_temp	Cooler_type	Pipe_diameter	Pipe_length	ls_reached	Cooler_amnt
620F	LG075	29.8	35	R290	2.4	2.1	1	<u>70</u>
620F	LG075	29.8	35	R290	2.4	2.3	1	<u>70</u>
620F	LG075	29.8	35	R290	2.4	2.5	1	<u>70</u>
620F	LG075	29.8	35	R290	2.4	2.7	1	<u>70</u>
620F	LG075	29.8	35	R290	2.4	2.9	1	<u>70</u>
620F	LG075	29.8	35	R290	2.4	3.1	1	<u>70</u>

SEOUL NATIONAL UNIVERSITY OF SCIENCE & TECHNOLOGY

4

Conclusion

- 본 과제에서는 냉매량, 외부온도 등 다양한 환경에서 냉동(냉장)성능에 대해 물리적 실험 데이터를 바탕으로 냉각 성능을 예측하는 수리 모델을 아래 두 가지 방법론을 활용하여 개발
- Polynomial regression model
 - 주어진 변수와 그에 상응하는 출력 변수 간의 관계를 모델링하는 데 사용되는 통계적 기법
 - 주어진 데이터에 대한 최적의 적합을 찾는 것이 목표
 - 냉장, 냉동 데이터를 바탕으로 Polynomial Regression 회귀식을 추정
 - 냉매량, 실내온도와 냉각 시간과의 관계를 바탕으로, 목포 온도에 도달하기까지 필요한 냉각 시간 예측 모델을 개발
- Machine Learning
 - AutoML 활용 : 다양한 machine learning 알고리즘을 자동으로 실행
 - 높은 성능을 보여주는 모델 선택
 - 냉장/냉동 예측 모델
 - LightGBM(냉장), LightGBMLarge(냉동)
 - 데이터로부터 패턴을 학습하는 모델
 - 통합 냉각 예측 모델
 - XGBoost
 - 높은 성능을 위해 약한 모델들을 조합하여 만든 강한 모델
 - 다양한 machine learning 모델을 적용하여 예측력을 평가하였으며, 본 냉각 실험에 대해 예측성능이 제일 우수한 것으로 나타난 XGBoost 모델을 활용하여 최종 예측 모델 개발
 - 최종 모형을 활용하여, 최적의 냉매량 예측 및 제안 수행

■ 최종 결론#1

Polynomial Regression을 통한 냉각 소요시간 예측 및 최적 냉매량 예측

• 냉장고

- 냉장고의 경우 냉매량이 72g 또는 73g일 경우에 가장 짧은 시간내에 목표온도(0℃)에 도달하는 것으로 예측
- 냉매량 절감을 목적으로 예측할 경우, 냉장고의 경우 실내온도 30℃를 가정하면, 약 59g의 냉매(R00a)만을 사용하여도 목표온도에 도달하는 냉장고를 생산할 수 있는 것으로 예측

냉동고

- 냉동고의 경우에는 냉매량이 88g 또는 89g일 경우에 가장 냉동성능이 높을 것으로 예측되며, 약 2시간~3시간 사이에 목표온도인 -20℃에 도달할 수 있는 것으로 모형을 활용한 결과 예측됨 (냉매: R290기준)
- 냉매량 절감을 목적으로 분석을 진행할 경우, 약 68g~79g의 냉매만을 사용하여도 필요 냉각성능을 보유한 냉동고를 생산할 수 있을 것으로 예측

- 최종 결론#2
 - Machine Learning 모델을 통한 목표온도 도달 가능여부 예측 및 최적 냉매량 예측
 - 선정 모델을 활용하여 동일한 조건 내 최적의 냉매량을 도출
 - 냉장고와 냉동고에 동일하게 적용할 수 있는 통합 모델을 개발
 - 통합모델을 활용하여 가상의 조건을 제시할 경우 희망하는 냉장/냉동 성능을 달성할 수 있는지 여부를 예측 가능
 - 냉장고의 경우 실내온도가 30℃일 경우 냉매량을 45g까지 줄이면서 냉장성능 구현이 가능한 것으로 예측됨
 - 냉동고의 경우에는 실내온도가 30℃일 경우 냉매량을 70g을 사용하여 -20℃의 목표온도 도달이 가능할 것으로 예 측

- 과제의 한계점
 - 모형 도출을 위해 활용한 관측치의 개수가 총 166개로 제약사항 존재
 - 시간상의 제약 등으로 인해 추가 정보(냉각 순환 과정에서 각 위치별 냉매의 압력 등) 미활용
 - 외부 온도 설정이 대부분 30℃ 또는 35℃ 설정되어 있어, 온도에 따른 냉각성능 분석에 제약 존재

감사합니다

본 과제를 위해 데이터와 산업지식을 공유해주신 ㈜제이오텍에 감사드립니다.