Assignment 3

September 8, 2020

- 1. Let $\{a_n\}$ and $\{b_n\}$ be two sequences. Suppose $\lim_{n\to\infty}a_n=a$, $\lim_{n\to\infty}b_n=b$, and $s_n=\frac{a_n^3+4a_n}{b_n^2+1}$. Evaluate $\lim_{n\to\infty}s_n$.
- 2. Let $t_1 = 1$ and $t_{n+1} = \frac{t_n^2 + 2}{2t_n}$ for $n \ge 1$. First prove $t_n \ne 0$ for all $n \ge 1$. Assume $\{t_n\}$ converges and find the limit. ??
- 3. Let $\{t_n\}$ be a bounded sequence, i.e., there exists M such that $|t_n| \leq M$ for all $n \in \mathbb{N}$, and let $\{s_n\}$ be a sequence such that $\lim_{n\to\infty} s_n = 0$. Prove $\lim_{n\to\infty} (s_n t_n) = 0$.
- 4. Let $\{s_n\}$ be a sequence such that $|s_{n+1}-s_n|<2^{-n}$ for all $n\geq 1$. Prove $\{s_n\}$ is a Cauchy sequence. Is the result true if we only assume $|s_{n+1}-s_n|<\frac{1}{n}$ for all $n\geq 1$.
- 5. Let $s_1 = 1$ and $s_{n+1} = \frac{1}{3}(s_n + 1)$ for $n \ge 1$.
 - (a) Find s_2 , s_3 and s_4 .
 - (b) Use induction to show $s_n > \frac{1}{2}$ for all $n \ge 1$.
 - (c) Show (s_n) is a decreasing sequence.
 - (d) Show that $\lim_{n\to\infty} s_n$ exists and find the limit.