AMENDMENTS TO THE CLAIMS

The following listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-5 (Cancelled)

Claim 6. (Currently Amended): The A holding device of claim 5 for holding a plurality of ferromagnetic parts, said holding device comprising:

a holder defining a plurality of cavities within which the parts may be disposed, said cavities being spaced apart and arranged in a row; and

a bar movably mounted to the holder and disposed parallel to the row of the cavities, said bar including a plurality of spaced-apart magnetic bodies arranged in a row, said bar being movable in the direction of the row of the cavities between first and second positions, wherein when the parts are disposed in the cavities and the bar is in the first position, the magnetic bodies are aligned with the cavities and the magnetic attraction forces generated by the magnetic bodies hold the parts in the cavities, and wherein when the parts are disposed in the cavities and the bar is in the second position, the magnetic bodies are not aligned with the cavities and the magnetic attraction forces generated by the magnetic bodies do not hold the parts in the cavities.

wherein when the parts are disposed in the cavities and the bar is in the first position, portions of the holder are aligned with the magnetic bodies and are disposed between the magnetic bodies and the parts, said portions being composed of a ferromagnetic or a paramagnetic material.

wherein the holder comprises a holding structure having a plurality of bores formed therein and a plurality of guide pockets disposed in the bores, said guide pockets defining the cavities,

OK tokur, TR 7/12/07

wherein the bores in the holding structure extend through a surface of the holding structure so as to form a plurality of slots in the holding structure that extend along the <u>lengths-length</u> of the bores.

Claim 7. (Original): The holding device of claim 6, wherein the holder further comprises a bar guide and a bar keep that cooperate to define a guide passage within which the bar is slidably disposed, and wherein the bar guide is secured to the holding structure, over the slots in the holding structure.

Claim 8. (Original): The holding device of claim 7, wherein when the bar is in the first position, the magnetic bodies are aligned with the slots in the holding structure, respectively.

Claim 9. (Original): The holding device of claim 8, wherein the guide pockets and the bar guide are composed of paramagnetic material.

Claim 10. (Original): The holding device of claim 9, wherein the holding structure is composed of paramagnetic material.

Claim 11. (Original): The holding device of claim 10, wherein the holding structure is composed of aluminum and the guide pockets and the bar guide are composed of stainless steel.

Claims 12-13 (Cancelled):

Claim 14. (Currently Amended): The A holding device of claim 13 for holding a plurality of ferromagnetic parts, said holding device comprising:

a holder defining a plurality of cavities within which the parts may be disposed, said cavities being spaced apart and arranged in a row; and

a bar movably mounted to the holder and disposed parallel to the row of the cavities, said bar including a plurality of spaced-apart magnetic bodies arranged in a row, said bar being movable in the direction of the row of the cavities between first

and second positions, wherein when the parts are disposed in the cavities and the bar is in the first position, the magnetic bodies are aligned with the cavities and the magnetic attraction forces generated by the magnetic bodies hold the parts in the cavities, and wherein when the parts are disposed in the cavities and the bar is in the second position, the magnetic bodies are not aligned with the cavities and the magnetic attraction forces generated by the magnetic bodies do not hold the parts in the cavities.

wherein the bar further comprises an elongated base and an elongated cover, the base and the cover being composed of paramagnetic material, that cooperate to define a plurality of voids within which the magnetic bodies are disposed,

wherein the bar further comprises a contact device secured to an end portion of the base, said contact device comprising a head defining a socket that rotatably holds a spherical bearing.

Claim 15. (Original): The holding device of claim 14, wherein the holding device further comprises a spring disposed between the holder and the contact device, said spring biasing the bar to the first position.

Claims 16-17 (Cancelled)

Claim 18. (Original): A supply system for supplying a plurality of ferromagnetic parts to an installing device, said supply system comprising:

- (a.) a mounting structure movable between a return position and a load position;
- (b.) a holding device connected to the mounting structure for movement therewith, said holding device comprising:
 - a holder defining a plurality of cavities within which the parts may be disposed, said cavities being spaced apart and arranged in a row;
 - a bar movably mounted to the holder and disposed parallel to the row of the cavities, said bar including a plurality of spaced-apart magnetic bodies arranged in a row, said bar being movable in the direction of the row of the cavities between first and second positions, wherein when the parts are

disposed in the cavities and the bar is in the first position, the magnetic bodies are aligned with the cavities and the magnetic attraction forces generated by the magnetic bodies hold the parts in the cavities, and wherein when the parts are disposed in the cavities and the bar is in the second position, the magnetic bodies are not aligned with the cavities and the magnetic attraction forces generated by the magnetic bodies do not hold the parts in the cavities; and

(c.) at least one actuation structure positioned such that an end portion of the bar contacts the at least one actuation structure during the movement of the mounting structure between the return position and the load position, wherein such contact between the at least one actuation structure and the end portion of the bar moves the bar to the second position.

Claim 19. (Original): The supply system of claim 18, wherein the holding device further comprises a spring that biases the bar to the first position.

Claim 20. (Original): The supply system of claim 19, wherein when the mounting structure is in the return position, the holder of the holding device is positioned to receive parts in the cavities, and wherein when the mounting structure is in the load position, the holder of the holding device is positioned to deliver the parts to the installing device.

Claim 21. (Original): The supply system of claim 20, wherein the at least one actuation structure comprises a return cam structure and a load cam structure, wherein the return cam structure is positioned to contact the end portion of the bar as the mounting structure is approaching the return position from the load position, and wherein the load cam structure is positioned to contact the end portion of the bar as the mounting structure is approaching the load position from the return position, whereby the bar is in the second position when the mounting structure is in the return position and when the mounting structure is in the load position.

Claim 22. (Original): The supply system of claim 21, wherein during the

travel of the holding device between the return cam structure and the load cam structure, the bar is in the first position.

Claim 23. (Original): The supply system of claim 21, wherein the end portion of the bar that contacts the return cam structure and the load cam structure comprises a rotatable bearing.

Claim 24. (Original): The supply system of claim 23, wherein the load cam structure and the return cam structure each comprise a cam surface positioned at an acute angle to the end portion of the bar when the end portion contacts the cam surface.

Claim 25. (Original): The supply system of claim 18, wherein the holder comprises a holding structure having a plurality of bores formed therein and a plurality of pockets disposed in the bores, said pockets defining the cavities.

Claim 26. (Original): The supply system of claim 25, wherein the holding structure is composed of a paramagnetic metal and the pockets are composed of a paramagnetic metal.

Claim 27. (Original): The supply system of claim 26, wherein the holding structure is composed of aluminum and the pockets are composed of stainless steel.

Claim 28. (Original): The supply system of claim 18, wherein the magnetic bodies comprise permanent magnets.

Claims 29-34 (Cancelled)