NOIP2015 模拟赛 DAY1

题目名称	序列	登山	Melancholy
源程序	sequence.*	walk.*	melancholy.*
输入文件名	sequence.in	walk.in	melancholy.in
输出文件名	sequence.out	walk.out	melancholy.out
单个测试点时限	1秒	1秒	1秒
内存限制	256MB	256MB	256MB
单个测试点分数	10	10	10
测试点数目	10	10	10
题目类型	传统型	传统型	传统型
代码长度限制	32KB	32KB	32KB

注意: 最终评测时,所有语言均不打开任何编译开关.

Sequence

【题目简述】

Fiugou 想要在一个长度为 N 的序列 A 中找到**不同位置**的三个数,以这三个数为三边长来构成一个三角形。但是它希望在满足条件下,这**三个数的位置**尽量靠前。具体地,设这三个数的为 Ai,Aj,Ak(i<j<k), Fiugou 希望 k 尽量小;当 k 相等时,满足 j 尽量小;当 k,j 均相等时,满足 i 尽量小。

但是这个序列中的数可能会发生变化。所以 Fiugou 给出了 M 个操作,形式如下:

- 1 x y:将 Ax 改为 y
- 2:查询最优的合法解,从小到大给出这三个数(而不是位置)。

【输入格式】

第一行一个整数 N, 代表序列的长度。

第二行有 N 个整数,代表初始序列。

第三行一个整数 M, 代表操作的个数。

接下来 M 行操作,两种操作格式如上所述。

【输出格式】

共 M 行,每行三个数,从小到大给出。如果不存在,输出-1-1。

【样例输入】

6

7 1 3 4 5 1

3

ว

1 3 5

2

【样例输出】

3 5 7

4 5 7

【数据范围】

对于10%的数据, N<=10, M<=5

对于30%的数据, N<=100, M<=25

对于50%的数据, N<=1000, M<=1000

对于100%的数据, N<=100000, M<=1000

对于100%的数据,0<=Ai<=10^9,1<=x<=N,0<=y<=10^9

登山

【题目简述】

恶梦是一个登山爱好者,今天他来到了黄山。

俗话说的好,不走回头路。所以在黄山,你只能往前走,或者往上走。并且很显然的是,当你走到山脊的时候,你不能够往上走,你只能往前走一步再往上走。

抽象一点而言就是,你可以把黄山视为一个N*N格点图,恶梦从(0,0)开始出发,要走到(N,N)。当他走到位置(x,y)的时候,它可以往(x+1,y),或(x,y+1)走。

并且当他走到(x,x)的时候,由于他已经处在了山脊上,所以他不能够往(x,x+1)方向上走。

当恶梦兴致勃勃准备开始爬山的时候,他的同伴告诉他,黄山由于年久失修,有一些位置出现了大坑,不能走。恶梦觉得更刺激了,但他想先知道他能有多少种方式走到黄山顶。

由于这个数字很大,所以你只需要将答案对10^9 + 7取模输出即可。

【输入格式】

第一行包括两个整数 N, C, 分别表示你可以把黄山视作一个 N * N 的格点图 , 并且黄山上面有 C 个位置出现了大坑。

接下来的 C 行,每行包括两个整数 X,Y,表示 X,Y 这个位置不能走。保证 X>=Y,也就是说(X,Y)必然在山上。

保证这 C 个点互不相同。

【输出格式】

输出只有一个整数 Ans,表示恶梦爬上山顶的路径数对 10^9+7 取模的值。

【样例输入输出】

输入1	输出1	输入 2	输出 2
5 2	27	7 4	34
5 0		6 5	
1 1		5 3	
		2 1	
		7 1	

【数据范围】

对于 30%的数据,保证 N<=5000

对于另外 20%的数据,保证 C=0

对于另外 20%的数据,保证 C=1

对于 100%的数据,保证 N<=100000,C<=1000

保证对于(0,0),(N,N)不存在障碍点。

Melancholy

【题目简述】

DX3906 星系, Melancholy 星上, 我在勘测这里的地质情况。

我把这些天来已探测到的区域分为 N 组,并用二元组(D,V)对每一组进行标记:其中 D 为区域的相对距离,V 为内部地质元素的相对丰富程度。

在我的日程安排表上有 Q 项指派的计划。每项计划的形式是类似的,都是"对相对距离 D 在 [L,R]之间的区域进行进一步的勘测,并在其中**有次序地**挑出 K 块区域的样本进行研究。"采集这 K 块的样品后,接下来在实验中,它们的研究价值即为这 K 块区域地质相对丰富程度 V 的乘积。

我对这 Q 项计划都进行了评估:一项计划的评估值 P 为所有可能选取情况的研究价值之和。

但是由于仪器的原因,在一次勘测中,这其中 V 最小的区域永远不会被选取。

现在我只想知道这 Q 项计划的评估值对 2^3 取模后的值,特殊地,如果没有 K 块区域可供选择,评估值为 0。

【输入格式】

第一行给出两个整数,区域数 N 与计划数 O。

第二行给出 N 个整数, 代表每一块区域的相对距离 D。

第三行给出 N 个整数,代表每一块区域的内部地质元素的相对丰富程度 V。

接下来的 Q 行,每一行 3 个整数,代表相对距离的限制 L,R,以及选取的块数 K。

【输出格式】

输出包括 Q 行,每一行一个整数,代表这项计划的评估值对 2^32 取模后的值。

【数据范围】

数据编号	数据约束	
1,2,3	K=1	1<=N,Q<=10^5
4 , 5 , 6	1<=K<=2	1<=D,V<=10^9
7 , 8	1<=K<=3	1<=L<=R<=10^9
9 , 10	1<=K<=6	
数据保证所有区域的 D 与 V 互不相等。		

【样例输入输出】

样例输入	样例输出
5 3	5
5 4 7 2 6	52
1 4 5 3 2	924

6 7 1	
2 6 2	
1 8 3	

【样例解释】

第一次被勘测区域的 V 值有{2,5}, 而能够被选取只有{5}。

第二次被勘测区域的 V 值有 $\{1,2,3,4\}$,能够被选取的有 $\{2,3,4\}$,评估值为 2!*(2*3+3*4+2*4)=52。

第三次被勘测区域的 V 值有 $\{1,2,3,4,5\}$,能够被选取的有 $\{2,3,4,5\}$,评估值为 3!*(2*3*4+2*3*5+2*4*5+3*4*5)=924。