Модуль 14.2. Методы приближения функций и обработки экспериментальных данных (часть II)

Экономизация полиномов и степенных рядов

Цели понижения степени полинома

Предположим, что значение функции f(x) в точке x вычисляется с помощью полинома, полученного усечением формулы Тейлора

$$f(x) \approx \underbrace{f(x^*) + f'(x^*) \cdot (x - x^*) + f''(x^*) \cdot \frac{(x - x^*)^2}{2!} + ... + f^{(n)}(x^*) \cdot \frac{(x - x^*)^n}{n!}}_{$$
Это усеченная формула Тейлора, то есть полином $S_n(x)$ степени не выше n

Определение 1. Погрешность замены функции f(x) полиномом $S_n(x)$ обозначим E(x), ее называют погрешностью усечения:

$$E(x) = f(x) - S_n(x)$$
 (14.1)

Утверждение 1. Погрешность усечения определяется **остаточным слагаемым** формулы Тейлора:

$$E(x) = f^{(n+1)}(\xi) \cdot \frac{(x-x^*)^{n+1}}{(n+1)!}$$
(14.2)

Здесь остаток записан в форме Лагранжа, неизвестная точка $\xi \in [x^*; x]$.

Предположим, что для функции f(x) в точке x ряд Тейлора сходится.

Тогда, с одной стороны, чем выше степень полинома, тем меньше (по модулю) погрешность усечения и более точным должен быть результат вычисления функции.

С другой стороны, вычисление полиномов высоких степеней может приводить к накоплению вычислительной погрешности, потому что в одну сумму складываются и крупные, и малые, и совсем малые слагаемые ряда.

Поэтому при увеличении степени полинома, полученного на основе формулы Тейлора, общая погрешность вычисления функции может не убывать.

Чтобы обеспечить

точность приближенного вычисления функции, используют полиномы (усеченные ряды Тейлора) высоких степеней,

а для того, чтобы при вычислении полиномов избежать накопления вычислительной погрешности, проводят их экономизацию.

Определение 2. Экономизацией полинома степени n называют такое понижение его степени, при котором погрешность его замены полиномом степени не выше n-1 является в том или ином смысле оптимальной.

Понижение степени полинома x^n на основе наилучшего равномерного приближения полиномом меньших степеней

Заменим на отрезке [-1;1] полином x^n полиномом меньшей степени $Q_{n-1}(x)$ так, чтобы разность указанных полиномов на отрезке [-1;1] была (по модулю) как можно меньше.

Для этого запишем задачу оптимизации:

$$\max_{x \in [-1;1]} \left| x^n - Q_{n-1}(x) \right| \to \min$$
 (14.3)

Поиск минимального значения функционала (14.3) ведется по всем возможным полиномам степени n-1.

Определение 3. Задачу (14.3) называют задачей об отыскании наилучшего равномерного приближения полинома x^n полиномом меньших степеней на отрезке [-1;1].

Утверждение 2. Решением задачи об отыскании наилучшего равномерного приближения полинома x^n полиномом меньших степеней на отрезке [-1;1] является

$$Q_{n-1}(x) = x^n - T_n(x) (14.4)$$

Здесь $T_n(x)$ есть полином Чебышёва, наименее уклоняющийся от нуля на отрезке [-1;1] в классе полиномов степени n со старшим коэффициентом 1.

(рекуррентные формулы для вычисления полиномов Чебышёва можно найти в справочнике либо записать полином самостоятельно, используя формулы его корней, см. Доказательство).

Норма погрешности экономизации, то есть замены x^n полиномом наилучшего равномерного приближения $Q_{n-1}(x)$ на отрезке [-1;1], составит

$$\max_{x \in [-1;1]} \left| x^n - Q_{n-1}(x) \right| = \frac{1}{2^{n-1}}$$
 (14.5)

Доказательство

Под знаком модуля задачи (14.3) записан полином степени n со старшим коэффициентом 1. Поэтому (14.3) может рассматриваться как задача об отыскании полинома степени n, наименее уклоняющегося от нуля на отрезке [-1;1], со старшим коэффициентом 1:

$$\max_{x \in [-1;1]} |P_n(x)| \to \min \tag{14.6}$$

Поиск минимального значения функционала (14.6) ведется по всем возможным полиномам степени n, имеющим при старшей степени коэффициент 1.

Известно, что решением (14.6) является полином Чебышёва $T_n(x)$ со старшим коэффициентом 1:

$$P_n(x) = T_n(x). (14.7)$$

Максимальное по модулю значение $T_n(x)$ на отрезке [-1;1] составит

$$\max_{x \in [-1;1]} |T_n(x)| = \frac{1}{2^{n-1}}$$
 (14.8)

Вернемся к (14.3). Так как решением (14.6) является $T_n(x)$, решением (14.3) станет такой $Q_{n-1}(x)$, для которого

$$x^{n} - Q_{n-1}(x) = T_{n}(x)$$
(14.9)

Следовательно, решение (14.3) записывается в виде (14.4)

$$Q_{n-1}(x) = x^n - T_n(x)$$

При подстановке в формулу полинома Чебышёва слагаемые степени n сокращаются, и $Q_{n-1}(x)$ не будет содержать слагаемых степени выше n-1.

Погрешность замены полинома x^n полиномом $Q_{n-1}(x)$ в точке x составит

$$x^{n} - Q_{n-1}(x) (14.10)$$

С учетом (14.8) и (14.9) для нормы погрешности верно

$$\max_{x \in [-1;1]} \left| x^n - Q_{n-1}(x) \right| = \max_{x \in [-1;1]} \left| T_n(x) \right| = \frac{1}{2^{n-1}}$$

что доказывает (14.5).

Полином Чебышёва $T_n(x)$, наименее уклоняющийся от нуля на отрезке [-1;1] в классе полиномов степени n со старшим коэффициентом 1, имеет на отрезке [-1;1] n различных корней:

$$x_S = \cos\left(\frac{\pi}{2n}(1+2s)\right), \quad s = 0,...n-1$$

и записывается в виде

$$T_n(x) = (x - x_0)(x - x_1)...(x - x_{n-1}).$$

Комментарии к названиям задач

1) Функционал задачи (14.3), а именно

$$\max_{x \in [-1;1]} \left| x^n - Q_{n-1}(x) \right|$$

имеет следующий смысл:

$$\max_{\substack{x \in [-1;1]}} \underbrace{x^n - Q_{n-1}(x)}_{\substack{\text{Это разность полиномов}}}$$

$$\underbrace{x^n - Q_{n-1}(x)}_{\substack{\text{Это разности полиномов}}}$$

Это максимальное на отрезке [-1; 1] значение модуля разности полиномов

Так записывается задача об отыскании для x^n полинома наилучшего равномерного приближения в классе полиномов меньших степеней на отрезке [-1;1].

2) Функционал задачи (14.3) можно рассматривать иначе:

$$x = \sum_{x \in [-1;1]} x^n - Q_{n-1}(x)$$
 Это полином степени п со старшим коэффициентом равным 1

Это модуль значения полинома, то есть уклонение полинома от нуля в точке x

Этомаксимальное на отрезке [-1, 1] уклонение полинома от нуля

Так записывается задача об отыскании полинома степени n, наименее уклоняющегося от нуля на отрезке [-1;1] в классе полиномов степени n со старшим коэффициентом 1.

3) Решением (14.6) является полином Чебышёва со старшим коэффициентом 1. Поэтому решение (14.3) находят из условия

4

$$x^n - Q_{n-1}(x) = T_n(x)$$

4) В названии задачи оптимизации использовано следующее обстоятельство:

$$\max_{x \in [-1;1]} \left| x^n - Q_{n-1}(x) \right| = \max_{x \in [-1;1]} \underbrace{ \underbrace{ x^n - Q_{n-1}(x)}_{nолином} - \underbrace{0}_{функция}_{"ноль"} }_{yклонение полинома om функции "ноль" в точке x}$$

Экономизация полиномов для вычисления экспоненты (пример)

Для функции e^{x} запишем формулу Тейлора

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \frac{x^{n+1}}{(n+1)!} e^{\xi}$$
 (14.11)

Остаток представлен в форме Лагранжа.

С целью приближенного вычисления e^x используем полином $S_n(x)$ степени n , полученный усечением формулы: $e^x \approx S_n(x)$, где

$$S_n(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$
 (14.12)

Погрешность применения $S_n(x)$ в точке x (то есть погрешность усечения) составит

$$E(x) = e^{x} - S_{n}(x) = \frac{x^{n+1}}{(n+1)!} e^{\xi}, \ \xi \in [0; x]$$
(14.13)

При $x \in [-1, 1]$ погрешность оценивается неравенством

$$\max_{x \in [-1;1]} |E(x)| \le \frac{e}{(n+1)!}$$
 (14.14)

Используя наилучшее равномерное приближение полинома x^n на отрезке [-1;1] полиномом меньших степеней, понизим степень полинома $S_n(x)$.

Для этого в (14.12) заменим x^n (старшую степень) на полином $Q_{n-1}(x)$:

$$Q_{n-1}(x) = x^n - T_n(x) (14.15)$$

Получим на основе $S_n(x)$ полином меньшей степени, обозначим его $S_{n-1}^*(x)$:

$$S_{n-1}^{*}(x) = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{x^{n} - T_{n}(x)}{n!}$$
(14.16)

Для приближенного вычисления e^x вместо $S_n(x)$ используем $S_{n-1}^*(x)$: $e^x \approx S_{n-1}^*(x)$.

Погрешность применения $S_{n-1}^{*}(x)$ в точке x для вычисления e^{x} составит

$$E^*(x) = e^x - S_{n-1}^*(x)$$
(14.17)

Исследуем эту погрешность при $x \in [-1; 1]$.

Утверждение 3. Погрешность вычисления e^x с помощью экономизированного полинома $S_{n-1}^*(x)$ при $x \in [-1;1]$ оценивается неравенством

$$\max_{x \in [-1;1]} \left| E^*(x) \right| \le \frac{e}{(n+1)!} + \frac{1}{2^{n-1} n!}$$
 (14.18)

Здесь
$$\frac{e}{(n+1)!}$$

– оценка погрешности усечения, то есть замены e^{x} усеченной формулой Тейлора;

$$\frac{1}{2^{n-1}n!}$$

– погрешность экономизации, то есть замены $S_n(x)$ полиномом $S_{n-1}^*(x)$.

Доказательство

Запишем по определению погрешность применения $S_{n-1}^*(x)$ для вычисления e^x , добавим и вычтем из полученного выражения полином $S_n(x)$:

$$E^*(x) = e^x - S_{n-1}^*(x) = \underbrace{e^x - S_n(x)}_{norpeuhocmb} + \underbrace{S_n(x) - S_{n-1}^*(x)}_{norpeuhocmb}$$
 (14.19)

Очевидно, что $E^*(x)$ складывается из двух компонент: погрешности усечения и погрешности замены полинома $S_n(x)$ полиномом $S_{n-1}^*(x)$.

Как следует из (14.12) и (14.16), полиномы $S_n(x)$ и $S_{n-1}^*(x)$ отличаются только последним слагаемым, поэтому

$$S_n(x) - S_{n-1}^*(x) = \frac{x^n}{n!} - \frac{(x^n - T_n(x))}{n!} = \frac{T_n(x)}{n!}$$
(14.20)

Для значений $x \in [-1;1]$ построим оценку:

$$\max_{x \in [-1;1]} \left| E^*(x) \right| \le \max_{x \in [-1;1]} \left| e^x - S_n(x) \right| + \max_{x \in [-1;1]} \left| S_n(x) - S_{n-1}^*(x) \right|$$

Из (14.14) для первого слагаемого получим

$$\max_{x \in [-1;1]} \left| e^x - S_n(x) \right| \le \frac{e}{(n+1)!}$$

Из (14.20) и свойств полинома Чебышёва следует оценка

$$\max_{x \in [-1;1]} |S_n(x) - S_{n-1}^*(x)| \le \frac{1}{n!} \cdot \max_{x \in [-1;1]} |T_n(x)| = \frac{1}{2^{n-1} n!}$$

Тогда для погрешности замены экспоненты полиномом $S_{n-1}^{*}(x)$ верно

$$\max_{x \in [-1,1]} \left| E^*(x) \right| \le \frac{e}{(n+1)!} + \frac{1}{2^{n-1} n!}$$

что и требовалось доказать.

Комментарии

1) Если полином служит для приближенного вычисления f(x), используют разные критерии целесообразности понижения степени полинома.

В случае $f(x) = e^x$ эти критерии можно записать следующим образом:

$$\frac{e}{(n+1)!} >> \frac{1}{2^{n-1}n!} \tag{I}$$

то есть оценка погрешности усечения формулы Тейлора до полинома степени n много больше погрешности экономизации указанного полинома;

$$\frac{e}{n!} >> \frac{e}{(n+1)!} + \frac{1}{2^{n-1}n!}$$
 (II)

то есть оценка погрешности усечения формулы Тейлора до полинома степени n-1 много больше погрешности применения полинома, полученного усечением формулы Тейлора до степени n и прошедшего экономизацию до степени n-1.

И тот, и другой критерий выполняются при достаточно больших $\it n$.

- 2) Экономизацию проводят поэтапно, иногда много раз подряд, снижая степень полинома, например с 10 до 4.
- 3) В этом примере рассмотрена погрешность вычисления экспоненты с помощью усеченной формулы Тейлора при $x \in [-1; 1]$.

Вместе с тем ряд Тейлора для $f(x) = e^{x}$, а именно

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
 (III)

сходится к значению e^{x} в любой точке действительной оси.

Ряд (III) и полиномы, полученные при усечении ряда, можно использовать для вычисления e^x при любом $x \in (-\infty; +\infty)$.

Поскольку при больших значениях аргумента x ряд (III) сходится медленно, значение e^x вычисляют, выделяя целую и дробную часть числа x.

Например, если x = 5.3, то $e^{5.3} = e^5 \cdot e^{0.3}$.

Первый множитель вычисляется возведением числа e в степень x=5.

Второй множитель можно вычислить с помощью усеченной формулы Тейлора для аргумента x=0.3 .

Такой аргумент попадает на отрезок $x \in [-1; 1]$.

Вместо формулы Тейлора, усеченной до полинома высокой степени n, можно использовать многократно экономизированный вариант, представляющий собой (без особой потери точности) полином меньшей степени.

4) В этом разделе рассмотрены полиномы наилучшего равномерного приближения и прием экономизации полинома на отрезке $x \in [-1;1]$.

Аналогичным образом (с помощью других полиномов Чебышёва) решается проблема на других отрезках.