Applied Spatial Data Analysis - Spatial Point and Lattice Data

Dr Sebnem Er

2020-10-03

Contents

1	Intr	oduction	5
2	Spatial Point Pattern Analysis		7
	2.1	Prerequisites	7
	2.2	Datasets - Readily Available, Imported, Simulated Datasets	7
	2.3	Plotting Datasets	13
	2.4	Quadrat Analysis - Quadrat Counts and Tests	19
	2.5	Kernel Density Smoothing	24
	2.6	Kernel Smoothing with a Covariate	27
	2.7	Distance Measures and Tests	33
	2.8	G Function	48
	2.9	F Function	52
	2.10	Ripley's K Function	57
	2.11	References:	59
3	Spat	tial Lattice Data Analysis	61

4 CONTENTS

Chapter 1

Introduction

This book will guide you through the R codes for Spatial Point and Lattice Data Analysis.

The chapters will be made available on Tuesdays when we start a new week So please update your browser to access the codes for the relevant chapter.

Chapter 2

Spatial Point Pattern Analysis

2.1 Prerequisites

You need to have the following R packages installed and recalled into your library:

```
library(sf)
library(spatstat)
library(spatstat.data)
library(ggplot2)
library(sp)
library(animation)
library(plotrix)
```

2.2 Datasets - Readily Available, Imported, Simulated Datasets

2.2.1 Swedishpines Dataset from spatstat.data library

```
data(swedishpines)
swp = spatstat::rescale(swedishpines)
class(swp)
## [1] "ppp"
```

```
## Planar point pattern: 71 points
## Average intensity 0.7395833 points per square metre
##
## Coordinates are given to 1 decimal place
## i.e. rounded to the nearest multiple of 0.1 metres
##
## Window: rectangle = [0, 9.6] x [0, 10] metres
## Window area = 96 square metres
## Unit of length: 1 metre
plot(swp)
```

swp

2.2.2 Clinics Dataset Using Simple Features (SF)

Download the data from the following:

https://web1.capetown.gov.za/web1/OpenDataPortal/DatasetDetail?DatasetName=Clinics

Extract the data frame into R:

```
library(sf)
clinics_sf = st_read("C:/Users/01438475/Google Drive/UCTcourses/ASDA/DataSets/Clinics/SL_CLNC.shp
## Reading layer `SL_CLNC' from data source `C:\Users\01438475\Google Drive\UCTcourses\ASDA\DataS
## Simple feature collection with 149 features and 5 fields
## geometry type: POINT
## dimension:
                   XY
## bbox:
                   xmin: 18.34268 ymin: -34.19491 xmax: 18.90847 ymax: -33.51262
## geographic CRS: WGS 84
clinics_sf
## Simple feature collection with 149 features and 5 fields
## geometry type: POINT
## dimension:
                   XY
## bbox:
                   xmin: 18.34268 ymin: -34.19491 xmax: 18.90847 ymax: -33.51262
## geographic CRS: WGS 84
## First 10 features:
                                          LCTN
                                                            ATHY
## 1
               C/O Adam/ Liedeman Street Mamre
                                                            PAWC
## 2
                     Cnr Hermes & GrosvenorAve CITY OF CAPE TOWN
## 3
                Hassen Kahn Ave Rusthof Strand
                                                            PAWC
## 4
                  61 Central Circle, Fish Hoek CITY OF CAPE TOWN
## 5
                         Simon Street, Nomzamo CITY OF CAPE TOWN
## 6 C/O Musical and Hospital Street Macassar
                                                            PAWC
## 7
                28 Church Street Somerset West CITY OF CAPE TOWN
## 8
                           Fagan Street Strand CITY OF CAPE TOWN
## 9
        Karbonkel Road, CMC Building, Hout Bay
## 10
                     Midmar Street Groenvallei CITY OF CAPE TOWN
##
                                            CLASS
                                                        RGN
## 1
                   MAMRE CDC Community Day Centre
                                                    Western
## 2
            SAXON SEA CLINIC
                                           Clinic
                                                    Western
                GUSTROUW CDC Community Day Centre
## 3
                                                    Eastern
## 4
            FISH HOEK CLINIC
                                           Clinic Southern
## 5
                  IKWEZI CDC Community Day Centre
                                                    Eastern
## 6
                MACASSAR CDC Community Day Centre
                                                    Eastern
## 7
        SOMERSET WEST CLINIC
                                           Clinic
                                                    Eastern
## 8 FAGAN STREET SATELLITE
                                        Satellite
                                                    Eastern
        HOUT BAY HARBOUR CDC Community Day Centre Southern
## 10 GROENVALLEI SATELLITE
                                        Satellite Tygerberg
##
                        geometry
## 1 POINT (18.47692 -33.51262)
## 2 POINT (18.48881 -33.55012)
```

3 POINT (18.85211 -34.13472)

```
## 4 POINT (18.42632 -34.13669)
## 5 POINT (18.86622 -34.11375)
## 6 POINT (18.76369 -34.06105)
## 7 POINT (18.84814 -34.08579)
## 8 POINT (18.82979 -34.1162)
## 9 POINT (18.34268 -34.0549)
## 10 POINT (18.66701 -33.89165)

class(clinics_sf)

## [1] "sf" "data.frame"

summary(clinics_sf)
```

2.2.3 Simulated Datasets

2.2.3.1 CSR Data Points

```
set.seed(135)
xy_csr <- matrix(runif(80), ncol=2)
pp_csr <- as.ppp(xy_csr, c(0,1,0,1))
plot(pp_csr)</pre>
```

pp_csr

2.2.3.2 Regular Data Points

```
regular <- read.csv("C:/Users/01438475/Google Drive/UCTcourses/ASDA/regular.csv")
xy_regular <- matrix(cbind(regular$X,regular$Y), ncol=2)
pp_regular <- as.ppp(xy_regular, c(0,1,0,1))
plot(pp_regular)</pre>
```

pp_regular

2.2.3.3 Cluster Data Points

```
cluster <- read.csv("C:/Users/01438475/Google Drive/UCTcourses/ASDA/cluster.csv")
xy_cluster <- matrix(cbind(cluster$X,cluster$Y), ncol=2)
pp_cluster <- as.ppp(xy_cluster, c(0,1,0,1))
plot(pp_cluster)</pre>
```

pp_cluster

2.3 Plotting Datasets

${\bf 2.3.1} \quad {\bf Basic\ plot()\ function}$

plot(swp)

swp

2.3.2 Basic ggplot() function - (sf) object

```
library(ggplot2)
plot1 = ggplot() +
    geom_sf(data = clinics_sf, size = .8, color = "black") +
    ggtitle("Location of Cape Town clinics - 2016") +
    # not specifying crs here, coord_sf will use the CRS defined in the first layer = "+coord_sf()
plot1
```


2.3.3 ggplot() function with a bounding box - (sf) object

2.3.4 ggplot() with Electoral Wards Shape File

In order to plot using the electoral wards polygons, we need the sf data frame to be converted into Spatial Points Data Frame (sp).

```
clinics_sp <- as(clinics_sf, Class = "Spatial")
class(clinics_sp)

## [1] "SpatialPointsDataFrame"
## attr(,"package")
## [1] "sp"</pre>
```

Download the CPT electoral wards and import the shape file as follows:

```
library(sf)
ct.wards_sf = st_read("C:/Users/01438475/Google Drive/UCTcourses/ASDA/DataSets/sa/CPT/
## Reading layer `electoral wards for cpt' from data source `C:\Users\01438475\Google I
## Simple feature collection with 111 features and 9 fields
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: 18.30722 ymin: -34.35834 xmax: 19.00467 ymax: -33.47128
## CRS: NA
```

```
st_geometry_type(ct.wards_sf)
```

```
[1] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
##
##
    [6] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
    [11] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
##
    [16] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
    [21] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
## [26] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
    [31] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
## [36] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
    [41] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
## [46] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
    [51] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
    [56] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
    [61] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
    [66] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
    [71] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
## [76] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
## [81] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
## [86] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
## [91] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
## [96] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
## [101] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
## [106] MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON MULTIPOLYGON
## [111] MULTIPOLYGON
## 18 Levels: GEOMETRY POINT LINESTRING POLYGON MULTIPOINT ... TRIANGLE
```


2.3.5 Plotting with google maps:

```
require("maps")
require("ggplot2")
```

First specify the outer boundaries of Google Map

```
require("ggmap")
caLongLat <-c(bbox(clinics_sp)[1,1], bbox(clinics_sp)[2,1], bbox(clinics_sp)[1,2],bbox
caLongLat</pre>
```

```
## [1] 18.34268 -34.19491 18.90847 -33.51262
```

```
caLongLat<-c(18, -34.3, 19, -33.2)
map <- get_map(location = caLongLat)</pre>
```

Google Map Plot

2.4 Quadrat Analysis - Quadrat Counts and Tests

2.4.1 swp dataset

Quadrat counts:

```
Q3x3 = quadratcount(swp, nx=3, ny=3)
plot(swp)
plot(Q3x3, add=TRUE, col="red", cex=1.5, lty=2)
```

swp


```
# Plot the density
cl <- interp.colours(c("lightyellow", "orange", "red"), 20)

plot( intensity(Q3x3, image=TRUE), las=1, col=cl, main=NULL)
plot(swp, pch=20, cex=0.6, col="black", add=TRUE) # Add points</pre>
```


Quadrat test

```
Q3x3test = quadrat.test(swp, 3,3)
Q3x3test
```

```
##
## Chi-squared test of CSR using quadrat counts
##
## data: swp
## X2 = 4.6761, df = 8, p-value = 0.4169
## alternative hypothesis: two.sided
##
## Quadrats: 3 by 3 grid of tiles
```

2.4.2 Simulated CSR Pattern

```
Q3x3_csr = quadratcount(pp_csr, nx=3, ny=3)
plot(pp_csr)
plot(Q3x3_csr, add=TRUE, col="red", cex=1.5, lty=2)
```

pp_csr


```
Test:
```

```
Q3x3test_csr = quadrat.test(pp_csr, 3,3)

## Warning: Some expected counts are small; chi^2 approximation may be inaccurate

Q3x3test_csr

##
## Chi-squared test of CSR using quadrat counts
##
## data: pp_csr
## X2 = 11.3, df = 8, p-value = 0.3705
```

2.4.3 Simulated Cluster Pattern

alternative hypothesis: two.sided

Quadrats: 3 by 3 grid of tiles

```
Q3x3_cluster = quadratcount(pp_cluster, nx=3, ny=3)
plot(pp_cluster)
plot(Q3x3_cluster, add=TRUE, col="red", cex=1.5, lty=2)
```

pp_cluster


```
Test:
```

```
Q3x3test_cluster = quadrat.test(pp_cluster, 3,3)
```

Warning: Some expected counts are small; chi^2 approximation may be inaccurate

```
Q3x3test_cluster
```

```
##
## Chi-squared test of CSR using quadrat counts
##
## data: pp_cluster
## X2 = 48.65, df = 8, p-value = 1.484e-07
## alternative hypothesis: two.sided
##
## Quadrats: 3 by 3 grid of tiles
```

2.4.4 Simulated Regular Pattern

```
Q3x3_regular = quadratcount(pp_regular, nx=4, ny=4)
plot(pp_regular)
plot(Q3x3_regular, add=TRUE, col="red", cex=1.5, lty=2)
```

pp_regular


```
Test:
```

```
## Warning: Some expected counts are small; chi^2 approximation may be inaccurate
Q3x3test_regular
```

```
##
## Chi-squared test of CSR using quadrat counts
##
## data: pp_regular
## X2 = 4.55, df = 8, p-value = 0.3912
## alternative hypothesis: two.sided
##
## Quadrats: 3 by 3 grid of tiles
```

Q3x3test_regular = quadrat.test(pp_regular, 3,3)

2.5 Kernel Density Smoothing

2.5.1 CSR Pattern

```
den <- density(pp_csr, sigma = .1)
plot(den, main = "CSR")
plot(pp_csr, add=TRUE)
contour(den, add = TRUE)</pre>
```

CSR

2.5.2 Regular Pattern

```
den <- density(pp_regular)
plot(den, main = "Regular")
plot(pp_regular, add=TRUE)
contour(den, add=TRUE)</pre>
```

Regular

2.5.3 Cluster Pattern

```
den <- density(pp_cluster)
plot(den, main = "Cluster")
plot(pp_cluster, add=TRUE)
contour(den, add=TRUE)</pre>
```

Cluster

2.6 Kernel Smoothing with a Covariate

2.6.1 Tropical rain forest trees dataset

```
data("bei")
```

Assign the elevation covariate to a variable elev by typing

```
elev <- bei.extra$elev
```

Plot the trees on top of an image of the elevation covariate.

```
plot(elev, main = "")
plot(bei, add = TRUE, cex = 0.3, pch = 16, cols = "white")
```


For the tropical rainforest data bei, it might be useful to split the study region into several sub-regions according to the terrain elevation:

```
b <- quantile(elev, probs=(0:4)/4, type=2)
Zcut <- cut(elev, breaks=b, labels=c("Low", "Med-Low", "Med-High", "High"))
textureplot(Zcut, main = "")</pre>
```


Convert the image from above to a tesselation, count the number of points in each region using quadratcount, and plot the quadrat counts.

```
V <- tess(image=Zcut)
qc <- quadratcount(bei, tess = V)
qc

## tile
## Low Med-Low Med-High High
## 714 883 1344 663</pre>
```

The output shows the number of trees in each region. Since the four regions have equal area, the counts should be approximately equal if there is a uniform density of trees. Obviously they are not equal; there appears to be a strong preference for higher elevations (dropping off for the highest elevations).

Estimate the intensity in each of the four regions.

```
intensity(qc)
```

```
## tile

## Low Med-Low Med-High High

## 0.005623154 0.006960978 0.010593103 0.005228707
```

Assume that the intensity of trees is a function ((u) = (e(u))) where (e(u)) is the terrain elevation at location u.

Compute a nonparametric estimate of the function () and plot it by

```
rh <- rhohat(bei, elev)
plot(rh)</pre>
```


Compute the predicted intensity based on this estimate of ().

```
predictedrho <- predict(rh)
plot(predictedrho, main = "")
plot(bei, add = TRUE, cols = "white", cex = .2, pch = 16)</pre>
```


Compute a non-parametric estimate by kernel smoothing and compare with the predicted intensity above.

The kernel density estimate of the points is computed and plotted with the following code:

```
kerneldensity <- density(bei, sigma = bw.scott)
plot(kerneldensity, main = "")
plot(kerneldensity, add = TRUE, cols = "white", cex = .2, pch = 16)</pre>
```


Compare the two

pairs(predictedrho, kerneldensity)


```
plot(eval.im(kerneldensity-predictedrho))
```

 $\mbox{\tt \#\#}$ Warning: the images 'kerneldensity' and 'predicted rho' were not compatible

eval.im(kerneldensity - predictedrho)

Which seems to be quite different form the predicted intensity.

2.7 Distance Measures and Tests

2.7.1 e2e Distances

2.7.1.1 swp dataset

```
PD = pairdist(swp)
class(PD)

## [1] "matrix" "array"

dm <- as.matrix(PD)
dm[1:5, 1:5]</pre>
```

```
## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.000000 2.700000 3.701351 1.503330 5.433231

## [2,] 2.700000 0.000000 1.004988 1.204159 2.765863

## [3,] 3.701351 1.004988 0.000000 2.200000 1.772005

## [4,] 1.503330 1.204159 2.200000 0.000000 3.931921

## [5,] 5.433231 2.765863 1.772005 3.931921 0.000000
```

```
diag(dm) <- NA
#dm[1:5, 1:5]
wdmin <- apply(dm, 1, which.min)

dmin <- apply(dm, 1, min, na.rm=TRUE)
head(dmin)</pre>
```

[1] 1.5033296 0.8544004 1.0049876 0.9055385 1.0770330 0.8544004

```
# which is the same as nndist e2e=nndist(swp)

dmin = nndist(swp)

plot(swp)
xy = cbind(swp$x, swp$y)

ord <- rev(order(dmin))
far25 <- ord[1:71]
neighbors <- wdmin[far25]
points(xy[far25, ], col='blue', pch=20)
points(xy[neighbors, ], col='red')
# drawing the lines, easiest via a loop
for (i in far25) {
    lines(rbind(xy[i, ], xy[wdmin[i], ]), col='red')
}</pre>
```

swp

2.7.1.2 Simulated CSR Pattern

```
e2e_csr = nndist(pp_csr)
e2e_csr

## [1] 0.11056220 0.05419105 0.08163249 0.05574520 0.19907565 0.03191166
## [7] 0.10456756 0.15049858 0.16325765 0.02841510 0.05044346 0.05419105
## [13] 0.10456756 0.07525211 0.02471890 0.08651227 0.03700818 0.06471165
## [19] 0.12663659 0.08163249 0.06471165 0.07525211 0.14362670 0.03195288
## [25] 0.09669706 0.03195288 0.09731910 0.04284774 0.11297958 0.03191166
## [31] 0.13454666 0.02841510 0.02471890 0.06711512 0.10924574 0.04269836
## [37] 0.09947882 0.03815278 0.14362670 0.10235020

PD = pairdist(pp_csr)
class(PD)

## [1] "matrix" "array"

dm <- as.matrix(PD)
dm[1:5, 1:5]</pre>
```

```
## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.0000000 0.2930205 0.5163115 0.2844957 0.7955061

## [2,] 0.2930205 0.0000000 0.5975953 0.4633681 0.8993362

## [3,] 0.5163115 0.5975953 0.0000000 0.2546708 0.3017974

## [4,] 0.2844957 0.4633681 0.2546708 0.0000000 0.5130861

## [5,] 0.7955061 0.8993362 0.3017974 0.5130861 0.0000000
```

```
diag(dm) <- NA
#dm[1:5, 1:5]
wdmin <- apply(dm, 1, which.min)

dmin <- apply(dm, 1, min, na.rm=TRUE)
head(dmin)</pre>
```

[1] 0.11056220 0.05419105 0.08163249 0.05574520 0.19907565 0.03191166

```
# which is the same as nndist e2e=nndist(swp)

dmin = nndist(pp_csr)

plot(pp_csr)

xy = cbind(pp_csr$x, pp_csr$y)

ord <- rev(order(dmin))
far25 <- ord[1:40]
neighbors <- wdmin[far25]
points(xy[far25, ], col='blue', pch=20)
points(xy[neighbors, ], col='red')

# drawing the lines, easiest via a loop
for (i in far25) {
    lines(rbind(xy[i, ], xy[wdmin[i], ]), col='red')
}</pre>
```

pp_csr

2.7.1.3 Simulated Cluster Pattern

```
e2e_cluster = nndist(pp_cluster)
e2e_cluster

## [1] 0.01854666 0.03502091 0.01854666 0.04969353 0.03502091 0.03390187
## [7] 0.01268286 0.05624330 0.01268286 0.03830134 0.04275255 0.02983313
## [13] 0.04275255 0.02983313 0.03774271 0.03774271 0.03391843 0.01376367
## [19] 0.01376367 0.03500058 0.08344093 0.06403124 0.05422191 0.08344093
## [25] 0.03500058 0.08988091 0.04304986 0.07202173 0.04586212 0.02906394
## [31] 0.08760076 0.11053898 0.04586212 0.02906394 0.05896243 0.07149045
## [37] 0.04361429 0.04361429 0.05745563 0.07483198

PD_cluster = pairdist(pp_cluster)
class(PD_cluster)

## [1] "matrix" "array"

dm_cluster <- as.matrix(PD_cluster)
dm_cluster[1:5, 1:5]</pre>
```

```
## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.00000000 0.09345138 0.01854666 0.04969353 0.07093497

## [2,] 0.09345138 0.00000000 0.08597921 0.13688899 0.03502091

## [3,] 0.01854666 0.08597921 0.00000000 0.05097721 0.05847323

## [4,] 0.04969353 0.13688899 0.05097721 0.00000000 0.10757315

## [5,] 0.07093497 0.03502091 0.05847323 0.10757315 0.00000000
```

```
diag(dm_cluster) <- NA
wdmin_cluster <- apply(dm_cluster, 1, which.min)

dmin_cluster <- apply(dm_cluster, 1, min, na.rm=TRUE)
head(dmin-cluster)</pre>
```

```
## X Y
## 1 0.080388175 -0.4397788
## 2 0.018557146 -0.5894417
## 3 0.034750612 -0.4767600
## 4 -0.001070259 -0.4526473
## 5 0.141971489 -0.4168896
## 6 -0.048015500 -0.5340536
```

```
# which is the same as nndist e2e=nndist(swp)

dmin_cluster = nndist(pp_cluster)

plot(pp_cluster)
xy_cluster = cbind(pp_cluster$x, pp_cluster$y)

ord <- rev(order(dmin_cluster))
far25 <- ord[1:40]
neighbors <- wdmin_cluster[far25]
points(xy_cluster[far25, ], col='blue', pch=20)
points(xy_cluster[neighbors, ], col='red')
# drawing the lines, easiest via a loop
for (i in far25) {
    lines(rbind(xy_cluster[i, ], xy_cluster[wdmin_cluster[i], ]), col='red')
}</pre>
```

pp_cluster

2.7.1.4 Simulated Regular Pattern

```
e2e_regular = nndist(pp_regular)
e2e_regular
## [36] 0.1111111 0.1111111 0.1111111 0.1111111
PD_regular = pairdist(pp_regular)
class(PD_regular)
## [1] "matrix" "array"
dm_regular <- as.matrix(PD_regular)</pre>
dm_regular[1:5, 1:5]
##
     [,1] [,2]
             [,3]
                 [,4]
                     [,5]
```

```
## [1,] 0.0000000 0.1666667 0.3333333 0.5000000 0.6666667

## [2,] 0.1666667 0.0000000 0.1666667 0.3333333 0.5000000

## [3,] 0.3333333 0.1666667 0.0000000 0.1666667 0.3333333

## [4,] 0.5000000 0.3333333 0.1666667 0.0000000 0.1666667

## [5,] 0.6666667 0.5000000 0.3333333 0.1666667 0.0000000
```

```
diag(dm_regular) <- NA
wdmin_regular <- apply(dm_regular, 1, which.min)

dmin_regular <- apply(dm_regular, 1, min, na.rm=TRUE)
head(dmin-regular)</pre>
```

```
## X Y

## 1 -0.05610447 -0.0005489143

## 2 -0.27914228 -0.0569200607

## 3 -0.41836751 -0.0294786165

## 4 -0.61092147 -0.0553659112

## 5 -0.63425768 0.0879645408

## 6 -0.13475501 -0.1903105666
```

```
# which is the same as nndist e2e=nndist(swp)

dmin_regular = nndist(pp_regular)

plot(pp_regular)

xy_regular = cbind(pp_regular$x, pp_regular$y)

ord <- rev(order(dmin_regular))
far25 <- ord[1:40]
neighbors <- wdmin_regular[far25]
points(xy_regular[far25, ], col='blue', pch=20)
points(xy_regular[neighbors, ], col='red')

# drawing the lines, easiest via a loop
for (i in far25) {
    lines(rbind(xy_regular[i, ], xy_regular[wdmin_regular[i], ]), col='red')
}</pre>
```

pp_regular

2.7.2 p2e Distances

Generate Random points

```
set.seed(23)
randompoints = matrix(runif(60),ncol=2)
#randompoints = matrix(runif(250),ncol=2)
```

2.7.2.1 CSR Pattern

```
plot(pp_csr)
points(randompoints, col = "blue", pch=3)
```

pp_csr


```
p2e_distances_csr = NULL
mins_csr = NULL
xy = cbind(pp_csr$x, pp_csr$y)
 \# \ sqrt((xy[2,1]-randompoints[1,1]) ^2 + (xy[2,2]-randompoints[1,2]) ^2) 
\# \ sqrt((xy[1,1]-randompoints[2,1])^2+(xy[1,2]-randompoints[2,2])^2)
for(i in 1:dim(randompoints)[1]){
dist1 = matrix(pairdist(rbind(randompoints[i,],xy)),41)
p2e_distances_csr = c(p2e_distances_csr,min(dist1[2:41,1]))
mins_csr = c(mins_csr, which.min(dist1[2:41,1]))
}
plot(pp_csr)
ord <- rev(order(p2e_distances_csr))</pre>
far25 <- 1:dim(randompoints)[1]</pre>
neighbors <- mins_csr</pre>
points(randompoints, col='red', pch=4)
points(xy[mins_csr, ], col='blue', pch=20)
# drawing the lines, easiest via a loop
for (i in far25) {
```

```
lines(rbind(xy[mins_csr[i], ], randompoints[i, ]), col='red')
}
```

pp_csr

2.7.2.2 Cluster Pattern

```
plot(pp_cluster)
points(randompoints, col = "blue", pch=3)
```

pp_cluster


```
p2e distances cluster = NULL
mins_cluster = NULL
xy_cluster = cbind(pp_cluster$x, pp_cluster$y)
for(i in 1:dim(randompoints)[1]){
dist1 = matrix(pairdist(rbind(randompoints[i,],xy_cluster)),41)
p2e_distances_cluster = c(p2e_distances_cluster,min(dist1[2:41,1]))
mins_cluster = c(mins_cluster, which.min(dist1[2:41,1]))
}
plot(pp_cluster)
ord <- rev(order(p2e_distances_cluster))</pre>
far25 <- 1:dim(randompoints)[1]</pre>
neighbors <- mins_cluster</pre>
points(randompoints, col='red', pch=4)
points(xy_cluster[mins_cluster, ], col='blue', pch=20)
# drawing the lines, easiest via a loop
for (i in far25) {
  lines(rbind(xy_cluster[mins_cluster[i], ], randompoints[i, ]), col='red')
```

pp_cluster

2.7.2.3 Regular Pattern

```
p2e_distances_regular = NULL
p2e_mins_regular = NULL
xy_regular = cbind(pp_regular$x, pp_regular$y)

for(i in 1:dim(randompoints)[1]){
    dist1 = matrix(pairdist(rbind(randompoints[i,],xy_regular)),41)

    p2e_distances_regular = c(p2e_distances_regular,min(dist1[2:41,1]))
    p2e_mins_regular = c(p2e_mins_regular,which.min(dist1[2:41,1]))
}

plot(pp_regular)
ord <- rev(order(p2e_distances_regular))
far25 <- 1:dim(randompoints)[1]
neighbors <- p2e_mins_regular
points(randompoints, col='red', pch=4)
points(xy_regular[p2e_mins_regular, ], col='blue', pch=20)
# drawing the lines, easiest via a loop
for (i in far25) {</pre>
```

```
lines(rbind(xy_regular[p2e_mins_regular[i], ], randompoints[i, ]), col='red')
}
```

pp_regular

2.7.3 Clark and Evans Index and Test

2.7.3.1 CSR Pattern

```
clarkevans(pp_csr)

## naive Donnelly cdf
## 1.0135515 0.9443703 0.9719128

clarkevans.test(pp_csr)

##

## Clark-Evans test
## No edge correction
## Z-test
##

## data: pp_csr
## ata: pp_csr
## alternative hypothesis: two-sided
```

2.7.3.2 Cluster Pattern

```
clarkevans(pp_cluster)
##
      naive Donnelly
                            cdf
## 0.5852722 0.5453237 0.5621148
clarkevans.test(pp_cluster)
##
## Clark-Evans test
## No edge correction
## Z-test
##
## data: pp_cluster
## R = 0.58527, p-value = 5.224e-07
## alternative hypothesis: two-sided
2.7.3.3 Regular Pattern
clarkevans(pp_regular)
     naive Donnelly
## 1.405457 1.309526 1.398362
clarkevans.test(pp_regular)
##
## Clark-Evans test
## No edge correction
## Z-test
##
## data: pp_regular
## R = 1.4055, p-value = 9.309e-07
## alternative hypothesis: two-sided
```

2.8 G Function

2.8.1 Simulated CSR Pattern

```
dmin_csr = nndist(pp_csr)
distance_csr <- c(0,sort(unique(dmin_csr)))
# compute how many cases there with distances smaller that each x
Gd <- sapply(distance_csr, function(x) sum(dmin_csr < x))
# normalize to get values between 0 and 1
Gd <- Gd / length(dmin_csr)
plot(distance_csr, Gd, type = "s")</pre>
```



```
plot(Gest(pp_csr))
```

2.8. G FUNCTION 49

2.8.2 Simulated Regular Pattern

```
dmin_regular = nndist(pp_regular)
distance_regular <- c(0,sort(unique(dmin_regular)))
# compute how many cases there with distances smaller that each x
Gd <- sapply(distance_regular, function(x) sum(dmin_regular < x))
# normalize to get values between 0 and 1
Gd <- Gd / length(dmin_regular)
plot(distance_regular, Gd, type = "s")</pre>
```


plot(Gest(pp_regular))

2.8.3 Simulated Cluster Pattern

```
dmin_cluster = nndist(pp_cluster)
# get the unique distances (for the x-axis)
distance_cluster <- sort(unique(round(dmin_cluster,2)))
# compute how many cases there with distances smaller that each x
Gd <- sapply(distance_cluster, function(x) sum(dmin_cluster < x))
# normalize to get values between 0 and 1
Gd <- Gd / length(dmin_cluster)
plot(distance_cluster, Gd, type = "s")</pre>
```



```
plot(Gest(pp_cluster))
```

Gest(pp_cluster)

2.9 F Function

2.9.1 Simulated CSR Pattern

```
max(p2e_distances_csr)
```

[1] 0.1698011

```
## [1] 1829.738
# get the unique distances (for the x-axis)
distance_csr <- sort(unique(round(p2e_distances_csr,3)))
# compute how many cases there with distances smaller that each x
Fd <- sapply(distance_csr, function(x) sum(p2e_distances_csr < x))
# normalize to get values between 0 and 1
Fd <- Fd / length(p2e_distances_csr)
plot(distance_csr, Fd, type = "s")</pre>
```


plot(Fest(pp_csr))

2.9.2 Simulated Regular Pattern

Fd <- Fd / length(p2e_distances_regular)
plot(distance_regular, Fd, type = "s")</pre>

max(p2e_distances_regular)

```
## [1] 0.1694105

## [1] 1829.738

# get the unique distances (for the x-axis)
distance_regular <- sort(unique(round(p2e_distances_regular,3)))
# compute how many cases there with distances smaller that each x
Fd <- sapply(distance_regular, function(x) sum(p2e_distances_regular < x))
# normalize to get values between 0 and 1</pre>
```



```
plot(Fest(pp_regular))
```

2.9. F FUNCTION

55

2.9.3 Simulated Cluster Pattern

```
max(p2e_distances_cluster)
```

[1] 0.3557434

```
## [1] 1829.738

# get the unique distances (for the x-axis)
distance_cluster <- sort(unique(round(p2e_distances_cluster,3)))
# compute how many cases there with distances smaller that each x
Fd <- sapply(distance_cluster, function(x) sum(p2e_distances_cluster < x))
# normalize to get values between 0 and 1
Fd <- Fd / length(p2e_distances_cluster)
plot(distance_cluster, Fd, type = "s")</pre>
```


plot(Fest(pp_cluster))

2.10 Ripley's K Function

2.10.1 Simulated CSR Pattern

```
K <- Kest(pp_csr)
plot(K, main=NULL, las=1, legendargs=list(cex=0.8, xpd=TRUE, inset=c(1.01, 0) ))</pre>
```

Warning in min(D[scaledlegbox]): no non-missing arguments to min; returning Inf

2.10.2 Simulated Regular Pattern

```
K <- Kest(pp_regular)
plot(K, main=NULL, las=1, legendargs=list(cex=0.8, xpd=TRUE, inset=c(1.01, 0) ))</pre>
```

Warning in min(D[scaledlegbox]): no non-missing arguments to min; returning Inf

2.10.3 Simulated Cluster Pattern

```
K <- Kest(pp_cluster)
plot(K, main=NULL, las=1, legendargs=list(cex=0.8, xpd=TRUE, inset=c(1.01, 0) ))</pre>
```

Warning in min(D[scaledlegbox]): no non-missing arguments to min; returning Inf

2.11 References:

- R and Data Mining
- Susan Li MBA
- Datacamp
- Dr Juwa Nyirenda's lecture notes

Chapter 3

Spatial Lattice Data Analysis

For this section, please update your browser on the 20th of October Tuesday.