

Pauta Ayudantía 13 Análisis Funcional

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

1 de diciembre de 2022

Problema 1. [Espectro de la proyección ortogonal] Sea H espacio de Hilbert, $V \subseteq H$ subespacio vectorial cerrado y P_V su proyección ortogonal.

- 1. Determine el espectro y los autovalores de P_V .
- 2. ¿Bajo qué condiciones P_V es compacto?

Demostración. Por las propiedades vistas en clases sabemos que P_V está bien definido, es un operador lineal continuo, y más aún

$$\ker(P_V) = V^{\perp}, \qquad P_V|_V = I_V$$

así que $0, 1 \in \mathcal{V}P(P_V) \subseteq \sigma(P_V)$. Probaremos que de hecho $\sigma(P_V) = \mathcal{V}P(P_V) = 0, 1$. Consideremos entonces $\lambda \neq 0, 1$ y veamos que $P_V - \lambda I$ es invertible. Si existiese $u \in H \setminus \{0\}$ tal que

$$P_V(u) - \lambda u = 0 \quad \Rightarrow \quad u \in V$$

pues V es subespacio, así que $P_V(u) = u$ y se sigue que $(1 - \lambda)u = 0$. Como $\lambda \neq 1$ necesariamente u = 0 así que $P_V - \lambda I$ es inyectivo.

Ahora, para $v \in H$ definimos

$$u := \frac{1}{1 - \lambda} P_V(v) - \frac{1}{\lambda} P_{V^{\perp}}(v)$$

y notamos que

$$(P_V - \lambda I)(u) = (P_V - \lambda I) \left[\frac{1}{1 - \lambda} P_V(v) - \frac{1}{\lambda} P_{V^{\perp}}(v) \right]$$
$$= \frac{1}{1 - \lambda} P_V(v) - \frac{\lambda}{1 - \lambda} P_V(v) + P_{V^{\perp}}(v)$$
$$= P_V(v) + P_{V^{\perp}}(v)$$
$$= v$$

Así que P_V es sobreyectivo.

Si el operador P_V fuera compacto, entonces la restricción $P_V|_V = I_V$ sería compacta también, lo cual solo sucede en caso que V sea de dimensión finita. Por otro lado, si V es de dimensión finita, como $\text{Im}(P_V) = V$ entonces P_V es compacto pues es de rango finito. Así P_V es compacto si y solo si $\dim(V) < +\infty$.

Problema 2. Considere el espacio ℓ^2 y defina los operadores shift izquierdo y derecho como

$$T_l: \ell^2 \to \ell^2,$$
 $T_l(x_0, x_1, x_2, \dots, x_n, \dots) := (x_1, x_2, x_3, \dots, x_{n+1}, \dots)$
 $T_r: \ell^2 \to \ell^2,$ $T_r(x_0, x_1, x_2, \dots, x_n, \dots) := (0, x_1, x_2, \dots, x_{n-1}, \dots)$

Con respecto a estos operadores

- 1. Muestre que $T_l, T_r \in \mathcal{L}(\ell^2)$ y calcule su norma.
- 2. Pruebe que estos operadores no son compactos.
- 3. Encuentre los operadores adjuntos T_l^*, T_r^* .

- 4. Calcule los valores propios de T_l, T_r y verifique que $\mathcal{V}P(T_l) \neq \mathcal{V}P(T_r)$.
- 5. Demuestre que $\sigma(T_l) = \sigma(T_r) = [-1, 1]$.

Demostración.

1. La linealidad de los operadores es evidente. Además es claro que

$$||T_l(x)||_{\ell^2} \le ||x||_{\ell^2} \qquad ||T_r(x)||_{\ell^2} = ||x||_{\ell^2}$$

así que ambos son continuos y se tiene directamente que $||T_r||_{\mathcal{L}(\ell^2)} = 1$, $||T_l||_{\mathcal{L}(\ell^2)} \le 1$. Considerando la sucesión $e_1 = (0, 1, 0, 0, \ldots)$ vemos que

$$||T_l(e_1)||_{\ell^2} = ||e_0||_{\ell^2} = 1$$

y en consecuencia $||T_l||_{\mathcal{L}(\ell^2)}$.

2. Veremos que T_l no es compacto considerando $(e_n)_{n\in\mathbb{N}}$ base canónica de ℓ^2 y viendo que su imagen no posee subsucesiones convergentes. Note que (e_n) es una sucesión acotada, y en general se cumple que

$$T_l(e_n) = e_{n-1} \qquad \forall n \ge 1$$

Sin embargo, siempre se tiene que

$$||e_m - e_n||_{\ell^2}^2 = 2 \qquad \forall m \neq n$$

es decir, (e_n) no posee subsucesiones de Cauchy y por lo tanto tampoco subsucesiones convergentes. El razonamiento para T_r es análogo.

3. Sean $x, y \in \ell^2$ sucesiones. Vemos que

$$\langle y, T_l(x) \rangle_{\ell^2} = \sum_{k=0}^{\infty} y_k x_{k+1} = 0 \cdot x_0 + \sum_{k=1}^{\infty} y_{k-1} x_k = \langle T_r(y), x \rangle_{\ell^2}$$

lo cual implica entonces que T_r, T_l son operadores adjuntos el uno del otro.

4. Para $\lambda \in \mathbb{R}$, la ecuación de valores propios en este caso se interpreta de la siguiente manera:

$$T_l(x) = \lambda x \iff x_{n+1} = \lambda x_n \quad \forall n \in \mathbb{N}$$

Entonces los vectores propios asociados a λ deben ser de la siguiente forma:

$$x = \alpha(1, \lambda, \lambda^2, \ldots), \quad \alpha \neq 0$$

Ahora, $x \in \mathbb{C}^2$ si y solo si $|\lambda| < 1$. Deducimos así que $\mathcal{V}P(T_l) = (-1,1)$. Ahora, en el caso de T_r

$$T_r(x) = \lambda x \quad \Longleftrightarrow \quad \begin{cases} x_{n-1} = \lambda x_n & \forall n \ge 1 \\ 0 = \lambda x_0 \end{cases}$$

Vemos así que para $\lambda \neq 0$ se tiene que la única solución es la trivial pues la condición $x_0 = 0$ implica que $x_n = 0$ para todo $n \geq 1$, y para $\lambda = 0$ ocurre lo mismo. Así $\mathcal{V}P(T_r) = \emptyset$.

5. Por teoría general se sabe que todo operador lineal acotado verifica que su espectro es compacto y $\sigma(T) \subseteq [-\|T\|_{\mathcal{L}(X)}, \|T\|_{\mathcal{L}(X)}]$, y como $\|T_l\|_{\mathcal{L}(\ell^2)} = 1$ y $\mathcal{V}P(T_l) \subseteq \sigma(T)$, necesariamente se tiene que $\sigma(T_l) = [-1, 1]$. Para T_r únicamente sabemos que $\sigma(T_r) \subseteq [-1, 1]$. Sea entonces $\lambda \in [-1, 1]$. Estudiemos la ecuación

$$(T_r - \lambda I)(x) = e_0$$

La ecuación anterior se traduce en

$$\begin{cases} -\lambda x_0 = 1 \\ x_{n-1} - \lambda x_n = 0 \quad \forall n \ge 1 \end{cases} \Rightarrow x_n = -\frac{1}{\lambda^{n+1}}$$

Una sucesión de la forma anterior está en ℓ^2 solo si $|\lambda| > 1$, así que hemos probado que para $|\lambda| \ge 1$ el operador $T_r - \lambda I$ no es sobreyectivo y entonces $\sigma(T_r) = [-1, 1]$.

Problema 3. Sea X = C[0, 1] con la norma del supremo y defina el operador de Hardy:

$$T(u)(x) = \begin{cases} \frac{1}{x} \int_0^x u(t)dt & \text{si } x \in (0,1] \\ u(0) & \text{si } x = 0 \end{cases}$$

- 1. Demuestre que T está bien definido y $||T||_{\mathcal{L}(X)} = 1$.
- 2. Demuestre que VP(T) = (0,1] y encuentre las funciones propias. Indicación: Transforme el problema de valores propios en una ecuación diferencial.
- 3. Muestre que $\sigma(T) = [0,1]$. Detemirne si el operador T es compacto y encuentre una fórmula explícita para $(T \lambda I)^{-1}$ cuando $\lambda \in \rho(T)$.
- 4. Considere ahora T como un operador $T:C[0,1]\to L^p(0,1)$ con $1\le p<+\infty$. Demuestre que T es un operador compacto.

Indicación: Para $\varepsilon > 0$ defina $T_{\varepsilon}(u)(x) = \frac{1}{x+\varepsilon} \int_0^x u(t)dt$. Demuestre que T_{ε} es compacto usando el teorema de Arzelá-Ascoli y concluye mostrando que $\|T_{\varepsilon} - T\| \to 0$.

Demostración.

1. Probar que T está bien definido significa demostrar que T(u) es continua. La continuidad en (0,1] es directa por álgebra de funciones continuas y por continuidad de la integral, así que resta ver la continuidad en x = 0. Para ello, dada $u \in X$ la continuidad en x = 0 significa que

$$\forall \varepsilon > 0, \exists \delta > 0, \quad |u(t) - u(0)| < \varepsilon \quad \forall t \in [0, \delta]$$

Luego

$$|T(u)(x) - T(u)(0)| = \left| \frac{1}{x} \int_0^x u(t)dt - u(0) \right|$$

$$= \left| \frac{1}{x} \int_0^x (u(t) - u(0))dt \right|$$

$$\leq \frac{1}{x} \int_0^x |u(t) - u(0)|dt$$

$$\leq \frac{\varepsilon x}{x} = \varepsilon \quad \forall x \in [0, \delta]$$

por lo que T(u) es continua. La linealidad es directa. Ahora notamos que

$$|T(u)(x)| \le \begin{cases} \frac{1}{x} \int_0^x |u(t)| dt & \text{si} \quad x \in (0,1] \\ |u(0)| & \text{si} \quad x = 0 \end{cases} \le ||u||_{\infty}$$

de donde deducimos que $||T||_{\mathcal{L}(X)} \le 1$. Considerando u = 1 tenemos |T(u)(x)| = 1 para todo $x \in [0,1]$ y por lo tanto se alcanza el supremo.

2. Supondremos que $\lambda \in \mathbb{R}$ es valor propio y $u \in X$ vector propio. La ecuación de valores propios en este caso es

$$\frac{1}{x} \int_0^x u(t)dt = \lambda u(x) \qquad \forall x \in (0,1]$$

y $u(0) = \lambda u(0)$. Derivando la expresión anterior tenemos que

$$u(x) = \lambda u(x) + \lambda x u'(x) \qquad \forall x \in (0, 1]$$

Si $\lambda = 0$ es claro que u = 0 en [0,1], es decir, T es inyectivo. Para $\lambda \neq 0$ podemos integrar la ecuación de manera directa y obtener la familia de soluciones

$$u(x) = Cx^{\frac{1}{\lambda}-1}, \quad \forall x \in [0,1], C \in \mathbb{R}$$

Para que $u \in C[0,1]$ se debe tener necesariamente que $\frac{1}{\lambda} - 1 \ge 0$, esto es, $\frac{1-\lambda}{\lambda} \ge 0$ y así $\lambda \in (0,1]$. Obtenemos así que $\mathcal{V}P(T) = (0,1]$.

3. Como T es un operador de norma 1 y $\sigma(T)$ es compacto tenemos que $[0,1] \subseteq \sigma(T) \subseteq [-1,1]$. Probaremos que para $\lambda \in [0,1]^c$, $T-\lambda I$ es sobreyectivo. Para $f \in X$ tenemos entonces la ecuación

$$T(u) - \lambda u = f \quad \iff \quad \begin{cases} \int_0^x u(t)dt - \lambda u(x) = xf(x) & \text{si} \quad x \in (0, 1] \\ (1 - \lambda)u(0) = f(0) \end{cases}$$

Definiendo $\varphi(x) = \int_0^x u(t)dt$ tenemos que φ es solución de

$$\varphi - \lambda \varphi' = x f(x), \qquad x \in (0, 1]$$

La ecuación anterior es una EDO lineal de primer orden cuya solución viene dada explícitamente por la fórmula de Leibniz

$$\varphi(x) = \frac{1}{\lambda} x^{1/\lambda} \int_x^1 t^{-1/\lambda} f(t) dt + C x^{1/\lambda}, \qquad C \in \mathbb{R}$$

Derivando la solución anterior obtenemos que

$$u(x) = \varphi'(x) = \frac{1}{\lambda^2} x^{1/\lambda - 1} \int_x^1 t^{-1/\lambda} f(t) dt - \frac{1}{\lambda} f(x) + \frac{C}{\lambda} x^{1/\lambda - 1}$$
$$= \frac{x^{1/\lambda - 1}}{\lambda} \left(\frac{1}{\lambda} \int_x^1 t^{-1/\lambda} f(t) dt + C \right) - \frac{1}{\lambda} f(x)$$

Note ahora que

$$\int_{x}^{1} \frac{1}{y^{1/\lambda}} = \frac{\lambda}{1-\lambda} (1 - x^{1-1/\lambda})$$

y la función anterior es continua en x=0 solo en caso que $\lambda \in (0, -\infty) \cup (1, +\infty)$. Dado que f es acotada la condición anterior sobre λ implica que la integral en u converge cuando $x \to 0$. Por otro lado, note que $x^{1/\lambda-1} \to +\infty$ cuando $x \to 0$ para $\lambda \in (0, -\infty) \cup (1, +\infty)$, y entonces para que u sea continua nos vemos obligados a escoger

$$C = -\frac{1}{\lambda} \int_0^1 t^{-1/\lambda} f(t) dt$$

Con esta elección obtenemos entonces

$$u(x) = -\frac{x^{1/\lambda - 1}}{\lambda^2} \int_0^x t^{-1/\lambda} f(t) dt - \frac{1}{\lambda} f(x), \qquad x \in (0, 1]$$

$$u(0) = \frac{1}{1 - \lambda} f(0)$$
(1)

A continuación se debe probar enonces que u es continua en x = 0 y que coincide con la condición en u(0) dada. Para ello tomamos el límite lateral derecho y empleamos la regla de L'Hopital como sigue:

$$\begin{split} \lim_{x \to 0^+} u(x) &= -\frac{1}{\lambda^2} \lim_{x \to 0^+} \frac{\int_0^x t^{-1/\lambda} f(t) dt}{x^{1-1/\lambda}} - \frac{f(0)}{\lambda} \\ &= -\frac{1}{\lambda^2} \lim_{x \to 0^+} \frac{x^{-1/\lambda} f(x)}{\frac{\lambda - 1}{\lambda} x^{-1/\lambda}} - \frac{f(0)}{\lambda} \\ &= -\frac{f(0)}{\lambda(\lambda - 1)} - \frac{f(0)}{\lambda} \\ &= \frac{1}{1 - \lambda} f(0) \end{split}$$

deduciendo que u es continua.

Como VP(T)=(0,1] se tiene entonces que $T-\lambda I$ es biyectivo en $\lambda\in(0,-\infty)\cup(1,+\infty)$ y su inversa $(T-\lambda I)^{-1}$ viene dada por (1). Deducimos entonces que $\sigma(T)=[0,1]$ y por lo tanto T no es compacto pues su espectro es no numerable.

4. Para $\varepsilon > 0$ definimos

$$T_{\varepsilon}(u)(x) = \frac{1}{x+\varepsilon} \int_{0}^{x} u(t)dt$$

y para p > 1 calculamos que

$$||T_{\varepsilon}(u) - T(u)||_{L^{p}(0,1)}^{p} = \int_{0}^{1} \left| \left(\frac{1}{x+\varepsilon} - \frac{1}{x} \right) \int_{0}^{x} u(t) dt \right|^{p} dx$$

$$\leq \int_{0}^{1} \frac{\varepsilon^{p}}{|x(x+\varepsilon)|^{p}} ||u||_{\infty}^{p} |x|^{p} dx$$

$$\leq \varepsilon^{p} ||u||_{\infty}^{p} \int_{0}^{1} \frac{dx}{(x+\varepsilon)^{p}}$$

$$= \varepsilon^{p} ||u||_{\infty}^{p} \left(\frac{(x+\varepsilon)^{1-p}}{1-p} \right) \Big|_{0}^{1}$$

$$\leq \varepsilon^{p} ||u||_{\infty}^{p} \frac{\varepsilon^{1-p}}{p-1}$$

$$= \frac{\varepsilon}{(p-1)} ||u||_{\infty}^{p}$$

de donde se obtiene la siguiente estimación:

$$||T_{\varepsilon}(u) - T(u)||_{L^{p}(0,1)} \le \frac{\varepsilon^{1/p}}{(p-1)^{1/p}} ||u||_{\infty}$$

De manera similar para p=1 se puede obtener la estimación

$$||T_{\varepsilon}(u) - T(u)||_{L^{1}(0,1)} \le \varepsilon \log(1 + 1/\varepsilon) ||u||_{\infty}$$

así que en cualquier caso vemos que $T_{\varepsilon} \to T$ en $\mathcal{L}(C[0,1],L^p(0,1))$. Para concluir que T es compacto bastará entonces con demostrar que los operadores de aproximación T_{ε} son compactos para todo $\varepsilon > 0$. Para ello notemos en primer lugar que en verdad los operadores T_{ε} toman valores en C[0,1], así que podemos considerar el operador con su imagen restringida. Por otro lado, note que la inyección $I:C[0,1] \to L^p(0,1)$ es continua, y dado que la composición de un operador compacto y un operador lineal continuo preserva la continuidad, bastará con demostrar que T_{ε} restringido a las funciones continuas es compacto.

Dado que ahora nos encontramos en el espacio de funciones continuas, es adecuado emplear el teorema de Arzelá-Ascoli para probar la compacidad del operador. Consideremos entonces la bola unitaria $B_{C[0,1]}$ de funciones continuas. Para $x \in [0,1]$ fijo entonces tenemos que

$$|T_{\varepsilon}(u)(x)| \le \frac{1}{x+\varepsilon} \int_{0}^{1} |u(t)| dt \le \frac{1}{x+\varepsilon} \quad \forall u \in B_{C[0,1]}$$

es decir, para $\varepsilon > 0$ fijo el conjunto de funciones continuas $T_{\varepsilon}(B_{C[0,1]})$ es puntualmente acotado, así que resta verificar la equicontinuidad de $T_{\varepsilon}(B_{C[0,1]})$.

Para la equicontinuidad calculamos que para $s \leq t$:

$$\begin{split} |T_{\varepsilon}(u)(t) - T_{\varepsilon}(u)(s)| &= \left| \frac{1}{t + \varepsilon} \int_{0}^{t} u(y) dy - \frac{1}{s + \varepsilon} \int_{0}^{s} u(y) dy \right| \\ &= \left| \int_{0}^{1} \frac{1}{t + \varepsilon} u(y) \mathbb{1}_{(0,t)}(y) - \frac{1}{s + \varepsilon} u(y) \mathbb{1}_{(0,s)}(y) dy \right| \\ &= \frac{1}{(t + \varepsilon)(s + \varepsilon)} \left| \int_{0}^{1} u(y) (\mathbb{1}_{(0,t)}(y)(s + \varepsilon) - \mathbb{1}_{(0,s)}(t + \varepsilon)) dy \right| \\ &\leq \frac{1}{(t + \varepsilon)(s + \varepsilon)} \|u\|_{\infty} \left(\int_{0}^{s} |(t + \varepsilon) - (s + \varepsilon)| dy + \int_{s}^{t} (s + \varepsilon) dy \right) \\ &\leq \frac{\|u\|_{\infty}}{\varepsilon^{2}} [(t - s)s + (t - s)(s + \varepsilon)] \\ &\leq \frac{\|u\|_{\infty}}{\varepsilon^{2}} (2 + \varepsilon) |t - s| \end{split}$$

y 'por lo tanto el cálculo anterior nos dice que si $u \in B_{C[0,1]}$ y $|t-s| < \delta$ entonces

$$|T_{\varepsilon}(u)(t) - T_{\varepsilon}(u)(s)| \le C_{\varepsilon}\delta$$

donde $C_{\varepsilon} > 0$ es una constante (que depende de ε) lo que permite concluir la equicontinuidad. Por todo lo dicho anteriormente T_{ε} es compacto y en consecuencia T es compacto al ser límite de operadores compactos.