

Controle Automático I

Engenharia Elétrica Prof. Fernando Passold

Objetivos

O objetivo geral deste trabalho é avaliar o conhecimento adquirido na primeira parte da disciplina associado com equações diferenciais e transformada de Laplace e seu uso para análise de sistemas.

Execução

Este trabalho está previsto para ser executado em duplas de alunos ou no máximo, em equipes de 3 alunos. Cada equipe devolve para o professor um arquivo PDF contendo a resolução das questões.

Não se exige nenhuma "capa" para este trabalho, nem nenhuma formatação especial, mas sugere-se uso de fonte tamanho 10 pt, espaçamento 1,1. Os gráficos podem ser traçados usando software como o Matlab ou Octave.

Data de entrega: 19/04/2024.

Pontuação

Todos os itens valem 1,0 ponto, com excessão do item 7 que vale 2,0 pontos.

ITENS:

1) A figura abaixo ilustra várias formas comuns de sinais de entrada para sistemas. Com auxílio de tabela, deduza as Transformadas de Laplace para estes sinais.

Onde: (a) função degrau de amplitude 4 Volts; (b) função degrau atrasada de 2 segundos e amplitude de 4 Volts; (c) função rampa, com razão de 3 Volts/s; (d) função rampa deslocada (atrasada) no tempo em 2 segundos e com razão de 3 Volts/2; (e) impulso de amplitude 4 Volts no instante de tempo t = 3 segundos; (f) onda senoidal de amplitude de 2 Volts de pico e frequência de 10 Hz.

2) Trace um gráfico (temporal) das funções abaixo e determine suas transformadas de Laplace:

- a) $y(t) = t^2$.
- b) $y(t) = t^2 e^{-at}$.
- c) $y(t) = t^2 (1 + e^{-at})$.

Obs.: Suponha que a = 1/4.

3) Determine as transformas inversas de Laplace para:

a)
$$Y(s) = \frac{2}{-}$$
.

a)
$$Y(s) = \frac{2}{s}$$
.
b) $Y(s) = \frac{3}{2s+1}$.
c) $Y(s) = \frac{2}{s-5}$.

c)
$$Y(s) = \frac{2}{s-5}$$

4) Use a transformada de Laplace para resolver a seguinte equação diferencial:

$$3\frac{dx}{dt} + 2x = 4,$$

com x = 0 em t = 0.

5) Para um degrau de amplitude V aplicado no instante t=0 em um circuito RC (série), a equação diferencial para a d.d.p. no capacitor, V_c , é dada por:

$$V = RC \frac{d V_c}{dt} + V_c$$

 V_c é zero em t=0.

Usar as transformadas de Laplace para resolver esta equação e traçar um esboço gráfico da tensão $v_c(t)$, depois de aplicada a tensão degrau de amplitude V. Ressalte no mesmo gráfico, o valor de v_c comparado com V quando a) $t=\tau$, b) $t=2\tau$, c) $t = 3\tau \,\mathrm{e}\,\mathrm{d}$) $t = 4\tau$, onde $\tau = RC = 0.5$ (segundos), corresponde a constante de tempo deste sistema.

6) Realizar a expansão em frações parciais da função abaixo:

$$F(s) = \frac{s+5}{s^2 + 3s + 2}$$

7) Considere um circuito RC série com uma tensão de entrada (V_{in}) em rampa. A equação diferencial para a d.d.p. no capacitor, V_c , é dada por:

$$RC\frac{dV_c}{dt} + V_c = V_{in}$$

Obs.: quando $t\,=\,0$, o valor (inicial) de V_{c} é zero.

- a) Desenvolva a função transferência que define $V_c(s)/V_{in}(s)$.
- b) Determine $V_c(s)$ quando $V_{in}(s)$ é uma rampa de razão de amplitude V(Volts/s).
- c) Determine $v_c(t)$ fazendo $\mathcal{L}^{-1}\{V_c(s)\}$, usando $V_c(s)$ determinado no item anterior.

Dica: será necessário fazer uso de frações parciais.

d) Por fim, trace um esboço gráfico com 2 curvas, uma tracejada para $v_{in}(t)$ e outro traço contínuo para $v_c(t)$. Considere neste caso: R=10 K Ω , C=100 μ F, e V = 1,0 Volt/segundo. Trace o gráfico para $0 \le t \le 3\tau$, onde $\tau = RC$ corresponde a constante de tempo deste sistema. Ressalte no mesmo gráfico o valor de v_c comparado com v quando d.1) $t = \tau$, d.2) $t = 2\tau$ e d.3) $t = 3\tau$.

