

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

#### ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

### ОТЧЕТ

по лабораторной работе № \_\_5\_

| Название: | Исследование | регист | <u>00B</u> |
|-----------|--------------|--------|------------|
|           |              |        |            |

Дисциплина: Схемотехника

| Студент       | ИУ6-52Б  |                 | С.В. Астахов   |
|---------------|----------|-----------------|----------------|
|               | (Группа) | (Подпись, дата) | (И.О. Фамилия) |
|               |          |                 |                |
| Преподаватель |          |                 | Т.А. Ким       |
|               |          | (Подпись, дата) | (И.О. Фамилия) |

**Цель работы:** изучение принципов построения регистров сдвига, способов преобразования параллельного кода в последовательный и обратно, сборка схем регистров сдвига и их экспериментальное исследование.

Вариант 14 (код 11001110)

## Ход работы.

- 1. Исследование регистра сдвига:
  - составить и собрать схему пятиразрядного регистра сдвига на синхронных D-триггерах с динамическим управлением записью, организовав сначала соединения триггеров для сдвига информации вправо;

Составим схему пятиразрядного регистра сдвига вправо (рисунок 1).



Рисунок 1 - Пятиразрядный регистр сдвига вправо

Проанализируем схемы, составив ее таблицу переходов (таблица 1).

| T-6       | 1 |          |       |         |          |
|-----------|---|----------|-------|---------|----------|
| таолица . | l | - таолиг | ta ne | реходов | регистра |

| D | С | $Q_1$ | $Q_2$ | $Q_3$ | Q <sub>4</sub> | $Q_5$ |
|---|---|-------|-------|-------|----------------|-------|
| X | 0 | 0     | 0     | 0     | 0              | 0     |
| 1 | 1 | 1     | 0     | 0     | 0              | 0     |
| 0 | 0 | 1     | 0     | 0     | 0              | 0     |
| 0 | 1 | 0     | 1     | 0     | 0              | 0     |
| 0 | 0 | 0     | 1     | 0     | 0              | 0     |
| 0 | 1 | 0     | 0     | 1     | 0              | 0     |
| 0 | 0 | 0     | 0     | 1     | 0              | 0     |
| 0 | 1 | 0     | 0     | 0     | 1              | 0     |

Продолжение таблицы 1

| 0 | 0 | 0 | 0 | 0 | 1 | 0 |
|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 |

Как видно из таблицы 1, рассматриваемый регистр при переходе синхросигнала из 0 в 1 записывает в левый разряд входное значение, а остальные значения сдвигаются вправо, значение крайнего правого.

- соединить прямой выход пятого разряда Q (нумерация слева направо) с входом D триггера первого разряда регистра (циклический режим);

Внеся данное изменение в схемы, мы создали регистр, работающий в циклическом режиме (рисунок 2).



Рисунок 2 - Регистр сдвига вправо в циклическом режиме

Проанализируем работу схемы с помощью таблицы 2.

Таблица 2 - таблица переходов регистра

| D | С | $Q_1$ | $Q_2$ | $Q_3$ | Q <sub>4</sub> | $Q_5$ |
|---|---|-------|-------|-------|----------------|-------|
| X | 0 | 0     | 0     | 0     | 0              | 0     |
| 1 | 1 | 1     | 0     | 0     | 0              | 0     |
| 0 | 0 | 1     | 0     | 0     | 0              | 0     |
| 0 | 1 | 0     | 1     | 0     | 0              | 0     |
| 0 | 0 | 0     | 1     | 0     | 0              | 0     |
| 0 | 1 | 0     | 0     | 1     | 0              | 0     |

Продолжение таблицы 2

| 0 | 0 | 0 | 0 | 1 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 1 | 0 | 0 | 0 | 0 |

Как видно из таблицы 2, данный регистр работает аналогично первому, но при очередном сдвиге содержимое крайнего правого разряда циклически перенесется в крайний левый.

проверить работу регистров сдвига влево в статическом и динамическом режимах;

Составим схему регистра сдвига влево (рисунок3).



Рисунок 3 - Регистр сдвига влево

Проанализируем работу регистра в статическом режиме с помощью таблицы 3.

Таблица 3 - таблица переходов регистра

| D | С | $Q_1$ | $Q_2$ | $Q_3$ | Q <sub>4</sub> | Q <sub>5</sub> |
|---|---|-------|-------|-------|----------------|----------------|
| X | 0 | 0     | 0     | 0     | 0              | 0              |
| 1 | 1 | 0     | 0     | 0     | 0              | 1              |
| 0 | 0 | 0     | 0     | 0     | 0              | 1              |
| 0 | 1 | 0     | 0     | 0     | 1              | 0              |

Продолжение таблицы 3

| 0 | 0 | 0 | 0 | 0 | 1 | 0 |
|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 |

Как видно из таблицы 3, регистр сдвига влево при очередном переходе синхросигнала из 0 в 1 записывает входное значение в правый разряд, а значения остальных разрядов сдвигаются влево.

Составим схему для анализа работы регистра сдвига влево в динамическом режиме (рисунок 4). Проанализируем ее на основе временной диаграммы (рисунок 5).



Рисунок 4 - Регистр сдвига влево в динамическом режиме



Рисунок 5 - Временная диаграмма сигналов

Результаты временной диаграммы подтверждают истинность выводов, сформулированных при анализе работы регистра в статическом режиме.

 повторить ознакомление с регистром сдвига, соединив инверсный выход пятого разряда с входом D триггера первого разряда

Составим описанную схему (рисунок 6) и проанализируем ее с помощью временной диаграммы (рисунок 7).



Рисунок 6 - Схема пятиразрядного регистра сдвига влево с инверсией



Рисунок 7 - Временная диаграмма сигналов

Как видно из временной диаграммы, в таком регистре изначально записанные данные зацикливаются, при этом инвертируясь при каждом цикле.

- 2. Исследование универсального регистра на ИС К555ИР11(74LS194):
  - собрать схему 8-разрядного регистра сдвига;
  - провести исследование режимов работы универсального регистра в статическом и динамическом режимах.

Примечание: ключи инвертированы относительно стандартного положения.

Составим схему 8-разрядного регистра сдвига (рисунок 8)



Рисунок 8 - схема 8-разрядного регистра сдвига

Проверим работу регистра в режиме параллельного ввода данных (в статическом режиме). Для этого выставим соответствующие входные значения и  $S_0$ =1,  $S_1$ =1. Убедимся, что код записан в регистр с помощью светодиодов.

Проверим работу регистра в режиме сдвига вправо ( $S_0$ =0,  $S_1$ =1, рисунок 9) и влево ( $S_0$ =1,  $S_1$ =0, рисунок 10).



Рисунок 9 - временные диаграммы при сдвиге вправо



Рисунок 10 - временные диаграммы при сдвиге вправо

Данные на временных диаграммах аналогичны данным, полученным при анализе регистров сдвига вправо и влево в статическом режиме в первой части лабораторной работы.

3. Определить по временным диаграммам параметры быстродействия от входа С до выходов регистров и максимальную частоту сигналов сдвига.

Измерим время задержки при циклическом сдвиге вправо (рисунок 11).



Рисунок 11 - определение времени задержки

Как видно из временной диаграммы  $t_{\rm вр. 3. p. cq} = 1$ мс. Расчитаем максимальную частоту срабатывания.

$$f_{max} = \frac{1}{\mathsf{t}_{\text{вр.3.р.сч}}} = 1$$
КГц

**Вывод:** в ходе данной лабораторной работы были изучены принципы построения регистров сдвига и универсальных регистров и рассчитано время задержки и максимальная частота их срабатывания.