Lecture 39 Sampling Distribution For Coefficients In Simple Linear Regression

BIO210 Biostatistics

Xi Chen Spring, 2022

School of Life Sciences
Southern University of Science and Technology

Summary of Simple Linear Regression Using OLS

Population regression line: $E[Y|X] = \mu_{y|x} = \beta_0 + \beta_1 x$

Take a sample to make estimate β_0 and β_1 using OLS:

$$\hat{y} = \hat{\mu}_{y|x} = \hat{\beta_0} + \hat{\beta_1}x, \text{ where } \hat{\beta_1} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}, \ \hat{\beta_0} = \bar{y} - \hat{\beta_1}\bar{x}$$

1

The Distribution of ϵ

According to the LINE assumptions: $\epsilon \sim \mathcal{N}(?,?)$

$$\mathbf{Y}|_{\mathbf{X}=x} = \beta_0 + \beta_1 x + (\boldsymbol{\epsilon}|_{\mathbf{X}=x}) \Rightarrow \boldsymbol{\epsilon}|_{\mathbf{X}=x} = (\mathbf{Y}|_{\mathbf{X}=x}) - (\beta_0 + \beta_1 x)$$

$$\Rightarrow E[\boldsymbol{\epsilon}|_{\mathbf{X}=x}] = E[(\mathbf{Y}|_{\mathbf{X}=x}) - (\beta_0 + \beta_1 x)] = E[(\mathbf{Y}|_{\mathbf{X}=x})] - E[(\beta_0 + \beta_1 x)]$$

$$\Rightarrow E[\boldsymbol{\epsilon}|_{\mathbf{X}=x}] = \mu_{y|x} - \mu_{y|x} = 0$$

$$var(\boldsymbol{\epsilon}|_{\boldsymbol{X}=x}) = var[(\boldsymbol{Y}|_{\boldsymbol{X}=x}) - (\beta_0 + \beta_1 x)] = var[(\boldsymbol{Y}|_{\boldsymbol{X}=x}) - \mu_{y|x}]$$

$$\Rightarrow var(\boldsymbol{\epsilon}|_{\boldsymbol{X}=x}) = var[\boldsymbol{Y}|_{\boldsymbol{X}=x}] = \sigma_{y|x}^2$$

 $\epsilon \sim \mathcal{N}(0,\sigma_{y|x}^2)$, $\sigma_{y|x}^2$ is called the "common error variance".

Sampling Distribution of The Coefficients in OLS

Population regression line: take a sample OLS regression line:
$$E[\boldsymbol{Y}|\boldsymbol{X}] = \mu_{y|x} = \beta_0 + \beta_1 x$$

$$\hat{\mu}_{y|x} = \hat{\beta}_0 + \hat{\beta}_1 x$$

 $\hat{\mu}_{y|x},\,\hat{\beta_0},\,\hat{\beta_1}$ have nice distributions

$$\hat{\beta_0} \sim \mathcal{N} \left(\beta_0, \frac{\sigma_{y|x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \cdot \frac{\sum_{i=1}^n x_i^2}{n} \right)$$

$$\hat{\beta_1} \sim \mathcal{N} \left(\beta_1, \frac{\sigma_{y|x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right)$$

$$\hat{\mu}_{y|x} \sim \mathcal{N} \left(\mu_{y|x}, \sigma_{y|x}^2 \cdot \left[\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right] \right)$$

Sampling Distribution of The Coefficients in OLS - Example

Population regression line:

$$F = \beta_0 + \beta_1 \cdot C$$

$$\beta_0 = 32$$

$$\beta_1 = 1.8$$

$$\beta_1 = 1.8$$

$$\sigma_{y|x}^2 = 4$$

Sampling Distribution of The Coefficients in OLS - Example

95% Confidence Interval for $\hat{\mu}_{y|x}$

 $F = 34.85 + 1.69 \cdot C$ 95% confidence interval of E[F|C]

What Is $\sigma_{y|x}^2$?

$$\hat{\beta_0} \sim \mathcal{N}\left(\beta_0, \frac{\sigma_{\boldsymbol{y}|\boldsymbol{x}}^2}{\sum_{i=1}^n (x_i - \bar{\boldsymbol{x}})^2} \cdot \frac{\sum_{i=1}^n x_i^2}{n}\right)$$

$$\hat{\beta_1} \sim \mathcal{N}\left(\beta_1, \frac{\sigma_{\boldsymbol{y}|\boldsymbol{x}}^2}{\sum_{i=1}^n (x_i - \bar{\boldsymbol{x}})^2}\right)$$

$$\hat{\mu}_{\boldsymbol{y}|\boldsymbol{x}} \sim \mathcal{N}\left(\mu_{\boldsymbol{y}|\boldsymbol{x}}, \frac{\sigma_{\boldsymbol{y}|\boldsymbol{x}}^2}{\sum_{i=1}^n (x_i - \bar{\boldsymbol{x}})^2}\right]$$

In reality, we rarely know $\sigma_{y|x}^2$, what is the best estimate for $\sigma_{y|x}^2$?

$$s_y^2 = \frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}?$$

good estimate for the variance of the entire population of y, not for $\sigma^2_{y|x}$

We denote the best estimate for $\sigma_{y|x}^2$ as $s_{y|x}^2$. Since $\sigma_{y|x}^2 = var(\epsilon|x)$, intuitively, we should use:

$$s_{y|x}^2 = MSE = \frac{SS_E}{n-2} = \frac{\sum_{i=1}^n (y_i - \hat{y_i})^2}{n-2}$$

When using $s_{y|x}^2$ to estimate $\sigma_{y|x}^2$, we introduce some error, those distributions become t_{n-2}

Is There A Linear Relationship Between x And y?

Use Pearson's
$$r: H_0: \rho=0 \ T \ \frac{r}{\sqrt{(1-r^2)/(n-2)}} \sim t_{n-2}$$

$$H_0: \text{ no linear relationship} \\ H_1: \text{ some linear relationship} \\ H_1: \text{ some linear relationship} \\ \begin{cases} \text{Use Pearson's } r: \frac{H_0: \rho = 0}{H_1: \rho \neq 0} & \frac{r}{\sqrt{(1-r^2)/(n-2)}} \sim t_{n-2} \\ \\ \text{Use Regression slope}: \frac{H_0: \beta_1 = 0}{H_1: \beta_1 \neq 0} & \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\sum\limits_{i=1}^n (x_i - \bar{x})^2}} \sim t_{n-2} \end{cases}$$

Use var. : H_0 : most var. is NOT explained by the regression H_1 : most var. is explained by the regression

$$rac{MSR}{MSE} \sim oldsymbol{F}_{1,n-2}$$