Prova 1 – Análise de Dados Categóricos – 16/10/2013

[1] A fim de comparar os exames de *Doppler* e cateterismo cardíaco, 72 pacientes com suspeita de problemas nas coronárias foram submetidos a ambos os exames obtendo-se os dados a seguir:

CATETERISMO CARDÍACO		DOPPLER CA Grau de obstrução		
Grau de obstrução das coronárias		70 a 90% (+)	< 70% (–)	Totais
70 a 90%	(+)	20	8	28
< 70%	(-)	4	40	44
Totais		24	48	72

Assumindo o cateterismo como o padrão-ouro (i.e., o método capaz de diagnosticar lesões nas coronárias com o máximo de acertos), foram obtidas as medidas a seguir:

- Sensibilidade do *doppler* em relação ao cateterismo = 20/28 = 0.714 com IC_{95%} = (0.546; 0.881)
- Especificidade do *doppler* em relação ao cateterismo = 40/44 = 0,909 com IC_{95%} = (0,824; 0,994)
- Poder preditivo (acurácia) do *doppler* em relação ao cateterismo = 60/72 = 0.833 com IC_{95%} = (0.747; 0.919)

[a] (1,0) Apresente conclusões sobre o doppler cardíaco em relação ao cateterismo.

O exame Doppler apresenta razoável sensibilidade e boa especificidade, detectando em torno de 71% dos casos positivos (grau de obstrução entre 70% e 90%) e 91% dos casos negativos (grau de obstrução abaixo de 70%). Contudo, o exame deixa de detectar em torno de 29% dos casos positivos e em torno de 9% dos casos negativos. A proporção bruta de concordância foi calculada em 83%.

Em face desses resultados, repetir o exame parece ser recomendável para evitar que um paciente doente não seja tratado ou que, um paciente livre da doença seja tratado indevidamente. (adaptado da apostila)

[2] Pacientes com uma doença respiratória foram submetidos aleatoriamente a um de dois tratamentos (A ou B). Após tais tratamentos foram classificados de acordo com suas respectivas mudanças no estado de saúde. Os resultados são mostrados a seguir.

Mudança no estado de saúde						
Tratamentos	Melhora	Melhora	Melhora	Estacionária	Piora	Totals
	acentuada	moderada	leve	LStacionana		IUlais
Α	11	27	42	53	11	144
В	7	15	16	13	1	52
Totais	18	42	58	66	12	196

[a] (0,5) Cite o modelo probabilístico associado a esse estudo e estabeleça as hipóteses de interesse.

Ensaio Clínico Aleatorizado – Modelo Produto de Multinomiais.

$$\begin{cases} H_0: \overline{F}_1 = \overline{F}_2 \\ H_A: \overline{F}_1 \neq \overline{F}_2 \end{cases}$$

[b] (1,0) Para testar a hipótese em (a), obtenha o valor da estatística Q_S e o p-valor aproximado, (utilize a tabela qui-quadrado) sabendo que os escores assumidos foram: $\mathbf{a} = (3,2,1,0,-1)$, bem como que $E(\bar{f}_1|H_0) = \mu_a = 0.94$, $V(\bar{f}_1|H_0) = 0.0021$ e $v_a = 1.16$.

[c] (1,0) Com base nos resultados obtidos em (b) e nas estimativas de \bar{f}_1 e \bar{f}_2 apresente as conclusões sobre os tratamentos A e B.

Há evidência estatística de associação entre o medicamento usado e a mudança no estado de saúde, ou seja, os pacientes tratados com o medicamento B tiveram melhores resultados que os tratados com o medicamento A.

[3] O medicamento *sinvastatina* foi utilizado com 3 dosagens diferentes (10mg, 20mg e 30mg) com o objetivo de investigar seu efeito em pessoas com colesterol total entre 270 e 300, os resultados obtidos foram:

	Efeito (red			
Dosagens (mg)	Pequeno	Moderado	Acentuado	Totais
10	27	14	5	46
20	10	17	26	53
30	5	12	50	67
Totais	42	43	81	166

IDÊNTICO AO DA APOSTILA (PÁGINA 65)

[a] (0,5) Identifique o tipo de estudo e o modelo probabilístico associado.

Ensaio Clínico Aleatorizado – Modelo Produto de Multinomiais.

[b] (0,5) Estabeleça as hipóteses de interesse.

$$\begin{cases} H_0: r_{ac} = 0 \text{ (ausência de tendência linear)} \\ H_A: r_{ac} \neq 0 \text{ (presença de tendência linear)} \end{cases}$$

[c] (1,5) Sabendo que os escores utilizados foram: $\mathbf{a} = (1,2,3)$ e $\mathbf{c} = (10,20,30)$ e que $r_{ac} = 0,554$, obtenha o valor da estatística Q_{CS} e o valor-p aproximado (utilize a tabela qui-quadrado) para testar as hipóteses estabelecida no item (b). Apresente conclusões quanto ao efeito da sinvastatina na redução do colesterol dos indivíduos.

Este resultado não somente evidencia a associação entre a dosagem e a redução no colesterol como também mostra que a redução no colesterol se acentua com o aumento da dosagem. (adaptado da apostila)

[4] (0,5) Para avaliar a acidez de vinhos, dois degustadores atribuíram escores de 0 a 9 a cada uma das 50 amostras analisadas. Apresente conclusões sobre a concordância entre esses dois degustadores sabendo que $k_w = 0.91$ com $IC_{95\%} = (0.86; 0.96)$.

O resultado indica uma concordância forte entre os degustadores. (Kappa >= 0,8 indica uma concordância forte segundo os slides)

[5] Em um estudo realizado para investigar a associação entre consumo de álcool e câncer de esôfago foram obtidos os dados a seguir.

	Câncer de Esôfago			
Consumo de álcool	Sim	Não	Totais	
Sim	96	109	205	
Não	104	666	770	
Totais	200	775	975	

[a] (0,75) Dado que o delineamento utilizado tenha sido o caso-controle, utilize uma medida de associação adequada a esse estudo (dentre as apresentadas no ANEXO I) para concluir sobre a associação de interesse.

Medida adequada: somente OR. Usar a interpretação específica de OR para caso-controle.

[b] (0,75) Faça o mesmo considerando que o delineamento tenha sido o de Coorte.

Todas as medidas apresentadas são adequadas. Usar a interpretação específica de OR para estudos de Coorte.

```
ANEXO I
> dados<-matrix(c(96,104,109,666),nc=2)
 chisq.test(dados,correct=F)
        Pearson's Chi-squared test
X-squared = 110.2554, df = 1, p-value < 2.2e-16
  z<-qnorm(0.975)
 cbind(RR,li,ls)
           RR
                    1i
[1,] 3.467167 2.752841 4.366852
  cbind(d, li, ls)
             d
[1,] 0.3332277 0.2606171 0.4058384
 cbind(OR, li, ls)
           OR
[1,] 5.640085 4.000589 7.951467
```

- [6] (1,0) As variáveis interferentes são usualmente classificadas em dois tipos: as confundimento e as modificadores de efeito. Desse modo, assinale se é ou não correto afirmar que:
- (\underline{V}) Não considerar um variável de confundimento Z na análise pode distorcer a intensidade ou o sentido da associação entre as variáveis X (fator de interesse) e Y (resposta).
- (\underline{V}) Uma variável modificadora de efeito Z mostra que o efeito de X sobre Y varia de acordo com as categorias de Z.
- $(\ \underline{V}\)$ Observar a existência de uma variável modificadora de efeito Z na análise de associação entre X e Y, indica de presença de interação entre X e Z.
- [7] Um estudo foi realizado para pesquisar a associação entre consumo de ferro na dieta (X) e anemia em crianças (Y), controlando pela variável idade (Z). Os dados são mostrados a seguir.

	Anemia (Y)			
Idade (Z)	Ferro na Dieta (X)	Sim	Não	Totais
< 2 anos	Não	42	8	50
< 2 anos	Sim	10	40	50
2 a 6 anos	Não	30	20	50
2 a 6 anos	Sim	12	38	50

[a] (1,0) Interprete os resultados da análise realizada para esse estudo (apresentado abaixo) e conclua sobre a associação de interesse.

```
> tab<-array(c(42,10,8,40,30,12,20,38),dim=c(2,2,2)) 
> mantelhaen.test(tab, correct=F) 
Mantel-Haenszel X-squared = 50.1825, df = 1, p-value = 1.401e-12 
> breslowday.test(tab) 
Breslow-Day X-squared = 4.797757 
Test for test of a common OR: p-value = 0.03006384 
OR_{sem} = 9,12, OR_1 = 21 e OR_2 = 4,75
```

Q_{MH} indica associação entre as variáveis consumo de ferro na dieta e anemia em crianças, controlando pela variável idade. O teste Breslow-Day indica que as odds não são homogêneas. Com isso, se verifica que a variável idade é modificadora de efeito. Assim, as odds devem ser analisadas separadamente, e desta forma, se verifica a eficiência do consumo de ferro no controle da anemia é mais eficiente entre o grupo de crianças menores de dois anos.