Теория категорий Элементарные топосы

Валерий Исаев

5 мая 2021 г.

План лекции

Классификатор подобъектов

Определение топосов
Эффективный топос
Синтаксическая категория
Категория предпучков

Свойства топосов

Классификатор подобъектов в Set

- ▶ В **Set** существует биекция между подмножествами некоторого множества A и предикатами $A \rightarrow 2$.
- ▶ Если $2 = \{\top, \bot\}$ и $f : A \to 2$, то соответствующее подмножество A можно определить как $f^{-1}(\top)$.
- > Эту конструкцию можно переформулировать категориально. Пусть ${
 m true}: 1 \to 2$ функция, выбирающая элемент \top . Тогда любому морфизму $f: A \to 2$ мы можем сопоставить подобъект A пулбэк ${
 m true}$ вдоль f.
- В Set эта конструкция взаимно однозначна. В произвольной категории это может быть не верно.

Определение классификатора подобъектов

Пусть в ${f C}$ существует терминальный объект ${f 1}$. Тогда объект ${f \Omega}$ вместе с морфизмом ${
m true}: {f 1} o {f \Omega}$ называется классификатором подобъектов, если для любого мономорфизма $f: A' \hookrightarrow A$ существует уникальный морфизм $\chi_f: A \to {f \Omega}$, такой что следующий квадрат является пулбэком:

Другими словами, функция $(-)^*(\mathrm{true}): \mathrm{Hom}(A,\Omega) \to \mathrm{Sub}(A)$ должна быть биекцией для любого A.

Другое определение классификатора подобъектов

Definition

Мономорфизм ${
m true}:\widehat{\Omega}\to\Omega$ называется классификатором подобъектов, если для любого мономорфизма $f:A'\hookrightarrow A$ существует уникальный морфизм $\chi_f:A\to\Omega$, такой что $\chi_f^*({
m true})(f)$ и f равны как подобъекты B.

Remark

Это определение эквивалентно предыдущему. Другими словами, можно доказать, что $\widehat{\Omega}$ всегда является терминальным объектом (упражнение).

Свойства

- Классификатор подобъектов уникален с точностью до изоморфизм
- Классификатор подобъектов в когерентной категории является внутренней дистрибутивной решеткой.
- ▶ В категории с классификатором подобъектов любой мономорфизм регулярен (упражнение).
- Категории с классификатором подобъектов являются сбалансированными.

Примеры

- ► B **Set** двухэлементное множество является классификатором подобъектов.
- В категории пунктированных множеств двухэлементное множество также является классификатором подобъектов.
- В категориях групп, моноидов и колец нет классификатора подобъектов, так как в них не любой мономорфизм регулярен.

План лекции

Классификатор подобъектов

Определение топосов
Эффективный топос
Синтаксическая категория
Категория предпучков

Свойства топосов

Определение топосов

Definition

(Элементарный) топос — это категория, в которой существуют конечные пределы, классификатор подобъектов Ω и для любого A экспонента Ω^A .

Примеры топосов:

- Категории предпучков.
- Эффективный топос.
- ▶ Синтаксическая категория подходящего языка.

Частичные комбинаторные алгебры

 $lackbox{ }$ Частичная комбинаторная алгебра — это множество A вместе с частичной функцией $\cdot: A \times A \to A$, такое что существуют константы $k,s \in A$, удовлетворяющие следующим равенствам:

$$k \cdot x \cdot y = x$$

 $s \cdot x \cdot y \cdot z = x \cdot z \cdot (y \cdot z)$

- Частичная комбинаторная алгебра это алгебраическая модель нетипизированного лямбда исчисления.
- ▶ Пример: A множество нетипизированных лямбда термов по отношению $\beta\eta$ -эквивалентности, · аппликация.
- ightharpoonup Пример: $A=\mathbb{N},\ n\cdot m=arphi(n)(m),\$ где arphi- некоторая нумерация вычислимых функций.

Эффективный топос

Сборки

- ▶ A-сборка это множество X вместе с отношением \Vdash на $A \times X$, таким что для любого $x \in X$ существует $a \in A$, такой что $a \Vdash x$, и, если $a \Vdash x$ и $a \Vdash y$, то x = y.
- ▶ Морфизм A-сборок X и Y это функция $f: X \to Y$, такая что существует $r \in A$, реализующий f, то есть если $a \Vdash x$, то $r \cdot a \Vdash f(x)$.
- Категория А-сборок не является топосом (но является квазитопосом).
- Эту категорию можно расширить, получив топос.
- ▶ Такой топос, когда А второй пример с предыдущего слайда, называется эффективным топосом.

Синтаксическая категория

Язык

- Если мы добавим в язык с зависимыми типами достаточное количество конструкций, то его синтаксическая категория (почти) будет топосом.
- Конкретно, нам нужно добавить вселенную утверждений *Prop* и правило, которое говорит, что она содержит все утверждения.

Синтаксическая категория

Замкнутость вселенной

- Обычно еще добавляют правила, которые говорят, что вселенная замкнута относительно различных конструкций: конъюнкций, дизъюнкций, и так далее.
- Если мы добавляем правило, которое говорит, что она замкнута относительно всех утверждений, то это не нужно делать.
- В частности, это означает, что в любом топосе можно проинтерпретировать такие правила.

Классификатор подобъектов в категории предпучков

Proposition

В любой категории предпучков существует классификатор подобъектов.

У нас должна быть биекция между множеством подобъектов объекта A и $\mathrm{Hom}(A,\Omega)$. Но по лемме Йонеды должно быть верно $\Omega_a = \mathrm{Hom}(\mathbf{y}a,\Omega)$. Следовательно, мы можем определить Ω_a как множество подобъектов $\mathbf{y}a$. Подобъект такого предпучка — это множество S морфизмов с кодоменом a, такое что $f \in S$ влечет $f \circ h \in S$ для любого h, для которого $f \circ h$ определено. Множество морфизмов с таким свойством называется peшетом на a.

Доказательство (продолжение)

Таким образом, мы определяем Ω_a как множество решет на a.

Если
$$f:a o b$$
, то $\Omega_f(S)=\{g|f\circ g\in S\}.$

Подобъект предпучка B можно задать как семейство $\{eta_x\subseteq B_x\mid orall f:y o x,eta_x\subseteq B_f^{-1}(eta_y)\}_x$. Таким образом, нам нужно показать, что следующая функция является биекцией:

$$Q: \operatorname{Hom}(B,\Omega) \to \operatorname{Sub}(B)$$
$$Q: \alpha \mapsto \{\{b \mid \alpha_{\mathsf{x}}(b) = \top\}\}_{\mathsf{x}}$$

Обратную функцию можно задать следующим образом:

$$R: \beta \mapsto \{\lambda b. \{g: y \to x \mid B_g(b) \in \beta_y\}\}_x$$

Естественность $R(\beta)$ следует из функториальности B.

Доказательство (продолжение)

Докажем, что $R(Q(\alpha)) = \alpha$:

$$R(Q(\alpha)) = \{ \lambda b. \{ g : y \to x \mid \alpha_y(B_g(b)) = \top \} \}_x$$

По естественности α верно $\alpha_y(B_g(b))=\Omega_g(\alpha_x(b))$, а условие $\Omega_g(\alpha_x(b))=\top$ эквивалентно тому, что любой $h:z\to y$ принадлежит $\Omega_g(\alpha_x(b))$, что верно в точности, если для любого $h:z\to y$ стрелка $g\circ h$ приндлежит $\alpha_x(b)$. Таким образом

$$R(Q(\alpha))_{x}(b) = \{g : y \to x \mid \forall h : z \to y, g \circ h \in \alpha_{x}(b)\}\$$

Если $g \in R(Q(\alpha))_x(b)$, то очевидно $g \in \alpha_x(b)$. Наоборот, если $g \in \alpha_x(b)$, то $g \in R(Q(\alpha))_x(b)$, так как $\alpha_x(b)$ – решето. Следовательно $R(Q(\alpha))_x(b) = \alpha_x(b)$.

Доказательство (конец)

Докажем, что $Q(R(\beta)) = \beta$:

$$Q(R(\beta)) = \{ \{ b \mid \{ g : y \to x \mid B_g(b) \in \beta_y \} = \top \} \}_x$$
$$= \{ \{ b \mid \forall g : y \to x, B_g(b) \in \beta_y \} \}_x$$

Если $b \in Q(R(\beta))_x$, то очевидно $b \in \beta_x$. Обратная импликация верна, так как $\beta \in \mathrm{Sub}(B)$. Следовательно $Q(R(\beta))_x = \beta_x$.

План лекции

Классификатор подобъектов

Определение топосов
Эффективный топос
Синтаксическая категория
Категория предпучков

Свойства топосов

Синглтоны

- ightharpoonup Этот морфизм можно определить как каррирование $\chi_{\Delta}: A \times A \to \Omega$, где $\Delta: A \hookrightarrow A \times A$ диагональ.
- ightharpoonup Таким образом, χ_{Δ} это просто предикат равенства.

Свойства синглтонов

Proposition

Морфизм $\{-\}_A:A o\Omega^A$ является мономорфизмом.

Доказательство.

Пусть $a,a':\Gamma\to A$ — морфизмы, такие что $\{-\}_A\circ a=\{-\}_A\circ a'.$ Тогда стрелки $\Gamma\times A\xrightarrow{a imes \mathrm{id}}A\times A\xrightarrow{\chi_\Delta}\Omega$ и $\Gamma\times A\xrightarrow{a'\times\mathrm{id}}A\times A\xrightarrow{\chi_\Delta}\Omega$ также равны. Но $((a\times\mathrm{id})\circ\chi_\Delta)^*(\mathrm{true})=(a\times\mathrm{id})^*\chi_\Delta^*(\mathrm{true})=(a\times\mathrm{id})^*(\Delta)=\langle\mathrm{id},a\rangle:\Gamma\to\Gamma\times A.$ Из равенства стрелок выше следует, что $\langle\mathrm{id},a\rangle$ и $\langle\mathrm{id},a'\rangle$ изоморфны как подобъекты $\Gamma\times A.$ Композиция с первой проекцией показывает, что этот изоморфизм равен id_Γ , а композиция со второй показывает. что a=a'.

Декартова замкнутость

Proposition

Любой топос является декартово замкнутым.

Скетч доказательства.

Мы определим экспоненту B^A так же как и в \mathbf{Set} (то есть как $\{f:A\times B\to\Omega\mid \forall a:A,\exists !(b:B),f(a,b)=\top\}$). Конкретно, B^A будет уравнителем двух стрелок $\Omega^{A\times B}\to\Omega^A$. Эти стрелки определяются как карирование стрелок $f,g:\Omega^{A\times B}\times A\to\Omega$. Стрелка f задается как композиция $\Omega^{A\times B}\times A\xrightarrow{\mathrm{ev}}\Omega^B\xrightarrow{\chi_{\{-\}_B}}\Omega$. Стрелка g задается как композиция $\Omega^{A\times B}\times A\to 1\xrightarrow{\mathrm{true}}\Omega$.

Декартова замкнутость

Чтобы задать ${
m ev}:B^A\times A\to B$, зададим сначала $B^A\times A\to \Omega^B$ и покажем, что он факторизуется через $\{-\}_B$. Этот морфизм задается как композиция

$$B^A \times A \xrightarrow{e \times id} \Omega^{A \times B} \times A \xrightarrow{ev} \Omega^B$$

где e — уравнитель из определения B^A . Стрелка факторизуется через $\{-\}_B$ тогда и только тогда, когда ее композиция с $\chi_{\{-\}_B}$ факторизуется через ${
m true}$. Для данной стрелки это верно по определению уравнителя e.

Универсальное свойство мы проверять не будем.

Фундаментальная теорема теории топосов

Proposition

Если A – некоторый объект топоса C, то C/A также является топосом.

Доказательство.

Очевидно в ${\bf C}/A$ существуют все конечные пределы. Классификатор подобъектов определяется просто как $\Omega_A=A^*(\Omega)$. Подобъекты некоторого $(B,p_B)\in {\bf C}/A$ – это просто подобъекты B в ${\bf C}$. С другой стороны у нас есть биекция ${\rm Hom}_{{\bf C}}(B,\Omega)\simeq {\rm Hom}_{{\bf C}/A}((B,p_B),\Omega_A)$. Откуда следует, что Ω_A является классификатором подобъектов в ${\bf C}/A$.

Фундаментальная теорема теории топосов

Доказательство.

Теперь мы хотим показать, что для любого $(B,p_B) \in \mathbf{C}/A$ существует $\Omega_A^{(B,p_B)} \in \mathbf{C}/A$. Для такого объекта должны выполняться следующие равенства: $\mathrm{Hom}_{\mathbf{C}/A}(X,\Omega_A^{(B,p_B)}) \simeq \mathrm{Hom}_{\mathbf{C}/A}(X \times_A (B,p_B),\Omega_A) \simeq \mathrm{Hom}_{\mathbf{C}}(X \times_A B,\Omega)$. Но морфизмы $X \times_A B \to \Omega$ — это просто подобъекты $X \times_A B$. Но этот объект сам является подобъектом $X \times B$. Таким образом, это множество состоит из тех морфизмов $p: X \times B \to \Omega$, которые задают подобъект, содержащий $X \times_A B$.

Фундаментальная теорема теории топосов

Доказательство.

Пусть $q: X \times B \to \Omega$, $q = \chi_{X \times_A B}$. Тогда это множество можно описать как $\{p: X \times B \to \Omega \mid (\lambda t: X \times B.p(t) \wedge q(t)) = p\}$. Или как $\{p': X \to \Omega^B \mid (\lambda x: X.\lambda b: B.p'(x)(b) \wedge q(x,b)) = p'\}$. Или как множество $p': X \to \Omega^B$, таких что $\langle p', p_X \rangle : X \to \Omega^B \times A$ уравнивает стрелки $f, g: \Omega^B \times A \to \Omega^B$, где $f = \pi_1$ и $g = (\lambda(s,a)b.s(b) \wedge p_B(b) = a)$. И, следовательно, как соответствующее подмножество множества морфизмов $\operatorname{Hom}_{\mathbf{C}/A}(X, A^*(\Omega^B))$. Следовательно, мы можем определить $\Omega_A^{(B,p_B)}$ как уравнитель f и g.

Регулярность топосов

- Любой топос регулярная категория.
- $lackbox{ Образ }A o 1$ можно определить как $\Pi_\Omega(\mathrm{true}^{\mathrm{true}^{
 ho}})$, где $p=\pi_2:A imes\Omega o\Omega$, а $\Pi_\Omega:\mathbf{C}/\Omega o\mathbf{C}$ правый сопряженный к $\Omega imes-:\mathbf{C} o\mathbf{C}/\Omega$.
- В нотации теории типов эта конструкция записывается следующим образом:

$$||A|| = \prod_{X:\Omega} (A \to X) \to X$$

- Для произвольного морфизма $A \to \Gamma$ образ получается применением этой конструкции в \mathbf{C}/Γ .
- ightharpoonup Стабильность относительно пулбэков следует из стабильности Ω , Π и Σ .

Операции над подобъектами

- ightharpoonup Используя Ω , легко сконструировать наименьший подобъет и объединение подобъектов.
- Сделаем это сначала для терминального объекта.
- ▶ Пусть A и B − подобъекты терминального объекта, тогда определим их объединение как

$$A \cup B = \prod_{X:\Omega} (A \to X) \to (B \to X) \to X.$$

- ▶ Легко сконструировать стрелку $A \to A \cup B$, конкретно, $\lambda aXfg.f$ a. Аналогично определяется стрелка $B \to A \cup B$.
- ▶ Теперь, если C подобъект терминального объекта и $f:A\to C,\ g:B\to C,\$ то существует стрелка $A\cup B\to C,$ конкретно, $\lambda d.d\ Cf\ g.$

Когерентность топосов

- Начальный подобъект конструируется аналогичным образом: $0 = \prod_{X \in \mathcal{N}} X$.
- Аналогчино для любого подобъекта C существует стрелка $0 \to C$, конкретно $\lambda d.d.C$.
- ► Если Г произвольный объект, то можно определить эти операции над подобъектами Г.
- ▶ Действительно, так как С/Г является топосом, то в нем эти операции определены для терминального объекта. Но терминальный объект в нем – это Г.
- Эти операции стабильны относительно пулбэков по аналогичным соображениям.

Конечные суммы

- Следовательно, любой топос когерентная категория, а значит в нем существует начальный объект.
- ▶ Так как $B \coprod C$ должно быть подобъектом $\Omega^{B \coprod C}$, а этот объект изоморфен $\Omega^B \times \Omega^C$, то мы можем определить $B \coprod C$ как некоторый подобъект этого произведения.
- ► Пусть $B' = \langle \{-\}_B, \bot \rangle : B \hookrightarrow \Omega^B \times \Omega^C$ и $C' = \langle \bot, \{-\}_C \rangle : C \hookrightarrow \Omega^B \times \Omega^C$.
- lacktriangle Тогда мы определяем $B \coprod C$ как объединение B' и C'.
- Универсальное свойство мы проверять не будем.

Коуравнители

- lacktriangle Мы хотим построить коуравнитель f,g:R o A.
- lacktriangle Если $R o R' \xrightarrow{\langle f',g'
 angle} A imes A$ образ $\langle f,g
 angle$, то несложно показать, что коуравнитель f',g' также будет коуравнителем f,g.
- ▶ Если $R'' \xrightarrow{\langle f'', g'' \rangle} A \times A$ рефлексивное симметричное транзитивное замыкание $R' \xrightarrow{\langle f', g' \rangle} A \times A$, то несложно показать, что коуравнитель f'', g'' также будет коуравнителем f', g'.
- Такое замыкание можно определить как пересечение всех отношений эквивалентности, содержащих R'.

Коуравнители

- Пересечение множества подмножеств некоторого множества строится при помощи квантора всеобщности и импликации, которые есть в любой локально декартово замкнутой категории.
- Коуравнитель отношения эквивалентности можно определить как множество классов эквивалентности, то есть подобъектов A вида $\{a': A \mid R''(a,a')\}$.
- ▶ Другими словами, мы определяем коуравнитель f'', g'' как образ стрелки $A \to \Omega^A$, соответствующей $\langle f'', g'' \rangle : R'' \hookrightarrow A \times A$.