

SEQUENCE LISTING

<110> Ron, David
Jousse, Celine

<120> METHODS OF SCREENING TEST COMPOUNDS USING GADD34L, AN eIF2alpha-SPECIFIC PHOSPHATASE SUBUNIT

<130> 5986/1L712-US1

<150> US 60/408,679
<151> 2002-09-06

<160> 10

<170> PatentIn version 3.1

<210> 1
<211> 2942
<212> DNA
<213> Homo sapiens

<400> 1	atttgggct tcgcttccac cgaccaggcc ggcctaccca gtcctccgg tatcgcgttg	60
	ctcagggct tttcaaccct ctgtcagtcg gaaaaccatc gccgaggccg tggggggact	120
	cctatccatg gtgttgaagc gtcgagccga ctagggAACc tccttccccg ccaggatgga	180
	agtgcatca gtcgcccctt attgcgcggg ctgttcttc ctgtgttctg ccgcccgcgt	240
	ccgcattcgc tgccctctgt ggctttctg ctggctcgaa gatcggcctg gagcagcgc	300
	gccaccgctg ggcaaggccg agactctgtt ggcttcctcc gaatccgcgc gaccccgac	360
	cgtgagcgc cgccgccta cctgagagac tgtcaagaaa aaggagatgg agccggggac	420
	aggcggatcg cggaaacggc ttggccctcg ggccggcttc cgggtctggc caccctttt	480
	ccctcggcga tcgcaagcag gctttctaa gttcccgacg cctttggcc cggaaaactc	540
	cggaaacccc acactgtttt cctctgcccc gcccggact cgggtcagtt actggacgaa	600
	actgctctcc cagctccttg cggcgctccc cggattgtttt cagaagggtgc taatttggag	660
	ccaactttt ggtggaatgt ttccgaccag atggcttagat tttgtggag tctacagcgc	720
	cctgagagcc ctgaaggggac gggagaaacc agccggccccc acagcgcaga aatctttgag	780
	ttcgctgcag ctcgactcct cagacccctc ggtcaccagt ccccttgatt ggctagagga	840
	ggggatccac tggcaatact cgccccccaga cctaaaattt gagcttaagg ccaagggaaag	900
	tgcggac cctgcagcac aggctttctt ctttagagcag cagctgtggg gagtggagct	960
	gttggccagt agccttcaat cccgtctgtttaaccgg gaaacttggctt cttcgccctc	1020

tgggcctcta aacattcaac gcatagacaa tttcagtgtg gtatcctatt tgctgaaccc 1080
ttcctacctg gactgcttc ctaggctaga agtcagctat cagaacagtg atggaaatag 1140
cgaggtagtc ggctccaga cactaaccgc agagagcagc tgcctgagag aggaccattg 1200
tcatccccag ccgctgagtg cagaactcat tccggcctcg tggcagggat gtccacctct 1260
ttctacggaa ggcctaccag aaattcacca tcttcgcattt aaacggctgg aattccttca 1320
acaggctaac aaggggcaag atttacccac ccctgaccag gataatggct accacagcct 1380
ggaggaggaa cacagccttc tccggatgga tccaaaacac tgcaagagata acccaacaca 1440
gttggttcct gctgctggag acattcctgg aaacacccag gaatccactg aagaaaaaat 1500
agaattatta actacagagg ttccacttgc tttggaagaa gagagccctt ctgagggctg 1560
tccatctagt gagataccta tggaaaagga gcctggagag ggccgaataa gtgtagttga 1620
ttactcatac ctagaaggtg accttccat ttctgccaga ccagcttgc gtaacaaact 1680
gatagattat atttgggag gtgcattccag tgacctggaa acaagttctg atccagaagg 1740
tgaggattgg gatgaggaag ctgaggatga tggtttgat agttagatgc cactgtcaga 1800
ctcagacctt gaacaagacc ctgaaggcgt tcaccttgg aactcttct gcagtgtaga 1860
tccttataat ccccagaact ttacagcaac aattcagact gctgccagaa ttgttcctga 1920
agagccttct gattcagaga aggatttgc tggcaagtct gatctagaga attcctccca 1980
gtctggaagc cttcctgaga cccctgagca tagttctggg gaggaagatg actggaaatc 2040
tagtgcagat gaagcagaga gtctcaaact gtggaaactca ttctgttaatt ctgtatgaccc 2100
ctacaaccct ttaaatttttta aggctcctt tcaaacatca gggaaaatg agaaaggctg 2160
tcgtgactca aagacccat ctgagtccat tgtggccatt tctgagtgtc acaccttact 2220
ttcttgcataag gtgcagctgt tggggagcca agaaagtgaa tgtccagact cggtacagcg 2280
tgacgttctt tctggaggaa gacacacaca tgtcaaaaga aaaaaggtaa ctttccttga 2340
agaagttact gagtattata taagtggta tgaggatcgc aaaggaccat gggagaatt 2400
tgcaagggat ggatgcaggt tccagaaacg aattcaagaa acagaagatg ctattggata 2460
ttgcttgaca tttgaacaca gagaaagaat gtttaataga ctccaggaa catgcttcaa 2520
aggacttaat gttctcaagc aatgttgagt tggcagcctg tagtccttagc tagcatacac 2580
tacctcttac ctgagaggtg tctttaaaa acaaatcttgc gcagctgtcc tttgacattt 2640
tttttttag aggaaatgta acttggatct agttaattt tttttttgc aacatatccc 2700
actcagaaac attcaggttt gaagccagcc ctgataatga aggtgaact agtgtgattt 2760

ctaatcctcc cttttttgat ttagttggat gtgcctttaa atgtcctttg cctgcatgag 2820
gtggaaaggg gaccttttg agttgtcatt ttgcacttgc aaaacttatt ttcttgaaa 2880
acaatatattt tagggcttaa agcccatttt catttcaat ctaaattatg tgtgcctatc 2940
tg 2942

<210> 2
<211> 713
<212> PRT
<213> Homo sapiens

<400> 2

Met Glu Pro Gly Thr Gly Gly Ser Arg Lys Arg Leu Gly Pro Arg Ala
1 5 10 15

Gly Phe Arg Phe Trp Pro Pro Phe Phe Pro Arg Arg Ser Gln Ala Gly
20 25 30

Ser Ser Lys Phe Pro Thr Pro Leu Gly Pro Glu Asn Ser Gly Asn Pro
35 40 45

Thr Leu Leu Ser Ser Ala Gln Pro Glu Thr Arg Val Ser Tyr Trp Thr
50 55 60

Lys Leu Leu Ser Gln Leu Leu Ala Pro Leu Pro Gly Leu Leu Gln Lys
65 70 75 80

Val Leu Ile Trp Ser Gln Leu Phe Gly Gly Met Phe Pro Thr Arg Trp
85 90 95

Leu Asp Phe Ala Gly Val Tyr Ser Ala Leu Arg Ala Leu Lys Gly Arg
100 105 110

Glu Lys Pro Ala Ala Pro Thr Ala Gln Lys Ser Leu Ser Ser Leu Gln
115 120 125

Leu Asp Ser Ser Asp Pro Ser Val Thr Ser Pro Leu Asp Trp Leu Glu
130 135 140

Glu Gly Ile His Trp Gln Tyr Ser Pro Pro Asp Leu Lys Leu Glu Leu
145 150 155 160

Lys Ala Lys Gly Ser Ala Leu Asp Pro Ala Ala Gln Ala Phe Leu Leu
165 170 175

Glu Gln Gln Leu Trp Gly Val Glu Leu Leu Pro Ser Ser Leu Gln Ser
180 185 190

Arg Leu Tyr Ser Asn Arg Glu Leu Gly Ser Ser Pro Ser Gly Pro Leu
195 200 205

Asn Ile Gln Arg Ile Asp Asn Phe Ser Val Val Ser Tyr Leu Leu Asn
210 215 220

Pro Ser Tyr Leu Asp Cys Phe Pro Arg Leu Glu Val Ser Tyr Gln Asn
225 230 235 240

Ser Asp Gly Asn Ser Glu Val Val Gly Phe Gln Thr Leu Thr Pro Glu
245 250 255

Ser Ser Cys Leu Arg Glu Asp His Cys His Pro Gln Pro Leu Ser Ala
260 265 270

Glu Leu Ile Pro Ala Ser Trp Gln Gly Cys Pro Pro Leu Ser Thr Glu
275 280 285

Gly Leu Pro Glu Ile His His Leu Arg Met Lys Arg Leu Glu Phe Leu
290 295 300

Gln Gln Ala Asn Lys Gly Gln Asp Leu Pro Thr Pro Asp Gln Asp Asn
305 310 315 320

Gly Tyr His Ser Leu Glu Glu His Ser Leu Leu Arg Met Asp Pro
325 330 335

Lys His Cys Arg Asp Asn Pro Thr Gln Phe Val Pro Ala Ala Gly Asp
340 345 350

Ile Pro Gly Asn Thr Gln Glu Ser Thr Glu Glu Lys Ile Glu Leu Leu
355 360 365

Thr Thr Glu Val Pro Leu Ala Leu Glu Glu Glu Ser Pro Ser Glu Gly
370 375 380

Cys Pro Ser Ser Glu Ile Pro Met Glu Lys Glu Pro Gly Glu Gly Arg

385	390	395	400
Ile Ser Val Val Asp Tyr Ser Tyr Leu Glu Gly Asp Leu Pro Ile Ser			
	405		415
Ala Arg Pro Ala Cys Ser Asn Lys Leu Ile Asp Tyr Ile Leu Gly Gly			
	420		430
Ala Ser Ser Asp Leu Glu Thr Ser Ser Asp Pro Glu Gly Glu Asp Trp			
	435		445
Asp Glu Glu Ala Glu Asp Asp Gly Phe Asp Ser Asp Ser Ser Leu Ser			
	450		460
Asp Ser Asp Leu Glu Gln Asp Pro Glu Gly Leu His Leu Trp Asn Ser			
	465		480
	470		475
Phe Cys Ser Val Asp Pro Tyr Asn Pro Gln Asn Phe Thr Ala Thr Ile			
	485		495
Gln Thr Ala Ala Arg Ile Val Pro Glu Glu Pro Ser Asp Ser Glu Lys			
	500		510
Asp Leu Ser Gly Lys Ser Asp Leu Glu Asn Ser Ser Gln Ser Gly Ser			
	515		525
Leu Pro Glu Thr Pro Glu His Ser Ser Gly Glu Glu Asp Asp Trp Glu			
	530		540
Ser Ser Ala Asp Glu Ala Glu Ser Leu Lys Leu Trp Asn Ser Phe Cys			
	545		560
	550		555
Asn Ser Asp Asp Pro Tyr Asn Pro Leu Asn Phe Lys Ala Pro Phe Gln			
	565		575
Thr Ser Gly Glu Asn Glu Lys Gly Cys Arg Asp Ser Lys Thr Pro Ser			
	580		590
Glu Ser Ile Val Ala Ile Ser Glu Cys His Thr Leu Leu Ser Cys Lys			
	595		605
Val Gln Leu Leu Gly Ser Gln Glu Ser Glu Cys Pro Asp Ser Val Gln			
	610		620
	615		

Arg Asp Val Leu Ser Gly Gly Arg His Thr His Val Lys Arg Lys Lys
625 630 635 640

Val Thr Phe Leu Glu Glu Val Thr Glu Tyr Tyr Ile Ser Gly Asp Glu
645 650 655

Asp Arg Lys Gly Pro Trp Glu Glu Phe Ala Arg Asp Gly Cys Arg Phe
660 665 670

Gln Lys Arg Ile Gln Glu Thr Glu Asp Ala Ile Gly Tyr Cys Leu Thr
675 680 685

Phe Glu His Arg Glu Arg Met Phe Asn Arg Leu Gln Gly Thr Cys Phe
690 695 700

Lys Gly Leu Asn Val Leu Lys Gln Cys
705 710

<210> 3
<211> 5468
<212> DNA
<213> Mus musculus

<400> 3
cggtcctccg ttcgccttg cagttccgg gtgtgcggct gcccattt tgagcttcgc 60
ttctttgcgc ctcgcctgc cacccagcca cccttccgc ctggcggtt cgccctccg 120
tgcgggccac cggaaacgcc gccgtcgctc ccgtcgccgc cgcgcgaggg agggtcttct 180
ctatggtggc gcgatctcac acggcttagg acgtctccctt ccctagccgg gatggaccta 240
accgcggtag ccaccgttg cgccggcctc tggccgtcc ggtgcagcac tcgttgcgga 300
agccgcccgt ctctggccct cctctgccc cgccggaaatc ggactgcagt acccaactccg 360
tggctggca aggccggagac tgtgttagacc tcggatccag cctgcgctga cgccgctgag 420
ctctgtcctc ctccgtctg agaagccgca aaggaaagga gatggagaca ggaacgcaca 480
ggccccggaa gcggcctggc ctcggctgg gtcctgggtt ccggctgccc ttccctcggc 540
gatcgacgc ctgcttccg gagttccgc cgccttcctc tcgacaaaat cccggaaact 600
ccgctctgcc cgagcgtcgg accaggtact ggaccaaatt gcttctcag ctccctgccc 660
tgctccctag cctattccag aagctgctgc tttggagcca gcttccggg ggcctgattc 720
ctaccagatg gctagattt gccgcaagtt acagcgcct gagagctcg agaggacggg 780

aggaatctga cgctcccacg gtgcagaagt ctctgagttt cactgcggct ggactcttcg 840
cgaagactcg cgtcgtcagt actcttgcat tggctagagg agggactcca gtggcagtgc 900
tcgtcctcag actggaagtt aaactcaagg cccagggaaag agcttagac tctgcagcgc 960
ccactttcct cctggagcag cagctgtggg gagtgagtt gctgccagt agccttcaag 1020
ctggtctagt ctccccaccga gaacttgact cttcatcctc tggcctctg agcgttcaga 1080
gcttaggtaa ttcaaggta gtttcctatc tcctgaaccc ttcttacctg gactaccc 1140
cccagttagg gctgcgtgt cagagcagcg ctggaggtgg ccagtttgtg ggtttccgaa 1200
cactaaccgc agagagctgc tatcttctg aagatggttg tcaccctcag ccgttgcggg 1260
cagagatgtc ggcaaccgc tggagaaggt gtccgcctct ctctacagaa ggcctgccc 1320
aaatccacca cttcgatataa aaacggctag aattcctcca ggctaacaaa gggcaagagt 1380
tacccaccc tgaccaagat aatggctatc atagcctgga ggaggaacat aaccttctcc 1440
ggatggaccc acaacattgc acagataacc cagcacaggg ggtgtccccct gctgcagaca 1500
ggccggagcc cactgagaaa aaaccagaat tggtgattca agaagttca cagagcccc 1560
agggaaagcag tctgtttgtt gaattacccg tggaaaaaga atgtgaagag gaccacacta 1620
atgcaactga cctctcagat agaggagaga gccttcgtt ttctaccaga ccagttgtta 1680
gcaacaaact gatagattat attttggag gcgcggccag tgacttgaa gccagctctg 1740
attctgaaag tgaggattgg ggcgaggaac ctgaggacga tggctttgat agcgatggct 1800
ccctgtctga atcagacgtg gaacaggact cggaaggcct tcacccctgg aactcttcc 1860
acagtgtaga tccttacaaa ccccaaact ttacagccac gattcagacg gctgccagaa 1920
ttggcccccag agacccatca gattcaggga catcctggc tggcagctgt ggtgtaggga 1980
gctgtcagga gggacccctt ccggagaccc ccgaccatag ttccggggag gaagatgact 2040
gggaaccgag tgcagatgaa gcagagaatc taaaattgtg gaactcttc tgtcattctg 2100
aggaccccta caacctttta aatttttaagg ctcccttca accgtcaggg aagaatttgg 2160
aaggccgtca ggactcaaag gcctcttcg aggtcacagt ggcctctct ggccatcata 2220
ccttactttc ttgttaaggcc cagctgttag agagccaaga agataattgt ccaggctgtg 2280
ggctgggtga ggctcttgct ggagaaagat acacccatat caagagaaaa aaggtAACCT 2340
tcctggaaaga agttactgag tattatataa gtggtgatga ggatcgaaa ggaccatggg 2400
aagaatttgc aaggatgga tgcaggttcc agaaacgaat tcaagaaaca gaagttgcc 2460

ttggctactg cttggcctt gaggcacagag aaaaaatgtt taatagactg aggatcgagt 2520
caaaggactt actgttgtac agcaatgtta agaagtgaac agcctgcaac ccgtgcccac 2580
tctgtctctt acttgagagt ttcccttaaa aacaaacact ggcagctgtc cttggacatg 2640
tttttaaaga aacaacttgt atcttagagat gcagttgtat tattttggg taatgtgtct 2700
cattagaaaac accaactccg ataatgaaga atctcttatac tctaattcctc tctttccta 2760
tttagttgga tgtggggttt gtcttttga gagggtctca ctgcataatt ctgtttggcc 2820
taggtctatg tatgttagacc aggttggcct tgaagtgggt atttccttgc ctctgtttcc 2880
tgtgccacca tgcccagctg gaagtgttt taaatatcct ctgcttacct ggggtgagag 2940
ttaattttg cactttcaaa acgtttcttc tggaggcagg ggctggtctg gtttacatac 3000
aggcttcagg ccagctaggg ctatgtggtg agacctagtc ttagaggaca aacagaacaa 3060
aacagtcagg ttactgtgga aactgaggca ggaggatagg aaggtccagg tatgcctgga 3120
actcagtgaa ctctgaactc aaggccagca tggggagttt agcaagacct ttttacactc 3180
agaatggaaa aggaagctgg ggatatacgat cggtacgaga ggccccctgca tacatgtgca 3240
aggtcctggg ttcagtcggc agtactgcaaa atagaaagaa aaaacattgt cttggataac 3300
tataagggtt aagcctcata gtcagttcta actcaaatta tgcattgcatt gagttcttgc 3360
gtgcttttc tgttctaaaa ttaatggct ttatgggtt tgttttgtt tgttttatg 3420
tctgttatat tttgaggttag gggattgagg cagggtctca ctgtggcctt gagctcatgg 3480
cagtttccct gcttcaactg agtgtttgg tttgttgc tttgtgttt tttacttca 3540
tagatttgac ttaatgaagg caaaaacctg ttatcaacccctt aaaagacatt gatgtgtcac 3600
ttcagtggtg gatttctcc ctctttttt tttccccca gagctgagga ccaaaccctg 3660
ggcttgcac ttgcctaggca agcgctctac cactgagctt aatccccaaa ccacccccc 3720
ccctttctt ttttaaaga catggtcttataatgtctt gctggcctt aactcattac 3780
ttagccaagg atggcttga aagatcctcc tgccttgc tttggcttgc acatggcatg 3840
tgccatacat ccagattttt ctctgtatct aggtctttt aagatatttc caaggactgc 3900
ccacaaatcc acagtgcagt actttcttga ctgggaaagc ggggttggtg tgctttcaa 3960
aggcacacac cattatgccc agctggtctg ccaaacttacatattgggtt ttctgtgca 4020
actgtccatt tggaaagggtt ctgtgtgtt tagttcagt tgaatgtggc tctctgttagc 4080
tttcaagaat gggtagaaat cataaaggcac tcattaaatcatttgcatt gtagacattt 4140
tttttttttta actagggggtt atttgggaga catgtcagat attcactttt gtttatgtg 4200

tcttaaaaacc agtgttactt acaccctgcc tcagcactgg cactttcaa acctgtcttg	4260
gagacactgt aaacttggat ggtgcaggcc tgggtttca tgtgtaaaat gtcaactaca	4320
aaggtaata tccaggtttgc ttgtgttcta ccttatgttag agagaagcaa agcagaaagg	4380
gcagatagag cagccagaaa gtgctagtgt cccccccaaa gcgtgcttct agatagtgtg	4440
tggatcaggt gtgcttggtt tgttcagttt gcgtcacctg ttgtgcattgg ttgaggtaat	4500
tggttaccag ttcttagtg gttacatgca caaaagagag gacctctgag tcgggtgtgg	4560
gatgagctt ccagacctgg cagggtaaac tacctcagtt tataatctcc ctggattttt	4620
ccgtttgatg tgcataagg tctgcctcag tggtgatgtat gttcatccac acacaagggtt	4680
agtaagagtg cacgaccaga aacgttggtc ttatTTTGA gaaccccat ttctgtgtat	4740
tttatgcacc tgccttagt gaactccaga gtgcattaaa gagttcggtt tagtgcctg	4800
ggaatggct agtttagaag ctatgtttgg aaagcaggca agttgacttt aggaagaaaa	4860
gctgtgacag tgcgttagaca ttctttttaa accggactgc agcttaacaa cacttgattt	4920
cagatgatta ggTTTTGTT tctgagaccc agcacctgta tattttaaaa ttgttccaga	4980
ttcacaccc actatcaaattt gagtaaatga ctcatgcctg cagacatgtc ctgtatgggg	5040
caagaacaga aggtcttgc actgaaggag aaaaactgtc attgtcatcc cagcccccaag	5100
gaaagaacac ctccaaggca ggcaggcagg caggcaggca tggtggttct agttgaatac	5160
acattcaagt ctgcagggtt tgcttagat ctgtgttagca tgtgaggctc tgtacagggt	5220
ggggccacac ttctgagggc tgaaatgtgg caaccctta tctaacttga aatcaaaaacc	5280
gtcaaattttt atttttata atttaagaaa gagttggggatgcatttt ttgagttggc	5340
cttttcagct cagtcattttt acgtgtacg tggagatggatgcattttt ttatatttgc	5400
atataattat taactaatct gtaaatttgcataaaatataat ttgcaattat taaaaaaaaaa	5460
aaaaaaaaaa	5468

<210> 4
<211> 698
<212> PRT
<213> *Mus musculus*

<400> 4

Met Glu Thr Gly Thr His Arg Ala Arg Lys Arg Pro Gly Pro Arg Leu
1 5 10 15

Gly Ser Trp Phe Arg Leu Pro Phe Leu Arg Arg Ser His Ala Cys Ser
20 25 30

Ser Glu Phe Pro Pro Pro Ser Ser Arg Gln Asn Pro Gly Asn Ser Ala
35 40 45

Leu Pro Glu Arg Arg Thr Arg Tyr Trp Thr Lys Leu Leu Ser Gln Leu
50 55 60

Leu Ala Leu Leu Pro Ser Leu Phe Gln Lys Leu Leu Leu Trp Ser Gln
65 70 75 80

Leu Ser Gly Gly Leu Ile Pro Thr Arg Trp Leu Asp Phe Ala Ala Ser
85 90 95

Tyr Ser Ala Leu Arg Ala Ser Arg Gly Arg Glu Glu Ser Asp Ala Pro
100 105 110

Thr Val Gln Lys Ser Leu Ser Tyr Thr Ala Ala Gly Leu Phe Ala Lys
115 120 125

Thr Arg Val Val Ser Thr Leu Ala Leu Ala Arg Gly Gly Thr Pro Val
130 135 140

Ala Val Leu Val Leu Arg Leu Glu Val Lys Leu Lys Ala Gln Glu Arg
145 150 155 160

Ala Leu Asp Ser Ala Ala Pro Thr Phe Leu Leu Glu Gln Gln Leu Trp
165 170 175

Gly Val Glu Leu Leu Pro Ser Ser Leu Gln Ala Gly Leu Val Ser His
180 185 190

Arg Glu Leu Asp Ser Ser Ser Gly Pro Leu Ser Val Gln Ser Leu
195 200 205

Gly Asn Phe Lys Val Val Ser Tyr Leu Leu Asn Pro Ser Tyr Leu Asp
210 215 220

Tyr Leu Pro Gln Leu Gly Leu Arg Cys Gln Ser Ser Ala Gly Gly Gly
225 230 235 240

Gln Phe Val Gly Phe Arg Thr Leu Thr Pro Glu Ser Cys Tyr Leu Ser

245 250 255

Glu Asp Gly Cys His Pro Gln Pro Leu Arg Ala Glu Met Ser Ala Thr
260 265 270

Ala Trp Arg Arg Cys Pro Pro Leu Ser Thr Glu Gly Leu Pro Glu Ile
275 280 285

His His Arg Arg Met Arg Trp Leu Val Phe Leu Gln Pro Asn Gln Gly
290 295 300

Gln Asp Leu Pro Thr Leu Asp Gln Asp Asn Gly Tyr His Ser Leu Glu
305 310 315 320

Glu Glu His Asn Leu Leu Arg Met Asp Pro Gln His Cys Thr Asp Asn
325 330 335

Pro Ala Gln Ala Val Ser Pro Ala Ala Asp Arg Pro Glu Pro Thr Glu
340 345 350

Lys Lys Pro Glu Leu Val Ile Gln Glu Val Ser Gln Ser Pro Gln Gly
355 360 365

Ser Ser Leu Phe Cys Glu Leu Pro Val Glu Lys Glu Cys Glu Glu Asp
370 375 380

His Thr Asn Ala Thr Asp Leu Ser Asp Arg Gly Glu Ser Leu Pro Val
385 390 395 400

Ser Thr Arg Pro Val Cys Ser Asn Lys Leu Ile Asp Tyr Ile Leu Gly
405 410 415

Gly Ala Pro Ser Asp Leu Glu Ala Ser Ser Asp Ser Glu Ser Glu Asp
420 425 430

Trp Gly Glu Glu Pro Glu Asp Asp Gly Phe Asp Ser Asp Gly Ser Leu
435 440 445

Ser Glu Ser Asp Val Glu Gln Asp Ser Glu Gly Leu His Leu Trp Asn
450 455 460

Ser Phe His Ser Val Asp Pro Tyr Lys Pro Gln Asn Phe Thr Ala Thr
465 470 475 480

Ile Gln Thr Ala Ala Arg Ile Ala Pro Arg Asp Pro Ser Asp Ser Gly
485 490 495

Thr Ser Trp Ser Gly Ser Cys Gly Val Gly Ser Cys Gln Glu Gly Pro
500 505 510

Leu Pro Glu Thr Pro Asp His Ser Ser Gly Glu Glu Asp Asp Trp Glu
515 520 525

Pro Ser Ala Asp Glu Ala Glu Asn Leu Lys Leu Trp Asn Ser Phe Cys
530 535 540

His Ser Glu Asp Pro Tyr Asn Leu Leu Asn Phe Lys Ala Pro Phe Gln
545 550 555 560

Pro Ser Gly Lys Asn Trp Lys Gly Arg Gln Asp Ser Lys Ala Ser Ser
565 570 575

Glu Val Thr Val Ala Phe Ser Gly His His Thr Leu Leu Ser Cys Lys
580 585 590

Ala Gln Leu Leu Glu Ser Gln Glu Asp Asn Cys Pro Gly Cys Gly Leu
595 600 605

Gly Glu Ala Leu Ala Gly Glu Arg Tyr Thr His Ile Lys Arg Lys Lys
610 615 620

Val Thr Phe Leu Glu Glu Val Thr Glu Tyr Tyr Ile Ser Gly Asp Glu
625 630 635 640

Asp Arg Lys Gly Pro Trp Glu Glu Phe Ala Arg Asp Gly Cys Arg Phe
645 650 655

Gln Lys Arg Ile Gln Glu Thr Glu Val Ala Ile Gly Tyr Cys Leu Ala
660 665 670

Phe Glu His Arg Glu Lys Met Phe Asn Arg Leu Arg Ile Glu Ser Lys
675 680 685

Asp Leu Leu Leu Tyr Ser Asn Val Lys Lys
690 695

<210> 5
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 5
gatccatgga tggatggcca g 21

<210> 6
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 6
gcatgcttg catacttctg cctg 24

<210> 7
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer G34L.Hind5S

<400> 7
tgcccaagct tcggcgatcg cacgcctgct c 31

<210> 8
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer G34L.Xho6AS

<400> 8
gaaactctcg agtaagagac agagtggca cg 32

<210> 9
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide

<400> 9
gggaugggaug cagguuccat t

21

<210> 10
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide

<400> 10
uggaaccugc auccauccct t

21