Correction S1 PA GEPNC

Exercice 1 : géométrie du plan

Soient $\overrightarrow{u_1}$, $\overrightarrow{u_2}$, $\overrightarrow{u_3}$ et \overrightarrow{v} quatre vecteurs du plan dont les coordonnées dans le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ sont : $\overrightarrow{u_1} = (1, -2), \ \overrightarrow{u_2} = (-2, 1), \ \overrightarrow{u_3} = (-3, 6)$ et $\overrightarrow{v} = (3 - 3)$.

- 1. Dessiner les vecteurs $\overrightarrow{u_1}$, $\overrightarrow{u_2}$, $\overrightarrow{u_3}$ et \overrightarrow{v} sur le plan quadrillé ci-dessus.
- 2. (a) $(O; \overrightarrow{u_1}, \overrightarrow{u_2})$ est-il un repère du plan? Justifier.

Oui car les deux vecteurs $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ ne sont pas colinéaires.

(b) Si oui, déterminer graphiquement deux réels a et b tels quel $\vec{v} = a\vec{u_1} + b\vec{u_2}$. (Les marques de construction doivent apparaître clairement sur le plan.)

Dans ce cas, indiquer ci-dessous votre résultat :

On trouve 1 et -1: $\overrightarrow{v} = \overrightarrow{v_1} + \overrightarrow{v_2} = -\overrightarrow{u_2} + \overrightarrow{u_1}$.

(c) Mêmes questions avec $\overrightarrow{u_1}$ et $\overrightarrow{u_3}$.

 $\overrightarrow{u_3} = -3\overrightarrow{u_1}$. Ces deux vecteurs sont donc colinéaires. Ils ne peuvent pas former un repère du plan.

3. Construire le vecteur $\vec{w} = -\vec{u_1} + 2\vec{u_2}$. (Les marques de construction doivent apparaître clairement sur le plan.) Quelles sont ses coordonnées dans le repère $(O; \vec{\imath}, \vec{\jmath})$?

Graphiquement, on trouve $\vec{w} = (-5, 4)$.

Exercice 2 : droites dans le plan

 $1.\ \ \textit{D\'eterminer un point et un vecteur directeur de la droite}\ D_1\ \ et\ \ \textit{compl\'eter sa}\ \ \textit{d\'efinition en utilisant ces \'el\'ements}.$

$$A_1(0,1)$$
 et $\overrightarrow{u_1} = (2,-1)$ et $D_1 = \left\{ M \in \mathbb{R}^2, \exists \alpha \in \mathbb{R} \ \overrightarrow{A_1 M} = \alpha \overrightarrow{u_1} \right\}$

 $2.\ \ \textit{Déterminer deux points de la droite}\ D_2\ et\ \textit{compléter sa définition en utilisant ces points}.$

$$A_2(2,0)$$
 $B_2(2,2)$ $D_2 = \left\{ M \in \mathbb{R}^2, \exists \alpha \in \mathbb{R}, \overrightarrow{A_2M} = \alpha \overrightarrow{A_2B_2} \right\}$

3. Déterminer une équation de la droite D_3 ainsi qu'un vecteur directeur.

La droite passe par l'origine donc son équation est de la forme y = ax. Elle passe par A(1,3). D'où $3 = a \times 1$. L'équation est donc y = 3x. Un vecteur directeur est par exemple $\vec{u} = (1,3)$.

4. Dessiner la droite D_4 d'équation x + 2y + 2 = 0 dans le plan ci-dessous.

5. Déterminer un vecteur directeur de D₄. De laquelle des autres droites, D₄ est-elle parallèle? Justifier par une propriété

Un vecteur directeur de D4 est $\vec{u} = (-2, 1)$. Ce vecteur est colinéaire au vecteur $\vec{u}_1 = (2, -1)$. Les droites D1 et D4 sont donc parallèles.

Exercice 3: nombres complexes 1

Soient $z_1 = 5 - 3i$, $z_2 = 2i + 3$, $z_3 = 1 + i$, $z_4 = 10 - 5i$ et $z_5 = 3 - 4i$

1. Écrire les deux nombres complexes $Z_1=iz_1+\overline{z_2}z_3$ et $Z_2=\frac{\overline{z_4}}{z_2}$ sous forme algébrique.

On a

•
$$Z_1 = i(5-3i) + (-2i+3)(1+i) = 5i+3-2i+2+3+3i = 8+6i$$
.

•
$$Z_2 = \frac{10+5i}{3-4i} = \frac{(10+5i)(3+4i)}{3^2+4^2} = \frac{30+40i+15i-20}{25} = \frac{10+55i}{25} = \frac{2}{5} + \frac{11}{5}i.$$

2. Déterminer le module de z_4 et z_5 . En déduire celui de Z_2 .

$$|z_4| = \sqrt{10^2 + (-5)^2} = \sqrt{125} = 5\sqrt{5} \text{ et } |z_5| = \sqrt{3^2 + (-4)^2} = \sqrt{25} = 5. \text{ Ainsi}, |Z_2| = \frac{|\overline{z_4}|}{|z_5|} = \frac{|z_4|}{|z_5|} = \sqrt{5}.$$

Exercice 4: nombres complexes 2

1. Écrire sous forme exponentielle les complexes suivants :

$$z_1 = \sqrt{3} - i$$
, $z_2 = 2 + 2i$, $z_3 = \frac{\sqrt{3} - i}{2 + 2i}$ et $z_4 = (\sqrt{3} - i)^5$

•
$$|z_1| = 2$$
. Ainsi, $z_1 = 2\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right) = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right) = 2e^{-i\frac{\pi}{6}}$.

• De même
$$|z_2|=2\sqrt{2}$$
. D'où, $z_2=2\sqrt{2}\left(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}\right)=2\sqrt{2}e^{i\frac{\pi}{4}}$.

• On en déduit que
$$z_3 = \frac{2e^{-i\frac{\pi}{6}}}{2\sqrt{2}e^{i\frac{\pi}{4}}} = \frac{1}{\sqrt{2}}e^{i\left(-\frac{\pi}{6} - \frac{\pi}{4}\right)} = \frac{1}{\sqrt{2}}e^{-i\frac{5\pi}{12}}.$$

•
$$z_4 = (z_1)^5 = (2e^{-i\frac{\pi}{6}})^5 = 32e^{-i\frac{5\pi}{6}}$$
.

2. Déterminer un argument de
$$z = \frac{-3i}{e^{i\frac{\pi}{4}}}$$
.

On a
$$z=\frac{3e^{-i\frac{\pi}{2}}}{e^{i\frac{\pi}{4}}}=3e^{-i\frac{3\pi}{4}}.$$
 Un argument de z est donc $\frac{3\pi}{4}.$

Exercice 5 : résolution d'équation du second degré

Résoudre dans \mathbb{C} , l'équation $z^2 - 3z + 3 = 0$.

$$\Delta = 9 - 4 \times 3 = -3$$
. Donc $S = \left\{ \frac{3 + i\sqrt{3}}{2}; \frac{3 - i\sqrt{3}}{2} \right\}$.