InT컴퓨팅 주간고사 대우 Cheat Shee

1주차. IoT 컴퓨팅 개요 #4차 산업혁명

1차 산업혁명	Late 18C	증기기관	증기기관으로 기계화
2차 산업혁명	Late 19C	전기	전기로 대량 생산
3차 산업혁명	Late 20C	컴퓨터	정보화, 자동화 시스템
4차 산업혁명	in 2000s	정보통신기술	인공지능, 가상현실, IoT

- IoT: 사물을 인터넷에 연결 ⇒ 부가가치 형성 ⇒ 사용자에 제공
- 유비쿼터스: 어디서나 존재하는
- #사물인터넷의 3가지 핵심 요소
- 1. 센서 및 액추에이터
- 센싱 기술 센서 이용… 정보 획득
- 2. 연결 네트워크
- 네트워킹 기술 분산된 요소를 네트워크로 연결
- 3. 서비스 인터페이스
- 서비스 인터페이스 기술 구성 요소를 응용 서비스와 연동
- # 주요 기술
- 센서 디바이스: 통신 가능, 센서로 주변 상황 인지
- ▶ 경량 소프트웨어 포함
- ▶ 프로세서, 통신 모듈, 센서 모듈, 구동기 모듈, Open API
- 네트워크 인프라: 기존 유무선 통신(CDMA, WiFi, 5G) + 근거리 무선통신 기술(NFC, BLE)
- ▶ 저비용/저전력, 넓은 통신 커버리지, QoS/QoE 보장
- ▶ 사물 정보 수집 / 저장
- 센서 데이터 수집: 대용량, 다양한 형식
- 실시간 데이터: 메모리 기반 관리
- 배치 처리용: DB 기반 관리
- 대규모: 클라우드 인프라 기반, 빅 데이터 기술
- 사물 정보 검색 / 시각화
- 수집/축적된 데이터 분석 ⇒ 서비스에 제공
- 실시간/배치 분석
- 필터링, 통계, 데이터 마이닝 등의 분석 기법

인터넷 패러다임

- 초연결성: 사람-사물 간 연결 + 사물-사물 간 연결
- 초지능성
- # 인공지능
- 강인공지능: 사람처럼 생각하는 기계
- 튜링 테스트
- 인공지능 ⊂ 머신러닝 ⊂ 딥러닝
- 머신러닝: 경험적 데이터로 컴퓨터 스스로 새로운 지식/능력 개발
- 지도학습 / 비지도학습 / 강화학습
- ▶ 딥러닝: 연속된 Layer에서 점진적으로 학습
- CNN: 필터를 사용하여 특징값 자동 추출;
- 각 층의 특징 사람이 설계 않음; 정적 데이터에 적합
- RNN: 시계열 데이터 등 동적 데이터에 적합

3-4주차. .ino 문법

- C++의 방언
- 상수
- ▶ HIGH 입력: 3V+/출력: 5V
- ▶ LOW 입력: 1.5V- / 출력: 0V
- ▶ INPUT high-impedance 상태
- ▶ OUTPUT low-impedance 상태
- 한수
- pinMode(pin, mode)
- ▶ Digital I/O
- digitalWrite(pin, value)
- digitalRead(pin)
- ▶ Analog I/O
- analogRead(u8 pin)
- analogWrite(u8 pin, i32 value), · Advanced I/O
- 구형파 출력
- tone(u8 pin, u32 frequency, u64 duration=0)
- noTone(u8 pin)
- 비트 단위 I/O
- shiftOut(u8 dataPin, u8 clockPin, u8 bitOrder, u8 value)
- u8 shiftIn(u8 dataPin, u8 clockPin, u8 bitOrder)

- 펄스 I/O
- u64 pulseIn(u8 pin, u8 value, u64 timeout=1'000'000)
- mills() / micros() / delay(ms) / delayMicroseconds(micros)
- 수학
- constrain(x, a, b) [a, b] 값 보장 (초과 시 절삭)
- ▶ 랜덤
- randomSeed(u32 seed) / random(i64 min, i64 max) [min, max) ·비트
- lowByte(x) (x & 0xff)
- highByte(x) ((x << 8) & 0xff)
- bitRead(value, bit)
- bitWrite(value, bit, w)
- bitSet(value, bit) (value | (1 << bit))</pre>
- bitClear(value, bit) (value & (0 << bit))</pre>
- bit(bit) (1 << bit)</pre>
- ▶ 인터럽트
- attachInterrupt(pin, ISR, mode)
- mode {LOW, HIGH, CHANGE, RISING, FALLING}
- detachInterrupt(pin)
- interrupts() / noInterrupts() 인터럽트 허용/금지
- Serial
- bool find(char *target) target 문자열을 시리얼 버퍼에서 찾음(+대기) (timeout: false)
- flush()
- parseFloat() / parseInt() 시리얼버퍼에서 파싱
- peek() 버퍼의 첫 바이트 데이터 (empty ⇒ -1)
- read() 버퍼의 첫 번째 문자
- readBvtes(*buf. length)
- readBytesUntil(character, buf, length) readBytes Or character 입력 시

5-6주차, 아날로그와 디지털 신호

AD Converting

- 표본화, 양자화, 부호화 과정을 거쳐 아날로그 ⇒ 디지털
- ▶ 표본화: Time Slice (∝ Hz)
- 양자화: 데이터 타입에 맞게 값 근사
- 분해능(resolution): N비트 AD변환기의 분해능 = $\frac{1}{2n} \times 100\%$
- i.e. 10V 전압범위를 16비트로 표현: 최소 0.00015V 표현 가능
- 양자화 잡음:계단형으로 근사하면서 생기는 오차
- SNR = 6n + 1.8dB (1비트 커질 때 약 6dB 향상)
- 부호화: 전송/처리에 적합하게 부호화

아날로그 데이터 입출력

- 아날로그 출력
- PWM: Pulse Width Modulation ⇒ 0..255(256개 값 출력 가능)

