Regressão Logística

ACH2036 – Métodos Quantitativos Aplicados à Adm. de Empresas I Prof. Regis Rossi A. Faria 2º sem. 2020

Créditos: Profa. Ana Amélia Benedito Silva (conteúdo parcial de slides)

Programa

- Introdução (histórico, aplicabilidade)
- Modelo (equações usadas, propriedades)
- Exemplo
- Características (vantagens, suposições requeridas)

 Regressão logística é um método usado para prever a probabilidade de ocorrência de valores de variáveis dependentes binárias (categóricas ou não-métricas) a partir de variáveis independentes (métricas e nãométricas)

- Regressão logística é um método usado para prever a probabilidade de ocorrência de valores de variáveis dependentes binárias (categóricas ou não-métricas) a partir de variáveis independentes (métricas e nãométricas)
- A variável dependente Y assume 2 valores somente, mas o que fazemos é representar graficamente a probabilidade de ocorrência P(Y) contra os valores das variáveis independentes X por meio de uma curva em S (nãolinear), em que P(Y) está restrita a um domínio entre 0 e 1

 O modelo que relaciona as variáveis independentes x1, x2, ... com a variável dependente y (que se quer prever) parte de um modelo de regressão linear mas que se relaciona com uma quantidade nomeada logit = logaritmo (natural) de uma razão de chances (também chamada de razão de desigualdades)

razão de chances
$$\ln\left(\frac{Y}{1-Y}\right) = b_0 + b_1 X_1 + b_2 X_2 + \cdots$$

 O modelo que relaciona as variáveis independentes x1, x2, ... com a variável dependente y (que se quer prever) parte de um modelo de regressão linear mas que se relaciona com uma quantidade nomeada logit = logaritmo (natural) de uma razão de chances (também chamada de razão de desigualdades)

$$\ln\left(\frac{Y}{1-Y}\right) = b_0 + b_1 X_1 + b_2 X_2 + \cdots$$
medida independente

logit, onde Y é a probabilidade de ocorrer o evento binário

medida dependente

Transformação da variável dependente

- A regressão logística deriva seu nome do uso da transformação logit usada sobre a variável dependente Y
- A equação

$$logit(Y) = ln(\frac{Y}{1-Y}) = b_0 + b_1 X_1 + b_2 X_2 + \cdots$$

agora com Y = P(evento) pode ser reescrita equivalentemente como

$$\frac{Prob(evento)}{1-Prob(evento)} = e^{b_0 + b_1 X_1 + b_2 X_2 + \cdots}$$
razão de chances

P(Y) e logit

Valores comparados

- Probabilidades variam de 0 a 1
- Razão de chances varia de 0 a +∞ (NC) (crescente)
- logit varia numa faixa entre -∞ (NC) e +∞ (NC), passando por 0 quando p=0,5 e a razão de chances = 1,0

Probabilidade	Razão de desigualdades	Logaritmo (Logit)		
0,00	0,00	NC		
0,10	0,111	-2,197		
0,30	0,428	-0,847		
0,50	1,000	0,000		
0,70	2,333	0,847		
0,90	9,000	2,197		
1,00	NC	NC		
NC = Não pode ser calculado				

Faixas dos valores

Parte operacional

- O trabalho com a regressão logística, semelhante com outras técnicas, envolve
 - ✓ estimar os coeficientes logísticos b
 - ✓ estimar a variável estatística Y
 - √ avaliar a adequação do modelo (o ajuste do modelo)
 - √ interpretar os resultados (coeficientes)
- ✓ Estimando a pertinência a um grupo: Para cada observação com valores *X*, a técnica prevê uma probabilidade 0<*Y*<1, usando os coeficientes *b* estimados
 - \checkmark Se Y>0,5 \rightarrow Y=1
 - ✓ Se Y≤0,5 → Y=0

Regressão Logística

Modelos de regressão não linear são usados, em geral, em duas situações: casos em que as variáveis respostas são qualitativas e os erros não são normalmente distribuídos.

O modelo de regressão não linear logístico binário é utilizado quando a variável resposta é qualitativa com dois resultados possíveis, por exemplo, sobrepeso de crianças (tem sobrepeso ou não tem sobrepeso). Esta variável terá assumida uma distribuição binomial.

Este modelo pode ser estendido quando a variável resposta qualitativa tem mais do que duas categorias; por exemplo, a pressão sanguínea pode ser classificada como alta, normal e baixa.

Modelos de regressão com variáveis respostas binárias

Em muitos estudos a variável resposta tem duas possibilidades e, assim, pode ser representada pela variável indicadora, recebendo os valores 0 (zero) e 1 (um).

Exemplos:

1) O objetivo da análise é verificar a proporção de óbitos neonatais com função da mãe ter diabetes *mellitus* tipo 1. A variável resposta tem duas possibilidades: a criança morreu ou não. Estes resultados podem ser codificados como 1 e 0 (de acordo com o interesse).

Modelos de regressão com variáveis respostas binárias

Em muitos estudos a variável resposta tem duas possibilidades e, assim, pode ser representada pela variável indicadora, recebendo os valores 0 (zero) e 1 (um).

Exemplos:

2) Num estudo sobre a participação das esposas no mercado de trabalho, como função da idade da esposa, número de filhos e rendimento do marido, a variável resposta *Y* foi definida do seguinte modo: a mulher participa no mercado de trabalho ou não. Novamente, estas respostas podem ser codificadas como 1 e 0, respectivamente.

Exemplo:

Bebês, ao nascer, abaixo de 1750 gramas estão confinados em uma UTI neonatal. Em uma amostra de 223 bebês, 76 apresentaram diagnóstico com displasia broncopulmonar (BPD).

A probabilidade de uma criança, nessas condições ter BPD é

$$\pi = \frac{76}{223} = 0,341$$

Análise gráfica:

Modelo Geral

Conceitos

Modelo de Regressão Múltipla

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p + \varepsilon$$

Objetivo: Estimar o valor médio da resposta, considerando algumas variáveis explicativas

$$E(Y_i) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p$$

Interpretação da função de resposta quando a variável resposta é binária

Vamos considerar o modelo de regressão linear simples:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \varepsilon_{i}$$

$$Y_{i} = \begin{cases} 1 \\ 0 \end{cases}$$

A resposta esperada é dada por:

$$E(Y_i) = \beta_0 + \beta_1 X_i$$

MODELO GERAL

$$E(Y_i) = \beta_0 + \beta_1 X_i$$

FUNÇÃO LOGÍSTICA

Modelo inicial:

$$p = \beta_0 + \beta_1 x$$

sendo \mathbf{x} o peso ao nascer. Para que $0 < \mathbf{p} < 1$, então o modelo é dado por

$$p = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

MODELO GERAL

$$\mathsf{E}(\mathsf{Y}_\mathsf{i}) = \beta_\mathsf{0} + \beta_\mathsf{1} \mathsf{X}_\mathsf{i}$$

FUNÇÃO LOGÍSTICA

Modelo inicial:

$$p = \beta_0 + \beta_1 x$$

sendo \mathbf{x} o peso ao nascer. Para que $0 < \mathbf{p} < 1$, então o modelo é dado por

$$p = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$
 nova variável (transformada)

$$\hat{p} = \frac{e^{3,9912-0,0043 \, x}}{1 + e^{3,9912-0,0043 \, x}}$$

Para encontrar a probabilidade de que uma criança que pesa 750 gramas no nascimento desenvolva BPD, substitui-se o valor x=750 na função.

$$\hat{p} = \frac{e^{3,9912 - 0,0043\,(750)}}{1 + e^{3,9912 - 0,0043\,(750)}} = 0,6827$$

DADOS CATEGORIZADOS

Fator: o peso de nascimento do bebê (0 |-- 950, 950 |-- 1350, 1350 |-- 1750)

Variável resposta: o bebê está ou não está doente

Peso ao nascer (gramas)	Tamanho da amostra	Quantidade com BPD	р
0 950	68	49	0,721
950 1350	80	18	0,225
1350 1750	75	9	0,120
	223	76	0,341

Modelo para o conjunto de dados

$$p = \frac{e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2}}{1 + e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2}}$$

$$p = \frac{e^{-1,992+2,940X_1+0,756X_2}}{1+e^{-1,992+2,940X_1+0,756X_2}}$$

X₁ representa o peso de 0 a 950 gramas e X₂ o peso de 950 a 1350 gramas

Através desta função posso afirmar que o peso está relacionado com a presença de BPD?

Regressão logística

$$p = \frac{e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2}}{1 + e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2}}$$

Interpretamos

eb1,..., ebk

como uma razão de chances

(odds ratio)

Regressão logística

$$p = \frac{e^{-1,992+2,940X_1+0,756X_2}}{1+e^{-1,992+2,940X_1+0,756X_2}}$$

X₁ representa o peso de 0 a 950 gramas e X₂ o peso de 950 a 1350 gramas

Se:

e^{b1}=1, então a chance de x1 apresentar y=1 é a mesma que x3 e^{b1}>1, então a chance de x1 apresentar y=1 é maior que x3 e^{b1}<1, então a chance de x1 apresentar y=1 é menor que x3

Analisando a relação entre duas variáveis

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step	PESO			53.748	2	.000	
1	PESO(1)	2.940	.446	43.364	1	.000	18.912
	PESO(2)	.756	.445	2.885	1	.089	2.129
	Constant	-1.992	.355	31.441	1	.000	.136

a. Variable(s) entered on step 1: PESO.

O que significa a primeira linha da tabela, referente a PESO ?

Qual a interpretação da significância de PESO (1) e PESO (2) ?

Analisando a razão de chances (OR)

	95,0% C.I.for EXP(B)		
Exp(B)	Lower	Upper	
18,912	7,884	45,368	
2,129	,890	5,092	
,136			

Interpretação: A chance de uma criança com peso entre 0 e 950 gramas ter a presença da BPD é 18,9 vezes maior do que uma criança com peso entre 1350 e 1750 gramas

Veja no youtube:

https://www.youtube.com/watch?v=ou1Q90sUbNA&t=19s

Medidas de avaliação do modelo

 Na regressão linear usamos a estatística F e o coeficiente de determinação R² para testar a significância e poder explicativo do modelo, mas em regressão logística o método de estimação dos coeficientes é o da máxima verossimilhança (e não dos mínimos quadrados, que produz R²) portanto precisamos de outras medidas para avaliar o modelo

Medidas usadas:

- Log Likelihood value
- R-quadrado do modelo logístico
- Teste Cox-Snell R²

Testes usados:

- Hosmer e Lemeshow
- Teste Wald

Medidas de avaliação do modelo

- Log Likelihood value (valor de verossimilhança)
 - Papel parecido com o da estatística F
 - Notação: -2LL (logaritmo natural do likelihood value *-2
 - Nível ideal: 0 (ajuste perfeito)
 - Serve para verificar se o modelo melhora com a inclusão/exclusão de alguma variável independente
- R-quadrado do modelo logístico
 - pseudo-R²
 - R²logit pode calculado da seguinte forma: $R^2_{\text{LOGIT}} = \frac{-2LL_{\text{nulo}} (-2LL_{\text{modelo}})}{-2LL_{\text{nulo}}}$
 - que expressa a variação percentual entre
 o LLvalue nulo (considerando apenas a constante)
 e o LLvalue do modelo (incorporando as variáveis explicativas)
 - Para -2LLmodelo = 0, teremos que o ajuste do modelo será perfeito

Medidas de avaliação do modelo

Testes usados:

- Hosmer e Lemeshow: é um teste qui-quadrado que consiste em dividir o número de observações em 10 classes, e então comparar as frequências preditas com as observadas → checa se há diferenças significativas entre as classificações do modelo e a realidade (observada)
- Teste Wald: afere o grau de significância de cada coeficiente da equação logística (inclusive a constante) → checa se cada parâmetro estimado é significativamente diferente de 0 (papel semelhante ao de um teste t, ao testar a hipótese de que um determinado coeficiente é nulo)
 - Estatística Wald: distribuição qui-quadrado
 - Wald = $(b/SE)^2$

Resumo das características do método

- Os valores de Y estão restritos entre 0 e 1 (não saem deste domínio, como qualquer valor de probabilidade)
- Equivalente a uma análise discriminante com dois grupos
- A variável resposta tem distribuição de probabilidade binomial
- Admite, simultaneamente, variáveis independentes métricas e não-métricas
- Menos restritiva quanto a suposições iniciais impostas aos dados: não requer normalidade nem variância constante (homoscedasticidade). No entanto requer que o valor esperado do erro seja 0; inexistência de autocorrelação entre erros; e entre estes e as variáveis independentes; e ausência de multicolinearidade perfeita entre as variáveis independentes
- Atraente para aplicações de machine learning
- Facilidade em predizer a ocorrência de fenômenos em diversas áreas do conhecimento (ex: administração, sociologia, medicina) identificando a que grupo certos objetos, pessoas ou fenômenos pertencem

Resumo das características do método

- \circ logit(p) = ln(p/(1-p))
- \circ In(odds) = In(p/(1-p))
- \circ odds = p/ (1-p)
- Na regressão logística não assumimos uma relação linear entre a variável dependente e independente
- Erros não têm distribuição normal
- Utilizamos a máxima verossimilhança, e não mínimos quadrados

Exemplo

- Regressão logística no RStudio
- Exemplo de coeficientes obtidos:

Estudo sobre a adimplência ou não de clientes (status ST) que tenham renda mensal R, ND dependentes e estejam empregados (VE)

```
Coefficients:
```

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.4776 1.6569 0.892 0.372501
R -1.8824 0.4885 -3.853 0.000117 ***
ND 0.8596 0.3857 2.228 0.025854 *
VE 2.8221 0.8521 3.312 0.000926 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Legenda:

ST = status de adimplência

R = renda mensal

ND = número de dependentes

VE = vínculo empregatício

Realizando previsões com o modelo:

$$P(evento) = \frac{1}{1 + e^{-(1,478 - 1,882R + 0,860ND + 2,822VE)}}$$

Interpretando o impacto de uma variável

- Exemplo: $logit = 0.25x_1 + 0.4x_2$
- x_1 = renda familiar
- x_2 = no. de filhos
- p = probabilidade de alugar um imóvel
- Inicialmente: p = 0,3. Mas o casal ganhou um filho
- a chance de alugar um imóvel era p/(1-p)=0,3/0,7=0,43
- com mais um filho, a chance varia de e^{0,4} = 1,49
- a razão de chance aumenta → 1,49*0,43=0,64
- logo p passou para p'=0,39 (p \sim 0,4) \rightarrow um aumento de \sim 10%

FIM