

Project Gaia Enabling climate risk analysis using generative Al

March 2024

© Bank for International Settlements 2024. All rights reserved. Limited extracts may be reproduced or translated provided the source is stated.

www.bis.org email@bis.org

Follow us

Executive summary

Project Gaia – a collaboration between the BIS Innovation Hub Eurosystem Centre, the Bank of Spain,¹ the Deutsche Bundesbank and the European Central Bank – leverages generative artificial intelligence (AI) to facilitate the analysis of climate-related risks in the financial system.

Central banks, supervisory authorities and financial institutions need higher quality and more accessible data to model the financial risks posed by climate change. Today, due to the lack of global reporting standards, accessing relevant climate-related indicators takes significant effort. In financial institutions' corporate reports, climate-related data are buried among other financial and non-financial information and, in many cases, information pertaining to one company is split across multiple reports, and relevant information is contained in texts, tables, footnotes and figures. These challenges constrain the usability of climate-related information.

Project Gaia aims to help analysts search corporate climate-related disclosures and extract data quickly and efficiently using AI, particularly large language models (LLMs). Gaia Phase I has surveyed climate risk experts from central banks and supervisory authorities, designed a solution that addresses the requirements articulated by these experts and delivered a proof of concept (PoC) demonstrating the technical feasibility of the concept.

By automating information extraction, Gaia opens up the possibility of analysing climate-related indicators at a scale that was not previously feasible. Furthermore, Gaia offers harmonised metrics despite the heterogeneity of naming conventions and definitions across different jurisdictions. The combination of semantic search together with iterative and systematic LLM prompting enables Gaia to overcome differences in disclosure frameworks. This offers much needed transparency and comparability of climate-related information.

Project Gaia breaks new ground by integrating LLMs into an application and leveraging it for data extraction. This poses several technical challenges, including LLMs' long response times, randomness (non-repeatability) in their responses and hallucinations. This report explains a set of concrete design choices that allow the Gaia PoC to overcome these challenges.

Gaia demonstrates the power of creating Al-enabled intelligent tools to automate existing workflows. For example, macro analysis results presented in this report cover 20 key performance indicators (KPIs) for 187 financial institutions over five years and adding more institutions or KPIs is quick and easy. Due to its flexible design, the platform is relevant in a much broader context than climate-related data analysis. This paves the way for Alenabled applications for central banks and the financial sector to address, for example, regulatory and supervisory use cases. Generative Al promises to change the way we work in the future and Project Gaia is one of the first comprehensive studies investigating how this can be done in practice.

List of abbreviations and acronyms

Al	Artificial intelligence
BIS	Bank for International Settlements
DC	Design choice
ESG	Environmental, social and governance
JSON	Java script object notation
KPI	Key performance indicator
LLM	Large language model
NGFS	Network for Greening the Financial System
NLP	Natural language processing
PoC	Proof of concept
SQL	Structured query language
TCFD	Task Force on Climate-related Financial Disclosures

Table of contents

Executive summary	3
List of abbreviations and acronyms	4
The climate data challenge	7
Project scope and methodology	10
Problem statement	10
Gaia value proposition	10
User survey	12
Platform design	15
Design principles	15
High-level architecture	16
Data processing and storage	17
LLM integration	19
Testing & Evaluation	24
Reliability of results	24
Language independence	26
AI risks and challenges	27
Macro analysis use cases	29
KPI coverage	29
Regional variation of KPI adoption	30
Evolution of KPI adoption	31
Journey of individual institutions	32
Learnings and next steps	35
A game changer for green finance	35
Applicability beyond climate data analysis	35
Next steps	36
Conclusions	39
Project participants and acknowledgements	40
Pafarances	<i>1</i> 1