Version 1.0: 16.Dec.2004 Part#: GE-X00-M-C-10-1216-001 Copyright © 2004 Googol Technology

固高科技 版权所有

固高科技 (深圳) 有限公司

地 址:深圳市高新技术产业园南区深港产学研基地西座

二层 W211 室

电 话: 0755-26970823 26970817 26970824

传 真: 0755-26970846

Googol Technology (HK) Ltd

Addr: Room 3639, Annex Building

Hong Kong University of Science and Technology,

Hong Kong

Tel: (852) 2358-1033 Fax: (852) 2719-8399

E-mail: sales@googoltech.com

Web: http://www.googoltech.com

GE 系列运动控制器 用户手册

务必将此手册交给用户

- 非常感谢您选购 GE 连续轨迹运动控制器
- 在您使用之前,请仔细阅读此手册,确保正确使用。
- 请将此手册妥善保存,以备随时查阅。

版权申明

固高科技有限公司 保留所有权力

固高科技有限公司(以下简称固高科技)保留在不事先通知的情况下,修改本手册中的 产品和产品规格等文件的权力。

固高科技不承担由于使用本手册或本产品不当,所造成直接的、间接的、特殊的、附带的或相应产生的损失或责任。

固高科技具有本产品及其软件的专利权、版权和其它知识产权。未经授权,不得直接或 者间接地复制、制造、加工、使用本产品及其相关部分。

运动中的机器有危险! 使用者有责任在机器中设计有效的出错处理和 安全保护机制,固高科技没有义务或责任对由此造成的附带的或相应 产生的损失负责。

前言

感谢选用固高运动控制器

为回报客户,我们将以品质一流的运动控制器、完善的售后服务、高效的技术支持,帮 助您建立自己的控制系统。

固高产品的更多信息

固高科技的网址是 <u>http://www.googoltech.com.cn</u> 。在我们的网页上可以得到更多关于公司和产品的信息,包括:公司简介、产品介绍、技术支持、产品最新发布等等。

您也可以通过电话(0755-26970839)咨询关于公司和产品的更多信息。

技术支持和售后服务

您可以通过以下途径获得我们的技术支持和售后服务:

- ◆ 电子邮件: support@googoltech.com;
- ◆ 电话: (0755) 26970835
- ◆ 发函至:深圳市高新技术产业园南区园深港产学研基地西座二楼 W211 室 固高科技(深圳)有限公司

邮编: 518057

用户手册的用途

用户通过阅读本手册,能够了解 **GE** 系列运动控制器的基本结构,正确安装运动控制器,连接控制器与电机控制系统,完成运动控制系统的基本调试。

用户手册的使用对象

本编程手册适用于,具有硬件基本知识,对控制有一定了解的工程人员。

用户手册的主要内容

本手册由三章内容和附录组成。第一章"概述",简介 GE 系列运动控制器及如何构成电机控制系统;第二章"快速使用",介绍运动控制器安装、接线和驱动程序的安装;第三章"系统调试",介绍利用运动控制器配套软件,进行系统调试;附录提供了:运动控制器技术参数;典型接线;故障处理。

相关文件

关于 GE 系列运动控制器的编程,请参见随产品配套的《GE 运动控制器编程手册》。

目 录

第一章	概述	1
	1.1 简介	1
	1.2 GE系列运动控制器型号及含义	1
	1.3 GE系列运动控制器功能列表	2
	1.4 电机控制系统的基本组成	2
第二章	快速使用	5
	2.1 开箱检查	5
	2.2 GE 系列运动控制器的外形结构	5
	2.3 安装步骤	7
	2.3.1 步骤 1: 在运动控制器上设置跳线(仅对ISA卡)	7
	2.3.2 步骤 2: 将运动控制器插入计算机	10
	2.3.3 步骤 3: 安装控制器通讯驱动(Windows操作系统)	11
	2.3.4 步骤 4: 建立主机与运动控制器的通讯(Windows操作系统)	11
	2.3.5 步骤 5: 联接电机和驱动器	11
	2.3.6 步骤 6: 联接运动控制器和端子板	11
	2.3.7 步骤 7: 联接驱动器、系统输入/输出和端子板	11
第三章	系统调试	21
附录A	技术参数	22
附录B	典型接线	26
hii Skn	一类空按线	, 20
	B.1 控制器与Panasonic MSDA系列驱动器速度控制方式接线	
	B.2 控制器与 Panasonic MSDA 系列驱动器位置控制方式接线	
	B.3 控制器与SANYO DENKI PV1 系列驱动器速度控制方式接线	
	B.4 控制器与SANYO DENKI PV1 系列驱动器位置控制方式接线	
	B.5 控制器与SANYO DENKI PY0/PY2 系列驱动器速度控制方式接线	
	B.6 控制器与SANYO DENKI PYO/PY2 系列驱动器位置控制方式接线	
	B.7 控制器与 SANYO DENKI PU 系列驱动器速度控制方式接线	
	B.8 控制器与 YASKAWA SERVOPACK 系列驱动器速度/力矩控制方式接线	
	B.9 控制器与 YASKAWA SERVOPACK 系列驱动器位置控制方式接线	
	B.10 控制器与 YASKAWA SGDE 系列驱动器位置控制方式接线	
	B.11 控制器与 YASKAWA SGDM 系列驱动器速度控制方式接线	
	B.12 控制器与 YASKAWA SGDM 系列驱动器位置控制方式接线	
	B.13 控制器与三菱 MEL SERVO-J2-SUPER 系列驱动器速度控制方式接线	
	B.14 控制器与三菱 MEL SERVO-J2-SUPER 系列驱动器位置控制方式接线	
	B.15 控制器与 FALDIC-W 系列驱动器速度控制方式接线	
	B.16 控制器与 FALDIC-W 系列驱动器位置控制方式接线	41
附录C	故障处理	42

第一章 概述

1.1 简介

固高公司生产的 GE 系列运动控制器,可以实现多轴协调运动和高速的点位运动。其核心由 DSP 和 FPGA 组成,可以实现高性能的控制计算。它适用于广泛的应用领域,包括机器人、数控机床、木工机械、印刷机械、装配生产线、电子加工设备、激光加工设备以及 PCB 钻铣设备等。

GE 运动控制器以 IBM-PC 及其兼容机为主机,提供标准的 ISA 总线和 PCI 总线两个系列的产品。作为选件,在任何一款产品上可以提供 RS232 串行通讯和 PC104 通讯接口,方便用户配置系统。运动控制器提供 C 语言函数库和 Windows 动态链接库,实现复杂的控制功能。用户能够将这些控制函数与自己控制系统所需的数据处理、界面显示、用户接口等应用程序模块集成在一起,建造符合特定应用要求的控制系统,以适应各种应用领域的要求。使用该运动控制器,要求使用者具有 C 语言或 Windows 下使用动态链接库的编程经验。

1.2 GE 系列运动控制器型号及含义

输出类型

SG: 连续轨迹,脉冲量输出 SV: 连续轨迹,模拟量或 脉冲量输出

PV: 点位,模拟量或脉冲量输出

1.3 GE 系列运动控制器功能列表

✓ 具备功能

- 不具备功能

* 可选功能

	功能	SV	SG	PV	PG
77 YF	ISA/ PCI/PC104	4	√	√	√
总线	RS232	*	*	*	*
	64K Byte ROM	*	*	*	*
用户存储区	512K Byte SRAM	*	*	*	*
控制周期	200us(不可调) GE-X00-PX: 400us	√	√	√	√
模拟量输出	范围: -10V~+10V	√	-	√	-
脉冲量输出	2/3/4/8 轴	√	√	√	√
编码器输入	2/3/4/8 路四倍频增量式 最高频率 8MHz	4	4	4	4
辅助编码器	1 路四倍频增量式,最高频率 8MHz	√	√	-	-
限位信号输入	每轴正负限位光隔	4	4	4	4
原点信号输入	每轴1路光隔	4	√	4	4
驱动报警信号输入	每轴1路光隔	4	4	4	4
驱动使能信号输出	每轴1路光隔	4	√	√	4
驱动复位信号输出	每轴1路光隔	√	√	√	√
通用数字信号输入	16 路光隔	√	√	√	√
通用数字信号输出	16 路光隔	√	√	√	√
A/D	8路	*	*	*	*
看门狗	实时监控 DSP 工作状态	√	√	√	√
插补运动	直线、圆弧插补	√	√	-	-
点位运动	S-曲线、梯形曲线、速度控制	-	-	√	4
程序缓冲区	实现运动轨迹预处理	4	√	-	-
滤波器	PID+速度前馈+加速度前馈	4	-	√	-
硬件捕获	编码器 Index 信号	4	√	4	4
2/11 1m 3/V	原点 Home 信号	√	√	√	√
	设置跟随误差极限	4	_	√	-
安全措施	设置加速度极限	√			4
	设置输出电压饱和极限	√	-	√	-

1.4 电机控制系统的基本组成

- 1. 运动控制器;
- 2. 具有 ISA/PCI/PC104 接口的主机;
- 3. 步进电机或伺服电机;
- 4. 驱动器;

- 5. 驱动器电源:
- 6. +12V/+24V 直流电源 (用于接口板电源);
- 7. 原点开关、正/负限位开关(根据系统需要可选);

伺服电机既可以选择交流伺服电机也可以选择直流伺服电机。

控制伺服电机时:

如果使用的是 GE-X00-XG 运动控制器,电机驱动器应选为位置控制方式,且控制器和驱动器的脉冲模式设置要一致。

如果使用的是 GE-X00-XV 运动控制器的脉冲量输出功能时,电机驱动器设置为位置控制方式, 且控制器和驱动器的脉冲模式设置要一致。

如果使用的是 GE-X00-XV 运动控制器的模拟量输出功能时,电机驱动器应设置为速度控制方式。如果还有疑问,可咨询您的电机供应商或与固高公司联系。

对于控制步进电机:

运动控制器提供两种不同的控制信号:正脉冲/负脉冲、脉冲+方向。在控制步进电机时,控制模式为开环控制,不需要编码器的反馈信号,运动控制器处于脉冲输出方式下时默认关闭编码器。若用户外接编码器来监视实际位置,可在编程中调用相关函数打开编码器。

采用 GE 运动控制器组成的控制系统典型连接见图 1-1:

图 1-1 采用 GE 运动控制器组成的控制系统框图

GE 系列运动控制器典型应用, 见图 1-2:

图 1-2 GE 系列运动控制器典型应用

第二章 快速使用

2.1 开箱检查

打开包装前,请先查看外包装标明的产品型号是否与订购的产品一致。打开包装后,请首先检查运动控制器的表面是否有机械损坏,然后按照装箱清单或订购合同仔细核对配件是否齐备。如果运动控制器表面有损坏,或产品内容不符合,请不要使用,立即与固高科技或经销商联系。

GE 系列运动控制器产品清单:

- GE 系列运动控制器 1 块;
- 转接挡板 (ACC1):
- 端子板 (ACC2) 1 块;
- 62pin 连接电缆 2 条;
- 配套光盘1张。

为了防止静电损害运动控制器,请在接触控制器电路或插/拔控制器之前触 摸有效接地金属物体以释放身体所携带的静电荷。

2.2 GE 运动控制器的外形结构

2.2.1 GE-X00-SX 运动控制器

ISA 系列 GE-X00-SX 运动控制器的外形结构如图 2-1 所示:

图 2-1 ISA 系列 GE-X00-SX 运动控制器连接器与跳线器位置示意图

PCI 系列 GE-X00-SX 运动控制器的外形结构如图 2-2 所示:

图 2-2 PCI 系列 GE-X00-SX 运动控制器连接器与跳线器位置示意图

GE-X00-SX 运动控制器的端子板外形结构图如图 2-3 所示:

图 2-3 GE-X00-SX 端子板接口示意图

GE-X00-SX 运动控制器端子板上接口端子的定义如表 2-1 所示:

表 2-1 GE-X00-SX 端子板接口定义

接口端子	功能	
CN1	运动控制器连接接口	
CN2	运动控制器连接接口	
CN5 (CN6, CN7)	控制轴接口	
CN8	空	
CN9	空	
CN10	辅助编码器接口	
CN12	专用 IO 信号输入接口	
CN13	通用 IO 输入接口	
CN14	通用 IO 输出接口	

2.2.2 GE-X00-PX 运动控制器

ISA 系列 GE-X00-PX 运动控制器的外形结构如图 2-4 所示:

图 2-4 ISA 系列 GE-X00-PX 运动控制器连接器与跳线器位置示意图

GE-X00-PX 运动控制器端子板外形结构图如图 2-5 所示:

图 2-5 GE-X00-PX 端子板示意图

GE-X00-PX 运动控制器端子板上接口定义如表 2-2 所示

表 2-2 GE-X00-PX 端子板接口定义

接口端子	功能
CN1	运动控制板卡连接接口
CN2	运动控制板卡连接接口
CN4	RS232 接口
CN5 (CN6, CN7, CN8, CN9, CN12, CN13)	控制轴接口
CN14	通用 IO 输出接口
CN15	限位信号输入接口
CN16	通用 IO 输入接口
CN17	原点信号输入接口
CN19	模拟量输入接口

表 2-3 为 GE 系列运动控制器上各连接器和跳线器的功能说明。请找到各连接器和跳线器的位置 并了解其作用,在本章随后的"安装步骤"中将讲述这些连接器和跳线器的连接和设置。

表 2-3 连接器及跳线器功能列表

定义	功能
JP1	基地址开关(仅用于 ISA/PC104)
JP2	中断矢量号跳线器(仅用于 ISA/PC104)
JP3	看门狗跳线器
JP4	调试用(非用户跳线器)
CN1	端子板连接接口(与端子板 CN1 连接)
CN2	端子板连接接口(与端子板 CN2 连接)
CN3	调试接口(非用户使用接口)
CN4 调试接口(非用户使用接口)	
CN5	电源输入(用于 PC104 主板时)

2.3 安装步骤

请按照以下安装步骤建立控制系统:

步骤1:在运动控制器上设置跳线(仅对ISA卡,PCI卡可跳到步骤2)

步骤2:将运动控制器插入计算机

步骤3:安装运动控制器驱动程序(仅对Windows)

步骤4:建立主机与运动控制器的通讯

步骤5: 联接电机和驱动器

步骤6: 联接运动控制器和端子板

步骤7: 联接驱动器、系统输入/输出和端子板

2.3.1 步骤 1: 在运动控制器上设置跳线(仅对 ISA 卡)

2.3.1.1 基地址选择, JP1

建立主机与运动控制器之间的通讯,必须选择并设置运动控制器的基地址。JP1 为运动控制器的基地址开关,其位置参见<u>图 2-1</u>, 2-2, 2-4。控制器出厂默认基地址为 0x300(16 进制),见图 2-6。运动控制器从该地址其连续占用 14 个主机I/O地址,实现与主机的通讯。请检查主机地址占用情况,以免地址发生冲突,影响系统工作。表 2-4 为运动控制器的基地址跳线选择列表,表 2-5 为PC机已占用的I/O地址,供需要改变基地址时参考。

建议初次安装运动控制器时,不改变基地址的初始设置。因为对于绝大部分计算机该地址是空闲的。在随后的测试中如果存在通讯问题时,再参考表 2-2、表 2-3 修改基地址设置。

JP1: ON OFF 1 2 3 4 5 6

图 2-6 JP1 基地址开关默认定义

地址线	定义
A 4	ON
A 5	ON
A 6	ON
A 7	ON
A 8	OFF
A 9	OFF

表 2-4 运动控制器基地址开关选择表

基地址(hex)	十进制	A 9	A 8	A 7	A 6	A 5	A 4
0x100	256	ON	OFF	ON	ON	ON	ON
0x120	288	ON	OFF	ON	ON	OFF	ON
0x140	320	ON	OFF	ON	OFF	ON	ON
0x160	352	ON	OFF	ON	OFF	OFF	ON
0x180	384	ON	OFF	OFF	ON	ON	ON
0x1a0	416	ON	OFF	OFF	ON	OFF	ON
0x1c0	448	ON	OFF	OFF	OFF	O N	ON
0x1e0	480	ON	OFF	OFF	OFF	OFF	ON
0x200	512	OFF	ON	ON	ON	ON	ON
0x220	544	OFF	ON	ON	ON	OFF	ON
0x240	576	OFF	ON	ON	OFF	ON	ON
0x260	608	OFF	ON	ON	OFF	OFF	ON
0x280	640	OFF	ON	OFF	ON	ON	ON
0x2a0	672	OFF	ON	OFF	ON	OFF	ON
0x2c0	704	OFF	ON	OFF	OFF	ON	ON
0x2e0	736	OFF	ON	OFF	OFF	OFF	ON
0x300(默认)	768	OFF	OFF	ON	ON	ON	ON
0x320	800	OFF	OFF	ON	ON	OFF	ON
0x340	832	OFF	OFF	ON	OFF	ON	ON
0x360	864	OFF	OFF	ON	OFF	OFF	ON
0x380	896	OFF	OFF	OFF	ON	ON	ON
0x3a0	928	OFF	OFF	OFF	ON	OFF	ON
0x3c0	960	OFF	OFF	OFF	OFF	ON	ON
0x3e0	992	OFF	OFF	OFF	OFF	OFF	ON

表 2-5 PC 机已占用地址表

ISA 总线	地址分配	
十六进制	十进制	2) HE
$000\sim01F$	$00 \sim 31$	DMA 控制器 1
$020 \sim 03F$	$32 \sim 63$	中断控制器 1
040~05F	64~95	定时器
$060\!\sim\!06{ m F}$	96~111	键盘
$070\sim07\mathrm{F}$	$112 \sim 127$	实时时钟 NMI
080~09F	128~159	DMA 页寄存器
$0A0\sim 0BF$	160~191	中断控制器 2
$0C0\sim 0DF$	192~223	DMA 控制器 2
$0 \text{F} 0 \sim 0 \text{F} \text{F}$	240~255	数学协处理器
1F0~1F8	496~504	硬盘驱动器
200~20F	512~527	游戏口

$210 \sim 217$	528~535	扩展单元
278~27F	630~639	并行口 2
2B0~2DF	688~735	可选择 EGA
2F8~2FF	$760 \sim 767$	异步通信口 2
300~31F	768~799	原型卡
360~36F	864~879	PC 网络卡
378~37F	888~895	并行口 1
380~38F	896~911	SDLC 通信口 2
390~393	912~915	保留
$3A0\sim3A9$	928~937	SDLC 通信口 1
3B0~3BF	944~959	IBM 单显
$3C0\sim 3CF$	$960 \sim 975$	EGA
$3D0\sim3DF$	976~991	彩显/图显
$3F0\sim3F7$	$1008 \sim 1015$	软盘驱动器
3F8~3FF	1016~1023	异步通信口 2
X2E1		GPIB 适配器
X390~X393		异步通信口 1

2.3.1.2 看门狗设置, JP3

运动控制器提供看门狗,实时监视其工作状态。JP3 为看门狗跳线选择器。用户通过跳线设置使看门狗有效后,当控制器死机时,看门狗在延时 150ms 后自动使运动控制器复位。默认设置为:看门狗无效。

2.3.2 步骤 2: 将运动控制器插入计算机

请小心拿放,在接触控制器电路或插/拔控制器之前触摸有效接地金属物体, 防止可能的静电损坏运动控制器。

- 1. 用随板配备的 62-Pin 扁平电缆,将运动控制器的 CN2 接口与转接挡板(ACC1) 相连接。
- 2. 关断计算机电源。
- 3a. 对于 ISA 卡,打开计算机机箱,选择一条空闲的 ISA 插槽,用螺丝刀卸下对应该插槽的挡板条。
- 3b. 对于 PCI 卡,打开计算机机箱,选择一条空闲的 PCI 插槽,用螺丝刀卸下对应该插槽的挡板条。
- 4. 将运动控制器可靠地插入该槽。
- 5. 拧紧其上的固定螺丝。
- 6. 卸下相近插槽的一条挡板条,用螺丝将转接板(ACC1)固定在机箱上。
- 7. 盖上计算机机盖, 打开 PC 电源, 启动计算机。

2.3.3 步骤 3: 安装控制器通讯驱动(Windows 操作系统)

使用 DOS 操作系统, 跳过本步, 直接到步骤 4。

ISA ₩

- 1. 将产品配套光盘放入光驱。
- 2. 在目录"光驱: \Windows\setup\ISA 驱动"下,直接运行 WinSetupCH.exe(中文版)或 WinSetupEN.exe(英文版)安装程序。
- 3. 按照提示,重新启动计算机。

PCI 卡

Windows98/2000 安装驱动程序

- 1. 在硬件安装好,启动计算机后,Windows98/2000 将自动检测到运动控制器,并启动"添加新硬件向导"。在向导提示下,点击"下一步"。
- 2. 在"希望 Windows"进行什么操作?"的提示下,选择"搜索设备的驱动程序(推荐)。", 点击"下一步"。
- 3. 将产品配套光盘放入光驱。
- 4. 选择"指定位置",利用"浏览"选择"光驱:\Windows\Setup\PCI 驱动"下相应操作系统的目录。
- 5. 跟随"添加硬件向导"点击"下一步",直到完成。

2.3.4 步骤 4: 建立主机与运动控制器的通讯(Windows 操作系统)

使用 DOS 操作系统,跳过本步,直接到步骤 5。

对于选用 GE 连续轨迹运动控制器的用户,请选用雕刻机演示软件测试主机是否和运动控制器建立了联系;对于选用了 GE 点位运动控制器的用户,请用附带的 DEMO 软件测试主机是否和运动控制器建立了联系。详细操作请参见对应的教学软件。

如果雕刻机演示程序或DEMO能正常工作,证明运动控制器**通讯正常**。否则会提示初始 化卡失败,证明运动控制器**通讯失败**。在**通讯成功**的前提下,用户可进行系统的运行,否则 参考<u>附录D故障处理</u>,确定问题所在,排除故障后重新测试。如果需要,请按照封面的公司 信息与我们联系。

2.3.5 步骤 5: 联接电机和驱动器

为安全起见,建议用户初次使用板卡时,务必将电机与负载脱离开,在未完 成控制系统的安装、调试前,**不要**将电机与任何机械装置联接。待调整板卡 以及驱动器参数使得电机受控后,方可进行系统的连接,否则可能造成严重 的后果。

在驱动器没有与运动控制器联接之前,联接驱动器与电机。用户必须详细的阅读驱动器的说明书,正确联接。按照驱动器说明书的要求测试驱动器与电机,确保其工作正常。

2.3.6 步骤 6: 联接运动控制器和端子板

仔细了解控制器的接口信号和电机驱动器的接口定义,妥善连线并**避免带电插拔接口**。否则,信号连接错误或带电操作可能导致系统正反馈或硬件损坏 使系统不能正常工作。

关闭计算机电源,取出产品附带的两条屏蔽电缆。联接控制器的 CN1 与端子板的 CN1,转接板的 CN2 与端子板的 CN2。见图 2-7。

图 2-7 GE 运动控制器与端子板联接示意图 2.3.7 步骤 7: 联接驱动器、系统输入/输出和端子板

2.3.7.1 联接端子板电源

端子板的 CN3 接用户提供的外部电源。板上标有+12V~/24V 的端子接+12V/+24V,标有 OGND 的接外部电源地,至于使用的外部电源的具体的电压值,取决外部的传感器和执行机构的供电要求,使用时应根据实际要求选择电源。接线图见图 2-8。

2.3.7.2 专用输入、输出连接方法

对于 GE-X00-SX 运动控制器:

专用输入包括:驱动报警信号、原点信号和限位信号,通过端子板的 CN5(CN6、CN7)、CN12 与驱动器及外部开关相连。CN5 的定义见表 2-6, CN12 的定义见表 2-7 连接方法见图 2-9。

专用输出包括:驱动允许,驱动报警复位。专用输出通过端子板 CN5、CN6、CN7 与驱动器联接。CN5 对应 1 轴,CN6 对应 2 轴,CN7 对应 3 轴。CN5~CN7 的引脚定义相同,见表 2-6。

对于 GE-X00-PX 运动控制器:

专用输入包括:驱动报警信号、原点信号和限位信号,通过端子板的 CN5(CN6、CN7、CN8、CN9、CN10、CN12、CN13)、CN17、CN15 与驱动器及外部开关相连。CN5 的定义见表 2-6, CN17 的定义见表 2-8 连接方法见图 2-9。

专用输出包括:驱动允许,驱动报警复位。专用输出通过端子板 CN5、CN6、CN7、CN8、CN9、CN10、CN12、CN13 与驱动器联接。CN5 对应 1 轴, CN6 对应 2 轴, CN7 对应 3 轴, CN8 对应 4 轴, CN9 对应 5 轴, CN10 对应 6 轴, CN12 对应 7 轴, CN13 对应 8 轴。CN5~CN13 的引脚定义相同,见表 2-6。

注意

根据安全标准:

- 1. 驱动器报警输入信号为常闭状态,(用户不用时,请将该输入对 OGND 短接);
- 2. 系统的限位开关须接成常闭状态;
- 3. 原点开关为常开状态。

表 2-6 端子板 CN5 (CN6、CN7、CN8、CN9、CN10、CN12、CN13)

引脚	信号	说明	引脚	信号	说明
1	OGND	外部电源地	14	OVCC	+12V/+24V 输出
2	ALM	驱动报警	15	RESET	驱动报警复位
3	ENABLE	驱动允许	16	保留	保留
4	A-	编码器输入	17	A+	编码器输入
5	В-	编码器输入	18	B+	编码器输入
6	C-	编码器输入	19	C+	编码器输入
7	+5V	电源输出	20	GND	数字地
8	DAC	模拟输出	21	GND	数字地
9	DIR+	步进方向输出	22	DIR-	步进方向输出
10	GND	数字地	23	PULSE+	步进脉冲输出
11	PULSE-	步进脉冲输出	24	GND	数字地
12	保留	保留	25	保留	保留
13	GND	数字地			

表 2-7 端子板 CN12 引脚定义(GE-X00-SX)

引脚	信号	说明
1	НОМЕ0	1 轴原点输入
2	HOME1	2 轴原点输入
3	HOME2	3 轴原点输入
4	номез	4 轴原点输入
5	LIMIT0+	1 轴 正 向 限 位
6	LIMIT0-	1 轴负向限位
7	LIMIT1+	2 轴 正 向 限 位
8	LIMIT1-	2 轴负向限位
9	LIMIT2+	3 轴 正 向 限 位
10	LIMIT2-	3 轴负向限位
11	LIMIT3+	4 轴 正 向 限 位
12	LIMIT3-	4 轴负向限位
13	EXI0	通用输入
14	EXI1	通用输入
15	OGND	外部电源地
16	OVCC	+12V/+24V 输 出

表 2-8 端子板 CN17 引脚定义(GE-X00-PX)

第二章 快速使用

引脚	信号	说明
1	HOME0	1 轴原点输入
2	HOME1	2 轴原点输入
3	HOME2	3 轴原点输入
4	HOME3	4 轴原点输入
5	HOME4	5 轴原点输入
6	HOME5	6 轴原点输入
7	HOME6	7 轴原点输入
8	HOME7	8 轴原点输入
9	EXI0	保留
10	EXI1	保留
11	EXO0	保留
12	EXO1	保留
13	OGND	外部电源地
14	OGND	外部电源地
15	OVCC	+12V/+24V 输 出
16	OVCC	+12V/+24V 输出

表 2-9 端子板 CN15 引脚定义

引脚	信号	说明		
1	LIMIT0+	1 轴 正 向 限 位		
2	LIMIT0-	1 轴负向限位		
3	LIMIT1+	2 轴 正 向 限 位		
4	LIMIT1-	2 轴负向限位		
5	LIMIT2+	3 轴 正 向 限 位		
6	LIMIT2-	3 轴负向限位		
7	LIMIT3+	4 轴 正 向 限 位		
8	LIMIT3-	4 轴负向限位		
9	LIMIT4+	5 轴 正 向 限 位		
10	LIMIT4-	5 轴负向限位		
11	LIMIT5+	6 轴 正 向 限 位		
12	LIMIT5-	6 轴负向限位		
13	LIMIT6+	7 轴 正 向 限 位		
14	LIMIT6-	7 轴负向限位		
15	LIMIT7+	8 轴 正 向 限 位		
16	LIMIT7-	8 轴负向限位		

图 2-9 专用输入、输出信号连接图

2.3.7.3 辅助编码器输入连接方法(仅对 GE-X00-SX)

辅助编码器输入接口为 CN10。GE-X00-SX 运动控制器只给用户提供一个辅助编码器接口 CN10,此辅助编码器接口只接受 A 相、B 相信号,无 INDEX 信号接口, CN10 引脚定义见表 2-10。连接方法见图 2-10 和 2-11

表 2-10 端子板 CN10 引脚定义

引脚	信号	说明	引脚	信号	说明
1	A5+	编码器输入	6	A5-	编码器输入
2	B5+	编码器输入	7	B5-	编码器输入
3			8		
4			9	GND	数字地
5	+5V	电源输出			

图 2-10 编码器双端输入信号连接图

图 2-11 编码器单端输入信号连接图

2.3.7.4 控制输出信号连接方法

GE-X00-XV 可以工作于脉冲模式或模拟量模式,默认情况下,各控制轴输出模拟量。当用于步进电机控制(或用位置方式控制伺服电机)时,用户可以通过软件提供的输出设置命令"GT_CtrlMode(1)",将该轴的输出设置为脉冲量输出信号。

(1) 脉冲输出连接方法

在脉冲量信号输出方式下,有两种工作模式。一种是脉冲+方向信号模式,另一种是正/负脉冲信号模式。默认情况下,控制器输出脉冲/方向信号模式。用户可以通过命令"GT_StepPulse",转换为正/负脉冲信号模式;亦可通过命令"GT_StepDir"切换为脉冲/方向信号模式。

脉冲/方向输出信号通过端子板的 CN5(CN6、CN7、CN8、CN9、CN10、CN12、CN13) 的引脚 9、22、23、11 输出, GND 为数字地引脚。

在脉冲+方向信号模式下,引脚 23、11 输出差动的脉冲控制信号,引脚 9、22 输出差动的运动方向控制信号。

在正/负脉冲模式下,引脚 9、22 输出差动的正转脉冲控制信号,引脚 23、11 输出差动的反转脉冲控制信号。

如果驱动器需要的信号不是差动信号,将相应信号接于上述差动信号输出的正信号端(即引脚 9、23),**负信号端悬空**。输出波形见图 2-12。

图 2-12 脉冲量控制输出信号连接图

输出方式	引脚	正转	反转
-PULSE	23-11		
+PULSE	9-22		
PULSE	23-11		
DIR	9-22		<u> </u>

图 2-13 脉冲、方向输出波形

(2) 模拟量输出连接方法(仅对 GE-X00-XV)

模拟量输出通过 CN5 (CN6、CN7、CN8、CN9、CN10、CN12、CN13)的 Pin8 输出。 参考地为数字地, CN5 的引脚定义请参见表 2-6, 电气接线图参见图 2-14。

2.3.7.5 通用数字量输入/输出连接方法

通用数字量输入通过端子板的 CN12、CN13 接入。CN12 引脚定义见表 2-7, CN13 引脚定义 见表 2-11,连接方法见图 2-15。(对于 GE-X00-PX,通用数字量输入接口为 CN16)。

通用数字量输出通过端子板的 CN14 接出,引脚定义见表 2-12,连接方法见图 2-15。通用输 出的供电可以从 CN12 或 CN13 上引出。(对于 GE-X00-PX,通用输出的供电可以从 CN17 上引 出)。

当通用 IO 的输出接感性负载时,应考虑连接用于反电势泄放的二极管。

表 2-11 端子板 CN13 引脚定义

引脚	信号	说明
1	EXI2	通用输入
2	EXI3	通用输入
3	EXI4	通用输入
4	EXI5	通用输入
5	EXI6	通用输入
6	EXI7	通用输入
7	EXI8	通用输入
8	EXI9	通用输入
9	EXI10	通用输入
10	EXI11	通用输入
11	EXI12	通用输入
12	EXI13	通用输入
13	EXI14	通用输入

第二章 快速使用

14	EXI15	通用输入
15	OGND	外部电源地
16	OVCC	+12V/+24V 输出

表 2-12 端子板 CN14 引脚定义

引脚	信号	说明
1	EXO0	通用输出
2	EXO1	通用输出
3	EXO2	通用输出
4	EXO3	通用输出
5	EXO4	通用输出
6	EXO5	通用输出
7	EXO6	通用输出
8	EXO7	通用输出
9	EXO8	通用输出
10	EXO9	通用输出
11	EXO10	通用输出
12	EXO11	通用输出
13	EXO12	通用输出
14	EXO13	通用输出
15	EXO14	通用输出
16	EXO15	通用输出

表 2-13 端子板 CN16 引脚定义

引脚	信号	说明
1	EI0	通用输入
2	EI1	通用输入
3	EI2	通用输入
4	EI3	通用输入
5	EI4	通用输入
6	EI5	通用输入
7	EI6	通用输入
8	EI7	通用输入
9	EI8	通用输入
10	EI9	通用输入
11	EI10	通用输入
12	EI11	通用输入
13	EI12	通用输入
14	EI13	通用输入
15	EI14	通用输入
16	EI15	通用输入

图 2-15 通用输入/输出信号连接图

2.3.7.6 RS-232 连接方法 (可选功能)

运动控制器提供串行通讯方式与主机交换信息的方法,通讯通过端子板的 CN4 实现。CN4 定义见表 2-14,连接方法见图 2-16。

信号 信号 引脚 说明 引脚 说明 1 6 2 RS-232 接收 7 RX3 ΤX RS-232 发送 8 9 4 5 GND 数字地

表 2-14 端子板 CN4 引脚定义

图 2-16 串行通讯接线图

2.3.7.7 模拟输入连接方法

运动控制器提供可选的模拟输入接口,通过端子板 CN11 实现。CN11 定义见表 2-15,连接方法见图 2-17。

引脚	信号	说明	引脚	信号	说明
1	AIN0	模拟输入	9	AGND	模拟地
2	AIN1	模拟输入	10	AGND	模拟地
3	AIN2	模拟输入	11	AGND	模拟地
4	AIN3	模拟输入	12	AGND	模拟地
5	AIN4	模拟输入	13	AGND	模拟地
6	AIN5	模拟输入	14	AGND	模拟地
7	AIN6	模拟输入	15	AGND	模拟地
8	AIN7	模拟输入			

表 2-15 端子板 CN11 引脚定义

图 2-17 模拟输入信号连接图

第三章 系统调试

GE 系列运动控制器为用户提供了相应的调试软件,对于 GE-X00-SX 运动控制器,提供雕刻机演示软件;对于 GE-X00-PX,提供了 DEMO 程序用户调试用,演示程序带有详细的使用说明,具体的使用方法请参见光盘教学软件。

在系统硬件正确设置、连接后,可以通过产品配套软件进行系统调试。在系统调试中,可以确认系统接线是否正确,控制系统是否可以正常工作,并且实现一些简单的轨迹运动。

为安全起见,建议用户在系统调试过程中,**不要**将电机与任何机械装置联接。 请检查电机确实没有负载。

附录 A 技术参数

GE 系列运动控制器

接口

PC-AT/PC104 或兼容机

用户存储区

ROM 64K Byte SRAM 512K Byte

控制周期

GE-X00-SX: 200 微秒 (四轴)

GE-X00-PX: 400 微秒 (八轴), 200 微秒 (四轴)

模拟量输出

轴数 2、3、4、8 范围 -10V~+10V

分辨率 16bit

模拟量输入

8路

分辨率 12bit

脉冲输出

2、3、4、8轴

GE-X00-SX: 最大频率 256KHz GE-X00-PX: 最大频率 1MHz RS-422 线驱动器, +/-20mA

占空比 50% 非线性 <1%

编码器输入

轴编码器: 2、3、4、8路(A, B, C, 其中A, B正交)

1路(A, B 其中A, B正交)——GE-X00-SX

单端或双端 RS-422 线接收器输入 GE-X00-PX: 最大频率 8MHz GE-X00-SX: 最大频率 4MHz

异步串行口

1 路 RS-232 (RX, TX, GND) 1 起始位, 1 停止位, 1 校验位 波特率-用户可设置, 默认 9600 RS-232 线驱动器/线接收器

I/0 56 路,TTL兼容,无上拉电阻

专用输入: LIMIT (POS) (正限位) 2、3、4、8路

LIMIT (NEG) (负限位) 2、3、4、8路

HOME (原点) 2、3、4、8路

通用输入: 16 路 通用输出: 16 路

电源要求

+5V Icc=1.5A +12V Icc=30mA -12V Icc=30mA

外形尺寸

 $122 \mathrm{mm} \times 185 \mathrm{mm}$

工作温度

0-60°C (32°F-140°F)

相对湿度

5%-90% 非凝结

端子板

光耦隔离I/0

光耦的输入规格:

隔离电压 5000V RMS 输入电压 +12V~+24VDC 输入电流 3.7mA~7.6mA 传输延迟 H→L 5us L→H 3us

光耦输出规格为:

隔离电压 5000V RMS 集电极开路输出,无上拉电阻

Vceo ≤ 50V Veco ≤ 5V Ic ≤ 30mA 平均输出延迟 8us

A/D

经同步串行口与运动控制器相连

输入路数 8路 (单端 双极性)

输入范围 -10V∼+10V

分辩率 12bit 精度 +/-1bit

最高采样速率 50KHz (单路)

外部电源

+12V DC Icc=1A 或 +24V DC Icc=1.8A

外形尺寸

 $220 \text{mm} \ x \ 132 \text{mm}$

附录 B 典型接线

B.1 控制器与 Panasonic MSDA 系列驱动器速度控制方式接线

Panasonic MSDA系列驱动器速度控制方式接线

B.2 控制器与 Panasonic MSDA 系列驱动器位置控制方式接线

Panasonic MSDA 系列驱动器位置控制方式接线图

B.3 控制器与 SANYO DENKI PV1 系列驱动器速度控制方式接线

SANYO DENKI PV1 系列驱动器速度控制方式接线

B.4 控制器与 SANYO DENKI PV1 系列驱动器位置控制方式接线

SANYO DENKI PV1 系列驱动器位置控制方式接线图

B.5 控制器与 SANYO DENKI PY0/PY2 系列驱动器速度控制方式接线

SANYO DENKI PYO/PY2系列驱动器速度控制方式接线

B.6 控制器与 SANYO DENKI PYO/PY2 系列驱动器位置控制方式接线

SANYODENKI PYO/PY2系列驱动器位置控制方式接线

B.7 控制器与 SANYO DENKI PU 系列驱动器速度控制方式接线

SANYODENKI PU系列驱动器速度控制方式接线

B.8 控制器与 YASKAWA SERVOPACK 系列驱动器速度/力矩空制方式接线

YASKAWA SERVOPACK SGDA-xxxS系列驱动器速度/力矩控制方式接线

B.9 控制器与 YASKAWA SERVOPACK 系列驱动器位置控制方式接线

YASKAWA SERVOPACK SGDA-xxxP系列驱动器位置控制方式接线

B.10 控制器与 YASKAWA SGDE 系列驱动器位置控制方式接线

YASKAWA SERVOPACK SGDE-xxxP系列驱动器位置控制方式接线

B11 控制器与 YASKAWA SGDM 型驱动器速度方式接线

注:本图为 YASKAWA SGDM 型伺服放大器与控制器的接线方式。

B12 控制器与 YASKAWA SGDM 型驱动器位置控制方式接线

注:本图为 YASKAWA SGDM 型伺服放大器与控制器的接线方式。

B13 控制器与三菱 MELSERVO-J2-Super 系列驱动器速度控制方式接线

B14 控制器与三菱 MELSERVO-J2-Super 系列驱动器位置控制方式接线

B.15 控制器与富士 FALDIC-W 系列驱动器速度控制方式接线

B.16 控制器与富士 FALDIC-W 系列驱动器位置控制方式接线

注:本图为富士 FALDIC-W 系列 RYC101D3-VVT2 的伺服驱动器与控制器的接线方式。

附录 C 故障处理

	故 障	原 因	处 理 办 法
1	安装好运动控制器 后,主机不能启动 或主机中其它硬件 设备工作不正常	地址冲突(仅 ISA 卡)	重新设置基地址
		运动控制器没有安装好	重新安装运动控制器
		ISA/PCI 总线接口损坏	换其他 ISA/PCI 插槽重试
			换其他计算机重试
			换另一块运动控制器重试
	主机与运动控制器通信出错	见故障 1	处理方法同上
2		运动控制器芯片损坏	更换运动控制器
		运动控制器软硬件不配套	更换运动控制器或更换配套软件
	不能正常读取编码 器信号	编码器接线错误	检查编码器接线
			采用带屏蔽的编码器连线、
		电气噪声	采用差动输入方式,减小编码器连线
			长度
4		编码器信号频率太高	运动控制器编码器输入信号最高频率
			不大于 8MHz,选择其它编码器降低
			分辨率
		编码器不能工作	检查编码器信号
		控制器错误	更换运动控制器
	电机不能控制	运动控制器读到正负限位开关	
7		状态均为触发状态,即限位开	重新设定限位开关触发电平
		关触发电平设置不对	
		驱动未使能	调用 GT_AxisOn(),驱动使能
		控制模式设置不匹配	检查驱动器的控制模式,确保与运动
			控制器设置模式匹配
		电机驱动器报警	检查电机驱动器报警原因,复位电机
			驱动器。如驱动器无报警输出信号,
			将 CN5 的 1、2 脚短接或调用相关函
			数关闭报警信号输入。
		运动控制器有工作异常的状态	检查状态,并加以更正
		电机连线不正确	按说明书检查接线
		接地不正确	按说明书检查接地

附录 C 典型接线

	故 障	原 因	处 理 办 法
		电机力矩输出太小	检查电机驱动器
9	电机驱动器(没有 伺服打开信号线) 带电的情况下,给 主机上电时,电机 突然转动	在运动控制器上电和断电时刻 处于不定状态,而电机处于工 作状态	在给主机上电之前,确保电机驱动器已经断电(即先上弱电、再上强电)
10	运动控制器输入/输 出信号不正确	接线错误	检查接线
		没有提供外部接口电源	检查外部电源供电
		接地错误	重新连接地线
		运动控制器输入/输出接口损坏	更换运动控制器
		5V 或 24V 保险电阻烧坏	更换保险电阻

固高科技(香港)有限公司

香港九龙清水湾香港科技大学新翼楼 3639 室

Tel: (852)-2358 1033 Fax: (852)-2719 8399

http://www.googoltech.com/ E-mail:sales@googoltech.com

固高科技 (深圳) 有限公司

深圳市南山区高新技术产业园南区深港产学研大楼西座二楼

电话: (86) 755-26970817 传真: (86) 755-26970846 http://www.googoltech.com.cn/ E-mail:googol@googoltech.com

华东办事处

上海市徐汇区漕溪路 222 号航天大厦宾馆 207 室

电话: 021-64832665 传真: 021-64832632

E-mail:googolsh@googoltech.com

华北办事处

北京市海淀区知春路罗庄西里 10 栋 1809 室

电话: 010-82356273、82358977

传真: 010-82357124

E-mail:googolbj@googoltech.com

西南办事处

重庆市江北区杨河二村 66 号 9-1

电话: 023-67000721 传真: 023-67709688

E-mail:googolcq@googoltech.com

西北办事处

西安德贝佳科技有限公司

西安市高新区科技路 10 号华奥大厦 C座 1001 室

电话: 029-88271480、81916828、88272492

传真: 029-88271480

E-mail:googolxa@googoltech.com

中原办事处

郑州市金水区东风路 9-1 号 富景花园 5 号楼东单元 5 层 C 号 电话/传真: 0371-3847807

E-mail:googolzz@googoltech.com