

Diffusion-Based Filling and Synthesis of Multiple Sclerosis Lesions

Master Thesis Presentation Experts: PD Dr. Richard McKinley, Dr. Ivan Diaz

Vinzenz Uhr 12.09.2024

Noise

Topics

- Introduction
- Methods
 - Models
 - Dataset
- Results
- Discussion
- Conclusions

Multiple Sclerosis and Lesion Filling

- Multiple sclerosis (MS) is a neurological disease
- Damages the coating of the nerves (myelin), which becomes visible as lesions on an MRI scan
- Computational methods on MRI scans (e.g. cortical thickness measurements) can be affected by the presence of white matter (WM) lesions [1]
- Countermeasure is lesion filling

T1w brain MRI with lesions

Noise Diffusion Models [2]

- SOTA for image synthesis
- Technology of famous text-to-image models like Dall-E or Stable Diffusion.
- Transforming a sample x_0 from original distribution to a sample x_T from a normal distribution by adding Gaussian noise over 1000 steps.
- The model learns to revert this process.

Noise Diffusion Models

- Model predicts the integrated noise for each timestep t and calculates the next timestep
- To generate a new image, we start with pure noise $x_T = N(0,1)$ and go through every timestep to obtain final prediction x_0 .

Noise Diffusion Models

- Noise diffusion models are data hungry
- Data scarcity for annotated MS Lesions
- Synthetic data generation is promising alternative

Goals

- Develop a method to fill WM lesions in MR-images using noise diffusion models.
- Create a noise diffusion model capable of generating new, synthetic WM lesions within MR-images.
- Assess the impact of lesion filling on cortical thickness measurements using current tools to evaluate their robustness.

Methods

BERN

b UNIVERSITÄT BERN

Models

Lesion Filling Conditional

- Model conditions on a binary mask and a voided MR-image
- Incorporated through concatenation at each timestep t

UNIVERSITÄT BERN

Models

Lesion Filling Conditional

Training step of conditional model

UNIVERSITÄT

Models

Lesion Filling Unconditional

- Train a noise diffusion model without conditioning
- Use RePaint [3] approach to condition the generation process by replacing pixels outside the mask with the MR-scan

RePaint sampling approach

Models

Lesion Synthesis Conditional

- Like conditional lesion filling
- Key distinction: Training target is inpainting WM lesions

Models

Lesion Synthesis Unconditional

- Train a noise diffusion model without conditioning
- Add coarse lesion to MRimage, add noise and start reverse diffusion process from timepoint t.

UNIVERSITÄT

Models

Lesion Synthesis Unconditional

Unconditional lesion synthesis pipeline

Datasets

- Different datasets with healthy and MS patients with lesions
- T1w and FLAIR images
- Binary lesion masks
- Synthetic random circle masks for lesion filling

U-Net Architectures

UNIVERSITÄT BERN

- 2D U-Net
- Pseudo 3D U-Net

Pseudo 3D U-Net layer

U-Net architecture [4]

Results

Lesion Filling: Evaluation

b Universität Bern

- Winner: Conditional model with pseudo 3D-Unet and 50% synthetic random circle masks
- Pseudo 3D: +5-8%
- Synthetic masks: +3-5%

	SSIM	PSNR	MSE	LPIPS
2D unconditional RePaint	0.83	28	8.2e-3	2.0e-3
2D conditional circles	0.9	32	4e-3	2e-3
2D conditional lesions	0.85	28	0.01	5e-3
2D conditional mixture	0.9	33	4e-3	1e-3
3D unconditional RePaint	0.90	32	3e-3	9e-4
3D conditional circles	0.95	38	1e-3	3e-4
3D conditional lesions	0.93	34	3e-3	4e-4
3D conditional mixture	0.96	39	8e-4	2e-4

UNIVERSITÄT

Lesion Filling: Examples

T1w after lesion filling

Lesion Filling: Solutions against Artifacts

b UNIVERSITÄT BEDN

- Dilation to prevent border artifacts
- Pseudo 3D layer to prevent stripe artifacts

Border (left arrow) and stripe artifacts (right arrow)

Lesion Filling: Training Duration

b UNIVERSITÄT BERN

RePaint achieves peak SSIM of 0.9 at 6000 training steps

Conditional models require 90'000 steps for comparable performance

Unconditional model is still underdeveloped

SSIM score of the 4 3D models unconditional RePaint (violet), conditional mixture (red), conditional circles (yellow) and conditional lesions (blue).

Samples of unconditional model without RePaint

UNIVERSITÄT

Lesion Filling: Robustness measurements

Comparing cortical thickness measurements before and after lesion filling

	Global mean thickness (%)	ROI-average (%)
ANTs	1.31	1.68
ANTsPyNet	0.52	0.84
Freesurfer	0.51	0.92
DL+DiReCT	0.05	0.14

Mean reproducibility errors

Color-coded reproducibility errors of the ROI-wise average cortical thicknesses.

Lesion Synthesis: Evaluation

b UNIVERSITÄT BERN

 Winner: Conditional model with pseudo 3D-Unet

	SSIM	PSNR	MSE	LPIPS
2D Unconditional (with $t_0 = 1$ and median	0.69	23.16	0.023	2.3e-3
lesion intensity)				
3D Unconditional (with $t_0 = 3$ and median	0.69	23.92	0.019	1.6e-4
lesion intensity)				
3D Conditional	0.79	27.13	0.009	1.3e-4

UNIVERSITÄT RERN

Lesion Synthesis: Examples

Example of synthetic lesion

UNIVERSITÄT BERN

Lesion Synthesis: Examples

Lesion Synthesis: Examples

(1) Before and (2) after adding a synthetic lesion to healthy tissue and (3) at a later timepoint with a natural new lesion at the same location.

Lesion Synthesis: Qualitative Evaluation

- Set of 20 examples
- Neuroradiologist nr. one identified three synthetically added lesions
- Neuroradiologist nr. two detected only one.

Lesion Synthesis: Artifacts with unconditional model

b UNIVERSITÄT

- Removal of coarse lesion
- High sensitivity to initial timestep and lesion intensity

Synthetic lesion: Partial lesion removal resulted in diffuse patterns

Lesion Synthesis: Artifacts with unconditional model

b UNIVERSITÄT RERN

 Lesions got inpainted as gray matter with T1w images.

Synthetic lesion inpainted as GM

Lesion Synthesis: Mask Registration

- Inpainting needs masks
- Registration of lesion masks across patients has often poor results

Poorly registered lesion mask

Discussion

Lesion Filling

- Good results
- Conditional model was better
- RePaint converges faster, but overfits
- Pseudo 3D U-Net and synthetic random circle masks improved performance

- Robustness varies between different tools
- Deep learning tools are more robust to WM lesions
- Lesion filling might become obsolete in the future

Lesion Synthesis

- Good results with conditional model
- Pseudo 3D U-Net improved performance
- Unconditional model never delivered satisfactory results

- Next step: Train model with synthetic dataset
- Better mask registration process is needed

Conclusions

- We could train good models for lesion filling and synthesis
- Lesion filling might become obsolete
- Next step for lesion synthesis is train a model with synthetic dataset

Thank you for your attention!

Vinzenz Uhr vinzenz.uhr@gmail.com

Thesis repository:

https://github.com/vinzenzuhr/
Thesis Diffusion Lesions

Brain Mapping, 33(9), 2012.

Bibliography

- . M. Battaglini, M. Jenkinson, and N. De Stefano. Evaluating and reducing the impact of white matter lesions on brain volume measurements. Human
- J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Advances in Neural Information Processing Systems, volume 2020-December, 2020.
- 3. A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool. RePaint: Inpainting using Denoising Diffusion Probabilistic Models. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2022-June, 2022.
- 4. O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. 5 2015.

Thank you for your attention!

Vinzenz Uhr vinzenz.uhr@gmail.com

Thesis repository:

https://github.com/vinzenzuhr/
Thesis Diffusion Lesions

Backup Slides

b UNIVERSITÄT BERN

Noise Diffusion Models

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I)$$

Data

Noise

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t; t), \sigma_t^2 I)$$

SCAN U

UNIVERSITÄT BERN

Datasets

Preprocessing

Pseudo 3D U-Net

- six feature map resolutions with two convolutional residual blocks per resolution level and one self-attention block.
- From highest to lowest resolution the U-Net stages use (128, 128, 256, 256, 512, 512) channels.

Min-SNR loss

- Smaller timesteps overfit faster
- Min-SNR reweights loss per

Validation loss of all 1000 timesteps

Loss timestep weights