IBM Coursera Advanced Data Science Capstone Project

Water Quality: Drinking water potability

BY: Hrishikesh Kini

Outlines

- Introduction
- Dataset Use case
- Data Exploration
- Data Preprocessing
- Model selection
- Model definition and training
- Model evaluation
- Hyperparameter Tuning
- Model deployment

Safe and readily available water is important for public health, whether it is used for drinking, domestic use, food production or recreational purposes. Improved water supply and sanitation, and better management of water resources, can boost countries' economic growth and can contribute greatly to poverty reduction.

Contaminated water and poor sanitation are linked to transmission of diseases such as **cholera**, **diarrhoea**, **dysentery**, **hepatitis A**, **typhoid**, **and polio**. Absent, inadequate, or inappropriately managed water and sanitation services expose individuals to preventable health risks.

This is particularly the case in health care facilities where both patients and staff are placed at additional risk of infection and disease when water, sanitation, and hygiene services are lacking. Globally, 15% of patients develop an infection during a hospital stay, with the proportion much greater in low-income countries.

So, I took some inspiration from this to use this **Water Quality** dataset to understand what constitutes to safe, Potable water and apply machine learning to it to distinguish between Potable and Non-Potable water.

2.1 billion people globally lack safe water at home (2015)

Of those people...

263 million

spend more than 30 minutes per round trip collecting water

drink water directly from surface sources, such as streams or lakes

844 million

do not have basic drinking water services

UNIVERSAL AND EQUITABLE ACCESS TO SAFE WATER FOR ALL BY 2030

- ph: pH of 1. water (0 to 14).
- 2. Hardness: Capacity of water to precipitate soap in mg/L.
- 3. **Solids**: Total dissolved solids in ppm.
- 4. **Chloramines**: Amount of Chloramines in ppm.
- 5. Sulfate: Amount of Sulfates dissolved in mg/L.
- 6. **Conductivity**: Electrical conductivity of water in μS/cm.
- 7. Organic_carbon: Amount of organic carbon in ppm.
- 8. **Trihalomethanes**: Amount of Trihalomethanes in µg/L.
- 9. **Turbidity**: Measure of light emitting property of water in NTU.
- 10. **Potability**: Indicates if water is safe for human consumption. Potable 1 and Not potable 0

```
raw_data = pd.read_csv(body)
raw_data.head()
```

memory usage: 256.1 KB

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
0	NaN	204.890455	20791.318981	7.300212	368.516441	564.308654	10.379783	86.990970	2.963135	0
1	3.716080	129.422921	18630.057858	6.635246	NaN	592.885359	15.180013	56.329076	4.500656	0
2	8.099124	224.236259	19909.541732	9.275884	NaN	418.606213	16.868637	66.420093	3.055934	0
3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524	100.341674	4.628771	0
4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279	31.997993	4.075075	0

4 9.0922	23 181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279	31.997993	4.075075	0
raw_data	.info()								
		rame.DataFrame							
	ex: 3276 entr: umns (total 10	ies, 0 to 3275 0 columns):	5						
# Colu	umn	Non-Null Coun	nt Dtype						
0 ph		2785 non-null	float64						
1 Hard	iness	3276 non-null	float64						
2 Sol:	ids	3276 non-null	float64						
3 Chlo	oramines	3276 non-null	float64						
4 Sult	fate	2495 non-null	float64						
5 Cond	ductivity	3276 non-null	float64						
			222						

Organic_carbon 3276 non-null float64

Trihalomethanes 3114 non-null float64

Turbidity 3276 non-null float64

Potability int64 3276 non-null dtypes: float64(9), int64(1)

Potablity of Water Quality

Distribution of features

1.0


```
data.Potability.value counts()
     1200
0
      811
Name: Potability, dtype: int64
Not potable is much more potable(1200 > 811) so we need to balance the data to prevent bias.
notpotable = data[data['Potability']==0]
potable = data[data['Potability']==1]
from sklearn.utils import resample
df minority upsampled = resample(potable, replace = True, n samples = 1200)
from sklearn.utils import shuffle
data = pd.concat([notpotable, df minority upsampled])
data = shuffle(data)
data.shape
(2400, 10)
data.Potability.value counts()
0
     1200
     1200
Name: Potability, dtype: int64
```

```
classifiers = [('Logistic Regression', lr), ('K Nearest Neighbours', knn),
               ('Decision Tree', dt), ('Random Forest', rf), ('AdaBoost', ada),
              ('Bagging Classifier', bagging), ('XGBoost', xgb)]
from sklearn.metrics import accuracy score
for classifier name, classifier in classifiers:
   # Fit clf to the training set
    classifier.fit(X train, y train)
   # Predict y pred
   y pred = classifier.predict(X test)
    accuracy = accuracy score(y test,y pred)
   # Evaluate clf's accuracy on the test set
    print('{:s} : {:.2f}'.format(classifier_name, accuracy))
  Logistic Regression: 0.53
  K Nearest Neighbours : 0.76
  Decision Tree : 0.77
  Random Forest: 0.88
  AdaBoost: 0.65
  Bagging Classifier: 0.85
```

```
model = models.Sequential()
model.add(layers.Dense(16, input shape=(9,)))
model.add(BatchNormalization())
model.add(Activation("relu"))
model.add(layers.Dense(32))
model.add(BatchNormalization())
model.add(Activation("relu"))
model.add(layers.Dense(16))
model.add(BatchNormalization())
model.add(Activation("relu"))
model.add(layers.Dense(1))
model.add(Activation("sigmoid"))
opt = Adam(learning rate=0.001)
model.compile(loss="binary crossentropy",
              optimizer=opt,
              metrics=['accuracy'])
```


0.8 Train Error Val Error 0.7 0.6 Loss 0.5 0.4 0.3 50 100 250 300 150 200 Epoch

Applying StandardScaler befor fitting ML model to normalize the features.

```
from sklearn.preprocessing import StandardScaler
st = StandardScaler()
```

col= x.columns x[col] = st.fit transform(x[col])

x[col]

```
X train, X test, Y train, Y test = train_test_split(x,y, test_size = 0.1)
from sklearn.ensemble import RandomForestClassifier
```

from sklearn.model selection import train test split

print("Accuracy:", metrics.accuracy score(Y test, y pred))

#Import scikit-learn metrics module for accuracy calculation from sklearn import metrics # Model Accuracy, how often is the classifier correct?

classifier.fit(X train, Y train)

y pred=classifier.predict(X test)

classifier = RandomForestClassifier()

Accuracy: 0.85833333333333333

```
from sklearn.model selection import RandomizedSearchCV
# Use the random grid to search for best hyperparameters
# First create the base model to tune
from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor()
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available cores
rf random = RandomizedSearchCV(estimator = rf, param distributions = random grid, n iter = 100, cv = 3, verbose=2, random state=
7, n jobs = -1
# Fit the random search model
rf random.fit(X train, Y train)
```

```
rf random.best params
{'n estimators': 230,
 'min samples split': 2,
 'min_samples_leaf': 1,
 'max features': 'sqrt',
 'max depth': 60,
 'bootstrap': False}
rf random.best estimator
RandomForestRegressor(bootstrap=False, max depth=60, max features='sqrt',
                      n estimators=230)
```

```
y_pred_r = rf_random.predict(X_test)
y_pred_r = y_pred_r.round()
```

Accuracy: 0.8791666666666667

```
#Import scikit-learn metrics module for accuracy calculation
from sklearn import metrics
# Model Accuracy, how often is the classifier correct?
print("Accuracy:",metrics.accuracy_score(Y_test, y_pred_r))
```

	precision	recall	f1-score	support
0	0.87	0.88	0.88	118
1	0.88	0.88	0.88	122
accuracy			0.88	240
macro avg	0.88	0.88	0.88	240
weighted avg	0.88	0.88	0.88	240

Accuracy is 88%

```
print(scoring endpoint)
https://us-south.ml.cloud.ibm.com/ml/v4/deployments/5a40960c-2088-47cd-96ab-97baf5e729da/predictions
# use our WML client to score our model
# add some test data
scoring payload = {"input data": [
    {'fields': ['ph', 'Hardness', 'Solids', 'Chloramines', 'Sulfate', 'Conductivity',
                'Organic carbon', 'Trihalomethanes', 'Turbidity'],
     'values': [[6, 191, 6200, 7.5, 333, 425, 20.8, 98.3, 3.7]]
    }]}
predictions = client.deployments.score(deployment uid, scoring payload)
print('prediction', json.dumps(predictions, indent=2))
prediction {
  "predictions": [
      "fields": [
        "prediction"
      "values": [
          0.45217391304347826
```

scoring endpoint = client.deployments.get scoring href(created deployment)

Water Quality: Drinking water potability

Made by Hrishikesh Kini

Enter The Values

THANK YOU