OWON, a product of Lilliput

1. SCPI (Standard Commands for Programmable Ins	truments)5
SCPI Structure	5
Syntax Rule	
Commands Combination	
SCPI Abbreviation	
Third-party API for SCPI	
2. IEEE488.2 Common Commands	
	-
*IDN	
*RST	9
3. SCPI for Oscilloscope Part	10
:HORIzontal command sub-structures	10
i. :HORIzontal:SCALe	10
ii. :HORIzontal:OFFSet	10
:CH command sub-structures	11
i. :CH <n>:BANDwidth</n>	11
ii. :CH <n>:DISPlay</n>	12
iii. :CH <n>:COUPling</n>	12
iv. :CH <n>:SCALe</n>	13
v. :CH <n>:OFFSet</n>	
vi. :CH <n>:INVErse</n>	14
:ACQuire command sub-structures	15
i. :ACQuire:MODE	15
ii. :ACQuire:DEPMEM	15
iii. :ACQuire:PRECision	
:TRIGger command sub-structures	17
i. :TRIGger:STATUS	
ii. :TRIGger:FORCe	17
iii. :TRIGger:HALF	17
iv. :TRIGger:TYPE	
v. :TRIGger:SINGle	18
i). :TRIGger:SINGle:MODE <type></type>	18
ii). :TRIGger:SINGle:SWEep	19
iii). :TRIGger:SINGle:HOLDoff	19
iv). :TRIGger:SINGle:EDGE	20
:TRIGger:SINGle:EDGE:SOURce	
:TRIGger:SINGle:EDGE:COUPling	
:TRIGger:SINGle:EDGE:SLOPe	
:TRIGger:SINGle:EDGE:LEVel	
v). :TRIGger:SINGle:VIDeo	
:TRIGaer:SINGle:VIDeo:SOURce	

:TRIGger:SINGle:VIDeo:MODU	22
:TRIGger:SINGle:VIDeo:SYNC	23
:TRIGger:SINGle:VIDeo:LNUM	23
vi). :TRIGger:SINGle:SLOPe	24
:TRIGger:SINGle:SLOPe:ULevel	24
:TRIGger:SINGle:SLOPe:LLevel	25
:TRIGger:SINGle:SLOPe:SOURce	25
:TRIGger:SINGle:SLOPe:TIME	26
:TRIGger:SINGle:SLOPe:WHEN	26
vii). :TRIGger:SINGle:PULSe	27
:TRIGger:SINGle:PULSe:SOURce	27
:TRIGger:SINGle:PULSe:TIME	28
:TRIGger:SINGle:PULSe:COUPling	28
:TRIGger:SINGle:PULSe:WHEN	29
:LAN command sub-structures	30
i. :LAN:DEVice	30
ii. :LAN:PROTocol	30
iii. :LAN:IPADdress	31
iv. :LAN:MASK	32
v. :LAN:GATeway	32
vi. :LAN:DNS	33
vii.:LAN:MAC	33
:WLAN command sub-structures	34
i. :WLAN:MODe	34
ii. :WLAN:PROTocol	
iii. :WLAN:IPADdress	35
iv. :WLAN:SSID	36
v. :WLAN:PSK	37
vi. :WLAN:MAC	37
vii. :WLAN:RESTart	38
:WAVeform command sub-structures	38
i. :WAVeform:DATA	38
ii. the combination of commands to read the original data	38
:WAVeform:BEGin	39
:WAVeform:PREamble	39
:WAVeform:RANGe	39
:WAVeform:FETCh	40
:WAVeform:END	40
:MEASure command sub-structures	41
i. :MEASure:DISPlay	41
ii. :MEASure:TIMer	42
iii. :MEASure:SOURce	42
iv. :MEASure:OVERflow	43
v. :MEASure: <items></items>	43
vi ·MEASure· <items> ? <cha> <chb></chb></cha></items>	46

C	Other Commands	47
	i. :AUToset	47
	ii. :CALibrate	47
	iii. :RUN	47
	iv. :STOP	48
	v. :LAN:PORT	48
4. S	CPI for Function Generator Part*	49
:F	FUNCtion command sub-structures	49
	i. :FUNCtion	49
	ii. :FUNCtion:FREQuency	49
	iii. :FUNCtion:AMPLitude	50
	iv. :FUNCtion:OFFSet	51
	v. :FUNCtion:RAMP:SYMMetry	51
	vi. :FUNCtion:PULSe:DTYCycle	52
5. S	CPI for Multimeter Part*	53
:1	MEASure command sub-structures	53
	i. :MEASure:VOLTage:DC	53
	ii. :MEASure:VOLTage:AC	53
	iii. :MEASure:CURRent:DC	54
	iv. :MEASure:CURRent:AC	54
	v. :MEASure:RESistance	55
	vi. :MEASure:CONTinuity	55
	vii. :MEASure:DIODe	56
	viii. :MEASure:CAPacitance	56
	ix. :MEASure:TEMPerature	57
6. S	upplement: Sampling Rate Conversion Rule	58
7. Si	upplement: WAVeform:DATA? Return Result	59
	i. empty data packet content parsing	
	ii. effective data packet content parsing	
	iii. other accompanying information from data packet	
	iv Calculation Tips Towards Waveform Data	67

1. SCPI (Standard Commands for Programmable Instruments)

SCPI Structure

SCPI comes in tree structure, with sub-structures (command lines) covered. Each sub-structure (command line) comprises one root keyword and one keyword, or more layers keyword.

The command line starts in ":", with ":" as the separator between keywords, after the last keyword, followed by available parameters, with "space" as the separator between keyword and parameter. The "?" after one command line means the checking inquiry for the command line.

Giving an example,

:TRIGger:SINGle:EDGE:SOURce <source>

From which, **TRIGger** is the root keyword, **SINGIe**, **EDGE** and **SOURce** is the second-layer, third-layer and fourth-layer keywords. This command line starts in ":", with next 3 respective ":" to separate the keywords, <source> as available parameters, with "space" to separate <source> and previous part.

:TRIGger:SINGle:EDGE:SOURce?

"?" is to inquire ":TRIGger:SINGle:EDGE:SOURce".

Syntax Rule

SCPI language defines the keyword of command lines, the keyword quantity within one command line is flexible, could be more or less. The keywords mainly come from meaningful English words, easy to remember, so-called "mnemonic". Mnemonic gets 2 category: long type and short type, generally speaking, the short type is always the abbreviation of the long type. Some special symbols been introduced to separate keywords, keyword and parameter, parameters, command lines.

Mnemonic Formation Rule

- i. Judged by the character length of one word, for the word not longer than 4 characters, it could be mnemonic by itself. Giving an example, the word "free" been used as mnemonic "FREE".
- ii. For the word longer than 4 characters, its first 4 characters work as mnemonic, like "FREQ" from the word "frequency".
- iii. Provided the 4th character from any mnemonic is vowel (a, e, i, o, u), delete the character from mnemonic. Giving an example, the word "power" been shorted as "POW" when working as mnemonic.
- iv. For word group, or sentence, the first character from every word, and the full character from last word forms the mnemonic. Giving ans example, the word group "input voltage" gets "IVOLtage" as mnemonic.

Special Symbol (as separator)

i. space (" ")

Been introduced to separate command and parameter.

ii. colon (":")

The different position of colon matches different meaning: when it locates the beginning of one command line, the command after it will be root command; when it is between two keywords, the keyword after it always mean the next layer.

iii. asterisk ("*")

The command line starts with asterisk been called "common command", been given to execute IEEE488.2 standard command.

iv. braces ("{ }")

The contents covered in braces is parameter. The vertical "|" separates parameters. When the command been introduced, at least one parameter from "{ }" should be chosen.

v. vertical ("|")

The vertical "|" separates parameters.

vi. square brackets ("[]")

The contents covered in the square brackets isn't a must, in other words, contents here could been chosen, or not been chosen.

vii. triangle brackets ("< >")

The contents covered in the triangle brackets is effective parameter, one of these effective parameters should be chosen.

Parameter Type

3 type parameter been referred: Discrete, Integer and Bool

i. Discrete

One of given options should be chosen as the parameter. Giving an example,

:TRIGger:SINGle:EDGE:SOURce <source>

From which, the option for <source> could be one of CH1|CH2|CH3|CH4*.

* |CH3|CH4 works for VDS6074/A, VDS6104/A and VDS6104P

:TRIGger:SINGle:EDGe:SOURce?

When this command line comes, the result will be "CH1", or "CH2", or "CH3", or "CH4".

ii. Integer

Unless specified, the parameter could be any NR1 format integer within the effective value range. Note: Any parameter with decimal set will cause errors / abnormal result.

Giving an example,

:LAN:PORT<port>

From which, <port> could be any integer ranges from 0 till 65535.

:LAN:PORT?

When this command line comes, the result will be any integer ranges from 0 till 65535.

iii. Bool

The parameter value reads "OFF", or "ON", giving an example,

:CH1:DISPlay <bool>

From which, <bool> could be one of {OFF|ON}

:CH1:DISPlay?

When this command line comes, the result will be "OFF", or "ON".

iv. Real

The parameter could be any real within the effective value range,

Note: Any NR2 format decimal, or any NR3 format scientific notation parameter is acceptable.

giving an example

:TRIGger:SINGle:HOLDoff <time>

From which, <time> could be any real ranges from 0.0000001, or 1.000000e-07 (i.e. 100ns) till 10, or 0.1e+02 (i.e. 10s)

:TRIGger:SINGle:HOLDoff?

When this command line comes, the result will be certain real within a.m. ranges.

Commands Combination

More than 1 command lines could be sent to device as commands combination, with the separator ";" after each command line (not a must for the last command line), and the commands combination enters into working as per the sequence of command lines.

Giving an example,

:TRIG:SING:MODE EDGE;:TRIG:SING:EDGE:SOUR CH2;:TRIG:SING:EDGE:SOUR?;......

SCPI Abbreviation

When editing command line, the syntax rule should be well-followed, with capital and small letter combined, among which, capital letter always act as the abbreviation of the current command. When abbreviated the current command, the full capital letter should be there. For the abbreviation of parameter with unit, please refer to the capital/small letter rule within parameter range from sub-structures.

Giving examples,

Example 1

:ACQuire:MODE SAMPle

Abbreviated as

:ACQ:MODE SAMP

Example 2

:CH1:SCALe 1v Abbreviated as

:CH1:SCAL 1v

Third-party API for SCPI

USB or LAN communication supported, covering USBTMC, LXI and socket option.

Note: At socket communication option, SCPI strings should be terminated with "\n" (new line) character, or "\r" (return) character.

2. IEEE488.2 Common Commands

*IDN

Syntax

*IDN?

Description

The inquiry returns the device ID, in the form of ASCII string.

Return Result

OWON <model no.> <serial number> VX.XX.XX

Among which, <model no.> matches the model no. of the current device;

<serial number> indicates the device serial number;

VX.XX.XX tells the device software version info.s.

Example

*IDN?

(The Return Result) OWON VDS6102 1928036 V2.01.30

*RST

Syntax

*RST

Description

Restore the device to its default status.

3. SCPI for Oscilloscope Part

:HORIzontal command sub-structures

i.: HORIzontal: SCALe

Syntax

:HORIzontal:SCALe <scale value>

:HORIzontal:SCALe?

Description

Set the division of time base.

Parameter

Parameter Name	Туре	Range	Default
<scale_value></scale_value>	discrete	refer to Explanation	1.0ms

Explanation

With main time base setting as default value.

The options for time base -

 $\{1.0 ns | 2.0 ns | 5.0 ns | 10 ns | 20 ns | 50 ns | 100 ns | 200 ns | 500 ns | 1.0 us | 2.0 us | 5.0 us | 10 us | 20 us | 500 us | 1.0 us | 2.0 us | 5.0 us | 1.0 us | 2.0 us | 1.0 us | 2.0 us | 1.0 us | 2.0 us | 2.0$

Return Result

The inquiry returns the time base division value, in the form of ASCII string.

Example

:HORI:SCAL 200us /* Set the main time base division at 200us. */

:HORI:SCAL?

(The Return Result) 200us

ii.:HORIzontal:OFFSet

Syntax

:HORIzontal:OFFSet <value>

:HORIzontal:OFFSet?

Description

Set the horizontal trigger position from the time base.

Parameter

Parameter Name	Туре	Range	Default
<value> Real</value>	Pool	refer to Explanation	0
	i Neai	(no. of division for horizontal movement)	

Explanation

Range:

move rightwards (negative division no.): - memory depth / 2 / (sampling rate x time base) move leftwards (positive division no.): 50 000 000 / (sampling rate x time base)

If the current main time base set at 500 us/div, assume the horizontal movement is 2 division, the horizontal offset time will be 1.000 ms.

Return Result

The inquiry returns the horizontal trigger position, in the form of ASCII string.

Example

:HORI:OFFS 2 /* set the horizontal position moves by +2 division */

:HORI:OFFS? /* time base set at 500us, horizontal position displays "1.000ms"*/

(The Return Result) 2

:CH command sub-structures

i. :CH<n>:BANDwidth

Syntax

:CH<n>:BANDwidth <type>

:CH<n>:BANDwidth?

Description

To set / inquire the bandwidth limit parameter of the specified channel.

Parameter

Parameter Name	Туре	Range	Default
<n></n>	Discrete	{1 2 3 4}*	1
< type>	Discrete	{OFF 20M}	OFF

^{* 3|4} works for VDS6074/A, VDS6104/A and VDS6104P

Explanation

The range of <type> decided by the device model no.

20M: Activate the bandwidth limit at 20MHz, the high-frequency components from the measured signal will be shielded.

OFF: Disable the bandwidth limit function, the high-frequency component from the measured signal will be displayed.

Return Result

The inquiry returns "OFF", or "20M".

Example

:CH1:BAND 20M /*activate the bandwidth limit at 20MHz from Channel 1*/

:CH1:BAND?

(The Return Result) 20M

ii. :CH<n>:DISPlay

Syntax

:CH<n>:DISPlay <bool>

:CH<n>:DISPlay?

Description

Turns on/off / inquires the display of the channel input signal.

Parameter

Parameter Name	Туре	Range	Default
<n></n>	Discrete	{1 2 3 4}*	1
<bool></bool>	Bool	{OFF ON}	ON

^{* 3|4} works for VDS6074/A, VDS6104/A and VDS6104P

Return Result

The inquiry returns "OFF", or "ON".

Example

:CH1:DISP ON /* turns on the display of Channel1 signal */

:CH1:DISP?

(The Return Result) ON

iii. :CH<n>:COUPling

Syntax

:CH<n>:COUPling <coupling>

:CH<n>:COUPling?

Description

To set / inquire the coupling mode of the channel input to "AC", "DC" or "GND".

Parameter

Parameter Name	Туре	Range	Default
<n></n>	Discrete	{1 2 3 4}*	1
<coupling></coupling>	Discrete	{AC DC GND}	AC

^{* 3|4} works for VDS6074/A, VDS6104/A and VDS6104P

The inquiry returns "AC", "DC" or "GND".

Example

:CH1:COUP DC /* sets the coupling mode of Channel 1 input to "DC" */

:CH1:COUP?

(The Return Result) DC

iv. :CH<n>:SCALe

Syntax

:CH<n>:SCALe <scale>

:CH<n>:SCALe?

Description

To set / inquire the vertical scale of the displayed signal from the specified channel.

Parameter

Parameter Name	Туре	Range	Default	
<n></n>	Discrete	{1 2 3 4}*	1	
<scale> Discrete</scale>		{2mv 5mv 10mv 20mv 50mv 1	1v	
\50aic/	Discrete	00mv 200mv 500mv 1v 2v 5v}	I V	

^{* 3|4} works for VDS6074/A, VDS6104/A and VDS6104P

Explanation

When setting the parameter, the probe rate is one factor should be considered. Giving an example, the probe rate in X10, to set 10v division, the command line goes in :CH<n>:SCALe 1v

Return Result

The inquiry returns the vertical division value, in the form of ASCII string.

Example

:CH1:SCAL 1v /* sets the vertical position of Channel 1 at 1V/div */

:CH1:SCAL?

(The Return Result) 1v

v. :CH<n>:OFFSet

Syntax

:CH<n>:OFFSet <offset>

:CH<n>:OFFSet?

Description

To set / inquire the vertical offset of the displayed signal from the specified channel.

Parameter

Parameter Name	Туре	Range	Default
<n></n>	Discrete	{1 2 3 4}*	1
		refer to Explanation	1-CH display
			CH <n>: 0</n>
<offset></offset>	Real	(no. of division for vertical offset of the	2-CH display
		displayed signal from the specified	CH1: 2
		channel)	CH2: - 2

^{* 3|4} works for VDS6074/A, VDS6104/A and VDS6104P

Explanation

Range -

2mv division: -1000 to 1000
5mv division: -400 to 400
10mv division: -200 to 200
20mv division: -100 to 100
50mv division: -40 to 40
100mv division: -200 to 200
200mv division: -100 to 100
500mv division: -40 to 40
1v division: -40 to 40
2v division: -20 to 20
5v division: -8 to 8

Return Result

The inquiry returns the division position from zero point, in the form of ASCII string.

Example

:CH1:OFFS 1 /* sets the vertical offset of Channel 1 at 1 div. */

:CH1:OFFS?

(The Return Result) 1.000000e+00

vi. :CH<n>:INVErse

Syntax

:CH<n>:INVErse <bool>

:CH<n>:INVErse?

Description

Turns on/off / inquires the inverse of the displayed channel signal.

Parameter

Parameter Name	Туре	Range	Default
<n></n>	Discrete	{1 2 3 4}*	1
<bool></bool>	Bool	{OFF ON}	OFF

^{* 3|4} works for VDS6074/A, VDS6104/A and VDS6104P

The inquiry returns "OFF", or "ON".

Example

:CH1:INVE ON /* turns the inverse of channel1 on. */

:CH1:INVE?

(The Return Result) ON

:ACQuire command sub-structures

i. :ACQuire:MODE

Syntax

:ACQuire:MODE <type>
:ACQuire:MODE?

Description

To set / inquire the acquisition mode of the device.

Parameter

Parameter Name	Туре	Range	Default
<type></type>	Discrete	{SAMPle PEAK}	SAMPle

Return Result

The inquiry returns "SAMPle", or "PEAK".

Example

:ACQ:MODE SAMP /* sets the acquisition mode to sample */

:ACQ:MODE?

(The Return Result) SAMPle

ii.: ACQuire: DEPMEM

Syntax

:ACQuire:DEPMEM <mdep>

:ACQuire:DEPMEM?

Description

To set / inquire the stored sampling points captured in one trigger from input signal.

Parameter

Parameter Name	Туре	Range	Default
<mdep></mdep>	Discrete	{1K 10K 100K 1M 10M 25M 50M 100M 250M}*	1K

^{* 25}M|50M|100M|250M works for VDS6102P and VDS6104P

Return Result

The inquiry returns the actual quantity of sampling points.

Example

:ACQ:DEPMEM 10K /* sets the memory depth to "10K" */

:ACQ:DEPMEM?

(The Return Result) 10K

iii. :ACQuire:PRECision

Syntax

:ACQuire:PRECision

:ACQuire:PRECision?

Description

To set / inquire the vertical resolution of the device.

Parameter

Parameter Name	Туре	Range	Default
<pre><prec></prec></pre>	Discrete	{8 12 14}	8

Return Result

The inquiry returns the current vertical resolution.

Example

:ACQ:PREC 12 /* sets the vertical resolution to 12 bits */

:ACQ:PREC?

(The Return Result) 12

:TRIGger command sub-structures

i. :TRIGger:STATUS

Syntax

:TRIGger:STATUS?

Description

Inquires the current trigger status.

Parameter

Parameter Type	Range	Default
Discrete	{AUTO STOP SCAN TRIG}	

Return Result

"AUTO", or "STOP", or "SCAN", or "TRIG".

Example

:TRIG:STATUS?

(The Return Result) AUTO

ii.:TRIGger:FORCe

Syntax

:TRIGger:FORCe

Description

Sets the forced trigger.

Explanation

This command forces the device to acquire the signal, even the currently-set trigger condition hasn't been met.

iii. :TRIGger:HALF

Syntax

:TRIGger:HALF

Description

Sets the trigger level at the vertical mid-point from the amplitude value of the triggered signal.

iv.:TRIGger:TYPE

Syntax

:TRIGger:TYPE <type>
:TRIGger:TYPE?

Description

To set / inquire the current trigger type.

Parameter

Parameter Name	Туре	Range	Default
<type></type>	Discrete	{SINGle}	SINGle

Return Result

The inquiry returns the current trigger type.

Example

:TRIG:TYPE SING /* sets the current trigger type to single trigger */

:TRIG:TYPE?

(The Return Result) SINGle

v.:TRIGger:SINGle

i). :TRIGger:SINGle:MODE <type>

Syntax

:TRIGger:SINGle:MODE <type>

:TRIGger:SINGle:MODE?

Description

To set / inquire the trigger type under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<type></type>	Discrete	{EDGE VIDeo PULSe SLOPe}	EDGE

Return Result

The inquiry returns the current trigger type under single trigger condition.

Example

:TRIG:SING:MODE EDGE /* set edge as the current trigger type under single trigger condition. */

:TRIG:SING:MODE?

(The Return Result) EDGE

ii).:TRIGger:SINGle:SWEep

Syntax

:TRIGger:SINGle:SWEep <mode>

:TRIGger:SINGle:SWEep?

Description

To set / inquire the trigger mode under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<mode></mode>	Discrete	{AUTO NORMal SINGle}	AUTO

Return Result

The query returns the current trigger mode.

Example

:TRIG:SING:SWE NORM /* sets normal as the current trigger mode under single trigger condition. */

:TRIG:SING:SWE?

(The Return Result) NORMal

iii).:TRIGger:SINGle:HOLDoff

Syntax

:TRIGger:SINGle:HOLDoff <time>

:TRIGger:SINGle:HOLDoff?

Description

To set / inquire the trigger hold-off time. The default unit reads "s".

Parameter

Parameter Name	Туре	Range	Default
<time></time>	Real	100ns - 10s	100ns

Return Result

The inquiry returns the trigger hold-off time, value comes in scientific notation, like 1.000000e+04.

Example

:TRIG:SING:HOLD 0.001 /* sets the trigger hold-off time at 1ms */

:TRIG:SING:HOLD?

(The Return Result) 1.000000e-03

iv).:TRIGger:SINGle:EDGE

:TRIGger:SINGle:EDGE:SOURce

Syntax

:TRIGger:SINGle:EDGE:SOURce <source>

:TRIGger:SINGle:EDGE:SOURce?

Description

To set / inquire the source of edge trigger under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<source/>	Discrete	{CH1 CH2 CH3 CH4}*	CH1

^{*} CH3|CH4 works for VDS6074/A, VDS6104/A and VDS6104P

Return Result

The inquiry returns "CH1", or "CH2", or "CH3", or "CH4".

Example

:TRIG:SING:MODE EDGE

:TRIG:SING:EDGE:SOUR CH2 /* sets "CH2" as the source of edge trigger under single trigger condition */

:TRIG:SING:EDGE:SOUR? (The Return Result) CH2

:TRIGger:SINGle:EDGE:COUPling

Syntax

:TRIGger:SINGle:EDGE:COUPling <coupling>

:TRIGger:SINGle:EDGE:COUPling?

Description

To set / inquire the coupling mode of edge trigger under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<coupling></coupling>	Discrete	{DC AC HF}	DC

Return Result

The inquiry returns "DC", or "AC", or "HF".

Example

:TRIG:SING:MODE EDGE

:TRIG:SING:EDGE:COUP AC /* sets "AC" as the coupling mode of edge trigger under single trigger condition */

:TRIG:SING:EDGE:COUP? (The Return Result) AC

:TRIGger:SINGle:EDGE:SLOPe

Syntax

:TRIGger:SINGle:EDGE:SLOPe <slope>

:TRIGger:SINGle:EDGE:SLOPe?

Description

To set / inquire the slope status of edge trigger under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<slope></slope>	Discrete	{RISE FALL}	RISE

Return Result

The inquiry returns "RISE", or "FALL".

Example

:TRIG:SING:MODE EDGE / * sets edge as trigger mode under single trigger condition * /

:TRIG:SING:EDGE:SLOP FALL /* sets "FALL" as the slope of edge trigger under single trigger condition */

:TRIG:SING:EDGE:SLOP? (The Return Result) FALL

:TRIGger:SINGle:EDGE:LEVel

Syntax

:TRIGger:SINGle:EDGE:LEVel <level>

:TRIGger:SINGle:EDGE:LEVel?

Description

To set / inquire the trigger level of edge trigger under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<level></level>	Real	±5 Divs - OFFSET (Div)	0

Return Result

The inquiry returns the division position of trigger level, in the form of ASCII string.

Example

:TRIG:SING:MODE EDGE / * sets edge as trigger mode under single trigger condition * /

:TRIG:SING:EDGE:SOUR CH1 /* sets "CH1" as the source of edge trigger under single trigger condition */

:TRIG:SING:EDGE:LEV 1 /* sets the trigger level at 1 division above zero position*/

:TRIG:SING:EDGE:LEV? (The Return Result) 1

v). :TRIGger:SINGle:VIDeo

:TRIGger:SINGle:VIDeo:SOURce

Syntax

:TRIGger:SINGle:VIDeo:SOURce <source>

:TRIGger:SINGle:VIDeo:SOURce?

Description

To set / inquire the source under of video trigger under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<source/>	Discrete	{CH1 CH2 CH3 CH4}*	CH1

^{*} CH3|CH4 works for VDS6074/A, VDS6104/A and VDS6104P

Return Result

The inquiry returns "CH1", or "CH2", or "CH3", or "CH4".

Example

:TRIG:SING:VID:SOUR CH2 /* sets "CH2" as the source of video trigger under single trigger condition */

:TRIG:SING:VID:SOUR? (The Return Result) CH2

:TRIGger:SINGle:VIDeo:MODU

Syntax

:TRIGger:SINGle:VIDeo:MODU <standard>

:TRIGger:SINGle:VIDeo:MODU?

Description

To set / inquire video standard of video trigger under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<standard></standard>	Discrete	{PAL SECam NTSC}	NTSC

The inquiry returns "PAL", or "SECam", or "NTSC".

Example

:TRIG:SING:MODE VID /* sets video as trigger mode under single trigger condition */

:TRIG:SING:VID:MODU NTSC /* selects "NTSC" as the video standard of video trigger under single trigger

condition */

:TRIG:SING:VID:MODU? (The Return Result) NTSC

:TRIGger:SINGle:VIDeo:SYNC

Syntax

:TRIGger:SINGle:VIDeo:SYNC <mode>

:TRIGger:SINGle:VIDeo:SYNC?

Description

To set / inquire the synchronization type of video trigger under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<mode></mode>	Discrete	{LINE FIELd ODD EVEN LNUM}	LINE

Return Result

The inquiry returns "LINE", or "FIELd", or "ODD", or "EVEN" or "LNUM".

Example

:TRIG:SING:MODE VID /* sets video as trigger mode under single trigger condition */

:TRIG:SING:VID:SYNC ODD /* selects "ODD" as the synchronization type of video trigger under single trigger

condition */

:TRIG:SING:VID:SYNC?
(The Return Result) ODD

:TRIGger:SINGle:VIDeo:LNUM

Syntax

:TRIGger:SINGle:VIDeo:LNUM <line> :TRIGger:SINGle:VIDeo:LNUM?

Description

To set / inquire the line number when the synchronization type is "LNUM", in video trigger mode under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
		NTSC: 1 to 525	
	Integer	PAL: 1 to 625	1
		SECam: 1 to 625	

Return Result

The inquiry returns the line number in the form of ASCII string when the synchronization type is "LNUM", in video trigger mode under single trigger condition.

Example

:TRIG:SING:MODE VID /* sets video as trigger mode under single trigger condition */

:TRIG:SING:VID:LNUM 100 /* sets "100" as the line number when the synchronization type is "LNUM", in video trigger mode under single trigger condition. */

:TRIG:SING:VID:LNUM? (The Return Result) 100

vi).:TRIGger:SINGle:SLOPe

:TRIGger:SINGle:SLOPe:ULevel

Syntax

:TRIGger:SINGle:SLOPe:ULevel <volt>

:TRIGger:SINGle:SLOPe:ULevel?

Description

To set / inquire the voltage value of the upper limit from the trigger level in slope trigger mode under single trigger condition.

Parameter

Parameter Name	Type	Range	Default
<volt></volt>	Real	varies from different voltage division	-

Return Result

The inquiry returns the voltage value of the upper limit from the trigger level in slope trigger mode under single trigger condition, value comes in scientific notation, like 1.000000e+04.

Example

:TRIG:SING:MODE SLOP /* sets slope as trigger mode under single trigger condition */

:TRIG:SING:SLOP:UL 1 /* sets the voltage value of the upper limit from the trigger level in slope trigger mode at

1 division */

:TRIG:SING:SLOP:UL?

(The Return Result) 1.000000e-01

:TRIGger:SINGle:SLOPe:LLevel

Syntax

:TRIGger:SINGle:SLOPe:LLevel <volt>

:TRIGger:SINGle:SLOPe:LLevel?

Description

To set / inquire the voltage value of the lower limit from the trigger level in slope trigger mode under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<volt></volt>	Real	varies from different voltage division	1

Return Result

The inquiry returns the voltage value of the lower limit from the trigger level in slope trigger mode under single trigger condition, value comes in scientific notation, like 1.000000e+04.

Example

:TRIG:SING:MODE SLOP /* sets slope as trigger mode under single trigger condition */

:TRIG:SING:SLOP:LL 1 /* sets the voltage value of the lower limit from the trigger level in slope trigger mode at 1 division */

:TRIG:SING:SLOP:LL?

(The Return Result) 1.000000e-01

:TRIGger:SINGle:SLOPe:SOURce

Syntax

:TRIGger:SINGle:SLOPe:SOURce <source>

:TRIGger:SINGle:SLOPe:SOURce?

Description

To set / inquire the trigger source in slope trigger mode under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<source/>	Discrete	{CH1 CH2 CH3 CH4}*	CH1

^{*} CH3|CH4 works for VDS6074/A, VDS6104/A and VDS6104P

The inquiry returns "CH1", or "CH2", or "CH3", or "CH4".

Example

:TRIG:SING:SLOP:SOUR CH2 /* sets "CH2" as the trigger source in slope trigger mode under single

trigger condition */

:TRIG:SING:SLOP:SOUR? (The Return Result) CH2

:TRIGger:SINGle:SLOPe:TIME

Syntax

:TRIGger:SINGle:SLOPe:TIME <time>

:TRIGger:SINGle:SLOPe:TIME?

Description

To set / inquire the time parameter in slope trigger mode under single trigger condition

Parameter

Parameter Name	Туре	Range	Default
<time></time>	String	30ns to 10s	30ns

Return Result

The inquiry returns the time in slope trigger mode under single trigger condition, value comes in scientific notation, like 1.000000e+04.

Example

:TRIG:SING:MODE SLOP / * sets slope as trigger mode under single trigger condition * /

:TRIG:SING:SLOP:TIME 1ms /* sets the slope trigger time at 1ms */

:TRIG:SING:SLOP:TIME?

(The Return Result) 1.000000e-03

:TRIGger:SINGle:SLOPe:WHEN

Syntax

:TRIGger:SINGle:SLOPe:WHEN <when>

:TRIGger:SINGle:SLOPe:WHEN?

Description

To set / inquire the trigger condition of the slope trigger, in slope trigger mode under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<when></when>	Discrete	{PGReater PLESs PGLess NGR eater NLESs NGLess}	PGReater

Return Result

The inquiry returns PGReater, or PLESs, or NGReater, or NLESs, or PGLess, or NGLess.

Explanation

PGReater: With given time parameter, the trigger happens when the positive slope time of the input signal larger than the given time.

PLESs: With given time parameter, the trigger happens when the positive slope time of the input signal smaller than the given time.

PGLess: With given time upper limit and lower limit, the trigger happens when the positive slope time of the input signal lager than given time lower limit, and smaller than given time upper limit.

NGReater: With given time parameter, the trigger happens when the negative slope time of the input signal larger than the given time.

NLESs: With given time parameter, the trigger happens when the negative slope time of the input signal smaller than the given time.

NGLess: With given time upper limit and lower limit, the trigger happens when the negative slope time of the input signal lager than given time lower limit, and smaller than given time upper limit.

Example

:TRIG:SING:MODE SLOP /* sets slope as trigger mode under single trigger condition */

:TRIG:SING:SLOP:WHEN PLES /* sets the slope trigger condition to PLESs*/

:TRIG:SING:SLOP:WHEN? (The Return Result) PLESs

vii). :TRIGger:SINGle:PULSe

:TRIGger:SINGle:PULSe:SOURce

Syntax

:TRIGger:SINGle:PULSe:SOURce <source>

:TRIGger:SINGle:PULSe:SOURce?

Description

To set / inquire the trigger source of the pulse trigger under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<source/>	Discrete	{CH1 CH2 CH3 CH4}*	CH1

^{*} CH3|CH4 works for VDS6074/A, VDS6104/A and VDS6104P

The inquiry returns "CH1", or "CH2", or "CH3", or "CH4".

Example

:TRIG:SING:PULS:SOUR CH2 /* sets "CH2" as the trigger source of the pulse trigger under single trigger condition */

:TRIG:SING:PULS:SOUR? (The Return Result) CH2

:TRIGger:SINGle:PULSe:TIME

Syntax

:TRIGger:SINGle:PULSe:TIME <time>
:TRIGger:SINGle:PULSe:TIME?

Description

To set / inquire the time parameter of the pulse width in pulse trigger mode under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<time></time>	String	30ns to 10s	30ns

Return Result

The inquiry returns the time parameter of the pulse width in pulse trigger mode under single trigger condition, value comes in scientific notation, like 1.000000e+04.

Example

:TRIG:SING:MODE PULS /* sets pulse as trigger mode under single trigger condition */

:TRIG:SING:PULS:TIME 1ms /* sets the pulse width time in pulse trigger mode at 1ms */

:TRIG:SING:PULS:TIME?

(The Return Result) 1.000000e-03

:TRIGger:SINGle:PULSe:COUPling

Syntax

:TRIGger:SINGle:PULSe:COUPling <coupling>

:TRIGger:SINGle:PULSe:COUPling?

Description

To set / inquire the coupling of pulse width trigger in pulse trigger mode under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<coupling></coupling>	Discrete	{DC AC HF}	DC

Return Result

The inquiry returns "DC", or "AC", or "HF".

Example

:TRIG:SING:MODE PULS /* sets pulse as trigger mode under single trigger condition */

:TRIG:SING:PULS:COUP AC /* sets the coupling of pulse width trigger to AC */

:TRIG:SING:PULS:COUP? (The Return Result) AC

:TRIGger:SINGle:PULSe:WHEN

Syntax

:TRIGger:SINGle:PULSe:WHEN <when>

:TRIGger:SINGle:PULSe:WHEN?

Description

To set / inquire the coupling condition of pulse width trigger in pulse trigger mode under single trigger condition.

Parameter

Parameter Name	Туре	Range	Default
<when> Discrete</when>	Discrete	{PGReater PLESs PGLess NGReater	PGReater
	NLESs NGLess}	1 Giveate	

Return Result

The inquiry returns PGReater, PLESs, NGReater, NLESs, PGLess, or NGLess.

Explanation

PGReater: With given pulse width, the trigger happens when the positive pulse width of the input signal larger than the given pulse width.

PLESs: With given pulse width, the trigger happens when the positive pulse width of the input signal smaller than the given pulse width.

PGLess: With given upper and lower pulse width, the trigger happens when the positive pulse width of the input signal lager than given lower pulse width, and smaller than given upper pulse width.

NGReater: With given pulse width, the trigger happens when the negative pulse width of the input signal larger than the given pulse width.

NLESs: With given pulse width, the trigger happens when the negative pulse width of the input signal smaller than the given pulse width.

NGLess: With given upper and lower pulse width, the trigger happens when the negative pulse width of the input signal lager than given lower pulse width, and smaller than given upper pulse width.

Example

:TRIG:SING:MODE PULS /* sets pulse as trigger mode under single trigger condition */
:TRIG:SING:PULS:WHEN PLES /* sets the coupling condition of pulse width trigger to PLESs */

:TRIG:SING:PULS:WHEN? (The Return Result) PLESs

:LAN command sub-structures

i.:LAN:DEVice

Syntax

:LAN:DEVice <string>

:LAN:DEVice?

Description

To set / inquire the current network communication interface.

Parameter

Parameter Name	Туре	Range	Default
string	Discrete	{eth0 eth1 wlan0}	eth0

Return Result

The inquiry returns "eth0", or "eth1", or "wlan0".

Example

:LAN:DEV eth0 /* set the current network communication interface to eth0. */

:LAN:DEV?

(The Return Result) eth0

ii.:LAN:PROTocol

Syntax

:LAN:PROTocol <device>

:LAN:PROTocol?

Description

To set / inquire the method to get the network IP.

Parameter

Parameter Name	Туре	Range	Default
<device></device>	Discrete	{STATIC DHCP}	STATIC

Return Result

The inquiry returns "STATIC", or "DHCP".

Example

:LAN:PROT STATIC /* sets the method to get network IP to STATIC */

:LAN:PROT?

(The Return Result) STATIC

iii.:LAN:IPADdress

Syntax

:LAN:IPADdress <string>

:LAN:IPADdress?

Description

To set / inquire the IP address of the device.

Parameter

Parameter Name	Туре	Range	Default
<string></string>	ASCII String	refer to Explanation	192.168.1.172

Explanation

The <string> goes in nnn.nnn.nnn.nnn (like 192.168.1.172), the first nnn ranges from 0 till 223 (excl. 127), the other thee nnn ranges from 0 till 255. This command line works for STATIC IP address configuration mode.

Return Result

The inquiry returns the current IP address in the form of ASCII string.

Example

:LAN:PROT STATIC /* sets the method to get network IP to STATIC */

:LAN:IPAD 192.168.1.10 /* sets the IP address at 192.168.1.10 */

:LAN:IPAD?

(The Return Result) 192.168.1.10

iv.:LAN:MASK

Syntax

:LAN:MASK <string>

:LAN:MASK?

Description

To set / inquire the subnet mask.

Parameter

Parameter Name	Туре	Range	Default
<string></string>	ASCII String	refer to Explanation	255.255.255.0

Explanation

The <string> goes in nnn.nnn.nnn (like 255.255.255.0), each nnn ranges from 0 till 255. This command line works for STATIC IP address configuration mode.

Return Result

The inquiry returns the current subnet mask in the form of ASCII string.

Example

:LAN:PROT STATIC /* sets the method to get network IP to STATIC */

:LAN:MASK 255.255.0.0 /* sets the subnet mask at 255.255.0.0 */

:LAN:MASK?

(The Return Result) 255.255.0.0

v. :LAN:GATeway

Syntax

:LAN:GATeway <string>

:LAN:GATeway?

Description

To set / inquire the current gateway.

Parameter

Parameter Name	Туре	Range	Default
<string></string>	ASCII String	refer to Explanation	192.168.1.1

Explanation

The <string> goes in nnn.nnn.nnn (like 192.168.1.1), the first nnn ranges from 0 till 223 (excl. 127), the other thee nnn ranges from 0 till 255.

The inquiry returns the current gateway in the form of ASCII string.

Example

:LAN:GAT 192.168.1.1 /* sets the gateway at 192.168.1.1 */

:LAN:GAT?

(The Return Result) 192.168.1.1

vi.:LAN:DNS

Syntax

:LAN:DNS <string>

:LAN:DNS?

Description

To set / inquire the current DNS address.

Parameter

Parameter Name	Туре	Range	Default
<string></string>	ASCII String	refer to Explanation	192.168.1.1

Explanation

The <string> goes in nnn.nnn.nnn (like 192.168.1.1), the first nnn ranges from 0 till 223 (excl. 127), the other thee nnn ranges from 0 till 255.

Return Result

The inquiry returns the current DNS address in the form of ASCII string.

Example

:LAN:DNS 192.168.1.1 /* sets the DNS address to 192.168.1.1 */

:LAN:DNS?

(The Return Result) 192.168.1.1

vii.:LAN:MAC

Syntax

:LAN:MAC?

Description

To inquire the MAC address of the device.

Return Result

The inquiry returns the MAC address 0019AF300000 and (00-19-AF-30-00-00) in the form of ASCII string.

:WLAN command sub-structures

i.:WLAN:MODe

Syntax

:WLAN:MODe <mode>

:WLAN:MODe? [SETTING]

Description

To set / inquire the WiFi working mode.

Parameter

Parameter Name	Туре	Range	Default
<mode></mode>	Discrete	{STA AP}	AP

Explanation

Before getting access to the AP mode, the optional WiFi module should work together with the device. Every time, all set commands only be valid until executing :WLAN:RESTart.

- i). STA mode: Similar to the wireless terminal, Station itself does not accept wireless communication, only after working with AP. The general wireless network card works in this mode.
- ii). AP mode: Access Point, supplies wireless communicating services, allowing other wireless devices to get through, provides data access. The general wireless router / network bridge works in this mode. Intercommunication between the AP and the AP is possible.
- iii). :WLAN:MODe? To inquire the WiFi working mode, the default is the current effective mode.
- iv). :WLAN:MODe? SETTING To inquire set-but-ineffective WiFi working mode.

Return Result

The inquiry returns "STA", or "AP".

Example

:WLAN:MOD STA /* sets WiFi working mode to STA */
:WLAN:REST /* restarts network configuration * /

:WLAN:MOD?

(The Return Result) STA

ii.:WLAN:PROTocol

Syntax

:WLAN:PROTocol?

Description

To set / inquire the network IP obtaining method in STA mode.

Parameter

Parameter Name	Туре	Range	Default
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Discrete	{STATIC DHCP}	DHCP

Explanation

The command only work in STA mode.

Every time, all set commands only be valid until executing :WLAN:RESTart.

Return Result

The inquiry returns the "STATIc", or "DHCP".

Example

:WLAN:MOD STA /* sets WiFi working mode to STA */

:WLAN:PROT STATIC /* sets the network IP obtaining method to STATIC */

:WLAN:REST / * restarts network configuration * /

:WLAN:PROT?

(The Return Result) STATIC

iii.: WLAN: IPAD dress

Syntax

:WLAN:IPADdress <string>

:WLAN:IPADdress? [SETTING|AP|STA]

Description

To set or inquire the IP address when the network IP obtaining method is STATIC in STA mode.

Parameter

Parameter Name	Туре	Range	Default
<string></string>	ASCII String	refer to Explanation	192.168.1.1

Explanation

The <string> goes in nnn.nnn.nnn (like 192.168.1.1), the first nnn ranges from 0 till 223 (excl. 127), the other thee nnn ranges from 0 till 255.

Every time, all set commands only be valid until executing :WLAN:RESTart.

i). :WLAN:IPADdress? As default, to inquire the current valid IP address.

ii). :WLAN:IPADdress? SETTINGiii). :WLAN:IPADdress? APiv). :WLAN:IPADdress? STATo inquire set-but-ineffective IP address.To inquire the IP address in AP mode.To inquire the IP address in STA mode.

The inquiry returns the IP address of the current device in the form of ASCII string.

Example

:WLAN:MOD STA /* sets WiFi working mode to STA */

:WLAN:PROT STATIC /* sets the network IP obtaining method to STATIC */
:WLAN:IPAD 192.168.1.253 /* sets the device IP address at 192.168.1.253 */

:WLAN:REST /* restarts network configuration * /

:WLAN:IPAD?

(The Return Result) 192.168.1.253

iv.: WLAN: SSID

Syntax

:WLAN:SSID <string>

:WLAN:SSID? [SETTING|AP|STA]

Description

To set / inquire WiFi name.

Parameter

Parameter Name	Туре	Range	Default
cotring String	WiFi name (within 20	OWONXXXXXX	
<string></string>	String	bytes)	(OWON + device serial number)

Explanation

- i). In STA mode, to set the WiFi name and password, the device could get access to the WiFi.
- ii). In AP mode, to set the WiFi name and password, the target PC which runs PC software could communicate with device, through the account no. (WiFi name) and password.

iii). : WLAN: SSID? As default, to inquire the current valid WiFi name.

iv).: WLAN: SSID?SETTINGv).: WLAN: SSID?APvi). WLAN: SSID?STATo inquire set-but-ineffective WiFi name.To inquire the WiFi name in AP mode.vi). WLAN: SSID?STA

Every time, all set commands only be valid until executing :WLAN:RESTart.

Return Result

The inquiry returns the WiFi name of the current device in the form of ASCII string.

Example

:WLAN:SSID OWON1 /* sets WiFi name to "OWON1" */
:WLAN:REST /* restarts network configuration * /

:WLAN:SSID?

(The Return Result) OWON1

v.:WLAN:PSK

Syntax

:WLAN:PSK <string>

:WLAN:PSK? [SETTING|AP|STA]

Description

To set / inquire the WiFi password.

Parameter

Parameter Name	Туре	Range	Default
<otrin a=""></otrin>	String	WiFi password	OWONXXXXXX
<string></string>	String	(8 - 20 bytes)	(OWON + device serial number)

Explanation

i). In STA mode, to set the WiFi name and password, the device could get access to the WiFi.

ii). In AP mode, to set the WiFi name and password, the target PC which runs PC software could communicate with device, through the account no. (WiFi name) and password.

iii). : WLAN: PSK? As default, to inquire the current valid WiFi password.

iv).: WLAN: PSK?SETTINGv).: WLAN: PSK?APvi). WLAN: PSK?STATo inquire set-but-ineffective WiFi password.To inquire the WiFi password in AP mode.vi). WLAN: PSK?STATo inquire the WiFi password in STA mode.

Every time, all set commands only be valid until executing :WLAN:RESTart.

Return Result

The inquiry returns the WiFi password of the current device in the form of ASCII string.

Example

:WLAN:PSK owon123456 /* sets the WiFi password to "owon123456" */

:WLAN:REST / * restarts network configuration * /

:WLAN:PSK?

(The Return Result) owon123456

vi.:WLAN:MAC

Syntax

:WLAN:MAC?

Description

To inquire the MAC address of the device.

Return Result

The inquiry returns the MAC address 0019AF300000 and (00-19-AF-30-00-00) in the form of ASCII string.

vii.: WLAN: RESTart

Syntax

:WLAN:RESTart

Description

To restart WiFi and update the WiFi configuration.

:WAVeform command sub-structures

i.: WAVeform: DATA

Syntax

:WAVeform:DATA?

Description

To read the processed data (data processed by interpolation, or compression).

Explanation

The read data format goes in the length of the TMC header + data packet.

The TMC header comes in the form of #NXXXXXX, among which, "#" is the standard header ID, "N" indicates the bytes quantity, to describe the length of the data packet in the form of ASCII string.

Return Result

The read data consists of two parts - TMC header and data packet, like #900000ddddXXXX..., among which, "dddd" indicates the length of the valid data packet in the data stream.

When reading memory data, each time's read-back data may be only one sector from memory. The read-back data by sectors, the beginning of each sector gets a descriptor like #9XXXXXXXX, among which, "XXXXXXXXX" reflects the data packet length in this transferring sector. The read-back data between two adjacent sectors is consecutive. Giving an example,

The read data by one time is #9000001024XXXX: among which, "9" indicates the bytes quantity, "000001024" describes the length of the waveform (input signal) data, say, 1024 bytes. The value of "N" calculated by introducing 2 functions: "partial string" and "decimal numeric string to numeric conversion".

Example

:WAVeform:DATA? /* reads the processed data */

(The Return Result) The data packet with TMC header, like #9000003040... (could refer to <u>7.</u> Supplement: WAVeform:DATA? Return Result for details).

ii. the combination of commands to read the original data

the combination of commands covers -

:WAVeform:BEGin :WAVeform:PREamble :WAVeform:RANGe :WAVeform:FETCh

:WAVeform:END

Note: The original data here, and hereinafter means the captured data without processing.

:WAVeform:BEGin

Syntax

:WAVeform:BEGin <CHn>

Description

To start reading the original data.

Parameter

Parameter Name	Туре	Range	Default
<chn></chn>	Discrete	{CH1 CH2 CH3 CH4}*	

^{*} CH3|CH4 works for VDS6074/A, VDS6104/A and VDS6104P

:WAVeform:PREamble

Syntax

:WAVeform:PREamble?

Explanation

To inquire all of the waveform parameters.

The read data format goes in the length of the TMC header + data packet.

The TMC header comes in the form of #NXXXXXX, among which, "#" is the standard header ID, "N" indicates the bytes quantity, to describe the length of the data packet in the form of ASCII string.

Return Result

The inquiry returns the waveform parameter.

The read data consists of two parts - TMC header and data packet, like #900000ddddXXXX..., among which, "dddd" reflects the length of the valid data packet in the data stream, "XXXX..." indicates the data from the data packet, which plays the role of waveform parameter (could refer to <u>7. Supplement: WAVeform:DATA? Return Result</u> for details).

:WAVeform:RANGe

Syntax

:WAVeform:RANGe <offset>,<size>

Description

To set/ read the offset and data length from the original data.

Parameter

Parameter Name	Туре	Range	Default
<offset></offset>	Integer	0M - 10M	
<size></size>	Integer	1 - 256k	

:WAVeform:FETCh

Syntax

:WAVeform:FETCh?

Description

To read the original data, the PC keeps reading the data at certain length one time until the ending of data.

Return Result

The inquiry returns waveform data.

The read data consists of two parts - TMC header and data packet, like #900000ddddXXXX..., among which, "dddd" reflects the length of the valid data packet in the data stream, "XXXX..." indicates the data from the data packet, every 2 bytes forms one effective data, to be 16-bit signed integer data (could refer to iv-calculation tips towards waveform bata under 7. Supplement: WAVeform:DATA? Return Result for details).

:WAVeform:END

Syntax

:WAVeform:END

Description

To stop reading the waveform data.

Via following 3 examples, to know the application of this combination of commands -

Example 1. to read the original data of 10k length from Channel 1

:WAV:BEG CH1; /* to start reading the original data from CH1 */

:WAV:PRE?; /* to inquire the waveform parameters (this line not a must provided only need to

read the data) */

:WAV:RANG 0,10000; /* to set/ read the offset and data length from the original data */

:WAV:FETC?; /* to read the original data */

:WAV:END;\n /* to stop reading the original data, and to unlock the protection of data

consistency */

Example 2. to read the original data of 100k length from CH1 / CH2 / CH3 / CH4* at the same time

* CH3 / CH4 works for VDS6074/A, VDS6104/A and VDS6104P

:WAV:BEG CH1; /* to start reading the original data from CH1 */

:WAV:PRE?; /* to inquire the waveform parameters (this line not a must provided only need to

read the data) */

:WAV:RANG 0,100000; /* to set/ read the offset and data length from the original data */

:WAV:FETC?; /* to read the original data */

:WAV:BEG CH2; /* to start reading the original data from CH2 */

:WAV:RANG 0,100000;

:WAV:FETC?;

:WAV:BEG CH3; /* to start reading the original data from CH3 */

:WAV:RANG 0,100000;

:WAV:FETC?;

:WAV:BEG CH4; /* to start reading the original data from CH4 */

:WAV:RANG 0,100000;

:WAV:FETC?;

:WAV:END;\n /* to stop reading the original data, and to unlock the protection of data

consistency */

Note: The part marked in gray background works for VDS6074/A, VDS6104/A and VDS6104P, when working with VDS6074 / VDS6074A / VDS6104 / VDS6104A / VDS6104P, via removing certain command lines (3 lines as a complete group, like the part marked in gray background), to read the original data of 100k length from any 2 or 3 channels at the same time.

Example 3. at deep memory status, to read the original data of 10M length from CH2

Note: The max data length that the device reads per time is 256k.

:WAV:BEG CH2; /* to start reading the original data from CH2 */

:WAV:PRE?; /* to inquire the waveform parameters (this line not a must provided only

need to read the data) */

:WAV:RANG 0,200000; /* to set/ read the offset and data length from the original data */

:WAV:FETC?; /* to read the original data */

:WAV:RANG 200000,200000; /* to read the original data from the position of 200k length till 400k length */

:WAV:FETC?;

:WAV:RANG 400000,200000; /* to read the original data from the position of 400k length till 600k length */

:WAV:FETC?:

:WAV:RANG 600000,200000; /* to read the original data from the position of 600k length till 800k length */

:WAV:FETC?;

• • • • •

/* multi-times :WAV:RANG XXXXXXX, 200000 */ {XXXXXXX goes like

the previous no. at the same position adds 200000}

/* multi-times :WAV:FETC? */

:WAV:RANG 9600000,2000000;

:WAV:FETC?;

:WAV:RANG 9800000,200000;

:WAV:FETC?:

:WAV:END;\n /* to stop reading the original data, and to unlock the protection of data

consistency */

:MEASure command sub-structures

i. :MEASure:DISPlay

Syntax

:MEASure:DISPlay <bool>

:MEASure:DISPlay?

Description

To turn on/off the display of channel signal measurement.

To inquire the display status of channel signal measurement.

Parameter

Parameter Name	Туре	Range	Default
<bool></bool>	Bool	{ON OFF}	OFF

Return Result

The inquiry returns "ON", or "OFF".

Example

:MEAS:DISP ON /* turns on the display of channel signal measurement */

:MEAS:DISP?

(The Return Result) ON

ii.: MEASure: TIMer

Syntax

:MEASure:TIMer <value>

:MEASure:TIMer?

Description

To set / inquire the time interval of signal measurement.

Parameter

Parameter Name	Туре	Range	Default
<value></value>	Real	{20ms-}	200ms

Return Result

The inquiry returns the time interval of signal measurement, value comes in scientific notation, like 1.000000e+04.

Example

:MEAS:TIM 0.2 /* sets the time interval of signal measurement at 0.2S*/

:MEAS:TIM?

(The Return Result) 2.000000e-01

iii.: MEASure: SOURce

Syntax

:MEASure:SOURce <CHn>

:MEASure:SOURce?

Description

To set or inquire the signal source of the current measurement.

Parameter

Parameter Name	Туре	Range	Default
<chn></chn>	Discrete	{CH1 CH2 CH3 CH4}*	CH1

^{*} CH3|CH4 works for VDS6074/A, VDS6104/A and VDS6104P

Return Result

The inquiry returns the signal source of the current measurement, "CH1", or "CH2", or "CH3", or "CH4".

Example

:MEAS:SOUR CH2 /*sets CH2 as the signal source of the current measurement */

:MEAS:SOUR?

(The Return Result) CH2

iv. :MEASure:OVERflow

Syntax

:MEASure:OVERflow?

Description

To inquire whether there is overflow for the ADC data on which the measurement calculation is based.

Return Format

The inquiry returns "TRUE" (there is overflow), or "FALSE" (there isn't overflow).

Example

:MEAS:OVER? /* inquires whether there is overflow for the measured ADC (suppose now there isn't overflow) */

(The Return Result) FALSE

v. :MEASure:<items>

Syntax

:MEASure:<items>?

Description

To inquire the value of the current channel measurement, which has been used for device's most basic measurement. The measurement result comes in scientific notation, on condition that the measurement value not possible to be calculated, the return result goes in 9.900000e+36.

Parameter

Parameter Name	Туре	Range	Default
<items></items>	Discrete	{VMAX VMIN VPP VTOP VBASE VAMP VAVG VR MS CRMS OVERshoot PREShoot PERiod FREQu ency RTIMe FTIMe PWIDth NWIDth AREA CARea PDUTy NDUTy PPULsecount NPULsecount REDG ecount FEDGecount}	

full meaning to Range items -

item	note	unit	item	note	unit
VMAX	maximum value	V	PERiod	cycle	s
VMIN	minimum value	V	FREQuency	frequency	Hz
VPP	peak to peak	V	RTIMe	rise time	s
VTOP	top value	V	FTIMe	fall time	s
VBASE	bottom value	V	PWIDth	positive pulse width time	s
VAMP	amplitude value	V	NWIDth	negative pulse width time	s
VAVG	average value	V	AREA	area	Vs
VRMS	valid value	V	CARea	cycle area	Vs
CRMS	cycle effective value	V	PPULsecount	positive pulse number	One
OVERshoot	data overshoot	100%	NPULsecount	number of negative pulses	One
PREShoot	data pre-shoot	100%	REDGecount	number of rising edges	One
PDUTy	positive duty cycle	100%	FEDGecount	number of falling edges	One
NDUTy	negative duty cycle	100%			

the measurement item from voltage parameter -

Average: The arithmetic mean value over the full waveform or chosen area.

Peak-to-peak (Vpp): The voltage value between upper peak and lower peak from measured signal. **Root Mean Square Value (Vrms):** The accurate "root mean square" voltage over the full waveform or chosen area.

Maximum value (Vmax): The voltage value between upper peak and ground (GND).

Minimum value (Vmin): The voltage value between lower peak and ground (GND).

Top value (Vtop): The voltage value between flat top and ground (GND).

Bottom value (Vbase): The voltage value between flat base and ground (GND).

Amplitude (Vamp): The voltage value between flat top and flat base from measured signal.

Overshoot: Equals (Vmax - Vtop) / Vamp.

Preshoot: Equals (Vmin - Vbase) / Vamp.

Cycle rms: The root mean square value calculated by the first complete waveform cycle.

the measurement item from time parameter -

RiseTime: The time span for signal amplitude rise from 10% to 90%, judged by the rising edge of its first pulse.

Fall Time: The time span for signal amplitude fall from 90% to 10%, judged by the falling edge of its first pulse.

Positive Pulse Width (+Width): The pulse width that the first positive pulse at 50% amplitude point.

Negative pulse width (-Width): The pulse width that the first negative pulse at 50% amplitude point.

Positive Duty Cycle (+Duty): Equals the value of +Width / Period.

Negative Duty Cycle (-Duty): Equals the value of -Width / Period.

other measurements -

number of positive pulses: Within the chosen waveform area, the quantity of positive pulses moved above the middle-cross-reference-pulse.

Number of negative pulses: Within the chosen waveform area, the quantity of negative pulses moved below the middle-cross-reference-pulse.

Number of rising edges: Within the chosen waveform area, the quantity of times for rising edge transited from the low reference value to the high reference value by positive.

Number of falling edges: Within the chosen waveform area, the quantity of times for falling edge transited from the high reference value to the low reference value by negative.

Area: The area of the full waveform within main display, its unit in volt-seconds. The measured area above the zero point (vertical offset) is positive, the measured area below the zero point is negative. The

measured area equals the algebraic sum of the full waveform area within main display.

Period Area: The area of the first period from the displayed waveform, its unit in volt-seconds. The measured area above the zero point (vertical offset) is positive, the measured area below the zero point is negative. The measured area equals the algebraic sum of the entire period area.

Note: When the displayed waveform less than one period, the measured period area will be zero.

Example

:MEASure:PERiod? /* to inquire the cycle of current channel */

(The Return Result) 2.000000e-03

vi. :MEASure:<items> ? <cha>,<chb>

Syntax

:MEASure:<items> ? <cha>,<chb>

Description

To inquire the value of the measurement between channels. The measurement result comes in scientific notation, on condition that the measurement value not possible to be calculated, the return result goes in 9.900000e+36.

Parameter

Parameter Name	Туре	Range	Default
<items></items>	Discrete	{RDELay FDELay RPHase FPHase FRRDelay FRFDelay FF RDelay FFFDelay LRRDelay LRFDelay LFRDelay LFFDelay}	
<cha></cha>	Discrete	{1 2 3 4}*	1
<chb></chb>	Discrete	{1 2 3 4}*	

^{* 3|4} works for VDS6074/A, VDS6104/A and VDS6104P

full meaning to Range items -

items	note	unit
RDELay	cha rising edge to chb rising edge time	s
FDELay	cha falling edge to chb falling edge time	s
RPHase	cha rising edge to chb rising edge phase	0
FPHase	cha falling edge to chb falling edge phase	0
FRRDelay	cha first rising edge to chb first rising edge time	s
FRFDelay	cha first rising edge to chb first falling edge time	s
FFRDelay	cha first falling edge to chb first rising edge time	s
FFFDelay	cha first falling edge to chb first falling edge time	s
LRRDelay	cha first rising edge to chb last rising edge time	s
LRFDelay	cha first rising edge to chb last falling edge time	s
LFRDelay	cha first falling edge to chb last rising edge time	s
LFFDelay	cha first falling edge to chb last falling edge time	S

:MEASure:RDELay? ch1,ch2 /* to inquire the time from the rising edge of CH1 to the rising edge of CH2*/

(The Return Result) 5.000000e-04

Other Commands

i. :AUToset

Syntax

:AUToset

:AUToset:PROGress?

Description

To do autoset.

To inquire whether autoset been fulfilled.

Parameter

Nil.

Return Result

The inquiry returns the no. from 1 till 100, when returns 100, it means the full process done.

ii.: CALibrate

Syntax

:CALibrate

:CALibrate:PROGress?

Description

To perform self-calibration.

To inquire whether self-calibration been fulfilled.

Parameter

Nil.

Return Result

The inquiry returns the no. from 1 till 100, when returns 100, it means the full process done.

iii.:RUN

Syntax

:RUN

Description

To start running the device.

Extension

The :STOP command could be introduced to stop the device running.

iv.:STOP

Syntax

:STOP

Description

To stop the device running.

Extension

The :RUN command could be introduced to start running the device.

v.:LAN:PORT

Syntax

:LAN:PORT<port>

:LAN:PORT?

Description

To set / inquire the LAN port number.

This command also works for inquiring WLAN port number.

Parameter

Parameter Name	Туре	Range	Default
< port>	Integer	{0~65535}	8866

Return Result

The inquiry returns the current port number, in the form of ASCII string.

Example

:LAN:PORT 2000 /* sets the LAN port to 2000 */

:LAN:PORT?

(The Return Result) 2000

4. SCPI for Function Generator Part*

* This part only works for VDS6102/A, VDS6102P.

:FUNCtion command sub-structures

i.: FUNCtion

Syntax

:FUNCtion < waveform >

:FUNCtion?

Description

To set / inquire the function waveform from the current function generator channel.

Parameter

Parameter Name	Туре	Range	Default
< waveform >	Discrete	{SINE SQUare RAMP PULSe DC TRIGout}	SINE

full meaning to Range items -

waveform	note	involved parameter
SINE	sine wave	frequency, amplitude, bias voltage
SQUare	rectangular wave	frequency, amplitude, bias voltage
RAMP	sawtooth wave	frequency, amplitude, bias voltage, symmetry
PULSe	pulse wave	frequency, amplitude, bias voltage, duty cycle
DC	DC voltage	bias voltage
TRIGout	device trigger output	amplitude, bias voltage

Return Result

The inquiry returns the string of <waveform> from the current channel.

Example

:FUNC RAMP /* sets the function waveform of the current channel to RAMP */

:FUNC?

(The Return Result) RAMP

ii.: FUNCtion: FREQuency

Syntax

:FUNCtion:FREQuency < frequency >

:FUNCtion:FREQuency?

Description

To set / inquire the frequency of output function from the current function generator channel.

Parameter

Parameter Name	Туре	Range	Default
< frequency >	Floating-point	refer to Explanation	1.000000e+03

Explanation

The frequency output range from different waveform is as follows:

sine wave: 0.1 Hz - 5 MHz

rectangular wave: 0.1 Hz - 200 kHz, rise / fall time <200 ns sawtooth wave 1 Hz - 10 kHz, rise / fall time ≥ 5us

pulse wave: 1 Hz - 10 kHz, minimum pulse width ≥ 5us

Note: This command is not available in DC or TRIGout parameter.

Return Result

The inquiry returns the string of < frequency > value from the current channel, the return result comes in scientific notation, like 1.000000e+04.

Example

:FUNC:FREQ 10000 /* sets the output frequency of the current channel at 10 kHz*/

:FUNC:FREQ?

(The Return Result) 1.000000e+04

iii.:FUNCtion:AMPLitude

Syntax

:FUNCtion:AMPLitude < Amplitude>

:FUNCtion:AMPLitude?

Description

To set / inquire the amplitude (Vpp) of output function from the current function generator channel.

Parameter

Parameter Name	Туре	Range	Default
< Amplitude>	Floating-point	10mVpp ~ 5Vpp	1.000000e+00

Explanation

This command is not available in DC parameter.

Return Result

The inquiry returns the string of < Amplitude > value, the return result comes in scientific notation, like 1.000000e+00.

:FUNC:AMPL 1.5 /* sets the amplitude of the current channel at 1.5 Vpp */

:FUNC:AMPL?

(The Return Result) 1.500000e+00

iv.: FUNCtion: OFFSet

Syntax

:FUNCtion:OFFSet < bias >

:FUNCtion:OFFSet?

Description

To set / inquire the offset of output function from the current function generator channel.

Parameter

Parameter Name	Туре	Range	Default
< bias >	Floating-point	±(2.5 Vpk - waveform amplitude Vpp/2)	

Return Format

The inquiry returns the string of < bias > value, the return result comes in scientific notation, like 0.000000e+00.

Example

:FUNC:OFFS 1 /* sets the offset of the current channel at 1V */

:FUNC:OFFS?

(The Return Result) 1.000000e+00

v.: FUNCtion: RAMP: SYMMetry

Syntax

:FUNCtion:RAMP:SYMMetry < symmetry >

:FUNCtion:RAMP:SYMMetry?

Description

To set / inquire the symmetry (in percentage) of ramp wave from the current function generator channel.

Parameter

Parameter Name	Туре	Range	Default
< symmetry >	Integer	0.0 to 100.0	50.0

Return Result

The inquiry returns the string of <symmetry> value, expressed in floating-point, like 50.0.

:FUNC:RAMP:SYMM 60 /* sets the symmetry of ramp wave from the current channel at 60% */

:FUNC:RAMP:SYMM? (The Return Result) 60.0

vi.: FUNCtion: PULSe: DTYCycle

Syntax

:FUNCtion:PULSe:DTYCycle < Duty cycle >

:FUNCtion:PULSe:DTYCycle?

Description

To set / inquire the pulse width duty cycle (in percentage) of the pulse wave from the current channel.

Parameter

Parameter Name	Туре	Range	Default
< Duty cycle >	Floating-point	0.0 to 100.0	50.0

Return Result

The inquiry returns the string of <duty> value in floating point, expressed like 25.0.

Example

:FUNC:PULS:DTYC 30 /* sets the pulse width duty cycle of the pulse wave from the current channel at 30% */

:FUNC:PULS:DTYC?

(The Return Result) 30.0

5. SCPI for Multimeter Part*

* This part only works for the device with digital multimeter option (at this moment, only VDS6102DMM gets this option).

:MEASure command sub-structures

i. :MEASure:VOLTage:DC

Syntax

:MEASure:VOLTage:DC? <scale>,<range>

Description

To set the measurement range, and perform DC voltage measurement.

Parameter

Parameter Name	Туре	Range	Default
<scale></scale>	Discrete	{mV V}	
mV, <range></range>	Discrete	mV,{auto 20mV 200mV}	mV,auto
V, <range></range>	Discrete	V,{auto 2V 20V 200V 1000V}	V,auto

Return Result

The inquiry returns the string of DC value in scientific notation, the default unit is V (volt). The returned DC value comes in scientific notation, like 0.000000e+00.

Example

:MEAS:VOLT:DC? mV,auto /* under mV, to set auto range to measure the current DC voltage */
(The Return Result) 7.10648066e-03

ii. :MEASure:VOLTage:AC

Syntax

:MEASure:VOLTage:AC? <scale>,<range>

Description

To set the measurement range, and perform AC voltage measurement.

Parameter

Parameter Name	Туре	Range	Default
<scale></scale>	Discrete	{mV V}	
mV, <range></range>	Discrete	mV,{auto 20mV 200mV}	mV,auto
V, <range></range>	Discrete	V,{auto 2V 20V 200V 750V}	V,auto

Return Format

The inquiry returns the string of AC value in scientific notation, the default unit is V (volt). The returned AC value comes in scientific notation, like 0.000000e+00.

:MEAS:VOLT:AC? mV,auto /* under mV, to set auto range to measure the current AC voltage*/
(The Return Result) 7.10648066e-03

iii.: MEASure: CURRent: DC

Syntax

:MEASure:CURRent:DC? <scale>,<range>

Description

To set the measurement range, and perform DC current measurement.

Parameter

Parameter Name	Туре	Range	Default
<scale></scale>	Discrete	{uA mA A}	
μA, <range></range>	Discrete	μΑ,{auto 200uA 2000uA}	μA,auto
mA, <range></range>	Discrete	mA,{auto 20mA 200mA}	mA,auto
A, <range></range>	Discrete	A,{20A}	A,20A

Return Result

The inquiry returns the string of DC value in scientific notation, the default unit is A (ampere). The returned DC value comes in scientific notation, like 0.000000e+00.

Example

:MEAS:CURR:DC? mA,auto /* under mA, to set auto range to measure the current DC current */
(The Return Result) 7.10648066e-03

iv.: MEASure: CURRent: AC

Syntax

:MEASure:CURRent:AC? <scale>,<range>

Description

To set the measurement range, and perform AC current measurement.

Parameter

Parameter Name	Туре	Range	Default
<scale></scale>	Discrete	{uA mA A}	
μA, <range></range>	Discrete	μΑ,{auto 200uA 2000uA}	μA,auto
mA, <range></range>	Discrete	mA,{auto 20mA 200mA}	mA,auto
A, <range></range>	Discrete	A,{20A}	A,20A

Return Format

The inquiry returns the string of AC value in scientific notation, the default unit is A (ampere). The returned AC value comes in scientific notation, like 0.000000e+00.

Example

:MEAS:CURR:AC? mA,auto /* under mA, to set auto range to measure the current AC current */
(The Return Result) 7.10648066e-03

v. :MEASure:RESistance

Syntax

:MEASure:RESistance? <range>

Description

To set the measurement range, and perform the resistance measurement towards two-wire resistor.

Parameter

Parameter Name	Туре	Range	Default
<range></range>	Discrete	{auto 200ohm 2kohm 20kohm 200 kohm 2mohm 20mohm 200mohm}	auto

Return Result

The inquiry returns the string of resistance value in scientific notation, the default unit is Ω (ohm). The returned resistance value comes in scientific notation, like 0.000000e+00.

Example

:MEAS:RES? 20mohm /* sets 20mohm range to measure the resistance of the current two-wire resistor */

(The Return Result) 3.29400000e+05

vi. :MEASure:CONTinuity

Syntax

:MEASure:CONTinuity?

Description

To preset the measurement parameter and trigger parameter to default value, so as to perform the continuity test.

Explanation

The range of the continuity test been fixed at 200Ω .

Return Result

The inquiry returns the string of resistance value in scientific notation, the default unit is Ω (ohm). The returned resistance value comes in scientific notation, like 0.000000e+00.

Example

:MEAS:CONT?

(The Return Result) 3.29400000e+02

vii.: MEASure: DIODe

Syntax

:MEASure:DIODe?

Description

To preset the measurement parameter and trigger the parameter to default value, so as to perform the diode measurement.

Explanation

The range of diode measurement been fixed at 2V.

Return Format

The inquiry returns the string of voltage value in scientific notation, the default unit is V (volt). The returned voltage value comes in scientific notation, like 0.000000e+00.

Example

:MEAS:DIOD?

Returns: 3.29400000e+01

viii. :MEASure:CAPacitance

Syntax

:MEASure:CAPacitance?

Description

To measure/ inquire the capacitance value of the current measurement.

Explanation

The capacitance value will be auto-measured/ read. The capacitance division ranges in 2nF|20nF|20nF|2uF|20uF|20uF|20mF.

Return Result

The inquiry returns the string of capacitance value in scientific notation, the default unit is F. The returned capacitance value comes in scientific notation, like 0.000000e+00.

:MEAS:CAP? /* to check the capacitance value of the current measurement */

(The Return Result) 1.29400000e+05

ix.:MEASure:TEMPerature

Syntax

:MEASure:TEMPerature? <unit>

Description

To set the unit of the measured temperature, 2 options available in C (degree Celsius) and F (degree Fahrenheit).

Parameter

Parameter Name	Туре	Range	Default
<range></range>	Discrete	{C F}	

Return Result

The inquiry returns the string of temperature value in scientific notation, the default unit is C ($^{\circ}$ C). The returned temperature value comes in scientific notation, like 0.000000e+00.

Example

:MEAS:TEMP? C /* to set the unit of the measured temperature in C, and do the temperature

measurement */

(The Return Result) 3.29400000e+01

6. Supplement: Sampling Rate Conversion Rule

Sampling Rate: According to the time base and recording length, the device works under the proper sampling rate automatically.

i. sampling rate conversion rule -

When max. sampling rate > sampling points per division / time base,

Sampling Rate = sampling points per division / time base ;

When max. sampling Rate < sampling points per division / time base,

Sampling Rate = max. sampling rate

ii. max. sampling rate available -

vertical resolution available in 8-bit / 12-bit / 14-bit;

channel running status: Single / Dual / Quad

max. sampling rate	8-bit	12-bit	14-bit
Single	1G Sa/s	500M Sa/s	125M Sa/s
Dual	500M Sa/s	250M Sa/s	125M Sa/s
Quad	250M Sa/s	125M Sa/s	125M Sa/s

iii. sampling rate details -

	1G	500M	250M	125M	100M	62.5M
	50M	25M	12.5M	10M	6.25M	5M
	2.5M	1.25M	1M	625k	500k	250k
sampling rate	125k	100k	62.5k	50k	25k	12.5k
(Sa/s)	10k	6.25k	5k	2.5k	1.25k	1k
	625	500	250	125	100	62.5
	50	25	12.5	10	6.25	5
	2.5	1.25	1	0.625	0.5	

iv. sampling points per division VS different recording length -

recording length	1k	10k	100k	1M	10M	25M	50M	100M	250M
sampling points per division	50	500	5k	50k	500k	1.25M	2.5M	5M	12.5M

v. time base details -

	1.0ns/div	2.0ns/div	5.0ns/div	10ns/div	20ns/div	50ns/div
	100ns/div	200ns/div	500ns/div	1.0us/div	2.0us/div	5.0us/div
time base	10us/div	20us/div	50us/div	100us/div	200us/div	500us/div
(s/div)	1.0ms/div	2.0ms/div	5.0ms/div	10ms/div	20ms/div	50ms/div
	100ms/div	200ms/div	500ms/div	1.0s/div	2.0s/div	5.0s/div
	10s/div	20s/div	50s/div	100s/div		

7. Supplement: WAVeform: DATA? Return Result

i. empty data packet content parsing

(little endian mode, low byte been allocated in low address)

Sequence No.	Offset (unit: byte)	No. of Bytes	Value or Range	Description
0	TMC	N+2	#NXXXXX	"#" is the standard header ID, "N" indicates the bytes quantity, to describe the length of the data packet in the form of ASCII string.
1	0	8	0x090906060A0A0550	starts synchronization and verification
2	8	2	0 - 255	dynamic synchronization check (echo to the end)
3	10	2	0 - 65535	N1 - no. of bytes that parameter gets
4	12	2	0 - 5	running status: 0 - Auto, 1 - Trig'd, 2 - Stop, 3 - Ready, 4 - Scan, 5 - Error
5	14	2		
6	16	2	0 - 4	-1 (FFFF)
25	N1+N2+N3 +16	2	0 - 255	dynamic synchronization check ends (echo to the beginning)
26	N1+N2+N3+18	8	0x0906060905A0050A	synchronization and verification ends

ii. effective data packet content parsing

(little endian mode, low byte been allocated in low address)

Sequence No.	Offset (unit: byte)	No. of Bytes	Value or Range	Description
0	TMC	N+2	#NXXXXX	"#" is the standard header ID, "N" indicates the bytes quantity, to describe the length of the data packet in the form of ASCII string.
1	0	8	0x090906060A0A0550	starts synchronization and verification
2	8	2	0 - 255	dynamic synchronization check (echo to the end)
3	10	2	0 - 65535	N1 - no. of bytes that parameter gets
4	12	2	0 - 5	running status: 0 - Auto, 1 - Trig'd, 2 - Stop, 3 - Ready, 4 - Scan, 5 - Error
5	14	2	0 - 16	available vertical resolution: 8 - 8-bit / 12 - 12-bit / 14 - 14-bit
6	16	2	0 - 4	n1 - no. of waveform channels in the data (max. 4) (FFFF indicates empty data packets / no new data / discarded data)
7	18	4	0 - 4G	n2 - no. of waveform data points per channel
8	22	2	0 - 65535	n3 - no. of waveform overlaps, N2 = n3*n1*(n2*2+2)
9	24	2	0 - 1	Reserved (n4)
10	26	4	0 - 4G	Reserved (n5) N3 = n4*(n5*2+2)
11	30	2	0 - 255	waveform forming method: 0 - normal (point by point); 1 - compressed (four-point by four-point); 2 - discrete (discrete); 3 - Vpp normal mode; 4 - Vpp discrete mode; 255 - reading the recorded data.
12	32	2	0 - 1	0 - normal; 1 - scan
13	34	4	0 - 4G	no. of scrolling data in scan mode (calculated by deep memory)
14				reserved (other accompanying information from data packet)

15	N1+10	2		reserved
16	N1+12	2	0 - 3	which channel does the first segment waveform data come from
17	N1+14	n2*2		first segment waveform data area
18	N1+14+n2*2	2	0 - 3	which channel does the second segment waveform data come from
19	N1+16+n2*2	n2*2		second segment waveform data area
20				
21			CH1 - 0 CH2 - 1 CH3 - 2 CH4 - 3	which channel does the first segment waveform data come from first segment waveform data area which channel does the n1 segment waveform data come from the n1 segment waveform data area n3th overlap which channel does the first segment waveform data come from first segment waveform data area which channel does the n1 segment waveform data come from the n1 segment waveform data area
22	N1+N2+12	4	0x0A0A0550	starts synchronization and verification, data separator reserved
23	N1+N2+16	2	0 - 4	reserved
24	N1+N2+18	n5*2		reserved
25	N1+N2+N3+16	2	0 - 255	dynamic synchronization check ends (echo to the beginning)
26	N1+N2+N3+18	8	0x0906060905A0050A	synchronization and verification ends

iii. other accompanying information from data packet (little endian mode, low byte been allocated in low address)

Sequence No.	Offset (unit: byte)	No. of Bytes	Value or Range	Description
	38	4	Integer	the count value of frequency counter from CH1 signal
	42	4	Integer	the count value of frequency counter from CH2 signal
	46	4	Integer	the count value of frequency counter from CH3 signal
	50	4	Integer	the count value of frequency counter from CH4 signal
	54	4	Integer	the reference count value of CH1 frequency counter
14	58	4	Integer	the reference count value of CH2 frequency counter
	62	4	Integer	the reference count value of CH3 frequency counter
	66	4	Integer	the reference count value of CH4 frequency counter
	70	2	D(30)	overflow flag (0: normal; 1: overflow) D0 - CH1; D1 - CH2; D2 - CH3; D3 - CH4
	72	2	ADC Data	CH1 minimum value (16-bit ADC data format)
	74	2	ADC Data	CH2 minimum value (16-bit ADC data format)
	76	2	ADC Data	CH3 minimum value (16-bit ADC data format)

78	2	ADC Data	CH4 minimum value (16-bit ADC data format)
80	2	ADC Data	CH1 maximum value (16-bit ADC data format)
82	2	ADC Data	CH2 maximum value (16-bit ADC data format)
84	2	ADC Data	CH3 maximum value (16-bit ADC data format)
86	2	ADC Data	CH4 maximum value (16-bit ADC data format)
88	2	ADC Data	CH1 average value (16-bit ADC data format)
90	2	ADC Data	CH2 average value (16-bit ADC data format)
92	2	ADC Data	CH3 average value (16-bit ADC data format)
94	2	ADC Data	CH4 average value (16-bit ADC data format)
96	2	D(150)	channel trigger type (0: edge; 1: video) D30 - CH1; D74 - CH2; D118 - CH3; D1512 - CH4
98	4	Integer	system clock (unit in 1 Hz)
256	4		data acquisition synchronization ID (whether data packet content qualified for requested sequence)
260	2	2mV - 5V	CH1 voltage division from the acquired data (index value 0 - 1mV, 9 - 1V)
262	2	2mV - 5V	CH2 voltage division from the acquired data (index value 0 - 1mV, 9 - 1V)
264	2	2mV - 5V	CH3 voltage division from the acquired data (index value 0 - 1mV, 9 - 1V)
266	2	2mV - 5V	CH4 voltage division from the acquired data (index value 0 - 1mV, 9 - 1V)
268	4	Float	CH1 zero position from the acquired data (floating-point, unit in division)
272	4	Float	CH2 zero position from the acquired data (floating-point, unit in division)
276	4	Float	CH3 zero position from the acquired data (floating-point, unit in division)
280	4	Float	CH4 zero position from the acquired data (floating-point, unit in division)
284	2	D(150)	channel working status (0: OFF; 1: ON) D30 - CH1; D74 - CH2; D118 - CH3;
286	2	D(150)	channel coupling mode (0: DC; 1: AC; 2: GND) D30 - CH1; D74 - CH2; D118 - CH3;
288	2	D(150)	bandwidth limit setting (0: full bandwidth; 1: 20M) D30 - CH1; D74 - CH2; D118 - CH3;
290	2	D(150)	analog front end attenuation factor adjustment (0: 1:1; 1: 1:10; 2: 1:100) D30 - CH1; D74 - CH2; D118 - CH3;
292	2	D(150)	waveform invert (0: OFF; 1: INVERT) D30 - CH1; D74 - CH2; D118 - CH3;
294	2	1ns-100s	the time base of the acquired data (index value 0 - 1ns, 9 - 1us)
296	4	Float	horizontal trigger time (floating-point, unit in μs)
300	4	Float	the processed horizontal trigger time (floating-point, unit in µs)
304	4	D(310)	the recording depth (0: 1K, 1: 10K, 2: 100K,)
	8		
316	4	Float	sampling rate of the acquired data (floating-point, unit in MHz)
	8		
524	4	Integer	the screen coordinates of the beginning point from acquired data (with blank pixels at left side) (integer, pixel value range: 0 - 999)
528	4	Integer	the screen coordinates of the ending point from acquired data (with blank pixels at right side) (integer, pixel value range: 0 - 999)
	8		
			1

540	4	D(0)	waveform data interpolation flag
	4		
548	4	Float	time interval between two adjacent data points (Result_data_time, floating-point, unit in µs)
552	4	Integer	no. of horizontal offset of interpolated data (integer, pixel value range: 0 - 999)
768	2	2mV - 5V	real-time CH1 voltage division (index value 0 - 1mV, 9 - 1V)
770	2	2mV - 5V	real-time CH2 voltage division (index value 0 - 1mV, 9 - 1V)
772	2	2mV - 5V	real-time CH3 voltage division (index value 0 - 1mV, 9 - 1V)
774	2	2mV - 5V	real-time CH4 voltage division (index value 0 - 1mV, 9 - 1V)
776	4	Float	real-time CH1 zero position (floating-point, unit in division)
780	4	Float	real-time CH2 zero position (floating-point, unit in division)
784	4	Float	real-time CH3 zero position (floating-point, unit in division)
788	4	Float	real-time CH4 zero position (floating-point, unit in division)

iv. Calculation Tips Towards Waveform Data

i). the frequency counter from channel signal -frequency counter = system clock * channel frequency count / channel reference count

ii). the channel voltage -

channel voltage = (channel ADC data / 6400 - channel zero offset) * channel volt scale Note: ADC Data = waveform data, or Vmax, or Vmin, or Vavg (16-bit signed integer data)

iii). the displayed position of waveform data (vertical direction) -

the displayed vertical voltage (unit: division, range: ± 5 divisions)

= (ADC data / 6400 - acquisition zero offset) * (acquisition volt scale / real-time volt scale) + real-time zero offset

In real-time data acquisition, the real-time waveform data is the one for data acquisition.

Disp. vertical voltage = ADC data / 6400 (unit: division, range: ± 5 divisions)

Note: ADC Data = waveform data (16-bit signed integer data)

Lilliput (OWON) 12/2020 ISSUE, in V1.0.4