8. Компактні метричні простори

- **Озн. 8.1.** Нехай A— деяка множина в метричному просторі (X, ρ) і ε деяке додатне число. Множина B із цього простору називається ε -сіткою для множини A, якщо $\forall x \in A \ \exists y \in B : \rho(x, y) < \varepsilon$.
- **Озн. 8.2.** Множина A називається **цілком обмеженою**, якщо для неї при довільному $\varepsilon > 0$ існує скінченна ε -сітка.

Теорема 8.1 (Хаусдорф). *Нехай* (X, ρ) — метричний простір. *Наступні твердження* ϵ еквівалентними.

- 1) (X, ρ) компактний;
- 2) (X, ρ) повний і цілком обмежений;
- 3) із довільної післідовності точок простору (X, ρ) можна вибрати збіжну підпослідовність (секвенціальна компактність);
- 4) довільна нескінченна підмножина в X має хоча б одну граничну точку (зліченна компактність).

Доведення. $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 1$.

Покажемо, що $1\Rightarrow 2$. Нехай (X,ρ) — компактний простір. Покажемо його повноту. Нехай $\{x_1,x_2,...,x_n,...\}$ — фундаментальна послідовність в X. Покладемо $A_n=\{x_n,x_{n+1},...\}$ і $B_n=\overline{A}_n$. Оскільки система $\{B_n\}$ є центрованою системою замкнених підмножин, то $\bigcap_{i=1}^\infty B_i$ —

непорожня множина. Нехай $x_0 = \bigcap_{i=1}^{\infty} B_i$. Тоді

$$\forall \varepsilon > 0 \ \forall N > 0 \ \exists n > N : \rho(x_0, x_n) < \varepsilon$$

$$\forall \varepsilon > 0 \exists N > 0 \forall n, m > N : \rho(x_n, x_m) < \varepsilon,$$

$$\forall \varepsilon > 0 \exists N > 0 \forall n, m > N :$$

$$\rho(x_0, x_m) \le \rho(x_0, x_n) + \rho(x_n, x_m) < 2\varepsilon.$$

3 цього випливає, що

$$x_0 = \lim_{n \to \infty} x_n \in X .$$

Отже, (X, ρ) — повний простір.

Припустимо тепер, що простір (X, ρ) не є цілком обмеженим. Інакше кажучи, припустимо, що існує таке число $\varepsilon_0 > 0$ таке, що в X немає скінченної ε_0 -сітки. Візьмемо довільну точку $x_1 \in X$.

- 1) $\exists x_2 \in X : \rho(x_1, x_2) > \varepsilon_0$. Інакше точка x_1 утворювала б ε_0 -сітку в X.
- 2) $\exists x_3 \in X: \rho(x_1, x_3) > \varepsilon_0$, $\rho(x_2, x_3) > \varepsilon_0$. Інакше точки x_1 і x_2 утворювали б ε_0 -сітку в X.

n) $\exists x_{n+1} \in X: \rho(x_{n+1}, x_i) > \varepsilon_0, i = 1, 2, ..., n$. Інакше точки $x_1, x_2, ..., x_n$ утворювали б ε_0 -сітку в X.

Таким чином, ми побудували послідовність $\{x_n\}_{n=1}^{\infty}$, яка не є фундаментальною, а, отже, не має границі. З цього випливає, що кожна із множин $A_n = \{x_n, x_{n+1}, ...\}$, які утворюють центровану систему, є замкненою. Їх перетин є порожнім. Це протирічить компактності простору (X, ρ) .

Покажемо, що $2 \Rightarrow 3$. Нехай $\left\{ x_n \right\}_{n=1}^{\infty}$ — послідовність точок X .

1) Виберемо в X скінченну 1-сітку і побудуємо навколо кожної з точок, що її утворюють, кулю радіуса 1: $S_i(a_i,1)$, $i=1,...,N_1$. Оскільки X є цілком обмеженою,

$$\bigcup_{i=1}^{N_1} S_i(a_i,1) = X.$$

3 цього випливає, що принаймні одна куля, скажімо, S_1 , містить нескінченну підпослідовність $\left\{x_n^{(1)}\right\}_{n=1}^{\infty}$ послідовності $\left\{x_n\right\}_{n=1}^{\infty}$.

2) Виберемо в X скінченну $\frac{1}{2}$ -сітку і побудуємо навколо кожної з цих точок, що її утворюють кулю радіуса $\frac{1}{2}$: $S_i \left(b_i, \frac{1}{2} \right), \ i = 1, 2, ..., N_2$. Оскільки множина X є цілком обмеженою,

$$\bigcup_{i=1}^{N_2} S_i\left(b_i, \frac{1}{2}\right) = X.$$

3 цього випливає, що принаймні одна куля, скажімо, S_2 , містить нескінченну підпослідовність $\left\{x_n^{(2)}\right\}_{n=1}^\infty$ послідовності $\left\{x_n^{(1)}\right\}_{n=1}^\infty$.

•••

m) Виберемо в X скінченну $\frac{1}{m}$ -сітку і побудуємо навколо кожної з цих точок, що її утворюють кулю радіуса $\frac{1}{m}$: $S_i\bigg(c_i,\frac{1}{m}\bigg), \quad i=1,2,...,N_m$. Оскільки множина X є цілком обмеженою,

$$\bigcup_{i=1}^{N_m} S_i\left(c_i, \frac{1}{m}\right) = X.$$

3 цього випливає, що принаймні одна куля, скажімо, S_m , містить нескінченну підпослідовність $\left\{x_n^{(m)}\right\}_{n=1}^{\infty}$ послідовності $\left\{x_n^{(m)}\right\}_{n=1}^{\infty}$.

Продовжимо цей процес до нескінченності. Розглянемо діагональну послідовність $\left\{x_n^{(n)}\right\}_{n=1}^{\infty}$. Вона є підпослідовністю послідовності $\left\{x_n\right\}_{n=1}^{\infty}$. Крім того, при $m \geq n_0$ $x_m^{(m)} \in \left\{x_n^{(n_0)}\right\}_{n=1}^{\infty} \in S_{n_0}$. Це означає, що $\left\{x_n^{(n)}\right\}_{n=1}^{\infty}$ є фундаментальною і внаслідок повноти (X, ρ) має границю.

Твердження $3\Rightarrow 4$ ϵ тривіальним, оскільки із довільної нескінченної множини можна виділити зліченну множину $\left\{x_n\right\}_{n=1}^{\infty}$, яка внаслідок секвенціальної компактності містить збіжну підпослідовність: $\left\{x_{n_k}\right\}_{n_k=1}^{\infty} \to x_0 \in X$.

Покажемо тепер, що $4\Rightarrow 1$. Для цього спочатку доведемо, що множина X ϵ цілком обмеженою, тобто в ній для довільного числа $\epsilon>0$ існує ϵ -сітка. Якщо б це було не так, то застосувавши той же прийом, що і на етапі $1\Rightarrow 2$, ми побудували б послідовність $\left\{x_n\right\}_{n=1}^{\infty}$, яка не має граничних точок, оскільки вона не ϵ фундаментальною. Для кожного n побудуємо скінченну $\frac{1}{n}$ -сітку і розглянемо об'єднання всіх таких сіток. Воно ϵ щільним і не більше ніж зліченним. Таким чином, простір $\left(X,\rho\right)$ ϵ сепарабельним, отже, має зліченну базу.

Для того щоб довести компактність простору, що має зліченну базу, достатньо перевірити, що із будь-якого зліченного (а не довільного нескінченного) відкритого покриття можна виділити скінченне підпокриття. Припустимо, що $\{U_{\alpha}\}$ — довільне покриття простору (X,ρ) , а $\{V_n\}$ — його зліченна база. Кожна точка $x\in X$ міститься в деякому U_{α} . За означенням бази знайдеться деяке $V_i\in \{V_n\}$ таке, що $x\in V_i\subset U_{\alpha}$. Якщо кожній точці $x\in X$ поставити у відповідність окіл $V_i\in \{V_n\}$, то сукупність цих околів утворить зліченне покриття множини X.

Залишилося довести, що із довільного зліченного відкритого покриття множини X можна вибрати скінченне підпокриття. Для цього достатньо довести еквівалентне твердження для замкнених підмножин, що утворюють зліченну центровану систему.

Нехай $\left\{F_n\right\}_{n=1}^{\infty}$ — центрована система замкнених підмножин X . Покажемо, що

$$\bigcap_{n=1}^{\infty} F_n \neq \emptyset.$$

Нехай $\Phi_n = \bigcap_{k=1}^n F_k$. Ясно, що множини Φ_n є замкненими і

непорожніми, оскільки система $\left\{F_n\right\}_{n=1}^{\infty}$ є центрованою, і

$$\Phi_1 \supset \Phi_2 \supset ..., \bigcap_{n=1}^{\infty} \Phi_n = \bigcap_{n=1}^{\infty} F_n$$
.

Можливі два випадки.

1) Починаючи з деякого номера

$$\Phi_{n_0} = \Phi_{n_0+1} = \dots = \Phi_{n_0+k} = \dots$$

Тоді

$$\bigcap_{n=1}^{\infty} F_n = \bigcap_{n=1}^{\infty} \Phi_n = \Phi_{n_0} \neq \emptyset.$$

2) Серед Φ_n ϵ нескінченно багато попарно різних. Достатньо розглянути випадок, коли всі вони відрізняються одна від одної. Нехай $x_n \in \Phi_n \setminus \Phi_{n+1}$. Тоді послідовність $\{x_n\}_{n=1}^{\infty}$ ϵ нескінченною множиною різних точок із X і, внаслідок уже доведеного факту (зліченна компактність), має хоча б одну граничну точку x_0 . Оскільки Φ_n містить всі точки x_n, x_{n+1}, \ldots то x_0 — гранична точка для кожної множини Φ_n і внаслідок замкненості Φ_n

$$\forall n \in \mathbb{N} \quad x_0 \in \Phi_n$$
.

Отже,

$$x_0 \in \bigcap_{n=1}^{\infty} \Phi_n = \bigcap_{n=1}^{\infty} F_n ,$$

тобто $\bigcap_{n=1}^{\infty} F_n$ є непорожнім.

Література

1. Садовничий В,А. Теория операторов. — М.: Изд-во Моск. ун-та, 1986. — с.49–51.