

A Machine Learning Approach

Gina McFarland COMP 4449

Research Question

Which machine learning model classifies lung x-ray images most accurately?

• Models examined: K Nearest Neighbor, Random Forest, Support Vector Machine, and Multilayer Perceptron Neural Networks

Data

Data Preparation

- 1. Resize Images
- 2. Gaussian Blurring
- 3. HOG Transform

Gaussian Blurring

Histogram of Oriented Gradients (HOG)

Data Preparation

sklearn train_test_split package

- 80% train / 20 % test
- shuffle = True
- stratify = 'y'

Metrics

- Baseline Average Radiologist
 - Sample of radiologists (7) in China and US diagnosed x-ray images of COVID-19 and viral pneumonia
 - Average accuracy 74%
- Accuracy main metric
 - True positive and true negative most important
 - · Classes reasonably balanced; No extreme skewing
- Precision, Recall, F1-score
 - These were also considered

K Nearest Neighbor Model

- Concept is similar points are grouped together
- Calculates the distance of incoming points to all existing data points
- Classifies incoming point by taking a vote based on the label of the nearest K points
- The best number of neighbors to consider, (K), will differ based on the data

Classification Report:				
Labels: {'Normal', 'COVID19', 'Pneumonia'}				
Classifier: KNeighborsClassifier(n_neighbors=1, p=1):				
	precision	recall	f1-score	support
COV	1.00	0.77	0.87	44
No	0.72	0.89	0.80	47
Pneum	0.79	0.77	0.78	30
accuracy			0.82	121
macro avg	0.84	0.81	0.82	121
weighted avg	0.84	0.82	0.82	121

Multilayer Perceptron Neural Network

- Multilayer Perceptron (MLP) is a neural network supervised machine learning algorithm
- Composed of one or more neural layers
 - Input layer, hidden layers, predictions are made on the output layer
- Activation functions propagate data through network
 - Data trained backwards through network
 - Input data only propagates forward

•	on Report: ormal', 'COVID MLPClassifier		-	dom state=0.
	precision		-	_
COV	0.95	0.95	0.95	44
No	0.84	0.89	0.87	47
Pneum	0.89	0.80	0.84	30
			0.00	424
accuracy			0.89	121
macro avg	0.89	0.88	0.89	121
weighted avg	0.89	0.89	0.89	121

Random Forest

- Random Forest Classifier is ensemble of decision trees
- Decision trees sensitive to the data they are trained on
- Random Forest avoids this with randomization
- Classification made from highest vote counts from created trees

Classifier:	RandomForest	Classifie	r(max_depth	n=8, n_esti	mators=57
	precision	recall	f1-score	support	
cov	0.91	0.98	0.95	44	
No	0.87	0.96	0.91	47	
Pneum	0.95	0.70	0.81	30	
accuracy			0.90	121	
macro avg	0.91	0.88	0.89	121	
weighted avg	0.91	0.90	0.90	121	

Support Vector Machine Classifier

- SVC finds best boundary to separates data points into different classes
- Creates boundary that is maximally distant from data points in each group to generalize for new data without breaking the model

Labels: {'Normal', 'COVID19', 'Pneumonia'} Classifier: SVC(C=1):				
	prècision	recall	f1-score	support
cov	0.98	0.98	0.98	44
No	0.90	0.94	0.92	47
Pneum	0.93	0.87	0.90	30
accuracy			0.93	121
macro avg	0.93	0.93	0.93	121
weighted avg	0.93	0.93	0.93	121

Results

- SVC most accurate 93%
- Random Forest 90%
- MLP 89%
- KNN 82%
- Ave Radiologist 74%

Data prep biased toward SVC?

Results

Precision (leftmost bar), Recall (middle bar), F1-Score (rightmost bar)

- Models performed best on COVID-19 images
- RF and MLP performed well on COVID-19 and Normal images
 - Pneumonia set reduced performance
- SVC had consistent performance across all data sets

Further Study

- Convolutional Neural Network (CNN)
 - Study used CNN for pneumonia x-ray detection
 - Achieved 98.4% accuracy(!)
 - CNNs were specifically designed to map image data
 - standard model for image predictions
- Differ image prep techniques
 - Without HOG transform, how would other models perform?
- Perform same analysis with balanced classes
 - MLP, SVC, and KNN sensitive to imbalanced classes
 - Random Forest more tolerant of data imbalances

Questions?