Mini-Problems 1

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Show that the function $g: \mathbb{R} \to \mathbb{R}^2$ defined by g(x) = (x, f(x)) is always injective. The range of g is an object that you have seen before. What is it? (Hint: try sketching the range of g for a simple choice of f like f(x) = x + 1.)
- **2.** If $f: X \to Y$ and $g: Y \to Z$ are functions, then their composite is $g \circ f: X \to Z$. Suppose that B is a subset of Z. Prove that $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$.
- **3.** If f(x) and g(x) are surjective functions from \mathbb{R} to \mathbb{R} , does the function (f(x), g(x)) from \mathbb{R} to \mathbb{R}^2 need to be surjective? Either prove that this is so, or find a counterexample.
- **4.** Let $f: X \to Y$ be a function. (i) If B is a subset of Y, prove that $f^{-1}(B^c) = f^{-1}(B)^c$. (ii) Let A be a subset of X. Prove that if f is surjective then $f(A^c) \supseteq f(A)^c$ and that if f is injective then $f(A^c) \subseteq f(A)^c$. (iii) Take $X = Y = \mathbb{R}$, $A = [0, \infty)$ and let $f: X \to Y$ be the function $f(x) = x^2$. Calculate $f(A^c)$ and $f(A)^c$ and observe that neither is contained in the other.