

查准率与查全率

严谨定义

		真实值	
		1	0
预测值	1	真阳性 (true positive) TP 图中2的部分	伪阳性 (false positive) FP 图中3的部分
	0	伪阴性(false negative) FN 图中1的部分	真阴性(true negative) TN

$$Precision = \frac{TP}{TP + FP}, \qquad Recall = \frac{TP}{TP + FN}$$

$$Precision = P(y_i = 1 | \hat{y}_i = 1)$$

 $Recall = P(\hat{y}_i = 1 | y_i = 1)$

查全率(recall) =
$$2 \div (1) + 2$$
)

查准率与查全率

严谨定义

对于一个二分类问题,我们往往对其中一个类别更感兴趣:

- · 将这个类别定义为 y = 1
- · 查准查全率定义都是针对 y = 1而言的

事实上对于 y = 0 这个类别,也能计算针对这个 类别的查准查全率

· 将y的取值颠倒一下,重新建模和计算指标,就能得到 y = 0 的查准查全率

		真实值	
		1	0
预测值	1	真阳性 (true positive) TP 图中2的部分	伪阳性 (false positive) FP 图中3的部分
	0	伪阴性 (false negative) FN 图中1的部分	真阴性(true negative) TN

针对
$$y = 1$$
 $Precision = \frac{TP}{TP + FP}$

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TN}{TN + FN},$$

$$Recall = \frac{TN}{TN + FP}$$

THANK YOU