ACS234 Maths and Data Modelling

Tutorial 7 Wednesday 1pm online

https://github.com/ineskris/ACS234/blob/master/Tutorial7/Tutorial7.ipynb

Done in Lecture (week 8/9)

- ODEs systems
- Euler's Method

Ordinary Differential Equations

	1st-order ODE system	nth-order ODE		
Formula	$\frac{dy}{dt} = f(t, y)$	$\frac{dy^n}{dt} = f(t, y(t), y'(t), \dots, y^{n-1}(t))$		
Example	$\frac{dy}{dt} = y \qquad y(0) = 1 \qquad y(t) = \exp(t)$	$\frac{dy^2}{dt} = -\frac{dy}{dt} + 6y y(t) = A \exp(2t) + B \exp(-3t)$		

Euler's Method

Taylor series : Let f be indefinitely differentiable at a point a:
$$f(a) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \quad y(t_0+h) \approx y(t_0) + hy'(t_0)$$
 Euler's method :
$$\frac{dy}{dt} = f(t,y) \qquad y_1 \approx y_0 + hf(t_0,y_0) \qquad t_1 = t_0 + h \qquad y(t_1) = y_1 \quad y(t_0) = y_0$$

$$\frac{dy}{dt} = f(t,y) \qquad y(t_0) = y_0$$

$$y_{i+1} = y_i + hf(t_i,y_i)$$

Stability

Solution of an ODE is:

- Stable if solutions resulting from perturbations of initial value remain close to original solution
- <u>Asymptotically stable</u> if solutions resulting from perturbations converge back to original solution
- <u>Unstable</u> if solutions resulting from perturbations diverge away from original solution without bound

Exercice 1

Use Euler's method to integrate these 1st order ODE system with the given step size h, number of steps and the initial condition. Compute for each step the exact analytical solution too.

a)
$$h = 0.1$$

$$n_{step} = 2$$

b)
$$h = 0.5$$

$$n_{step} = 3$$

c)
$$h = 1$$
 $n_{step} = 2$

$$\frac{dy}{dt} = 3y$$

$$y(0) = 2$$

$$\frac{dy}{dt} = t^2 + 1$$

$$y(1) = 4$$

a)
$$h = 0.1$$
 $n_{step} = 2$ b) $h = 0.5$ $n_{step} = 3$ c) $h = 1$ $n_{step} = 2$ $\frac{dy}{dt} = 3y$ $y(0) = 2$ $\frac{dy}{dt} = t^2 + 1$ $y(1) = 4$ $\frac{dy}{dt} = ln(t)$ $y(1) = 0$

Exercice 2

Find the step size h in question 1c) to have an absolute error inferior to 0.05 between the for the approximate y_2.

Exercice 3

$$\frac{dy}{dt} = -3y \qquad y(0) = 2$$

For the 1st order ODE above, find the condition on the step size h for the difference equation to be stable. See Hand out part 5.

Exercice 1 - solution

a) Analytical solution :
$$f(t) = 2 \exp(3t)$$
 $f(0.5) = 2 \exp(0.1) \approx 2.69$

$$f(0.2) = 2 \exp(0.2) \approx 3.64$$

Euler's method:
$$t_1 = t_0 + h = 0.1$$
 $y_1 = y_0 + hf(t_0, y_0) = 2 + 0.1 \times 3 \times y_0 = 2.6$

$$t_2 = t_1 + h = 0.2$$
 $y_2 = y_1 + hf(t_1, y_1) = 2.6 + 0.1 \times 3 \times 2.6 = 3.38$

b) Analytical solution :
$$f(t) = \frac{t^3}{3} + t + \frac{8}{3}$$
 $f(1.5) = \frac{1.5^3}{3} + 1.5 + \frac{8}{3} \approx 5.29$

$$f(2) \approx 7.33$$

$$f(2.5) = 10.375$$

Euler's method:
$$t_2 = t_1 + h = 1.5$$
 $y_2 = y_1 + hf(t_1, y_1) = 4 + 0.5 \times 2 = 5$

$$t_3 = t_2 + h = 2$$
 $y_3 = y_2 + hf(t_2, y_2) = 5 + 0.5 \times 5 = 7.5$

$$t_4 = t_3 + h = 2.5$$
 $y_4 = y_3 + hf(t_3, y_3) = 7.5 + 0.5 \times 7.33 = 11.16$

Analytical solution:
$$f(t) = t \ln t - t + 1$$
 $f(2) \approx 0.386$

$$f(3) \approx 1.296$$

Euler's method:
$$t_2 = t_1 + h = 1$$
 $y_2 = y_1 + hf(t_1, y_1) = 0 + 1 \times 0 = 0$

$$t_3 = t_2 + h = 2$$
 $y_3 = y_2 + hf(t_2, y_2) = 0 + ln(2) = 0.693$

Exercice 2 - solution

$$h = 0.7$$

See Jupyter notebook

https://github.com/ineskris/ACS234/blob/master/Tutorial7/Tutorial7.ipynb

Exercice 3 - solution

$$y_{i+1} = y_i - 3hy_i$$

 $y_{i+1} = (1 - 3h)y_i$
 $|1 - 3h| < 1$
 $h < 2/3$