IT5100A

Industry Readiness:

Typed Functional Programming

Typeclasses

Foo Yong Qi yongqi@nus.edu.sg

```
000
       f :: [Int] -> [Int]
       f(x:xs) =
           let r = f xs
           in r ++ [x]
       main :: IO ()
       main = do
           let x = [1...10]
           print $ f x
```


Algebraic Data Types don't give much information about its component fields (different constructors usually have different fields)

Most importantly, we write **functions** over these types

```
area :: Shape -> Double
area (Circle r) = pi * r ^ 2
area (Rectangle w h) = w * h
```

Those functions might/should also work on other types

```
data House = H [Room]
type Room = Rectangle
area' :: House -> Double
area' (H ls) = foldr ((+) . area) 0 ls
```

How do we allow these types to have the **same functionality** but **type-dependent implementations**?

Python approach: if it walks like a duck, quacks like a duck, it is probably a duck

```
@dataclass
class Rectangle:
    w: float
    h: float
    def area(self) -> float:
        return self.w * self.h
@dataclass
class House:
    ls: list[Rectangle]
    def area(self) -> float:
        return sum(x.area() for x in self.ls)
def total_area(ls):
    return sum(x.area()) for x in ls)
ls = [Rectangle(1, 2), House([Rectangle(3, 4)])]
total area(ls) # 14
```

Two classes declaring the same method with different implementations is known as **method overloading**, a form of **ad-hoc polymorphism**!

```
@dataclass
class Fraction:
    num: int
    den: int
    def __add__(self, f: 'Fraction') -> 'Fraction':
        num = self.num * f.den + f.num * self.den
        den = self.den * f.den
        return Fraction(num, den)
print(1 + 2) # 3
print(Fraction(1, 2) + Fraction(3, 4)) # 10/8
```

Python and other languages like C++ support operator overloading

Add static duck typing on the fly with protocols in Python

```
class HasArea(Protocol):
    @abstractmethod
    def area(self) -> float:
        pass

def total_area(ls: list[HasArea]) -> float:
        return sum(x.area() for x in ls)
ls: list[HasArea] = [Rectangle(1, 2), House([Rectangle(3, 4)])]
total_area(ls) # 14
```

Alternatively, define abstract class / interface and let classes inherit them

Expression problem: adding new methods to classes is difficult in OOP

Use helpers!

```
def rectangle_area(rect: Rectangle) -> float:
    return rect.w * rect.h
def house area(house: House) -> float:
    return sum(x.area() for x in house.ls)
def area(x, f) -> float:
    return f(x)
r = Rectangle(1, 2)
h = House([Rectangle(3, 4)])
area(r, rectangle area) # 2
area(h, house area) # 12
```

```
HasArea = {}
HasArea[Rectangle] = Lambda rect: rect.w * rect.h
HasArea[House] = Lambda house: sum(x.area() for x in house.ls)

def area(x):
    t = type(x)
    return HasArea[t](x)

r = Rectangle(1, 2)
h = House([Rectangle(3, 4)])
area(r) # 2
area(h) # 12
```

______ IT5100A

Dictionary where keys are types and values are implementations for area

```
HasArea = {}
HasArea[Rectangle] = Lambda rect: rect.w * rect.h
HasArea[House] = Lambda house: sum(x.area() for x in house.ls)

def area(x):
    t = type(x)
    return HasArea[t](x)

r = Rectangle(1, 2)
h = House([Rectangle(3, 4)])
area(r) # 2
area(h) # 12
```

Implementations of area for Rectangles and Houses

```
HasArea = {}
HasArea[Rectangle] = Lambda rect: rect.w * rect.h
HasArea[House] = Lambda house: sum(x.area() for x in house.Ls)

def area(x):
    t = type(x)
    return HasArea[t](x)

r = Rectangle(1, 2)
h = House([Rectangle(3, 4)])
area(r) # 2
area(h) # 12
```

area looks up implementation by type

```
HasArea = {}
HasArea[Rectangle] = Lambda rect: rect.w * rect.h
HasArea[House] = Lambda house: sum(x.area() for x in house.ls)

def area(x):
    t = type(x)
    return HasArea[t](x)

r = Rectangle(1, 2)
h = House([Rectangle(3, 4)])
area(r) # 2
area(h) # 12
```

2 — IT5100A

area works on
Rectangles and
Houses without changing
class definitions

```
HasArea = {}
HasArea[Rectangle] = Lambda rect: rect.w * rect.h
HasArea[House] = Lambda house: sum(x.area() for x in house.Ls)

def area(x):
    t = type(x)
    return HasArea[t](x)

r = Rectangle(1, 2)
h = House([Rectangle(3, 4)])
area(r) # 2
area(h) # 12
```

Defining a new class/new overloaded function is a simple extension

```
@dataclass
class Triangle(Shape):
    w: float
    h: float
HasArea[Triangle] = Lambda t: t.w * t.h
area(Triangle(5, 2)) # 5
```

This form of ad-hoc polymorphism supports:

- Otherwise disparate types adhering to a common interface
- Decoupling types and behaviour

How do we do this in Haskell?

Typeclass

A type system construct that enables ad-hoc polymorphism

Typeclass

A nominal classification of types that support specified behaviour by providing its type-specific implementation

Typeclass

A constraint or witness for a type to support specified behaviours

Typeclass System

Typeclass

Gives interface/specification/contract for members of typeclass to follow

Typeclass Instance

Provides actual type-specific implementations of the functions specified in the typeclass

To join, must have (1) assistant, (2) magic trick

Typeclass

21

IT5100A

Example of different types that have an area

Define contract for all types that have area

```
class HasArea a where
    area :: a -> Double
```

Why is HasArea polymorphic?

Recall: we are looking up implementation by type

```
HasArea = {}
HasArea[Rectangle] = Lambda rect: rect.w * rect.h
HasArea[House] = Lambda house: sum(x.area() for x in house.ls)

def area(x):
    t = type(x)
    return HasArea[t](x)
```

Dictionary receives type and returns new function...

Polymorphic!

```
class HasArea a where
    area :: a -> Double
```

Now we provide type-specific implementations of area

```
instance HasArea Shape where
  area (Circle r) = pi * r ^ 2
  area (Rectangle w h) = w * h
  area (Triangle w h) = w * h / 2
instance HasArea Room where
  area x = area $ shape x
instance HasArea House where
  area (H rooms) = sum $ map area rooms
```

The area function now works on all those types!

```
x :: Shape = Triangle 2 3
y :: Room = R "bedroom" (Rectangle 3 4)
z :: House = H [y]
ax = area x -- 3
ay = area y -- 12
az = area z -- 12
```

```
x :: Shape = Triangle 2 3
y :: Room = R "bedroom" (Rectangle 3 4)
z :: House = H [y]
ax = area x -- 3
ay = area y -- 12
az = area z -- 12
```

```
ghci> :t area
area :: forall a. HasArea a => a -> double
```

Read: area is a function for all a where a is constrained by HasArea, and receives an a, and returns a Double

Another way of looking at this: HasArea is an ADT

```
data HasArea a = HA { area :: a -> Double }
```

Another way of looking at this: HasArea is an ADT

```
data HasArea a = HA { area :: a -> Double }
```

Typeclass instances are just normal terms

```
hasAreaShape :: HasArea Shape
hasAreaShape = HA $ \x -> case x of
        Circle r -> pi * r ^ 2
        Rectangle w h -> w * h
        Triangle w h -> w * h / 2
```

Another way of looking at this: HasArea is an ADT

```
data HasArea a = HA { area :: a -> Double }
```

Typeclass instances are just normal terms

```
hasAreaShape :: HasArea Shape
hasAreaShape = HA $ \x -> case x of
    Circle r -> pi * r ^ 2
    Rectangle w h -> w * h
    Triangle w h -> w * h / 2
```

To compute the area of something that has an area, call the area function passing in the typeclass instance

```
x :: Shape = Triangle 2 3
ax = area hasAreaShape x -- 3
```

Typeclass system

"Helper system"

```
class HasArea a where
    area :: a -> Double
x :: Shape = Triangle 2 3
ax = area x -- 3
ghci> :t area
area :: forall a. HasArea a => a -> double
data HasArea a = HA { area :: a -> Double }
x :: Shape = Triangle 2 3
ax = area hasAreaShape x -- 3
ghci> :t area
area :: forall a. HasArea a -> a -> double
```

Typeclass system

"Helper system"

Our system is almost identical to how Haskell implements typeclasses—in actual typeclass system, we let Haskell infer the supporting term (term inference)

```
class HasArea a where
    area :: a -> Double
x :: Shape = Triangle 2 3
ax = area x
ghci> :t area
area :: forall a. HasArea a(=>)a -> double
data HasArea a = HA { area :: a -> Double }
 Shape = Triangle 2 3
ax = area hasAreaShape x
ghci> :t area
area :: forall a. HasArea a(->)a
```

Polymorphism & Typeclasses

Let's define a function that uses our new area function

```
totalArea :: [Shape] -> Double
totalArea [] = 0
totalArea (x : xs) = area x + totalArea xs
-- Point free style:
totalArea = sum . map area
```

Define another one over a list of Rooms

```
totalArea :: [Room] -> Double
totalArea = sum . map area
```

3 –

Polymorphism & Typeclasses

Same implementation, different types—make it **polymorphic**!

```
totalArea :: [Shape] -> Double
totalArea [] = 0
totalArea (x : xs) = area x + totalArea xs
-- Point free style:
totalArea = sum . map area
```

```
totalArea :: [Room] -> Double totalArea = sum . map area
```

Don't forget to constrain a to have an instance of HasArea!

```
totalArea :: forall a. HasArea a => [a] -> Double totalArea = sum . map area
```

Now, type of list elements doesn't matter as long as they are members of **HasArea** typeclass!

```
ghci> xs :: [Shape] = [Rectangle 1 2, Triangle 3 4]
ghci> ys :: [House] = [H [R "bedroom" (Rectangle 1 2)]]
ghci> axz = totalArea xs -- 8
ghci> ays = totalArea ys -- 2
```



```
class Eq a where
  (==) :: a -> a -> Bool
  (/=) :: a -> a -> Bool
```

```
class Num a where
  (+) :: a -> a -> a
  (-) :: a -> a -> a
  (*) :: a -> a -> a
  negate :: a -> a
  abs :: a -> a
  signum :: a -> a
  fromInteger :: Integer -> a
```

Example:

```
instance Eq Fraction where
  (F a b) == (F c d) = a == c && b == d
  (F a b) /= (F c d) = a /= c || b /= d
```

Notice that usually by definition $a \neq b = not (a == b)$, having to define both $== and \neq b = not (a == b)$,

Let's inspect the definition of Eq

```
ghci> :i Eq
type Eq :: * -> Constraint
class Eq a where
  (==) :: a -> a -> Bool
  (/=) :: a -> a -> Bool
  {-# MINIMAL (==) | (/=) #-}
  -- Defined in 'GHC.Classes'
```

Notice the MINIMAL pragma: we only need to define either (==) or (/=) for a complete definition

Let's try only defining (==)

```
data Fraction = F Int Int
instance Eq Fraction where
  (F \ a \ b) == (F \ c \ d) = a == c \ \&\& \ b == d
x, y :: Fraction
x = F 1 2
y = F 3 4
xey, xney :: Bool
xey = x == y -- False
xney = x /= y -- True
```

Everything works!

Another example:

Equality of trees depends on equality of their elements!

Some classes also require instances of another typeclass, e.g. Ord

```
class Eq a => Ord a where
  (<) :: a -> a -> Bool
  (<=) :: a -> a -> Bool
  -- etc..
```

Cannot define Ord instance for type without accompanying Eq instance

Defining **Eq** instances simple but tedious—derive automatically!

Recall: map maps function over items in list

```
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x : xs) = f x : map f xs
```

Can we try mapping Trees?

```
map' :: (a -> b) -> Tree a -> Tree b
map' _ Empty = Empty
map' f (Node l c r) = Node (map' f l) (f c) (map' f r)

x = map' (+1) (Node Empty 1 Empty) -- Node Empty 2 Empty
```

Clearly possible! Let's look at their type signatures

```
map :: (a -> b) -> [a] -> [b]
map' :: (a -> b) -> Tree a -> Tree b
```

```
map :: (a -> b) -> [a] -> [b]
map' :: (a -> b) -> Tree a -> Tree b
```

Any mappable **type constructor f** can perform **fmap** like so:

```
class Mappable f where
  fmap :: (a -> b) -> f a -> f b
instance Mappable [] where
  fmap = map
instance Mappable Tree where
  fmap = map'
```

This is actually the **Functor** typeclass:

```
class Functor f where
  fmap :: (a -> b) -> f a -> f b
instance Functor [] where
  fmap = map
instance Functor Tree where
  fmap = map'
```

Functor is an example of a higher-kinded type

Let's look at the type of (+):

```
ghci> :t (+)
(+) :: Num a => a -> a -> a
```

This is very different from how + behaves in Python:

```
>>> type(1 + 1)
class <'int'>
>>> type(1 + 1.0)
class <'float'>
>>> type(1.0 + 1)
class <'float'>
>>> type(1.0 + 1.0)
class <'float'>
>>> type(1.0 + 1.0)
class <'float'>
```

Create another typeclass defining heterogenous addition (+#):

```
class (Num a, Num b, Num c) => HAdd a b c where
  (+#) :: a -> b -> c
```

Typeclass instances for **Int** and **Double**:

```
instance Num a => HAdd a a a where
  (+#) :: a -> a -> a
  (+#) = (+)

instance HAdd Int Double Double where
  (+#) :: Int -> Double -> Double
  x +# y = fromIntegral x + y

instance HAdd Double Int Double where
  (+#) :: Double -> Int -> Double
  x +# y = x + fromIntegral y
```

```
ghci> x :: Int = 1
ghci> y :: Double = 2.0
ghci> x +# y
<interactive>:3:1: error:
    - No instance for (HAdd Int Double ()) arising from a use of 'it'
    - In the first argument of 'print', namely 'it'
        In a stmt of an interactive GHCi command: print it
ghci> x +# y :: Double
3.0
```

Compiler does not know what the return type should be! Nothing stopping us from having two instances like so:

```
instance HAdd Int Double Double where
  (+#) :: Int -> Double -> Double
  -- ...
instance HAdd Int Double String where
  (+#) :: Int -> Double -> String
  -- ...
```

```
(+#) :: a -> b -> c
```

c depends solely on what a and b are a and b should uniquely characterize c

State this as a **functional dependency**

```
ghci> x :: Int = 1
ghci> y :: Double = 2.0
ghci> x +# y
3.0
```

Existential Typeclass "Antipattern"

Python: if class abides by protocol, can be put in a list of that protocol, okay because protocol is a class (therefore a type)

```
class HasArea(Protocol):
    # ...
# following is ok and well-typed
ls: list[HasArea] = [Rectangle(1, 2), House([...])]
```

Not okay in Haskell since **HasArea** is not a type

```
x = Triangle 2 3
y = R "bedroom" (Rectangle 3 4)
z = H [y]
ls = [x, y, z] -- error!
```

How do we create a type that represents all types that implement **HasArea** in Haskell?

Polymorphic types are known as for-all types (implementation is independent of input)

 $\forall \alpha. \tau$

Idea behind for-all: can substitute α with any other type to give a new type

```
id: \forall \alpha. \alpha \rightarrow \alphaid = \Lambda \alpha. \lambda x: \alpha. xid Int = (\lambda x: \alpha. x)[\alpha := Int]= \lambda x: Int. x
```

Alice

id: $\forall \alpha. \alpha \rightarrow \alpha$

 $id = \Lambda \alpha. \lambda x: \alpha. x$

Bob

Alice: "Here's a polymorphic type; I don't know what α is. I can only refer to it opaquely as α . You can replace it with whatever type you want."

Are there "there-exists" types? Yes! These are called **existential** types!

 $\exists \alpha. \tau$

Idea behind exists: there is **some** type which inhabits α to give a new type

```
\exists \alpha. [\alpha] means "some" list [1,2]::\exists \alpha. [\alpha] is valid since because we can let \alpha be Int
```

"abc" :: $\exists \alpha$. $[\alpha]$ is also valid because we can let α be Char

[1, 'a']:: $\exists \alpha$. [α] is invalid

Alice

 $x: \exists \alpha. [\alpha]$

$$x = [1,2]$$

Bob

Alice: "Here's an existential type. I know what α is but I won't tell you. **You** can only refer to it opaquely as α ."

Polymorphism: implementer does not know the type, must ignore it. User chooses the type.

Existential types: implementer chooses the type. User does not know the type, must ignore it.

```
x = Triangle 2 3
y = R "bedroom" (Rectangle 3 4)
z = H [y]
ls = [x, y, z] -- error!
```

Ideally, 1s has type $[\exists \alpha. \mathsf{HasArea} \ \alpha \Rightarrow \alpha]$

Haskell doesn't have existential types, what now?

IT5100A

data HasAreaType = HAT $(\exists \alpha. \text{HasArea} \alpha \Rightarrow \alpha)$ instance HasArea HasAreaType where area (HAT x) = area x

We create a new type HasAreaType that wraps any type that has area. But, still have the same problem!

Mental model for polymorphism: function that receives type and produces type/term

Mental model for existential types: a pair containing a witness type and the object itself

Object of type $\exists \alpha. \tau$ is pair (β, x) such that x has type $\tau[\alpha := \beta]$

```
(Int, [1,2]) inhabits \exists \alpha. [\alpha] Because [1,2] :: [Int] (Char, "abc") inhabits \exists \alpha. [\alpha] Because "abc" :: [Char]
```

HAT :: (∃a. HasArea a ⇒ a) -> HasAreaType

Function that receives existential type can be thought of as a function receiving a pair consisting of type and object

```
HAT :: (a :: *, HasArea a => a) -> HasAreaType
```

Function that receives existential type can be thought of as a function receiving a pair consisting of type and object

```
HAT :: (a :: *, HasArea a => a) -> HasAreaType
```

Currying: function receiving more than one parameter can be curried into function that receives one parameter

```
def add(x, y):
    return x + y

def add(x):
    return Lambda y: x + y
```

First parameter is a type, so...

. .

HAT :: forall a. HasArea a => a -> HasAreaType

Make it polymorphic!

Polymorphic functions simulate functions over existential types

Other examples:

```
area :: (∃a. HasArea a => a) -> Double
area :: forall a. HasArea a => a -> Double

EqExpr :: (∃a. Eq a => (Expr a, Expr a)) -> Expr Bool
EqExpr :: forall a. Eq a => Expr a -> Expr Bool
```

```
data HasAreaType where
   HAT :: forall a. HasArea a => a -> HasAreaType
instance HasArea HasAreaType where
   area (HAT x) = area x
```

Now we can put terms of different types that implement **HasArea** in a list!

```
x = Triangle 2 3
y = R "bedroom" (Rectangle 3 4)
z = H [y]

ls :: [HasAreaType]
ls = [HAT x, HAT y, HAT z]
d = totalArea ls -- 27
```

However, in this case, not particularly useful

```
x = Triangle 2 3
y = R "bedroom" (Rectangle 3 4)
z = H [y]

ls :: [Double]
ls = [area x, area y, area z]
d = sum ls -- 27
```

Existential Types

- Not commonly used, usually to abstract over types that have common behaviour
- Not knowing existential types should **not** affect understanding of typeclasses/polymorphic types
- Existential types as pairs is very handwave-y
- Demonstration only serves as mental model for why we write polymorphic functions where return type does not depend on type parameter

Key Point

- We should **not** replicate 00 design patterns in FP just because they are familiar
- Trying to skirt around the restrictions of the type system is, generally, not a good idea—work **with** the type system

Thank you

Foo Yong Qi

yongqi@nus.edu.sg

https://yongqi.foo/

