Práctica 1.5. RIP y BGP

Objetivos

En esta práctica se afianzan los conceptos elementales del encaminamiento IP. En particular, se estudia un protocolo de encaminamiento interno y otro externo: RIP (*Routing Information Protocol*) y BGP (*Border Gateway Protocol*).

Existen muchas implementaciones de los protocolos de encaminamiento. En esta práctica vamos a utilizar Quagga, que actualmente implementa RIP (versiones 1 y 2), RIPng, OSPF, OSPFv3, IS-IS y BGP. Quagga está estructurado en diferentes demonios (uno para cada protocolo) controlados por un demonio central (zebra) que hace de interfaz entre la tabla de encaminamiento del *kernel* y la información de encaminamiento de los protocolos individuales.

Todos los archivos de configuración han de almacenarse en el directorio /etc/quagga. La sintaxis de estos archivos es sencilla y está disponible en http://quagga.net. Revisar especialmente la correspondiente a RIP y BGP en http://www.nongnu.org/quagga/docs/docs-info.html.

Contenidos

Parte I. Protocolo interior: RIP
Preparación del entorno
Configuración del protocolo RIP

Parte II. Protocolo exterior: BGP
Preparación del entorno
Configuración del protocolo BGP

Parte I. Protocolo interior: RIP

Preparación del entorno

Configuraremos la topología de red que se muestra en la siguiente figura:

Cada encaminador (Router1... Router4) tendrá tres interfaces, dos de ellos conectados a una red interna y el otro, conectado a una red diferente en cada encaminador.

Al igual que en las prácticas anteriores, usaremos la herramienta vtopol para construir automáticamente esta topología. A continuación se muestra el contenido del archivo de configuración de la topología:

```
netprefix inet
machine 1 0 0 1 3 2 4
machine 2 0 0 1 1 2 5
machine 3 0 2 1 1 2 6
machine 4 0 2 1 3 2 7
```

Para facilitar la configuración de las máquinas la siguiente tabla muestra las direcciones de cada uno de los interfaces de los encaminadores:

Máquina Virtual	Interfaz	Red interna	Dirección de red	Dirección IP
Router1	eth0	inet0	172.16.0.0/16	172.16.0.1
	eth1	inet3	172.19.0.0/16	172.19.0.1
	eth2	inet4	192.168.0.0/24	192.168.0.1
Router2	eth0	inet0	172.16.0.0/16	172.16.0.2
	eth1	inet1	172.17.0.0/16	172.17.0.2
	eth2	inet5	192.168.1.0/24	192.168.1.2
Router3	eth0	inet2	172.18.0.0/16	172.18.0.3
	eth1	inet1	172.17.0.0/16	172.17.0.3
	eth2	inet6	192.168.2.0/24	192.168.2.3
Router4	eth0	inet2	172.18.0.0/16	172.18.0.4
	eth1	inet3	172.19.0.0/16	172.19.0.4
	eth2	inet7	192.168.3.0/24	192.168.3.4

Configuración del protocolo RIP

Ejercicio 1. Configurar todas las máquinas virtuales Router1...Router4 según se muestra en la figura anterior. Debe comprobarse para cada una de las máquinas que:

• Los encaminadores adyacentes son alcanzables, por ejemplo Router1 recibe respuesta a las solicitudes de ping enviadas a Router2 y Router4.

```
Router 1: ping 172.16.0.2
Router 1: ping 172.19.0.4
Router 3: ping 172.17.0.2
Router 3: ping 172.18.0.4
```

• La tabla de encaminamiento de cada encaminador es la correcta e incluye una entrada para cada una de las tres redes a las que está conectado.

```
ip neigh o ip route
```

Para configurar los encaminadores usar el comando ip. Además, activar el *forwarding* de paquetes igual que en la práctica 1.1.

```
sysctl net.ipv4.ip_forward=1
```

Ejercicio 2. Configurar RIP en todos los encaminadores para que intercambien información de encaminamiento. El proceso consiste en:

• Activar los demonios ripd y zebra en /etc/quagga/daemons

nano /etc/quagga/daemons

• Crear un archivo ripd.conf en /etc/quagga. Puede usarse como referencia el archivo que se muestra a continuación.

nano /etc/quagga/ripd.conf

Crear un archivo vacío con la configuración para zebra (/etc/quagga/zebra.conf).

nano /etc/quagga/zebra.conf

• Iniciar los demonios con service quagga start

Contenido del fichero /etc/quagga/ripd.conf:

```
# Activar el encaminamiento por RIP
router rip
# Definir la versión del protocolo que se usará
version 2
# Habilitar información de encaminamiento en redes asociadas a los interfaces
network eth0
network eth1
network eth2
```

Nota: En /usr/share/doc/quagga/examples hay archivos de ejemplo para la configuración de Quagga.

Ejercicio 3. Usando el comando vtysh, consultar la tabla de encaminamiento de RIP y de zebra en cada encaminador. Comprobar también la tabla de encaminamiento del *kernel* con el comando ip.

```
# vtysh -c "show ip rip"
...
# vtysh -c "show ip route"
...
# ip route
...
```

ip route tabla de rutas de forwarding

Ejercicio 4. Con ayuda de la herramienta wireshark, estudiar los mensajes RIP intercambiados, en particular comprobar:

- Encapsulado (UDP)
- Direcciones origen y destino (Origen → maquina, Destino → dir. multicast)
- Campo de versión (RIPV2)
- Información para cada ruta: campo de dirección de red, máscara y distancia.

Ejercicio 5. Eliminar el enlace entre Router1 y Router4 (p.ej. desactivando el interfaz eth1 en Router4). Comprobar que Router1 deja de recibir los anuncios de Router4 y que, pasados aproximadamente 3 minutos (valor de *timeout* por defecto para las rutas), ha reajustado su tabla.

Ejercicio 6 (Opcional). Los demonios de Quagga pueden configurarse de forma interactiva mediante un terminal (telnet), de forma similar a los encaminadores comerciales. Para activar el terminal virtual (VTY), hay que añadir el comando password al archivo de configuración del demonios al que queramos habilitar el acceso.

Configurar ripd vía VTY:

- Añadir "password redes" al fichero ripd.conf, desactivar el protocolo (no router rip) y comentar el resto de entradas. Una vez cambiado el archivo, reiniciar el demonio.
- Conectar al VTY del demonio ripd y configurarlo. En cada comando se puede usar ? para mostrar la ayuda asociada:

```
# telnet localhost ripd
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hello, this is Quagga (version 0.99.20.1)
Copyright © 1996-2005 Kunihiro Ishiguro, et al.
User Access Verification
Password: redes
frontend> enable
frontend# configure terminal
frontend(config)# router rip
frontend(config-router)# version 2
frontend(config-router)# network eth0
frontend(config-router)# write
Configuration saved to /etc/quagga/ripd.conf
frontend(config-router)# exit
frontend(config)# exit
frontend# show running-config
Current configuration:
password redes
router rip
 version 2
 network eth0
line vty
ļ
end
frontend# write
Configuration saved to /etc/quagga/ripd.conf
```

Parte II. Protocolo exterior: BGP

Preparación del entorno

Configuraremos la topología de red con 3 sistemas autónomos, siendo uno de ellos el proveedor de los otros dos:

Nota: El prefijo 2001:db8::/32 está reservado para documentación y ejemplos (RFC 3849).

Usaremos la herramienta **vtopol** para construir automáticamente esta topología con el siguiente fichero de configuración:

```
netprefix inet
machine 1 0 0
machine 2 0 0 1 1
machine 3 0 1
```

Para facilitar la configuración de las máquinas la siguiente tabla muestra las direcciones de cada uno de los interfaces de los encaminadores:

Máquina Virtual	Interfaz	Red interna	Dirección de red	Dirección IP
Router1	eth0	inet0	2001:db8:200:1::/64	2001:db8:200:1::1
Router2	eth0	inet0	2001:db8:200:1::/64	2001:db8:200:1::2
	eth1	inet1	2001:db8:200:2::/64	2001:db8:200:2::2
Router3	eth0	inet1	2001:db8:200:2::/64	2001:db8:200:2::3

Ejercicio 1. Determinar el tipo de AS y las redes que deben anunciar teniendo en cuenta que el RIR ha asignado a cada sistema autónomo prefijos de longitud 48. Nota, agregar al máximo posible los prefijos anunciados.

Número de AS	Tipo	Redes
AS100	Stub	2001:db8:100:1::/64 ¿? 2001:db8:101:1::/64 ¿?
AS200	Tránsito	2001:db8:200:1::/64 ¿? 2001:db8:200:2::/64 ¿?
AS300	Stub	2001:db8:300:1::/64 ¿? 2001:db8:301:1::/64 ¿? 2001:db8:301:2::/64 ¿?

Ejercicio 2. Configurar los encaminadores según se muestra en la figura anterior. Debe comprobarse la conectividad entre máquinas adyacentes.

```
ping6 <dir.Ipv6Maquina> Ej: ping6 2001:db8:200:2::1
```

Configuración del protocolo BGP

Ejercicio 1. Configurar BGP en los encaminadores para que intercambien información de encaminamiento. El proceso consiste en:

- Activar los demonios zebra y bgpd en el archivo /etc/quagga/daemons.
- Crear un archivo zebra.conf vacío en /etc/quagga.
- Crear un archivo bgpd.conf en /etc/quagga, siguiendo la plantilla se muestra a continuación.
- Iniciar los demonios con service quagga start.

Plantilla para los archivos bgpd.conf:

```
# Activar encaminamiento BGP y establece el ASN

router bgp <ASN>

# Establecer el identificador de encaminador BGP

bgp router-id <identificador de encaminador>

# Añadir un encaminador vecino BGP en un AS remoto

neighbor <dirección IP del encaminador vecino> remote-as <ASN del vecino>

# Empezar a trabajar con direcciones IPv6

address-family ipv6

# Anunciar un prefijo de red

network <prefijo de red>

# Activar IPv6 en el encaminador vecino BGP

neighbor <dirección IP del encaminador vecino> activate

# Dejar de trabajar con direcciones IPv6

exit-address-family
```

Ampliación de Sistemas Operativos y Redes

Por ejemplo, el archivo del Router1 del AS100 es el siguiente:

```
router bgp 100
bgp router-id 0.0.0.1
neighbor 2001:db8:200:1::2 remote-as 200
address-family ipv6
network 2001:db8:100::/47
neighbor 2001:db8:200:1::2 activate
exit-address-family
```

archivo del Router2 del AS200:

```
router bgp 200
bgp router-id 0.0.0.2
neighbor 2001:db8:200:1::1 remote-as 100
neighbor 2001:db8:200:2::3 remote-as 300
address-family ipv6
network 2001:db8:200::/47
neighbor 2001:db8:200:1::1 activate
neighbor 2001:db8:200:2::3 activate
exit-address-family
```

archivo del Router3 del AS300:

```
router bgp 300
bgp router-id 0.0.0.3
neighbor 2001:db8:200:2::2 remote-as 200
address-family ipv6
network 2001:db8:300::/47
neighbor 2001:db8:200:2::2 activate
exit-address-family
```

Ejercicio 2. Con ayuda de la herramienta wireshark, estudiar los mensajes BGP intercambiados:

OPEN: UPDATE:

Ejercicio 3. Usando el comando vtysh, consultar la tabla de encaminamiento de BGP, de los protocolos de encaminamiento interno y de zebra en cada encaminador. Comprobar también la tabla de encaminamiento del *kernel* con el comando ip.

```
# vtysh -c "show ipv6 bgp"
...
# vtysh -c "show ipv6 route"
...
# ip -6 route
...
```