Exercice 1 -

Soit (u_n) la suite définie par $u_0 = 3$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{2u_n}{4u_n + 2}$. Soit (v_n) la suite définie pour tout $n \in \mathbb{N}$ par $v_n = \frac{1}{u_n}$

- 1) Montrer par récurrence que (u_n) et (v_n) sont bien définies.
- 2) Déterminer la nature de la suite v_n .
- 3) En déduire une expression de v_n en fonction de n, puis une expression de u_n en fonction de n.

Exercice 2

 $\overline{}$ - Voir correction -

Soit (u_n) la suite définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{3}{2}u_n - 1$.

- 1) Pour tout $n \in \mathbb{N}$, on pose $v_n = u_n 2$. Montrer que v_n est une suite géométrique dont on déterminera la raison.
- 2) En déduire une expression du terme général de (u_n) .
- 3) En déduire la limite de (u_n) lorsque $n \to +\infty$

Exercice 3 ——

——— Voir correction —

On considère la suite (u_n) définie par $u_0 = 9$ et pour tout $n \in \mathbb{N}$ par $u_{n+1} = \frac{u_n - 3}{2}$.

Déterminer une expression du terme général de (u_n) puis déterminer la limite de (u_n) si elle existe.

Exercice 4

On considère la suite (u_n) définie par $u_0 = 2$ et pour tout $n \in \mathbb{N}$ par $u_{n+1} = -2u_n + 5$.

Déterminer une expression du terme général de (u_n) puis déterminer la limite de (u_n) si elle existe.

Exercice 5 -

Voir correction -

Déterminer une expression de (u_n) en fonction de n dans chaque cas.

- 1) (u_n) est la suite définie par $u_0 = 3$, $u_1 = 8$, et $\forall n \in \mathbb{N}$, $u_{n+2} = 4u_{n+1} 2u_n$.
- 2) (u_n) est la suite définie par $u_0=0, u_1=1$ et $u_{n+2}=2u_{n+1}-\frac{3}{4}u_n$

—— Exercice 6 —

——— Voir correction -

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = 3\cos\left(\frac{2\pi}{3}n\right) - \sqrt{3}\sin\left(\frac{2\pi}{3}n\right)$.

Montrer que u_n vérifie :

$$\begin{cases} u_0 &= 3 \\ u_1 &= -3 \\ u_{n+2} &= -u_{n+1} - u_n \end{cases}$$

Exercice 7 -

Voir correction –

Étudier dans chaque cas la limite de la suite (u_n) . On pourra utiliser un nombre dérivé.

1) $\forall n \in \mathbb{N}^*, \ u_n = \frac{\cos(1/n) - 1}{1/n}$

3) $\forall n \in \mathbb{N}^*, \ u_n = n \sin\left(\frac{1}{n}\right)$

2) $\forall n \in \mathbb{N}^*, \ u_n = n \ln \left(1 + \frac{1}{n} \right)$

4) $\forall n \in \mathbb{N}^*, \ u_n = n(e^{-1/n} - 1)$

Exercice 8 -

Voir correction -

Étudier la limite des suites suivantes :

1)
$$\forall n \in \mathbb{N}, \ u_n = n^2 + e^{-n^2 \cos(n)}$$

2)
$$\forall n \in \mathbb{N}, \ u_n = n^2 \sin n - n^3$$

3)
$$\forall n \in \mathbb{N}, \ u_n = (\ln n)^{1/n}$$

$$4) \ \forall n \in \mathbb{N}, \ u_n = \frac{\sin n}{n}$$

5)
$$\forall n \in \mathbb{N}, \ u_n = \frac{n(-1)^n - n^2}{3n^2 + 1}$$

Exercice 9

Voir correction

Déterminer la limite des suites suivantes :

1)
$$e^{-0.001 \times n} n^{2021}$$

2)
$$n! e^{-n}$$

3)
$$(3n)! e^{-n}$$

4)
$$\frac{(\ln n)^{2021}}{\sqrt{n}}$$

Exercice 10

— Voir correction -

Déterminer dans chaque cas la limite de la suite (u_n)

a)
$$u_n = \frac{e^{2n-1} + e^{n^2}}{e^{n^2+2}}$$

c)
$$u_n = \ln(1+n) - \ln(n)$$

e)
$$u_n = \frac{(8n^3 + 1)^{\frac{1}{3}}}{(9n^2 + 1)^{\frac{1}{2}}}$$

b)
$$u_n = \frac{\sqrt{n^2 - n + 1}}{\sqrt{4n^2 + 2n + 1}}$$

d)
$$u_n = \ln(n) + \ln(2n+1) - 2\ln(n)$$

f)
$$u_n = \frac{\sqrt{\ln(n)}}{\ln(\sqrt{n})}$$

Exercice 11 -

Voir correction —

Déterminer dans chaque cas la limite de la suite (u_n)

a)
$$u_n = \frac{\sin\left(\frac{1}{n}\right)}{\ln(n+1) - \ln(n)}$$

$$b) u_n = n \left(e^{\frac{2}{n}} - 1 \right)$$

c)
$$u_n = \frac{4n^3 + 2n + 1}{3\ln(n^{2022} + e^n)}$$

Exercice 12

Voir correction -

Déterminer dans chaque cas la limite de la suite (u_n)

a)
$$\forall n \in \mathbb{N}, \ u_n = \frac{3n^2 - 4}{6 - 7n^2}$$

c)
$$\forall n \in \mathbb{N}, \ u_n = \frac{1 - \sqrt{n\cos^2(n)}}{n\sqrt{n}}$$

b)
$$\forall n \in \mathbb{N}, \ u_n = \frac{2n^2\sqrt{n} - 3}{2 - n^3}$$

d)
$$\forall n \in \mathbb{N}, \ u_n = \sqrt{n+1} - \sqrt{n}$$

Exercice 13 -

- Voir correction -

Déterminer dans chaque cas un équivalent simple de u_n

a)
$$u_n = \sqrt{n+50}$$

c)
$$u_n = \frac{\sqrt{1 + 2n + 5n^2}}{\ln(1 + n^2)}$$

e)
$$u_n = \frac{e^{1/n} + \cos(e^{-n})}{\sqrt{n^4 + n + 1}}$$

b)
$$u_n = n^4 + 2e^{-n} + \frac{1}{n} - n^3 - n^2$$
 d) $u_n = \sin\left(\frac{\ln(n)}{n + \sqrt{n}}\right)$

d)
$$u_n = \sin\left(\frac{\ln(n)}{n + \sqrt{n}}\right)$$

f)
$$u_n = n^3 (e^{\frac{a}{\sqrt{n}}} + e^{\frac{b}{n}} + e^{\frac{c}{n^2}} - 3)$$

Exercice 14

— Voir correction —

Soit (u_n) la suite définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = \frac{u_n^2 + 1}{2}$.

- 1) Montrer que la suite (u_n) est croissante.
- 2) Déterminer, selon la valeur de u_0 , la limite de la suite (u_n)

Voir correction — Exercice 15

Soit (u_n) la suite définie par $u_1 = 1$ et $u_{n+1} = u_n + \frac{1}{u^2}$.

- 1) Montrer que la suite (u_n) est bien définie
- 2) Étudier la monotonie de la suite (u_n)
- 3) Montrer que $\lim_{n \to +\infty} u_n = +\infty$.

Exercice 16 —

- 1) Pour tout $n \in \mathbb{N}$, on pose $f_n(x) = x^n + \ln x$. Montrer que l'équation $f_n(x) = 0$ admet une unique solution dans [0;1[. On note u_n cette solution.
- 2) Soit $n \in \mathbb{N}$. En exprimant $f_{n+1}(u_n) f_n(u_n)$ de deux façons différentes, déterminer le signe de $f_{n+1}(u_n)$ puis en déduire que (u_n) est croissante
- 3) Justifier que (u_n) converge vers un réel ℓ , puis montrer que $\ell=1$.

Exercice 17 -

——— Voir correction —

- 1) Pour tout $n \in \mathbb{N}^*$, justifier que l'équation $\tan x = x$ admet une unique solution dans l'intervalle $] \frac{\pi}{2} + n\pi; \frac{\pi}{2} + n\pi[$. On note x_n cette solution.
- 2) Justifier que $x_n \sim n\pi$

— Voir correction —

Soient (u_n) et (v_n) deux suites définies par $u_0, v_0 \in \mathbb{R}_+^*$ avec $u_0 < v_0$, et pour tout $n \in \mathbb{N}$

$$u_{n+1} = \sqrt{u_n v_n}$$
 et $v_{n+1} = \frac{u_n + v_n}{2}$

- 1) Montrer que pour tout $n \in \mathbb{N}$, $0 < u_n < v_n$
- 2) Montrer que pour tout $n \in \mathbb{N}$, $v_n u_n \leq \frac{1}{2^n}(v_0 u_0)$
- 3) Montrer que (u_n) et (v_n) sont adjacentes. Conclure.

* * * Exercice 19 ——————————Voir correction –

Soit (u_n) une suite définie sur \mathbb{N}^* qui converge vers un réel ℓ , et soit (w_n) la suite définie pour tout $n \in \mathbb{N}^*$ par

$$w_n = \frac{1}{n} \sum_{k=1}^n u_k = \frac{u_1 + u_2 + \dots + u_n}{n}$$

En utilisant la définition de la limite, montrer que $\lim_{n\to +\infty} w_n = \ell$ (ce résultat est connu sous le nom de **Théorème de** Cesàro).

Exercice 20

Voir correction -

Soient (u_n) et (v_n) deux suites de réels strictement positifs telles que

$$\forall n \in \mathbb{N}, \ \frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$$

Montrer que si $\lim_{n \to +\infty} u_n = +\infty$, alors $\lim_{n \to +\infty} v_n = +\infty$.

Exercice 21

- Voir correction —

Dans cet exercice, on considère la suite (H_n) définie pour tout entier naturel non nul n par

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

1) Soient (u_n) et (v_n) les suites définies pour tout entier naturel n non nul par :

$$u_n = H_n - \ln(n)$$
 et $v_n = u_n - \frac{1}{n}$

- a) Montrer que pour tout réel x > -1, on a $\ln(1+x) \le x$. Indication : On pourra étudier la fonction $f: x \longmapsto x - \ln(1+x)$.
- b) Montrer que (u_n) est une suite décroissante et que (v_n) est une suite croissante.
- c) Montrer que (u_n) et (v_n) convergent vers une même limite γ .
- d) En déduire un équivalent simple de H_n
- e) Montrer que $\gamma > 0$.

Exercice 22

— Voir correction —

Soit a > 0 un réel. On considère la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par $u_1 = a$ et pour tout $n \in \mathbb{N}^*$, $u_{n+1} = \sum_{k=1}^n \frac{3^k u_k}{k}$

- 1) Montrer par récurrence simple que pour tout entier $n \in \mathbb{N}^*$, $3^n \ge n+2$
- 2) Montrer par récurrence forte que pour tout $n \in \mathbb{N}^*$, $u_n \geq an$
- 3) En déduire la limite de (u_n) .

* *
Exercice 23

Voir correction —

Soient (u_n) et (v_n) deux suites telles que pour tout $n \in \mathbb{N}$, $0 \leqslant u_n \leqslant 2$ et $0 \leqslant v_n \leqslant 3$.

On suppose que $(u_n v_n)$ converge et que $\lim_{n \to +\infty} u_n v_n = 6$. Montrer que (u_n) et (v_n) sont convergentes et préciser leurs limites.

*

Exercice 24

— Voir correction —

On considère la suite (u_n) définie par $u_0=0$ et pour tout $n\in\mathbb{N},\ u_{n+1}=\frac{\mathrm{e}^{2u_n}}{\mathrm{e}^{u_n}+1}$

On pose $f(x) = \frac{e^{2x}}{e^x + 1}$.

- 1) Étudier les variations de f sur \mathbb{R}
- 2) Montrer que pour tout $n \in \mathbb{N}$, u_n et u_{n+1} sont bien définis et $0 \le u_n \le u_{n+1}$
- 3) Montrer que pour tout réel $x \in \mathbb{R}$, $e^x \ge 1 + x$.
- 4) En déduire que l'équation f(x) = x n'a aucune solution réelle. Conclure sur la limite de (u_n) .

Exercice 25

- Voir correction -

Le but de cet exercice est de montrer que $\lim_{n \to +\infty} \frac{e^n}{n!} = 0$.

On pose pour tout $n \in \mathbb{N}$, $u_n = e^n$ et $v_n = n!$

- 1) Montrer qu'il existe un entier n_0 tel que pour tout $n \ge n_0$, $\frac{u_{n+1}}{u_n} \le \frac{1}{2} \frac{v_{n+1}}{v_n}$
- 2) En déduire qu'il existe une constante C > 0 telle que pour tout $n \ge n_0$ on a $u_n \le C \left(\frac{1}{2}\right)^{n-n_0} v_n$.
- 3) Conclure.

- 1) Dans cette question on démontre le théorème de Césàro (voir exercice 19) dans un cas particulier. On considère une suite (a_n) croissante qui converge vers un réel ℓ et on pose, pour tout entier $n \in \mathbb{N}^*$, $b_n = \frac{1}{n} \sum_{i=1}^{n-1} a_i$.
 - a) Établir, pour tout entier nature
lnnon nul, l'inégalité $b_n \leq a_n$
 - b) Montrer que la suite (b_n) est croissante.
 - c) Montrer que la suite (b_n) converge vers un réel ℓ' qui vérifie $\ell' \leq \ell$.
 - d) Établir, pour tout entier naturel n non nul, l'inégalité $b_{2n} \geq \frac{b_n + a_n}{2}$
 - e) En déduire que $\lim_{n \to +\infty} b_n = \lim_{n \to +\infty} a_n$.
- 2) On se propose d'étudier maintenant la suite (u_n) définie par $u_0 = 1$ et pour tout entier naturel n, $u_{n+1} = \sqrt{u_n^2 + u_n}$.
 - a) Montrer que pour tout entier naturel n, u_n est bien défini et supérieur ou égal à 1.
 - b) Montrer que (u_n) est croissante.
 - c) Montrer que si (u_n) converge vers un réel ℓ , alors $\ell = 0$. Conclure sur la limite de (u_n) .
- 3) Recherche d'un équivalent de u_n
 - a) Montrer que $\lim_{n \to +\infty} (u_{n+1} u_n) = \frac{1}{2}$
 - b) Étudier les variations de la fonction $f: x \mapsto \sqrt{x^2 + x} x$, puis en déduire que la suite $(u_{n+1} u_n)$ est croissante.
 - c) Utiliser la première question pour établir que $u_n \underset{n \to +\infty}{\sim} \frac{n}{2}$.

Voir correction -

Le but de cet exercice est de démontrer l'irrationalité du nombre e. On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$\forall n \in \mathbb{N}, \quad u_n = \sum_{k=0}^n \frac{1}{k!} \quad \text{et} \quad v_n = u_n + \frac{1}{n \times n!}$$

- 1) Montrer que (u_n) et (v_n) sont adjacentes. En déduire qu'elles convergent vers une même limite ℓ et que pour tout $n \in \mathbb{N}$ on a $u_n < \ell < v_n$.
- 2) Montrer par l'absurde que ℓ est irrationnel.
- 3) En utilisant une intégration par parties, montrer par récurrence sur n que

$$\forall n \in \mathbb{N}, \quad \mathbf{e} = \sum_{k=0}^{n} \frac{1}{k!} + \int_{0}^{1} \frac{(1-t)^{n}}{n!} \, \mathbf{e}^{t} \, \mathrm{d}t$$

- 4) Montrer que pour tout $n \in \mathbb{N}^*$, $\left| \int_0^1 \frac{(1-t)^n}{n!} e^t dt \right| \leq \frac{1}{n!}$
- 5) En déduire que $\lim_{n \to +\infty} u_n = e$. Conclure.

Correction des exercice

Correction de l'exercice 1 :

- 1) On note $\mathcal{P}(n)$: " u_n est bien défini et $u_n > 0$ " et on raisonne par récurrence
 - Initialisation : $u_0 = 3 > 0$ donc $\mathcal{P}(0)$ est vraie.
 - **Hérédité :** Supposons que $\mathcal{P}(n \text{ soit vraie pour un certain rang } n$. Alors $4u_n + 2 > 2 > 0$ donc $u_{n+1} = \frac{2u_n}{4u_n + 2}$ est bien défini et $u_{n+1} > 0$ car $u_n > 0$.
 - Conclusion : Par principe de récurrence, on en conclut que u_n est bien défini pour tout $n \in \mathbb{N}$ et que $u_n > 0$

On en déduit que $v_n = \frac{1}{u_n}$ est bien défini pour tout $n \in \mathbb{N}$ car $u_n \neq 0$.

2) Soit $n \in \mathbb{N}$, on a:

$$v_{n+1} = \frac{1}{u_{n+1}}$$

$$= \frac{1}{\frac{2u_n}{4u_n + 2}}$$

$$= \frac{4u_n + 2}{2u_n}$$

$$= \frac{4u_n}{2u_n} + \frac{2}{2u_n}$$

$$= 2 + \frac{1}{u_n}$$

$$= 2 + v_n$$

Ainsi, (v_n) est une suite arithmétique de raison 2.

3) (v_n) est une suite arithmétique et $v_0 = \frac{1}{u_0} = \frac{1}{3}$. On en déduit que $\forall n \in \mathbb{N}, \ v_n = \frac{1}{3} + 2n$

On a alors
$$u_n = \frac{1}{v_n} = \frac{1}{\frac{1}{3} + 2n} = \frac{3}{1 + 6n}$$
 pour tout $n \in \mathbb{N}$

Correction de l'exercice 2 :

1) Soit $n \in \mathbb{N}$, on a

$$v_{n+1} = u_{n+1} - 2$$

$$= \frac{3}{2}u_n - 1 - 2$$

$$= \frac{3}{2}u_n - 3$$

$$= \frac{3}{2}(u_n - 2)$$

$$= \frac{3}{2}v_n$$

donc (v_n) est une suite géométrique de raison $\frac{3}{2}$ et de premier terme $v_0 = u_0 - 2 = -1$.

2) On en déduit que $\forall n \in \mathbb{N}, \ v_n = -\left(\frac{3}{2}\right)^n$. Ainsi, comme $\forall n \in \mathbb{N}, \ u_n = v_n + 2$, on a

$$\forall n \in \mathbb{N}, \ u_n = 2 - \left(\frac{3}{2}\right)^n$$

3) Comme
$$1 < \frac{3}{2}$$
, on a $\lim_{n \to +\infty} \left(\frac{3}{2}\right)^n = +\infty$ donc par opérations $\lim_{n \to +\infty} u_n = -\infty$.

Correction de l'exercice 3 : On reconnaît une suite arithmético-géométrique : $\forall n \in \mathbb{N}, \ u_n = \frac{1}{2}u_n - \frac{3}{2}$. D'après le cours, on sait qu'il existe un réel r tel que la suite (v_n) définie par $v_n = u_n - r$ est géométrique. Si on ne se souvient plus de la formule pour retrouver r, on peut procéder d'une des façons suivantes :

Méthode 1:

$$(v_n) \text{ est g\'eom\'etrique} \Longleftrightarrow \exists q \in \mathbb{R}, \forall n \in \mathbb{N}, v_{n+1} = qv_n$$

$$\Longleftrightarrow \exists q \in \mathbb{R}, \forall n \in \mathbb{N}, u_{n+1} - r = q(u_n - r)$$

$$\Longleftrightarrow \exists q \in \mathbb{R}, \forall n \in \mathbb{N}, \frac{u_n - 3}{2} - r = qu_n - qr$$

$$\Longleftrightarrow \exists q \in \mathbb{R}, \forall n \in \mathbb{N}, \left(\frac{1}{2} - q\right)u_n = (1 - q)r + \frac{3}{2}$$

En posant $q = \frac{1}{2}$ et r tel que $(1-q)r + \frac{3}{2} = 0$ on aura bien l'égalité voulue. On pose donc $r = \frac{-\frac{3}{2}}{1 - \frac{1}{2}} = -3.$

r est un point fixe de la fonction $f: x \mapsto \frac{x-3}{2}$ donc $r = \frac{r-3}{2}$, on retrouve r = -3

Soit donc (v_n) la suite définie pour tout $n \in \mathbb{N}$ par $v_n = u_n + 3$. Alors

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} + 3$$

$$= \frac{u_n - 3}{2} + 3$$

$$= \frac{v_n - 3 - 3}{2} + 3$$

$$= \frac{v_n}{2} - 3 + 3$$

$$= \frac{v_n}{2}$$

donc (v_n) est une suite géométrique de raison $\frac{1}{2}$. On en déduit que pour tout entier n, $v_n = \frac{1}{2^n}v_0 = \frac{1}{2^n}(u_0 + 3) = \frac{12}{2^n}$, donc pour tout entier n, $u_n = \frac{12}{2^n} - 3$. Puisque 2 > 1 on a $\lim_{n \to +\infty} 2^n = +\infty$ donc $\lim_{n \to +\infty} u_n = -3$ par opérations sur les limites.

Correction de l'exercice 4 : On cherche r tel que r=-2r+5, on trouve $r=\frac{5}{3}$.

On pose $v_n = u_n - \frac{5}{3}$ pour tout entier n, on a alors

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - \frac{5}{3}$$

$$= -2u_n + 5 - \frac{5}{3}$$

$$= -2(v_n + \frac{5}{3}) + 5 - \frac{5}{3}$$

$$= -2v_n - \frac{10}{3} + \frac{15}{3} - \frac{5}{3}$$

$$= -2v_n$$

donc (v_n) est une suite géométrique de raison -2. On en déduit que pour tout entier $n, v_n = (-2)^n v_0 = (-2)^n (u_0 - \frac{5}{3}) = (-2)^n (u_0 - \frac{5}{3})$ $-\frac{1}{3}\times(-2)^n$.

Finalement, pour tout $n \in \mathbb{N}$, $u_n = v_n + \frac{5}{3} = \frac{5}{3} - \frac{1}{3} \times (-2)^n$. Si (u_n) convergeait, alors par opération sur les limites $(-2)^n$ convergerait. Or -2 < -1 donc $(-2)^n$ diverge.

Correction de l'exercice 5 :

1) L'équation caractéristique de cette suite récurrente linéaire d'ordre 2 est

$$r^2 - 4r + 2 = 0$$

dont le discriminant est $\Delta = 4^2 - 4 \times 2 = 8$.

Les racines sont
$$r_1 = \frac{4 - \sqrt{8}}{2} = 2 - \sqrt{2}$$
 et $r_2 = \frac{4 + \sqrt{8}}{2} = 2 + \sqrt{2}$.

Ainsi, il existe $\lambda \in \mathbb{R}$ et $\mu \in \mathbb{R}$ tels que

$$\forall n \in \mathbb{N}, u_n = \lambda (2 - \sqrt{2})^n + \mu (2 + \sqrt{2})^n$$

Comme $u_0 = 3$ et $u_1 = 8$, on en déduit que

$$\left\{ \begin{array}{rcl} \lambda(2-\sqrt{2})^0 + \mu(2+\sqrt{2})^0 & = & 3 \\ \lambda(2-\sqrt{2})^1 + \mu(2+\sqrt{2})^1 = 8 \end{array} \right.$$

donc

$$\begin{cases} \lambda + \mu = 3 \\ \lambda(2 - \sqrt{2}) + \mu(2 + \sqrt{2}) = 8 \end{cases}$$

$$\iff \begin{cases} \mu = 3 - \lambda \\ \lambda(2 - \sqrt{2}) + (3 - \lambda)(2 + \sqrt{2}) = 8 \end{cases}$$

$$\iff \begin{cases} \mu = 3 - \lambda \\ -2\sqrt{2}\lambda = 2 - 3\sqrt{2} \end{cases}$$

$$\iff \begin{cases} \mu = 3 - \lambda \\ \lambda = \frac{3\sqrt{2} - 2}{2\sqrt{2}} \end{cases}$$

Donc
$$\lambda = \frac{3-\sqrt{2}}{2}$$
 et $\mu = \frac{3+\sqrt{2}}{2}$.

Finalement

$$\forall n \in \mathbb{N}, \ u_n = \left(\frac{3-\sqrt{2}}{2}\right)(2-\sqrt{2})^n + \left(\frac{3+\sqrt{2}}{2}\right)(2+\sqrt{2})^n$$

2) L'équation caractéristique de cette suite récurrence linéaire d'ordre 2 est

$$r^2 - 2 + \frac{3}{4}$$

dont le discriminant est $\Delta = 4 - 4 \times \frac{3}{4} = 1$ et les racines sont $x_1 = \frac{2 - \sqrt{1}}{2} = \frac{1}{2}$ et $r_2 = \frac{2 + \sqrt{1}}{2} = \frac{3}{2}$. Ainsi, il existe $\lambda \in \mathbb{R}$ et $\mu \in \mathbb{R}$ telles que

$$\forall n \in \mathbb{N}, \ u_n = \lambda \frac{1}{2^n} + \mu \left(\frac{3}{2}\right)^n$$

Comme $u_0 = 1$ et $u_1 = 1$, on a

$$\begin{cases} \lambda + \mu = 0 \\ \frac{1}{2}\lambda + \frac{3}{2}\mu = 1 \end{cases} \iff \begin{cases} \mu = -\lambda \\ -\lambda = 1 \end{cases}$$
$$\iff \begin{cases} \mu = 1 \\ \lambda = -1 \end{cases}$$

donc
$$\forall n \in \mathbb{N}, \ u_n = -\frac{1}{2^n} + \left(\frac{3}{2}\right)^n$$

Correction de l'exercice 6: On a $\cos 0 = 1$ et $\sin 0 = 0$ donc $u_0 = 3 \times 1 - \sqrt{3} \times 0 = 3$. De plus, $\cos \left(\frac{2\pi}{3}\right) = -\frac{1}{2}$ et $\sin \left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}$ donc

$$u_1 = 3 \times \left(-\frac{1}{2}\right) - \sqrt{3} \times \frac{\sqrt{3}}{2}$$
$$= -\frac{3}{2} - \frac{3}{2}$$
$$= -3$$

Finalement, on a $u_{n+2} = 3\cos\left(\frac{2\pi}{3}n + \frac{4\pi}{3}\right) - \sqrt{3}\sin\left(\frac{2\pi}{3}n + \frac{4\pi}{3}\right)$ Ainsi,

$$\begin{aligned} u_{n+2} &= 3\left(\cos\left(\frac{2\pi}{3}n\right)\cos\left(\frac{4\pi}{3}\right) - \sin\left(\frac{2\pi}{3}n\right)\sin\left(\frac{4\pi}{3}\right)\right) - \sqrt{3}\left(\sin\left(\frac{2\pi}{3}n\right)\cos\left(\frac{4\pi}{3}\right) + \sin\left(\frac{4\pi}{3}\right)\cos\left(\frac{2\pi}{3}n\right)\right) \\ &= 3\left(-\frac{1}{2}\cos\left(\frac{2\pi}{3}n\right) + \frac{\sqrt{3}}{2}\sin\left(\frac{2\pi}{3}n\right)\right) - \sqrt{3}\left(-\frac{1}{2}\sin\left(\frac{2\pi}{3}n\right) - \frac{\sqrt{3}}{2}\cos\left(\frac{2\pi}{3}n\right)\right) \\ &= \cos\left(\frac{2\pi}{3}n\right)\left[\frac{3}{2} - \frac{3}{2}\right] + \sin\left(\frac{2\pi}{3}n\right)\left[2\sqrt{3}\right] \\ &= 2\sqrt{3}\sin\left(\frac{2\pi}{3}n\right) \end{aligned}$$

Or, d'autre part, on a

$$-u_{n+1} - u_n = -3\cos\left(\frac{2\pi}{3}n + \frac{2\pi}{3}\right) + \sqrt{3}\sin\left(\frac{2\pi}{3}n + \frac{2\pi}{3}\right) - 3\cos\left(\frac{2\pi}{3}n\right) + \sqrt{3}\sin\left(\frac{2\pi}{3}n\right)$$

$$= \frac{3}{2}\cos\left(\frac{2\pi}{3}n\right) + \frac{3\sqrt{3}}{2}\sin\left(\frac{2\pi}{3}n\right) - \frac{\sqrt{3}}{2}\sin\left(\frac{2\pi}{3}n\right) + \frac{3}{2}\cos\left(\frac{2\pi}{3}n\right) - 3\cos\left(\frac{2\pi}{3}n\right) + \sqrt{3}\sin\left(\frac{2\pi}{3}n\right)$$

$$= 2\sqrt{3}\sin\left(\frac{2\pi}{3}n\right)$$

donc on a bien $u_{n+2} = -u_{n+1} - u_n$

Correction de l'exercice 7 :

- 1) On sait que cos est dérivable en 0 et que $\cos'(0) = \sin(0) = 0$. On en déduit, par définition de la dérivabilité, que $\lim_{x\to 0} \frac{\cos x - \cos(0)}{x - 0} = \lim_{x\to 0} \frac{\cos x - 1}{x} = 0$. Ainsi, puisque $\frac{1}{n} \xrightarrow[n\to +\infty]{} 0$, on a par composition de limites $\lim_{n\to +\infty} \frac{\cos(1/n) - 1}{1/n} = 0$
- 2) On sait que ln est dérivable en 1 et que $\ln'(1) = \frac{1}{1} = 1$.

 On en déduit, par définition de la dérivabilité, que $\lim_{x\to 0} \frac{\ln(1+x) \ln(1)}{x-0} = \lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$.

 Ainsi, puisque $\frac{1}{n} \xrightarrow[n\to +\infty]{} 0$, on a par composition de limites $\lim_{n\to +\infty} \frac{\ln(1+\frac{1}{n})}{1/n} = \lim_{n\to +\infty} n \ln\left(1+\frac{1}{n}\right) = 1$.
- 3) On sait que sin est dérivable en 0 et que $\sin'(0) = \cos(0) = 1$. On en déduit que $\lim_{x\to 0} \frac{\sin x - \sin 0}{x - 0} = \lim_{x\to 0} \frac{\sin x}{x} = 1$. Ainsi, puisque $\frac{1}{n} \xrightarrow[n\to +\infty]{} 0$, on a par composition de limites, $\lim_{n\to +\infty} \frac{\sin(1/n)}{1/n} = \lim_{n\to +\infty} n\sin(1/n) = 1$.
- 4) On sait que exp est dérivable en 0 et que exp'(0) = exp(0) = 1.

 On en déduit, par définition de la limite, que $\lim_{x\to 0} \frac{\mathrm{e}^x \mathrm{e}^0}{x-0} = \lim_{x\to 0} \frac{\mathrm{e}^x 1}{x} = 1$.

 Ainsi, puisque $dfrac1n \xrightarrow[n\to +\infty]{} 0$, on a par composition de limites $\lim_{n\to +\infty} \frac{\mathrm{e}^(-1/n) 1}{-1/n} = 1$ donc $\lim_{n\to +\infty} n(e^{-1/n} 1) = -1$

Correction de l'exercice 8 :

- 1) $\forall x \in \mathbb{R}, \ e^x \ge 0 \ \text{donc} \ \forall n \in \mathbb{N}, \ n^2 + e^{-n^2 \cos(n)} \ge n^2. \ \text{Or} \ \lim_{n \to +\infty} n^2 = +\infty \ \text{donc par comparaison} \ \lim_{n \to +\infty} u_n = +\infty.$
- $2) \ u_n = n^3 \left(\frac{\sin n}{n} n \right).$

Or, $\forall n \in \mathbb{N}, -1 \leq sinn \leq 1$ donc $-\frac{1}{n} \leq \frac{\sin n}{n} \leq \frac{1}{n}$. Comme $\lim_{n \to +\infty} \frac{1}{n} = \lim_{n \to +\infty} -\frac{1}{n} = 0$, d'après le théorème des gendarmes $\frac{\sin n}{n}$ converge et $\lim_{n \to +\infty} \frac{\sin n}{n} = 0$.

Par opérations sur les limites, on a $\lim_{n\to+\infty} u_n = -\infty$.

3) Pour tout $n \in \mathbb{N}^*$, on a $u_n = e^{\ln(\ln n)/n}$

Or, $\frac{\ln(\ln(n))}{n} = \frac{\ln(\ln(n))}{\ln(n)} \times \frac{\ln(n)}{n}$. Comme $\ln(n) \xrightarrow[n \to +\infty]{} +\infty$, on a par composition et par croissance comparée $\lim_{n \to +\infty} \frac{\ln(\ln(n))}{\ln n} = 0$ et $\lim_{n \to +\infty} \frac{\ln n}{n} = 0$. Ainsi, par produit de limites, $\lim_{n \to +\infty} \frac{\ln(\ln(n))}{n} = 0$ et donc $\lim_{n \to +\infty} u_n = 1$ par composition de limites.

- 4) Pour tout $n \in \mathbb{N}$, $-1 \le \sin n \le 1$ donc $-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$. Comme $\lim_{n \to +\infty} -\frac{1}{n} = \lim_{n \to +\infty} \frac{1}{n} = 0$, on a d'après le théorème des gendarmes $\lim_{n \to +\infty} u_n = 0$.
- 5) Pour tout $n \in \mathbb{N}$, $-1 \le (-1)^n \le 1$ donc $-n \le n(-1)^n \le n$ et $-n n^2 \le n(-1)^n n^2 \le n n^2$. Comme $3n^2 + 1 > 0$ on a

$$\frac{-n-n^2}{3n^2+1} \le \frac{n(-1)^n - n^2}{3n^2+1} \le \frac{n-n^2}{3n^2+1}$$

On a $\frac{-n-n^2}{3n^2+1} = \frac{n^2(-1-\frac{1}{n})}{n^2(3+\frac{1}{n^2})} = \frac{-1-\frac{1}{n}}{3+\frac{1}{n}} \xrightarrow[n\to+\infty]{} -\frac{1}{3}$ par opérations sur les limites.

On a aussi $\frac{n-n^2}{3n^2+1} = \frac{n^2(1-\frac{1}{n})}{n^2(3+\frac{1}{n^2})} = \frac{-1+\frac{1}{n}}{3+\frac{1}{n}} \xrightarrow[n \to +\infty]{} -\frac{1}{3}$ par opérations sur les limites.

Ainsi, d'après le théorème des gendarmes, $\lim_{n\to+\infty} u_n = -\frac{1}{3}$.

Correction de l'exercice 9 :

- 1) Par comparaison usuelle on a $\lim_{n\to +\infty} \mathrm{e}^{-0.001\times n} \times n^{2021} = 0$
- 2) Par comparaison usuelle on a $\lim_{n\to +\infty} n! e^{-n} = +\infty$.
- 3) On a $(3n)! e^{-n} = (3n)! e^{-3n} e^{2n}$ Par comparaison usuelle, comme $\lim_{n \to +\infty} 3n = +\infty$ on a $\lim_{n \to +\infty} (3n)! e^{(-3n)} = +\infty$. Par produit, on a donc $\lim_{n \to +\infty} (3n)! e^{-n} = +\infty$.
- 4) Par comparaison usuelle, on a $\lim_{n\to+\infty} \frac{(\ln n)^{2021}}{\sqrt{n}} = 0$.

5)

Correction de l'exercice 10 :

a) Pour tout $n \in \mathbb{N}$,

$$u_n = \frac{e^{2n-1} + e^{n^2}}{e^{n^2+2}}$$
$$= e^{2n-1-n^2-2} + e^{-2}$$
$$= e^{-n^2+2n-3} + e^{-2}$$

 $\operatorname{Or} -n^2 + 2n - 3 \sim -n^2 \operatorname{donc} \lim_{n \to +\infty} (-n^2 + 2n - 3) = -\infty \operatorname{et} \operatorname{donc} \lim_{n \to +\infty} \operatorname{e}^{-n^2 + 2n - 3} = 0. \operatorname{On} \operatorname{en} \operatorname{d\'eduit} \operatorname{que} \lim_{n \to +\infty} u_n = \operatorname{e}^{-2} \operatorname{donc} \operatorname{diag} u_n = \operatorname{e}^{-2} \operatorname{donc} u_n = \operatorname{e}^{-2} \operatorname{don$

- b) Pour tout $n \in \mathbb{N}$ on a $u_n = \sqrt{\frac{n^2 n + 1}{4n^2 + 2n + 1}}$
 - Or, $\frac{n^2-n+1}{4n^2+2n+1} \sim \frac{n^2}{4n^2} \sim \frac{1}{4} \operatorname{donc} \lim_{n \to +\infty} \frac{n^2-n+1}{4n^2+2n+1} = \frac{1}{4}.$ Par composition de limites on a donc $\lim_{n \to +\infty} u_n = \sqrt{\frac{1}{4}} = \frac{1}{2}.$

c) Pour tout $n \in \mathbb{N}$,

$$u_n = \ln\left(\frac{1+n}{n}\right)$$
$$= \ln\left(1 + \frac{1}{n}\right)$$

Or $\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right) = 1$ donc par composition de limites $\lim_{n \to +\infty} u_n = \ln(1) = 0$.

d) Pour tout $n \in \mathbb{N}$,

$$u_n = \ln(n) + \ln(2n+1) - 2\ln(n)$$

$$= \ln(2n+1) - \ln(n)$$

$$= \ln\left(\frac{2n+1}{n}\right)$$

$$= \ln\left(2 + \frac{1}{n}\right)$$

or $\lim_{n\to+\infty} \left(2+\frac{1}{n}\right) = 2$ donc $\lim_{n\to+\infty} u_n = \ln(2)$ par composition de limites.

e) Pour tout $n \in \mathbb{N}$,

$$u_n = \frac{(8n^3)^{1/3} \times \left(1 + \frac{1}{8n^3}\right)^{1/3}}{(9n^2)^{1/2} \left(1 + \frac{1}{9n^2}\right)^{1/2}}$$
$$= \frac{2n\left(1 + \frac{1}{8n^3}\right)^{1/3}}{3n\left(1 + \frac{1}{9n^2}\right)^{1/2}}$$

Or, $\lim_{n\to+\infty} \left(1+\frac{1}{8n^3}\right)^{1/3} = 1$ et $\lim_{n\to+\infty} \left(1+\frac{1}{9n^2}\right)^{1/2} = 1$ par composition de limites, donc par produit et quotient de limites, $\lim_{n\to+\infty} u_n = \frac{2}{3}$.

f) Pour tout $n \in \mathbb{N}$,

$$u_n = \frac{\sqrt{\ln(n)}}{\ln(\sqrt{n})}$$
$$= \frac{\sqrt{\ln(n)}}{\frac{1}{2}\ln(n)}$$
$$= 2\frac{\sqrt{\ln(n)}}{\ln(n)}$$
$$= \frac{2}{\sqrt{\ln(n)}}$$

donc $\lim_{n \to +\infty} u_n = 0$.

Correction de l'exercice 11 :

a) Comme $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$ on a $\sin\left(\frac{1}{n}\right) \sim \frac{1}{n}$.

De plus, pour tout $n \in \mathbb{N}^*$, $\ln(n+1) - \ln(n) = \ln\left(\frac{n+1}{n}\right) = \ln\left(1 + \frac{1}{n}\right) \sim \frac{1}{n}$.

Finalement, $u_n \sim \frac{1/n}{1/n} \sim 1$ donc $\lim_{n \to +\infty} u_n = 1$.

b) On a $\lim_{n \to +\infty} \frac{2}{n} = 0$ donc $e^{\frac{2}{n}} = 1 + \frac{2}{n} + o\left(\frac{2}{n}\right)$. Ainsi, $u_n = n \times \left(1 + \frac{2}{n} + o\left(\frac{2}{n}\right) - 1\right) = 2 + o(2)$ donc $\lim_{n \to +\infty} u_n = 2$.

c) On a $4n^3+2n+1\sim 4n^3$, et pour tout $n\in\mathbb{N},$ $3\ln(n^{2022}+\mathrm{e}^n)=3\ln(e^n(n^{2022}\,\mathrm{e}^{-n}+1)=3n+3\ln(n^{2022}\,\mathrm{e}^{-n}+1)$. Or, $\lim_{n\to+\infty}n^{2022}\,\mathrm{e}^{-n}=0$ par croissance comparée donc $\lim_{n\to+\infty}3\ln(n^{2022}\,\mathrm{e}^{-n}+1)=\ln(1)=0$. Ainsi, $3\ln(n^{2022}\,\mathrm{e}^{-n}+1)=o(3n)$ donc finalement $3\ln(n^{2022}+\mathrm{e}^n)\sim 3n$.

On en déduit finalement que $u_n \sim \frac{4n^3}{3n} \sim \frac{4n^2}{3}$ donc $\lim_{n \to +\infty} u_n = +\infty$.

Correction de l'exercice 12:

a) Pour tout $n \in \mathbb{N}$,

$$u_n = \frac{n^2 \left(3 - \frac{4}{n^2}\right)}{n^2 \left(\frac{6}{n^2} - 7\right)} = \frac{3 - \frac{4}{n^2}}{\frac{6}{n^2} - 7}$$

Or $\lim_{n \to +\infty} 3 - \frac{4}{n^2} = 3$ et $\lim_{n \to +\infty} \frac{6}{n^2} - 7 = -7$ donc par opérations sur les limites, (u_n) converge et $\lim_{n \to +\infty} u_n = \frac{-3}{7}$.

b) Pour tout $n \in \mathbb{N}$

$$u_n = \frac{n^2 \sqrt{n} \left(2 - \frac{3}{n^2 \sqrt{n}}\right)}{n^3 \left(\frac{2}{n^3} - 1\right)}$$

$$= \frac{2 - \frac{3}{n^2 \sqrt{n}}}{\sqrt{n} \left(\frac{2}{n^3} - 1\right)}$$

$$\operatorname{car} \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}}$$

Or $\lim_{n\to+\infty} \left(2-\frac{3}{n^2\sqrt{n}}\right) = 2$, $\lim_{n\to+\infty} \sqrt{n} = +\infty$ et $\lim_{n\to+\infty} \left(\frac{2}{n^3}-1\right) = -1$ donc $\lim_{n\to+\infty} u_n = 0$ par opérations sur les limites.

c) Pour tout $n \in \mathbb{N}$, $0 \le \cos^2(n) \le 1$ donc $0 \le n \cos^2(n) \le n$ et ainsi $0 \le \sqrt{n \cos^2(n)} \le \sqrt{n}$. On a donc pour tout entier n,

$$0 \ge -\sqrt{n\cos^2(n)} \ge -\sqrt{n}$$
$$1 \ge 1 - \sqrt{n\cos^2(n)} \ge 1 - \sqrt{n}$$
$$\frac{1}{n\sqrt{n}} \ge \frac{1 - \sqrt{n\cos^2(n)}}{n\sqrt{n}} \ge \frac{1 - \sqrt{n}}{n\sqrt{n}}$$

Or $\frac{1}{n\sqrt{n}} \xrightarrow{n \to +\infty} 0$ et $\frac{1-\sqrt{n}}{n\sqrt{n}} = \frac{\frac{1}{\sqrt{n}}-1}{n} \xrightarrow{n \to +\infty} 0$ donc par théorème d'encadrement $\lim_{n \to +\infty} u_n = 0$.

d) Pour tout $n \in \mathbb{N}$,

$$u_n = \sqrt{n+1} - \sqrt{n}$$

$$= \frac{(\sqrt{n+1} - \sqrt{n}) \times (\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{(\sqrt{n+1})^2 - (\sqrt{n})^2}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

Or pour tout $n \in \mathbb{N}$, $\sqrt{n+1} \ge \sqrt{n}$ car la fonction racine carrée est croissante, donc $\sqrt{n+1} + \sqrt{n} \ge 2\sqrt{n}$ et $\lim_{n \to +\infty} \sqrt{n} = +\infty$ (limite de référence). Ainsi par théorème de comparaison $\lim_{n \to +\infty} (\sqrt{n+1} + \sqrt{n}) = +\infty$ donc par inverse de limite $\lim_{n \to +\infty} u_n = 0$.

Correction de l'exercice 13:

- a) Pour tout $n \in \mathbb{N}^*$, $u_n = \sqrt{n\left(1 + \frac{50}{n}\right)} = \sqrt{n} \times \sqrt{1 + \frac{50}{n}}$. Or $\lim_{n \to +\infty} \sqrt{1 + \frac{50}{n}} \xrightarrow[n \to +\infty]{} 1$ donc $u_n \sim \sqrt{n}$.
- b) On a $\lim_{n \to +\infty} 2e^{-n} = \lim_{n \to +\infty} \frac{1}{n} = 0$, et $n^4 n^3 n^2 \sim n^4$ donc $2e^{-n} = o(n^4)$ et $\frac{1}{n} = o(n^4)$ donc finalement $u_n \sim n^4$.
- c) $\sqrt{1+2n+5n^2} = \sqrt{5n^2} \times \sqrt{1+\frac{2}{5n}+\frac{1}{5n^2}} \sim \sqrt{5n^2} \operatorname{car} \lim_{n \to +\infty} \sqrt{1+\frac{2}{5n}+\frac{1}{5n^2}} = 1.$

De même, $\ln(1+n^2) = \ln(n^2) + \ln(1+\frac{1}{n^2}) \sim \ln(n^2) \sim 2\ln(n)$

Donc
$$u_n \sim \frac{\sqrt{5n^2}}{2\ln(n)} \sim \frac{\sqrt{5}n}{2\ln(n)}$$
.

- d) On a $\sqrt{n} = o(n)$ donc $n + \sqrt{n} \sim n$. Ainsi, $\frac{\ln n}{n + \sqrt{n}} \sim \frac{\ln n}{n}$ donc $\frac{\ln n}{n + \sqrt{n}} \xrightarrow[n \to +\infty]{} 0$ et donc $\sin\left(\frac{\ln n}{n + \sqrt{n}}\right) \sim \frac{\ln n}{n + \sqrt{n}} \sim \frac{\ln n}{n}$.
- e) $\lim_{n \to +\infty} e^{1/n} = 1$ et $\lim_{n \to +\infty} \cos(e^{-n}) = \cos(0) = 1$ donc $e^{1/n} + \cos(e^{-n}) \sim 2$.

De plus,
$$\sqrt{n^4 + n + 1} = \sqrt{n^4} \times \sqrt{1 + \frac{1}{n^3} + \frac{1}{n^4}} \sim \sqrt{n^4} \sim n^2 \operatorname{car} \sqrt{1 + \frac{1}{n^3} + \frac{1}{n^4}} \xrightarrow[n \to +\infty]{} 1.$$

Ainsi,
$$u_n \sim \frac{2}{n^2}$$
.

f)
$$e^{a/\sqrt{n}} = 1 + \frac{a}{\sqrt{n}} + o\left(\frac{a}{\sqrt{n}}\right)$$

 $e^{b/n} = 1 + \frac{b}{n} + o\left(\frac{b}{n}\right)$
 $e^{c/n^2} = 1 + \frac{c}{n^2} + o\left(\frac{b}{n^2}\right)$.
Ainsi, $u_n = n^3\left(3 + \frac{a}{\sqrt{n}} + \frac{b}{n} + \frac{c}{n^2} - 3 + o\left(\frac{a}{\sqrt{n}}\right)\right)$

Ainsi,
$$u_n = n^3 \left(3 + \frac{a}{\sqrt{n}} + \frac{b}{n} + \frac{c}{n^2} - 3 + o\left(\frac{a}{\sqrt{n}}\right) + o\left(\frac{b}{n}\right) + o\left(\frac{c}{n^2}\right) \right).$$

Si
$$a \neq 0$$
, alors $\frac{c}{n^2} = o\left(\frac{b}{n}\right)$ et $\frac{b}{n} = o\left(\frac{a}{\sqrt{n}}\right)$.

Ainsi,
$$u_n = n^3 \times \left(\frac{a}{\sqrt{n}} + \frac{b}{n} + \frac{c}{n^2} + o\left(\frac{a}{\sqrt{n}}\right)\right) = n^3 \times \left(\frac{a}{\sqrt{n}} + o\left(\frac{a}{\sqrt{n}}\right)\right) = an^2\sqrt{n} + o\left(an^2\sqrt{n}\right)$$
 donc $u_n \sim an^2\sqrt{n}$.

Si
$$a = 0$$
 et $b \neq 0$, on a $u_n = n^3 \times \left(\frac{b}{n} + o\left(\frac{b}{n}\right)\right)$ donc $u_n \sim bn^2$

Si
$$a = 0$$
 et $b = 0$, alors $u_n = n^3 \times \left(\frac{c}{n^2} + o\left(\frac{c}{n^2}\right)\right) \sim cn$.

Correction de l'exercice 14:

1) Soit $n \in \mathbb{N}$. On a

$$u_{n+1} - u_n = \frac{u_n^2 + 1}{2} - u_n$$
$$= \frac{u_n^2 - 2u_n + 1}{2}$$
$$= \frac{(u_n - 1)^2}{2}$$

comme $(u_n - 1)^2 \ge 0$, on a $u_{n+1} - u_n \ge 0$ donc (u_n) est croissante.

- 2) (u_n) est croissante donc il y a deux possibilités
 - Soit (u_n) est majorée, dans ce cas elle admet une limite finie ℓ
 - Soit (u_n) est non majorée et tend vers $+\infty$.

Analyse : Supposons d'abord que (u_n) admette une limite finie ℓ . Alors, par passage à la limite dans l'égalité $u_{n+1} = \frac{u_n^2 + 1}{2}$ et par opérations sur les limites, on obtient $\ell = \frac{\ell^2 + 1}{2}$. La seule solution de cette équation est $\ell = 1$.

Puisque (u_n) est croissante, cela implique que $u_0 \le 1$ et que $\forall n \in \mathbb{N}, \ u_n \le 1$. On remarque que $u_n < -1 \Rightarrow \frac{u_n^2 + 1}{2} > 1$ donc une condition plus forte est $\forall n \in \mathbb{N}, -1 \le u_n \le 1$

Synthèse: Supposons que $-1 \le u_0 \le 1$ et montrons par récurrence que pour tout $n \in \mathbb{N}, -1 \le u_n \le 1$.

• Initialisation : On a $-1 \le u_0 \le 1$ par hypothèse donc la propriété est vraie au rang n = 0.

- <u>Hérédité</u>: On suppose que pour un certain $n \in \mathbb{N}$, $-1 \le u_n \le 1$. Alors $0 \le u_n^2 \le 1$ donc $1 \le u_n^2 + 1 \le 2$ et finalement $0 \le \frac{1}{2} \le \frac{u_n^2 + 1}{2} \le 1$, donc $\mathcal{P}(n+1)$ est vraie.
- Conlusion : Par principe de récurrence on en conclut que $\mathcal{P}(n)$ est vraie quel que soit $n \in \mathbb{N}$.

Ainsi, si $-1 \le u_0 \le 1$, (u_n) est bornée donc (u_n) converge vers 1 comme vu dans la première partie de la réponse. Si $|u_0| > 1$, alors $u_1 > 1$. Comme (u_n) est croissante, on en déduit que (u_n) ne peut pas converger vers 1 (sinon on aurait $1 \ge u_1 > 1$. Comme 1 est la seule limite possible, on en conclut que (u_n) ne converge pas. (u_n) est croissante et elle ne converge pas donc $\lim_{n \to +\infty} u_n = +\infty$.

Correction de l'exercice 15:

- 1) Montrons par récurrence que pour tout $n \in \mathbb{N}$, u_n est bien défini et $u_n > 0$.
 - Initialisation : On a $u_0 = 1 > 0$ donc la propriété est vraie au rang n = 0
 - <u>Hérédité</u>: Supposons que $u_n > 0$ pour un certain rang n, alors u_{n+1} est bien défini et $u_{n+1} > 0$ car $\frac{1}{u_n^2} > 0$ et $u_n > 0$.
 - <u>Conclusion</u>: Par principe de récurrence, on en conclut que pour tout $n \in \mathbb{N}$, u_n est bien défini et $u_n > 0$
- 2) Pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = \frac{1}{u_n^2} \ge 0$ donc (u_n) est croissante.
- 3) Une suite croissante est soit convergente, soit elle tend vers $+\infty$. Supposons que (u_n) soit convergente de limite $\ell \in \mathbb{R}$. Alors, par unicité de la limite et par opérations de limites, on a $\ell = \ell + \frac{1}{\ell^2}$, donc $\frac{1}{\ell^2} = 0$. Cette équation n'a aucune solution, donc (u_n) ne peut pas converger. On en conclut que $\lim_{n \to +\infty} u_n = +\infty$.

Correction de l'exercice 16:

- 1) f_n est dérivable sur]0;1] comme somme de fonction dérivables sur cet intervalle, et $\forall x \in]0;1]$, $f'_n(x) = nx^{n-1} + \frac{1}{x}$. Pour tout $x \in]0;1]$ on a $f'_n(x) > 0$ donc f_n est strictement croissante sur]0;1]. De plus, f_n est continue sur]0;1] (car dérivable sur]0;1]) et $\lim_{x\to 0} f_n(x) = -\infty$ et $f_n(1) = 1$. Puisque $0 \in]\lim_{x\to 0} f_n(x); f_n(1)[$, on en conclut d'après le théorème des valeurs intermédiaires qu'il existe une unique solution à l'équation $f_n(x) = 0$ dans l'intervalle]0;1[.
- 2) Soit $n \in \mathbb{N}$, on a d'une part

$$f_{n+1}(u_n) - f_n(u_n) = u_n^{n+1} + \ln u_n - u_n^n - \ln u_n$$
$$= u_n^n(u_n - 1)$$

et d'autre part $f_{n+1}(u_n) - f_n(u_n) = f_{n+1}(u_n)$ car $f_n(u_n) = 0$.

Puisque $u_n \in]0; 1[, u_n^n(u_n - 1) < 0 \text{ donc } f_{n+1}(u_n) < 0.$

Puisque $f_{n+1}(u_{n+1}) = 0$ et que f_{n+1} est croissante sur]0;1[, on en déduit que $u_n < u_{n+1}$. Ceci étant valable pour tout $n \in \mathbb{N}$ on en conclut finalement que (u_n) est croissante.

3) (u_n) est croissante d'après la question 2) et majorée par 1 d'après la question 1), donc (u_n) est convergente. Soit ℓ la limite de (u_n) , alors $\forall n \in \mathbb{N}$, puisque $\forall n \in \mathbb{N}$, $u_n < 1$ alors $\ell \le 1$, et puisque (u_n) est croissante on a $\forall n \in \mathbb{N}$, $u_n \le \ell \le 1$. Raisonnons par l'absurde et supposons que $\ell < 1$, alors $\lim_{n \to +\infty} \ell^n = 0$ et puisque $\forall n \in \mathbb{N}, 0 \le u_n^n \le \ell^n$ on en déduit que $\lim_{n \to +\infty} u_n^n = 0$.

Or, $\forall n \in \mathbb{N}, u_n^n + \ln u_n = 0$, donc par passage à la limite et par continuité de ln on obtient $\ln(\ell) = 0$ donc $\ell = 1$.

Correction de l'exercice 17:

Contradiction, donc $\ell = 1$.

- 1) Pour tout $n \in \mathbb{N}^*$, La fonction $f: x \mapsto \tan x x$ est continue et dérivable sur $] \frac{\pi}{2} + n\pi; \frac{\pi}{2} + n\pi[$, et $\lim_{x \to -\frac{\pi}{2} + n\pi} \tan x = -\infty$ et $\lim_{x \to \frac{\pi}{2} + n\pi} \tan x = +\infty$ par somme de limites. De plus $\forall x \in] \frac{\pi}{2} + n\pi; \frac{\pi}{2} + n\pi[$, $f'(x) = 1 + \tan^2(x) 1 = \tan^2(x)$. $f'(x) = 1 + \tan^2(x) + \tan^2(x)$
- 2) Pour tout $n \in \mathbb{N}$ on a $-\frac{\pi}{2} + n\pi \le x_n \le \frac{\pi}{2} + n\pi$ donc $-\frac{\pi}{2n\pi} + 1 \le \frac{x_n}{2n\pi} \le \frac{\pi}{2n\pi} + 1$ et comme $\lim_{n \to +\infty} \left(-\frac{\pi}{2n\pi} + 1 \right) = \lim_{n \to +\infty} \left(\frac{\pi}{2n\pi} + 1 \right) = 1$ on en déduit que $\lim_{n \to +\infty} \frac{x_n}{2n\pi} = 1$, donc $x_n \sim n\pi$.

Correction de l'exercice 18 :

1) On raisonne par récurrence :

- <u>Initialisation</u>: Par hypothèse, on a $u_0 < v_0$ donc la propriété est vraie au rang n = 0.
- <u>Hérédité</u>: Supposons que pour un certain $n \in \mathbb{N}$ on a $0 < u_n < v_n$. On a $u_{n+1} = \sqrt{u_n v_n}$ et $v_{n+1} = \frac{u_n + v_n}{2}$ donc on a immédiatement $u_{n+1} > 0$ et $v_{n+1} > 0$.

Montrons que pour tout $x, y \in \mathbb{R}_+$, $\frac{x+y}{2} \ge \sqrt{xy}$ avec égalité si et seulement si x = y:

On a $(\sqrt{x} - \sqrt{y})^2 \ge 0$ avec égalité si et seulement si $\sqrt{x} = \sqrt{y}$ c'est à dire si x = y.

Or $(\sqrt{x} - \sqrt{y})^2 = x + y - 2\sqrt{xy}$ car $x \ge 0$ et $y \ge 0$.

Finalement, on a bien

$$x+y-2\sqrt{xy}\geq 0$$
 avec égalité si et seulement si $x=y$
$$\frac{x+y}{2}\geq \sqrt{xy}$$
 avec égalité si et seulement si $x=y$

Comme $u_n \neq v_n$, on a bien $\sqrt{u_n v_n} < \frac{u_n + v_n}{2}$ donc $0 < u_{n+1} < v_{n+1}$, la propriété est vraie au rang n+1.

— <u>Conclusion</u>: Par principe de récurrence, on en conclut que pour tout $n \in \mathbb{N}$, $0 < u_n < v_n$. Soit $n \in \mathbb{N}$, on a

$$v_{n+1} - u_{n+1} = \frac{u_n + v_n}{2} - \sqrt{u_n v_n}$$

$$= \frac{u_n + v_n - 2\sqrt{u_n v_n}}{2}$$

$$= \frac{1}{2}(\sqrt{v_n} - \sqrt{u_n})^2$$

$$\leq \frac{1}{2}(\sqrt{v_n} - \sqrt{u_n})(\sqrt{v_n} + \sqrt{u_n})$$

$$\leq \frac{1}{2}(v_n - u_n)$$

Par récurrence immédiate, on en déduit que pour tout $n \in \mathbb{N}$, $v_{n+1} - u_{n+1} \le \frac{1}{2^n}(v_0 - u_0)$.

3) Pour tout $n \in \mathbb{N}$, on a $0 < v_n - u_n < \frac{1}{2^n}(v_0 - u_0)$, comme $\lim_{n \to +\infty} \frac{1}{2^n}(v_0 - u_0) = 0$ on en déduit d'après le théorème des gendarmes que $\lim_{n \to +\infty} (v_n - u_n) = 0$.

Montrons que l'une de ces suites est croissante et l'autre décroissante.

Soit $n \in \mathbb{N}$:

$$u_{n+1} - u_n = \sqrt{u_n v_n} - u_n$$
$$= \sqrt{u_n v_n} - \sqrt{u_n u_n}$$
$$= \sqrt{u_n} (\sqrt{v_n} - \sqrt{u_n})$$

comme $v_n > u_n$ et que la fonction racine carrée est strictement croissante, on a $\sqrt{v_n} - \sqrt{u_n} > 0$ donc $u_{n+1} - u_n > 0$, la suite (u_n) est strictement croissante.

Soit $n \in \mathbb{N}$:

$$v_{n+1} - v_n = \frac{u_n + v_n}{2} - v_n$$
$$= \frac{u_n + v_n - 2v_n}{2}$$
$$= \frac{u_n - v_n}{2}$$

comme $v_n > u_n$, on a $v_{n+1} - v_n < 0$, la suite (v_n) est donc strictement décroissante.

On en conclut que (u_n) est (v_n) sont des suites adjacentes, elles convergent donc toutes deux vers la même limite ℓ .

Le passage à la limite dans les égalités $u_{n+1} = \sqrt{u_n v_n}$ et $v_{n+1} = \frac{u_n + v_n}{2}$ donne $\ell = \sqrt{\ell^2} = \ell$ et $\ell = \frac{\ell + \ell}{2}$, cela ne nous apprend donc rien sur la limite ℓ .

On ne peut rien dire sur ℓ à part que $u_0 \leq \ell \leq v_0$.

Correction de l'exercice 19 :

On a $\ell = n \times \frac{\ell}{n} = \sum_{k=1}^{n} \frac{\ell}{n}$ donc pour tout $n \in \mathbb{N}$,

$$w_n - \ell = \sum_{k=1}^n \frac{u_k}{n} - \sum_{k=1}^n \frac{\ell}{n}$$
$$= \sum_{k=1}^n \frac{u_k - \ell}{n}$$

On sait que (u_n) converge vers ℓ , donc il existe un rang n_0 tel que pour tout $n \ge n_0$ on a $\ell - \varepsilon \le u_n \le \ell + \varepsilon$. Pour $n \ge n_0$, on a $\sum_{k=1}^n u_k = \sum_{k=1}^{n_0} u_k + \sum_{k=n_0}^n u_k$. La deuxième somme peut être encadrée de la façon suivante :

$$\sum_{k=n_0}^{n} (\ell - \varepsilon) \le \sum_{k=n_0}^{n} u_k \le \sum_{k=n_0}^{n} (\ell + \varepsilon)$$

donc

$$-\sum_{k=n_0}^n \varepsilon \le \sum_{k=n_0}^n (u_k - \ell) \le \sum_{k=n_0}^n \varepsilon$$

et finalement

$$-\frac{1}{n}\sum_{k=n_0}^n \varepsilon \le \frac{1}{n}\sum_{k=n_0}^n (u_k - \ell) \le \frac{1}{n}\sum_{k=n_0}^n \varepsilon$$

En ajoutant $\frac{1}{n}\sum_{k=1}^{n_0-1}(u_k-\ell)$ de chaque côté de l'inégalité, on obtient

$$\frac{1}{n} \sum_{k=1}^{n_0-1} (u_k - \ell) - \frac{1}{n} \sum_{k=n_0}^{n} \varepsilon \le w_n \le \frac{1}{n} \sum_{k=1}^{n_0-1} (u_k - \ell) + \frac{1}{n} \sum_{k=n_0}^{n} \varepsilon$$

Comme $\frac{1}{n}\sum_{k=n_0}^n \varepsilon = \frac{n-n_0}{n}\varepsilon \le \varepsilon$, on obtient :

$$\frac{1}{n} \sum_{k=1}^{n_0 - 1} (u_k - \ell) - \varepsilon \le w_n \le \frac{1}{n} \sum_{k=1}^{n_0 - 1} (u_k - \ell) + \varepsilon$$

Puisque n_0 est fixé, $\sum_{k=1}^{n_0-1} (u_k - \ell)$ est un réel fixé. Ainsi $\frac{1}{n} \sum_{k=1}^{n_0-1} (u_k - \ell)$ converge vers 0, donc il existe un entier n_1 tel que

$$\forall n \ge n_1, -\varepsilon \le \frac{1}{n} \sum_{k=1}^{n_0-1} (u_k - \ell) \le \varepsilon$$

En posant $n_2 = \max(n_0, n_1)$, on a en combinant les inégalités précédemment obtenues

$$\forall n \ge n_2, \ -2\varepsilon \le w_n - \ell \le 2\varepsilon$$

Pour un réel $\varepsilon>0$ fixé, en posant $\varepsilon'=\frac{\varepsilon}{2},$ on a d'après la question précédente

$$\exists n_2, \forall n \geq n_2, -2\varepsilon' \leq w_n - \ell \leq 2\varepsilon'$$

donc

$$\exists n_2, \forall n \geq n_2, -\varepsilon \leq w_n - \ell \leq \varepsilon$$

On en déduit que $\lim_{n\to +\infty}(w_n-\ell)=0$, autrement dit que $\lim_{n\to +\infty}w_n=\ell$.

Correction de l'exercice 20 : Pour tout $n \in \mathbb{N}$, u_n , et v_n sont des réels strictement positifs donc l'inégalité donnée est équivalente à

$$\forall n \in \mathbb{N}, \ \frac{u_{n+1}}{v_{n+1}} \le \frac{u_n}{v_n}$$

autrement dit la suite $\left(\frac{u_n}{v_n}\right)$ est décroissante.

On a donc $\forall n \in \mathbb{N}, \ \frac{u_n}{v_n} \leq \frac{u_0}{v_0}$ par une récurrence immédiate, donc $\forall n \in \mathbb{N}, \ u_n \leq u_0 v_n$. On conclut par théorème de comparaison que si $\lim_{n \to +\infty} u_n = +\infty$, alors $\lim_{n \to +\infty} u_0 v_n = +\infty$ donc $\lim_{n \to +\infty} v_n = +\infty$ car $u_0 > 0$.

Correction de l'exercice 21 : a) On étudie la fonction $f: x \longmapsto x - \ln(1+x)$ définie sur $]-1; +\infty[$.

Cette fonction est dérivable comme somme et composée de fonctions dérivables et pour tout $x \in]-1, +\infty[, f'(x) =$ $1-\frac{1}{1+x}=\frac{x}{1+x}.$ Pour x>-1 on a 1+x>0 donc f'(x) est du même signe que x. On a donc

x	-1	0	$+\infty$
f'(x)	_	0	+
f			

f atteint son minimum en 0 donc pour tout $x \in]-1;+\infty[$, $f(x) \geq f(0)=0$. On a conclut que pour tout $x \in]-1; +\infty[, \ln(1+x) \le x.$

b) Soit $n \in \mathbb{N}^*$.

On a

$$u_{n+1} - u_n = H_{n+1} - \ln(n+1) - H_n + \ln(n)$$

$$= \sum_{k=1}^{n+1} \frac{1}{k} + \ln\left(\frac{n}{n+1}\right) - \sum_{k=1}^{n} \frac{1}{k}$$

$$= \frac{1}{n+1} + \ln\left(\frac{n+1}{n+1} - \frac{1}{n+1}\right)$$

$$= \frac{1}{n+1} + \ln\left(1 - \frac{1}{n+1}\right)$$

Or, $-\frac{1}{n+1} > -1$ donc d'après la question précédente on a $\ln\left(1 - \frac{1}{n+1}\right) \le -\frac{1}{n+1}$. Finalement,

$$u_{n+1} - u_n \le \frac{1}{n+1} - \frac{1}{n+1} \le 0$$

De plus, on a

$$v_{n+1} - v_n = u_{n+1} - u_n - \frac{1}{n+1} + \frac{1}{n}$$

$$= H_{n+1} - \ln(n+1) - H_n + \ln(n) - \frac{1}{n+1} + \frac{1}{n}$$

$$= \frac{1}{n+1} - \ln\left(\frac{n+1}{n}\right) - \frac{1}{n+1} + \frac{1}{n}$$

$$= \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)$$

Or, $\frac{1}{n} > -1$ donc d'après la question précédente $\ln\left(1 + \frac{1}{n}\right) \le \frac{1}{n}$ et ainsi $-\ln\left(1 + \frac{1}{n}\right) \ge -\frac{1}{n}$. Finalement

$$v_{n+1} - v_n \ge \frac{1}{n} - \frac{1}{n}$$

Ainsi, pour tout entier $n \in \mathbb{N}^*$, $u_{n+1} \leq u_n$ et $v_{n+1} \geq v_n$ donc (u_n) est décroissante et (v_n) est croissante.

- c) Pour tout $n \in \mathbb{N}^*$, $u_n v_n = u_n u_n + \frac{1}{n} = \frac{1}{n}$ donc $\lim_{n \to +\infty} (u_n v_n) = 0$. Comme de plus (u_n) est décroissante et (v_n) est croissante d'après la question précédente, on en conclut que (u_n) et (v_n) sont des suites adjacentes. Ainsi, d'après le cours, (u_n) et (v_n) convergent vers un même réel γ .
- d) On a pour tout $n \in \mathbb{N}^*$, $H_n = u_n + \ln(n)$. Ainsi, pour tout $n \ge 2$, on a $\frac{H_n}{\ln(n)} = \frac{u_n}{\ln(n)} + 1$. Puisque $\lim_{n \to +\infty} u_n = \gamma$ et $\lim_{n \to +\infty} \ln(n) = +\infty$ on en déduit que $\lim_{n \to +\infty} \frac{H_n}{\ln(n)} = 1$, autrement dit $H_n \sim \ln(n)$.
- e) (v_n) est une suite croissante et $v_2 = u_2 \frac{1}{2} = 1 + \frac{1}{2} \ln(2) \frac{1}{2} = 1 \ln(2)$. Or $\ln(2) < \ln(e) = 1$ donc $v_2 > 0$. Ainsi, pour tout $n \in \mathbb{N}$, $v_n \ge v_2$ donc par passage à la limite $\gamma \ge v_2 > 0$ donc $\gamma > 0$.

Correction de l'exercice 22:

1) Pour n = 1, $3^1 = 3$ et 1 + 2 = 3 donc $3^1 \ge 1 + 2$. La propriété est donc vraie pour n = 1 Supposons que $3^n \ge n + 2$ pour un certain entier n. Alors en multipliant par 3 on obtient

$$3^{n+1} \ge 3n + 6$$

Or $3n+6=\underbrace{2n+3}_{>0}+n+3\geq n+3$ donc $3^{n+1}\geq n+3$. La propriété est donc vraie au rang n+1

La propriété est héréditaire et elle est vraie pour n=1, on en conclut que pour tout $n \in \mathbb{N}^*$, $3^n \ge n+2$.

2) Pour n=1 on a $u_1=a$ par hypothèse, et $a\times 1=a$ donc on a bien $u_1\geq a\times 1$, la propriété est vraie pour n=1. Supposons que pour un certain $n\in\mathbb{N}^*$ on ait $\forall k\in \llbracket 1,n\rrbracket,\,u_k\geq ak$. Alors

$$u_{n+1} = \sum_{k=1}^{n} \frac{3^k a_k}{k}$$

$$\geq \sum_{k=1}^{n} \frac{3^k \times ak}{k}$$
par hypothèse de récurrence
$$\geq a \sum_{k=1}^{n} 3^k$$

$$\geq 3a \sum_{k=1}^{n} 3^{k-1}$$

$$\geq 3a \sum_{j=0}^{n-1} 3^j$$

$$\geq 3a \times \frac{3^{n-1+1}-1}{3-1}$$

$$\geq 3a \times \frac{3^n-1}{2}$$

$$\geq \frac{3a}{2} \times (3^n-1)$$

$$\geq \frac{3a}{2} \times (n+2-1)$$
d'après la question précédente
$$\geq a(n+1)$$
car $\frac{3}{2} \geq 1$

donc la propriété est vraie au rang n+1

3) Puisque a > 0, on a $\lim_{n \to +\infty} an = +\infty$ donc par comparaison $\lim_{n \to +\infty} u_n = +\infty$.

Correction de l'exercice 23 : Puisque $0 \le u_n \le 2$ pour tout $n \in \mathbb{N}$, on a $0 \le u_n v_n \le 2v_n$ pour tout $n \in \mathbb{N}$ Or, $\forall n \in \mathbb{N}$, $0 \le v_n \le 3$ donc $0 \le 2v_n \le 6$.

On obtient l'encadrement suivant : $\forall n \in \mathbb{N}, u_n v_n \leq 2v_n \leq 6$. Or par hypothèse, $\lim_{n \to +\infty} u_n v_n = 6$ donc d'après le théorème d'encadrement on en conclut que $\lim_{n \to +\infty} 2v_n = 6$, donc $\lim_{n \to +\infty} v_n = 3$. De la même façon on montre que (u_n) converge et que $\lim_{n \to +\infty} u_n = 2$.

Correction de l'exercice 24:

1) Les fonctions $x \mapsto e^{2x}$ et $x \mapsto e^x + 1$ sont dérivables sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $e^x > 0$ donc $e^x + 1 > 0$. Ainsi, f est dérivable sur \mathbb{R} comme quotient de fonctions dérivables sur \mathbb{R} dont le dénominateur ne s'annule pas. De plus, pour tout réel x, on a

$$f'(x) = \frac{2e^{2x}(e^x + 1) - e^{2x}e^x}{(e^x + 1)^2}$$
$$= \frac{2e^{3x} + 2e^{2x} - e^{3x}}{(e^x + 1)^2}$$
$$= \frac{e^{3x} + 2e^{2x}}{(e^x + 1)^2}$$

Or, pour tout $x \in \mathbb{R}$, $e^{3x} > 0$ et $e^{2x} > 0$ et $(e^x + 1)^2 > 0$ donc f'(x) > 0. On en conclut que f est strictement croissante sur \mathbb{R} .

- 2) On note $\mathcal{P}(n)$: « u_n est bien défini et $0 \le u_n \le u_{n+1}$ » et on raisonne par récurrence.
 - **Initialisation**: u_0 est bien défini et $u_1 = \frac{e^0}{e^0 + 1} = \frac{1}{2} \ge u_0$ donc u_0 et u_1 sont bien définis et $0 \le u_0 \le u_1$.
 - **Hérédité**: Supposons qu'il existe un entier n tel que u_n et u_{n+1} sont bien définis et tel que $0 \le u_n \le u_{n+1}$. Puisque f est bien définie sur \mathbb{R} , $u_{n+2} = f(u_{n+1})$ est bien défini. Puisque f est croissante sur \mathbb{R} , on a $f(0) \le f(u_n) \le f(u_{n+1})$ donc

$$0 \le \frac{1}{2} \le u_{n+1} \le u_{n+2}$$

Ainsi, u_{n+1} et u_{n+2} sont bien définis et $0 \le u_{n+1} \le u_{n+2}$, $\mathcal{P}(n+1)$ est donc vraie.

- Conclusion : Par principe de récurrence on en conclut que pour tout $n \in \mathbb{N}$, u_n et u_{n+1} sont bien définis et $0 \le u_n \le u_{n+1}$.
- 3) On pose $g(x) = e^x x 1$ et on étudie les variations de g sur \mathbb{R} . g est dérivable sur \mathbb{R} comme somme de fonctions dérivables sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \quad g'(x) = e^x - 1$$

On a $g'(x) \ge 0 \iff e^x \ge 1 \iff x \ge 0$ et $g'(x) \le 0 \iff e^x \le 1 \iff x \le 0$, donc g est décroissante sur $]-\infty,0[$ et croissante sur $]0,+\infty[$ et admet donc un minimum en 0.

g(0) = 0 donc $\forall x \in \mathbb{R}, g(x) \ge g(0) \ge 0$, d'où le résultat voulu.

4) Supposons qu'il existe un réel x solution de l'équation f(x) = x.

Alors
$$\frac{e^{2x}}{e^x + 1} = x \text{ donc } e^{2x} = x e^x + x.$$

Or $e^{2x} = e^x \times e^x \ge e^x (1+x)$ d'après la question précédente car $e^x > 0$.

Ainsi, $x e^x + x \ge e^x (1 + x)$ donc $x e^x + x \ge e^x + x e^x$ et on obtient finalement $x \ge e^x$, ce qui est faux pour tout $x \in \mathbb{R}$ d'après la question précédente.

Contradiction, donc l'équation f(x) = x n'admet aucune solution réelle.

Puisque (u_n) est une suite croissante d'après la question 2., elle est soit majorée et convergente, soit non majorée et elle tend vers $+\infty$.

Supposons qu'elle converge vers une limite ℓ , alors on aurait $\lim_{n\to+\infty}u_{n+1}=\ell$ et $\lim_{n\to+\infty}f(u_n)=f(\ell)$ car f est dérivable donc continue sur $\mathbb R$.

Par unicité de la limite on aurait donc $\ell = f(\ell)$ ce qui est impossible comme on vient de le voir.

On en conclut que (u_n) ne converge pas, donc $\lim_{n\to +\infty} u_n = +\infty$.

Correction de l'exercice 25:

1) Pour tout $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} = \frac{e^{n+1}}{e^n} = e$, et $\frac{1}{2} \frac{v_{n+1}}{v_n} = \frac{1}{2} \frac{(n+1)!}{n!} = \frac{n+1}{2}$.

Puisque $\lim_{n\to+\infty} \frac{n+1}{2} = +\infty$, il existe un rang n_0 à partir duquel on a $\frac{n+1}{2} \ge e$, donc pour tout $n \ge n_0$, $\frac{u_{n+1}}{u_n} \le \frac{1}{2} \frac{v_{n+1}}{v_n}$.

- 2) Posons $C = \frac{u_{n_0}}{v_{n_0}}$ et montrons par récurrence que pour tout $n \ge n_0$, $u_n \le C \left(\frac{1}{2}\right)^{n-n_0} v_n$.
 - Initialisation : Pour $n=n_0$, on a $u_{n_0}=\frac{u_{n_0}}{v_{n_0}}v_{n_0}=\frac{u_{n_0}}{v_{n_0}}v_{n_0}\left(\frac{1}{2}\right)^{n_0-n_0}v_0$. La propriété est donc vraie au rang n_0
 - **Hérédité :** Supposons que pour un certain $n \ge n_0$ on ait $u_n \le C\left(\frac{1}{2}\right)^{n-n_0} v_n$.

Alors, $u_{n+1} \leq \frac{1}{2} \frac{v_{n+1}}{v_n} u_n$ d'après la question précédente donc

$$u_{n+1} \le \frac{1}{2} \frac{v_{n+1}}{v_n} \times C\left(\frac{1}{2}\right)^{n-n_0} v_n$$
$$\le \frac{1}{2} v_{n+1} \times C\left(\frac{1}{2}\right)^{n-n_0}$$

la propriété est donc vraie au rang n+1

- Conclusion : La propriété est héréditaire et elle est vraie au rang $n=n_0$, donc pour tout $n \ge n_0$ on a $u_n \le C\left(\frac{1}{2}\right)^{n-n_0}v_n$.
- 3) On a donc pour tout $n \in \mathbb{N}$, $0 \le \frac{u_n}{v_n} \le C\left(\frac{1}{2}\right)^{n-n_0} = C\left(\frac{1}{2}\right)^n \times \left(\frac{1}{2}\right)^{-n_0}$ et puisque $0 \le \frac{1}{2} < 1$ on a $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$ donc par encadrement $\lim_{n \to +\infty} \frac{u_n}{v_n} = 0$, d'où le résultat voulu.

Correction de l'exercice 26:

- 1) a) Soit $n \in \mathbb{N}^*$. Pour tout entier k avec $0 \le k \le n$ on a $a_k \le a_n$, donc $\sum_{k=0}^{n-1} a_k \le \sum_{k=0}^{n-1} a_n = n \times a_n$. Ainsi, $b_n \le \frac{1}{n} \times n \times a_n \le a_n$.
 - b) Soit $n \in \mathbb{N}^*$. On a

$$b_{n+1} - b_n = \frac{1}{n+1} \sum_{k=0}^{n} a_k - \frac{1}{n} \sum_{k=0}^{n-1} a_k$$

$$= \frac{n}{n(n+1)} \sum_{k=0}^{n} a_k - \frac{n+1}{n(n+1)} \sum_{k=0}^{n-1} a_k$$

$$= \frac{n}{n(n+1)} a_n + \sum_{k=0}^{n-1} a_k \left(\frac{n}{n(n+1)} - \frac{n+1}{n(n+1)} \right)$$

$$= \frac{1}{n+1} a_n - \frac{1}{n(n+1)} \sum_{k=0}^{n-1} a_k$$

$$= \frac{1}{n+1} a_n - \frac{1}{n+1} b_n$$

$$= \frac{1}{n+1} (a_n - b_n)$$

$$> 0$$

d'après la question précédente

donc (b_n) est croissante.

- c) a_n est croissante et converge vers ℓ , donc $\forall n \in \mathbb{N}, a_n \leq \ell$. Pour tout $n \in \mathbb{N}^*$, $b_n \leq a_n \leq \ell$ donc (b_n) est croissante (d'après la question précédente) et majorée par ℓ , ainsi elle converge vers un réel ℓ' .
 - Par passage à la limite dans l'inégalité $u_n \leq \ell$, on a $\ell' \leq \ell$.
- d) Soit $n \in \mathbb{N}^*$. On a

$$b_{2n} = \frac{1}{2n} \sum_{k=0}^{2n-1} a_k$$

$$= \frac{1}{2} \times \frac{1}{n} \sum_{k=0}^{n-1} a_k + \frac{1}{2n} \sum_{k=n}^{2n-1} a_k$$
$$= \frac{b_n}{2} + \frac{1}{2n} \sum_{k=n}^{2n-1} a_k$$

Or, pour tout $k \in [n, 2n-1], a_k \ge a_n$ car (a_n) est croissante, donc par somme d'inégalité $\frac{1}{2n} \sum_{k=n}^{2n-1} a_k \ge \frac{1}{2n} \sum_{k=n}^{2n-1} a_n \ge \frac{1}{2n} \times n \times a_n \ge \frac{a_n}{2}$.

Finalement on a bien $b_{2n} \ge \frac{b_n + a_n}{2}$

- e) (b_n) converge donc (b_{2n}) aussi et $\lim_{n \to +\infty} b_{2n} = \lim_{n \to +\infty} b_n = \ell'$. Par passage à la limite dans l'inégalité $b_{2n} \ge \frac{b_n + a_n}{2}$ on a donc $\ell' \ge \frac{\ell' + \ell}{2}$ et ainsi $2\ell' \ge \ell' + \ell$ d'où $\ell' \ge \ell$. Puisque $\ell' \le \ell$ d'après la question 1.c), on a finalement $\ell' = \ell$ d'où $\lim_{n \to +\infty} b_n = \lim_{n \to +\infty} a_n$.
- a) On pose $\mathcal{P}(n): u_n$ est bien défini et $u_n \geqslant 1$ et on raisonne par récurrence.
 - Initialisation : $u_0 = 1$ d'après l'énoncé donc u_0 est bien défini et $u_0 \ge 1$.
 - **Hérédité**: Supposons que u_n soit bien défini et que $u_n \ge 1$. Alors, $u_n^2 \ge 1$ donc $u_n^2 + u_n \ge 2$, ainsi $u_{n+1} = \sqrt{u_n^2 + u_n}$ est bien défini car $2 \ge 0$ et $u_{n+1} \ge \sqrt{2} \ge \sqrt{1} \ge 1$ car la fonction racine carrée est croissante.
 - Conclusion : Par principe de récurrence on en conclut que pour tout $n \in \mathbb{N}$ u_n est bien défini et $u_n \ge 1$.
- b) Soit $n \in \mathbb{N}$, on a $u_n \ge 1 \ge 0$ donc $\sqrt{u_n^2 + u_n} \ge \sqrt{u_n^2} \ge u_n$ car la fonction racine carrée est croissante. Ainsi, $u_{n+1} \ge u_n$, et ce quel que soit $n \in \mathbb{N}$ donc (u_n) est croissante.
- c) Supposons que (u_n) converge vers un réel ℓ . Remarquons que nécessairement $\ell \geq 1$ car $\forall n \in \mathbb{N}, u_n \geq 1$. De plus, la fonction $x \mapsto \sqrt{x^2 + x}$ étant continue sur $[1; +\infty[$, on a par passage à la limite $\lim_{n \to +\infty} \sqrt{u_n^2 + u_n} = \sqrt{\ell^2 + \ell}$. D'autre part, $\lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} u_n = \ell$ donc par unicité de la limite $\ell = \sqrt{\ell^2 + \ell}$. Ainsi, comme $\ell \geq 0$ on peut écrire $\ell^2 = \ell^2 + \ell$ d'où $\ell = 0$.

On a montré que si (u_n) converge vers un réel ℓ , alors $\ell = 0$. Or on a montré que $\ell \geq 1$, contradiction. On en conclut que (u_n) diverge, mais puisque (u_n) est croissante on a nécessairement $\lim_{n \to +\infty} u_n = +\infty$.

3) a) Pour tout entier n, on a

$$u_{n+1} - u_n = \sqrt{u_n^2 + u_n} - u_n$$

$$= \frac{(\sqrt{u_n^2 + u_n} - \sqrt{u_n^2})(\sqrt{u_n^2 + u_n} + \sqrt{u_n^2})}{\sqrt{u_n^2 + u_n} + \sqrt{u_n^2}}$$

$$= \frac{u_n^2 + u_n - u_n^2}{\sqrt{u_n^2 + u_n} + \sqrt{u_n^2}}$$

$$= \frac{u_n}{u_n \left(\sqrt{1 + \frac{1}{u_n}} + 1\right)}$$

Comme $\lim_{n\to+\infty}u_n=+\infty$ d'après la question 2.c), on a $\lim_{n\to+\infty}\sqrt{1+\frac{1}{u_n}}+1=2$ donc $u_{n+1}-u_n\sim\frac{u_n}{2u_n}\sim\frac{1}{2}$ donc $\lim_{n\to+\infty}(u_{n+1}-u_n)=\frac{1}{2}$.

b) $x \mapsto x^2 + x$ est dérivable sur $]0; +\infty[$ et à valeurs dans $]0; +\infty[$ et $x \mapsto \sqrt{x}$ est dérivable sur $]0; +\infty[$ donc $x \mapsto \sqrt{x^2 + x}$ est dérivable. Ainsi f est dérivable sur $]0; +\infty[$ comme somme de fonctions dérivables et pour tout $x \in]0; +\infty[$ on a

$$f'(x) = \frac{2x+1}{2\sqrt{x^2+x}} - 1 = \frac{2x+1-2\sqrt{x^2+x}}{2\sqrt{x^2+x}}$$
$$= \frac{(2x+1)^2 - 4(x^2+x)}{2\sqrt{x^2+x} \times (2x+1+2\sqrt{x^2+x})}$$

$$= \frac{4x^2 + 4x + 1 - 4x^2 - 4x}{2\sqrt{x^2 + x} \times (2x + 1 + 2\sqrt{x^2 + x})}$$
$$= \frac{1}{2\sqrt{x^2 + x} \times (2x + 1 + 2\sqrt{x^2 + x})}$$

donc f'(x) > 0 pour tout $x \in]0; +\infty[$, ainsi f est strictement croissante sur cet intervalle.

Comme (u_n) est croissante, on a $\forall n \in \mathbb{N}, u_n \leq u_{n+1}$ donc $f(u_n) \leq f(u_{n+1})$ donc $u_{n+1} - u_n \leq u_{n+2} - u_{n+1}$ donc $(u_{n+1} - u_n)$ est croissante.

c) Si on pose $b_n = \frac{1}{n} \sum_{k=0}^{n-1} a_k$, avec pour tout $n \in \mathbb{N}$, $a_n = u_{n+1} - u_n$, alors (a_n) est croissante et converge vers $\frac{1}{2}$ donc (a_n) et (b_n) vérifient les hypothèse de la question 1. Ainsi, d'après cette question, b_n converge vers $\frac{1}{2}$. On a donc $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} (u_{k+1} - u_k) = \frac{1}{2}$. On remarque que $\sum_{k=0}^{n-1} (u_{k+1} - u_k) = u_n - u_0$ (par télescopage) et comme $\lim_{n \to +\infty} u_n = +\infty$ on a $u_n - u_0 \sim u_n$, ainsi $b_n \sim \frac{u_n}{n} \sim \frac{1}{2}$ donc finalement $u_n \sim \frac{n}{2}$.

Correction de l'exercice 27 :

1) Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n = \frac{1}{(n+1)!} > 0$ donc (u_n) est croissante. Pour tout $n \in \mathbb{N}$, on a

$$v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{(n+1) \times (n+1)!} - \frac{1}{n \times n!}$$

$$= \frac{1}{(n+1)!} + \frac{1}{(n+1) \times (n+1)!} - \frac{1}{n \times n!}$$

$$= \frac{n(n+1)}{n \times (n+1) \times (n+1)!} + \frac{n}{n \times (n+1) \times (n+1)!} - \frac{(n+1)^2}{n \times (n+1) \times (n+1)!}$$

$$= \frac{n^2 + n + n - n^2 - 2n - 1}{n \times (n+1) \times (n+1)!}$$

$$= \frac{-1}{n \times (n+1) \times (n+1)!}$$

$$< 0$$

donc (v_n) est décroissante.

Enfin, pour tout $n \in \mathbb{N}$, $v_n - u_n = \frac{1}{n \times n!}$ donc $\lim_{n \to +\infty} (v_n - u_n) = 0$.

On en conclut que (u_n) et (v_n) sont adjacentes, elles convergent donc vers un même réel ℓ .

Puisqu'elles sont strictement monotones, on a pour tout $n \in \mathbb{N}$, $u_n < \ell < v_n$.

2) Supposons que ℓ soit rationnel.

Alors il existe deux entiers p et q tels que $\ell = \frac{p}{q}$. On a donc pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} \frac{1}{k!} < \frac{p}{q} < \sum_{k=0}^{n} \frac{1}{k!} + \frac{1}{n \times n!}$. En particulier, pour n = q, on a

$$\sum_{k=0}^{q} \frac{1}{k!} < \frac{p}{q} < \sum_{k=0}^{q} \frac{1}{k!} + \frac{1}{q \times q!}$$

donc en multipliant par q! > 0 on obtient

$$\sum_{k=0}^{q} \frac{q!}{k!}$$

Or, pour tout $k \in [0, q]$, $\frac{q!}{k!}$ est un entier car $q \ge k$, donc $\sum_{k=0}^q \frac{q!}{k!}$ est un entier. De plus, $\frac{1}{q} < 1$ donc $\sum_{k=0}^q \frac{1}{k!} + \frac{1}{q} < \sum_{k=0}^q \frac{1}{k!} + 1$ On en conclut que

$$\sum_{k=0}^{q} \frac{q!}{k!}$$

donc $p \times (q-1)!$ est un entier qui est strictement compris entre deux entiers consécutifs, c'est absurde donc ℓ est irrationnel.

3) Pour n = 0, on a $\int_0^1 \frac{(1-t)^0}{0!} e^t dt = \int_0^1 e^t dt = [e^t]_0^1 = e - 1$ donc $\sum_{k=0}^0 \frac{1}{k!} + \int_0^1 \frac{(1-t)^0}{0!} e^t dt = \frac{1}{0!} + e - 1 = 1 + e - 1 = e$. Supposons qu'on ait $e = \sum_{k=0}^n \frac{1}{k!} + \int_0^1 \frac{(1-t)^n}{n!} e^t dt$. Par intégration par partie, on a

$$\int_0^1 \frac{(1-t)^n}{n!} e^t dt = \left[\frac{-(1-t)^{n+1}}{(n+1)!} e^t \right]_0^1 + \int_0^1 \frac{(1-t)^{n+1}}{(n+1)!} e^t dt$$
$$= \frac{1}{(n+1)!} + \int_0^1 \frac{(1-t)^{n+1}}{(n+1)!} e^t dt$$

donc

$$e = \sum_{k=0}^{n} \frac{1}{k!} + \int_{0}^{1} \frac{(1-t)^{n}}{n!} e^{t} dt = \sum_{k=0}^{n} \frac{1}{k!} + \frac{1}{(n+1)!} + \int_{0}^{1} \frac{(1-t)^{n+1}}{(n+1)!} e^{t} dt$$
$$= \sum_{k=0}^{n+1} \frac{1}{k!} + \int_{0}^{1} \frac{(1-t)^{n+1}}{(n+1)!} e^{t} dt$$

donc l'égalité est vraie au rang n+1

Finalement, par principe de récurrence, on en conclut que pour tout $n \in \mathbb{N}$, $e = \sum_{k=0}^{n} \frac{1}{k!} + \int_{0}^{1} \frac{(1-t)^{n}}{n!} e^{t} dt$.

4) Pour tout $t \in [0;1]$, pour tout $n \in \mathbb{N}^*$, $0 \le \frac{(1-t)^n}{n!} e^t \le \frac{1-t}{n!} e^t$.

Ainsi, en intégrant on obtient

$$0 \le \int_0^1 \frac{(1-t)^n}{n!} e^t \le \frac{1}{n!} \int_0^1 (1-t) e^t dt$$

Or, $\int_0^1 (1-t) e^t dt = [(1-t) e^t]_0^1 + \int_0^1 e^t dt = -1 + e - 1 = e - 2$. Or 2 < e < 3 donc 0 < e - 2 < 1. Finalement, on a

$$0 \le \int_0^1 \frac{(1-t)^n}{n!} e^t \le \frac{1}{n!}$$

d'où le résultat.

5) On déduit de la question précédente par encadrement de limites que $\lim_{n\to+\infty} \int_0^1 \frac{(1-t)^n}{n!} e^t dt = 0$.

De plus, on sait que la suite $\left(\sum_{k=0}^n \frac{1}{k!}\right)$ converge vers ℓ , donc par somme de limites $\lim_{n \to +\infty} \left(\sum_{k=0}^n \frac{1}{k!} + \int_0^1 \frac{(1-t)^n}{n!} \, \mathrm{e}^t \, \mathrm{d}t\right) = \ell$. Puisque cette suite est constante égale à e on en conclut finalement que $\ell = \mathrm{e}$, et puisqu'on a montré que ℓ est irrationnel on a bien e irrationnel.

