

ANALIZA MATEMATYCZNA I (Lista 12, 19.12.2022)

Całka oznaczona.

Zad. 1. Obliczyć całki oznaczone:

(a)
$$\int_{1}^{3} (4x^{2} - 3x + 4) dx$$
, (b) $\int_{1}^{2} \frac{1}{x^{2}} dx$, (c) $\int_{0}^{1} 3x^{2} e^{x^{3} - 1} dx$, (d) $\int_{1}^{e} x \ln x dx$, (e) $\int_{-\pi/2}^{\pi} \sin^{5} x dx$ (f) $\int_{-1}^{1} x(x+1)^{2} dx$

Zad. 2. Na przedziale [a; b] wyznaczyć średnią wartość funkcji f(x):

(a)
$$f(x) = x^4$$
; $[-1; 1]$; (b) $f(x) = x^5$; $[-1; 1]$; (c) $f(x) = \sqrt{x}$; $[0; 4]$; (d) $f(x) = \frac{1}{x^2}$; $[1; 2]$.

Zad. 3. Obliczyć długości krzywych:

(a)
$$y = x^2, -1 \le x \le 3$$
, (b) $y = \ln x, \sqrt{3} \le x \le \sqrt{8}$, (c) $y = \frac{x^5}{10} + \frac{1}{6x^3}$, $1 \le x \le 3$,

(d)
$$y = \ln(1 - x^2)$$
, $0 \le x \le \frac{1}{2}$. (e) $y = \ln \frac{e^x + 1}{e^x - 1}$, $2 \le x \le 3$.

Zad. 4. Wyznaczyć pole obszaru pomiędzy krzywą, a osią współrzędnych na odcinku [a; b]

a)
$$y = 4 - x^2$$
, $a = -2$, $b = 2$; b) $y = \sqrt{x+2}$, $a = -2$, $b = 2$;

c)
$$y = 9x - x^2$$
, $a = 0$, $b = 3$; d) $y = 3x^{\frac{1}{3}}$, $a = 1$, $b = 8$.

Zad. 5. Obliczyć pole obszaru ograniczonego wykresami:

(a) parabolą
$$y = x^2$$
 oraz prostą $y = x$,

b) parabolą
$$y = 2x - x^2$$
 oraz prostą $x + y = 0$,

c) krzywą
$$y = e^x$$
, prostymi $x=0$ i $x=1$ oraz osią OX,

d) parabolą
$$y = x^2 + x - 6$$
, prostymi $x=-1$ i $x=1$ oraz osią OX,

e) parabolami
$$y = x^2$$
, $y = 2x^2$ oraz prostą $y = 8$ ($x \ge 0$),

f) krzywą
$$y = x^2 \ln x$$
, prostymi $x=e$ i $x=e^2$ oraz osią OX,

g) hiperbolą
$$y = \frac{2}{x} + 1$$
, prostymi $x=1$ i $x=2$ oraz osią OX, hkrzywymi $y = \ln x, x = e, y = -1$

Zad. 4. Obliczyć objętość bryły powstałej przez obrót wokół osi OX trapezu krzywoliniowego ograniczonego przez wykres funkcji f(x), proste x = a i x = b:

a)
$$y = 2\sqrt{x}$$
, $a = 0$, $b = 1$,
b) $y = x^2 + 1$, $a = -1$, $b = 1$
c) $y = x^3$, $a = 0$, $b = 1$,
d) $y = \sin x$, $a = 0$, $b = \pi$,
e) $y = e^x$, $a = 1$, $b = 2$.

$$y = x^2 + 1, \ a = -1, \ b = 1$$

$$y = x^3$$
, $a = 0$, $b = 1$,

$$y = \sin x, \ a = 0, \ b = \pi$$

$$y = e^x, a = 1, b = 2$$

Zad. 5. Obliczyć pole powierzchni powstałej w wyniku obrotu wokół osi OX krzywej y = f(x).

(a)
$$y = 2\sqrt{x}, x \in [0,1],$$

b
$$y = \frac{1}{2}x + 1, x \in [1,3],$$

(c)
$$y = \cos x$$
, $x \in [-\pi/2, \pi/2]$.