

Multiphase implementation on a parallel 2D/3D Lattice Boltzmann solver using GPGPUs

Technical Presentation

José Oliveira

Cranfield University School of Aerospace, Transport and Manufacturing

July 2017

- Introduction
- Multiphase Lattice Boltzmann Methods
- Result
- Future work

Lattice Boltzmann Method Applications

What is the Lattice Boltzmann Method?

LBM is a fluid flow simulation method capable of solving CFD problems.

- Incompressible and isothermal flows
- Mesoscopic approach
- Model evolution of time
- Commonly used in automotive industry
- Great candidate for parallel programming

Multiphase flow in Lattice Boltzmann

Multiphase can simulate flows in different states

- Solid / Liquid
- Liquid / Liquid
- Gas / Solid
- etc.

Used in

- Problems controlled by surface tension
- Oil industry
- Bubble dynamics
- Fluid management in space

High Performance Computing

Growth of GPU Computing

2008

2013

Cuda Programming

Main differences from CPU programming

- Different memory structure (registers, shared, constant and global memory)
- Many concurrent threads

Lattice Boltzmann Method

Basics

Iterative method, analogous from 2D to 3D

- Collision
- Streaming
- Boundary conditions
- Macro-variable update
- Residuals

Color Gradient Model

Simulates interaction between a red and blue fluid.

- Single phase collision
- Perturbation
- Recoloring

Plans for implementation:

- 2D case
 - Serial
 - Validation
 - Parallel
 - Validation
- 3D case

Results

Previous solver Runtimes

Previous solver Validation

Validation

Coalescence and oscilation

0.8 - 0.6 - 5 0.4 -					rho 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.2	0.2	0.4	0.6 x	0.8	1

γ	Error (%)		
1	4.81		
10	0.56		
40	0.93		
75	0.16		

Validation

Couette flow

Validated by Antonio González, MSc CFD Thesis at Cranfield University

Memory usage

Type	Nodes	Single precision (MB)	Double Precision (MB)
2D_128	16384	21,8	33,6
3D_128	2097152	1725	2785
2D_256	65536	47,97	83,95
3D_256	16777216	9637	18091

50

0

Performance

2D Color Gradient over 10000 iterations

250

200

150

Parallel

8.4

Code profiling

Future work

- Implement higher order Color Gradient
- Improve memory usage/performance
- Validate 3D solver
- Finish writing thesis

	Jı	ıly	August		
	24 - 27	27 – 01	2-8	9 – 15	15 – 18
High Order CG					
3D Validation					
Optimisation					
Writing					

Thank you!