

- (9) BUNDESREPUBLIK
 DEUTSCHLAND
- PatentschriftDE 41 21 356 C 2
- (5) Int. Cl.⁶: H 03 H 21/00 H 03 H 17/02

DEUTSCHES PATENTAMT ② Aktenzeichen:

P 41 21 358.4-31

2 Anmeldetag:

28. 6.91

G Offenlegungstag:

14. 1.93

Weröffentlichungstag

der Patenterteilung: 19. 1.95

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

② Patentinhaber: Siemens AG, 80333 München, DE

② Erfinder:

Baier, Paul Walter, Prof. Dr.-Ing., 6750 Kaiserslautern, DE; Felhauer, Toblas, Dipl.-Ing., 6750 Kaiserslautern, DE; Zimmermann, Thomas, Dr.-Ing., 6750 Kaiserslautern, DE; Klein, Anja, 6750 Kaiserslautern, DE

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

US 44 87 476
TURIN, George L.: An Introduction to Matched
Filters. In: IRE TRANSACTIONS ON INFORMATION
THEORY, June 1960, S. 311-328;
ROBINSON, Geoffrey N.: Matched filters for radar

ROBINSON, Gooffrey N.: Matched filters for radar and satellites. In: WIRELESS WORLD, April 1984, S. 42, 43;

LOFFELD, O.: Estimationstheorie Bd. 1 u. 2, Oldenbourg Verlag München, 1990, Bd. 1, S. 225-227Bd. 2. S. 392;

VITERBI, J., OMURA K.: Principles of Digital Communications and Coding, McGraw-Hill, New York, 1979, S. 273-275;

WHALEN, A.: Detection of Signals in noise, Academic Press, New York, 1971,

S. 168-179,176,177293-295,368,369;

SIMON M. u.a.: Spread spectrum communications Vol. I-III, Compute Science Press, Rockville, 1989, Vol. I, S. 8-11;

NAUERZ, R.: Entwurf und Realisierung

Semikundenspezifischer hochintegrierter digitaler Korrelatoren für die Bandspreiztechnik, VDI-Verlag, Reihe 10, Nr. 155, Düsseldorf, 1990, S. 23-30;

(S) Verfahren und Einrichtung zur Separierung eines Signalgemisches

Beschreibung

Die Erfindung geht aus von einem Verfahren sowie einer Einrichtung nach dem Oberbegriff des Patentanspruches 1 zum Separieren eines Signalgemisches

$$s(t) = \sum_{\mu=1}^{M} g_{\mu} \cdot f_{\mu}(t)$$
 (1)

Dabei sind alle oder einige der Funktionen fµ(t) zeitlich und/oder spektral nicht disjunkt, d. h. alle oder einige der Funktionen fµ(t) sind zeitlich teilweise oder vollständig überlagert und/oder besitzen gemeinsame Frequenzen. Ein solches Verfahren ist durch /3/ bekannt.

Systeme, in denen derartige Signalgemische auftreten, sind beispielsweise Nachrichtenübertragungssysteme mit Symbolinterferenz, SSMA (spread spectrum multiple access) — Systeme und Pulsradarsysteme. Bei Nachrichtenübertragungssystemen mit Symbolinterferenz sind die Funktionen $f\mu(t)$ zeitverschobene und sich überlappende Versionen ein und desselben Impulses. Bei SSMA-Systemen sind die Funktionen $f\mu(t)$, die Spread-Spectrum-Trägersignale der verschiedenen Benutzer. Bei Pulsradarsystemen sind die Funktionen $f\mu(t)$ zeitverschobene und sich eventuell überlappende Versionen des gesendeten Impulses, die durch Reflexion an Zielen in unterschiedlichen Entfernungstoren entstehen.

In der vorliegenden Beschreibung wird davon ausgegangen, daß die Funktionen f $\mu(t)$ reell sind. Der Übergang auf komplexe Funktionen f $\mu(t)$ ist ohne weiteres möglich (/4/, S. 368 – 369).

Es ist bekannt, daß das Problem des Signalseparierens darin besteht, aus dem Signalgemisch s(t) nach Gl. (1) Schätzwerte \hat{g}_{μ} für die unbekannten Gewichtsfaktoren g_{μ} zu gewinnen. Gemäß dem Stand der Technik, siehe z. B. /2/, S. 273–275 oder Fig. 5 in /3/, erfolgt das Schätzen der Gewichtsfaktoren g_{μ} nach einem Verfahren, bei dem das Signalgemisch s(t) nach Gl. (1) mit jeder der bekannten Funktionen $f_{\mu}(t)$ korreliert und die dadurch gewonnenen M Korrelationsprodukte w_{μ} als Schätzwerte \hat{g}_{μ} für die unbekannten Gewichtsfaktoren g_{μ} betrachtet werden. Eine Einrichtung, mit der dieses Verfahren gemäß dem Stand der Technik ausgeführt wird, ist in Fig. 1 dargestellt. Diese Anordnung besteht aus M Filtern 1 mit den Impulsantworten $h_{\mu}(t)$, $\mu=1,2\ldots M$, und aus M Abtastern 2, wobei jedes der M Filter 1 an jeweils genau eine der Funktionen $f_{\mu}(t)$ signalangepaßt ist und in seinen Eigenschaften somit unabhängig von den jeweils M-1 restlichen Funktionen $f_{\mu}(t)$ ist. Für den Fall, daß als Störsignal n(t) weißes Gaußrauschen angenommen wird, bedeutet Signalanpassung, daß zwischen der Funktion $f_{\mu}(t)$ und der Impulsantwort des entsprechenden μ -ten signalangepaßten Filters die Beziehung

$$f_{\mu}(t) = A \cdot f_{\mu}(T-t) \quad (2)$$

besteht /3/. Für andere Störsignaltypen ist die Impulsantwort $h_{\mu}(t)$ entsprechend zu modifizieren /4/, S. 293—295. Der Amplitudenfaktor A und die Verzögerungszeit T in Gl. (2) können bei den folgenden Betrachtungen ohne Einschränkung der Allgemeinheit gleich Eins bzw. gleich Null gesetzt werden. Anstelle von signalangepaßten Filtern 1 können in der Anordnung nach Fig. 1 aufgrund der bekannten Äquivalenz von Korrelation und signalangepaßter Filterung (/4/m S, 168—170) auch Korrelatoren eingesetzt werden.

Wenn das Signalgemisch s(t) nach Gl. (1) der Anordnung nach Fig. 1 zugeführt wird, so erhält man durch zeitrichtiges Abtasten der M Filterausgangssignale mit den Abtaste. n 2 Abtastwerte w_{μ} , $\mu = 1, 2 \dots M$, die den Korrelationsprodukten aus dem Signalgemisch s(t) nach (1) und aus jeweils einer der M Funktionen $f_{\mu}(t)$, $\mu = 1, 2 \dots M$, entsprechen. Wählt man die Impulsantwort $h_{\mu}(t)$ der signalangepaßten Filter gemäß Gl. (2) und setzt man A gleich Eins und T gleich Null, so lauten die Abtastwerte w_{μ} im ungestörten Fall

$$w_{\mu} = \int_{T_{int}} s(t) \cdot f_{\mu}(t) dt, \, \mu = 1, 2 ... M.$$
 (3)

Das Integrationsintervall T_{int} in Gl. (3) ist so zu wählen, daß der gesamte Zeitbereich erfaßt wird, in dem die Funktionen $f_{\mu}(t)$ Werte ungleich Null annehmen können.

Die Abtastwerte w_{μ} nach Gl. (3) können bekanntlich als Schätzwerte g_{μ} , $\mu=1,2...M$, der Gewichtsfaktoren g_{μ} angesehen werden /3/. Diese Schätzwerte g_{μ} sind im allgemeinen allerdings, wie ebenfalls bekannt ist, dadurch verfälscht, daß zum Abtastzeitpunkt die Signalkomponente $g_{\mu} \cdot f_{\mu}(t)$ des Signalgemisches s(t) nach Gl. (1) nicht nur am Ausgang des ihr zugeordneten μ -ten signalangepaßten Filters eine Spannung erzeugt, sondern auch an den Ausgängen der M-1 anderen signalangepaßten Filter in der Einrichtung nach Fig. 1 treten Linearkombinationen der Korrelationsprodukte aus dem Eingangssignal und aus den zu separierenden Funktionen auf, so daß die Schätzwerte g_{μ} verfälscht werden. Diese Verfälschungen werden als systematische Fehler (engl. bias) bezeichnet. Man sagt auch, die Schätzung sei nicht erwartungsgetreu (/1/, Bd. 2, S. 392).

Aufgrund der genannten systematischen Fehler ist die Anordnung nach Fig. 1, die der Anordnung nach Fig. 5 in /3/ entspricht, nicht ohne weiteres zum einwandfreien Separieren eines Signalgemisches nach GL (1) geeignet. Ein signalangepaßtes Filter unterdrückt nämlich Signale, an die es nicht angepaßt ist, im allgemeinen nicht vollständig. Lediglich in dem in der Praxis meist nicht vorliegenden Spezialfall, daß alle Funktionen $f_{\mu}(t)$ zueinander exakt orthogonal sind, würden bei Verwendung der Anordnung nach Fig. 1 solche systematischen Fehler der Schätzwerte g_{μ} nicht auftreten. Das Auftreten der obengenannten systematischen Fehler bei Verwendung nicht exakt orthogonaler Funktionen $f_{\mu}(t)$ im Signalgemisch nach Gl. (1) ist ein schwerwiegender Nachteil des bisher üblichen Verfahrens zum Separieren eines Signalgemisches nach Gl. (1) und der entsprechenden Anordnung nach Fig. 1. Gemäß dem Stand der Technik (/4/, S. 179—182) versucht man diesem Nachteil

DE 41 21 356 C2

dadurch entgegenzuwirken, daß man sich auf die Verwendung von speziell selektierten bzw. konstruierten Funktionen $f_{\mu}(t)$ beschränkt, die dem Fall der Orthogonalität möglichst nahekommen. Diese Vorgehensweise hat allerdings den offensichtlichen Nachteil, daß man bei der Wahl der Funktionen $f_{\mu}(t)$ nicht frei ist. Eine solche Freiheit ist aber wünschenswert, z. B. dann, wenn in einem Nachrichtenübertragungssystem zum Erzielen von Abhörsicherheit die Funktionen $f_{\mu}(t)$ häufig geändert werden sollen. In vielen Fällen sind die Funktionen $f_{\mu}(t)$ auch vorgegeben, so daß die Möglichkeit der Wahl spezieller Funktionen $f_{\mu}(t)$ a priori nicht besteht. In Anwendungsfällen wie z. B. dem Mobilfunk muß überdies davon ausgegangen werden, daß ein senderseitig orthogonaler Funktionssatz $f_{\mu}(t)$ durch die Eigenschaften des Funkkanals deorthogonalisiert wird. Angesichts der im allgemeinen nicht gegebenen Orthogonalität der Funktionen $f_{\mu}(t)$ ist der Stand der Technik der Signalseparierung somit unbefriedigend.

5

20

30

35

45

50

Der im Anspruch 1 angegebenen Erfindung liegt das Problem zugrunde, bei der Ermittlung des Schätzwertes \hat{g}_{μ} systematische Fehler zu vermeiden, die beim herkömmlichen Separierungsverfahren und beim Einsatz der Anordnung nach Fig. 1, die dem Stand der Technik entspricht, und bei Auftreten nicht orthogonaler Funktionen $f_{\mu}(t)$ entstehen. Dieses Problem soll erfindungsgemäß dadurch gelöst werden, daß man ein neuartiges Separationsverfahren und anstelie der Anordnung nach Fig. 1 zweckmäßig erweiterte bzw. modifizierte Anordnungen verwendet.

Die mit der Erfindung erzielbaren Vorteile bestehen darin, daß auch bei fehlender Orthogonalität der Funktionen $f_{\mu}(t)$ eine genaue, d. h. erwartungstreue Schätzung der Gewichtsfaktoren g_{μ} ermöglicht wird, und daß bei der Auswahl der Funktionen $f_{\mu}(t)$ das einschränkende Streben nach Orthogonalität nicht erforderlich ist.

Fig. 2 veranschaulicht das erfindungsgemäße Verfahren zum Scparieren des Signalgemisches s(t). Dem Eingang 9 der in Fig. 2 dargestellten Signalauswerteeinheit 19 wird das Signalgemisch s(t) inklusive des eventuellen Störsignals n(t) zugeführt, und die Signalauswerteeinheit bildet aus ihrem Eingangssignal s(t) + n(t) durch Filterung an ihren Ausgängen 11 erwartungstreue Schätzwerte gu für die Gewichtsfaktoren gu.

Die Erfindung geht von dem Gedanken aus, daß die aus der Korrelation — diese entspricht dem Stand der Technik — hervorgehenden Abtastwerte \mathbf{w}_{μ} , die mit der Einrichtung nach Fig. 1 gewonnen werden, im störungsfreien Fall Linearkombinationen der gesuchten Gewichtsfaktoren \mathbf{g}_{μ} sind. Mit dem Vektor

$$g = (g_1, g_2 \dots g_M)$$
 (4)

der Gewichtsfaktoren gu, dem Vektor

$$w = (w_1, w_2 ... w_M)$$
 (5)

der Abtastwerte wu und der Kovarianzmatrix

$$C = \begin{vmatrix} c_{1,1} & \cdots & c_{1,M} \\ \cdots & \cdots & \cdots \\ c_{M,1} & \cdots & c_{M,M} \end{vmatrix}$$
 (6)

kann der lineare Zusammenhang zwischen den Abtastwerten \mathbf{w}_{μ} und den Gewichtsfaktoren \mathbf{g}_{μ} in der Form

$$w = g \cdot C$$
 (7)

dargestellt werden. Die Elemente $c_{\mu,\nu}$ der Kovarianzmatrix C nach Gl. (6) sind die Kreuzkorrelationsprodukte der Funktionen $f_{\mu}(t)$ und $f_{\nu}(t)$, d. h. es gilt

$$c_{\mu,\nu} = \int_{T_{int}} f_{\mu}(t) f_{\nu}(t) dt, \, \mu, \, \nu = 1, 2 ... M.$$
 (8)

Als nächster Gedankenschritt wird die zur Matrix C nach GL (7) inverse Matrix

$$R = C^{-1} = \begin{bmatrix} r_{1,1} & \cdots & r_{1,M} \\ \vdots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \vdots \\ r_{M,1} & \cdots & r_{M,M} \end{bmatrix}$$
(9)

eingeführt. Aus dem Vektor w nach GL (5) und der Matrix C nach GL (9) ergibt sich der Vektor g der Gewichtsfaktoren g_{μ} zu

$$g = w \cdot R.$$
 (10)

Die Gewichtsfaktoren g_{μ} kann man also als Linearkombinationen der in der Anordnung nach Fig. 1 an den Ausgängen der signalangepaßten Filter auftretende Abtastwerte w_{μ} darstellen. Diese Erkenntnis wird in der Erfindung genutzt.

Fig. 4 zeigt das Prinzip eines erfindungsgemäßen linearen Kombinierers 12. Der lineare Kombinierer (12) besteht aus einer Anzahl von M · M Multiplizierern (3) und aus einer Anzahl von M Addierern 4. Die Multiplizierer 3 werden, wie in Fig. 4 dargestellt, an ihrem einen Eingang 5 mit den Korrelationsprodukten $w_{\mu\nu} \mu = 1, 2...$ M, und an ihrem anderen Eingang (6) mit den Elementen $r_{\mu\nu}$ der Matrix R nach Gl. (9) gespeist. Die Ausgangssignale von jeweils M Multiplizierern werden, wie in Fig. 4 dargestellt, jeweils einem der Addierer 4 zugeführt, an dessen Ausgang 7 die erwartungstreuen Schätzwerte g_{μ} der Gewichtsfaktoren g_{μ} vorliegen. Anstelle der linearen Überlagerung der mit der Anordnung nach Fig. 1 gewonnenen Filterausgangssignale $w_{\mu\nu} \mu = 1, 2...$ M, gemäß Gl. (10) ist es theoretisch auch denkbar, zunächst die Impulsantworten $h_{\mu}(t)$ der signalangepaßten Filter 1 linear zu überlagern, die Ausgangssignale der dadurch entstehenden neuartigen modifizierten signalangepaßten Filter oder Korrelatoren abzutasten und dadurch direkt erwartungstreue Schätzwerte g_{μ} der Gewichtsfaktoren g_{μ} zu erhalten. Setzt man diesen nicht naheliegenden Gedanken in die Tat um, so ergibt sich die Anordnung nach Fig. 3. Diese besteht aus M Filtern 8 mit den noch zu bestimmenden Impulsantworten $q_{\mu}(t), \mu = 1, 2...$ M und aus M Abtastern 2. Mit dem Vektor

$$h(t) = [h_1(t), h_2(t)...h_M(t)]$$
 (11)

der Impulsantworten der signalangepaßten Filter 1 in der Anordnung nach Fig. 1 mit dem Vektor

$$q(t) = [q_1(t), q_2(t)...q_M(t)]$$
 (12)

der zu bestimmenden Impulsantworten der Filter 8 in der Anordnung nach Fig. 3 folgt aus GL (10) die Bestimmungsgleichung

$$q(t) = h(t) \cdot R. \quad (13)$$

Eine erwartungstreue Schätzung der Gewichtsfaktoren g_{μ} ist mit der Einrichtung nach Fig. 3 bei Wahl der Filterimpulsantworten $q_{\mu}(t)$, $\mu = 1, 2 \dots M$, gemäß Gl. (13) auf einfache Weise dadurch möglich, daß man anstelle der üblichen signalangepaßten Filter mit den Impulsantworten $h_{\mu}(t)$, $\mu = 1, 2 \dots M$, siehe Gl. (2), modifizierte signalangepaßte Filter mit den Impulsantworten $h_{\mu}(t)$ verwendet, die sich gemäß Gl. (13) aus den Impulsantworten $h_{\mu}(t)$ ergeben. Im Gegensatz zu der in Fig. 1 dargestellten, dem Stand der Technik entsprechenden Anordnung ermöglicht die in Fig. 3 dargestellte erfindungsgemäße Anordnung eine erwartungstreue und folglich genauere Schätzung der Gewichtsfaktoren g_{μ} . Trotz dieses verbesserten Verhaltens erfordert die neuartige Anordnung nach Fig. 3 keinen höheren Schaltungsaufwand als die herkömmliche und bekannte Anordnung nach Fig. 1

Das auf den Gleichungen (4) bis (10) basierende Verfahren zum Schätzen von Gewichtsfaktoren gµ beinhaltet die zusätzliche Möglicheit, z. B. in Form von Vertrauensgrenzen quantitative Aussagen über die Genauigkeit der Schätzergebnisse zu erhalten. Die mathematischen Grundlagen einer derartigen Vorgehensweise findet man z. B. in /1/, Bd. 1, S. 225-227.

Der Hauptanspruch sieht auch vor, daß man beim Bilden der Korrelationsprodukte anstelle der bekannten Funktionen $f_{\mu}(t)$ andere Funktionen $f_{\mu}(t)$ verwendet, die sich aus den Funktionen $f_{\mu}(t)$ beispielsweise durch Filterung ergeben. Auf diese Weise kann man die Signalauswerteeinrichtung 10 je nach Typ des einwirkenden Störsignals n(t) so gestalten, daß die erzielten Ergebnisse möglichst genau sind. In diesem Zusammenhang wird auf die Theorie der signalangepaßten Filter für den Fall des farbigen Rauschens hingewiesen /4/, S. 176—177.

Vorteilhafte Ausgestaltungen der Erfindung sind in den Ansprüchen 2 bis 11 angegeben.

Die Weiterbildung nach Anspruch 2 ermöglicht es, an den Ausgängen der Signalauswerteeinrichtung unmittelbar Schätzwerte für die unbekannten Gewichtsfaktoren guzu entnehmen.

Es kann vorteilhaft sein, die Bildung der Korrelationsprodukte in funktionell getrennten oder nicht getrennten Schritten vorzunehmen. Die beiden Weiterbildungen nach den Ansprüchen 3 und 4 erfassen diese beiden Möglichkeiten.

Anspruch 5 betrifft eine erfindungsgemäße Einrichtung, bei der das im Anspruch 1 beschriebene Verfahren so realisiert wird, daß man, wie auch in Fig. 3 dargestellt, anstelle der signalangepaßten Filter 1 der Anordnung nach Fig. 1 modifizierte signalangepaßte Filter 8 verwendet. In besonders vorteilhafter und aufwandsgünstiger Weise können die modifizierten signalangepaßten Filter 8 in Form elektroakustischer angezapfter Verzögerungsleitungen oder elektroakustischer Convolver /5/ realisiert werden. Elektroakustische Convolver oder Oberflächenwellenfilter bestehen aus Elektroden, die auf der Oberfläche eines piezoelektrischen Kristalls aufgebracht sind und unter Nutzung eines piezoelektrischen Effekts elektrische Signale in akustische Oberflächenwellen oder umgekehrt wandeln. Der Einsatz solcher Komponenten bietet sich vor allem dann an, wenn die Funktionen fµ(t) großes Zeit-Bandbreite-Produkt haben, d. h. wenn es sich um Spread-Spectrum-Funktionen (/6/, Vol. 1, S. 9 – 11) handelt. Die Ansprüche 7 und 8 betreffen die Weiterbildung der Erfindung in diesem Sinne.

Anspruch 8 betrifft eine Weiterbildung der Erfindung, bei der die modifizierten signalangepaßten Filter oder

Korrelatoren 8 durch digitale Korrelatoren realisiert sind. Derartige digitale Korrelatoren sind beispielsweise in /7/, S. 23 – 30 eingehend beschrieben. Bei Verwendung derartiger digitaler Komponenten ist eine Änderung der Funktion $f_{\mu}(t)$, beispielsweise zum Erzielen von Abhörsicherheit bei der Funkübertragung, besonders einfach und rasch möglich.

In Anspruch 9 wird die Erfindung schließlich so ausgestaltet, daß die dem Stand der Technik entsprechende Anordnung nach Fig. 1 mit der erfindungsgemäßen Anordnung nach Fig. 2 kombiniert wird. Auf diese Weise wird es ermöglicht, Anordnungen nach Fig. 1 so zu ergänzen, daß eine erfindungsgemäße Signalauswerteeinrichtung 10 entsteht.

Anspruch 10 betrifft eine Einrichtung zur erfindungsgemäßen Ausführung der Signalseparierung, bei der das Signalgemisch zunächst geführt und/oder einem A/D-Wandler zur Digitalisierung zugeführt wird.

Eine vollständig digitale Signalverarbeitung gemäß dem erfindungsgemäßen Verfahren zur Signalseparierung ist auch durch einen digitalen Prozessor oder eine andere digitale Recheneinheit möglich. Diese Möglichkeit wird durch Anspruch 11 erfaßt.

Literatur

10

15

30

35

/1/O. Loffeld: Estimationstheorie Band 1 und 2. Oldenbourg Verlag München, 1990
/2/ J. Viterbi, K. Omura: Principles of Digital Communications and Coding. McGraw-Hill, New York, 1979
/3/ G. L. Turin: An Introduction to Matched Filters. IRE Trans. of Inf. Theory, Juni 1960, S. 311 – 328
/4/ A. Whalen: Detection of signals in noise. Academic Press, New York, 1971
/5/ G. N. Robinson: Matched filters for radar and satellites. Wireless World, April 1984, S. 42, 43.
/6/ M. Simon, K. Omura, R. Scholtz, B. Levitt: Spread spectrum communications Volume I—III. Computer Science Press, Rockville, 1989
/7/ R. Nauerz: Entwurf und Realisierung semikundenspezifischer hochintegrierter digitaler Korrelatoren für die Bandspreiztechnik. VDI Verlag. Reihe 10, Nr. 155, Düsseldorf, 1990

Patentansprüche

1. In den Empfängern von Nachrichtenübertragungs- oder Radarsystemen anzuwendendes Verfahren zum Separieren eines Signalgemisches

$$s(t) = \sum_{\mu=1}^{M} g_{\mu} \cdot f_{\mu}(t),$$

das aus M bekannten, von der Zeit t abhängigen reellen oder komplexen Funktionen $f_{\mu}(t)$, $\mu=1,2...M$, besteht, die mit M unbekannten Gewichtsfaktoren g_{μ} , $\mu=1,2...M$ gewichtet sind, wobei alle oder einige der Funktionen $f_{\mu}(t)$ zeitlich und/oder spektral nicht disjunkt sind, wobei dem Signalgemisch s(t) ein zusätzliches, mit s(t) korreliertes oder nicht korreliertes Störsignal n(t) überlagert sein kann und wobei Korrelationsprodukte $w=(w_1,w_2...w_M)$, aus dem Eingangssignal s(t)+n(t) und aus Funktionen $f_{\mu}(t)$, die aus den Funktionen $f_{\mu}(t)$ durch lineare oder nichtlineare Filterung hervorgehen oder die mit den Funktionen $f_{\mu}(t)$ identisch sind, gebildet werden, dadurch gekennzeichnet, daß das Signalgemisch s(t) inklusive des eventuellen Störsignals n(t) dem Eingang (9) einer analog und/oder digital arbeitenden Signalauswerteeinrichtung (10) zugeführt wird, in der mit der Kovarianzmatrix C der Funktionen $f_{\mu}(t)$ und $f_{\mu}(t)$ aus den Korrelationsprodukten $w=(w_1,w_2...w_M)$ Linearkombinationen gemäß der Beziehung $w\cdot C^{-1}$ gebildet und den Ausgängen (11) als Schätzwerte g_{μ} für die unbekannten Gewichtsfaktoren g_{μ} zugeführt werden.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß insgesamt M Linearkombinationen gebildet werden, die erwartungstreue Schätzwerte für die unbekannten Gewichtsfaktoren g_{μ} sind.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in der Signalauswerteeinrichtung (10) das Bilden der Korrelationsprodukte w und das Bilden der Linearkombinationen $\mathbf{w} \cdot \mathbf{C}^{-1}$ in funktionell getrennten Schritten erfolgen.

4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in der Signalauswerteeinrichtung (10) das Bilden der Korrelationsprodukte w und das Bilden der Linearkombinationen w · C⁻¹ in funktionell nicht getrennten Schritten erfolgen.

5. Einrichtung zum Separieren eines Signalgemisches s(t) gemäß Anspruch 1, dadurch gekennzeichnet, daß das Signalgemisch s(t) inklusive des eventuellen Störsignals n(t) modifizierten signalangepaßten Filtern oder Korrelatoren (8) zugeführt wird, deren Impulsantworten $q(t) = [q_1(t), q_2(t) \dots q_M(t)]$ Linearkombinationen $q(t) = h(t) \cdot C^{-1}$ der Impulsantworten $h(t) = [h_1(t), h_2(t) \dots h_M(t)]$ von Filtern (1) sind, die an die Funktionen $f_{\mu}(t)$ oder $f_{\mu}'(t)$ signalangepaßt sind.

6. Einrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Filter oder Korrelatoren in analoger Technik realisiert sind.

7. Einrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Filter oder Korrelatoren in Form elektroakustischer angezapfter Verzögerungsleitungen oder elektroakustischer Convolver realisiert sind.

8. Einrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die modifizierten signalangepaßten Filter oder Korrelatoren (8) in digitaler Technik realisiert sind.

9. Einrichtung zum Separieren eines Signalgemisches s(t) gemäß Anspruch 1, dadurch gekennzelchnet, daß das Signalgemisch s(t) inklusive des eventuellen Störsignals n(t) Filtern oder Korrelatoren (1) zugeführt wird, die an die Funktionen $f_{\mu}(t)$ oder $f_{\mu}'(t)$ signalangepaßt sind, und daß die Filterausgangssignale w einer

DE 41 21 356 C2

Einrichtung (12) zugeführt werden, in der sie gemäß w · C⁻¹ linear kombiniert werden.

10. Einrichtung zum Separieren eines Signalgemisches s(t) gemäß Anspruch 1, dadurch gekennzeichnet, daß das Signalgemisch s(t) inklusive des eventuell empfangenen Störsignals n(t) vor der Weiterverarbeitung einem Filter und/oder einem A/D-Wandler zugeführt wird.

11. Einrichtung zum Separieren eines Signalgemisches s(t) gemäß Anspruch 1, dadurch gekennzeichnet, daß das Signalgemisch s(t) inklusive des eventuell empfangenen Störsignals n(t) durch einen digitalen Prozessor oder eine andere digitale Recheneinheit verarbeitet wird.

Hierzu 3 Seite(n) Zeichnungen

ZEICHNUNGEN SEITE 1

Nummer: Int. Cl.6:

Veröffentlichungstag: 19. Januar 1995

Figur 1. (Stand der Technik)

Figur 2.

ZEICHNUNGEN SEITE 2

Nummer: int. Cl.⁶: DE 41 21 356 C2

Veröffentlichungstag: 19. Januar 1995

H 03 H 21/00

Figur 3.

Figur 4.

Nummer:

Int. Cl.⁹:

An os H721,356 C2

Int. Cl.⁹:

Veröffentlichungstag: ,19. Januar 1995

SEICHNONGEN SELLE 3