

MONASH BUSINESS SCHOOL

ETC3550/ETC5550 Applied forecasting

Week 2: Time series graphics

- 1 dplyr functions
- 2 Time series graphics
- 3 Seasonality and cyclicity
- 4 Scatterplots
- 5 White noise and random walks
- 6 Lag plots and ACFs

- 1 dplyr functions
- 2 Time series graphics
- 3 Seasonality and cyclicity
- 4 Scatterplots
- 5 White noise and random walks
- 6 Lag plots and ACFs

dplyr functions

- filter: choose rows
- select: choose columns
- mutate: make new columns
- group_by: group rows
- summarise: summarise across groups
- reframe: summarise multiple rows across groups

- 1 dplyr functions
- 2 Time series graphics
- 3 Seasonality and cyclicity
- 4 Scatterplots
- 5 White noise and random walks
- 6 Lag plots and ACFs

Time series graphics

- Time plots: autoplot()
- Seasonal plots: gg_season()
- Seasonal subseries plots: gg_subseries()
- Lag plots: gg_lag()
- ACF plots: ACF() |> autoplot()

- 1 dplyr functions
- 2 Time series graphics
- 3 Seasonality and cyclicity
- 4 Scatterplots
- 5 White noise and random walks
- 6 Lag plots and ACFs

Time series patterns

- **Trend** pattern exists when there is a long-term increase or decrease in the data.
- **Seasonal** pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).
 - **Cyclic** pattern exists when data exhibit rises and falls that are *not of fixed period* (duration usually of at least 2 years).

Time series components

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Time series components

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

- 1 dplyr functions
- 2 Time series graphics
- 3 Seasonality and cyclicity
- 4 Scatterplots
- 5 White noise and random walks
- 6 Lag plots and ACFs

- 1 dplyr functions
- 2 Time series graphics
- 3 Seasonality and cyclicity
- 4 Scatterplots
- 5 White noise and random walks
- 6 Lag plots and ACFs

White noise and random walks

White noise

 $\varepsilon_t \sim$ independent and identically distributed with mean zero and constant variance.

Random walks

 $y_t = y_{t-1} + \varepsilon_t$ where ε_t is a white noise variable.

- 1 dplyr functions
- 2 Time series graphics
- 3 Seasonality and cyclicity
- 4 Scatterplots
- 5 White noise and random walks
- 6 Lag plots and ACFs

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

- 95% of all r_k for white noise must lie within $\pm 1.96/\sqrt{T}$.
- If this is not the case, the series is probably not WN.
- Common to plot lines at $\pm 1.96/\sqrt{T}$ when plotting ACF. These are the **critical values**.

Trend and seasonality in ACF plots

- When data have a trend, the autocorrelations for small lags tend to be large and positive.
- When data are seasonal, the autocorrelations will be larger at the seasonal lags (i.e., at multiples of the seasonal frequency)
- When data are trended and seasonal, you see a combination of these effects.