OLIMPIADA NATIONALĂ DE INFORMATICĂ

Piatra-Neamţ, 15-22 aprilie 2011

Proba 1

Sursa: poligon.c, poligon.cpp, poligon.pas

Clasa a IX-a

poligon 100 puncte

Poligonul de tragere este un teren special amenajat în cadrul căruia se fac exerciții și se execută trageri cu arme de foc. Comandantul plasează câte o țintă în toate punctele aflate la distanțele R_i , $1 \le i \le n$ față de punctul de tragere (origine) și care au coordonatele carteziene numai numere naturale **nenule**.

Specialiștii în armament români au creat recent o nouă armă sub forma unui tun laser care își lansează razele pe o traiectorie **rectilinie** și are capacitatea de a distruge toate țintele aflate pe direcția de tragere.

Cerintă

Știind că tunul laser se găsește în originea sistemului de coordonate, să se scrie un program care să determine: numărul de ținte, numărul minim de lovituri de tun laser necesare pentru a distruge toate țintele precum și numărul de ținte doborâte la fiecare lovitură. Spre exemplu, dacă avem n=6 distanțe (5, 7, 10, 13, 15, 17) pentru care se încearcă plasarea țintelor, atunci în poligon se vor plasa 10 ținte, va fi nevoie de 6 lovituri pentru a doborî toate țintele iar la fiecare lovitură se vor doborî respectiv 1, 1, 3, 3, 1, 1 ținte.

Date de intrare

Fişierul de intrare *poligon.in* conține pe prima linie numărul **n** de distanțe la care vor fi plasate ținte, iar pe a doua linie **n** numere naturale nenule distincte separate printr-un spațiu, ce reprezintă aceste distanțe.

Date de iesire

Fişierul de ieşire *poligon.out* va conține 3 linii. Pe prima linie se va scrie numărul țintelor plasate în poligon. Pe a doua linie se va scrie numărul minim de lovituri de tun laser cu care se pot doborî toate țintele, iar pe a treia linie se va scrie numărul de ținte doborâte la fiecare lovitură, separate printr-un spațiu, în ordinea crescătoare a unghiurilor direcțiilor cu axa OX.

Restricții și precizări

- $1 \le n \le 1000$
- $1 \le \mathbf{R_i} \le 1000$
- pentru fiecare set de date de intrare, în poligon va exista cel puţin o ţintă.
- se acordă:
 - 20% din punctaj pentru determinarea corectă a numărului de ținte.
 - 40% din punctaj pentru determinarea corectă a numărului minim de lovituri.
 - 40% din punctaj pentru determinarea corectă a numărului de ținte doborâte la fiecare lovitură.

Exemplu

poligon.in	poligon.out	Explicație
6	10	Avem 6 distante: 5,10,15,7,13,17.
5 10 15 7 13 17	6	În poligon vor fi plasate 10 ținte
	1 1 3 3 1 1	(punctele negre marcate pe figură)
		care pot fi doborâte din 6 lovituri
		iar la fiecare lovitură se vor doborî
		câte 1,1,3,3,1,1 ținte.

Timp maxim de execuție/test: 0.4 secunde.

Total memorie disponibilă 2 MB Dimensiunea maximă a sursei : 5 KB.