This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

> ्राप्ति । इस्केट्रिक्या । प्राप्तिक । स्थापन

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(5) I nt. C12. C 22 C 38/52 C 22 C 38/30 H 01 F 7/02 (2)日 2 10 J 174 62 B 1

即日本国特許庁

訂止有 🛭 ①特許出願公告

昭51-18884

特 報

49公告 昭和51年(1976)6月14日

庁内整理番号 6616 - 42 発明の数 1

(全4頁)

1

函磁性材料

21)特 願 昭45-124182

22出 昭45(1970)12月29日 . 願

72発 明 徳島忠夫

浜松市中沢町7の1

人 日本楽器製造株式会社 创出 願

浜松市中沢町10の1

個代 理 人 弁理士 猪股清 外2名

図面の簡単な説明

図面は本発明合金における電子個数差と磁気ェ ネルギー積との関係を示すグラフである。 発明の詳細な説明

ーダル分解型磁石合金に関し、新たに各種の添加 元素を追加することにより、該合金の磁気的、機 械的特性を改良するようにしたものである。

近年、スピノーダル分解型Fe-Cr-Co系 金として注目され研究が始められている。更に Fe-Cr-Co系合金のスプノーダル分解範囲 を拡大するため添加元素の1つとして、Mo添加 の効果が明らかにされ、その研究の一部が報告さ Moの添加は合金の機械加工性を悪化させるので できるだけその添加量を少なくすることが必要で ある。また、磁気回路を構成する上でパーミアン ス係数の高い所ではBrが必要であり、一方その 低い所ではHcが必要であり、また精密な加工寸 30 法を必要とする場合は機械加工性を必要とするな どというように個々の要求もあるので、本発明は この研究を更に進めて、種々の添加元素の効果に

ついて明らかにしたものである。

すなわち本発明者は、Fe-Cr-Co系合金 に各種の添加元素、即ちTi,V,Zr,Nb, Ta, Mo, W, Mn, Ni, Cu, Zn, Ge 5 等を加え、その磁気特性を測定して、この発明は 完成するに至つた。すなわち、この発明は Co 10~35原子%(10.6~37.2重量%)、 Crl0~40原子%(9.2~38.0重量%)、 電子個数差が一0.5~2になるようにTi,V, 10 Zr, Nb, Ta, Mo, W, Mn, Ni, Cu, Zn,Geの1種または2種以上を含有させ残部 をFeとしてその磁気特性を改良した(BH) max が8000TA/m以上の磁性合金に関す るものである。なお、この発明の合金の組成につ 本発明は、Fe-Cr-Co系合金即ちスピノ I5 いて、主要添加成分のうちのCoについては10原子%未満ではBrが下がり、35原子%を越え るとHcがでなくなる。Crについては逆に40 原子%を越えるとBrが下がり、10原子%未満 ではHcがでなくなる。この発明を完成するため、 合金は、塑性加工や切削加工が可能な永久磁石合 20 磁気特性を測定するために使用した試料は、各元 素を合計508分各成分配合比になるように計量 し、Ar-H2プラズマ溶解炉で溶解して5 ×10×40 mm3 のインゴットを作つた。溶解は2 ~3秒で終り、溶解中に振動を与えて組成が一様 れている。しかしながらMoは高価であり、かつ 25 になるようにした。分析は螢光X線を使用し、一 部のものは化学分析を行なった。得られた合金試 料は、1350℃で30分加熱後ただちに水冷す ることにより溶体化処理を施し、次に600℃付 近で560,000A/mの磁場中熱処理を30分 して、引続き550℃付近で2時間安定化熱処理 を行ない磁気特性を測定した。その結果を表に示 す。

特公 昭51-18884

4

				3									+-			_	$\overline{-1}$					5	7		
			1			7 7		Zr 4.5	Nb 1.5		1	1		1	W	- 1	1	1				0.18	.		
	(%			+	1 3	-	- 1	Mn 1	6	2 00	Zn 4	Cu 4	- 1	Mo 7	1	Ni Z	Si 1.0	6	B 1.0	At 1.0	1	١	A (2		
	(単位は原子%)		-8	•	o 10 W	-	ç	Mo 3	١.	Mo 2	Mo 2	6	Ta c	Ge 3		Mo 3	Mo 1.5		Mo 1.5	Mi 1.5	Sb 1	}	Nb 1		
	ظ		-	2.4 M10	0 25 Mo	+	o 25 Mo	0 24.5 M		0 25	Co 24	+	Co 28		07 00	Co 2.9	46.00	,	Co 24	Co 24			Co 14		
	55	Į.	-	34 Co			35 C	١ ،	a a	r 27. 5 C	3.0		r 19		Cr 35	Cr 35	\ '	Cr 34	Cr 34	7 34		Cr 30	Cr 29		
聚	-			40.2 Cr		47 Cr	27 Cr	+	28 Cr	43 C	. .	e 40	0 47 C	+	e 27	3.0	+	Fe 39.5	Fe 39.5	, '	Fe 35. 3	Fe 57	Fe 57		
				, r	-	2.73 Fe	١.		1.93 Fe	[2		0.35 F	١.	0.63	1.7 F	-	0.55	0.24	٠	4 7 7	0.2.4	0.54	1	* 0	
	1	max \triangle e	(m)	-	32,000	200		000	600	3	, 400	002.6		6, 400	1	16,000	24,000	000	34, 000	32,000	30,000		22,000.	24, 800	
			(m) (TA/m)		000 32,	+	000	000 20,	+	000	000 37,	-	000	000	+	000	000	+	000	6,000	2 000	î	40,000	50,000	
			He(A/m)	-	47, 0(6.2, 0	4 8,	1	4 9,	2 57, (+	0 42,	0 4	0	1 64,	63,	-	0 5 54,	0 0 0	4	20	. 00	0 6	1
		_	海 Br(T)			>	B 0.30	780	,	D 0.82	1.1	+	F 1.1	1	0	Н 0.6	1	o l	J 1. C	K I	+	 	M 1.	o z	

次に本発明の合金におけるアルゴン外殼電子個 数差△eと磁気エネルギー積との関係を示す。な お、電子個数差へeとは、次の例で示す方式に従 つて算出する値を意味するものである。

配合組成(例)

成分	アルゴン外殻電子配置数	原子%
Fe	3 d ⁶ 4 s ²	40%
Со	$3 d^7 4 s^2$	2 4 %
Сr	3 d ⁵ 4 s ¹	3 4 %
Mo	$3 d^{10} 4 s^2 4 p^6 4 d^5 5 s^1$	2 %

	. 🕀	例 ←	- 0	→ ⊖側
	Мо	Сr	Fе	Со
3 d	0. 2	1. 7	2. 4	1.68
4 s	0.04	0.34	0.8	0.48
4 p	0.12			
4 d	0. 1			
4 f				
5 s	0.02		· .	
計(2.5 2		(∋ 2. 1 6

$$\therefore \triangle e = 2.5 \ 2 - 2.1 \ 6 = 0.3 \ 6$$

即ち、配合成分がFe 40原子%、Co 24原 子%、Cr 3 4原子%、Mo 2原子%の試料につ いては、上記の例の如く、各元素のアルゴン外般 25 ピノーダル分解型磁性合金。 電子配置数に各成分比(原子%)を掛けて、周期 率表においてFeを中心として左右に⊕側、⊖側 を設け、差引計算したものである。

表に示す結果をグラフに示したのが図面である。 このグラフに示すように、電子個数差へeが -0.5~2の範囲のものが、(BH) max が

8000TA/m(テスラ・アンペア毎メートル) 以上で特性が良い。以上の結果より各種の添加元 素を加えて必要とする磁化特性を得る場合、△e が0~0.5以内の配合比を有するように選択すれ 5 ば大きな磁気エネルギー積を得られる。又△e が 0.5~1.0 に近い配合比をとれば H c 値の大きな 特性が得られる。例えば15Co-28Cr-Fe合金ではNb, Ti, W等を添加すればHc 値が上がり、良好な磁気特性が得られる。なおス 10 ピノーダル分解型磁性合金では、分解波長の方向 を揃えるために、該合金の加工率の効果が大きく 影響するので、これを適当な手段を用いて改良す ることにより磁気特性を大巾に向上することがで きる。

15 以上述べたように、本発明はFe-Cr-Co 系合金の特性を改善し、種々の用途(各種のバー ミアンス係数)に合うような組成を選択できるよ うにしたもので工業上利益が大きい。

の特許請求の範囲

20 1 Co10~35原子%、Cr10~40原子 %、電子個数差が $-0.5 \sim 2$ になるようにTi, V, Zr, Nb, Ta, Mo, W, Mn, Ni, Cu, Zn, Geの1種または2種以上(但し、 Mo単体は除く。)を含有させ残部 Fe としたス

66引用文献

許 120626

30 昳 公 昭39-22485

公 昭48-8692

公告特許番号

51-18884

昭和45年特許顯第124182号(特公昭51-18884号、 審 昭54-4841号、昭51. 6. 14発行の特許公報2(1)-59〔481〕号掲載)については特許法第64条の規定による補正があつたので下記のとおり掲載する。

特許第996846号

Int. Cl. ³ C 22 C 38/52 38/30 H 01 F 7/02

識別記号 庁内整理番号 6339-4K

6339 -4 K 6664 -5 E

記

- 1 「特許請求の範囲」の項を「1 Co 10~35原子%、Cr 15~40原子%電子個数差が
 -0.5~2になるようにTi、V、Zr、Nb、Ta、Mo、W、Mn、Ni、Cu、Zn、Ge の1種または2種以上(但し、Mo 単体は除く。)を含有させ残部Fe 27原子%以上としたスピノーダル分解型磁性合金。」と補正する。
- 2 第2欄8行「Cr 10~40………重量%)」を「Cr 15~40原子%(13.8~38.0重量%)」と補正する。
- 3 第2欄12行「Fe 」を「Fe 27原子%以上」と補正する。
- 4 第5欄28行「……計算したものである。」の次に「Co、Cr の配合量は、含有量の限定 範囲

Co 10~35原子%

Cr 15~40原子%

内で独立して決定される。但し、Fe - Co - Cr系合金であるために、Fe 27原子%以上の要件を満すことが必要であり、且つ周期律表でFe の右側にある元素の使用を希望するときにはCr の添加量をCo の添加量より少くするなどの配慮をして電子個数差△eを-0.5~2の範囲内に抑えるべきことは当然である。」を加入する。

5 第2頁の「表」を「

と補正する。

6 第4頁の「図面」を「

と補正する。

1