6.

7.

a)

				w			1	SGG	. COLLEG	Ch.
F	Reg No.:				Nar	ne:	1/3	5/3	EDUCATION	15%
		APJ ABDU	L KA	LAM TECHN			CRSIT	Y V		
	Sixt	h Semester B.Tecl					11	n Jul	y 2021	
						·	1	130		1 1
								Chi		1
				Course Coo	le CS3	52				
was 1965		Course	nam	e: COMPRE			(CS)			
Ma	x. Marks:	50				,			Duration: 1	Hour
Ins	tructions:	(1) Each questio	n car	ries one mark.	No nega	tive marks fo	r wroi	та ан	CWAPC	
		(2) Total number	r of q	uestions: 50		•				
		(3) All questions	are t	o be answered.	Each qu	estion will be	follo	wed t	by 4 possible	
		answers of which				. () <u>.</u>			
		(4) If more than (5) Calculators a	one o	puon is chosen t nermitted	i, it will i	not be conside	ered fo	or val	uation.	
		(s) suremulors a		PART A- COM	IMON C	COURSES				
1.	The wor	k done by the force					=4,z	= 2	in the positiv	ve
	a)	. 0	b)	1	c)	4π		d)	8π	
2.	General	solution of the Dif	/	_	- 5			u)	οn	
	a)	$ae^{2x} + be^{3x}$						4)	$20^{2x} + bo$	-3x
3.	A cutting	g plane cut the con								
		lane is cutting the				or cutting por	11011 13	SCCII	as triangle w	VIICII
	a)	midpoint of axis				generator	of	(4)	ony maint	
	,	1	(0)	upen of cone	C)	cone	OI	(d)	any point axis	on
4.	The pers	pective projection	of any	y soli <mark>d will be</mark> f	ormed or			plar		
	a) :	Horizon	(b)	Picture	c)	Ground		(d)	Central	
5.	A force '	'P" acts at point A	hori	zontally to the	right sid	e. What is the	e valu	e mo	ment due to	this
*	force at a	point <mark>B</mark> which is a B and the force app	at a di	stance "x" to th	e right o	f A an <mark>d</mark> a dist	ance "	y" be	elow*A? Assi	ume
	a)	Px	(b)	Py	c)	$P\sqrt{x^2 + y^2}$		(d)	Pxy	
6.	Reaction	of a roller support	is alv	vays		γ - γ		, ,	•	
	a)	parellel to	(b)	Perpendicular	to c)	depends on	the	(d)	Inclined	to
		rolling direction	~ 2	rolling direction		direction loading	of	(4)	rolling direction	ω
7.	Carbon be	elongs to which far	mily o	of engineering n	naterials				difection	

(b) Polymers

c) Ceramics

(d) Composites

	a)	Evaluate implement solution	and th€		Define problem	the	c)	Present solution	the	(d)	Develop solution	
9.		is a biologica	l haza	rd								
	a)	COVID 19		(b)	Lead poison	ing	c)	Flurosis		(d)	Trachor	na
10.	Whic	h protocol helps	to pha	ise ou	t Hydro-fluor	ocarb	ons)				
	a)	Kyoto Protoco	1	(b)	Montreal Protocol PART B- CO	ORE :	c) COI	Protocol	agena	(d)	The Protoco	
11.	"The	product of two n	egativ	e rea	l numbers is n	ot neg	gativ	e." Is given	by?			
	a)	$\exists x \forall y ((x < 0))$	۸ (у	b)	$\exists x \exists y ((x <$	< 0)	c)	$\forall x \forall y ((x < x))$	< 0) A	d)	∀х∃у	((x<0)
		$<0) \rightarrow (xy > 0)$)		∧ (y<0) ∧	(xy		$(y<0) \rightarrow (xy$	>0))		٨	(y<0)∧
					> 0))						(xy>0))	
12.	Which	h of the following	g state	ment	is NOT true a	bout	Latt	ice?				
	a)	Every chain distributed latti		b)	Boolean Algebra is complemented distributed lattice		c)	Lattice in POSET	s a	d)	Idempot property not hold Lattice	does
13.	necess	nclusion ofsary and sufficient.	set ent to	s into make	$R = \{\{1, 2\},$, {1, 2 ete la	2, 3) ttice	1, 3, 5, under the p	{1, 2, 4 partial	l}, { order	1, 2, 3, 4, defined	5}} is by set
	a)	{1}, {2, 4}		b)	{1}, {1, 2, 3}		c)	{1}		d)	{1}, {1, 2, 3, 4}, 3, 5}	
14.	Let G	be a finite group	with	two s	sub groups M	& N :	such	that M =56	and N	=123	3, 3, B. Determ	ine the
		of MNN.										
	a)	1		b)	56		c)	14		d) -	78	
15.	How n	nany <mark>permutati</mark> or	ns of t	he let	ters ABCDEF	GH c	onta	in the string	ABC?			
	a)	540			720		c)	The state of the s		d)	650	
16.	How n	nany number of o	onto fi	unctio	ons are there fi	rom a	5 el	ement set to	2 elem			
	a)	2^{5-2}		b)			c) :			d)	2^{10} -2	
17.	The op	erands in zero-ac	ddress	instr	uction are sto							
~	a)	Cache			Registers			Accumulator	'S	d)	Push stack	down
18.	The co	llection of regist	ers in	multi	ple bus organi	izatio	n is	referred as				
	a)	Register set		b)	Register block	(c) l	Register file		d)	Map regi	sters
19.	To exte	end the connective	ity of	the p	processor bus	we us	e	1				

	a)	PCI bus	b)	SCSI bus	c)	controllers	d)	Multiple bus
20.	How	many 128×8 RAM c	hips a	are needed to provi	de a	memory capacity o		
	a)	2	b)		c)		d)	128
21.	The n	nultiplicand and the c	ontro	l signals are passed	thro	ough to the n-bit ad		
	a)	Encoder	b)	Decoder	c)		d)	DEMUX
22.	The h	ardwired control gene	erator	consist of			,	
	a)	Decoder/encoder	b)		,	counter		All the above
23.	114. (der a disk queue witl Considering SSTF (sh ead is initially at 50 i	ortest	uests for I/O to bloc t seek time first), f	cks o ind t	n cylinders are 176 he total number of	, 79, 3 head n	4, 60, 92, 11, 4; novements if th
	a)	204	b)	236	c)	240	d)	245
24.		is not the necessary						
25.	a) A race	Mutual exclusion e condition refers to	b)	Hold and wait	c)	Circular wait	d)	Pre-emption
	a)	A situation where single process access and manipulate same data concurrently		A situation where several processes access and manipulate same data	c)	A situation where process access and manipulate different data concurrently		None of thabove
26.	The co	de which a <mark>re not self</mark> Subroutin <mark>e</mark> code	mod b)	concurrently lifying and never cl Re-entrant code	nang c)	Main program	are ca	alled None of these
27.	Effecti	ve access time is dire	ctly p	proportional to		code		
	a)	page-fault rate	b)	hit ratio	c)	memory access	d)	none of the
28.	thom	selects among	g prod	ce <mark>ss</mark> es tha <mark>t</mark> are read	y for	exe <mark>cu</mark> tion and allo	cate C	CPU to one of
		Medium term scheduler	b)	Long term	c)	Short term scheduler	d)	None of these
29.	How may	nany stacks are need le to you.	led to	o implement a que	eue.		ther c	lata structure is
	,	1		3	c)		d)	2
30.	Binary	s the worst case tim Search Tree?	ie coi	mplexity for search	h, in	sert and delete op	eratio	ns in a general
		O(logn)	b)			O(n)		$O(n^2)$
31.	Conside algorith	er a situation where ms should be preferre	swa ed so	p operation is ve that the number of	ry c	ostly. Which of t p operations are mi	he fol	llowing sorting ed in general?

	a)	Heap Sort	b)	Selection Sort	c)	Insertion Sort	d)	Merge Sort
32.	1.	of the following state A hash function takes A hash function takes	s a m	essage of arbitrary	leng gth a	th and generates a fi and generates a code	ixed loof va	ength code. riable length.
	3.	A hash function may	give	the same hash valu	ie fo	r distinct messages.		
33.	a) What i	I only is the time complexity	b) of se	II and III only carching for an elen		II only in a circular linked	d) list?	I and III only
	a)	O(n)	b)	O(nlogn)	c)	O(1)	d)	$O(n^2)$
34.		does the following fun	ction	, • ,	ked	List with first node	as hea	id?
	void fi	un1(struct node* head) ad == NULL)						
		(head->next); f("%d ", head->data);						
	a)	Prints all nodes of linked lists	b)	Prints all nodes of linked list in reverse order	c)	Prints alternate nodes of Linked List	d)	Prints alternate nodes in reverse order
35.	In a m	ax-heap, element with	the	greatest key is alwa	rys i	n the which node?		
	a)	Leaf node	b)	Leftmost node of the right subtree of the root.	c)	root node	d)	Rightmost node of the left subtree of the root.
36.	What	is a hash table?						
	a)	A structure that maps values to keys	b)	A structure that maps keys to values	c)	A structure used for storage	d)	A structure used to implement stack and queue
37.	In a R	ecoverable schedule: l	fT1					•
v		only Statement 2 is true	it be	fore T2 Statemen	nt 2:	T2 must commit be Statement 1 and statement 2 are true	fore T d)	Statement land Statement 2 are false
38.		h of the following cla	iuses	is used for check	ing 1	the result of a corre	elated	nested query is
	a)	UNIQUE	b)	ANY	c)	EXISTS	d)	ALL

39.	bytes	ose that we have an o File records are of fire ocks needed for the file	xed s					
	a)	1000	b)	30000	c)	300	d)	3000
40.		d on the functional d	epend	lencies B -> A; I	3 ->	C; C -> D and D	-> X	Y, which of the
	a)	A -> C	,	B -> AC	ĺ	B -> D	d)	None of the Above
41.		ctional dependency of						
	a)	$A \subseteq B$	b)	$A \subset B \text{ and } B \subset A$	c)	$B \subset A$	d)	$B \subseteq A$
42.	No pr	imary key value can b	e nul	l. This is specified	by			
	a)	Domain constraint	b)	Referential integrity	c)	Foreign key	d)	Entity integrity
43.	The fe	eature that cannot be cap	tured	<i>C</i> ,	nmar	is		
	a)	Recursive procedure Syntax	b)	Syntax of if- then-else statement	c)	Variable declared before its use	d)	Arbitrary length of variable names
44.	Consi	der the language L={v	<mark>vw</mark> w					1
	a)	Regular	b)	Accepted by turing machine	c)	CSL	d)	CFL
45.	langua	$=(0+1)^*$, $r2=0*1+10$ age corresponds to region r2.	gular	expression r1 and	not p	oresent in language	corres	sponds to regular
16	a)	2	b)	3	c)	4	d)	5
46.	not is	nethod used ot check					text I	free Grammar or
	a)	Thomson ² s construction	b)	CYK algorithm	c)	Table filling algorithm	d)	Church hypothesis
47.		s the <mark>number of stat</mark>	es of	a Nondeterminis	stic]	FA, then the equiv	alent	DFA can have
	a)	s states	b)	s-1 states	c)	2 ^s states	d)	2 ^{s-1} states
48.	The fa	amily of recursive lang			,		/	
	a)	Union	b)	Intersection	c)	Complementation	d)	None
49.		very pair of transaction						execution before
	a)	ted, or T_j started execution						Dumah :1:4-
50.		ID properties letter 'D	-	Consistency ads for	C)	Atomicity	d)	Durability
	a)	Dimension Dimension		Definition	c)	Durability	d)	Dependency