on fait un DFS ~~ G(n)

on calcule les degrées et on donne les sommets de degrée 1: (0 6(2m) (m) (d

(on peut aussi procéder à un tri à l'aide d'un bucket don) Q2. (a) Gn fait de la programmation dynamique:

mwore G: min { poids (x) + 2 mwoe [y] , = mwoc [y] }.

(b) On fait un 1er DFS pour trouver le sommet ele plus loin de bommet choixi arbitrairement. Ensuite, avec un 2^{md} DFS, on pout ou x et on sugarde le sommet y le plus boin de x.

diam (T) = profondeur de y dans le 2nd porton

Q3. 6643633

On crée une file de priorilé seu [1, lwl+2] où les priocités bent les mb d'acc dans us, plus un.

Solution: Em barre des sommets. Sont que la file de prio n'est pas viole foire 6m lit le mot, à une lettre on la relie au plus petit qui n'est pas barrie et qui n'est pos dons la téquence restante; puis en boire la

Extraire le min x. Relin x à wi Retiren 1 à la prio de Wi et 2. Si prio = 0 alous on le retire.

Q5. $|\mathcal{I}_{m}| = n^{m-2}$

Q1. (a) Soient T_1 et T_2 deux avores convront de poids minimum. Supposons $T_1 \neq T_2$ d'avi $E(T_1) \triangleq E(T_2) \neq \emptyset$. Soif $e \in E(T_1) \triangleq E(T_2)$ de poids min.

Sans perdre en généralité, supposons ec $E(T_1)$. de graphe T_2 + e a un cycle C.

Soit e'e($C \cdot le$) n ($E(T_2) \cdot E(T_2)$).

 $Algo, T_2 + e^2 - e$ est un avore assurant de poids < poids de T_2 .

Gm conclut T1 = T2.

(b) Soit E = 7 e2, ..., en ? tels que w(e2) ≤ ... ≤ w(en).
Gov pose w'(ei) := i.

Comme les poids (w'(e)) sont tous différents, alors on peut appliquer l'algorithme et avoir T.

Et, comme l'ordre défini per w'est un reffinement de l'ordre défini par w, en a que T est un ACPM pour w.

Q2. Gn considère 6: (V, 82(V), w) où w(v,v):=d(v,v).

Gn fait n.k étapes de Kruskal.

Complexité en G((n-k) d(n)).

Soit C le résultat d'expocemment E.

Soit () um autre k-clustering.

Il existe 11,10 dans 2 composantes différentes de c'et dans la même amprente de C Cloutrons que d(11,10) € E (ce qui implique exportement (c') € E).

Soit it tel que d(s, t) = E.

Si $d(s,t) = \varepsilon < d(u,v)$ et en suit que st me crée pas de cycle alors absorde on Kruskal await choisit st.

Q3. Utibres mon enracines

- · Reflexivate: Φ = id
- · Symétice : φ' = φ-1
- Transikuité: $\phi' = \phi' \circ \phi$ $V_1 \xrightarrow{\phi} V_2 \xrightarrow{\phi'} \circ V_3$

Mibre enracine:

- · Réflexivité : 0 = id
- Symétie : $\phi' = \phi^{-1}$ Transitivité : $\phi'' = \phi' \circ \phi$

Q4.

 $A \sim D$ are c l'isomorphisme

- aw fukr

- Cop A,D con il existe un sommet de degré 4 relié à trois fauilles dons C mais pas dons A.

$$B \neq A,C,D$$
 can deg(2) = 2 et deg(·) $\neq 2$ deg(·) $\neq 2$.

Q5. Vx e V(T-F), R==(2) = R=(2)-1

$$C(T-F) = \left\{ x \in V(T-F) \mid R_{T-F}(x) = R(T-F) \right\}$$

$$= \frac{1}{2} \times \epsilon V(T-F) \mid R_T(x) = R(T)$$

$$= C(T)$$

Q6.	Par	Nécusseme	forte	Ser	# 7.	Gomplexité on G(n),	c.f. TD 5.
QЭ	Τ.	~ T'	=	Эл	e CTT)	, Эл' е C(T') , (T,	z) ~ (T', z')
	<u>"="</u>						
	=)	R(Φ(:			A (-1)	h (a c = 1)	
		đơù	CLT]	<i>=</i> C C	Ψ(1).	$= \phi(c(\tau)).$	
Q 8 .	Gm	alail	e CCT) ek	C(T')	en G(n).	
		it xe					
	Pa	n tout a	e'e C(T	'),	tester	$(\tau, \mathbf{x}) \sim (\tau', \mathbf{x}')$	
	જ	emplexité d	en G	(q. 4 2	f(nj):	= G(f(n)+n).	

T Year to bis and in
I Grapheo bipartis
Q1. S'il est biponti et qu'il a un (2k+1)-ayell alous
X = Y Abourde can X = 9.
Réciprogument, si 6 n'est
Q2. DFS en O(n+m) pour avoir un 2-rologiage
II Tri topologique par élagage
·
Q3. On part que uev. Nont que deg+(u) > 0 faire Lu - un prédécassem de u
Sout que deg+(n) > 0 faire
u - un prédécussion de u
Qh. cycle => x1 < < xn dans le tri tope
$x_1 \rightarrow \cdots \rightarrow x_n \rightarrow x_n$ $\langle x_n absumble.$
sort v de degt (v) = 0.
70011 5 20 20 20 20 20 20 20 20 20 20 20 20 20

Q5. On calcule tous les degt que l'on maintient. On extrait tous les sommets de degt = 0 (dans une pile)

Lacydique

I. Ju des erreurs
Q.1. Prai
a2. faux : 15 4
,
/ \ /
1 4 / 15
.~
Q-3. Faux: 20 18 il faut faire de 7 à 1
Q-3. Paux : 20 18 il font faire de 7 à 1
Qh. Toux: pas d'hypothère sur le poids de e
Q.T. Virai:
pointeus
domnées
ì
Q6. En fait l'algorithme de Prim Jannik avec trois buckets
, , , , , , , , , , , , , , , , , , ,
LI LI en peut remplic aétes aétes as aétes par DFS
mêtes mêtes mêtes par DFS de poids 1 de poids 2 de poids 3 dugraphe

1 Coloriage minimal et k-ième minimum
Q7. Par programmation dynamique: opt: Vx \$1,0+1\$ -0 N où D=max deg(10) veV
opt $(U, i) = i + \sum_{u = v}^{\infty} \min_{1 \le j \le \text{deg } v + 2} \text{opt } (v, j)$
Algo en $\sum_{u \in V} \sum_{u \to v} d(v)$
08. Tas & k extractions de min
III Graphes dynamiques
Q3. (a) gui $(b) \Rightarrow gui \qquad \Leftarrow c_i = max(k_i, k_{i+1})$
[] no confre - exemple
C) TCM := mim
parcours du graphe en G(IVI+IEI)
a 10. En fait un parcours avec une file de priorité.

Mutre solution:

Pan tout à, U[i] <]i | T[i] = i}

E = [faux, ..., famx]

Pour bout j

Pour lout occ Aj, E[x] - Aroni

Pour tout reulij]

1 Pour tout y CA: Tester ECyl

Pour tout occaj, E[x] - foux

II Lex BFS

Q3. Si L[j] ~ L[i] ~ L[k]. où i cjek

si, au moment de kraîter l'India i, l[j] et l[k] sont dans la même poutre alors on a k < j, a qui n'est pas possible.

D'où L[j] et L[k] sont dijà dons des postion différentes.

Soit t minimal tel que LEAJ-LEAJ.

Par jek alow L[x] - L[x] et L[x] - L[x].

Q2. (a) $\sum_{x \in V} (2 \cdot G(1) + G(\# N(x))) + G(\# V) = G(2n + 2m)$

(b) On extrait le max avec la structure de Q1.

IV Graphes ordonnés

Qs.

Q6. Si T' simplicial et 6*(T')=6, TLT' alors

 $G \subseteq G^*(\mathcal{T}) \subseteq G^*(\mathcal{T}') \subseteq G$

d'où 6 simplicial

(a) On verifie $N(i) \subseteq N(j) \cup \{j\}$ pour bout i et $j = \min_{A_j \neq n} N(i)$.

Complexité en G(n+m).

(b) $[1, i-2] \setminus N^{-}(i) \subseteq [[1, j-1] \setminus N^{-}(j)] \cup \{j\}$ Soi $[1, i-2] \setminus N^{-}(i) \subseteq [[1, i-1] \setminus N^{-}(j)]$ Soi $[1, i-2] \setminus N^{-}(i) \subseteq [[1, i-1] \setminus N^{-}(j)]$ Soi $[1, i-2] \setminus N^{-}(i) \subseteq [[1, i-1] \setminus N^{-}(j)]$

6m peut tester za pour lout i, où j = max ? i+j?