coursework1

Problem1:

(i)

Show that for any pair of vector $v,w\in\mathbb{R}^m$,we have $|vullet w|\leq ||v||_1||w||_\infty$

assume
$$v = [v_1, v_2, \dots, v_m]^T$$
 and $w = [w_1, w_2, \dots, w_m]^T$

by definition

$$||v||_1 = \sum_{i=0}^m |v_i|$$

$$||w||_{\infty}=\max\{w_1,w_2,\ldots,w_m\}$$

$$\begin{split} |v \bullet w| &= |v^T w| \\ &= |\sum_{i=0}^m v_i w_i| & \text{(by definition of dot product)} \\ &= \sum_{i=0}^m |v_i w_i| & \text{(since } \sum a = \sum |a|) \\ &\leq \sum_{i=0}^m |v_i| |w_i| & \text{(by triangular inequality)} \\ &\leq \sum_{i=0}^m |v_i| ||w||_{\infty} & \text{(by definition of l_{∞})} \\ &= ||w||_{\infty} \sum_{i=0}^m |v_i| & \text{(since } ||w||_{\infty} \text{ doesnt involve i)} \\ &= ||w||_{\infty} ||v||_{1} & \text{(by definition of } ||v||_{i}) \\ &= ||v||_{1} ||w||_{\infty} & \text{(since both terms are scalar values)} \end{split}$$

(ii)

As in the lecture notes, define the l_{∞} matrix norm for $A \in \mathbb{R}^{m imes n}$ by

$$||A||_{\infty}:=\max_{1\leq i\leq m}||a^i||_1$$

where a^i is the ith row of A. Show carefully using part (i) that

$$||A||_{\infty} = \max\{||Ax||_{\infty}: ||x||_{\infty} \leq 1\} = \max\{||Ax||_{\infty}: ||x||_{\infty} = 1\}$$

by the definition of $||A||_{\infty}$

we have

for any $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n$

assume $A = [a^1, a^2, \dots, a^m], x = [x_1, x_2, \dots, x_n]^T$ where $orall i \leq m, a_i \in \mathbb{R}^n$

$$||A||_{\infty} = \max_{1 \leq i \leq m} ||a^i||_1$$

and

$$||Ax||_{\infty} = \max_{1 \leq i \leq m} ||a^ix||_1$$
 (by definition of the norm) $\leq \max_{1 \leq i \leq m} ||a^i||_1 ||x||_{\infty}$ by part (i)

if at this point, we add the constraint of $||x||_{\infty}$, or $[x_1,x_2,\ldots,x_n] \le 1$ as required in $\max\{||Ax||_{\infty}:||x||_{\infty}\le 1\}$

then

$$egin{aligned} ||Ax||_\infty &\leq \max_{1 \leq i \leq m} ||a^i||_1 ||x||_\infty &\qquad ext{by part (i)} \ &= \max_{1 \leq i \leq m} ||a^i||_1 &\qquad ext{max} \, ||x||_\infty = 1 \ &= ||A||_\infty \end{aligned}$$

and also, since the max can only be obtained when $||x||_{\infty}=1$

we proved that

$$\max\{||Ax||_{\infty}: ||x||_{\infty} \le 1\} = \max\{||Ax||_{\infty}: ||x||_{\infty} = 1\}$$

in conclusion

$$||A||_{\infty} = \max\{||Ax||_{\infty}: ||x||_{\infty} \leq 1\} = \max\{||Ax||_{\infty}: ||x||_{\infty} = 1\}$$

Problem 2:

Find the singular value decomposition of the matrix

$$A = egin{bmatrix} 3 & 2 & 2 \ 2 & 3 & -2 \end{bmatrix}$$

A is in dimension 2×3 with 3 > 2

therefore, we first calculate

$$A^TA = egin{bmatrix} 3 & 2 \ 2 & 3 \ 2 & -2 \end{bmatrix} egin{bmatrix} 3 & 2 & 2 \ 2 & 3 & -2 \end{bmatrix} = egin{bmatrix} 13 & 12 & 2 \ 12 & 13 & -2 \ 2 & -2 & 8 \end{bmatrix}$$

then we find the eigenvectors of A^TA

$$det(A^TA - \lambda) = 0$$

$$det(egin{bmatrix} 13-\lambda & 12 & 2 \ 12 & 13-\lambda & -2 \ 2 & -2 & 8-\lambda \end{bmatrix})=0$$

$$\begin{array}{l} \text{so } (13-\lambda)((13-\lambda)(8-\lambda)-4)-12(12(8-\lambda)-(-4))+2(-24-2(13-\lambda))=0 \\ (13-\lambda)(\lambda^2-21\lambda+100)-12(100-12\lambda)+2(-50+2\lambda)=0 \\ (13\lambda^2-273\lambda+1300)+(-\lambda^3+21\lambda^2-100\lambda)-1200+144\lambda+(-100+4\lambda)=0 \\ -\lambda^3+34\lambda^2-255\lambda=0 \end{array}$$

$$\lambda(\lambda - 9)(\lambda - 25) = 0$$

therefore the eigenvalues are 25, 9, 0

(skipping eigenvector calculation)

and the eigenvectors are $v_1 = [1, 1, 0]^T$, $v_2 = [1, -1, 4]^T$, $v_3 = [-2, 2, 1]^T$

after normalising

$$v_1 = rac{1}{\sqrt{2}}[1,1,0]^T, v_2 = rac{1}{3\sqrt{2}}[1,-1,4]^T, v_3 = rac{1}{3}[-2,2,1]$$

therefore in the SVD expression of $A=USV^T$

$$V = [v_1, v_2, v_3] = egin{bmatrix} rac{\sqrt{2}}{2} & rac{\sqrt{2}}{6} & -rac{2}{3} \ \end{pmatrix} \ 0 & rac{2\sqrt{2}}{3} & rac{1}{3} \ \end{pmatrix}$$

and each $u_i = rac{1}{\sigma_i} A v_i$

therefore

u₃ does not exist since the corresponding eigenvalue is 0

therefore
$$U=egin{bmatrix} rac{\sqrt{2}}{2} & rac{\sqrt{2}}{2} \\ rac{\sqrt{2}}{2} & -rac{\sqrt{2}}{2} \end{bmatrix}$$

and
$$S=diag(\sigma_1,\sigma_2)=diag(5,3)=egin{bmatrix} 5 & 0 & 0 \ 0 & 3 & 0 \end{bmatrix}$$

in conclusion the SVD representation is

$$\begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix} = A = USV^T = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{6} & -\frac{\sqrt{2}}{6} & \frac{2\sqrt{2}}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

Problem 3:

Show that for any matrix $A \in \mathbb{R}^{mn}$ the two matrices A^TA and A have the same nullspace, Deduce carefully that the three matrices A, A^TA, AA^T have the same rank

first we prove that A^TA and A have the same nullspace

1.
$$null(A^TA) \subseteq null(A)$$
 for arbitrary vector $x \in \mathbb{R}^m$

if
$$x \in null(A)$$
, or $Ax = 0$

then
$$A^TAx = A^T(Ax) = A^T0 = 0$$

so
$$x \in null A^T A$$

therefore
$$null(A^TA) \subseteq null(A)$$

2.
$$null(A) \subseteq null(A^TA)$$

for arbitrary vector
$$x \in \mathbb{R}^m$$

$$\text{if } x \in null(A) \text{, or } A^TAx = 0 \\$$

then
$$x^T A^T A x = 0$$

therefore
$$(Ax)^T(Ax) = 0$$

thus
$$Ax=0$$
, or $x\in null(A)$

so
$$null(A) \subseteq null(A^TA)$$

in conclusion
$$null(A) = null(A^T A)$$

the in the exact similar way we can also prove $null(A) = null(A^TA)$

and since null(M) + rank(M) = cols of M for any matrix M

$$A \in \mathbb{R}^{m imes n}$$
. $A^T A \in \mathbb{R}^{n imes n}$

therefore, they have the same number of columns and the same rank

$$rank(A) = rank(A^TA) = n - null(A)$$

in addition using singular value decomposition

assume

$$A = USV^T$$

then
$$AA^T = USV^T(USV^T)^T = USV^TVS^TU^T$$

and
$$A^TA = (USV^T)^TUSV^T = VS^TU^TUSV^T$$

since V and U in singular value decomposition are orthonormal

therefore
$$UU^T = 0, VV^T = 0$$

$$AA^T = USS^TU^T, A^TA = VS^TSV^T$$

in SVD, S is a diagonal matrix with the singular values on the diagonals, we assume S is shape $n \times m$, with $m \le n$ (the other case is just the reverse)

then SS^T would give a $m \times m$ square matrix with the n eigenvalues on the diagonal and the rest 0

 S^TS would give a n imes nsquare matrix with the n eigenvalues the fill the whole diagonal

or to be more specific $rank(SS^T) = rank(S^TS)$

also notice that $A^TA=(A^TA)^T$ therefore A^TA is symmetric, the same for AA^T

therefore $AA^T=USS^TU^T$ and $A^TA=VS^TSV$ posses the form of the spectral theorem, so the eigenvalues of AA^T is the non-zero elements on the diagonal of SS^T and the eigenvalues of A^TA is the non-zero elements on the diagonal of S^TS

as mentioned before, the non-zero elements of SS^T and S^TS are the same, so AA^T and A^TA possess the same set of eigenvalues,

therefore
$$rank(AA^T) = rank(A^TA)$$

Problem 4:

which one of the following two matrices A and B does not have a Cholesky decomposition? Find the Cholesky decomposition of the other matrix

$$A = egin{bmatrix} 25 & 15 & -5 \ 15 & 18 & 0 \ -5 & 0 & 11 \end{bmatrix}, B = egin{bmatrix} 5 & 7 & 1 \ 7 & 6 & 4 \ 1 & 4 & 13 \end{bmatrix}$$

for a matrix to have a Cholesky decomposition, the matrix has to be semi-definite

therefore we test we a random vector x say x = [1, -1, 0]

$$x^{T}Ax = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
 $= \begin{bmatrix} 10 & -3 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} = 13 > 0$
 $x^{T}Ax = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 5 & 7 & 1 \\ 7 & 6 & 4 \\ 1 & 4 & 13 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$
 $= \begin{bmatrix} -2 & 1 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = -3 < 0$

We cannot say A is semi-positive definite, but we are certain that B is not semi-positive definite so B is the one that does not have a Cholesky decomposition therefore, assume $A=LL^T$ where L is an upper triangular matrix

$$L = egin{bmatrix} l_{11} & 0 & 0 \ l_{21} & l_{22} & 0 \ l_{31} & l_{32} & l_{33} \end{bmatrix}$$

$$\begin{bmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix} = A$$

$$=LL^{T} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

$$= \begin{bmatrix} l_{11}^{2} & l_{11}l_{21} & l_{11}l_{31} \\ l_{11}l_{21} & l_{21}^{2} + l_{22}^{2} & l_{21}l_{31} + l_{22}l_{32} \\ l_{11}l_{31} & l_{21}l_{31} + l_{22}l_{32} & l_{31}^{2} + l_{32}^{2} + l_{33}^{2} \end{bmatrix}$$

therefore

$$\begin{cases} l_{11}^2 = 25 & \Rightarrow l_{11} = 5 \\ l_{11}l_{21} = 15 & \Rightarrow l_{21} = 3 \end{cases}$$

$$\begin{cases} l_{11}l_{31} = -5 & \Rightarrow l_{31} = -1 \\ l_{21}^2 + l_{22}^2 = 18 & \Rightarrow l_{22} = 3 \end{cases}$$

$$\frac{l_{21}l_{31} + l_{22}l_{32}}{l_{31}^2 + l_{32}^2 + l_{33}^2 = 11} & \Rightarrow l_{33} = 3 \end{cases}$$

in conclusion, the Cholesky decomposition is

$$A = LL^T = egin{bmatrix} 5 & 0 & 0 \ 3 & 3 & 0 \ -1 & 1 & 3 \end{bmatrix} egin{bmatrix} 5 & 3 & -1 \ 0 & 3 & 1 \ 0 & 0 & 3 \end{bmatrix}$$