PH108: Electricity & Magnetism: Problem Set 9 Only * problems are to be solved in the tut session

- 1. Calculate the magnetic force of attraction between the northern and southern hemispheres of a spinning charged magnetic shell (with radius R, angular speed ω and surface charge density σ)
- 2. * What current density would produce the vector potential, $\vec{A} = k\hat{\phi}$ (where k is a constant), in cylindrical coordinates?
- 3. * A sphere of radius R carries a polarization $\vec{P}(\vec{r}) = k\vec{r}$ where k is a constant and \vec{r} is the vector from the center.
 - (a) Calculate the bound charges σ_b and ρ_b
 - (b) Find the electric field inside and outside the sphere.
- 4. A thick spherical shell having inner radius a and outer radius b is made of dielectric material with a "frozen-in" polarization $\vec{P}(\vec{r}) = \frac{k}{r}\hat{r}$ where k is a constant and r is the distance from the center and no free charge is present, then find \vec{D} and \vec{E} for all 3 regions. Refer Figure 1.

Figure 1

5. In the lecture, we have calculated the total field inside the sphere when a sphere made of homogeneous linear isotropic dielectric (with dielectric constant ϵ_r) material is placed in an otherwise uniform electric field \vec{E}_0 by solving Laplace's equation:

$$\vec{E} = \frac{3}{\epsilon_r + 2} E_0$$

Attempt an alternate (and possibly more intuitive) approach to this, as follows. First find the polarization $\vec{P_0}$ due to $\vec{E_0}$. This polarization generates a field of its own, $\vec{E_1}$ which in turns causes and additional polarization $\vec{P_1}$, which further generates an additional field $\vec{E_2}$ and so on. Show that resultant field inside the sphere $\vec{E} = \vec{E_0} + \vec{E_1} + \vec{E_2} + \dots$ matches that what we get by solving Laplace's Equation.

- 6. * Find the electric potential inside and outside a homogeneous linear isotropic dielectric sphere (with dielectric constant ϵ_r and radius R), at the centre of which a pure dipole \vec{p} is imbedded.
- 7. * A cylinder of radius R and height L is positioned such that the origin is at the center and the z-axis is along the axis of the cylinder. The cylinder carries a frozen polarisation $\vec{P} = P_o \hat{z}$. Calculate \vec{E} and \vec{D} at all points on the z-axis. Are the quantities \vec{D} and \vec{E} proportional to each other inside the material?

- 8. * A conducting sphere of radius R is half submerged in a linear, homogeneous, semi-infinite liquid dielectric medium of doelectric constant κ . The sphere is at a potential V_0 . Assuming there is no bound charge at the liquid-air interface, calculate
 - (a) the potential at a point outside the sphere,
 - (b) the electric field, the electric dispacement, and the surface and volume bound charge density in the dielectric,
 - (c) the total free charge on the conductor.