Københavns Universitets Økonomiske Institut

2. årsprøve 2019 V-2DM ex ret

Rettevejledning til skriftlig eksamen i Dynamiske Modeller Fredag den 18. januar 2019

Opgave 1. Vi betragter femtegradspolynomiet $P: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^5 + z^4 + 5z^3 + 5z^2 + 4z + 4.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^5x}{dt^5} + \frac{d^4x}{dt^4} + 5\frac{d^3x}{dt^3} + 5\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = 0,$$

og

$$(**) \qquad \frac{d^5x}{dt^5} + \frac{d^4x}{dt^4} + 5\frac{d^3x}{dt^3} + 5\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = 4t^3 + 20t^2 + 50t + 66.$$

Vi betragter tillige differentialligningen

$$(***) \frac{d^6y}{dt^6} + \frac{d^5y}{dt^5} + 5\frac{d^4y}{dt^4} + 5\frac{d^3y}{dt^3} + 4\frac{d^2y}{dt^2} + 4\frac{dy}{dt} = 0.$$

(1) Vis, at z = -1 er en rod i polynomiet P, og at betingelsen

$$\forall z \in \mathbf{C} : P(z) = (z^4 + 5z^2 + 4)(z+1)$$

er opfyldt.

Løsning. Ved at udregne P(-1) ser vi, at P(-1) = 0, så z = -1 er en rod i polynomiet P.

Ved at benytte polynomiers division finder vi, at betingelsen

$$\forall z \in \mathbf{C} : P(z) = (z^4 + 5z^2 + 4)(z+1)$$

er opfyldt.

(2) Bestem samtlige rødder i polynomiet P.

Løsning. Idet

$$z^2 = \frac{-5 \pm \sqrt{25 - 16}}{2} = \frac{-5 \pm 3}{2} = \begin{cases} -4 \\ -1 \end{cases}$$

Dette viser, at polynomiet P har rødderne i, -i, 2i, -2i og -1.

(3) Bestem den fuldstændige løsning til differentialligningen (*).

Løsning. Vi finder nu, at

$$x = c_1 \cos t + c_2 \sin t + c_3 \cos(2t) + c_4 \sin(2t) + c_5 e^{-t}$$

hvor $c_1, c_2, c_3, c_4, c_5 \in \mathbf{R}$.

(4) Bestem den fuldstændige løsning til differentialligningen (**).

Løsning. Vi gætter på en løsning af formen $\hat{x} = At^3 + Bt^2 + Ct + D$, så $\hat{x}' = 3At^2 + 2Bt + C$, $\hat{x}'' = 6At + 2B$, $\hat{x}''' = 6A$ og $\hat{x}'''' = \hat{x}''''' = 0$.

Vi finder herefter, at A = 1, B = 2, C = 1 og D = 3. Den fuldstændige løsning til (**) er derfor

$$x = c_1 \cos t + c_2 \sin t + c_3 \cos(2t) + c_4 \sin(2t) + c_5 e^{-t} + t^3 + 2t^2 + t + 3,$$

hvor $c_1, c_2, c_3, c_4, c_5 \in \mathbf{R}$.

(5) Bestem den fuldstændige løsning til differentialligningen (* * *).

Løsning. Det karakteristiske polynomium for differentialligningen (***) er Q(z) = zP(z), som foruden rødderne i P også har roden z = 0. Den fuldstændige løsning for differentialligningen (***) er derfor

$$y = c_1 \cos t + c_2 \sin t + c_3 \cos(2t) + c_4 \sin(2t) + c_5 e^{-t} + c_6$$

hvor $c_1, c_2, c_3, c_4, c_5, c_6 \in \mathbf{R}$.

Opgave 2. Vi betragter mængderne

$$A = \left\{ z \in \mathbf{C} \mid \forall n \in \mathbf{N} : |z| = 1 - \frac{1}{2n} \right\}$$

og

$$B = \{ z \in \mathbf{C} \mid \forall r \in \mathbf{Q}_+ \cap [0, 1] : |z| = r \}.$$

(1) Bestem det indre A^O og afslutningen \overline{A} af mængden A.

Løsning. Vi finder, at $A^O = \emptyset$ og $\overline{A} = A \cup T$, hvor **T** er torusgruppen.

(2) Lad (z_k) være en følge af punkter fra mængden A. Vis, at denne følge har en konvergent delfølge (z_{k_n}) , hvis grænsepunkt $z_0 \in \overline{A}$.

Løsning. Da følgen (z_k) er en følge på A, er denne følge også en følge på den kompakte mængde \overline{A} . Heraf følger påstanden umiddelbart.

(3) Bestem det konvekse hylster K = conv(A) for A, og godtgør, at enhver kontinuert funktion $\phi: K \to K$ har et fixpunkt.

Løsning. Vi finder, at

$$K = \text{conv}(A) = \{ z \in \mathbf{C} \mid |z| \le 1 \},$$

og enhver kontinuert funktion $\phi: K \to K$ har et fixpunkt $z^* \in K$, jvf. Brouwers fixpunktsætning.

(4) Bestem det indre B^O og afslutningen \overline{B} af mængden B, og godtgør, at

$$\overline{(B^O)} \subset \overline{B}^O$$
.

Løsning. Vi ser, at $B^O=\emptyset$ og $\overline{B}=K$, jvf. løsningen i overstående spørgsmål.

Endvidere ser vi, at $\overline{B^O} = \emptyset$ og

$$(\overline{B})^O = K^O = \{ z \in \mathbf{C} \mid |z| < 1 \}$$

Nu er påstanden åbenbar.

(5) Lad G være en åben delmængde af \mathbb{C} . Vis, at

$$G \subseteq (\overline{G})^O$$
.

Løsning. Det er klart, at $G\subseteq \overline{G}$, og da G er åben, er påstanden klar.

(6) Lad F være en afsluttet delmængde af \mathbb{C} . Vis, at

$$\overline{(F^O)} \subseteq F$$
.

Løsning. Det er oplagt, at $F^O \subseteq F$, og da F er afsluttet, er påstanden klar.

Opgave 3. Vi betragter korrespondancen $F : \mathbf{R} \to \mathbf{R}$, som er defineret ved forskriften

$$F(x) = \begin{cases} [0,1] & \text{for } x < 0 \\ [-1,2] & \text{for } x = 0 \\ [-3,3] & \text{for } x > 0 \end{cases}$$

og den funktion $f: \mathbb{R}^2 \to \mathbb{R}$, der er givet ved udtrykket

$$\forall (x,y) \in \mathbf{R} : f(x,y) = x^2 + 2xy^2.$$

Desuden betragter vi korrespondancen $G: \mathbf{R} \to \mathbf{R}$, som er givet ved udtryket

$$G(y) = \begin{cases} \begin{bmatrix} -2,2 \end{bmatrix} & \text{for } y < 0 \\ [0,3] & \text{for } y \ge 0 \end{cases}.$$

(1) Vis, at korrespondancen F ikke har afsluttet graf egenskaben, og at den hverken er nedad eller opad hemikontinuert.

Løsning. Grafen for korrespondancen F er ikke en afsluttet mængde i \mathbf{R}^2 , så F har ikke afsluttet graf egenskaben. Lad os dernæst betragte følgen $\left(-\frac{1}{k}\right)$, som konvergerer mod 0. En følge (y_k) , hvor $y_k \in F(x_k)$ for ethvert $k \in \mathbb{N}$, kan umuligt konvergere mod $2 \in F(0)$. Dette viser, at korrespondancen F ikke er nedad hemikontinuert. Lad os sluttelig betragte den åbne omegn U =]-2,3[af intervallet [-1,2]. Mængden [-3,3] er imidlertid ikke en delmængde af U, og derfor er F ikke opad hemikontinuert i $x_0 = 0$.

(2) Bestem den maksimale værdifunktion $v_u: \mathbf{R} \to \mathbf{R}$, som er defineret ved udtrykket

$$\forall x \in \mathbf{R} : v_u(x) = \max\{f(x,y) \mid y \in F(x)\}.$$

Løsning. Vi ser, at

$$v_u(x) = \begin{cases} x^2, & \text{for } x < 0 \text{ med } y = 0\\ 0, & \text{for } x = 0 \text{ med } y \in [-1, 2]\\ x^2 + 18x, & \text{for } x > 0 \text{ med } y = \pm 3 \end{cases}.$$

(3) Bestem en forskrift for den maksimale værdikorrespondance $M_u: \mathbf{R} \to \mathbf{R}$, hvor

$$\forall x \in \mathbf{R} : M_u(x) = \{ y \in F(x) \mid f(x,y) = v_u(x) \}.$$

Løsning. Fra det overstående får vi straks, at

$$M_u(x) = \begin{cases} \{0\} & \text{for } x < 0 \\ [-1, 2], & \text{for } x = 0 \\ \{-3, 3\} & \text{for } x > 0 \end{cases}.$$

(4) Bestem en forskrift for den sammensatte korrespondance $H = G \circ F$: $\mathbf{R} \to \mathbf{R}$.

Løsning. Vi finder, at

$$H(x) = G \circ F(x) = \bigcup_{y \in F(x)} G(y) = \begin{cases} [0,3], & \text{for } x < 0 \\ [-2,3], & \text{for } x \ge 0 \end{cases}$$
.

Opgave 4. Vi betragter integralet

$$I(x) = \int_0^{\sqrt{3}} (e^t - 2x^2 - u^2) dt,$$

hvor $\dot{x} = x + u$, x(0) = 0 og $x(1) = \sqrt{3}$.

(1) Vis, at dette optimale kontrolproblem er et maksimumsproblem.

Løsning. Vi opstiller først Hamiltonfunktionen

$$H = H(t, x, u, p) = e^{t} - 2x^{2} - u^{2} + p(x + u),$$

og heraf finder vi, at

$$\frac{\partial H}{\partial x} = -4x + p = -\dot{p} \text{ og } \frac{\partial H}{\partial u} = -2u + p = 0,$$

og desuden ser vi, at

$$H'' = \left(\begin{array}{cc} -4 & 0 \\ 0 & -2 \end{array} \right).$$

Denne Hessematrix er negativ definit, og derfor er der tale om et maksimumsproblem.

(2) Opstil Hamiltonfunktionen H = H(t, x, u, p), og bestem det optimale par (x^*, u^*) .

Løsning. Vi har allerede opstillet Hamiltonfunktionen, og fra de ovenstående udregninger finder vi, at p=2u, at $u=\dot{x}-x$ og at $\dot{p}=2\dot{u}$. Heraf finder vi så, at $-2\dot{u}=-4x+2u$ og dermed, at $-4x+2\dot{x}-2x=-2\ddot{x}+2\dot{x}$. Nu ser vi så, at $\ddot{x}-3x=0$, og det karakteristiske polynomium for den lineære, homogene andenordens differentialligning er $P(\lambda)=\lambda^2-3$. De karakteristiske rødder er således $\lambda=\pm\sqrt{3}$.

Vi ser nu, at

$$x = Ae^{\sqrt{3}t} + Be^{-\sqrt{3}t}$$
, hvor $A, B \in \mathbf{R}$.

Da x(0) = 0, er B = -A, så

$$x = A\left(e^{\sqrt{3}t} - e^{-\sqrt{3}t}\right), \text{ hvor } A \in \mathbf{R}.$$

Nu er $x(\sqrt{3})=1$, og heraf finder vi, at $A=\frac{1}{e^3-e^{-3}}=\frac{e^3}{e^6-1}$. Vi ser derfor, at

$$x^* = \frac{e^3}{e^6 - 1} \left(e^{\sqrt{3}t} - e^{-\sqrt{3}t} \right).$$

Vi differentiation opnås, at

$$\dot{x}^* = \frac{e^3}{e^6 - 1} \left(\sqrt{3}e^{\sqrt{3}t} + \sqrt{3}e^{-\sqrt{3}t} \right),$$

så

$$u^* = \frac{e^3}{e^6 - 1} \left((\sqrt{3} - 1)e^{\sqrt{3}t} + (\sqrt{3} + 1)e^{-\sqrt{3}t} \right).$$