2011 G4

Ezra Guerrero Alvarez

October 14, 2021

2011 G4

2011 G4

Let ABC be an acute triangle with circumcircle Ω . Let B_0 be the midpoint of AC and let C_0 be the midpoint of AB. Let D be the foot of the altitude from A and let G be the centroid of the triangle ABC. Let ω be a circle through B_0 and C_0 that is tangent to the circle Ω at a point $X \neq A$. Prove that the points D, G and X are collinear.

We use directed angles $\mod 180^{\circ}$. Let Y be the point on ω such that $\overline{AY} \parallel \overline{BC}$, A_0 be the midpoint of \overline{BC} , T be the A_0 -altitude of $\triangle A_0 B_0 C_0$, and X' be the second intersection of \overline{YD} with ω . Considering a homothety with center G and ratio $-\frac{1}{2}$, (ABC) is taken to the nine-point circle of $\triangle ABC$, so the image of Y must be the intersection of \overline{BC} and the nine-point circle that is not A_0 . Thus, Y - G - D. Thus, it suffices to show $(X'B_0C_0)$ is tangent to (ABC).

Again by the homothety with center G, note that D maps to T, so D-G-T. Now, we have

$$\angle C_0 TX' = \angle AYX' = \angle ABX' = \angle C_0 BX',$$

so $C_OTX'B$ is cyclic. Analogously, $B_0TX'C$ is cyclic. Thus,

$$\angle C_0 X' B = \angle C_0 T B = 90^\circ - \angle B T A_0 = 90^\circ - \angle A_0 T C = \angle C T B_0 = \angle C X' B_0.$$

Let P and Q be the second intersections of $\overline{X'C_0}$ and $\overline{X'B_0}$ with ω . The last angle equality implies that PQCB is an isosceles trapezoid, giving $\overline{B_0C_0} \parallel \overline{QP}$. Thus, there is a homothety centered at X' taking $(X'B_0C_0)$ to (ABC), implying these circles are tangent at X', as desired.