Implement K-Means clustering/ hierarchical clustering on

 sales_data_sample.csv dataset. Determine the number of clusters using the elbow method.

```
2 import numpy as np
3 import seaborn as sns
4 import matplotlib.pyplot as plt
5 #Importing the required libraries.

1 from sklearn.cluster import KMeans, k_means #For clustering
2 from sklearn.decomposition import PCA #Linear Dimensionality reduction.

1 df = pd.read_csv('sales_data_sample.csv', encoding = "Latin-1")
2 #df = pd.read_csv("sales_data_sample.csv") #Loading the dataset.
```

Preprocessing

1 import pandas as pd

1 df.head()

	ORDERNUMBER	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	ORDERDATE	!
0	10107	30	95.70	2	2871.00	2/24/2003 0:00	S
1	10121	34	81.35	5	2765.90	5/7/2003 0:00	S
2	10134	41	94.74	2	3884.34	7/1/2003 0:00	S
3	10145	45	83.26	6	3746.70	8/25/2003 0:00	S
4	10159	49	100.00	14	5205.27	10/10/2003 0:00	S
5 rows × 25 columns							
←						•	

```
1 df.shape
(2823, 25)
```

1 df.describe()

		ORDERNUMBER	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	
	count	2823.000000	2823.000000	2823.000000	2823.000000	2823.000000	2
	mean	10258.725115	35.092809	83.658544	6.466171	3553.889072	
	std	92.085478	9.741443	20.174277	4.225841	1841.865106	
	min	10100.000000	6.000000	26.880000	1.000000	482.130000	
	25%	10180.000000	27.000000	68.860000	3.000000	2203.430000	
	50%	10262.000000	35.000000	95.700000	6.000000	3184.800000	
	75%	10333.500000	43.000000	100.000000	9.000000	4508.000000	
_							

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2823 entries, 0 to 2822
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
0	ORDERNUMBER	2823 non-null	int64
1	QUANTITYORDERED	2823 non-null	int64
2	PRICEEACH	2823 non-null	float64
3	ORDERLINENUMBER	2823 non-null	int64
4	SALES	2823 non-null	float64
5	ORDERDATE	2823 non-null	object
6	STATUS	2823 non-null	object
7	QTR_ID	2823 non-null	int64
8	MONTH_ID	2823 non-null	int64
9	YEAR_ID	2823 non-null	int64
10	PRODUCTLINE	2823 non-null	object
11	MSRP	2823 non-null	int64
12	PRODUCTCODE	2823 non-null	object
13	CUSTOMERNAME	2823 non-null	object
14	PHONE	2823 non-null	object
15	ADDRESSLINE1	2823 non-null	object
16	ADDRESSLINE2	302 non-null	object
17	CITY	2823 non-null	object
18	STATE	1337 non-null	object
19	POSTALCODE	2747 non-null	object
20	COUNTRY	2823 non-null	object
21	TERRITORY	1749 non-null	object
22	CONTACTLASTNAME	2823 non-null	object
23	CONTACTFIRSTNAME	2823 non-null	object
24	DEALSIZE	2823 non-null	object
	C	/ - \ / -	- \

dtypes: float64(2), int64(7), object(16)

memory usage: 551.5+ KB

1 df.isnull().sum()

ORDERNUMBER	0
QUANTITYORDERED	0
PRICEEACH	0
ORDERLINENUMBER	0
SALES	0
ORDERDATE	0
STATUS	0
QTR_ID	0
MONTH_ID	0
YEAR_ID	0
PRODUCTLINE	0
MSRP	0

PRODUCTCODE	0
CUSTOMERNAME	0
PHONE	0
ADDRESSLINE1	0
ADDRESSLINE2	2521
CITY	0
STATE	1486
POSTALCODE	76
COUNTRY	0
TERRITORY	1074
CONTACTLASTNAME	0
CONTACTFIRSTNAME	0
DEALSIZE	0
dtype: int64	

1 df.dtypes

ORDERNUMBER	int64
QUANTITYORDERED	int64
PRICEEACH	float64
ORDERLINENUMBER	int64
SALES	float64
ORDERDATE	object
STATUS	object
QTR_ID	int64
MONTH_ID	int64
YEAR_ID	int64
PRODUCTLINE	object
MSRP	int64
PRODUCTCODE	object
CUSTOMERNAME	object
PHONE	object
ADDRESSLINE1	object
ADDRESSLINE2	object
CITY	object
STATE	object
POSTALCODE	object
COUNTRY	object
TERRITORY	object
CONTACTLASTNAME	object
CONTACTFIRSTNAME	object
DEALSIZE	object
dtype: object	

1 df_drop = ['ADDRESSLINE1', 'ADDRESSLINE2', 'STATUS', 'POSTALCODE', 'CITY', 'TERRITORY', 'PHONE', 'STATE', 'CONTA' 2 df = df.drop(df_drop, axis=1) #Dropping the categorical uneccessary columns along with columns having null value

1 df.isnull().sum()

QUANTITYORDERED	0
PRICEEACH	0
ORDERLINENUMBER	0
SALES	0
ORDERDATE	0
QTR_ID	0
MONTH_ID	0
YEAR_ID	0
PRODUCTLINE	0
MSRP	0
PRODUCTCODE	0
COUNTRY	0

```
1 df.dtypes
   QUANTITYORDERED
                       int64
   PRICEEACH
                       float64
   ORDERLINENUMBER
                       int64
   SALES
                      float64
   ORDERDATE
                      object
   QTR ID
                        int64
   MONTH_ID
                        int64
   YEAR ID
                        int64
   PRODUCTLINE
                      object
   MSRP
                        int64
   PRODUCTCODE
                       object
   COUNTRY
                       object
   DEALSIZE
                       object
   dtype: object
1 # Checking the categorical columns.
1 df['COUNTRY'].unique()
   array(['USA', 'France', 'Norway', 'Australia', 'Finland', 'Austria', 'UK',
           'Spain', 'Sweden', 'Singapore', 'Canada', 'Japan', 'Italy',
           'Denmark', 'Belgium', 'Philippines', 'Germany', 'Switzerland',
           'Ireland'], dtype=object)
1 df['PRODUCTLINE'].unique()
   array(['Motorcycles', 'Classic Cars', 'Trucks and Buses', 'Vintage Cars',
           'Planes', 'Ships', 'Trains'], dtype=object)
1 df['DEALSIZE'].unique()
   array(['Small', 'Medium', 'Large'], dtype=object)
1 productline = pd.get_dummies(df['PRODUCTLINE']) #Converting the categorical columns.
2 Dealsize = pd.get_dummies(df['DEALSIZE'])
1 df = pd.concat([df,productline,Dealsize], axis = 1)
1 df_drop = ['COUNTRY', 'PRODUCTLINE', 'DEALSIZE'] #Dropping Country too as there are alot of countries.
2 df = df.drop(df_drop, axis=1)
1 df['PRODUCTCODE'] = pd.Categorical(df['PRODUCTCODE']).codes #Converting the datatype.
1 df.drop('ORDERDATE', axis=1, inplace=True) #Dropping the Orderdate as Month is already included.
1 df.dtypes #All the datatypes are converted into numeric
   QUANTITYORDERED
                          int64
   PRICEEACH
                        float64
```

DEALSIZE

dtype: int64

ORDERLINENUMBER

int64

0

```
float64
SALES
QTR_ID
                      int64
                      int64
MONTH_ID
                      int64
YEAR_ID
MSRP
                     int64
PRODUCTCODE
                      int8
Classic Cars
                     uint8
                     uint8
Motorcycles
Planes
                      uint8
Ships
                      uint8
Trains
                      uint8
Trucks and Buses uint8 Vintage Cars uint8
                      uint8
Large
Medium
                      uint8
Small
                      uint8
dtype: object
```

▼ Plotting the Elbow Plot to determine the number of clusters.

→ As the number of k increases Inertia decreases.

Observations: A Elbow can be observed at 3 and after that the curve decreases gradually.

→ Visualization

```
1 pca = PCA(n_components=2) #Converting all the features into 2 columns to make it easy to visualize using Princip
1 reduced_X = pd.DataFrame(pca.fit_transform(X_train),columns=['PCA1','PCA2']) #Creating a DataFrame.
1 reduced_X.head()
```

```
PCA1 PCA2
```

1 #Plotting the normal Scatter Plot
2 plt.figure(figsize=(14,10))
3 plt.scatter(reduced_X['PCA1'],reduced_X['PCA2'])

<matplotlib.collections.PathCollection at 0x7f0fe6fad810>

1 model.cluster_centers_ #Finding the centriods. (3 Centriods in total. Each Array contains a centroids for partic

```
array([[ 3.72031394e+01, 9.52120960e+01,
                                          6.44967682e+00,
        4.13868425e+03,
                         2.72022161e+00, 7.09879963e+00,
        2.00379409e+03, 1.13248384e+02, 5.04469067e+01,
        3.74884580e-01, 1.15420129e-01, 9.41828255e-02,
        8.21791320e-02, 1.84672207e-02, 1.16343490e-01,
                         2.08166817e-17, 1.00000000e+00,
        1.98522622e-01,
       -3.38618023e-15],
      [ 3.08302853e+01, 7.00755230e+01,
                                          6.67300658e+00,
        2.12409474e+03, 2.71762985e+00, 7.09509876e+00,
                         7.84784199e+01, 6.24871982e+01,
        2.00381127e+03,
        2.64813460e-01,
                        1.21433797e-01, 1.29480614e-01,
        1.00219459e-01,
                        3.87710315e-02, 9.21726408e-02,
        2.53108998e-01,
                         6.93889390e-18, 6.21799561e-02,
        9.37820044e-01],
       [ 4.45871314e+01, 9.98931099e+01,
                                          5.75603217e+00,
        7.09596863e+03,
                        2.71045576e+00,
                                         7.06434316e+00,
        2.00389008e+03, 1.45823056e+02, 3.14959786e+01,
        5.33512064e-01,
                         1.07238606e-01,
                                         7.23860590e-02,
        2.14477212e-02,
                         1.07238606e-02, 1.31367292e-01,
```

```
1.23324397e-01, 4.20911528e-01, 5.79088472e-01, -1.99840144e-15]])
```


1 $reduced_X['Clusters'] = predictions #Adding the Clusters to the reduced dataframe.$

1 reduced_X.head()

```
        PCA1
        PCA2
        Clusters

        0
        -682.488323
        -42.819535
        1

        1
        -787.665502
        -41.694991
        1

        2
        330.732170
        -26.481208
        0
```

<matplotlib.collections.PathCollection at 0x7f0fe700c1d0>

• ×