Betaflight BF4.x Tuning-Parameters

Inhaltsverzeichnis

- · Betaflight BF4.x Tuning-Parameters
- Inhaltsverzeichnis
- Historie
- Tuning-Parameter
 - · Betaflight Tuning-Tips
- DSHOT RPM Telemetrie-Daten
 - · Allgemeines
 - IN
 - OUT
 - Parameter
- Gyro Filter
 - · Allgemeines
 - IN
 - OUT
 - Gyro Filterarten
 - Gyro Filter => GYRO-RPM Notch Filter
 - Allgemeines
 - Parameter
 - Gyro Filter => Dynamic-Notch Filter
 - Allgemeines
 - Parameter
 - ∘ Gyro Filter => Static Gyro-Notch Filter (1 und 2)
 - Allgemeines
 - Parameter
 - ∘ Gyro Filter => Dynamic Gyro LowPass Filter
 - Allgemeines
 - Parameter
 - Gyro Filter => Static Gyro LowPass Filter
 - Allgemeines
 - IN
 - Parameter
- DTerm Filter
 - Allgemeines
 - IN

- OUT
- ∘ DTerm => Dynamic D lowpass
 - Allgemein
 - Parameter
- ∘ DTerm => Static D notch
 - AllgemeiHz
 - Parameter
- Feedforward
 - · Allgemeines
 - IN
 - OUT
 - Parameter
- VBat
 - · Allgemeines
 - IN
 - OUT
 - Parameter
- RC-Command
 - Allgemeines
 - IN
 - OUT
 - Parameter
 - ∘ rc_smoothing_auto_smoothness (Default:10)
- Setpoint
 - · Allgemeines
 - IN
 - OUT
 - Parameter
- ITerm Parameter
 - Allgemeines

Historie

VersionDatum Inhalt

- 0.1 August 2020initial
- 0.2 August 2020neu strukturiert

Tuning-Parameter

Nachfolgende eine Reihe der wichtigsten Tuning-Variablen.

Viel mehr Details findet man hier: BF4.2-Tuning-Notes (https://github.com/betaflight/betaflight/wiki/4.2-Tuning-Notes)

ACHTUNG

Bei einem Update von BF <4.2 bitte **KEIN** Restore von alten Werten die durch diff all gespeichert wurden, importieren. Fangt bei **NULL** an

Betaflight - Tuning-Tips

Weitere Tuning-Tips findest du im BF-Wiki der jeweiligen Versionen: * BF4.2-Tuning-Notes (https://github.com/betaflight/betaflight/wiki/4.2-Tuning-Notes) * BF4.1-Tuning-Notes (https://github.com/betaflight/betaflight/wiki/4.1-Tuning-Notes) * BF4.0-Tuning-Notes (https://github.com/betaflight/betaflight/wiki/4.0-Tuning-Notes) * BF4.0-Tuning-Notes (https://github.com/betaflight/wiki/3.5-tuning-notes)

DSHOT RPM Telemetrie-Daten

Allgemeines

Ab BF 4.0 werden Telemetriedaten des ESCs ausgelesen und analysiert. Diese Informationen sind elementar wichtig für viele nachgelagerte Filtertechniken und für den PID-Controller. Voraussetzung ist, dass man für den ESC ein DSHOT-Protokoll ausgewählt hat

IN

ESC - Beachten: die aktuelle Firmware des ESCs muss RPM-Telemetrie-Daten verarbeiten können.

OUT

RPM-Daten pro Motor

Parameter

Diese Parameter können nicht direkt beeinflußt werden. Zu beachten sind welches **DSHOT** Protokoll verwendet wird.

Bedenke: bei DSHOT300 und einer 8k PIDLoop erhältst du nur jede zweite PID-Loop Daten zugesendet. Daraus folgt, du solltest das passende **DSHOT-Protokoll** auf Deine PID-Loop auswählen

DSHOT150: empfohlen bei 2k PIDLoop
DSHOT300: empfohlen bei 4k PIDLoop
DSHOT600: empfohlen bei 8k PIDLoop

· DSHOT1200 : 8k PIDLoop

Gyro Filter

Allgemeines

Der Gyro ist das zentrale Bauelement auf dem FC und stellt die aktuellen **IST** Flugdaten zur Verfügung. Diese Daten werden dann bezogen auf die **SOLL** Daten (Die RC-Commands) verrechnet, gefiltert dem PIDController zur Verfügung gestellt. Anschließend gemixt und den Motoren als neue.

Jeder GYRO besitzt werkseitig einen internen LowPass-Filter. Je nach Bautyp des Gyros unterscheiden sich wie gut dieser interne Filter tatsächlich ist.

Die Gyro-Filter Parameter umfassen folgende Filterarten

Bei den weiteren beschriebenen Gyro Filtern wird nicht nochmals auf IN/OUT eingegangen.

IN

gyro scaled Daten direkt aus dem Gyro.

OUT

Bereitstellung der Daten für nachgelagerte DTerm-Filter und als Mix-Daten für den P-Controller => Vorab-Fehler P-Berechnung

Gyro Filterarten

Es wird unterschieden zwischen den Gyro-RPM Filtern, einem Dynamic NotchFilter und Statich Notichfilter 1+2, einem Dynamsiche LowPassfilter und einem statischen Lowpassfilter.

Gyro-RPM-Notch Filter

```
gyro_rpm_notch_harmonics=3 gyro_rpm_notch_q=500 gyro_rpm_notch_min=100
```

- Dynamic-Notch Filter dyn_notch_min_hz dyn_notch_max_hz dyn_notch_width_percent dyn_notch_q
- Static Gyro-Notch Filter (1 und 2) gyro_notch1_hz gyro_notch1_cutoff gyro_notch2_hz gyro_notch2_cutoff
- Dynamic Gyro LowPass Filter gyro_lowpass_type gyro_lowpass_hz dyn_lpf_gyro_min_hz dyn_lpf_gyro_max_hz
- Static Gyro LowPass Filter gyro_lowpass2_type gyro_lowpass2_hz

Gyro Filter => GYRO-RPM Notch Filter

Allgemeines

Der Gyro-RPM Notch Filter nutzt die vom ESC zurückgegeben RPM-Daten und liegt als erste Filterstufe direkt hinter dem gyro_scaled Daten.

BF 4.1/4.2 Bidirectional DSHOT and RPM Filter Guide (https://github.com/betaflight/betaflight/wiki/Bidirectional-DSHOT-and-RPM-Filter#Tuning)

Parameter

Parameter I	BrDefaulBezeichnung	
		Schwingungen treten in wiederkehrenden Amplituden auf. Eine harmonische Schwingung kann durch eine Sinusfunktion
		beschrieben werden (https://de.wikipedia.org/wiki/
		Schwingung#Harmonische_Schwingung). Das bedeutet, dass
<pre>gyro_rpm_notch_harmonics</pre>	3	eine Vibration sich alle xHz wiederholt! Betaflight generiert somit
		pro Motor 3 (Anzahl Harmonics) Notch-Filter, somit werden alle
		Motordaten durch 12 individuellen RPM-Notch-Filter analyisiert
		und schon vorgefiltert. Diesen Sachverhalt kann man in einer
		Blackboxauswertung sehr gut sehen (FFT-Spektrogram).
		Der Q-Faktor des Notchfilters gibt die Breite der Kerbe
		(Notch=Kerbe) an. Je größer die Zahl (max 1000) umso schmaler
		wird der Notchfilter. Der Q-Faktor wird auch als Güte-Faktur
gyro_rpm_notch_q	500	bezeichnet. Je höher die Güte-Faktor (Q-Faktor) desto
		geringer die Dämpfung, desto schmaler der Notch-Filter. Kleine
		Q-Faktoren vergrößern den RPM-Filter Delay - was unerwünscht
		ist
<pre>gyro_rpm_notch_min</pre>	100	Beschreibt die untere Grenzfrequenz des Notch-Filters

Gyro Filter => Dynamic-Notch Filter

Allgemeines

Dieser Filter ist dem RPM-Filter nachgelagert und filtern nochmals bestimmte Frequenzen aus. Ohne RPM-Filter wird der Filter als Doppel-Notch Filter betrieben, dies wird über dyn_notch_width_percent > 0 definiert. Ist dieser Wert 0, wird nur ein Notch-Filter erzeugt.

Das besondere an dynamic-notch-Filter ist, dass sie dynamisch sich an der aktuellen *RPM* des Systems orientieren und so laufend rund um den höchsten Frequenzbereich der Motor-Vibrationen arbeiten.

Grundsätzlich gilt, dynamische Notch-Filter haben eine geringere Latenzzeit als statische Notch-Filter. Bei einem gut abgestimmten Copter können andere Low-Pass Filter deaktiviert werden.

Parameter

Parameter	BFDefaultBezeichnung
<pre>dyn_notch_min_hz</pre>	Beschreibt die untere Grenzfrequenz dieses Notch-Filters in Hz
dyn_notch_max_hz	Beschreibt die obere Grenzfrequenz dieses Notch-Filters in Hz
	Beschreibt (wenn > 0), wie weit beide Notch-Filter voneinander
dyn_notch_width_percent	getrennt sind. Der Prozentsatz berechnet sich aus der Breite des
	Notch-Filters.
dum matah m	Q-Faktor des Notch-Filters. (siehe hierzu Beschreibung weiter
dyn_notch_q	oben

Gyro Filter => Static Gyro-Notch Filter (1 und 2)

Allgemeines

Zwei statische Notch-Filter für ein bestimmtes Frequenzband. Dieses Frequenzband wird während des Fluges nicht mehr angepasst (statisch).

Parameter

Parameter BFDefaultBezeichnung

gyro_notch1_hz	Center-Frequenz des Notch-Filters
gyro_notch1_cutoff	todo
gyro_notch2_hz	Center-Frequenz des Notch-Filters
gyro_notch2_cutoff	todo

Gyro Filter => Dynamic Gyro LowPass Filter

Allgemeines

```
Die Auswahl den Dyn-Notchfilters Frequenzbereiches kann über drei Auswahlmöglichkeiten voreingestellt werden * LOW : dyn_lpf_gyro_max_hz liegt bei 334hz oder ist 0 (deaktiviert) * MEDIUM : dyn_lpf_gyro_max_hz liegt bei 610hz * HIGH : dyn_lpf_gyro_max_hz liegt bei > 610hz
```

Die durchschnittlichen Werte für optimale Werte für diese Ranges liegen * **LOW** : 80-330hz (für Copter mit niedrigen Drehzahlen oder wenn Resonanzen in niedrigen Frequenzen auftreten * **MEDIUM** : 140-550hz (für gut eingestellte 5" Copter * **HIGH** : 230-800hz (für Copter mit hohen Drehzahlen 2,5" - 3")

Ab BF 4.0 wird zusätzlicher dyn_notch_min_hz Parameter zur Verfügung gestellt. Dieser Wert fängt den Bereich unterhalb des Dyn-LPF ab und hat seinen Default bei 150Hz.

Um 100Hz Peaks heraus zu filtern muss LOW aktiviert werden und der

Parameter

Parameter BFDefaultBezeichnung

dyn_notch_min_hz	
gyro_lowpass_type	LOW/MEDIUM/HIGH (siehe Beschreibung)
gyro_lowpass_hz	Static Gyro LPF, sind dyn_lpf gesetzt, dann ist der Static LPF deaktiviert
<pre>dyn_lpf_gyro_min_hz</pre>	untere Grenzfrequenz es DynLPF
dyn_lpf_gyro_max_hz	obere Grenzfrequenz des DynLPF

Gyro Filter => Static Gyro LowPass Filter

Allgemeines

IN

Throttle-Daten

Parameter

Parameter	BF Default	Bezeichnung
gyro_lowpass2_	type4.0 BIQUAD	
gyro_lowpass2_	_hz 4.0	unter Grenzfrequenz des LPF in Hz, wenn auf 0, dann ist der LPF deaktiviert

DTerm Filter

Allgemeines

Der DTerm-Filter besitzt eine Reihe von Parametern die dazu genutzt werden, das DTerm-Ausgangssignal zu bearbeiten und von Störungen (Vibrations-Frequenzen zu befreien). **Wichtig:** : Der DTerm des PID-Controllers verstärkt Vibrationen, daher ist es wichtig, dass dieses Signal möglichst frei von Störungs- / Vibrationssignalen ist.

D verstärkt höhere Frequenzen, der D-Anteil wird aber dringend benöigt um Vibrationen zwischen 30-80hz (Z.B. Propwash) auszugleichen. Das bedeutet wir benötigen soviel wie möglich D-Anteil bis 100hz und so wenig wie möglich über 100hz. DTerm-Filter sollten immer in der ersten Stufe als BIQUAD und in der zweiten Stufe als PT eingestellt werden.

DTerm Filter Daten sind zeitabhängig (d/dt)

Folgende DTerm-Filter werden genutzt: * Dynamic D lowpass

```
dterm_lowpass_type
dyn_lpf_dterm_min_hz
dyn_lpf_dterm_max_hz
dyn_lpf_dterm_curve_expo
```

- Static D lowpass dterm_lowpass2_type dterm_lowpass2_hz
- Static D notch dterm_notch_hz dterm_notch_cutoff

IN

Daten kommen aus den Gyro Filter Berechnungen

OUT

Daten gehen direkt an den D-Controller

DTerm => Dynamic D lowpass

Allgemein

Dynamischer Lowpass filter für den DTerm

Parameter

ParameterBF DefaultBezeichnungdterm_lowpass_type4.0PT1 / BIQUAD, sollte auf BIQUAD für LPF 1 stehen, LPF2 = PT1dyn_lpf_dterm_min_hz4.0LowPass min Hzdterm_lowpass2_hz4.0LowPass2 min Hz

DTerm => Static D notch

AllgemeiHz

Parameter

Parameter	BFDefaultBezeichnung
dterm_notch_hz	
dterm notch cuto	ff

Feedforward

Allgemeines

Feedforward ist dem PID-Controller nachgelagert und unabhängig vom PID. FF verstärkt bzw. wirkt auf Deine Stickbewegung und hilft den Motoren schneller zu reagieren.

Mehr Infos zu Feedforward

- Feedforward BF 4.1 (https://github.com/betaflight/betaflight/wiki/4.1-Tuning-Notes#feed-forward-boost)
- Feedforward 2.0 BF 4.2 (https://github.com/betaflight/betaflight/wiki/Feed-Forward-2.0)

IN

OUT

Parameter

Parameter	BFD efault	Bezeichnung
ff_boost 4.115	1 115	Der Booster verstärkt den gesamten FF-Wert aber zu einem sehr
	-	frühen Zeitpunkt und veringert damit ein Delay
ff_interpolate_s	p4.1 (Average_	siehe Anhang der Tabelle 2)
		Es wird eine effiziente verzögerungsfreie Dämpfungsmethode
		verwendet, die Erhöhung des boosts durch Spikes verringert bzw.
ff_spike_limit 4.150	4.150	vermeidet. Liegt der normale Boost-Wert unter dem limit wird er
		durchgelassen, alles weitere, hohe Boosts die durch Spikes
		verursacht werden, werden gedämpft.
ff_max_rate_limit4.1100		ff_max_rate_limit unterbricht den Feedforward, wenn die
		Geschwindigkeit mit dem der Stick bewegt wird wahrscheinlich sein
		Ende des mechanischen Verfahrensweges erreicht. Dadurch wird
		ein Überschwingen gerade bei Beginn von Flips reduziert.

Parameter BFDefault Bezeichnung Glättungsfaktor für einkommende Signale. Funktioniert wie ein LowPassfilter. 0 = keine Glättung, höhere Werte wie der Defaultwert, ff smooth factor 4.237 erhöhen auch die Latzenzeit und wirkt dem eigentlich FF-Forward entgegen ff_interpolate_sp Ausprägung * OFF * ON * AVERAGE-2 : passt für die meisten Copter &

Freestyler * AVERAGE-3: * AVERAGE-4:

VBat

Allgemeines

Ab BF 4.2 wir mit VBAT-SAG-Kompensation Weitere Informationen: (https://github.com/betaflight/ betaflight/wiki/4.2-Tuning-Notes#dynamic-battery-sag-compensation)

IN

OUT

Parameter

Parameter BF DefaultBezeichnung

100% Kompensation der Batterieentladung vbat sag compensation4.2100 vbat_pid_gain ? OFF alte Version sollte immer OFF sein

RC-Command

Allgemeines

IN

Receiver-Daten Signal

OUT

Daten werden mit den eingstellten Rates verrechnet und gelten dann als das angewendete RCCommand-Eingangs-Signal

Parameter

Parameter BFDefaultBezeichnung

rc_interpolation rc_interp rc_inter_ch rc_inter_int

rc_smoothing_auto_smoothness (Default:10)

rc-smoothing-auto-smoothness setzt wie glatt der die RC-Signale sein sollen. Größere Werte erhöhen die Glättung vergrößern aber das RC-Delay. 10 ist optimal für die meisten allgemeinen Flüge. Racer bevorzugen 8 oder sogar 5. Das RC-Delay nimmt zwar ab, dafür können die Motor-Signale etwas unruhiger werden.

Setpoint

Allgemeines

In der weiteren Berarbietung der Eingangssignale werden diese als Setpoint bezeichnet und spiegeln das RC-Signal wieder allerdings durch eine Reihe von Parametern geglättet

IN

Aufbereitetes RC-Command Signal

OUT

Daten die mittels setpoint_smoothing nochmals geglättet werden werden an * Vorab-Fehler P-Berechnung * d/dt

Parameter

Setpoint/Setpoint smoothing beinhaltet eine Reihe von Parametern die das eigentlich Signal nochmals aufbereiten.

Parameter rc_smoothing_type setzt wie glat Werte erhöhe rc_smoothing_auto_smoothness 10 10 ist optima bevorzugen 8 dafür können rc_smoothing_input_Hz

setzt wie glatt der die RC-Signale sein sollen. Größere Werte erhöhen die Glättung vergrößern aber das RC-Delay. 10 ist optimal für die meisten allgemeinen Flüge. Racer bevorzugen 8 oder sogar 5. Das RC-Delay nimmt zwar ab, dafür können die Motor-Signale etwas unruhiger werden

ITerm Parameter

rc_smoothing_input_type

Allgemeines

ITerm Parameter dienen dazu das I-Signal die PID-Controllers entweder vor der Bearbeitung von ITerm oder nach ITerm zu beeinflußen.

Insbesondere sollen hier Peaks im ITerm eliminiert werden.

Die Nachfolgende Tabelle beinhaltet zwei zusätzliche Spalten **IN** und **OUT** sie bezeichnen woher die Daten kommen (IN) und wer sie verwertet (OUT)

Parameter	BIN OUT	DefaulBezeichnung
		iterm_windup ist eine alte Methode zur Unterdrückung
iterm_windup	MIXER ITerm	der iTerm-Akkumulation, wenn das Motordifferential
Tteriii_windup	IVIIAEN HEITH	einen benutzerdefinierten Schwellenwert überschreitet.
		In BF 4.2 wirkt iterm_windup nur noch auf YAW
		iterm_relax hat iterm_windup zur Vermeidung
iterm_relax	ITERM PID_SUM	von I-Anhäufungen auf Mini-Quads weitgehend ersetzt.
		iterm_relax ist hauptsächlich zur Vermeidung von
		bounce-backs

Parameter BfIN OUT DefaulBezeichnung

iterm_relax_type ITERM PID_SUM

Wenn der Pilot eine Änderung der Drehgeschwindigkeit anfordert, die für das Quad zu schnell ist, eilt das Gyrosignal dem Sollwert (SetPoint) hinterher und daraus entsteht ein mehr oder minder großes Fehlersignal. Der I-Term versucht nun diesen Fehler zu akkumulieren (aufsummieren) und versucht diese zu korrigieren. iterm relax versucht nun diese Akkumulation zu kontrollieren. Reicht der iterm relax nicht aus, sammeln sich die ITerm Fehler immer mehr an. Stoppt nun der Pilot seine Stickbewegung (z.B. in einem Flip), dann wird all der angesammelte ITerm-Fehler eine Gegenbewegung des Copters verursachen (BounceBack), der dann langsam ausklingen wird bis er wieder auf 0 ist. iterm_relax für Flip & Rolls und item windup für YAW, versuchen diese Bouncebacks zu kontrollieren und abzumildern. item relax cutoff begrennzt die ITerm Akkumulation.

iterm_relax_cutoff | ITERM PID_SUM

iterm_rotation GYRO-ITerm

 $Hsgyqir xexnsir fynpx { nxt QoHsgw,l xxt xxt } { { 2q ohsgw2svk3-ywnnk [nnhq npp,l xxt wx33k nxt yf 2gsq 3k vnnwqpef w3q ohsgw1 } { nnhq npp xliqif } K vnnwk Pef w2$