Weather and cycling in New York: The case of Citibike

Weather and cycling in New York: The case of Citibike

Authors

Ran An | Renee Zahnow | Dorina Pojani | Jonathan Corcoran

Acknowledgment

This is an Authors' Original Manuscript of an article whose final and definitive form, the Version of Record, has been published in *Journal of Transport Geography*, 2019, *doi.org/10.1016/j.jtrangeo.2019.04.016*, available online at: https://www.sciencedirect.com/science/article/pii/S0966692318307282?dgcid=author

Abstract

This study maps and models the effect of weather on cycling in New York whilst controlling for several built *and* natural environment characteristics *and* temporal factors. To this end, we draw on 12 months of disaggregate trip data from the Citibike public bicycle sharing scheme (PBSP) in New York, currently the largest public bicycle sharing system in the United States, and spatially integrate these data with information on land use, bicycle infrastructure, topography, calendar events and weather. Overall, we find that weather impacts cycling rates more than topography, infrastructure, land use mix, calendar events, and peaks. The policy implication is that, in northern latitudes which experience inclement weather for extended periods, creating state-of-the-art cycling infrastructure - sheltered, promptly cleared from snow, and potentially heated - may be much more important than in warm and sunny places if planners are to succeed in "getting people out of their cars."

Note

Accompanying figures and tables are at the end of this document.

1. Introduction

Weather and the propensity to cycle are inextricably linked (Nankervis 1999; Corcoran et al. 2014). Extensive empirical evidence demonstrates that inclement weather conditions act to supress cycling trips (more than other travel modes) because cyclists are exposed to the elements and thus vulnerable to their full effects (Nahal and Mitra 2018). This suppression of trips during bad weather is shown to be especially pronounced for non-utilitarian cycling trips where travellers are likely to have greater flexibility to re-schedule or cancel a planned trip to better suit shifts in prevailing conditions (Heinen et al. 2010). With climate change, extreme weather conditions are predicted to become more frequent and intense which goes to underscore the importance of developing a comprehensive empirical understanding of the weather-cycling relationship (Heaney et al. 2019). Developing this understanding will go some way to generating the necessary evidence from which tailored weather resilient cycling infrastructure can be better conceived and integrated into existing transit systems.

Existing weather-cycling studies have begun to unpack the way in which certain observed weather conditions, such as rain, temperature, wind, and humidity, as well as season or human-perceived variables, such as the heat index, explain variations in bicycle ridership (Schmiedeskamp and Zhao 2016). This empirical literature, which is based across a variety of situational and climatic contexts has, however, painted a somewhat varied picture. To this end, some studies have found that weather exerts an important impact explaining variations in ridership (Pucher and Buehler 2006) whilst others suggest that its effects are less prevalent (Dill and Carr 2003; Winters et al. 2007).

Despite increasing interest and a growing weather-cycling literature, further research is needed to bring greater clarity on the intricacies of the relationship in various contexts. In this paper we draw particular attention to one element of the weather-cycling relationship that is currently underdeveloped. More specifically, we seek to shed new light on the way in which weather conditions interact with characteristics of the built and natural environment, alongside temporal variations, to explain increases or decreases in cycling ridership. For example, a state-of-theart bike lane network, a high land use mix, or a flat topography might act to moderate the effects of inclement weather. Understanding such interactions will unveil important and previously unexplored subtleties in the weather-cycling relationship that we hope will begin to help eliminate apparent contradictions in the literature that include: high cycling rates in rainy Copenhagen, snowy Montreal, and scorching Seville and low cycling rates in balmy Sydney and Johannesburg (Pojani et al. 2018); or high cycling rates in hilly San Francisco and low cycling rates in flat East Anglian towns in the United Kingdom. Identifying environmental factors, built or natural, that in combination produce situations that support high bicycle ridership, regardless of weather conditions, can inform smarter cycling infrastructure design and implementation to navigate the potential effects of future climate changes on weather and resultant implications for bicycle ridership (Böcker et al. 2013).

The present study draws on mapping and modelling techniques to reveal the effect of weather on cycling in New York whilst controlling for a suite of built *and* natural environment characteristics *and* temporal factors. In particular we explore a series of interaction effects, which each capture the extent to which two characteristics occurring simultaneously exert a combinatorial effect on cycling ridership – for example how is cycling impacted when it is both wet and a weekend day or humid day in the hilliest parts of the cycling network. To this end, we draw on 12 months of disaggregate trip data from the Citibike public bicycle sharing scheme (PBSP) in New York, currently the largest public bicycle sharing system in the United States,

and spatially integrate these data with information on land use, bicycle infrastructure, topography, calendar events and weather.

The remainder of the article is organised as follows: The next section provides an overview of the current scholarship on the determinants of cycling and develops a conceptual framework. This serves to guide the analytical approach delineated in the third section. Section four presents the results before discussing their consequences and proposing a set of policy recommendations.

2. Background: Cycling determinants

We next review empirical scholarship to unpack the key determinants of cycling in order to inform the development of our conceptual model and guide the empirical analysis. To this end, we draw on existing reviews by Butterworth and Pojani (2018), Willis et al. (2015) and Heinen et al. (2010).

2.1 Natural environment factors

Weather. The transport-weather relationship is complex for all modes. Research has determined that inclement weather conditions can lead to trip re-scheduling, re-routing, and cancellation (De Palma and Rochat 1999; Sabir et al. 2010; Cools et al. 2010; Zanni and Ryley 2017). Cycling is particularly vulnerable to weather (Miranda-Moreno and Nosal 2011). Temperature variations have a major effect on decisions to cycle. Both excessively high and excessively low temperatures can deter cycling, in particular among recreational cyclists who engage in the activity by choice rather than for utilitarian purposes (Pucher and Buehler 2006; Brandenburg et al. 2007; Heaney et al. 2019; Helbich et al. 2014). Sensitivity to weather varies among geographic regions but generally cyclists perceive cold temperatures to be more unpleasant than hot temperatures (Heinen et al. 2010; Nankervis 1999). Cities with continental climates and distinct seasons see major variations in cycling rates between summer and winter, with fewer people cycling during the colder and darker months. In fact, more days of freezing temperatures per year are associated with lower levels of utilitarian cycling (Winters et al. 2007). The 'ideal' cycling temperature range appears to be between 17°C and 33°C; although in cities with continental climates cycling occurs in much wider temperature ranges, e.g., -4°C to 40°C (Heinen et al. 2010; de Chardon 2017; Brandenburg et al. 2007). Precipitation, including rain and/or snow, or even the chance of precipitation, are among the most influential weather variables for determining decisions to cycle. Precipitation is a particularly strong deterrent for women, recreational cyclists, and winter commuters (Nosal and Miranda-Moreno 2012; Heinen et al. 2010; Winters et al. 2007; Nankervis 1999; Gebhart and Noland 2014; Corcoran et al. 2014). Strong wind and high humidity are also well documented deterrents to cycling (Rietveld and Daniel 2004; Nankervis 1999; de Chardon 2017; Corcoran et al. 2014).

<u>Topography</u>. Hilliness has a negative effect on cycling rates, especially among inexperienced cyclists (Heinen et al. 2010; Rietveld and Daniel 2004; Mateo-Babiano et al. 2016). Cyclists tend to choose routes with flat or gentle gradients. Uninterrupted topography - for example, by harbours, bays, and rivers – has also been found to favour cycling as it enables more direct routes to a destination (Buehler and Pucher 2011; Pucher et al. 2011; Vandenbulcke et al. 2011).

2.2 Built environment factors

Infrastructure. The availability and quality of cycling infrastructure is a key factor in cycling rates, especially among women, children, and inexperienced cyclists (Krizek et al. 2009; Dill and Carr 2003; Nelson and Allen 1997; Mateo-Babiano et al. 2016; El-Assi et al. 2017). Cyclists prefer higher levels of separation from other traffic, especially on major roads with higher traffic intensity and on intersections or roundabouts, as this imparts much higher levels of safety, both objectively and subjectively (Heinen et al. 2010; Reynolds et al. 2009; Krizek et al. 2009; Pucher and Buehler 2006). For example, continuous and segregated paths are preferred to (patchy) curb side lanes, and their presence leads to higher cycling rates (Dill and Carr 2003; Nelson and Allen 1997; Pucher et al. 2010a; Pucher and Buehler 2006; de Chardon 2017; Vandenbulcke et al. 2011). One cross-sectional study of 43 cities in the US found that each additional mile of bicycle lane per square mile produced an increase of 1% in the share of cycling commuters (Dill and Carr 2003). Narrower roads with fewer crossings and more pavement markings such as coloured lanes and bike boxes (advanced stop lines) are also preferred (Pucher et al. 2010a; Reynolds et al. 2009). In addition to 'hard' cycling infrastructure, there is some evidence that visually appealing urban settings attract higher cycling rates (Heinen et al. 2010). Exceptionally, some older US-based studies find that cycling rates are only moderately associated with infrastructure but this likely reflects the limited bicycle infrastructure in the case study settings (Moudon et al. 2005).

Land-use mix. A mix of land uses is linked to smaller distances between destinations, which generally results in higher shares of cycling as a commute mode (Heinen et al. 2010). Given that both distance and land-use mix are key factors in decisions to cycle, cycling rates are higher in (a) smaller and medium-sized cities, (b) cities with denser population and street network patterns, (c) inner city areas, as opposed to suburbs, and (d) fine-grained neighbourhoods (Heinen et al. 2010; Pucher and Buehler 2006; Pucher et al. 2011; Vandenbulcke et al. 2011; Saelens et al. 2003). The maximum acceptable cycling distance varies by place and by gender, with women willing to cycle shorter distances than men. But generally, there is a strong market for trips shorter than 2.5 km and cycling rates decline after about 4 km (Krizek et al. 2009). Regular cyclists tend to live closer to their work compared to commuters who employ other transport modes (Heinen et al. 2010).

2.3 Temporal factors

<u>Calendar events</u>. Public holidays and weekends, have been identified as a factor influencing ridership patterns (Corcoran et al. 2014; Borgnat et al. 2011; Brandenburg et al. 2007). Such periods reflect changes in the routine activities of individuals and households, which, in turn, can encourage or suppress bicycle trips. Some studies suggest that weekend trips are shorter and slower than weekday trips (Mateo-Babiano et al. 2016).

<u>Peaks</u>. During regular weekdays, patterns of bicycle trips change during peak travel periods. Peak travel periods are times of the day when commuting is highest. These periods tend to align with socially prescribed activities such as the 9-5pm work day or school hours. For example, in Lyon, France and Brisbane, Australia, a trimodal weekday peak is evident, reflecting commute trips in the morning and evening peak periods and a smaller peak around lunchtime (Borgnat et al. 2011; Mateo-Babiano et al. 2016). Studies point to how weather exerts a larger effect during off-peak periods (Zhou et al. 2017) and weekends (Al Hassan and Barker 1999) where travellers are likely to have greater flexibility to adjust travel plans according to shifts in prevailing conditions (or weather predictions).

2.4 Other factors

In addition to the abovementioned factors, the propensity to cycle is also known to be influenced by a series of other factors including socio-economic characteristics, household structure, gender and ethnicity, attitudes and perceptions, social norms, cultural traditions, image and identity, habits and routines, transportation costs, urban composition (e.g., a high percentage of college students), physical fitness, fear of crime, and traffic law enforcement levels (Willis et al. 2015; Heinen et al. 2010; Pucher and Buehler 2006; Pucher et al. 2010a; Pojani et al. 2017). These mostly *internal* factors fall outside of our study scope given the nature of the data we employed Bikeshare trip data do not contain characteristics of the individual riders, and as such, do not permit us to examine of the effect of socioeconomic or psychological factors on cycling in New York. Further, there is little that can be done by transport planners to *change* these internal, individual factors to enhance cycling propensity. Therefore, we focus on *external* factors, such as the natural and built environment and temporal factors. It is these external factors that are amenable to modification through the manipulation of environmental conditions using smart transport infrastructure and planning strategies.

2.5 Conceptual framework: Cycling determinants

Based on the review of the empirical literature concerning the determinants of cycling we have constructed a three-point conceptual framework, which has guided our analytical approach (Figure 1).

Existing scholarship has tended to place a particular emphasis on a subset of, rather than consider all of, the variables included in our framework. For example, Schmiedeskamp and Zhao (2016) examined the weather-cycling interaction in relation to temporal factors (such as holidays or day of the week). Zhao et al. (2018) examined the same interaction in relation to cycling infrastructure and temporal factors, such as day of week and time of day combinations. Nahal and Mitra (2018) assembled a comprehensive model, which examined the effect of commute distances, cycling infrastructure, land use mix, and age of housing in neighbourhoods, in addition to socio-demographic factors, on the weather-cycling relationship. However, their empirical analysis was limited to cyclists who commute to the University in Toronto; thus, the findings might not be widely applicable. The study by El-Assi and colleagues (2017) presented arguably the most inclusive conceptual and empirical model to date by drawing on bikeshare ridership data for Toronto and incorporating hourly weather information, population and employment data, and bicycle and other transport infrastructure data. In combination, these studies indicate that there is no single, silver-bullet factor that determines cycling rates but rather a complex web of forces (see Cervero et al. 2019). Our framework recognises this complexity. Furthermore, we embrace this complexity through the introduction of interactions into our modelling framework. More specifically, we capture how combinations of our independent variables, when simultaneously present, exert significant effects on cycling. To this end, we are now able to explore the extent to which a weekend day that is wet or a humid day in a hilly district are important factors in explaining variations in the number of cycling trips.

3. Methodology

3.1 Case study context

At 8.5 million inhabitants, New York City (NYC) is the most populous urban conurbation in the United States. It comprises five boroughs (Brooklyn, Queens, Manhattan, The Bronx, and

Staten Island). The city experienced a doubling in cycling over the decade leading to 2010 (Pucher et al. 2010b). The Citibike public bicycle sharing system is located across Brooklyn, Queens and Manhattan (Figures 2a and 2b)¹. Beginning operations in 2012, it is now the largest is the United States, comprising 12,000 bicycles, 750 stations, 130,000 registered members, and 450,000 daily bicycle trips (Citibike 2017).

The NYC climate is classified as *humid continental* by the Köppen classification (Köppen 1900; Kottek et al. 2006). As such, it is characterised by cold and snowy winters, with January and February having average daily temperatures below -3 degrees Celsius. Summers are hot and humid, with temperatures averaging around 29 degrees Celsius in July, but relatively short (Figure 3). The topography of NYC is relatively flat. There is only a 30.5 metre variation in height across our study area and a mean slope of 4.7 degrees; the steepest gradient on a cycle path is 24% (West End Avenue).

3.2 Data and analysis

To explore system-wide ridership patterns we drew on trip data from Citibike (Citibike 2018) and a publically available weather database (Weather Underground 2018). The choice to employ Citibike rather than population survey data owes to the coverage of the dataset. Population surveys tend to be problematic in that response rates are often low. Additionally, surveys rely on participants' travel diaries, and human memory is notoriously fallible (Stopher, 1992; Wolf, et al., 2001; Stopher and Shen, 2011). By contrast, the Citibike dataset captures every trip within a determined period, rather than just a sample of trips and therefore for our study design that is concerned with metropolitan-wide cycling ridership patterns is best suited. As we highlight in the discussion, much opportunity exists to develop methods to integrate bikeshare data with population surveys to extend our understanding of 'objective' characteristics via bikeshare data [along with other datasets describing the physical environment] allied with information on individuals, households and 'subjective' characteristics via survey data.

While rental bicycle systems have existed for nearly half a century, the specificity of modern bike-sharing is that stations are fully automated and computerised. This allows for system-wide management allied with the capacity to monitor and record the state of the system in real-time. In some cases, the implementation of a bikeshare system in itself leads to slight increases in bicycle use and also in private bicycle ownership (Castillo-Manzano et al. 2015; Fishman 2016; Nadal 2007). As such, the findings of this study have the potential to inform design and planning of PBSPs, in addition to supporting planning for cycling transport more broadly.

Our Citibike data includes 622 cycle stations situated across 17 NYC Community Districts. Constructed as early as 1975, Community Districts (59 in total) are administrative units used by the City of New York for the planning and administration of public services. Each district has a community board which advises on matters such as land use and zoning, and participates in the NYC budget process (Berg 2007). The 'statements of needs' in New York (e.g., requests for new cycle lanes, bus stops, parks, and other amenities and services) are issued by Community Districts. The Community Districts within our study area vary in both physical size (from less than 243 hectares to almost 1,600 hectares) and in population (from 51,700 residents to over 219,900). Given their diversity and distinctiveness along with their importance in city planning, Community Districts were considered as an appropriate unit of analysis. The selection of this unit of analysis is further informed by an examination of all bicycle trips highlighting that on average 37% of trips begin and end in the same Community District and 72% end in a neighbouring Community District. In lieu of GPS-based data that

captures the actual path of a given bike trip, we consider that Community Districts (and their neighbouring districts) offer an appropriate scale that acknowledges their distinctive planning function along with broadly reflecting the underlying distribution of bikeshare trips. In sum, we argue that this unit enables us to capture the way in which natural and built environment features vary across the study space whilst simultaneously unpacking the role played by weather on the cycling ridership (New York City Planning 2018).

The study proceeded in two steps.

First, to visually explore sub-system ridership patterns we employed flow-comaps (Tao et al. 2014). Flow-comaps reveal the way in which weather and temporal factors exert an influence on the spatial patterns of cycling across a set of locations. The flow-comap is an augmentation of two well established mapping techniques to visually depict spatial movement patterns, namely the flow map (Tobler 1987) and the comap (Brunsdon 2001). Flow maps have long been employed by geographers to visualise the movement of populations and commodities between a point of origin and destination using arrows to symbolise direction and varying the width of the line to indicate the volume of the flow. The comap introduces the capacity to visually explore multivariate spatial data by segmenting the data into a panel of maps. Each of these depicts the relationship between a pair of variables that are conditioned on a third variable. Flow-comaps have already been used in various urban planning sub-disciplines, in addition to transport. For example, Corcoran et al. (2007) have employed comaps to explore the relationship between the locations of fire incidents and their variation by different aggregations of time (i.e., month, day, and hour).

Second, we examined the impact of weather features and cycle station characteristics on ridership in NYC Community Districts. We use the log-normalized count of cycling trips in panel regression models that take into account clustering on time (level one) and Community District (level two) variables. Independent (predictor) variables represent the key components of the natural, built, and temporal environment around a cycle station, among which the principal is weather. The weather variables are included in the model at level one (time variant) while elements of the built and natural environment, measured at the level of the Community District, are included in the model at level two (time stable). Community District variables are also included as spatially lagged terms to estimate the influence of the physical characteristics of the surrounding Community Districts. Spatially lagged terms were computed using Stata software with first-order rook contiguity. For the focal community district, the spatially lagged measure of land mix for example, indicates the average land use mix among contiguous districts. The list of independent variables is presented in Table 1. The multilevel regression analysis tests the relationship between weather and cycle trips whilst accounting for the physical characteristics of the bikeshare station environment.

Existing transport research suggests that the strength of the relationship between weather and people's activities may vary dependent on whether the activity is 'obligatory' or 'discretionary' (Bocker et al. 2013; Nosal and Miranda-Moreno 2012). Therefore, we explicitly tested whether the link between weather and cycling trips differs on weekends and public holidays, when people are more likely to be engaging in discretionary activities, compared to days of working/school week (i.e., Monday through to Friday). We also estimated the moderating effects of each of the weather variables on the influence of the physical environment of the bike station on cycling trips. In total we examined 20 interactions between the weather characteristics: temperature; rainfall; humidity; wind; snow, and four separate variables (1) weekend/weekday; (2) elevation; (3) infrastructure; and, (4) land use mix. Here we report the results of four interaction effects that were both statistically significant and meaningful.

4. Results

4.1 Sub-system analysis

The flow co-maps shown in Figure 4 (a to h) visually depict the intra- and inter-community spatial patterns of Citibike ridership. Figure 4a provides an overall summary of these spatial patterns. It reveals that the Manhattan portion of the Citibike scheme accounts for the majority of both intra- and inter-community trips, with communities 46 (Chelsea, Clinton) and 47 (Midtown Business District) being especially popular. The two communities located in Queens (38: Sunnyside, Woodside and 41: Astoria, Long Island City) recorded the fewest number of trips.

Figure 4b examines the variation in spatial patterns over a 24 hour period. Most trips occur between the afternoon and evening (1 pm and 7 pm); the fewest number of trips is recorded during the morning period (5 am to 10 am). Communities 46 and 47 are major locales for trips during all periods; however 66 (Greenwich Village, Soho), 68 (Lower East Side, Chinatown) and 43 (Battery Park City, Tribeca) also display relatively high numbers of inflows and outflows across each time period. That is especially the case for 66 and 68 between 6 pm and 11 pm.

Next, Figure 4c visualises how Citibike trips vary over a 24 hour period by weekdays and weekends. Common to patterns captured in Figure 4b, communities 46 and 57 remain key in terms of trip origins and destinations. That is especially the case during 1 pm to 7 pm on weekdays; however, communities 66 and 68 surpass this number during weekends between both 9 am to 2 pm and 1 pm to 7 pm. Figure 4d examines differences in trip patterns during public and school holidays revealing that, spatially, trip patterns for these two holiday periods are broadly alike. The principal differences are in the number of trips, wherein more trips take place during school holidays than public holidays.

The effect of rain across weekdays and weekends is depicted in Figure 4e. Rain appears to exhibit a suppressing effect that is consistent across both weekdays and weekends. All interand intra-community trips are equally reduced during rainfall. With regard to temperature, Figure 4f provides some evidence to suggest that cooler temperatures (down to minus 7 degree Celsius) are associated with a reduction in ridership. That is especially the case for weekends.

Wind speed, examined in Figure 4g, appears to exert a rather dramatic effect on ridership on weekends where winds are in excess of 6 km/h. Strong winds suppress inter- and intracommunity trips equally. The same effect is not visible in weekday travel. The latter appears largely unaffected by wind. Finally, Figure 4h reports the effect of snow on ridership across weekends and weekdays. It shows that, compared to all other weather parameters, the presence of snow on the ground has the most dramatic effect on ridership, especially during the weekend.

4.2 System-wide analysis

Summary statistics for all variables included in the analysis are reported in Table 2. The correlations between the variables were considered and are presented in Table 3. The magnitude of the correlations between the independent variables suggested that multicollinearity would not be problematic; all independent variables had variance inflation factors less than 3.0. There was no evidence that the simultaneous inclusion of these variables impacted analytic results.

The results of the five regression models are presented in Table 4. Model 1 examines the direct relationship between average daily weather indicators and daily number of cycling trips initiated from NYC community districts while controlling for natural and built environment characteristics. The results demonstrate a significant relationship between weather and cycling in NYC across all weather parameters.

Consistent with existing scholarship, higher temperature predicted more cycling trips (β = 0.154, p < .001), regardless of the natural and built environment characteristic in which those trips took place. On the other hand, higher rainfall (β = -0.153, p < .001); higher humidity (β = -0.037, p < .01); higher wind speed (β = -0.057, p < .001) and the presence of snow (β = -0.790, p < .001) predicted fewer cycling trips. There was also evidence of fewer cycling trips on weekends and public holidays when compared to workdays (i.e., Monday through Friday) (β = -0.127, p < .001). The average daily temperature had a greater influence on cycling trips during weekends compared to weekdays (β = 0.070, p < .01). While there was no significant relationship between the physical characteristics of the origin Community District and cycling trips, level of elevation in the spatially contiguous Community Districts was significantly and negatively associated with cycling trips (β = -2.262, p < .001).

Of the twenty interactions effects tested, four were statistically significant. The average daily temperature had a greater influence on cycling trips during weekends compared to weekdays (β = 0.070, p < .01); in Community Districts where the topography is flatter compared to areas with greater elevation (β = -0.136, p < .001); and in Community Districts with poorer cycle infrastructure (β = -0.105, p < .001). Similar to temperature, average daily humidity had a greater influence on cycling trips during weekends compared to weekdays (β = 0.048, p < .05). There was no evidence that the association between other weather parameters (i.e., rainfall, wind speed, snow) and cycling trips was contingent upon the day of the week or physical characteristics of the bike station (see Figures 5 to 8)

5. Discussion and conclusion

The decision to cycle is a complex interplay of personal, situational, and natural- and built-environmental factors. Identifying the key factors that influence cycling across a metropolitan area is a non-trivial task. In this paper, we have sought to focus on the way in which weather influences cycling in NYC, whilst accounting for other well-known determinants of cycling, namely land-use, bicycle infrastructure, topography, and calendar events. Through the use of both mapping and modelling, we have identified a number of important findings, which, taken together, elucidate the cycling-weather relationship.

Weather and cycling are related across each of the weather parameters investigated in the context of NYC. Overall, we find that the weather impacts the number of cycling trips more than the topography, infrastructure, land-use mix, calendar events, and travel peaks. Consistent with existing scholarship, a higher temperature (up to 28°C) predicts more cycling trips (Heaney et al. 2019), regardless of the natural- and built-environment characteristics in which those trips take place. In good weather, characterised by temperate conditions and an absence of strong winds, humidity and/or precipitation, people cycle more. This relationship remains present after accounting for land-use mix, topography and bicycle path availability.

On the other hand, rainy, humid, windy and especially snowy weather leads to fewer cycling trips — which is also consistent with existing studies (Heaney et al. 2019). The presence of bicycle paths, a high land-use mix, and a flat topography moderate the effects of inclement weather but not in a marked manner. However, this finding may be an artefact of the spatial

unit of analysis used in this study, allied to the fact that we employed an area-based model rather than a trip-based model. This finding may also be due to a lack of high quality and dense cycling networks in New York City – which is a problem throughout the United States (see Pucher et al. 2011). A useful follow-up study could draw on Citibike GPS tracking data to identify the spatial circuits taken by riders and the extent to which the latter seek to use bicycle paths and avoid other parts of the road network. This GPS-based data would also be helpful to identify locations where riders have lingered during a given trip such that we can better understand how particular types of land-use and topography interact to inhibit or facilitate tripmaking and route choices (Heesch and Langdon 2017).

With regard to temporal factors, fewer cycling trips are taken during weekends and public holidays compared to weekdays - especially in colder temperatures. Likely, weekday trips are ostensibly utilitarian in nature (work-related); thus there is less opportunity to cancel or postpone even when the weather is inclement. Existing research (see for example, Brandenburg et al., 2007) also suggests that calendar events help to explain trip variations as they disrupt the routines of individuals and families. The effect of wind and snow is dramatic on weekends but not during weekdays. Most cycling trips occur between the afternoon and early evening when temperatures are typically the warmest rather than being closely aligned with the two commute peaks.

Bikesharing data (such as that used in this study) provide excellent coverage of cycling patterns, and can be linked, relatively easily, to 'objective', physical characteristics of the cycling environment, such as topography, bicycle infrastructure, traffic conditions, access and linkage, and transportation alternatives. However data lack information on 'subjective' characteristics (safety and danger, convenience, cost and income, valuation of time, valuation of exercise, health condition, family circumstances, habits, attitudes and values, public image, and peer group acceptance) – all of which are known to influence cycling (FHWA 1992; Pucher et al. 1999; Pojani et al. 2017). To further unpack the effect of these important subjective factors, the use of additional datasets is needed. One fruitful future avenue of research could explore ways to integrate traditional travel survey/diary data with bikesharing databases, to potentially provide a more complete empirical foundation through which to explain cycling patterns and behaviours.

Taken together, our findings hold a number of important policy implications. Clearly, urban planners and transport policy makers must be much more mindful of the role of weather when planning, designing or retrofitting active travel spaces. As Susan Joy Hassol, director of Climate Communication, a non-profit organisation devoted to science outreach, said in a press interview: "Weather, and especially extreme weather, is how most people will experience climate change... You don't experience the slow change in average temperature. What you experience are the changes in extreme weather that are brought about" (Plumer 2019). In practical terms, predicted shifts in the patterns and intensity of severe weather might mean that in creating state-of-the-art cycling infrastructure – that is, sheltered, promptly cleared of snow, and potentially heated or cooled - may become the key to 'getting people out of their cars.' In cold, northern latitudes this may be more important than in warm, sunny places.

There is some evidence that climate and weather sensitive cycling infrastructure is already being both considered and implemented. For example, the Netherlands is building the longest heated bicycle path in western Europe (totalling 1.7 kilometres in length) to connect Wageningen and Arnhem, which will be kept snow-free (Boffey 2018). Meanwhile, Qatar has proposed to build a shaded, solar-powered, mist-cooled bicycle path of 30 kilometres (Naparstek 2006), while Berlin is planning on converting an elevated rail line (9 kilometres)

into a covered cycle path (Finger 2017). Similarly, Singapore has recommended the creation of covered and/or shaded cycling paths in its new Walking and Cycling Design Guide (URA and LTA 2018).

Weather intrinsically influences our everyday behaviours. The decision to cycle is far from exempt from the influences of weather that together with walking, cycling are the most vulnerable modes of travel to variations in prevailing conditions. Climate change is set to place a growing and disproportionate influence [compared to motorised modes] on such methods of travel underscoring the urgency for us to develop a rigorous understanding of the weather-cycling relationship. Indeed, if cities are to increase cycling patronage there is a compelling need to expand the cross-national research on cycling determinants, and understand how these determinants vary across space, time, climatic and cultural contexts. Once this evidence base on cycling is assembled, urban planners will be far better equipped to (re)design urban environments in a manner that best protects citizens and offers the most conducive conditions for active travel.

References

- Al Hassan, Y., & Barker, D. J. 1999. "The impact of unseasonable or extreme weather on traffic activity within Lothian region, Scotland." *Journal of Transport Geography*, 7(3), 209-213.
- Berg, B. 2007. New York City politics: governing Gotham. Newark, NJ: Rutgers University Press.
- Borgnat, P., Robardet, C., Rouquier, J., Abry, P., Flandrin, P., Fleury, E. 2011. "Shared Bicycles in a City: A Signal Processing and Data Analysis Perspective." *Advances in Complex Systems* 14(03):415-438
- Böcker, L., Dijst, M., Prillwitz, J. 2013. "Impact of everyday weather on individual daily travel behaviours in perspective: a literature review." *Transport Reviews* 33(1):71-91.
- Boffey, D. 2018. "Europe's longest heated cycle path to connect Dutch cities." *The Guardian* 10th April, 2018.
- Brandenburg, C., Matzarakis, A., Arnberger, A. 2007. "Weather and cycling: a first approach to the effects of weather conditions on cycling." *Meteorological Applications* 14(1):61-67.
- Brunsdon, C. 2001. "The comap: exploring spatial pattern via conditional distributions." *Comput Environ Urban Syst* 25(1):53–68.
- Buehler, R., Pucher, J. 2011. "Cycling to work in 90 large American cities: new evidence on the role of bicycle paths and lanes." *Transportation* 39(2):409-432.
- Butterworth, E., Pojani, D. 2018. "Why isn't Australia a cycling mecca?" *European Transport* 69(4):1-22.
- Castillo-Manzano, J., Castro-Nuño, M., López-Valpuesta, L. 2015. "Analyzing the transition from a public bicycle system to bicycle ownership: a complex relationship." *Transportation Research D* 38:15-26.
- Cervero, R., Denman, S., Jin, Y. 2019. "Network design, built and natural environments, and bicycle commuting: Evidence from British cities and towns." *Transport Policy* 74:153-164.
- Citibike. 2017. Citbike, System data. Available at: https://www.citibikenyc.com/system-data Last accessed 31st August 2018. New York.
- Citibike. 2018. Citbike. Available at: https://www.citibikenyc.com/ Last accessed 31st August 2018. New York.
- Cools, M., Moons, E., Wets, G. 2010a. "Assessing the impact of weather on traffic intensity." *Weather, Climate, and Society* 2(1):60-68.
- Corcoran, J., Higgs, G., Brunsdon, C., Ware, A. 2007. The use of comaps to explore the spatial and temporal dynamics of fire incidents: a case study in South Wales, United Kingdom. *The Professional Geographer* 59(4):521-536.
- Corcoran, J., Li, T., Rohde, D., Charles-Edwards, E., Mateo-Babiano, D. 2014. "Spatiotemporal patterns of a Public Bicycle Sharing Program: the effect of weather and calendar events." *Journal of Transport Geography* 41:292-305.
- de Chardon, C., Caruso, G., Thomas, I. 2017. "Bicycle sharing system 'success' determinants." *Transportation Research A* 100:202-214.

- de Palma, A., Rochat, D. 1999. "Understanding individual travel decisions: results from a commuters survey in Geneva." *Transportation* 26(3):263-281.
- Dill, J., Carr, T. 2003. "Bicycle commuting and facilities in major US cities: if you build them, commuters will use them." *Transportation Research Record* 1828:116-123.
- El-Assi, W., Mahmoud, M.S., Habib, K.N. 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto." *Transportation* 44(3):589-613.
- Federal Highway Administration (FHWA), U.S. Department of Transportation. 1992. "Reasons why bicycling and walking are not being used more extensively as travel modes." National Bicycling and Walking Study. Available at: https://safety.fhwa.dot.gov/ped_bike/docs/case1.pdf. Last accessed on 15th April 2019.
- Finger, T. 2017. "Radbahn could become Berlin's first covered cycle path." Urban Independence 13th April, 2017.
- Fishman, E. 2016. "Bikeshare: A review of recent literature." *Transport Reviews* 36(1):92-113.
- Gebhart, K., Noland, R. 2014. "The impact of weather conditions on bicycleshare trips in Washington, DC." *Transportation* 41(6):1205-1225.
- Heaney, A. K., Carrión, D., Burkart, K., Lesk, C., Jack, D. 2019. "Climate change and physical activity: estimated impacts of ambient temperatures on bikeshare usage in New York City." *Environmental Health Perspectives* 127(3):037002.
- Heesch, K., Langdon, M. 2017. "The usefulness of GPS bicycle tracking data for evaluating the impact of infrastructure change on cycling behaviour." *Health Promotion Journal of Australia* 27(3):222-229.
- Heinen, E., van Wee, B., Maat, K. 2010. "Commuting by bicycle: an overview of the literature." *Transport Reviews* 30(1):59-96.
- Helbich, M., Böcker, L., Dijst, M. 2014. "Geographic heterogeneity in cycling under various weather conditions: evidence from Greater Rotterdam." *Journal of Transport Geography* 38:38-47.
- Köppen, W. 1900. "Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt." *Geographische Zeitschrift* 6(11. H):593-611.
- Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F. 2006. "World map of the Köppen-Geiger climate classification updated." *Meteorologische Zeitschrift* 15(3):259-263.
- Krizek, K., Forsyth, A., Baum, L. 2009. "Walking and cycling international literature review." Report for the Department of Transport, Melbourne. Available at: http://www.pedbikeinfo.org/cms/downloads/Krizek%20Walking%20and%20Cycling%20 Literature%20Review%202009-1.pdf. Last accessed on 11th January 2019.
- Mateo-Babiano, I., Bean, R., Corcoran, J., Pojani, D. 2016. "How does our natural and built environment affect the use of bicycle sharing?" *Transportation Research A* 94:295-307.
- Miranda-Moreno, L., Nosal, T. 2011. "Weather or not to cycle: temporal trends and impact of weather on cycling in an urban environment." *Transportation Research Record* 2247:42-52.

- Moudon, A.V., Lee, C., Cheadle, A.D., Collier, C.W., Johnson, D., Schmid, T.L., Weather, R.D. 2005. "Cycling and the built environment, a US perspective." *Transportation Research Part D* 10(3):245-261.
- Nadal, L. 2007. "Bike sharing sweeps Paris off its feet." Sustainable Transport 19:8-12.
- Nahal, T., Mitra, R. 2018. "Facilitators and barriers to winter cycling: case study of a downtown university in Toronto, Canada." *Journal of Transport & Health* 10:262-271.
- Nankervis, M. 1999. "The effect of weather and climate on bicycle commuting." *Transportation Research A* 33(6):417-431.
- Naparstek, A. 2006. "Mist-cooled bike paths being built in Qatar." *StreetsBlog* 10th August, 2006.
- Nelson, A., Allen, D. 1997. "If you build them, commuters will use them." *Transportation Research Record* 1578:79-83.
- Nosal, T., Miranda-Moreno, L. 2012. "Cycling and weather: a multi-city and multi-facility study in North America." *Transportation Research Record* 12-2917. Presented at 91st Annual Meeting of the Transportation Research Board, Washington, D.C.
- New York City Planning. 2018. "Community District Profiles." Available at: https://communityprofiles.planning.nyc.gov/. Last accessed 10th September, 2018. New York.
- Plumer, B. 2019. "How the weather gets weaponized in climate change messaging." The New York Times. 1st March, 2019.
- Pojani, D., Bakija, D., Shkreli, E., Corcoran, J., Mateo-Babiano, I. 2017. "Do northwestern and southeastern Europe share a common "cycling mindset"? Comparative analysis of beliefs toward cycling in the Netherlands and the Balkans." *European Journal of Transport and Infrastructure Research* 17(1):25-45.
- Pojani, D., Butterworth, E., Cooper, J., Corcoran, J., Sipe, N. 2018. "Australian cities are far from being meccas for walking and cycling." *The Conversation* 5 Feb. Melbourne. Available online at: https://theconversation.com/australian-cities-are-far-from-being-meccas-for-walking-and-cycling-87331. Last accessed on 11 Jan. 19.
- Pucher, J., Komanoff, C., Schimek, P. 1999. "Bicycling renaissance in North America? Recent trends and alternative policies to promote bicycling. *Transportation Research Part A* 33:625-654.
- Pucher, J., Buehler, R. 2006. "Why Canadians cycle more than Americans: a comparative analysis of bicycling trends and policies." *Transport Policy* 13(3):265-279.
- Pucher, J., Buehler, R., Seinen, M. 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies." *Transportation Research A* 45(6):451-475.
- Pucher, J., Dill, J., Handy, S. 2010a. "Infrastructure, programs, and policies to increase bicycling: an international review." *Preventive Medicine* 50:S106-125.
- Pucher, J., Thorwaldson, L., Buehler, R., Klein, N. 2010b. "Cycling in New York: innovative policies at the urban frontier." *World Transport Policy and Practice* 16(1):7-50.

- Reynolds, C., Harris, A., Teschke, K., Cripton, P., Winters, M. 2009. "The impact of transportation infrastructure on bicycling injuries and crashes: a review of the literature." *Environmental Health* 8:47-66.
- Rietveld, P., Daniel, V. 2004. "Determinants of bicycle use: do municipal policies matter?" *Transportation Research A* 38:531-550.
- Sabir, M., Ommeren, J., Koetse, M., Rietveld, P. 2010. "Impact of weather on daily travel demand." Proceedings of the Tinbergen Institute discussion paper, Vrije University, Amsterdam.
- Saelens, B., Sallis, J., Frank, L. 2003. "Environmental correlates of walking and cycling: findings from the transportation, urban design, and planning literatures." *Annals of Behavioral Medicine* 25(2):80-91.
- Schmiedeskamp, P., Zhao, W. 2016. "Estimating daily bicycle counts in Seattle, Washington, from seasonal and weather factors." *Transportation Research Record* 2593:94-102.
- Stopher, P. R. 1992. "Use of an activity-based diary to collect household travel data." *Transportation*, 19(2), 159-176.
- Stopher, P., Shen, L. 2011. "In-depth comparison of global positioning system and diary records." *Transportation Research Record*, 2246(1), 32-37.
- Tao, S., Rohde, D., Corcoran, J. 2014. "Examining the spatial-temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap." *Journal of Transport Geography* 41:21-36.
- Tobler, W. 1987. "Experiments in Migration Mapping by Computer." *American Cartographer* 14 (2): 155–163.
- Urban Redevelopment Authority and Land Transport Authority. 2018. "Walking and cycling: design guide." Report, Singapore. Available online at: https://www.ura.gov.sg/Corporate/Guidelines/Active-Mobility/-/media/BD725DB201DB496A93569C8072DD9FD0.ashx. Last accessed 8th March, 2019.
- Vandenbulcke, G., Dujardin, C., Thomas, I., de Geus, B., Degraeuwe, B., Meeusen, R., Panis, L. 2011. "Cycle commuting in Belgium: spatial determinants and 're-cycling' strategies." *Transportation Research A* 45(2):118-137.
- Weather Underground. 2018. Available at: https://www.wunderground.com/ Last accessed 11th September, 2018. Brookhaven, GA.
- Willis, D., Manaugh, K., El-Geneidy, A. 2015. "Cycling under the influence: summarizing the influence of perceptions, attitudes, habits, and social environments on cycling for transportation." *International Journal of Sustainable Transportation* 9(8):565-579.
- Winters, M., Friesen, M., Koehoorn, M., Teschke, K. 2007. "Utilitarian bicycling: a multilevel analysis of climate and personal influences." *American Journal of Preventive Medicine* 32(1):52-58.
- Wolf, J., Guensler, R., Bachman, W. 2001. "Elimination of the travel diary: Experiment to derive trip purpose from global positioning system travel data." *Transportation Research Record*, 1768(1), 125-134.
- Zanni, A., Ryley, T. 2015. "The impact of extreme weather conditions on long distance travel behaviour." *Transportation Research Part A* 77:305-319.

Zhao, J., Wang, J., Xing, Z., Luan, X., Jiang, Y. 2018. "Weather and cycling: mining big data to have an in-depth understanding of the association of weather variability with cycling on an off-road trail and an on-road bike lane." *Transportation Research Part A* 111:119-135.

Zhou, M., Wang, D., Li, Q., Yue, Y., Tu, W., & Cao, R. 2017. "Impacts of weather on public transport ridership: Results from mining data from different sources." *Transportation Research Part C: Emerging Technologies* 75, 17-29.

Notes

¹ Citibike is also located in New Jersey. However the New Jersey portion of the PBSP is excluded from this study given that the system's expansion outside of NYC is relatively recent (2016) and has a comparatively limited number of docking stations (50).

Tables

Table 1. List of variables used in modelling.

	Category	Variable	Description	Data source							
	DEPENDENT VARIABLE										
	cycling trips		number of cycle trips per day from community district i	Citibike data for a 12 month period (1st July, 2016 to 30th June, 2017) was procured from the operators' website (Citibike System Data, 2017) and included a total of 14,985,889 individual trips.							
	INDEPENDENT V	ARIABLES									
		temperature	average daily temperature in degrees Celsius								
rs		rainfall	total daily rainfall in mm	Climate and weather data was procured from Weather							
rt facte		humidity	average daily humidity (percentage)	Underground history data and included hourly observations for temperature, humidity, wind speed, precipitation and snow cover. (Weather Underground 2018)							
эптеп	weather	wind	average daily wind speed in km per hour								
natural environment factors		snow	1 if there is snow cover during the day 0 if no snow cover during the day								
	topography	elevation	SD of elevation in community district i	Topographic data was sourced from NYC OpenData. (NYC Planning 2018)							
built environment factors	infrastructure cycle paths		total length of cycle path in km in community district i	Bicycle infrastructure was sourced from Open Street Map revealing a total of 1,823 kilometres of cycle paths across NYC of which around 684 kilometres are protected bicycle lanes (Hu 2018).							
built envir	land use mix	land use mix	Shannon entropy index	Land use data was sourced from NYC Government Website (NYC Planning 2018). The spatial unit of analysis were the community districts i.							
		weekend	1 if a weekend 0 if a weekday	Sourced from https://publicholidays.us/							
tors	calendar events	school	1 if a school holiday	Included 11 days of public							
facı		holiday public	0 if not a school holiday 1 if a public holiday	holiday, 52 weekends and 105 days of school holiday for the							
əral		holiday	0 if not a public holiday	study period.							
temporal factors	peaks	peak	percentage of journeys started during peak periods	Citibike System Data included trip-duration (seconds), start							
	pcaks	trip duration	trip duration in minutes for all trips in one day	time and date, stop time and date, start station, end station.							

Table 2. Summary statistics (n=6,102; N=17)

	Min	Max	Mean/%	SD	
Cycling trips (total n)	0	12710	2326.054	2438.348	
Average daily temperature (degrees C)	-7	32	14.107	9.393	
Precipitation (mm)	0	76.71	3.602	9.220	
Average daily humidity (%)	26	26 98		14.882	
Average daily wind speed (km/hr)	2	2 29		3.858	
Snow (0 =no snow; 1=snow)	0	1	Snow		
			3.84%		
Weekend (0=work day; 1=weekend)	0	1	Weekend		
			30.41%		
Environmental controls					
Elevation (m)	8.844	39.300	20.203	9.112	
Cycle path (length km)	16.535	49.647	33.863	8.985	
Land use mix	0.172	0.813	0.560	0.150	

Table 3. Pairwise correlations

Variables	1	2	3	4	5	6	7	8	9
1. Average daily temperature	1.00								
2. Precipitation	-0.031	1.00							
3. Average daily humidity	0.187	0.459	1.00						
4. Average daily wind speed	-0.492	0.167	-0.056	1.00					
5. Snow	-0.303	0.142	0.070	0.189	1.00				
6. Elevation	0.000	0.000	0.000	0.000	0.000	1.00			
7. Cycle path (length km)	0.000	0.000	0.000	0.000	0.000	0.221	1.00		
8. Land use mix	0.000	0.000	0.000	0.000	0.000	-0.227	0.626	1.00	
9. Weekend	-0.052	-0.030	-0.040	0.015	0.085	0.000	0.000	0.000	1.00

 \overline{NOTES} : bold face p<0.05; collinearity diagnostics show all VIFs are below 2.0 with exception of cycle paths (2.15) and land use mix (2.14)

Table 4. Multilevel regression[†]

	Model 1 Cycling trips			Model 2 Interaction: temperature x weekend		Model 3 Interaction: temperature x elevation		Model 4 Interaction: temperature x infrastructure			Model 5 Interaction: humidity x weekend				
	β	SE		β	SE		β	SE		β	SE		β	SE	
Natural environment variables				-											
Temperature	0.154	0.013	***	0.132	0.015	***	0.154	0.013	***	0.153	0.013	***	0.153	0.013	***
Rainfall	-0.153	0.013	***	-0.154	0.013	**	-0.152	0.013	***	-0.153	0.013	***	-0.151	0.013	***
Humidity	-0.037	0.012	**	-0.038	0.012	***	-0.035	0.012	**	-0.037	0.012	**	-0.053	0.015	***
Wind	-0.057	0.013	***	-0.057	0.013	***	-0.058	0.013	***	-0.057	0.013	***	-0.056	0.012	***
Snow	-0.790	0.063	***	-0.763	0.064	***	-0.825	0.062	***	-0.790	0.062	***	-0.806	0.064	***
Elevation	0.634	0.378		0.634	0.378		0.635	0.378		0.634	0.377		0.634	0.378	
Built environment variables															
Infrastructure (cycle paths)	0.120	0.434		0.120	0.434		0.120	0.434		0.121	0.434		0.120	0.434	
Land use mix	0.89	0.419		0.189	0.420		0.188	0.420		0.189	0.419		0.189	0.419	
Temporal variables															
Weekend	-0.127	0.024	***	-0.125	0.024	***	-0.126	0.023	***	-0.127	0.023	***	-0.124	0.024	***
Spatial lags															
Elevation	-2.262	0.648	***	-2.262	0.648	***	-2.262	0.648	***	-2.262	0.648	***	-2.262	0.648	
Infrastructure (cycle paths)	0.071	0.748		0.071	0.748		0.071	0.748		0.070	0.747		0.070	0.748	
Land use mix	-0.078	0.810		-0.078	0.810		-0.077	0.810		-0.077	0.810		-0.078	0.810	
Interactions															
Interaction: temperature x															
weekend				0.070	0.024	**									
Interaction: temperature x							-0.136	0.011	***						
elevation										0.105	0.011	***			
Interaction: temperature x infrastructure										-0.105	0.011	***			
Interaction: humidity x													-0.125	0.023	*
weekend													0.123	0.023	
Constant	6.926	0.270	***	6.926	0.270	***	6.926	0.270	***	6.926	0.270	***	6.927	0.270	***
R ² overall	0.4576		0.4578		0.4609		0.4600			0.4577					
Wald chi ²	4.72***		924.81***			1060.44***			1021.86***			91	919.40***		

Significance: *p< 0.05; **p<0.01; ***p<0.001. † n=6,102; N=17; standardised coefficients.

Figures

Figure 1. Conceptual framework: cycling determinants.

Figure 2a. Case study context

Figure 2b. Community districts in the study area.

Figure 3. Weather conditions and calendar events in NYC.

Figure 4a. Average daily Citibike trips.

Figure 4b. Univariate flow-comap for Citibike trips (by hour).

Figure 4c. Bivariate flow-comap for Citibike trips (by hour of day and for calendar events [weekday/weekend]).

Figure 4d. Bivariate flow-comap for Citibike trips (by hour of day and for calendar events [public holiday/school holiday]).

Figure 4e. Bivariate flow-comap for Citibike trips (rainfall and calendar events [weekday/weekend]).

Figure 4f. Bivariate flow-comap for Citibike trips (temperature and calendar events [weekday/weekend]).

Figure 4g. Bivariate flow-comap for Citibike trips (wind speed and calendar events [weekday/weekend]).

Figure 4h. Bivariate flow-comap for Citibike trips (snow and calendar events [weekday/weekend]).

Figure 5. Interaction term weekend/weekday and average daily temperature on number of cycle trips.

Figure 6. Interaction term elevation and average daily temperature on number of cycle trips.

Figure 7. Interaction term infrastructure and average daily temperature on number of cycle trips.

Figure 8. Interaction term weekend/weekday and average daily humidity on number of cycle trips.