Системы компьютерной математики

Н.Ю. Золотых

Пакеты для символьных вычислений (системы компьютерной алгебры)

Общецелевые:

- \$\$ Maple
- \$\$ Mathematica
- \$\$ Wolfram Alpha
- \$\$ muPAD (сейчас в составе MATLAB)
- GeoGebra (своя, част. GPL)
- SageMath (GNU GPL)
- Maxima (GNU GPL)
- Reduce (мод.BSD)
- Yacas (GNU GPL)
- FriCAS (мод.BSD)
- GiNaC (C++ библиотека) (GNU GPL)
- SymPy (Python библиотека) (мод.BSD)
- ...

Специализированные

- GAP (теория групп) (GNU GPL)
- Macaulay2 (алгебраическая геометрия) (GNU GPL)
- PARI/GP (теория чисел) (GNU GPL)
- SINGULAR (коммутативная алгебра и др.) (GNU GPL)
- Normaliz (полиэдры, решетки,...) (GNU GPL)
- ..

Намного более полный список и сравнение см. https://en.wikipedia.org/wiki/List of computer algebra systems

Compute expert-level answers using Wolfram's breakthrough algorithms, knowledgebase and AI technology

Пакеты численного анализа

Общецелевые:

- MATLAB \$\$
- Octave (GNU GPL)
- R (GNU GPL)
- Scilab (GNU GPL)
- Euler Math ToolBox (GNU GPL)
- Python (вместе с библиотеками NumPy, SciPy, Matplotlib и др.)

Намного более полный список и сравнение см.

https://en.wikipedia.org/wiki/Comparison of numerical-analysis software

Python (Питон, Пайтон) – высокоуровневый язык программирования общего назначения.

Поддерживает несколько парадигм программирования (структурное, объектно-ориентированное, функциональное и др.)

Основные черты:

- Динамическая типизация (тип переменной определяется во время выполнения и может меняться в процессе работы программы)
- Автоматическое управление памятью
- Интроспекция (возможность получения информации об объекте)
- Обработка исключений
- Поддержка многопоточных вычислений
- Высокоуровневые структуры данных

Код организуется в функции и классы, которые, в свою очередь, могут быть организованы в модули, а те - в пакеты.

TIOBE Programming Community Index

Source: www.tiobe.com

Feb 2021	Feb 2020	Change	Programming Language	Ratings	Change
1	2	^	С	16.34%	-0.43%
2	1	•	Java	11.29%	-6.07%
3	3		Python	10.86%	+1.52%
4	4		C++	6.88%	+0.71%
5	5		C#	4.44%	-1.48%
6	6		Visual Basic	4.33%	-1.53%
7	7		JavaScript	2.27%	+0.21%
8	8		PHP	1.75%	-0.27%
9	9		SQL	1.72%	+0.20%
10	12	^	Assembly language	1.65%	+0.54%
11	13	^	R	1.56%	+0.55%

https://www.tiobe.com/tiobe-index/

Другие важные черты

- Многоплатформенный
- Свободно распространяемый, с открытым кодом
- Богатая стандартная библиотека (работа с операционной системой, сетевыми протоколами и форматами интернета, XML, регулярными выражениями, мультимедийными форматами, криптографическими протоколами, архивами, . . .)
- Огромное количество дополнительных библиотек (веб, базы данных, обработка изображений, обработка текста, численные методы, системные вызовы, графика, разработка игр, ...)
- Программный интерфейс для написания собственных модулей на С и С++
- Возможность встраивания интерпретатора python в приложения

Краткая история

Появился в 1990–1991 г.

Автор: Гвидо ван Россум (_Guido van Rossum_)

Последние релизы:

- python 3.x.x
- python 2.x.x

Ветки 2.х и 3.х не совместимы.

- Numpy векторы, матрица, линейная алгебра
- Scipy другие численные методы
- Matplotlib научная графика
- Pandas манипуляция таблицами (dataframe) и временными рядами (series)
- Scikit-Learn методы машинного обучения
- Seaborn визуализация данных

- "The Most Popular Python Data Science Platform"
- https://www.anaconda.com/download/

Anaconda – это дистрибутив Питона, включающий в себя Jupiter Notebook, некоторое количество нужных библиотек, spyder и др.

Возможность все это запустить удаленно colab.research.google.com

Темы

- 1. Введение в системы компьютерной математики
- 2. Основы языка Питон
- 3. Научная графика
- 4. Ошибки в научных вычислениях
- 5. Системы линейных уравнений
- 6. Интерполяция
- 7. Аппроксимация
- 8. Численное интегрирование
- 9. Дифференциальные уравнения
- 10. Решение нелинейных уравнений
- 11. Одномерная минимизация
- 12. Многомерная оптимизация
- 13. Условная оптимизация
- 14. Символьные вычисления

Репозиторий

https://github.com/NikolaiZolotykh/ScientificPython

Зачет

- Решаете одну зачетную персональную задачу
- Решение оформляется в Jupyter Notebook
- Выкладываете на гит
- Дедлайн в мае (будет точно известен ближе к концу курса)
- Все замечания надо устранить
- Если задача не сдана в срок получаете одну дополнительную задачу
- В случае обнаружения плагиата получаете 2 дополнительные задачи

Домашнее задание на следующую неделю

- Если вы работали на питоне:
 - Устанавливаете Jupyter Notebook и необходимые библиотеки (см. выше)
- Если вы новичок:
 - Устанавливаете Anaconda
 - Пробуете запускать Jupyter Notebook