PMATH347S18 - Groups & Rings

Johnson Ng

May 3, 2018

Table of Contents

1	Lecture 1 May 02nd 2018										9								
	1.1	Introd	uction																9
		1.1.1	Numbers																9
		1.1.2	Matrices																10
2	Inde	ρ y																	13

List of Definitions

List of Theorems

1 Lecture 1 May 02nd 2018

1.1 Introduction

1.1.1 Numbers

The following are some of the number sets that we are already familiar with:

$$\mathbb{N} = \{1,2,3,\ldots\} \qquad \mathbb{Z} = \{\ldots,-2,-1,0,1,2,\ldots\}$$

$$\mathbb{Q} = \left\{\frac{a}{b}: a \in \mathbb{Z}, b \in \mathbb{N}\right\} \qquad \mathbb{R} = \text{ set of real numbers}$$

$$\mathbb{C} = \{a+bi: a,b \in \mathbb{R}, i = \sqrt{-1}\} = \text{ set of complex numbers}$$

For $n \in \mathbb{Z}$, let \mathbb{Z}_n denote the set of integers modulo n, i.e.

$$\mathbb{Z}_n = \{[0], [1], ..., [n-1]\}$$

where the [r], $0 \le r \le n-1$, are the congruence classes, i.e.

$$|r| = \{z \in \mathbb{Z} : z \equiv r \mod n\}$$

These sets share some common properties, e.g. + and \times . Let's try to break that down to make further observation.

NOTE THAT for $R = \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, or \mathbb{Z}_n , R has 2 operations, i.e. addition and multiplication.

Addition If $r_1, r_2, r_3 \in R$, then

- (closure) $r_1 + r_2 \in R$
- (associativity) $r_1 + (r_2 + r_3) = (r_1 + r_2) + r_3$

Also, if $R \neq \mathbb{N}$, then $\exists 0 \in R$ (the additive identity) such that

$$\forall r \in R \quad r + 0 = r = 0 + r.$$

Also, $\forall r \in R, \exists (-r) \in R \text{ such that }$

$$r + (-r) = 0 = (-r) + r.$$

Multiplication For $r_1, r_2, r_3 \in R$, we have

- (closure) $r_1r_2 \in R$
- (associativity) $r_1(r_2r_3) = (r_1r_2)r_3$

Also, $\exists 1 \in R$ (a.k.a the **mutiplicative identity**), such that

$$\forall r \in R \quad r \cdot 1 = r = 1 \cdot r.$$

Finally, for $R = \mathbb{Q}$, \mathbb{R} , or \mathbb{C} , $\forall r \in R$, $\exists r^{-1} \in R$ such that

$$r \cdot r^{-1} = 1 = r^{-1} \cdot r$$
.

Note that for $R = \mathbb{Z}_n$, where $n \in \mathbb{Z}$, not all $[r] \in \mathbb{Z}_n$ have a multiplicative inverse. For example, for $[2] \in \mathbb{Z}_4$, there is no $[x] \in \mathbb{Z}_4$ such that $[2][x] = [1].^1$

1.1.2 Matrices

For $n \in \mathbb{N} \setminus \{1\}$, an $n \times n$ matrix over \mathbb{R}^{-2} is an $n \times n$ array that can be expressed as follows:

$$^{2}\mathbb{R}$$
 can be replaced by \mathbb{Q} or $\mathbb{C}.$

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

where for $1 \leq i, j \leq n$, $a_{ij} \in \mathbb{R}$. We denote $M_n(\mathbb{R})$ as the set of all $n \times n$ matrices over \mathbb{R} .

As in Section 1.1.1, we can perform addition and multiplication on $M_n(\mathbb{R})$.

¹ This is best proven using techniques introduced in MATH135/145.

Matrix Addition Given $A = [a_{ij}], B = [b_{ij}], C = [c_{ij}] \in M_n(\mathbb{R}),$ we define matrix addition as

$$A + B = [a_{ij} + b_{ij}],$$

which immediately gives the closure property, since $a_{ij} + b_{ij} \in \mathbb{R}$ and hence $A + B \in M_n(\mathbb{R})$. Also, by this definition, we also immediately obtain the associativity property, i.e.

$$A + (B + C) = (A + B) + C.$$

We define the zero matrix as

$$0 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}.$$

Then we have that 0 is the additive identity, i.e.

$$A + 0 = A = 0 + A.$$

Finally, $\forall A \in M_n(\mathbb{R}), \exists (-A) \in M_n(\mathbb{R})$ (the additive inverse) such that

$$A + (-A) = 0 - (-A) + A.$$

Note that in this case, we also have that that the operation is com-

$$A + B = B + A$$
.

Matrix Multiplication Given $A = [a_{ij}], B = [b_{ij}], C = [c_{ij}] \in M_n(\mathbb{R}),$ we define the matrix multiplication as

$$AB = [d_{ij}] \text{ where } c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \in \mathbb{R}.$$

Clearly, $AB \in M_n(\mathbb{R})$, i.e. it is closed under matrix multiplication. Also, we have that, under such a defintion, matrix multiplication is associative, i.e.

$$A(BC) = (AB)C.$$

Define the identity matrix, $I \in M_n(\mathbb{R})$, as follows:

$$I = egin{bmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & dots \ 0 & 0 & \dots & 1 \end{bmatrix}.$$

Then we have that I is the multiplicative identity, since

$$AI = A = IA$$
.

However, contrary to matrix addition, $\forall A \in M_n(\mathbb{R})$, it is not always true that $\exists A^{-1} \in M_n(\mathbb{R})$ such that

$$AA^{-1} = I = A^{-1}A.$$

Also, we can always find some $A, B \in M_n(\mathbb{R})$ such that

$$AB \neq BA$$
,

i.e. matrix multiplication is not always commutative.

THE COMMON PROPERTIES of the operations from above: **closure**, **associativity**, **and existence of an inverse**, are not unique to just addition and multiplication. We shall see in the next lecture that there are other operations where these properties will continue to hold, e.g. **permutations**.

This is especially true if the **determinant** of A is 0.

2 Index

additive identity, 10 associativity, 9

closure, 9

mutiplicative identity, 10