IYKRA Training: Model Evaluation Assignment

Nama: Anugrah Yudha Pranata

E-mail: anugrah.yudha150796@gmail.com

```
# Loading Dataset 5: Essay Wine Quality White
df5 <- read.csv("essay winequality-white.csv", sep = ";")
head(df5)
summary(df5)
# Untuk menjawab pertanyaan mengenai Lift dan Gain Chart,
dataset 5 disimpan dengan nama temp (temporary)
temp <- df5
# Penentuan kelas berdasarkan variabel quality
df5$quality <- ifelse(df5$quality >= 6, "good", "bad")
df5$quality <- factor(df5$quality)
# Membagi dataset menjadi 80% training data dan 20% testing
data
set.seed(12345)
df5.sample = sample.split(df5$quality,SplitRatio = 0.8)
df5.train = df5[df5.sample,]
df5.test = df5[!df5.sample,]
```

```
# Pembuatan model dengan menggunakan decision tree
df5.dtree = rpart(quality~.,data=df5.train)
# Tanpa memperhatikan parameter cp
df5.dtree
summary(df5.dtree)
# Melakukan prediksi dengan model yang sudah dibuat
(Decision tree, variabel yang diprediksi bertipe data class)
df5.test.predict = predict(df5.dtree, newdata=df5.test,
type="class")
```

Confusion Matrix

caret::confusionMatrix(data=df5.test.predict, reference=df5.test\$quality, positive = "good")

Didapatkan nilai accuracy adalah 0.7592

ROC Curve Essay Wine Quality-White

ROC Curve with default parameter (AUC value = 0.7236)

```
# Mengubah skala hasil prediksi dari class (kategorikal) menjadi numerik, untuk menghitung besarnya ROC dan AUC
```

```
df5.predictions <- ifelse(df5.test.predict=="good", 1, 0)
df5.labels <- ifelse(df5.test$quality=="good", 1, 0) # Labels sebagai reference
```

Penghitungan ROC, AUC

plot(rocCurve.df5,legacy.axes=TRUE)

```
pred.val3 <- prediction(df5.predictions,df5.labels)
auc.perf3 = performance(pred.val3, measure = "auc")
auc.perf3@y.values
perf2 = performance(pred.val3,measure="tpr",x.measure = "fpr")
#plot(perf2)
rocCurve.df5 <- roc(response = df5.labels, predictor = df5.predictions, levels = rev(levels(factor(df5.labels))))
auc(rocCurve.df5)</pre>
```

Didapatkan hasil bahwa nilai AUC adalah 0.7236

Nilai AUC 0.7236 dapat dinyatakan sebagai cukup (fair)

title("ROC Curve Essay Wine Quality-White",line=+3)

ROC Curve Essay Wine Quality-White

ROC Curve with default parameter $(AUC\ value = 0.7236)$

1 - Specificity

```
# Melakukan Cross-Validation dengan K-fold sebanyak 10

ctrl = trainControl(method = "cv", number = 10)

grid = expand.grid(cp=seq(0,0.5,0.001))

# Diatur sequential dari nilai 0 hingga 0.5 dengan kenaikan incremental setiap 0.001

df5.tree.kcv.grid = train(quality~.,

data = df5.train, # Membuat model dengan menggunakan data training

method = "rpart", # Menggunakan method decision tree

trControl = ctrl,

tuneGrid = grid)
```

Hasil grid df5.tree.kcv.grid

Accuracy was used to select the optimal model using the largest value. The final value used for the model was cp = 0.002.

cp value	accuracy				
0.002	0.7588186				
0.008638211	0.7462916				

Berdasarkan hasil perhitungan grid, didapatkan bahwa nilai cp yang optimum adalah 0.002

Sebagai pembanding, dihitung juga: jika tidak menggunakan grid, berapakah cp optimum?

Hasilnya berbeda, tanpa grid didapatkan bahwa nilai cp yang optimum adalah 0.008xxx

Kemudian, berdasarkan nilai accuracy yang lebih besar, dipilih cp yang optimum adalah 0.002

Untuk menghitung nilai ROC dan AUC, variabel prediksinya yang semula

Penyusunan model baru dengan tambahan parameter cp = 0.002

df5.dtree.cp = rpart(quality~.,data=df5.train, cp=0.002) df5.dtree.cp

Melakukan prediksi dengan model decision tree yang baru (yang ditambahkan dengan parameter cp)

df5.test.predict.cp = predict(df5.dtree.cp, newdata=df5.test,
type="class")

Confusion Matrix

caret::confusionMatrix(data=df5.test.predict.cp,
reference=df5.test\$quality, positive = "good")

Nilai Accuracy menjadi 0.7704

Kesimpulan: Nilai accuracy meningkat dengan cp = 0.002 dibandingkan tanpa mempertimbangkan parameter cp

bertipe class (kategorikal), diubah menjadi skala numerik
df5.predictions.cp <- ifelse(df5.test.predict.cp=="good", 1, 0)

Penghitungan ROC, AUC
pred.val3.cp <- prediction(df5.predictions.cp,df5.labels)
auc.perf3.cp = performance(pred.val3.cp, measure = "auc")
auc.perf3.cp@y.values
perf2.cp = performance(pred.val3.cp,measure="tpr",x.measure = "fpr")
#plot(perf2.cp)
rocCurve.df5.cp <- roc(response = df5.labels, predictor = df5.predictions.cp,
levels = rev(levels(factor(df5.labels))))
auc(rocCurve.df5.cp)</pre>

Namun, meskipun nilai akurasi meningkat, nilai AUC turun menjadi 0.7161 (berkurang 0.0075)

title("ROC Curve Essay Wine Quality-White With Parameter cp",line=+3)

Kategori model tetap dalam kelompok "Cukup" (fair)

plot(rocCurve.df5.cp,legacy.axes=TRUE)

ROC Curve Essay Wine Quality-White With Parameter cp = 0.002

ROC Curve with parameter cp = 0.002(AUC value = 0.7161)

Parameter	Accuracy	AUC value	Kategori Model
Default Parameter	0.7592	0.7236	Cukup (fair)
CP = 0.002	0.7704	0.7161	Cukup (fair)

Untuk membuat Lift Chart, Gain Chart, dan K-S, digunakan data temp yang sebelumnya telah kita simpan

Pembuatan model dengan menggunakan decision tree, disesuaikan dengan cp yang telah didapatkan sebelumnya

temp.dtree.cp = rpart(quality~.,data=temp.train, cp = 0.002)
temp.dtree.cp
summary(temp.dtree.cp)

Melakukan prediksi dengan model yang sudah dibuat (Decision tree, variabel yang diprediksi merupakan probabilitas)

temp.test.predict.cp = predict(temp.dtree.cp, newdata=temp.test)

Mengkategorikan hasil sesuai treshold

temp.test.predict <- ifelse(temp.test.predict.cp >= 6, "good", "bad")
temp.test.reference <- ifelse(temp.test\$quality >= 6, "good", "bad")

Confusion Matrix

caret::confusionMatrix(data=temp.test.predict,
reference=temp.test.reference, positive = "good")

Didapatkan hasil bahwa nilai Accuracy menurun menjadi 0.6388

Mengubah skala kategorik menjadi numerik untuk menghitung ROC, AUC temp.test.predict.num <- ifelse(temp.test.predict=="good", 1, 0) temp.test.reference.num <- ifelse(temp.test.reference=="good", 1, 0)

Penghitungan ROC, AUC

```
pred.val4.cp <- prediction(temp.test.predict.num,temp.test.reference.num)
auc.perf4.cp = performance(pred.val4.cp, measure = "auc")
auc.perf4.cp@y.values
perf3.cp = performance(pred.val4.cp,measure="tpr",x.measure = "fpr")
#plot(perf3.cp)</pre>
```

rocCurve.temp.cp <- roc(response = temp.test.reference.num, predictor =
temp.test.predict.num, levels = rev(levels(factor(temp.test.reference.num))))
auc(rocCurve.temp.cp)</pre>

plot(rocCurve.temp.cp,legacy.axes=TRUE)

title("ROC Curve Essay Wine Quality-White With Parameter cp",line=+3)

Didapatkan hasil bahwa nilai AUC adalah 0.7058. Nilai AUC kembali turun daripada sebelumnya

Kategori model tetap dalam kelompok "Cukup" (fair)

Membuat Lift Chart dan Gain Chart secara manual

```
temp.predict.actual = data.frame(temp.test$quality,temp.test.predict.cp) %>% arrange(-temp.test.predict.cp)
# arrange adalah untuk mengurutkan. Penamaan variabel sudah menyesuaikan dengan penggunaan baku dplyr/tidyverse
temp.decile = temp.predict.actual %>% mutate(decile.10 = ntile(temp.test.predict.cp,10)) %>% group_by(decile.10)
# Dibagi berdasarkan decile (dibagi 10)
temp.decile.summ = temp.decile %>% mutate(temp.test.quality=ifelse(temp.test.quality>=6,"good","bad")) %>%
group_by(decile.10,temp.test.quality) %>% summarise(Pop=n()) %>% spread(temp.test.quality,Pop)
# mutate kalau good jadi True atau False-nya dihilangkan, karena datanya sudah merupakan numerik (bukan kategorikal)
# Summarise berdasarkan nilai 1 (True) atau 0 (False). Ditambahkan mutate agar nama column-nya menjadi character. Spread dibuat sebagai deep layer untuk mengubah long table menjadi wide table
temp.decile.summ[is.na(temp.decile.summ)]=0 # Jika terdapat NA, diisi dengan nilai 0
temp.decile.summ = temp.decile.summ %>% mutate(Population=bad+good) # Ditambahkan column baru bernama Populasi
```

Di-export ke CSV untuk dibuka dalam Ms. Excel

write.csv(temp.decile.summ,"D:/BODT Camp IYKRA/Materi/#21/assignment df5 temp.csv",row.names = FALSE)

decile.10	good	bad	Population	%good	%bad	%рор	Cumm. good	Cumm. bad	Cumm. Pop	Total Lift	Lift @ Decile	Lift Random	K-S
1	93	5	98	1,52%	14,26%	10%	14,26%	1,52%	10%	143%	143%	100%	12,74%
2	92	6	98	1,83%	14,11%	10%	28,37%	3,35%	20%	142%	141%	100%	25,02%
3	90	8	98	2,44%	13,80%	10%	42,18%	5,79%	30%	141%	138%	100%	36,39%
4	82	16	98	4,88%	12,58%	10%	54,75%	10,67%	40%	137%	126%	100%	44,08%
5	69	29	98	8,84%	10,58%	10%	65,34%	19,51%	50%	131%	106%	100%	45,83%
6	64	34	98	10,37%	9,82%	10%	75,15%	29,88%	60%	125%	98%	100%	45,28%
7	50	48	98	14,63%	7,67%	10%	82,82%	44,51%	70%	118%	77%	100%	38,31%
8	41	57	98	17,38%	6,29%	10%	89,11%	61,89%	80%	111%	63%	100%	27,22%
9	33	65	98	19,82%	5,06%	10%	94,17%	81,71%	90%	105%	51%	100%	12,46%
10	38	60	98	18,29%	5,83%	10%	100,00%	100,00%	100%	100%	58%	100%	0,00%
TOTAL	652	328	980	100%	100%	100%							

Berdasarkan nilai Lift @ Decile, diketahui pula bahwa kita dapat percaya kepada model (model lebih baik daripada hasil random) hingga pada decile ke-5. Dikarenakan nilai Lift @ Decile yang lebih besar daripada nilai Lift Random (100%). Lalu, didapatkan pula hasil dari Kolmogorov-Smirnov chart bahwa nilai K-S adalah 45,83% atau 0.4583.

Berdasarkan lift chart di atas, dapat dinyatakan bahwa kita dapat percaya kepada model (model lebih baik daripada hasil random) hingga pada decile ke-5. Dikarenakan nilai Lift @ Decile yang lebih besar daripada nilai Lift Random (100%).

Kolmogorov-Smirnov Chart

→Cumm. bad

→Cumm. good

Hasil dari Kolmogorov-Smirnov chart berikut ini adalah bahwa nilai K-S adalah 45,83% atau 0.4583, tepatnya pada decile ke-5.

Nilai K-S = 0.4583 berarti model dinilai kurang mampu untuk membedakan hasil (prediksi) yang baik dan buruk (lebih kecil dari 0.5)

KS Chart

Mem-plot K-S secara otomatis

ks_stat(temp.test.reference,temp.test.predict.cp, returnKSTable = T)
ks_stat(temp.test.reference,temp.test.predict.cp)
source("D:/BODT Camp IYKRA/Materi/#21/KS_Plot_Function.R")
ks_plot(temp.test.reference,temp.test.predict.cp)

