Оглавление

1	Mar	рицы и определители	5
	1.1	Определения	5
	1.2	Виды матриц	5
	1.3	Краткая запись различных видов матриц	7
	1.4	Линейные операции	7
		1.4.1 Сравнение матриц	7
		1.4.2 Сложение матриц	8
		1.4.3 Умножение матрицы на число	8
		1.4.4 Умножение матриц	9
	1.5	Элементарные преобразования	9
	1.6	Свойства транспонирования матриц	10
	1.7	Вычисление определителей	13
	1.8	Присоединенная матрица	14
	1.9	Невырожденная матрица	15
	1.10	Обратная матрица	15
		1.10.1 Свойства обратной матрицы	15
		1.10.2 Теоремы	17
	1.11	Норма матрицы	18
	1.12	Базисный минор	19
	1.13	Система линейных алгебраических уравнений	19
	1.14	Однородные системы линейных алгебраических уравнений	21
	1.15	Фундаментальная система решений	22
2	Вект	орное пространство	23
	2.1	Определение	23
	2.2	Аксиомы векторного пространства	24
		2.2.1 Аксиомы сложения	24

		2.2.2 Аксиомы умножения	24					
	2.3	Линейная зависимость и независимость векторов	24					
3	Лин	ейные операторы	25					
	3.1	Определение линейного оператора	25					
	3.2		26					
			26					
		3.2.2 Оператор поворота	26					
		3.2.3 Оператор дифференцирования	27					
		3.2.4 Оператор интегрирования	27					
		3.2.5 Матричный оператор	27					
	3.3		28					
	3.4	Матрица линейного оператора	60					
	3.5		32					
			32					
		3.5.2 Тождественный оператор	32					
		3.5.3 Поворот трехмерного пространства	3					
	3.6	Действия над линейными операторами	3					
		3.6.1 Сложение линейных операторов	3					
			64					
		3.6.3 Умножение оператора на число	64					
		3.6.4 Свойства умножения линейного оператора на число 3	64					
4	Лид	Дифференциальные уравнения 35						
•	4.1	T-F- VF-	35					
	4.2		36					
	1.2	онда на глотия						
5	Мет	71	59					
	5.1	Неполные уравнения	39					
	5.2	Уравнения с разделяющимися переменными	Ю					
	5.3	Однородные уравнения	ŀ1					
	5.4	Линейные уравнения	12					
	5.5	Однородные уравнения	ŀ 2					
	5.6	Линейные уравнения первого порядка 43						
	5.7	Уравнение Бернулли						
	5.8	r	14					
		5.8.1 Определение	14					
		5.8.2 Решение уравнений	14					

	5.9	Дифференциальные уравнения высших порядков, допускающие	
		понижение порядка	46
		5.9.1 Определение	46
		5.9.2 Примеры точных производных	46
	5.10	Линейные однородные дифференциальные уравнения с посто-	
		янными коэффициентами	47
	5.11	Линейные неоднородные дифференциальные уравнения с по-	
		стоянными коэффициентами	48
	5.12	Метод Лагранжа	49
6	Числ	повые ряды	51
	6.1	Основные понятия	51
	6.2	Свойства числовых рядов	
		Ряд геометрической прогрессии	

Глава 1

Матрицы и определители

1.1 Определения

Определение 1. Матрица размером $m \times n$ — это таблица выражений, состоящая из m строк и n столбцов:

$$A_{m\times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = (a_{ij}).$$

Определение 2. След матрицы — это сумма диагональных элементов матрицы. Операция взятия следа обозначается tr:

$$A_{n\times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}; = (a_{ij}) \qquad \mathrm{tr} A = \sum_{i=1}^n = a_{11} + a_{22} + \dots + a_{nn}$$

Определение 3. Ранг матрицы — это наивысший порядок ненулевого минора. Ранг матрицы обозначается rang.

1.2 Виды матриц

В зависимости от размерности, матрицы имеют названия, приведенные в следующей таблице.

Размерность	Название	Размерность	Название
$m \times n$	прямоугольная	$1 \times n$	матрица-строка
$n \times n$	квадратная	$m \times 1$	матрица-столбец

Элементы квадратной матрицы, имеющие одинаковые индексы $(a_{11}, a_{22}, ..., a_{nn})$, образуют главную диагональ матрицы. Диагональ, соединяющая элементы $a_{1n}, a_{2n}, ..., a_{n1}$, называется побочной диагональю матрицы.

Квадратная матрица, у которой все элементы, расположенные выше (ниже) главной диагонали, равны нулю, называется нижней (верхней) треугольной матрицей:

нижняя:
$$\begin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}; \qquad \qquad \text{верхняя:} \quad \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

Квадратная матрица, имеющая ненулевые элементы только на главной диагонали, называется *диагональной*:

$$\operatorname{diag}\{a_{11},a_{22},\dots,a_{nn}\} = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

Диагональная матрица, у которой все элементы главной диагонали равны единицам, называется *единичной*:

$$I_{n \times n} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Прямоугольная матрица, все элементы которой равны нулю, называется *ну- левой*:

$$\Theta_{m \times n} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

Матрица A^T , у которой по отношению к матрице A элементы строк и столбцов поменялись местами, называется mpahcnohupobahhoù по отношению к A:

$$A_{m\times n} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nm} \end{pmatrix} = A'_{m\times n}.$$

Матрица, для которой справедливо равенство $A=A^T$ называется $\mathit{симмеm-ричной}.$

1.3 Краткая запись различных видов матриц

Перечисленные выше основные виды матриц характеризуются определенными свойствами ее элементов. Введем *символ Кронекера*:

$$\delta_{ij} = egin{cases} 1, \ \text{если} \ i = j, \\ 0, \ \text{если} \ i \neq j \end{cases}$$

В таблице ниже приведены условия, с помощью которых можно выразить ранее приведеные свойства для квадратных матриц $A=(a_{ij})\;(i,j=\overline{1,n}).$

Условие	Название	Условие	Название
$a_{ij}=0$ при $i>j$	верхняя треугольная	$a_{ij} = \delta_{ij}$	единичная
$a_{ij} = 0$ при $i < j$	нижняя треугольная	$a_{ij} = 0$	нулевая
$a_{ij} = a_i \delta_{ij}$	диагональная	$a_{ij} = a_{ji}$	симметричная

1.4 Линейные операции

Рассмотрим операции, справедливые для матриц с размерностью $m \times n$.

1.4.1 Сравнение матриц

Две матрицы одинаковых размеров называются равными, если совпадают их элементы с одинаковыми индексами:

$$A = B \iff a_{ij} = b_{ij}$$

1.4.2 Сложение матриц

Сложение матриц A+B есть операция нахождения матрицы C, все элементы которой равны попарной сумме всех соответствующих элементов матриц A и B:

$$C = A + B \iff c_{ij} = a_{ij} + b_{ij}$$

Свойства сложения матриц:

• Коммутативность:

$$A + B = B + A$$
.

• Ассоциативность:

$$A + B + C = (A + B) + C = A + (B + C).$$

• Сложение с нулевой матрицей:

$$A + \theta = \theta + A = A$$
.

• Существование противоположной матрицы:

$$A + A^{-1} = 0.$$

1.4.3 Умножение матрицы на число

Умножение матрицы A на число $\lambda \in \mathcal{K}$ заключается в построении матрицы $\lambda A = (\lambda a_{ij}).$

Свойства умножения матриц на число:

• Ассоциативность:

$$(\lambda \beta) A = \lambda (\beta A).$$

• Дистрибутивность:

$$(\lambda + \beta)A = \lambda A + \beta A.$$

$$\lambda(A+B) = \lambda A + \lambda B.$$

• Умножение на единицу:

$$1 \cdot A = A \cdot 1 = A.$$

1.4.4 Умножение матриц

Умножение матриц — операция вычисления матрицы C, каждый элемент которой равен сумме произведений элементов в соответствующей строке первого множителя и столбце второго:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Количество столбцов в матрице A должно совпадать с количеством строк в матрице B. Если матрица A имеет размерность $m \times n$, $B - n \times k$, то размерность их произведения AB = C есть $m \times k$.

Свойства умножения матриц:

• Некоммутативность (в общем случае):

$$AB \neq BA$$
.

• Ассоциативность:

$$(AB)C = A(BC).$$

• Коммутативность при умножении с единичной матрицей:

$$AE = EA = A$$
.

• Дистрибутивность:

$$(A+B)C = AC + BC.$$

$$A(B+C) = AB + BC.$$

• Ассоциативность и коммутативность умножения на число:

$$(\lambda A)B = A(\lambda B) = \lambda (AB).$$

1.5 Элементарные преобразования

Определение 1. Элементарные преобразования — это такие преобразования матрицы, в результате которых сохраняется эквивалентность матриц.

Таким образом, элементарные преобразования не изменяют множество решений системы линейных алгебраических уравнений, которую представляет эта матрица. Элементарные операции обратимы. Обозначение $A \sim B$ указывает на то, что матрица A может быть получена из матрицы B путем элементарных преобразований.

Примеры элементарных преобразований строк:

- перестановка местами любых двух строк матрицы;
- умножение любой строки матрицы на константу $k \neq 0$, при этом определитель матрицы увеличивается в k раз;
- прибавление к любой строке матрицы другой строки, умноженной на некоторую константу;
- удаление нулевых строк;
- транспонирование.

Аналогично определяются элементарные преобразования столбцов.

1.6 Свойства транспонирования матриц

Свойство 1.

$$(A^T)^T = A$$

Доказательство.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \implies A^T = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix} \implies$$

$$\implies (A^T)^T = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = A$$

Что и требовалось доказать.

Свойство 2.

$$(A+B)^T = A^T + B^T$$

Доказательство.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$$

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{11} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix} \qquad B^{T} = \begin{pmatrix} b_{11} & b_{21} & \dots & b_{m1} \\ b_{11} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{1n} & b_{2n} & \dots & b_{mn} \end{pmatrix}$$

$$A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

$$(A + B)^{T} = \begin{pmatrix} a_{11} + b_{11} & a_{21} + b_{21} & \dots & a_{m1} + b_{m1} \\ a_{12} + b_{12} & a_{22} + b_{22} & \dots & a_{m2} + b_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} + b_{1n} & a_{2n} + b_{2n} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

$$A^{T} + B^{T} = \begin{pmatrix} a_{11} + b_{11} & a_{21} + b_{21} & \dots & a_{m1} + b_{m1} \\ a_{12} + b_{12} & a_{22} + b_{22} & \dots & a_{m2} + b_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} + b_{1n} & a_{2n} + b_{2n} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

Что и требовалось доказать.

Свойство 3.

$$(\lambda A)^T = \lambda A^T$$

Доказательство.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m-1} & a_{m-2} & \dots & a_{m-n} \end{pmatrix}$$

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \dots & \lambda a_{2n} \\ \dots & \dots & \dots & \dots \\ \lambda a_{m1} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{pmatrix} \qquad (\lambda A)^T = \begin{pmatrix} \lambda a_{11} & \lambda a_{21} & \dots & \lambda a_{m1} \\ \lambda a_{12} & \lambda a_{22} & \dots & \lambda a_{m2} \\ \dots & \dots & \dots & \dots \\ \lambda a_{1n} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{pmatrix}$$

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{m2} & \dots & a_{mn} \end{pmatrix} \qquad \lambda A^{T} = \begin{pmatrix} \lambda a_{11} & \lambda a_{21} & \dots & \lambda a_{m1} \\ \lambda a_{12} & \lambda a_{22} & \dots & \lambda a_{m2} \\ \dots & \dots & \dots & \dots \\ \lambda a_{1n} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{pmatrix}$$

Что и требовалось доказать.

Свойство 4.

$$(A \cdot B)^T = B^T \cdot A^T$$

Доказательство.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$$

$$A^T = C = \begin{pmatrix} c_{11} & c_{21} & \dots & c_{m1} \\ c_{11} & c_{22} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ c_{1n} & c_{2n} & \dots & c_{mn} \end{pmatrix} \qquad B^T = D = \begin{pmatrix} d_{11} & d_{21} & \dots & d_{m1} \\ d_{11} & d_{22} & \dots & d_{2n} \\ \dots & \dots & \dots & \dots \\ d_{1n} & d_{2n} & \dots & d_{mn} \end{pmatrix}$$

$$\begin{cases} a_{ij} = c_{ji} \\ b_{\alpha\beta} = d_{\beta\alpha} \end{cases}$$

$$A \cdot B = F = \begin{pmatrix} f_{11} & f_{21} & \dots & f_{m1} \\ f_{11} & f_{22} & \dots & f_{2n} \\ \dots & \dots & \dots & \dots \\ f_{1n} & f_{2n} & \dots & f_{mn} \end{pmatrix} \qquad B^T \cdot A^T = G = \begin{pmatrix} g_{11} & g_{21} & \dots & g_{m1} \\ g_{11} & g_{22} & \dots & g_{2n} \\ \dots & \dots & \dots & \dots \\ g_{1n} & g_{2n} & \dots & g_{mn} \end{pmatrix}$$

$$g_{ji} = \sum_{\alpha=1}^{k} d_{j\alpha} c_{\alpha i} = \sum_{\alpha=1}^{k} b_{\alpha j} a_{i\alpha} = \sum_{\alpha=1}^{k} a_{i\alpha} b_{\alpha j} = f_{ij}$$

$$G = F^T \implies (A \cdot B)^T = B^T \cdot A^T$$

Что и требовалось доказать.

1.7 Вычисление определителей

Теорема 1 (о раздложении определителя). Определителем порядка n, соответствующим квадратной матрице порядка n, называется число, равное

$$\det A = \sum_{i=1}^n a_{ij} A_{ij} = \sum_{i=1}^n a_{ij} A_{ij} = \sum_{i=1}^n (-1)^{i+j} a_{ij} M_{ij}.$$

где

- $i, j \in (\overline{1, n});$
- A_{ij} соответствующее алгебраическое дополнение a_{ij} ;
- M_{ij} соответствующий минор элемента a_{ij} .

Доказательство. Опираясь на основные свойства определителей, выпишем цепочку равенств:

$$\det A = \begin{vmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & \dots & a_{2j} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{vmatrix} = \\ = \begin{vmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & \dots & 0 & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & 0 & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \dots & 0 & \dots & a_{1n} \\ a_{21} & \dots & 0 & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & 0 & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{vmatrix} = \sum_{i=1}^{n} \begin{vmatrix} a_{11} & \dots & a_{1j-1} & 0 & a_{1j+1} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{i1} & \dots & a_{ij-1} & a_{ij} & a_{ij+1} & \dots & a_{in} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{nj-1} & 0 & a_{nj+1} & \dots & a_{nn} \end{vmatrix} = \\ = \sum_{i=1}^{n} \begin{vmatrix} a_{ij} & a_{i1} & \dots & a_{ij-1} & a_{ij+1} & \dots & a_{in} \\ 0 & a_{11} & \dots & a_{1j-1} & a_{1j+1} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & a_{i+1,1} & \dots & a_{i+1,j-1} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & a_{n1} & \dots & a_{nj-1} & a_{nj+1} & \dots & a_{nn} \end{vmatrix} = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij}.$$

Таким образом, часть теоремы доказана. Положим теперь $A^T=(a_{ij}')$, где $a_{ji}'=a_{ij}$. Заметим, что соответствующим элементу a_{ji}' в det A^T будет $M_{ji}'=M_{ij}$. Как

было показано выше,

$$\det A = \det A^T = \sum_{j=1}^n (-1)^{j+i} a'_{ji} M'_{ji} = \sum_{j=1}^n (-1)^{i+j} a_{ij} M_{ij}.$$

Что и требовалось доказать.

1.8 Присоединенная матрица

Определение 1. Присоединенная матрица A^c — это транспонированная матрица алгебраических дополнений A_{ij} элементов a_{ij} матрицы A:

$$A^c = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix};$$

Теорема 1 (Аннулирование). Сумма произведений элементов любой строки (или столбца) на алгебраические дополнения элементов другой строки (столбца) равна нулю:

$$\sum_{k=1}^{n} a_{ik} A_{jk} = 0, \quad (i \neq j); \qquad \sum_{k=1}^{n} a_{ki} A_{kj} = 0, \quad (i \neq j).$$

Доказательство. Рассмотрим вспомогательную матрицу A', полученную из матрицы A, заменой j-ой строки i-ой строкой:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}; \qquad A' = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

$$\det A' = \sum_{k=1}^n a_{jk} A'_{jk} = \sum_{k=1}^n a_{ik} A'_{jk}.$$

Заметим, что алгебраическое дополнение элемента некоторой строки не зависит от элементов этой строки (поскольку при вычислении алгебраического дополнения эта строка просто вычеркивается). Однако матрицы A и A' отличаются только j-ой строкой, следовательно, $A_{ik}=A'_{ik}$. Тогда

$$\det A' = \sum_{k=1}^n a_{ik} A_{jk}.$$

Поскольку матрица A' имеет две одинаковые строки, ее определитель равен нулю. Аналогично доказывается случай со столбцами.

Что и требовалось доказать.

1.9 Невырожденная матрица

Определение 1. Невырожденная матрица — это квадратная матрица, определитель которой отличен от нуля. В противном случае матрица называется вырожденной.

1.10 Обратная матрица

Определение 1. Обратная матрица — это такая матрица A^{-1} , при умножении которой на исходную матрицу A получается единичная матрица E:

$$AA^{-1} = A^{-1}A = E.$$

1.10.1 Свойства обратной матрицы

Свойство 1.

$$\det A^{-1} = (\det A)^{-1}$$

Доказательство.

$$\det E = \det(A^{-1}A) = \det A^{-1} \det A$$

$$\det A^{-1} = \frac{\det E}{\det A} = \frac{1}{\det A} = (\det A)^{-1}$$

Что и требовалось доказать.

Свойство 2.

$$(AB)^{-1} = B^{-1}A^{-1}$$

Доказательство.

$$\begin{cases} B^{-1}A^{-1}AB = B^{-1}EB = E \\ ABB^{-1}A^{-1} = AEA^{-1} = E \end{cases} \implies (AB)^{-1} = B^{-1}A^{-1}.$$

Что и требовалось доказать.

Свойство 3.

$$(A^T)^{-1} = (A^{-1})^T$$

Доказательство. Воспользуемся одним из свойств транспонированных матриц

$$\begin{cases} (A^{-1})^T A^T = (A^{-1}A)^T = E^T = E \\ A^T (A^{-1})^T = (AA^{-1})^T = E^T = E \end{cases} \implies (A^{-1})^T = A^T.$$

Что и требовалось доказать.

Свойство 4.

$$(A^{-1})^{-1} = A$$

Доказательство.

$$(A^{-1})^{-1} = A \implies (A^{-1})^{-1}A^{-1}A = A \stackrel{\text{2 cs.}}{\Longrightarrow} (AA^{-1})^{-1}A = A \implies A = A$$

$$\Longrightarrow (AA^{-1})^{-1}A = A \implies E^{-1}A = A \implies A = A$$

Что и требовалось доказать.

Свойство 5.

$$(\lambda A)^{-1} = \lambda^{-1} A^{-1}$$

Доказательство.

$$\begin{cases} \lambda A \lambda^{-1} A^{-1} = 1E = E \\ \lambda^{-1} A^{-1} \lambda A = 1E = E \end{cases} \implies (\lambda A)^{-1} = \lambda^{-1} A^{-1}.$$

Что и требовалось доказать.

1.10.2 Теоремы

Теорема 1. Для всякой невырожденной матрицы A существует обратная матрица A^{-1} и притом только одна.

Доказательство. Сначала докажем существование обратной матрицы. Пусть нам дана следующая матрица A, определитель которой не равен нулю:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Для этой матрицы построим присоединенную матрицу:

$$A^c = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$

Перемножим матрицы A и A^c :

$$A^{c}A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} = \\ = \begin{pmatrix} \sum_{k=1}^{n} A_{k1} a_{k1} & \sum_{k=1}^{n} A_{k1} a_{k2} & \dots & \sum_{k=1}^{n} A_{k1} a_{kn} \\ \sum_{k=1}^{n} A_{k2} a_{k1} & \sum_{k=1}^{n} A_{k2} a_{k2} & \dots & \sum_{k=1}^{n} A_{k2} a_{kn} \\ \dots & \dots & \dots & \dots \\ \sum_{k=1}^{n} A_{kn} a_{k1} & \sum_{k=1}^{n} A_{kn} a_{k2} & \dots & \sum_{k=1}^{n} A_{kn} a_{kn} \end{pmatrix}$$

По теореме о разложении определителя и теореме аннулирования:

$$\begin{cases} i = k \implies \sum_{k=1}^{n} a_{ik} A_{jk} = \det A \\ i \neq k \implies \sum_{k=1}^{n} a_{ik} A_{jk} = 0 \end{cases}$$

Тогда получим, что

$$A^cA = \begin{pmatrix} \det A & 0 & \dots & 0 \\ 0 & \det A & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \det A \end{pmatrix} = \det A \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} = E \det A.$$

Значит обратная матрица равна

$$A^{-1} = \frac{A^c}{\det A}.$$

Аналогично доказывается случай AA^c , Теперь докажем единственность обратной матрицы. Предположим, что существует две обратные матрицы: A^{-1} и \tilde{A} . Тогда

$$\begin{cases} AA^{-1} = A^{-1}A = E \\ A\tilde{A} = \tilde{A}A = E \end{cases} \implies A^{-1}A\tilde{A} = \begin{cases} A^{-1}(A\tilde{A}) = A^{-1}E = A^{-1} \\ (A^{-1}A)\tilde{A} = E\tilde{A} = \tilde{A} \end{cases} \implies A^{-1} = \tilde{A}.$$

Результат противоречит исходному предположению о существовании двух обратных матриц.

Что и требовалось доказать.

1.11 Норма матрицы

Определение 1. Нормой матрицы $A\in\mathcal{K}^{m\times n}$ (обычно $\mathcal{K}=\mathbb{R}$ или $\mathcal{K}=\mathbb{C}$) понимается неотрицательное число $\|A\|$, удовлетворяющее следующим аксиомам:

- 1. $||A|| \ge 0$;
- 2. $\|\lambda A\| = |\lambda| \|A\|$, где $\lambda \in \mathbb{R}$ или $\lambda \in \mathbb{C}$;
- 3. $\|A+B\| \leq \|A\| + \|B\|$, где A и B матрицы, допускающие сложение;
- 4. $\|AB\| \le \|A\| \|B\|$, где A и B матрицы, допускающие умножение.

Определение 2. Норма $\|A\|$ называется *мультипликативной*, если выполняются все 4 аксиомы, и $a\partial \partial umu$ вной, если выполняются первые 3 аксиомы.

Определение 3. Если матрица удовлетворяет условию

$$\|\lambda A\| < |\lambda| \|A\|$$
,

то такая норма называются согласованной с нормой вектора.

Определим некоторые наиболее употребительные на практике матричные нормы:

• Евклидова норма или норма Фробениуса:

$$\|A\|_E = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}.$$

• Столбцовая норма:

$$\|A\|_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$

• Строковая форма:

$$\|A\|_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$$

• Спектральная норма:

$$\|A\|_2 = \sqrt{\max_i(\sigma_i)},$$

где σ_i — собственные значения симметричной матрицы A^TA .

1.12 Базисный минор

Определение 1. Если rang A=r, то любой ненулевой минор порядка r называется базисным минором, а его строки (столбцы) — базисными.

Теорема 1 (о базисном миноре). Базисные строки (столбцы) матрицы A, соответствующие любому ее базисному минору M, линейно независимы. Любые строки (столбцы) матрицы A, не входящие в M, являются линейными комбинациями базисных строк (столбцов).

1.13 Система линейных алгебраических уравнений

Определение 1. Система линейных алгебраических уравнений (СЛАУ, СЛУ) — система уравнений, каждое уравнение в которой является *линейным* — алгебраическим уравнением первой степени.

Определение 2. Расширенная матрица — матрица, которая получается при добавлении в качестве (n+1) столбца матрицу-столбец свободных членов. Приведем пример. Пусть дана матрица коэффициентов A и матрица свободных

членов B:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}; \qquad B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}.$$

Тогда расширенная матрица P будет иметь вид:

$$P = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}.$$

СЛАУ можно записать в матричном виде:

$$A_{m\times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}; \qquad X_{n\times 1} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}; \qquad B_{m\times 1} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}.$$

$$AX = B \implies A^1AX = A^{-1}B \implies X = A^{-1}B.$$

Теорема 1 (Кронекера–Капелли). Система линейных алгебраических уравнений будет совместной тогда и только тогда, когда ранг матрицы A ее коэффициентов и ранг расширенной матрицы P равны. Из этого утверждения следует, что для СЛАУ справедливо следующее:

- $\operatorname{rang} A = \operatorname{rang} P = n$ имеет единственное решение;
- $\operatorname{rang} A = \operatorname{rang} P < n$ имеет бесконечное множество решений;
- $\operatorname{rang} A < \operatorname{rang} P$ не имеет решений.

Доказательство.

Необходимость. Пусть система совместна, тогда найдутся такие числа

$$\alpha_1, \alpha_2, \dots, \alpha_n,$$

что при подстановке которых в систему мы получим m тождеств, которые можно записать в виде одного векторного тождества:

$$\alpha_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{pmatrix} + \alpha_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \dots \\ a_{m2} \end{pmatrix} + \dots + \alpha_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \dots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}$$

Следовательно, вектор-столбец свободных членов B является линейной комбинацией вектор-столбцов матрицы A, тогда добавление его к системе векторовстолбцов матрицы A не меняет ранга системы. Отсюда rang $A=\operatorname{rang} R$.

Достаточность. Пусть rang $A=\operatorname{rang} P=r$, следовательно существует линейно независимая подсистема из r векторов-столбцов матрицы A. Она же будет содержаться и в матрице P. Так как эта система максимальна, то векторстолбец свободных членов B будет выражаться через эти r векторов-столбцов. Следовательно, вектор-столбец свободных членов B можно представить в виде линейной комбинации всех векторов-столбцов матрицы A, т. е. найдутся такие числа $\alpha_1,\alpha_2,\dots,\alpha_n$, что вектор-столбец будет представлен в виде:

$$\begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix} = \alpha_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{pmatrix} + \alpha_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \dots \\ a_{m2} \end{pmatrix} + \dots + \alpha_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \dots \\ a_{mn} \end{pmatrix}$$

Что и требовалось доказать.

1.14 Однородные системы линейных алгебраических уравнений

Определение 1. Однородная система уравнений (ОСЛУ) — это система линейных уравнений, у которой все свободные члены равны нулю:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

Любая ОСЛУ всегда совместна, поскольку всегда обладает нулевым (тривиальным) решением:

$$x_1=x_2=\ldots=x_n=0.$$

Теорема 1. Если rang A=n и $\det A\neq 0$, тогда система имеет единственное решение.

Теорема 2. Если $\operatorname{rang} A < n$ и $\det A = 0$, тогда система имеет множество решений.

Теорема 3. Если X и Y — решения ОСЛУ, то любая линейная комбинация $\alpha X + \beta Y$ тоже является решением ОСЛУ.

1.15 Фундаментальная система решений

Определение 1. Фундаментальная система решений (ФСР) — это совокупность ненулевых решений ОСЛУ $x_1; x_2; \dots; x_k$, если

- 1. $x_1; x_2; ...; x_k$ линейно независимы;
- 2. любое другое ненулевое решение x ОСЛУ может быть представлено линейной комбинацией $x_1; x_2; \dots; x_k$, то есть общее решение ОСЛУ

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_k x_k, \quad \alpha_i \in R.$$

Глава 2

Векторное пространство

2.1 Определение

Определение 1. Векторным (линейным) пространством называется множество L произвольных элементов, называемых векторами, если для них:

- определена операция **сложения** векторов $L \times L \to L$, сопоставляющая каждой паре элементов $(x,y) \in L$ единственный элемент множества L, называемый их суммой и обозначаемый x+y;
- определена операция **умножения** векторов на скаляры $F \times L \to L$ (F множество скаляров), сопоставляющая каждому элементу $\lambda \in F$ и каждому элементу $x \in L$ единственный элемент множества L, обозначаемый $\lambda \cdot x$ или λx .

Эти операции должны удовлетворять восьми аксиомам векторного пространства.

Примеры линейных пространств:

- множество ℝ
- множество всех матриц
- множество всех многочленов $P_n(x)=a_0x^n+a_1x^{n-1}+\ldots+a_n$, $a_i\in\mathbb{R}$, $i=\overline{1,n}$
- n-мерное пространство арифметических векторов A_n n=1,2,...
- множество всех функций, интегрируемых на $\left[a,b\right]$

2.2 Аксиомы векторного пространства

2.2.1 Аксиомы сложения

1. Коммутативность:

$$\forall x, y \in L \implies x + y = y + x.$$

2. Ассоциативность:

$$\forall x,y,z\in L \implies x+(y+z)=(x+y)+z.$$

3. Существование нейтрального элемента:

$$\exists 0 \in L : x + 0 = 0 + x = x.$$

4. Существование противоположного элемента:

$$\forall x \in L \ \exists (-x) \in L : x + (-x) = 0.$$

2.2.2 Аксиомы умножения

1. Ассоциативность:

$$\alpha(\beta x) = (\alpha \beta) x.$$

2. Дистрибутивность относительно сложения скаляров:

$$(\alpha + \beta)x = \alpha x + \beta x.$$

3. Дистрибутивность относительно сложения векторов:

$$\alpha(x+y) = \alpha x + \alpha y.$$

4. Существование нейтрального элемента:

$$1 \cdot x = x$$

2.3 Линейная зависимость и независимость векторов

Определение 1. Система из k векторов $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_k$ называется линейно зависимой, если существуют такие числа $\alpha_1, \alpha_2, \dots, \alpha_k$, не равные нулю одновременно, что

$$\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_k \vec{a}_k = 0.$$

Если это равенство справедливо только при $\alpha_1=\alpha_2=...=\alpha_k$, тогда эта система называется линейно независимой.

Глава 3

Линейные операторы

3.1 Определение линейного оператора

Определение 1. Правило f, по которому каждому элементу x некоторого непустого множества X ставится в соответствие единственный элемент y непустого множества Y, называют **отображением** (или **оператором**) множества X в множество Y. Результат y применения оператора f к элементу x обозначают

$$y = f(x)$$

и говорят, что оператор f, действует из X в Y или отображает X в Y, записывая это в виде

$$f: X \to Y$$
.

Элемент y называют **образом** элемента x при действии оператора f, а элемент x — **прообразом** элемента y.

Определение 2. Пусть Vи W — линейные пространства (либо оба вещественные, либо оба комплексные). Тогда отображение $\mathcal{A}:V\to W$ называют **линейным отображением** или **линейным оператором**, если выполняются следующие условия:

1.
$$\forall x \in V; \forall \lambda \in \mathbb{R} \implies \mathcal{A}(\lambda x) = \lambda \mathcal{A}x;$$

$$2. \ \forall x_1, x_2 \in X \implies \mathcal{A}x + \mathcal{A}y.$$

Эти два условия можно объединить:

$$\forall x_1, x_2 \in V; \forall \alpha, \beta \in \mathbb{R} \implies \mathcal{A}(\alpha x_1 + \beta x_2) = \alpha \mathcal{A} x_1 + \beta \mathcal{A} x_2.$$

Определение 3. Линейные операторы $\mathcal{A}:V\to W$ и $\mathcal{B}:V\to W$ называют **равными,** если

$$\forall x, y \in V \implies \mathcal{A}x = \mathcal{B}x.$$

Определение 4. Линейный оператор \mathcal{A} , который осуществляет отображение линейного пространства V в себя, также называют **линейным преобразованием** линейного пространства. В этом случае говорят, что линейный оператор \mathcal{A} действует в линейном пространстве V, и записывают

$$\mathcal{A}:V\to V$$
.

Определение 5. Оператор $E:V \to V$ называется **тождественным**, если

$$\forall x \in V \Longrightarrow Ex = x.$$

Определение 6. Оператор $\Theta:V o V$ называется **нулевым**, если

$$\forall x \in V \Longrightarrow \Theta x = \theta.$$

Определение 7. Линейный оператор $\mathcal A$ называют **невырожденным**, если из равенства $\mathcal Ax=\theta$ следует, что $x=\theta$. В противном случае линейный оператор $\mathcal A$ называют **вырожденным**.

3.2 Примеры линейных операторов

3.2.1 Преобразование подобия

Каждому элементу x из пространства V по некоторому правилу ставится в соответствие элемент λx из $V(\lambda \neq 0$ и фиксировано), т. е. имеет место равенство $\mathcal{A}x = \lambda x$.

3.2.2 Оператор поворота

Оператора поворота на угол φ , действующий в пространстве V^2 векторов на плоскости, поворачивает каждый вектор на угол φ . Поворот происходит против хода часовой стрелки, если $\varphi>0$, и по ходу часовой стрелки, если $\varphi<0$.

3.2.3 Оператор дифференцирования

Оператор дифференцирования $\dfrac{d}{dx}$, действующий в линейном пространстве K^n многочленов одной переменной x степени, не превосходящей $n\in\mathbb{N}$. Каждому многочлену P(x) ставится в соответствие его производная P'(x), являющаяся многочленом степени не выше n-1, т. е. P'(x) — элемент того же пространства K^n :

$$\frac{d}{dx}P(x) = P'(x).$$

Заметим, что производная суммы функций равна сумме производных, а при умножении функции на число производная этой функции умножается на это число.

3.2.4 Оператор интегрирования

Пусть задано пространство, в котором элементами являются непрерывные функции $\varphi(t), t \in [0,1]$. Положим, что

$$\mathcal{A}\varphi(t) = \int_{0}^{t} \varphi(\tau)d\tau.$$

Преобразование $\mathcal{A}-$ линейное, поскольку в силу свойств определенного интеграла имеем

$$\begin{split} \mathcal{A}(\varphi_1+\varphi_2) &= \int\limits_0^t [\varphi_1(\tau)+\varphi_2(\tau)] d\tau = \int\limits_0^t \varphi_1(\tau) d\tau + \int\limits_0^t \varphi_2(\tau) d\tau = \mathcal{A}\varphi_1 + \mathcal{A}\varphi_2; \\ \mathcal{A}(\alpha\varphi) &= \int\limits_0^t \alpha\varphi(\tau) d\tau = \alpha \int\limits_0^t \varphi(\tau) d\tau = \alpha \mathcal{A}\varphi. \end{split}$$

3.2.5 Матричный оператор

Рассмотрим n-мерное арифметическое пространство \mathbb{R}^n (пространство матрицстолбцов высотой n) и прямоугольную матрицу \mathcal{A} размером $m \times n$. Каждому столбцу $X \in \mathbb{R}^n$ поставим в соответствие столбец $\mathcal{A}X$, имеющий высоту m. Таким образом, определено отображение $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$, которое является линейным в силу свойств умножения матриц.

3.3 Образ и ядро линейного оператора

Определение 1. Образом линейного оператора $\mathcal{A}:V\to W$ называют множество всех элементов $y\in W$ таких, что $\mathcal{A}x=y$ для некоторого $x\in V$. Образ обозначается через $\operatorname{Im} \mathcal{A}$:

$$\operatorname{Im} \mathcal{A} = \{ y : y = \mathcal{A}x; x \in V \}.$$

Определение 2. Ядром линейного оператора $\mathcal{A}:V\to W$ называют множество всех элементов $x\in V$ таких, что $\mathcal{A}(x)=\theta$. Ядро обозначается через ker \mathcal{A} :

$$\ker \mathcal{A} = \{x: \mathcal{A}x = \theta; x \in V\}.$$

Теорема 1. Для любого линейного оператора $\mathcal{A}:V\to W$ образ Im A и ядро $\ker A$ являются линейными подпространствами в пространствах W и V соответственно.

Доказательство. Пусть y_1 и y_2 — элементы из Im \mathcal{A} . Значит

$$\exists x_1, x_2 \in V: \mathcal{A}x_1 = y_1, \mathcal{A}x_2 = y_2.$$

Из соотношения

$$\lambda_1 y_1 + \lambda_2 y_2 = \lambda_1 \mathcal{A} x_1 + \lambda_2 \mathcal{A} x_2 = \mathcal{A} (\lambda_1 x_1 + \lambda_2 x_2)$$

следует, что произвольная комбинация элементов y_1 и y_2 также лежит в Im $\mathcal{A}.$

В тоже время, если $x_1,x_2\in\ker\mathcal{A}$, что означает выполнение соотношений $\mathcal{A}x_1=\theta$ и $\mathcal{A}x_2=\theta$, то

$$\mathcal{A}(\lambda_1 x_1 + \lambda_2) = \lambda_1 \mathcal{A} x_1 + \lambda_2 \mathcal{A} x_2 = \theta + \theta = \theta,$$

т. е. множество $\ker A$ замкнуто относительно линейных операций и потому является линейных подпространством.

Что и требовалось доказать.

Определение 3. Размерность образа $\operatorname{Im} \mathcal{A}$ линейного оператора \mathcal{A} называют **рангом** этого линейного оператора. Обозначают через rang A.

Определение 4. Размерность ядра $\ker \mathcal{A}$ линейного оператора \mathcal{A} называют **дефектом** этого линейного оператора. Обозначают через $\det \mathcal{A}$.

Теорема 2. Для любого линейного оператора $\mathcal{A}:V o W$ справедливо равенство

rang
$$\mathcal{A} + \operatorname{def} \mathcal{A} = \operatorname{dim} V$$
.

Теорема 3 (построение линейного оператора). Пусть V и W — линейные пространства, $\{e\}=(e_1,e_2,\dots,e_n)$ — базис пространства V, а g_1,g_2,\dots,g_n — произвольные элементы из пространства W. Тогда

$$\exists ! \mathcal{A} : V \to W : \mathcal{A}e_i = g_i, i = \overline{1,n}.$$

Доказательство. Докажем существование. Разложим произвольный элемент $x \in V$ по базису $\{e\}$ пространства V:

$$x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n = \sum_{i=1}^{n} x_i e_i.$$

Построим отображение $\mathcal{A}:V \to W$ по следующему правилу:

$$\mathcal{A}x = \mathcal{A}(x_1e_1 + \ldots + x_ne_n) = x_1(\mathcal{A}e_1) + \ldots + x_n(\mathcal{A}e_n) = \sum_{i=1}^n x_i(\mathcal{A}e_i) = \sum_{i=1}^n x_ig_i,$$

т. е., зная элементы $\mathcal{A}e_i$ можно найти образ любого элемента x линейного пространства V.

Убедимся в линейности оператора \mathcal{A} . Пусть

$$x = \sum_{i=1}^{n} x_i e_i;$$
 $y = \sum_{i=1}^{n} y_i e_i.$

Тогда:

$$\mathcal{A}(\alpha x + \beta y) = \sum_{i=1}^n (\alpha x_i + \beta y_i) g_i = \alpha \sum_{i=1}^n x_i g_i + \beta \sum_{i=1}^n y_i g_i = \alpha \mathcal{A} x + \beta \mathcal{A} y.$$

Условие линейности оператора выполняется.

Докажем единственность. Предположим, что

$$\exists \mathcal{B}: V \to W: \mathcal{B}e_i = g_i, i = \overline{1,n}.$$

Тогда

$$\mathcal{A}x = \sum_{i=1}^n x_i g_i = \sum_{i=1}^n x_i \mathcal{B}e_i = \mathcal{B}\Big(\sum_{i=1}^n x_i e_i\Big) = \mathcal{B}x.$$

Операторы $\mathcal A$ и $\mathcal B$ совпадают.

Что и требовалось доказать.

3.4 Матрица линейного оператора

Пусть задан линейный оператор $\mathcal{A}:V\to V$, т. е. линейное преобразование n-мерного линейного пространства в себя: $y=\mathcal{A}x$. Найдем связь между координатами элемента $x\in V$ и координатами его образа $y\in V$.

Выберем в пространстве Vбазис $\{e\}=(e_1,e_2,\dots,e_n)$, и пусть $x=x_1e_1+x_2e_2+\dots+x_ne_n$. Тогда в силу линейности преобразований $\mathcal A$ имеем

$$\mathcal{A}x = x_1(\mathcal{A}e_1) + x_2(\mathcal{A}e_2) + \ldots + x_n(\mathcal{A}e_n) = \sum_{i=1}^n x_i(\mathcal{A}e_i).$$

Поскольку $\mathcal{A}e_i$ $(i=\overline{1,n})$ — это тоже элемент из V, то и $\mathcal{A}e_i$ можно разложить по базису:

$$\mathcal{A}e_{i} = a_{1i}e_{1} + a_{2i}e_{2} + \ldots + a_{ni}e_{n} = \sum_{k=1}^{n} a_{ki}e_{k}, \quad i = \overline{1,n}.$$

Тогда получим

$$\mathcal{A}x = \sum_{i=1}^n x_i (Ae_i) = \sum_{i=1}^n x_i \sum_{k=1}^n a_{ki} e_k = \sum_{k=1}^n \Big(\sum_{i=1}^n a_{ki} x_i\Big) e_k.$$

В силу единственности разложения элемента по базисным элементам e_1, e_2, \dots, e_r получим

$$\mathcal{A}x = y_1e_1 + y_2e_2 + \dots + y_ne_n = \sum_{i=1}^n y_ie_i,$$

где y_1,y_2,\ldots,y_n — координаты преобразованного элемента $\mathcal{A}x$ в базисе $\{e\}.$ Тогда получим

$$y_k = \sum_{i=1}^n a_{ik} x_i,$$

или в развернутом виде:

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \\ y_2 = a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \\ \ldots \\ y_n = a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n \end{cases}$$

Эта формула представляет линейное преобразование $y=\mathcal{A}x$ в координатной форме.

Элементам x и y поставим в соответствие матрицы-столбцы X и Y, образованные из координат этих элементов в базисе $\{e\}$:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}.$$

Тогда полученная система уравнений в развернутой матричной форме примет вид

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

или, в сокращенной форме,

$$Y = AX$$
.

Здесь A — квадратная матрица, у которой i-й столбец образован коэффициентами разложения элемента $\mathcal{A}e_i$ по базису $\{e\}$.

Таким образом, показано, что при заданном базисе любое линейное преобразование можно представить, и притом единственным способом, в матричной форме, т. е. по своей структуре линейный оператор есть некоторая матрица.

Определение 1. Матрицу A, составленную из координатных столбцов элементов $\mathcal{A}e_i$ $(i=\overline{1,n})$ в базисе $\{e\}=(e_1,e_2,\dots,e_n)$ называют матрицей линейного оператора \mathcal{A} в базисе $\{e\}$.

Определение 2. Матрица линейного оператора $\mathcal{A}:V\to V$ называется **квадратной**, если ее порядок совпадает с размерностью линейного пространства V.

Теорема 1. Каждая квадратная матрица A порядка n может рассматриваться как матрица некоторого линейного оператора \mathcal{A} , следовательно, всякое преобразование вида Y=AX является линейным преобразованием.

Доказательство. В силу свойств операции умножения матриц:

$$\forall X_1, X_2, \lambda_1, \lambda_2 \implies A(\lambda_1 X_1 + \lambda_2 X_2) = \lambda_1 A X_1 + \lambda_2 A X_2.$$

Таким образом, при фиксированном базисе между линейным преобразованием и матрицей линейного преобразования установлено взаимно-однозначное соответствие, что позволяет отождествлять преобразование $\mathcal A$ с его матрицей

A и записывать линейное преобразование $y=\mathcal{A}x$ в матричной форме Y=AX или в координатной форме.

Что и требовалось доказать.

Теорема 2. Ранг матрицы A линейного оператора $\mathcal{A}:V\to V$ совпадает с рангом этого оператора.

Доказательство. Пусть $\{e\}=(e_1,e_2,\dots,e_n)$ — некоторый базис линейного пространства V. Образ Im $\mathcal A$ линейного оператора $\mathcal A$ представляет собой линейную оболочку системы элементов $\mathcal Ae_1,\mathcal Ae_2,\dots,\mathcal Ae_n$, то есть

$$\operatorname{Im} \mathcal{A} = L(\mathcal{A}e_1, \mathcal{A}e_2, \dots, \mathcal{A}e_n).$$

При этом rang $\mathcal A$ равен максимальному число линейно независимых элементов в системе $\mathcal Ae_1, \mathcal Ae_2, \dots, \mathcal Ae_n$ и совпадает с максимальным числом линейно независимых столбцов в матрице A, т. е. с ее рангом. Таким образом,

rang
$$A = \operatorname{rang} \mathcal{A}$$
.

Что и требовалось доказать.

3.5 Примеры матриц линейных операторов

3.5.1 Нулевой оператор

Пусть $\Theta:V\to V$ — нулевой оператор. Матрицей такого оператора независимо от выбора базиса является нулевая матрица θ соответствующего типа. Действительно, в случае нулевого оператора любой элемент будет нулевым. Поэтому матрица нулевого оператора в любом базисе состоит из нулевых столбцов.

3.5.2 Тождественный оператор

Пусть $\mathcal{E}:V \to V$ — тождественный оператор, действующий согласно правилу

$$\forall x \implies \mathcal{E}x = x$$

Тогда $\mathcal{E}e_i=e_i$ для всех $i=\overline{1,n}$ и, следовательно, матрица оператора \mathcal{E} в любом базисе является единичной:

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

3.5.3 Поворот трехмерного пространства

Пусть $\mathcal{A}-$ поворот трехмерного пространства на угол φ вокруг оси Oz. Если e_1,e_2,e_2- единичные векторы прямоугольной декартовой системы координат, то

$$\begin{split} \mathcal{A}e_1 &= \cos\varphi \cdot e_1 + \sin\varphi \cdot e_2; \\ \mathcal{A}e_2 &= -\sin\varphi \cdot e_1 + \cos\varphi \cdot e_2; \\ \mathcal{A}e_3 &= e_3 \end{split}$$

и, значит, матрица этого оператора будет иметь вид

$$A = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0\\ \sin \varphi & \cos \varphi & 0\\ 0 & 0 & 1 \end{pmatrix}$$

3.6 Действия над линейными операторами

3.6.1 Сложение линейных операторов

Лемма 1. Пусть $\mathcal{A}:V\to W$ и $\mathcal{B}:V\to W$ — линейные операторы. Тогда **суммой линейных операторов** \mathcal{A} и \mathcal{B} называют оператор $\mathcal{C}:V\to W$ такой, что

$$\forall x \in V \implies \mathcal{C}x = \mathcal{A}x + \mathcal{B}x.$$

Доказательство. Линейность оператора $\mathcal C$ можно доказать следующим образом:

$$\begin{split} \mathcal{C}(\lambda_1 x + \lambda_2 y) &= \mathcal{A}(\lambda_1 x + \lambda_2 y) + B(\lambda_1 x + \lambda_2 y) = \\ &= \lambda_1 (\mathcal{A}x + \mathcal{B}x) + \lambda_2 (\mathcal{A}y + \mathcal{B}y) = \lambda_1 \mathcal{C}x + \lambda_2 \mathcal{C}y. \end{split}$$

Что и требовалось доказать.

3.6.2 Свойства сложения линейных операторов

Свойство 1.

$$\mathcal{A} + \mathcal{B} = \mathcal{B} + \mathcal{A}$$

Свойство 2.

$$(\mathcal{A}+\mathcal{B})+\mathcal{C}=\mathcal{A}+(\mathcal{B}+\mathcal{C}).$$

Свойство 3.

$$A + \Theta = A$$

Свойство 4.

$$\mathcal{A} + (-\mathcal{A}) = \Theta.$$

3.6.3 Умножение оператора на число

Лемма 2. Произведением линейного оператора $\mathcal{A}:V\to W$ и числа α называют такой оператор $\mathcal{B}:V\to W$, что

$$\forall x \in V \implies \mathcal{B}x = \alpha \mathcal{A}x.$$

Доказательство. Линейность оператора $\mathcal B$ можно доказать следующим образом:

$$\mathcal{B}(\lambda_1x_1+\lambda_2x_2)=\alpha\mathcal{A}(\lambda_1x_1+\lambda_2x_2)=\lambda_1(\alpha\mathcal{A}x_1)+\lambda_2(\alpha\mathcal{A}x_2)=\lambda_1\mathcal{B}x_1+\lambda_2\mathcal{B}x_2.$$

Что и требовалось доказать.

3.6.4 Свойства умножения линейного оператора на число

Свойство 5.

$$1\cdot \mathcal{A}=\mathcal{A}.$$

Свойство 6.

$$\alpha(\beta \mathcal{A}) = (\alpha \beta) \mathcal{A}.$$

Свойство 7.

$$(\alpha + \beta)\mathcal{A} = \alpha\mathcal{A} + \beta\mathcal{A}.$$

Свойство 8.

$$\alpha(\mathcal{A} + \mathcal{B}) = \alpha \mathcal{A} + \alpha \mathcal{B}.$$

Глава 4

Дифференциальные уравнения

4.1 Основные определения

Дифференциальное уравнение называется **обыкновенным**, если оно содержит производные от искомой функции только по одной переменной:

Порядком дифференциального уравнения называется порядок старшей производной, входящей в это уравнение.

Обыкновенным дифференциальным уравнением первого порядка называется соотношение, связывающее искомую функцию, ее аргумент и первую производную от искомой функции:

$$F(x, y, y') = 0, (4.1)$$

где y – искомая функция, x – ее аргумент, а $y^\prime = dy/dx$.

Если уравнение (4.1) можно переписать в виде

$$y' = f(x, y), \tag{4.2}$$

то уравнение (4.2) называется уравнением, разрешенным относительно производной, или уравнением в нормальной форме.

В некоторых случаях возникает необходимость использовать перевернутое уравнение:

$$\frac{dx}{dy} = \frac{1}{f(x,y)},\tag{4.3}$$

В место двух уравнений (4.2) и (4.3) можно использовать одно уравнение, записанное в форме

$$dy - f(x, y)dx = 0. (4.4)$$

Уравнение (4.4) содержит не производную искомой функции, а дифференциалы от ее аргументов. Это частый случай уравнения, записанного в дифференциалах. В общем случае уравнение в дифференциалах имеет вид:

$$M(x,y)dx + N(x,y)dy = 0.$$
 (4.5)

В уравнениях (4.4) и (4.5) переменные x и y входят равноправно. Запись уравнения в виде (4.5) показывает, что при решении дифференциального уравнения первого порядка любую величину x или y можно рассматривать в качестве аргумента, а другую – принять за искомую функцию.

Уравнение в симметрической форме выглядит следующим образом:

$$\frac{dx}{M(x,y)} = \frac{dy}{N(x,y)}. (4.6)$$

4.2 Задача Коши

Одной из важнейших задач в теории дифференциальных уравнений является так называемая задача Коши. Для уравнения

$$\frac{dy}{dx} = f(x, y),\tag{4.7}$$

задача Коши или **начальная задача** ставится следующим образом: среди всех решений уравнения найти такое решение, которое будет удовлетворять условию:

$$y(x_0) = y_0, (4.8)$$

где x_0 и y_0 – некоторые заданные числа. При этом y_0 называется **начальным значением** искомой функции, а число x_0 – **начальным значением независимой переменной.** В целом же числа x_0 и y_0 называются **начальными данными**.

Задачу Коши **геометрически** можно сформулировать так: среди всех интегральных кривых уравнения

$$\frac{dy}{dx} = f(x, y) \tag{4.9}$$

найти ту, которая проходит через заданную точку $M_0(x_0,y_0)$.

Задача Коши с начальными условиями x_0 и y_0 имеет единственное решение, если $\exists \lambda>0$ такое, что в интервале $|x-x_0|\leq \lambda$ определено решение

y=y(x) такое, что $y(x_0)=y_0$. При этом не существует решения, определенного в этом же интервале и не совпадающего с решением y=y(x) хотя бы в одной точке интервала $|x-x_0|\leq \lambda$, отличной от точки $x=x_0$.

Теорема 1. Непрерывная функция y=y(x) является решением задачи Коши тогда и только тогда, когда выполняется равенство

$$y = y_0 + \int_{x_0}^{x} f(t, y(t))dt.$$
 (4.10)

Доказательство. Докажем необходимость. Пусть y=y(x) является решением задачи Коши, тогда справедливо тождество

$$y' = f(x, y).$$

Интегрируя это тождество в пределах от x_0 до x и учитывая условие $x=x_0$ и $y=y_0$, получаем требуемое равенство (4.10).

Докажем достаточность. Так как функции y=y(x) и f(x,y) непрерывные, то правая часть равенства (4.10), а следовательно, и левая, будут непрерывно дифференцируемыми по x функциями. Дифференцируя тождество (4.10) получаем, что функция y=y(x) является решением уравнения задачи Коши. Если в равенстве (4.10) положить $x=x_0$, то увидим, что это уравнение также удовлетворяет условию.

Что и требовалось доказать.

Глава 5

Методы интегрирования уравнений в нормальной форме

5.1 Неполные уравнения

Дифференциальное уравнение в нормальной форме называется **неполным**, если его правая часть зависит только от одного аргумента. Рассмотрим уравнение вида

$$y' = f(x), (5.1)$$

где будем считать функцию f(x) определенной и непрерывной на некотором интервале (a,b).

Правая часть уравнения не зависит от искомой функции y(x), поэтому область определения есть множество $D=(a,b)\times (-\infty,+\infty)$. Поскольку правая часть уравнения не зависит от переменной y, то выполнены условия теоремы Пикара и поэтому имеет место существования и единственность решения начальной задачи.

Преобразуем уравнение:

$$y' = f(x) \tag{5.2}$$

$$\frac{dy}{dx} = f(x) \tag{5.3}$$

$$dy = f(x)dx (5.4)$$

$$y = \int f(x)dx + C. \tag{5.5}$$

Полученная формула определяет общее решение исходного уравнения на множестве $R=\{x\in(a,b);|y|<\infty\}.$ Особых решений y исходного уравнения нет.

Если дополнительно задано начальное условие $y(x_0)=y_0$, то решение, удовлетворяющее этому условию, определяется формулой

$$y(x, x_0, y_0) = y_0 + \int_{x_0}^{x} f(t)dt.$$
 (5.6)

При фиксированном x_0 и произвольном y_0 эта формула определяет общее решение исходного уравнения на множестве $\mathbb R$ в форме Коши. Также из этой формы следует, что каждое решение уравнения определено на интервале (a,b) и вся полоса $\mathbb R$ заполнена непересекающимися интегральными кривыми.

Предположим теперь, что для некоторого $\xi \in (a,b)$ будет $f(\xi) = \infty$. В окрестности этой точки рассмотрим тогда перевернутое уравнение

$$\frac{dx}{dy} = \frac{1}{f(x)}. ag{5.7}$$

Это уравнение определено при $x=\xi$, более того, очевидно, что прямая $x\equiv\xi$ – решение этого уравнения. Это решение может быть как частным, так и особым.

5.2 Уравнения с разделяющимися переменными

Дифференциальное уравнение первого порядка, допускающее приведение к виду

$$f_1(x)\varphi_1(y)dx + f_2(x)\varphi_2(y)dy = 0, \tag{5.8}$$

где $f_1(x), f_2(x)$ – известные функции лишь переменной x, а $\varphi_1(y), \varphi_2(y)$ – известные функции лишь переменной y, называется уравнением с разделяющимися переменными.

Для решения этого уравнения нужно произвести разделение переменных, т. е. преобразовать это уравнение так, чтобы при dx стоял бы множитель, зависящий только от x, а при dy стоял бы множитель, зависящий только от у. Для этого достаточно обе части уравнения разделить на произведение $f_2(x)\varphi_i(y)$:

$$\frac{f_1(x)}{f_2(x)}dx + \frac{\varphi_2(y)}{\varphi_1(y)}dy = 0.$$

Рассматривая для определенности в последнем равенстве y как функцию переменной x, получим

$$\[\frac{f_1(x)}{f_2(x)} + \frac{\varphi_2(y)}{\varphi_1(y)} \cdot y'\] dx = 0.$$

Отсюда, интегрируя по x, будем иметь

$$\int \left[\frac{f_1(x)}{f_2(x)} + \frac{\varphi_2(y)}{\varphi_1(y)} y' \right] dx = C.$$

или

$$\int \frac{f_1(x)}{f_2(x)} dx + \int \frac{\varphi_2(y)}{\varphi_1(y)} dy = C, \tag{5.9}$$

где C – произвольная постоянная.

Кроме решений, даваемых формулой (5.9), уравнение (5.8) допускает решение, обращающие в ноль произведение $f_2(x)\varphi_1(y)$, т. е. являющиеся корнями уравнений $f_2(x)=0$ или $\varphi_1(y)=0$.

В самом деле, пусть x=a, где $f_2(a)=0$, тогда dx=0 (поскольку дифференциал константы a равен нулю). Подставляя эту функцию в уравнение, получим

$$f_1(a)\varphi_1(y)\cdot 0 + f_2(a)\varphi_2(y)dy \equiv 0,$$

т. е. x=a – решение уравнения (5.8). Аналогично можно показать, что функция y=b, где $\varphi_1(b)=0$, является также решением уравнения (5.8). Геометрически эти решения, если они существуют, составляют собой прямые, параллельные осям координат.

5.3 Однородные уравнения

Функция f(x,y) называется **однородной измерения** α , если при любом значении λ выполняется тождество

$$f(\lambda x, \lambda y) = \lambda^{\alpha} f(x, y). \tag{5.10}$$

В частности, многочлен

$$P(x,y) = \sum_{i,j} C_{ij} x^i y^i$$

представляет собой однородную функцию n-го измерения, если всего его члены имеют одно и тоже измерение, равное n, то есть, если i+j=n.

Дифференциальное уравнение первого порядка

$$P(x,y)dx + Q(x,y)dy = 0 (5.11)$$

называется **однородным**, если коэффициенты P(x,y) и Q(x,y) при дифференциалах переменных x и y однородные функции одного и того же измерения.

5.4 Линейные уравнения

Дифференциальное уравнение 1-го порядка называется **линейным**, если оно первой степени относительно неизвестной функции y и ее производной y' (или дифференциала dy) и не содержит произведения этих величин. В общем случае линейное уравнение имеет вид

$$\alpha(x)y' + \beta(x)y + \gamma(x) = 0, \tag{5.12}$$

где коэффициенты $\alpha(x)$, $\beta(x)$ и $\gamma(x)$ – данные непрерывные функции в некотором интервале $x\in(a,b)$.

Предполагая, что $\alpha(x) \neq 0$, и вводя обозначения

$$p(x) = \frac{\beta(x)}{\alpha(x)}, \qquad q(x) = -\frac{\gamma(x)}{\alpha(x)},$$

уравнение (5.12) можно привести к нормальному виду

$$y' + p(x)y = q(x), (5.13)$$

где функции p(x) и q(x) определены и непрерывны в интервале $x\in(a,b)$.

Если $q(x)\equiv 0$, то линейное уравнение (5.13) называется **однородным**, в противном случае – **неоднородным**.

5.5 Однородные уравнения

Функция F(x,y) называется **однородной степени** k, если

$$\forall \lambda > 0 \implies F(\lambda x, \lambda y) = \lambda^k F(x, y).$$

Примером однородной функции может служить любая форма (однородный многочлен) степени k.

Следующие функции являются однородными функциями степени $0,\,1,\,2$ и k соответственно:

$$\frac{x-y}{x+y}$$
; $\frac{x^2+xy}{x-y}$; x^2+y^2-xy ; $x^{k-1}y+y^k$.

Дифференциальное уравнение $\dfrac{dy}{dx}=f(x,y)$ называется **однородным**, если f(x,y) – однородная функция степени ноль.

Уравнение M(x,y)dx+N(x,y)dy=0 является однородным, если M(x,y) и N(x,y) – однородные функции одной и той же степени. Замена y=zx приводит однородное уравнение к уравнению с разделяющимися переменными.

5.6 Линейные уравнения первого порядка

Уравнение вида

$$y' + p(x)y = q(x),$$

где p(x), q(x) – функции, непрерывные на [a,b], называется **линейным дифференциальным уравнением первого порядка**. Его решение ищут в виде

$$y(x) = u(x) \cdot v(x),$$

где u(x), v(x) – две неизвестные функции. После подстановки в уравнение выражений для y и y^\prime получаем

$$v\frac{du}{dx} + \left(\frac{dv}{dx} + p(x)v\right)u = q(x).$$

В качестве v(x) выбирают одну из функций, удовлетворяющих уравнению

$$\frac{dv}{dx} + p(x)v = 0.$$

Тогда функция u(x) определяется из уравнения

$$v\frac{du}{dx} = q(x).$$

5.7 Уравнение Бернулли

Уравнение вида

$$y' + p(x)y = q(x)y^{\alpha},$$

где $\alpha \in R(\alpha \neq 0, \alpha \neq 1)$, называется **уравнением Бернулли**. Путем подстановки $z=y^{1-\alpha}$ оно сводится к линейному. Его можно решать и непосредственно, применяя подстановку

$$y(x) = u(x) \cdot v(x)$$
.

5.8 Уравнение в полных дифференциалах

5.8.1 Определение

Уравнение вида

$$M(x,y)dx + N(x,y)dy = 0$$

называется уравнением в полных дифференциалах, если его левая часть есть полный дифференциал некоторой функции u(x,y). В этом случае уравнение можно записать в виде du(x,y)=0, откуда следует, что соотношение u(x,y)=C является его общим интегралом.

Выражение

$$M(x,y)dx + N(x,y)dy,$$

где M,N – непрерывные функции вместе со своими частными производными $\frac{\partial M}{\partial y}$ и $\frac{\partial N}{\partial x}$ в некоторой области D, есть **полный дифференциал** тогда и только толко $\frac{\partial M}{\partial x}$ в области $\frac{\partial N}{\partial x}$ в области $\frac{\partial N}{\partial x}$ в области $\frac{\partial N}{\partial x}$

тогда, когда $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ во всей области D.

5.8.2 Решение уравнений

Рассмотрим пример. Пусть необходимо решить следующее уравнение:

$$(3x^2 + 6xy^2)dx + (6x^2y + 4y^3)dy = 0.$$

Пусть

$$M(x,y) = 3x^2 + 6xy^2$$
, $N(x,y) = 6x^2y + 4y^3$.

Так как

$$\frac{\partial M}{\partial y} = 12xy, \quad \frac{\partial N}{\partial x} = 12xy, \quad \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x},$$

то данное уравнение является уравнением в полных дифференциалах. Значит

$$Mdx + Ndy = du.$$

Следовательно

$$Mdx + Ndy = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy \implies \frac{\partial u}{\partial x} = M, \quad \frac{\partial u}{\partial y} = N.$$

$$\begin{cases} \frac{\partial u}{\partial x} = 3x^2 + 6xy^2, \\ \frac{\partial u}{\partial y} = 6x^2y + 4y^3. \end{cases}$$

Проинтегрируем первое уравнение по x, считая y постоянной:

$$u(x,y) = \int (3x^2 + 6xy^2)dx = 3 \cdot \frac{x^3}{3} + 6y^2 * \frac{x^2}{2} + \varphi(y) = x^3 + 3x^2y^2 + \varphi(y),$$

где $\varphi(y)$ – произвольная непрерывно-дифференцируемая функция. Для полученной функции u(x,y) найдем частную производную по y:

$$\frac{\partial u}{\partial y} = 6x^2y + \varphi'(y).$$

Объединим это уравнение и второе уравнение системы:

$$6x^2y + \varphi'(y) = 6x^2y + 4y^3$$
$$\varphi'(y) = 4y^3$$
$$\varphi(y) = y^4 + C.$$

Подставим $\varphi(y)$ в ранее найденную функцию u(x,y):

$$u(x,y) = x^3 + 3x^2y^2 + y^4 + C.$$

Общий интеграл дифференциального уравнения:

$$x^3 + 3x^2y^2 + y^4 = C.$$

5.9 Дифференциальные уравнения высших порядков, допускающие понижение порядка

5.9.1 Определение

Общий вид дифференциальных уравнений высшего порядка:

$$F\!\!\left(x,y,y',y'',\dots,y^{(n)}\right)=0.$$

Допускают понижение порядка следующие типы дифференциальных уравнений:

- 1. Уравнение вида $y^{(n)} = f(x)$ решается путем n-кратного интегрирования.
- 2. Уравнение вида F(x,y',y'')=0, явно не содержащее искомой функции y(x), сводят к уравнению первого порядка путем введения новой неизвестной функции z=z(x). Полагая y'(x)=z(x), y''(x)=z'(x), уравнение принимает вид F(x,z,z')=0.
- 3. Уравнение вида F(y,y',y'')=0 явно **не содержащее независимой переменной** x, интегрируют с помощью подстановки p=y', где p=p(y) новая не известная функция, зависящая от y. Тогда $y''=p\cdot p'$. При этом порядок уравнение понижается на единицу.
- 4. Если левая часть дифференциального уравнения **есть точная производная** какой-либо функции, то порядок уравнения так же можно понизить.

5.9.2 Примеры точных производных

$$\begin{split} \frac{y'}{y} &= (\ln y)'; \qquad \frac{y''}{y'} = (\ln y')'; \\ xy'' + y' &= (xy')'; \qquad yy'' + (y')^2 = (yy')'; \\ \frac{yy'' - (y')^2}{y^2} &= \left(\frac{y'}{y}\right)'. \end{split}$$

5.10 Линейные однородные дифференциальные уравнения с постоянными коэффициентами

Чтобы решить ЛОДУ с постоянными коэффициентами

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0, (5.14)$$

надо составить характеристическое уравнение

$$a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n = 0$$
 (5.15)

и найти все его корни $\lambda_1, \dots, \lambda_n$.

Общее решение уравнения (5.14) есть сумма, состоящая из слагаемых вида $C_i e^{\lambda_i x}$ для каждого простого корня λ_i уравнения (5.15) и слагаемых вида

$$(C_{m+1} + C_{m+2}x + C_{m+3}x^2 + \dots + C_{m+k}x^{k-1})e^{\lambda x}$$
 (5.16)

для каждого кратного корня λ уравнения (5.15), где k – кратность корня. Все C_i – произвольные постоянные.

Для каждой пары комплексных сопряженных корней $\lambda=\alpha\pm i\beta$ в формулу общего решения включаются слагаемые

$$C_{m+1}e^{\alpha x}\cos\beta x + C_{m+2}e^{\alpha x}\sin\beta x$$
,

если эти корни простые, и слагаемые

$$P_{k-1}(x)e^{\alpha x}\cos\beta x + Q_{k-1}(x)e^{\alpha x}\sin\beta x,$$

если каждый из корней $\alpha+i\beta$ и $\alpha-i\beta$ имеет кратность k. Здесь P_{k-1} и Q_{k-1} – многочлены степени k-1, аналогичные многочлену в (5.16), их коэффициенты – произвольные постоянные.

Например, вид общего решения уравнения второго порядка

$$y'' + a_1 y' + a_2 y = 0$$

с постоянными коэффициентами зависит от корней характеристического уравнения

$$\lambda^2 + a_1\lambda + a_2 = 0.$$

Если λ_1 и λ_2 – различные и действительные корни, общее решение имеет вид

$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}.$$

Если $\lambda_1=\lambda_2=\lambda$ – двукратный действительный корень, общее решение имеет вид

$$y = C_1 e^{\lambda x} + C_2 x e^{\lambda x}.$$

Если $\lambda_{1,2}=\alpha\pm i\beta$ – комплексно-сопряженные корни, общее решение имеет вид

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x).$$

5.11 Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами

Рассмотрим уравнение

$$y^{(n)} + p_1 y^{(n-1)} + \dots + p_n y = f(x).$$

Общее решение этого уравнения равно сумме какого-нибудь частного решения этого уравнения и общего решения соответствующего однородного уравнения, то есть

$$y(x) = y_0(x) + \bar{y}(x).$$

Решение однородного уравнения определяется также, как было описано ранее. Частное решение уравнения $\bar{y}(x)$ в случае, когда правая часть имеет специальный вид, определяется методом неопределенных коэффициентов. Правая часть специального вида

$$f(x) = e^{\alpha x} (P_m(x) \cos \beta x + Q_n(x) \sin \beta x),$$

где $P_m(x)$ и $Q_n(x)$ – полиномы степеней m и n соответственно. Укажем вид частного решения дифференциального уравнения в двух случаях.

Первый случай: число $\alpha+i\beta$ не является корнем характеристического уравнения:

$$\bar{y}(x) = e^{\alpha x} (S_I(x) \cos \beta x + R_I(x) \sin \beta x),$$

где S_l и R_l – полиномы степени $l=\max(m,n)$ с неопределенными коэффициентами.

Второй случай: число $\alpha+i\beta$ является корнем характеристического уравнения кратности k:

$$\bar{y}(x) = x^k e^{\alpha x} (S_I(x) \cos \beta x + R_I(x) \sin \beta x),$$

то есть частное решение приобретает множитель x^k .

5.12 Метод Лагранжа

Общее решение y(x) линейного неоднородного уравнения второго порядка

$$y'' + p_1(x)y' + p_2(x)y = f(x)$$

есть сумма общего решения y_0 соответствующего ему однородного уравнения $y''+p_1(x)y'+p_2(x)y=0$ и какого-нибудь частного решения \bar{y} :

$$y(x) = y_0(x) + \bar{y}.$$

Суть метода Лагранжа вариации произвольных постоянных заключается в следующем. Если $y_0=C_1y_1+C_2y_2$ – общее решение однородного уравнения, то частное решение $\bar{y}(x)$ ищется в виде

$$\bar{y} = C_1(x)y_1 + C_2(x)y_2,$$

где $C_1(x)$ и $C_2(x)$ – неизвестные пока функции, производные от которых определяются из системы

$$\left\{C_1'(x)y_1+C_2'(x)y_2=0C_1'(x)y_1'+C_2'(x)y_2'=f(x).\right.$$

Решая данную систему, находим $C_1'(x)$ и $C_2'(x)$, откуда после интегрирования определяем $C_1(x)$ и $C_2(x)$.

Глава 6

Числовые ряды

6.1 Основные понятия

Определение. Выражение вида

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots,$$

называют **числовым рядом.** Числа $a_1, a_2, \ldots, a_n, \ldots$ – действительные или комплексные числа, называющиеся членами ряда, а a_n – n-ый или общий член ряда.

Ряд задан, если известен общий член ряда a_n , выраженных как функция его номера n: $a_n = f(n)$.

Сумму первых n членов числового ряда обозначают через S_n и называют n-й частичной суммой ряда:

$$S_n = a_1 + a_2 + \dots + a_n.$$

Ряд вида

$$\sum_{k=n+1}^\infty a_k = a_{n+1} + a_{n+2} + \dots$$

называется n-м остатком ряда $\sum_{n=1}^{\infty} a_n$, который получается отбрасыванием его n первых членов.

Ряд называется **сходящимся**, если его n-я частичная сумма S_n при неограниченном возрастании n стремится к конечному пределу, т. е. если

$$\lim_{n\to\infty} = S.$$

Число S называют **суммой** ряда. Если же n-я частичная сумма ряда не стремиться к конечному пределу, то ряд называют **расходящимся**.

6.2 Свойства числовых рядов

Свойство 1. Если ряд

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$
 (6.1)

сходится и его сумма равна S, то ряд

$$\sum_{n=1}^{\infty} \lambda a_n = \lambda a_1 + \lambda a_2 + \dots + \lambda a_n + \dots, \tag{6.2}$$

где λ – произвольное число, также сходится и его сумма равна λS . Если же ряд (6.1) расходится и $\lambda \neq 0$, то и ряд (6.2) расходится.

Доказательство.

Сходимость. Пусть S_n – n-я частичная сумма ряда (6.2). Тогда

$$\begin{split} S_n^{(a)} &= \lambda a_1 + \lambda a_2 + \ldots + \lambda a_n + \ldots = \lambda (a_1 + a_2 + \ldots + a_n + \ldots) = \lambda S_n. \\ &\lim_{n \to \infty} S_n^{(a)} = \lim_{n \to \infty} \lambda S_n = \lambda \lim_{n \to \infty} S_n = \lambda S. \end{split}$$

Так как существует конечный предел частичных сумм, то ряд (6.2) сходится и имеет сумму λS .

Расходимость. Допустим противное. Пусть ряд (6.2) сходится и имеет сумму S_1 . Тогда

$$S_1 = \lim_{n \to \infty} S_n^{(a)} = \lim_{n \to \infty} \lambda S_n = \lambda \lim_{n \to \infty} S_n \implies \lim_{n \to \infty} S_n = \frac{S_1}{\lambda}.$$

т. е. ряд (6.1) сходится, что противоречит условию о расходимости данного ряда.

Что и требовалось доказать.

Свойство 2. Если сходится ряд

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$
 (6.3)

и сходится ряд

$$\sum_{n=1}^{\infty} b_n = b_1 + b_2 + \dots + b_n + \dots, \tag{6.4}$$

а их суммы равны S_a и S_b соответственно, то сходятся и ряды

$$\sum_{n=1}^{\infty} (a_n \pm b_n),\tag{6.5}$$

причем сумма каждого равна $S_a \pm S_b$. Доказательство. Пусть $S_n^{(a)}$, $S_n^{(b)}$, S_n – n-е частичные суммы рядов (6.3), (6.4) μ (6.5) соответственно. Тогда

$$\lim_{n\to\infty}S_n=\lim_{n\to\infty}(S_n^{(a)}\pm S_n^{(b)})=\lim_{n\to\infty}S_n^{(a)}\pm\lim_{n\to\infty}S_n^{(b)}=S_a\pm S_b,$$

т. е. каждый из рядов (6.5) сходится и его сумма равна $S_a \pm S_b$.

Что и требовалось доказать.

Следствие. Сумма (разность) сходящегося и расходящегося рядов есть расходящийся ряд.

Замечание. Сумма (разность) двух расходящимся рядов может быть как сходящимся, так и расходящимся рядом.

Свойство 3. Если к ряду

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$
 (6.6)

прибавить (или отбросить) конечное число членов, то полученный ряд и ряд (6.6) сходятся или расходятся одновременно.

Доказательство. Пусть S – сумма отброшенных членов ряда, а k – наибольший из этих номеров. Будем считать, что на место отброшенных членов ряда поставили нули. Тогда при n>k выполняется равенство

$$S_n - S_n' = S$$

где S_n' – n-я частичная сумма ряда, полученная из ряда (6.6) путем отбрасывания конечного числа членов. Поэтому

$$\lim_{n \to \infty} S_n = S + \lim_{n \to \infty} S'_n.$$

Пределы в левой и правой части данного равенства одновременно существуют или не существуют, т. е. ряд (6.6) сходится (расходится) тогда и только тогда, когда сходятся (расходятся) ряды без конечного числа его членов.

Аналогично доказывается случай приписывания к ряду конечного числа членов.

Что и требовалось доказать.

Следствие 1. Ряд (6.6) и его n-й остаток сходятся или расходятся одновременной.

Следствие 2. Если ряд (6.6) сходится, то его n-й остаток r_n стремится к нулю при $n \to \infty$, т. е.

$$\lim_{n\to\infty} r_n = 0.$$

6.3 Ряд геометрической прогрессии

Определение. Ряд вида

$$a+aq+aq^2+\ldots+aq^{n-1}+\ldots,\quad (a\neq 0)$$

называется рядом геометрической прогрессии.

Исследуем данный ряд на сходимость. Сумма первых n членов прогрессии находится по формуле

$$S_n = \frac{a(1-q^n)}{1-q}, \quad q \neq 1.$$

Найдем предел этой суммы:

$$\lim_{n\to\infty}S_n=\lim_{n\to\infty}\frac{a(1-q^n)}{1-q}=\frac{a}{1-q}-a\lim_{n\to\infty}\frac{q^n}{1-q}.$$

Рассмотрим следующие случаи:

- 1. Если |q|<1, то $q^n\to 0$ при $n\to\infty$, значит $\lim_{n\to\infty}S_n=\frac{a}{1-q}$, т. е. ряд сходится и его сумма равна $\frac{a}{1-q}$.
- 2. Если |q|>1, то $q^n\to\infty$ при $n\to\infty$, значит $\lim_{n\to\infty}S_n=\infty$, т. е. ряд расходится.
- 3. Если q=1, получаем ряд a+a+a+..., который расходится, так как $S_n=na$, значит $\lim_{n\to\infty}S_n=\infty$.
- 4. Если q=-1, получаем ряд a-a+a-a+..., который расходится, так как $\lim_{n \to \infty} S$ не существует.

Таким образом, ряд геометрической прогрессии сходится при |q|<1 и расходится при $|q|\geq 1.$