a)

	0	1	2	3	4	5	6
0	0	2	1	1	0	0	0
1	0	0	0	3	4	0	0
2	0	0	0	0	0	5	0
3	0	0	2	0	2	2	8
4	0	0	0	0	0	0	5
5	0	0	0	0	0	0	0
6	0	0	0	0	0	1	0

0 represents False, and positive integers represent weight

```
b)
    0: { 1, 2, 3 }
    1: { 3, 4 }
    2: { 5 }
    3: { 2, 4, 5, 6 }
    4: { 6 }
    5: { }
    6: { 5 }

c)
    {0=max_value(2147483647)}
    {0=max_value(2147483647)}, 1=max_value(2147483647)}
    {0=max_value(2147483647), 1=max_value(2147483647)}
```

{0=max_value(2147483647), 1=max_value(2147483647), 2=max_value(2147483647), 3=max_value(2147483647)}

3=max_value(2147483647)}

d) The algorithm is supposed to go backward, therefore we need to trace back from 2 to 4. However, 2 has only one out leading to 5, which does not have any outs but only ins. Therefore, the algorithm would not work in this case.

4 a) b=4.

inserting 3

inserting 17

inserting 2

inserting 4

insert 3

insert 17

insert 2

insert 4

