

Report No: CCISE180903202

FCC REPORT

(Bluetooth)

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: Smart phone

Model No.: N5001W, A3

Trade mark: NUU

FCC ID: 2ADINN5001W

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 10 Sep., 2018

Date of Test: 10 Sep., to 12 Oct., 2018

Date of report issued: 16 Oct., 2018

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCISE180903202

Version

Version No.	Date	Description
00	16 Oct., 2018	Original

Tested by: Mike.OU Test Engineer 16 Oct., 2018 Date:

Reviewed by: Date: 16 Oct., 2018

Project Engineer

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3		
3		
4	4 TEST SUMMARY	4
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T.	
	5.3 TEST ENVIRONMENT AND TEST MODE	
	5.4 DESCRIPTION OF SUPPORT UNITS	
	5.5 MEASUREMENT UNCERTAINTY	6
	5.6 LABORATORY FACILITY	6
	5.7 LABORATORY LOCATION	
	5.8 TEST INSTRUMENTS LIST	7
6	6 TEST RESULTS AND MEASUREMENT DATA	8
	6.1 ANTENNA REQUIREMENT	8
	6.2 CONDUCTED EMISSIONS	9
	6.3 CONDUCTED OUTPUT POWER	12
	6.4 20DB OCCUPY BANDWIDTH	
	6.5 CARRIER FREQUENCIES SEPARATION	
	6.6 HOPPING CHANNEL NUMBER	
	6.7 DWELL TIME	
	6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9 BAND EDGE	
	6.9.1 Conducted Emission Method	
	6.10 Spurious Emission	
	6.10.1 Conducted Emission Method	
	6.10.2 Radiated Emission Method	
7	7 TEST SETUP PHOTO	53
8	8 FUT CONSTRUCTIONAL DETAILS	54

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna Requirement	15.203 & 15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Spurious Emission	15.205 & 15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

General Information 5

5.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Manufacturer:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Factory:	SUNCUPID (ShenZhen) Electronic Ltd
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.

5.2 General Description of E.U.T.

OIZ CONGIA DOCOMPHON	2 Contra Booth Parent of Elotti				
Product Name:	Smart phone				
Model No.:	N5001W, A3				
Operation Frequency:	2402MHz~2480MHz				
Transfer rate:	1/2/3 Mbits/s				
Number of channel:	79				
Modulation type:	GFSK, π/4-DQPSK, 8DPSK				
Modulation technology:	FHSS				
Antenna Type:	Internal Antenna				
Antenna gain:	1.53 dBi				
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh				
AC adapter:	Model: HJ-0501000E1-US Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1000mA				
Remarks:	item No.: N5001W,A3 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name and for different areas.				
Test Sample Condition:	The test samples were provided in good working order with no visible defects.				

Operation	Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		
Remark: Ch	nannel 0, 39 &78	3 selected for	or GFSK, π/4-D	QPSK and 8	BDPSK.		

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Modes:	
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.
Hopping mode:	Keep the EUT in hopping mode.
Remark	GFSK (1 Mbps) is the worst case mode.

Report No: CCISE180903202

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 6 of 54

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2017	11-20-2018	
EMI Test Software	AUDIX	E3	Version: 6.110919b		b	
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2017	11-20-2018	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0			

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-07-2018	03-06-2019	
EMI Test Software	AUDIX	E3	\	ersion: 6.110919/	b	

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement: FCC Part 15 C Section 15.203 & 247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is 1.53 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz, Sweep time=auto		
Limit:	Frequency range	Limit (dBuV)	
	(MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the log	arithm of the frequency.		
Test setup:	Reference	Plane		
	AUX Equipment E.U.T Remark: E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Hopping mode			
Test results:	Pass			

Measurement Data:

Product name:	Smart phone	Product model:	N5001W
Test by:	Mike	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Remark	:							
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	dB	dBu₹	dBu∜	<u>dB</u>	
1	0.158	37.65	0.17	10.77	48.59	65.56	-16.97	QP
1 2 3 4 5 6 7 8 9	0.158	21.91	0.17	10.77	32.85	55.56	-22.71	Average
3	0.194	35.30	0.15	10.76	46.21	63.84	-17.63	QP
4	0.194	21.28	0.15	10.76	32.19	53.84	-21.65	Average
5	0.381	19.22	0.12	10.72	30.06	48.25	-18.19	Average
6	0.454	34.47	0.12	10.74	45.33	56.80	-11.47	QP
7	0.454	23.87	0.12	10.74	34.73	46.80	-12.07	Average
8	0.497	30.74	0.12	10.76	41.62	56.05	-14.43	QP
9	0.502	20.90	0.12	10.76	31.78	46.00	-14.22	Average
10	0.558	30.51	0.12	10.76	41.39	56.00	-14.61	QP
11	7.407	22.87	0.26	10.82	33.95	50.00	-16.05	Average
12	7.977	35.14	0.28	10.85	46.27	60.00	-13.73	QP

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Smart phone	Product model:	N5001W
Test by:	Mike	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Remark	:							
	120	Read	LISN	Cable	922 19230	Limit	Over	9 <u>22</u> 89 23
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
-	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu∜	<u>dB</u>	
1	0.158	36.47	0.98	10.77	48.22	65.56	-17.34	QP
2	0.381	32.84	0.97	10.72	44.53	58.25	-13.72	QP
3	0.389	22.43	0.97	10.72	34.12	48.08	-13.96	Average
1 2 3 4 5 6 7 8	0.449	23.56	0.97	10.74	35.27	46.89	-11.62	Average
5	0.489	33.95	0.97	10.76	45.68	56.19	-10.51	QP
6	0.497	23.97	0.97	10.76	35.70	46.05	-10.35	Average
7	0.518	24.17	0.97	10.76	35.90	46.00	-10.10	Average
8	0.579	32.35	0.97	10.76	44.08	56.00	-11.92	QP
9	0.585	20.47	0.97	10.76	32.20	46.00	-13.80	Average
10	4.926	34.55	1.01	10.85	46.41	56.00	-9.59	QP
11	4.952	19.93	1.01	10.85	31.79	46.00	-14.21	Average
12	7.810	35.39	1.02	10.84	47.25	60.00	-12.75	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)			
Test Method:	ANSI C63.10:2013 and DA00-705			
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)			
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Non-hopping mode			
Test results:	Pass			

Measurement Data:

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
	GFSK mo	de			
Lowest channel	3.33	30.00	Pass		
Middle channel	2.66	30.00	Pass		
Highest channel	1.55	30.00	Pass		
	π/4-DQPSK mode				
Lowest channel	2.87	21.00	Pass		
Middle channel	2.66	21.00	Pass		
Highest channel	1.55	21.00	Pass		
	8DPSK mo	ode			
Lowest channel	3.24	21.00	Pass		
Middle channel	2.32	21.00	Pass		
Highest channel	1.43	21.00	Pass		

Test plot as follows:

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Toot channel		20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	752	1120	1164	
Middle	828	1120	1164	
Highest	828	1120	1168	

Test plot as follows:

6.5 Carrier Frequencies Separation

o Carrier i requericies deparation				
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013 and DA00-705			
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak			
Limit:	 a) 0.025MHz or the 20dB bandwidth (whichever is greater) b) 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater) 			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Hopping mode			
Test results:	Pass			

Measurement Data:

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
	GFSK					
Lowest	1004	828.00	Pass			
Middle	1004	828.00	Pass			
Highest	1000	828.00	Pass			
	π/4-DQPSK mode					
Lowest	1004	746.67	Pass			
Middle	1004	746.67	Pass			
Highest	1008	746.67	Pass			
8DPSK mode						
Lowest	1004	778.67	Pass			
Middle	1004	778.67	Pass			
Highest	1004	778.67	Pass			

Note: According to section 6.4

		The state of the s
Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	828	828.00
π/4-DQPSK	1120	746.67
8DPSK	1168	778.67

Test plot as follows:

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)			
•	77.7			
Test Method:	ANSI C63.10:2013 and DA00-705			
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz,			
	Detector=Peak			
Limit:	15 channels			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Hopping mode			
Test results:	Pass			

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and KDB DA00-705
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Hopping mode
Test results:	Pass

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.12608		
GFSK	DH3	0.26592	0.4	Pass
	DH5	0.31147		
π/4-DQPSK	2-DH1	0.11200		
	2-DH3	0.26688	0.4	Pass
	2-DH5	0.31147		
	3-DH1	0.12800		
8DPSK	3-DH3	0.26592	0.4	Pass
	3-DH5	0.31147		

Note:

The test period = 0.4 Second/Channel x 79 Channel = 31.6 s

Calculation Formula: Dwell time = Ton time per hop * Hopping numbers * Period

For example:

DH1 time slot=0.394*(1600/(2*79))*31.6=126.08ms DH3 time slot=1.662*(1600/(4*79))*31.6=265.92ms DH5 time slot=2.920*(1600/(6*79))*31.6=311.47ms

Test plot as follows:

Report No: CCISE180903202

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and DA00-705			
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Non-hopping mode and hopping mode			
Test results:	Pass			

Test plot as follows:

6.9.2 Radiated Emission Method

Test Method: ANS Test Frequency Range: 2.30			J.ZU9	anu 13.203							
Test Frequency Range: 2.30	,, COS. 10. Z	2013				FCC Part 15 C Section 15.209 and 15.205 ANSI C63.10: 2013					
1 , 0	2.3GHz to 2.5GHz										
Test Distance: 3m	3m										
							Remark				
Receiver setup.	equency	Peak		1MHz		1Hz	Peak Value				
Abo	ve 1GHz	RMS		1MHz		1Hz	Average Value				
Limit:	Frequence	1		it (dBuV/m @3		11 12	Remark				
Lillitt	riequen	Су	LIIII	54.00	DIII)	۸۷	erage Value				
	Above 1G	iHz		74.00			Peak Value				
Test Procedure: 1. T	Horn Antenna Tower AE EUT Ground Reference Plane Test Receiver Amplier Controller										
g de 2. Ti ai to 3. Ti g gi he m 4. Fe ai ai m 5. Ti S 6. If lir E 10	round at a etermine the EUT wantenna, whower. The antenna round to de orizontal armeasurement or each suind then the naximum rethe test-recipecified Batthe emissimit specifie UT would to the termination of the test-recipecified Batthe emissimit specifie UT would to the test-recipecified Batthe emissimit specifie UT would to the test-recipecifie UT would to the test-recipecifie the emissimit specifie UT would to the test-recipecifie the emission of the test-recipecifie the emission of the test-recipecifie the emission of the test-recipecifie the test-recipecifie the test-recipecified Batthe emission of th	3 meter cane position as set 3 meter in a height is etermine the distribution of the cantenna table was eading. eiver system and width won level of the tesperte in would be in a position of the tesper in would be in a set of the tesper in would be in a set of the tesper in would be in a set of the tesper in would be in a set of the tesper in would be in a set of the tesper in would be in a set of the tesper i	varied va	r. The table was e highest radia away from the ed on the top or d from one meaximum value or izations of the on, the EUT was uned to heighted from 0 degrees set to Peak aximum Hold I EUT in peak measured to be stoppherwise the em	s rotatition. interfe f a varium ter to for the fi antenras arrais from the sees to sees to see the code was also and the sees to see the code was a see the sees to see the code was a see the sees to see the sees	erence-riable-herence street are	receiving eight antenna ters above the ength. Both set to make the its worst case r to 4 meters grees to find the on and a lower than the eak values of the id not have , quasi-peak or				
	Refer to section 5.8 for details										
Test mode: Non-	Non-hopping mode										
Test results: Pass	Passed										

GFSK Mode:

Product Name:	Smart phone	Product Model:	N5001W
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

enna Cable Preamp Limit Over ctor Loss Factor Level Line Limit Remark

MHz dBuV dB/m ďΒ dB dBuV/m dBuV/m dB 16.01 74.00 -25.93 Peak 2390.000 27.37 4.69 0.00 48.07 2390.000 7.61 27.37 4.69 0.00 39.67 54.00 -14.33 Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	N5001W
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	N5001W
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMARK	:	Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor					Limit	Remark
-	MHz	dBu∜	dB/m		<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500		27.57 27.57		0.00 0.00	51.87 40.76	74.00 54.00	-22.13 -13.24	Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	N5001W
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMAR	к :	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500		27.57 27.57	4.81 4.81				-21.82 -13.69	Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

π/4-DQPSK mode

Product Name:	Smart phone	Product Model:	N5001W
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMARI	:	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
-	MHz	dBu∜	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2	2390.000 2390.000		27.37 27.37	4.69 4.69		47.55 39.42			Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	N5001W
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMAR	к :	Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu∜	$\overline{dB}/\overline{m}$	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000	T1723 T1700	27.37 27.37		0.00 0.00				Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	N5001W
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMARK		Read	Antenna	Cable	Preamp		Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu₹	dB/m	dB	<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
100000000000000000000000000000000000000	2483.500 2483.500		27.57 27.57						

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	N5001W
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMARK ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 0.00 51.35 74.00 -22.65 Peak 0.00 41.07 54.00 -12.93 Average 27.57 2483.500 18.97 4.81 27.57 2483.500 8.69 4.81

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

8DPSK mode

Product Name:	Smart phone	Product Model:	N5001W
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

1 2

Freq		Antenna Factor				Limit Line		
MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2390.000 2390.000				0.00 0.00				

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	N5001W
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMARK	277.5		Antenna				Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu₹	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000		27.37 27.37	4.69 4.69	0.00 0.00		74.00 54.00		Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	N5001W
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMARK ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark MHz dB/m dB dB dBuV/m dBuV/m dB 2483.500 20.47 27.57 4.81 0.00 52.85 74.00 -21.15 Peak 2483.500 8.02 27.57 4.81 0.00 40.40 54.00 -13.60 Average

Romark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	N5001W
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMAR	к :	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor						
,	MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500				0.00 0.00				

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and DA00-705					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Non-hopping mode					
Test results:	Pass					

Test plot as follows:

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission Me	ethod							
Test Requirement:	FCC Part 15 C Section 15.209							
Test Method:	ANSI C63.10: 2	013						
Test Frequency Range:	9 kHz to 25 GH:	z						
Test Distance:	3m							
Receiver setup:	Frequency Detector RBW VBW Remark							
	30MHz-1GHz	Quasi-pe	eak	120kHz	300kl	Hz	Quasi-peak Value	
	Above 1GHz	Peak	,	1MHz	3MH	lz	Peak Value	
	Above 10112	RMS		1MHz	3MH	lz	Average Value	
Limit:	Frequenc	:y	Lim	it (dBuV/m @	⊉3m)		Remark	
	30MHz-88N	ИHz		40.0			Quasi-peak Value	
	88MHz-216	MHz		43.5			Quasi-peak Value	
	216MHz-960	MHz		46.0			Quasi-peak Value	
	960MHz-10	SHz		54.0			Quasi-peak Value	
	Above 1GI	H7 -		54.0			Average Value	
	Above 101	112		74.0			Peak Value	
	Antenna Tower Search Antenna RF Test Receiver Ground Plane Above 1GHz						Search Antenna F Test ceiver	
	AE EUT Horn Antenna Tower (Turntable) Ground Reference Plane Test Receiver Pie- Ampiñer Controller						na Tower	
Test Procedure:							0.8m(below 1GHz) chamber. The table	

	was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.
	CONTILE III THE TOPOIL

Measurement Data (worst case):

Below 1GHz:

Product Name:	Smart phone	Product Model:	N5001W
Test By:	Mike	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	: Freq		Antenna Factor		Preamp Factor	Level	Limit Line	Over Limit	Remark
1307	MHz	dBu∜			<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	dB	
1	53.882	38.06	13.40	1.34	29.80	23.00	40.00	-17.00	QP
2 3 4 5	88.964	46.08	9.81	2.00	29.58	28.31	43.50	-15.19	QP
3	164.908	44.39	9.25	2.62	29.09	27.17	43.50	-16.33	QP
4	197.893	49.19	11.44	2.86	28.84	34.65	43.50	-8.85	QP
5	220.617	44.96	12.29	2.85	28.70	31.40	46.00	-14.60	QP
6	304.610	42.21	13.70	2.95	28.46	30.40	46.00	-15.60	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart phone	Product Model:	N5001W
Test By:	Mike	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMARK	: Freq		Antenna Factor			Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u> /π	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	150.538	42.19	8.63	2.52	29.22	24.12	43.50	-19.38	
2	159.225	41.88	9.06	2.58	29.14	24.38	43.50	-19.12	
3	199.286	44.52	11.48	2.86	28.83	30.03	43.50	-13.47	
4	299.316	39.72	13.60	2.94	28.45	27.81	46.00	-18.19	
2 3 4 5 6	790.619	29.35	21.00	4.35	28.25	26.45	46.00	-19.55	
6	869.130	29.14	21.69	4.01	27.95	26.89	46.00	-19.11	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Above IGHZ	•							
			Test ch	annel: Lowe	est channel			
			De	tector: Peak	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	46.40	30.85	6.80	41.81	42.24	74.00	-31.76	Vertical
4804.00	47.02	30.85	6.80	41.81	42.86	74.00	-31.14	Horizontal
			Dete	ctor: Averag	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.12	30.85	6.80	41.81	31.96	54	-22.04	Vertical
4804.00	37.07	30.85	6.80	41.81	32.91	54	-21.09	Horizontal
				annel: Mido				
				tector: Peak	Value		T .	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	47.60	31.20	6.86	41.84	43.82	74.00	-30.18	Vertical
4882.00	46.86	31.20	6.86	41.84	43.08	74.00	-30.92	Horizontal
			Dete	ctor: Averaç	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	37.48	31.20	6.86	41.84	33.70	54.00	-20.30	Vertical
4882.00	36.51	31.20	6.86	41.84	32.73	54.00	-21.27	Horizontal
			Test ch	annel: Highe	est channel			
		,	De	tector: Peak	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	45.95	31.63	6.91	41.87	42.62	74.00	-31.38	Vertical
4960.00	46.23	31.63	6.91	41.87	42.90	74.00	-31.10	Horizontal
			Dete	ctor: Averaç	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.95	31.63	6.91	41.87	32.62	54.00	-21.38	Vertical
4960.00	36.40	31.63	6.91	41.87	33.07	54.00	-20.93	Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.