Friday, March 15, 2019 11:31 AM

1301.05437 BDV3 F193: 1506.1601

· Connections to statistics:

As we discussed, the Hamiltonian can be interpreted as the total energy of a system.

Using the concept of cononical ensemble mechanical eyestem in themal equilibrium (Tenders) with a heat both at fixed temperature?) with a heat both at the con relate the solution of a ref a not vibility (yes, which is a ref a not vibility) of a repeat of a state of a state?

P(x) = = exp (-E(x) | T)

[Desiration tollows from the objinition of entropy (Boltzmann),

S(E) = kg log SCE)

and literally courting individual a tester of the I. Magreery's notes I

In terms of the Hamiltonian functions HCP, Q?, we can use (1) to varite the joint probability distribution, parameters of

P(P,Q) & exp(-H(P,Q)) (2)

Gravillary

where we've set 7 = 1.

For a Bayesian analysis, usire interested in sampling the posterior, P(2/4), which

coe can esté in terms of conditional , sevolled es ensitadistails

P(a14) x [P(a18,4) P(P) dp __(3)

d (P(410,8) P(918) P(8) de

Les sail test se rientement frantament

[PCR,BIC) = PCRIB, C) PCBIC)]

used Bayes' theorem for the second.

Naive HMC somple

In lieu of un algorithm, I'll summarize the stope in some detail.

The goal, like oney MMC sample, is to drown new samples based on a sample, and then accept / reject steps with the Metropolis update.

Unlike the M-H complex, for example, the proposed is n't a random walk but is quided by the gradient of the posterior density w.r.t its personalers.

Algorithm:

, noitezilaitini molenor o \mathcal{H} icu q stabell $\langle ... \rangle$ $(21, \mathcal{M}, 0) \mathcal{N} \sim \overline{q}$

istulances) bother portgal set see straight (:5

soon ecusio II'see; ratorpetri

2'nothinal set standard of (retal smar fo

chant ocet no ceiler IT. moitaups

'standard for a siz-ast : exclanarag

Least for solo as siz-ast : exclanarag

o) $\overrightarrow{b}(4+\varepsilon|5) \leftarrow \overrightarrow{b}(4) + \overline{7} \in 9 \frac{36}{100} (3H)$

c) b(++ e) < b(++ e/2) + 7 e 3/036(6/10)

We can combine a) and c) for all steps except the last, so we can write:

 $-\overrightarrow{P}(4+\varepsilon|2) \leftarrow \overrightarrow{P}_0 + \underline{1} \in \underbrace{\frac{3\log P(\alpha|\beta)}{3Q}}$

-for (in I:L)

& Step b)

P (++€) = P (+) + € 3/09 P(0/1/1)

2

- Step c)

*

Louer reject step follows the usual netropolis , stalege silogostem

tu (2", 20-19t)

Je of , othersise (after t

long boo loitini est ere "to, o endes states acceptance estates", which some acceptance probability is given bey

2 (-19t) = min { 1, exp (-H(2*, p*) }

ti esnie & phitalogu tuoda eras t'nobescu.

comments:

1. The leappog integration steps presence the the soint density PCR, 9/4). A formal proof is begond the scope of this talk, but , Last: plantintin is startan of got 11'I' low desity (-ve gradient), high desity (tre gradient).

mound, voitasti veretad agrad year petined a

2. Metropolis -> obsciled bulance -> Kanonical estimals

Note:
P(P,Q/Y) ~ P(Q/P,Y) P(P)

Taking log on both sider,

109 P(P,Q14) = 109 P(Q1P,4) + 109 P(F)

Houses, using the definition of caronical distribution from Eq. (2),

- KCB) - U(Q) = 100 P(Q1P,4) + 100 P(P)

=: 30 = - 3 log P(a18,4)

The RHS is a regative log-libelihood implying that the potential energy UCV increases as you roll down the hill.