- 1) Implement and Verify De Morgan's Law.
- 2) Implement and Verify half adder using NAND Gate.

SET-2

- 1) Implement and Verify Full adder using NAND Gate.
- 2) Simplify the flowing Boolean Expression
 - i) AB(A+B)(B+B)

SET-3

- 1) Implement and Verify Full Sub-tractor.
- 2) Simplify the flowing Boolean Expression
 - i) (A+C)(AD+AD)+AC+C

SET-4

- 1) Implement and Verify Full Sub-tractor.
- 2) Simplify the flowing Boolean Expression
 - i) A (A+B) + (B+AA) (A+B)

SET-5

1) Implement and Verify Multiplexer.

SET-6

- 1) Implement and Verify Full Sub-tractor.
- 2) Simplify the flowing Boolean Expression
 - i) A (A + B) + (B + AA) (A + B)

SET-7

- 1) Implement and Verify De Morgan's Law.
- 2) Simplify the flowing Boolean Expression
 - i) Y + X (Y + Z) + Y (Y + Z)

SET-8

- 1) Implement and Verify Half Sub-tractor.
- 2) Simplify the flowing Boolean Expression
 - i) x * y * z + x * z

SET-9

- 1) Implement the Boolean expression simplification-AB (A+B) (B+B)
- 2) Implement and verify Full Sub-Tractor.

SET-10

- 1) Implement the Boolean expression simplification-AB (A+B) (B+B)
- 3) Implement and Verify Half Sub-tractor.

SET-11

- 1) Implement and verify Full Sub-Tractor.
- 2) Simplify the flowing Boolean Expression

$$Y + X (Y + Z) + Y (Y + Z)$$

SET-12

- 1) Implement and Verify Full adder using NAND Gate.
- 2) Simplify the flowing Boolean Expression

$$Y + X (Y + Z) + Y (Y + Z)$$