Recorrências

Rômulo César Silva

Unioeste

Dezembro de 2019

Sumário

- Definição
- 2 Métodos de Resolução
- 3 Recorrências Homogêneas Lineares
- 4 Recorrências Lineares Não Homogêneas
- Mudança de variável
- 6 Recorrências Não Lineares
- Bibliografia

Recorrência

Definição

Uma recorrência é uma equação ou inequação matemática definida em termos dela mesma (de maneira recursiva), e de seus valores iniciais.

Exemplo:

$$f(n) = \begin{cases} 1 & \text{se } n = 0 \text{ ou } n = 1 \\ f(n-1) + f(n-2) & \text{se } n > 1 \end{cases}$$

Para calcular f(3), precisa-se calcular f(2) e f(1). Para calcular f(2) precisa-se calcular f(1) e f(0). Assim:

$$f(3) = f(2) + f(1) = f(2) + 1 = f(1) + f(0) + 1 = 1 + 1 + 1 = 3$$

Recorrência

Resolução

Resolver uma recorrência significa obter uma fórmula fechada, isto é, que dependa somente de n, que permita calcular f(n) diretamente.

Existem diferentes métodos para resolução de recorrências. O formato (*"jeitão"*) da recorrência é o que determina qual ou quais métodos são aplicáveis para sua resolução.

Método da Iteração

Método da Iteração

Consiste em expandir (iterar) a recorrência identificando um padrão, e em seguida, expressá-lo como um somatório em termos de n e das condições iniciais.

Exemplo a):

$$T(n) = \begin{cases} 0 & \text{se} \quad n = 0 \\ T(n-1) + n & \text{se} \quad n > 0 \end{cases}$$

Expandindo a recorrência, temos:

$$T(n) = T(n-1) + n$$

= $T(n-1) + (n-1) + n = T(n-2) + (n-1) + n$

$$T(n) = T(n-2) + (n-1) + n$$

$$= \underbrace{T(n-2-1) + (n-2)}_{T(n-2)} + (n-1) + n$$

$$= T(n-3) + (n-2) + (n-1) + n$$

$$= T(n-k) + \sum_{i=0}^{k-1} (n-i)$$

Fazendo k = n, temos:

$$T(n) = T(0) + \sum_{i=0}^{n-1} (n-i)$$

Como está estalecido pela recorrência que T(0) = 0, e observando que o somátorio corresponde a uma PA (progressão aritmética) de la zão 1, então $T(n) = \frac{(n+1)n}{2}$ 4 D F 4 P F A B F A B F

Método da Iteração - Exemplo a) (continuação)

Conferindo:

$$T(5) = \frac{(5+1)5}{2} = 15$$

E usando a recorrência:

$$T(5) = T(4) + 5$$

$$= T(3) + 4 + 5$$

$$= T(2) + 3 + 4 + 5$$

$$= T(1) + 2 + 3 + 4 + 5$$

$$= T(0) + 1 + 2 + 3 + 4 + 5$$

$$= 0 + 1 + 2 + 3 + 4 + 5$$

$$= 15$$

Método da Iteração - Exemplo b)

$$T(n) = T(\left|\frac{n}{2}\right|) + 1$$

- sem indicação de valor inicial: podemos estabelecer de acordo com o nosso interesse
- para esse tipo de recorrência, geralmente está-se mais interessado em obter um limite assintótico que uma fórmula exata.
- o uso das funções teto e chão $(\lceil \frac{n}{2} \rceil e \lfloor \frac{n}{2} \rfloor$, respectivamente) não alteram o resultado final. Apenas indicam se é feito um arredondamento para cima ou para baixo.

$$T(n) = T(\frac{n}{2}) + 1$$

$$= \underbrace{T(\frac{n}{4}) + 1}_{T(\frac{n}{2})} + 1$$

$$= T(\frac{n}{4}) + 2$$

$$= \underbrace{T(\frac{n}{8}) + 1}_{T(\frac{n}{4})} + 2$$

$$= T(\frac{n}{8}) + 3$$

$$= \dots$$

$$= T(\frac{n}{2k}) + k$$

Método da Iteração - Exemplo b) (continuação)

Assumindo n como potência de 2 e que a iteração segue até T(1), tem-se: $n=2^k$. Logo $k=\log_2 n$.

Considerando T(1) = 0 teremos:

$$T(n) = T(\frac{n}{2^{\log_2 n}}) + \log_2 n$$

$$= T(\frac{n}{n}) + \log_2 n$$

$$= T(1) + \log_2 n$$

$$= 0 + \log_2 n$$

Portanto
$$T(n) = \log_2 n$$

Método da Iteração - Exemplo c)

$$T(n) = 3T(\frac{n}{4}) + n$$

Resolvendo:

$$T(n) = 3T(\frac{n}{4}) + n$$

$$= 3\left[3T(\frac{n}{4^2}) + \frac{n}{4}\right] + n$$

$$= 3^2T(\frac{n}{4^2}) + \frac{3n}{4} + n$$

$$= 3^2\left[3T(\frac{n}{4^3}) + \frac{n}{4^2}\right] + \frac{3n}{4} + n$$

 $=3^3T(\frac{n}{4^3})+\frac{3^2n}{4^2}+\frac{3n}{4}+n$

Método da Iteração - Exemplo c) (continuação)

Podemos supor que a iteração segue até que $T(\frac{n}{4^i}) = T(1)$ Se $\frac{n}{4^i} = 1$, então $n = 4^i$. Logo $i = \log_4 n$. Portanto:

$$T(n) = n + (\frac{3}{4})n + (\frac{3}{4})^2n + ... + 3^i\Theta(1)$$

Isto é:

$$T(n) \leq n \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i + 3^{\log_4 n} \Theta(1)$$

A somátoria corresponde à soma da série geométrica infinita (PG) de razão $\frac{3}{4}$ e termo inicial 1. Como a soma da PG de infinitos termos é dada por $\frac{a_1}{1-a}$ onde a_1 é o termo inicial e q a razão, assim

$$\sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{1}{1-\frac{3}{4}} = 4$$

Método da Iteração - Exemplo c) (continuação)

Logo $T(n) \le 4n + 3^{\log_4 n}\Theta(1)$. Aplicando propriedades de logaritmos tem-se:

$$T(n) \le 4n + n^{\log_4 3}\Theta(1)$$
. Como $\log_4 3 < 1$, então

$$T(n) \in O(n)$$
.

Método da Substituição

Método da Substituição

Consiste em propor ("chutar") uma fórmula para a recorrência e em seguida demonstrar sua validade.

Exemplo a):

$$T(n) = \begin{cases} 1 & \text{se} \quad n = 1 \\ T(n-1) + 3n + 2 & \text{se} \quad n \ge 2 \end{cases}$$

Chute:
$$T(n) = \frac{3n^2}{2} + \frac{7n}{2} - 4$$
.

Método da Substituição - Exemplo a) (continuação)

Demonstração por indução:

- Caso Base: n = 1. $T(1) = \frac{3.1^2}{2} + \frac{7.1}{2} 4 = 5 4 = 1$ (verdadeiro)
- Passo da Indução: Seja a hipótese de indução (HI): suponha que a fórmula valha para n-1. Isto é:

$$T(n-1) = \frac{3(n-1)^2}{2} + \frac{7(n-1)}{2} - 4$$

Temos que T(n) = T(n-1) + 3n + 2. Usando HI, temos:

$$T(n) = \frac{3(n-1)^2}{2} + \frac{7(n-1)}{2} - 4 + 3n + 2$$

$$= \frac{3n^2}{2} - 3n + \frac{3}{2} + \frac{7n}{2} - 4 + 3n + 2$$

$$= \frac{3n^2}{2} + \frac{7n}{2} - 4$$
como queríamos demonstrar.

Método da Substituição - Exemplo b)

$$T(n) = 2T(\left|\frac{n}{2}\right|) + n$$

chute: $O(n \lg n)$

Demonstração direta usando a definição da notação assintótica ${\it O}$:

Tem-se de provar que:

 $T(n) \le cnlg \ n$ para algum c > 0.

Usando como hipótese a definição da notação O, temos que:

$$T(\lfloor \frac{n}{2} \rfloor) \le c \lfloor \frac{n}{2} \rfloor \lg \lfloor \frac{n}{2} \rfloor.$$

Método da Substituição - Exemplo b) (continuação)

```
Substituindo em T(n):
T(n) \leq 2c \left\lfloor \frac{n}{2} \right\rfloor \lg \left\lfloor \frac{n}{2} \right\rfloor + n
\leq cn\lg \frac{n}{2} + n
\leq cn\lg n - cn\lg 2 + n
\leq cn\lg n - cn + n
\leq cn\lg n \text{ desde que } c \geq 1
```

Logo $T(n) \in O(n \lg n)$ como queríamos demonstrar.

Método da Árvore de Recorrência

Método da Árvore de Recorrência

Consiste em expandir os termos da recorrência no formato de árvore tal que seja possível visualizar melhor os termos expandidos, facilitando o cálculo de sua soma.

Exemplo:

$$T(n) = T(\frac{n}{9}) + T(\frac{8n}{9}) + n$$
 para $n \ge 1$

Por conveniência, vamos supor que n seja potência de 9.

Método da Árvore de Recorrência - exemplo (continuação)

Árvore de recorrência para $T(n) = T(\frac{n}{9}) + T(\frac{8n}{9}) + n$:

Método da Árvore de Recorrência

Observações:

- Quando se chega em solução que consiste em um limite assintótico logaritmico, NÃO interessa a base do logaritmo.
 Ex.: se uma função f(n) ∈ O(log₃ n), fazendo-se a mudança de base do logaritmo para base 2, tem que log₃ n = log₂ n / log₂ 3.
 Como 1/log₂ 3 é uma constante, e portanto é Θ(1), então f(n) ∈ O(lg n).
- Assim no exemplo anterior, como $T(n) \in O(n \log_{\frac{9}{8}} n)$, então $T(n) \in O(n \lg n)$.

Método Master (Mestre ou Teorema CLRS)

Método Mestre

Estabelece limite assintótico para recorrência que atenda determinadas condições e tenha a forma:

$$T(n) = aT(\frac{n}{b}) + f(n)$$

onde $a \ge 1$, $b \ge 1$ e $\frac{n}{b}$ pode ser $\left| \frac{n}{b} \right|$ ou $\left[\frac{n}{b} \right]$.

Método Mestre

Dada $T(n) = aT(\frac{n}{b}) + f(n)$, deve-se analisar qual das seguintes situações ocorre:

- Se $f(n) \in O(n^{\log_b a} \epsilon)$ para constante $\epsilon > 0$ então $T(n) \in \Theta(n^{\log_b a})$
- ② Se $f(n) \in \Theta(n^{\log_b a})$ então $T(n) \in \Theta(n^{\log_b a} \log_2 n)$
- Se f(n) ∈ Ω(n^{log_b a + ϵ}) para algum ϵ > 0, e se af(ⁿ/_b) ≤ cf(n) para alguma constante c < 1 e n suficientemente grande, então T(n) ∈ Θ(f(n))</p>

Método Mestre - exemplo a)

$$T(n) = 9T(\left|\frac{n}{3}\right|) + n$$

Para esta recorrência tem-se:

$$a = 9$$

$$b=3$$

$$f(n) = n$$

$$\log_b a = \log_3 9 = 2 \text{ e } f(n) \in O(n^{\log_3 9 - \epsilon}) \text{ onde } \epsilon = 1.$$

Portanto, pelo método Mestre, $T(n) \in \Theta(n^2)$.

Método Mestre - exemplo b)

$$T(n) = T(\frac{2n}{3}) + 1$$

Para esta recorrência tem-se:

$$a = 1$$

$$b = \frac{3}{2}$$

$$f(n)=1$$

$$\log_b a = \log_{\frac{3}{2}} 1 = 0$$
 e $f(n) \in \Theta(n^0) = \Theta(1)$

Portanto, pelo método Mestre, $T(n) \in \Theta(\lg n)$.

Método Mestre - exemplo c)

$$T(n) = 2T(\frac{n}{2}) + n^2$$

Para esta recorrência tem-se:

$$a = 2$$

$$b=2$$

$$f(n) = n^2$$

 $\log_b a = \log_2 2 = 1$ e $f(n) \in \Omega(n^{1+\epsilon})$ onde $\epsilon = 1$. Além disso

$$af(\frac{n}{b})=2(\frac{n}{2})^2\leq c.f(n)=c.n^2$$

$$\frac{n^2}{2}\leq c.n^2 \text{ para } c=\frac{1}{2}<1.$$

Portanto, pelo método Mestre, $T(n) \in \Theta(n^2)$.

Método Mestre

Observação: a pártir do método Mestre pode-se demonstrar os seguintes casos particulares:

Para
$$T(n) = aT(\frac{n}{b}) + cn^k$$
 onde $a > 1$, $b \ge 2$ e $c, k \in \mathbb{R}^+$ tem-se:

$$T(n) \in \begin{cases} \Theta(n^{\log_b a}) & \text{se} \quad a > b^k \\ \Theta(n^k \lg n) & \text{se} \quad a = b^k \\ \Theta(n^k) & \text{se} \quad a < b^k \end{cases}$$

Recorrências Homogêneas Lineares

Recorrências Homogêneas Lineares

São da forma:

$$\sum_{i=0}^k c_i T(n-i) = 0$$

 $\sum_{i=0}^k c_i T(n-i) = 0$ em que c_i é constante real tal que $c_0, c_k \neq 0$.

Esse tipo de recorrência é conhecida como linear homogênea:

- linear: os termos recursivos são em função n, não existindo termos como $T(n)^2$ ou $\lg T(n)$.
- homogênea: soma dos termos é igual a zero.

Exemplos:

•
$$T(n) = \begin{cases} 1 & \text{se } n = 0 \text{ ou } n = 1 \\ T(n-1) + T(n-2) & \text{se } n > 1 \end{cases}$$

•
$$T(n) = 5T(n-1) - 8T(n-2) + 4T(n-3)$$
 para $n \ge 2$ union u

As recorrências homogêneas lineares podem ser resolvidas através do Método do Polinômio Característico

Dada uma recorrência linear homogênea $\sum_{i=0}^{n} c_i T_{n-i} = 0$, o polinômio característico associado é dado por:

$$\sum_{i=0}^{k} c_i x^{k-i} = c_o x^k + c_1 x^{k-1} + \dots + c_{k-1} x^1 + c_k = 0$$

Considerando as recorrências do slide anterior:

- T(n) = T(n-1) + T(n-2), podemos reescrevê-la como T(n) - T(n-1) - T(n-2) = 0. Seu polinômio característico: $x^2 - x - 1 = 0$.
- T(n) = 5T(n-1) 8T(n-2) + 4T(n-3), podemos reescrevê-la como

$$T(n) - 5T(n-1) + 8T(n-2) - 4T(n-3) = 0$$
. Seu polinômico característico: $x^3 - 5x^2 + 8x - 4 = 0$

Há 2 casos a serem considerados, a depender das raízes do polinômio característico:

- Raízes distintas
- 2 Raízes com multiplicidade maior que 1

Caso o polinômio característicos tenha **raízes distintas**: Uma vez obtido o polinômio característico, a solução da recorrência será dada pela combinação linear:

$$d_1r_1^n + d_2r_2^n + ... + d_kr_k^n$$

onde $r_1, r_2, ..., r_k$ correspondem às raízes distintas do polinômio característico e os coeficientes $d_1, d_2, ..., d_k$ são determinados pelas condições de contorno.

Para o exemplo anterior, as raízes do polinômio $x^2 - x - 1 = 0$ são $r_1 = \frac{1+\sqrt{5}}{2}$ e $r_2 = \frac{1-\sqrt{5}}{2}$.

Logo a solução terá a forma $T(n)=a(\frac{1+\sqrt{5}}{2})^n+b(\frac{1-\sqrt{5}}{2})^n$.

Para determinar os valores de a e b usamos as condições de contorno T(0)=1 e T(1)=1, obtendo o sistema linear:

$$\begin{cases} T(0) = a + b = 1 \\ T(1) = a(\frac{1+\sqrt{5}}{2})^1 + b(\frac{1-\sqrt{5}}{2})^1 = 1 \end{cases}$$

Resolvendo o sistema linear, obtém-se que $a=rac{\sqrt{5}+1}{2\sqrt{5}}$ e $b=rac{\sqrt{5}-1}{2\sqrt{5}}$

Logo
$$T(n) = (\frac{\sqrt{5}+1}{2\sqrt{5}})[\frac{1+\sqrt{5}}{2}]^n + (\frac{\sqrt{5}-1}{2\sqrt{5}})[\frac{1-\sqrt{5}}{2}]^n$$

Outro exemplo com raízes distintas:

$$T(n) = \begin{cases} 0 & \text{se } n = 0 \\ 5 & \text{se } n = 1 \\ 3T(n-1) + 4T(n-2) & \text{se } n > 1 \end{cases}$$

O polinômio característico associado é: $x^2 - 3x - 4 = 0$, cujas raízes são $r_1 = -1$ e $r_2 = 4$.

Assim a solução terá a forma $T(n) = a(-1)^n + b4^n$

Usando as condições de contorno T(0) = 0 e T(1) = 5. obtém-se o sistema linear:

$$\begin{cases} T(0) = a + b = 0 \\ T(1) = -a + 4b = 1 \end{cases}$$

Resolvendo o sistema linear
$$\begin{cases} a+b=0\\ -a+4b=1 \end{cases}$$
 obtém-se $a=-1$ e $b=1$.

Portanto, substituindo em
$$T(n) = a(-1)^n + b4^n$$

a solução é
$$T(n) = 4^n - (-1)^n$$

Caso o polinômio característicos tenha **raízes com multiplicade maior que 1**:

Sejam $r_1, r_2, ..., r_k$ as raízes do polinômio característico e m_i suas respectivas multiplicidades. Ou seja, o polinômio pode ser reescrito como:

$$(x-r_1)^{m_1}(x-r_2)^{m_2}...(x-r_k)^{m_k}=0$$

Então a solução da recorrência será dada por:

$$T(n) = \sum_{i=1}^{m_1} d_{1i} n^{i-1} r_1^n + \sum_{i=1}^{m_2} d_{2i} n^{i-1} r_2^n + \ldots + \sum_{i=1}^{m_k} d_{ki} n^{i-1} r_k^n.$$

e os coeficientes $d_{1i}, d_{2i}, ..., d_{ki}$ são determinados pelas condições de contorno.

Por exemplo, considere a recorrência

$$T(n) = 5T(n-1) - 8T(n-2) + 4T(n-3),$$

com condições iniciais T(k) = k para k = 0, 1, 2.

Seu polinômio característico é $x^3 - 5x^2 + 8x - 4$, cujas raízes são:

2 (com multiplicidade 2) e 1 (com multiplicade 1).

Isto é, seu polinômio característico pode ser reescrito como:

$$(x-2)^2(x-1)=0$$
. Assim $T(n)=a2^n+bn2^n+c1^n$. Usando das condições de contorno para resolver o sistema linear:

$$\begin{cases} T(0) = a + c = 0 \\ T(1) = 2a + 2b + c = 1 \\ T(2) = 4a + 8b + c = 2 \end{cases}$$
 obtém-se: $a = 2, b = \frac{-1}{2}, c = -2$.

Logo

$$T(n) = 2.2^n - \frac{n2^n}{2} + (-2)1^n$$

$$T(n) = 2^{(n+1)} - n2^{(n-1)} - 2.$$

Ou seja
$$T(n) \in \Theta(n2^n)$$
.

Recorrências Lineares Não Homogêneas

Recorrências Lineares Não Homogêneas

Consideremos primeiro as recorrências não homogêneas da forma:

$$\sum_{i=0}^{k} c_i T(n-i) = s^n p(n)$$

em que c_i é constante real tal que $c_0, c_k \neq 0$ e p(n) é polinômio de grau t, isto é,

$$p(n) = \sum_{i=0}^{t} b_i n^{t-i} = (b_0 n^t + b_1 n^{t-1} + ... + b_{t-1} n + b_t)$$

Uma solução particular da recorrência é da forma:

$$n^{m}(\sum_{i=0}^{t} t p_{i} n^{t-i}) s^{n} = n^{m}(p_{0} n^{t} + p_{1} n^{t-1} + ... + p_{t-1} n + p_{t}) s^{n}$$

onde $m \ge 0$ é a multiplicidade de s como raiz do polinômio característico associado:

$$\sum_{i=0}^{k} c_i x^{k-i} = c_0 x^k + c_1 x^{k-1} + \dots + c_{k-1} x + c_k$$

Recorrências Lineares Não Homogêneas

Consideremos primeiro as recorrências não homogêneas da forma:

$$\sum_{i=0}^{k} c_i T(n-i) = s^n p(n)$$

em que c_i é constante real tal que c_0 , $c_k \neq 0$ e p(n) é polinômio de grau t, isto é,

$$p(n) = \sum_{i=0}^{t} b_i n^{t-i} = (b_0 n^t + b_1 n^{t-1} + \dots + b_{t-1} n + b_t)$$

Uma solução particular da recorrência é da forma:

$$n^{m}(\sum_{i=0}^{t} t p_{i} n^{t-i}) s^{n} = n^{m}(p_{0} n^{t} + p_{1} n^{t-1} + ... + p_{t-1} n + p_{t}) s^{n}$$

onde $m \ge 0$ é a multiplicidade de s como raiz do polinômio característico associado:

$$\sum_{i=0}^{k} c_i x^{k-i} = c_0 x^k + c_1 x^{k-1} + \dots + c_{k-1} x + c_k$$

Por exemplo, considere T(n) = 2T(n-1) + n para $n \ge 1$.

Polinômio característico da homogênea: (x-2).

Logo, soluções da homogênea tem a forma $c2^n$.

A solução particular da não homogênea:

$$T(n) - 2T(n-1) = n = n.1^n$$

Como 1 não é raiz do polinômio característico, portanto tem multiplicidade 0 (zero). Assim:

$$n^0(an+b) imes 1^n = an+b$$

Portanto an + b - 2(a(n-1) + b) = n

$$an + b - 2an + 2a - 2b = n$$

$$n(-a-1) + (2a-b) = 0$$

$$n(-a-1)=-(2a-b)$$

$$n(a+1)=2a-b$$

Para n=1 temos a+1=2a-b, logo a=1+b.

Para n = 2 temos 2a + 2 = 2a - b, logo b = -2 e

Recorrência: T(n) = 2T(n-1) + n para $n \ge 1$.

Assim a solução geral é:

$$T(n) = c2^n - n - 2$$

Quando n = 0 obtém-se $T(0) = c2^0 - 0 - 2$.

Assim c = T(0) + 2. Observe que T(0) não havia sido estabelecida.

Podemos então escrever:

$$T(n) = (T(0) + 2)2^n - n - 2.$$

Portanto $T(n) \in \Theta(2^n)$.

Outra forma mais simples de resolver recorrências da forma:

$$\sum_{i=0}^{k} c_i T(n-i) = s^n p(n)$$

em que c_i é constante real tal que c_0 , $c_k \neq 0$ e p(n) é polinômio de grau t, é manipular a recorrência visando torná-la homogênea.

Por exemplo, considere a recorrência $T(n) - 2T(n-1) = 3^n$ para $n \ge 2$, tendo como condições de contorno T(0) = 0 e T(1) = 1.

Multiplicando a recorrência por 3, tem-se:

$$3T(n) - 6T(n-1) = 3^{n+1} (1)$$

Calculando T(n+1) teremos:

$$T(n+1) - 2T(n) = 3^{n+1}$$
 (2)

Subtraindo uma equação a equação (1) da (2) obtém-se:

$$T(n+1) - 5T(n) + 6T(n-1) = 0$$
 (homogênea),

cuja solução pelo método do polinômio característico é

$$T(n) = 3^n - 2^n$$

Portanto $T(n) \in \Theta(3^n)$.

Recorrências Lineares Não Homogêneas

Generalizando, para recorrências não homogêneas da forma:

$$\sum_{i=0}^{k} c_{i} T(n-i) = s_{1}^{n} p_{1}(n) + s_{2}^{n} p_{2}(n) + ... + s_{t}^{n} p_{t}(n)$$

em que c_i é constante real tal que $c_0, c_k \neq 0$ e $p_i(n)$ é polinômio de grau $g_i, i = 1, 2, ..., t$

Uma solução particular da recorrência não homogênea é da forma: $n^{m_1}q_1(n)s_1^n + n^{m_2}q_2(n)s_2^n + ... + n^{m_t}q_t(n)s_t^n$ onde $m \ge 0$ é a multiplicidade de s_i como raiz do polinômio característico associado:

$$\sum_{i=0}^{k} c_i x^{k-i} = c_0 x^k + c_1 x^{k-1} + \dots + c_{k-1} x + c_k e$$

 $q_i(n)$ é polinômio de grau g_i com $g_i + 1$ coeficientes a determinar, i = 1, ..., t.

Por exemplo, considere: $T(n) = 2T(n-1) + n + 2^n$ para $n \ge 1$ e condição de contorno T(0) = 0. Reescrevendo:

$$T(n) - 2T(n-1) = n + 2^n$$

Polinômio característico da homogênea: (x-2), e portanto solução da homogênea é $k2^n$ e solução particular não homogênea:

$$T(n) - 2T(n-1) = n \cdot 1^n + 1 \cdot 2^n$$

Como raiz do polinômio característico , 1 tem multiciplidade 0, e 2 tem multiplicidade 1. Assim:

 $n^0q_1(n) imes 1^n + nq_2(n) imes 2^n$, sendo q_1 de grau 1 e q_2 de grau 0.

$$q_1(n) = an + b \in q_2(n) = c$$

 $(an + b)cn2^n - 2(a(n - 1) + b) - 2(n - 1)c2^{n-1} = n + 2^n$
 $(-n)(a + 1) + (2a - b) + (2c - 2)2^{n-1} = 0$

$$a = -1$$
, $b = -2$, $c = 1$

Portanto:

Recorrência: $T(n) = 2T(n-1) + n + 2^n$ para $n \ge 1$ e condição de contorno T(0) = 0.

Portanto a Solução geral tem a forma:

$$T(n) = k2^n - (2+n) + n2^n$$
.

Usando a condição de contorno: 0 = k - (2 - 0) + 0. Assim k = 2

Logo,
$$T(n) = n2^n + 2^{n+1} - (n+2)$$
.

Portanto $T(n) \in \Theta(n2^n)$.

Observações

- existem recorrências que não se conhecem métodos de resolução
- se o polinômio característico tem raízes com multiplicidade ou a recorrência não é homogênea, o método do polinômio característico não pode ser usado.

Mudança de variável

É um artifício matemático usando para reescrever recorrências com objetivo de obter uma recorrência mais simples de ser resolvida por algum dos métodos vistos anteriormente. E em seguida, usar o resultado para calcular a solução da recorrência original.

Exemplo:
$$T(n) = T(\sqrt{n}) + 1$$

Criando variável $m = \lg n$, tem-se que $n = 2^m$.

Renomeando $S(m) = T(2^m)$ fica:

$$T(2^m) = T((2^m)^{\frac{1}{2}}) + 1$$

 $T(2^m) = T(2^{\frac{m}{2}}) + 1$

$$S(m) = S(\frac{m}{2}) + 1$$
 cuja solução usando o método Mestre é $S(m) \in \Theta(\lg m)$.

Como
$$m = \lg n \in S(m) = T(n)$$
, então $T(n) \in \Theta(\lg \lg n)$.

Recorrências Não Lineares

Recorrências Não Lineares

A estratégia é tentar fazer uma mudança de variável para converter a recorrência não linear em uma recorrência linear e resolvê-la por algum dos métodos vistos anteriormente.

Por exemplo, seja $T(n) = nT^2(\frac{n}{2})$, considerando que n é potência de 2, n > 1 e com condição de contorno $T(1) = \frac{1}{3}$.

Chamando $t_k = T(2^k)$, a recorrência fica:

$$t_k = T(2^k) = 2^k T^2(2^{k-1}) = 2^k t_{k-1}^2$$

Aplicando logaritmo em ambos lados, em que $u_k = \lg t_k$ temos:

$$u_k - 2u_{k-1} = k$$
, que é homogênea e tem o polinômio característico associado $(x-2)(x-1)^2 = 0$.

Logo
$$u_k = c_1 2^k + c_2 + c_3 k$$
.

Recorrências Não Lineares

Recorrência: $T(n) = nT^2(\frac{n}{2})$, n é potência de 2, n > 1 e $T(1) = \frac{1}{3}$.

$$u_k = c_1 2^k + c_2 + c_3 k$$

E agora substituido de volta $t_k = T(2^k)$, tem-se:

$$T(n) = 2^{c_1 n + c_2 + c_3 \lg n}$$

Como temos 3 coeficientes a serem determinados e temos apenas a condição de contorno $T(0)=\frac{1}{3}$, então usamos a recorrência original para calcular mais 2 valores:

$$T(2) = 2T^2(1) = \frac{2}{9} e T(4) = 2T^2(2) = \frac{16}{81}.$$

Assim, obtemos $c_1=\lg \frac{4}{3}=2-\lg 3$, $c_2=-1$ e $c_3=-1$.

Portanto,
$$T(n) = \frac{2^{2n}}{4n3^n}$$
.

Recorrências Não Lineares

Recorrência:
$$T(n) = nT^2(\frac{n}{2})$$
, $n \neq potência de 2$, $n > 1 e$

$$T(1) = \frac{1}{3}.$$

$$T(n) = 2^{(2-\lg 3)n + (-2) + (-1)\lg n}$$

$$= 2^{2n - n\lg 3 - 2 - \lg n}$$

$$= 2^{2n} \times 2^{-n\lg 3} \times 2^{-2} \times 2^{-\lg n}$$

$$= \frac{2^{2n}}{2^{n\lg 3} \times 2^2 \times 2^{\lg n}}$$

$$= \frac{2^{2n}}{(2^{\lg 3})^n \times 2^2 \times 2^{\lg n}}$$

$$= \frac{2^{2n}}{3^n 4^n}$$
Portanto, $T(n) = \frac{2^{2n}}{4n^{2n}}$.

Bibliografia I

[Cormen 1997] Cormen, T.; Leiserson, C.; Rivest, R. Introduction to Algorithms. McGrawHill, New York, 1997.

[Vallecillo 2000] Rosa Guerequeta; Antonio Vallecillo. *Técnicas de Diseño de Algoritmos*. SPICUM, Málaga, 2000.

[Manber 1989] Udi Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley, 1989.

