Company bankruptcy prediction based on financial metrics

Author: Andrei Mikhailov
email: am@mikhailovandrei.com

Flex Program:

Instructor name: Abhineet Kulkarni

Overview

During this project, we will be building models for prediction companies bunkruptcy based on given set of financial features. For the sake of research, we will use the following dataset:

https://www.kaggle.com/code/kaixiongf/company-bankruptcy-w-pycaret (https://www.kaggle.com/code/kaixiongf/company-bankruptcy-w-pycaret)

The data collected from the Taiwan Economic Journal for the years 1999 to 2009 and to see what insight can be generated during data exploration and which model is able to predict company bankruptcy most accurately.

We will employ:

- · Logistic Regression,
- KNN,
- · Decision Tree,
- · SMOTE and
- · Random Forest.

Business Problem

The customer, Restructuring Investment Bank, wants to increase precision of their forecast for their customers, debtors (the distressed companies) and creditors (banks, lenders) when capital structure issues arise, which primarily stem from over-leveraged companies with insufficient liquidity to meet their obligations.

We will build different models based on the given dataset of portfolio companies.

Data Understanding

During the following steps, we will load and expore the datasets.

```
In [1]: # Import libraries
        import pandas as pd
        from sklearn.model_selection import train_test_split
        import numpy as np
        from sklearn.metrics import precision_score, recall_score, accuracy_score, f1_score
        import matplotlib.pyplot as plt
        from sklearn.metrics import confusion_matrix
        from sklearn.metrics import plot_confusion_matrix
        from sklearn.preprocessing import StandardScaler
        from sklearn.metrics import precision_score, recall_score, accuracy_score, f1_score, classification_report
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import BaggingClassifier, RandomForestClassifier
        from xgboost import XGBClassifier
        from sklearn.feature_selection import (VarianceThreshold, SelectKBest, f_regression, mutual_info_regression,
           RFE, RFECV)
        from sklearn.linear model import LinearRegression, LassoCV, Lasso
        from sklearn.metrics import mean_squared_error
        from sklearn.linear_model import LogisticRegression
        from imblearn.over_sampling import RandomOverSampler
        from imblearn.under sampling import RandomUnderSampler
        from imblearn.over_sampling import SMOTE
        from sklearn.preprocessing import MinMaxScaler
```

/Users/andreim/opt/anaconda3/envs/learn-env/lib/python3.8/site-packages/xgboost/compat.py:93: FutureWarning: pandas. Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.

from pandas import MultiIndex, Int64Index

```
In [2]: # Import dataset
data = pd.read_csv('/Users/andreim/Desktop/Mastering/Flatiron/Phase_III/Final_Project/Bankruptcy/data.csv')
```

In [3]: data.head()

Out[3]:

	Bankrupt?	ROA(C) before interest and depreciation before interest	ROA(A) before interest and % after tax	ROA(B) before interest and depreciation after tax	Operating Gross Margin	Realized Sales Gross Margin	Operating Profit Rate	Pre-tax net Interest Rate	After-tax net Interest Rate	Non-industry income and expenditure/revenue	 Net Income to Total Assets	Total assets to GNP price	No- credit Interval
0	1	0.370594	0.424389	0.405750	0.601457	0.601457	0.998969	0.796887	0.808809	0.302646	 0.716845	0.009219	0.622879
1	1	0.464291	0.538214	0.516730	0.610235	0.610235	0.998946	0.797380	0.809301	0.303556	 0.795297	0.008323	0.623652
2	1	0.426071	0.499019	0.472295	0.601450	0.601364	0.998857	0.796403	0.808388	0.302035	 0.774670	0.040003	0.623841
3	1	0.399844	0.451265	0.457733	0.583541	0.583541	0.998700	0.796967	0.808966	0.303350	 0.739555	0.003252	0.622929
4	1	0.465022	0.538432	0.522298	0.598783	0.598783	0.998973	0.797366	0.809304	0.303475	 0.795016	0.003878	0.623521

5 rows × 96 columns

```
In [4]: data['Bankrupt?'].value_counts()
```

Out[4]: 0 6599 1 220

Name: Bankrupt?, dtype: int64

As we can see we are dealing with severe class imbalance.

In [5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6819 entries, 0 to 6818
Data columns (total 96 columns):

Data	columns (total 96 columns):		
#	Column	Non-Null Count	Dtype
0	Bankrupt?	6819 non-null	int64
1	ROA(C) before interest and depreciation before interest	6819 non-null	float64
2	ROA(A) before interest and % after tax	6819 non-null	float64
3	ROA(B) before interest and depreciation after tax	6819 non-null	float64
4	Operating Gross Margin	6819 non-null	float64
5	Realized Sales Gross Margin	6819 non-null	float64
6	Operating Profit Rate	6819 non-null	float64
7	Pre-tax net Interest Rate	6819 non-null	float64
8	After-tax net Interest Rate	6819 non-null	float64
9	Non-industry income and expenditure/revenue	6819 non-null 6819 non-null	float64
10 11	Continuous interest rate (after tax) Operating Expense Rate	6819 non-null	float64 float64
12	Research and development expense rate	6819 non-null	float64
13	Cash flow rate	6819 non-null	float64
14	Interest-bearing debt interest rate	6819 non-null	float64
15	Tax rate (A)	6819 non-null	float64
16	Net Value Per Share (B)	6819 non-null	float64
17	Net Value Per Share (A)	6819 non-null	float64
18	Net Value Per Share (C)	6819 non-null	float64
19	Persistent EPS in the Last Four Seasons	6819 non-null	float64
20	Cash Flow Per Share	6819 non-null	float64
21	Revenue Per Share (Yuan \(\frac{\pmathbf{Y}}{2} \)	6819 non-null	float64
22	Operating Profit Per Share (Yuan ₹)	6819 non-null	float64
23	Per Share Net profit before tax (Yuan \(\frac{1}{2} \))	6819 non-null	float64
24	Realized Sales Gross Profit Growth Rate	6819 non-null	float64
25	Operating Profit Growth Rate	6819 non-null	float64
26	After-tax Net Profit Growth Rate	6819 non-null	float64
27	Regular Net Profit Growth Rate	6819 non-null	float64
28	Continuous Net Profit Growth Rate	6819 non-null	float64
29	Total Asset Growth Rate	6819 non-null	float64
30	Net Value Growth Rate	6819 non-null	float64
31	Total Asset Return Growth Rate Ratio	6819 non-null	float64
32	Cash Reinvestment %	6819 non-null	float64
33	Current Ratio	6819 non-null	float64
34	Quick Ratio	6819 non-null	float64
35	Interest Expense Ratio	6819 non-null	float64
36	Total debt/Total net worth	6819 non-null	float64
37 38	Debt ratio % Net worth/Assets	6819 non-null 6819 non-null	float64 float64
39	Long-term fund suitability ratio (A)	6819 non-null	float64
40	Borrowing dependency	6819 non-null	float64
41	Contingent liabilities/Net worth	6819 non-null	float64
42	Operating profit/Paid-in capital	6819 non-null	float64
43	Net profit before tax/Paid-in capital	6819 non-null	float64
44	Inventory and accounts receivable/Net value	6819 non-null	float64
45	Total Asset Turnover	6819 non-null	float64
46	Accounts Receivable Turnover	6819 non-null	float64
47	Average Collection Days	6819 non-null	float64
48	Inventory Turnover Rate (times)	6819 non-null	float64
49	Fixed Assets Turnover Frequency	6819 non-null	float64
50	Net Worth Turnover Rate (times)	6819 non-null	float64
51	Revenue per person	6819 non-null	float64
52	Operating profit per person	6819 non-null	float64
53	Allocation rate per person	6819 non-null	float64
54	Working Capital to Total Assets	6819 non-null	float64
55	Quick Assets/Total Assets	6819 non-null	float64
56	Current Assets/Total Assets	6819 non-null	float64
57 50	Cash/Total Assets	6819 non-null 6819 non-null	float64
58	Quick Assets/Current Liability	6819 non-null	float64
59 60	Cash/Current Liability Current Liability to Assets		float64 float64
61	Operating Funds to Liability	6819 non-null 6819 non-null	float64
62	Inventory/Working Capital	6819 non-null	float64
63	Inventory/Current Liability	6819 non-null	float64
64	Current Liabilities/Liability	6819 non-null	float64
65	Working Capital/Equity	6819 non-null	float64
66	Current Liabilities/Equity	6819 non-null	float64
67	Long-term Liability to Current Assets	6819 non-null	float64
68	Retained Earnings to Total Assets	6819 non-null	float64
69	Total income/Total expense	6819 non-null	float64
70	Total expense/Assets	6819 non-null	float64
71	Current Asset Turnover Rate	6819 non-null	float64
72	Quick Asset Turnover Rate	6819 non-null	float64
73	Working capitcal Turnover Rate	6819 non-null	float64
74	Cash Turnover Rate	6819 non-null	float64
75	Cash Flow to Sales	6819 non-null	float64
76	Fixed Assets to Assets	6819 non-null	float64
77	Current Liability to Liability	6819 non-null	float64
78	Current Liability to Equity	6819 non-null	float64
79	Equity to Long-term Liability	6819 non-null	float64

Out[7]:

```
80
     Cash Flow to Total Assets
                                                              6819 non-null
                                                                              float64
     Cash Flow to Liability
                                                              6819 non-null
                                                                              float64
81
82
     CFO to Assets
                                                              6819 non-null
                                                                              float64
                                                              6819 non-null
                                                                              float64
     Cash Flow to Equity
     Current Liability to Current Assets
84
                                                              6819 non-null
                                                                              float64
                                                              6819 non-null
85
     Liability-Assets Flag
                                                                             int64
86
     Net Income to Total Assets
                                                              6819 non-null
                                                                              float64
     Total assets to GNP price
                                                              6819 non-null float64
88
     No-credit Interval
                                                              6819 non-null
                                                                              float64
     Gross Profit to Sales
                                                              6819 non-null
                                                                              float64
89
90
     Net Income to Stockholder's Equity
                                                              6819 non-null float64
91
     Liability to Equity
                                                              6819 non-null
                                                                              float64
     Degree of Financial Leverage (DFL)
                                                              6819 non-null float64
                                                              6819 non-null
6819 non-null
                                                                             float64
93
     Interest Coverage Ratio (Interest expense to EBIT)
94
    Net Income Flag
                                                                              int64
    Equity to Liability
                                                              6819 non-null float64
dtypes: float64(93), int64(3)
memory usage: 5.0 MB
```

All features in our dataset are represented as int or float. There are no missing values.

Data preparation

```
In [6]: # As we are interested if the company is about to be bankrupt, our target feature is "Bankruptcy?".
# Therefor we drop it
X = data.drop('Bankrupt?', axis=1)
y = data['Bankrupt?']

# Apply train-test-split method
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=2001)
```

As we see most of our data is represented in values between 0 and 1, therefore we use MinMaxScaler method

: 	ROA(C) before interest and depreciation before interest	ROA(A) before interest and % after tax	ROA(B) before interest and depreciation after tax	Operating Gross Margin	Realized Sales Gross Margin	Operating Profit Rate	Pre-tax net Interest Rate	After-tax net Interest Rate	Non-industry income and expenditure/revenue	Continuous interest rate (after tax)	 Net Income to Total Assets	Total assets to GNP price	c Inti
4238	0.523659	0.556019	0.556507	0.621348	0.621420	0.999148	0.797514	0.809397	0.303368	0.781656	 0.759368	1.271294e- 13	0.62
2937	0.467359	0.493440	0.497832	0.597933	0.597933	0.998898	0.797251	0.809181	0.303432	0.781444	 0.705667	2.122690e- 13	0.62
3538	0.531989	0.519130	0.557150	0.597645	0.597645	0.998948	0.797357	0.809285	0.303512	0.781545	 0.730942	2.508159e- 14	0.62
3879	0.544081	0.559971	0.571765	0.649072	0.649072	0.999351	0.797664	0.809487	0.303204	0.781931	 0.758793	1.571543e- 13	0.62
551	0.471925	0.514080	0.506130	0.593645	0.593645	0.998931	0.797323	0.809253	0.303488	0.781500	 0.722608	3.892992e- 13	0.61
1637	0.490642	0.538453	0.525778	0.597018	0.597018	0.998979	0.797383	0.809309	0.303492	0.781567	 0.738295	9.088226e- 14	0.62
5094	0.503688	0.548389	0.540554	0.602149	0.602149	0.998850	0.798024	0.809882	0.304882	0.782170	 0.752669	1.022029e- 11	0.63
6160	0.454714	0.464401	0.490069	0.592852	0.592852	0.998678	0.796751	0.808756	0.303019	0.781165	 0.682516	1.472602e- 14	0.62
2438	0.514828	0.656255	0.546389	0.603208	0.603208	0.998966	0.797745	0.809651	0.304152	0.781576	 0.828320	3.112829e- 14	0.62
1540	0.478850	0.507219	0.514321	0.592607	0.593047	0.998862	0.797239	0.809196	0.303486	0.781442	 0.720014	4.724864e- 13	0.62

5114 rows × 95 columns

Building models

Logistic Regression

```
In [8]: # Building logistic regression
          logreg = LogisticRegression(fit_intercept=False, C=1e12, solver='liblinear')
          model_log = logreg.fit(X_train_scaled, y_train)
 Out[8]: LogisticRegression(C=1000000000000.0, fit_intercept=False, solver='liblinear')
 In [9]: # Predicting values
          y hat train = logreg.predict(X train)
          y_hat_test = logreg.predict(X_test)
In [10]: print('Training Precision: ', precision_score(y_train, y_hat_train, average=None))
print('Testing Precision: ', precision_score(y_test, y_hat_test, average=None))
          print('\n\n')
          print('Training Recall: ', recall_score(y_train, y_hat_train, average=None))
          print('Testing Recall: ', recall_score(y_test, y_hat_test, average=None))
          print('Training Accuracy: ', accuracy_score(y_train, y_hat_train))
print('Testing Accuracy: ', accuracy_score(y_test, y_hat_test))
          print('\n\n')
          print('Training F1-Score: ', f1_score(y_train, y_hat_train, average=None))
          print('Testing F1-Score: ', f1_score(y_test, y_hat_test, average=None))
          Training Precision: [0.97598522 0.04448017]
          Testing Precision: [0.96238532 0.02926829]
          Training Recall: [0.64001615 0.51552795]
          Testing Recall: [0.63730255 0.30508475]
          Training Accuracy: 0.6360969886585843
          Testing Accuracy: 0.6258064516129033
          Training F1-Score: [0.77307645 0.08189443]
          Testing F1-Score: [0.76681287 0.05341246]
In [11]: # Plot the confusion matrix
          plot_confusion_matrix(logreg, X_test, y_test,
                                  cmap=plt.cm.Blues)
          plt.show()
                                                 1000
                     1049
                                                 800
             0
           True label
                                                 600
                                                 400
             1
                     41
                                    18
                                                 200
```

As we can see, due to the significant class imbalance, the model performs very poor on prediction of companies that are true bunkrupts.

KNN

```
In [12]: # Instantiate StandardScaler
         scaler = StandardScaler()
         # Transform the training and test sets
         scaled_data_train = scaler.fit_transform(X_train)
         scaled_data_test = scaler.transform(X_test)
In [13]: # Import KNeighborsClassifier
         from sklearn.neighbors import KNeighborsClassifier
         # Instantiate KNeighborsClassifier
         clf = KNeighborsClassifier()
         # Fit the classifier
         clf.fit(scaled data train, y train)
         # Predict on the test set
         test_preds = clf.predict(scaled_data_test)
In [14]: # Complete the function
         def print_metrics(labels, preds):
             print("Precision Score: {}".format(precision_score(labels, preds, average=None)))
             print("Recall Score: {}".format(recall_score(labels, preds, average=None)))
             print("Accuracy Score: {}".format(accuracy_score(labels, preds)))
             print("F1 Score: {}".format(f1_score(labels, preds,average=None)))
         print_metrics(y_test, test_preds)
         Precision Score: [0.97156398 0.64705882]
         Recall Score: [0.9963548 0.18644068]
         Accuracy Score: 0.9683284457478006
         F1 Score: [0.98380324 0.28947368]
In [15]: # Plot the confusion matrix
         plot_confusion_matrix(clf, X_test, y_test,
                               cmap=plt.cm.Blues)
         plt.show()
                                             1600
                                             1400
                   1646
                                  0
            0
                                             1200
                                             1000
          Frue label
                                             800
                                             600
                   59
                                  0
            1
                                             400
                                             200
                      Predicted label
```

The KNN model performs even worse, givin actually zero prediction of the true values for the bankrupt companies, even showing much less false positives

Decision tree

```
In [16]: # Instantiate and fit a DecisionTreeClassifier
    tree_clf = DecisionTreeClassifier(criterion='gini', max_depth=5)
    tree_clf.fit(X_train, y_train)
```

Out[16]: DecisionTreeClassifier(max_depth=5)

```
In [17]: # Test set predictions
         pred = tree_clf.predict(X_test)
         # Confusion matrix and classification report
         print(confusion_matrix(y_test, pred))
         print(classification_report(y_test, pred))
         [[1621
                  25]
          [ 44
                  15]]
                       precision
                                    recall f1-score
                                                        support
                            0.97
                                       0.98
                                                 0.98
                                                           1646
                    0
                    1
                            0.38
                                       0.25
                                                 0.30
                                                             59
             accuracy
                                                 0.96
                                                           1705
                            0.67
                                       0.62
            macro avg
                                                 0.64
                                                           1705
         weighted avg
                            0.95
                                       0.96
                                                 0.96
                                                           1705
```

Decision tree model performance is close to the Logistic regression but still giving us low recall and F-1 scores.

Random forest


```
In [21]: rfc_pred = forest.predict(X_test)
fl_score(y_test, rfc_pred)
```

Out[21]: 0.24324324324324323

Random Forest doesnt show any significant improvements.

XGBooster

```
In [22]: # Instantiate XGBClassifier
         clf = XGBClassifier()
         # Fit XGBClassifier
         clf.fit(X_train, y_train)
         # Predict on training and test sets
         training preds = clf.predict(X train)
         test_preds = clf.predict(X_test)
         # Accuracy of training and test sets
         training_accuracy = accuracy_score(y_train, training_preds)
         test_accuracy = accuracy_score(y_test, test_preds)
         print('Training Accuracy: {:.4}%'.format(training_accuracy * 100))
         print('Validation accuracy: {:.4}%'.format(test accuracy * 100))
         /Users/andreim/opt/anaconda3/envs/learn-env/lib/python3.8/site-packages/xgboost/data.py:173: FutureWarning: pandas.I
         nt64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate d
         type instead.
           from pandas import MultiIndex, Int64Index
         Training Accuracy: 100.0%
         Validation accuracy: 96.54%
In [23]: fig, ax = plt.subplots(figsize=(25, 10))
         plot_confusion_matrix(clf, X_test, y_test,
                               cmap=plt.cm.Blues, ax=ax)
         plt.show()
                                                                                             1600
                                                                                             1400
            0 -
                                                               15
                                                                                             1200
                                                                                             1000
          rue label
                                                                                             800
                                                                                             600
```

15

400

200

XGBooster model performs the best compare to all previous models, even still very poor predicts true bankrupts.

Predicted label

Dealing with data imbalance

44

In this section we employ Undersampler and Oversampler methods to reduce data imbalance effect. Than we will use Decision Tree to build a model on both undersampled and oversampled datasets.

1

```
In [27]: # Use under_sampler
         under_sampler = RandomUnderSampler(random_state=42)
         X_train_under, y_train_under = under_sampler.fit_resample(X_train,y_train)
         # Print shape of the dataset
         print(X_train_under.shape)
         (322, 95)
In [28]: # Use over_sampler
         over_sampler = RandomOverSampler(random_state=42)
         X_train_over, y_train_over = over_sampler.fit_resample(X_train,y_train)
         print(X_train_over.shape)
         (9906, 95)
In [29]: # Use DecisionTreeClassifier
         model_reg = DecisionTreeClassifier(random_state=42)
         model_reg.fit(X_train, y_train)
         model_under = DecisionTreeClassifier(random_state=42)
         model_under.fit(X_train_under, y_train_under)
         model_over = DecisionTreeClassifier(random_state=42)
         model_over.fit(X_train_over, y_train_over)
Out[29]: DecisionTreeClassifier(random_state=42)
In [30]: for m in [model_reg, model_under, model_over]:
             acc_train = m.score(X_train,y_train)
             acc_test = m.score(X_test,y_test)
             print("Training Accuracy:", round(acc_train, 4))
             print("Test Accuracy:", round(acc_test, 4))
         Training Accuracy: 1.0
         Test Accuracy: 0.946
         Training Accuracy: 0.8252
         Test Accuracy: 0.7994
         Training Accuracy: 1.0
         Test Accuracy: 0.9484
```



```
In [33]: # Discover feature importance
    importances = model_over.feature_importances_

feat_imp = pd.Series(importances, index=X_train_over.columns).sort_values()

# Plot series
    feat_imp.tail(15).plot(kind="barh")
    plt.xlabel("Gini Importance")
    plt.ylabel("Feature")
    plt.title("model_over Feature Importance");
```


SMOTE

```
In [34]: # Split data using SMOTE
X_train_sm, y_train_sm = SMOTE(random_state=1).fit_resample(X_train, y_train)
```

In [35]: from sklearn import metrics

```
# Build a model
          model = DecisionTreeClassifier(random_state=1)
          model.fit(X_train_sm, y_train_sm)
          pred = model.predict(X_test)
           cm = confusion_matrix(y_test, pred)
          print("Train set Accuracy: ", metrics.accuracy_score(y_train_sm, model.predict(X_train_sm)))
print("Test set Accuracy: ", metrics.accuracy_score(y_test, pred))
           Train set Accuracy: 1.0
           Test set Accuracy: 0.9325513196480938
In [36]: # Plot confusion matrix
           fig, ax = plt.subplots(figsize=(25, 10))
           plot_confusion_matrix(model, X_test, y_test,
                                   cmap=plt.cm.Blues, ax=ax)
           plt.show()
                                                                                                          1400
                                                                                                         - 1200
              0 -
                                                                        82
                                                                                                          1000
           Frue label
                                                                                                          800
                                                                                                          600
                                 33
                                                                        26
                                                                                                          400
                                                                                                          200
                                  ò
                                                                        i
                                                Predicted label
In [37]: pred = model.predict(X_test)
           print(classification_report(y_test, pred))
```

support	f1-score	recall	precision	
1646	0.96	0.95	0.98	0
59	0.31	0.44	0.24	1
1705	0.93			accuracy
1705	0.64	0.70	0.61	macro avg
1705	0.94	0.93	0.95	weighted avg

Conlusion

Due to the very strong effect of the data imbalance it's hard to build a reliable model for companies bankruptcy using giving dataset.