電腦圖學 Project 02

目次

電腦圖學 Project 02	1
API 文件	
My_GLU.h	
perspective	
lookAt	
Frustum.h	
class Frustum_2D	
演算法	
投影到2維座標並繪製牆壁	
Cell Portal	
Frustum_2D::clip	

API 文件

My_GLU.h

下列函數都宣告在 namespace My 中。

perspective

自己實作的 gluPerspective。建立一個 perspective 投影矩陣,並用 glMultMatrixd 和原本的矩陣相乘。

lookAt

自己實作的 gluLookAt。建立一個用來將 world 座標轉成 view 座標的座標轉換矩陣.並用 glMultMatrixd 和原本的矩陣相乘。

Frustum.h

下列 class 宣告在 namespace My 中。

class Frustum 2D

以左、右兩直線來表示 2D 平面上的視錐。

member function

演算法

投影到2維座標並繪製牆壁

Source: https://www.songho.ca/opengl/gl_transform.html

OpenGL 在顯示時會將物體的座標乘上 ModelView Matrix 得到 view 座標、再乘上 Projection Matrix 得到 clip 座標、再將(x, y, z)除以 w 得到 NDC 座標(稱作 perspective division)、最後再做 Viewport Transformation 得到 window 座標。

NDC 座標很接近 window 座標,只不過它是獨立於螢幕設備的表示法—— $x \cdot y$ 代表要畫在螢幕的哪裡,而 z 則代表深度。

所以,對於原本要用 glVertex3f 畫的座標,我們可以自己手動轉成 NDC 座標,並用 glVertex2f 將 NDC 座標的 $\mathbf{x} \cdot \mathbf{y}$ 繪製上去。

【註1】GL_MODELVIEW 和 GL_PROJECTION 這兩個矩陣要設成單位方陣,這樣用 glVertex2f 畫上去的座標才會原封不動的保留下來變 NDC 座標。

【註 2】Viewport Transformation 是由 glViewport 定義的,這部分讓 OpenGL 自己做就好。

Cell Portal

```
Draw_Cell(cell C, frustum F) {
    for each cell edge E {
        if E is opaque {
            E' = clip E to F
            draw E'
        }
        if E is transparent {
            E' = clip E to F
            F' = F restricted to E'
            Draw_Cell(neighbor(C, E), F')
        }
    }
}
```


和投影片講得差不多。

Frustum_2D::clip

對於視錐的每個邊界:

if 線段的兩端都在邊界的右側: 保持不變

else if 兩端都在左側: return false

else: 將邊界左側的端點設成邊界和線段的交點

return true

邊界的方向性如下:

