

美子 $\frac{dx}{dt} = f(x) - dx$. (一) 化学上,可递反应。 $A = \frac{Ron}{Roff} B$, $K = \frac{Ron}{Roff} = \frac{[B]}{[A]} = \frac{T - [A]}{[A]}$ $Ast = [A] = \frac{T}{1+1} = \frac{k_{off}}{k_{onl}+k_{on}}$ T = A + B $\frac{d}{dt}A = -konA + koffB = -konA + koff(T-A)$ de A = (korf T) (kon+Roff) A. (dx + B) dx. DDE) 通解: $A(t) = \frac{koffT}{kon+koff} \times (1-CCkon+koff)$) $A(t) = \frac{\beta}{\alpha} (1 - c \cdot e^{-\alpha t}) = \frac{koff T}{kon + koff} \cdot (1 - c \cdot e^{-(kont koff)t})$ 依赖于初始条件的第数人. 依赖投料后量 Ast = koff . T $A(t) = \frac{k_{\text{off}} \cdot T}{k_{\text{ont}} \cdot k_{\text{off}}} \cdot \left(1 + \frac{k_{\text{on}}}{k_{\text{off}}} e^{-(k_{\text{on}} + k_{\text{off}})t}\right)$ $V_A(t) = \frac{kon.T}{kon+koff} \cdot (+(kon+koff)) \cdot e^{-(kon+koff)t}) = -\frac{d}{dt}A(t)$ VA(t) = RonT·e (kon+koff)t. A的海反应建度 $\begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \hspace{-1mm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \end{array} \end{array} \hspace{-1mm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \end{array} \hspace{-1mm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \end{array} \hspace{-1mm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \end{array} \hspace{-1mm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{-1mm} \begin{array}{lll} \end{array} \hspace{-1mm} \end{array} \hspace{-1mm} \begin{array}{lll} \end{array} \hspace{-1mm} \begin{array}{l} \end{array} \hspace{-1mm} \begin{array}{lll} \end{array} \hspace{-1mm} \end{array} \hspace{-1mm} \begin{array}{lll} \end{array} \hspace{-1mm} \end{array} \hspace{-1mm} \begin{array}{lll} \end{array} \hspace{-1mm} \begin{array}{lll} \end{array} \hspace{-1mm} \begin{array}{l} \end{array} \hspace{-1mm$ kon + Roff . T

(3) 当七=0月、
$$V=0$$
 · ($\frac{d}{dt}x=\beta-dx$)
$$V=\frac{\beta}{\alpha}\left(1-e^{-dt}\right)=\frac{mg}{k}\cdot\left(1-e^{-\frac{k}{m}t}\right).$$

(2).
$$\mathcal{E} - IR = \frac{Q}{C}$$
: $\frac{d}{dt}Q = \frac{\mathcal{E}}{R} - \frac{Q}{RC}$

(3).
$$e-iR = L\frac{di}{dt}$$
: $\frac{d}{dt}i = \frac{e}{L} - \frac{IR}{L}$

两步: Step 1: $\chi + \rho \longrightarrow \chi \rho$. 快速近似乎约 Step21 7P. — Protein: X /慢度. $f(x) = \beta \cdot \eta = \beta \frac{\chi^h}{\kappa \alpha^h + \chi^h} \quad \text{$ \pm \chi$ in }$ 当 $\chi = \text{repressor}$ $\eta = \frac{\chi}{\chi + \chi p} = \frac{k d^n}{k d^n + \chi h}$ un brinding fraction $\chi = \frac{\chi}{\chi} + \chi p$ 生成建氧 $\chi = \chi$ (四) 数图上。 $Q_{n+1} = f(Q_n) = Q_{n+1} - Q_n = f(Q_n) - Q_n$ $\frac{(2n+1)-(2n)}{(n+1)-n}=\int_{-\infty}^{\infty}(\alpha_n)-(\alpha_n)$ = $\int_{-\infty}^{\infty}(\alpha_n)$ $x \sim (Cen).$; $t \sim Cen).$ f (can). ◆Un 不动点法与蛛网图 *. 找 g(n).近似 an (表面顶) $\int_{0}^{n} dx = \frac{d dx}{\int_{0}^{n} dx} = \frac{d dx}{\int_{0}^{n} dx}$ $\frac{d f(an)}{d n} = f(an) - f(an)$ $\frac{dx}{dt} = f(x) - x.$

