Problem 1

- (a) For x = 0, $P(X = x) = P(Z = 0) + P(Z = 1) \times P(Y = 0) = (1 p) + pe^{-\lambda}$ For $x = 1, 2, 3, \dots$, $P(X = x) = P(Z = 1) \times P(Y = x) = p \times \frac{e^{-\lambda}\lambda^x}{x!}$ Therefore, $P(X = x) = \begin{cases} 1 - p + pe^{-\lambda} & x = 0 \\ p \times \frac{e^{-\lambda}\lambda^x}{x!} & x \in \mathbb{N} \\ 0 & otherwise \end{cases}$ (b) For x = 0, $P(\tilde{X} = x) = P(1 - I = 0) + P(1 - I = 1) \times P(Y = 0) = P(I = 1) + P(I = 1)$
- (b) For x = 0, $P(\tilde{X} = x) = P(1 I = 0) + P(1 I = 1) \times P(Y = 0) = P(I = 1) + P(I = 0) \times P(Y = 0) = (1 p) + pe^{-\lambda}$ For $x = 1, 2, 3, ..., P(\tilde{X} = x) = P(1 I = 1) \times P(Y = x) = P(I = 0) \times P(Y = x) = p \times \frac{e^{-\lambda}\lambda^x}{x!}$ Therefore, $P(\tilde{X} = x) = \begin{cases} 1 p + pe^{-\lambda} & x = 0 \\ p \times \frac{e^{-\lambda}\lambda^x}{x!} & x \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$, which is the same as P(X = x).
- (c) Let $p_U(u) = P(U = u)$, $p_V(v) = P(V = v)$. Since U and V are independent, $p_{UV}(u, v) = p_U(u) \times p_V(v)$. Therefore, $E[UV] = \sum_{u \in S_U} \sum_{v \in S_v} uv \times p_{UV}(u, v) = \sum_{u \in S_U} \sum_{v \in S_V} uv \times p_U(u) \times p_V(v) = \sum_{u \in S_U} u \times p_U(u) \times \sum_{v \in S_V} v \times p_V(v) = E[U] \times E[V]$.

Problem 2

- (a) The MGF of a Poisson random variable is $e^{\lambda(e^t-1)}$, so we can know $M_{3X}(t) = M_X(3t) = e^{\lambda(e^{3t}-1)}$, $M_{4Y}(t) = M_Y(4t) = e^{\lambda(e^{4t}-1)}$. We also know that $M_{3X+4Y}(t) = M_{3X}(t) \times M_{4Y}(t) = e^{\lambda(e^{3t}-1)} \times e^{\lambda(e^{4t}-1)} = e^{\lambda(e^{3t}+e^{4t}-2)}$, which is not the MGF of a Poisson random variable. Therefore, 3X+4Y is not a Poisson random variable.
- (b) $M_Y(t) = \sum_{k=1}^{\infty} e^{tk} \cdot \frac{6}{\pi^2 k^2} = \frac{6}{\pi^2} \sum_{k=1}^{\infty} \frac{e^{tk}}{k^2}$. For t > 0, the term $\frac{e^{tk}}{k^2}$ grows exponentially, which makes the series $\sum_{k=1}^{\infty} \frac{e^{tk}}{k^2}$ diverges. Therefore, $M_Y(t)$ does not exist since it is not finite for any t > 0.

Problem 3

- (a) Marginal CDF of X: $F_X(t) = \lim_{u \to \infty} F_{XY}(t,u) = \lim_{u \to \infty} (1 e^{-t} e^{-u} + e^{-(t+u+\theta tu)}) = 1 e^{-t}$ Marginal CDF of Y: $F_Y(t) = \lim_{t \to \infty} F_{XY}(t,u) = \lim_{t \to \infty} (1 e^{-t} e^{-u} + e^{-(t+u+\theta tu)}) = 1 e^{-u}$ If X and Y are independent, $F_{XY}(t,u) = F_X(t) \times F_Y(u) = (1 e^{-t}) \times (1 e^{-u}) = 1 e^{-t} e^{-u} + e^{-(t+u)}$, which means $e^{-(t+u+\theta tu)} = e^{-(t+u)}$. Therefore, X and Y are independent only if $\theta = 0$.
- (b) $\frac{\partial F_{X,Y}(t,u)}{\partial t} = \frac{\partial}{\partial t} (1 e^{-t} e^{-u} + e^{-(t+u+\theta tu)}) = e^{-t} + (1 + \theta u)e^{-(t+u+\theta tu)}$ Joint PDF of X and Y: $f_{X,Y}(t,u) = \frac{\partial}{\partial u} (e^{-t} + (1 + \theta u)e^{-(t+u+\theta tu)}) = \theta e^{-(t+u+\theta tu)} + (1 + \theta u)(1 + \theta t)e^{-(t+u+\theta tu)} = [1 + \theta(1 + u + t) + \theta^2 ut]e^{-(t+u+\theta tu)}$

Problem 4

(a) Since $R(T_a) > R(T_b)$, we can know that each labeler votes for T_a with probability $p = \sigma(R(T_a) - R(T_b)) > 0.5$. We can define the indicator random variable X_i for the i-th labeler, where $X_i = 1$ if the labeler votes for T_a and $X_i = 0$ if the labeler votes for T_b . Therefore, $X_i \sim Bernoulli(p)$. Define the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, then the event E that T_a gets more votes than T_b is equivalent to $E = \{\bar{X} > \frac{1}{2}\}$. Using Hoeffding's inequality for bounded independent random variables, $P(|\bar{X} - \mu| \ge \epsilon) \le 2e^{-\frac{2n\epsilon^2}{(b-a)^2}}$, where a = 0 and b = 1 in this case, so $P(E) = P(\bar{X} > \frac{1}{2}) = 1 - P(\bar{X} \le \frac{1}{2}) = 1 - P(\bar{X} - \mu \le -(\mu - 0.5)) \ge 1 - e^{-2n(\mu - 0.5)^2}$. Therefore, $P(E) \ge 1 - e^{-2n(p - \frac{1}{2})^2}$.

- (b) 1. We should ensure that $P(E) = P(\bar{X} > \frac{1}{2}) \ge 1 \delta$, which means $P(\bar{X} \le \frac{1}{2}) \le \delta$. Applying Chebyshev's inequality, $P(\bar{X} \le \frac{1}{2}) = P(|\bar{X} \mu| \ge \mu \frac{1}{2}) \le \frac{p(1-p)}{n(\mu \frac{1}{2})^2}$. Therefore, we require $\frac{p(1-p)}{n(\mu \frac{1}{2})^2} \le \delta$, which means $n \ge \frac{p(1-p)}{\delta(p-\frac{1}{2})^2}$.
 - 2. $P(E) \geq 1 e^{-2n(p-\frac{1}{2})^2} \geq 1 \delta$. This requires $e^{-2n(p-\frac{1}{2})^2} \leq \delta$, which can be simplified to $2n(p-\frac{1}{2})^2 \geq \ln{(\frac{1}{\delta})}$. Therefore, $n \geq \frac{1}{2(p-\frac{1}{2})^2} \ln{(\frac{1}{\delta})}$.
- (c) We need to find an upper bound on P(S>90), where $S=\sum_{j=1}^{100}I_j$. For each I_j , $\mathbb{E}[e^{tI_j}]=(1-p_j)e^{t\cdot 0}+p_je^t=1+p_j(e^t-1)$. Since I_j are independent, for any t>0, we have $P(S\geq a)\leq e^{-ta}\cdot M_X(t)=e^{-ta}\prod_{j=2}^{100}(1+p_j(e^t-1))$, where a=91 since S>90. Using the inequality $1+x\leq e^x$, we can simplify the expression to $e^{-ta}\prod_{j=2}^{100}e^{p_j(e^t-1)}=e^{-ta}\cdot e^{\sum_{j=2}^{100}p_j(e^t-1)}$. Now we have $P(S\geq a)\leq e^{-ta+\mu(e^t-1)}$, where $\mu=\sum_{j=2}^{100}p_j$. To find the tightest bound, set $\phi(t)=-ta+\mu(e^t-1)$, then $\phi'(t)=-a+\mu e^t$. Set $\phi'(t)=0$, we can find the optimal $t=\ln\frac{a}{\mu}$. Therefore, $P(S\geq a)\leq e^{-a\ln\frac{a}{\mu}+a-\mu}=e^{-91\ln\frac{91}{\mu}+91-\mu}$.

Problem 5

(a) 1. Since N is the smallest interget such that $S_N > 1$, therefore N = n occurs when $S_{n-1} < 1$ and $S_n > 1$. So $P(N = n) = P(S_{n-1} < 1 \text{ and } S_n > 1) = P(S_{n-1} < 1) - P(S_n \le 1)$. Since $P(S_n = 1) = 0$, $P(N = n) = P(S_{n-1} < 1) - P(S_n < 1)$.

2. Proof $P(S_k < v) = \frac{v^k}{k!}$ by induction:

Base case:
$$P(S_1 < 1) = 1 = \frac{1^1}{1!}$$

Inductive step: Assume n=k, $P(S_k<1)=\frac{v^k}{k!}$. Then for n=k+1, $P(S_{k+1}<1)=\int_{u_{k+1}=0}^1 P(S_k<1-u_{k+1})\,du_{k+1}$. Let $v=1-u_{k+1}$, then $P(S_{k+1}<1)=\int_{v=0}^1 P(S_k< v)\,dv=\int_{v=0}^1 \frac{v^k}{k!}\,dv=\frac{1}{k!}\int_0^1 v^k\,dv=\frac{1}{k!}\left[\frac{v^{k+1}}{k+1}\right]_{v=0}^1=\frac{1}{k!}\cdot\frac{1}{k+1}=\frac{1}{(k+1)!}$.

Therefore, $P(S_k < 1) = \frac{1^k}{k!} = \frac{1}{k!}$.

- 3. $P(N=n) = P(S_{n-1} < 1) P(S_n < 1) = \frac{1}{(n-1)!} \frac{1}{n!} = \frac{n}{n!} \frac{1}{n!} = \frac{n-1}{n!}.$ $E[N] = \sum_{n=1}^{\infty} n \times P(N=n) = \sum_{n=1}^{\infty} \frac{n(n-1)}{n!} = \frac{1 \cdot 0}{1!} + \sum_{n=2}^{\infty} \frac{1}{(n-2)!} = \sum_{m=0}^{\infty} \frac{1}{m!} = e$
- (b) Procedure of simulation:
 - 1. Define the number of trials N_{trials} of each simulation run.
 - 2. Generate a sequence of i.i.d. Uniform(0,1) random variables $U_1, U_2, \ldots, U_{N_{trials}}$.
 - 3. For each $i=1,2,\ldots,N_{trials}$, record the value n such that $S_{n-1}<1$ and $S_n>1$.
 - 4. After all trials, compute the average of all recorded N_i values. This average is an estimate of e.
 - All Estimates of Euler's Number e:
 Trials: 10, Estimated e: 2.8000000000
 Trials: 1000, Estimated e: 2.7240000000
 Trials: 100000, Estimated e: 2.7153000000
 Trials: 10000000, Estimated e: 2.7183091000

Problem 6

(a) Observations:

- 1. For lower ϵ values ($\epsilon = 0.01$), the performance of Epsilon Greedy is closer to Empirical Means.
- 2. For moderate ϵ values ($\epsilon = 0.03$), a balance between exploration and exploitation is achieved.
- 3. For higher ϵ values ($\epsilon = 0.1$), Epsilon Greedy outperforms Empirical Means in environments with sparse reward distributions (e.g., Environment 2).
- 4. Larger ϵ values ($\epsilon = 0.3$) result in higher regrets due to excessive exploration.

	$\epsilon = 0.01$	$\epsilon = 0.03$	$\epsilon = 0.1$	$\epsilon = 0.3$
Environment 0	0.048430	0.041721	0.040679	0.040719
Environment 1	0.018111	0.008061	0.009311	0.007883
Environment 2	0.040201	0.039511	0.042640	0.042674

Mean Regrets for Empirical Means

	$\epsilon = 0.01$	$\epsilon = 0.03$	$\epsilon = 0.1$	$\epsilon = 0.3$
Environment 0	0.059363	0.030785	0.044694	0.121840
Environment 1	0.031996	0.022477	0.039259	0.103480
Environment 2	0.046880	0.027960	0.015047	0.022627

Mean Regrets for Epsilon Greedy

(b) Observations:

- 1. Smaller α values ($\alpha = 0.1$) result in slower decay of exploration, leading to excessive regret in some environments.
- 2. Moderate α values ($\alpha=0.5$) achieve the best trade-off, minimizing regret effectively across all environments.
- 3. Larger α values ($\alpha = 2.0$) lead to insufficient exploration, causing suboptimal performance.
- 4. Sparse reward environments (e.g., Environment 2) are more sensitive to the choice of α , as insufficient exploration can quickly result in higher regret.

	$\alpha = 0.1$	$\alpha = 0.5$	$\alpha = 1.0$	$\alpha = 2.0$
Environment 0	0.044749	0.024617	0.048363	0.036975
Environment 1	0.010909	0.005492	0.009362	0.009503
Environment 2	0.043087	0.042800	0.046280	0.044781

Mean Regrets for Empirical Means

	$\alpha = 0.1$	$\alpha = 0.5$	$\alpha = 1.0$	$\alpha = 2.0$
Environment 0	0.177120	0.015667	0.113410	0.417050
Environment 1	0.149890	0.011907	0.030241	0.381130
Environment 2	0.031097	0.021433	0.078094	0.087898

Mean Regrets for Epsilon Greedy