华东师范大学软件学院课程项目报告 - 附件

课程名称: 创客实践 成绩:

目录

_	项目附加文件	1
=	ESP-Wroom-32	2
Ξ	MAX98357A	2
四	INMP441 MEMS	3
五	MPU6050 六轴传感器	3
六	MQ-135 有毒气体传感器	4
七	ESP32 Wifi Public Interfaces	4
八	Hmac-sha256 算法	5
九	引脚定义与硬件接线	6
	1 主机(Master)接线表如下	6
	2 从机(Slave)接线表加下	7

一 项目附加文件

- partitions.csv 用于 ESP32 中 Flash 分区配置,存储程序、数据、参数等。
- src 源代码目录,包含项目的源代码。
- configuration.h 项目配置文件,包含项目的常量、宏定义、Wi-Fi 设置等。
- include 头文件目录,包含项目的头文件。
- lib 库文件目录,包含项目的库文件。

□ ESP-Wroom-32

图 1: ESP-Wroom-32

\equiv MAX98357A

图 2: MAX98357A

MAX98357A 模块引脚	引脚说明	
VIN	电源正 (2.5V-5.5V)	
GND	电源地	
SD	关机和频道选择。SD MODE 拉低以将器件处于关断状态。	
GAIN	增益和频道选择。在 TDM 模式下,增益固定为 12dB	
DIN	数字信号输入	
BCLK	位时钟输入	
LRC	I2S 与 LJ 模式的左/右时钟。同步时钟用于 TDM 模式	

表 1: MAX98357A 模块引脚说明

四 INMP441 MEMS

图 3: INMP441 Mems

信号	描述
SCK	I2S 时钟线,是由主机产生的高频方波,用来控制每位数据的传输时序
SD	I2S 数据线,从机通过这根线把 ADC 采样值发送给主机
WS	I2S 声道选择线,I2S 协议可以传输左右两个声道的数据,WS 信号是由主机发送给从机的,从机
	根据 WS 的电平高低,判断当前数据帧发送左声道还是右声道数据。WS 低电平时,从机发送左声
	道数据,高电平发送右声道。
L/R	芯片左右声道选择线,每个麦克风只能检测一处声源,因此若要进行双声道录音,就要使用两个模
	块,一左一右放置。

表 2: I2S 信号线说明

五 MPU6050 六轴传感器

MPU6050 由具有微机电系统(MEMS)技术的三轴陀螺仪组成。

图 4: MPU6050

参数	描述
芯片型号	MPU6050
加速度计范围	$\pm 2g, \pm 4g, \pm 8g, \pm 16g$
陀螺仪范围	$\pm 250, \pm 500, \pm 1000, \pm 2000$ °/s
工作电压	3.3V-5V
接口	I2C (400kHz) / SPI
工作温度范围	-40°C 至 +85°C

表 3: MPU6050 参数

六 MQ-135 有毒气体传感器

MQ-135 是一种空气质量传感器,用于检测空气中的一氧化碳、氮氧化物、酒精、氨气和烟雾等有害气体。工作原理是通过化学反应来检测目标气体的浓度,并将结果转换为电信号输出。

对于需要读取不同的气体,需要设置不同的系数,系数表如下所示:

Gas	a	b
CO	605.18	-3.937
Alcohol	77.255	-3.18
CO2	110.47	-2.862
Toluen	44.947	-3.445
NH4	102.2	-2.473
Aceton	34.668	-3.369
Smoke	30000000	-8.308

表 4: MQ-135 系数表 (来源: MQUnifiedsensor 库)

七. ESP32 Wifi Public Interfaces

- begin()
 - 使用存储的配置连接 Wi-Fi。
- disconnect(bool wifioff, bool eraseap)
 - 从当前网络断开,并可选择关闭 Wi-Fi 无线电或从非易失性存储中擦除 AP 配置。
- config(IPAddress local_ip, IPAddress gateway, IPAddress subnet, IPAddress dns1, IPAddress dns2)
 - 配置静态 IP 设置,禁用 DHCP。
- isConnected()
 - 如果 STA 接口已连接到 AP,则返回 true。
- setAutoReconnect(bool autoReconnect)
 - 启用或禁用连接丢失时的自动重连。
- getAutoReconnect()
 - 如果启用了自动重连,则返回 true。
- $\bullet \ \ waitForConnectResult (unsigned \ long \ time outLength)$
 - 等待连接完成,返回连接状态或断开状态。
- localIP()
 - 返回 STA 接口的本地 IP 地址。
- macAddress(void)
 - 返回 STA 接口的 MAC 地址作为字符串。
- SSID() const
 - 返回连接网络的 SSID。

八 Hmac-sha256 算法

图 5: Hmac-sha256 算法

使用密钥 APISecret 和消息 original Signature 计算 HMAC-SHA256:

$$HMAC-SHA256 = HMAC(APISecret, original Signature)$$
 (1)

其中, HMAC 的计算公式为:

$$\operatorname{HMAC}(key, message) = \operatorname{hash}((key \oplus \operatorname{opad}) \parallel \operatorname{hash}((key \oplus \operatorname{ipad}) \parallel \operatorname{message}))$$
 (2)

此部分内容过于复杂,我并不将重点置于此,搜索资料后发现,ESP32 的核心库中已包含 Mbed TLS,已帮助实现了此部分算法。

mbedTLS 开源库文档: https://mbed-tls.readthedocs.io/en/latest/

数据与哈希加密运算中,每个字节的数据都处于 0-255 之间,所以使用 unsigned char 类型来定义变量,处理字节数据。在 Arduino 环境中使用 Mbed TLS 库进行 HMAC-SHA256 计算时,涉及的主要函数如下:

• 初始化消息摘要上下文

void mbedtls_md_init(mbedtls_md_context_t *ctx);

初始化消息摘要上下文结构体。

• 获取消息摘要信息

const mbedtls md info t*mbedtls md info from type(mbedtls md type t md type);

根据指定的消息摘要类型返回对应的信息结构体。

• 设置上下文

int mbedtls_md_setup(mbedtls_md_context_t *ctx, const mbedtls_md_info_t *md_info, int hmac);

配置消息摘要上下文,绑定指定的算法,并为 HMAC 分配资源。

• 开始计算

int mbedtls_md_starts(mbedtls_md_context_t *ctx);

开始消息摘要或 HMAC 计算。

• 输入数据

 $int\ mbedtls_md_update(mbedtls_md_context_t\ *ctx,\ const\ unsigned\ char\ *input,\ size_t\ ilen);$

将数据块输入到消息摘要或 HMAC 计算中,可以多次调用。

• 完成计算

int mbedtls_md_finish(mbedtls_md_context_t *ctx, unsigned char *output);

完成计算并将结果写入输出缓冲区。

• 释放资源

void mbedtls_md_free(mbedtls_md_context_t *ctx);

释放消息摘要上下文中分配的资源。

九 引脚定义与硬件接线

```
#define RAINDROP_PIN 33
#define MQ5_PIN 36
#define MQ135_PIN 35
#define LIGHT_PIN 34
#define DHT22_PIN 25
#define FIRE_PIN 39
#define DHTTYPE DHT22
```

1 主机(Master)接线表如下

引脚编号	引脚名称	接入点	功能/用途
1	VDD	3.3V	提供 3.3V 电压输出
2	GND	GND	接地
3	SD	GPIO22	麦克风数据引脚
4	WS	GPIO15	麦克风时钟同步
5	SCK	GPIO4	麦克风串行时钟
6	Vin	VIN	音频放大模块供电
7	GND	GND	接地
8	LRC	GPIO27	音频放大模块同步信号
9	BCLK	GPIO26	音频放大模块时钟信号
10	DIN	GPIO25	音频放大模块数据输入

表 5: 麦克风与音频放大模块接线引脚表

图 6: 主机 (Master) 接线图

2 从机(Slave)接线表如下

引脚编号	引脚名称	接入点	功能/用途
1	3V3	面包板长线	提供 3.3V 电压输出
2	GND	面包板长线	接地
4	GPIO36	MQ5 AO	获取 MQ5 模拟信号
5	GPIO25	DHT22 Output	获取 DHT22 数据
6	GPIO33	Raindrop Module	获取雨量数据
7	GPIO32	MQ135 Module	获取有毒气体数据
8	GPIO35	MQ135 Module	获取有毒气体数据
9	GPIO34	Light Module	获取光照强度数据
10	GPIO36	Fire Module	获取火焰传感器数据

表 6: ESP32 引脚接线表

图 7: 从机(Slave)接线图