

Entrega 2

Grupo 118 Integrantes: José Caraball Javiera Rojas

1 Diagrama E/R

Figure 1: Diagrama Entidad Relación

2 Esquema relacional

- Pais(PRIMARY KEY pais_id:INT, pais_nombre:VARCHAR(30))
- Naviera(PRIMARY KEY nav_id:INT, nav_nombre: VARCHAR(40), giro: VARCHAR(50), FOREIGN KEY pais_id:INT REFERENCES Pais(pais_id))

- Buque(PRIMARY KEY buq_id:INT, buq_nombre:VARCHAR(30), patente:VARCHAR(30), FOREIGN KEY nav_id:INT REFERENCES Naviera(nav_id), FOREIGN KEY pais_id:INT REFERENCES Pais(pais_id))
- BuquePesquero(PRIMARY KEY bpes_id:INT, FOREIGN KEY buq_id:INT REFERENCES Buque(buq_id), tipo_pesca:VARCHAR(30))
- BuqueCarga(PREIGN KEY buq_id:INT REFERENCES Buque(buq_id), max_containers:INT, max_toneladas:INT)
- BuquePetrolero(PRIMARY KEY bpet_id:INT, FOREIGN KEY buq_id:INT REFERENCES Buque(buq_id), max_litros:INT)
- Personal(PRIMARY KEY per_id:INT, per_nombre:VARCHAR(50), nacionalidad:VARCHAR(30), pasaporte:VARCHAR(30), edad:INT, genero:VARCHAR(30),
 FOREIGN KEY buq_id:INT REFERENCES Buque(buq_id), cargo:VARCHAR(30))
- Puerto(PRIMARY KEY puerto_id:INT, puerto_nombre:VARCHAR(30))
- Itinerario(PRIMARY KEY it_id:INT, fecha_llegada:TIMESTAMP, FOREIGN KEY buq_id:INT REFERENCES Buque(buq_id), FOREIGN KEY puerto_id:INT REFERENCES Puerto(puerto_id))
- Atraque(<u>PRIMARY KEY atr_id:INT</u>, fecha_atraque:TIMESTAMP, fecha_salida:TIMESTAMP, FOREIGN KEY buq_id:INT REFERENCES Buque(buq_id), FOREIGN KEY puerto_id:INT REFERENCES Puerto(puerto_id))

3 Justificación modelo

3.1 Pais

Tenemos la dependencia pais_id ->pais_nombre, por lo tanto la tabla está normalizada.

3.2 Naviera

Tenemos la siguiente dependencia:

• nav_id, nav_nombre ->giro, pais_id

Donde nav_id y nav_nombre por separado son llaves minimales, se elige nav_id como primary key y la tabla queda normalizada.

3.3 Buque

Tenemos la siguiente dependencia:

• buq_id, buq_nombre, patente ->nav_id, pais_id

Donde buq_id, buq_nombre y patente por separado son llaves minimales, se elige buq_id como primary key y la tabla queda normalizada.

3.4 BuquePesquero

Tenemos la siguiente dependencia:

• bpes_id, buq_id ->tipo_pesca

Donde bpes_id y buq_id por separado son llaves minimales, se elige bpes_id como primary key y la tabla queda normalizada.

3.5 BuqueCarga

Tenemos la siguiente dependencia:

• bcar_id, buq_id ->max_containers, max_toneladas

Donde bcar_id y buq_id por separado son llaves minimales, se elige bcar_id como primary key y la tabla queda normalizada.

3.6 BuquePetrolero

Tenemos la siguiente dependencia:

• bpet_id, buq_id ->max_litros

Donde bpet_id y buq_id por separado son llaves minimales, se elige bpet_id como primary key y la tabla queda normalizada.

3.7 Personal

Tenemos la siguiente dependencia:

• per_id, per_nombre, pasaporte ->nacionalidad, edad, genero, buq_id, cargo

Donde per_id, per_nombre y pasaporte por separado son llaves minimales, se elige per_id como primary key y la tabla queda normalizada.

3.8 Puerto

Tenemos la dependencia puerto_id ->puerto_nombre, por lo tanto la tabla está normalizada.

3.9 Itinerario

Tenemos la siguiente dependencia:

• it_id ->fecha_llegada, buq_id, puerto_id

Nota: Nuestra interpretación del enunciado es que cada buque debería aparecer en solo una tupla en esta tabla, y en ese caso buq-id sería llave minimal. Sin embargo, en los datos entregados sucede que hay buques que aparecen en más de una tupla, por lo que no puede ser llave minimal.

Por otro lado, como un buque no puede llegar al mismo tiempo a más de un puerto, tenemos la siguiente dependencia:

• fecha_llegada, buq_id ->puerto_id, it_id

Que nos indica que (fecha_llegada, buq_id) es llave minimal. Se elige it_id como primary key por ser atributo único, además que tener un atributo de tipo TIMESTAMP como llave no es eficiente. De esta forma, la tabla queda normalizada.

3.10 Atraque

Tenemos la siguiente dependencia:

• atr_id ->fecha_atraque, fecha_salida, buq_id, puerto_id

Además, como un buque no puede llegar al mismo tiempo a más de un puerto, y no puede haber salido dos veces, tenemos la siguiente dependencia:

• fecha_atraque, buq_id ->puerto_id, fecha_salida, atr_id

Que nos indica que (fecha_atraque, buq_id) es llave minimal. Se elige atr_id como primary key por ser atributo único, además que sea de tipo INT lo hace más eficiente. De esta forma, la tabla queda normalizada.

4 Consultas en SQL

1. Muestre el nombre de todas las navieras.

SELECT nav_nombre FROM Naviera;

2. Muestre todos los buques de la naviera 'Francis Drake S.A.'.

SELECT Buque.* FROM Buque, Naviera WHERE LOWER(Naviera.nav_nombre) LIKE '%francis drake s.a.%' AND Buque.nav_id = Naviera.nav_id;

3. Muestre todos los buques que hayan atracado en 'Valparaiso' el 2020.

SELECT Atraque.fecha_atraque, Buque.*, Puerto.puerto_nombre FROM Buque, Atraque, Puerto WHERE LOWER(Puerto.puerto_nombre) LIKE '%valparaiso%' AND Atraque.puerto_id = Puerto.puerto_id AND Atraque.buq_id = Buque.buq_id AND Atraque.fecha_atraque >'2019-12-31 23:59:59' AND Atraque.fecha_atraque <'2021-01-01 00:00:00' ORDER BY Atraque.fecha_atraque;

4. Muestre todos los buques que hayan estado en 'Mejillones' al mismo tiempo que el buque 'Magnolia'.

SELECT Buque.* FROM (SELECT Atraque.* FROM Buque, Puerto, Atraque WHERE Puerto.puerto_nombre = 'Mejillones' AND Atraque.puerto_id = Puerto.puerto_id AND Buque.buq_nombre = 'Magnolia' AND Atraque.buq_id = Buque.buq_id) AS Foo, Buque, Atraque WHERE

(((Atraque.fecha_atraque>= Foo.fecha_atraque AND Atraque.fecha_atraque <= Foo.fecha_salida) OR (Atraque.fecha_salida>= Foo.fecha_atraque AND Atraque.fecha_salida <= Foo.fecha_salida)) OR ((Atraque.fecha_atraque <= Foo.fecha_atraque AND Atraque.fecha_salida>= Foo.fecha_salida) OR (Atraque.fecha_atraque >= Foo.fecha_atraque AND Atraque.fecha_salida <= Foo.fecha_salida)))

AND Atraque.buq_id <> Foo.buq_id AND Atraque.puerto_id = Foo.puerto_id

AND Buque.buq_id = Atraque.buq_id;

5. Encuentre todos los capitanes mujeres que han pasado por el puerto 'Talcahuano'.

SELECT Personal.* FROM Personal, Atraque, Puerto WHERE
Atraque.puerto_id = Puerto.puerto_id AND Personal.genero = 'mujer' AND
Personal.cargo = 'capitan' AND Atraque.buq_id = Personal.buq_id AND
LOWER(Puerto.puerto_nombre) LIKE '%talcahuano%';

6. Encuentre el buque pesquero que tiene más personas trabajando.

SELECT Personal.buq_id, Buque.buq_nombre, BuquePesquero.tipo_pesca, COUNT(Personal.buq_id)
FROM Personal, BuquePesquero, Buque WHERE Personal.buq_id = BuquePesquero.buq_id AND
Personal.buq_id = Buque.buq_id GROUP BY Buque.buq_nombre, Personal.buq_id,
BuquePesquero.tipo_pesca HAVING COUNT(Personal.buq_id) = (SELECT MAX(maximo.valor)
FROM (SELECT Personal.buq_id, COUNT(Personal.buq_id) AS valor FROM Personal,
BuquePesquero WHERE Personal.buq_id = BuquePesquero.buq_id GROUP BY Personal.buq_id) AS
maximo);