ΤΥΠΟΛΟΓΙΟ ΜΑΣ002

Α. Εφαρμογές ολοκληρωμάτων

Εμβαδόν χωρίου μεταξύ καμπυλών $y=f(x),$ $y=g(x)$	$\int_{a}^{b} f(x) - g(x) dx$
Μήκος τόξου καμπύλης $y=f(x)$	$\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$
Όγκος στερεού από περιστροφή καμπύλης $y=f(x)$ γύρω από τον άξονα x	$\pi \int_{a}^{b} (f(x))^2 dx$
Εμβαδόν επιφάνειας στερεού από περιστροφή καμπύλης $y=f(x)$ γύρω από τον άξονα x	$2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$

Β. Κριτήρια Σύγκλισης Σειρών

Β1. Κριτήριο απόκλισης: Αν $\lim_{\kappa \to \infty} a_k \neq 0$, τότε η σειρά $\sum a_k$ αποκλίνει.

B2. Κριτήρια για σειρές $\sum a_{\kappa}, \sum b_{\kappa}$ με θετικούς όρους.

Κριτήριο ολοκλήρωσης	
Κριτήριο οριακής σύγκρισης	Αν το όριο $\rho=\lim_{\kappa\to\infty}\frac{a_\kappa}{b_\kappa}$ υπάρχει και $\rho>0$, τότε οι $\sum a_\kappa, \sum b_\kappa$ αμφότερες συγκλίνουν ή αποκλίνουν.
Κριτήριο λόγου	$ \Gamma \text{iα } \rho = \lim_{\kappa \to \infty} \frac{a_{\kappa+1}}{a_{\kappa}} \text{:} $ $ \text{an } \rho < 1 \text{ h} \sum a_{\kappa} \text{ sunkline,} $ $ \text{an } \rho > 1 \text{ h} \sum a_{\kappa} \text{ apokline,} $ $ \text{an } \rho = 1 \text{ den écoure sumérasha.} $
Κριτήριο ρίζας	$ \Gamma \text{iα } \rho = \lim_{\kappa \to \infty} (a_\kappa)^{1/\kappa} \text{:} $ $ \text{an } \rho < 1 \text{ h} \sum a_\kappa \text{ sugklivel,} $ $ \text{an } \rho > 1 \text{ h} \sum a_\kappa \text{ apoklivel,} $ $ \text{an } \rho = 1 \text{ den écoure sumérasha.} $

B3. Κριτήριο για εναλάσσουσες σειρές $\text{Οι σειρές } \sum_{\kappa=1}^{\infty} (-1)^{\kappa+1} a_{\kappa} \text{ και } \sum_{\kappa=1}^{\infty} (-1)^{\kappa} a_{\kappa} \text{ συγκλίνουν αν:}$

- $a_{\kappa} > a_{\kappa+1}$
- $\lim_{\kappa \to \infty} a_{\kappa} = 0$

Β4. Κριτήριο λόγου για απόλυτη σύγκλιση

Αν $\sum a_{\kappa}$ είναι μια σειρά με όρους διάφορους του μηδενός και $\rho=\lim_{\kappa\to\infty}\frac{|a_{\kappa+1}|}{|a_{\kappa}|}$ τότε:

- αν $\rho < 1$ η $\sum a_{\kappa}$ συγκλίνει απόλυτα,
- αν $\rho > 1$ η $\sum a_{\kappa}$ αποκλίνει,
- αν $\rho = 1$ δεν έχουμε συμπέρασμα.

•
$$e^x = \sum_{\kappa=0}^{\infty} \frac{x^{\kappa}}{k!}$$
 • $\ln(1+x) = \sum_{\kappa=1}^{\infty} (-1)^{\kappa+1} \frac{x^{\kappa}}{k!}$ • $\sin x = \sum_{\kappa=0}^{\infty} (-1)^k \frac{x^{2\kappa+1}}{(2k+1)!}$ • $\cos x = \sum_{\kappa=0}^{\infty} (-1)^k \frac{x^{2\kappa}}{2k!}$

•
$$\sin x = \sum_{\kappa=0}^{\infty} (-1)^k \frac{x^{2\kappa+1}}{(2k+1)!}$$

$$\bullet \cos x = \sum_{\kappa=0}^{\infty} (-1)^k \frac{x^{2\kappa}}{2k!}$$

Δ. Διαφορικές εξισώσεις πρώτου βαθμού

Δ1. Χωριζομένων μεταβλητών

$$\frac{dy}{dx} = \frac{f(x)}{g(y)} \iff \int g(y) \, dy = \int g(x) \, dx$$

• Αν η εξίσωση έχει τη μορφή $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$, θέτουμε $u = \frac{y}{x} \implies \frac{dy}{dx} = x\frac{du}{dx} + u$ και η εξίσωση γίνεται όπως παραπάνω.

Δ2. Γραμμικές εξισώσεις

$$\boxed{\frac{dy}{dx} + f(x)y = g(x)}$$

- 1. Θέτουμε $I(x) = e^{\int f(x) dx}$
- 2. Πολλαπλασιάζουμε τα δύο μέλη της εξίσωσης με I(x) η οποία γίνεται $\dfrac{d}{dx}[I(x)y]=g(x)I(x).$
- 3. Ολοκληρώνουμε τα δύο μέλη της παραπάνω εξίσωσης.

Ε. Διαφορικές εξισώσεις δευτέρου βαθμού

Ε1. Γραμμικές ομογενείς

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = 0$$

- Λύνουμε τη χαρακτηριστική εξίσωση $m^2 + am + b = 0$
- Αν έγει δύο πραγματικές λύσεις m_1, m_2 , τότε $y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$.
- Αν έχει μία πραγματική λύση m_0 , τότε $y = c_1 e^{m_0 x} + c_2 x e^{m_0 x}$.
- Αν έχει δύο μιγαδικές λύσεις $\kappa \pm i\lambda$ τότε $y = e^{\kappa x}(c_1\cos(\lambda x) + c_2\sin(\lambda x)$.

Ε2. Γραμμικές μη ομογενείς

$$\boxed{\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = f(x)}$$

Η λύση είναι $y = y_{\sigma} + y_{\mu}$ όπου

- y_{σ} η λύση της αντίστοιχης ομογενούς,
- y_{μ} μία ειδική λύση της μη ομογενούς που βρίσκεται από τον παρακάτω πίνακα.

f(x)	y_{μ}
$a_0 + a_1 x + \ldots + a_n x^n$	$A_0 + A_1 x + \ldots + A_n x^n$
κe^{ax}	Ae^{ax}
$(a_1\cos(\lambda x) + a_2\sin(\lambda x))e^{ax}$	$(A_1\cos(\lambda x) + A_2\sin(\lambda x))e^{ax}$

^{*}Αν ένας όρος της y_{μ} είναι όρος της λύσης της αντίστοιχης ομογενούς, πολλαπλασιάζουμε με τη μικρότερη θετική δύναμη του x ώστε κανένας όρος να μην είναι λύση της ομογενούς.