Estimating Covariance Spectrum

Weihao Kong Joint work with Gregory Valiant

May 12, TOCA

A Case Study

Data matrix **Y**: 500 iid samples with dimension 500. Compute PCA.

Plot singular values of sample covariance i.e. $svd(\frac{1}{500}\mathbf{Y}^{\mathsf{T}}\mathbf{Y})$:

A Case Study

Data matrix **Y**: 500 iid samples with dimension 500. Compute PCA.

Plot singular values of sample covariance i.e. $svd(\frac{1}{500}\mathbf{Y}^{\mathsf{T}}\mathbf{Y})$:

Sample eigenvalues misleading, distribution has IDENTITY covariance! $Y_i \sim N(o_i I_d)$

Question: Is there anything REALLY meaningful in the data?

Answer: Estimating Covariance Spectrum

Answer: Estimating Covariance Spectrum

Thm (informal): Given n samples from d dimensional distribution. Can estimate spectrum to (L1) error ε d with sample size $n = O(d^{1-\varepsilon/C})$ w.h.p.

Further Questions

Question:

Answer

How much information do top principal components capture?

Accurately estimate the actual variance explained by top principal components.

What's the best covariance estimator?

Almost-optimal covariance estimator for variety of metrics (Frobenius, Schatten norm)

Both with the help of the knowledge of covariance spectrum