Al for Medical Image Classification

- Linear Classifiers -

Outline

- Preliminary
- Logistic Regression (LR)
- Neural Network (NN)
- Support Vector Machine (SVM)
- Kernel Trick
- Summary

Preliminary

Problem Formulation

- Aim to predict Y by X
 - Response *Y*
 - 2 classes: $\{0,1\}$ or $\{-1,+1\}$
 - M + 1 classes: $\{0,1,...,M\}$
 - Covariate $X = (X_1, X_2, \dots, X_p)^T$
- Classification by posterior probability $\pi_i(X) = P(Y = j|X)$
 - Bayes classifier: $\hat{Y} = \operatorname{argmax}_{i} \pi_{i}(X)$

Q: How to estimate $\pi_j(X)$?

Statistical Inference Procedure

$$\pi_j(X) \stackrel{\text{m}}{=} \pi_j(X;\theta)$$

- Random variable $Z = (X, Y) \sim g$
 - Model: $g \stackrel{\text{\tiny m}}{=} f_{\theta}$ for a known function f_{θ} with unknown parameter θ
- Aim to estimate θ by the data $\{Z_i\}_{i=1}^n$
- Regularized maximum likelihood estimation (MLE)
 - log likelihood function: $\ell(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ln f_{\theta}(Z_i)$
 - $\max_{\theta} \ell(\theta) + \lambda J(\theta) \rightarrow \hat{\theta}$

- λ : penalty
- $J(\theta)$: regularization

Another View of Estimation

- Two distributions
 - Empirical distribution of $\{Z_i\}_{i=1}^n$: $\hat{g} = \frac{1}{n} \sum_{i=1}^n \delta_{Z_i}$
 - Model distribution: f_{θ}
- A geometric interpretation of estimation
 - Find θ so that \hat{g} and f_{θ} are as close as possible

Q: distance between \hat{g} and f_{θ} ?

- Divergence D(g, f): a measure of distance between g and f
 - $D(g,f) \ge 0$
 - D(g, f) = 0 iff g = f

Another View of Estimation

- Minimum divergence estimation
 - $\min_{\theta} D(\hat{g}, f_{\theta}) + \lambda J(\theta) \rightarrow \hat{\theta}$
- Kullback-Leibler (KL) divergence

$$D_{KL}(g,f) = \int \ln g \cdot g - \int \ln f \cdot g$$

$$D_{KL}(\hat{g}, f_{\theta}) \propto -\int \ln f_{\theta} \cdot \hat{g} = -\frac{1}{n} \sum_{i=1}^{n} \ln f_{\theta}(Z_{i})$$

- Minimize D_{KL} = MLE
- D determines the statistical properties of $\hat{\theta}$
 - SVM
 - γ -divergence based robust statistical methods

A Quick Summary for Classification

- Random vector (X, Y)
- Bayes classifier: $\hat{Y} = \operatorname{argmax}_{j} \pi_{j}(X)$
 - Target: $\pi_j(X) = P(Y = j|X)$
- Model: $\pi_j(X) \stackrel{\text{\tiny m}}{=} \pi_j(X; \theta) \rightarrow \text{model distribution } f_{\theta}$
- Data: $\{(X_i, Y_i)\}_{i=1}^n \rightarrow \text{data distribution } \hat{g}$
- Estimating θ via a proper D
 - $\min_{\theta} D(\hat{g}, f_{\theta}) + \lambda J(\theta) \rightarrow \hat{\theta} \text{ and, hence, } \pi_{j}(X; \hat{\theta})$

Logistic Regression

Linear classifier for binary *Y*

Logistic Regression (LR)

- Random vector (X, Y)
 - Binary $Y \in \{0,1\}$
 - Covariate $X = (X_1, X_2, ..., X_n)^{\top}$

 $I\{\cdot\}$: indicator function

- Bayes classifier: $\hat{Y} = I\{\pi_1(X) > 0.5\}$
 - Target: $\pi_1(X) = P(Y = 1|X)$
- Model

$$\theta = (\beta_0, \beta)$$

Estimation of LR

Two distributions

- Model: $f_{\theta}(y|x) = {\{\pi_1(x)\}}^y {\{1 \pi_1(x)\}}^{1-y}$
- Data: $\{(X_i, Y_i)\}_{i=1}^n \rightarrow \hat{g}$

• Estimation via D_{KL}

- $\min_{\theta} D_{KL}(\hat{g}, f_{\theta}) + \lambda J(\theta) \rightarrow \hat{\theta}$
- $D_{KL}(\hat{g}, f_{\theta}) = \frac{1}{n} \sum_{i} \ln \left\{ 1 + e^{\beta_0 + \beta^{\mathsf{T}} X_i} \right\} Y_i(\beta_0 + \beta^{\mathsf{T}} X_i)$

all distribution functions

Classification of LR

- log-odds ratio: $r(X) = \ln \frac{\pi_1(X)}{1 \pi_1(X)}$ $\pi_1(X) > 0.5 \Leftrightarrow r(X) > 0$
- Bayes classifier: $\hat{Y} = I\{r(X) > 0\}$
- Model: $r(X) = \ln \frac{\pi_1(X)}{1 \pi_1(X)} \stackrel{\text{m}}{=} \beta_0 + \beta^T X$
- Bayes classifier: $\hat{Y} = I\{\hat{\beta}_0 + \hat{\beta}^\top X > 0\}$ Linear classifier with *decision boundary* $\hat{\beta}_0 + \hat{\beta}^\top x = 0$

Multiclass Logistic Regression

Linear classifier for categorical *Y*

Multiclass Logistic Regression (MLR)

- Random vector (X, Y)
 - Response $Y \in \{0,1,...,M\}$
 - Covariate $X = (X_1, X_2, ..., X_n)^T$
- Bayes classifier: $\hat{Y} = \operatorname{argmax}_{0 \le i \le M} \pi_i(X)$
 - Target: $\pi_i(X) = P(Y = j|X)$

$$\theta = \{\beta_{0j}, \beta_j : 1 \le j \le M\}$$

- Model

 - $Y|X \sim \text{Multinomial}(\pi(X)) \text{ with } \pi(X) = (\pi_0(X), \dots, \pi_M(X))$ $\ln \frac{\pi_j(X)}{\pi_0(X)} \stackrel{\text{m}}{=} \beta_{j0} + \beta_j^\top X \Leftrightarrow \pi_j(X) \stackrel{\text{m}}{=} \frac{\exp(\beta_{0j} + \beta_j^\top X)}{1 + \sum_{i=1}^M \exp(\beta_0 + \beta^\top X)}, 1 \leq j \leq M$

Multiclass Logistic Regression (MLR)

Two distributions

- Model: $f_{\theta}(y|x) = \prod_{j=0}^{M} \{\pi_{j}(X)\}^{I(y=j)}$
- Data: $\{(X_i, Y_i)\}_{i=1}^n \rightarrow \hat{g}$

• Estimation via D_{KL}

- $\bullet \min_{\theta} D_{KL}(\hat{g}, f_{\theta}) + \lambda J(\theta) \rightarrow \hat{\theta}$
- The case of M=2
 - $\hat{Y} = 0$ if $\beta_{10} + \beta_1^{\mathsf{T}} X < 0$ and $\beta_{20} + \beta_2^{\mathsf{T}} X < 0$
 - $\hat{Y} = 1$ if $\beta_{10} + \beta_{1}^{\mathsf{T}} X > 0$ and $\beta_{10} + \beta_{1}^{\mathsf{T}} X > \beta_{20} + \beta_{2}^{\mathsf{T}} X$
 - $\hat{Y} = 2 \text{ if } \beta_{20} + \beta_2^{\mathsf{T}} X > 0 \text{ and } \beta_{10} + \beta_1^{\mathsf{T}} X < \beta_{20} + \beta_2^{\mathsf{T}} X$

$$\ln \frac{\pi_j(X)}{\pi_0(X)} \stackrel{\text{\tiny m}}{=} \beta_{j0} + \beta_j^{\mathsf{T}} X$$

Neural Network

Non-linear extension of MLR

Neural Network (NN)

- Random vector (X, Y)
 - Response $Y \in \{0,1,...,M\}$
 - Covariate $X = (X_1, X_2, \dots, X_p)^{\mathsf{T}}$
- Bayes classifier: $\hat{Y} = \operatorname{argmax}_{0 \le j \le M} \pi_j(X)$
 - Target: $\pi_j(X) = P(Y = j|X)$

MLR uses linear transformations of X to

model
$$\pi_j(X) \stackrel{\text{m}}{=} \frac{\exp(\beta_{0j} + \beta_j^{\mathsf{T}} X)}{1 + \sum_{l=1}^{M} \exp(\beta_{0l} + \beta_l^{\mathsf{T}} X)}$$

- Model
 - $Y|X \sim \text{Multinomial}(\pi(X)) \text{ with } \pi(X) = (\pi_0(X), \dots, \pi_M(X))$
 - NN uses non-linear transformations $\alpha_j(X)$ to model $\pi_j(X) \triangleq \frac{\exp(\alpha_j(X))}{\sum_{l=0}^M \exp(\alpha_l(X))}$

Neural Network (NN)

Two distributions

```
• Model: f_{\theta}(y|x) = \prod_{j=0}^{M} \{\pi_{j}(X)\}^{I(y=j)}
```

- Data: $\{(X_i, Y_i)\}_{i=1}^n \rightarrow \hat{g}$
- Estimation via D_{KL}
 - $\min_{\theta} D_{KL}(\hat{g}, f_{\theta}) + \lambda J(\theta) \rightarrow \hat{\theta}$

• NN and MLR differs in the ways of modeling $\pi_j(X)$

Non-Linear Transformation $\alpha(X)$

NN with *K* layers

intercept: $A_1^{(k)} = 1 \forall k$

- Input: Layer-1
 - $X = A^{(1)} \in \mathbb{R}^p$
- Hidden: Layer-2 to Layer-*K*
 - $A^{(k+1)} = h^{(k+1)} (W^{(k)} A^{(k)})$
 - $W^{(k)}$: $p_{k+1} \times p_k$ matrix
 - $h^{(k+1)}$: non-linear function
- Output: $\alpha(X) = W^{(K)}A^{(K)} \in \mathbb{R}^{M+1}$
- Parameter: $\theta = (W^{(1)}, ..., W^{(K)})$

Neural Network (NN)

NN is a non-linear extension of MLR

- The decision boundary is non-linear
- NN = MLR if $h^{(k)}$'s are linear functions

Specification of NN

- Number of layers K
- Number of nodes p_k
- The choice of $h^{(k)}$
- Regularization function $J(\theta)$ and its penalty λ

NN is usually overparameterized

Regularization is necessary!

Choices of $h^{(k)}$:

- tanh: $h(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$
- rectified linear: $h(x) = z_+$
- leaky rectified linear: $h(z) = z_+ \alpha z_-$

LR as a Special Case of NN

Specification of NN

•
$$K = 1$$

•
$$p_{K+1} = 2 \rightarrow W^{(1)} = \begin{bmatrix} W_1 \\ W_2 \end{bmatrix}_{2 \times p}$$

•
$$\alpha(X) = W^{(1)}A^{(1)} = \begin{bmatrix} W_1X \\ W_2X \end{bmatrix}$$

$$\pi_1(X) = \frac{\exp(W_2 X)}{\exp(W_1 X) + \exp(W_2 X)} = \frac{\exp(\beta^\top X)}{1 + \exp(\beta^\top X)}$$

$$\pi_0(X) = 1 - \pi_1(X)$$

NN with 1 layer

Support Vector Machine

Linear classifier for binary *Y*

Support Vector Machine (SVM)

 $\beta_0 + \beta^{-1} x = 0$

- Random vector (X, Y)
 - Binary $Y \in \{-1,1\}$
 - Covariate $X = (X_1, X_2, ..., X_p)^T$

- Construct $\beta_0 + \beta^T x = 0$ that separates two groups perfectly
 - Prediction rule: $\hat{Y} = \text{sign}(\beta_0 + \beta^{\mathsf{T}} x)$
- Non-identifiability for the target

$$Y \in \{0,1\} \xrightarrow{\bullet} \widehat{Y} = I\{\beta_0 + \beta^\top X > 0\}$$

Find the separating line with "maximum margin"

Margin of $\beta_0 + \beta^T x = 0$

- Shifting distance without changing the classification result
- Two separating lines parallel to $\beta_0 + \beta^T x = 0$

• L1:
$$\beta_0 + \beta^{\mathsf{T}} x = 1$$

• L2:
$$\beta_0 + \beta^{\mathsf{T}} x = -1$$

- Margin of $\beta_0 + \beta^T x = 0$
 - Distance between L1 and L2: $\frac{2M}{||\beta||}$

 $\beta_0 + \beta^{\mathsf{T}} x = 0$

Support Vector Machine (SVM)

- Aim: separating line $\beta_0 + \beta^T x = 0$ with maximum margin $2M = \frac{2}{||\beta||}$
 - Able to tolerate more violation in future application

•
$$\max_{\beta_0,\beta} 2M \text{ s.t. } \frac{1}{||\beta||} Y_i(\beta_0 + \beta^\top X_i) \ge M \ \forall \ i$$

• $\frac{1}{||\beta||} Y_i(\beta_0 + \beta^\top X_i) \rightarrow \text{distance from } X_i \text{ to L1 or L2}$

- $\min_{\beta_0,\beta} ||\beta||^2$ s.t. $Y_i(\beta_0 + \beta^\top X_i) \ge 1 \ \forall i$
 - $\hat{\beta} = \sum_{i \in S} \alpha_i X_i \text{ for some } \alpha_i \text{ with } support \ set \ S$

SVM with Soft Margin

Non-separable case → allow for violation

- $\min_{\beta_0,\beta} ||\beta||^2$ s.t. $Y_i(\beta_0 + \beta^\top X_i) \ge 1 \varepsilon_i, \varepsilon_i > 0, \sum_i \varepsilon_i \le B$
 - B: maximum total amount of violation
 - $\hat{\beta} = \sum_{i \in S} \alpha_i X_i$ with the support set S
- B is a tuning parameter
 - Larger $B \rightarrow$ larger support set S
 - The role of regularization

SVM with Soft Margin

- Prediction rule: $\hat{Y} = \text{sign}(\hat{\beta}_0 + \hat{\beta}^T X)$
- Decision boundary: $\hat{\beta}_0 + \hat{\beta}^{T} = 0$
- Linear classifier
- Q: Connection to Bayes classifier?

Statistical View of SVM

- $\min_{\beta_0,\beta} ||\beta||^2$ s.t. $\sum_i [1 Y_i(\beta_0 + \beta^T X_i)]_+ \le B$
- $\min_{\beta_0,\beta} ||\beta||^2 + C \sum_i [1 Y_i(\beta_0 + \beta^\top X_i)]_+$ with Lagrange multiplier C
- $\min_{\beta_0,\beta} \frac{1}{n} \sum_i [1 Y_i(\beta_0 + \beta^T X_i)]_+ + \frac{1}{2} \lambda ||\beta||^2 \text{ with } \lambda = \frac{2}{nC}$
- $\min_{\beta_0,\beta} \int L(y,\beta_0 + \beta^{\mathsf{T}} x) \hat{g} + \frac{1}{2} \lambda ||\beta||^2$
 - $L(y,z) = [1 yz]_+ \rightarrow \text{hinge loss}$
 - Empirical distribution \hat{g} of data

$$\approx \min_{\theta} D(\hat{g}, f_{\theta}) + \lambda J(\theta)$$

- Divergence ≈ Loss
- $D(\hat{g}, f_{\theta}) \propto \int L(y, \beta_0 + \beta^{\mathsf{T}} x) \hat{g}$

Statistical View of SVM

- Population loss function of SVM
 - $E[1 Yh(X)]_+$ with $h(x) = \beta + \beta^T x$

$$\pi_1(X) = P(Y = 1|X)$$

- Population target of SVM
 - $E\{[1 Yh(X)]_+ | X\} = \pi_1(X)[1 h(X)]_+ + \{1 \pi_1(X)\}[1 + h(X)]_+$
 - Minimized at $h^*(X) = \begin{cases} +1, & \text{if } \pi_1(X) > 0.5 \\ -1, & \text{if } \pi_1(X) < 0.5 \end{cases}$ the Bayes classifier!
 - $h^*(X) = \operatorname{sign}(r(X))$ with log-odds ratio $r(X) = \ln \frac{\pi_1(X)}{1 \pi_1(X)}$

LR Revisit with $Y \in \{-1,1\}$

- LR criterion: $\min_{\theta} D_{KL}(\hat{g}, f_{\theta}) + \lambda J(\theta)$
 - $Y \in \{0,1\}: D_{KL}(\hat{g}, f_{\theta}) = \frac{1}{n} \sum_{i} \ln \left\{ 1 + e^{\beta_0 + \beta^{\mathsf{T}} X_i} \right\} Y_i(\beta_0 + \beta^{\mathsf{T}} X_i) \Rightarrow \hat{Y} = I\{\beta_0 + \beta^{\mathsf{T}} > 0\}$
 - $Y \in \{-1,1\}: D_{KL}(\hat{g}, f_{\theta}) = \frac{1}{n} \sum_{i} \ln \{1 + e^{-Y_{i}(\beta_{0} + \beta^{T}X_{i})}\} \rightarrow \hat{Y} = \operatorname{sign}(\beta_{0} + \beta^{T}X)$
- $\min_{\beta_0,\beta} \int L(y,\beta_0 + \beta^\top x) \hat{g} + \frac{1}{2} \lambda ||\beta||^2$
 - $L(y,s) = \ln(1 + e^{-ys})$: the logistic loss for $y \in \{-1,1\}$
 - Empirical distribution \hat{g}

 $J(\theta) = \frac{1}{2} ||\beta||^2$

- Population target of LR
 - $E\{\ln(1+e^{-Yh(X)})|X\} = \pi_1(X)\ln(1+e^{-h(X)}) + \{1-\pi_1(X)\}\ln(1+e^{h(X)})$
 - Minimized at $h^*(X) = r(X)$

SVM vs LR

- (Linear) Bayes classifier: $\hat{Y} = \text{sign}(\hat{\beta}_0 + \hat{\beta}^T X)$
- $\min_{\beta_0,\beta} \int L(y,\beta_0+\beta^{\mathsf{T}}x) \hat{g} + \frac{1}{2}\lambda||\beta||^2$ with different loss SVM: $L(y,z) = [1-yz]_+$

 - LR: $L(y, s) = \ln(1 + e^{-ys})$
- Different targets regarding $r(X) = \ln \frac{\pi_1(X)}{1 \pi_1(X)}$
 - SVM: sign(r(X))
 - LR: r(X)
- sign(r(X)) suffices for classification
 - Complexity: r(X) > sign(r(X))
 - Robustness in classification: SVM > LR
 - Precision of interpretation: LR > SVM

Kernel Trick

Non-linear extension of SVM and LR

Basic Idea

An extension of linear model to its non-linear version

•
$$\int L(y,\beta_0 + \beta^{\mathsf{T}} x) \hat{g} + \frac{1}{2} \lambda ||\beta||^2$$

- Linear model
- L2 norm regularization: $||\beta||^2$
- Stationary equation: $\int \frac{\partial L(y,\beta_0 + \beta^T x)}{\partial (\beta^T X)} \mathbf{x} \hat{g} + \lambda \mathbf{\beta} = 0$
 - $\hat{\beta} = \sum_{i=1}^{n} \alpha_i X_i$ for some α_i
- Prediction score: $\hat{\beta}^{\top}x = \sum_{i=1}^{n} \alpha_i \left(X_i^{\top}x \right) = \sum_{i=1}^{n} \alpha_i \left\langle x, X_i \right\rangle$
 - Depends only on inner products $\langle x, X_i \rangle$, i = 1, ..., n

Kernel Trick

- Non-linear extension \rightarrow non-linear transformation of X
 - NN $\rightarrow \alpha(X)$
 - interaction terms X_1X_2 , polynomial terms X_1^2 ...
- Kernel Trick \rightarrow high-dimensional transformation $X \rightarrow \phi(X) \in \mathbb{R}^{\infty}$
 - lacksquare The exact form of ϕ is NOT important
 - Only need to calculate $\langle \phi(x), \phi(z) \rangle$
- Kernel function $K(x,z) \rightarrow \langle \phi(x), \phi(z) \rangle \triangleq K(x,z)$
 - E.g., $K(x,z) = \exp\left(-\gamma ||x-z||^2\right)$
 - ullet ϕ is implicitly determined by K

Non-linear Extension

- Choose a kernel $K(x,z) = \langle \phi(x), \phi(z) \rangle$
 - $\phi(x)$ is implicitly determined
- Transformed data: $\{(\phi(X_i), Y_i)\}_{i=1}^n$
- Bayes classifier: $sign(\beta_0 + \beta^T \phi(x))$
- Estimation via the loss L
 - $\min_{\beta_0,\beta} \int L(y,\beta_0 + \beta^{\mathsf{T}}\phi(x)) \hat{g} + \frac{1}{2}\lambda||\beta||^2$
 - $\hat{\beta} = \sum_{i=1}^{n} \alpha_i \phi(X_i)$ for some α_i

Non-linear Extension

- $\hat{\beta} = \sum_{i=1}^{n} \alpha_i \phi(X_i)$ and $K(x, z) = \langle \phi(x), \phi(z) \rangle$
 - Bayes classifier: $\hat{\beta}^{\mathsf{T}}\phi(x) = \sum_{i=1}^{n} \alpha_i K(x, X_i)$
 - Regularization: $||\hat{\beta}||^2 = \sum_{ij} \alpha_i \alpha_j K(X_i, X_j) = \alpha^{\mathsf{T}} K \alpha$

$$K = [K_{ij}]_{n \times n}$$
 with $K_{ij} = K(X_i, X_j)$

- Criterion: $\min_{\alpha_0,\alpha} \int L(y,\alpha_0 + \sum_{i=1}^n \alpha_i K(x,X_i)) \hat{g} + \frac{1}{2} \lambda \alpha^\top K \alpha$
 - hinge loss $L(y,z) = [1 yz]_+ \rightarrow$ Kernel SVM
 - logistic loss $L(y,s) = \ln(1 + e^{-ys}) \rightarrow \text{Kernel LR}$
- (Non-linear) Bayes classifier: $sign(\hat{\alpha}_0 + \sum_{i=1}^n \hat{\alpha}_i K(x, X_i))$
- Extra tuning parameters for K(x, z)
 - γ of $K(x,z) = \exp(-\gamma ||x-z||^2)$

Another View of Kernel Trick

$$\min_{\beta_0,\beta} \int L(y,\beta_0 + \beta^{\mathsf{T}} x) \hat{g} + \frac{1}{2} \lambda ||\beta||^2$$

•
$$\min_{\alpha_0,\alpha} \int L(y,\alpha_0 + \sum_{i=1}^n \alpha_i K(x,X_i)) \hat{g} + \frac{1}{2} \lambda \alpha^\top K \alpha$$

- Fitting by kernel data $\{(\hat{\phi}(X_i), Y_i)\}_{i=1}^n$ with regularization $\alpha^{\top} K \alpha$
 - $\mathbf{x} \to \hat{\phi}(x) = [K(x, X_1), \dots, K(x, X_n)] \in \mathbb{R}^n$, an approximation of $\phi(x) \in \mathbb{R}^\infty$

•
$$\min_{\alpha_0,\alpha} \int L\left(y,\alpha_0 + \alpha^{\mathsf{T}}\hat{\phi}(x)\right)\hat{g} + \frac{1}{2}\lambda\alpha^{\mathsf{T}}K\alpha \rightarrow (\hat{\alpha}_0,\hat{\alpha})$$

■ Bayes classifier: $sign(\hat{\alpha}_0 + \hat{\alpha}^T \hat{\phi}(x))$

Existing codes suffice to implement Kernel Trick!

Summary

