PSFML Session 3 Homework

Full Name:	•
Group No.:	
Lecturer Name:	
Submission date: _/_/	Grade:/30

Please write down all the steps not the final answer only

Questions (30 points):

1. (4 points) Let X be a discrete random variable with the following PMF

Х	0.2	0.4	0.5	0.8	1	Otherwise
P(X)	0.1	0.2	0.2	0.3	0.2	0

- a) Write the random variable space of X
- b) Find P(X <= 0.5)
- c) Find P(0.25<X<0.75)
- 2. (5 points) Let X be a discrete random variable with the following PMF

$$P_X(k) = egin{cases} 0.1 & ext{ for } k = 0 \ 0.4 & ext{ for } k = 1 \ 0.3 & ext{ for } k = 2 \ 0.2 & ext{ for } k = 3 \ 0 & ext{ otherwise} \end{cases}$$

- a) Find E[X].
- b) Find Var(X).
- c) If $Y=(X-2)^2$, find E[Y].
- 3. (3 points) Let X and Y be two independent random variables. Suppose that we know Var(2X-Y)=6 and Var(X+2Y)=9. Find Var(X) and Var(Y).

- 4. (5 points) You take an exam that contains 20 multiple-choice questions. Each with four choices. You know the answer to 10 questions, and you choose random answers to the other 10 questions. Your score X on the exam is the total number of correct answers. Find the PMF of X. What is P(X>15)?
- 5. (4 points) The number of customers arriving at a grocery store is a Poisson random variable. On average 10 customers arrive per hour. Let X be the number of customers arriving from 10am to 11:30am. What is P(10 < X ≤ 15)? (hint: look up the Probability mass function of Poisson distribution)</p>
- 6. (4 points) Given the discrete CDF, F(X), shown; What are the probabilities P(X = 5), P(2 < X < 5), and $P(X \ge 3)$?

7. Find the mean and variance of the Binomial distribution.

Readings:

- Discrete Probability Distributions (with solved examples):
 <a href="https://learn.lboro.ac.uk/archive/olmp/olmp_resources/pages/workbooks_1_50_jan2008/Workbo
- PMF and PDF: https://towardsdatascience.com/probability-concepts-explained-probability-distributions-introduction-part-3-4a5db81858dc
- Joint, marginal and conditional probability: https://towardsdatascience.com/deep-learning-book-series-3-4-and-3-5-marginal-and-conditional-probability-8c6239e453b8
- Bayes rule: https://www.mathsisfun.com/data/bayes-theorem.html
- Naïve Bayes Classifier with examples: https://web.iitd.ac.in/~bspanda/BY.pdf

- Naïve Bayes Classifier with python implementation: https://www.analyticsvidhya.com/blog/2021/01/a-guide-to-the-naive-bayes-algorithm/
- Maximum likelihood: https://www.mygreatlearning.com/blog/maximum-likelihood-estimation/
- List of all Probability distributions https://www.statisticshowto.com/probability-distribution/