0.1 Introducción

Como siempre, antes de este curso hay que recordar algunos términos o conceptos para poder entender cosas que se vienen. Empezamos con las unidades logarítmicas:

$$Belio = \log\left(rac{P_{out}}{P_{in}}
ight)$$
 $Decibelio(dB) = 10 \cdot \log\left(rac{P_{out}}{P_{in}}
ight)$
 $Decibelio(dB) = 20 \cdot \log\left(rac{V_{out}}{V_{in}}
ight)$
 $Neper(Np) = ln\left(rac{V_{out}}{V_{in}}
ight)$

Asimismo debemos tener en cuenta las demás medidads respecto a un valor como 1mW, 1W, 1V, etc. Otros conceptos importantes a recordar son:

Definición 0.1 — Longitud de Onda.

$$\lambda = \frac{v}{f} \tag{1}$$

Donde:

 λ : Longitud de onda (m)

- v: Velocidad, si el medio es el aire o espacio libre: v=c=300000 km/s=300000000 m/s (m/s)
- f: Frecuencia (Hz)

Definición 0.2 — Temperatura.

$$\frac{C}{5} = \frac{F - 32}{9} = \frac{K - 273}{5} = \frac{R - 492}{9} \tag{2}$$

Despejando podemos obtener:

$$C = \frac{5}{9}(F - 32)$$
$$K = C + 273$$
$$R = F + 460$$

Además debemos recordar las bandas y frecuencias designadas por la ITU:

¹Estas puedes ser vistas en la sección **Decibelios** en el capítulo de **Ingeniería en mantenimiento**.

N° de banda	Rango de frecuencia	Indicativo	Propagación
2	30-300 Hz	ELF	Onda terrestre
3	0.3-3 KHz	SLF	Onda terrestre
4	3-30 KHz	VLF	Onda terrestre
5	30-300 KHz	LF	Onda terrestre y superficial
6	0.3-3 MHz	MF	Onda superficial
7	3-30 MHz	HF	Onda superficial y Ionosférica
8	30-300 MHz	VHF	Onda Ionosférica y directa
9	0.3-3 GHz	UHF	Onda directa
10	3-30 GHz	SHF	Onda directa
11	30-300 GHz	EHF	Onda directa e infrarojo
12	0.3-3 THz		Luz infraroja
13	3-30 THz		Luz infraroja
14	30-300 THz		Luz infraroja
15	0.3-3 PHz		Luz visible
16	3-30 PHz		Luz ultravioleta
17	30-300 PHz		Rayos X
18	0.3-3 EHz		Rayos X
19	3-30 EHz		Rayos cósmicos

Table 1: Designación de bandas CCIR por la ITU.

Los medios de transmisión:

Medio de transmisión	Banda de frecuencia	Longitud de onda	Aplicación principal
Par de alambres, cable multipar	30-300 Hz	10000-1000 Km	Comunicación submarina
Par de alambres, cable multipar	0.3-3 KHz	1000-100 Km	Telefonía, transmisión de datos, telex, fax.
Par de alambres, cable multipar, ondas de tierra	3-30 KHz	100-10 Km	Telefonía de onda portadora baja, capacidad, navegación y radiotelegrafía.
Par de alambres, ondas de tierra	30-300 KHz	10-1 Km	Telefonía de onda portadora mediana capacidad, radiofaro, navegación, radiodifusión onda larga.
Cable coaxial, ondas de cielo	0.3-3 MHz	1000-100 m	Radiodifusión, AM, radio aficionados, radio móvil.
Cable coaxial, cable UTP cat 3-4, ondas de cielo	3-30 MHz	100-10m	Radio aficionados, comunicaciones milirares, marítimas, radio telefonía movil.
Cable coaxial, cable UTP cat 5, ondas directas	30-300 MHz	10-1 m	TV, radiodifusión FM, multiacceso radial, radio enlaces, direccionales.
Ondas directas	0.3-3 GHz	100-10 cm	TV, telemetría por radar, comunicaiones militares por satélite, telefonía celular, radio de espectro ensanchado.
Guía de onda, línea visual	3-30 GHz	10-1 cm	Comunicaiones vía satélite, radio enlace direccional analógico y digítal, operación aérea por radar.
Guía de onda, línea visual.	30-300 GHz	1-0.1 cm	Comunicación militar por satelite, radio astronomia, aterrizaje por radar.
Fibra óptica	100-1000 THz	3-0.3 pm	Telefonia muy alta capacidad, servicios de banda ancha (SONET, SDH y ATM), video conferencia, CATV por F.O.

Ancho de banda y capacidad de información

Las limitaciones más importantes para el funcionamiento de una sistema de comunicaciones son el **ruido** y el **ancho de banda**. El ancho de banda de un canal de comunicación

es la diferencia entre la frecuencia máxima y mínima que puede pasar por el canal. El ancho de banda de un canal de comunicación debe ser igual o mayor que el ancho de banda de la información.

Definición 0.3 — Ley de Hartley. Es la medida de cuanta información se puede transferir a través de un sistema de comunicaciones en un determinado tiempo.

$$I \approx B \times t$$
 (3)

Donde:

- I: Capacidad de información.
- **B**: Ancho de banda (Hz)
- t: Tiempo de transmisión (s)
- **Notación 0.1** Se requieren **3 KHz** de ancho de banda para transmitir las señales telefónicas con calidad de voz.

Se asignas 200 KHz para transmisión comercial de FM para música, con alta fidelidad. Se requieren casi 6 MHz de ancho de banda para emitir señales de televisión de alta calidad

Otra medida que debemos saber es:

Definición 0.4 — Capacidad de información de un canal digital. Shannon relacionó la capacidad de información de un canal de comunicaciones, en bits por segundo (bps), con el ancho de banda y la relación señal a ruido:

$$I = B \cdot \log_2(1 + S/N) \tag{4}$$

Donde:

- I: Capacidad de información (bps)
- B: Ancho de banda (Hz)
- S/N: Relación señal a ruido.

Ruido

Energía eléctrica no deseable presente en la banda útil del circuito de comunicación. Se puede clasificar el ruido en dos categorías:

- 1. **Correlacionado**: Solo existe cuando hay una señal. Es aquel que se relaciona mutuamente con la señal, y no puede estar en un circuito a menos que haya una señal de entrada. Se produce por amplificación no lineal, e incluye la distorsión armónica (cuando se producen las armónicas no deseadas de una señal, debido a una amplificación no lineal) y de intermodulación (generación de frecuencias indeseables de suma o diferencia), ya que las dos son formas de distorsión no lineal.
- 2. **No Correlacionado**: Está presente siempre, haya o no señal. El ruido No Correlacionado puede sub dividirse en dos categorías generales:
 - a. **El Ruido Externo** es el que se genera fuera del dispositivo o circuito. Hay tres causas principales de ruido Externo:
 - i. **Ruido atmosférico**: Perturbaciones eléctricas naturales. Electricidad estática (rayos)
 - ii. **Ruido extraterrestre**: Señales eléctricas originadas fuera de la atmósfera terrestre (solar y cósmico)
 - iii. Ruido hecho por el hombre: Su puente principal son mecanismos que

producen chispas, ruido industrial (conmutadores, generadores, lámparas fluorescentes)

- El Ruido Interno es la interferencia eléctrica generada dentro de un dispositivo o circuito. Las causas principales son:
 - Ruido Térmico: Asociado con el movimiento rápido y aleatorio de electrones libre, producido por la agitación térmica.
 - ii. Ruido de Tiempo de Tránsito: Variación irregular y aleatoria, producida por la modificación de una corriente de portadores, cuando pasa de la entrada a la salida de un dispositivo.
 - iii. **Ruido de Disparo**: Se debe a la llegada aleatoria de portadoras al elemento de salida de un dispositivo electrónico (diodo, FET, transistor bipolar).

Ruido térmico

Es el movimiento aleatorio de los electrones libres dentro de un conductor, causado por la agitación térmica. Llamado también: Movimiento Browniano por su descubridor Robert Brown, Ruido de Johnson en honor a quien lo relacionó con el movimiento de los electrones y Ruido Blanco porque se produce en todas las frecuencias.

Definición 0.5 — Potencia de ruido térmico.

$$P_{tn} = K \cdot T \cdot B \tag{5}$$

Donde:

 P_{tn} : Potencia del ruido térmico^a (W)

- **K:** Constante de Boltzmann= $1.38 \times \times 10^{-23} J/K$
- T: Temperatura absoluta (°K)
- **B**: Ancho de banda (Hz)

Alternativamente, el ruido térmico puede ser expresado en dBm, para ello debemos usar la siguiente expresión:

$$P_{tn}(dBm) = 10 \cdot \log\left(\frac{K \cdot T \cdot B}{0.001}\right) \tag{6}$$

En temperatura ambiente, el ruido térmico ambiente:

$$P_{tn}(dBm) = -174dBm + 10\log(B) \tag{7}$$

Definición 0.6 — Voltaje ruido térmico.

$$V_{tn} = \sqrt{4 \cdot R \cdot K \cdot T \cdot B} \tag{8}$$

Donde:

R: Resistencia interna (Ω)

- V_{tn} : Voltaje RMS del ruido (V)
- Notación 0.2 Para la máxima potencia transferencia de potencia $R_L = R_I$.

^atn:thermal noise o ruido térmico.

Definición 0.7 — Relación señal a ruido-SNR. Es la relación en decibelios entre la potencia de la señal(S) y la potencia del ruido(N):

$$SNR = 10\log_{10}\left(\frac{S}{N}\right) = 20\log_{10}\left(\frac{V_s}{V_n}\right) \tag{9}$$

- R
- El **factor a ruido** se define como el cociente entre la potencia SNR de entrada y potencia SNR de salida. Por consecuencia, la **cifra de ruido** es el factor de ruido expresado en dB.
- Notación 0.3 Para voltaje, 6dB indica que la salida es dos veces el valor de la entrada, es decir: Si la entrada es 1, la salida será 2. Para potencia, 3dB indica lo mismo: el valor de la salida es dos veces el valor de la entrada.

Ángulo crítico

Debemos recordar ecuaciones como Ley de Snell, dentro de ella una que usaremos es la del *ángulo crítico*:

La forma de obtener el ángulo crítico es:

$$\sin \theta_c = \frac{n_2}{n_1} \tag{10}$$