

Srs.

Estamos desenvolvendo um dispositivo capaz de realizar somas e subtrações automaticamente, usando para isso um sistema de válvulas. A base numérica do nosso sistema é binária, onde visualizamos diversas vantagens em relação ao que usamos naturalmente, que é a base decimal. Abaixo (Table I) está uma descrição da lógica que imaginamos para fazer soma*. Acreditamos que seja possível implementar tal lógica com válvulas, estas sendo usadas como chaveadores. Vocês poderiam nos ajudar a implementar tal lógica usando portas lógicas, como AND, OR, NOT, NAND, NOR, XOR, XNOR por exemplo?

Professor Dr. John Vincent Atanasoff e Clifford Berry.

		-		Possible	Com	oinatio	ons		-
Number		0	0	0	0	1	1	1]
Number	added or subtracted	0	1	0	1	0	1.	0	1
Carry	over from previous place	0	0	1	1	0	0	1	1
1111	(Result in this place	0	1	1	0	1	0	0	1
Add	(Result in this place (Carryover to next place	0	0	0	1	0	1	1.	1
	(Result in this place	0	1	1	0	1	0	0	1
Subt.	(Carryover to next place	0	1	1	1	0	0	0	1

^{*} Esta imagem foi extraída do manual do ABC Computer : http://jva.cs.iastate.edu/img/ABC%20%20manual.pdf

EXERCÍCIO 1 - PRATICANDO

Assuma vetores de 8 bits, e codificação em complemento de dois.

a) Escreva o valor em binário que representa -5

1 1 + 1 1 0 1 1

b) Escreva o valor em binário que representa -230

				1,5	0	_	A	Meson sentar	com	\mathcal{S}	んてく
				IVO	יט כ	и	P/	1 gresenius	WM	U	0,, 5

c) Qual valor está representando em binário? É positivo ou negativo?

								ı
1	0	0	0	0	0	1	1	- 123

d) Escreva o valor em binário da letra `G` codificada em ASCII

0 1	0	O	0	1	1	1
-----	---	---	---	---	---	---

e) Faça a operação de soma binária a seguir: Qual valor resulta? (Decimal)

f) Faça a operação de soma binária a seguir: Qual valor resulta? (Decimal)

EXERCÍCIO 2 - IMPLEMENTE UM HALF-ADDER COM PORTAS LÓGICAS

a	b	soma	carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

EXERCÍCIO 3 - IMPLEMENTE UM FULL-ADDER COM PORTAS LÓGICAS

a	b	С	soma	carr y
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

EXERCÍCIO 4 - SOMADOR 2 BITS:

Usando dois full-adder, implemente um circuito capaz de somar dois vetores de 2 bits cada:

