Numerical Analysis homework 07: Matrix Eigenvalues

Due on Tuesday, April 18, 2017

102061149 Fu-En Wang

1 Introduction

In previous homework, we had already use power method and inverse power method to find the largest and smallest eigenvalue. However, both of them cannot be used to find all the eigenvalue of a matrix A; therefore, it this project, we will use \mathbf{QR} Method to find all the eigenvalues.

1.1 API

In MAT.h and MAT.cpp, I implement the following functions:

- 1. void QRFact(const MAT &A, MAT &Q, MAT &R);
- 2. int EVqr(MAT &A, double tol, int maxiter);
- 3. int EVqrShifted(MAT &A, double mu, double tol, int maxiter);

QRFact will apply QR Decomposition to A and store them into Q and R. EVqr and EVqrShifted is the implementation of QR Iteration and Shifted QR Iteration. In this assignment, tol should be set to 10^{-9} and mu should be 0.5. We have to find the three largest and the three smallest eigenvalues of m3.dat, m4.dat, m5.dat, m6.dat, m7.dat, m8.dat.

1.2 Error Calculation

According to **Gram-Schmidt Process**, we should get a final matrix with 0 in the non-diagonal from **QR Iteration**. Therefore, it makes sense that we can check whether all non-diagonal elements are zero or not. However, for saving execution time, we simply this checking to the following fomula:

$$error = \max_{2 \le i \le n} |a_{i,i-1}|$$

For each iteration, we only check the one-line elements below diagonal, which will be faster a lot than checking all non-diagonal elements.

2 Implementation

Algorithm 1 QR Decomposition

```
\begin{split} A &= \{a_1, a_2, ..., a_n\}, a_i \text{ is column vector,} \\ r_{11} &= \sqrt{(a_1)^T a_1} \\ q_1 &= \frac{a_1}{r_{11}} \\ \text{for each } \mathbf{j} \in \{2, \, ..., \, \mathbf{n}\} \text{ do} \\ q_j &= a_j \\ \text{for each } \mathbf{i} \in \{1, \, ..., \, \mathbf{j}\text{-}1\} \text{ do} \\ r_{ij} &= (q_i)^T q_j \\ q_j - &= r_{ij} q_i \\ \text{end for} \\ r_{jj} &= \sqrt{(q_j)^T q_j} \\ q_j &= \sqrt{sum((q_j)^2)} \\ \text{end for} \end{split}
```

Algorithm 2 QR Iteration

```
T^{(0)} = A for each k \in \{1, ..., maxIter\} do T^k = Q^k R^k T^{k+1} = R^k Q^k if error < tol then break end if end for
```

Algorithm 3 Shifted QR Iteration

```
T^{(0)}=A for each \mathbf{k}\in\{1,...,\mathrm{maxIter}\} do T^k-\mu I=Q^kR^k T^{k+1}=R^kQ^k+\mu I if error < tol then break end if end for
```

2.1 Complexity

For **QR Decomposition**, the double for-loop do $\frac{n(n+1)}{2}$ times of operation, and $(q_i)^T q_j$ in each operation make **QR Decomposition** be a $O(n^3)$ problem.

For each iteration of **QR Iteration**, there are **QR Decomposition** and **mat** \times **mat**. So it is also $O(n^3)$ problem.

3 Discussion

In the section, we will discuss the following topics:

- 1. Eigenvalues of m3, ..., m15.dat
- 2. Runtime of EVqr
- 3. Runtime of EVqrShifted
- 4. Overall complexity

3.1 Eigenvalues

Table 1 and 2 show eigenvalue calculated by EVqr and EVqrShifted, respectively.

EVqr	N	E_large_1	E_large_2	E_large_3	E_small_1	E_small_2	E_small_3
m3	3	0.627719	2	6.372281	0.627719	2	6.372281
m4	10	4.455992	20.431729	67.840399	0.512543	0.55164	0.629808
m5	20	17.235222	81.223819	270.495189	0.503097	0.512479	0.528819
m6	30	38.53868	182.544889	608.253606	0.501373	0.505511	0.512543
m7	40	68.364136	324.394506	1081.115447	0.500772	0.503093	0.507004
m8	50	106.711318	506.772618	1689.080688	0.500494	0.501978	0.504468

Table 1: Eigenvalue of EVqr $\,$

EVqrShifted	N	E_large_1	E_large_2	E_large_3	E_small_1	E_small_2	E_small_3
m3	3	0.627719	2	6.372281	0.627719	2	6.372281
m4	10	4.455992	20.431729	67.840399	0.512543	0.55164	0.629808
m5	20	17.235222	81.223819	270.495189	0.503097	0.512479	0.528819
m6	30	38.53868	182.544889	608.253606	0.501373	0.505511	0.512543
m7	40	68.364136	324.394506	1081.115447	0.500772	0.503093	0.507004
m8	50	106.711318	506.772618	1689.080688	0.500494	0.501978	0.504468
m9	60	153.580161	729.679212	2432.149321	0.500343	0.501373	0.503097
m10	70	208.970642	993.114283	3310.321344	0.500252	0.501008	0.502273
m11	80	272.882751	1297.07783	4323.596758	0.500193	0.500772	0.501739
m12	90	345.316483	1641.569852	5471.97556	0.500152	0.50061	0.501373
m13	100	426.271836	2026.590348	6755.457752	0.500123	0.500494	0.501112
m14	120	613.747401	2918.216761	9727.732302	0.500086	0.500343	0.500772
m15	150	958.872886	4559.619934	15199.419543	0.500055	0.500219	0.500494

Table 2: Eigenvalue of EVqrShifted

From Table 2, we can plot the largest/smallest eigenvalue of m3 m15.dat as shown in Figure 1 and 2.

Page 4 of 9

Figure 1: Largest eigenvalue

Figure 2: Smallest eigenvalue

In Figure 1 and 2, we can find that the three largest eigenvalues grow with N^2 , while the three smallest eigenvalues converge to 0.5. As a result, in our case we can easily predict the eigenvalue for other N.

3.2 EVqr

Table 3 show the average iteration time(iter_avg) and iteration number(iter_num) for m3 m8.dat.

EVqr	N	iter_num	runtime(s)	iter_avg
m3	3	20	7.20E-05	3.6000E-06
m4	10	249	0.005884	2.3631E-05
m5	20	909	0.110081	1.2110E-04
m6	30	1942	0.693329	3.5702E-04
m7	40	3325	2.88519	8.6773E-04
m8	50	5041	9.79014	1.9421E-03

Table 3: Itertion number and iter_avg of EVqr

From Table 3, we can plot iter_avg vs N and iter_num vs N as shown in Figure 3 and 4.

Figure 3: iter_avg vs N(EVqr)

In Figure 3, we can find that the slope of iter_avg is same as N^3 , which means the complexity of each iteration of EVqr is $O(n^3)$ and satisfies my analysis in Section 2.1.

Figure 4: iter_num vs N(EVqr) in normal scale(top) and log scale(bottom)

From Figure 4, we can find that the iteration number of EVqr grows with N^2 , which mean the complexity of iteration number in EVqr is $O(n^2)$. Because the complexity of iter_avg and iter_num is $O(n^3)$ and $O(n^2)$, repectively, the overall complexity of EVqr will be $O(n^5)$.

3.3 EVqrShifted

Table 4 show the average iteration time(iter_avg) and iteration number(iter_num) for m3 m15.dat.

EVqrShifted	N	$iter_num$	runtime(s)	$iter_avg$
m3	3	17	7.60E-05	4.4706E-06
m4	10	35	0.000616	1.7600 E-05
m5	20	67	0.01132	1.6896E-04
m6	30	104	0.039096	3.7592 E-04
m7	40	133	0.079233	5.9574E-04
m8	50	167	0.17786	1.0650E-03
m9	60	209	0.386447	1.8490E-03
m10	70	244	0.724597	2.9697E-03
m11	80	277	1.13667	4.1035E-03
m12	90	310	1.81915	5.8682E-03
m13	100	346	2.72404	7.8729E-03
m14	120	425	5.60207	1.3181E-02
m15	150	489	12.2082	2.4966E-02

Table 4: Itertion number and iter_avg of EVqrShifted

From Table 4, we can plot iter_avg vs N and iter_num vs N as shown in Figure 5 and 6.

Figure 5: iter_avg vs N(EVqrShifted)

In the beginning of Figure 5, the slope is unstable because the runtime calculation has large error when N is small. After N is large enough, the slope is same as N^3 , which means the complexity of each iteration in EVqrShifted is $O(n^3)$ and satisfies my analysis in Section 2.1.

Figure 6: iter_num vs N(EVqrShifted)

In Figure 6, we can find that the iteration number grows with N, which means complexity of iteration number in EVqrShifted is O(n). Because the complexity of iter_avg and iter_num is $O(n^3)$ and O(n), the overall complexity of EVqrShifted is $O(n^4)$.

3.4 Overall Complexity

From Section 3.2 and 3.3, the overall complexity is listed in Table 5.

Complexity	Evqr	EvqrShifted
iter_avg	$O(n^3)$	$O(n^3)$
iter_num	$O(n^2)$	O(n)
overall	$O(n^5)$	$O(n^4)$

Table 5: Overall comlexity of EVqr and EVqrShifted

From Table 3 and 4, we can plot (iter_avg x iter_num) vs N as shown in Figure 7.

Figure 7: (iter_avg x iter_num) vs N

In Figure 7, the slope of EVqr is same as N^5 , while the slope of EVrShifted is same as N^4 . Therefore, the overall complexity satisfies my analysis in Section 3.2 and 3.3.

Because the overall complexity of EVqr and EVqrShifted is $O(n^5)$ and $O(n^4)$, respectively, EVqrShifted will be much faster when N is large.