ST102 Outline solutions to Exercise 16

1. For a 98% confidence interval, we need the lower and upper percentile values from the $\chi^2_{n-1} = \chi^2_{17}$ distribution. These are, respectively, $\chi^2_{0.99,\,17} = 6.408$ and $\chi^2_{0.01,\,17} = 33.409$. Hence we obtain:

$$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2,\,n-1}},\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,\,n-1}}\right) = \left(\frac{17\times27.64}{33.409},\frac{17\times27.64}{6.408}\right) = (14.06,73.33).$$

Note that this is a very wide confidence interval due to (i.) a high level of confidence (98%), and (ii.) a small sample size (n = 18).

- 2. Using Murdoch and Barnes' Statistical Tables, we obtain the following:
 - (a) If P(Z < k) = 0.0681, then P(Z > -k) = 0.0681, hence k = -1.49.
 - (b) k = P(Z < -1.72) = P(Z > 1.72) = 0.0427.
 - (c) $k = P(-0.23 < Z < 2.04) = P(Z < 2.04) P(Z \le -0.23) = (1 P(Z \ge 2.04)) P(Z \ge 0.23) = (1 0.02068) 0.4090 = 0.57032.$
 - (d) If $P(X_6 < k) = 0.20$, then $k = \chi^2_{0.80, 6} = 3.070$.
 - (e) If $P(X_{26} > k) = 0.025$, then $k = \chi^2_{0.025, 26} = 41.923$.
 - (f) $k = P(18.939 < X_{28} < 50.993) = P(X_{28} \ge 18.939) P(X_{28} \ge 50.993) = 0.90 0.005 = 0.895.$
 - (g) If $P(T_7 > k) = 0.99$, then $P(T_7 > -k) = 0.01$, hence $-k = t_{0.01,7} = 2.998$ and so k = -2.998.
 - (h) $k = P(T_{19} < 2.861) = 1 P(T_{19} \ge 2.861) = 1 0.005 = 0.995.$
 - (i) Since $P(|T_{60}| < k) = 0.98$, $P(T_{60} > k) = (1 0.98)/2 = 0.01$. Hence $k = t_{0.01, 60} = 2.390$.

Note that it is important that you are familiar with Murdoch and Barnes' *Statistical Tables* which contains a lot of information. In the summer examination, you will be provided with a copy of these tables.

3. Let $T = X_1 + X_2 + \cdots + X_{12}$. Therefore, $T \sim \text{Bin}(12, \pi)$. We use T as the test statistic. With the given sample, we observe t = 3. We now determine which are the more extreme values of T if H_0 is true.

Under H_0 , $E(T) = n\pi_0 = 6$. Hence 9 is as extreme as 3, and the more extreme values are:

0, 1, 2, 10, 11 and 12.

Therefore, the p-value is:

$$\left(\sum_{i=0}^{3} + \sum_{i=9}^{12}\right) P_{H_0}(T=i) = \left(\sum_{i=0}^{3} + \sum_{i=9}^{12}\right) \frac{12!}{i! (12-i)!} (0.50)^i (1-0.50)^{12-i}$$

$$= 2 \times (0.50)^{12} \sum_{i=0}^{3} \frac{12!}{i! (12-i)!}$$

$$= 2 \times (0.50)^{12} \times \left(1 + 12 + \frac{12 \times 11}{2!} + \frac{12 \times 11 \times 10}{3!}\right)$$

$$= 0.1460.$$

Since $\alpha = 0.10 < 0.1460$, we do not reject the null hypothesis of a fair coin at the 10% significance level. The observed data are consistent with the null hypothesis of a fair coin.

- 4. When σ^2 is unknown, we use the test statistic $T = \sqrt{n}(\bar{X} 9)/S$. Under H_0 , $T \sim t_{15}$. With $\alpha = 0.05$, we reject H_0 if:
 - (a) $t > t_{0.05, 15} = 1.753$, against $H_1 : \mu > 9$.
 - (b) $t < -t_{0.05, 15} = -1.753$, against $H_1 : \mu < 9$.
 - (c) $|t| > t_{0.025, 15} = 2.131$, against $H_1 : \mu \neq 9$.

For the given sample, t = 2.02. Hence we reject H₀ against the alternative H₁: $\mu > 9$, but we will not reject H₀ against the two other alternative hypotheses.

When σ^2 is known, we use the test statistic $T = \sqrt{n}(\bar{X} - 9)/\sigma$. Now under H_0 , $T \sim N(0, 1)$. With $\alpha = 0.05$, we reject H_0 if:

- (a) $t > z_{0.05} = 1.645$, against $H_1 : \mu > 9$.
- (b) $t < -z_{0.05} = -1.645$, against $H_1: \mu < 9$.
- (c) $|t| > z_{0.025} = 1.96$, against $H_1 : \mu \neq 9$.

For the given sample, t=2.02. Hence we reject H_0 against the alternative $H_1: \mu > 9$ and $H_1: \mu \neq 9$, but we will not reject H_0 against $H_1: \mu < 9$.

With σ^2 known, we should be able to perform inference better simply because we have more information about the population. More precisely, for the given significance level, we require less extreme values to reject H_0 . Put another way, the *p*-value of the test is reduced when σ^2 is given. Therefore, the risk of rejecting H_0 is also reduced.

5. Let T be the number of car accidents per week such that $T \sim \text{Poisson}(\lambda)$. We are interested in testing:

$$H_0: \lambda = 8$$
 vs. $H_1: \lambda < 8$.

Under H_0 , then $T \sim Poisson(8)$, and we observe t = 3. Hence the p-value is:

$$P(T \le 3) = \sum_{t=0}^{3} \frac{e^{-8}8^t}{t!} = e^{-8} \left(1 + 8 + \frac{8^2}{2!} + \frac{8^3}{3!} \right) = 0.0424.$$

Since 0.0424 < 0.05, we reject H₀ and conclude that there is evidence to suggest that the accident rate has dropped.