In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [2]:

```
df=pd.read_csv(r"C:\Users\smb06\Downloads\drug200.csv")
df
```

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [3]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Age	200 non-null	int64
1	Sex	200 non-null	object
2	BP	200 non-null	object
3	Cholesterol	200 non-null	object
4	Na_to_K	200 non-null	float64
5	Drug	200 non-null	object

dtypes: float64(1), int64(1), object(4)

memory usage: 9.5+ KB

In [5]:

```
df['Drug'].value_counts()
```

Out[5]:

Drug
drugY 91
drugX 54
drugA 23
drugC 16
drugB 16

Name: count, dtype: int64

In [7]:

df['Age'].value_counts()

Out[7]:

Age

Name: count, dtype: int64

In [8]:

```
convert={"Sex":{"F":1,"M":0}}
df=df.replace(convert)
df
```

Out[8]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	1	HIGH	HIGH	25.355	drugY
1	47	0	LOW	HIGH	13.093	drugC
2	47	0	LOW	HIGH	10.114	drugC
3	28	1	NORMAL	HIGH	7.798	drugX
4	61	1	LOW	HIGH	18.043	drugY
195	56	1	LOW	HIGH	11.567	drugC
196	16	0	LOW	HIGH	12.006	drugC
197	52	0	NORMAL	HIGH	9.894	drugX
198	23	0	NORMAL	NORMAL	14.020	drugX
199	40	1	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [10]:

```
convert={'BP':{"HIGH":1,"LOW":2,"NORMAL":3}}
df=df.replace(convert)
df
```

Out[10]:

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
0	23	1	1	HIGH	25.355	drugY
1	47	0	2	HIGH	13.093	drugC
2	47	0	2	HIGH	10.114	drugC
3	28	1	3	HIGH	7.798	drugX
4	61	1	2	HIGH	18.043	drugY
195	56	1	2	HIGH	11.567	drugC
196	16	0	2	HIGH	12.006	drugC
197	52	0	3	HIGH	9.894	drugX
198	23	0	3	NORMAL	14.020	drugX
199	40	1	2	NORMAL	11.349	drugX

200 rows × 6 columns

```
In [11]:
x=["Age","Sex"]
y=["Yes","No"]
all_inputs=df[x]
all_classes=df["Cholesterol"]
In [12]:
(x_train,x_test,y_train,y_test)=train_test_split(all_inputs,all_classes,test_size=0.5)
In [13]:
clf=DecisionTreeClassifier(random_state=0)
In [14]:
clf.fit(x_train,y_train)
Out[14]:
          DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)
In [15]:
score=clf.score(x_test,y_test)
print(score)
0.49
In [ ]:
```