

The Good

• Data Mining is pervasive

• Q. Valkanas

The "Bad" • Effective Data Science requires / builds on a SET of skills: • Analytical thinking • Technical skills • Creativity • Communication • Domain Knowledge (!)

The "Ugly" • We will be doing some math G. Valkanas

The "Ugly" • We will be doing some math • We will be doing some Programming • Highly sought-after skill! • BUT REMEMBER: • Data Mining is not (just) about coding, especially in business settings! • We will also be focusing on several non-technical areas

"If we have data, let's look at da go with mine."	ata. If all we have are opinions, let's
	James Love Barksda
	Former CEO of Netscap
G. Valkanas	New York University

concepts, and techniques that structure ysis of data
ormation and knowledge from large volumes of a process with reasonably well defined steps
ou think about data and its role in business

Approach business problems data-analytically Interact competently on the topic of data mining for business intelligence Hands-on experience mining data

New York University

G. Valkanas

Outline Business Understanding Data Understanding Data Preparation Modeling Evaluation Deployment

This is NOT a course about... Data Mining versus... · Statistics · Data Warehousing / Storage · Data warehouses coalesce data from across an enterprise, often from multiple transaction-processing systems · Database Querying • Querying / Reporting (SQL, Excel, QBE, other GUI-based querying) • SQL · Very flexible interface to ask factual questions about data No modeling or sophisticated pattern finding · Data Warehousing · Most of the cool visualizations · Regression Analysis OLAP - On-line Analytical Processing · Explanatory vs Predictive modeling · OLAP provides easy-to-use GUI to explore large data collections • Exploration is manual; no modeling Dimensions of analysis preprogrammed into OLAP system · Big Data G. Valkanas New York University G. Valkanas New York University Data Mining versus... Answering business questions with these techniques.. · Traditional statistical analysis · Who are the most profitable customers? · Mainly based on hypothesis testing or estimation / quantification of · Database querying · Is there really a difference between profitable customers and the Should be used to follow-up on data mining's <u>hypothesis generation</u> average customer? Automated statistical modeling (e.g., advanced regression) · Statistical hypothesis testing · This is data mining, one type - usually based on linear models • But who really are these customers? Can I characterize them? · Massive databases allow non-linear alternatives OLAP (manual search), Data mining (automated pattern finding) · Will some particular new customer be profitable? How much revenue should I expect this customer to generate? Data mining (predictive modeling) New York University New York University Thanks! Questions?

New York University

G. Valkanas

New York University

G. Valkanas