Shading and Lighting

- Shading models
 - Flat
 - Gouraud (smooth)
 - Phong

- Lighting models
 - Phong
 - Blinn-Phong
 - per-vertex implementation
 - per-pixel implementation

Flat shading

- Use triangle face normals for lighting
- Solid color per triangle
- Can't use shared normals

.

Gouraud

- Use vertex normal for lighting
- Color computed for each vertex, interpolated over triangle
 - Compute color in vertex shader
 - Output as varying variable to fragment shader

.

Phong

- Interpolate parameters over triangle, compute color in fragment shader
- Color computed per fragment
 - Output normal, light, view vectors from vertex shader as varyings
 - Compute lighting in fragment shader

.

Bui Tuong Phong

- December 14, 1942 July 1975
- Ph.D. University of Utah, 1973
- Joined Stanford faculty, 1975
- Developed Phong (specular) lighting model
- Developed Phong shading model

Local lighting model

- *v*, view vector
- n, normal vector
- *l*, light vector
- r, reflection vector
- All are unit vectors
- Pointing away from surface

Viewer models How to compute v?

Infinite viewer

- v = -look
- Faster since view vector is the same for all vertices

Local viewer

- e = eye position, p = point on surface
- v = (e-p)/||e-p||

Blinn-Phong

- Jim Blinn modified the Phong lighting model so that the specular term is estimated quickly
- Less precise, but faster
 - Halfway vector: $h = \frac{1}{2}(l+v)$
 - Replace $(r \cdot v)^{\alpha}$ with $(h \cdot n)^{\alpha'}$

Coordinate system for lighting

- We need all vectors to be in the <u>same coordinate system</u> in order to compute lighting
- Some choices:
 - Object local coordinate system
 - World coordinate system
 - Eye coordinate system
 - Tangent space (see CGT 521)

Coordinate systems

Recall:

- If matrix T transforms points from space A to space B then T⁻¹ transforms points from B to A
- If T transforms points from A to B and S transforms points from B to C then ST transforms points from A to C
- If M transforms points then M^{-T} transforms normal vectors
 - $M^{-T} = (M^{-1})^T$

Coordinate systems

• What matrix transforms points from object space to eye space?

VM : the product of view and model matrix

Normals

- Normal vectors also get transformed to move from one coordinate system to another
- Keep in mind:
 - M may include uniform scaling, so normalize n in the shader so that it is a unit vector
 - If M includes nonuniform scale then we have another problem...

Nonuniform scaling

 Look at what applying a nonuniform scaling transformation does to normal vectors...

 The opposite thing should have happened, the normal should have gotten shorter in the y-direction, not longer.

Transforming normals

 Consider the problem or transforming object-space normals into world-space

- Instead of multiplying with M, multiply with the upper 3x3
 part of (M⁻¹)^T
- This matrix, M inverse transposed, is sometimes called the normal matrix
- Sometimes written as M^{-T}
- Why does this work?

Normal matrix

- Let M = TRS
 - This idea works for any product, but let's demonstrate with this example
 - $M^{-T} = ((TRS)^{-1})^T$
 - $M^{-T} = (S^{-1}R^{-1}T^{-1})^T$
 - $M^{-T} = T^{-T}R^{-T}S^{-T}$
 - T^{-T} = I since we are only considering the upper 3x3 part of M
 - $R^{-T} = R$ since rotation matrices are orthogonal ($R^{-1} = R^{T}$)
 - $S^{-T} = S^{-1} \text{ since } S^{T} = S$
 - So, M^{-T} = RS⁻¹

Normal matrix

- If M = TRS then M⁻T = RS⁻¹
 - Note that
 - S⁻¹ applies geometric scaling to normals in the correct way
 - The rotation and scaling are in the correct order, so there is no issue with the noncommutativity of matrix multiplication
- In glm:
 - mat3 N = glm::inverseTranspose(glm::mat3(M));

Eye space lighting

Subscripts denote coord frame: m = model, w=world, e = eye

- Eye position : [0,0,0,1]^T
- Surface point : p_e = (VM)p_m
- View vector (local viewer): v_e = -p_e / ||p_e||
- <u>Light position</u>: L_e = VL_w
- Light vector : $I_e = (L_e p_e) / ||L_e p_e||$
- Surface normal vector: n_e = (VM)^{-T}n_m

World space lighting

Subscripts denote coord frame: m = model, w=world, e = eye

- Eye position : $e_{w} = V^{-1} [0,0,0,1]^{T}$
- <u>Surface point</u>: $p_w = Mp_m$
- $\underline{\text{View vector}} : v_w = (e_w p_w) / ||e_w p_w||$
- Light position: L
- <u>Light vector</u>: $I_w = (L_w p_w) / ||L_w p_w||$
- <u>Surface normal vector</u>: $n_w = (M)^{-T}n_m$

Object space lighting

Subscripts denote coord frame : m = model, w=world, e = eye

- Eye position : $e_m = (MV)^{-1} [0,0,0,1]^T$
- Surface point : p_m
- View vector $v_m = (e_m p_m) / ||e_m p_m||$
- Light position : $L_m = M^{-1} L_w$
- Light vector: $I_m = (L_m p_m) / ||L_m p_m||$
- Surface normal vector: n_m

Clip space lighting

DON'T DO IT

 Projection matrix, P, is not affine, will distort angles between objects

Which space to pick?

- Which space results in the fewest matrix-vector multiplications?
- The space your lights are in can help you decide
 - Lights can be positioned in the world
 - streetlights
 - They can be attached to objects
 - headlights
 - They can be attached to the camera
 - flashlight

