	H_0 верна	H_0 неверна	
H_0 не отвергается	ok	β	ошибка 2 рода
H_0 отвергается	α	ok	

ошибка 1 рода

 $\alpha = \mathbb{P}(H_0 \text{ отвергнута} \mid H_0 \text{ верна})$

 $\beta = \mathbb{P}(H_0$ не отвергнута | H_0 не верна)

Величину $1-\beta$ называют **мощностью** критерия

$$H_0: p = p_0$$

Ошибки первого и второго рода неравнозначны:

мы перед экспериментом фиксируем lpha,

$$H_a$$
: $p = p_a$

а β минимизируется по остаточному принципу

 $H_0: p = p_0$

 $H_a: p = p_a$

При уменьшении ошибки первого рода всегда возрастает ошибка второго рода

Н₀: нет беременности

 H_0 верна

 H_a : есть беременность

 H_0 неверна

 H_0 не этвергается

Вы не беременны

Вы не беременны

 H_0 отвергается

Вы беременны

Вы беременны

Аналогия с классификацией

$$y=1$$
 $y=0$ $\hat{y}=1$ TP FP ошибка 2 рода $\hat{y}=0$ FN TN

ошибка 1 рода

Пример: хотим, чтобы классификатор удалял спам и задел минимум хороших документов

Подбор порога: зафиксировать $FPR = \frac{FP}{FP + TN} \leq 0.05$ (доля зря удалённых), а дальше максимизировать полноту $Recall = TPR = \frac{TP}{TP + FN} = 1 - \frac{FN}{TP + FN}$

Наиболее мощный критерий

- Статистический критерий способ посчитать расстояние между наблюдаемым значением и предполагаемым
- Подобные расстояния можно считать разными способами
- Хочется выбрать такой способ, который при фиксированном размере выборки и фиксированной ошибке первого рода будет давать наименьшую ошибку второго рода
- Такой критерий называется наиболее мощным

Сколько надо наблюдений

	H_0 верна	H_0 неверна	
H_{0} не отвергается	ok	β	ошибка 2 рода
H_{0} отвергается	α	ok	
'	ошибка 1 рода		

 $\alpha = \mathbb{P}(H_0 \text{ отвергнута} \mid H_0 \text{ верна})$

 $\beta = \mathbb{P}(H_0$ не отвергнута | H_0 не верна)

Величину $1-\beta$ называют мощностью критерия

Размер эффекта

Сколько нужно наблюдений

- Необходимое количество наблюдений зависит от размеров ошибок первого и второго рода, а также от размера эффекта
- Фиксируем уровень значимости (ошибку 1 рода), на которую мы согласны
- Подбираем соотношение между минимальным размером эффекта, желаемой мощностью и объёмом выборки
- В выборе соотношении помогает заказчик эксперимента, у него обычно есть ограничения, с которыми нам придётся работать (количество магазинов, длительность АБ-теста и т.п.)

Таблица эффекта-ошибки

Ошибка 1/2 рода lpha=eta

размер эффекта		0.1%	1%	5%	10%
	1%	много данных			
	1.5%				
	3%				
	5%				
	10%				мало данных

 Совокупность этих трёх параметров (ошибка 1/2 рода, размер эффекта) позволяют рассчитать необходимый для эксперимента объём выборки.

Сколько нужно наблюдений

Пример: проверяем равенство конверсий до и после нововведений

$$H_0: p_0 = p_a$$

$$H_a$$
: $p_0 \neq p_a$

Используем асимптотически-нормальный тест:

$$z=rac{p_a-p_0}{\sqrt{P(1-P)\cdot\left(rac{1}{n}+rac{1}{n}
ight)}} \stackrel{asy}{\sim} N(0,1)$$
 размер эффекта

Сколько нужно наблюдений

Ошибка второго рода:

$$\beta = \Phi\left(\frac{\sqrt{p_0(1-p_0)}}{\sqrt{p_a(1-p_a)}} \cdot z_{1-\alpha} + \frac{p_0 - p_a}{\sqrt{\frac{p_a(1-p_a)}{n}}}\right)$$

Число наблюдений:

$$n=\left(rac{z_{1-lpha}\cdot\sqrt{p_0(1-p_0)}+z_{1-eta}\cdot\sqrt{p_a(1-p_a)}}{p_a-p_0}
ight)^2$$
 размер эффекта

Анализ мощности

До эксперимента:

- Какой нужен объём выборки, чтобы найти различия с разумной степенью уверенности
- Различия какой величины мы можем найти, если известен объём выборки

После эксперимента:

 смогли бы мы найти различия с помощью нашего эксперимента, если бы величина эффекта была равна Δ

Резюме

- Для многих критериев можно вывести формулу для расчёта необходимого числа наблюдений
- Число наблюдений зависит от ошибок ½ рода и минимального размера эффекта, который мы хотим уловить
- Перед экспериментом необходимое число наблюдений определяют исходя из пожеланий заказчика и физических возможностей