МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Построение и анализ алгоритмов»

Тема: Максимальный поток

Студент гр. 9382	Русинов Д.А.
Преподаватель	 Фирсов М.А.

Санкт-Петербург

2021

Цель работы.

Научиться находить величину потока в ориентированном графе, изучить и реализовать алгоритм Форда-Фалкерсона.

Задание.

Найти максимальный поток в сети, а также фактическую величину потока, протекающего через каждое ребро, используя алгоритм Форда-Фалкерсона. Сеть (ориентированный взвешенный граф) представляется в виде триплета из имён вершин и целого неотрицательного числа - пропускной способности (Beca).

Входные данные:

```
N - количество ориентированных рёбер графа
V0 - ИСТОК
V_n - CTOK
```

 $V_i V_i ω_{ii}$ - peбро графа $v_i v_i \omega_{ii}$ - peбро графа

Выходные данные:

 P_{max} - величина максимального потока

 $V_i V_i \omega_{ii}$ - ребро графа с фактической величиной протекающего потока $V_i V_i \omega_{ii}$ - ребро графа с фактической величиной протекающего потока ...

В ответе выходные рёбра отсортируйте в лексикографическом порядке по первой вершине, потом по второй (в ответе должны присутствовать все указанные входные рёбра, даже если поток в них равен 0).

Sample Input:

7 a f a b 7

a c 6

b d 6

cf9

de3

df4

e c 2

Sample Output:

12

a b 6

a c 6

b d 6

cf8

d e 2

df4

e c 2

Вар. 3. Поиск в глубину. Рекурсивная реализация.

Описание структуры данных, используемой для представления графа.

Для представления графа используется встроенная структура данных — dict. В качестве ключа выступает вершина, а в качестве значения выступает список вершин, до которых есть путь. Вершина в списке имеет три значения:

- 1) Наименование вершины.
- 2) Поток, который до нее можно пропустить.
- 3) Поток, который уже пропущен до вершины.

Описание алгоритма.

Считываем входные данные, заполняем словарь, тем самым формируя граф. После создается экземпляр класса Solver, который хранит в себе граф и данные для формирования промежуточного вывода в ходе алгоритма. Данный класс имеет рекурсивный метод _solve, который предназначен для поиска пути, от начальной вершины до конечной. Также класс имеет публичный метод solve, который вызывает метод _solve с необходимыми аргументами. Метод _solve вызывается поэтапно, он находит возможный путь от начальной до конечной вершины, в графе записываются значения потока, который был пропущен через ту или иную вершину, когда удалось найти путь до конечной вершины.

Поток, который запишется до вершины – минимум между доступным потоком до этой вершины и потоком, который был пропущен до этой вершины ранее. Доступный поток вычисляется следующим образом – разность изначально заданного потока и уже пропущенного потока до этой вершины. Данный метод вызывается до тех пор, пока удается найти путь, по которому возможно пропустить поток до конечной вершины. Поскольку в графе на каждом этапе записываются значения потока, которые были пропущены от одной вершине к другой, то алгоритм рано или поздно окончится, так как возможного пути может более не остаться. Поиск пути от начальной до конечной вершины работает на базе поиска в глубину. Используется список посещенных вершин, чтобы повторно не заходить в вершину. Также путь до смежной вершины должен иметь свободный поток, иначе посещать данную вершину не имеет смысла.

Оценка сложности по памяти

Для каждой вершины необходимо хранить список вершин, до которых есть путь, поэтому сложность равна $O(N^2)$.

Оценка сложности по времени

На каждом шаге алгоритм добавляет поток увеличивающего пути к уже имеющемуся потоку. На каждом шаге алгоритм увеличивает поток хотя бы на единицу. Значит, что алгоритм завершится не более чем за O(F) шагов, где F максимальный поток в графе. Можно выполнить каждый шаг за время O(E), где E — число рёбер в графе, тогда общее время работы алгоритма ограничено O(Ef).

Тестирование

Результаты тестирования программы можно посмотреть в приложении B.

Выводы.

Был изучен поиск потока в ориентированном графе алгоритмом Форда-Фалкерсона и написана программа, которая его реализует.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py from typing import Union class GraphCreator: @staticmethod def readGraph(): countEdges = int(input()) source = input() destination = input() graph = dict() for in range(countEdges): src, dest, length = input().split() if src not in graph: graph[src] = [] graph[src].append([dest, int(length), 0]) return source, destination, graph class Solver: def init (self, source: str, destination: str, graph: dict): self. source = source self. destination = destination self. graph = graph self._visited = []

self. stepCounter = 1

```
self. recursionLevel = 0
    def solve(self, vertex: str, thread: Union[int, float]):
        print(f"{'*' * self. recursionLevel * 2}Вызов рекурсивной
функции с вершиной {vertex},"
              f" текущий возможный поток {thread}")
        # выходим из рекурсии, если вершина конечная
        if vertex == self. destination:
            print(f"{'*' * self. recursionLevel * 2}Текущая
рассматриваемая вершина - конечная,"
                 f" поэтому работа на текущем шагу завершается.")
            return thread
        # добавляем вершину в список посещенных
        self. visited.append(vertex)
        # проверяем, есть ли смежные вершины к рассматриваемой. Если
нет, выходим из рекурсии
        if vertex not in self. graph:
           print(f"{'*' * self. recursionLevel * 2}Из данной вершины
нет возможный путей,"
                 f" поэтому оканчиваем работу с ней")
            return 0
        # Сортируем список смежных вершин (требуется для верного
ответа на Степике)
        children = sorted(self._graph[vertex], key=lambda x: x[0],
reverse=True)
        print(f"{'*' * self. recursionLevel * 2}Вершина {vertex} имеет
следующие смежные вершины"
```

```
f" - {' '.join([child[0] for child in children])}")
        # Рассматриваем смежные вершины
        for i, child in enumerate(children):
            print(f"{'*' * self. recursionLevel * 2}[{i+1}]
Paccматриваю смежную вершину {child[0]}")
            # Если смежная вершина еще не посещена, а также через нее
возможно еще пропустить поток
            # То начинаем рассматривать возможный поток из смежной
вершины до конечной
            if child[0] not in self. visited and child[2] < child[1]:
                print(f"{'*' * self._recursionLevel * 2}[{i+1}]
Вершина {child[0]} еще не посещена,"
                      f" а также из нее еще возможно пропустить
поток")
                print(f"{'*' * self. recursionLevel * 2}[{i+1}]
Поэтому начинаем искать возможный поток, который можно"
                      f" пропустить из данной вершины до конечной")
                # текущий возможный поток, который можно пропустить
через смежную вершину
                maxFlowFromChild = min(thread, child[1] - child[2])
                print(f"{'*' * self. recursionLevel * 2}[{i+1}]
Текущий максимальный поток,"
                      f" который можно через нее пропустить
{maxFlowFromChild}")
                self. recursionLevel += 1
                # вызов рекурсивной функции
```

```
delta = self. solve(child[0], maxFlowFromChild)
                self. recursionLevel -= 1
                # если через смежную вершину можно пропустить поток до
конечной, то delta будет > 0
                if delta > 0:
                    print(f"{'*' * self. recursionLevel * 2}[{i+1}]
Поток, который можно пропустить"
                          f" через вершину {child[0]} до конечной
вершины - {delta}")
                    # записываем пропущенный через эту вершину поток
                    child[2] += delta
                    return delta
                else:
                    print(f"{'*' * self._recursionLevel * 2}[{i+1}]
Через вершину {child[0]} нельзя пропустить"
                          f" поток до конечной вершины")
            else:
                print(f"{'*' * self. recursionLevel * 2}[{i+1}]
Вершина {child[0]} уже была"
                      f" посещена на текущем шагу, либо через нее
пропущен максимально возможный поток")
        return 0
    def solve(self):
        result = 0
        print(f"Текущий шаг {self. stepCounter}")
        answer = self. solve(self. source, float("+inf"))
        print()
        while answer:
            self. stepCounter += 1
            # запускаем следующий шаг для поиска пути, обнуляем
посещенные вершины
            result += answer
```

```
self. visited = []
            print(f"Текущий шаг {self. stepCounter}")
            answer = self. solve(self. source, float("+inf"))
            print()
        print(f"C шага {self._stepCounter} невозможно пропустить более
поток до конечной вершины,"
              f" программа завершает работу")
        return result
    def __str__(self):
       text = ""
        for vertex in sorted(self._graph.keys()):
            for neighbor in sorted(self._graph[vertex], key=lambda x:
x[0]):
                text += f"{vertex} {neighbor[0]} {neighbor[2]}\n"
        return text
if name == " main ":
    solver = Solver(*GraphCreator.readGraph())
   print(solver.solve())
   print(solver)
```

ПРИЛОЖЕНИЕ В ТЕСТИРОВАНИЕ

Входные данные	Выходные данные	
8	Текущий шаг 1	
a	Вызов рекурсивной функции с вершиной а, текущий	
h	возможный поток inf	
a c 8	Вершина а имеет следующие смежные вершины - d с	
a d 2	[1] Рассматриваю смежную вершину d	
c d 16	[1] Вершина d еще не посещена, а также из нее еще возможно	
c f 4	пропустить поток	
d g 6	[1] Поэтому начинаем искать возможный поток, который можно	
g f 18	пропустить из данной вершины до конечной	
g h 5	[1] Текущий максимальный поток, который можно через нее	
f h 5	пропустить 2	
	**Вызов рекурсивной функции с вершиной d, текущий	
	возможный поток 2	
	**Вершина d имеет следующие смежные вершины - g	
	**[1] Рассматриваю смежную вершину g	
	**[1] Вершина g еще не посещена, а также из нее еще возможно	
	пропустить поток	
	**[1] Поэтому начинаем искать возможный поток, который	
	можно пропустить из данной вершины до конечной	
	**[1] Текущий максимальный поток, который можно через нее	
	пропустить 2	
	****Вызов рекурсивной функции с вершиной g, текущий	
	возможный поток 2	
1	****Вершина g имеет следующие смежные вершины - h f	
	Department of the control of the con	

- ****[1] Рассматриваю смежную вершину h
- ****[1] Вершина h еще не посещена, а также из нее еще возможно пропустить поток
- ****[1] Поэтому начинаем искать возможный поток, который можно пропустить из данной вершины до конечной
- ****[1] Текущий максимальный поток, который можно через нее пропустить 2
- *****Вызов рекурсивной функции с вершиной h, текущий возможный поток 2
- ******Текущая рассматриваемая вершина конечная, поэтому работа на текущем шагу завершается.
- ****[1] Поток, который можно пропустить через вершину h до конечной вершины 2
- **[1] Поток, который можно пропустить через вершину g до конечной вершины 2
- [1] Поток, который можно пропустить через вершину d до конечной вершины 2

Текущий шаг 2

Вызов рекурсивной функции с вершиной а, текущий возможный поток inf

Вершина а имеет следующие смежные вершины - d с

- [1] Рассматриваю смежную вершину d
- [1] Вершина d уже была посещена на текущем шагу, либо через нее пропущен максимально возможный поток
- [2] Рассматриваю смежную вершину с
- [2] Вершина с еще не посещена, а также из нее еще возможно пропустить поток
- [2] Поэтому начинаем искать возможный поток, который можно пропустить из данной вершины до конечной
- [2] Текущий максимальный поток, который можно через нее пропустить 8

- **Вызов рекурсивной функции с вершиной с, текущий возможный поток 8
- **Вершина с имеет следующие смежные вершины f d
- **[1] Рассматриваю смежную вершину f
- **[1] Вершина f еще не посещена, а также из нее еще возможно пропустить поток
- **[1] Поэтому начинаем искать возможный поток, который можно пропустить из данной вершины до конечной
- **[1] Текущий максимальный поток, который можно через нее пропустить 4
- ****Вызов рекурсивной функции с вершиной f, текущий возможный поток 4
- ****Вершина f имеет следующие смежные вершины h
- ****[1] Рассматриваю смежную вершину h
- ****[1] Вершина h еще не посещена, а также из нее еще возможно пропустить поток
- ****[1] Поэтому начинаем искать возможный поток, который можно пропустить из данной вершины до конечной
- ****[1] Текущий максимальный поток, который можно через нее пропустить 4
- *****Вызов рекурсивной функции с вершиной h, текущий возможный поток 4
- ******Текущая рассматриваемая вершина конечная, поэтому работа на текущем шагу завершается.
- ****[1] Поток, который можно пропустить через вершину h до конечной вершины 4
- **[1] Поток, который можно пропустить через вершину f до конечной вершины 4
- [2] Поток, который можно пропустить через вершину с до конечной вершины 4

Текущий шаг 3

Вызов рекурсивной функции с вершиной а, текущий возможный поток inf

Вершина а имеет следующие смежные вершины - d с

- [1] Рассматриваю смежную вершину d
- [1] Вершина d уже была посещена на текущем шагу, либо через нее пропущен максимально возможный поток
- [2] Рассматриваю смежную вершину с
- [2] Вершина с еще не посещена, а также из нее еще возможно пропустить поток
- [2] Поэтому начинаем искать возможный поток, который можно пропустить из данной вершины до конечной
- [2] Текущий максимальный поток, который можно через нее пропустить 4
- **Вызов рекурсивной функции с вершиной с, текущий возможный поток 4
- **Вершина с имеет следующие смежные вершины f d
- **[1] Рассматриваю смежную вершину f
- **[1] Вершина f уже была посещена на текущем шагу, либо через нее пропущен максимально возможный поток
- **[2] Рассматриваю смежную вершину d
- **[2] Вершина d еще не посещена, а также из нее еще возможно пропустить поток
- **[2] Поэтому начинаем искать возможный поток, который можно пропустить из данной вершины до конечной
- **[2] Текущий максимальный поток, который можно через нее пропустить 4
- ****Вызов рекурсивной функции с вершиной d, текущий возможный поток 4
- ****Вершина d имеет следующие смежные вершины g
- ****[1] Рассматриваю смежную вершину д
- ****[1] Вершина g еще не посещена, а также из нее еще возможно пропустить поток

- ****[1] Поэтому начинаем искать возможный поток, который можно пропустить из данной вершины до конечной
- ****[1] Текущий максимальный поток, который можно через нее пропустить 4
- *****Вызов рекурсивной функции с вершиной g, текущий возможный поток 4
- *****Вершина g имеет следующие смежные вершины h f
- ******[1] Рассматриваю смежную вершину h
- ******[1] Вершина h еще не посещена, а также из нее еще возможно пропустить поток
- ******[1] Поэтому начинаем искать возможный поток, который можно пропустить из данной вершины до конечной
- ******[1] Текущий максимальный поток, который можно через нее пропустить 3
- ******Вызов рекурсивной функции с вершиной h, текущий возможный поток 3
- *******Текущая рассматриваемая вершина конечная, поэтому работа на текущем шагу завершается.
- ******[1] Поток, который можно пропустить через вершину h до конечной вершины 3
- ****[1] Поток, который можно пропустить через вершину ${\bf g}$ до конечной вершины 3
- **[2] Поток, который можно пропустить через вершину d до конечной вершины 3
- [2] Поток, который можно пропустить через вершину с до конечной вершины 3

Текущий шаг 4

Вызов рекурсивной функции с вершиной а, текущий возможный поток inf

Вершина а имеет следующие смежные вершины - d с

[1] Рассматриваю смежную вершину d

- [1] Вершина d уже была посещена на текущем шагу, либо через нее пропущен максимально возможный поток
- [2] Рассматриваю смежную вершину с
- [2] Вершина с еще не посещена, а также из нее еще возможно пропустить поток
- [2] Поэтому начинаем искать возможный поток, который можно пропустить из данной вершины до конечной
- [2] Текущий максимальный поток, который можно через нее пропустить 1
- **Вызов рекурсивной функции с вершиной с, текущий возможный поток 1
- **Вершина с имеет следующие смежные вершины f d
- **[1] Рассматриваю смежную вершину f
- **[1] Вершина f уже была посещена на текущем шагу, либо через нее пропущен максимально возможный поток
- **[2] Рассматриваю смежную вершину d
- **[2] Вершина d еще не посещена, а также из нее еще возможно пропустить поток
- **[2] Поэтому начинаем искать возможный поток, который можно пропустить из данной вершины до конечной
- **[2] Текущий максимальный поток, который можно через нее пропустить 1
- ****Вызов рекурсивной функции с вершиной d, текущий возможный поток 1
- ****Вершина d имеет следующие смежные вершины g
- ****[1] Рассматриваю смежную вершину g
- ****[1] Вершина g еще не посещена, а также из нее еще возможно пропустить поток
- ****[1] Поэтому начинаем искать возможный поток, который можно пропустить из данной вершины до конечной
- ****[1] Текущий максимальный поток, который можно через нее пропустить 1

```
*****Bызов рекурсивной функции с вершиной g, текущий
возможный поток 1
******Вершина g имеет следующие смежные вершины - h f
******[1] Рассматриваю смежную вершину h
******[1] Вершина h уже была посещена на текущем шагу, либо
через нее пропущен максимально возможный поток
******[2] Рассматриваю смежную вершину f
******[2] Вершина f еще не посещена, а также из нее еще
возможно пропустить поток
******[2] Поэтому начинаем искать возможный поток, который
можно пропустить из данной вершины до конечной
******[2] Текущий максимальный поток, который можно через
нее пропустить 1
*******Вызов рекурсивной функции с вершиной f, текущий
возможный поток 1
*******Вершина f имеет следующие смежные вершины - h
*******[1] Рассматриваю смежную вершину h
*******[1] Вершина h еще не посещена, а также из нее еще
возможно пропустить поток
******[1] Поэтому начинаем искать возможный поток,
который можно пропустить из данной вершины до конечной
******[1] Текущий максимальный поток, который можно
через нее пропустить 1
********Вызов рекурсивной функции с вершиной h,
текущий возможный поток 1
******* Текущая рассматриваемая вершина - конечная,
поэтому работа на текущем шагу завершается.
******[1] Поток, который можно пропустить через вершину
h до конечной вершины - 1
******[2] Поток, который можно пропустить через вершину f
до конечной вершины - 1
****[1] Поток, который можно пропустить через вершину g до
конечной вершины - 1
```

	**[2] Поток, который можно пропустить через вершину d до	
	конечной вершины - 1	
	[2] Поток, который можно пропустить через вершину с до	
	конечной вершины - 1	
	Текущий шаг 5	
	Вызов рекурсивной функции с вершиной а, текущий	
	возможный поток inf	
	Вершина а имеет следующие смежные вершины - d с	
	[1] Рассматриваю смежную вершину d	
	[1] Вершина d уже была посещена на текущем шагу, либо через	
	нее пропущен максимально возможный поток	
	[2] Рассматриваю смежную вершину с	
	[2] Вершина с уже была посещена на текущем шагу, либо через	
	нее пропущен максимально возможный поток	
	С шага 5 невозможно пропустить более поток до конечной	
	вершины, программа завершает работу	
	10	
	a c 8	
	a d 2	
	c d 4	
	c f 4	
	d g 6	
	f h 5	
	g f 1	
	g h 5	
7	12	
a	a b 6	
f	a c 6	
a b 7	b d 6	
a c 6	c f 8	
b d 6	d e 2	

c f 9	d f 4
d e 3	e c 2
df4	
e c 2	
5	9
a	a b 5
e	a e 4
a b 8	b c 2
b c 10	b e 3
b e 3	c e 2
a e 4	
c e 2	
4	1
a	a b 1
c	b c 1
a b 2	c a 0
b c 1	c d 0
c d 1	
c a 1	
5	2
b	a b 0
d	a c 0
a c 5	a d 0
a b 6	b c 2
c d 3	c d 2
b c 2	
a d 4	