

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMËRICA) FACULTAD DE INGENIERIA ELECTRÓNICA

E.A.P. INGENIERIA ELECTRONICA

CURSO DE ELECTROTECNIA

LABORATORIO N° RESISTENCIAS

I. OBJETIVOS:

- Usar el código de colores para determinar el valor de las resistencias.
- Usar el ohmímetro para medir resistencias y chequear continuidad.
- Verificar el estado del potenciómetro.
- Verificar el estado de la caja de década de resistencias.
- Utilizar el puente RLC.

II. INFORME PREVIO:

- 1. ¿Qué es una resistencia?
- 2. ¿Qué tipos de resistencias existen por su composición? Características. (potencia/ ohmiaje).
- 3. Mencione las clases de resistencias de acuerdo a su construcción.
- 4. ¿Cuáles son las diferencias entre un potenciómetro y un reóstato?
- 5. ¿Cuál es el código de colores par determinar el valor y tolerancia de una resistencia?

III. MATERIALES Y EQUIPOS A UTILIZAR:

- 01 Multimetro (VOM).
- 10 resistencias de diferentes tipos, valores nominales y potencia.
- 02 potenciómetros (5 KΩ y 10 KΩ).
- 01 caja de décadas de resistencias (FOK-GYEM HICKOK)
- Conectores largos, cortos y puntos de prueba para el multímetro

IV. PROCEDIMIENTO:

 Leer el código de colores de cada resistencias, medirla con el ohmímetro y anotar en el Tabla N° 1.

Color	Resistencias fijas									es		
	1	2	3	4	5	6	7	8	9	10	-	ap
1ro.										-		/ลเ
2do.												2
3ro.												<u>S</u>
4to.												Ten Len
5to.											Resistencias variables	
Tolerancia												
Potencia (W)											P1	P2
Valor codificado											<u> </u>	
(nominal) en ohms												
Valor medio (real)												
en ohms												
Tipo de resistencia												
por su composición												
Tipo de resistencia												
por su construcción												

Tabla 1

2. Verificar el estado de la caja de décadas de resistencias para los valores dados en la Tabla N° 2.

Valor teórico (en ohms)		Valor práctico				
	x 10K	x 1K	x 100	x 10	x 1	(en ohms)
150						1
470						
936						
10,890						
56,750						
65,567						

Tabla 2

- 3. Examinar el potenciómetro mediante las indicaciones que se le da a continuación:
 - a. Medir y anote la resistencia Rab. Conectando el ohmímetro entre a y b, seguidamente varíe el potenciómetro en todo su rango, observe que sucede.
 - b. Conecte el instrumento entre los puntos a y x del potenciómetro. Gire el control en sentido contrario, mida y anote Rax y en base a cálculos determine el valor de Rbx.
 - c. Conectar el ohmímerto entre a y x, en seguida gire el control del potenciómetro hasta: 1/4 del recorrido, 1/2 y 3/4 del recorrido. Explique que sucede.
 - d. ¿Qué pasaría con la resistencia Rax, si se cortocircuita Rbx?

4. Verificar las resistencias de elementos asociados en el Tabla N° 3.

 a. Conectarlas resistencias R₁, R₂ y R₃ en serie y utilizando los métodos teórico y práctico y determinar el valor de la resistencia equivalente del conjunto.

 b. Conectar las resistencias R₄ y R₅ en paralelo, y por los métodos teórico y práctico y determinar el valor de la resistencia equivalente del conjunto.

Resistencia	R1	R2	R3	Req. en serie	R4	R5	Req. en paralelo	
Valor teórico								
Valor práctico								

Tabla N° 3

V. INFORME FINAL:

- 1. Determine el valor de las resistencias cuyos el código de colores son los siguientes:
 - a. Rojo, verde, amarillo, dorado
 - b. Amarillo, violeta, anaranjado, oro, marrón.
- 2. ¿Como se representaría mediante el código de colores las siguiente resistencias:
 - a. $856 \text{ K}\Omega$ al 5%
 - b. 23.4Ω al 1%
- 3. ¿Podrá usted utilizar resistencias de alambre en sistemas de alta frecuencia? ¿Por qué?
- 4. Describir el funcionamiento de la caja de resistencias y mostrar su circuito equivalente.
- 5. ¿Qué es un multímetro? ¿Cómo se usa para medir resistencias?
- 6. ¿Cuáles son los tipos de potenciómetros que existen? Explicar cada uno de ellos.
- 7. Entre un puente y un ohmimetro ¿Cuál de los dos instrumentos escogería, para medir resistencias con mayor exactitud?
- 8. Dar conclusiones.