ΦΥΣ 331 - Χειμερινό Εξάμηνο 2020

Ενδιάμεση Εξέταση

Διάρκεια: 10:00 - 13:00

Σάββατο 30/10/2020

Σας δίνονται 10 ισοδύναμες ασκήσεις και θα πρέπει να απαντήσετε σε όλες. Σύνολο μονάδων 100.

Καλή Επιτυχία

1. $[10\mu]$

Θεωρήστε την αλληλεπίδραση $\eta \to \pi^-\pi^+$. Δίνεται ότι οι κβαντικοί αριθμοί του η και π^+ είναι $I^G(J^{PC})=0^+(0^{-+})$ και $I^G(J^{PC})=1^-(0^-)$ αντίστοιχα. Εξηγήστε αν η παραπάνω διεργασία μπορεί να πραγματοποιηθεί μέσω των γνωστών αλληλεπιδράσεων. [5μ] Τι θα συνέβαινε αν οι κβαντικοί αριθμοί το η ήταν $I^G(J^{PC})=0^+(0^{+-})$; [5μ]

2. $[10\mu]$

Θεωρήστε την διάσπαση $K^+ \to \pi^+ \pi^0 \pi^0$ όπου $m_{K^+} = 495~MeV/c^2$, $m_{\pi^+} = 139~MeV/c^2$ και $m_{\pi^0} = 135 MeV/c^2$.

- (α) Ποια είναι η μέγιστη ορμή του π^+ στο σύστημα αναφοράς του K^+ ; [3μ]
- (β) Υποθέστε ότι έχετε μια ανιχνευτική διάταξη η οποία δεν μπορεί να ανιχνεύσει διασπάσεις όπου η αναλλοίωτη μάζα των δύο ουδέτερων πιονίων, $m_{\pi^0\pi^0} < 320~MeV/c^2$. Ποιες είναι οι επιτρεπόμενες τιμές της ορμής του π^+ στην περίπτωση αυτή; $[4\mu]$
- (γ) Ποια είναι η μέγιστη τιμή για την μάζα $m_{\pi^+\pi^0}$ στην περίπτωση του ερωτήματος (β); [3μ]

3. $[10\mu]$

- (α) Θα μπορούσε το φαινόμενο των ταλαντώσεων των ουδέτερων καονίων $(\overline{K}^0 \leftrightarrow K^0)$ να υπήρχε χωρίς παραβίαση της CP; $[4\mu]$
- (β) Γιατί δεν παρατηρούνται ταλαντώσεις παραδοξότητας στις διεγερμένες καταστάσεις των ουδέτερων K-μεσονίων, $\overline{K}^{*0}(892)$ και $K^{*0}(892)$; $[6\mu]$

4. $[10\mu]$

Ποιες από τις παρακάτω διεργασίες ισχυρών αλληλεπιδράσεων απαγορεύονται από διατήρηση του isospin;

- $(\alpha) \omega(783) \to \rho^{+}(770)\pi^{-} [2\mu]$
- $(\beta) \varphi(1680) \to \varphi(1020)\pi^0 \ [2\mu]$
- $(\gamma) \ K^*(892) \to K\pi$ που περιλαμβάνει τις ακόλουθες τέσσερεις περιπτώσεις διασπάσεων:
- (i) $K^{*+} \to K^+\pi^0$, (ii) $K^{*+} \to K^0\pi^+$, (iii) $K^{*0} \to K^0\pi^0$ kai (iv) $K^{*0} \to K^-\pi^+$. [4 μ]
- $(\delta) \rho^0(770) \to \pi^0 \pi^0 [2\mu]$

Κάποιες από τις διασπάσεις μπορεί να απαγορεύονται και για άλλους λόγους (π.χ. κινηματική), όπως επίσης διασπάσεις οι οποίες απαγορεύονται από το isospin μπορεί να πραγματοποιηθούν μέσω ασθενών ή ηλεκτρομαγνητικών αλληλεπιδράσεων.

5. $[10\mu]$

Η parity, P, και η συζυγία φορτίου C, αποτελούν καλές συμμετρίες για τις ισχυρές και ηλεκτρομαγνητικές αλληλεπιδράσεις, όπως άλλωστε συμβαίνει και για την στροφορμή. Με βάση αυτό απαντήστε τις ακόλουθες προτάσεις:

- (α) Το η-μεσόνιο διασπάται σε τρία πιόνια αλλά όχι σε δύο. Ποιος ο λόγος για τον οποίο δεν παρουσιάζεται η συγκεκριμένη διάσπαση; [2.5μ]
- (β) Η διάσπαση $B^+ \to K^+ \gamma$ είναι απαγορευμένη. Γιατί; [2.5μ]
- (γ) Τι αποτρέπει τη διάσπαση $\pi(1300) \rightarrow 3\gamma$; [2.5μ]
- (δ) Η διάσπαση $K^+ \to \pi^+ \pi^0$ παραβιάζει isospin και parity. Εξηγήστε γιατί καθώς και τον τρόπο με τον οποίο μπορεί να συμβεί. [2.5μ]

6. $[10\mu]$

Εξηγήστε γιατί οι J^{PC} συνδυασμοί 0^{+-} και 1^{-+} δεν είναι συμβατοί με για τη δημιουργία $q\bar{q}$ δέσμιας κατάστασης.

7. $[10\mu]$

Δίνονται τα σωματίδια: $\Omega^-=(sss)$ $\mathcal{E}^-=(dss)$ $\mathcal{E}^+=(uus)$ p=(uud) $D^-=(\bar{c}d)$

 $K^+=(u\bar s)$ $\pi^\pm=\left(u\bar d,\bar ud\right)$ και $\pi^0=\frac{1}{\sqrt{2}}\left(u\bar u-d\bar d\right)$. Βασισμένοι στην προηγούμενη πληροφορία, να περιγράψετε ποιους νόμους διατήρησης παραβιάζουν (αν παραβιάζουν) οι ακόλουθες διεργασίες. Αν οι διεργασίες επιτρέπονται, ποιες αλληλεπιδράσεις είναι υπεύθυνες για την πραγματοποίησή τους; Να κάνετε τα διαγράμματα Feynman σε επίπεδο quark για τις διεργασίες που επιτρέπονται.

(a)
$$\Omega^- \to \Xi^- \pi^-$$
 (b) $\Sigma^+ \to \pi^0 \pi^+$ (c) $\pi^0 \to \mu^+ e^- \bar{\nu}_e$ (d) $\pi^0 \to K^+ \pi^+ \pi^-$ (e) $\pi^0 \to e^+ \gamma$

8. $[10\mu]$

Για κάθε μια από τις παρακάτω διασπάσεις να κατασκευάσετε το διάγραμμα Feynman και να αναφέρετε ποια αλληλεπίδραση είναι υπεύθυνη για την διεργασία:

$$\begin{array}{lll} D^{*+} \to D^0 \pi^+ & D^+ \to \overline{K}{}^0 \pi^+ & K^{0*} \to K^+ \pi^- \\ & \Sigma^0 \to \Lambda \gamma & \tau^- \to \rho^- \nu_\tau & \pi^0 \to \gamma \gamma \\ & \text{ Linetal otl } D^{*+} = \left(c \bar{d} \right), \ D^0 = \left(c \bar{u} \right), \ \Sigma^0 = (u d s), \ \Lambda^0 = (u d s), \ K^{0*} = (d \bar{s}), \ K^+ = (u \bar{s}), \\ & \text{kal } \rho^- = (d \bar{u}). \end{array}$$

9. $[10\mu]$

(α) Το ποζιτρόνιουμ είναι μια ασταθής δέσμια κατάσταση ηλεκτρονίου-ποζιτρονίου. Ο χρόνος ζωής του δίνεται στο σύστημα των φυσικών μονάδων ως: $\tau = \frac{2}{ma^5}$, όπου $m = 0.512 MeV/c^2$ είναι η μάζα του ηλεκτρονίου και $\alpha = 1/137$, η σταθερά της λεπτής υφής. Να εκφράσετε τον χρόνο ζωής του ποζιτρόνιουμ σε sec. $[4\mu]$

(β) Προβλέψτε ποιο από τα π-μεσόνια, το π^0 ή το π^+ έχει τον μικρότερο χρόνο ζωής και δικαιολογήστε την απάντησή σας. Οι κύριες διασπάσεις των δύο μεσονίων είναι $\pi^0 \to \gamma\gamma$ και $\pi^+ \to \mu^+ \nu_\mu$. $[6\mu]$

10. [10µ]

Θεωρήστε την διάσπαση ενός φορτισμένου πιονίου εν πτήση $(\pi^+ \to \mu^+ \nu_\mu)$. Υποθέστε ότι το νετρίνο εκπέμπεται σε γωνία $\theta_\nu = 90^0$ ως προς τη διεύθυνση πτήσης του διασπώμενου πιονίου. Βρείτε την εξίσωση που περιγράφει τη γωνία εκπομπής του μιονίου, θ_μ , ως προς την διεύθυνση πτήσης του πιονίου. Θεωρήστε ότι το νετρίνο έχει μηδενική μάζα. Η εξίσωσή σας θα πρέπει να εκφραστεί συναρτήσει των m_π , m_μ , γ , και β .

43. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND d FUNCTIONS

Figure 43.1: The sign convention is that of Wigner (*Group Theory*, Academic Press, New York, 1959), also used by Condon and Shortley (*The Theory of Atomic Spectra*, Cambridge Univ. Press, New York, 1953), Rose (*Elementary Theory of Angular Momentum*, Wiley, New York, 1957), and Cohen (*Tables of the Clebsch-Gordan Coefficients*, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).

For
$$I=1$$
 (π, b, ρ, a) : $u\overline{d}$, $(u\overline{u}-d\overline{d})/\sqrt{2}$, $d\overline{u}$; for $I=0$ $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

$$\pi^{\pm}$$
 $I^{G}(J^{P}) = 1^{-}(0^{-})$

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

$$\rho(770)$$
 $I^{G}(J^{PC}) = 1^{+}(1^{-})$

$$\omega(782)$$
 $I^G(J^{PC}) = 0^-(1^{-1})$

$$\phi$$
(1020) $I^{G}(J^{PC}) = 0^{-}(1^{-})$

$$\phi$$
(1680) $I^{G}(J^{PC}) = 0^{-}(1^{-})$

 $K^+ = u\overline{s}$, $K^0 = d\overline{s}$, $\overline{K}^0 = \overline{d}s$, $K^- = \overline{u}s$, similarly for K^* 's

$$I(J^P) = \frac{1}{2}(0^-)$$

$$I(J^P) = \frac{1}{2}(0^-)$$

K*(892)
$$I(J^P) = \frac{1}{2}(1^-)$$

 $B^+=u\overline{b},\ B^0=d\overline{b},\ \overline{B}{}^0=\overline{d}\,b,\ B^-=\overline{u}\,b,$ similarly for B^* 's

$$B^{\pm}$$
 $I(J^P) = \frac{1}{2}(0^-)$

$$I(J^P) = \frac{1}{2}(0^-)$$