Chapitre 6

Trigonométrie

I. Relations trigonométriques

Le **cosinus**, le **sinus** et la **tangente** sont des outils qui permettent de calculer des longueurs de segments et des mesures d'angles dans des **triangles rectangles**.

Définition:

Dans un triangle rectangle:

Le cosinus d'un angle aigu est égal au rapport :

longueur du côté adjacent à cet angle longueur de l'hypoténuse

Définition:

Dans un triangle rectangle:

Le sinus d'un angle aigu est égal au rapport :

longueur du côté opposé à cet angle longueur de l'hypoténuse

Définition:

Dans un triangle rectangle:

La tangente d'un angle aigu est égal au rapport :

longueur du côté opposé à cet angle longueur du côté opposé à cet angle

Ces trois rapports ne dépendent que de la mesure de l'angle considéré.

$$\cos \widehat{ABC} = \frac{AB}{BC}$$

$$\sin \widehat{ABC} = \frac{AC}{BC}$$

$$\tan \widehat{ABC} = \frac{AC}{AB}$$

II. Formules trigonométriques

Propriétés:

Dans un triangle rectangle, quelle que soit la mesure d'un angle aigu α , on a :

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
 et $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$

Démonstrations:

$$\cos \widehat{ABC} = \frac{AB}{BC}$$
 ; $\sin \widehat{ABC} = \frac{AC}{BC}$

et d'après le théorème de Pythagore :

et d'après le théorème de
$$AB^{2} + AC^{2} = BC^{2}$$

$$\frac{AB^{2} + AC^{2}}{BC^{2}} = \frac{BC^{2}}{BC^{2}} = 1$$

$$\frac{AB^{2}}{BC^{2}} + \frac{AC^{2}}{BC^{2}} = 1$$

$$\cos^{2} \widehat{ABC} + \sin^{2} \widehat{ABC} = 1$$

$$\cos \widehat{ABC} = \frac{AB}{BC} \qquad ; \qquad AB = \frac{BC}{SC} \times \cos \widehat{ABC}$$

$$\sin \widehat{ABC} = \frac{AC}{BC} \qquad ; \qquad AC = \frac{BC}{SC} \times \sin \widehat{ABC}$$

$$\tan \widehat{ABC} = \frac{AC}{AB} = \frac{BC}{BC} \times \sin \widehat{ABC} = \frac{\sin \widehat{ABC}}{\cos \widehat{ABC}}$$

Annexe 1 : Valeurs remarquables

Il existe quelques angles pour lesquels on peut déterminer des valeurs exactes du cosinus, du sinus et donc de la tangente.

et donc de la	a tangente.	17				
angle	figure	démonstration				
60°	a a/2	$\widehat{DAC} = 60 \circ \text{ et } AC = a \text{ et } AD = \frac{a}{2}$ $\operatorname{donc} \qquad \cos 60 \circ = \frac{AD}{AC} = \frac{\frac{a}{2}}{a} = \frac{1}{2}$ D'après le théorème de Pythagore: $AC^2 = AD^2 + DC^2 \qquad ; \qquad a^2 = \frac{a^2}{2} + DC^2$ $DC^2 = a^2 - \frac{a^2}{4} = \frac{3a^2}{4} \qquad ; \qquad DC = \frac{\sqrt{3}a}{2}$ donc $\sin 60 \circ = \frac{DC}{AC} = \frac{\frac{\sqrt{3}a}{2}}{a} = \frac{\sqrt{3}}{2} \text{ et } \tan 60 \circ = \frac{\sin 60 \circ}{\cos 60 \circ} = \frac{\frac{\sqrt{3}}{2}}{2} = \sqrt{3}$				
30°	a a/2	$\widehat{ACD} = 30 \circ \text{ et } AC = a \text{ et } AD = \frac{a}{2}$ $\operatorname{donc} \qquad \sin 30 \circ = \frac{AD}{AC} = \frac{\frac{a}{2}}{a} = \frac{1}{2}$ $D'après \text{ le th\'eorème de Pythagore :}$ $AC^2 = AD^2 + DC^2 \qquad ; \qquad a^2 = \frac{a^2}{2} + DC^2$ $DC^2 = a^2 - \frac{a^2}{4} = \frac{3a^2}{4} \qquad ; \qquad DC = \frac{\sqrt{3}a}{2}$ donc $\cos 30 \circ = \frac{DC}{AC} = \frac{\frac{\sqrt{3}a}{2}}{a} = \frac{\sqrt{3}}{2} \text{ et } \tan 30 \circ = \frac{\sin 30 \circ}{\cos 30 \circ} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}$				
45°	A 45°	$\widehat{BAC} = \widehat{BCA} = 45^{\circ} donc AB = BC$ D'après le théorème de Pythagore : $AC^{2} = AB^{2} + BC^{2} \qquad ; \qquad a^{2} = 2 \times AB^{2}$ $AB^{2} = \frac{a^{2}}{2} \qquad ; \qquad AB = \frac{a}{\sqrt{2}} = BC$ donc $\cos 45^{\circ} = \frac{AB}{AC} = \frac{\frac{a}{\sqrt{2}}}{a} = \frac{1}{\sqrt{2}} \text{ et } \sin 45^{\circ} = \frac{BC}{AC} = \frac{\frac{a}{\sqrt{2}}}{a} = \frac{1}{\sqrt{2}}$ $\tan 45^{\circ} = \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = 1$				

Annexe 2 : Quart de cercle trigonométrique

Les relations trigonométriques peuvent également être introduites à partir du quart de cercle trigonométrique : on s'intéresse à l'abscisse (cosinus) et à l'ordonnée (sinus) d'un point situé sur un quart de cercle de rayon 1.

Le quart de cercle trigonométrique permet de démontrer certaines identités trigonométriques :

$$\cos(90-\alpha)=\sin\alpha$$

$$\sin(90-\alpha)=\cos\alpha$$

• $\cos(\alpha + \beta) = \cos \alpha \times \cos \beta - \sin \alpha \times \sin \beta$

• $\sin(\alpha+\beta)=\cos\alpha\times\sin\beta+\sin\alpha\times\cos\beta$

cas particulier: $(\alpha = \beta)$

• $\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha$

• $\sin(2\alpha) = 2 \times \cos \alpha \times \sin \alpha$

Remarque:

Ces formules trigonométriques permettent d'obtenir de nouvelles identités trigonométriques :

$$2 \times \cos \alpha \times \sin \alpha$$

•
$$\tan(2\alpha) = \frac{\frac{2 \times \cos \alpha \times \sin^2 \alpha}{\cos^2 \alpha}}{\frac{\cos^2 \alpha - \sin^2 \alpha}{\cos^2 \alpha}} = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$$

• $\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha = \cos^2 \alpha + \sin^2 \alpha - 2\sin^2 \alpha = 1 - 2\sin^2 \alpha$

Extension:

• A partir de

$$\cos 45^\circ = \sin 45^\circ = \frac{1}{\sqrt{2}}$$
 et $\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2}$ et $\cos^2 \alpha = 1 - \sin^2 \alpha$

on peut obtenir des valeurs exactes pour les relations trigonométriques de certains angles :

•
$$\sin 22.5^{\circ} = \sqrt{\frac{1-\cos 45^{\circ}}{2}} = \sqrt{\frac{1-\frac{1}{\sqrt{2}}}{2}} = \sqrt{\frac{1}{2} - \frac{1}{2\sqrt{2}}} = \sqrt{\frac{2-\sqrt{2}}{4}} = \frac{\sqrt{2-\sqrt{2}}}{2}$$

•
$$\cos 22.5^{\circ} = \sqrt{1 - \sin^2 22.5^{\circ}} = \sqrt{1 - \frac{2 - \sqrt{2}}{4}} = \sqrt{\frac{2 + \sqrt{2}}{4}} = \frac{\sqrt{2 + \sqrt{2}}}{2}$$

•
$$\tan 22.5^{\circ} = \frac{\sin 22.5^{\circ}}{\cos 22.5^{\circ}} = \frac{\frac{\sqrt{2-\sqrt{2}}}{2}}{\frac{\sqrt{2+\sqrt{2}}}{2}} = \frac{\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}} = \sqrt{\frac{2-\sqrt{2}}{2+\sqrt{2}}} = \sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}$$

On peut ainsi déterminer les valeurs exactes de :

 $\cos 11,25^{\circ}$, $\sin 11,25^{\circ}$, $\tan 11,25^{\circ}$, $\cos 5,625^{\circ}$, $\sin 5,625^{\circ}$, $\tan 5,625^{\circ}$, etc...

• Et en partant de

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$$
 et $\sin 30^{\circ} = \frac{1}{2}$ et $\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2}$ et $\cos^2 \alpha = 1 - \sin^2 \alpha$ on peut obtenir les valeurs exactes de :

 $\cos 15^{\circ}$, $\sin 15^{\circ}$, $\tan 15^{\circ}$, $\cos 7.5^{\circ}$, $\sin 7.5^{\circ}$, $\tan 7.5^{\circ}$, etc...

Annexe 3 : Table trigonométrique

Angle (°)	cosinus	sinus	tangente		
0	1	0	0		
1	0.9998	0.0175	0.0175		90
2	0.9994	0.0349	0.0349	57.2900	89
3	0.9986	0.0523	0.0524	28.6363	88
4	0.9976	0.0698	0.0699	19.0811	87
5	0.9962	0.0872	0.0875	14.3007	86
6	0.9945	0.1045	0.1051	11.4301	85
7	0.9925	0.1219	0.1228	9.5144	84
8	0.9903	0.1392	0.1405	8.1443	83
9	0.9877	0.1564	0.1584	7.1154	82
10	0.9848	0.1736	0.1763	6.3138	81
11	0.9816	0.1908	0.1944	5.6713	80
12	0.9781	0.2079	0.2126	5.1446	79
13	0.9744	0.2250	0.2309	4.7046	78
14	0.9703	0.2419	0.2493	4.3315	77
15	0.9659	0.2588	0.2679	4.0108	76
16	0.9613	0.2756	0.2867	3.7321	75
17	0.9563	0.2924	0.3057	3.4874	74
18	0.9511	0.3090	0.3249	3.2709	73
19	0.9455	0.3256	0.3443	3.0777	72
20	0.9397	0.3420	0.3640	2.9042	71
21	0.9336	0.3584	0.3839	2.7475	70
22	0.9272	0.3746	0.4040	2.6051	69
23	0.9205	0.3907	0.4245	2.4751	68
24	0.9135	0.4067	0.4452	2.3559	67
25	0.9063	0.4226	0.4663	2.2460	66
26	0.8988	0.4384	0.4877	2.1445	65
27	0.8910	0.4540	0.5095	2.0503	64
28	0.8829	0.4695	0.5317	1.9626	63
29	0.8746	0.4848	0.5543	1.8807	62
30	0.8660	0.5000	0.5774	1.8040	61
31	0.8572	0.5150	0.6009	1.7321	60
32	0.8480	0.5299	0.6249	1.6643	59
33	0.8387	0.5446	0.6494	1.6003	58
34	0.8290	0.5592	0.6745	1.5399	57
35	0.8192	0.5736	0.7002	1.4826	56
36	0.8090	0.5878	0.7265	1.4281	55
37	0.7986	0.6018	0.7536	1.3764	54
38	0.7880	0.6157	0.7813	1.3270	53
39	0.7771	0.6293	0.8098	1.2799	52
40	0.7660	0.6428	0.8391	1.2349	51
41	0.7547	0.6561	0.8693	1.1918	50
42	0.7431	0.6691	0.8093	1.1504	49
43	0.7314	0.6820	0.9004		49
43	0.7193	0.6947	0.9323	1.1106 1.0724	48
45	0.7193	0.6947	1.0000	1.0724	46
	U. /U / I	U./U/I	1.0000	1.0333	40