Verslag Tinlab Advanced Algorithms

J. I. Weverink 176-671

11 maart 2021

Inhoudsopgave

1	Inlei	ding	2	
2	Requirements 2			
	2.1	Requirements	2	
	2.2	specificaties	2	
	2.3	Het vier variabelen model	2	
		2.3.1 Monitored variabelen	2	
		2.3.2 Controlled variabelen	2	
		2.3.3 Input variabelen	2	
		2.3.4 Output variabelen	2	
	2.4	Rampen	2	
		2.4.1 Ramp 1	2	
		2.4.2 Ramp 2	2	
		2.4.3 Ramp 3	2	
		2.4.4 Ramp 4	3	
		2.4.5 Ramp 5	3	
		2.4.6 Ramp 6	3	
		2.1.0 Nump 0		
3	Mod	ellen	3	
	3.1	De Kripke structuur	4	
	3.2	Soorten modellen	4	
	3.3	Tiid	4	
	3.4	Guards en invarianten	4	
	3.5	Deadlock	4	
	3.6	Zeno gedrag	4	
	5.0	Zeno geurag	1	
4	Logi	са	4	
	4.1	Propositielogica	4	
	4.2	Predicatenlogica	4	
	4.3	Kwantoren	4	
	4.4	Dualiteiten	4	
		Buditeiteit	•	
5	Com	putation tree logic	4	
	5.1	De computation tree	4	
	5.2	Operator: AG	4	
	5.3	Operator: EG	4	
	5.4	Operator: AF	4	
	5.5	Operator: EF	4	
	5.6	Operator: AX	4	
	5.7	Operator: EX	4	
	5.8	Operator: p U q	4	
	5.9	Operator: p R q	4	
			4	
	-	Fairness	4	
		LIVEUEDO	4	

1 Inleiding

Zie hier een referentie naar Royce [?] en nog een naar Clarke [?]...

2 Requirements

2.1 Requirements

Requirements zijn punten opgesteld tijdens het opzetten van een project. Requirements zijn punten waar een systeems aan moet voldoen.

- 2.2 specificaties
- 2.3 Het vier variabelen model
- 2.3.1 Monitored variabelen
- 2.3.2 Controlled variabelen
- 2.3.3 Input variabelen
- 2.3.4 Output variabelen
- 2.4 Rampen
- 2.4.1 Ramp 1

Beschrijving

Datum en plaats

Oorzaak

2.4.2 Ramp 2

Beschrijving

Datum en plaats

Oorzaak

2.4.3 Ramp 3

Beschrijving

Datum en plaats

Oorzaak

- 2.4.4 Ramp 4
- 2.4.5 Ramp 5
- 2.4.6 Ramp 6

3 Modellen

Een goed model heeft een duidelijk object dat gemodelleerd moet worden, er is duidelijk **wat** er beschreven moet worden.

Een goed model heeft een duidelijk doel. -waarom modelleren we? (voor communicatie of verificatie, analyse, etc.)

Een goed model is traceerbaar: elk onderdeel is te herleiden tot de onderdelen van het ëchte" systeem.

Een goed model is waarheidsgetrouw: relevante onderdelebn van het model komen terug in de werkelijkheid.

een goed model is eenvoudig, maar niet te eenvoudig

Een goed model is uitbreidbaar en herbruikbaar: in de toekomst is het eenvoudig verder te werken met dit model en kunnen zelfs *klassen* van vergelijkbare systemen gemaakt worden

Een goed model deelt geen jargon/semantiek met andere documenten en modellen.

Richtlijnen (tegenstrijdig heden:

Waarheidgetrouw vs simpelheid duidelijheid vs. gedeeld jargon/semantiek

- 3.1 De Kripke structuur
- 3.2 Soorten modellen
- 3.3 Tijd
- 3.4 Guards en invarianten
- 3.5 Deadlock
- 3.6 Zeno gedrag
- 4 Logica
- 4.1 Propositielogica
- 4.2 Predicatenlogica
- 4.3 Kwantoren
- 4.4 Dualiteiten
- 5 Computation tree logic
- 5.1 De computation tree
- 5.2 Operator: AG
- 5.3 Operator: EG
- 5.4 Operator: AF
- 5.5 Operator: EF
- 5.6 Operator: AX
- 5.7 Operator: EX
- 5.8 Operator: p U q
- 5.9 Operator: p R q
- 5.10 Fairness
- 5.11 Liveness