

ASESORÍAS MATEMÁTICAS BURGOD ÁREA DE MATEMÁTICAS UNIVERSITARIAS. CÁLCULO III - INGENIERÍA CIVIL - USACH GUÍA PEP 1 1S 2023

PROF.: CRISTIAN BURGOS G.

Ejercicios sobre continuidad, derivadas parciales, diferenciabilidad, derivada direccional.

Ejercicio 1.

Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} 2xy \left(\frac{x^2 - y^2}{x^2 + y^2}\right) & \text{si } x^2 + y^2 \neq 0\\ 0 & \text{si } x = y = 0 \end{cases}$$

- 1. Determine (si es posible) $\nabla f(0,0)$.
- 2. Determine $f_x(x,y)$ y $f_y(x,y)$ si $(x,y) \neq (0,0)$
- 3. Muestre que $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$.

Ejercicio 2.

Considere la función
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 definida por $f(x,y) = \begin{cases} \frac{x^3 y \sin(xy^2)}{x^6 + y^6} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$

- 1. Determine si existen $f_x(0,0)$ y $f_y(0,0)$ y la derivada direccional $f'((0,0),\hat{v})$, donde $||\hat{v}|| = ||(v_1,v_2)|| = 1$.
- 2. Determine si f es diferenciable en (0,0).

Ejercicio 3.

Considerando la función

$$f(x,y) = \begin{cases} y \sin\left(\frac{xy}{\sqrt{x^2 + y^2}}\right) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- 1. Determine si f es continua en (0,0).
- 2. Determinar $\nabla f(0,0)$.
- 3. Determine si f es diferenciable en (0,0).

ASESORÍAS MATEMÁTICAS BURGOD ÁREA DE MATEMÁTICAS UNIVERSITARIAS. CÁLCULO III - INGENIERÍA CIVIL - USACH

GUÍA PEP 1 1S 2023

PROF.: CRISTIAN BURGOS G.

Ejercicios de regla de la cadena

Ejercicio 1.

1. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función diferenciable tal que $f_x + f_y = 0$, $f(x,y) \neq 0$ para todo $(x,y) \in \mathbb{R}^2$. Considere la función $F: \mathbb{R}^2 \to \mathbb{R}$ dada por $F(x,y) = \frac{x}{f(x,y)}$. Demuestre que

$$\frac{\partial F}{\partial x}(x,y) + \frac{\partial F}{\partial y}(x,y) = \frac{F(x,y)}{x}$$

2. Sea $u(x,t) = \phi(x-at) + \psi(x+at)$, donde ϕ y ψ son dos funciones reales de variable real, dos veces derivables. Pruebe que

$$u_{tt} - a^2 u_{xx} = 0$$

Ejercicio 2.

1. Sea $u(x,y) = xyf\left(\frac{1}{x} + \frac{1}{y}\right)$, con f diferenciable. Obtenga la función g(x,y) de modo que

$$x^{2} \frac{\partial u}{\partial x} - y^{2} \frac{\partial u}{\partial y} = g(x, y) \cdot u$$

para todo x, y con $x \neq 0$, $y \neq 0$.

2. La función f(x,y) posee por lo menos hasta derivadas parciales de segundo orden continuas en una vecindad de (x,y), si consideramos la función $g(u,v)=f\left(e^v\cos u,e^v\sin u\right)$, demostrar que

$$e^{-2v} (g_{uu} + g_{vv}) = f_{xx} + f_{yy}$$

Ejercicio 3.

1. Sea $\phi:\mathbb{R}\to\mathbb{R}$ una función real diferenciable que verifica

$$\phi'\left(a^{\frac{p}{p-1}} + b^{\frac{p}{p-1}}\right) = \frac{p}{ab}$$

para $p \in \mathbb{R} - \{1\}$ y $a, b \in \mathbb{R} - \{0\}$. Considere la función diferenciable $g : \mathbb{R}^2 \to \mathbb{R}$ definida por $g(x, y) = x^p + y^p$. Determine $\nabla (\phi \circ g)(x_0, y_0)$, donde $(x_0, y_0) = \left(a^{\frac{p}{p-1}}, b^{\frac{p}{p-1}}\right)$.

2. Considere $g: \mathbb{R}^2 \to \mathbb{R}^3$ y $f: \mathbb{R}^3 \to \mathbb{R}^2$ definidas por

$$g(x,y) = (xy, 5x, y^{3})$$
$$f(x, y, z) = (3x^{2} + y^{2} + z^{2}, 5xyz)$$

Determine $J(f \circ g)(x, y, z)$.

ASESORÍAS MATEMÁTICAS BURGOD ÁREA DE MATEMÁTICAS UNIVERSITARIAS. CÁLCULO III - INGENIERÍA CIVIL - USACH GUÍA PEP 1 1S 2023

PROF.: CRISTIAN BURGOS G.

Ejercicio 4.

1. Sea $f:\mathbb{R}^2\to\mathbb{R}^2$ y $g:\mathbb{R}\to\mathbb{R}^2$, g diferenciable y f definida por

$$f(x,y) = (ax + by, cx - dy)$$

con $a,b,c\in\mathbb{R}$, $a+c\neq 0$ y $b\neq 0$. Sabiendo que

$$D(f \circ g) = \begin{pmatrix} \sin(x) \\ \cos(2x) \end{pmatrix}$$

Determine el valor de g.

2. Sean $G(x,y,z) = \|(x,y,z)\|$ y $F(r,\theta) = (r\cos\theta,r\sin\theta,r)$. Calcule, usando la regla de la cadena, la matriz derivada $(G\circ F)$ en $P_0=(1,0)$.

ASESORÍAS MATEMÁTICAS BURGOD ÁREA DE MATEMÁTICAS UNIVERSITARIAS. CÁLCULO III - INGENIERÍA CIVIL - USACH GUÍA PEP 1 18 2023

PROF.: CRISTIAN BURGOS G.

Ejercicios sobre teorema de la función implícita, inversa.

Ejercicio 1.

1. Considere la ecuación no lineal

$$\sin(z) + xy + e^z = 0$$

Demuestre que en una vecindad de (0,0), la variable z se puede despejar como una función de clase \mathcal{C}^1 de (x,y) tal que z(0,0)=0. Deduzca que $\nabla z(0,0)=(0,0)$.

2. Sea f una función diferenciable tal que f(cx - az, cy - bz) = 0, donde z se define implícitamente como una función diferenciable de las variables x e y. Demuestre que

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = c$$

Ejercicio 2.

1. Sea $f:U\subseteq\mathbb{R}^3\to\mathbb{R}$ definida por $f(x,y,z)=g\left(x+\frac{z}{y},y+\frac{z}{x}\right)$, con $xy\neq 0$ y $g:\mathbb{R}^2\to\mathbb{R}$ función de clase \mathcal{C}^1 , tal que $\frac{\partial f(x,y,z)}{\partial z}\neq 0$, $\forall (x,y,z)\in U$. Suponga que la función f(x,y,z)=0 define implícitamente a z como una función de clase C^1 de x e y. Verifique si se cumple la igualdad siguiente

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z - xy$$

2. Muestre que en una vecindad del punto $(x_0, y_0, u_0, v_0) = (0, 1, 1, 1)$ se puede resolver el sistema

$$\begin{cases} u\sin(x) + yv^2u &= 1\\ u^2v + xyv^4 &= 1 \end{cases}$$

de manera única para u, v como funciones clase C^1 de x, y. Determine $u_x(0,1)$ y $v_x(0,1)$.

ASESORÍAS MATEMÁTICAS BURGOD ÁREA DE MATEMÁTICAS UNIVERSITARIAS. CÁLCULO III - INGENIERÍA CIVIL - USACH GUÍA PEP 1 1S 2023

PROF.: CRISTIAN BURGOS G.

Ejercicio 3.

1. Sea el sistema

$$\begin{cases} 3xy + x^2z^2 + z^3 + 2uv - 4v - 3u &= 0\\ x^3 + y^3 + z^3 - 2v^2 - u &= 0 \end{cases} (*)$$

Demuestre que el sistema (*) determina expresiones implícitas u = u(x, y, z), v = (x, y, z) en una vecindad de $P_0 = (1, 1, 1, 1, 1)$. Determine las derivadas parciales de estas funciones en (1, 1, 1).

2. Sean $f_1, f_2, g_1, g_2 : \mathbb{R} \to \mathbb{R}$ funciones continuas tales que $f_1(1) = f_2(1) = g_1(1) = g_2(1) = 1$. Considere las expresiones

$$\begin{cases} \int_{u}^{v^{2}} f_{1}(t)dt &= \int_{x}^{y} g_{1}(t)dt \\ \int_{u^{3}}^{v^{4}} f_{2}(t)dt &= \int_{x^{2}}^{y^{2}} g_{2}(t)dt \end{cases}$$

Demuestre que este sistema determina funciones implícitas u=u(x,y), v=v(x,y) en una vecindad del punto $P_0(1,1,1,1)$. Determine $\nabla u(1,1)$ y $\nabla v(1,1)$.

Ejercicio 4.

- 1. Considere la función $F: \mathbb{R}^2 \to \mathbb{R}^2$ definida por $F(u, v) = (e^{u+v}, e^{u-v})$. Demuestre que es posible definir u y v como funciones de clase C^1 de x e y, donde $x = e^{u+v}$, $y = e^{u-v}$. Determine $JF^{-1}(u, v)$.
- 2. Sea $g:\mathbb{R}\to\mathbb{R}$ una función continua tal que g(0)=1. Considere la función $F:\mathbb{R}^2\to\mathbb{R}^2$ dada por

$$F(x,y) = \left(\int_{x}^{y} g(t)dt, \int_{y}^{x^{2}} g(t)dt\right)$$

Demuestre que esta función tiene una inversa F^{-1} definida en una bola B del origen coordenadas. Determine $JF^{-1}(0,0)$.

3. Sean $f,g:\mathbb{R}\to\mathbb{R}$ dos funciones de clase \mathcal{C}^1 . Considere la función $F:\mathbb{R}^3\to\mathbb{R}^3$ definida por F(x,y,z)=(x+f(y)+g(z),y+g(z),z). Demuestre que F tiene inversa $F^{-1}:\mathbb{R}^3\to\mathbb{R}^3$ y determine $JF^{-1}(u,v,w)$, donde (u,v,w)=F(x,y,z).

ASESORÍAS MATEMÁTICAS BURGOD ÁREA DE MATEMÁTICAS UNIVERSITARIAS. CÁLCULO III - INGENIERÍA CIVIL - USACH

GUÍA PEP 1 1S 2023

PROF.: CRISTIAN BURGOS G.

Ejercicios sobre planos tangentes, recta normal, gradiente y geometría.

Ejercicio 1.

1. Considere la superficie definida por la ecuación

$$z = 2x^2 + 6xy + y^2 - 5y$$

Encuentre la ecuación del plano tangente a esta superficie en el punto (1, 1, 4).

2. Determine la ecuación del plano tangente a la superficie $z = x \sin(x+y)$ en el punto (-1,1,0)

Ejercicio 2.

1. Sea $f: \mathbb{R} \to \mathbb{R}$ una función diferenciable en 5, con f(5) = 7 y f'(5) = 10. Considere la superficie de revolución dado por el conjunto

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 : z = f\left(\sqrt{x^2 + y^2}\right) \right\}.$$

Determine la ecuación del plano tangente a S en el punto (3,4,7).

- 2. Determine las ecuaciones de los planos tangentes al elipsoide $x^2+y^2+2z^2=2$ en los puntos de intersección de éste con la recta $x=3t,\,y=2t$, z=t, con $t\in\mathbb{R}$.
- 3. Determine las ecuaciones de los planos tangentes a la superficie $z=x^2+3y^2$ en los puntos de intersección de ésta con la recta que resulta de la intersección de los planos 2x-y-z=0, x+3y-4z=0.

Ejercicio 3.

- 1. Demuestre que los planos tangentes a la superficie $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a}$ cortan los ejes coordenados en puntos cuya suma de distancias al origen es constante.
- 2. Demuestre que las rectas normales a la superficie $z = \frac{1}{2}x^2 + \frac{1}{3}y^3 + y$, en los puntos (x_0, y_0, z_0) con $x_0 \neq 0$, no cortan el eje z.

Ejercicio 4.

- 1. Determine los puntos sobre el elipsoide $x^2+2y^2+3z^2=1$, donde el plano tangente es paralelo al plano 3x-y+3z=1.
- 2. Muestre que todos los planos tangentes al cono $z = \sqrt{x^2 + y^2}$ pasan por el origen.
- 3. Considere la elipsoide dada por

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Muestre que la ecuación del plano tangente en un punto $P_0(x_0, y_0, z_0)$ del elipsoide está dado por

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} + \frac{zz_0}{c^2} = 1$$

ASESORÍAS MATEMÁTICAS BURGOD ÁREA DE MATEMÁTICAS UNIVERSITARIAS. CÁLCULO III - INGENIERÍA CIVIL - USACH GUÍA PEP 1 18 2023

PROF.: CRISTIAN BURGOS G.

Ejercicios sobre derivadas direccionales de funciones diferenciables.

Ejercicio 1.

1. Sea $f: \mathbb{R}^3 \to \mathbb{R}$ una función diferenciable de la cual se conoce la siguiente información en el punto $P_0(0,4,-1)$

$f(P_0)$	$f_x(P_0)$	$f_y(P_0)$	$f_z(P_0)$
25	1	2	-1

- a) Calcule la derivada direccional de f en P_0 en la dirección del vector (1, -3, 4)
- b) Encuentre la dirección para la cual la derivada direccional es máxima y calcule dicha derivada dreccional
- 2. Sea $f(x,y)=x^2-xy-2y^2$. Calcule $\frac{\partial f}{\partial v}(1,2)$, donde v es la dirección que forma un ángulo de $\frac{\pi}{3}$ con el semieje positivo de las abscisas.

Ejercicio 2.

- 1. Sea $f:U\subseteq\mathbb{R}^2\to\mathbb{R}$ una función diferenciable definida en un conjunto abierto U de \mathbb{R}^2 y sea $p\in U$. Suponga que $f_x(p)=3$ y $f_y(p)=4$.
 - a) ¿En qué dirección se tiene que $D_v f(p) = 2$?
 - b) ¿En qué dirección se tiene que $D_v f(p) = 0$?
- 2. Sea $f:U\subseteq\mathbb{R}^2\to\mathbb{R}$ una función diferenciable definida en un conjunto abierto U de \mathbb{R}^2 y sea $p\in U$. Suponga que $D_uf(p)=3$ y $D_vf(p)=2$, donde $u=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ y $v=\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)$. Calcule las derivadas parciales de f en p.

Ejercicio 3.

1. Sea $f: U \subseteq \mathbb{R}^2 \to \mathbb{R}$ una función diferenciable definida en un conjunto abierto U de \mathbb{R}^2 y sea $p \in U$. Suponga que $D_u f(p) = a$ y $D_v f(p) = b$, donde $u = (x_1, -y_1)$ y $v = (x_2, y_2)$. Demuestre que las derivadas parciales de f en p son

$$f_x(p) = \frac{ay_2 - by_1}{x_1y_2 - x_2y_1}$$
$$f_y(p) = \frac{bx_1 - ax_2}{x_1y_2 - x_2y_1}$$

2. Sea $f:U\subseteq\mathbb{R}^n\to\mathbb{R}$ una función diferenciable definida en un abierto U de \mathbb{R}^n y sea $p\in U$. Si v es un fector unitario de \mathbb{R}^n , entonces demuestre que

$$\frac{\partial f}{\partial (-v)}(p) = -\frac{\partial f}{\partial v}(p)$$

ASESORÍAS MATEMÁTICAS BURGOD ÁREA DE MATEMÁTICAS UNIVERSITARIAS. CÁLCULO III - INGENIERÍA CIVIL - USACH

PROF.: CRISTIAN BURGOS G.

Ejercicios sobre valores extremos

Ejercicio 1.

- 1. Para $f: \mathbb{R}^2 \to \mathbb{R}$, definida por $f(x,y) = 3x^3 + y^2 9x 6y + 1$. Obtenga sus puntos críticos y clasifíquelos. (máximos, mínimos o puntos silla).
- 2. Para $f: \mathbb{R}^2 \to \mathbb{R}$, definida por $f(x,y) = xye^{-x^2-y^2}$. Obtenga sus puntos críticos y clasifíquelos. (máximos, mínimos o puntos silla).

Ejercicio 2.

- 1. Sea $f: U \subseteq \mathbb{R}^2 \to \mathbb{R}$ definida en el abierto U, dada por $f(x,y) = x^4 2px^2 y^2 + 3$, donde p es una constante entera. Calcular los valores extremos de la función.
- 2. Considere la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = \ln(1 + e^x + e^y) ax by$, donde a,b > 0.
 - a) Demuestre que si $a + b \ge 1$, entonces la función no tiene puntos críticos. Calcule explícitamente el único punto crítico cuando a + b < 1.
 - b) Clasifique el punto crítico encontrado en el item anterior usando las condiciones de segundo orden.

Ejercicio 3.

- 1. Usando multiplicadores de Lagrange, determine los valores máximo y mínimo de las funciones siguientes, sujetas a la restricción propuesta
 - a) $f(x,y) = x^2 + y^2$, xy = 1.
 - b) $f(x,y,z) = x^2 + y^2 + z^2$, x + y + z = 12.
- 2. Determine los valores máximos y mínimos absolutos de f en el conjunto D.
 - a) $f(x,y) = x^2 + y^2 + x^2y + 4$, si $D = \{(x,y) \in \mathbb{R}^2 : |x| \le 1, |y| \le 1\}$
 - b) $f(x,y) = xy^2$, si $D = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0, x^2 + y^2 \le 3\}$

Ejercicio 4.

- 1. Determine los puntos más cercanos y más alejados del origen de la curva cerrada $x^2 + y^2 + xy = 4$.
- 2. Determine los extremos absolutos de la función $f(x,y) = 4x^2 + 10y^2$ en la región $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$
- 3. Encuentre el máximo y el mínimo de la función $f(x,y,z) = x^2y^2z^2$ en el conjunto

$$A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = R^2\}$$

donde R>0. Deducir que para todo $a,b,c\geq 0,$ se tiene la desigualdad

$$\sqrt[3]{abc} \le \frac{(a+b+c)^3}{3}$$