Theory of atom

Jinyuan Wu

March 7, 2023

1 Hydrogen

The energy unit Hartree is defined as twice of E_1 . That's to say, one Hartree is equal to $27.6 \,\mathrm{eV}$, and if the Hartree unit is used, then the energy levels of the hydrogen atom are $1/2n^2$.

1.1 Stability

The hydrogen atom is bound together by Coulomb potential 1/r. From Virial theorem, we will find not all attractive potentials lead to stable bound states. Specifically, $1/r^2$ or $1/r^3$ doesn't give us bound states in 3D. This can be shown by explicitly calculating T + V: if it's greater than zero for the whole spectrum, then of course we don't have stable bound states.

1.2 Finite size effects

1.2.1 Finite nucleus mass

In reality, the nucleus has a finite mass and therefore also moves together with the electron. Fortunately this is a two-body problem and we can work in the center of mass frame, and the EOM of $r_{\rm electron} - r_{\rm nucleus}$ is governed by the usual Newton's second law with the mass being

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \approx m_1 - \frac{m_1^2}{m_2}, \quad m_2 \to \infty.$$
 (1)

Thus

$$\frac{\delta E_n}{E_n} = -\frac{m_1}{m_2} = -\frac{1}{1850} \tag{2}$$

for hydrogen. This relative error is the same for all energy levels; it immediately leads to the **isotope shift**, in which adding a neutron to the nucleus changes the energy levels. This is the most important correction.

1.2.2 Going into the nucleus

When r is smaller than the radius of the nucleus, it can be verified by Gauss's theorem that

$$V(r) = \frac{1}{2} \frac{r^2}{R_{\rm n}^3} - \frac{3}{2R_{\rm n}}.$$
 (3)

To see why, just calculate the force using this potential and check the force obtained by

$$4\pi r^2 \cdot F(r) = \int_0^r \frac{Ze}{\frac{4}{2}\pi R_p^3} \cdot 4\pi r'^2 \, dr'. \tag{4}$$

The constant term is there to guarantee continuity at $r = R_n$. So

$$V(r) = \begin{cases} -\frac{1}{r}, & r > R_{\rm n}, \\ \frac{1}{2} \frac{r^2}{R_{\rm o}^3} - \frac{3}{2R_{\rm n}}, & r < R_{\rm n}. \end{cases}$$
 (5)

So, we find the existence of a finite-size nucleus means we have a perturbation Hamiltonian

$$V(r) - V_0(r) = \frac{1}{r} + \frac{1}{2} \frac{r^2}{R_n^3} - \frac{3}{2R_n}.$$
 (6)

The first-order energy correction can therefore be determined. The magnitude is $1.6 \times 10^{-10} E_{\rm H}$. It's small, but is already observable using existing spectrography techniques.

1.3 Relativistic corrections

1.3.1 Spin-orbital coupling

The first order perturbation of the SOC Hamiltonian is

$$E^{(1)} = \frac{e^2}{8\pi\epsilon_0} \frac{1}{m^2 c} \left\langle \frac{\boldsymbol{L} \cdot \boldsymbol{S}}{r^3} \right\rangle.$$

Note that $L \cdot S$ extracts information about m and m_s (which are good quantum numbers) in the wave function: we have

$$L \cdot S = \frac{\hbar^2}{2} (j(j+1) - l(l+1) - s(s+1)). \tag{7}$$

So the energy perturbation is just

$$E^{(1)} = \frac{e^2}{8\pi\epsilon_0} \frac{1}{m^2 c} \left\langle \frac{1}{r^3} \right\rangle \cdot \frac{\hbar^2}{2} (j(j+1) - l(l+1) - s(s+1)).$$

Now we just add $E^{(1)}$ to T+V, and we find the influence of SOC can be seen as adding

$$H = \frac{e^2}{8\pi\epsilon_0} \frac{1}{m^2 c} \left\langle \frac{1}{r^3} \right\rangle \boldsymbol{L} \cdot \boldsymbol{S},\tag{8}$$

to the total Hamiltonian, where

$$\left\langle \frac{1}{r^3} \right\rangle = \frac{1}{l(l+1/2)(l+1)n^3}.$$
 (9)

Formally, this means we have averaged over $1/r^3$ only; but note that strictly speaking \boldsymbol{L} is no longer the old \boldsymbol{L} obtained from V+T, because after perturbation of SOC, the eigenstates themselves are changed, and so is $L_z = \sum m |n,l,m,m_s\rangle\langle n,l,m,m_s|$.

We can estimate the magnitude of SOC correction: we have

$$\frac{\delta E_n}{E_n} = \frac{E_n}{mc^2} = \frac{10^{-5}Z^2}{n^2}. (10)$$

1.3.2 Relativistic kinetic energy

Another relativistic effect, apart from SOC, is the kinetic energy of an electron is actually

$$T = \sqrt{m^2 c^4 + p^2 c^2},\tag{11}$$

and not just $p^2/2m$. So now we have a perturbation term in the kinetic energy. The Taylor expansion gives

$$T = mc^2 + \frac{p^2}{2m} - \frac{p^4}{8m^3c^2} + \cdots, (12)$$

and the first relativistic correction is

$$H = -\frac{p^4}{8m^3c^2}. (13)$$

Its expectation can be found using the following trick:

$$\langle \psi | H | \psi \rangle \propto (\langle \psi | p^2)(p^2 | \psi \rangle)$$

$$= \langle \psi | 2(E - V(r)) \cdot 2(E - V(r)) | \psi \rangle, \qquad (14)$$

and this can be further simplified using Virial's theorem

$$2\langle T \rangle = \langle \boldsymbol{r} \cdot \boldsymbol{v} V \rangle, \tag{15}$$

which, in the Coulomb case, means for all eigenstates (and not just the ground state), we have

$$\langle T \rangle = -E_n, \quad \langle V \rangle = 2E_n.$$
 (16)

The $\langle V^2 \rangle$ term can be evaluated using Feynman-Hellmun theorem

$$\frac{\partial E_n(\lambda)}{\partial \lambda} = \langle \psi(\lambda) | \frac{\partial H(\lambda)}{\partial \lambda} | \psi(\lambda) \rangle. \tag{17}$$

Recall that there is a

$$\frac{l(l+1)}{2r^2}$$

term in the Hamiltonian, and we find

$$\frac{\partial}{\partial l} \left(-\frac{1}{(n_r + l)^2} \right)^2 = \left\langle \frac{2l+1}{r^2} \right\rangle,\tag{18}$$

and $\langle 1/r^2 \rangle$ can then be found by taking the derivative of $E_n = E_{n_r+l}$. The final expression is

$$E_{\rm rel}^{(1)} = \frac{1}{2mc^2} \frac{(E_n^{(0)})^2}{mc^2} \left(\frac{4n}{l+1/2} - 3 \right). \tag{19}$$

This term is extremely small. It can be easily seen that when l = 0, the term takes its maximum, but even at the maximum its magnitude is still only $\sim 1 \, \mathrm{MHz}$.

Thus the main relativistic correction to atomic energy levels is SOC. The energy level splitting caused by SOC is called the **fine structure**. But not that the relative magnitude of it compared with Coulomb interaction between electrons is not known: it's possible that the single-body SOC is more important, but the opposite case – that Coulomb interaction between electrons is stronger – is also possible.

1.4 Electron-nucleus interaction

The interaction between the electron and the nucleus is of course not restricted to Coulomb interaction. The nucleus can have a spin, and then magnetic dipole interaction becomes a perturbation. We can link spin and magnetic moment by

$$\mu = \frac{g}{2m}S,\tag{20}$$

and we also have

$$\boldsymbol{B} = \frac{\mu_0}{4\pi r^3} (3(\boldsymbol{\mu} \cdot \hat{\boldsymbol{r}})\hat{\boldsymbol{r}} - \boldsymbol{\mu}) + \frac{2}{3}\mu_0 \boldsymbol{\mu} \delta^3(\boldsymbol{r}), \tag{21}$$

and therefore the Hamiltonian is

$$H = \frac{\mu_0 g_{\rm n} e^2}{8\pi m_{\rm n} m_e} \left(\frac{3(\boldsymbol{I} \cdot \hat{\boldsymbol{r}})(\boldsymbol{S} \cdot \hat{\boldsymbol{r}})}{r^3} - \boldsymbol{S} \cdot \boldsymbol{I} \right) + \frac{\mu_0 g_{\rm n} e^2}{3\pi m_{\rm n} m_e} \boldsymbol{I} \cdot \boldsymbol{S}.$$
 (22)

When l = 0, the first-order perturbation caused by this Hamiltonian is proportion to $\langle \mathbf{S} \cdot \mathbf{I} \rangle$, because the $(\mathbf{I} \cdot \hat{\mathbf{r}})(\mathbf{S} \cdot \hat{\mathbf{r}})$ vanishes after $\int d\Omega$. We define

$$F = I + S, \tag{23}$$

so that

$$I \cdot S = F(F+1) - I(I+1) - S(S+1), \tag{24}$$

and we can use F to label

The energy level splitting caused by this effect is hyperfine structure. We have

$$\frac{E_{\rm HFS}}{E_n} \sim 1 \times 10^{-7},\tag{25}$$

which is still larger than the finite size nucleus effect.