FILE HOME

FILE HCAPLUS

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 19 May 2005 VOL 142 ISS 21 FILE LAST UPDATED: 18 May 2005 (20050518/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d 14 ibib ab 1-42

ANSWER 1 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2004:452955 HCAPLUS

DOCUMENT NUMBER: 141:22207

Human monoclonal antibodies against CD25 TITLE:

INVENTOR(S): Schuurman, Janine; Havenith, Catharina Emanuele

Gerarda; Parren, Paul; Van De Winkel, Jan G. J.; Williams, Denise Leah; Petersen, Jorgen; Baadsgaard,

Ole

PATENT ASSIGNEE(S): Genmab A/s, Den.

SOURCE: PCT Int. Appl., 114 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

English LANGUAGE:

FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

	PATENT NO.				KIND DATE					APPL	ICAT	ION 1	. OI.	DATE					
	WO	2004	0455	12	A2		-	20040603		. ,	WO 2003-US36126					20031114			
		W:	ΑE,	AG,	AL,	AM,	ΑT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BW,	BY,	ΒZ,	CA,	CH,	
			CN,	·co,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,	
			GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	ΚP,	KR,	KZ,	LC,	
			LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NI,	NO,	
			NZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	TJ,	
			TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW		
		RW:	BW,	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	ÚĠ,	ZM,	ZW,	AM,	ΑZ,	
			BY,	KG,	KZ,	MD,	RU,	TJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	
			ES,	FI,	FR,	GB,	GR,	HU,	ΙE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	
			TR,	BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG
	US	2004	1706	26		A1		2004	0902	1	US 2	003-	7143	5,3		2	0031	114	
PRIO	RITY	APP	LN.	INFO	. :					. 1	US 2	002-	4266	90P	:	P 2	0021	115	
AB	Isc	late	d hu	man 1	mono	clona	al a	ntib	odie:	s wh	ich l	bind	to a	and	inhi	bit 1	huma	n CD	25,

and related antibody-based compns. and mols., are disclosed. The human

antibodies can be produced by a hybridoma, a transfectoma or in a nonhuman transgenic animal, e.g., a transgenic mouse, capable of producing multiple isotypes of human monoclonal antibodies by undergoing V(D)J recombination and isotype switching. Also disclosed are pharmaceutical compns. comprising the human antibodies, nonhuman transgenic animals, hybridomas and transfectomas which produce the human antibodies, and therapeutic and diagnostic methods for using the human antibodies.

L4 ANSWER 2 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2004:117156 HCAPLUS

DOCUMENT NUMBER:

140:180235

TITLE:

Purification of preproinsulins using two step ion

exchange chromatography

INVENTOR(S):

Thurow, Horst; Blumenstock, Hans;

Havenith, Chantalle

PATENT ASSIGNEE(S):

Aventis Pharma Deutschland GmbH, Germany

SOURCE:

Ger. Offen., 19 pp.

CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	TENT				KIN)	DATE				LICAT				D.	ATE	
•	1023				A1	_	2004	0212		DE :	2002-	1023	5168		2	0020	801
CA	2493	539			AA		2004	0212		CA :	2003-	2493	539		2	0030	718
WO	2004	0131	76		A1		2004	0212	1	WO :	2003-	EP78	20		2	0030	718
	W:	ΑĒ,	AG,	AL,	AM,	ΑT,	AU,	ΑZ,	BA,	BB	, BG,	BR,	BY,	BZ,	CA,	CH,	CN,
											, EE,						
											, KG,						
•		LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN	, MW,	MX,	MZ,	NO,	ΝŻ,	OM,	PH,
											, SL,						
							YU,										
	RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ	, TZ,	ŪĠ,	ZM,	ZW,	AM,	ΑZ,	BY,
		KG,	KZ,	MD,	RU,	TJ,	TM,	AΤ,	ΒE,	BG	, CH,	CY,	CZ,	DE,	DK,	EE,	ES,
		FI,	FR,	GB,	GR,	HU,	ΙE,	IT,	LU,	MC	, NL,	PT,	RO,	·SE,	SI,	SK,	TR,
		BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ	, GW,	ML,	MR,	NE,	SN,	TD,	TG
EP	1527	097			A1		2005	0504		EP :	2003-	7662	11		2	0030	718
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR	, IT,	LΙ,	LU,	NL,	SE,	MC,	PT,
		IE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	\mathtt{AL}	, TR,	BG,	.CZ,	EE,	HU,	SK	
US	2005	0800	00	•	A1		2005	0414		US :	2003-	6324	14		2	0030	801
PRIORIT	Y APP	LN.	INFO	. :						DE :	2002-	1023	5168	1	A 2	0020	801
										US :	2002-	4337	26P		P 2	0021	216
									,	WO :	2003-	EP78	20	1	w 2	0030	718

The invention refers to a procedure for chromatog. purification of preproinsulin whereby higher-mol. weight substances from aqueous solution of preproinsulin are separated through a first chromatog. on an anion exchange resin in flow-through mode and a subsequent second chromatog. on a cation exchanger in the adsorption mode, as well as to a procedure for production of insulin, which also includes the procedure for production of preproinsulin.

L4 ANSWER 3 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2002:295740 HCAPLUS

DOCUMENT NUMBER:

136:384936

TITLE:

Rat monocyte-derived dendritic cells function and migrate in the same way as isolated tissue dendritic cells

AUTHOR(S): Richters, C. D.; Mayen, I.; Havenith, C. E. G.

; Beelen, R. H. J.; Kamperdijk, E. W. A.

CORPORATE SOURCE: Department of Molecular Cell Biology, Faculty of

Medicine, VUMC, Amsterdam, 1081 BT, Neth.

SOURCE: Journal of Leukocyte Biology (2002), 71(4), 582-587

CODEN: JLBIE7; ISSN: 0741-5400

PUBLISHER: Federation of American Societies for Experimental

Biology

DOCUMENT TYPE: Journal LANGUAGE: English

Dendritic cells (DC) are the most potent antigen-presenting cells and are AB therefore useful to induce immune responses against tumor cells in patients. DC can be generated in vitro from monocytes using GM-CSF and IL-4, the so-called monocyte-derived DC (MoDC). To achieve antitumor responses, MoDC must be able to migrate to the draining lymph nodes after injection to induce cytotoxic T cells. Therefore, we studied migration of MoDC in a rat model. Functional rat MoDC were generated from PVG-RT7B rats and injected s.c. into PVG rats. These rat strains differ only at one epitope of the leukocyte-common antigen, which can be recognized by the antibody His 41. The advantage is that migrated cells can be detected in the draining lymph nodes by staining sections with His 41+; thus, migration is not influenced by labeling procedures. Rat MoDC migrated to the T-cell areas of the draining lymph nodes, just as isolated Langerhans cells or spleen DC do. In contrast, monocytes also migrated to the B-cell areas and the medulla.

REFERENCE COUNT: 24 THERE ARE

THERE ARE 24 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 4 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2002:89287 HCAPLUS

DOCUMENT NUMBER: 137:123627

TITLE: Gut-associated lactobacilli for oral immunisation

AUTHOR(S): Havenith, Carin E. G.; Seegers, Jos F. M.

L.; Pouwels, Peter H.

CORPORATE SOURCE: Department of Infection and Immunology, Special

Programme Infectious Diseases, TNO Prevention and

Health, Leiden, 2301 CE, Neth.

SOURCE: Food Research International (2002), 35(2/3), 151-163

CODEN: FORIEU; ISSN: 0963-9969

PUBLISHER: Elsevier Science Ltd.
DOCUMENT TYPE: Journal; General Review

LANGUAGE: English

A review. Lactobacilli have a number of properties which render them highly suited as vehicles for the delivery to the mucosa of compds. that are of pharmaceutical interest. Many strains of the genus Lactobacillus are capable of colonizing specific regions of the body e.g. the oral cavity and the gastro-intestinal and uro-genital tract, where they play an important role in maintaining a balanced ecosystem. Moreover, lactobacilli have been used for many centuries in food fermentation processes and are considered as GRAS organisms that can safely be used also for medical and veterinarian applications. Recent years have seen an impressive growth in the authors' understanding of the mol. genetic properties of lactobacilli and how to exploit this knowledge for the expression of foreign proteins. The immunomodulating capacity of lactobacilli together with the possibility to target antigens to specific sites of the bacterium offers attractive opportunities for the treatment of infectious diseases through vaccination, and of auto-immune diseases or other immune disorders by modulating the immune response in a directed and

predetd. way. In this overview the present state of the art regarding systems for the high-level expression of foreign antigens will be presented, as well as the authors' knowledge of the mol. mechanisms of mucosal adherence of lactobacilli. Finally, some immunol properties of lactobacilli will be discussed and their potential use as delivery vehicles for oral immunization purposes will be highlighted.

REFERENCE COUNT:

THERE ARE 80 CITED REFERENCES AVAILABLE FOR THIS 80 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 5 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN L4

ACCESSION NUMBER:

2001:835371 HCAPLUS

DOCUMENT NUMBER:

136:323759

TITLE:

AUTHOR(S):

Analysis of monocyte chemotactic protein-1 production

in different major histocompatibility

complex-restricted antigen presentation systems Tekstra, Janneke; Tjin, Esther P. M.; Tuk, Cornelis

W.; Broekhuis-Fluitsma, Donna, Havenith, Carin E.

G.; Beelen, Robert H. J.

CORPORATE SOURCE:

Department of Cell Biology and Immunology, Faculty of

Medicine, Vrije Universiteit, Amsterdam, 1081 BT,

Neth.

SOURCE:

Clinical Immunology (San Diego, CA, United States)

(2001), 101(1), 77-85

CODEN: CLIIFY; ISSN: 1521-6616

PUBLISHER:

effectively

Academic Press

DOCUMENT TYPE:

Journal English

LANGUAGE:

In the present study the production of the CC chemokine monocyte chemotactic protein-1 (MCP-1) in several MHC II-restricted antigen presentation systems was investigated in vitro. To assess which type of antigen-presenting cell (APC) influences MCP-1 production during antigen presentation, cultures enriched for different APC populations were prepared and MCP-1 production was determined Our results showed that APCs that

induce a T cell response also produce elevated amts. of MCP-1. The MCP-1 production is highest in the memory-driven secondary response against a single antigen. Despite a massive T cell proliferation, low MCP-1 concns. are found in Con A-induced cultures. These results suggest that T cell proliferation alone is not sufficient for MCP-1 production and that stimulation of the APC during the process of antigen presentation results in MCP-1 production Based on our results and the literature, we propose a model for MCP-1 as an enhancer of the adaptive immune response. (c) 2001 Academic Press.

REFERENCE COUNT:

23 THERE ARE 23 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 6 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN L4

ACCESSION NUMBER:

2001:263963 HCAPLUS

DOCUMENT NUMBER:

136:58763

TITLE:

Effect of PD fluid instillation on the

peritonitis-induced influx and bacterial clearing

capacity of peritoneal cells

AUTHOR(S):

Hekking, Liesbeth H. P.; Huijsmans, Agnes; Van Gelderop, Erwin; Wieslander, Andes P.; Havenith, Carin E. G.; van den Born, Jacob; Beelen, Robert

H. J.

CORPORATE SOURCE:

Department of Cell Biology and Immunology, Faculty of Medicine, Vrije Universiteit, Amsterdam, 1081 BT,

Neth.

SOURCE: Nephrology, Dialysis, Transplantation (2001), 16(3),

679-682

CODEN: NDTREA; ISSN: 0931-0509

PUBLISHER: Oxford University Press

DOCUMENT TYPE: Journal LANGUAGE: English

The commonly used peritoneal dialysis fluids contain glucose as the osmotic agent. Heat sterilization leads to the formation of glucose degradation products which contribute, together with glucose, to the formation of advanced glycation end-products (AGEs). AGEs have been shown to be present in the peritoneal cavity. Methods have been developed to minimize the amount of glucose degradation products in peritoneal dialysis fluids. In a rat peritoneal dialysis model, we compare the effect of a commonly used peritoneal dialysis fluid, Gambrosol, with a newly developed peritoneal dialysis fluid, PD-Bio, on the influx and functional capacity of the peritoneal cells after 2 wk of peritoneal dialysis fluid instillation. Three groups of animals were used: rats received daily infusion with 15 mL of either 4% Gambrosol (group 1) or 4% PD-Bio (group 2), and a control group of animals did not receive fluid (group 3). After 2 wk of PD fluid instillation, all the animals were injected with a 0.5 mL suspension containing 3 + 108 colony-forming units of Staphylococcus aureus. The in vivo bacterial clearing capacity was determined after 15 h. A statistically significant higher leukocyte influx was found in the control group compared with both PD fluid-injected groups. No statistical differences in bacterial clearing were observed among the three groups, although the number of bacteria recovered from the PD-Bio group tended to be lower than that from the Gambrosol group. Moreover, in both PD fluid instillation groups, the bacteria tended to be cleared more slowly compared with the control The number of mesothelial cells in the PD fluid groups was significantly greater than in the control group. No differences were observed in bacterial clearing capacity, leukocyte influx and mesothelial cell number after a 2 wk exposure of the peritoneal cavity to Gambrosol vs PD-Bio.

REFERENCE COUNT: 15 THERE ARE 15 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 7 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2000:633042 HCAPLUS

DOCUMENT NUMBER: 133:280276

TITLE: Engineering the microflora to vaccinate the mucosa:

serum immunoglobulin G responses and activated draining cervical lymph nodes following mucosal application of tetanus toxin fragment C-expressing

lactobacilli

AUTHOR(S): Shaw, D. M.; Gaerthe, B.; Leer, R. J.; Van Der Stap,

J. G. M. M.; Smittenaar, C.; Den Bak-Glashouwer, M.-J. Heijne; Thole, J. E. R.; Tielen, F. J.; Pouwels, P.

H.; Havenith, C. E. G.

CORPORATE SOURCE: TNO-Prevention and Health, Special Program Infectious

Diseases, Leiden, 2315 CE, Neth. Immunology (2000), 100(4), 510-518

SOURCE: Immunology (2000), 100(4), 510-53
CODEN: IMMUAM; ISSN: 0019-2805

PUBLISHER: Blackwell Science Ltd.

DOCUMENT TYPE: Journal LANGUAGE: English

AB The delivery of antigens to mucosal-associated lymphoid tissues in pediatric and immunocompromised populations by safe, non-invasive vectors, such as

commensal lactobacilli, represents a crucial improvement to prevailing vaccination options. In this report, the authors describe the oral and nasal immunization of mice with vaccines constructed through an original system for heterologous gene expression in Lactobacillus in which the 50,000-mol. weight (MW) fragment C of tetanus toxin (TTFC) is expressed either as an intracellular or a surface-exposed protein. Our data indicate that L. plantarum is more effective in this respect than L. casei and that, under the exptl. conditions investigated, delivery of TTFC expressed as an intracellular antigen is more effective than cell-surface expression. Immunization of mice with live recombinant lactobacilli induced significant levels of circulating TTFC-specific IgG following nasal or oral delivery of vaccine strains. In addition, following nasal delivery, secretory IgA (sIgA) was induced in bronchoalveolar lavage fluids, as were antigen-specific antibody-secreting cells and antigen-specific T-cell activation in draining lymph nodes, substantiating their potential for safe mucosal delivery of pediatric vaccines.

REFERENCE COUNT: 23 THERE ARE 23 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 8 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2000:608776 HCAPLUS

DOCUMENT NUMBER: 133:203411

TITLE: Covalently bridged insulin dimers
INVENTOR(S): Hoecker, Hartwig; Havenith, Chantalle;

Brandenburg, Dietrich

PATENT ASSIGNEE(S): Aventis Pharma Deutschland G.m.b.H., Germany

SOURCE: PCT Int. Appl., 22 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PATENT NO.								APF	LICA		DATE					
WO 2	000	0504	56		A2							-EP15					224
	w:																
		CZ,	DE,	DK,	DM,	EE,	ES,	FI,	GB,	GE), GE	, GH,	GM,	HR,	HU,	ID,	IL,
		IN,	IS,	JP,	KE,	KG,	ΚP,	KR,	ΚZ,	LC	LK	, LR,	LS,	LT,	LU,	LV,	MA,
		MD,	MG,	MK,	MN,	MW,	MX,	NO,	NZ,	PL	, PT	, RO,	RU,	SD,	SE,	SG,	SI,
		SK,	SL,	TJ,	TM,	TR,	TT,	TZ,	UA,	UG	, US	, UZ,	VN,	YU,	ZA,	ZW,	AM,
							RU,							•			
	RW:		•	•		•	•			TZ	, UG	, ZW,	AT,	BE,	CH,	CY,	DE,
												, NL,					
			-	•								, TD,		•	•	•	•
CA 2	363											-2363			2	0000	224
EP 1												-9092					
		-															
	K:			CH,	DE,	, אע	ES,	FK,	GD,	Gr	, 11	, LI,	ъо,	мь,	SE,	MC,	ΡΙ,
		IE,											- <i>-</i>		_		204
JP 2							2003					-6010				0000	
AU 7	650	76			B2		2003	0911		ΑU	2000	-3160	1		2	0000	224
US 2	002	1609:	38		A 1		2002	1031		US	2001	-9347	66		2	0010	823
ZA 2	001	0069	71		Α		2002	1122		ZA	2001	-6971			2	0010	B23
PRIORITY								-				-1990				9990	224
1111011111				- •								-EP15			_	0000	
OWNED CON	מספו	101.			MAD:	סאידי.	133.	2034							·· -		

OTHER SOURCE(S): MARPAT 133:203411

AB Modified insulin dimers are prepared in which the α -amino groups of

the Phel residues of the 2 B chains are joined with C(0) (CRR')nC(0) [R, R' = H, NH2, Cl-10 alkyl, (substituted) aryl; n = 0-16] and residues 26-30 of the 2 B chains are replaced with X [X = Cl-10 alkyl, (substituted) aryl, (substituted) aryloxy, amino acid, NRR'] for use in medicaments for treatment of diabetes. The dimers are synthesized from the corresponding monomers (prepared enzymically or by genetic engineering methods) by provision with protecting groups as needed and reaction with an activated dicarboxylic acid. The dimers show high affinity for insulin receptors, very high biol. activity, and selectivity for the liver.

L4 ANSWER 9 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2000:535159 HCAPLUS

DOCUMENT NUMBER: 133:103813

TITLE: Method for drying insulin and other protein crystals

INVENTOR(S): Deusser, Rolf; Kramer, Peter; **Thurow, Horst**PATENT ASSIGNEE(S): Aventis Pharma Deutschland G.m.b.H., Germany

SOURCE: PCT Int. Appl., 16 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

PATENT NO	, 	KIND	DATE	APPLICATION NO	DATE
WO 2000044	1767 1767	A2 A3	20000803	WO 2000-EP287	20000115
CZ IN MI SH	Z, DE, DK, N, IS, JP, D, MG, MK,	DM, EE KE, KG MN, MW TM, TR	, ES, FI, , KP, KR, , MX, NO, , TT, TZ,	BB, BG, BR, BY, CA GB, GD, GE, GH, GI KZ, LC, LK, LR, LS NZ, PL, PT, RO, RU UA, UG, UZ, VN, YU	S, LT, LU, LV, MA, J, SD, SE, SG, SI,
RW: GF	H, GM, KE, K, ES, FI,	LS, MW FR, GB	, SD, SL, , GR, IE,	SZ, TZ, UG, ZW, AT IT, LU, MC, NL, PT MR, NE, SN, TD, TO	
DE 1990312 CA 2361397	25 7	A1 AA	20000810 20000803	DE 1999-1990312 CA 2000-2361397 BR 2000-7713	25 19990127 7 20000115
EP 1185548	3	A2	20020313	EP 2000-903580 GB, GR, IT, LI, LV	20000115
JP 2002535 AU 764353		Т2	20021022	JP 2000-596023 AU 2000-25418	
RU 2235730 PRIORITY APPLN		C2	20040910	RU 2001-123684	20000115 25 A 19990127

The invention relates to a method for drying protein crystals contained in an aqueous protein crystal suspension. The method is characterized in that the protein crystal suspension is dried in a centrifugal dryer and that after the protein crystals have been extracted from the protein crystal suspension by filtration said protein crystals are preferably transferred into a drying medium which consists of a mixture of water and a non-aqueous solvent which can be mixed with water to any ratio and has a lower vapor pressure than water. A drying gas humidified with water is advantageously used and the protein crystals are advantageously dried in a fluidized bed. The method is used for drying various types of insulin crystals, e.g. pork insulin, human insulin, recombinant insulin.

ANSWER 10 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

2000:288632 HCAPLUS ACCESSION NUMBER:

133:99697 DOCUMENT NUMBER:

Novel insulin dimers: semisynthesis and receptor TITLE:

studies

AUTHOR (S): Havenith, Chantalle; Sundermann, Erik;

Rutten, Stephan; Hocker, Hartwig; Brandenburg,

Dietrich

CORPORATE SOURCE: Deutsches Wollforschungsinstitut an der RWTH Aachen,

Aachen, D-52062, Germany

Peptides 1998, Proceedings of the European Peptide SOURCE:

Symposium, 25th, Budapest, Aug. 30-Sept. 4, 1998 (1999)

), Meeting Date 1998, 590-591. Editor(s): Bajusz, Sandor; Hudecz, Ferenc.

Akademiai Kiado: Budapest, Hung.

CODEN: 68WKAY

DOCUMENT TYPE:

Conference

LANGUAGE:

English

A report from a symposium on the semisynthesis and receptor studies of the novel insulin dimers. The affinity to the insulin receptor in intact lymphocytes as well as the dynamic binding behavior of the dimers is studied.

REFERENCE COUNT:

THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 11 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

1999:578712 HCAPLUS ACCESSION NUMBER:

132:45093 DOCUMENT NUMBER:

Receptor studies with novel insulin analogues and TITLE:

photoaffinity labelling techniques

Brandenburg, D.; Fabry, M.; Fischer, Y.; Gattner, AUTHOR(S):

H.-G.; Grotzinger, J.; Hagelstein, M.; Havenith, C.; Kurapkat, G.; Rutten, S.; Siedentop, M.;

and the second of the second of the second of

- Wollmer, A.

CORPORATE SOURCE: Deutsches Wollforschungsinstitut an der RWTH Aachen,

Aachen, D-52062, Germany

Peptide Science: Present and Future, Proceedings of SOURCE:

> the International Peptide Symposium, 1st, Kyoto, Nov. 30-Dec. 5, 1997 (1999), Meeting Date 1997, 223-225. Editor(s): Shimonishi, Yasutsugu. Kluwer: Dordrecht,

Neth.

CODEN: 68BYA5

DOCUMENT TYPE:

Conference

LANGUAGE:

English

The receptors for insulin and IGF-I show a high degree of homol., but different regions have been postulated for ligand binding. The authors' work aims at determining structure-function relationships, especially the structural

requirements for receptor binding, and the definition of contact sites in the ligand-receptor binding regions. The authors have replaced B26-tyrosine by D-alanine in des-(B27-B30)insulin-B26-amide (DTI) to give D-Ala-DT1 (1). The first and so far only antagonistic insulin analog is a covalent insulin dimer. To test whether the marked discrepancy between receptor binding and biopotency can be increased, they introduced binding-enhancing Arg residues into insulin dimers to give B29,B29'-suberoyl-(ArgA0insulin)2 (3) and B1,B1'-suberoyl-(ArgA0insulin)2 (5). D-Ala in position B26 gives rise to a dramatic increase in receptor binding and in-vitro activity. The addition of Arg to B29,B29'-suberoyl

insulin dimer (2) increased receptor binding but, unexpectedly, also activity. It is striking that 3 can elicit maximal insulin effect in cardiomyocytes but, like 2, is unable to do so in 3T3-L1 cells (53%). authors conclude that the monomeric and dimeric analogs are interesting lead compds. for refined receptor/activity studies directed towards signal generation and transduction in various cell systems. Recombinant human IGF-I was acylated with Asa(4-azidosalicyloy1)-OSu. The 3 monosubstituted derivs. were subfractionated by RP-HPLC to give pure $N\alpha$ -, NEB28-, and mixed NeB65/NeB68-Asa-IGF-I. Pure NαA1- and NεB29-Asa-insulins were prepared similarly. The

radioiodinated probes could be specifically crosslinked to overexpressed receptors for insulin, IGF-I and 2 chimeric insulin/IGF-I receptors in 4 NIH3T3 cell lines. Tryptic digestion reveals characteristic labeling and fragmentation patterns which are currently analyzed further to determine the ligand-receptor contact sites.

REFERENCE COUNT:

THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 12 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1999:52199 HCAPLUS

DOCUMENT NUMBER:

130:276517

TITLE: AUTHOR(S):

SOURCE:

Talc-induced inflammation in the pleural cavity Van Den Heuvel, M. M.; Smit, H. J. M.; Barbierato, S.

B.; Havenith, C. E. G.; Beelen, R. H. J.; Postmus, P. E.

CORPORATE SOURCE:

Dept of Cell Biology and Immunology, Faculty of

Medicine of Free University, Amsterdam, 1081 BT, Neth. European Respiratory Journal (1998), 12(6), 1419-1423

CODEN: ERJOEI; ISSN: 0903-1936

Munksgaard International Publishers Ltd. PUBLISHER:

DOCUMENT TYPE: Journal LANGUAGE: English

Talc administration into the pleural cavity induces pleurodesis. In order to study the inflammatory process that causes pleurodesis, the cellular kinetics in the pleural space after the administration of talc was studied along with its relation to chemokine concns. in the pleural fluid. Thirteen consecutive patients with idiopathic spontaneous pneumothorax and eight patients with malignant pleural effusions received talc pleurodesis. The first group was treated with talc poudrage, whereas the second group was treated with talc slurry. Pleural fluids were isolated before talc administration as well as 3, 6, 24, 48 and 72 h afterwards. Talc induced a rapid polymorphonuclear neutrophil (PMN) influx followed by an accumulation of macrophages. In addition, increased production of interleukin (IL)-8 and monocyte chemotactic protein (MCP)-1 was observed The talc-induced PMN influx reached its maximum after 3-24 h and was related to the IL-8 concentration In contrast, the MCP-1 was not related to the macrophage

accumulation. Talc-induced inflammation in patients with idiopathic spontaneous pneumothorax and malignant pleural effusion is characterized by an influx of polymorphonuclear neutrophils related to interleukin-8, followed by an accumulation of monocytes.

REFERENCE COUNT:

THERE ARE 19 CITED REFERENCES AVAILABLE FOR THIS 19 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 13 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

1998:401659 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 129:112570

TITLE: CO2 reduction - is increasing the diesel share the way

Rijkeboer, R. C.; Havenith, C.; Baarbe, H. AUTHOR(S):

TNO Road-Vehicles Research Institute, Delft, Neth. CORPORATE SOURCE: IMechE Conference Transactions (1998), (4, Combustion SOURCE:

Engines and Hybrid Vehicles), 17-26

CODEN: ICTRFH; ISSN: 1356-1448

Professional Engineering Publishing Ltd. PUBLISHER:

DOCUMENT TYPE: Journal LANGUAGE: English

AB Different scenarios have been compared for the future reduction of CO2 emissions under real-world driving conditions. A significant shift towards diesel appears to only marginally benefit with regard to CO2 emissions, but would carry a real NOx penalty. Introduction of DI (direct injection) gasoline engines and a shift towards gaseous fuels for spark ignition engines would have similar results for CO2 without this NOx penalty. Even so, the possible gains are limited. The most effective way to obtain significant CO2 redns. for the EU car fleet in the long term seems to be an all-out approach towards more fuel-efficient vehicles in combination with innovative technologies. It is the aim of this paper to enable more soundly based decision-making.

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 14 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

1997:8323 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 126:45965

TITLE: Heterogeneity of mouse brain macrophages in

alloantigen presentation to naive CD8+ T cells as

revealed by a panel of microglial cell lines' Askew, David; Havenith, Carin E. G.; Walker,

William S.

CORPORATE SOURCE: Department of Immunology, St. Jude Children's Research

Hospital, Memphis, TN, USA

Immunobiology (Stuttgart) (1996), 195(4-5), 417-430 CODEN: IMMND4; ISSN: 0171-2985

Fischer PUBLISHER:

AUTHOR(S):

DOCUMENT TYPE: Journal; General Review

English LANGUAGE:

AB A review with 56 refs. Topics discussed include strategies for generating mouse macrophage cell lines; characterization of microglial cell lines; and role of interleukin-12 and B7-2 in alloantigen presentation to naive CD8+ T-cells.

ANSWER 15 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1995:1003602 HCAPLUS

DOCUMENT NUMBER: 124:84806

Mouse microglial cell lines differing in constitutive TITLE:

and interferon- γ -inducible antigen-presenting

activities for naive and memory CD4+ and CD8+ T cells

Walker, William S.; Gatewood, Janet; Olivas, Elvia; AUTHOR(S):

Askew, David; Havenith, Carin E. G.

Department of Immunology, St. Jude Children's Research CORPORATE SOURCE:

Hospital, Memphis, TN, USA

SOURCE: JOUINAL OF NEWLOCKERS CODEN: JNRIDW; ISSN: 0165-5728 Journal of Neuroimmunology (1995), 63(2), 163-74

Elsevier PUBLISHER: DOCUMENT TYPE: Journal

LANGUAGE: English

The authors developed a panel of non-virus transformed cell lines derived from individual microglial precursors residing in the brains of normal mice. These colony stimulating factor-1-dependent cell lines are B7-1+ (CD80), Mac-1+, Mac-2+, Mac-3+, CD45+, MHC class I+, colony stimulating factor-1 receptor+, and they ingest antibody-coated particles. However, the cell lines differ in their expression of B7-2 (CD86), F4/80, Ly-6C, and MHC class II mols. They also differ in their ability to constitutively process and present antigens to naive CD4+ and CD8+ T cells, memory CD4+ and CD8+, and in the manner by which interferon γ modulates their antigen-presenting activities. These cell lines should be valuable as models for studies on the immunobiol. of the microglia.

L4 ANSWER 16 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1993:253185 HCAPLUS

DOCUMENT NUMBER: 118:253185

TITLE: T cell priming in situ by intratracheally instilled

antigen-pulsed dendritic cells

AUTHOR(S): Havenith, Carin E. G.; Breedijk, Annette J.;

Betjes, Michiel G. H.; Calame, Wim; Beelen, Robert H.

The second section of the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a section section in the second section in the section is a section section in the section is a section section in the section is a section section in the section section in the section section is a section section section in the section section is a section secti

J.; Hoefsmit, Elisabeth C. M.

CORPORATE SOURCE: Dep. Cell Biol., Vrije Univ., Amsterdam, 1081 BT,

Neth.

SOURCE: American Journal of Respiratory Cell and Molecular

Biology (1993), 8(3), 319-24 CODEN: AJRBEL; ISSN: 1044-1549

DOCUMENT TYPE: Journal LANGUAGE: English

AB Splenic dendritic cells (DC) and alveolar macrophages (AM) were pulsed with antigen in vitro and subsequently intratracheally instilled to test whether these cells have the capacity to sensitize T cells in the draining lymph nodes of the lung. Antigen-pulsed DC, instilled in the bronchoalveolar lumen, induce antigen-specific T cell priming in vivo in the draining lymph nodes. T cell priming is only seen with viable but not with killed antigen-pulsed DC. Amts. as low as 5-10 + 103 cells can still induce some responsiveness. In addition, instillation of viable as well as killed pulsed Ia-neg. AM also leads to T cell priming, although apprx.10 times higher nos. of cells had to be used in comparison with DC. Apparently, DC instilled in the bronchoalveolar lumen present antigen directly to naive T cells, whereas for AM other mechanisms are involved.

L4 ANSWER 17 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1985:137837 HCAPLUS

DOCUMENT NUMBER: 102:137837

TITLE: Aqueous protein solutions resistant to denaturation

and their use

INVENTOR(S): Thurow, Horst

PATENT ASSIGNEE(S): Hoechst A.-G., Fed. Rep. Ger.

SOURCE: Ger. Offen., 12 pp.

CODEN: GWXXBX

DOCUMENT TYPE: Patent LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

DE 3325223 A1 19850124 DE 1983-3325223 19830713

EP	131864			A2	19850123	EP 1984-107889		19840706
ÉP	131864			A 3	19870826			
EP	131864			В1	19900926			
	R: AT,	BE,	CH.	DĒ,	FR. GB. IT.	LI, LU, NL, SE		
АТ	56876	,	,	E	19901015	AT 1984-107889		19840706
	8402798			A	19850114	FI 1984-2798		19840711
	80276			В	19900131	22 2301 2770		
	80276			Ĉ	19900510	•		
	534195			A1	19851001	ES 1984-534195		19840711
								19840712
	8403426			A	19850114	DK 1984-3426		19840/12
DK	168030			В1	19940124			
AU	8430537			A 1	19850117	AU 1984-30537		19840712
- AU	579106			B2	19881117			
JP	60038398			A2	19850227	JP 1984-143378		19840712
JP	05082397			В4	19931118	·		
	8405384			A	19850227	ZA 1984-5384		19840712
	1229083			A1	19871110	CA 1984-458725		19840712
	72389	er green er		^ A1		IL 1984-72389		19840712
					19860901	ES 1984-535482		19840829
_ :-	535482			A1				
US	4637834			Α	19870120	US 1986-825965		19860205
PRIORITY	APPLN. :	INFO.	. :			DE 1983-3325223	Α	19830713
						EP 1984-107889	Α	19840706
						US 1984-629847	A1	19840711
						J		

AB Polymers are synthesized for stabilization of proteins against adsorption on hydrophobic surfaces and denaturation. These stabilizer polymers can be used for pharmaceutical prepns., especially in a dosing apparatus, such as

implanted or external automatic pump. Other uses include applications in steps of protein purification. Thus, propylene glycol [57-55-6] was reacted with KOH to produce propylene oxide, which was reacted with ethylene oxide. The final product was a block polymer consisting of a linear chain of polypropylene glycol with an average mol. weight of 1750 daltons, which included polyethylene glycol on each side of the polypropylene glycol. When this polymer (0.1% in final solution) was added to a solution of ovalbumin (0.1% in final solution), there was no turbidity in the protein solution (no denaturation) after several months of storage at 37° with rotation of the tube containing the sample. However, without the stabilizer, the ovalbumin was markedly denatured after 5 days. Other substances stabilized with this polymer included myoglobin, human Ig, and β-galactosidase [9031-11-2], and human fibroblast interferon was stabilized by a similar polymer.

L4 ANSWER 18 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1984:635471 HCAPLUS

DOCUMENT NUMBER: 101:235471

TITLE: Stabilization of dissolved proteins against

denaturation at hydrophobic interfaces

AUTHOR(S): Thurow, H.; Geisen, K.

CORPORATE SOURCE: Hoechst A.-G., Frankfurt/Main, D-6230/80, Fed. Rep.

Ger.

SOURCE: Diabetologia (1984), 27(2), 212-18

CODEN: DBTGAJ; ISSN: 0012-186X

DOCUMENT TYPE: Journal LANGUAGE: English

AB Polypropylene glycol [25322-69-4]/polyethylene glycol [25322-68-3] block polymers prevent both the adsorption of dissolved proteins to hydrophobic interfaces and the resultant aggregation. At a concentration of 0.001% (weight/vol), the block polymer, Genapol PF 10 [9003-11-6], stabilizes

insulin [9004-10-8] solns. over a wide range of concns. The effectiveness of mol. variants of Genapol PF 10 to stabilize other proteins (human γ -globulin, myoglobin and serum albumin) is presented also.

ANSWER 19 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1984:629903 HCAPLUS

DOCUMENT NUMBER:

101:229903

four-coordinate carbocation Ph3C(DMF)+ - a NMR and

relaxation study

AUTHOR(S):

Blumenstock, H.; Dickert, F. L.;

Hammerschmidt, A.

CORPORATE SOURCE:

Inst. Phys. Theor. Chem., Univ. Erlangen-Nuernberg,

Erlangen, D-8520, Fed. Rep. Ger.

SOURCE:

Zeitschrift fuer Physikalische Chemie (Muenchen,

Germany) (1984), 139, 123-32 CODEN: ZPCFAX; ISSN: 0044-3336

DOCUMENT TYPE:

Journal English

LANGUAGE:

Trityl ions form an 1:1 adduct with DMF according to titration curves via the NMR chemical shift. This 4-coordinate carbocation [Ph3C(DMF)+] further reacts with the carbenium ion (Ph3C+) in a consecutive step. In CH2Cl2 the rate consts. of formation and dissociation of Ph3C(DMF)+ were determined

by NMR

line shape anal. [k12(298 K) = 1.5 + 108 M-1 s-1; k21(298 K) = 4.2]+ 107 s-1]. From the rate constant of the reaction between the carbocation and the CF3CO2 anion (measured with pressure jump expts.) and the formation equilibrium of the carbocation, the recombination rate of the carbenium ion with CF3CO2- was calculated The very high value of k(298 K) = 2.5 + 109 M-1 s-1 indicates that CF3CO2- in DMF reacts as a naked anion.

L4. ANSWER 20 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1984:209058 HCAPLUS

DOCUMENT NUMBER:

100:209058

TITLE:

The effect of both π -donor substituents and acid

media on the formation of trityl cations, studied by relaxation methods and NMR spectroscopy

AUTHOR(S):

Blumenstock, H.; Dickert, F.; Fackler, H.;

Hammerschmidt, A.

CORPORATE SOURCE:

Inst. Phys. Theor. Chem., Univ. Erlangen-Nuernberg,

Erlangen, D-852, Fed. Rep. Ger.

SOURCE:

Zeitschrift fuer Physikalische Chemie (Muenchen,

Germany) (1983), 135, 157-70 CODEN: ZPCFAX; ISSN: 0044-3336

DOCUMENT TYPE:

Journal

LANGUAGE:

English

Trityl trifluoroacetates were studied to determine why ion formation from ionogens is favored by acid media. From relaxation measurements, NMR spectroscopy, and conductivity studies it was found that this effect is due to anion solvation by acid, namely a specific solvation of the free anions and a statistical solvation of the anions bound in the ionogen. This leads to a drastically reduced ion recombination rate constant even at low concns. of acid and an increased dissociation rate constant at rather high concns. of acid.

ANSWER 21 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN L4

ACCESSION NUMBER: 1983:456410 HCAPLUS

DOCUMENT NUMBER: 99:56410

TITLE: Investigations on a passenger car swirl-chamber diesel

engine using different alcohol fuels

AUTHOR(S): Pischinger, Franz F.; Burghardt, Peter; Havenith,

Cornelis; Weidmann, Kurt

CORPORATE SOURCE: Inst. Appl. Thermodyn., Tech. Univ., Aachen, Fed. Rep.

Ger.

SOURCE: Society of Automotive Engineers, [Special Publication]

SP (1983), SP-542(Alternate Fuels Spark Ignition

Diesel Engines), 43-53

CODEN: SAESA2; ISSN: 0099-5908

DOCUMENT TYPE:

LANGUAGE:

Journal English

The use of alc.-diesel fuel blends permit a good engine operation without alteration of the engine adjustment. With a reduced soot emission and considerably reduced particulate emissions improvements in energy consumption can be achieved, especially in the upper load range. The increased hydrocarbons and CO emissions in the lower load range can be avoided by adapting the injection timing for alc. blend operation. The use of a MeOH-ignition improver mixture permits a complete substitution of the

conventional diesel fuel and a soot-free combustion. At low loads thermal efficiency of the alc. engine is inferior, whereas in the higher load

range significant advantages in efficiency occur.

L4 ANSWER 22 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1981:589970 HCAPLUS

DOCUMENT NUMBER: 95:189970

TITLE: The suitability of different alcohol-fuels for diesel

engines by using the direct-injection method Pischinger, Franz F.; Havenith, Cornelis

AUTHOR(S): Pischinger, Franz F.; Havenith, Cornelis CORPORATE SOURCE: Aachen Tech. Univ., Aachen, Fed. Rep. Ger.

SOURCE: Proc. Int. Symp. Alcohol Fuels Technol., 4th (1981),

Meeting Date 1980, Volume 2, 619-25. Inst. Pesqui. Tecnol. Estado Sao Paulo S.A.: Sao Paulo, Brazil.

CODEN: 45TSAY

DOCUMENT TYPE: Conference LANGUAGE: English

The suitability of injecting MeOH [67-56-1] or EtOH [64-17-5] combined with diesel fuel ignition spray into the combustion chamber of a diesel engine was investigated. Compared with the conventional diesel engine, the emission of gaseous pollutants as well as the combustion noise level are reduced by using the direct-injection method. While maintaining a high efficiency, the dual fueling concept also allows the use of alc. fuels with a high content of water or other impurities. The diesel fuel as an ignition fuel can also be substituted by a mixture of alc. and ignition improver without adverse effects on engine characteristics. Compared with the use of alc.-ignition improver mixts. in a standard diesel engine, the dual-fuel operation allows a considerable saving of the ignition improver. The mech. stress of the engine and the emission of gaseous pollutants are also lowered. Tests were carried out for MeOH-dual fuel operation using vegetable oils as ignition spray. The oils are suitable as pilot injection fuels.

L4 ANSWER 23 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1981:214619 HCAPLUS

DOCUMENT NUMBER: 94:214619

TITLE: Insulin crystalline suspension

INVENTOR(S):

Thurow, Horst

PATENT ASSIGNEE(S):

Hoechst A.-G., Fed. Rep. Ger.

SOURCE:

Ger. Offen., 8 pp. CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATI	ENT NO.			KINI)	DATE			API	PLICATION NO.		DATE
DE 2	2933946		بية دي ويومون في يود	A1		1981	0312	. "	DE	1979-2933946		19790822
ES 4	494260			A1		1982	0801		ES	1980-494260		19800814
EP 2	25868			A1		1981	0401		ΕP	1980-104879		19800816
EP 2	25868			В1		1982	0630					
	R: AT,	BE,	CH,	DE,	FR	, GB,	IT,	NL,	SE	Ξ		
AT 3	1281			\mathbf{E}		1982	0715		AΤ	1980-104879		19800816
DK 8	8003593			Α		1981	0223		DK	1980-3593		19800821
DK 1	149347			В		1986	0512					
· DK	149347			С		1986	1020					
AU 8	8061621			A1		1981	0409		AU	1980-61621		19800821
AU 5	539091			B2		1984	0913					
ZA 8	8005152			Α		1981	0826		ZA	1980-5152		19800821
IL 6	60889			A1		1983	0731		$_{ m IL}$	1980-60889		19800821
CA C	1155439			A1		1983	1018		CA	1980-358705		19800821
JP S	56032412			A2		1981	0401		JΡ	1980-114879		19800822
PRIORITY	APPLN.	INFO	. :						DE	1979-2933946	Α	19790822
	•								ΕP	1980-104879	Α	19800816

Rhombohedral crystalline insulin (especially swine insulin) with 4 Zn structure is

converted to rhombohedral crystals with 2 Zn structure by holding at room temperature to ≤45° in a <67% NaCl solution at pH 4.5-6. The 2 Zn structure is more stable. Thus, crystalline porcine insulin (450,000 IU) containing 0.5% Zn was dissolved in 400 mL 0.03N HCl, mixed with 15 mL 1% ZnCl2 in 0.03N HCl, and diluted with the HCl to 500 mL, mixed with 500 mL solution containing 70 g NaCl, 14 g NaOAc, and 10 mL 1N NaOH, and stirred and room temperature to give crystals with 4 Zn structure. The crystals were allowed to settle, 888 mL of the supernatant was removed and replaced by 1013 mL pH 5.4-5.5 solution containing 50 mg ZnCl2, 1.125 g NaCl, and 1N HCl,

the suspension was stirred 7 days at room temperature and 7 days at 37°. The x-ray spectrum showed complete conversion to 2 Zn structure.

ANSWER 24 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1981:90319 HCAPLUS

DOCUMENT NUMBER:

94:90319

TITLE:

and

Aqueous solutions of proteins stable against

denaturation

INVENTOR(S):

Thurow, Horst

PATENT ASSIGNEE(S):

Hoechst A.-G., Fed. Rep. Ger.

Eur. Pat. Appl., 25 pp. SOURCE:

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.

KIND DATE APPLICATION NO.

DATE

EP 18609	A1	19801112	EP 1980-102252		19800425	
EP 18609	B1	19830921				
R: AT, BE, C	CH, DE, F	R, GB, IT,	NL, SE			
DE 2917535	A1	19801106	DE 1979-2917535		19790430	
DE 2917535	C2	19861030				
DE 2952119	A1	19810709	DE 1979-2952119		19791222	
AT 4667	E	19831015	AT 1980-102252		19800425	
PRIORITY APPLN. INFO.	:		DE 1979-2917535	Α	19790430	
			DE 1979-2952119	Α	19791222	
			EP 1980-102252	Α	19800425	

AB Proteins, especially insulin [9004-10-8], in aqueous solns. are stabilized against

denaturation by the presence of a surface-active polymer with alternating weakly hydrophobic and weakly hydrophilic segments. Thus, a mixture of 152.1 g propylene glycol and 125 g 40% KOH was dehydrated by vacuum distillation, and, at 120°, 4141 g propylene oxide, followed by 476 g ethylene oxide, was added. When the reaction was complete, lactic acid was added for neutralization. The product was vacuum distilled to remove volatiles and H20 to give a propylene glycol-ethylene glycol block copolymer [9003-11-6] with a mol. weight of 2000 and containing 10% polyoxyethylene. When a 0.1% solution of bovine or human serum albumin in 0.01M phosphate buffer, pH 7, was shaken with 10 ppm of such a polymer, the solution was clear for several months although a control was turbid after 7 days.

L4 ANSWER 25 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1981:20450 HCAPLUS

DOCUMENT NUMBER:

94:20450

TITLE:

Insulin solution resistant to denaturation

INVENTOR(S):

Thurow, Horst

PATENT ASSIGNEE(S):

Hoechst A.-G., Fed. Rep. Ger.

SOURCE:

Ger. Offen., 12 pp.

CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

The statement was at a control of the state of

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 2917535 DE 2917535	A1 C2	19801106 19861030	DE 1979-2917535	1,9790430
EP 18609 EP 18609	A1 B1	19801112 19830921	EP 1980-102252	19800425
R: AT, BE, CH,	DE, FR	, GB, IT, N	L, SE	
AT 4667	E	19831015	AT 1980-102252	19800425
FI 8001361	A	19801031	FI 1980-1361	19800428
FI 70671	В.	19860626		
FI 70671	С	19861006		
IL 59933	A1	19840629	IL 1980-59933	19800428
DK 8001851	A	19801031	DK 1980-1851	19800429
DK 160459	В	19910318		
DK 160459	С	19910826		
AU 8057877	A1	19801106	AU 1980-57877	19800429
AU 535040	B2	19840301		
ZA 8002583	Α	19810429	ZA 1980-2583	19800429
CA 1146069	A1	19830510	CA 1980-350871	19800429

and the second of the second o

JP 55157518 JP 01018920	A2 B4	19801208 19890407	JP 1980-58	553	19800430
ES 494356	A1	19810716	ES 1980-49	4356	19800819
US 4783441	Α	19881108	US 1983-56	4346	19831221
US 4885164	Α	19891205	US 1987-13	6673	19871222
PRIORITY APPLN. INFO.:			DE 1979-29	17535 A	19790430
			DE 1979-29	52119 A	19791222
			EP 1980-10	2252 A	19800425
			US 1980-14	4040 A2	19800428
·			· US 1981-26	3720 A1	19810614
			US 1983-56	4346 A1	19831221

Surface-active agents, RO(CH2CHR10)nR2, where R = R2 = H, C1-20-alkylAΒ residue, C2-20-carboxylic acid residue, C1-10-alkylphenol residue, C1-20-alkylamine residue and R1 = H, Me, or Et, and n = 2-80, as homopolymers, block polymers, or mixed polymers in concns. of 2-200 mg/L to prevent denaturation of insulin [9004-10-8] solns. are described. E.g., up to 1,500,000 IU bovine, porcine, or human insulin or their des-β1-phenylalanine derivs. with ≤0.8 weight% Zn were dissolved in water. This solution was mixed with a solution containing a preservative such as

phenol, an isotonic agent such as glycerin, and buffering agents to which was added the surface-active agent, such as Me(CH2)130(CH2CH2O)4(CH2CHMeO) 4H [37311-04-9].

ANSWER 26 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

1980:599492 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 93:199492

Studies on the denaturation of dissolved insulin TITLE:

Thurow, H. AUTHOR(S):

CORPORATE SOURCE: Hoechst A.-G., Frankfurt, D-6000, Fed. Rep. Ger. Insulin: Chem., Struct. Funct. Insulin Relat. Horm., SOURCE: Proc. Int. Insulin Symp., 2nd (1980), Meeting Date

1979, 215-21. Editor(s): Brandenburg, Dietrich;
Wollmer, Axel. de Gruyter: Berlin, Fed. Rep. Ger.

CODEN: 44BTA8

DOCUMENT TYPE: Conference LANGUAGE: English

The rate of denaturation of insulin in solution was studied under different conditions. Insulin (400 IU/mL bovine insulin) was denatured after 1.5 min (pH 7.2) or 2 min (pH 3.5) in the absence of Zn. In the presence of Zn, denaturation occurred at 0.5 min. At 37° in neutral solution denaturation did not occur in the presence of Zn. At hydrophobic surfaces denaturation occurred at 20 h. Of 5 antioxidants tested, only 1 (nordihydroguaiaretic acid) extended the time of denaturation, and that extension was just 2 h. In the presence of SH reagents again insulin denatured at .apprx.20 h. Rotation expts. conducted at 5° indicated insulin denaturation after 4-5 mo, at 20° after 18 days, and at 37° after 20 h. Neutral insulin solns. stored at rest at 37° showed no turbidity or increased viscosity after 2 yr, but electropherograms indicated denaturation beginning at 3 mo which was complete at 12 mo. Thus, unlike agitated solns., insulin denatured during resting storage reamins dissolved. At 37° insulin denatures more rapidly at neutral (7.0-7.6) than at acid (3.5) pH and the addition of agents which shift aggregation equilibrium in the direction of the monomeric mol., i.e., urea, guanidine, pyridine, or detergents, substantially lowers the time required for denaturation. An addnl. charge at the amino end of the B-chain (B1-sulfopropionylinsulin) hastened denaturation.

ANSWER 27 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1980:475301 HCAPLUS

DOCUMENT NUMBER: 93:75301

Suitability of various diesel motor combustion TITLE:

was alcohol motor fuels

Pischinger, F.; Havenith, C.; Finsterwalder, AUTHOR(S):

Fed. Rep. Ger. CORPORATE SOURCE:

VDI-Berichte (1980), 370, 331-8 SOURCE:

CODEN: VDIBAP; ISSN: 0083-5560

DOCUMENT TYPE: Journal German LANGUAGE:

The use of direct injection of alc. and a gas oil ignition jet gives good diesel engine operation essentially without soot formation with substantial replacements of gas oil by MeOH [67-56-1] or EtOH [64-17-5]. The emission of gaseous pollutants and combustion noise is lower than from conventional diesel engines. Preliminary tests of direct MeOH injection with a fluidized combustion chamber resulted in further reduction of the already low NOx emissions from such combustion.

ANSWER 28 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1980:93773 HCAPLUS

DOCUMENT NUMBER: 92:93773

NMR spectroscopic studies on the kinetics of TITLE:

acid-catalyzed formation of tritylcarbenium ions

Blumenstock, H.; Dickert, F.; Reichenbacher, AUTHOR(S):

Inst. Phys. Theor. Chem., Univ. Erlangen-Nuernberg, CORPORATE SOURCE:

Erlangen, Fed. Rep. Ger.

Zeitschrift fuer Physikalische Chemie (Muenchen, SOURCE:

Germany) (1978), 113(2), 199-206 CODEN: ZPCFAX; ISSN: 0044-3336

DOCUMENT TYPE: Journal LANGUAGE: German

Formation of Ph3C+ from Ph3CO2CCF3 (I) was studied in MeCN by pulsed Fourier-transform 19F NMR. Since the concentration of I was small (2 + 10-3 to 5 + 10-2 M), a special procedure for excluding trace amts.

of H2O was used. The dissociation of I was catalyzed by CF3CO2H, which formed

a 1:1 complex with I.

ANSWER 29 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1979:536585 HCAPLUS

DOCUMENT NUMBER: 91:136585

LE: An enzyme immunoassay (EIA) for progesterone in horse

AUTHOR(S): Seeger, K.; Thurow, H.; Haede, W.; Knapp, E.

Hoechst A.-G., Frankfurt/Main, D-6230/80, Fed. Rep. CORPORATE SOURCE:

Ger.

SOURCE: Journal of Immunological Methods (1979), 28(3-4),

CODEN: JIMMBG; ISSN: 0022-1759

DOCUMENT TYPE: Journal English LANGUAGE:

A simple enzyme immunoassay (EIA) for the measurement of progesterone (I) is described. Antibody against 11-OH-hemisuccinate-bovine serum albumin is bound to polystyrene tubes. 11-OH-hemisuccinyl- β -D-galactosidase

is used as enzyme-coupled antigen and methylumbelliferyl-β-D-

أنجاز والمعاد وفيعا والمعاري المرازي المرازي والمعارض ومعاوض ومستقل والمرازي والمراز والمرازي والمرازي

galactoside as substrate. Concns. down to 0.156 ng I/mL plasm or amts. of

93 pg I/tube are detectable. Probit anal. gave a linear relation between log concentration and percentage of binding. A comparison of EIA and radioimmunoassay gave a correlation coefficient of 0.81. The assay is sufficiently sensitive to estimate I levels in plasma.

ANSWER 30 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1979:200169 HCAPLUS

DOCUMENT NUMBER:

90:200169

TITLE:

Penetration of the polysaccharide capsule of Escherichia coli (Bi161/42) by bacteriophage K29

AUTHOR (S):

Bayer, Manfred E.; Thurow, Horst; Bayer,

Margret H.

CORPORATE SOURCE:

Fox Chase Cancer Cent., Inst. Cancer Res.,

Philadelphia, PA, USA

Virology (1979), 94(1), 95-118 CODEN: VIRLAX; ISSN: 0042-6822

Journal

DOCUMENT TYPE: LANGUAGE: English

The interaction between the capsulated E. coli strain K29 and a capsule K29-specific phage was studied, using virus adsorption kinetics and immunol. methods in combination with electron microscopy. The adsorption of the phage to capsulated wild-type (w.t.) E. coli was fast, with a rate constant of 1-2.5 + 10-8 mL/min at 37° , and 4 + 10-9mL/min at 0°. Mutant strains with temperature-sensitive defects in production of capsule antigen showed a much reduced virus adsorption rate when grown at permissive temps. The virus, being capable of enzymically hydrolyzing the receptor polysaccharide, destroyed the macromol. structure of both the isolated polysaccharides (p.s.) and the capsule in vivo. Phage adsorption occurred without release of virus DNA. Virus adsorption carried out with w.t. cells in the presence of isolated p.s. revealed receptor competition in which the isolated p.s. from mutant cells was .apprx.103-fold less efficient than the isolated p.s. from the wild-type cells. Electron microscopy enabled following the virion in its travel through the w.t. capsule. In the capsule of the infected cell, a tunnel-shaped penetration path of the virus became visible; the path of the virus was often but not exclusively unidirectional toward the outer membrane (OM) of the cell. A virus particle that had reached the OM might subsequently move along the surface of the OM or might turn back into the capsule. Movement of the adsorbed virion was halted by anti-capsule IgG which caused trapping of the virus particles. The virion was eventually positioned over 1 of the adhesion sites at which inner and outer membrane are fused. After 4 min, the virus released its DNA, as judged from a decreased state of filling of the phage heads. The data support a multiple-step adsorption model.

ANSWER 31 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1977:418632 HCAPLUS

DOCUMENT NUMBER:

87:18632

TITLE:

Polysaccharide capsule of Escherichia coli:

microscope study of its size, structure, and sites of

synthesis

AUTHOR(S):

Bayer, Manfred E.; Thurow, Horst

CORPORATE SOURCE:

Fox Chase Cancer Cent., Inst. Cancer Res.,

Philadelphia, PA, USA

Journal of Bacteriology (1977), 130(2), 911-36

CODEN: JOBAAY; ISSN: 0021-9193

DOCUMENT TYPE:

Journal

LANGUAGE:

English

This report describes the structure, size, and shape of the uncollapsed polysaccharide capsule of E. coli strain Bi 161/42 [09:K29(A):H-], its ultrastructural preservation as well as the filamentous components of the isolated capsular material. In a temperature-sensitive mutant, sites were localized at which capsular polysaccharide is exported to the cell surface. The highly hydrated capsule of the wild-type cells was visible in the uncollapsed state after freeze-etching, whereas dehydration in ≥50% acetone or alc. caused the capsule to collapse into thick bundles. This was prevented by pretreatment of the cell with capsule-specific immunoglobulin G; the capsule appeared as a homogeneous layer of 250- to 300-nm thickness. The structural preservation depended on the concentration of the anti-capsular immunoglobulin G.

Temperature-sensitive

mutants, unable to produce capsular antigen at elevated temps., showed, 10-15 min after shift down to permissive temperature, polysaccharide strands with K29 specificity appearing at the cell surface at roughly 20 sites/cell; concomitantly, capsule-directed antibody started to agglutinate the bacteria. The sites at which the new antigen emerged were found in random distribution over the entire surfacee of the organism. Spreading of purified polysaccharide was achieved on air-water interfaces; after subsequent shadow casting with heavy metal, filamentous elements were observed with a smallest class of filaments measuring 250 nm in length and 3-6 nm in width. At one end these fibers revealed a knoblike structure of .apprx.10-nm diameter. The slimelike polysaccharides from mutants produced filamentous bundles of >100-µm length, with antigenic and phage-receptor properties indistinguishable from those of the wild-type K29 capsule antigen.

L4 ANSWER 32 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1975:406932 HCAPLUS

DOCUMENT NUMBER: 83:6932

TITLE: Structure of Klebsiella serotype 11 capsular

polysaccharide

AUTHOR(S): Thurow, Horst; Choy, Yuen-Min; Frank,

Norbert; Niemann, Heiner; Stirm, Stephan

CORPORATE SOURCE: Max Planck-Inst. Immunbiol., Freiburg, Fed. Rep. Ger.

SOURCE: Carbohydrate Research (1975), 41(1), 241-55

CODEN: CRBRAT; ISSN: 0008-6215

DOCUMENT TYPE: Journal LANGUAGE: English

AB Using periodate oxidation, methylation anal., the characterization of oligosaccharides obtained by partial acid hydrolysis, PMR spectroscopy, and anal. ultracentrifugation, the structure of the (mildly alkali-treated) Klebsiella serotype 11 capsular polysaccharide has been elucidated. The tetrasaccharide repeating unit has the sequence → 3)-β-D-Glcp-(1 → 3)-β-D-GlcUAp-(1 →

3)-α-D=Galp-(1 → with a 4,6-0-(1-carboxyethylidene)-α-D-galactosyl residue linked to 0-4 of the glucuronic acid residue (Glc represents glucose, GlcUA represents glucuronic acid, Gal represents galactose, and p represents pyruvate). The structural basis for some serol. cross-reactions of the Klebsiella K11 antigen is discussed, and it is shown that rabbit antiserums against the Klebsiella K11 test-strain predominantly contain K agglutinins specific for branch-terminal 4,6-0-(1-carboxyethylidene)-D-galactose.

L4 ANSWER 33 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1975:404594 HCAPLUS

DOCUMENT NUMBER: 83:4594

Cordero-Garcia 10/632,414

Bacteriophage-borne enzymes in carbohydrate chemistry. TITLE:

I. Glycanase activity associated with particles of

Klebsiella bacteriophage number 11 Thurow, Horst; Niemann, Heiner; Stirm,

Stephan

Max Planck-Inst. Immunbiol., Freiburg, Fed. Rep. Ger. CORPORATE SOURCE:

Carbohydrate Research (1975), 41(1), 257-71 SOURCE:

CODEN: CRBRAT; ISSN: 0008-6215

Journal DOCUMENT TYPE: English LANGUAGE:

AUTHOR(S):

The preparation and use of particles of Klebsiella bacteriophage Number 11 are described. A glycanase activity associated with the viruses catalyses the depolymerization of (alkali-treated) Klebsiella serotype 11 capsular polysaccharide, ultimately to a mixture of oligosaccharides consisting of 1

or 2 repeating units. Mainly glucosidic bonds are hydrolyzed. The

substrate specificity of the viral enzyme has been characterized by using derivs. of serotype-11 polysaccharide, as well as 81 heterologous, bacterial; capsular glycans. The glycanase will (at least) also depolymerize all polysaccharides containing the unsubstituted chain-trisaccharide repeating-unit of its natural substrate.

ANSWER 34 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

1974:130227 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 80:130227

Bacteriophage-induced colanic acid depolymerase TITLE:

Stirm, Stephan; Bessler, W.; Fehmel, F.; AUTHOR(S):

Freund-Moelbert, E.; Thurow, H.;

Kochanowski, H.; Stuebig, H.; Thoma, H.
Max-Planck-Inst. Immunbiol., Freiburg, Fed. Rep. Ger.

CORPORATE SOURCE:

Zentralblatt fuer Bakteriologie, Parasitenkunde, SOURCE:

Infektionskrankheiten und Hygiene, Abteilung 1:

Originale, Reihe A: Medizinische Mikrobiologie und Parasitologie (1974), 226(1), 26-35

CODEN: ZMMPAO; ISSN: 0300-9688

DOCUMENT TYPE: Journal LANGUAGE: German

Phage m59, virulent for a mucoid mutant of Escherichia coli (F9095M) and specific for colanic acid (M antigen), has an isometric head with a set of spikes 40 + 125 Å. Plaques by m59 were surrounded by haloes caused by a phage-induced colanic acid depolymerase. This enzyme was isolated from lysates and purified. The purified enzyme was essentially a fucosidase, and was seen as oblong particles 40 + 135 Å with a central core or axis. Since the dimensions are similar to the phage spikes and enzyme activity occurred in purified phage, the depolymerase probably consists of free tail organelles.

ANSWER 35 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1974:105669 HCAPLUS

80:105669 DOCUMENT NUMBER:

Host capsule depolymerase activity of bacteriophage TITLE:

particles active on Klebsiella K20 and K24 strains

Thurow, Horst; Niemann, Heiner; Rudolph, AUTHOR(S):

Claus; Stirm, Stephan

CORPORATE SOURCE: Max-Planck-Inst. Immunbiol., Freiburg, Fed. Rep. Ger.

Virology (1974), 58(1), 306-9 SOURCE: CODEN: VIRLAX; ISSN: 0042-6822

Journal DOCUMENT TYPE:

LANGUAGE: English

AB Purified particles of 2 small bacteriophages, active on Klebsiella K20 or K24 strains, exhibited galactosidase or glucosidase activities, resp., that cause an extensive depolymn. of isolated host capsular polysaccharides.

L4 ANSWER 36 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1974:11716 HCAPLUS

DOCUMENT NUMBER: 80:11716

TITLE: Bacteriophage-induced depolymerase active on

Klebsiella K11 capsular polysaccharide

AUTHOR(S): Bessler, Wolfgang; Freund-Moelbert, Elisabeth;

Knuefermann, Hubert; Rudolph, Claus; Thurow,

Horst; Stirm, Stephan

CORPORATE SOURCE: Max Planck-Inst. Immunbiol., Freiburg, Fed. Rep. Ger.

SOURCE: Virology (1973), 56(1), 134-51 CODEN: VIRLAX; ISSN: 0042-6822

DOCUMENT TYPE: Journal LANGUAGE: English

A capsule depolymerase induced by bacteriophage Number 11 on Klebsiella 390 (03:K11), was isolated. The material was essentially homogeneous in analytical ultracentrifugation and immunoelectrophoresis. It catalyzes the hydrolysis mainly of β -D-glucopyranoside-(1 \rightarrow 3)-Dglucuronic acid, but also that of a few (1 in .apprx.20) D-galactopyranoside-(1→3)-D-glucose bonds in K11 capsular polysaccharide. The depolymerase consists of dimers of club- or drop-shaped particles of a molecular weight of 155,000 containing 1 polypeptide chain of .apprx.62,500 and 1 of 94,000 daltons. The Klebsiella bacteriophage Number 11 is an isometric virus; its head has a diameter of apprx.450 Å. It bears a base plate of apprx.265-Å diameter which has the shape of a 6-pointed star with a central hole or prop, carrying 2 spikes for each of its 6 points. The following observations support the view that the depolymerase consists of pairs of free spikes of phage 11. (1) The depolymerase monomers and phage spikes in situ have the same dimensions. (2) Polypeptide chains of the same size as the two in the depolymerase also occur in whole virus. (3) The free depolymerase shows approximately the same enzymic activity as do phage spikes in situ. Purified depolymerase and bacteriophage particles catalyze the hydrolysis of the same bonds in Klebsiella K11 capsular polysaccharide, ultimately forming oligosaccharide fragments of 1, 2, and 3 repeating units of the (alkali-treated) polymer. (4) Phage 11 and the depolymerase strongly cross-react serologically, and antidepolymerase IgG antibodies specifically adhere to the spike region of whole virus.

L4 ANSWER 37 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1930:5284 HCAPLUS

DOCUMENT NUMBER: 24:5284
ORIGINAL REFERENCE NO.: 24:612c-d

TITLE: Trimercapto- β -naphthol

AUTHOR(S):

Blumenstock-Halward, Eugen; Riesz, Eugen

SOURCE:

Monatshefte fuer Chemie (1929), 52, 377-8

CODEN: MOCMB7; ISSN: 0026-9247

DOCUMENT TYPE: Journal LANGUAGE: Unavailable

AB Reduction of 2,3,6,8-C10H4(OH)(SO2C1)3 with Zn and concentrated HCl gives 2-hydroxytrimercaptonaphthalene, which, because of its ease of oxidation, is analyzed as the Pb salt. The EtOH solution of the free compound, warmed with picryl chloride and AcONa, gives tri[picrylmercapto]-2-naphthol, yellow, decomps. on heating. Reduction in AcOH-Ac2O gives an

acetoxytri[acetylmercapto] naphthalene, C15H16O6S3, m. 134°.

L4 ANSWER 38 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1930:2927 HCAPLUS

DOCUMENT NUMBER: 24:2927
ORIGINAL REFERENCE NO.: 24:360e-g

TITLE: β-Naphtholdisulfonyl chlorides

AUTHOR(S): Pollak, Jakob; Gebauer-Fulnegg, Erich;

Blumenstock-Halward, Eugen

SOURCE: Monatshefte fuer Chemie (1929), 53;54, 83-9

CODEN: MOCMB7; ISSN: 0026-9247

DOCUMENT TYPE: Journal LANGUAGE: Unavailable

AB cf. C. A. 22, 3653. The action of ClSO3H upon β-ClOH7OH gives 2 isomeric chlorides, m. 111° and 177°. The former has been shown to be the 1,6-disulfonyl chloride; the latter is now shown to be the 1,5-isomer (I), since the same product results from 2,5-ClO(OH)SO3H and from 2-carbethoxynaphthol-5-sulfonic acid, m. 101°. The latter results from 2,5-ClOH6(OCO2Et)SO4K and ClSO3H as an intermediate production in the formation of I, as well as from I by the successive action of HCl, ClCO2Et and PCl5. 2-Naphthol-5-sulfonanilide, m. 188°, results from the acid and PhNH2. 2,7-ClOH6(OH)SO2H and ClSO2H give 2-naphthol-1,7-disulfonyl chloride, m. 169°; the dianilide, m. 233°. The tri-Ba and tri-K salts of the 1,7-, 1,6- and 1,5-di-SO3H acids were prepared and analyzed. 2,4-ClOH6(OH)SO3H gives a disulfonanilide, m. 290° whose structure has not been determined

L4 ANSWER 39 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1929:9734 HCAPLUS

DOCUMENT NUMBER: 23:9734
ORIGINAL REFERENCE NO.: 23:1129b-e

TITLE: Bathochromic action of the methylthiol group in azo

dyes. I

AUTHOR(S): Blumenstock-Halward, Eugen; Jusa, Egon CORPORATE SOURCE: Univ. Wien.

SOURCE: Monatshefte fuer Chemie (1928), 50, 123-38

Control of the Contro

CODEN: MOCMB7; ISSN: 0026-9247

DOCUMENT TYPE: Journal LANGUAGE: Unavailable

AB Advantage is taken of the bathochromic action of the MeS group observed by Brand to prepare from 3,6,8-trismethylthiol- β -naphthol and p-O2NC6H4N2X a reddish violet aso dye, markedly deeper in shade than the other dyes of this class ("ice colors"). The shade deepens successively in the dyes derived from the trisulfonic acid, trithiol and trismethylthiol derivs., corresponding with the change from sexavalent to bivalent S and methylation resp. The poor yields of the trithiol derivs. obtained makes tech. application impossible in this case. K O-Carbethoxy- β -naphthol-3,6,8-trisulfonate, heated with PCl5, gives the trisulfonyll choride (I), m. 195°. The action of PhNH2 causes partial hydrolysis of the CO2Et group, completed on recrystn., and yields β -naphthol-3,6,8-trisulfonanilide. O-Carbethoxy-3,6,8-trithiol- β -naphthol, m. 80-6° (decomposition), which could not be obtained pure, was formed in 15-20% yield by the reduction of I by adding HCl to the EtOH solution containing

It is readily oxidized to polysulfides, and yields, with simultaneous hydrolysis of the CO2Et group, a dark red aso dye, with p-O2NC6H4N2X, slowly formed in neutral solution, rapidly in alkaline solution. The orange-red Pb salt of the trithiol was obtained with

EtOH-Pb(OAc)2. The action of ClCO2Et yields O-carbethoxy-6,8-dithiol-3-carbethoxythiol- β -naphthol, m. 115-20° (decomposition), Hydrolysis with KOH yields 2,2'-dihydroxy-6,6',8,8'-tetrathiodinaphthalene-3,3'-disulfide (Pb salt), which yields 3,6,8-trithiol- β -naphthol (Pb salt) on reduction. O-Carbethoxy-3,6,8-trimethylthiol- β -naphthol, resinous, has no characteristic m. p., accompanied in certain case by 2,2'-di[carbethoxyoxy]tetramethylthiodinaphthalene disulfide, it was obtained from the trithiol with Me2SO4 and Na2CO3 and yields 3,6,8-trimethylthiod- β -naphthol, m. 140°, on hydrolysis with EtOH-KOH.

L4 ANSWER 40 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

manife continued in the colonical manage of the displacement of th

ACCESSION NUMBER: 1928:31139 HCAPLUS

DOCUMENT NUMBER: 22:31139
ORIGINAL REFERENCE NO . 22:3653b-e

ORIGINAL REFERENCE NO.: 22:3653b-e

TITLE: Constitution of the β -naphtholdisulfonyl

chlorides

AUTHOR(S): Pollak, J.; Blumenstock-Halward, Eugen;

Schlesinger, Alexander; Weinmayr, Viktor; Winter, Kurt

CORPORATE SOURCE: Univ. Wien

SOURCE: Monatshefte fuer Chemie (1928), 49, 203-12

CODEN: MOCMB7; ISSN: 0026-9247

DOCUMENT TYPE: Journal LANGUAGE: Unavailable

cf. preceding abstract ClsO3H and 2,6(or 1)-C10H6(OH)SO3H give AB β -naphthol-1,6-disulfonyl chloride, m. 111°, which establishes the structure of IV in the preceding abstract 2,8-C10H6(OH)SO3H, which might give the chloride, m. 177°, gave instead the 6,8-disulfonyl chloride (I), m. 161-2° (anilide, m. 195°). The constitution of I is established by reacting 2,6,8-C10H5(OH)(SO3H)2 withClCO2Et.and.then.with ClSO3H, giving O-carbethoxy-β-naphthol-6,8disulfonyl chloride, m. 131°, whose anilide, m. 178°, on hydrolysis, gives the anilide of I. Similarly 2,3,6-C10H5(OH)(SO3H)2 gives O-carbethoxy- β -naphthol-3,6-disulfonyl chloride, m. 125° (anilide, m. 153-63°, which was not purified but hydrolyzed to 2-naphthol-3,6-disulfonanilide, m. 202°); this was not identical with the anilide from the chloride, m. 177° , as might be expected from the conversion of the latter into 2,3,6,8-C10H4(OH)(SO2Cl)3; this acid derivative, however, is also obtained from the chloride, m. 111°, which involves the migration of the SO2Cl group from the 1-position. It is, therefore, suggested that the chloride, m. 177° may be the 1,8-derivative Since 2,1-C10H6(OH)SO2Cl (Anschutz and Maxim, C. A. 13, 431) does not form a sulfonylide, it was thought that the SO2Cl group might be in some other position; O-acetyl-2-naphthol-6- and 8-sulfonyl chlorides, m. 103° and 129°, resp., were therefore prepared Since these are different from the compound of A. and M., there is no reason to question their structure. The 6-sulfonanilide, m. 95°, on hydrolysis gives 2,6-C10H6(OH)SO2NHPh, m. 161°; this m. p. does not agree with that of Zincke and Dereser (C. A. 12, 2559), viz. 100-5°; the anilide was prepared by their method and found to contain 2 mols. H2O, m. 100-5%, but on-crystallization from C6H6, it m. 160-1%; recrystn. from H2O did not again give the low-melting form, which must be regarded as a labile form. O-Carbethoxy-2-naphthol-8-sulfonyl chloride, m. 118°; anilide, m. 195°; hydrolysis gives 2-naphthol-8-sulfonanilide, m. 195°, also obtained from the O-Ac derivative

L4 ANSWER 41 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN

```
ACCESSION NUMBER:
                          1928:31138 HCAPLUS
DOCUMENT NUMBER: 22:31138
ORIGINAL REFERENCE NO.: 22:3652h-i,3653a
                                           The second control and a second control of the second con-
                          Action of chlorosulfonic acid on phenols. IV
TITLE:
                          Pollak, Jakob; Gebauer-Fulnegg, Erich;
AUTHOR(S):
                          Blumenstock-Halward, Eugen
CORPORATE SOURCE:
                          Univ. Wien.
                          Monatshefte fuer Chemie (1928), 49, 187-202
SOURCE:
                          CODEN: MOCMB7; ISSN: 0026-9247
DOCUMENT TYPE:
                          Journal
LANGUAGE:
                          Unavailable
AB cf. C. A. 21, 2070. (With Eduard Peterill.) ClSO3H (I) acts on
     \alpha-C10H7OH (II) at the ordinary temperature, the 2-SO3H derivative
crystallizing out.
     With an excess of I (5 times the weight of II for 2.5 hrs., or 10 times, for
     1.5 hrs.), there results 1-napththol-2,4-disulfonyl chloride, m.
     149° (anilide, m. 228°). Prolonged action (4-5 days) gives
     1-naphthol-2,4,7(?)-trisulfonyl chloride, m. 172° (with 0.5 C6H6,
     160°); anilide, m. 240° (decompose). Alkaline hydrolysis splits
     off 2 SO3H groups, giving probably the 7-SO3H derivative At 100°, I
     and II give the 4 SO3H derivative; at 160°, a black product, or with an
  excess of I, a resinous product, is obtained, from which a
     trichloronaphthalenesulfonyl chloride, m. 214°, is isolated. (With
     Kurt Winter.) The action of I upon \beta-C10H70H (III) at the ordinary
     temperature gives only the 1-SO3H derivative; on standing, a mixture of
disulfonyl
     chlorides is obtained. In C2H2Cl4 at 130°, there results the
     6-SO3H derivative Excess of I yields a a mixture of 2 disulfonyl chlorides, m.
     111° (IV) and 177° (V), whose constitution is studied in the following abstract The anilide from IV m. 191°, from V, 231°.
     Heating I and III at 130-40° gives 2-naphthol-3,6,8-trisulfonyl
     chloride, m. 196° (anilide, m. 152-5°, also obtained from
     O-carbethoxy-2-naphthol-3,6,8-trisulfonyl chloride). Heating III with 50
     parts I 80 hrs. at 150-60° gives a compound containing Cl but not S, m.
     120-2° (a dichloronaphthalene?) and a S-containing compound, m.
     135-40°, probably a naphthoquinone derivative
     ANSWER 42 OF 42 HCAPLUS COPYRIGHT 2005 ACS on STN
ACCESSION NUMBER: 1928:581 HCAPLUS
DOCUMENT NUMBER:
                          22:581
ORIGINAL REFERENCE NO.: 22:70e-f
TITLE: Action of aqua regla upon fluorene
AUTHOR(S):
                        Blumenstock-Halward, Eugen
SOURCE:
                          Monatshefte fuer Chemie (1927), 48, 99-101
                          CODEN: MOCMB7; ISSN: 0026-9247
```

DOCUMENT TYPE: Journal Unavailable LANGUAGE:

Fluorene (5 g.) in 150 cc. concentrated HCl and 50 cc. fuming HNO2, allowed to stand 14 days, gives a mixture of mono- and di-Cl derivs. of fluorenone, of which only the β -di-Cl derivative, m. 185-8°, could be identified.