

Jan Philipp Girgott and Dido Stoikou

December 12th, 2023 | Optimization Methods

PROBLEM STATEMENT AND DATA

WE ARE USING YAHOO! FINANCE DATA SO SIMULATE A REALISTIC INVESTMENT SCENARIO

SETTING

- Securities to choose from:
 Top 500 NASDAQ securities
 (by market capitalization)
- \$100,000 with the goal to increase it as high as possible
- Investment horizon:
 One year (11/22 10/23) with daily trading opportunities

DATA

Dataset with daily prices and trading volumes for 7,000 stocks and 5,000 ETFs

Pre-processing:

- 1. **Remove ETF**data (focus is on diversified stock portfolios)
- 2. Filter for stocks with at least 2 years of data
- 3. Focus on **top 500** stocks to
 lower solving
 times

APPROACH: BASELINE MODELS

WE USE A MODEL WITH PERFECT INFORMATION AND A NASDAQ INDEX FUND AS UPPER AND LOWER BASELINE

UPPER BASELINE

/ariables

 $x_{i,t}$: # of stock i bought in t

 $z_{i,t}$: # of stock i held in t

 c_t : cash held in t

Objective

Maximize final port-folio value

$$\max_{c,x,z} \sum_{i=1}^{n} P_{i,T} z_{i,T} + c_T$$

Constraints

Transaction logic (incl. no short selling)

Cash management (incl. transaction cost)

$$c_{t} = c_{t-1} - \sum_{i=1}^{n} P_{i,t} x_{i,t} - \alpha \sum_{i=1}^{n} P_{i,t} |x_{i,t}| \,\forall t$$

 $z_{i,t} = z_{i,t-1} + x_{i,t} \ \forall i, t$

 $z_{i,t-1} + x_{i,t} \ge 0 \ \forall i, t$

Other: portfolio diversification, limit to transaction amount, no leveraged transactions, respect initial endowment

LOWER BASELINE

NASDAQ index fund:

- A fund which imitates the composition of the NASDAQ index
- Investors will generate the average return of all NASDAQ securities

APPROACH: MAIN MODEL

THE MAIN MODEL DIFFERS IN THREE ASPECTS: STOCK PRICES, INVESTOR RISK APPETITE, ROBUSTNESS

1 St

Stock Prices: Predictions from ML Model

Risk Appetite: Modeled by Portfolio Variance

Robustness: Included by different scenarios

- LSTM model provides predictions for stock prices
- Introduces distortion and reflects real-life scenario

$$\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} z_{i,t} \sum_{i,j,s} z_{i,t}}{\sum_{i=1}^{n} z_{i,t} P_{i,t,s}} \le \sigma^2 \ \forall t, s$$

- Portfolio variance relative to the total portfolio value is capped by parameter σ^2
- Represents risk appetite
- σ^2 is derived from upper baseline model result

$$P_{i,t} \rightarrow P_{i,t,s}$$
 and $\forall s \in [S]$

- Robustness is applied on stock price predictions
- We used modeled different scenarios using an uncertainty set based on the Central Limit Theorem

RESULTS

THE ROBUST MODEL ACHIEVES SIX TIMES THE FINAL PORTFOLIO VALUE OF THE LOWER BASELINE

FINAL PORTFOLIO VALUES

\$2.8m

Upper Baseline ModelFinal Portfolio Value

\$730k

Robust ModelFinal Portfolio Value

\$120k

Lower Baseline Model Final Portfolio Value

RESULTS

THE ROBUST MODEL ACHIEVES SIX TIMES THE FINAL PORTFOLIO VALUE OF THE LOWER BASELINE

\$2.8m

\$730k

\$120k

TOTAL PORTFOLIO VALUE OVER TIME

RESULTS

THE ROBUST MODEL ACHIEVES SIX TIMES THE FINAL **PORTFOLIO VALUE OF THE LOWER BASELINE**

DIVERSIFICATION OVER TIME (NO. OF TITLES HELD)

