MODULE THREE: DETERMINING CAUSE AND MAKING RELIABLE FORECASTS

TOPIC 9: INTRODUCTION TO MULTIPLE REGRESSION

Learning Objectives

At the completion of this topic, you should be able to:

- construct a multiple regression model and analyse model output
- differentiate between independent variables and decide which ones to include in the regression model, and determine which impendent variables are more important in predicting a dependent variable
- incorporate categorical and interactive variables in regression model
- detect collinearity

+The Multiple Regression Model

Idea: Examine the linear relationship between

1 dependent (Y) and 2 or more independent variables (X_i)

Multiple Regression Model with k Independent Variables:

Population slopes
$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} + \ldots + \beta_{k} X_{ki} + \epsilon_{i}$$

+Multiple Regression Equation

Multiple regression equation with k independent variables:

In this topic we will use Excel to obtain the regression slope coefficients and other regression summary measures

+Pie Sales Example:

Week	Pie Sales	Price (\$)	Advertising (\$100s)
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0
4	430	8.00	4.5
5	350	6.80	3.0
6	380	7.50	4.0
7	430	4.50	3.0
8	470	6.40	3.7
9	450	7.00	3.5
10	490	5.00	4.0
11	340	7.20	3.5
12	300	7.90	3.2
13	440	5.90	4.0
14	450	5.00	3.5
15	300	7.00	2.7

A distributor of frozen dessert pies wants to evaluate factors thought to influence demand

Dependent variable:

Pie sales (units per week)

Independent variables:

Advertising (\$100s), Price (in \$)

Data are collected for 15 weeks

Multiple regression equation:

Sales =
$$b_0 + b_1$$
 (Price) + b_2 (Advertising)

+Multiple Regression Output

Regression	Statistics					
Multiple R	0.72213					
R Square	0.52148	Sales = 30	6.526 - 24.97	75(Price) +	-74.131(Advert	ising)
Adjusted R Square	0.44172				7 1.131(114.010.	
Standard Error	47.46341		1			
Observations	15					
ANOVA	df	ss	MS	F	Significance F	
Regression	2	29460.027	14730.01	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14/	56493.333				
		Standard				
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

+The Multiple Regression Equation

Where:

- Sales is in number of pies per week
- Price is in \$
- Advertising is in \$100s

b₁ = -24.975: sales will decrease, on average, by
24.975 pies per week for each
\$1 increase in selling price, net of the effects of changes due to advertising

b₂ = 74.131: sales will increase, on average, by
74.131 pies per week for each \$100 increase in advertising, net of the effects of changes due to price

+Using The Equation to Make Predictions

Predict sales for a week in which the selling price is \$5.50 and advertising is \$350:

```
Sales = 306.526 - 24.975(Price) + 74.131(Advertising)

= 306.526 - 24.975 (5.50) + 74.131 (3.5)

= 428.62

Predicted sales is 428.62 pies

Note: Advertising is in $100s, so $350 means that X<sub>2</sub> = 3.5
```

+Coefficient of Multiple Determination

Reports the proportion of total variation in Y explained by all X variables taken together

$$r^2 = \frac{SSR}{SST} = \frac{regression sum of squares}{total sum of squares}$$

+Coefficient of Multiple Determination (Cont)

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

+Adjusted r²

r² never decreases when a new X variable is added to the model - this can be a disadvantage when comparing models

What is the net effect of adding a new variable?

- we lose a degree of freedom when a new X variable is added
- did the new X variable add enough explanatory power to offset the loss of one degree of freedom?

+Adjusted r² (Cont)

Shows the proportion of variation in Y explained by all X variables adjusted for the number of X variables used

$$r_{adj}^2 = 1 - \left[(1 - r^2) \left(\frac{n-1}{n-k-1} \right) \right]$$

(where: n = sample size, k = number of independent variables)

- Penalises excessive use of unimportant independent variables
- Smaller than r²
- Useful in comparing among models

+Adjusted r² (Cont)

Regression Statistics				
Multiple R	0.72213			
R Square	0.52148			
Adjusted R Square	0.44172			
Standard Error	47.46341			
Observations	15			

 $r_{adj}^2 = .44172$

44.2% of the variation in pie sales is explained by the variation in price and advertising, taking into account the sample size and number of independent variables

ANOVA	df	SS	MS	F	Significance F
Regression	2	29460.027	14730.01	6.53861	0.01201
Residual	12	27033.306	2252.776		
Total	14	56493.333			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

*Is the Model Significant?

F Test for Overall Significance of the Model

Shows if there is a linear relationship between all of the X variables considered together and Y

Hypotheses:

 H_0 : $\beta_1 = \beta_2 = ... = \beta_k = 0$ (no linear relationship)

 H_1 : at least one $\beta_i \neq 0$ (at least one independent variable affects Y)

+F Test for Overall Significance

Test statistic

$$F = \frac{MSR}{MSE} = \frac{\frac{SSR}{k}}{\frac{SSE}{n-k-1}}$$

where F has: (numerator) = k, and

(denominator) = (n - k - 1) degrees of freedom

+F Test for Overall Significance (Cont)

Regression S	Statistics		10D 1	4700.0		
Multiple R	0.72213	$ F = \frac{I V}{I}$	= _	4730.0	= 6.5386	
R Square	0.52148	_ N	ISE 2	252.8	3.0000	
Adjusted R Square	0.44172					
Standard Error	47.46341	With 2 and	d 12		P-valu	e for
Observations	15	degrees o	f freedom	1 /	the F	Test
ANOVA	df	ss	MS	F	Significance F	
Regression	2 /	29460.027	14730.01	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

+F Test for Overall Significance (Cont)

$$H_0$$
: $\beta_1 = \beta_2 = 0$

 H_1 : β_1 and β_2 not both zero

$$\alpha$$
 = .05

$$df_1 = 2$$
 $df_2 = 12$

Critical Value: $F_{\alpha} = 3.885$

Test Statistic:

$$F = \frac{MSR}{MSE} = 6.5386$$

Decision:

Since F test statistic is in the rejection region (p-value < .05), reject H_0

Conclusion:

There is evidence that at least one independent variable affects Y

+Are Individual Variables Significant?

Shows if there is a linear relationship between the variable X_j and Y

Hypotheses:

 H_0 : $\beta_i = 0$ (no linear relationship)

 H_1 : $\beta_i \neq 0$ (linear relationship does exist)

Use t tests of individual variable slopes (between X_i and Y)

+Are Individual Variables Significant? (Cont)

Regression S	Statistics							
Multiple R	0.72213							
R Square	0.52148	t-stat for Price	t-stat for Price is: t = -2.306, with p-value .0398					
Adjusted R Square	0.44172	t-stat for Adve	ertising is: t	= 2.855, v	vith p-value .014	.5		
Standard Error	47.46341			<u> </u>	•			
Observations	15							
ANOVA	df	SS	MS	F	Significance F			
Regression	2	29460.027	14730.01	6.53861	0.01201			
Residual	12	27033.306	2252.776					
Total	14	56493.333						
	Coefficients	Chandrad Fare	4.644	D. control	1			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%		
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404		
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392		
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888		

+Are Individual Variables Significant?(Cont) From Excel output:

H_0 : $\beta_i = 0$

 $H_1: \beta_i \neq 0$

d.f. = 15-2-1 = 12 α = .05 $t_{\alpha/2}$ = 2.1788

From	Excel	out	tpu	t:
From	FVCDI		TMII:	r·
110111	LACEI	UU	LPU	L.

	Coefficients	Standard Error	t Stat	P-value
Price	-24.97509	10.83213	-2.30565	0.03979
Advertising	74.13096	25.96732	2.85478	0.01449

Decision:

The test statistic for each variable falls in the rejection region (p-values < .05)

Conclusion:

Reject H_0 for each variable.

There is evidence that both Price and Advertising affect pie sales at

$$\alpha = .05$$

+Confidence Interval Estimate for the Slope

Confidence interval for the population slope β_i

$$b_j \pm t_{n-k-1} S_{b_j}$$
 Where t has: $(n-k-1)$ d.f.

	Coefficients	Standard Error
Intercept	306.52619	114.25389
Price	-24.97509	10.83213
Advertising	74.13096	25.96732

Here, t has: (15-2-1) = 12 d.f.

Example: Form a 95% confidence interval for the effect of changes in price (X_1) on pie sales: $-24.975 \pm (2.1788)(10.832)$

So the interval is (-48.576, -1.374)

(This interval does not contain zero, so price has a significant effect on sales)

+Confidence Interval Estimate for the Slope (Cont)

Confidence interval for the population slope β_i

	Coefficients	Standard Error	•••	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	•••	57.58835	555.46404
Price	-24.97509	10.83213		-48.57626	-1.37392
Advertising	74.13096	25.96732	•••	17.55303	130.70888

Example: Excel output also reports these interval endpoints:

Weekly sales are estimated to be reduced by between 1.37 to 48.58 pies for each increase of \$1 in the selling price

+Using Dummy Variables

A dummy variable is a categorical explanatory variable with two levels:

- yes or no, on or off, male or female
- coded as 0 or 1

Regression intercepts are different if the variable is significant

Assumes equal slopes for other variables

If more than two levels, the number of dummy variables needed is number of levels minus 1

+Dummy Variable Example (with 2 Levels):

$$\hat{Y} = b_0 + b_{_1}X_{_1} + b_{_2}X_{_2}$$

Let: Y = pie sales

 $X_1 = price$

 X_2 = holiday (dummy variable)

 $(X_2 = 1 \text{ if a holiday occurred during the week})$

 $(X_2 = 0 \text{ if there was no holiday that week})$

+Dummy Variable Example (with 2 Levels):

*Interpreting the Dummy Variable Coefficient - with 2 Levels

$$Sales = 300 - 30(Price) + 15 (Holiday)$$

Sales: number of pies sold per week

Price: pie price in \$

```
Holiday: \begin{cases} 1 & \text{If a holiday occurred during the week} \\ 0 & \text{If no holiday occurred} \end{cases}
```

 b_2 = 15: on average, sales were 15 pies greater in weeks with a holiday than in weeks without a holiday, given the same price

+Dummy Variable Models - more than 2 Levels

The number of dummy variables is one less than the number of levels

Example:

Y = apartment price

 X_1 = size of apartment in hundreds of square metres

If number of bedrooms is incorporated:

Bedrooms = one, two, three

Three levels, so two dummy variables are needed

+Dummy Variable Models - more than 2 Levels (Cont)

Example:

Let '1-bedroom' be the default category, and let X2 and X3 be used for the other two categories

Y = apartment price

 X_1 = size in hundreds of square metres

 $X_2 = 2$ bedroom, 0 otherwise

 $X_3 = 3$ bedroom, 0 otherwise

The multiple regression equation is:

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$$

+Dummy Variable Models - more than 2 Levels (Cont)

Consider the regression equation:

$$\hat{\mathbf{Y}} = 20.43 + 0.045\mathbf{X}_1 + 18.84\mathbf{X}_2 + 33.53\mathbf{X}_3$$

For 1-bedroom: $X_2 = X_3 = 0$

$$\hat{Y} = 20.43 + 0.045X_1$$

For 2-bedroom: $X_2 = 1$; $X_3 = 0$

$$\hat{Y} = 20.43 + 0.045X_1 + 18.84$$

For 3-bedroom: $X_2 = 0$; $X_3 = 1$

$$\hat{Y} = 20.43 + 0.045X_1 + 33.53$$

With the same size in hundreds of square meters, a 2-bedroom will have an estimated average price of 18.84 thousand dollars more than a 1-bedroom apartment

With the same size in hundreds of square meters, a 3-bedroom will have an estimated average price of 33.53 thousand dollars more than a 1-bedroom

+Collinearity

High correlation exists among two or more independent variables

This means the correlated variables contribute redundant information to the multiple regression model

Including two highly correlated independent variables can adversely affect the regression results

No new information provided:

- Can lead to unstable coefficients (large standard error and low t-values)
- Coefficient signs may not match prior expectations

+Some Indications of Strong Collinearity

- Incorrect signs on the coefficients
- Large change in the value of a previous coefficient when a new variable is added to the model
- A previously significant variable becomes non-significant when a new independent variable is added
- The estimate of the standard deviation of the model increases when a variable is added to the model

*Measuring Collinearity Variance **Inflationary Factor**

The variance inflationary factor VIF_i can be used to measure collinearity:

$$VIF_{j} = \frac{1}{1 - R_{j}^{2}}$$

 $VIF_{j} = \frac{1}{1 - R_{i}^{2}}$ Where: R_{j}^{2} is the coefficient of multiple determination of independent variable X_{j} with all other X variables

If: $VIF_i = 1$, X_i is uncorrelated with the other Xs

If: $VIF_i > 10$, X_i is highly correlated with the other Xs (conservative estimate reduces this to VIF_j > 5)