1 Logic

```
\begin{array}{lll} A = \{\, x \mid P(x) \,\} & \text{ set builder notation} \\ A \cup B & \text{ cup set union} \\ A \cap B & \text{ set intersection} \end{array}
```

2 Probability

$\Pr(\cdot)$	\Pr	probability
$\mathrm{E}(\cdot)$	$\setminus E$	expectation
$\mathrm{E}(\cdot \cdot)$	\E()	conditional expectation
$\mathrm{var}(\cdot)$	$\backslash \mathtt{var}$	variance (matrix)
$\operatorname{cov}(\cdot,\cdot)$	\cov	covariance (matrix)
$\operatorname{corr}(\cdot,\cdot)$	$\backslash \mathtt{corr}$	correlation (matrix)

3 Inference

$ackslash ext{distr}$	is distributed as
$\backslash { t adistr}$	is asymptotically distributed as
$\L(\vtheta)$	likelihood function
\ell	log-likelihood function
$ackslash ext{Hesmat}$	Hessian matrix
$\backslash { t Infmat}$	(Fisher) information matrix
\pto	converges in probability
\dto	converges in distribution
\plant{plim}	probability limit
	\adistr \L(\vtheta) \ell \Hesmat \Infmat \pto \dto

4 Matrix Algebra

5 Calculus

```
\frac{df}{dx} \set first derivative \frac{d^2f}{dx^2} \set first derivative \frac{\partial f}{\partial x} \set first derivative \frac{\partial^2 f}{\partial x^2} \set first derivative \frac{\partial^2 f}{\partial x^2 \partial x} \set first derivative
```