BACS HW13

109062710

5/19/2021

Prepare the data set

```
cars_log <- with(Auto, data.frame(log(mpg), log(cylinders), log(displacement),</pre>
log(horsepower), log(weight), log(acceleration), year, origin, name))
weight_mean <- mean(cars_log$weight)</pre>
## Warning in mean.default(cars_log$weight): argument is not numeric or logical:
## returning NA
names(cars_log) <- names(Auto)</pre>
head(cars_log)
##
          mpg cylinders displacement horsepower
                                                   weight acceleration year origin
## 1 2.890372 2.079442
                            5.726848
                                       4.867534 8.161660
                                                              2.484907
                                                                         70
                                                                         70
## 2 2.708050 2.079442
                            5.857933
                                       5.105945 8.214194
                                                              2.442347
                                                                                  1
## 3 2.890372 2.079442
                            5.762051
                                       5.010635 8.142063
                                                              2.397895
                                                                         70
                                                                         70
## 4 2.772589 2.079442
                            5.717028
                                       5.010635 8.141190
                                                              2.484907
                                                                                  1
## 5 2.833213 2.079442
                            5.710427
                                       4.941642 8.145840
                                                              2.351375
                                                                         70
## 6 2.708050 2.079442
                                       5.288267 8.375860
                                                              2.302585
                                                                         70
                            6.061457
                                                                                  1
                          name
## 1 chevrolet chevelle malibu
## 2
            buick skylark 320
## 3
            plymouth satellite
## 4
                 amc rebel sst
## 5
                   ford torino
              ford galaxie 500
```

Convert the numbers in origin column into names, namely 1 for USA, 2 for Europe, and 3 for Japan.

```
origins <- c("USA", "Europe", "Japan")
cars_log$origin <- factor(cars_log$origin, labels = origins)</pre>
```

Question 1

Visualization

i. Split the data set into lightweight cars and heavyweight cars

A new column will be made called weight_type with 1 as a heavy car and 2 as a light car.

```
cars_log <- cars_log %>% mutate(weight_type = ifelse(weight >= mean(weight), 1, 2))
head(cars_log)
```

```
##
          mpg cylinders displacement horsepower
                                                   weight acceleration year origin
               2.079442
## 1 2.890372
                            5.726848
                                        4.867534 8.161660
                                                               2.484907
                                                                                USA
## 2 2.708050
               2.079442
                            5.857933
                                        5.105945 8.214194
                                                               2.442347
                                                                          70
                                                                                USA
## 3 2.890372
               2.079442
                            5.762051
                                        5.010635 8.142063
                                                               2.397895
                                                                          70
                                                                                USA
                                                                          70
                                                                                USA
## 4 2.772589
               2.079442
                            5.717028
                                        5.010635 8.141190
                                                               2.484907
## 5 2.833213
               2.079442
                            5.710427
                                        4.941642 8.145840
                                                               2.351375
                                                                          70
                                                                                USA
## 6 2.708050
                            6.061457
                                        5.288267 8.375860
                                                               2.302585
                                                                                USA
               2.079442
                                                                          70
                          name weight_type
## 1 chevrolet chevelle malibu
## 2
             buick skylark 320
                                          1
## 3
            plymouth satellite
                                          1
                 amc rebel sst
                                          1
## 4
## 5
                   ford torino
                                          1
## 6
              ford galaxie 500
                                          1
```

ii. Create a scatter plot of mpg vs acceleration

```
ggplot(data = cars_log, aes(x = acceleration, y = mpg, col = factor(weight_type))) +
    geom_point()
```


iii. Make two seperate regression lines

```
ggplot(data = cars_log, aes(x = acceleration, y = mpg, col = factor(weight_type))) +
    geom_point() +
    geom_smooth(method=lm)
```

'geom_smooth()' using formula 'y ~ x'

b. Report full summaries of light cars and heavy cars

```
light_cars <- cars_log[cars_log$weight < mean(cars_log$weight), ]
light_cars_lm <- lm(mpg ~ weight + acceleration + year + origin, data = light_cars)
summary(light_cars_lm)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ weight + acceleration + year + origin, data = light_cars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.36684 -0.06688 0.00620 0.06448 0.31576
```

```
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                6.817512 0.606080 11.249
                                              <2e-16 ***
## (Intercept)
## weight
               -0.820783
                           0.066717 -12.302
                                              <2e-16 ***
## acceleration 0.111434
                                              0.0595 .
                          0.058800
                                      1.895
## year
                0.033109
                           0.002096 15.798
                                              <2e-16 ***
## originEurope 0.039695
                           0.021455
                                      1.850
                                              0.0658 .
## originJapan
                0.020798
                           0.019458
                                      1.069
                                              0.2864
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1109 on 196 degrees of freedom
## Multiple R-squared: 0.7034, Adjusted R-squared: 0.6958
## F-statistic: 92.97 on 5 and 196 DF, p-value: < 2.2e-16
heavy_cars <- cars_log[cars_log$weight >= mean(cars_log$weight), ]
heavy_cars_lm <- lm(mpg ~ weight + acceleration + year + origin, data = heavy_cars)
summary(heavy_cars_lm)
##
## Call:
## lm(formula = mpg ~ weight + acceleration + year + origin, data = heavy_cars)
##
## Residuals:
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -0.37106 -0.07150 0.00276 0.06702 0.42505
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                7.096619
                           0.690120 10.283 < 2e-16 ***
## weight
               -0.824266
                           0.069657 -11.833
                                             < 2e-16 ***
## acceleration 0.031170
                           0.056250
                                             0.58017
                                      0.554
                0.032086
                           0.003325
## year
                                      9.649
                                             < 2e-16 ***
## originEurope 0.098291
                           0.034250
                                      2.870 0.00459 **
## originJapan
                0.061596
                           0.066222
                                      0.930 0.35351
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.122 on 184 degrees of freedom
## Multiple R-squared: 0.754, Adjusted R-squared: 0.7473
## F-statistic: 112.8 on 5 and 184 DF, p-value: < 2.2e-16
```

c. What do you observe about light vs. heavy cars?

Both light and heavy cars follow the same trend where as the acceleration increases, so as the distance that a car can cover.

Question 2

a. Which is the moderating variable (not graded)?

A moderating variable is a variable that explains the behavior of an independent variable and a dependent variable. In this case, we can see that 'weight' affects 'acceleration', and 'acceleration' affects 'mpg'. Clearly, 'acceleration' is the moderating variable.

b. Use various regression models

i. Regression without interaction terms

```
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                         Max
## -0.38259 -0.07054 0.00401 0.06696 0.39798
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               ## weight
              -0.875499
                         0.029086 -30.101 < 2e-16 ***
## acceleration 0.054377
                         0.037132
                                    1.464
                                          0.14389
               0.032787
                          0.001731 18.937
                                          < 2e-16 ***
## year
## originEurope 0.056111
                          0.018241
                                    3.076 0.00225 **
## originJapan
               0.031937
                          0.018506
                                    1.726 0.08519 .
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.1163 on 386 degrees of freedom
## Multiple R-squared: 0.8845, Adjusted R-squared: 0.883
## F-statistic: 591.1 on 5 and 386 DF, p-value: < 2.2e-16
```

ii. Regression with an interaction between weight and acceleration

```
summary(
    lm(
        mpg ~
        weight +
        acceleration +
```

```
year +
          origin +
          weight * acceleration,
      data = cars_log
   )
)
##
## Call:
## lm(formula = mpg ~ weight + acceleration + year + origin + weight *
      acceleration, data = cars_log)
##
## Residuals:
##
      Min
              1Q Median
                                3Q
                                       Max
## -0.37795 -0.06904 0.00367 0.06946 0.39735
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
                    1.084310 2.780784 0.390 0.69680
## (Intercept)
                    -0.097340 0.341054 -0.285 0.77548
## weight
## acceleration
                     2.357003 1.006243
                                       2.342 0.01967 *
## year
                     ## originEurope
                     0.027512 0.018506
                                       1.487 0.13793
## originJapan
## weight:acceleration -0.286724   0.125213   -2.290   0.02257 *
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1157 on 385 degrees of freedom
## Multiple R-squared: 0.886, Adjusted R-squared: 0.8843
## F-statistic: 498.9 on 6 and 385 DF, p-value: < 2.2e-16
```

iii. Regression with a mean-centered interaction term

```
mean_center <- function(data) {
    return(scale(data, center = TRUE, scale = FALSE))
}

summary(
    lm(
        mean_center(mpg) ~
        mean_center(acceleration) +
        mean_center(year)+
        mean_center(Auto$origin) + # Auto$origin is in numeric
        mean_center(mpg * acceleration),
        data = cars_log
)
)</pre>
```

```
##
## Call:
```

```
## lm(formula = mean_center(mpg) ~ mean_center(acceleration) + mean_center(year) +
##
      mean_center(Auto$origin) + mean_center(mpg * acceleration),
##
      data = cars_log)
##
## Residuals:
##
        Min
                         Median
                                       3Q
                   10
                                                Max
## -0.126873 -0.010337 0.005623 0.013265 0.064810
##
## Coefficients:
##
                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                  -3.924e-16 1.152e-03
                                                           0.000
                                                                  1.0000
## mean_center(acceleration)
                                  -1.089e+00 1.067e-02 -102.069
                                                                  <2e-16 ***
## mean_center(year)
                                   1.087e-03 3.903e-04
                                                           2.786
                                                                  0.0056 **
                                   3.155e-04 1.771e-03
                                                                   0.8587
## mean_center(Auto$origin)
                                                           0.178
## mean_center(mpg * acceleration) 3.636e-01 1.950e-03 186.419
                                                                   <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.02281 on 387 degrees of freedom
## Multiple R-squared: 0.9955, Adjusted R-squared: 0.9955
## F-statistic: 2.164e+04 on 4 and 387 DF, p-value: < 2.2e-16
```

iv. Regression with an orthogonalized interaction term

```
## [1] 2.617096e-16
```

```
cor(weight_acc_inter_lm$residuals, cars_log$acceleration)
```

```
## [1] -1.374861e-16
```

We can see that both weight and acceleration are orthogonal to each other.

Then we show the linear model summary

```
summary(
    lm(
        mpg ~ weight + acceleration + year + origin + weight_acc_inter_lm$residual,
        data = cars_log
)
```

```
##
## Call:
## lm(formula = mpg ~ weight + acceleration + year + origin + weight_acc_inter_lm$residual,
```

```
data = cars_log)
##
##
## Residuals:
##
       Min
                1Q
                   Median
                                 3Q
                                        Max
## -0.37795 -0.06904 0.00367 0.06946 0.39735
##
## Coefficients:
##
                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                              7.410974 0.315079 23.521 < 2e-16 ***
## weight
                             ## acceleration
                              0.054377 0.036929
                                                  1.472 0.14171
                                       0.001722 19.041 < 2e-16 ***
## year
                              0.032787
## originEurope
                              0.056111 0.018141
                                                  3.093 0.00213 **
                              0.031937 0.018405
                                                  1.735 0.08350 .
## originJapan
                                       0.125213 -2.290 0.02257 *
## weight_acc_inter_lm$residual -0.286724
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.1157 on 385 degrees of freedom
## Multiple R-squared: 0.886, Adjusted R-squared: 0.8843
## F-statistic: 498.9 on 6 and 385 DF, p-value: < 2.2e-16
```

c. What is the correlation between the interaction term and the two variables that are multiplied together?

```
# without interaction
no_interaction_weight <- cor((cars_log$weight * cars_log$acceleration), cars_log$weight)
no_interaction_acceleration = cor((cars_log$weight * cars_log$acceleration), cars_log$acceleration)
# mean-centered weight and acceleration
mean_centered_weight <- cor(mean_center(cars_log$weight) * mean_center(cars_log$acceleration), mean_cen
mean_centered_acceleration = cor(mean_center(cars_log$weight) * mean_center(cars_log$acceleration), mea
# orthogonalized weight and acceleration
orthogonalized_weight <- cor(weight_acc_inter_lm$residuals, cars_log$weight)
orthogonalized_acceleration = cor(weight_acc_inter_lm$residuals, cars_log$acceleration)
correlation_matrix <- matrix(</pre>
        no_interaction_weight,
       no_interaction_acceleration,
        mean_centered_weight,
        mean_centered_acceleration,
        orthogonalized_weight,
        orthogonalized_acceleration
   ),
   ncol = 2, byrow=TRUE
)
```

[,1] [,2]

correlation_matrix

```
## [1,] 1.090314e-01 8.528828e-01
## [2,] -1.977815e-01 3.445721e-01
## [3,] 2.617096e-16 -1.374861e-16
rownames(correlation_matrix) <- c("without interaction", "mean-centered", "orthogonalized")</pre>
colnames(correlation_matrix) <- c("weight", "acceleration")</pre>
round(correlation_matrix, 5)
##
                         weight acceleration
## without interaction 0.10903
                                    0.85288
## mean-centered
                      -0.19778
                                     0.34457
                       0.00000
                                     0.00000
## orthogonalized
```