Autoencoders for Anomaly Detection

Autoencoders

An autoencoder is a type of neural network

- The network is designed to reconstruct its input vector
- lacktriangle The input is a tensor x and the output should be similar to the same tensor x

Autoencoders

Autoencoders can be broken down in two halves

- \blacksquare An encoder, i.e. $e(x, \theta_e)$, mapping x into a vector of latent variables z
- lacksquare A decoder, i.e. $d(z, \theta_d)$, mapping z into reconstructed input tensor

Training an Autoencoder

Autoencoders are typically trained for minimum MSE:

$$\underset{\theta_e,\theta_d}{\operatorname{arg \, min}} \|d(e(x_i,\theta_e),\theta_d) - x_i\|_2^2$$

- lacksquare I.e. d, when applied to the output of e
- ...Should approximately return the input vector itself

A nice tutorial about autoencoders can be found <u>on the Keras blog</u>

There is a risk that an autoencoder learns a trivial transformation (x' = x)

This is obviously undesired, and it can be avoided by:

- Choosing a small-dimensional latent space (compressing autoencoder)
- By encouraging sparse encodings with an L1 regularizer (sparse autoencoder)

Autoencoders for Anomaly Detection

Autoencoders can be used for anomaly detection

...By using the reconstruction error as an anomaly signal, e.g.:

$$||x - d(e(x, \theta_e), \theta_d)||_2^2 \ge \theta$$

This approach has some PROs and CONs compared to KDE

- The size of a Neural Network does not depend on the size of the training set
- Neural Networks have good support for high dimensional data
- ...Plus limited overfitting and fast prediction/detection time
- However, error reconstruction can be harder than density estimation

Let's prepare the data to test the approach

Shall we standardize/normalize the data? And why?

NNs and Standardization

Normalization is important for NNs, due to the use of gradient descent

The performance of SGD depends a lot on its starting point

- DL libraries all come with robust weight initialization procedures
 - ...And robust default parameters for the gradient descent algorithms
- ...But those are designed for data that is:
 - Reasonably close to zero
 - Mostly contained in a $[-1, 1]^n$ box

You can use NNs with non standardize data

...But expect far less reliable results

- In addition, vector output should always be standardized/normalized
- We'll see why in a short while

Data Preparation

We'll prepare our data as we did for KDE

First we apply a standardization step:

```
In [2]: tr_end, val_end = 3000, 4500
hpcs = hpc.copy()
tmp = hpcs.iloc[:tr_end]
hpcs[inputs] = (hpcs[inputs] - tmp[inputs].mean()) / tmp[inputs].std()
```

The we separate a training, validation, and test set

```
In [3]: trdata = hpcs.iloc[:tr_end]
  valdata = hpcs.iloc[tr_end:val_end]
  tsdata = hpcs.iloc[val_end:]
```


Building an Autoencoder

The we can build an autoencoder (we'll use tensorflow 2.0 and keras)

First, we build the model using (e.g.) the functional API

```
In [4]: from tensorflow import keras
        from tensorflow.keras import layers, callbacks
        input_shape = (len(inputs), )
        ae_x = keras.Input(shape=input_shape, dtype='float32')
        ae z = layers.Dense(64, activation='relu')(ae x)
        ae y = layers.Dense(len(inputs), activation='linear')(ae z)
        ae = keras.Model(ae x, ae y)
        2023-09-27 09:52:23.268360: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda dr
        ivers on your machine, GPU will not be used.
        2023-09-27 09:52:23.303446: I tensorflow/tsl/cuda/cudart stub.cc:28] Could not find cuda dr
        ivers on your machine, GPU will not be used.
        2023-09-27 09:52:23.303943: I tensorflow/core/platform/cpu_feature_quard.cc:182] This Tenso
        rFlow binary is optimized to use available CPU instructions in performance-critical operati
        ons.
        To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow wit
        h the appropriate compiler flags.
        2023-09-27 09:52:24.080971: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT
        Warning: Could not find TensorRT
```


Input builds the entry point for the input data

Autoencoders in Keras

Then we can prepare our model for training

In keras terms, we compile it

```
In [5]: ae.compile(optimizer='Adam', loss='mse')
```

■ We are using the Adam optimizer (a variant of Stochastic Gradient Descent)

Then we can start training:

- We are using a callback to stop training early
- ...If no improvement on the validation set is observed for 3 epochs

Autoencoders in Keras

Let's have a look at the loss evolution over different epochs

Autoencoders in Keras

Finally, we can obtain the predictions

In [8]: preds = pd.DataFrame(index=hpcs.index, columns=inputs, data=ae.predict(hpcs[inputs], verbose
preds.head()

Out[8]:

	ambient_temp	cmbw_p0_0	cmbw_p0_1	cmbw_p0_10	cmbw_p0_11	cmbw_p0_12	cmbw_p0_13	cmbw_p0_14	cmbw_p0_2	cmbw_p0
0	-1.144768	-1.536241	-0.269183	2.361146	1.892044	1.734433	2.038270	2.160941	-2.222770	-0.79172
1	-0.781902	-0.744511	0.131924	2.177929	2.226960	2.209065	2.277657	2.279097	0.167708	-0.58163(
2	-0.842867	-0.796300	-0.202314	2.223009	2.219742	2.044022	2.279411	2.291493	0.096068	0.841466
3	-0.798506	-0.674088	-0.378586	2.215375	2.291924	2.048959	2.200196	2.291318	0.696663	1.109623
4	-0.985389	-0.811094	-0.376052	2.291038	2.247289	2.205690	2.214597	2.331640	0.625559	1.089861

5 rows × 159 columns

■ These are the reconstructed values for all the input features

Alarm Signal

We can finally obtain our alarm signal, i.e. the sum of squared errors

```
In [9]: labels = pd.Series(index=hpcs.index, data=(hpcs['anomaly'] != 0), dtype=int)
         sse = np.sum(np.square(preds - hpcs[inputs]), axis=1)
         signal_ae = pd.Series(index=hpcs.index, data=sse)
         util.plot_signal(signal_ae, labels, figsize=figsize)
          1.50
          1.25
          1.00
          0.75
          0.50
          0.25
          0.00
                                                                                  5000
                                          2000
                                                        3000
                                                                     4000
                                                                                                6000
```


Let's try to understand what we have just done

When we train an autoencoder (renamed here as h), we solve:

$$\underset{\theta}{\operatorname{arg\,min}} \|h(x_i, \theta) - x_i\|_2^2$$

By expanding the L2 norm, we get:

$$\underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(h_{j}(x_{i}, \theta) - x_{i,j} \right)^{2}$$

By introducing a \log and \exp transformation we obtain:

$$\underset{\theta}{\operatorname{arg \, min \, log \, exp}} \left(\sum_{i=1}^{m} \sum_{j=1}^{n} \left(h_{j}(x_{i}, \theta) - x_{i,j} \right)^{2} \right)$$

Then, from the last step:

$$\underset{\theta}{\operatorname{arg \, min \, log \, exp}} \left(\sum_{i=1}^{m} \sum_{j=1}^{n} \left(h_{j}(x_{i}, \theta) - x_{i,j} \right)^{2} \right)$$

We rewriting the outer sum using properties of exponentials:

$$\arg\min_{\theta} \log \prod_{i=1}^{m} \exp \left(\sum_{j=1}^{n} \left(h_{j}(x_{i}, \theta) - x_{i,j} \right)^{2} \right)$$

Then we rewrite the inner sum in matrix form:

Starting from the last step:

$$\underset{\theta}{\operatorname{arg\,min}\,\log} \prod_{i=1}^{m} \exp\Big(\big(h(x_{i},\theta)-x_{i,j}\big)^{T} I\left(h(x_{i},\theta)-x_{i,j}\right)\Big)$$

We make a few adjustment that do not change the optimal solution:

- We negate the argument of **exp** and swap the **arg min** for a **arg max**
- We multiply exponent by $1/2\sigma$ (for some constant σ)
- We multiply the exponential by $1/\sqrt{2\pi}$

$$\arg\max_{\theta} \log \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(h(x_i, \theta) - x_{i,j}\right)^T (\sigma I) \left(h(x_i, \theta) - x_{i,j}\right)\right)$$

Let's look at our last formulation:

$$\arg\max_{\theta} \log \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(h(x_i, \theta) - x_{i,j}\right)^T (\sigma I) \left(h(x_i, \theta) - x_{i,j}\right)\right)$$

The term inside the product is the PDF of a multivariate normal distribution

$$\underset{\theta}{\operatorname{arg \, min}} \log \prod_{i=1}^{m} f(x_i, h(x_i), \sigma I)$$

- In particular a distribution centered on $h(x_i)$
- ...With independent Normal components
- ...All having uniform variance

Let's discuss some implications

When we use a MSE loss, we are training for maximum likelihood

- ...Just like density estimators!
- This is actually true for many ML approaches

Let's discuss some implications

When we use a MSE loss, we are training for maximum likelihood

- ...Just like density estimators!
- This is actually true for many ML approaches

The output of a (MSE trained) regressor has a probabilistic interpretation

- Specifically, the output is the mean of a conditional distribution
- The distribution represents the variability of the target
- ...Once the effect of the input is taken into account
- Another way to think of it: noise around the prediction

Let's discuss some implications

We are implicitly assuming that the noise is normally distributed

- This true in many cases, but not always
- E.g., sometimes large values are under-represented
-Leading to log-normal distributions
- In this cases, applying a log transformation to the output can be very effective

Let's discuss some implications

We are implicitly assuming that the noise is normally distributed

- This true in many cases, but not always
- E.g., sometimes large values are under-represented
-Leading to log-normal distributions
- In this cases, applying a log transformation to the output can be very effective

We are also assuming that the all output components have the same variance

■ This is another (very) good reason to standardize the output

Let's discuss some implications

We are also assuming that the noise on all output components is independent

- This might be true even if the output components themselves are correlated
- ...But still it is not true in all cases

Let's discuss some implications

We are also assuming that the noise on all output components is independent

- This might be true even if the output components themselves are correlated
- ...But still it is not true in all cases

All these implicit assumption can make the problem harder

■ This is why error reconstruction can be harder than density estimation

Let's discuss some implications

We are also assuming that the noise on all output components is independent

- This might be true even if the output components themselves are correlated
- ...But still it is not true in all cases

All these implicit assumption can make the problem harder

■ This is why error reconstruction can be harder than density estimation

Finally, our alarm signal can be interpreted as a density:

- To see why, just apply the transformation to $\|x d(e(x, \theta_e), \theta_d)\|_2^2$
- This fact explains why the signal is similar to the KDE one

Threshold Optimization

The threshold can be optimized as usual

```
In [10]: c alarm, c missed, tolerance = 1, 5, 12
         cmodel = util.HPCMetrics(c alarm, c missed, tolerance)
         th range = np.linspace(1e4, 2e5, 200)
         th_ae, val_cost_ae = util.opt_threshold(signal_ae[tr_end:val_end], hpcs['anomaly'][tr_end:val_end]
         print(f'Best threshold: {th ae:.3f}')
         tr_cost_ae = cmodel.cost(signal_ae[:tr_end], hpcs['anomaly'][:tr_end], th_ae)
         print(f'Cost on the training set: {tr cost ae}')
         print(f'Cost on the validation set: {val cost ae}')
         ts_cost_ae = cmodel.cost(signal_ae[val_end:], hpcs['anomaly'][val_end:], th_ae)
         print(f'Cost on the test set: {ts cost ae}')
         Best threshold: 118844.221
         Cost on the training set: 0
         Cost on the validation set: 263
         Cost on the test set: 265
```

■ The performance is similar to KDE (not surprisingly)

Mutiple Signal Analysis

But autoencoders do more than just anomaly detection!

- Instead of having a single signal we have many
- So we can look at the individual reconstruction errors

```
In [11]: se = np.square(preds - hpcs[inputs])
          signals_ae = pd.DataFrame(index=hpcs.index, columns=inputs, data=se)
          util.plot_dataframe(signals_ae, labels, vmin=-5e4, vmax=5e4, figsize=figsize)
           20
           60
           100
           120
           140
                           1000
                                         2000
                                                        3000
                                                                                                    6000
                                                                       4000
                                                                                     5000
```


Mutiple Signal Analysis

Reconstruction errors are often concentrated on a few signals

- These correspond to the properties of the input vector that were harder to reconstruct
- ...And often they are useful clues about the nature of the anomaly

```
In [12]: se = np.square(preds - hpcs[inputs])
          signals_ae = pd.DataFrame(index=hpcs.index, columns=inputs, data=se)
          util.plot_dataframe(signals_ae, labels, vmin=-5e4, vmax=5e4, figsize=figsize)
            20
            40
            80
           100
           120
           140
                           1000
                                         2000
                                                        3000
                                                                       4000
                                                                                      5000
                                                                                                    6000
```

Multiple Signal Analysis

Here are the average errors for all anomalies (sorted by decreasing value)

■ Errors are concentrated on 10-20 features

Multiple Signal Analysis

These are the 20 largest average errors for all anomalies

- The largest errors are on "ips", then on "util" (utilization)
- This kind of information can be very valuable for a domain expert!