

August 29, 2016 Maximum marks: 20

(5)

ALL QUESTIONS ARE COMPULSORY

with $n_1 > n_3 > n_2$. Write down the expression for E_y of the TE₀ guided mode in all regions. (2)

b) Draw schematic diagrams of the transverse intensity patterns of E_{21}^x and E_{13}^y modes of a channel waveguide. (2)

Show that for the TE_0 mode in a planar waveguide with refractive index variation n(x) there is no power flow along the x-direction. (3)

- 2. The fundamental TE mode in a planar step index waveguide operating at 1000 nm with $n_1 = 1.5$ and $n_2 = 1.48$ has $n_{\text{eff}} = 1.49$.
 - a) Obtain the thickness of the film.
 - b) What is the depth of penetration of the mode in the lower index region?
 - c) If the operating wavelength is increased to 1300 nm, will the effective index of the same mode be lesser than or greater than 1.49? (4)
- 3. Consider a rectangular channel waveguide with $n_1 = 1.51$ and $n_2 = 1.50$ with a = 4 µm and b = 8 µm operating at a wavelength of 1µm.
 - a) Write down expressions for the separable refractive index profile which can be used as an approximation to evaluate the propagation characteristics of the given waveguide.
 - b) Write down an expression for the Ey field of the E_{12}^y mode in the core region of the waveguide ($|x| < 2 \mu m$, $|y| < 4 \mu m$) and in the region $|x| > 2 \mu m$, $|y| < 4 \mu m$ in terms of β_x and β_y , where symbols have their usual meanings.
- 4. Consider a directional coupler made up of two single mode channel waveguides. Given that the coupling coefficient between the waveguides is $\pi/2$ cm⁻¹,
 - a) What should be the length of the coupler so that entire power transfer can take place between the waveguides if they are identical?
 - b) What is the value of $\Delta\beta$ (= $\beta_1 \beta_2$) between the two waveguides so that the maximum transfer of power between the two waveguides is 50%?
 - c) What is the corresponding length of the coupler where power launched in waveguide I gets divided equally between the two waveguides?