B4B01DMA

Jakub Adamec Domácí úkol č. 9A

26. 11. 2024

Tento úkol vypracujte a pak přineste na cvičení č. 10.

- 1. Uvažujte funkci zadanou f(0) = 1, f(1) = 2 a f(n+1) = f(n) + 2f(n-1) pro $n \in \mathbb{N}$.
- a) Spočítejte několik prvních hodnot této funkce a odhadněte obecný vzorec pro f(n).
- b) Dokažte indukcí, že váš odnadnutý vzorec je správně.
- **2.** Uvažujte funkci zadanou f(1) = 0 a f(n+1) = f(n) + n pro $n \in \mathbb{N}$.

Dokažte indukcí, že takto zadaná funkce splňuje nerovnost $f(n) < n^2$ pro $n \in \mathbb{N}.$

Bonus:

Nechť \mathcal{R} je relace na A. Dokažte:

Je-li \mathcal{R} antisymetrická, tak je i \mathcal{R}^{-1} antisymetrická.

Použijte strukturu důkazu, kdy je závěr brán jako cesta.

1.

a)
$$f(2) = 2 + 2 = 4$$
, $f(3) = 4 + 2 \cdot 2 = 8$, $f(4) = 8 + 2 \cdot 4 = 16$, $f(5) = 16 + 2 \cdot 8 = 32$.

$$f(n) = 2^n, n \in \mathbb{N}$$

b)

(0)
$$n=0$$
: $2^0 = f(0) = 1$.

(1)
$$n \ge 0$$
: IP: $f(n) = 2^n$, $f(n-1) = 2^{n-1}$.

Pak
$$f(n+1) = f(n) + 2f(n-1) \stackrel{\text{IP}}{=} 2^n + 2 \cdot 2^{n-1} = 2 \cdot 2^n = 2^{n+1}$$
.

2.

$$f(2) = 0 + 1 = 1, f(3) = 1 + 2 = 3, f(4) = 3 + 3 = 6, f(5) = 6 + 4 = 10, f(6) = 10 + 5 = 15$$

$$f(n) = \frac{(n-1)n}{2}, n \ge 1$$

(0)
$$n=1$$
: $f(1) = \frac{(1-1)\cdot 1}{2} = 0 < 1^2$

(1)
$$n > 1$$
: IP: $f(n) = \frac{(n-1)n}{n}$

$$\begin{array}{l} (0) \ n{=}1: \ f(1) = \frac{(1-1)\cdot 1}{2} = 0 < 1^2. \\ (1) \ n \geq 1: \ \mathrm{IP}: \ f(n) = \frac{(n-1)n}{2}. \\ \mathrm{Pak} \ f(n+1) < n^2 + 2n + 1 \stackrel{\mathrm{IP}}{=} \frac{n^2 + n}{2} < n^2 + 2n + 1 \to 0 < n^2 + 3n + 2. \end{array}$$

Bonus.

 $\forall a, b \in A$.

předpoklad
$$(a\mathcal{R}b \wedge b\mathcal{R}a) \Rightarrow a = b$$
.

$$a\mathcal{R}b \iff b\mathcal{R}^{-1}a \wedge b\mathcal{R}a \iff a\mathcal{R}^{-1}b.$$

z předpokladu tedy platí: $(b\mathcal{R}^{-1}a \wedge a\mathcal{R}^{-1}b) \Rightarrow a = b$.

což je přesná definice antisymetrie pro \mathcal{R}^{-1} .