Package 'FIREVAT'

April 9, 2020

```
Type Package
Title FIREVAT, FInding REliable Variants without ArTifacts
Description FIREVAT is a variant filtering tool for cancer sequencing data,
      which uses mutational signatures to identify sequencing artifacts and
      low-quality variants.
Version 0.6.0
Authors Andy Jinseok Lee, Hyunbin Kim
Maintainer Andy Jinseok Lee <jinseok.lee@ncc.re.kr>, Hyunbin Kim <khb7840@gmail.com>
Depends R (>= 3.5.0)
Imports data.table,
     rngtools,
      doRNG,
      stringi,
      bedr,
      GA,
     jsonlite,
      yaml,
      lsa,
      ggpubr,
      caTools,
      ggrepel,
      gridExtra,
      ggplot2,
      rmarkdown,
      gtable,
      dplyr,
      extrafont,
      IRanges,
      BSgenome,
      BSgenome. Hsapiens. UCSC. hg19,
      BSgenome. Hsapiens. UCSC. hg38,
      MutationalPatterns,
      deconstructSigs
biocViews CancerGenomics,
      VariantRefinement,
      VariantFiltering,
      MutationalSignatures,
      SomaticMutation,
```

2 R topics documented:

<pre>URL https://github.com/cgab-ncc/FIREVAT</pre>
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
Suggests knitr
VignetteBuilder knitr
License MIT + file LICENSE

R topics documented:

Annotate VCFObj
CheckIfVariantRefinementIsNecessary
Chromosome.Names
ComputeZScore
ComputeZScoreEquiValue
DecimalCeiling
Default.Obj.Fn
DefaultFilterToBinary
EnumerateTriNucCounts
Euc.Exp.Weighted.Obj.Fn
Euc.Exp.Weighted.Seq.Art.Only.Obj.Fn.1
Euc.Exp.Weighted.Seq.Art.Only.Obj.Fn.2
Euc.Obj.Fn
Exp.Weighted.A.Art.Obj.Fn
Exp.Weighted.A.Ref.Obj.Fn
Exp.Weighted.Obj.Fn.1
Exp.Weighted.Obj.Fn.2
Exp.Weighted.Refined.Seq.Art.Only.Obj.Fn
FilterByStrandBiasAnalysis
FilterVCF
GenerateConfigObj
GetCOSMICMutSigs
GetCOSMICMutSigsEtiologiesColors
GetCOSMICMutSigsNames
GetGASuggestedSolutions
GetOptimizedSignatures
GetParameterLowerUpperVector
GetPCAWGMutSigs
GetPCAWGMutSigsEtiologiesColors
GetPCAWGMutSigsNames
GetPCAWGPlatinumMutSigs
GetPCAWGPlatinumMutSigsEtiologiesColors
GetPCAWGPlatinumMutSigsNames
GetSeedForVCF
InitializeVCF
Leaky.ReLU.A.Art.Obj.Fn
Leaky.ReLU.A.Ref.Obj.Fn
Leaky.ReLU.Obj.Fn
MakeFilter
MutaliskParseVCFObj

MutPatParseRefMutSigs	24
MutPatParseVCFObj	25
ParameterToBits	25
ParseConfigFile	26
PCAWG.All.Sequencing.Artifact.Signatures	26
PCAWG.Known.Sequencing.Artifact.Signatures	27
PCAWG.Platinum.All.Technology.Related.Artifact.Signatures	27
PCAWG.Possible.Sequencing.Artifact.Signatures	27
PCAWG.Target.Mutational.Signatures	28
PerformStrandBiasAnalysis	28
PlotMutaliskResults	29
PlotMutationTypes	30
PlotOptimizationIterations	31
PlotSignaturesContProbs	32
PlotTable	33
PlotTriNucSpectrum	33
PlotVCFStatsBoxPlots	34
PlotVCFStatsHistograms	35
PrepareAnnotationDB	36
PrepareArtifactAnnotationTable	36
PrepareArtifactStrandBiasTable	37
PrepareArtifactualMutsOptimizationIterationsPlot	37
PrepareFilterCutoffsTable	38
PrepareGeneticAlgorithmParametersTable	
PrepareIdentifiedSignaturesPlot	
PrepareMLEReconstructedSpectrumsPlot	
PrepareNucleotideSubstitutionTypesPlot	40
PrepareObservedSpectrumsPlot	
	40
PrepareOptimizationResultsTable	
PrepareOptimizedVCFStatisticsPlot	41
PrepareRefinedAnnotationTable	42
PrepareRefinedMutsOptimizationIterationsPlot	42
PrepareRefinedStrandBiasTable	
PrepareResidualSpectrumsPlot	
PrepareTrinucleotideSpectrumsTable	44
PrintLog	
QueryAnnotatedVCF	
ReadOptimizationIterationReport	45
ReadVCF	46
ReportFIREVATResults	46
RunFIREVAT	47
RunGAMode	50
RunManualMode	50
RunMutalisk	51
RunMutaliskHelper	52
RunMutPat	53
Sig.Extraction.Obj.Fn	54
Sigmoid.Obj.Fn	54
Test.Obj.Fn.1	55
Test.Obj.Fn.2	55
TriNuc.Mutation.Type.Hex.Colors	56
UpdateFilter	56

	WriteFIREVATRes WriteVCF														
Index															58
Annot	tateVCFObj	AnnotateV	'CFC) Dbj											

Annotates a vcf.obj using df.variants.of.interest (from PrepareAnnotationDB)

Usage

```
AnnotateVCFObj(vcf.obj, df.annotation.db, columns.to.include,
  include.all.columns = FALSE)
```

Arguments

```
vcf.obj ReadVCF

df.annotation.db

A data.frame from PrepareAnnotationDB. This data.frame must have the columns 'CHROM', 'POS', 'REF', 'ALT'

columns.to.include

A character vector of columns to include. Note that existing columns in vcf.obj will not be affected.

include.all.columns

A boolean value. If TRUE, then annotates vcf.obj with all columns present in df.variants.of.interest. If FALSE, columns.to.include must be supplied.
```

Value

An annotated vcf.obj

```
\label{lem:check_start} Check If Variant Refinement Is Necessary \\ \textit{Check If Variant Refinement Is Necessary}
```

Description

Checks if variant refinement is necessary by identifying mutational signatures related to sequencing artifact in the vcf.obj (set of original unrefined point mutations).

Usage

```
CheckIfVariantRefinementIsNecessary(vcf.obj, bsg, df.mut.pat.ref.sigs,
  target.mut.sigs, sequencing.artifact.mut.sigs,
  init.artifact.stop = 0.05, verbose = TRUE)
```

Chromosome.Names 5

Arguments

vcf.obj A list from ReadVCF

bsg BSgenome.Hsapiens.UCSC object

df.mut.pat.ref.sigs

A data.frame from MutPatParseRefMutSigs

target.mut.sigs

A character vector of target mutational signatures from reference mutational signatures.

 ${\tt sequencing.artifact.mut.sigs}$

A character vector of sequencing artifact mutational signatures from reference mutational signatures.

init.artifact.stop

Numeric value less than 1. If the sum of sequencing artifact weights in vcf.obj is less than or equal to this value then this function returns judgment = FALSE, otherwise returns judgment = TRUE.

verbose

If TRUE, provides process detail. Default value is TRUE.

Value

A list with the following elements

- judgmentA boolean value
- seq.art.sigs.weights.sumA numeric value. Sum of sequencing artifact weights.

Chromosome.Names

Constant

Description

Chromosome names for FIREVAT. Chromosome names should be given in the format of "chr" + chromosome number.

Usage

Chromosome.Names

Format

An object of class character of length 25.

 ${\tt Compute ZScore}$

Compute ZScore

Description

Returns a z-score of x given a distribution of values

Usage

```
ComputeZScore(values, x)
```

Arguments

values a numeric vector x a numeric value

Value

a numeric value corresponding to the z-score of x

 ${\tt Compute ZScore EquiValue}$

Compute ZS core Equi Value

Description

Returns a numeric value that is equivalent to the specified z.score in the distribution of 'values'

Usage

```
ComputeZScoreEquiValue(z.score, values)
```

Arguments

z.score numeric value values numeric vector

Value

a numeric value corresponding to the specified z.score in the 'values' distribution

DecimalCeiling 7

DecimalCeiling DecimalCeiling

Description

Returns the ceiling of a decimal value e.g. value = 0.15, decimal = 0.1 returns 0.2

Usage

```
DecimalCeiling(value, decimal)
```

Arguments

value numeric value (decimal)

decimal numeric value (e.g. 0.1, 0.001)

Value

a numeric value

Default.Obj.Fn Default.Obj.Fn

Description

Calculates the default objective value for FIREVAT GA optimization.

Usage

```
Default.Obj.Fn(C.refined, A.refined, C.artifactual, A.artifactual)
```

Arguments

C.refined A numeric value between 0 and 1.

A.refined A numeric value between 0 and 1.

C.artifactual A numeric value between 0 and 1.

A.artifactual A numeric value between 0 and 1.

Value

8 EnumerateTriNucCounts

DefaultFilterToBinary Transform default filtering parameters to a binary vector

Description

This function transforms default filtering parameter to binary vector which can be used as a suggested solution in GA algorithm.

Usage

```
DefaultFilterToBinary(vcf.filter, params.bit.len)
```

Arguments

```
vcf.filter A list generated in MakeFilter
params.bit.len A list with bit lengths of filtering parameters which is generated from ParameterToBits
```

Value

A binary vector

 $Enumerate TriNuc Counts \quad \textit{Enumerate TriNuc Counts}$

Description

```
Returns C>A, C>G, C>T, T>A, T>C, T>G counts
```

Usage

EnumerateTriNucCounts(spectrum)

Arguments

spectrum

a numeric vector with 96 numeric values

Details

```
Please note that this function assumes that 'spectrum' is sorted (i.e. 1:16 \rightarrow C>A; 17:32 \rightarrow C>G; 33:48 \rightarrow C>T; 49:64 \rightarrow T>A; 65:80 \rightarrow T>C; 81:96 \rightarrow T>G)
```

Value

a numeric vector of length 6 corresponding to the counts of each trinucleotide change (C>A, C>G, C>T, T>A, T>C, T>G)

```
Euc.Exp.Weighted.Obj.Fn
```

Euc.Exp.Weighted.Obj.Fn

Description

Calculates the Euclidean-distance of logarithmically weighted objective value for FIREVAT GA optimization.

Usage

```
Euc.Exp.Weighted.Obj.Fn(C.refined, A.refined, C.artifactual, A.artifactual)
```

Arguments

```
C.refined A numeric value between 0 and 1.

A.refined A numeric value between 0 and 1.

C.artifactual A numeric value between 0 and 1.

A.artifactual A numeric value between 0 and 1.
```

Value

A numeric value between 0 and 1.

```
\label{local_equation} Euc. \texttt{Exp.Weighted.Seq.Art.Only.Obj.Fn.1} \\ Euc. \textit{Exp.Weighted.Seq.Art.Only.Obj.Fn.1}
```

Description

Calculates the Euclidean-distance of logarithmically weighted objective value for FIREVAT GA optimization.

Usage

```
Euc.Exp.Weighted.Seq.Art.Only.Obj.Fn.1(C.refined, A.refined, C.artifactual,
   A.artifactual)
```

Arguments

```
C.refined A numeric value between 0 and 1.

A.refined A numeric value between 0 and 1.

C.artifactual A numeric value between 0 and 1.

A.artifactual A numeric value between 0 and 1.
```

Value

10 Euc.Obj.Fn

```
\label{local_equation} Euc. {\tt Exp.Weighted.Seq.Art.Only.Obj.Fn.2} \\ Euc. {\tt Exp.Weighted.Seq.Art.Only.Obj.Fn.2}
```

Description

Calculates the Euclidean-distance of logarithmically weighted objective value for FIREVAT GA optimization.

Usage

```
Euc.Exp.Weighted.Seq.Art.Only.Obj.Fn.2(C.refined, A.refined, C.artifactual,
   A.artifactual)
```

Arguments

C.refined	A numeric value between 0 and 1.
A.refined	A numeric value between 0 and 1.
C.artifactual	A numeric value between 0 and 1.
A.artifactual	A numeric value between 0 and 1.

Value

A numeric value between 0 and 1.

```
Euc.Obj.Fn Euc.Obj.Fn
```

Description

Calculates the Euclidean-distance based objective value for FIREVAT GA optimization.

Usage

```
Euc.Obj.Fn(C.refined, A.refined, C.artifactual, A.artifactual)
```

Arguments

```
C.refined A numeric value between 0 and 1.

A.refined A numeric value between 0 and 1.

C.artifactual A numeric value between 0 and 1.

A.artifactual A numeric value between 0 and 1.
```

Value

```
\label{eq:continuous} {\it Exp. Weighted. A. Art. Obj. Fn} \\ {\it Exp. Weighted. A. Art. Obj. Fn}
```

Exponentially weighted objective function

Usage

```
Exp.Weighted.A.Art.Obj.Fn(C.refined, A.refined, C.artifactual,
   A.artifactual)
```

Arguments

C.refined A numeric value between 0 and 1.

A.refined A numeric value between 0 and 1.

C.artifactual A numeric value between 0 and 1.

A.artifactual A numeric value between 0 and 1.

Value

A numeric value between 0 and 1.

```
Exp.Weighted.A.Ref.Obj.Fn

Exp.Weighted.A.Ref.Obj.Fn
```

Description

Exponentially weighted objective function

Usage

```
Exp.Weighted.A.Ref.Obj.Fn(C.refined, A.refined, C.artifactual,
   A.artifactual)
```

Arguments

```
C.refined A numeric value between 0 and 1.

A.refined A numeric value between 0 and 1.

C.artifactual A numeric value between 0 and 1.

A.artifactual A numeric value between 0 and 1.
```

Value

```
Exp.Weighted.Obj.Fn.1 Exp.Weighted.Obj.Fn.1
```

Calculates the exponentially weighted objective value for FIREVAT GA optimization.

Usage

```
Exp.Weighted.Obj.Fn.1(C.refined, A.refined, C.artifactual, A.artifactual)
```

Arguments

```
C.refined A numeric value between 0 and 1.

A.refined A numeric value between 0 and 1.

C.artifactual A numeric value between 0 and 1.

A.artifactual A numeric value between 0 and 1.
```

Value

A numeric value between 0 and 1.

```
Exp.Weighted.Obj.Fn.2 Exp.Weighted.Obj.Fn.2
```

Description

Calculates the exponentially weighted objective value for FIREVAT GA optimization.

Usage

```
Exp.Weighted.Obj.Fn.2(C.refined, A.refined, C.artifactual, A.artifactual)
```

Arguments

```
C.refined A numeric value between 0 and 1.

A.refined A numeric value between 0 and 1.

C.artifactual A numeric value between 0 and 1.

A.artifactual A numeric value between 0 and 1.
```

Value

```
\label{lem:exp.Weighted.Refined.Seq.Art.Only.Obj.Fn} Exp. Weighted. Refined. Seq. Art. Only. Obj. Fn
```

Calculates the Euclidean-distance of logarithmically weighted objective value for FIREVAT GA optimization.

Usage

```
Exp.Weighted.Refined.Seq.Art.Only.Obj.Fn(C.refined, A.refined,
   C.artifactual, A.artifactual)
```

Arguments

C.refined	A numeric value between 0 and 1.
A.refined	A numeric value between 0 and 1.
C.artifactual	A numeric value between 0 and 1.
A.artifactual	A numeric value between 0 and 1.

Value

A numeric value between 0 and 1.

```
FilterByStrandBiasAnalysis
```

Filter By Strand Bias Analysis

Description

Filters refined.vcf.obj by strand bias analysis and moves these filtered variants to artifactual.vcf.obj

Usage

```
FilterByStrandBiasAnalysis(refined.vcf.obj, artifactual.vcf.obj, perform.fdr.correction, filter.by.strand.bias.analysis.cutoff)
```

Arguments

```
refined.vcf.obj
A list of vcf data
artifactual.vcf.obj
A list of vcf data
perform.fdr.correction
A boolean value.
filter.by.strand.bias.analysis.cutoff
A numeric value.
```

14 FilterVCF

Value

A list with filtering parameter values

- refined.vcf.obj updated refined.vcf.obj
- artifactual.vcf.obj updated artifactual.vcf.obj

FilterVCF FilterVCF

Description

Filter vcf based on the filter Filtering parameters are saved in config.obj Split vcf.obj into vcf.obj.filtered & vcf.obj.artifact based on vcf.filter

Usage

```
FilterVCF(vcf.obj, vcf.filter, config.obj, include.array = NULL,
  force.include = FALSE, verbose = TRUE)
```

Arguments

vcf.obj A list from ReadVCF
vcf.filter A list from MakeMuTect2Filter
config.obj A list from ParseConfigFile
include.array A boolean vector
force.include A boolean value. If TRUE, then uses 'include.array'
verbose If true, provides process detail

Value

A list with the following elements

- 1) Mutations which passed filteringvcf.obj.filtered = vcf.obj (list with data, header, genome)
- 2) Mutations which did not pass filteringvcf.obj.artifact = vcf.obj (list with data, header, genome)

GenerateConfigObj 15

GenerateConfigObj Generate config.obj by checking vcf header
--

Description

This function generate config.obj by checking vcf header. Users should fill in the information needed in console. In current version, only Integers & Float values can be used in config.obj for running FIREVAT.

Usage

```
GenerateConfigObj(vcf.obj, save.config = TRUE,
  config.path = "../temp/FIREVAT_configure.json")
```

Arguments

vcf.obj A list from ReadVCF

save.config If true, save config.obj to config.path

config.path File path to write config.obj (json or yaml)

Value

config.obj

	GetCOSMICMutSigs	GetCOSMICMutSigs
--	------------------	------------------

Description

Returns a data.frame of the COSMIC mutational signature reference file from the data directory

Usage

```
GetCOSMICMutSigs()
```

Value

a data.frame of the COSMIC reference mutational signatures

${\it GetCOSMICMutSigsEtiologiesColors} \\ {\it GetCOSMICMutSigsNames}$

Description

Returns all COSMIC mutational signature etiologies and colors

Usage

```
GetCOSMICMutSigsEtiologiesColors()
```

Value

data.frame with following columns: signature, group and color.

GetCOSMICMutSigsNames GetCOSMICMutSigsNames

Description

Returns all COSMIC mutational signature names

Usage

```
GetCOSMICMutSigsNames()
```

Value

a character vector

GetGASuggestedSolutions

GetGASuggestedSolutions

Description

Computes suggested solutions

Usage

```
GetGASuggestedSolutions(vcf.obj, bsg, config.obj, lower.upper.list,
  df.mut.pat.ref.sigs, target.mut.sigs, sequencing.artifact.mut.sigs,
  objective.fn, original.muts.seq.art.weights.sum, ga.preemptive.killing,
  verbose = TRUE)
```

Arguments

vcf.obj A list from ReadVCF

bsg BSgenome.Hsapiens.UCSC object

config.obj A list from ParseConfigFile

lower.upper.list

A list from GetParameterLowerUpperVector

df.mut.pat.ref.sigs

A data.frame from MutPatParseRefMutSigs

target.mut.sigs

A character vector of the target mutational signatures from reference mutational signatures.

sequencing.artifact.mut.sigs

A character vector of the sequencing artifact mutational signatures from reference mutational signatures.

objective.fn Objective value derivation function.

original.muts.seq.art.weights.sum

A numeric value. 'seq.art.sigs.weights.sum' from CheckIfVariantRefinementIs-Necessary

ga.preemptive.killing

If TRUE, then preemptively kills populations that yield greater sequencing artifact weights sum compared to the original mutatational signatures analysis

verbose If TRUE, provides process detail. Default value is TRUE.

Value

A list with the following elements

- judgmentA boolean value
- seq.art.sigs.weightsA numeric value. Sum of sequencing artifact weights.

GetOptimizedSignatures

GetOptimizedSignatures

Description

This function fetches the last row from the optimization iteration log and returns the target and artifactual mutational signatures for the type of mutations ('refined' or 'artifactual')

Usage

```
GetOptimizedSignatures(data, mutations.type = "refined",
    signatures = "all")
```

Arguments

data A list of main data from RunFIREVAT

mutations.type A string for type of mutations ('refined' or 'artifact')

signatures A string ('all', 'target', 'artifact')

18 GetPCAWGMutSigs

Value

A data.frame with the columns 'signature' and 'weight'

 ${\tt GetParameterLowerUpperVector}$

 ${\it GetParameterLowerUpperVector}$

Description

Return a lower/upper vector needed to conduct FIREVAT GA real-valued optimization.

Usage

```
GetParameterLowerUpperVector(vcf.obj, config.obj, vcf.filter,
  multiplier = 100)
```

Arguments

vcf.obj	A list from ReadVCF
config.obj	A list from ParseConfigFile
vcf.filter	A list from MakeMuTect2Filter
multiplier	A multiplier for convert fraction to integer (default = 100)

Details

vcf.obj\$data: if max(vcf.obj\$data[[param]]) < 1, then multiply multiplier to the vector

Value

A list with the elements

- lower.vector A numeric vector. Each element is the minimum value of each parameter
- upper.vector A numeric vector. Each element is the maximum value of each parameter
- vcf.obj vcf.obj with updated data

GetPCAWGMutSigs GetPCAWGMutSigs

Description

Returns the PCAWG mutational signatures data

Usage

```
GetPCAWGMutSigs(sequencing.type = "wes")
```

Arguments

sequencing.type

A string value. It can be either 'wes' for whole-exome sequencing or 'wgs' for whole-genome sequencing

Value

a data.frame of the PCAWG mutatioanl signatures

 ${\tt GetPCAWGMutSigsEtiologiesColors}$

GetPCAWGMutSigsEtiologiesColors

Description

Returns the PCAWG mutational signatures etiologies and colors

Usage

GetPCAWGMutSigsEtiologiesColors()

Value

a data.frame with the columns 'signature', 'group', 'color'

GetPCAWGMutSigsNames Get

GetPCAWGMutSigsNames

Description

Returns the PCAWG mutational signatures names

Usage

GetPCAWGMutSigsNames()

Value

a character vector of the PCAWG mutational signatures names

GetPCAWGPlatinumMutSigs

GetPCAWGPlatinumMutSigs

Description

Returns the PCAWG platinum mutational signatures data

Usage

GetPCAWGPlatinumMutSigs()

Value

a data.frame of the PCAWG platinum mutatioanl signatures

 $\label{lem:GetPCAWGPlatinumMutSigsEtiologiesColors} GetPCAWGPlatinumMutSigsEtiologiesColors$

Description

Returns the PCAWG platinum mutational signatures etiologies and colors

Usage

GetPCAWGPlatinumMutSigsEtiologiesColors()

Value

a data.frame with the columns 'signature', 'group', 'color'

 ${\tt GetPCAWGPlatinumMutSigsNames}$

GetPCAWGPlatinumMutSigsNames

Description

Returns the PCAWG platinum mutational signatures names

Usage

GetPCAWGPlatinumMutSigsNames()

Value

a character vector of the PCAWG platinum mutational signatures names

GetSeedForVCF 21

GetSeedForVCF

GetSeedForVCF

Description

Returns a seed integer based on VCF file size

Usage

```
GetSeedForVCF(vcf.file)
```

Arguments

vcf.file

(full path of a .vcf file)

Details

Returns the same seed integer for the same VCF file (based on file size)

Value

an integer value

InitializeVCF

InitializeVCF

Description

Initialize VCF with FIREVAT config file This functions selects point mutations and appends filter values to vcf.obj\$data

Usage

```
InitializeVCF(vcf.obj, config.obj, verbose = TRUE)
```

Arguments

vcf.obj A list from ReadVCF

config.obj A list from ParseConfigFile verbose If true, provides process detail

Value

A list with the following elements

- vcf.obj.filteredvcf.obj (high-quality vcf)
- vcf.obj.artifactvcf.obj (low-quality vcf)

```
Leaky.ReLU.A.Art.Obj.Fn

Leaky.ReLU.A.Art.Obj.Fn
```

Leaky ReLU objective function

Usage

```
Leaky.ReLU.A.Art.Obj.Fn(C.refined, A.refined, C.artifactual, A.artifactual)
```

Arguments

```
C.refined A numeric value between 0 and 1.

A.refined A numeric value between 0 and 1.

C.artifactual A numeric value between 0 and 1.

A.artifactual A numeric value between 0 and 1.
```

Value

A numeric value between 0 and 1.

```
{\it Leaky.ReLU.A.Ref.Obj.Fn} \\ {\it Leaky.ReLU.A.Ref.Obj.Fn}
```

Description

Leaky ReLU objective function

Usage

```
Leaky.ReLU.A.Ref.Obj.Fn(C.refined, A.refined, C.artifactual, A.artifactual)
```

Arguments

```
C.refined A numeric value between 0 and 1.

A.refined A numeric value between 0 and 1.

C.artifactual A numeric value between 0 and 1.

A.artifactual A numeric value between 0 and 1.
```

Value

Leaky.ReLU.Obj.Fn 23

Leaky.ReLU.Obj.Fn Leaky.ReLU.Obj.Fn

Description

Lkeay ReLU objective function

Usage

```
Leaky.ReLU.Obj.Fn(C.refined, A.refined, C.artifactual, A.artifactual)
```

Arguments

C.refined A numeric value between 0 and 1.

A.refined A numeric value between 0 and 1.

C.artifactual A numeric value between 0 and 1.

A.artifactual A numeric value between 0 and 1.

Value

A numeric value between 0 and 1.

MakeFilter MakeFilter

Description

Creates a vcf filter from config.obj

Usage

MakeFilter(config.obj)

Arguments

config.obj A list from ParseConfigFile (any filter with "use_in_filter" value declared as FALSE is not considered)

Value

A list with the filter parameters

MutaliskParseVCFObj MutaliskParseVCFObj

Description

Parses a vcf.obj and prepares it to run Mutalisk.

Usage

```
MutaliskParseVCFObj(vcf.obj)
```

Arguments

vcf.obj

A list from ReadVCF

Value

A data.frame

MutPatParseRefMutSigs MutPatParseRefMutSigs

Description

Parses a df.ref.mut.sigs and prepares it to run Mutational Patterns.

Usage

```
MutPatParseRefMutSigs(df.ref.mut.sigs, target.mut.sigs,
    signature.start.column.index = 4,
    mutation.type.header = "SomaticMutationType")
```

Arguments

```
df.ref.mut.sigs

A data.frame of reference mutational signatures

target.mut.sigs

A character vector of target mutational signatures names

signature.start.column.index

= An integer value (e.g. column index corresponding to 'SBS1')

mutation.type.header

= A string value (name of header corresponding to column containing 'A[C>A]A' data))
```

Value

 $A\ data. frame\ of\ the\ format\ deconstruct Sigs:: signatures. cosmic$

MutPatParseVCFObj 25

MutPatParseVCFObj	MutPatParseVCFObj
-------------------	-------------------

Description

Parses a vcf.obj and prepares it to run Mutational Patterns.

Usage

```
MutPatParseVCFObj(vcf.obj, bsg, sample.id = "sample")
```

Arguments

```
vcf.obj A list from ReadVCF
bsg A BSgenome object
sample.id A string value
```

Value

A data.frame with the column sample.id and row names corresponding to 96 substitution types

ParameterToBits	ParameterToBits	

Description

Calculate the number of bits needed to conduct FIREVAT GA binary optimization.

Usage

```
ParameterToBits(vcf.obj, config.obj, vcf.filter, multiplier = 100)
```

Arguments

vcf.obj	A list from ReadVCF
config.obj	A list from ParseConfigFile
vcf.filter	A list from MakeMuTect2Filter
multiplier	A multiplier for convert fraction to integer (default = 100)

Details

vcf.obj\$data: if max(vcf.obj\$data[[param]]) < 1, then multiply multiplier to the vector

Value

A list with the elements

- params.bit.lenA numeric vector. Each element is the bit length of each parameter value
- vcf.objA vcf.obj (ReadVCF) with updated data

ParseConfigFile

Parse Config File

Description

This function returns config.obj from JSON or YAML config file. - Check if the config file is in JSON format or YAML format - Return config.obj

Usage

```
ParseConfigFile(config.path, verbose = TRUE)
```

Arguments

config.path A string for config file path
verbose If true, provides process detail

Value

```
config.obj: list of parameters
```

Examples

```
## Not run:
ParseConfigFile("example.variant.caller.json")
ParseConfigFile("example.variant.caller.json", verbose=False)
## End(Not run)
```

```
{\it PCAWG.All.Sequencing.Artifact.Signatures} \\ {\it Constant}
```

Description

PCAWG mutational signatures reported to be associated with sequencing artifacts

Usage

```
PCAWG.All.Sequencing.Artifact.Signatures
```

Format

An object of class character of length 18.

 ${\it PCAWG.} Known. Sequencing. Artifact. Signatures \\ {\it Constant}$

Description

PCAWG mutational signatures reported to be associated with sequencing artifacts

Usage

PCAWG.Known.Sequencing.Artifact.Signatures

Format

An object of class character of length 1.

 ${\it PCAWG. Platinum. All. Technology. Related. Artifact. Signatures} \\ {\it Constant}$

Description

PCAWG mutational signatures reported to be associated with sequencing artifacts

Usage

PCAWG.Platinum.All.Technology.Related.Artifact.Signatures

Format

An object of class character of length 9.

 ${\it PCAWG. Possible. Sequencing. Artifact. Signatures} \\ {\it Constant}$

Description

PCAWG mutational signatures reported to be associated with sequencing artifacts

Usage

PCAWG.Possible.Sequencing.Artifact.Signatures

Format

An object of class character of length 17.

```
{\it PCAWG.Target.Mutational.Signatures} \\ {\it Constant}
```

PCAWG target mutational signatures reported to be unrelated to sequencing artifacts

Usage

```
PCAWG. Target. Mutational. Signatures
```

Format

An object of class character of length 47.

PerformStrandBiasAnalysis

PerformStrandBiasAnalysis

Description

Performs strand bias analysis

Usage

```
PerformStrandBiasAnalysis(vcf.obj, ref.forward.strand.var,
  ref.reverse.strand.var, alt.forward.strand.var, alt.reverse.strand.var,
  perform.fdr.correction = TRUE, fdr.correction.method = "BH")
```

Arguments

Value

An updated vcf.obj

PlotMutaliskResults 29

Description

Plots Mutalisk results

Usage

```
PlotMutaliskResults(mutalisk.results, signatures,
  df.ref.sigs.groups.colors, trinuc.max.y, trinuc.min.y, mut.type.max.y,
  title, font.size.small = 8, font.size.med = 14)
```

Arguments

```
mutalisk.results
                 A list obtained from RunMutalisk
signatures
                 A character vector of mutational signatures names
df.ref.sigs.groups.colors
                 A data.frame with signature groups and colors
trinuc.max.y
                 A numeric value (maximum y-axis value)
                 A numeric value (minimum y-axis value)
trinuc.min.y
mut.type.max.y A numeric value
title
                 A string value
font.size.small
                 A numeric value
font.size.med A numeric value
```

Value

A ggplot object

Examples

30 PlotMutationTypes

PlotMutationTypes

PlotMutationTypes

Description

Plots a horizontal barplot of mutation types

Usage

```
PlotMutationTypes(mutation.types = c("C>A", "C>G", "C>T", "T>A", "T>C",
    "T>G"), mutation.types.values, mutation.types.colors, max.y.val, title,
    convert.to.percentage = T, show.legend = T, font.size.small = 8,
    font.size.med = 14, plot.margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
```

Arguments

```
mutation.types Mutation types; Default = c("C>A", "C>G", "C>T", "T>A", "T>C", "T>G")
mutation.types.values
                  Mutation count for each mutation type
mutation.types.colors
                  A color vector for indicating mutation types
                  y axis maximum value
max.y.val
                  Plot title
title
convert.to.percentage
                  if True convert y values to percentage (x 100); Default = T
show.legend
                  If True, show legend; Default = T
font.size.small
                  Small font size; Default = 8
font.size.med
                 Medium font size; Default = 14
                  Margin vector for drawing plot; Default = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
plot.margin
```

Value

A ggplot object

Examples

```
PlotOptimizationIterations
```

PlotOptimizationIterations

Description

Plots multiple scatter plots into one figure

Usage

```
PlotOptimizationIterations(df, columns.to.plot, x.axis.var, x.axis.title,
    x.min, x.max, save.file, title, y.axis.title = "", y.max = 1,
    point.size = 1, connect.dots = T, plot.legend = T,
    legend.ncol = 1, font.size.med = 14, font.size.large = 16,
    plot.margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
```

Arguments

```
df
                  A data.frame (from reading "FIREVAT_Optimization_Logs.tsv")
columns.to.plot
                  A character vector (of column names to plot)
                  x axis variable
x.axis.var
                  x axis title
x.axis.title
x.min
                  x axis minimum value
x.max
                  x axis maximum value
save.file
                  Filename (including full path) to which the plot will be saved
title
                  Plot title
                  y axis title; Default = ""
y.axis.title
                  y axis maximum value; Default = 1
y.max
point.size
                  Point size; Default = 1
                  If True draws dots for each iteration; Default = True
connect.dots
plot.legend
                  If True write legend of plot; Default = T
legend.ncol
                  legend.n Default = 1
font.size.med
                  Medium font size; Default = 14
font.size.large
                  Large font size; Default = 16
                  Margin vector for plot; Default = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
plot.margin
```

Value

A ggplot object

PlotSignaturesContProbs

PlotSignaturesContProbs

Description

Plots a horizontal barplot of identified mutational signatures

Usage

```
PlotSignaturesContProbs(df.identified.mut.sigs, df.ref.sigs.groups.colors,
  title, convert.to.percentage = T, font.size.small = 8,
  font.size.med = 14, plot.margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
```

Arguments

Value

A ggplot object

Examples

```
## Not run:
    g <- PlotSignaturesContProbs(sigs = c(mutalisk.results$identified.mut.sigs),
    sigs.probs = c(mutalisk.results$identified.mut.sigs.probs),
    df.ref.sigs.groups.colors = GetPCAWGMutSigsEtiologiesColors())
    print(g)
## End(Not run)</pre>
```

PlotTable 33

	PlotTable	PlotTable		
--	-----------	-----------	--	--

Description

Plots basic statistics table

Usage

```
PlotTable(df, padding = 20, font.size = 14)
```

Arguments

df = A data frame where the first column is header and the second column is data

value

padding Padding size; Default = 20 font.size Font size; Default = 14

Value

A plot

PlotTriNucSpectrum PlotTriNucSpectrum

Description

Plots the spectrum of 96 trinucleotide distribution (C>A, C>G, C>T, T>A, T>C, T>G) Please note that this function assumes that both sub.types and spectrum are sorted in the following order: C>A, C>G, C>T, T>A, T>C, T>G

Usage

```
PlotTriNucSpectrum(sub.types, spectrum, max.y.val, min.y.val, y.axis.title,
  draw.top.strip = T, draw.x.axis.labels = T, draw.y.axis.labels = T,
  draw.y.axis.title = T, font.size.small = 8, font.size.med = 14,
  plot.margin.top = 0.5, plot.margin.bottom = 0.5,
  plot.margin.left = 0.5, plot.margin.right = 0.5, title)
```

Arguments

```
sub.types A character vector (types of 96 trinucleotide substitutions)
spectrum A numeric vector (96 elements)
max.y.val y axis maximum value
min.y.val y axis minimum value
y.axis.title y axis title
draw.top.strip If True then draws top strip; Default = T
```

34 PlotVCFStatsBoxPlots

```
draw.x.axis.labels
                  If True then draws x axis labels; Default = T
draw.y.axis.labels
                  If True then draws y axis labels; Default = T
draw.y.axis.title
                  If True then draws y axis title; Default = T
font.size.small
                  Small font size; Default = 8
font.size.med Medium font size; Default = 14
plot.margin.top
                  Top margin; Default = 0.5
plot.margin.bottom
                  Bottom margin; Default = 0.5
plot.margin.left
                  Left margin; Default = 0.5
plot.margin.right
                  Right margin; Default = 0.5
title
                  Plot title
```

Value

A ggplot object

Description

Plots multiple (original, refined, artifact vcf) boxplots for single filter parameter

Usage

```
PlotVCFStatsBoxPlots(original.vcf.stat.values, refined.vcf.stat.values,
  artifact.vcf.stat.values, xlab, axis.font.size = 10,
  label.font.size = 10, title.font.size = 12)
```

Arguments

original.vcf.stat.values

A numeric vector corresponding to the original vcf.obj values of single filter parameter

refined.vcf.stat.values

A numeric vector corresponding to the refined vcf.obj values of single filter parameter

artifact.vcf.stat.values

A numeric vector corresponding to the artifact vcf.obj values of single filter parameter

xlab A string value (x-axis label)

axis.font.size An integer value (axis font size)

```
label.font.size

An integer value (label font size)

title.font.size

An integer value (title font size)
```

Value

A ggboxplot

PlotVCFStatsHistograms

PlotVCFStatsHistograms

Description

Plots multiple VCF stats histograms into one figure

Usage

```
PlotVCFStatsHistograms(plot.values, x.axis.labels, stat.y.max.vals,
   stat.x.max.vals, sample.id, save.file, title, cutoff.values,
   plot.boxplot = F, plot.cutoff.line.color = "#D4012E",
   plot.cutoff.value.lines = F, bin.width = 1, ncol = 4, nrow = 3,
   font.size.med = 10, font.size.large = 12, plot.margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
```

Arguments

plot.margin

```
plot.values
                  A list of multiple numeric vectors
                  A character vector of x axis labels
x.axis.labels
stat.y.max.vals
                  A numeric vector of max y-axis values
stat.x.max.vals
                  A numeric vector of max x-axis values
sample.id
                  A string value of sample ID
save.file
                  A string value of file to which the resulting plot will be saved
                  A string value of plot title
title
cutoff.values
                  A numeric vector of cutoff values
plot.boxplot
                  A boolean value (default = False)
plot.cutoff.line.color
                  A hex string value (default = "\#D4012E")
plot.cutoff.value.lines
                  A boolean value (default = False)
bin.width
                  An integer value (default = 1; histogram bin width)
                  An integer value (default = 4; ggarrange ncol)
ncol
                  An integer value (default = 3; ggarrange nrow)
nrow
font.size.med
                  An integer value (default = 10)
font.size.large
                  An integer value (default = 12)
```

A list (default = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))

Value

A list with the following elements

- f = A ggarrange object
- graphs = A list of length 3; each element is a ggplot histogram

PrepareAnnotationDB

Prepare Annotation DB

Description

Prepares df.genes.of.interest from a vcf.obj (ReadVCF) of COSMIC or ClinVar vcf for AnnotateVCFObj

Usage

PrepareAnnotationDB(annotation.vcf.obj)

Arguments

```
annotation.vcf.obj
```

vcf.obj of COSMIC or ClinVar vcf file

Value

A data.frame of annotation.vcf.obj

 ${\tt PrepareArtifactAnnotationTable}$

Prepare Artifact Annotation Table

Description

Prepares artifactual mutations annotation (filtered, queried) table

Usage

PrepareArtifactAnnotationTable(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A data.frame

 ${\tt PrepareArtifactStrandBiasTable}$

Prepare Artifact Strand Bias Table

Description

Prepares artifactual mutations strand biased variants table

Usage

PrepareArtifactStrandBiasTable(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A data.frame

 $\label{lem:prepareArtifactualMutsOptimizationIterationsPlot} PrepareArtifactualMutsOptimizationIterationsPlot$

Description

Prepares artifactual mutations optimization iterations plot

Usage

 $\label{lem:prepareArtifactualMutsOptimizationIterationsPlot(data)} PrepareArtifactualMutsOptimizationIterationsPlot(data)$

Arguments

data

A list of elements returned from RunFIREVAT

Value

A ggplot object

 ${\tt PrepareFilterCutoffsTable}$

Prepare Filter Cutoffs Table

Description

Prepares filter cutoffs table for reporting

Usage

PrepareFilterCutoffsTable(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A data.frame

 $\label{local-prop} Prepare {\it Genetic Algorithm Parameters Table} \\ Prepare {\it Genetic Algorithm Parameters Table}$

Description

Prepares Genetic Algorithm parameters table

Usage

PrepareGeneticAlgorithmParametersTable(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A data.frame

 ${\tt PrepareIdentifiedSignaturesPlot}$

PrepareIdentifiedSignaturesPlot

Description

Prepares identified signatures plot for reporting

Usage

PrepareIdentifiedSignaturesPlot(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A ggarrange object

 ${\tt Prepare MLERe constructed Spectrums Plot}$

 $\label{lem:prepareMLER} Prepare MLER econstructed Spectrums Plot$

Description

Prepares MLE reconstructed spectrums plot

Usage

PrepareMLEReconstructedSpectrumsPlot(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

 $\label{lem:prepareNucleotideSubstitutionTypesPlot} PrepareNucleotideSubstitutionTypesPlot$

Description

Prepares nucleotide substitution types plot

Usage

PrepareNucleotideSubstitutionTypesPlot(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A ggarrange object

PrepareObservedSpectrumsPlot

 ${\it Prepare Observed Spectrums Plot}$

Description

Prepares observed spectrums plot

Usage

PrepareObservedSpectrumsPlot(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

 ${\tt PrepareOptimizationResultsTable}$

Prepare Optimization Results Table

Description

Prepares optimization results table

Usage

PrepareOptimizationResultsTable(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A data.frame

PrepareOptimizedVCFStatisticsPlot

Prepare Optimized VCF Statistics Plot

Description

Prepares optimized VCF statistics plot

Usage

PrepareOptimizedVCFStatisticsPlot(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

 ${\tt Prepare Refined Annotation Table}$

Prepare Refined Annotation Table

Description

Prepares refined mutations annotation (filtered, queried) table

Usage

PrepareRefinedAnnotationTable(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A data.frame

 $\label{lem:prepareRefinedMutsOptimizationIterationsPlot} Prepare Refined MutsOptimization Iterations Plot$

Description

Prepares refined mutations optimization iterations plot

Usage

PrepareRefinedMutsOptimizationIterationsPlot(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A ggplot object

 ${\tt Prepare Refined Strand Bias Table}$

Prepare Refined Strand Bias Table

Description

Prepares refined mutations strand biased variants table

Usage

PrepareRefinedStrandBiasTable(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A data.frame

PrepareResidualSpectrumsPlot

Prepare Residual Spectrums Plot

Description

Prepares residual spectrums plot

Usage

PrepareResidualSpectrumsPlot(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

PrintLog

PrepareTrinucleotideSpectrumsTable

Prepare Trinucle otide Spectrums Table

Description

Prepares trinucleotide spectrums table

Usage

PrepareTrinucleotideSpectrumsTable(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A data.frame

PrintLog

PrintLog

Description

Prints log message

Usage

```
PrintLog(msg, type = "INFO")
```

Arguments

msg String value message to print along with log type and date

type String value that represents type of this message. 'INFO' by default.

QueryAnnotatedVCF 45

 ${\tt QueryAnnotatedVCF}$

Filter Annotated VCF

Description

Annotates a vcf.obj using df.variants.of.interest (from (PrepareAnnotationDB)

Usage

```
QueryAnnotatedVCF(vcf.obj.annotated, filter.key.value.pairs,
  filter.condition = "AND")
```

Arguments

```
vcf.obj.annotated
```

AnnotateVCF0bj

filter.key.value.pairs

A list with the key as the column name and value as the filtering values. E.g. list("CLNSIG" = c("Pathogenic", "Pathogenic/Likely_pathogenic"))

filter.condition

'AND' or 'OR'.

Value

A vcf.obj

 ${\tt ReadOptimizationIterationReport}$

ReadOptimizationIterationReport

Description

Read optimization iteration report

Usage

ReadOptimizationIterationReport(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A data.frame of FIREVAT optimization logs

ReadVCF

ReadVCF

Description

Reads a .vcf file

Usage

```
ReadVCF(vcf.file, genome = "hg19", split.info = FALSE,
   check.chromosome.name = TRUE, match.bsg = FALSE)
```

Arguments

vcf.file (full path of a .vcf file)

genome A genome name for BSgenome (default: hg19)

split.info A boolean value. If TRUE, then makes the INFO column in the vcf as a separate

column. Default value is FALSE.

check.chromosome.name

A boolean value. If TRUE, then check whether converts

match.bsg A boolean value. If TRUE, check whether chromosome matches with those in

BSgenome 'MT' to 'M' and adds 'chr' to the CHROM column. Default value

is TRUE.

Value

A list with elements 'data', 'header', 'genome'

ReportFIREVATResults ReportFIREVATResults

Description

Reports FIREVAT results in html format (generated from Rmd)

Usage

ReportFIREVATResults(data)

Arguments

data A list of main data from RunFIREVAT

Value

An updated data list

RunFIREVAT 47

RunFIREVAT

RunFIREVAT

Description

Runs FIREVAT using configuration data. Filters point mutations in the user-specified vcf file based on mutational signature identification and outputs the refined and artifact vcf files as well as metadata related to the refinement process.

Usage

```
RunFIREVAT(vcf.file, vcf.file.genome = "hg19",
 check.chromosome.name = TRUE, config.file,
 df.ref.mut.sigs = GetPCAWGMutSigs(),
  target.mut.sigs = GetPCAWGMutSigsNames(),
 df.ref.mut.sigs.groups.colors = GetPCAWGMutSigsEtiologiesColors(),
 sequencing.artifact.mut.sigs = PCAWG.All.Sequencing.Artifact.Signatures,
 num.cores = 2, output.dir, mode = "ga", init.artifact.stop = 0.05,
 objective.fn = Default.Obj.Fn, use.suggested.soln = TRUE,
 ga.type = "real-valued", ga.pop.size = 100, ga.max.iter = 100,
 ga.run = 50, ga.pmutation = 0.1, ga.preemptive.killing = FALSE,
 ga.seed = NULL, mutalisk = TRUE, mutalisk.method = "all",
 mutalisk.must.include.sigs = NULL,
 mutalisk.random.sampling.count = 20,
 mutalisk.random.sampling.max.iter = 10,
 perform.strand.bias.analysis = FALSE,
 filter.by.strand.bias.analysis = TRUE,
 filter.by.strand.bias.analysis.cutoff = 0.25,
 strand.bias.perform.fdr.correction = TRUE,
 strand.bias.fdr.correction.method = "BH",
 ref.forward.strand.var = NULL, ref.reverse.strand.var = NULL,
 alt.forward.strand.var = NULL, alt.reverse.strand.var = NULL,
 annotate = FALSE, df.annotation.db = NULL,
 annotated.columns.to.display = NULL,
 annotation.filter.key.value.pairs = NULL,
 annotation.filter.condition = "AND", write.vcf = TRUE,
 report = TRUE, save.rdata = TRUE, save.tsv = TRUE,
 report.format = "html", verbose = TRUE)
```

Arguments

```
vcf.file String value corresponding to input .vcf file. Please provide the full path.
vcf.file.genome

Genome assembly of the input .vcf file. The genome should be supported by BSgenome.
check.chromosome.name

Boolean value. If TRUE, FIREVAT checks chromosome names

config.file String value corresponding to input configuration file. For more details please refer to ...

df.ref.mut.sigs
```

A data.frame of the reference mutational signatures

48 RunFIREVAT

target.mut.sigs

A character vector of the target mutational signatures from reference mutational signatures.

df.ref.mut.sigs.groups.colors

A data.frame of the reference mutational signatures groups and colors

sequencing.artifact.mut.sigs

A character vector of the sequencing artifact mutational signatures from reference mutational signatures.

num. cores Number of cores to allocate

output.dir String value of the desired output directory

mode String value. The value should be either 'ga' or 'manual'.

init.artifact.stop

Numeric value less than 1. If the sum of sequencing artifact weights in the user-specified original VCF file (i.e. vcf.file) is less than or equal to this value then FIREVAT does not perform variant refinement. Default value is 0.05. Note that this option does not apply if 'mode' is 'manual'.

 ${\tt objective.fn} \qquad {\tt Objective\ value\ derivation\ function.\ Default:\ Default.Obj.Fn.}$

use.suggested.soln

Boolean value. If TRUE, then FIREVAT passes the default values of filter variables declared as 'use_in_filter' in the config file to the 'suggestions' parameter of the Genetic Algorithm package. If FALSE, then FIREVAT supplies NULL to the GA package 'suggestions' parameter. FIREVAT also computes baseline performance of each filter variable and uses fittest population from each variable as a suggested solution.

ga. type String value. The value should be either 'binray' or 'real-valued'.

ga.pop.size Integer value of the Genetic Algorithm 'population size' parameter. Default: 100. This value should be set based on the number of filter parameters. Recom-

mendation: 40 per filter parameter.

ga.max.iter Integer value of the Genetic Algorithm 'maximum iterations' parameter. De-

fault: 100. This value should be set based on the number of filter parameters.

Recommendation: same as 'ga.pop.size'.

ga.run Integer value of the Genetic Algorithm 'run' parameter. Default: 50. This value

should be set based on the 'ga.max.iter' parameter. Recommendation: 25 per-

cent of 'ga.max.iter'.

ga.pmutation Float value of the Genetic Algorithm 'mutation probability' parameter. Default:

0.1.

ga.preemptive.killing

If TRUE, then preemptively kills populations that yield greater sequencing artifact weights sum compared to the original mutatational signatures analysis

ga. seed Integer value of the Genetic Algorithm 'seed' parameter. Default: NULL.

mutalisk If TRUE, confirm mutational signature analysis with Mutalisk. Default: TRUE.

mutalisk.method

Mutalisk signature identification method. Default: 'random.sampling'. The value can be either 'all' or 'random.sampling'. 'all' uses all target.mut.sigs to identify mutational signatures. 'random.sampling' randomly samples from target.mut.sigs to identify mutational signatures.

mutalisk.must.include.sigs

Signatures that must be included in the Mutalisk signature identification A character vector corresponding to the signature names.

RunFIREVAT 49

mutalisk.random.sampling.count

Mutalisk random sampling count. Default: 20. The number of signatures to sample from target.mut.sigs

mutalisk.random.sampling.max.iter

Mutalisk random sampling maximum iteration. Default: 10. The number of times Mutalisk randomly samples from target.mut.sigs before determining the candidate signatures.

perform.strand.bias.analysis

If TRUE, then performs strand bias analysis.

filter.by.strand.bias.analysis

If TRUE, then filters out variants in refined vcf based on strand bias analysis results

filter.by.strand.bias.analysis.cutoff

The p.value or q value cutoff for filtering out variants.

strand.bias.perform.fdr.correction

If TRUE, then performs false discovery rate correction for strand bias analysis.

strand.bias.fdr.correction.method

A string value. Default value is 'BH'. Refer to 'p.adjust()' function method.

ref.forward.strand.var

A string value.

ref.reverse.strand.var

A string value,

alt.forward.strand.var

A string value,

alt.reverse.strand.var

A string value,

annotate A boolean value. Default value is TRUE.

df.annotation.db

A data.frame. Please refer to PrepareAnnotationDB

annotated.columns.to.display

A character vector.

annotation.filter.key.value.pairs

A list.

annotation.filter.condition

'AND' or 'OR'.

write.vcf If TRUE, write original/refined/artifact vcfs. Default: TRUE.

report If TRUE, generate report. Default: TRUE. save.rdata If TRUE, save rdata. Default: TRUE.

 ${\tt save.tsv} \qquad \qquad {\tt If TRUE, save tsv. \ Default: TRUE.}$

report. format
The format of FIREVAT report. We currently only support 'html'.

verbose If TRUE, provides process detail. Default: TRUE.

Value

A list with the following elements

- f = A ggarrange object
- graphs = A list of length 3; each element is a ggplot histogram

Something State of the State of

RunGAMode

RunGAMode

Description

Runs FIREVAT ga mode

Usage

RunGAMode(data)

Arguments

data

A list from RunFIREVAT

Value

A list

RunManualMode

RunManualMode

Description

Runs FIREVAT manual mode

Usage

RunManualMode(data)

Arguments

data

A list from RunFIREVAT

Value

A list

RunMutalisk 51

nMutalisk	alisk	R
-----------	-------	---

Description

Identifies mutational signatures using Mutalisk

Usage

```
RunMutalisk(vcf.obj, df.ref.mut.sigs, target.mut.sigs,
  random.sampling.candidate.mut.sigs = c(), method = "random.sampling",
  n.sample = 20, n.iter = 10, verbose = TRUE)
```

Arguments

```
vcf.obj
                  A list (from firevat_vcf::ReadVCF)
df.ref.mut.sigs
                  A data.frame of reference mutational signatures
target.mut.sigs
                  A character vector of target mutational signatures names to identify from
random.sampling.candidate.mut.sigs
                  A character vector of mutational signatures names that gets appended to the list
                  of candidate mutational signatures so that these are always considered.
method
                  A string value (must be either 'random.sampling' or 'all'). The method 'ran-
                  dom.sampling' samples (without replacement) 'n.sample' number of signatures
                  'n.iter' number of times and runs the candidate signatures one last time. The
                  method 'all' uses all target.mut.sigs
n.sample
                  An integer value ('random.sampling' method parameter) Number of signatures
                  to choose for each iteration of random sampling).
                  An integer value ('random.sampling' method parameter). Number of iterations
n.iter
                  to perform random sampling.
verbose
                  If true, provides process details
```

Value

A list with the following elements

- num.point.mutationsAn integer value count of total point mutations
- sub.typesA character vector of length 96
- sub.types.spectrumA numeric vector of length 96
- num.mut.sigsAn integer value (count of unique mutational signatures identified)
- identified.mut.sigsA character vector where each element is a mutational signature identified
- identified.mut.sigs.probsA numeric vector where each element is the weight of mutational signature identified. The ordering follows identified.mut.sigs
- identified.mut.sigs.spectrumA numeric vector of length 96
- residualsA numeric vector of length 96
- rssA numeric value (residual sum of squares)

52 RunMutaliskHelper

 cos.sim.scoreA numeric value (cosine similarity score between observed mutational spectrum and reconstructed mutational signatures)

- all.models.sigsA list where each element is a model; a model is a list of signatures identified)
- all.models.sigs.probsA list where each element is a model; a model is a list of contribution probabilities
- all.models.cos.sim.scoresA list where each element is a model; a model is a list of cosine similarity socres

RunMutaliskHelper

RunMutaliskHelper

Description

Helper function for RunMutalisk

Usage

```
RunMutaliskHelper(vcf.trinucleotide.data, df.ref.mut.sigs, target.mut.sigs)
```

Arguments

```
vcf.trinucleotide.data
A data.frame (from firevat_mutalisk::MutaliskParseVCFObj)

df.ref.mut.sigs
A data.frame of reference mutational signatures

target.mut.sigs
A character vector of target mutational signatures names
```

Value

A list with the following elements

- num.point.mutationsAn integer value count of total point mutations
- sub.typesA character vector of length 96
- sub.types.spectrumA numeric vector of length 96
- num.mut.sigsAn integer value (count of unique mutational signatures identified)
- · identified.mut.sigsA character vector where each element is a mutational signature identified
- identified.mut.sigs.probsA numeric vector where each element is the weight of mutational signature identified. The ordering follows identified.mut.sigs
- identified.mut.sigs.spectrumA numeric vector of length 96
- · residualsA numeric vector of length 96
- rssA numeric value (residual sum of squares)
- cos.sim.scoreA numeric value (cosine similarity score between observed mutational spectrum and reconstructed mutational signatures)
- all.models.sigsA list where each element is a model; a model is a list of signatures identified)
- all.models.sigs.probsA list where each element is a model; a model is a list of contribution probabilities
- all.models.cos.sim.scoresA list where each element is a model; a model is a list of cosine similarity socres

RunMutPat 53

RunMutPat	RunMutPat
RUNMUTPAT	KunwiuiPai

Description

Identifies mutational signatures using Mutational Patterns

Usage

```
RunMutPat(mut.pat.input, df.mut.pat.ref.sigs, target.mut.sigs,
  verbose = TRUE)
```

Arguments

Value

A list with the following elements

- tumor.mutation.types.spectrumA numeric vector of length 96 'observed' spectrum
- identified.mutation.types.spectrumA numeric vector of length 96 'identified' spectrum
- residualsA numeric vector of length 96 residuals
- mutation.typesA character vector of length 96
- · identified.mut.sigsA character vector where each element is a mutational signature identified
- identified.mut.sigs.contribution.weightsA numeric vector where each element is the weight of mutational signature identified. The ordering follows identified.mut.sigs
- · cosine.similarity.scoreA numeric value

Examples

```
## Not run:
vcf.obj <- ReadVCF(vcf.file = "../data/sample/HNT-082-BT.final.call.vcf", genome = "hg19")
df.ref.mut.sigs <- GetPCAWGMutSigs()
target.mut.sigs <- GetPCAWGMutSigsNames()
RunMutPat(vcf.obj = vcf.obj,
df.ref.mut.sigs = df.ref.mut.sigs,
target.mut.sigs = target.mut.sigs)
## End(Not run)</pre>
```

54 Sigmoid.Obj.Fn

```
Sig.Extraction.Obj.Fn Sig.Extraction.Obj.Fn
```

Description

Calculates the signature extraction objective value for FIREVAT GA optimization.

Usage

```
Sig.Extraction.Obj.Fn(C.refined, A.refined, C.artifactual, A.artifactual)
```

Arguments

```
C.refined A numeric value between 0 and 1.

A.refined A numeric value between 0 and 1.

C.artifactual A numeric value between 0 and 1.

A.artifactual A numeric value between 0 and 1.
```

Value

A numeric value between 0 and 1.

```
Sigmoid.Obj.Fn Sigmoid.Obj.Fn
```

Description

Sigmoid objective function

Usage

```
Sigmoid.Obj.Fn(C.refined, A.refined, C.artifactual, A.artifactual)
```

Arguments

```
C.refined A numeric value between 0 and 1.

A.refined A numeric value between 0 and 1.

C.artifactual A numeric value between 0 and 1.

A.artifactual A numeric value between 0 and 1.
```

Value

A numeric value between 0 and 1.

Test.Obj.Fn.1 55

Test.Obj.Fn.1 Test.Obj.Fn.1

Description

Test objective function 1

Usage

```
Test.Obj.Fn.1(C.refined, A.refined, C.artifactual, A.artifactual)
```

Arguments

C.refined A numeric value between 0 and 1.

A.refined A numeric value between 0 and 1.

C.artifactual A numeric value between 0 and 1.

A.artifactual A numeric value between 0 and 1.

Value

A numeric value between 0 and 1.

Test.Obj.Fn.2 Test.Obj.Fn.2

Description

Test objective function 2

Usage

```
Test.Obj.Fn.2(C.refined, A.refined, C.artifactual, A.artifactual)
```

Arguments

C.refined A numeric value between 0 and 1.

A.refined A numeric value between 0 and 1.

C.artifactual A numeric value between 0 and 1.

A.artifactual A numeric value between 0 and 1.

Value

A numeric value between 0 and 1.

TriNuc.Mutation.Type.Hex.Colors

Constant

Description

Hex codes for the mutation types (for plotting purposes)

Usage

TriNuc.Mutation.Type.Hex.Colors

Format

An object of class character of length 6.

UpdateFilter

UpdateFilter

Description

Update filter based on optim parameter values

Usage

```
UpdateFilter(vcf.filter, param.values)
```

Arguments

vcf.filter

A list from MakeFilterFromConfig

param.values

A numeric vector contains filtering value (same length with length(vcf.config.filter))

Value

Updated vcf.filter (list)

WriteFIREVATResultsToTSV

WriteFIREVATResultsToTSV

Description

Writes FIREVAT results to a csv file

Usage

WriteFIREVATResultsToTSV(firevat.results)

Arguments

firevat.results

List returned from RunFIREVAT

WriteVCF 57

WriteVCF WriteVCF

Description

Writes a vcf.obj to a .vcf file

Usage

```
WriteVCF(vcf.obj, save.file)
```

Arguments

vcf.obj (from the function ReadVCF) save.file (full path including filename)

Index

```
*Topic datasets
                                                GetCOSMICMutSigsEtiologiesColors, 16
    Chromosome.Names, 5
                                                GetCOSMICMutSigsNames, 16
    PCAWG.All.Sequencing.Artifact.Signatures, GetGASuggestedSolutions, 16
                                                GetOptimizedSignatures, 17
    PCAWG.Known.Sequencing.Artifact.SignatureGetParameterLowerUpperVector, 18
                                                GetPCAWGMutSigs, 18
    PCAWG.Platinum.All.Technology.Related.ArtGetracksingstiologiesColors, 19
                                                GetPCAWGMutSigsNames, 19
    {\tt PCAWG.Possible.Sequencing.Artifact.Signat {\tt Qetes}{\tt CAWGPlatinumMutSigs}, 20}
                                                {\tt GetPCAWGPlatinumMutSigsEtiologiesColors},
    PCAWG.Target.Mutational.Signatures,
                                                GetPCAWGPlatinumMutSigsNames, 20
    TriNuc.Mutation.Type.Hex.Colors,
                                                GetSeedForVCF, 21
                                                InitializeVCF, 21
AnnotateVCFObj, 4, 36, 45
                                                Leaky.ReLU.A.Art.Obj.Fn, 22
CheckIfVariantRefinementIsNecessary, 4
                                                Leaky.ReLU.A.Ref.Obj.Fn, 22
Chromosome.Names, 5
                                                Leaky.ReLU.Obj.Fn, 23
ComputeZScore, 6
ComputeZScoreEquiValue, 6
                                                MakeFilter, 8, 23
                                                MutaliskParseVCFObj, 24
DecimalCeiling, 7
                                                MutPatParseRefMutSigs, 24, 53
Default.Obj.Fn, 7
                                                MutPatParseVCFObj, 25, 53
DefaultFilterToBinary, 8
                                                ParameterToBits, 8, 25
EnumerateTriNucCounts, 8
                                                ParseConfigFile, 26
Euc.Exp.Weighted.Obj.Fn, 9
                                                PCAWG.All.Sequencing.Artifact.Signatures,
Euc.Exp.Weighted.Seq.Art.Only.Obj.Fn.1,
                                                PCAWG.Known.Sequencing.Artifact.Signatures,
Euc.Exp.Weighted.Seq.Art.Only.Obj.Fn.2,
                                                PCAWG.Platinum.All.Technology.Related.Artifact.Signatur
Euc. Obj. Fn, 10
Exp.Weighted.A.Art.Obj.Fn, 11
                                                PCAWG.Possible.Sequencing.Artifact.Signatures,
Exp.Weighted.A.Ref.Obj.Fn, 11
Exp.Weighted.Obj.Fn.1, 12
                                                PCAWG. Target. Mutational. Signatures, 28
Exp.Weighted.Obj.Fn.2, 12
                                                PerformStrandBiasAnalysis, 28
Exp.Weighted.Refined.Seq.Art.Only.Obj.Fn,
                                                PlotMutaliskResults, 29
                                                PlotMutationTypes, 30
                                                PlotOptimizationIterations, 31
FilterByStrandBiasAnalysis, 13
                                                PlotSignaturesContProbs, 32
FilterVCF, 14
                                                PlotTable, 33
GenerateConfigObj, 15
                                                PlotTriNucSpectrum, 33
                                                PlotVCFStatsBoxPlots, 34
GetCOSMICMutSigs, 15
```

INDEX 59

```
PlotVCFStatsHistograms, 35
PrepareAnnotationDB, 4, 36, 45, 49
PrepareArtifactAnnotationTable, 36
PrepareArtifactStrandBiasTable, 37
PrepareArtifactualMutsOptimizationIterationsPlot,
PrepareFilterCutoffsTable, 38
{\tt Prepare Genetic Algorithm Parameters Table},
PrepareIdentifiedSignaturesPlot, 39
PrepareMLEReconstructedSpectrumsPlot,
PrepareNucleotideSubstitutionTypesPlot,
PrepareObservedSpectrumsPlot, 40
PrepareOptimizationResultsTable, 41
PrepareOptimizedVCFStatisticsPlot, 41
PrepareRefinedAnnotationTable, 42
\label{lem:prepareRefinedMutsOptimizationIterationsPlot,} PrepareRefinedMutsOptimizationIterationsPlot,
PrepareRefinedStrandBiasTable, 43
PrepareResidualSpectrumsPlot, 43
PrepareTrinucleotideSpectrumsTable, 44
PrintLog, 44
QueryAnnotatedVCF, 45
ReadOptimizationIterationReport, 45
ReadVCF, 4, 15, 25, 28, 36, 46
ReportFIREVATResults, 46
RunFIREVAT, 17, 36–46, 47
RunGAMode, 50
RunManualMode, 50
RunMutalisk, 29, 51
RunMutaliskHelper, 52
RunMutPat, 53
Sig.Extraction.Obj.Fn, 54
Sigmoid.Obj.Fn, 54
Test.Obj.Fn.1, 55
Test.Obj.Fn.2, 55
TriNuc.Mutation.Type.Hex.Colors, 56
UpdateFilter, 56
WriteFIREVATResultsToTSV, 56
WriteVCF, 57
```