Esercizio 1

$$T(n) = \begin{cases} 1, & \text{se } n \leq 27 \\ 3n^2 \cdot T(\sqrt[3]{n}) + 2n^{\frac{3}{2}}, & \text{oftrumenti:} \end{cases}$$

Livello	Nodi per livello	bimensione in in put	Contributo pur nodo	Contributo totale per livello
0	1	n	2 n3	2 13
1	3n²	n 3	2 n	6n³
2	9 n 8/3	n 4	2 n 3	18 n.
3	26/9 27 n	727	2 1 4	54 n
i	3 n 3 1-1	3; D	2 n 3t	3 · 2 n

Calcolo l'altezza:

$$\frac{4}{n^{3h}} \leq 27 \stackrel{\text{\tiny (a)}}{\leq} \frac{4}{3^{h}} \log_3(n) \leq 3 \stackrel{\text{\tiny (a)}}{\leq} 3 \stackrel{\text{\tiny (a)}}{\leq} \log_3(n) \stackrel{\text{\tiny (a)}}{\leq} 2 \stackrel{\text{\tiny (a)}}{\simeq} 2 \stackrel{\text{\tiny (a)}}$$

Calcolo la sommatoria

$$\overset{h}{\underset{i \to 0}{\not=}} 3 \overset{1}{\underset{i \to 0}{\Rightarrow}} 1 \overset{h}{\underset{i \to 0}{\Rightarrow}} 3 \overset{$$

$$= \int_{0}^{1} \left(\log_{3}(n) - 1 \right) = \int_{0}^{1} \log_{3}(n) - \int_{0}^{3} = \mathcal{H}\left(\int_{0}^{3} \log_{3}(n) \right)$$

