$\mathbf{MTH375} :$ Mathematical Statistics - Homework #2

Cason Konzer

Key Concepts: Estimator, bias, unbiased estimator, standard error, MSE, δ -method.

1. Let X_1, \ldots, X_n and Y_1, \ldots, Y_n be two random samples with the same mean μ and variance σ^2 . (The pdf of X_i and Y_j are not specified.)

(a) Show that $T = \frac{1}{2}\overline{X} + \frac{1}{2}\overline{Y}$ and $U = \frac{1}{3}\overline{X} + \frac{2}{3}\overline{Y}$ are both unbiased estimators of μ .

Solution:

We have
$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
 and $\overline{Y} = \frac{\sum_{j=1}^{n} Y_j}{n}$.

We know for each X_i and Y_j that $E(X_i) = E(Y_j) = \mu$.

It follows that
$$E(\overline{X}) = E(\overline{Y}) = \frac{n \cdot \mu}{n} = \mu$$
.

Thus
$$E(T) = \frac{1}{2}\mu + \frac{1}{2}\mu = \mu$$
 and $E(U) = \frac{1}{3}\mu + \frac{2}{3}\mu = \mu$.

It follows that T and U are unbiased estimators of μ as $Bias(T; \mu) = Bias(U; \mu) = \mu - \mu = 0$.

(b) Evaluate $MSE(T; \mu)$ and $MSE(U; \mu)$. According to the MSE criterion, is T or U the better estimator of μ ?

Solution:

We know that for unbiased estimators $MSE(S; \theta) = V(S)$.

We also know that for each X_i and Y_j that $V(X_i) = V(Y_j) = \sigma^2$.

It follows that
$$V(\overline{X}) = V(\overline{Y}) = \frac{n \cdot \sigma^2}{n^2} = \frac{\sigma^2}{n}$$
.

We can now compute V(T) and V(U).

$$V(T) = V(\frac{\overline{X}}{2} + \frac{\overline{Y}}{2}) = \frac{V(\overline{X})}{4} + \frac{V(\overline{Y})}{4} = \frac{\sigma^2}{4n} + \frac{\sigma^2}{4n} = \frac{\sigma^2}{2n}.$$

$$V(U) = V(\frac{\overline{X}}{3} + \frac{2\overline{Y}}{3}) = \frac{V(\overline{X})}{9} + \frac{V(\overline{4Y})}{9} = \frac{\sigma^2}{9n} + \frac{4\sigma^2}{9n} = \frac{5\sigma^2}{9n}.$$

Thus
$$MSE(T; \mu) = \frac{9\sigma^2}{18n}$$
 and $MSE(U; \mu) = \frac{10\sigma^2}{18n}$.

We can now see that T is a better estimator of μ than U for all sample sizes as the MSE is closer to 0 for all sample sizes n; both are consistent estimators.

2. Let X_1, \ldots, X_n be a random sample uniform on $[0, \theta]$. (Hint: We know f_{X_i} , $E(X_i)$ and $V(X_i)$; use them all.)

(a) Show that $T=2\overline{X}$ is an unbiased estimator of θ , and evaluate $MSE(T;\theta)$. Solution:

We know that
$$f_{X_i} = \frac{1}{\theta - 0} = \frac{1}{\theta}$$
, $E(X_i) = \frac{0 + \theta}{2} = \frac{\theta}{2}$, $V(X_i) = \frac{(\theta - 0)^2}{12} = \frac{\theta^2}{12}$.

We also know that $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$.

We can evaluate $E(\overline{X}) = \frac{\theta n}{2n} = \frac{\theta}{2}$.

It follows nicely that $E(T) = E(2\overline{X}) = 2E(\overline{X}) = \frac{2\theta n}{2n} = \theta$.

We can now show that T is an unbiased estimator of θ as $Bias(T; \theta) = \theta - \theta = 0$.

As T is an unbiased of θ , we know that $MSE(T;\theta) = V(T)$.

We can evaluate
$$V(\overline{X}) = \frac{nV(X_i)}{n^2} = \frac{\theta^2}{12n}$$
.

It follows that
$$V(T) = V(2\overline{X}) = 4V(\overline{X}) = \frac{4\theta^2}{12n} = \frac{\theta^2}{3n}$$
.

We can now see that $MSE(T;\theta) = \frac{\theta^2}{3n}$ and that T is a consistent estimator of θ .

(b) Let $M = max\{X_1, ..., X_n\}$. Find the pdf of M. (Hint: Use the fact that $F_m = P(M \le m) = P(X_1 \le m \& \cdots \& X_n \le m)$.) Solution:

We know that $P(M \leq m) = P(X_1 \leq m \& \cdots \& X_n \leq m) = (F_{X_i})^n$.

We also know that
$$F_{X_i} = \int_0^x \frac{1}{\theta} dx = \frac{x}{\theta} \Big|_0^x = \frac{x}{\theta}.$$

It then follows that $F_m = \left(\frac{x}{\theta}\right)^n = \frac{x^n}{\theta^n}$.

We can now see that
$$f_m = \frac{d}{dx}[F_m] = \frac{d}{dx}\left[\frac{x^n}{\theta^n}\right] = \frac{nx^{n-1}}{\theta^n}$$
.

(c) Compute E(M) and V(M).

Solution:

From probability we know that
$$E(M) = \int_0^\theta x f_m(x) \, dx = \int_0^\theta \frac{nx^n}{\theta^n} \, dx = \frac{n}{\theta^n} \int_0^\theta x^n \, dx$$
. Thus $E(M) = \frac{n}{\theta^n} \left[\frac{x^{n+1}}{n+1} \Big|_0^\theta \right] = \frac{n}{\theta^n} \left[\frac{\theta^{n+1}}{n+1} - \frac{0^{n+1}}{n+1} \right] = \frac{n\theta^{n+1}}{(n+1)\theta^n} = \frac{n\theta}{n+1}$. We will now solve for $V(M) = E(M^2) - E(M)^2$. It is straight forward that $E(M)^2 = \frac{n^2\theta^2}{(n+1)^2}$. By RUS , $E(M^2) = \int_0^\theta x^2 f_m(x) \, dx = \int_0^\theta \frac{nx^{n+1}}{\theta^n} = \frac{n}{\theta^n} \int_0^\theta x^{n+1} \, dx$. Thus $E(M) = \frac{n}{\theta^n} \left[\frac{x^{n+2}}{n+2} \Big|_0^\theta \right] = \frac{n}{\theta^n} \left[\frac{\theta^{n+2}}{n+2} - \frac{0^{n+2}}{n+2} \right] = \frac{n\theta^{n+2}}{(n+2)\theta^n} = \frac{n\theta^2}{n+2}$. We now have $V(M) = \frac{n\theta^2}{n+2} - \frac{n^2\theta^2}{(n+1)^2} = \frac{n\theta^2(n+1)^2 - n^2\theta^2(n+2)}{(n+2)(n+1)^2}$.
$$= \frac{n\theta^2(n^2+2n+1) - (n^3\theta^2+2n^2\theta^2)}{(n+2)(n+1)^2} = \frac{n^3\theta^2+2n^2\theta^2+n\theta^2-n^3\theta^2-2n^2\theta^2}{(n+2)(n+1)^2}.$$

(d) Using your answers to (c), find an unbiased estimator M^* of θ based on M, and evaluate $MSE(M^*;\theta)$. According to the MSE criterion, which is a better estimator of θ , T or M^* ?

Solution:

We can obtain an unbiased estimator M^* of θ by solving $E(M) = \frac{n\theta}{n+1}$ for θ .

$$\theta = \frac{(n+1)E(M)}{n} = E\left(\frac{(n+1)M}{n}\right) = E\left(\frac{(n+1)max\{X_1, ..., X_n\}}{n}\right).$$

We now have an unbiased estimator $M^* = \frac{(n+1)max\{X_1, ..., X_n\}}{n}$ for θ .

Now we will solve for $MSE(M^*) = V(M^*) = V\left(\frac{(n+1)M}{n}\right) = \frac{(n+1)^2}{n^2}V(M)$.

$$=\frac{(n+1)^2}{n^2}\cdot\frac{n\theta^2}{(n+2)(n+1)^2}=\frac{\theta^2}{n(n+2)}.$$

As $\lim_{n\to\infty} \frac{\theta^2}{n(n+2)} = 0$, We can say that M^* is a consistent estimator of θ .

Last, as
$$\frac{\theta^2}{n(n+2)} = \frac{\theta^2}{n^2 + 2n} < \frac{\theta^2}{3n}$$
 for all $n > 1$,

we find that M^* is a better estimator of θ than T.

3. Let X_1, \ldots, X_n be a sample of $iid\ Bin(1,\theta)$ random variables, and let $T = \overline{X}(1-\overline{X})$ be an estimator of $V(X_i) = \theta(1-\theta)$.

(Hint: We know f_{X_i} , $E(X_i)$ and $V(X_i)$; use them all.)

$$f_{X_i} = {1 \choose x} \theta^x (1 - \theta)^{1-x} \; ; \; E(X_i) = \theta \; ; \; V(X_i) = \theta (1 - \theta).$$

(a) Determine E(T).

Solution:

We will first let $\sum_{i=1}^{n} X_i = \Sigma$ as shorthand.

We can see that $\Sigma \sim Bin(n, \theta)$.

It follows that $E(\Sigma) = n\theta$ and $V(\Sigma) = n\theta(1 - \theta)$.

We can now solve for $E(\overline{X}) = \frac{E(\Sigma)}{n} = \theta$ and $V(\overline{X}) = \frac{V(\Sigma)}{n^2} = \frac{\theta(1-\theta)}{n}$.

We know $V(\overline{X}) = E(\overline{X}^2) - E(\overline{X})^2$ and $E(\overline{X}^2) = V(\overline{X}) + E(\overline{X})^2$.

It is straightforward that $E(\overline{X})^2 = \theta^2$.

We will now solve for $E(\overline{X}^2) = \frac{V(\Sigma)}{n^2} = \frac{\theta(1-\theta)}{n} + \theta^2$.

We can now see that $E(T) = E(\overline{X}(1 - \overline{X})) = E(\overline{X} - \overline{X}^2) = E(\overline{X}) - E(\overline{X}^2)$.

By substitution, $E(T) = \theta - \frac{\theta(1-\theta)}{n} - \theta^2 = \frac{n\theta - \theta + \theta^2 - n\theta^2}{n} = \frac{\theta(n-1) - \theta^2(n-1)}{n}$.

Furter simplification arrives at $E(T) = \frac{\theta(1-\theta)(n-1)}{n}$.

(b) Determine $Bias(T; \theta(1-\theta))$.

Solution:

$$Bias(T; \theta(1-\theta)) = E(T) - \theta(1-\theta) = \frac{\theta(1-\theta)(n-1)}{n} - \theta(1-\theta) = \frac{\theta(1-\theta)(n-1) - n\theta(1-\theta)}{n}.$$

$$\theta(1-\theta)(n-1-n) = \frac{\theta(1-\theta)(n-1) - n\theta(1-\theta)}{n}.$$

Simplification provides our solution, $Bias(T; \theta(1-\theta)) = \frac{\theta(1-\theta)(n-1-n)}{n} = -\frac{\theta(1-\theta)}{n}$.

(c) Determine the asymptotic bias of T for estimating $\theta(1-\theta)$.

Solution:

We can see that T is an asymptotically unbiased estimator for $\theta(1-\theta)$ as $\lim_{n\to\infty} -\frac{\theta(1-\theta)}{n} = 0$.

(d) Determine an unbiased estimator of $\theta(1-\theta)$ based on T.

Solution:

As $E(T) = \frac{\theta(1-\theta)(n-1)}{n}$ We can solve for $\theta(1-\theta)$ to find an unbiased estimator.

$$\theta(1-\theta) = \frac{nE(T)}{n-1} = E\left(\frac{nT}{n-1}\right) = E\left(\frac{n\overline{X}(1-\overline{X})}{n-1}\right).$$

We can now see that $\frac{n\overline{X}(1-\overline{X})}{n-1}$ is an unbiased estimator of $\theta(1-\theta)$.

4. Let X_1, \ldots, X_n be a sample of $iid\ N(0, \sigma^2)$ random variables, and let $T = \frac{1}{n} \sum_{i=1}^n X_i^2$. (Hint: the mgf of X_i is $M(t) = e^{\sigma^2 t^2/2}$.)

(a) Is T an unbiased estimator of σ^2 ?

Solution:

We know that $V(X_i) = E(X_i^2) - E(X_i)^2$ and that $E(X_i) = 0$.

We can then see that $E(X_i^2) = V(X_i) + E(X_i)^2 = \sigma^2 + 0^2 = \sigma^2$.

It follows nicely that $E(T) = \frac{nE(X_i^2)}{n} = \sigma^2$.

We can now see that T is an unbiased estimator of σ^2 as $Bias(T; \sigma^2) = \sigma^2 - \sigma^2 = 0$.

(b) Find $MSE(T; \sigma^2)$.

Solution:

We know $MSE(T; \sigma^2) = V(T)$. as T is unbiased.

Notice
$$V(T) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}V(X_{i}^{2}) = \frac{1}{n^{2}}\sum_{i=1}^{n}E(X_{i}^{4}) - E(X_{i}^{2})^{2} = \frac{E(X_{i}^{4}) - E(X_{i}^{2})^{2}}{n}$$

Differentiating the mgf, $M(t) = e^{\sigma^2 t^2/2}$; $M'(t) = \sigma^2 t e^{\sigma^2 t^2/2}$; $M^2(t) = \sigma^2 e^{\sigma^2 t^2/2} + \sigma^4 t^2 e^{\sigma^2 t^2/2}$.

$$M(t)^{3} = \sigma^{4} t e^{\sigma^{2} t^{2}/2} + 2\sigma^{4} t e^{\sigma^{2} t^{2}/2} + \sigma^{6} t^{3} e^{\sigma^{2} t^{2}/2} = 3\sigma^{4} t e^{\sigma^{2} t^{2}/2} + \sigma^{6} t^{3} e^{\sigma^{2} t^{2}/2}$$

$$M(t)^4 = 3\sigma^4 e^{\sigma^2 t^2/2} + 3\sigma^6 t^2 e^{\sigma^2 t^2/2} + 3\sigma^6 t^2 e^{\sigma^2 t^2/2} + \sigma^8 t^4 e^{\sigma^2 t^2/2}$$

$$M(t)^4 = 3\sigma^4 e^{\sigma^2 t^2/2} + 6\sigma^6 t^2 e^{\sigma^2 t^2/2} + \sigma^8 t^4 e^{\sigma^2 t^2/2}$$

$$M(0)^4 = 3\sigma^4 e^{\sigma^2(0)^2/2} + 6\sigma^6(0)^2 e^{\sigma^2(0)^2/2} + \sigma^8(0)^4 e^{\sigma^2(0)^2/2} = 3\sigma^4 = E(X_i^4).$$

From above, $E(X_i^2) = \sigma^2$, Thus $E(X_i^2)^2 = (\sigma^2)^2 = \sigma^4$.

We can now solve
$$MSE(T; \sigma^2) = V(T) = \frac{E(X_i^4) - E(X_i^2)^2}{n} = \frac{3\sigma^4 - \sigma^4}{n} = \frac{2\sigma^4}{n}$$
.

In conclusion we say that T is a consistent estimator of σ^2 as $\lim_{n\to\infty} \frac{2\sigma^4}{n} = 0$.

5. Let X_1, \ldots, X_n be a sample of $iid\ Exp(\beta)$ random variables. Use the δ -Method to determine the approximate standard error of $\hat{\beta}^2 = \overline{X}^2$.

Solution:

Recall the δ -Method, given a function g and SE(S), $SE(g(S)) \approx |g'(E(S))| \cdot SE(S)$.

Here we will apply the $\delta\text{-Method}$ for $S=\overline{X}$; $\,g(S)=S^2$; $\,g'(S)=2S$.

For shorthand we will us $\Sigma = \sum_{i=1}^{n} X_i$ as $\Sigma \sim Gamma(n, \beta)$.

It follows that $E(\overline{X}) = E\left(\frac{\Sigma}{n}\right) = \frac{n\beta}{n} = \beta$.

Similarly
$$V(\overline{X}) = V\left(\frac{\Sigma}{n}\right) = \frac{n\beta^2}{n^2} = \frac{\beta^2}{n}$$
; $SE(\overline{X}) = \sqrt{V(\overline{X})} = \sqrt{\frac{\beta^2}{n}} = \frac{\beta}{\sqrt{n}}$.

Now
$$SE(\hat{\beta}^2) = SE(g(\overline{X})) \approx |g'(E(\overline{X}))| \cdot SE(\overline{X}) = |g'(\beta)| \cdot \frac{\beta^2}{\sqrt{n}} = |2\beta| \cdot \frac{\beta}{\sqrt{n}}.$$

We now have an approximate of $SE(\hat{\beta}^2)$, given as $SE(\hat{\beta}^2) \approx \frac{2\beta}{\sqrt{n}}$.