Álgebra Universal e Categorias

– 1° teste (20 de abril de 2017) — duração: 2 horas _____

1. Sejam $\mathcal{A}=(\{1,2,3,4,5\};*^{\mathcal{A}},c^{\mathcal{A}})$ e $\mathcal{B}=(\{1,2\};*^{\mathcal{B}},c^{\mathcal{B}})$ as álgebras de tipo (2,0) cujas operações nulárias são dadas por $c^{\mathcal{A}}=2$, $c^{\mathcal{B}}=1$ e cujas operações binárias são definidas por

$_*\mathcal{A}$					
1	2	2	2	5	2
2	2	3	3	2	2
3	2	3	2	2	2
4	5	2	2	4	2
1 2 3 4 5	2	2	2	2	2

Seja $\alpha:\{1,2\} \to \{1,2,3,4,5\}$ a aplicação definida por $\alpha(1)=2$ e $\alpha(2)=3$.

- (a) Diga, justificando, se o conjunto $Sg^{\mathcal{A}}(\{1\}) \cup Sg^{\mathcal{A}}(\{4\})$ é um subuniverso de \mathcal{A} .
- (b) Mostre que a aplicação α é um monomorfismo de $\mathcal B$ em $\mathcal A$. Justifique que $\mathcal B$ é isomorfa a uma subálgebra de $\mathcal A$.
- 2. Seja $\mathcal{A}=(A;F)$ uma álgebra unária. Mostre que se S_1 e S_2 são subuniversos de \mathcal{A} , então $S_1\cup S_2$ é um subuniverso de \mathcal{A} .
- 3. Sejam $\mathcal{A}=(A;(f^{\mathcal{A}})_{f\in O}), \ \mathcal{B}=(B;(f^{\mathcal{B}})_{f\in O})$ e $\mathcal{C}=(C;(f^{\mathcal{C}})_{f\in O})$ álgebras de tipo $(O,\tau),$ $\alpha_1\in \mathrm{Hom}(\mathcal{A},\mathcal{B})$ e $\alpha_2\in \mathrm{Hom}(\mathcal{A},\mathcal{C}).$ Seja $\alpha:A\to B\times C$ a aplicação definida por $\alpha(a)=(\alpha_1(a),\alpha_2(a)),$ para todo $a\in A.$
 - (a) Mostre que α é um homomorfismo de \mathcal{A} em $\mathcal{B} \times \mathcal{C}$.
 - (b) Mostre que $\ker \alpha = \ker \alpha_1 \cap \ker \alpha_2$.
 - (c) Mostre que se α é um epimorfismo, então α_1 e α_2 são epimorfismos e

$$A/(\ker \alpha_1 \cap \ker \alpha_2) \cong A/\ker \alpha_1 \times A/\ker \alpha_2.$$

4. Seja $\mathcal{A}=(A;f^{\mathcal{A}},g^{\mathcal{A}})$ a álgebra de tipo (1,1) tal que $A=\{a,b,c,d\}$ e cujas operações $f^{\mathcal{A}}$ e $g^{\mathcal{A}}$ são definidas por

Sabendo que o reticulado de congruências de ${\mathcal A}$ pode ser representado por

onde $\theta_1=\theta(a,b)$, $\theta_2=\theta(a,c)$, $\theta_3=\theta(b,d)$ e $\theta_4=\triangle_A\cup\{(a,c),(c,a),(b,d),(d,b)\}$:

- (a) Determine θ_1 e justifique que (θ_1, θ_4) é um par de congruências fator.
- (b) Justifique que $\mathcal{A} \cong \mathcal{A}/\theta_1 \times \mathcal{A}/\theta_4$. Defina as operações da álgebra $\mathcal{A}/\theta_4 = (A/\theta_4; f^{\mathcal{A}/\theta_4}, g^{\mathcal{A}/\theta_4})$.
- (c) Diga, justificando, se a álgebra \mathcal{A} é:
 - i. c-distributiva. ii. subdiretamente irredutível.
- 5. Considere os operadores de classes de álgebras H e S. Mostre que HSH é um operador idempotente.