EXERCICE 1 (Cours)

Donner (et prouver) la propriété concernant la multiplication par $-1 \in \mathbb{K}$.

Exercice 2 (Cours)

Soit E un \mathbb{K} -espace vectoriel, $n \in \mathbb{N}^*$, et $e_1, \ldots, e_n \in E$. Montrer que $\text{Vect}(e_1, \ldots, e_n)$ est un sous-espace vectoriel de E.

Exercice 3 (Cours)

Donner (et prouver) la propriété liant espaces vectoriels engendrés et réunions.

EXERCICE 4 (Cours)

Donner (et prouver) la caractérisation des sommes directes.

Exercice 5

Soit E un espace vectoriel et soient F et G deux sous-espaces vectoriels de E. Montrer que $F \cup G$ est encore un sous-espace vectoriel si et seulement si $F \subset G$ ou $G \subset F$.

Exercice 6

On considère dans \mathbb{R}^3 les vecteurs

$$v_1 = (1, 1, 0), v_2 = (4, 1, 4), v_3 = (2, -1, 4).$$

- 1. Montrer que la famille (v_1, v_2) est libre. Faire de même pour (v_1, v_3) et (v_2, v_3) .
- 2. La famille (v_1, v_2, v_3) est-elle libre?

Exercice 7

On considère dans \mathbb{R}^3 les vecteurs

$$v_1 = (1, -1, 1), v_2 = (2, -2, 2), v_3 = (2, -1, 2).$$

- 1. Peut-on trouver un vecteur w tel que (v_1, v_2, w) soit libre? Si oui, construisezen un.
- 2. Même question en remplaçant v_2 par v_3 .

Exercice 8

Soit (P_1, P_2, \dots, P_n) une famille de polynômes de $\mathbb{R}[X]$ non nuls, à degrés échelonnés, c'est-à-dire tels que

$$\deg P_1 < \deg P_2 < \dots < \deg P_n.$$

Montrer que (P_1, \ldots, P_n) est une famille libre.

Exercice 9

Donner un système d'équations des espaces vectoriels engendrés par les vecteurs suivants :

- 1. $u_1 = (1, 2, 3);$
- 2. $u_1 = (1, 2, 3)$ et $u_2 = (-1, 0, 1)$;
- 3. $u_1 = (1, 2, 0), u_2 = (2, 1, 0)$ et $u_3 = (1, 0, 1)$.

Exercice 10

Trouver une famille génératrice des sous-espaces vectoriels suivants de \mathbb{R}^3 .

- 1. $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y z = 0\};$
- 2. $G = \{(x, y, z) \mid x y + z = 0 \text{ et } 2x y z = 0\}.$

Exercice 11

Soit $E = \mathbb{R}^{\mathbb{N}}$ l'espace vectoriel des suites réelles, on pose

$$F = \{ u \in E \mid \forall n \in \mathbb{N}, u_{2n} = 0 \} \text{ et } G = \{ u \in E \mid \forall n \in \mathbb{N}, u_{2n} = u_{2n+1} \}.$$

- 1. Démontrer que F et G sont des sous-espaces vectoriels de E.
- 2. Démontrer que F et G sont supplémentaires.

Exercice 12

Soit $E = \mathbb{R}^{\mathbb{R}}$ l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} . On note F l'ensemble des fonctions périodiques de période 1 et G l'ensemble des fonctions f telles que $\lim_{x\to +\infty} f(x)=0$.

- 1. Démontrer que F et G sont des sous-espaces vectoriels de E.
- 2. Démontrer que $F \cap G = \{0\}$. Est-ce que F et G sont supplémentaires ?

Exercice 13

Dire si les ensembles suivants sont des espaces vectoriels.

- 1. $E_1 = \{ P \in \mathbb{R}[X] \mid P(0) = P(2) \};$
- 2. $E_2 = \{ P \in \mathbb{R}[X] \mid P'(0) = 2 \};$
- 3. $E_3 = \{ P \in \mathbb{R}[X] \mid Q \text{ divise } P \}$ pour $Q \in \mathbb{R}[X]$ un polynôme non-nul fixé;
- 4. \mathcal{D} l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} qui sont dérivables;
- 5. $E_4 = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\};$
- 6. $E_5 = \{(x, y) \in \mathbb{R}^2 \mid x = y^2\}.$