12/13/22, 6:46 PM assignment_2.3

RUMAISA SHAHAB 2211-024-DEG-KHI AND USMAN ZAMAN 2211-032-DEG-KHI

```
In [21]: import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets
from sklearn.cluster import KMeans
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.metrics import calinski_harabasz_score
from sklearn.metrics import davies_bouldin_score
In [22]: iris = datasets.load_iris()
x = iris.data
y = iris.target
```

MODEL_1 (Kmeans)

```
In [23]: model_1 = KMeans(n_clusters=3, n_init=4, max_iter=300)
labels = model_1.fit_predict(x)

davies_bouldin_score_1=davies_bouldin_score(x, labels)
calinski_harabasz_score_1 = calinski_harabasz_score(x, labels)

print("davies_bouldin_score_1 = " , davies_bouldin_score_1)
print("calinski_harabasz_score_1 = " , calinski_harabasz_score_1)

davies_bouldin_score_1 = 0.6619715465007465
calinski harabasz_score 1 = 561.62775662962
```

MODEL_2 (Kmeans with PCA)

```
In [27]: pca = PCA(n_components=2)
x_reduced = pca.fit_transform(x)

model_2 = KMeans(n_clusters=3, n_init=4, max_iter=300)
```

12/13/22, 6:46 PM assignment_2.3

```
labels_2 = model_2.fit_predict(x_reduced)

davies_bouldin_score_2=davies_bouldin_score(x_reduced, labels_2)

calinski_harabasz_score_2 = calinski_harabasz_score(x_reduced, labels_2)

print("davies_bouldin_score_2 = " , davies_bouldin_score_2)

print("calinski_harabasz_score_2 = ", calinski_harabasz_score_2)

davies_bouldin_score_2 = 0.5648157434964133

calinski_harabasz_score_2 = 693.708433418847
```

EXPLANATION

The Calinski-Harabasz (to check Cohesion):

We used The Calinski-Harabasz to evaluate cohesion. It also known as the Variance Ratio Criterion, is calculated as a ratio of the sum of inter-cluster dispersion and the sum of intra-cluster dispersion for all clusters (where the dispersion is the sum of squared distances).

davies_bouldin_score (to check separation):

The score (DBI) is calculated as the average similarity of each cluster with a cluster most similar to it. The lower the average similarity is, the better the clusters are separated and the better is the result of the clustering performed.

CONCLUSION

Since the cohesion and separation validation proved that Model_2 had better clustering in contrast with Model_1.PCA dimension reduction proved to be a better approach to enchance the model's behaviour.

```
In [29]: if davies_bouldin_score_2<davies_bouldin_score_1 and calinski_harabasz_score_2>calinski_harabasz_score_1:
        print("Model 2 has better clustering")
else:
        print("Model 1 has better clustering")
Model 2 has better clustering
```

12/13/22, 6:46 PM assignment_2.3