

Continuous Assessment Test I - October 2022

Programme	: B.Tech	October 2022	
		Semester	FALLSEM 2022-2
Course	Calculus	Code	BMAT1011
Faculty : Dr. R. Radha Dr. N. Nathiya Dr. Sowndarrajan P T Dr. Manoj Kumar Singh Dr. Harshavarthini Shanmus	Dr. R. Radha	Slot	A1+TA1
	Dr. N. Nathiya Dr. Sowndarrajan P T	Class Number	CH2022231700297 CH2022231700423 CH2022231700424
	Dr. Harshavarthini Shanmugam		CH2022231700298 CH2022231700617
ime :	1½ hours		CH2022231700608
		Max. Marks	50

Answer ALL the Questions ($5 \times 10 = 50 \text{ marks}$)

Q.No. Se	o. Sec Questions (5 x 10 = 50 marks)	
1. a	Question D	Mark
b. I	Suppose that $f(x)$ is continuous and differentiable on the interval $[-2,2]$ such that $f(-2) = 3$ and $f'(x) \le 4$. What is the largest possible value for $f(2)$?	5

b. Find the intervals in which the given function
$$f(x) = \frac{1}{2x^2 + 5}$$
 is increasing, decreasing, concave up and concave down.

Find the volume of the solid generated by revolving the region in the first quadrant bounded above by the curve
$$y = x^2$$
, below by x-axis and on the right

Show that the function
$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
 is continuous.

If
$$x = u - y - z$$
, $y = uv - z$, $z = uvw$ and $u = \frac{x_2 x_3}{x_1}$, $v = \frac{x_3 x_1}{x_2}$, $w = \frac{x_1 x_2}{x_3}$, find $\frac{\partial(x, y, z)}{\partial(x_1, x_2, x_3)}$.