- (19) Weltorganisation für geistiges Eigentum Internationales Büro
- OHP

(43) Internationales Veröffentlichungsdatum 6. April 2006 (06.04.2006)

PCT

(10) Internationale Veröffentlichungsnummer WO 2006/034872 A1

(51) Internationale Patentklassifikation:

C07D 239/48 (2006.01) **C07D 239/46** (2006.01)

A61K 31/505 (2006.01) A61P 35/00 (2006.01)

(21) Internationales Aktenzeichen:

PCT/EP2005/010578

(22) Internationales Anmeldedatum:

27. September 2005 (27.09.2005)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 60/613,964 29. September 2004 (29.09.2004) U 10 2004 049 622.6 6. Oktober 2004 (06.10.2004) D
- (71) Anmelder: SCHERING AKTIENGESELLSCHAFT [DE/DE]; Müllerstrasse 178, 13353 Berlin (DE).
- (72) Erfinder: CLEVE, Arwed; Konstanzer Strasse 8, 10707 Berlin (DE). LÜCKING, Ulrich; Bödickerstrasse 6, 10245 Berlin (DE). WEST, Christopher; 43 Montecarlo Way, American Canyon, CA 94503 (US). BRIEM, Hans; Baumhauser Weg 41a, 28279 Bremen (DE). SIEMEIS-TER, Gerhard; Reimerswalder Steig 26, 13503 Berlin (DE). KRÜGER, Martin; Heeruferweg 7A, 13465 Berlin (DE). JAUTELAT, Rolf; Driesener Strasse 1, 10439

(1),

Berlin (DE). LIENAU, Philip; Invalidenstr. 101, 10115 Berlin (DE).

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben. für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: SUBSTITUTED 2-ANILINOPYRIMIDINES AS CELL CYCLE KINASE INHIBITORS OR RECEPTOR TYROSINE KINASE INHIBITORS, PRODUCTION OF SAID SUBSTANCES AND USE OF THE LATTER AS MEDICAMENTS
- (54) Bezeichnung: SUBSTITUIERTE 2-ANILINOPYRIMIDINE ALS ZELLZYKLUS -KINASE ODER REZEPTORTYROSIN-KINASE INHIBITOREN, DEREN HERSTELLUNG UND VERWENDUNG ALS ARZNEIMITTEL

- (57) Abstract: The invention relates to pyrimidine derivatives of general formula (I), in which R¹, R², R³, R⁴, A and D are defined as cited in the description, said derivatives being used as inhibitors of cyclin-dependent kinases and VEGF receptor kinases. The invention also relates to the production of said substances and to their use as a medicament for treating various diseases. The inventive compounds have a reduced affinity to carbonic anhydrase 2.
- (57) Zusammenfassung: Die vorliegende Erfindung betrifft Pyrimidinderivate der allgemeinen Formel (I), in der R¹, R², R³, R⁴, A und D die in der Beschreibung enthaltenen Bedeutungen haben, als Inhibitoren von Zyklin-abhängigen Kinasen und VEGF-Rezeptortyrosinkinasen, deren Herstellung sowie deren Verwendung als Medikament zur Behandlung verschiedener Erkrankungen. Die Verbindungen haben eine reduzierte Affinität zu Carboanhydrassen-2.

WO 2006/034872 A

Substituier te 2- Anilinopyrimidine als Zellzyklus –kinase oder Rezeptortyrosin-kinase Inhibitoren, deren Herstellung und Verwendung als Arzneimittel

- Die vorliegende Erfindung betrifft substituierte 2-Anilino-pyrimidine als Zellzyklus –kinase und/oder Rezeptortyrosin-kinase Inhibitoren, deren Herstellung und Verwendung als Arzneimittel zur Behandlung oder Prophylaxe verschiedener Erkrankungen.
- Die Zyklin-abhängigen Kinasen (cyclin-dependent kinase, CDK) sind eine Enzymfamilie, die eine wichtige Rolle bei der Regulation des Zellzyklus spielt und somit ein besonders interessantes Ziel für die Entwicklung kleiner inhibitorischer Moleküle darstellt. Selektive Inhibitoren der CDKs können zur Behandlung von Krebs oder anderen Erkrankungen, die Störungen der Zellproliferation zur Ursache haben, verwendet werden.
- Rezeptortyrosinkinæsen und deren Liganden, die spezifisch die Funktion von Endothelzellen regulieren, sind in entscheidender Weise an der physiologischen, wie auch der pathogenen Angiogenese beteiligt. Von besonderer Bedeutung ist hier das Vascular Endothelial Growth Factors (VEGF) / VEGF-Rezeptor System. In pathologischen Situationen, die mit einer verstärkten Neovas kularisation einhergehen, wie z.B. Tumorerkrankungen, wurde eine erhöhte Expression von angiogenen Wachstumsfaktoren und ihrer Rezeptoren gefunden. Inhibitoren des VEGF/VEGF-Rezeptorsystems können die Ausbildung eines Blutgefäßsystems im Tumor inhibieren, damit den Tumor von der Sauerstoff- und Nährstoffversorgung abscheiden und somit das Tumorwachstum inhibieren.
- Pyrimidine und Analoga sind bereits als Wirkstoffe beschrieben wie

 beispielsweise die 2-Anilino-Pyrimidine als Fungizide (DE 4029650) oder
 substituierte Pyrimidinderivate zur Behandlung von neurologischen oder
 neurodegenerativen Erkrankungen (WO 99/19305). Als CDK-Inhibitoren werden
 unterschiedlichste Pyrimidinderivate beschrieben, beispielsweise Bis(anilino)-

pyrimidinderivate (WO 00/12486), 2-Amino-4-substituierte Pyrimidine (WO 01/14375), Purine (WO 99/02162), 5-Cyano-Pyrimidine (WO 02/04429), Anilinopyrimidine (WO 00/12486) und 2-Hydroxy-3-N,N-dimethylaminopropoxy-Pyrimidine (WO 00/39101).

5

10

15

Insbesondere wurden in WO 02/096888 und WO 03/7076437 Pyrimidinderivate offenbart, die inhibitorische Wirkungen bezüglich CDKs aufweisen.

Verbindungen, die eine Phenylsulfonamid-Gruppe enthalten sind als Inhibitoren der humanen Carbonanhydrasen (insbesondere Carbonahydrase-2) bekannt und werden als Diuretica u.a. zur Behandlung von Glaukom eingesetzt. Das Stickstoffatom und die Sauerstoffatome des Sulfonamids binden über Wasserstoffbrücken mit dem Zink²⁺-Ion und der Aminosäure Thr 199 im aktiven Zentrum Carboanhydrase-2 und blockieren dadurch deren enzymatische Funktion (A. Casini, F. Abbate, A. Scozzafava, C.T. Supuran, *Bioorganic. Med. Chem L.* 2003, 1, 2759.3).

Eine Erhöhung der Spezifität der bekannten CDK-Inhibitoren durch Reduktion oder Elimination der inhibitorischen Eigenschaften hinsichtlich der Carboanhydrasen könnte zu einer Verbesserung der pharmakologischen Eigenschaften und einer Veränderung des Nebenwirkungsspektrums führen.

20

Die Aufgabe der vorliegenden Erfindung ist es Verbindungen bereitzustellen, die verbesserte pharmazeutische Eigenschaften, insbesondere eine Reduzierung der Carboanhydrase-2-Inhibition, als die bereits bekannten CDK-Inhibitoren aufweisen.

25

Es wurde nun gefunden, dass Verbindungen der allgemeinen Formel I

$$\begin{array}{c|c} A & O & O \\ \hline & & & \\$$

30

٠	in der	•
•	A und D	jeweils unabhängig voneinander für Halogen, Hydroxy,
		Cyano, für die Gruppe -O-R ⁵ , für ein C ₃ -C ₆ -Cycloalkyl oder
5		für ein gegebenenfalls ein- oder mehrfach, gleich oder
		verschieden mit Halogen oder Hydroxy oder mit der Gruppe
		–O-R⁵ substituiertes C₁-C₄-Alkyl, wobei der Alkylrest
		gegebenenfalls verzweigt sein kann, stehen,
	X	für –NH-, -N(C ₁ -C ₃ -Alkyl)- oder –O-, wobei der Alkylrest
10		gegebenenfalls verzweigt sein kann, steht,
	R ¹	für Halogen oder Cyano steht,
	R^2	für gegebenenfalls ein- oder mehrfach, gleich oder
		verschieden mit C_1 - C_3 -Alkoxy substituiertes Hydroxy- C_1 - C_8 -
		Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein
15		kann, oder für ein gegebenenfalls mit Hydroxy oder C ₁ -C ₃ -
		Alkyl substituiertes C ₃ -C ₇ -Cycloalkyl , steht,
	R ³ und R ⁴	jeweils unabhängig voneinander für Wasserstoff oder für
		gegebenenfalls ein- oder mehrfach, gleich oder verschieden
		mit Hydroxy oder der GruppeO-R ⁵ oderNR ⁶ R ⁷
20		substituiertes C ₁ -C ₃ -Alkyl, wobei der Alkylrest
		gegebenenfalls verzweigt sein kann, stehen,
	R ⁵	für gegebenenfalls mit Halogen substituiertes C ₁ -C ₄ -Alkyl,
		wobei der Alkylrest gegebenenfalls verzweigt sein kann,
		steht und
25	R ⁶ und R ⁷	jeweils unabhängig voneinander für gegebenenfalls ein-
		oder mehrfach, gleich oder verschieden mit Hydroxy oder
		der Gruppe –O-R ⁵ substituiertes C ₁ -C ₃ -Alkyl steht,

sowie deren Isomeren, Diastereomeren, Enantiomeren und/oder Salze, zyklinabhängige Kinasen und VEGF-Rezeptortyrosinkinasen inhibieren, wobei überraschenderweise die erfindungsgemäßen Substanzen gleichzeitig eine stark reduzierte bis keine nachweisbare Carboanhydrase Inhibierung aufweisen und gleichzeitig eine verbesserte Inhibierung der VEGF-Rezeptortyrosinkinasen gegenüber der Inhibition von Aminopyrimidinen, die unsubstituiert oder einfach in Orthostellung zu dem Sulfonamidsubstituenten am Phenylring der 2-Anilinopyrimidin substituiert sind, aufweisen.

5

10

Somit besitzen also die erfindungsgemäßen Verbindungen verbesserte pharmazeutische Eigenschaften, insbesondere durch die Reduktion der Carboanhydrase Inhibition und durch die verbesserte VEGF-Rezeptortyrosinkinase Inhibition, wodurch erfindungsgemäße Substanzen die Proliferation der Tumorzellen und/oder die Tumorangiogenese inhibieren können bei gleichzeitiger Reduktion von Nebenwirkungen durch Carboanhydrasewirkung.

Unter Alkyl ist jeweils ein geradkettiger oder verzweigter Alkylrest, wie beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek. Butyl, tert. Butyl, Pentyl, Isopentyl, Hexyl, Heptyl, Octyl, Nonyl oder Decyl, zu verstehen.

Unter Alkoxy ist jeweils ein geradkettiger oder verzweigter Alkoxyrest, wie beispielsweise Methyloxy, Ethyloxy, Propyloxy, Isopropyloxy, Butyloxy, Isobutyloxy, sek. Butyloxy, Pentyloxy, Isopentyloxy, Hexyloxy, Heptyloxy, Octyloxy, Nonyloxy, Decyloxy, Undecyloxy oder Dodecyloxy zu verstehen.

Unter Cycloalkyl ist jeweils Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl zu verstehen.

25

30

20

Unter Halogen ist jeweils Fluor, Chlor, Brom oder Jod zu verstehen.

Unter Isomeren sind chemische Verbindungen der gleichen Summenformel aber unterschiedlicher chemischer Struktur zu verstehen. Man unterscheidet im allgemeinen Konstitutionsisomere und Stereoisomere.

Konstitutionsisomere besitzen die gleiche Summenformel, unterscheiden sich jedoch durch die Verknüpfungsweise ihrer Atome oder Atomgruppen. Hierzu

zählen Funktionelle Isomere, Stellungsisomere, Tautomere oder Valenzisomere.

Stereoisomere haben grundsätzlich die gleiche Struktur (Konstitution) – und damit auch die gleiche Summenformel – unterscheiden sich aber durch die räumliche Anordnung der Atome.

Man unterscheidet im allgemeinen Konfigurationsisomere und Konformationsisomere. Konfigurationsisomere sind Stereoisomere, die sich nur durch Bindungsbruch ineinander überführen lassen. Hierzu zählen

- Enantiomere, Diastereomere und E / Z (cis / trans) Isomere.

 Enantiomere sind Stereoisomere, die sich wie Bild und Spiegelbild zueinander verhalten und keine Symmetrieebene aufweisen. Alle Stereoisomere, die keine Enantiomere sind, bezeichnet man als Diastereomere. Ein Spezialfall sind E / Z (cis / trans) Isomere an Doppelbindungen.
- Konformationsisomere sind Stereoisomere, die sich durch die Drehung von Einfachbindungen ineinander überführen lassen.

Zur Abgrenzung der Isomerie-Arten voneinander siehe auch die IUPAC Regeln Sektion E (Pure Appl. Chem. **45**, 11-30, 1976).

20

25

30

lst eine saure Funktion enthalten, sind als Salze die physiologisch verträglichen Salze organischer und anorganischer Basen geeignet, wie beispielsweise die gut löslichen Alkali- und Erdalkalisalze sowie N-Methyl-glukamin, Dimethyl-glukamin, Ethyl-glukamin, Lysin, 1,6-Hexadiamin, Ethanolamin, Glukosamin, Sarkosin, Serinol, Tris-hydroxy-methyl-amino-methan, Aminopropandiol, Sovak-

Base, 1-Amino-2,3,4-butantriol.

Ist eine basische Funktion enthalten, sind die physiologisch verträglichen Salze organischer und anorganischer Säuren geeignet wie Salzsäure, Schwefelsäure, Phosphorsäure, Zitronensäure, Weinsäure u.a.

Unter Krebs sind solide Tumoren oder Leukämie, insbesondere Ataxiatelangiectasia, Basalzellkarzinom, Blasenkarzinom, Gehirntumor, Brustkrebs, Cervix Karzinom, Tumoren des Zentralnervensystems, Kolorektalkarzinom, Endometriales Karzinom, Magenkarzinom, Gastrointestinales Karzinom, Kopfund Halstumore, Akute lymphozytische Leukämie, Akute myelogene Leukämie, Chronische lymphozytische Leukämie, Chronische myelogene Leukämie,

Haarzell Leukämie, Leberkarzinom, Lungentumor, Nicht-kleinzelliges
 Lungenkarzinom, Kleinzelliges Lungenkarzinom, B-Zell Lymphom, Hodgkin's
 Lymphom, Non-Hodgkin's Lymphom, T-Zell Lymphom, Melanom, Mesotheliom,
 Myelom, Myom, Tumore des Oesophagus, orale Tumore, Ovarialkarzinom,
 Pankreastumore, Prostatatumore, Nierenkarzinom, Sarkom, Kaposi's Sarkom,
 Leiomyosarkom, Hautkrebs, Plattenzellkarzinom, Hodenkrebs oder
 Schilddrüsenkrebs.

Eine besonders wirksame Untergruppe sind solche Verbindungen der allgemeinen Formel I, in der

X für –NH- oder –O- steht,

15

30

 R^2 für gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit C_1 - C_3 -Alkoxy substituiertes Hydroxy- C_1 - C_8 -Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein kann, oder für C_3 - C_7 -Cycloalkyl, steht R^3 und R^4 für Wasserstoff stehen und

20 R⁵ für C₁-C₄-Alkyl steht, wobei der Alkylrest gegebenenfalls verzweigt sein kann, steht, und

A, D und R¹ die oben angegebenen Bedeutungen besitzen, sowie deren Isomeren, Diastereomeren, Enantiomeren und/oder Salze.

25 Eine weitere besonders wirksame Untergruppe sind solche Verbindungen der allgemeinen Formel I, in der

A und D jeweils unabhängig voneinander für Halogen, Hydroxy, Cyano oder für die Gruppe –O-R⁵ oder für gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen oder Hydroxy oder mit der Gruppe –O-R⁵ substituiertes C₁-C₄-Alkyl oder C₃-C₆-Cycloalkyl, wobei der Alkylrest gegebenenfalls verzweigt sein kann, stehen, X für –NH-, -N(C₁-C₃-Alkyl)- oder –O-, wobei der Alkylrest gegebenenfalls verzweigt sein kann, steht,

15

20

	R ¹	für Halogen oder Cyano steht,
	R ²	für gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit
		C ₁ -C ₃ -Alkoxy substituiertes Hydroxy- C ₁ -C ₈ -Alkyl, wobei der
		Alkylrest gegebenenfalls verzweigt sein kann, steht,
5	R ³ und R ⁴	jeweils unabhängig voneinander für Wasserstoff stehen und
	R ⁵	für -CF ₃ oder C ₁ -C ₄ -Alkyl, wobei der Alkylrest gegebenenfalls
		verzweigt sein kann, steht,
	sowie deren	Isomeren, Diastereomeren, Enantiomeren und/oder Salze.

Von großer Bedeutung sind solche Verbindungen der allgemeinen Formel I, in der

A und D jeweils unabhängig voneinander für Halogen, Hydroxy, Cyano, für die Gruppe –O-R⁵, für ein C₃-C₆-Cycloalkyl oder für ein gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen oder Hydroxy substituiertes C₁-C₄-Alkyl stehen, und X, R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeutungen besitzen, sowie deren Isomeren, Diastereomeren, Enantiomeren und/oder Salze.

Eine weitere Untergruppe von großer Bedeutung sind solche Verbindungen der allgemeinen Formel I, in der

A und D jeweils unabhängig voneinander für Halogen, Hydroxy, Cyano oder die Gruppe –O-R⁵ oder für gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen substituiertes C₁-C₄-Alkyl oder C₃-C₆-Cycloalkyl stehen,

25 X für –NH- oder –O- stehen,

R¹ für Halogen steht,

R² für gegebenenfalls mit der Gruppe –O-R⁵ substituiertes Hydroxy-C₁-C₈-Alkyl steht,

R³ und R⁴ für Wasserstoff stehen und

30 R⁵ für C₁-C₄-Alkyl steht, sowie deren Isomeren, Diastereomeren, Enantiomeren und/oder Salze. Von besonders großer Bedeutung sind Verbindungen der allgemeinen Formel I, in der

A und D jeweils unabhängig voneinander für C₁-C₄-Alkyl oder Halogen

stehen,

5 X für –NH- oder –O- steht,

R¹ für Halogen oder Cyano steht,

R² für ein Hydroxy-C₁-C₈-Alkyl, wobei der Alkylrest gegebenenfalls

verzweigt sein kann, oder für ein C₃-C₇-Cycloalkyl, steht

R³ und R⁴ für Wasserstoff stehen und .

10 R⁵ für C₁-C₄-Alkyl steht,

sowie deren Isomeren, Diastereomeren, Enantiomeren und/oder Salze.

Eine weitere Gruppe von besonders großer Bedeutung sind Verbindungen der allgemeinen Formel I, in der

15 A und D jeweils unabhängig voneinander für C₁-C₄-Alkyl stehen,

X für --NH- oder --O- stehen,

R¹ für Halogen steht,

R² für gegebenenfalls mit der Gruppe –O-R⁵ substituiertes Hydroxy-

C₁-C₈-Alkyl steht,

20 R³ und R⁴ für Wasserstoff stehen,

sowie deren Isomeren, Diastereomeren, Enantiomeren und/oder Salze.

Die größte Bedeutung haben Verbindungen der allgemeinen Formel I, in der A und D jeweils unabhängig voneinander für C₁-C₄-Alkyl stehen,

25 X für –NH- oder –O- steht,

R¹ für Halogen steht,

R² für ein Hydroxy-C₃-C₅-Alkyl, wobei der Alkylrest gegebenenfalls

verzweigt sein kann, steht

R³ oder R⁴ für Wasserstoff stehen,

30 sowie deren Isomeren, Diastereomeren, Enantiomeren und/oder Salze und

Verbindungen der allgemeinen Formel I, in der.

A und D jeweils una bhängig voneinander für C₁-C₄ Alkyl stehen

X für –NH- steht,

R¹ für Cyano steht,

5 R² für ein C₃-C₇ -Cycloalkyl steht,

R³ oder R⁴ für Wasserstoff stehen,

sowie deren Isomeren, Diastereomeren, Enantiomeren und/oder Salze

A und D können jeweils unabhängig voneinander stehen für:

Halogen, Hydroxy, Cyano, die Gruppe –O-R⁵, ein C₃-C₆-Cycloalkyl oder ein gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen oder Hydroxy oder mit der Gruppe –O-R⁵ substituiertes C₁-C₄-Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein kann, stehen,

Bevorzugt haben A und D jeweils unabhängig voneinander folgende Bedeutung:

Halogen, Hydroxy, Cyano, die Gruppe –O-R⁵, ein C₃-C₆-Cycloalkyl oder ein gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen oder Hydroxy substituiertes C₁-C₄-Alkyl stehen,

Mehr bevorzugt stehen A und D jeweils unabhängig voneinander für C_1 - C_4 -Alkyl oder Halogen.

20 Am bevorzugsten stehen A und D jeweils unabhängig voneinander für C₁-C₄-Alkyl, insbesondere aber beide für Methyl.

X kann stehen für:

–NH-, -N(C₁-C₃-Alkyl)- oder –O-, wobei der Alkylrest gegebenenfalls verzweigt sein kann.

Bevorzugt hat X die Bedeutung -NH- oder -O-, am bevorzugsten -NH-.

R¹ kann stehen für:

Halogen oder Cyano.

30 Bevorzugt hat R¹die Bedeutung Br.

20

R² kann stehen für:

gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit C₁-C₃-Alkoxy substituiertes Hydroxy-C₁-C₈-Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein kann, oder für ein gegebenenfalls mit Hydroxy oder C₁-C₃-Alkyl

5 substituiertes C₃-C₇-Cycloalkyl,

Bevorzugt hat R² die Bedeutung:

gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit C_1 - C_3 -Alkoxy substituiertes Hydroxy- C_1 - C_8 -Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein kann, oder für ein C_3 - C_7 -Cycloalkyl .

10 Mehr bevorzugt hat R² die Bedeutung:

Hydroxy-C₁-C₈-Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein kann, oder C₃-C₇-Cycloalkyl.

Noch mehr bevorzugt steht R² für ein Hydroxy-C₂-C₆-Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein kann ode r für ein C₅- oder-C₆-Cycloalkyl.

15 Am bevorzugsten hat R² folgende Bedeutung:

Hydroxy-C₃-C₅-Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein kann, oder Cyclohexyl.

Verbindungen der allgemeinen Formel I, bei denen R² ein gegebenenfalls einoder mehrfach, gleich oder verschieden mit C₁-C₃-Alkoxy substituiertes
Hydroxy-C₁-C₈-Alkyl, das gegebenenfalls verzweigt ist, erfolgt die Bindung
zwischen X und R² bevorzugt über ein nicht endständiges C-Atom von R².

R³ und R⁴ können jeweils unabhängig voneinander stehen für:

- Wasserstoff oder für ein gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Hydroxy oder der Gruppe –O-R⁵ oder –NR⁶R⁷ substituiertes C₁-C₃-Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein kann. Bevorzugt haben R³ und R⁴ die Bedeutung Wasserstoff.
- R⁵ kann stehen für: ein gegebenenfalls mit Halogen substituiertes C₁-C₄-Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein kann.

Bevorzugt hat R^5 die Bedeutung C_1 - C_4 -Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein kann.

R⁶ und R⁷ können jeweils unabhängig stehen für:

15

25

30

ein gegebenenfalls ein- oder me hrfach, gleich oder verschieden mit Hydroxy oder der Gruppe –O-R⁵ substitui ertes C₁-C₃-Alkyl.

Ebenfalls als von der vorliegen den Erfindung als erfasst anzusehen sind alle Verbindungen, die sich ergeben durch jede mögliche Kombination der oben genannten möglichen, bevorzugten oder bevorzugsten Bedeutungen der Substituenten.

Besondere Ausführungsformen der Erfindung bestehen darüber hinaus in Verbindungen, die sich durch Kombination der direkt in den Beispielen offenbarten Bedeutungen für die Substituenten ergeben.

Die erfindungsgemäßen Verbindungen inhibieren im wesentlichen Zyklinabhängige Kinasen, worauf auch deren Wirkung zum Beispiel gegen Krebs, wie
solide Tumoren und Leukämie, Autoimmunerkrankungen wie Psoriasis,
Alopezie, und Multiple Sklerose, Chemotherapeutika-induzierte Alopezie und
Mukositis, kardiovaskuläre Erkrankungen, wie Stenosen, Arteriosklerosen und
Restenosen, infektiöse Erkrankungen, wie z. B. durch unizelluläre Parasiten,
wie Trypanosoma, Toxoplasma oder Plasmodium, oder durch Pilze
hervorgerufen, nephrologische Erkrankungen, wie z. B. Glomerulonephritis,
chronische neurodegenerative Erkrankungen, wie Huntington's Erkrankung,
amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und
Alzheimer'sche Erkrankung, akute neurodegenerative Erkrankungen, wie
Ischämien des Gehirns und Neurotraumata, virale Infektionen, wie z. B.
Cytomegalus-Infektionen, Herpes, Hepatitis B und C, und HIV Erkrankungen
basiert.

Der eukaryote Zellteilungszyklus stellt die Duplikation des Genoms und seine Verteilung auf die Tochterzellen sicher, indem er eine koordinierte und regulierte Abfolge von Ereignissen durchläuft. Der Zellzyklus wird in vier aufeinanderfolgende Phasen eingeteilt: die G1 Phase repräsentiert die Zeit vor der DNA-Replikation, in der die Zelle wächst und für externe Stimuli empfänglich ist. In der S Phase repliziert die Zelle ihre DNA, und in der G2

Phase bereitet sie sich auf den Eintritt in die Mitose vor. In der Mitose (M Phase) wird die replizierte DNA getrennt und die Zellteilung vollzogen.

Die Zyklin-abhängigen Kinasen (CDKs), eine Familie von Serin/Threonin-Kinasen, deren Mitglieder die Bindung eines Zyklins (Cyc) als regulatorische Untereinheit zu ihrer Aktivierung benötigen, treiben die Zelle durch den 10 Zellzyklus. Unterschiedliche CDK/Cyc Paare sind in den verschiedenen Phasen des Zellzyklus aktiv. Für die grundlegende Funktion des Zellzyklus bedeutende CDK/Cyc Paare sind beispielsweise CDK4(6)/CycD, CDK2/CycE, CDK2/CycA, CDK1/CycA und CDK1/CycB. Einige Mitglieder der CDK-Enzymfamilie haben eine regulatorische Funktion indem sie die Aktivität der vorgenannten 15 Zellzyklus-CDKs beeinflussen, während anderen Mitgliedern der CDK-Enzymfamlie noch keine bestimmte Funktion zugeordnet werden konnte. Eine von diesen, CDK5, zeichnet sich dadurch aus, dass sie eine atypische, von den Zyklinen abweichende, regulatorische Untereinheit besitzt (p35), und ihre Aktivität im Gehirn am höchsten ist. 20

Der Eintritt in den Zellzyklus und das Durchlaufen des "Restriction Point", der die Unabhängigkeit einer Zelle von weiteren Wachstumssignalen für den Abschluss der begonnenen Zellteilung markiert, werden durch die Aktivität der CDK4(6)/CycD und CDK2/CycE Komplexe kontrolliert. Das wesentliche Substrat 25 dieser CDK-Komplexe ist das Retinoblastoma-Protein (Rb), das Produkt des Retinoblastoma Tumorsuppressor Gens. Rb ist ein transkriptionelles Ko-Repressor Protein. Neben anderen noch weitgehend unverstandenen Mechanismen, bindet und inaktiviert Rb Transkriptionsfaktoren vom E2F-Typ, und bildet transkriptionelle Repressorkomplexe mit Histon-Deacetylasen (HDAC) (Zhang H.S. et al. (2000). Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and RbhSWI/SNF. Cell 101, 79-89). Durch die Phosphorylierung des Rb durch CDKs

30

werden gebundene E2F Transkriptionsfaktoren freigesetzt und führen zu transkriptioneller Aktivierung von Genen, deren Produkte für die DNA Synthese und die Progression durch die S-Phase benötigt werden. Zusätzlich bewirkt die Rb-Phosphorylierung die Auflösung der Rb-HDAC Komplexe, wodurch weitere Gene aktiviert werden. Die Phosphorylierung von Rb durch CDK's ist mit dem Überschreiten des "Restriction Point" gleichzusetzen. Für die Progression durch die S-Phase und deren Abschluss ist die Aktivität der CDK2/CycE und CDK2/CycA Komplexe notwendig, z. B. wird die Aktivität der Transkriptionsfaktoren vom E2F-Typ mittels Phosphorylierung durch

CDK2/CycA abgeschaltet sobald die Zellen in die S-Phase eingetreten sind. Nach vollständiger Replikation der DNA steuert die CDK1 im Komplex mit CycA oder CycB den Eintritt und das Durchlaufen der Phasen G2 und M (Abb. 1).

Entsprechend der außerordentlichen Bedeutung des Zellteilungszyklus ist das Durchlaufen des Zyklus streng reguliert und kontrolliert. Die Enzyme, die für die 15 Progression durch den Zyklus notwendig sind, müssen zu dem richtigen Zeitpunkt aktiviert werden, und auch wieder abgeschaltet werden sobald die entsprechende Phase durchlaufen ist. Entsprechende Kontrollpunkte ("Checkpoints") arretieren die Progression durch den Zellzyklus falls DNA-Schäden detektiert werden, oder die DNA-Replikation, oder der Aufbau des 20 Spindelapparates noch nicht beendet ist. Die Aktivität der CDKs wird durch verschiedene Mechanismen, wie Synthese und Degradation der Zykline, Komplexierung der CDKs mit den entsprechenden Zyklinen, Phosphorylierung und Dephosphorylierung regulatorischer Threoninund Tyrosin-Reste, und die Bindung natürlicher inhibitorischer Proteine, direkt 25 kontrolliert. Während die Proteinmenge der CDKs in einer proliferierenden Zelle relativ konstant ist, oszilliert die Menge der einzelnen Zykline mit dem Durchlaufen des Zyklus. So wird zum Beispiel die Expression von CycD während der frühen G1 Phase durch Wachstumsfaktoren stimuliert, und die Expression von CycE wird nach Überschreiten des "Restriction Point" durch die 30 Aktivierung der Transkriptionsfaktoren vom E2F-Typ induziert. Die Zykline selbst werden durch Ubiquitin-vermittelte Proteolyse abgebaut. Aktivierende und inaktivierende Phosphorylierungen regulieren die Aktivität der CDK's, zum

Beispiel phosphorylieren CDK-aktivierende Kinasen (CAKs) Thr160/161 der CDK1, wohingegen die Familie der Wee1/Myt1 Kinasen CDK1 durch Phosphorylierung von Thr14 und Tyr15 inaktivieren. Diese inaktivierenden Phosphorylierungen können durch cdc25 Phosphatasen wieder aufgehoben werden. Sehr bedeutsam ist die Regulation der Aktivität der CDK/Cyc-Komplexe durch zwei Familien natürlicher CDK Inhibitorproteine (CKIs), den Proteinprodukten der p21 Genfamilie (p21, p27, p57) und der p16 Genfamilie (p15, p16, p18, p19). Mitglieder der p21 Familie binden an Zyklin-Komplexe der CDKs 1,2,4,6, inhibieren aber nur Komplexe die CDK1 oder CDK2 enthalten.

Mitglieder der p16 Familie sind spezifische Inhibitoren der CDK4- und CDK6-Komplexe.

Oberhalb dieser komplexen direkten Regulation der Aktivität der CDKs liegt die Ebene der Kontrollpunkt-Regulation. Kontrollpunkte erlauben der Zelle das geordnete Ablaufen der einzelnen Phasen während des Zellzyklusses zu verfolgen. Die wichtigsten Kontrollpunkte liegen am Übergang von G1 nach S und von G2 nach M. Der G1-Kontrollpunkt stellt sicher, dass die Zelle keine DNA-Synthese beginnt, falls sie nicht entsprechend ernährt ist, mit anderen Zellen oder dem Substrat korrekt interagiert, und ihre DNA intakt ist. Der G2/M Kontrollpunkt stellt die vollständige Replikation der DNA und den Aufbau der 20 mitotischen Spindel sicher, bevor die Zelle in die Mitose eintritt. Der G1 Kontrollpunkt wird von dem Genprodukt des p53 Tumorsuppressorgens aktiviert. p53 wird nach Detektion von Veränderungen im Metabolismus oder der genomischen Integrität der Zelle aktiviert und kann entweder einen Stopp der Zellzyklusprogression oder Apoptose auslösen. Dabei spielt die transkriptionelle 25 Aktivierung der Expression des CDK Inhibitorproteins p21 durch p53 eine entscheidende Rolle. Ein zweiter Zweig des G1 Kontrollpunktes umfasst die Aktivierung der ATM und Chk1 Kinasen nach DNA-Schädigung durch UV-Licht oder ionisierende Strahlung und schließlich die Phosphorylierung und den 30 nachfolgenden proteolytischen Abbau der cdc25A Phosphatase (Mailand N. et al. (2000). Rapid destruction of human cdc25A in response to DNA damage. Science 288, 1425-1429). Daraus resultiert eine Arretierung des Zellzykluses. da die inhibitorische Phosphorylierung der CDKs nicht entfernt wird. Nach

Aktivierung des G2/M Kontrollpunktes durch Schädigung der DNA sind beide Mechanismen in ähnlicher Weise daran beteiligt, die Progression durch den Zellzyklus zu stoppen.

Der Verlust der Regulation des Zellzyklusses und der Verlust der Funktion der 5 Kontrollpunkte sind Charakteristika von Tumorzellen. Der CDK-Rb-Signalweg ist in über 90% humaner Tumorzellen von Mutationen betroffen. Diese Mutationen, die schließlich zur inaktivierenden Phosphorylierung des RB führen, schließen die Überexpression von D- und E-Zyklinen durch Genamplifikation oder chromosomale Translokationen, inaktivierende Mutationen oder Deletionen von 10 CDK-Inhibitoren des p16-Typs, sowie erhöhten (p27) oder verminderten (CycD) Proteinabbau ein. Die zweite Gruppe von Genen, die durch Mutationen in Tumorzellen getroffen sind, kodiert für Komponenten der Kontrollpunkte. So ist p53, das essentiell für die G1 und G2/M Kontrollpunkte ist, das am häufigsten mutierte Gen in humanen Tumoren (ca. 50%). In Tumorzellen, die p53 ohne 15 Mutation exprimieren, wird es häufig aufgrund einer stark erhöhten Proteindegradation inaktiviert. In ähnlicher Weise sind die Gene anderer für die Funktion der Kontrollpunkte notwendiger Proteine von Mutationen betroffen, zum Beispiel ATM (inaktivierende Mutationen) oder cdc25 Phosphatasen 20 (Überexpression).

Überzeugende experimentelle Daten deuten darauf hin, dass CDK1/Cyc und CDK2/Cyc-Komplexe eine entscheidende Position während der Zellzyklusprogression einnehmen: (1) Sowohl dominant-negative Formen der CDK2 oder der CDK1, wie die transkriptionelle Repression der CDK2 Expression durch anti-sense Oligonukleotide bewirken einen Stopp der Zellzyklusprogression. (2) Die Inaktivierung des CycA Gens in Mäusen ist letal. (3) Die Störung der Funktion des CDK2/CycA Komplexes in Zellen mittels zellpermeabler Peptide führte zur Tumorzell-selektiven Apoptose (Chen Y.N.P. et al. (1999). Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. *Proc. Natl. Acad. Sci. USA* 96, 4325-4329). (4) CDK1/Cyc Komplexe scheinen die funktionelle Inaktivierung von CDK2/CycE Komplexen in Mäusen, bei denen das CDK2 Gen oder die Cyclin E Gene inaktiviert wurden

25

30

und überraschenderweise keinen letalen Phänotyp zeigten, zu kompensieren (Aleem E. et al. (2005) Cdc2-cyclin E complexes regulate the G1/S phase transition. *Nat. Cell Biol.* 7, 831-836).

- Veränderungen der Zellzykluskontrolle spielen nicht nur bei Krebserkrankungen ein Rolle. Der Zellzyklus wird durch eine Reihe von Viren, sowohl durch transformierende, wie durch nicht-transformierende, aktiviert um die Vermehrung der Viren in der Wirtszelle zu ermöglichen. Der fälschliche Eintritt in den Zellzyklus von normalerweise post-mitotischen Zellen wird mit verschiedenen neurodegenerativen Erkrankungen in Zusammenhang gebracht.
- Die Mechanismen der Zellzyklusregulation, ihrer Veränderungen in Krankheiten und eine Vielzahl von Ansätzen zur Entwicklung von Inhibitoren der Zellzyklusprogression und speziell der CDKs wurden bereits in mehreren Publikationen ausführlich zusammenfassend beschrieben (Sielecki T.M. et al. (2000). Cyclin-dependent kinase inhibitors: useful targets in cell cycle regulation.
- J. Med. Chem. 43, 1-18; Fry D.W. & Garrett M.D. (2000). Inhibitors of cyclin-dependent kinases as therapeutic agents for the treatment of cancer. Curr. Opin. Oncol. Endo. Metab. Invest. Drugs 2, 40-59; Rosiania G.R. & Chang Y.T. (2000). Targeting hyperproliferative disorders with cyclin dependent kinase inhibitors. Exp. Opin. Ther. Patents 10, 215-230; Meijer L. et al. (1999).
- Properties and potential applications of chemical inhibitors of cyclin-dependent kinases. *Pharmacol. Ther.* 82, 279-284; Senderowicz A.M. & Sausville E.A. (2000). Preclinical and clinical development of cyclin-dependent kinase modulators. *J. Natl. Cancer Inst.* 92, 376-387).
- Zur Verwendung der erfindungsgemäßen Verbindungen als Arzneimittel werden diese in die Form eines pharmazeutischen Präparats gebracht, das neben dem Wirkstoff für die enterale oder parenterale Applikation geeignete pharmazeutische, organische oder anorganische inerte Trägermaterialien, wie zum Beispiel, Wasser, Gelatine, Gummi arabicum, Milchzucker, Stärke,
- Magnesiumstearat, Talk, pflanzliche Öle, Polyalkylenglykole usw. enthält. Die pharmazeutischen Präparate können in fester Form, zum Beispiel als Tabletten, Dragees, Suppositorien, Kapseln oder in flüssiger Form, zum Beispiel als Lösungen, Suspensionen oder Emulsionen vorliegen. Gegebenenfalls enthalten

sie darüber hinaus Hilfsstoffe, wie Konservierungs-, Stabilisierungs-, Netzmittel oder Emulgatoren; Salze zur Veränderung des osmotischen Drucks oder Puffer.

Diese pharmazeutischen Präparate sind ebenfalls Gegenstand der vorliegenden Erfindung.

Für die parenterale Anwendung sind insbesondere Injektionslösungen oder Suspensionen, insbesondere wässrige Lösungen der aktiven Verbindungen in polyhydroxyethoxyliertem Rizinusöl, geeignet.

Als Trägersysteme können auch grenzflächenaktive Hilfsstoffe wie Salze der Gallensäuren oder tierische oder pflanzliche Phospholipide, aber auch Mischungen davon sowie Liposomen oder deren Bestandteile verwendet werden.

Für die orale Anwendung sind insbesondere Tabletten, Dragees oder Kapseln mit Talkum und/oder Kohlenwasserstoffträger oder -binder, wie zum Beispiel

Lactose, Mais- oder Kartoffelstärke, geeignet. Die Anwendung kann auch in flüssiger Form erfolgen, wie zum Beispiel als Saft, dem gegebenenfalls ein Süßstoff beigefügt ist.

Die enteralen, parenteralen und oralen Applikationen sind ebenfalls

Gegenstand der vorliegenden Erfindung.

25

30

Die Dosierung der Wirkstoffe kann je nach Verabfolgungsweg, Alter und Gewicht des Patienten, Art und Schwere der zu behandelnden Erkrankung und ähnlichen Faktoren variieren. Die tägliche Dosis beträgt 0,5-1000 mg, vorzugsweise 50-200 mg, wobei die Dosis als einmal zu verabreichende Einzeldosis oder unterteilt in 2 oder mehreren Tagesdosen gegeben werden kann.

Erfindungsgemäße Verbindungen der allgemeinen Formel I inhibieren zum anderen auch Rezeptortyrosinkinasen und deren Liganden, die spezifisch die Funktion von Endothelzellen regulieren, inhibieren. Rezeptortyrosinkinasen und deren Liganden, die spezifisch die Funktion von Endothelzellen regulieren, sind in entscheidender Weise an der physiologischen, wie auch der pathogenen Angiogenese beteiligt. Von besonderer Bedeutung ist hier das VEGF/VEGF-

Rezeptor System. In pathologischen Situationen die mit einer verstärkten Neovaskularisation einhergehen wurde eine erhöhte Expression von angiogenen Wachstumsfaktoren und ihrer Rezeptoren gefunden. So exprimieren die meisten soliden Tumoren große Mengen an VEGF, und die Expression der VEGF-Rezeptoren ist vorzugsweise in den Endothelzellen, d

- Expression der VEGF-Rezeptoren ist vorzugsweise in den Endothelzellen, die in der Nähe der Tumoren liegen oder durch diese hindurchführen, deutlich erhöht (Plate et al., Cancer Res. 53, 5822-5827, 1993). Die Inaktivierung des VEGF/VEGF-Rezeptorsystems durch VEGF-neutralisierende Antikörper (Kim et al., Nature 362, 841-844, 1993), retrovirale Expression dominant-negativer
- VEGF-Rezeptorvarianten (Millauer et al., Nature 367, 576-579, 1994), rekominanter VEGF-neutralisierender Rezeptorvarianten (Goldman et al., Proc. Natl. Acad. Sci. USA 95, 8795-8800, 1998), oder niedermolekularer Inhibitoren der VEGF-Rezeptortyrosinkinase (Fong et al., Cancer Res. 59, 99-106, 1999; Wedge et al., Cancer Res. 60, 970-975, 2000; Wood et al., Cancer Res. 60,
- 2178-2189, 2000) resultierten in einem verringerten Tumorwachstum und einer verringerten Tumorvaskularisierung. Somit ist die Hemmung der Angiogenese ein möglicher Behandlungsmodus für Tumorerkrankungen.
- Erfindungsgemäße Verbindungen können dementsprechend entweder Zyklinabhängigen Kinasen, wie CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7,
 CDK8 und CDK9, und VEGF-Rezeptortyrosinkinasen oder Zyklin-abhängigen
 Kinasen oder VEGF-Rezeptortyrosinkinasen inhibieren. Diese Wirkungen
 tragen dazu bei, dass die erfindungsgemäßen Verbindungen verwendet werden
 können bei der Behandlung von Krebs, Angiofribroma, Arthritis,
- Augenerkrankungen, Autoimmunerkrankungen, Chemotherapeutika-induzierter Alopezie und Mukositis, Crohn-Krankheit, Endometriose, fibrotische Erkrankungen, Hämangioma, kardiovaskulären Erkrankungen, infektiösen Erkrankungen, nephrologischen Erkrankungen, chronischen und akuten neurodegenerativen Erkrankungen, sowie von Verletzungen des
- Nervengewebes, viralen Infektionen, zur Hemmung der Reocclusion von Gefäßen nach Ballonkatheterbehandlung, bei der Gefäßprothetik oder nach dem Einsetzen von mechanischen Vorrichtungen zum Offenhalten von

- Gefäßen, wie z. B. Stents, als Immunsuppressiva, zur Unterstützung der narbenfreien Wundheilung, bei Altersflecken und bei Kontaktdermatitis, wobei unter Krebs solide Tumoren, Tumor- oder Metastasenwachstum, Kaposis Sarkom, Morbus Hodgkin und Leukämie,
- unter Arthritis, rheumatoide Arthritis, unter Augenerkrankungen, diabetische Retinopathie, Neovaskulares Glaukom, unter Autoimmu nerkrankungen Psoriasis, Alopezie und Multiple Sklerose, unter fibrotische Erkrankungen, Leberzirrhose, mesangialzellproliferative Erkrankungen, Arteriosklerose,
- unter infektiösen Erkrankungen durch unizelluläre Parasiten hervorgerufene Erkrankungen, unter kardiovaskulären Erkrankungen Stenosen, wie z. B. Stent-induzierte
 - unter nephrologischen Erkrankungen Glomerulonephritis, diabetische

Restenose, Arteriosklerosen und Restenosen,

- Nephropatie, maligne Nephrosklerose, thrombische mikroangiopatische Syndrome, Transplantationsabstoßungen und Glomerulopathie, unter chronisch neurodegenerativen Erkrankungen Huntington's Erkrankung, amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und Alzheimer'sche Erkrankung,
- unter akut neurodegenerativen Erkrankungen Ischämien des Gehirns und Neurotraumata, und unter viralen Infektionen Cytomegalus-Infektionen, Herpes, Hepatitis B oder C, und HIV Erkrankungen zu verstehen sind.
- Ebenfalls Gegernstand der vorliegenden Erfindung sind Arzneimittel zur Behandlung der oben aufgeführten Erkrankungen, die mindestens eine Verbindung gemäß der allgemeinen Formel (I) enthalten, sowie Arzneimittel mit geeigneten Formulierungs- und Trägerstoffen.
- Die erfindungsgemäßen Verbindungen der allgemeinen Formel I sind unter anderem hervorragende Inhibitoren der Zyklin-abhängigen Kinasen, wie CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8 und CDK9, oder der VEGF-Rezeptortyrosin kinasen.

Die Isomerengemische können mach üblichen Methoden wie beispielsweise Kristallisation, Chromatographie oder Salzbildung in die Enantiomeren bzw. E/Z-Isomeren aufgetrennt werden.

- Die Herstellung der Salze erfolgt in üblicher Weise, indem man eine Lösung der Verbindung der Formel I mit der äquivalenten Menge oder einem Überschuß einer Base oder Säure, die gegebenenfalls in Lösung ist, versetzt und den Niederschlag abtrennt oder in üblicher Weise die Lösung aufarbeitet.
- Die für die Herstellung der erfind ungsgemäßen Verbindungen der allgemeinen Formel I vorzugsweise verwendeten Zwischenprodukte der allgemeinen Formeln (IIa) oder (IIb)

15

in der A, D, R³ und R⁴ die in der allgemeinen Formel (I) angegebenen Bedeutungen haben, sowie deren Isomeren, Diastereomeren, Enantiomeren und/oder Salze sind ebenfalls Gegenstand der vorliegenden Erfindung.

- Soweit die Herstellung der Ausgangsverbindungen nicht beschrieben wird, sind diese bekannt oder analog zu bekannten Verbindungen oder hier beschriebenen Verfahren herste Ilbar. Es ist ebenfalls möglich, alle hier beschriebenen Umsetzungen in Parallel-Reaktoren oder mittels kombinatorischer Arbeitstechniken durchzuführen.
- Die Isomerengemische können nach üblichen Methoden wie beispielsweise Kristallisation, Chromatographie oder Salzbildung in die Enantiomeren bzw. E/Z-Isomeren aufgetrennt werden.

Die Herstellung der Salze erfolgt in üblicher Weise, indem man eine Lösung der Verbindung der Formel I mit der äquivalenten Menge oder einem Überschuss einer Base oder Säure, die gegebenenfalls in Lösung ist, versetzt und den Niederschlag abtrennt oder in üblicher Weise die Lösung aufarbeitet.

5

10

15

20

Herstellung der erfindungsgemäßen Verbindungen

Die nachfolgenden Beispiele erläutern die Herstellung der erfindungsgemäßen Verbindungen, ohne den Umfang der beanspruchten Verbindungen auf diese Beispiele zu beschränken.

I. Verfahrensvariante 1

Die Substituenten R¹, R², A und D haben die in der allgemeinen Formel (I) angegebene Bedeutung.

Beispiel 1

Herstellung von 4-[5-Brom-4-((*R*)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-2,6-dimethyl-benzolsulfonamid

180 mg (0,9 mmol) 4-Amino-2,6-dimethyl-benzolsulfonamid in 3 ml Acetornitril werden mit 0,25 ml einer 4 molaren Lösung von Chlorwasserstoff in Dioxan und 0,5 ml Wasser versetzt. Es werden 266 mg (1,0 mmol) (*R*)-2-(5-Brom-2-chlorpyrimidin-4-ylamino)-propan-1-ol zugegeben und der Ansatz wird 16 h unter Rückfluss gerührt. Nach dem Erkalten wird der ausgefallene Feststoff abgesaugt und sukzessive mit Acetonitril, Ethanol, Wasser und Diisopropylether

Rückfluss gerührt. Nach dem Erkalten wird der ausgefallene Feststoff abgesaugt und sukzessive mit Acetonitril, Ethanol, Wasser und Diisopropylether gewaschen. Nach dem Trocknen erhält man 349 mg (0,8 mmol; entsprechend 88% der Theorie) des Produktes.

¹H-NMR (DMSO-D6): 10.53 (s,1H), 8.29 (s,1H), 7.70 (d,1H), 7.44 (s,2H), **7**.20 (s,2H), 4.25 (m,1H), 3.53 (m,2H), 2.45 (s,6H), 1.20 (d,3H). MS: 430 (ES).

Beispiele 2 bis 4

In analoger Verfahrensweise zu der oben beschriebenen Verfahrensvaria inte werden auch die nachfolgenden Verbindungen hergestellt:

		D NH. THE STATE OF	O NH2
Beispiel	2	3	4
¹ HNMR (DMSO-D6)	10.44 (s,1H) 8.19 (s,1H) 7.47 (s,2H) 7.20 (s,2H) 6.95 (d,1H) 4.10 (m,1H) 2.58 (s,6H) 1.20 (m,9H)	10.45 (s,1H) 8.29 (s,1H) 7.48 (s,2H) 7.38 (d,1H) 7.20 (s,2H) 4.05 (m,1H) 3.80 (m,1H) 2.58 (s,6H) 1.24 (d,3H) 1.08 (d,3H)	10.25 (s,1 H) 8.20 (s,1 H) 7,94 (s,1 H) 7.48 (s,1 H) 7,38 (s,2 H) 6,80 (d,1 H) 4,02 (m,1 H) 3,77 (m,1 H) 2,54 (s,3 H) 1,18 (d,3 H) 1,08 (d,3 H)
MS	458 (ES)	444 (ES)	465 (ES)

Beispiel 5

Herstellung von 4-(5-Cyano-4-cyclohexylamino-pyrimidin-2-ylamino)-2,6-dimethyl-benzolsulfonamid

5

375 mg des Rohproduktes 2-Chlor-4-cyclohexylamino-pyrimidin-5-carbonitril werden mit 200 mg (1,00 mmol) 4-Amino-2,6-dimethyl-benzolsulfonamid und 0,3 ml einer 4 N Lösung von Chlorwasserstoff in Dioxan sowie 0,2 ml Acetonitril 24 Stunden bei 60 °C gerührt. Nach dem Erkalten wird der Ansatz mit gesättigter NaHCO₃-Lösung versetzt und gegen Essigester extrahiert (3x). Die vereinten organischen Phasen werden getrocknet (Na₂SO₄), filtriert und eingeengt. Der erhaltene Rückstand wird chromatographisch (DCM / EtOH 95:5) gereinigt. Man erhält 144 mg (0,36 mmol; entsprechend 30% der Theorie) des Produktes.

15

10

¹H-NMR (DMSO-D6): 9.85 (s,1H), 8.31 (s,1H), 7.50 (m, 3H), 7.09 (s, 2H), 3.99 (m, 1H), 2.55 (s, 6H), 1,75 (m, 3H), 1.62 (m, 1H), 1,25 (m, 6H). MS: 401 (ES).

II. Verfahrensvariante 2

Die Substituenten R¹, R², A und D haben die in der allgemeinen Formel (I) angegebene Bedeutung.

5 Beispiel 6

Herstellung von 4-[5-Brom-4-((1*R*,2*R*)-2-hydroxy-1-methyl-propoxy)-pyrimidin-2-ylamino]-2,6-dimethyl-benzolsulfonamid

10

15

202 mg (1,01 mmol) 4-Amino-2,6-dimethyl-benzolsulfonamid in 3 ml Acetonitril werden mit 0,28 ml einer 4 molaren Lösung von Chlorwasserstoff in Dioxan versetzt. Es wird eine Lösung von 310 mg (1,10 mmol) (2*R*,3*R*)-3-(5-Brom-2-chlor-pyrimidin-4-yloxy)-butan-2-ol in 1,5 ml Acetonitril zugegeben und der Ansatz wird 75 h unter Rückfluss gerührt. Nach dem Erkalten wird der ausgefallene Feststoff abgesaugt und anschließend chromatographisch (DCM / EtOH 95:5) gereinigt. Das erhaltene Rohprodukt wird abschließend aus Methanol umkristallisiert. Man erhält 39 mg (0,09 mmol; entsprechend 9% der Theorie) des Produktes.

¹H-NMR (DMSO-D6): 9.91 (s,1H), 8.40 (s,1H), 7.51 (s,2H), 7.10 (s,2H), 5.20 (m,1H), 4.90 (d,1H), 3.82 (m,1H), 2.60 (s,6H), 1.30 (d,3H), 1.15 (d,3H). MS: 445 (ES).

In analoger Verfahrensweise zu der oben beschriebenen Verfahrensvariante wird auch die nachfolgende Verbindung hergestellt:

¹HNMR (DMSO-D6): 10.05 (s,1H)8.43 (s,1H), 8,16 (s,1H), 7.58 (s,1H), 7,33 (s,2H), 5,15 (m,1H), 4,88 (d,1H), 3,79 (m,1H), 2,55 (s,3 H), 1,28 (d,3H), 1,10 (d,3H)

MS: 510 (ES)

Die nachfolgenden Beispiele können analog der vorbeschriebenen

Verfahrensvarianten einschließlich dem Fachmann naheliegender Verfahren erhalten werden:

	HO OS NH ₂		Br NH2 OH
Beispiel	11	12	13
Literatur	Behrens,	Hirst, J. Chem. Soc.	Liedholm, Acta
	Synthesis 1992,	Perk. Trans. 2 1980,	Chem. Scand. !993,
	1235	829	701

	CI ONH ₂	P O S O NH ₂ CF ₃ O H	NH ₂
Beispiel	14	15	16
Literatur	Moore, J. Med. Chem. 1991, 1243	Mishani, J. Labelled Compd. Radiopharm. 1999, S27	Green, J. Med. Chem. 1999, 3572

	Br ONH2	CF ₃ OO NH ₂ HN CF ₃ OH	OH O O S NH ₂ HN CF ₃ OH O
Beispiel	17	18	19
Literatur	Uyeo, Nippon	Drake, J. Am.	Hauptschein, J. Am.
	Kagaku Kaishi	Chem. Soc. 1946,	Chem. Soc. 1955,
	1942, 1452	1602	2284

	DH NH	HN N OH	O NH ₂ O H
Beispiel	20	21	22
Literatur	Haworth, J.	Dubinin, Zh.	Hauptschein, J. Am.
	Chem. Soc.	Obshch. Khim.	Chem. Soc. 1955,
	1923, 2989	1951, 662	2284

	ON NH?	N N OH	N N N OH
Beispiel	23	24	25
Literatur	Reich, J. Med. Chem. 2000, 1670	Morgan, J. Chem. Soc. 1934, 418	Kurtz, Chem. Ber. 1973, 525

	D D D D D D D D D D D D D D D D D D D	DOS DE LE	ON NH2
Beispiel	26	27	28
Literatur	Meindl, J. Med. Chem. 1984, 1111	Behrens, Synthesis 1992, 1235	Rickards, Aust. J. Chem. 1987, 1011

	Br ONH ₂	HN NH2	NH ₂
Beispiel	29	30	31
Literatur	Cosmo, Aust. J. Chem. 1987, 1107	Merck US 3671636, 1972	Kovacic, Tetrahedron 1967, 3965

	OS NH ₂	Br A Principle of the p	CF ₃ O O NH ₂
Beispiel	32	33	34
Literatur	Uyeo, Yakugaku Zasshi, 1965, 314	Merck De 2300447, 1973	Merck De 2300447, 1973

	TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ T	H H N N N N N N N N N N N N N N N N N N	ONH ₂ NH ₂ OH NH ₂ OH NH ₃ OH NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇ NH
Beispiel	35	36	37
Literatur	Koerner, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 1913, 823	Tamayo, Tet. Lett. 1993, 4713	Huba, J. Org. Chem. 1959, 595

	NH ₂	HN N IIIII OH	Br OH
Beispie I	38	39	40
Literatu r	Browne, J. Chem. Soc. 1931, 3285	Grella, J. Med. Chem. 2000, 4726	Sheperd, J. Org. Chem. 1947, 257

	Br ON NH2	HO OH OH OH	NH2 NH2 NH2 NH2 NH2 NH3 NH3 NH3 NH3 NH3 NH3 NH3 NH3
Beispiel	41	42	43
Literatu r	Hodgson, J. Chem. Soc. 1926, 2078	Behrens, Synthesis 1992, 1235	Hirst, J. Chem. Soc. Perk. Trans. 2 1980, 829

	Br ZH ZH OH	D D D D D D D D D D D D D D D D D D D	F O O NH ₂ CF ₃ OH
Beispiel	44	45	46
Literatu r	Liedholm, Acta Chem. Scand. !993, 701		Mishani, J. Labelled Compd. Radiopharm. 1999, S27

	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃	Br OS NH ₂	CF ₃ O O NH ₂
Beispiel	47	48	49
Literatur	Green, J. Med. Chem. 1999, 3572	Uyeo, Nippon Kagaku Kaishi 1942, 1452	Drake, J. Am. Chem. Soc. 1946, 1602

	OH ON OH OH OH OH	ONH ₂	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₂ NH ₄ NH ₅ NH ₂ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇
Beispiel	50	51	52
Literatur	Hauptschein, J. Am. Chem. Soc. 1955, 2284	Haworth, J. Chem. Soc. 1923, 2989	Dubinin, Zh. Obshch. Khim. 1951, 662

	O S S D D D D D D D D D D D D D D D D D	ONH ₂ HN OH OH OH OH OH OH OH OH OH OH	ON NH? OH OH NH NH NH NH NH NH NH NH
Beispiel	56	57	58
Literatur	Kurtz, Chem. Ber. 1973, 525	Meindl, J. Med. Chem. 1984, 1111	Behrens, Synthesis 1992, 1235

	OH ON NH2	Br N N N N N N N N N N N N N N N N N N N	NH ₂
Beispiel	59	60	61
Literatur	Rickards, Aust. J. Chem. 1987, 1011	Cosmo, Aust. J. Chem. 1987, 1107	Merck US 3671636, 1972

	NH ₂	NH ₂	Br NH ₂
Beispiel	62	63	64
Literatur	Kovacic, Tetrahedron 1967, 3965	Uyeo, Yakugaku Zasshi, 1965, 314	Merck De 2300447, 1973

·	CF ₃ OO ONH ₂	O NH N O H	OH ON NH2
Beispiel	65	66	67
Literatur	Merck De 2300447, 1973	Koerner, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 1913, 823	Tamayo, Tet. Lett. 1993, 4713

	CI ON NH2	HN NH ₂	O S NH ₂ O H N O H
Beispiel	68	69	70
Literatur	Huba, J. Org. Chem. 1959, 595	Browne, J. Chem. Soc. 1931, 3285	Grella, J. Med. Chem. 2000, 4726

	Br ON NH2	Br D D D D D D D D D D D D D D D D D D D	HO OH OH OH OH
Beispiel	71	72	73
Literatur	Sheperd, J. Org.	Hodgson, J. Chem.	Beh rens, Synthesis
	Chem. 1947, 257	Soc. 1926, 2078	1992, 1235

	NH ₂	NH ₂	CI ON NH2
Beispiel	74	75	76
Literatur	Hirst, J. Chem. Soc. Perk. Trans. 2 1980, 829		Moore, J. Med. Chem. 1991, 1243

	DO S NH2 CF3 OH Br	N O O O O O O O O O O O O O O O O O O O	Br NH ₂
Beispiel	77	78	79
Literatur	Mishani, J. Labelled Compd. Radiopharm. 1999, S27	Green, J. Med. Chem. 1999, 3572	Uyeo, Nippon Kagaku Kaishi 194 2 , 1452

	CF ₃ O S NH ₂ HN CF ₃ OH Br	OH OUS NH2 HN OH	OH ONH2 HN N OH Br OH
Beispiel	80	81	82
Literatur	Drake, J. Am.	Hauptschein, J. Am.	Haworth, J. Chem.
	Chem. Soc.	Chem. Soc. 1955,	Soc. 1923, 2989
	1946, 1602	2284	

	NH ₂	HN CF ₃	ON NH ₂
Beispiel	83	84	85
Literatur	Dubinin, Zh.	Hauptschein, J. Am.	Reich, J. Med. Chem.
	Obshch. Khim.	Chem. Soc. 1955,	2000, 1670
	1951, 662	2284	

	NH ₂ NH ₂ OH Br	ON S NH2 HN OH Br OH	ONH ₂ OH
Beispiel	86	87	88
Literatur	Morgan, J. Chem. Soc. 1934, 418	Kurtz, Chem. Ber. 1973, 525	Meindl, J. Med. Chem. 1984, 1111

	NH ₂ OH OH OH	OH OON NH2 HN OH Br OH	Br O S NH ₂
Beispiel	89	90	91
Literatur	Behrens, Synthesis 1992, 1235	Rickards, Aust. J. Chem. 1987, 1011	Cosmo, Aust. J. Chem. 1987, 1107

	P O S NH2	Br H N N N N N N N N N N N N N N N N N N	O NH ₂
Beispiel	92	93	94
Literatur	Merck US 3671636, 1972	Kovacic, Tetrahedron 1967, 3965	Uyeo, Yakugaku Zasshi, 1965, 314

	Br O S NH ₂	CF D D D D D D D D D D D D D D D D D D D	O NH ₂ Br O H D D D D D D D D D D D D D
Beispiel	95	96	97
Literatur	Merck De 2300447, 1973	Merck De 2300447, 1973	Koerner, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 1913, 823

	ON O	Br OS NH ₂	Br ON NH2
Beispiel	101	102	103
Literatur	Grella, J. Med. Chem. 2000, 4726	Sheperd, J. Org. Chem. 1947, 257	Hodgson, J. Chem. Soc. 1926, 2078

	HO ON S NH2	P O S NH2	Br OON NH2
Beispiel	104	105	106
Literatur	Behrens, Synthesis 1992, 1235	Hirst, J. Chem. Soc. Perk. Trans. 2 1980, 829	Liedholm, Acta Chem. Scand. !993, 701

	ONH ₂ NH N N N N N N N N N N N N N N N N N	E S S S S S S S S S S S S S S S S S S S	N O O NH ₂
Beispiel	107	108	109
Literatur	Moore, J. Med. Chem. 1991, 1243	Mishani, J. Labelled Compd. Radiopharm. 1999, S27	Green, J. Med. Chem. 1999, 3572

	Br ONH2	CF ₃ O O O O O O O O O O O O O O O O O O O	O NH2
Beispiel	110	111	112
Literatur	Uyeo, Nippon Kagaku Kaishi 1942, 1452	Drake, J. Am. Chem. Soc. 1946, 1602	Hauptschein, J. Am. Chem. Soc. 1955, 2284

	ON NH2	NH ₂	TZ H TZ H D O O O O O O O O O O O O O O O O O O O
Beispiel	113	114	115
Literatur	Haworth, J.	Dubinin, Zh.	Hauptschein, J. Am.
	Chem. Soc.	Obshch. Khim.	Chem. Soc. 1955,
	1923, 2989	1951, 662	2284

	O NH ₂ O NH ₂ O O O O O O O O O O O O O O O O O O O	NH ₂	NH ₂
Beispiel	116	117	118
Literatur	Reich, J. Med. Chem. 2000, 1670	Morgan, J. Chem. Soc. 1934, 418	Kurtz, Chem. Ber. 1973, 525

	CI O O NH2	ON DH OH	OH ON ON NH2
Beispiel	119	120	121
Literatur	Meindl, J. Med. Chem. 1984, 1111	Behrens, Synthesis 1992, 1235	Rickards, Aust. J. Chem. 1987, 1011

	Br ON NH2	F O O NH ₂	ONS NH ₂
Beispiel	122	123	124
Literatur	Cosmo, Aust. J. Chem. 1987, 1107	Merck US 3671636, 1972	Kovacic, Tetrahedron 1967, 3965

	CI ON NH2 Br OH CI ON NH2 A DI ON NH2 A	DH DO DH	CI O DH
Beispiel	128	129	130
Literatur	Koerner, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 1913, 823	Tamayo, Tet. Lett. 1993, 4713	Huba, J. Org. Chem. 1959, 595

	NH ₂	O S O O O O O O O O O O O O O O O O O O	Br O OH
Beispiel	131	132	133
Literatur	Browne, J. Chem. Soc. 1931, 3285	Grella, J. Med. Chem. 2000, 4726	Sheperd, J. Org. Chem. 1947, 257

	Br ONH ₂	HO ON S NH2 OH NH	NH ₂
Beispiel	134	135	136
Literatur	Hodgson, J.	Behrens, Synthesis	Hirst, J. Chem. Soc.
	Chem. Soc.	1992, 1235	Perk. Trans. 2 1980,
	1926, 2078		829

	Br O O O O O O O O O O O O O O O O O O O	CI OUS NH2 HN N N N N N N N N N N N N N N N N N N	O NH ₂ O O O O O H N O O O O H N O O O O O O O O O O O O O O O O O O
Beispiel	137	138	139
Literatur	Liedholm, Acta Chem. Scand. !993, 701	Moore, J. Med. Chem. 1991, 1243	Mishani, J. Labelled Compd. Radiopharm. 1999, S27

·	NH ₂	Br O O O O O O O O O O O O O O O O O O O	CF ₃ O O NH ₂
Beispiel	140	141	142
Literatur	Green, J. Med. Chem. 1999, 3572	Uyeo, Nippon Kagaku Kaishi 1942, 1452	Drake, J. Am. Chem. Soc. 1946, 1602

	ONH ₂ OF ₃ OH	OH OON NH2 HN N N N N N N N N N N N N N N N N N N	NH ₂
Beispiel	143	144	145
Literatur	Hauptschein, J. Am. Chem. Soc. 1955, 2284	Haworth, J. Chem. Soc. 1923, 2989	Dubinin, Zh. Obshch. Khim. 1951, 662

	D D D D D D D D D D D D D D D D D D D	D D D D D D D D D D D D D D D D D D D	ON NH ₂ DH NH NH NH NH NH NH NH NH NH
Beispiel	146	147	148
Literatur	Hauptschein, J. Am. Chem. Soc. 1955, 2284	Reich, J. Med. Chem. 2000, 1670	Morgan, J. Chem. Soc. 1934, 418

		ONH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ N	ON DH OH
Beispiel	149	150	151
Literatur	Kurtz, Chem. Ber. 1973, 525	Meindl, J. Med. Chem. 1984, 1111	Behrens, Synthesis 1992, 1235

	O O O O O O O O O O O O O O O O O O O	O S NH 2 HE N S N	Br ZH
Beispiel	155	156	157
Literatur	Kovacic, Tetrahedron 1967, 3965	Uyeo, Yakugaku Zasshi, 1965, 314	Merck De 2300447, 1973

	CF ₃ O O O O O O O O O O O O O O O O O O O	O O O O O O O O O O O O O O O O O O O	DO NH2 Br OOH NATIONAL OH NAT
Beispiel	158	159	160
Literatur	Merck De 2300447, 1973		Koerner, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 1913, 823

	H Z Z H H H H H H H H H H H H H H H H H	HN OH OH	H N D D D D D D D D D D D D D D D D D D
Beispiel	161	162	163
Literatur			

Beispiel	164	
Literatur		

	O NH ₂	CI ON NH2 HN NH NH	ON NH2 OH NH NH NH NH NH NH NH NH NH
Beispiel	165	166	167
Literatur	Tamayo, Tet. Lett. 1993, 4713	Huba, J. Org. Chem. 1959, 595	Browne, J. Chem. Soc. 1931, 3285

Herstellung der Zwischenprodukte

1. Herstellung der Anilinderivate

Die Substituenten A und D haben die in der allgemeinen Formel (I) angegebene Bedeutung.

1.1 Herstellung von 4-Amino-2,6-dimethyl-benzolsulfonamid

10

15

7,53 g (31,1 mmol) N-(3,5-Dimethyl-4-sulfamoyl-phenyl)—acetamid werden in 100 ml einer 2N NaOH Lösung 2 Stunden unter Rückfluss gerührt. Der Ansatz wird nach dem Abkühlen gegen Essigester extrahiert (3x). Die vereinten organischen Phasen werden über einen Whatman Filter filtriert und eingeengt. Man erhält 1,17 g (5,9 mmol; entsprechend 19% der Theorie) des Produktes.

¹H-NMR (DMSO-D6): 6.81 (s,2H), 6.25 (s,2H), 5.55 (br,2H), 2.40 (s,6H).

15

Analog werden folgende Strukturen hergestellt:

5 1.2 Herstellung von N-(3,5-Dimethyl-4-sulfamoyl-phenyl)-acetamid

Eine Lösung von 8,54 g (32,6 mmol) 4-Acetylamino-2,6-dimethylbenzolsulfonylchlorid in 100 ml DCM wird mit Ammoniak Gas gesättigt.

Anschließend wird der Ansatz weitere 10 Minuten bei Raumtemperatur gerührt.

Der gebildete Niederschlag wird abgesaugt und aus heißem Methanol umkristallisiert. Man erhält 3,29 g (13,6 mmol, entsprechend 42% der Theorie) des Produktes.

¹H-NMR (DMSO-D6): 10.05 (s,1H), 7.37 (s,2H), 7.15 (s,2H), 2.55 (s,6H), 2.03 (s,3H).

1.3 Herstellung von 4-Acetylamino-2,6-dimethyl-benzolsulfonylchlorid

21,0 g (129 mmol) N-(3,5-Dimethyl-phenyl)-acetamid werden vorsichtig zu 35 ml Chlorsulfonsäure gegeben und der Ansatz anschließend 3 Stunden bei 90°C gerührt. Nach dem Erkalten wird der Ansatz langsam auf ein Gemisch aus Essigester / Hexan (1:1) und Eis gegeben. Die organische Phase wird abgetrennt, über einen Whatman Filter filtriert und eingeengt. Man erhält 15,1 g (58 mmol, entsprechend 45% der Theorie) des Rohproduktes, das ohne weitere Aufreinigung in den folgenden Versuchen eingesetzt wird.

1.4 Herstellung von N-(3,5-Dimethyl-phenyl)-acetamid

15

20

25

20 ml (160 mmol) 3,5-Dimethylanilin werden unter Rühren langsam mit 30 ml (317 mmol) Acetanhydrid versetzt. Das Reaktionsgemisch wird 2 Stunden gerührt, anschließend wird der gebildete Feststoff abgesaugt und mit Diisopropylether gewaschen. Nach dem Trocknen erhält man 21,1 g (129 mmol, entsprechend 81% der Theorie) des Produktes.

¹H-NMR (DMSO-D6): 9.75 (s,1H), 7.18 (s,2H), 6.65 (s,1H), 2.21 (s,6H), 2.02 (s,3H).

2. Herstellung der 2-Chlor-Pyrimidin Derivate

2.1 Herstellung der 4-N Derivate

Die Substituenten R1 und R2 haben die in der allgemeinen Formel (I) angegebene Bedeutung.

2.1.1. Herstellung von (R)-3-(5-Brom-2-chlor-pyrimidin-4-ylamino)-2-methyl-butan-2-ol

2.1.1.1 Herstellung von (*R*)-2-(5-Brom-2-chlor-pyrimidin-4-ylamino)-propionsäure-methyl-ester

15

20

5

10

22,8 g (100mmol) 5-Brom-2,4-dichlor-pyrimidin und 14,0 g (100 mmol) D-Alaninsäuremethylester Hydrochlorid werden in 300 ml THF und 75 ml DMF gelöst. Der eisgekühlte Ansatz wird mit 33,5 ml (240 mmol) Triethylamin versetzt und anschließend langsam auf Raumtemperatur erwärmt. Nach 48 Stunden wird das Lösungsmittel am Rotationsverdampfer entfernt und der verbleibende Rückstand chromatographisch (Hexan / Essigester: 4:1 – 2:1) gereinigt. Man erhält 25,5 g (86,1 mmol, entsprechend 86% der Theorie) des Produktes.

25

¹H-NMR (CDCl₃): 8.2 (s,1H), 6.1 (d,1H), 4.8 (m,1H), 3.8 (s,3H), 1.6 (d,3H).

2.1.1.2 Herstellung von (*R*)-3-(5-Brom-2-chlor-pyrimidin-4-ylamino)-2-methylbutan-2-ol

5

10

15

20

Eine eisgekühlte Lösung von 2,95 g (10,0 mmol) (*R*)-2-(5-Brom-2-chlorpyrimidin-4-ylamino)-propionsäure-methyl-ester in 150 ml THF wird tropfenweise mit 30 ml (90 mmol) einer 3 molaren Lösung von Methylmagnesiumbromid in Diethylether versetzt. Nach 2,5 Stunden bei Raumtemperatur wird der Ansatz mit 30 ml gesättigter Ammoniumchlorid Lösung versetzt. Man verdünnt mit Wasser und extrahiert gegen Essigester (3x). Die vereinten organischen Phasen werden getrocknet (Na₂SO₄), filtriert und eingeengt. Der verbleibende Rückstand wird chromatographisch (Hexan / Essigester: 4:1 – 1:1) gereinigt. Man erhält 2,81 g (9,5 mmol, entsprechend 95% der Theorie) des Produktes.

¹H-NMR (CDCl₃): 8.1 (s,1H), 5.9 (d,1H), 4.2 (m,1H), 1.8 (br,1H), 1.2 (m, 9H).

- 2.1.2 Herstellung von (2*R*,3*R*)-3-(5-Brom-2-chlor-pyrimidin-4-ylamino)-butan-2-ol
- 2.1.2.1 Herstellung von (*R*)-2-(5-Brom-2-chlor-pyrimidin-4-ylamino)-propionaldehyd

Eine Lösung von 40,0g (135,8 mmol) (*R*)-2-(5-Brom-2-chlor-pyrimidin-4-ylamino)-propionsäure-methyl-ester in 800 ml Toluol wird bei –78°C mit 310 ml einer 1,2 molaren Lösung von Diisobutylaluminiumhydrid versetzt. Nach 30 Minuten wird vorsichtig mit Methanol gequencht. Der Ansatz wird auf

Raumtemperatur erwärmt und mit 1000 ml tert-Butyl-methylether verdünnt. Man wäscht sukzessive mit 1 N HCl (3x 100 ml), gesättigter

Natriumhydrogencarbonat Lösung (3x) und gesättigter NaCl Lösung (3x). Die organische Phase wird getrocknet (MgSO₄), filtriert und eingeengt. Der verbleibende Rückstand wird chromatographisch (Hexan / Essigester: 4:1 – 1:1)

gereinigt. Man erhält 22,5 g (83,9 mmol, entsprechend 62% der Theorie) des Produktes.

¹H-NMR (CDCl₃): 9.6 (s,1H), 8.2 (s,1H), 6.3 (d,1H), 4.8 (m,1H), 1.5 (d,3H).

2.1.2.2 Herstellung von (2*R*,3*R*)-3-(5-Brom-2-chlor-pyrimidin-4-ylamino)-butan-2-ol

32,7 g (159 mmol) Kupfer(I)bromid Dimethylsulfid Komplex werden unter Stickstoffatmosphäre in 1000 ml Diethylether vorgelegt und auf –78 °C gekühlt. Über einen Zeitraum von ca. 25 Minuten werden 200 ml einer 1,6 molaren Lösung von Methyllithium in Diethylether zugetropft und anschließend das Kühlbad entfernt. Der Ansatz wird 40 Minuten gerührt, die Temperatur steigt auf –35 °C. Es wird auf –55 °C abgekühlt und 18,9 g (71,5 mmol) (*R*)-2-(5-Brom-2-chlor-pyrimidin-4-ylamino)-propionaldehyd über einen Zeitraum von 20 Minuten zugegeben. Es wird 6 Stunden bei –55 °C gerührt, anschließend wird das Kühlbad erneut mit Trockeneis gefüllt, mit Alufolie abgedeckt und der Ansatz über Nacht gerührt. Es werden 200 ml einer gesättigten Ammoniumchlorid Lösung zugetropft und der Ansatz auf Raumtemperatur erwärmt. Es wird mit

20

25

30

500 ml Diethylether verdünnt, die organische Phase abgetrennt und die wässrige Phase mit Diethylether extrahiert. Die vereinten organischen Phasen werden mit gesättigter Ammoniumchlorid Lösung und gesättigter NaCl Lösung gewaschen, getrocknet (Na₂SO₄), filtriert und eingeengt. Der verbleibende

Rückstand wird chromatographisch (Hexan / Essigester: 4:1 – 1:1) gereinigt.
 Man erhält 8,4 g (30,0 mmol, entsprechend 42 % der Theorie) des Produktes.

¹H-NMR (CDCl₃): 8.1 (s,1H), 5.8 (d,1H), 4.2 (m,1H), 3.9 (m,1H), 2.0 (d,1H), 1.3 (d,3H), 1.2 (d,3H).

10

HPLC-Analytik:

Säule: Chiralpak AD-H 5μ, Länge x ID: 150 x 4,6 mm, Eluenten: A= Hexan, C = Etha nol, Fluß: 1,0 ml / min, Gradient: isokratisch 5%C, Detektor:UV

254nm, Temperatur:25 °C, RT in min: 6,04

15

2.1.3 Herstellung von (2*R*,3*R*)-3-(5-Brom-2-chlor-pyrimidin-4-ylamino)-4-methoxy-butan-2-ol

20

25

311 mg (2,6 mmol) (2*R*,3*R*)-3-Amino-4-methoxy-butan-2-ol Hydrochlorid (Herstellung nach A.I. Meyers, D. Hoyer, *Tet. Lett.* **1985**, *26*, 4687) in 2 ml Acetonitril werden mit 0.28 ml Triethylamin versetzt und geschüttelt. Man filtriert und wäscht den Filterkuchen mit 2 ml Acetonitril. Das Filtrat wird zu einer Lösung von 455 mg (2,0 mmol) 5-Brom-2,4-dichlor-pyrimidin in 26 ml Acetonitril bei –30°C getropft. Durch Entfernen des Kühlbades wird langsam unter Rühren auf Raumtemperatur erwärmt. Nach 16 Stunden wird das Lösungsmittel am

Rotationsverdampfer entfernt und der verbleibende Rückstand chromatographisch (Hexan / Essigester: 4:1 – 1:1) gereinigt. Man erhält 509 mg (1,6 mmol, entsprechend 80% der Theorie) des Produktes.

¹H-NMR (CDCl₃): 8.1 (s,1H), 6.3 (d,1H), 4.3 (m,1H), 4.2 (m,1H), 3.8 (d,2H), 3.4 (s,3H), 3.1 (d,1H), 1.2 (d,3H).

2.1.4. 2-Chlor-4-cyc Iohexylamino-pyrimidin-5-carbonitril

10 2.1.4.1 Herstellung von 2,4-Dichlor-pyrimidin-5-carbonylchlorid

Ein Ansatz aus 30,0 g (192,2 mmol) 2,4-Dichloro-pyrimidine-5-carboxylsäure,
44,8 ml (480,5 mmol) Phosphoroxychlorid und 132,1 g (634,2 mmol)
Phosphorpentachlorid wird 6 Stunden unter Argon bei 115 °C gerührt.

Anschließend wird der Ansatz über Nacht bei Raumtemperatur gerührt. Es wird filtriert und der Filterkuchen mit Toluol nachgewaschen. Das Filtrat wird zur Trockene eingeengt und der Rückstand durch Vakuumdestillation (80-90°C / 0,15 mbar) gereinigt. Man erhält 26,0 g (123,0 mmol, entsprechend 64% der Theorie) des Produktes.

2.1.4.2 Herstellung von 2,4-Dichlor-pyrimidin-5- carboxylsäure tert-butylamid

Eine Lösung von 26,0g (123,0 mmol) 2,4-Dichlor-pyrimidin-5-carbonylchlorid in 163 ml THF (getrocknet) wird bei –3°C bis –7°C unter Argon tropfenweise über einen Zeitraum von 70 Minuten mit einer Lösung von 13.73 ml (129,5 mmol) tert.-Butylamin und 17,95 ml (129,5 mmol) Triethylamin in 163 ml THF (getrocknet) versetzt. Der Ansatz wird 4 Stunden gerührt und dabei langsam auf Raumtemperatur erwärmt. Der gebildete Niederschlag wird abgetrennt und das Filtrat zur Trockene eingeengt. Man erhält 32,6 g des Rohproduktes, das ohne weitere Reinigung eingesetzt wird.

¹H-NMR (DMSO-D6): 8,80 (s, 1H), 8,28 (s, 1H), 1.32 (s, 9H).

15

2.1.4.3 Herstellung von 2-Chlor-4-cyclohexylamino-pyrimidin-5-carboxylsäure tert-butylamid

Eine wassergekühlte Lösung von 2,00 g (8,06 mmol) 2,4-Dichlor-pyrimidin-5-carboxylsäure tert-butylamid in 11,5 ml THF wird tropfenweise mit einer Lösung von 0,92 ml (8,06 mmol) Cyclohexylamin und 1,12 ml (0,73 mmol) Triethylamin in 16,1 ml THF versetzt. Der Ansatz wird über Nacht bei Raumtemperatur gerührt und anschließend mit verdünnter NaCl-Lösung versetzt. Man extrahiert mit Essigester (2x). Die vereinten organischen Phasen werden getrocknet (Na₂SO₄), filtriert und eingeengt. Man erhält 2,28 g (7,34 mmol, entsprechend 91% der Theorie) des Produktes.

PCT/EP2005/010578

¹H-NMR (DMSO-D6): 8,88 (d, 1H), 8.45 (s, 1H), 7.93 (s, 1H), 3.85 (m, 1H), 1.85 (m, 2H), 1.60 (m, 4H), 1.25 (m, 13H).

2.1.4.4 2-Chlor-4-cyclohexylamino-pyrimidin-5-carbonitril

500 mg (1,61 mmol) 2-Chlor-4-cyclohexylamino-pyrimidin-5-carboxylsäure tert-butylamid in 10 ml Thionylchlorid werden 30 h bei 80 °C gerührt. Nach dem Erkalten wird der Ansatz mehrfach unter Zugabe von Toluol zur Trockene eingeengt. Der Rückstand wird einige Minuten mit einigen Millilitern Toluol / Wasser (1:1) bei Raumtemperatur gerührt. Anschließend wird erneut unter Zugabe von Toluol zur Trockene eingeengt. Man erhält 500 mg des Rohproduktes.

2.2 Herstellung der 4-O Derivate

25

$$\begin{array}{c}
CI \\
N \\
N \\
R^1
\end{array}$$
 $+ HO$
 R^2
 R^2

Die Substituenten R¹ und R² haben die in der allgemeinen Formel (I) angegebene Bedeutung.

2.2.1 Herstellung von (2R,3R)-3-(5-Brom-2-chlor-pyrimidin-4-yloxy)-butan-2-ol

Eine Lösung von 2,7 g (30,0 mmol) (2*R*,3*R*)-Butan-2,3-diol in 120 ml THF vvird unter Eisbadkühlung portionsweise mit 0,96 g (24,0 mmol) Natriumhydrid versetzt und anschließend 30 min bei Raumtemperatur gerührt. Der Ansatz wird zu einer eisgekühlten Lösung von 4,46 g (20,0 mmol) 5-Brom-2,4-dichlorpyrimidin in 40 ml THF gegeben. Der Ansatz wird langsam unter Rühren auf Raumtemperatur erwärmt. Nach 12 Stunden wird der Ansatz am

Rotationsverdampfer eingeengt und der verbleibende Rückstand chromatographisch (Hexan / Essigester: 4:1 − 1:1) gereinigt. Man erhält 3,18 g (11,3 mmol, entsprechend 57% der Theorie).

¹H-NMR (CDCl₃): 8.4 (s,1H), 5.2 (m,1H), 3.9 (m,1H), 2.0 (br,1H), 1.4 (d,3H), 1.2 (d,3H).

Assay 1 CDK1/CycB Kinase Assay

- 20 Rekombinante CDK1- und CycB-GST-Fusionsproteine, gereinigt aus Bakulovirus-infizierten Insektenzellen (Sf9), wurden von ProQinase GmbH, Freiburg, gekauft. Das als Kinase-Substrat verwendet Histon IIIS ist über die Fa. Sigma käuflich zu erwerben.
- CDK1/CycB (200 ng/Messpunkt) wurde für 10 min bei 22°C in Anwesenhe it
 verschiedener Konzentrationen an Testsubstanzen (0 μM, sowie innerhalb des
 Bereiches 0,01 100 μM) in Assaypuffer [50 mM Tris/HCl pH8,0, 10 mM MgCl2,
 0,1 mM Na ortho-Vanadat, 1,0 mM Dithiothreitol, 0,5 μM Adenosintrisphos phat
 (ATP), 10 μg/Messpunkt Histon IIIS, 0,2 μCi/Messpunkt 33P-gamma ATP,

5

10

20

25

30

0,05% NP40, 1,25% Dimethylsulfoxid] inkubiert. Die Reaktion wurde durch Zugabe von EDTA-Lösung (250 mM, pH8,0, 15 µl/Messpunkt) gestoppt. Von jedem Reaktionsansatz wurden 15 µl auf P30 Filterstreifen (Fa. Wallac) aufgetragen, und nicht-eingebautes 33P-ATP wurde durch dreimaliges Waschen der Filterstreifen für je 10 min in 0,5%iger Phosphorsäure entfernt. Nach dem Trocknen der Filterstreifen für 1 Stunde bei 70°C wurden die Filterstreifen mit Szintillator-Streifen (MeltiLexTM A, Fa. Wallac) bedeckt und für 1 Stunde bei 90°C eingebrannt. Die Menge an eingebautem 33P (Substratphosphorylierung) wurde durch Szintillationsmessung in einem

Assay 2 CDK2/CycE Kinase Assay

Gamma-Strahlungsmessgerät (Wallac) bestimmt.

- 15 Rekombinante CDK2- und CycE-GST-Fusionsproteine, gereinigt aus Bakulovirus-infizierten Insektenzellen (Sf9), wurden von ProQinase GmbH, Freiburg, gekauft. Histon IIIS, das als Kinase-Substrat verwendet wurde, wurde bei der Fa. Sigma gekauft.
 - CDK2/CycE (50 ng/Messpunkt) wurde für 10 min bei 22°C in Anwesenheit verschiedener Konzentrationen an Testsubstanzen (0 μM, sowie innerhalb des Bereiches 0,01 100 μM) in Assaypuffer [50 mM Tris/HCl pH8,0, 10 mM MgCl₂, 0,1 mM Na ortho-Vanadat, 1,0 mM Dithiothreitol, 0,5 μM Adenosintrisphosphat (ATP), 10 μg/Messpunkt Histon IIIS, 0,2 μCi/Messpunkt ³³P-gamma ATP, 0,05% NP40, 1,25% Dimethylsulfoxid] inkubiert. Die Reaktion wurde durch Zugabe von EDTA-Lösung (250 mM, pH8,0, 15 μl/Messpunkt) gestoppt.
 - Von jedem Reaktionsansatz wurden 15 μl auf P30 Filterstreifen (Fa. Wallac) aufgetragen, und nicht-eingebautes ³³P-ATP wurde durch dreimaliges Waschen der Filterstreifen für je 10 min in 0,5%iger Phosphorsäure entfernt. Nach dem Trocknen der Filterstreifen für 1 Stunde bei 70°C wurden die Filterstreifen mit Szintillator-Streifen (MeltiLexTM A, Fa. Wallac) bedeckt und für 1 Stunde bei 90°C eingebrannt. Die Menge an eingebautem ³³P (Substratphosphorylierung) wurde durch Szintillationsmessung in einem Gamma-Strahlungsmessgerät (Wallac) bestimmt.

Assay 3 VEGF Rezeptor-2 Kinase Assay

Rekombinante VEGF Rezeptortyrosinkinase-2 wurde als GST-Fusionsprotein aus Bakulovirus-infizierten Insektenzellen (Sf9) gereinigt. Poly-(Glu4Tyr), das als Kinase-Substrat verwendet wurde, wurde bei der Fa. Sigma gekauft. VEGF Rezeptortyrosinkinase (90 ng/Messpunkt) wurde für 10 min bei 22°C in Anwesenheit verschiedener Konzentrationen an Testsubstanzen (0 μM, sowie innerhalb des Bereiches 0,001 - 30 μM) in 30 μl Assaypuffer [40 mM Tris/HCl pH5,5, 10 mM MgCl2, 1 mM MnCl2, 3 μM Na ortho-Vanadat, 1,0 mM Dithiothreitol, 8 μM Adenosintrisphosphat (ATP), 0,96 μg/Messpunkt poly-(Glu4Tyr), 0,2 μCi/Messpunkt 33P-gamma ATP, 1.4% Dimethylsulfoxid] inkubiert. Die Reaktion wurde durch Zugabe von EDTA-Lösung (250 mM, pH8,0, 15 μl/Messpunkt) gestoppt.

Von jedem Reaktionsansatz wurden 15 μl auf P30 Filterstreifen (Fa. Wallac) aufgetragen, und nicht-eingebautes 33P-ATP wurde durch dreimaliges Waschen der Filterstreifen für je 10 min in 0,5%iger Phosphorsäure entfernt. Nach dem Trocknen der Filterstreifen für 1 Stunde bei 70°C wurden die Filterstreifen mit Szintillator-Streifen (MeltiLexTM A, Fa. Wallac) bedeckt und für 1 Stunde bei 90°C eingebrannt. Die Menge an eingebautem 33P (Substratphosphorylierung) wurde durch Szintillationsmessung in einem gamma-Strahlungsmessgerät (Wallac) bestimmt. Die IC50-Werte bestimmen sich aus der Inhibitorkonzentration, die notwendig ist, um den Phosphateinbau auf 50% des ungehemmten Einbaus nach Abzug des Leerwertes (EDTAgestoppte Reaktion) zu hemmen.

Assay 4

Proliferationsassay

Kultivierte humane Tumorzellen (MCF7, hormonunabhängige menschliche Mammakarzinomazellen, bezogen von ATCC HTB22; NCI-H460, menschliche 5 nicht kleinzellige Lungenkarzinomazellen, ATCC HTB-177; DU 145, hormonunabhängige menschliche Prostatakarzinomzellen, ATCC HTB-81; MaTu-MDR, hormonunabhängige, multiple Arzneimittel resistente menschliche Mammakarzinomzellen, EPO-GmbH, Berlin) wurden in einer Dichte von ca. 3000-5000 Zellen/Messpunkt, je nach Wachstumsgeschwindigkeit der 10 jeweiligen Zellen, in einer 96-Loch Multititerplatte in 200 µl des entsprechenden Wachstumsmediums ausplattiert. Nach 24 Stunden wurden die Zellen einer Platte (Nullpunkt-Platte) mit Kristallviolett gefärbt (s.u.), während das Medium der anderen Platten durch frisches Kulturmedium (200 µl), dem die Testsubstanzen in verschiedenen Konzentrationen (0 µM, sowie im Bereich 15 0.01 - 30 µM; die finale Konzentration des Lösungsmittels Dimethylsulfoxid betrug 0,5%) zugesetzt waren, ersetzt. Die Zellen wurden für 4 Tage in Anwesenheit der Testsubstanzen inkubiert. Die Zellproliferation wurde durch Färbung der Zellen mit Kristallviolett bestimmt: Die Zellen wurden durch Zugabe von 20 µl/Messpunkt einer 11%igen Glutaraldehyd-Lösung 15 min bei 20 Raumtemperatur fixiert. Nach dreimaligem Waschen der fixierten Zellen mit Wasser wurden die Platten bei Raumtemperatur getrocknet. Die Zellen wurden durch Zugabe von 100 µl/Messpunkt einer 0,1%igen Kristallviolett-Lösung (pH durch Zugabe von Essigsäure auf pH3 eingestellt) gefärbt. Nach dreimaligem Waschen der gefärbten Zellen mit Wasser wurden die Platten bei 25 Raumtemperatur getrocknet. Der Farbstoff wurde durch Zugabe von 100 µl/Messpunkt einer 10%igen Essigsäure-Lösung gelöst. Die Extinktion wurde photometrisch bei einer Wellenlänge von 595 nm bestimmt. Die prozentuale Änderung des Zellwachstums wurde durch Normalisierung der Messwerte auf die Extinktionwerte der Nullpunktplatte (=0%) und die Extinktion der 30

unbehandelten (0 µM) Zellen (=100%) berechnet.

Assay 5

Carboanhydraseassay

Das Prinzip des Assays beruht auf der Hydrolyse von 4-Nitrophenyl Acetat durch Carbonanhydrasen (Pocker & Stone, *Biochemistry*, 1967, 6, 668.), mit anschließender photometrischer Bestimmung des entstandenen Farbstoffs 4-Nitrophenolat bei 400 nm mittels eines 96-Kanal Spektralphotometers.

2µl der Testverbindungen, gelöst in DMSO (100x der finalen Konzentration), in einem Konzentrationsbereich von 0,03 - 10 μM (final) wurden als 10 Vierfachbestimmungen in die Löcher einer 96-Loch Mikrotiter-Platte pipettiert. Löcher, die Lösungsmittel ohne Testverbindungen enthielten dienten als Referenzwerte (1. Löcher ohne Carboanhydrase zur Korrektur der nichtenzymatischen Hydrolyse des Substrates, und 2. Löcher mit Carboanhydrase zur Bestimmung der Aktivität des nicht-inhibierten Enzyms). 15 188 µl Assaypuffer (10 mM Tris/HCl pH7.4, 80 mM NaCl) ohne oder mit 3 units/Loch an Carboanhydrase I oder II wurden in die Löcher der Mikrotiterplatte pipettiert. Die enzymatische Reaktion wurde durch die Zugabe von 10 µl der Substratiosung (1 mM 4-Nitrophenyl Acetat (Fluka #4602), gelöst in Wasserfreiem Acetonitril, gestartet (finale Substratkonzentration: 50 µM). Die Platte 20 wurde bei Raumtemperatur 60 min inkubiert. Die Extinktionen wurden photometrisch bei einer Wellenlänge von 400 nm gemessen. Die Enzyminhibition wurde nach Normalisation der Messwerte auf die Extinktion der Reaktionen in den Löchern ohne Enzym (=100% Inhibition) und auf die 25 Extinktion der Reaktionen in den Löchern mit nicht-inhibiertem Enzym (=0% Inhibition) berechnet.

Die Ergebnisse aus den Beispielen und die Vergleichsdaten sind in den nachfolgenden Tabellen 1 bis 3 angegeben. Zum Nachweis der Überlegenheit der erfindungsgemäßen Verbindungen Beispiele 1, 2, 3, 4, 6 und 7 gegenüber den bekannten Verbindungen wurden die erfindungsgemäßen Verbindungen mit strukturähnlichen bekannten Verbindungen Beispiele 10, 47, 144, 255, 271 und 275 aus WO 02/096888 in Enzymtests verglichen. Das Ergebnis ist in den folgenden Tabellen 1 und 2 aufgeführt. In Tabelle 3 werden die verbesserten Daten der erfindungsgemäßen Verbindungen im Vergleich zu den Verbindungen aus WO 02/096888 und Azetazolamid (Diuretikum) wiedergegeben.

Tabelle 1

Beispiel-Nr.	Prolifera	tion IC ₅₀	[µM]	
	MCF7	H460	DU145	MaTu-ADR
1	0,6	0,3	0,4	0,4
2	<0,1	0,13	0,09	0,07
3	<0,1	0,05	0,07	0,04
4	0,12	<0,1	0,1	<0,1
6	0,05	0,05	0,05	0,02
7	0,12	0,16	0,16	0,05
Bsp. 10 aus WO 02/096888	0,4	0,6	0,7	0,8
Bsp. 47 aus WO 02/096888	0,9	1,8	1,3	0,2
Bsp. 144 aus WO 02/096888	1,0	1,7	3	0,3
Bsp. 255 aus WO 02/096888	0,3	1,5	2,0	1,3
4-[5-Brom-4-((R)-2-hydroxy- 1,2-dimethyl-propylamino)- pyrimidin-2-ylamino]- benzolsulfonamid (Bsp. 271 aus WO 02/096888)	0,18	0,2	0,15	<0,1
4-[5-Brom-4-((1R,2R)-2-hydroxy-1-methyl-propylamino)-pyrimidin-2-ylamino]-benzolsulfonamid (Bsp. 275 aus WO 02/096888)	0,05	0,04	0,07	0,02

Tabelle 2

Beispiel-Nr.	CDK2/CycE	CDK1/CycB	VEGF-R2
	IC ₅₀ [nM]	IC ₅₀ [nM]	IC ₅₀ [nM]
1	14	15	18
2	2	3	20
3	6	5	19
4	10	5	130
6	8	8	39
7	15	12	56
Bsp. 10 aus WO 02/096888	<10	90	200
Bsp. 47 aus WO 02/098666	13	n.b.	200
Bsp. 77 aus WO 02/098666	800	n.b.	n.b.
Bsp. 144 aus WO 02/098666	13	n.b.	n.b.
Bsp. 255 aus WO 02/096888	50	400	n.b.
4-[5-Brom-4-((R)-2-hydroxy- 1,2-dimethyl-propylamino)- pyrimidin-2-ylamino]- benzolsulfonamid (Bsp. 271 aus WO 02/096888)	<10	<10	250
4-[5-Brom-4-((1R,2R)-2-hydroxy-1-methyl-propylamino)-pyrimidin-2-ylamino]-benzolsulfonamid (Bsp. 275 aus WO 02/096888)	<10	<10	130

Tabelle 3

Beispiel-Nr.	Inhibition der humanen
	Carboanhydrase-2
	IC ₅₀ [nM]
1	>10000
2	>10000
3	>10000
6	>10000
7	6000
Bsp. 10 aus WO 02/096888	180
Bsp. 4 7 aus WO 02/096888	310
Bsp. 77 aus WO 02/096888	160
Bsp. 144 aus WO 02/096888	750
Bsp. 255 aus WO 02/096888	2600
4-[5-Brom-4-((R)-2-hydroxy-1,2-dimethyl-propylamino)-pyrimidin-2-ylamino]-benzolsulfonamid (Bsp. 271 aus WO 02/096888)	530
4-[5-Brom-4-((1R,2R)-2-hydroxy-1-methyl-propylamino)-pyrimidin-2-ylamino]-benzolsulfonamid (Bsp. 275 aus WO 02/096888)	810
Azetazolamid	51

Aus den vorbeschriebenen Tabellen kann der Fachmann erkennen, dass bei gleichzeitiger gleicher oder verbesserter Inhibition von Zellzykluskinasen im Vergleich zu den bekannten strukturähnlichen Verbindungen (Tabelle 1), die erfindungsgemäßen Verbindungen gleichzeitig eine stark verringerte bis nicht mehr nachweisbare Carboanhydrase Inhibition (Tabelle 3) sowie eine verbesserte VEGF-Rezeptortyrosinkinase Inhibition (Tabelle 2) aufweisen.

Patentansprüche:

Verbindungen der allgemeinen Formel I

5

10

20

25

in der

A und D

jeweils unabhängig voneinander für Halogen, Hydroxy, Cyano, für die Gruppe –O-R⁵, für ein C₃-C₀-Cycloalkyl oder für ein gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Halogen oder Hydroxy-oder mit der Gruppe –O-R⁵ substituiertes C₁-C₄-Alkyl, wobei der Alkylrest

gegebenenfalls verzweigt sein kann, stehen,

gegebenentalis verzweigt sein kann, stellen,

X für –NH-, -N(C₁-C₃-Alkyl)- oder –O-, wobei der Alkylrest gegebenenfalls verzweigt sein kann, steht,

15 R¹ fü**r** Halogen oder Cyano steht,

für gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit C₁-C₃-Alkoxy substituiertes Hydroxy-C₁-C₈-Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein kann, oder für ein gegebenenfalls mit Hydroxy oder C₁-C₃-

Alkyl substituiertes C₃-C₇-Cycloalkyl, steht,

R³ und R⁴ jeweils unabhängig voneinander für Wasserstoff oder für gegebenenfalls ein- oder mehrfach, gleich oder verschieden mit Hydroxy oder der Gruppe --O-R⁵ oder --NR⁶ R⁷ substituiertes C₁-C₃-Alkyl, wobei der Alkylrest

gegebenenfalls verzweigt sein kann, stehen,

		R ⁵	für gegebenenfalls mit Halogen substituiertes C ₁ -C ₄ -Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein kann, steht und
5		R ⁶ und R ⁷	jeweils unabhängig voneinander für gegebenenfalls ein- oder mehrfach, gleich oder vers chieden mit Hydroxy oder
			der Gruppe –O-R ⁵ substituiertes C ₁ -C ₃ -Alkyl steht,
		sowie deren	Isomeren, Diastereomeren, Enantiomeren und/oder Salze.
	2.	Verbindunge	en der allgemeinen Formel I, gem äß Anspruch 1, in der
10		Χ	für –NH- oder –O- steht,
		R^2	für gegebenenfalls ein- oder mehrfach, gleich oder
			verschieden mit C ₁ -C ₃ -Alkoxy substituiertes Hydroxy-C ₁ -C ₈ -
			Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein
			kann, oder für C ₃ -C ₇ -Cycloalkyl,steht
15		R ³ und R ⁴	für Wasserstoff stehen und
		R^5	für C ₁ -C ₄ -Alkyl steht, wobei der Alkylrest gegebenenfalls
			verzweigt sein kann, und
		A, D und R ¹	die in Anspruch 1 angegebenen Bedeutungen besitzen,
		sowie derer	n Isomeren, Diastereomeren, Enantiomeren und/oder Salze.
20			
	3.	Verbindung	en der allgemeinen Formel I, gemäß Anspruch 1 oder 2, in
		der	
		A und D	jeweils unabhängig voneinander für Halogen, Hydroxy,
			Cyano, für die Gruppe –O-R ⁵ , für ein C ₃ -C ₆ -Cycloalkyl oder
25			für ein gegebenenfalls ein- oder mehrfach, gleich oder
			verschieden mit Halogen oder Hydroxy substituiertes C ₁ -C ₄ -
			Alkyl stehen, und
		X, R^1, R^2, R	t ³ , R ⁴ und R ⁵ die in Anspruch 2 a⊓gegebenen Bedeutungen
		besitzen,	

sowie deren Isomeren, Diastereomeren, Enantiomeren und/oder Salze.

4.	Verbindungen der allgemeinen Formel I, gemäß einem der Ansprüche 1						
	bis 3 , in der						

A und D jeweils unabhängig voneinander für C₁-C₄-Alkyl oder Halogen stehen,

5 X für –NH- oder –O- steht,

R¹ für Halogen oder Cyano steht,

R² für ein Hydroxy-C₁-C₈-Alkyl, wobei der Alkylrest

gegebenenfalls verzweigt sein kann, oder für ein C₃-C₇-

Cycloalkyl, steht

10 R³ und R⁴ für Wasserstoff stehen und

R⁵ für C₁-C₄-Alkyl steht,

sowie deren Isomeren, Diastereomeren, Enantiomeren und/oder Salze.

5. Verbindungen der allgemeinen Formel I, gemäß einem der Ansprüche 1bis 4 , in der

A und D jeweils unabhängig voneinander für C_1 - C_4 -Alkyl oder

Halogen stehen,

X für –NH- oder –O- steht,

R¹ für Halogen oder Cyano steht,

20 R² für ein Hydroxy-C₂-C₆-Alkyl, wobei der Alkylrest

gegebenenfalls verzweigt sein kann, oder für ein C5- oder-

C₆-Cycloalkyl, steht

R³ oder R⁴ für Wasserstoff stehen,

sowie deren Isomeren, Diastereomeren, Enantiome ren und/oder Salze.

25

6. Verbindungen der allgemeinen Formel I, gemäß ein em der Ansprüche 1 bis 5, in der

A und D jeweils unabhängig voneinander für C₁-C₄-Alkyl oder

Halogen stehen,

30 X für –NH- oder –O- steht,

R¹ für Halogen oder Cyano steht,

für ein Hydroxy-C₃-C₅-Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein kann, oder für Cyclohexyl, steht

R³ oder R⁴ für Wasserstoff stehen,

- sowie deren Isomeren, Diastereomeren, Enantiomeren und/oder Salze.
 - 7. Verbindungen der allgemeinen Formel I, gemäß einem der Ansprüche 1 bis 6, in der

A und D jeweils unabhängig voneinander für C₁-C₄-Alkyl stehen,

10 X für –NH- oder –O- steht,

R¹ für Halogen steht,

R² für ein Hydroxy-C₃-C₅-Alkyl, wobei der Alkylrest gegebenenfalls verzweigt sein kann, steht

R³ oder R⁴ für Wasserstoff stehen,

- sowie deren Isomeren, Diastereomeren, Enantiomeren und /oder Salze.
 - 8. Verbindungen der allgemeinen Formel I, gemäß einem der Ansprüche 1 bis 7, bei denen die Bindung zwischen X und R² über ein nicht endständiges C-Atom von R² erfolgt, wenn R² ein Alkylrest ist.
- Verbindungen der allgemeinen Formel I, gemäß einem der Ansprüche 1
 bis 6, in der

A und D jeweils unabhängig voneinander für C₁-C₄ Alkyl stehen

X für –NH- steht,

25 R¹ für Cyano steht,

30

R² für ein C₃-C₇ –Cycloalkyl steht,

R³ oder R⁴ für Wasserstoff stehen,

sowie deren Isomeren, Diastereomeren, Enantiomeren und/oder Salze.

10. Verwendung der Verbindung der allgemeinen Formel Ila od er Ilb

$$\begin{array}{c|c}
 & A & O & O \\
 & A & O & O$$

in der A und D, sowie R³ und R⁴die in der allgemeinen Formel (I) angegebenen Bedeutungen haben, sowie deren Isomeren, Diastereomeren, Enantiomeren und/oder Salze als Zwischenprodukte zur Herstellung der Verbindung der allgemeinen Formel I.

- Verwendung der Verbindung der allgemeinen Formel IIa, gemäß
 Anspruch 10, dadurch gekennzeichnet, dass
- A oder D für Halogen, Cyano, Hydroxy, Methoxy, Methyl, CF₃, Ethyl, Isopropyl, Isobutyl oder Cyclopropyl stehen, sowie deren Isomere, Diastereomere, Enantiomere und/oder Salze.
- 12. Verwendung der Verbindung der allgemeinen Formel IIb, gemäß

 Anspruch 10, dadurch gekennzeichnet, dass

 A oder D für Halogen, Cyano, Hydroxy, Methoxy, Methyl, CF₃, Ethyl,
 Isopropyl, Isobutyl oder Cyclopropyl stehen und

 R³ oder R⁴ für Wasserstoff stehen,
 sowie deren Isomere, Diastereomere, Enantiomere und/oder Salze.

20

5

13. Verwendung der Verbindung der allgemeinen Formel IIa, gemäß Anspruch 10 oder 11 oder der allgemeinen Formel (IIb), gemäß Anspruch 10 oder 12, dadurch gekennzeichnet, dass

A oder D für Methyl stehen und

25 R³ oder R⁴ für Wasserstoff stehen,

sowie deren Isomere, Diastereomere, Enantiomere und/od er Salze.

- 14. Pharmazeutische Mittel umfassend eine Verbindung der allge meinen Formel I gemäß mindestens einem der Ansprüche 1 bis 9.
- Verwendung der Verbindungen der allgemeinen Formel I, gernäß den 15. Ansprüchen 1 bis 9, zur Herstellung eines Arzneimittels zur Behandlung 5 von Krebs, Angiofribroma, Arthritis, Augenerkrankungen, Autoimmunerkrankungen, Chemotherapeutika-induzierter Alo pezie und Mukositis, Crohn-Krankheit, Endometriose, fibrotische Erkran kungen, Hämangioma, kardiovaskulären Erkrankungen, infektiösen Erkrankungen, nephrologischen Erkrankungen, chronischen und akuten 10 neurodegenerativen Erkrankungen, sowie von Verletzungen des Nervengewebes, viralen Infektionen, zur Hemmung der Reocclusion von Gefäßen nach Ballonkatheterbehandlung, bei der Gefäßprothetik oder nach dem Einsetzen von mechanischen Vorrichtungen zum Offenhalten von Gefäßen, wie z. B. Stents, als Immunsuppressiva, zur Un terstützung 15 der narbenfreien Wundheilung, bei Altersflecken und bei Kontaktdermatitis.
- Verwendung gemäß Anspruch 14, dadurch gekennzeichnet, class 16. unter Krebs solide Tumoren, Tumor- oder Metastasenwachstum, Kaposis 20 Sarkom, Morbus Hodgkin und Leukämie, unter Arthritis, rheumatoide Arthritis, unter Augenerkrankungen, diabetische Retinopathie, Neovaskulares Glaukom, unter Autoimmunerkrankungen Psoriasis, Alopezie und Multiple Sklerose, unter fibrotische Erkrankungen, Leberzirrhose, mesangialzell proliferative 25 Erkrankungen, Arteriosklerose, unter infektiösen Erkrankungen durch unizelluläre Parasiten hervorgerufene Erkrankungen, unter kardiovaskulären Erkrankungen Stenosen, wie z. B. Stentinduzierte Restenose, Arteriosklerosen und Restenosen, 30 unter nephrologischen Erkrankungen Glomerulonephritis, dia betische Nephropatie, maligne Nephrosklerose, thrombische mikroangiopatische Syndrome, Transplantationsabstoßungen und Glomerulopathie,

unter chronisch neurodegenerativen Erkrankungen Huntington's
Erkrankung, amyotrophe Lateralsklerose, Parkinsonsche Erkrankung,
AIDS Dementia und Alzheimer'sche Erkrankung,
unter akut neurodegenerativen Erkrankungen Ischämien des Geh irns und
Neurotraumata,
und unter viralen Infektionen Cytomegalus-Infektionen, Herpes, Hepatitis
B oder C, und HIV Erkrankungen zu verstehen sind.

- 17. Arzneimittel, die mindestens eine Verbindung gemäß mindestens einem der Ansprüche 1 bis 9 enthalten.
 - Arzneimittel gemäß Anspruch 16, die zusätzlich geeignete Formulierungs- und/oder Trägerstoffen enthalten.
- Arzneimittel gemäß Anspruch 16 oder 17, zur Behandlung von Krebs, 19. 15 Angiofribroma, Arthritis, Augenerkrankungen, Autoimmunerkrankungen, Chemotherapeutika-induzierter Alopezie und Mukositis, Crohn-Krankheit, Endometriose, fibrotische Erkrankungen, Hämangioma, kardiovaskulären Erkrankungen, infektiösen Erkrankungen, nephrologischen Erkrankungen, chronischen und akuten neurodegenerativen 20 Erkrankungen, sowie von Verletzungen des Nervengewebes, und viralen Infektionen und zur Hemmung der Reocclusion von Gefäßen nach Ballonkatheterbehandlung, bei der Gefäßprothetik oder nach denn Einsetzen von mechanischen Vorrichtungen zum Offenhalten von Gefäßen, wie z. B. Stents, und als Immunsuppressiva, und zur 25 Unterstützung der narbenfreien Wundheilung, und bei Altersflecken und bei Kontaktdermatitis.
- 20. Arzneimittel zur Verwendung gemäß Anspruch 18, wobei unter Krebs solide Tumoren, Tumor- oder Metastasenwachstum, Kaposis Sarkom, Morbus Hodgkin und Leukämie, unter Arthritis, rheumatoide Arthritis, unter Augenerkrankungen, diabetische Retinopathie, Neovaskulares Glaukom,

unter Autoimmunerkrankungen Psoriasis, Alopezie und Multiple Skelerose, unter fibrotische Erkrankungen, Leberzirrhose, mesangialzellproliferative Erkrankungen, Arteriosklerose,

unter infektiösen Erkrankungen durch unizelluläre Parasiten hervorgerufene Erkrankungen,

10

15

unter kardiovaskulären Erkrankungen Stenosen, wie z. B. Stentinduzierte Restenose, Arteriosklerosen und Restenosen, unter nephrologischen Erkrankungen Glomerulonephritis, diabetische Nephropatie, maligne Nephrosklerose, thrombische mikroangiopatische Syndrome, Transplantationsabstoßungen und Glomerulopathie, unter chronisch neurodegenerativen Erkrankungen Huntington's Erkrankung, amyotrophe Lateralsklerose, Parkinsonsche Erkrankung, AIDS Dementia und Alzheimer'sche Erkrankung,

unter akut neurodegenerativen Erkrankungen Ischämien des Gehi**r**ns und Neurotraumata,

und unter viralen Infektionen Cytomegalus-Infektionen, Herpes, Hepatitis B oder C, und HIV Erkrankungen zu verstehen sind.

- 21. Verwendung der Verbindungen der allgemeinen Formel I gemäß

 mindestens einem der Ansprüche 1 bis 9 und/oder der pharmazeutischen

 Mittel gemäß Anspruch 13 als Inhibitoren von Zyklin-abhängigen

 Kinasen.
- Verwendung gemäß Anspruch 20, dadurch gekennzeichnet, dass die
 Kinase CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8 oder
 CDK9 ist.
- Verwendung der Verbindungen der allgemeinen Formel I gemäß mindestens einem der Ansprüche 1 bis 9 und/oder der pharmazeutischen Mittel gemäß Anspruch 13 als Inhibitoren der Glycogen-Synthase-Kinase (GSK-3ß).

24. Verwendung der Verbindungen der allgemeinen Formel I gemäß mindestens einem der Ansprüche 1 bis 9 und/oder der pharmazeutischen Mittel gemäß Anspruche 13 als Inhibitoren der VEGF-Rezeptortyrosinkinasen.

5

25. Verwendung der Verbindungen der allgemeinen Formel I gemäß mindestens einem der Ansprüche 1 bis 9 und/oder der pharmazeutischen Mittel gemäß Anspruch 13 als Inhibitoren der Zyklin-abhängigen Kinasen und der VEGF-Rezeptortyrosinkinasen.

10

26. Verwendung der Verbindungen der allgemeinen Formel I, gemäß mindestens einem der Ansprüche 1 bis 9, in Form eines pharmazeutischen Präparates für die enterale, parenterale und orale Applikation.

15

- 27. Verbindungen der allgemeinen Formel I, gemäß mindestens einem der Ansprüche 1 bis 9, und Arzneimittel gemäß mindestens einem der Ansprüche 16 bis 19 mit geeigneten Formulierungs- und Trägerstoffen.
- 28. Verwendung der Verbindungen der allgemeinen Formel I, gemäß mindestens einem der Ansprüche 1 bis 9 in Form eines pharmazeutischen Präparates für die enterale, parenterale und orale Applikation.
- 29. Verwendung des pharmazeutischen Mittels gemäß Anspruch 13 in Form eines Präparates für die enterale, parenterale und orale Applikation.

Fig 1

'----tional Application No
1----/EP2005/010578

A. CLASSIFICATION OF SUBJECT MATTER CO7D239/48 CO7E C07D239/46 A61K31/505 A61P35/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) CO7D A61K A61P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, CHEM ABS Data, BIOSIS, BEILSTEIN Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category ^c Citation of document, with indication, where appropriate, of the relevant passages Υ WO 02/096888 A (SCHERING 1 - 29AKTIENGESELLSCHAFT) 5 December 2002 (2002-12-05) cited in the application examples 10,270,271 WO 02/04429 A (ASTRAZENECA AB; ASTRAZENECA 1 - 29Υ UK LIMITED; THOMAS, ANDREW, PETER; NEWCOMB) 17 January 2002 (2002-01-17) cited in the application claims WO 03/076437 A (SCHERING 1 - 29Α AKTIENGESELLSCHAFT) 18 September 2003 (2003-09-18) claims Patent family members are listed in annex. Further documents are listed in the continuation of box C. X Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention 'E' earlier document but published on or after the international *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the continuous state. "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 30/12/2005 14 December 2005 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016 Kollmannsberger, M

ational Application No
. . . /EP2005/010578

	/EP2005/0105/8
ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
CASINI ANGELA ET AL: "Carbonic anhydrase inhibitors: X-ray crystallographic structure of the adduct of human isozyme II with a bis-sulfonamide: Two heads are better than one?" BIOORGANIC AND MEDICINAL CHEMISTRY LETTERS, vol. 13, no. 16, 18 August 2003 (2003-08-18), pages 2759-2763, XP002359155 ISSN: 0960-894X cited in the application the whole document	1-29
SAAB N H ET AL: "Phenylsulfonylnitromethanes as potent irreversible inhibitors of aldose reductase" EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, EDITIONS SCIENTIFIQUE ELSEVIER, PARIS, FR, vol. 34, no. 9, September 1999 (1999-09), pages 745-751, XP004202950 ISSN: 0223-5234 compound 25	10
CROSS P E ET AL: "Cerebrovasodilatation through selective inhibition of the enzyme carbonic anhydrase. 1. Substituted benzenedisulfonamides." JOURNAL OF MEDICINAL CHEMISTRY. SEP 1978, vol. 21, no. 9, September 1978 (1978-09), pages 845-850, XP002359156 ISSN: 0022-2623 page 848; compound 44	10
DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; "Sulfonyl chlorides" XP002359158 retrieved from STN Database accession no. 1984:102940 abstract; compounds 88963-78-4 & JP 58 183665 A2 (SUMITOMO CHEMICAL CO., LTD., JAPAN) 26 October 1983 (1983-10-26)	10
	CASINI ANGELA ET AL: "Carbonic anhydrase inhibitors: X-ray crystallographic structure of the adduct of human isozyme II with a bis-sulfonamide: Two heads are better than one?" BIOORGANIC AND MEDICINAL CHEMISTRY LETTERS, vol. 13, no. 16, 18 August 2003 (2003-08-18), pages 2759-2763, XP002359155 ISSN: 0960-894X cited in the application the whole document SAAB N H ET AL: "Phenylsulfonylnitromethanes as potent irreversible inhibitors of aldose reductase" EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, EDITIONS SCIENTIFIQUE ELSEVIER, PARIS, FR, vol. 34, no. 9, September 1999 (1999-09), pages 745-751, XP004202950 ISSN: 0223-5234 compound 25 CROSS P E ET AL: "Cerebrovasodilatation through selective inhibition of the enzyme carbonic anhydrase. 1. Substituted benzenedisulfonamides." JOURNAL OF MEDICINAL CHEMISTRY. SEP 1978, vol. 21, no. 9, September 1978 (1978-09), pages 845-850, XP002359156 ISSN: 0022-2623 page 848; compound 44 DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; "Sulfonyl chlorides" XP002359158 retrieved from STN Database accession no. 1984:102940 abstract; compounds 88963-78-4 & JP 58 183665 A2 (SUMITOMO CHEMICAL CO.,

International application No. .../EP2005/010578

Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet) Box I This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Although claims 21-26, 28, 29 relate to a method for treatment of the human or animal body, the search was carried out and was based on the stated effects of the compound or composition. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Observations where unity of invention is lacking (Continuation of item 2 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

Information on patent family members

national Application No L/EP2005/010578

					. 51/EF	2005/0105/8
Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 02096888	A	05-12-2002	BR CA CN EP JP MX	0209774 2449118 1633419 1392662 2004535414 PA03010810	3 A1 9 A 2 A1 5 T	01-06-2004 05-12-2002 29-06-2005 03-03-2004 25-11-2004 22-03-2004
			NZ PL US	529654 367130 2004102630	A1	19-12-2003 21-02-2005 27-05-2004
WO 0204429	A	17-01-2002	AU BG BR CA CN	6931701 107451 0112420 2415486 1454210	A D A S A1 D A	21-01-2002 30-09-2003 24-06-2003 17-01-2002 05-11-2003
			CZ EE EP HU JP	20030076 200300020 1303496 0301722 2004502763	A A1 2 A2 3 T	16-04-2003 15-10-2004 23-04-2003 29-12-2003 29-01-2004
			NO NZ PL SK TW US ZA	20030146 523357 360385 282003 221470 2003216406 200300079	A A1 B B A1	10-01-2003 30-07-2004 06-09-2004 01-07-2003 01-10-2004 20-11-2003 05-05-2004
WO 03076437	A	18-09-2003	AU EP JP	2003212282 1483260 2005526765	A1	22-09-2003 08-12-2004 08-09-2005
JP 58183665	A2			 		

Information on patent family members

Ir*ional Application No	
, EP2005/010578	

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
JP 58183665 A2				
			•	
				
•				
}				•

ationales Aktenzeichen
. . . /EP2005/010578

A. KLASSII	Fizierung des anmeldungsgegenstandes C07D239/48 C07D239/46 A61K31/5	05 A61P35/00	•					
Nach der int	ternationalen Patentklassifikation (IPK) oder nach der nationalen Klas	sifikation und der IPK						
	RCHIERTE GEBIETE							
Recherchier	Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) C07D A61K A61P							
	te aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so							
]	or internationalen Recherche konsultlerte elektronische Datenbank (N ternal, WPI Data, CHEM ABS Data, BIO		ьисниедляе)					
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN							
Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	e der in Betracht kommenden Teile	Betr. Anspruch Nr.					
Υ	WO 02/096888 A (SCHERING AKTIENGESELLSCHAFT) 5. Dezember 2002 (2002-12-05) in der Anmeldung erwähnt Ansprüche Beispiele 10,270,271							
Y	WO 02/04429 A (ASTRAZENECA AB; ASTRAZENECA 1-2 UK LIMITED; THOMAS, ANDREW, PETER; NEWCOMB) 17. Januar 2002 (2002-01-17) in der Anmeldung erwähnt Ansprüche							
	WO 03/076437 A (SCHERING AKTIENGESELLSCHAFT) 18. September 2003 (2003-09-18) Ansprüche	-/	1-29					
	<u> </u>		<u> </u>					
	lere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Patentfamilie						
 Besondere Kategorien von angegebenen Veröffentlichungen : *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeidedatum veröffentlicht worden ist *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden sell oder die pie einem enderen im Appeten besonderen Stand angeraben ist (wie veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung sell werden veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung vor veröffentlichung vor besonderer Bedeutung; die beanspruchte Erfindung vor veröffentlichung vor veröffentlichung vor besonderer Bedeutung; die beanspruchte Erfindung vor veröffentlichung vor besonderer Bedeutung; die beanspruchte Erfindung vor veröffentlichung vor besonderer Bedeutung; die beanspruchte Erfindung vor veröffentlichtung vor ver								
soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) 'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht 'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist Kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist '&' Veröffentlichung, die Mitglied derselben Patentfamilie ist								
Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts								
1	4. Dezember 2005	30/12/2005						
Name und F	Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2	Bevollmächtigter Bediensteter						
	NL - 2280 HV Riswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Kollmannsberger, M							

/EP2005/010578

			005/0105/8
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	enden Teile	Betr. Anspruch Nr.
A	CASINI ANGELA ET AL: "Carbonic anhydrase inhibitors: X-ray crystallographic structure of the adduct of human isozyme II with a bis-sulfonamide: Two heads are better than one?" BIOORGANIC AND MEDICINAL CHEMISTRY LETTERS, Bd. 13, Nr. 16, 18. August 2003 (2003-08-18), Seiten 2759-2763, XP002359155 ISSN: 0960-894X in der Anmeldung erwähnt das ganze Dokument		1-29
A	SAAB N H ET AL: "Phenylsulfonylnitromethanes as potent irreversible inhibitors of aldose reductase" EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, EDITIONS SCIENTIFIQUE ELSEVIER, PARIS, FR, Bd. 34, Nr. 9, September 1999 (1999-09), Seiten 745-751, XP004202950 ISSN: 0223-5234 Verbindung 25		10
A	CROSS P E ET AL: "Cerebrovasodilatation through selective inhibition of the enzyme carbonic anhydrase. 1. Substituted benzenedisulfonamides." JOURNAL OF MEDICINAL CHEMISTRY. SEP 1978, Bd. 21, Nr. 9, September 1978 (1978-09), Seiten 845-850, XP002359156 ISSN: 0022-2623 Seite 848; Verbindung 44		10
A	DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; "Sulfonyl chlorides" XP002359158 gefunden im STN Database accession no. 1984:102940 Zusammenfassung; Verbindungen 88963-78-4 & JP 58 183665 A2 (SUMITOMO CHEMICAL CO., LTD., JAPAN) 26. Oktober 1983 (1983-10-26)	· · · · · · · · · · · · · · · · · · ·	

ternationales Aktenzeichen PCT/EP2005/010578

Feld II Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Bla
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. X Ansprüche Nr. weil sie si ch auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
Obwohl die Ansprüche 21-26,28,29 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung.
2. Ansprüche Nr. well sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
3. Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld III Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internati onale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4. Der Anrnelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recher-chenber icht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

Internationales Akten zeichen
. . . /EP2005/010578

Im Decharabachariaht						
Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Daturn der ∨eröffentlichung
WO 02096888	A	05-12-2002	BR CA CN EP JP MX NZ PL US	0209774 2449118 1633419 1392662 2004535414 PA03010810 529654 367130 2004102630	3 A1 2 A1 3 T 3 A 3 A1	01-06-2004 05-12-2002 29-06-2005 03-03-2004 25-11-2004 22-03-2004 19-12-2003 21-02-2005 27-05-2004
WO 0204429	A	17-01-2002	AU BG BR CA CZ EE HU JP NO NZ PL SK TW US ZA	6931701 107451 0112420 2415486 1454210 20030076 200300020 1303496 0301722 2004502763 20030146 523357 360385 282003 221470 2003216406 200300079	A A A A A A A A A A A A A A A A A A A	21-01-2002 30-09-2003 24-06-2003 17-01-2002 05-11-2003 16-04-2003 15-10-2004 23-04-2003 29-12-2003 29-12-2004 10-01-2003 30-07-2004 06-09-2004 01-07-2003 01-10-2004 20-11-2003 05-05-2004
WO 03076437	Α	18-09-2003	AU EP JP	2003212282 1483260 200552676) A1	22-09-2003 08-12-2004 08-09-2005
JP 58183665	A2					

41

Irromates Aktenzeichen
..., EP2005/010578

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentlamille	Datum der Veröffentlichung
JP 58183665 A2			
			
			
			
			
			
			
			•