CHEM-1212 Spring 2016 Third Examination Form A

Multiple Choice - Choose the BEST Answer

Use the Standard Electrode Potentials at 25°C on the questions below as needed.

Reduction Half-Reaction	<i>E</i> ° (V)
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+ 1.50
$\text{Cr}_2\text{O}_7^{2^-}(\text{aq}) + 14\text{H}^+(\text{aq}) + 6\text{e}^- \rightarrow 2\text{Cr}^{3^+}(\text{aq}) + 4\text{H}_2\text{O}(1)$	+ 1.36
$Br_2(1) + 2e^- \rightarrow 2Br^-(aq)$	+ 1.09
$NO_3(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O(1)$	+ 0.96
$ClO_2(g) + e^- \rightarrow ClO_2(aq)$	+ 0.95
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+ 0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+ 0.77
$I_2(s) + 2e^- \rightarrow 2I^-(aq)$	+ 0.54
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+ 0.52
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+ 0.34
$SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \rightarrow H_2SO_3(aq) + H_2O(1)$	+ 0.17
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (defined)
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	- 0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}(\operatorname{s})$	- 0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.26
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	- 0.45
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	- 0.76
$Mn^{2+}(aq) + 2e^{-} \rightarrow Mn(s)$	- 1.18
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.66
$K^+(aq) + e^- \rightarrow K(s)$	- 2.93

1. What is the change in entropy, ΔS , when the volume 0.0250 mol of $\mathrm{O}_2(g)$ increases from 1.5 L to 3.5 L at constant temperature of 298.15 K?

- A) -0.0017 J/K
- B) 0.0017 J/K
- C) -0.18 J/K
- D) 0.18 J/K
- E) -0.0211 J/K

2. When the temperature of a liquid increases, the entropy of that substance will also increase. Which of the following is a reason that this occurs?

- A) The vibrational energy increases.
- B) The reaction is spontaneous.
- C) The total energy can be distributed among the individual molecules in an increasing number of ways.
- D) Only A and C
- E) All of the above

3. Which of the following scenarios will cause an increase in entropy of the system?

- A) expansion of a gas
- B) decrease in volume
- C) decrease in temperature
- D) B and C only
- E) A, B and C

4. Which of the following are true of a chemical reaction at equilibrium?

- I. ΔS_{total} equals zero
- II. ΔG_{rxn} equals zero.
- III. ΔG°_{rxn} equals zero.
- A) II only
- B) II and III only
- C) III only
- D) I and II only
- E) I, II and III

- 5. Which of the following would you expect to have the greatest standard molar entropy?
 - A) gaseous oxygen
 - B) solid calcium carbonate
 - C) liquid acetic acid
 - D) liquid methanol
 - E) All of the above substances will have the same standard molar entropy because they are all at standard conditions
- 6. Considering the following reaction: $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$ and the information below. Which of the following statements are true about the reaction at 25°C?

Substance	$\Delta H^{\circ}_{f}(\mathrm{kJ/mol})$	$\Delta G^{\circ}_{f}(\mathrm{kJ/mol})$	S°(J/mol.K)
CaCO ₃ (s)	-1207.6	-1129.1	91.7
CaO(s)	-634.9	-603.3	38.1
CO ₂ (g)	-393.5	-394.4	213.8

- A) ΔH° is negative, ΔS° is negative and ΔG° is positive
- B) ΔH° is positive, ΔS° is positive and ΔG° is positive
- C) ΔH° is positive, ΔS° is positive and ΔG° is negative
- D) ΔH° is negative, ΔS° is negative and ΔG° is negative
- E) ΔH° is positive, ΔS° is negative and ΔG° is negative
- 7. At 25°C, $K_{\rm w}$ for the dissociation (autoionization) of water is 1.0 x 10⁻¹⁴. What is the value of ΔG° for the dissociation (autoionization) of water at 25°C?
 - A) -1750 kJ
 - B) -79.9 kJ
 - C) -34.7 kJ
 - D) 34.7 kJ
 - E) 79.9 kJ
- 8. When a double helix of DNA forms from two singled strands of DNA, the result is a release of heat, a decrease in entropy of the system and a total entropy increase. Which statement is true regarding the combination of single strands of DNA to form a double stranded DNA helix?
 - A) $\Delta S_{\text{surroundings}} > \Delta S_{\text{system}}$
 - B) $\Delta S_{\text{surroundings}} < \Delta S_{\text{system}}$
 - C) $\Delta S_{\text{surroundings}} = \Delta S_{\text{system}}$
 - D) $\Delta S_{\text{surroundings}} < \Delta S_{\text{total}}$
 - E) There is not enough information to compare $\Delta S_{\text{surroundings}}$ to ΔS_{system} to ΔS_{total}

***** Use the following image and information of the galvanic cell below to answer the next two questions. *******

- 9. Which of the following statement(s) is(are) true about the galvanic cell?
 - A) At the cathode, silver is oxidized from an oxidation state of +1 to 0.
 - B) At the anode, aluminum is reduced from an oxidation state of 0 to ± 3 .
 - C) Electrons travel from the aluminum half cell to the silver half cell.
 - D) One electron is transferred per mole of reaction.
 - E) At the anode, silver is oxidized from an oxidation state of +1 to 0.
- 10. Which of the following statement(s) is(are) true concerning a salt bridge in a galvanic cell?
 - A) Cations from the salt in the salt bridge travel to the cathode to neutralize the Ag⁺ ions and keep it electrochemically balanced.
 - B) Anions from the salt in the salt bridge travel to the anode to neutralize the Ag⁺ and keep it electrochemically balanced.
 - C) Cations from the salt in the salt bridge travel to the cathode to neutralize the Al³+ ions and keep it electrochemically balanced.
 - D) Anions from the salt in the salt bridge travel to the anode to neutralize the Al³⁺ ions and keep it electrochemically balanced.
 - E) None of the above.

11. Balance the following reaction in basic solution.

$$IO_3$$
-(aq) + MnO_4 -(aq) $\rightarrow MnO_2(s) + IO_4$ -(aq)

What is the coefficient in front of H₂O(l) and which side of the equation is it on in the overall, balanced reaction?

- A) 1, left side of the equation
- B) 6, left side of the equation
- C) 4, right side of the equation
- D) 10, right side of the equation
- E) H₂O is not present in the overall, balanced equation.
- 12. Which of the following is the balanced half reaction at the anode in the cell shown below?

- A) $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$
- B) $SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \rightarrow H_2SO_3(aq) + H_2O(1)$
- C) Ni(s) \rightarrow Ni²⁺(aq) + 2e⁻
- D) $H_2SO_3(aq) + H_2O(1) \rightarrow SO_4^{2-}(aq) + 4H^+(aq) + 2e^{-}$
- E) More information is needed to determine the half reaction occurring at the anode.
- 13. Which molecule or ion contains uranium in the most positive oxidation state?
 - A) UO₂
 - B) U_2O_5
 - C) UO₂SO₄
 - D) UO₂Cl
 - E) They all the same oxidation state.

14. What is the correct cell notion for the redox reaction given below?

$$Pb(s) + 2 H^{+}(aq) \rightarrow H_{2}(g) + Pb^{2+}(aq)$$

- A) $Pt(s) \mid H_2(g) \mid H^+(aq) \mid Pb(s) \mid Pb^{2+}(aq)$
- B) $Pb(s) \mid Pb^{2+}(aq) \mid 1 \mid 2 \mid H^{+}(aq) \mid 1 \mid H_{2}(g)$
- C) Pb(s) | $Pb^{2+}(aq)$ | $H^{+}(aq)$ | $H_{2}(g)$ | Pt(s)
- D) Pt(s) $H_2(g)$ $H^+(aq)$ Pb(s) $Pb^{2+}(aq)$
- E) $H_2(g) \mid H^+(aq) \mid Pb(s) \mid Pb^{2+}(aq)$

15. A galvanic cell is made using the following reaction:

$$2 H^+(aq) + Zn(s) \rightarrow Zn^{2+}(aq) + H_2(g)$$

The cell potential is found to be 0.58 V when $[Zn^{2+}] = 0.75 M$ and $P_{H2} = 0.95$ atm. What is the pH of the cathode solution when the cell is at 298.15 K?

- A) pH = 0.83
- B) pH = 3.11
- C) pH = 3.63
- D) pH = 4.06
- E) pH = 6.22

16. One method of hydrogen production is the electrolysis of water. How many grams of H₂(g) will be produced if 250. A is applied for 30. minutes? Use the following equations as needed.

Oxidation: $2 \text{ H}_2\text{O(1)} \rightarrow \text{O}_2(g) + 4 \text{ H}^+(aq) + 4e^-$

Reduction: $4 \text{ H}_2\text{O(1)} + 4\text{e}^- \rightarrow 2 \text{ H}_2(g) + 4 \text{ OH}^-(aq)$

Overall Cell Reaction: $6 \text{ H}_2\text{O(l)} \rightarrow \text{O}_2(g) + 2 \text{ H}_2(g) + 4 \text{ H}^+(aq) + 4 \text{ OH}^-(aq)$

- A) 0.58 g
- B) 3.2 g
- \dot{C}) 4.7 g
- D) 2.4 x 10⁴ g
- E) 2.7 x 104 g

- 17. Which of the following are true statements about Standard Reduction Potentials?
 - A) The standard hydrogen electrode is used as a reference half-cell.
 - B) When a standard hydrogen electrode is used, the entire potential of the cell is attributed to the non standard electrode
 - C) The standard hydrogen electrode consists of an inert platinum electrode in 1 M H⁺(aq) with H₂(g) at 1 atm.
 - D) A and C only
 - E) A, B and C
- 18. You are working with $1 M \, \text{HNO}_3$ (aq) in lab when your gold necklace breaks and falls into a beaker of the acid. Which of the following situations is most likely to occur? Assume the necklace is pure gold.
 - A) The solid gold will spontaneously oxidize to form Au³⁺(aq) in solution.
 - B) The strong acid cannot oxidize gold under standard conditions; therefore, nothing would happen.
 - C) The oxidation of Au³⁺(aq) in solution would have an $E^{\circ}_{cell} = 0.54V$.
 - D) Both A and C are correct.
 - E) There is not enough information to make any of the above predictions.
- 19. In the formation of a coordination compound, what acts as the Lewis base?
 - A) ligand
 - B) metal ion
 - C) d-electrons
 - D) exterior ion used to balance charge
 - E) none of the above
- 20. What is the coordination number of the Co³⁺ ion in [Co(en)₂Cl₂]Cl₂?

$$en = H_2N \sim NH_2$$

- A) 2
- B) 4
- C) 5
- D) 6
- E) 7
- 21. What is the oxidation number of the iron ion in [Fe(NH₃)₅Br]SO₄?
 - A) +1
 - B) +2
 - C) +3
 - D) +4
 - E) +5

22. Which form of the exam do you have? A) A B) B