Extended Finite Element Method (XFEM)

Janna Puderbach

October 25, 2023

Content

Extended Finite Element Method (XFEM)

Janna Puderbach

Motivation

nterface Problems

Motivation

Figure: Microstructure of a composite material

Applications:

- Crack propagation
- Microstructured problems
- Composite materials
- ► Time-depending domains

Advantages:

- Discontinuities within elements possible
- Avoiding complex mesh generation

Interface Problems

Figure: Composite material

$$-\nabla \cdot (\mu_i \nabla u_i) = f \qquad \qquad \text{in } \Omega_i \tag{1}$$

$$u_i = g$$
 on $\partial \Omega$ (2)

$$[u] = g_s$$
 on Γ (3)

Extended Finite Element Method (XFEM)

Janna Puderbach

Motivation

- background mesh
- cut cells

Figure: Unfitted mesh

► Tracking the interface

$$\begin{array}{c} \phi:\Omega\to\mathbb{R}\\ \phi=0 & \text{on }\Gamma\\ \phi<0 & \text{in }\Omega_1\\ \phi>0 & \text{in }\Omega_2 \end{array}$$

Figure: Level set function

▶ i.e. signed distance function

Enriched Elements

Extended Finite Element Method (XFEM)

Janna Puderbach

Motivation

Interface Problems

Figure: Cut cells

Enriched Elements

Extended Finite Element Method (XFEM)

Janna Puderbach

Motivation

Interface Problems

Figure: Standard degrees of freedom

Enriched Elements

Extended Finite Element Method (XFEM)

Janna Puderbach

Motivation

Interface Problems

Figure: Enriched degrees of freedom

$$u_h = \sum_{i \in I} u_i \varphi_i + \sum_{j \in J} a_j M_j \tag{4}$$

Boundary and Interface condition

Extended Finite Element Method (XFEM)

Janna Puderbach

Motivation

Implementation

Extended Finite Element Method (XFEM)

Janna Puderbach

Motivation

XFEValues Class

Extended Finite Element Method (XFEM)

Janna Puderbach

Motivation