2. Übungseinheit vom 17.04.2018

1 Wannier-Stark Effekt

Im Festkörper sind Elektronen über das gesamte Gitter delokalisiert (mit Maxima der Aufenthaltswahrscheinlichkeit zwischen den Rumpfionen). Mit einem hinreichend starken äußeren, elektrischen (konstanten) Feld $E_{el}=konst.$ bekommt man ein linear mit dem Ort anwachsendes Potential $V(x)=-\int_0^x E_{el}dx'=E_{el}\cdot x$, woraus folgt, dass die niederenergetischsten Elektronzustände beginne sich in den tiefsten Potentialtöpfen des Kristallgitters zu loaklisieren.

Für die Berechnung der ersten 20 stationären Elektroneigenzustände $|\phi_i(x)\rangle$ soll ein Gitter mit 10 Potentialtöpfen der Breite 5 a.u. und Abstand 5 a.u. (und genug Vakuum am Rand) simuliert werden. Diese Berechnung soll für externe Felder $E_{el}=0-10^{-2}a.u.$ duchgeführt werden.

Das fortran script wannier.f95 implementiert die Simulation durch Lösung der stationären Schrödingergleichung

$$\hat{H} |\phi(x)\rangle = E |\phi(x)\rangle \tag{1}$$

als Eigenwertgleichung mit den Energieeigenwerten E und der Matrixdarstellung des Hamiltonoperators in Ortsdarstellung $\hat{H} = -\frac{\hbar^2}{2m_e}\Delta + E_{el} \cdot x$ und gibt die Eigenvektoren $|\phi_i(x)\rangle$ im file wannierEV.dat und die Energieeigenwerte E_i im file wannierEW.dat aus.

Das bash script plot 20EV.sh erzeugt ein GnuPlot .gif mit dem Betragsquadrat der 20 niedernergetischsten Eigenvektoren $|\psi_i(x)|^2$ (d.h. der Aufenthaltswahrscheinlichkeit) bei einem angelegten elektrischen Feldes E_{el} (wannier.gif), plot All Energies.sh ein GnuPlot .gif mit dem Betragsquadrat der 20 niedernergetischsten Eigenvektoren für die Felder $E_{el} = 0.0, 0.001, 0.002, 0.004, 0.006, 0.008, 0.01, 0.012, 0.014, 0.016, 0.018, 0.02. (die gifs mit Namen wannierAllE-<math>VE???.qif$)

Die zur Simulation verwendete Auflösung des Gitters liegt bei dx = 0.07a.u.. **NOTE:** Das script wannier.f95 verwendet die LAPACK Subroutine ssyyev.