Vetores e Geometria Analítica

Pedro H A Konzen

14 de março de 2019

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados tópicos sobre vetores e geometria analítica.

Agradeço aos(às) estudantes e colegas que assiduamente ou esporadicamente contribuem com correções, sugestões e críticas em prol do desenvolvimento deste material didático.

Pedro H A Konzen

Sumário

Capa Licença				i
				ii
Prefácio				
Sı	ımár	rio		iv
1	l Vetores			1
	1.1	Segme	entos orientados	. 1
			Exercícios	
	1.2	Vetore	es	. 5
		1.2.1	Adição de vetores	
		1.2.2	Vetor oposto	. 7
		1.2.3	Subtração de vetores	. 7
		1.2.4	Multiplicação de vetor por um escalar	. 7
		1.2.5	Propriedades das operações com vetores	. 8
\mathbf{R}	Respostas dos Exercícios			
R	Referências Bibliográficas			
Ín	Índice Remissivo			

Capítulo 1

Vetores

1.1 Segmentos orientados

Sejam dois pontos A e B sobre uma reta r. O conjunto de todos os pontos de r entre A e B é chamado de **segmento** AB.

Figura 1.1: Esboço de um segmento AB.

Associado a um segmento AB, temos seu **comprimento** (ou tamanho), o qual é definido como sendo a **distância** entre os pontos $A \in B$. A distância entre os ponto $A \in B$ é denotada por |AB| ou |BA|.

A direção de um segmento AB é a direção da reta que fica determinada pelos pontos A e B.

Exemplo 1.1.1. Consideremos os segmentos esboçados na Figura 1.2. Os segmentos AB e CD têm as mesmas direções, mas comprimentos diferentes. Já, o segmento EF tem direção diferente dos segmentos AB e CD.

Figura 1.2: Esboço referente ao Exemplo 1.1.1.

Se A e B são o mesmo ponto, então chamamos AB de **segmento nulo** e temos |AB| = 0. Um segmento nulo não tem direção.

Observemos que um dado segmento AB é igual ao segmento BA. Agora, podemos associar a noção de **sentido** a um segmento, escolhendo um dos pontos como sua **origem** e o outro como sua **extremidade**. Ao fazermos isso, definimos um **segmento orientado**. Mais precisamente, um segmento orientado AB é o segmento definido pelos pontos A e B, sendo A a origem e B a extremidade. Veja a Figura 1.3.

Dizemos que dois dados segmentos orientados não nulos $AB \in CD$ têm a **mesma direção** quando as retas $AB \in CD$ forem paralelas ou coincidentes.

Exemplo 1.1.2. Consideremos os segmentos orientados esboçados na Figura 1.4. Observemos que os segmentos orientados $AB \in CD$ têm a mesma direção. Já o segmento orientado EF tem direção diferente dos segmentos $AB \in CD$.

Sejam dados dois segmentos orientados AB e CD de mesma direção, cujas retas AB e CD não sejam coincidentes. Então, as retas AB e CD determinam um único plano e a reta AC determina dois semiplanos (veja a Figura

Figura 1.3: Esboço de um segmento orientado AB.

Figura 1.4: Esboço referente ao Exemplo 1.1.2.

 $\ref{eq:continuous}$). Assim sendo, dizemos que os segmentos AB e CD têm **mesmo sentido** quando os pontos B e D estão ambos sobre o mesmo semiplano.

Para analisar o sentido de dois segmentos orientados e colineares, escolhemos um deles e construímos um segmento orientado de mesmo sentido a este, mas não colinear. Então, analisamos o sentido dos segmentos orientados originais

Figura 1.5: Esboço de dois segmentos orientados AB e CD de mesmo sentido.

com respeito ao introduzido.

Dois segmentos orientados não nulos são **equipolentes** quando eles têm o mesmo comprimento, mesma direção e mesmo sentido. Veja o exemplo dado na Figura 1.6.

Figura 1.6: Esboço de dois segmentos orientados AB e CD equipolentes.

1.1.1 Exercícios

E 1.1.1. Mostre que dois segmentos orientados AB e CD são equipolentes se, e somente se, os pontos médios de AD e BC são coincidentes.

Em construção ...

1.2 Vetores

Dado um segmento orientado AB, chama-se **vetor** AB e denota-se \overrightarrow{AB} , qualquer segmento orientado equipolente a AB. Cada segmento orientado equipolente a AB é um representado de \overrightarrow{AB} . A Figura 1.7 mostra duas representações de um dado vetor \overrightarrow{AB} .

Figura 1.7: Esboço de duas representações de um mesmo vetor.

O **módulo** (ou **norma**) de um vetor \overrightarrow{AB} é o valor de seu comprimento e é denotado por $|\overrightarrow{AB}|$.

Dois vetores são ditos paralelos quando qualquer de suas representações têm a mesma direção. De forma análoga, definem-se vetores coplanares, vetores não coplanares, vetores ortogonais, além de conceitos como ângulo entre dois vetores, etc. Veja a Figura 1.8.

Observemos que na Figura 1.8(direita) os vetores foram denotados por \vec{a} , \vec{b} e \vec{c} , sem alusão aos pontos que definem suas representações como segmentos orientados. Isto é costumeiro, devido a definição de vetor.

Figura 1.8: Esquerda: esboços de vetores paralelos e de vetores ortogonais. Direita: esboços de vetores coplanares.

1.2.1 Adição de vetores

Sejam dados dois vetores \vec{u} e \vec{v} . Sejam, ainda, uma representação \overrightarrow{AB} qualquer de u e a representação \overrightarrow{BC} do vetor \vec{v} . Então, define-se o vetor soma $\vec{u} + \vec{v}$ como o vetor dado por \overrightarrow{AC} . Veja a Figura 1.9.

Figura 1.9: Representação geométrica da adição de dois vetores.

1.2.2 Vetor oposto

Um **vetor** \vec{v} é dito ser **oposto** a um dado vetor \vec{u} , quando quaisquer representações de \vec{u} e \vec{v} são segmentos orientados de mesmo comprimento e mesma direção, mas com sentidos opostos. Neste caso, denota-se por $-\vec{u}$ o vetor oposto a \vec{u} . Veja a Figura 1.10.

Figura 1.10: Representação geométrica de vetores opostos.

1.2.3 Subtração de vetores

Sejam dados dois vetores \vec{u} e \vec{v} . A subtração de \vec{u} com \vec{v} é denotada por $\vec{u} - \vec{v}$ e é definida pela adição de \vec{u} com $-\vec{v}$, i.e. $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$. Veja a Figura 1.11.

1.2.4 Multiplicação de vetor por um escalar

A multiplicação de um número real $\alpha > 0$ (escalar) por um vetor \vec{u} é denotado por $\alpha \vec{u}$ e é definido pelo vetor de mesma direção e mesmo sentido de \vec{u} com norma $\alpha |\vec{u}|$. Quando $\alpha = 0$, define-se $\alpha \vec{u} = \vec{0}$, i.e. o vetor nulo (geometricamente, representado por qualquer ponto).

Observação 1.2.1. • Para $\alpha < 0$, temos $\alpha \vec{u} = -(-\alpha \vec{u})$.

• $|\alpha \vec{u}| = |\alpha| |\vec{u}|$.

Figura 1.11: Representação geométrica da subtração de \vec{u} com \vec{v} , i.e. $\vec{u} - \vec{v}$.

Figura 1.12: Representações geométricas de multiplicações de um vetor por diferentes escalares.

1.2.5 Propriedades das operações com vetores

As operações de adição e multiplicação por escalar de vetores têm propriedades importantes. Para quaisquer vetores $\vec{u},\,\vec{v}$ e \vec{w} e quaisquer escalares α e β temos:

• comutatividade da adição: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$;

- associatividade da adição: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w});$
- elemento neutro da adição: $\vec{u} + \vec{0} = \vec{u}$;
- existência do oposto: $\vec{u} + (-\vec{u}) = \vec{0}$;
- associatividade da multiplicação por escalar: $\alpha(\beta \vec{u}) = (\alpha \beta) \vec{u};$
- distributividade da multiplicação por escalar:

$$\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \beta \vec{v},\tag{1.1}$$

$$(\alpha + \beta)\vec{u} = \alpha \vec{u} + \beta \vec{v}; \tag{1.2}$$

• existência do elemento neutro da multiplicação por escalar: $1\vec{u}=\vec{u}.$

Exercícios

Em construção ...

Resposta dos Exercícios

E 1.1.1. Propriedades de congruência entre ângulos determinados por retas paralelas cortadas por uma transversal e congruência entre triângulos provam o enunciado.

Referências Bibliográficas

[1] D.A. de Mello and R.G. Watanabe. Vetores e uma iniciação à geometria analítica. Livraria da Física, 2. edition, 2011.

Índice Remissivo

```
ângulo
   entre vetores, 5
comprimento, 1
distância, 1
equipolentes, 4
extremidade, 2
módulo, 5
mesmo sentido, 3
norma, 5
origem, 2
segmento, 1
segmento nulo, 2
segmento orientado, 2
vetor
    oposto, 7
vetores
   coplanares, 5
   não coplanares, 5
   ortogonais, 5
   paralelos, 5
```