Exercise 0.1 (2). Let R be a Noetherian ring. Show that every ideal of R is a finite intersection of irreducible ideals.

Proof. Let \mathcal{A} be the set of ideals of R which are not a finite intersection of irreducible ideals. Suppose $\{X_i\} = \mathcal{X} \subset \mathcal{A}$ is a chain with respect to inclusion. Then since R is Noetherian, this chain stabilizes, hence it has an upper bound. Thus \mathcal{A} has a maximal element, call it M. Now, M is not a finite intersection of irreducible ideals, so in particular, M is not irreducible, so write $M = I \cap J$ where I and J contain M properly. But then $I, J \notin \mathcal{A}$, so they are finite intersections of irreducible ideals. However, then their intersection is also a finite intersection of irreducible ideals. \square

Exercise 0.2 (3). Let R be a ring. Show that an ideal \mathfrak{B} of R is a prime ideal if and only if for all ideals I and J of R, $IJ \subset \mathfrak{B}$ implies $I \subset \mathfrak{B}$ or $J \subset \mathfrak{B}$.

Proof. If \mathcal{B} is a prime ideal, then suppose $IJ \subset \mathcal{B}$, and suppose $I \not\subset \mathcal{B}$. Then there exists some $i \in I$ such that $i \notin \mathcal{B}$ but $iJ \subset \mathcal{B}$. Since \mathcal{B} is prime, we must have that $J \subset \mathcal{B}$.

Conversely, suppose that for all $I, J, IJ \subset \mathcal{B}$ implies $I \subset \mathcal{B}$ or $J \subset \mathcal{B}$. Let $a, b \in R$ such that $ab \in \mathcal{B}$. Then

(a) (b) $\subset \mathcal{B}$, so either (a) $\subset \mathcal{B}$ or (b) $\subset \mathcal{B}$, so either $a \in \mathcal{B}$ or $b \in \mathcal{B}$. So \mathcal{B} is prime.

Exercise 0.3 (4). Let R_S be the localization of the integral domain R by a multiplicative subset S which does not contain 0. Let \mathfrak{U} be a primary ideal of R. Show that the extension $\mathfrak{U}R_S$ is a primary ideal of R_S and that $R \cap \mathfrak{U}R_S = \mathfrak{U}$.

Proof. Let $\tau \colon R \to R_S = (R-S)^{-1} R$. Recall that $\mathfrak{U}R_S = (\tau(\mathfrak{U}))$. Suppose $ab \in \mathfrak{U}R_S$. Then there exists $\sum \alpha_i u_i \in \mathfrak{U}$ such that $ab = \sum \alpha_i \tau(u_i) = \sum \alpha_i \frac{u_i}{1}$. We can write $a = \frac{x}{y}$ and $b = \frac{v}{w}$. Then $xv \in \mathfrak{U}$, so either $x \in \mathfrak{U}$, in which case $\frac{x}{y} \in \mathfrak{U}R_S$, or $v^n \in \mathfrak{U}$, in which case $\left(\frac{v}{w}\right)^n \in \mathfrak{U}R_S$ since S is multiplicative, so $w^n \in S$. Thus $a \in \mathfrak{U}R_S$ or $b^n \in \mathfrak{U}R_S$. Hence $\mathfrak{U}R_S$ is primary in R_S .

Now recall that $R \cap \mathfrak{U}R_S$ denote the contraction of $\mathfrak{U}R_S$ along τ , i.e., $R \cap \mathfrak{U}R_S = \tau^{-1}(\mathfrak{U}R_S)$. Clearly, $\mathfrak{U} \subset R \cap \mathfrak{U}R_S$. Conversely, suppose $a \in \tau^{-1}(\mathfrak{U}R_S)$. Then $\frac{a}{1} \in \mathfrak{U}R_S$, so $\frac{a}{1} = \sum \alpha_i \frac{u_i}{1}$. So there exists some $r \in R - S$ such that $ra = r \sum \alpha_i u_i$. So since $r \neq 0$ as $0 \notin S$, we have $a = \sum \alpha_i u_i$ since R is an integral domain. Thus $a \in \mathfrak{U}$.

Exercise 0.4 (5). Let R be a ring and \mathfrak{U} a \mathfrak{B} -primary ideal. Show the following.

- (1) For all $x \in \mathfrak{U}$, we have $(\mathfrak{U}: x) = R$.
- (2) For all $x \in R \mathfrak{U}$, we have that $(\mathfrak{U}: x)$ is \mathfrak{B} -primary.
- (3) For all $x \in R \mathfrak{B}$, we have that $(\mathfrak{U}: x) = \mathfrak{U}$.
- (4) If R is Noetherian, then there is some $x \in R \mathfrak{U}$ such that $(\mathfrak{U}: x) = \mathfrak{B}$.

Proof. So $\sqrt{\mathfrak{U}} = \mathfrak{B}$ by assumption.

- (1) Since \mathfrak{U} is an ideal, $x\mathfrak{U} \subset \mathfrak{U}$ for all $x \in R$, so for all $x \in \mathfrak{U}$, $(\mathfrak{U}: x) = R$.
- (2) Suppose $a \in \sqrt{(\mathfrak{U}:x)}$, so $a^n x \in \mathfrak{U}$. Since \mathfrak{U} is primary, either $x \in \mathfrak{U}$, which we have assumed it is not, or $a^{nm} \in \mathfrak{U}$ for some m. Hence the latter must be true. So $a \in \sqrt{\mathfrak{U}} = \mathfrak{B}$.

Hence $\sqrt{(\mathfrak{U}:x)} \subset \mathfrak{B}$. Conversely, suppose $a \in \mathfrak{B}$, so $a^n \in \mathfrak{U}$. So for any $x \in R - \mathfrak{U}$, we have $a^n x \in \mathfrak{U}$, so $a \in \sqrt{(\mathfrak{U}:x)}$.

(3) Suppose $x \in R - \mathfrak{B}$. Now if $y \in \mathfrak{U}$ then $xy \in \mathfrak{U}$, so $y \in (\mathfrak{U}:x)$. Conversely, suppose $y \in (\mathfrak{U}:x)$. So $xy \in \mathfrak{U}$, so since $x \notin \mathfrak{B} = \sqrt{\mathfrak{U}}$, we must have that $y \in \mathfrak{U}$. (4) Let n be minimal such that $\mathfrak{B}^n \subset \mathfrak{U}$. Let $x \in \mathfrak{B}^{n-1} - \mathfrak{U}$. We claim $(\mathfrak{U}:x) = \mathfrak{B}$. For $b \in \mathfrak{B}$, we have $bx \in \mathfrak{B}^n \subset \mathfrak{U}$, so $b \in (\mathfrak{U}:x)$. Conversely, if $bx \in \mathfrak{U}$, then since $x \notin U$, we have $b^m \in \mathfrak{U}$, so $b \in \sqrt{U} = \mathfrak{B}$.