4.6 The Alias Method for Generating Discrete Random Variables

In this section we study a technique for generating discrete random variables which, although requiring some setup time, is very fast to implement.

In what follows, the quantities $\mathbf{P}, \mathbf{P}^{(k)}, \mathbf{Q}^{(k)}, k \leq n-1$, represent probability mass functions on the integers $1, 2, \ldots, n$ —that is, they are n-vectors of nonnegative numbers summing to 1. In addition, the vector $\mathbf{P}^{(k)}$ has at most k nonzero components, and each of the $\mathbf{Q}^{(k)}$ has at most two nonzero components. We show that any probability mass function \mathbf{P} can be represented as an equally weighted mixture of n-1 probability mass functions \mathbf{Q} (each having at most two nonzero components). That is, we show, for suitably defined $\mathbf{Q}^{(1)}, \ldots, \mathbf{Q}^{(n-1)}$, that \mathbf{P} can be expressed as

$$\mathbf{P} = \frac{1}{n-1} \sum_{k=1}^{n-1} \mathbf{Q}^{(k)}$$
 (4.4)

As a prelude to presenting the method for obtaining this representation, we need the following simple lemma whose proof is left as an exercise.

Lemma Let $P = \{P_i, i = 1, ..., n\}$ denote a probability mass function. Then

- (a) there exists an $i, 1 \le i \le n$, such that $P_i < 1/(n-1)$, and
- (b) for this *i* there exists aj, $j \neq i$, such that $P_i + P_j \geq 1/(n-1)$.

Before presenting the general technique for obtaining the representation (4.4), let us illustrate it by an example.

Example 4h Consider the three-point distribution \mathbf{P} with $P_1 = \frac{7}{16}$, $P_2 = \frac{1}{2}$, $P_3 = \frac{1}{16}$. We start by choosing i and j satisfying the conditions of the preceding lemma. Since $P_3 < \frac{1}{2}$ and $P_3 + P_2 \ge \frac{1}{2}$, we can work with i = 3 and j = 2. We now define a two-point mass function $\mathbf{Q}^{(1)}$, putting all its weight on 3 and 2 and such that \mathbf{P} is expressible as an equally weighted mixture between $\mathbf{Q}^{(1)}$ and a second two-point mass function $\mathbf{Q}^{(2)}$. In addition, all the mass of point 3 is contained in $\mathbf{Q}^{(1)}$. As we have

$$P_j = \frac{1}{2}(Q_j^{(1)} + Q_j^{(2)}), \quad j = 1, 2, 3$$
 (4.5)

and $Q_3^{(2)}$ is supposed to equal 0, we must therefore take

$$Q_3^{(1)} = 2P_3 = \frac{1}{8}, \qquad Q_2^{(1)} = 1 - Q_3^{(1)} = \frac{7}{8}, \qquad Q_1^{(1)} = 0$$

To satisfy (10.2), we must then set

$$Q_3^{(2)} = 0,$$
 $Q_2^{(2)} = 2P_2 - \frac{7}{8} = \frac{1}{8},$ $Q_1^{(2)} = 2P_1 = \frac{7}{8}$

Hence we have the desired representation in this case. Suppose now that the original distribution was the following four-point mass function:

$$P_1 = \frac{7}{16}$$
, $P_2 = \frac{1}{4}$, $P_3 = \frac{1}{8}$, $P_4 = \frac{3}{16}$

Now $P_3 < \frac{1}{3}$ and $P_3 + P_1 \ge \frac{1}{3}$. Hence our initial two-point mass function — $\mathbf{Q}^{(1)}$ — concentrates on points 3 and 1 (giving no weight to 2 and 4). Because the final representation gives weight $\frac{1}{3}$ to $\mathbf{Q}^{(1)}$ and in addition the other $\mathbf{Q}^{(j)}$, j = 2, 3, do not give any mass to the value 3, we must have that

$$\frac{1}{3}Q_3^{(1)} = P_3 = \frac{1}{8}$$

Hence

$$Q_3^{(1)} = \frac{3}{8}, \qquad Q_1^{(1)} = 1 - \frac{3}{8} = \frac{5}{8}$$

Also, we can write

$$\mathbf{P} = \frac{1}{3}\mathbf{Q}^{(1)} + \frac{2}{3}\mathbf{P}^{(3)}$$

where $\mathbf{P}^{(3)}$, to satisfy the above, must be the vector

$$\mathbf{P}_{1}^{(3)} = \frac{3}{2} \left(P_{1} - \frac{1}{3} Q_{1}^{(1)} \right) = \frac{11}{32}$$

$$\mathbf{P}_{2}^{(3)} = \frac{3}{2} P_{2} = \frac{3}{8}$$

$$\mathbf{P}_{3}^{(3)} = 0$$

$$\mathbf{P}_{4}^{(3)} = \frac{3}{2} P_{4} = \frac{9}{32}$$

Note that $\mathbf{P}^{(3)}$ gives no mass to the value 3. We can now express the mass function $\mathbf{P}^{(3)}$ as an equally weighted mixture of two-point mass functions $\mathbf{Q}^{(2)}$ and $\mathbf{Q}^{(3)}$, and we end up with

$$\mathbf{P} = \frac{1}{3}\mathbf{Q}^{(1)} + \frac{2}{3}\left(\frac{1}{2}\mathbf{Q}^{(2)} + \frac{1}{2}\mathbf{Q}^{(3)}\right)$$
$$= \frac{1}{3}(\mathbf{Q}^{(1)} + \mathbf{Q}^{(2)} + \mathbf{Q}^{(3)})$$

(We leave it as an exercise for the reader to fill in the details.)

The above example outlines the following general procedure for writing the n-point mass function \mathbf{P} in the form (4.4), where each of the $\mathbf{Q}^{(i)}$ are mass functions giving all their mass to at most two points. To start, we choose i and j satisfying the conditions of the lemma. We now define the mass function $\mathbf{Q}^{(1)}$ concentrating

on the points i and j and which contain all the mass for point i by noting that in the representation (4.4) $Q_i^{(k)} = 0$ for k = 2, ..., n - 1, implying that

$$Q_i^{(1)} = (n-1)P_i$$
 and so $Q_i^{(1)} = 1 - (n-1)P_i$

Writing

$$\mathbf{P} = \frac{1}{n-1}\mathbf{Q}^{(1)} + \frac{n-2}{n-1}\mathbf{P}^{(n-1)}$$
 (4.6)

where $\mathbf{P}^{(n-1)}$ represents the remaining mass, we see that

$$\begin{split} P_i^{(n-1)} &= 0 \\ P_j^{(n-1)} &= \frac{n-1}{n-2} \left(P_j - \frac{1}{n-1} Q_j^{(1)} \right) = \frac{n-1}{n-2} \left(P_i + P_j - \frac{1}{n-1} \right) \\ P_k^{(n-1)} &= \frac{n-1}{n-2} P_k, \quad k \neq i \text{ or } j \end{split}$$

That the above is indeed a probability mass function is easily checked—for example, the nonnegativity of $P_j^{(n-1)}$ follows from the fact that j was chosen so that $P_i + P_j \ge 1/(n-1)$.

We may now repeat the above procedure on the (n-1) point probability mass function $\mathbf{P}^{(n-1)}$ to obtain

$$\mathbf{P}^{(n-1)} = \frac{1}{n-2} \mathbf{Q}^{(2)} + \frac{n-3}{n-2} \mathbf{P}^{(n-2)}$$

and thus from (4.6) we have

$$\mathbf{P} = \frac{1}{n-1} \mathbf{Q}^{(1)} + \frac{1}{n-1} \mathbf{Q}^{(2)} + \frac{n-3}{n-1} \mathbf{P}^{(n-2)}$$

We now repeat the procedure on $P^{(n-2)}$ and so on until we finally obtain

$$\mathbf{P} = \frac{1}{n-1}(\mathbf{Q}^{(1)} + \dots + \mathbf{Q}^{(n-1)})$$

In this way we are able to represent \mathbf{P} as an equally weighted mixture of n-1 two-point mass functions. We can now easily simulate from \mathbf{P} by first generating a random integer N equally likely to be either $1, 2, \ldots, n-1$. If the resulting value N is such that $\mathbf{Q}^{(N)}$ puts positive weight only on the points i_N and j_N , we can set X equal to i_N if a second random number is less than $\mathbf{Q}_{i_N}^{(N)}$ and equal to j_N otherwise. The random variable X will have probability mass function \mathbf{P} . That is, we have the following procedure for simulating from \mathbf{P} .

STEP 1: Generate U_1 and set $N = 1 + \text{Int} [(n-1)U_1]$.

STEP 2: Generate U_2 and set

$$X = \begin{cases} i_N & \text{if } U_2 < Q_{i_N}^{(N)} \\ j_N & \text{otherwise} \end{cases}$$

Remarks

- 1. The above is called the alias method because by a renumbering of the **Q**'s we can always arrange things so that for each k, $Q_k^{(k)} > 0$. (That is, we can arrange things so that the kth two-point mass function gives positive weight to the value k.) Hence, the procedure calls for simulating N, equally likely to be $1, 2, \ldots, n-1$, and then if N=k it either accepts k as the value of K, or it accepts for the value of K the "alias" of K (namely, the other value that $\mathbf{Q}^{(k)}$ gives positive weight).
- 2. Actually, it is not necessary to generate a new random number in Step 2. Because N-1 is the integer part of $(n-1)U_1$, it follows that the remainder $(n-1)U_1-(N-1)$ is independent of N_1 and is uniformly distributed on (0, 1). Hence, rather than generating a new random number U_2 in Step 2, we can use $(n-1)U_1-(N-1)$.

4.7 Generating Random Vectors

A random vector X_1, \ldots, X_n can be simulated by sequentially generating the X_i . That is, first generate X_1 ; then generate X_2 from its conditional distribution given the generated value of X_1 ; then generate X_3 from its conditional distribution given the generated values of X_1 and X_2 ; and so on. This is illustrated in Example 4i, which shows how to simulate a random vector having a multinomial distribution.

Example 4i Consider n independent trials, each of which results in one of the outcomes $1, 2, \ldots, r$ with respective probabilities $p_1, p_2, \ldots, p_r, \sum_{i=1}^r p_i = 1$. If X_i denotes the number of trials that result in outcome i, then the random vector (X_1, \ldots, X_r) is said to be a multinomial random vector. Its joint probability mass function is given by

$$P\{X_i = x_i, i = 1, \dots, r\} = \frac{n!}{x_1! \cdots x_r!} p_1^{x_1} \cdots p_r^{x_r}, \quad \sum_{i=1}^r x_i = n$$

The best way to simulate such a random vector depends on the relative sizes of r and n. If r is large relative to n, so that many of the outcomes do not occur on any of the trials, then it is probably best to simulate the random variables by generating