Gradient Boosted Tree

Rappel

Boosting tree correspond à une agrégation de modèles adaptatifs les uns des autres. Les modèles ici sont donc des arbres CART (d'où le "boosted tree"). Pourquoi parle t-on de *gradient* boosted tree ?

Théorie

On veut donc construire un modèle h_M tel que $h_M(x) = \sum_{i=1}^M \alpha \cdot \delta_i(x)$ dans l'espoir de minimiser $E(L(h_M(X), Y))$ avec L une fonction de coût. Soit $\{(x_i, y_i)\}_{i=1,\dots,n}$ des réalisations du couple (X, Y) et soit $h_{m-1}(x)$ posé.

Sachant que $h_m(x) = h_{m-1}(x) + \alpha \cdot \delta_m(x)$ avec α une constante, on cherche $\delta_m(x)$ un modèle d'arbre tel que :

$$\sum_{i=1}^{n} L(y_i, h_m(x_i)) < \sum_{i=1}^{n} L(y_i, h_{m-1}(x_i))$$
(1)

$$\sum_{i=1}^{n} L(y_i, h_{m-1}(x_i) + \alpha \cdot \delta_m(x)) < \sum_{i=1}^{n} L(y_i, h_{m-1}(x_i))$$
 (2)

 $x \rightarrow L(y, x)$ étant strictement convexe, on sait que :

$$L(y, x - h.\nabla_x L(y, x)) < L(y, x) \quad \forall x \neq x_{min}$$
 pour h assez petit (3)

Cela se démontre avec un développement de Taylor à l'ordre 1. On a donc en remplaçant x et h dans (3) respectivement par $h_{m-1}(x_i)$ et α :

$$\sum_{i=1}^{n} L(y_i, h_{m-1}(x_i) + \alpha \cdot g_i) < \sum_{i=1}^{n} L(y_i, h_{m-1}(x_i))$$
 (4)

avec $g_i = -\nabla_{h_{m-1}(x_i)} L(y_i, \; h_{m-1}(x_i)$ (appelé negative gradient ou résidus) et α assez petit. g_i étant dépendant de y_i , il nous faut les approcher avec un arbre de régression au sens de la norme L2 pour conserver l'inégalité (4). On va donc fitter un arbre de régression δ_m sur les negative gradient g_i .

On peut donc mettre au points un algorithme où on initialise $h_0(x)$ par exemple la moyenne des réalisation y_i dans un problème de régression, puis on fit les arbres δ_k sur les negative gradient $g_i = -\nabla_{h_{k-1}(x_i)} L(y_i, \ h_{k-1}(x_i)$ à chaque itération. On choisira un pas α assez petit. Le caractère strictement convexe de L assure une convergence de l'algorithme vers un minimum global.

Aller plus loin

Pour éviter l'over fitting, XGBoost propose une pénalisation des arbres, et en partant d'un développement de Taylor à l'ordre 2 de (2) on aboutit à une solution approchée d'arbres originaux.