C

2025年1月28日

1 数据预处理

1.1 导入数据

[23]: # 导入相关 package

```
import geopandas as gpd
     import pandas as pd
     import matplotlib.pyplot as plt
     import chardet
[24]: import os
     # 设置环境变量 LOKY_MAX_CPU_COUNT
     os.environ["LOKY_MAX_CPU_COUNT"] = "8" # 使用 CPU 核心数
[25]: # 定义一个函数, 自动检测文件编码并读取文件
     def read_csv_with_detected_encoding(file_path):
         # 检测文件编码
         with open(file_path, 'rb') as f:
            result = chardet.detect(f.read())
            encoding = result['encoding']
            print(f"检测到文件 {file_path} 的编码格式为: {encoding}")
         # 使用检测到的编码读取文件
         return pd.read_csv(file_path, encoding=encoding)
     # 读取 data_dictionary.csv 文件
     csv_content =
      oread_csv_with_detected_encoding('2025_Problem_C_Data\\data_dictionary.csv')
```

```
print("data dictionary.csv 数据预览: ")
print(csv_content.head())
# 读取 summerOly_medal_counts.csv 文件
medal_counts =
 Gread csv with detected encoding ('2025 Problem C Data\\summerOly medal counts.
 ⇔csv')
print("\nsummerOly medal counts.csv 数据预览: ")
print(medal_counts.head())
# 读取 summerOly_hosts.csv 文件
olympic_hosts =_
 →read_csv_with_detected_encoding('2025_Problem_C_Data\\summerOly_hosts.csv')
print("\nsummerOly hosts.csv 数据预览: ")
print(olympic_hosts.head())
# 读取 summerOly_programs.csv 文件
olympic_programs =_
 Gread csv with detected encoding('2025 Problem C Data\\summerOly programs.
 GCSV')
print("\nsummerOly_programs.csv 数据预览: ")
print(olympic_programs.head())
# 读取 summerOly_athletes.csv 文件
olympic_athletes =_
 →read_csv_with_detected_encoding('2025_Problem_C_Data\\summerOly_athletes.
 ⇔csv')
print("\nsummerOly_athletes.csv 数据预览: ")
print(olympic_athletes.head())
检测到文件 2025_Problem_C_Data\data_dictionary.csv 的编码格式为: Windows-1252
data_dictionary.csv 数据预览:
  summerOly_medal_counts.csv
                                                               Unnamed: 1 \
0
                  variables
                                                              explanation
                                 Rank of country based on total medals won
1
                       Rank
2
                        NOC Name of country as recorded for that Olympics
```

3 Gold Number of Gold medals the country earned 4 Silver Number of Silver medals the country earned

Unnamed: 2

0 example

1 1, 2

2 China, France

3 0, 1, 2

4 0, 1, 2

检测到文件 2025_Problem_C_Data\summerOly_medal_counts.csv 的编码格式为: utf-8

summerOly_medal_counts.csv 数据预览:

	Rank	NOC	Gold	Silver	Bronze	Total	Year
0	1	United States	11	7	2	20	1896
1	2	Greece	10	18	19	47	1896
2	3	Germany	6	5	2	13	1896
3	4	France	5	4	2	11	1896
4	5	Great Britain	2	3	2	7	1896

检测到文件 2025_Problem_C_Data\summerOly_hosts.csv 的编码格式为: UTF-8-SIG

summerOly_hosts.csv 数据预览:

Host	Year	
Athens, Greece	1896	0
Paris, France	1900	1
St. Louis, United States	1904	2
London, United Kingdom	1908	3
Stockholm, Sweden	1912	4

检测到文件 2025_Problem_C_Data\summerOly_programs.csv 的编码格式为: Windows-1252

summerOly_programs.csv 数据预览:

	Sport	Discipline	Code	${\tt Sports}$	Govern	ning Body	1896	1900	1904	\
0	Aquatics	Artistic Swimming	SWA		World	Aquatics	0	0	0	
1	Aquatics	Diving	DIV		World	Aquatics	0	0	2	
2	Aquatics	Marathon Swimming	OWS		World	Aquatics	0	0	0	
3	Aquatics	Swimming	SWM		World	Aquatics	4	7	9	
4	Aquatics	Water Polo	WPO		World	Aquatics	0	1	1	

```
1908 1912 ... 1988 1992 1996 2000 2004 2008 2012 2016 2020 \
  1906*
0
            0
                 0
                          2
                                   1.0
                                        2.0
                                              2.0
                                                    2.0
                                                          2.0
                                                                2.0
                                                                      2.0
1
                                              8.0
                                                    8.0
                                                          8.0
                                                                     8.0
      1
                 4
                          4
                                   4.0
                                        8.0
                                                                8.0
2
                                                    2.0
      0
            0
                 0
                                  0.0
                                        0.0
                                              0.0
                                                          2.0
                                                                2.0
                                                                     2.0
                         0
                              0
3
            6
                 9
                         31
                              31 32.0 32.0
                                             32.0 32.0 32.0 32.0 35.0
4
                 1 ...
                          1
                                   1.0
                                        2.0
                                              2.0
                                                    2.0
                                                          2.0
                                                                2.0
                                                                      2.0
```

2024

- 0 2.0
- 1 8.0
- 2 2.0
- 3 35.0
- 4 2.0

[5 rows x 35 columns]

检测到文件 2025_Problem_C_Data\summerOly_athletes.csv 的编码格式为: utf-8

summerOly_athletes.csv 数据预览:

\	City	Year	NOC	Team	Sex	Name	
	Barcelona	1992	CHN	China	M	A Dijiang	0
	London	2012	CHN	China	М	A Lamusi	1
	Antwerpen	1920	DEN	Denmark	М	Gunnar Aaby	2
	Paris	1900	DEN	Denmark/Sweden	М	Edgar Aabye	3
	Los Angeles	1932	NED	Netherlands	F	Cornelia (-strannood)	4

Medal	Event	Sport	
No medal	Basketball Men's Basketball	Basketball	0
No medal	Judo Men's Extra-Lightweight	Judo	1
No medal	Football Men's Football	Football	2
Gold	Tug-Of-War Men's Tug-Of-War	Tug-Of-War	3
No medal	Athletics Women's 100 metres	Athletics	4

1.2 数据清洗

1.2.1 缺失值检查

```
[26]: # 1. 缺失值检查
     def check_missing_values(file_path):
         检查 CSV 文件中的缺失值。
        参数:
            file path (str): CSV 文件的路径。
         返回:
            None, 但会打印缺失值的相关信息。
         11 11 11
        try:
            # 尝试读取 CSV 文件
            data = pd.read_csv(file_path, encoding='utf-8')
        except UnicodeDecodeError:
            data = pd.read_csv(file_path, encoding='ISO-8859-1')
        print(file_path)
        # 检查每列的缺失值数量
        missing_values_per_column = data.isnull().sum()
        print("每列的缺失值数量:")
        print(missing_values_per_column)
         # 检查整个数据框的总缺失值数量
        total_missing_values = missing_values_per_column.sum()
        print("整个数据框的总缺失值数量: ", total_missing_values)
        # 检查是否有任何缺失值
        has_missing_values = data.isnull().values.any()
        print("数据框中是否存在缺失值: ", has_missing_values)
        print("\n")
```

```
# 如果有缺失值,输出包含缺失值的行
   if has_missing_values:
      print("\n包含缺失值的行:")
      print(data[data.isnull().any(axis=1)])
content_name = ['2025_Problem_C_Data\\summerOly_medal_counts.csv',__
 for i in content name:
   check_missing_values(i)
2025_Problem_C_Data\summerOly_medal_counts.csv
每列的缺失值数量:
Rank
       0
NOC
Gold
Silver
Bronze
Total
Year
dtype: int64
整个数据框的总缺失值数量: 0
数据框中是否存在缺失值: False
2025_Problem_C_Data\summerOly_hosts.csv
每列的缺失值数量:
     0
Year
Host
     0
dtype: int64
整个数据框的总缺失值数量: 0
数据框中是否存在缺失值: False
2025_Problem_C_Data\summerOly_programs.csv
```

每列的缺失值数量:

Sport		0
Discipl	ine	2
Code		0
Sports	Governing Body	0
1896		0
1900		0
1904		0
1906*		0
1908		0
1912		0
1920		0
1924		0
1928		2
1932		2
1936		2
1948		2
1952		2
1956		2
1960		2
1964		2
1968		2
1972		2
1976		2
1980		2
1984		2
1988		3
1992		2
1996		2
2000		2
2004		2
2008		2
2012		2
2016		2
2020		2
2024		2

dtype: int64

整个数据框的总缺失值数量: 49

数据框中是否存在缺失值: True

包含缺失值的行:

Sport				t	Dis	ciplin	e Coc	de Spo	orts	Govern	ning 1	Body 18	396 19	900	\	
1	2]	Basque	Pelota	a Bas	sque	Pelot	a PI	EL			Ī	FIPV	0	1	
4	4	Mode	rn Pent	athlor	ı		Na	N MF	ΡN			1	UIPM	0	0	
65 Water Motorsports				3	NaN			ВТ			UIM	0				
69 Skating				3		Figur	e FS	SK				ISU	0	0		
7	С		Ice	Hockey	y	Ice	Hocke	y II	Ю				IIHF	0	0	
	1	904	1906*	1908	1912		1988	1992	1996	2000	2004	2008	2012	2016	\	
1	2	0	0	0	0	•••	NaN		0.0	0.0	0.0	0.0	0.0	0.0		
4	4	0	0	0	1	•••	2	2	1.0	2.0	2.0	2.0	2.0	2.0		
6	5	0	0	3	0	•••	0	0	0.0	0.0	0.0	0.0	0.0	0.0		
6	9	0	0	4	0	•••	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		
7	С	0	0	0	0		NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		

2020 2024

- 12 0.0 0.0
- 44 2.0 2.0
- 65 0.0 0.0
- 69 NaN NaN
- 70 NaN NaN

[5 rows x 35 columns]

 ${\tt 2025_Problem_C_Data\backslash summerOly_athletes.csv}$

每列的缺失值数量:

Name 0
Sex 0
Team 0
NOC 0
Year 0
City 0
Sport 0
Event 0

Medal 0 dtype: int64 整个数据框的总缺失值数量: 0

数据框中是否存在缺失值: False

1.2.2 补全 summerOly programs.csv 中的缺失值

```
[27]: import pandas as pd
     import numpy as np
     from sklearn.ensemble import RandomForestRegressor
     from sklearn.linear_model import LinearRegression
     from sklearn.neighbors import KNeighborsRegressor
     import re
     import os
     # 确保保存结果的目录存在
     os.makedirs('Generated', exist_ok=True)
     data = olympic_programs.copy()
     #3. 检查缺失值
     #print(" 每列的缺失值数量: ")
     #print(data.isnull().sum())
     # 4. 填充 Discipline 列的缺失值
     data['Discipline'] = data['Discipline'].fillna(data['Sport'])
     # 5. 准备年份列的数据
     years = [col for col in data.columns if col.isdigit() or col.endswith('*')]
     # 6. 将数据从宽格式转换为长格式
     data_long = data.melt(id_vars=['Sport', 'Discipline', 'Code', 'Sports Governing_

→Body'],
                          value_vars=years,
                          var_name='Year',
```

```
value name='Events')
# 7. 将年份列转换为数值
data_long['Year'] = data_long['Year'].str.replace('*', '').astype(int)
# 8. 清理 Events 列中的非数值字符
def clean events(value):
   if isinstance(value, str):
       # 移除非数值字符
       cleaned_value = re.sub(r'[^0-9]', '', value)
       return float(cleaned_value) if cleaned_value.isdigit() else np.nan
   return value
data_long['Events'] = data_long['Events'].apply(clean_events)
# 9. 将 1924 年以及之后的 Skating 和 Ice Hockey 项目的赛事数目填为 0
mask = (data_long['Year'] >= 1924) & (data_long['Sport'].isin(['Skating', 'Ice_
→Hockey']))
data_long.loc[mask, 'Events'] = 0
# 10. 分组处理, 按运动种类单独训练模型
for sport, group in data_long.groupby('Sport'):
   # 分离已知数据和缺失数据
   known_data = group.dropna(subset=['Events'])
   missing_data = group[group['Events'].isna()]
   if not known_data.empty and not missing_data.empty:
       #准备训练数据
       X_known = known_data[['Year']]
       y_known = known_data['Events']
       # 检查已知数据的数量
       if len(y_known) < 5:</pre>
           print(f"警告:运动种类 '{sport}' 的已知数据太少,使用 KNN 或线性回归填
充。")
```

```
# 尝试使用线性回归
          if len(y_known) >= 3: # 至少需要 3 个点来拟合线性回归
             model = LinearRegression()
             model.fit(X_known, y_known)
             predicted_events = model.predict(missing_data[['Year']])
          else: # 使用 KNN, K=1
             model = KNeighborsRegressor(n_neighbors=1)
             model.fit(X_known, y_known)
             predicted_events = model.predict(missing_data[['Year']])
          # 将预测值四舍五入为整数
          predicted_events = np.round(predicted_events).astype(int)
          # 将预测值转换为 Pandas Series, 并确保索引对齐
         predicted_series = pd.Series(predicted_events, index=missing_data.
⇒index)
          #填充缺失值
          data_long.loc[data_long['Sport'] == sport, 'Events'] = data_long.
→loc[data_long['Sport'] == sport, 'Events'].fillna(predicted_series)
      else:
          # 训练随机森林模型
         model = RandomForestRegressor(n_estimators=100, random_state=42)
          model.fit(X_known, y_known)
          # 预测缺失数据
          X_missing = missing_data[['Year']]
          predicted_events = model.predict(X_missing)
          # 将预测值四舍五入为整数
          predicted_events = np.round(predicted_events).astype(int)
          #将预测值转换为 Pandas Series, 并确保索引对齐
          predicted series = pd.Series(predicted events, index=missing data.
⇒index)
```

```
#填充缺失值
           data_long.loc[data_long['Sport'] == sport, 'Events'] = data_long.
 →loc[data_long['Sport'] == sport, 'Events'].fillna(predicted_series)
           # 记录日志
           print(f"运动种类 '{sport}' 的模型训练完成,预测了」
 →{len(predicted_events)} 个缺失值。")
    else:
       print(f"运动种类 '{sport}' 没有缺失数据或没有足够的已知数据。")
# 11. 将数据重新转换为宽格式
data_filled = data_long.pivot_table(index=['Sport', 'Discipline', 'Code', __
 ⇔'Sports Governing Body'],
                                columns='Year',
                                values='Events',
                                aggfunc='first').reset_index()
# 12. 输出结果
print("\n填充后的数据: ")
print(data_filled.head())
# 13. 保存结果到新的 CSV 文件
output path = 'Generated\\summerOly programs filled.csv'
data_filled.to_csv(output_path, index=False, encoding='utf-8') # 确保保存时使用
正确的编码
print(f"填充后的数据已保存到 {output_path}")
运动种类 'Aquatics' 没有缺失数据或没有足够的已知数据。
```

运动种类 'Archery' 没有缺失数据或没有足够的已知数据。

运动种类 'Athletics' 没有缺失数据或没有足够的已知数据。

运动种类 'Badminton' 的模型训练完成, 预测了 2 个缺失值。

运动种类 'Baseball and Softball' 的模型训练完成, 预测了 8 个缺失值。

运动种类 'Basketball' 的模型训练完成, 预测了 2 个缺失值。

运动种类 'Basque Pelota' 的模型训练完成, 预测了 4 个缺失值。

运动种类 'Boxing' 没有缺失数据或没有足够的已知数据。

运动种类 'Breaking' 没有缺失数据或没有足够的已知数据。

- 运动种类 'Canoeing' 的模型训练完成, 预测了 1 个缺失值。
- 运动种类 'Cricket' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Croquet' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Cycling' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Equestrian' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Fencing' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Field hockey' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Flag football' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Football' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Golf' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Gymnastics' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Handball' 的模型训练完成, 预测了 1 个缺失值。
- 运动种类 'Ice Hockey' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Jeu de Paume' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Judo' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Karate' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Lacrosse' 的模型训练完成, 预测了 3 个缺失值。
- 运动种类 'Modern Pentathlon' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Polo' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Rackets' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Roque' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Rowing' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Rugby' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Sailing' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Shooting' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Skateboarding' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Skating' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Sport Climbing' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Squash' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Surfing' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Table Tennis' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Taekwondo' 的模型训练完成, 预测了 2 个缺失值。
- 运动种类 'Tennis' 的模型训练完成, 预测了 2 个缺失值。
- 运动种类 'Total disciplines' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Total events' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Total sports' 没有缺失数据或没有足够的已知数据。
- 运动种类 'Triathlon' 没有缺失数据或没有足够的已知数据。

```
运动种类 'Tug of War' 没有缺失数据或没有足够的已知数据。
```

运动种类 'Volleyball' 的模型训练完成, 预测了 1 个缺失值。

运动种类 'Water Motorsports' 的模型训练完成, 预测了 1 个缺失值。

运动种类 'Weightlifting' 没有缺失数据或没有足够的已知数据。

运动种类 'Wrestling' 没有缺失数据或没有足够的已知数据。

填充后的数据:

Year	Sport			Discip	olin	e Code	Sports	s Gove	rning	Body	1896	1900	\
0	Aquat	ics A	rtisti	c Swin	nmin	g SWA		Worl	tics	0.0	0.0		
1	Aquat	ics		Di	lvin	g DIV		Worl	0.0	0.0			
2	Aquat	ics M	aratho	on Swimming OWS				Worl	tics	0.0	0.0		
3	Aquatics			Swin	nmin	g SWM		Worl	d Aqua	tics	4.0	7.0	
4	Aquatics		Water	Pol	o WPO		Worl	d Aqua	tics	0.0	1.0		
Year	1904	1906	1908	1912	•••	1988	1992	1996	2000	2004	2008	2012	\
0	0.0	0.0	0.0	0.0	•••	2.0	2.0	1.0	2.0	2.0	2.0	2.0	
1	2.0	1.0	2.0	4.0	•••	4.0	4.0	4.0	8.0	8.0	8.0	8.0	
2	0.0	0.0	0.0	0.0	•••	0.0	0.0	0.0	0.0	0.0	2.0	2.0	
3	9.0	4.0	6.0	9.0	•••	31.0	31.0	32.0	32.0	32.0	32.0	32.0	
4	1.0	0.0	1.0	1.0		1.0	1.0	1.0	2.0	2.0	2.0	2.0	
Year	2016	2020	2024										
0	2.0	2.0	2.0										
1	8.0	8.0	8.0										
2	2.0	2.0	2.0										
3	32.0	35.0	35.0										
4	2.0	2.0	2.0										

[5 rows x 35 columns]

填充后的数据已保存到 Generated\summerOly_programs_filled.csv

1.2.3 Medal_counts 数据清洗

[28]: # 2. 数据清洗

确保数据的格式正确

data = medal_counts[['Year', 'NOC', 'Gold', 'Silver', 'Bronze', 'Total']]

```
# 3. 创建年份和国家的索引
     years = data['Year'].unique()
     noc = data['NOC'].unique()
     # 4. 定义一个函数来生成表格
     def generate_table(data, column_name):
         # 创建一个空的 DataFrame, 以年份为列, 国家为行
         table = pd.DataFrame(index=noc, columns=years)
         #填充数据
         for index, row in data.iterrows():
             year = row['Year']
             country = row['NOC']
             value = row[column_name]
             table.at[country, year] = value
         # 推断数据类型并填充缺失值为 0
         table = table.infer_objects(copy=False).fillna(0).astype(int)
         return table
     # 5. 生成金牌、银牌、铜牌和总数的表格
     gold_table = generate_table(data, 'Gold')
     silver_table = generate_table(data, 'Silver')
     bronze_table = generate_table(data, 'Bronze')
     total_table = generate_table(data, 'Total')
     # 6. 保存到新的 CSV 文件
     gold_table.to_csv('Generated\\summerOly_gold_summary.csv')
     silver_table.to_csv('Generated\\summerOly_silver_summary.csv')
     bronze_table.to_csv('Generated\\summerOly_bronze_summary.csv')
     total_table.to_csv('Generated\\summerOly_total_summary.csv')
[29]: # 7. 输出结果
```

print("金牌表格: ")
print(gold_table)

金牌表格:

1896	1900	1904	1908	1912	1920	1924	1928	1932	\
11	19	76	23	26	41	45	22	0	
10	0	1	0	1	. 0	0	0	0	
6	4	4	3	5	0	0	10	0	
5	27	0	5	7	9	13	6	0	
2	15	1	56	10	14	9	3	0	
	•••								
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
1936	19	988 19	992 1	996 2	2000 2	004 2	008 20)12 \	
24	•••	36	37	44	37	36	36	48	
0	•••	0	2	4	4	6	0	0	
38	•••	0	33	20	13	13	16	11	
7	•••	6	8	15	13	11	7	11	
4	•••	5	5	1	11	9	19	29	
			•••		•••				
0	•••	0	0	0	0	0	0	0	
0	•••	0	0	0	0	0	0	0	
0	•••	0	0	0	0	0	0	0	
0	•••	0	0	0	0	0	0	0	
0	•••	0	0	0	0	0	0	0	
2016	2020	2024							
46	39	40							
3	2	1							
17	10	12							
10	10	16							
27	22	14							
	•••								
0	0	1							
0	0	1							
0	0	0							
	11 10 6 5 2 0 0 0 0 1936 24 0 38 7 4 0 0 0 2016 46 3 17 10 27 0 0	11 19 10 0 6 4 5 27 2 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 19 76 10 0 1 6 4 4 5 27 0 2 15 1	11 19 76 23 10 0 1 0 6 4 4 3 5 27 0 5 2 15 1 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>11 19 76 23 26 10 0 1 0 1 6 4 4 3 5 5 27 0 5 7 2 15 1 56 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>11 19 76 23 26 41 10 0 1 0 1 0 6 4 4 3 5 0 5 27 0 5 7 9 2 15 1 56 10 14 0 0 0 0 0 0 0 0 0 0</td> <td>11 19 76 23 26 41 45 10 0 1 0 1 0 0 6 4 4 3 5 0 0 5 27 0 5 7 9 13 2 15 1 56 10 14 9 </td> <td>11 19 76 23 26 41 45 22 10 0 1 0 1 0 0 0 6 4 4 3 5 0 0 10 5 27 0 5 7 9 13 6 2 15 1 56 10 14 9 3 0 <</td> <td>11</td>	11 19 76 23 26 10 0 1 0 1 6 4 4 3 5 5 27 0 5 7 2 15 1 56 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 19 76 23 26 41 10 0 1 0 1 0 6 4 4 3 5 0 5 27 0 5 7 9 2 15 1 56 10 14 0 0 0 0 0 0 0 0 0 0	11 19 76 23 26 41 45 10 0 1 0 1 0 0 6 4 4 3 5 0 0 5 27 0 5 7 9 13 2 15 1 56 10 14 9	11 19 76 23 26 41 45 22 10 0 1 0 1 0 0 0 6 4 4 3 5 0 0 10 5 27 0 5 7 9 13 6 2 15 1 56 10 14 9 3 0 <	11

```
Cabo Verde 0 \quad 0 \quad 0 Refugee Olympic Team 0 \quad 0 \quad 0
```

[30]: print("\n银牌表格: ") print(silver_table)

银牌表格:

	1896	190	00 19	904	1908	19	12 1	920	192	4 1	928	1932	\
United States	7	1	14	78	12	:	19	27	2	7	18	0	
Greece	18		0	0	3		0	1		0	0	0	
Germany	5		3	5	5		13	0		0	7	0	
France	4	3	39	1	5		4	19	1	5	10	0	
Great Britain	3		7	1	51	;	15	15	1	3	10	0	
•••			•••		•••		•••	•••					
Saint Lucia	0		0	0	0		0	0		0	0	0	
Dominica	0		0	0	0		0	0		0	0	0	
Albania	0		0	0	0		0	0		0	0	0	
Cabo Verde	0		0	0	0		0	0		0	0	0	
Refugee Olympic Team	0		0	0	0		0	0		0	0	0	
	1936	•••	1988	199	92 19	996	2000) 20	004	2008	201	.2 \	
United States	21	•••	31	3	34	32	24	ŀ	39	39	2	26	
Greece	0	•••	0		0	4	6	3	6	2		0	
Germany	31	•••	0	2	21	18	17	7	16	11	2	20	
France	6	•••	4		5	7	14	<u> </u>	9	16	1	.1	
Great Britain	7	•••	10		3	8	10)	9	13	1	.8	
•••		•••	•••	•••									
Saint Lucia	0	•••	0		0	0	C)	0	0		0	
Dominica	0	•••	0		0	0	C)	0	0		0	
Albania	0	•••	0		0	0	C)	0	0		0	
Cabo Verde	0	•••	0		0	0	C)	0	0		0	
Refugee Olympic Team	0	•••	0		0	0	C)	0	0		0	

2016 2020 2024

37	41	44
1	1	1
10	11	13
18	12	26
23	20	22
•••	•••	
0	0	1
0	0	0
0	0	0
0	0	0
0	0	0
	1 10 18 23 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[31]: print("\n铜牌表格: ") print(bronze_table)

铜牌表格:

	1896	1900	1904	1908	1912	1920	1924	1928	1932	\	
United States	2	15	77	12	19	27	27	16	0		
Greece	19	0	1	1	1	0	0	0	0		
Germany	2	2	6	5	7	0	0	14	0		
France	2	37	0	9	3	13	10	5	0		
Great Britain	2	9	0	39	16	13	12	7	0		
Saint Lucia	0	0	0	0	0	0	0	0	0		
Dominica	0	0	0	0	0	0	0	0	0		
Albania	0	0	0	0	0	0	0	0	0		
Cabo Verde	0	0	0	0	0	0	0	0	0		
Refugee Olympic Team	0	0	0	0	0	0	0	0	0		
	1936	19	988 19	92 19	96 20	000 20	04 20	08 201	12 \		
United States	12	•••	27	37	25	32	26	37 3	30		
Greece	0	•••	1	0	0	3	4	1	2		
Germany	32		0	28	27	26	20	14 1	13		
France	6	•••	6	16	15	11	13	20 1	13		

Great Britain		3	•••	9	12	6	7	12	19	18
***	•••	•••	•••		•••		•••			
Saint Lucia		0	•••	0	0	0	0	0	0	0
Dominica		0		0	0	0	0	0	0	0
Albania		0		0	0	0	0	0	0	0
Cabo Verde		0		0	0	0	0	0	0	0
Refugee Olympic Team		0	•••	0	0	0	0	0	0	0

	2016	2020	2024
United States	38	33	42
Greece	2	1	6
Germany	15	16	8
France	14	11	22
Great Britain	17	22	29
		•••	
Saint Lucia	0	0	0
Dominica	0	0	0
Albania	0	0	2
Cabo Verde	0	0	1
Refugee Olympic Team	0	0	1

[32]: print("\n总数表格: ") print(total_table)

总数表格:

	1896	1900	1904	1908	1912	1920	1924	1928	1932	\
United States	20	48	231	47	64	95	99	56	0	
Greece	47	0	2	4	2	1	0	0	0	
Germany	13	9	15	13	25	0	0	31	0	
France	11	103	1	19	14	41	38	21	0	
Great Britain	7	31	2	146	41	42	34	20	0	
		•••				•••				
Saint Lucia	0	0	0	0	0	0	0	0	0	
Dominica	0	0	0	0	0	0	0	0	0	

Albania	0		0	0	0	0	0	0	0	0
Cabo Verde	0		0	0	0	0	0	0	0	0
Refugee Olympic Team	0		0	0	0	0	0	0	0	0
0										
	1936		1988	1992	1996	2000	2004	2008	2012	\
United States	57	•••	94	108	101	93	101	112	104	
Greece	0	•••	1	2	8	13	16	3	2	
Germany	101		0	82	65	56	49	41	44	
France	19	•••	16	29	37	38	33	43	35	
Great Britain	14	•••	24	20	15	28	30	51	65	
•••		•••								
Saint Lucia	0	•••	0	0	0	0	0	0	0	
Dominica	0		0	0	0	0	0	0	0	
Albania	0	•••	0	0	0	0	0	0	0	
Cabo Verde	0	•••	0	0	0	0	0	0	0	
Refugee Olympic Team	0	•••	0	0	0	0	0	0	0	
	2016	202	0 20	24						
United States	121	11	3 1	26						
Greece	6		4	8						
Germany	42	3	7	33						
France	42	3	3	64						
Great Britain	67	6	4	65						

Saint Lucia	0		0	2						
Dominica	0		0	1						
Albania	0		0	2						
Cabo Verde	0		0	1						

Refugee Olympic Team

1.2.4 清理 summerOly medal counts.csv 异常值

```
[33]: import pandas as pd
     import numpy as np
     from sklearn.impute import KNNImputer
     # 读取 CSV 文件
     file_path = '2025_Problem_C_Data\\summerOly_medal_counts.csv'
     data = pd.read_csv(file_path)
     # 定义一个函数, 用于剔除非英文字符
     def remove_non_english_chars(text):
         if pd.isnull(text):
            return text
         return re.sub(r'[^a-zA-Z]', '', text)
     # 对 NOC 列进行数据检查和处理
     data['NOC'] = data['NOC'].apply(remove_non_english_chars)
     # 提取实际的奥运会年份
     olympic_years = data['Year'].unique()
     olympic_years = np.sort(olympic_years) # 按年份排序
     print("实际的奥运会年份: ", olympic_years)
     # 将数据按年份和国家分组
     data['Year'] = data['Year'].astype(int)
     data['NOC'] = data['NOC'].astype(str)
     data = data[['Year', 'NOC', 'Gold', 'Silver', 'Bronze', 'Total']]
     # 获取所有国家
     countries = data['NOC'].unique()
     # 创建一个完整的年份和国家组合的 DataFrame
     all_combinations = pd.MultiIndex.from_product([olympic_years, countries],__
      names=['Year', 'NOC']).to_frame(index=False)
     # 合并数据,填充缺失值为 NaN (暂时不填充为 O)
```

```
complete data = pd.merge(all combinations, data, on=['Year', 'NOC'], how='left')
# 计算每个国家首次参加奥运会的时间
first_participation = complete_data[complete_data['Total'] > 0].
 ⇒groupby('NOC')['Year'].min().reset_index()
first participation.columns = ['NOC', 'First Participation']
complete_data = pd.merge(complete_data, first_participation, on='NOC',__
 ⇔how='left')
# 将每个国家在首次参加之前的所有年份的奖牌数填充为 0
complete_data.loc[complete_data['Year'] < complete_data['First_Participation'],__</pre>
⇔['Gold', 'Silver', 'Bronze', 'Total']] = 0
#将首次参加时间列删除,因为它已经不再需要
complete data.drop(columns=['First Participation'], inplace=True)
# 定义一个函数来处理每个奖牌类型
def knn impute(column name):
   # 提取需要处理的列
   grouped = complete_data[['Year', 'NOC', column_name]].groupby('NOC')
   # 将分组结果转换为多个 DataFrame
   grouped_dfs = [group for noc, group in grouped]
   for df in grouped dfs:
       current_noc = df['NOC'].iloc[0] # 由于每个分组的 'NOC' 是相同的, 可以直接
取第一个值
       #print(f" 当前组的 NOC: {current_noc}")
       # 初始化 KNNImputer
       imputer = KNNImputer(n_neighbors=3, weights='distance') # n_neighbors_\( \)
 →是邻居数量, weights 可以选择 'uniform' 或 'distance'
       # 选择需要填充的列
       try:
           df_filled = imputer.fit_transform(df[['Year', column_name]])
       except ValueError as e:
           print(f"Error processing {current_noc} for {column_name}: {e}")
```

```
continue
      # 将结果转换回 DataFrame
      df_filled = pd.DataFrame(df_filled, columns=['Year', column name])
      #print(df_filled)
      df_filled['Year'] = df_filled['Year'].astype(int)
      df_filled[column_name] = df_filled[column_name].round().astype(int)
      #print(df_filled)
      # 合并回原始数据
      \#complete\_data['NOC'==current\_noc, column\_name] = df\_filled[column\_name]
      for year in df_filled['Year']:
          index = df_filled[df_filled['Year'] == year].index[0]
          original_value = complete_data.loc[(complete_data['NOC'] ==__
⇔current_noc) & (complete_data['Year'] == year), column_name]
          if original_value.isna().any():
              # 如果存在 NaN 值, 进行填充
             complete_data.loc[(complete_data['NOC'] == current_noc) &__
→(complete_data['Year'] == year), column_name] = df_filled[column_name].
→iloc[index]
          else:
             # 获取原始值和填充值
             original_value = original_value.values[0] # 获取具体的数值
             imputed_value = df_filled[column_name].iloc[index]
             # 检查分母是否为零
             if imputed value != 0:
                 if abs(original_value - imputed_value) / imputed_value > 0.
→2:
                     print(f"Large difference detected for {current_noc} in__
complete_data.loc[(complete_data['NOC'] == current_noc)__
→& (complete_data['Year'] == year), column_name] = imputed_value
```

```
#else:
                   #print(f"Imputed value is zero for {current_noc} in {year},__
 ⇔skipping division.")
def adjust_outliers(column_name):
   print(f"Adjusting outliers for {column_name}")
   for current_noc in countries:
        country_data = complete_data[complete_data['NOC'] ==__
 ⇔current_noc][['Year', column_name]].sort_values(by='Year')
       for i in range(1, len(country_data) - 1):
           current_year = country_data.iloc[i]['Year']
           current_value = country_data.iloc[i][column_name]
           prev_value = country_data.iloc[i - 1][column_name]
           next_value = country_data.iloc[i + 1][column_name]
           if prev_value == 0 or next_value == 0:
               continue
            # 计算左右年份的平均值
           avg_value = (prev_value + next_value) / 2
           # 检查当前值是否偏离平均值超过 50%
           if ((abs(current_value - avg_value) > avg_value) and current_value_
 = avg_value) or ((abs(current_value - avg_value) > current_value) and__
 ⇔current_value <= avg_value):
               # 替换为三个值的平均值
               new_value = (current_value + prev_value + next_value) / 3
               new_value = round(new_value)
               #print(f"Outlier detected for {current_noc} in {current_year}:__
 →original={current_value}, adjusted={new_value}")
               complete_data.loc[(complete_data['NOC'] == current_noc) &__
 →(complete_data['Year'] == current_year), column_name] = new_value
medal_list = ['Total', 'Gold', 'Silver', 'Bronze']
# 进行 KNN 补全
```

```
for medal in medal_list:
    knn_impute(medal)

# 调整异常值

for medal in medal_list:
    adjust_outliers(medal)

# 保存处理后的数据为 CSV 文件

output_file = 'Generated\\summerOly_medal_counts_imputed.csv'

complete_data.to_csv(output_file, index=False)

print(f"处理后的数据已保存到 {output_file}")
```

```
实际的奥运会年份: [1896 1900 1904 1908 1912 1920 1924 1928 1932 1936 1948 1952」
41956 1960
1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016
2020 2024]
Adjusting outliers for Total
Adjusting outliers for Gold
Adjusting outliers for Silver
Adjusting outliers for Bronze
处理后的数据已保存到 Generated\summerOly_medal_counts_imputed.csv
```

1.2.5 处理国家变更与如今不存在的国家

```
[34]: import pandas as pd

# 读取 CSV 文件
file_path = 'Generated\\summerOly_medal_counts_imputed.csv'
df = pd.read_csv(file_path)

# 定义国家名称映射关系
country_mapping = {
    'WestGermany': 'Germany',
    'EastGermany': 'Germany',
    'UnitedTeamofGermany': 'Germany',
    'RussianEmpire': 'Russia',
    'SovietUnion': 'Russia',
```

```
'Czechoslovakia': 'CzechRepublic',
   'Yugoslavia': 'Serbia',
   'Bohemia': 'CzechRepublic',
   'Formosa': 'Taiwan',
  'Mixedteam': 'Mixedteam'
}
# 更新国家名称
df['NOC'] = df['NOC'].replace(country_mapping)
# 去除如今不存在的国家
current_countries = [
   'UnitedStates', 'Greece', 'Germany', 'France', 'GreatBritain', 'Hungary', |
'Mixedteam', 'Belgium', 'Italy', 'Cuba', 'Canada', 'Spain', 'Luxembourg',
'Australasia', 'Finland', 'SouthAfrica', 'Estonia', 'Brazil', 'Japan', 🗆
'Argentina', 'Uruguay', 'Poland', 'Haiti', 'Portugal', 'Romania', 'Egypt', |
'Latvia', 'Turkey', 'Jamaica', 'Peru', 'Ceylon', 'TrinidadandTobago', L
'Lebanon', 'Bulgaria', 'Venezuela', 'Iceland', 'Pakistan', 'Bahamas', 🗆
'BritishWestIndies', 'Iraq', 'Tunisia', 'Kenya', 'Nigeria', 'Mongolia', 🗆
'Colombia', 'Niger', 'Bermuda', 'Thailand', 'Zimbabwe', 'Tanzania', '

¬'Guyana', 'China', 'IvoryCoast', 'Syria', 'Algeria',
  'ChineseTaipei', 'DominicanRepublic', 'Zambia', 'Suriname', 'CostaRica', 🗆
'VirginIslands', 'Djibouti', 'UnifiedTeam', 'Lithuania', 'Namibia', u
'Slovenia', 'Malaysia', 'Qatar', 'Russia', 'Ukraine', 'CzechRepublic', 🗆
```

```
'Armenia', 'Burundi', 'Ecuador', 'HongKong', 'Moldova', 'Uzbekistan',
 'SaudiArabia', 'SriLanka', 'Vietnam', 'Barbados', 'Kuwait', 'Kyrgyzstan',
 'SerbiaandMontenegro', 'Paraguay', 'Eritrea', 'Serbia', 'Tajikistan', 🗆

¬'Samoa', 'Sudan', 'Afghanistan', 'Mauritius', 'Togo',

   'Bahrain', 'Grenada', 'Botswana', 'Cyprus', 'Gabon', 'Guatemala',
'Jordan', 'Kosovo', 'ROC', 'SanMarino', 'NorthMacedonia', 'Turkmenistan', 🗆
⇔'BurkinaFaso', 'SaintLucia', 'Dominica',
   'Albania', 'CaboVerde', 'RefugeeOlympicTeam'
1
#保留当前存在的国家
df = df[df['NOC'].isin(current_countries)]
# 国家合并取均值
df_grouped = df.groupby(['Year', 'NOC']).mean().apply(np.floor).reset_index()
#保存数据
df_grouped.to_csv('Generated\\summerOly_medal_counts_processed.csv')
# 查看处理后的数据
print(df_grouped.head(4))
```

```
NOC Gold Silver Bronze Total
  Year
0 1896 Afghanistan
                     0.0
                             0.0
                                     0.0
                                            0.0
1 1896
            Albania
                    0.0
                             0.0
                                     0.0
                                            0.0
2 1896
            Algeria
                    0.0
                             0.0
                                     0.0
                                            0.0
3 1896
                            0.0
                                     0.0
                                            0.0
          Argentina
                     0.0
```

1.2.6 清理 athletes.csv 并转换格式为宽

```
[35]: # 读取 summerOly_athletes.csv 文件
data = olympic_athletes.copy()

# 转换为长格式,将年份放到列的抬头位置
```

```
pivot_df = data.pivot_table(index=['Name', 'Sex', 'Team', 'NOC', 'City', __
  columns='Year',
                                 values='Medal',
                                 aggfunc='first').reset_index()
#填充缺失值为 0
pivot_df = pivot_df.fillna(0)
# 输出结果
print("转换为宽格式后的数据:")
print(pivot_df.head())
# 保存为新的 CSV 文件
output_path = 'Generated\\summerOly_athletes_wide_format.csv'
pivot_df.to_csv(output_path, index=False, encoding='utf-8')
print(f"宽格式数据已保存到 {output_path}")
转换为宽格式后的数据:
                                                         Sport \
Year
              Name Sex
                               Team
                                     NOC
                                           City
0
      (jr) Larocca
                           Argentina ARG Paris
                                                    Equestrian
                     М
1
      . Chadalavada
                     F
                              India IND
                                          Tokyo
                                                       Fencing
2
            . Deni
                     М
                           Indonesia INA
                                          Tokyo Weightlifting
3
               671
                              China CHN
                                          Paris
                                                      Breaking
4
          A Alayed
                    F Saudi Arabia KSA Paris
                                                      Swimming
                        Event 1896 1900 1904 ... 1988 1992 1996 2000 2004
Year
0
           Jumping Individual
                                0
                                          0
                                                  0
                                                           0
                                                                0
                                                                     0
     Women's Sabre Individual
                                          0
1
                                                  0
                                                                     0
2
                   Men's 67kg
                                          0 ...
                                                  0
                                0
                                     0
                                                                     0
                      B-Girls
                                          0
3
                                0
                                     0
                                                  0
                                                           0
                                                                0
                                                                     0
4
       Women's 200m Freestyle
                                          0 ...
                                                  0
                                                       0
                                                           0
                                                                0
                                                                     0
Year 2008 2012 2016
                        2020
                                 2024
0
                            No medal
1
       0
                                    0
            0
                 0 No medal
       0
                 0 No medal
                                    0
2
            0
```

```
3 0 0 0 0 Bronze
4 0 0 0 0 No medal
```

[5 rows x 38 columns]

宽格式数据已保存到 Generated\summerOly_athletes_wide_format.csv

2 分析数据

2.1 国家级特征

```
[36]: import pandas as pd
     import matplotlib.pyplot as plt
     # 读取 CSV 文件
     data = medal_counts.copy()
     #数据预处理
     # 由于数据格式较为复杂,需要先将其转换为更易于处理的格式
     # 提取年份和各个国家的奖牌总数
     #假设我们关注的是美国(United States)和中国的(China)奖牌总数
     us_data = data[data['NOC'] == 'United States'][['Year', 'Total']].
      →rename(columns={'Total': 'US_Total'})
     china_data = data[data['NOC'] == 'China'][['Year', 'Total']].
      ⇔rename(columns={'Total': 'China_Total'})
     # 合并数据
     merged_data = pd.merge(us_data, china_data, on='Year', how='outer').
      ⇔sort_values(by='Year')
     #绘制折线图
     plt.figure(figsize=(12, 6))
     plt.plot(merged_data['Year'], merged_data['US_Total'], label='United_States',__

marker='o')
     plt.plot(merged_data['Year'], merged_data['China_Total'], label='China',_
      →marker='o')
```

```
# 添加标题和图例
plt.title('Summer Olympic Medal Totals Over the Years')
plt.xlabel('Year')
plt.ylabel('Total Medals')
plt.legend()

# 显示网格
plt.grid(True)

# 显示图表
plt.show()
```



```
[37]: import pandas as pd import matplotlib.pyplot as plt

# 读取 CSV 文件
data = pd.read_csv('Generated\\summerOly_medal_counts_imputed.csv')

# 数据预处理
# 由于数据格式较为复杂,需要先将其转换为更易于处理的格式
```

```
# 提取年份和各个国家的奖牌总数
# 假设我们关注的是美国 (United States) 和中国的 (China) 奖牌总数
us_data = data[data['NOC'] == 'United States'][['Year', 'Total']].
→rename(columns={'Total': 'US_Total'})
china_data = data[data['NOC'] == 'China'][['Year', 'Total']].
Grename(columns={'Total': 'China_Total'})
# 合并数据
merged_data = pd.merge(us_data, china_data, on='Year', how='outer').
⇔sort_values(by='Year')
#绘制折线图
plt.figure(figsize=(12, 6))
plt.plot(merged_data['Year'], merged_data['US_Total'], label='United States', __
→marker='o')
plt.plot(merged_data['Year'], merged_data['China_Total'], label='China',__
 →marker='o')
#添加标题和图例
plt.title('Summer Olympic Medal Totals Over the Years')
plt.xlabel('Year')
plt.ylabel('Total Medals')
plt.legend()
#显示网格
plt.grid(True)
# 显示图表
plt.show()
```


2.2 项目级特征

```
[38]: import pandas as pd

# 读取 CSV 文件
df = pd.read_csv('Generated\\summerOly_programs_filled.csv')

# 获取所有年份列
years = [col for col in df.columns if col.isdigit()]

# 初始化一个空的 DataFrame 来存储结果
result = pd.DataFrame(columns=['Year', 'Amount'])

# 選历每个年份, 计算总项目数
for year in years:
    total_events = df[year].sum()
    new_row = pd.DataFrame({'Year': [int(year)], 'Amount': [int(total_events)]})
    result = pd.concat([result, new_row], ignore_index=True)

# 显示结果
```

```
print(result.head())
result.to_csv('Generated\\Project_amount.csv')
```

```
Year Amount
0 1896 113
1 1900 236
2 1904 224
3 1906 176
4 1908 267
```

2.2.1 可视化

```
[39]: import pandas as pd
     import matplotlib.pyplot as plt
     # 读取 CSV 文件
     df = pd.read_csv('Generated\\Project_amount.csv')
     #绘制折线图
     plt.figure(figsize=(12, 6)) # 设置图形大小
     plt.plot(df['Year'], df['Amount'], marker='o', linestyle='-') # 绘制折线图,添加
     标记点
     #添加标题和标签
     plt.title('Olympic Events Over the Years', fontsize=16) #添加标题
     plt.xlabel('Year', fontsize=14) #添加 x 轴标签
     plt.ylabel('Amount of Events', fontsize=14) #添加 y 轴标签
     #添加网格线
     plt.grid(True, linestyle='--', alpha=0.6)
     #显示图形
     plt.show()
```


2.2.2 线性拟合

```
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
import matplotlib.pyplot as plt

# 读取 CSV 文件
df = pd.read_csv('Generated\\Project_amount.csv')

# 准备数据

X = df['Year'].values.reshape(-1, 1) # 将年份作为自变量
y = df['Amount'].values # 将项目数作为因变量

# 创建线性回归模型
model = LinearRegression()

# 拟合模型
model.fit(X, y)
```

```
# 预测 2028 年的总项目数
year_{2028} = np.array([2028]).reshape(-1, 1)
predicted_amount_2028 = model.predict(year_2028)
# 计算决定系数 R~2
y_pred = model.predict(X)
r2 = r2_score(y, y_pred)
#绘制折线图和拟合线
plt.figure(figsize=(12, 6))
plt.plot(X, y, marker='o', linestyle='-', label='Actual Data') # 绘制实际数据
plt.plot(X, y_pred, linestyle='--', label='Fitted Line') # 绘制拟合线
#添加标题和标签
plt.title('Olympic Events Over the Years with Linear Regression', fontsize=16)
plt.xlabel('Year', fontsize=14)
plt.ylabel('Amount of Events', fontsize=14)
#添加网格线
plt.grid(True, linestyle='--', alpha=0.6)
#添加图例
plt.legend()
#显示图形
plt.show()
# 打印预测结果和拟合度
print(f"预测 2028 年的总项目数: {round(predicted_amount_2028[0])}")
print(f"决定系数 R^2: {r2:.4f}")
```


预测 2028 年的总项目数: 721 决定系数 R²: 0.9177

2.3 运动员级特征

2.3.1 预处理

```
athlete_years = athlete_years.sort_values(by=['Feature','Year'])
athlete_years.to_csv('Generated\\athlete_yesrs.csv', index=False,_

encoding='utf-8')
```

2.3.2 添加唯一特征值

```
[42]: import os

# 设置环境变量 LOKY_MAX_CPU_COUNT
os.environ["LOKY_MAX_CPU_COUNT"] = "8" # 使用 CPU 核心数
```

```
[43]: import pandas as pd
     from sklearn.cluster import DBSCAN
     from sklearn.preprocessing import StandardScaler
     # 读取 CSV 文件
     file_path = 'Generated\\athlete_yesrs.csv' # 替换为你的文件路径
     data = pd.read_csv(file_path)
     # 显示原始数据的前几行
     print("原始数据的前几行:")
     print(data.head())
     # 设置时间阈值
     time_threshold_small = 12
     time_threshold_large = 44
     # 按 Feature 分组
     grouped = data.groupby('Feature')
     # 用于存储处理后的数据
     processed_data = []
     # 遍历每个分组
     for feature, group in grouped:
         #按 Year 排序
         group = group.sort_values(by='Year')
```

```
# 初始化变量
  unique_feature_count = 0
  last_year = None
  # 遍历分组中的每条记录
  for index, row in group.iterrows():
      current_year = row['Year']
      # 判断是否为同一个运动员
      if last_year is not None:
         year_diff = current_year - last_year
          if year_diff > time_threshold_large:
              # 如果时间跨度大于 44 年,直接认为是不同运动员
             unique_feature_count += 1
          elif year_diff > time_threshold_small:
              # 如果时间跨度在 12 到 44 年之间, 进行聚类分析
             features_cluster = group[['Year', 'Sport', 'Event']].
→apply(lambda x: x.factorize()[0])
             features_cluster = StandardScaler().
→fit_transform(features_cluster)
             # 使用 DBSCAN 聚类
             dbscan = DBSCAN(eps=0.5, min_samples=2)
             group['Cluster'] = dbscan.fit_predict(features_cluster)
             # 为每个聚类生成唯一标识
             for cluster in group['Cluster'].unique():
                 cluster_group = group[group['Cluster'] == cluster]
                 for _, cluster_row in cluster_group.iterrows():
                     new_feature = f"{feature}_{cluster}"
                     processed_data.append({
                         'Name': cluster_row['Name'],
                         'Sex': cluster_row['Sex'],
                         'Team': cluster_row['Team'],
                         'NOC': cluster_row['NOC'],
```

```
'Year': cluster row['Year'],
                          'Sport': cluster_row['Sport'],
                          'Event': cluster_row['Event'],
                          'Feature': new_feature
                      })
                      unique_feature_count += 1
              break # 已经处理完当前分组, 跳出循环
       # 如果时间跨度在阈值内, 认为是同一个运动员
       new_feature = f"{feature}_{unique_feature_count}"
       processed_data.append({
           'Name': row['Name'],
           'Sex': row['Sex'],
           'Team': row['Team'],
           'NOC': row['NOC'],
           'Year': row['Year'],
           'Sport': row['Sport'],
           'Event': row['Event'],
           'Feature': new_feature
       })
       # 更新变量
       last_year = current_year
# 将处理后的数据转换为 DataFrame
processed_df = pd.DataFrame(processed_data)
#显示处理后的数据
print("\n处理后的数据: ")
print(processed_df[['Feature', 'Sport', 'Event', 'Year']].head())
# 保存处理后的数据到新的 CSV 文件
output_file_path = 'Generated\\athlete_years_processed.csv'
processed_df.to_csv(output_file_path, index=False)
print(f"\n处理后的数据已保存到 {output_file_path}")
```

原始数据的前几行:

```
Name Sex NOC
                                  Team Year
                                                      Sport \
    (jr) Larocca
                             Argentina 2024
                                                 Equestrian
0
                     ARG
  . Chadalavada
                    IND
                                 India 2020
                                                    Fencing
2
          . Deni
                  M INA
                             Indonesia 2020 Weightlifting
                                 China 2024
             671
                  F CHN
3
                                                   Breaking
                  F KSA Saudi Arabia 2024
4
       A Alayed
                                                   Swimming
                                          Feature
                     Event
                             (jr) Larocca, M, ARG
         Jumping Individual
0
  Women's Sabre Individual . Chadalavada, F, IND
2
                Men's 67kg
                                    . Deni, M, INA
3
                   B-Girls
                                      671, F, CHN
4
    Women's 200m Freestyle
                                 A Alayed, F, KSA
```

处理后的数据:

		F	eature	Sport		Event	Year
0	(jr) Larocca,	Μ,	ARG_0	Equestrian	Jumping	Individual	2024
1	. Chadalavada,	F,	IND_0	Fencing	Women's Sabre	Individual	2020
2	. Deni,	M,	INA_O	Weightlifting		Men's 67kg	2020
3	671,	F,	CHN_O	Breaking		B-Girls	2024
4	A Alayed,	F,	KSA_O	Swimming	Women's 200m	n Freestyle	2024

处理后的数据已保存到 Generated\athlete_years_processed.csv

2.3.3 统计连续参加奥运会的年数与对应人数

```
[44]: # 读取 CSV 文件
file_path = 'Generated\\athlete_years_processed.csv' # 替换为你的文件路径
athlete_years = pd.read_csv(file_path)
```

```
[45]: # 计算连续参加的届数

def count_consecutive_years(group):
    years = group['Year'].sort_values().values
    consecutive_year = []
    current_count = 1
    for i in range(1, len(years)):
        if years[i] - years[i - 1] <= 6 :
```

```
if years[i] - years[i - 1] >= 3:
               current_count += 1
        else:
           if current_count > 10:
               print(group)
            consecutive_year.append(current_count)
            current count = 1
    consecutive_year.append(current_count)
    return pd.Series(consecutive_year)
# 应用函数计算每个运动员的连续届数
consecutive_years = athlete_years.groupby('Feature').
 apply(count_consecutive_years, include_groups=False).explode().reset_index()
consecutive_years.columns = ['Feature', 'level_0', 'Consecutive_Years'] # 修正
列名
consecutive_years = consecutive_years.drop(columns=['level_0']) # 删除不必要的
# 统计每个连续届数的人数
consecutive_years_count = consecutive_years['Consecutive_Years'].value_counts().
 →reset_index()
consecutive_years_count.columns = ['Consecutive_Years', 'Count']
#输出结果
print("连续参加奥运会的届数与对应人次:")
print(consecutive_years_count)
# 保存为新的 CSV 文件
output_path = 'Generated\\consecutive_years_count.csv'
consecutive_years_count.to_csv(output_path, index=False, encoding='utf-8')
print(f"统计结果已保存到 {output_path}")
连续参加奥运会的届数与对应人次:
  Consecutive_Years
                    Count
0
                 1 108202
```

23470

1

```
2
                       3
                             6036
3
                             1575
                       4
4
                              372
                       6
                               79
5
                       7
6
                                18
7
                       8
                                 4
8
                                 1
```

统计结果已保存到 Generated\consecutive_years_count.csv

数据可视化

```
[46]: # 导入必要的库
     import pandas as pd
     import matplotlib.pyplot as plt
     from matplotlib.font_manager import FontProperties
     # 设置支持中文的字体
     plt.rcParams['font.sans-serif'] = ['SimHei'] # 使用黑体字体
     plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
     # 读取数据
     data = pd.read_csv("Generated/consecutive_years_count.csv")
     # 定义大致届数区间
     bins = [0, 2, 3, 4, 14]
     labels = ['1 times', '2 times', '3 times', '4 times and above']
     # 将数据分组到区间
     data['Group'] = pd.cut(data['Consecutive_Years'], bins=bins, labels=labels,__
      ⇔right=False)
     # 计算每个区间的总人次,显式设置 observed=True
     grouped_data = data.groupby('Group', observed=True)['Count'].sum().reset_index()
     #准备绘图数据
     labels = grouped data['Group']
     sizes = grouped_data['Count']
     colors = ['#ff9999', '#66b3ff', '#66ccff', '#99ff99'] # 颜色列表
```

```
# 绘制併图
plt.figure(figsize=(8, 8))
wedges, texts, autotexts = plt.pie(sizes, colors=colors, autopct='%1.1f%%',u
startangle=140, textprops={'fontsize': 12})

# 添加图例(色块 + 标签), 放置在右侧
plt.legend(wedges, labels, title="Continue times", loc="center left",u
sbbox_to_anchor=(1, 0, 0.5, 1))

plt.title('A chart of the number of consecutive Olympic Games', fontsize=16)
plt.axis('equal') # 确保併图是圆形
plt.show()
```

A chart of the number of consecutive Olympic Games


```
[47]: #保存组别与对应比例
     group_percentages = []
     for label, autotext in zip(labels, autotexts):
         # 获取百分比文本并去掉百分号, 转换为浮点数
         percentage = float(autotext.get_text().strip('%'))
         group_percentages.append((label, percentage))
     # 打印结果
     print("组别与对应比例:")
     for group, percentage in group_percentages:
         print(f"{group}: {percentage:.1f}%")
    组别与对应比例:
    1 times: 77.4%
    2 times: 16.8%
    3 times: 4.3%
    4 times and above: 1.5%
    2.3.4 统计运动员参加奥运会的时间跨度
[48]: # 读取 CSV 文件
     file_path = 'Generated\\athlete_years_processed.csv' # 替换为你的文件路径
     athlete_years = pd.read_csv(file_path)
[49]: # 计算每个运动员的第一次和最后一次参赛年份
     def calculate_year_gap(group):
         years = group['Year'].values
         min n = 2032
         max_n = 1896
         for i in years:
            if i < min_n:</pre>
                min_n = i
            if i > max_n:
                \max n = i
         if len(years) > 0:
             if max_n - min_n + 1 > 60:
                #print(group)
```

```
return 1
       return max_n - min_n + 1
   else:
       return 0
# 应用函数计算每个运动员的间隔年数
athlete_gaps = athlete_years.groupby('Feature').apply(calculate_year_gap,__
 sinclude_groups=False).reset_index()
athlete_gaps.columns = ['Feature', 'Year_Gap']
# 统计每个间隔年数的人数
gap_counts = athlete_gaps['Year_Gap'].value_counts().reset_index()
gap_counts.columns = ['Year_Gap', 'Count']
#按 Year_Gap 排序
gap_counts = gap_counts.sort_values(by='Year_Gap')
#输出结果
print("运动员第一次参加奥运会和最后一次参加奥运会之间的间隔年数:")
print(gap_counts)
#保存为新的 CSV 文件
output_path = 'Generated\\athlete_year_gaps.csv'
gap_counts.to_csv(output_path, index=False, encoding='utf-8')
print(f"统计结果已保存到 {output_path}")
```

运动员第一次参加奥运会和最后一次参加奥运会之间的间隔年数:

	Year_Gap	Count
0	1	99249
8	3	98
1	5	21869
10	7	77
2	9	8014
18	11	12
3	13	2887
15	15	16
4	17	942

```
19
19
                    8
5
           21
                  382
                    3
20
           23
           25
                  178
6
           27
21
                    1
7
                  134
           29
22
           31
                    1
9
           33
                   90
           37
                   57
11
12
           41
                   49
24
           43
                    1
13
           45
                   44
14
           49
                   21
17
           53
                   12
16
           57
                   13
23
           59
                    1
```

统计结果已保存到 Generated\athlete_year_gaps.csv

数据可视化

```
[50]: # 导入必要的库
     import pandas as pd
     import matplotlib.pyplot as plt
     import numpy as np
     # 设置支持中文的字体
     plt.rcParams['font.sans-serif'] = ['SimHei'] # 使用黑体字体
     plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
     # 读取数据
     data = pd.read_csv("Generated\\athlete_year_gaps.csv")
     # 定义大致间隔年数区间
     bins = [0, 5, 10, 15, 20, 30, 120] #区间划分: 0-5 年, 5-10 年, 10-15 年, 15-20
     年, 20-30年, 30年以上
     labels = ['0-5 years', '5-10 years', '10-15 years', '15-20 years', '20-30
      ⇔years', '30 years and above']
```

```
# 将数据分组到区间
data['Group'] = pd.cut(data['Year_Gap'], bins=bins, labels=labels, right=False)
# 计算每个区间的总人次
grouped_data = data.groupby('Group', observed=True)['Count'].sum().reset_index()
#准备绘图数据
labels = grouped_data['Group']
sizes = grouped_data['Count']
colors = plt.cm.viridis(np.linspace(0, 1, len(labels))) # 使用颜色映射生成颜色列
#绘制饼图
plt.figure(figsize=(10, 10))
wedges, texts, autotexts = plt.pie(sizes, colors=colors, autopct='%1.1f\%', __
 ⇔startangle=140, textprops={'fontsize': 12})
#添加图例(色块 +标签),放置在右侧
plt.legend(wedges, labels, title="Interval of years apart", loc="center left", u
\rightarrowbbox_to_anchor=(1, 0, 0.5, 1))
plt.title("A bar chart showing the ratio of the number of years between anu
 →athlete's first and last participation in the Olympic Games.", fontsize=16)
plt.axis('equal') # 确保饼图是圆形
plt.show()
```

A bar chart showing the ratio of the number of years between an athlete's first and last participation in the Olympic Games.

" 根据扇形图,对于运动员连续参加比赛,只考虑连续参加 2-3 届的运动员的连续性影响,其余影响可以忽略不计。""

```
# 输出结果
print(f"时间跨度为 1-15 年的运动员中, 连续参加的比例为: {consecutive_ratio:.2%}")
# 保存结果到 CSV 文件
output_path = 'Generated\\consecutive_ratio.csv'
filtered_data.to_csv(output_path, index=False, encoding='utf-8')
print(f"统计结果已保存到 {output_path}")
```

时间跨度为 1-15 年的运动员中, 连续参加的比例为: 94.51% 统计结果已保存到 Generated\consecutive ratio.csv

```
数据可视化
[52]: # 导入必要的库
     import matplotlib.pyplot as plt
     # 设置支持中文的字体
     plt.rcParams['font.sans-serif'] = ['SimHei'] # 使用黑体字体
     plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
     #数据
     percentages = [consecutive_ratio*100, (1-consecutive_ratio)*100] # 一个百分数和
     剩余部分
     labels = ['continuous', 'not continuous'] #标签
     colors = ['#66ccff', '#66b3ff'] # 颜色
     #绘制饼图
     plt.figure(figsize=(6, 6)) # 设置图形大小
     plt.pie(percentages, labels=labels, colors=colors, autopct='%1.2f%%',_
      ⇔startangle=90)
     # autopct='%1.2f%%' 表示在每个扇形上显示百分比,格式为 2 位小数
     # startangle=90 表示从 90 度 (即正上方) 开始绘制
     #添加标题
     plt.title('The proportion of athletes who have participated continuously among⊔

→those with a participation time span of 0 to 15 years.')

     #显示图形
```

plt.show()

The proportion of athletes who have participated continuously among those with a participation time span of 0 to 15 years.

结论

- '我们可以发现,参加奥运会时间跨度 0-15 年中绝大部分运动员都是连续参加的'
- '而且我们前面发现,绝大部分的运动员的时间跨度在 0-15 年之间,连续参加届数在 1-3 届'
- '而且我们知道, 0-15 之间只能连续参加 1-3 次奥运会'

→(group_percentages[2][1]+group_percentages[3][1])*100

- '我们因此可以得出结论,绝大部分奥运会运动员连续参加了 1-3 次奥运会'
- '所以我们可以得出结论,考虑运动员连续参加比赛对奖牌的影响只需要考虑连续参加 2-3 次的情况'

```
print(f'一个参加了三次奥运会的运动员参加下一次奥运会的可能为{third_percentage : . →2f}' + '%')
athlete_join_willing = {1 : first_percentage, 2 : second_percentage, 3 : □ →third_percentage}
```

- 一个参加了一次奥运会的运动员参加下一次奥运会的可能为 16.80%
- 一个参加了两次奥运会的运动员参加下一次奥运会的可能为 19.03%
- 一个参加了三次奥运会的运动员参加下一次奥运会的可能为 25.86%

3 构建模型

3.1 XGBoost

3.1.1 直接预测(超参数优化)

```
[54]: import pandas as pd
     import numpy as np
     from xgboost import XGBRegressor
     from sklearn.model_selection import train_test_split, GridSearchCV
     from sklearn.metrics import mean_squared_error
     from sklearn.preprocessing import LabelEncoder
     #scikit-learn==1.5.2
     # 加载数据
     data = pd.read_csv('Generated\\summerOly_medal_counts_processed.csv')
     #数据预处理
     # 将国家代码转换为数值标签
     label_encoder = LabelEncoder()
     data['NOC'] = label_encoder.fit_transform(data['NOC'])
     # 处理缺失值
     data = data.fillna(0)
     # 创建特征: 前一届奥运会的奖牌总数、金牌数、银牌数、铜牌数
     data['Prev_Total'] = data.groupby('NOC')['Total'].shift(1)
```

```
data['Prev Gold'] = data.groupby('NOC')['Gold'].shift(1)
data['Prev_Silver'] = data.groupby('NOC')['Silver'].shift(1)
data['Prev_Bronze'] = data.groupby('NOC')['Bronze'].shift(1)
# 填充缺失值
data['Prev_Total'] = data['Prev_Total'].fillna(0)
data['Prev_Gold'] = data['Prev_Gold'].fillna(0)
data['Prev_Silver'] = data['Prev_Silver'].fillna(0)
data['Prev_Bronze'] = data['Prev_Bronze'].fillna(0)
# 选择特征和目标变量
features = data[['Year', 'NOC', 'Prev_Total', 'Prev_Gold', 'Prev_Silver', |

¬'Prev_Bronze']]
target_total = data['Total']
target_gold = data['Gold']
target_silver = data['Silver']
target_bronze = data['Bronze']
# 划分训练集和测试集
X_train_total, X_test_total, y_train_total, y_test_total =_
-train_test_split(features, target_total, test_size=0.2, random_state=42)
X_train_gold, X_test_gold, y_train_gold, y_test_gold =_
 strain_test_split(features, target_gold, test_size=0.2, random_state=42)
X_train_silver, X_test_silver, y_train_silver, y_test_silver =_
strain_test_split(features, target_silver, test_size=0.2, random_state=42)
X_train_bronze, X_test_bronze, y_train_bronze, y_test_bronze =_
 strain_test_split(features, target_bronze, test_size=0.2, random_state=42)
X_test = pd.DataFrame({'Total' : [X_test_total],
          'Gold' : [X_test_gold],
          'Silver' : [X_test_silver],
          'Bronze' : [X_test_bronze],
y_test = pd.DataFrame({'Total' : [y_test_total],
          'Gold' : [y_test_gold],
          'Silver' : [y_test_silver],
```

```
'Bronze' : [y_test_bronze],
          })
# 启用 GPU 加速
params = {
    #'tree_method' : "hist",
    #'device' : "cuda",
    #'predictor': 'qpu_predictor', # 使用 GPU 进行预测
    'objective': 'reg:squarederror',
    'random_state': '42'
}
# 定义 XGBoost 模型
model_total = XGBRegressor(**params)
model_gold = XGBRegressor(**params)
model_silver = XGBRegressor(**params)
model_bronze = XGBRegressor(**params)
# 超参数优化
param_grid = {
    'n_estimators': [50, 100, 150],
    'learning_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 5, 7],
    'subsample': [0.7, 0.8, 0.9]
}
# 使用 GridSearchCV 进行超参数优化
grid_search_total = GridSearchCV(estimator=model_total, param_grid=param_grid,__
 ⇔cv=3, scoring='neg_mean_squared_error', n_jobs=-1)
grid_search_gold = GridSearchCV(estimator=model_gold, param_grid=param_grid,_u
 ⇒cv=3, scoring='neg_mean_squared_error', n_jobs=-1)
grid_search_silver = GridSearchCV(estimator=model_silver,__
 sparam_grid=param_grid, cv=3, scoring='neg_mean_squared_error', n_jobs=-1)
grid_search_bronze = GridSearchCV(estimator=model_bronze,__
 →param_grid=param_grid, cv=3, scoring='neg_mean_squared_error', n_jobs=-1)
```

```
#训练模型
grid_search_total.fit(X_train_total, y_train_total)
grid_search_gold.fit(X_train_gold, y_train_gold)
grid_search_silver.fit(X_train_silver, y_train_silver)
grid_search_bronze.fit(X_train_bronze, y_train_bronze)
# 获取最佳模型
best_model_total = grid_search_total.best_estimator_
best_model_gold = grid_search_gold.best_estimator_
best_model_silver = grid_search_silver.best_estimator_
best_model_bronze = grid_search_bronze.best_estimator_
# 评估模型
def evaluate_model(model, X_test, y_test):
   y_pred = model.predict(X_test)
   mse = mean_squared_error(y_test, y_pred)
   print(f'MSE: {mse}')
   return y_pred
print("Total Medals Model Evaluation:")
evaluate_model(best_model_total, X_test_total, y_test_total)
print("Gold Medals Model Evaluation:")
evaluate_model(best_model_gold, X_test_gold, y_test_gold)
print("Silver Medals Model Evaluation:")
evaluate_model(best_model_silver, X_test_silver, y_test_silver)
print("Bronze Medals Model Evaluation:")
evaluate_model(best_model_bronze, X_test_bronze, y_test_bronze)
# 定义超参数网格
param_grid = {
    'max_depth': [3, 5, 7],
    'learning_rate': [0.01, 0.1, 0.2],
```

```
'n estimators': [50, 100, 150],
    'subsample': [0.7, 0.8, 0.9],
    'colsample bytree': [0.7, 0.8, 0.9]
}
# 为每个国家单独训练模型
country models = {}
for country in data['NOC'].unique():
   country_data = data[data['NOC'] == country]
   if len(country_data) > 1: #确保每个国家至少有两条记录
       country_data = country_data.replace([np.inf, -np.inf], np.nan) # 替换无
穷值为 NaN
       country_data = country_data.ffill() # 前向填充
       country_data = country_data.bfill() # 后向填充
       country_features = country_data[['Year', 'NOC', 'Prev_Total',_
 ⇔'Prev_Gold', 'Prev_Silver', 'Prev_Bronze']]
       country_target_total = country_data['Total']
       country_target_gold = country_data['Gold']
       country_target_silver = country_data['Silver']
       country_target_bronze = country_data['Bronze']
       country_model_total = XGBRegressor(**params)
       country_model_gold = XGBRegressor(**params)
       country_model_silver = XGBRegressor(**params)
       country_model_bronze = XGBRegressor(**params)
        # 使用 GridSearchCV 进行超参数优化
       grid_search_country_model_total =_
 GridSearchCV(estimator=country_model_total, param_grid=param_grid, cv=2,_
 ⇒scoring='neg_mean_squared_error', n_jobs=-1, verbose=0)
       grid_search_country_model_gold =_u
 GridSearchCV(estimator=country_model_gold, param_grid=param_grid, cv=2,__
 ⇒scoring='neg_mean_squared_error', n_jobs=-1, verbose=0)
       grid_search_country_model_silver = ___
 GridSearchCV(estimator=country_model_silver, param_grid=param_grid, cv=2,_
 ⇒scoring='neg_mean_squared_error', n_jobs=-1, verbose=0)
```

```
grid_search_country_model_bronze =_
GridSearchCV(estimator=country_model_bronze, param_grid=param_grid, cv=2,_u
⇒scoring='neg_mean_squared_error', n_jobs=-1, verbose=0)
      grid_search_country_model_total.fit(country_features,__
→country_target_total)
      grid_search_country_model_gold.fit(country_features,__
→country_target_gold)
      grid_search_country_model_silver.fit(country_features,__
grid_search_country_model_bronze.fit(country_features,_
⇔country target bronze)
      # 获取最佳模型
      best_country_model_total = grid_search_country_model_total.
⇒best estimator
      best_country_model_gold = grid_search_country_model_gold.best_estimator_
      best_country_model_silver = grid_search_country_model_silver.
\hookrightarrowbest_estimator_
      best_country_model_bronze = grid_search_country_model_bronze.
⇒best estimator
      # 评估性能
      print("Total Medals Model Evaluation:")
      evaluate model(best_country_model_total, X_test_total, y_test_total)
      print("Gold Medals Model Evaluation:")
      evaluate_model(best_country_model_gold, X_test_gold, y_test_gold)
      print("Silver Medals Model Evaluation:")
      evaluate_model(best_country_model_silver, X_test_silver, y_test_silver)
      print("Bronze Medals Model Evaluation:")
      evaluate_model(best_country_model_bronze, X_test_bronze, y_test_bronze)
      country_models[country] = {
          'total': best_country_model_total,
          'gold': best_country_model_gold,
          'silver': best_country_model_silver,
```

```
'bronze': best country model bronze
       }
# 预测 2028 年奥运会的奖牌数
next_year = 2028
predictions = []
for country in data['NOC'].unique():
    country_data = data[data['NOC'] == country]
    if len(country_data) > 1:
       prev_total = country_data['Total'].iloc[-1]
       prev_gold = country_data['Gold'].iloc[-1]
       prev_silver = country_data['Silver'].iloc[-1]
       prev_bronze = country_data['Bronze'].iloc[-1]
       next_data = pd.DataFrame({
            'Year': [next_year],
            'NOC': [country],
            'Prev_Total': [prev_total],
            'Prev_Gold': [prev_gold],
            'Prev_Silver': [prev_silver],
            'Prev_Bronze': [prev_bronze]
       })
        # 使用单独模型预测
       total_pred = country_models[country]['total'].predict(next_data)
       gold_pred = country_models[country]['gold'].predict(next_data)
        silver_pred = country_models[country]['silver'].predict(next_data)
       bronze_pred = country_models[country]['bronze'].predict(next_data)
        # 使用整体模型预测
       total_pred_global = best_model_total.predict(next_data)
       gold_pred_global = best_model_gold.predict(next_data)
        silver_pred_global = best_model_silver.predict(next_data)
       bronze_pred_global = best_model_bronze.predict(next_data)
```

```
# 根据数据量分配权重
       data_count = len(country_data)
       weight = min(data_count / 10, 1) # 数据量越多, 权重越高, 但不超过 1
       total_pred_combined = weight * total_pred + (1 - weight) *__
 →total_pred_global
       gold_pred_combined = weight * gold_pred + (1 - weight) *_
 →gold_pred_global
       silver_pred_combined = weight * silver_pred + (1 - weight) *__
 ⇔silver pred global
       bronze_pred_combined = weight * bronze_pred + (1 - weight) *
 ⇔bronze_pred_global
       # 对预测结果取整
       total_pred_combined = round(total_pred_combined[0])
       gold_pred_combined = round(gold_pred_combined[0])
       silver_pred_combined = round(silver_pred_combined[0])
       bronze_pred_combined = round(bronze_pred_combined[0])
       predictions.append({
           'NOC': country,
           'Total_Predicted': total_pred_combined,
           'Gold_Predicted': gold_pred_combined,
           'Silver_Predicted': silver_pred_combined,
           'Bronze_Predicted': bronze_pred_combined
       })
# 将预测结果转换为 DataFrame
predictions_df = pd.DataFrame(predictions)
# 将 NOC 标签转换回国家代码
predictions_df['NOC'] = label_encoder.inverse_transform(predictions_df['NOC'])
# 输出预测结果
print(predictions_df)
# 保存预测结果到 CSV 文件
```

predictions_df.to_csv('Result\\2028_olympics_medal_predictions.csv', →index=False)

Total Medals Model Evaluation:

MSE: 14.183948320207696

Gold Medals Model Evaluation:

MSE: 2.9414593946059715

Silver Medals Model Evaluation:

MSE: 1.8287626291987034

Bronze Medals Model Evaluation:

MSE: 2.185780634244944

Total Medals Model Evaluation:

MSE: 140.75342068015084

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 15.818427348076781

Total Medals Model Evaluation:

MSE: 142.85282353556897

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.57628960602166

Total Medals Model Evaluation:

MSE: 122.58495074211991

Gold Medals Model Evaluation:

MSE: 17.402119733106872

Silver Medals Model Evaluation:

MSE: 14.068511301831862

Bronze Medals Model Evaluation:

MSE: 12.350547132239438

Total Medals Model Evaluation:

MSE: 117.61289573977655

Gold Medals Model Evaluation:

MSE: 15.07693219210729

Silver Medals Model Evaluation:

MSE: 13.564828598561522

Bronze Medals Model Evaluation:

MSE: 14.238776584657261

Total Medals Model Evaluation:

MSE: 129.11978398983476

Gold Medals Model Evaluation:

MSE: 18.434324148292763

Silver Medals Model Evaluation:

MSE: 14.228132612839607

Bronze Medals Model Evaluation:

MSE: 14.471448380309658

Total Medals Model Evaluation:

MSE: 124.98686516532699

Gold Medals Model Evaluation:

MSE: 16.651968965013406

Silver Medals Model Evaluation:

MSE: 13.778019188979943

Bronze Medals Model Evaluation:

MSE: 14.139838236770917

Total Medals Model Evaluation:

MSE: 358.80440175013155

Gold Medals Model Evaluation:

MSE: 20.563497436255997

Silver Medals Model Evaluation:

MSE: 14.728424680409017

Bronze Medals Model Evaluation:

MSE: 62.151548453599624

Total Medals Model Evaluation:

MSE: 121.52328745335026

Gold Medals Model Evaluation:

MSE: 17.08826741405428

Silver Medals Model Evaluation:

MSE: 8.456780684764317

Bronze Medals Model Evaluation:

MSE: 13.800333944030273

Total Medals Model Evaluation:

MSE: 121.28168772713842

Gold Medals Model Evaluation:

MSE: 17.188011597117296

Silver Medals Model Evaluation:

MSE: 12.243500658956734

Bronze Medals Model Evaluation:

MSE: 13.01291421240365

Total Medals Model Evaluation:

MSE: 135.42778365851981

Gold Medals Model Evaluation:

MSE: 16.491949999900445

Silver Medals Model Evaluation:

MSE: 15.715501421589924

Bronze Medals Model Evaluation:

MSE: 15.425882914340793

Total Medals Model Evaluation:

MSE: 136.0125892999167

Gold Medals Model Evaluation:

MSE: 17.489983416107265

Silver Medals Model Evaluation:

MSE: 14.761046310429055

Bronze Medals Model Evaluation:

MSE: 16.594110127403372

Total Medals Model Evaluation:

MSE: 141.87124104542065

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.243400642547297

Total Medals Model Evaluation:

MSE: 120.71016681843432

Gold Medals Model Evaluation:

MSE: 15.787307093399031

Silver Medals Model Evaluation:

MSE: 14.19017143798728

Bronze Medals Model Evaluation:

MSE: 13.257024386223838

Total Medals Model Evaluation:

MSE: 147.57950644741916

Gold Medals Model Evaluation:

MSE: 18.25579859115117

Silver Medals Model Evaluation:

MSE: 18.632453573025572

Bronze Medals Model Evaluation:

MSE: 14.94270892045927

Total Medals Model Evaluation:

MSE: 139.6394026306558

Gold Medals Model Evaluation:

MSE: 17.767295402724574

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.460522670790425

Total Medals Model Evaluation:

MSE: 139.35187215005126

Gold Medals Model Evaluation:

MSE: 17.88929933233542

Silver Medals Model Evaluation:

MSE: 14.974081675585804

Bronze Medals Model Evaluation:

MSE: 16.854725073108664

Total Medals Model Evaluation:

MSE: 101.07380992388109

Gold Medals Model Evaluation:

MSE: 15.216573986366383

Silver Medals Model Evaluation:

MSE: 10.614158888550097

Bronze Medals Model Evaluation:

MSE: 17.021541084900498

Total Medals Model Evaluation:

MSE: 137.91288893522758

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 15.049108389021708

Total Medals Model Evaluation:

MSE: 61.34089209055521

Gold Medals Model Evaluation:

MSE: 10.549011817980551

Silver Medals Model Evaluation:

MSE: 7.605056533916365

Bronze Medals Model Evaluation:

MSE: 7.2707636253885966

Total Medals Model Evaluation:

MSE: 142.02179006561525

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.237062975312316

Total Medals Model Evaluation:

MSE: 139.3351760873514

Gold Medals Model Evaluation:

MSE: 18.035994408118114

Silver Medals Model Evaluation:

MSE: 14.73899526655078

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 143.3969044824103

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.724709920071003

Total Medals Model Evaluation:

MSE: 139.34559437757136

Gold Medals Model Evaluation:

MSE: 17.214406951374524

Silver Medals Model Evaluation:

MSE: 15.212162587307901

Bronze Medals Model Evaluation:

MSE: 16.490335383368734

Total Medals Model Evaluation:

MSE: 137.43044956221405

Gold Medals Model Evaluation:

MSE: 14.082064906186895

Silver Medals Model Evaluation:

MSE: 18.99416929276979

Bronze Medals Model Evaluation:

MSE: 13.800402129408212

Total Medals Model Evaluation:

MSE: 142.49664552351146

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.023011600995122

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 133.4642191773885

Gold Medals Model Evaluation:

MSE: 17.355501671116315

Silver Medals Model Evaluation:

MSE: 13.540156929741585

Bronze Medals Model Evaluation:

MSE: 15.426952193809083

Total Medals Model Evaluation:

MSE: 1059.2390573782006

Gold Medals Model Evaluation:

MSE: 217.9136816957673

Silver Medals Model Evaluation:

MSE: 65.1023815429746

Bronze Medals Model Evaluation:

MSE: 61.27728020539144

Total Medals Model Evaluation:

MSE: 120.7995675082242

Gold Medals Model Evaluation:

MSE: 15.957535261561022

Silver Medals Model Evaluation:

MSE: 14.024219968829057

Bronze Medals Model Evaluation:

MSE: 12.974846857613437

Total Medals Model Evaluation:

MSE: 114.4462319617079

Gold Medals Model Evaluation:

MSE: 14.065858206775063

Silver Medals Model Evaluation:

MSE: 12.038611154448432

Bronze Medals Model Evaluation:

MSE: 12.862802915832578

Total Medals Model Evaluation:

MSE: 134.83039375503853

Gold Medals Model Evaluation:

MSE: 18.518730006912765

Silver Medals Model Evaluation:

MSE: 15.35066484663198

Bronze Medals Model Evaluation:

MSE: 14.726264824957381

Total Medals Model Evaluation:

MSE: 123.04308202795725

Gold Medals Model Evaluation:

MSE: 16.378520776721903

Silver Medals Model Evaluation:

MSE: 13.313374606708491

Bronze Medals Model Evaluation:

MSE: 14.652005754387616

Total Medals Model Evaluation:

MSE: 92.45289568036877

Gold Medals Model Evaluation:

MSE: 17.45292206229233

Silver Medals Model Evaluation:

MSE: 9.54926623257859

Bronze Medals Model Evaluation:

MSE: 9.575333970581806

Total Medals Model Evaluation:

MSE: 141.5976571749477

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.763930751060396

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 124.00918192995411

Gold Medals Model Evaluation:

MSE: 15.70584489021724

Silver Medals Model Evaluation:

MSE: 13.685500024925961

Bronze Medals Model Evaluation:

MSE: 14.075050089775988

Total Medals Model Evaluation:

MSE: 135.07712626389417

Gold Medals Model Evaluation:

MSE: 16.407976076624227

Silver Medals Model Evaluation:

MSE: 14.712657467624638

Bronze Medals Model Evaluation:

MSE: 18.195535976693513

Total Medals Model Evaluation:

MSE: 141.4524764745244

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.06321729731559

Total Medals Model Evaluation:

MSE: 143.3969044824103

Gold Medals Model Evaluation:

MSE: 18.35809521683373

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 132.9917902552506

Gold Medals Model Evaluation:

MSE: 17.333133489644688

Silver Medals Model Evaluation:

MSE: 14.774083079468037

Bronze Medals Model Evaluation:

MSE: 14.888124326409718

Total Medals Model Evaluation:

MSE: 131.57558257428238

Gold Medals Model Evaluation:

MSE: 17.577953646470387

Silver Medals Model Evaluation:

MSE: 13.83418224110092

Bronze Medals Model Evaluation:

MSE: 15.704402378295871

Total Medals Model Evaluation:

MSE: 125.64458241245921

Gold Medals Model Evaluation:

MSE: 17.677077047051263

Silver Medals Model Evaluation:

MSE: 13.565503849149154

Bronze Medals Model Evaluation:

MSE: 14.639010014660908

Total Medals Model Evaluation:

MSE: 142.6711241751874

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.53910115819738

Total Medals Model Evaluation:

MSE: 119.74260543786875

Gold Medals Model Evaluation:

MSE: 16.40745144714485

Silver Medals Model Evaluation:

MSE: 13.848489533202711

Bronze Medals Model Evaluation:

MSE: 12.920595633059174

Total Medals Model Evaluation:

MSE: 119.64131817384899

Gold Medals Model Evaluation:

MSE: 15.789496425350672

Silver Medals Model Evaluation:

MSE: 13.436402389671295

Bronze Medals Model Evaluation:

MSE: 12.054728090609537

Total Medals Model Evaluation:

MSE: 132.08755741712528

Gold Medals Model Evaluation:

MSE: 17.16391235187512

Silver Medals Model Evaluation:

MSE: 14.09656418567718

Bronze Medals Model Evaluation:

MSE: 15.291661971328502

Total Medals Model Evaluation:

MSE: 141.42012674221036

Gold Medals Model Evaluation:

MSE: 18.33465279574127

Silver Medals Model Evaluation:

MSE: 14.846908790952323

Bronze Medals Model Evaluation:

MSE: 16.789748792221168

Total Medals Model Evaluation:

MSE: 71.46401099844464

Gold Medals Model Evaluation:

MSE: 10.874740656055133

Silver Medals Model Evaluation:

MSE: 8.503563416648833

Bronze Medals Model Evaluation:

MSE: 8.952931957009552

Total Medals Model Evaluation:

MSE: 430.3321074157528

Gold Medals Model Evaluation:

MSE: 51.211189027312564

Silver Medals Model Evaluation:

MSE: 60.169209903551945

Bronze Medals Model Evaluation:

MSE: 76.01822924563578

Total Medals Model Evaluation:

MSE: 141.9789980744976

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.847146113828398

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 128.99034889723183

Gold Medals Model Evaluation:

MSE: 16.59454281295756

Silver Medals Model Evaluation:

MSE: 13.569258233283135

Bronze Medals Model Evaluation:

MSE: 14.641360235746816

Total Medals Model Evaluation:

MSE: 958.9618946758767

Gold Medals Model Evaluation:

MSE: 89.13399482046448

Silver Medals Model Evaluation:

MSE: 101.97040236207555

Bronze Medals Model Evaluation:

MSE: 88.12731449605982

Total Medals Model Evaluation:

MSE: 137.77627507790044

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.505414889948891

Bronze Medals Model Evaluation:

MSE: 14.940825786098362

Total Medals Model Evaluation:

MSE: 423.5669933946924

Gold Medals Model Evaluation:

MSE: 36.31717644068732

Silver Medals Model Evaluation:

MSE: 47.29206765147535

Bronze Medals Model Evaluation:

MSE: 48.93329161520254

Total Medals Model Evaluation:

MSE: 145.86302352903726

Gold Medals Model Evaluation:

MSE: 19.99434790818509

Silver Medals Model Evaluation:

MSE: 23.392654973091872

Bronze Medals Model Evaluation:

MSE: 17.401896702261702

Total Medals Model Evaluation:

MSE: 139.87656568615063

Gold Medals Model Evaluation:

MSE: 18.441185924955366

Silver Medals Model Evaluation:

MSE: 13.53636457150377

Bronze Medals Model Evaluation:

MSE: 16.126925245552552

Total Medals Model Evaluation:

MSE: 139.00450093060985

Gold Medals Model Evaluation:

MSE: 18.257099882233568

Silver Medals Model Evaluation:

MSE: 15.39002164701618

Bronze Medals Model Evaluation:

MSE: 16.571470586552312

Total Medals Model Evaluation:

MSE: 142.2275439007511

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.306406148992405

Total Medals Model Evaluation:

MSE: 137.46119030179804

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.143672283592648

Bronze Medals Model Evaluation:

MSE: 16.943613958528637

Total Medals Model Evaluation:

MSE: 132.78970479872174

Gold Medals Model Evaluation:

MSE: 17.4729361979997

Silver Medals Model Evaluation:

MSE: 15.245944176253085

Bronze Medals Model Evaluation:

MSE: 15.606736971660961

Total Medals Model Evaluation:

MSE: 189.24244991334984

Gold Medals Model Evaluation:

MSE: 37.85571514365352

Silver Medals Model Evaluation:

MSE: 27.82685424008854

Bronze Medals Model Evaluation:

MSE: 31.511467693917236

Total Medals Model Evaluation:

MSE: 137.7564704547477

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.615002026414722

Bronze Medals Model Evaluation:

MSE: 15.55369268783078

Total Medals Model Evaluation:

MSE: 141.46316516955667

Gold Medals Model Evaluation:

MSE: 17.520532117597618

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 15.779644445974679

Total Medals Model Evaluation:

MSE: 137.7791441335767

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 13.761335055679432

Bronze Medals Model Evaluation:

MSE: 15.26846197606054

Total Medals Model Evaluation:

MSE: 128.71381913191783

Gold Medals Model Evaluation:

MSE: 17.69731813118513

Silver Medals Model Evaluation:

MSE: 14.284207697126444

Bronze Medals Model Evaluation:

MSE: 13.743768023631464

Total Medals Model Evaluation:

MSE: 128.79591029344485

Gold Medals Model Evaluation:

MSE: 16.960412414942144

Silver Medals Model Evaluation:

MSE: 14.181781246488878

Bronze Medals Model Evaluation:

MSE: 14.09178375897888

Total Medals Model Evaluation:

MSE: 114.8451674781899

Gold Medals Model Evaluation:

MSE: 15.416523229377445

Silver Medals Model Evaluation:

MSE: 13.84757605170232

Bronze Medals Model Evaluation:

MSE: 13.857348757217634

Total Medals Model Evaluation:

MSE: 142.97759343948675

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.562434910371756

Total Medals Model Evaluation:

MSE: 125.65896596947744

Gold Medals Model Evaluation:

MSE: 16.561858866459158

Silver Medals Model Evaluation:

MSE: 13.791116233875021

Bronze Medals Model Evaluation:

MSE: 12.911142548854563

Total Medals Model Evaluation:

MSE: 131.91750636022712

Gold Medals Model Evaluation:

MSE: 17.5655350180797

Silver Medals Model Evaluation:

MSE: 13.81521282450842

Bronze Medals Model Evaluation:

MSE: 15.049765848257437

Total Medals Model Evaluation:

MSE: 206.45664606820688

Gold Medals Model Evaluation:

MSE: 43.468497500318506

Silver Medals Model Evaluation:

MSE: 20.675656069336327

Bronze Medals Model Evaluation:

MSE: 17.542365157074435

Total Medals Model Evaluation:

MSE: 136.13675874993626

Gold Medals Model Evaluation:

MSE: 17.779087314064153

Silver Medals Model Evaluation:

MSE: 14.921817966987119

Bronze Medals Model Evaluation:

MSE: 15.62986508350761

Total Medals Model Evaluation:

MSE: 111.17327072317192

Gold Medals Model Evaluation:

MSE: 14.261646986460654

Silver Medals Model Evaluation:

MSE: 11.315058124927397

Bronze Medals Model Evaluation:

MSE: 12.197801233909257

Total Medals Model Evaluation:

MSE: 319.9670015264475

Gold Medals Model Evaluation:

MSE: 31.05901598394929

Silver Medals Model Evaluation:

MSE: 38.39943386640468

Bronze Medals Model Evaluation:

MSE: 24.50816027411338

Total Medals Model Evaluation:

MSE: 136.15506462077178

Gold Medals Model Evaluation:

MSE: 18.447981328716264

Silver Medals Model Evaluation:

MSE: 14.707436911961903

Bronze Medals Model Evaluation:

MSE: 14.775797220374905

Total Medals Model Evaluation:

MSE: 127.30748648909412

Gold Medals Model Evaluation:

MSE: 16.634659806400304

Silver Medals Model Evaluation:

MSE: 12.609374066776969

Bronze Medals Model Evaluation:

MSE: 13.842519328445977

Total Medals Model Evaluation:

MSE: 115.70549389757369

Gold Medals Model Evaluation:

MSE: 15.432247519733274

Silver Medals Model Evaluation:

MSE: 12.93039784822176

Bronze Medals Model Evaluation:

MSE: 12.110291854474921

Total Medals Model Evaluation:

MSE: 139.74747766272486

Gold Medals Model Evaluation:

MSE: 18.432234553194622

Silver Medals Model Evaluation:

MSE: 14.848137494719394

Bronze Medals Model Evaluation:

MSE: 16.22947823700332

Total Medals Model Evaluation:

MSE: 140.11930942429288

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 15.662211468322043

Total Medals Model Evaluation:

MSE: 133.10545942321878

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 13.96414535656642

Bronze Medals Model Evaluation:

MSE: 14.855834224010652

Total Medals Model Evaluation:

MSE: 127.56652924353895

Gold Medals Model Evaluation:

MSE: 17.353212941067035

Silver Medals Model Evaluation:

MSE: 13.276219113771015

Bronze Medals Model Evaluation:

MSE: 14.97416532796742

Total Medals Model Evaluation:

MSE: 137.71314003465486

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 13.785144539581065

Bronze Medals Model Evaluation:

MSE: 14.956013439102191

Total Medals Model Evaluation:

MSE: 125.57589470566808

Gold Medals Model Evaluation:

MSE: 16.80106889405876

Silver Medals Model Evaluation:

MSE: 14.256961497853823

Bronze Medals Model Evaluation:

MSE: 13.590768783485288

Total Medals Model Evaluation:

MSE: 137.07256891101002

Gold Medals Model Evaluation:

MSE: 16.767026971472696

Silver Medals Model Evaluation:

MSE: 15.144168640389212

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 141.87124104542065

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.243400642547297

Total Medals Model Evaluation:

MSE: 132.9885280255021

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.025048059925746

Bronze Medals Model Evaluation:

MSE: 15.550514312800422

Total Medals Model Evaluation:

MSE: 142.41286633228276

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.391406811866954

Total Medals Model Evaluation:

MSE: 122.88854761340191

Gold Medals Model Evaluation:

MSE: 17.41744942829359

Silver Medals Model Evaluation:

MSE: 13.266356384500956

Bronze Medals Model Evaluation:

MSE: 13.925095231808378

Total Medals Model Evaluation:

MSE: 130.3344856428949

Gold Medals Model Evaluation:

MSE: 23.178505781786185

Silver Medals Model Evaluation:

MSE: 13.800624435420994

Bronze Medals Model Evaluation:

MSE: 17.20539461309142

Total Medals Model Evaluation:

MSE: 135.3465064408034

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.570818820045854

Bronze Medals Model Evaluation:

MSE: 14.808219510499175

Total Medals Model Evaluation:

MSE: 133.5653302599893

Gold Medals Model Evaluation:

MSE: 18.243516810099045

Silver Medals Model Evaluation:

MSE: 14.158554731579681

Bronze Medals Model Evaluation:

MSE: 14.799591778455794

Total Medals Model Evaluation:

MSE: 141.9789980744976

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.847146113828398

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 128.53279094919372

Gold Medals Model Evaluation:

MSE: 15.163652603577788

Silver Medals Model Evaluation:

MSE: 14.394880057608226

Bronze Medals Model Evaluation:

MSE: 13.801221794303313

Total Medals Model Evaluation:

MSE: 139.33559570427354

Gold Medals Model Evaluation:

MSE: 17.19828224455516

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.79758977136095

Total Medals Model Evaluation:

MSE: 136.40619780497929

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 13.509131303570495

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 127.97074906745453

Gold Medals Model Evaluation:

MSE: 13.446127503491082

Silver Medals Model Evaluation:

MSE: 9.709605096279564

Bronze Medals Model Evaluation:

MSE: 22.473188101012962

Total Medals Model Evaluation:

MSE: 141.41526602534674

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.719530727107722

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 90.82187183131279

Gold Medals Model Evaluation:

MSE: 16.46292436843005

Silver Medals Model Evaluation:

MSE: 9.861979940395406

Bronze Medals Model Evaluation:

MSE: 10.557522512299439

Total Medals Model Evaluation:

MSE: 138.90460745989

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.334087824543742

Bronze Medals Model Evaluation:

MSE: 16.269595238379605

Total Medals Model Evaluation:

MSE: 130.24560627768508

Gold Medals Model Evaluation:

MSE: 17.046973306958115

Silver Medals Model Evaluation:

MSE: 13.388307855682035

Bronze Medals Model Evaluation:

MSE: 12.61663651919816

Total Medals Model Evaluation:

MSE: 117.16959512126158

Gold Medals Model Evaluation:

MSE: 15.025275128218055

Silver Medals Model Evaluation:

MSE: 13.17042773656496

Bronze Medals Model Evaluation:

MSE: 13.332845766228688

Total Medals Model Evaluation:

MSE: 142.02253023859032

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.879037674693903

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 113.12692967068391

Gold Medals Model Evaluation:

MSE: 12.567166176786662

Silver Medals Model Evaluation:

MSE: 12.097676294688442

Bronze Medals Model Evaluation:

MSE: 14.28169880610954

Total Medals Model Evaluation:

MSE: 137.73642807920788

Gold Medals Model Evaluation:

MSE: 17.805580306523346

Silver Medals Model Evaluation:

MSE: 14.831100015655679

Bronze Medals Model Evaluation:

MSE: 15.91288272227091

Total Medals Model Evaluation:

MSE: 137.56921310056828

Gold Medals Model Evaluation:

MSE: 17.115933522281484

Silver Medals Model Evaluation:

MSE: 15.028158419773177

Bronze Medals Model Evaluation:

MSE: 15.923797272210706

Total Medals Model Evaluation:

MSE: 142.67113750188773

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.087768574724542

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 137.6247990519643

Gold Medals Model Evaluation:

MSE: 18.015592930757705

Silver Medals Model Evaluation:

MSE: 13.891151909137237

Bronze Medals Model Evaluation:

MSE: 16.222980978212686

Total Medals Model Evaluation:

MSE: 130.93607685319475

Gold Medals Model Evaluation:

MSE: 17.55580040628031

Silver Medals Model Evaluation:

MSE: 14.047186837285457

Bronze Medals Model Evaluation:

MSE: 14.64044132805513

Total Medals Model Evaluation:

MSE: 141.09046314385375

Gold Medals Model Evaluation:

MSE: 15.615346401008328

Silver Medals Model Evaluation:

MSE: 9.488869177705215

Bronze Medals Model Evaluation:

MSE: 14.394994150607133

Total Medals Model Evaluation:

MSE: 128.74027775749815

Gold Medals Model Evaluation:

MSE: 16.882727234912707

Silver Medals Model Evaluation:

MSE: 13.574545565240095

Bronze Medals Model Evaluation:

MSE: 15.263664923091076

Total Medals Model Evaluation:

MSE: 136.06583345801198

Gold Medals Model Evaluation:

MSE: 18.282738631898457

Silver Medals Model Evaluation:

MSE: 15.022675106118193

Bronze Medals Model Evaluation:

MSE: 15.207178453684888

Total Medals Model Evaluation:

MSE: 137.2541636466537

Gold Medals Model Evaluation:

MSE: 18.2053941034054

Silver Medals Model Evaluation:

MSE: 14.758058418403055

Bronze Medals Model Evaluation:

MSE: 15.314030286556767

Total Medals Model Evaluation:

MSE: 319.3562992481888

Gold Medals Model Evaluation:

MSE: 32.45522085934934

Silver Medals Model Evaluation:

MSE: 44.730654201336975

Bronze Medals Model Evaluation:

MSE: 34.2966550913708

Total Medals Model Evaluation:

MSE: 143.3969044824103

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.724709920071003

Total Medals Model Evaluation:

MSE: 69.0968085735777

Gold Medals Model Evaluation:

MSE: 11.332462973290282

Silver Medals Model Evaluation:

MSE: 8.005806236692317

Bronze Medals Model Evaluation:

MSE: 6.9620993715241

Total Medals Model Evaluation:

MSE: 731.6196669968692

Gold Medals Model Evaluation:

MSE: 155.5471407104923

Silver Medals Model Evaluation:

MSE: 62.76565025740928

Bronze Medals Model Evaluation:

MSE: 34.14865917254159

Total Medals Model Evaluation:

MSE: 142.85282353556897

Gold Medals Model Evaluation:

MSE: 18.35809521683373

Silver Medals Model Evaluation:

MSE: 15.297862980408816

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 141.97211501849736

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.868688356632255

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 140.1860723417631

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.89386352183329

Bronze Medals Model Evaluation:

MSE: 16.3834643829581

Total Medals Model Evaluation:

MSE: 139.81409086366125

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.990330475436913

Bronze Medals Model Evaluation:

MSE: 15.767712838466531

Total Medals Model Evaluation:

MSE: 141.41526602534674

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.719530727107722

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 115.50343250893141

Gold Medals Model Evaluation:

MSE: 16.76679836055545

Silver Medals Model Evaluation:

MSE: 12.520437626804206

Bronze Medals Model Evaluation:

MSE: 13.279401321327365

Total Medals Model Evaluation:

MSE: 139.60382040217826

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.212751059806186

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 137.50041052809894

Gold Medals Model Evaluation:

MSE: 16.404693533998483

Silver Medals Model Evaluation:

MSE: 14.816481700720088

Bronze Medals Model Evaluation:

MSE: 14.844592006576514

Total Medals Model Evaluation:

MSE: 126.16630244990345

Gold Medals Model Evaluation:

MSE: 15.071809809910627

Silver Medals Model Evaluation:

MSE: 13.40853226322626

Bronze Medals Model Evaluation:

MSE: 12.597443131742804

Total Medals Model Evaluation:

MSE: 127.25009954091041

Gold Medals Model Evaluation:

MSE: 16.926480710184762

Silver Medals Model Evaluation:

MSE: 13.85025155682014

Bronze Medals Model Evaluation:

MSE: 15.943679690749073

Total Medals Model Evaluation:

MSE: 122.22429946498771

Gold Medals Model Evaluation:

MSE: 16.772517866978095

Silver Medals Model Evaluation:

MSE: 11.583161634916555

Bronze Medals Model Evaluation:

MSE: 13.999412456879316

Total Medals Model Evaluation:

MSE: 251.61842026089872

Gold Medals Model Evaluation:

MSE: 33.140948130894614

Silver Medals Model Evaluation:

MSE: 19.51450542095045

Bronze Medals Model Evaluation:

MSE: 26.495273911833902

Total Medals Model Evaluation:

MSE: 105.98040261668906

Gold Medals Model Evaluation:

MSE: 15.69860768926409

Silver Medals Model Evaluation:

MSE: 15.896625274102412

Bronze Medals Model Evaluation:

MSE: 14.196455796077425

Total Medals Model Evaluation:

MSE: 141.82337932321212

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.772864172316424

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 141.97211501849736

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.868688356632255

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 138.76663959741063

Gold Medals Model Evaluation:

MSE: 18.348737894531723

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 15.32975484106139

Total Medals Model Evaluation:

MSE: 97.86561132643006

Gold Medals Model Evaluation:

MSE: 9.939944801859536

Silver Medals Model Evaluation:

MSE: 14.530194606984049

Bronze Medals Model Evaluation:

MSE: 11.830940058907796

Total Medals Model Evaluation:

MSE: 92.3029029187137

Gold Medals Model Evaluation:

MSE: 16.731164303443318

Silver Medals Model Evaluation:

MSE: 10.859344784883668

Bronze Medals Model Evaluation:

MSE: 9.421127814825896

Total Medals Model Evaluation:

MSE: 138.59047770663238

Gold Medals Model Evaluation:

MSE: 17.75290432646527

Silver Medals Model Evaluation:

MSE: 15.428913291547145

Bronze Medals Model Evaluation:

MSE: 15.990374443350733

Total Medals Model Evaluation:

MSE: 144.00537634408602

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 139.89583852281243

Gold Medals Model Evaluation:

MSE: 18.49097762254012

Silver Medals Model Evaluation:

MSE: 15.364905985556241

Bronze Medals Model Evaluation:

MSE: 15.351029718397214

Total Medals Model Evaluation:

MSE: 138.15749736287572

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 13.867874875710406

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 124.52643597291664

Gold Medals Model Evaluation:

MSE: 16.54440089048447

Silver Medals Model Evaluation:

MSE: 13.363132120760671

Bronze Medals Model Evaluation:

MSE: 14.387371590097464

Total Medals Model Evaluation:

MSE: 142.41286633228276

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.391406811866954

Total Medals Model Evaluation:

MSE: 141.23447219747518

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.637407466189542

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 133.09967521980215

Gold Medals Model Evaluation:

MSE: 18.044336810714906

Silver Medals Model Evaluation:

MSE: 14.63179011803488

Bronze Medals Model Evaluation:

MSE: 14.792626154088062

Total Medals Model Evaluation:

MSE: 133.92583877046084

Gold Medals Model Evaluation:

MSE: 17.53268434088007

Silver Medals Model Evaluation:

MSE: 14.570375991830685

Bronze Medals Model Evaluation:

MSE: 12.342067246971313

Total Medals Model Evaluation:

MSE: 118.09401599766086

Gold Medals Model Evaluation:

MSE: 15.895064846442166

Silver Medals Model Evaluation:

MSE: 13.026615279307633

Bronze Medals Model Evaluation:

MSE: 13.59106185654135

Total Medals Model Evaluation:

MSE: 142.02253023859032

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.879037674693903

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 136.1892923916188

Gold Medals Model Evaluation:

MSE: 17.199064555728967

Silver Medals Model Evaluation:

MSE: 14.479878408930748

Bronze Medals Model Evaluation:

MSE: 16.335528680973404

Total Medals Model Evaluation:

MSE: 147.09534075675091

Gold Medals Model Evaluation:

MSE: 17.525681307294043

Silver Medals Model Evaluation:

MSE: 11.920742772536746

Bronze Medals Model Evaluation:

MSE: 21.738538680584604

Total Medals Model Evaluation:

MSE: 801.8796592665005

Gold Medals Model Evaluation:

MSE: 127.08414639875762

Silver Medals Model Evaluation:

MSE: 92.8079718222651

Bronze Medals Model Evaluation:

MSE: 54.35878860000859

Total Medals Model Evaluation:

MSE: 139.97747351836793

Gold Medals Model Evaluation:

MSE: 18.31775223173615

Silver Medals Model Evaluation:

MSE: 15.480645161290322

Bronze Medals Model Evaluation:

MSE: 16.10785772122929

Total Medals Model Evaluation:

MSE: 7955.440914422284

Gold Medals Model Evaluation:

MSE: 1287.7319429982033

Silver Medals Model Evaluation:

MSE: 886.8534870824524

Bronze Medals Model Evaluation:

MSE: 502.76065810972136

Total Medals Model Evaluation:

MSE: 136.6027273902471

Gold Medals Model Evaluation:

MSE: 17.93912512270018

Silver Medals Model Evaluation:

MSE: 14.284246468040052

Bronze Medals Model Evaluation:

MSE: 15.606827977360092

Total Medals Model Evaluation:

MSE: 118.05266389190098

Gold Medals Model Evaluation:

MSE: 17.147729741230755

Silver Medals Model Evaluation:

MSE: 14.076711138301276

Bronze Medals Model Evaluation:

MSE: 13.454165858708564

Total Medals Model Evaluation:

MSE: 130.08125955237986

Gold Medals Model Evaluation:

MSE: 18.012003816764853

Silver Medals Model Evaluation:

MSE: 12.81432007096309

Bronze Medals Model Evaluation:

MSE: 14.951866215159672

Total Medals Model Evaluation:

MSE: 138.9081210348589

Gold Medals Model Evaluation:

MSE: 17.97066037439278

Silver Medals Model Evaluation:

MSE: 14.325087813911944

Bronze Medals Model Evaluation:

MSE: 16.856653003907994

Total Medals Model Evaluation:

MSE: 141.41526602534674

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.719530727107722

Bronze Medals Model Evaluation:

MSE: 16.93763440860215

Total Medals Model Evaluation:

MSE: 138.59047770663238

Gold Medals Model Evaluation:

MSE: 18.508602150537634

Silver Medals Model Evaluation:

MSE: 14.379276547459726

Bronze Medals Model Evaluation:

MSE: 15.834178407042506

Total Medals Model Evaluation:

MSE: 128.59097654913361

Gold Medals Model Evaluation:

MSE: 16.939784606300343

Silver Medals Model Evaluation:

MSE: 13.285004550045176

Bronze Medals Model Evaluation:

MSE: 16.012281431777485

	NOC	Total_Predicted	${\tt Gold_Predicted}$	Silver_Predicted	\
0	Afghanistan	1	0	0	
1	Albania	2	0	0	
2	Algeria	4	2	0	
3	Argentina	3	1	1	
4	Armenia	4	0	3	

150	Venezuela	3	0	2
151	Vietnam	1	0	1
152	VirginIslands	0	0	0
153	Zambia	1	0	0
154	Zimbabwe	3	1	2

Bronze_Predicted

0	1
1	2
2	2
3	1
4	1
• •	
150	0
151	0
152	0
153	1
154	0

[155 rows x 5 columns]

3.1.2 非超参数优化模型

```
import pandas as pd
import numpy as np
from xgboost import XGBRegressor
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import LabelEncoder

# 加载数据
data = pd.read_csv('Generated\\summerOly_medal_counts_processed.csv')

# 数据预处理
# 将国家代码转换为数值标签
label_encoder = LabelEncoder()
data['NOC'] = label_encoder.fit_transform(data['NOC'])
```

```
# 处理缺失值
data = data.fillna(0)
# 创建特征: 前一届奥运会的奖牌总数、金牌数、银牌数、铜牌数
data['Prev_Total'] = data.groupby('NOC')['Total'].shift(1)
data['Prev_Gold'] = data.groupby('NOC')['Gold'].shift(1)
data['Prev_Silver'] = data.groupby('NOC')['Silver'].shift(1)
data['Prev_Bronze'] = data.groupby('NOC')['Bronze'].shift(1)
# 填充缺失值
data['Prev_Total'] = data['Prev_Total'].fillna(0)
data['Prev_Gold'] = data['Prev_Gold'].fillna(0)
data['Prev_Silver'] = data['Prev_Silver'].fillna(0)
data['Prev_Bronze'] = data['Prev_Bronze'].fillna(0)
# 选择特征和目标变量
features = data[['Year', 'NOC', 'Prev_Total', 'Prev_Gold', 'Prev_Silver', |
target total = data['Total']
target_gold = data['Gold']
target_silver = data['Silver']
target_bronze = data['Bronze']
#划分训练集和测试集
X_train_total, X_test_total, y_train_total, y_test_total =_
-train_test_split(features, target_total, test_size=0.2, random_state=42)
X_train_gold, X_test_gold, y_train_gold, y_test_gold =_
 strain_test_split(features, target_gold, test_size=0.2, random_state=42)
X_train_silver, X_test_silver, y_train_silver, y_test_silver =_
→train_test_split(features, target_silver, test_size=0.2, random_state=42)
X_train_bronze, X_test_bronze, y_train_bronze, y_test_bronze =__
 otrain_test_split(features, target_bronze, test_size=0.2, random_state=42)
# 定义 XGBoost 模型
model_total = XGBRegressor(objective='reg:squarederror', random_state=42)
```

```
model gold = XGBRegressor(objective='reg:squarederror', random state=42)
model_silver = XGBRegressor(objective='reg:squarederror', random_state=42)
model_bronze = XGBRegressor(objective='reg:squarederror', random_state=42)
# 超参数优化
param_grid = {
    'n estimators': [50, 100, 150],
    'learning_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 5, 7],
    'subsample': [0.7, 0.8, 0.9]
}
# 使用 GridSearchCV 进行超参数优化
grid_search_total = GridSearchCV(estimator=model_total, param_grid=param_grid,__
⇔cv=3, scoring='neg_mean_squared_error', n_jobs=-1)
grid_search_gold = GridSearchCV(estimator=model_gold, param_grid=param_grid,__
 ⇒cv=3, scoring='neg_mean_squared_error', n_jobs=-1)
grid_search_silver = GridSearchCV(estimator=model_silver,__
 param grid=param grid, cv=3, scoring='neg mean squared error', n_jobs=-1)
grid_search_bronze = GridSearchCV(estimator=model_bronze,__
 sparam_grid=param_grid, cv=3, scoring='neg_mean_squared_error', n_jobs=-1)
# 训练模型
grid_search_total.fit(X_train_total, y_train_total)
grid_search_gold.fit(X_train_gold, y_train_gold)
grid_search_silver.fit(X_train_silver, y_train_silver)
grid_search_bronze.fit(X_train_bronze, y_train_bronze)
# 获取最佳模型
best_model_total = grid_search_total.best_estimator_
best_model_gold = grid_search_gold.best_estimator_
best_model_silver = grid_search_silver.best_estimator_
best_model_bronze = grid_search_bronze.best_estimator_
# 评估模型
def evaluate_model(model, X_test, y_test):
```

```
y_pred = model.predict(X_test)
   mse = mean_squared_error(y_test, y_pred)
   print(f'MSE: {mse}')
   return y_pred
print("Total Medals Model Evaluation:")
evaluate_model(best_model_total, X_test_total, y_test_total)
print("Gold Medals Model Evaluation:")
evaluate_model(best_model_gold, X_test_gold, y_test_gold)
print("Silver Medals Model Evaluation:")
evaluate_model(best_model_silver, X_test_silver, y_test_silver)
print("Bronze Medals Model Evaluation:")
evaluate model(best model bronze, X test bronze, y test bronze)
# 为每个国家单独训练模型
country_models = {}
for country in data['NOC'].unique():
   country data = data[data['NOC'] == country]
   if len(country_data) > 1: #确保每个国家至少有两条记录
       country_features = country_data[['Year','NOC', 'Prev_Total',_
 country_target_total = country_data['Total']
       country_target_gold = country_data['Gold']
       country_target_silver = country_data['Silver']
       country_target_bronze = country_data['Bronze']
       country model_total = XGBRegressor(objective='reg:squarederror',_
 →random_state=42)
       country_model_gold = XGBRegressor(objective='reg:squarederror',_
 →random_state=42)
       country_model_silver = XGBRegressor(objective='reg:squarederror',_
 →random_state=42)
```

```
country_model_bronze = XGBRegressor(objective='reg:squarederror',_
 →random_state=42)
        country_model_total.fit(country_features, country_target_total)
        country_model_gold.fit(country_features, country_target_gold)
        country_model_silver.fit(country_features, country_target_silver)
        country_model_bronze.fit(country_features, country_target_bronze)
        country_models[country] = {
            'total': country_model_total,
            'gold': country_model_gold,
            'silver': country_model_silver,
            'bronze': country_model_bronze
       }
# 预测 2028 年奥运会的奖牌数
next_year = 2028
predictions = []
for country in data['NOC'].unique():
    country_data = data[data['NOC'] == country]
    if len(country_data) > 1:
       prev_total = country_data['Total'].iloc[-1]
       prev_gold = country_data['Gold'].iloc[-1]
       prev_silver = country_data['Silver'].iloc[-1]
       prev_bronze = country_data['Bronze'].iloc[-1]
       next_data = pd.DataFrame({
            'Year': [next_year],
            'NOC': [country], #添加 NOC 列
            'Prev_Total': [prev_total],
            'Prev_Gold': [prev_gold],
            'Prev_Silver': [prev_silver],
            'Prev_Bronze': [prev_bronze]
       })
```

```
# 使用单独模型预测
      total_pred = country_models[country]['total'].predict(next_data)
      gold_pred = country_models[country]['gold'].predict(next_data)
      silver_pred = country_models[country]['silver'].predict(next_data)
      bronze_pred = country_models[country]['bronze'].predict(next_data)
      # 使用整体模型预测
      total_pred_global = best_model_total.predict(next_data)
      gold_pred_global = best_model_gold.predict(next_data)
      silver_pred_global = best_model_silver.predict(next_data)
      bronze_pred_global = best_model_bronze.predict(next_data)
      #根据数据量分配权重
      data_count = len(country_data)
      weight = min(data_count / 10, 1) # 数据量越多, 权重越高, 但不超过 1
      total_pred_combined = weight * total_pred + (1 - weight) *__
→total_pred_global
      gold_pred_combined = weight * gold_pred + (1 - weight) *_
⇒gold_pred_global
      silver_pred_combined = weight * silver_pred + (1 - weight) *__
⇒silver_pred_global
      bronze_pred_combined = weight * bronze_pred + (1 - weight) *__
⇒bronze pred global
      # 对预测结果取整
      total_pred_combined = round(total_pred_combined[0])
      gold_pred_combined = round(gold_pred_combined[0])
      silver_pred_combined = round(silver_pred_combined[0])
      bronze_pred_combined = round(bronze_pred_combined[0])
      predictions.append({
          'NOC': country,
          'Total_Predicted': total_pred_combined,
          'Gold_Predicted': gold_pred_combined,
          'Silver_Predicted': silver_pred_combined,
          'Bronze_Predicted': bronze_pred_combined
```

```
# 将预测结果转换为 DataFrame
predictions_df = pd.DataFrame(predictions)

# 将 NOC 标签转换回国家代码
predictions_df['NOC'] = label_encoder.inverse_transform(predictions_df['NOC'])

# 输出预测结果
print(predictions_df)

# 保存预测结果到 CSV 文件
predictions_df.to_csv('Result\\2028_olympics_medal_predictions_2.csv',u
```

Total Medals Model Evaluation:

MSE: 14.183948320207696

Gold Medals Model Evaluation:

MSE: 2.9414593946059715

Silver Medals Model Evaluation:

MSE: 1.8287626291987034

Bronze Medals Model Evaluation:

MSE: 2.185780634244944

	NOC	Total_Predicted	${\tt Gold_Predicted}$	Silver_Predicted	\
0	Afghanistan	1	0	0	
1	Albania	2	0	0	
2	Algeria	5	2	0	
3	Argentina	3	1	1	
4	Armenia	4	0	3	
		•••	•••	•••	
150	Venezuela	3	1	2	
151	Vietnam	1	0	1	
152	VirginIslands	0	0	0	
153	Zambia	1	0	0	
154	Zimbabwe	3	1	2	

 ${\tt Bronze_Predicted}$

```
0
                        1
                        2
1
2
                        2
3
                        1
4
                        1
. .
                        0
150
151
                        0
152
153
                        1
154
                        0
```

[155 rows x 5 columns]

3.1.3 评估预测区间

```
[56]: import math
     # 加载数据
     data = pd.read_csv('Generated\\summerOly_medal_counts_processed.csv')
     predictions_df = pd.read_csv('Result\\2028_olympics_medal_predictions_2.csv')
     #数据预处理
     # 将国家代码转换为数值标签
     label_encoder = LabelEncoder()
     data['NOC2'] = data['NOC'].copy()
     data['NOC'] = label_encoder.fit_transform(data['NOC'])
     predictions_df['NOC2'] = predictions_df['NOC'].copy()
     predictions_df['NOC'] = label_encoder.fit_transform(predictions_df['NOC'])
     # 输出预测结果
     print(predictions_df)
     # 处理缺失值
     data = data.fillna(0)
     # 创建特征: 前一届奥运会的奖牌总数、金牌数、银牌数、铜牌数
```

```
data['Prev Total'] = data.groupby('NOC')['Total'].shift(1)
data['Prev_Gold'] = data.groupby('NOC')['Gold'].shift(1)
data['Prev_Silver'] = data.groupby('NOC')['Silver'].shift(1)
data['Prev_Bronze'] = data.groupby('NOC')['Bronze'].shift(1)
#填充缺失值
data['Prev_Total'] = data['Prev_Total'].fillna(0)
data['Prev_Gold'] = data['Prev_Gold'].fillna(0)
data['Prev_Silver'] = data['Prev_Silver'].fillna(0)
data['Prev_Bronze'] = data['Prev_Bronze'].fillna(0)
def evaluate_model_2(model, X_test, y_test):
   y_pred = model.predict(X_test)
   mse = mean_squared_error(y_test, y_pred)
   print(f'MSE: {mse}')
   return mse
# 计算预测区间
def prediction_interval(model, X, y, confidence=0.95):
    # 评估区间
   interval_get = math.sqrt(int(evaluate_model_2(model, X, y)))
   preds = []
   for i in range(10): # 进行 10 次预测以估计不确定性
       preds.append(model.predict(X))
   preds = np.array(preds)
   lower = np.percentile(preds, (1 - confidence) / 2 * 100, axis=0) -
 →round(interval_get/2)
   upper = np.percentile(preds, (1 + confidence) / 2 * 100, axis=0) +
 →round(interval_get/2)
   return lower, upper
# 计算每个国家的预测区间
prediction_intervals = []
for country in data['NOC'].unique():
   country_data = data[data['NOC'] == country]
   print(country, label_encoder.inverse_transform([country])[0])
```

```
if len(country data) > 1:
      prev_total = country_data['Total'].iloc[-1]
      prev_gold = country_data['Gold'].iloc[-1]
      prev_silver = country_data['Silver'].iloc[-1]
      prev_bronze = country_data['Bronze'].iloc[-1]
      next_data = pd.DataFrame({
          'Year': [next_year],
          'NOC': [country],
          'Prev_Total': [prev_total],
          'Prev_Gold': [prev_gold],
          'Prev_Silver': [prev_silver],
          'Prev_Bronze': [prev_bronze]
      })
      total_lower, total_upper =__

→country_data['Total'][country_data['Year']==2024], 0.95)
      gold_lower, gold_upper =__
oprediction_interval(country_models[country]['gold'], next_data, □

country_data['Gold'][country_data['Year']==2024], 0.95)

      silver_lower, silver_upper =_
oprediction_interval(country_models[country]['silver'], next_data, □

→country_data['Silver'][country_data['Year']==2024], 0.95)
      bronze_lower, bronze_upper =_
oprediction_interval(country_models[country]['bronze'], next_data, □

country_data['Bronze'][country_data['Year']==2024], 0.95)

      prediction_intervals.append({
          'NOC': country,
          'Total_Predicted': predictions_df.loc[predictions_df['NOC2'] ==__
→label_encoder.inverse_transform([country])[0], 'Total_Predicted'].values[0],
          'Total_Lower': round(total_lower[0]),
          'Total_Upper': round(total_upper[0]),
          'Gold_Predicted': predictions_df.loc[predictions_df['NOC2'] ==__
alabel_encoder.inverse_transform([country])[0], 'Gold_Predicted'].values[0],
```

```
'Gold Lower': round(gold lower[0]),
            'Gold_Upper': round(gold_upper[0]),
            'Silver_Predicted': predictions_df.loc[predictions_df['NOC2'] ==_
 ⇔label_encoder.inverse_transform([country])[0], 'Silver_Predicted'].values[0],
            'Silver_Lower': round(silver_lower[0]),
            'Silver_Upper': round(silver_upper[0]),
            'Bronze_Predicted': predictions_df.loc[predictions_df['NOC2'] ==__
 →label_encoder.inverse_transform([country])[0], 'Bronze_Predicted'].values[0],
            'Bronze_Lower': round(bronze_lower[0]),
            'Bronze_Upper': round(bronze_upper[0])
       })
#将预测区间转换为 DataFrame
prediction_intervals_df = pd.DataFrame(prediction_intervals)
# 将 NOC 标签转换回国家代码
prediction_intervals_df['NOC'] = label_encoder.
 →inverse_transform(prediction_intervals_df['NOC'])
# 输出预测区间
print(prediction_intervals_df)
# 保存预测区间到 CSV 文件
prediction_intervals_df.
 oto_csv('Result\\2028_olympics_medal_predictions_intervals.csv', index=False)
```

	NOC	Total_Predicted	${\tt Gold_Predicted}$	Silver_Predicted	${\tt Bronze_Predicted}$	\
0	0	1	0	0	1	
1	1	2	0	0	2	
2	2	5	2	0	2	
3	3	3	1	1	1	
4	4	4	0	3	1	
	•••	•••	•••	•••	•••	
150	150	3	1	2	0	
151	151	1	0	1	0	
152	152	0	0	0	0	
153	153	1	0	0	1	

NOC2

0 Afghanistan

1 Albania

2 Algeria

3 Argentina

4 Armenia

.

150 Venezuela

151 Vietnam

152 VirginIslands

153 Zambia

154 Zimbabwe

[155 rows x 6 columns]

0 Afghanistan

MSE: 1.6973353922367096e-07

MSE: 0.0 MSE: 0.0

MSE: 1.6973353922367096e-07

1 Albania

MSE: 1.5524549326073611e-06

MSE: 0.0 MSE: 0.0

MSE: 1.5524549326073611e-06

2 Algeria

MSE: 3.994724107171578

MSE: 0.0715187132484516

MSE: 6.735792893548496e-07

MSE: 0.40100133269567095

3 Argentina

MSE: 2.3470784071832895e-07

MSE: 3.494688058935935e-07

MSE: 4.82183182271001e-09

MSE: 1.0942446948547513e-08

4 Armenia

MSE: 1.7953652786673047e-08

MSE: 0.022775736567688165

MSE: 1.1654483387246728e-06

MSE: 0.000602870343314521

5 Australasia

MSE: 7.366907084360719e-09

MSE: 2.8141045049778768e-09

MSE: 0.0

MSE: 3.5811922316497657e-09

6 Australia

MSE: 46.04812975054665

MSE: 18.760339548826778

MSE: 14.428052094081067

MSE: 2.297645300950535

7 Austria

MSE: 3.2837787522751114

MSE: 0.929088444383197

MSE: 0.3103930830840831

MSE: 0.12714879985674088

8 Azerbaijan

MSE: 0.9369287917252223

MSE: 5.139809786669503e-07

MSE: 0.01512698294305892

MSE: 3.4371402080068947e-07

9 Bahamas

MSE: 2.9368317200351157e-07

MSE: 4.619677440587111e-08

MSE: 2.775757794742491e-08

MSE: 4.4608173054226145e-07

10 Bahrain

MSE: 1.4410503013095877e-06

MSE: 1.3981571242993596e-06

MSE: 2.537326828644382e-07

MSE: 1.4199488305166597e-06

11 Barbados

MSE: 1.140026007704961e-08

MSE: 0.0

MSE: 0.0

MSE: 1.140026007704961e-08

12 Belarus

MSE: 0.04860342527626926

MSE: 5.0977689625142375e-08

MSE: 0.10681934870467558

MSE: 3.903685922068689e-06

13 Belgium

MSE: 1.1185702533111908e-06

MSE: 0.10785510490313754

MSE: 2.5321249417231684e-06

MSE: 8.881784197001252e-08

14 Bermuda

MSE: 1.1742159244931827e-08

MSE: 1.6973353922367096e-07

MSE: 0.0

MSE: 2.3612407219856805e-08

15 Botswana

MSE: 1.3981571242993596e-06

MSE: 1.4199488305166597e-06

MSE: 0.06726882339650331

MSE: 9.92802048623378e-08

16 Brazil

MSE: 2.201559254899621e-07

MSE: 0.019516072094120318

MSE: 1.5123171124287182e-06

MSE: 3.873096941505537

17 BritishWestIndies

MSE: 2.3428810891346075e-08

MSE: 0.0

MSE: 0.0

MSE: 2.3428810891346075e-08

18 Bulgaria

MSE: 3.1766921892995015e-07

MSE: 0.011571393059114143

MSE: 0.42826602829359217

MSE: 0.0004790748798768618

19 BurkinaFaso

MSE: 4.778883209155538e-07

MSE: 0.0

MSE: 0.0

MSE: 4.778883209155538e-07

20 Burundi

MSE: 7.42305452661185e-08

MSE: 1.0778264337465494e-08

MSE: 2.1742369327171218e-07

MSE: 0.0

21 CaboVerde

MSE: 1.4199488305166597e-06

MSE: 0.0 MSE: 0.0

MSE: 1.4199488305166597e-06

22 Cameroon

MSE: 3.263864201130673e-08

MSE: 4.982917154450206e-07

MSE: 3.155964636928306e-08

MSE: 2.0903196290074218e-07

23 Canada

MSE: 1.63796721608378e-06

MSE: 1.4971092241466977e-06

MSE: 1.342618816124741e-08

MSE: 0.008354335444892058

24 Ceylon

MSE: 7.160666008459318e-09

MSE: 0.0

MSE: 7.160666008459318e-09

MSE: 0.0

25 Chile

MSE: 3.476111487543676e-08

MSE: 7.718895744801557e-09

MSE: 1.955996253855119e-09

MSE: 1.9367148421502254e-08

26 China

MSE: 1.6994433920481242

MSE: 3.6888543146196753

MSE: 0.049751780348742614

MSE: 0.22513277226607897

27 ChineseTaipei

MSE: 4.584762791637331e-07

MSE: 2.8574106636369834e-08

MSE: 9.210824938766463e-05

MSE: 1.4479246601695195e-07

28 Colombia

MSE: 4.800773467650288e-08

MSE: 7.667576085625353e-08

MSE: 1.885928213596344e-08

MSE: 1.248465650860453e-07

29 CostaRica

MSE: 3.2878375577638508e-09

MSE: 1.1996345016534961e-08

MSE: 1.654898907929553e-08

MSE: 2.1325163857000007e-08

30 Croatia

MSE: 2.7412261260906234e-07

MSE: 1.1951328815484885e-09

MSE: 2.786348431982333e-07

MSE: 0.09114096443249764

31 Cuba

MSE: 33.48610947668567

MSE: 1.2728315964550916

MSE: 0.948688959761057

MSE: 2.3940999722990455

32 Cyprus

MSE: 2.1742369327171218e-07

MSE: 0.0

MSE: 2.1742369327171218e-07

MSE: 0.0

33 CzechRepublic

MSE: 0.84680817145113

MSE: 1.0291515195604006e-06

MSE: 0.9990270121516573

MSE: 3.725290298461914e-09

34 Denmark

MSE: 0.03616618936939631

MSE: 9.044993589668593e-07

MSE: 0.1823740395662412

MSE: 1.0471276254975237e-06

35 Djibouti

MSE: 4.99626951493399e-10

MSE: 0.0 MSE: 0.0

MSE: 4.99626951493399e-10

36 Dominica

MSE: 1.4199488305166597e-06

MSE: 1.4199488305166597e-06

MSE: 0.0 MSE: 0.0

37 DominicanRepublic

MSE: 2.525930540286936e-07

MSE: 1.868126137338777e-06

MSE: 9.782178919332541e-08

MSE: 6.22405934791459e-07

38 Ecuador

MSE: 1.5181867638602853e-06

MSE: 6.74118041388283e-08

MSE: 1.7011171991043739e-06

MSE: 1.5524549326073611e-06

39 Egypt

MSE: 0.23856807980359918

MSE: 3.078030772485363e-07

MSE: 1.7557830744863168e-09

MSE: 4.140958503623779

40 Eritrea

MSE: 1.2923835163312744e-08

MSE: 0.0

MSE: 0.0

MSE: 1.2923835163312744e-08

41 Estonia

MSE: 2.1151436158106662e-10

MSE: 6.444296118957027e-08

MSE: 1.6270200604035775e-08

MSE: 3.412026217120001e-09

42 Ethiopia

MSE: 0.010629131050393426

MSE: 1.8673951274195133e-07

MSE: 0.019763054388022283

MSE: 1.2788976758932105e-06

43 FRYugoslavia

MSE: 5.835327101522125e-07

MSE: 7.42305452661185e-08

MSE: 7.42305452661185e-08

MSE: 1.0830504493242188e-08

44 Fiji

MSE: 6.195568857947364e-08

MSE: 3.211040390258338e-07

MSE: 1.4199488305166597e-06

MSE: 9.92802048623378e-08

45 Finland

MSE: 1.1690545420606213e-06

MSE: 2.1794434937132136e-08

MSE: 1.4613750559701322e-06

MSE: 6.722712555529142e-07

46 France

MSE: 43.71525864351133

MSE: 7.979276914310503

MSE: 12.340475586766843

MSE: 53.4596161448726

47 Gabon

MSE: 2.3095451991457522e-08

MSE: 0.0

MSE: 2.3095451991457522e-08

MSE: 0.0

48 Georgia

MSE: 0.7632527873668096

MSE: 2.521139776945347e-07

MSE: 8.145667749204222e-07

49 Germany

MSE: 6.055925041437149e-07

MSE: 0.06465836433926597

MSE: 0.00010631933400873095

MSE: 1.0608346201479435e-08

50 Ghana

MSE: 2.5669578462839127e-08

MSE: 0.0

MSE: 2.263556034862694e-08

MSE: 2.873554194593453e-08

51 GreatBritain

MSE: 2.852175384759903e-09

MSE: 1.6575540939811617e-08

MSE: 0.00024034082889556885

MSE: 34.540550915757194

52 Greece

MSE: 3.0976461244392794

MSE: 1.2118888018651433

MSE: 0.9956312315707692

MSE: 5.115907697472721e-07

53 Grenada

MSE: 1.3981571242993596e-06

MSE: 6.5833540192780865e-09

MSE: 1.6884047836144305e-09

MSE: 1.4026714012516095e-06

54 Guatemala

MSE: 1.3981571242993596e-06

MSE: 4.778883209155538e-07

MSE: 6.5833540192780865e-09

MSE: 4.778883209155538e-07

55 Guyana

MSE: 1.6995968167330504e-08

MSE: 0.0

MSE: 0.0

MSE: 1.6995968167330504e-08

56 Haiti

MSE: 5.802590408165997e-09

MSE: 0.0

MSE: 1.1631658389687339e-08 MSE: 8.517478996543298e-09

57 HongKong

MSE: 1.248465650860453e-07 MSE: 1.8416621969663538e-06 MSE: 1.2191963105777634e-07 MSE: 1.2249893188709393e-07

58 Hungary

MSE: 0.002195656594267348 MSE: 0.0002019169187406078 MSE: 1.1612176542187171 MSE: 0.006406245419384504

59 Iceland

MSE: 2.324669878817076e-08

MSE: 0.0

MSE: 0.002013544599727135

MSE: 1.4244981230149278e-06

60 IndependentOlympicAthletes

MSE: 1.1061871418860392e-09

MSE: 3.211040390258338e-07

MSE: 0.0

MSE: 3.211040390258338e-07

61 IndependentOlympicParticipants

MSE: 3.8314794892357895e-08

MSE: 0.0

MSE: 1.2548357216595072e-08 MSE: 1.0830504493242188e-08

62 India

MSE: 0.06979242902184524 MSE: 0.7265408555982198 MSE: 0.9983279547677739

MSE: 4.9885456974152476e-06

63 Indonesia

MSE: 1.8737522608134896

MSE: 1.6257845345535316e-06

MSE: 1.3687797402614174e-06

MSE: 2.4663728481755243e-07

64 Iran

MSE: 1.642853021621704e-06

MSE: 5.83309542889765e-08

MSE: 7.531583619324067

MSE: 2.180833917009295e-06

65 Iraq

MSE: 2.7549018638868555e-08

MSE: 0.0

MSE: 0.0

MSE: 2.7549018638868555e-08

66 Ireland

MSE: 1.4142724467092194e-06

MSE: 1.8448991454533825e-06

MSE: 0.46593481471610687

MSE: 0.7807063998482136

67 Israel

MSE: 1.7584991383046145e-06

MSE: 1.3219647598816664e-07

MSE: 1.8261644072481431e-06

MSE: 2.7850900607973017e-07

68 Italy

MSE: 0.00036612991243600845

MSE: 1.4288358099438483

MSE: 0.564170645521699

MSE: 1.7591466999292606

69 IvoryCoast

MSE: 2.6284396881237626e-08

MSE: 2.3095451991457522e-08

MSE: 1.8298635804604773e-08

MSE: 9.313225746154785e-08

70 Jamaica

MSE: 3.1977305135480947

MSE: 0.013250568242767713

71 Japan

MSE: 3.2145180739462376e-08 MSE: 5.820766091346741e-11 MSE: 1.2450072972569615e-06 MSE: 0.000157535324433411

72 Jordan

MSE: 3.32009939540967e-08 MSE: 5.387291710150455e-09 MSE: 4.778883209155538e-07 MSE: 1.6884047836144305e-09

73 Kazakhstan

MSE: 3.9617589209228754e-07 MSE: 1.0344371048631729e-07 MSE: 1.3376143215282355e-07 MSE: 1.7768252291716635e-07

74 Kenya

MSE: 4.193143468000926e-07 MSE: 1.161333784693852e-08 MSE: 1.8744076498933282e-05 MSE: 1.8814792641026088

75 Kosovo

MSE: 4.5204160414868966e-07 MSE: 1.4409998954043146e-07 MSE: 1.4199488305166597e-06 MSE: 1.4199488305166597e-06

76 Kuwait

MSE: 1.0754776269550348e-07

MSE: 0.0 MSE: 0.0

MSE: 1.0754776269550348e-07

77 Kyrgyzstan

MSE: 0.08774251273848677

MSE: 0.0

MSE: 3.089947000489701e-07 MSE: 1.5193620583886513e-06

78 Latvia

MSE: 6.0040861171728466e-09

MSE: 1.0754776269550348e-07

MSE: 5.725222185767824e-11

MSE: 1.3648104868480004e-10

79 Lebanon

MSE: 2.1325163857000007e-08

MSE: 0.0

MSE: 5.551115123125783e-09

MSE: 3.915943125321064e-10

80 Lithuania

MSE: 0.6522478321587641

MSE: 7.01580543894945e-07

MSE: 0.9995318007261176

MSE: 1.0194995070378354e-08

81 Luxembourg

MSE: 1.6816557035781443e-09

MSE: 6.814904196517091e-09

MSE: 3.3506523167585813e-09

MSE: 0.0

82 Macedonia

MSE: 1.140026007704961e-08

MSE: 0.0

MSE: 0.0

MSE: 1.140026007704961e-08

83 Malaysia

MSE: 8.543997864762787e-08

MSE: 0.0

MSE: 1.4577337912290291e-06

MSE: 1.5757123605908419e-06

84 Mauritius

MSE: 1.074163096010802e-08

MSE: 0.0

MSE: 0.0

MSE: 1.074163096010802e-08

85 Mexico

MSE: 0.9750407944522976

MSE: 3.5144368818055796

86 Mixedteam

MSE: 9.094947017729282e-13

MSE: 4.330104275140911e-09

MSE: 1.035971308738226e-09

MSE: 4.8466972657479346e-09

87 Moldova

MSE: 0.12468672506435041

MSE: 0.0

MSE: 1.4780625043897544e-06

MSE: 1.81073210114846e-06

88 Mongolia

MSE: 0.5925653473187964

MSE: 6.8889623910832355e-09

MSE: 0.8167207442879034

MSE: 3.9594106877861037

89 Montenegro

MSE: 2.3095451991457522e-08

MSE: 0.0

MSE: 2.3095451991457522e-08

MSE: 0.0

90 Morocco

MSE: 0.0621849701985866

MSE: 4.6511901530266186e-07

MSE: 6.6136397777894295e-09

MSE: 0.06726647361860216

91 Mozambique

MSE: 7.42305452661185e-08

MSE: 6.5513532170963446e-09

MSE: 0.0

MSE: 1.1996345016534961e-08

92 Namibia

MSE: 2.0497751052062085e-08

MSE: 0.0

MSE: 2.0497751052062085e-08

93 Netherlands

MSE: 4.895264282822609e-08

MSE: 1.682201400399208e-06

MSE: 3.4904610402008984e-07

MSE: 1.101434463635087e-07

94 NetherlandsAntilles

MSE: 4.99626951493399e-10

MSE: 0.0

MSE: 4.99626951493399e-10

MSE: 0.0

95 NewZealand

MSE: 5.392394086811692e-07

MSE: 1.813299604691565e-06

MSE: 1.4324768926599063e-06

MSE: 1.1054964943468804e-08

96 Niger

MSE: 6.407848474054845e-09

MSE: 0.0

MSE: 9.313225746154785e-08

MSE: 2.1719322495902997e-08

97 Nigeria

MSE: 2.1082144030515337e-08

MSE: 2.5066654497944264e-09

MSE: 5.0816325369851256e-08

MSE: 6.369734961708673e-09

98 NorthKorea

MSE: 5.8215846365783364e-08

MSE: 1.792197035308668e-06

MSE: 3.387004312571662e-07

MSE: 1.0614653211096083

99 NorthMacedonia

MSE: 4.778883209155538e-07

MSE: 0.0

MSE: 4.778883209155538e-07

MSE: 0.0

100 Norway

MSE: 0.8465350429990082

MSE: 2.7309997733482305e-05

101 Pakistan

MSE: 2.063451631784119e-08

MSE: 1.4284850990975428e-07

MSE: 9.562590587676924e-09

MSE: 2.0079145783913323e-09

102 Panama

MSE: 2.0259506072761724e-08

MSE: 1.46794109540162e-09

MSE: 4.778883209155538e-07

MSE: 8.960664046499676e-10

103 Paraguay

MSE: 1.2923835163312744e-08

MSE: 0.0

MSE: 1.2923835163312744e-08

MSE: 0.0

104 Peru

MSE: 1.0424972884948147e-08

MSE: 5.429920696925306e-09

MSE: 2.5110489548319094e-09

MSE: 2.537326828644382e-07

105 Philippines

MSE: 4.760770480061183e-07

MSE: 1.3981571242993596e-06

MSE: 0.22906018066709866

MSE: 1.762611660183211e-06

106 Poland

MSE: 1.8835820108652115

MSE: 1.4319062415779626e-06

MSE: 0.011657366299914429

MSE: 0.06389915492400178

107 Portugal

MSE: 0.17264335821215582

MSE: 7.583341954386924e-07

108 PuertoRico

MSE: 1.7581829894197654e-06 MSE: 3.211040390258338e-07 MSE: 2.2689356340973604e-07 MSE: 1.4889521935401717e-06

109 Qatar

MSE: 1.4262332115322351e-07 MSE: 1.0822434133541845e-07 MSE: 9.578828589701526e-08 MSE: 5.445324191555301e-08

110 ROC

MSE: 1.6350531950592995e-07 MSE: 1.752787284203805e-07 MSE: 6.007121555740014e-08 MSE: 1.3271710486151278e-07

111 RefugeeOlympicTeam

MSE: 1.4199488305166597e-06

MSE: 0.0 MSE: 0.0

MSE: 1.4199488305166597e-06

112 Romania

MSE: 4.682085129465122

MSE: 0.0023860022158714855 MSE: 0.03766681315846654 MSE: 0.4349356939110862

113 Russia

MSE: 0.010707588458899409 MSE: 0.027287651206279406 MSE: 8.185452315956354e-08 MSE: 0.07871044465355226

114 SaintLucia

MSE: 1.5524549326073611e-06 MSE: 1.4199488305166597e-06 MSE: 1.4199488305166597e-06

MSE: 0.0 115 Samoa MSE: 1.074163096010802e-08

MSE: 0.0

MSE: 1.074163096010802e-08

MSE: 0.0

116 SanMarino

MSE: 7.834591997379903e-08

MSE: 0.0

MSE: 4.778883209155538e-07

MSE: 1.0707914555041498e-07

117 SaudiArabia

MSE: 7.887379638304992e-09

MSE: 0.0

MSE: 2.623921915301253e-07 MSE: 4.986535256637552e-07

118 Senegal

MSE: 4.99626951493399e-10

MSE: 0.0

MSE: 4.99626951493399e-10

MSE: 0.0

119 Serbia

MSE: 1.477101250202395e-07

MSE: 2.1570394892478362e-07

MSE: 2.8090477144360193e-07

MSE: 1.4190391084412113e-07

120 SerbiaandMontenegro

MSE: 7.718895744801557e-09

MSE: 0.0

MSE: 7.718895744801557e-09

MSE: 0.0

121 Singapore

MSE: 1.1510792319313623e-10

MSE: 1.6884047836144305e-09

MSE: 1.398155706801059e-07

MSE: 5.7985971579910256e-08

122 Slovakia

MSE: 4.5220191680073185e-07

MSE: 1.1319621282318755e-06

MSE: 1.5416651523103239e-06

MSE: 2.8032619781015455e-08

123 Slovenia

MSE: 0.2425715807476081

MSE: 2.461115400365088e-08

MSE: 5.994852614321644e-09

MSE: 0.3530150804849974

124 SouthAfrica

MSE: 0.5164398081578838

MSE: 0.0506667008408499

MSE: 0.08793004583191077

MSE: 0.0007638633409356999

125 SouthKorea

MSE: 43.26979633342489

MSE: 8.856364980260878

MSE: 1.2459555987063595

MSE: 1.0008031549741645

126 Spain

MSE: 35.331490358920746

MSE: 0.10381211041021743

MSE: 0.17627111272395268

MSE: 2.291215537134349

127 SriLanka

MSE: 1.140026007704961e-08

MSE: 0.0

MSE: 1.140026007704961e-08

MSE: 0.0

128 Sudan

MSE: 1.074163096010802e-08

MSE: 0.0

MSE: 1.074163096010802e-08

MSE: 0.0

129 Suriname

MSE: 4.1797321159720013e-08

MSE: 1.654898907929553e-08

MSE: 0.0

MSE: 1.1631658389687339e-08

130 Sweden

MSE: 1.9083821927861209 MSE: 0.06598845990106383 MSE: 0.06784283701654203 MSE: 0.7962807892091064

131 Switzerland

MSE: 0.9667695876871676 MSE: 3.8678848104464123 MSE: 0.011723307024169571 MSE: 6.526305188073422

132 Syria

MSE: 3.324445074781579e-08 MSE: 1.6080186172781866e-08 MSE: 1.65282874911838e-08 MSE: 9.313225746154785e-08

133 Taiwan

MSE: 0.0

MSE: 0.0 MSE: 0.0

MSE: 0.0

134 Tajikistan

MSE: 1.6581680597482773e-06 MSE: 5.387291710150455e-09 MSE: 6.3767993767271316e-09 MSE: 1.377653063627804e-06

135 Tanzania

MSE: 1.6760225207690382e-08

MSE: 0.0

MSE: 1.6760225207690382e-08

MSE: 0.0

136 Thailand

MSE: 0.9632442612428349
MSE: 0.00017719934754723
MSE: 1.7095235307351686e-06

MSE: 0.21871474907038646

137 Togo

MSE: 1.074163096010802e-08

MSE: 0.0

MSE: 1.074163096010802e-08

138 Tonga

MSE: 1.0778264337465494e-08

MSE: 0.0

MSE: 1.0778264337465494e-08

MSE: 0.0

139 TrinidadandTobago

MSE: 0.0032727213500862717 MSE: 1.8668228882745552e-06

MSE: 0.0019722895922882344 MSE: 0.00010224747132170364

140 Tunisia

MSE: 4.1224262758987607e-07 MSE: 4.604316927725449e-08 MSE: 3.049969166113442e-08

MSE: 1.6554061090801042e-06

141 Turkey

MSE: 4.860666316170864 MSE: 1.1744494875247256 MSE: 4.015513412259143

MSE: 4.807044206245337e-06

142 Turkmenistan

MSE: 4.778883209155538e-07

MSE: 0.0

MSE: 4.778883209155538e-07

MSE: 0.0

143 Uganda

MSE: 1.3815684951623552e-07 MSE: 5.908192690640135e-08

MSE: 4.330104275140911e-09 MSE: 4.754275237188478e-07

144 Ukraine

MSE: 3.40419490225122 MSE: 0.7299633708512943 MSE: 0.137955934971842

145 UnifiedTeam

MSE: 3.230670699849725e-07 MSE: 2.516353561077267e-07 MSE: 5.047922968515195e-07 MSE: 1.6350531950592995e-07

146 UnitedArabEmirates

MSE: 9.313225746154785e-08 MSE: 8.74015187083042e-09

MSE: 0.0

MSE: 2.1742369327171218e-07

147 UnitedStates

MSE: 5.0188551566097885 MSE: 14.137472632122808 MSE: 1.0510191714856774 MSE: 31.46059445689025

148 Uruguay

MSE: 1.2185466857772553e-08 MSE: 8.925877397551354e-09 MSE: 2.0251356147582555e-09 MSE: 1.2979553837339814e-09

149 Uzbekistan

MSE: 1.7145148376584984e-06 MSE: 0.45250979676438874 MSE: 0.9990391656192656 MSE: 1.9813847984551103e-07

150 Venezuela

MSE: 1.602439283487911e-07 MSE: 5.948828629698255e-08 MSE: 1.9244907889515162e-07 MSE: 3.937924236597676e-08

151 Vietnam

MSE: 2.516353561077267e-07 MSE: 3.211040390258338e-07 MSE: 1.0754776269550348e-07 MSE: 6.5833540192780865e-09

152 VirginIslands

MSE: 4.99626951493399e-10

MSE: 0.0

MSE: 4.99626951493399e-10

MSE: 0.0 153 Zambia

MSE: 3.324445074781579e-08

MSE: 0.0

MSE: 7.859672177473758e-10 MSE: 2.9385830657702172e-08

154 Zimbabwe

MSE: 7.781864042044617e-11 MSE: 5.2332339350869006e-08 MSE: 1.2535252835732535e-09 MSE: 1.140026007704961e-08

	NOC	Total_Predicted	Total_Lower	Total_Upper	${\tt Gold_Predicted}$	\
0	Afghanistan	1	1	1	0	
1	Albania	2	2	2	0	
2	Algeria	5	4	6	2	
3	Argentina	3	3	3	1	
4	Armenia	4	4	4	0	
	•••			•••		
150	Venezuela	3	3	3	1	
151	Vietnam	1	1	1	0	
152	VirginIslands	0	0	0	0	
153	Zambia	1	1	1	0	
154	Zimbabwe	3	3	3	1	

	Gold_Lower	${ t Gold_Upper}$	Silver_Predicted	Silver_Lower	Silver_Upper	\
0	0	0	0	0	0	
1	0	0	0	0	0	
2	2	2	0	0	0	
3	1	1	1	1	1	
4	0	0	3	3	3	
	•••	•••	•••	•••		
150	1	1	2	2	2	
151	0	0	1	1	1	
152	0	0	0	0	0	

153	0	0	0	0	0
154	1	1	2	2	2

	Bronze_Predicted	Bronze_Lower	Bronze_Upper
0	1	1	1
1	2	2	2
2	2	2	2
3	1	1	1
4	1	1	1
	•••	•••	
150	0	0	0
151	0	0	0
152	0	0	0
153	1	1	1
154	0	0	0

[155 rows x 13 columns]

• 结论: XGBoost 已经训练好的模型的值趋近于不变

3.2 贝叶斯方法

3.2.1 先验预测

```
import pandas as pd
import numpy as np
from scipy.stats import norm
from xgboost import XGBRegressor
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
from sklearn.preprocessing import LabelEncoder

# 加载数据
data = pd.read_csv('Generated\\summerOly_medal_counts_processed.csv')

# 数据预处理
# 将国家代码转换为数值标签
label_encoder = LabelEncoder()
```

```
data['NOC'] = label encoder.fit transform(data['NOC'])
# 处理缺失值
data = data.fillna(0)
# 创建特征: 前一届奥运会的奖牌总数、金牌数、银牌数、铜牌数
data['Prev Total'] = data.groupby('NOC')['Total'].shift(1)
data['Prev_Gold'] = data.groupby('NOC')['Gold'].shift(1)
data['Prev_Silver'] = data.groupby('NOC')['Silver'].shift(1)
data['Prev_Bronze'] = data.groupby('NOC')['Bronze'].shift(1)
# 填充缺失值
data['Prev Total'] = data['Prev Total'].fillna(0)
data['Prev_Gold'] = data['Prev_Gold'].fillna(0)
data['Prev_Silver'] = data['Prev_Silver'].fillna(0)
data['Prev_Bronze'] = data['Prev_Bronze'].fillna(0)
# 选择特征和目标变量
features = data[['Year', 'NOC', 'Prev_Total', 'Prev_Gold', 'Prev_Silver', |
target_total = data['Total']
target_gold = data['Gold']
target_silver = data['Silver']
target_bronze = data['Bronze']
#划分训练集和测试集
X_train_total, X_test_total, y_train_total, y_test_total =_
strain_test_split(features, target_total, test_size=0.2, random_state=42)
X_train_gold, X_test_gold, y_train_gold, y_test_gold =_
_strain_test_split(features, target_gold, test_size=0.2, random_state=42)
X_train_silver, X_test_silver, y_train_silver, y_test_silver =_
-train_test_split(features, target_silver, test_size=0.2, random_state=42)
X train bronze, X test bronze, y train bronze, y test bronze = 1
# 定义 XGBoost 模型
```

```
model total = XGBRegressor(objective='reg:squarederror', random state=42)
model_gold = XGBRegressor(objective='reg:squarederror', random_state=42)
model_silver = XGBRegressor(objective='reg:squarederror', random_state=42)
model_bronze = XGBRegressor(objective='reg:squarederror', random_state=42)
# 超参数优化
param grid = {
    'n_estimators': [50, 100, 150],
    'learning_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 5, 7],
    'subsample': [0.7, 0.8, 0.9]
}
# 使用 GridSearchCV 进行超参数优化
grid_search_total = GridSearchCV(estimator=model_total, param_grid=param_grid,_u
 ⇔cv=3, scoring='neg_mean_squared_error', n_jobs=-1)
grid_search_gold = GridSearchCV(estimator=model_gold, param_grid=param_grid,__
 ⇔cv=3, scoring='neg_mean_squared_error', n_jobs=-1)
grid_search_silver = GridSearchCV(estimator=model_silver,__
 →param_grid=param_grid, cv=3, scoring='neg_mean_squared_error', n_jobs=-1)
grid_search_bronze = GridSearchCV(estimator=model_bronze,__
 ⇒param grid=param grid, cv=3, scoring='neg_mean squared error', n_jobs=-1)
# 训练模型
grid_search_total.fit(X_train_total, y_train_total)
grid_search_gold.fit(X_train_gold, y_train_gold)
grid_search_silver.fit(X_train_silver, y_train_silver)
grid_search_bronze.fit(X_train_bronze, y_train_bronze)
# 获取最佳模型
best_model_total = grid_search_total.best_estimator_
best_model_gold = grid_search_gold.best_estimator_
best_model_silver = grid_search_silver.best_estimator_
best_model_bronze = grid_search_bronze.best_estimator_
# 评估模型
```

```
def evaluate_model(model, X_test, y_test):
   y_pred = model.predict(X_test)
   mse = mean_squared_error(y_test, y_pred)
   r2 = r2_score(y_test, y_pred)
   mae = mean_absolute_error(y_test, y_pred)
   print(f'MSE: {mse}, R2: {r2}, MAE: {mae}')
   return y_pred
print("Total Medals Model Evaluation:")
evaluate_model(best_model_total, X_test_total, y_test_total)
print("Gold Medals Model Evaluation:")
evaluate_model(best_model_gold, X_test_gold, y_test_gold)
print("Silver Medals Model Evaluation:")
evaluate_model(best_model_silver, X_test_silver, y_test_silver)
print("Bronze Medals Model Evaluation:")
evaluate_model(best_model_bronze, X_test_bronze, y_test_bronze)
# 贝叶斯更新
def bayesian_update(prior_mean, prior_std, new_data):
    if np.isnan(prior_mean) or np.isnan(prior_std) or np.isnan(new_data).any():
       return np.nan, np.nan
   n = len(new_data)
   new_mean = np.mean(new_data)
   new_std = np.std(new_data)
   # 避免除以零
   if prior_std == 0:
       prior_std = 1e-6
   if new_std == 0:
       new_std = 1e-6
    # 更新后验分布的参数
```

```
posterior_mean = (prior_mean / prior_std**2 + new_mean * n / new_std**2) /__
 posterior_std = np.sqrt(1 / (1 / prior_std**2 + n / new_std**2))
   return posterior_mean, posterior_std
# 使用历史数据作为先验分布
prior_mean_total = np.mean(data['Total'])
prior_std_total = np.std(data['Total'])
prior_mean_gold = np.mean(data['Gold'])
prior_std_gold = np.std(data['Gold'])
prior_mean_silver = np.mean(data['Silver'])
prior_std_silver = np.std(data['Silver'])
prior_mean_bronze = np.mean(data['Bronze'])
prior_std_bronze = np.std(data['Bronze'])
# 为每个国家单独训练模型
country_models = {}
for country in data['NOC'].unique():
    country data = data[data['NOC'] == country]
    if len(country_data) > 1: #确保每个国家至少有两条记录
       country_features = country_data[['Year', 'NOC', 'Prev_Total',_
 Gold', 'Prev_Silver', 'Prev_Bronze']]
       country_target_total = country_data['Total']
       country_target_gold = country_data['Gold']
       country_target_silver = country_data['Silver']
       country_target_bronze = country_data['Bronze']
       country_model_total = XGBRegressor(objective='reg:squarederror',__
 →random state=42)
       country_model_gold = XGBRegressor(objective='reg:squarederror',_
 →random_state=42)
       country_model_silver = XGBRegressor(objective='reg:squarederror',_
 →random_state=42)
       country_model_bronze = XGBRegressor(objective='reg:squarederror',_
 →random state=42)
```

```
country_model_total.fit(country_features, country_target_total)
        country_model_gold.fit(country_features, country_target_gold)
        country_model_silver.fit(country_features, country_target_silver)
        country_model_bronze.fit(country_features, country_target_bronze)
        country_models[country] = {
            'total': country_model_total,
            'gold': country_model_gold,
            'silver': country_model_silver,
            'bronze': country_model_bronze
       }
# 预测 2028 年奥运会的奖牌数
next_year = 2028
predictions = []
for country in data['NOC'].unique():
    country_data = data[data['NOC'] == country]
    if len(country_data) > 1:
       prev_total = country_data['Total'].iloc[-1]
       prev_gold = country_data['Gold'].iloc[-1]
       prev_silver = country_data['Silver'].iloc[-1]
       prev_bronze = country_data['Bronze'].iloc[-1]
       next_data = pd.DataFrame({
            'Year': [next_year],
            'NOC': [country],
            'Prev_Total': [prev_total],
            'Prev_Gold': [prev_gold],
            'Prev_Silver': [prev_silver],
            'Prev_Bronze': [prev_bronze]
       })
        # 使用单独模型预测
       total_pred_private = country_models[country]['total'].predict(next_data)
```

```
gold pred private = country models[country]['gold'].predict(next data)
      silver_pred_private = country_models[country]['silver'].
⇒predict(next data)
      bronze_pred_private = country_models[country]['bronze'].
⇒predict(next data)
      # 使用整体模型预测
      total_pred_global = best_model_total.predict(next_data)
      gold pred global = best model gold.predict(next data)
      silver_pred_global = best_model_silver.predict(next_data)
      bronze_pred_global = best_model_bronze.predict(next_data)
      # 根据数据量分配权重
      data count = len(country data)
      weight = min(data_count / 10, 1) # 数据量越多, 权重越高, 但不超过 1
      # 贝叶斯更新
      total_posterior_mean_private, total_posterior_std_private =_
→bayesian update(prior_mean_total, prior_std_total, [total_pred_private])
      gold_posterior_mean_private, gold_posterior_std_private =__
abayesian_update(prior_mean_gold, prior_std_gold, [gold_pred_private])
      silver_posterior_mean_private, silver_posterior_std_private =__
abayesian_update(prior_mean_silver, prior_std_silver, [silver_pred_private])
      bronze_posterior_mean_private, bronze_posterior_std_private =_
→bayesian_update(prior_mean_bronze, prior_std_bronze, [bronze_pred_private])
      total_posterior_mean_global, total_posterior_std_global =_
abayesian_update(prior_mean_total, prior_std_total, [total_pred_global])
      gold_posterior_mean_global, gold_posterior_std_global =__
→bayesian_update(prior_mean_gold, prior_std_gold, [gold_pred_global])
      silver_posterior_mean_global, silver_posterior_std_global =__
⇒bayesian_update(prior_mean_silver, prior_std_silver, [silver_pred_global])
      bronze_posterior_mean_global, bronze_posterior_std_global =__
abayesian_update(prior_mean_bronze, prior_std_bronze, [bronze_pred_global])
```

```
# 合成预测结果
      total_posterior_mean_combined = weight * total_posterior_mean_private +__
→(1 - weight) * total_posterior_mean_global
      gold_posterior_mean_combined = weight * gold_posterior_mean_private +
→(1 - weight) * gold_posterior_mean_global
      silver_posterior_mean_combined = weight * silver_posterior_mean_private_u
bronze_posterior_mean_combined = weight * bronze_posterior_mean_private__
total_posterior_std_combined = weight * total_posterior_std_private +__
→(1 - weight) * total_posterior_std_global
      gold_posterior_std_combined = weight * gold_posterior_std_private + (1__
→ weight) * gold_posterior_std_global
      silver posterior std combined = weight * silver posterior std private + 11
→(1 - weight) * silver_posterior_std_global
      bronze_posterior_std_combined = weight * bronze_posterior_std_private +u
→(1 - weight) * bronze_posterior_std_global
      # 计算 95% 置信区间
      total_lower, total_upper = norm.interval(0.95,_u
Gloc=total_posterior_mean_combined, scale=total_posterior_std_combined)
      gold_lower, gold_upper = norm.interval(0.95,__
aloc=gold_posterior_mean_combined, scale=gold_posterior_std_combined)
      silver_lower, silver_upper = norm.interval(0.95,__
-loc=silver_posterior_mean_combined, scale=silver_posterior_std_combined)
      bronze_lower, bronze_upper = norm.interval(0.95,__
aloc=bronze_posterior_mean_combined, scale=bronze_posterior_std_combined)
      predictions.append({
          'NOC': country,
          'Total_Predicted': round(total_posterior_mean_combined),
          'Total_Lower': round(total_lower),
          'Total_Upper': round(total_upper),
          'Gold_Predicted': round(gold_posterior_mean_combined),
```

```
'Gold_Lower': round(gold_lower),
            'Gold_Upper': round(gold_upper),
            'Silver_Predicted': round(silver_posterior_mean_combined),
            'Silver_Lower': round(silver_lower),
            'Silver_Upper': round(silver_upper),
            'Bronze_Predicted': round(bronze_posterior_mean_combined),
            'Bronze_Lower': round(bronze_lower),
            'Bronze_Upper': round(bronze_upper)
        })
#将预测结果转换为 DataFrame
predictions_df = pd.DataFrame(predictions)
# 将 NOC 标签转换回国家代码
predictions_df['NOC'] = label_encoder.inverse_transform(predictions_df['NOC'].
 ⇔astype(int))
# 输出预测结果
print(predictions_df)
# 保存预测结果到 CSV 文件
predictions_df.to_csv('Result\\2028_olympics_medal_predictions_3.csv', u
  →index=False)
Total Medals Model Evaluation:
MSE: 14.183948320207696, R2: 0.8897282113283617, MAE: 1.2766138611301299
Gold Medals Model Evaluation:
MSE: 2.9414593946059715, R2: 0.82618743758341, MAE: 0.553917856282124
Silver Medals Model Evaluation:
MSE: 1.8287626291987034, R2: 0.867498342532686, MAE: 0.5179618502816846
Bronze Medals Model Evaluation:
MSE: 2.185780634244944, R2: 0.8524910127837848, MAE: 0.5823690356586569
              NOC Total_Predicted Total_Lower Total_Upper Gold_Predicted \
0
      Afghanistan
                                 1
                                              1
                                                           1
                                                                           0
          Albania
                                 2
                                              2
                                                           2
                                                                           0
1
2
          Algeria
                                 5
                                              5
                                                           5
                                                                           2
3
        Argentina
                                 3
                                              3
                                                           3
                                                                           1
```

4	Armen	ia	4		4	4	0
			•••	•••	•••		
150	Venezuela		3		3	3	1
151	Vietna	am	1		1	1	0
152	VirginIsland	ds	0		0	0	0
153	Zamb	ia	1		1	1	0
154	Zimbab	we	3		3	3	1
	Gold_Lower	Gold_Uppe	r Silver_	Predicted	Silver_Lower	Silver_Upper	\
0	0		0	0	(0	
1	0		0	0	(0	
2	2		2	0	(0	
3	1		1	1	1	1	
4	0		0	3	3	3	
	•••	•••		•••	•••	•••	
150	1		1	2	2	2 2	
151	0		0	1	1	1	
152	0		0	0	(0	
153	0		0	0	(0	
154	1		1	2	2	2 2	
	December December	inted Dec	T	December 11-			
0	Bronze_Pred:	1	nze_Lower	bronze_op	1 1		
1		2	2		2		
2		2	2		2		
3		1	1		1		
4		1	1		1		
					1		
 150		 O		***	0		
151		0	0		0		
152		0	0		0		
153		1	1		1		
154		0	0		0		
104		J	U		· ·		

[155 rows x 13 columns]

3.2.2 区间合成

```
[58]: import pandas as pd
     # 读取 CSV 文件
     file1 = 'Result\\2028 olympics medal predictions 3.csv'
     file2 = 'Result\\2028_olympics_medal_predictions_intervals.csv'
     # 读取数据
     df1 = pd.read_csv(file1)
     df2 = pd.read_csv(file2)
     # 合并两个数据框, 基于 NOC 列
     merged_df = pd.merge(df1, df2, on='NOC', suffixes=('_file1', '_file2'))
     # 计算均值、最大值和最小值
     merged_df['Total_Predicted'] = round((merged_df['Total_Predicted_file1'] +__

¬merged_df['Total_Predicted_file2']*2) / 3).astype(int)

     merged_df['Total_Lower'] = merged_df[['Total_Lower_file1',__
      merged_df['Total_Upper'] = merged_df[['Total_Upper_file1',__

¬'Total_Upper_file2']].max(axis=1)
     merged_df['Gold_Predicted'] = round((merged_df['Gold_Predicted_file1'] +__
       →merged_df['Gold_Predicted_file2']*2) / 3).astype(int)
     merged_df['Gold_Lower'] = merged_df[['Gold_Lower_file1', 'Gold_Lower_file2']].
       →min(axis=1)
     merged_df['Gold_Upper'] = merged_df[['Gold_Upper_file1', 'Gold_Upper_file2']].
       →max(axis=1)
     merged_df['Silver_Predicted'] = round((merged_df['Silver_Predicted_file1'] +__
       →merged_df['Silver_Predicted_file2']*2) / 3).astype(int)
     merged_df['Silver_Lower'] = merged_df[['Silver_Lower_file1',__

¬'Silver_Lower_file2']].min(axis=1)
     merged_df['Silver_Upper'] = merged_df[['Silver_Upper_file1',__
       ⇔'Silver_Upper_file2']].max(axis=1)
```

```
merged_df['Bronze_Predicted'] = round((merged_df['Bronze_Predicted_file1'] + __

¬merged_df['Bronze_Predicted_file2']*2) / 3).astype(int)

      merged_df['Bronze_Lower'] = merged_df[['Bronze_Lower_file1',__

¬'Bronze_Lower_file2']].min(axis=1)
      merged_df['Bronze_Upper'] = merged_df[['Bronze_Upper_file1',_
       ⇔'Bronze_Upper_file2']].max(axis=1)
      # 选择需要的列
      final_df = merged_df[['NOC', 'Total_Predicted', 'Total_Lower', 'Total_Upper',
                            'Gold_Predicted', 'Gold_Lower', 'Gold_Upper',
                            'Silver_Predicted', 'Silver_Lower', 'Silver_Upper',
                            'Bronze_Predicted', 'Bronze_Lower', 'Bronze_Upper']]
      #保存结果到新的 CSV 文件
      final_df.to_csv('Result\\merged_olympics_medal_predictions.csv', index=False)
      #显示结果
      final df.head()
[58]:
                      Total_Predicted Total_Lower Total_Upper Gold_Predicted \
      0
        Afghanistan
                                                                               0
                                    1
                                                 1
                                                               1
             Albania
                                    2
                                                 2
                                                               2
                                                                               0
      1
      2
             Algeria
                                                               6
                                                                               2
                                    5
                                                 4
      3
           Argentina
                                                 3
                                    3
                                                               3
                                                                               1
             Armenia
                                    4
                                                                               0
         Gold_Lower Gold_Upper Silver_Predicted Silver_Lower Silver_Upper \
      0
                  0
                              0
                                                0
                                                               0
                                                                             0
      1
                  0
                                                0
                                                               0
                              0
                                                                             0
      2
                  2
                              2
                                                0
                                                               0
                                                                             0
      3
                  1
                              1
                                                1
                                                               1
                                                                             1
                                                3
      4
                  0
                              0
                                                               3
                                                                             3
         Bronze_Predicted Bronze_Lower Bronze_Upper
      0
                        1
                                      1
```

1	2	2	2
2	2	2	2
3		1	
4	1	1	1

4 结果分析

4.1 第一问

• 构建一个模型,用于预测每个国家的奖牌数(至少包括金牌数和奖牌总数)。请包含对模型预测的不确定度/精确度的估计以及模型性能的衡量指标。根据您的模型,您对 2028 年美国洛杉矶夏季奥运会奖牌榜的预测结果是什么?请给出所有结果的预测区间。您认为哪些国家最有可能取得进步?哪些国家的表现会不如 2024 年?

4.1.1 国家相比 2024 年进步或退步

```
[60]: # 读取合并后的 CSV 文件
medal_file = '2025_Problem_C_Data\\summerOly_medal_counts.csv'

# 读取数据
medal_df = pd.read_csv(medal_file)
```

```
[61]: import pandas as pd
     # 2024 年奥运会奖牌榜
     data_2024 = pd.read_csv('Generated\\2024_Observation_data.csv')
     # 2028 年奥运会奖牌榜预测结果
     data_2028 = pd.read_csv('Generated\\2028_Prediction_data.csv')
     # 创建 DataFrame
     df_2024 = pd.DataFrame(data_2024)
     df_2028 = pd.DataFrame(data_2028)
     # 合并两个 DataFrame
     merged_df = pd.merge(df_2024, df_2028, on='NOC', how='outer')
     # 计算奖牌总数和金牌数的变化
     merged_df['Total_Change'] = merged_df['Total_Predicted'] - merged_df['Total']
     merged_df['Gold_Change'] = merged_df['Gold_Predicted'] - merged_df['Gold']
     # 判断进步或退步
      \#merged\ df['Total\ Progress'] = merged\ df.apply(lambda\ row:\ 'Front'\ if_{\sqcup}
      →row['Total_Change'] / row['Total'] > 0.15 else 'Back' if row['Total_Change']
       →/ row['Total'] < -0.15 else 'Stable', axis=1)
```

```
#merged df['Gold Progress'] = merged df.apply(lambda row: 'Front' if |
 →row['Gold_Change'] / row['Gold'] > 0.15 else 'Back' if row['Gold_Change'] /⊔
 \Rightarrow row['Gold'] < -0.15 \ else 'Stable', axis=1)
# 判断进步或退步 (0 检验)
merged_df['Total_Progress'] = merged_df.apply(lambda row: 'Front' if_
 ogrow['Total'] != 0 and row['Total_Change'] / row['Total'] > 0.15 else 'Back'⊔
 oif row['Total'] != 0 and row['Total_Change'] / row['Total'] < -0.15 else⊔
 merged_df['Gold_Progress'] = merged_df.apply(lambda row: 'Front' if row['Gold']__
 →!= 0 and row['Gold_Change'] / row['Gold'] > 0.15 else 'Back' if row['Gold'] !
 ⇒= 0 and row['Gold_Change'] / row['Gold'] < -0.15 else 'Stable' if⊔
 →row['Gold_Change'] == 0 else 'NaN', axis=1)
# 生成新的 DataFrame
result_df = merged_df[['NOC', 'Total_Progress', 'Gold_Progress']]
# 重命名列
result_df.columns = ['NOC', 'Total', 'Gold']
print(result_df)
result_df.to_csv('Result\\2028_Olympics_country_progress.csv')
            NOC
                 Total
                        Gold
0
```

```
Afghanistan Stable Stable
          Albania Stable Stable
1
2
          Algeria Front Stable
3
        Argentina Stable Stable
4
          Armenia Stable Stable
150
        Venezuela Stable Stable
151
          Vietnam Stable Stable
    VirginIslands Stable Stable
152
153
           Zambia Stable Stable
```

154 Zimbabwe Stable Stable

[155 rows x 3 columns]

4.2 第二问

• 您的模型应涵盖尚未获得奖牌的国家, 您预计在下一届奥运会中会有多少个国家获得其首枚 奖牌? 对于这个估计, 您认为可能性有多大?

4.2.1 预处理

```
[62]: import pandas as pd
     import re
     # 加载数据
     file_path = '2025_Problem_C_Data\\summerOly_medal_counts.csv'
     data = pd.read_csv(file_path)
     # 清洗国家名 NOC, 只保留英文字母
     data['NOC'] = data['NOC'].apply(lambda x: ''.join(re.findall(r'[A-Za-z]', x)))
     # 初始化字典来存储每个国家的第一枚奖牌时间和第一枚金牌时间
     first_medal_time = {}
     first_gold_time = {}
     # 遍历数据
     for index, row in data.iterrows():
        year = row['Year']
        noc = row['NOC']
        gold = row['Gold']
        total = row['Total']
        # 如果国家尚未记录第一枚奖牌时间
        if noc not in first_medal_time and total > 0:
            first_medal_time[noc] = year
         # 如果国家尚未记录第一枚金牌时间
```

```
if noc not in first_gold_time and gold > 0:
    first_gold_time[noc] = year

# 将结果转换为 DataFrame
result = pd.DataFrame(
    'NOC': list(first_medal_time.keys()),
    'First Medal Time': list(first_medal_time.values()),
    'First Gold Time': [first_gold_time.get(noc, None) for noc in_u
    ofirst_medal_time.keys()]
})

# 保存结果到 CSV 文件
result.to_csv('Generated\\first_medal_and_gold_times.csv', index=False)

print("结果已保存到 first_medal_and_gold_times.csv 文件中。")
```

结果已保存到 first_medal_and_gold_times.csv 文件中。

```
[63]: import pandas as pd

# 加载数据
file_path = 'Generated\\first_medal_and_gold_times.csv'
data = pd.read_csv(file_path)

# 定义实际的奥运会年份
olympic_years = [1896, 1900, 1904, 1908, 1912, 1920, 1924, 1928, 1932, 1936,u
--1948, 1952, 1956, 1960, 1964, 1968, 1972, 1976, 1980, 1984, 1988, 1992,u
--1996, 2000, 2004, 2008, 2012, 2016, 2020, 2024]

# 初始化字典来存储每届奥运会首次获得奖牌和金牌的国家数量
first_medal_counts = {year: 0 for year in olympic_years}

first_gold_counts = {year: 0 for year in olympic_years}

# 適历数据
for index, row in data.iterrows():
    first_medal_time = row['First Medal Time']
    first_gold_time = row['First Gold Time']
```

结果已保存到 first_medal_and_gold_countries.csv 文件中。

```
[64]: import pandas as pd import matplotlib.pyplot as plt

# 加载数据
file_path = 'Generated\\first_medal_and_gold_countries.csv'
data = pd.read_csv(file_path)

# 绘制折线图
plt.figure(figsize=(14, 7))

# 绘制第一次获得奖牌的国家数
plt.plot(data['Year'], data['First Medal Countries'], label='First Medal_u-Countries', marker='o')

# 绘制第一次获得金牌的国家数
```


4.2.2 线性回归预测

```
[65]: import pandas as pd
     import numpy as np
     from sklearn.linear_model import LinearRegression
     import matplotlib.pyplot as plt
     # 加载数据
     file_path = 'Generated\\first_medal_and_gold_countries.csv'
     data = pd.read_csv(file_path)
     #准备数据
     years = data['Year'].values.reshape(-1, 1)
     first_medal_countries = data['First Medal Countries'].values
     first_gold_countries = data['First Gold Countries'].values
     # 训练线性回归模型
     model_medal = LinearRegression()
     model_medal.fit(years, first_medal_countries)
     model_gold = LinearRegression()
     model_gold.fit(years, first_gold_countries)
     # 预测 2028 年的值
     year_2028 = np.array([2028]).reshape(-1, 1)
     pre_medal_2028 = [round(model_medal.predict(year_2028)[0])]
     pre_gold_2028 = [round(model_gold.predict(year_2028)[0])]
     #绘制折线图
     plt.figure(figsize=(14, 7))
     # 绘制第一次获得奖牌的国家数
     plt.plot(data['Year'], data['First Medal Countries'], label='First Medalu

→Countries', marker='o')
     plt.plot([2028], pre_medal_2028, marker='o', color='red', label='Predicted_L
       ⇒First Medal Countries in 2028')
```

```
# 绘制第一次获得金牌的国家数
plt.plot(data['Year'], data['First Gold Countries'], label='First Gold

□
plt.plot([2028], pre_gold_2028, marker='o', color='green', label='Predicted_
 ⇒First Gold Countries in 2028')
#添加标题和标签
plt.title('Number of Countries Winning Medals or Gold for the First Time in_{\sqcup}
⇔Each Olympic Year')
plt.xlabel('Year')
plt.ylabel('Number of Countries')
plt.legend()
#显示网格
plt.grid(True)
#显示图表
plt.show()
# 输出预测结果
print(f"预测 2028 年首次获得奖牌的国家数量: {pre_medal_2028[0]}")
print(f"预测 2028 年首次获得金牌的国家数量: {pre_gold_2028[0]}")
```


预测 2028 年首次获得奖牌的国家数量: 6 预测 2028 年首次获得金牌的国家数量: 5

• 分析效果

```
[66]: # 计算模型的拟合度
```

```
r2_medal = model_medal.score(years, first_medal_countries)
r2_gold = model_gold.score(years, first_gold_countries)

print(f"首次获得奖牌的国家数量模型的拟合度 (R^2): {r2_medal:.2f}")
print(f"首次获得金牌的国家数量模型的拟合度 (R^2): {r2_gold:.2f}")
```

首次获得奖牌的国家数量模型的拟合度 (R²): 0.02 首次获得金牌的国家数量模型的拟合度 (R²): 0.02

- 这说明有 2% 的可能完全准确
- 考虑到数目只为整数,可能性会更大

```
[67]: # 进行预测
```

```
pre_medal = model_medal.predict(years)

pre_gold = model_gold.predict(years)

# 四舍五入预测值

pre_medal_rounded = np.round(pre_medal)

pre_gold_rounded = np.round(pre_gold)

# 计算偏离

deviation_medal = np.abs(pre_medal_rounded - first_medal_countries)

deviation_gold = np.abs(pre_gold_rounded - first_gold_countries)

# 统计偏离超过 1 的次数

count_deviation_medal_over_1 = np.sum(deviation_medal > 1)

count_deviation_gold_over_1 = np.sum(deviation_gold > 1)

# 计算比例

proportion_deviation_medal_over_1 = count_deviation_medal_over_1 / len(years)
```

首次获得奖牌的国家数量预测偏离超过 1 的比例: 0.57 首次获得金牌的国家数量预测偏离超过 1 的比例: 0.67 首次获得奖牌的国家数量预测准确度: 43.33% 首次获得金牌的国家数量预测准确度: 33.33%

4.2.3 评估可能性

```
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
import matplotlib.pyplot as plt

# 加载数据
file_path = 'Generated\\first_medal_and_gold_countries.csv'
data = pd.read_csv(file_path)

# 准备数据
years = data['Year'].values.reshape(-1, 1)
first_medal_countries = data['First Medal Countries'].values
first_gold_countries = data['First Gold Countries'].values

# 训练线性回归模型
model_medal = LinearRegression()
model_medal.fit(years, first_medal_countries)
```

```
model_gold = LinearRegression()
model_gold.fit(years, first_gold_countries)
# 预测 2028 年的值
year_2028 = np.array([[2028,1]])
pre_medal_2028 = round(model_medal.predict(year_2028.reshape(-1,1))[0])
pre_gold_2028 = round(model_gold.predict(year_2028.reshape(-1,1))[0])
# 使用 statsmodels 计算置信区间
X = sm.add constant(years) #添加常数项
model_medal_sm = sm.OLS(first_medal_countries, X).fit()
model_gold_sm = sm.OLS(first_gold_countries, X).fit()
print(model_medal_sm.summary())
print(model_gold_sm.summary())
# 预测 2028 年的值及其置信区间
year_2028_sm = sm.add_constant(year_2028).reshape(-1,2) #添加常数项
pre medal 2028 sm = model medal sm.get prediction(year 2028 sm).summary frame()
pre_gold_2028_sm = model_gold_sm.get_prediction(year_2028_sm).summary_frame()
#绘制折线图
plt.figure(figsize=(14, 7))
# 绘制第一次获得奖牌的国家数
plt.plot(data['Year'], data['First Medal Countries'], label='First Medal
 ⇔Countries', marker='o')
plt.plot([2028], pre_medal_2028, marker='o', color='red', label='Predicted_
 ⇔First Medal Countries in 2028')
# 绘制第一次获得金牌的国家数
plt.plot(data['Year'], data['First Gold Countries'], label='First Gold_

→Countries', marker='o')
plt.plot([2028], pre_gold_2028, marker='o', color='green', label='Predicted_
 →First Gold Countries in 2028')
```

```
#添加置信区间
#plt.fill_between([2028], pre_medal_2028_sm['mean_ci_lower'],__
\hookrightarrow pre\_medal\_2028\_sm['mean\_ci\_upper'], color='red', alpha=0.2)
#plt.fill_between([2028], pre_gold_2028_sm['mean_ci_lower'],__
→pre_gold_2028_sm['mean_ci_upper'], color='green', alpha=0.2)
#添加标题和标签
plt.title('Number of Countries Winning Medals or Gold for the First Time in
→Each Olympic Year')
plt.xlabel('Year')
plt.ylabel('Number of Countries')
plt.legend()
# 显示网格
plt.grid(True)
#显示图表
plt.show()
# 输出预测结果及其置信区间
print(f"预测 2028 年首次获得奖牌的国家数量: {pre_medal_2028}")
print(f"预测 2028 年首次获得金牌的国家数量: {pre gold 2028}")
print(f"预测 2028 年首次获得奖牌的国家数量的置信区间:」

¬{pre_medal_2028_sm['mean_ci_upper'][0]:.2f}]")
print(f"预测 2028 年首次获得金牌的国家数量的置信区间:,,

¬{pre_gold_2028_sm['mean_ci_upper'][0]:.2f}]")
```

OLS Regression Results

Dep. Variable: R-squared: 0.025 Model: OLS

Method: Least Squares F-statistic: 0.7110

周二, 28 1 月 2025 Prob (F-statistic): Date: 0.406

Adj. R-squared:

-0.010

Time:		07:42	:02	Log-L	ikelihood:		-79.692
No. Observ	ations:		30	AIC:			163.4
Df Residua	als:		28	BIC:			166.2
Df Model:			1				
Covariance	: Type:	nonrob	ust				
=======			====	=====			=======
	coef	std err		t	P> t	[0.025	0.975]
const	-22.3475	32.992	-0	.677	0.504	-89.928	45.233
x1	0.0142	0.017	C	.843	0.406	-0.020	0.049
=======			====	=====			=======
Omnibus:		12.	296	Durbi	n-Watson:		1.450
Prob(Omnib	ous):	0.	002	Jarqu	e-Bera (JB):		11.745
Skew:		1.	241	Prob(JB):		0.00282
Kurtosis:		4.	798	Cond.	No.		9.94e+04
			=====	=====			

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.94e+04. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

========	=======	========		========	=========		
Dep. Variab	le:		y R-	squared:		0.015	
Model:		C	DLS Ad	j. R-squared:		-0.020	
Method:		Least Squar	res F-	statistic:		0.4312	
Date:		周二,281	月 2025	Prob (F-sta	tistic):	0.5	17
Time:		07:42:	02 Lo	g-Likelihood:		-78.874	
No. Observa	tions:		30 AI	C:		161.7	
Df Residual	s:		28 BI	C:		164.5	
Df Model:			1				
Covariance	Type:	nonrobu	ıst				
	coef	std err		t P> t	[0.025	0.975]	
const	-17.1783	32.104	-0.53	5 0.597	-82.941	48.584	

x1	0.0107	0.016	0.657	0.517	-0.023	0.044
==========			======		=======	=======
Omnibus:		21.261	Durbi	n-Watson:		1.473
Prob(Omnibus)):	0.000	Jarque	e-Bera (JB):		29.640
Skew:		1.775	Prob(JB):		3.66e-07
Kurtosis:		6.334	Cond.	No.		9.94e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.94e+04. This might indicate that there are strong multicollinearity or other numerical problems.

预测 2028 年首次获得奖牌的国家数量: 6

预测 2028 年首次获得金牌的国家数量: 5

预测 2028 年首次获得奖牌的国家数量的置信区间: [-182373.15, 91731.90]

预测 2028 年首次获得金牌的国家数量的置信区间: [-168204.18, 98528.84]

4.3 第三问

- 您的模型还应考虑特定奥运会的赛事(数量和类型)。
- 探究赛事与各国所获奖牌数量之间的关系。
- 对于不同国家而言,哪些体育项目最为重要?原因何在?
- 主办国所选择的赛事如何影响比赛结果?

4.3.1 各国优势项目

预处理

```
[69]: import pandas as pd
    # 读取 CSV 文件
    df = pd.read_csv('2025_Problem_C_Data\\summerOly_athletes.csv')
    # 定义一个函数,将 Medal 列中的值转换为对应的奖牌类型
    def medal_to_type(medal):
       if medal == 'Gold':
          return 'Gold'
       elif medal == 'Silver':
          return 'Silver'
       elif medal == 'Bronze':
          return 'Bronze'
       else:
          return 'No Medal'
    #应用函数转换 Medal 列
    df['Medal_Type'] = df['Medal'].apply(medal_to_type)
    #按 NOC 和 Sport 分组,统计每种奖牌的数量
    # 重置索引,以便将 NOC 和 Sport 作为列
    medal_counts = medal_counts.reset_index()
    # 填充缺失的奖牌类型列
    medal_counts = medal_counts.fillna(0)
```

[69]:	Medal_Type	NOC	Sport	Gold	Silver	Bronze	Total
	0	AFG	Taekwondo	0	0	2	2
	1	AHO	Sailing	0	1	0	1
	2	AIN	Rowing	0	1	0	1
	3	AIN	Tennis	0	2	0	2
	4	AIN	Trampoline Gymnastics	1	1	0	2

4.3.2 得出优势项目

```
[70]: import pandas as pd

# 读取 CSV 文件
df = pd.read_csv('Generated2\\medal_counts.csv')

# 定义一个函数,用于获取每个国家总奖牌榜和金牌榜前 2 的运动项目
def get_top_sports(group):
    #print(group)
    # 按总奖牌数降序排列
```

```
total_sorted = group.sort_values(by='Total', ascending=False)
   #按金牌数降序排列
   gold_sorted = group.sort_values(by='Gold', ascending=False)
   # 获取前 2 的运动项目
   total_top2 = total_sorted.head(2)[['Sport', 'Total']]
   gold_top2 = gold_sorted.head(2)[['Sport', 'Gold']]
   # 提取结果
   result = {
       'Gold1': gold_top2.iloc[0]['Sport'] if len(gold_top2) > 0 else None,
       'Gold2': gold_top2.iloc[1]['Sport'] if len(gold_top2) > 1 else None,
       'Total1': total_top2.iloc[0]['Sport'] if len(total_top2) > 0 else None,
       'Total2': total_top2.iloc[1]['Sport'] if len(total_top2) > 1 else None
   }
   #print(result)
   return pd.Series(result)
#应用函数, 获取每个国家的前 2 运动项目
results = df.groupby('NOC').apply(get_top_sports).reset_index()
#保存到新的 CSV 文件
results.to_csv('Generated2\\top_sports.csv', index=False)
# 打印结果
print(results)
```

Total2	Total1	Gold2	Gold1	NOC	
None	Taekwondo	None	Taekwondo	AFG	0
None	Sailing	None	Sailing	AHO	1
Trampoline Gymnastics	Tennis	Rowing	Trampoline Gymnastics	AIN	2
None	Wrestling	None	Wrestling	ALB	3
Boxing	Athletics	Boxing	Athletics	ALG	4
	•••	•••	•••	•••	
Taekwondo	Shooting	Taekwondo	Shooting	VIE	152

None	Athletics	None	Athletics	WIF	153
Water Polo	Basketball	Water Polo	Handball	YUG	154
Boxing	Athletics	Boxing	Athletics	ZAM	155
Swimming	Hockey	Swimming	Hockey	ZIM	156

[157 rows x 5 columns]

C:\Users\Ziqi\AppData\Local\Temp\ipykernel_30472\3729593612.py:31:

DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.

results = df.groupby('NOC').apply(get_top_sports).reset_index()

4.4 东道主效应

4.4.1 回归分析模型

- 考虑金牌数对奖牌数贡献
- 考虑项目数量增长对奖牌数贡献

[71]: # 导入必要的库

```
import pandas as pd
import statsmodels.api as sm
import re
from sklearn.preprocessing import StandardScaler

# 读取 CSV 文件
medal_counts = pd.read_csv('2025_Problem_C_Data\\summerOly_medal_counts.csv')
hosts = pd.read_csv('2025_Problem_C_Data\\summerOly_hosts.csv')
project_amount = pd.read_csv('Generated\\Project_amount.csv')

# 数据预处理
# 去除 NOC 列和 Host 列中的非英文字符
medal_counts['NOC'] = medal_counts['NOC'].apply(lambda x: re.sub(r'[^a-zA-Z]', u'', x))
hosts['Host'] = hosts['Host'].apply(lambda x: re.sub(r'[^a-zA-Z]', ''', x))
```

```
# 如果 Host 中的字符串包含 NOC 中的字符串, 就将其替换为 NOC 的值
def replace host(row):
   for noc in medal_counts['NOC']:
       if noc in row:
           return noc
   return row
hosts['Host'] = hosts['Host'].apply(replace_host)
hosts.loc[hosts['Host'] == 'LondonUnitedKingdom', 'Host'] = 'GreatBritain'
# 将 medal counts 和 hosts 数据按 Year 列合并
merged_data = pd.merge(medal_counts, hosts, on='Year', how='left')
# 将 merged_data 和 project_amount 数据按 Year 列合并
merged_data = pd.merge(merged_data, project_amount, on='Year', how='left')
# 填充缺失值
merged_data['Host'] = merged_data['Host'].fillna('Not Host')
merged_data['Amount'] = merged_data['Amount'].fillna(merged_data['Amount'].
 →mean())
# 创建东道主标识变量
merged_data['Is_Host'] = merged_data['NOC'] == merged_data['Host']
# 选择特征和目标变量
X = merged_data[['Gold', 'Is_Host', 'Amount']]
y = merged_data['Total']
#数据标准化
#scaler = StandardScaler()
#X_scaled = scaler.fit_transform(X)
#添加常数项
#X scaled = sm.add constant(X scaled)
X = sm.add_constant(X)
```

```
# 构建回归模型
model = sm.OLS(y, X.astype(float)).fit()
# 输出模型结果
print(model.summary())
# 对每个国家分别进行回归分析
results = []
for noc in merged_data['NOC'].unique():
   country_data = merged_data[merged_data['NOC'] == noc]
   if len(country_data) > 1: #确保每个国家至少有两条数据
       X_country = country_data[['Gold', 'Is_Host', 'Amount']]
       y_country = country_data['Total']
       #数据标准化
       #X_country_scaled = scaler.fit_transform(X_country)
       #添加常数项
       #X_country_scaled = sm.add_constant(X_country_scaled)
       X_country = sm.add_constant(X_country)
       # 构建回归模型
       model_country = sm.OLS(y_country, X_country.astype(float)).fit()
       # 保存结果
       results.append({
           'NOC': noc,
           'Is_Host_Coef': model_country.params['Is_Host'],
           'Is_Host_PValue': model_country.pvalues['Is_Host']
       })
# 将结果转换为 DataFrame
results_df = pd.DataFrame(results)
# 输出每个国家的东道主效应结果
```

```
print(results_df)

# 计算并输出 Is_Host 系数的均值
is_host_mean = results_df['Is_Host_Coef'].mean()
print(f"Is_Host 系数的均值: {is_host_mean:.2f}")
```

OLS Regression Results

Dep. Variable: Total R-squared: 0.942

Model: OLS Adj. R-squared: 0.942

Method: Least Squares F-statistic: 7701.

Date: 周二, 28 1 月 2025 Prob (F-statistic): 0.00

Time: 07:42:02 Log-Likelihood: -4405.0

No. Observations: 1435 AIC: 8818.

Df Residuals: 1431 BIC: 8839.

Df Model: 3
Covariance Type: nonrobust

========	=======	=======	=======	=======	=======	=======
	coef	std err	t	P> t	[0.025	0.975]
const	2.0739	0.447	4.636	0.000	1.196	2.951
Gold	2.4847	0.018	140.611	0.000	2.450	2.519
Is_Host	1.9067	1.055	1.807	0.071	-0.163	3.977
Amount	0.0005	0.001	0.689	0.491	-0.001	0.002
		========		=======	========	
Omnibus:		448.4	481 Durbin	-Watson:		1.979
Prob(Omnibus	3):	0.0	000 Jarque	-Bera (JB):		5078.169
Skew:		1.	119 Prob(J	B):		0.00
Kurtosis:		11.9	940 Cond.	No.		4.23e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.23e+03. This might indicate that there are strong multicollinearity or other numerical problems.

NOC Is_Host_Coef Is_Host_PValue

```
0
     UnitedStates
                        5.446768
                                         0.652329
                        5.424184
1
           Greece
                                         0.311642
2
          Germany
                       16.535894
                                         0.213560
3
           France
                       14.879555
                                         0.030750
4
     GreatBritain
                                         0.837392
                        1.250883
. .
                        0.000000
122
           Cyprus
                                               NaN
        Guatemala
                                               NaN
123
                        0.000000
124
             Fiji
                        0.000000
                                               NaN
125
           Jordan
                        0.000000
                                               NaN
126
           Kosovo
                        0.000000
                                               NaN
```

[127 rows x 3 columns] Is Host 系数的均值: 1.01

• Is Host 系数均值明显为正,说明成为东道主对总奖牌数有正面促进作用。

4.5 伟大教练效应

4.5.1 预处理

```
import pandas as pd

# 读取 CSV 文件

df = pd.read_csv('2025_Problem_C_Data\\summerOly_athletes.csv')

# 将 Medal 列中的值转换为 Gold, Silver, Bronze

df['Medal'] = df['Medal'].replace({'No medal': None, 'Gold': 'Gold', 'Silver': 'Bronze': 'Bronze': 'Bronze'})

# 按 NOC, Year, Sport 分组,统计每种奖牌的数量

medal_counts = df.groupby(['NOC', 'Year', 'Sport'])['Medal'].value_counts().

--unstack(fill_value=0)

# 重置索引,将 NOC, Year, Sport 作为列

medal_counts = medal_counts.reset_index()

# 填充缺失的奖牌类型列
```

```
medal_counts = medal_counts.fillna(0)

# 计算 Total 列

medal_counts['Total'] = medal_counts['Gold'] + medal_counts['Silver'] + u

omedal_counts['Bronze']

# 重新排列列的顺序

medal_counts = medal_counts[['NOC', 'Sport', 'Year', 'Gold', 'Silver', u

o'Bronze', 'Total']]

# 显示结果

print(medal_counts)

medal_counts.to_csv('Generated2\\sports_medal_counts.csv')
```

Medal	NOC	Sport	Year	Gold	Silver	Bronze	Total
0	AFG	Taekwondo	2008	0	0	1	1
1	AFG	Taekwondo	2012	0	0	1	1
2	AHO	Sailing	1988	0	1	0	1
3	AIN	Rowing	2024	0	1	0	1
4	AIN	Tennis	2024	0	2	0	2
			•••	•••			
6740	ZAM	Athletics	1996	0	1	0	1
6741	ZAM	Athletics	2024	0	0	1	1
6742	ZIM	Hockey	1980	15	0	0	15
6743	ZIM	Swimming	2004	1	1	1	3
6744	ZIM	Swimming	2008	1	3	0	4

[6745 rows x 7 columns]

4.5.2 LSTM + Transformer 模型

```
[73]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Model
```

```
from tensorflow.keras.layers import LSTM, Dense, Input, TimeDistributed, __
 →MultiHeadAttention, LayerNormalization, Dropout
from tensorflow.keras.optimizers import Adam
# 1. 数据准备
# 读取 CSV 文件
data = pd.read_csv('Generated2\\sports_medal_counts.csv')
# 2. 数据预处理
# 归一化处理
def preprocess_data(data, time_step=1):
   data = data.sort_values(by='Year')
   data.set_index('Year', inplace=True)
   scaler = MinMaxScaler()
   data_scaled = scaler.fit_transform(data)
   X, Y = create_dataset(data_scaled, time_step)
   X = X.reshape(X.shape[0], X.shape[1], 1)
   return X, Y, scaler
# 创建时间序列数据
def create_dataset(data, time_step=1):
   X, Y = [], []
   for i in range(len(data) - time_step - 1):
        a = data[i:(i + time_step), 0]
       X.append(a)
       Y.append(data[i + time_step, 0])
   return np.array(X), np.array(Y)
# 3. 构建 LSTM + Transformer 模型
def transformer encoder(inputs, head size, num heads, ff dim, dropout):
   x = MultiHeadAttention(key_dim=head_size, num_heads=num_heads)(inputs,_
 ⇔inputs)
   x = Dropout(dropout)(x)
   x = LayerNormalization(epsilon=1e-6)(x)
   x = Dense(ff_dim, activation="relu")(x)
   x = Dense(inputs.shape[-1])(x)
```

```
x = Dropout(dropout)(x)
   x = LayerNormalization(epsilon=1e-6)(x)
   return x
def build_model(time_step):
   input_shape = (time_step, 1)
   inputs = Input(shape=input_shape)
   x = LSTM(50, return_sequences=True)(inputs)
   x = transformer_encoder(x, head_size=160, num_heads=4, ff_dim=4, dropout=0.
 ⇒25)
   x = LSTM(50)(x)
   outputs = Dense(1)(x)
   model = Model(inputs, outputs)
   model.compile(optimizer=Adam(learning_rate=1e-4), loss='mean_squared_error')
   return model
# 4. 遍历所有国家和项目
results = []
for country in data['NOC'].unique():
   for sport in data[data['NOC'] == country]['Sport'].unique():
       project_data = data[(data['NOC'] == country) & (data['Sport'] ==__
 ⇔sport)][['Year', 'Total']]
        # 如果数据量太少, 跳过
       if len(project_data) < 10:</pre>
            continue
       #数据预处理
       X, Y, scaler = preprocess_data(project_data, time_step=5)
        # 训练模型
       model = build_model(time_step=5)
       model.fit(X, Y, epochs=100, batch_size=32, verbose=0)
        # 使用模型进行预测
```

```
Y_pred = model.predict(X)
        # 反归一化
        Y_pred = scaler.inverse_transform(Y_pred)
        Y_true = scaler.inverse_transform(Y.reshape(-1, 1))
        # 计算异常分数
        anomaly_score = np.abs(Y_true - Y_pred)
        # 找出异常上升或下降的年份
        threshold = np.percentile(anomaly_score, 95)
        anomaly_indices = np.where(anomaly_score.flatten() > threshold)[0]
        # 调整索引以匹配原始数据
        anomaly_years = project_data.index[anomaly_indices + 5]
        # 区分异常上升和异常下降
        for year in anomaly_years:
            index = anomaly_indices[anomaly_years.get_loc(year)]
            if index -5 < 0:
                continue # 跳过索引超出范围的情况
            if Y_pred[index - 5] > Y_true[index - 5]:
                anomaly_type = 'Down'
            else:
                anomaly type = 'Up'
            results.append((country, sport, year, anomaly_type))
# 5. 输出结果
results_df = pd.DataFrame(results, columns=['NOC', 'Sports', 'Time', 'Type'])
print(results_df)
result_df.to_csv('Result2\\exception_country.csv')
1/1
               Os 158ms/step
1/1
               Os 169ms/step
1/1
               Os 164ms/step
1/1
              Os 155ms/step
1/1
               Os 155ms/step
```

1/1	0s	154ms/step
1/1	0s	162ms/step
1/1	0s	159ms/step
1/1	0s	153ms/step
1/1	0s	157ms/step
1/1	0s	156ms/step
1/1	0s	155ms/step
1/1	0s	164ms/step
1/1	0s	161ms/step
1/1	0s	163ms/step
1/1	0s	173ms/step
1/1	0s	160ms/step
1/1	0s	172ms/step
1/1	0s	161ms/step
1/1	0s	186ms/step
1/1	0s	159ms/step
1/1	0s	170ms/step
1/1	0s	162ms/step
1/1	0s	171ms/step
1/1	0s	163ms/step
1/1	0s	161ms/step
1/1	0s	242ms/step
1/1	0s	274ms/step
1/1	0s	259ms/step
1/1	0s	281ms/step
1/1	0s	292ms/step
1/1	0s	277ms/step
1/1	0s	305ms/step
1/1	0s	294ms/step
1/1	0s	267ms/step
1/1	0s	276ms/step
1/1	0s	275ms/step
1/1	0s	274ms/step
1/1	0s	289ms/step
1/1	0s	149ms/step
1/1	0s	157ms/step
1/1	0s	277ms/step

1/1	0s	289ms/step
1/1	0s	270ms/step
1/1	0s	246ms/step
1/1	0s	275ms/step
1/1	0s	280ms/step
1/1	0s	267ms/step
1/1	0s	272ms/step
1/1	0s	269ms/step
1/1	0s	269ms/step
1/1	0s	266ms/step
1/1	0s	268ms/step
1/1	0s	278ms/step
1/1	0s	267ms/step
1/1	0s	251ms/step
1/1	0s	275ms/step
1/1	0s	275ms/step
1/1	0s	272ms/step
1/1	0s	276ms/step
1/1	0s	269ms/step
1/1	0s	280ms/step
1/1	0s	259ms/step
1/1	0s	279ms/step
1/1	0s	277ms/step
1/1	0s	260ms/step
1/1	0s	274ms/step
1/1	0s	271ms/step
1/1	0s	271ms/step
1/1	0s	272ms/step
1/1	0s	276ms/step
1/1	0s	271ms/step
1/1	0s	277ms/step
1/1	0s	271ms/step
1/1	0s	272ms/step
1/1	0s	280ms/step
1/1	0s	280ms/step
1/1	0s	272ms/step
1/1	0s	283ms/step

1/1	0s	281ms/step
1/1	0s	280ms/step
1/1	0s	273ms/step
1/1	0s	286ms/step
1/1	0s	296ms/step
1/1	0s	277ms/step
1/1	0s	280ms/step
1/1	0s	270ms/step
1/1	0s	279ms/step
1/1	0s	282ms/step
1/1	0s	294ms/step
1/1	0s	267ms/step
1/1	0s	275ms/step
1/1	0s	278ms/step
1/1	0s	269ms/step
1/1	0s	269ms/step
1/1	0s	265ms/step
1/1	0s	278ms/step
1/1	0s	268ms/step
1/1	0s	273ms/step
1/1	0s	220ms/step
1/1	0s	275ms/step
1/1	0s	276ms/step
1/1	0s	274ms/step
1/1	0s	271ms/step
1/1	0s	289ms/step
1/1	0s	282ms/step
1/1	0s	269ms/step
1/1	0s	153ms/step
1/1	0s	152ms/step
1/1	0s	171ms/step
1/1	0s	164ms/step
1/1	0s	154ms/step
1/1	0s	160ms/step
1/1	0s	164ms/step
1/1	0s	156ms/step
1/1	0s	154ms/step

1/1	0s	163ms/step
1/1	0s	158ms/step
1/1	0s	165ms/step
1/1	0s	165ms/step
1/1	0s	171ms/step
1/1	0s	163ms/step
1/1	0s	165ms/step
1/1	0s	154ms/step
1/1	0s	155ms/step
1/1	0s	161ms/step
1/1	0s	153ms/step
1/1	0s	158ms/step
1/1	0s	172ms/step
1/1	0s	170ms/step
1/1	0s	153ms/step
1/1	0s	182ms/step
1/1	0s	156ms/step
1/1	0s	159ms/step
1/1	0s	165ms/step
1/1	0s	163ms/step
1/1	0s	158ms/step
1/1	0s	156ms/step
1/1	0s	162ms/step
1/1	0s	159ms/step
1/1	0s	156ms/step
1/1	0s	172ms/step
1/1	0s	159ms/step
1/1	0s	162ms/step
1/1	0s	172ms/step
1/1	0s	163ms/step
1/1	0s	158ms/step
1/1	0s	169ms/step
1/1	0s	158ms/step
1/1	0s	177ms/step
1/1	0s	164ms/step
1/1	0s	172ms/step
1/1	0s	167ms/step

1/1	0s	161ms/step
1/1	0s	160ms/step
1/1	0s	158ms/step
1/1	0s	166ms/step
1/1	0s	155ms/step
1/1	0s	172ms/step
1/1	0s	155ms/step
1/1	0s	156ms/step
1/1	0s	162ms/step
1/1	0s	161ms/step
1/1	0s	157ms/step
1/1	0s	167ms/step
1/1	0s	160ms/step
1/1	0s	168ms/step
1/1	0s	153ms/step
1/1	0s	160ms/step
1/1	0s	158ms/step
1/1	0s	159ms/step
1/1	0s	178ms/step
1/1	0s	166ms/step
1/1	0s	169ms/step
1/1	0s	166ms/step
1/1	0s	166ms/step
1/1	0s	169ms/step
1/1	0s	169ms/step
1/1	0s	157ms/step
1/1	0s	173ms/step
1/1	0s	161ms/step
1/1	0s	164ms/step
1/1	0s	164ms/step
1/1	0s	159ms/step
1/1	0s	168ms/step
1/1	0s	158ms/step
1/1	0s	159ms/step
1/1	0s	172ms/step
1/1	0s	160ms/step
1/1	0s	160ms/step

```
Os 154ms/step
1/1
1/1
               Os 161ms/step
   NOC
               Sports Time
                             Туре
              Swimming
0
    AUS
                         242
                             Down
               Cycling
1
   AUS
                         232
                              Down
2
   BRA
             Athletics
                         645 Down
3
   CAN
             Athletics
                         859
                               Uр
4
   CAN
               Rowing
                         933
                               Uр
. .
               Sailing
65
   USA
                       6434
                             Down
66 USA
               Rowing
                       6356
                                Uр
67 USA
            Wrestling
                       6396
                             Down
  USA
                Boxing
68
                       6397
                              Down
        Equestrianism
69 USA
                       6506
                                Uр
```

[70 rows x 4 columns]

```
[74]: results_df.to_csv('Result2\\exception_country.csv')
```

• 在诸如郎平、贝拉•卡罗利这样的伟大教练进出某国时,产生了明显的影响。