# **CS571: Artificial Intelligence**

# **End Semester Quiz**

Name: M Maheeth Reddy Roll No. 1801CS31 Date: 24 November 2021

#### Ans 1:

## **Gini Index**

- calculates the degree of probability of a specific variable that is wrongly being classified when chosen randomly and a variation of gini coefficient.
- works on categorical variables, provides outcomes either be "successful" or "failure" and hence conducts binary splitting only.

### **Information Gain**

- used for determining the best features/attributes that render maximum information about a class.
- follows the concept of entropy while aiming at decreasing the level of entropy, beginning from the root node to the leaf nodes.
- computes the difference between entropy before and after split and specifies the impurity in class elements.

#### **Diferences of Gini Index and Information Gain:**

- Gini Index performs binary splitting to determine the efficiency of the split, Information Gain is robust.
- <u>Reason</u>: the Gini algorithm itself experiments with the data in a greedy fashion in-order to land at the best possible split using the concept of entropy.
- Though Information gain is computationally more heavy compared to Gini Index, we can be sure that it enables us to get the best possible split.
- However, if the data consists of large number of partitions, Information Gain will take lots of time to reach optimality. In such cases Gini Index could be preferred.
- Gini's maximum impurity is 0.5 and maximum purity is 0 while Entropy's maximum impurity is 1 and maximum purity is 0

<u>Counterexample</u>: If we have a dataset of 1000 clases, using information gain will take much time as compared to gini index.

#### Ans 2:

A heuristic h(n) is said to be admissible if  $h(n) <= h^*(n)$  where  $h^*(n)$  is the true cost to the goal  $\rightarrow h(n)$  never overestimates the cost from node to goal state.

A\* is guaranteed to always return the shortest path. All other algorithms return the optimal path must expand all other nodes whereas A\* does not.

So, the given statement that "If A\* knows the ACTUAL cost of the optimal path of any node to the goal, then no useless node is expanded" is **TRUE** 

- We are using an admissible heuristic h(n), so there is no overestimation of the actual cost from a node n to goal.
- Since A\* heuristic is calculated in such a way that it adds both the cost to that node and cost from that node to Goal state, A\* is always guaranteed to return the shortest path and doesnt expand to an useless node

Consider the following scenario:



Node n is an unexpanded node on the shortest path to goal (G) and  $G_2$  is a suboptimal goal.

$$h(G2) = 0 \Rightarrow f(G2) = g(G2)$$

As G2 is not optimal, g(G2) > g(G)

so, 
$$h(G) = 0 \Rightarrow f(G) = g(G) \Rightarrow f(G2) \Rightarrow f(G)$$
  
as n is an unexpanded node,  $f(n) = g(n) + h(n) \iff f(G)$   
So,  $f(n) \iff f(G)$ . (Since h is admissible)  
This implies  $f(G2) \Rightarrow f(n)$ 

Hence, A\* will never expand node G2.
Therefore, A\* will never expand a useless node.

### **Ans 3**:

Our knowledge base consists of the following first-order Horn clauses:

Ancestor (Mother(x), x)

Ancestor (x,y) ^ Ancestor (y,z) ==> Ancestor (x,z)

Clearly, we can see that the resolution is complete

We need to prove the following:

# ~ Ancestor (John, John)

The resolution cannot prove the above statement despite being complete or finished. A careful analysis will show that the statement to be proven doesn't follow the knowledge base.

<u>Reason</u>: There is nothing in the knowledge base that dismisses the possibility of everything being the ancestor of everything else.