Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker

Dr Heinz M. Kabutz

Last Updated 2017-05-15

Javaspecialists.eu

Regular

ManagedBlocker

Speeding Up Fibonacci

By Leonardo of Pisa

$$- F_0 = 0$$

$$-F_1 = 1$$

$$-F_n = F_{n-1} + F_{n-2}$$

 Thus the next number is equal to the sum of the two previous numbers

The numbers get large quickly, like Australian rabbit population

Rights

Naive Implementation

Taking our recursive definition

```
- F_0 = 0, F_1 = 1
- F_n = F_{n-1} + F_{n-2}
```

Converting this into Java:

```
public long f(int n) {
   if (n <= 1) return n;
   return f(n-1) + f(n-2);
}</pre>
```


But this has exponential time complexity, so gets terribly slow

Rights

2nd Attempt at Coding Fibonacci

Iterative algorithm

```
public static long f(int n) {
  long n0 = 0, n1 = 1;
  for (int i = 0; i < n; i++) {
    long temp = n1;
    n1 = n1 + n0;
    n0 = temp;
  }
  return n0;
}</pre>
```


- Linear time complexity
 - f(1_000_000_000) in 1.7 seconds
 - However, long overflows so the result is incorrect
 - We can use BigInteger, but its add() is also linear, so time is quadratic

3rd Attempt Dijkstra's Sum of Squares

- Dijkstra's clever formula
 - $-F_{2n-1} = F_{n-1}^2 + F_n^2$
 - $-F_{2n} = (2 \times F_{n-1} + F_n) \times F_n$
- Logarithmic time complexity
 - Multiply in Java BigInteger
 - Karatsuba complexity is O(n^{1.585})
 - 3-way Toom Cook complexity is O(n^{1.465})
 - Prior to Java 8, multiply() had complexity O(n²)
 - BigInteger.multiply() single-threaded in Java we'll fix that later

Demo 1: Dijkstra's Sum of Squares

- We implement this algorithm using BigInteger
 - $-F_{2n-1} = F_{n-1}^2 + F_n^2$
 - $-F_{2n} = (2 \times F_{n-1} + F_n) \times F_n$
- Please remind me to commit each step to github
 - tinyurl.com/jprime17

Demo 2: Parallelize Our Algorithm

- We can parallelize by using common Fork/Join Pool
 - Next we fork() the 1st task, do the 2nd and then join 1st

```
RecursiveTask<BigInteger> f0_task = new RecursiveTask<BigInteger>() {
    protected BigInteger compute() {
        return f(half - 1);
    }
};
f0_task.fork();
BigInteger f1 = f(half);
BigInteger f0 = f0_task.join();
```

Demo 3: Parallelize BigInteger

- Let's hack fork/join into:
 - multiplyToomCook3()
 - squareToomCook3()
- These probably won't reach the threshold
 - multiplyKaratsuba()
 - squareKaratsuba()
- Choose modified BigInteger with
 - -Xbootclasspath/p:<path_to_hack>

Demo 4: Cache Results

- Dijkstra's Sum of Squares needs to work out some values several times. Cache results to avoid this.
 - Careful to avoid a memory leak
 - No static maps

Demo 5: Reserved Caching Scheme

- Instead of calculating same value twice:
 - Use putlfAbsent() to insert special placeholder
 - If result is null, we are first and start work
 - If result is the placeholder, we wait

Demo 6: ManagedBlocker

- ForkJoinPool is configured with desired parallelism
 - Number of active threads
 - ForkJoinPool mostly used with CPU intensive tasks
- If one of the FJ Threads has to block, a new thread can be started to take its place
 - This is done with the ManagedBlocker
- We use ManagedBlocker to keep parallelism high

Rights

Demo 7: CompletableFuture (Homework)

- Implement Fibonacci using
 - CompletableFuture with methods
 - thenAcceptBothAsync()
 - complete()
- What happens with thread creation when you disable the common ForkJoinPool?
 - -Djava.util.concurrent.ForkJoinPool.common.parallelism=0
- Send me your answers here: tinyurl.com/jprime17

Java Specialists' Newsletter

Core Java Tips & Tricks http://tinyurl.com/jprime17

