

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT FOR LOW-POWER, NON-LICENSED TRANSMITTER

Test Report No. : W174R-D002

AGR No. : A172A-372

Applicant : LG Innotek Co., Ltd.

Address : 26, Hanamsandan 5beon-ro Gwangsan-gu, Gwangju, 506-731, South Korea

Manufacturer : LG Innotek Co., Ltd.

Address : 26, Hanamsandan 5beon-ro Gwangsan-gu, Gwangju, 506-731, South Korea

Type of Equipment : BT(V4.2) + WLAN(802.11a/b/g/n/ac) 2x2 MIMO Module

FCC ID. : YZP-RBHP-B216C

Model Name : RBHP-B216C

Serial number : N/A

Total page of Report : 66 pages (including this page)

Date of Incoming : March 21, 2017

Date of issue : April 05, 2017

SUMMARY

The equipment complies with the regulation; FCC PART 15 SUBPART C Section 15.247

This test report only contains the result of a single test of the sample supplied for the examination.

It is not a generally valid assessment of the features of the respective products of the mass-production.

Reviewed by:

Ki-Hong, Nam / Asst, Chief Engineer ONETECH Corp.

Approved by:

Keun-Young, Choi / Vice President

Report No.: W174R-D002

ONETECH Corp.

CONTENTS

1. VERIFICATION OF COMPLIANCE	5
2. TEST SUMMARY	6
2.1 TEST ITEMS AND RESULTS	6
2.2 Additions, deviations, exclusions from standards	6
2.3 RELATED SUBMITTAL(S) / GRANT(S)	6
2.4 PURPOSE OF THE TEST	6
2.5 TEST METHODOLOGY	6
2.6 TEST FACILITY	6
3. GENERAL INFORMATION	7
3.1 PRODUCT DESCRIPTION	7
3.2 ALTERNATIVE TYPE(S)/MODEL(S); ALSO COVERED BY THIS TEST REPORT	10
4. EUT MODIFICATIONS	10
5. SYSTEM TEST CONFIGURATION	11
5.1 JUSTIFICATION	11
5.2 PERIPHERAL EQUIPMENT	11
5.3 MODE OF OPERATION DURING THE TEST	12
5.4 CONFIGURATION OF TEST SYSTEM	13
5.5 ANTENNA REQUIREMENT	13
6. PRELIMINARY TEST	14
6.1 AC POWER LINE CONDUCTED EMISSIONS TESTS	14
6.2 GENERAL RADIATED EMISSIONS TESTS	14
7. MIMIMUM 6 DB BANDWIDTH	15
7.1 OPERATING ENVIRONMENT	15
7.2 TEST SET-UP	15
7.3 TEST EQUIPMENT USED	15
7.4 TEST DATA FOR 802.11B WLAN MODE	16
7.5 TEST DATA FOR 802.11G WLAN MODE	18
7.6 TEST DATA FOR 802.11N_HT20 WLAN MODE	20
8. MAXIMUM PEAK OUTPUT POWER	22
8.1 OPERATING ENVIRONMENT	22
8.2 Test set-up	22

Report No.: W174R-D002

PAGE

8.3 TEST EQUIPMENT USED	22
8.4 TEST DATA FOR 802.11B WLAN MODE	23
8.5 TEST DATA FOR 802.11G WLAN MODE	25
8.6 TEST DATA FOR 802.11N_HT20 WLAN MODE	27
9. 100 KHZ BANDWIDTH OUTSIDE THE FREQUENCY BAND	29
9.1 OPERATING ENVIRONMENT	29
9.2 TEST SET-UP FOR CONDUCTED MEASUREMENT	29
9.3 TEST SET-UP FOR RADIATED MEASUREMENT	29
9.4 TEST EQUIPMENT USED	29
9.5 TEST DATA FOR CONDUCTED EMISSION	30
9.5.1 Test data for 802.11b WLAN Mode	30
9.5.2 Test data for 802.11g WLAN Mode	35
9.5.3 Test data for 802.11n_HT20 WLAN Mode	40
9.6 TEST DATA FOR RADIATED EMISSION	45
9.6.1 Radiated Emission which fall in the Restricted Band	45
9.6.2 Radiated Emission which fall in the Band Edge	48
9.6.3 Spurious & Harmonic Radiated Emission	51
10. PEAK POWER SPECTRUL DENSITY	54
10.1 OPERATING ENVIRONMENT	54
10.2 TEST SET-UP	54
10.3 TEST EQUIPMENT USED.	54
10.4 TEST DATA FOR 802.11B WLAN MODE	55
10.5 TEST DATA FOR 802.11G WLAN MODE	57
10.6 TEST DATA FOR 802.11N_HT20 WLAN MODE	59
11. RADIATED EMISSION TEST	61
11.1 OPERATING ENVIRONMENT	61
11.2 TEST SET-UP	61
11.3 TEST EQUIPMENT USED.	61
11.4 TEST DATA FOR 30 MHz ~ 1 000 MHz	62
11.5 TEST DATA FOR BELOW 30 MHz	63
11.6 TEST DATA FOR ABOVE 1 GHZ	63
12. CONDUCTED EMISSION TEST	64
12.1 OPERATING ENVIRONMENT	64
12.2 TEST SET-UP	64
12.3 TEST EQUIPMENT USED.	64
12.4 TEST DATA	65

REVISION HISTORY

Issued Report No.	Issued Date	Revisions	Effect Section
W174R-D002	April 05, 2017	Initial Issue	All

DOCUMENT HISTORY

Revision No.	Issued Date	Revisions	Effect Section
Original	April 05, 2017	Initial Issue	-
Revision 01	April 11, 2017	The add FCC ID/IC information and DFS function.	10 Page
Revision 02		The add information for master device.	11 Page
Revision 03	April 12, 2017	The modify information for master device.	11 Page
Revision 04	April 13, 2017	Delete for the FCC ID/IC information.	10 Page

Page 5 of 66 Report No.: W174R-D002

1. VERIFICATION OF COMPLIANCE

Applicant : LG Innotek Co., Ltd.

Address : 26, Hanamsandan 5beon-ro Gwangsan-gu, Gwangju, 506-731, South Korea

Contact Person : Inchang Jeong
Telephone No. : +82-62-950-0332
FCC ID : YZP-RBHP-B216C

Model Name : RBHP-B216C

Serial Number : N/A

Date : April 05, 2017

EQUIPMENT CLASS	DTS – DIGITAL TRNSMISSION SYSTEM	
E.U.T. DESCRIPTION	Modular Transmitter, BT(V4.2) + WLAN(802.11a/b/g/n/ac) 2x2 MIMO Module	
THIS REPORT CONCERNS	Original Grant	
MEASUREMENT PROCEDURES	ANSI C63.10: 2013	
TYPE OF EQUIPMENT TESTED	Pre-Production	
KIND OF EQUIPMENT		
AUTHORIZATION REQUESTED	Certification	
EQUIPMENT WILL BE OPERATED	FCC DART 15 CURDART C Continue 15 247	
UNDER FCC RULES PART(S)	FCC PART 15 SUBPART C Section 15.247	
Modifications on the Equipment to	Nama	
Achieve Compliance	None	
Final Test was Conducted On	3 m, Semi Anechoic Chamber	

^{-.} The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. TEST SUMMARY

2.1 Test items and results

SECTION	TEST ITEMS	RESULTS
15.247 (a) (2)	Minimum 6 dB Bandwidth	Met the Limit / PASS
15.247 (b) (3)	Maximum Peak Conducted Output Power	Met the Limit / PASS
15.247 (d)	100 kHz Bandwidth Outside the Frequency Band	Met the Limit / PASS
15.247 (d)	Radiated Emission which fall in the Restricted Band	Met the Limit / PASS
15.247 (e)	Peak Power Spectral Density	Met the Limit / PASS
15.209	Radiated Emission Limits	Met the Limit / PASS
15.207	Conducted Limits	Met the Limit / PASS
15.203	Antenna Requirement	Met requirement / PASS

2.2 Additions, deviations, exclusions from standards

No additions, deviations or exclusions have been made from standard.

2.3 Related Submittal(s) / Grant(s)

Original submittal only

2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in FCC PART 15 SUBPART C Section 15.247.

2.5 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

2.6 Test Facility

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea

-. Site Filing:

VCCI (Voluntary Control Council for Interference) - Registration No. R-4112/ C-4617/ G-10666 / T-1842

IC (Industry Canada) – Registration No. Site# 3736A-3

-. Site Accreditation:

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) - Designation No. KR0013

3. GENERAL INFORMATION

3.1 Product Description

The LG Innotek Co., Ltd., Model RBHP-B216C (referred to as the EUT in this report) is a BT(V4.2) + WLAN(802.11a/b/g/n/ac) 2x2 MIMO Module. Product specification information described herein was obtained from product data sheet or user's manual.

DEVICE TYPE	BT(V4.2) + WLAN(802.11a/b/g/n/ac) 2x2 MIMO Module			
	Bluetooth	2 402 MHz ~ 2 480 MHz		
	WLAN 2.4 GHz Band	2 412 MHz ~ 2 462 MHz (802.11b/g/n(HT20))		
		5 150 MH	5 180 MHz ~ 5 240 MHz (802.11a/n(HT20)/ac(VHT20))	
		5 150 MHz ~	5 190 MHz ~ 5 230 MHz (802.11n(HT40)/ac(VHT40))	
		5 250 MHz Band	5 210 MHz (802.11ac(VHT80))	
FREQUENCY		5 250 MHz ~ 5 350 MHz Band 5 470 MHz ~	5 260 MHz ~ 5 320 MHz (802.11a/n(HT20)/ac(VHT20))	
			5 270 MHz ~ 5 310 MHz (802.11n(HT40)/ac(VHT40))	
RANGE	WLAN		5 290 MHz (802.11ac(VHT80))	
	5 GHz Band		5 500 MHz ~ 5 720 MHz (802.11a/n(HT20)/ac(VHT20))	
			5 510 MHz ~ 5 710 MHz (802.11n(HT40)/ac(VHT40))	
		5 725 MHz Band	5 530 MHz (802.11ac(VHT80))	
			5 745 MHz ~ 5 825 MHz (802.11a/n(HT20)/ac(VHT20))	
		5 725 MHz ~ 5 850 MHz Band	5 755 MHz ~ 5 795 MHz (802.11n(HT40)/ac(VHT40))	
			5 775 MHz (802.11ac(VHT80))	

ONETECH

0.97 dBm 1 Mbps Bluetooth 2 Mbps -1.67 dBm 3 Mbps -1.24 dBm Wi-Fi 802.11b (16.40 dBm) WLAN Wi-Fi 802.11g (15.84 dBm) 2.4 GHz Band Wi-Fi 802.11n(HT20) (15.05 dBm) Wi-Fi 802.11a (13.96 dBm) Wi-Fi 802.11n(HT20) (11.80 dBm) Antenna 0 Wi-Fi 802.11n(HT40) (10.14 dBm) Wi-Fi 802.11ac(HT80) (12.61 dBm) Wi-Fi 802.11a (13.92 dBm) 5 150 MHz ~ Wi-Fi 802.11n(HT20) (10.62 dBm) Antenna 1 5 250 MHz Band Wi-Fi 802.11n(HT40) (10.54 dBm) Wi-Fi 802.11ac(HT80) (12.66 dBm) MAX. RF OUTPUT POWER Wi-Fi 802.11n(HT20) (14.24 dBm) Antenna 0 Wi-Fi 802.11n(HT40) (13.29 dBm) + Antenna 1 **WLAN** Wi-Fi 802.11ac(HT80) (12.96 dBm) 5 GHz Band Wi-Fi 802.11a (14.42 dBm) Wi-Fi 802.11n(HT20) (14.61 dBm) Antenna 0 Wi-Fi 802.11n(HT40) (14.10 dBm) Wi-Fi 802.11ac(HT80) (12.51 dBm) Wi-Fi 802.11a (14.41 dBm) 5 250 MHz ~ Wi-Fi 802.11n(HT20) (14.54 dBm) Antenna 1 5 350 MHz Band Wi-Fi 802.11n(HT40) (13.56 dBm) Wi-Fi 802.11ac(HT80) (13.21 dBm) Wi-Fi 802.11n(HT20) (17.59 dBm) Antenna 0

+ Antenna 1

Wi-Fi 802.11n(HT40) (16.85 dBm)

Wi-Fi 802.11ac(HT80) (15.88 dBm)

				Wi-Fi 802.11a (14.91 dBm)
			Antenna 0	Wi-Fi 802.11n(HT20) (14.94 dBm)
				Wi-Fi 802.11n(HT40) (14.81 dBm)
				Wi-Fi 802.11ac(HT80) (12.99 dBm)
				Wi-Fi 802.11a (14.62 dBm)
		5 470 MHz ~		Wi-Fi 802.11n(HT20) (14.97 dBm)
		5 725 MHz Band	Antenna 1	Wi-Fi 802.11n(HT40) (14.32 dBm)
				Wi-Fi 802.11ac(HT80) (13.44dBm)
				Wi-Fi 802.11n(HT20) (17.88 dBm)
			Antenna 0	Wi-Fi 802.11n(HT40) (17.58 dBm)
MAX. RF OUTPUT	WLAN		+ Antenna 1	, , , , , , , , , , , , , , , , , , ,
POWER	5 GHz Band			Wi-Fi 802.11ac(HT80) (16.23 dBm)
TOWER		5 725 MHz ~ 5 850 MHz Band	Antenna 0	Wi-Fi 802.11a (14.58 dBm)
				Wi-Fi 802.11n(HT20) (14.27 dBm)
				Wi-Fi 802.11n(HT40) (13.88 dBm)
				Wi-Fi 802.11ac(HT80) (12.80 dBm)
			Antenna 1	Wi-Fi 802.11a (14.74 dBm)
				Wi-Fi 802.11n(HT20) (14.84 dBm)
				Wi-Fi 802.11n(HT40) (14.69 dBm)
				Wi-Fi 802.11ac(HT80) (13.88 dBm)
			Antenna 0	Wi-Fi 802.11n(HT20) (17.57 dBm)
			+ Antenna 1	Wi-Fi 802.11n(HT40) (17.31 dBm)
				Wi-Fi 802.11ac(HT80) (16.38 dBm)
	Bluetooth	GFSK for 1 Mbps,	π/4-DQPSK	for 2 Mbps, 8-DPSK for 3 Mbps
MODINATIONATION	WLAN	DSSS Modulation(I	OBPSK/DOP:	SK/CCK)
MODULATION TYPE	2.4 GHz Band			
	WLAN	OFDM Modulation(BPSK/QPSK/16QAM/64QAM)		
	5 GHz Band	Iz Band		

ON	E1	E	C	H
	-	/		

	Bluetooth (BDR/EDR)	2.2 dBi	2.2 dBi		
	WLAN 2.4 GHz Band (802.11b/g/n(HT20))	4.8 dBi			
		Antenna 0	5.4 dBi		
	5 150 MHz ~ 5 250 MHz Band	Antenna 1	5.7 dBi		
	3 230 MHZ Ballu	Antenna 0 + Antenna 1	8.56 dBi		
ANTENNA TYPE		Antenna 0	5.6 dBi		
& GAIN	5 250 MHz ~ 5 350 MHz Band	Antenna 1	4.8 dBi		
		Antenna 0 + Antenna 1	8.23 dBi		
	5 470 MHz ~ 5 725 MHz Band	Antenna 0	5.7 dBi		
		Antenna 1	5.3 dBi		
		Antenna 0 + Antenna 1	8.51 dBi		
	5 725 MHz ~ 5 850 MHz Band	Antenna 0	5.2 dBi		
		Antenna 1	5.4 dBi		
		Antenna 0 + Antenna 1	8.31 dBi		
List of each Osc. or crystal	37.4 MHz				
Freq.(Freq. >= 1 MHz)	J. I MILE				
DFS FUNCTION	Slave without radar detection				

3.2 Alternative type(s)/model(s); also covered by this test report.

-. None

4. EUT MODIFICATIONS

-. None

5. SYSTEM TEST CONFIGURATION

5.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the following components were installed inside of the EUT.

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID
Main Board	LG Innotek Co., Ltd.	RBHA-B2168_RDK_Rev0.1	N/A

5.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested:

Model	Manufacturer	Description	Connected to	
RBHP-B216C	LG Innotek Co., Ltd.	BT(V4.2) + WLAN(802.11a/b/g/n/ac) 2x2	Notebook PC	
KBHF-B210C	LG IIIIolek Co., Ltd.	MIMO Module (EUT)	Notebook PC	
PP11L	DELL	Notebook PC	EUT	
***********		WLAN Access Point	77.VI	
WEA504i	Samsung Electronics Co Ltd	(FCC ID.: A3LWEA504I)	EUT	

5.3 Mode of operation during the test

Modulation	DATA RATE	OUTPUT POWER[dBm]
	1 Mbps	16.40
802.11 b	2 Mbps	16.27
(Middle Channel)	5.5 Mbps	15.88
	11 Mbps	15.65
	6 Mbps	15.84
	9 Mbps	15.49
	12 Mbps	15.29
802.11g	18 Mbps	14.90
(Middle Channel)	24 Mbps	14.51
	36 Mbps	14.39
	48 Mbps	14.02
	54 Mbps	13.92
	6.5 Mbps	15.05
	13 Mbps	14.81
	19.5 Mbps	14.45
HT 20	26 Mbps	14.28
(Middle Channel)	39 Mbps	13.99
	52 Mbps	13.72
	58.5 Mbps	13.59
	65 Mbps	13.22

The worse case data rate for each modulation is determined 1 Mbpsfor IEEE 802.11b, 6 Mbps for IEEE 802.11g, 6.5 Mbps for HT20

Page 13 of 66 Report No.: W174R-D002

5.4 Configuration of Test System

Line Conducted Test: The jig board of the EUT was connected to LISN. All supporting equipments were

connected to another LISN. Preliminary Power line Conducted Emission test was performed by using the procedure in ANSI C63.10: 2013 to determine the worse

operating conditions.

Radiated Emission Test: Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10:

2013 to determine the worse operating conditions. Final radiated emission tests were

conducted at 3 meter Semi Anechoic Chamber.

The turntable was rotated through 360 degrees and the EUT was tested by positioned three orthogonal planes to obtain the highest reading on the field strength meter. Once maximum reading was determined, the search antenna was raised and lowered in both

vertical and horizontal polarization.

5.5 Antenna Requirement

For intentional device, according to section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Construction:

The transmitter antenna of the EUT is WLAN 2.4 GHz Band & WLAN 5 GHz Band is PCB antenna and Bluetooth & WLAN 5 GHz Band is PIFA antenna so no consideration of replacement by the user.

Page 14 of 66 Report No.: W174R-D002

6. PRELIMINARY TEST

6.1 AC Power line Conducted Emissions Tests

During Preliminary Test, the following operating mode was investigated.

Operation Mode	The Worse operating condition (Please check one only)
Transmitting Mode	X

6.2 General Radiated Emissions Tests

During Preliminary Test, the following operating mode was investigated.

Operation Mode	The Worse operating condition (Please check one only)		
Transmitting Mode	X		

Page 15 of 66 Report No.: W174R-D002

7. MIMIMUM 6 dB BANDWIDTH

7.1 Operating environment

Temperature : $21 \, ^{\circ}\text{C}$

Relative humidity : 45 % R.H.

7.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz, and peak detection was used. The 6 dB bandwidth is defined as the total spectrum over which the power is higher than the peak power minus 6 dB.

7.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
-	FSV40	Rohde & Schwarz	Signal Analyzer	101009	April 05, 2017 (1Y)

All test equipment used is calibrated on a regular basis.

Page 16 of 66 Report No.: W174R-D002

7.4 Test data for 802.11b WLAN Mode

-. Test Date : March 24, 2017

-. Test Result : Pass

CHANNEL	FREQUENCY (MHz)	6 dB Bandwidth (MHz)	LIMIT (MHz)	Margin (MHz)
Low	2 412	8.00	0.5	7.50
Middle	2 442	8.00	0.5	7.50
High	2 462	8.00	0.5	7.50

Remark. Margin = Measured Value - Limit

Tested by: Tae-Ho, Kim / Senior Engineer

Page 18 of 66 Report No.: W174R-D002

7.5 Test data for 802.11g WLAN Mode

-. Test Date : March 24, 2017

-. Test Result : Pass

CHANNEL	FREQUENCY (MHz)	6 dB Bandwidth (MHz)	LIMIT (MHz)	Margin (MHz)
Low	2 412	16.43	0.5	15.93
Middle	2 442	16.43	0.5	15.93
High	2 462	16.43	0.5	15.93

Remark. Margin = Measured Value - Limit

Tested by: Tae-Ho, Kim / Senior Engineer

7.6 Test data for 802.11n_HT20 WLAN Mode

-. Test Date : March 24, 2017

-. Test Result : Pass

CHANNEL	FREQUENCY (MHz)	6 dB Bandwidth (MHz)	LIMIT (MHz)	Margin (MHz)
Low	2 412	17.63	0.5	17.13
Middle	2 442	17.63	0.5	17.13
High	2 462	17.63	0.5	17.13

Remark. Margin = Measured Value - Limit

Tested by: Tae-Ho, Kim / Senior Engineer

Page 22 of 66 Report No.: W174R-D002

8. MAXIMUM PEAK OUTPUT POWER

8.1 Operating environment

Temperature : $21 \, ^{\circ}\text{C}$

Relative humidity : 45 % R.H.

8.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer.

The resolution bandwidth is set to ≥DTS Bandwidth, the video bandwidth is set to 3 times the resolution bandwidth.

8.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
I -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	April 05, 2017 (1Y)

All test equipment used is calibrated on a regular basis.

8.4 Test data for 802.11b WLAN Mode

-. Test Date : March 24, 2017

-. Test Result : Pass

CHANNEL	FREQUENCY	6 dB Bandwidth	MEASURED VLAUE	LIMIT	MARGIN
CHANNEL	(MHz)	(MHz)	(dBm)	(dBm)	(dB)
LOW	2 412	8.00	16.05	30	13.95
MIDDLE	2 442	8.00	16.39	30	13.61
HIGH	2 462	8.00	16.40	30	13.60

Remark. Margin = Limit – Measured Value (=Receiver Reading + Cable Loss)

Tested by: Tae-Ho, Kim / Senior Engineer

Page 25 of 66 Report No.: W174R-D002

8.5 Test data for 802.11g WLAN Mode

-. Test Date : March 24, 2017

-. Test Result : Pass

ONETECH

CHANNEL	FREQUENCY	6 dB Bandwidth	MEASURED VLAUE	LIMIT	MARGIN
CHANNEL	(MHz)	(MHz)	(dBm)	(dBm)	(dB)
LOW	2 412	16.43	15.52	30	14.48
MIDDLE	2 442	16.43	15.84	30	14.16
HIGH	2 462	16.43	15.78	30	14.22

Remark. Margin = Limit – Measured Value (=Receiver Reading + Cable Loss)

Tested by: Tae-Ho, Kim / Senior Engineer

8.6 Test data for 802.11n_HT20 WLAN Mode

-. Test Date : March 24, 2017

-. Test Result : Pass

CHANNEL	FREQUENCY	6 dB Bandwidth	MEASURED VLAUE	LIMIT	MARGIN
CHANNEL	(MHz)	(MHz)	(dBm)	(dBm)	(dB)
LOW	2 412	17.63	14.70	30	15.30
MIDDLE	2 442	17.63	14.82	30	15.18
HIGH	2 462	17.63	15.05	30	14.95

Remark. Margin = Limit – Measured Value (=Receiver Reading + Cable Loss)

Tested by: Tae-Ho, Kim / Senior Engineer

Page 29 of 66 Report No.: W174R-D002

9. 100 kHz BANDWIDTH OUTSIDE THE FREQUENCY BAND

9.1 Operating environment

Temperature : $21 \, ^{\circ}\text{C}$ Relative humidity : $45 \, ^{\circ}\text{R.H.}$

9.2 Test set-up for conducted measurement

The antenna output of the EUT was connected to the spectrum analyzer. The resolution and video bandwidth is set to 100 kHz, and peak detection was used.

9.3 Test set-up for radiated measurement

The radiated emissions measurements were performed on the 3 m semi anechoic chamber. The EUT was placed on turntable approximately 1.5 m above the ground plane.

The frequency spectrum from 30 MHz to 26.5 GHz was scanned and maximum emission levels at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for horizontal and vertical polarization of the receiving antenna.

9.4 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	April 05, 2017 (1Y)
■ -	ESU	Rohde & Schwarz	EMI Test Receiver	100261	Apr. 06, 2017 (1Y)
■ -	310N	Sonoma Instrument	Pre-Amplifier	312544	Apr. 05, 2017 (1Y)
■ -	SCU-18	Rohde & Schwarz	Pre-Amplifier	102209	May 31, 2016 (1Y)
	SCU40A	Rohde & Schwarz	Signal Conditioning unit	100436	May 31, 2016 (1Y)
■ -	DT3000-3t	Innco System	Turn Table	DT3000/093	N/A
■ -	MA-4000XPET	Innco System	Antenna Master	MA4000/509	N/A
■ -	VULB9163	Schwarzbeck	TRILOG Broadband Antenna	9163-421	Apr. 15, 2016 (1Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D295	Aug. 31, 2015 (2Y)
■ -	BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Aug. 31, 2015 (2Y)

All test equipment used is calibrated on a regular basis.

9.5 Test data for conducted emission

9.5.1 Test data for 802.11b WLAN Mode

High Channel

Report No.: W174R-D002

Report No.: W174R-D002

Page 45 of 66 Report No.: W174R-D002

9.6 Test data for radiated emission

9.6.1 Radiated Emission which fall in the Restricted Band

9.6.1.1 Test data for 802.11b WLAN Mode

-. Test Date : March 22, 2017

-. Resolution bandwidth : 1 MHz and Peak Detector for Peak Mode

1 MHz and RMS Detector for Average Mode

-. Video bandwidth : 3 MHz for Peak and Average Mode

-. Measurement distance : 3 m-. Duty Cycle : 98 %-. Result : PASSED

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
			Test l	Data for L	ow Channe	el			
	57.41	Peak	Н				53.34	74.00	20.66
	51.71	Average	Н	26.04			47.64	54.00	6.36
2 390.00	49.72	Peak	V	26.94	9.20	40.21	45.65	74.00	28.35
	43.94	Average	V				39.87	54.00	14.13
			Test I	Oata for Hi	igh Channe	el			
	51.11	Peak	Н				47.91	74.00	26.09
	47.14	Average	Н				43.94	54.00	10.06
2 483.50	43.53	Peak	V	27.47	9.49	40.16	40.33	74.00	33.67
	36.74	Average	V				33.54	54.00	20.46

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

Total Level = Reading + Antenna Factor + Cable Loss - Pre-Amplifier Gain

Page 46 of 66 Report No.: W174R-D002

9.6.1.2 Test data for 802.11g WLAN Mode

-. Test Date : March 22, 2017

-. Resolution bandwidth : 1 MHz and Peak Detector for Peak Mode

1 MHz and RMS Detector for Average Mode

-. Video bandwidth : 3 MHz for Peak and Average Mode

-. Measurement distance : 3 m-. Duty Cycle : 98 %-. Result : PASSED

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
	Test Data for Low Channel								
	66.61	Peak	Н				62.54	74.00	11.46
	52.16	Average	Н				48.09	54.00	5.91
2 390.00	60.11	Peak	V	26.94	9.20	40.21	56.04	74.00	17.96
	49.21	Average	V				45.14	54.00	8.86
			Test I	Data for Hi	gh Chann	el			
	67.57	Peak	Н				64.37	74.00	9.63
	53.36	Average	Н				50.16	54.00	3.84
2 483.50	61.20	Peak	V	27.47	9.49	40.16	58.00	74.00	16.00
	51.66	Average	V				48.46	54.00	5.54

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

Total Level = Reading + Antenna Factor + Cable Loss - Pre-Amplifier Gain

Page 47 of 66 Report No.: W174R-D002

9.6.1.3 Test data for 802.11n HT20 WLAN Mode

-. Test Date : March 22, 2017

-. Resolution bandwidth : 1 MHz and Peak Detector for Peak Mode

1 MHz and RMS Detector for Average Mode

-. Video bandwidth : 3 MHz for Peak and Average Mode

-. Measurement distance : 3 m-. Duty Cycle : 98 %-. Result : PASSED

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
	Test Data for Low Channel								
	70.54	Peak	Н				66.47	74.00	7.53
	53.30	Average	Н				49.23	54.00	4.77
2 390.00	62.14	Peak	V	26.94	9.20	40.21	58.07	74.00	15.93
	50.30	Average	V				46.23	54.00	7.77
			Test I	Data for Hi	gh Chann	el			
	67.35	Peak	Н				64.15	74.00	9.85
	54.27	Average	Н				51.07	54.00	2.93
2 483.50	61.02	Peak	V	27.47	9.49	40.16	57.82	74.00	16.18
	52.15	Average	V				48.95	54.00	5.05

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

Total Level = Reading + Antenna Factor + Cable Loss - Pre-Amplifier Gain

Page 48 of 66 Report No.: W174R-D002

9.6.2 Radiated Emission which fall in the Band Edge

9.6.2.2 Test data for 802.11b WLAN Mode

-. Test Date : March 23, 2017

-. Resolution bandwidth : 100 kHz and Peak Detector for Peak Mode

100 kHz and RMS Detector for Average Mode

-. Video bandwidth : 300 kHz for Peak and Average Mode

-. Measurement distance : 3 m-. Duty Cycle : 98 %-. Result : PASSED

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)	
	Test Data for Low Channel									
	74.97	Peak	Н				71.34	81.01	9.67	
	72.39	Average	Н				68.76	78.93	10.17	
2 400.00	57.94	Peak	V	27.20	9.35	40.18	54.31	79.25	24.94	
	55.37	Average	V				51.74	77.35	25.61	

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

Total Level = Reading + Antenna Factor + Cable Loss - Pre-Amplifier Gain

Page 49 of 66 Report No.: W174R-D002

9.6.2.2 Test data for 802.11g WLAN Mode

-. Test Date : March 23, 2017

-. Resolution bandwidth : 100 kHz and Peak Detector for Peak Mode

100 kHz and RMS Detector for Average Mode

-. Video bandwidth : 300 kHz for Peak and Average Mode

-. Measurement distance : 3 m-. Duty Cycle : 98 %-. Result : PASSED

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)	
	Test Data for Low Channel									
	74.61	Peak	Н				70.98	76.77	5.79	
	63.15	Average	erage H 27.20 9.35 40.18		59.52	68.75	9.23			
2 400.00	62.12	Peak		40.18	58.49	73.25	14.76			
	53.15	Average	V				49.52	67.12	17.60	

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

 $Total\ Level = Reading + Antenna\ Factor + Cable\ Loss - Pre-Amplifier\ Gain$

Page 50 of 66 Report No.: W174R-D002

9.6.2.3 Test data for 802.11n HT20 WLAN Mode

-. Test Date : March 23, 2017

-. Resolution bandwidth : 100 kHz and Peak Detector for Peak Mode

100 kHz and RMS Detector for Average Mode

-. Video bandwidth : 300 kHz for Peak and Average Mode

-. Measurement distance : 3 m-. Duty Cycle : 98 %-. Result : PASSED

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)	
	Test Data for Low Channel									
	76.45	Peak	Н				72.82	76.51	3.69	
	62.61	Average	Н	27.20			58.98	66.12	7.14	
2 400.00	61.55	Peak	V		9.35	40.18	57.92	74.22	16.30	
	50.25	Average	V				46.62	62.84	16.22	

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

 $Total\ Level = Reading + Antenna\ Factor + Cable\ Loss - Pre-Amplifier\ Gain$

Page 51 of 66 Report No.: W174R-D002

9.6.3 Spurious & Harmonic Radiated Emission

9.6.3.1 Test data for 802.11b WLAN Mode

-. Test Date : March 23, 2017

-. Resolution bandwidth : 1 MHz and Peak Detector for Peak Mode for the emissions fall in restricted band,

1 MHz and RMS Detector for Average Mode for the emissions fall in restricted band

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 3 MHz for Peak and Average Mode

-. Frequency range : 1 GHz ~ 26.5 GHz

-. Measurement distance : 3 m-. Duty Cycle : 98 %-. Result : PASSED

				<u> </u>	1	1	l	1	
Frequency	Reading	Detector	Ant. Pol.	Ant.	Cable	Amp	Total	Limits	Margin
(GHz)	(dBµV)	Mode	(H/V)	Factor	Loss	Gain	(dBµV/m)	(dBµV/m)	(dB)
			Test	Data for I	Low Chan	nel			
	50.10	Peak	Н				52.56	74.00	21.44
4.024.00	38.80	Average	Н	20.04	10.01	40.60	41.26	54.00	12.74
4 824.00	48.80	Peak	V	30.84	12.31	40.69	51.26	74.00	22.74
	40.90	Average	V				43.36	54.00	10.64
Test Data for Middle Channel									
	48.60	Peak	Н				50.39	74.00	23.61
4 00 4 00	38.00	Average	Н	20.01	10.10	40.55	39.79	54.00	14.21
4 884.00	48.40	Peak	V	30.01	12.43	40.65	50.19	74.00	23.81
	40.20	Average	V				41.99	54.00	12.01
			Test	Data for H	ligh Chan	nel			
	51.00	Peak	Н				54.35	74.00	19.65
	38.00	Average	Н				41.35	54.00	12.65
4 924.00	49.30	Peak	V	31.15	12.81	40.61	52.65	74.00	21.35
	40.40	Average	V				43.75	54.00	10.25

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

Total Level = Reading + Antenna Factor + Cable Loss - Pre-Amplifier Gain

Tested by: Tae-Ho, Kim / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH Corp.

Page 52 of 66 Report No.: W174R-D002

9.6.3.2 Test data for 802.11g WLAN Mode

-. Test Date : March 23, 2017

-. Resolution bandwidth : 1 MHz and Peak Detector for Peak Mode for the emissions fall in restricted band,

1 MHz and RMS Detector for Average Mode for the emissions fall in restricted band

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 3 MHz for Peak and Average Mode

-. Frequency range : 1 GHz ~ 26.5 GHz

-. Measurement distance : 3 m-. Duty Cycle : 98 %-. Result : PASSED

Frequency (GHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
(322)	(==	3.23.22		Data for I			(===	((32)
	47.70	Peak	Н				50.16	74.00	23.84
	40.20	Average	Н				42.66	54.00	11.34
4 824.00	48.10	Peak	V	30.84	12.31	40.69	50.56	74.00	23.44
	39.60	Average	V				42.06	54.00	11.94
Test Data for Middle Channel									
	47.80	Peak	Н				49.59	74.00	24.41
	38.10	Average	Н				39.89	54.00	14.11
4 884.00	48.30	Peak	V	30.01	12.43	40.65	50.09	74.00	23.91
	39.90	Average	V				41.69	54.00	12.31
			Test	Data for H	ligh Chan	nel			
	50.90	Peak	Н				54.25	74.00	19.75
	38.80	Average	Н			=	42.15	54.00	11.85
4 924.00	48.10	Peak	V	31.15	12.81	40.61	51.45	74.00	22.55
	39.30	Average	V				42.65	54.00	11.35

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

Total Level = Reading + Antenna Factor + Cable Loss - Pre-Amplifier Gain

Tested by: Tae-Ho, Kim / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH Corp.

EMC-003 (Rev.2)

Page 53 of 66 Report No.: W174R-D002

9.6.3.3 Test data for 802.11n HT20 WLAN Mode

-. Test Date : March 23, 2017

-. Resolution bandwidth : 1 MHz and Peak Detector for Peak Mode for the emissions fall in restricted band,

1 MHz and RMS Detector for Average Mode for the emissions fall in restricted band

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 3 MHz for Peak and Average Mode

-. Frequency range : 1 GHz ~ 26.5 GHz

-. Measurement distance : 3 m-. Duty Cycle : 98 %-. Result : PASSED

Frequency (GHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
(322)	(==	1.2332		Data for I			(===	((32)
	48.40	Peak	Н				50.86	74.00	23.14
	39.50	Average	Н			40.40	41.96	54.00	12.04
4 824.00	47.60	Peak	V	30.84	12.31	40.69	50.06	74.00	23.94
	40.10	Average	V				42.56	54.00	11.44
Test Data for Middle Channel									
	48.00	Peak	Н				49.79	74.00	24.21
	38.90	Average	Н				40.69	54.00	13.31
4 884.00	50.20	Peak	V	30.01	12.43	40.65	51.99	74.00	22.01
	39.70	Average	V				41.49	54.00	12.51
			Test	Data for H	ligh Chan	nel			
	49.80	Peak	Н				53.15	74.00	20.85
	40.60	Average	Н			=	43.95	54.00	10.05
4 924.00	48.80	Peak	V	31.15	12.81	40.61	52.15	74.00	21.85
	38.80	Average	V				42.15	54.00	11.85

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

Total Level = Reading + Antenna Factor + Cable Loss - Pre-Amplifier Gain

Tested by: Tae-Ho, Kim / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH Corp.

10. PEAK POWER SPECTRUL DENSITY

10.1 Operating environment

Temperature : $21 \, ^{\circ}\text{C}$

Relative humidity : 45 % R.H.

10.2 Test set-up

ONETECH

The antenna output of the EUT was connected to the spectrum analyzer.

The resolution bandwidth is set to 3 kHz \leq RBW \leq 100 kHz, the video bandwidth is set to 3 times the resolution bandwidth.

10.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	April 05, 2017 (1Y)

All test equipment used is calibrated on a regular basis.

Report No.: W174R-D002

Page 55 of 66 Report No.: W174R-D002

10.4 Test data for 802.11b WLAN Mode

-. Test Date : March 24, 2017

-. Test Result : Pass

-. Operating Condition : Continuous transmitting mode

CHANNEL	FREQUENCY(MHz)	MEASURED VLAUE (dBm)	LIMIT (dBm)	MARGIN (dB)
Low	2 412	-5.75	8.00	13.75
Middle	2 442	-5.01	8.00	13.01
High	2 462	-4.45	8.00	12.45

Remark. Margin = Limit - Measured value

Page 57 of 66 Report No.: W174R-D002

10.5 Test data for 802.11g WLAN Mode

-. Test Date : March 24, 2017

-. Test Result : Pass

-. Operating Condition : Continuous transmitting mode

CHANNEL	FREQUENCY(MHz)	MEASURED VLAUE (dBm)	LIMIT (dBm)	MARGIN (dB)
Low	2 412	-9.25	8.00	17.25
Middle	2 442	-9.19	8.00	17.19
High	2 462	-8.62	8.00	16.62

Remark. Margin = Limit - Measured value

Page 59 of 66 Report No.: W174R-D002

10.6 Test data for 802.11n_HT20 WLAN Mode

-. Test Date : March 24, 2017

-. Test Result : Pass

-. Operating Condition : Continuous transmitting mode

CHANNEL	FREQUENCY(MHz)	MEASURED VLAUE (dBm)	LIMIT (dBm)	MARGIN (dB)
Low	2 412	-11.38	8.00	19.38
Middle	2 442	-10.97	8.00	18.97
High	2 462	-10.96	8.00	18.96

Remark. Margin = Limit – Measured value

Page 61 of 66 Report No.: W174R-D002

11. RADIATED EMISSION TEST

11.1 Operating environment

Temperature : $21 \, ^{\circ}\text{C}$

Relative humidity : 45 % R.H.

11.2 Test set-up

The radiated emissions measurements were on the 3 m semi anechoic chamber. The EUT and other support equipment were placed on turntable above the ground plane. The interconnecting cables from outside test site were inserted into ferrite clamps at the point where the cables reach the turntable.

The frequency spectrum from 30 MHz to 26.5 GHz was scanned and emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

11.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	April 05, 2017 (1Y)
■ -	ESU	Rohde & Schwarz	EMI Test Receiver	100261	Apr. 06, 2017 (1Y)
■ -	310N	Sonoma Instrument	Pre-Amplifier	312544	Apr. 05, 2017 (1Y)
■ -	SCU-18	Rohde & Schwarz	Pre-Amplifier	102209	May 31, 2016 (1Y)
■ -	DT3000-3t	Innco System	Turn Table	DT3000/093	N/A
■ -	MA-4000XPET	Innco System	Antenna Master	MA4000/509	N/A
■ -	VULB9163	Schwarzbeck	TRILOG Broadband Antenna	9163-421	Apr. 15, 2016 (1Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D295	Aug. 31, 2015 (2Y)
■ -	BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Aug. 31, 2015 (2Y)

All test equipment used is calibrated on a regular basis.

Page 62 of 66 Report No.: W174R-D002

11.4 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : 45 % R.H. Temperature: 21 °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : BT(V4.2) + WLAN(802.11a/b/g/n/ac) 2x2 MIMO Module Date: March 23, 2017

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

No.	FREQ	READING		Loss	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	PEAK [dBuV]	FACTOR [dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
H	lorizontal									
1	111.480	47.5	11.3	2.9	33.1	28.6	43.5	14.9	100	0
2	199.750	48.7	10.7	3.7	33.0	30.1	43.5	13.4	100	0
2 3	359.800	47.4	15.0	5.1	33.1	34.4	46.0	11.6	100	0
4	480.081	42.1	16.6	5.9	33.2	31.4	46.0	14.6	100	198
V	ertical									
5 6	47.460	43.6	14.3	2.0	33.0	26.9	40.0	13.1	100	276
6	99.840	46.8	12.4	2.7	33.1	28.8	43.5	14.7	100	276

Page 63 of 66 Report No.: W174R-D002

11.5 Test data for Below 30 MHz

-. Test Date : March 23, 2017

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	Reading (dBµV)	Ant. Height (m)	0	Ant. Factor (dB/m)	Emission Level(dBμV/m)	Limits (dBµV/m)	Margin (dB)

It was not observed any emissions from the EUT.

11.6 Test data for above 1 GHz

-. Test Date : March 23, 2017

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 26.5 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	Reading (dBµV)	Ant. Height (m)	Angle (°)	Ant. Factor (dB/m)	Emission Level(dBμV/m)	Limits (dBµV/m)	Margin (dB)

It was not observed any emissions from the EUT.

Report No.: W174R-D002

12. CONDUCTED EMISSION TEST

12.1 Operating environment

Temperature : $(23 \sim 24)$ °C

Relative humidity : $(46 \sim 47) \%$ R.H.

12.2 Test set-up

The EUT was placed on a wooden table, 0.8 m height above the floor. Power was fed to the EUT through a 50 Ω / 50 μ H + 5 Ω Artificial Mains Network (AMN). The ground plane was electrically bonded to the reference ground system and all power lines were filtered from ambient.

12.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
■ -	ESPI	Rohde & Schwarz	Test Receiver	101012	Nov. 01, 2016 (1Y)
□-	ESHS10	Rohde & Schwarz	Test Receiver	834467/007	Apr. 05, 2017 (1Y)
□-	NSLK8128	Schwarzbeck	AMN	8128-216	Apr. 06, 2017 (1Y)
■ -	NSLK8126	Schwarzbeck	AMN	8126-404	Apr. 05, 2017 (1Y)
□ -	3825/2	EMCO	AMN	9109-1869	Apr. 06, 2017 (1Y)
■ -	3825/2	EMCO	AMN	9109-1867	Apr. 06, 2017 (1Y)

All test equipment used is calibrated on a regular basis.

Page 65 of 66 Report No.: W174R-D002

12.4 Test data

DUELECH

-. Test Date : March 27, 2017

-. Resolution bandwidth : 9 kHz

-. Frequency range : 0.15 MHz ~ 30 MHz

-. Tested Line : HOT LINE

FREQ	READ	ING	C.FACTOR	RES	ULT	LI	MIT	MA	RGIN	PHASE
66	QP	AV		QP	AV	QP	AV	QP	AV	
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV	[dBuV]	[dBuV][dBuV]	
0.15400	48.6		0.1	48.7		65.8		17.1		H(QP)
0.50700	27.9		0.1	28.0		56.0		28.0		H(QP)
1.48000	26.4		0.1	26.5		56.0		29.5		H(QP)
3.52000	33,3		0.1	33.4		56.0		22,6		H(QP)
8.60500	21.0		0.2	21.2		60.0		38.8		H(QP)
24.32000	42.2		0.5	42.7		60.0		17.3		H(QP)
0.15400		27.3	0.1	-	27.4		55.8		28.4	H(CAV)
0.50700		19.0	0.1		19.1		46.0		26.9	H(CAV)
1.48000		13.3	0.1		13.4		46.0		32.6	H(CAV)
3.52000	$\cdots = \cdots$	15.7	0.1		15.8		46.0		30.2	H(CAV)
8.60500		12.3	0.2		12.5		50.0		37.5	H(CAV)
24.32000		33.6	0.5		34.1		50.0		15.9	H(CAV)
	[MHz] 0.15400 0.50700 1.48000 3.52000 8.60500 24.32000 0.15400 0.50700 1.48000 3.52000 8.60500	QP [MHz] [dBuV] 0.15400 48.6 0.50700 27.9 1.48000 26.4 3.52000 33.3 8.60500 21.0 24.32000 42.2 0.15400 0.50700 1.48000 3.52000 8.60500	QP AV [MHz] [dBuV][dBuV] 0.15400 48.6 0.50700 27.9 1.48000 26.4 3.52000 33.3 8.60500 21.0 24.32000 42.2 0.15400 27.3 0.50700 19.0 1.48000 13.3 3.52000 15.7 8.60500 12.3	QP AV [dBuV] [dBuV] [dB] 0.15400 48.6 0.1 0.50700 27.9 0.1 1.48000 26.4 0.1 3.52000 33.3 0.1 8.60500 21.0 0.2 24.32000 42.2 0.5 0.15400 27.3 0.1 0.50700 19.0 0.1 1.48000 13.3 0.1 3.52000 15.7 0.1 8.60500 12.3 0.2	QP AV [dBuV] [dBuV] [dB] [dBuV] 0.15400 48.6 0.1 48.7 0.50700 27.9 0.1 28.0 1.48000 26.4 0.1 26.5 3.52000 33.3 0.1 33.4 8.60500 21.0 0.2 21.2 24.32000 42.2 0.5 42.7 0.15400 27.3 0.1 0.50700 19.0 0.1 1.48000 13.3 0.1 3.52000 15.7 0.1 8.60500 12.3 0.2	QP AV [MHz] [dBuV] [dBuV] [dB] [dBuV]	QP AV QP [dBuV]	QP AV [dBuV] [dBuV] QP AV [dBuV] QU [dBuV]	QP AV [dBuV][dBuV] [dB] [dBuV][dBuV] [dBuV][dBuV][dBuV] [dBuV][dBuV] [dBuV][dBuV] [dBuV][dBuV] [dBuV][dBuV] [dBuV][dBuV][dBuV] [dBuV][dBuv][dBuv	QP AV [MHz] [dBuV] [dBuV] [dB] [dBuV]

NO	FREQ	REAL	ING	C.FACTOR	RES	ULT	LIN	TIN	MAI	RGIN	PHASE
	[MHz]	QP [dBuV]	AV [dBuV]	[dB]	QP [dBuV]	AV [dBuV]	QP [dBuV]	AV [dBuV]	QP [dBuV	AV][dBuV]	Printer Control
1	0.50100	27.6		0.1	27.7		56.0		28.3		N(QP)
2	0.93800	26.3		0.1	26.4		56.0		29.6		N(QP)
3	1.66800	23.4		0.1	23.5		56.0		32.5		N(QP)
4	3.50800	29.8		0.1	29.9		56.0		26.1		N(QP)
5	7.29000	19.9		0.2	20.1		60.0		39.9		N(QP)
6	13.56000	18.3		0.4	18.7		60.0		41.3		N(QP)
7	0.50100		16.5	0.1		16.6		46.0		29.4	N(CAV)
8	0.93800		13.4	0.1		13.5		46.0		32.5	N(CAV)
9	1.66800	-	11.1	0.1		11.2		46.0		34.8	N(CAV)
10	3.50800		12.9	0.1		13.0		46.0		33.0	N(CAV)
11	7.29000		11.4	0.2		11.6		50.0		38.4	N(CAV)
12	13.56000		8.7	0.4		9.1		50.0		40.9	N(CAV)

Remark: Margin(dB) = Limit - Level(Result)

The emission level in above table is included the transducer factor that means insertion loss (LISN), cable loss and attenuator.