

Outline

• Intro

- Diffusion studies in General

Context

- Social Movement Studies about Protest Diffusion

Research Design

- A 5-step Method to Generate Diffusion Index

Method

- Data, Variables and ZIP Models

Findings

- Size, Populations, SMOs, Policing and Violence

Discussion

- Implications and Future Agenda

Diffusion Studies

- Diffusion has been an important topic in many disciplines.
- Epidemiology and Public Health
- Social Sciences
 - Language, Writing Systems, Symbols, Numbers and Notations...
 - Tales, Religion, and Ideology...
 - Technology and Innovations...
 - Financial and Business Models, Organizations, Management Practices...
 - Policies, Institutions and Laws...
 - Criminology...

Social Movements and Diffusion

- It is agreed that social movements diffuse.
 - The protests themselves diffuse;
 - Elements of protests, such as repertoire, strategy, framing and ideology, networks and organizations, personnel and resources, diffuse as well.
- However, there are some gaps in existing studies of protest diffusion.
 - The context, environment, and "field" for diffusion to occur is paid much attention to, but not enough has been paid to the inter-movement dynamics, especially the features of each protest.
 - There has not been a widely accepted methodological practice in the field.

We suggest...

- Turning to the inter-movement dynamics of diffusion.
 - "toward an eventful sociology" (Sewell 1996)
- Borrowing wisdom from public health and criminology.
 - E.g. copy-cat crimes, broken window theory. why and how events lead to similar event?
- Focusing on features of each event, and how they affect diffusion.
 - E.g. what kinds of patients/viruses are more contagious?
 - E.g. what kinds of protests are more diffusive?

A Five-Step Method to Measure Diffusion

- (I) Use event-based data (protests as cases, with key information such as time/location and other features)
- \Box (2) Define the temporal and geographical ranges;
- (3) For each observation, count the numbers of events that occurred before and after the selected observation within the defined temporal and spatial ranges;
- \Box (4) Predict the counts with appropriate models;
- (5) Calculate the ratios of predicted values from post-event and pre-event count models for corresponding predictors, which are the risk factors.
- The calculated ratio will serve as the diffusion indices (DIs) and corresponding Confidence Intervals (CIs) will be calculated as well.

Data, Variables and Modeling

(I) Dynamics of Collective Action (DOCA) data

- DOCA is the most widely used social movement data in American sociology of contentious politics.
- DOCA records more than 23,000 protests that took place during 1960-1995, in the United States.
- DOCA's information source is New York Times' reports on the contentious incidents.

- It records the following variables:
 - Time / Location the key information to measure diffusion
 - Size, Form of Action, Population composition, Social Movement Organizations involved, Policing and Violence

Variables

Basics

- Date (to count cases within certain t days)
- Location (State information was used to count cases)

Risk Factors

- Size of protest (1-9, 10-49, 50-99, 100-999, 1000-9999, 10000+)
- Form of action (strikes, rallies, ceremonies, conflicts, legal actions...)
- Population Composition (how many demographic groups?)
- SMOs (number of organizations)
- Policing (DUMMY: whether policing happens?)
- Violence (DUMMY: whether violence happens?)

(2) Define the Spatial/Temporal Ranges

- Spatial
 - Geographic distance?
 - Within the same state. Why?

- Temporal
 - T = 1, 2, 3, 4, 7, 14, 30, and 60 days
 - March I, 1960 October 31, 1995

(3) Count the Protests Before/After Each Case

> head(event_su	ub)					,	
CASEID	STATE	POL	VIO	DATE	SIZE	PostAct30	PostAct60
1 CASE_000027	new york	0	0	1960-09-14	10	42	56
2 CASE_000162	tennessee	3	0	1960-03-02	50	9	16
3 CASE_000163	tennessee	3	0	1960-03-02	7	9	16
4 CASE_000164	alabama	0	0	1960-03-04	900	17	18
5 CASE_000165 s	south carolina	3	0	1960-03-04	26	13	13
6 CASE_000166 r	north carolina	0	0	1960-03-04	10	9	13
> tail(event_su	ub)						
CASE	EID STATE	POL	VIO	DATE	SIZE	PostAct30	PostAct60
19156 CASE_0235	511 new york	0	0	1995-05-13	2	7	14
19157 CASE_0235	514 new york	0	0	1995-11-01	50	11	22
19158 CASE_0235	517 michigan	0	0	1995-11-01	1000	0	0
19159 CASE_0235	585 new york	0	0	1993-12-15	4	2	7
19160 CASE_0235	598 new york	0	0	1995-10-16	100	16	27
19161 CASE_0236	604 california	0	1	1995-08-23	1	4	6

(4) Predict with ZIP models

Count Models

- DV's values are natural numbers: 0, 1, 2, 3, ...
- To count stuff. (e.g. How many apples you harvested today? How many 911 calls in the past hour? How many traffic violations in this street today?)

Commonly used types

- Poisson, Negative Binomial (NB), Zero-inflated
 Poisson (ZIP) and Zero-inflated Negative Binomial (ZINB)
- NB: over-dispersion
- ZI: excessive zeros
- Why ZIP?

Appendix Table 1 Predicted Counts of Precedent Protests (P-pre t) from ZIP Models (Standard Errors in Parentheses)

	Model 1 Pre ₀₁	Model 2 Pre ₀₂	Model 3 Pre ₀₃	Model 4 Pre ₀₄	Model 5 Pre ₀₇	Model 6 Pre ₁₄	Model 7 Pre ₃₀	Model 8 Pre ₆₀
Count model: (Intercept)	0.41***	0.93***	1.17***	1.35***	1.72***	2.18***	2.71***	3.23***
1 /	(0.04)	(0.03)	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)
Count model: DECADE70s	-0.18***	-0.19***	-0.17***	-0.17***	-0.15***	-0.12***	-0.05***	0.02***
	(0.03)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)
Count model: DECADE80s	-1.06***	-1.04***	-1.00***	-0.97***	-0.95***	-0.89***	-0.87***	-0.84***
	(0.08)	(0.04)	(0.03)	(0.03)	(0.02)	(0.01)	(0.01)	(0.01)
Count model: DECADE90s	-0.73***	-0.76***	-0.74***	-0.71***	-0.68***	-0.64***	-0.62***	-0.60***
	(0.08)	(0.05)	(0.04)	(0.03)	(0.02)	(0.01)	(0.01)	(0.01)
Count model: LOGSIZE	-0.04*	-0.03**	-0.02*	-0.02**	-0.02**	-0.02***	-0.01***	-0.01***
	(0.02)	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)
Count model: FORMRally/March	0.09**	0.09***	0.07***	0.08***	0.07***	0.08***	0.07***	0.05***
	(0.03)	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)
Count model: FORMDrama/Ceremony/Other	0.24***	0.14***	0.10***	0.14***	0.12***	0.08***	0.07***	0.02**
	(0.05)	(0.03)	(0.03)	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)
Count model: FORMViolence/Conflict	0.01	0.01	0.05	0.04	-0.01	-0.08***	-0.09***	-0.09***
	(0.06)	(0.04)	(0.03)	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)
Count model: FORMLegal/Institution	-0.13**	-0.10***	-0.11***	-0.12***	-0.16***	-0.16***	-0.17***	-0.15***
	(0.05)	(0.03)	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.00)
Count model: POP	0.07***	0.05***	0.05***	0.07***	0.08***	0.10***	0.10***	0.10***
	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)
Count model: SMO	-0.04**	-0.02*	-0.01	-0.01	0.00	0.01	0.02***	0.04***
	(0.02)	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)
Count model: POL	-0.06***	-0.05***	-0.05***	-0.06***	-0.07***	-0.08***	-0.09***	-0.09***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)
Count model: VIO	0.25***	0.19***	0.17***	0.19***	0.21***	0.19***	0.13***	0.12***
	(0.05)	(0.03)	(0.02)	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)
Zero model: (Intercept)	0.39***	0.16*	-0.07	-0.31***	-0.66***	-1.15***	-1.78***	-2.35***
1 /	(0.08)	(0.06)	(0.06)	(0.06)	(0.06)	(0.06)	(0.07)	(0.09)
Zero model: DECADE70s	-0.03	-0.05	0.00	0.04	0.04	0.07	0.24***	0.37***
	(0.05)	(0.04)	(0.04)	(0.04)	(0.04)	(0.04)	(0.05)	(0.06)

(5) Calculate the CIs and DIs

DI is calucated as ratio of the predicted counts, namely, P_{pre-t} and P_{post-t} obtained from the model specified in Step 4. The correspoding variance can be approximated using delta method (Papanicolaou 2009; Xu and Long 2005). For example, we have

$$\begin{split} E(DI_t) &\approx \frac{\hat{P}_{post_t}}{\hat{P}_{pre_t}} \ and \\ var(DI_t) &\approx \frac{1}{\hat{P}_{pre_t}^2} var(\hat{P}_{post_t}) + \frac{\hat{P}_{post_t}^2}{\hat{P}_{pre_t}^4} var(\hat{P}_{post_t}) - \frac{\hat{P}_{post_t}}{\hat{P}_{pre_t}^3} cov(\hat{P}_{post_t}, \hat{P}_{pre_t}) \\ &= \left(\frac{\hat{P}_{post_t}}{\hat{P}_{pre_t}}\right)^2 \left(\frac{var(\hat{P}_{post_t})}{\hat{P}_{post_t}^2} + \frac{var(\hat{P}_{pre_t})}{\hat{P}_{pre_t}^2} - 2\frac{cov(\hat{P}_{post_t}, \hat{P}_{pre_t})}{\hat{P}_{post_t} \times \hat{P}_{pre_t}}\right). \end{split}$$

If we further assume P_{pre-t} and P_{post-t} are indepdent, then it yields

$$var(DI_t) \approx \left(\frac{\hat{P}_{post_t}}{\hat{P}_{pre_t}}\right)^2 \left(\frac{var(\hat{P}_{post_t})}{\hat{P}_{post_t}^2} + \frac{var(\hat{P}_{pre_t})}{\hat{P}_{pre_t}^2}\right).$$

```
y1 = ggeffects::ggpredict(n1, terms = j, type = 'zero_inflated'
y2 = ggeffects::ggpredict(n2, terms = j, type = 'zero_inflated'
PRE = y1$predicted
POST = y2$predicted
fit = log(y2$predicted/y1$predicted)
ratio = exp(fit)
cov1<-vcov(n1)[1:nco](x1),1:nco](x1)]
cov2 < -vcov(n2)[1:ncol(x2),1:ncol(x2)]
v.d = x1\%\%cov1\%\%t(x1)+x2\%\%cov2\%\%t(x2)
se = sqrt(diag(v.d))
```

upper = exp(fit + 1.96*se)lower = exp(fit - 1.96*se)

Findings

Main Findings

- Overall, decays are more often than diffusions (due to the general declining trend from 1960s)
- Immediate effects (1-3 days): largely decaying
- Long term effects (7-60 days): mainly decaying, some diffusive
- Size of Protest inverted U shape curve (midsize diffusive, small/large decaying)
- Forms of Actions decaying
- SMOs diffusive
- Violence diffusive

Discussion and Conclusion

Contributions

Theoretical

Turning to an inter-movement perspective, focusing on events

Methodological

- A five-step method to calculate diffusion
- Objective, standardized, systematic, immune from personal bias

Empirical

- Identified a few risk factors of protest diffusion
- Certain features of social movements are associated with diffusion/decay in a cycle of protest.

Limitations and Future Agenda

 Protests were assigned equal weights – shall we see them differently?

- A geographical-spatial perspective should be incorporated.
- Data quality and limitations needs more comprehensive data.
- Long-term social changes and how that are reflected in a dynamic diffusion pattern.

