Boosting

Fabio G. Cozman - fgcozman@usp.br

October 30, 2019

Basics

- Consider a classification problem with a binary class variable Y with values 1 and -1.
- Use X to refer to all features X_1, \ldots, X_n .

Basics

- Consider a classification problem with a binary class variable Y with values 1 and -1.
- Use X to refer to all features X_1, \ldots, X_n .
- Suppose you have weak classifiers $g_k(X)$ for k = 1, ..., M.
 - These classifiers are "weak" in the sense that they can be only a bit better than random guessing, but they may be accurate ones if possible.

The basic idea

- The idea is to somehow combine these classifiers to produce a "boosted" classifier.
 - Apply each weak classifier to a modified version of the training dataset.
- While g_1 is learned on the original training data, each g_k is learned on some weighted version of the training dataset.

Final result:

■ The boosted classifier is

$$g(x) = \operatorname{sign}\left(\sum_{k=1}^{M} \alpha_k g_k(x)\right),$$

for some α_k .

A simple case

Suppose we have three classifiers and take "majority vote".

A perfect majority vote

Majority vote, generic case

Simple idea

- **I** First, learn g_1 .
- 2 Then learn g_2 , emphasizing that it must do the right thing whenever g_1 makes a mistake.
- Then learn g_2 , emphasizing that it must do the right thing whenever g_1 and g_2 make a mistake.

Most famous algorithm: AdaBoost

- Initialize $w_j = 1/N$ for $j \in \{1, \dots, N\}$.
- \blacksquare For k from 1 to M:
 - 1 Fit $g_k(X)$ to training data using weights w_j .
 - 2 Compute

$$\beta_k = \frac{\sum_{j=1}^{N} w_j I_{y_j \neq g_k(x^j)}}{\sum_{j=1}^{N} w_j}.$$

- 3 Compute $\alpha_k = \ln((1 \beta_k)/\beta_k)$.
- Multiply each weight w_j by $\exp(\alpha_k I_{y_j \neq g_k(x^j)})$.
- Output $g(x) = \operatorname{sign} \sum_{k=1}^{M} \alpha_k g_k(x)$.

Why??

- AdaBoost was derived from intuitive ideas, using probability bounds to "justify" the results.
- No really general theory.

Popular scheme: AdaBoost with stumps

- A stump is a tree with a single split.
- A stump is usually a weak classifier.
- Boosted classifiers based on a large number of stumps work very well.

Boosting as approximate optimization

Suppose we want to find

$$\min_{g} \sum_{j=1}^{N} L\left(y_{j}, g(x^{j})\right),\,$$

where $g(x) = \sum_{k=1}^{M} \alpha_k g_k(x)$, with g_k using some parameters γ_k .

Boosting as approximate optimization

Suppose we want to find

$$\min_{g} \sum_{j=1}^{N} L\left(y_{j}, g(x^{j})\right),\,$$

where $g(x) = \sum_{k=1}^{M} \alpha_k g_k(x)$, with g_k using some parameters γ_k .

 \blacksquare Suppose it is easy to find, for each k,

$$\min_{\alpha,g_k} \sum_{j=1}^N L(y_j, f(x^j) + \alpha g_k(x^j))$$

for some given f.

■ Then there is special optimization method...

Forward stagewise additive minimization

- I Start with $f_0(x) = 0$.
- \blacksquare For k from 1 to M:
 - **I** Find α and g_k that minimize

$$\sum_{j=1}^{M} L(y_j, f_{k-1}(x^j) + \alpha g_k(x^j)).$$

- 2 Set $f_k = f_{k-1} + \alpha g_k$.
- Output $g(x) = f_M(x)$.

Relation to AdaBoost

■ If $L(y, g(x)) = \exp(-yg(x))$, then f.s.a.m. produces "AdaBoost with output $\sum_k \alpha_k g_k(x)$ ".

Note: without the sign in the output, so it is not exactly AdaBoost but it is close enough.

Quadratic loss

• If
$$L(y, g(x)) = (y - g(x))^2$$
, then
$$L(y_j, f_{k-1}(x^j) + \alpha g_k(x^j)) = (y_j - f_{k-1}(x^j) - \alpha g_k(x^j))^2.$$

■ In this case, as $y_j - f_{k-1}(x^j)$ is the residual from the previous iteration, we are basically regressing on the "errors from the previous iteration".

Boosting in regression trees

- Set $r_j = y_j$ for all observations in the training dataset.
- $extbf{P}$ For $k = 1, \dots, M$, repeat:
 - I Fit a tree \hat{f}^k with d splits to data (X, r).
 - 2 Update: $r_j \leftarrow r_j \lambda \hat{f}^k(x_j)$.
- Output $\hat{f}(x) = \sum_{k=1}^{M} \lambda \hat{f}^k(x)$.

Boosting in regression trees

- Set $r_j = y_j$ for all observations in the training dataset.
- For $k = 1, \dots, M$, repeat:
 - I Fit a tree \hat{f}^k with d splits to data (X, r).
 - 2 Update: $r_j \leftarrow r_j \lambda \hat{f}^k(x_j)$.
- Output $\hat{f}(x) = \sum_{k=1}^{M} \lambda \hat{f}^k(x)$.

Note:

- \blacksquare d is a parameter, often d=1 (stumps).
- λ is a parameter, usually small (0.01, 0.001, ...).
- M is a parameter, usually large (100, 1000, ...).

Some intuition

- If $\lambda = 1$, then r_j is the "residual".
- Smaller λ "dampens" the residuals.

Gene expression: 2 labels, 500 features

Single tree: error rate about 24%.

A note

Some of the figures in this presentation are taken from *An Introduction to Statistical Learning, with applications in R* (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.