STEREO VISION

CODE:

```
img1 = input("Enter the Left Image: ")
img2 = input("Enter the Right Image: ")
img1 = cv.imread(img1)
img_r = cv.imread(img1)
img_r = cv.imread(img2)
img_lgray = cv.cvtColor(img_l, cv.COLOR_BGR2GRAY)
img_n_gray = cv.cvtColor(img_r, cv.COLOR_BGR2GRAY)

block size = 5
min_disp = 16
max_disp = 112

num_disp = max_disp - min_disp

uniquenessRatio = 10

speckleWindowSize = 100

speckleWindowSize = 100

speckleRange = 2
disp12MaxOiff = 0

stereo = cv.StereoSGBM_create(
    minDisparity=min_disp,
    numDisparities=num_disp,
    blockSize=block_size,
    uniquenessRatio_uniquenessRatio,
    speckleRange=speckleRange,
    cuniquenessRatio_uniquenessRatio,
    speckleRange=speckleRange,
    disp12MaxOiff=disp12MaxOiff,
    Pl=8 *I *I *block_size * block_size,
    Pz=33 * 1 * block_size * block_size,
    Disparity_SGBM_ = stereo.compute(img I, img r)
```

Enter the Left Image: 2.png Enter the Right Image: 1.png out3.ply saved

OUTPUT:

BALL:

PLY FILE:

BABY:

PLY FILE:

PLANT:

PLY FILE:

IMAGE FROM MOBILE PHONE:

DISPARITY MAP:

PLY FILE:

OPERATING SYSTEM: Windows 10

IDE Used: Jupyter Notebook

Number of Hours Spent: 11 Hours