

# LEAD SCORING CASE STUDY

SUMMARY

Venkatasubramanian Sundaramahadevan



# **PROBLEM STATEMENT**

An education company 'X Education' sells online courses to industry professionals. X Education has appointed us to help them select the most promising leads, i.e., the leads that are most likely to convert into paying customers. The company requires us to build a model wherein you need to assign a lead score to each of the leads such that the customers with higher lead score have a higher conversion chance and the customers with lower lead score have a lower conversion chance. The CEO has given a ballpark of the target lead conversion rate to be around 80%.

## **APPROACH**

The following steps were followed in sequence to arrive at the final model

### **Data Cleaning**

In this step, we imported the leads dataset from the past with around 9000 data points. After that, the following steps were followed as part of cleaning:

- 1) Drop columns with NULL values above 32%
- 2) Remove columns that don't provide any business value such as Country/City/Lead Number etc..
- 3) Remove columns that have very less variance such as 'Do Not Call'
- 4) Remove columns with more than 50% 'select' values (this indicates that user didn't select any value)
- 5) Remove the rows for all columns with < 32% NULL values

### **Data Preparation**

Once Data Cleaning was complete, we move to Data Preparation. In this step, following activities were performed to ready the data for modeling

- 1) Convert below binary categorical variables to 1 & 0 values
  - a. 'Do Not Email' & 'A free copy of Mastering The Interview'
- 2) For multi-level categorical variables, we perform One-Hot Encoding
  - a. 'Lead Origin', 'Lead Source', 'Last Activity', 'What is your current occupation', 'Last Notable Activity'
  - b. Drop the first column for each dummified variable as we need only n-1 dummies to represent unique n values
  - c. Drop all the categorical variables for which we performed dummification



### Modeling

Once Data Preparation was complete, we move to Modeling. We performed the following operations:

- Split data into train and test with ratio 0.7 to 0.3
- Do Feature Scaling for numerical variables with MinMaxScaler
- Look at Correlations using Heatmap and make a note of correlation above 60% as they indicate multicollinearity
- Create 1<sup>st</sup> model with all features
- As we have 74 features, we will use RFE (Recursive Feature Elimination) to narrow down to 15 important features. Using this create 2<sup>nd</sup> model
- Check VIFs (Variance Inflation factor) for all features. This helps us to identify features which have highly collinear (i.e., VIF > 5)
- Check p-value for all features (p-value should be < 0.05)</li>
- From here on, we repeatedly create models (after removing high VIFs and p-value variables one by one)
- The model was finalized at 6<sup>th</sup> iteration where we all p-values < 0.05 & VIFs < 5</li>

### **Evaluation**

Once Modeling was complete, we move to Model Evaluation. We did the following activities:

- Predict target probability values based on X train (feature train data set)
- Build base predictions based on 0.5 probability cut-off point and calculate metrics such as accuracy, sensitivity, specificity, False Positive rate, Positive Predictive rate, & Negative Predictive rate
- Plot ROC (Receiver Operating Characteristic) curve to determine trade-off b/w Sensitivity and Specificity. We get AUC (Area under the curve) as 0.86 which indicates a good model
- We will then determine the optimal probability cut-off point based on various probabilities in the range 0, 0.1, 0.2...,0.9 by plotting the accuracy, sensitivity, and specificity curve. The intersection point determines the optimal cut-off. In our case it's 0.43
- We create precision and recall curve as well to validate the optimal cut-off. We observe 0.43 in this case as well
- Predict target probability values based on X\_test (feature test data set)
- Calculate accuracy, sensitivity, and specificity for both train and test data based on 0.43
  probability cut-off. They are as follows:

| Train/Test | Accuracy | Sensitivity | Specificity |
|------------|----------|-------------|-------------|
| Train      | 0.7895   | 0.7854      | 0.7932      |
| Test       | 0.7850   | 0.7751      | 0.7941      |

 Calculate Lead Score based on the Conversion Probabilities on the test data set by multiplying the probability values by 100

# RECOMMENDATIONS

The attributes mentioned below will helps us select the most promising leads that are most likely to convert into paying customers. They are listed in their order of significance.

- 1) The total number of visits made by the customer on the website
- 2) The total time spent by the customer on the website
- 3) The origin identifier with which the customer was identified to be a lead was through 'Lead Add Form'
- 4) Last activity performed by the customer was a **phone conversation**
- 5) The source of the lead is via 'Welingak Website'
- 6) The source of the lead is via 'Olark Chat'
- 7) Last activity performed by the customer was 'SMS Sent'
- 8) The customer is a 'Student'
- 9) Current Occupation of the customer is 'Unemployed'