BENG 420/520 Biomedical Data Analytics

Prof. Qi Wei Spring 2020

- Homework assignment #2 due on March 16, Monday
- Midterm on March 18, Wednesday
- Project report including introduction and methods due on March 23, Monday

Learning rules

 Idea: to adjust the weights of the network to minimize error on the training set

Learning is formulated as an optimization search in weight space

NN Learning Algorithms (2)

 Delta rule (Least Mean Squared Error Rule, gradient descent) [Widrow and Hoff, 1960]

/idrow and Hoff, 1960]
$$\Delta \theta_{ij} = \alpha (y_j - t_j) g'(h_j) x_i$$

Back propagation

Perceptron Learning Algorithm (sequential)

Randomly initialize all weights $heta_i$

Repeat until some stopping criterion is satisfied

For one training example $D^{j}=(X^{j}, y^{j}), j=1,2,...m$ compute neuron potential

$$a = \sum_{i=0}^{n} \theta_i x_i$$

compute predicted output

$$t^j = \begin{cases} 1, a \ge 0 \\ 0, a < 0 \end{cases}$$

if
$$(y^j \neq t^j)$$

update every weight

$$\Delta \theta_i = \alpha (y^j - t^j) x_i^j$$

$$\theta_i = \theta_i + \Delta \theta_i$$

end if

end for

end repeat

Example: Learn OR in Perceptron

$$\alpha = 0.2$$

x0	x1	x2	У	а	t	$\Delta \theta_0$	θ_0	$\Delta heta_1$	θ_1	$\Delta \theta_2$	θ_2
-1	-	-	-	-	-	-	0.8	-	0.1	-	0.5
-1-05		0	0	,O.S	Ō	0	0.8	0	6,1	O	0.5
-1 ^{eq}		10.5	1	03	0	-0.2	0.6	0	1.0	02	0.7
-1	1 0 .\	0 0	1	-6.5	0	-0.7	0.4	0.2	G,3	0	0.7
-1 ⁻⁶ ¹	1 0.3	10.7	1	0:6	1	0	G,H	0	0.3	6	0.7
-1 ^{-0!}	0 0	0	0	-0.4	0	0	D. 0	Ø	0,3	8	0.7
-1-JH		1° ->	1	0.3	1	0)	0,4	0)	<i>G.</i> 3	0	0.7
-1 ⁻⁰ ^M		0 🕏	1	-0.1	0	-0.2	6.2	0.7	0,5	0	0,7
-1-0.2		1 0.7	1	1,0	1	0	0,2	ð	05	0	0.7
-1	0 🔮	0 0	0	.0.2	Ó	O	5,0	0	0,5	0	0.7
-10.2	0 0	10,7	1	o .5	1	0		ಲ		0	
-1	1 6.5	0 0	1	0,3	1	0		0		0	
-16.2	10.5	107	1	1.0	١	0		0	ĺ	0	

Choosing learning rate

- If it is too small, it will take very long to converge
- If it is too big, weight updates may overshoot

 Optimal value is hard to determine and depend on the network.

One can try different values (e.g., 1, 0.1, 0.01, 0.001)

Matlab Perceptron Example

- Initial guess
- Number of iterations
- Interpretation of weight vector?

Example_myPerceptron.m

Batch vs sequential (online)

- Sequential (Online) training: update the weights immediately after processing each training pattern
 - Does not perform true gradient descent
 - Individual weight changes can be rather erratic
 - Overall learning can be quicker
- Batch training: update the weights after all training examples have been presented

Perceptron Learning Algorithm (sequential vs. batch)

Randomly initialize all weights $heta_i$

Repeat until some stopping criterion is satisfied

For one training example $D^{j}=(X^{j}, y^{j})_{,j=1,2,...m}$ compute neuron potential

$$a = \sum_{i=0}^{n} \theta_i x_i$$

compute predicted output

$$t^j = \begin{cases} 1, a \ge 0 \\ 0, a < 0 \end{cases}$$

if
$$(y^j \neq t^j)$$

update every weight

$$\Delta \theta_i = \alpha (y^j - t^j) x_i^j$$

$$\theta_i = \theta_i + \Delta \theta_i$$

end if

end for

end repeat

Randomly initialize weights θ_i

Repeat until some stopping criterion is satisfied $\Delta \theta_i = 0;$

For one training example D^j=(X^j, y^j)

compute neuron potential

$$a = \sum_{i=0}^{n} \theta_i x_i$$

compute predicted output

$$t^j = \begin{cases} 1, a \ge 0 \\ 0, a < 0 \end{cases}$$

if
$$(y^j \neq t^j)$$

store weight change

$$\Delta \theta_i = \Delta \theta_i + \alpha (y^j - t^j) x_i^j$$

end if

end for

update every weight

$$\theta_i = \theta_i + \frac{\Delta \theta_i}{m}$$

end repeat

Sequential update vs. batch

Matlab example_onePerceptron.m

Example: Learn OR in Perceptron using batch

$$\alpha = 0.2$$

x0	x1	x2	У	t	$\Delta \theta_0$	θ_0	$\Delta heta_1$	$ heta_1$	$\Delta heta_2$	θ_2
-1	-	-	-	-	-	0.8	-	0.1	-	0.5
-1	0	0	0							
-1	0	1	1							
-1	1	0	1							
-1	1	1	1					>		\
-1	0	0	0							
-1	0	1	1							
-1	1	0	1							
-1	1	1	1							
-1	0	0	0							
-1	0	1	1							
-1	1	0	1							
-1	1	1	1							

Different "Neurons" – Activation functions

Search Space

- ANN training is like marble rolling across a surface, which has valleys in it.
- Some valleys may be deeper than others we want to find a deep one.
- When we find it, we stop training

Logistic Sigmoid Function

The activation of a sigmoid unit is a continuous function of its inputs that ranges between 0 and 1, increasing monotonically with its inputs.

Smooth nonlinearity!

$$t = f(a) = \frac{1}{1 + e^{-a}}$$

$$\frac{dt}{da}$$

Logistic Sigmoid Function

The activation of a sigmoid unit is a continuous function of its inputs that ranges between 0 and 1, increasing monotonically with its inputs.

Smooth nonlinearity!

$$t = f(a) = \frac{1}{1 + e^{-a}} \qquad \frac{dt}{da}$$

• Delta rule (Least Mean Squared Error Rule, gradient descent) $a = \sum_{i=1}^{n} \theta_i \cdot x_i^j = \theta \cdot X$

$$\Delta \theta = \alpha (y^j - t^j) \cdot \frac{dt}{da} \cdot X^j$$

$$\theta \leftarrow \Delta\theta + \theta$$

Logistic neuron learning algorithm (sequential)

Input: a training set D={D^j=(X^j , y^j); j=1,2,...m}

Output: learned weights θ_i , i=0,1,...n;

Randomly initialize all weights θ_i

Repeat until some stopping criterion is satisfied

For one training example $D^{j}=(X^{j}, y^{j})_{,j=1,2,...m}$;

compute neuron potential:

$$a = \sum_{i=0}^{n} \theta_i X_i^j$$

compute predicted output:

$$t^j = \frac{1}{1 + e^{-a}}$$

update every weight θ_i :

$$\Delta \theta_i = \alpha \cdot (y^j - t^j) \cdot \frac{dt}{da} \cdot X_i^j$$

$$end if \quad \theta_i = \theta_i + \Delta \theta_i$$

end for

end repeat

Biases versus Weights in Perceptrons

- Weights adjust slope of the decision boundary
- Bias adjusts zero crossing points
- Express \vec{n} as a function of θ_1 and θ_2

Perceptron Decision Boundary

Red points belong to the positive class, blue points belong to the negative class When an error is made, moves the weight in a direction that corrects the error

Perceptron decision boundary

Red points belong to the positive class, blue points belong to the negative class When an error is made, moves the weight in a direction that corrects the error

Perceptron Convergence Theorem

 If a set of examples are learnable (i.e., 100% correct classification), the Perceptron Learning Rule will find the necessary weights (Minksy and Papert, 1988) In a finite number of steps

Theorem 1 Let S be a sequence of labeled examples consistent with a linear threshold function $\mathbf{w}^* \cdot \mathbf{x} > 0$, where \mathbf{w}^* is a unit-length vector. Then the number of mistakes M on S made by the online Perceptron algorithm is at most $(1/\gamma)^2$, where

$$\gamma = \min_{\mathbf{x} \in \mathcal{S}} \frac{|\mathbf{w}^* \cdot \mathbf{x}|}{||\mathbf{x}||}.$$

- •If we scale all examples to have Euclidean length 1, then r is the min distance of any example to the plane w^* . X = 0
- r is called the margin of w*
- r without absolute is the cosine of the angle between w* and x

Single-layer, single-node or multi-node

More outputs lead to more discriminants (classes)

Four class classification

- Which label coding would work? If not, give feasible labels
 - A[0 1]; B[1 0]; C[0 0]; D[1 1]
 - A[1 1]; B[1 0]; C[1 1]; D[0 0]
 - A[0 0]; B[1 1]; C[0 0]; D[1 1]
 - A[0 1]; B[1 1]; C[1 0]; D[0 0]
 - A[1 1]; B[1 0]; C[1 1]; D[1 0]

Four class classification

example_twoPerceptrons.m

Where would the decision boundaries be?

Four class classification

example_twoPerceptrons.m

What would be the network architecture?

Four class classification

- Which label coding would work? If not, give feasible labels
 - A[0 1]; B[1 0]; C[0 0]; D[1 1]
 - A[1 1]; B[1 0]; C[1 1]; D[0 0]
 - A[0 0]; B[1 1]; C[0 0]; D[1 1]
 - A[0 1]; B[1 1]; C[1 0]; D[0 0]
 - A[1 1]; B[1 0]; C[1 1]; D[1 0]

Acknowledgement

http://www.cs.cornell.edu/courses/cs4700