

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, P_s =	18.56 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.82	
$C_e =$	0.90	

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	115 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 20.76 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- POTTOM	=	-1 000	approx array remains contact

2.4 Seismic Loads - N/A

$S_S =$ $S_{DS} =$ $S_1 =$ $S_{D1} =$	0.00 0.00	$R = 1.25$ $C_S = 0$ $\rho = 1.3$ $\Omega = 1.25$	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5 may be used to calculate the base shear, C_s , of structures under five stories and with a period, T_s of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>450.61</u>	<u>5289.02</u>	k
Compressive Load =	4112.17	<u>4819.45</u>	k
Lateral Load =	<u>21.44</u>	2840.10	k
Moment (Weak Axis) =	0.04	0.01	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 142361.2 in-lbs Resisting Force Required = 1991.07 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3318.44 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding 654.96 lbs Force = Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1637.40 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 654.96 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

		Ballast	Width	
	<u>35 in</u>	<u>36 in</u>	<u>37 in</u>	<u>38 in</u>
$P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) =$	7560 lbs	7776 lbs	7992 lbs	8208 lbs

ASD LC	1.0D + 1.0S			1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W						
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1537 lbs	1537 lbs	1537 lbs	1537 lbs	1265 lbs	1265 lbs	1265 lbs	1265 lbs	1961 lbs	1961 lbs	1961 lbs	1961 lbs	-197 lbs	-197 lbs	-197 lbs	-197 lbs
F _B	1604 lbs	1604 lbs	1604 lbs	1604 lbs	1797 lbs	1797 lbs	1797 lbs	1797 lbs	2405 lbs	2405 lbs	2405 lbs	2405 lbs	-2430 lbs	-2430 lbs	-2430 lbs	-2430 lbs
F _V	202 lbs	202 lbs	202 lbs	202 lbs	1191 lbs	1191 lbs	1191 lbs	1191 lbs	1028 lbs	1028 lbs	1028 lbs	1028 lbs	-1310 lbs	-1310 lbs	-1310 lbs	-1310 lbs
P _{total}	10700 lbs	10916 lbs	11132 lbs	11348 lbs	10622 lbs	10838 lbs	11054 lbs	11270 lbs	11925 lbs	12141 lbs	12357 lbs	12573 lbs	1908 lbs	2038 lbs	2167 lbs	2297 lbs
M	3731 lbs-ft	3731 lbs-ft	3731 lbs-ft	3731 lbs-ft	3207 lbs-ft	3207 lbs-ft	3207 lbs-ft	3207 lbs-ft	4861 lbs-ft	4861 lbs-ft	4861 lbs-ft	4861 lbs-ft	4141 lbs-ft	4141 lbs-ft	4141 lbs-ft	4141 lbs-ft
е	0.35 ft	0.34 ft	0.34 ft	0.33 ft	0.30 ft	0.30 ft	0.29 ft	0.28 ft	0.41 ft	0.40 ft	0.39 ft	0.39 ft	2.17 ft	2.03 ft	1.91 ft	1.80 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft						
f _{min}	253.8 psf	252.8 psf	251.9 psf	250.9 psf	259.1 psf	258.0 psf	256.9 psf	255.8 psf	272.7 psf	271.2 psf	269.7 psf	268.3 psf	0.0 psf	0.0 psf	2.2 psf	5.6 psf
f _{max}	361.9 psf	357.9 psf	354.1 psf	350.5 psf	352.1 psf	348.3 psf	344.8 psf	341.4 psf	413.5 psf	408.1 psf	402.9 psf	398.0 psf	115.1 psf	115.3 psf	115.7 psf	116.1 psf

Maximum Bearing Pressure = 414 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 1305.9 \text{ ft-lbs}$

Resisting Force Required = 895.50 lbs S.F. = 1.67

Weight Required = 1492.50 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	277 lbs	710 lbs	277 lbs	915 lbs	2602 lbs	915 lbs	81 lbs	208 lbs	81 lbs		
F _V	2 lbs	0 lbs	2 lbs	9 lbs	0 lbs	9 lbs	1 lbs	0 lbs	1 lbs		
P _{total}	9636 lbs	7560 lbs	9636 lbs	9824 lbs	7560 lbs	9824 lbs	2818 lbs	7560 lbs	2818 lbs		
M	8 lbs-ft	0 lbs-ft	8 lbs-ft	29 lbs-ft	0 lbs-ft	29 lbs-ft	2 lbs-ft	0 lbs-ft	2 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	276.8 psf	217.5 psf	276.8 psf	281.0 psf	217.5 psf	281.0 psf	81.0 psf	217.5 psf	81.0 psf		
f _{max}	277.7 psf	217.5 psf	277.7 psf	284.4 psf	217.5 psf	284.4 psf	81.2 psf	217.5 psf	81.2 psf		

Maximum Bearing Pressure = 284 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 26in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	3.163 k 12.808 k 7.421 k <u>43%</u>	Rear Strut Maximum Axial Load = 3.594 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 48%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.026 k 12.808 k 7.421 k 27%	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
	4	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 56.48 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & & 0.020 h_{\text{sx}} \\ \text{1.130 in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.054 \text{ in} \\ \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 117 \text{ in}$$

$$J = 0.432$$

$$323.677$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.5 \text{ ksi}$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

h/t = 37.0588

$$\phi F_L St = 25.1 \text{ ksi}$$
 $lx = 897074 \text{ mm}^4$
 2.155 in^4
 $y = 41.015 \text{ mm}$
 $Sx = 1.335 \text{ in}^3$

2.788 k-ft

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 117 \\ \mathsf{J} &= & 0.432 \\ & & 205.839 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b} [\mathsf{Bc-1.6Dc} * \sqrt{((\mathsf{LbSc})/(\mathsf{Cb} * \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= & 28.7 \end{split}$$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

$$V = 0.599 \text{ in}^3$$

1.152 k-ft

 $M_{max}Wk =$

 $M_{max}St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 21.94 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 104.56 \text{ in}$$
 $J = 1.08$
 179.85

$$S1 = \left(\frac{BC - \frac{1}{\theta_b}FCy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

S2 =
$$1701.56$$

 $\phi F_1 = \phi b[Bc-1.6Dc*\sqrt{(}$

$$\phi F_1 = 29.0 \text{ ksi}$$

$$(C_c)^2$$

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

 $\phi F_L = 31.6 \text{ ksi}$

Weak Axis:

$$L_b = 104.56$$

$$J = 1.08$$

$$190.335$$

$$\int Bc - \frac{\theta_y}{\theta} Fcy$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$\phi F_1 =$ 28.9

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = \varphi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

 $\phi F_L =$

16.2

 $\frac{\theta_y}{2}$ 1.3Fcy

3.4.18

h/t =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.0 \text{ ksi}$$

$$lx = 984962 \text{ mm}^4$$

$$2.366 \text{ in}^4$$

31.1 ksi

S1 = 36.9
m = 0.65

$$C_0$$
 = 40
 C_0 = 40
 $S2 = \frac{k_1 Bbr}{mDbr}$
S2 = 77.3
 ϕF_L = 1.3 $\phi y F_C y$
 ϕF_L = 43.2 ksi
 $\phi F_L Wk$ = 33.3 ksi
 $\phi F_L Wk$ = 32.44 mm⁴
2.219 in⁴
 $\phi F_L Wk$ = 40 mm
 $\phi F_L Wk$ = 3.904 k-ft

Compression

 $M_{max}St =$

Sx =

y = 43.717 mm

1.375 in³

3.323 k-ft

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_I = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

0.621 in³

Weak Axis:

3.4.14 $L_b =$ 24.8 J = 0.942 38.7028

$$S1 = \begin{pmatrix} Bc - \frac{\theta_y}{\theta_b} Fcy \\ \hline 1.6Dc \end{pmatrix}$$

$$S1 = 0.51461$$

$$S2 = \begin{pmatrix} C_c \\ \end{pmatrix}^2$$

 $\phi F_L = 31.4$

$$\begin{split} S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18 h/t = 24.5

$$m = 0.65$$
 $C_0 = 27.5$
 $C_0 =$

 $M_{max}Wk = 1.460 \text{ k-ft}$

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ mDbr

Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_{b} = 98.03 \text{ in}$	$L_b = 98.03$
J = 0.942 152.985	J = 0.942 152.985
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$
$\varphi F_L = 29.4 \text{ ksi}$	$\phi F_L = 29.4$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{rll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.9

$$b/t = 24.5$$

 $S1 = 12.21$ (See 3.4.16 above for formula)
 $S2 = 32.70$ (See 3.4.16 above for formula)
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2$ ksi

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 6.29 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14 $L_b = 69.80 \text{ in}$ J = 0.942 108.93

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{(\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2}))}]$$

$$\phi F_L = 30.0 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 69.8$$
 $J = 0.942$
 108.93

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

S2 = 1701.56

$$\varphi F_L = \varphi b[Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.0$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

S2 =
$$\frac{46.7}{\phi F_L} = \frac{46.7}{\phi [Bp-1.6Dp*b/t]}$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1 N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

$$\varphi F_L St = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

27.5 mm

0.621 in³

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L Wk = 28.2 \text{ ksi}$$

$$\varphi F_L Wk = 28.2 \text{ ksi}$$

$$\varphi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

Compression

y = Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

3.4.7

$$\begin{array}{lll} \lambda = & 1.61471 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.80606 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 10.8205 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi c [Bp-1.6Dp^*b/t]$$

 $\varphi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\varphi F_L = \varphi c [Bp-1.6Dp^*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 10.82 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 11.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-55.176	-55.176	0	0
2	M14	Υ	-55.176	-55.176	0	0
3	M15	Υ	-55.176	-55.176	0	0
4	M16	Υ	-55 176	-55 176	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-74.938	-74.938	0	0
2	M14	٧	-74.938	-74.938	0	0
3	M15	V	-115.813	-115.813	0	0
4	M16	V	-115.813	-115.813	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	170.313	170.313	0	0
2	M14	V	129.438	129.438	0	0
3	M15	V	68.125	68.125	0	0
4	M16	У	68.125	68.125	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Y		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Y		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	_		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	546.067	2	1119.715	1	.944	1	.004	1	0	1	Ó	1
2		min	-704.042	3	-1258.525	3	.046	15	0	15	0	1	0	1
3	N7	max	.043	9	1186.464	1	69	15	001	15	0	1	0	1
4		min	164	2	-81.057	3	-16.489	1	033	1	0	1	0	1
5	N15	max	0	15	3163.205	1	0	11	0	11	0	1	0	1
6		min	-1.882	2	-346.62	3	0	2	0	2	0	1	0	1
7	N16	max	2054.057	2	3707.27	1	0	9	0	1	0	1	0	1
8		min	-2184.696	3	-4068.475	3	0	3	0	3	0	1	0	1
9	N23	max	.043	9	1186.464	1	16.489	1	.033	1	0	1	0	1
10		min	164	2	-81.057	3	.69	15	.001	15	0	1	0	1
11	N24	max	546.067	2	1119.715	1	046	15	0	15	0	1	0	1
12		min	-704.042	3	-1258.525	3	944	1	004	1	0	1	0	1
13	Totals:	max	3143.979	2	11482.834	1	0	1	·				·	
14		min	-3593.109	3	-7094.259	3	0	2						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	99.59	1	467.035	_1_	-8.091	15	0	15	.279	1	0	1
2			min	4.045	15	-602.677	3	-200.257	1	015	1	.011	15	0	3
3		2	max	99.59	1	326.396	1	-6.21	15	0	15	.088	1	.556	3
4			min	4.045	15	-424.32	3	-153.604	1	015	1	.004	15	43	1
5		3	max	99.59	1	185.758	1	-4.33	15	0	15	0	3	.919	3
6			min	4.045	15	-245.962	3	-106.951	1	015	1	054	1	707	1
7		4	max	99.59	1	45.119	1	-2.449	15	0	15	005	12	1.089	3
8			min	4.045	15	-67.605	3	-60.299	1	015	1	144	1	832	1
9		5	max	99.59	1	110.752	3	568	15	0	15	007	12	1.066	3
10			min	4.045	15	-95.519	1	-13.646	1	015	1	184	1	805	1
11		6	max	99.59	1	289.109	3	33.007	1	0	15	007	15	.849	3
12			min	4.045	15	-236.158	1	.6	12	015	1	174	1	625	1
13		7	max	99.59	1	467.466	3	79.66	1	0	15	005	15	.439	3
14			min	4.045	15	-376.796	1	2.512	12	015	1	113	1	293	1
15		8	max	99.59	1	645.824	3	126.312	1	0	15	.002	2	.191	1
16			min	4.045	15	-517.435	1	4.423	12	015	1	004	3	164	3
17		9	max	99.59	1	824.181	3	172.965	1	0	15	.161	1	.828	1
18			min	4.045	15	-658.073	1	6.335	12	015	1	.004	12	96	3
19		10	max	99.59	1	798.711	1	-8.246	12	.015	1	.374	1	1.617	1
20			min	4.045	15	-1002.538	3	-219.618	1	001	3	.011	12	-1.949	3
21		11	max	99.59	1	658.073	1	-6.335	12	.015	1	.161	1	.828	1
22			min	4.045	15	-824.181	3	-172.965	1	0	15	.004	12	96	3
23		12	max	99.59	1	517.435	1	-4.423	12	.015	1	.002	2	.191	1
24			min	4.045	15	-645.824	3	-126.312	1	0	15	004	3	164	3
25		13	max	99.59	1	376.796	1	-2.512	12	.015	1	005	15	.439	3
26			min	4.045	15	-467.466	3	-79.66	1	0	15	113	1	293	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC_			z-z Mome	
27		14	max	99.59	1	236.158	1_	6	12	.015	1	007	15	.849	3
28			min	4.045	15	-289.109	3	-33.007	1	0	15	174	1	625	1
29		15	max	99.59	1_	95.519	_1_	13.646	1	.015	1	007	12	1.066	3
30			min	4.045	15	-110.752	3	.568	15	0	15	184	1	805	1
31		16	max	99.59	1	67.605	3	60.299	1	.015	1	005	12	1.089	3
32		4 -	min	4.045	15	-45.119	1_	2.449	15	0	15	<u>144</u>	1	832	1
33		17	max	99.59	1	245.962	3	106.951	1	.015	1	0	3	.919	3
34		40	min	4.045	15	-185.758	1_	4.33	15	0	15	054	1	<u>707</u>	1
35		18	max	99.59	1	424.32	3	153.604	1	.015	1	.088	1	.556	3
36		19	min	4.045	15	-326.396	1	6.21	15	0	15	.004	15	43	1
37		19	max	99.59	1 15	602.677	3	200.257 8.091	1 15	.015	15	.279 .011	1 15	0	
38	M14	1	min	4.045 54.887	1	-467.035	<u>1</u> 1	-8.386	15	<u> </u>	3	.327	1	0	1
39	IVI 14		max min	2.236		509.956 -473.666	3	-207.563	1	014	1	.013	15	0	3
40		2	max	54.887	1 <u>5</u> 1	369.317	<u> </u>	-6.505	15	014 .01	3	.013	1	<u> </u>	3
42		 	min	2.236	15	-339.59	3	-160.911	1	014	1	.005	15	476	1
43		3	max	54.887	1	228.679	1	-4.624	15	.01	3	.002	3	.736	3
44			min	2.236	15	-205.514	3	-114.258	1	014	1	022	1	8	1
45		4	max	54.887	1	88.04	1	-2.744	15	.01	3	004	12	.886	3
46			min	2.236	15	-71.438	3	-67.605	1	014	1	12	1	972	1
47		5	max	54.887	1	62.638	3	863	15	.01	3	007	12	.891	3
48			min	2.236	15	-52.598	1	-20.953	1	014	1	168	1	991	1
49		6	max	54.887	1	196.714	3	25.7	1	.01	3	007	15	.75	3
50			min	2.236	15	-193.236	1	.303	12	014	1	166	1	858	1
51		7	max	54.887	1	330.79	3	72.353	1	.01	3	005	15	.464	3
52			min	2.236	15	-333.875	1	2.214	12	014	1	113	1	572	1
53		8	max	54.887	1	464.866	3	119.005	1	.01	3	0	10	.033	3
54			min	2.236	15	-474.513	1	4.126	12	014	1	009	1	135	2
55		9	max	54.887	1	598.942	3	165.658	1	.01	3	.145	1	.456	1
56			min	2.236	15	-615.152	1_	6.037	12	014	1	.003	12	543	3
57		10	max	54.887	1	755.79	_1_	-7.949	12	.014	1	.35	1	1.198	1
58			min	2.236	15	-733.017	3	-212.311	1	01	3	.011	12	-1.264	3
59		11	max	54.887	1	615.152	1_	-6.037	12	.014	1	.145	1	.456	1
60			min	2.236	15	-598.942	3	-165.658	1	01	3	.003	12	543	3
61		12	max	54.887	1	474.513	1_	-4.126	12	.014	1	0	10	.033	3
62		40	min	2.236	15	-464.866	3	-119.005	1	01	3	009	1	135	2
63		13	max	54.887	1	333.875	1_	-2.214	12	.014	1	005	15	.464	3
64		4.4	min	2.236	15	-330.79	3	-72.353	1	<u>01</u>	3	<u>113</u>	1	<u>572</u>	1
65		14	max	54.887	1	193.236	1	303	12	.014	1	007	15	.75	1
66 67		15	min	2.236 54.887	1 <u>5</u>	-196.714 52.598	<u>3</u> 1	-25.7 20.953	1	01 .014	1	166 007	12	858 .891	3
68		13	min	2.236	15	-62.638	3	.863	15	01	3	168	1	991	1
69		16		54.887	1	71.438	3	67.605	1	.014	1	004	12	.886	3
70		10	min	2.236	15	-88.04	1	2.744	15	01	3	12	1	972	1
71		17	max	54.887	1	205.514	3	114.258	1	.014	1	.002	3	.736	3
72		1 '	min	2.236	15	-228.679	1	4.624	15	01	3	022	1	8	1
73		18	max	54.887	1	339.59	3	160.911	1	.014	1	.127	1	<u></u> .441	3
74		'	min	2.236	15	-369.317	1	6.505	15	01	3	.005	15	476	1
75		19	max	54.887	1	473.666	3	207.563	1	.014	1	.327	1	0	1
76			min	2.236	15	-509.956	1	8.386	15	01	3	.013	15	0	3
77	M15	1	max	-2.396	15	592.991	2	-8.382	15	.014	1	.326	1	0	2
78			min	-58.786	1	-249.931	3	-207.496	1	008	3	.013	15	0	3
79		2	max	-2.396	15	427.07	2	-6.501	15	.014	1	.127	1	.234	3
80			min	-58.786	1	-182.277	3	-160.843		008	3	.005	15	553	2
81		3	max	-2.396	15	261.15	2	-4.621	15	.014	1	.002	3	.395	3
82			min	-58.786	1	-114.623	3	-114.191	1	008	3	022	1	925	2
83		4	max	-2.396	15	96.299	1	-2.74	15	.014	1	004	12	.482	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
84			min	-58.786	1	-46.97	3	-67.538	1	008	3	121	1	-1.118	2
85		5	max	-2.396	15	20.684	3	859	15	.014	1	007	12	.497	3
86			min	-58.786	1	-70.69	2	-20.885	1	008	3	169	1	-1.132	2
87		6	max	-2.396	15	88.337	3	25.767	1	.014	1	007	15	.438	3
88			min	-58.786	1	-236.61	2	.368	12	008	3	166	1	965	2
89		7	max	-2.396	15	155.991	3	72.42	1	.014	1	005	15	.305	3
90			min	-58.786	1	-402.53	2	2.28	12	008	3	113	1	626	1
91		8	max	-2.396	15	223.644	3	119.073	1	.014	1	0	10	.1	3
92		T .	min	-58.786	1	-568.45	2	4.191	12	008	3	009	1	113	1
93		9	max	-2.396	15	291.298	3	165.725	1	.014	1	.145	1	.613	2
94		1 3	min	-58.786	1	-734.37	2	6.102	12	008	3	.003	12	179	3
95		10		-2.396	15	900.29	2	-8.014	12	.008	3	.35	1	1.498	2
96		10	max		1		3	-212.378	1		1	.011	12	531	3
		4.4	min	-58.786		-358.951				014					
97		11	max	-2.396	15	734.37	2	-6.102	12	.008	3	.145	1_	.613	2
98		40	min	-58.786	1_	-291.298	3	-165.725	1	014	1	.003	12	179	3
99		12	max	-2.396	15	568.45	2	-4.191	12	.008	3	0	10	.1	3
100			min	-58.786	1	-223.644	3	-119.073	1	014	1_	009	_1_	113	1
101		13	max	-2.396	15	402.53	2	-2.28	12	.008	3	005	15	.305	3
102			min	-58.786	1	-155.991	3	-72.42	1	014	1	113	1_	626	1
103		14	max	-2.396	15	236.61	2	368	12	.008	3	007	<u>15</u>	.438	3
104			min	-58.786	1	-88.337	3	-25.767	1	014	1	166	1	965	2
105		15	max	-2.396	15	70.69	2	20.885	1	.008	3	007	12	.497	3
106			min	-58.786	1	-20.684	3	.859	15	014	1	169	1	-1.132	2
107		16	max	-2.396	15	46.97	3	67.538	1	.008	3	004	12	.482	3
108			min	-58.786	1	-96.299	1	2.74	15	014	1	121	1	-1.118	2
109		17	max	-2.396	15	114.623	3	114.191	1	.008	3	.002	3	.395	3
110			min	-58.786	1	-261.15	2	4.621	15	014	1	022	1	925	2
111		18	max	-2.396	15	182.277	3	160.843	1	.008	3	.127	1	.234	3
112		'	min	-58.786	1	-427.07	2	6.501	15	014	1	.005	15	553	2
113		19	max	-2.396	15	249.931	3	207.496	1	.008	3	.326	1	0	2
114		10	min	-58.786	1	-592.991	2	8.382	15	014	1	.013	15	0	3
115	M16	1	max	-4.529	15	553.978	2	-8.106	15	.013	1	.282	1	0	2
116	IVITO		min	-111.236	1	-222.434	3	-200.73	1	011	3	.011	15	0	3
117		2		-4.529	15	388.057	2	-6.226	15	.013	1	.09	1 <u>5</u>	.204	3
118			max	-111.236	1		3	-0.220	1		3				2
		2	min		_	-154.78				011		.004	15	51	
119		3	max	-4.529	15	222.137	2	-4.345	15	.013	1	0	12	.335	3
120		-	min	-111.236	1_	-87.127	3	-107.425	1_	011	3	052	1	841	2
121		4	max	-4.529	15	56.217	2	-2.464	15	.013	1	005	12	.393	3
122		-	min	-111.236	1	-19.473	3	-60.772	1	011	3	143	1_	992	2
123		5	max	-4.529	15	48.18	3	584	15	.013	1	007	12	.378	3
124				-111.236		-109.703		-14.119	1_	011	3	183	1_	963	2
125		6	max		15	115.834	3	32.533	1	.013	1	007	<u>15</u>	.289	3
126			min	-111.236	1	-275.623		.796	12	011	3	173	_1_	754	2
127		7	max		15	183.487	3	79.186	1	.013	1	005	15	.127	3
128			min			-441.543	2	2.707	12	011	3	113	1	365	2
129		8	max		15	251.141	3	125.839	1	.013	1	0	10	.209	1
130			min	-111.236	1	-607.463	2	4.619	12	011	3	003	3	109	3
131		9	max	-4.529	15	318.794	3	172.491	1	.013	1	.16	1	.951	2
132			min	-111.236		-773.383	2	6.53	12	011	3	.004	12	418	3
133		10	max		15	939.303	2	-8.442	12	.013	1	.372	1	1.878	2
134				-111.236		-386.448		-219.144		011	3	.012	12	8	3
135		11	max		15	773.383	2	-6.53	12	.011	3	.16	1	.951	2
136			min		1	-318.794	3	-172.491	1	013	1	.004	12	418	3
137		12	max		15	607.463	2	-4.619	12	.011	3	0	10	.209	1
138		14	min			-251.141	3	-125.839		013	1	003	3	109	3
139		13	max		15	441.543	2	-2.707	12	.013	3	005	15	.127	3
140		13			1	-183.487	3	-79.186	1		1	113	1		2
140			min	-111.230		-103.40/	<u>ა</u>	-19.100		013		113		365	

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC			z-z Mome	LC
141		14	max	-4.529	15	275.623	2	796	12	.011	3	007	15	.289	3
142			min	-111.236	1_	-115.834	3	-32.533	1	013	1	173	1	754	2
143		15	max	-4.529	15	109.703	2	14.119	1	.011	3	007	12	.378	3
144			min	-111.236	1	-48.18	3	.584	15	013	1	183	1	963	2
145		16	max	-4.529	15	19.473	3	60.772	1	.011	3	005	12	.393	3
146			min	-111.236	1	-56.217	2	2.464	15	013	1	143	1	992	2
147		17	max	-4.529	15	87.127	3	107.425	1	.011	3	0	12	.335	3
148			min	-111.236	1	-222.137	2	4.345	15	013	1	052	1	841	2
149		18	max	-4.529	15	154.78	3	154.078	1	.011	3	.09	1	.204	3
150			min	-111.236	1	-388.057	2	6.226	15	013	1	.004	15	51	2
151		19	max	-4.529	15	222.434	3	200.73	1	.011	3	.282	1	0	2
152			min	-111.236	1	-553.978	2	8.106	15	013	1	.011	15	0	3
153	M2	1		1085.465	1	2.022	4	.796	1	0	5	0	3	0	1
154	··· -		min	-1112.467	3	.476	15	.032	15	0	1	0	1	0	1
155		2	1	1085.939	1	1.985	4	.796	1	0	5	0	1	0	15
156			min	-1112.111	3	.467	15	.032	15	0	1	0	15	0	4
157		3			1	1.948	4	.796	1	0	5	0	1	0	15
158			min	-1111.756	3	.458	15	.032	15	0	1	0	15	001	4
159		4		1086.887	1	1.911	4	.796	1	0	5	0	1	0	15
160			min	-1111.401	3	.45	15	.032	15	0	1	0	15	002	4
161		5	max	1087.36	1	1.874	4	.796	1	0	5	.001	1	0	15
162		J	min	-1111.045	3	.441	15	.032	15	0	1	0	15	002	4
163		6	+	1087.834	1	1.837	4	.796	1	0	5	.001	1	0	15
164		0	min	-1110.69	3	.432	15	.032	15	0	1	0	15	003	4
165		7		1088.308				.796	1			.002	1	003 0	
				-1110.335	1	1.8	4 15			0	5		15	_	15
166		0	min		3	.423		.032	15	0		0		004	4
167		8	max		1	1.763	4	.796	1	0	5	.002	1	0	15
168			min	-1109.979	3	.415	15	.032	15	0	1_	0	15	004	4
169		9		1089.255	1	1.726	4	.796	1	0	5	.002	1	001	15
170		40	min	-1109.624	3	.406	15	.032	15	0	1_	0	15	005	4
171		10			1	1.689	4	.796	1	0	5	.002	1_	001	15
172		4.4	min	-1109.269	3	.397	15	.032	15	0	1_	0	15	005	4
173		11		1090.203	1	1.652	4	.796	1_	0	5	.003	1_	001	15
174		4.0	min	-1108.914	3	.389	15	.032	15	0	1_	0	15	006	4
175		12		1090.677	1	1.615	4	.796	1	0	5	.003	1	002	15
176		4.0	min	-1108.558	3	.38	15	.032	15	0	1_	0	15	006	4
177		13	max	1091.15	1	1.578	4	.796	1_	0	5	.003	1	002	15
178			min	-1108.203	3	.371	15	.032	15	0	1_	0	15	007	4
179		14		1091.624	1	1.541	4	.796	1	0	5	.003	1	002	15
180			min	-1107.848	3	.363	15	.032	15	0	1_	0	15	007	4
181		15		1092.098	1	1.504	4	.796	1	0	5	.004	1	002	15
182			min		3	.354	15	.032	15	0	1_	0	15	008	4
183		16		1092.572	1	1.467	4	.796	1	0	5	.004	1	002	15
184			min		3	.345	15	.032	15	0	1	0	15	008	4
185		17		1093.045	1	1.43	4	.796	1	0	5	.004	1	002	15
186			min	-1106.782	3	.336	15	.032	15	0	1	0	15	009	4
187		18		1093.519	1	1.393	4	.796	1	0	5	.004	1	002	15
188			min	-1106.426	3	.328	15	.032	15	0	1	0	15	009	4
189		19		1093.993	1	1.356	4	.796	1_	0	5	.005	1	002	15
190			min	-1106.071	3	.319	15	.032	15	0	1	0	15	01	4
191	<u>M3</u>	1_		502.624	2	8.992	4	.343	1	0	12	0	1	.01	4
192			min		3	2.114	15	.014	15	0	1	0	15	.002	15
193		2	max		2	8.12	4	.343	1_	0	12	0	1_	.006	4
194			min		3	1.909	15	.014	15	0	1	0	15	.001	15
195		3	max		2	7.248	4	.343	1	0	12	0	1_	.003	2
196			min		3	1.704	15	.014	15	0	1	0	15	0	3
197		4	max	502.113	2	6.376	4	.343	1	0	12	0	1	0	2

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
198			min	-655.932	3	1.499	15	.014	15	0	1	0	15	002	3
199		5	max	501.943	2	5.504	4	.343	1	0	12	0	1	0	15
200			min	-656.06	3	1.294	15	.014	15	0	1	0	15	004	4
201		6	max		2	4.632	4	.343	1	0	12	.001	1	001	15
202			min	-656.187	3	1.089	15	.014	15	0	1	0	15	006	4
203		7	max		2	3.76	4	.343	1	0	12	.001	1	002	15
204			min	-656.315	3	.884	15	.014	15	0	1	0	15	008	4
205		8	max		2	2.888	4	.343	1	0	12	.001	1	002	15
206		1	min	-656.443	3	.679	15	.014	15	0	1	0	15	01	4
207		9	max		2	2.016	4	.343	1	0	12	.002	1	003	15
208		9		-656.571	3	.474	15	.014	15	0	1	0	15	003	4
		40	min												_
209		10	max		2	1.144	4	.343	1	0	12	.002	1	003	15
210			min		3	.269	15	.014	15	0	1	0	15	012	4
211		11	max	500.92	2	.344	2	.343	1	0	12	.002	1	003	15
212			min	-656.826	3	023	3	.014	15	0	1	0	15	012	4
213		12	max		2	141	15	.343	1	0	12	.002	1	003	15
214			min	-656.954	3	6	4	.014	15	0	1	0	15	012	4
215		13	max	500.58	2	346	15	.343	1	0	12	.002	1	003	15
216			min	-657.082	3	-1.472	4	.014	15	0	1	0	15	012	4
217		14	max	500.409	2	551	15	.343	1	0	12	.002	1	003	15
218			min	-657.209	3	-2.344	4	.014	15	0	1	0	15	011	4
219		15	max		2	756	15	.343	1	0	12	.003	1	002	15
220			min		3	-3.216	4	.014	15	0	1	0	15	009	4
221		16	max		2	961	15	.343	1	0	12	.003	1	002	15
222		10	min	-657.465	3	-4.088	4	.014	15	0	1	0	15	008	4
223		17			2	-1.166	15	.343	1	0	12	.003	1	001	15
		17	max										_		
224		4.0	min	-657.593	3	-4.96	4	.014	15	0	1	0	15	006	4
225		18	max		2	-1.371	15	.343	1	0	12	.003	1	0	15
226		1.0	min	-657.72	3	-5.832	4	.014	15	0	1	0	15	003	4
227		19	max		2	-1.576	15	.343	1_	0	12	.003	1	0	1
228			min	-657.848	3	-6.704	4	.014	15	0	1	0	15	0	1
229	M4	1	max	1183.398	1	0	1	691	15	0	1	.002	1	0	1
230			min	-83.357	3	0	1	-17.067	1	0	1	0	15	0	1
231		2	max	1183.568	1	0	1	691	15	0	1	0	1	0	1
232			min	-83.229	3	0	1	-17.067	1	0	1	0	15	0	1
233		3	max	1183.739	1	0	1	691	15	0	1	0	15	0	1
234			min	-83.101	3	0	1	-17.067	1	0	1	002	1	0	1
235		4	max	1183.909	1	0	1	691	15	0	1	0	15	0	1
236			min	-82.973	3	0	1	-17.067	1	0	1	004	1	0	1
237		5		1184.079	1	0	1	691	15	0	1	0	15	0	1
238				-82.846	3	0	1	-17.067	1	Ö	1	006	1	0	1
239		6		1184.25	1	0	1	691	15	0	1	0	15	0	1
240			min		3	0	1	-17.067	1	0	1	008	1	0	1
241		7	max		1	0	1	691	15	0	1	000	15	0	1
241		-	min	-82.59	3	0	1	-17.067	1	0	1	01	1	0	1
242		8		1184.59			1		15		1		15		-
		0			1	0		691		0		0		0	1
244			min		3	0	1	-17.067	1_	0	1	012	1	0	1
245		9		1184.761	1	0	1_	691	15	0	1	0	15	0	1
246			min	-82.335	3	0	1	-17.067	1_	0	1	013	1	0	1
247		10		1184.931	1	0	1	691	15	0	1	0	15	0	1
248			min	-82.207	3	0	1	-17.067	1	0	1	015	1	0	1
249		11	max	1185.101	1	0	1	691	15	0	1	0	15	0	1
250			min	-82.079	3	0	1	-17.067	1	0	1	017	1	0	1
251		12	max	1185.272	1	0	1	691	15	0	1	0	15	0	1
252			min	-81.951	3	0	1	-17.067	1	0	1	019	1	0	1
253		13		1185.442	1	0	1	691	15	0	1	0	15	0	1
254			min		3	0	1	-17.067	1	0	1	021	1	0	1
207			111111	01.027				17.007		•		1021			

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
255		14	max	1185.612	1	0	1	691	15	0	1	0	15	0	1
256			min	-81.696	3	0	1	-17.067	1	0	1	023	1	0	1
257		15	max	1185.783	1	0	1	691	15	0	1	001	15	0	1
258			min	-81.568	3	0	1	-17.067	1	0	1	025	1	0	1
259		16	max	1185.953	1	0	1	691	15	0	1	001	15	0	1
260			min	-81.44	3	0	1	-17.067	1	0	1	027	1	0	1
261		17	max	1186.123	1	0	1	691	15	0	1	001	15	0	1
262			min	-81.313	3	0	1	-17.067	1	0	1	029	1	0	1
263		18	max	1186.294	1	0	1	691	15	0	_1_	001	15	0	1
264			min	-81.185	3	0	1	-17.067	1	0	1	031	1	0	1
265		19	max	1186.464	1	0	1	691	15	0	1	001	15	0	1
266			min	-81.057	3	0	1	-17.067	1	0	1	033	1	0	1
267	M6	1	max	3430.848	1	2.279	2	0	1_	0	_1_	0	1	0	1
268			min	-3594.042	3	.282	12	0	1	0	1	0	1	0	1
269		2	max	3431.321	_1_	2.25	2	0	1	0	_1_	0	1_	0	12
270			min	-3593.686	3	.268	12	0	1	0	1	0	1	0	2
271		3	max	3431.795	1_	2.221	2	0	1	0	_1_	0	1	0	12
272			min	-3593.331	3	.253	12	0	1	0	1_	0	1	001	2
273		4	max	3432.269	1	2.192	2	0	1	0	_1_	0	1	0	12
274			min	-3592.976	3	.239	12	0	1	0	1	0	1	002	2
275		5	max	3432.742	1_	2.163	2	0	1	0	_1_	0	1	0	12
276			min	-3592.62	3	.224	12	0	1	0	1_	0	1	003	2
277		6		3433.216	1_	2.134	2	0	1	0	_1_	0	1	0	12
278			min	-3592.265	3	.21	12	0	1	0	1	0	1	004	2
279		7	max		1	2.105	2	0	1	0	1_	0	1	0	12
280			min	-3591.91	3	.195	12	0	1	0	1_	0	1	004	2
281		8	max	3434.164	1_	2.076	2	0	1_	0	_1_	0	1	0	12
282			min	-3591.554	3	.181	12	0	1	0	1	0	1	005	2
283		9	max	3434.637	1	2.048	2	0	1	0	1	0	1	0	12
284			min	-3591.199	3	.164	3	0	1	0	1	0	1	006	2
285		10	max	3435.111	1_	2.019	2	0	1	0	_1_	0	1	0	12
286			min	-3590.844	3	.143	3	0	1	0	1	0	1	006	2
287		11		3435.585	1_	1.99	2	0	1_	0	_1_	0	1_	0	12
288			min	-3590.488	3	.121	3	0	1	0	1	0	1	007	2
289		12		3436.059	_1_	1.961	2	0	1	0	_1_	0	1_	0	12
290			min	-3590.133	3	.099	3	0	1	0	1_	0	1	007	2
291		13		3436.532	1	1.932	2	0	1	0	1	0	1	0	12
292			min	-3589.778	3	.078	3	0	1	0	1_	0	1	008	2
293		14		3437.006	1	1.903	2	0	1	0	_1_	0	1	0	12
294			min		3	.056	3	0	1	0	1_	0	1	009	2
295		15		3437.48	1	1.874	2	0	1	0	_1_	0	1	0	12
296			min		3	.034	3	0	1	0	1	0	1	009	2
297		16		3437.954	1	1.846	2	0	1	0		0	1	0	12
298			min	-3588.712	3	.013	3	0	1	0	1	0	1	01	2
299		17		3438.427	1	1.817	2	0	1	0	1	0	1	0	3
300			min	-3588.357	3	009	3	0	1	0	1	0	1	01	2
301		18		3438.901	1	1.788	2	0	1_	0		0	1	0	3
302			min		3	031	3	0	1	0	1	0	1	011	2
303		19		3439.375	1	1.759	2	0	1	0		0	1	0	3
304	A 47	4	min	-3587.646	3	052	3	0	1	0	1	0	1	012	2
305	M7	1		1927.958	2	9.031	4	0	1	0		0	1	.012	2
306			min		3	2.12	15	0	1_	0	_1_	0	1	0	3
307		2		1927.787	2	8.159	4	0	1	0		0	1	.008	2
308			min	-2024.266	3	1.915	15	0	1	0	1_	0	1	001	3
309		3		1927.617	2	7.287	4	0	1	0	1	0	1	.005	2
310			min	-2024.394	3	1.71	15	0	1	0	1	0	1	003	3
311		4	max	1927.447	2	6.415	4	0	_ 1_	0	_1_	0	1	.002	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-2024.522	3	1.505	15	0	1	0	1	0	1	005	3
313		5	max	1927.276	2	5.543	4	0	1	0	_1_	0	_1_	0	2
314			min	-2024.649	3	1.3	15	0	1	0	1	0	1	006	3
315		6		1927.106	2	4.671	4	0	1	0	1	0	1	001	15
316			min	-2024.777	3	1.095	15	0	1	0	1	0	1	007	3
317		7	max		2	3.799	4	0	1	0	_1_	0	1	002	15
318			min	-2024.905	3	.89	15	0	1	0	1	0	1	008	4
319		8	max	1926.765	2	2.927	4	0	1	0	_1	0	_1_	002	15
320			min	-2025.033	3	.685	15	0	1	0	1	0	1	01	4
321		9	max	1926.595	2	2.055	4	0	1	0	_1_	0	1	003	15
322			min	-2025.16	3	.443	12	0	1	0	1	0	1	011	4
323		10	max	1926.425	2	1.368	2	0	1	0	1	0	1	003	15
324			min	-2025.288	3	.097	3	0	1	0	1	0	1	012	4
325		11	max	1926.254	2	.688	2	0	1	0	1	0	1	003	15
326			min	-2025.416	3	413	3	0	1	0	1	0	1	012	4
327		12	max	1926.084	2	.009	2	0	1	0	1	0	1	003	15
328			min	-2025.544	3	923	3	0	1	0	1	0	1	012	4
329		13	max	1925.914	2	34	15	0	1	0	1	0	1	003	15
330			min	-2025.671	3	-1.433	4	0	1	0	1	0	1	011	4
331		14	max	1925.743	2	545	15	0	1	0	1	0	1	002	15
332			min	-2025.799	3	-2.305	4	0	1	0	1	0	1	011	4
333		15	max	1925.573	2	75	15	0	1	0	1	0	1	002	15
334			min	-2025.927	3	-3.177	4	0	1	0	1	0	1	009	4
335		16	max	1925.403	2	955	15	0	1	0	1	0	1	002	15
336			min	-2026.055	3	-4.049	4	0	1	0	1	0	1	008	4
337		17	max	1925.232	2	-1.16	15	0	1	0	1	0	1	001	15
338			min	-2026.182	3	-4.921	4	0	1	0	1	0	1	005	4
339		18		1925.062	2	-1.365	15	0	1	0	1	0	1	0	15
340		1	min	-2026.31	3	-5.793	4	0	1	0	1	0	1	003	4
341		19		1924.891	2	-1.57	15	0	1	0	1	0	1	0	1
342		1.0	min	-2026.438	3	-6.665	4	0	1	0	1	Ö	1	0	1
343	M8	1		3160.139	1	0	1	0	1	0	1	0	1	0	1
344			min	-348.92	3	0	1	0	1	0	1	0	1	0	1
345		2	max		1	0	1	0	1	0	1	0	1	0	1
346		_	min	-348.792	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3160.48	1	0	1	0	1	0	1	0	1	0	1
348			min	-348.665	3	0	1	0	1	0	1	0	1	0	1
349		4	max	3160.65	1	0	1	0	1	0	1	0	1	0	1
350			min	-348.537	3	0	1	0	1	0	1	0	1	0	1
351		5		3160.821	1	0	1	0	1	0	1	0	1	0	1
352				-348.409	3	Ö	1	0	1	0	1	0	1	0	1
353		6		3160.991	1	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	0	1	0	1	0	1	0	1
355		7		3161.161	1	0	1	0	1	0	1	0	1	0	1
356				-348.154	3	0	1	0	1	0	1	0	1	0	1
357		8		3161.332	1	0	1	0	1	0	1	0	1	0	1
358				-348.026	3	0	1	0	1	0	1	0	1	0	1
359		9		3161.502	1	0	1	0	1	0	1	0	1	0	1
360		 		-347.898	3	0	1	0	1	0	1	0	1	0	1
361		10		3161.672	<u> </u>	0	1	0	1	0	1	0	1	0	1
362		10		-347.77	3	0	1	0	1	0	1	0	1	0	1
363		11		3161.843	<u> </u>	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		3162.013	<u>ာ</u> 1	0	1	0	1	0	1	0	1	0	1
		12			3		1		1		1		1		1
366 367		13		-347.515 3162.183		0	1	0	1	0	1	0	1	0	_
		13				0	1	0		0	1	0		0	1
368			THIII	-347.387	3	0		0	1	0		0	1	0	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14	max	3162.354	_1_	0	1	0	_1_	0	_1_	0	1_	0	1
370				-347.259	3	0	1	0	1_	0	1_	0	1	0	1
371		15		3162.524	_1_	0	1	0	_1_	0	_1_	0	1_	0	1
372				-347.132	3	0	1	0	1_	0	1_	0	1	0	1
373		16		3162.694	1_	0	1	0	1_	0	1_	0	1	0	1
374		4-		-347.004	3	0	1	0	1_	0	1_	0	1	0	1
375		17		3162.865	1_	0	1	0	1	0	1_	0	1	0	1
376		40		-346.876	3	0	1	0	1_	0	1_	0	1_	0	1
377		18		3163.035	1	0	1	0	1	0	1	0	1	0	1
378		19		-346.748 3163.205	3	0	1	0	<u>1</u> 1	0		0	1	0	1
379		19			<u>1</u> 3	0	1	0	1	0	1	0	1	0	1
381	M10	1	min	1085.465	<u> </u>	2.022	4	032	15	0	1	0	1	0	1
382	IVITO		min	-1112.467	3	.476	15	032 796	1	0	5	0	3	0	1
383		2		1085.939	<u> </u>	1.985	4	032	15	0	1	0	15	0	15
384			min	-1112.111	3	.467	15	796	1	0	5	0	1	0	4
385		3	_	1086.413	1	1.948	4	032	15	0	1	0	15	0	15
386			-	-1111.756	3	.458	15	796	1	0	5	0	1	001	4
387		4		1086.887	1	1.911	4	032	15	0	1	0	15	0	15
388			min		3	.45	15	796	1	0	5	0	1	002	4
389		5	max		1	1.874	4	032	15	Ö	1	0	15	0	15
390			min	-1111.045	3	.441	15	796	1	0	5	001	1	002	4
391		6	max	1087.834	1	1.837	4	032	15	0	1	0	15	0	15
392			min	-1110.69	3	.432	15	796	1	0	5	001	1	003	4
393		7	max	1088.308	1	1.8	4	032	15	0	1	0	15	0	15
394			min	-1110.335	3	.423	15	796	1	0	5	002	1	004	4
395		8	max	1088.782	1	1.763	4	032	15	0	1	0	15	0	15
396			min	-1109.979	3	.415	15	796	1	0	5	002	1	004	4
397		9		1089.255	_1_	1.726	4	032	15	0	_1_	0	15	001	15
398				-1109.624	3	.406	15	796	1	0	5	002	1	005	4
399		10		1089.729	_1_	1.689	4	032	15	0	_1_	0	15	001	15
400			min	-1109.269	3	.397	15	796	_1_	0	5	002	1	005	4
401		11		1090.203	_1_	1.652	4	032	<u>15</u>	0	1_	0	15	001	15
402			min	-1108.914	3	.389	15	796	1_	0	5	003	1_	006	4
403		12		1090.677	1_	1.615	4	032	<u>15</u>	0	1_	0	15	002	15
404		40	min	-1108.558	3	.38	15	796	1_	0	5	003	1_	006	4
405		13		1091.15	1	1.578	<u>4</u> 15	032	<u>15</u>	0	1_	0	15	002	15
406		11	min	1091.624	<u>3</u>	.371 1.541		796	1_	0	<u>5</u>	003 0	15	007	4
407		14		-1107.848	3	.363	4 15	032 796	<u>15</u>	0	5	003	1	002 007	15
409		15		1092.098	<u> </u>	1.504	4	032	15	0	<u> </u>	003 0	15	007	15
410		13		-1107.492	3	.354	15	796	1	0	5	004	1	002	4
411		16		1092.572	1	1.467	4	032	15	0	1	0	15	002	15
412		10		-1107.137	3	.345	15	796	1	0	5	004	1	002	4
413		17		1093.045		1.43	4	032	15	0	1	0	15	002	15
414		.,		-1106.782	3	.336	15	796	1	0	5	004	1	009	4
415		18		1093.519	1	1.393	4	032	15	0	1	0	15	002	15
416			-	-1106.426	3	.328	15	796	1	0	5	004	1	009	4
417		19		1093.993	1	1.356	4	032	15	0	1	0	15	002	15
418				-1106.071	3	.319	15	796	1	0	5	005	1	01	4
419	M11	1		502.624	2	8.992	4	014	15	0	1	0	15	.01	4
420				-655.548	3	2.114	15	343	1	0	12	0	1	.002	15
421		2		502.454	2	8.12	4	014	15	0	1	0	15	.006	4
422				-655.676	3	1.909	15	343	1	0	12	0	1	.001	15
423		3	max		2	7.248	4	014	15	0	1	0	15	.003	2
424				-655.804	3	1.704	15	343	1_	0	12	0	1	0	3
425		4	max	502.113	2	6.376	4	014	15	0	1	0	15	0	2

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	
426			min	-655.932	3	1.499	15	343	1	0	12	0	1	002	3
427		5	max		2	5.504	4	014	15	0	1	0	15	0	15
428			min	-656.06	3	1.294	15	343	1	0	12	0	1	004	4
429		6	max	501.772	2	4.632	4	014	15	0	1	0	15	001	15
430		_	min	-656.187	3	1.089	15	343	1	0	12	001	1	006	4
431		7	max		2	3.76	4	014	15	0	1	0	15	002	15
432			min	-656.315	3	.884	15	343	1_	0	12	001	1	008	4
433		8	max		2	2.888	4	014	15	0	1	0	15 1	002	15
434		9	min	-656.443	3	.679	15	343 014		0	12	001 0		01	15
435 436		9	max min	501.261 -656.571	3	2.016 .474	15	014	15 1	0	12	002	15 1	003 011	1 <u>5</u>
437		10			2	1.144	4	014	15	0	1	<u>002</u> 0	15	003	15
438		10	max min	-656.698	3	.269	15	343	1	0	12	002	1	012	4
439		11	max	500.92	2	.344	2	014	15	0	1	<u>002</u> 0	15	003	15
440			min	-656.826	3	023	3	343	1	0	12	002	1	012	4
441		12	max	500.75	2	0 <u>2</u> 3 141	15	014	15	0	1	<u>002</u>	15	003	15
442		12	min	-656.954	3	6	4	343	1	0	12	002	1	012	4
443		13	max	500.58	2	346	15	014	15	0	1	0	15	003	15
444		-10	min	-657.082	3	-1.472	4	343	1	0	12	002	1	012	4
445		14	max	500.409	2	551	15	014	15	0	1	0	15	003	15
446			min	-657.209	3	-2.344	4	343	1	0	12	002	1	011	4
447		15	max		2	756	15	014	15	0	1	0	15	002	15
448			min	-657.337	3	-3.216	4	343	1	0	12	003	1	009	4
449		16	max		2	961	15	014	15	0	1	0	15	002	15
450			min	-657.465	3	-4.088	4	343	1	0	12	003	1	008	4
451		17	max		2	-1.166	15	014	15	0	1	0	15	001	15
452			min	-657.593	3	-4.96	4	343	1	0	12	003	1	006	4
453		18	max	499.728	2	-1.371	15	014	15	0	1	0	15	0	15
454			min	-657.72	3	-5.832	4	343	1	0	12	003	1	003	4
455		19	max	499.558	2	-1.576	15	014	15	00	1	00	15	0	1
456			min	-657.848	3	-6.704	4	343	1	0	12	003	1	0	1
457	M12	1		1183.398	_1_	0	1	17.067	1	0	1	0	15	0	1
458			min	-83.357	3	0	1_	.691	15	0	1	002	1	0	1
459		2		1183.568	1_	0	1	17.067	1	0	1	0	15	0	1
460		_	min	-83.229	3	0	1	.691	15	0	1	0	1	0	1
461		3		1183.739	1	0	1	17.067	1	0	1	.002	1	0	1
462		4	min	-83.101	3	0	1	.691	15	0	1	0	15	0	1
463		4		1183.909	<u>1</u>	0	1	17.067	15	0	1	.004	15	0	1
464 465		5	min	-82.973 1184.079	<u>3</u> 1	0	1	.691 17.067	1	<u> </u>	1	.006	1	0	1
466		5		-82.846		0	1	.691	15	0	1	0	15	0	1
467		6		1184.25	1	0	1	17.067	1	0	1	.008	1	0	1
468			min		3	0	1	.691	15	0	1	0	15	0	1
469		7		1184.42		0	1	17.067	1	0	1	.01	1	0	1
470			min	-82.59	3	0	1	.691	15	0	1	.01	15	0	1
471		8		1184.59	1	0	1	17.067	1	0	1	.012	1	0	1
472			min	-82.462	3	0	1	.691	15	0	1	0	15	0	1
473		9		1184.761	1	0	1	17.067	1	0	1	.013	1	0	1
474			min		3	0	1	.691	15	0	1	0	15	0	1
475		10		1184.931	1	0	1	17.067	1	0	1	.015	1	0	1
476			min		3	0	1	.691	15	0	1	0	15	0	1
477		11		1185.101	1	0	1	17.067	1	0	1	.017	1	0	1
478			min	-82.079	3	0	1	.691	15	0	1	0	15	0	1
479		12	max	1185.272	1	0	1	17.067	1	0	1	.019	1	0	1
480			min	-81.951	3	0	1	.691	15	0	1	0	15	0	1
481		13		1185.442	_1_	0	1	17.067	1	0	1	.021	1	0	1
482			min	-81.824	3	0	1	.691	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec	T	Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC	z-z Mome	LC
483		14		1185.612	_1_	0	1	17.067	1	0	_1_	.023	_1_	0	1
484			min	-81.696	3	0	1	.691	15	0	1_	0	15	0	1
485		15		1185.783	_1_	0	1	17.067	1_	0	_1_	.025	_1_	0	1
486			min	-81.568	3	0	1	.691	15	0	1	.001	15	0	1
487		16		1185.953	_1_	0	1_	17.067	1	0	_1_	.027	_1_	0	1
488			min	-81.44	3	0	1	.691	15	0	1_	.001	15	0	1
489		17	max	1186.123	<u>1</u>	0	1	17.067	1_	0	_1_	.029	_1_	0	1
490			min	-81.313	3	0	1	.691	15	0	1	.001	15	0	1
491		18	max	1186.294	_1_	0	1	17.067	1	0	_1_	.031	1_	0	1
492			min	-81.185	3	0	1	.691	15	0	1	.001	15	0	1
493		19	max	1186.464	1	0	1	17.067	1	0	1	.033	1	0	1
494			min	-81.057	3	0	1	.691	15	0	1	.001	15	0	1
495	M1	1	max	200.264	1	602.638	3	-4.045	15	0	1	.279	1	0	15
496			min	8.091	15	-464.609	1	-99.401	1	0	3	.011	15	015	1
497		2	max	200.976	1	601.493	3	-4.045	15	0	1	.218	1	.274	1
498			min	8.306	15	-466.136	1	-99.401	1	0	3	.009	15	375	3
499		3	max	423.256	3	537.502	1	-4.013	15	0	3	.156	1	.553	1
500			min	-270.077	2	-437.358	3	-98.935	1	0	1	.006	15	737	3
501		4	max		3	535.975	1	-4.013	15	0	3	.095	1	.22	1
502			min	-269.365	2	-438.504	3	-98.935	1	0	1	.004	15	465	3
503		5	max		3	534.448	1	-4.013	15	0	3	.033	1	005	15
504			min	-268.653	2	-439.649	3	-98.935	1	0	1	.001	15	192	3
505		6	max	424.858	3	532.921	1	-4.013	15	0	3	001	15	.081	3
506		<u> </u>	min	-267.941	2	-440.794	3	-98.935	1	0	1	028	1	444	1
507		7	max	425.392	3	531.394	1	-4.013	15	0	3	004	15	.355	3
508		<u> </u>	min	-267.229	2	-441.939	3	-98.935	1	0	1	09	1	774	1
509		8	max	425.926	3	529.868	1	-4.013	15	0	3	006	15	.63	3
510		<u> </u>	min	-266.517	2	-443.084	3	-98.935	1	0	1	151	1	-1.103	1
511		9	max		3	38.253	2	-6.249	15	0	9	.094	1	.737	3
512			min	-182.605	2	.466	15		1	0	3	.004	15	-1.257	1
513		10	max		3	36.726	2	-6.249	15	0	9	0	15	.718	3
514		10	min	-181.893	2	.005	15	-153.885	1	0	3	002	1	-1.27	1
515		11	max	441.529	3	35.199	2	-6.249	15	0	9	004	15	.699	3
516			min	-181.181	2	-1.828	4	-153.885	1	0	3	097	1	-1.282	1
517		12	max	455.957	3	282.44	3	-3.854	15	0	2	.148	1	.609	3
518		12	min	-102.355	10	-571.375	1	-95.172	1	0	3	.006	15	-1.132	1
519		13	max		3	281.295	3	-3.854	15	0	2	.089	1	.434	3
520		13	min	-101.761	10	-572.902	1	-95.172	1	0	3	.004	15	777	1
521		14			3	280.15	3	-3.854	15	0	2	.03	1	.26	3
522		14	max min	-101.168	10	-574.429	1	-95.172	1	0	3	.001	15	421	1
		15				279.005	_	-3.854	-		_				
523		15		457.559	3		3		15	0	2	001	<u>15</u>	.087	3
524		10	min		<u>10</u>	-575.956	1	-95.172	1_	0	3	029	1_	064	1
525		10	max		3	277.859	3	-3.854	15	0	2	004	<u>15</u>	.317	2
526		47	min	-99.981 458.627	10	-577.483	1	-95.172	1_	0	3	088	1_	086	3
527		17			3	276.714	3	-3.854	15	0	2	006	<u>15</u>	.668	2
528		4.0	min		10	-579.01	1	-95.172	1_	0	3	147	1_	258	3
529		18	max		<u>15</u>	556.339	2	-4.53	15	0	3	009	<u>15</u>	.334	2
530		10	min		1_	-221.379	3	-111.415		0	2	213	1_	127	3
531		19	max		15	554.812	2	-4.53	15	0	3	011	<u>15</u>	.011	3
532			min		1_	-222.525	3	-111.415		0	2	282	1_	013	1
533	M5	1		439.221	1_	2004.99	3	0	1	0		0	_1_	.029	1
534			min	16.493	12	-1585.144	1	0	1_	0	<u>1</u>	0	_1_	0	15
535		2		439.933	_1_	2003.845	3	0	1	0	_1_	0	_1_	1.014	1
536			min		12	-1586.671	1	0	1	0	1	0	1_	-1.241	3
537		3		1342.093	3	1563.772	1	0	1	0	1	0	1_	1.964	1
538				-932.219	2	-1367.424	3	0	1	0	1	0	1_	-2.448	3
539		4	max	1342.627	3	1562.245	1	0	1	0	1	0	_1_	.994	1

Schletter, Inc. HCV

Model Name : Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-931.507	2	-1368.57	3	0	1	0	1	0	1	-1.599	3
541		5	max	1343.161	3	1560.719	1	0	1	0	1	0	1	.033	9
542			min	-930.795	2	-1369.715	3	0	1	0	1	0	1	749	3
543		6	max	1343.695	3	1559.192	1	0	1	0	1	0	1	.101	3
544			min	-930.083	2	-1370.86	3	0	1	0	1	0	1	943	1
545		7	max		3	1557.665	1	0	1	0	1	0	1	.952	3
546			min	-929.371	2	-1372.005	3	0	1	0	1	0	1	-1.91	1
547		8	_		3	1556.138	1	0	1	0	1	0	1	1.804	3
548			min	-928.659	2	-1373.15	3	0	1	0	1	0	1	-2.876	1
549		9		1368.903	3	127.598	2	0	1	0	1	0	1	2.083	3
550			min	-754.777	2	.465	15	0	1	0	1	0	1	-3.262	1
551		10		1369.437	3	126.071	2	0	1	0	1	0	1	2.011	3
552		10	min	-754.065	2	.004	15	0	1	0	1	0	1	-3.306	1
553		11		1369.971	3	124.544	2	0	1	0	1	0	1	1.94	3
554			min	-753.353	2	-1.57	4	0	1	0	1	0	1	-3.348	1
555		12		1394.324	3	860.782	3	0	1	0	1	0	1	1.699	3
556		12	min	-579.498	2	-1695.327	1	0	1	0	1	0	1	-2.98	1
557		13	_	1394.858	3	859.636	3	0	1	0	1	0	1	1.166	3
558		13	min	-578.786	2	-1696.854	1	0	1	0	1	0	1	-1.927	1
		4.4							•		-				
559		14		1395.392	3	858.491	3	0	1	0	1	0	1	.632	3
560		4.5	min	-578.074	2	-1698.38	1	0		0	_	0	_	874	1
561		15		1395.926	3	857.346	3	0	1	0	1	0	1	.255	2
562		10	min	-577.362	2	-1699.907	1	0	1	0	1	0	1_	0	13
563		16	max	1396.46	3	856.201	3	0	1	0	1	0	1	1.287	2
564			min	-576.65	2	-1701.434	1	0	1	0	1	0	1_	432	3
565		17	max		3	855.056	3	0	1	0	1	0	1	2.321	2
566			min	-575.938	2	-1702.961	1	0	1	0	1	0	1	963	3
567		18	max	-17.239	12	1884.163	2	0	1	0	1	0	1	1.19	2
568			min	-439.011	1	-772.228	3	0	1	0	1	0	1	502	3
569		19	max	-16.883	12	1882.636	2	0	1	0	1	0	1_	.025	1
570			min	-438.299	1	-773.373	3	0	1	0	1	0	1	022	3
571	<u>M9</u>	1	max	200.264	1_	602.638	3	99.401	1	0	3	011	15	0	15
572			min	8.091	15	-464.609	1	4.045	15	0	1	279	1	015	1
573		2	max	200.976	1	601.493	3	99.401	1	0	3	009	15	.274	1
574			min	8.306	15	-466.136	1	4.045	15	0	1	218	1	375	3
575		3	max	423.256	3	537.502	1	98.935	1	0	1	006	15	.553	1
576			min	-270.077	2	-437.358	3	4.013	15	0	3	156	1	737	3
577		4	max	423.79	3	535.975	1	98.935	1	0	1	004	15	.22	1
578			min	-269.365	2	-438.504	3	4.013	15	0	3	095	1	465	3
579		5	max		3	534.448	1	98.935	1	0	1	001	15	005	15
580				-268.653	2	-439.649	3	4.013	15	0	3	033	1	192	3
581		6	max		3	532.921	1	98.935	1	0	1	.028	1	.081	3
582			min	-267.941	2	-440.794		4.013	15	0	3	.001	15	444	1
583		7		425.392	3	531.394	1	98.935	1	0	1	.09	1	.355	3
584			min	-267.229	2	-441.939	3	4.013	15	0	3	.004	15	774	1
585		8		425.926	3	529.868	1	98.935	1	0	1	.151	1	.63	3
586			min	-266.517	2	-443.084	3	4.013	15	0	3	.006	15	-1.103	1
587		9		440.461	3	38.253	2	153.885	1	0	3	004	15	.737	3
588		٦		-182.605	2	.466	15		15	0	9	094	1	-1.257	1
		10		440.995				153.885			3	.002	1		
589		10			3	36.726	2		1	0				.718	3
590		4.4		-181.893	2	.005	15		15	0	9	0	15	-1.27	1
591		11		441.529	3	35.199	2	153.885	1	0	3	.097	1_	.699	3
592		4.0	min	-181.181	2	-1.828	4	6.249	15	0	9	.004	15	-1.282	1
593		12		455.957	3	282.44	3	95.172	1	0	3	006	15	.609	3
594			min	-102.355	10	-571.375	1	3.854	15	0	2	148	1_	-1.132	1
595		13		456.491	3	281.295	3	95.172	1	0	3	004	15	.434	3
596			min	-101.761	10	-572.902	1	3.854	15	0	2	089	1	777	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	457.025	3	280.15	3	95.172	1	0	3	001	15	.26	3
598			min	-101.168	10	-574.429	1	3.854	15	0	2	03	1	421	1
599		15	max	457.559	3	279.005	3	95.172	1	0	3	.029	1	.087	3
600			min	-100.575	10	-575.956	1	3.854	15	0	2	.001	15	064	1
601		16	max	458.093	3	277.859	3	95.172	1	0	3	.088	1	.317	2
602			min	-99.981	10	-577.483	1	3.854	15	0	2	.004	15	086	3
603		17	max	458.627	3	276.714	3	95.172	1	0	3	.147	1	.668	2
604			min	-99.388	10	-579.01	1	3.854	15	0	2	.006	15	258	3
605		18	max	-8.321	15	556.339	2	111.415	1	0	2	.213	1	.334	2
606			min	-201.437	1	-221.379	3	4.53	15	0	3	.009	15	127	3
607		19	max	-8.106	15	554.812	2	111.415	1	0	2	.282	1	.011	3
608			min	-200.725	1	-222.525	3	4.53	15	0	3	.011	15	013	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.183	1	.008	3 1.229e-2	1_	NC	1_	NC	1
2			min	0	15	029	3	004	2 -1.87e-3	3	NC	1	NC	1
3		2	max	0	1	.238	3	.046	1 1.369e-2	1	NC	5	NC	2
4			min	0	15	004	9	.002	10 -1.747e-3	3	878.694	3	5265.034	1
5		3	max	0	1	.454	3	.107	1 1.509e-2	1_	NC	5	NC	3
6			min	0	15	132	1	.005	15 -1.625e-3	3	485.174	3	2206.076	1
7		4	max	0	1	.586	3	.16	1 1.649e-2	1	NC	5	NC	3
8			min	0	15	205	1	.007	15 -1.502e-3	3	380.998	3	1476.629	1
9		5	max	0	1	.617	3	.186	1 1.789e-2	1	NC	5	NC	3
10			min	0	15	202	1	.008	15 -1.379e-3	3	362.166	3	1267.014	1
11		6	max	0	1	.552	3	.179	1 1.929e-2	1	NC	5	NC	3
12			min	0	15	125	1	.007	15 -1.257e-3	3	403.249	3	1320.34	1
13		7	max	0	1	.408	3	.139	1 2.069e-2	1	NC	5	NC	3
14			min	0	15	008	9	.006	15 -1.134e-3	3	535.629	3	1694.989	1
15		8	max	0	1	.225	3	.08	1 2.209e-2	1_	NC	1_	NC	2
16			min	0	15	.005	15	0	10 -1.012e-3	3	921.159	3	2977.583	1
17		9	max	0	1	.311	1	.027	3 2.349e-2	1	NC	4	NC	1
18			min	0	15	.009	15	008	10 -8.891e-4	3	1779.984	2	NC	1
19		10	max	0	1	.374	1	.026	3 2.489e-2	1	NC	3	NC	1
20			min	0	1	016	3	018	2 -7.665e-4	3	1225.499	1	NC	1
21		11	max	0	15	.311	1	.027	3 2.349e-2	1	NC	4	NC	1
22			min	0	1	.009	15	008	10 -8.891e-4	3	1779.984	2	NC	1
23		12	max	0	15	.225	3	.08	1 2.209e-2	1	NC	1	NC	2
24			min	0	1	.005	15	0	10 -1.012e-3	3	921.159	3	2977.583	1
25		13	max	0	15	.408	3	.139	1 2.069e-2	1	NC	5	NC	3
26			min	0	1	008	9	.006	15 -1.134e-3	3	535.629	3	1694.989	1
27		14	max	0	15	.552	3	.179	1 1.929e-2	1	NC	5	NC	3
28			min	0	1	125	1	.007	15 -1.257e-3	3	403.249	3	1320.34	1
29		15	max	0	15	.617	3	.186	1 1.789e-2	1	NC	5	NC	3
30			min	0	1	202	1	.008	15 -1.379e-3	3	362.166	3	1267.014	1
31		16	max	0	15	.586	3	.16	1 1.649e-2	1_	NC	5	NC	3
32			min	0	1	205	1	.007	15 -1.502e-3	3	380.998	3	1476.629	
33		17	max	0	15	.454	3	.107	1 1.509e-2	1_	NC	5	NC	3
34			min	0	1	132	1	.005	15 -1.625e-3	3	485.174	3	2206.076	1
35		18	max	0	15	.238	3	.046	1 1.369e-2	1	NC	5	NC	2
36			min	0	1	004	9	.002	10 -1.747e-3	3	878.694	3	5265.034	1
37		19	max	0	15	.183	1	.008	3 1.229e-2	1	NC	1	NC	1
38			min	0	1	029	3	004	2 -1.87e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.301	3	.007	3 7.45e-3	1	NC	1	NC	1
40			min	0	15	57	1	004	2 -4.652e-3	3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r I	_С	(n) L/v Ratio	LC	(n) L/z Ratio	LC
41		2	max	Ö	1	.585	3	.03		1	NC	5	NC	2
42			min	0	15	922	1	0	10 -5.584e-3	3	665.865	1	8106.995	1
43		3	max	0	1	.829	3	.084	1 1.01e-2	1	NC	15	NC	3
44			min	0	15	-1.23	1	.004		3	354.722	1	2843.493	1
45		4	max	0	1	1.006	3	.134	1 1.142e-2	1	9360.02	15	NC	3
46			min	0	15	-1.465	1	.006	15 -7.446e-3	3	261.575	1	1767.429	1
47		5	max	0	1	1.101	3	.162		1	8073.641	15	NC	3
48			min	0	15	-1.611	1	.007	15 -8.378e-3	3	224.962	1_	1455.791	1
49		6	max	0	1	1.115	3	.16		1	7703.398	15	NC	3
50			min	0	15	-1.665	1	.007		3	213.765	1	1477.817	1
51		7	max	0	1	1.06	3	.127	1 1.539e-2	1	7921.422	15	NC	3
52			min	0	15	-1.641	1	.005	15 -1.024e-2	3	218.601	1	1861.726	1
53		8	max	0	1	.963	3	.074		1_	8589.309	15	NC	2
54			min	0	15	-1.564	1	0	10 -1.117e-2	3	235.386	1	3217.789	1
55		9	max	0	1	.864	3	.024		1_	9488.943	15	NC	1
56			min	0	15	-1.477	1	007	10 -1.21e-2	3	258.15	1	NC	1
57		10	max	0	1	.816	3	.023	3 1.935e-2	1_	NC	15	NC	1
58			min	0	1	-1.433	1	016	2 -1.303e-2	3	271.328	1	NC	1
59		11	max	0	15	.864	3	.024		1	9488.943	15	NC	1
60			min	0	1	-1.477	1	007		3	258.15	1	NC	1
61		12	max	0	15	.963	3	.074		1_	8589.309	15	NC	2
62			min	0	1	-1.564	1	0		3	235.386	1_	3217.789	1
63		13	max	0	15	1.06	3	.127		<u>1_</u>	7921.422	15	NC	3
64			min	0	1	-1.641	1	.005		3	218.601	1	1861.726	1
65		14	max	0	15	1.115	3	.16		1_	7703.398	15	NC	3
66			min	0	1	-1.665	1	.007	15 -9.309e-3	3	213.765	1	1477.817	1
67		15	max	0	15	1.101	3	.162		1_	8073.641	<u>15</u>	NC	3
68			min	0	1	-1.611	1	.007		3	224.962	1_	1455.791	1
69		16	max	0	15	1.006	3	.134		1_	9360.02	15	NC	3
70			min	0	1	-1.465	1	.006		3	261.575	1_	1767.429	1
71		17	max	0	15	.829	3	.084		1_	NC	15	NC	3
72			min	0	1	-1.23	1	.004		3	354.722	1_	2843.493	1
73		18	max	0	15	.585	3	.03	1 8.773e-3	1_	NC	5	NC	2
74			min	0	1	922	1	0		3	665.865	1_	8106.995	1
75		19	max	0	15	.301	3	.007		<u>1_</u>	NC	_1_	NC	1
76			min	0	1	57	1	004		3	NC	1_	NC	1
77	M15	1	max	0	15	.308	3	.007		3_	NC	_1_	NC	1
78			min	0	1	569	1	003		<u>1</u>	NC	1_	NC	1
79		2	max	0	15	.496	3	.031		3	NC	5_	NC	2
80			min	0	1	953	1	0	10 0.0100	1_	609.474		8036.856	1
81		3	max	0	15	.663	3	.084		3	NC	<u>15</u>	NC	3
82			min	0	1	-1.288	1	.004		1_	325.692	1_	2828.949	1
83		4	max	0	15	<u>.793</u>	3	.134		3	9373.932	<u>15</u>	NC	3
84			min	0	1	<u>-1.539</u>	1	.006		1_	241.424	1_	1760.42	1
85		5_	max	0	15	.879	3	.163	1 6.962e-3	3_	8087.032	<u>15</u>	NC 1 1 1 5 0 5 7 7	3
86			min	0	1	<u>-1.688</u>	1	.007		1_	209.238	1_	1450.577	1
87		6	max	0	15	.92	3	<u>.16</u>		3	7718.037	<u>15</u>	NC NC	3
88			min	0	1	<u>-1.734</u>	1	.007		1_	200.988		1472.344	1
89		7	max	0	15	.92	3	.128		3	7939.066	15	NC	3
90			min	0	1	<u>-1.691</u>	1	.005		1_	208.577	1_	1853.273	1
91		8	max	0	15	.892	3	.075		3_	8612.003	<u>15</u>	NC 0400 004	2
92			min	0	1	<u>-1.592</u>	1	0		1_	228.829	1_	3193.834	1
93		9	max	0	15	.856	3	.022		3_		<u>15</u>	NC NC	1
94			min	0	1	-1.484	1	006		1_	255.976	1_	NC	1
95		10	max	0	1	.837	3	.021		3_	NC	<u>15</u>	NC	1
96			min	0	1	<u>-1.43</u>	1	015		1_	271.863	1_	NC	1
97		11	max	0	1	.856	3	.022	3 1.006e-2	3_	9518.163	15	NC	1_

Model Name

: Schletter, Inc. : HCV

....

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r LC			
98			min	0	15	-1.484	1	006	10 -1.85e-2 1	200.070	1 NC	1
99		12	max	0	1	.892	3	.075	1 9.284e-3 3		15 NC	2
100			min	0	15	<u>-1.592</u>	1	0	10 -1.714e-2 1		1 3193.834	
101		13	max	0	1	.92	3	.128	1 8.51e-3 3		15 NC	3
102		4.4	min	0	15	<u>-1.691</u>	1	.005	15 -1.578e-2 1		1 1853.273	
103		14	max	0	1	.92	3	.16	1 7.736e-3 3		15 NC	3
104		4.5	min	0	15	<u>-1.734</u>	1	.007	15 -1.442e-2 1		1 1472.344	
105		15	max	0	15	.879	3	.163	1 6.962e-3 3		15 NC	3
106		16	min	0	1	<u>-1.688</u>		.007	15 -1.306e-2 1		1 1450.577	
107 108		16	max	0	15	.793 -1.539	3	.134 .006	1 6.189e-3 3 15 -1.17e-2 1		15 NC 1 1760.42	3
109		17	min max	0	1	.663	3	.084	1 5.415e-3 3		1 1760.42 15 NC	3
110		17	min	0	15	-1.288	1	.004	15 -1.033e-2 1		1 2828.949	
111		18	max	0	1	.496	3	.031	1 4.641e-3 3		5 NC	2
112		10	min	0	15	953	1	0	10 -8.973e-3 1		1 8036.856	
113		19	max	0	1	.308	3	.007	3 3.868e-3 3		1 NC	1
114		10	min	0	15	569	1	003	2 -7.612e-3 1		1 NC	1
115	M16	1	max	0	15	.177	1	.006	3 7.115e-3 3		1 NC	1
116	WITO		min	001	1	106	3	003	2 -1.146e-2 1		1 NC	1
117		2	max	0	15	.005	4	.045	1 8.169e-3 3		5 NC	2
118			min	0	1	063	2	.002	15 -1.267e-2 1		2 5332.118	
119		3	max	0	15	.027	3	.107	1 9.223e-3 3		5 NC	3
120			min	0	1	237	2	.004	15 -1.387e-2 1		2 2220.579	
121		4	max	0	15	.054	3	.159	1 1.028e-2 3		5 NC	3
122			min	0	1	334	2	.007	15 -1.507e-2 1		2 1481.274	1
123		5	max	0	15	.045	3	.186	1 1.133e-2 3	NC	5 NC	3
124			min	0	1	341	2	.008	15 -1.627e-2 1	468.852	2 1267.477	1
125		6	max	0	15	.004	12	.179	1 1.238e-2 3		5 NC	3
126			min	0	1	259	2	.007	15 -1.747e-2 1		2 1316.63	1
127		7	max	0	15	.005	4	.14	1 1.344e-2 3		5 NC	3
128			min	0	1	109	2	.006	15 -1.867e-2 1		2 1681.496	
129		8	max	0	15	.124	1	.081	1 1.449e-2 3		4 NC	3
130			min	0	1_	<u>151</u>	3	.002	10 -1.987e-2 1		2 2915.932	
131		9	max	0	15	.285	1	.023	1 1.555e-2 3		5 NC	1
132		40	min	0	1	221	3	005	10 -2.107e-2 1		3 NC	1
133		10	max	0	1	.357	1	.018	3 1.66e-2 3		5 NC	1
134		4.4	min	0	1	253	3	013	2 -2.227e-2 1		1 NC	1
135		11	max	0	1	.285	1	.023	1 1.555e-2 3		5 NC	1
136		12	min	0	15 1	221	3	005	10 -2.107e-2 1 1 1.449e-2 3		3 NC	
137 138			max min	0	15	.124 151	3	.081 .002	1 1.449e-2 3 10 -1.987e-2 1		4 NC	3
139			max	0	1	.005	4	.14	1 1.344e-2 3		5 NC	3
140		13	min	0	15	109	2	.006	15 -1.867e-2 1		2 1681.496	
141		14	max	0	1	.004	12	.179	1 1.238e-2 3		5 NC	3
142		17	min	0	15	259	2	.007	15 -1.747e-2 1		2 1316.63	1
143		15	max	0	1	.045	3	.186	1 1.133e-2 3		5 NC	3
144		'	min	0	15	341	2	.008	15 -1.627e-2 1		2 1267.477	
145		16	max	0	1	.054	3	.159	1 1.028e-2 3		5 NC	3
146			min	0	15	334	2	.007	15 -1.507e-2 1		2 1481.274	
147		17	max	0	1	.027	3	.107	1 9.223e-3 3		5 NC	3
148			min	0	15	237	2	.004	15 -1.387e-2 1		2 2220.579	
149		18	max	0	1	.005	4	.045	1 8.169e-3 3		5 NC	2
150			min	0	15	063	2	.002	15 -1.267e-2 1		2 5332.118	
151		19	max	.001	1	.177	1	.006	3 7.115e-3 3		1 NC	1
152			min	0	15	106	3	003	2 -1.146e-2 1		1 NC	1
153	M2	1	max	.007	1	.007	2	.013	1 -1.218e-5 15	NC NC	1 NC	2
154			min	007	3	012	3	0	15 -3.005e-4 1	9799.821	2 5308.245	1

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		
155		2	max	.007	1	.006	2	.012	1 -1.149e-5	<u>15</u>	NC	<u>1</u>	NC	2
156			min	007	3	012	3	0	15 -2.835e-4	1	NC	1	5787.828	1
157		3	max	.006	1	.005	2	.011	1 -1.08e-5	15	NC	1	NC	2
158			min	007	3	011	3	0	15 -2.665e-4	1	NC	1	6358.984	1
159		4	max	.006	1	.004	2	.01	1 -1.011e-5	15	NC	1	NC	2
160			min	006	3	011	3	0	15 -2.495e-4	1_	NC	1	7045.886	1
161		5	max	.006	1	.003	2	.009	1 -9.425e-6	15	NC	1	NC	2
162			min	006	3	011	3	0	15 -2.325e-4	1	NC	1	7881.482	1
163		6	max	.005	1	.002	2	.008	1 -8.736e-6	15	NC	1_	NC	2
164			min	005	3	01	3	0	15 -2.155e-4	1	NC	1	8911.632	1
165		7	max	.005	1	0	2	.007	1 -8.048e-6	15	NC	1	NC	1
166			min	005	3	01	3	0	15 -1.985e-4	1	NC	1	NC	1
167		8	max	.004	1	0	2	.006	1 -7.36e-6	15	NC	1_	NC	1
168			min	005	3	009	3	0	15 -1.815e-4	1	NC	1	NC	1
169		9	max	.004	1	0	2	.005	1 -6.672e-6	15	NC	1	NC	1
170			min	004	3	009	3	0	15 -1.645e-4	1	NC	1	NC	1
171		10	max	.004	1	001	15	.004	1 -5.984e-6	15	NC	1	NC	1
172			min	004	3	008	3	0	15 -1.475e-4	1	NC	1	NC	1
173		11	max	.003	1	001	15	.003		15	NC	1	NC	1
174			min	003	3	008	3	0	15 -1.305e-4	1	NC	1	NC	1
175		12	max	.003	1	001	15	.003	1 -4.607e-6	15	NC	1	NC	1
176			min	003	3	007	3	0	15 -1.135e-4	1	NC	1	NC	1
177		13	max	.002	1	001	15	.002	1 -3.919e-6	15	NC	1	NC	1
178			min	002	3	006	3	0	15 -9.647e-5	1	NC	1	NC	1
179		14	max	.002	1	001	15	.001		15	NC	1	NC	1
180			min	002	3	006	3	0	15 -7.947e-5	1	NC	1	NC	1
181		15	max	.002	1	001	15	0	1 -2.543e-6	•	NC	1	NC	1
182			min	002	3	005	4	0	15 -6.246e-5	1	NC	1	NC	1
183		16	max	.001	1	0	15	0		15	NC	1	NC	1
184		10	min	001	3	004	4	0	15 -4.546e-5	1	NC	1	NC	1
185		17	max	0	1	<u>.00+</u>	15	0	1 -1.167e-6	15	NC	1	NC	1
186			min	0	3	003	4	0	15 -2.846e-5	1	NC	1	NC	1
187		18	max	0	1	0	15	0	1 -4.785e-7	15	NC	1	NC	1
188		10	min	0	3	002	4	0	15 -1.145e-5	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1 5.552e-6	1	NC	1	NC	1
190		10	min	0	1	0	1	0	1 5.933e-8	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1 -1.159e-7	12	NC	1	NC	1
192	IVIO	•	min	0	1	0	1	0	1 -3.275e-6	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1 3.215e-5	1	NC	1	NC	1
194			min	0	2	003	4	0	12 1.302e-6	15	NC	1	NC	1
195		3	max	0	3	003 001	15	0		1	NC	1	NC	1
196		J	min	0	2	006	4	0	12 2.734e-6	15	NC NC	1	NC	1
197		4	max	.001	3	002	15	0	1 1.03e-4	1	NC	1	NC	1
198		-	min	.001	2	002	4	0	12 4.165e-6	15	NC NC	1	NC	1
199		5	max	.001	3	003	15	0	1 1.384e-4	1	NC	1	NC	1
200		5	min	001	2	003 012	4	0	12 5.597e-6		8792.805	4	NC NC	1
201		6		.002	3		15		1 1.738e-4		NC		NC	1
202		U	max	001	2	003 015	4	<u> </u>		<u>1</u>	7098.313	<u>2</u> 4	NC NC	1
203		7		.002	3	015 004	15	0	15 7.028e-6 1 2.093e-4	<u>15</u> 1	NC	-4 5	NC NC	1
203			max		2			0			6079.122	4	NC NC	1
		0	min	002	3	017	15	.001	15 8.46e-6 1 2.447e-4			<u>4</u> 5		
205		8	max	.003		004				1_	NC 5450 101		NC NC	1
206		0	min	002	2	019	4	0	15 9.891e-6		5450.191	4_	NC NC	1
207		9	max	.003	3	005	15	.002	1 2.801e-4	1_	NC	5_4	NC NC	1
208		40	min	002	2	02	4	0	15 1.132e-5		5077.449	4_	NC NC	1
209		10	max	.003	3	005	15	.002	1 3.155e-4	1_	NC	5	NC NC	1
210		4.4	min	002	2	021	4	0	15 1.275e-5	<u>15</u>	4895.736	4_	NC NC	1
211		11	max	.004	3	005	15	.003	1 3.51e-4	<u>1</u>	NC	5	NC	1_

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
212			min	003	2	021	4	0	15	1.419e-5	15	4878.202	4	NC	1
213		12	max	.004	3	005	15	.003	1	3.864e-4	_1_	NC	5	NC	1
214			min	003	2	021	4	0	15	1.562e-5	15	5026.009	4	NC	1
215		13	max	.004	3	005	15	.004	1	4.218e-4	_1_	NC	5	NC	1
216			min	003	2	02	4	0	15	1.705e-5	15		4	NC	1
217		14	max	.005	3	004	15	.005	1	4.572e-4	_1_	NC	5_	NC	1
218			min	004	2	018	4	0	15	1.848e-5	15		4	NC	1
219		15	max	.005	3	004	15	.006	1	4.926e-4	1	NC	3	NC	1
220			min	004	2	015	4	0	15	1.991e-5	15	7047.997	4	NC	1
221		16	max	.005	3	003	15	.007	1	5.281e-4	1	NC	1	NC	1
222			min	004	2	012	4	0	15	2.134e-5	15	8965.765	4	NC	1
223		17	max	.006	3	002	15	.009	1	5.635e-4	1	NC	1	NC	1
224			min	004	2	009	4	0	15	2.277e-5	15	NC	1	NC	1
225		18	max	.006	3	001	15	.01	1	5.989e-4	1	NC	1	NC	2
226			min	005	2	006	1	0	15	2.421e-5	15	NC	1	9835.668	1
227		19	max	.006	3	0	15	.012	1	6.343e-4	1	NC	1	NC	2
228			min	005	2	003	1	0	15	2.564e-5	15	NC	1	8432.114	1
229	M4	1	max	.003	1	.005	2	0	15	1.567e-4	1	NC	1	NC	3
230			min	0	3	007	3	012	1	6.364e-6	15	NC	1	2050.448	
231		2	max	.003	1	.004	2	0	15	1.567e-4	1	NC	1	NC	3
232			min	0	3	006	3	011	1	6.364e-6	15	NC	1	2227.985	1
233		3	max	.003	1	.004	2	0	15	1.567e-4	1	NC	1	NC	3
234			min	0	3	006	3	01	1	6.364e-6	15	NC	1	2439.386	
235		4	max	.002	1	.004	2	0	15	1.567e-4	1	NC	1	NC	3
236		•	min	0	3	005	3	009	1	6.364e-6	15	NC	1	2693.428	
237		5	max	.002	1	.004	2	0	15	1.567e-4	1	NC	<u> </u>	NC	3
238			min	0	3	005	3	008	1	6.364e-6	15	NC	1	3002.042	1
239		6	max	.002	1	.003	2	0	15	1.567e-4	1	NC	1	NC	3
240			min	0	3	005	3	007	1	6.364e-6	15	NC	1	3381.774	1
241		7	max	.002	1	.003	2	0	15	1.567e-4	1	NC	1	NC	3
242		1	min	0	3	004	3	006	1	6.364e-6	15	NC	1	3856.11	1
243		8	max	.002	1	.003	2	<u>.000</u>	15	1.567e-4	1	NC	1	NC	2
244		0	min	0	3	004	3	006	1	6.364e-6	15	NC	1	4459.3	1
245		9	max	.002	1	.003	2	<u>000</u>	15	1.567e-4	1	NC	1	NC	2
246			min	0	3	004	3	005	1	6.364e-6	15	NC	1	5242.904	1
247		10	max	.001	1	.002	2	<u>003</u> 0	15	1.567e-4	1	NC	1	NC	2
248		10	min	0	3	003	3	004	1	6.364e-6	15	NC	1	6287.512	1
249		11		.001	1	.002	2	0	15	1.567e-4	1	NC	1	NC	2
250		+ ' '	max min	0	3	003	3	003	1	6.364e-6	15	NC NC	1	7724.945	
251		12		.001	1	.002	2	003 0	15	1.567e-4	1 <u>15</u>	NC NC	1	NC	2
252		12	max	0	3	003	3	003		6.364e-6		NC NC	1	9783.197	
		12	min							1.567e-4				NC	
253 254		13	max	0	3	.002 002	3	0 002	15	6.364e-6	1_	NC NC	<u>1</u> 1	NC NC	1
		1.1			1						<u>15</u>		•		1
255		14	max	0	3	.001	2	0	15	1.567e-4	1_	NC NC	1	NC NC	1
256		15	min	0		002	3	001	1 1 5	6.364e-6	<u>15</u>			NC NC	
257		15	max	0	1	.001	2	0	15	1.567e-4	1_	NC NC	1_	NC NC	1
258		40	min	0	3	<u>001</u>	3	0	1_	6.364e-6	<u>15</u>	NC NC	1_	NC NC	1
259		16	max	0	1	0	2	0	15	1.567e-4	1_	NC NC	1_	NC NC	1
260		4-	min	0	3	001	3	0	1_	6.364e-6	<u>15</u>	NC NC	1_	NC NC	1
261		17	max	0	1	0	2	0	15	1.567e-4	1_	NC NC	1_	NC NC	1
262		4.0	min	0	3	0	3	0	1_	6.364e-6	15	NC	1_	NC NC	1
263		18	max	0	1	0	2	0	15	1.567e-4	1_	NC	1_	NC NC	1
264		1	min	0	3	0	3	0	1	6.364e-6	<u>15</u>	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	1.567e-4	_1_	NC	_1_	NC	1
266			min	0	1	0	1	0	1	6.364e-6	<u> 15</u>	NC	1_	NC	1
267	<u>M6</u>	1	max	.023	1	.027	2	0	1	0	_1_	NC	3	NC	1
268			min	024	3	037	3	0	1	0	1	2552.443	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio) LC
269		2	max	.022	1	.025	2	0	1	0	_1_	NC	3	NC	1
270			min	023	3	035	3	0	1	0	1	2808.821	2	NC	1
271		3	max	.02	1	.022	2	0	1	0	_1_	NC	3	NC	1
272			min	021	3	033	3	0	1	0	1_	3119.786	2	NC	1
273		4	max	.019	1	.02	2	0	1	0	_1_	NC	3	NC	1
274		_	min	02	3	031	3	0	1	0	1_	3501.493	2	NC NC	1
275		5	max	.018	1	.017	2	0	1	0	1	NC	3	NC NC	1
276			min	019	3	029	3	0	1	0	1_	3976.756	2	NC NC	1
277		6	max	.016	1	.015	2	0	1	0	1	NC 4F70 CFC	3	NC NC	1
278		7	min	017	3	027	2	0	1	0	<u>1</u> 1	4578.656 NC	1	NC NC	1
279 280			max	.015 016	3	.013 025	3	0	1	0	1	5356.678	2	NC NC	1
281		8	min	.014	1	.025 .011	2	0	1		1	NC	1	NC NC	1
282		0	max	01 4	3	023	3	0	1	0	1	6387.646	2	NC NC	1
283		9	max	.013	1	.009	2	0	1	0	1	NC	1	NC NC	1
284		-	min	013	3	021	3	0	1	0	1	7796.314	2	NC NC	1
285		10	max	.011	1	.007	2	0	1	0	1	NC	1	NC	1
286		10	min	012	3	019	3	0	1	0	1	9796.908	2	NC	1
287		11	max	.012	1	.005	2	0	1	0	1	NC	1	NC	1
288			min	011	3	017	3	0	1	0	1	NC	1	NC	1
289		12	max	.009	1	.004	2	0	1	0	1	NC	1	NC	1
290		· -	min	009	3	015	3	0	1	0	1	NC	1	NC	1
291		13	max	.008	1	.003	2	0	1	0	1	NC	1	NC	1
292			min	008	3	013	3	0	1	0	1	NC	1	NC	1
293		14	max	.006	1	.002	2	0	1	0	1	NC	1	NC	1
294			min	007	3	011	3	0	1	0	1	NC	1	NC	1
295		15	max	.005	1	0	2	0	1	0	1	NC	1	NC	1
296			min	005	3	009	3	0	1	0	1	NC	1	NC	1
297		16	max	.004	1	0	2	0	1	0	1	NC	1	NC	1
298			min	004	3	007	3	0	1	0	1	NC	1	NC	1
299		17	max	.003	1	0	2	0	1	0	1	NC	1_	NC	1
300			min	003	3	004	3	0	1	0	1	NC	1	NC	1
301		18	max	.001	1	00	2	0	1	0	_1_	NC	1_	NC	1
302			min	001	3	002	3	0	1	0	1_	NC	1	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC	1_	NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
305	<u>M7</u>	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
307		2	max	.001	3	0	15	0	1	0	1	NC	1_	NC NC	1
308			min	001	2	003	3	0	1	0	1_	NC NC	1_	NC NC	1
309		3	max	.002	3	001	15	0	1	0	1	NC NC	1	NC NC	1
310		1	min	002	2	006	3	0	1	0	1	NC NC	1_	NC NC	1
311		4	max	.003	3	002	15	0	1	0	<u>1</u> 1	NC NC	1	NC NC	1
312		-	min	003	2	01			1	0	1	NC NC	1	NC NC	1
313		5	max min	.004 004	3	003 012	15	<u>0</u> 	1	0	1		3	NC NC	1
315		6	max	.006	3	003	15	0	1	0	1	NC	1	NC NC	1
316		-0	min	005	2	003 015	3	0	1	0	1	7275.189	4	NC NC	1
317		7	max	.005	3	015 004	15	0	1	0	+	NC	1	NC NC	1
318			min	006	2	004 017	4	0	1	0	1	6217.904	4	NC NC	1
319		8	max	.008	3	017 004	15	0	1	0	+	NC	2	NC NC	1
320			min	007	2	019	4	0	1	0	1	5565.32	4	NC NC	1
321		9	max	.009	3	005	15	0	1	0	1	NC	5	NC	1
322			min	008	2	02	4	0	1	0	1	5177.544	4	NC	1
323		10	max	.01	3	005	15	0	1	0	1	NC	5	NC	1
324		1.0	min	009	2	021	4	0	1	0	1		4	NC	1
325		11	max	.011	3	005	15	0	1	0	1	NC	5	NC	1
			,								_		_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

226	Member	Sec	min	x [in]	LC 2	y [in] 021	LC 4	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio	LC 4	(n) L/z Ratio	LC 1
326 327		12	min max	011 .012	3	021 005	15	0	1	0	1	NC	5	NC NC	1
328		12	min	012	2	021	4	0	1	0	1	5110.047	4	NC	1
329		13	max	.013	3	005	15	0	1	0	1	NC	5	NC	1
330		13	min	013	2	02	4	0	1	0	1	5456.141	4	NC	1
331		14	max	.014	3	004	15	0	1	0	1	NC	2	NC	1
332		17	min	014	2	018	4	0	1	0	1	6079.721	4	NC	1
333		15	max	.015	3	004	15	0	1	0	1	NC	1	NC	1
334		10	min	015	2	015	4	0	1	0	1	7153.58	4	NC	1
335		16	max	.017	3	003	15	0	1	0	1	NC	1	NC	1
336		10	min	016	2	013	4	0	1	0	1	9096.774	4	NC	1
337		17	max	.018	3	002	15	0	1	0	1	NC	1	NC	1
338			min	017	2	01	3	0	1	0	1	NC	1	NC	1
339		18	max	.019	3	001	15	0	1	0	1	NC	1	NC	1
340			min	018	2	007	1	0	1	0	1	NC	1	NC	1
341		19	max	.02	3	0	15	0	1	0	1	NC	1	NC	1
342			min	019	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.018	2	0	1	0	1	NC	1	NC	1
344			min	0	3	02	3	0	1	0	1	NC	1	NC	1
345		2	max	.007	1	.017	2	0	1	0	1	NC	1	NC	1
346			min	0	3	019	3	0	1	0	1	NC	1	NC	1
347		3	max	.007	1	.016	2	0	1	0	1	NC	1	NC	1
348			min	0	3	018	3	0	1	0	1	NC	1	NC	1
349		4	max	.006	1	.015	2	0	1	0	1	NC	1	NC	1
350			min	0	3	017	3	0	1	0	1	NC	1	NC	1
351		5	max	.006	1	.014	2	0	1	0	1	NC	1	NC	1
352			min	0	3	016	3	0	1	0	1	NC	1	NC	1
353		6	max	.005	1	.013	2	0	1	0	1	NC	1	NC	1
354			min	0	3	015	3	0	1	0	1	NC	1	NC	1
355		7	max	.005	1	.012	2	0	1	0	1	NC	1	NC	1
356			min	0	3	014	3	0	1	0	1	NC	1	NC	1
357		8	max	.005	1	.011	2	0	1	0	1_	NC	1_	NC	1
358			min	0	3	012	3	0	1	0	1_	NC	1_	NC	1
359		9	max	.004	1	.01	2	0	1	0	_1_	NC	_1_	NC	1
360			min	0	3	011	3	0	1	0	1_	NC	1_	NC	1
361		10	max	.004	1	.009	2	0	1	0	_1_	NC	_1_	NC	1
362			min	0	3	01	3	0	1	0	<u>1</u>	NC	<u>1</u>	NC	1
363		11	max	.003	1	.008	2	0	1_	0	_1_	NC	_1_	NC	1
364			min	0	3	009	3	0	1	0	1_	NC	1_	NC	1
365		12	max	.003	1	.007	2	0	1	0	1_	NC	1	NC	1
366		4.0	min	0	3	008	3	0	1	0	_1_	NC NC	1	NC NC	1
367		13	max	.003	1	.006	2	0	1	0	1_	NC NC	1_	NC NC	1
368		4.4	min	0	3	007	3	0	1	0	1_	NC NC	1_	NC NC	1
369		14	max	.002	1	.005	2	0	1	0	1_	NC NC	1	NC NC	1
370		4.5	min	0	3	006	3	0	1	0	1_1	NC NC	1	NC NC	1
371		15	max	.002	1	.004	2	0	1	0	1_	NC NC	1	NC NC	1
372		10	min	0	3	005	3	0	1	0	1_	NC NC	1_	NC NC	1
373		16	max	.001	1	.003	2	0	1	0	1_	NC NC	1_	NC NC	1
374		47	min	0	3	003	3	0	1	0	1_1	NC NC	1	NC NC	1
375		17	max	0	3	.002	3	<u> </u>	1	0	1	NC NC	1	NC NC	1
376		10	min			002			1		_	NC NC	_	NC NC	
377		18	max	0	3	0 001	3	0	1	0	1	NC NC	<u>1</u> 1	NC NC	1
378 379		19	min	0	1	<u>001</u> 0	1	0	1	0	<u>1</u> 1	NC NC	1	NC NC	1
380		19	max min	0	1	0	1	0	1	0	1	NC NC	1	NC NC	1
381	M10	1		.007	1	.007	2	0	15	3.005e-4	1	NC NC	1	NC NC	2
382	IVITU		max min	007	3	012	3	013	1	1.218e-5		9799.821	2	5308.245	
302			HIIII	007	J	012	J	013		1.2106-3	IJ	3133.021		3300.243	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.007	1	.006	2	0	15	2.835e-4	_1_	NC	_1_	NC	2
384			min	007	3	012	3	012	1	1.149e-5	15	NC	<u>1</u>	5787.828	1
385		3	max	.006	1	.005	2	0	15	2.665e-4	_1_	NC	_1_	NC	2
386			min	007	3	011	3	011	1	1.08e-5	15	NC	1_	6358.984	
387		4	max	.006	1	.004	2	0	15	2.495e-4	_1_	NC	_1_	NC	2
388			min	006	3	011	3	01	1	1.011e-5	15	NC	1_	7045.886	1
389		5	max	.006	1	.003	2	0	15	2.325e-4	_1_	NC	_1_	NC	2
390			min	006	3	011	3	009	1	9.425e-6	15	NC	1_	7881.482	1
391		6	max	.005	1	.002	2	0	15	2.155e-4	1_	NC	1_	NC	2
392			min	005	3	01	3	008	1	8.736e-6	15	NC	1_	8911.632	1
393		7	max	.005	1	0	2	0	15	1.985e-4	_1_	NC	_1_	NC	1_
394			min	005	3	01	3	007	1	8.048e-6	15	NC	1	NC	1
395		8	max	.004	1	0	2	0	15	1.815e-4	_1_	NC	_1_	NC	1
396			min	005	3	009	3	006	1	7.36e-6	15	NC	1_	NC	1
397		9	max	.004	1	0	2	0	15	1.645e-4	1_	NC	_1_	NC	1
398			min	004	3	009	3	005	1	6.672e-6	15	NC	1	NC	1
399		10	max	.004	1	001	15	00	15	1.475e-4	_1_	NC	_1_	NC	1
400			min	004	3	008	3	004	1	5.984e-6	15	NC	1_	NC	1
401		11	max	.003	1	001	15	0	15	1.305e-4	1	NC	1	NC	1
402			min	003	3	008	3	003	1	5.296e-6	15	NC	1	NC	1
403		12	max	.003	1	001	15	0	15	1.135e-4	1	NC	1	NC	1
404			min	003	3	007	3	003	1	4.607e-6	15	NC	1	NC	1
405		13	max	.002	1	001	15	0	15	9.647e-5	1	NC	1	NC	1
406			min	002	3	006	3	002	1	3.919e-6	15	NC	1	NC	1
407		14	max	.002	1	001	15	0	15	7.947e-5	1	NC	1	NC	1
408			min	002	3	006	3	001	1	3.231e-6	15	NC	1	NC	1
409		15	max	.002	1	001	15	0	15	6.246e-5	1	NC	1	NC	1
410			min	002	3	005	4	0	1	2.543e-6	15	NC	1	NC	1
411		16	max	.001	1	0	15	0	15	4.546e-5	1	NC	1	NC	1
412			min	001	3	004	4	0	1	1.855e-6	15	NC	1	NC	1
413		17	max	0	1	0	15	0	15	2.846e-5	1	NC	1	NC	1
414			min	0	3	003	4	0	1	1.167e-6	15	NC	1	NC	1
415		18	max	0	1	0	15	0	15	1.145e-5	1	NC	1	NC	1
416			min	0	3	002	4	0	1	4.785e-7	15	NC	1	NC	1
417		19	max	0	1	0	1	0	1	-5.933e-8	12	NC	1	NC	1
418			min	0	1	0	1	0	1	-5.552e-6	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	3.275e-6	1	NC	1	NC	1
420			min	0	1	0	1	0	1	1.159e-7	12	NC	1	NC	1
421		2	max	0	3	0	15	0	12	-1.302e-6	15	NC	1	NC	1
422			min	0	2	003	4	0	1	-3.215e-5	1	NC	1	NC	1
423		3	max	0	3	001	15	0		-2.734e-6	_	NC	1	NC	1
424			min	0	2	006	4	0	1	-6.757e-5	1	NC	1	NC	1
425		4	max	.001	3	002	15	0	12	-4.165e-6		NC	1	NC	1
426		T	min	0	2	009	4	0	1	-1.03e-4	1	NC	1	NC	1
427		5	max	.001	3	003	15	0	12	-5.597e-6		NC	1	NC	1
428			min	001	2	012	4	0	1	-1.384e-4	1	8792.805	4	NC	1
429		6	max	.002	3	003	15	0	15	-7.028e-6	15	NC	2	NC	1
430			min	001	2	015	4	0	1	-1.738e-4	1	7098.313	4	NC	1
431		7	max	.002	3	004	15	0	15	-8.46e-6	15		5	NC	1
432			min	002	2	004 017	4	0	1	-2.093e-4	1	6079.122	4	NC	1
433		8	max	.002	3	004	15	0		-9.891e-6		NC	5	NC NC	1
434		U	min	002	2	004 019	4	001	1	-9.691e-6	1	5450.191	4	NC NC	1
435		9		.002	3	019 005	15	<u>001</u> 0	15		15	NC	5	NC NC	1
436		3	max	002	2	005 02	4	002	1	-1.132e-5 -2.801e-4	1	5077.449	4	NC NC	1
		10	min									NC			1
437		10	max	.003	3	005	15	0		-1.275e-5		4895.736	5_4	NC NC	
438		14	min	002	2	021	4	002	1 1 5	-3.155e-4	1_		4	NC NC	1
439		11	max	.004	3	00 <u>5</u>	15	0	15	-1.419e-5	15	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		
440			min	003	2	021	4	003	1 -3.51e-4	1	4878.202	4	NC	1
441		12	max	.004	3	005	15	0	15 -1.562e-5	15	NC	5	NC	1
442			min	003	2	021	4	003	1 -3.864e-4	1	5026.009	4	NC	1
443		13	max	.004	3	005	15	0	15 -1.705e-5	15	NC	5	NC	1
444			min	003	2	02	4	004	1 -4.218e-4	1	5370.08	4	NC	1
445		14	max	.005	3	004	15	0	15 -1.848e-5	15	NC	5	NC	1
446			min	004	2	018	4	005	1 -4.572e-4	1	5987.22	4	NC	1
447		15	max	.005	3	004	15	0	15 -1.991e-5	15	NC	3	NC	1
448			min	004	2	015	4	006	1 -4.926e-4	1	7047.997	4	NC	1
449		16	max	.005	3	003	15	0	15 -2.134e-5	15	NC	1	NC	1
450			min	004	2	012	4	007	1 -5.281e-4	1	8965.765	4	NC	1
451		17	max	.006	3	002	15	0	15 -2.277e-5	15	NC	1	NC	1
452			min	004	2	009	4	009	1 -5.635e-4	1	NC	1	NC	1
453		18	max	.006	3	001	15	0	15 -2.421e-5	15	NC	1	NC	2
454		1.0	min	005	2	006	1	01	1 -5.989e-4	1	NC	1	9835.668	
455		19	max	.006	3	0	15	0	15 -2.564e-5		NC	1	NC	2
456		10	min	005	2	003	1	012	1 -6.343e-4	1	NC	1	8432.114	1
457	M12	1	max	.003	1	.005	2	.012	1 -6.364e-6	•	NC	1	NC	3
458	IVIIZ		min	.003	3	007	3	0	15 -1.567e-4	1	NC	1	2050.448	
459		2		.003	1	.004	2	.011	1 -6.364e-6		NC	1	NC	3
460			max min	.003	3	004 006	3	0	15 -1.567e-4	1	NC NC	1	2227.985	1
		2					2				NC NC	_	NC	
461		3	max	.003	3	.004		.01	1 -6.364e-6			1	2439.386	3
462		4	min	0		006	3	0	15 -1.567e-4	1_	NC NC			
463		4	max	.002	1	.004	2	.009	1 -6.364e-6		NC	1	NC	3
464		+ -	min	0	3	005	3	0	15 -1.567e-4	1_	NC NC	1_	2693.428	
465		5	max	.002	1	.004	2	.008	1 -6.364e-6	<u>15</u>	NC	1	NC	3
466		_	min	0	3	<u>005</u>	3	0	15 -1.567e-4	_1_	NC	_1_	3002.042	1
467		6	max	.002	1	.003	2	.007	1 -6.364e-6		NC	_1_	NC	3
468			min	0	3	005	3	0	15 -1.567e-4	_1_	NC	1_	3381.774	1
469		7	max	.002	1	.003	2	.006	1 -6.364e-6		NC	1	NC	3
470			min	0	3	004	3	0	15 -1.567e-4	_1_	NC	1	3856.11	1
471		8	max	.002	1	.003	2	.006	1 -6.364e-6		NC	_1_	NC	2
472			min	0	3	004	3	0	15 -1.567e-4	1	NC	1_	4459.3	1
473		9	max	.002	1	.003	2	.005	1 -6.364e-6	15	NC	1_	NC	2
474			min	0	3	004	3	0	15 -1.567e-4	1_	NC	1_	5242.904	1
475		10	max	.001	1	.002	2	.004	1 -6.364e-6	<u> 15</u>	NC	_1_	NC	2
476			min	0	3	003	3	0	15 -1.567e-4	1	NC	1	6287.512	1
477		11	max	.001	1	.002	2	.003	1 -6.364e-6	15	NC	1	NC	2
478			min	0	3	003	3	0	15 -1.567e-4	1	NC	1	7724.945	1
479		12	max	.001	1	.002	2	.003	1 -6.364e-6	15	NC	1	NC	2
480			min	0	3	003	3	0	15 -1.567e-4	1	NC	1	9783.197	1
481		13	max	0	1	.002	2	.002	1 -6.364e-6		NC	1	NC	1
482			min	0	3	002	3	0	15 -1.567e-4	1	NC	1	NC	1
483		14	max	0	1	.001	2	.001	1 -6.364e-6	15	NC	1	NC	1
484			min	0	3	002	3	0	15 -1.567e-4	1	NC	1	NC	1
485		15	max	0	1	.001	2	0	1 -6.364e-6	15	NC	1	NC	1
486		1.0	min	0	3	001	3	0	15 -1.567e-4	1	NC	1	NC	1
487		16	max	0	1	0	2	0	1 -6.364e-6	15	NC	1	NC	1
488		1,0	min	0	3	001	3	0	15 -1.567e-4	1	NC	1	NC	1
489		17	max	0	1	0	2	0	1 -6.364e-6		NC	1	NC	1
490		17	min	0	3	0	3	0	15 -1.567e-4	1	NC NC	1	NC	1
491		10			1						NC NC	1	NC NC	-
		18	max	0	3	0	2	0	1 -6.364e-6	10				1
492		40	min	0		0	3	0	15 -1.567e-4	4.5	NC NC	1_	NC NC	
493		19	max	0	1	0	1	0	1 -6.364e-6		NC NC	1	NC NC	1
494	N 4 4		min	0	1	0	1	0	1 -1.567e-4	1_	NC NC	1_	NC NC	1
495	<u>M1</u>	1_	max	.008	3	.183	1	0	1 1.418e-2	1_	NC	1	NC NC	1
496			min	004	2	029	3	0	15 -2.125e-2	3	NC	1_	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio LC		LC
497		2	max	.008	3	.091	1	0	15	6.84e-3	_1_	NC 5	NC	1
498			min	004	2	014	3	009	1	-1.055e-2	3	1459.024 1	NC	1
499		3	max	.008	3	.012	3	0	15	2.465e-6	10	NC 5	NC	2
500			min	004	2	01	2	013	1	-2.804e-4	1_	700.539 1	9754.933	1
501		4	max	.008	3	.056	3	0	15	4.895e-3	1_	NC 15	NC	1
502			min	004	2	123	1	012	1	-4.243e-3	3	440.375 1	NC	1
503		5	max	.008	3	.113	3	0	15	1.007e-2	1	9546.857 15	NC	1
504			min	004	2	242	1	008	1	-8.381e-3	3	316.511 1	NC	1
505		6	max	.008	3	.175	3	0	15	1.525e-2	1	7536.806 15	NC	1
506			min	004	2	358	1	004	1	-1.252e-2	3	248.449 1	NC	1
507		7	max	.008	3	.235	3	0	1	2.042e-2	1	6350.97 15	NC	1
508			min	004	2	462	1	0	3	-1.666e-2	3	208.374 1	NC	1
509		8	max	.007	3	.285	3	.001	1	2.56e-2	1	5649.728 15	NC	1
510			min	004	2	545	1	0	15	-2.08e-2	3	184.718 1	NC	1
511		9	max	.007	Ω	.318	Ω	0	15	2.816e-2	1	5283.179 15	NC	1
512			min	004	2	597	1	0	1	-2.101e-2	3	172.401 1	NC	1
513		10	max	.007	3	.33	3	0	1	2.897e-2	1	5171.239 15	NC	1
514			min	004	2	615	1	0	15	-1.861e-2	3	168.708 1	NC	1
515		11	max	.007	3	.322	3	0	1	2.978e-2	1	5282.975 15	NC	1
516			min	003	2	597	1	0	15	-1.62e-2	3	172.634 1	NC	1
517		12	max	.007	3	.295	3	0	15	2.808e-2	1	5649.302 15	NC	1
518			min	003	2	544	1	001	1	-1.367e-2	3	185.433 1	NC	1
519		13	max	.007	3	.251	3	0	15	2.262e-2	1	6350.234 15	NC	1
520		-10	min	003	2	459	1	0	1	-1.093e-2	3	210.121 1	NC	1
521		14	max	.006	3	.196	3	.003	1	1.716e-2	1	7535.572 15	NC	1
522		17	min	003	2	353	1	0	15	-8.199e-3	3	252.181 1	NC	1
523		15	max	.006	3	.133	3	.008	1	1.171e-2	1	9544.739 15	NC	1
524		10	min	003	2	235	1	0	15	-5.465e-3	3	324.162 1	NC NC	1
525		16	max	.006	3	.067	3	.011	1	6.249e-3	1	NC 15	NC	1
526		10	min	003	2	116	1	0	15	-2.73e-3	3	456.372 1	NC NC	1
527		17	max	.006	3	.004	3	.012	1	7.907e-4	1	NC 5	NC NC	1
528		17	min	003	2	006	2	0	15	3.954e-6	3	736.299 1	NC NC	1
529		18		.006	3	.091	1	.009	1	8.895e-3	2	NC 5	NC NC	1
530		10	max	003	2	053	3	<u>.009</u>	15	-3.007e-3	3	1549.454 1	NC NC	1
		40	min											
531		19	max	.006	3	.177	3	0	15	1.767e-2	2	.,,	NC NC	1
532	N 4 C	4	min	003	2	106		<u>001</u>	1	-6.121e-3	3	110	NC NC	•
533	<u>M5</u>	1	max	.026	3	.374	1	0	1	0	1_	NC 1	NC NC	1
534			min	018	2	016	3	0	1	0	1_	NC 1	NC NC	1
535		2	max	.026	3	.185	1	0	1	0	1_	NC 5	NC NC	1
536			min	<u>018</u>	2	007	3	0	1	0	1_	714.006 1	NC NC	1
537		3	max	.026	3	.037	3	0	1	0	1	NC 15		1
538			min	018	2	033	2	0	1	0	1_	332.161 1	NC NC	1
539		4	max	.025	3	.143	3	0	1	0	1	6757.225 15	NC NC	1
540			min	017	2	297	1	0	1	0	1_	200.576 1	NC	1
541		5	max	.024	3	.293	3	0	1	0	1_	4711.947 15	NC	1
542			min	017	2	591	1	0	1	0	1_	139.553 1	NC	1
543		6	max	.024	3	.463	3	0	1_	0	_1_	3617.767 15	NC	1
544			min	017	2	884	1	0	1	0	1_	106.94 1	NC	1
545		7	max	.023	3	.631	3	0	1	0	1_	2987.512 15	NC	1
546			min	016	2	-1.152	1	0	1	0	1	88.168 1	NC	1
547		8	max	.023	3	.772	3	0	1	0	1	2621.891 15	NC	1
548			min	016	2	-1.367	1	0	1	0	1	77.285 1	NC	1
549		9	max	.022	3	.864	3	0	1	0	1	2434.485 15	NC	1
550			min	016	2	-1.503	1	0	1	0	1	71.712 1	NC	1
551		10	max	.022	3	.897	3	0	1	0	1	2377.983 15	NC	1
552			min	015	2	-1.548	1	0	1	0	1	70.054 1	NC	1
553		11	max	.021	3	.875	3	0	1	0	1	2434.572 15	NC	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

1554		Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio LC		
	554			min	015	2	-1.502	1	0	1	0	<u>1</u>	71.823 1	NC	1
557			12	max	.021			3	0	1	0	<u>1</u>			_
558				min	015		-1.363		0	1	0	1		NC	1
559	557		13	max	.02	3	.677	3	0	1	0	1	2987.953 15	NC	1
560	558			min	015	2	-1.141	1	0	1	0	1	89.128 1	NC	1
561	559		14	max	.02	3	.522	3	0	1	0	1	3618.642 15	NC	1
F662	560			min	014	2	867	1	0	1	0	1	109.117 1	NC	1
562 min -014 2 -588 1 0 1 0 1 14432 1 NC 1 564 min -014 2 -274 1 0 1 0 1 211376 1 NC 1 565 17 max .018 3 .012 3 0 1 0 1 211376 1 NC 1 566 min .014 2 -017 2 0 1 0 1 858712 1 NC 1	561		15	max	.019	3	.35	3	0	1	0	1	4713.693 15	NC	1
F663				min	014				0	1	0	1			1
F664			16			3		3	0	1	0	1	6760,909 15	NC	1
Feb										1		1			1
Fee6			17					3	0	1		1			1
567															
See			18												
F669			10												
S70			10								_	•			-
S71			19					-		-					
S72		MO	1								•	•			
573		<u>IVI9</u>										-			
For the first color For the first color												•			
S75			2							<u> </u>					
577			3												
578				min											1
5 max			4	max	.008		.056	3	.012			3		NC	1
S80	578			min	004	2		1	0	15		1	440.375 1	NC	1
581 6 max .008 3 .175 3 .004 1 1.252e-2 3 7536.806 15 NC 1 582 min 004 2 358 1 0 15 -1.525e-2 1 248.449 1 NC 1 583 7 max .008 3 2.35 3 0 3 1.666e-2 3 6350.97 15 NC 1 584 min 004 2 462 1 0 1 -2.042e-2 1 208.374 1 NC 1 585 8 max .007 3 .285 3 0 15 2.08e-2 3 5649.728 15 NC 1 587 9 max .007 3 318 3 0 15 2.08e-2 3 5649.728 15 NC 1 587 9 max .007 3 .33 3 <td>579</td> <td></td> <td>5</td> <td>max</td> <td>.008</td> <td>3</td> <td>.113</td> <td>3</td> <td>.008</td> <td>1</td> <td></td> <td>3</td> <td>9546.857 15</td> <td>NC</td> <td>1</td>	579		5	max	.008	3	.113	3	.008	1		3	9546.857 15	NC	1
S82	580			min	004	2	242	1	0	15		1	316.511 1	NC	1
583 7 max .008 3 .235 3 0 3 1.666e-2 3 6350.97 15 NC 1 584 min 004 2 462 1 0 1 -2.042e-2 1 208.374 1 NC 1 585 8 max .007 3 .285 3 0 15 2.08e-2 3 5649.728 15 NC 1 586 min 004 2 545 1 001 1 -2.56e-2 1 184.718 1 NC 1 587 9 max .007 3 .318 3 0 1 2.101e-2 3 5283.179 15 NC 1 588 min 004 2 597 1 0 15.2.816e-2 1 172.401 1 NC 1 599 min 004 2 615 1 <td>581</td> <td></td> <td>6</td> <td>max</td> <td>.008</td> <td>3</td> <td>.175</td> <td>3</td> <td>.004</td> <td>1</td> <td></td> <td>3</td> <td>7536.806 15</td> <td>NC</td> <td>1</td>	581		6	max	.008	3	.175	3	.004	1		3	7536.806 15	NC	1
583 7 max .008 3 .235 3 0 3 1.666e-2 3 6350.97 15 NC 1 584 min 004 2 462 1 0 1 -2.042e-2 1 208.374 1 NC 1 585 8 max .007 3 .285 3 0 15 2.08e-2 3 5649.728 15 NC 1 586 min 004 2 545 1 001 1 -2.56e-2 1 184.718 1 NC 1 587 9 max .007 3 .318 3 0 1 2.101e-2 3 5283.179 15 NC 1 588 min 004 2 597 1 0 15.2.816e-2 1 172.401 1 NC 1 599 min 004 2 615 1 <td>582</td> <td></td> <td></td> <td>min</td> <td>004</td> <td>2</td> <td>358</td> <td>1</td> <td>0</td> <td>15</td> <td>-1.525e-2</td> <td>1</td> <td>248.449 1</td> <td>NC</td> <td>1</td>	582			min	004	2	358	1	0	15	-1.525e-2	1	248.449 1	NC	1
584 min 004 2 462 1 0 1 -2.042e-2 1 208.374 1 NC 1 585 8 max .007 3 .285 3 0 15 2.08e-2 3 5649.728 15 NC 1 587 9 max .007 3 .318 3 0 1 2.101e-2 3 5283.179 15 NC 1 588 min 004 2 597 1 0 15 -2.816e-2 1 172.401 1 NC 1 589 10 max .007 3 .33 3 0 15 1.861e-2 3 5171.239 15 NC 1 590 min 004 2 615 1 0 1 -2.897e-2 1 168.708 1 NC 1 591 11 max .007 3	583		7	max	.008	3	.235	3	0	3		3	6350.97 15	NC	1
585 8 max .007 3 .285 3 0 15 2.08e-2 3 5649.728 15 NC 1 586 min .004 2 545 1 001 1 -2.56e-2 1 184.718 1 NC 1 587 9 max .007 3 .318 3 0 1 2.101e-2 3 5283.179 15 NC 1 588 min 004 2 597 1 0 15 2.816e-2 1 172.401 1 NC 1 589 10 max .007 3 .322 3 0 15 1.861e-2 3 5171.239 15 NC 1 590 min 004 2 615 1 0 1 -2.897e-2 1 168.708 1 NC 1 591 11 min 003 2				min	004				0	1		1		NC	1
586 min 004 2 545 1 001 1 -2.56e-2 1 184.718 1 NC 1 587 9 max .007 3 .318 3 0 1 2.101e-2 3 5283.179 15 NC 1 588 min 004 2 597 1 0 15 -2.816e-2 1 172.401 1 NC 1 589 10 max .007 3 .33 3 0 15 1.861e-2 3 5171.239 15 NC 1 590 min 004 2 615 1 0 1 -2.897e-2 1 168.708 1 NC 1 591 11 max .007 3 .295 3 .001 1 -2.978e-2 1 172.634 1 NC 1 592 min 003 2 544			8		.007	3		3	0	15		3		NC	1
587 9 max .007 3 .318 3 0 1 2.101e-2 3 5283.179 15 NC 1 588 min 004 2 597 1 0 15 -2.816e-2 1 172.401 1 NC 1 589 10 max .007 3 .33 3 0 15 1.681e-2 3 5171.239 15 NC 1 590 min 004 2 615 1 0 1 -2.897e-2 1 168.708 1 NC 1 591 11 max .007 3 .322 3 0 15 1.62e-2 3 5282.975 15 NC 1 592 min 003 2 597 1 0 1 -2.978e-2 1 772.634 1 NC 1 593 12 max .007 3 .251 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>001</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									001						
588 min 004 2 597 1 0 15 -2.816e-2 1 172.401 1 NC 1 589 10 max .007 3 .33 3 0 15 1.861e-2 3 5171.239 15 NC 1 590 min 004 2 615 1 0 1 -2.897e-2 1 168.708 1 NC 1 591 11 max .007 3 .322 3 0 15 1.62e-2 3 5282.975 15 NC 1 592 min 003 2 597 1 0 1 -2.978e-2 1 772.634 1 NC 1 593 12 max .007 3 .295 3 .001 1 1.63e-2 3 5649.302 15 NC 1 594 min 003 2 544 </td <td></td> <td></td> <td>9</td> <td></td>			9												
589 10 max .007 3 .33 3 0 15 1.861e-2 3 5171.239 15 NC 1 590 min 004 2 615 1 0 1 -2.897e-2 1 168.708 1 NC 1 591 11 max .007 3 .322 3 0 15 1.62e-2 3 5282.975 15 NC 1 592 min 003 2 597 1 0 1 -2.978e-2 1 172.634 1 NC 1 593 12 max .007 3 .295 3 .001 1 1.367e-2 3 5649.302 15 NC 1 594 min 003 2 544 1 0 15 -2.808e-2 1 185.433 1 NC 1 595 13 max .007 3										_					
590 min 004 2 615 1 0 1 -2.897e-2 1 168.708 1 NC 1 591 11 max .007 3 .322 3 0 15 1.62e-2 3 5282.975 15 NC 1 592 min 003 2 597 1 0 1 -2.978e-2 1 172.634 1 NC 1 593 12 max .007 3 .295 3 .001 1 1.367e-2 3 5649.302 15 NC 1 594 min 003 2 544 1 0 15 -2.808e-2 1 185.433 1 NC 1 595 13 max .007 3 .251 3 0 1 1.093e-2 3 6350.234 15 NC 1 596 min 003 2 459<			10					-							1
591 11 max .007 3 .322 3 0 15 1.62e-2 3 5282.975 15 NC 1 592 min 003 2 597 1 0 1 -2.978e-2 1 172.634 1 NC 1 593 12 max .007 3 .295 3 .001 1 1.367e-2 3 5649.302 15 NC 1 594 min 003 2 544 1 0 15 -2.808e-2 1 185.433 1 NC 1 595 13 max .007 3 .251 3 0 1 1.093e-2 3 6350.234 15 NC 1 596 min 003 2 459 1 0 15 -2.262e-2 1 210.121 1 NC 1 597 14 max .006 3 <td></td> <td></td> <td>1.0</td> <td></td>			1.0												
592 min 003 2 597 1 0 1 -2.978e-2 1 172.634 1 NC 1 593 12 max .007 3 .295 3 .001 1 1.367e-2 3 5649.302 15 NC 1 594 min 003 2 544 1 0 15 -2.808e-2 1 185.433 1 NC 1 595 13 max .007 3 .251 3 0 1 1.093e-2 3 6350.234 15 NC 1 596 min 003 2 459 1 0 15 -2.262e-2 1 210.121 1 NC 1 597 14 max .006 3 .196 3 0 15 8.199e-3 3 7535.572 15 NC 1 598 min 003 2 35			11					_							
593 12 max .007 3 .295 3 .001 1 1.367e-2 3 5649.302 15 NC 1 594 min 003 2 544 1 0 15 -2.808e-2 1 185.433 1 NC 1 595 13 max .007 3 .251 3 0 1 1.093e-2 3 6350.234 15 NC 1 596 min 003 2 459 1 0 15 -2.262e-2 1 210.121 1 NC 1 597 14 max .006 3 .196 3 0 15 8.199e-3 3 7535.572 15 NC 1 598 min 003 2 353 1 003 1 -1.716e-2 1 252.181 1 NC 1 600 min 003 2															
594 min 003 2 544 1 0 15 -2.808e-2 1 185.433 1 NC 1 595 13 max .007 3 .251 3 0 1 1.093e-2 3 6350.234 15 NC 1 596 min 003 2 459 1 0 15 -2.262e-2 1 210.121 1 NC 1 597 14 max .006 3 .196 3 0 15 8.199e-3 3 7535.572 15 NC 1 598 min 003 2 353 1 003 1 -1.716e-2 1 252.181 1 NC 1 599 15 max .006 3 .133 3 0 15 5.465e-3 3 9544.739 15 NC 1 600 min 003 2			12							-		•			
595 13 max .007 3 .251 3 0 1 1.093e-2 3 6350.234 15 NC 1 596 min 003 2 459 1 0 15 -2.262e-2 1 210.121 1 NC 1 597 14 max .006 3 .196 3 0 15 8.199e-3 3 7535.572 15 NC 1 598 min 003 2 353 1 003 1 -1.716e-2 1 252.181 1 NC 1 599 15 max .006 3 .133 3 0 15 5.465e-3 3 9544.739 15 NC 1 600 min 003 2 235 1 008 1 -1.171e-2 1 324.162 1 NC 1 601 min 003 2 <td< td=""><td></td><td></td><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2 9090 2</td><td>1</td><td></td><td></td><td>1</td></td<>			12								2 9090 2	1			1
596 min 003 2 459 1 0 15 -2.262e-2 1 210.121 1 NC 1 597 14 max .006 3 .196 3 0 15 8.199e-3 3 7535.572 15 NC 1 598 min 003 2 353 1 003 1 -1.716e-2 1 252.181 1 NC 1 599 15 max .006 3 .133 3 0 15 5.465e-3 3 9544.739 15 NC 1 600 min 003 2 235 1 008 1 -1.171e-2 1 324.162 1 NC 1 601 16 max .006 3 .067 3 0 15 2.73e-3 3 NC 15 NC 1 602 min 003 2 116			12					2							1
597 14 max .006 3 .196 3 0 15 8.199e-3 3 7535.572 15 NC 1 598 min 003 2 353 1 003 1 -1.716e-2 1 252.181 1 NC 1 599 15 max .006 3 .133 3 0 15 5.465e-3 3 9544.739 15 NC 1 600 min 003 2 235 1 008 1 -1.171e-2 1 324.162 1 NC 1 601 16 max .006 3 .067 3 0 15 2.73e-3 3 NC 15 NC 1 602 min 003 2 116 1 011 1 -6.249e-3 1 456.372 1 NC 1 603 17 max .006 3<			13												
598 min 003 2 353 1 003 1 -1.716e-2 1 252.181 1 NC 1 599 15 max .006 3 .133 3 0 15 5.465e-3 3 9544.739 15 NC 1 600 min 003 2 235 1 008 1 -1.171e-2 1 324.162 1 NC 1 601 16 max .006 3 .067 3 0 15 2.73e-3 3 NC 15 NC 1 602 min 003 2 116 1 011 1 -6.249e-3 1 456.372 1 NC 1 603 17 max .006 3 .004 3 0 15 -3.954e-6 3 NC 5 NC 1 604 min 003 2 006 <td></td> <td></td> <td>4.4</td> <td></td>			4.4												
599 15 max .006 3 .133 3 0 15 5.465e-3 3 9544.739 15 NC 1 600 min 003 2 235 1 008 1 -1.171e-2 1 324.162 1 NC 1 601 16 max .006 3 .067 3 0 15 2.73e-3 3 NC 15 NC 1 602 min 003 2 116 1 011 1 -6.249e-3 1 456.372 1 NC 1 603 17 max .006 3 .004 3 0 15 -3.954e-6 3 NC 5 NC 1 604 min 003 2 006 2 012 1 -7.907e-4 1 736.299 1 NC 1 605 18 max .006 3			14												
600 min 003 2 235 1 008 1 -1.171e-2 1 324.162 1 NC 1 601 16 max .006 3 .067 3 0 15 2.73e-3 3 NC 15 NC 1 602 min 003 2 116 1 011 1 -6.249e-3 1 456.372 1 NC 1 603 17 max .006 3 .004 3 0 15 -3.954e-6 3 NC 5 NC 1 604 min 003 2 006 2 012 1 -7.907e-4 1 736.299 1 NC 1 605 18 max .006 3 .091 1 0 15 3.007e-3 3 NC 5 NC 1 606 min 003 2 053			4.5							_					•
601 16 max .006 3 .067 3 0 15 2.73e-3 3 NC 15 NC 1 602 min 003 2 116 1 011 1 -6.249e-3 1 456.372 1 NC 1 603 17 max .006 3 .004 3 0 15 -3.954e-6 3 NC 5 NC 1 604 min 003 2 006 2 012 1 -7.907e-4 1 736.299 1 NC 1 605 18 max .006 3 .091 1 0 15 3.007e-3 3 NC 5 NC 1 606 min 003 2 053 3 009 1 -8.895e-3 2 1549.454 1 NC 1 607 19 max .006 3			15												
602 min 003 2 116 1 011 1 -6.249e-3 1 456.372 1 NC 1 603 17 max .006 3 .004 3 0 15 -3.954e-6 3 NC 5 NC 1 604 min 003 2 006 2 012 1 -7.907e-4 1 736.299 1 NC 1 605 18 max .006 3 .091 1 0 15 3.007e-3 3 NC 5 NC 1 606 min 003 2 053 3 009 1 -8.895e-3 2 1549.454 1 NC 1 607 19 max .006 3 .177 1 .001 1 6.121e-3 3 NC 1 NC 1															
603 17 max .006 3 .004 3 0 15 -3.954e-6 3 NC 5 NC 1 604 min 003 2 006 2 012 1 -7.907e-4 1 736.299 1 NC 1 605 18 max .006 3 .091 1 0 15 3.007e-3 3 NC 5 NC 1 606 min 003 2 053 3 009 1 -8.895e-3 2 1549.454 1 NC 1 607 19 max .006 3 .177 1 .001 1 6.121e-3 3 NC 1 NC 1			16												
604 min 003 2 006 2 012 1 -7.907e-4 1 736.299 1 NC 1 605 18 max .006 3 .091 1 0 15 3.007e-3 3 NC 5 NC 1 606 min 003 2 053 3 009 1 -8.895e-3 2 1549.454 1 NC 1 607 19 max .006 3 .177 1 .001 1 6.121e-3 3 NC 1 NC 1															
605 18 max .006 3 .091 1 0 15 3.007e-3 3 NC 5 NC 1 606 min 003 2 053 3 009 1 -8.895e-3 2 1549.454 1 NC 1 607 19 max .006 3 .177 1 .001 1 6.121e-3 3 NC 1 NC 1			17							15		3			1
606 min 003 2 053 3 009 1 -8.895e-3 2 1549.454 1 NC 1 607 19 max .006 3 .177 1 .001 1 6.121e-3 3 NC 1 NC 1				min				2	012	1		1			1
606 min 003 2 053 3 009 1 -8.895e-3 2 1549.454 1 NC 1 607 19 max .006 3 .177 1 .001 1 6.121e-3 3 NC 1 NC 1	605		18	max	.006		.091	1	0	15	3.007e-3	3	NC 5	NC	1
607 19 max .006 3 .177 1 .001 1 6.121e-3 3 NC 1 NC 1	606				003		053	3	009	1		2	1549.454 1	NC	1
			19						.001	1				NC	_1
										15		2			

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{ m ed,Na}$ $\Psi_{ m p,Na}$

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5}$ (Eq. D-24)									
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)					
4.00	0.50	1.00	2500	7.87					

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	/c/ / (v co) 1 eu, v 1 c, i	V 1 11, V V by (OCO. D	.+. 1, D.O.Z. 1(0)	α Lq. D Z 1)			
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			_

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

k c	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_i)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	$_{d,N} arPsi_{c,N} arPsi_{cp,N} \mathcal{N}_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (Ib)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f short-term	K_{sat}	$\tau_{k,cr}$ (psi)	
1035	1.00	1.00	1035	
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \Psi_{ed,Na} \Psi_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N_{a0} \text{ (Sec. D.4.1 \& Eq. D-16b)}$

A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{ec,Na}$	$arPsi_{ ho, Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 21-31 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av\infty$ (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.