1 Problem 3

Let slack $S_{j,k}$ be the difference

$$S_{j,k} = L - \left[\sum_{i=j}^{k-1} (c_i + 1) \right] + c_k \tag{1}$$

where if $S_{j,k} < 0$, $S_{j,k} = \text{Integer.MAX_VALUE}$.

1.1 Algorithm

Segmented-slack(n)

- 1. Array M[0...n]
- 2. Set M[0] = 0
- 3. For all pairs $i \leq j$
 - \bullet Compute the slack $S_{i,j}$ for the line of words $w_i,...,w_j$
- 4. Endfor
- 5. For j = 1, ..., n
 - Use the recurrence relation to compute M[j]
- 6. Endfor
- 7. Return M[n]

Find-lines(j)

- 1. If j = 0 then return
- 2. Else
 - Find an i that minimizes $S_{i,j}^2 + M[i-1]$
 - Output the line $w_i, ..., w_j$ and the result of Find-lines(i-1)
- 3. Endif

Recurrence Relation For the subproblem on the words $w_i, ..., w_j$,

$$OPT(j) = min_{1 \le i \le j} (S_{i,j}^2 + OPT(i-1)),$$

and the line $w_i, ..., w_j$ is used in an optimum partitioning for the subproblem if and only if the minimum is obtained using index i.

1.2 Runtime

To compute all the values of the slacks $S_{i,j}$, there are $O(n^2)$ pairs (i,j) for which this computation is needed. For each pair (i,j), we can use equation (1) to compute $S_{i,j}$ in O(1) time. Thus, the total running time to compute all $S_{i,j}$ values is $O(n^2)$. Iterating through array M to find the optimal sequence of partitions to get value M[n] takes O(n) time. Thus, the total running time to compute the partitions is bounded by $O(n^2)$.

1.3 Correctness

Lemma 1. Segmented-slack(j) writes OPT(j) into the array entry M[j]

Proof of Lemma 1. By definition OPT(0) = 0. Now, for some j > 0, assume that Segmented-slack(i) correctly computes OPT(i) for all i < j. By the induction hypothesis,

Segmented-slack
$$(j) = min_{1 \leq i \leq j}(S_{i,j}^2 + \text{Segmented-slack}k(i-1))$$

= $min_{1 \leq i \leq j}(S_{i,j}^2 + OPT(i-1))$
= $OPT(j)$.

Hence, we have proved Lemma 1 as needed.