Introduction to Data Science CSC59970 | CCNY Professor Grant M. Long

Final Project
Initial Submission

Abdur Rafey Dzhonibek Parmankulov Hasibul Islam

(i) Expected Performance of the Model

To attain a formidable mean squared error for the rents of New York City apartments posted on StreetEasy, we intended to use a couple of models to initialize our tests. The first model we thought of using was Linear Regression.

Mean Squared Error for **Test1** using <u>Linear Regression</u>: 3313817.143868871

The feature columns that we used to test this method were:

```
feature_cols = ['bedrooms', 'year_built', 'bathrooms', 'min_to_subway', 'size_sqft', 'no_fee', 'has_doorman', 'Addr_zip', 'floor_count', 'has_gym', 'allows pets',]
```

We decided to eliminate the following features as they were beginning to increase the overall mean squared error:

```
['has_elevator', 'has_dishwasher', 'is_furnished', 'has_garage', 'has_pool', 'has_garden']
```

Although this method provided an acceptable error, it was still not efficient enough as we want to deviate as far left of the 4.0 mark as we can. Next, we tried using the Random Forest Regressor and we obtained the following results:

Mean Squared Error for **Test1** using <u>Random Forest Regressor</u>: 1851745.5923584981

Thus, we were able to attain a much better result using the random forest method. This could be due to the large number of features that we taking into account. Generally, Linear Regression models can be useful for smaller ranges of continuous data. In this case, however, even though we are taking into account only one city, we have many features to handle, including numerous binary variables such as 'has_doorman' and 'has_elevator'. Thus, as we move from one borough to another, more data is fed in and a random forest can handle messier data more efficiently than the regression model. Another hidden factor that could

be playing a role in this could be the fact that Linear Regressions require normalization to avoid overfitting, whereas Random Forest has this built-in.

(ii) Intended Strategy to improve the predictions

For the final submission, we intend to improve our results by using more models for predicting larger datasets because we intend to add some additional data and functions. We are planning to include popular restaurant spots or grocery shopping locations and see if those variables can be used to predict a higher or lower rent for each location. One of the algorithms we intend to feed our data to is the k-nearest neighbors algorithm. However, since this algorithm can use both classification data and continuous data for regressions, we may fit the variables or separate them in such a way so that we run a separate compilation for classification variables and leave the continuous variables for a regression format of this algorithm. As we use this algorithm against test 3, we will be looking to see how the continuous variables are being predicted compared to our Linear Regression results. In this manner, we can fairly compare each variable with its equal counterpart and see how the classification, binary variables affect the total rental prediction output and the mean squared error with each test run. Afterwards, we will follow the same sequence of steps as our run against test 2 and generate tables and plots of our concluding results.

Graphs for training data:

Graphs for test 2 data:

OLS Regression Results for Test2 Data:

OLS Regression Results									
Dep. Variable:		rent	R-squared:			0.898			
Model: Method: Le		OLS	Adj. R-squared:		0.897				
		ast Squares			1588.				
Date:	Wed,	20 Nov 2019	Prob (F-statistic): Log-Likelihood:		0.00 -17318.				
Time:		17:42:28							
No. Observations:		2000	AIC:		3.466e+04				
Df Residuals:		1989	BIC:		3.472e+04				
Df Model:		11							
Covariance Typ	e:	nonrobust							
	coef	std err	t	P> t	[0.025	0.975]			
bedrooms	199.7667	37,691	5.300	0.000	125.850	273,684			
year built	2.4586	0.233	10.531	0.000	2.001	2.916			
bathrooms	1771.4711	82.298	21.525	0.000	1610.072	1932.878			
min to subway	0.0149	0.010	1.517	0.129	-0.004	0.034			
size sqft	2.2056	0.085	25.983	0.000	2.039	2.372			
no fee	-270.4860	69.230	-3.907	0.000	-406.257	-134.715			
has doorman	385.0043	112.572	3.420	0.001	164.233	605.776			
addr zip	-0.5609	0.041	-13.525	0.000	-0.642	-0.480			
floor count	21.5113	3.794	5.669	0.000	14.070	28.953			
has gym	482.2676	111.959	4.308	0.000	262.697	701.838			
allows_pets	186.3280	68.165	2.733	0.006	52.645	320.011			
Omnibus:	ibus: 1397.915				2.089				
Prob(Omnibus):		0.000			46484.783				
Skew:		2.845	Prob(JB):			0.00			
Kurtosis:		25.922	Cond. No.		4.79e+04				
						======			

OLS Regression Results for Training Data:

		OLS Regres	sion Result:	5			
Dep. Variable:	rent		R-squared:		0.836		
Model:	OLS		Adj. R-squared:		0.836		
Method: Least Square			F-statist		6487.		
		20 Nov 2019	Prob (F-statistic):		0.00		
Time:		17:42:28	Log-Likelihood:		-1.2528e+05		
No. Observations:		14000	AIC:		2.506e+05		
Df Residuals:		13989	BIC:		2.507e+05		
Df Model:		11					
Covariance Typ	e:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975	
bedrooms	145.6283	19.185	7.591	0.000	108.024	183.23	
year built	1.4243	0.091	15.662	0.000	1.246	1.60	
bathrooms	1622.6973	36.597	44.340	0.000	1550.963	1694.433	
min_to_subway	-0.0023	0.006	-0.355	0.722	-0.015	0.010	
size_sqft	2.4718	0.040	61.379	0.000	2.393	2.55	
no fee	-232.1212	34.133	-6.801	0.000	-299.026	-165.21	
has doorman	569.6259	53.495	10.648	0.000	464.768	674.48	
addr_zip	-0.3815	0.016	-23.427	0.000	-0.413	-0.35	
floor_count	18.6267	1.911	9.749	0.000	14.882	22.37	
has_gym	498.2204	51.740	9.629	0.000	396.802	599.63	
allows_pets	297.7480	34.079	8.737	0.000	230.950	364.54	
Omnibus:		13693.453	Durbin-Watson:		2.023		
Prob(Omnibus):		0.000	Jarque-Bera (JB):		3379523.106		
Skew:		4.200	Prob(JB): 0.00				
Kurtosis:		78.650	Cond. No.		4.32e+04		