一. 计算题 (每小题 10 分, 共 60 分)。

- 1. 进制转换: (1) 将二进制(10100101)2分别转换为十进制和十六进制:
 - (2) 将十进制(153)10分别转换为二进制和十六进制

$$(10100101)_2 = (165)_{10} = (A5)_{16}$$

 $(153)_{10} = (10011001)_2 = (99)_{16}$

2.2018年6月27日是星期三,何过2²⁰¹⁸⁰⁶²⁸天后是星期几?

星期
$$7$$
天一周期; $2^{20180628}\pmod{7}=1$ 所以,是星期四

3. 求群
$$(Z/23Z)^* = \{1, 2, \cdots, 22\}$$
的所有生成元。

(Z/23Z*)是模 23的简化剩余系,对于乘法 $\otimes: a\otimes b=a\cdot b\pmod{23}$ 构成群 而 23是素数,所以 $\varphi(23)=22$,而根据的原根 g性质, $\{g^0,g,\dots g^{\varphi(23)-1}\}$ 构成模 23的简化剩余系 查原根表得到模 23的原根有 g=5,因此5是一个生成元,由于群阶 22,所以(Z/23Z*)有 $\varphi(22)=10$ 个生成元. 生成元形如 g^j , $(j,22)=\frac{22}{22}=1$,j=1,3,5,7,9,13,15,17,19,21 所以生成元是 $g^j\pmod{23}=5$,100、100 100

4. 求解同余式组 $\begin{cases} x \equiv 2 \pmod{9} \\ 3x \equiv 4 \pmod{5} \\ 4x \equiv 3 \pmod{7} \end{cases}$

注意到9,5,7两两互素,但是方程左边不相同.

 $3x \equiv 4 \pmod{5}$, $\operatorname{\mathbb{R}} x \equiv 3 \pmod{5}$

 $4x \equiv 3 \pmod{7}$, $\mathbb{R} \oplus x \equiv 6 \pmod{7}$

因此原方程组化为:

$$\begin{cases} x \equiv 2 \pmod{9} \\ x \equiv 3 \pmod{5} \\ x \equiv 6 \pmod{7} \end{cases}$$

由9,5,7两两互素,可运用中国剩余定理;

$$M_1 = 35, M_1' = 8,$$

$$M_2 = 63, M_2' = 2,$$

$$M_3 = 45, M_3' = 5;$$

 $m = m_1 m_2 m_3 = 315$

原方程组的解就是 $x\equiv 2\cdot 35\cdot 8+3\cdot 63\cdot 2+6\cdot 45\cdot 5=2288\pmod{315}$

 $x \equiv 83 \pmod{315}$