

UNISOC Android 9.0 Camera AE Tuning Guide

修改历史

版本号	日期	注释
V1.0	2020/05/08	初稿

文档信息

适用产品信息	适用版本信息	关键字
SC9863A/SC7731E/SC9832E/UMS312/ UDS710_UDX710	Android 9.0	AE

- 1 原理介绍
- 2 参数介绍
- 3 调试流程
- 4 功能确认
- 5 调试案例
- 6 附: param list

AE(Auto Exposure)模块,可以根据不同的亮度环境,配置不同的 target lum值 ,达到适度的图像预期亮度。

参数介绍

AE Target 计算可分三种情况

- Touch AE
- 有人脸Global AE: Face AE && Face_id_unlock
- 无人脸Global AE

Final AE target = AE base target + AE offset AE offset计算流程如右图

AE主要有UI界面和ISP界面参数:

- 1. AE table 表生成和导入导出
- NORMAL AE0
- NORMAL AE1
- SCENE AE0
- SCENE AE1
- PARAM EXPORT/IMPORT
- AE CHART
- 2. AE weight
- 3. TOUCH AE
- 4. FACE AE
- 5. AE CONFIG
- 6. ISP界面 AE list参数

BLOCK ISP EXIF
NAME
⊡ @ common Parameter
─ □ version_id
−∭ param_modify_time
+ in BYPASS
+ in SMART
+ in BLC
+ 🚞 RGBGAIN
+ 🛅 LSC_2D
+ in CMC10
+ 🚞 RGB_GAM
+ in HSV
+ a CCE
± i BCHS
+ in HIST
+ i Y_GAMMA
+ a ALSC
+ a AFT_V1
+ a AE
+ in AWB
+ a AF
+ in ENVI_DETECT

NORMAL AE 0

Line time: preview状态下sensor曝光一行所占用的时间(在 driver的sensor.h中查询如下图)

```
/*line time unit: 1ns*/
#define VIDEO_LINE_TIME 6098
#define PREVIEW_LINE_TIME 11671
#define SNAPSHOT_LINE_TIME 11671
```

Min line:preview状态下sensor 支持的最小曝光行(在driver的 sensor.h中查询如下图)

```
/* please ret your spec */
#define FRAME_OFFSET 18
#define SENSOR_MAX_GAIN 0xF0
#define SENSOR_BASE_GAIN_0x20
#define SENSOR_MIN_SHUTTER 8
```

Max gain:AE table使用的最大gain

Max shutter 50Hz:50hz 下所支持的最大曝光时间。它会影响最小帧率。max shutter = n*0.01s

Max shutter 60Hz:60hz下所支持的最大曝光时间。它会影响最小帧率。max shutter = n*0.008333333s。

Target Lum: AE的目标亮度(未加权重)

参数介绍-NORMAL AE1

NORMAL AE1

AE mode:选择填入50Hz/60Hz模式参数

Line time: sensor曝光一行所占用的时间(在driver的sensor.h中查

询)

Min line:sensor 支持的最小曝光行(在driver的sensor.h中查询)

outdoor gain:决定AE table使用的最小gain

start gain:设置进入相机时使用的起始gain

Target Lum: AE的目标亮度

ISO:可指定选择iso档(ISO auto /100 /200 /400 /800 /1600)

- •填入exp time及Max Gain注意规则:
- •Exp time_N * Max gain_N > = Exp time_{N+1}, 例: 6*25>7
- •Exp time_{N+1} * Max gain_{N+1} > Exp time_N * Max gain_N 例:7*56>6*25

参数介绍-Scene AE

Scene AE

作用:可设定不同场景的AE曝光表

Enable: scene模式开关

scene mode: 分别建立NIGHT, SPORT, PORTRAIT, LANDSCAPE,

FACEID,USER1, USER2, USER3等八种场景(其中USER1固定video-eis使用)

Weight mode:选择测光权重

Target Lum: AE的目标亮度

Ev offset:使用的ev_table的档位(3为offset=0)

Max fps:支持最大帧率

Min fps:支持最小帧率

ISO:可指定选择iso档(ISO auto /100 /200 /400 /800 /1600)

Target zone in&& Target zone out: AE稳定区间判定值, 亮度环境从变化到稳定, AE误差在target_zone_in区间内判断AE稳定, 亮度环境从稳定到变化时, AE误差在target_zone_out区间外判断AE不稳定。

(暂未使用)

参数介绍-PARAM EXPORT/IMPORT

• PARAM EXPORT/IMPORT :

此模块导出导入AE 表。可以将现有的50/60Hz 下各iso的AE表,或者各个场景的AE表,通过Export导出,也可以将在外部修改过的AE表,通过Import导入。

index	exp(hex)	dummy(hex	again(hex	start_ind	max_index	exp	dummy	again/128
0	0000A0F0	00000000	0080	179	378	41200	0	1
1	0000A0F0	00000000	0084			41200	0	1.03125
2	0000A0F0	00000000	0088			41200	0	1.0625
3	0000A0F0	00000000	008C			41200	0	1.09375
4	0000A0F0	00000000	0090			41200	0	1.125
5	0000A0F0	00000000	0095			41200	0	1.164063
6	0000A0F0	00000000	0099			41200	0	1.195313
7	0000A0F0	00000000	009E			41200	0	1.234375

参数介绍-AE CHART

AE CHART

AE CHART:可直观显示各AE mode、ISO及Scene下AE

table中Exp和gain的配比关系

图表示随着曝光时间的增加,Gain的变化趋势。

表示AE table中随着index的增加,Exp*gain二者乘积的变化。

参数介绍-AE weight

• AE weight :

在Weight tab中可以修改不同测光模式下的权重表,测试模

式可分为:

avg: 平均测光

center: 中心测光

spot: 点测光

Custom:客户自定义

其中权重表是一个32*32的表格,对应图像中的区域。为了方便修改可以将数据copy到excel表中修改。

参数介绍-TOUCH AE

TOUCH AE

作用:参数控制touch框的大小、框内的亮度权重。

Win1_weight: 对应整个图像的亮度权重,这个值越大得到的lum 越靠近

整个图像的base lum

Win2_weight: touch 区域的亮度权重,这个值越大touch ROI 的权重越

大, touch亮度变化越明显

建议范围: win1_weight/ win2_weight 为4:3

Touch_zone_width: Touch window 的宽

Touch_zone_height: Touch window 的高

建议范围: [image width/16, image width/8]

Face AE

作用:根据不同bv设置不同的face target

(SC9863A平台与SC9832E&SC7731E平台设置参数位置不同,

SC9863A请如图填入参数)

LV::分段使用bv值

Face_Target:根据bv分段设置的Face目标亮度。

Up_Offset:设置可以增加的门限值,各bv之间分段进行插值获取。

Down_Offset: 设置可以减少的门限值,各bv之间分段进行插值获取。

Ratio_Block:多人脸时计算的权重,值越大侧重与人脸大小的方式调整,与Ratio_Pos成对调整(Ratio_Block + Ratio_Pos = 100)。

Ratio_Pos: 多人脸时计算的权重,值越大侧重与人脸位置的方式调整,与Ratio_Block成对调整(Ratio_Block + Ratio_Pos = 100。

MaxWRatio:画面中多人脸大小相近情况下过亮抑制权重,值越大多人脸场景中会根据最亮人脸的抑制能力越强。

Face AE

作用:根据不同bv设置不同的face target

(SC9832E&SC7731E平台请在isp-->AE-->face_param中配置

分段参数)

Cfg[x].x_idx:分段使用bv值

Cfg[x].y_idx (Face_Target):根据bv分段设置的Face目标亮度。

Cfg[x].up_limit (Up_Offset):设置可以增加的门限值,各bv之间分段进行插值获取。

Cfg[x].down_limit (Down_Offset): 设置可以减少的门限值,各bv之间分段进行插值获取。

Cfg[x].ratio_block (Ratio_Block):多人脸时计算的权重,值越大侧重与人脸大小的方式调整,与Ratio_Pos成对调整(Ratio_Block + Ratio_Pos = 100)。

Cfg[x].ratio_position (Ratio_Pos): 多人脸时计算的权重,值越大侧重与人脸位置的方式调整,与Ratio_Block成对调整(Ratio_Block + Ratio_Pos = 100。

Cfg[x].max_with_ratio (MaxWRatio):画面中多人脸大小相近情况下过亮抑制权重,值越大多人脸场景中会根据最亮人脸的抑制能力越强。

a face_param		
− <u>≡</u> face_ae_enable	0x01	1
– <u>≡</u> face_target	0x3C	60
- ☐ face_tuning_lum1	0x1E	30
- <u>□</u> face_tuning_lum2	0x28	40
– cur_offset_weight	0x14	20
– <u>□</u> up_face_offset	0x26	38
- ■ down_face_offset	0x00	0
−≣ ratio_block	0x00	0
− <u>≡</u> ratio_postion	0x00	0
─ <u></u> max_with_ratio	0x00	0
num	0x08	8
−∭ cfg[0].x_idx	0x64	100
−∭ cfg[0].y_lum	0x23	35
−∭ cfg[0].up_limit	0x1E	30
−∭ cfg[0].down_limit	0x3C	60
− cfg[0].ratio_block	0x5A	90
−∭ cfg[0].ratio_position	0x0A	10
−∭ cfg[0].max_with_ratio	0x32	50
cfg[1].x_idx	0xC8	200

Face AE

Face_param_adv参数:修改人脸亮度稳定速度

Face_param_adv参数调整:(一般情况下使用默认参数)

trigger_sensitivity1: face ae trigger时的亮度区间,数值越大越易trigger。

trigger_sensitivity2: check face ae trigger亮度区间帧数,数值越小越易trigger。

trigger_sensitivity3:固定值不修改

trigger_sensitivity4: trigger稳定后再次face ae计算周期。

face_frame_thrd:人脸消失后维持face ae状态的帧数。

smooth_weight: Face ae offset收敛过程中平滑参数权重值,

[0]表示当前帧权重、[1]表示前一帧权重,依次类推。

= face_param_adv		
−≝ trigger_sensitivity1	0x28	40
−≝ trigger_sensitivity2	0x03	3
−∭ trigger_sensitivity3	0x01	1
−∭ trigger_sensitivity4	0x01	1
–l≝l face frame thrd	0x14	20
smooth_weight		
− ■ [0]	0x1E	30
- ■ [1]	0x1E	30
- ■ [2]	0x14	20
− ≝ [3]	0x0A	10
<u>□</u> [4]	0x0A	10

Face AE

参数作用: 逆光场景,在Face AE的基础上,再次提亮人脸,根据

不同的逆光偏移offset,输出不同的ae target

- <u>□</u> abl_face_offset	0x32	50
abl_offset_thrd	0x64	100

abl_face_offset: 逆光偏移offset

abl_offset_thrd:逆光门限值,通过线性计算出offset。

(如图1)

使用此参数,ABL必 须打开

Face AE

参数作用:增强人脸识别度,改善人脸稍微偏转未识别的问题。通过中心人脸和全局人脸设置不同的权重,提高人脸的识别度。

face_roi_ratio:设置中心人脸识别框大小,图1中人脸红框

face_weight1:中心人脸权重。图1中人脸红框

face_weight2:全局人脸权重,图1中人脸黄框。

small_weight_thrd:红框中人脸权重的门限值。(人脸占block

的数量)

small_weight_raise:红框中人脸权重提升值。(权重加值,直接叠加到face_weight1)

红框人脸权重是weight1加上图2曲线计算出的weight raise 黄框人脸权重是weight2

⊢ <u>≡</u> abl_face_offset	0x32	50
⊣≝ abl_offset_thrd	0x64	100
− <u>≡</u> face_roi_ratio	0x19	25
-∭ face_weight1	0x03	3
− <u>≡</u> face_weight2	0x01	1
─ <u></u> small_weight_thrd	0x1E	30
─ <u></u> small_weight_raise	0x00	0
−∭ offset_ratio_thrd	0x04	4
offset_ratio_value	0x32	50

Face AE

参数作用:适用照片中人脸较小时亮度控制

offset_ratio_thrd:判断人脸占block数量门限值,

小于此值会增加线性offset,大于此值100%输出。

offset_ratio_value:判断远处小人脸时调整偏移百分比,

保证图像中人脸的亮度(图1为偏移权重值)

⊢ <u>≡</u> abl_face_offset	0x32	50
– <u>≡</u> abl_offset_thrd	0x64	100
− <u>□</u> face_roi_ratio	0x19	25
−∭ face_weight1	0x03	3
− <u>≡</u> face_weight2	0x01	1
− <u>≡</u> small_weight_thrd	0x1E	30
− <u>□</u> small_weight_raise	0x00	0
− offset_ratio_thrd	0x04	4
offset_ratio_value	0x32	50

参数介绍-Face id unlock

Face id unlock

参数作用:可单独设置人脸解锁状态下的目标亮度

u4fdunlock_enable: 人脸解锁调试参数的使能开关

u4fdunlock_face_target:人脸解锁时的人脸目标亮度

u4fdunlock_face_weight1:人脸解锁时的中心人脸区域权重

u4fdunlock_face_weight2:人脸解锁时的全局人脸区域权重

u4fdunlock_face_roi_ratio:人脸解锁时的中心人脸区域百分比

u4fdunlock_unlinear_cancel:人脸解锁时背景亮度是否参与face ae计算

u4fdunlock_up_limit:人脸解锁时的目标偏移的上限值

u4fdunlock_down_limit:人脸解锁时的目标偏移的下限制

注:预览进入face id unlock需先输入以下命令 adb shell setprop persist.vendor.isp.ae.set.test_faceid on

关闭预览功能命令:adb shell setprop persist.vendor.isp.ae.set.test_faceid (除on以外任何值)

参数介绍-Face AE--debug

Face AE--debug

调试时需注意参数中的up/down门限值与 offset对比, 当调试增加face_target无法变亮时,请查看是否被门限值限制。

参数介绍-Mulaes

Mulaes:根据不同bv设置不同的Tlum。

如右图1所示各bv填入期望的T Lum, 两个bv之间T Lum通过插值产生(如图2)。

参数介绍-Mulaes-debug

查看信息可以得出最终lum: Final_target_lum= target_lum_ori+target_offset

参数介绍-Region

Region:检测画面过曝与欠曝区域,调整各区块target,减轻曝光不合理区块的曝光或欠曝问题。

将图片分成五个统计区域(图1),分别为上、下、左、右和中心, 计算区域亮度差(CU)、(CD)、(CL)、(CR)、(UD) (LR),将各亮度差与设定的阈值作比较,计算出最终的亮度补偿值。

SampNum:选择填入的分段数

UpRatio:补偿亮度增加的权重(256为1倍)

DnRatio:补偿亮度减少的权重(256为1倍)

LV:分段bv,两个bv之间weight通过插值产生

Index: region的分档数(如图2, index对应)

参数介绍-Region

up/down_max_offset: 设置提高/降低亮度的上下限值 当前场景亮度Threshold Min
brightness difference<Threshold Max, 不调整 Weight之间必须满足以下条件 weight_{UP}=weight_{DOWN}, weight_{LEFT}=weight_{RIGHT}, weight_{UD}=weight_{LR}

Region 关闭

Region 打开

参数介绍-Region--debug

≡ cur_lum	0x39	57	
🖺 target_lum	0x3A	58	Current torget luminon
target_zone	0x02	2	Current target luminand
🖺 target_lum_ori	0x40	64	Original target luminan
≝ target_zone_ori	0x02	2	Original target furnitian
<u>≡</u> max_index	0x0166	358	

可以从exif中分析到Current target luminance = Original target luminance + Final target offset 例:58 = 64 - 6

Flat:针对某些平坦场景,增加照片亮度

LV:两个LV level 之间的ratio权重插值产生

Ratio: 填写256 表示输出 100% offset

Index:可选择flat的档位参数

Flatness=degree*4 (degree从exif中获取)

当Flatness < Threshold Low, 画面不调整

当Flatness>Threshold Up, Flat offset = Offset Up

Threshold Low<Flatness< Threshold Up, Flat offset = Offset Up offset

与 Offset Low offset插值

参数介绍-Flat--debug

				i i i i i i i i i i i i i i i i i i i			
				− <u>≡</u> enable	0x01	1	
–∭ cur_lum	0x41	65		-∭ debug_level	0x00	0	
_≝ target_lum	0x41 0x43	67	Luminance of current image	-∭ down_scale	0x08	8	
target_zone	0x43 0x02	2	Current target luminance	real_target	0x40	64	
_≝ target_lum_ori	0x40	64		− <u>□</u> match_lv	0x02EA	746	
target_tunn_on	0x40 0x02	2	Original target luminance	– <u>≡</u> tar_offset	0x03	3	
max_index	0x0166	358		-∭ degree	0xBB	187	
- max_muex	0,0100	330		_ = L strongth	0.0100	256	

BLOCK ISP

EXIF

NAME ⊢ 🦰 flat → Flat switch, 1:enable, 0: disable Current target luminance Current environment brightness → Final target offset → Flatness= degree *4 -<u>|≝</u>|strength ± input_interpolation

HEX

可以从exif中分析到Current target luminance = Original target luminance + Final target offset 例:67 = 64 + 3

参数介绍-ABL

ABL

ABL:是自动检测背光,并进行AE矫正和gamma矫正的算法。

ABL模块调试详细请参考Camera ABL Tuning Guide

· AE参数及AEM(ae exposure monitor)设置

算法版本信息,alg_id意义表示版本号

target_lum:同参数设置的target值

iso_special_mode: 0:固定iso(常规模式); 1: iso auto mode(特殊模式)。

Min_line:sensor的最小曝光行

Start_index:start index。只在烧录版本后,第一次进入相机时才生效

enter_skip_num:进入相机时,AE跳帧设置

win_num_w&win_num_h: AEM区域block划分(请按右图size规则配置,只配置common中参数)

SC9832E及SC7731E只配置为32x32

BLOCK ISP EXIF		
NAME	HEX DE	С
= ⊕ AE		
∨ersion	0x01	1
- <u>≡</u> alg_id	0x02	2
- <u>□</u> target_lum	0x40	64
- <u>□</u> target_lum_zone	0x02	2
→ □ convergence_speed	0x20	32
− iso_special_mode	0x00	0
−∭ flicker_index	0x00	0
ー <u>III</u> min_line	0x04	4
- <u>■</u> start_index	0xD2	210
enter_skip_num	0x01	1

□ 🏝 AEM		
─ <u></u> win_num_w	0x40	64
win_num_h	0x40	64

Sensor size	Default
720P	32x32
1080P	32x32
2M	32x32
5M	32x32
8M	64x64
12M	64x64
13M	64x64
16M	64x64
32M	128x128

· Sensor基础参数

Lv_cali:用于定标sensor基准LV/bv值

ev_table:相机选择手动模式(如图1)进入手机默认第0档, items[0].lum_diff=-3档、items[1].lum_diff=-2档以此类推。 target_lum(最终)=target_lum+items[x].lum_diff

BLOCK ISP EXIF		
NAME	HEX	DEC
□ AE		
lv_cali		
–∭ lux_value	0x0244	580
bv_value	0x0970	2416
ev_table		
− <u>□</u> items[0].lum_diff	0xFFCE	-50
−∭ items[0].stab	0x02	2
−∭ items[0].stab	0x04	4
− items[1].lum_diff	0xFFDD	-35
−∭ items[1].stab	0x00	0
−∭ items[1].stab	0x00	0
− items[2].lum_diff	0xFFED	-19
−∭ items[2].stab	0x00	0
− items[2].stab	0x00	0
− items[3].lum_diff	0x00	0
− items[3].stab	0x02	2
− items[3].stab	0x04	4
− items[4].lum_diff	0x2A	42
− items[4].stab	0x00	0
− items[4].stab	0x00	0
form to the later	0 50	nn)

· Sensor基础参数

dc_fps:控制preview模式帧率(若全设置0,默认值min=20、max=30)暂时无法使用

Dv_fps:控制video模式帧率(若全设置0,默认值min=20、max=30) 暂时无法使用

sensor_cfg:

max_gain:sensor最大支持gain*128

min_gain:sensor的base gain

gain_precision:gain精度, isp_base_gain/sensor_base_gain

exp_skip_num和gain_skip_num:1表示的隔一帧生效;0表示下一帧

帧生效,要严格按照sensor spec来配置;

(请使用此命令测试sensor exp和gain生效: adb shell setprop persist.vendor.isp.ae.exp_gain "2 10000 128 5000 256",画面无闪烁表明正常,若画面出现ae闪烁,请询问sensor厂商sensor生效机制isp_gain_skip_num:使用默认值0即可

stable_zone_ev:AE稳定区间判定值,亮度环境从变化到稳定时,AE误差在stable_zone_ev区间内判断为稳定。

☐∰ dc_fps		
− ≡ min	0x14	20
_ <u>≡</u> max	0x1E	30
□ 🔄 dv_fps		
− <u>≡</u> min	0x14	20
□ max	0x1E	30
sensor_cfg		
-∭ may gain	0v07FF	2047

🖃 🚉 sensor_cfg		
− ≡ max_gain	0x07FF	2047
⊢ ≣ min_gain	0x80	128
− ≡ isp_gain_skip_num	0x00	0
− ■ gain_precision	0x01	1
− ≡ exp_skip_num	0x01	1
gain_skip_num	0x01	1

= stable_zone_ev			
– ≡ [0]	0x02	2	
− ■ [1]	0x02	2	
- ■ [2]	0x02	2	
− ■ [3]	0x02	2	
- ≝ [4]	0x02	2	
−≡ [5]	0x02	2	
		_	

• 阈值控制参数

ctrl_3dnr: auto_3dnr开启的上下阈值(bv值)。

BV大于thrd_up,不开启。

BV小于thrd down,开启

BV在两者之间,过渡区域。

auto_video_fps:控制video帧率生效的阈值(bv值)。

BV大于thrd_up,使用高帧率;

BV小于thrd down,使用低帧率;

BV在两者之间,使用浮动帧率。

ctrl_4in1:4in1模式开启的上下阈值(bv值)。

BLOCK ISP EXIF HEX DEC NAME Ė⊜ AE ctrl_3dnr -∭ thrd_up 0x01F4 500 thrd_down 0x01EA 490 auto_video_fps -∭ thrd_up 0x0190 400 thrd_down 0x64 100 ctrl_4in1 thrd_up 0x01F4 500 -∭ thrd_down 490 0x01EA + in touch_param + in face_param + mulaes_param 🛨 🧰 region_param + 🧰 flat param 🛨 🧰 ai_param 🛨 🧰 abl_param 🛨 🧰 hdr_param + in flash_swith_param + in flash_control_param

请参考各模块调试文档

AE_SYNC

作用:双摄模组使用,用来保证双摄的AE能同步的参数。

mode: 0: OTP mode;1:dynamic mode(固定设置为1)

y_ratio_chg_thr: slave 与 master之间的亮度差异 -> change的

门限,越小越灵敏

y_ratio_chg_cnt: slave 与 master之间的亮度启动帧率计数 ->

change的统计帧数,越小越触发

y_ratio_stb_thr: ae亮度稳定阈值 -> stable的门限, 越大越稳定

y_ratio_stb_cnt: ae亮度稳定计数器-> stable的统计帧数,越大

越易稳定

adpt_speed: AE sync收敛速速。越大收敛越快,但容易产生振

|荡;越小收敛越慢。

soft_frm_sync:软件同步开关,如硬件同步,则设置0

adj_ratio:不使用

adj_thrd:不使用

BLOCK ISP EXIF	: 	
NAME	HEX	DEC
Ē ♠ AE		
□ 🔄 AE_SYNC		
– <u>≡</u> mode	0x01	1
y_ratio_chg_thr	0x07	7
-∭ y_ratio_chg_cnt	0x0A	10
− <u>□</u> y_ratio_stb_thr	0x05	5
- <u>□</u> y_ratio_stb_cnt	0x0F	15
- <u>□</u> adpt_speed	0x05	5
- <u>□</u> soft_frm_sync	0x00	0
- <u>≡</u> adj_ratio	0x00	0
<u>adj_thrd</u>	0x00	0

AE_ADAPT_SETTING

当预览采用binning方式与camera的输出方式不同导致 亮度有差异,需要将亮度持平,所以需要修改 AE_ADAPT_SETTING (128为基数表示1倍) |需满足规则: gain*exp_{binning size} / binning_factor_{binning size} = gain*exp_{full size} / binning_factor_{full size} 例如:预览使用4M binning size , capture使用16M fullsize 通过preview与capture的gain与exposure获得, preview中binning factor=128 Capter中binning factor=512

· ISP中无需修改参数

convergence_speed:固定参数不使用

flicker_index:第一次进相机使用的默认值,0表示50HZ。

1表示60HZ;

stat_req : 固定参数不使用

ev_cali:固定参数不使用

monitor_mode:使用默认值1,表示aem 出帧continue;

ae_tbl_exp_mode:使用默认值0

cnvg_stride_ev_num:固定参数不使用

cnvg_stride_ev:使用固定参数

convergence_speed	0x20	32
– <u>≡</u> iso_special_mode	0x00	0
− <u>≡</u> flicker_index	0x00	0
+ in stat_req		
monitor_mode	0x01	1
–≝ ae_tbl_exp_mode	0x00	0
–∭ enter_skip_num	0x01	1
−∭ cnvg_stride_ev_num	0x12	18
cnvg_stride_ev		

- 1、点击打开参数按钮,打开tuning参数。
- 2、填写sensor_cfg

调试流程

3、安装mlog

输入以下命令安装mlog.apk adb shell setenforce 0 adb install –r MLog.apk adb shell rm -rf /data/mlog adb shell mkdir /data/mlog/ adb shell touch /data/mlog/ae.txt adb shell touch /data/mlog/smart.txt adb shell touch /data/mlog/awb.txt adb shell touch /data/mlog/lsc1.txt //for rear and front camera adb shell touch /data/mlog/lsc2.txt //for extend rear camera adb shell chmod 777 /data/mlog/*.txt

- 4、标定lv cali
- ① 暗室中,打开lightbox调整到LV10(或者使用DNP亮度设置最低),使用照度计测量其照度值,填入lux_value;
- ② 开启相机,镜头距光源1cm左右,使用Mlog工具抓取cali_bv,填入bv_value;

– 🔁 lv_cali		
- <u>□</u> lux_value	0x75	117
_ <u></u> <u>Bv_value</u>	0x0375	885

调试流程

- 5、选择SCENE AE,填入参数生成曝光表。
- 6、选择FACE AE,确保参数完整。
- 7、AE CONFIG→Mulaes/Region/Flat,填入参数。
- 8、点击保存

	Mulae	s	Region	Region			Flat		
Enable		7		✓				~	
SampleNum	5		4				5		
	LV	T Lum	LV	Index	UpRatio	DownRatio	LV	Index	Ratio
0	200	32	400	0	256	256	450	0	256
1	350	54	500	1	256	256	550	0	256
2	500	55	950	1	256	256	950	1	256
3	800	55	1100	2	256	256	1000	1	256
4	1080	61					1250	2	256
5									
6									

功能确认—确认AE

- 1、打开相机拍摄带有exif信息的照片
- 2、将图片导入ISPtool(最新的tool),对图片的debug信息进行解析。
- 3、AE exif能正确完整的解析,表明功能正常。

a Exif Parameter		
□ <mark>·</mark> AE		
-≣ size	0x85D4	34260
- <u>≡</u> version	0x01	1
+ 🖮 alg_id		
-⊞ cur_frame_id	0x0141	321
-∭ lock_status	0x01	1
- ☐ FD_AE_status	0x00	0
-∭ cur_lum	0x47	71
- <u>□</u> target_lum	0x49	73
- <u>□</u> target_zone	0x02	2
- <u>□</u> target_lum_ori	0x46	70
- <u>□</u> target_zone_ori	0x02	2
- <u>≡</u> max_index	0x0176	374
-∭ min_index	0x00	0
- <u>□</u> max_fps	0x1E	30
−∭ min_fps	0x05	5
−∭ cur_fps	0x98BD	39101
- <u>□</u> cur_ev	0x03	3
cur_metering_mo	ode 0x01	1
- <u>≡</u> cur_exp_time	0x63E640	6
- <u>□</u> cur_exp_line	0x01E8	488
-∭ cur dummv	0x00	0

功能确认—Face AE

小 紫光展锐™

- 1、关闭FACE AE与打开FACE AE以如图参数填入人脸照片。
- 2、对比两张图片的人脸亮度,判断功能是否打开并生效。

ап	nple Nu	ım: 8					
	LV	Face Target	Up Offset	Down Offset	Ratio Block	Ratio Pos	MaxWith Ratio
0	200	90	30	25	90	10	50
1	300	90	30	30	90	10	50
2	500	90	36	30	90	10	50
3	600	90	40	30	90	10	50
4	700	90	44	20	90	10	50
5	900	90	30	20	90	10	50
6	1180	90	30	15	90	10	50
7	1380	90	30	13	90	10	50

功能关闭

功能打开

AE MLOG介绍

AE MLOG

Cam-id:表示现在预览的模组,0为主摄,1为前摄

cur-l:当前帧的图片亮度(不带weight权重)

tar-I:当前帧的图片亮度(带weight权重)

bv(lv):此场景的bv值

expl: 当前曝光行

expt: 当前曝光时间

gain: 当前场景gain值

```
cam/id:0 fmg-id:15%3,flicket 0
idx(0-358):215,cur-l:60, tar-l:61,
bv(lv):802, cali_bv: 885,expl(9343):
3211, expt: 30000373, gain:222,
dmy:0, FR(5-30):30.00
adv info:
G sensor
:0.368676, 0.332766, 0.541044
abs delta:2.980530, 0.208278,
8.843436, thrd: 0.300000
```

调试案例—

小 紫光展锐 №

- 1、调试时想修改某些场景的亮度,可以查询照片exif信息确定需要修改的BV=658.
- 2、修改对应Tlum,改后的照片亮度增加。
- 3、exif信息mulaes_target_offset 增加 14

修改前

修改后

问题分析: Face AE功能开启,但是人脸亮度与对比机相比较暗。

对比机

测试机

调试案例二

问题分析:打开测试照片的debug exif信息中Face_luma较低。

- 1、可以查询照片exif信息确定需要修改的BV=486.
- 2、fd_ae_target_offset=9增加值较少。

可以增大face target使人脸变亮

BLOCK ISP EXIF			
NAME	HE	X	DEC
- @ Exif Parameter			
□ 🖨 AE			
- <u>≡</u> size	0x8C	B4	36020
– <u>≡</u> version	0x0	3	3
− <u>≡</u> cur_lum_w	0)	κ4B	75
– <u>≡</u> cur_lum_avg		κ4B	75
– <u>≡</u> cur_bv	0x0)1E6	486
-∭ final_target_lum	0:	x49	73
-∭ final_target_offset	0:	x09	9
−∭ fd0.face_avg_luma		0x2B	43
−∭ fd0.face_max_luma		0x2B	43
-∭ fd0.face_prv_luma		0x2B	43

修改前

修改后

Parameters	Description	Range	Default
version	显示算法版本信息	-	1
alg_id	版本ID	-	2
target_lum	参数设定的base_target		64
Target_lum_zone	ae稳定区间判定值。	[5,128]	2
Iso_special_mode	0:固定iso(常规模式); 1: iso auto mode(特殊模式)	[0,1]	1
convergence_speed	固定参数不使用	_	_
Flicker_index	第一次进相机使用的默认值;0:表示50HZ;1:表示60HZ;	_	_
Min_line	Sensor最小曝光行	-	-
start_index	start index。只在烧录版本后,第一次进入相机时才生效	-	210
ev_table	手机选择Manual模式使用参数	-	_
items[i].lum_diff	offset偏移, items[0].lum_diff=-3档、items[1].lum_diff=-2档以此类推。	[-100,100]	-
items[0].stable_zone_in	对应这个EV下的稳定区间(进稳定区间)(EVD ,精度: 1/100)		5
items[0].stable_zone_out	对应这个EV下的稳定区间(出稳定区间)(EVD ,精度: 1/100)		5

Parameters	Description	Range	Default
Win1_weight	整个图像的亮度权重	[0.255]	4
Win2_weight	touch 区域的亮度权重	[0.255]	3
Max_offset		_	-
win_w	Touch window 的宽	[image width/16 , image width/8]	image width/13
win_h	Touch window 的高	[image width/16 , image width/8]	image height/13
dc_fps	控制preview模式帧率(若全设置0,默认值min=20、 max=30)暂未使用	_	_
dv_fps	控制video模式帧率(若全设置0,默认值min=20、 max=30)暂未使用	_	_
monitor_mode	使用默认值1;1:表示aem 出帧continue;	_	1
ae_tbl_exp_mode	使用默认值0;0:ae table 中exposure 是曝光时间;	-	0
enter_skip_num	进入相机时,AE跳帧设置	_	0
cnvg_stride_ev_num	固定参数不使用	_	_
cnvg_stride_ev	使用的是固定值;	_	_

Parameters	Description	Range	Default
stable_zone_ev	判断ae稳定区间的值	[2,100]	2
max_gain	sensor最大支持gain*128	[128 , m*128]	_
min_gain	Sensor的base gain	[128 , 128]	128
isp_gain_skip_num	isp gain的生效机制,ps:sharklE平台不支持	_	_
gain_precision	gain精度 , isp_base_gain/sensor_base_gain	-	1
exp_skip_num	根据具体sensor exp生效机制配置,0表示下一帧生效,1表示隔一帧生效。	_	1
gain_skip_num	根据具体sensor gain生效机制配置,0表示下一帧生效,1表示隔一帧生效	_	0
lux_value	对应光源机下,测得的lux值	-	_
bv_value	对应光源机下,测得的bv值,可以通过mlog直接看到	-	_
Flat_enable	功能开关	[0,1]	0
cfg_info[0].thrd[0]	cfg_info[0]中的0是第0组参数,thrd[0]表示平 坦度的下阈值	[0,1024]	512
cfg_info[0].thrd[1]	thrd[1]表示平坦度的上阈值	[0,1024]	720
cfg_info[0].offset[0]	offset[0] : offset_low	[-100,100]	0

Parameters	Description	Range	Default
cfg_info[0].region_thrd[0].min		[0,256]	10
cfg_info[0].region_thrd[0].max		[0,256]	75
cfg_info[0].region_thrd[1].min		[0,256]	10
cfg_info[0].region_thrd[1].max		[0,256]	75
cfg_info[0].region_thrd[2].min	region_thrd[0]这里的0~5是指划分的区域分别是 0:up 1:down 2:left 3:right	[0,256]	10
cfg_info[0].region_thrd[2].max		[0,256]	75
cfg_info[0].region_thrd[3].min		[0,256]	10
cfg_info[0].region_thrd[3].max	4: up & down 5: left & right	[0,256]	75
cfg_info[0].region_thrd[4].min	5 : left & right	[0,256]	10
cfg_info[0].region_thrd[4].max		[0,256]	75
cfg_info[0].region_thrd[5].min		[0,256]	10
cfg_info[0].region_thrd[5].max		[0,256]	75
cfg_info[0].up_max		[-100,100]	15
cfg_info[0].dwn_max		[-100,100]	-25

Parameters	Description	Range	Default
cfg[i].x_idx	填入分段bv值	[-600,1600]	-
cfg[i].y_lum	设定亮度目标值	[0,255]	_
Face ae enable	Face使能开关	[0,1]	-
Face target	人脸目标亮度	[0,255]	45
Up offset	基础亮度增加的上限阈值	[0,255]	30
Down offset	基础亮度增加的下限阈值	[0,255]	30
Ratio block	多人脸计算权重(Ratio_Block + Ratio_Pos = 100)	[0,100]	90
Ratio pos	多人脸计算权重(Ratio_Block + Ratio_Pos = 100)	[0,100]	10
Max With Ratio	多人脸过亮抑制权重,值越大多人脸场景会根据最亮人脸的抑制能力越强	[0,100]	50
face_trigger_sensitivity1	亮度区间,数值越大越易trigger。	[0,255]	40
face_trigger_sensitivity2	亮度区间帧数,数值越小越易trigger	[0,10]	3
trigger_sensitivity3	固定不调试	_	_
trigger_sensitivity4	trigger稳定后再次face ae计算周期	[0,10]	1

Parameters	Description	Range	Default
face_frame_thrd	人脸消失后维持face ae状态的帧数	[0,100]	20
smooth_weight	Face ae offset收敛过程中平滑参数权重值,[0]表示当前帧权重、[1]表示前一帧权重,依次类推。	_	_
u4abl_face_offset	abl提供的偏移值	[0,255]	40
u4abl_offset_thrd	abl提供的偏移值的阈值	[0,100]	100
u4face_roi_ratio	中心人脸大小	[1,100]	25
u4face_weight1	中心人脸框权重	[0,10]	3
u4face_weight2	全局人脸框权重	[0,10]	1
u4small_weight_thrd	中心人脸权重的门限值	[0,100]	30
u4small_weight_raise	中心人脸权重的提升值	[0,10]	0
u4offset_ratio_thrd	人脸大小的门限值	[0,1024]	4
u4offset_ratio_value	对应大小的偏移比例	[0,100]	100

Parameters	Description	Range	Default
u4fdunlock_enable	人脸解锁时,face ae的使能开关	[0,1]	1
u4fdunlock_face_target	人脸解锁时,face ae的目标亮度	[0,255]	80
u4fdunlock_face_weight1	人脸解锁时,中心人脸区域权重	[1,10]	3
u4fdunlock_face_weight2	人脸解锁时,全局人脸区域权重	[1,10]	1
u4fdunlock_face_roi_ratio	设置中心人脸roi的ratio	[0,100]	1
u4fdunlock_unlinear_cancel	非线性设置是否取消	[0,1]	1
u4fdunlock_range_high	目标偏移的上限值	[0,255]	180
u4fdunlock_range_low	目标偏移的下限值	[0,255]	60
sampNum	对应各模块所分段数	-	-
Fps_thr_low	控制video帧率生效的下阈值(bv值)	[1,1600]	100
fps_thr_high	控制video帧率生效的上阈值(bv值)	[1,1600]	400

Parameters	Description	Range	Default
Ctrl_3dnr(thrd_up)	auto_3dnr开启的关闭阈值(bv值)	[1,1600]	500
Ctrl_3dnr(thrd_down)	auto_3dnr开启的打开阈值(bv值)	[1,1600]	490
4in1(thrd_up)	4in1模式开启的关闭阈值(bv值)	[1,1600]	500
4in1(thrd_down)	4in1模式开启的打开阈值(bv值)	[1,1600]	490
AE_sync(mode)	0: OTP mode;1:dynamic mode	[0,1]	1
y_ratio_chg_thr	slave 与 master之间的亮度差异	[0,100]	7
y_ratio_chg_cnt	ae亮度同步启动计数器	[0,10]	10
y_ratio_stb_thr	ae亮度稳定阈值	[0, 100]	5
y_ratio_stb_cnt	ae亮度稳定计数器	[0, 10]	15
adpt_speed	亮度逼近的速度	[0,100]	5

THANKS

本文件所含数据和信息都属于紫光展锐所有的机密信息,紫光展锐保留所有相关权利。本文件仅为信息参考之目的提供,不包含任何明示或默示的知识产权许可,也不表示有任何明示或默示的保证,包括但不限于满足任何特殊目的、不侵权或性能。当您接受这份文件时,即表示您同意本文件中内容和信息属于紫光展锐机密信息,且同意在未获得紫光展锐书面同意前,不使用或复制本文件的整体或部分,也不向任何其他方披露本文件内容。紫光展锐有权在未经事先通知的情况下,在任何时候对本文件做任何修改。紫光展锐对本文件所含数据和信息不做任何保证,在任何情况下,紫光展锐均不负责任何与本文件相关的直接或间接的、任何伤害或损失。

WWW.UNISOC.COM 紫光展锐科技