MACM 201 - Discrete Mathematics

4. Counting in graphs

Department of Mathematics

Simon Fraser University

Bipartite graphs

Definition

A bipartition of a graph G = (V, E) is a pair (V_1, V_2) of subsets of V satisfying:

- $(1) V_1 \cap V_2 = \emptyset$
- $(2) V_1 \cup V_2 = V$
- (3) every edge of G is incident with one vertex in V_1 and one vertex in V_2 .

If a graph G has a bipartition, we call it bipartite.

Example. Draw the bipartite graph given by
$$V_1 = \{1, 2, 3\}$$
, $V_2 = \{a, b, c, d\}$, and $E = \{\{1, b\}, \{1, d\}, \{2, b\}, \{2, c\}, \{2, d\}, \{3, d\}\}$.

Definition

For nonnegative integers n_1, n_2 we define the *complete bipartite graph* K_{n_1,n_2} to be a bipartite graph with bipartition (V_1, V_2) where $|V_i| = n_i$ for i = 1, 2 and $E = \{\{v_1, v_2\} \mid v_1 \in V_1 \text{ and } v_2 \in V_2\}.$

Counting graphs

Problem 1. How many graphs have vertex set $V = \{1, 2, ..., n\}$?

Problem 2. How many graphs have vertex set $V = \{1, 2, \dots, n\}$ and m edges?

Problem 3. Let V_1 , V_2 be disjoint sets with $|V_1| = n_1$ and $|V_2| = n_2$. How many graphs have bipartition (V_1, V_2) ?

Problem 4. Let V_1, V_2 be disjoint sets with $|V_1| = n_1$ and $|V_2| = n_2$. How many graphs have bipartition (V_1, V_2) and exactly m edges?

Walks

Definition

A walk in a graph G = (V, E) from v_1 to v_r of length r is a sequence $v_1, e_1, v_2, e_2, \ldots, e_r, v_{r+1}$ satisfying:

- $(1) \quad v_i \in V \text{ for } 1 \leq i \leq r+1$
- (2) $e_i \in E$ for $1 \le i \le r$.
- (2) $e_i = \{v_i, v_{i+1}\} \text{ for } 1 \leq i \leq r.$

Note that the length of a walk is the number of edges.

Definition

A graph G = (V, E) is connected if for every $x, y \in V$ there is a walk from x to y.

Problem 1. How many walks in K_n have length r?

Problem 2. How many walks in K_{n_1,n_2} have length r?

Subgraphs

Definition

Let G = (V, E) be a graph. A *subgraph* of G is a graph G' = (V', E') satisfying:

- (1) $V' \subseteq V$
- $(2) \quad E' \subseteq E$

Note: if $\{u,v\} \in E'$ then we must have $u,v \in V'$ since G' is a graph. If V'=V then we call G' a spanning subgraph of G

Problem. How many spanning subgraphs of K_{n_1,n_2} have exactly m edges?

Have we seen this problem before?

Problem. Let G = (V, E) be a graph with m edges. How many spanning subgraphs of G have exactly m' edges?

Induced subgraphs

Definition

Let G=(V,E) be a graph and let $V'\subseteq V$. The subgraph of G induced by V' is the subgraph G'=(V',E') where

$$E' = \{\{u, v\} \in E \mid u, v \in V'\}$$

Example.

Problem. If G = (V, E) is a graph with |V| = n, how many induced subgraphs does G have?

Paths and cycles

Definition

 $\text{if } \left\{ \begin{array}{c} P \\ C \end{array} \right\} \text{ is a subgraph of } G \text{ that is a } \left\{ \begin{array}{c} \mathsf{path} \\ \mathsf{cycle} \end{array} \right\} \text{ we call } \left\{ \begin{array}{c} P \text{ a path} \\ C \text{ a cycle} \end{array} \right\} \text{ of } G.$

Note: Paths and cycles are subgraphs of G; walks are sequences of vertices and edges!

Example

Problem 1. How many k-vertex paths does the graph K_n have?

Problem 2. How many k-vertex paths does the graph K_{n_1,n_2} have?