APRILE 2011

COMPITO A

DOMANDA:

Illustrare le definizioni di vertice e soluzione base ammissibile. Dimostrare che una soluzione ammissibile di un problema di PL in forma standard è un vertice del poliedro delle soluzioni ammissibili se e solo se è una soluzione base ammissibile.

RISPOSTA:

Definizione base ammissibile:

Ponendo che la soluzione di un sistema Ax=b sia x = $\begin{bmatrix} x_B \\ x_F \end{bmatrix} = \begin{bmatrix} B^{-1}b - B^{-1}F_{xF} \\ x_F \end{bmatrix}$

La soluzione base (e, per estensione, la base B stessa) si dice soluzione base ammissibile, o SBA, se $x_B=B^{-1}b\ge 0$.

Definizione vertice:

-Un punto x di un poliedro P si dice punto di estremo o vertice di P se non può essere espresso come una combinazione convessa stretta di altri due punti del poliedro, cioè non esistono y.z \in P, y \neq z e $\lambda \in$ (0,1) tali che $x=\lambda y+(1-\lambda)z$.

-Un punto $x \in P$ è un vertice del poliedro non vuoto $P: = \{x \ge 0 : Ax = b\}$ se e solo se x è una soluzione base ammissibile del sistema Ax = b.

Dimostrazione:

Dimostriamo prima l'implicazione $x SBA \rightarrow x$ vertice. Supponiamo per assurdo che una soluzione $x \in P$ sia una SBA e non un vertice P. Senza perdita di generalità possiamo raggruppare le componenti positive di x e quelle nulle, ovvero assumiamo:

$$x=[x_1,...,x_K,0,...,0]^T$$
positive

dove k rappresenta il numero di componenti non nulle(cioè positive) di x. Ne consegue che le colonne $A_1,...,A_k$ devono fare parte di una qualsiasi base B associata alla SBA x, insieme eventualmente ad altre colonne(SOLUZIONE DEGENERE).

-Se x non è un vertice di P, esistono due punti :

$$y=[y_1,...,y_K,0,...0]^T \in P$$

 $z=[z_1,...,z_K,0,...0]^T \in P$

con y \neq z, tale che x= λ y+(1- λ)z, per un qualche λ \in (0,1).

Si noti che y e z devono necessariamente avere le ultime componenti a zero, altrimenti la loro combinazione convessa non potrebbe dare x. Per ipotesi si ha allora:

$$y \in P \rightarrow Ay=b \rightarrow A_1y_1+...+A_Ky_K=b$$

 $z \in P \rightarrow Az=b \rightarrow A_1z_1+...+A_Kz_K=b$

sottraendo la seconda equazione dalla prima si ottiene $(y_1-z_1)A_1+...+(y_K-z_K)A_K=\alpha_1A_1+...+\alpha_KA_K=0$, ove si è posto $\alpha_i=y_i-z_i$, i=1,...,k. Esistono quindi scalari α_i ,..., α_K non tutti nulli(dato che $y\neq z$) tale che $\sum_{i=1}^k \alpha_1 A_1=0$,

pertanto le colonne $A_1,...,A_K$ sono linearmente dipendenti, e non possono fare parte di una fase, contraddicendo l'ipotesi x SBA.

Dimostriamo ora l'implicazione x vertice→x SBA.

Per dimostrare l'implicazione è sufficiente che x vertice \rightarrow x soluzione base. Il fatto che la soluzione base sia anche ammissibile deriva infatti dall'ipotesi x \in P.

Supponiamo per assurdo che x sia un vertice di P, ma non una soluzione base del sistema Ax=b. Ipotizzando come prima $x=[x_1,...,x_K,0,...,0]^T$, con $x_1,...,x_K>0$, si ha che $x\in P\to Ax=b\to A_1x_1+...+A_Kx_K=b$, le colonne A_1 ,..., A_K sono linearmente dipendenti, e quindi esistono k coefficienti $\alpha_1,...,\alpha_K$ non tutti nulli tali che: $\alpha_1A_1+...+\alpha_KA_K=0$. Sommando la prima equazione e la seconda moltiplicate per $\epsilon>0$ si ottiene: $A_1(\alpha_1+\epsilon\alpha_1)+...+A_K(\alpha_K+\epsilon\alpha_K)=b$.

COMPITO B

DOMANDA:

Illustrare le definizioni di vertice e direzione estrema. Enunciare il teorema di Minkowski-Weyl e utilizzarlo per dimostrare che se un problema di PL in forma standard ammette soluzione ottima, allora ammette soluzione ottima su un vertice.

RISPOSTA:

Definizione vertice:

Vedi compito A.

Definizione direzione estrema:

Un vettore $d \in \mathbb{R}^n$ di norma unitaria(cioè tale che ||d||=1) si dice direzione di un poliedro P se $\forall u \geq 0$, $x \in P \to x+ud \in P$.

Una direzione d \in Rⁿ di un poliedro P si dice direzione estrema di P se non può essere espressa come una combinazione conica stretta di altre due direzioni di P.

Teorema di Minkowski-Weyl:

Ogni punto di un poliedro dotato di almeno un vertice si può ottenere come somma di una combinazione convessa dei suoi vertici e di una combinazione conica delle sue direzioni estreme.

Teorema:

Dato un PL min{ $C^Tx : x \in P$ }, con P poliedro contenente almeno un vertice, se esiste una soluzione ottima del problema, esiste un vertice di P ottimo.

Dimostrazione:

Siano $x^1,...,x^K$ i vertici di P e siano $d^1,...,d^h$ le sue direzioni estreme. Sia infine $z^*=\min\{C^Tx^i: i=1,...,k\}$.

Per dimostrare la tesi del teorema basta dimostrare che, dato un qualunque y \in P, si ha $c^Ty \ge z^*$.

Dal lemma si ha che c'd_i \geq 0, per i=1,...,h.

Devono esistere moltiplicatori $u_1,...u_h \ge 0$ e $\lambda_1,...,\lambda_k \ge 0$, $\sum_{i=1}^k \lambda_i = 1$, tali che y= $\sum_{i=1}^k \lambda_i \, x^i + \sum_{i=1}^h u_i d^i$. Si ha allora $c^T y = c^T \left(\sum_{i=1}^k \lambda_i x^i + \sum_{i=1}^h u_i d^i \right) = \sum_{i=1}^k \left(\lambda_i \, c^T x^i \right) + \sum_{i=1}^h u_i (c^T d^i) \ge \sum_{i=1}^k \lambda_i z^* = z^*$.

COMPITO C = COMPITO A

COMPITO D

DOMANDA:

Illustrare le definizioni di insieme convesso, funzione convessa, problema di programmazione convessa, punto di minimo locale e di minimo globale. Dimostrare che nei problemi di Programmazione Convessa un punto di minimo locale è anche punto di minimo globale.

RISPOSTA:

Definizione minimo globale:

Una soluzione $x^* \in X$ si dice punto di minimo globale per f(x), o soluzione ottima, se: $f(x^*) \le f(x) \ \forall x \in X$. In questo caso $f(x^*)$ si dice minimo globale di f(x) in X.

Un punto di minimo globale è stretto se $f(x^*)< fx$) $\forall x \in X, x \neq x^*$.

Definizione minimo locale:

Una soluzione $\overline{x} \in X$ si dice punto di minimo locale per f(x) se: $\exists \in >0 : f(\overline{x}) \le f(x) \ \forall x \in X : ||x-\overline{x}|| < \varepsilon$. Un punto di minimo locale è stretto se $f(x^*) < f(x) \ \forall x \in X : ||x-\overline{x}|| < \varepsilon$, $x \ne \overline{x}$.

Definizione di insieme convesso e funzione convessa:

L'intersezione di k insiemi convessi $X_1,...,X_K \subseteq \mathbb{R}^n$ è un insieme convesso. Un insieme $X \subseteq \mathbb{R}^n$ si dice convesso se: $\forall x,y \in X$, $\lambda \in [0,1] \to z = \lambda x + (1-\lambda)y \in X$.

Dati un insieme convesso X e una funzione $f:x \to \mathbb{R}^n$, si dice che f è una funzione convessa su X se comunque presi due punti $x,y \in X$ e uno scalare $\lambda \in [0,1]$ e detto $z=\lambda x+(1-\lambda)y$, si ha che: $f(z) \le \lambda f(x)+(1-\lambda)f(y)$.

Definizione di Programmazione Convessa:

Un PM si dice problema di Programmazione convessa se l'insieme ammissibile x è convesso e la funzione obiettivo f(x) è convessa su x.

Un punto di minimo locale è anche detto di minimo globale(solo nella programmazione convessa) : Sia \bar{x} un punto di minimo locale, ovvero tale che $\exists \ \epsilon > 0 : f(\bar{x}) \le f(x) \ \forall x \ \epsilon \ X : \ | \ | x - \bar{x} | \ | < \epsilon$. Sia $y \ \epsilon \ X$ una generica soluzione ammissibile. Dalla convessità di x discende il fatto che $\forall \lambda \ \epsilon \ [0,1]$ il punto $z = \lambda \bar{x} + (1-\lambda)y \ \epsilon \ X$. E' sempre possibile scegliere un valore di x sufficientemente vicino a 1 tale che sia verificata la condizione $| \ |z - \bar{x}| \ | < \epsilon$, il che implica $f(\bar{x}) \le f(x)$, la convessità di f implica: $f(z) \le \lambda f(\bar{x}) + (1-\lambda)f(y)$.

Unita alla precedente: $f(\bar{x}) \le \lambda f(\bar{x}) + (1-\lambda)f(y)$. Portando $\lambda f(\bar{x})$ a primo membro e dividendo per $(1-\lambda)$ segue la tesi.