

Departamento de Eletrónica, Telecomunicações e Informática

Hadamard codes[8,4,4]₂

Digital Circuit implementation

Assignment 1 - Nov. 2022

Arquiteturas de Alto Desempenho Prof. António Rui Borges André Clérigo 98485 Pedro Rocha 98256 Turma 1 - Grupo 7

Encoder's bit serial implementation

While the busy flag has the value 0, the Y value does not have a meaning.

It takes 5 clock cycles to process the 4 bits and show the encode the message.

Implementation cost:

BINCOUNTER_3BIT

1 AND + 2 XOR + 3 D-type Flip Flop

BITENCODER

1 AND + 1 XOR + 1 D-type FlipFlop

Total cost of 8x: 8 AND + 8 XOR + 8 D-type FlipFlop

PARALLEL REGISTER_8BIT

1 AND + 1 XOR + 1 D-type FlipFlop

Total ENCODER Cost: 10 AND + 11 XOR + 13 D-type FlipFlop

Encoder's bit serial implementation

Encoder straightforward implementation

$$x_{0} = m_{3}$$

$$x_{1} = m_{0} \oplus m_{3}$$

$$x_{2} = m_{1} \oplus m_{3}$$

$$x_{3} = m_{0} \oplus m_{1} \oplus m_{3}$$

$$x_{4} = m_{2} \oplus m_{3}$$

$$x_{5} = m_{0} \oplus m_{2} \oplus m_{3}$$

$$x_{6} = m_{1} \oplus m_{2} \oplus m_{3}$$

$$x_{7} = m_{0} \oplus m_{1} \oplus m_{2} \oplus m_{3}$$

Regular expressions

```
x_0 = k_{00} m_0 \oplus k_{01} m_1 \oplus k_{02} m_2 \oplus k_{03} m_3
...
x_7 = k_{70} m_0 \oplus k_{71} m_1 \oplus k_{72} m_2 \oplus k_{73} m_3
```

Algorithm

```
for (int i = 0; i < 4; i++) {
    for (int j = 0; j < 8; j++) {
        y_j = y_j XOR (k_ji AND m_i);
    }
}</pre>
```

CMem content

```
("0000000010".
                  -- Initial State nRst = 1 busy = 0
"0101010111",
                  -- K0: 01010101
                                    nRst = 1 busy = 1
"0011001111".
                  -- K1: 00110011
                                    nRst = 1 busy = 1
"0000111111".
                  -- K2: 00001111
                                    nRst = 1 busv = 1
                  -- K3: 11111111
                                    nRst = 1 busy = 1
"1111111111",
"0000000001".
                   -- Reset
                                    nRst = 0 busv = 1
"0000000011".
                   -- Dont' care
"0000000011"):
                  -- Don't care
```

Decoder's parallel implementation

Implementation cost:

DECODER8T012:

Cost: 12 XOR

Worst case propagation delay: 1 XOR

DECODER1BIT:

Cost: 2 AND, 2 NOR, 2 OR, 1 XOR

Worst case propagation delay: 1 NOR + 1 OR + 1 XOR

Total Cost of 3x: 6 AND, 6 NOR, 6 OR, 3 XOR

DECODERLAST:

Cost: 2 XOR, 2 AND, 2 OR

Worst case propagation delay: 1 XOR + 1 OR + 1 AND

+ 1 OR

Total DECODER Cost: 17 XOR, 10 AND, 6 NOR, 8 OR **Parallel DECODER worst case propagation delay:** (1 XOR) + (1 NOR + 1 OR + 1 XOR) + (1 XOR + 1 OR + 1

AND + 1 OR

= 3 XOR + 1 NOR + 3 OR + 1 AND

Decoder's parallel implementation

Application of the property of local decodability for m', m', m',

T - Value of bit if 1

Т		C1C0			
		00	01	11	10
C3 C2	00	0	0	Е	0
	01	0	Е	1	Е
	11	Е	1	1	1
	10	0	Е	1	Е

F - Value of bit if 0

E - Error 2 bits equal

$$E = T \oplus F$$

c11 =
$$y_0 \oplus y_1$$

c12 = $y_2 \oplus y_3$
c13 = $y_4 \oplus y_5$
c14 = $y_6 \oplus y_7$

c21 =
$$y_0 \oplus y_2$$

c22 = $y_1 \oplus y_3$
c23 = $y_4 \oplus y_6$
c24 = $y_5 \oplus y_7$

$$\begin{array}{c}
c31 = y_0 \oplus y_4 \\
c32 = y_1 \oplus y_5 \\
c33 = y_2 \oplus y_6 \\
c34 = y_3 \oplus y_7
\end{array}$$
 m'_2

Extracting SOP from Karnaugh Maps

T =
$$(C3 \land C2) \lor (C1 \land C0)$$

F = $(\neg C3 \land \neg C2) \lor (\neg C1 \land \neg C0) = \neg(C3 \lor C2) \lor \neg(C1 \lor C0)$

Decoder's parallel implementation

Application of the property of local decodability for m',

Abstracting
$$a = x_0$$
, $b = x_1 \oplus m'_0$, $c = x_2 \oplus m'_1$

Extracting SOP from Karnaugh Map

$$m'_3 = (A \land B) \lor (A \land C) \lor (B \land C)$$

With the Karnaugh Map expression and knowing that $x_{\scriptscriptstyle \#}$ on the encoder is ${\rm y}_{\scriptscriptstyle \#}$ on the decoder

$$\mathsf{m'}_3 = (\mathsf{y}_2 \oplus \mathsf{m'}_1) \ \land \ (\mathsf{y}_0 \ \lor \ (\mathsf{y}_1 \oplus \mathsf{m'}_0)) \ \lor \ (\mathsf{y}_0 \ \land \ (\mathsf{y}_1 \oplus \mathsf{m'}_0))$$

Having m′₀ m′₁ m′₂ only 3 equations are needed local decodability

Encoder straightforward implementation

$$x_0 = m'_3$$

$$x_1 = m'_0 \oplus m'_3$$

$$x_2 = m'_1 \oplus m'_3$$

In order of
$$m_3$$

 $m'_3 = x_0$
 $m'_3 = x_1 \oplus m'_0$
 $m'_3 = x_2 \oplus m'_1$