Aggregated Tests Based on Supremal Divergence Estimators for non-Regular Statistical Models

Jean-Patrick Baudry Michel Broniatowski Cyril Thommeret

LPSM – Sorbonne Université – Paris

August 31st 2023

CASM (Csiszar-Ali-Silvey-Morimoto) φ -Divergences

- $ightharpoonup arphi: \mathbb{R} o \mathbb{R}^+$ differentiable and strictly convex with arphi(1)=0
- \triangleright P and P^* probability measures
- \triangleright φ -divergence between P and P^* :

$$D_{\varphi}(P, P^*) = egin{cases} \int arphi(rac{dP}{dP^*}) \, dP^* & ext{if } P << P^* \\ +\infty & ext{otherwise} \end{cases}$$

- $D_{\varphi}(P, P^*) = 0 \Longleftrightarrow P = P^*$
- examples:
 - for $\varphi(x) = x \log x x + 1$, D_{φ} is the Kullback-Leibler divergence
 - for $\varphi(x) = \frac{1}{2}(x-1)^2$, D_{φ} is the χ^2 -divergence

Dual Representation of φ -Divergences

$$D_{\varphi}(P, P^*) = egin{cases} \int arphi(rac{dP}{dP^*}) \, dP^* & ext{if } P << P^* \\ +\infty & ext{otherwise} \end{cases}$$

- \triangleright \mathcal{F} some class of borelian real valued functions
- ► For any *P* such that

$$\begin{cases} \int |f| dP < \infty \text{ for any } f \in \mathcal{F} \\ D_{\varphi}(P, P^*) < \infty \\ \varphi'(\frac{dP}{dP^*}) \in \mathcal{F} \end{cases}$$

it holds

$$D_{\varphi}(P, P^*) = \max_{f \in \mathcal{F}} \int f \, dP - \int \varphi^*(f) \, dP^*,$$

where φ^* : $t \in \mathbb{R} \mapsto \sup_{x \in \mathbb{R}} tx - \varphi(x)$.

The supremum is uniquely attained at $f = \varphi'(\frac{dP}{dP^*})$.

[Liese and Vajda, 2006, Broniatowski and Keziou, 2006]

Statistical Setting

- ▶ $\{f_1(.;\theta_1):\theta_1\in\Theta_1\}$, $\Theta_1\subset\mathbb{R}^p$, and $\{f_2(.;\theta_2):\theta_2\in\Theta_2\}$, $\Theta_2\subset\mathbb{R}^q$ probability density families with respect to a σ -finite measure λ on $(\mathcal{X},\mathcal{B})$
- ▶ for any $(\pi, \theta) \in \Theta$ with $\theta = (\theta_1, \theta_2)$,

$$g_{\pi,\theta} = (1-\pi)f_1(.;\theta_1) + \pi f_2(.;\theta_2)$$

- ► $X_1, ..., X_n$ i.i.d. sample with distribution $P^* := g_{\pi^*, \theta^*} . \lambda$ (unknown parameters $(\pi^*, \theta^*) \in \Theta$)
- ▶ Aim: inference on π^*

$$g_{\pi,\theta} = (1-\pi)f_1(.;\theta_1) + \pi f_2(.;\theta_2)$$

▶ g a probability density (escort parameter) such that

$$\forall (\pi, \theta) \in \Theta, \left\{ egin{aligned} & \mathsf{Supp}(\mathsf{g}) \subset \mathsf{Supp}(\mathsf{g}_{\pi, \theta}) \ \int \left| arphi'(rac{\mathsf{g}}{\mathsf{g}_{\pi, \theta}})
ight| \mathsf{g} \; \mathsf{d} \lambda < \infty \end{aligned}
ight.$$

▶ For any $(\pi, \theta) \in \Theta$, define

$$m_{\pi,\theta}: x \in \mathcal{X} \mapsto \int \varphi'\Big(\frac{\mathsf{g}}{\mathsf{g}_{\pi,\theta}}\Big) \mathsf{g} \; d\lambda - \varphi^* \circ \varphi'\Big(\frac{\mathsf{g}}{\mathsf{g}_{\pi,\theta}}\Big)(x)$$

▶ Dual representation of the divergence:

$$\begin{split} D_{\varphi}(g.\lambda, g_{\pi^*, \theta_1^*, \theta_2^*}.\lambda) &= \max_{(\pi, \theta_1) \in]a, b[\times \Theta_1} \mathbb{E}_{P^*}[m_{\pi, \theta_1, \theta_2^*}(X)] \\ (\pi^*, \theta_1^*) &= \underset{(\pi, \theta_1) \in]a, b[\times \Theta_1}{\operatorname{argmax}} \mathbb{E}_{P^*}[m_{\pi, \theta_1, \theta_2^*}(X)] \end{split}$$

$$g_{\pi,\theta} = (1-\pi)f_1(.;\theta_1) + \pi f_2(.;\theta_2)$$

- g a probability density (escort parameter)
- $\blacktriangleright (\pi^*, \theta_1^*) = \operatorname{argmax}_{(\pi, \theta_1) \in]a, b[\times \Theta_1} \mathbb{E}_{P^*}[m_{\pi, \theta_1, \theta_2^*}(X)]$
- \triangleright θ_2 is not estimated
- ▶ Supremal estimator of (π^*, θ_1^*) :

$$\forall \theta_2 \in \Theta_2, (\hat{\pi}(\theta_2), \hat{\theta}_1(\theta_2)) \in \operatorname*{argmax}_{(\pi, \theta_1) \in]a, b[\times \Theta_1} \frac{1}{n} \sum_{i=1}^n m_{\pi, \theta_1, \theta_2}(X_i)$$

▶ $P^* \to \mathbb{P}_n$ is a legitimate substitution when $\theta_2 = \theta_2^*$ or $\pi^* = 0$ (since $X_1, \ldots, X_n \overset{i.i.d.}{\sim} P^* = g_{\pi^*, \theta^*} . \lambda$)

$$g_{\pi,\theta} = (1-\pi)f_1(.;\theta_1) + \pi f_2(.;\theta_2)$$

- ightharpoonup g a probability density (escort parameter)
- $\blacktriangleright (\pi^*, \theta_1^*) = \operatorname{argmax}_{(\pi, \theta_1) \in]a, b[\times \Theta_1} \mathbb{E}_{P^*}[m_{\pi, \theta_1, \theta_2^*}(X)]$
- \triangleright θ_2 is not estimated
- ▶ Supremal estimator of (π^*, θ_1^*) :

$$\forall \theta_2 \in \Theta_2, (\hat{\pi}(\theta_2), \hat{\theta}_1(\theta_2)) \in \operatorname*{argmax}_{(\pi, \theta_1) \in]a, b[\times \Theta_1} \frac{1}{n} \sum_{i=1}^n m_{\pi, \theta_1, \theta_2}(X_i)$$

 $P^* \to \mathbb{P}_n$ is a legitimate substitution when $\theta_2 = \theta_2^*$ or $\pi^* = 0$ (since $X_1, \ldots, X_n \overset{i.i.d.}{\sim} P^* = g_{\pi^*, \theta^*} . \lambda$)

$$g_{\pi,\theta} = (1-\pi)f_1(.;\theta_1) + \pi f_2(.;\theta_2)$$

- g a probability density (escort parameter)
- $\blacktriangleright (\pi^*, \theta_1^*) = \operatorname{argmax}_{(\pi, \theta_1) \in]a, b[\times \Theta_1} \mathbb{E}_{P^*}[m_{\pi, \theta_1, \theta_2^*}(X)]$
- \triangleright θ_2 is not estimated
- ▶ Supremal estimator of (π^*, θ_1^*) :

$$\forall \theta_2 \in \Theta_2, (\hat{\pi}(\theta_2), \hat{\theta}_1(\theta_2)) \in \operatorname*{argmax}_{(\pi, \theta_1) \in]a, b[\times \Theta_1} \frac{1}{n} \sum_{i=1}^n m_{\pi, \theta_1, \theta_2}(X_i)$$

 $P^* \to \mathbb{P}_n$ is a legitimate substitution when $\theta_2 = \theta_2^*$ or $\pi^* = 0$ (since $X_1, \ldots, X_n \overset{i.i.d.}{\sim} P^* = g_{\pi^*, \theta^*}.\lambda$)

Consistency and Asymptotic Distribution of the Supremal Estimator

$$(\hat{\pi}(\theta_2), \hat{\theta}_1(\theta_2)) \in \operatorname*{argmax}_{(\pi,\theta_1)} \frac{1}{n} \sum_{i=1}^n m_{\pi,\theta_1,\theta_2}(X_i) \quad \text{with} \quad \pi \in]a,b[\ni 0]$$

If $\pi^* = 0$, for any $\theta_2, \theta_2' \in \Theta_2$, and under regularity conditions

$$\begin{pmatrix} \hat{\pi}(\theta_2) \xrightarrow{a.s.} 0 \\ \hat{\theta}_1(\theta_2) \xrightarrow{a.s.} \theta_1^* \end{pmatrix}$$

and

$$\begin{pmatrix} \sqrt{\frac{n}{a_n}} (\hat{\pi}(\theta_2) - \pi^*) \\ \sqrt{\frac{n}{a'_n}} (\hat{\pi}(\theta'_2) - \pi^*) \end{pmatrix} \xrightarrow{\mathcal{L}} \mathcal{N} \left(0, \begin{pmatrix} 1 & \frac{b}{\sqrt{aa'}} \\ \frac{b}{\sqrt{aa'}} & 1 \end{pmatrix} \right)$$

where a_n (resp. a'_n) depends only on θ_2 (resp. θ'_2) and the sample but a, a', and b depend on the (unknown) distribution P^* .

Consistency and Asymptotic Distribution of the Supremal Estimator

$$(\hat{\pi}(\theta_2), \hat{\theta}_1(\theta_2)) \in \operatorname*{argmax}_{(\pi,\theta_1)} \frac{1}{n} \sum_{i=1}^n m_{\pi,\theta_1,\theta_2}(X_i) \quad \text{with} \quad \pi \in]a,b[\ni 0]$$

If $\pi^* = 0$, for any $\theta_2, \theta_2' \in \Theta_2$, and under regularity conditions,

$$\begin{cases} \hat{\pi}(\theta_2) \xrightarrow{a.s.} 0 \\ \hat{\theta}_1(\theta_2) \xrightarrow{a.s.} \theta_1^* \end{cases}$$

and

$$\begin{pmatrix} \sqrt{\frac{n}{a_n}} (\hat{\pi}(\theta_2) - \pi^*) \\ \sqrt{\frac{n}{a'_n}} (\hat{\pi}(\theta'_2) - \pi^*) \end{pmatrix} \xrightarrow{\mathcal{L}} \mathcal{N} \left(0, \begin{pmatrix} 1 & \frac{b}{\sqrt{aa'}} \\ \frac{b}{\sqrt{aa'}} & 1 \end{pmatrix} \right)$$

where a_n (resp. a'_n) depends only on θ_2 (resp. θ'_2) and the sample but a, a', and b depend on the (unknown) distribution P^* .

Consistency and Asymptotic Distribution of the Supremal Estimator

$$(\hat{\pi}(\theta_2), \hat{\theta}_1(\theta_2)) \in \operatorname*{argmax} \frac{1}{n} \sum_{i=1}^n m_{\pi, \theta_1, \theta_2}(X_i) \quad \text{with} \quad \pi \in]a, b[\ni 0]$$

If $\pi^* = 0$, for any $\theta_2, \theta_2' \in \Theta_2$, and under regularity conditions,

$$\begin{cases} \hat{\pi}(\theta_2) \xrightarrow{a.s.} 0 \\ \hat{\theta}_1(\theta_2) \xrightarrow{a.s.} \theta_1^* \end{cases}$$

and

$$\begin{pmatrix} \sqrt{\frac{n}{a_n}} (\hat{\pi}(\theta_2) - \pi^*) \\ \sqrt{\frac{n}{a_n'}} (\hat{\pi}(\theta_2') - \pi^*) \end{pmatrix} \xrightarrow{\mathcal{L}} \mathcal{N} \begin{pmatrix} 0, \begin{pmatrix} 1 & \frac{b}{\sqrt{aa'}} \\ \frac{b}{\sqrt{aa'}} & 1 \end{pmatrix} \end{pmatrix}$$

where a_n (resp. a'_n) depends only on θ_2 (resp. θ'_2) and the sample but a, a', and b depend on the (unknown) distribution P^* .

Aim: based on a realisation of the sample, test the hypothesis

Test statistic:

$$T_n = \sup_{\theta_2} \sqrt{\frac{n}{a_n}} \hat{\pi}(\theta_2)$$

Reject H_0 if T_n large \iff if there is enough evidence of a second component for some θ_2 if $T_n > t_\alpha$ such that for $\pi^* = 0$ and any $\theta_1^* \in \Theta_1$,

$$P^*(T_n > t_\alpha) \le \alpha$$

▶ with G centred Gaussian process s.t. $Cov(G_{\theta_2}, G_{\theta'_2}) = \frac{b}{\sqrt{aa'}}$

$$T_n \stackrel{\mathcal{L}}{\to} \sup_{\theta_2 \in \Theta_2} G_{\theta_2}$$

▶ with G^n centred Gaussian process s.t. $Cov(G^n_{\theta_2}, G^n_{\theta'_2}) = \frac{b_n}{\sqrt{a_n a'_n}}$ and Θ^{δ}_2 finite δ -grid,

$$\sup_{\theta_2 \in \Theta_2^{\delta}} \frac{\mathcal{L}}{\underset{\delta \to 0}{n \to \infty}} \sup_{\theta_2 \in \Theta_2} G_{\theta_2}$$

Aim: based on a realisation of the sample, test the hypothesis $H_0:\pi^*=0$ vs $H_1:\pi^*>0$

Test statistic:

$$T_n = \sup_{\theta_2} \sqrt{\frac{n}{a_n}} \hat{\pi}(\theta_2)$$

Reject H_0 if T_n large \iff if there is enough evidence of a second component for some θ_2 if $T_n > t_\alpha$ such that for $\pi^* = 0$ and any $\theta_1^* \in \Theta_1$,

$$P^*(T_n > t_\alpha) \leq \alpha.$$

• with G centred Gaussian process s.t. $Cov(G_{\theta_2}, G_{\theta'_2}) = \frac{b}{\sqrt{2a'}}$

$$T_n \xrightarrow{\mathcal{L}} \sup_{\theta_2 \in \Theta_2} G_{\theta_2}$$

with G^n centred Gaussian process s.t. $Cov(G^n_{\theta_2}, G^n_{\theta'_2}) = \frac{b_n}{\sqrt{a_n a'_n}}$ and Θ^δ_2 finite δ-grid

$$\sup_{\theta_2 \in \Theta_2^{\delta}} G_{\theta_2}^n \xrightarrow[\delta \to 0]{\mathcal{L}} \sup_{\theta_2 \in \Theta_2} G_{\theta_2}$$

Aim: based on a realisation of the sample, test the hypothesis $H_0: \pi^* = 0$ vs $H_1: \pi^* > 0$

Test statistic:

$$T_n = \sup_{\theta_2} \sqrt{\frac{n}{a_n}} \hat{\pi}(\theta_2)$$

Reject H_0 if T_n large \iff if there is enough evidence of a second component for some θ_2 if $T_n > t_\alpha$ such that for $\pi^* = 0$ and any $\theta_1^* \in \Theta_1$,

$$P^*(T_n > t_\alpha) \leq \alpha$$

• with G centred Gaussian process s.t. $Cov(G_{\theta_2}, G_{\theta'_2}) = \frac{b}{\sqrt{aa'}}$

$$T_n \xrightarrow{\mathcal{L}} \sup_{\theta_2 \in \Theta_2} G_{\theta_2}$$

• with G^n centred Gaussian process s.t. $Cov(G_{\theta_2}^n, G_{\theta_2'}^n) = \frac{b_n}{\sqrt{a_n a_n'}}$ and Θ_2^{δ} finite δ -grid,

$$\sup_{\theta_2 \in \Theta_2^{\delta}} \frac{\mathcal{L}}{\stackrel{n \to \infty}{\delta \to 0}} \sup_{\theta_2 \in \Theta_2} G_{\theta_2}$$

Aim: based on a realisation of the sample, test the hypothesis $H_0: \pi^* = 0$ vs $H_1: \pi^* > 0$

Test statistic:

$$T_n = \sup_{\theta_2} \sqrt{\frac{n}{a_n}} \hat{\pi}(\theta_2)$$

Reject H_0 if T_n "large": if $T_n > t_\alpha$ such that for $\pi^* = 0$ and any $\theta_1^* \in \Theta_1$,

$$P^*(T_n > t_\alpha) \leq \alpha.$$

with G centred Gaussian process s.t. $Cov(G_{\theta_2}, G_{\theta'_2}) = \frac{b}{\sqrt{aa'}}$,

$$T_n \xrightarrow{\mathcal{L}} \sup_{\theta_2 \in \Theta_2} G_{\theta_2}$$

• with G^n centred Gaussian process s.t. $Cov(G_{\theta_2}^n, G_{\theta'_2}^n) = \frac{b_n}{\sqrt{a_n a'_n}}$ and Θ_2^{δ} finite δ -grid,

$$\sup_{\theta_2 \in \Theta_2^{\delta}} G_{\theta_2}^n \xrightarrow[\delta \to 0]{\mathcal{L}} \sup_{\theta_2 \in \Theta_2} G_{\theta_2}$$

 \triangleright G depends on P^* but G^n depends on the sample only.

Aim: based on a realisation of the sample, test the hypothesis $H_0: \pi^* = 0$ vs $H_1: \pi^* > 0$

Test statistic:

$$T_n = \sup_{\theta_2} \sqrt{\frac{n}{a_n}} \hat{\pi}(\theta_2)$$

Reject H_0 if T_n "large": if $T_n > t_\alpha$ such that for $\pi^* = 0$ and any $\theta_1^* \in \Theta_1$,

$$P^*(T_n > t_\alpha) \leq \alpha.$$

• with G centred Gaussian process s.t. $Cov(G_{\theta_2}, G_{\theta'_2}) = \frac{b}{\sqrt{aa'}}$,

$$T_n \xrightarrow{\mathcal{L}} \sup_{\theta_2 \in \Theta_2} G_{\theta_2}$$

• with G^n centred Gaussian process s.t. $Cov(G^n_{\theta_2}, G^n_{\theta'_2}) = \frac{b_n}{\sqrt{a_n a'_n}}$ and Θ^δ_2 finite δ -grid,

$$\sup_{\theta_2 \in \Theta_2^{\delta}} G_{\theta_2}^n \xrightarrow[\delta \to 0]{\mathcal{L}} \sup_{\theta_2 \in \Theta_2} G_{\theta_2}$$

 \triangleright G depends on P^* but G^n depends on the sample only.

Algorithm

Input :
$$\varphi$$
, g , $\{f_1(.; \theta_1) : \theta_1 \in \Theta_1\}$, $\{f_2(.; \theta_2) : \theta_2 \in \Theta_2\}$, K , Θ_2^{δ} , $\rho \in [0, 1]$, (x_1, \dots, x_n)

- 1. let $t = \sup_{\theta_2 \in \Theta_2} \sqrt{\frac{n}{a_n(\theta_2)}} \hat{\pi}(\theta_2)$
- 2. for $k \in \{1, ..., K\}$
 - 2.1 sample $(G_t)_{t \in \Theta_2^{\delta}} \sim \mathcal{N}\left(0, \left(\frac{b_n(t,t')}{\sqrt{a_n(t)a_n(t')}}\right)_{t,t' \in \Theta_2^{\delta}}\right)$
 - 2.2 let $\tilde{t}_k = \max_{t \in \Theta_2^{\delta}} g_t$
- 3. if $t \ge \text{empirical_quantile}((\tilde{t}_k)_{k \in \{1,...,K\}}, 1-p)$ reject H_0 else don't reject H_0 vs H_1

Let F be a (known) continuous cdf.

Test

 H_0 : the observations can be modelled as a sample from F versus

 H_1 : a proportion π^* (unknown) of this data has been obtained by discarding all values larger than some $c^* \in \mathbb{R}$ (unknown)

- ▶ If $Y \sim F$ and $\eta^* = F(c^*)$, the cdf of $Y|Y \leq c^*$ is $G: t \in [0,1] \mapsto \frac{1}{\eta^*} F(t) \mathbb{1}_{0 \leq F(t) \leq \eta^*} + \mathbb{1}_{\eta^* < F(t)}$.
- ▶ If $X \sim (1 \pi^*)F + \pi^*G$ with $\pi^* \in [0, 1]$, then $F(X) \sim (1 \pi^*)\mathcal{U}([0, 1]) + \pi^*\mathcal{U}([0, \eta^*])$.
- ► Test H_0 : $\pi^* = 0$ vs H_1 : $\pi^* > 0$ for the observations $F(x_1), \ldots, F(x_n)$ in the model

$$g_{\pi,\eta} = (1-\pi)\mathbb{1}_{[0,1]} + rac{\pi}{\eta}\mathbb{1}_{[0,\eta]}.$$

Let F be a (known) continuous cdf.

Test

 H_0 : the observations can be modelled as a sample from F versus

 H_1 : a proportion π^* (unknown) of this data has been obtained by discarding all values larger than some $c^* \in \mathbb{R}$ (unknown)

- ▶ If $Y \sim F$ and $\eta^* = F(c^*)$, the cdf of $Y | Y \leq c^*$ is $G: t \in [0,1] \mapsto \frac{1}{n^*} F(t) \mathbb{1}_{0 \leq F(t) \leq \eta^*} + \mathbb{1}_{\eta^* < F(t)}$.
- ▶ If $X \sim (1 \pi^*) \overline{F} + \pi^* G$ with $\pi^* \in [0, 1]$, then $F(X) \sim (1 \pi^*) \mathcal{U}([0, 1]) + \pi^* \mathcal{U}([0, \eta^*])$.
- ► Test H_0 : $\pi^* = 0$ vs H_1 : $\pi^* > 0$ for the observations $F(x_1), \ldots, F(x_n)$ in the model

$$g_{\pi,\eta} = (1-\pi)\mathbb{1}_{[0,1]} + rac{\pi}{\eta}\mathbb{1}_{[0,\eta]}.$$

- $f_1 = \mathbb{1}_{[0,1]}, f_2(.; \eta) = \frac{1}{n} \mathbb{1}_{[0,\eta]} (\theta_2 = \eta, \text{ no } \theta_1 \text{ to estimate})$
- \blacktriangleright for any η ,

$$g_{\pi,\eta} = (1-\pi)\mathbb{1}_{[0,1]} + \frac{\pi}{\eta}\mathbb{1}_{[0,\eta]}$$

▶ consider the modified Kullback-Leibler divergence: $\phi: x \in \mathbb{R} \mapsto -\log x + x - 1$

► The associated supremal estimator is:

$$\hat{\pi}(\eta) = \begin{cases} p_{-} + \frac{\eta}{\eta - 1} p_{+} = \frac{p_{-} - \eta}{1 - \eta} & \text{if } n_{-} > 0 \\ 0 & \text{if } n_{-} = 0 \end{cases}$$

with
$$p_{-} = \frac{n_{-}}{n} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{X_{i} \leq \eta}$$
 and $p_{+} = 1 - p_{-}$

• $\hat{\pi}(\eta)$ is the usual maximum likelihood estimator when $\hat{\pi}(\eta) \geq 0 \Leftrightarrow p_- \geq \eta$

$$g_{\pi,\eta} = (1-\pi)\mathbb{1}_{[0,1]} + \frac{\pi}{\eta}\mathbb{1}_{[0,\eta]} \quad p_- = \frac{n_-}{n} = \frac{1}{n}\sum_{i=1}^n\mathbb{1}_{X_i \leq \eta} \quad p_+ = 1-p_-$$

- $X_1, \ldots, X_n \sim g_{\pi^*, \eta^*}$. Test $H_0: \pi^* = 0$ vs $H_1: \pi^* > 0$.
- lacksquare $H_1=\cup_{\eta}H_1(\eta)$ where $H_1(\eta):X_1,\ldots,X_n\sim g_{\pi^*,\eta}$ with $\pi^*>0$
- usual likelihood ratio test:

$$\begin{split} LRTS &= 2\log\frac{\sup_{\eta} \prod_{i=1}^{n} g_{\hat{\pi}(\eta) \vee 0, \eta}(X_{i})}{\prod_{i=1}^{n} \mathbb{1}_{[0,1]}(X_{i})} \\ &= 2\log\sup_{\eta \leq p_{-}} \left(\frac{p_{-}}{\eta}\right)^{n_{-}} \left(\frac{p_{+}}{1-\eta}\right)^{n_{+}} \vee 1 \end{split}$$

Non-regular model: under H_0 , $LRTS \xrightarrow{\mathcal{L}} \sup_{\eta} \xi_{\eta}^2 \mathbb{1}_{\xi_{\eta} > 0}$ Based on Feng & McCulloch (1992), we may consider to extend the range of π :

$$LRTSe = 2 \log \frac{\sup_{\eta} \prod_{i=1}^{n} g_{\hat{\pi}(\eta), \eta}(X_{i})}{\prod_{i=1}^{n} \mathbb{1}_{[0,1]}(X_{i})}$$

$$= 2 \log \sup_{\eta} \left(\frac{p_{-}}{\eta}\right)^{n_{-}} \left(\frac{p_{+}}{1-\eta}\right)^{n_{+}} \vee 1$$

$$g_{\pi,\eta} = (1-\pi)\mathbb{1}_{[0,1]} + rac{\pi}{\eta}\mathbb{1}_{[0,\eta]} \quad p_- = rac{n_-}{n} = rac{1}{n}\sum_{i=1}^n\mathbb{1}_{X_i \leq \eta} \quad p_+ = 1-p_-$$

- $X_1, \ldots, X_n \sim g_{\pi^*, \eta^*}$. Test $H_0: \pi^* = 0$ vs $H_1: \pi^* > 0$.
- $H_1 = \bigcup_{\eta} H_1(\eta)$ where $H_1(\eta) : X_1, \dots, X_{\eta} \sim g_{\pi^*, \eta}$ with $\pi^* > 0$
- usual likelihood ratio test:

$$LRTS = 2 \log \frac{\sup_{\eta} \prod_{i=1}^{n} g_{\hat{\pi}(\eta) \vee 0, \eta}(X_{i})}{\prod_{i=1}^{n} \mathbb{1}_{[0,1]}(X_{i})}$$

$$= 2 \log \sup_{\eta \leq p_{-}} \left(\frac{p_{-}}{\eta}\right)^{n_{-}} \left(\frac{p_{+}}{1-\eta}\right)^{n_{+}} \vee 1$$

Non-regular model: under H_0 , $LRTS \xrightarrow{\mathcal{L}} \sup_{\eta} \xi_{\eta}^2 \mathbb{1}_{\xi_{\eta} > 0}$ Based on Feng & McCulloch (1992), we may consider to extend the range of π :

$$LRTSe = 2\log \frac{\sup_{\eta} \prod_{i=1}^{n} g_{\hat{\pi}(\eta),\eta}(X_i)}{\prod_{i=1}^{n} \mathbb{1}_{[0,1]}(X_i)}$$
$$= 2\log \sup_{\eta} \left(\frac{p_{-}}{\eta}\right)^{n_{-}} \left(\frac{p_{+}}{1-\eta}\right)^{n_{+}} \vee 1$$

$$g_{\pi,\eta} = (1-\pi)\mathbb{1}_{[0,1]} + rac{\pi}{\eta}\mathbb{1}_{[0,\eta]} \quad p_- = rac{n_-}{n} = rac{1}{n}\sum_{i=1}^n \mathbb{1}_{X_i \leq \eta} \quad p_+ = 1-p_-$$

- $X_1, \ldots, X_n \sim g_{\pi^*, \eta^*}$. Test $H_0: \pi^* = 0$ vs $H_1: \pi^* > 0$.
- $ightharpoonup H_1 = \cup_{\eta} H_1(\eta)$ where $H_1(\eta): X_1, \ldots, X_n \sim g_{\pi^*,\eta}$ with $\pi^* > 0$
- usual likelihood ratio test:

$$\begin{split} \mathit{LRTS} &= \sup_{\eta \leq p_{-}} \left(\frac{p_{-}}{\eta}\right)^{n_{-}} \left(\frac{p_{+}}{1-\eta}\right)^{n_{+}} \vee 1 \xrightarrow{\mathcal{L}} \sup_{\eta} \ \xi_{\eta}^{2} \mathbb{1}_{\xi_{\eta} > 0} \\ &\mathit{LRTSe} = \sup_{\eta} \left(\frac{p_{-}}{\eta}\right)^{n_{-}} \left(\frac{p_{+}}{1-\eta}\right)^{n_{+}} \vee 1 \end{split}$$

our test is not a likelihood ratio test:

$$T = \sup_{\eta} \sqrt{\frac{n}{a_n}} \, \hat{\pi}(\eta) = \sup_{\eta} \sqrt{n} \, \frac{p_- - \eta}{\sqrt{p_- p_+}} \, \frac{\mathcal{L}}{\rightarrow} \, \sup_{\eta} \xi_{\eta}$$

$$g_{\pi,\eta} = (1-\pi) \mathbb{1}_{[0,1]} + rac{\pi}{\eta} \mathbb{1}_{[0,\eta]} \quad p_- = rac{n_-}{n} = rac{1}{n} \sum_{i=1}^n \mathbb{1}_{X_i \leq \eta} \quad p_+ = 1-p_-$$

- $X_1, \ldots, X_n \sim g_{\pi^*, n^*}$. Test $H_0: \pi^* = 0$ vs $H_1: \pi^* > 0$.
- \blacktriangleright $H_1 = \cup_{\eta} H_1(\eta)$ where $H_1(\eta): X_1, \ldots, X_n \sim g_{\pi^*, \eta}$ with $\pi^* > 0$
- usual likelihood ratio test:

$$LRTS = \sup_{\eta \le p_{-}} \left(\frac{p_{-}}{\eta}\right)^{n_{-}} \left(\frac{p_{+}}{1-\eta}\right)^{n_{+}} \lor 1 \xrightarrow{\mathcal{L}} \sup_{\eta} \ \xi_{\eta}^{2} \mathbb{1}_{\xi_{\eta} > 0}$$
 $LRTSe = \sup_{\eta} \left(\frac{p_{-}}{\eta}\right)^{n_{-}} \left(\frac{p_{+}}{1-\eta}\right)^{n_{+}} \lor 1$

our test is not a likelihood ratio test:

$$T = \sup_{\eta} \sqrt{\frac{n}{a_n}} \, \hat{\pi}(\eta) = \sup_{\eta} \sqrt{n} \, \frac{p_- - \eta}{\sqrt{p_- p_+}} \xrightarrow{\mathcal{L}} \sup_{\eta} \xi_{\eta}$$

$$X_1, \ldots, X_n \overset{i.i.d.}{\sim} g_{\pi^*, \eta^*} = (1 - \pi^*) \mathbb{1}_{[0,1]} + \frac{\pi^*}{\eta^*} \mathbb{1}_{[0,\eta^*]}$$

$$n = 100$$

$$X_1, \ldots, X_n \overset{i.i.d.}{\sim} g_{\pi^*, \eta^*} = (1 - \pi^*) \mathbb{1}_{[0,1]} + \frac{\pi^*}{n^*} \mathbb{1}_{[0,\eta^*]}$$

n = 100

 $q_{\rm LRTS}$ by Monte-Carlo such that

$$P_{\pi^*=0}(LRTS > q_{LRTS}) \le p$$
 $(p = 0.1, 0.01, 0.001)$

 $q_{\rm LRTS}$ by Monte-Carlo such that

$$P_{\pi^*=0}(LRTS>q_{\mathsf{LRTS}}) \leq p$$
 $(p=0.1,0.01,0.001)$

 $q_{\rm LRTSe}$ by Monte-Carlo such that

$$P_{\pi^*=0}(LRTSe > q_{\mathsf{LRTSe}}) \leq p$$
 $(p = 0.1, 0.01, 0.001)$

 q_{T} by Monte-Carlo such that

$$P_{\pi^*=0}(T > q_{\mathsf{T}}) \le p$$

($p = 0.1, 0.01, 0.001$)

 $q_{\rm LRTS}$ by Monte-Carlo such that

$$P_{\pi^*=0}(LRTS > q_{LRTS}) \le p$$
 $(p = 0.1, 0.01, 0.001)$

Under H_1 $\pi^*=0.4$ $\eta^*=0.8$ $\eta=100$

 $q_{\rm LRTSe}$ by Monte-Carlo such that

$$P_{\pi^*=0}(LRTSe > q_{\mathsf{LRTSe}}) \leq p$$
 $(p = 0.1, 0.01, 0.001)$

Under
$$H_1$$
 $\pi^*=0.4$ $\eta^*=0.8$ $n=100$

 q_{T} by Monte-Carlo such that

$$P_{\pi^*=0}(T>q_{\mathsf{T}}) \leq p$$
 $(p=0.1,0.01,0.001)$

Monte-Carlo

approximation of

the probability

to reject H_0

under H_1 for

each test

 $\pi^* = 0.4$

 $\eta^* = 0.8$

n = 100

$$X_1, \ldots, X_n \overset{i.i.d.}{\sim} g_{\pi^*, \eta^*} = (1 - \pi^*) \mathbb{1}_{[0,1]} + \frac{\pi^*}{\eta^*} \mathbb{1}_{[0,\eta^*]}$$

$$n = 1000$$

Conclusion and Perspectives

- ► Work in progress
- ▶ Other divergences φ , choice of g: robustness?
- ightharpoonup Situations with unknown θ_1 can be addressed
- Mixtures components in neighbourhoods of given families of probability measures

Thank you for your attention!

Liese, F. and Vajda, I. (2006).

On divergences and informations in statistics and information theory.

IEEE Transactions on Information Theory, 52(10):4394–4412.