IoT infrastructure State of art

Aghiles DJOUDI

Paris-Est University

March 18, 2019

- 1. Introduction
- State of the art
- Conclusion

Figure 1: The IoT Platform

- Connect sensors to the gateway.
- Connect the gateway to the infrastructure.
- Store & Analyze sensors data.

1. Introduction | 1. Context 1/21

Problematic

Introduction

Figure 2: The IoT problematics

- How to communicate sensors efficiently
 - → IEEE 802.15.4, 6LowPAN
 - Throughput, Delay, Jitter, Loss rate and Availability.
- How to communicate sensors with the infrastructure efficiently
 - → LPWAN, LoraWan
 - Interoperability ?
- How to extract knowledge from sensors data.
 - Data mining: Classification, Clustering
 - Deep learning: Machine learning

1. Introduction | 2. Problematic 2/21

- 1. Introduction
- 2. State of the art
- 3. Conclusion

- Introduction
- 2. State of the art
- Conclusion

- 1. Application protocols
- 2. Service discovery
- 3. Network layer
- 4. Link & Physical layer

Standardization

Application protocol	DDS CoAP AMQP	MQTT MQTT-SN	XMPP HTTP		
Service discovery	mDNS	DNS-S	SD		
Network layer		RPL			
Link layer	IEEE 802.15.4				
Physical layer	EPCglobal	IEEE 802.15.4	Z-Wave		

Table 1: Standardization efforts that support the IoT

2. State of the art 3/21

Standardization

Figure 3: Rime Stack

2. State of the art 4/21

Standardization

Figure 4: Uip Stack

2. State of the art 5 / 21

Standardization

Figure 5: rime VS uip

2. State of the art 6 / 21

- Introduction
- 2. State of the art
- Conclusion

- 1. Application protocols
- 2. Service discovery
- 3. Network laver
- 4. Link & Physical layer

CoAP application

State of the art

- Constrained Application Protocol
- The IETF Constrained RESTful Environments
- CoAP is bound to UDP
- CoAP can be divided into two sub-layers
 - messaging sub-layer
 - request/response sub-layer
 - a) Confirmable.
 - b) Non-confirmable.
 - c) Piggybacked responses.
 - d) Separate response
- CoAP, as in HTTP, uses methods such as:
 - GET, PUT, POST and DELETE to
 - Achieve, Create, Retrieve, Update and Delete
 - Ex: the GET method can be used by a server to inquire the clients temperature

Figure 6: CoAP application

Figure 7: CoAP message types

CoAP application

State of the art

0 1	23	4-7	16-31				
Ver	Т	OC	CODE	Message ID			
	Token						
	Options						
Payload							

Table 2: CoAP message format.

Ver: is the version of CoAP

T: is the type of Transaction

OC: is Option count

Code: represents the request method (1-10) or response code (40-255).

→ Ex: the code for GET, POST, PUT, and DELETE is 1, 2, 3, and 4, respectively.

Message ID: is a unique identifier for matching the response.

MQTT application

State of the art

- Message Queue Telemetry Transport
- Andy Stanford-Clark of IBM and Arlen Nipper of Arcom
 - Standardized in 2013 at OASIS
- MQTT uses the publish/subscribe pattern to provide transition flexibility and simplicity of implementation
- MQTT is built on top of the TCP protocol
- → MQTT delivers messages through three levels of QoS
- Specifications
 - → MQTT v3.1 and MQTT-SN (MQTT-S or V1.2)
 - MQTT v3.1 adds broker support for indexing topic names
- The publisher acts as a generator of interesting data.

Figure 8: MQTT application

MQTT application

State of the art

0-3	4	5 6	7			
Message type	DUP	QoS level	Retain			
Remaining length						
Variable length header						
Variable length message payload						

Table 3: MQTT message format.

Message type: CONNECT (1), CONNACK (2), PUBLISH (3), SUBSCRIBE (8) and so on

DUP flag: indicates that the massage is duplicated

QoS Level: identify the three levels of QoS for delivery assurance of Publish messages

Retain field: retain the last received Publish message and submit it to new subscribers as a first message

XMPP application

State of the art

- Extensible Messaging and Presence Protocol
- Developed by the Jabber open source community
- An IETF instant messaging standard used for:
 - multi-party chatting, voice and telepresence
- Connects a client to a server using a XML stanzas
- An XML stanza is divided into 3 components:
 - message: fills the subject and body fields
 - presence: notifies customers of status updates
 - iq (info/query): pairs message senders and receivers
- Message stanzas identify:
 - the source (from) and destination (to) addresses
 - types, and IDs of XMPP entities

Figure 9: XMPP application

Figure 10: XML stanza

AMQP application

State of the art

- Advanced Message Queuing Protocol
- Communications are handled by two main components
 - exchanges: route the messages to appropriate gueues.
 - message queues: Messages can be stored in message queues and then be sent to receivers
- It also supports the publish/subscribe communications.
- It defines a layer of messaging on top of its transport layer.
- AMQP defines two types of messages
 - bare massages: supplied by the sender
 - annotated messages: seen at the receiver
- The header in this format conveys the delivery parameters:
 - durability, priority, time to live, first acquirer & delivery count.
- AMQP frame format

Size the frame size

DOFF the position of the body inside the frame.

Type the format and purpose of the frame.

- Fx: 0x00 show that the frame is an AMOP frame.
- Ex: 0x01 represents a SASL frame.

Figure 11: AMQP application

Figure 12: AMQP frame format

DDS application

State of the art

- Data Distribution Service
- Developed by Object Management Group (OMG)
- Supports 23 QoS policies:
 - ike security, urgency, priority, durability, reliability, etc
- Relies on a broker-less architecture
 - uses multicasting to bring excellent Quality of Service
 - real-time constraints
- DDS architecture defines two layers:

DLRL Data-Local Reconstruction Layer

* serves as the interface to the DCPS functionalities

DCPS Data-Centric Publish/Subscribe

- delivering the information to the subscribers
- 5 entities are involved with the data flow in the DCPS layer:
 - Publisher:disseminates data

2. State of the art | 1. Application protocols

- DataWriter: used by app to interact with the publisher
- Subscriber: receives published data and delivers them to app
- DataReader: employed by Subscriber to access received data
- → Topic: relate DataWriters to DataReaders

Figure 13: DDS application

IoT cloud platforms

State of the art

Platform	COAP	XMPP	MQTT
Arkessa			✓
Axeda			
Etherios			
LittleBits			
NanoService	✓		
Nimbits		√	
Ninja blocks			
OnePlateformv	✓	√	
RealTime.io			
SensorCloud			
SmartThings			
TempoDB			
ThingWorx			✓
Xively			✓
Ubidots			✓

Table 4: IoT cloud platforms and their characteristics

- Introduction
- 2. State of the art
- 3 Conclusion

- 1. Application protocols
- 2. Service discovery
- 3. Network layer
- 4. Link & Physical layer

MDNS State of the art

- No need for manual reconfiguration or extra administration
- It is able to run without infrastructure
- It is able to continue working if failure happens.
- It inquires names by sending an IP multicast message to all the nodes in the local domain
 - → Clients asks devices that have the given name to reply back
 - the target machine receives its name and multicasts its IP @
 - → Devices update their cache with the given name and IP @

Figure 14: MDNS

DNS-SD State of the art

- Requires zero configuration aids to connect machine
- It uses mDNS to send DNS packets to specific multicast addresses through UDP
- There are two main steps to process Service Discovery:
 - inding host names of required services such as printers
 - pairing IP addresses with their host names using mDNS
- Advantages
 - IoT needs an architecture without dependency on a configuration mechanism
 - smart devices can join the platform or leave it without affecting the behavior of the whole system
- Drawbacks
 - Need for caching DNS entries

Figure 15: DNS-SD

IoT operating systems

State of the art

os	Architecture	Multi threading	Scheduling	Dynamic Memory	Memory protection	Network Stack	Virtualization and Completion
Contiki/Contiki-ng	Modular	/	Interrupts execute w.r.t.	/	×	uIP Rime	Serialized Access
MANTIS	Modular	×	Priority classes	/	×	At Kernel COMM layer	Semaphores.
Nano-RK	Layered	/	Monotonic harmonized	×	×	Socket abstraction	Serialized access semaphores
LiteOS	Monolithic	1	Round Robin	/	1	File	Synchronization primitives

Table 5: Common operating systems used in IoT environment [1]

- 2. State of the art

- 3. Network layer

IEEE 802.15.4 topologies

State of the art

Standard topologies to form IEEE 802.15.4e networks are

Star contains at least one FFD and some RFDs

Mesh contains a PAN coordinator and other nodes communicate with each other

Cluster consists of a PAN coordinator, a cluster head and normal nodes.

■ The IEEE 802.15.4e standard supports 2 types of network nodes

FFD Full function device: serve as a coordinator

- * It is responsible for creation, control and maintenance of the net
- * It store a routing table in their memory and implement a full MAC

RFD Reduced function devices: simple nodes with restricted resources

- * They can only communicate with a coordinator
- * They are limited to a star topology

Figure 16: IEEE 802.15.4 topologies. (a) Star. (b) Mesh. (c) Cluster-tree.

2. State of the art | 3. Network layer 18 / 21

- Introduction
- 2. State of the art
- 3 Conclusion

- 1. Application protocols
- 2. Service discover
- Network layer
- 4. Link & Physical layer

Results

State of the art

Phy protocol	Radio band (MHz)	MAC address	Data rate (bps)	Scalability
IEEE 802.15.4	868/915/2400	TDMA, CSMA/CA	20/40/250 K	65K nodes
BLE	2400	TDMA	1024K	5917 slaves
EPCglobal	860-960	ALOHA	varies 5-640K	-
Z-Wave	868/908/2400	CSMA/CA	40K	232 nodes

Table 6: IoT cloud platforms and their characteristics [1]

Results

Comparison with related work

Characteristics	6LoWPAN	LoRaWAN	SigFox
Frequency band	902-929	902-928	902
(MHz)	868-868.6	863-870 and 434	868
Number of channels	0016 for 2400	80 for 915	25
(channels for MHz)	0010 for 915	10 for 868 and 780	
	0001 for 868.3		
Channel bandwidth	0005 for 2400	0.125 and 0.50 for 915	0.0001-0.0012
(MHz)	0002 for 915	0.125 and 0.25 for 868 and 780	
	0600 for 868.3		
Maximum data rate	0250 for 2400	0.00098-0.0219 for 915	0.1-0.6
(kbps for MHz)	0040 for 915	0.250-0.05 for 868 and 780	
	0020 for 868.3		
Channel coding	-085 for 2400	-137	-137
(dBm for MHz)	-092 for 915		
	-092 for 868.3		
Protocol data unit (bytes)	6+127	x + (19 to 250)	12+ (0 to 12)
Channel coding	Direct	CSS	Ultra
Transmission range	10-100 m	5-15 km	10-50 km
Battery lifetime	1-2 years	<10 years	<10 years

Table 7: LPWan Characteristics [2]

- 1. Introduction
- State of the art
- 3. Conclusion

Conclusion

Routing protocol	Control Cost	Link Cost	Node Cost
OSPF/IS-IS	Х	✓	X
OLSRv2	?	✓	✓
RIP	✓	?	X
DSR	✓	X	X
RPL	✓	1	✓

Table 8: Routing protocols comparison _rpl2_

Application protocol	Rest- Full	Trans- port	Pub- lish/Sub- scribe	Request/Re- sponse	Secu- rity	QoS	Header size (Byte)
COAP	✓	UDP	✓	✓	DTLS	1	4
MQTT	Х	TCP	✓	Х	SSL	1	2
MQTT-SN	X	TCP	✓	X	SSL	✓	2
XMPP	X	TCP	✓	✓	SSL	X	-
AMQP	X	TCP	✓	X	SSL	✓	8
DDS	Х	UDP	✓	X	SSL	1	-
		TCP			DTLS		
HTTP	✓	TCP	X	✓	SSL	Х	-

Table 9: Application protocols comparison

3. Conclusion 21/21

Conclusion

Routing protocol	Control Cost	Link Cost	Node Cost
OSPF/IS-IS	Х	✓	X
OLSRv2	?	1	✓
RIP	✓	?	X
DSR	✓	X	X
RPL	1	1	1

Table 8: Routing protocols comparison _rpl2_

Application protocol	Rest- Full	Trans- port	Pub- lish/Sub- scribe	Request/Re- sponse	Secu- rity	QoS	Header size (Byte)
COAP	✓	UDP	✓	✓	DTLS	✓	4
MQTT	Х	TCP	✓	X	SSL	1	2
MQTT-SN	Х	TCP	✓	X	SSL	1	2
XMPP	Х	TCP	✓	✓	SSL	Х	-
AMQP	Х	TCP	✓	X	SSL	1	8
DDS	Х	UDP	✓	X	SSL	1	-
		TCP			DTLS		
HTTP	✓	TCP	X	✓	SSL	X	-

Table 9: Application protocols comparison

Thank you!

References

- [1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, " "Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications," IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347–2376, 24–2015, 01947.
- [2] H. A. A. Al-Kashoash and A. H. Kemp, * Comparison of 6LoWPAN and LPWAN for the Internet of Things,* Australian Journal of Electrical and Electronics Engineering, vol. 13, no. 4, pp. 268–274, Oct. 2016, 00007.