(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-201688 (P2000-201688A)

(43)公開日 平成12年7月25日(2000.7.25)

(51) Int.Cl. ⁷	識別記号	FI	テーマコード(参考)
C 1 2 N 15/09	ZNA	C 1 2 N 15/00	ZNAA 4B024
C 0 7 K 14/72		C 0 7 K 14/72	4 B 0 6 3
C 1 2 N 5/10		C 1 2 P 21/02	C 4B064
C 1 2 P 21/02		C 1 2 Q 1/02	4 B 0 6 5
C 1 2 Q 1/02		C12N 5/00	B 4H045
C124 1/02	審査請求	未請求 請求項の数12 OL	(全 23 頁) 最終頁に続く
(21)出顧番号	特願平 11-98787	(71)出顧人 000002093 住友化学工美	
(22)出顧日	平成11年4月6日(1999.4.6)		市中央区北浜4丁目5番33号
(31)優先権主張番号	特願平10-319465	兵庫県宝塚市	市高司4丁目2番1号 住化テ
(32)優先日	平成10年11月10日(1998.11.10)	クノサービ	ス株式会社内
(33)優先権主張国	日本(JP)		市高司4丁目2番1号 住化テス株式会社内
		クノッーと、 (74)代理人 100093285 弁理士 久代	

最終頁に続く

(54) 【発明の名称】 エストロジェンレセプター遺伝子およびその利用

(57) 【要約】

【課題】化学物質のエストロジェン様作用を測定するた めの方法として、化学物質のエストロジェンレセプター 活性化能を評価するための試験系を提供可能とするこ

【解決手段】配列番号1で示されるアミノ酸配列を有す る蛋白質をコードするエストロジェンレセプター遺伝子 等。

30

1

【特許請求の範囲】

【請求項1】配列番号1で示されるアミノ酸配列を有する蛋白質をコードするエストロシェンレセプター遺伝子。

【請求項2】配列番号3で示されるアミノ酸配列からなる蛋白質をコードするエストロジェンレセプター遺伝子。

【請求項3】配列番号2で示される塩基配列を有するエストロジェンレセプター遺伝子。

【請求項4】配列番号4で示される塩基配列からなるエー10 ストロジェンレセプター遺伝子。

【請求項5】請求項1~4記載のエストロジェンレセプター遺伝子を含有するベクター。

【請求項6】エストロジェンレセプター遺伝子に宿主細胞で機能可能なプロモーターが機能可能な形で結合されてなる請求項5記載のベクター。

【請求項7】請求項1~4記載のエストロシェンレセプター遺伝子が宿主細胞に導入されてなる形質転換体。

【請求項8】請求項5または6記載のベクターが宿主細 胞に導入されてなる形質転換体。

【請求項9】宿主細胞が動物細胞である請求項7または 8記載の形質転換体。

【請求項10】請求項7~9記載の形質転換体を培養してエストロジェンレセプターを産生させ、これを回収することを特徴とするエストロジェンレセプターの製造方法

【請求項11】配列番号1で示されるアミノ酸配列を有 するエストロジェンレセプター。

【請求項12】化学物質のエストロジェンレセプター活性化能を評価するためのレポーターアッセイにおいて、エストロジェン応答配列を含む転写制御領域の下流に連結されたレポーター遺伝子と請求項1~4記載のエストロジェンレセプター遺伝子とがエストロジェンレセプター非内在性宿主細胞に導入されてなる形質転換体に、化学物質を作用させることを特徴とする化学物質のエストロジェンレセプター活性化能の評価方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、エストロジェンレ セプター遺伝子およびその利用に関する。

[0002]

【従来の技術および発明が解決しようとする課題】近年、環境中の幾つかの化学物質がエストロジェン様作用 を示すことが報告されている。かかる化学物質の作用は

して化学物質のエストロジェン様作用を側定する試みがなされている。エストロジェンの作用機序として、エストロジェンがボストロジェンの標的細胞に存在するエストロジェンレセプターに結合すると、該レセプターは活 50

9

性化され、染色体上のエストロジェン応答配列に結合して該配列の下流に在する遺伝子の発現を促進する。そこで、化学物質のエストロジェン様作用を測定するための方法として、化学物質のエストロジェンレセプター活性化能を評価するための試験系の開発が切望されている。 【0003】

【課題を解決するための手段】本発明者らは、かかる状 況の下、鋭意検討した結果、水生動物のモデル動物であ るメダカのエストロジェンレセプターをコードする遺伝 子を見出し、本発明に至った。即ち、本発明は、配列番 号1で示されるアミノ酸配列を有する蛋白質をコードす るエストロジェンレセプター遺伝子(以下、本発明遺伝 子と記す。)、配列番号3で示されるアミノ酸配列から なる蛋白質をコードする該遺伝子、配列番号2で示され る塩基配列を有する該遺伝子、配列番号4で示される塩 基配列からなる該遺伝子、該遺伝子を含有するベクター (以下、本発明ペクターと記す。) 、該遺伝子が宿主細 胞に導入されてなる形質転換体(以下、本発明形質転換 体と記す。)、該刑質転換体を培養してエストロジェン レセプターを産生させ、これを回収することを特徴とす るエストロジェンレセプターの製造方法、配列番号1で 示されるアミノ酸配列を有するエストロジェンレセプタ 一、化学物質のエストロシェンレセプター活性化能を評 価するためのレポーターアッセイにおいて、エストロジ エン応答配列を含む転写制御領域の下流に連結されたレ ポーター遺伝子と本発明遺伝子とがエストロジェンレセ プター非内在性宿主細胞に導入されてなる形質転換体 に、化学物質を作用させることを特徴とする化学物質の エストロジェンレセプター活性化能の評価方法、を提供 するものてある。

[0004]

【発明の実施の形態】以下、本発明について詳細に説明する。本発明遺伝子は、例えば、ヒメダカ等のメダカから、J. Sambrook, E. F. Frisch, I. Maniatis著:モレキュラークローニンク第2版(Molecular Cloning 2nd edition)、コールドスプリング ハーバー ラボラトリー(Cold Spring Harbor Laboratory)発行、1989年等に記載の遺伝子工学的方法に準じて取得することができる。具体的には、まず、ヒメダカ等のメダカからRNAを調製する。例えば、ヒメダカの内臓を塩酸グアニジンやグアニジンチオシアネート等の強力な蛋白質変性剤を含む溶液中で粉砕し、さらに該粉砕物にフェノール、クロロボルム等を加えることにより蛋白質を変性させる。変性蛋白質を遠心分離等により除去した後、回収されたでは、原理の過度な多に、

「法等の方法により全KNAを抽出する。なお、これらの方法に基づいた市販のRNA調製用キットとしては、 例えばISOGEN(ニッポンジー)製)がある。得られた全 RNAを鋳型として使用し、該RNAにオリゴはTプラ イマーをアニールさせた後に逆転写酵素を作用させるこ とにより一本鎖cDNAを合成し、次いて、該一本鎖c DNAに大腸菌RNaseHおよび大腸菌のDNAポリ メラーゼ I を作用させて二本鎖の c DNAを合成する。 更に該cDNAの両末端をT4DNAポリメラーゼによ り平滑化する。得られた c DNAはフェノールークロロ ホルム抽出、エタノール沈殿等の通常の方法により精製 し、回収する。なお、これらの方法に基づいた市販ので DNA合成用キットとしては、例えばc DNA合成シス テムプラス(アマシャム社製)がある。このようにして 得られたcDNAを例えば、プラスミドpUC118やファー ジぇgtllなどのベクターにリガーゼを用いて挿入するこ とによりてDNAライブラリーを作製する。次に、この ようなcDNAライブラリーから、例えば、配列番号2 で示される塩基配列の部分塩基配列を有するDNA断片 をプロープとして用いるハイブリダイゼーション法や、 配列番号2で示される塩基配列の部分塩基配列を有する オリゴヌゥレオチドをプライマーとして用いるPCR法 により、本発明遺伝子を取得することができる。また、 上記のようにして調製された全RNAを鋳型に使用して 逆転写反応を行なった後、得られたDNAを鋳型にして PCRを行なうことにより (RT-PCR法) 本発明遺 伝子を取得することもできる。上記のPCR法またはR T-PCR法においてPCRにより本発明遺伝子を増幅 する際に用いるプライマーとしては、例えば、20bpから 40bp程度の長さでかつGまたはC塩基の割合が40%から70% 程度の塩基配列を、配列番号2で示される塩基配列の 5、末端領域および3、末端領域からそれぞれ選択し、 該塩基配列を有するオリゴヌクレオチドを台成するとよ い。具体的には、例えば、フォワードブライマーの塩基 配列としては5'-ATG TAC CCT GAA GAG AGC (GG G-3'や 5'-AAG CTTCAT GAG TAA GAG ACA GAG C-3'があげられ、 リバースプライマーの塩基配列としては5°-T(A GTC TTG AAG GGC CGG GGA G-3 があげられる。このようにしてP (Rで増幅された本発明遺伝子は、例えば、J. Sambrook E. F. Frisch, T. Maniatis著;モレキュラー クローニング 第2版 (Molecular Cloning 2nd edition) , コールド スプリング ハーハー ラボラトリー (Cold Spring Harb or Laboratory) 発行、1989年等に記載の遺伝子工 学的方法に準じてバクターにクローニングすることがで きる。具体的には例えば、TAグローニングキット(Invi trogen社)やpBluescriptII(Stratagene社)などの市 販のプラスミドへ ケターを用いてクローエンタすること ができる。尚、本発明遺伝子は、配列番号2型配列番号 4

60. 1977 等に記載される) やSanger法 (例えばSanger, F. & A R. Coulson, J. Mol. Biol., 94, 441, 1975、Sanger, F. & Nicklen and A. R. Coulson, Proc. Natl. Acad Sci. USA, 74, 5463, 1977等に記載される) に準じて解析することにより確認することができる。

【0005】このようにして取得される本発明遺伝子 を、例えば、宿主細胞内で複製可能なDNAであって、宿 主細胞からの単離、精製が可能であり、検出可能なマー カー遺伝子をもつベクターに、通常の遺伝子工学的手法 を用いて組込むことにより本発明ベクターを構築するこ とができる。本発明ベクターの構築に用いることができ るベクターとしては、具体的には、微生物である大腸菌 を宿主細胞とする場合、例えば、プラスミドpUC119(宝 酒造 (株) 製) や、ファージミドpBluescriptII (スト ラタジーン社製)等をあげることができ、酵母を宿主細 胞とする場合は、プラスミドpACT2(Clontech社製)な どをあげることができる。また、哺乳類動物細胞を宿主 細胞とする場合は、pRC/RSV、pRC/CMV(Invitrogen社 製)等のプラスミド、ウシパピローマウイルスプラスミ ドpBPV (ファルマシア社製)、EBウイルスプラスミドpC EP4(Invitrogen社製)等のウイルス由来の自律複製起 点を含むベクター、ワクシニアウイルス等のウイルスな どをあげることができ、昆虫類動物細胞(以下、昆虫細 胞と記す。)を宿主細胞とする場合は、バキュロウイル ス等の昆虫ウイルスをあげることができる。バキュロウ イルスやワクシニアウイルス等のウイルスに本発明遺伝 子を組込むには、使用しようとするウイルスのゲノムと 相同な塩基配列を含有するトランスファーベクターを用 いる。このようなトランスファーベクターの具体的例と しては、Pharmingen社から市販されているpVL1392.pVL1 393 (Smith, G. E., Summers M. D. et al. : Mol. Cell. Biol., 3.2156-2165, 1983) . pSFB5 (Funahashi, S. et al., J. Vir ol., 65:5584-5588. 1991) などのプラスミドをあげること かできる。本発明遺伝子を前記のようなトランスファー ヘクターに挿入し、該トランスファーベクターとウイル フゲノムとを同時に宿主細胞に導入すると、トランスフ ァーベクターとウイルスゲノムとの間で相同組換えが起 こり、本発明遺伝子がゲノム上に組み込まれたウイルス を得ることができる。ウイルスゲノムとしては、Baculo virus、Adenovirus、Vacciniavirusなどのゲノムを用い ることができる。本発明遺伝子の上流に、宿主細胞で機 能可能なプロモーターを機能可能な形で結合させ、これ を上述のような。クターに組み込むことにより、本発明 遺伝子を宿主細胞で発現させることの可能な本発明へク The second of the second of the second

正は、本発明遺伝子が導入される宿主細胞においてプロモーターの制御下に発現するように、該プロモーターに 本発明遺伝子とを結合させることを意味する。使用する プロモーターは 飛質転換する宿主細胞内でプロモータ

^{0.105. 1984)} 等い通常の方法に準じて、移骸の化学合成を行うことにより調製することもできる。符られた本発明遺伝子の塩基配列は、Maxam Gilbert法(例えば、Maxam A.M. & W. Gilbert. Proc. Natl. Acad. Sci. U.A. 74. 5

一活性を示すものであれば特に制限はなく、例えば、宿 主細胞が動物細胞や分裂酵母である場合は、例えば、ラ ウス肉腫ウイルス (RSV) プロモーター、サイトメガロ ウィルス (CMV) プロモーター、シミアンウイルス (SV4 () の初期もしくは後期プロモーター、マウス乳頭腫ウ イルス (MMTV) プロモーター、単純ヘルペスウイルス (HSV) のチミジンキナーゼ(tk)遺伝子プロモーター 等をあげることができる。宿主細胞が出芽酵母である場 合はADH1プロモーターなどをあげることができる。ま た、宿主細胞において機能するプロモーターをあらかじ め保有するベクターを使用する場合は、ベクター保有の プロモーターと本発明遺伝子とが機能可能な形で結合す るように、該プロモーターの下流に本発明遺伝子を挿入 すればよい。例えば、前述のプラスミドpRC/RSV.pRC/CM V等は、動物細胞で機能可能なプロモーターの下流にク ローニング部位が設けられており、該クローニンク部位 に本発明遺伝子を挿入し動物細胞に導入すれば、本発明 遺伝子が発現する。これらのプラスミトにはあらかじめ SV40の自律複製起点 (ori) が組み込まれているため、o ri(-)のSV40ゲノムで形質転換された培養細胞、例えばC 08細胞等に該プラスミドを導入すると、細胞内でプラス ミドのコピー数が非常に増大し、結果として該プラスミ ドに組み込まれた本発明遺伝子を大量発現させることも てきる。また、前述の酵母用プラスミドpACT2はADH1プ ロモーターを有しており、該プラスミドまたはその誘導 体のADH1プロモーターの下流に本発明遺伝子を挿入すれ ば、本発明遺伝子を例えばCG1945 (Clontech社製) 等の 出芽酵母内で大量発現させることが可能な本発明ベクタ ーが構築できる。

【0006】上述のようにして構築された本発明ベクタ 一を宿主細胞に導入することにより、本発明形質転換体 を取得することができる。本発明ベクターを宿主細胞ベ 導入する方法は、形質転換される宿主細胞に応じて通常 用いられる方法でよい。例えば、大腸菌を宿主細胞とす る場合は、「モレキュラー・クローニング」(J Sambrook ら、コールド・スプリング・バーバー、1989年)等 に記載される塩化カルシウム法やエレクトロボレーショ シ法等を用いることができ、酵母菌を宿主細胞とする場 合は、例えばリチウム法に基づくYeast transformation kit (Clontech社製) などを用いてホクターを導入するこ とができる。また、哺乳類動物細胞や昆虫細胞等の動物 細胞を宿主細胞とする場合は、例えば、リン酸カルシウ A.法、DEVEデキストラン法、エレガトロオレーション 法、またはリボフェクション法等により試宿主細胞に本

【0007】本発明形質転換体の選抜は、導入された本 発明ベクターが有する検出マーカー遺伝子の性質に応じ た方法を用いればよい。例えば、検出マーカー遺伝子 が、細胞致死活性を示す薬剤に対する耐性遺伝子である 場合には、該薬剤を添加した培地を用いて、本発明ベク ターを導入した細胞を培養すればよい。このようにして 用いることのできる薬剤耐性遺伝子と選抜薬剤との組み 台わせとしては、例えば、ネオマイシン耐性遺伝子とネ オマイシンとの組合せ、ハイグロマイシン耐性遺伝子と ハイグロマイシンとの組み合せ、ブラストサイジンS耐 性遺伝子とブラストサイジンSとの組合せ等をあげるこ とができる。また、検出マーカー遺伝子が、宿主細胞の 栄養要求性を相補する遺伝子である場合には、該栄養素 を含まない最少培地を用いて、本発明ベクターを導入し た細胞を培養すればよい。さらに、本発明発現ベクター を導入した場合は、エストロジェン結合活性に基づく検 出方法を用いることもできる。本発明遺伝子が宿主細胞 の染色体に導入されてなる本発明形質転換体を取得する には、例えば、本発明ベクターを制限酵素等で消化する ことにより直鎖上にした後、これを前述の方法で宿主細 胞へ導入して該細胞を通常数週間培養し、導入された本 発明ベクターにコードされる検出マーカーを指標にして 目的とする形質転換体を選抜すればよい。例えは、上記 のような選択薬剤に対する耐性遺伝子を検出マーカー遺 伝子として持つ本発明ベクターを前述の方法で宿主細胞 に導入し、選択薬剤を添加した培地で数週間以上該細胞 を継代培養して、コロニー状に生き残った選択薬剤耐性 クローンをピペットで吸い上げ純化することにより、本 発明遺伝子が宿主細胞の染色体に導入されてなる本発明 形質転換体を取得することができる。該形質転換体は、 凍結保存が可能であり必要に応じて起眠して使用するこ とできるので、一過性の遺伝子導入株と比較して、形質 転換体作製の手間を省くことができ、形質転換体の性能 を一定に保つこともできる。

【0008】上述のようにして得られた本発明形質転換 体を培養することにより本発明のエストロジェンレセプ ターを産生させることができる。例えば、本発明形質転 換体が微生物である場合、該形質転換体は、一般微生物 における通常の培養に使用される炭素源や窒素源、有機 ないし無機塩等を適宜含む各種の培地を用いて培養すれ ばよい。培養は、一般微生物における通常の方法に準じ で行い、固体培養、液体培養(試験管振とう式培養、往 復式振とう培養、ジャーファーメンター (Jar Fermente r) 培養、タンク培養等)等が可能である。培養温度

勇夫法によりウェルスゲノムを宿主細胞に導入できるほ つ ウイルスゲノムを含有するウイルス粒子を宿主細胞 へ感染させることによってもウイルスゲノムを宿主細胞 に尊入することができる。

養するとよい。培養時間は、種々の培養条件によって異 なるが、通常約1~約5日間である。また、上記刑質転 換体が動物細胞である場合、一般の培養細胞における通 50 常の培養に使用される培地を用いて培養すればよい。選

Burn Assessment of the experimental property of the experimental and the

択菓剤を利用して当該形質転換体を選抜した場合は、対 **恥する選択薬剤を共存させて培養するのが望ましい。哺** 乳類動物細胞の場合、例えば10v/v%となるようFBSを添 加したDMEM培地等の培地を用いて、37℃、5 v/v%CO。 存在下等にて、培地を数日ごとに交換しながら培養す る。細胞がコンフルエントになるまで増殖したら、0. 25 k/v%程度のトリプシンPBS溶液を用いて個々の細胞 に分散させ、数倍に希釈して新しい培養容器に播種し培 養を続ける。目的とする量まて細胞が増殖したら細胞を 集める。昆虫細胞の場台も同様に、TOv/v%FBSおよび2w/ vaYeastlateを含むGrace's medium等の昆虫細胞用培地 を用いて25℃から35℃で継代培養する。ただし、Sf 21細胞などの培養容器からはかれやすい細胞の場合は、 トリプシン液ではなくピペッテイングにより細胞を分散 させ継代を行なう。また、Baculovirus等のウイルスペ クターを含む形質転換体の場合は、細胞質効果により細 胞が死滅する前、例えば培養開始から72時間目までに 培養を終了することが好ましい。本発明形質転換体によ り産生されたエストロジェンレセプターの回収は、適 官、通常の単離、精製の方法を組み合わせて行えば良 く、例えば、培養終了後、形質転換体の細胞を遠心分離 等て集め、該細胞を通常のバッファー、例えば、20mMHE PES_pH7.1mM_EDTA,1mM_DTT,0.5mM_PMSFからなるバッフ ァー等に懸濁した後、ポリトロン、超音波、ダウンスホ モジナイザー等を用いて細胞を破砕し、破砕液を数万x gで数十分から1時間程度超遠心分離し、上清画分を回 収することにより、エストロシェンレセプターを含む画 分を得ることができる。さらに、前記上清画分をイオン <u>交換、疎水、ゲルろ過、アフィニティ等の各種クロマト</u> グラフィーに供することにより、より精製されたエスト ロジェントセプターを回収することもできる。この際、 後述のエストロシェンレセプターが結合する塩基配列を 含む15kpから200kp程度の長さのオリゴヌクレ ナチドをプロープとしたDNA結合アッセイなどにより、 目的とするエストロジェンレセプターを含む画分を見分 けることができる。このようにして製造された本発明の エストロジェンレセプターは、例えば、エストロジェン しセプターに対する化学物質の親和性を測定するための ラジオレセプターアッセイ等に用いることができる。 【0.0.0.9】上述のようにして構築された本発明発現べ 40 ^ やーは、例えば、化学物質のエストロジェンレセプタ 一活性化能を評価するためのレポーターアッセイに利用 で切ことができる。具体的には、エストロジェン応答配

例を有しエストロジェンレセプターにより転写が制御さ

子。または、エクトロジェン応答配列の下流に転写開始 こい要な塩基配列とレポーター遺伝子とを結合させたキ メラ遺伝子(以下、本キメラ遺伝子と記す。)を、細胞 内でのエピトロジェレレセプターの転写調節能をモニタ 50 するが、本発明はこれら実施例によって限定されるもの

ーするためのレポーター遺伝子として用いる。エストロ ジェン応答配列 (estrogen response element) とは、 エストロジェンにより転写が制御される遺伝子のプロモ ーターの上流に存在し、エストロジェンレセプターによ って認識される塩基配列を意味する。エストロジェンの 結合したエストロジェンレセプターは活性化されてエス トロジェン応答配列に結合することにより、該配列の下 流にある遺伝子の転写を促進する。エストロジェン応答 配列のコンセンサス配列としては、塩基配列 AGGTCAXXX TGACCT (Xは、A、G、C、またはTを意味する。) が一般 に知られている。レポーター遺伝子としては、ルシフェ ラーゼ遺伝子、分泌型アルカリフォスファターゼ遺伝 子、βガラクトシダーゼ遺伝子、クロラムフェニコール アセチルトランスフェラーゼ遺伝子、成長ホルモン遺伝 子などが利用できる。上述のように作製した本発明発現 ベカターと、本キメラ遺伝子を組み込んだベクターと を、内在性のエストロジェンレセプターを産生していな い宿主細胞、例えばHeLa細胞やNIH3T3細胞などに導入し 形質転換体を取得する。この形質転換体をそのまま1日 20 から数日間培養する間に、例えばエストロジェン様作用 をもつ化学物質を培地中に加えて前記形質転換体に作用 させる。該形質転換体が産生するエストロジェンレセプ ターが化学物質の結合により活性化された場合は、レポ ーター遺伝子のmRNAへの転写が促進され、ルシフェラー ゼ酵素蛋白質が形質転換体の細胞内に蓄積する。この状 態の形質転換体を破砕して細胞粗抽出物を調製し、レポ ーターの酵素活性等を指標にして細胞当たりのレポータ - 蛋白質の量を求める。例えば、レポーター遺伝子とし てルシフェラーゼ遺伝子を用いた場合、前記細胞粗抽出 物にルシフェラーゼの基質であるルシフェリンを加える と発光し、発光量はルシフェラーゼ量に比例する。従っ て、この発光量をルミノメーター等の測定装置で測定す ることにより、ルシフェラーゼ遺伝子の発現量がわか り、よって、その際に添加されていた化学物質のエスト ロジェンレセプター活性化能を評価することができる。 また、本発明発現ペクターと、本キメラ遺伝子が組み込 まれたベクターとを同時に宿主細胞に導入して、本発明 遺伝子および本キメラ遺伝子が宿主細胞の染色体に導入 されてなる形質転換体を取得し、上記レポーターアッセ イに用いてもよい。該形質転換体は凍結保存が可能であ り必要に応じて起眠して使用することできるので、これ を一旦取得すると、アッセイの度ごとにこれらの遺伝子 を宿主細胞に導入して新たな形質転換体を取得する必要 が無く、また、非質転換体の性能を一定に保つこともで

有用である。

[0010]

【実施例】以下、実施例により本発明を更に詳細に説明

ではない。

【0011】実施例1(本発明遺伝子の取得)

餌 (コイ稚魚用) にβーエストラシオール (和光純薬工 業株式会社製)10mg/lを10mg/g餌となるように添加し、 これにアセトンを加えてよく混和した後、ヘアードライ ヤーの下でアセトンを除去した。こうして得た処理餌 を、約3ヶ月のヒメダカ雌10個体に3回/1日の頻度で1 日間飽食量与えた。βーエストラジオール投与24時間後 に、これらのヒメダカから内臓を摘出し、直ちに組織1

(22mer, GC/AT = 13/9)XU1 : 5'-ATG TAC CCT GAA GAG AGC CGG G-3'

XU14: 5'-TCA GTC TTG AAG GGC CGG GGA G-3'

次いで、前記RT-PCRで得られたDNA断片をpCR2.1(TA cl oningベクター) にサブクローニングして大腸菌DH5-α に導入し、プラスミドを調製した (p(R-ER)。 pCR2.1の塩 基配列に基づくプライマーおよび上記のプライマー (XU 1. XU14)を用い、 ABI sequence systemで、前記のpCR-ERにクローニングされたDNA断片の塩基配列を決定し た。その結果、配列番号2で示される塩基配列が明らか となった。また、上記のようにして調製したRNAIμgを 鋳型とし、ランダム9merプライマーを用い、予め30℃で 10分間逆転写反応を行い、引き続き42℃で50分間逆転写 反応を行った。続いて下記のプライマー (XU36とXU14) を用い PCR (30サイクル、94℃ 30sec-1mim、50-60℃ 1 -1.5min、72℃ 1-3min)を行った。

XU36: 5'-AAG CTT CAT GAG TAA GAG ACA GAG C-3' (25mer GC/AT = 11/14) (22mer. GC/AT = 14/8)YU14: 5'-TCA GTC TTG AAG GGC CGG GGA G-3'

次いて、前記RT-PCRで得られたDNA断片をpCR2.1(TA cl oningベクター) にサブクローニングして大腸菌DH5-α に導入し、プラスミドを調製した(pCR-ER2)。pCR2.1の 塩基配列に基づくプライマーおよひ上記のプライマー (XU36, XU14)を用い、 ABI sequence systemで、前記の pCR-ER2にクローニングされたDNA断片の塩基配列を決定 した。その結果、配列番号4で示される塩基配列が明ら かとなった。

【0012】実施例2(本発明遺伝子発現用ベクターの

実施例1で得られたプラスミドpCR-ERからエストロシェ ンレセプター遺伝子をXba I とHind IIIで切り出し、同 し制限酵素で消化した発現ベクターpRc/RSVに組みこ み、エストロシェンレセプターを発現させるための発現

オリコヌクレオチド1:

5'-CCA AAG TCA GGT CAC AGT GAC CTG ATC AAA GGA AC-3' オリコヌクレオチド2:

5'-CTT TGA TCA GGT CAC TGT GAC CTG ACT TTG GGT TC-3

両オリゴヌクレオチドの末端をカイネーションによりリ ン酸化した。カイネーション反応液は、10 mmolのオリ ゴヌクレオチト1または10 nmolのオリゴヌクレオチ ト、2、 5μ] σ 10 Xカイネーション バッファー、 1μ 1 のin mMのATP. 2.5 μiのポリヌクレオチドキナーゼ 『宝酒造社製』を1.5 司容チューでに採り、滅菌蒸留水

ーブに加え、95℃で5分間保温し、60℃、次いで37℃に 40 てそれぞれ1時間保温した後、室温で約1時間放置し た。反応終了後、 $10\mu1$ のアニーリング反応液に $10\mu1$ の INAリガーゼ(ライゲーションキット、宝酒造社製)を 加え、2本鎖のERE断片を連結した。反応液をアガロー スゲル電気泳動に供してDNA断片の長さを分析し、ER to to section access a a company アヤマノ郷中 700年

リゴマッレオチト1とすりゴヌクレオチド2をアニーリ 1 がさせ、2本鎖のEREを得た。アニーリング反応液 は、リン酸化させたオリゴヌクレオチド1およびオリゴ スケレオチド2のそれぞれ20ヵ1ずこを、1.5 配容チュ

と判断されるDNA断片(以下、5 Y ERE断片と記 す。)をそれぞれ回収した。これらのDNA断片をプラ シティングキット(宝酒造社製)を用い、末端を平滑化 - 50 - した。一方、pBluescript (SK-) を制限酵素EcoR I (宝酒

10 gあたり10mlのトリゾール試薬を加えてホモジナイズし

た後、クロロホルムを加えて遠心分離した。水相を採取

してイソプロパノールを加えRNAを沈澱させた。約0.3g

約500 μ gのRNAが得られた。このようにして調製したRNA

lμgを鋳型とし、ランダム9merプライマーを用い、予め

30℃で10分間逆転写反応を行い、引き続き42℃で50分間

逆転写反応を行った。続いて下記のプライマー(XU1とX

U14) を用い PCR (30サイクル、94℃ 30sec-1mim、50-6

0℃ 1-1.5min、72℃ 1-3min)を行った。

(22mer, GC/AT = 14/8)

ベクターRSV-ERを構築した。具体的な過程を図1に、発 現べクターRSV-ERの構造の詳細を図2示す。また、同様 にして、実施例1で得られたプラスミドpCR-ER2からエ ストロジェンレセプター遺伝子をXba I とHind IIIで切 り出し、同じ制限酵素で消化した発現ベクターpRc/RSV に組みこみ、エストロジェンレセプターを発現させるた

【0013】実施例3(エストロジェンレセプターに応 答するレポーター遺伝子を有するベクターの構築)

めの発現ベクターRSV-ER2を構築した。

30 既知のセノプスのA2ビテロジェニン遺伝子 (GenBank Ac cession No. X00205) の5′末端領域のエストロジェン 応答配列 (以下、EREと記す。) のコンセンサス配列を もとに、下記のオリゴヌクレオチド1 およびオリゴヌク レオチド2を台成した。

造社製)で切断し、5′末端をアルカリフォスフェターゼ (宝酒造社製)で脱リン酸化した。前記のDNA断片(4 X ERE断片または5 % ERE断片)とpBluescript(SK-)とを それぞれDNAライゲーションキットを用いて結合した。 得られた反応液で大腸菌DH5αのコンピテントセル (東洋紡社製) を形質転換してアンピシリン耐性となっ た株を選抜し、該アンピシリン耐性株からプラスミドDN Aを調製し、塩基配列を AB1 PRISMTM377 DNA Sequence System (バーキンエルマージャパン社製) で確認した。次 に、 HSV $tKプロモーター配列を持つベクター<math>pTK\beta$ (ク ロンテック)を制限酵素Sal IおよびXho I (それぞれ宝 酒造社とニッポンシーン社製)で切断した後アガロース ケル電気泳動で分析し、約1 kbpのtKプロモーター断片 を得た。該断片をプランティングキットを用い、末端を 平滑化した。一方、ルシフェラーゼ遺伝子を持つレポー タープラスミト pGL-3(ピッカジー))を制限酵素Sma I(宝酒造社製)で切断し、5'末端をアルカリフォスフ ェターゼ (宝酒造社製) で脱リン酸化した。2つのDNA 断片をDNAライゲーションキットを用いて結合した。得 られた反応液で大腸菌DH5αのコンピテントセル(東 洋紡)を形質転換してアンピシリン耐性となった株を選 抜し、該アンビシリン耐性株からプラスミドDNAを調製 し、 tKプロモーター挿入したレポータープラスミド(tK -pGL-3) を取得した。次に、上記の4 % ERE断片が挿入さ れたpBluescriptを制限酵素KpnlおよびXbal(それぞれ 宝酒造社とニッポンジーン社製)で切断し、アガロース ゲル電気泳動で4 λ ERE断片を回収した。一方、tK-pGL-3をKpn lおよびNhe I (いずれも宝酒造社製) で消化 し、5'末端をアルカリフォスフェターゼ(宝酒造社 製)で脱りン酸化した。このようにして調製された4 X ERE断片とtK-pGL-3とをDNAライゲーションキットを用い て結合した。得られた反応液で大腸菌DH5α株のコン ピテントセル (東洋紡) を形質転換してアンピシリン耐 性となった株を選抜し、該アンビシリン耐性株からプラ スミドDNAを調製し、4 % ERE 断片およびtKフロモータ 一断片を保有するレポータープラスミド(ERE-tK-pGL)を 取得した。該プラスミドの構築の過程を図3に、該プラ スミドの構造を図4に示す。また、同様にして、上記の 5 X ERE断片が挿入されたpBluescriptからる X ERE 断 片を回収し、診断片と、Kpn TおよびShe Tで消化された。40 tk-pGL-3とを結合させ、5 Y FRE 断片およびtKプロモ --ター断片を保有するレポータープラスミド(ERE5-tK-p (山) を取得した。

【0.0.1.4】 実施例4(プラスミドINAの辻 量調製

トロールレポータープラスミトであるpRL-tk (ビッカジーン) のDNAを以下の方法より土量に調製した。上記プラスミドを含む土腸菌をアンプレリン (終農度€0 / g/ml) を含有LB培地3mlに植菌し、37℃で一晩振動培養した。そ

12

の培養液をアンピシリン (50μg/ml)を含むLB培地200ml に植菌し、一晩振動培養した。一晩培養後の菌体を5,00 0 rpm, 10 分間、4℃で遠心分離し (CR21、日立工 機)、得られた沈澱を0.1 M のSTEバッファー60 mlに懸 濁し、同条件で再度遠心分離した。沈澱を3 ml のsolut ion 1に懸濁し、1 ml のリゾチーム(20 mg/ml)を加え、 室温で5分間放置した。引き続き10 mlの Solution 2を 加え、氷上に10分間放置した後、7.5 ml のsolution 3 を加え、氷上に15分間放置した。12,000 rpm, 20分, 4 ℃で遠心分離し、上清を50 mlチューブに移し、0.6容量 のイソプロビルアルコールを加え、室温で15分間放置し た。3,000 rpm 10分間,室温で遠心分離し (CR5DL、日 立工機)、70% エタノールで洗浄し、乾燥させた。沈澱 を4.2 mlの TE バッファーに密かし、5 mg/ml Rnase溶 液 (ニッポンジーン) を28μ1加え、50℃、30分間インキ ュベートした。2 mg/mlエチジウムブロマイド溶液400μ 1とCsC1(関東化学)4.6 g を加えた後、日立工機シール チューブに移し、55,000 rpm. 20℃. 16時間遠心分離(S CP85H2. 日立工機)した。スーパーコイルドプラスミドDN Aのバンドを注射筒で抜き取り、55,000 rpm、20℃、16 時間再度遠心分離した。再びスーパーコイルプラスミド DNAのバンドを注射筒で抜き取り、水飽和イソアミルア ルコールでエチジウムプロマイドを完全に除き、一晩5 mM STEバッファーに透析した後、試料として用いた。

【0015】実施例5(細胞の培養)

不活化済み牛胎仔血清 (GIBCO-BRL、米国) を活性炭ー デキストランで処理し、細胞培養の培地作製に用いた。 処理過程でおける各ステップは以下の通りであった。25 Mスクロース (和光純薬) 、1.5mM MgCl₂ (和光純薬) 、 10mM HEPES(pH7.4) (同仁化学、熊本) 1L中にノーリッ トEXW (ナカライテスク) 2.5gとデキストランT-70 (フ ァルマシアハイオテク、スウェーデン)0.25gを懸濁 し、4℃で終夜撹拌した。本懸濁液を12,000rpmで10分遠 心 (CR21、日立工機) して活性炭を沈殿させた。これ を不活化済み牛胎仔血清(GIBCO-BRL、米国)1Lに懸濁 し、4℃で終夜撹拌した。その後、12,000rpmで10分遠心 (CR21、日立工機)して活性炭を沈殿させ、取り除い た。以上の操作を2回繰り返した後、ザルトラブV500 (0.20 µm、サルトリウス、独国) を用いてフィルター ろ過したろ液を活性炭ーデキストラン処理済みの牛胎仔 血清とした。ヒト子宮癌細胞株HeLa(大日本製薬製) を、10% 活性炭ーテキストラン処理済みの牛胎仔血清、 0.03% Lーフルタミン (日水製薬) および0.15% 炭酸水 素ナトリウムを添加したイーゲルMEM(日水製薬)培地

PBS(-) (日水製業) で接着した細胞を洗浄し、 PBS(-)8 0m1に5%トリプシン (D1FCO 米国) 10m1、0.2% EDTA・3 Na(同仁化学) 10m1を添加した液を用いて細胞を剥離し 50 た。細胞の培養はすべて5% (O2および飽和湿度下、37で

実施例も記載のレポーターア、セ1において、トランス 7ェクションの際の各ウェルへのブラブミドで活加量 と、リポフェクチンまたはリポフェクタミン学は加量に ついて検討した。まず、各ウェルに、ブラスミド(tK-p 50 ルAまたはフエルフェノールでは100mMで活性が上昇し

14

GL-3) を 0.2μ gから 1.2μ g、リポフェクチンまたはリポ フェクタミンを0.2μ1から0.8μ1の範囲で添加してトラ ンスフェクションを行い、得られた細胞を培養して、実 施例6記載の方法に準じてルシフェラーゼ活性を測定し た、結果を図5に示した。リポフェクチンを用いた場合 には、リポフェクチン0.4μ1とプラスミド0.4μgを加え たときに、リポフェクタミンを用いた場合は、リポフェ クタミンを0.6μ1とプラスミド0.4μg加えたときに、そ れぞれ最も高いルシフェラーゼ活性が認められた。次 に、リポフェクチンまたはリポフェクタミン添加量につ いて更に詳細に検討した。すなわち、各ウェルに加える プラスミド量 (0.4μg) を固定し、リポフェクチンはウ ェル当り0.3~0.55μ1の範囲で、とりポフェクタミンは ウェル当り $0.4\sim0.9\mu$ 1の範囲で添加し、ルシフェラー ゼ活性を測定した。その結果を図6に示した。リボフェ クチンを0.35μ1加えた場合、または、リポフェクタミ ンを0 6μ1加えた場台にそれぞれ最も高いルシフェラー ゼ活性を認めた。この結果を基に、リポフェクチンとリ ポフェクタミンの添加量をそれぞれ0.35μ1と0.6μ1 に 固定して、再度プラスミドの添加量を詳細に検討した。 その結果を図7に示した。プラスミドを0.4~0.6μg を 加えた場合に最も高いルシフェラーゼ活性が認められ た。以上の結果を基に、レポーターアッセイにおける各 ウェルに添加する最適なプラスミドの量を $0.4 \mu g \sim 0.$ 6μg、リポフェクチンの量を 0.35μ1、リポフェクタミ ンの量を0.6μ1と決定した。

【0018】実施例8 (B-エストラジオールによる 反応性の確認)

実施例6記載の方法およひ実施例7で得られた最適条件 下に、HeLa細胞における β - エストラジオール(E_{γ}) のエストロジェンレセプター活性化能を測定した。ウェ ル内のβ-エストラジオールの終濃度が10pM から50μM となる条件てルシフェラーゼ活性を測定した。結果を図 8と9に示した。100pM以上でルシフェラーゼ活性の上 昇を認め、InMでの活性は最大に達した。β-エストラジ オール50μMでは活性の低下が認められたがこれは細胞 **羞性によるものであると思われた。**

【0019】実施例9(化学物質のエストロン゙ュン様作用の測 定)

実施例6の方法および実施例7の結果で得られた最適条 件下に、HeLa細胞におけるピスフェノールA、 p - / 二 ルフェノール、酢酸トリプチルすず、またはフタル酸ジ 一 2 一エチルペキシルのエストロジェンレセプター活性 化能を測定した。アッセイにおける各被験化学物質の終 and continue of the property to 一体勝力ないものない

壺物がないことを目視で確認した。また、被験化合物に 替えてβーエストラジオールを終濃度500pMとなるよう に添加した群を設定し、陽性対照とした。ピスフェノー

始め、 10μ Mでは活性化倍率は溶媒コントロール(DMSO のみ添加)の約5倍に上昇した(図10、11)。酢酸トリブチルすずまたはフタル酸ジー2ーエチルヘキシルでは活性の上昇は認められなかった(図12、13)。さらに上記4種について 50μ Mでの実験も行った。その結果を図14に示した。ビスフェノールAで更なる活性の上昇を認めた。ノニルフェノールにおいては細胞に対する毒性に起因すると思われる活性の低下が認められた。

16

【0020】参考例1(他の細胞用いたアッセイ) 他の種類の培養細胞を選び、実施例5~9と同様の実験 を行う。

[0021]

【発明の効果】メダカエストロジェンレセプターをコードする遺伝子、および、化学物質の該レセプター活性化能を評価するための試験系等が提供可能となる。

[0022]

【配列表】

<1105 Sumitomo Chemical Company Limited

· 120> Estrogen receptor genes

<130> P150237

150. JP 10/319465

<151> 1998-11-10

160.4

<210> 1

<211> 575

<212\times PRT

<213> Oryzias lapites

<400> 1

Met Tyr Pro Glu Glu Ser Arg Gly Ser Gly Gly Val Ala Ala Val Asp 1 5 10 15

Leu Leu Glu Gly Thr Tyr Asp Tyr Ala Ala Pro Asn Pro Ala Thr Thr 20 25 30

Pro Leu Tyr Ser Gln Ser Ser Thr Gly Tyr Tyr Ser Ala Pro Leu Glu 35 40 45

Thr Asn Gly Pro Pro Ser Glu Gly Ser Leu Gln Ser Leu Gly Ser Gly 50 55 60

Pro Thr Ser Pro Leu Val Phe Val Pro Ser Ser Pro Arg Leu Ser Pro 65 70 75 80

Phe Met His Pro Pro Ser His His Tyr Leu Glu Thr Thr Ser Thr Pro
85 90 95

Val Tyr Arg Ser Ser His Gln Gly Ala Ser Arg Glu Asp Gln Cys Gly 100 105 110

Ser Arg Glu Asp Thr Cys Ser Leu Gly Glu Leu Gly Ala Gly Ala Gly 115 120 125

Ala Gly Gly Phe Glu Met Ala Lys Asp Thr Arg Phe Cys Ala Val Cys

Cys Lys Ala Phe Phe Lys Arg Ser IIe Gln Gly His Asn Asp Tyr Met 165 170 175

and the second of the second o

Cys Pro Ala Thr Asn Gln Cys Thr Ile Asp Arg Asn Arg Arg Lys Gly 180 185 190

Cys	Gln	Ala 195	Cys	Arg	Leu .		Lys (200	Cys (ſyr	Glu	Val	Gly 205	Met	Met	Lys
Gly	Gly 210		Arg	Lys			He.		He	Leu	Arg 220	Arg	Asp	Lys	Arg
Arg	Thr	Gly	Val	Gly	Asp	Gly	Asp	Lys	Val	Val	Lys	Gly	Gln	Glu	His
225					230					235					240
Lvs	Thr	Val	His	Tyr	Asp	Gly	Arg	Lys	Arg	Ser	Ser	Thr	Gly	Gly	Gly
2,0				245					250					255	
Glv	Glv	Glv	Glv		Glv	Arg	Leu	Ser	Val	Thr	Ser	He	Pro	Pro	Glu
013	0.,	0.1.5	260	,				265					270		
Gln	Val	Len		Len	Leu	Gln	Gly		Glu	Pro	Pro	He	Leu	Cys	Ser
0111	, 61	275	Leu	Dec	200		280					285			
۸rσ	Gla		Len	Ser	Arg	Pro	Tyr	Thr	Glu	Val	Thr	Met	Met	Thr	Leu
ліб	290	Lys	Leu	001	0	295	- •				300				
الم أ		Ser	Met	Ala	Asp		Glu	Leu	Val	His	Met	He	Ala	Trp	Ala
305		501	me t	,,,,	310	-,-				315					320
lve	Lve	Leu	Pro	Glv		Leu	Gln	Leu	Ser	Leu	His	Asp	Gln	Val	Leu
Lys	Lys	LCu	1.0	325					330					335	
Len	Len	Glu	Ser			Leu	Glu	Val			He	Gly	Leu	He	Trp
Ltu	Leu	010	340					345					350		
Arg	Ser	He			Pro	Gly	Lys		He	Phe	Ala	Gln	Asp	Leu	He
,,,,,	501	355		-,-		-	360					365			
Len	Asn			Glu	Gly	Asp		Val	Glu	Gly	Met	Thr	Glu	Πŧ	Phe
Deu	370		,			375					380				
Asn			Leu	Ala	Thr	Ala	Ser	Arg	Phe	Are	, Val	Leu	Lys	Lei	ı Lys
385		-			390					395					400
Pro	Glu	Glu	. Phe	Val	Cys	Leu	Lys	Ala	He	He	Leu	Lei	Ası	ı Se	r Gly
				405					410					41	
Ala	Phe	Ser	Phe			Gly	Thr	Me t	Glu	Pro	Let	His	s Ası	n Se	r Ala
			420					425					430	0	
Ala	a Val	Glr	ı Ser	Met	Leu	Asp	Thr	He	Thr	Ası	o Ala	ı Lei	u II	e Hi	s Tyr
		435					440					44			
He	e Ser	Gli	n Sei	Gly	. Tyr	Let	ı Ala	Gln	Glu	ı Gl:	n Ala	a Ar	g Ar	g Gl	n Ala
	450						Ď								
Gli	n Pro	Lei	u Lei	ı Lei	ı Leu	Sei	His	He	Are	g Hi	s Me	t Se	r As	n Ly	s Gly
465	5				470)				47	5				480
Me	t Gli	ı Hi:	s Lei	а Туг	r Ser	Me	t Lys	Cys	Ly	s As	n Ly	s Va	l Pr	o Le	u Tyr
				48					49					49	15
Asj	p Lei	ı Le	u Lei	u Gli	u Met	Lei	u Asp	Ala	a Hi	s Ar	g Le	u Hi	s Hi	s Pr	o Val
			50	0				508	;				51	0	
Ar	g Ala	a Pr	o Gl	n Se	r Lei	ı Se	r Glr	ı Val	l As	p Ar	g As	p Pr	o Pr	o Se	r Thr
		51	5				520)				52	5		
Se	r Se	r Gl	y Gl	y G1	y Gly	y H	e Ala	a Pro	o G1	y Se	r II	e Se	r Al	a Se	er Arg
	53					53					54				
												•			
4.4	J				(K)										
									TL	T) -	11	. 1.	E	In 1	c n

Gin Tyr Gly Gly Ser Arg Pro Asp Cys Thr Pro Ala Leu Gln Asp 565 570 575

211	> 17	28														
212.	· DN	A														
213	> 0r	yzia	s la	pite	S											
220	>															
(221)	> CD	S														
(222)	> (1)	(172	8)												
(400	> 2															
atg	t ac	cct	gaa	gag	agc	cgg	ggt	tct	gga	ggg	gtg	gc t	gc t	gtg	gac	48
Met	Tyr	Pro	Glu	Glu	Ser	Arg	Gly	Ser	Gly	Gly	Val.	Ala	Ala	Val	Asp	
1				5					10					15		
											aac					96
Leu	Leu	Glu	Gly	Thr	Tyr	Asp	Туг	Ala	Ala	Pro	Asn	Pro	Ala	Thr	Thr	
			20					25					30			
											tct					144
Pro	Leu	Tyr	Ser	Gln	Ser	Ser	Thr	Gly	Tyr	Tyr	Ser	Ala	Pro	Leu	Glu	
		35					40					45				
											tcc					192
Thr	Asn	Gly	Pro	${\tt Pro}$	Ser	Glu	Gly	Ser	Leu	Gln	Ser	Leu	Gly	Ser	Gly	
	50					55					60					
ccg	acg	agc	cct	ctg	gtg	ttt	gtg	ccc	tcc	agc	ccc	aga	ctc	agt	CCC	240
Pro	Thr	Ser	Pro	Leu	Val	Phe	Val	Pro	Ser		Pro	Arg	Leu	Ser		
65					70					75					80	000
ttt	atg	cat	cca	ccc	agc	cac	cac	tat	ctg	gaa	acc	ac t	tcc	acg	CCC	288
Phe	Met	His	Pro	Pro	Ser	His	His	Туг	Leu	Glu	Thr	Thr	Ser		Pro	
				85					90					95		000
											gag					336
Val	Туг	Arg	Ser	Ser	His	Gln	Gly		Ser	Arg	Glu	Asp			GIY	
			100					105					110			204
											ggc					384
Ser	Arg	Glu	Asp	Thr	Cys	Ser		Gly	Glu	Leu	Gly		ыу	Ala	GIY	
		115					120					125			t a o	432
											ttc					432
Ala			Phe	Glu	Me t			Asp	lhr	Arg	Phe	СУS	Ala	ı vai	Cys	
	130					135					140	tat	1.01		aac	480
agc	gac	t ac	gcc	tct	ggg	tac T	cac	tat	ggg	gig . Val	res Ten	Cor	Cuc	. gag	ggc	400
	Asp	Tyr	Ala	Ser			HIS	lyr	ыу			361	Cys	s 010	Gly 160	
145					150			- 4		155		aat	an.	a tat		528
															atg - Mot	520
Cys	Lys	Ala	Phe			Arg	ser	116			nis	ASI	1 451	175 175	Met	
				165					170			ogs				570
															g ggc	011
(ys	Pro	A12	ı inr	ASD	611	ı tys	1111	116	' ASI) Alk	3 .481.	I ATE	5 MI	E LY:	s Gly	
	c 14		, r		. 1	, 4	, 1	r.	т	r (*)	ı Val	Ch	. Ma	t Mo	1 Ive	
Cys	(+) N		_	ATE	; ւ։	1 41,6			5 1 Y	011	u 1d1	201		, MC	t Lys	
		198					200			1 11.	a coo	-		c aa	а сер	67
															a cgg s Arg	
ΘIJ	613	· · d	1 WIF	, L):	1.01	5 311	- 116	UT F	5 11	C LC	ه دد ین	3 .111		P L !	0	

210 215 220	
210 215 220 cgg aca ggc gtt ggt gat gga gac aag gtt gta aag ggt cag gag ca	t 720
Arg Thr Gly Val Gly Asp Gly Asp Lys Val Val Lys Gly Gln Glu Hi	
225 230 235 24	
aaa acg gig cat tal gat gga agg aaa cgc agc agc aca gga gga gg	a 768
Lys Thr Val His Tyr Asp Gly Arg Lys Arg Ser Ser Thr Gly Gly G	
245 250 255	
gga gga gga gga gga aga ctg tct gtg acc agc ata cct cct g	
Gly Gly Gly Gly Gly Arg Leu Ser Val Thr Ser Ile Pro Pro G	. U
260 265 270	001
cag gtg ctg ctc ctc ctt cag ggc gcc gag ccc ccg ata ctc tgc to	
Gln Val Leu Leu Leu Gln Gly Ala Glu Pro Pro Ile Leu Cys S	:1
275 280 285	tg 912
cgt cag aag tig agc cga ccg tac acc gag gtc acc atg atg acc c Arg Gln Lys Leu Ser Arg Pro Tyr Thr Glu Val Thr Met Met Thr L	
290 295 300	
ctc acc agc atg gca gac aag gag ctg gtc cac atg atc gcc tgg g	cc 960
Leu Thr Ser Met Ala Asp Lys Glu Leu Val His Met Ile Ala Trp A	
	20
aag aag ctc cca ggt tit cig cag cig icc cig cac gai cag gig c	tg 1008
Lys Lys Leu Pro Gly Phe Leu Gln Leu Ser Leu His Asp Gln Val L	eu
325 330 335	1050
ctg ctg gag agc tcg tgg ctg gag gtg ctc atg atc ggc ctc att t	
Leu Leu Glu Ser Ser Trp Leu Glu Val Leu Met Ile Gly Leu Ile T	rp
340 345 350	tc 1104
agg too ato cac tgt coc ggg aag oto ato ttt gca caa gac oto a	
Arg Ser lle His Cys Pro Gly Lys Leu lle Phe Ala Gln Asp Leu l 355 360 365	TC .
355 360 365 ctg gac agg aat gag gga gac tgc gtg gaa ggc atg acg gag atc	tc 1152
Leu Asp Arg Asn Glu Gly Asp Cys Val Glu Gly Met Thr Glu lle I	
370 375 380	
gac atg ctg ctg gcc act gct tcc cgc ttc cgt gtg ctc aaa ctc a	naa 1200
Asp Met Leu Leu Ala Thr Ala Ser Arg Phe Arg Val Leu Lys Leu l	
385 390 395	100
cct gag gaa tic gic igc cic aaa gct att att ita cic aac icc	
Pro Glu Glu Phe Val Cys Leu Lys Ala Ile Ile Leu Leu Asn Ser	Gly
405 410 415	190¢
get tit tet tie tge ace gge ace atg gag cea ett eae aac age	gcg 1296
Ala Phe Ser Phe Cys Thr Gly Thr Met Glu Pro Leu His Asn Ser	114
420 425 430 gcg gtt cag agc atg ctg gac acc atc aca gac gca ctc att cat	tac 1344
Ala Val Gln Ser Met Leu Asp Thr Ile Thr Asp Ala Leu Ile His	Tvr
435 440 445	•
atc agt cag tog ggt tac tig gcc cag gag cag gcg aga cgg cag	gcc 1392
arc age coo rec dos sur o d	• 1
40.6	
e ·	ggc 1440
cag eeg ete etg etg etc tee eac atc agg eac atg age aac aaa	
	Gly
cag eeg ete etg etg etc tee eac atc agg eac atg age aac aaa	Gly 480

Met	Glu	His	Leu	Туг	Ser	Met	Lys			Asn	Lys	Val			Tyr	
				485					490					495		15
gac	ctc	cta	ctg	gag	atg	ctc	gat	gcc	cac	cgc	ctg.	cac	cac	CCC	gic	153
Asp	Leu	Leu		Glu	Met	Leu	Asp		HIS	Arg	Leu	HIS		PTO	vai	
			500					505					510	4		1 5
											gac					15
Arg	Ala		Gln	Ser	Leu	Ser		Val	Asp	Arg	Asp		PTO	ser	Inr	
		515					520					525		4 - 4		1.0
											ata					16
Ser	Ser	Gly	Gly	Gly	Gly		Ala	Pro	Gly	Ser	He	Ser	Ата	261	AIG	
	530					535					540				- 4 4	1.0
ggc	aga	atc	gag	agt	ccg	agc	aga	ggc	ccc	111	gct	CCC	agı	gic	CII	16
Gly	Arg	He	Glu	Ser		Ser	Arg	Gly	Pro		Ala	Pro	Se r	vai		
545					550					555					560	17
											gcc					17
Gln	Tyr	Gly	Gly		Arg	Pro	Asp	Cys		Pro	Ala	Leu	GIN			
				565					570					575		
	2> P 3> 0		as l	ap i t	es											
	0 > 1															
Met	Ser	Lys	Arg	Gln	Ser	Ser	Val	Gln	lle	Arg	Gln	Let	Phe	Gly	Pro	
1				5					10					15		
Ala	Leu	Ar٤	g Ser	Arg	lle	Ser	Pro			Ser	Glu	Lei			Leu	
			20					25		_			30		ħ	
Ser	Pro	Pro	Arg	g Leu	Ser	Pro			Pro	Lei	ı Gly			lyi	Pro	
		3					40				• • •	45		,	C1	
Glu	Glu	Sei	r Arg	g Gly	Ser			7 Val	Ala	a Ala			Let	ı Let	ı Glu	
	50					55					6(1	. Т	
Gly	Thr	Ту	r Ası	тут			Pro) Asr	Pro			r Ih:	ר ארנ) Lei	u Tyr	
65					7(_			7		61	ጥኒ		80	
Ser	Glr	Se	r Se			уТуг	Tyı	r Sei			o Lei	1 61	נו נו		n Gly	
				85		_	0.1		90			- C1	n-	9 . Th		
Pro	Pro) Se			y Se:	r Lei	1 611			1 61	y Se	F 61			r Ser	
			10					10		,	C	T)	. 11		. His	
Pro	Lei			e Va	l Pro	o Sei			o Ar	g Le	u Se			e me	t His	
		11			_	_	12		· ·	C	TI	12		1 T.	- 1	
Pro			r Hi	s Hi	s Ty			u Th	r Th	r Se			o va	1 I	r Arg	
	130					13					14				a Cla	
Ser	Set	r Hi	s Gl	n Gl			r Ar	g Gl	u As			s Gl	у 5e	r Ar	g Glu	
145)				15	0				15	5			. ,	160	
	•										• •					
												1 0		4	т	
Ph€	61	u Me			s As	p Ih	r Ar			s Al	a Va	1 ()		_	ъ Туг	
			18	()				18					19		elA o	

Ala Ser Gly Tyr His Tyr Gly Val Trp Ser Cys Glu Gly Cys Lys Ala

200 205

195

Phe	Phe 210	Lys	Arg	Ser		G1n 215	Gly	His	Asn	Asp	Tyr 220	Met	Cys	Pro	Ala
The		Cln	Cve	Thr			Arg	Asn	Arg	Arg		Gly	Cys	Gln	Ala
225	лоп	OIII	0,3	1 111	230	пор				235	_,_	-			240
	A r a	Lau	۸ra	Lve			Glu	Val			Met	Lvs	Gly	Gly	Val
Cys	AIR	Leu	MIE	245	C y S	1 9 1	Olu	, , ,	250	inc t		2,5		255	
	1	1 a n	1-0	-	1 - 0	110	Leu	Ara		Acn	Lvs	Arg			Glv
Arg	L y S	изр		116	AIB	116	LCu	265	6	110 p	LJS	0	270		,
** 1	61.	4	260	4	1	Vol	Val		Clv	Cln	Glu	Hic		Thr	Val
vai	ыу		GIY	игр	LYS	141	280	Lys	Gly	0111	010	285	L , 5		
	T	275	C1	4	1	1 - 0	Ser	Sar	Thr	Clv	Glv		Glv	Glv	Glv
HIS			ыу	AIR	LyS		361	361	1111	Uly	300	u,	013	01,	01,
	290				C	295	Th -	C	Ha	Dro		Clu	Cln	Val	Len
	Gly	Gly	Arg	Leu		vai	Thr	261	116		110	Giu	0111	141	320
305	_		6.1	6.1	310	C1	n	D=0	Ha	315	Cvc	Sor	A r a	Cln.	
Leu	Leu	Leu	GIn		Ala	Glu	Pro	Pro		ren	CyS	sei	AIG	335	Lys
	_			325		C 1	37 . 1	TL -	330	Mat	Th-	1	lou		Sar
Leu	Ser	Arg			lhr	Glu	Val		wet	meı	1111	Leu	350	1111	361
			340			., ,	71.	345	71-	41.	Τ	410		Lve	Lou
Me t	Ala			Glu	Leu	Val	His		116	АТа	Пр		Lys	LYS	Leu
		355			,		360		A a ==	Cln	Vol	365	Lou	Lau	Clu
Pro			Leu	Gin	Leu		Leu		ASP	GIII	380	Leu	Leu	Leu	Olu
_	370			0.1	V. 1	375			Clu	Lon		Trn	Ara	Ser	Πρ
		Trp	Leu	610			меі		GIY	395		пр	лιδ	SCI	11e 400
385		_	6.1		390		DL.					Ha	الم ا	Acr	
His	Cys	Pro	Gly			116	rne	Ага			Leu	116	Leu	415	Arg
				405		C 1	C1	Mai	410		. Ila	Dho	Acr		
Asn	Głu	Gly			vai	GIU	GIY			GIU	1116	rne	430		Leu
			420			D.I		425		1	. 1	Lvc			. Clu
Leu	Ala			Ser	Arg	Phe				Lys	Leu	445		, 011	Glu
		435		,				I		Acr				Dha	Sar
Phe			Let	Lys	Ala			Leu	Leu	ASI			MIC	1 1110	Ser
	450		۵.			455		1	11: -		460			Va	i Cln
		Thr	Gly	i Ihr			Pro	Leu	HIS			HId	I AIC	1 14	61n 480
465		_			470				1	475		т.,,	- 117		
Ser	Mel	t Let	ı Ası			Inr	ASP) Ala			, uis	, 1 y i	. 110	49:	r Gln
		_		485		0.1	C 1	. 1 -	490		- (1-		. C1		
Sei	Gly	у Туі			a Gli	ı Git	GIR			3 AII	3 611	1 Ala			o Leu
			500				•••	505			1	C1.	510		. Uic
Lei	ı Lei			r His	s 116	e Are			. 5e	r ASI	n Lys			t GI	u His
		51					520		• • •		,	525		I.a	1
Let			r Me	t Lys	s Cys			1 Lys	s Va	l Pr			r AS	p re	u Leu
	530					535				***	540		1 4	_ 4.1	n D=::
Lei	ı Gli	u Me	t Le	u Ast			s Arg	g Lei) H1:			o ¥a	ı Ar	g Al	a Pro
54	5				55()				55	อ	Ŧ.			560
															•
					*.	(2.1	c		r		. c.	4	a C1	A -	σ 11e
	2 m m	77. 9	7 1	4 1											

Gly Gly Gly Ile Ala Pro Gly Ser Ile Ser Ala Ser Arg Gly Arg Ile 580 585 590 Glu Ser Pro Ser Arg Gly Pro Phe Ala Pro Ser Val Leu Gln Tyr Gly 605

600 595

Gly Ser Arg Pro Asp Cys Thr Pro Ala Leu Gln Asp 610 615

<210> 2 <211> 1863 <212> DNA <213> Oryzias lapites <220> <221> CDS <222> (1)... (1863) <400 > 2 atg agt aag aga cag agc tcg gtg cag atc agg cag ctg ttc gga cca 48 Met Ser Lys Arg Gln Ser Ser Val Gln Ile Arg Gln Leu Phe Gly Pro 10 gca ctc aga tcc agg atc agc cca gcc tcc tca gag ctg gag acc ctc 96 Ala Leu Arg Ser Arg lle Ser Pro Ala Ser Ser Glu Leu Glu Thr Leu 25 tcc cca cct cgc ctc tcg ccc cgt gac ccc ctc ggt gac atg tac cct 144 Ser Pro Pro Arg Leu Ser Pro Arg Asp Pro Leu Gly Asp Met Tyr Pro 40 gaa gag agc cgg ggt tot gga ggg gtg got got gtg gac ott tig gaa 192 Glu Glu Ser Arg Gly Ser Gly Gly Val Ala Ala Val Asp Leu Leu Glu 55 ggg acg tac gac tat gcc gcc ccc aac cct gcc acg act ccc ctt tac 240 Gly Thr Tyr Asp Tyr Ala Ala Pro Asn Pro Ala Thr Thr Pro Leu Tyr 70 age cag tee age ace gge tae tae tet get eee etg gaa aca aac gga 288 Ser Gln Ser Ser Thr Gly Tyr Tyr Ser Ala Pro Leu Glu Thr Asn Gly 85 ccc ccc tca gaa ggc agt ctg cag tcc ctg ggc agt ggg ccg acg agc 336 Pro Pro Ser Glu Gly Ser Leu Gln Ser Leu Gly Ser Gly Pro Thr Ser 105 100 cct clg gtg ttt gtg ccc tcc agc ccc aga ctc agt ccc ttt alg cat 384 Pro Leu Val Phe Val Pro Ser Ser Pro Arg Leu Ser Pro Phe Met His 120 cca ecc age cae cae tat etg gaa acc act tee aeg ecc git tae aga 432 Pro Pro Ser His His Tyr Leu Glu Thr Thr Ser Thr Pro Val Tyr Arg 135 480 tee age cae cag gga gee tee agg gag gae cag tge gge tee egg gag Ser Ser His Glm Gly Ala Ser Arg Glu Asp Glm Cys Gly Ser Arg Glu 155 150 528gac acg tgc agc ctg ggg gag tta ggc gcc gga gcc ggg gct ggg ggg tit gag aig gcc aaa gac acg cgt tic igc gcc gig igc agc gac tac 576 Phe Glu Met Ala Lys Asp Thr Arg Phe Cys Ala Val Cys Ser Asp Tyr 185 god tot ggg tad dad tat ggg gtg tgg tot tgt gag ggd tgd aag gdd

Αl	а	Ser	Gly 195	Туг	His	Tyr	Gly	Val 200	Trp	Ser	Cys	Glu	Gly 205	Cys	Lys	Ala	
t t	С	ttc	aag	agg	agc	atc	cag	ggt	cac	aat	gac	tat	atg	t gc	cca	gcg	672
					Ser												
		210	2,0				215	•				220					
20	rc		cag	tec	ac t	att		aga	aat	cga	agg	aag	ggc	tgt	cag	gct	720
					Thr												
22		11311	0111	0,3		230		0		0	235	•	_	-		240	
		cat	ctt	200	aag		tac	gaa	ete	gga		atg	aaa	ggc	ggt	gtg	768
					Lys												
C.	, 3	W1 P	LCU	0	245	0,0	.,.			250			•	-	255		
c	T.C	220	gac	cgc	att	ር ጀር	att	tta	cgg		gac	aaa	cgg	cgg	aca	ggc	816
					He												
А	1.6	Lys	изр	260	110	,,, B		200	265	0		- •		270			
σ	1 1	σσt	gat		gac	aag	ett	gta		ggt	cag	gag	cat	aaa	acg	gtg	864
					Asp												
,	a 1	Oly	275	01)	Пор	2,0		280	-,-				285				
C	a f	tat		gga	agg	aaa	cgc		agc	aca	gga	gga	gga	gga	gga	gga	912
					Arg												
11	13	290	пор	01,		2,0	295					300					
g.	ga		gga	aga	ctg	tct	gtg	acc	agc	ata	cct	cct	gag	cag	gtg	ctg	960
					Leu												
	05	0.,	0.,			310					315					320	
		ctc	ctt	cag	ggc	gcc	gag	ссс	ccg	ata	ctc	tgc	tcg	cgt	cag	aag	1008
					Gly												
					325					330					335		
t	t g	agc	cga	ccg	tac	acc	gag	gtc	acc	atg	atg	acc	ctg	ctc	acc	agc	1056
					Tyr												
				340					345					350			
a	t g	gca	gac	aag	gag	ctg	gtc	cac	atg	atc	gcc	t gg	gcc	aag	aag	ctc	1104
М	e t	Ala	Asp	Lys	Glu	Leu	Val	His	Met	He	Ala	Trp	Ala	Lys	Lys	Leu	
			355					360					365				
С	са	ggt	ttt	ctg	cag	ctg	tcc	ctg	cac	gat	cag	gtg	ctg	cte	ctg	gag	1152
P	10	Gly	Phe	Leu	Gln	Leu	Ser	Leu	His	Asp	Gln	Val	Leu	Lev	Leu	Glu	
		370					375					380	l				
					gag												1200
S	er	Ser	Trp	Leu	Glu	Val	Leu	Me t	He	Gly	Let	He	Trr	Ar8	g Ser	He	
	85					390					395					400	
																agg	1248
H	lis	Cys	Pro	Gly	Lys	Lei	lle	Phe	Ala	Glm	Ası	Lei	116	Let	ı Asp	Arg	
					405					410					415		
																ctg	1296
Δ	sn	Glu	Gly	Ası) (ys	Val	Glu	i Gly	Met	Thr	Glu	ıΠε	Phe			Leu	
				420)				425)				430)		
								440	}				443)			

ttc gtc tgc ctc aaa gct att att tta ctc aac tcc ggt gct ttt tct 1392
Phe Val Cys Leu Lys Ala IIe IIe Leu Leu Asn Ser Gly Ala Phe Ser
450 455 460

	tgc															1440
Phe	Cys	Thr	Gly	Thr	Met	Glu	Pro	Leu	His	Asn	Ser	Ala	Ala	Val	Gln	
465					470					475					480	
ago	atg	ctg	gac	acc	atc	aca	gac	gca	ctc	att	cat	tac	atc	agt	cag	1488
Ser	Met	Leu	Asp	Thr	He	Thr	Asp	Ala	Leu	He	His	Tyr	He	Ser	Gln	
				485					490					495		
tcg	ggt	tac	ttg	gcc	cag	gag	cag	gcg	aga	cgg	cag	gcc	cag	ccg	ctc	1536
	Gly															
			500					505					510			
cts	ctg	ctc	tcc	cac	atc	agg	cac	atg	agc	aac	aaa	ggc	atg	gag	cac	1584
	Leu															
		515					520					525				
cto	tac	agc	atg	aag	t gc	aag	aac	aaa	gtc	cct	ctt	tat	gac	ctc	cta	1632
	ı Tyr															
	530					535					540					
cts	g gag	atg	ctc	gat	gcc	cac	cgc	ctg	cac	cac	ccc	gtc	aga	gcc	ccc	1680
	ı Glu															
54					550					555					560	
ca	g tcc	ttg	tcc	caa	gtc	gac	aga	gac	cct	ccc	tcc	acc	agc	agc	ggc	1728
	ı Ser															
				565					570					575		
gg	g ggt	gga	atc	gc t	ссс	ggt	tct	ata	tca	gca	tct	cga	ggc	aga	atc	1776
Gl	y Gly	Gly	He	Ala	Pro	Gly	Ser	He	Ser	Ala	Ser	Arg	Gly	Arg	He	
			580					585					590			
ga	gagt	ccg	agc	aga	ggc	ccc	ttt	gc t	ccc	agt	gto	ctt	cag	tat	gga	1824
Gl	u Ser	Pro	Ser	Arg	Gly	Pro	Phe	Ala	Pro	Ser	Val	Leu	Gln	Туг	Gly	
		595					600					605	i			
gg	g tcg	cgt	cct	gac	t gc	acc	ccg	gcc	ctt	caa	gad	tga	l			1863
	y Ser															
	610					615					620					
									#	. 7.	F E	r On to	7117	ト =	ランス・	フェクシ

【図面の簡単な説明】

【図1】本発明のエストロジェンレセプター遺伝子を発現させるための発現ベクターの構築過程を示す図である。

【図2】本発明のエストロシェンレセプター遺伝子を発現させるための発現ベクターRSV-ERの構造を示す図である。pRC/RSVは構築に用いたベクターである。ERは本発明のエストロジェン遺伝子を、RSV LTRはRSVプロモーターを、pSV40はSV40プロモーターを、Neomycinはネオマイシン耐性遺伝子をそれぞれ示す。

【図3】エストロジェン応答配列とレポーター遺伝子と を含むレポータープラスミトERE-tK-pGL(図中ではERE-pGLと表示)の構築過程を示す図である。

【図4】エストロジェン応答配列とレポーター遺伝子と
ススニーニュー・コンニー trprore and titte and re

た配列を意味し、tK promoterはtKプロモーターを、Amp tアンピシリン耐性遺伝子を示す。

【図5】レポーターア・セイ用の細胞を調製するための トランスフェクションの条件を検討した結果を示す図で ある。上段の図は、トランスフェクション試薬にリポフェクチンを使用した場合、下段の図はリポフェクトアミンを使用した場合の結果を示す。

【図6】レポーターアッセイ用の細胞を調製するためのトランスフェクションにおいて、添加するトランスフェクション試薬の量を検討した結果を示す図である。上段の図は、リポフェクチンを使用した場合、下段の図はリポフェクトアミンを使用した場合の結果を示す。

【図7】レポーターアッセイ用の細胞を調製するためのトランスフェクションにおいて、添加するプラスミドの量を検討した結果を示す図である。上段の図は、リポフェクチンを使用した場合、下段の図はリポフェクトアミンを使用した場合の結果を示す。

【図8】 レポーターアッセイにおけるβーエストラジオ

一発現パツターRSV-ER、 $0.15 \pm g \phi$ レポータープラスミドERE5-tk-pGL、および、 $0.1 \pm g \phi$ コントロールレポータープラスミドpRL-tKを導入した細胞を試験に用いた。上段の国は、トランスフェクション試薬にリポフェクチ

ンを使用した場合、下段の図はリポフェクトアミンを使 用した場合の結果を示す。

【図9】レポーターアッセイにおける β - エストラジオールのエストロジェンレセプター活性化能を測定した結果を示す図である。1 ウェルあたり0.25 μ gのレセプター発現ベクターRSV-ER、0.15 μ gのレポータープラスミトERE5-tK-pGL、および、0.1 μ gのコントロールレポータープラスミドpRL-tKをリポフェクタミンを用いて導入した細胞を試験に用いた。

【図10】レポーターアッセイにおけるビスフェノールAのエストロジェンレセプター活性化能を測定した結果を示す図である。1ウェルあたり0.25 μ gのレセプター発現ペクターRSV-ER、0.15 μ gのレポータープラスミドERE5-tK-pGL、および、0.1 μ gのコントロールレポータープラスミドpRL-tKをリポフェクタミンを用いて導入した細胞を試験に用いた。E2は、終濃度500pMの β -エストラジオールが添加された系を示す。

【図11】レポーターアッセイにおけるp-/ニルフェノールのエストロジェンレセプター活性化能を測定した結果を示す図である。1ウェルあたり 0.25μ gのレセプター発現ベクターRSV-ER、 0.15μ gのレポータープラスミドERE5-tK-pGL、および、 0.1μ gのコントロールレポータープラスミドpRL-tKをリポフェクタミンを用いて導入した細胞を試験に用いた。E2は、終濃度500pMの β -エストラジオールが添加された系を示す。

【図12】レポーターアッセイにおける酢酸トリプチルすずのエストロジェンレセプター活性化能を測定した結果を示す図である。 1ウェルあたり 0.25μ gのレセプター発現ベクターRSV-ER、 0.15μ gのレポータープラスミドERE5-tK-pGL、および、 0.1μ gのコントロールレポー

タープラスミドpRL-tKをリポフェクタミンを用いて導入した細胞を試験に用いた。E2は、終濃度500pMの β -エストラジオールが添加された系を示す。

【図14】レポーターアッセイにおける各種化合物のエ ストロジェンレセプター活性化能を測定した結果を示す 図である。1ウェルあたり0.25μgのレセプター発現べ クターRSV-ER、0.15μgのレポータープラスミドERE5-tK -pGL、および、0.1μgのコントロールレポータープラス ミドpRL-tKをリポフェクタミンを用いて導入した細胞を 試験に用いた。E 2は終濃度500pMの β ーエストラジオ -- μが添加された系を、Tisは終濃度50μMの酢酸トリブ チルすずが添加された系を、BisAは終濃度50μMのビス フェノールAが添加された系を、Di-2は終濃度50μMの フタル酸ジー2ーエチルヘキシルが添加された系を、No nv]は終濃度50μMのノニルフェノールが添加された系を 示す。顕微鏡観察により判定された死亡細胞率は、酢酸 トリブチルすずが添加された系において90%以上、ビ スフェノールAが添加された系において0%、フタル酸 ジー2ーエチルヘキシルが添加された系において90% 以上、ノニルフェノールが添加された系において40% 前後であった。

【図2】

[図9]

【图1】

【図11】 【図10】 8 東対照を1とした時の 。写活性化倍率(倍) 7.対照を1とした時の 写活性化倍率(倍) 5 5 4 Ü DMSO 500pM 1 On**M** 100nM 10 µ M DMSO 500pM 10nM 100n**M** 1 µ M 10 µ M (E2) (E2) pーノニルフェノール ビスフェノールA

[図3]

【図8】

8 ーエストラジオール

【図14】

フロントページの続き

(51) Int. C1. 7

識別記号

FI

テーマコード(参考)

(C 1 2 P 21/02 C 1 2 R 1:91) F ターム (参考) 4B024 AA11 AA17 AA20 BA63 DA02 EA04 FA02 FA10 GA13 HA03 HA11

4B063 QA01 QQ22 QQ61 QQ75 QQ91 QQ94 QR33 QR60 QR77 QR80 QS36 QX02

4B064 AG20 CA10 CA19 CC24 DA13 DA16

4B065 AA90Y AA93X AB01 AC14 BA05 CA46

4H045 AA10 AA20 AA30 BA10 CA52 DA50 EA50 FA72 FA74 HA06

1

IDS コメント翻訳作成票

本件の IDS コメント翻訳につきまして下記の処理をお願いします。

SP No.: () () S | 2119- | 技術担当者名

翻訳依頼者

翻訳期限 2003 年

翻訳文は「5sv (ネットワークコンピュータ)の[T. HAGA]フォルダへ入れてください 翻訳が出来上がりましたら、ワード数をご記入の上、事務担当まで ご返却してください。

翻訳担当者

ワード数 (450)

翻訳室受領印

