14. Теорема на Полке-Шварц

Теорема на Полке-Шварц: За всеки равнинен четириъгълник ABCD и всеки тетраедър $\overline{A}\overline{B}\overline{C}\overline{D}$ съществува равнина π и безкрайна точка Us, таква че проекцията на тетраедъра $\overline{A}\overline{B}\overline{C}\overline{D}$ в π от центъра Us е четириъгълник подобен на ABCD.

Доказателство: Означаваме:

 $K=AC\cap BD$, $\eta=(ACK)$, $\mu=(BDK)$. Нека точките $\overline{M}\in \overline{A}\overline{C}$ и $\overline{N}\in \overline{B}\overline{D}$ са такива, че $(\overline{A}\overline{C}\overline{M})=\eta$ и $(\overline{B}\overline{D}\overline{N})=\mu$. Тъй като $\overline{A}\overline{C}$ и $\overline{B}\overline{D}$ са кръстосани прави, то $\overline{M}\neq \overline{N}$ и е определена правата $s=\overline{M}\overline{N}$. Нека a,b,c,d са правите през $\overline{A},\overline{B},\overline{C},\overline{D}$, успоредни на s.

Нека α_0 е равнина, $\alpha_0 \perp$ s и α_0 $\alpha = A_0$,

 α_0 n $b=B_0$, α_0 n $c=C_0$, α_0 n $d=D_0$, α_0 n $s=K_0$.

От теоремата на Талес имаме, че

$$(\overline{A}\overline{C}\overline{M})=(A_0C_0K_0)$$
. Но $(\overline{A}\overline{C}\overline{M})=(ACK)$ и следователно $(ACK)=(A_0C_0K_0)$.

Аналогично получаваме

$$(B_0D_0K_0)=(BDK).$$

Оттук следва, че четириъгълниците ABCD и $A_0B_0C_0D_0$ са афинно еквивалентни. Съгласно следствието от теоремата за представяне на афинитет между две равнини чрез подобност ортогонално проектиране, съществува равнина π такава че, ако

 $a \cap \pi = A'$, $b \cap \pi = B'$, $c \cap \pi = C'$, $d \cap \pi = D'$, To $ABCD \sim A'B'C'D'$.

	Įž.