Study of Quantum Convolutional Neural Network (QCNN) applied to the MINST dataset

Authors: Marco Dall'Ara, Giulio Albertin, Joan Verguizas I Moliner

14/07/2023

Convolutional Neural Network

Multiple feature maps

Shared weights

Max Pooling

2

Example: «beak detector»

Some patterns are much smaller than the whole image:

Convolutional NN vs Fully Connected NN

Hierarchical Representation

Compress the number of Connection

Reduce complexity

Quantum Computing

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)e^{i\phi}|1\rangle$$

Some quantum algorithms are demonstrated to be **more efficient** than classical ones (Shor's algorithm).

Every quantum algorithm can be decomposed with a finite set of gates (universal set of gates):

- Single qubit gate
- Multi-qubits gate

Quantum Neural Network

Theory

Why? Superposition and entanglement

- Quantum algorithms are able to extract patterns of a function (Deutsch–Jozsa algorithm)
- Entanglement is a **unique** feature of Quantum Systems
- Theoretically, can be stored more information in N qubits than in N bits

Quantum Neural Network

Parametrized quantum circuit (PQC)

Non-linearity of the model comes from **measurements**.

Expressibility: extent to which a PQC can generate states within the Hilbert space.

Entangling capability: ability of a PQC to generate entangled states.

Quantum Neural Network

Classical Optimization

Classical

Parameter Shift Rule: Permits to analytically find the gradient of a linear function of expectation values of Pauli matrixes. $\nabla_{\theta} f(x;\theta) = \frac{1}{2} \left[f(x;\theta + \frac{\pi}{2}) - f(x;\theta - \frac{\pi}{2}) \right]$.

Minimize Mean Squared Error (MSE) between **<Z>** and true label.

Quantum Convolutional Neural Network Convolutional Layer

Same Features as Classical CNN: Local Connectivity and Parameters Sharing.

Consists of Two Qubit Unitary Operations U_{i.}

Y. Lu,et al., 40th CCC, 52363, (2021).

Quantum Convolutional Neural Network

Pooling Layer

Qubits are **traced out** in the calculation of the expected value of Z in the end.

The outcome determines whether apply a single-qubit gate on neighbors' qubits.

Reduces dimensionality and introduces **nonlinearities**.

Y. Lu,et al., 40th CCC, 52363, (2021).

Quantum Convolutional Neural Network

FC layer is applied to perform classification on the extracted features.

The output of the QCNN model for x_{in} is -> $f(\theta, x_{in}) \equiv \langle Z \rangle$.

Binary classification:

$$\langle Z \rangle \geq 0$$
 -> one class

$$<$$
Z $>$ < **0** -> other class

Y. Lu,et al., 40th CCC, 52363, (2021).

Basis encoding

Theory

$$|0\rangle \longrightarrow |1\rangle$$
 $|0\rangle \longrightarrow |1\rangle$
 $|0\rangle \longrightarrow |0\rangle$

$$\begin{vmatrix}
0 \rangle & \longrightarrow & |1 \rangle \\
0 \rangle & \longrightarrow & |0 \rangle \\
0 \rangle & \longrightarrow & |0 \rangle$$

$$|\psi_{x}\rangle = |i_{x}\rangle$$

Advantages: Simple and straightforward approach. Low encoding circuit depth.

Disadvantages: At least N qubits per image of N pixels. The data input discretization produces information loss.

Basis encoding

- 3x3 input images
- 9 qubits

- 30 parameters
- 21 sec/epoch

Basis encoding Model results

Angle encoding

$$|\psi_x\rangle = \cos(-\frac{x}{2})|0\rangle + \sin(-\frac{x}{2})|1\rangle$$

Advantages: Low depth of the encoding circuit. No information loss due to a continuous representation of the input.

Disadvantages: Use of N qubits per pixel. Susceptible to noise.

Angle encoding

- 3x3 input images
- 9 qubits

- 57 parameters
- 40 sec/epoch

Angle encoding Model results

Amplitude encoding

Theory

$$|\psi_x\rangle = \sum_{i=1}^N x_i |i\rangle$$

Advantages: number of data encoded scales exponentially with the number of qubits.

Disadvantages: depth of the encoding circuit scales exponentially with the number of qubits.

Amplitude encoding

First model

- 8x8 input images
- 6 qubits

- 51 parameters
- 35 sec/epoch

Amplitude encoding First model results

Amplitude encoding

Second model

- 4x4 input images
- 4 qubits/filter (12qubits)

- 168 parameters
- 45 sec/epoch

Amplitude encoding Second model results

Amplitude encoding Locality problem

$$|\psi_i\rangle = x_{00}|00\rangle + x_{01}|01\rangle + x_{10}|10\rangle + x_{11}|11\rangle$$

$$|\psi_f\rangle = U|0\rangle \otimes (x_{00}|0\rangle + x_{01}|1\rangle) + U|1\rangle \otimes (x_{10}|0\rangle + x_{11}|1\rangle)$$

- Applying a local gate will mix information on amplitudes losing local connectivity.
- We need unitary block matrixes to preserve local connectivity.

Amplitude encoding Locality problem

$$|\psi_i\rangle = x_{00}|00\rangle + x_{01}|01\rangle + x_{10}|10\rangle + x_{11}|11\rangle$$

$$U|\psi_i\rangle = \begin{bmatrix} \mathbf{U}' & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \vec{x}_{00,01} \\ \vec{x}_{10,11} \end{bmatrix} = \begin{bmatrix} \mathbf{U}'\vec{x}_{00,01} \\ \vec{x}_{10,11} \end{bmatrix}$$

- Applying a local gate will mix information on amplitudes losing local connectivity
- We need unitary block matrixes to preserve local connectivity

Amplitude encoding

Third model

- 8x8 input images6 qubits

$$=\mathbb{I}_{2x2}\otimes\mathbb{I}_{2x2}\otimes\cdots\otimes\mathbb{I}_{2x2}\otimes U_{4x4}=\begin{bmatrix}\mathbf{U}_{4x4}&0&\dots&0\\0&\mathbf{U}_{4x4}&\dots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\dots&\mathbf{U}_{4x4}\end{bmatrix}$$
• 78 parameters • 24 sec/epoch

$$= \mathbb{I}_{2x2} \otimes \mathbb{I}_{2x2} \otimes \cdots \otimes \mathbb{I}_{2x2} \otimes U_{2x2} = \begin{bmatrix} \mathbf{U}_{2x2} & 0 & \cdots & 0 \\ 0 & \mathbf{U}_{2x2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{U}_{2x2} \end{bmatrix}$$

Amplitude encoding Third model results and comparison

Amplitude encoding

Hybrid model

- 8x8 input images
- 6 qubits

- 168 parameters
- 45 sec/epoch

Amplitude encoding Hybrid model results

Convolutional Neural Network

15 parameters,

our QFCC

6 parameters,

Sukin Sim et al., Adv. Quantum Technol. 2, 1900070 (2019)

42 parameters,

Maria Schuld et al., Phys. Rev. A 101, 032308 (2019)

10 parameters,

Sukin Sim et al., Adv. Quantum Technol 2, 1900070 (2019)

Training parameters during the QFCC analysis

Each QFCC is adapted on 3 qubits to match the output of the QCNN

Training set size: 5000 samples

Test set size: 500 samples

Gradient Descent: Adam optimizer

Loss function: MSE

Minibatch size: 75 samples

Epochs: 50

QFCC Results

Summary

Conclusions

We were not able to evaluate Basis and Angle encoding in QCNN accurately due to limitations in simulating a large quantum algorithm.

We reproduced similar models to 1 with amplitude encoding and found slightly smaller accuracies than classical fair models. However, thanks to amplitude encoding data capacity is higher in the quantum model.

We slightly improved that model's speed, depth, and accuracy (Qm_Amp_1) with a simpler model (Qm_Amp_3) by accurately considering local connectivity in amplitude encoding. By changing the final QFCC we have not found significant results.

With the Hybrid model with amplitude encoding, we improved the accuracy of the classical fair model.