2020 Digital IC Design Homework 3: Approximate Average

NAME Student ID		hi Ai				
Student ID	D = 600	Tran Thi Ai				
	P76087081					
Simulation Result						
Functional	Pass	Gate-level	Pass	Gate-level	122264 (ng)	
simulation		simulation		simulation time	132264 (ns)	
(your pre-sim result)				(your post-sim result)		
#						
Synthesis Result Total logic elements 515 / 68,416 (< 1 %)						
Total memory bit				1,152,000 (0 %)		
Embedded multiplier 9-bit element				300 (0 %)		
(your flow sur	nmary)					
Flow Summary Flow Status Quartus II Version Revision Name CS Top-level Entity Name CS Family Device Final Met timing requirements Total combinational functions Dedicated logic registers Total registers Total virtual pins Total PLLs Successful - Thu Apr 23 13:59:11 2020 10.0 Build 262 08/18/2010 SP 1 SJ Full Version Successful - Thu Apr 23 13:59:11 2020 10.0 Build 262 08/18/2010 SP 1 SJ Full Version CS Cydone II EP 2C70F896C8 Final Yes Final Yes 515 / 68,416 (< 1 %) 515 / 68,416 (< 1 %) 515 / 68,416 (< 1 %) 515 / 68,416 (< 1 %) 515 / 68,416 (< 1 %) Total registers 84 Total virtual pins 0 / 1,152,000 (0 %) 0 / 4 (0 %)						

Description of your design

In order to calculate Y, this circuit is in after checking, the calculation of Yi is started. However, at the time point after checking, 9 numbers are stored in Register File and implement calculation sum. The steps are as follows:

Step 1: At this stage, the Sum value in the Register Sum is read out and subtracted from the Xi-9 in the Register File and then waits for the next stage Xi value to enter. The input X is changed to the next at the negative edges of the clock.

Step 2: Xi value waits outside the Register File for clock positive edge trigger to prepare to write to Register File.

After Sum i-1 and Xi-9 are subtracted add Xi to Xi-8 ~ Xi sum value Sum i and wait for clock positive edge trigger outside Register Sum to prepare to write Register Sum.

The sum value is calculated by a dividing circuit.

The Compare is a circuit compares the numbers with avg and out1 is records the respective comparison results. Which largest number in the numbers less than or equal to average number.

```
always @(in) begin
c in = in;
apprl = 8'b0;
for( i=0; i<9; i=i+1) begin
    a[7:0] = c in[7:0];
    c_in = c_in >> 8;
    //apprl <= 100000001;
    if(a<=avg 1) begin
       d= avg 1 - a;
        e= avg_1- apprl;
        if(d<=e) begin
            apprl = a;
            //apprl=d;
        end
        else begin
           apprl = apprl;
           //apprl=apprl;
        end
    end
end
outl = apprl;
```

Finally divide by 8 to be Y.

```
'timescale lns/10ps
'define CYCLE 66  // Modify your clock period here

'define INFILE "in.dat"
'define OUTFILE "out_golden.dat"

This is the clock cycle modified when post-sim.
```

Scoring = (Total logic elements + total memory bit + 9*embedded multiplier 9-bit element) × (gate-level simulation time in \underline{ns})