n tuple, Cartesian product set operations and Set identities

Ordered n-tuples

 $(a_1, a_2, a_3, \dots a_n)$ is the ordered collection. And we say that $(a_1, a_2, a_3, \dots a_n) = (b_1, b_2, b_3, \dots b_n)$ iff $a_i = b_i$ (i = 1, 2, 3..)

And when n = 2 ----Ordered pairs (a,b), (c, d)

Cartesian Product

A X B is the set of all ordered pairs where $a \in A$ and $b \in B$

A X B = $\{(a,b) \mid a \in A \land b \in B\}$. It is called a relation from set A to set B

- A x B \neq B x A unless A = B
- Can be performed on more than 2 sets: $A_1xA_2x...A_n = \{(a_1, a_2, ...a_n)|a_i \in A_i \text{ for } i=\{1,2,..,n\}$

Examples:

- $A = \{1,2\}$ and $B = \{a, b, c\}$ $AxB = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$
- $A=\{0,1\}, B=\{1,2\}, C=\{0,1,2\}$ $AxBxC=\{(0,1,0),(0,1,1),(0,1,2),(0,2,0),(0,2,1),(0,2,2),(1,1,0),(1,1,1),(1,1,2),(1,2,0),(1,2,1),(1,2,2)\}$

Set Operations

As always there must be a universe U. All sets are assumed to be subsets of U.

Two sets can be combined in many different ways. Union, Intersection, Difference

Union AU B

The set that contains elements that are either in A or in B, or in both

- AUB = $\{x | x \in A \ V \ x \in B\}$
- Example $A = \{1,3,5\}$ $B = \{1,2,3,5\}$ AU $B = \{1,2,3,5\}$ What is the cardinality?

Intersection $A \cap B$

The set that contains elements that are in both A and in B

- $A \cap B = \{x | x \in A \land x \in B\}$
- Example A= $\{1,3,5\}$ B = $\{1,2,3\}$, A \cap B = $\{1,3\}$ What is the cardinality? Definition: Two sets are Disjoint if their intersection is empty. A \cap B = \emptyset
- Example: $A=\{2, 4, 6\}$ $B=\{1, 3, 5\}$

Difference A-B

Set containing elements in A but not in B. In other words: Complement of B with respect to A

- $A B = \{x | x \in A \land x \notin B\}$
- A $\cap \bar{B}$
- Example: $A=\{1,3,5\}$ $B=\{1,2,3\}$, $A-B=\{5\}$, $B-A=\{2\}$

Symmetric difference A ⊕ B

• $A \oplus B = (A - B) U (B - A)$

Returning back to the cardinality of AUB

• The cardinality of AU B $|A \cup B| = |A| + |B| - |A \cap B|$

The universal set U & set complement

 \overline{A} is a complement of $\overline{A} = U - A$

• $\overline{A} = \{x \mid x \notin A\} = \{x \mid \neg (x \in A)\}$ Example $A = \{a, e, i, o, u\}$ vowels, $\overline{A} = \text{consonant}$

Set Identities

Identity Laws: A U \emptyset = A, A \cap U = A

Domination laws $A \cup U = U$, $A \cap \emptyset = \emptyset$

Idempotent laws $A \cup A = A$, $A \cap A = A$

Complementation laws $\bar{\bar{A}}$ = A

Commutative laws A U B = B U A, A \cap B = B \cap A

Associative laws A U(B U C) = (A U B) U C, A \cap (B \cap C) = (A \cap B) \cap C

Distributive laws A \cap (B U C) = (A \cap B) U (A \cap C), A U (B \cap C) = (A U B) \cap (A U C)

De Morgan's laws $\overline{A \cap B} = \overline{A} \cup \overline{B}$, $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Absorption laws A U (A \cap B) = A, A \cap (A U B) = A

Complement laws A U $\bar{A} = U$, A $\cap \bar{A} = \varphi$