Университет ИТМО

Факультет Программной Инженерии и Компьютерных Техники

Лабораторная работа №4

Аппроксимация функции методом наименьших квадратов Вариант № 15

> Выполнила: Студент группы Р3213 Юсупова Алиса Ильясовна Преподаватель:

Преподаватель практики

ЦЕЛЬ:

Цель лабораторной работы: найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Лабораторная работа состоит из двух частей: вычислительной и программной.

№ варианта задания лабораторной работы определяется как номер в списке группы согласно ИСУ.

ВЫЧИСЛИТЕЛЬНАЯ ЧАСТЬ:

Вычислительная реализация задачи

Вычислительная часть лабораторной работы должна быть представлена только в отчете.

Задание:

- 1. Сформировать таблицу табулирования заданной функции на указанном интервале (см. табл. 1)
- 2. Построить линейное и квадратичное приближения по 11 точкам заданного интервала;
- 3. Найти среднеквадратические отклонения для каждой аппроксимирующей функции. Ответы дать с тремя знаками после запятой;
- 4. Выбрать наилучшее приближение;
- 5. Построить графики заданной функции, а также полученные линейное и квадратичное приближения;
- 6. Привести в отчете подробные вычисления.

№ вариан та	Функция	Исследуемый интервал				
15	$y = \frac{4x}{x^4 + 15}$	$x \in [-2, 0]$ $h = 0,2$				

Таблица табулирования заданной функции:

X	-2	-1.8	-1.6	-1.4	-1.2	-1.0	-0.8	-0.6	-0.4	-0.2	0
Y	-0.25	-0.282	0.297	0.2972	0.2811	-0.25		0.159	0.106	0.053	0

Линейная аппроксимация:

$$\varphi(x) = a + bx$$

Вычисляем суммы:

$$SX = -11$$

$$SXX = 15.4$$

$$SY = -2.18$$

$$SXY = 2.801$$

$$\begin{cases} n*a + sx*b = sy \\ sx*a + sxx*b = sxy \end{cases} \begin{cases} 11*a + (-11)*b = -2.18 \\ (-11)*a + 15.4*b = 2.801 \end{cases} \begin{cases} a = -0.0581 \\ b = 0.1404 \end{cases}$$

$$\varphi(x) = -0.0581 + 0.1404x$$

X	-2	-1.8	-1.6	-1.4	-1.2	-1.0	-0.8	-0.6	-0.4	-0.2	0
Y	-0.25	-0.282	-0.297	-	-	-0.25	-	-	-	-	0
				0.2972	0.2811		0.208	0.159	0.106	0.053	
$\varphi(x)$	0.934	0.708	0.4812	0.2548	0.0284	-0.2	-0.42	-0.65	-0.88	-1.10	-1.33
$(\varphi(x)-y)^2$	1.4	0.98	0.605	0.305	0.096	0.003	0.047	0.24	0.6	1.1	1.77

$$\sigma = \sqrt{\frac{\sum(\varphi(x) - y)^2}{n}} = 0.0496$$

Квадратичная аппроксимация:

$$\varphi(x) = a + bx + cx^2$$

Вычисляем суммы:

$$SX = -11$$

$$SXX = 15.4$$

$$SXXX = -24.2$$

$$SXXXX = 40.5328$$

$$SY = -2.18$$

$$SXY = 2.801$$

$$SXXY = -4.12074$$

$$\begin{cases} n*a + sx*b + sxx*c = sy \\ sx*a + sxx*b + sxxx*c = sxy \\ sxx*a + sxxx*b + sxxxx*c = sxxy \end{cases} \begin{cases} 11*a + (-11)*b + 15.4*c = -2.18 \\ (-11)*a + 15.4*b + (-24.2)*c = 2.801 \\ 15.4*a + (-24.2)*b + 40.5328*c = -4.12074 \end{cases} \begin{cases} a = 0.66 \\ b = 0.66 \\ c = 0.66 \end{cases}$$

$$\varphi(x) = 0.0187 + 0.394 * x + 0.126 * x^2$$

X	-2	-1.8	-1.6	-1.4	-1.2	-1.0	-0.8	-0.6	-0.4	-0.2	0
Y	-0.25	-	-0.75	-0.5	-0.37	-0.29	-0.22	-0.16	-0.11	-0.05	0
		1.599									
$\varphi(x)$	-0.27	-0.28	-0.29	-0.285	-0.27	-0.24	-0.22	-0.17	-0.12	0.06	0.02
$(\varphi(x)$	0.0002	0.000	0.00006	0.0001	0.00007	0.000	0.00006	0.0002	0.0002	0.000	0.0003
$-y)^2$											

$$\sigma = \sqrt{\frac{\sum (\varphi(x) - y)^2}{n}} = 0.0012367$$

У квадратичной аппроксимации среднеквадратичное отклонение меньше, поэтому это приближение лучше

Программная реализация:

См. приложение

Вывод:

Я нашла функцию, являющуюся наилучшим приближение заданной табличной функции по методу наименьших квадратов и реализовала методы её на языке программирования Python.