Regras de derivação

Na lista de derivadas que se segue, omitem-se os domínios das funções.

13. $((f(x))^{g(x)})' = g(x)(f(x))^{g(x)-1}f'(x) + g'(x)(f(x))^{g(x)}\ln f(x)$

1.
$$C' = 0$$
, sendo C uma constante

3.
$$(f(x) + g(x))' = f'(x) + g'(x)$$

5.
$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

7.
$$(f \circ g)'(x) = f'(g(x)) g'(x)$$

9.
$$(e^{f(x)})' = f'(x) e^{f(x)}$$

11.
$$(a^{f(x)})' = f'(x) a^{f(x)} \ln a$$

$$\mathbf{II.} \ (a \quad) = \mathbf{j} \ (a) \, a \quad \mathbf{III} \, a$$

14.
$$(\operatorname{sen} f(x))' = f'(x) \cos f(x)$$

16.
$$(\operatorname{tg} f(x))' = \frac{f'(x)}{\cos^2 f(x)}$$

18.
$$(\sinh f(x))' = f'(x) \cosh f(x)$$

20.
$$(\operatorname{th} f(x))' = \frac{f'(x)}{\operatorname{ch}^2 f(x)}$$

22.
$$(\arcsin f(x))' = \frac{f'(x)}{\sqrt{1 - f^2(x)}}$$

24.
$$(\operatorname{arctg} f(x))' = \frac{f'(x)}{1 + f^2(x)}$$

26.
$$(\operatorname{argsh} f(x))' = \frac{f'(x)}{\sqrt{1+f^2(x)}}$$

28.
$$(\operatorname{argth} f(x))' = \frac{f'(x)}{1 - f^2(x)}$$

2.
$$(kf(x))' = kf'(x)$$
 $(k \in \mathbb{R})$

4.
$$(f^{\alpha}(x))' = \alpha f^{\alpha-1}(x)f'(x) \quad (\alpha \in \mathbb{R})$$

6.
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

8.
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

10.
$$(\ln f(x))' = \frac{f'(x)}{f(x)}$$

12.
$$(\log_a f(x))' = \frac{f'(x)}{f(x)} \log_a e$$

15.
$$(\cos f(x))' = -f'(x) \sin f(x)$$

17.
$$(\cot f(x))' = \frac{-f'(x)}{\sin^2 f(x)}$$

19.
$$(\operatorname{ch} f(x))' = f'(x) \operatorname{sh} f(x)$$

21.
$$(\coth f(x))' = \frac{-f'(x)}{\sinh^2 f(x)}$$

23.
$$(\arccos f(x))' = \frac{-f'(x)}{\sqrt{1 - f^2(x)}}$$

25.
$$(\operatorname{arccotg} f(x))' = \frac{-f'(x)}{1 + f^2(x)}$$

27.
$$(\operatorname{argch} f(x))' = \frac{f'(x)}{\sqrt{f^2(x) - 1}}$$

29.
$$(\operatorname{argcoth} f(x))' = \frac{f'(x)}{1 - f^2(x)}$$