Home ▶ Electrical Engineering ▶ Engr17-2016F-Tatro ▶ Homework ▶ Homework 8 - Chap 4

Started on Sunday, 23 October 2016, 8:04 PM

State Finished

Completed on Monday, 24 October 2016, 5:15 AM

Time taken 9 hours 10 mins

Grade 75.00 out of 100.00

Question 1

Incorrect

Mark 0.00 out of 10.00

P4.51_6ed

Use source transformations to:

a) Find the current i0 through the 5 $k\Omega$ (kilo Ohm) resistor.

$$i_0 = \begin{bmatrix} 5 \end{bmatrix}$$
 mA (milli Amp)

b) Find the power absorbed/delivered by the 75V voltage source.

$$P_{75V} = 375$$
 × mW (milli Watt)

Numeric Answer

a)
$$i_0 = 3.0 \text{ mA}$$

Incorrect

Correct

Mark 10.00 out of 10.00

P4.52_6ed

Use source transformations to:

a) Use Find the current \boldsymbol{i}_0 through the 2.3 $k\Omega$ (kilo Ohm) resistor.

$$i_0 = \{-1.020 | -0.980 | -1 \}$$
 mA (milli Amp)

b) Find the power absorbed/delivered by the 0.6 mA current source.

$$P_{0.6mA} = 240$$
 $\checkmark \mu W (micro Watt)$

Numeric Answers

a)
$$i_0 = -1.0 \text{ mA}$$

b)
$$P_{0.6mA} = 240 \text{ mW}$$
 (micro Watt) absorbing

Correct

Correct

Mark 10.00 out of 10.00

AP4.18_9ed

A voltmeter with an internal resistance of 100 k Ω (kilo Ohm) is used to measure the voltage v_{AB} in the circuit shown.

What is the voltmeter reading? $v_{AB} = \begin{bmatrix} 120 \\ \end{bmatrix}$

Numeric Answer

 v_{AB} = Voltmeter Reading = 120V

Correct

Correct

Mark 10.00 out of 10.00

P4.64_10ed

Find the Thévenin equivalent circuit with respect to the terminals a,b for this circuit.

$$V_{Th} = \boxed{60}$$

$$R_{Th} = \boxed{10}$$
 $\checkmark \Omega \text{ (Ohm)}$

Numeric Answer

$$V_{TL} = 60 \text{ V}$$

$$V_{Th} = 60 \text{ V}$$

 $R_{Th} = 10 \Omega \text{ (Ohm)}$

Correct

Correct

Mark 10.00 out of 10.00

Copyright ©2015 Pearson Education, All Rights Reserved

P4.67_10ed

Find the Thévenin equivalent circuit with respect to the terminals a,b for this circuit.

$$R_{Th} = \boxed{7.5}$$
 Ω (Ohm)

Numeric Answer

$$V_{Th} = 425 V$$

$$V_{Th} = 425 \text{ V}$$

 $R_{Th} = 7.5 \Omega \text{ (Ohm)}$

Correct

Incorrect

Mark 0.00 out of 10.00

AS4-02

The circuit in figure (a) is simplified to its Thévenin equivalent shown in (b).

Find the numerical values for $\rm V_{Th}$ and $\rm R_{Th}$

$$R_{Th} = 20$$
 \times k Ω (kilo Ohm)

Numeric Answer

$$V_{-} = 2 \text{ V}$$

$$V_{\text{Th}} = 2 \text{ V}$$

 $R_{\text{Th}} = 1.6 \text{ k}\Omega$

Incorrect

Correct

Mark 10.00 out of 10.00

P4.59_6ed

Find the Thévenin equivalent circuit with respect to the terminals a,b for this circuit.

$$R_{Th} = \boxed{6}$$
 $\checkmark \Omega \text{ (Ohm)}$

Numeric Answer

$$V_{Th} = 52 V$$

$$R_{Th}^{III} = 6 \Omega \text{ (Ohm)}$$

Correct

Correct

Mark 10.00 out of 10.00

P4.66_10ed

Find the Norton equivalent circuit with respect to the terminals a,b for this circuit.

$$R_{Th} = \begin{bmatrix} 16 \\ \end{bmatrix} \checkmark \Omega \text{ (Ohm)}$$

Numeric Answer

$$I_N = 7 A$$

$$I_N = 7 A$$

 $R_{Th} = 16 \Omega \text{ (Ohm)}$

Correct

Correct

Mark 10.00 out of 10.00

P4.62_6ed

Find the Norton equivalent circuit with respect to the terminals a,b for this circuit. The Norton equivalent current should "point up".

$$I_N = \boxed{-8}$$
 mA (milli Amp)

$$R_{Th} = \boxed{10}$$
 \checkmark $k\Omega$ (kilo Ohm)

Numeric Answer

$$I_N = -8 \text{ mA}$$

$$R_{Th}^{N} = 10 \text{ k}\Omega \text{ (Ohm)}$$

Correct

Partially correct

Mark 5.00 out of 10.00

P4.68_10ed

Find the Norton equivalent circuit with respect to the terminals a,b for this circuit.

$$I_N = \boxed{-1}$$
 mA

$$R_{Th} = \begin{bmatrix} 3750 \\ \end{pmatrix} \times \Omega \text{ (Ohm)}$$

Numeric Answer

$$I_N = -1mA$$

$$R_{Th} = 3.75k\Omega$$
 (Ohm)

Partially correct