E. Compound Semiconductors 분과

O25_[TM2-E] WBG Semiconductor-II

좌장: 차호영 교수(홍익대학교), 권혁민 교수(한경대학교)

TM2-E-1 10:55-11:10	Sub-100 nm Al _{0.4} Ga _{0.6} N/GaN HEMTs with f_{max} = 490 GHz Su-Min Choi ¹ , Hyeok-Jun Lee ¹ , Wan-Soo Park ¹ , Hyo-Jin Kim ¹ , Young-Hun Han ² , June-O Song ² , Jae-Hak Lee ¹ , Kyounghoon Yang ³ , and Dae-Hyun Kim ¹ School of Electronic and Electrical Engineering, Kyungpook National University, ² WaveLord, ³ KAIST
TM2-E-2 11:10-11:25	Fabrication and Characterization of GaN FinFETs for Power Devices Hyun Woo Lee ^{1,2} , Hyeon Tak Kwak ¹ , Jae Won Park ¹ , Dong Han Kim ¹ , Hoe Min Kwak ¹ , Sung Bum Bae ¹ , Sang Mo Koo ² , and Hyung Seok Lee ¹ ¹ ETRI, ² Department of Electrical Material Engineering, Kwangwoon University
TM2-E-3 11:25-11:40	Enhancement of AlGaN/GaN HEMTs through N ₂ treatment on SiN Passivation Hyo-Jin Kim ¹ , Su-Min Choi ¹ , Hyeok-Jun Lee ¹ , Min-Seo Yoo ¹ , Yu-Jeong Lee ¹ Jae-Hak Lee ¹ , Kyounghoon Yang ² and Dae-Hyun Kim ¹ ¹ Kyungpook National University, ² KAIST
TM2-E-4 11:40-11:55	E-mode AlGaN/GaN HEMTs의 드레인 전압에 의한 문턱전압 열화 분석 채명수, 김형탁 홍익대학교 전자전기공학부
TM2-E-5 11:55-12:10	Device Performance Improvement in GaN-Based HEMTs Using Extremely Thin h-BN Passivation Layer and Air Spacer SJ. Chang ¹ , S. Moon ² , DS. Kim ³ , HY. Jung ¹ , J. Jeong ¹ , J. Song ² , J. Kim ² , HK. Ahn ¹ , YS. Noh ¹ , JW. Lim ¹ , J. K. Kim ² , and DM. Kang ¹ ¹ ETRI, ² POSTECH, ³ KAERI
TM2-E-6 12:10-12:25	Reducing Thermal Crosstalk in Multi-Finger AlGaN/GaN HEMTs Through Central Source Length Modulation Chae-Yun Lim, Jae-Hun Lee, Tae-Sung Kim, Yeong-Hyun Won, and Hyun-Seok Kim Division of Electronics and Electrical Engineering, Dongguk University
TM2-E-7 12:25-12:40	Effect of Al-rich AlGaN Channel Composition Variation on HEMT Performance Joon-Hyuk Lee, Joocheol Jeong, Shyam Mohan, Jooyong Park, Jaejin Heo, and Okhyun Nam Convergence Center for Advanced Nano Semiconductor (CANS), Department of Nano-Semiconductor, Tech University of Korea

Reducing Thermal Crosstalk in Multi-Finger AlGaN/GaN HEMTs Through Central Source Length Modulation

*임채윤, 이재훈, 김태성, 원영현, 김현석© 동국대학교 전자전기공학부

Table of Contents

- 1. Introduction of WBG AlGaN/GaN HEMTs
- 2. Device Structure Modeling and Reliability Assurance
- 3. Thermal and Operational Characteristics Analysis in Multi-Finger HEMTs
- 4. Conclusion

1. Introduction of WBG AlGaN/GaN HEMTs (1) Multi-Finger AlGaN/GaN HEMTs and It's Challenges

Zhiyuan Qi, et al., IEEE Trans. Power Electron, 2021

M.Kuball, et al., phys. stat. sol, 2005

- GaN: High thermal stability, superior RF performance
- Multi-Finger structure: Reduces gate resistance, ideal for RF, but faces thermal issues
- Thermal challenges: Heat variation and thermal crosstalk increase device failure rate

2. Device Structure Modeling and Reliability Assurance (1) Modeling Based on the Layout of 0.15µm Planar-gate HEMT Device

<Layout of 0.15 μm Planar-gate HEMT>

< 0.15 µm Planar-gate HEMT>

Parameters	Values (μm)	Parameters	Values (μm)
① L _{SD}	3	⑥ L _{SG}	0.5
② L _{G.HEAD_TOP}	0.8	7 L _{FP.TOP}	1.4
③ L _{G.HEAD_BOTTOM}	1.0	8 L _{FP.BOTTOM}	1.6
4 L _{G.FOOT}	0.15	9 L _{SOURCE}	3.0
⑤ L _{GD}	1.5	(I) L _{DRAIN}	1.0

2. Device Structure Modeling and Reliability Assurance (2) Simulation Reliability Assurance

	I _{dss} (mA/mm)	G _m (mS/mm)	V _{th} (V)
Measured Data	913.80	367.34	-3.5
Simulated Data	884.32	367.17	-3.5
Error Rate	Error Rate 3.32%		0%

 \times I_{dss}: Drain Current @ V_{GS} = 0 V G_m: Maximum Transconductance V_{th}: Threshold Voltage

- Simulation reliability: Simulation data were matched with the measured data of AlGaN/GaN
 HEMT devices fabricated through actual processes
- Error rates: 3.32% for I_{dss}, 0.04% for G_m, and 0% for V_{th}

3. Thermal and Operational Characteristics Analysis in Multi-Finger HEMTs (1) Device Structure Analysis

< Schematic Cross-Section of AlGaN/GaN HEMT Devices>

3. Thermal and Operational Characteristics Analysis in Multi-Finger HEMTs (2) Thermal Degradation of Multi-Finger HEMTs

- Thermal crosstalk: Peak finger temperature differences between 1F HEMT & Multi-Finger HEMTs
- Maximum thermal crosstalk at $V_{DS} = 40 \text{ V}$: 9.03 K (2F), 27.03 K (4F), and 34.98 K (8F)
- Average temperature at V_{DS} = 40 V: 9.58 K (2F), 35.77 K (4F), and 49.53 K (8F)

3. Thermal and Operational Characteristics Analysis in Multi-Finger HEMTs (3) Degradation of DC Characteristics in Multi-Finger HEMTs

- Thermal crosstalk degrades R_{ON} and I_{D,MAX} as the number of fingers increases
- 68.81% increase in R_{ON} , 6.34% decrease in $I_{D,MAX}$ (1F HEMT \rightarrow 8F HEMT)

3. Thermal and Operational Characteristics Analysis in Multi-Finger HEMTs (4) Widening the Central Source Contact Length

< Schematic Cross-Section of 4F HEMT Device>

Variable Parameters	Units	Values	Note
Central Source Contact	μm	3.0 ~ 6.0	Simulation performed with 1 µm increments

3. Thermal and Operational Characteristics Analysis in Multi-Finger HEMTs (5) Thermal Characteristics of Widened Central Source Contact Multi-Finger HEMTs

- Maximum thermal crosstalk decreased by 27.03 K (3 μm) to 9.39 K (6 μm)
- Average temperature differences between outer (1, 4) and center fingers (2, 3) decreased from 32.27 K (3 μm) to 1.59 K (6 μm)

3. Thermal and Operational Characteristics Analysis in Multi-Finger HEMTs (6) DC Characteristics of Widened Central Source Contact Multi-Finger HEMTs

- Extending the central source contact alleviates R_{ON} degradation and $I_{D,MAX}$ with 6 μm delivering optimal performance
- 6 μm central source contact shows clear temperature benefits at higher power densities
- At 12 W/mm, the device temperature for the 6 μm is 17.45 K lower than the 3 μm 4F HEMT

3. Thermal and Operational Characteristics Analysis in Multi-Finger HEMTs (7) Thermal Transient Analysis of Multi-Finger HEMTs

Central Source Length (µm)	Duty (%)	ΔΤ _{MAX} (K)
	25	18.94
3	50	25.00
	75	30.60
	25	9.89
6	50	10.65
	75	12.04

- Transient analysis shows ΔT_{MAX} as the maximum thermal crosstalk during the on-state of a single pulse (On-off duration : 2 µm)
- For the 3 μ m configuration, ΔT_{MAX} increased from **18.94 K (25% duty cycle) to 30.60 K (75% duty cycle)**
- The 6 μm configuration exhibited smaller increases, from 9.89 K (25% duty cycle) to 12.04 K
 (75% duty cycle), mitigating heat accumulation

3. Thermal and Operational Characteristics Analysis in Multi-Finger HEMTs (8) Central Source Contact Length Exceeding 6 µm

< Schematic Cross-Section of 4F HEMT Device>

Variable Parameters	Units	Values	Note
Central Source Contact	μm	6.0 ~ 9.0	Simulation performed with 1 µm increments

3. Thermal and Operational Characteristics Analysis in Multi-Finger HEMTs (9) Temperature Non-uniformity and Reduced Area Efficiency

- Extending the central source contact length beyond 6 μ m reduces thermal coupling but increases temperature variation (T_{OUTER} - T_{INNER} = 35.66 K at 9 μ m)
- R_{ON} improves by only 0.85%, but specific on-resistance (R_{ON} · A) rises by 17.74%, reducing area efficiency

4. Research Summary and Conclusion

Research Summary

Central Source Length (µm)	Maximum Thermal Crosstalk	ΔΤ _{ΜΑΧ} (K) @ Duty (75%)	T _{OUTER} -T _{INNER} (K)
3	27.03	30.60	32.27
6	9.39	12.04	1.59

Conclusion

• This study investigates thermal crosstalk in multi-finger GaN HEMTs by proposing a four-finger structure with a modulation of central source contact length. As a result, the maximum thermal crosstalk is reduced by 65% in 6 µm central source contact. The optimized design reduces thermal crosstalk and improves temperature uniformity for high-power applications.

Thank You

Acknowledgement:

This work was supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP) through the Korea government (MSIT) under Grant 2021-0-00760.

