

Wahrscheinlichkeitstheorie und Frequentistische Inferenz

BSc Psychologie WiSe 2022/23

Prof. Dr. Dirk Ostwald

(8) Transformationen der Normalverteilung

Transformationstheoreme

Standardtransformationen

- Summentransformation
- Mittelwerttransformation
- Z-Transformation
- χ^2 -Transformation
- T-Transformation
- F-Transformation

Selbstkontrollfragen

Transformationstheoreme

Standardtransformationen

- Summentransformation
- Mittelwerttransformation
- Z-Transformation
- χ^2 -Transformation
- T-Transformation
- F-Transformation

Selbstkontrollfragen

Realisierungen von Zufallsvariablen

Der einzelne Wert, den eine Zufallsvariable bei jedem Durchgang eines Zufallsvorgangs annimmt, heißt eine **Realisierung** der Zufallsvariable. Mithilfe eines Computers lassen sich Zufallsexperimente simulieren und Realisierungen von Zufallsvariablen erhalten.

Realisierungen von normalverteilten Zufallsvariablen erhält man in R mit rnorm(), wobei die Syntax für Realisierungen von n unabhängig und identisch verteilten Zufallsvariablen $\xi_i \sim N(\mu, \sigma^2), i=1,...,n$ durch rnorm(n,mu,sigma) gegeben ist.

```
rnorm(1,0,1)  # \xi_i \sim N(0,1)

[1] -1.4
rnorm(1,10,1)  # \xi_i \sim N(10,1)

[1] 10.3
rnorm(3,5,sqrt(2))  # \xi_i \sim N(5,2), i = 1,2,3 (u.i.v.)

[1] 1.55 4.99 5.88
rnorm(1e1,5,sqrt(2))  # \xi_i \sim N(5,2), i = 1,...,10 (u.i.v.)
```

[1] 6.62 2.42 4.65 4.65 4.60 4.22 5.89 7.92 2.69 5.72

Realisierungen von Zufallsvariablen

Die empirische Verteilung unabhängig und identisch simulierter Zufallsvariablenrealisationen entspricht der Verteilung der Zufallsvariable. Die empirische Verteilung stellt man mit Histogrammen (Häufigkeitsverteilungen) oder histogrammbasierten Dichteschätzern dar.

Transformation von Zufallsvariablen

Inhalt dieser Vorlesungseinheit sind einige Gesetzmäßigkeiten zur Transformation von normalverteilten Zufallsvariablen. Mit *Transformation* ist hier die Anwendung einer Funktion auf Zufallsvariablen sowie die arithmetische Verknüpfung mehrerer Zufallsvariablen gemeint. Die zentrale Fragestellung dabei ist folgende: "Wenn die Zufallsvariable ξ normalverteilt ist, wie ist dann eine Zufallsvariable v, die sich durch Transformation von ξ ergibt, verteilt?"

Für die in dieser Vorlesungseinheit behandelten Fälle gilt, dass man explizit Wahrscheinlichkeitsdichtefunktionen für die Verteilung der transformierten Zufallsvariable angeben kann. Diese gehören zu den klassischen Resultaten der frequentistischen Inferenz und sind für das Verständnis von Konfidenzintervallen, Hypothesentests, und Varianzanalysen essentiell.

Intuitiv kann man sich die Transformation einer Zufallsvariable anhand der Transformation ihrer u.i.v. Realisierungen klar machen. Betrachtet man z.B. $\xi \sim N(0,1)$ und ihre Transformation $v:=\xi^2$ und sind $x_1=0.10, x_2=-0.20, x_3=0.80$ drei u.i.v. Realisierungen von ξ , so entspricht dies den u.i.v. Realisierungen $y_1=x_1^2=0.01, y_2=x_2^2=0.04, y_3=x_3^2=0.64$ von v. In diesem Beispiel fällt auf, dass v keine negativen Werte annimmt, die Verteilung von v ordnet negativen Werten daher Wahrscheinlichkeitsdichten von v0 zu.

print(y[1:8], digits = 2)

Simulation der Transformation normalverteilter Zufallsvariablen in R

```
# Simulationsspezifikation
       = 1e4
                                       # Anzahl von u.i.v Realisierungen (ZVen)
        = 1
                                       # Erwartungswertparameter von \xi
mıı
sigsqr = 2
                                       # Varianzparameter von \xi
# Quadrieren einer Zufallsvariable
        = rnorm(n, mu, sqrt(sigsqr))
                                       # Realisierungen x_i, i = 1, ..., n von \xi
Х
        = x^2
                                       # Realisierungen y i = x i^2 von \ups
v
# Ausgabe der ersten acht Werte
print(x[1:8], digits = 2)
[1] -1.63 0.26 0.93 1.77 -0.29 1.66 1.51 -0.84
```

```
[1] 2.672 0.069 0.857 3.126 0.086 2.762 2.290 0.714
```

Simulation der Transformation normalverteilter Zufallsvariablen in R

Simulation der Transformation normalverteilter Zufallsvariablen in R

Theorem (Transformation eines Zufallsvektors)

 $\xi:\Omega o\mathcal{X}$ sei ein Zufallsvektor und $f:\mathcal{X} o\mathbb{R}^m$ sei eine multivariate vektorwertige Funktion. Dann ist

$$v: \Omega \to \mathbb{R}, \omega \mapsto v(\omega) := (f \circ \xi)(\omega) := f(\xi(\omega))$$
 (1)

ein Zufallsvektor.

Bemerkungen

- Das Theorem formalisiert die oben etablierte Intuition, dass die Anwendung einer (deterministischen) Funktion auf eine zufällige Größe im Allgemeinen wieder eine zufällige Größe ergibt. Wir verzichten auf einen Beweis.
- ullet In einem Beweis müsste die Messbarkeit von v als Folge der Messbarkeit von arepsilon nachgewiesen werden.
- Im Folgenden ist oft $\mathcal{X} := \mathbb{R}$ und $f : \mathbb{R} \to \mathbb{R}$.
- ullet Wir schreiben in diesem Fall in der Regel einfach $v:=f(\xi)$ und nennen v die transformierte Zufallsvariable.

Überblick

Im Abschnitt **Transformationstheoreme** stellen wir zunächst einige generelle Werkzeuge zum Berechnen der WDFen von transformierten Zufallsvariablen bereit. Diese Werkzeuge sind von der allgemeinen Form "Wenn ξ eine Zufallsvariable mit WDF p_{ξ} und $v:=f(\xi)$ die durch f transformierte Zufallsvariable ist, dann gilt für die WDF von v die folgende Formel: $p_{v}:=\{\text{Formel}\}$ ".

Im Abschnitt **Standardtransformationen** diskutieren wir sechs Standardtransformationen normalverteilter Zufallsvariablen, die in der frequentistischen Inferenz und damit im weiteren Verlauf des Kurses zentrale Rollen spielen. Diese Aussagen sind von der allgemeinen Form "Wenn ξ_i , i=1,...,n unabhängig und identisch normalverteilte Zufallsvariablen sind und $v:=f(\xi_1,...,\xi_n)$ eine Transformation dieser Zufallsvariablen ist, dann ist die WDF von v durch die Formel v:= {Formel} gegeben und man nennt die Verteilung von v: Verteilungsname".

Die Aussagen im Abschnitt Standardtransformationen sind für die frequentistische Inferenz zentral, weil

- die Zentralen Grenzwertsätze die Annahme additiv unabhängig normalverteilter Störvariablen, und damit normalverteilter Daten, rechtfertigt,
- (2) wie wir in der n\u00e4chsten Vorlesungseinheit sehen werden, es sich bei Sch\u00e4tzern und Statistiken um Transformationen von Zufallsvariablen handelt, und
- (3) Konfidenzintervalle und Hypothesentests durch die Verteilungen ihrer jeweiligen Statistiken charakterisiert und gerechtfertigt sind.

Ausblick

Das probabilistische Standardmodell von \sqrt{n} Datenpunkten hat die Form

$$y_i := \mu_i + \varepsilon_i, i = 1, ..., n. \tag{2}$$

Die Zufallsvariable y_i dient dabei als das Modell des iten Datenpunktes $\tilde{y}_i \in \mathbb{R}$, d.h. \tilde{y}_i wird als Realisierung von y_i modelliert. Die Normalverteilung $y_i \sim N(\mu_i, \varepsilon)$ der Zufallsvariable y_i ergibt sich dabei wie wir später sehen werden aus der linear-affinen Transformation der Zufallsvariable ε_i unter der Abbildung $f(\varepsilon_i) := \mu_i + \varepsilon_i$

 $\mu_i \in \mathbb{R}$ repräsentiert den deterministischen Aspekt des Datenpunktmodells und liefert die theoretische Erklärung für den Wert von $y_i.$ $\varepsilon_i \sim N(0,\sigma^2)$ dagegen repräsentiert den stochastischen Aspekt des Datenpunktmodells und liefert im Sinne der Zentralen Grenzwertsätzte die theoretischer Erklärung für die Differenz von μ_i und y_i als Resultat der Addition vieler weiterer Einflüsse in der Generation von y_i über μ_i hinaus.

Statistiken und Schätzer, also Funktionen von y_i , $i=1,\ldots,n$, entsprechen damit im probabilistischen Standardmodell Transformationen von normalverteilten Zufallsvariablen.

Transformationstheoreme

Standardtransformationen

- Summentransformation
- Mittelwerttransformation
- Z-Transformation
- χ^2 -Transformation
- T-Transformation
- F-Transformation

Selbstkontrollfragen

Überblick

Das univariate WDF Transformationstheorem bei bijektiven Abbildungen liefert eine Formel zur Berechnung der WDF p_{υ} von $\upsilon:=f(\xi)$, wenn ξ eine Zufallsvariable mit WDF p_{ε} ist und f eine bijektive Funktion ist.

Das univariate WDF Transformationstheorem bei linear affinen Abbildungen gibt eine Formel zur Berechnung der WDF p_{v} von $v:=f(\xi)$ an, wenn ξ eine Zufallsvariable mit WDF p_{ξ} ist und f eine linear-affine Funktion ist.

Das univariate WDF Transformationstheorem bei stückweisen bijektiven Abbildungen gibt eine Formel zur Berechnung der WDF p_{υ} von $\upsilon:=f(\xi)$ an, wenn ξ eine Zufallsvariable mit WDF p_{ξ} ist und f zumindest in Teilen bijektiv ist.

Das multivariate WDF Transformationstheorem bei bijektiven Abbildungen liefert eine Formel zur Berechnung der WDF p_{v} von $v:=f(\xi)$, wenn ξ ein Zufallsvektor mit WDF p_{ξ} ist und f eine bijektive multivariate vektorwertigeFunktion ist.

Das **Faltungstheorem** liefert eine Formel zur Berechnung der WDF p_v von $v:=\xi_1+\xi_2$, wenn ξ_1 und ξ_2 zwei Zufallsvariablen mit WDFen p_{ξ_1} und p_{ξ_2} sind.

Theorem (Univariate WDF Transformation bei bijektiven Abbildungen)

 ξ sei eine Zufallsvariable mit WDF p_{ξ} für die $\mathbb{P}(]a,b[)=1$ gilt, wobei a und/oder b entweder endlich oder unendlich seien. Weiterhin sei

$$v := f(\xi) \tag{3}$$

wobei die univariate reellwertige Funktion $f:]a,b[\to \mathbb{R}$ differenzierbar und bijektiv auf]a,b[sei. f(]a,b[) sei das Bild von]a,b[unter f. Schließlich sei $f^{-1}(y)$ der Wert der Umkehrunktion von f(x) für $y\in f(]a,b[)$ und f'(x) sei die Ableitung von f an der Stelle x. Dann ist die WDF von v gegeben durch

$$p_{\upsilon}: \mathbb{R} \to \mathbb{R}_{\geq 0}, y \mapsto p_{\upsilon}(y) := \begin{cases} \frac{1}{|f'(f^{-1}(y))|} p_{\xi} \left(f^{-1}(y) \right) & \text{für } y \in f(]a, b[) \\ 0 & \text{für } y \in \mathbb{R} \setminus f(]a, b[). \end{cases}$$
(4)

Bemerkungen

- Linear-affine Abbildungen sind ein wichtiger Anwendungsfalls.
- Die Z-Transformation ist ein wichtiger Anwendungsfall.

Beweis

Wir halten zunächst fest, dass weil f eine differenzierbare bijektive Funktion auf]a,b[ist, f entweder strikt wachsend oder strikt fallend ist. Nehmen wir zunächst an, dass f auf]a,b[strikt wachsend ist. Dann ist auch f^{-1} für alle $y \in f(]a,b[)$ wachsend, und es gilt

$$P_{\mathcal{U}}(y) = \mathbb{P}(v \leq y) = \mathbb{P}\left(f(\xi) \leq y\right) = \mathbb{P}\left(f^{-1}(f(\xi)) \leq f^{-1}(y)\right) = \mathbb{P}\left(\xi \leq f^{-1}(y)\right) = P_{\xi}\left(f^{-1}(y)\right).$$

 $P_{\mathcal{U}}$ ist also differenzierbar an allen Stellen y, an denen sowohl f^{-1} als auch P_{ξ} differenzierbar sind. Mit der Kettenregel und dem Satz von der Umkehrabbildung $(f^{-1}(x))' = 1/f'(f^{-1}(x))$, folgt dann, dass die WDF $p_{\mathcal{U}}$ sich ergibt wie folgt:

$$p_{\mathcal{U}}(y) = \frac{d}{dy}P_{\mathcal{U}}(y) = \frac{d}{dy}P_{\xi}\left(f^{-1}(y)\right) = p_{\xi}\left(f^{-1}(y)\right)\frac{d}{dy}f^{-1}(y) = \frac{1}{f'\left(f^{-1}(y)\right)}p_{\xi}\left(f^{-1}(y)\right),$$

Weil f^{-1} strikt wachsend ist, ist $d/dy(f^{-1}(y))$ positiv und das Theorem trifft zu. Analog gilt, dass wenn f auf]a,b[strikt fallend ist, dann ist auch f^{-1} für alle $y\in f(]a,b[)$ fallend und es gilt

$$P_{\mathcal{U}}(y) = \mathbb{P}(f(\xi) \leq y) = \mathbb{P}\left(f^{-1}(f(\xi)) \geq f^{-1}(y)\right) = \mathbb{P}\left(\xi \geq f^{-1}(y)\right) = 1 - P_{\xi}\left(f^{-1}(y)\right),$$

Mit der Kettenregel und dem Satz von der Umkehrabbildung folgt dann

$$p_{_{\mathcal{U}}}(y) = \frac{d}{dy}(1 - P_{_{\mathcal{U}}}(y)) = -\frac{d}{dy}P_{\xi}\left(f^{-1}(y)\right) = -p_{\xi}\left(f^{-1}(y)\right)\frac{d}{dy}f^{-1}(y) = -\frac{1}{f'\left(f^{-1}(y)\right)}p_{\xi}\left(f^{-1}(y)\right).$$

Weil f^{-1} strikt fallend ist, ist $d/dy(f^{-1}(y))$ negativ, so dass $-d/dy(f^{-1}(y))$ gleich $|d/dy(f^{-1}(y))|$ ist und das Theorem trifft zu.

Theorem (Univariate WDF Transformation bei linear-affinen Abbildungen)

 ξ sei eine Zufallsvariable mit WDF p_{ξ} und es sei

$$v = f(\xi) \text{ mit } f(\xi) := a\xi + b \text{ für } a \neq 0.$$
 (5)

Dann ist die WDF von υ gegeben durch

$$p_{\upsilon}: \mathbb{R} \to \mathbb{R}_{\geq 0}, y \mapsto p_{\upsilon}(y) := \frac{1}{|a|} p_{\xi} \left(\frac{y-b}{a}\right).$$
 (6)

Bemerkung

- Das Theorem folgt direkt WDF Transformationstheorem bei bijektiven Abbildungen.
- Die Z-Transformation ist ein wichtiger Anwendungsfall.

Beweis

Wir halten zunächst fest, dass

$$f^{-1}: \mathbb{R} \to \mathbb{R}, y \mapsto f^{-1}(y) = \frac{y-b}{a} \tag{7}$$

ist, weil dann $f\circ f^{-1}=\operatorname{id}_{\mathbb{R}}$ gilt, wie man anhand von

$$f(f^{-1}(x)) = a\left(\frac{x-b}{a}\right) + b = x-b+b = x \text{ für alle } x \in \mathbb{R} \tag{8}$$

einsieht. Wir halten weiterhin fest, dass

$$f': \mathbb{R} \to \mathbb{R}, x \mapsto f'(x) = \frac{d}{dx}(ax+b) = a.$$
 (9)

Also folgt mit dem Theorem zur WDF Transformation bei bijektiven Abbildungen, dass

$$p_{\upsilon}: \mathbb{R} \to \mathbb{R}_{\geq 0}, y \mapsto p_{\upsilon}(y) = \frac{1}{|f'\left(f^{-1}(y)\right)|} p_{\xi}\left(f^{-1}(y)\right)$$
$$= \frac{1}{|a|} p_{\xi}\left(\frac{y-b}{a}\right). \tag{10}$$

 \neg

Theorem (WDF Transformation bei stückweise bijektiven Abbildungen)

 ξ sei eine Zufallsvariable mit Ergebnisraum ${\mathcal X}$ und WDF p_{ξ} . Weiterhin sei

$$v = f(\xi), \tag{11}$$

wobei f so beschaffen sei, dass der Ergebnisraum von ξ in eine endliche Anzahl von Mengen $\mathcal{X}_1,\dots,\mathcal{X}_k$ mit einer entsprechenden Anzahl von Mengen $\mathcal{Y}_1:=f(\mathcal{X}_1),\dots,\mathcal{Y}_k:=f(\mathcal{X}_k)$ im Ergebnisraum \mathcal{Y} von v partitioniert werden kann (wobei nicht notwendigerweise $\mathcal{Y}_i\cap\mathcal{Y}_j=\emptyset, 1\leq i,j\leq k$ gelten muss), so dass die Abbildung f für alle $\mathcal{X}_1,\dots,\mathcal{X}_k$ bijektiv ist (d.h. f ist eine st "uckweise bijektive Abbildung). Für $i=1,\dots,k$ bezeichne f_i^{-1} die Umkehrfunktion von f auf \mathcal{Y}_i . Schließlich nehmen wir an, dass die Ableitungen f_i' für alle $i=1,\dots,k$ existieren und stetig sind. Dann ist eine WDF von v durch

$$p_{v}: \mathcal{Y} \to \mathbb{R}_{\geq 0}, y \mapsto p_{v}(y) := \sum_{i=1}^{k} 1_{\mathcal{Y}_{i}}(y) \frac{1}{|f'_{i}(f_{i}^{-1}(y))|} p_{\xi}\left(f_{i}^{-1}(y)\right). \tag{12}$$

gegeben.

Bemerkungen

- · Wir verzichten auf einen Beweis.
- Die χ^2 -Transformation ist ein wichtiger Anwendungsfall.

Theorem (Multivariate WDF Transformation bei bijektiven Abbildungen)

 ξ sei ein n-dimensionaler Zufallsvektor mit Ergebnisraum \mathbb{R}^n und WDF p_{ξ} . Weiterhin sei

$$v := f(\xi),$$
 (13)

wobei die multivariate vektorwertige Funktion $f:\mathbb{R}^n o \mathbb{R}^n$ differenzierbar und bijektiv auf]a,b[sei. Schließlich seien

$$J^{f}(x) = \left(\frac{\partial}{\partial x_{j}} f_{i}(x)\right)_{1 \leq i \leq n, 1 \leq j \leq n} \in \mathbb{R}^{n \times n}$$
(14)

die Jacobi-Matrix von f an der Stelle $x \in \mathbb{R}^n$, $|J^f(x)|$ die Determinante von $J^f(x)$, und es sei $|J^f(x)| \neq 0$ für alle $x \in \mathbb{R}^n$. Dann ist eine WDF von v durch

$$p_{\upsilon}: \mathbb{R}^{n} \to \mathbb{R}_{\geq 0}, y \mapsto p_{\upsilon}(y) := \begin{cases} \frac{1}{|J^{f}(f^{-1}(y))|} p_{\xi}(f^{-1}(y)) & \text{for } y \in f(\mathbb{R}^{n}) \\ 0 & \text{for } y \in \mathbb{R}^{n} \setminus f(\mathbb{R}^{n}) \end{cases}$$
(15)

gegeben.

Bemerkungen

- · Wir verzichten auf einen Beweis.
- Es handelt sich um eine direkte Generalisierung des univariaten Falls.
- Die T-und F-Transformationen sind wichtige Anwendungsfälle.

Theorem (Summe unabhängiger Zufallsvariable, Faltung)

 ξ_1 und ξ_2 seien zwei kontinuierliche unabhängige Zufallsvariablen mit WDF p_{ξ_1} und p_{ξ_2} , respektive. $v:=\xi_1+\xi_2$ sei die Summe von ξ_1 und ξ_2 . Dann ergibt sich eine WDF der Verteilung von v als

$$p_{v}(y) = \int_{-\infty}^{\infty} p_{\xi_{1}}(y - x_{2})p_{\xi_{2}}(x_{2}) dx_{2} = \int_{-\infty}^{\infty} p_{\xi_{1}}(x_{1})p_{\xi_{2}}(y - x_{1}) dx_{1}$$
 (16)

Die Formel für die WDF p_v heißt Faltung oder Konvolution von p_{ξ_1} und p_{ξ_2} .

Bemerkung

• Die Summen- und Mittelwerttransformation sind wichtige Anwendungsfälle.

Beweis

Wir nutzen das multivariate WDF Transformationstheorem für bijektive Abbildungen. Dazu definieren wir zunächst

$$f: \mathbb{R}^2 \to \mathbb{R}^2, x \mapsto f(x) := \begin{pmatrix} x_1 + x_2 \\ x_2 \end{pmatrix} := \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$
 (17)

Die inverse Funktion von f ist dann gegeben durch

$$f: \mathbb{R}^2 \to \mathbb{R}^2, z \mapsto f(z) := \begin{pmatrix} z_1 - x_2 \\ z_2 \end{pmatrix}$$
 (18)

weil dann $f\circ f^{-1}=\mathrm{id}_{\scriptscriptstyle{\mathbb{D}}2}$ gilt, wie man anhand von

$$f^{-1}(f(x)) = f^{-1} \begin{pmatrix} x_1 + x_2 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 - x_2 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 (19)

einsieht. Die Jacobimatrix von f ergibt sich zu

$$J^{f}(x) = \begin{pmatrix} \frac{\partial}{\partial x_{1}} f_{1}(x) & \frac{\partial}{\partial x_{2}} f_{1}(x) \\ \frac{\partial}{\partial x_{1}} f_{2}(x) & \frac{\partial}{\partial x_{2}} f_{2}(x) \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x_{1}} (x_{1} + x_{2}) & \frac{\partial}{\partial x_{2}} (x_{1} + x_{2}) \\ \frac{\partial}{\partial x_{1}} x_{2} & \frac{\partial}{\partial x_{2}} x_{2} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
(20)

und die Jacobideterminante damit zu $|J^f(x)| = 1$.

Beweis (fortgeführt)

Wir halten weiterhin fest, dass die Unabhängigkeit von ξ_1 und ξ_2 impliziert, dass

$$p_{\xi_1,\xi_2}(x_1,x_2) = p_{\xi_1}(x_1)p_{\xi_2}(x_2)$$
(21)

impliziert. Einsetzen und Integration hinsichtlich x_2 ergibt dann ergibt dann für $z \in f(\mathbb{R}^2)$

$$p_{\zeta}(z) = \frac{1}{|Jf(f^{-1}(z))|} p_{\xi}(f^{-1}(z))$$

$$= \frac{1}{1} p_{\xi_{1},\xi_{2}} (z_{1} - x_{2}, x_{2})$$

$$= p_{\xi_{1}} (z_{1} - x_{2}) p_{\xi_{2}} (x_{2})$$
(22)

Integration über x_2 ergibt dann eine WDF für die marginale Verteilung von ζ_1

$$p_{\zeta_1}(z_1) = \int_{-\infty}^{\infty} p_{\xi_1}(z_1 - x_2) p_{\xi_2}(x_2) \, dx_2 \tag{23}$$

Mit $\zeta_1=\xi_1+\xi_2=\upsilon$ ergibt sich dann die erste Form des Faltungstheorems zu

$$p_{v}(y) = \int_{-\infty}^{\infty} p_{\xi_{1}}(y - x_{2})p_{\xi_{2}}(x_{2}) dx_{2}. \tag{24}$$

Transformationstheoreme

Standardtransformationen

- Summentransformation
- Mittelwerttransformation
- Z-Transformation
- χ^2 -Transformation
- T-Transformation
- F-Transformation

Selbstkontrollfragen

Standardtransformationen

Überblick

Das **Summentransformationstheorem** besagt, dass die Summe unabhängig normalverteilter Zufallsvariablen wiederum normalverteilt ist und gibt die Parameter dieser Verteilung an.

Das Mittelwertstransformationstheorem besagt, dass das Stichprobenmittel unabhängig normalverteilter Zufallsvariablen wiederum normalverteilt ist und gibt die Parameter dieser Verteilung an.

Das Z-Transformationstheorem besagt, dass Subtraktion des Erwartungswertparameters und gleichzeitige Division mit der Wurzel des Varianzsparameters die Verteilung einer normalverteilten Zufallsvariable in eine Standardnormalverteilung transformiert.

Das χ^2 -**Transformationstheorem** besagt, dass die Summe quadrierter unabhängiger standardnormalverteilter Zufallsvariablen eine χ^2 -verteilte Zufallsvariable ist.

Das T-**Transformationstheorem** besagt, dass die Zufallsvariable, die sich durch Division einer standardnormalverteilten Zufallsvariable durch die Quadratwurzel einer χ^2 -verteilten Zufallsvariable geteilt durch ein n, ergibt, eine t-verteilte Zufallsvariable ist.

Das F-Transformationstheorem besagt, dass die Zufallsvariable, die sich durch Division zweier χ^2 verteilter Zufallsvariablen, jeweils geteilt durch ihre jeweiligen Freiheitsgradparameter, ergibt eine F-verteilte Zufallsvariable ist.

Transformationstheoreme

Standardtransformationen

- Summentransformation
- Mittelwerttransformation
- Z-Transformation
- χ^2 -Transformation
- T-Transformation
- F-Transformation

Selbstkontrollfragen

Theorem (Summe unabhängig normalverteilter Zufallsvariablen)

Für i=1,...,n seien $\xi_i\sim N(\mu_i,\sigma_i^2)$ unabhängige normalverteilte Zufallsvariablen. Dann gilt für die Summe $v:=\sum_{i=1}^n \xi_i$, dass

$$v \sim N\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$
 (25)

Für unabhängige und identisch normalverteilte Zufallsvariablen $\xi_i \sim N(\mu, \sigma^2)$ gilt folglich

$$v \sim N(n\mu, n\sigma^2). \tag{26}$$

Bemerkungen

- Die Mittelwerttransformation ist ein wichtiger Anwendungsfall.
- Die Generalisierung der zentralen Grenzwertsätze sind wichtige Anwendungsfälle.

Summentransformation

Beweis

Wir skizzieren mithilfe der Faltungsformel, dass für $\xi_1 \sim N(\mu_1, \sigma_1^2)$, $\xi_2 \sim N(\mu_2, \sigma_2^2)$, und $\upsilon := \xi_1 + \xi_2$ gilt, dass $\upsilon \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$. Für n>2 folgt das Theorem dann durch Iteration. Mit der Definition der WDF der Normalverteilung erhalten wir zunächst

$$p_{v}(y) = \int_{-\infty}^{\infty} p_{\xi_{1}}(x_{1})p_{\xi_{2}}(y - x_{1}) dx_{1}$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{1}} \exp\left(-\frac{1}{2}\left(\frac{x_{1} - \mu_{1}}{\sigma_{1}}\right)^{2}\right) \frac{1}{\sqrt{2\pi}\sigma_{2}} \exp\left(-\frac{1}{2}\left(\frac{y - x_{1} - \mu_{2}}{\sigma_{2}}\right)^{2}\right) dx_{1}$$

$$= \int_{-\infty}^{\infty} \frac{1}{2\pi\sigma_{1}\sigma_{2}} \exp\left(-\frac{1}{2}\left(\frac{x_{1} - \mu_{1}}{\sigma_{1}}\right)^{2} - \frac{1}{2}\left(\frac{y - x_{1} - \mu_{2}}{\sigma_{2}}\right)^{2}\right) dx_{1}.$$
(27)

Mit einigem algebraischen Aufwand erhält man die Identität

$$-\frac{1}{2} \left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 - \frac{1}{2} \left(\frac{y - x_1 - \mu_2}{\sigma_2}\right)^2$$

$$= -\frac{(y - \mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)} - \frac{((\sigma_1^2 + \sigma_2^2)x_1 - \sigma_1^2y + \mu_2\sigma_1^2 - \mu_1\sigma_2^2)^2}{2\sigma_1^2\sigma_2^2(\sigma_1^2 + \sigma_2^2)}, \quad (28)$$

so dass weiterhin gilt, dass

Beweis (fortgeführt)

$$p_{\mathcal{U}}(y) = \int_{-\infty}^{\infty} \frac{1}{2\pi\sigma_{1}\sigma_{2}} \exp\left(-\frac{(y-\mu_{1}-\mu_{2})^{2}}{2(\sigma_{1}^{2}+\sigma_{2}^{2})} - \frac{((\sigma_{1}^{2}+\sigma_{2}^{2})x_{1}-\sigma_{1}^{2}y+\mu_{2}\sigma_{1}^{2}-\mu_{1}\sigma_{2}^{2})^{2}}{2\sigma_{1}^{2}\sigma_{2}^{2}(\sigma_{1}^{2}+\sigma_{2}^{2})}\right) dx_{1}$$

$$= \int_{-\infty}^{\infty} \frac{1}{2\pi\sigma_{1}\sigma_{2}} \exp\left(-\frac{(y-\mu_{1}-\mu_{2})^{2}}{2(\sigma_{1}^{2}+\sigma_{2}^{2})}\right) \exp\left(-\frac{((\sigma_{1}^{2}+\sigma_{2}^{2})x_{1}-\sigma_{1}^{2}y+\mu_{2}\sigma_{1}^{2}-\mu_{1}\sigma_{2}^{2})^{2}}{2\sigma_{1}^{2}\sigma_{2}^{2}(\sigma_{1}^{2}+\sigma_{2}^{2})}\right) dx_{1}$$

$$= \frac{1}{2\pi\sigma_{1}\sigma_{2}} \exp\left(-\frac{(y-\mu_{1}-\mu_{2})^{2}}{2(\sigma_{1}^{2}+\sigma_{2}^{2})}\right) \int_{-\infty}^{\infty} \exp\left(-\frac{((\sigma_{1}^{2}+\sigma_{2}^{2})x_{1}-\sigma_{1}^{2}y+\mu_{2}\sigma_{1}^{2}-\mu_{1}\sigma_{2}^{2})^{2}}{2\sigma_{1}^{2}\sigma_{2}^{2}(\sigma_{1}^{2}+\sigma_{2}^{2})}\right) dx_{1}.$$
(29)

Summentransformation

Beweis (fortgeführt)

Für das verbleibende Integral zeigt man mithilfe der Integration durch Substitution, dass

$$\int_{-\infty}^{\infty} \exp\left(-\frac{((\sigma_1^2 + \sigma_2^2)x_1 - \sigma_1^2y + \mu_2\sigma_1^2 - \mu_1\sigma_2^2)^2}{2\sigma_1^2\sigma_2^2(\sigma_1^2 + \sigma_2^2)}\right) dx_1 = \frac{\sqrt{2\pi}\sigma_1\sigma_2}{\sqrt{\sigma_1^2 + \sigma_2^2}}.$$
 (30)

Es ergibt sich also

$$p_{\upsilon}(y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}} \frac{\sqrt{2\pi}\sigma_{1}\sigma_{2}}{\sqrt{\sigma_{1}^{2} + \sigma_{2}^{2}}} \exp\left(-\frac{(y - \mu_{1} - \mu_{2})^{2}}{2(\sigma_{1}^{2} + \sigma_{2}^{2})}\right)$$

$$= \frac{(2\pi)^{-1}(2\pi)^{2}}{\sqrt{\sigma_{1}^{2} + \sigma_{2}^{2}}} \exp\left(-\frac{(y - \mu_{1} - \mu_{2})^{2}}{2(\sigma_{1}^{2} + \sigma_{2}^{2})}\right)$$

$$= \frac{1}{\sqrt{2\pi}\sqrt{\sigma_{1}^{2} + \sigma_{2}^{2}}} \exp\left(-\frac{(y - \mu_{1} - \mu_{2})^{2}}{2(\sigma_{1}^{2} + \sigma_{2}^{2})}\right).$$
(31)

Summentransformation

Beweis (fortgeführt)

Schließlich folgt, dass

$$p_{v}(y) = \frac{1}{\sqrt{2\pi(\sigma_{1}^{2} + \sigma_{2}^{2})}} \exp\left(-\frac{1}{2(\sigma_{1}^{2} + \sigma_{2}^{2})} (y - (\mu_{1} + \mu_{2}))^{2}\right)$$

$$= N(y; \mu_{1} + \mu_{2}, \sigma_{1}^{2} + \sigma_{2}^{2})$$
(32)

Ein einfacheres Vorgehen ergibt sich vermutlich nach Fouriertransformation der WDF im Sinne der sogenannten charakteristischen Funktion einer Zufallsvariable. In diesem Fall würde die Faltung der WDFen der Multiplikation der charakteristischen Funktionen entsprechen.

٦

Transformationstheoreme

Standardtransformationen

- Summentransformation
- Mittelwerttransformation
- Z-Transformation
- χ^2 -Transformation
- T-Transformation
- F-Transformation

Selbstkontrollfragen

Theorem (Stichprobenmittel von u.i.v. normalverteilten Zufallsvariablen)

Für i=1,...,n seien $\xi_i\sim N(\mu,\sigma^2)$ unabhängig und identisch normalverteilte Zufallsvariablen. Dann gilt für das Stichprobenmittel $\bar{\xi}_n:=\frac{1}{n}\sum_{i=1}^n\xi_i$, dass

$$\bar{\xi}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right).$$
 (33)

Bemerkung

- Die Analyse von Erwartungswertschätzern ist ein wichtiger Anwendungsfall.
- Die Generalisierung der zentralen Grenzwertsätze sind wichtige Anwendungsfälle.

Mittelwerttransformation

Beweis

Wir halten zunächst fest, dass mit dem Theorem zur Summe von unabhängig normalverteilten Zufallsvariablen gilt, dass $ar{\xi}_n=rac{1}{n}v$ mit $v:=\sum_{i=1}^n \xi_i \sim N(n\mu,n\sigma^2)$. Einsetzen in das univariate WDF Transformationstheorem für lineare Funktionen ergibt dann

$$p_{\tilde{\xi}_{n}}(\bar{x}_{n}) = \frac{1}{|1/n|} N\left(n\bar{x}_{n}; n\mu, n\sigma^{2}\right)$$

$$= \frac{n}{\sqrt{2\pi n\sigma^{2}}} \exp\left(-\frac{1}{2n\sigma^{2}} (n\bar{x}_{n} - n\mu)^{2}\right)$$

$$= \frac{n}{\sqrt{2\pi n\sigma^{2}}} \exp\left(-\frac{1}{2n\sigma^{2}} (n\bar{x}_{n} - n\mu)^{2}\right)$$

$$= nn^{-\frac{1}{2}} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{(n\bar{x}_{n})^{2}}{2n\sigma^{2}} + \frac{2(n\bar{x}_{n})(n\mu)}{2n\sigma^{2}} - \frac{(n\mu)^{2}}{2n\sigma^{2}}\right)$$

$$= \sqrt{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{n\bar{x}_{n}^{2}}{2\sigma^{2}} + \frac{2n\bar{x}_{n}\mu}{2\sigma^{2}} - \frac{n\mu^{2}}{2\sigma^{2}}\right)$$

$$= \frac{1}{1/\sqrt{n}} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{\bar{x}_{n}^{2}}{2(\sigma^{2}/n)} + \frac{2\bar{x}_{n}\mu}{2(\sigma^{2}/n)} - \frac{\mu^{2}}{2(\sigma^{2}/n)}\right)$$

$$= \frac{1}{\sqrt{2\pi(\sigma^{2}/n)}} \exp\left(-\frac{1}{2(\sigma^{2}/n)} (\bar{x}_{n} - \mu)^{2}\right)$$

$$= N\left(\bar{x}_{n}; \mu, \sigma^{2}/n\right)$$

Vorbemerkungen

Transformationstheoreme

Standardtransformationen

- Summentransformation
- Mittelwerttransformation
- Z-Transformation
- χ^2 -Transformation
- T-Transformation
- F-Transformation

Definition (z-Zufallsvariable)

Z sei eine Zufallsvariable mit Ergebnisraum $\mathbb R$ und WDF

$$p: \mathbb{R} \to \mathbb{R}_{>0}, z \mapsto p(z) := \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right). \tag{35}$$

Dann sagen wir, dass Z einer z-Verteilung (oder Standardnormalverteilung) unterliegt und nennen Z eine z-Zufallsvariable. Wir kürzen dies mit $Z\sim N(0,1)$ ab. Die WDF einer z-Zufallsvariable bezeichnen wir mit

$$N(z;0,1) := \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right).$$
 (36)

Bemerkung

ullet Eine z-Zufallsvariable ist eine normalverteilte Zufallsvariable mit $\mu:=0$ und $\sigma^2:=1$.

Wahrscheinlichkeitsdichtefunktion einer z-Zufallsvariable

Theorem (Z-Transformation)

Es sei $y \sim N(\mu, \sigma^2)$ eine normalverteilte Zufallsvariable. Dann ist die Zufallsvariable

$$Z := \frac{y - \mu}{\sigma} \tag{37}$$

eine Z-verteilte Zufallsvariable, es gilt also $Z \sim N(0, 1)$.

Bemerkungen

- Wir benutzen hier den Bezeichner y für eine normalverteilte Zufallsvariable. Werte, die diese Zufallsvariable annehmen kann, bezeichnen wir in der Folge mit ỹ.
- Z wird hier als $(y \mu)/\sigma$ definiert. Dass ein solches Z aber eine z-Zufallsvariable ist, muss bewiesen werden und ergibt sich nicht einfach durch die Wahl des Bezeichners für $(y \mu)/\sigma$, welcher hier zufällig auch Z lautet. In analoger Form gilt diese Bemerkung auch für alle weiteren betrachteten Transformationen.
- Die Z-Konfidenzintervallstatistik und die Z-Teststatistik sind wichtige Anwendungsfälle.

Beweis

Wir nutzen das univariate WDF Transformationstheorem für linear-affine Funktionen. Dazu halten wir zunächst fest, dass die Z-Transformation einer Funktion der Form

$$\zeta : \mathbb{R} \to \mathbb{R}, \, \tilde{y} \mapsto \zeta(\tilde{y}) := \frac{\tilde{y} - \mu}{\sigma} =: z$$
 (38)

entspricht. Wir stellen weiterhin fest, dass die Umkehrfunktion von ζ durch

$$\zeta^{-1}: \mathbb{R} \to \mathbb{R}, z \mapsto \zeta^{-1}(z) := \sigma z + \mu \tag{39}$$

gegeben ist, da für alle $z \in \mathbb{R}$ mit $z = \frac{\tilde{y} - \mu}{\sigma}$ gilt, dass

$$\zeta^{-1}(z) = \zeta^{-1}\left(\frac{\tilde{y} - \mu}{\sigma}\right) = \frac{\sigma(\tilde{y} - \mu)}{\sigma} + \mu = \tilde{y} - \mu + \mu = \tilde{y}. \tag{40}$$

Schließlich stellen wir fest, dass für die Ableitung ζ' von ζ gilt, dass

$$\zeta'(\tilde{y}) = \frac{d}{d\tilde{y}} \left(\frac{\tilde{y} - \mu}{\sigma} \right) = \frac{d}{d\tilde{y}} \left(\frac{\tilde{y}}{\sigma} - \frac{\mu}{\sigma} \right) = \frac{1}{\sigma}.$$
 (41)

Beweis (fortgeführt)

Einsetzen in das univariate WDF Transformationstheorem für lineare Funktionen ergibt dann

$$p_{\zeta}(z) = \frac{1}{|1/\sigma|} N\left(\sigma z + \mu; \mu, \sigma^2\right)$$

$$= \frac{1}{1/\sqrt{\sigma^2}} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (\sigma z + \mu - \mu)^2\right)$$

$$= \frac{\sqrt{\sigma^2}}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} \sigma^2 z^2\right)$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} z^2\right)$$

$$= N(z; 0, 1)$$
(42)

also, dass $Z \sim N(0,1)$. Z ist also eine z-Zufallsvariable.

Vorbemerkungen

Transformationstheoreme

Standardtransformationen

- Summentransformation
- Mittelwerttransformation
- Z-Transformation
- χ^2 -Transformation
- T-Transformation
- F-Transformation

Definition (χ^2 -Zufallsvariable)

U sei eine Zufallsvariable mit Ergebnisraum $\mathbb{R}_{>0}$ und WDF

$$p: \mathbb{R}_{>0} \to \mathbb{R}_{>0}, u \mapsto p(u) := \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}} u^{\frac{n}{2} - 1} \exp\left(-\frac{1}{2}u\right), \tag{43}$$

wobei Γ die Gammafunktion bezeichne. Dann sagen wir, dass U einer χ^2 -Verteilung mit n Freiheitsgraden unterliegt und nennen U eine χ^2 -Zufallsvariable mit n Freiheitsgraden. Wir kürzen dies mit $U\sim\chi^2(n)$ ab. Die WDF einer χ^2 -Zufallsvariable bezeichnen wir mit

$$\chi^{2}(u;n) := \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}} u^{\frac{n}{2}-1} \exp\left(-\frac{1}{2}u\right). \tag{44}$$

Bemerkung

• Die WDF der χ^2 -Verteilung entspricht der WDF $G\left(u;\frac{n}{2},2\right)$ einer Gammaverteilung.

χ^2 -Transformation

Wahrscheinlichkeitsdichtefunktionen von ξ^2 -Zufallsvariablen

Steigendes n verbreitert $\chi^2(u;n)$ und verschiebt Masse zur größeren Werten.

χ^2 -Transformation

Theorem (χ^2 -Transformation)

 $Z_1,...,Z_n\sim N(0,1)$ seien unabhängig und identisch verteilte z-Zufallsvariablen. Dann ist die Zufallsvariable

$$U := \sum_{i=1}^{n} Z_i^2 \tag{45}$$

eine χ^2 -verteilte Zufallsvariable mit n Freiheitsgraden, es gilt also $U \sim \chi^2(n)$. Insbesondere gilt für $Z \sim N(0,1)$ und $U := Z^2$, dass $U \sim \chi^2(1)$.

Bemerkungen

- Die U-Konfidenzintervallstatistik ist ein wichtiger Anwendungsfall.
- t- und f-Zufallsvariablen sind wichtige Anwendungsfälle.

χ^2 -Transformation

Beweis

Wir zeigen das Theorem nur für den Fall n:=1 mithilfe des WDF Transformationstheorems für stückweise bijektive Abbildungen. Danach ist die WDF einer Zufallsvariable U:=f(Z), welche aus der Transformation einer Zufallsvariable Z mit WDF $p_{\mathcal{C}}$ durch eine stückweise bijektive Abbildung hervorgeht, gegeben durch

$$p_U(u) = \sum_{i=1}^k {1_{\mathcal{U}_i} \frac{1}{|f_i'(f_i^{-1}(u))|} p_\zeta\left(f_i^{-1}(u)\right)}. \tag{46}$$

Wir definieren

$$\mathcal{U}_1 :=]-\infty, 0[, \mathcal{U}_2 :=]0, \infty[, \text{ und } \mathcal{U}_i := \mathbb{R}_{>0} \text{ für } i=1,2,$$
 (47)

sowie

$$f_i: \mathcal{Z}_i \to \mathcal{U}_i, x \mapsto f_i(z) := z^2 =: u \text{ für } i = 1, 2.$$

$$\tag{48}$$

Die Ableitung und die Umkehrfunktion der f_i ergeben sich zu

$$f_i': \mathcal{Z}_i \to \mathcal{Z}_i, x \mapsto f_i'(z) = 2z \text{ für } i = 1, 2,$$
 (49)

und

$$f_1^{-1}: \mathcal{U}_1 \to \mathcal{U}_1, u \mapsto f_1^{-1}(u) = -\sqrt{u} \text{ und } f_2^{-1}: \mathcal{U}_2 \to \mathcal{U}_2, u \mapsto f_2^{-1}(u) = \sqrt{u}, \tag{50}$$

respektive.

Beweis (fortgeführt)

Einsetzen in Gleichung (46) ergibt dann

$$\begin{split} p_{U}(u) &= \mathbf{1}_{\mathcal{U}_{1}}(u) \frac{1}{|f'_{1}(f_{1}^{-1}(u))|} p_{\zeta} \left(f_{1}^{-1}(u) \right) + \mathbf{1}_{\mathcal{U}_{2}}(u) \frac{1}{|f'_{2}(f_{2}^{-1}(u))|} p_{\zeta} \left(f_{2}^{-1}(u) \right) \\ &= \frac{1}{|2(-\sqrt{u})|} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} (-\sqrt{u})^{2} \right) + \frac{1}{|2(\sqrt{u})|} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} (\sqrt{u})^{2} \right) \\ &= \frac{1}{2\sqrt{u}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u \right) + \frac{1}{2\sqrt{u}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u \right) \\ &= \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{u}} \exp\left(-\frac{1}{2}u \right). \end{split} \tag{51}$$

Andererseits gilt, dass mit $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$, die PDF einer χ^2 -Zufallsvariable U mit n=1 durch

$$\frac{1}{\Gamma\left(\frac{1}{2}\right)2^{\frac{1}{2}}}u^{\frac{1}{2}-1}\exp\left(-\frac{1}{2}u\right) = \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{u}}\exp\left(-\frac{1}{2}u\right)$$
(52)

gegeben ist. Also gilt, dass wenn $Z \sim N(0,1)$ ist, dann ist $U := Z^2 \sim \chi^2(1)$.

Vorbemerkungen

Transformationstheoreme

Standardtransformationen

- Summentransformation
- Mittelwerttransformation
- Z-Transformation
- χ^2 -Transformation
- T-Transformation
- F-Transformation

Definition (*t*-Zufallsvariable)

T sei eine Zufallsvariable mit Ergebnisraum $\mathbb R$ und WDF

$$p: \mathbb{R} \to \mathbb{R}_{>0}, t \mapsto p(t) := \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}, \tag{53}$$

wobei Γ die Gammafunktion bezeichne. Dann sagen wir, dass T einer t-Verteilung mit n Freiheitsgraden unterliegt und nennen T eine t-Zufallsvariable mit n Freiheitsgraden. Wir kürzen dies mit $T\sim t(n)$ ab. Die WDF einer t-Zufallsvariable bezeichnen wir mit

$$T(t;n) := \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}.$$
 (54)

Wahrscheinlichkeitsdichtefunktionen von t-Zufallsvariablen

- · Die Verteilung ist um 0 symmetrisch
- $\bullet\,$ Steigendes n verschiebt Wahrscheinlichkeitsmasse aus den Ausläufen zum Zentrum.
- Ab n = 30 gilt $T(t; n) \approx N(0, 1)$.

Theorem (T-Transformation)

 $Z\sim N(0,1)$ sei eine z-Zufallsvariable, $U\sim \chi^2(n)$ sei eine χ^2 -Zufallsvariable mit n Freiheitsgraden, und Z und U seien unabhängige Zufallsvariablen. Dann ist die Zufallsvariable

$$T := \frac{Z}{\sqrt{U/n}} \tag{55}$$

eine t-verteilte Zufallsvariable mit n Freiheitsgraden, es gilt also $T \sim t(n)$.

Bemerkungen

- Das Theorem geht auf Student (1908) zurück.
- Das Theorem ist das zentrale Resultat der Frequentistischen Statistik.
- Zabell (2008) gibt hierzu einen historischen Überblick.
- Die T-Konfidenzintervallstatistik und die T-Teststatistik sind wichtige Anwendungsfälle.

Beweis

Wir halten zunächst fest, dass die zweidimensionale WDF der gemeinsamen (unabhängigen) Verteilung von ${\cal Z}$ und ${\cal U}$ durch

$$p_{Z,U}(z,u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right) \frac{1}{\Gamma(\frac{n}{2})2^{\frac{n}{2}}} u^{\frac{n}{2}-1} \exp\left(-\frac{1}{2}u\right).$$
 (56)

gegeben ist. Wir betrachten dann die multivariate vektorwertige Abbildung

$$f: \mathbb{R}^2 \to \mathbb{R}^2, (z, u) \mapsto f(z, u) := \left(\frac{z}{\sqrt{u/n}}, u\right) =: (t, w)$$
 (57)

und benutzen das multivariate WDF Transformationstheorem für bijektive Abbildungen um die WDF von (t,w) herzuleiten. Dazu erinnern wir uns, dass wenn ξ ein n-dimensionaler Zufallsvektor mit WDF p_{ξ} und $\upsilon:=f(\xi)$ für eine differenzierbare und bijektive Abbildung $f:\mathbb{R}^n\to\mathbb{R}^n$ ist, die WDF des Zufallsvektors υ durch

$$p_{\upsilon}: \mathbb{R}^n \to \mathbb{R}_{\geq 0}, y \mapsto p_{\upsilon}(y) := \frac{1}{|J^f\left(f^{-1}(y)\right)|} p_{\xi}\left(f^{-1}(y)\right)$$

$$\tag{58}$$

gegeben ist. Für die im vorliegenden Fall betrachtete Abbildung halten wir zunächst fest, dass

$$f^{-1}: \mathbb{R}^2 \to \mathbb{R}^2, (t, w) \mapsto f^{-1}(t, w) := \left(\sqrt{w/n}t, w\right).$$
 (59)

Beweis (fortgeführt)

Dies ergibt sich direkt aus

$$f^{-1}(f(z,u)) = f^{-1}\left(\frac{z}{\sqrt{u/n}}, u\right) = \left(\frac{\sqrt{u/nz}}{\sqrt{u/n}}, u\right) = (z,u) \text{ für alle } (z,u) \in \mathbb{R}^2. \tag{60}$$

Wir halten dann fest, dass die Determinante der Jacobi-Matrix von f an der Stelle (z,u) durch

$$|J^{f}(z,u)| = \begin{vmatrix} \frac{\partial}{\partial z} \left(\frac{z}{\sqrt{u/n}} \right) & \frac{\partial}{\partial u} \left(\frac{z}{\sqrt{u/n}} \right) \\ \frac{\partial}{\partial z} u & \frac{\partial}{\partial u} u \end{vmatrix} = \left(\frac{v}{n} \right)^{-1/2}, \tag{61}$$

gegeben ist, sodass folgt, dass

$$\frac{1}{|J^f\left(f^{-1}(z,u)\right)|} = \left(\frac{w}{n}\right)^{1/2}.\tag{62}$$

Einsetzen in Gleichung (58) ergibt dann

$$p_{T,W}(t,w) = \left(\frac{w}{n}\right)^{1/2} p_{Z,V}\left(\sqrt{w/nt}, w\right),\tag{63}$$

Beweis (fortgeführt)

Es folgt also

$$p_{T}(t) = \int_{0}^{\infty} p_{T,W}(t,w) dw$$

$$= \int_{0}^{\infty} \left(\frac{w}{n}\right)^{1/2} p_{Z,V}\left(\sqrt{w/nt},w\right) dw$$

$$= \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\sqrt{w/nt})^{2}\right) \frac{1}{\Gamma(\frac{n}{2})2^{\frac{n}{2}}} w^{\frac{n}{2}-1} \exp\left(-\frac{1}{2}w\right) \left(\frac{w}{n}\right)^{1/2} dw$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\Gamma(\frac{n}{2})2^{\frac{n}{2}} n^{\frac{1}{2}}} \int_{0}^{\infty} \exp\left(-\frac{1}{2}\frac{w}{n}t^{2}\right) w^{\frac{n}{2}-1} \exp\left(-\frac{1}{2}w\right) w^{1/2} dw$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\Gamma(\frac{n}{2})2^{\frac{n}{2}} n^{\frac{1}{2}}} \int_{0}^{\infty} \exp\left(-\frac{1}{2}\frac{w}{n}t^{2} - \frac{1}{2}w\right) w^{\frac{n}{2}-1} w^{\frac{1}{2}} dw$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\Gamma(\frac{n}{2})2^{\frac{n}{2}} n^{\frac{1}{2}}} \int_{0}^{\infty} \exp\left(-\frac{1}{2}\left(\frac{w}{n}t^{2} + w\right)\right) w^{\frac{n+1}{2}-1} dw$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\Gamma(\frac{n}{2})2^{\frac{n}{2}} n^{\frac{1}{2}}} \int_{0}^{\infty} \exp\left(-\frac{1}{2}\left(1 + \frac{t^{2}}{n}\right)\right) w^{\frac{n+1}{2}-1} dw$$

Beweis (fortgeführt)

Wir stellen dann fest, dass der Integrand auf der linken Seite der obigen Gleichung dem Kern einer Gamma WDF mit Parametern $\alpha=\frac{n+1}{2}$ und $\beta=\frac{2}{1+t^2}$ entspricht, wie man leicht einsieht:

$$\begin{split} \Gamma(w;\alpha,\beta) &= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} w^{\alpha-1} \exp\left(-\frac{w}{\beta}\right) \\ &\Rightarrow \Gamma\left(w;\frac{n+1}{2},\frac{2}{1+\frac{t^2}{n}}\right) = \frac{1}{\Gamma(\frac{n+1}{2})\left(\frac{2}{1+\frac{t^2}{n}}\right)^{\frac{n+1}{2}}} w^{\frac{n+1}{2}-1} \exp\left(-\frac{w}{\frac{2}{1+\frac{t^2}{n}}}\right) \\ &= \frac{1}{\Gamma(\frac{n+1}{2})\left(\frac{2}{1+\frac{t^2}{n}}\right)^{\frac{n+1}{2}}} \exp\left(-\frac{1}{2}\left(1+\frac{t^2}{n}\right)\right) w^{\frac{n+1}{2}-1}. \end{split}$$

Beweis (fortgeführt)

Es ergibt sich also

$$p_T(t) = \frac{1}{\sqrt{2\pi}} \frac{1}{\Gamma(\frac{n}{2}) 2^{\frac{n}{2}} n^{\frac{1}{2}}} \int_0^\infty \Gamma\left(w; \frac{n+1}{2}, \frac{2}{1 + \frac{t^2}{n}}\right) dw.$$
 (65)

Schließlich stellen wir fest, dass der Integralterm in obiger Gleichung dem Normalisierungsterm einer Gamma WDF entspricht. Abschließend ergibt sich also

$$p_T(t) = \frac{1}{\sqrt{2\pi}} \frac{1}{\Gamma(\frac{n}{2}) 2^{\frac{n}{2}} n^{\frac{1}{2}}} \Gamma\left(\frac{n+1}{2}\right) \left(\frac{2}{1+\frac{t^2}{n}}\right)^{\frac{n+1}{2}}.$$
 (66)

Die Verteilung von $Z/\sqrt{U/n}$ hat also die WDF einer T-Zufallsvariable.

Vorbemerkungen

Transformationstheoreme

Standardtransformationen

- Summentransformation
- Mittelwerttransformation
- Z-Transformation
- χ^2 -Transformation
- T-Transformation
- F-Transformation

Definition (f-Zufallsvariable)

F sei eine Zufallsvariable mit Ergebnisraum $\mathbb{R}_{>0}$ und WDF

$$p_F: \mathbb{R} \to \mathbb{R}_{>0}, f \mapsto p_F(f) := m^{\frac{m}{2}} n^{\frac{n}{2}} \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} \frac{f^{\frac{m}{2}-1}}{\left(1 + \frac{m}{n}f\right)^{\frac{m+n}{2}}}, \tag{67}$$

wobei Γ die Gammafunktion bezeichne. Dann sagen wir, dass F einer f-Verteilung mit n,m Freiheitsgraden unterliegt und nennen F eine f-Zufallsvariable mit n,m Freiheitsgraden. Wir kürzen dies mit $F \sim f(n,m)$ ab. Die WDF einer f-Zufallsvariable bezeichnen wir mit

$$F(f;n,m) := m^{\frac{m}{2}} n^{\frac{n}{2}} \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} \frac{f^{\frac{m}{2}-1}}{\left(1 + \frac{m}{n}f\right)^{\frac{m+n}{2}}}.$$
 (68)

Wahrscheinlichkeitsdichtefunktionen von f-Zufallsvariablen

Theorem (F-Transformation)

 $V\sim \chi^2(n)$ und $W\sim \chi^2(m)$ seien zwei unabhängige χ^2 -Zufallfsvariablen mit n und m Freiheitsgraden, respektive. Dann ist die Zufallsvariable

$$F := \frac{V/n}{W/m} \tag{69}$$

eine f-verteilte Zufallsvariable mit n, m Freiheitsgraden, es gilt also $F \sim f(n, m)$.

Bemerkungen

- Wir verzichten auf einen Beweis
- Das Theorem kann bewiesen werden, in dem man zunächst ein Transformationstheorem für Quotienten von Zufallsvariablen mithilfe des multivariaten Transformationstheorems und Marginalisierung herleitet und dieses Theorem dann auf die WDF von χ^2 -verteilten ZVen anwendet. Dabei ist die Regel zur Integration durch Substitution von zentraler Bedeutung.

Vorbemerkungen

Transformationstheoreme

Standardtransformationen

- Summentransformation
- Mittelwerttransformation
- Z-Transformation
- χ^2 -Transformation
- T-Transformation
- F-Transformation

- 1. Erläutern Sie den Begriff der Transformation einer Zufallsvariable.
- 2. Erläutern Sie die zentrale Idee der Transformationstheoreme.
- 3. Erläutern Sie die Bedeutung der Standardtransformationen für die Statistik.
- 4. Geben Sie das Summentransformationstheorem wieder.
- 5. Geben Sie das Mittelwerttransformationstheorem wieder.
- 6. Geben Sie das Z-Transformationstheorem wieder.
- 7. Geben Sie das χ^2 -Transformationstheorem wieder.
- 8. Beschreiben Sie die WDF der t-Verteilung in Abhängigkeit ihrer Freiheitsgrade.
- 9. Geben Sie das T-Transformationstheorem wieder.
- 10. Geben Sie das F-Transformationstheorem wieder.

References

Student. 1908. "The Probable Error of a Mean." Biometrika 6 (1): 1-25.

Zabell, S. L. 2008. "On Student's 1908 Article 'The Probable Error of a Mean'." Journal of the American Statistical Association 103 (481): 1–7. https://doi.org/10.1198/016214508000000030.