

Optimización I

PEP II Semestre II Año 2016

		Puntaje
Profesores: Iván Derpich, Óscar C. Vásquez	Pregunta 1:	
Fecha: 5 de diciembre 2016	Pregunta 2:	
	Pregunta 3:	
Nombre Alumno:	Puntaje Total:	

Problema 1.- (100 puntos):

Resuelva el siguiente problema:

$$Min W = -\frac{5}{2}y_1 + 4y_2$$

Sujeto a:

$$\frac{1}{2} y_1 \le 5 + y_2$$

$$6y_2 + 45 \ge 5 y_1$$

$$y_1 \in \{0,2,4,6,8,10,11\}$$

$$y_2 \in \{0,-1,-2,-3,-4,-5,-9,-14\}$$

Pauta Problema 1: El problema se puede reescribir como:

$$Max Z = 5x_1 + 4x_2$$

Sujeto a:

$$x_1 + x_2 \leq 5$$

$$10 x_1 + 6x_2 \le 45$$

$$x_1 \in \{0,1,2,3,4\}$$

$$2x_1 = y_1$$

$$x_2 \in \{0,1,2,3,4,5\}$$

$$x_2 = -y_2.$$

Los valores de y_1 puede ser restringidos solo a $y_1 \in \{0,2,4,6,8\}$, ya que los valores $y_1 \in \{10,11\}$ no pertenecen a una solución factible al aplicar a la restricción $6y_2 + 45 \ge 5$ y_1

En el caso de y_2 puede ser restricción solo a $\in \{0, -1, -2, -3, -4, -5\}$, ya que los valores $y_2 \in \{-9, -14\}$ no pertenecen a una solución factible al aplicar a la restricción $6y_2 + 45 \ge 5$ y_1

El árbol de solución del problema anterior es

Dado que las variables son enteras y los coeficientes enteros, entonces la función objetivo es entera. Considerando que el valor de Z=23,75 es el valor del problema relajado, entonces cual solución factible con valor 23 es óptima.

Y así la solución del problema es:

$$y_1 = 6$$
, $y_2 = -2$, $W = -23$

Nombre Alumno:		

Pregunta 2: (100 puntos):

2.1.- (75 puntos) La siguiente tabla define un conjunto de nodos y su interconexión; lo cual representa el actual sistema de distribución de productos en caso de emergencia de la Región Metropolitana (RM). Note que: 1) Este sistema cuenta con 3 centros de acopio de (R1, R2 y R3) desde donde – en caso de emergencia- los productos son enviados hacia la RM, representada por el nodo terminal T; 2) la interconexión entre el nodo fila i y el nodo columna j existe si y solo si la celda donde se intersectan (i,j) tiene valor; y 3) la capacidad máxima de productos que pueden ser enviados desde el nodo fila i al nodo columna j está definido por el valor de la celda (i,j)

	Α	В	С	D	E	F	Т
R1	130	115					
R2	70	90	110				
R3		140	120				
Α				110	85		
В				130	95	85	
С					130	160	
D							220
E							330
F							240

Determine la cantidad máxima de recursos con los cuales RM puede contar en caso de emergencia. Identifique nodo origen, nodo un destino y los nodos de trasbordo, y trace la red completa en donde se muestre la capacidad de cada arco y la capacidad máxima.

2.2. (25 puntos) Usted quiere hacer una fiesta y quiere contactar a todas su red de amigos y amigas, pero no tiene el tiempo necesario para contactar a todos. Frente a este problema usted considera la posibilidad de contactarse con algunos amigos vía otros amigos, por lo tanto, un amigo estará informado de la fiesta si existe una "ruta" desde usted a ellos. Por otro lado, usted sabe que existe una cierta probabilidad de que su amigo no vaya a la fiesta, la cual depende de quién le informe. La siguiente matriz muestra la probabilidad de "no ir" a la fiesta en función de que si alguien i (fila) invita directamente a alguien j (columna). Por ejemplo, si Tamara invita a Miguel, entonces Miguel no ira a la fiesta. Asuma que la matriz de probabilidades A descrita a continuaciónes simétrica, esto es $(A_{ij}) = (A_{ji})$

	Usted	Juan	María	Pedro	Miguel	Tamara
Usted	-					
Juan	0,61	-				
María	0,23	0,32	-			
Pedro	0,37	0,35	0,45	-		
Miguel	0,87	0,69	0,39	0,56	-	
Tamara	0,52	0,16	0,71	0,26	1,00	-

Su objetivo es que todos sus amigos sepan de la fiesta, invitados de manera directa o indirecta por usted, por lo cual usted sea que la probabilidad promedio sea la mínima o equivalentemente que la suma de las probabilidades de que sus amigos no vayan a la su fiesta sea la menor.

Explique a qué tipo de problema se ajusta la descripción anterior y resuelva.

Pauta 2.1. (75 puntos):

Nodos de Transbordo

La cantidad máxima de recursos con los cuales RM puede contar en caso de emergencia es de 715.

Pauta 2.2. (25 puntos)

La matriz simétrica seria

	Usted	Juan	María	Pedro	Miguel	Tamara
Usted	-	0,61	0,23	0,37	0,87	0,52
Juan	0,61	-	0,32	0,35	0,69	0,16
María	0,23	0,32	-	0,45	0,39	0,71
Pedro	0,37	0,35	0,45	-	0,56	0,26
Miguel	0,87	0,69	0,39	0,56	-	1,00
Tamara	0,52	0,16	0,71	0,26	1,00	-

Y el problema se ajusta a un árbol de mínima expansión donde el peso o longitud del nodo representa la probabilidad de no asistir a la fiesta. Así, en el problema de minimiza expansión se distinguen los nodos: Usted (U), Juan (J), Maria (Ma), Pedro (P), Miguel (M) y Tamara (T) y el árbol de mínima expansión es:

Con lo cual la minia expansión del árbol, equivalente a la suma de probabilidades de "no ir a la fiesta": 0,39+0,32+0,16+0,26+0,23 = 1,36.

Alternativamente, puede considerarse como un problema de asignación, dado que la asiganción será de n-1 nodos, lo cual genera un árbol.

Nombre Alumno:				

Pregunta 3: (100 puntos) La siguiente tabla presenta los ingresos marginales que posee una empresa al enviar una unidad de producto a la cuidad fila i desde el centro comercial columna j. El objetivo es maximizar el ingreso total.

\$5	\$1	\$7	10
\$6	\$4	\$6	80
\$3	\$2	\$5	15
75	20	50	

- a) Resuelva, inventando un método para obtener una solución inicial factible (**NO utilice los métodos mínimo costo, esquina noroeste y Vogel**). (80 puntos)
- b) Considere la solución encontrada anteriormente.-Suponga que ahora se define que cada vez que la empresa envía uno o más producto desde una cuidad fila *i* hacia el centro comercial *j* (columna) existe un costo de \$200, entonces ¿cuál sería su recomendación a la empresa? ¿sirve el modelo clásico de transporte? (20 puntos)

Pauta problema 3:

a) Se balancea el problema y se tiene.

\$5	\$1	\$7	10
\$6	\$4	\$6 \$5	80
\$3	\$2	\$5	15
\$0	\$0	\$0	40
75	20	50	145

Dado que el problema está balanceado, una solución factible contiene n+m-1=4+3-1=6 (30 puntos)

La solución óptima es (50 puntos):

Y el valor óptimo es 625.

b) Dado que son 4 envíos los que realiza la empresa, entonces tendría un costo de 200*4 =800 y entonces al realizar los envíos de la solución encontrada , la empresa tendría pérdidas de 800-625=175. La recomendación seria que no realizará esta solución. En cuanto a si sirve le modelo de transporte, la respuesta es NO SIRVE, ya que la modelación del problema a incorporar este costo requiere una variable binaria que se active, es decir que exista el costo de 200, si el envío desde la ciudad i al centro j es realizado y 0 en otro caso. (20 puntos)