

Intro to ML

#4 Klasyfikacja

Agenda

- 1. Regresja przypomnienie
- 2. Co to jest klasyfikacja?
- 3. Metody oceny klasyfikacji
- 4. Proste klasyfikatory
- 5. Wyzwania

Regresja vs klasyfikacja

Regresja vs klasyfikacja

Regresja

Klasyfikacja

Regresja vs klasyfikacja

9

Klasyfikacja podstawowe pojęcia

Czym jest klasyfikacja?

Klasyfikacja to proces, w którym na podstawie dostępnych danych przewiduje się wartość określonego atrybutu. Jej celem jest przypisanie danego obiektu do jednej z wcześniej ustalonych kategorii na podstawie jego cech.

Zastosowanie - filtrowaniu spamu

Zastosowanie - **diagnozowanie chorób** (na podstawie danych medycznych, takich jak wyniki badań, objawy oraz historia choroby.

Zastosowanie - **wykrywanie nadużyć finansowych** (wykrywanie działania o charakterze przestępczym poprzez analizę wzorców transakcji i identyfikację anomalii)

Zastosowanie - klasyfikacja obrazów

Ważne zagadnienia związane z klasyfikacją

- 1. Cechy i etykiety
 - Cechy(ang. features)
 - wejście
 - Etykiety (ang. labels)
 - wyjście

Ważne zagadnienia związane z klasyfikacją

1. Klasyfikacja binarna vs wieloklasowa

Ważne zagadnienia związane z klasyfikacją

1. Klasyfikacja wieloklasowa vs wieloetykietowa

Metody oceny klasyfikacji

Czy klasyfikator popełnia błędy?

Jak często się one zdarzają?

Jak ocenić czy pomimo pomyłki resztę dobrze przypasował?

Macierz pomyłek (eng. Confusion matrix)

Wartość prognozowana		
	Negatywna	Pozytywna
Negatywna	Prawdziwie Negatywna (TN)	Fałszywie Pozytywna (FP)
Pozytywna	Fałszywie Negatywna (FN)	Prawdziwie Pozytywna (TP)

→ **Dokładność (Accuracy)** określa, jaki procent wszystkich przewidywań modelu był poprawny – zarówno pozytywnych, jak i negatywnych

War	tość prognozov	wana
	Negatywna	Pozytywna
Negatywna	Prawdziwie Negatywna (TN)	Fałszywie Pozytywna (FP)
Pozytywna	Fałszywie Negatywna (FN)	Prawdziwie Pozytywna (TP)

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

→ Precyzja (Precision) – odsetek prawdziwie pozytywnych wyników spośród wszystkich przypadków zaklasyfikowanych jako pozytywne

Wartość prognozowana		
	Negatywna	Pozytywna
Negatywna	Prawdziwie Negatywna (TN)	Fałszywie Pozytywna (FP)
Pozytywna	Fałszywie Negatywna (FN)	Prawdziwie Pozytywna (TP)

Accuracy vs precision

→ Czułość (Recall/Sensitivity) – odsetek prawdziwie pozytywnych wyników spośród wszystkich rzeczywiście pozytywnych przypadków

War	tość prognozov	wana
	Negatywna	Pozytywna
Negatywna	Prawdziwie Negatywna (TN)	Fałszywie Pozytywna (FP)
Pozytywna	Fałszywie Negatywna (FN)	Prawdziwie Pozytywna (TP)

$$Recall = \frac{TP}{TP + FN}$$

→ Specyficzność (Specificity) – odsetek prawdziwie negatywnych wyników spośród wszystkich rzeczywiście negatywnych przypadków

War	tość prognozov	wana
	Negatywna	Pozytywna
Negatywna	Prawdziwie Negatywna (TN)	Fałszywie Pozytywna (FP)
Pozytywna	Fałszywie Negatywna (FN)	Prawdziwie Pozytywna (TP)

Macierz pomyłek w praktyce:

$$Precision$$

$$= \frac{TP}{TP + FP}$$

$$= \frac{320}{320 + 20} = 0.941$$

Recall
$$= \frac{TP}{TP + FN} \\
= \frac{320}{320 + 43} = 0.882$$

$$Specificity = \frac{TN}{TN}$$

$$= \frac{538}{20 + 538} = 0.964$$

Accuracy?

Proste klasyfikatory

Regresja logistyczna

$$P=rac{1}{1+e^{-(eta_0+eta_1x)}}$$

$$P = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_n X_n)}}$$

Regresja logistyczna vs Regresja liniowa

$\overset{\diamond\diamond}{\sim}$

K najbliższych sąsiadów (KNN)

k – parametr określający k najbliższych sąsiadów

X-Axis

K najbliższych sąsiadów (KNN)

Przewidywana klasa dla zielonego kółka jeśli:

$$- k = 1$$

$$- k = 3$$

$$- k = 5$$

to ...

K najbliższych sąsiadów (KNN)

Jak najlepiej dopasować parametr k?

- Walidacja Krzyżowa (ang. Cross Validation)
- Metoda "łokcia" (ang. Elbow Method)
- Nieparzyste wartości k

∞

Drzewo decyzyjne - idea

Drzewo decyzyjne - konstruowanie

Cel: Maksymalne zróżnicowanie klas w podzbiorach

Drzewo decyzyjne - Jak ocenić zróżnicowanie klas?

Jako miary rozkładu klas w zbiorze przykładów (miary zanieczyszczenia węzła, miary informacji w zbiorze) używa się:

ENTROPIA =
$$-\sum_{i=1}^{n} p_i \log_2(p_i)$$

p - prawdopodobieństwo otrzymania wybranej klasy w zbiorze

Drzewo decyzyjne - Entropia jako nasz przyjaciel

Drzewo decyzyjne - przykład

$$E(Parent) = -\frac{16}{30}\log_2\left(\frac{16}{30}\right) - \frac{14}{30}\log_2\left(\frac{14}{30}\right) \approx 0.99$$

$$E(Balance < 50K) = -\frac{12}{13}\log_2\left(\frac{12}{13}\right) - \frac{1}{13}\log_2\left(\frac{1}{13}\right) \approx 0.39$$

$$E(Balance > 50K) = -\frac{4}{17}\log_2\left(\frac{4}{17}\right) - \frac{13}{17}\log_2\left(\frac{13}{17}\right) \approx 0.79$$

Weighted Average of entropy for each node:

$$E(Balance) = \frac{13}{30} \times 0.39 + \frac{17}{30} \times 0.79$$
$$= 0.62$$

Information Gain:

$$IG(Parent, Balance) = E(Parent) - E(Balance)$$

= 0.99 - 0.62
= 0.37

Drzewo decyzyjne - przykład

$$E(Residence = OWN) = -\frac{7}{8}\log_2\left(\frac{7}{8}\right) - \frac{1}{8}\log_2\left(\frac{1}{8}\right) \approx 0.54$$

$$E(Residence = RENT) = -\frac{4}{10}\log_2\left(\frac{4}{10}\right) - \frac{6}{10}\log_2\left(\frac{6}{10}\right) \approx 0.97$$

$$E(Residence = OTHER) = -\frac{5}{12}\log_2\left(\frac{5}{12}\right) - \frac{7}{12}\log_2\left(\frac{7}{12}\right) \approx 0.98$$

Weighted Average of entropies for each node:

$$E(Residence) = \frac{8}{30} \times 0.54 + \frac{10}{30} \times 0.97 + \frac{12}{30} \times 0.98 = 0.86$$

Information Gain:

$$IG(Parent, Residence) = E(Parent) - E(Residence)$$

= 0.99 - 0.86
= 0.13

Inne wyzwania

6

Niezbalansowanie klas

000

Niezbalansowanie klas - metryki Weighted Balanced Accuracy

$$Weighted Balanced Accuracy = \sum_{i=1}^{C} w_i * Accuracy_i$$

$$0 \leq w_i \leq 1, and, \sum_{i=1}^C w_i = 1$$

Niezbalansowanie klas - metryki Precision-Recall Curve(AUC-PR)

Wysoka wartość AUC-PR (Area Under Curve)

- zwraca trafne przewidywania (wysoka precyzja),
- wychwytuje większość pozytywnych przypadków (wysoka czułość).

Wysoka precyzja → mało fałszywie pozytywnych wyników.

Wysoka czułość → mało fałszywie negatywnych wyników.

https://arize.com/blog/what-is-pr-auc/

Niezbalansowanie klas - inne

Podpróbkowanie

Nadpróbkowanie

Klątwa wymiarowości

Klątwa wymiarowości

Klątwa wymiarowości - czy 3 cechy mogą zastąpić nam 100?

Klątwa wymiarowości - PCA vs ICA

Klątwa wymiarowości - UMAP

https://pair-code.github.io/understanding-umap/

Dziękuję za uwagę!

GHOST

Group of Horribly Optimistic Statisticians

