3D Coordinate Systems

Distance: $|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ **Sphere:** $(x - h)^2 + (y - k)^2 + (z - l)^2 = r^2$

Vectors

Properties: a + b = b + a $c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$

Dot Product

Formula: $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$ Angle: $\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$ Orthogonality: $\mathbf{a} \cdot \mathbf{b} = 0$ Projections: comp_ab = $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$

 $\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\mathbf{a}$

Cross Product

Formula: $\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$ Magnitude: $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$ Triple Product: $V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$

Lines and Planes

Line: $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$ Plane: $\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$ ax + by + cz + d = 0

Distance:

$$D = \frac{|a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0)|}{\sqrt{a^2 + b^2 + c^2}}$$

Curve Length: $s(t) = \int_a^t \sqrt{\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2 + \left(\frac{dz}{du}\right)^2} du$

Vector Value Functions

Form: $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ Limit: $\lim_{t \to a} \mathbf{r}(t) = \langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \rangle$ Derivative: $\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$ Orthogonality: If $|\mathbf{r}(t)| = c$, then $\mathbf{r}'(t)$ is orthogonal to

Definite Integral: $\int_a^b \mathbf{r}(t) dt = \mathbf{R}(t) \Big|_a^b = \mathbf{R}(b) - \mathbf{R}(a)$

Length: $L = \int_a^b |\mathbf{r}'(t)| dt$

Curvature

Form: $s(t) = \int_a^t |\mathbf{r}'(u)| du = \int_a^t \sqrt{\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2 + \left(\frac{dz}{du}\right)^2} du$

Motion in space

Form: $\mathbf{v}(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h} = \mathbf{r}'(t)$

Partial Derivatives

Form: $f_x(a,b) = g'(a)$ where g(x) = f(x,b) Defintion:

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

Notation:

$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x,y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f$$

$$f_y(x,y) = f_y = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x,y) = \frac{\partial z}{\partial y} = f_2 = D_2 f = D_y f$$

Rules

To find f_x , regard y as a constant and differentiate f(x,y)

To find f_y , regard x as a constant and differentiate f(x,y)with respect to y.

Higher Derivatives:

$$(f_x)_x = f_{xx} = f_{11} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 z}{\partial x^2}$$

$$(f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 z}{\partial y \partial x}$$

$$(f_y)_x = f_{yx} = f_{21} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 z}{\partial x \partial y}$$

$$(f_y)_y = f_{yy} = f_{22} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 z}{\partial y^2}$$