GEH1036/GEK1505 Tutorial 5(week 7)

Tsien Lilong February 21, 2017

Department of Mathematics, NUS

Personal Information

- Tsien Lilong
 - ► Email: qian.lilong@u.nus.edu
 - ▶ Phone Number: 90874186
 - ► Website: tsien.farbox.com
 Go to the website, and scroll down, see the **Work** entry, in the "Tutor" project, click the link for more information. I will provide this slide and the source .tex file on that site.
- Course information
 - EVERY WEEK MONDAY 10:00-11:00 S16-0431

Question

Draw all the trees with 7 unlabelled vertices.

We draw them according to the maximal degree (denote by Δ) among all the vertices. Note that the number of the trees is 6, then the sum of the degrees is $2\times 6=12$.

Question

Draw all the trees with 7 unlabelled vertices.

We draw them according to the maximal degree (denote by Δ) among all the vertices. Note that the number of the trees is 6, then the sum of the degrees is $2 \times 6 = 12$.

 $\Delta=6$: the distribution of degrees of the 7 vertices is 6+1+1+1+1+1.

$$\Delta = 6$$
:

Question

Draw all the trees with 7 unlabelled vertices.

We draw them according to the maximal degree (denote by Δ) among all the vertices. Note that the number of the trees is 6, then the sum of the degrees is $2 \times 6 = 12$.

 $\Delta=5$: the distribution of degrees of the 7 vertices is 5+2+1+1+1+1+1.

$$\Delta = 5$$
:

Question

Draw all the trees with 7 unlabelled vertices.

We draw them according to the maximal degree (denote by Δ) among all the vertices. Note that the number of the trees is 6, then the sum of the degrees is $2\times 6=12$.

 $\Delta=4$: the distribution of degrees of the 7 vertices is 4+2+2+1+1+1+1 or 4+3+1+1+1.

Question

Draw all the trees with 7 unlabelled vertices.

We draw them according to the maximal degree (denote by Δ) among all the vertices. Note that the number of the trees is 6, then the sum of the degrees is $2\times 6=12$.

 $\Delta=3$: the distribution of degrees of the 7 vertices is 3+3+2+1+1+1+1 or 3+2+2+1+1+1.

Question

Draw all the trees with 7 unlabelled vertices.

We draw them according to the maximal degree (denote by Δ) among all the vertices. Note that the number of the trees is 6, then the sum of the degrees is $2\times 6=12$.

 $\Delta=2$: the distribution of degrees of the 7 vertices is 2+2+2+2+1+1.

$$\Delta = 2$$
:

2. Number of vertices

Question

Suppose a tree has exactly one vertex of degree 5; exactly four vertices of degree 2; while all the remaining vertices are leaves. How many vertices are there in this tree?

2. Number of vertices

Question

Suppose a tree has exactly one vertex of degree 5; exactly four vertices of degree 2; while all the remaining vertices are leaves. How many vertices are there in this tree?

Let n be the number of vertices. Since a tree must have n-1 edges, by the Degree Theorem,

$$5 + 4 \times 2 + (n - 5) = 2(n - 1) \Rightarrow n = 10.$$

2. Number of vertices

Question

Suppose a tree has exactly one vertex of degree 5; exactly four vertices of degree 2; while all the remaining vertices are leaves. How many vertices are there in this tree?

Let n be the number of vertices. Since a tree must have n-1 edges, by the Degree Theorem,

$$5+4\times 2+(n-5)=2(n-1)\Rightarrow n=10.$$

An example of this graph is,

Question

Question

Draw two different trees (with unlabeled vertices) that satisfy the properties given in the previous Question.

 First draw one vertex 5 degree, other 5 vertices are connected to it.

Question

- First draw one vertex 5 degree, other 5 vertices are connected to it.
- Choose 4 vertices to be of degree 2 from the five vertices.

Question

- First draw one vertex 5 degree, other 5 vertices are connected to it.
- Choose 4 vertices to be of degree 2 from the five vertices.
- Or choose 3.

Question

- First draw one vertex 5 degree, other 5 vertices are connected to it.
- Choose 4 vertices to be of degree 2 from the five vertices.
- Or choose 3.
- Or choose 2.

Question

- First draw one vertex 5 degree, other 5 vertices are connected to it.
- Choose 4 vertices to be of degree 2 from the five vertices.
- Or choose 3.
- Or choose 2.

Question

- First draw one vertex 5 degree, other 5 vertices are connected to it.
- Choose 4 vertices to be of degree 2 from the five vertices.
- Or choose 3.
- Or choose 2.
- Or choose 1.

Question

Is it possible to find a tree with 5 vertices and at least two vertices of degree 3? Justify your answer.

Question

Is it possible to find a tree with 5 vertices and at least two vertices of degree 3? Justify your answer.

• If such graph G exists, then it has 4 edges. (5 vertices).

Question

Is it possible to find a tree with 5 vertices and at least two vertices of degree 3? Justify your answer.

- If such graph G exists, then it has 4 edges. (5 vertices).
- Using the **Degree Theorem**, the sum of all degrees is

$$2\times 2 = \sum_{i\in V(G)} d(v) \geqslant 2\times 3 + 3 = 9$$

(every vertex in a tree must has at least 1 degree), which is impossible.

Question

Is it possible to find a tree with 5 vertices and at least two vertices of degree 3? Justify your answer.

- If such graph G exists, then it has 4 edges. (5 vertices).
- Using the **Degree Theorem**, the sum of all degrees is

$$2\times 2 = \sum_{i\in V(G)} d(v) \geqslant 2\times 3 + 3 = 9$$

(every vertex in a tree must has at least 1 degree), which is impossible.

Question

Let T be a spanning tree in a graph G. Suppose G contains a cycle C and that ab is an edge of C that is also in T. Show that there is always at least one edge uv in C that can replace ab in T so that the resulting graph is still a spanning tree of G.

First consider a example.

Question

Let T be a spanning tree in a graph G. Suppose G contains a cycle C and that ab is an edge of C that is also in T. Show that there is always at least one edge uv in C that can replace ab in T so that the resulting graph is still a spanning tree of G.

- First consider a example.
- Delete ab from T, the resulting graph, denoted by T-ab, consists of two disjoint trees T_1 and T_2 .

Question

Let T be a spanning tree in a graph G. Suppose G contains a cycle C and that ab is an edge of C that is also in T. Show that there is always at least one edge uv in C that can replace ab in T so that the resulting graph is still a spanning tree of G.

- First consider a example.
- Delete ab from T, the resulting graph, denoted by T-ab, consists of two disjoint trees T_1 and T_2 .
- Since C is a cycle containing the edge ab, there will be an edge uv of C different from ab that joins one vertex of T₁ and one vertex of T₂.

Question

Find a minimal spanning tree and its weight in the following graph with Prim's Algorithm.

 $lack \$ Using the Prim's algorithm, chose a minimal weighted edge, BE for example, $S=\{B,E\}.$

Using the Prim's algorithm, chose a minimal weighted edge, BE for example, $S=\{B,E\}$.

Consider all edges connected to set S, choose one mimimal wighted edge, BG, S = {B, E, G}.

- Using the Prim's algorithm, chose a minimal weighted edge, BE for example, $S=\{B,E\}$.
- Consider all edges connected to set S, choose one mimimal wighted edge, BG, S = {B, E, G}.
- Then AB, $S = \{A, B, E, G\}$.

- Using the Prim's algorithm, chose a minimal weighted edge, BE for example, $S=\{B,E\}$.
- Consider all edges connected to set S, choose one mimimal wighted edge, BG, $S = \{B, E, G\}$.

• Then EC, $S = \{A, B, C, E, G\}$.

- Using the Prim's algorithm, chose a minimal weighted edge, BE for example, $S=\{B,E\}$.
- Consider all edges connected to set S, choose one mimimal wighted edge, BG, $S = \{B, E, G\}$.

- Then AB, $S = \{A, B, E, G\}$.
- Then EC, $S = \{A, B, C, E, G\}$.
- Then CD, $S = \{A, B, C, D, E, G\}$.

- Using the Prim's algorithm, chose a minimal weighted edge, BE for example, $S=\{B,E\}$.
- Consider all edges connected to set S, choose one mimimal wighted edge, BG, $S = \{B, E, G\}$.

- Then AB, $S = \{A, B, E, G\}$.
- Then EC, $S = \{A, B, C, E, G\}$.
- Then CD, $S = \{A, B, C, D, E, G\}$.
- Then DI, $S = \{A, B, C, D, E, G, I\}$.

- Using the Prim's algorithm, chose a minimal weighted edge, BE for example, $S=\{B,E\}$.
- Consider all edges connected to set S, choose one mimimal wighted edge, BG, $S = \{B, E, G\}$.

- Then AB, $S = \{A, B, E, G\}$.
- Then EC, $S = \{A, B, C, E, G\}$.
- Then CD, $S = \{A, B, C, D, E, G\}$.
- Then DI, $S = \{A, B, C, D, E, G, I\}$.
- Then IH, $S = \{A, B, C, D, E, G, H, I\}$.

- Using the Prim's algorithm, chose a minimal weighted edge, BE for example, $S=\{B,E\}$.
- Consider all edges connected to set S, choose one mimimal wighted edge, BG, $S = \{B, E, G\}$.

- Then AB, $S = \{A, B, E, G\}$.
- Then EC, $S = \{A, B, C, E, G\}$.
- Then CD, $S = \{A, B, C, D, E, G\}$.
- Then DI, $S = \{A, B, C, D, E, G, I\}$.
- Then IH, $S = \{A, B, C, D, E, G, H, I\}$.
- Then HF, $S = \{A, B, C, D, E, F, G, H, I\}$.

- Using the Prim's algorithm, chose a minimal weighted edge, BE for example, $S=\{B,E\}$.
- Consider all edges connected to set S, choose one mimimal wighted edge, BG, $S = \{B, E, G\}$.

- Then AB, $S = \{A, B, E, G\}$.
- Then EC, $S = \{A, B, C, E, G\}$.
- Then CD, $S = \{A, B, C, D, E, G\}$.
- Then DI, $S = \{A, B, C, D, E, G, I\}$.
- Then IH, $S = \{A, B, C, D, E, G, H, I\}$.
- Then HF, $S = \{A, B, C, D, E, F, G, H, I\}$.
- Then IJ, $S = \{A, B, C, D, E, F, G, H, I, J\}$.

- Using the Prim's algorithm, chose a minimal weighted edge, BE for example, $S = \{B, E\}$.
- Consider all edges connected to set S, choose one mimimal wighted edge, BG, $S = \{B, E, G\}$.

- Then $AB, S = \{A, B, E, G\}.$
- Then EC, $S = \{A, B, C, E, G\}$.
- Then CD, $S = \{A, B, C, D, E, G\}$.
- Then DI, $S = \{A, B, C, D, E, G, I\}$.
- Then IH, $S = \{A, B, C, D, E, G, H, I\}$.
- Then HF, $S = \{A, B, C, D, E, F, G, H, I\}$.
- Then IJ, $S = \{A, B, C, D, E, F, G, H, I, J\}$.
- The final tree is AB, BE, BG, EC, CD, DI, IH, HF, IJ.

Question

Find a minimal set of edges that can be added to each of the following trees so that in the resulting graph, every edge belongs to some cycle.

Question

Find a minimal set of edges that can be added to each of the following trees so that in the resulting graph, every edge belongs to some cycle.

 Since every vertex in a cycle cannot have degree 1.

Note the number of them as n, then we have at least $\left[\frac{n}{2}\right]$ edges to connect them.

Question

Find a minimal set of edges that can be added to each of the following trees so that in the resulting graph, every edge belongs to some cycle.

• Since every vertex in a cycle cannot have degree 1. Note the number of them as n, then we have at least $\left[\frac{n}{2}\right]$ edges to connect them.

 The case with minimal edges is to link those one-degree vertices pairly. And can be checked that every edge is contained in a cycle.

8. End

Thank you for listening!