

A search for tWZ production with the ATLAS detector

Alex Veltman

Supervisor: Dr. James Keaveney

SAIP 2022

The tWZ process

- tWZ process is the electroweak production of a top quark and an associated W and Z boson
- The rates of tWZ production is dependent on top electroweak couplings
- Top EW couplings is an area of interest for beyond SM theories
- Could be used to constrain new theories

Goal: Measure the cross section σ_{tWZ} and compare it with SM

- 1. Particularly rare process
- 2. Considerable diagram overlaps with ttZ

Analysis Overview

3f Channel (B Warren)

- Requires 1 hadronically and 1 leptonically decaying W bosons
- Difficult to distinguish from 3\ell backgrounds
- Backgrounds are ttZ and WZ
- Being updated with latest calibrations and samples

4f Channel (J Reich)

- Requires 2 leptonically decaying W bosons
- Easier to distinguish but lower statistics
- Backgrounds are ttZ and ZZ
- Updated results available and will be the focus

Name	Samples of interest	Variable		
tWZ Opp. Flav. SR	tWZ	BDT Discr.		
tWZ Same Flav. SR	tWZ Captures ZZ background	BDT Discr.		
tťZ CR	tťZ	BDT Discr.		
ZZb CR	ZZ	ZZ Sum. p _T of leptons jets and E _T ^{miss} (SMT)		
tWZ fake CR	Fake leptons in ttZ sample	Loose lepton p _T		

Region: A classification for events for isolating a sample based off physical information

Signal regions for signal and Control regions for background

Signal/Background Discrimination

We want to define variable to differentiate tWZ events and background events in our SR regions

Two Neutrino Scanning Method (2vSM)

- Discriminate tWZ from ttZ using tt system
- Reconstruct top quarks and E_{τ}^{miss} for various possible neutrino kinematics
- Find maximum ω_{2VSM}
- Produces score between 0 and 1
- Larger score means more likely to have a tt system

Event level Boosted Decision Tree (BDT)

- Gives a score from 0 to 1 for each event
- Inputs
 - $\begin{array}{ll} \text{Maximum } \omega_{\text{2vSM}} & \textit{dmlc} \\ \text{Sum of jet } p_{\text{T}} & \textit{XGBoost} \end{array}$

 - Sum of lepton p₊
 - Δη between 2 non-Z leptons
- Trained on tWZ, ttZ and ZZ
- ω_{DSM} has the largest feature importance

Control Regions

Generally good agreement between data and sim. across CRs

Low samples numbers due to 4 lepton channel

ATLAS EXPERIMENT

- Performed a binned maximum likelihood fit using µ(tWZ) as parameter of interest
- Nuisance Parameters
 - Statistical uncertainties on bins
 - Experimental Systematic Uncertainties
 - Theoretical Systematic Uncertainties
- Fits are blinded (Asimov) to avoid bias
- The fit is performed using fully blinded and partially blinded datasets

Asimov Dataset: Toy dataset whose number of entries is the same as each bin is equal to the simulated value

Fully Blinded: The ATLAS data in all regions is replaced with Asimov dataset

Partially Blinded: Asimov dataset used in SR regions but ATLAS data used in CR

Experimental Systematics

Luminosity
Pileup
Jet Vertex Tagger
Jet Flavour Tagging
Object Scale/Resolution
Lepton Scale Factors
and more

Theory Systematics

Cross section estimations muR/muF scale variations
Alternative event generators
PDF calculations

Blinded Results for 4^l Channel

 μ_{exp} =2.61^{+1.46}

- Uncertainties are statistically dominated due to low event numbers
- Additional regions could provide more events

 Agreement with SM in partially blinded fit

Large impacts due to ttZ cross section estimation and jet modelling systematics

Blue is how much the value of $\mu(tWZ)$ changes when systematic varies (top axis)

Black is value of systematic post-fit (bottom axis)

Summary

ATLAS EXPERIMENT

- tWZ is a rare never before measured process that may be relevant for constraining BSM theories
- Difficult to measure due to large ttZ backgrounds
- Measurement in 4 ℓ channel produced an expected significance of $Z_{\parallel}^{\text{exp}} = 0.95\sigma$
- Channel is dominated by statistical uncertainty

Future Plans

- Combine 3l and 4l channel for simultaneous fit
- Define additional regions in 4l to increase total events
- Perform kinematic reconstruction of top using ML for better signal/background discrimination

Backup

ATLAS Full Run 2 proton proton collisions at \sqrt{s} = 13 TeV

Years	Luminosity (fb ⁻¹)
2015 + 2016	3.2 + 33.0
2017	44.3
2018	58.5
Total	139

```
Simulation Samples
tWZ-DR1
tWZ-DR2
ttZ
ZZ
WZ
tth
tt
VVV
tty
+ others
```

Diagram removal (DR): Accounting for higher order ttZ diagrams

Basel	line	sel	ect	in	ns
Dasc		30		w	110

$$\begin{split} N_{\ell} &= 4 \\ p_{T}(\ell_{1},\ell_{2},\ell_{3},\ell_{4}) > (28,18,10,10) \text{ GeV} \\ p_{T}(\text{jet}) &> 20 \text{ GeV}, \, |\eta(\text{jet})| < 4.5, \, \text{jvt} > 0.5 \\ |\eta(\ell_{e})| &< 2.47 \text{ excluding } 1.37 < |\eta(\ell_{e})| < 1.52 \\ |\eta(\ell_{\mu})| &< 2.5 \end{split}$$

 $\sum_{i=1}^{4} \text{charge}(\ell_i) = 0$

All OSSF lepton pairs require $m_{OSSF} > 10 \,\text{GeV}$

Name	Definitions	Variable	
tWZ Opp. Flav. SR	1 Z Candidate Jets ≥ 1 b-jets = 1 Opp. flavour non-Z leptons	BDT Discr.	
tWZ Same Flav. SR	1 Z Candidate Jets ≥ 1 b-jets = 1 Same flavour non-Z leptons	BDT Discr.	
ttZ CR	1 Z Candidate Jets ≥ 2 b-jets = 2	BDT Discr.	
ZZb CR	2 Z Candidate Jets ≥ 1 b-jets = 1	Sum. p _T of leptons, jets and E _T ^{miss} (SMT)	
tWZ fake CR	3 tight and 1 loose lepton 1 Z Candidate Jets ≥ 2 b-jets = 2	Loose lepton p _T	

Experimental Systematics

Luminosity
Pileup
Jet Vertex Tagger
Jet Flavour Tagging
Jet Energy Scale/Resolution
e/gamma Scale/Resolution

µ Scale/Resolution

E_T miss Soft terms
Lepton Scale Factors

and more

Theory Systematics

Cross section estimations muR/muF scale variations
Alternative event generators
PDF calculations