Riemannian and Complex Geometry

Lecturers Daniel Galviz & Bowen Liu Teaching Assistants: Anis Bousclet & Julian Alzate PhysicsLatam.com/RC

Submission deadline: 29 October 2025, 5:59 pm (GMT-4)

— Exercises —

3.1 Vector bundles

Exercise 3.1. Show that the following two definitions for vector bundles are the same.

Definition 3.1. Let M be a smooth manifold. A *(real) vector bundle* E of rank r on M consists of the following data:

- (1) E is a smooth manifold with surjective map $\pi: E \to M$, such that
 - (1) For all $x \in M$, fibre E_x is a \mathbb{R} -vector space of dimension r.
 - (2) For all $x \in M$, there exists $x \in U \subseteq M$ and there is a diffeomorphism $\varphi \colon \pi^{-1}(U) \to U \times \mathbb{R}^r$ such that

$$\pi^{-1}(U) \xrightarrow{\pi} U$$

$$U \times \mathbb{R}^r \xrightarrow{p_2} \mathbb{R}^r$$

and for all $y \in U$, $E_y \xrightarrow{p_2 \circ \varphi} \mathbb{R}^r$ is a \mathbb{R} -vector space isomorphism. The pair (U, φ) is called a trivialization of E over U.

Definition 3.2. Let M be a smooth manifold. A *(real) vector bundle* E of rank r on M consists of the following data:

- (1) open covering $\{U_{\alpha}\}$ of M.
- (2) smooth functions $\{g_{\alpha\beta} \colon U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(r,\mathbb{R})\}\$ satisfies

$$g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha} = \mathrm{id}$$
 on $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$
 $g_{\alpha\alpha} = \mathrm{id}$ on U_{α} .

Exercise 3.2. Show that a line bundle with a nowhere vanishing section is trivial.

3.2 Riemannian manifold

Exercise 3.3. Show that Poincaré disk is isometric to hyperbolic upper plane.

3.3 Levi-Civita connection

Exercise 3.4. Let g be the Riemannian metric on $\mathbb{S}^n(R)$ induced from the canonical metric on \mathbb{R}^{n+1} by the natural inclusion $f: \mathbb{S}^n \to \mathbb{R}^{n+1}$. Compute its Christoffel symbol.

Exercise 3.5. Let $\mathbb{H}^n(R) = \{(x^1, \dots, x^{n-1}, y) \in \mathbb{R}^n \mid y > 0\}$ with Riemannian metric

$$g = R^2 \frac{\delta_{ij} dx^i \otimes dx^j + dy \otimes dy}{y^2}.$$

Compute the Christoffel symbol of this Riemannian metric.

3.4 Tensor computation

Exercise 3.6. Let g be a Riemannian metric. Prove that a connection ∇ is compatible with g if and only if g is parallel, that is, $\nabla g = 0$.

Exercise 3.7. Let (M, g) be a Riemannian manifold. There is an induced metric on $T^*M \otimes T^*M$ defined as follows: Take two (2,0)-tensors T, S and write them locally as $T = T_{ij} dx^i \otimes dx^j$, $S = S_{k\ell} dx^k \otimes dx^\ell$. The induced metric, which is still denoted by g for convenience, is defined as

$$g(T,S) = T_{ij}S_{k\ell}g(\mathrm{d}x^i \otimes \mathrm{d}x^j, \mathrm{d}x^k \otimes \mathrm{d}x^\ell)$$
$$:= T_{ij}S_{k\ell}g^{ik}g^{j\ell}.$$

Prove that if connection ∇ on vector bundle T^*M is compatible with metric g on it, then induced connection on $T^*M \otimes T^*M$ is compatible with induced metric g on it.

Exercise 3.8. Let (M, g) be a Riemannian manifold and ∇ be the Levi-Civita connection. For an (2, 0)-tensor T on M, prove that

$$X(\operatorname{tr}_q T) = g(g, \nabla_X T)$$

holds for any vector field X.