12864M-1 使用说明书液晶显示器使用手册

目

录

(一)概述(二)外形尺寸(三)模块主要硬件构成说明(四)模块的外部接口(五)指令说明(六)读写操作时序(七)软件初始化

一、概述

12864M-1 是一种图形点阵液晶显示器,它主要由行驱动器/列驱动器及128X64 全点阵液晶显示器组成,可完成图形显示,也可以显示8X4 个(16X16 点阵汉 字,与外部CPU 接口可采用串行或并行方式控制。主要技术参数和性能:

- 1 1.电源: VDD:+5V
- 2 2.显示内容: 128 (列) X64 (行)点。
- 3 3.全屏幕点阵。
- 4 ROM 总共提供8192 个汉字(16X16 点阵)。
- 5 ROM (CGROM) 总共提供128 个字符(16X8 点阵)
- 6 6.工作温度: -20℃∽+70℃,存储温度: -30℃∽+80℃

二、外形尺寸图

表:

ITEM	NOMINAL DIMEN	UNIT
模块体积	93X70X13.5	mm
视域	70.0X38.8	mm
行列点阵数	128X64	DOTS
点距离	0.52X0.52	mm
点大小	0.48X0.48	mm

三、模块主要硬件构成说明

RS,R/W 的配合选择决定控制界面的4 种模式:

RS	R/W	功能说明
L	L	MPU 写指令到指令暂存器(IR)
L	Н	读出忙标致(BF)及地址计数器(AC)的状态
Н	L	MPU 写入数据到数据暂存器 (DR)
Н	Н	MPU 从数据暂存器(DR) 中读出数据
Н	Н	MPU 从数据暂存器(DR) 中读出数据

· 忙标志:BF

BF 标志提供内部工作情况,BF=1 表示模块在进行内部操作,此时模块不接受外部指令和数据,BF=0 时,模块为准备状态,随时可接受外部指令和数据。

•字型产生**ROM**(**CGROM**)

字型产生ROM(CGROM)提供8192 个此触发器是用于模块屏幕显示开和关的控制.DFF=1 为开显示,DFF 的状态是指令DISPLAY ON/OFF 和RST 信号控制的。

·显示数据RAM(DDRAM)

显示数据RAN 提供64X2 位组的空间,最多可控制4 行16 字,(64 字)的中文字型显示,当写入显示数据RAM 时,可分别显示CGROM 与CGRAM 的字型,此模块可显示三种字型,分别是瘦长的英数字型、CGRAM 字型及CGRAM 的中文字型,三种字型的选择,由在DDRAM 中写入的编码选择,在00~OF 的编码中将选择CGRAM 的自定义字型,10~7F 的编码中将选择瘦长英数字的字型,至于A.以上的编码将自动的结合下一个位组,组成两个元组吃编码形成中文字型的编码(A140~D75F)。

·字型产生RAM (CGRAM)

字型产生ERAM 提供图像定义(造字)功能,可以提供四组16X16 点的自定义图像空间,使用者可以将内部字型没有提供的图像字型自行定义到CGRAM 中,便可和CGRAM 中的定义一般通过DDRAM 显示在荧屏中。

·地址计算器AC

地址计数器是用来贮存DDRAM 之一的地址,它可由设定指令暂寸器来改变,之后只要读取或是写入DDRAM/CGRAM 的值时,地址计数器的值就会自动加一,

当RS 为"0"而R/W 为"1"时,地址计数器的值会被读取到DB6~DB0 中。

• LCD 驱动电

路•

LCD 驱动电路提供33COMMOM 以及64SEGMENT 信号来驱动CD 棉板, SEGMENT 数据从CGRAM/CGROM 转换储存到64 位的SEGMENT 串行锁存, 当33 个COMMON 中的一个COMMON 输出时,相对应的SEGMENT,数据将从64 位的串行锁存输出到SEGMENT 驱动电路。

•游标/闪烁控制电路

此模块提供硬件游标及闪烁控制电路,由地址计数器的值来制定DDRAM 中的游标或闪烁位置。

· DDRAM 地址表

	列1	列2	列3	列4	列5	列6	列7	列8
行1	80H	81H	82H	83H	84H	85H	86H	87H
行2	90H	91H	92H	93H	94H	95H	96H	97H
行3	98H	99H	9AH	9BH	9CH	9DH	9EH	9FH
行4	88H	89H	8BH	8BH	8CH	8DH	8EH	8FH

四、模块的外部接口

外部接口信号如下表所示(并行接口JP/PCB 上的PS 链接到P 端):

管脚号	管脚名称	LEVER	管脚功能描述
1	VSS	OV	电源地
2	VDD	+5V	电源正
3	VO	-	液晶显示器驱动电器(可调)
4	RS	H/L	RS="H",表示DB7~DB0 为显示数据RS="L",表示DB7~DB0 为控制指令。
5	R/W	H/L	R/W="H", E="H", 数据被督导DB7~DB0 R/W="l", E="H→ L", DB7~DB0 的数据被写到IR 或DR
6	Е	H/L	使能信号
7	DB0	H/L	数据线
8	DB1	H/L	数据线
9	DB2	H/L	数据线
10	DB3	H/L	数据线
	•		
11	DB4	H/L	数据线
12	DB5	H/L	数据线

11	DB4	H/L	数据线
12	DB5	H/L	数据线
13	DB6	H/L	数据线
14	DB7	H/L	数据线
15	PSB		串并口选择
16	NC		空脚
17	RST		复位脚(低电平有效)
18	VOUT		倍压输出脚
19	LEDA		背光电源正极 (5V)
20	LEDK		背光电源负极(0V)

外部接口信号如下表所示, (串行接口PCB 上的PS 链接到S 端)。

管脚号	管脚名称	LEVER	管脚功能描述
1	VSS	OV	电源地
2	VDD	+5V	电源正
3	V0	-	液晶显示器驱动d 电压(可调)
4	/CS	H/L	片选信号
5	SIF	H/L	串行数据输入/出
6	CLK	H/L	串行同步时钟
7	BLA	H/L	背光源使能(高电平有效)
8	BLK	3V	背光源电压

五、指令说明 ICI 提供两套控制命令,基本指令和扩充指令如下:指令表1:(RE=0;基本指令

指	指令码 功											
*	RS	R/W	D7	D6	D5	D4	D3	D2	D1		•	D0
清除显示	0	0	0	0	0	0	0	0	0	1	将DDRAM 填满"20H",并且设定 DDRAM 的地址计数器(AC) 到"OOH"	
地址归地	0	0	0	0	0	0	0	0	1	X	设定DDRAM 的地址计数器 (AC)到"OOH",并且将游标移 到开头原地位置,这个指令不改 变DDRAM 的内容	
显示状态开/ 关	0	0	0	0	0	0	1	D	С	В	D=1; 整体显示ON C=1; 游标ON B=1 ; 游标位置ON	
进入点设定	0	0	0	0	0	0	0	1	I/D	S	指定在数据的读取与写入时,设 定游标的移动方向及指定显示的 移位。	
游标或显示移 位控制	0	0	0	0	0	1	S/C	R/L	X	X	设定游标的移动与显示的移位控制位,这个指令不改变DDRAM的内容	
功能设定	0	0	0	0	1	DL	X	0 RE	X	X	DL=1(必须设为1)RE=1;扩充 指令操作RE=0;基本指令操作	

设定CGRAM 地址	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	设定DDRAM 地址到地址计数器
设定DDRAM 地址	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	设定CGRAM 地址到地址计数器
读取忙标志和地址	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	读取忙标志(BF) 可以query 内部动作 是否完成,同时可以读出地址计数器 (AC)
写到数据RAM	1	0				数		将数据D7~D0 写入到内部的RAM (DDRAM/CGRAM/IRAM/GRAM)			
读出RAM 的值	1	1		数据 从内部RAM 读取数据 (DDRAM/CGRAM/TRAM							

指令表2: (RE=1: 扩充指令)

指					功 能						
*	RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0	り BE
待命模式	О	0	0	О	0	0	О	0	0	1	进入待命模式,执行气压指 令部终止待命模式
卷动地址 开关开启	0	0	0	О	0	0	О	0	1	SR	
反白 选择	0	0	0	0	0	О	0	1	R1	RO	
睡眠 模式	0	0	0	0	0	О	1	SL	X	X	
点距 书面	0	О	0	0	0	1	OA	LR	L1	LO	
移位 控制											
扩充 功能 设定	0	О	0	0	1	CL	X	1 RE	G	GP	
设定IRAM 地址或是 卷动地址	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	
设定绘图 RAM地址	0	О	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	

备注: 当ICI 在接受指令前,微处理器必须先确认其内部处于非忙碌状态,即读取BF 标志时,BF 需为零,方可接受新的指令,如果在送出一个指令钱并不检查BF 标志,那么在钱一个指令和这个指令中建必须延长一段较长的一段时间,即是等待前一个指令确实执行完成。

六、时序图

八位原界面时续图。MPU 写数据MPU 读数据

• 电源开启

七、软件初始化: (8 位接口)

延迟时间超过15ms RS RW D7 D6 0 0 0 1				
	D5 1	D4 X	D3 X	D2 D1, 在此指令前,不能检查BF 标志X X
0000	1	X	X	XX, 在此指令前,不能检查BF 标志
延迟时间超过100us 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	1 1 1 0	1 1 1 0	X 1 1 0	XXX, 在此指令前,不能检查BF 标志 $1xx$, 在此指令前,不能检查BF 标志 000 , 设为基本指令 001 , 荧屏显示清除
初始设定结束0000	0	0	0	1 I/D S进入点设定