	SEARCHING	Algorithm	1	LAVS		Wor	3t	Space		
	Verticies	DFS		-		O(EGVI)		O(v)	***************************************	non-reconnected and
	E edges	BFS		_		O(E(V))		G(V)		
	Sorted Array	Binary Search		$O(\log n)$		0(e03 n)		0(1)		
		Briteforce		O(n)		O(n)		0(1)		
		Dijkstra-MinHeap		O(VIE ROSV)		O(VIE 109V)		0(W)		
	Dijksore-Unsovted Arrey		$O(V^2)$		O(V2)		O(V)			
	Unsorted list	Unsorted list Quickselect		0(n)		O(n2)		0(?)		
	SORTING Alborithm		Best		Avg		Worse			
		Hergescrt		O(n. 609 n)		O(n.eogn)		O(n·log 1	<u>a)</u>	distribution (comme
	- W	Insertion Sort				$\Theta(n^2)$		$\Theta(n^2)$. /	
		Heapsort						O(n logn)	
		QuickSort		O(n 103 n)		O(n. e09 n)		O(n2)	*	
STRUCTU		tug Search	lv9 Insert Avg	Pelete Wind	exh	Search	Winse	ere w delete	5Pac	e
Basic Ar	ray O(1)	O(n)	-	0(1) c)(n)	-		n	Appendix .
Drnamic A		(n)	X	*1 O(1		(n)	*1	×1	1	
Sinsly Linke	A STATE OF THE PARTY OF THE PAR	0(n)	*2	* O(n)(n)	*2	*2		
Doubly Link	red O(n)	0(n)	*2	* O(n) 0	(n)	×2	×2		
Hishtable	-			1) -)(n)	0(n)	(0(n)		O(1) w/ perfect
Binary ST	Y. T.	0(los n) ((logn)Q	log n) O(n)	C	Cn)	O(n)	(3(n)		hashing.
AVLTree	O(logn)	((logn) ((log n) O(l	99 n) O(109	n) 0	(129 n)	Ollog v	1) O(009 p)		W-01.
Red Black		10(log n) 10	(logn) 0(logn)	09 n) 0(log	$n) \propto$	209 n)	00091	n) (0(109 m)		
B-Tree	O(log n)	10(105 n) C	(logn)0(l	08 n XX (109	n) O	(log n)	D(109	n)O(109 n)	1	
T: Insert Delete at beginning ()(1). Insert Delete at and ()(1) amountized										
* insert Pelete at beginning O(1). Insert/Delete at end, O(1) if last elem is known, O(n) if unknown.										
TIDAPS	HEAPITY FI	nd Masc Coctract	Max Increas	Key Insert	. [Delete	Mer	3e		
Linked List(so	100 miles	(1) 0(1		1) O(n)	0	(1)	OCMI	-n)		
Linked Lise (unsi		(n) O(n)		0(1)		(1)	0(1)			
Binary Heaf		1) 0(209				(log n)				
Binomial Hea		(1) O(log				(09 n) (
Fibonacci Hea	p - 0	(1) 0(203				log n)				
Leftist Heap Coraphs		0(103		0003	n)O((los n)	Ourc	en)		
*	> Storage	Add Vertex Ad	12 Edge Kemo	ove Vertex			e Que	ery		
		0(1)	(1) 0(VE)	OC		00	U)		
Incidence List			(1) 0	1	0(6		0(
holacency Matri	$ \begin{array}{ccc} \infty & O(V^2) \\ \infty & O(V \cdot E) \end{array} $		(1) 0	(V2)	00		00			
	har (ac) is all	0(V.E) 10	(VE) OC	V·E)	000	·E)	DIE			
Leftist Heap: hPe(x) is the econth of the shortest Path from 2c to a node w/o two children.										
property: For every node of in the heap the null path length of the left child is at least										
as early as the tot the make										
Quich Select: Find the kith smallest element in an unordered list. Tree Traversal: Preorder - Root > Left -> Right Inorder - Left -> Rook -> Right										
1100012	Passanda I	al Paul	Kight	Inorder	- L	ete->k	COOK-	>Kight		
GRAPH: Sparse graph => Adjacency list Desce graphs Alternation										
CANTILL. OF WISE CHAIR CORCY IST DONCE 900 DIAN ALL										
Recreation: BST Ok for: Pre the and Post tille. NOT OK fer only inorder. BT OK for Pre+in/Lul and Post + in/Lul.										
Binary Tree: A creek in which no node can have more than two this livery.										
BST: For every node of in the tree the values of au the items in its less subtree are smaller than the item in of. The analog proposit is true the value will be subtree are smaller than										
	the item in	Y The sail	a con	le values of	au ch	ne items	in its	s left subtre	e ave	smaller than
AVL Tree										
	: A BH is a B	T +ho+ is =	the neigh	t of the 1	etc	and vis	3ht sc	obtrees can	diller	at most by 1.
Completely the possible exception of the board										
For anny element in position i the left child is in position 2i, the right child in 2i+1 and the Parent @ 11/21. In a heap, for every node of the key in the Parent of T is still a the										and the
	les "	mak are on along	I IN COST	1 HOGE C	CIMP	Key in	the.	Wayne al	~ ~,	1/2

Parent @ 1/21. In a heap, for every node of the key in the parent of of is smaller than

REDBLACU

the key in oc, with the exception of the vorc.

1. Every node is colored either red or black. 2. The vorc is black. 3. If a proble is red, its child must be black. 4. Every path from a node to a now reference must contain the same number of black nodes.

```
BFS: Maintain a queue of nodes to visit next. The queve contains the start
                    node initially. Repeat: Remove node from queve. Visit it. Find all
                    nodes adjacent to the node and add them to the queve IF they
                    have not already been visited or is not already in the queve.
DFS: Maintain a stack of nodes to visit next. Repeat: Add node to stack. Visit it. Pop stack
        and add that nodes adjacent nodes to the stab IF they have not already been visited
         or is not already on the Stack.
         5 is a set of all the nodes that are in the tree so far. Pick one arbitrary node. While there is a
         node in S: Pich the lowest-weight edge between a node in S and a node not in s.
                       Add that suggets the spannins tree and the node to S. (edge)
                                                                                         (Use a Pa)
KRUSKAL: Start W/ a set of all nodes and no edges. At each point choose an edge w/ the lowest cost which
         doesn't create a cycle.
TOPSORT: Keep an init empty list that will contain the sorted elems. Let S be a set of all nodes w/ no incoming edges. While { S is
         non empty: remove a node n from S, add n to the end of L. For each node m with an edge e from n to m:
         remove edge from the graph. IF in his no other incoming edges: insert in into S. If graph has edges "Cycle ever", else
BUCKET: Set up an every of init empty buckets. Scatter: Cao over the eviginal avery and put each object in this bucket.
          Sort each non-empty bucket. (insertion-sort) Crather: Visit the buckets in order and put all elements loach.
RADIOC Perform BULLET by "lease significant". O(KN), N keys which have k or fewer digits. Army TIED -> Peller trad
                                                   append(List ys) { Dubbel(enhade!
                                                                                         Free(A[] t) {
                            Public void reverse() {
 Public void reverse U {
                                                                                             if (t == null)
                                                      tail presinence = Ys. head. next;
                              Note Prev=104;
   Node corr = first;
                                                                                                return;
                                                      Ys.head.next. Preu = tail. Preu;
                              Node corr = head!
   while (corr != nou) {
                                                                                             root = from Array (t, 0);
                                                      tail = Ys. tail;
                              Node next!
      Node Neact = corr. neact;
                                                      Ys. tail = new Klode (null, Yo. head, Mull);
                              while (com != nul) {
      com. Prev= Nesct;
                                                                                          Node from Array (AC) t, int pos) {
                                                      Ys. feednext . Ys. tail;
                                 Next = comnext;
      curr = next;
                                                                                             if (pos >= t.length)
                                                    3 Array sold - AVL givet somers arr
                                 currinero = Preu;
                                                                                                return null;
                                                   Public AULTREE (List ns) {
                                 Prevacur:
    Node tmp = first:
                                                                                             return new Model
                                                      roce = from Array (ns, O, ns. size-1);
                                 CUTT = Neact;
    first = last:
                                                                                                t[pos],
    lest= tmp;
                                                   Private TreeNode from Array (List ns, int f, int t) { from Array (t, Posm2+1)
                               hecd = prev:
                                                                                               frommer (t, Pos + 2+2));
                            3 Riluted, ovilited > byt viluen if (f<= t) {
  DFS(G, v){
                                                        ine m = f + (t-f)/2;
                                                                                          3 Thee W/O parent point -> Tree Le
                            Petablic void reverse(){
    label v as visited
                                                                                    Public TreeWith(TreeWithout (4> t) {
                              List(Interes [] r= new LL[notes] return new TreeNode
     fer all edges v to w
                                                                                      voot = add Pavents (E.voot, null)
                                                             from Array (ns, f, m-1),
       if w is not visited for(i:0 > nodes){
                                                              ns. get (mil),
                                r[i]= new LL (Integer>();
           DFS(G, W)
                                                              from Array (ns. mg1, t)); Privaco TreeNode add Parents (
 Push v to stack
                                                                                       TW/OKA> TreeNode wo,
                                                      3 else { return null }
                               for(int i:0 > nodes) {
  3 class Multinapak, V) {
                                                                                       TreeNode Parent) {
                                 for (Integer j: adjacent[i])
       Map(K, Lise (V)) Map;
       Multimap() { map = new AULK, Lisecus ( TEi]. add(i): Dijkstra: Sätt alla valer till not if WO == null return null;
                                                                                          TreeNode W = new TreeNode (
                                   3 visited. Satt auständet till aug Inder till 00.
       insert (KK, Vv){
          Lister Vs = map. lookup(h) Sate austander till stannoder till O. Lass de narlissande Wo.contents, noll, null,
                               adjacent = vev: noderna i en min-heap. Berâhna austindet Pavent);
          if (vs== noll) {
                                                                                          W.left = add Parents (wo. left,
             VS. new LLKVXO; From Start till "exchactmin()" or pq. Repect.
          Map.insert(k, vs.insert(v)): d, P, k: arrays of size IVI init to co, nou, false. W. right = add parents (wa. right, w)
                                                                                           return W
                                   9: New Pg. d[s]=0. 9. insert (S.O).
        3
                                   While (9 is not empty) { V=9. delete min ();
        delete (K) {
                                      if (! K[v]) { K[v] = true, for each adjacent v' to v?
           LISTKU> US = Map. Rodup(L)
                                        if (!k[v] and d[v] >d[v] + c(v,v') &
           V v = VS. head!
                                             d[v']=d[v]+((v.v')
P[v']=v cost(v,v')
           V5 = V3 . tail!
           if (US. EMPEYC)
                                            q.insert(v,d[v])
              map. delete (k)
                                  return (dip)
           MGP. insert (k, vs)
           return V;
```