Proof. The first statement is a direct consequence of Theorem 29.4. If $K = \mathbb{C}$, then every λ_i has a square root μ_i , and if replace e_i by e_i/μ_i , we obtained the desired form.

If $K = \mathbb{R}$, then there are two cases:

- 1. If $\lambda_i > 0$, let μ_i be a positive square root of λ_i and replace e_i by e_i/μ_i .
- 2. If $\lambda_i < 0$, et μ_i be a positive square root of $-\lambda_i$ and replace e_i by e_i/μ_i .

In the nondegenerate case, the matrices corresponding to the complex and the real case are, $I_n, -I_n$, and $I_{p,q}$. Observe that the second statement of Proposition 29.6 holds in any field in which every element has a square root. In the case $K = \mathbb{R}$, we can show that (p,q) only depends on φ .

Definition 29.7. Let $\varphi \colon E \times E \to \mathbb{R}$ be any symmetric real bilinear form. For any subspace U of E, we say that φ is positive definite on U iff $\varphi(u,u) > 0$ for all nonzero $u \in U$, and we say that φ is negative definite on U iff $\varphi(u,u) < 0$ for all nonzero $u \in U$. Then, let

$$r = \max\{\dim(U) \mid U \subseteq E, \varphi \text{ is positive definite on } U\}$$

and let

$$s = \max\{\dim(U) \mid U \subseteq E, \varphi \text{ is negative definite on } U\}$$

Proposition 29.7. (Sylvester's inertia law) Given any symmetric bilinear form $\varphi \colon E \times E \to \mathbb{R}$ with $\dim(E) = n$, for any basis (e_1, \ldots, e_n) of E such that

$$\Phi\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{p} x_i^2 - \sum_{i=p+1}^{p+q} x_i^2,$$

with $0 \le p, q$ and $p + q \le n$, the integers p, q depend only on φ ; in fact, p = r and q = s, with r and s as defined above.

Proof. If we let U be the subspace spanned by (e_1, \ldots, e_p) , then φ is positive definite on U, so $r \geq p$. Similarly, if we let V be the subspace spanned by $(e_{p+1}, \ldots, e_{p+q})$, then φ is negative definite on V, so $s \geq q$.

Next, if W_1 is any subspace of maximum dimension such that φ is positive definite on W_1 , and if we let V' be the subspace spanned by (e_{p+1},\ldots,e_n) , then $\varphi(u,u)\leq 0$ on V', so $W_1\cap V'=(0)$, which implies that $\dim(W_1)+\dim(V')\leq n$, and thus, $r+n-p\leq n$; that is, $r\leq p$. Similarly, if W_2 is any subspace of maximum dimension such that φ is negative definite on W_2 , and if we let U' be the subspace spanned by $(e_1,\ldots,e_p,e_{p+q+1},\ldots,e_n)$, then $\varphi(u,u)\geq 0$ on U', so $W_2\cap U'=(0)$, which implies that $s+n-q\leq n$; that is, $s\leq q$. Therefore, p=r and q=s, as claimed

These last two results can be generalized to ordered fields. For example, see Snapper and Troyer [162], Artin [6], and Bourbaki [24].