Complexity Analysis

Data Structures and Algorithms in Java

Adam Drozdek

Computational and Asymptotic Complexity

- To evaluate an algorithm's efficiency, real-time units such as microseconds and nanoseconds should not be used.
- Rather, it should be logical units between the size of n of a file or an array and the amount of time t required to process the data.

Asymptotic Complexity

- A measure of efficiency
- Used when disregarding certain terms of a function to express the efficiency of an algorithm or when calculating a function is difficult or impossible and only approximations can be found.

Big - O Notation

- Introduced in 1894 by Paul Bachman.
- Given two positive valued functions f and g, consider the following definitions:
 - f(n) is O(g(n)) if there exist positive numbers c and N_o such that f(n) ≤ cg(n) for all n ≥ N_o

Growth Rate of $f(n) = n^2 + 100n + log_{10}n + 1,000$

n	f(n)	n^2	100n	log10n	1000
1	1,101	1	100	0	1000
10	2,101	100	4.76	1	1000
100	21,002	10,000	10,000	2	1000
1000	1,101,003	1,000,000	100,000	3	1,000
10,000	101,001,004	100,000,000	1,000,000	4	1,000
100,000	10,010,001,005	10,000,000,000	10,000,000,000	5	1,000

Logarithmic Form

Logarithmic Form	Exponential Form
$Log_2 16 = 4$	$4^2 = 16$
$\log_{7} 1 = 0$	7 ⁰ = 1
$Log_5 5 = 1$	$5^1 = 5$
Log ₄ ¼ = -1	$4^{-1} = \frac{1}{4}$
$Log_{10} 0.01 = log10 1/100 = -2$	$10^{-2} = 0.01$

Properties of Big – O Notation

• Fact 1:

If f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is
 O(h(n))

• Fact 2:

— If f(n) is O(h(n)) and g(n) is O(h(n)), then f(n) + g(n) is O(h(n))

Properties of Big – O Notation

- Fact 3:
 - The function an^k is O(n^k)
- Fact 4:
 - The function n^k is $O(n^{k+j})$ for any positive j.
- Fact 5:
 - If f(n) = cg(n), then f(n) is O(g(n))
- Fact 6:
 - The function $log_a n$ is $O(log_b n)$ for any positive numbers a and b $\neq 1$

Properties of Big – O Notation

- Fact 7:
 - Log_an is O(1_gn) for any positive a \neq 1, where 1_gn = log₂n

Ω (big omega) and θ (theta) Notation

- The function f(n) is Ω(g(n) if there exist
 positive numbers c and N such that f(n) ≥ cg(n)
 for al n ≥ N.
- F(n) is $\theta(g(n))$ if there exist positive numbers c_1, c_2 and N such that $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge N$

Prove:

- $4n^3 + 4n^2 + 6n + 4$ is $O(n^3)$
- 6n + 5 is O(n)
- 2n + 3 is $O(n^2)$
- $3n^2 + 6n + 1$ is O(n)

Programming Assignment: