МГТУ	Дисциплина «Безопасность Жизнедеятельности»	Группа	ИУ7-75Б
им. Н.Э.Баумана	Отчёт к дистанционной расчётной работе	Студент	Овчинникова А. П.
НУК Э	«Исследование защитного заземления в электроустановках напряжением до 1 кВ»		
Кафедра Э9	Задание № 1	Вариант	15

Вариант	15				
Исходные данные			Результат	ты расчётов	
R3, Ом	Uф, В	R и, Ом	Із, А	Uк, B	Uк без заземления, B
4	240	20000	0.036	0.144	240

Расчётные формулы:
$$I_3 = \frac{U_{\phi}}{(R_3 + R_{\text{H}}/_3)} = \frac{240}{(4 + 20000/_3)} = 0.036$$
 (1)
$$U_{\text{K}} = \frac{U_{\phi}R_3}{(R_3 + R_{\text{H}}/_3)} = \frac{240 \cdot 4}{(4 + 20000/_3)} = 0.144$$
 (2)

$$U_{K} = \frac{U_{\phi}R_{3}}{(R_{c} + R_{M/c})} = \frac{240 \cdot 4}{(4 + 20000/2)} = 0.144 \tag{2}$$

При отсутствии защитного заземления в формуле (2) принимается $R_{\scriptscriptstyle 3}=\infty$, при этом $U_{\scriptscriptstyle K}=U_{\scriptscriptstyle \Phi}=$ 240B.

Схема рассматриваемой электросети:

Выводы:

Прикосновение человека к корпусу электропотребителя в случае замыкания на него фазного провода при отсутствии заземления является опасным. Ожидаемое максимальное напряжение прикосновения $U_{\rm np} = U_{\rm \kappa} = 240~{
m B}.$ Защитное заземление значительно снижает напряжение фазных проводов сети относительно земли.

МГТУ	Дисциплина «Безопасность Жизнедеятельности»	Группа	ИУ7-75Б
им. Н.Э.Баумана	Отчёт к дистанционной расчётной работе	Студент	Овчинникова А. П.
НУК Э	«Исследование защитного заземления в электроустановках напряжением до 1 кВ»		
Кафедра Э9	Задание № 2	Вариант	15

Вариант	15									
Исходные	R31	, Ом	R32, 0	Ом	R33, O	R33, OM R34, OM		Uф, В	Rи, Ом	
данные	-	1	4		10		100		240	20000
Результаты	I31, A	Uк1, B	I32, A	Uк2, В	I33, A	Uк3, В	I34, A	Uк4, В		
расчётов	0.035995	0.035995	.035979	0.144	0.035946	0.36	0.035468	3.55		

Расчётные формулы (1) и (2):
$$I_{31} = \frac{240}{1 + \frac{20000}{3}} = 0.035995 \qquad U_{\text{K1}} = \frac{240 \cdot 1}{(1 + \frac{20000}{3})} = 0.035995$$

$$I_{32} = \frac{240}{4 + \frac{20000}{3}} = 0.035979 \qquad U_{\text{K2}} = \frac{240 \cdot 4}{(4 + \frac{20000}{3})} = 0.144$$

$$I_{33} = \frac{240}{10 + \frac{20000}{3}} = 0.035946 \qquad U_{\text{K3}} = \frac{240 \cdot 10}{(10 + \frac{20000}{3})} = 0.36$$

$$I_{34} = \frac{240}{100 + \frac{20000}{3}} = 0.035468 \qquad U_{\text{K4}} = \frac{240 \cdot 100}{(100 + \frac{20000}{3})} = 3.55$$

Зависимость U_{κ} от R_3 :

Выводы:

Применение защитного заземления в сети с изолированной нейтралью обеспечивает снижение напряжения на заземленных корпусах энергопотребителей, поэтому уменьшается напряжение прикосновения. В сетях с изолированной нейтралью при нормальном режим работы опасность для человека при прямом однофазном прикосновении зависит от сопротивления изоляции и емкости фазных проводов относительно земли. С увеличением сопротивления изоляции и уменьшении фазных проводов относительно земли опасность уменьшается. При увеличении сопротивления заземляющего устройства напряжение на корпусе энергопотребителя увеличивается, а значит увеличивается и опасность поражения током. Напряжение прикосновения с увеличением расстояния уменьшается, а при значительном удалении от заземлителя падает до нуля.

МГТУ им. Н.Э.Баумана	Дисциплина «Безопасность Жизнедеятельности»	Группа	ИУ7-75Б
	Отчёт к дистанционной расчётной работе	Студент	Овчинникова А. П.
НУК Э	«Исследование защитного заземления в электроустановках напряжением до 1 кВ»		
Кафедра Э9	Задание № 3	Вариант	15

Вариант	15					
Исходные данные	R31, Ом	Uф, В	Rз21, Ом	Rз22, Ом	R323, Ом	
	4	240	1	4	10	
Результаты	Uл	т, В	I31, A	I32, A	I33, A	
расчётов	415	5,69	83,138	51,96	29,69	

Расчётные формулы:

$$U_{\pi} = \sqrt{3}U_{\Phi} = 415,69$$

$$U_{\pi} = \sqrt{3}U_{\phi} = 415,69$$

$$I_{3} = \frac{U_{\pi}}{R_{31} + R_{32}} \qquad I_{31} = \frac{415,69}{4+1} = 83,138 \qquad I_{32} = \frac{415,69}{4+4} = 51,96 \qquad I_{33} = \frac{415,69}{4+10} = 29,69$$

$$I_{32} = \frac{415,69}{4+4} = 51,96$$

$$I_{33} = \frac{415,69}{4+10} = 29,69$$

Схема рассматриваемой электросети:

Выводы:

Сила тока, стекающая в землю через заземлитель с увеличением сопротивления заземления уменьшается. Косвенное прикосновение в случае двойного замыкания фаз на заземленные корпуса тем опаснее, чем выше сопротивление заземления.

Перегрузка одной из фаз в трехфазной сети с изолированной нейтралью нередко может привести к замыканию ее на корпус из-за перегрева. И если в этот момент на подстанции не сработала автоматическая защита, то остальные две фазы оказываются перегруженными, что ведет к значительному увеличению тока в их цепях. При этом возникает вероятность и еще одного замыкания, что приводит к так называемому двойному замыканию на землю. Двойное замыкание на землю создает серьезную опасность для людей. Следовательно, любая сеть с наличием в ней однофазного замыкания должна рассматриваться как находящаяся в аварийном состоянии, так как общие условия безопасности при таком состоянии сети резко ухудшаются.

МГТУ им. Н.Э.Баумана	Дисциплина «Безопасность Жизнедеятельности»	Группа	ИУ7-75Б
	Отчёт к дистанционной расчётной работе	Студент	Овчинникова А. П.
НУК Э	«Исследование защитного заземления в электроустановках напряжением до 1 кВ»		
Кафедра Э9	Задание № 4	Вариант	15

Вариант	15					
	Исходные данные Результаты расчётов				В	
R3, Ом	Uф, В	R0, Ом	Iз, A Uк, B U0, B			
4	240	4	30	120	120	

Расчётные формулы:
$$I_3 = \frac{U_{\varphi}}{R_3 + R_0} = \frac{240}{4 + 4} = 30$$

$$U_{\kappa} = U_3 = I_3 \cdot R_3 = \frac{U_{\varphi} \cdot R_3}{R_3 + R_0} = 30 \cdot 4 = \frac{240 \cdot 4}{4 + 4} = 120$$

$$U_0 = I_3 \cdot R_0 = \frac{U_{\varphi} \cdot R_0}{R_3 + R_0} = 30 \cdot 4 = \frac{240 \cdot 4}{4 + 4} = 120$$

Схема рассматриваемой электросети:

Выводы:

При $R_3 = R_0$ $U_K = U_0$. Такое напряжение корпусов, присоединенных к данному заземляющему устройству, а также РЕ-проводника и соединенных с ним (зануленных) корпусов электропотребителей опасно в отношении поражения током. В сетях с заземленной нейтралью напряжением до 1 кВ защитное заземление в качестве основной защиты от поражения электрическим током при косвенном прикосновении не применяется, так как оно не эффективно.