TECHNICAL SPECIFICATION

Model Number: QYEG0584RWF686F0

Description : Screen Size :5.84"

Color:Black, White and Red Display Resolution:768*256

DALIAN QIYUN DISPLAY CO.,LTD.

Specification for 5.84 inch EPD

Model NO.: QYEG0584RWF686F0

QY's Confirmation:

Prepared by	Checked by	Approved by

Customer approval:

Customer	Approved by	Date

Revision History

Version	Content	Date	Producer
1.0	New release	2019/12/10	
1.1	Update storage condition for temperature and Humidity	2020/5/8	

CONTENTS

1.Over View	6
2. Features.	6
3. Mechanical Specification	6
4.Mechanical Drawing of EPD Module.	7
5. Input/output Pin Assignment	8
6. Electrical Characteristics.	9
6.1 Absolute Maximum Rating	9
6.2 Panel DC Characteristics.	10
6.3 Panel AC Characteristics	11
6.3.1 MCU Interface Selection.	11
6.3.2 MCU Serial Interface (4-wire SPI)	11
6.3.3 MCU Serial Interface (3-wire SPI)	12
6.3.4 Interface Timing.	12
7.Command Table	14
8. Optical Specification	34
9. Handling, Safety, and Environment Requirements	34
10. Reliability Test	35
11. Typical Application Circuit with SPI Interface	36
12 Typical Operating Sequence	37

12.1 LUT from OTP Operation Flow	37
12.2 LUT from OTP Operation Reference Program Code	38
13. Part Number Definition	40
14. Inspection condition	39
14.1 Environment.	39
14.2 Illuminance	39
14.3 Inspect method.	39
14.4 Display area	40
14.5 Inspection standard	40
14.5.1 Electric inspection standard	40
14.5.2 Appearance inspection standard	41
15.Packaging	44

1. Over View

The display is a TFT active matrix electrophoretic display, with interface and a reference system design. The 5.84inch active area contains 768×256 pixels, and has 1-bit white/black 1-bit red full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

2. Features

- ◆ 768×256 pixels display
- ♦ High contrast
- ◆ High reflectance
- ◆ Ultra wide viewing angle
- ◆ Ultra low power consumption
- ◆ Pure reflective mode
- ♦ Bi-stable display
- ◆ Commercial temperature range
- ◆ Hard-coat antiglare display surface
- ◆ Ultra Low current deep sleep mode
- ◆ On chip display RAM
- ◆ Waveform can stored in On-chip OTP or written by MCU
- ◆ Serial peripheral interface available
- ♦ On-chip oscillator
- ◆ On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- ◆ I C signal master interface to read external temperature sensor
- ◆ Built-in temperature sensor

3. Mechanical Specification

Parameter	Specifications	Unit	Remark
Screen Size	5.84	Inch	
Display Resolution	768(H)×256V)	Pixel	DPI:138
Active Area	140.70×46.90	mm	
Pixel Pitch	0.1832×0.1832	mm	
Pixel Configuration	Rectangle		
Outline Dimension	147.6(H)×59.58 (V) ×1.20(D)	mm	
Weight	20.6±0.5	g	

4.Mechanical Drawing of EPD Module

5. Input/output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	О	I2C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I2C Interface to digital temperature sensor Data pin	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I/O	Serial Data pin (SPI)	
15	VDDIO	Р	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	Keep Open
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	C	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	C	VCOM driving voltage	

- I = Input Pin, O = Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin
- Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.
- Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.
- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin is Busy state output pin. When Busy is Low, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin Low when -Outputting display waveform -Communicating with digital temperature sensor.

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface			
L	4-lines serial peripheral interface(SPI) - 8 bits SPI			
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI			

6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.3 to +6.0	V
Logic Input voltage	VIN	-0.3 to TBD	V
Operating Temp range	TOPR	0 to+40	°C.
Storage Temp range	TSTG	-25 to +40	°C.
Optimal Storage Temp	TSTGo	23±3	°C.
Optimal Storage Humidity	HSTGo	55±10	%RH

Note:

1.Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.3V, TOPR =23°C.

Parameter	Symbol	Condition	Applicab le pin	Min.	Тур.	Max.	Unit
Single ground	Vss	-		-	0	-	V
Logic supply voltage	Vci	-	VCI	2.3	3.3	3.6	V
Digital/Analog supply voltage	V _{DD}		VDD	2.3	3.3	3.6	V
High level input voltage	Vih	-	-	0.7 VCI	-	-	V
Low level input voltage	VIL	-	-	GND	-	0.3VDD	V
High level output voltage	Voh	IOH = 400uA	-	VCI -0.4	-	-	V
Low level output voltage	Vol	IOL =- 400uA	-	-	-	GND +0.4	V
Typical power	PTYP		-	-	29.7	-	mW
Deep sleep mode	PSTPY		-	-		0.003	mW
Typical operating current	Iopr_VCI		-	-	9	-	mA
Image update time	-	23 °C	-	-	15	-	sec
Sleep mode current	Islp_V _{CI}	DC/DC off No clock No input load Ram data retain	-	-	20	-	uA
Deep sleep mode current	Idslp_Vci	DC/DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes: 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by QY.

6.3 Panel AC Characteristics

6.3.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-3-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Comm	and Interface		Control Signa	l
Bus interface	SDA	SCL	CS#	D/C#	RES#
BS1=L 4-wire SPI	SDA	SCL	CS#	D/C#	RES#
BS1=H 3-wire SPI	SDA	SCL	CS#	L	RES#

Table 6-3-1: MCU interface assignment under different bus interface mode

6.3.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D/C#	SCL
Write command	L	L	↑
Write data	L	Н	1

Table 6-3-2: Control pins of 4-wire Serial Peripheral interface

Note: \(\) stands for rising edge of signal

Figure 6-3-1: 4-wire SPI mode

6.3.3 MCU Serial Interface (3-wire SPI)

Function	CS#	D/C#	SCL
Write command	L	Tie	↑
Write data	L	Tie	<u> </u>

Table 6-3-3: Control pins of 4-wire Serial Peripheral interface Note:

↑ stands for rising edge of signal

Figure 6-3-2: 3-wire SPI mode

6.3.4 Interface Timing

Serial Interface Timing Characteristics

Symbol	Signal	Parameter	Min	Тур	Max	Unit
Tess		Chip Select Setup Time	100	-	-	ns
Tesh		Chip Select Hold Time	100	-	-	ns
Tscc	CSB	Chip Select Setup Time	50	-	-	ns
Tchw		Chip Select Setup Time	500	-	-	ns
Tscycw		Serial clock cycle (write)	100	-	-	ns
Tshw		SCL "H" pulse width (write)	35	-	-	ns
Tslw		SCL"L" pulse width (write)	35	-	-	ns
Tscycr	SCL	Serial clock cycle (Read)	200	-	-	ns
Tshr		SCL "H" pulse width (Read)	85	-	-	ns
Tslr		SCL "L" pulse width (Read)	85	-	-	ns
Tsds		Data setup time	30	-	-	ns
Tsdh		Data hold time	30	-	-	ns
Тасс	SDA	Access time	10	-	-	ns
Toh		Output disable time	15	_	_	ns

7. Command Table

#	Command	W/R	C/D	D 7	D6	D5	D4	D3	D2	D1	D0	Default
1	Danel Setting (DSD)	W	0	0	0	0	0	0	0	0	0	00h
1	Panel Setting (PSR)	W	1	RES[1]	RES[0]	REG-EN	BWR	UD	SHL	SHD-N	RST-N	8Fh
		W	0	0	0	0	0	0	0	0	1	01H
		W	1	-	-	-	-	-	-	VDS_EN	VDG_E N	03h
2	Power Setting (PWR)	W	1			-	-	VCOM_ HV	VGHL_L V [2]	VGHL_L V[1]	VGHL_L V [0]	00h
		W	1			VSH [5]	VSH [4]	VSH [3]	VSH [2]	VSH [1]	VSH [0]	3Fh
		W	1			VSL [5]	VSL [4]	VSL [3]	VSL [2]	VSL [1]	VSL [0]	3bh
		W	1		VSHR [6]	VSHR [5]	VSHR [4]	VSHR [3]	VSHR [2]	VSHR [1]	VSHR [0]	0Fh
3	Power OFF (POF)	W	0	0	0	0	0	0	0	1	0	02H
4	Power OFF Sequence	W	0	0	0	0	0	0	0	1	1	03H
4	Setting(PFS)	W	1	-	-	T_VDS_ OFF[1]	T_VDS_ OFF[0]					00h
5	Power ON (PON)	W	0	0	0	0	0	0	1	0	0	04H
6	Power ON Measure Command	W	0	0	0	0	0	0	1	0	1	05H
		W	0	0	0	0	0	0	1	1	0	06H
_		W	1	7	6	BT_PHA 5	4	3		1	_0	17h
7	Booster Soft Start (BTST)	W	1	BT_PHB 7	BT_PHB 6	BT_PHB 5	4	3		1	_0	17h
		W	1	-	-	BT_PHC 5	BT_PHC 4	BT_PHC 3	BT_PHC 2	BT_PHC 1	BT_PHC 0	17h
8	Deep Sleep(DSLP)	W	0	0	0	0	0	0	1	1	1	07H
	Deep oleep(DoEi)	W	1	1	0	1	0	0	1	0	1	A5h
9	Data Start Transmission 1	W	0	0	0	0	1	0	0	0	0	10H
	(DTM1)	W	1	#	#	#	#	#	#	#	#	00H
10	Data Stop (DSP)	W	0	0	0	0	1	0	0	0	1	11H
	2 a.a. e.ap (2 e.)	R	1	Data_flag	-	-	-	-	-	-	-	
11	Display Refresh (DRF)	0	0	0	0	0	1	0	0	1	0	12h
12	Data Start transmission	W	0	0	0	0	1	0	0	1	1	13H
	2(DTM2)	W	1	#	#	#	#	#	#	#	#	00h
13	Partial Data Start	W	0	0	0	0	1	0	1	0	0	14H
	transmission1 (PDTM1)	W	1	#	#	#	#	#	#	#	#	00h
14	Partial Data Start	W	0	0	0	0	1	0	1	0	1	15H
11	transmission 2 (PDTM2)	W	1	#	#	#	#	#	#	#	#	00h
15	Partial Display Refresh(PDRF)	W	0	0 #	0 #	0 #	1 #	0 #	1 #	1 #	0 #	16H 00h
		W	0	0	0	1	0	0	0	0	0	20H
16	LUT for VCOM (LUT1)	W	1	#	#	#	#	#	#	#	#	00h
	White to White LUT	W	0	0	0	1	0	0	0	0	1	21H
17	(LUTWW)	W	1	#	#	#	#	#	#	#	#	00h
18	Black to White LUT	W	0	0	0	1	0	0	0	1	0	22H

	(LUTBW/LUTR)	W	1	#	#	#	#	#	#	#	#	00h
19	White to Black LUT	W	0	0	0	1	0	0	0	1	1	23H
	(LUTWB/LUTW)	W	1	#	#	#	#	#	#	#	#	00h
20	Black to Black LUT	W	0	0	0	1	0	0	1	0	0	24H
	(LUTBB/LUTB)	W	1	#	#	#	#	#	#	#	#	00h
		W	0	0	0	1	0	0	1	0	1	25H
		W	1							XON	[9:8]	00h
21	LUTC option	W	1				XON	[7:0]		•		00h
		W	1							ST_CH	IV [9:8]	00h
		W	1				ST_CH	IV [7:0]				00h
		W	0	0	0	1	0	0	1	1	0	26H
22	Set Vcom/Red states	W	1	0	0			vcom_stg	g_sel[1:0]	b2w_stg	_sel[1:0]	00h
		W	0	0	0	1	1	0	0	0	0	30H
23	OSC control (OSC)	W	1				M[2:0]			N[2:0]	'	3Ah
	,	W	0	0	1	0	0	0	0	0	0	40H
	Temperature Sensor Command (TSC)	R	1	D10/T S [7]	D9/TS[6]	D8/TS[5]	D7/TS[4]	D6/TS[3]	D5/TS[2]	D4/TS[1]	D3/TS[0]	
		R	1	D2	D1	D0	-	-	-	-	-	
25	Temperature Sensor	W	0	0	1	0	0	0	0	0	1	41H
	Calibration(TSE)	W	1	TSE	-	-	-	TO[3]	TO[2]	TO[1]	TO0]	00h
		W	0	0	1	0	0	0	0	1	0	42H
26	Temperature Sensor Write	W	1	WATTR [7]	WATTR [6]	WATTR [5]	WATTR [4]	WATTR [3]	WATTR [2]	WATTR [1]	WATTR [0]	00h
26	(TSW)	W	1	WMSB [7]	WMSB [6]	WMSB [5]	WMSB [4]	WMSB [3]	WMSB [2]	WMSB [1]	WMSB [0]	00h
		W	1	WLSB[7]	WLSB[6]	WLSB[5]	WLSB[4]	WLSB[3]	WLSB[2]	WLSB[1]	WLSB[0]	00h
	_	W	0	0	1	0	0	0	0	1	1	43H
27	Temperature Sensor Read (TSR)	R	1	RMSB[7]	RMSB[6]	RMSB[5]	RMSB[4]	RMSB[3]	RMSB[2]	RMSB[1]	RMSB[0]	-
	(1.5.1)	R	1	RLSB[7]	RLSB[6]	RLSB[5]	RLSB[4]	RLSB[3]	RLSB[2]	RLSB[1]	RLSB[0]	-
20	Vcom and data interval	W	0	0	1	0	1	0	0	0	0	50H
28	setting(CDI)	W	1	VBD[1]	VBD[0]	DDX[1]	DDX[0]	CDI[3]	CDI[2]	CDI[1]	CDI[0]	D7h
20	Lower Power Detection	W	0	0	1	0	1	0	0	0	1	51H
29	(LPD)	R	1	-	-	-	-	-	-	-	LPD	-
20	TCON soffing (TCON)	W	0	0	1	1	0	0	0	0	0	60H
30	TCON setting (TCON)	W	1	S2G[3]	S2G[2]	S2G[1]-	S2G[0]	G2S[3]	G2S[2]	G2S[1]	G2S[0]	22h
		W	0	0	1	1	0	0	0	0	1	61H
2.1	TOON recolution (TDEO)	W	1	HRES(7)	HRES(6)	HRES(5)	HRES(4)	HRES(3)	-	-	-	00h
31	TCON resolution (TRES)	W	1	-	-	-	-	-	-	-	VRES(8)	00h
		W	1	VRES(7)	VRES(6)	VRES(5)	VRES(4)	VRES(3)	VRES(2)	VRES(1)	VRES(0)	00h
		W	0	0	1	1	0	0	0	1	0	62H
32	Source & gate start setting	W	1	S_start (7)	S_start (6)	S_start (5)	S_start (4)	S_start (3)	-	-	-	00h

		W	1				gscan				G_start [8]	00h
		W	1	G_start (7)	G_star t (6)	G_start (6)	G_start (4)	G_start (3)	G_start (2)	G_start (1)	G_start (0)	00h
		W	0	0	1	1	1	0	0	0	0	70H
33	Revision (REV)	R	1	REV[7]	REV[6]	REV[5]	REV[4]	REV[3]	REV[2]	REV[1]	REV[0]	-
		R	1	REV[15]	REV[14]	REV[13]	REV[12]	REV[11]	REV10]	REV[09]	REV[08]	-
	0 (0) (5)	W	0	0	1	1	1	0	0	0	1	71H
34	Get Status(FLG)	R	1	-	PTL_flag	I2C_ERR	I ² C_ BUSYN	Data_flag	PON	POF	BUSY_N	-
35	Auto Measurement Vcom	W	0	1	0	0	0	0	0	0	0	80 H
	(AMV)	W	1	-	-	AMVT [1]	AMVT [0]	XON	AMVS	AMV	AMVE	10h
36	Read Vcom Value(VV)	W	0	1	0	0	0	0	0	0	1	81H
50	rtead veolii valde(vv)	R	1	-	-	VV[5]	VV[4]	VV[3]	VV[2]	VV[1]	VV[0]	-
2.5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W	0	1	0	0	0	0	0	1	0	82H
37	VCM_DC Setting (VDCS)	W	1	-	-	VCDS[5]	VCDS [4]	VCDS [3]	VCDS [2]	VCDS [1]	VCDS [0]	1Fh
38	Program Mode (PGM)	W	0	1	0	1	0	0	0	0	0	A0H
	1 Togram Mode (1 GM)	W	1	1	0	1	0	0	1	0	1	A5h
39	Active program(APG)	W	0	1	0	1	0	0	0	0	1	A1H
40	Read OTP Data (ROTP)	W	0	1	0	1	0	0	0	1	0	A2H
	, ,	R	1	#	#	#	#	#	#	#	#	-
41	Force Temperature	W	0	1	1	1	0	0	1	0	1	E5H
	r eree remperature	W	1	TS_SET [7]	TS_SET [6]	TS_SET [5]	TS_SET [4]	TS_SET [3]	TS_SET [2]	TS_SET [1]	TS_SET [0]	00h
42	LVD voltage Select	W	0	1	1	1	0	0	1	1	0	Е6Н
42	LVD Voltage Select	W	1	-	-	-	-	-	-	LVD_SE L[1]	LVD_SE L[0]	11h
42	Danal Brank Charle	W	0	1	1	1	0	0	1	1	1	E7H
43	Panel Break Check	R	1	-	-	-		-	-	-	PSTA	-
44	Power saving	W	0	1	1	1	0	1	0	0	0	E8H
	1 ower saving	W	1	VCOM_ W[3]	VCOM_ W[2]	VCOM_ W[1]	VCOM_ W[0]	SD_W[3]	SD_W[2]	SD_W[1]	SD_W[0]	00h
45	AUTO sequence	W	0	1	1	1	0	1	0	0	1	Е9Н
	7.2.2.3940000	W	1	1	0	1	0	0	1	0	1	00h
46	OTP LUT backup1 program	W	0	1	1	1	0	1	0	1	1	EBH
47	Read OTP LUT backup1	W	0	1	1	1	0	1	1	0	0	ECH
		R	1	#	#	#	#	#	#	#	#	
48	OTP LUT backup2 program	W	0	1	1	1	0	1	1	0	1	EDH

		R	1	#	#	#	#	#	#	#	#	
49	Read OTP LUT backup2	W	0	1	1	1	0	1	1	1	0	EEH
50	Checksum Program to OTP	W	0	1	1	1	0	1	1	1	1	EFH
		W	0	1	1	1	1	0	0	0	0	F0H
51	Remap LUT	W	1	-	-	-		rmp2_tab le sel[3]			rmp2_tab le_sel[0]	1Fh
		W	1	-	-	-		rmp1_tab	rmp1_tab		rmp1_tab	1Fh
52	Cot OTD are surers	W	0	1	1	1	1	0	0	0	1	F1H
52	Set OTP program	W	1	-	-	-	-	-	-	LUT_ban k	reg_bank	03h
52	Dood shockeyes	W	0	1	1	1	1	0	0	1	0	F2H
53	Read checksum	R	1	#	#	#	#	#	#	#	#	00h
54	Calculate Checksum	W	0	1	1	1	1	0	0	1	1	F3H

COMMAND DESCRIPTION

W/R: 0: Write Cycle / 1: Read Cycle C/D: 0: Command / 1: Data D7-D0: -: Don't Care

1) Panel Setting (PSR) (R00H)

R00H						Bit				
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
PSR	W	0	0	0	0	0	0	0	0	0
1st Parameter	W	1	RES[1]	RES[0]	REG_EN	BWR	UD	SHL	SHD_N	RST_N

The command defines as:

Bit	Name	Description
0	RST_N	RST_N function 1 : no effect. (default) 0: Booster OFF, Register data are set to their default values, and SEG/BG/VCOM:floating
1	SHD_N	SHD_N function 0 : Booster OFF, register data are kept, and SEG/BG/VCOM are kept floating. 1 : Booster on. (default)
2	SHL	SHL function 0: Shift left; First data=Sn →Sn-1 →→S2 →Last data=S1. 1: Shift right: First data=S1→ S2 →→Sn-1 → Last data=Sn. (default)
3	UD	UD function 0:Scan down; First line=Gn→Gn-1 →→ G2 → Last line=G1. 1:Scan up; First line=G1 →G2 →→Gn-1 →Last line=Gn. (default)
4	BWR	Color selection setting 0: Pixel with B/W/Red. Run both LU1 and LU2. (default) 1: Pixel with B/W. Run LU1 only
5	REG_EN	LUT selection setting 0 : Using LUT from OTP(default) 1 : Using LUT from register
7-6	RES[1,0]	Resolution setting 00: Display resolution is 600x448 01: Display resolution is 640x480 10: Display resolution is 720x540 11: Display resolution is 800x600 (default)

Notes

- 1. When SHD_N become low, DCDC will turn off. Register and SRAM data will keep until VDD turn off. SD output and VCOM will base on previous condition and keep floating.
- 2. When RST_N become low, driver will reset. All register will reset to default value. All of the driver's functions will disable. SD output and VCOM will base on previous condition and keep floating.

2) Power setting Register (PWR) (R01H)

R01H						Bit				
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
PWR	W	0	0	0	0	0	0	0	0	1
1st Parameter	W	1	-	-	-	-	-	1	VDS_EN	VDG_EN
2 _{nd} Parameter	W	1	-	-	-	-	VCOM_HV	VGHL_LV [2]	VGHL_L V [1]	VGHL_L V [0]
3 _{rd} Parameter	W	1	-	-	VSH [5]	VSH [4]	VSH [3]	VSH [2]	VSH [1]	VSH [0]
4 _{th} Parameter	W	1	-	-	VSL [5]	VSL [4]	VSL [3]	VSL [2]	VSL [1]	VSL [0]
5th Parameter	W	1	-	VSHR [6]	VSHR [5]	VSHR [4]	VSHR [3]	VSHR [2]	VSHR [1]	VSHR [0]

The command defines as:

1st Parameter:

Bit	Name	Description
0	VDG_EN	Gate power selection. 0 : External VDNS power from VGH/VGL pins. (VDNG_EN open) 1 : Internal DCDC function for generate VGH/VGL. (default)
1	VDS_EN	Source power selection. 0 : External source power from VSH/VSL pins. 1 : Internal DC/DC function for generate VSH/VSL. (default)

2nd Parameter:

Bit	Name	Description
2-0	VGHL_LV	VGHL_LV Voltage Level. 000: VGH=20 v, VGL=-20v (default) 001: VGH=19 v, VGL=-19v 010: VGH=18 v, VGL=-18v 011: VGH=17 v, VGL=-17v 100: VGH=16 v, VGL=-16v 101: VGH=15 v, VGL=-15v 110: VGH=14 v, VGL=-14v 111: VGH=13 v, VGL=-13v
3	VCOM_HV	VCOM Voltage Level 0: VCOMH=VSH+VCOMDC,VCOML=VSL+VCOMDC(default) 1: VCOMH=VGH, VCOML=VGL

3rd Parameter: Internal VSH power selection for B/W LUT. (Default value: 111111b)

Bit	Name	Description
5-0	VSH	Internal VSH power selection. 000000: 2.4 v 000001: 2.8 v 000010: 2.8 v 000011: 3.0 v
		010111: 7.0V 011000: 7.2 V 011001: 7.4 V
		111010: 14.0V 111011: 14.2 V
		111100: 14.4V 111101: 14.6V 111110: 14.8V 111111: 15.0V

4th Parameter: Internal VSL power selection for B/W LUT. (Default value: 111111b)

Bit	Name	Description					
5-0	VSL	Internal VSL power selection. 000000: -2.4 v 000001: -2.8 v 000010: -2.8 v 000011: -3.0 v 010111: -7.0V 011000: -7.2 V 011001: -7.4 V 111010: -14.0V 111011: -14.2 V 111100: -14.4 V 111110: -14.8 V 111111: -15.0 V					

5th Parameter: Internal VSHR power selection for Red LUT. (Default value: 00001111b)

Bit	Name	Description	
6-0	VSHR	Internal VSL power selection. 0000000: 2.4 v 0000001: 2.5 v 0000010: 2.6 v 0000011: 2.7 v 0101110: 7.0 V 0101111: 7.1 V 0110000: 7.2 V 1010001: 10.5 V 1010010: 10.6 V 1010010: 10.8 V 1010101: 10.9 V 1010110: 11.9 V	

Notes: VSH>VSHR

3) Power OFF Command (POF)(R02H)

R02H		Bit								
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
POF	W	0	0	0	0	0	0	0	1	0

The command defines as:

After power off command, driver will power off base on power off sequence.

After power off command, BUSY_N signal will drop from high to low. When finish the power off sequence, BUSY_N signal will rise from low to high.

Power off command will turn off charge pump, T-con, source driver, gate driver, VCOM, temperature sensor, but register and SRAM data will keep until VDD off.

SD output and VCOM will keep floating.

4) Power off Sequence Setting Register (PFS)(R03H)

R03H		Bit								
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
PFS	W	0	0	0	0	0	0	0	1	1
1 _{st} Parameter	W	1	-	-	Vsh_off[1]	Vsh_off [0]	Vsl_off[1]	vsl_off[0]	vshr_off[1]	vshr_off[0]

The command defines as:

Bit	Name	Description
1-0	vshr_off	00: 5ms. (default) 01: 10ms 10: 20ms 11: 40ms
3-2	vsl_off	00: 5ms. (default) 01: 10ms 10: 20ms 11: 40ms
5-4	vsh_off	00: 5ms. (default) 01: 10ms 10: 20ms 11: 40ms

5) Power ON Command (PON)(R04H)

R04H		Bit								
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
PON	W	0	0	0	0	0	0	1	0	0

The command defines as:

After power on command, driver will power on base on power on sequence.

After power on command, BUSY_N signal will drop from high to low. When finishing the power off sequence, BUSY_N signal will rise from low to high.

6) Power ON Measure Command(PMES)(R05H)

R05H		Bit								
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
PMES	W	0	0	0	0	0	0	1	0	1

The command defines as:

If user wants to read temperature sensor or detect low power in power off mode, user has to send this command. After power on measure command, driver will switch on relevant commend with Low Power detection (R51H) and temperature measurement. (R40H).

7) Booster Soft Start Command(BTST)(R06H)

R01H		Bit								
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
PWR	W	0	0	0	0	0	0	1	1	0
1 _{st} Parameter	W	1	BT_PHA7	BT_PHA6	BT_PHA5	BT_PHA4	BT_PHA3	BT_PHA2	BT_PHA1	BT_PHA0
2 _{nd} Parameter	W	1	BT_PHB7	BT_PHB6	BT_PHB5	BT_PHB4	BT_PHB3	BT_PHB2	BT_PHB1	BT_PHB0
3rdParameter	W	1	-	-	BT_PHC5	BT_PHC4	BT_PHC3	BT_PHC2	BT_PHC1	BT_PHC0

The command define as follows:

1st Parameter:

Bit	Name	Description
2-0	Driving strength of	000: period1 001: period2 010: period3 011: period4 100: period5 101: period6 110: period7 111: period8
5-3	phase A	000: Strength 1 001: Strength 2 010: Strength 3 (default) 011: Strength 4 100: Strength 5 101: Strength 6 110: Strength 7 111: Strength 8
7-6	Soft start period of phase A	00: 10mS (default) 01: 20mS 10: 30mS 11: 40mS

2nd Parameter:

Bit	Name	Description
2-0	Driving strength of	000: period1 001: period2 010: period3 011: period4 100: period5 110: period6 110: period7 111: period8
5-3	phase B	000: Strength 1 001: Strength 2 010: Strength 3 (default) 011: Strength 4 100: Strength 5 101: Strength 6 110: Strength 7 111: Strength 8
7-6	Soft start period of phase B	00: 10mS (default) 01: 20mS 10: 30mS 11: 40mS

3rd Parameter:

Bit	Name	Description
2-0	Minimum OFF time setting of GDR in phase C	000: period1 001: period2 010: period3 011: period4 100: period5 101: period6 110: period7 111: period8
5-3	Driving strength of phase C	000: Strength 1 001: Strength 2 010: Strength 3 (default) 011: Strength 4 100: Strength 5 101: Strength 6 110: Strength 7 111: Strength 8

8) Deep Sleep (DSLP)(R07H)

R07H		Bit								
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
DSLP	W	0	0	0	0	0	0	1	1	1
1 _{st} Parameter	W	1	1	0	1	0	0	1	0	1

The command define as follows:

After this command is transmitted, the chip would enter the deep-sleep mode to save power.

The deep sleep mode would return to standby by hardware reset.

The only one parameter is a check code, the command would be excited if check code = 0xA5.

9) Data Start transmission 1 Register(DTM1)(R10H)

R10H						Bit				
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
DTM1	W	0	0	0	0	1	0	0	0	0
1st Parameter	W	1	KPixel1	KPixel2	KPixel3	KPixe4	KPixel5	KPixel6	KPixel7	KPixel8
2nd Parameter	W	1								
	W	1								
Mth Parameter	W	1	KPixel(n-	KPixel(n-	KPixel(n-	KPixel(n-4)	KPixel(n-3)	KPixel(n-2)	KPixel(n-1)	KPixel(n)

The command define as follows:

The register is indicates that user start to transmit data, then write to SRAM. While data transmission complete, user must send command 11H. Then chip will start to send data/VCOM for panel.

In B/W mode, this command writes "OLD" data to SRAM.

In B/W/Red mode, this command writes "B/W" data to SRAM.

10) Display Refresh Command(DRF)(R12H)

R12H		Bit								
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
DRF	W	0	0	0	0	1	0	0	1	0

The command defines as:

While users send this command, driver will refresh display (data/VCOM) base on SRAM data and LUT. After display refresh command, BUSY_N signal will become 0.

11) Data Start transmission 2 Register (DTM2)(R13H)

R13H						Bit				
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
DTM2	W	0	0	0	0	1	0	0	1	1
1 _{st} Parameter	W	1	KPixel1	KPixel2	KPixel3	KPixe4	KPixel5	KPixel6	KPixel7	KPixel8
2nd Parameter	W	1								
	W	1								
Mth Parameter	W	1	KPixel(n-	KPixel(n-	KPixel(n-	KPixel(n-4)	KPixel(n-3)	KPixel(n-2)	KPixel(n-1)	KPixel(n)

The command define as follows:

The register is indicates that user start to transmit data, then write to SRAM. While data transmission complete, user must send command 11H. Then chip will start to send data/VCOM for panel.

In B/W mode, this command writes "NEW" data to SRAM.

In B/W/Red mode, this command writes "RED" data to SRAM.

12) LUT for VCOM (LUTC)(R20H)

R20H			/(- /			Bit					
Inst/Para	R/W	D/CX	D7	D7 D6		D4	D3	D2	D1	D0	
LUTC	W	0	0	0	1	0	0	0	0	0	
1 _{st} Parameter	W	1	1st Level	selection	2nd Level	selection	3rd Level	selection	4th	evel	
Istraiameter	VV	1	[1:	0] [1:0]			[1:	:0]	selecti	on[1:0	
2 _{nd} Parameter	W	1		1st Frame number [7:0]							
3 _{rd} Parameter	W	1		2nd Frame number [7:0]							
4thParameter	W	1		3rd Frame number[7:0]							
5thParameter	W	1			,	4th Frame r	number[7:0]]			
6thParameter	W	1				Repeat nui	mbers[7:0]				
7th~13th	W	1				2nd	ctato				
Parameter	VV	1		2nd state							
•••	W	1		3rd ~9th state							
55th ~60h	W 1 10th state										
Parameter	VV	1		10th state							

The command defines as:

This register is set for VCOM LUT.

This command stores VCOM Look-Up Table with 10 states of data. Each group contains information for one state and is stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.

If BWR=0 (BWR mode), User could choose 7~10 groups by R26H(SET_STG)

If BWR=1 (BW mode), only 7 groups are used.

define	description
Level selection [1:0]	00: -VCM_DC
	01: VSH+VCM_DC.
	10: VSL+VCM DC.
	11: Floating.
Frame number [7:0]	00000000 :0 frame
CONTRACTOR OF THE PROPERTY OF	00000001: 1 frame
	11111110: 254 frame
	11111111: 255 frame
Repeat numbers [7:0]	00000000:0
	0000001: 1
	00
	11111110: 254
	11111111: 255

13) White to White LUT Register(LUTWW)(R21H)

13) White to W	nite L	LUI Register(LUI ww)(R21H)								
R21H						Bit				
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
LUTWW	W	0	0	0	1	0	0	0	0	1
1 _{st} Parameter	W	1	1st Level [1:	selection 0]		selection :0]	3rd Level selection [1:0]		4th level selection[1:0	
2nd Parameter	W	1		1st Frame number [7:0]						
3 _{rd} Parameter	W	1		2nd Frame number [7:0]						
4thParameter	W	1		3rd Frame number[7:0]						
5thParameter	W	1		4th Frame number[7:0]						
6thParameter	W	1				Repeat nui	mbers[7:0]			
7th~13th Parameter	W	1		2nd state						
•••	W	1	3rd ~9th state							
55th ~60h Parameter	W	1				10th	state			

The command defines as:

This command stores White-to-White Look-Up Table with 7 groups of data. Each group contains information for one state and is stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.

define	description
Level selection [1:0]	00: GND
	01: VSH
	10: VSL
	11: VSHR
Frame number [7:0]	00000000 :0 frame
A STATE OF THE STA	00000001: 1 frame
	2
	11111110: 254 frame
	11111111: 255 frame
Repeat numbers [7:0]	00000000 : 0 time
	00000001: 1 time
	11111110: 254 times
	11111111: 255 times

14) Black to White LUT or Red LUT Register(LUTBW/LUTR) (R22H)

R22H		Bit								
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
LUTBW/LUTR	W	0	0	0	1	0	0	0	1	0
1 _{st} Parameter	W	1	1st Level	selection	2nd Level	selection	3rd Level	3rd Level selection		evel
1st Parameter	VV	1	[1	[1:0] [1:0]			selection	on[1:0		
2 _{nd} Parameter	W	1		1st Frame number [7:0]						
3 _{rd} Parameter	W	1			2	2nd Frame r	number [7:0)]		
4thParameter	W	1				3rd Frame r	number[7:0]]		
5thParameter	W	1		4th Frame number[7:0]						
6thParameter	W	1		Repeat numbers[7:0]						
7th~13th	W	1		2nd state						

Parameter			
•••	W	1	3rd ∼9th state
55th ~60h Parameter	W	1	10th state

The command defines as:

This command stores White-to-White Look-Up Table with 10 groups of data. Each group contains information for one state and is stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.

define	description					
Level selection [1:0]	00: GND					
	01: VSH					
	10: VSI					
	11: VSHR					
Frame number [7:0]	00000000 :0 frame					
	00000001: 1 frame					
	11111110: 254 frame					
	11111111: 255 frame					
Repeat numbers [7:0]	00000000 : 0 time					
	00000001: 1 time					
	Service and the service of the servi					
	11111110: 254 times					
	11111111: 255 times					

15) White to Black LUT or White LUT Register(LUTWB/LUTW)(R23H)

R23H						Bit				
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
LUTWB/LUTW	W	0	0	0	1	0	0	0	1	1
1 _{st} Parameter	W	1	1st Level	selection	2nd Level	selection	3rd Level	selection	4th	evel
istraidilletei	VV	1	[1:	0]	[1:	:0]	[1:	:0]	selection	on[1:0
2 _{nd} Parameter	W	1		1st Frame number [7:0]						
3rd Parameter	W	1		2nd Frame number [7:0]						
4thParameter	W	1		3rd Frame number[7:0]						
5thParameter	W	1				4th Frame	number[7:0]		
6thParameter	W	1			•	Repeat nu	mbers[7:0]	•	•	•
7th~13th	W	1	·	·	•	2nd	ctato	•	•	•
Parameter	VV			2nd state						
	W	1		3rd ~9th state						
55th ~60h	W	1	10th state							
Parameter vv		1	10th state							

The command defines as:

This command stores White-to-White Look-Up Table with 7 groups of data. Each group contains information for one state and is stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.

define	description					
Level selection [1:0]	00: GND					
3541 5	01: VSH					
	10: VSL					
	11: VSHR					
rame number [7:0]	00000000 :0 frame					
	00000001: 1 frame					
	2					
	11111110: 254 frame					
	11111111: 255 frame					
Repeat numbers [7:0]	00000000 : 0 time					
	00000001: 1 time					
	W III					
	11111110: 254 times					
	11111111: 255 times					

16) Black to Black LUT or Black LUT Register(LUTBB/LUTB)(R24H)

R24H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0			
LUTBB/LUTB	W	0	0	0	1	0	0	1	0	0			
1 _{st} Parameter	W	W 1 1st Level selection [1:0]		2nd Level selection [1:0]			selection :01	4th level selection[1:0					

2 _{nd} Parameter	W	1	1st Frame number [7:0]
3rdParameter	W	1	2nd Frame number [7:0]
4thParameter	W	1	3rd Frame number[7:0]
5thParameter	W	1	4th Frame number[7:0]
6thParameter	W	1	Repeat numbers [7:0]
7th~13th Parameter	W	1	2nd state
•••	W	1	3rd ∼9th state
55th ~60h Parameter	W	1	10th state

The command defines as:

This command stores White-to-White Look-Up Table with 7 groups of data. Each group contains information for one state and is stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.

define	description
Level selection [1:0]	00: GND
	01: VSH
	10: VSL
	11: VSHR
Frame number [7:0]	00000000 :0 frame
A MANAGEMENT AND A STATE OF THE	00000001: 1 frame
	*
	11111110: 254 frame
	11111111: 255 frame
Repeat numbers [7:0]	00000000 : 0 time
-	00000001: 1 time
	AND THE PROPERTY OF THE PROPER
	11111110: 254 times
	11111111: 255 times

17) LUTC option(LUTC Option)(R25H)

R25H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0			
LUTC option	W	0	0	0 1 0 0 1 0									
1st Parameter	W	1		XON [9:8]									
2nd Parameter	W	1				XON	[7:0]						
3 _{rd} Parameter	W	1		VCOM_H [9:8]									
4thParameter	W	1		VCOM_H [7:0]									

The command defines as:

This register is set for VCOM LUT.

XON[9:0]	All Gate ON 0000000000: No all gate on. 0000000001: State1 gate power on 1111111111: State1~10 all gate power on	
VCOM_H[9:0]	Control VCOM Power as High 0000000000: No VCOM High voltage 000000001: State1 VCOM High voltage	

18) Set VCOM/Red States(SET_STG) (R26H)

				(- /									
R26H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0			
SET_STG	W	0	0	0	1	0	0	1	1	0			
1 _{st} Parameter	W	1			-	-	vcom stg	g_sel[1:0]	b2w stg	sel[1:0]			

This command is used to set VCOM/Red LUT states

Function of vcom_stg_sel [1:0]/ b2w_stg_sel[1:0] are shown below

Value	Stages
00	7
01	8
10	9
11	10

Default is set as 7 stages.

19) OSC control Register(OSC)(R30H)

R30H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0			
OSC	W	0	0	0	1	1	0	0	0	0			
1 _{st} Parameter	W	1	-	-	M[2:0] N[2:0]								

The command defines as:

The command controls the OSC clock frequency. The OSC structure must support the following frame rates:

_									200-100-0	_	
M	N	Frame rate	M	N	Frame rate	M	N	Frame rate	M	Ν	Frame rate
	1	29HZ		1	86HZ		1	150HZ		1	200HZ
	2	14HZ	1	2	43HZ		2	72HZ	1	2	100HZ
	3	10HZ	1	3	29HZ		3	48HZ	1	3	67HZ
1	4	7HZ	3	4	21HZ	5	4	36HZ	7	4	50HZ (default)
	5	6HZ	1	5	17HZ	ĺ	5	29HZ		5	40HZ
	6	5HZ	1	6	14HZ		6	24HZ	1	6	33HZ
	7	4HZ		7	12HZ		7	20HZ		7	29HZ
	1	57HZ		1	114HZ		1	171HZ	Ī		
	2	29HZ	1	2	57HZ		2	86HZ	1		
	3	19HZ	1	3	38HZ		3	57HZ	1		
2	4	14HZ	4	4	29HZ	6	4	43HZ	1		
	5	11HZ	1	5	23HZ		5	34HZ			
	6	10HZ	1	6	19HZ		6	29HZ			
	7	8HZ	1	7	16HZ	1	7	24HZ	1		

20) Temperature Sensor Command(TSC)(R40H)

R40H		Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0		
TSC	W	0	0	1	0	0	0	0	0	0		
1 _{st} Parameter	R	1	D10/TS[7]	D9/TS[6]	D8/TS[5]	D7/TS[4]	D6/TS[3]	D5/TS[2]	D4/TS[1]	D3/TS[0]		
2nd Parameter	R	1	D2	D1	D0	-	-	-	-	-		

The command define as follows:

This command indicates the temperature value.

If R41H(TSE) bit7 set to 0, this command reads internal temperature sensor value.

If R41H(TSE) bit7 set to 1, this command reads external (LM75) temperature sensor value

TS[7:0]/D[10:3]	T(C)	TS[7:0]/D[10:3]	T (°C)	TS[7:0]/D[10:3]	T (°C)
11100111	-25	00000000	0	00011001	25
11101000	-24	00000001	1	00011010	26
11101001	-23	00000010	2	00011011	27
11101010	-22	00000011	3	00011100	28
11101011	-21	00000100	4	00011101	29
11101100	-20	00000101	5	00011110	30
11101101	-19	00000110	6	00011111	31
11101110	-18	00000111	7	00100000	32
11101111	-17	00001000	8	00100001	33
11110000	-16	00001001	9	00100010	34
11110001	-15	00001010	10	00100011	35
11110010	-14	00001011	11	00100100	36
11110011	-13	00001100	12	00100101	37
11110100	-12	00001101	13	00100110	38
11110101	-11	00001110	14	00100111	39
11110110	-10	00001111	15	00101000	40
11110111	-9	00010000	16	00101001	41
11111000	-8	00010001	17	00101010	42
11111001	-7	00010010	18	00101011	43
11111010	-6	00010011	19	00101100	44
11111011	-5	00010100	20	00101101	45
11111100	-4	00010101	21	00101110	46
11111101	-3	00010110	22	00101111	47
11111110	-2	00010111	23	00110000	48
11111111	-1	00011000	24	00110001	49

This command only actives after R04H(PON) or R05H(PMES)

21) VCOM and DATA interval setting Register(CDI)(R50H)

R50H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0			
CDI	W	0	0	1	0	1	0	0	0	0			
1st Parameter	W	1	VBD[1]	VBD[0]	DDX[1]	DDX[0]	CDI[3]	CDI[2]	CDI[1]]	CDI[0]			

The command defines as:

1st Parameter:

CDI[1:0]: This command indicates the interval of VCOM and data output. When setting the vertical back porch, the total blanking will be keep (20hsync).

Bit	
3-0	Vcom and data interval
	0000: 17 hsync
	0001:16 hsync
	0010:15 hsync
	0011:14 hsync
	0100:13 hsync
	0101:12 hsync
	0110:11 hsync
	0111:10 hsync
	1000:9 hsync
	1001:8 hsync
	1010:7 hsync
	1011:6 hsync
	1100:5 hsync
	1101:4 hsync
	1110:3 hsync
	1111:2 hsync

VBD[1:0] Border data selection.

DAM	/DI	(DIA/D-0)
B/VV	/Rea	mode(BWR=0)

Bit 5-4	Bit7-6	Description	
DDX[0]	VBD[1:0]	LUT	
0	00	Floating	
	01	LUTR	
	10	LUTW	
	11	LUTB	
1 (default)	00	LUTB	-
	01	LUTW	j
	10	LUTR	
	11 (default)	Floating	

B/W mode (BWR=1)

Bit 5-4	Bit7-6	description
DDX[0]	VBD[1:0]	LUT
0	00	Floating
	01	LUTBW (1->0)
	10	LUTWB (0->1)
	11	Floating
1 (default)	00	Floating
	01	LUTWB (1->0)
	10	LUTBW (0->1)
	11	Floating

- DDX[1:0]: Data polarity
 1. DDX[1] for RED data, DDX[0] for BW data in the B/W/Red mode
 2. DDX[0] for B/W mode

B/W/Red mode(BWR=0)

Bit 5-4	Description					
DDX[1:0]	Data (Red/B/W)	LUT				
00	00	LUTW				
	01	LUTB				
	10	LUTR				
	11	LUTR				
01 (default)	00	LUTB				
	01	LUTW				
	10	LUTR				
	11	LUTR				
10	00	LUTR				
	01	LUTR				
	10	LUTW				
	11	LUTB				
11	00	LUTR				
	01	LUTR				
	10	LUTB				
	11	LUTW				

B/W mode (BWR=1)

Bit 5-4	Description	10	
DDX[0]	Data (B/W)	LUT	
0	00	LUTWW (0->0)	
	01	LUTBW(1->0)	
	10	LUTWB(0->1)	
	11	LUTBB(1->1)	
1 (default)	00	LUTBB(0->0)	Ť
	01	LUTWB(1->0)	
	10	LUTBW(0->1)	
	11	LUTWW(1->1)	

22) TCON setting(TCON)(R60H)

R60H		Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0		
TCON	W	0	0	1	1	0	0	0	0	0		
1st Parameter	W	1	-	-	-	-	-	-	-	LPD		

The command define Non-overlap period of gate and source as below:

1st Parameter:

Bit	Period
S2G[3:0]/G2S[3:0]	0000: 2 clock(default)
020[0:0] 020[0:0]	0001: 4 clock
	0010: 6 clock
	0011:8 clock
	0100: 10 clock
	0101: 12 clock
	0110: 14 clock
	0111: 16 clock
	1000: 18 clock
	1001: 20 clock
	1010: 22 clock
	1011; 24 clock
	1100: 26 clock
	1101: 28 clock
	1110: 40 clock
	1111: 32 clock
	ことの後にある時代では、3や6年の日本語のでは、100mmの日本語のでは

23) Resolution setting(TRES)(R61H)

R61H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0			
TREAS	W	0	0	1	1	0	0	0	0	1			
1 _{st} Parameter	W	1							HRES(9)	HRES(8)			
2 _{nd} Parameter	W	1	HRES(7)	HRES(6)	HRES(5)	HRES(4)	HRES(3)	-	-	-			
3 _{rd} Parameter	W	1							VRES(9)	VRES(8)			
4thParameter	W	1	VRES(7)	VRES(6)	VRES(5)	VRES(4)	VRES(3)	VRES(2)	VRES(1)	VRES(0)			

The command define as follows: When using register:

Horizontal display resolution = HRES Vertical display resolution = VRES

Channel disable calculation:

GD: First G active = G0; LAST active GD= first active +VRES[8:0] -1

SD: First active channel: =S0; LAST active SD= first active +HRES[7:3]*8-1

EX:128X272

GD: First G active = G0

LAST active GD= 0+272-1= 271; (G271)

SD : First active channel: =S0

LAST active SD=0+16*8-1=127; (S127)

24) Source & gate start setting(TSGS)(R62H)

<u>- 1) 200000000000000000000000000000000000</u>	y source to guestius setting (1868) (180211)												
R62H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0			
TSGS	W	0	0	1	1	0	0	0	1	0			
1 _{st} Parameter	W	1							S_Start (9)	S_Start (8)			
2 _{nd} Parameter	W	1	S_Start (7)	S_Start (6)	S_Start (5)	S_Start (4)	S_Start (3)	-	-	-			
3 _{rd} Parameter	W	1							G_Start (9)	G_Start (8)			
4thParameter	W	1	G_Start (7)	G_Start (6)	G_Start (5)	G_Start (4)	G_Start (3)	G_Start (2)	G_Start (1)	G_Start (0)			

The command define as follows:

1.S_Start [8:0] describe which source output line is the first dateline

2.G_Start[8:0] describe which gate line is the first scan line

3.gscan :Gate scan select

0: Normal scan

1: Cascade type 2 scan

Restriction: S_Start should be the multiple of 8

Bit	Function	
5-0	Vcom value 000000: -0.1V 000001:-0.15V 000010:-0.2V	
	111000:-2.9V 111001:-2.95V 111010:-3.0V	

25) Program Mode(PGM)(RA0H)

RA0H		Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0		
PTIN	W	0	1	0	1	0	0	0	0	0		
1st Parameter	W	1	1	0	1	0	0	1	0	1		

The command define as follows:

After this command is issued, the chip would enter the program mode.

The mode would return to standby by hardware reset.

The only one parameter is a check code, the command would be executed if check code = 0xA5.

26) Active Program(APG)(RA1H)

RA1H						Bit				
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
APG	W	0	1	0	1	0	0	0	0	1

The command define as follows:

After this command is transmitted, the programming state machine would beactivated.

27) Read OTP Data(ROTP)(RA2H)

	/ Kau OTT Data(KOTT)(KAZIT)									
RA2H		Bit								
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
LUTBB/LUTB	W	0	1	0	1	0	0	0	1	0
1st Parameter	W	1				Dur	nmy			
2nd Parameter	W	1		The data of address 0x000 in the OTP						
3 _{rd} Parameter	W	1		The data of address 0x001 in the OTP						
4thParameter	W	1		:						
5thParameter	W	1		The data of address (n-1) in the OTP						
6th~ (m-1)th Parameter	W	1								
mth Parameter	w	1		The data of address (n) in the OTP						

The command define as follows:

The command is used for reading the content of OTP for checking the data of programming. The value of (n) is depending on the amount of programmed data, the max address = 0xFFF.

28) Reman LUT command(RM LUT CMD)(RF0H)

207 Kemap Let	7 Kemap Eo I command(KM_Eo I_EMD)(KI OII)									
RF0H	RF0H Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
RM_LUT_CMD	W	0	1	1	1	1	0	0	0	0
1 _{st} Parameter	W	1	-	-	-	tr10_lut_en	rmp2_table _sel[3]	rmp2_table _sel[2]	rmp2_table _sel[1]	rmp2_table _sel[0]
2 _{nd} Parameter	w	1	-	-	-	tr9_lut_en	Rmp1_tab l e_sel[3]	Rmp1_tab l e_sel[2]	. –	Rmp1_tab l e_sel[0]

The command is used for indicating backup OTP blocks to remap for LUTs

Addr (hex)	OTP Bank 0 (3K Bytes)	Addr (hex)	OTP Bank 1 (3K Bytes)
00h~0Fh	Temp. segment	C00h~C0Fh	Temp. segment
20h~60h	Default setting	C20h~C60h	Default setting
100h	TR0 WF	D00h	TR0 WF
200h	TR1 WF	E00h	TR1 WF
300h	TR2 WF	F00h	TR2 WF
400h	TR3 WF	1000h	TR3 WF
500h	TR4 WF	1100h	TR4 WF
600h	TR5 WF	1200h	TR5 WF
700h	TR6 WF	1300h	TR6 WF
800h	TR7 WF	1400h	TR7 WF
900h	TR8 WF	1500h	TR8 WF
A00h	TR9 WF / Backup 1	1600h	TR9 WF / Backup 1
B00h	TR10 WF / Backup 2	1700h	TR10 WF / Backup 2

1st Parameter:

tr10_lut_en:

Value	Function
1	OTP Address B00h~BFFh is used as "TR10 WF"
0	OTP Address B00h~BFFh is used as "Backup 2", And you can replace one of TR0 ~TR9.

rmp2_tab_sel [3:0] :

Only be functional when tr10_lut_en is set "0", target LUTs to be replaced is shown below

Value	Target LUTs
0001	TR0
0010	TR1
0011	TR2
0100	TR3
0101	TR4
0110	TR5
0111	TR6
1000	TR7
1001	TR8
1010	TR9
1011~1111	None

2nd Parameter

tr9_lut_en:

Value	Function
1	OTP Address B00h~BFFh is used as "TR9 WF"
0	OTP Address B00h~BFFh is used as "Backup 1", And you can replace one of TR0 ~TR8.

rmp1_tab_sel[3:0]

Only be functional when tr9_lut_en is set "0", target LUTs to be replaced is shown below

Value	Target LUTs
0001	TR0
0010	TR1
0011	TR2
0100	TR3
0101	TR4
0110	TR5
0111	TR6
1000	TR7
1001	TR8
1010~1111	None

Notice:

If rmp1_tab_sel = rmp2_tab_sel , the control hardware will reload "backup 1" block to replace target LUT.

29) Set OTP program bank(SET_OTP_BANK)(RF1H)

REEH						Bit				
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
SET_OTP_BA NK	W	0	1	1	1	1	0	0	0	1
1st Parameter	W	1			-	-	-	-	LUT_bank0	reg_bank0

This command is used to set program bank for registers and LUTs

Addr (hex)	OTP Bank 0 (3K Bytes)	Addr (hex)	OTP Bank 1 (3K Bytes)
00h~0Fh	Temp. segment	C00h~C0Fh	Temp. segment
20h~60h	Default setting	C20h~C60h	Default setting
100h~BFFh	LUTs	D00h~17FFh	LUTs

reg_bank:

Value	Function
1	Program "Temp. segment" and "Default Setting" in bank 0
0	Program "Temp. segment" and "Default Setting" in bank 1

LUT_bank:

N.	Value	Function
ì	1	Program "LUTs" in bank 0
ĺ	0	Program "LUTs" in bank 1

30) Read checksum information(RD CHKSUM)(RF2H)

50) Kcau check	Keau thecksum miormation(KD_CHKSOM)(KF2H)									
RF2H						Bit				
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
RD_CHKSUM	W	0	1	1	1	1	0	0	1	0
1st ~9th Parameter	R	1		Checksum from "TR0 WF" to "TR8 WF"						
10th Parameter	R	1		Checksum of "TR9 WF / backup 1"						
11th Parameter	R	1			Checks	sum of "TR1	LO WF / bac	kup 2"		
12th Parameter	R	1		Checksum comparison result from "TR0 WF" to "TR7 WF"						
13th Parameter	R	1	Che	cksum com	parison res	ult from "	TR8" and	i "TR10 W	/F / backup	2"

This command is to read checksum information from OTP.

1st to 11th Parameter: Checksum from "TRO WF" to "TR10 WF / backup 2"

12th Parameter

D7	D6	D5	D4	D3	D2	D1	D0
fault_TR7	fault_TR6	fault_TR5	fault_TR4	fault_TR3	fault_TR2	fault_TR1	fault_TR0

13th Parameter

D7	7 D6 D5 D4 D3		D3	D2	D1	D0	
2	0=0	-	22	3=1	fault TR10 / fault backup2	fault TR9 / fault backup1	fault TR9

definition of fault_TRx / fault_backup_x

Value	Function
0	Checksum comparison : Equal
1	Checksum comparison : Not Equal

31) RF3H (CAL_CHKSUM): Calculate Checksum

RF3H						Bit				
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0
CAL_CHKSUM	W	0	1	1	1	1	0	0	1	1

This command is used to Calculate Checksum of LUT Table

8. Optical Specification

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	indoor	8:1		-		8-2
GN	2Grey Level	-	-	-			
T update	Image update time	at 23 °C	-	15	-	sec	
1.0		23±3°C		_			8-3
Life		$55 \pm 10\%$ RH		5 years			

Notes: 8-1. Luminance meter: Eye-One Pro Spectrophotometer.

- 8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
- 8-3. When the product is stored. The display screen should be kept white and face up.

9. Handling, Safety, and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status						
Product specification This data sheet contains final product specifications.						
	Limiting values					
or more of the limiting values operation of the device at these	coordance with the Absolute Maximum Rating System (IEC 134). Stress above one may cause permanent damage to the device. These are stress ratings only and e or at any other conditions above those given in the Characteristics sections of the Exposure to limiting values for extended periods may affect device reliability.					
Application information						
Where application information	is given, it is advisory and does not form part of the specification.					

10. Reliability Test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=60°C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=40°C, RH=35%, 240h
4	Low-Temperature Operation	0°C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50°C, RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25°C 30min]→[+60 °C 30 min] : 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

11. Typical Application Circuit with SPI Interface

Part Name	Value	Requirements for spare part
C1 C2	4.7uF	50V
C3 C4 C6 C7 C8 C9 C10	1uF	50V
R1	2.2Ohm	NO
D4 D5 D6	Diode	MBR0503
Q1	NMOS	Si1304BDL
L2	47UH	NO

12 Typical Operating Sequence

12.1LUT from OTP Operation Flow

12.2 LUT from OTP Operation Reference Program Code

13. Part Number Definition

QYE G 0584 R W F686 F0

1 2 3 4 5 6 7

1: QYE: QYE EPD

2: G:Dot matrix type

3: The E-paper size: 5.84 inch: 0584

4: The color of E-paper:

B: Black/White R: Black/White/Red Y: Black/White/Yellow

5: OT range: N: Normal L/S: Low temperature H/W: High temperature

6: Driver type

7: FPC type

14. Inspection condition

14.1 Environment

Temperature: 23 ± 3 °C Humidity: 55 ± 10 %RH

14.2 Illuminance

Brightness:1200~1500LUX;distance: 30CM;Angle:Relate 45°surround.

14.3 Inspect method

14.4 Display area

14.5 Inspection standard

14.5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Clear display Display complete Display uniform	MA		
2	Black/White spots	D≤0.3mm, negligible 0.3mm <d≤0.5mm, n≤5,<br="">Allowed 0.5mm<d allow<="" not="" td=""><td></td><td>Visual inspection</td><td></td></d></d≤0.5mm,>		Visual inspection	
3	Black/White spots (No switch)	L≤1.0mm,W≤0.15mm negligible 1.0mm <l≤4.0mm 0.15mm<w≤0.5mm="" allowable="" l="" n≤4="">4.0mm,W>0.5mm is not allowed</l≤4.0mm>	MI	Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	

5	Flash dot / Multilateral	Flash points are allowed when switching screens Multilateral colors outside the frame are allowed for fixed screen time	MI	Visual/ Inspection card	Zone A Zone B
6	Segmented display	Selection segments are all displayed, and other segments are not displayed after the selection segment.	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Abnormal Display	Not Allow			

14.5.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	D= $(L+W)/2$ D ≤ 0.3 mm, Allowed 0.3mm $\leq D\leq 0.5$ mm, N ≤ 5 D ≥ 0.5 mm, Not Allow	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual	Zone A Zone B
3	\Dirty	Allowed if can be removed	MI	/ Microscop e	Zone A Zone B
4	Chips/Scratch/ Edge crown	$X \le 3$ mm, $Y \le 0.5$ mm $X \le 3$ mm, $Y \le 0.5$ mm, $Y \le 3$ mm $X \le 3$ mm, $Y \le 3$ mm	MI	Visual / Microscop e	Zone A Zone B

5	TFT Cracks	Not Allow	МА	Visual / Microscop e	Zone A Zone B
6	Dirty/ foreign body	Allowed if can be removed/ allow	MI	Visual / Microscop e	Zone A / Zone B
7	FPC broken/ FPC oxidation / scratch	Not Allow	MA	Visual / Microscop e	Zone B
8	B/W Line	L≤1.0mm,W≤0.15mm negligible 1.0mm <l≤4.0mm 0.15mm<w≤0.5mm="" allowable="" l="" n≤4="">4.0mm,W>0.5mm is not allowed</l≤4.0mm>	MI	Visual / Ruler	Zone B
9	TFT edge bulge /TFT chromatic aberration	TFT edge bulge: X≤3mm, Y≤0.3mm Allowed TFT chromatic aberration :Allowed	MI	Visual / Microscope	Zone A Zone B
10	Electrostatic point	D≤0.25mm, allow 0.25mm <d≤0.4mm,n≤4 allow="" d="">0.4mm is not allowed (n≤8 items are allowed within 5 mm in diameter)</d≤0.4mm,n≤4>	MI	Visual / Microscope	Zone A
11	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%	MI	Visual / Ruler	
12	Edge glue height/ Edge glue bubble	Edge Adhesives H≤PS surface (Including protect film) Edge adhesives seep in≤1/2 Margin width Length excluding Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤5.0mm₀ n≤5	MI		Zone B
13	Protect film	Surface scratch but not effect protect function, Allow	MI	Visual Inspection	Zone B

14	Silicon glue	Thickness≤PS surface(With protect film): Full cover the IC; Shape: The width on the FPC≤0.5mm (Front) The width on the FPC≤1.0mm (Back) smooth surface, No obvious raised.	MI	Visual Inspection	
15	Warp degree (TFT substrate)	FPL t≤1.5mm	MI	Ruler	
16	Color difference in COM area (Silver point area)	Allowed		Visual Inspection	

15.Packaging

Not Available