Introduction to Snowflake SQL

INTRODUCTION TO SNOWFLAKE SQL

George Boorman
Senior Curriculum Manager, DataCamp

Connecting to Snowflake

• Snowsight: Snowflake Web Interface

Worksheets

Notebooks

Connecting to Snowflake: Drivers

Drivers & Connectors

- ODBC (Open Database Connectivity)
- JDBC (Java Database Connectivity)
- Connectors: Python, Spark, and more

¹ https://docs.snowflake.com/en/developer-guide/drivers

Connecting to Snowflake: Snowflake CLI

Snowflake CLI

- Command-line client
 - Installed on Linux, Windows, or Mac

¹ https://docs.snowflake.com/en/user-guide/snowsql

SQL flavors

Snowflake uses Snowflake SQL

- Other popular SQL flavors:
 - PostgreSQL
 - T-SQL
 - MySQL
- Some differences in data types, functions, and general syntax

Common syntax

- SELECT
- FROM
- WHERE
- GROUPBY
- ORDER BY
- AVG(), COUNT(), SUM() (etc)
- DISTINCT
- HAVING
- JOIN *

^{*}Some differences exist, more on this later!

Let's practice!

INTRODUCTION TO SNOWFLAKE SQL

Snowflake SQL data types

INTRODUCTION TO SNOWFLAKE SQL

George Boorman
Senior Curriculum Manager, DataCamp

Category	Data types		
Text/string	VARCHAR, CHAR, TEXT		

Category	Data types		
Text/string	VARCHAR, CHAR, TEXT		
Numeric	INTEGER		

Category	Data types		
Text/string	VARCHAR, CHAR, TEXT		
Numeric	INTEGER		
Boolean	BOOLEAN		

Category	Data types		
Text/string	VARCHAR, CHAR, TEXT		
Numeric	INTEGER		
Boolean	BOOLEAN		
Date/time	DATE, TIME, TIMESTAMP		

¹ https://docs.snowflake.com/en/sql-reference/intro-summary-data-types

Snowflake SQL data types - NUMBER

NUMBER(p, s)

- NUMERIC works in Snowflake as an alias for NUMBER
- p = precision; s = scale
- Max p and s values: 38
 - Exceeding will cause rounding!

Snowflake SQL data types - TIMESTAMP_LTZ

- TIMESTAMP_LTZ
 - Combines DATE and TIME with local time zone
 - Format: YYYY-MM-DD HH:MI:SS

```
CREATE TABLE orders (
   -- Timestamp with local time zone
   order_timestamp TIMESTAMP_LTZ
   )
```

	ORDER_TIMESTAMP
1	2015-01-01 11:38:36.000 -0800
2	2015-01-01 11:57:40.000 -0800
3	2015-01-01 12:12:28.000 -0800
4	2015-01-01 12:16:31.000 -0800
5	2015-01-01 12:21:30.000 -0800

Data type conversion - What?

Converting data from one type to another

Data type conversion - Why?

- Improving performance
- Data accuracy and consistency
- Data quality

Data type conversion - How?

1. CAST Syntax:

```
o CAST( <source_data/column> AS <target_data_type> )
```

- CAST('80' AS INT)
- 2. :: *Syntax:*
 - < <source_data/column>::<target_data_type>
 - '80'::INT

CAST

```
SELECT CAST(order_timestamp AS DATE)
    AS order_date
FROM orders
```

CAST results

	ORDER_TIMESTAMP		
1	2015-01-01 11:38:36.000 -0800		
2	2015-01-01 11:57:40.000 -0800		
3	2015-01-01 12:12:28.000 -0800		
4	2015-01-01 12:16:31.000 -0800		
5	2015-01-01 12:21:30.000 -0800		

	ORDER_DATE			
1	2015-01-01			
2	2015-01-02			
3	2015-01-03			
4	2015-01-04			
5	2015-01-05			

Conversion functions

• Examples: TO_VARCHAR, TO_DATE, etc.

TO_VARCHAR

- TO_VARCHAR(<expr>)
 - expr numeric, timestamp, etc.
 - Result: VARCHAR

Example:

```
SELECT TO_VARCHAR(86)
```

Result:

86

Checking data types

DESC TABLE orders

name	type	kind	null?	default	primary key
ORDER_ID	NUMBER(38,0)	COLUMN	N	null	Υ
ORDER_DATE	DATE	COLUMN	Υ	null	N
ORDER_TIME	TIME(9)	COLUMN	Υ	null	N

Let's practice!

INTRODUCTION TO SNOWFLAKE SQL

Functions, sorting, and grouping

INTRODUCTION TO SNOWFLAKE SQL

George Boorman
Senior Curriculum Manager, DataCamp

String functions - INITCAP

Syntax: INITCAP(<expr>)

Capitalize each word in a string

```
SELECT INITCAP(category) AS capitalized_category
FROM pizza_type
```

A CAPITALIZED_NAMES

The Barbecue Chicken Pizza

The California Chicken Pizza

The Chicken Alfredo Pizza

The Chicken Pesto Pizza

String functions - CONCAT

Combines the expressions

Syntax:

```
CONCAT( <expr1> [ , <exprN> ... ] )
```

Before Concat:

Combining category with '- Pizza'

```
SELECT CONCAT(category, ' - Pizza')
   AS pizza_category
FROM pizza_type
```

After Concat:

PIZZA_CATEGORY
Chicken - Pizza
Classic - Pizza
Supreme - Pizza
Veggie - Pizza

DATE & TIME functions

- CURRENT_DATE() or CURRENT_DATE
- CURRENT_TIME() or CURRENT_TIME

SELECT CURRENT_DATE

SELECT CURRENT_TIME

CURRENT_DATE

2023-08-15

CURRENT_TIME

13:35:58

EXTRACT

Syntax

```
EXTRACT( <date_or_time_part> FROM <date_or_time_expr> )<date_or_time_part> - year, month, day, weekday, etc.
```

```
SELECT EXTRACT(MONTH FROM order_date) AS order_month,
    COUNT(*) AS num_orders
FROM orders
GROUP BY order_month
```

# ORDER_MONTH	# NUM_ORDERS
1	1845
2	1685
3	1840

SORTING and GROUPING

• SORTING: ORDER BY

• GROUPING: GROUP BY

Snowflake: GROUP BY ALL

GROUP BY ALL

• GROUP BY column1, column2

```
SELECT
    pizza_type_id,
    size,
    AVG(price) AS average_price
FROM
    pizzas
GROUP BY
    pizza_type_id, -- explicit columns
    size
ORDER BY
    pizza_type_id, average_price DESC
```

• GROUP BY ALL

```
SELECT
    pizza_type_id,
    size,
    AVG(price) AS average_price
FROM
    pizzas
GROUP BY ALL -- Don't specify columns
ORDER BY
    pizza_type_id, average_price DESC
```

Summary

Function/keyword	Use
INITCAP()	Capitalize each word in a string
CONCAT()	Combine multiple strings
CURRENT_DATE	Get the current date
CURRENT_TIME	Get the current time
EXTRACT	Pull a date/time element, e.g., month from a date
ORDER BY	Sort query results
GROUP BY ALL	Group query by all (non-aggregated) columns

Let's practice!

INTRODUCTION TO SNOWFLAKE SQL

