Homework 8 – STAT 542 Due Friday, Nov 18 by 11:59 PM

- 1. X_1, X_2 are independent exponential random variables with mean θ
 - (a) Find the joint moment generating function of X_1, X_2 .
 - (b) Give the definition of the moment generating function of $X_1 X_2$ and show this can be obtained from (a).
 - (c) Find the distribution of $Y = X_1 X_2$ (using the mgf of Y, one can find that this is a so-called Laplace or double-exponential distribution.)
- 2. 4.30, Casella & Berger
- 3. 4.54, Casella & Berger (Hint: Show first if $X \sim \text{uniform}(0,1)$, then $-\log X \sim \text{exponential}(1)$.)
- 4. 4.47, Casella & Berger
- 5. 4.52, Casella & Berger
- 6. 4.55, Casella & Berger
- 7. 4.28, Casella & Berger
- 8. 4.50, Casella & Berger (Hint: Don't use the joint pdf directly. Use the fact that (X,Y) are MVN with means, variances and covariances implied by the joint pdf. Further, X^2 and Y^2 have χ^2_1 distributions here for finding the variances of X^2 and Y^2 . Find $\mathrm{E}[X^2Y^2] = \mathrm{E}[\mathrm{E}(X^2Y^2|Y)]$ using that X|Y has a (conditional) normal distribution.)