# EECE 5550: Mobile Robotics



Lecture 14: Optimization

### Recap

### Last time:

- Factor graphs
- Simultaneous localization and mapping (SLAM)
- Maximum likelihood estimation

### This time:

 Basic theory of optimization (i.e. how to actually do MLE)





### References



### The Main Idea

**Given:**  $f: \mathbb{R}^n \to \mathbb{R}$ , we want to

$$\min_{x\in\mathbb{R}^n} f(x)$$

**Problem:** We have *no idea* how to actually do this ...



**Main idea:** Let's approximate f with a simple model function m, and use that to search for a minimizer of f.

### **Optimization Meta-Algorithm**

**Given:** A function  $f: \mathbb{R}^n \to \mathbb{R}$  and an initial guess  $x_0 \in \mathbb{R}^n$  for a minimizer

### **Iterate:**

- Construct a model  $m_i(h) \approx f(x_i + h)$  of f near  $x_i$ .
- Use  $m_i$  to search for a descent direction h(f(x+h) < f(x))
- Update  $x_{i+1} \leftarrow x_i + h$

### until convergence

### A first example

Let's consider applying the Basic Algorithm to minimize

$$f(x) = x^4 - 3x^2 + x + 2$$

starting at  $x_0 = -\frac{1}{2}$ .

**Q:** How can we *approximate* (*model*) f near  $x_0$ ?

A: Let's try linearizing! Take

$$m_0(h) \triangleq f(x_0) + f'(x_0)h$$



### Gradient descent

#### Given:

- A function  $f: \mathbb{R}^n \to \mathbb{R}$
- An initial guess  $x_0 \in \mathbb{R}^n$  for a minimizer
- Sufficient decrease parameter  $c \in (0,1)$ , stepsize shrinkage parameter  $\tau \in (0,1)$
- Gradient tolerance  $\epsilon > 0$

#### Iterate:

- Compute search direction  $p = -\nabla f(x_i)$  at  $x_i$
- Set initial stepsize  $\alpha = 1$
- Backtracking line search: Update  $\alpha \leftarrow \tau \alpha$  until the Armijo-Goldstein sufficient decrease condition:

$$f(x_i + \alpha p) < f(x_i) - c\alpha ||p||^2$$

is satisfied

• Update  $x_{i+1} \leftarrow x_i + \alpha p$ 

until 
$$\|\nabla f(x_i)\| < \epsilon$$

### Try minimizing the quadratic:

$$f(x,y) = x^2 - xy + \kappa y^2$$

using gradient descent, starting at  $x_0=(1,1)$  and using c,  $au=\frac{1}{2}$  and  $\epsilon=10^{-3}$ , for a few different values of  $\kappa$ , say

$$\kappa \in \{1, 10, 100, 1000\}$$

**Q:** If you plot function value  $f(x_i)$  vs. iteration number i, what do you notice?

#### **Gradient Descent**

#### Given:

- A function  $f: \mathbb{R}^n \to \mathbb{R}$
- An initial guess  $x_0 \in \mathbb{R}^n$  for a minimizer
- Sufficient decrease parameter  $c \in (0,1)$ , stepsize shrinkage parameter  $\tau \in (0,1)$
- Gradient tolerance  $\epsilon > 0$

#### Iterate:

- Compute search direction  $p = -\nabla f(x_i)$  at  $x_i$
- Set initial stepsize  $\alpha = 1$
- Line search: update  $\alpha \leftarrow \tau \alpha$  until

$$f(x_i + \alpha p) < f(x_i) - c\alpha ||p||^2$$

• Update  $x_{i+1} \leftarrow x_i + \alpha p$ 

until 
$$\|\nabla f(x_i)\| < \epsilon$$





 $\kappa = 1$ 









# The problem of conditioning

Gradient descent doesn't perform well when f is poorly conditioned (has "stretched" contours).

**Q:** How can we improve our local model:

$$m_i(h) = f(x_i) + \nabla f(x_i)^T h$$

so that it handles curvature better?





### Second-order methods

Let's try adding in curvature information using a *second-order* model for *f*:

$$m_i(h) = f(x_i) + \nabla f(x_i)^T h + \frac{1}{2} h^T \nabla^2 f(x) h$$

**NB:** If  $\nabla^2 f(x) > 0$ , then  $m_i(h)$  has a unique minimizer:

$$h_N = -\left(\nabla^2 f(x_0)\right)^{-1} \nabla f(x_0)$$

In that case, using the update rule:

$$x_{i+1} \leftarrow x_i + h_N$$

gives Newton's method

Let's try minimizing the same quadratic:

$$f(x,y) = x^2 - xy + \kappa y^2$$

this time using Newton's method, starting at  $x_0=(1,1)$  and using  $\epsilon=10^{-3}$ , for

$$\kappa \in \{1, 10, 100, 1000\}$$

If you plot function value  $f(x_i)$  vs. iteration number i, what do you notice?

### **Newton's method**

#### Given:

- A function  $f: \mathbb{R}^n \to \mathbb{R}$
- An initial guess  $x_0 \in \mathbb{R}^n$  for a minimizer
- Gradient tolerance  $\epsilon > 0$

#### **Iterate:**

- Compute gradient  $\nabla f(x_i)$  and Hessian  $\nabla^2 f(x_i)$
- Compute Newton step:

$$h_N = -\left(\nabla^2 f(x_0)\right)^{-1} \nabla f(x_0)$$

- Update  $x_{i+1} \leftarrow x_i + h_N$
- until  $\|\nabla f(x_i)\| < \epsilon$

### **Quasi-Newton methods**

Newton's method is **fast**! (It has a **quadratic** convergence rate)

#### **But:**

- $h_N$  is only guaranteed to be a descent direction if  $\nabla^2 f(x_i) > 0$
- Computing exact Hessians can be expensive!

**Quasi-Newton methods:** Use a *positive-definite approximate Hessian*  $B_i$  in the model function:

$$m_i(h) = f(x_i) + \nabla f(x_i)^T h + \frac{1}{2} h^T B_i h$$

 $\Rightarrow$   $m_i(h)$  always has a unique minimizer:

$$h_{QN} = -B_i^{-1} \nabla f(x_i)$$

 $\Rightarrow$   $h_{QN}$  is *always* a descent direction!

### Quasi-Newton method with line search

#### Given:

- A function  $f: \mathbb{R}^n \to \mathbb{R}$
- An initial guess  $x_0 \in \mathbb{R}^n$  for a minimizer
- Sufficient decrease parameter  $c \in (0,1)$ , stepsize shrinkage parameter  $\tau \in (0,1)$
- Gradient tolerance  $\epsilon > 0$

#### Iterate:

- Compute gradient  $g_i = \nabla f(x_i)$  and positive-definite Hessian approximation  $B_i$  at  $x_i$
- Compute quasi-Newton step:

$$h_{QN} = -B_i^{-1}g_i$$

- Set initial stepsize  $\alpha = 1$
- Backtracking line search: Update  $\alpha \leftarrow \tau \alpha$  until the Armijo-Goldstein sufficient decrease condition:

$$f(x_i + \alpha h_{QN}) < f(x_i) + c\alpha g_i^T h_{QN}$$

is satisfied

• Update  $x_{i+1} \leftarrow x_i + \alpha h_{QN}$ 

until 
$$||g_i|| < \epsilon$$

# Quasi-Newton methods (cont'd)

Different choices of  $B_i$  give different QN algorithms

 $\Rightarrow$  Can trade off *accuracy* of  $B_i$  with *computational cost* 

### **LOTS** of possibilities here!

- Gauss-Newton
- Levenberg-Marquardt
- (L-)BFGS
- Broyden
- etc ...
- $\Rightarrow$  Don't be afraid to experiment  $\odot$ !

# Special case: The Gauss-Newton method

A quasi-Newton algorithm for minimizing a *nonlinear least-squares objective*:

$$f(x) = ||r(x)||^2$$

where  $r: \mathbb{R}^m \to \mathbb{R}^n$  is a vector-valued residual function.

Uses the local quadratic model obtained by *linearizing r*:

$$m_i(h) = [||r(x_i) + J(x_i)h||^2]$$

 $m_i(h) = \boxed{\|r(x_i) + J(x_i)h\|^2}$  where  $J(x_i) \triangleq \frac{\partial r}{\partial x}(x_i)$  is the Jacobian of r.

**Equivalently:** 

$$g_i = 2J(x_i)^T r(x_i), \qquad B_i = 2J(x_i)^T J(x_i)$$

**NB:** In this case, the update h is the solution of a linear least-squares problem

### A word on linear algebra

The dominant cost (memory + time) in a QN method is *linear algebra*:

- Constructing the Hessian approximation  $B_i$
- Solving the linear system:

$$B_i h_{QN} = -h_{QN}$$

- ⇒ Fast/robust linear algebra is *essential* for efficient QN methods
- Take advantage of sparsity in  $B_i$ !
- NEVER, NEVER, NEVER INVERT B<sub>i</sub> directly!!!
  - It's incredibly expensive, and unnecessary
  - Use instead [cf. Golub & Van Loan's Matrix Computations]:
    - Matrix factorizations: QR, Cholesky, LDL<sup>T</sup>
    - Iterative linear methods: conjugate gradient

### A word on linear algebra

# NEVER INVERT B<sub>i</sub>!!!

### Optimization methods: Cheat sheet

### First-order methods

### Second-order methods

Use only gradient information

• **Pro:** Local model is inexpensive

• Con: Slow (linear) convergence rate

**Canonical example:** Gradient descent

### **Best for:**

- Moderate accuracy
- Very large problems

Use (some) 2nd-order information

• **Pro:** Fast (superlinear) convergence

• Con: Local model can be expensive

Canonical example: Newton's method

### **Best for:**

- High accuracy
- Small to moderately large problems

### Optimization on Manifolds

**Main idea (recap):** Search for a descent direction *h* using a *local model m* of the objective *f*:

$$m_i(h) = f(x_i) + \nabla f(x_i)^T h + \frac{1}{2} h^T B_i h$$

**NB:** model m is built using (approximate) derivative information  $(B_i \approx \nabla^2 f(x_i))$ 

#### **Recall:**

- **Key point:** Derivatives are *local*:  $df_x$  only depends upon f's behavior in an infinitesimally small open set around x.
- Smooth manifolds are spaces in which every point x has an open set U that is diffeomorphic to an open set in  $\mathbb{R}^n$

⇒We can apply exactly the same approach to optimize functions on smooth manifolds!



### Quasi-Newton optimization on $\mathbb{R}^n$

#### Iterate:

- 1. Compute gradient  $g_i = \nabla f(x_i)$  and positive-definite Hessian approximation  $B_i \approx \nabla^2 f(x_i)$  at  $x_i$
- 2. Compute quasi-Newton step:

$$h_{QN} = -B_i^{-1}g_i$$

- 3. Set initial stepsize  $\alpha = 1$
- 4. Backtracking line search: Update  $\alpha \leftarrow \tau \alpha$  until the Armijo-Goldstein sufficient decrease condition:

$$f(x_i + \alpha h_{QN}) < f(x_i) + c\alpha g_i^T h_{QN}$$

is satisfied

5. Update  $x_{i+1} \leftarrow x_i + \alpha h_{QN}$  until  $\|g_i\| < \epsilon$ 

### Quasi-Newton optimization on a manifold M

#### Iterate:

- 1. Compute gradient  $g_i = \nabla f(x_i)$  and positive-definite Hessian approximation  $B_i \approx \nabla^2 f(x_i)$  at  $x_i$
- 2. Compute quasi-Newton step:

$$h_{QN} = -B_i^{-1}g_i$$

- 3. Set initial stepsize  $\alpha = 1$
- 4. Backtracking line search: Update  $\alpha \leftarrow \tau \alpha$  until the Armijo-Goldstein sufficient decrease condition:

$$f(Retr_{x_i}(\alpha h_{QN})) < f(x_i) + c\alpha g_i^T h_{QN}$$

is satisfied

5. Update  $x_{i+1} \leftarrow Retr_{x_i}(\alpha h_{QN})$  until  $||g_i|| < \epsilon$ 

 $\Rightarrow$  The only difference is that on a general manifold, in steps 4 & 5 we need a *retraction operator*  $Retr_{\chi}: T_{\chi}(M) \to M$  that describes how to move along the manifold M from x in the direction of a tangent vector  $\dot{v} \in T_{\chi}(M)$ 

### Special case: Optimization on Lie groups

**Recall:** Exponential map  $\exp: Lie(G) \to G$  is a map from Lie algebra Lie(G) (tangent space at the identity  $e \in G$ ) to G

Given some function  $f: G \to \mathbb{R}$  and some point  $x_i \in G$ , we can construct the following  $pullback \ \hat{f}: Lie(G) \to \mathbb{R}$  of f to Lie(G) at  $x_i$ :

$$\hat{f}_{x_i}(\xi) \triangleq f(x_i \cdot \exp(\xi))$$

#### NB:

- $y = x_i \cdot \exp(\xi)$  maps a neighborhood of  $\xi = 0$  in Lie(G) to a neighborhood of  $x_i$  in G.
- $\hat{f}_{x_i}$  is a function between Euclidean spaces  $\Rightarrow$ We know exactly how to differentiate this!
- $\hat{f}_{x_i}(0) = f(x_i)$

**Therefore:** We can build a local model of  $\hat{f}_{x_i}$  at  $\xi=0$ , just as before:

$$\widehat{m}_i(h) = f(x_i) + \nabla \widehat{f}(0)^T h + \frac{1}{2} h^T B h,$$

then find a descent direction  $h \in Lie(G)$  for  $\widehat{m}_i(h)$ , then apply the retraction (update):

$$x_{i+1} \leftarrow x_i \exp(h)$$



### Quasi-Newton method on a Lie group G

#### Given:

- A function  $f: G \to \mathbb{R}$
- An initial guess  $x_0 \in \mathbb{R}^n$  for a minimizer
- Sufficient decrease parameter  $c \in (0,1)$ , stepsize shrinkage parameter  $\tau \in (0,1)$
- Gradient tolerance  $\epsilon > 0$

#### Iterate:

- Construct pullback function  $\hat{f}_{x_i}(\xi) \triangleq f(x_i \cdot \exp(\xi))$  at  $x_i$
- Compute gradient  $g_i = \nabla \hat{f}_{x_i}(0)$  and positive-definite Hessian approximation  $B_i \approx \nabla^2 \hat{f}_{x_i}(0)$  at  $\xi = 0$
- Compute quasi-Newton step:

$$h_{QN} = -B_i^{-1}g_i$$

- Set initial stepsize  $\alpha = 1$
- Backtracking line search: Update  $\alpha \leftarrow \tau \alpha$  until the Armijo-Goldstein sufficient decrease condition:

$$f(x_i \cdot \exp(\alpha h)) < f(x_i) + c\alpha g_i^T h_{QN}$$

is satisfied

• Update  $x_{i+1} \leftarrow x_i \cdot \exp(\alpha h_{QN})$ 

until 
$$||g_i|| < \epsilon$$