Sprawozdanie

Przedmiot	WSI	Grupa	103	Prowadzący	mgr. inż. Kacper Kania	
Numer éwiczenia	5	Temat	ćwiczenia	Wielowarstwowy perceptron		
Numery albumów	336369, 318407			Skład sekcji	Jakub Włodarz, Mikołaj Wewiór	
Data zadania	23.04.2024			Data wykonania	21.05.2024	

1. Treść zadania

Celem ćwiczenia było stworzenie modelu wielowarstwowego perceptronu, wykorzystującego przejście w przód, propagacje wsteczną oraz algorytm SGD do przeprowadzenia treningu na zbiorze *digits*. Perceptron powinien wspierać funkcje aktywacji tj. ReLU czy sigmoid. Do realizacji zadania wykorzystano język programowania Python w wersji 3.12 wraz z stosownymi bibliotekami (Numpy, Sklearn).

2. Opis programu

Stworzony program został podzielony na dwie klasy:

- *MLP*, zarządzający procesem uczenia na podanych warstwach,
- Layer, podstawową warstwę obliczeniową, która przetwarza podane paczki uczenia.

Uruchomienie instancji klasy *MLP* wymaga przekazania wyłącznie tablicy warstw, stanowiącej strukturę naszego modelu. Trening odbywa się poprzez wywołanie metody *fit()*, która pobiera dane wejściowe, etykiety oraz parametry bezpośrednio związane z procesem uczenia: liczbę epok i learning rate. Wielkość paczki uczenia ustalona zostaje poprzez warstwy.

Wizualizację analizy założonego zbioru danych wykonano w oddzielnym pliku .ipynb, umożliwiającym czytelną prezentację poszczególnych etapów jak i wyników pracy modelu - dane wejściowe przekazywane są w wersji znormalizowanej tablicy wartości zmiennoprzecinkowych, natomiast dla etykiet wykonywany jest one-hot encoding.

3. Wykonane eksperymenty

W ramach eksperymentów przeprowadzonych na stworzonym perceptronie założono trenowanie modelu przez 250 iteracji, zwanych potocznie epokami. Wartość *learning_rate* została ustalona jako 0.0005. W przypadku funkcji aktywacji na ostatniej warstwie umieszczono funkcję sigmoid, podczas gdy pozostałe warstwy wykorzystywały ReLU bądź sigmoid.

Podział danych został wykonany zgodnie z poleceniem - 70% należy do części do treningowej, a 30% do testowej. Ilość przykładów jest wystarczająco mała, aby pominąć podział danych na część walidacyjną. Badania przeprowadzono dla ziarna liczb pseudolosowych o wartości '20240521'.

Tab. 1 – Wyniki analizy perceptronu wielowarstwowego dla zestawu danych 'digits'

Liczba warstw ukrytych Funkcja	aktywacji Rozmiar paczki uczenia	Accuracy	F1-score (micro)
--------------------------------	----------------------------------	----------	------------------

1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s	ReLU Rigmoid Rigmoid Rigmoid Rigmoid Rigmoid	1 4 8 16 32 64 128 1 4	0.811 0.104 0.154 0.066 0.070 0.104 0.115 0.750 0.139	0.811 0.104 0.154 0.066 0.070 0.104 0.115 0.750
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ReLU ReLU ReLU ReLU ReLU sigmoid sigmoid sigmoid	8 16 32 64 128 1	0.154 0.066 0.070 0.104 0.115 0.750	0.154 0.066 0.070 0.104 0.115 0.750
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ReLU ReLU ReLU ReLU sigmoid sigmoid sigmoid	16 32 64 128 1	0.066 0.070 0.104 0.115 0.750	0.066 0.070 0.104 0.115 0.750
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ReLU ReLU sigmoid sigmoid sigmoid sigmoid	32 64 128 1 4	0.070 0.104 0.115 0.750	0.070 0.104 0.115 0.750
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ReLU ReLU sigmoid sigmoid sigmoid sigmoid	64 128 1 4	0.104 0.115 0.750	0.104 0.115 0.750
1	ReLU sigmoid sigmoid sigmoid	128 1 4	0.115 0.750	0.115 0.750
1	sigmoid sigmoid sigmoid	1 4	0.750	0.750
1	sigmoid sigmoid	4		
1	sigmoid		0.139	0.450
1	sigmoid	8		0.139
1			0.126	0.126
1	sigmoid	16	0.131	0.131
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		32	0.096	0.096
2 2 2	sigmoid	64	0.085	0.085
2 2	sigmoid	128	0.105	0.105
2	ReLU	1	0.813	0.813
	ReLU	4	0.148	0.148
2	ReLU	8	0.083	0.083
	ReLU	16	0.052	0.052
2	ReLU	32	0.076	0.076
2	ReLU	64	0.096	0.096
2	ReLU	128	0.098	0.098
2	sigmoid	1	0.415	0.415
2	sigmoid	4	0.057	0.057
2	sigmoid	8	0.137	0.137
2	sigmoid	16	0.12	0.12
2	sigmoid	32	0.104	0.104
2	sigmoid	64	0.098	0.098
2		128	0.098	0.098
3	sigmoid	1	0.865	0.865

3	ReLU	4	0.096	0.096
3	ReLU	8	0.082	0.082
3	ReLU	16	0.098	0.098
3	ReLU	32	0.098	0.098
3	ReLU	64	0.1	0.1
3	ReLU	128	0.098	0.098
3	sigmoid	1	0.348	0.348
3	sigmoid	4	0.27	0.27
3	sigmoid	8	0.041	0.041
3	sigmoid	16	0.156	0.156
3	sigmoid	32	0.1	0.1
3	sigmoid	64	0.098	0.098
3	sigmoid	128	0.098	0.098

W warstwie wejściowej są 64 neurony - tyle ile pikseli bitmapy z narysowaną cyfrą. Ostatnia warstwa posiada 10 wyjść - czyli tyle ile klas do reprezentacji jest w danym zadaniu. Struktura w środku jest zmienna, zależnie od liczby warstw ukrytych. Dla przypadku z zerem warstw ukrytych warstwa wyjściowa posiada 16 wejść. W przypadku pojedynczej warstwy ukrytej posiada ona 32 wejścia i 16 wyjść. Gdy sieć składa się z dwóch warstw ukrytych mają one kolejno 32 wejścia i 24 wyjścia oraz 24 wejścia i 16 wyjść.

Rys. 1, 2 – przykładowe macierze pomyłek dla batch size = 1 oraz 128 (2 warstwy ukryte, ReLU)

Dla przeprowadzonych pomiarów możliwe jest zauważanie pewnej ciekawej zależności - w przypadku realizacji procesu trenowania modelu z dużą paczką uczenia mamy do czynienia z zjawiskiem nadmiernego dopasowania modelu do pewnej cyfry, co z kolei przyczynia się do oscylacji wyniku końcowego w granicach 9-10%.

Rys. 3, 4 – wykresy wartości F1-score dla funkcji ReLU oraz sigmoid

4. Wnioski

Po przeprowadzonych badaniach można zauważyć, iż badane hiperparametry (*liczba warstw ukrytych*, wielkość paczki, funkcja aktywacji) nie wpływają bezpośrednio na otrzymane wyjścia. Najlepszą wartością parametru batch_size okazała się batch_size = 1. Może to wynikać z błędu w implementacji, jednak ustalenie tego faktu nie zostało możliwe.

Dla funkcji aktywacji ReLU uzyskano wyniki znacznie lepsze niż w przypadku funkcji sigmoid, co może oznaczać, iż jej stosowanie nie jest dobrym rozwiązaniem w ramach powyższego zestawu danych. W przypadku danych o liczbie warstw ukrytych zauważalna jest nieznaczna poprawa modeli końcowych dla większej ilości warstw. Niestety, taka rozbudowa modelu wiąże się z znacznym wydłużeniem czasu treningu.