MS 221 — Homework Set (6)

(The Chain Rule and The Gradient)

QUESTION 1

Let $\mathbf{p} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and let the function $f : \mathbf{R}^3 \to \mathbf{R} : \begin{bmatrix} u \\ v \\ w \end{bmatrix} \mapsto f(u, v, w)$ satisfy

$$\frac{\partial f}{\partial u}(\mathbf{p}) = -3, \quad \frac{\partial f}{\partial v}(\mathbf{p}) = 2, \quad \frac{\partial f}{\partial w}(\mathbf{p}) = 5.$$

If the functions $u, v, w : \mathbf{R}^2 \to \mathbf{R}$ are defined by

$$u(x,y) = x^{2} - y^{2}$$

$$v(x,y) = x + xy$$

$$w(x,y) = 2 + xy - y^{3}$$

calculate

$$\frac{\partial}{\partial x} f(u(x,y), v(x,y), w(x,y))$$
 at $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$.

QUESTION 2

Find ∇f_{p} where the function $f: \mathbf{R}^{3} \to \mathbf{R}$ and the point $p \in \mathbf{R}^{3}$ are given by

$$f(x, y, z) = x^2 z + y \ln(z^2 + 1)$$
 and $\mathbf{p} = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}$

QUESTION 3

Find all points $p \in \mathbb{R}^3$ such that $\nabla \varphi_p = \mathbf{0}$ where the function $\varphi : \mathbb{R}^3 \to \mathbb{R}$ is given by

$$\varphi(x, y, z) = x^2y + y^2z + z^2x.$$

QUESTION 4

Let $\varphi: \mathbb{R}^3 \to \mathbb{R}$ be as in Question 3 and let M be the **level set** determined by

$$\varphi(x, y, z) = 1.$$

Now, show that the point $\mathbf{p} = (1, -1, 1)$ is on the level set M and find the equation of the **tangent plane** to M at \mathbf{p} .

QUESTION 5

The equation z = f(x, y) defines a surface M in \mathbb{R}^3 . If we put $z_0 = f(x_0, y_0)$, then the point $\mathbf{p}_0 = (x_0, y_0, z_0)$ is on the surface M. Now, find the equation of the **tangent plane** to M at \mathbf{p}_0 .

Hint: Define the function $\varphi(x, y, z) \equiv z - f(x, y)$, then

QUESTION 6

Let the functions φ , $\psi : \mathbb{R}^2 \to \mathbb{R}$ be given by:

$$\varphi(x, y) = x^2 - y^2 + x$$
 and $\psi(x, y) = 2xy + y$

If C_1 , $C_2 \subset \mathbb{R}^2$ denote the **level sets** (i.e. curves) defined by

$$\varphi(x, y) \equiv 0$$
 and $\psi(x, y) \equiv 0$

respectively, show that $(0, 0) \in \mathcal{C}_1 \cap \mathcal{C}_2$ and find the **angle of intersection** of \mathcal{C}_1 and \mathcal{C}_2 at this point.