Cassini State Separatrix Hopping Group Meeting Presentation

Yubo Su

Apr 19, 2019

Introduction

• In corotating $(\hat{l}_p \text{ fixed})$ frame,

$$\frac{\mathrm{d}\hat{s}}{\mathrm{d}t} = (\hat{s} \cdot \hat{l}_1)(\hat{s} \times \hat{l}_1) - \eta(\hat{s} \times \hat{l}_p).$$

- $\eta = \frac{|g|}{\alpha}$: g is \hat{l}_1 precession around total angular momentum axis, α spin precession.
- Hamiltonian

$$\mathcal{H} = \frac{\left(\hat{s} \times \hat{l}_1\right)^2}{2} - \eta \left(\hat{s} \cdot \hat{l}_p\right).$$

Separatrix

Figure: Black line corresponds to *separatrix*. Equipotential surface joining two saddle points, *flows cannot cross*. Area can be numerically estimated.

Separatrix

Figure: Red, purple Cassini states are stable, *attracting* with dissipation.

- Zoom in on $\eta = 0.1$ case (left).
- If weak dissipation & random IC, what is fate of system?
- Hypothesis:

Outside Alignment (77.1%) Inside High obliquity (22.9%)

Simulations

Introduce tidal force
$$\left(\frac{\mathrm{d}\hat{s}}{\mathrm{d}t}\right)_{tide} = \epsilon \hat{s} \times (\hat{l}_1 \times \hat{s}) = -\epsilon \sin\theta \hat{\theta}$$
. Fate?

Figure: In other sims $\epsilon \rightarrow 0$, $P_{hop} \rightarrow 0.08$, nonzero!

Separatrix Hopping

 Revised hypothesis: 74% align, 26% high obliquity,

Above Goes to alignment (38.55%)

Inside High obliquity (22.9%)

Below High-obliquity 8% (3.1%), rest align (35.55).

 Data: 73.4% align, 25.9% high obliquity!

Figure: Trajectories at moment of crossing θ_4 , converging to two attracting CSs.

Separatrix Hopping

Heteroclinic Orbits

Figure: Heteroclinic orbit (*separatrix*) under perturbation.

Separatrix Hopping

Hypothesis

- Modified Cassini state under tides, $\delta\phi_4 = +\frac{\varepsilon}{\eta\sin I}$.
- Opens gap $\propto \epsilon$, but alignment strength also $\propto \epsilon$ (draw).
- Thus, hopping probability $\propto \mathcal{O}(\epsilon^2)$.

Figure: Heteroclinic orbit (*separatrix*) under perturbation.

Separatrix Hopping

Varying η

• Tried varying η , fixed ϵ . Maybe $P_{hop} \propto \eta A$?:

η	0.025	0.05	0.1	0.2
P_{hop}	0.01	0.028	0.08	0.25
\boldsymbol{A}	0.115	0.163	0.229	0.320

