Project 3: Proton emission

Phys. Rev. C 45, 1688 (1992); Phys. Rev. C 56, 1762 (1997)

$$\Gamma = S_p \mathcal{N} \frac{\hbar^2}{4\mu} \exp\left\{-2 \int_{r_1}^{r_2} |k(r)| dr\right\} \qquad T_{1/2} = \hbar \ln 2/\Gamma$$

proton spectroscopic factor

$$\hbar k(r) = \sqrt{2\mu [E_0 - V(r)]}$$
 $\frac{1}{N} = \frac{1}{2} \int_{r_0}^{r_1} \frac{dr}{k(r)}$

The interaction between the odd proton and the core nucleus is given by the Woods-Saxon optical potential:

$$V(r) = V_{\text{WS}} + V_{\text{Coul}} + \frac{\hbar^2}{2\mu r^2} \ell(\ell+1)$$

$$V_{\rm WS} = -V_0 f_{\rm WS}(r) + V_{\rm so} \left(\frac{\hbar}{m_{\pi} c}\right)^2 \frac{2}{r} \left[\frac{d}{dr} f_{\rm WS}(r)\right] (\vec{\ell} \cdot \vec{s})$$

$$f_{\mathrm{WS}}(r) = \frac{1}{1 + \exp[(r-R)/a]}$$
 Woods-Saxon form factor

$$V_{\text{Coul}}(r) = \begin{cases} \frac{Ze^2}{r} & \text{for } r > R\\ \frac{Ze^2}{2R} \left[3 - \left(\frac{r}{R}\right)^2 \right] & \text{for } r \le R \end{cases}$$

Take:
$$e^2 = 1.4399764 \,\mathrm{MeV \, fm}, \ a = 0.7 \,\mathrm{fm}, \ \left(\frac{\hbar}{m_\pi c}\right)^2 \approx 2.044 \,\,\mathrm{fm}^2$$

Assume:
$$V_0 = 54 \,\mathrm{MeV}$$
 $R = 1.2 A^{1/3} \,\mathrm{fm}, \ V_{\mathrm{SO}} = 0.2 V_0$

1. Assuming S_p =1 compute partial decay half-lives for proton emission for the following cases:

Nucleus	Q_p (keV)	Orbit	t _{1/2} ^{exp}	
$^{109}_{53}\mathrm{I}_{56}$	829 ±4	$1d_{5/2}$	$(100 \pm 5) \mu s$	
¹¹² ₅₅ Cs ₅₇	823 ± 7	$1d_{5/2}$	$(500 \pm 100) \ \mu s$	E_0 ?
$^{113}_{55}\mathrm{Cs}_{58}$	977 ± 4	$1d_{5/2}$	$(17 \pm 2) \mu s$	 0
$^{146}_{69}\mathrm{Tm}_{77}$	1140 ± 5	$0h_{11/2}$	$(235 \pm 27) \text{ ms}$	
	1210 ± 5	$0h_{11/2}$	$(72 \pm 23) \text{ ms}$	
$^{147}_{69}\mathrm{Tm}_{78}$	1071 ± 3	$0h_{11/2}$	$(2.7 \begin{array}{c} +2.4 \\ -0.9)$ s	
	1132 ± 4	$1d_{3/2}$	$(360 \pm 40) \mu s$	
¹⁵⁰ ₇₁ Lu ₇₉	1283 ± 4	$0h_{11/2}$	(40^{+30}_{-20}) ms	

- 2. For ¹⁴⁷Tm, plot $T_{1/2}$ (in a \log_{10} scale) as a function of Q_p -value for several values of l. Discuss the result.
- 3. Using computed and experimental half-lives, extract the spectroscopic factors
- 4. Compute the neutron decay width for a neutron in a $h_{11/2}$ shell in a nucleus with A=150 as a function of E_0 . Discuss the result.