Trabalho Prático 2 Solução para problemas difíceis

Leandro Freitas de Souza¹

¹Departamento de Ciência da Computação – Universidade Federal de Minas Gerais Belo Horizonte – MG – Brasil

1. Introdução

Neste trabalho, foi estudado o problema dos k-centros, que é classificado como NP-Completo, o que o torna inviável para instâncias muito grandes. Dessa maneira, para contornar esse problema, vemos algorítmos aproximativos que, embora não consigam chegar na solução ótima, chegam a uma distância aceitável e aproximada, além de ser calculado em tempo polinomial, o que o torna extremamente viável.

A entrada do problema consiste de um conjunto finito $S = \{s_1, \dots, s_m\} \subset \mathbb{R}^n$ de pontos, com $m, n \in \mathbb{N}$. A partir dessa entrada, o objetivo é achar um conjunto $C = \{c_1, \dots, c_k\} \subset \mathbb{R}^n$, com $k \in \mathbb{N}$, que minimize a distância máxima entre os elementos de $S \in C$, ou seja, minimizar $r(C) = maxdist(s_i, C)$

Em outras palavras, o problema se baseia em agrupar os elementos de um conjunto S em k grupos (determinado pelo centro mais próximo) de forma que o raio desses grupos seja o mínimo possível.

Figura 1. Ilustração dos K centros

2. Métodos e Métricas Usados

2.1. Métodos

Como afirmado na sessão anterior, o problema dos k-centros é NP-Completo, o que nos leva a utilizar algorítmos aproximativos para que consigamos algo em tempo polinomial.

Algorithm 1 K-Centros guloso 2-Aproximado

```
\begin{array}{l} \textbf{procedure KCENTERS}(S,k) \\ \textbf{if } k \geq |S| \textbf{ then return S} \\ \textbf{end if} \\ C \leftarrow \emptyset \\ s \leftarrow randint(1,|S|) \\ C \leftarrow C \cup \{s\} \\ \textbf{while } |C| < k \textbf{ do} \\ s \leftarrow argmaxdist(S,C) \\ C \leftarrow C \cup \{s\} \\ \textbf{end while} \\ \textbf{return C} \\ \textbf{end procedure} \end{array} \hspace{0.5cm} \triangleright \textbf{C} \ \acute{\textbf{e}} \ \text{inicializado com um elemento aleatório de S} \\ \textbf{c} \ \acute{\textbf{e}} \ \emph{c} \
```

Como visto em aula, existe um algorítmo guloso 2-Aproximado para o problema, que funciona da seguinte maneira:

Esse algorítmo consiste em primeiramente selecionar um elemento arbitrário de C para incluir em S, e depois ir selecionando em incluindo em C os elementos de S mais distantes de C, até que |C|=k

Sabemos que esse algorítmo é 2-Aproximado, como provado no livro utilizado pela matéria [Kleinberg and Tardos 2006], o que significa que o raio máximo encontrado por meio desse algorítmo será no máximo duas vezes maior que o raio ótimo.

2.2. Métricas

Para calcular Dist(S,C), foi utilizada uma métrica específica: a distância de minkowski. Essa métrica é definida como:

$$Dist(X,Y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

Sendo que $p\in\mathbb{N}$ é um parâmetro passado na entrada do programa. Nos casos em que $p=1,\,p=2$ e $p\to\infty$ correspondem respectivamente às distâncias de Manhattan, Euclidiana e de Chebyshev.

Além disso, para calcular a precisão dos resultados encontrados, foram utilizados dois tipos de medidas clássicas para a avaliação: silhueta e índice de rand aleatório. Essas métricas não foram implementadas, e foram importadas de uma biblioteca do python. Enquanto a Silhueta mede o quão sepadrados os clusters encontrados estão, o índice de Rand aleatório mede a distância da solução à solução ideal.

3. Implementação

Esse trabalho foi implementado e compilado completamente em Python. Foram utilizados três arquivos para a execução do problema.

No primeiro arquivo, cujo nome é 'KCenters.py', é implementada a classe 'KCenters', que recebe a quantidade de centros k a ser calculada e o índice p. A partir disso,

ela possui a função getMinkowskiDistances(S), que calcula a matriz de distâncias do conjunto S, a função GreedyKCenters(S), que executa o algorítmo guloso e retorna os índices dos centros selecionados, e por fim a função getLabels, que retorna um vetor com os centros assignados a cada ponto.

O segundo arquivo possui a função Evaluate(S, labelIndex, p), que filtra a coluna de rótulos do dataset e retorna um relatório que possui a média e o desvio padrão do tempo, índice Silhueta, índice Rand e raio máximo, englobando 30 execuções do algorítmo aproximativo. Além disso, o relatório contém os mesmos resultados do algorítmo implementado na biblioteca de python 'Sklearn' e o raio ótimo, como visto na figura 2

```
2-Approximate Algorithm:

Time: 0.078348 (avg), 0.006937 (std)
Silhouette Score: 0.154597 (avg), 0.027994 (std)
Rand Score: 0.833975 (avg), 0.024461 (std)
Max Radius: 172.380979 (avg), 3.280977 (std)

SKlearn Algorithm:

Time: 0.147709
Silhouette Score: 0.322589
Rand Score: 0.894768
Max Radius: 158.313521

True Radius: 144.219451 (Given by .data file)
```

Figura 2. Saída do programa

Por fim, o terceiro arquivo é responsável pela leitura dos repositórios e pela chamada das funções.

Além disso, na chamada da função, podemos usar os argumentos '-p', que recebe o índice usado na distância de Minkowski, 'c', que recebe a coluna do repositório em que as classes ideais estão atribuídas e '-i', que recebe o nome do arquivo de entrada, como pode ser visto na figura 3

```
root@LeandroPC:/mnt/c/Users/leand/Desktop/Alg2/TP02-Alg2# python3 Main.py -i DataSets/pendigits.tra -c -1 -p 2 root@LeandroPC:/mnt/c/Users/leand/Desktop/Alg2/TP02-Alg2#
```

Figura 3. Chamada do programa

Referências

Kleinberg, J. and Tardos, E. (2006). *Algorithm Design*. Addison Wesley.

4. Experimentos

Foram feitos os seguintes experimentos em 10 datasets diferentes:

Nome do Arquivo	p_index	Tempo	Silhueta	Rand	Raio
CTG1.data	1	0.005473	0.416651	0.632899	521.236667
CTG1.data	2	0.005348	0.566821	0.643582	278.568826
CTG1.data	5	0.010752	0.729565	0.633759	244.005226
CTG2.data	1	0.019083	0.134163	0.631287	320.590000
CTG2.data	2	0.019269	0.228682	0.511607	135.489709
CTG2.data	5	0.034958	0.265496	0.492868	95.011997
letter-recognition.data	1	1.082332	0.067887	0.865533	38.766667
letter-recognition.data	2	3.381425	0.073623	0.862158	12.978237
letter-recognition.data	5	0.969378	0.058429	0.856721	7.905548
madelon_train.data	1	0.003310	0.021277	0.502218	15769.366667
madelon_train.data	2	0.003192	0.059779	0.501984	1194.220669
madelon_train.data	5	0.005262	0.141885	0.501416	537.064859
optdigits.data	1	0.043405	0.102101	0.846807	260.866667
optdigits.data	2	0.040287	0.096070	0.840624	50.976807
optdigits.data	5	0.068323	0.064266	0.828053	22.558111
pendigits.data	1	0.078524	0.153191	0.832894	526.700000
pendigits.data	2	0.081233	0.156222	0.834801	172.312815
pendigits.data	5	0.081882	0.160488	0.844864	104.860312
segmentation.data	1	0.012509	0.451757	0.425305	741.773067
segmentation.data	2	0.012855	0.427938	0.268536	358.753655
segmentation.data	5	0.015565	0.558002	0.154567	279.388587
UCI.data	1	0.019015	0.127844	0.525443	23.939128
UCI.data	2	0.019897	0.140495	0.522581	11.684957