International Rectifier

IRLML2244TRPbF

HEXFET® Power MOSFET

V _{DS}	-20	V
V _{GS Max}	± 12	٧
$R_{DS(on) max}$ (@V _{GS} = -4.5V)	54	$\mathbf{m}\Omega$
$R_{DS(on) max}$ (@V _{GS} = -2.5V)	95	$\mathbf{m}\Omega$

Application(s)

System/Load Switch

Features and Benefits

Features

Low $R_{DS(on)}$ ($\leq 54m\Omega$)
Industry-standard pinout
Compatible with existing Surface Mount Techniques
RoHS compliant containing no lead, no bromide and no halogen
MSL1, Consumer qualification

Benefits

	Lower switching losses
	Multi-vendor compatibility
results in	Easier manufacturing
\Rightarrow	Environmentally friendly
	Increased reliability

Absolute Maximum Ratings

Absolute Maximum natings					
Symbol Parameter		Max.	Units		
V _{DS}	Drain-Source Voltage	-20	V		
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	-4.3			
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	-3.4	Α		
I _{DM}	Pulsed Drain Current	-18			
P _D @T _A = 25°C	Maximum Power Dissipation	1.3	w		
P _D @T _A = 70°C Maximum Power Dissipation		0.8	T vv		
	Linear Derating Factor	0.01	W/°C		
V _{GS}	Gate-to-Source Voltage	± 12	V		
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C		

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
$R_{\theta JA}$	Junction-to-Ambient (t<10s) ®		99	C/VV

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10 www.irf.com

International
TOR Rectifier

Electric Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20			٧	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.01		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		42	54	mΩ	V _{GS} = -4.5V, I _D = -4.3A ②
1 1DS(on)	Static Dialific-Source Off-nesistatice		71	95	11122	V _{GS} = -2.5V, I _D = -3.4A ②
$V_{GS(th)}$	Gate Threshold Voltage	-0.4		-1.1	>	$V_{DS} = V_{GS}$, $I_D = -10\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1	μA	$V_{DS} = -16V, V_{GS} = 0V$
	Diam-to-Source Leakage Current			150	μΑ	$V_{DS} = -16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage	_	_	-100	nA	V _{GS} = 12V
	Gate-to-Source Reverse Leakage		_	100	IIA	V _{GS} = -12V
R_{G}	Internal Gate Resistance		8.9		Ω	
gfs	Forward Transconductance	6.5			S	$V_{DS} = -10V, I_{D} = -4.3A$
Q_g	Total Gate Charge		6.9			$I_D = -4.3A$
Q_{gs}	Gate-to-Source Charge		1.0		nC	V _{DS} =-10V
Q_{gd}	Gate-to-Drain ("Miller") Charge		2.9			V _{GS} = -4.5V ②
t _{d(on)}	Turn-On Delay Time		7.0			V _{DD} =-10V②
t _r	Rise Time		12			I _D = -1A
t _{d(off)}	Turn-Off Delay Time		34		ns	$R_G = 6.8\Omega$
t _f	Fall Time		25			V _{GS} = -4.5V
C _{iss}	Input Capacitance		570			V _{GS} = 0V
C _{oss}	Output Capacitance		160		pF	V _{DS} = -16V
C _{rss}	Reverse Transfer Capacitance		110			f = 1.0KHz

Source - Drain Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-1.3		MOSFET symbol
	(Body Diode)			-1.0	A	showing the
I _{SM}	Pulsed Source Current			-18		integral reverse
	(Body Diode) ①			-10		p-n junction diode.
V_{SD}	Diode Forward Voltage			-1.2	٧	$T_J = 25^{\circ}C$, $I_S = -4.3A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		21	32	ns	$T_J = 25^{\circ}C$, $V_R = -16V$, $I_F = -4.3A$
Q _{rr}	Reverse Recovery Charge		9.0	14	nC	di/dt = 100A/µs ②

International **TOR** Rectifier

IRLML2244TRPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International

TOR Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International **TOR** Rectifier

IRLML2244TRPbF

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

International

TOR Rectifier

200 $R_{\mbox{\footnotesize DS}}(\mbox{on}), \mbox{ Drain-to -Source On Resistance } (\mbox{$\mathfrak{m}\Omega$})$ 160 Vgs = -2.5V120 80 40 0 0 5 35 15 20 25 30 -I_D, Drain Current (A)

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

International **IOR** Rectifier

IRLML2244TRPbF

Fig 15. Typical Threshold Voltage Vs. Junction Temperature

Fig 16. Typical Power Vs. Time

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS					
SYMBOL	MILLIM	ETERS	INCHES		
STIVIDOL	MIN	MAX	MIN	MAX	
Α	0.89	1.12	0.035	0.044	
A1	0.01	0.10	0.0004	0.004	
A2	0.88	1.02	0.035	0.040	
b	0.30	0.50	0.012	0.020	
С	0.08	0.20	0.003	0.008	
D	2.80	3.04	0.110	0.120	
E	2.10	2.64	0.083	0.104	
E1	1.20	1.40	0.047	0.055	
е	0.95	BSC	0.037	BSC	
e1	1.90	BSC	0.075	BSC	
L	0.40	0.60	0.016	0.024	
L1	0.54	REF	0.021	REF	
L2	0.25	BSC	0.010	BSC	
0	0	8	0	8	

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 3. CONTROLLING DIMENSION: MILLIMETER.
- A CONTROLLING DIMENSION MILLIMETER.

 ADATUM PLANE HIS LOCATED AT THE MOLD PARTING LINE.

 ADATUM AND B TO BE DETERMINED AT DATUM PLANE H.

 ADMENSIONS D AND E1 ARE MEASUPED AT DATUM PLANE H. DIMENSIONS DOES NOT INCLIDE MOLD PROTINGIONS OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM [0.010 INCH] PER SIDE.

 ADMENSION LIS THE LEAD LEAVING THE ORDERING TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 228 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YEAR	Υ	WEEK	W	
2001	1	01	Α	
2002	2	02	В	
2003	3	03	С	
2004	4	04	D	
2005	5			
2006	6			
2007	7			
2008	8	1	1	
2009	9	y	7	
2010	0	24	X	
		25	Υ	
		26	Z	

A= IRLML2402 S = IRLML6244B = IRLML2803 T = IRLML6246 C= IRLML6302 U = IRLML6344 D = IRLML5103 E = IRLML6402 F = IRLML6401 G= IRLML2502 Y = IRLML2246 Z = IRFML9244

V= IRLML6346 W = IRFML8244 X = IRLML2244

H = IRLML5203 I = IRLML0030 J = IRLML2030K = IRLML0100L = IRLML0060 M = IRLML0040 N = IRLML2060 P = IRLML9301

R = IRLML9303

Note: A line above the work week (as shown here) indicates Lead - Free.

W = (27-52) IF PRECEDED BY ALETTER

YEAR	2 Y	WORK WEEK	W
2001	Α	27	Α
2002	В	28	В
2003	С	29	С
2004	D	30	D
2005	Ε		
2006	F		
2007	G		
2008	Н	1	1
2009	J	7	7
2010	K	50	Χ
		51	Υ
		52	Z

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3TM Tape & Reel Information Dimensions are shown in millimeters (inches)

NOTES:

CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

International

TOR Rectifier

Orderable part number	Package Type	Standard Pack Note		Note
_		Form	Quantity	
IRLML2244TRPbF	Micro3	Tape and Reel	3000	

Qualification information[†]

Qualification level	Consumer ^{††} (per JEDEC JES D47F ^{†††} guidelines)		
	(per JEDEC JES D4/F guidelines)		
		MS L 1	
Moisture Sensitivity Level	Micro3	(per IPC/JEDEC J-STD-020D ^{†††})	
RoHS compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- 3 Surface mounted on 1 in square Cu board
- Refer to <u>application note #AN-994.</u>

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.01/2011

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.