CLAIMS

1. A compound having the structural formula IB or a pharmaceutically acceptable salt thereof,

$$X_7$$
 X_6
 X_4
 X_5
 X_4

formula IB

wherein X_1 , X_2 , R_1 and R_2 are independently selected from the group comprising oxo, hydrogen, hydroxyl, oxyalkyl, alkyl, alkenyl, alkynyl, alkyloxy, alkyloxyalkyl, alkylthioalkyl, alkoxycarbonyl, alkylthiocarbonyl, alkanoyl, cycloalkylalkyl, cycloalkylcarbonyl, cycloalkylalkanoyl, cycloalkylthiocarbonyl, cycloalkylalkoxycarbonyl, cycloalkylalkoxythiocarbonyl, cycloalkylthioalkyl, alkylcarbonyloxyalkyl, cycloalkylcarbonyloxyalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylcarbonyl, aryloxycarbonyl, aralkoxycarbonyl, arylalkylthiocarbonyl, aryloxyalky, arylthioalkyl, haloalkyl, hydroxyalkyl, aralkanoyl, aroyl, aryloxycarbonylalkyl, aryloxyalkanoyl, carboxyl, alkenylcarbonyl, alkynylcarbonyl, Het¹, Het¹alkyl, Het¹oxyalkyl, Het¹aryl, Het¹aralkyl, Het¹cycloalkyl, Het¹alkoxycarbonyl, Het¹alkylthiocarbonyl, Het¹oxycarbonyl, Het¹thiocarbonyl, Het¹alkanoyl, Het¹aralkanoyl, Het¹aryloxyalkyl, Het¹alkyloxyalkyl, Het¹arylthioalkyl, Het¹aryloxycarbonyl, Het¹aralkoxycarbonyl, Het¹aroyl, Het¹oxyalkylcarbonyl, Het¹alkyloxyalkylcarbonyl, Het¹aryloxyalkylcarbonyl, Het¹carbonyloxyalkyl, Het¹alkylcarbonyloxyalkyl, Het¹aralkylcarbonyloxyalkyl, Het²alkyl, Het²oxyalkyl, Het²alkyloxyalkyl, Het²aralkyl, Het²carbonyl, Het²oxycarbonyl, Het²thiocarbonyl, Het²alkanoyl, Het²alkylthiocarbonyl, Het²alkoxycarbonyl, Het²aralkanoyl, Het²aralkoxycarbonyl, Het²aryloxycarbonyl, Het²aroyl, Het²aryloxyalkyl, Het²arylthioalkyl, Het²oxyalkylcarbonyl, Het²alkyloxyalkylcarbonyl, Het²aryloxyalkylcarbonyl, Het²carbonyloxyalkyl, Het²alkylcarbonyloxyalkyl, Het²aralkylcarbonyloxyalkyl, CR3=NR4, CR3=N(OR4), aminocarbonyl, aminoalkanoyl, aminoalkyl, optionally substituted by one or more substituents independently selected from the group comprising alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen or amino optionally mono- or disubstituted wherein the substituents are independently

selected from the group comprising alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, aylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR³, SR^3 , $SO_2NR^3R^4$, $SO_2N(OH)R^3$, CN, $CR^3=NR^4$, $S(O)R^3$, SO_2R^3 , $CR^3=N(OR^4)$, N_3 , NO_2 , $NR^{3}R^{4}, \quad N(OH)R^{3}, \quad C(O)R^{3}, \quad C(S)R^{3}, \quad CO_{2}R^{3}, \quad C(O)SR^{3}, \quad C(O)NR^{3}R^{4}, \quad C(S)NR^{3}R^{4}, \quad C(S$ $C(O)N(OH)R^4$, $C(S)N(OH)R^3$, $NR^3C(O)R^4$, $NR^3C(S)R^4$, $N(OH)C(O)R^4$, $N(OH)C(S)R^3$, NR³CO₂R⁴, NR3C(O)NR4R5, $NR^3C(S)NR^4R^5$, $N(OH)CO_2R^3$, $NR^3C(O)SR^4$, and $N(OH)C(O)NR^3R^4$, $N(OH)C(S)NR^3R^4$, $NR^3C(O)N(OH)R^4$, $NR^3C(S)N(OH)R^4$, $NR^3SO_2R^4$, $NHSO_2NR^3R^4$, $NR^3SO_2NHR^4$, $P(O)(OR^3)(OR^4)$, wherein t is an integer between 1 and 2 and R³, R⁴ and R⁵ are each independently selected from the group comprising hydrogen, hydroxyl, alkyi, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino alkylthiocarbonylamino and arylthiocarbonylamino;

wherein X_3 participates together with X_3 ' to an oxo functional group, or wherein X_3 is selected from the group comprising hydrogen, hydroxyl, sulfur, oxyalkyl, oxycarbonyl, alkyl, Het¹alkyl, alkenyl, alkynyl, aminoalkyl, aminoacyl, alkylcarbonylamino, alkylthiocarbonylamino, Het1, glycosyl, thio derivatives thereof, amino derivatives thereof, hydroxyl-protected derivatives thereof, alkyloxycarbonyl, optionally substituted by one or more substituents independently selected from the group comprising alkyl, aralkyl, aryl, Het^1 , Het^2 , cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl and aminocarbonyl; and X_3 is selected from the group comprising hydrogen, alkyl, aryl, Het1, glycosyl, thio derivatives thereof, amino derivatives thereof, hydroxyl-protected derivatives thereof, aralkyl, and optionally substituted by one or more substituents independently selected from the group comprising alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O), hydroxy, cyano, halogen or amino optionally mono- or disubstituted wherein the substituents are independently selected from the group comprising alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy. aylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl and cycloalkylalkyl;

wherein X_4 and X_7 are independently selected from the group comprising hydrogen, halogen, oxogen, oxo, carbonyl, thiocarbonyl, hydroxyl, alkyl, aryl, Het^1 ,

glycosyl, thio derivatives thereof, amino derivatives thereof, hydroxyl-protected derivatives Het¹alkyl, thereof, Het¹aryl, alkenyl, alkynyl, hydroxyalkyl, hydroxycarbonyl, hydroxycarbonylalkyl, hydroxycarbonylaryl, hydroxycarbonyloxyalkyl hydroxycarbonyloxyaryl; aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, aminoalkyl, aminoaryl, cyano, halogen or amino optionally mono- or disubstituted wherein the substituents are independently selected from the group comprising alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy. alkylthio, alkoxy, aryloxyalkoxy, aylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, Het¹. Het², aikyloxycarbonyl, carboxyl, aminocarbonyl, cycloalkyl and cycloalkylalkyl;

wherein X_5 participates to a double bond between the carbon atoms in position 4 and 5 or between carbon atoms in position 5 and 6, and X_6 is independently selected from the group comprising hydrogen, hydroxyl and hydroxyalkyl, or wherein X_5 and X_6 are independently selected from the group comprising halogen, hydrogen, hydroxyl, hydroxyalkyl, aminoalkyl, aminoaryl, optionally substituted by one or more substituents independently selected from the group comprising alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl, aminocarbonyl, and

wherein n is an integer between 0 and 10,

provided that when X_6 and X_4 are H, when X_5 participates to a double bond between the carbon atoms in position 5 and 6, when X_3 participates together with X_3 ' to an oxo functional group, when n is zero and X_1 , X_2 , R_1 and R_2 are H, X_7 is not hydroxyl.

2. A compound according to claim 1,

wherein X_1 , X_2 , R_1 and R_2 are independently selected from the group comprising oxo, hydrogen, hydroxyl, oxyalkyl, alkyl, alkenyl, alkynyl, alkyloxy, alkyloxyalkyl, alkylthioalkyl, alkoxycarbonyl. alkylthiocarbonyl, alkanoyl, cycloalkylalkyl. cycloalkylcarbonyl, cycloalkylalkanoyl, cycloalkylthiocarbonyl, cycloalkylalkoxycarbonyl, cycloalkylalkoxythiocarbonyl, cycloalkylthioalkyl, alkylcarbonyloxyalkyl, cycloalkylcarbonyloxyalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylcarbonyl, aryloxycarbonyl, arylthiocarbonyl, aralkoxycarbonyl, arylalkylthiocarbonyl, aryloxyalky, arylthioalkyl, haloalkyl, hydroxyalkyl, aralkanoyl, aroyl, aryloxycarbonylalkyl, aryloxyalkanoyl, carboxyl, alkenylcarbonyl, alkynylcarbonyl, Het¹, Het¹alkyl, Het¹oxyalkyl, Het¹aryl, Het¹aralkyl, Het¹cycloalkyl, Het¹alkoxycarbonyl, Het¹alkylthiocarbonyl, Het¹oxycarbonyl. Het¹thiocarbonyl, Het¹alkanoyl, Het¹aralkanoyl, Het¹aryloxyalkyl, Het¹alkyloxyalkyl,

76

Het¹arylthioalkyl, Het¹aryloxycarbonyl, Het¹aralkoxycarbonyl, Het¹aroyl, Het¹oxyalkylcarbonyl, Het¹alkyloxyalkylcarbonyl, Het¹aryloxyalkylcarbonyl, Het¹carbonyloxyalkyl, Het¹alkylcarbonyloxyalkyl, Het¹aralkylcarbonyloxyalkyl, Het²alkyl, Het²oxyalkyl, Het²alkyloxyalkyl, Het²aralkyl, Het²carbonyl, Het²oxycarbonyl, Het²thiocarbonyl, Het²alkanoyl, Het²alkylthiocarbonyl, Het²alkoxycarbonyl, Het²aralkanoyl, Het²aralkoxycarbonyl, Het²aryloxycarbonyl, Het²aroyl, Het²aryloxyalkyl, Het²arylthioalkyl, Het²oxyalkylcarbonyl, Het²alkyloxyalkylcarbonyl, Het²aryloxyalkylcarbonyl, Het²carbonyloxyalkyl, Het²alkylcarbonyloxyalkyl, Het²aralkylcarbonyloxyalkyl, CR3=NR4, CR3=N(OR4), aminocarbonyl, aminoalkanoyl, aminoalkyl, optionally substituted by one or more substituents independently selected from the group comprising alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen or amino optionally mono- or disubstituted wherein the substituents are independently selected from the group comprising alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, aylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR³, SR³, SO₂NR³R⁴, SO₂N(OH)R³, CN, CR³=NR⁴, S(O)R³, SO₂R³, CR³=N(OR⁴), N₃, NO₂, $NR^{3}R^{4}, \quad N(OH)R^{3}, \quad C(O)R^{3}, \quad C(S)R^{3}, \quad CO_{2}R^{3}, \quad C(O)SR^{3}, \quad C(O)NR^{3}R^{4}, \quad C(S)NR^{3}R^{4}, \quad C(S$ $C(O)N(OH)R^4$, $C(S)N(OH)R^3$, $NR^3C(O)R^4$, $NR^3C(S)R^4$, $N(OH)C(O)R^4$, $N(OH)C(S)R^3$, NR³CO₂R⁴, NR3C(O)NR4R5, NR³C(S)NR⁴R⁵, and N(OH)CO₂R³. NR3C(O)SR4, $N(OH)C(O)NR^3R^4,\ N(OH)C(S)NR^3R^4,\ NR^3C(O)N(OH)R^4,\ NR^3C(S)N(OH)R^4,\ NR^3SO_2R^4,$ NHSO₂NR³R⁴, NR³SO₂NHR⁴, P(O)(OR³)(OR⁴), wherein t is an integer between 1 and 2 and R³, R⁴ and R⁵ are each independently selected from the group comprising hydrogen, hydroxyl, alkyl, alkenyl, alkynyi. aminoalkyl. aminoaryl, alkylcarbonylamino, arylcarbonylamino alkylthiocarbonylamino and arylthiocarbonylamino;

wherein X_3 participates together with X_3 ' to an oxo functional group, or wherein X_3 is selected from the group comprising hydrogen, hydroxyl, sulfur, oxyalkyl, oxycarbonyl, alkyl, Het¹alkyl, alkenyl, alkynyl, aminoalkyl, aminoacyl, alkylcarbonylamino, alkylthiocarbonylamino, Het¹, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, xylofuranosyl, lyxosyl, talosyl, psicosyl, idosyl, gulosyl, altrosyl, allosyl, mannoheptulosyl, sedoheptulosyl, abequosyl, isomaltosyl, kojibiosyl, laminarabiosyl,

77

nigerosyl, primeverosyl, rutinosyl, tyvelosyl, maltosyl, lactosyl, sucrosyl, cellobiosyl, trehalosyl, gentiobiosyl, melibiosyl, turanosyl, sophorosyl, isosucrosyl, raffinosyl, gentianosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, 2-amino-2-deoxy mannosyl, 2-acetamido-2deoxy-mannosyl, 2-amino-1,3-cyclohexanediol, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combination thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, di-, tri-, oligo- and polysaccharide thereof, alkyloxycarbonyl, optionally substituted by one or more substituents independently selected from the group comprising alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl and aminocarbonyl; and X_3 is selected from the group comprising hydrogen, alkyl, aryl, Het¹, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, xylofuranosyl, lyxosyl, talosyl, psicosyl, idosyl, gulosyl, altrosyl, allosyl, mannoheptulosyl, sedoheptulosyl, abequosyl, isomaltosyl, kojibiosyl, laminarabiosyl, nigerosyl, primeverosyl, rutinosyl, tyvelosyl, maltosyl, lactosyl, sucrosyl, cellobiosyl, trehalosyl, gentiobiosyl, melibiosyl, turanosyl, sophorosyl, isosucrosyl, raffinosyl, gentianosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2deoxy-galactosyl, 2-amino-2-deoxy mannosyl, 2-acetamido-2-deoxy-mannosyl, 2-amino-1,3-cyclohexanediol, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combination thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, di-, tri-, oligo- and polysaccharide thereof, aralkyl, and optionally substituted by one or more substituents independently selected from the group comprising alkyl, aralkyl, aryl, Het1, Het2, cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl, aminocarbonyl. monodi(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen or amino optionally mono- or disubstituted wherein the substituents are independently selected from the group comprising alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, aylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl cycloalkylalkyl;

wherein X_4 and X_7 are independently selected from the group comprising hydrogen, oxygen, halogen, oxo, carbonyl, thiocarbonyl, hydroxyl, alkyl, aryl, Het^1 , glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl,

erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, xylofuranosyl, lyxosyl, talosyl, psicosyl, idosyl, gulosyl, altrosyl, allosyl, mannoheptulosyl, sedoheptulosyl, abequosyl, isomaltosyl, kojibiosyl, laminarabiosyl, nigerosyl, primeverosyl, rutinosyl, tyvelosyl, maltosyl, lactosyl, sucrosyl, cellobiosyl, trehalosyl, gentiobiosyl, melibiosyl, turanosyl, sophorosyl, isosucrosyl, raffinosyl, gentianosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2deoxy-galactosyl, 2-amino-2-deoxy mannosyl, 2-acetamido-2-deoxy-mannosyl, 2-amino-1,3-cyclohexanediol, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combination thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, di-, tri-, oligo- and polysaccharide thereof; Het¹alkyi, Het¹aryl. alkenyl, alkynyl, hydroxyalkyl, hydroxycarbonyl, hydroxycarbonylalkyl, hydroxycarbonylaryl, hydroxycarbonyloxyalkyl, hydroxycarbonyloxyaryl; aminocarbonyl, monoor di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, aminoalkyl, aminoaryl, cyano, halogen or amino optionally mono- or disubstituted wherein the substituents are independently selected from the group comprising alkyl, aryl, aralkyl, aryloxy, arylamino, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, aylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino. Het¹. Het², alkyloxycarbonyl, carboxyl, aminocarbonyl, cycloalkyl and cycloalkylalkyl;

wherein X_5 participates to a double bond between the carbon atoms in position 4 and 5 or between carbon atoms in positions 5 and 6, and X_6 is independently selected from the group comprising hydrogen, hydroxyl and hydroxyalkyl, or

wherein X_5 and X_6 are independently selected from the group comprising halogen hydrogen, hydroxyl, hydroxyalkyl, aminoalkyl, aminoaryl, optionally substituted by one or more substituents independently selected from the group comprising alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl, aminocarbonyl, and

wherein n is an integer between 0 and 10.

3. A compound according to claim 1 or 2,

wherein X_1 , X_2 , R_1 and R_2 is selected from the group comprising hydrogen, hydroxyl, oxyalkyl, oxo, alkyl, alkenyl, alkynyl, alkyloxy, alkyloxyalkyl, alkylthioalkyl, alkoxycarbonyl, alkylthiocarbonyl, alkanoyl, cycloalkylalkyl, cycloalkylalkoxycarbonyl, cycloalkylalkoxythiocarbonyl, cycloalkylalkoxythiocarbonyl, cycloalkylthioalkyl, alkylcarbonyloxyalkyl,

79

cycloalkylcarbonyloxyalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylcarbonyl, aryloxycarbonyl, arylthiocarbonyl, aryloxycarbonyl, arylalkylthiocarbonyl, aryloxyalky, arylthioalkyl, haloalkyl, hydroxyalkyl, aralkanoyl, aroyl, aryloxycarbonylalkyl, aryloxyalkanoyl, carboxyl, alkenylcarbonyl and alkynylcarbonyl;

wherein X_3 participates together with X_3 to an oxo functional group, or wherein X_3 is selected from the group comprising hydrogen, hydroxyl, sulfur, oxyalkyl, oxycarbonyl alkyl, Het¹alkyl. alkenyl, alkynyl, aminoalkyl, aminoacyl, alkylcarbonylamino, alkylthiocarbonylamino, Het¹, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, xylofuranosyl, lyxosyl, talosyl, psicosyl, idosyl, gulosyl, altrosyl, allosyl, mannoheptulosyl, sedoheptulosyl, abequosyl, isomaltosyl, kojibiosyl, laminarabiosyl, nigerosyl, primeverosyl, rutinosyl, tyvelosyl, maltosyl, lactosyl, sucrosyl, cellobiosyl, trehalosyl, gentiobiosyl, melibiosyl, turanosyl, sophorosyl, isosucrosyl, raffinosyl, gentianosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, 2-amino-2-deoxy mannosyl, 2-acetamido-2deoxy-mannosyl, 2-amino-1,3-cyclohexanediol, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combination thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, disaccharide thereof, trisaccharide thereof, oligosaccharide and polysaccharide thereof, alkyloxycarbonyl optionally substituted by one or more substituents independently selected from the group comprising alkyl, aralkyl, aryl, Het1, Het^2 , cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl and aminocarbonyl; and $\mathrm{X_3}$ is selected from the group comprising hydrogen, alkyl, aryl, aralkyl, Het1, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, xylofuranosyl, lyxosyl, talosyl, psicosyl, idosyl, gulosyl, altrosyl, allosyl, mannoheptulosyl, sedoheptulosyl, abequosyl, isomaltosyl, kojibiosyl, laminarabiosyl, nigerosyl, primeverosyl, rutinosyl, tyvelosyl, maltosyl, lactosyl, sucrosyl, cellobiosyl, trehalosyl, gentiobiosyl, melibiosyl, turanosyl, sophorosyl, isosucrosyl, raffinosyl, gentianosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, 2-amino-2deoxy mannosyl, 2-acetamido-2-deoxy-mannosyl, 2-amino-1,3-cyclohexanediol, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combination thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, disaccharide thereof, trisaccharide thereof, oligosaccharide and polysaccharide thereof;

80

wherein X_4 and X_7 are independently selected from the group comprising hydrogen, oxo, carbonyl, thiocarbonyl, hydroxyl, alkyl, aryl, Het¹, Het¹alkyl, Het¹aryl, alkenyl, hydroxyalkyl, hydroxycarbonyl, hydroxycarbonylalkyl, alkynyl, hydroxycarbonylaryl, hydroxycarbonyloxyalkyl, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, xylofuranosyl, lyxosyl, talosyl, psicosyl, idosyl, gulosyl, altrosyl, allosyl, mannoheptulosyl, sedoheptulosyl, abequosyl, isomaltosyl, kojibiosyl, laminarabiosyl, nigerosyl, primeverosyl, rutinosyl, tyvelosyl, maltosyl, lactosyl, sucrosyl, cellobiosyl, trehalosyl, gentiobiosyl, melibiosyl, turanosyl, sophorosyl, isosucrosyl, raffinosyl, gentianosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, 2-amino-2-deoxy mannosyl, 2acetamido-2-deoxy-mannosyl, 2-amino-1,3-cyclohexanediol, L or D isomers thereof, $\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$ form thereof, pyranose or furanose form thereof, combination thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, disaccharide thereof, trisaccharide thereof, oligosaccharide and polysaccharide thereof;

wherein X_6 participates to a double bond between the carbon atoms in position 4 and 5 or between carbon atoms in positions 5 and 6, and X_6 is independently selected from the group comprising hydrogen, hydroxyl, and hydroxyalkyl, or wherein X_5 and X_6 are independently selected from the group comprising hydrogen, hydroxyl, hydroxyalkyl, aminoalkyl, aminoaryl, optionally substituted by one or more substituents independently selected from the group comprising alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl, aminocarbonyl, and

wherein n is an integer between 0 and 5.

4. A compound according to any of claims 1 to 3,

wherein X_1 , X_2 , R_1 and R_2 is selected from the group comprising hydrogen, hydroxyl, alkyloxy, oxo and oxyalkyl,

wherein X_3 participates together with X_3 ' to an oxo functional group, or wherein X_3 is selected from the group comprising hydrogen, hydroxyl, oxyalkyl, oxycarbonyl, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, 2-amino-2-deoxy mannosyl, 2-acetamido-2-deoxy-mannosyl, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combination

thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, disaccharide thereof, trisaccharide thereof, oligosaccharide and polysaccharide thereof; and X'_3 is selected from the group comprising alkyl, aryl and aralkyl, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, 2-amino-2-deoxy mannosyl, 2-acetamido-2-deoxy-mannosyl, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combination thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, disaccharide thereof, trisaccharide thereof, oligosaccharide and polysaccharide thereof;

wherein X_4 and X_7 are independently selected from the group comprising hydrogen, oxygen, oxo, hydroxyl, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-mannosyl, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combination thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, disaccharide thereof, trisaccharide thereof, oligosaccharide and polysaccharide thereof;

wherein X_5 and X_6 are hydrogen or wherein X_5 participates to a double bond between the carbon atoms in position 4 and 5, and X_6 is hydrogen, and

wherein n is an integer between 0 and 2.

5. A compound according to any of claims 1 to 4,

wherein X_1 , X_2 , X_3 , X_3 , X_6 , X_7 , R_1 , R_2 and n are selected from the group indicated in claims 1 to 3; and

wherein X_4 is equal to X_5 and is selected from the group comprising halogen, aminoalkyl, aminoaryl, optionally substituted by one or more substituents independently selected from the group comprising alkyl, aralkyl, aryl, Het^1 , Het^2 , cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl and aminocarbonyl, or wherein X_5 participates to a double bond between the carbon atoms in position 5 and 6, and X_4 is independently selected from the group comprising hydrogen, aminoalkyl, aminoaryl, optionally substituted by one or

more substituents independently selected from the group comprising alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl and aminocarbonyl.

- 6. A compound according to any of claims 1 to 4, wherein X_1 and X_2 are –OMe, wherein R_1 and R_2 are –H, wherein X_4 is hydrogen, wherein X_3 participates together with X_3 ' to an oxo functional group, wherein X_5 participates to a double bond between the carbon atoms in position 4 and 5, wherein X_6 is hydrogen, wherein X_7 is hydroxyl, glucosyl, fructosyl, galactosyl, mannosyl, fucosyl, cellobiosyl, gentiobiosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, disaccharide or trisaccharide thereof; and wherein n is 0.
- 7. A compound according to any of claims 1 to 4, wherein X_1 and X_2 are –OMe, wherein R_1 and R_2 are –H, wherein X_3 is hydrogen, hydroxyl, oxyalkyl or oxycarbonyl, wherein X_3 ' is glucosyl, fructosyl, galactosyl, mannosyl, fucosyl, cellobiosyl, gentiobiosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, a disaccharide or a trisaccharide thereof, wherein X_4 is hydrogen, wherein X_5 participates to a double bond between the carbon atoms in position 5 and 6, wherein X_6 is –H, wherein X_7 is hydrogen, oxygen, hydroxyl or oxo, and wherein n is 0.
- 8. A compound according to any of claims 1 to 4, wherein X_1 and X_2 are –OMe, wherein R_1 and R_2 are –H, wherein X_3 is glucosyl, fructosyl, galactosyl, mannosyl, fucosyl, cellobiosyl, gentiobiosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, a disaccharide or a trisaccharide thereof, wherein X_3 is hydrogen, alkyl or aralkyl, wherein X_4 is hydrogen, wherein X_5 participates to a double bond between the carbon atoms in position 5 and 6, wherein X_6 is –H, wherein X_7 is hydrogen, oxygen, hydroxyl or oxo, and wherein n is 0.
- 9. A compound according to any of claims 1 to 4, wherein X_1 and X_2 are –OMe, wherein R_1 and R_2 are –H, wherein X_3 participates together with X_3 ' to an oxo functional group, wherein X_4 is hydroxyl, glucosyl, fructosyl, galactosyl, mannosyl, fucosyl, cellobiosyl, gentiobiosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, a disaccharide or a trisaccharide thereof, wherein X_5 participates to a double bond between the carbon atoms in position 5 and 6, wherein X_6 is –H, wherein X_7 is hydrogen, oxygen, hydroxyl or oxo, and wherein n is 0.
- 10. Compound of formula IB a pharmaceutically acceptable salt thereof, wherein X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , R_1 , R_2 and n are selected as indicated in Table A or Table B.
- 11. Method for synthesizing a compound having the structural formula IB

$$X_7$$
 X_6
 X_5
 X_4
 X_5
 X_4
 X_5
 X_4
 X_5
 X_4
 X_5
 X_4
 X_5
 X_5
 X_4
 X_5
 X_5
 X_5
 X_4

formula IB

wherein X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , R_1 , R_2 and n are selected from the group as indicated in any of claims 1 to 10, said method comprising the steps of

a) providing a starting material having the structural formula IV,

formula IV

wherein X_3 , X_3 ' and X_7 are selected from the group as indicated in any of claims 1 to 10, and wherein P is a protecting group,

b) effecting reaction between the compound of step a) with an organometallic compound having the structural formula V

$$R_1$$
 X_1
 $(CH_2)n-W-Hall$

formula V

wherein X_1 , X_2 , R_1 , R_2 and n are selected from the group as indicated in any of claims 1 to 10, wherein W is a metal or a combination of metals and wherein Hal is a halogen atom,

to result in an intermediate having the structural formula III'B

84

$$\begin{array}{c|c} X_3 \\ X_3 \\ Y_3 \\ Y_4 \\ Y_2 \\ Y_2 \\ \end{array}$$

formula III'B

wherein X_1 , X_2 , X_3 , X_3 , X_7 , R_1 , R_2 and n are selected from the group as indicated in any of claims 1 to 10, and wherein p is a protecting group,

c) effecting reaction between the compound of step b) with an organometallic compound having the structural formula VI

Hal-W-X'3

formula VI

wherein X'_3 is selected from the group as indicated in any of claims 1 to 10, wherein W is a metal or a combination of metals, and wherein Hal is a halogen atom,

to result in an intermediate having the structural formula IIIB

$$X_3 \times X_1 \times X_2 \times X_2$$

formula IIIB

wherein X_1 , X_2 , X_3 , X_3 , X_7 , R_1 , R_2 and n are selected from the group as indicated in any of claims 1 to 10, wherein P is a protecting group,

d) deprotecting the X_7 group of the compound obtained in step c) to form an compound having the structural formula IIB

$$X_{1}$$
 X_{2}
 X_{2}
 X_{3}
 X_{1}
 X_{1}
 X_{2}
 X_{2}

formula II B

wherein X_1 , X_2 , X_3 , X_3 , X_7 , R_1 , R_2 and n are selected from the group as indicated in any of claims 1 to 10, and

- e) oxidizing by reaction with a suitable oxidizing agent or agents to from a compound of formula IB or
- e) coupling an O-protected glycosyl or non-protected glycosyl to form a compound of formula IIB wherein X_1 , X_2 , X_3 , X'_3 , X_7 , R_1 , R_2 and n are selected from the group as indicated in any of claims 1 to 10 and X_7 is an O-protected glycosyl or a non-protected glycosyl, and
- f) deprotecting the O-protected groups of glycosyl to form a compound of formula IB wherein X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , R_1 , R_2 and n are selected from the group as indicated in any of claims 1 to 10, and X_7 is a glycosyl, thio derivatives thereof, amino derivatives thereof, hydroxyl-protected derivatives thereof.
- 12. A compound obtainable by any of the steps according to the method of claim 11.
- 13. A compound designated as compound UBS1664

14. A compound designated as compound UBS3327.

WO 2004/055039

86

UBS3327

15. A compound designated as compound UBS3328.

UBS3328

- 16. A compound according to any of claims 1 to 10 and 12 to 15 for use as a medicament.
- 17. Use of a compound according to any of claims 1 to 10 and 12 to 15 for the preparation of a medicament for treating cancer.
- 18. A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound according to any of claims 1 to 10 and 12 to 15.
- 19. Use of a pharmaceutical composition according to claim 18 in the treatment of cancer.
- 20. Method of treating cancer comprising administrating to an individual in need of such treatment a pharmaceutical composition according to claim 18.