10 Cuestiones de TEORIA (6 puntos). Puntuación: BIEN:+0.6 puntos. MAL: -0.15 puntos, N.C: 0

- 1. En el circuito de la figura y suponiendo V = 2V y $V\gamma = 0.7V$ para el diodo. Se puede AFIRMAR que:
 - [A] Si la tensión de entrada (Vi) es positiva, el diodo conduce y la tensión de salida (Vo) es 2V.
 - [B] Si la tensión de entrada (Vi) es menor que +2.7V, la salida Vo es igual a Vi, pues no hay caída de potencial en R.
 - [C] Si la tensión de entrada (Vi) es negativa, el diodo no conduce y la tensión de salida (Vo) es 0V.
 - [D] Cuando la tensión de entrada (Vi) es positiva y mayor que +2.7V, el diodo conduce y la salida Vo es igual a Vi.

- 2. Dado el circuito de la figura con diodos LED, indique cuál de las siguientes afirmaciones es **CORRECTA**, teniendo en cuenta que para los LED, V_{LED} =1.5V e I_{LED} =15mA, y para la puerta NAND, V_{OL} =0.15V y V_{OH} =4.5V (V_{CC} = 5V).
 - [A] En el nivel lógico alto de salida, los LED brillarán adecuadamente con una resistencia R mayor de 100Ω .
 - [B] En el nivel lógico bajo de salida, los LED brillarán adecuadamente con una resistencia R menor de 200Ω.
 - [C] En el nivel lógico alto de salida, los LED brillarán adecuadamente con una resistencia R de 100Ω .
 - [D] Los LED no llegarán a brillar para ninguno de los niveles lógicos de salida de la puerta NAND.

- 3. Para el circuito con diodos de la figura y suponiendo que A = "0" (0V) y B = "1" (5V) señale la afirmación**CORRECTA** $, considerando <math>V\gamma = 0.7V$ para ambos diodos:
 - [A] $V_{AK} = -4.3V$ para el diodo cuya entrada es B.
 - [B] La tensión de la salida S es de 5V.
 - [C] Se trata de una puerta OR de dos entradas.
 - [D] La corriente que circula por la resistencia se reparte por los diodos.

- 4. Acerca de las características del transistor MOSFET, señale la afirmación FALSA.
- [A] Permiten una alta densidad de integración, adecuada para los circuitos VLSI.
- [B] Presentan un alto consumo.
- [C] Presentan una alta impedancia de entrada.
- [D] Son unipolares y simétricos.

5. En el circuito con transistor de la figura, y para los datos que se indican, indique la afirmación **FALSA**.

13 de Abril de 2018

Datos:
$$\beta = 100$$
, $V_{BE(ON)} = 0.7V$, $V_{CE(SAT)} = 0.2V$

- [A] Para una $V_i = 2.7$, la $V_{CE} = 6V$
- [B] En saturación la I_C es de 9.8mA
- [C] El transistor comienza a conducir para Vi > 0.7V
- [D] En saturación, si aumenta la V_i, aumenta la I_C

6. Para el circuito de la figura se han representado las curvas características del transistor y la recta de carga del circuito. Indique cuál de las siguientes afirmaciones es **FALSA**: (Datos: $R_B = 100k\Omega$; $V_{BE(ON)} = 0.7V$; $V_{CE(SAT)} = 0.2V$)

- [A] $R_C = 0.5k\Omega$
- [B] $\beta = 200$
- [C] Con I_B = 40 μ A, si aumentamos Vcc de 4V a 8V el transistor pasaría de estar en saturación a estar en activa.
- [D] Para una V_{BB} de 3.7 V, estamos en zona de saturación.
- 7. En el circuito inversor con BJT de la figura, ¿Para qué valor de Vi está en el límite entre activa y saturación?
 - [A] $V_i = 0.7V$
 - [B] $V_i = 2.7V$
 - [C] $V_i = 1.92V$
 - [D] $V_i = 2.62V$

- 8. Señale la afirmación FALSA acerca del transistor MOSFET de canal N.
- [A] En la zona de saturación, la corriente I_{DS} es constante al variar V_{DS}.
- [B] En la zona óhmica, la R_{ON} equivalente es mayor cuanto mayor es V_{GS} .
- [C] El límite entre la zona óhmica y la de saturación se encuentra cuando $V_{DS} = V_{GS} V_{T}$.
- [D] La saturación se da cuando $V_{DS} \ge V_{GS} V_T$.
- 9. Dado el circuito de polarización con MOSFET de la figura, señale la afirmación CORRECTA:

$$I_{DS (SAT)} = K (V_{GS} - V_T)^2; I_{DS (OHM)} = K [2(V_{GS} - V_T)V_{DS} - V_{DS}^2]$$

- [A] El MOSFET está en la zona óhmica.
- [B] El MOSFET está en el límite entre las zonas óhmica y de saturación.
- [C] El MOSFET está saturado.
- [D] El MOSFET está en corte.

10. Indique los niveles mínimo y máximo de la tensión de salida Vo en el inversor lógico de la figura, si Vi es una onda cuadrada con valores mínimo y máximo de 0V y 5V. Suponga que en la zona óhmica se puede utilizar la siguiente expresión aproximada de la corriente:

$$I_{DS (ON)} \approx 2K(V_{GS}-V_T) V_{DS}$$

- [A] 0V y 4.7V
- [B] 0.05V y 5V
- [C] 0.08V y 4.5V
- [D] 0.03V y 5V

$$R_{D} \lessapprox 80K$$

$$Q1 \qquad Vo$$

$$Vi \qquad K = 0.5 \text{mA/V}$$

$$V_{T} = 3 \text{ V}$$

PAGINA INTENCIONADAMENTE EN BLANCO

Apellidos: Nombre:

PROBLEMA 1 (4 PTOS)

El circuito de la figura es una puerta lógica NMOS. Se pide:

Nota: En zona óhmica utilice la expresión aproximada $I_{DS} \approx 2K(V_{GS} - V_T) V_{DS}$, y en saturación $I_{DS} = K(V_{GS} - V_T)^2$

Nota: Las curvas representadas son para incrementos de 1V de V_{GS} .

[A] (20%) A partir de las gráficas obtenga el valor de la transconductancia K y de V_T del transistor MOSFET. **Justifique la respuesta**.

V _T = (V)	K =	(mA/V ²)
----------------------	-----	----------------------

[B] (20%) Calcule el punto de trabajo Q (V_{GS} , V_{DS} , I_{DS}) y el valor lógico de salida V_o con una entrada a "1" (V_i =5V). **Justifique la respuesta**. (Sugerencia: calcule el valor de la resistencia equivalente R_{ON})

$V_{GS} = (V)$	$V_{DS} = (V)$	$I_{DS} = (mA)$	R _{ON} = (kOhm)
----------------	----------------	-----------------	--------------------------

[C] (10%) Dibuje,	sobre las curvas	características,	la recta de	carga y el p	unto de traba	ijo del apa	artado an	terior.
Justi	ifique la resp	puesta.							

[D] (10%) Si **Vi = 3V**, ¿en qué zona de funcionamiento se encontrará el transistor? Se recomienda el uso de la gráfica. **Justifique la respuesta**.

Zona de funcionamiento:	
-------------------------	--

[E] (20%) Partiendo del diseño base del inversor, dibuje el circuito de una puerta **NOR NMOS** de 2 entradas, y rellene la tabla de verdad adjunta.

V1	V2	M1 (OFF/ON)	M2 (OFF/ON)	Salida (Valor lógico)
0	0			
0	1			
1	0			
1	1			

[F] (20%) Calcule la tensión de salida de la puerta **NOR** de 2 entradas del apartado anterior cuando las entradas son V_1 = 5V y V_2 = 5V. **Nota**: utilice la resistencia equivalente R_{ON} del MOSFET calculada en el apartado B, y tómese la resistencia de drenador R_D = 2.5kOhm, como en el primer apartado.

0	0	0	0	0	0	0	0
_1	1	_1	_1_	1	_1_	_1_	_1_
2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9

DΝ	П				——————————————————————————————————————
					ETSINF - Tecnología de computadores GII
0	0	0	0	0	E renti recinciogia de compatadores en

Examen	n Primer Parcial - 13/04/2018
Apellidos	
Nombre	

Marque así	Así NO marque
	\bigcirc $\not\sim$ \nearrow $\not\sim$
NO BORRAR.	corregir con Typex

1		b		
2		b		d
3		b		d
		b		d
5		b	С	d
6		b		
7		b	С	d
8		b	С	d
	_	h	0	۵