Imprimitive Permutation Groups

of Rank 3

Anton Bagkalov (University of Western Australia)

Joint meeting of NZMS, AusMS and AMS Auckland, 9.12.2024

Rank of a permutation group

- Rank of $G \leq Sym(\Omega)$ is the number of orbits of G on $\Omega \times \Omega$

 - . of Gw on 12 if Gristransitive

Rank of a permutation group

1

- · Rank of G < Sym(12) is the number of orbits
 - of Geon IXI
 - of Gu on 12 if Gristransitive
- · Rank 2 (2-transitive) groups, 1980's
 - (Huppert, Hering, Maillet, Howlet, Curtis, Kantor, Seitz, Cameron...)
 - · Affine G ≤ AGL(V)
 - . Almost simple Go = G = Aut(Go)

Rank of a permutation group

(1

- · Rank of G < Sym(12) is the number of orbits
 - of G on IXI
 - . of Gw on 12 if Gris transitive
- · Rank 2 (2-transitive) groups, 1980's
 - (Huppert, Hering, Maillet, Howlet, Curtis, Kantor, Seitz, Cameron...)

 Affine G \(\text{GL(V)} \)
 - . Almost simple Go < G < Aut (Go)
- · Rank 3 primitive groups, 1980's
- (Cameron, Bannai, Kantor, Liebler, Liebeck, Saxl...)
 - (i) TxT & G ≤ To 2C2; T-simple, To ≤ Aut(T) 2-tran; no=n
 - (ii) Gis affine
 - (iii) G is almost simple

Imprimitive Rank 3 groups

2

Proposition 1. If GS Sym(-12) has rank 3 and imprimitive, then I unique non-trivial block system E.

Imprimitive Rank 3 groups

2

Proposition 1. If GS Sqm(-12) has rank 3 and imprimitive, then I unique non-trivial block system Z.

Proposition 2. If $G \leq Sym(\Omega)$ is imprimitive of rank 3, $G \in \Xi$, then both G^{Σ} and G_{σ} are 2-transitive.

Imprimitive Rank 3 groups

2)

Proposition 1. If $G \leq Sym(-12)$ has rank 3 and imprimitive, then I unique non-trivial block system Z.

Proposition 2. If $G \leq Sym(\Omega)$ is imprimitive of rank 3, $G \in \Xi$, then both G^{Σ} and G^{G} are 2-transitive.

known classifications:

- Quasiprimitive: + min. normal subgr. is transitive (Plinth)
 [1] [Devillers, Grindici, Li, Pearce, Praeger, 2011]
 - · Innately transitive: I transitive min. normal subgroup
- [2] [B., Devillers, Proce er, 2023]
- . Semiprimitive: normal subgr is either trans. or semireg.
- [3] [Huang, Li, Zhu, 202?]

3

Quasiprimitive => G1 = G2 is almost simple Innately transitive => G2 is almost simple Quasiprimitive => G1 = GE is almost simple

Innately transitive => GE is almost simple

Theorem [3]

If GSSqm(FL) is (imprimitive) semiprimitive of rank 3, then

a) G^{Σ} is almost simple (and known)

b) $N \preceq G \preceq N \times Aut(N)$ N is resular special p-subgr

b) $N \leq G \leq N \times Aut(N)$, N is regular special p-subgr. In particular, Aut(N) has at mos 3 orbits on N.

Quasiprimitive => G1 = G2 is almost simple

Innately transitive => GE is almost simple

Theorem [3]

If $G \leq Sgm(-1)$ is (imprimitive) semiprimitive of rank 3, then
a) G^{ϵ} is almost simple (and known)

b) $N \leq G \leq N \times Aut(N)$, N is regular special p-subgr. In particular, Aut(N) has at mos 3 orbits on N.

an:

- 1. Results from the 3 papers on Gr =- almost simple + Example
- 2. Results on N s.t. Aut(N) has 3 orbits.
- 3. What if GE-almost simple and no other conditions?

M	$ \Sigma $	r	G	Conditions on G	type
$PSL_n(q)$	$\frac{q^n-1}{q-1}$	prime such that $r (q-1)$,	$\langle \omega^r I \rangle \operatorname{SL}_n(q) / \langle \omega^r I \rangle \leqslant G \leqslant \Gamma \operatorname{L}_n(q) / \langle \omega^r I \rangle$	$ G^{\Sigma}/(G^{\Sigma} \cap \mathrm{PGL}_n(q)) = a/j$	qp/it/sp
	, -	$o_r(p) = r - 1$ and		with $(j, r - 1) = 1$	
		$(n,r) \neq (2,2)$		_	
$PSL_2(q)$		2	$\langle \omega^2 I \rangle \operatorname{SL}_2(q) / \langle \omega^2 I \rangle \leqslant G \leqslant \Gamma \operatorname{L}_2(q) / \langle \omega^2 I \rangle$	$q \ge 5$, q is odd, $G^{\Sigma} \not\leq P\Sigma L_2(q)$	qp/it/sp
$PSU_3(q)$	$q^{3} + 1$	odd prime such that	$\langle \omega I \rangle \operatorname{SU}_3(q) / \langle \omega^r I \rangle \leqslant G \leqslant \Gamma \operatorname{U}_3(q) / \langle \omega^r I \rangle$	$ G^{\Sigma}/(G^{\Sigma} \cap \mathrm{PGU}_{3}(q)) = 2a/j$	it
		$r q-1, o_r(p)=r-1$		with $(j, r - 1) = 1$	
$PSL_3(2)$	7	2	$PSL_3(2), C_2 \times PSL_3(2)$		qp, it
M_{11}	11	2	$M_{11}, C_2 \times M_{11}$		qp, it
$PSL_3(4)$	21	6	$PGL_3(4), P\Gamma L_3(4)$		qp, qp
$PSL_3(5)$	31	5	$PSL_3(5)$		qp
$PSL_5(2)$	31	8	$PSL_5(2)$		qp
$PSL_3(8)$	73	28	$P\Gamma L_3(8)$		qp
$PSL_3(3)$	13	3	$PSL_3(3)$		qp
Alt(6)	6	3	3.Sym(6)	$G_{\alpha} = \text{Alt}(5)$	$^{\mathrm{sp}}$
M_{12}	12	2	$2.M_{12}$	$G_{\alpha} = \mathrm{M}_{11}$	$_{ m sp}$

Table 1.1. G satisfying Hypothesis 1.1, $q = p^a$ with p prime

.

Example: Soc(GE) = PSLn(Q)

 $n \ge 2$, $q = p^a \ge 3$, $<\omega> = F_2^*$, $V = F_2^n$, $\binom{V}{1}$ - set of 1-subsp.

Let r-integer div q-1. Define:

 $\mathcal{L} = \{\langle w^r \rangle u \mid u \in V^* \} \qquad g: \langle w^r \rangle u \mapsto \langle w^r \rangle \langle u \rangle g, g \in \Gamma L_{4} e \}$

kernel Y= $\langle w^{T} \rangle$, $G = \Gamma L_{n}(Q) / Y \angle S_{q} m(\Omega)$ $E = \{ G(U) | U \in {V \}} \text{ where } G(U) = \{ \langle w^{r} \rangle w^{i} u | i = 0, ..., r-1 \}, \langle u \rangle = U$

Example: Soc(GE) = PSLn(Q)

(5)

 $n \ge 2$, $q = p^a \ge 3$, $\langle \omega \rangle = F_{\xi}^*$, $V = F_{\xi}^n$, $\binom{V}{1}$ - set of 1-subsp.

Let r-integer div q-1. Define:

 $\Omega = \{\langle w^r \rangle u \mid u \in V^* \} \qquad q : \langle w^r \rangle u \mapsto \langle w^r \rangle \langle u \rangle q, q \in \Gamma L_{\ell} \ell_{\ell}$

kernel Y= $\langle w^{T} \rangle$, $G_{r} = \Gamma L_{n}(Q) / Y < S_{q} m(-\Omega)$ $E = \{ 6(U) | U + (V) \}$ where $6(U) = \{ \langle w^{r} \rangle w^{r} u | i = 0,...,r-1 \}$, $\langle u \rangle = U$

Theorem If SLn(q) Y/Y & G & G, then:

a) Gis semiprimitive on 12

b) Gr is innately transitive <=> $r (q-1)/(n,q-1) \left[SLn(q) \frac{y}{y} = PSLn(q) \right]$ c) Gr is quaiprimitive <=> r (q-1)/(n,q-1) and Gr ((wI)/y)=1

d) Gr has rank 3 on size r is prime and ... (see Table)

Theorem 1.1. Let G be a finite 3-orbit group with $N = \langle G', \Phi(G) \rangle$ and $|N| = p^n$. Then 1 < N < G and G is isomorphic to a group in lines 1-7 of Table 1. Moreover, the values of $V \cong G/N$, $A = \operatorname{Aut}(G)^V$, $W \cong N$, $B = \operatorname{Aut}(G) \downarrow W$ are valid, where $\operatorname{Aut}(G)^V$ and $\operatorname{Aut}(G) \downarrow W$ denote the groups induced on G/N and N by $\operatorname{Aut}(G)$.

Table 1: 3-orbit groups G and $V \cong G/N, A = \operatorname{Aut}(G)^{G/N}, B = \operatorname{Aut}(G) \downarrow N$

G	V	A	N	B	Comments	Ref.
1. $(C_{p^2})^n$	\mathbb{F}_p^{n}	$\mathrm{GL}_n(p)$	\mathbb{F}_p^{n}	$\mathrm{GL}_n(p)$	$p \geqslant 2$, G abelian	p. 4
2. $\mathbb{F}_q^d \times \mathbb{C}_r$	\mathbb{F}_r	$\mathrm{GL}_1(r)$	$\mathbb{F}_q^{\ d}$	$\Gamma L_d(q)$	$q = p^{r-1}, p \neq r, d = \frac{n}{r-1}$	6.12
3. $A(n,\theta)$	\mathbb{F}_2^{n}	$\Gamma L_1(2^n)$	\mathbb{F}_2^{n}	$\Gamma L_1(2^n)$	Def. 3.2(a), $n \neq 2^{\ell}$	6.14
4. $B(n)$	\mathbb{F}_2^{2n}	$\Gamma L_1(2^{2n})$	\mathbb{F}_2^{n}	$\Gamma L_1(2^n)$	Def. 3.2(b), $n \ge 1$	6.14
5. P	\mathbb{F}_2^{6}	$C_7 \rtimes C_9$	\mathbb{F}_2^{3}	$\Gamma L_1(2^3)$	Def. $3.2(c)$, $n = 3$	6.14
6. \mathbb{F}_q^3 : \mathbb{F}_q^3	\mathbb{F}_q^{3}	$\Gamma L_3(q)$	\mathbb{F}_q^{3}	$\Gamma L_3^+(q)$	$q = p^{\frac{n}{3}}$ odd, $3 \mid n$	6.9
7. \mathbb{F}_{p^n} : $\mathbb{F}_q^{\frac{m}{b}}$	$\mathbb{F}_q^{rac{m}{b}}$	$\operatorname{Sp}_{\frac{m}{b}}(q) \leq$	\mathbb{F}_{p^n}	$\Gamma L_1(p^n) \leq$	$q = p^b$ odd, $n \mid b \mid m$	6.2

Theorem B. A finite group is a 3-orbit group if and only if it is one of the groups listed in Table 1, where p, q are distinct primes, and m, n are positive integers.

Table 1. Finite 3-orbit groups

	N	$\operatorname{Aut}(N)$	Conditions	Ref
(1)	$\mathbb{Z}_p^{n(q-1)}{:}\mathbb{Z}_q$	$A\Gamma L(n, p^{q-1})$	Example 2.1	2.2
(2)	$\mathbb{Z}_{p^2}^n$	$\mathrm{GL}(n,\mathbb{Z}/p^2\mathbb{Z}) \cong p^{n^2}.\mathrm{GL}(n,p)$		2.3
(3)	$A_2(n,\theta) \cong 2^{n+n}$	2^{n^2} : Γ L $(1,2^n)$	$ \theta \neq 1$ is odd	2.6
(4)	$SU(3,2^n)_2 \cong 2^{n+2n}$	2^{2n^2} : Γ L $(1, 2^{2n})$		2.6
(5)	$P(\epsilon) \cong 2^{3+6}$	$2^{18}:(\mathbb{Z}_7:\mathbb{Z}_9)$		2.6
(6)	$A_p(n,\theta) \cong p^{n+n}$	p^{n^2} : Γ L $(3, p^{n/3})$	p is odd and $ \theta = 3$	4.3
(7)	$q_{+}^{1+2m} \cong p^{n+2mn}$	p^{2mn^2} :(Sp(2m,q): Γ L(1,q))	$q = p^n$ and p is odd	4.4
(8)	$q_+^{1+2m}/U \cong p^{n_0+2mn}$	p^{2mn_0n} :(Sp(2m,q): Γ L(1,q) _U)	Example 5.3	5.4

Can me classify all Grof rank 3 with G= almost simple? Let $G \le Y2X$, $Y = G^{5}$, $X = G^{5} - both 2-transitive$.

Let
$$G \leq Y^2 X$$
, $Y = G^{\circ}$, $X = G^{\circ} - both 2$ -transitive.
Let $T = soc(Y)$, $L = G \cap T^n$, $K = G_{(\Sigma)}$

Can we classify all G of rank 3 with G_{τ}^{ξ} -almost simple? Let $G_{\tau}^{\xi} \leq Y^{2} \times Y^{\xi} = G_{\tau}^{\xi}$, $X = G_{\tau}^{\xi}$ - both 2-transitive.

Let T = soc(Y), L = GAT", K = G(E)

Theorem [1] Assume Tis non-abelian simple grocep.
Ghas rank 3 (=> one of the following holds:

- 1) L=Th
- 2) G is quaiprimitive of rank 3
- 3) n = 2, G = M10, PGL_2(9) or Aut(A6) acting on 12 points
- 4) n=2, G= Aut(M12) acting on 24 points

Can we classify all G of rank 3 with G_{τ}^{ξ} -almost simple? Let $G_{\tau} \leq Y^{2} \times Y^{\xi} = G_{\tau}^{\xi}$, $Y = G_{\tau}^{\xi} = G_{\tau}^{\xi}$ both 2-transitive. Let T = soc(Y), L = GATh, K = G(E) Theorem [1] Assume Tis non-abelian simple grocep.
Ghas rank 3 (=> one of the following holds: 1) L=丁h 2) G is quiprimitive of rank 3 3) n = 2, G = M10, PGL_2(9) or Aut(As) acting on 12 points 4) n=2, G1 = Aut (M12) acting on 24 points Theorem [3] Assume Y is affine (T2 Fp), G has rank 3 => 1) Gis semiprim. with Gizalmost simple 2) NAGENA Aut(N), Nis regular 3-orbit subgroup.

Can me classify all Gof rank 3 with G_{ϵ}^{ξ} -almost simple?

Let $G_{\epsilon} \leq Y2X$, $Y = G_{\sigma}^{\xi}$, $X = G_{\epsilon}^{\xi}$ - both 2-transitive. Let T = soc(Y), L = GATh, K = G(E) Theorem [1] Accume I's non-abelian simple grocep.

Ghas rank 3 (=) one of the following holds: 1) $L = T^n$ 2) G is quaiprimitive of rank 3 3) h = 2, G = M10, PGL_2(9) or Aut(A6) acting on 12 points 4) n=2, G1 = Aut (M12) acting on 24 points Theorem [3]. Assume Y is affine (To Fo), G has rank 3 => 1) Gris semiprim. with Gr=almost simple (1) G=-affile 2) N=G=N=A=(CN), Nis regular scortif subgroup. 3) K(o) is transitive on ol & \(\{\sigma}\) K(o) + 1 is infransitive on o'; G has elab self-centr. (L)

CG(L) = L

hormal subgroup. (L)

Can ne classify all Gof rank 3 with G_{r}^{2} -almost simple? Let G_{r}^{2} Y_{r}^{2} Y_{r}^{3} Y_{r}^{4} Y_{r}^{4 Let T = soc(Y) = Fo,

Can we classify all Got rank 3 with G_{ξ}^{z} -almost simple? affine deg r deg r deg r almost simple. Let $G_{\xi} \leq Y^{2} \times X$, $Y = G_{\xi}^{z}$, $X = G_{\xi}^{z}$ - both 2-transitive. Let $T = soc(Y) \simeq \mathbb{F}_{p}^{d}$, $L = G_{\eta} T^{\eta}$, $K = G_{\zeta} \simeq T_{\eta}$ and $G_{\eta} \simeq T_{\eta} \simeq T_{\eta}$ Can we classify all Gof rank 3 with G_{κ}^{2} -almost simple? Affine deg r deg r almost simple rLet $G_{\kappa} \leq \gamma 2 \times \gamma = G_{\kappa}^{2}$, $\chi = G_{\kappa}^{2}$ both 2-transitive.

Let $T = soc(Y) \simeq F_p^d$, L=GnT", K=G(E) Y=TXY0

 $C_{G_{1}}(L) = L \qquad \Big(=> G_{1}/L \leq Aut(T^{n}) = G_{1}/L \leq Aut(T^{n$ · CG(L) = L

• Basis $\beta = \beta_1 \cup ... \cup \beta_n$ of $V = |F_p|^n d$ • $\overline{G} \le \frac{1}{2} \times 2X \le GLnd(\overline{F}_p)$

gi & Yi & GLd (IF) g ~ (\frac{\fir}{\frac{\fir}}}}}}}}}{\frac{\f{\fin}}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f{\frac{\

Can me classify all God rank 3 with G_{r}^{2} -almost simple? Affine deg r deg n almost simple & Let $G_{r}^{2} \le Y_{r}^{2} \times Y_{r}^{2} = G_{r}^{2}$, $X = G_{r}^{2} - both 2$ -transitive. Let $T = soc(Y) \simeq \mathbb{F}_p^d$, $Y = T \times Y_0$ L=GnT", K=G(E) $U_{G}(L) = L$ $= > G/L \leq Aut(T^n) = GrL_{nd}(I_{\overline{p}})$ $C_{G}(T^n) \leq C_{G}(L) = L$ · CG(L) = L

• Basis $\beta = \beta_1 \cup ... \cup \beta_n$ of $V = |F_p|^{nd}$ • $G \leq \frac{1}{2} \times \frac{1}{2}$

gi & Yi & GLd (IF)

L≤V is G-invariant subspace. What are the options?

- . d=1, G ≤ Mn(Fp) subgroup of monomial matrin Geln(Fp)
- $\mathscr{C}: M_{\mathfrak{n}}(p) \rightarrow S_{\mathfrak{m}}(n)$
 - · ve (Gr) = X 2-transitive almost simple.

G is monomial

9

· d=1, G ≤ Mn(Fp) - subgroup of monomial matrin Geln(Fp)

• $\mathcal{C}: M_n(p) \rightarrow Sym(n)$

· ve (Ge) = X - 2-fransitive almost simple.

Lemma

If Gn Dn(p) \$ Z(Ghn(p)) then G is irreducible.

· => L = V = Th, so L(6) < K(0) is fransitive on 5' and Go has rank 3

- subgroup of monomial matrin Geln(Fp) . d=1, G & Mn(Fp)
- $\mathscr{C}: M_{\mathfrak{n}}(p) \to Sym(n)$
- · ue(Ge) = X 2-transitive almost simple.

Lemma

If Gn Dn(p) \$ Z(Ghn(p)) then G is irreducible.

· => L = V = Th, so L(6) < K(0) is transitive on 5' and Gr has rank 3

If G ≤ ZX, then G leaves invariant the following:

- 1) U = <(1,1,-..,1)> of dim 1
- 2) L'={(a, _.an) | £a; = 0} of dim n-1.

 3) Sometimes something else see B. Mortimer paper

The modular perm. rep. of known 2-trans. groups 1980

- subgroup of monomial matrin Geln(Fp) . d=1, G < Mn(Fp)
- $\mathcal{C}: M_{\mathfrak{n}}(p) \to Sym(n)$
- · ue(Ge) = X 2-transitive almost simple.

Lemma

If Gn Dn(p) \$ Z(Ghn(p)) then G is irreducible.

· => L = V = Th, so L(6) < K(0) is transitive on 5' and Go has rank 3

If G ≤ ZX, then G leaves invariant the following:

- 1) U = <(1,1,-.,1)> of dim 1 not rank 3
- 2) L'={(a, _an) | £a; =0} of dim n-1. rank 3

 3) Sometimes something else see B. Mortimer paper

The modular perm. rep. of known 2-trans. groups 1980

Table 1. Reducibility of the hearts of the known 2-transitive groups

Group, G	$rac{ ext{Degree}}{ \Omega }$	Transitivity	heart of G over K is reducible (K a field of characteristic p)
$\operatorname{Sym}(n), n \geq 3$	n	n	always simple
$Alt(n), n \ge 5$	n	n-2	always simple
Alt(4) = AGL(1, 4)	4	2	$K\geqslant F_4$
$G \leq A\Gamma L(d,q)$ containing the translations	$q^{\mathbf{d}}$	2 or 3	p divides q
$PSL(d, q) \leq G \\ \leq P\Gamma L(d, q), d \geq 3$	$(q^d-1)/(q-1)$	2	p divides q
$G \cong Alt(7) < PGL(4, 2)$	15	2	p = 2
$[\operatorname{Sp}(2m, 2)]^-, m \geq 3$	$2^{m-1}(2^m-1)$	$egin{smallmatrix} 2 \ 2 \ 2 \end{bmatrix}$	p=2
$[\mathrm{Sp}(2m, 2)]^+, m \ge 2$	$2^{m-1}(2^m+1)$	2	p = 2
G , a 3-transitive subgroup of $P\Gamma L(2, q)$	q+1	3	always simple
$PSL(2,q) \leqslant \widetilde{G} \leqslant P\Sigma L(2,q)$	q+1	2	$K \geqslant F_2$ if $q \equiv \pm 1 \pmod{8}$ $K \geqslant F_4$ if $q \equiv \pm 3 \pmod{8}$
$\operatorname{Sz}(q) \leqslant G \leqslant \operatorname{Aut}(\operatorname{Sz}(q))$	$q^2 + 1$	2	$p \text{ divides } q + 1 + m$ where $m^2 = 2q$
$PSU(3, q^2) \leq G$ $\leq P\Gamma U(3, q^2)$	$q^3 + 1$	2	p divides $q+1$
$\operatorname{Re}(q) \leqslant G \leqslant \operatorname{Aut}(\operatorname{Re}(q))$	$q^3 + 1$	2	p divides $(q+1)(q+m+1)$ and perhaps if p divides $(q-m+1)$ where $m^2 = 3q$
$\mathbf{M_{24}}$	24	5	p = 2
Maa	23	4 3	p = 2
$\mathbf{M_{22}}$	22	3	p = 2
M_{12}	12	5	always simple
\mathbf{M}_{11}	11	5 4 3 2 2 2	always simple
M ₁₁	12	3	p = 3
PSL(2, 11)	11	2	p = 3
HS	176	2	p=2,3
CO ₃	276	2	$\begin{array}{c} \text{perhaps if} \\ p = 2 \text{ or } 3 \end{array}$

Conjecture.

If GnDn(p) ≤ Z, then Gris conjugate to a subgroup of Z. Pern(p) by an element from Mn(p)