1. Normed Spaces and Modules

1.1. Overview

This module defines normed spaces (vector spaces with compatible norms) and normed algebras over normed fields. The key structure is NormedSpace, which combines a module structure with a norm satisfying the fundamental scaling property $\|c \cdot x\| = \|c\| \cdot \|x\|$.

1.2. Main Definition

1.2.1. NormedSpace

A normed space over a normed field \mathbb{K} is a vector space E with a norm satisfying: $\|\mathbf{a} \cdot \mathbf{b}\| \le \|\mathbf{a}\| \det \|\mathbf{b}\|$

In fact, equality always holds (proved as norm_smul), but we only require the inequality in the definition for flexibility.

Key insight: This works for "semi-normed spaces" too, since we only require SeminormedAddCommGroup rather than NormedAddCommGroup.

1.3. Core Properties

1.3.1. Scalar Multiplication and Norms

The fundamental property of normed spaces:

- $\|c \cdot x\| = \|c\| \cdot \|x\|$ (exact equality, though only \leq is required)
- $||n \cdot x|| = |n| \cdot ||x||$ for integer scalars $n \in \mathbb{Z}$
- $||n \cdot x|| = n \cdot ||x||$ for natural scalars $n \in \mathbb{N}$

1.3.2. Continuity Properties

Scalar multiplication interacts continuously with limits:

- If $f_n \to 0$ and $\|g_n\|$ is bounded, then $f_n \cdot g_n \to 0$
- If $||f_n||$ is bounded and $g_n \to 0$, then $f_n \cdot g_n \to 0$

These properties are essential for analysis in normed spaces.

1.4. Standard Instances

1.4.1. Field as Normed Space

Every normed field \mathbb{R} is naturally a normed space over itself: $\|\mathbf{a}\| = \|\mathbf{a}\| = \|\mathbf{a}\|$

1.4.2. Product Spaces

The product $E \times F$ of normed spaces is a normed space with the sup norm: $\|(x, y)\| = \max(\|x\|, \|y\|) \|c \det(x, y)\| = (\|c \det x\|, \|c \det y\|) = \|c\| \det \max(\|x\|, \|y\|)$

1.4.3. Pi Types

For finitely many normed spaces E_i , the product $\prod_i E_i$ is a normed space: $\|\mathbf{f}\| = \sup_i \|\mathbf{f}_i\|$ This generalizes the finite product case.

1.4.4. Subspaces

Every submodule of a normed space inherits the normed space structure:

- The norm is simply restricted from the ambient space
- The scaling property is inherited automatically

1.4.5. Induced Structures

Given a linear map $f: E \to G$ where G is a normed space, we can induce a normed space structure on E via: $\|\mathbf{x}\|E = \|f(\mathbf{x})\|G$

1.5. Special Structures

1.5.1. Opposite Spaces

The multiplicative opposite E^{op} of a normed space is itself a normed space with the same norm.

1.5.2. Separation Quotient

The separation quotient (identifying points at distance 0) preserves the normed space structure.

1.5.3. ULift

The universe lift of a normed space retains its normed space structure.

1.6. Nontrivially Normed Spaces

When \mathbb{k} is a nontrivially normed field and E is nontrivial:

1.6.1. Unboundedness

For any $c \in \mathbb{R}$, there exists $x \in E$ with ||x|| > c.

Proof idea: Take any nonzero x_0 , then scale by large $r \in \mathbb{k}$: $\|\mathbf{r} \det \mathbf{x}_0\| = \|\mathbf{r}\| \det \|\mathbf{x}_0\|$ Since \mathbb{k} is unbounded, we can make this arbitrarily large.

1.6.2. Noncompactness

Consequences of unboundedness:

- The universal set is not bounded
- The cobounded filter is non-trivial (NeBot)
- The space is not compact

1.6.3. Infinitude

Any nontrivially normed field must be infinite (cannot be finite).

1.7. Discrete Subgroups

1.7.1. Integer Multiples

For a normed space over \mathbb{Q} , the additive subgroup $\mathbb{Z} \cdot e$ (integer multiples of $e \neq 0$) has discrete topology.

This is because $||k \cdot e|| = |k| \cdot ||e||$, so distinct integer multiples are separated by at least ||e||.

1.8. Type Class Hierarchy

The instance hierarchy:

```
NormedSpace № E

↓
NormSMulClass № E

↓
IsBoundedSMul № E
```

Special instances with priorities:

- Priority 100: NormedSpace.toNormSMulClass
- Priority 75: SubmoduleClass.toNormedSpace

1.9. Applications

Normed spaces are fundamental for:

- Functional Analysis: Banach spaces, Hilbert spaces
- Differential Calculus: Derivatives in infinite dimensions
- Operator Theory: Bounded linear operators
- **Approximation Theory**: Best approximation problems
- PDEs: Solution spaces for differential equations

1.10. Design Notes

The definition requires only the inequality $\|a\cdot b\| \leq \|a\|\cdot \|b\|$ rather than equality, making it easier to verify instances. The equality is then proved as a theorem. This design choice simplifies the construction of normed spaces while maintaining full strength in applications.