



# The TRICLADE application

Dr. François Letierce

CExA Kick Off – 2023.09.19



# Introduction



#### **Turbulent mixing**

- Found in fields of interest to the CEA:
  - Astrophysics;
  - Geophysics;
  - Inertial Confinement Fusion;
  - Etc.
- Very complex problem :
  - Intrinsically 3D;
  - Multi-scale.



## Introduction

- Direct study in production codes is impossible:
  - Multi-physics;
  - Highly complex geometries, ...
- Dedicated turbulence models:
  - Derived from theoretical concepts;
  - Effects to be integrated into these codes;
  - Calibrated and validated comparing results from experiments or numerical simulation.
- **TRICLADE** code serve as a pivot in this approach.



## Some Context

- Study of Turbulent Mixing Zone:
  - Created and developed at fluids interface;
  - From shock, expansion, acceleration, ...
  - Dynamic and structure not fully understood.

#### TRICLADE:

- Turbulent binary mixing in a highly compressible environment
- Navier-Stokes equations
- Structured Cartesian Mesh
- « Shock-capturing » numerical schemes



### Some Context



#### TRICLADE:

- Wave Propagation" of order 5 in time and space: **WP5**
- [R.J. LeVeque. Finite Volume Method for Hyperbolic Problems. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge, 2002]
- [V. Daru and C. Tenaud. High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations. Journal of Computational Physics, 193:563–594, 2004]
- MUSCL of order 5 in time and 3 in space: M5
- [K. Kim and C. Kim. Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows. Part II: multi-dimensionnal limiting process. J. Comput. Phys., 208:570–615, 2005]
- Both explicit
- Boundary conditions = ghost cells beyond physical domain

### Collaboration

#### TRICLADE:

- Developed and used in-use at CEA
- Nationnaly with the ISAE
- Internationnaly in the **Θ-Group collaboration**
- Numerous research papers published







F. Letierce - CExA KickOff

- C++
  - Not really modern though...
  - $\approx$  100 000 Lines of Code
  - Modular design
    - 1 module ≈ 1 numerical scheme
  - Depends on
    - Very little external libraries: MPI et FFTW
    - Lots of internal libraries for code environment







F. Letierce - CExA KickOff

- Internal libraries:
  - Initial states management
  - Complex fields modifier
    - Can re-use them as inputs
  - **■** I/O:
    - Own format,
    - Checkpoint / restart,
    - Pre / post-processing
- Scripts :
  - Help configure, run, etc.





F. Letierce – CExA KickOff 2023/09/19

- Open Source soon ?
  - CEA Internal GitLab

https://gitlab.ccc.ocre.cea.fr/triclade/triclade

- Makefile 

  Cmake
- Documentation
  - User manual
  - Developer manual
- A few examples



cea

F. Letierce – CExA KickOff 2023/09/19

- Input files
  - Old plain text style...
  - Mesh (dimension, length, refinement, etc.)
  - Numerical scheme
  - Solver methods (time and space orders, etc.)
  - Boundary conditions
  - Material definitions
  - Other complex parameters
  - I/O, etc.
- Leads to beautiful outputs!

```
2 *--Def du dom ----
4 demarrage
         cas_test sod
8 geometrie
          xmin -0.5 xmax 0.5 ymin 0. ymax 0.02 zmin 0. zmax 0.02
         interface Plan interf a 0.
11 *
          raffinage 1.
13 *-----
14 *--Def du mail ----
15 *-----
16 maillage
         cote_x_max 0.5 maille 100
         cote y max 0.02 maille 10
         cote_z_max 0.02 maille 11
22 *--Def du sche ----
25 hydro
27 ************************
28 *** Methode M5LM
29 ********************
          methode M5LM
          ordre_schema 5 ordre 3
         ordre temps 3 cfl temps 0.9
         limitation 1
         low mach 0
          extrapolation 0
         flux m5lm HLLC2
         visco coef 1.e-5
         diffusion 1.e-5
         diffusion_thermique 1.e-5
42 *--Def schema diffusion viscosite ----
44 Diffusion
          methode Initiale
47 *-----
48 *--Def des mat ----
49 *-----
50 materiaux
51 nom materiau aval
          gamma 1.4 masse_molaire 29.
         pression 0.1 densite 0.125 vitesse_x 0.
         gamma 1.4 masse molaire 29.
         pression 1. densite 1. vitesse_x 0.75
58 *-----
59 *-----
60 sortie
         arret 100000 arret_temps 0.4
         post rythme_temps 0.1 ptmp
         xxxl rythme_protection_temps 0.1 xxl_ptmp
65 *-----
66 *--Def des cl ----
67 *-----
68 condition
         bord up type reflective_wall
         bord down type reflective_wall
         bord right type reflective_wall
         bord left type flux
         bord back type reflective wall
         bord front type reflective_wall
                                                                       Texte brut ▼ Largeur des tabulations : 8 ▼
                                                                                                          Lig 78, Col 1 ▼ INS
```

2023/09/19

# Example



ISAE shock tube: gases separation by rotative shutters

- Experimental set-up:
  - vertical shock tube : square cross section 13×13cm
  - interface air : (below LP1) / helium (above LP2)
  - incident shock waves of Mach 1.2 in air
  - adjustable end wall
  - initial gases separation : multiple rotating shutter system



2023/09/19

# Example

ISAE shock tube: gases separation by rotative shutters

- Numerical simulation set-up:
  - 3D-computations after complete opening
    - → motionless shutters.
  - Domain: a fraction of the chamber: up to the top end
  - Blades treated = slipping rigid walls
  - Euler equations for binary mixtures of ideal gases
  - 3D-cartesian grid resolution 0.1mm (cubic cells)
  - Doubly-periodic boundary conditions along y



F. Letierce - CExA KickOff 2023/09/19

# Example



tacisae21ms3l11wp5fz\_blanc\_strio.mp4

Courtesy of:

J. Griffond, O. Soulard, D. Souffland, Y. Bury, S. Jamme, M. Rasteiro dos Santos

## Triclade & HPC



Turbulence mixing problem = high complexity + multi-scale

- Need large mesh : typical size is 1 Billion cells (1024^3)
- HPC is essential
  - Code is parallel : MPI domain decomposition
    - Uses same ghost cells technique as boundary conditions
      - Consistent results for any number of domains
    - Own decomposition (3 axes)
      - Do not use FFTW3 lib decomposition (1 single axis)
        - FFT → intensively @ fields' initialization and post-processing
  - I/O = MPI-I/O
    - Same process for sequential and parallel
      - You can change domains' sizes and numbers before restarting simulation
    - Compatible with internal libraries



# Porting Triclade to GPU



Triclade GPU port was decided

Impacted modules are roughly 10 000 LoC



Regardless of the CExA initiative

Focusing on currently most use features

+ yet to be discovered dependencies...

<u>cea</u>

F. Letierce – CExA KickOff 2023/09/19

## Triclade & Kokkos



- Prior experience of porting legacy applications to GPU
- Positive experience using Kokkos
  - academic projects,
  - R&D prototypes,
  - Miniapps, ...
- No vendor dependent politic
- Performance portability
- Kokkos is the obvious choice!
  - good timing to use Triclade as a stepping stone for CExA





# Battle plan



#### 1<sup>st</sup> step: change data structures

- "Variables": multi-dimensional arrays of POD.
  - "Primitive": physical variables, lifespan of the program.
    - E.g: pressure, etc.
  - "Conservative": linked physical variables, lifespan of a class or method.
    - E.g: internal energy, etc.
- → Kokkos::View (?)
- Collection of variables
  - Looks like: double\*\*\*\* tab; where dimensions are [VAR][X][Y][Z]
- Mokkos::View<double\*\*\*\*> ?
- std::array<Kokkos::View<double\*\*\*>, VAR> ?
- → ?



# Battle plan



2<sup>nd</sup> step: change compute loops

- Rewrite classical loops → parallel dispatch
  - Functors / Lambda functions
  - Use parallel\_for, etc.
- Early study → possible use of hierarchical parallelism
  - Some computations seems "axis independent"
- → Kokkos::TeamEtc...

<u>cea</u>

# Conclusion



**Triclade** already fulfills its role as a demonstrator application in the CExA project, popping some interesting questions:

- Can I map variable to something more advanced than Kokkos::View
  - Properties
  - Lifespan management
- What should I use for collection of variables ?
  - Can I have memory pools for these ?
  - Can I use properties to filter variables ?
  - Can I have some batch processing?
- This is only the beginning...







# Thank you for your attention

Dr. François LETIERCE

#### **CEA DAM Île-de-France**

Bruyères-le-Châtel 91297 Arpajon cedex France francois.letierce@cea.fr

