Explicit Categorical Constructions Used in Modeling Sentences

Monoidal Product Category

Mia Goldstein and Emily Herbert SUNY New Paltz

Brief History of Our References:

From word to sentence: a computational algebraic approach to grammar by Joachim Lambek - 2008

Producing high-dimensional semantic spaces from lexical co-occurrence by K. Lund and C. Burgess - 1996.

Mathematical Foundations for a Compositional Distributional Model of Meaning by Bob Coecke, Mehrnoosh Sadrzadeh and Stephen Clark -2010

Original Example of sentence processing

Mathematical Foundations for a Compositional Distributional Model of Meaning

Bob Coecke*, Mehrnoosh Sadrzadeh*, Stephen Clark†

coecke, mehrs@comlab.ox.ac.uk - stephen.clark@cl.cam.ac.uk

*Oxford University Computing Laboratory [†]University of Cambridge Computer Laboratory

We propose a mathematical framework for a unification of the distributional theory of meaning in terms of vector space models, and a compositional theory for grammatical types, for which we rely on the algebra of Pregroups, introduced by Lambek. This mathematical framework enables us to compute the meaning of a well-typed sentence from the meanings of its constituents. Concretely, the type reductions of Pregroups are 'lifted' to morphisms in a category, a procedure that transforms meanings of constituents into a meaning of the (well-typed) whole. Importantly, meanings of whole sentences live in a single space, independent of the grammatical structure of the sentence. Hence the inner-product can be used to compare meanings of arbitrary sentences, as it is for comparing the meanings of words in the distributional model. The mathematical structure we employ admits a purely diagrammatic calculus which exposes how the information flows between the words in a sentence in order to make up the meaning of the whole sentence. A variation of our 'categorical model' which involves constraining the scalars of the vector spaces to the semiring of Booleans results in a Montague-style Boolean-valued semantics.

23 Mar 2010

arXiv:1003.4394v1 [cs.CL]

The symbolic [13] and distributional [36] theories of meaning are somewhat orthogonal with competing pros and cons: the former is compositional but only qualitative, the latter is non-compositional but quantitative. For a discussion of these two competing paradigms in Natural Language Processing see [15]. Following [39] in the context of Cognitive Science, where a similar problem exists between the

1 Introduction

Categories

Objects: +, ▲, ●

Objects: +, ▲, ●

Morphisms:

Identity Morphism

 $id:c\mapsto c\in\mathcal{C}$

Objects: +, ▲, ●

Morphisms:

- Identity Morphism $id: c \mapsto c \in C$
- Morphisms between pairs of objects

Example: EVect

Example: EVect

- Objects: Euclidian Vector Spaces (\mathbb{R}^n)
- Morphisms: matrices (Linear maps)

$$A = \begin{bmatrix} 4 & 6 \\ -3 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\mathbb{R}^2 \xrightarrow{A} \mathbb{R}^2$$

Category: Composition of Morphisms

Category: Composition of Morphisms

$$f: c_1 \mapsto c_0 \in \mathcal{C}$$
$$g: c_2 \mapsto c_1 \in \mathcal{C}$$

$$f \circ g : c_2 \mapsto c_0 \in \mathcal{C}$$

Example: Matrix Multiplication

Example: Matrix Multiplication

$$A \in Mat_{5 \times 2}$$
$$B \in Mat_{2 \times 2}$$

Example: Matrix Multiplication

$$A \in Mat_{5\times 2}$$

$$B \in Mat_{2\times 2}$$

$$A \circ B = AB \in Mat_{5\times 2}$$

Product Categories

 $(c_0, d_0) \in \mathcal{C} \times \mathcal{D}$ where $c_0 \in \mathcal{C}$ and $d_0 \in \mathcal{D}$

$$C \times T$$

$$f \times g: (c_0, d_0) \mapsto (c_1, d_1) \in \mathcal{C} \times \mathcal{D}$$

Functor

Assignments/Map between categories

Functor : Category → Category

Functor : Category → Category

there is a corresponding morphism

 $Ff: Fc \rightarrow Fc' \in \mathcal{D}$

Functor : Category → Category

For each morphism $f: c \to c' \in C$, there is a corresponding morphism

 $Ff : Fc \rightarrow Fc' \in \mathcal{D}$

The most important functor in our story is the tensor product (⊗), which is a

bifunctor.

 $(c_0, c_0') \mapsto d_0$ $(c_1, c_1') \mapsto d_1$ $(c_2, c_2') \mapsto d_2$ $(c_3, c_3') \mapsto d_2$

 $(f_1, f_2) \mapsto f'$ $(g_1, g_2) \mapsto g'$

Tensor Product in EVect

 $EVect \times EVect \xrightarrow{\otimes} EVect$

$$\mathbb{R}^n \otimes \mathbb{R}^m = \mathbb{R}^{n \cdot \mathbf{m}}$$

$$\binom{x}{y} \otimes \binom{a}{b} = \binom{xa}{xb} \\ xc \\ ya \\ yb \\ yc \end{pmatrix}$$

Structures on Categories

Monoidal structures

A monoidal category $(\mathcal{C}, \otimes, 1_{\mathcal{C}})$ consist of a category \mathcal{C} with the following structures:

- Bifunctor $-\otimes$ $-: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$
- Unit object $1_{\mathcal{C}} \in \mathcal{C}$

For $a, b, c \in \mathcal{C}$, there exists natural isomorphisms

- Associator $\alpha_{\mathcal{C}}$: $(a \otimes b) \otimes c \stackrel{\sim}{\rightarrow} a \otimes (b \otimes c)$
- Unitor $u_{\mathcal{C}}$: $a \stackrel{\sim}{\to} a \otimes 1_{\mathcal{C}}$

A monoidal category $(C, \otimes, 1_C)$ consist of a category C with the following structures:

- Bifunctor $-\otimes$ $-: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$
- Unit object $1_{\mathcal{C}} \in \mathcal{C}$

For $a, b, c \in \mathcal{C}$, there exists natural isomorphisms

- Associator $\alpha_{\mathcal{C}}$: $(a \otimes b) \otimes c \stackrel{\sim}{\rightarrow} a \otimes (b \otimes c)$
- Unitor $u_{\mathcal{C}}$: $a \stackrel{\sim}{\to} a \otimes 1_{\mathcal{C}}$

(example) in $(FVect, \otimes, \mathbb{R}^1)$ $V \stackrel{\sim}{\to} V \otimes \mathbb{R}^1$

FVect Tensor Product

$$FVect \times FVect \xrightarrow{\bigotimes} FVect$$
$$V \times W \mapsto (V \otimes W)$$

 $V,W \in FVect$ $V \simeq \mathbb{R}^n \text{ and } W \simeq \mathbb{R}^m$ $V \otimes W \simeq \mathbb{R}^{n \cdot m}$

Unitor in a single Category

C

C

Unitor in a single Category

Where

 $\Delta: \mathcal{C} \to \mathcal{C} \times \mathcal{C}$

 $cons: \mathcal{C} \to \mathcal{C}$

 $c \mapsto (c,c)$

 $c\mapsto 1_{\mathcal{C}}$

 $i_{\mathcal{C}} := (id \times cons) \circ \Delta$

 $i_{\mathcal{C}} := (id \times cons) \circ \Delta$

 $u_{\mathcal{C}}: \bigotimes \circ i_{\mathcal{C}} \Rightarrow id_{\mathcal{C}}$

Claim: If \mathcal{C} and \mathcal{D} have a unitor, their product category $\mathcal{C} \times \mathcal{D}$ has a unitor

Associator in a product category

Model in Sentence Structure

Categories Used in the Model EVect x P Medning **EVect** Pregroup

Application

The Sentence

ex: John likes Marie

- Noun One: (*n*, *V*)
- Verb: $(n^r s n^l, V \otimes S \otimes W)$
- Noun Two: (*n*, *W*)

$$(n(n^r s n^l) n, V \otimes (V \otimes S \otimes W) \otimes W))$$

Morphisms:

- (ϵ^r, ϵ) : $(nn^r \to 1, V \otimes V \to \mathbb{R})$
- (ϵ^l, ϵ) : $n^l n \to 1, W \otimes W \to \mathbb{R}$)

Thank You! Any Questions?

Mia Goldstein and Emily Herbert SUNY New Paltz

Additional Information

The size of a Category...

depends on whether the objects and/ or morphisms form sets

A category of categories has:

- Categories as objects
- Functors as morphisms
- Natural transformations as functors

Objects in Cat are small while Cat is locally small

Objects in CAT are locally small while CAT is large

Tensor Product

Universal Property:

Concrete Model:

$$\mathbb{R}^{n} \times \mathbb{R}^{m} \xrightarrow{\phi} \mathbb{R}^{n} \otimes \mathbb{R}^{m}$$

$$\downarrow^{b(A \times B)} \downarrow_{A \otimes B}$$

$$\mathbb{R}^{nm}$$

The vector space $V \otimes W$ whose elements are ich satisfy three properties:

$$(\alpha \cdot v, w) = (v, \alpha \cdot w) = \alpha \cdot (v, w)$$
$$(v_1 + v_2, w) = (v_1, w) + (v_2, w)$$
$$(v, w_1 + w_2) = (v, w_1) + (v, w_2)$$

If $\mathcal{B}_1 = \{v_1, \dots, v_n\}$ is the basis for V and $\mathcal{B}_2 = \{w_1, \dots, w_n\}$ for W, then $\mathcal{B}_1 \otimes \mathcal{B}_2 = \{v_i \otimes w_j | v_i \in \mathcal{B}_1, w_j \in \mathcal{B}_2\}$ is the basis for $V \otimes W$.

Given linear maps $V \xrightarrow{A} X$ and $W \xrightarrow{B} Y$ there exists a unique linear map:

$$V \otimes W \xrightarrow{A \otimes B} X \otimes Y$$
.

Pregroup

Pregroup:
$$(P, \leq, \cdot, 1, p^r, p^l) \forall p \in P$$

Pregroups are partially ordered monoids.

They hold the following properties:

$$p \le q \Rightarrow p \cdot r \le q \cdot r$$
 and $r \cdot p \le r \cdot q$

$$p \cdot p^r \le 1 \le p^r \cdot p$$
 and $p^l \cdot p \le 1 \le p \cdot p^l$

There can be no more than 1 morphism between any 2 objects.

The P used to model grammar is defined by Lambek grammar.

$$(\mathcal{C} \times \mathcal{D}) \times (\mathcal{C} \times \mathcal{D}) \longrightarrow (\mathcal{C} \times \mathcal{C}) \times (\mathcal{D} \times \mathcal{D})$$

$$\alpha: (\mathcal{C} \times \mathcal{C}) \times \mathcal{C} \to \mathcal{C} \times (\mathcal{C} \times \mathcal{C})$$

$$((c_0, c_1), c_2) \mapsto (c_0, (c_1, c_2))$$

$$\gamma: \mathcal{C} \times \mathcal{C} \to \mathcal{C} \times \mathcal{C}$$

$$(c_0, c_1) \mapsto (c_1, c_0)$$

$$T$$

$$C \times (\mathcal{D} \times (\mathcal{C} \times \mathcal{D}))$$

$$C \times (\mathcal{D} \times (\mathcal{D} \times \mathcal{C}))$$

$$C \times ((\mathcal{D} \times \mathcal{D}) \times \mathcal{C})$$

$$\downarrow \gamma$$

$$C \times ((\mathcal{D} \times \mathcal{D}) \times \mathcal{C})$$

$$\downarrow \gamma$$

$$C \times ((\mathcal{C} \times (\mathcal{D} \times \mathcal{D})))$$

$$\downarrow \alpha$$

$$C \times ((\mathcal{C} \times (\mathcal{D} \times \mathcal{D})))$$

$$\downarrow \alpha$$

$$(\mathcal{C} \times \mathcal{D}) \times (\mathcal{C} \times \mathcal{D}) \longrightarrow (\mathcal{C} \times \mathcal{D})$$

Functoriality Axioms

Functor : Category → Category

Functor : Category → Category

Functor : Category → Category

