In [33]: # Import the libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.decomposition import PCA from sklearn.preprocessing import scale

In [34]: # Import Dataset
wine=pd.read_csv("C:\\Users\\nishi\\Desktop\\Assignments\\PCA\\wine.csv")
wine

Out[34]:

	Type	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Proar
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
173	3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	
174	3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	
175	3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	
176	3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	
177	3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	

178 rows × 14 columns

In [35]: wine['Type'].value_counts()

Out[35]: 2 71

59
 48

Name: Type, dtype: int64

In [36]: wine1=wine.iloc[:,1:]
wine1

Out[36]:

	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Proanthocya
0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	_
1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
173	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	
174	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	
175	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	
176	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	
177	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	

178 rows × 13 columns

In [37]: wine1.shape

Out[37]: (178, 13)

```
In [38]: wine1.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 178 entries, 0 to 177
         Data columns (total 13 columns):
          #
              Column
                               Non-Null Count
                                               Dtype
              -----
                               -----
                                                ____
          0
              Alcohol
                               178 non-null
                                                float64
              Malic
                               178 non-null
                                                float64
          1
          2
                               178 non-null
                                                float64
              Ash
          3
                               178 non-null
              Alcalinity
                                               float64
          4
              Magnesium
                               178 non-null
                                                int64
          5
              Phenols
                               178 non-null
                                                float64
          6
              Flavanoids
                               178 non-null
                                               float64
          7
              Nonflavanoids
                               178 non-null
                                               float64
          8
              Proanthocyanins 178 non-null
                                               float64
          9
              Color
                               178 non-null
                                               float64
          10 Hue
                               178 non-null
                                               float64
          11 Dilution
                               178 non-null
                                                float64
          12 Proline
                               178 non-null
                                                int64
         dtypes: float64(11), int64(2)
         memory usage: 18.2 KB
In [39]: # Converting data to numpy array
         wine arr=wine1.values
         wine_arr
Out[39]: array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
                 1.065e+03],
                [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
                 1.050e+03],
                [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
                 1.185e+03],
                [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00,
                 8.350e+02],
                [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00,
```

[1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00,

8.400e+02],

5.600e+02]])

```
In [40]: |# Normalizing the numerical data
         wine norm=scale(wine arr)
         wine norm
Out[40]: array([[ 1.51861254, -0.5622498 , 0.23205254, ..., 0.36217728,
                  1.84791957, 1.01300893],
                [0.24628963, -0.49941338, -0.82799632, ..., 0.40605066,
                  1.1134493 , 0.96524152],
                [0.19687903, 0.02123125, 1.10933436, ..., 0.31830389,
                  0.78858745, 1.39514818],
                . . . ,
                [0.33275817, 1.74474449, -0.38935541, ..., -1.61212515,
                 -1.48544548, 0.28057537],
                [0.20923168, 0.22769377, 0.01273209, ..., -1.56825176,
                 -1.40069891, 0.29649784],
                [1.39508604, 1.58316512, 1.36520822, ..., -1.52437837,
                 -1.42894777, -0.59516041]])
In [41]: pca=PCA(n_components=13)
         wine_pca=pca.fit_transform(wine_norm)
         wine_pca
Out[41]: array([[ 3.31675081e+00, -1.44346263e+00, -1.65739045e-01, ...,
                 -4.51563395e-01, 5.40810414e-01, -6.62386309e-02],
                [ 2.20946492e+00, 3.33392887e-01, -2.02645737e+00, ...,
                 -1.42657306e-01, 3.88237741e-01, 3.63650247e-03],
                [ 2.51674015e+00, -1.03115130e+00, 9.82818670e-01, ...,
                 -2.86672847e-01, 5.83573183e-04, 2.17165104e-02],
                . . . ,
                [-2.67783946e+00, -2.76089913e+00, -9.40941877e-01, ...,
                  5.12492025e-01, 6.98766451e-01, 7.20776948e-02],
                [-2.38701709e+00, -2.29734668e+00, -5.50696197e-01, ...,
                  2.99821968e-01, 3.39820654e-01, -2.18657605e-02],
                [-3.20875816e+00, -2.76891957e+00, 1.01391366e+00, ...,
                 -2.29964331e-01, -1.88787963e-01, -3.23964720e-01]])
```

```
In [42]: |pca.components
Out[42]: array([[ 0.1443294 , -0.24518758, -0.00205106, -0.23932041, 0.14199204,
                  0.39466085, 0.4229343, -0.2985331,
                                                        0.31342949, -0.0886167,
                              0.37616741, 0.28675223],
                  0.29671456,
                [-0.48365155, -0.22493093, -0.31606881, 0.0105905, -0.299634
                 -0.06503951, 0.00335981, -0.02877949, -0.03930172, -0.52999567,
                              0.16449619, -0.36490283],
                  0.27923515,
                [-0.20738262,
                              0.08901289, 0.6262239,
                                                        0.61208035, 0.13075693,
                  0.14617896,
                              0.1506819 , 0.17036816,
                                                        0.14945431, -0.13730621,
                  0.08522192,
                              0.16600459, -0.12674592],
                              0.53689028, -0.21417556,
                                                        0.06085941, -0.35179658,
                [-0.0178563,
                              0.15229479, -0.20330102,
                  0.19806835,
                                                        0.39905653, 0.06592568,
                              0.18412074, -0.23207086,
                 -0.42777141,
                [-0.26566365, 0.03521363, -0.14302547,
                                                        0.06610294, 0.72704851,
                 -0.14931841, -0.10902584, -0.50070298,
                                                        0.13685982, -0.07643678,
                 -0.17361452, -0.10116099, -0.1578688 ],
                                                        0.10082451, -0.03814394,
                [-0.21353865, -0.53681385, -0.15447466,
                  0.0841223 , 0.01892002, 0.25859401,
                                                        0.53379539, 0.41864414,
                 -0.10598274, -0.26585107, -0.11972557],
                [-0.05639636, 0.42052391, -0.14917061, -0.28696914, 0.3228833]
                 -0.02792498, -0.06068521, 0.59544729, 0.37213935, -0.22771214,
                  0.23207564, -0.0447637, 0.0768045],
                [-0.39613926, -0.06582674, 0.17026002, -0.42797018, 0.15636143,
                  0.40593409, 0.18724536, 0.23328465, -0.36822675, 0.03379692,
                 -0.43662362, 0.07810789, -0.12002267,
                [0.50861912, -0.07528304, -0.30769445, 0.20044931, 0.27140257,
                  0.28603452, 0.04957849, 0.19550132, -0.20914487,
                                                                    0.05621752,
                              0.1372269 , -0.57578611],
                  0.08582839,
                [ 0.21160473, -0.30907994, -0.02712539, 0.05279942, 0.06787022,
                 -0.32013135, -0.16315051, 0.21553507, 0.1341839, -0.29077518,
                              0.52370587, 0.162116 ],
                 -0.52239889,
                [-0.22591696,
                              0.07648554, -0.49869142, 0.47931378,
                                                                    0.07128891,
                  0.30434119, -0.02569409, 0.11689586, -0.23736257, 0.0318388,
                 -0.04821201, 0.0464233, 0.53926983],
                [-0.26628645,
                              0.12169604, -0.04962237, -0.05574287, 0.06222011,
                 -0.30388245, -0.04289883, 0.04235219, -0.09555303, 0.60422163,
                  0.259214 ,
                              0.60095872, -0.07940162
                              0.02596375, -0.14121803, 0.09168285, 0.05677422,
                [ 0.01496997,
                 -0.46390791,
                              0.83225706, 0.11403985, -0.11691707, -0.0119928,
                 -0.08988884, -0.15671813, 0.01444734]])
In [43]: var=pca.explained variance ratio
         var
```

```
Out[43]: array([0.36198848, 0.1920749 , 0.11123631, 0.0706903 , 0.06563294, 0.04935823, 0.04238679, 0.02680749, 0.02222153, 0.01930019, 0.01736836, 0.01298233, 0.00795215])
```

```
In [44]: var1=np.cumsum(np.round(var,4)*100)
var1
```

Out[44]: array([36.2 , 55.41, 66.53, 73.6 , 80.16, 85.1 , 89.34, 92.02, 94.24, 96.17, 97.91, 99.21, 100.01])

In [45]: plt.plot(var1,color='blue')

Out[45]: [<matplotlib.lines.Line2D at 0x25dd417e790>]

In [46]: final_df=pd.concat([wine['Type'],pd.DataFrame(wine_pca[:,0:3],columns=['PC1','PC2
final_df

Out[46]:

	Type	PC1	PC2	PC3
0	1	3.316751	-1.443463	-0.165739
1	1	2.209465	0.333393	-2.026457
2	1	2.516740	-1.031151	0.982819
3	1	3.757066	-2.756372	-0.176192
4	1	1.008908	-0.869831	2.026688
173	3	-3.370524	-2.216289	-0.342570
174	3	-2.601956	-1.757229	0.207581
175	3	-2.677839	-2.760899	-0.940942
176	3	-2.387017	-2.297347	-0.550696
177	3	-3.208758	-2.768920	1.013914

178 rows × 4 columns

```
In [47]: fig=plt.figure(figsize=(16,12))
sns.scatterplot(data=final_df)
```

Out[47]: <AxesSubplot:>

In [48]: # Import Libraries import scipy.cluster.hierarchy as sch from sklearn.cluster import AgglomerativeClustering from sklearn.preprocessing import normalize

```
In [49]: # As we already have normalized data, create Dendrograms
    plt.figure(figsize=(10,8))
    dendrogram=sch.dendrogram(sch.linkage(wine_norm,'complete'))
```



```
In [50]: # Create Clusters (y)
hclusters=AgglomerativeClustering(n_clusters=3,affinity='euclidean',linkage='ward
hclusters
```

Out[50]: AgglomerativeClustering(n_clusters=3)

```
In [51]: y=pd.DataFrame(hclusters.fit predict(wine norm),columns=['clustersid'])
          y['clustersid'].value counts()
Out[51]: 2
                64
                58
          1
                56
          Name: clustersid, dtype: int64
In [52]: wine2=wine.copy()
          wine2['clustersid']=hclusters.labels_
          wine2
Out[52]:
                Type Alcohol Malic Ash Alcalinity
                                                   Magnesium Phenols Flavanoids Nonflavanoids Proar
                   1
                        14.23
                               1.71 2.43
             0
                                              15.6
                                                          127
                                                                  2.80
                                                                             3.06
                                                                                          0.28
             1
                   1
                        13.20
                               1.78 2.14
                                              11.2
                                                          100
                                                                  2.65
                                                                             2.76
                                                                                          0.26
             2
                   1
                        13.16
                               2.36 2.67
                                              18.6
                                                          101
                                                                  2.80
                                                                             3.24
                                                                                          0.30
             3
                   1
                        14.37
                               1.95 2.50
                                              16.8
                                                          113
                                                                  3.85
                                                                             3.49
                                                                                          0.24
```

21.0

...

20.5

23.0

20.0

20.0

24.5

118

...

95

102

120

120

96

2.80

...

1.68

1.80

1.59

1.65

2.05

2.69

...

0.61

0.75

0.69

0.68

0.76

0.39

...

0.52

0.43

0.43

0.53

0.56

178 rows × 15 columns

4

173

174

175

176

177

1

...

3

3

3

3

3

13.24

...

13.71

13.40

13.27

13.17

14.13

2.59 2.87

5.65 2.45

3.91 2.48

4.28 2.26

2.59 2.37

4.10 2.74

...

178 Tows × 15 Columns

```
In [53]: from sklearn.cluster import KMeans
```

```
In [54]: wcss=[]
for i in range (1,6):
    kmeans=KMeans(n_clusters=i,random_state=2)
    kmeans.fit(wine_norm)
    wcss.append(kmeans.inertia_)
```

C:\Users\nishi\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:881: User Warning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environ ment variable OMP_NUM_THREADS=1.

warnings.warn(

```
In [55]: plt.plot(range(1,6),wcss)
    plt.title('Elbow Graph')
    plt.xlabel('Number of clusters')
    plt.ylabel('WCSS')
    plt.show()
```


In [58]: wine3=wine.copy()
wine3['clusters3id']=clusters3.labels_
wine3

Out[58]:

	Type	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Proar
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
173	3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	
174	3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	
175	3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	
176	3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	
177	3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	

178 rows × 15 columns

In [59]: wine3['clusters3id'].value_counts()

Out[59]: 2 65

1 62 0 51

Name: clusters3id, dtype: int64