

Multi-Precision Arithmetic for Cryptography in C++

at Run-Time and at Compile-Time

Niek J. Bouman, PhD

niekbouman@gmail.com

Secure Multiparty Computation (MPC)

...in Gartner's Hype Cycle (2017)

Secure Multiparty Computation (MPC)

...in Gartner's Hype Cycle (2017)

- ▶ N parties jointly compute a function $f(x_1, ..., x_N)$ such that no party learns anything beyond the output
- ▶ In essence, the N parties jointly emulate a "virtual trusted party" that computes f for the parties

Example: Privacy-Preserving Data Analysis

Example: Privacy-Preserving Data Analysis

- Instead of sending all patient data to the Census Bureau, the hospitals and the Census Bureau run an MPC protocol
- Census Bureau only learns about the desired statistic,
 without seeing the underlying data

Big-Integer Arithmetic for Cryptographic Applications

Target Size ≈ 200 Bits

Big-Integer Arithmetic for Cryptographic Applications

Secure
Multiparty
Computation

Target Size ≈ 200 Bits

Big-number arithmetic

▶ numbers do not fit in a single (64-bit) register

Big-number arithmetic

▶ numbers do not fit in a single (64-bit) register

Required operations

ightharpoonup addition: a + b

 \blacktriangleright multiplication: $a \times b$

Big-number arithmetic

▶ numbers do not fit in a single (64-bit) register

Required operations

ightharpoonup addition: a + b

• multiplication: $a \times b$

▶ addition mod q: (a + b) % q

• multiplication mod q: $(a \times b) \% q$

 \blacktriangleright in our application, q is in the order of 200 bits (and q is prime)

Big-number arithmetic

▶ numbers do not fit in a single (64-bit) register

Required operations

ightharpoonup addition: a + b

• multiplication: $a \times b$

▶ addition mod q: (a + b) % q

• multiplication mod q: $(a \times b) \% q$

 \blacktriangleright in our application, q is in the order of 200 bits (and q is prime)

▶ (and other operations: like comparison, ...)

 \triangleright q has fixed size & all numbers smaller than q

⇒ fixed-size storage: std::array

ightharpoonup q has fixed size & all numbers smaller than q

```
⇒ fixed-size storage: std::array
```

- \blacktriangleright header only => compiler has access to the implementation of functions
- ▶ *q* known at compile-time
 - ▶ leverage compile-time optimizations

ightharpoonup q has fixed size & all numbers smaller than q

```
⇒ fixed-size storage: std::array
```

- \blacktriangleright header only => compiler has access to the implementation of functions
- ▶ *q* known at compile-time
 - ▶ leverage compile-time optimizations
 - ▶ in order to do this, we need to perform big-integer computations during compile-time... let's use constexpr

Example: The compiler can rewrite a modulo operation with a fixed modulus into a multiplication followed by a bitshift.

We want the same optimisation for big-ints. This requires the ability to perform computation with big-ints at compile-time.

- ▶ header only => compiler has access
- ▶ *q* known at compile-time
 - ▶ leverage compile-time optimizations
 - in order to do this, we need to perform big-integer computations during compile-time... let's use constexpr

```
unsigned long foo(unsigned long a)
1
2
        return a % 78623419;
4
 1 foo(unsigned long):
                  %rdi, %rcx
 2
          movq
          movabsq $-2701562103368370257, %rdx
          movq
                  %rcx, %rax
 5
          mulq
                  %rdx
                  $26, %rdx
          shrq
          imulq $78623419, %rdx, %rax
                                          # i
           subq %rax, %rcx
          movq
                  %rcx, %rax
10
          retq
```

ightharpoonup q has fixed size & all numbers smaller than q

```
⇒ fixed-size storage: std::array
```

- \blacktriangleright header only => compiler has access to the implementation of functions
- ▶ *q* known at compile-time
 - ▶ leverage compile-time optimizations
 - ▶ in order to do this, we need to perform big-integer computations during compile-time... let's use constexpr

ightharpoonup q has fixed size & all numbers smaller than q

```
⇒ fixed-size storage: std::array
```

- ▶ header only => compiler has access to the implementation of functions
- ▶ *q* known at compile-time
 - ▶ leverage compile-time optimizations
 - ▶ in order to do this, we need to perform big-integer computations during compile-time... let's use constexpr
- ...should have a "natural" Modern-C++ API, and be fast, bug-free, and constant-time

▶ Compile-time parsing of immediate values

```
auto x = 184467440737095516166_Z; //user-defined literal
```

▶ Compile-time parsing of immediate values

```
auto x = 184467440737095516166_Z; //user-defined literal
// x has type std::integer_sequence<uint64_t, 6, 10>
```

▶ Compile-time parsing of immediate values

```
auto x = 184467440737095516166_Z; //user-defined literal
// x has type std::integer_sequence<uint64_t, 6, 10>
```

For arithmetic mod q, modulus gets "baked into" the numeric type (no overhead at runtime for storing the modulus)

```
using GF = decltype(Zq(885443715538058477627_Z)); // 70-bit prime
//GF has type ZqElement<uint64_t, 59, 48>
```

▶ Compile-time parsing of immediate values

```
auto x = 184467440737095516166_Z; //user-defined literal
// x has type std::integer_sequence<uint64_t, 6, 10>
```

For arithmetic mod q, modulus gets "baked into" the numeric type (no overhead at runtime for storing the modulus)

```
using GF = decltype(Zq(885443715538058477627_Z)); // 70-bit prime
//GF has type ZqElement<uint64_t, 59, 48>

GF x { 885443715538058477626_Z }; // q-1
GF y { 2_Z };
```

▶ Compile-time parsing of immediate values

```
auto x = 184467440737095516166_Z; //user-defined literal
// x has type std::integer_sequence<uint64_t, 6, 10>
```

For arithmetic mod q, modulus gets "baked into" the numeric type (no overhead at runtime for storing the modulus)

```
using GF = decltype(Zq(885443715538058477627_Z)); // 70-bit prime
//GF has type ZqElement<uint64_t, 59, 48>

GF x { 885443715538058477626_Z }; // q-1
GF y { 2_Z };

auto sum_mod_q = x + y; // sum_mod_q == 1_Z
// '+' is overloaded, such that it performs modulo reduction
```

A Recurring Pattern with std::integer_sequence

1. Compute something, return result as std::integer_sequence

- 2. Count the number of trailing zeros and cut them off
- ▶ Easy, right?
- ▶ Implementation becomes rather messy... (next slide)

```
template <typename T, T... Is>
constexpr auto tight_length(std::integer_sequence<T, Is...>){
  size_t L = sizeof...(Is);
  std::array<T, sizeof...(Is)> num {Is...};
 while (L > 0 \&\& num[L - 1] == 0) --L;
 return L;
template <typename T, T... Limbs, size_t... Is>
constexpr auto take_first(std::integer_sequence<T, Limbs...>, std::index_sequence<Is...>) {
  constexpr std::array<T, sizeof...(Limbs)> num = {Limbs...};
 return std::integer_sequence<T, num[Is]...> {};
template <size_t N, typename T = uint64_t, size_t... Is>
constexpr auto actual_computation(std::index_sequence<Is...>) {
  constexpr std::array<T, N> working_storage {};
  . . .
 return std::integer_sequence<T, working_storage[Is]...>{};
template <size_t N, typename T = uint64_t>
constexpr auto some_computation() {
  auto m = actual_computation<N>(std::make_index_sequence<N>{});
 return take_first(m, std::make_index_sequence<tight_length(m)>{});
}
```

```
mp_limb_t mpn_add_n (mp_ptr rp, mp_srcptr up, mp_srcptr vp,
                     mp_size_t n)
  mp_limb_t ul, vl, sl, rl, cy, cy1, cy2;
  cy = 0;
  do {
      // loop body
  } while (--n != 0);
  return cy;
}
```


- compiler cannot see link between n and array lengths


```
mp_limb_t mpn_add_n (mp_ptr rp, mp_srcptr up, mp_srcptr vp,
                             mp_size_c n)
         mp_limb_t ul, vl, sl, rl, cy, cy1, cy2;
         cy = 0;
         do {
             // loop body
         } while (--n != 0);
         return cy;
- compiler cannot see link between n and
 array lengths
```


- compiler cannot see link between n and array lengths
- n is not a compile-time value, no loop unrolling
- possibility of aliasing between inputs and output might block compiler optimizations

Parameter Passing: our Library

Parameter Passing: our Library

```
template <typename T, size_t N>
constexpr auto add(std::array<T, N> a, std::array<T, N> b)
{
  std::array<T, N+1> result {};
  auto carry = 0;
  for(auto i = 0; i < N; ++i) {</pre>
     // addition body
     // updates result[i] and carry
  result[N] = carry;
  return result;
```

Parameter Passing: our Library

```
template <typename T, size_t N>
constexpr auto add(std::array<T, N> a, std::array<T, N> b)
  std::array<T, N+1> result {};
  auto carry = 0;
  for(auto i = 0; i < N; ++i) {</pre>
                                            "Pass-by-value"
     // addition body
     // updates result[i] and carry
 result[N] = carry;
 return result;
                                      "Return-by-value"
```

Preliminary Benchmarks (Google Benchmark lib)

Time [ns]

(Non-Modular) Multiplication (2..8 64-bit limbs)

Preliminary Benchmarks (Google Benchmark lib)

Time [ns]

(Non-Modular) Multiplication (2..8 64-bit limbs)

"GMP" means mpn mul

"GMP-raw" means __**gmpn** _ **mul** _ **basecase** (not part of GMP's public API)

Preliminary Benchmarks (Google Benchmark lib)

Time [ns] (Non-Modular) Multiplication (2..8 64-bit limbs) 100 Our library GMP raw **GMP** 75 **Targeted Parameter Range** 50 25 Limbs 5 6 8 Schoolbook Mult. Optimal **Alternative Algorithms Superior (?)** gmpn mul basecase (not part of GMP's public API) "GMP-raw" means

Preliminary Benchmarks (Google Benchmark lib)

195-bit operand raised to 122-bit exponent, mod 200-bit prime

fast, bug-free, and constant-time

Bug-Free?

- ▶ Using existing tools, it is sometimes feasible (depending on the particular function) to obtain a formal correctness proof
- ▶ Prove equivalence between high-level specification (in a special functional language) and LLVM bitcode of our C++ implementation
- ▶ Gives the "best possible unit test"

Correctness via Equivalence Proofs

Example: Addition Spec in Cryptol

Example: Addition Spec in Cryptol

```
add_ref : \{n, w\} (fin n, fin w, n >= 1, w >= 1) =>
          [n][w] -> [n][w] -> [n+1][w]
add_ref a b = num_to_bigint`{n+1,w}
    (bigint_to_num^{(n+1)*w} a) + (bigint_to_num^{(n+1)*w} b)
num_to_bigint : \{n,w\} (fin n, fin w, n \ge 1, w \ge 1)
             => [n*w] -> [n][w]
num_to_bigint num = reverse (split`{n} num)
bigint_to_num : \{n, w, out\} (fin n, fin w, fin out, n \ge 1, w \ge 1, out \ge n \ge n)
             => [n] [w] -> [out]
bigint_to_num limbs = zero # (join (reverse limbs))
```

Example: Equivalence Proof Setup in SAW

```
import "add.cry";
let mangled_name = "_ZN3cbn3addIyLm4EEEDaNS_7big_intIXT0_ET_NSt3__19
                     enable_ifIXsr3std11is_integralIS3_EE5valueEvE4typeEEES8_";
let my_alloc n ty ty2 = do { /* function body omitted*/ };
let add_spec n_ w_ = do {
    (xs, xp) <- my_alloc "xs" (llvm_struct "struct.cbn::big_int.0")</pre>
(llvm_array n_ (llvm_int w_));
    (ys, yp) <- alloc_and_bind "ys" (llvm_struct "struct.cbn::big_int.0")</pre>
(llvm_array n_ (llvm_int w_));
    (rs, rp) <- alloc_and_bind "rs" (llvm_struct "struct.cbn::big_int")</pre>
(llvm_array (eval_int {{ ((`n_):[8]) + 1 }}) (llvm_int w_));
    crucible_execute_func [rp, xp, yp];
    crucible_points_to rp (crucible_term {{ add_ref`{n=n_,w=w_}} xs ys }});
};
m <- llvm_load_module "add.bc";</pre>
add_ov <- crucible_llvm_verify m mangled_name [] true (add_spec 4 64) z3;
```

Example: Equivalence Proof Setup in SAW

Load Cryptol spec

Describe data types

Describe how to call our function

Require that output coincides with Cryptol spec

Load LLVM bitcode

Set various parameters and run verifier

Correctness Via Equivalence Proofs

...with varying success

- proof for add function found in matter of seconds
- ▶ prover does not terminate for mul function (on realistic input sizes)
 - => requires another approach

fast, bug-free, and constant-time

Constant-Time?

- ▶ A function enjoys the constant-time property if it does not "leak" any information about values designated as secrets (e.g., the secret key in an encryption function) via timing side-channels
- ▶ Attacker cannot infer any secret information from measuring execution time of such function

Constant-Time: don'ts...

▶ Don't branch on a secret value

Don't index memory with a secret value

```
// 'arr' is a pointer to an array
auto x = arr[secret_int];
```

Automatic Constant-Time Verification

- ct-verif tool for constant-time verification of C programs sound and complete
 (Almeida, Barbosa, Barthe, Dupressoir, Emmi, 2016)
- ▶ Verification on the level of optimized LLVM bitcode (step from LLVM IR to target-CPU-specific code currently remains unverified)
- ▶ Uses Boogie (Microsoft Research) as a backend

Automatic Constant-Time Verification

- ▶ ct-verif tool for constant-time verification of C programs sound and complete
 (Almeida, Barbosa, Barthe, Dupressoir, Emmi, 2016)
- ▶ Verification on the level of optimized LLVM bitcode (step from LLVM IR to target-CPU-specific code currently remains unverified)
- ▶ Uses Boogie (Microsoft Research) as a backend
- ▶ Via some minor modifications, now also works for C++!

https://github.com/niekbouman/verifying-constant-time/tree/cplusplus

Running ct-verif

```
niek@macwin023 $ docker exec --env 'B00GIE=monodocker exec --env 'B00GIE=mono // boogie/Binaries/Boogie.exe' --workdir /test -it 7f41630821d2 /verifying-constant-time/bin/ct-verif.rb --clang-options '-x c++ -std=c++14 -03 -I ctbignum/include -Wno-c++1z-extensions' -e _Z15generic_wrapperI3MulmLm4EEvPT0_PmS3_ ctbignum_ctverif.cpp
```

```
SMACK program verifier version 1.9.0 SMACK generated a.bpl
```

Boogie program verifier version 2.3.0.61016, Copyright (c) 2003-2014, Microsoft.

Boogie program verifier finished with 1 verified, 0 errors

fast, bug-free, and constant-time

Modulo Operation

Modulo Operation

- Fixed modulus, known at compile-time
- ▶ Barrett / Montgomery reduction (precomputations at compile time)

Modulo Operation

- ▶ Fixed modulus, known at compile-time
- ▶ Barrett / Montgomery reduction (precomputations at compile time)
- ▶ Montgomery & Granlund: "Division by Invariant Integers using Multiplication", 1994
- ► Compiler already does this for integers:

```
1 unsigned long foo(unsigned long a)
2 {
3 return a % 78623419;
4 }
```

```
# @foo(unsigned long)
  foo(unsigned long):
                  %rdi, %rcx
2
          movq
          movabsq $-2701562103368370257, $rdx # imm = 0xDA821F949A1237AF
                  %rcx, %rax
          movq
          mulq
                %rdx
          shrq $26, %rdx
          imulq $78623419, rdx, rax # imm = 0x4AFB2BB
          subq %rax, %rcx
                  %rcx, %rax
          movq
                                                    Thank you Matt Godbolt!
10
          retq
```

▶ Idea: Let N be an integer multiple of the machine word size, and let $d < 2^N, \quad \ell = \lceil \log_2 d \rceil$

Idea: Let N be an integer multiple of the machine word size, and let $d < 2^N$, $\ell = \lceil \log_2 d \rceil$

▶ Find m such that the following equality holds

$$\left| \frac{n}{d} \right| = \left| \frac{m \cdot n}{2^{N+\ell}} \right| \qquad \forall n : 0 \le n < 2^N - 1$$

Idea: Let N be an integer multiple of the machine word size, and let $d < 2^N$, $\ell = \lceil \log_2 d \rceil$

Find m such that the following equality holds

$$\left| \frac{n}{d} \right| = \left| \frac{m \cdot n}{2^{N+\ell}} \right| \qquad \forall n : 0 \le n < 2^N - 1$$

▶ The remainder is found by performing an additional multiplication and subtraction

Idea: Let N be an integer multiple of the machine word size, and let $d < 2^N$, $\ell = \lceil \log_2 d \rceil$

Find m such that the following equality holds

$$\left| \frac{n}{d} \right| = \left| \frac{m \cdot n}{2^{N+\ell}} \right| \qquad \forall n : 0 \le n < 2^N - 1$$

- ▶ The remainder is found by performing an additional multiplication and subtraction
- ▶ Gives constant-time modulo reduction

Composition With Higher Level Libraries

Composition With Higher Level Libraries

▶ E.g., Linear Algebra with eigen

http://eigen.tuxfamily.org/

```
using Mx33 = Eigen::Matrix<GF_100_bits_prime, 3, 3>;
Mx33 A, B, C;
A << 2_Z, 4_Z, 6_Z,
    10_Z, 11_Z, 12_Z,
     1_Z, 100_Z, 30_Z;
B << 5_Z, 3_Z, 9_Z,
    8_Z, 6_Z, 55_Z,
    3_Z, 17_Z, 2_Z;
C = A * B;
```

Composition With Higher Level Libraries

▶ E.g., Linear Algebra with eigen

http://eigen.tuxfamily.org/

```
using Mx33 = Eigen::Matrix<GF_100_bits_prime, 3, 3>;
Mx33 A, B, C;
```

...plus some boilerplate...

```
A << 2_Z, 4_Z, 6_Z,
10_Z, 11_Z, 12_Z,
1_Z, 100_Z, 30_Z;

B << 5_Z, 3_Z, 9_Z,
8_Z, 6_Z, 55_Z,
3_Z, 17_Z, 2_Z;

C = A * B;
```

```
using GF100_bits_prime =
decltype(Zq(633825300114114700748351602943_Z));
namespace Eigen {
template <>
struct NumTraits<GF100_bits_prime> :
GenericNumTraits<GF100_bits_prime> {
  using Real = GF100_bits_prime;
 using NonInteger = GF100_bits_prime;
 using Literal = GF100_bits_prime;
 using Nested = GF100_bits_prime;
  static inline Real epsilon() { return 0; }
  static inline Real dummy_precision() { return 0; }
  static inline int digits10() { return 0; }
  enum {
   IsComplex = 0, IsInteger = 1, IsSigned = 1,
   RequireInitialization = 1, ReadCost = 1,
   AddCost = 1, MulCost = 1
```

Key Takeaways

- ▶ ctbignum Library for fixed-size big-int and modular arithmetic: pure Modern C++; features big-integer computations at compile-time
- constexpr functions:

 Compile-time evaluation + competitive runtime performance
 - Use std::integer_sequence for compile-time arrays!
 - ▶ However, cumbersome to handle
- ▶ Some functions have been formally verified (correctness, constant-timeness)
- ▶ Open-source tooling for formal verification of C++ programs has become mature & easy-to-use (SAW, SeaHorn, ct-verif, Smack, ...)
 Give them a try on your C++ code!

Thank You!

niekbouman@gmail.com

github.com/niekbouman/ctbignum

niekbouman.github.io