Razonamiento en robots y arquitecturas de control

Robótica

Alberto Díaz y Raúl Lara Curso 2022/2023 Departamento de Sistemas Informáticos

License CC BY-NC-SA 4.0

Inteligencia

¿Qué es la inteligencia?

- ¿Sumar y restar números grandes? ¿Resolver una ecuación diferencial?
- ¿Saber jugar al GO? ¿Ganar al GO?
- ¿Reconocer a una persona? ¿A un gato?
- ¿Conducir un coche? ¿Una moto? ¿Un avión?
- ¿Ser capaz de andar por la calle sin tropezar con mucha gente alrededor?
- ¿Entender lo que dice una persona? ¿Dobles sentidos? ¿Ironía?

¿Puede una máquina ser inteligente?

¿Somos algo más que datos, reglas y cálculos?

Algunas definiciones

	Inteligencia humana	Ideal de inteligencia
Razonamiento	Estudio de procesos que posibilitan razonar y actuar. ¹	" Máquinas con mente ", en un sentido literal. ²
Conducta	Estudio para que un ordenador haga cosas que la gente hace mejor .3	Automatización de la conducta inteligente .4

- IA Débil : Aspectos de comportamiento considerados inteligentes.
- IA Fuerte: Un agente artificial puede llegar a sentir y tener mente.

¹ Wiston, 1992, ² Haugeland, 1985, ³ Rich and Knight, 1991, ⁴ Luger y Stubblefield, 1989

Elementos relacionados con la Inteligencia

La inteligencia es un concepto que se relaciona directamente con:

- Conciencia: Tener experiencia subjetiva y pensamiento.
- Conciencia de sí mismo: Ser consciente de uno mismo como individuo separado, y ser consciente de los propios pensamientos.
- Sentiencia: Capacidad de sentir percepciones de forma subjetiva.
- Sapiencia: Capacidad de sabiduría.

Existen dos debates destacados desde un plano ético respecto a estos:

- 1. ¿Son necesarios y/o suficientes para considerar un ente inteligente?
- 2. ¿Sirven de base para otorgar derechos y deberes a un ente?

Razonamiento en robots

Razonamiento: Proceso de inferencia que permite a un agente obtener conocimiento a partir de información previamente adquirida.

En un robot autónomo el razonamiento lo provee el controlador.

Controlador ≈ cerebro de un robot.

Un robot autónomo intenta alcanzar varios objetivos a la vez:

- Comportamientos simples de supervivencia (e.g. no quedarse sin energía)
- Actividades complejas (e.g. jugar al fútbol).

Balance tiempo/reacción en el control de robots

Una reacción debe ser rápida, mientras que el pensamiento es lento.

- Pensar permite planificar cómo evitar situaciones peligrosas o desfavorables.
- Lo malo, pensar mucho puede ser peligroso (e.g. caer en una zanja).

Para "pensar", un robot requiere de mucha información de entornos complejos.

Son necesarios modelos para representar el entorno del robot

Niveles de complejidad cognitiva que controlar

Control a bajo nivel: Tareas simples (e.g. cambiar de marcha en un vehículo).

- Generalmente se tratan de problemas de valores continuos.
- Escalas temporales cortas, de frecuencas mayores a 1 Hz.

Control a **nivel intermedio**: Tareas medias (e.g. cambiar de carril).

- Involucran indistintamente tareas de valor continuo o discreto.
- Escalas temporales medias, del orden de unos pocos segundos

Control a alto nivel: Tareas complejas (e.g. planificar una ruta completa).

- Normalmente son problemas de valores discretos.
- Escalas de tiempo grandes, incluso de minutos.

Arquitecturas de control en robots

Principios sobre como organizar el sistema de control de un robot.

- ¿Cómo organizar el razonamiento, la representación del entorno y los componentes de percepción y actuación de un robot?
- Suelen tener más "enjundia" en el software que en el hardware.

Existen tres tipos principales de arquitecturas de control:

- Deliberativas: Decisiones basandas en representaciónes simbólicas.
- **Reactivas**: Modelo estímulo-respuesta.
- Basadas en comportamiento: Inspiradas en sistemas biológicos.
- **Híbridas**: Formadas por dos o más subarquitecturas.

Coordinación de comportamientos

Cuando tenemos varios comportamientos, existen dos estrategias principales de coordinación:

- Competitiva (arbitraje): Sólo se selecciona la salida de un comportamiento.
- Cooperativa (fusión): Se combinan las salidas de varios comportamientos.

Arquitectura de control deliberativa

- Es intrínsecamente secuencial.
- La planificación requiere de una búsqueda (lenta) y mucha memoria.
- Requiere un modelo del mundo, cuanto más preciso mejor.

Inconvenientes de las arquitecturas deliberativas

Estas arquitecturas tienen varios inconvenientes, entre los que se encuentran:

- Modelizar el entorno es muy costoso en términos de tiempo y memoria.
- La planificación no lineal es intratable (es un problema NP-completo)
- La retroalimentación a través del modelo del entorno es complicada.
- Una única línea entre una detección y su actuación.
- Enfoque muy general, pobre para muchas tareas específicas.
- Pasar representaciones entre diferentes componentes es costoso.

Una pausa para reflexionar

La arquitectura de control de una mosca, ¿es deliberativa o reactiva?

Deliberativa

- Crea un modelo del entorno por el que navega.
- Se plantea la naturaleza de las amenazas.
- Analiza la idoneidad de plantar huevos en heces.
- Delibera sobre cómo aterrizar en superficies irregulares.

Reactiva

- Sensores y actuadores están estrechamente conectados.
- Patrones de comportamiento aprendidos, no planificados.
- Técnicas de navegación sencillas (casi deterministas).
- Miles de receptores visuales simples conectados al cerebro.

Para navegar por un entorno, ¿quién lo hace mejor, una mosca o un dron?

Arquitectura de control reactiva

Al igual que no hay animales de propósito general...

• ¿Por qué deberían existir robots de propósito general?

Es un punto de vista opuesto al de las arquitecturas deliberativas:

• Se basan esencialmente en mapas de estímulo-respuesta, sin planificaciones.

Características de las arquitectura reactivas

- No requieren de modelo de entorno ni de planificación de ningún tipo.
- Sí necesitan mecanismos de retroalimentación, a poder ser cortos.
- Mapas de estímulo-respuesta, por lo que son intrínsecamente paralelas.
- Muy específico, es decir, bueno en una o dos tareas conretas.
- No se pasan representaciones entre componentes.

Arquitectura basada en comportamiento (BBR)

Utilizar los sistemas biológicos como modelo.

- Enfoque clásico: Usa un camino basado en representaciones internas.
- Enfoque moderno: Adaptabilidad, sin depender de cálculos preestablecidos.

Muchos de los sistemas basados en comportamiento son también reactivos:

- No necesitan modelar entorno, toda información la obtienen de sus sensores.
- Esa información la usa para corregir gradualmente sus acciones.

Esas arquitecturas muestran acciones en apariencia más biológica.

- De hecho las comparaciones entre BBR e insectos son muy frecuentes
- Algunos investigadores lo consideran un ejemplo de IA débil.

¡GRACIAS!