

SEA LEVEL PREDICTION F.E.A.M (TEAM)

Fnu Parshant
DATA SCIENTIST

Edward Chang DATA SCIENTIST

Akira Takahashi DATA SCIENTIST

Mark Befeld
DATA SCIENTIST

CONTENTS:

- 1. Problem Statement
- 2. Brief Summary
- 3. Target Audience
- 4. Data Collection
- 5. Data Cleaning
- 6. EDA
- 7. Model Building
- 8. Conclusion & Recommendations
- 9. Model Deployment

1. PROBLEM STATEMENT

We intend to create an optimal model to predict sea levels in various geographical areas of Alaska to pinpoint areas requiring attention from **environmental regulators.**

2. BRIEF SUMMARY

- Sea level rise poses huge threat to coastal habitats
 - Leads to erosion, flooding, as well as wind-driven storm surges
- Factors contributing to sea level rise
 - Ice Melt, Thermal Expansion, Land Sinkage, Gulf Stream
- Local meteorological conditions reasonably tie to sea level tendency

3. TARGET AUDIENCE

- Alaska Department of Environmental Conservation
- Environmental Protection Agency (EPA)
- Background: The state and national environmental regulators are not always aligned in their priorities
- **Goal:** Aligning both regulators' understanding of the sea level situation in Alaska, and create awareness consistent between both parties

4. DATA COLLECTION

- Sea Level Data for Various
 Weather Stations in Alaska
- Carbon Dioxide Data

- **Sea Level** Data

5. DATA CLEANING

- Filled empty values with adequate values.
- Dropped less valuable features.
- Renamed many features.
- Created year_month_day feature to organise the dataset.
- Dropped all the observations where Y-variable (sea_level) was null.

7. MODEL BUILDING

- Regression Problem
 - Machine Learning:
 - Linear Regression
 - Polynomial Features
 - Random Forest
 - Extra Trees
 - ADA Boost

7. <u>MODEL BUILDING</u>

- Regression Problem (continued)
 - Deep Learning:
 - Neural Networks
 - Recurrent Neural Networks

7. MODEL BUILDING

Parameters Considered

- Correlation coefficients (R-squared scores)
- Root Mean Square Error Values

- Best Predictors

- Longitude
- Elevation
- Temperature (Min, Max, Avg)
- Precipitation

7. MODEL BUILDING

Model	Features	R-squared score (Training)	R-squared score (Testing)	RMSE	Description
Machine Learning		C###			
Simple Linear Regression (baseline)			0.7671	443.97	
Linear Regression	Best 6 Features	0.5807	0.5840	655.15	
Linear Regression with Polynomial Features			0.9519		
Random Forest	Best 6 Features	0.9899	0.9639	192.95	222
Extra Trees	Best 6 Features	0.9932	0.9603	202.41	
ADA Boosting	Best 6 Features	0.9602	0.9600	203.11	
Deep Learning	222	7 <u>242</u>			
Neural Net Model	Best 6 Features		0.3306	830.62	
Neural Net Model (GridSearch)	Best 6 Features		0.9632	194.65	Best Parameters dropout: 0.1 epochs: 50, hidden_layers: 5, hidden_neurons: 64
Recurrent Neural Net Model	Best 6 Features			274.59	
Recurrent Neural Net Model	Best 6 Features		***	1053.94	

8. <u>CONCLUSIONS &</u> RECOMMENDATIONS

- 'Random Forest' Machine Learning Model to predict sea levels
 - Interpretability over other models
- Latitude and elevation key features to consider
 - Atmospheric CO2 not significant

8. <u>CONCLUSIONS &</u> RECOMMENDATIONS

- Further Data Collection
- Entirely different region for study
- Setting up new weather stations
- Further features to consider
 - e.g. Sea surface temperature, sea level pressure, surface salinity

* MODEL DEPLOYMENT

THANKS!

Any questions?

