Parte I

Introduzione alla logica

1 Logica e Ragionamento

Per poter iniziare a parlare di *linguaggi logici*, dobbiamo prima acquisire cosa è un *linguaggio*. Dobbiamo quindi capire come un ragionamento può essere formalizzato in un numero di passi (connessi da regole) a partire da premesse per raggiungere una conclusione .

Questo processo è quello che siamo abituati a riscontrare nella soluzione di *teoremi* tramite **dimostrazioni**.

Un esempio di applicazione di questo processo possiamo vederlo qui di seguito:

Teorema del triangolo isoscele. Dato un triangolo isoscele, ovvero con due lati AB = BC, si dimostra che gli angoli $\angle A$ e $\angle C$ sono uquali.

Conoscenze pregresse

- 1. Se due triangoli sono uguali, i due triangoli hanno lati e angoli uguali.
- 2. Se due triangoli hanno due lati e l'angolo sotteso uguali, allora i due triangoli sono uguali.
- 3. BH bisettrice di $\angle B$ cioè $\angle ABH = \angle HBC$.

Dimostrazione

- AB = BC per ipotesi;
- $\angle ABH = \angle HBC$ per (3);
- Il triangolo HBC è uguale al triangolo ABH per (2);
- $\angle A \ e \angle C \ per (1)$;

Quindi abbiamo trasformato (2) in "Se AB = BC e BH = BH e $\angle ABH = \angle HBC$, allora il triangolo ABH è uguale al triangolo HBC" e abbiamo trasformato (1) in "Se triangolo ABH è uguale al triangolo HBC, allora

AB = BC e BH = BH e AH = HC e $\angle ABH = \angle HBC$ e $\angle AHB = \angle CHB$ e $\angle A = \angle C$ ".

L'obiettivo diventa a questo punto formalizzare e razionalizzare il processo che permette di affermare

$$AB = BC \vdash \angle A = \angle C$$

dove \vdash indica il simbolo di *derivazione logica* , che comunemente significa "**consegue**", "allora", ecc.

Formalizzazione

Abbiamo assunto che:

•
$$\mathbf{P} = \{AB = BC, \angle ABH = \angle HBC, BH = HB\}.$$

Avevamo inoltre delle conoscenze pregresse (vedi *conoscenze pregresse* sopra riportate). Abbiamo quindi costruito una catena di **formule**:

P1: AB = BC da **P** P2: $\angle ABH = \angle HBC$ da **P** P3: BH = HB da **P** P4: $AB = BC \land BH = HB \land \angle ABH =$ da P1, P2, P3 e introduzione della congiunzione $\angle HBC$