$C_1[A_1[\lambda x.C_2[E[x]]] A_2[v]] \quad \boldsymbol{\beta_{need}} \quad C_1[A_1[A_2[C_2[E[x]]]\{x:=v\}]]]$ $C_1[C_2] \in A$

Example 2 (anti-AF style)

- C_1 = around everything
- $A_1 = \text{around the } \lambda x$., but not the $A_2[v]$
- C_2 = under the λx ., around the E[x]

Example 1 (AF style)

v_z v_y v_x

Example 3 (via Casey)

- 1. $(\underline{\lambda x}.(\lambda y.(\lambda z.x) v_z) v_y) \underline{v_x}$ $A_2[v] = v_x$ $C_1 = A_1 = []$ $C_2[E] = (\lambda y.(\lambda z.[]) e_z) e_y$
- 1. $(\underline{\lambda x}.\lambda y.\lambda z.x) \underline{v_x} v_y v_z$ $A_2[v] = v_x$ $C_1 = [] v_y v_z$ $A_1 = []$ $C_2 = \lambda y.\lambda z.[]$ E = []
- 1. $(\underline{\lambda x}.(\lambda y.\lambda z.x) v_y) \underline{v_x} v_z$ $A_2[v] = v_x$ $C_1 = [] v_z$ $A_1 = []$ $C_2 = (\lambda y.\lambda z.[]) v_y$ E = []

- 2. $(\lambda x.(\underline{\lambda y}.(\lambda z.y) v_z) \underline{v_y}) v_x$ $A_2[v] = v_y$ $C_1 = (\lambda x.[]) v_x$ $A_1 = []$ $C_2[E] = (\lambda z.[]) e_z$
- 2. $(\lambda x.\underline{\lambda y}.\lambda z.y) v_x \underline{v_y} v_z$ $A_2[v] = v_y$ $C_1 = [] v_z$ $A_1 = \lambda x.[] v_x$ $C_2 = \lambda z.[]$ E = []
- 2. $(\lambda x.(\underline{\lambda y}.\lambda z.y) \underline{v_y}) v_x v_z$ $A_2[v] = v_y$ $C_1 = (\lambda x.[]) v_x v_z$ $A_1 = []$ $C_2 = \lambda z.[]$ E = []

- 3. $(\lambda x.(\lambda y.(\underline{\lambda z}.z) \underline{v_z}) v_y) v_x$ $A_2[v] = v_z$ $C_1 = (\lambda x.(\lambda y.[]) e_y) e_x$ $A_1 = []$ $C_2 = E = []$
- 3. $(\lambda x.\lambda y.\underline{\lambda z.z}) v_x v_y \underline{v_z}$ $A_2[v] = v_z$ $C_1 = []$ $A_1 = (\lambda x.\lambda y.[]) v_x v_y$ $C_2 = E = []$
- 3. $(\lambda x.(\lambda y.\lambda z.z) v_y) v_x \underline{v_z}$ $A_2[v] = \overline{v_z}$ $C_1 = []$ $A_1 = (\lambda x.(\lambda y.[]) v_y) v_x$ $C_2 = E = []$

Example 4 (compose 1 + 2) Example 5 (compose 2 + 1)

- 1. $(\lambda x.(\lambda y.\lambda z.x) v_y v_z) \underline{v_x}$ $A_2[v] = v_x$ $C_1 = []$ $A_1 = []$ $C_2[E] = (\lambda y.\lambda z.[]) v_y v_z$
- 2. $(\lambda x.(\underline{\lambda y}.\lambda z.y) \underline{v_y} v_z) v_x$ $A_2[v] = v_y$ $C_1 = (\lambda x.[] v_z) v_x$ $A_1 = []$ $C_2 = \lambda z.[]$ E = []
- 3. $(\lambda x.(\lambda y.\lambda z.z) v_y \underline{v_z}) v_x$ $A_2[v] = v_z$ $C_1 = (\lambda x.[]) v_x$ $A_1 = (\lambda y.[]) v_y$ $C_2 = E = []$

- 1. $(\underline{\lambda x}.\lambda y.(\lambda z.x) v_z) \underline{v_x} v_y$ $A_2[v] = v_x$ $C_1 = [] v_y$ $A_1 = []$ $C_2[E] = \lambda y.(\lambda z.[]) v_z$
- 2. $(\lambda x.\underline{\lambda y.}(\lambda z.y) v_z) v_x \underline{v_y}$ $A_2[v] = v_y$ $C_1 = []$ $A_1 = (\lambda x.[]) v_x$ $C_2[E] = (\lambda z.[]) v_z$
- 3. $(\lambda x.\lambda y.(\underline{\lambda z.z}) \underline{v_z}) v_x v_y$ $A_2[v] = v_z$ $C_1 = (\lambda x.\lambda y.[]) v_x v_y$ $A_1 = []$ $C_2 = E = []$