

May 25-28, 2020 | Valamar Lacroma | Dubrovnik, Croatia

Effect of the Exposure Time in Laser Speckle Imaging for Improving Blood Vessels Localization: a Wavelet Approach

F. Lopez-Tiro, H. Peregrina-Barreto, J. Rangel-Magdaleno, J. C. Ramirez-San-Juan and J. M. Ramirez-Cortes

Instituto Nacional de Astrofísica, Óptica y Electrónica (Mexico)

Hello!

This is the index:)

- First a short introduction
 - Speckle, Exposure time, Contrast and Wavelets
- Then, ours methodology
 - The wavelet approach!
- Then, ours experiments and results
 - Nice results
- Finally, the conclusions:)

Visualization and localization

Visualization and localization of blood vessels (VLBV) is important for different biomedical
applications, such as neuroscience, dermatology and ophthalmology¹.

(a) Brain activation and blood flow changes in the brain¹.

(b) Assessment of photodynamic therapy in Port Wine Stains².

(c) Visual stimulation and blood flow analysis in the retina³.

 Laser Speckle Imaging (LSI) is the most widely used non-invasive technique for measuring blood flow and is based on the speckle phenomenon⁴.

Laser Speckle Imaging (LSI)

 Speckle is a scattering phenomenon. It appears by interaction between photons, of a coherent light laser, and a rough surface such as biological tissue⁵.

 The movement of particles (i.e. blood cells) inside a rough surface generates a blurring effect (BE). LSI technique is used to analyze the BE⁶.

Laser Speckle Imaging (LSI)

• The main limitation of **LSI** is related to **VLBV**. Speckle images noise increases when the depth of the blood vessels (ρ), inside the skin, is higher. It is due to strongly scattering of static structures⁷.

Visualization of straight in-vitro blood vessels in a speckle image to different depths (ρ) .

Introduction State of the art

Physical improvements: (a) exposure time calibration⁸, (b) substances on the skin, (c) particles in the blood¹⁰, and (d) heat¹¹.

⁸[Wang et al., 2017]. "Improving the estimation of flow speed for laser speckle imaging with single exposure time". Optics letters.

⁹[Son et al., 2013]. "Contrast enhancement of laser speckle contrast image in deep vasculature by reduction of tissue scattering". Journal of the Optical Society of Korea.

¹⁰[Kim et al., 2010]. "Magnetomotive laser speckle imaging". Journal of biomedical optics.

¹¹[Regan et al., 2014]. "Photothermal laser speckle imaging". Optics letters.

Introduction State of the art

Computational methods. Slow dynamics such as (a) Motion History Image¹², and (b) Generalized Differences¹³.

Introduction State of the art

Computational methods⁷.
Fast dynamics with contrast representation.
(a) speckle image, and (b) contrast image

Introduction Exposure time to improve VLBV

- In physical methods, exposure time calibration⁸ is a non-invasive method to improve blurring effect (BE).
- **BE** in the speckle image depends on:
 - 1. The depth of the blood vessels (ρ) inside the biological tissue.
 - 2. The exposure time (T) of the charge-coupled device camera.
 - 3. The speed-flow (v) in the blood vessel.
- Visualization is limited for superficial blood vessels (up to 100µm), therefore the boundaries between dynamic and static speckle are difficult to establish (localization)⁷.

Introduction Exposure time to improve VLBV

Contrast to improve VLBV

- Contrast (K) in speckle images can be calculated using traditional methods, such as spatial contrast (sK)⁷.
- K is the ratio between standard deviation and the average intensity, σ(W) and I(W), respectively, in a dxd analysis window.

⁷[Vaz et al., 2016]. "Laser speckle imaging to monitor microvascular blood flow: a review". IEEE reviews in biomedical engineering.

Contrast to improve VLBV

 Information fusion due to noise, between static and dynamic speckle, is present in contrast images.

Visualization of straight in-vitro blood vessels in a contrast images to different depths (ρ) .

• To avoid information fusion, the noise in the blood vessel region must be attenuated to improve VLBV.

Wavelet Transform

 Wavelet Transform (WT) is a technique to noise's attenuation. It provides a better spatial resolution in images compared to other techniques such as Fourier Transform^{14,15}.

(a) **Input image** with salt and pepper noise.

(b) First filtering level coefficients (approximation and detail).

(c) Output image attenuated.

¹⁴[Kimlyk et al., 2018]. "Image denoising using discrete wavelet transform and edge information". In 57 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), IEEE.

This work

- The proposed methodology works two aspects:
 - 1. An approach based on the wavelet transform (called wavelet approach!) to improve the visualization and localization of blood vessels, and
 - 2. The blurring effect analysis, due to exposure time, in contrast images.

This work Methodology

This work Contrast computing

Average of

Spatial contrast computing of N speckle images

This work WT filtering

This work Clustering and area criterion

$$RI(A,B) = \frac{TP}{TP + FP + FN}$$

Experiments and resultsDataset

- The dataset consist of
 - 75 speckle packages, each one of package contains 30 in-vitro straight blood vessels speckle images.
 - **15 exposure times** (**70.6ms**, 138.4ms, 256.6ms, 500ms, 980.2ms, 1883.4ms, 3949.6ms, 5908.6ms, 8204.8ms, 11062ms, 12200.6ms, 20885ms, 26481.8ms, 31760ms, and **32789.8ms**).
 - 5 blood vessels depths $(0\mu m, 190\mu m, 311\mu m, 510\mu m, and 1000\mu m)$.

Experiments and resultsDataset

- The dimensions of the speckle images are 640x480 pixels.
- The **ground truth** (GT) is a binary image [0,1] and it is obtained by labeling of the blood vessel at $0\mu m$ depth.
- The contrast images are calculated with the spatial contrast averaged algorithm (sKavg).

Experiments and resultsSettings

- In this methodology, **two parameters** were selected for the wavelet approach: wavelet function ψ and filtering level j.
 - 1. The selected wavelet function was Symlet 5 (52.16±18.23% RI).
 - 2. The level j selected was j = 5 (84.22±16.52% RI).

Level	0	1	2	3	4	5
Average	69.85%	71.89%	72.70%	71.30%	75.80%	84.22%
Error	15.12%	15.69%	17.08%	21.10%	22.38%	16.52%

Performance of exposure time

In superficial blood vessels $(0\mu m)$:

• WA (96.28% RI) performs well from short exposure times (T>2).

• sKavg (81.67% RI) performs well for longer exposure times (T>7).

Blood vessel at 0µm depth

Performance of exposure time

In deep blood vessels (190 μm , 310 μm , and 510 μm):

• WA (83.08% RI) performs well from short exposure times (T>3).

• sKavg (69.90% RI) could perform better in longer exposure times (T>15).

Blood vessel at 510µm depth

Performance of exposure time

In the dee blood vessels (1000 μm):

• WA (59.58% RI) performs well in long exposure times (T>12).

• sKavg (64.71% RI) performs well from short exposure times (T>3).

Blood vessel at 1000µm depth

Performance of exposure time

In general terms,

- In both models, exposure times greater than 12.2 seconds offer better similarity performance.
- •The WA model improves the performance of the skavg model.
- •The WA model is useful for locating deep blood vessels up to $510\mu m$.

Average similarity performance for depths $\rho = \{0\mu m, 190\mu m, 311\mu m, 510\mu m, 1000\mu m\}$ for sKavg and WA models in blood vessels.

Conclusions

- The visualization and localization is an important task to determine the presence of blood vessels in the biological tissue.
- This paper presented a methodology based on a wavelet approach to attenuate noise in contrast images, and improve the localization of blood vessels.
- A useful exposure time was determined to improve the localization of blood vessels and also, high exposure times increase the percentage of similarity in the tested models.

Thank you for your attention!

Questions?

francisco.lopez@inaoe.mx