

Constraint satisfaction problems

- Simple example of a formal representation language
- CSP benefits
- Standard representation language
- Generic goal and successor functions
- Useful general-purpose algorithms with more power than standard search algorithms, including generic heuristics
- Applications:
- □ Time table problems (exam/teaching schedules)
- Assignment problems (who teaches what)

October 13, 2014

Varieties of CSPs

- Discrete variables
- □ Finite domains of size $d \Rightarrow O(d^n)$ complete assignments.
 - The satisfiability problem: a Boolean CSP
- Infinite domains (integers, strings, etc.)
- Continuous variables
 - Linear constraints solvable in poly time by linear programming methods (dealt with in the field of operations research).
- Our focus: discrete variables and finite domains

October 13, 2014

Varieties of constraints

- Unary constraints involve a single variable.
- e.g. SA ≠ green
- Binary constraints involve pairs of variables.
 - e.g. SA ≠ WA
- Global constraints involve an arbitrary number of variables.
- Preference (soft constraints) e.g. red is better than green often representable by a cost for each variable assignment; not considered here.

October 13, 2014

Constraint graph

- Binary CSP: each constraint relates two variables
- Constraint graph: nodes are variables, edges are constraints

October 13, 2014

Example: cryptarithmetic puzzles

Constraints

Variables: $F T U W R O X_1 X_2 X_3$ Domains: $\{0,1,2,3,4,5,6,7,8,9\}$ The constraints are represented by a hypergraph by a hypergraph

alldiff(F, T, U, W, R, O) $O+O=R+10\cdot X_1$, etc.

October 13, 2014

CSP as a standard search problem

- Incremental formulation
 - Initial State: the empty assignment {}.
 - Successor: Assign value to unassigned variable provided there is no conflict.
 - Goal test: the current assignment is complete.
- Same formulation for all CSPs !!!
- Solution is found at depth n (n variables).
 - What search method would you choose?

October 13, 2014

October 13, 2014

Arc consistency

- X → Y is arc-consistent iff for every value x of X there is some allowed value y of Y
- Example: X and Y can take on the values 0...9 with the constraint: Y=X². Can use arc consistency to reduce the domains of X and Y:
 - $X \rightarrow Y$ reduce X's domain to $\{0,1,2,3\}$

October 13, 2014

er 13, 2014

The Arc Consistency Algorithm

function AC-3(csp) returns false if an inconsistency is found and true otherwise inputs: csp, a binary csp with components {X, D, C} local variables: queue, a queue of arcs initially the arcs in csp while queue is not empty do (X, X) ← REMOVE-FIRST(queue)

if REVISE(csp, X_j , X_j) then if size of D_i =0 then return false for each X_k in X_i , NEIGHBORS – $\{X_j\}$ do

add (X_i, X_j) to queue function REVISE (csp, X_j, X_j) returns true iff we revise the domain of X_i revised \leftarrow false

for each x in D_i do

if no value y in D_j allows (x,y) to satisfy the constraints between X_i and X_j then delete x from D_i

 $revised \leftarrow true$ return revised

October 13, 2014

10/13/14

, 2014

Arc consistency limitations

- X → Y is arc-consistent iff
- for every value x of X there is some allowed y of Y
- Consider mapping Australia with two colors. Each arc is consistent, and yet there is no solution to the CSP.
- So it doesn't help

October 13, 2014

Path Consistency

- Looks at triples of variables
 - □ The set $\{X_{\mu}, X_{j}\}$ is path-consistent with respect to X_{m} if for every assignment consistent with the constraints of X_{μ}, X_{j} , there is an assignment to X_{m} that satisfies the constraints on $\{X_{\mu}, X_{m}\}$ and $\{X_{m}, X_{j}\}$
- The PC-2 algorithm achieves path consistency

K-consistency

- Stronger forms of propagation can be defined using the notion of k-consistency.
- A CSP is k-consistent if for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any k-th variable.
- Not practical!

October 13, 2014

Backtracking example

October 13, 2014 2

Improving backtracking efficiency

General-purpose methods/heuristics can give huge gains in speed:

Which variable should be assigned next?

In what order should its values be tried?

Can we detect inevitable failure early?

Forward checking

- Solving CSPs with combination of heuristics plus forward checking is more efficient than either approach alone.
- FC does not provide early detection of all failures.
 Once WA=red and Q=green: NT and SA cannot both be blue!
- MAC (maintaining arc consistency): calls AC-3 after assigning a value (but only deals with the neighbors of a node that has been assigned a value).

October 13, 2014

Local search for CSP

- Local search methods use a "complete" state representation, i.e., all variables assigned.
- To apply to CSPs
 - Allow states with unsatisfied constraints
 - reassign variable values
- Select a variable: random conflicted variable
- Select a value: min-conflicts heuristic
- Value that violates the fewest constraints
- Hill-climbing like algorithm with the objective function being the number of violated constraints
- Works surprisingly well in problems like n-Queens

October 13, 2014

Min-Conflicts

function MIN-CONFLICTS(csp, max_steps) returns a solution or failure inputs: csp, a constraint satisfaction problem

max_steps, the number of steps allowed before giving up current ← an initial complete assignment for csp

for i = 1 to max_steps do

if current is a solution for csp then return current

var— a randomly chosen conflicted variable from csp.VARIABLES value— the value v for var that minimizes CONFLICTS(var, v, current, csp) set var=value in current

return failure

October 13, 2014

Problem structure

- How can the problem structure help to find a solution quickly?
- Subproblem identification is important:
 - Coloring Tasmania and mainland are independent subproblems
 - Identifiable as connected components of constraint graph.
- Improves performance

October 13, 2014

52

Problem structure

- Suppose each problem has c variables out of a total of n.
- Worst case solution cost is O(n/c dc) instead of O(dn)
- Suppose *n*=80, *c*=20, *d*=2
 - 280 = 4 billion years at 1 million nodes/sec.
 - □ 4 * 2²⁰= .4 second at 1 million nodes/sec

October 13, 2014

Tree-structured CSPs

- Theorem: if the constraint graph has no loops then CSP can be solved in O(nd²) time
- Compare with general CSP, where worst case is O(dⁿ)

October 13, 2014

54

