Homework 8

Problem 1. (a) Let u be real harmonic. Show that u^2 is subharmonic.

(b) Let u be real harmonic, u = u(x, y). Show that

$$(\operatorname{grad} u)^2 = (\operatorname{grad} u) \cdot (\operatorname{grad} u)$$

is subharmonic.

- (c) Show that the function $u(x,y) = x^2 + y^2 1$ is subharmonic.
- (d) Let u_1 , u_2 be subharmonic, and c_1 , c_2 positive numbers. Show that $c_1u_1 + c_2u_2$ is subharmonic.

Proof. We have

$$\frac{\partial u^2}{\partial x} = 2u \frac{\partial u}{\partial x}$$

and

$$\frac{\partial u^2}{\partial x^2} = 2 \frac{\partial^2 u}{\partial x^2} u + 2 \left(\frac{\partial u}{\partial x} \right)^2.$$

Likewise

$$\frac{\partial u^2}{\partial y^2} = 2 \frac{\partial^2 u}{\partial y^2} u + 2 \left(\frac{\partial u}{\partial y} \right)^2.$$

Adding these equations and noting that $\Delta u = 0$ we obtain

$$\Delta u^2 = \frac{\partial u^2}{\partial x^2} + \frac{\partial u^2}{\partial x^2} = 2\left(\frac{\partial u}{\partial x}\right)^2 + 2\left(\frac{\partial u}{\partial x}\right)^2 \ge 0.$$

(b) Let $v = (\text{grad}u)^2$. Note that

$$v = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2.$$

Differentiating twice we find

$$\frac{\partial^2 v}{\partial x^2} = 2 \left(\frac{\partial^3 u}{\partial x^3} \frac{\partial u}{\partial x} + \left(\frac{\partial^2 u}{\partial x^2} \right)^2 + \frac{\partial^3 u}{\partial y^2 \partial x} \frac{\partial u}{\partial x} + \left(\frac{\partial^2 u}{\partial x \partial y} \right)^2 \right)^2$$

and a similar expression for y. Adding these two equations and again using the fact that $\Delta u = 0$, we find that $\Delta v \geq 0$ as in part (a).

- (c) It's immediate that $\Delta u = 4 > 0$.
- (d) Since differentiation is linear, we have $\Delta(c_1u_1 + c_2u_2) = c_1\Delta u_1 + c_2\Delta u_2$. Since c_1 and c_2 are positive and u_1 and u_2 are subharmonic, it's immediate that this sum is greater than or equal to 0.

Problem 2. Suppose that φ is defined on an open set U and is subharmonic on U. Prove the maximum principal, that no point $a \in U$ can be a strict maximum for φ , i.e. that for every disk of radius r centered at a with r sufficiently small, we have

$$\varphi(a) \le \max \varphi(z) \quad \text{for} \quad |z - a| = r.$$

Proof. Let $a \in U$ and choose r small enough that $\overline{D}_r(a) \subseteq U$. Now since φ is continuous on the circle $\partial \overline{D}_r(a)$ which is compact, it obtains a maximum on that set. Therefore $\varphi(a+re^{i\theta}) \leq \max_{z \in \partial \overline{D}_r(a)} \varphi(z)$ for every θ . Now integrate over θ from 0 to 2π .

$$\varphi(a) \leq \int_0^{2\pi} \varphi(a + re^{i\theta}) \frac{d\theta}{2\pi} \leq \max_{z \in \partial \overline{D}_r(a)} \varphi(z).$$

This is precisely the statement.

Problem 3. Let φ be subharmonic on an open set U. Assume that the closure \overline{U} is compact, and that φ extends to a continuous function on \overline{U} . Show that a maximum for φ occurs on the boundary.

Proof. Since φ is continuous and \overline{U} is compact, we know φ obtains a maximum on \overline{U} . Suppose this maximum is at a in the interior of U. Choose r small enough so that $\overline{D}_r(a) \subseteq U$. Define a function f on $\partial \overline{D}_r(a)$ as $f(\theta) = \varphi(a) - \varphi(a + re^{i\theta})$. Note that $f \geq 0$. Suppose there exists $0 \leq \theta_0 \leq 2\pi$ such that $f(\theta_0) > 0$. Then

$$\int_{0}^{2\pi} f(\theta)d\theta > 0$$

since f is continuous. But then

$$\varphi(a) \le \int_0^{2\pi} \varphi(a + re^{i\theta} \frac{d\theta}{2\pi} < \varphi(a)$$

and so f must be constantly 0. Therefore φ is locally constant.

For each connected open set $V \subseteq U$ we see that $\varphi(z) = \varphi(a)$ for $z \in V$. Suppose that V is the largest such connected open set and suppose that $\partial V \nsubseteq U$. Then there exists $z \in \partial V$ with $z \in U$ and so there exists some $D_{\varepsilon}(z) \subseteq U$. But then $V \subseteq D_{\varepsilon}(z)$ is open, connected and contained in U which contradicts the maximality of V. Thus $\partial V \subseteq \partial U$. Now using continuity, it must be that $\varphi(z) = \varphi(a)$ for $z \in \partial V$ and thus there exists $z \in \partial U$ such that $\varphi(z) = \varphi(a)$. Therefore, φ attains a maximum on ∂U .

Problem 4. Let U be a bounded open set. Let u, v be continuous functions on \overline{U} such that U is harmonic on U, v is subharmonic on U and u = v on the boundary of U. Show that $v \le u$ on U. Thus a subharmonic function lies below the harmonic function having the same boundary value, whence its name.

Proof. The function v-u is subharmonic by linearity of differentiations. That is

$$\Delta(v - u) = \Delta v - \Delta u = \Delta v \le 0.$$

Note that on ∂U we have $v-u \leq 0$ and so using Problem 3 we must have $v-u \leq 0$ on all of U. Thus $v \leq u$ on all of U.

Problem 5. Define

$$P_{R,r}(\theta) = \frac{1}{2\pi} \frac{R^2 - r^2}{R^2 - 2Rr\cos\theta + r^2}$$

for $0 \le r < R$. Prove the inequalities

$$\frac{R-r}{R+r} \le 2\pi P_{R,r}(\theta - \varphi) \le \frac{R+r}{R-r}$$

for 0 < r < R.

Proof. Note that

$$-2rR \le -2rR\cos(\theta - \varphi) \le 2rR$$

which means

$$(R-r)^2 \le R^2 - 2rR\cos(\theta - \varphi) + r^2 \le (R+r)^2.$$

Now using $0 \le r < R$ we have

$$\frac{R^2 - r^2}{(R+r)^2} \le 2\pi P_{R,r}(\theta - \varphi) \le \frac{R^2 - r^2}{(R-r)^2}$$

Now expand $R^2 - r^2 = (R + r)(R - r)$ to obtain

$$\frac{R-r}{R+r} \le 2\pi P_{R,r}(\theta - \varphi) \le \frac{R+r}{R-r}.$$

Problem 6. Let f be analytic on the closed disk $\overline{D}(\alpha,R)$ and let u = Re(f). Assume that $u \geq 0$. Show that for $0 \leq r < R$ we have

$$\frac{R-r}{R+r}u(\alpha) \le u(\alpha + re^{i\theta}) \le \frac{R+r}{R-r}u(\alpha).$$

Proof. We can assume $\alpha = 0$ by applying a translation of the disk. Note that u is harmonic because it is the real part of an analytic function and therefore

$$u(re^{i\varphi}) = \int_0^{2\pi} u(r3^{i\theta}) P_r(\theta - \varphi) d\theta.$$

Now use Problem 5 and the fact that $u \geq 0$ to obtain

$$\int_0^{2\pi} u(re^{i\theta}) \frac{R-r}{R+r} \frac{d\theta}{2\pi} \le u(re^{i\varphi}) \le \int_0^{2\pi} u(re^{i\theta}) \frac{R+r}{R-r} \frac{d\theta}{2\pi}.$$

But since

$$u(0) = \int_0^{2\pi} u(re^{i\theta}) \frac{d\theta}{2\pi}$$

the result follows. Shifting back by α will finish the general case.

Problem 7. Prove that if $v(z) = \operatorname{Im}\left(\left(\frac{1+z}{1-z}\right)^2\right)$, then v is harmonic on $\mathbb D$ and $\lim_{r\uparrow 1} v(re^{i\theta}) = 0$ for all $\theta \in [0, 2\pi)$. Why does this not contradict the maximum principal?

Proof. Let z = x + iy. Then

$$\operatorname{Im}\left(\left(\frac{1+z}{1-z}\right)^{2}\right) = \operatorname{Im}\left(\left(\frac{x+iy+1}{-x-iy+1}\right)^{2}\right)$$

$$= \operatorname{Im}\left(\frac{1+2x+x^{2}+2iy+2ixy-y^{2}}{1-2x+x^{2}-2iy+2ixy-y^{2}}\right)$$

$$= \operatorname{Im}\left(\frac{1+2x+x^{2}+2iy+2ixy-y^{2}}{1-2x+x^{2}+2iy-2ixy-y^{2}}\right)$$

$$= \operatorname{Im}\left(\frac{1+2x+x^{2}+2iy+2ixy-y^{2}}{1-2x+x^{2}+2iy-2ixy-y^{2}}\right)$$

$$= \operatorname{Im}\left(\frac{1-2x^{2}+x^{4}+4iy-4ix^{2}y-6y^{2}+2x^{2}y^{2}-4iy^{3}+y^{4}}{1-4x+6x^{2}-4x^{3}+x^{4}+2y^{2}-4xy^{2}+2x^{2}y^{2}+y^{4}}\right)$$

$$= \frac{1-2x^{2}+x^{4}-6y^{2}+2x^{2}y^{2}+y^{4}}{1-4x+6x^{2}-4x^{3}+x^{4}+2y^{2}-4xy^{2}+2x^{2}y^{2}+y^{4}}.$$

But also

$$\begin{split} \frac{\partial^2 v}{\partial x^2} &= \frac{\partial^2}{\partial x^2} \frac{1 - 2x^2 + x^4 - 6y^2 + 2x^2y^2 + y^4}{1 - 4x + 6x^2 - 4x^3 + x^4 + 2y^2 - 4xy^2 + 2x^2y^2 + y^4} \\ &= \frac{8(2 - 2x^4 + x^5 - 16y^2 + 6y^4 + x^2(8 - 12y^2) - 2x^3(1 + y^2) + x(-7 + 30y^2 - 3y^4))}{(1 - 2x + x^2 + y^2)^4} \\ &= -\frac{\partial^2}{\partial y^2} \frac{1 - 2x^2 + x^4 - 6y^2 + 2x^2y^2 + y^4}{1 - 4x + 6x^2 - 4x^3 + x^4 + 2y^2 - 4xy^2 + 2x^2y^2 + y^4} \\ &= -\frac{\partial^2 v}{\partial y^2}. \end{split}$$

Thus v(z) is harmonic.

Note that $\frac{1+z}{1-z}$ maps $\mathbb D$ to the right half plane. Thus $\left(\frac{1+z}{1-z}\right)^2$ maps $\mathbb D$ to $\mathbb C$ without the negative imaginary axis and v maps $\mathbb D$ to the upper half plane. Furthermore, note that $\frac{1+z}{1-z}$ takes $\partial \mathbb D$ to the imaginary axis and squaring this line results in the negative real axis. The imaginary part of this is obviously 0 which shows why $\lim_{r\uparrow 1} v(re^{i\theta}) = 0$ for all $\theta \in [0, 2\pi)$. This doesn't contradict the maximum principle because v(z) is not continuous on $\partial \mathbb D$ at 1.