HOW LINUX WORKS

WHAT EVERY SUPERUSER SHOULD KNOW

BRIAN WARD

How Linux Works: What Every Superuser Should Know

Brian Ward

Published by No Starch Press

Praise for the First Edition of How Linux Works

"A great resource. In roughly 350 pages, the book covers all the basics."

—EWEEK

"I would definitely recommend this book to those who are interested in Linux, but have not had the experience to know the inner workings of the OS."

—O'REILLYNET

"One of the best basic books on learning Linux, written with the power user in mind. Five stars."

---OPENSOURCE-BOOK-REVIEWS.COM

"Succeeds admirably because of the way in which it's organized and the level of technical detail it offers."

—KICKSTART NEWS

"This is a very different introduction to Linux. It's unflashy, concentrates on the command line, and digs around in the internals rather than on GUI frontends that take the place of more familiar MS Windows tools."

—TECHBOOKREPORT.COM

"This book does a good job of explaining the nuts and bolts of how Linux operates."

—HOSTING RESOLVE

Preface

I wrote this book because I believe you should be able to learn what your computer does. You should be able to make your software do what you want it to do (within the reasonable limits of its capabilities, of course). The key to attaining this power lies in understanding the fundamentals of what the software does and how it works, and that's what this book is all about. You should never have to fight with a computer.

Linux is a great platform for learning because it doesn't try to hide anything from you. In particular, most system configuration can be found in plaintext files that are easy enough to read. The only tricky part is figuring out which parts are responsible for what and how it all fits together.

Who Should Read This Book?

Your interest in learning how Linux works may have come from any number of sources. In the professional realm, operations and DevOps folks need to know nearly everything that you'll find in this book. Linux software architects and developers should also know this material in order to make the best use of the operating system. Researchers and students, often left to run their own Linux systems, will also find that this book provides useful explanations for *why* things are set up the way they are.

Then there are the tinkerers—people who just love to play around with their computers for fun, profit, or both. Want to know why certain things work while others don't? Want to know what happens if you move something around? You're probably a tinkerer.

Prerequisites

Although Linux is beloved by programmers, you do not need to be a programmer to read this book; you need only basic computer-user knowledge. That is, you should be able to bumble around a GUI (especially the installer and settings interface for a Linux distribution) and know what files and directories (folders) are. You should also be prepared to check additional documentation on your system and on the Web. As mentioned earlier, the most important thing you need is to be ready and willing to play around with your computer.

How to Read This Book

Building the requisite knowledge is a challenge in tackling any technical subject. When explaining how software systems work, things can get *really* complicated. Too much detail bogs down the reader and makes the important stuff difficult to grasp (the human brain just can't process so many new concepts at once), but too little detail leaves the reader in the dark and unprepared for later material.

I've designed most chapters to tackle the most important material first: the basic information that you'll need in order to progress. In places, I've simplified things in order to keep focus. As a chapter progresses, you'll see much more detail, especially in the last few sections. Do you need to know those bits right away? In most cases, no, as I often note. If your eyes start to glaze over when faced with a lot of extra details about stuff that you only just learned, don't hesitate to skip ahead to the next chapter or just take a break. The nitty-gritty will still be there waiting for you.

A Hands-On Approach

However you choose to proceed through this book, you should have a Linux machine in front of you, preferably one that you're confident abusing with experiments. You might prefer to play around with a virtual installation—I used VirtualBox to test much of the material in this book. You should have superuser (root)

access, but you should use a regular user account most of the time. You'll mostly work at the command line, in a terminal window or a remote session. If you haven't worked much in this environment, no problem; Chapter 2 will bring you up to speed.

Commands in this book will typically look like this:

```
$ ls /
[some output]
```

Enter the text in bold; the non-bolded text that follows is what the machine spits back. The \$ is the prompt for your regular user account. If you see a # as a prompt, you should be superuser. (More on that in Chapter 2.)

How This Book is Organized

I've grouped the book's chapters into three basic parts. The first is introductory, giving you a bird's-eye view of the system and then offering hands-on experience with some tools you'll need for as long as you run Linux. Next, you'll explore each part of the system in more detail, from device management to network configuration, following the general order in which the system starts. Finally, you'll get a tour of some pieces of a running system, learn some essential skills, and get some insight into the tools that programmers use.

With the exception of Chapter 2, most of the early chapters heavily involve the Linux kernel, but you'll work your way into user space as the book progresses. (If you don't know what I'm talking about here, don't worry; I'll explain in Chapter 1.)

The material here is meant to be as distribution-agnostic as possible. Having said this, it can be tedious to cover all variations in systems software, so I've tried to cover the two major distribution families: Debian (including Ubuntu) and RHEL/Fedora/CentOS. It's also focused on desktop and server installations. There is a significant amount of carryover into embedded systems, such as Android and OpenWRT, but it's up to you to discover the differences on those platforms.

What's New in the Second Edition?

The first edition of this book dealt primarily with the user-centric side of a Linux system. It focused on understanding how the parts worked and how to get them humming. At that time, many parts of Linux were difficult to install and configure properly.

This is happily no longer the case thanks to the hard work of the people who write software and create Linux distributions. With this in mind, I have omitted some older and perhaps less relevant material (such as a detailed explanation of printing) in favor of an expanded discussion of the Linux kernel's role in every Linux distribution. You probably interact with the kernel more than you realize, and I've taken special care to note where.

Of course, so much of the original subject matter in this book has changed over the years, and I've taken pains to sort through the material in the first edition in search of updates. Of particular interest is how Linux boots and how it manages devices. I've also taken care to rearrange material to match the interests and needs of current readers.

One thing that hasn't changed is the size of this book. I want to give you the stuff that you need to get on the fast track, and that includes explaining certain details along the way that can be hard to grasp, but I don't want you to have to become a weightlifter in order to pick up this book. When you're on top of the important subjects here, you should have no trouble seeking out and understanding more details.

I've also omitted some of the historical information that was in the first edition, primarily to keep you focused. If you're interested in Linux and how it relates to the history of Unix, pick up Peter H. Salus's *The Daemon*,

the Gnu, and the Penguin (Reed Media Services, 2008)—it does a great job of explaining how the software we use has evolved over time.

A Note on Terminology

There's a fair amount of debate over the names of certain elements of operating systems. Even "Linux" itself is game for this—should it be "Linux," or should it be "GNU/Linux" to reflect that the operating system also contains pieces from the GNU Project? Throughout this book, I've tried to use the most common, least awkward names possible.

Acknowledgments

Thanks go to everyone who helped with the first edition: James Duncan, Douglas N. Arnold, Bill Fenner, Ken Hornstein, Scott Dickson, Dan Ehrlich, Felix Lee, Scott Schwartz, Gregory P. Smith, Dan Sully, Karol Jurado, and Gina Steele. For the second edition, I'd especially like to thank Jordi Gutiérrez Hermoso for his excellent technical review work; his suggestions and corrections have been invaluable. Thanks also to Dominique Poulain and Donald Karon for providing some excellent early-access feedback, and to Hsinju Hsieh for putting up with me during the process of revising this book.

Finally, I'd like to thank my developmental editor, Bill Pollock, and my production editor, Laurel Chun. Serena Yang, Alison Law, and everyone else at No Starch Press have done their usual outstanding job at getting this new edition on track.

Chapter 1. The Big Picture

At first glance, a modern operating system such as Linux is very complicated, with a dizzying number of pieces simultaneously running and communicating. For example, a web server can talk to a database server, which could in turn use a shared library that many other programs use. But how does it all work?

The most effective way to understand how an operating system works is through *abstraction*—a fancy way of saying that you can ignore most of the details. For example, when you ride in a car, you normally don't need to think about details such as the mounting bolts that hold the motor inside the car or the people who build and maintain the road upon which the car drives. If you're a passenger in a car, all you really need to know is what the car does (transports you somewhere else) and a few basics about how to use it (how to operate the door and seat belt).

But if you're driving a car, you need to know more. You need to learn how to operate the controls (such as the steering wheel and accelerator pedal) and what to do when something goes wrong.

For example, let's say that the car ride is rough. Now you can break up the abstraction of "a car that rolls on a road" into three parts: a car, a road, and the way that you're driving. This helps isolate the problem: If the road is bumpy, you don't blame the car or the way that you're driving it. Instead, you may want to find out why the road has deteriorated or, if the road is new, why the construction workers did a lousy job.

Software developers use abstraction as a tool when building an operating system and its applications. There are many terms for an abstracted subdivision in computer software, including *subsystem*, *module*, and *package*—but we'll use the term *component* in this chapter because it's simple. When building a software component, developers typically don't think much about the internal structure of other components, but they do care about what other components they can use and how to use them.

This chapter provides a high-level overview of the components that make up a Linux system. Although each one has a tremendous number of technical details in its internal makeup, we're going to ignore these details and concentrate on what the components do in relation to the whole system.

1.1 Levels and Layers of Abstraction in a Linux System

Using abstraction to split computing systems into components makes things easier to understand, but it doesn't work without organization. We arrange components into layers or levels. A *layer* or *level* is a classification (or grouping) of a component according to where that component sits between the user and the hardware. Web browsers, games, and such sit at the top layer; at the bottom layer we have the memory in the computer hardware—the 0s and 1s. The operating system occupies most of the layers in between.

A Linux system has three main levels. Figure 1-1 shows these levels and some of the components inside each level. The *hardware* is at the base. Hardware includes the memory as well as one or more central processing units (CPUs) to perform computation and to read from and write to memory. Devices such as disks and network interfaces are also part of the hardware.

The next level up is the *kernel*, which is the core of the operating system. The kernel is software residing in memory that tells the CPU what to do. The kernel manages the hardware and acts primarily as an interface between the hardware and any running program.

Processes—the running programs that the kernel manages—collectively make up the system's upper level,

called *user space*. (A more specific term for process is *user process*, regardless of whether a user directly interacts with the process. For example, all web servers run as user processes.)

Figure 1-1. General Linux system organization

There is a critical difference between the ways that the kernel and user processes run: The kernel runs in *kernel mode*, and the user processes run in *user mode*. Code running in kernel mode has unrestricted access to the processor and main memory. This is a powerful but dangerous privilege that allows a kernel process to easily crash the entire system. The area that only the kernel can access is called *kernel space*.

User mode, in comparison, restricts access to a (usually quite small) subset of memory and safe CPU operations. *User space* refers to the parts of main memory that the user processes can access. If a process makes a mistake and crashes, the consequences are limited and can be cleaned up by the kernel. This means that if your web browser crashes, it probably won't take down the scientific computation that you've been running in the background for days.

In theory, a user process gone haywire can't cause serious damage to the rest of the system. In reality, it depends on what you consider "serious damage," as well as the particular privileges of the process, because some processes are allowed to do more than others. For example, can a user process completely wreck the data on a disk? With the correct permissions, yes—and you may consider this to be fairly dangerous. There are safeguards to prevent this, however, and most processes simply aren't allowed to wreak havoc in this manner.

1.2 Hardware: Understanding Main Memory

Of all of the hardware on a computer system, *main memory* is perhaps the most important. In its most raw form, main memory is just a big storage area for a bunch of 0s and 1s. Each 0 or 1 is called a *bit*. This is where the running kernel and processes reside—they're just big collections of bits. All input and output from peripheral devices flows through main memory, also as a bunch of bits. A CPU is just an operator on memory; it reads its instructions and data from the memory and writes data back out to the memory.

You'll often hear the term *state* in reference to memory, processes, the kernel, and other parts of a computer system. Strictly speaking, a state is a particular arrangement of bits. For example, if you have four bits in your memory, 0110, 0001, and 1011 represent three different states.

When you consider that a single process can easily consist of millions of bits in memory, it's often easier to use abstract terms when talking about states. Instead of describing a state using bits, you describe what something has done or is doing at the moment. For example, you might say "the process is waiting for input" or "the process is performing Stage 2 of its startup."

NOTE

Because it's common to refer to the state in abstract terms rather than to the actual bits, the term image refers to a particular physical arrangement of bits.

1.3 The Kernel

Why are we talking about main memory and states? Nearly everything that the kernel does revolves around main memory. One of the kernel's tasks is to split memory into many subdivisions, and it must maintain certain state information about those subdivisions at all times. Each process gets its own share of memory, and the kernel must ensure that each process keeps to its share.

The kernel is in charge of managing tasks in four general system areas:

- o **Processes**. The kernel is responsible for determining which processes are allowed to use the CPU.
- Memory. The kernel needs to keep track of all memory—what is currently allocated to a particular process, what might be shared between processes, and what is free.
- o **Device drivers**. The kernel acts as an interface between hardware (such as a disk) and processes. It's usually the kernel's job to operate the hardware.
- o **System calls and support**. Processes normally use system calls to communicate with the kernel.

We'll now briefly explore each of these areas.

NOTE

If you're interested in the detailed workings of a kernel, two good textbooks are Operating System Concepts, 9th edition, by Abraham Silberschatz, Peter B. Galvin, and Greg Gagne (Wiley, 2012) and Modern Operating Systems, 4th edition, by Andrew S. Tanenbaum and Herbert Bos (Prentice Hall, 2014).

1.3.1 Process Management

Process management describes the starting, pausing, resuming, and terminating of processes. The concepts behind starting and terminating processes are fairly straightforward, but describing how a process uses the CPU in its normal course of operation is a bit more complex.

On any modern operating system, many processes run "simultaneously." For example, you might have a web browser and a spreadsheet open on a desktop computer at the same time. However, things are not as they appear: The processes behind these applications typically do not run at *exactly* the same time.

Consider a system with a one-core CPU. Many processes may be *able* to use the CPU, but only one process may actually use the CPU at any given time. In practice, each process uses the CPU for a small fraction of a second, then pauses; then another process uses the CPU for another small fraction of a second; then another process takes a turn, and so on. The act of one process giving up control of the CPU to another process is called a *context switch*.

Each piece of time—called a *time slice*—gives a process enough time for significant computation (and indeed,

a process often finishes its current task during a single slice). However, because the slices are so small, humans can't perceive them, and the system appears to be running multiple processes at the same time (a capability known as *multitasking*).

The kernel is responsible for context switching. To understand how this works, let's think about a situation in which a process is running in user mode but its time slice is up. Here's what happens:

- 1. The CPU (the actual hardware) interrupts the current process based on an internal timer, switches into kernel mode, and hands control back to the kernel.
- 2. The kernel records the current state of the CPU and memory, which will be essential to resuming the process that was just interrupted.
- 3. The kernel performs any tasks that might have come up during the preceding time slice (such as collecting data from input and output, or I/O, operations).
- 4. The kernel is now ready to let another process run. The kernel analyzes the list of processes that are ready to run and chooses one.
- 5. The kernel prepares the memory for this new process, and then prepares the CPU.
- 6. The kernel tells the CPU how long the time slice for the new process will last.
- 7. The kernel switches the CPU into user mode and hands control of the CPU to the process.

The context switch answers the important question of *when* the kernel runs. The answer is that it runs *between* process time slices during a context switch.

In the case of a multi-CPU system, things become slightly more complicated because the kernel doesn't need to relinquish control of its current CPU in order to allow a process to run on a different CPU. However, to maximize the usage of all available CPUs, the kernel typically does so anyway (and may use certain tricks to grab a little more CPU time for itself).

1.3.2 Memory Management

Because the kernel must manage memory during a context switch, it has a complex job of memory management. The kernel's job is complicated because the following conditions must hold:

- o The kernel must have its own private area in memory that user processes can't access.
- o Each user process needs its own section of memory.
- o One user process may not access the private memory of another process.
- User processes can share memory.
- o Some memory in user processes can be read-only.
- o The system can use more memory than is physically present by using disk space as auxiliary.

Fortunately for the kernel, there is help. Modern CPUs include a *memory management unit (MMU)* that enables a memory access scheme called *virtual memory*. When using virtual memory, a process does not directly access the memory by its physical location in the hardware. Instead, the kernel sets up each process to act as if it had an entire machine to itself. When the process accesses some of its memory, the MMU intercepts the access and uses a memory address map to translate the memory location from the process into an actual physical memory location on the machine. The kernel must still initialize and continuously maintain and alter this memory address map. For example, during a context switch, the kernel has to change the map from the outgoing process to the incoming process.

NOTE

The implementation of a memory address map is called a page table.

You'll learn more about how to view memory performance in Chapter 8.

1.3.3 Device Drivers and Management

The kernel's role with devices is pretty simple. A device is typically accessible only in kernel mode because improper access (such as a user process asking to turn off the power) could crash the machine. Another problem is that different devices rarely have the same programming interface, even if the devices do the same thing, such as two different network cards. Therefore, device drivers have traditionally been part of the kernel, and they strive to present a uniform interface to user processes in order to simplify the software developer's job.

1.3.4 System Calls and Support

There are several other kinds of kernel features available to user processes. For example, *system calls* (or *syscalls*) perform specific tasks that a user process alone cannot do well or at all. For example, the acts of opening, reading, and writing files all involve system calls.

Two system calls, fork() and exec(), are important to understanding how processes start up:

- o **fork()** When a process calls fork(), the kernel creates a nearly identical copy of the process.
- **exec()** When a process calls exec (*program*), the kernel starts *program*, replacing the current process.

Other than init (see Chapter 6), *all* user processes on a Linux system start as a result of fork(), and most of the time, you also run exec() to start a new program instead of running a copy of an existing process. A very simple example is any program that you run at the command line, such as the ls command to show the contents of a directory. When you enter ls into a terminal window, the shell that's running inside the terminal window calls fork() to create a copy of the shell, and then the new copy of the shell calls exec(ls) to run ls. Figure 1-2 shows the flow of processes and system calls for starting a program like ls.

Figure 1-2. Starting a new process
NOTE

System calls are normally denoted with parentheses. In the example shown in Figure 1-2, the process asking the kernel to create another process must perform a fork() system call. This notation derives from the way the call would be written in the C programming language. You don't need to know C to understand this book; just remember that a system call is an interaction between a process and the kernel. In addition, this book simplifies certain groups of system calls. For example, exec() refers to an entire family of system calls that all perform a similar task but differ in programming.

The kernel also supports user processes with features other than traditional system calls, the most common of which are *pseudodevices*. Pseudo-devices look like devices to user processes, but they're implemented purely in software. As such, they don't technically need to be in the kernel, but they are usually there for practical reasons. For example, the kernel random number generator device (/dev/random) would be difficult to implement securely with a user process.

NOTE

Technically, a user process that accesses a pseudodevice still has to use a system call to open the

device, so processes can't entirely avoid system calls.

1.4 User Space

As mentioned earlier, the main memory that the kernel allocates for user processes is called *user space*. Because a process is simply a state (or image) in memory, user space also refers to the memory for the entire collection of running processes. (You may also hear the more informal term *userland* used for user space.)

Most of the real action on a Linux system happens in user space. Although all processes are essentially equal from the kernel's point of view, they perform different tasks for users. There is a rudimentary service level (or layer) structure to the kinds of system components that user processes represent. Figure 1-3 shows how an example set of components fit together and interact on a Linux system. Basic services are at the bottom level (closest to the kernel), utility services are in the middle, and applications that users touch are at the top. Figure 1-3 is a greatly simplified diagram because only six components are shown, but you can see that the components at the top are closest to the user (the user interface and web browser); the components in the middle level has a mail server that the web browser uses; and there are several smaller components at the bottom.

Figure 1-3. Process types and interactions

The bottom level tends to consist of small components that perform single, uncomplicated tasks. The middle level has larger components such as mail, print, and database services. Finally, components at the top level perform complicated tasks that the user often controls directly. Components also use other components. Generally, if one component wants to use another, the second component is either at the same service level or below.

However, Figure 1-3 is only an approximation of the arrangement of user space. In reality, there are no rules in user space. For example, most applications and services write diagnostic messages known as *logs*. Most programs use the standard syslog service to write log messages, but some prefer to do all of the logging themselves.

In addition, it's difficult to categorize some user-space components. Server components such as web and database servers can be considered very high-level applications because their tasks are often complicated, so you might place these at the top level in Figure 1-3. However, user applications may depend on these servers to perform tasks that they'd rather not do themselves, so you could also make a case for placing them at the middle level.

1.5 Users

The Linux kernel supports the traditional concept of a Unix user. A *user* is an entity that can run processes and own files. A user is associated with a *username*. For example, a system could have a user named *billyjoe*. However, the kernel does not manage the usernames; instead, it identifies users by simple numeric identifiers called *userids*. (You'll learn more about how the usernames correspond to userids in Chapter 7.)

Users exist primarily to support permissions and boundaries. Every user-space process has a user *owner*, and processes are said to run *as* the owner. A user may terminate or modify the behavior of its own processes (within certain limits), but it cannot interfere with other users' processes. In addition, users may own files and choose whether they share them with other users.

A Linux system normally has a number of users in addition to the ones that correspond to the real human beings who use the system. You'll read about these in more detail in Chapter 3, but the most important user to know about is *root*. The root user is an exception to the preceding rules because root may terminate and alter another user's processes and read any file on the local system. For this reason, root is known as the *superuser*. A person who can operate as root is said to have *root access* and is an administrator on a traditional Unix system.

NOTE

Operating as root can be dangerous. It can be difficult to identify and correct mistakes because the system will let you do anything, even if what you're doing is harmful to the system. For this reason, system designers constantly try to make root access as unnecessary as possible, for example, by not requiring root access to switch between wireless networks on a notebook. In addition, as powerful as the root user is, it still runs in the operating system's user mode, not kernel mode.

Groups are sets of users. The primary purpose of groups is to allow a user to share file access to other users in a group.

1.6 Looking Forward

So far, you've seen what makes up a *running* Linux system. User processes make up the environment that you directly interact with; the kernel manages processes and hardware. Both the kernel and processes reside in memory.

This is great background information, but you can't learn the details of a Linux system by reading about it alone; you need to get your hands dirty. The next chapter starts your journey by teaching you some user-space basics. Along the way, you'll learn about a major part of the Linux system that this chapter doesn't discuss—long-term storage (disks, files, etc.). After all, you need to store your programs and data somewhere.