



Emanuel Kieroński, Jakub Michaliszyn, Jan Otop

# Modal logic

- Many different modal logics (K4, S5, CTL, LTL, ATL, HS, CTL\*K)
- Many applications in verification, planing, linguistics
- Many proofs, many papers

# Modal logic

- Many different modal logics (K4, S5, CTL, LTL, ATL, HS, CTL\*K)
- Many applications in verification, planing, linguistics
- Many proofs, many papers
- Our area of interest: a comprehensive study on the satisfiability problem.

# Kripke semantics

• Kripke structure — a frame + a labelling.

### Kripke semantics

- Kripke structure a frame + a labelling.
- $\mathcal{K}$ -SAT local satisfiability problem w.r.t.  $\mathcal{K}$ .
- ullet  $\mathcal{K}$ -GSAT global satisfiability problem w.r.t.  $\mathcal{K}$ .

### Kripke semantics

- Kripke structure a frame + a labelling.
- ullet  $\mathcal{K}$ -SAT local satisfiability problem w.r.t.  $\mathcal{K}$ .
- ullet  $\mathcal{K} ext{-GSAT}$  global satisfiability problem w.r.t.  $\mathcal{K} ext{.}$

# Our ultimate goal

For all first-order definable classes K, determine the decidability and complexity of K-SAT and K-GSAT.

We are also interested in finite satisfiability.

# Negative results

- (E. Hemaspaandra, "The Price of Universality", 1996)

   *K*-GSAT is undecidable for some ∀FO-definable *K*.
- (E. Hemaspaandra, H. Schnoor, MFCS 2011)

   *K*-SAT is undecidable for some ∀FO-definable *K*.

# Negative results

- (E. Hemaspaandra, "The Price of Universality", 1996)

   *K*-GSAT is undecidable for some ∀FO-definable *K*.
- (E. Hemaspaandra, H. Schnoor, MFCS 2011)

   *K*-SAT is undecidable for some ∀FO-definable *K*.
- (E. Kieroński, J. Michaliszyn, J. Otop, FSTTCS 2011)

   *K*-GSAT and *K'*-SAT are undecidable for some ∀FO³-definable *K* and *K'* (holds also for finite satisfiability).

$$\neg xRy \lor \neg xRz \lor yRz \lor zRy \lor yRx \lor zRx$$

#### Standard translation

Is  $\varphi$  satisfied w.r.t. the class defined by  $\Phi$ ?  $\to$  Is  $\Phi \wedge ST(\varphi)$  satisfiable?

#### Standard translation

Is  $\varphi$  satisfied w.r.t. the class defined by  $\Phi$ ?  $\to$  Is  $\Phi \wedge ST(\varphi)$  satisfiable? Decidability in many interesting cases (even multimodal), including

- FO<sup>2</sup>:
  - with one transitive relation (W. Szwast, L. Tendera, 2012),
  - with counting quantifiers (I. Pratt-Hartmann, 2005),
  - with two equivalence relations (E. Kieroński, J.Michaliszyn, I. Pratt-Hartmann, L. Tendera, 2012).
- Guarded Fragment:
  - with fixed points (E. Grädel, I. Walukiewicz, 1999),
  - with the transitive closure operator in guards (J.Michaliszyn, 2009).

#### Standard translation

Is  $\varphi$  satisfied w.r.t. the class defined by  $\Phi$ ?  $\to$  Is  $\Phi \wedge ST(\varphi)$  satisfiable? Decidability in many interesting cases (even multimodal), including

- FO<sup>2</sup>:
  - with one transitive relation (W. Szwast, L. Tendera, 2012),
  - with counting quantifiers (I. Pratt-Hartmann, 2005),
  - with two equivalence relations (E. Kieroński, J.Michaliszyn, I. Pratt-Hartmann, L. Tendera, 2012).
- Guarded Fragment:
  - with fixed points (E. Grädel, I. Walukiewicz, 1999),
  - with the transitive closure operator in guards (J.Michaliszyn, 2009).
- High complexity.

### J. Michaliszyn, J. Otop, LICS 2012

For any  $\mathcal K$  definable by universal Horn formulas,  $\mathcal K$ -SAT and  $\mathcal K$ -GSAT are decidable.

### J. Michaliszyn, J. Otop, LICS 2012

For any  ${\cal K}$  definable by universal Horn formulas,  ${\cal K}\text{-SAT}$  and  ${\cal K}\text{-GSAT}$  are decidable.

### J. Michaliszyn, E. Kieroński, AIML 2012

Also finite satisfiability of modal logic is decidable w.r.t. the classes definable by universal Horn formulas.

# General satisfiability

| Туре | $\mathcal{K}_{\Phi}	ext{-}GSAT$ | $\mathcal{K}_{\Phi}	ext{-}SAT$ |
|------|---------------------------------|--------------------------------|
| S1+  | EXPTIME-c                       | PSPACE-c                       |
| S1-  | PSPACE-c                        | NP-c                           |
| S2+  | NP-c                            | PSPACE-c                       |
| S2-  | NP-c                            | NP-c                           |
| S3+  | impossible                      |                                |
| S3-  | NP-c                            | NP-c                           |

Except for some trivial formulas like  $xRx \wedge (xRx \Rightarrow \bot)$ .

# Finite satisfiability

| Type of $\Phi$     | $\mathcal{K}_{m{\Phi}}	ext{-}GFINSAT$ | $\mathcal{K}_{m{\Phi}}	ext{-FINSAT}$ |
|--------------------|---------------------------------------|--------------------------------------|
| S3+, S3-           | FMP, NP-c                             |                                      |
| S2+, S2-           | NEXPTIME                              |                                      |
| S1+ & "merges"     | Lack of FMP<br>(always!),<br>PSPACE-c | FMP,<br>PSPACE-c                     |
| S1+ & not "merges" | FMP,<br>EXPTIME-c                     | FMP,<br>PSPACE-c                     |
| S1-                | FMP,<br>PSPACE-c                      | FMP,<br>NP-c                         |

#### Finite vs. General

### J. Michaliszyn, J. Otop, P. Witkowski, Gandalf 2012

- There is an undecidable logic that is finitely decidable
- There is a decidable logic that is finitely undecidable

#### **Transitiveness**

- Transitive modalities are popular in practice:
- F, G of LTL
- B, D, L of HS logic
- $K_i$ ,  $C_G$  of epistemic logic

### J. Michaliszyn, J. Otop, CSL 2013

For any  $\mathcal K$  of transitive frames definable by universal formulas,  $\mathcal K$ -SAT and  $\mathcal K$ -GSAT are decidable. The same holds for the finite satisfiability problem.

### Our ultimate goal

For all first-order definable classes  $\mathcal{K}$ , classify  $\mathcal{K}\text{-SAT}$ ,  $\mathcal{K}\text{-GSAT}$  (and their finite counterparts) w.r.t. the decidability status and the complexity.

### Our ultimate goal

For all first-order definable classes  $\mathcal{K}$ , classify  $\mathcal{K}\text{-SAT}$ ,  $\mathcal{K}\text{-GSAT}$  (and their finite counterparts) w.r.t. the decidability status and the complexity.

# Why?

- Better understanding
- Easy modifications
- Unified theory

### Our ultimate goal

For all first-order definable classes  $\mathcal{K}$ , classify  $\mathcal{K}\text{-SAT}$ ,  $\mathcal{K}\text{-GSAT}$  (and their finite counterparts) w.r.t. the decidability status and the complexity.

# Why?

- Better understanding
- Easy modifications
- Unified theory

### The "metaproblem"

Input: A first-order formula  $\Phi$  that defines a class of frames  $\mathcal{K}$ .

Question: Is K-SAT decidable?

#### Is the metaproblem decidable?

# Thank you for your attention!

### Summary

- We study the satisfiability problem of modal logic over first-order definable classes of frames.
- In some cases the problem is undecidable.
- There are wide classes of formulas that lead to **decidable** problems (Horn formulas, transitive formulas, FO<sup>2</sup>, *GF*).
- Our goal: to classify them all.

### Open: Is the "metaproblem" decidable?

Input: A first-order formula  $\Phi$  that defines a class of frames  $\mathcal{K}.$ 

Question: Is K-SAT decidable?