Relatório 08:

Operação de um Gerador Ligado na Rede Elétrica

Batista, H.O.B.¹, Alves, W. F. O.²
Matriculas: 96704¹, 96708²
Departamento de Engenharia Elétrica,
Universidade Federal de Viçosa, Viçosa - MG.
e-mails: hiago.batista@ufv.br¹, werikson.alves@ufv.br²

I. Introdução

Para o funcionamento de uma maquina de indução como gerador o rotor deve ser acionado acima da velocidade síncrona por meio de uma máquina primária.

A potência mecânica que é fornecida pela máquina é convertida em potência elétrica, sendo transferida para o estator por meio do entreferro, e ao final entregue a rede como potência gerada.

Durante a operação como gerador as perdas internas são supridas pela potência mecânica recebida no eixo. Esta potência é fornecida através de um motor de corrente contínua e convertida em potencia elétrica. Além disto, vale ressaltar que o gerador entrega potência ativa para a rede, enquanto a potência reativa é retirada da rede.

II. Objetivos Gerais e Específicos

Portanto, neste trabalho pretende-se analisar o funcionamento da máquina de indução operando como gerador ligado à rede elétrica. Para esta analise foi utilizada uma carga resistiva ligada em paralelo com a rede, sendo possível analisar a potência ativa com que o gerador de indução entrega para a carga.

III. METODOLOGIA

A. Materiais

Os materiais utilizados para está prática serão os listados abaixo:

- Uma máquina de indução;
- Um motor de corrente contínua;
- Uma carga trifásica de 450 W;
- Um reostato de ajuste da corrente de campo do motor de corrente contínua;
- Um multímetro;
- Três wattímetros monofásicos;
- Um tacômetro.

B. Desenvolvimento

Para o desenvolvimento, inicialmente foi montado o circuito da figura 1, com a carga ligada em estrela, alimentada pela rede, em seguida foi medida a potência ativa absorvida, sendo os wattímetros posicionados nas conexões da rede, do motor de indução e na carga.

Figura 1. Modelo de circuito.

Depois com a carga desligada, a máquina de indução foi ligada como motor em vazio na rede (ligada em estrela), e assim medindo a velocidade, potência ativa absorvida da rede e observado o sentido de rotação. Depois ao conectar a carga e o motor de indução na rede, foi medida a potência absorvida, e ao final a máquina foi desligada novamente. Em seguida, a máquina de corrente contínua foi ligada como motor com excitação independente, sendo observado seu o sentido de rotação. Por meio destas configurações, percebe-se que os sentidos de rotação dos motores devem ser concordantes.

Seguindo o experimento, as duas máquinas foram ligadas na rede, sendo primeiro o motor de corrente contínua e depois o motor de indução juntamente com a carga. Em seguida, foi ajustado a velocidade do motor de corrente contínua em 1790 RPM, 1800 RPM, 1810 RPM e 1830 RPM.

IV. RESULTADOS E DISCUSSÕES

Ao executarmos as simulações, obtemos os valores apresentados na tabela (I). Variando a velocidade foram medidos a potência ativa, tensão e corrente nos barramentos de rede, carga e do motor de indução trifásico, (II), (III), e (IV), respectivamente.

Para uma tensão de alimentação da rede fixada em 380 V, quando a velocidade no eixo é menor que a velocidade síncrona, observa-se que no barramento da rede a potência absorvida e a corrente diminuem, no barramento da carga a potência e a corrente se mantém constantes e no barramento do M.I.T a potência absorvida tende a se aproximar de zero e a corrente tende a se aproximar de um valor mínimo. Quando a velocidade no eixo ultrapassa a velocidade síncrona, no barramento da rede a potência e a corrente ainda continuam a diminuir, no barramento

Tabela I Valores para a carga e M.I.T

Tipo		Carga Ligada	Carga e M.I.T ligadas
Barramento da Rede	Vt (V)	380	380
	I (A)	2.9	4.3
	P (W)	1110	1590
Barramento da Carga	Vt (V)	380	380
	I (A)	2.9	2.9
	P (W)	1110	1110
Barramento do M.I.T	Vt (V)	-	380
	I (A)	-	1.59
	P (W)	-	510

Tabela II VALORES PARA A REDE.

Velocidade	Barramento da Rede		
(RPM)	Vt (V)	I (A)	P (W)
1780	380	3,4	1260
1800	380	3,07	1140
1810	380	2,94	1080
1840	380	2,52	910
1856	380	2,32	840

Tabela III VALORES PARA A CARGA.

Velocidade	Barramento da Rede		
(RPM)	Vt (V)	I (A)	P (W)
1780	380	2,9	1110
1800	380	2,9	1110
1810	380	2,91	1110
1840	380	2,91	1110
1856	380	2,91	1110

Tabela IV VALORES PARA O MOTOR.

Velocidade	Barramento M.I.T			
(RPM)	Vt (V)	I (A)	P (W)	
1780	380	0,94	180	
1800	380	0,85	60	
1810	380	0,85	0	
1840	380	1,05	240	
1856	380	1,20	300	

da carga a potência e a corrente se mantém constantes, e no barramento do M.I.T o módulo da potência tende a aumentar novamente e a corrente volta a crescer.

Figura 2. Torque em função do escorregamento.

Pela Figura (2), para um intervalo de (-1 < S < 0), observa-se que o torque é negativo. Isto ocorre pois como

a velocidade do eixo superou a velocidade síncrona o motor passa a fornecer potência para o sistema, o valor do escorregamento passa a ser negativo, e assim o torque também fica negativo. Nota-se também que da mesma forma que na parte positiva, quando o motor opera como gerador, também há um ponto de torque máximo, e para velocidades mais altas o torque tende a se aproximar de zero.

Outro ponto importante, é que a medida que a velocidade no eixo aumenta (acima da velocidade síncrona) o motor de indução trifásica passa a fornecer potência ativa para o sistema, enquanto começa a consumir a potencia reativa presente na rede elétrica.

Caso a carga fosse indutiva, a potência ativa consumida por ela seria aumentada, e com isto a potência ativa do sistema iria aumentar. Para manter-se o equilíbrio a potencia reativa deveria diminuir, logo o motor de indução passaria a consumir mais potência reativa do sistema.

V. Conclusões

Portanto, conclui-se que o motor de indução quando ligado como gerador consegue fornecer potência ativa para o circuito além de consumir a potência reativa do mesmo e possuir torque negativo devido ao escorregamento negativo.

Referências

- [1] Stephen J Chapman. Fundamentos de máquinas elétricas. AMGH editora, 2013.
- [2] Stephen D Umans. Máquinas Elétricas de Fitzgerald e Kingsley-7. AMGH Editora, 2014.