Do limits to arbitrage explain the benefits of volatility-managed portfolios?

Pedro Barroso, Andrew Detzel

Journal of Financial Economics, 2021

Interpreter: Weihao Zhao

School of Economics and management WHU

2025-05-23

Framework

Research Question 1. Will the VMP strategies remain effective after

2. Can Limits to Arbitrage explain abnormal returns of these strategies?

adding transaction costs?

Theoretical Setting

- 1. Vol Managed Strategies
- 2. Limit to arbitrage Theory
- 3. Sentiment + Behavioral Finance

Design

- 1. Build VMP strategy
- 2. Transaction cost estimation
- Arbitrage Risk/Short selling restrictions
- 4. Behavioral Variables

Findings

- (1) Most factors' VMPs have no alpha after transaction costs.
- (2) MKT portfolio VMP strategy remains effective even after cost.
- (3) Limits to arbitrage cannot fully explain VMP's abnormal returns.
- (4) Sentiment can explain differences in VMP strategy performance.

Research Questions

- 1. Can Volatility Managed Portfolios (VMPs) still have significant abnormal returns after considering transaction costs?
- Namely, Can transaction costs explain why non-market factors' VMP generate alphas?
- Do seemingly useful strategies really make money?
- 2. Can Limits to Arbitrage (LTA) explain the performance of VMP strategies?
- If not, is there any alternative channel to explain such anomly?

Motivation

Moreira and Muir (2017) found that VMPs can generate significant abnormal returns.

- Most studies on VMP only evaluate 'ideal profits' and ignore costs.
- VMP strategy(high turnover rate and cost sensitivity) is an ideal research object.

Contradictions between theoretical and empirical expectations:

- Classical financial theory holds that the higher the risk, the higher the expected return.
- Empirically, VMP reverses the use of VOL, and still brings excess rets.

This abnormal result may not necessarily mean that market is ineffective:

- Market participants are unable to execute effective arbitrage; (high costs)
- Market participants have 'behavioral biases'; (slow to react during high volatility)

Contributions

1. Literature on VMPs and Their Abnormal Returns

Prior: VMP significantly improved return of various asset factors.(Moreira & Muir 2017)

Extend: Analyze actual feasibilit when adding transaction costs, turnover rates, etc.

2. Literature on the role of LTA in explaining abnormal returns

Prior: Higher arbitrage risk implied the stronger the abnormal returns. (Stambaugh et al. 2015)

Extend: Testing and discovering that LTA cannot explain the benefits of **VMP** strategy.

3. Literature on introduction of Sentiment Theory into Asset Pricing

Prior: The market responds slowly to negative information when sentiment is high.

Extend: Introducing sentiment interpretation pathway into interpretation framework of VMP.

Hypothesis

H1: VMPs for non-market factors achieve high excess returns after considering costs.

- Checking that if LTA explain for VMP alpha returns for non-market factors.
- High-return strategies (VMP) may not be profitable(arbitrage costs are too high)

H2: LTA explains the excess returns obtained by market portfolio VMP strategy.

- Many studies have shown that abnormal returns increase with increasing IV and decrease with increasing IO in the cross-section;
- Otherwise, LTAs fails to explain, and there may exist another channel(**Sentiment**).

Sample and Variables

Sample Range:

- Stock data: CRSP, Compustat
- Factor data: Kenneth French, AQR, Hou-Xue-Zhang
- Sample period: 1926–2015(Monthly)

Key Vairables:

ullet The VMP returns: $f^{\sigma}_t = rac{c}{RV_{t-1}^2} \cdot f_t$

 f_t : Monthly returns of raw factors (such as HML) at time t.

 RV_{t-1}^2 : Realized variance of the daily returns of the factor in period (t-1).

c: Normalizd coefficient: Managed portfolio has same vol as the original factor.

Idea: Less/More weights during high/Low volatility periods for risk adjusted returns.

H1: Non-market Factors' VMP don't remain effective after adding costs

Panel A: Full sample									
	MKT	SMB	HML	MOM	RMW	CMA	ROE	IA	BAB
α	4.81 (3.05)	-0.46 (-0.50)	1.74 (1.64)	12.53 (8.06)	2.68 (3.06)	0.36 (0.50)	5.03 (5.15)	1.41 (2.06)	6.83 (6.85)
β	0.61 (25.17)	0.61 (25.23)	0.57 (22.71)	0.47 (17.36)	0.58 (17.97)	0.68 (22.94)	0.65 (20.62)	0.70 (23.51)	0.58 (22.95)
N	1073	1073	1073	1068	629	629	587	587	1020

Estimation method for transaction costs: two-step modeling

Step1: Adopting Hasbrouck's (2009) Effective Spread measurement method;

Step2: Adding up individual stock costs as factor portfolio cost(Novy Marx 2016).

	Panel A: Whole sample factor performance and transaction cost statistics							
	SMB	HML	MOM	RMW	CMA	ROE	IA	BAB
$E(f_{net}^{\sigma})$	-5.56	4.48	1.33	3.13	4.43	0.85	2.25	6.67
α_{net}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$t(\alpha_{net})$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

H1(further): Introducing six cost mitigation mechanisms is of no help

			Panel A: 150%	maximum lev	erage constra	int			
		SMB	HML	МОМ	RMW	CMA	ROE	IA	BAB
1926 to 2015	α_{net}	0.00	0.00	1.27	0.00	0.00	0.17	0.00	0.00
	$t(\alpha_{net})$	0.00	0.00	1.26	0.00	0.00	0.24	0.00	0.00
	$z(SR(f_{net}^{\sigma}))$	5.72	3.97	1.65	3.79	6.66	0.52	4.27	6.23
1926 to 1955	α_{net}	0.00	0.00	0.00					0.00
	$t(\alpha_{net})$	0.00	0.00	0.00					0.00
	$z(SR(f_{net}^{\sigma}))$	3.62	3.73	0.45					3.94
1956 to 1985	O'met	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
	$t(\alpha_{net})$	0.00	0.00	0.95	0.00	0.00	0.00	0.00	0.00
	$z(SR(f_{net}^{\alpha}))$	4.83	3.08	0.33	4.53	4.75	1.92	4.35	5.92
1986 to 2015	O'met	0.00	0.00	2.14	0.00	0.00	0.90	0.00	0.00
	$t(\alpha_{net})$	0.00	0.00	1.67	0.00	0.00	1.09	0.00	0.00
	$z(SR(f_{net}^{\sigma}))$	5.14	2.35	1.35	2.28	5.09	0.38	3.03	4.13
		Pa	nel D: Factor	s scaled by six	-month volati	lity			
1926 to 2015	α_{net}	0.00	0.39	5.01	0.00	0.00	1.92	0.09	1.23
	$t(\alpha_{net})$	0.00	0.61	2.88	0.00	0.00	3.20	0.22	1.77
	$z(SR(f_{net}^{\sigma}))$	-2.45	-0.27	5.09	-0.94	-1.93	2.86	-0.31	0.63

The cost mitigation strategy reduces liquidity demand through one of the following two techniques: (i) slowing down trading speed or (ii) avoiding stocks with high trading costs.

Proxies for Limits to Arbitrage, LTA

Idiosyncratic Volatility(IVOL) as the **arbitrage risk** proxy variable.

$$\mathsf{IVOL}_{i,t} = \mathsf{Std.} \ \mathsf{Dev}(\epsilon_{i,t})$$

Among them, $\epsilon_{i,t}$ is the CAPM regression residual of stock i at time t.

Institutional Ownership(IO) measures the short-selling restrictions.

$${
m IO}_{i,t} = rac{{
m Number \ of \ shares \ held \ by \ the \ institution}}{{
m Total \ number \ of \ outstanding \ shares}}$$

Calculate the monthly IVOL & IO of all stocks and divide into three quartiles:

Low arbitrage risk group, Medium arbitrage risk group, High arbitrage risk group.

Supporting H1 & Rejecting H2

	P	anel A: IV, 1926 to 20	15	P	anel B: IO, 1986 to 20	15
	IV1	IV2	IV3	IO1	IO2	IO3
β	0.56***	0.72***	0.83***	0.55***	0.65***	0.71***
	(11.19)	(11.47)	(10.89)	(12.24)	(13.23)	(13.48)
α	5.74***	5.29***	0.72	0.33	2.41	5.46***
	(3.81)	(2.71)	(0.27)	(0.13)	(1.13)	(2.63)
N	1072	1072	1072	360	360	360
R^2	0.35	0.34	0.27	0.29	0.43	0.48
SR(rx)	0.48	0.38	0.15	0.27	0.42	0.52
$SR(rx, rx^{\sigma})$	0.62	0.47	0.15	0.27	0.47	0.71
ΔCER	2.63	1.35	0.00	0.00	0.74	3.82

Rejecting H2: LTA cannot explain the abnormal returns of market portfolio VMP.

The excess returns of VMP strategy are concentrated in stocks with "low arbitrage restrictions" (i.e. low-risk, high short selling stocks).

New Channel: Behavioral finance -Sentiment

The BW Sentiment Index:

Constructed by Baker and Wurgler (2006), is one of the most classic and widely cited market sentiment measures(behavioral finance).

Selecting 6 market variables that represent the level of investor optimism:

Return on the First Day of IPO; Number of IPOs; Closed-end fund discount; Equity Issuance; Turnover; Changes in PE,PB;

Using PCA to extract the first PC from them as overall market sentiment factor.

Adopting a regression residual version, which is the "pure sentiment component" after controlling for macroeconomic variables such as inflation, interest rates, etc.

H2(further): Sentiment explains performance of market portfolio VMP

When market sentiment is low, volatility has a positive predictive effect on market returns, while it has a negative predictive effect when sentiment is high.

研究结论如何回应研究假设

研究假设	是否被支持	说明
H1: VMP 策略在成本后仍有效	不支持	除市场组合和少数例外 (如 MOM) 外, 多数策略在交易成本后无 alpha
H2: 套利限制解释 VMP 超额收益	不支持	VMP 收益集中在套利限制小的股票中,违背套利限制理论预期
H3: 情绪驱动解释 VMP 收益	支持	高情绪时期 VMP 策略表现显著更好,符合行为金融理论解释

维度	套利限制理论 (LTA)	行为金融情绪理论
理论出发点	理性套利者面临摩擦或风险	投资者非理性、存在行为偏差
假设核心	"不能套利"导致错误持续存在	"错误定价 + 迟钝反应"形成可预测收益
文中检验方式	分组套利限制变量 (IVOL、IO)	分组情绪指数变量 (BW 情绪指数)
实证结果支持	不支持	支持
研究意义	驳斥传统"摩擦"路径解释	强化行为金融在资产定价中的解释力

研究局限性与未来展望

局限性:

- (1). 样本范围主要基于美国市场数据:时间跨度虽然长 (1926-2015),但缺乏国际样本。
- 研究结论的外部有效性有限,在其他国家市场(特别是新兴市场或制度差异显著的市场)是否成立仍需检验。
- (2). 交易成本估计基于模型推导,非真实交易数据:虽然作者使用 Hasbrouck (2009)与 Novy-Marx & Velikov (2016)的方法进行交易成本建模,但这些仍是"模型估算",并非基于真实交易账户执行成本。

未来研究方向:

- (1). 可将 VMP 策略在不同国家 (如欧洲、新兴市场)、不同监管环境下检验;
- 可进一步拓展至其他资产类别。验证 VMP 策略的普适性与套利限制/情绪理论的跨市场有效性。
- (2). 构建多因子下的最优杠杆动态策略:
- 当前 VMP 策略基于单因子波动率,未来可基于多因子协方差矩阵动态调整组合杠杆(风险平价); 或结合机器学习,进行多维特征条件下的策略优化。

Appendix-交易成本的估算方法-两步法建模

第一步: 个股交易成本的估算

采用 Hasbrouck (2009) 的**有效价差 (Effective Spread)** 度量方法:

有效价差 = 成交价格与中间报价 (midquote) 之间的差值;

衡量投资者实际承担的买卖滑点成本;

使用高频数据估算每只股票的单位交易成本。

第二步:组合层面的交易成本建模

使用 Novy-Marx and Velikov (2016) 的方法将个股成本汇总为因子组合成本:

计算组合的月度换手率 (Turnover);

按照权重分配和换手金额,对个股交易成本加权求和;

得到组合月度总交易成本;

从组合收益中减去交易成本 \rightarrow 得到净收益 (Net Return)。

Appendix-2

项目	市场组合 MKT	一般因子(如MOM、SMB)
VMP调合对象	整体市场权重	个股之间大幅换仓
是否需要借券	否	是 (某些因子需做空)
换手率	低	极高 (动量类尤甚)
成本可控性	非常好(可用ETF、期货)	非常差 (个股价差 + 冲击成本)
成本后收益	仍显著为正	多数为负或为零