3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

3.23 Fall 2007 – Lecture 12 **SEMICONDUCTORS**

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Last time

- 1. Periodic potential: atomic + pertubation
- 2. Bloch sums of localized orbitals (atomic, or LCAO)
- 3. Tight-binding formulation (in the case only one orbital has significant overlap)
- 4. From flat atomic "bands" to dispersive cosines
- 5. Bandwidths
- 6. Tight-binding vs. empirical pseudopotential (i.e. a perturbation of the free electron gas)
- 7. Band structure (DETAILED) of a semiconductor

Ferroelectric perovskites

Image removed due to copyright restrictions. Please see: Fig. 3 in King-Smith, R. D., and David Vanderbilt. "First-principles Investigation of Ferroelectricity in Perovskite Compounds." *Physical Review B* 49 (March 1994): 5828-5844.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Ferroelectric perovskites

Image removed due to copyright restrictions. Please see: Fig. 4 in King-Smith, R. D., and David Vanderbilt. "First-principles Investigation of Ferroelectricity in Perovskite Compounds." *Physical Review B* 49 (March 1994): 5828-5844.

Silicon

Lead

Images removed due to copyright restrictions.

Please see Fig. 2.24 and in Yu, Peter Y., and Cardona, Manuel.

"Fundamentals of Semiconductors: Physics and Materials Properties."

New York, NY: Springer, 2001.

Image removed due to copyright restrictions.

Please see any band gap diagram of lead, such as http://www.bandstructure.jp/Table/BAND/band_png/pb4800b.ps.png

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Copper

Figure by MIT OpenCourseWare.

Silver

Image removed due to copyright restrictions.

Please see and band gap diagram of silver, such as

http://www.bandstructure.jp/Table/BAND/band_png/ag39275a.ps.png

Band structure of graphene

Images removed due to copyright restrictions. Please see: Fig. 2.4 and 2.6 in Minot, Ethan. "Tuning the Band Structure of Carbon Nanotubes." PhD dissertation, Cornell University, 2004.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Carbon nanotubes

Image from Wikimedia Commons, http://commons.wikimedia.org

Zone folding: Band structure of nanotubes

Figure by MIT OpenCourseWare.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

The independent-electron gas

- Hamiltonian
- Eigenvalues and eigenfunctions

The independent-electron gas

BvK boundary conditions

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

The independent-electron gas

Counting the states

Image removed due to copyright restrictions. Please see any diagram of free electron band gaps, such as

 $http://leung.uwaterloo.ca/CHEM/750/Lectures\%202007/SSNT-5-Electronic\%20Structure\%20II_files/image008.jpg.$

The independent-electron gas

Particle density

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

The independent-electron gas

Energy density

Density of states (for any solid)

$$g_n(\varepsilon) = 2\int \frac{1}{8\pi^3} \delta(\varepsilon - \varepsilon_n(\vec{k})) d\vec{k}$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Band structure of graphene

Courtesy Hongki Min. Used with permission.

Massive vs massless bands

Dimensions	d=1	d=2	d=3
Massless (E≈k)	const	E	E ²
Massive (E≈k²)	1/sqrt(E)	const	sqrt(E)

$$g_n(\varepsilon) = 2\int \frac{1}{8\pi^3} \frac{1}{\left|\nabla \varepsilon_n(\vec{k})\right|} dS$$

- S goes as k^{d-1}, where d is the dimensionality
- $\frac{1}{\left|\nabla arepsilon(ar{k})\right|}$ for a band that has k^I dispersions goes as k^{-(I-1)},
- the integral goes as kd-l
- energy is proportional to k^l , the integral goes as $\epsilon^{(d-l)/l}$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Statistics of classical and quantum particles

\neg	1	2	3
1	AB	Ć	ą.
2	710000	AB	
3	100	2	AB
4	A	В	-
5	A		В
6	1000	A	В
7	В	A	
8	В	713	A
9		В	A

\neg	1	2	3
1	AA		
2		AA	
3			AA
4	A	A	
5	A		A
6		Α	- 4

Probability and Partition Function

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Chemical potential

Fermi-Dirac distribution

Images from Wikimedia Commons, http://commons.wikimedia.org.