EXERCÍCIOS SIMPLES E CALCULOS MATEMÁTICOS UTILIZANDO MÓDULOS

MANIPULANDO TEXTO

ESTRUTURAS DE CONDIÇÕES SIMPLES

ESTRUTURA DE CONDIÇÕES, ANINHADAS E COMPOSTAS

ESTRUTURA DE REPETIÇÃO FOR

ESTRUTURA DE REPETIÇÃO WHILE

INTERROMPENDO ESTRUTURA DE REPETIÇÃO WHILE

EXERCÍCIOS SIMPLES E CALCULOS MATEMÁTICOS

EX001 OLA MUNDO (PRINT)	5
EX002 RESPOSTA AO USÁRIO (INPUT, PRINT)	5
EX003 SOMA (+)	5
EX004 TIPOS PRIMITIVOS (VAR.IS())	5
EX005 ANTECESSOR E SUCESSOR(-,+)	6
EX006 DOBRO TRIPLO E RAIZ QUADRADA (POW)	6
EX007 MÉDIA (FLOAT)	6
EX008 CONVERTER METROS (*)	6
EX009 TABUADA SIMPLES (PRINT, FORMAT)	7
EX010 CONVERTER MOEDAS (/)	7
EX011 PINTAR PAREDE (*, /)	7
EX012 % DESCONTO (-, *)	7
EX013 % AUMENTO (+, *)	
EX014 CONVERTER GRAUS (*, /, +)	8
EX015 ALUGUEL DE CARRO (VAR, *)	8
EX016 PORÇÃO INTEIRA (MATH, TRUNC)	
EX017 HIPOTENUSA (MATH, SQRT, POW)	9
EX018 SENO COSSENO E TANGENTE (MATH, SIN, COS, TAN)	
EX019 SORTEIO (RANDOM, CHOICE)	9
EX020 SORTEIO ORDEM DA LISTA (RAMDOM, SUFFLE)	
EX021 REPRODUZIR ÁUDIO (PLAYSOUND)	10
EX022 MANIPULANDO TEXTO (UPPER, LOWER, COUNT, LEN, SPLIT)	11
EX023 DEZENA CENTENA E MILHAR, FATIAMENTO DE STRING ([])	11
EX024 NOME DE CIDADE COM SANTO (IN, [], FIND)	11
EX025 NOME DE PESSOA COM SILVA (IN, STRIP, UPPER)	12

EX026 QUANTAS VEZES APARECE UMA LETRA NA FRASE (.FIND) 12	
EX027 PRIMEIRO E ULTIMO NOME (LEN , FATIAMENTO [])	
EX028 ADIVINHAR NÚMERO (RANDINT, IF, ELSE)13	
EX029 CÁLCULO DE MULTA (IF)	
EX030 PAR OU ÍMPAR (IF, ELSE)	
EX031 CÁLCULO DE VIAGEM (IF, ELSE)	
EX032 ANO BISSEXTO (DATETIME, IF)	
EX033 MAIOR E MENOR NÚMERO (IF, AND)	
EX034 AUMENTO % (IF, ELSE)	
EX035 RETAS PARA FORMAR TRIÂNGULO (IF, AND, ELSE)	
EX036 APROVAR EMPRÉSTIMO (IF, ELSE)	
EX037 BINÁRIO, OCTAL E HEXADECIMAL (IF, ELIF, ELSE)	
EX038 MAIOR VALOR 2 NÚMEROS (IF, ELIF, ELSE)	
EX039 ALISTAMENTO NO EXÉRCITO (IF, ELIF)17	
EX040 REPROVADO OU APROVADO (IF, ELIF)	
EX041 CATEGORIA DO ATLETA (IF, ELIF)	
EX042 RETAS FORMAR UM TIPO DE TRIÂNGULO (IF, ELIF)	
EX043 LEITURA DE IMC (IF, ELIF)	
EX04419	
EX04519	
EX04619	
EX04719	
EX04819	
EX04919	
EX05019	
FX051 19	

EX052	20
EX053	20
EX054	20
EX055	20
EX056	20
EX057	20
EX058	20
EX059	20
EX060	20
EX061	20
EX062	20
EX063	20
EX064	20
EX065	21
EX066	21
EX067	21
EX068	21
EX069	21
EX070	21
EX071	21

EX001 OLA MUNDO (PRINT)

```
print('\033[0;31;40m0lá Mundo\033[m!')
print('\033[1;32;41m0lá Mundo\033[m!')
print('\033[7m0lá Mundo\033[m')
msg = '0la Mundo!'
print(msg)
Olá Mundo
Ola Mundo!
```

Exercício simples onde é atribuído uma string a uma variável, logo depois através do comando print essa variável é mostrada no terminal, no exercício é possível visualizar também estilos diferentes de cores utilizadas para modificar o texto.

EX002 RESPOSTA AO USÁRIO (INPUT, PRINT)

Faça um programa que leia o nome de uma pessoa e mostre uma mensagem de boas-vindas.

```
nome = input('Digite seu nome: ')
print('0i', nome, 'Tudo bom?! só alegria?!')
print('0i {} Tudo bom?! só alegria?!'.format(nome))
print(f'0i {nome} Tudo bom?! ')
```

EX003 SOMA (+)

Crie um programa que leia dois números e mostre a soma entre eles.

```
n1 = int(input('Digite um número: '))
n2 = int(input('Digite outro número: '))
s = n1 + n2
print(f'0 resultado da soma entre e {n2} é igual a {s}')
```

EX004 TIPOS PRIMITIVOS (VAR.IS...())

Crie um programa que receba um input de algo e retorne informações sobre.

```
n = input('Digite um algo:')
print(f'0 tipo primitivo de {n} é ', type(n))
print(f'{n} é somente espaço?', n.isspace())
print(f'{n} é considerado str (letras)?', n.isalpha())
print(f'{n} é considerado número?', n.isnumeric())
print(f'{n} é considerado alfanumérico ?', n.isalnum())
print(f'{n} esta em maiúsculo?', n.isupper())
print(f'{n} esta em minúsculo?', n.islower())
print(f'{n} está capitalizada (upper e lower)?', n.istitle())
```

EX005 ANTECESSOR E SUCESSOR(-,+)

Faça um programa que leia um número inteiro e mostra na tela o seu antecessor e seu sucessor.

```
print('Pense em um número....\nQuer saber qual número vem antes e qual vem depois?')
n = int(input('Digite um número: '))
na = n - 1
ns = n + 1
print(f'0 antecessor de \033[0;36m{n}\033[m é \033[1;31m{na}\033[m!\n')]
f'0 sucessor de \033[0;34m{n}\033[m é \033[1;31m{ns}\033[m!\n')])
```

EX006 DOBRO TRIPLO E RAIZ QUADRADA (POW)

Crie um algoritmo que leia um número e mostre o seu dobro, triplo e raiz quadrada.

```
n = int(input('Digite um número: '))
nd = n * 2
nt = n * 3
nrq = n ** (1/2)
nrq2 = pow(n, (1/2))
print(f'dobro de {n} é {nd}!\n'
f'triplo de {n} é {nt}\n'
f'raiz guadrada de {n} é {nrq:.3f}!\n'
f':)')
```

EX007 MÉDIA (FLOAT)

Desenvolva um programa que leia duas notas de um aluno calcule e mostre a sua média

```
n1 = float(input('Digite a primeira nota: '))
n2 = float(input('Digite a segunda nota: '))
m = (n1 + n2) / 2
print(f'A média das notas é {m:.1f}!\n:)')
```

EX008 CONVERTER METROS (*)

Escreva um programa que leia um valor em metros e exiba um valor convertido em centímetros e milímetros.

```
nm = float(input('Digite um valor em metros: '))
ncm = nm * 100
nmm = nm * 1000
print(f'{nm}m em cemtimetros é {ncm}cm!\n{nm}m em milimetros é {nmm}mm!\n:)')
```

EX009 TABUADA SIMPLES (PRINT, FORMAT)

Faça um programa que leia um número inteiro qualquer e mostre na tela a sua tabuada.

```
n = int(input('Digite um número: '))

mt = (f'TABUADA DO NÚMERO {n}')

print(f'{mt:=^30}')

print(f'{n} X 0 = {n * 0}\n'

f'{n} X 1 = {n * 1}\n'

f'{n} x 2 = {n * 2}\n'

f'{n} X 3 = {n * 3}\n'

f'{n} X 5 = {n * 5}\n'

f'{n} X 5 = {n * 5}\n'

f'{n} X 6 = {n * 6}\n'

f'{n} X 7 = {n * 7}\n'

f'{n} X 8 = {n * 8}\n'

f'{n} X 8 = {n * 8}\n'

f'{n} X 8 = {n * 8}\n'

f'{n} X 9 = {n * 9}\n'
```

EX010 CONVERTER MOEDAS (/)

Crie um programa que leia quantos reais a pessoa tem na carteira e mostre quantos dólares ela pode comprar (considere 1,00U\$ = 3,27R\$).

```
nr = float(input('Digite quantos reais você tem: R$'))
print(f'Com R${nr:.2f} você pode comprar U${(nr/3.27):.2f}!\n:)')
```

EX011 PINTAR PAREDE (*,/)

Faça um programa que leia a largura e a altura de uma parede em metros, calcule a sua área e a quantidade de tinta para pintá-la, sabendo que cada litro de tinta pinta uma área de 2m².

EX012 % DESCONTO (-, *)

Faça um programa que leia um preço de um produto e mostre seu novo preço com 5% de desconto.

```
md = ('PRODUTOS COM 5% DE DESCONTO')
print(f'{md:=^40}')

pp = float(input('Digite o valor do preço do produto: '))
print(f'Esse produto vai custar R${(pp - (pp * 0.05)):.2f}!\n:)')
```

EX013 % AUMENTO (+, *)

Faça um programa que leia um salário de um funcionário e mostre seu novo salário com 15% de aumento.

```
s = float(input('Digite o salário de um funcionário: '))
ns = s + (s * 0.15)
print(f'0 novo salário desse funcionário sera de R${ns:.2f}!\n:)')
```

EX014 CONVERTER GRAUS (*, /, +)

Escreva um programa que leia um valor de temperatura em Cº e mostre em ºF.

```
nc = float(input('Digite a temperatura em C°: '))
nf = 9 * nc / 5 + 32
print(f'{nc:.2f}C° são {nf:.2f}°F !\n:)')
```

EX015 ALUGUEL DE CARRO (VAR, *)

Escreva um programa que pergunte a quantidade de Km percorridos por um carro alugado e a quantidade de dias pelos quais ele foi alugado. Calcule o preço a pagar, sabendo que o carro custa R\$60 por dia e R\$0,15 por Km rodado.

```
print('Calcular aluguel de carro!')

da = float(input('Digite a quantidade de dias alugados pelo carro: '))

kp = float(input('Digite a quantidade de quilometros percorridos pelo carro: '))

a = (60 * da) + (0.15 * kp)

print(f'0 valor que sera pago pelo aluguel do carro sera de R${a:.2f}\n:)')
```

EX016 PORÇÃO INTEIRA (MATH, TRUNC)

Crie um programa que leia um número Real qualquer pelo teclado e mostre na tela a sua porção Inteira.

```
import math
n = float(input('Digite um número: '))
pi = math.trunc(n)
print(pi)
```

EX017 HIPOTENUSA (MATH, SQRT, POW)

Faça um programa que leia o comprimento do cateto oposto e do cateto adjacente de um triângulo retângulo. Calcule e mostre o comprimento da hipotenusa.

```
from math import sqrt, pow

print('CÁLCULO DA HIPOTENUSA')

co = float(input('Digite o valor do cateto oposto: '))

ca = float(input('Digite o valor do cateto adjacente: '))

h = sqrt((pow(co, 2))+(pow(ca, 2)))

print(f'O comprimento da hipotenusa do triângulo retangulo: {h:.2f}\n:)')

from math import hypot

print(f'O comprimento da hipotenusa do triângulo retangulo: {hypot(co, ca):.2f}\n:)')
```

EX018 SENO COSSENO E TANGENTE (MATH, SIN, COS, TAN)

Faça um programa que leia um ângulo qualquer e mostre na tela o valor do seno, cosseno e tangente desse ângulo.

```
from math import cos, sin, radians, tan
a = radians(float((input('Digite um angulo: '))))
ca = cos(a)
sa = sin(a)
ta = tan(a)
print(f'0 seno do angulo é {sa:.2f}\n'
f'0 cosseno do angulo é {ca:.2f}\n'
f'A tangente do angulo é {ta:.2f}\n'
```

EX019 SORTEIO (RANDOM, CHOICE)

Um professor quer sortear um dos seus quatro alunos para apagar o quadro. Faça um programa que ajude ele, lendo o nome dos alunos e escrevendo na tela o nome do escolhido.

```
import random
a1 = str(input('digite o nome de um aluno: '))
a2 = str(input('digite o nome de outro aluno: '))
a3 = str(input('digite o nome de outro aluno: '))
a4 = str(input('digite o nome de outro aluno: '))
lista = [a1, a2, a3, a4]
print(f'0 aluno escolhido foi o(a): {random.choice(lista)}!\n:)')
```

EX020 SORTEIO ORDEM DA LISTA (RAMDOM, SUFFLE)

O mesmo professor do desafio 19 quer sortear a ordem de apresentação de trabalhos dos alunos. Faça um programa que leia o nome dos quatro alunos e mostre a ordem sorteada.

```
import random
a1 = input('Digite o nome de um aluno:')
a2 = input('Digite o nome de outro aluno: ')
a3 = input('Digite o nome de outro aluno: ')
a4 = input('Digite o nome de outro aluno: ')
lista = [a1, a2, a3, a4]
random.shuffle(lista)
print(f'A ordem de apresentação será {lista}')
```

EX021 REPRODUZIR ÁUDIO (PLAYSOUND)

Faça um programa em Python que abra e reproduza o áudio de um arquivo MP3.

```
from playsound import playsound
playsound('ex021.mp3')
print('Escutando um somm')
```

EX022 MANIPULANDO TEXTO (UPPER, LOWER, COUNT, LEN, SPLIT)

Crie um programa que leia o nome completo de uma pessoa e mostre: O nome com todas as letras maiúsculas e minúsculas. Quantas letras ao todo sem considerar espaços. Quantas letras tem o primeiro nome.

```
print('===Analisando seu nome===')
nome = str(input('Digite seu nome: ')).strip()
print('Seu nome em maiúsculo é:', nome.upper())
print('Seu nome em minúsculo é', nome.lower())
print(f'Seu nome tem {(len(nome)) - (nome.count(" "))} letras')
nd = nome.split()
print(f'0 primeiro nome tem {len(nd [0])} letras')
```

EX023 DEZENA CENTENA E MILHAR, FATIAMENTO DE STRING ([])

Faça um programa que leia um número de 0 a 9999 e mostre na tela cada um dos dígitos separados. Unidade, dezena, centena e unidade de milhar.

```
n1 = str(input('Digite um número de 0 a 9999: '))
print(f'Unidade: {n1[3]}\nDezena: {n1[2]}\nCentena: {n1[1]}\nMilhar: {n1[0]}')
n = int(input('Digite um número de 0 a 9999: '))
print(f'Unidade: {n // 1 % 10}\n'
f'Dezena: {n // 10 % 10}\n'
f'Centena: {n // 1000 % 10}')
```

2 formas de fazer o exercício sendo a primeira com a variável n1 mais simples utilizando métodos de fatiamento de string.

EX024 NOME DE CIDADE COM SANTO (IN, [], FIND)

Crie um programa que leia o nome de uma cidade diga se ela começa ou não com o nome "SANTO".

```
n = str(input('Digite o nome de uma cidade: ')).strip().title()
nd = n.split()
print(f'Essa cidade começa com a palavra "Santo"? {"Santo" in nd [0]}')
print(f'Essa cidade começa com a palavra "Santo"? {n [:(n.find(" "))] == "Santo"}')
```

EX025 NOME DE PESSOA COM SILVA (IN, STRIP, UPPER)

Crie um programa que leia o nome de uma pessoa e diga se ela tem "SILVA" no nome.

```
n = str(input('Digite seu nome: ')).strip().upper()
print(f'Seu nome tem "Silva"? {"SILVA" in n}')
```

EX026 QUANTAS VEZES APARECE UMA LETRA NA FRASE (.FIND)

Faça um programa que leia uma frase pelo teclado e mostre quantas vezes aparece a letra "A", em que posição ela aparece na primeira vez e em que posição ela aparece na última vez.

```
f = str(input('Digite uma frase: ')).strip()
fraction fractio
```

EX027 PRIMEIRO E ULTIMO NOME (LEN, FATIAMENTO [])

Faça um programa que leia o nome completo de uma pessoa, mostrando em seguida o primeiro e o último nome separadamente.

```
n = str(input('Digite seu nome completo: ')).strip().title()
nd = n.split()
print(f'Seu primeiro nome é {nd [0]}')
print(f'Seu último nome é {nd [(len(nd)) - 1 ]}')
```

EX028 ADIVINHAR NÚMERO (RANDINT, IF, ELSE)

Escreva um programa que faça o computador "pensar" em um número inteiro entre 0 e 5 e peça para o usuário tentar descobrir qual foi o número escolhido pelo computador. O programa deverá escrever na tela se o usuário venceu ou perdeu.

```
from random import randint
print('0 computador vai escolher em um número entre 0 e 5!')
n = int(randint(0, 5))
nu = int(input('Advinhe qual o número o computador escolheu?: '))
if nu == n:
    print(f'Parabens você acertou!!! 0 computador escolheu {n}!')
else:
    print(f'Você errou! 0 computador escolheu {n}!')
print(':)')
#print(f'Parabens você acertou!!! 0 número é {n}' if nu == n else f'Você errou! 0 número é {n}')
```

2 formas de fazer o exercício sendo o último colocado como comentário pelo #, mais simples pois ocupa somente uma linha.

EX029 CÁLCULO DE MULTA (IF)

Escreva um programa que leia a velocidade de um carro. Se ele ultrapassar 80Km/h, mostre uma mensagem dizendo que ele foi multado. A multa vai custar R\$7,00 por cada Km acima do limite.

```
print('Calcular multa!')

v = int(input('Velocidade do carro: '))

if v > 80:
    m = float((v - 80) * 7)

print(f'Você foi multado em: R${m:.2f}!')

print(':)')
```

EX030 PAR OU ÍMPAR (IF, ELSE)

Crie um programa que leia um número inteiro e mostre na tela se ele é PAR ou ÍMPAR.

```
n = int(input('Digite um número: '))
rd = n % 2
if rd == 0:
print(f'{n} é um número par!')
else:
print(f'{n} é um número impar!')
print(':)')
```

EX031 CÁLCULO DE VIAGEM (IF, ELSE)

Desenvolva um programa que pergunte a distância de uma viagem em Km. Calcule o preço da passagem, cobrando R\$0,50 por Km para viagens de até 200Km e R\$0,45 parta viagens mais longas.

EX032 ANO BISSEXTO (DATETIME, IF)

Faça um programa que leia um ano qualquer e mostre se ele é bissexto.

```
from datetime import date
a = int(input('Digite um ano: '))
if a == 0:
    a = date.today().year
if a % 4 == 0 and a % 100 != 0 or a % 400 == 0:
    print(f'\033[0;33;44m{a} é um ano bissexto!\033[m')
print(':)')
```

EX033 MAIOR E MENOR NÚMERO (IF, AND)

Faça um programa que leia três números e mostre qual é o maior e qual é o menor.

```
n1 = int(input('Digite um valor: '))

n2 = int(input('Digite um valor: '))

n3 = int(input('Digite um valor: '))

maior = n1

if n2>n1 and n2>n3:

maior = n2

if n3>n1 and n3>n2:

maior = n3

menor = n1

if n2<n1 and n2<n3:

menor = n2

if n3<n1 and n3<n2:

menor = n2

if n3<n1 and n3<n2:

menor = n3

print(f'0 maior número foi {maior}\n0 menor número foi o {menor}')
```

EX034 AUMENTO % (IF, ELSE)

Escreva um programa que pergunte o salário de um funcionário e calcule o valor do seu aumento. Para salários superiores a R\$1250,00, calcule um aumento de 10%. Para os inferiores ou iguais, o aumento é de 15%.

```
s = float(input('Salário do funcionário: '))
f s > 1250:
    a = s + (s * 0.10)
    print(f'Quem ganhava \033[0;31mR${s:.2f}\033[m vai passar a ganhar \033[1;32mR${a:.2f}\033[m')]
    else:
    a = s + (s * 0.15)
    print(f'Quem ganhava \033[0;31mR${s:.2f}\033[m vai passar a ganhar \033[1;36mR${a:.2f}\033[m')]
    print(f'Quem ganhava \033[0;31mR${s:.2f}\033[m vai passar a ganhar \033[1;36mR${a:.2f}\033[m')]
```

EX035 RETAS PARA FORMAR TRIÂNGULO (IF, AND, ELSE)

Desenvolva um programa que leia o comprimento de três retas e diga ao usuário se elas podem ou não formar um triângulo.

```
print('\033[0;33m-=' * 40)

msg = '\033[1;33m\formalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalfo
```

EX036 APROVAR EMPRÉSTIMO (IF, ELSE)

Escreva um programa para aprovar o empréstimo bancário para a compra de uma casa. Pergunte o valor da casa, o salário do comprador e em quantos anos ele vai pagar. A prestação mensal não pode exceder 30% do salário ou então o empréstimo será negado.

```
vc = float(input('Digite o valor da casa: R$'))
s = float(input('Digite o seu salário: R$'))
a = int(input('Em guantos anos pretende pagar: '))
pm = vc / (a * 12)
print(f'Para pegar uma casa de R${vc:.2f} em {a} anos a prestação será de R${pm:.2f}')
if pm > (0.3 * s):
    print('\033[0;31mVocê \033[1;31mNÃO\033[m \033[0;31mpode comprar a casa!\nEmprestimo negado!\033[m'))
else:
    print('\033[0;32mVocê \033[1;32mPODE\033[m \033[0;32mcomprar a casa!\nEmprestimo aceito!\033[m\n:) ')
```

EX037 BINÁRIO, OCTAL E HEXADECIMAL (IF, ELIF, ELSE)

Escreva um programa em Python que leia um número inteiro qualquer e peça para o usuário escolher qual será a base de conversão: 1 para binário, 2 para octal e 3 para hexadecimal.

```
n = int(input('Digite um número inteiro: '))

print('''Escolha uma das bases da conversão!

[ 1 ] Converter para BINĂRIO
[ 2 ] Converter para OCTAL

[ 3 ] Converter para HEXADECIMAL''')

print(input('Sua opção : '))

b = bin(n)

o = oct(n)

h = hex(n)

if op == 1:

print(f'{n} em BINÁRIO é {b[2:]}')

elif op == 2:

print(f'{n} em OCTAL é {o[2:]}')

elif op == 3:

print(f'{n} em HEXADECIMAL é {h[2:]}')

else:

print('\033[0;31mOpção inválida\nTente novamente!\033[m')
```

EX038 MAIOR VALOR 2 NÚMEROS (IF, ELIF, ELSE)

Escreva um programa que leia dois números inteiros e compare-os. mostrando na tela uma mensagem: – O primeiro valor é maior – O segundo valor é maior – Não existe valor maior, os dois são iguais.

```
5     n1 = int(input('Digite um número inteiro: '))
6     n2 = int(input('Digite um número inteiro: '))
7     if n1 > n2:
8         print(f'O maior valor é {n1}')
9     elif n2 > n1:
10         print(f'O maior valor é {n2}')
11     else:
12         print(f'Os dois valores são iguais!')
```

EX039 ALISTAMENTO NO EXÉRCITO (IF, ELIF)

Faça um programa que leia o ano de nascimento de um jovem e informe, de acordo com a sua idade, se ele ainda vai se alistar ao serviço militar, se é a hora exata de se alistar ou se já passou do tempo do alistamento. Seu programa também deverá mostrar o tempo que falta ou que passou do prazo.

```
from datetime import date
an = int(input('Digite o ano de nascimento: '))
i = date.today().year - an
if i == 18:
    print(f'Você tem {i}anos então está no perído de se alistar!')
elif i < 18:
    print(f'Você tem {i} anos, ainda não está no período de se alistar!\nFaltam {18 - i} anos!\n'
    f'Seu alistamento será em {date.today().year + (18 - i)}')
elif i > 18:
    print(f'Você tem {i}anos, Você ja passou do tempo de alistamento!!')
```

EX040 REPROVADO OU APROVADO (IF, ELIF)

Crie um programa que leia duas notas de um aluno e calcule sua média, mostrando uma mensagem no final, de acordo com a média atingida: Média abaixo de 5.0: REPROVADO Média entre 5.0 e 6.9: RECUPERAÇÃO Média 7.0 ou superior: APROVADO.

```
n1 = float(input('Digite a primeira nota: '))

n2 = float(input('Digite a segunda nota: '))

m = (n1 + n2) / 2

print(f'Sua média foi de {m:.1f}')

if m < 5.0:

print(f'A média foi abaixo de 5.0\nREPROVADO!')

elif 5.0 <= m < 6.9:

print(f'A média foi entre 5.0 e 6.9\nRECUPERAÇÃO!')

elif m >= 7.0:

print(f'A média foi 7.0 ou superior\nAPROVADO!')
```

EX041 CATEGORIA DO ATLETA (IF, ELIF)

A Confederação Nacional de Natação precisa de um programa que leia o ano de nascimento de um atleta e mostre sua categoria, de acordo com a idade: Até 9 anos: MIRIM Até 14 anos: INFANTIL Até 19 anos: JÚNIOR Até 25 anos: SÊNIOR. Acima de 25 anos: MASTER

```
from datetime import date

aa = date.today().year

an = int(input('Digite seu ano de nascimento: '))

i = aa - an

if i <= 9:
    print(f'De acordo com a sua idade ({i} anos), Você está na categoria MIRIM!')

elif i <= 14:
    print(f'De acordo com a sua idade ({i} anos), Você está na categoria JÚNIOR!')

elif i <= 19:
    print(f'De acordo com a sua idade ({i} anos), Você está na categoria JÚNIOR!')

elif i <= 25:
    print(f'De acordo com a sua idade ({i} anos), Você está na categoria INFANTIL!')

elif i <= 25:
    print(f'De acordo com a sua idade ({i} anos), Você está na categoria SÊNIOR!')

elif i > 25:
    print(f'De acordo com a sua idade ({i} anos), Você está na categoria MASTER!')
```

EX042 RETAS FORMAR UM TIPO DE TRIÂNGULO (IF, ELIF)

Refaça o DESAFIO 35 dos triângulos, acrescentando o recurso de mostrar que tipo de triângulo será formado: – EQUILÁTERO: todos os lados iguais – ISÓSCELES: dois lados iguais, um diferente – ESCALENO: todos os lados diferentes.

```
a = float(input('Digite o valor do lado a: '))
b = float(input('Digite o valor do lado b: '))
c = float(input('Digite o valor do lado c: '))

if a < (b + c) and b < (a + c) and c < (a + b):

print('É possível formar um triângulo!')

'''t = 1'''

if a == b == c:

print('Será um triângulo EQUILÁTERO!')
elif a == b != c or b == c != a or c == a != b:

print('Será um triângulo ISÓSCELES!')
elif a != b != c != a:

print('Será um triângulo ESCALENO!')

else:

print('Não é possível formar um triângulo!')

'''t = 0'''
else:

print('Será um triângulo EQUILÁTERO!')
elif t == 1 and a == b and a == c:

print('Será um triângulo ESCALENO!')

elif t == 1 and a == b and a != c or b == c and b != a or c == a and c != b:

print('Será um triângulo ISÓSCELES!')
elif t == 1 and a != b and b != c and c != a:

print('Será um triângulo ISÓSCELES!')
elif t == 1 and a != b and b != c and c != a:
```

EX043 LEITURA DE IMC (IF, ELIF)

Desenvolva uma lógica que leia o peso e a altura de uma pessoa, calcule seu Índice de Massa Corporal (IMC) e mostre seu status, de acordo com a tabela abaixo: – IMC abaixo de 18,5: Abaixo do Peso – Entre 18,5 e 25: Peso Ideal – 25 até 30: Sobrepeso – 30 até 40: Obesidade – Acima de 40: Obesidade Mórbida.

```
p = float(input('Digite o seu peso: '))
a = float(input('Digite a sua altura: '))
imc = p / (a ** 2)
if imc < 18.5:
    print(f'Seu IMC é de {imc:.1f}\nVocê está Abaixo do peso!')
elif imc < 25:
    print(f'Seu IMC é de {imc:.1f}\nVocê está no Peso Ideal!')
elif imc < 30:
    print(f'Seu IMC é de {imc:.1f}\nVocê está com Sobrepeso!')
frint(f'Seu IMC é de {imc:.1f}\nVocê está com Obesidade')
else:
    print(f'Seu IMC é de {imc:.1f}\nVocê está com Obesidade Mórbida!')
else:
    print(f'Seu IMC é de {imc:.1f}\nVocê está com Obesidade Mórbida!')</pre>
```

EX044

EX045

EX046

EX047

EX048

EX049

EX050

EX051

EX052

EX053
EX054
EX055

EX056

EX057

EX058

EX059

EX060

EX061

EX062

EX063

EX064

EX065

EX066

EX067

EX068

EX069

EX070

EX071