input and output with getchar, putchar, and printf may be entirely adequate, and is certainly enough to get started. This is particularly true if redirection is used to connect the output of one program to the input of the next. For example, consider the program lower, which converts its input to lower case:

```
#include <stdio.h>
#include <ctype.h>

main() /* lower: convert input to lower case*/
{
   int c

   while ((c = getchar()) != EOF)
       putchar(tolower(c));
   return 0;
}
```

The function tolower is defined in <ctype.h>; it converts an upper case letter to lower case, and returns other characters untouched. As we mentioned earlier, ``functions" like getchar and putchar in <stdio.h> and tolower in <ctype.h> are often macros, thus avoiding the overhead of a function call per character. We will show how this is done in Section 8.5. Regardless of how the <ctype.h> functions are implemented on a given machine, programs that use them are shielded from knowledge of the character set.

Exercise 7-1. Write a program that converts upper case to lower or lower case to upper, depending on the name it is invoked with, as found in argv[0].

7.2 Formatted Output - printf

The output function printf translates internal values to characters. We have used printf informally in previous chapters. The description here covers most typical uses but is not complete; for the full story, see Appendix B.

```
int printf(char *format, arg1, arg2, ...);
```

printf converts, formats, and prints its arguments on the standard output under control of the format. It returns the number of characters printed.

The format string contains two types of objects: ordinary characters, which are copied to the output stream, and conversion specifications, each of which causes conversion and printing of the next successive argument to printf. Each conversion specification begins with a % and ends with a conversion character. Between the % and the conversion character there may be, in order:

- A minus sign, which specifies left adjustment of the converted argument.
- A number that specifies the minimum field width. The converted argument will be printed in a field at least this wide. If necessary it will be padded on the left (or right, if left adjustment is called for) to make up the field width.
- A period, which separates the field width from the precision.
- A number, the precision, that specifies the maximum number of characters to be printed from a string, or the number of digits after the decimal point of a floating-point value, or the minimum number of digits for an integer.
- An h if the integer is to be printed as a Short, or 1 (letter ell) if as a long.

Conversion characters are shown in Table 7.1. If the character after the % is not a conversion specification, the behavior is undefined.

Character	Argument type; Printed As
d,i	int; decimal number
О	int; unsigned octal number (without a leading zero)
x,X	int; unsigned hexadecimal number (without a leading 0x or 0X), using abcdef or ABCDEF for 10,,15.
u	int; unsigned decimal number
С	int; single character
S	char *; print characters from the string until a '\0' or the number of characters given by the precision.
f	double; [-] <i>m.dddddd</i> , where the number of <i>d</i> 's is given by the precision (default 6).
e,E	double; $[-]m.dddddde+/-xx$ or $[-]m.ddddddE+/-xx$, where the number of d 's is given by the precision (default 6).
g,G	double; use %e or %E if the exponent is less than -4 or greater than or equal to the precision; otherwise use %f. Trailing zeros and a trailing decimal point are not printed.
p	void *; pointer (implementation-dependent representation).
%	no argument is converted; print a %

Table 7.1 Basic Printf Conversions

A width or precision may be specified as *, in which case the value is computed by converting the next argument (which must be an int). For example, to print at most max characters from a string S,

```
printf("%.*s", max, s);
```

Most of the format conversions have been illustrated in earlier chapters. One exception is the precision as it relates to strings. The following table shows the effect of a variety of specifications in printing ``hello, world" (12 characters). We have put colons around each field so you can see it extent.

```
:%s:
              :hello, world:
:%10s:
              :hello, world:
:%.10s:
              :hello, wor:
              :hello, world:
:%-10s:
:%.15s:
              :hello, world:
:%-15s:
              :hello, world
:%15.10s:
                    hello, wor:
:%-15.10s:
              :hello, wor
```

A warning: printf uses its first argument to decide how many arguments follow and what their type is. It will get confused, and you will get wrong answers, if there are not enough arguments of if they are the wrong type. You should also be aware of the difference between these two calls:

The function sprintf does the same conversions as printf does, but stores the output in a string:

```
int sprintf(char *string, char *format, arg1, arg2, ...);
```

sprintf formats the arguments in arg1, arg2, etc., according to format as before, but places the result in String instead of the standard output; String must be big enough to receive the result.

Exercise 7-2. Write a program that will print arbitrary input in a sensible way. As a minimum, it should print non-graphic characters in octal or hexadecimal according to local custom, and break long text lines.

7.3 Variable-length Argument Lists

This section contains an implementation of a minimal version of printf, to show how to write a function that processes a variable-length argument list in a portable way. Since we are mainly interested in the argument processing, minprintf will process the format string and arguments but will call the real printf to do the format conversions.

The proper declaration for printf is

```
int printf(char *fmt, ...)
```

where the declaration . . . means that the number and types of these arguments may vary. The declaration . . . can only appear at the end of an argument list. Our minprintf is declared as

```
void minprintf(char *fmt, ...)
```

since we will not return the character count that printf does.

The tricky bit is how minprintf walks along the argument list when the list doesn't even have a name. The standard header <stdarg.h> contains a set of macro definitions that define how to step through an argument list. The implementation of this header will vary from machine to machine, but the interface it presents is uniform.

The type va_list is used to declare a variable that will refer to each argument in turn; in minprintf, this variable is called ap, for ``argument pointer." The macro va_start initializes ap to point to the first unnamed argument. It must be called once before ap is used. There must be at least one named argument; the final named argument is used by va_start to get started.

Each call of va_arg returns one argument and steps ap to the next; va_arg uses a type name to determine what type to return and how big a step to take. Finally, va_end does whatever cleanup is necessary. It must be called before the program returns.

These properties form the basis of our simplified printf:

```
#include <stdarg.h>
/* minprintf: minimal printf with variable argument list */
void minprintf(char *fmt, ...)
{
    va_list ap; /* points to each unnamed arg in turn */
    char *p, *sval;
    int ival;
    double dval;

va_start(ap, fmt); /* make ap point to 1st unnamed arg */
    for (p = fmt; *p; p++) {
        if (*p != '%') {
            putchar(*p);
            continue;
        }
        switch (*++p) {
        case 'd':
```

```
ival = va_arg(ap, int);
            printf("%d", ival);
            break;
        case 'f':
            dval = va_arg(ap, double);
            printf("%f", dval);
            break;
        case 's':
            for (sval = va_arg(ap, char *); *sval; sval++)
                putchar(*sval);
            break;
        default:
            putchar(*p);
            break;
        }
    va_end(ap); /* clean up when done */
}
```

Exercise 7-3. Revise minprintf to handle more of the other facilities of printf.

7.4 Formatted Input - Scanf

The function scanf is the input analog of printf, providing many of the same conversion facilities in the opposite direction.

```
int scanf(char *format, ...)
```

scanf reads characters from the standard input, interprets them according to the specification in format, and stores the results through the remaining arguments. The format argument is described below; the other arguments, *each of which must be a pointer*, indicate where the corresponding converted input should be stored. As with printf, this section is a summary of the most useful features, not an exhaustive list.

scanf stops when it exhausts its format string, or when some input fails to match the control specification. It returns as its value the number of successfully matched and assigned input items. This can be used to decide how many items were found. On the end of file, EOF is returned; note that this is different from 0, which means that the next input character does not match the first specification in the format string. The next call to scanf resumes searching immediately after the last character already converted.

There is also a function **sscanf** that reads from a string instead of the standard input:

```
int sscanf(char *string, char *format, arg1, arg2, ...)
```

It scans the string according to the format in format and stores the resulting values through arg1, arg2, etc. These arguments must be pointers.

The format string usually contains conversion specifications, which are used to control conversion of input. The format string may contain:

- Blanks or tabs, which are not ignored.
- Ordinary characters (not %), which are expected to match the next non-white space character of the input stream.
- Conversion specifications, consisting of the character %, an optional assignment suppression character *, an optional number specifying a maximum field width, an optional h, 1 or L indicating the width of the target, and a conversion character.

A conversion specification directs the conversion of the next input field. Normally the result is places in the variable pointed to by the corresponding argument. If assignment suppression is indicated by the * character, however, the input field is skipped; no assignment is made. An input field is defined as a string of non-white space characters; it extends either to the next white space character or until the field width, is specified, is exhausted. This implies that Scanf will read across boundaries to find its input, since newlines are white space. (White space characters are blank, tab, newline, carriage return, vertical tab, and formfeed.)

The conversion character indicates the interpretation of the input field. The corresponding argument must be a pointer, as required by the call-by-value semantics of C. Conversion characters are shown in Table 7.2.

Table 7.2: Basic Scanf Conversions

Character	Input Data; Argument type
d	decimal integer; int *
i	integer; int *. The integer may be in octal (leading 0) or hexadecimal (leading 0x or 0X).
0	octal integer (with or without leading zero); int *
u	unsigned decimal integer; unsigned int *
Х	hexadecimal integer (with or without leading 0x or 0X); int *
С	characters; char *. The next input characters (default 1) are placed at the indicated spot. The normal skip-over white space is suppressed; to read the next non-white space character, use %1s
S	character string (not quoted); char *, pointing to an array of characters long enough for the string and a terminating '\0' that will be added.