日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 1月 7日

出 願 番 号 Application Number:

特願2004-001794

[ST. 10/C]:

[J P 2 0 0 4 - 0 0 1 7 9 4]

出 願
Applicant(s):

人

富士通株式会社

2004年 1月21日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】特許願【整理番号】0353055【提出日】平成16年

【提出日】平成16年 1月 7日【あて先】特許庁長官殿【国際特許分類】H04B 7/26

【発明者】

【住所又は居所】 神奈川県川崎市中原区上小田中4丁目1番1号 富士通株式会社

内

【氏名】 関宏之

【発明者】

【住所又は居所】 神奈川県川崎市中原区上小田中4丁目1番1号 富士通株式会社

内

【氏名】 田中 良紀

【特許出願人】

【識別番号】 000005223

【氏名又は名称】 富士通株式会社

【代理人】

【識別番号】 100092152

【弁理士】

【氏名又は名称】服部 毅巖【電話番号】0426-45-6644

【先の出願に基づく優先権主張】

【出願番号】 特願2003- 44509 【出願日】 平成15年 2月21日

【手数料の表示】

【予納台帳番号】 009874 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 9705176

【書類名】特許請求の範囲

【請求項1】

無線通信を行う通信装置において、

無線フレーム周期毎に、伝搬路の複素時間応答信号を測定する複素時間応答信号測定部と、

候補となる複素時間応答信号の位相差の絶対値を求める位相差演算部と、

位相差の絶対値を、複数の無線フレームに渡り平均化して平均値を求める平均化演算部と、

平均値を無線フレームの間隔時間で除算してドップラ周波数を推定するドップラ周波数 推定部と、

を有することを特徴とする通信装置。

【請求項2】

前記位相差演算部は、フレーム (n-1) に対し、最大複素時間応答信号を抽出し、最大複素時間応答信号が発生したタイミングを検出して、フレーム (n-1) の最大複素時間応答信号と、検出した同一タイミングによるフレーム n の複素時間応答信号と、の位相差の絶対値を求めることを特徴とする請求項1記載の通信装置。

【請求項3】

前記位相差演算部は、候補となる複素時間応答信号を抽出し、前記複素時間応答信号が発生したタイミングを検出して、検出したタイミングと同一のタイミングによる各フレームの複素時間応答信号を抽出して、抽出した候補となる複素時間応答信号と複素時間応答信号間の位相差の絶対値及び抽出した各フレームの複素時間応答信号間の位相差の絶対値を求めることを特徴とする請求項1記載の通信装置。

【請求項4】

前記位相差演算部は、平均化区間内のフレームの各タイミングにおける複素時間応答信号の平均電力を算出して、平均電力が最大となるタイミングを検出し、検出したタイミングと同一のタイミングによる各フレームの複素時間応答信号を抽出して、抽出した複素時間応答信号間の位相差の絶対値を求めることを特徴とする請求項1記載の通信装置。

【請求項5】

無線通信を行う通信装置において、

無線フレーム周期毎に、周波数オフセットが付与された受信信号から、伝搬路の複素時間応答信号を測定する複素時間応答信号測定部と、

候補となる複素時間応答信号から、位相差と位相差の絶対値とを求める位相差演算部と

位相差の絶対値を、複数の無線フレームに渡り平均化して第1の平均値を求める第1の 平均化演算部と、

位相差を、複数の無線フレームに渡り平均化して第2の平均値を求める第2の平均化演算部と、

第2の平均値を無線フレームの間隔時間で除算して前記周波数オフセットを推定する周波数オフセット推定部と、

推定結果にもとづいて、前記周波数オフセットを低減するAFC部と、

第1の平均値を無線フレームの間隔時間で除算してドップラ周波数を推定するドップラ 周波数推定部と、

を有することを特徴とする通信装置。

【書類名】明細書

【発明の名称】通信装置

【技術分野】

 $[0\ 0\ 0\ 1]$

本発明は通信装置に関し、特に無線通信を行う通信装置に関する。

【背景技術】

$[0\ 0\ 0\ 2\]$

近年、携帯電話をはじめとする移動体通信の加入者数は、爆発的に増加している。また、携帯電話は、音声通話だけでなく、インターネットとの融合を進めた複合機能を持つ端末としての比重が高くなっており、モバイル分野におけるマルチメディアサービスへの発展が期待されている。

[0003]

移動体通信では、移動局の移動に伴い、基地局と移動局の見通しは建物などにより遮られ、伝搬路特性は時々刻々変動する。このため、移動体通信技術では、伝搬路特性の変動に伴う通信品質劣化を克服することが重要なテーマになっている。

$[0\ 0\ 0\ 4\]$

図20は基地局と移動端末間の伝搬モデルを示す図である。基地局BSのアンテナから送信された搬送電波(キャリア)は、複数の伝搬経路(マルチパス:信号波が山やビルなどの反射によって複数の経路を伝搬する現象)を経由して移動端末MSに到達する。また、移動端末MSが移動していた場合には、各パスで到来角度に依存してキャリア周波数が異なるドップラシフトを受けることになる(すなわち、キャリア周波数にあらたなドップラ周波数が加わり、受信周波数が変位することになる)。このため、移動端末MSでは、周波数領域において広がった複数の信号の受信によりレベルが激しく変動するフェージング(マルチパスフェージング)と呼ばれる現象が生じる。

[0005]

このようなフェージング変動は、無線通信における情報伝送の誤り率を増大する原因となる。このため、ドップラ周波数を精度よく推定することができれば、推定結果に応じた通信方式を選択できるので、無線通信特性を向上させることが可能になる。

[0006]

従来、ドップラ周波数の推定技術として、各パスの逆拡散出力の平均パワー出力のうち、最も大きいパスの逆拡散出力をフーリエ変換してパワースペクトルを算出し、その最大パワーを持つ周波数を最大ドップラ周波数と推定する技術が提案されている(例えば、特許文献1)。

【特許文献1】特開平10−65610号公報(段落番号〔0007〕~〔0017〕 〕, 第1図)

【発明の開示】

【発明が解決しようとする課題】

[0007]

上記のような従来技術では、逆拡散出力の平均パワーの最も大きいパスを選んで、最大パワーを持つ周波数をドップラ周波数としているが、このような制御では、雑音成分が含まれてしまい、また、マルチパス数が多くなるほど、ドップラ周波数の変動が複雑になるため、正確なドップラ周波数の推定を行うことができないといった問題があった。

[0008]

さらに、ドップラ周波数の推定技術としては、ドップラ周波数のレベル変動のピッチを 測定する方法と、ある一定間隔のチャネル推定値の位相差を測定する方法とが一般に知ら れているが、いずれの場合も受信信号のS/Nが低い領域において、安定して高精度にド ップラ周波数を推定することは困難であった。

[0009]

本発明はこのような点に鑑みてなされたものであり、ドップラ周波数を高精度に推定して無線通信特性の向上を図った通信装置を提供することを目的とする。

【課題を解決するための手段】

$[0\ 0\ 1\ 0]$

本発明では上記課題を解決するために、図1に示すような、無線通信を行う通信装置10において、無線フレーム周期毎に、伝搬路の複素時間応答信号を測定する複素時間応答信号測定部11と、候補となる複素時間応答信号の位相差の絶対値を求める位相差演算部12と、位相差の絶対値を、複数の無線フレームに渡り平均化して平均値を求める平均化演算部13と、平均値を無線フレームの間隔時間で除算してドップラ周波数を推定するドップラ周波数推定部14と、を有することを特徴とする通信装置10が提供される。

$[0\ 0\ 1\ 1]$

ここで、複素時間応答信号測定部11は、無線フレーム周期毎に、伝搬路の複素時間応答信号を測定する。位相差演算部12は、候補となる複素時間応答信号の位相差の絶対値を求める。平均化演算部13は、位相差の絶対値を、複数の無線フレームに渡り平均化して平均値を求める。ドップラ周波数推定部14は、平均値を無線フレームの間隔時間で除算してドップラ周波数を推定する。

【発明の効果】

$[0\ 0\ 1\ 2\]$

本発明の通信装置では、伝搬路の複素時間応答信号を無線フレーム周期毎に測定し、候補となる複素時間応答信号の位相差の絶対値を、複数の無線フレームに渡り平均化することで、ドップラ周波数を推定する構成とした。これにより、受信信号のS/Nが低い領域においても、ドップラ周波数を高精度に推定できるので、無線通信特性の向上を図ることが可能になる。

【発明を実施するための最良の形態】

$[0\ 0\ 1\ 3]$

以下、本発明の実施の形態を図面を参照して説明する。図1は本発明の通信装置の原理 図である。通信装置10は、例えば、携帯電話などの移動体通信機に設置され、マルチパ ス環境下で無線信号の受信機能を有する装置である。

$[0\ 0\ 1\ 4\]$

複素時間応答信号測定部 1 1 は、無線フレーム周期毎に、伝搬路の複素時間応答信号(以下、複素インパルスレスポンス)を測定する。ここで、時間分解能を持ってマルチパスの電力を測定すると遅延プロファイルを測定できるが、遅延プロファイルの電波到来時間における各マルチパスの波形をインパルスレスポンス(複素インパルスレスポンス)と呼ぶ。複素インパルスレスポンスの定義については後述する。

$[0\ 0\ 1\ 5]$

位相差演算部12は、候補となる複素インパルスレスポンスの位相差の絶対値を求める。候補となる複素インパルスレスポンスとは、例えば、最大複素インパルスレスポンスに該当し、以下、最大複素インパルスレスポンスとして説明する。

$[0\ 0\ 1\ 6]$

平均化演算部13は、位相差の絶対値を、複数の無線フレームに渡り平均化して平均値を求める。ドップラ周波数推定部14は、平均値を無線フレームの間隔時間で除算してドップラ周波数を推定する。詳細動作については図9以降で説明する。

$[0\ 0\ 1\ 7]$

次にドップラ周波数の定義及びドップラ周波数推定技術の重要性の説明を含めながら、本発明が解決すべき問題点について詳しく説明する。図 2 はドップラ周波数を示す図である。マルチパス中の1 つのパスから到来したキャリア周波数 f c が、移動端末MSの進行方向に対して角度 θ で到来する場合を考える。

$[0\ 0\ 1\ 8]$

移動端末MSの移動速度をv、電波(キャリア)の波長を λ 、到来角度を θ とすると、ドップラ周波数 f d は、進行方向を基準としたときの見かけ上の電波の波長によって次式のように表せる。

[0019]

【数1】

$$f d = \frac{v}{\lambda} c o s \theta \qquad ---- (1)$$

[0020]

図3はドップラ周波数を示す図である。(A)は移動端末MSの進行方向に対し同一方向のパスから電波を受けた場合、(B)は移動端末MSの進行方向に対し垂直方向から電波を受けた場合を示している。

$[0\ 0\ 2\ 1]$

マルチパス環境では、電波はほぼ全方位から到来するとみなすことができ、到来角度分布は360°としてよい。したがって、(A)のように、移動端末MSの進行方向と同一方向のパスから電波を受ければ、 $\theta=0$ 、 π となり、式(1)より、ドップラ周波数の絶対値 |f| |f|

【0022】 【数2】

$$f_{d, max} = \frac{v}{\lambda} \qquad ---- (2)$$

[0023]

また、(B)のように、移動端末MSの進行方向に対し垂直方向から電波を受ける場合は、進行方向に対する見かけ上の電波の波長は生成されないので、移動端末MSが移動していないのと同じことになり、ドップラシフトの影響は受けない($\theta=\pi/2$ 、 $3\pi/2$ となり、fd=0)。

[0024]

図4はドップラ周波数の遷移を示す模式図である。グラフの横軸は時間、縦軸は移動端末MSの電波受信レベルであり、移動端末MSの移動に伴うフェージング変動(フェージング波のモデル図)を表している。図に示す移動端末MSに対して、マルチパスA方向からの到来波はfc+fd、マルチパスB方向からの到来波はfcとなる(fc:キャリア周波数、fd:ドップラ周波数)。マルチパスAの位相 θ_A は、 $\theta_A=2\pi$ (fc+fd)・t、マルチパスBの位相 θ_B は、 $\theta_B=2\pi$ ・fc・tであり、マルチパスの位相差($\Delta\theta=\theta_A-\theta_B=2\pi$ ・fd・t)は、移動端末MSの移動と共に変化する。

[0025]

ここで、図3の説明からわかるように、マルチパスA、Bの到来波が逆位相になったときがグラフのt1の状態であり、同位相になったときがt2の状態になる。なお、図に示す時間 $0 \sim t$ 2までの間隔はドップラ周波数の周期となる(なお、ドップラ周波数はフェージング周波数、ドップラ周波数の周期はフェージング周期とも呼ばれる)。

[0026]

このようにして生じるドップラシフトによるフェージング変動は、下りリンク(移動局での受信)だけでなく、上りリンク(基地局での受信)においても同様に発生する。特に、フェージングによる受信電界強度の落ち込み(例えば、図4の時間 t 1の受信レベル)は、無線通信における情報伝送誤りを増大する原因となる。

[0027]

したがって、ドップラ周波数を精度よく推定することができれば、フェージング周期に応じて、通信方式を選択したり、受信アルゴリズムを最適化したりするなどの工夫を行うことにより、無線通信特性を大幅に向上させることが期待できる。

[0028]

例えば、ドップラ周波数が低い場合(フェージング変動の影響が小さく無線環境が良い

場合)には、16QAM(Quadrature Amplitude Modulation)や64QAMなどの多値変調を用いて伝送レートを上げて、できるだけ多くの情報量を伝送し、逆にドップラ周波数が高い場合(フェージング変動の影響が大きく無線環境が悪い場合)には、フェージング変動の影響を受けにくいBPSK(Binary Phase Shift Keying)やQPSK(Quadrat ure Phase Shift Keying)などを用いて伝送レートを下げて、少ない情報量を確実に伝送するといった、伝搬環境に応じて変調方式の切り替えを行う適応変調方式を採用することが考えられる。

[0029]

また、パイロットシンボルによるチャネル推定の結果にもとづき同期検波を行う場合でもドップラ周波数の推定精度は重要である。図5はチャネル推定の概要を示す図である。フェージング環境においては、受信信号は振幅の変動のみならず、位相も変動(回転)することになる。QPSKを例にして説明すると、実際に送信側が送信した信号(シンボル)が信号点S1の場合、フェージングによって位相が α 回転し、受信側では信号点S2で受信したとする。この信号点S2の情報をそのまま復調すれば誤りになってしまう。

[0030]

したがって、受信側では、現在のフェージングによって位相がどれぐらい回転したか(チャネル変動)を検出して、位相変動分を元に戻す必要がある(この例では、 $-\alpha$ の位相補正を行う)。チャネル推定を行う際には、送信側はパイロットシンボルと呼ばれる基準信号を常に一定の位相で送信する(送信信号にパイロットシンボルは内挿される)。受信側でもパイロットシンボルの位相を既知としているので、受信側ではこのパイロットシンボルを検出して、現在のフェージングによる位相回転を推定し、位相補正を行って、チャネルを推定する。そして、チャネル推定の結果により同期検波を行えば、正確にデータを復調することができる。

[0031]

ただし、実際のチャネル推定では、1つのパイロットシンボルだけを見ているのではなく、ノイズの影響を考えて複数のパイロットシンボルを平均化してチャネル推定を行っている。この場合、ノイズの影響を低減することだけを考えれば、平均化する区間を長くとればよいことになるが、フェージング変動が大きい環境で平均化区間を長くとってしまうと、レベル変動の大きい他シンボルも含めて演算することになるために、誤りも大きくなってしまう。

[0032]

したがって、ドップラ周波数が低い場合には、チャネル推定の平均化区間を長くとることによりチャネル推定精度を高め、逆にドップラ周波数が高い場合には、フェージング変動によりチャネル推定精度が劣化するのを避けるために、平均化区間を短く設定する、というような方法を選択すれば、常に最適な受信特性を得ることができる。

[0033]

次に従来のドップラ周波数推定技術として、ドップラ周波数のレベル変動のピッチを測定する方法(従来技術1と呼ぶ)とその問題点について説明する。図6はドップラ周波数のレベル変動のピッチ測定を示す図である。従来技術1では、受信信号の振幅に対し、基準値を設けて、受信電界強度が基準値より高くなったり低くなったりする回数(Level Crossing Rate)をカウントすることにより、フェージング周波数を推定するものである。

[0034]

しかし、従来技術1では、受信電界強度の変化を連続的に測定するため、受信信号レベルを求めるための平均区間を短く設定する必要があり、高いフェージング周波数を精度よく測定することが難しい。また、マルチパスフェージングの変動は、マルチパス数が多くなるほど複雑になるため、Level Crossing Rateから実際のフェージング速度に変換することは容易ではない。さらに、Level Crossing Rateの基準値によっても推定結果が大きく変わるため、シャドウイング(Shadowing)などにより平均受信レベルが大きく変化するシステムにおいて、安定した精度で推定結果を得るのは難しいといった問題があった。

[0035]

5/

図7はシャドウイングによる受信レベル変化を示す図である。シャドウイングとは、長 区間変動であって(フェージングは短区間変動である)、伝搬路の見通しが障害物によっ て、例えば、数秒~数十秒遮られて受信品質が劣化する現象のことである。

[0036]

図に示すように、移動端末MSがビルの影に隠れた場合、見通しのよかった基地局BSからの電波を直接受信することはできなくなって、反射波を受信するようになり受信レベルが低下する。このような環境下では、基地局BSと移動端末MSの見通しが良いときの受信レベルと、シャドウイングが発生しているときの受信レベルとでは大きく変わることになる。したがって、従来技術1のように1つの基準値でピッチを測定すると、ドップラ周波数の推定結果は大きく変動してしまい高精度に推定できないことがわかる。

[0037]

次に従来のドップラ周波数推定技術として、一定間隔のチャネル推定値の位相差を測定する方法(従来技術2と呼ぶ)とその問題点について説明する。図8はチャネル推定値の位相差測定の概念を示す図である。従来技術2では、無線フレーム毎に求めたチャネル推定値の位相差の絶対値を、複数フレームにわたって平均化することでドップラ周波数を推定する。

[0038]

例えば図では、無線フレームT1内の複数のパイロットシンボルを平均化してチャネル推定値 h_{n-1}を求め、無線フレームT2内の複数のパイロットシンボルを平均化してチャネル推定値 h_nを求め、無線フレームT3内の複数のパイロットシンボルを平均化してチャネル推定値 h_{n+1}を求めている(すなわち、各フレームにおける位相変動を求めている)。そして、チャネル推定値の位相差を以下の式で算出する。

[0039]

【数3】

$$\Delta \theta_n = \angle h_n - \angle h_{n-1}$$

$$= t a n^{-1} \left(\frac{l m \{h_n\}}{R e \{h_n\}} \right) - t a n^{-1} \left(\frac{l m \{h_{n-1}\}}{R e \{h_{n-1}\}} \right)$$

--- (3)

[0040]

式(3)で求めたチャネル推定値の位相差 $\Delta \theta$ nには、フェージングによる位相変動分と、周波数オフセット(キャリアオフセット)による位相変化量とが含まれている。ここで、周波数オフセットについて説明すると、W-CDMAの場合、キャリア周波数は 2GHzが用いられるが、基地局が生成する 2GHzと移動端末が生成する 2GHzとは正確に一致することはない。例えば、基地局では 2.0001GHzであり、移動端末では 1.999GHzというように、送受信間では周波数に若干のずれ(周波数オフセット)を持っている。

$[0\ 0\ 4\ 1]$

位相変動はフェージングだけでなく、この周波数オフセットによっても生じる。したがって、フェージングによって生じる位相変動がなかったとしても、キャリアの周波数オフセットによって位相変動が生じることになる。

[0042]

ここで、式(1)からわかるように、フェージングによる位相変動の方向は様々であるが、周波数オフセットによる位相変動は一定方向のみ回転する。例えば、フェージングの

位相変動の場合、 $+10^\circ$ 方向に2回転したら、次は-10度方向に3回転するというように、位相変動は一定方向には回転しない。また、周波数オフセットの位相変動の場合では、例えば、周波数オフセットが80 H z であったなら、80 H z の決まった速度で一定方向に回転することになる。

[0043]

このため、 $\Delta \theta$ nをそのまま平均化(ベクトル成分の平均化)してしまうと、フェージングによる位相変動成分が消えてしまい、周波数オフセット成分のみが残ることになる。なぜなら、フェージングによる位相変動では、上述のように $+10^\circ$ 方向に2回転したら、 -10° 方向に3回転、…といったことの繰り返しであるので、平均するとゼロに近づくからであり、また、周波数オフセットは単位時間当たり、例えば、 $+10^\circ$ 、 $+10^\circ$ 、…といったことの繰り返しであるので、平均しても周波数オフセットの成分は残るからである。したがって、フェージングによる位相変動量を推定するには、式(3)の $\Delta \theta$ nの絶対値をとって平均化(スカラーの平均化)する必要がある。

[0044]

または、式(3)の他に、次式に示すようにチャネル推定値の内積から位相差の絶対値を直接計算することができるため、この値を平均化することにより、以下の式(4)のようにして、ドップラ周波数の推定を行うこともできる。

$$\left| \Delta \theta_{n} \right| = c \circ s^{-1} \left(\frac{h_{n} \cdot h_{n-1}}{\left| h_{n} \right| \cdot \left| h_{n-1} \right|} \right) \qquad ---- (4)$$

[0046]

そして、このようにして求めた位相差の絶対値を平均化し、その平均値をフレーム間隔時間で割ると毎秒何度で位相が回っているか、ということが推定できる。今、チャネル推定を行うフレーム間隔時間をTとすると、ドップラ周波数は、以下の式(5)で求められる。なお、Nは平均化フレーム数を表す。

$$fd = \frac{\left| \overline{\Delta \theta_n} \right|}{2 \pi T} = \frac{1}{2 \pi T N} \sum_{n=0}^{N-1} \left| \Delta \theta_n \right| \quad --- \quad (5)$$

[0048]

しかし、従来技術2では、位相差の絶対値を平均化するため、雑音成分はキャンセルされず、累積して平均化されてしまう(雑音もフェージングの位相変動と同様に一定方向には回転しない。よって、ベクトル成分で平均化すれば雑音成分は低減する方向に向かうが、スカラー平均を行っているので、雑音成分は累積してしまう)。したがって、ドップラ周波数の推定結果は、雑音成分の影響を大きく受け、雑音レベルが高いほど、推定結果が実際のドップラ周波数よりも大きな値となってしまうといった問題があった。

[0049]

現在の無線通信システムでは、ダイバーシチ受信や誤り訂正技術を用いて、S/Nが低い領域においても良好な通信特性を実現している。また、送信電力制御を併用することにより、少ない送信電力で所要の通信品質を確保し、端末の通話時間を長くするなどの工夫がなされている。

[0050]

このように、受信信号のS/Nは一般的に高くなく、このような無線環境の中でドップラ周波数を高精度に推定することは困難となっている。本発明では、上記のような問題点を解決し、S/Nが低い領域においても、ドップラ周波数を高精度に推定して無線通信特性の向上を図った通信装置を実現するものである。

$[0\ 0\ 5\ 1]$

次に本発明の通信装置10の動作(ドップラ周波数推定方法)について詳しく説明する。まず、第1の実施の形態の動作について説明する。図9は本発明のドップラ周波数推定の概念を示す図である。図に示すように、本発明では、無線フレームT毎の受信信号を用いて、複素インパルスレスポンスを求め、その最大値である最大複素インパルスレスポンスを検出する。そして、無線フレームT毎の最大複素インパルスレスポンスの位相差の絶対値を計算し、複数の無線フレームに渡り平均化することにより、ドップラ周波数を推定する。

[0052]

複素インパルスレスポンスは、パイロットシンボル(または基地局から常時送信される同期チャネルを用いてもよい)等の既知の信号を用いて、そのレプリカを通信装置10内で生成し、受信信号とレプリカとの相関値を計算することにより求めることができる。

[0053]

図10は複素インパルスレスポンス測定部11の動作概要を示す図である。複素インパルスレスポンス測定部11では、受信信号とパイロットシンボル系列(パイロットシンボルのレプリカ)との相関値を、乗算器11-1~11-8及び加算器11-9を用いて計算する。受信信号にはパイロットシンボルが内挿されているので、レプリカと一致した場合には、相関が最も高くなり、このときインパルスが立つことになる。したがって、最初に受信したマルチパスのパスに対してインパルスが立ち、次に受信したマルチパスのパスに対してインパルスが立ち、次に受信したマルチパスのパスに対してインパルスが立ち、次に受信したマルチパスのパスに対してインパルスが立つということが繰り返されて、遅延プロファイルが測定され、かつ複素インパルスレスポンスも測定することができる。

[0054]

次に複素インパルスレスポンスの定義式を示す。今、1つの無線フレームにおけるパイロットシンボルの信号系列(レプリカ)を $Sk(k=0\sim K-1)$ とし、n番目のフレームのタイミングiにおける受信信号をRn(i)とすると、複素インパルスレスポンス Ψ n(i)は、次式で求められる(*は複素共役を示す)。

[0055]

【数6】

$$\Psi_{n}(i) = \sum_{k=0}^{K-1} R_{n}(i+k) \cdot S_{k}^{*} ---- (6)$$

[0056]

ここで、i、kは、送受のサンプルタイミングであり、複素インパルスレスポンスの分解能は、サンプリングレートの逆数となる。一般の無線通信方式では、4倍から8倍のオーバーサンプルが用いられるため、インパルスレスポンス測定の分解能もシンボルレートの4倍から8倍となる。

[0057]

次に最大複素インパルスレスポンスΨnの位相差の絶対値を次式により求める。

[0058]

【数7】

$$\left| \Delta \theta_{n} \right| = c \circ s^{-1} \left(\frac{\Psi_{n} \cdot \Psi_{n-1}}{\left| \Psi_{n} \right| \cdot \left| \Psi_{n-1} \right|} \right) \qquad ---- (7)$$

[0059]

そして、上述した式(5)のように、Nフレームに渡り平均化し、ドップラ周波数を推定する。

一方、無線フレーム間で最大複素インパルスレスポンスのタイミングが頻繁に変動する場合は、式(7)で位相差を求めると、フェージングの推定精度が劣化する可能性がある。このような場合は、本発明の第2の実施の形態として、2つのフレーム間で同一タイミングにおける、最大複素インパルスレスポンスと複素インパルスレスポンスとの位相差を用いるようにする。この第2の実施の形態について図11、図12を用いて説明する。

[0060]

図11は最大複素インパルスレスポンスの変動を示す図である。無線フレーム Υ 1では、最大複素インパルスレスポンス Ψ 1が位置Pa1にあり、次の無線フレームT2では、最大複素インパルスレスポンス Ψ 2が位置Pa2にあるが、このように、最大複素インパルスレスポンスの位置が頻繁に変動するような場合、最大複素インパルスレスポンス Ψ 1、 Ψ 2のそれぞれの位相差 Δ θ を算出すると、波形がずれたことによる変動分が Δ θ の中に含まれてしまい、推定精度が劣化するおそれがある。

$[0\ 0\ 6\ 1]$

図12は2つのフレーム間における複素インパルスレスポンスの位相差を求める場合を説明するための図である。無線フレームT1では、最大複素インパルスレスポンス Ψ 1が位置Pa1にあり、次の無線フレームT2では、最大複素インパルスレスポンス Ψ 2が位置Pa2にあり、次の無線フレームT3では、最大複素インパルスレスポンス Ψ 3が位置Pa3にあるとする。

$[0\ 0\ 6\ 2\]$

このような場合、無線フレームT1の最大複素インパルスレスポンス Ψ 1と、無線フレームT2の位置Pa1上の複素インパルスレスポンス Ψ 2aとの位相差を求める(すなわち、無線フレームT1の最大複素インパルスレスポンスと同一タイミングの無線フレームT2上の複素インパルスレスポンスとの位相差を求める)。そして、次は無線フレームT2の最大複素インパルスレスポンス Ψ 2と、無線フレームT3の位置Pa2上の複素インパルスレスポンス Ψ 3aとの位相差を求める(同様に、無線フレームT2の最大複素インパルスレスポンスと同一タイミングの無線フレームT3上の複素インパルスレスポンスとの位相差を求める)。

$[0\ 0\ 6\ 3]$

このように、フレーム(n-1)に対し、最大複素インパルスレスポンスが発生したタイミング t 1を固定して、フレーム(n-1)の最大複素インパルスレスポンスと、同一タイミング t 1によるフレーム n の複素インパルスレスポンスと、の位相差の絶対値を求める。さらに、フレーム n に対し、最大複素インパルスレスポンスが発生したタイミング t 2を固定して、フレーム n の最大複素インパルスレスポンスと、同一タイミング t 2によるフレーム(n+1)の複素インパルスレスポンスと、の位相差の絶対値を求める…といったことを繰り返すことにより、波形ずれの変動分が Δ θ に与える影響を抑制することができ、推定精度の劣化を低減させることができる。

[0064]

今、n番目のフレームにおける最大複素インパルスレスポンスのタイミングをInとすると、図12で示したような制御による位相差の絶対値は次式により求まる。

[0065]

【数8】

$$\left| \Delta \theta_{n} \right| = c o s^{-1} \left(\frac{\Psi_{n}(I_{n}) \cdot \Psi_{n-1}(I_{n})}{\left| \Psi_{n}(I_{n}) \right| \cdot \left| \Psi_{n-1}(I_{n}) \right|} \right) ---- (8)$$

 $[0\ 0\ 6\ 6]$

そして、上述した式(5)を用いて、Nフレームに渡り平均化し、ドップラ周波数を推 定する。

以上説明したように、本発明では、最大複素インパルスレスポンス(S/Nの高いマルチパス)を利用してドップラ周波数を推定するため、常にS/Nが最大となる状態で高精度にドップラ周波数推定を行うことが可能になる。したがって、雑音成分の影響を最小にでき、また高い分解能で複素インパルスレスポンスを求めることにより、余分なマルチパス成分の影響を排除し短い平均区間で、ドップラ周波数を推定することが可能になる。

[0067]

次に本発明の通信装置10を適用したディジタル無線受信機について説明する。図13はディジタル無線受信機の構成を示す図である。ディジタル無線受信機100は、A/D部101~復号部107で構成されるデータ再生部の他に、本発明の複素インパルスレスポンス測定部、位相差演算部、平均化演算部、ドップラ周波数推定部を含む。複素インパルスレスポンス測定部11は、パイロットシンボル生成部11aと相関算出部11bから構成され、位相差演算部12は、最大値検出部12a、遅延部12b、位相差検出部12cから構成される。

[0068]

A/D部101は、アンテナより受信した R F (Radio Frequency) 信号を周波数変換し、直交検波により I チャネルと Q チャネルとのベースバンド信号に分ける。そして、それぞれの信号を A/D変換して、ディジタル信号へ変換する。

[0069]

同期CH生成部102は、タイミング同期部103で、フレームタイミング(フレームの先頭位置を示すタイミング情報)の検出に用いる同期チャネルのレプリカを生成する。タイミング同期部103は、同期チャネルを用いて、A/D変換後のディジタル信号に含まれるフレームタイミングを検出する。

[0070]

チャネル推定部104は、パイロットシンボルを用いて、チャネル情報を推定する。同期検波部105は、チャネル推定部104で求めたチャネル情報を用いて、受信信号からマルチパス伝搬路の影響を除去し、送信信号の状態に戻す検波処理を行う。

[0071]

復調部106は、QPSKや16QAMなどの変調信号を元に戻し、データ系列へ復調する。復号部107は、畳込み符号化やターボ符号化などの誤り訂正符号化されたデータを復号化し、情報ビットを再生する。

[0072]

パイロットシンボル生成部11aは、時間分解能の高い複素インパルスレスポンスを得るために、拡散後(CDMAの場合)やオーバーサンプル後のパイロットシンボルのレプリカを生成する。相関算出部11bは、パイロットシンボル系列と受信信号との相関演算を行い、時間分解能の高い複素インパルスレスポンスΨn(i)を生成する(なお、複素インパルスレスポンスは、時間分解能の高いチャネル情報であり、複素インパルスレスポンスの電力を平均化したものは、電力遅延プロファイルとなる)。

[0073]

位相差演算部12に対し、第1の実施の形態の動作を行う場合について示すと、最大値 検出部12aは、複素インパルスレスポンスの最大値(最大複素インパルスレスポンスΨ n)を検出する。遅延部12bは、検出された最大複素インパルスレスポンスΨ n を 1フ レーム遅延させる(最大複素インパルスレスポンスΨn-1)。

[0074]

位相差検出部 $1 \ 2 \ c$ は、フレーム n の最大複素インパルスレスポンス Ψ n と、フレーム (n-1) の最大複素インパルスレスポンス Ψ n-1 とに対し、位相差の絶対値 $|\Delta \theta|$ n $|(=|\angle\Psi n-\angle\Psi n-1|)$ を計算する。

[0075]

そして、平均化演算部13は、位相差の絶対値を複数フレームに渡り平均化して平均値情報を求める。ドップラ周波数推定部14は、平均値情報から、ドップラ周波数(Hz)に変換する。

[0076]

次に本発明の第3の実施の形態について説明する。上記の説明では、ドップラ周波数を推定する際に、第1の実施の形態では、"最大複素インパルスレスポンスの位相差の絶対値を複数フレームに渡り平均化すること(図9、10)"、第2の実施の形態では、"フレーム (n-1) の最大複素インパルスレスポンスが発生したタイミングを固定して、フレーム (n-1) の最大複素インパルスレスポンスと、同一タイミングによるフレーム n の複素インパルスレスポンスと、の位相差の絶対値を求めること(図11、12)"について述べた。

[0077]

以降では第3の実施の形態として、"複数フレームに渡って同一タイミングによる複素 インパルスレスポンスの位相差の絶対値を求める"ことの内容について説明する。

図13のディジタル無線受信機100の位相差演算部12において、複素インパルスレスポンスの位相差演算を行う際に、最大複素インパルスレスポンスが発生するタイミングを更新するとき、平均化演算部13では、各無線フレームでフェージング状態が良好であるパスの位相変化量($= |\Delta \theta n|$ ($= |\angle \Psi n - \angle \Psi n - 1|$) のみが平均化される。

[0078]

一般的に、フェージング状態が良好な部分の位相変化量は、フェージングの落ち込み部分の位相変化量よりも小さいため、上記のようにフェージング状態が良好な部分のみの平均化を行うと、実際よりも低いドップラ周波数が推定されてしまう可能性がある(すなわち、フェージングの落ち込み部分の位相変化量も考慮した平均化を行わないと、フェージングの落ち込み具合によっては、実際はドップラ周波数が高くて、フェージング変動の影響が大きい無線環境であっても、実際のドップラ周波数値よりも低いドップラ周波数が推定される可能性がある)。

[0079]

したがって、第3の実施の形態では、複数の無線フレームに渡って位相変化量を平均化する場合、まず、位相差演算に用いる最大複素インパルスレスポンスを検出する。そして、このときの検出タイミングを固定し、このタイミングによる複数の他無線フレームの複素インパルスレスポンスを抽出して、抽出した複素インパルスレスポンス間の位相差の絶対値を求めるようにする。

[080]

このようにすれば、フェージングの落ち込み部分の位相変化量も平均化できるため(フェージングが良好な部分に該当する最大複素インパルスレスポンスだけを用いた平均化処理だけでなく、フェージングの落ち込み部分を含む、最大複素インパルスレスポンス以外の複素インパルスレスポンスも用いた平均化処理も行うということ)、ドップラ周波数の推定精度を向上させることが可能になる。

[0081]

図14は同一タイミングにおける複素インパルスレスポンスの位相差を求める場合を説明するための図である。無線フレームT1で、最大複素インパルスレスポンス Ψ 1が位置 Pb1で検出されたとする。次に無線フレームT2に対しては、位置 Pb1のタイミングでの複素インパルスレスポンス Ψ 2bを抽出する。無線フレームT3に対しても、位置 Pb1のタイミングでの複素インパルスレスポンス Ψ 3bを抽出する。次フレームに対して

も同様なことが行われる。

[0082]

そして、最大複素インパルスレスポンスΨ1と複素インパルスレスポンスΨ2bとの位相差の絶対値を求め、複素インパルスレスポンスΨ2bと複素インパルスレスポンスΨ3bとの位相差の絶対値を求める…といったことを平均化区間内のフレームに対して繰り返し、これらの位相差の絶対値の平均を求めることにより、平均値情報が求められ、平均値情報からドップラ周波数が推定されることになる。

[0083]

図15は第3の実施の形態を行う際の最大値検出部の構成を示す図である。最大値検出部12a-1は、電力化部121、タイマ122、ピーク検出部123、メモリ124、複素インパルスレスポンス抽出部125とから構成される。

[0084]

電力化部121は、図13の複素インパルスレスポンス測定部11から送信された複素インパルスレスポンスを受信して電力値に変換する。タイマ122は、平均化区間(平均化演算部13で平均化演算を行う際に定められている平均化フレーム数)毎に、複素インパルスレスポンスの電力値を後段へ出力する。

[0085]

ここで、フレーム番号がnで、タイミングiにおけるタイマ出力信号 ϕ_n (i) は、複素インパルスレスポンス Ψ_n (i) を用いて、式(9) で表される。

[0086]

【数9】

$$\phi_{n}(i) = \{\Psi_{n}(i)\}^{2}$$
 ---- (9)

[0087]

ピーク検出部 1 2 3 では、平均化演算部 1 3 における平均化区間毎に、 ϕ_n (i) が最大となるタイミング i=m a x を検出する。メモリ 1 2 4 は、検出されたタイミング情報を保持する。また、平均化区間毎にタイミング情報は更新される。

[0088]

複素インパルスレスポンス抽出部125は、複素インパルスレスポンス測定部11から送信された複素インパルスレスポンスを受信して、時間調整のための遅延処理を施した後、メモリ124に保持されたタイミングに該当する複素インパルスレスポンスを抽出して、その後、図13に示した遅延部12b及び位相差検出部12cへ出力する。

[0089]

また、図15では最大値検出部12a-1の動作が理解しやすいように、平均化区間内の各フレーム(フレームF $1\sim$ F4)における複素インパルスレスポンス(の電力)を示して動作を表している。ここでは、フレームF1で最大複素インパルスレスポンスa1が検出されたとすると、このときの検出タイミング t0がメモリ124に記憶される。

[0090]

そして、複素インパルスレスポンス抽出部125では、フレームF1では検出タイミング t 0の最大複素インパルスレスポンス a 1を抽出し、フレームF2~F4に対しては、検出タイミング t 0のときの複素インパルスレスポンスを抽出することになる(その後、最大値検出部12a-1を出力した、これらの複素インパルスレスポンスは、遅延部12b、位相差検出部12cへ送られ、位相差の絶対値が計算される)。

[0091]

次に第3の実施の形態の変形例について説明する。上記では、平均化区間内の複数フレームに対して、最大複素インパルスレスポンスを検出し、最大複素インパルスレスポンスを検出した際のタイミングで、他フレームの複素インパルスレスポンスを抽出し、これらの位相差を求めたが、変形例の場合は、平均化区間内の各フレームの複素インパルスレス

[0092]

図16は第3の実施の形態の変形例の動作を行う際の最大値検出部の構成を示す図である。最大値検出部12a-2は、電力化部126、平均化部127、ピーク検出部128、メモリ129、複素インパルスレスポンス抽出部130とから構成される。

[0093]

電力化部126は、図13の複素インパルスレスポンス測定部11から送信された複素 インパルスレスポンスを受信して電力値に変換する。平均化部127は、平均化演算部1 3における平均化区間で、複素インパルスレスポンスの電力値を平均化して出力する。

[0094]

ここで、平均化フレーム数をM、フレーム番号をnとし、タイミングiにおける平均化出力信号 ϕ (i)は、複素インパルスレスポンス Ψ_n (i)を用いて,式(10)で表される。

【数10】

$$\phi(i) = \frac{1}{M} \sum_{m=0}^{M-1} \{ \Psi_{n-m}(i) \}^2 --- (10)$$

[0096]

例えば、式(10)は、M=4とすれば、 ϕ (i)=[$\{\Psi_n$ (i) $\}^2+\{\Psi_{n-1}$ (i) $\}^2+\{\Psi_{n-2}$ (i) $\}^2+\{\Psi_{n-3}$ (i) $\}^2$]/4となり、フレーム番号が $n\sim(n-3)$ の4つのフレームに対して、各フレームのタイミングiにおける複素インパルスレスポンスの電力値の平均値を表している。

[0097]

ピーク検出部128は、平均化演算部13における平均化フレーム数毎に、φ(i)が最大となるタイミング i = maxを検出する。メモリ129は、検出されたタイミング情報を保持する。また、平均化区間毎にタイミング情報は更新される。

[0098]

複素インパルスレスポンス抽出部130は、複素インパルスレスポンス測定部11から送信された複素インパルスレスポンスを受信して、時間調整のための遅延処理を施した後、メモリ129に保持されたタイミングに該当する複素インパルスレスポンスを抽出して、図13に示した遅延部12b及び位相差検出部12cへ出力する。

[0099]

図17は図16の最大値検出部12a-2の動作を説明するための図である。平均化区間内の各フレーム(フレームF1~F4)において、1~kのタイミングの複素インパルスレスポンス(の電力)を示している。このような複素インパルスレスポンスに、式(10)を用いて、平均化部127において各タイミングにおける平均化出力信号 ϕ (i)を求めると、図に示すような算出式となる。

[0100]

そして、ピーク検出部 1 2 8 では、 ϕ (1) $\sim \phi$ (k) の最大値を求めるが、ここでは ϕ (2) が最大であったとする。すると、メモリ 1 2 9 は、i = 2 を記憶し、複素インパルスレスポンス抽出部 1 3 0 は、フレーム F 1 $\sim F$ 4 のタイミング i が 2 のときの複素インパルスレスポンス Ψ_1 (2) 、 Ψ_2 (2) 、 Ψ_3 (2) 、 Ψ_4 (2) を出力することになる

[0101]

次に図13で上述したディジタル無線受信機100の変形例について説明する。 $\Delta \theta$ n にはフェージングによる位相変動及び周波数オフセットによる位相変動が含まれるが、周波数オフセットによる位相変動量が、フェージングによる位相変動量に対して同程度かまたは大きい場合は、周波数オフセットの影響が大きく現れてしまう。

[0102]

このため、本発明の変形例では、AFC (Automatic Frequency Control:自動周波数制御)により、周波数オフセットをあらかじめ低減しておき、その上でドップラ周波数の推定を行うようにする。

[0103]

図18は変形例であるディジタル無線受信機の構成を示す図である。なお、図13と同じ構成要素には同じ符号を付けてその説明は省略し、異なる構成要素を中心に説明する。ディジタル無線受信機100-1は、A/D部101~復号部107で構成されるデータ再生部の他に、本発明の複素インパルスレスポンス測定部、位相差演算部、第1の平均化演算部、第2の平均化演算部、ドップラ周波数推定部、周波数オフセット推定部、AFC部を含む。

$[0\ 1\ 0\ 4\]$

複素インパルスレスポンス測定部11は、パイロットシンボル生成部11aと相関算出部11bから構成され、位相差演算部12-1は、最大値検出部12a、遅延部12b、位相差検出部12c-1から構成される。

[0105]

位相差演算部12-1内の位相差検出部12c-1は、1フレーム離れた最大複素インパルスレスポンスの位相差 $\Delta\theta$ n と、位相差の絶対値 $\Delta\theta$ n | とを計算する。

第1の平均化演算部13aは、位相差の絶対値を複数フレームに渡り平均化して第1の平均値情報を求める。第2の平均化演算部13bは、位相差を複数フレームに渡り平均化して第2の平均値情報を求める。

[0106]

ドップラ周波数推定部14は、第1の平均値情報から、ドップラ周波数(Hz)に変換する。周波数オフセット推定部15は、第2の平均化情報から、周波数オフセット(Hz)に変換する。

[0107]

D/A部16は、推定された周波数オフセット量をアナログ情報に変換する。AFC部17は、D/A部16からの周波数オフセット量にもとづき、受信信号から周波数オフセットの影響を除去し、除去した信号をA/D部101へ送信する。

[0108]

次に本発明の通信装置10をOFDM (Orthogonal Frequency Division Multiplexing : 直交周波数分割多重) 受信装置に適用した場合について説明する。OFDMは、伝送帯域内に多数の直交する副搬送波(サブキャリア)を設け、それぞれのサブキャリアの振幅及び位相にデータを割り当て、PSKやQAMによりディジタル変調する方式である。

[0109]

このOFDMは、多数のサブキャリアで伝送帯域を分割するもので、サブキャリア 1 波あたりの帯域を狭くすることで、それぞれのサブキャリアのシンボル長を長くし、またガードインターバルの付加や、周波数軸上及び時間軸上でのインタリーブ制御を行うことで、マルチパスによるシンボル間干渉(ISI:Inter Symbol Interference)の影響を除くことができる。

$[0\ 1\ 1\ 0\]$

さらに、同時にすべてのサブキャリアを同期変調させて周波数直交関係を保つことによって、サブキャリアの間隔を最少に設定できるため、周波数利用効率をあげることができる。

$[0\ 1\ 1\ 1]$

このような特徴を持つOFDMは、マルチパス妨害の影響を強く受ける地上波ディジタ

[0112]

OFDM受信装置では、各サブキャリアに多重されたパイロットシンボルを用いて、サブキャリア毎のチャネル推定値 hn.m を求める(n はフレームをm はサブキャリア番号を表す)。データチャネルは、これらのチャネル推定値を用いて、サブキャリア毎に同期検波され、データ復調および誤り訂正復号される。

[0113]

一方、OFDM受信装置に対する本発明の適用については、チャネル推定値 h n, m を逆フーリエ変換することにより、受信信号の複素インパルスレスポンスを求める。そして、フレームタイミング毎に、最大となる複素インパルスレスポンスを検出し、フレーム間の位相差の絶対値を求め、複数フレームに渡り平均化し、ドップラ周波数の推定結果を得るようにする。

$[0 \ 1 \ 1 \ 4]$

図19はOFDM受信装置の構成を示す図である。OFDM受信装置200は、A/D部201~復号部207で構成されるデータ再生部の他に、本発明の複素インパルスレスポンス測定部、位相差演算部、平均化演算部、ドップラ周波数推定部を含む。複素インパルスレスポンス測定部21は、パイロットシンボル生成部21a、チャネル推定部21b、IFFT (Inverse Fast Fourier Transform) 部21cから構成され、位相差演算部22は、最大値検出部22a、遅延部22b、位相差検出部22cから構成される。

[0115]

A/D部201は、アンテナより受信したRF信号を周波数変換し、直交検波によりIチャネルとQチャネルとのベースバンド信号に分ける。そして、それぞれの信号をA/D変換して、ディジタル信号へ変換する。

[0116]

同期CH生成部202は、タイミング同期部203で、フレームタイミングの検出に用いる同期チャネルのレプリカを生成する。タイミング同期部203は、同期チャネルを用いて、A/D変換後のディジタル信号に含まれるフレームタイミングを検出する。

$[0\ 1\ 1\ 7\]$

FFT (Fast Fourier Transform) 部204は、フーリエ変換処理により、時間領域の広帯域信号を、周波数領域のサブキャリア毎の信号に分ける。同期検波部205は、チャネル推定部21bで求めたチャネル情報を用いて、受信信号からマルチパス伝搬路の影響を除去し、送信信号の状態に戻す検波処理を行う。

[0118]

復調部206は、変調信号を元に戻し、データ系列へ復調する。復号部207は、畳込み符号化やターボ符号化などの誤り訂正符号化されたデータを復号化し、情報ビットに再生する。

[0119]

パイロットシンボル生成部 2 1 a は、パイロットシンボルを生成する。チャネル推定部 2 1 b は、パイロットシンボルを用いて、チャネル情報を推定する。 I F F T 部 2 1 c は 、サブキャリア毎のチャネル推定値を逆フーリエ変換処理することにより、時間領域の複素インパルスレスポンスΨ n (i) を計算する。

$[0 \ 1 \ 2 \ 0]$

$[0\ 1\ 2\ 1]$

平均化演算部23は、位相差の絶対値を複数フレームに渡り平均化して平均値情報を求

める。ドップラ周波数推定部14は、平均値情報から、ドップラ周波数(Hz)に変換する。なお、周波数オフセットを除去した後にドップラ周波数を推定する変形例をOFDM 受信装置に適用した場合の説明は省略する。

[0122]

また、いずれの実施の形態においても、複素インパルスレスポンスが最大となるタイミングが複数存在した場合や、(平均)振幅の大きい複素インパルスレスポンスのタイミングが複数存在した場合は、それぞれのタイミングにおけるフレーム間の位相差の絶対値を求め、それらの結果を平均する方法により、ドップラ周波数を推定することができる。

[0123]

以上説明したように、本発明によれば、S/Nの高いマルチパスを選択して用いることにより、受信信号のS/Nが低い領域においても、精度よくドップラ周波数を推定することが可能になる。また、OFDMに本発明を適用することにより、精度よくドップラ周波数を推定することができ、地上波放送の伝送品質の向上を図ることが可能になる。

[0124]

(付記1) 無線通信を行う通信装置において、

無線フレーム周期毎に、伝搬路の複素時間応答信号を測定する複素時間応答信号測定部と、

候補となる複素時間応答信号の位相差の絶対値を求める位相差演算部と、

位相差の絶対値を、複数の無線フレームに渡り平均化して平均値を求める平均化演算部と、

平均値を無線フレームの間隔時間で除算してドップラ周波数を推定するドップラ周波数推定部と、

を有することを特徴とする通信装置。

[0125]

(付記2) 前記複素時間応答信号測定部は、各無線フレームに多重された既知のパイロットシンボル、または同期チャネルを用いて、複素時間応答信号を測定することを特徴とする付記1記載の通信装置。

[0126]

(付記3) 前記位相差演算部は、フレーム(n-1)に対し、最大複素時間応答信号を抽出し、最大複素時間応答信号が発生したタイミングを検出して、フレーム(n-1)の最大複素時間応答信号と、検出した同一タイミングによるフレームnの複素時間応答信号と、の位相差の絶対値を求めることを特徴とする付記1記載の通信装置。

[0127]

(付記4) 前記位相差演算部は、候補となる複素時間応答信号を抽出し、前記複素時間応答信号が発生したタイミングを検出して、検出したタイミングと同一のタイミングによる各フレームの複素時間応答信号を抽出して、抽出した候補となる複素時間応答信号と複素時間応答信号間の位相差の絶対値及び抽出した各フレームの複素時間応答信号間の位相差の絶対値を求めることを特徴とする付記1記載の通信装置。

[0128]

(付記5) 前記位相差演算部は、平均化区間内のフレームの各タイミングにおける複素時間応答信号の平均電力を算出して、平均電力が最大となるタイミングを検出し、検出したタイミングと同一のタイミングによる各フレームの複素時間応答信号を抽出して、抽出した複素時間応答信号間の位相差の絶対値を求めることを特徴とする付記1記載の通信装置。

[0129]

(付記6) 無線通信を行う通信装置において、

無線フレーム周期毎に、周波数オフセットが付与された受信信号から、伝搬路の複素時間応答信号を測定する複素時間応答信号測定部と、

- 候補となる複素時間応答信号から、位相差と位相差の絶対値とを求める位相差演算部と

位相差の絶対値を、複数の無線フレームに渡り平均化して第1の平均値を求める第1の 平均化演算部と、

位相差を、複数の無線フレームに渡り平均化して第2の平均値を求める第2の平均化演算部と、

第2の平均値を無線フレームの間隔時間で除算して前記周波数オフセットを推定する周波数オフセット推定部と、

推定結果にもとづいて、前記周波数オフセットを低減するAFC部と、

第1の平均値を無線フレームの間隔時間で除算してドップラ周波数を推定するドップラ 周波数推定部と、

を有することを特徴とする通信装置。

[0130]

(付記7) 前記複素時間応答信号測定部は、各無線フレームに多重された既知のパイロットシンボル、または同期チャネルを用いて、複素時間応答信号を測定することを特徴とする付記6記載の通信装置。

[0131]

(付記8) 前記位相差演算部は、フレーム (n-1) に対し、最大複素時間応答信号を抽出し、最大複素時間応答信号が発生したタイミングを検出して、フレーム (n-1) の最大複素時間応答信号と、検出した同一タイミングによるフレーム n の複素時間応答信号と、の位相差の絶対値を求めることを特徴とする付記 6 記載の通信装置。

$[0\ 1\ 3\ 2]$

(付記9) 前記位相差演算部は、候補となる複素時間応答信号を抽出し、前記複素時間応答信号が発生したタイミングを検出して、検出したタイミングと同一のタイミングによる各フレームの複素時間応答信号を抽出して、抽出した候補となる複素時間応答信号と複素時間応答信号間の位相差の絶対値及び抽出した各フレームの複素時間応答信号間の位相差の絶対値を求めることを特徴とする付記6記載の通信装置。

[0 1 3 3]

(付記10) 前記位相差演算部は、平均化区間内のフレームの各タイミングにおける 複素時間応答信号の平均電力を算出して、平均電力が最大となるタイミングを検出し、検 出したタイミングと同一のタイミングによる各フレームの複素時間応答信号を抽出して、 抽出した複素時間応答信号間の位相差の絶対値を求めることを特徴とする付記6記載の通 信装置。

$[0\ 1\ 3\ 4]$

(付記11) OFDM変調された信号を受信するOFDM受信装置において、

サブキャリアのチャネル推定を無線フレーム毎に行い、全サブキャリアに渡るチャネル 推定値を逆フーリエ変換することにより、複素時間応答信号を測定する複素時間応答信号 測定部と、

候補となる複素時間応答信号の位相差の絶対値を求める位相差演算部と、

位相差の絶対値を、複数の無線フレームに渡り平均化して平均値を求める平均化演算部と、

平均値を無線フレームの間隔時間で除算してドップラ周波数を推定するドップラ周波数推定部と、

を有することを特徴とするOFDM受信装置。

[0135]

(付記12) 前記複素時間応答信号測定部は、各無線フレームに多重された既知のパイロットシンボル、または同期チャネルを用いて、複素時間応答信号を測定することを特徴とする付記11記載のOFDM受信装置。

[0136]

(付記13) 前記位相差演算部は、フレーム (n-1) に対し、最大複素時間応答信号を抽出し、最大複素時間応答信号が発生したタイミングを検出して、フレーム (n-1) の最大複素時間応答信号と、検出した同一タイミングによるフレーム n の複素時間応答

信号と、の位相差の絶対値を求めることを特徴とする付記11記載のOFDM受信装置。

[0137]

(付記14) 前記位相差演算部は、候補となる複素時間応答信号を抽出し、前記複素時間応答信号が発生したタイミングを検出して、検出したタイミングと同一のタイミングによる各フレームの複素時間応答信号を抽出して、抽出した候補となる複素時間応答信号と複素時間応答信号間の位相差の絶対値及び抽出した各フレームの複素時間応答信号間の位相差の絶対値を求めることを特徴とする付記11記載のOFDM受信装置。

[0138]

(付記15) 前記位相差演算部は、平均化区間内のフレームの各タイミングにおける 複素時間応答信号の平均電力を算出して、平均電力が最大となるタイミングを検出し、検 出したタイミングと同一のタイミングによる各フレームの複素時間応答信号を抽出して、 抽出した複素時間応答信号間の位相差の絶対値を求めることを特徴とする付記11記載の OFDM受信装置。

[0139]

(付記16) OFDM変調された信号を受信するOFDM受信装置において、

周波数オフセットが付与された受信信号から、サブキャリアのチャネル推定を無線フレーム毎に行い、全サブキャリアに渡るチャネル推定値を逆フーリエ変換することにより、 複素時間応答信号を測定する複素時間応答信号測定部と、

候補となる複素時間応答信号から、位相差と位相差の絶対値とを求める位相差演算部と

位相差の絶対値を、複数の無線フレームに渡り平均化して第1の平均値を求める第1の 平均化演算部と、

位相差を、複数の無線フレームに渡り平均化して第2の平均値を求める第2の平均化演算部と、

第2の平均値を無線フレームの間隔時間で除算して前記周波数オフセットを推定する周波数オフセット推定部と、

推定結果にもとづいて、前記周波数オフセットを低減するAFC部と、

第1の平均値を無線フレームの間隔時間で除算してドップラ周波数を推定するドップラ 周波数推定部と、

を有することを特徴とするOFDM受信装置。

$[0\ 1\ 4\ 0\]$

(付記17) 前記複素時間応答信号測定部は、各無線フレームに多重された既知のパイロットシンボル、または同期チャネルを用いて、複素時間応答信号を測定することを特徴とする付記16記載のOFDM受信装置。

$[0\ 1\ 4\ 1]$

(付記 18) 前記位相差演算部は、フレーム (n-1) に対し、最大複素時間応答信号を抽出し、最大複素時間応答信号が発生したタイミングを検出して、フレーム (n-1) の最大複素時間応答信号と、検出した同一タイミングによるフレーム n の複素時間応答信号と、の位相差の絶対値を求めることを特徴とする付記 16 記載の 0 F D M 受信装置。

[0142]

(付記19) 前記位相差演算部は、候補となる複素時間応答信号を抽出し、前記複素時間応答信号が発生したタイミングを検出して、検出したタイミングと同一のタイミングによる各フレームの複素時間応答信号を抽出して、抽出した候補となる複素時間応答信号と複素時間応答信号間の位相差の絶対値及び抽出した各フレームの複素時間応答信号間の位相差の絶対値を求めることを特徴とする付記16記載のOFDM受信装置。

[0143]

(付記20) 前記位相差演算部は、平均化区間内のフレームの各タイミングにおける 複素時間応答信号の平均電力を算出して、平均電力が最大となるタイミングを検出し、検 出したタイミングと同一のタイミングによる各フレームの複素時間応答信号を抽出して、 抽出した複素時間応答信号間の位相差の絶対値を求めることを特徴とする付記16記載の

OFDM受信装置。

[0144]

(付記21) 移動端末の移動速度に比例して生じるドップラ周波数を推定するドップラ周波数推定方法において、

伝搬路の複素時間応答信号を無線フレーム周期毎に測定し、

候補となる複素時間応答信号の位相差の絶対値を求め、

位相差の絶対値を、複数の無線フレームに渡り平均化して平均値を求め、

平均値を無線フレームの間隔時間で除算してドップラ周波数を推定することを特徴とするドップラ周波数推定方法。

[0145]

(付記22) 各無線フレームに多重された既知のパイロットシンボル、または同期チャネルを用いて、複素時間応答信号を測定することを特徴とする付記21記載のドップラ 周波数推定方法。

$[0\ 1\ 4\ 6]$

(付記 23) フレーム (n-1) に対し、最大複素時間応答信号を抽出し、最大複素時間応答信号が発生したタイミングを検出して、フレーム (n-1) の最大複素時間応答信号と、検出した同一タイミングによるフレーム n の複素時間応答信号と、の位相差の絶対値を求めることを特徴とする付記 21 記載のドップラ周波数推定方法。

[0147]

(付記24) 候補となる複素時間応答信号を抽出し、前記複素時間応答信号が発生したタイミングを検出して、検出したタイミングと同一のタイミングによる各フレームの複素時間応答信号を抽出して、抽出した候補となる複素時間応答信号と複素時間応答信号間の位相差の絶対値及び抽出した各フレームの複素時間応答信号間の位相差の絶対値を求めることを特徴とする付記21記載のドップラ周波数推定方法。

[0148]

(付記25) 平均化区間内のフレームの各タイミングにおける複素時間応答信号の平均電力を算出して、平均電力が最大となるタイミングを検出し、検出したタイミングと同一のタイミングによる各フレームの複素時間応答信号を抽出して、抽出した複素時間応答信号間の位相差の絶対値を求めることを特徴とする付記21記載のドップラ周波数推定方法。

[0149]

(付記26) OFDM変調された信号を受信する場合は、各サブキャリアのチャネル推定を無線フレーム毎に行い、全サブキャリアに渡るチャネル推定値を逆フーリエ変換することにより、複素時間応答信号を測定することを特徴とする付記21記載のドップラ周波数推定方法。

[0150]

(付記27) 移動端末の移動速度に比例して生じるドップラ周波数を推定するドップラ周波数推定方法において、

無線フレーム周期毎に、周波数オフセットが付与された受信信号から、伝搬路の複素時間応答信号を測定し、

候補となる複素時間応答信号から、位相差と位相差の絶対値とを求め、

位相差の絶対値を、複数の無線フレームに渡り平均化して第1の平均値を求め、

位相差を、複数の無線フレームに渡り平均化して第2の平均値を求め、

第2の平均値を無線フレームの間隔時間で除算して前記周波数オフセットを推定し、

推定結果にもとづいて、AFCを動作して前記周波数オフセットを低減し、

第1の平均値を無線フレームの間隔時間で除算してドップラ周波数を推定することを特 徴とするドップラ周波数推定方法。

[0151]

(付記28) 各無線フレームに多重された既知のパイロットシンボル、または同期チャネルを用いて、複素時間応答信号を測定することを特徴とする付記27記載のドップラ

周波数推定方法。

[0152]

(付記 2 9) フレーム (n-1) に対し、最大複素時間応答信号を抽出し、最大複素時間応答信号が発生したタイミングを検出して、フレーム (n-1) の最大複素時間応答信号と、検出した同一タイミングによるフレーム n の複素時間応答信号と、の位相差の絶対値を求めることを特徴とする付記 2 7 記載のドップラ周波数推定方法。

[0153]

(付記30) 候補となる複素時間応答信号を抽出し、前記複素時間応答信号が発生したタイミングを検出して、検出したタイミングと同一のタイミングによる各フレームの複素時間応答信号を抽出して、抽出した候補となる複素時間応答信号と複素時間応答信号間の位相差の絶対値及び抽出した各フレームの複素時間応答信号間の位相差の絶対値を求めることを特徴とする付記27記載のドップラ周波数推定方法。

[0154]

(付記31) 平均化区間内のフレームの各タイミングにおける複素時間応答信号の平均電力を算出して、平均電力が最大となるタイミングを検出し、検出したタイミングと同一のタイミングによる各フレームの複素時間応答信号を抽出して、抽出した複素時間応答信号間の位相差の絶対値を求めることを特徴とする付記27記載のドップラ周波数推定方法。

[0155]

(付記32) OFDM変調された信号を受信する場合は、各サブキャリアのチャネル推定を無線フレーム毎に行い、全サブキャリアに渡るチャネル推定値を逆フーリエ変換することにより、複素時間応答信号を測定することを特徴とする付記27記載のドップラ周波数推定方法。

【図面の簡単な説明】

[0156]

- 【図1】本発明の通信装置の原理図である。
- 【図2】ドップラ周波数を示す図である。
- 【図3】ドップラ周波数を示す図である。(A)は移動端末の進行方向に対し同一方向のパスから電波を受けた場合、(B)は移動端末の進行方向に対し垂直方向から電波を受けた場合を示す図である。
- 【図4】ドップラ周波数の遷移を示す模式図である。
- 【図5】チャネル推定の概要を示す図である。
- 【図6】ドップラ周波数のレベル変動のピッチ測定を示す図である。
- 【図7】シャドウイングによる受信レベル変化を示す図である。
- 【図8】チャネル推定値の位相差測定の概念を示す図である。
- 【図9】本発明のドップラ周波数推定の概念を示す図である。
- 【図10】複素インパルスレスポンス測定部の動作概要を示す図である。
- 【図11】最大複素インパルスレスポンスの変動を示す図である。
- 【図12】2つのフレーム間における複素インパルスレスポンスの位相差を求める場合を説明するための図である。
- 【図13】ディジタル無線受信機の構成を示す図である。
- 【図14】同一タイミングにおける複素インパルスレスポンスの位相差を求める場合 を説明するための図である。
- 【図15】第3の実施の形態を行う際の最大値検出部の構成を示す図である。
- 【図16】第3の実施の形態の変形例の動作を行う際の最大値検出部の構成を示す図 である。
- 【図17】図16の最大値検出部の動作を説明するための図である。
- 【図18】変形例であるディジタル無線受信機の構成を示す図である。
- 【図19】OFDM受信装置の構成を示す図である。
- 【図20】基地局と移動端末間の伝搬モデルを示す図である。

【符号の説明】

[0157]

- 10 通信装置
- 11 複素時間応答信号測定部
- 12 位相差演算部
- 13 平均化演算部
- 14 ドップラ周波数推定部

【書類名】図面 【図1】

【図3】

(A) 進行方向と同一方向

ドップラ周波数は最大

(B) 進行方向に対し垂直方向

ドップラ周波数はゼロ

図4】

パイロットンンボルの位相が、信号点S1であることを受信倒では認識しており、パイロットシンボルの位相からフェージングによる位相回転々を推定し、 - 3 全位相補正を行う

【図7】

波形が変動し、最大複素インパルス レスポンスの位置がずれる

【図13】

【図15】

【図16】

φmax(i)=φ(2)であれば、タイミングi=2のときの複素インパルスレスポンス ψ1(2)、ψ2(2)、ψ3(2)、ψ4(2)が最大値検出部12a-2から出力される

【図18】

【図20】

【書類名】要約書

【要約】

【課題】 ドップラ周波数を高精度に推定して無線通信特性の向上を図る。

【解決手段】 複素時間応答信号測定部 1 1 は、無線フレーム周期毎に、伝搬路の複素時間応答信号を測定する。位相差演算部 1 2 は、候補となる複素時間応答信号の位相差の絶対値を求める。候補となる複素時間応答信号としては、最大の複素時間応答信号が該当する。また、最大の複素時間応答信号が頻繁に移動する場合は、最大となる複素時間応答信号が発生するタイミングを固定して、同一タイミングによる位相差の絶対値を求める。平均化演算部 1 3 は、位相差の絶対値を、複数の無線フレームに渡り平均化して平均値を求める。ドップラ周波数推定部 1 4 は、平均値を無線フレームの間隔時間で除算してドップラ周波数を推定する。

【選択図】 図1

特願2004-001794

出願人履歴情報

識別番号

[000005223]

1. 変更年月日

1996年 3月26日

[変更理由]

住所変更

住所

神奈川県川崎市中原区上小田中4丁目1番1号

氏 名

富士通株式会社