Recitation 3

Wednesday 12th November, 2014

Contents

1	Sandwich Theorem	2
	1.1 Examples	2
	1.1.1 $\lim_{x \to \infty} \frac{5x^2 - \sin(3x)}{x^2 + 10} \dots \dots \dots \dots$	2
2	Intermediate Value Theorem	2
3	Weierstrauss Theorem	2

1 Sandwich Theorem

1.1 Examples

1.1.1
$$\lim_{x \to \infty} \frac{5x^2 - \sin(3x)}{x^2 + 10}$$

$$\frac{5x^2 - 1}{x^2 + 10} \le \frac{5x^2 - \sin(3x)}{x^2 + 10} \le \frac{5x^2 + 1}{x^2 + 10}$$

$$\therefore \frac{5 - \frac{1}{x^2}}{1 + \frac{10}{x^2}} \le \frac{5x^2 - \sin(3x)}{x^2 + 10} \le \frac{5 + \frac{1}{x^2}}{1 + \frac{10}{x^2}}$$

$$\therefore \lim_{x \to \infty} \frac{5x^2 - \sin(3x)}{x^2 + 10} = 5$$

2 Intermediate Value Theorem

If f is continuous over [a,b], then, $\forall h$ between f(a) and $f(b), \exists c \in [a,b]$, s.t. f(c) = h

3 Weierstrauss Theorem

If f is continuous over [a, b], then, f has a maximum and a minimum in [a, b].