Challenge Deliverable 3 Answer form

4DB00 Dynamics and Control of mechanical systems 2019-2020

Name:	Jelle Langedijk
Student number:	1315358

Be aware of the TU/e Code of Scientific conduct. See: https://www.tue.nl/en/our-university/about-the-university/organization/integrity/scientific-integrity/.

Question a):

Consider the undamped response of the system (i.e. you may assume that $\underline{D}=0$) in order to determine the eigenfrequencies ω_1 and ω_2 , with $\omega_1 \leq \omega_2$, of the system.

$$\omega_1 = 0 \text{ [rad/s]}$$

$$\omega_2 = 1.4007 \text{ [rad/s]}$$

Question b):

Excite the "virtual test setup" with the input signal $F_A(t)=1500\sin(\omega_2 t)$, by utilizing the "Sim_Setup" request within the DOMS toolbox. Use the simulation conditions as described in the deliverable and add the requested plots here.

Question c):

Repeat this simulation experiment with the input signal $F_A(t)=1500\sin(0.7\cdot\omega_2 t)$ and the input signal $F_A(t)=1500\sin(1.3\cdot\omega_2 t)$. After the initialization of the experiment (i.e. for $t\geq 100$ s), do you observe a difference between the amplification of these sinusoidal input signals and the input signal considered in question b? If so, can you explain this difference?

Figure 4: Time response of the angle of the chain with an input signal $F_A(t)=1500\sin(0.7\omega_2 t)$

$$F_A(t) = 1500\sin(1.3 \cdot \omega_2 t)$$

Figure 5: Time response of the position of the hoist block with an input signal $F_A(t)=1500\sin(1.3\omega_2 t)$

Figure 6: Time response of the angle of the chain with an input signal $F_A(t)=1500\sin(1.3\omega_2 t)$

Explanation

There is indeed a difference in amplitude visible between both frequencies plotted in this question compared to the plots in the previous question. This can be easilly explained by the fact that ω_2 is the eigenfrequency, thus the system resonates when exitated at a frequency that equals (one of) the eigenfrequencies. One can see this resonance effect clearly when plotting trajectories of an exitation that is not at a eigenfrequency (e.g. $0.7\omega_2$ and $1.3\omega_2$, as done in this question). For T>100, when the system "settled", the amplitudes are indeed far lower at these frequencies compared to ω_2 .

Question d):

Compute the transfer functions $G_1(s)$ and $G_2(s)$, by utilizing the "Make_tf" request and by providing the linear equations of motion to the DOMS toolbox. Add the bode diagrams of these transfer functions here.

Figure 7: Bode plots of $G_1(s)$ and $G_2(s)$ at the top two and bottom two respectively

Question e):

Determine the gains $|G_1(j\omega_2)|$ and $|G_2(j\omega_2)|$. Are these values similar to the amplification that you observed in question b? **(Do not forget to include units)**

$$|G_1(j\omega_2)| = 0.7209 \times 10^{-3}$$
 (not in dB)

$$|G_2(j\omega_2)| = 0.1427 \times 10^{-3}$$
 (not in dB)

Comparison

$$|G_1(j\omega_2)| \times 1500 [N] = 1.08135$$
 (**not** in dB)

$$|G_2(j\omega_2)| \times 1500 [N] = 0.21405$$
 (**not** in dB)

These values are similar to the amplifications found in the plots of question b). The plot in figure 1 has indeed an amplitude of about 1.1 (see $|G_1(j\omega_2)| \times 1500 \ [N]$) and the plot in figure 2 has indeed an amplitude of about 0.2 (see $|G_2(j\omega_2)| \times 1500 \ [N]$).

Question f):

Express $G_l(s)$ in terms of the variables $G_1(s)$, $G_2(s)$ and the system parameters.

$$G_l(s) = G_1(s) + L_2G_2(s)$$

Question g):

Add the bode diagram for $G_l(s)$ here.

