BLM312 Mikroişlemciler

Microprocessor Architecture - Memory Systems

Outline

- Memory
 - Von Neumann vs. Harvard Architecture
 - Types of Memory
 - Memory Chips
 - Memory Interfacing
- Memory Architecture A closer look
- Memory Architecture for Intel Processor
 - Memory Addressing
 - Registers for Programming Use

Von Neuman & Harvard Architectures

Von Neuman architecture

Alan kullanımı bakımından verimlidir (area efficient), fakat daha yüksek veri yolu bant genişliği gerektirir çünkü komutlar ve veriler, bellek için rekabet etmek zorundadır.

Harvard architecture

Harvard mimarisi, ayrı bellekli makineleri tanımlamak için icat edilmiştir.

Speed efficient: artırılmış verimlilik

Outline

- Memory
 - Von Neumann vs. Harvard Architecture
 - Types of Memory
 - Memory Chips
 - Memory Interfacing
- Memory Architecture A closer look
- Memory Architecture for Intel Processor
 - Memory Addressing
 - Registers for Programming Use
 - Segmented Mode
 - Protected Mode

Types of Memories

- İki temel tür:
 - ROM: Read-only memory
 - RAM: Read-Write memory (a.k.a. random access memory)
- Yaygın olarak kullanılan dört bellek:
 - ROM
 - Flash, EEPROM
 - Static RAM (SRAM)
 - Dynamic RAM (DRAM), SDRAM, RAMBUS, DDR RAM
- Genel bacak(pin) konfigürasyonu:

General Pin Configuration

- Address pins: bellek hücresini seçen giriş uçları. Ao'dan An'ye etiketlenmiştir. Örn. 16k x 1 (16Kbit) ve 2k x 8 (2KByte)
- Output/Input (or Data) Pins: bellekten okuma veya belleğe yazma yapmayı sağlayan uçlar. Oo'dan On'ye etiketlenmiştir.
- Control Pins:
 - Select Pin: bellek cihazını seçen veya etkinleştiren giriş ucu
 - Write Pin: bellek cihazına yazmayı belirten giriş ucu
 - Read Pin: bellek cihazından okumayı belirten giriş pini

Outline

- Memory
 - Von Neumann vs. Harvard Architecture
 - Types of Memory
 - Memory Chips
 - Memory Interfacing
- Memory Architecture A closer look
- Memory Architecture for Intel Processor
 - Memory Addressing
 - Registers for Programming Use

Memory Chips (1)

- Adres pinlerinin sayısı, <u>bellek hücrelerinin sayısı</u> ile ilgilidir.
 - Yaygın boyutlar 1K ila 256M hücredir (ve daha da artmaktadır)
 - Bu nedenle 10 ile 28 arasında adres pini mevcuttur.
- Veri pinlerinin sayısı bellek hücresinin boyutuyla ilgilidir.
 - Örnek: 8 bit genişliğinde (bayt genişliğinde) bir bellek aygıtının 8 veri pini vardır.
 - 1K X 8 bellek katalog olarak, her biri 8-bit genişliğinde 1K tane bellek
 hücresini belirtir. Toplam 8Kbit veya 10 adres pinli 1KByte bellek.
 - Veri pinleri tipik olarak okuma-yazma belleklerinde iki yönlüdür (bidirectional).
- Her bellek aygıtında, bellek aygıtını etkinleştiren en az bir yonga seçme (chip select-CS) veya yonga etkinleştirme (chip enable-CE) veya seçme (select-S) pini bulunur.
 - Bu, okuma ve/veya yazma işlemlerini etkinleştirir.
 - Eğer birden fazla varsa, çipin okuma veya yazma için etkinleştirilmesi için tümü 0 olmalıdır.

Octal Bidirectional Transceiver with 3-State Inputs/Outputs MC74AC245, MC74ACT245

TRUTH TABLES

Inp	uts	Outnuto		
ŌĒ	T/R	Outputs		
	ıΠ	Bus B Data to Bus A Bus A Data to Bus B		
Н	X	High Z State		

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Memory Chips (2)

- Her bellek cihazının en az bir kontrol pini vardır.
 - ROM'lar için, bir çıkış etkinleştirme (output enable-OE) veya geçit (gate-G) pini mevcuttur.
 - OE pini, bir dizi tristate buffer'ı etkinleştirir ve devre dışı bırakır.
 - RAM'ler için, bir okuma-yazma (read-write-R / W) VEYA yazma etkinleştirme (write enable-WE) ve okuma etkinleştirme (read enable-OE) mevcuttur.
 - Çift kontrol pinli cihazlar için (yani, WE ve OE pinlere sahip cihaz), <u>her ikisinin de aynı anda 0 olmama durumu</u> geçerlidir.

Read-Only Memories (ROM) Type

- ROM, programları ve verileri <u>kalıcı olarak (permanently)</u> depolar ve güç kaynağı bağlantısı kesildiğinde veriler değişmez.
 - Güç kesildiğinde durumunu korur
- Genellikle <u>geçici olmayan (non-volatile)</u> bellek olarak adlandırılır ve bilgisayarın dışında programlanır.
- Type:
 - **ROM**: Fabrikada programlanmıştır, değiştirilemez.
 - PROM: Programmable-ROM, yalnızca bir kez programlanabilir.
 - **EPROM**: Erasable-PROM, değiştirilebilir, EPROM programlayıcı kullanılarak programlanabilir ve yüksek yoğunluklu UV ışığına maruz kalırsa silinebilir. Yazılımın sık sık değiştirilmesi gereken uygulamalar için kullanışlıdır.
 - **EEPROM** (Electrically-EPROM) or flash memory: değiştirilebilir, Sistemde elektriksel olarak silinebilir ancak silme için normal RAM'den daha uzun süre gerekir. Uçucu Olmayan RAM (**Non-Volatile RAM**) olarak da bilinir.

EPROMs

Intel 2716 EPROM (2K X 8):

EPROMs Timing Diagram

2716 Timing diagram:

Sample of the data sheet for the 2716 A.C. Characteristics.

Symbol	Parameter	Limits			Unit	Test Condition	
	Tarametti	Min	Typ.	Max	Cinc	Test Condition	
t _{ACC1}	Addr. to Output Delay		250	450		$PD/PGM = CS = V_{IL}$	
t _{OH}	Addr. to Output Hold	0			ns	PD/PGM= CS =V _{IL}	
t _{DF}	Chip Deselect to Output Float	0		100	ns	PD/PGM=V _{IL}	

This EPROM requires a wait state for use with the 8086 (460ns constraint).

Read-Write Memory (RAM) Type

SRAM

- DC güç uygulandığı sürece verileri saklar (statik) .
- Çok hızlıdır ve okuma/yazma belleğinin boyutu nispeten küçük olduğunda kullanılır..
- -mesela önbellek, ASIC.
- -SRAM'lerin boyutu sınırlıdır (up to about 128K X 8).

DRAM

- Verileri yalnızca 2 veya 4 ms korur.
- DRAM içeriği tamamen yeniden yazılmalıdır (yenilenmelidir).
- Üretici, tüm içeriği 2 veya 4 ms aralıklarla yenileyecek şekilde DRAM in dahili yapısını oluşturmuştur.
- DRAM'ler, 64M X 1 gibi çok daha büyük boyutlarda mevcuttur.

SRAMs

TI TMS 4016 SRAM (2K X 8):

Pin(s)	Function
A ₀ -A ₁₀	Address
DQ_0-DQ_7	Data In/Data Out
S (CS)	Chip Select
$\overline{\mathbf{G}}$ $(\overline{\mathbf{OE}})$	Read Enable
W (WE)	Write Enable

- Pin şeması açısından EPROM ile neredeyse aynıdır.
 - Ancak erişim süresi (access time) daha kısadır (250ns).
- Önbellekler (caches) için kullanılan SRAM'lerin erişim süreleri 10 ns'ye kadar düşüktür.

DRAMs

TI TMS4464 DRAM (64K X 4):

Pin(s)	Function			
A ₀ -A ₇	Address			
DQ_0-DQ_3	Data In/Data Out			
RAS	Row Address Strobe			
CAS	Column Address Strobe			
G	Output Enable			
W	Write Enable			

- TMS4464, toplam 256 Kbit veri depolayabilir.
- 64K adreslenebilir konumu vardır, bu da 16 adres girişine ihtiyaç duyduğu anlamına gelir, ancak yalnızca 8 tane vardır.
 - Satır adresi (A0'dan A7'ye) adres pinlerine yerleştirilir ve RAS ucu kullanılarak bir dizi dahili kilit
 (latch) buffer'a yazılır.
 - Sütun adresi (A8'den A15'e) daha sonra CAS kullanılarak diğer dahili kilit buffer'a yazılır.

DRAMs Timing Diagram

TI TMS4464 DRAM (64K X 4) Timing Diagram:

DRAMs (cont.)

Larger DRAMs are available which are organized as 1M X 1, 4M X 1, 16M X 1, 64M X 1, 256M X 1.

DRAMs are typically placed on SIMM (Single In-line Memory Modules) boards.

30-pin SIMMs come in 1M X 8, 1M X 9 (parity), 4M X 8, 4M X 9.

72-pin SIMMs come in 1/2/3/8/16M X 32 or 1M X 36 (parity).

$$V_{SS}$$
 Addr₀₋₁₁ RAS W NC V_{CC} DQ₀₋₃₁ CAS PD₁₋₄

DRAMs (cont.)

- Pentium'lar 64-bit genişliğinde veri yoluna sahiptir.
 - 30 pinli ve 72 pinli SIMM'ler bu sistemlerde kullanılmamaktadır.
 - Bunun yerine 64 bit DIMM'ler (Dual In-line Memory Modules-Çift Sıralı Bellek Modülleri) standarttır.
 - Bunlar belleği 64 bit genişliğinde organize eder.
 - Kartın her iki tarafına monte edilmiş DRAM'ler vardır ve 168 pindir.
 - Boyutlar arasında 2M X 64 (16M), 4M X 64 (32M), 8M X 64 (64M)
 ve 16M X 64 (128M).
 - DIMM modülü, EPROM içeren ve içermeyen DRAM, EDO ve SDRAM (ve NVRAM) olarak mevcuttur.
 - EPROM, PnP (Plug and Play) uygulamaları için bellek cihazının boyutu ve hızı hakkında bilgi sağlar.

Outline

- Memory
 - Von Neumann vs. Harvard Architecture
 - Types of Memory
 - Memory Chips
 - Memory Interfacing
- Memory Architecture A closer look
- Memory Architecture for Intel Processor
 - Memory Addressing
 - Registers for Programming Use

x86 Terminology on Data

Bit	0
Nibble (4-bits)	0000
Byte (8-bits)	0000 0000
Word (16-bits)	0000 0000 0000
Doubleword (32-bits)	0000 0000 0000 0000 0000 0000 0000
Quadwords	???
Octalwords	???

Endianness

2 types:

- Big Endian:
 - Lowest address: MSB
 - Highest address: LSB
- Little Endian:
 - Lowest address: LSB
 - Highest address: MSB

Which one is used by Intel processors?

Inside Memory

Komutlar:

- Move 21H value to A register
- Add the value 42H to A register
- Add the value 12H to the A register

Not:

- BOH, bir değeri A registerine taşır (Op-code)
- 04H, bir değeri A registerine ekler (Op-code)

<u>İşlemci eylemleri:</u>

- PC'yi 1400H'ye ayarlar
- CPU, adres yoluna 1400H koyar ve OE sinyalini etkinleştirir
- CPU, B0H op-code'unu çözer ve işlevi anlar
- Fetch Operands, Execute & Store/Writeback
- Sıradaki komut ile devam eder

Processor-Memory-I/O

Microprocessor

Intel 8086 Processor Pinout

Basic Architecture: Logical Memory Space

Figure 1-10 The memory map used by Windows XP.

Data Representations in Intel Processor

- Little-endian byte ordering in memory
- Unsigned integer, signed (two's complement)

High Quadword

FP, string of bits, bytes, .. etc.

127

- Pointer
 - Near
 - Far (logical)

Outline

- Memory
 - Von Neumann vs. Harvard Architecture
 - Types of Memory
 - Memory Chips
 - Memory Interfacing
- Memory Architecture A closer look
- Memory Architecture for Intel Processor
 - Memory Addressing
 - Registers for Programming Use

Memory Addressing

- Flat-address 2³² byte'tan oluşan tek parça sürekli (continuous) bir adres uzayı
- Segmented-address bir bölüm seçici (segment selector) ve bir ofsetten oluşan mantıksal bir adres.
- 8086 için real-address
 - 64KB lik 16 adet segment
- Linear address space → (paging) physical space

Linear Address

Flat Model

Linear Address

Memory Addressing – Flat Address mode

- Düz adres (flat address) modlu bellek sisteminde bölümleme (segmentation) YOKTUR.
 - Bellekteki bir hücreyi adreslemek için segment registeri kullanmaz
- 40 bit adresli işlemci örneği (1T bayt bellek)
 - İlk hücrenin adresi: 00 0000 0000H;
- Gelecekte Intel, 4 Peta bayt belleğe erişmek için adres genişliğini 52 bit'e çıkarmayı planlıyor.
- Flat mod, yalnızca 64 bit uzantıları etkinleştirilmiş Pentium 4 ve Core2'de mevcuttur.

Memory Addressing – Real-Address Mode

- Tüm real address/segmented mode, bir segment adresi ve bir ofset adresinden oluşmalıdır.
 - segment address: herhangi bir 64K byte bellek
 bölümünün başlangıç adresi.
 - offset address: 64K byt bellek segmenti içindeki herhangi bir lokasyon
- Logical address: Segment adresi (seg_add) ve ofset adresi (off_add) şu şekilde yazılabilir: seg_add: off_add
 - 1000: F000 → 1000H segment adresi; F000H ofseti

Outline

- Memory
 - Von Neumann vs. Harvard Architecture
 - Types of Memory
 - Memory Chips
 - Memory Interfacing
- Memory Architecture A closer look
- Memory Architecture for Intel Processor
 - Memory Addressing
 - Registers for Programming Use

Programmer's model

Basic Program Execution Registers

32-bit General-Purpose Registers

CS][ES
SS		FS
DS		GS
	1 2	_

- EAX accumulator
- ECX loop counter
- ESP stack pointer
- ESI, EDI index registers
- ☐ EBP extended frame pointer

- CS code segment
- DS data segment
- □ SS stack segment
- □ ES, FS, GS additional segments

Accessing Parts of General-Purpose Registers

- Compatibility
 - 8080 (A, B, C, D, H, L)
 - 8086 (AX, BX, CX, DX, SI, DI, SP, BP)
- Use 8-bit name, 16-bit name, or 32-bit name

32-bit	16-bit	8-bit (high)	8-bit (low)			
EAX	AX	AH	AL			
EBX	BX	ВН	BL	8	8	
ECX	CX	CH	CL	AH	AL	O bita L O I
EDX	DX	DH	DL		/\ <u>-</u>	8 bits + 8 b
32-bit	16-bit				AX	16 bits
ESI	SI					TO DIES
EDI	DI	7 _		FAV		
EBP	BP	\neg		EAX		32 bits
ESP	SP					