Corrigé du Levoir 2

Exercice 1

1-

&-

Exercice & Soit $x_1 = (a+b)c+b$, $x_2 = [a+b]e$ et $x_3 = (a+bc)(b+c)$

CL.	Ь	C	x,	The	TC3
0	0	0	0-	0	0 V
0	0	١	0 -	1	OV
0	(0	1,	D /	10 V
0	1	1	1.	0	0
	O	0	0 -	01	10
1	Q	1	1 - /	0	1 ~
1	1	0	1/	0/	₩0°
	1	1	11	O	600

Exercice 3

1. ébé sebelésée aboltoc

2. axbaerast abortoc

2. axbaerast abortoc

4. ef + jh

Exercicely

Exercice 5%

que ((3PD) et LEPOS) out les Or semanque même valeurs pour les memes state Als Frercice 6 abé + abe + abe + abe + abe ab (c+c+c) + ab (c+c) = ab + ab 6 (a + a) = 6 Karnaugh Supportons que F=cébé + abe + abe + abe + abe Soit la table de vérté puisante:

Exercice 7

Exercice 8

Exercice 10 of circuit consespond à la fonction logique 6 = ((a'c) b + cb) £(b(a'c')). (cb) Equation ā = b + b c (a+c) b+ bc = ab+be+bc ab + c(b+b) = ab . c = \$\ab\c ab.c