③ロジスティック回帰_実装演習

In [1]:

```
#from モジュール名 import クラス名(もしくは関数名や変数名)
import pandas as pd
from pandas import DataFrame
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

・タイタニックのデータを使用

In [2]:

titanic data csvファイルの読み込み
titanic_df = pd.read_csv('C:/Users/Kadoya Toshiki/Desktop/2. 機械学習/機械学習_実習演習用コード/s
tudy_ai_ml_google/data/titanic_train.csv')

In [3]:

ファイルの先頭部を表示し、データセットを確認する titanic_df. head (5)

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500

========

0.データ前処理

・不要なデータを削除

In [4]:

#予測に不要と考えるからうをドロップ (本来はここの情報も使うべき) titanic_df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True)

#一部カラムをドロップしたデータを表示

titanic_df.head()

Out[4]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.0	1	0	7.2500	S
1	1	1	female	38.0	1	0	71.2833	С
2	1	3	female	26.0	0	0	7.9250	S
3	1	1	female	35.0	1	0	53.1000	S
4	0	3	male	35.0	0	0	8.0500	S

・nullを含んでいるデータの補完

In [5]:

#nullを含んでいる行を表示

titanic_df[titanic_df.isnull().any(1)].head(10)

Out[5]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
5	0	3	male	NaN	0	0	8.4583	Q
17	1	2	male	NaN	0	0	13.0000	S
19	1	3	female	NaN	0	0	7.2250	С
26	0	3	male	NaN	0	0	7.2250	С
28	1	3	female	NaN	0	0	7.8792	Q
29	0	3	male	NaN	0	0	7.8958	S
31	1	1	female	NaN	1	0	146.5208	С
32	1	3	female	NaN	0	0	7.7500	Q
36	1	3	male	NaN	0	0	7.2292	С
42	0	3	male	NaN	0	0	7.8958	С

In [6]:

#Ageカラムのnullを中央値で補完

titanic_df['AgeFill'] = titanic_df['Age']. fillna(titanic_df['Age']. mean())

#再度nullを含んでいる行を表示 (Ageのnullは補完されている)

titanic_df[titanic_df.isnull().any(1)]

Out[6]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	AgeFill
5	0	3	male	NaN	0	0	8.4583	Q	29.699118
17	1	2	male	NaN	0	0	13.0000	S	29.699118
19	1	3	female	NaN	0	0	7.2250	С	29.699118
26	0	3	male	NaN	0	0	7.2250	С	29.699118
28	1	3	female	NaN	0	0	7.8792	Q	29.699118
859	0	3	male	NaN	0	0	7.2292	С	29.699118
863	0	3	female	NaN	8	2	69.5500	S	29.699118
868	0	3	male	NaN	0	0	9.5000	S	29.699118
878	0	3	male	NaN	0	0	7.8958	S	29.699118
888	0	3	female	NaN	1	2	23.4500	S	29.699118

179 rows × 9 columns

=======

1.ロジスティック回帰(1変数)

・チケット価格(1変数)から乗客の生死を判別する

In [7]:

```
#運賃だけのリストを作成(説明変数)
data1 = titanic_df.loc[:, ["Fare"]].values
```

In [8]:

#生死フラグのみのリストを作成(目的変数)

label1 = titanic_df.loc[:,["Survived"]].values

In [11]:

```
from sklearn.linear_model import LogisticRegression

model=LogisticRegression()

#学習

model.fit(data1, label1)

#予測

model.predict([[61]])

model.predict_proba([[62]])
```

- C:\Users\Kadoya Toshiki\undersanaconda3\unders
- 0: DataConversionWarning: A column-vector y was passed when a 1d array was expecte
- d. Please change the shape of y to (n_samples,), for example using ravel().
 y = column_or_1d(y, warn=True)

Out[11]:

array([[0.49978123, 0.50021877]])

In [12]:

```
print (model.intercept_)
print (model.coef_)
```

[-0. 94131796] [[0. 01519666]]

=======

2.ロジスティック回帰(2変数)

- ・性別を扱えるようにカテゴリ変数をエンコード
- ・新しい特徴量(Pclass Gender)を追加

In [15]:

```
titanic_df['Gender'] = titanic_df['Sex'].map({'female': 0, 'male': 1}).astype(int)
titanic_df['Pclass_Gender'] = titanic_df['Pclass'] + titanic_df['Gender']
titanic_df.head(3)
```

Out[15]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	AgeFill	Gender	Pclas
0	0	3	male	22.0	1	0	7.2500	S	22.0	1	
1	1	1	female	38.0	1	0	71.2833	С	38.0	0	
2	1	3	female	26.0	0	0	7.9250	S	26.0	0	

・使用しない特徴量を削除

In [16]:

```
titanic_df = titanic_df.drop(['Pclass', 'Sex', 'Gender','Age'], axis=1)
titanic_df.head()
```

Out[16]:

	Survived	SibSp	Parch	Fare	Embarked	AgeFill	Pclass_Gender
0	0	1	0	7.2500	S	22.0	4
1	1	1	0	71.2833	С	38.0	1
2	1	0	0	7.9250	S	26.0	3
3	1	1	0	53.1000	S	35.0	1
4	0	0	0	8.0500	S	35.0	4

[・]データを可視化し、関係をみる(AgeFillとPclass_Genderおよび生死)

In [17]:

```
np. random. seed = 0
xmin, xmax = -5, 85
ymin, ymax = 0.5, 4.5
index_survived = titanic_df[titanic_df["Survived"]==0].index
index_notsurvived = titanic_df[titanic_df["Survived"]==1].index
from matplotlib.colors import ListedColormap
fig, ax = plt. subplots()
cm = plt. cm. RdBu
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
sc = ax. scatter(titanic_df.loc[index_survived, 'AgeFill'],
                titanic_df.loc[index_survived, 'Pclass_Gender']+(np.random.rand(len(index_surviv
ed))-0.5*0.1,
                color='r', label='Not Survived', alpha=0.3)
sc = ax. scatter(titanic_df.loc[index_notsurvived, 'AgeFill'],
                titanic_df.loc[index_notsurvived, 'Pclass_Gender']+(np.random.rand(len(index_not
survived) -0.5 *0.1,
                color='b', label='Survived', alpha=0.3)
ax. set_xlabel('AgeFill')
ax. set_ylabel('Pclass_Gender')
ax. set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
ax. legend(bbox_to_anchor=(1.4, 1.03))
```

Out[17]:

<matplotlib.legend.Legend at 0x17448aa1388>

In [18]:

```
#運賃だけのリストを作成
data2 = titanic_df.loc[:, ["AgeFill", "Pclass_Gender"]].values
#生死フラグのみのリストを作成
label2 = titanic_df.loc[:, ["Survived"]].values

model2 = LogisticRegression()

#学習
model2.fit(data2, label2)
#予測
model2.predict([[10, 1]])
model2.predict_proba([[10, 1]])
```

C:\Users\User

Out[18]:

array([[0.03754749, 0.96245251]])

In [19]:

```
h = 0.02
xmin, xmax = -5, 85
ymin, ymax = 0.5, 4.5
xx, yy = np. meshgrid (np. arange (xmin, xmax, h), np. arange (ymin, ymax, h))
Z = model2.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
Z = Z. reshape (xx. shape)
fig, ax = plt.subplots()
levels = np. linspace(0, 1.0)
cm = plt. cm. RdBu
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
\#contour = ax. contourf(xx, yy, Z, cmap=cm, levels=levels, alpha=0.5)
sc = ax. scatter(titanic_df. loc[index_survived, 'AgeFill'],
                titanic_df.loc[index_survived, 'Pclass_Gender']+(np.random.rand(len(index_surviv
ed))-0.5*0.1,
                color='r', label='Not Survived', alpha=0.3)
sc = ax. scatter(titanic_df.loc[index_notsurvived, 'AgeFill'],
                titanic_df.loc[index_notsurvived, 'Pclass_Gender']+(np.random.rand(len(index_not
survived) -0.5 *0.1,
                color='b', label='Survived', alpha=0.3)
ax. set_xlabel('AgeFill')
ax. set_ylabel('Pclass_Gender')
ax. set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
#fig. colorbar (contour)
x1 = xmin
x2 = xmax
y1 = -1*(mode|2. intercept_[0]+mode|2. coef_[0][0]*xmin)/mode|2. coef_[0][1]
y2 = -1*(model2. intercept_[0]+model2. coef_[0][0]*xmax)/model2. coef_[0][1]
ax. plot([x1, x2], [y1, y2], 'k--')
```

Out[19]:

[<matplotlib.lines.Line2D at 0x17448b6ec08>]

.

3.モデル評価

・混同行列と交差検証(クロスバリデーション)

In [20]:

```
from sklearn.model_selection import train_test_split traindata1, testdata1, trainlabel1, testlabel1 = train_test_split(data1, label1, test_size=0.2) traindata1.shape trainlabel1.shape
```

Out[20]:

(712. 1)

In [21]:

```
traindata2, testdata2, trainlabel2, testlabel2 = train_test_split(data2, label2, test_size=0.2) traindata2. shape trainlabel2. shape #本来は同じデータセットを分割しなければいけない。(簡易的に別々に分割している。)
```

Out [21]:

(712. 1)

In [22]:

```
data = titanic_df.loc[:, ].values
label = titanic_df.loc[:, ["Survived"]].values
traindata, testdata, trainlabel, testlabel = train_test_split(data, label, test_size=0.2)
traindata.shape
trainlabel.shape
```

Out [22]:

(712. 1)

In [23]:

```
eval_model1=LogisticRegression()
eval_model2=LogisticRegression()
#eval_model=LogisticRegression()

predictor_eval1=eval_model1.fit(traindata1, trainlabel1).predict(testdata1)
predictor_eval2=eval_model2.fit(traindata2, trainlabel2).predict(testdata2)
#predictor_eval=eval_model.fit(traindata, trainlabel).predict(testdata)
```

- C:¥Users¥Kadoya Toshiki¥anaconda3¥lib¥site-packages¥sklearn¥utils¥validation.py:76
- O: DataConversionWarning: A column-vector y was passed when a 1d array was expecte
- d. Please change the shape of y to $(n_samples,)$, for example using ravel(). y = column or 1d(y, warn=True)
- C:\Users\Kadoya Toshiki\undersanaconda3\undersite-packages\undersklearn\undersutils\undersanaconda3\undersite-packages\undersklearn\undersutils\undersanaconda3\undersite-packages\undersanaconda3\undersanaco
- O: DataConversionWarning: A column-vector y was passed when a 1d array was expecte
- d. Please change the shape of y to (n_samples,), for example using ravel().

 $y = column_or_1d(y, warn=True)$

In [25]:

```
eval_model1.score(traindata1, trainlabel1)
```

Out[25]:

0.6629213483146067

In [26]:

```
eval_model1. score(testdata1, testlabel1)
```

Out[26]:

0.664804469273743

In [27]:

```
eval_model2.score(traindata2, trainlabel2)
```

Out [27]:

0.7808988764044944

In [28]:

```
eval_model2. score(testdata2, testlabel2)
```

Out[28]:

0.7430167597765364

In [29]:

```
from sklearn import metrics
print(metrics.classification_report(testlabel1, predictor_eval1))
print(metrics.classification_report(testlabel2, predictor_eval2))
```

	precision	recall	f1-score	support
0	0. 67	0. 92	0. 77	112
1	0. 64	0. 24	0. 35	67
accuracy			0.66	179
macro avg	0. 65	0. 58	0. 56	179
weighted avg	0. 66	0. 66	0. 61	179
	precision	recall	f1-score	support
0	precision 0.73	recall 0.89	f1-score 0.80	support 104
0				
•	0. 73	0. 89	0.80	104
1	0. 73	0. 89	0. 80 0. 63	104 75

混同行列

- ・正解率
- ・適合率
- ・再現率
- F値

In [30]:

```
from sklearn.metrics import confusion_matrix confusion_matrix1=confusion_matrix(testlabel1, predictor_eval1) confusion_matrix2=confusion_matrix(testlabel2, predictor_eval2)
```

In [31]:

```
confusion_matrix1
```

Out[31]:

```
array([[103, 9], [51, 16]], dtype=int64)
```

In [33]:

```
fig = plt. figure(figsize = (7, 7))
#plt. title(title)
sns. heatmap (
    confusion_matrix1,
    vmin=None,
    vmax=None,
    cmap="Blues".
    center=None,
    robust=False,
    annot=True, fmt='.2g',
    annot_kws=None,
    linewidths=0,
    linecolor='white',
    cbar=True,
    cbar_kws=None,
    cbar_ax=None,
    square=True, ax=None,
    #xticklabels=columns,
    #yticklabels=columns,
    mask=None)
```

Out[33]:

<matplotlib.axes._subplots.AxesSubplot at 0x174499c1a88>

In [32]:

```
confusion_matrix2
```

Out[32]:

```
array([[93, 11], [35, 40]], dtype=int64)
```

In [34]:

```
fig = plt. figure(figsize = (7,7))
#plt. title(title)
sns. heatmap (
    confusion_matrix2,
    vmin=None,
    vmax=None,
    cmap="Blues",
    center=None,
    robust=False,
    annot=True, fmt='.2g',
    annot_kws=None,
    linewidths=0,
    linecolor='white',
    cbar=True,
    cbar_kws=None,
    cbar_ax=None,
    square=True, ax=None,
    #xticklabels=columns,
    #yticklabels=columns,
    mask=None)
```

Out[34]:

<matplotlib.axes._subplots.AxesSubplot at 0x17449a4c4c8>

========

・学習の前に、データを確認。・データの前処理を実施。不要なデータの削除や欠損値の補完。・データを視覚化し、関係性を把握。・ロジスティック回帰(特徴量:1 or 2つの場合を実施。)・モデル評価 →混同行列で評価。どの指標を重視するかは、目的に合わせて変化。目的別に最適な指標を選択。・交差検証→訓練データ、テストデータの分割の組み合わせを複数パターンで実施。学習するデータの偏りによる影響を取り除く。

I to I	
111 1	
A 1 1	а.