

Prof. Dr. Peter Thiemann Manuel Geffken 26.10.2015 bis 28.10.2015

Präsenzübungen für das erste Tutorat der Vorlesung Theoretische Informatik

Aufgabe 1: Wörter und Sprachen

Sei Σ ein beliebiges Alphabet, seien $u,v,w\in\Sigma^*$ Wörter über Σ und seien $L,L'\subseteq\Sigma^*$ Sprachen, welche aus endlich vielen Wörtern bestehen (d.h. $|L|\in\mathbb{N}$ und $|L'|\in\mathbb{N}$). Beweisen oder widerlegen Sie folgende Aussagen:

- (a) $|v \cdot w| = |v| + |w|$
- (b) Die Konkatenation von Wörtern \cdot ist assoziativ mit dem Neutralelement $\varepsilon.$ D.h es gilt
 - $u \cdot (v \cdot w) = (u \cdot v) \cdot w$
 - $\bullet \ \varepsilon \cdot w = w \cdot \varepsilon$
- (c) $|L \cdot L'| = |L| \cdot |L'|$
- (d) Für alle $n \in \mathbb{N}$ gilt: $L \cdot L^n = L^n \cdot L$ Sie dürfen dabei ausnutzen, dass die Konkatenation von Sprachen assoziativ ist (d.h. für Sprachen $L_1, L_2, L_3 \subseteq \Sigma^*$ gilt $(L_1 \cdot L_2) \cdot L_3 = L_1 \cdot (L_2 \cdot L_3)$).

Zur Erinnerung:

Die Konkatenation $L_1 \cdot L_2$ der Sprachen L_1 und L_2 ist definiert als:

$$L_1 \cdot L_2 = \{ u \cdot v \mid u \in L_1 \text{ und } v \in L_2 \}$$

Die n-te Potenz einer Sprache L ist induktiv definiert durch:

$$L^0 = \{\varepsilon\}$$
 und $L^{n+1} = L \cdot L^n$

Aufgabe 2: Sprachen

Sei Σ ein Alphabet und seien $U, V, W \subseteq \Sigma^*$ Sprachen. Beweisen Sie folgende Aussagen.

- (a) Assoziativität: $U \cdot (V \cdot W) = (U \cdot V) \cdot W$.
- (b) Distributivität: $U \cdot (V \cup W) = (U \cdot V) \cup (U \cdot W)$

Aufgabe 3: Extreme Sprachen

Sei $\bar{\Sigma}$ ein Alphabet.

Vereinfache die gegebenen Ausdrücke und beweise die Korrektheit der Vereinfachung.

- (a) $\{\varepsilon\}^*$
- (b) ∅*
- (c) $(\Sigma^*)^*$