A FIRST COURSE

IN

NUMERICAL ANALYSIS

A FIRST COURSE

IN

NUMERICAL ANALYSIS

MAT4001 Notebook

Prof. Yutian Li

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	vii
Notat	ions	ix
1	Week1	1
1.1	Tuesday	1
1.1.1	News Vendor Problems	1
2	Week2	3
2.1	Tuesday	3
2.1.1	Review	3
2.1.2	Special matrix multiplication case	5
2.1.3	Inverse	8

Acknowledgments

This book is from the MAT4001 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

Chapter 1

Week1

1.1. Tuesday

The Markov Chains course mainly focus on the performance analysis for which the Markov decision is made.

1.1.1. News Vendor Problems

A store sells perishable iterms (newpapers) with:

- Selling price $c_p = 1$
- Variable cost $c_v = 0.25$
- Salvage value $c_s = 0$

The aim is to decide how many copies should be ordered. Before making the decision, we need to estimate the demand.

Suppose the demand *D* has the following distribution:

$$d$$
 10 15 20 25 30 \mathbb{P} 1/4 1/8 1/8 1/4 1/4

Hence, the profit for the day i is given by:

profit per day =
$$min(q, D_i)c_p - qc_v$$
,

with *q* being the number of copies ordered.

More generally, for $c_s \neq 0$, the profit for the day i is

profit per day =
$$\min(q, D_i)c_p - qc_v + \max(q - D_i, 0)c_s$$
,

Hence, our objective is to maximize the expected profit for a day

$$h(q) = \mathbb{E}_D \operatorname{Profit}(q, D)$$

$$= c_p \mathbb{E}_D \min(q, D) - c_v q + c_s \mathbb{E}_D \max(q - D, 0)$$
(1.1)

Chapter 2

Week2

2.1. Tuesday