

# QJxx16xHx Series





#### **Main Features**

| Symbol               | Value      | Unit |
|----------------------|------------|------|
| I <sub>T(RMS)</sub>  | 16         | А    |
| $V_{DRM}/V_{RRM}$    | 400 or 600 | V    |
| I <sub>GT (Q1)</sub> | 10 to 80   | mA   |

#### **Description**

This 16A high temperature Alternistor TRIAC, offered in TO-220AB, TO-220 isolated and TO-263 package, has 150°C maximum junction temperature and 200A I<sub>TSM</sub>(60Hz). This series enables easier thermal management and higher surge handling capability in AC power control applications such as heater control, motor speed control, lighting controls, and static switching relays. Alternistor TRIAC operates in quadrants I, II, & III and offers high performance in applications requiring high commutation capability.

#### **Features & Benefits**

- High T, of 150°C
- Voltage capability up to 600V
- Surge capability of 200A at 60Hz half cycle
- Mechanically and thermally robust TO-220 and TO-218 clip-attach assembly
- Internally-isolated TO-220 and TO-218 packages
- Halogen free and RoHS compliant

# **Schematic Symbol**



#### **Applications**

TRIAC is an excellent AC switch in applications such as heating, lighting, and motor speed controls.

Typical applications are

- Heater control such as coffee brewer, tankless water heater and infrared heater
- AC solid-state relays
- Light dimmers including incandescent and LED lighting
- Motor speed control in kitchen appliances, power tools, home/brow/white goods and light industrial applications as compressor motor control

Alternistor TRIAC is used with high inductive loads requiring the high commutation capability. Internally isolated packages offer better heat sinking with higher isolation voltage.

# **Thyristors**16 Amp High Temperature Alternistor Triacs

### Absolute Maximum Ratings — Alternistor Triac (3 Quadrants)

| Symbol                    | Paramete                                           | Value                                                                | Unit                    |                       |      |
|---------------------------|----------------------------------------------------|----------------------------------------------------------------------|-------------------------|-----------------------|------|
|                           |                                                    | QJxx16LHy                                                            | T <sub>c</sub> = 115 °C |                       |      |
| I <sub>T(RMS)</sub>       | RMS on-state current (full sine wave)              | QJxx16RHy<br>QJxx16NHy                                               | T <sub>C</sub> = 130 °C | 16                    | А    |
|                           | Non repetitive surge peak on-state current         | f = 50Hz                                                             | t = 20 ms               | 167                   | Α    |
| TSM                       | (Single half cycle, T <sub>J</sub> initial = 25°C) | f = 60Hz                                                             | t = 16.7 ms             | 200                   | A    |
| l²t                       | I²t Value for fusing                               | 166                                                                  | A²s                     |                       |      |
| di/dt                     | Critical rate of rise of on-state current          | f = 60Hz                                                             | T <sub>J</sub> = 125 °C | 100                   | A/µs |
| I <sub>GTM</sub>          | Peak gate trigger current                          | Peak gate trigger current $t_{gt} \le 10\mu s;$ $t_{gt} \le t_{gtM}$ |                         |                       | А    |
| P <sub>G(AV)</sub>        | Average gate power dissipation                     | 0.5                                                                  | W                       |                       |      |
| T <sub>stg</sub>          | Storage temperature range                          | -40 to 150                                                           | °C                      |                       |      |
| $T_{J}$                   | Operating junction temperature range               | -40 to 150                                                           | °C                      |                       |      |
| $V_{\rm DSM}/V_{\rm RSM}$ | Peak non-repetitive blocking voltage               | Pw=10                                                                | 00 µs                   | $V_{DRM}/V_{RRM}+100$ | V    |

xx = voltage/10, y = sensitivity

# Electrical Characteristics (T<sub>J</sub> = 25°C, unless otherwise specified) — Alternistor Triac (3 Quadrants)

| Symbol          | Test Conditions                                                                                   | Quadrant     |      | QJxx16xH2 | QJx16xH3 | QJx16xH4 | QJx16xH6 | Unit |
|-----------------|---------------------------------------------------------------------------------------------------|--------------|------|-----------|----------|----------|----------|------|
| I <sub>GT</sub> | V 19V B 600                                                                                       | 1 – 11 – 111 | MAX. | 10        | 20       | 35       | 80       | mA   |
| $V_{\rm GT}$    | $V_D = 12V R_L = 60\Omega$                                                                        | 1 – 11 – 111 | MAX. |           | 1.       | 3        |          | V    |
| V <sub>GD</sub> | $V_D = V_{DRM} R_L = 3.3 k\Omega T_J = 150$ °C                                                    | 1 – 11 – 111 | MIN. | 0.15      |          |          | V        |      |
| I <sub>H</sub>  | $I_{T} = 100 \text{mA}$                                                                           |              | MAX. | 15        | 35       | 50       | 70       | mA   |
| dv/dt           | $V_D = V_{DRM}$ Gate Open $T_J = 150$ °C 600V                                                     |              | MIN. | -         | 250      | 350      | 850      | V/µs |
| uv/ut           | $V_D = 2/3 V_{DRM}$ Gate Open $T_J = 150$ °C 600V                                                 |              | MIN. | 50        | 300      | 400      | 925      | ν/μ5 |
| (dv/dt)c        | $(di/dt)c = 8.6 \text{ A/ms T}_J = 150^{\circ}\text{C}$                                           |              | MIN. | 2         | 20       | 25       | 30       | V/µs |
| t <sub>gt</sub> | $I_{_{\mathrm{G}}} = 2 \times I_{_{\mathrm{GT}}}$ PW = 15 $\mu$ s $I_{_{\mathrm{T}}} = 22.6$ A(pk | )            | TYP. | 3         | 3        | 3        | 5        | μs   |

#### **Static Characteristics**

| Symbol Test Conditions              |                           |                                      |       |   | Unit |
|-------------------------------------|---------------------------|--------------------------------------|-------|---|------|
| V <sub>TM</sub>                     | $I_{T} = 22.6A t_{p} = 3$ | $I_{T} = 22.6A t_{p} = 380 \mu s$ MA |       |   | V    |
| 1 /1                                | @V /V                     | T <sub>J</sub> = 25°C                | MAX   | 5 | μΑ   |
| I <sub>DRM</sub> / I <sub>RRM</sub> | $@V_{DRM}/V_{RRM}$        | T <sub>J</sub> = 150°C               | IVIAX | 4 | mA   |

#### **Thermal Resistances**

| Symbol            | Parameter             | Value                  | Unit |      |  |
|-------------------|-----------------------|------------------------|------|------|--|
| R                 | Junction to case (AC) | QJxx16RHy<br>QJxx16NHy | 0.90 | °C/W |  |
| $R_{\theta(J-C)}$ | Current to case (10)  | QJxx16LHy              | 1.8  | G/VV |  |
| R                 | Junction to ambient   | QJxx16RHy<br>QJxx16NHy | 45   | °C/W |  |
| $R_{\theta(J-A)}$ | oundion to unibiont   | QJxx16LHy              | 50   |      |  |

xx = voltage/10; y = sensitivity



**Figure 1: Definition of Quadrants** 



Note: Alternistors will not operate in QIV

Figure 3: Normalized DC Holding Current vs. Junction Temperature



Figure 5: Power Dissipation (Typical) vs. RMS On-State Current



Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature



Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature



Figure 6: On-State Current vs. On-State Voltage (Typical)





Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current



Figure 9: Surge Peak On-State Current vs. Number of Cycles



Supply Frequency: 60Hz Sinusoidal

Load: Resistive

RMS On-State [ $I_{T(RMS)}$ ]: Max Rated Value at Specific Case Temperature

#### Notes:

- Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

# **Soldering Parameters**

| Reflow Co                             | ndition                                        | Pb – Free assembly      |  |
|---------------------------------------|------------------------------------------------|-------------------------|--|
|                                       | -Temperature Min (T <sub>s(min)</sub> )        | 150°C                   |  |
| Pre Heat                              | -Temperature Max (T <sub>s(max)</sub> )        | 200°C                   |  |
|                                       | -Time (min to max) (t <sub>s</sub> )           | 60 – 180 secs           |  |
| Average ra                            | amp up rate (LiquidusTemp)<br>k                | 5°C/second max          |  |
| T <sub>S(max)</sub> to T <sub>L</sub> | - Ramp-up Rate                                 | 5°C/second max          |  |
| Reflow                                | -Temperature (T <sub>L</sub> ) (Liquidus)      | 217°C                   |  |
| nellow                                | -Time (t <sub>L</sub> )                        | 60 – 150 seconds        |  |
| PeakTemp                              | erature (T <sub>P</sub> )                      | 260 <sup>+0/-5</sup> °C |  |
| Time with<br>Temperatu                | in 5°C of actual peak<br>ure (t <sub>p</sub> ) | 20 – 40 seconds         |  |
| Ramp-dov                              | vn Rate                                        | 5°C/second max          |  |
| Time 25°C                             | to peakTemperature (T <sub>P</sub> )           | 8 minutes Max.          |  |
| Do not exc                            | ceed                                           | 280°C                   |  |



# **Thyristors**16 Amp High Temperature Alternistor Triacs

#### **Physical Specifications**

| Terminal Finish 100% Matte Tin-plated |                                                     |  |
|---------------------------------------|-----------------------------------------------------|--|
| Body Material                         | UL Recognized epoxy meeting flammability rating V-0 |  |
| Terminal Material                     | Copper Alloy                                        |  |

#### **Design Considerations**

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

#### **Environmental Specifications**

| Test                          | Specifications and Conditions                                                 |  |  |
|-------------------------------|-------------------------------------------------------------------------------|--|--|
| AC Blocking                   | MIL-STD-750, M-1040, Cond A Applied<br>Peak AC voltage @ 150°C for 1008 hours |  |  |
| Temperature Cycling           | MIL-STD-750, M-1051,<br>100 cycles; -40°C to +150°C; 15-min<br>dwell time     |  |  |
| Temperature/<br>Humidity      | EIA / JEDEC, JESD22-A101<br>1008 hours; 160V - DC: 85°C; 85%<br>rel humidity  |  |  |
| High Temp Storage             | MIL-STD-750, M-1031,<br>1008 hours; 150°C                                     |  |  |
| Low-Temp Storage              | 1008 hours; -40°C                                                             |  |  |
| Resistance to Solder Heat     | MIL-STD-750 Method 2031                                                       |  |  |
| Solderability                 | ANSI/J-STD-002, category 3, Test A                                            |  |  |
| Lead Bend                     | MIL-STD-750, M-2036 Cond E                                                    |  |  |
| Moisture Sensitivity<br>Level | Level 1, JEDEC-J-STD-020                                                      |  |  |

#### Dimensions — TO-220AB (R-Package) — Non-Isolated Mounting Tab Common with Center Lead



| Dimension | Incl  | nes   | Millimeters |       |  |
|-----------|-------|-------|-------------|-------|--|
| Dimension | Min   | Max   | Min         | Max   |  |
| А         | 0.380 | 0.420 | 9.65        | 10.67 |  |
| В         | 0.105 | 0.115 | 2.66        | 2.92  |  |
| С         | 0.230 | 0.250 | 5.84        | 6.35  |  |
| D         | 0.590 | 0.620 | 14.99       | 15.75 |  |
| Е         | 0.142 | 0.147 | 3.61        | 3.73  |  |
| F         | 0.110 | 0.130 | 2.79        | 3.30  |  |
| G         | 0.540 | 0.575 | 13.72       | 14.61 |  |
| Н         | 0.025 | 0.035 | 0.64        | 0.89  |  |
| J         | 0.195 | 0.205 | 4.95        | 5.21  |  |
| K         | 0.095 | 0.105 | 2.41        | 2.67  |  |
| L         | 0.060 | 0.075 | 1.52        | 1.91  |  |
| М         | 0.085 | 0.095 | 2.16        | 2.41  |  |
| N         | 0.018 | 0.024 | 0.46        | 0.61  |  |
| 0         | 0.178 | 0.188 | 4.52        | 4.78  |  |
| Р         | 0.045 | 0.060 | 1.14        | 1.52  |  |
| R         | 0.038 | 0.048 | 0.97        | 1.22  |  |



### Dimensions — TO-220AB (L-Package) — Isolated Mounting Tab



| Dimension | Inc   | hes   | Millin | neters |
|-----------|-------|-------|--------|--------|
| Dimension | Min   | Max   | Min    | Max    |
| А         | 0.380 | 0.420 | 9.65   | 10.67  |
| В         | 0.105 | 0.115 | 2.67   | 2.92   |
| С         | 0.230 | 0.250 | 5.84   | 6.35   |
| D         | 0.590 | 0.620 | 14.99  | 15.75  |
| Е         | 0.142 | 0.147 | 3.61   | 3.73   |
| F         | 0.110 | 0.130 | 2.79   | 3.30   |
| G         | 0.540 | 0.575 | 13.72  | 14.60  |
| Н         | 0.025 | 0.035 | 0.64   | 0.89   |
| J         | 0.195 | 0.205 | 4.95   | 5.21   |
| K         | 0.095 | 0.105 | 2.41   | 2.67   |
| L         | 0.060 | 0.075 | 1.52   | 1.91   |
| М         | 0.085 | 0.095 | 2.16   | 2.41   |
| N         | 0.018 | 0.024 | 0.46   | 0.61   |
| 0         | 0.178 | 0.188 | 4.52   | 4.78   |
| Р         | 0.045 | 0.060 | 1.14   | 1.52   |
| R         | 0.038 | 0.048 | 0.97   | 1.22   |

### Dimensions — TO-263AB (N-Package) — D<sup>2</sup>Pak Surface Mount



| Dimension | Incl  | nes   | Millimeters |       |  |
|-----------|-------|-------|-------------|-------|--|
| Dimension | Min   | Max   | Min         | Max   |  |
| А         | 0.360 | 0.370 | 9.14        | 9.40  |  |
| В         | 0.380 | 0.420 | 9.65        | 10.67 |  |
| С         | 0.178 | 0.188 | 4.52        | 4.78  |  |
| D         | 0.025 | 0.035 | 0.64        | 0.89  |  |
| Е         | 0.045 | 0.060 | 1.14        | 1.52  |  |
| F         | 0.060 | 0.075 | 1.52        | 1.91  |  |
| G         | 0.095 | 0.105 | 2.41        | 2.67  |  |
| Н         | 0.092 | 0.102 | 2.34        | 2.59  |  |
| J         | 0.018 | 0.024 | 0.46        | 0.61  |  |
| K         | 0.090 | 0.110 | 2.29        | 2.79  |  |
| S         | 0.590 | 0.625 | 14.99       | 15.88 |  |
| V         | 0.035 | 0.045 | 0.89        | 1.14  |  |
| U         | 0.002 | 0.010 | 0.05        | 0.25  |  |
| W         | 0.040 | 0.070 | 1.02        | 1.78  |  |

# **Thyristors**16 Amp High Temperature Alternistor Triacs

#### **Product Selector**

| David November | Vol  | tage | Gate Sensitivity Quadrants | T                 | Deales as     |
|----------------|------|------|----------------------------|-------------------|---------------|
| Part Number    | 400V | 600V | I – II – III               | Type              | Package       |
| QJxx16LH2      | X    | X    | 10 mA                      | Alternistor Triac | TO-220L       |
| QJxx16RH2      | X    | X    | 10 mA                      | Alternistor Triac | TO-220R       |
| QJxx16NH2      | X    | X    | 10 mA                      | Alternistor Triac | TO-263 D²-PAK |
| QJxx16LH3      | X    | X    | 20 mA                      | Alternistor Triac | TO-220L       |
| QJxx16RH3      | Х    | Х    | 20 mA                      | Alternistor Triac | TO-220R       |
| QJxx16NH3      | Х    | Х    | 20 mA                      | Alternistor Triac | TO-263 D²-PAK |
| QJxx16LH4      | X    | X    | 35 mA                      | Alternistor Triac | TO-220L       |
| QJxx16RH4      | X    | X    | 35 mA                      | Alternistor Triac | TO-220R       |
| QJxx16NH4      | X    | X    | 35 mA                      | Alternistor Triac | TO-263 D²-PAK |
| QJxx16LH6      | Х    | Х    | 80 mA                      | Alternistor Triac | TO-220L       |
| QJxx16RH6      | X    | X    | 80 mA                      | Alternistor Triac | TO-220R       |
| QJxx16NH6      | Х    | Х    | 80 mA                      | Alternistor Triac | TO-263 D²-PAK |

#### **Packing Options**

| Part Number   | Marking     | Weight | Packing Mode     | Base Quantity     |
|---------------|-------------|--------|------------------|-------------------|
| QJxx16L/RHyTP | QJxx16L/RHy | 2.2 g  | Tube Pack        | 500 (50 per tube) |
| QJxx16NHyTP   | QJxx16NHy   | 1.6 g  | Tube Pack        | 500 (50 per tube) |
| QJxx16NHyRP   | QJxx16NHy   | 1.6 g  | Embossed Carrier | 500               |

xx = voltage/10; y = Sensitivity

#### **Part Numbering System**



#### **Part Marking System**

TO-220 AB - (L and R Package) TO-263 AB - (N Package)



Date Code Marking Y:Year Code M: Month Code XXX: LotTrace Code



#### **TO-263 Embossed Carrier Reel Pack (RP)**

#### Meets all EIA-481-2 Standards



Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at <a href="https://www.littelfuse.com/disclaimier-electronics">www.littelfuse.com/disclaimier-electronics</a>.

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

# Littelfuse:

 QJ6016NH4RP
 QJ4016LH6TP
 QJ6016LH2TP
 QJ6016LH6TP
 QJ6016NH2RP
 QJ4016RH4TP
 QJ4016RH3TP

 QJ4016NH3RP
 QJ4016LH3TP
 QJ6016RH2TP
 QJ4016NH2RP
 QJ6016RH6TP
 QJ6016RH3TP
 QJ4016NH4RP
 QJ6016RH4TP
 QJ6016LH3TP

 QJ4016RH6TP
 QJ6016NH6RP
 QJ4016LH4TP
 QJ6016NH3RP
 QJ4016NH4RP
 QJ6016RH4TP
 QJ6016LH3TP