CÉSAR D. SALVADOR

MODELOS DE PROPAGACIÓN ACÚSTICA Y AUDICIÓN BINAURAL

PERCEPCIÓN DEL ESPACIO ACÚSTICO

EVENTO EN EL ESPACIO

INFORMACIÓN ACÚSTICA Y AUDICIÓN ESPACIAL

ENTORNO

Entorno Oyente Head-related Room impulse impulse **Tiempo** response response (RIR) (HRIR) Head-related Room transfer transfer **Frecuencia** function function (RTF) (HRTF)

ENTORNO: ROOM IMPULSE RESPONSE (RIR)

ENTORNO

ENTORNO: ROOM IMPULSE RESPONSE (RIR)

ENTORNO: ROOM IMPULSE RESPONSE (RIR)

ENTORNO: ROOM IMPULSE RESPONSE & ROOM TRANSFER FUNCTION

R. Badeau, "Unified stochastic reverberation model," in Proc. 26th European Signal Process. Conf., Rome, Italy, 2018.

ENTORNO: SPATIAL ROOM IMPULSE RESPONSE

ENTORNO

SIMULADOR RÁPIDO DE PROPAGACIÓN ACÚSTICA

HTTPS://GITHUB.COM/JINNSJJ/ARD-SIMULATOR

J. Shi, Universidad de Tohoku

BASADO EN DESCOMPOSICIÓN ADAPTATIVA RECTANGULAR

[1] J. Shi, C. D. Salvador, J. Treviño, S. Sakamoto, and Y. Suzuki, "Spherical harmonic representation of rectangular domain sound fields," in *Int. Symp. Universal Acoustical Communication*, Sendai, Japan, Oct. 2018. [http://www.tfc.tohoku.ac.jp/event/4212.html] [2] N. Raghuvanshi, R. Narain, and M. C. Lin, "Efficient and Accurate Sound Propagation Using Adaptive Rectangular Decomposition," IEEE Trans. Vis. Comput. Graphics, vol. 15, no. 5, pp. 789-801, Sep. 2009.

PROPAGACIÓN ACÚSTICA EN EL TIEMPO Y EL ESPACIO

APLICACIONES PARA MODELAR EL ENTORNO

- Unity
- Google Resonance Audio

OYENTE: HEAD-RELATED IMPULSE RESPONSE (HRIR)

HEAD-RELATED TRANSFER FUCTION (HRTF)

MEDICIÓN DIRECTA

Laboratorio de Acústica de la Universidad de Tohoku

MEDICIÓN POR RECIPROCIDAD

Laboratorio Hirahara-Morikawa de la Universidad Prefectural de Toyama

HEAD-RELATED TRANSFER FUNCTION (HRTF)

R: distance from the center of the head

 $R = 15, 20, \dots, 100 \text{ cm}.$

IID: Interaural intensity difference

HRTFs calculated using the boundary element method (BEM) (Otani and Ise, 2006)

OYENTE: HEAD-RELATED TRANSFER FUNCTION (HRTF)

C. D. Salvador, S. Sakamoto, J. Treviño, and Y. Suzuki, "Distance-varying filters to synthesize head-related transfer functions in the horizontal plane from circular boundary values," Acoust. Sci. Technol., vol. 38, no. 1, pp. 1-13, Jan. 2017.

MODELOS GENÉRICOS E INDIVIDUALES

Genéricos

Individuales

C. D. Salvador, S. Sakamoto, J. Treviño, and Y. Suzuki, "Dataset of near-distance head-related transfer functions calculated using the boundary element method," in Proc. Audio Eng. Soc. Int. Conf. Spatial Reproduction —Aesthetics and Science—, Tokyo, Japan, 2018.

MODELOS GENÉRICOS E INDIVIDUALES

25

Distance (cm)

12.5

12.5

25

Distance (cm)

100

Interaural HRTFs for a distribution of sources along distances at $\theta = 100^{\circ}$ and $\phi = 20^{\circ}$.

25

Distance (cm)

50

100

12.5

25

Distance (cm)

50

100

12.5

100

Individual distance cues

SISTEMAS DE COORDENADAS PARA POSICIONES DE FUENTES

Vertical-polar, spherical coordinates

r: radial distance

 θ : azimuthal angle $\in [-\pi, \pi]$

 ϕ : elevation angle $\in [-\frac{\pi}{2}, \frac{\pi}{2}]$

Interaural-polar, spherical coordinates

r: radial distance

 α : polar angle $\in [-\pi, \pi]$

 β : lateral angle $\in [-\frac{\pi}{2}, \frac{\pi}{2}]$

APLICACIONES PARA MODELAR LA ANATOMÍA EXTERNA DEL OYENTE

- Spatially-oriented format for acoustics (SOFA)
- MESH2HRTF

BINAURAL ROOM TRANSFER FUNCTION (BRTF)

= HEAD-RELATED TRANSFER FUNCTION (HRTF) * ROOM TRANSFER FUNCTIONS (RTF)

ENTORNO

REPRESENTACIÓN DEL ESPACIO A PARTIR DE LA PRESIÓN ACÚSTICA EN LOS TÍMPANOS

RETINOTOPÍA

TONOTOPÍA

TONOTOPÍA

https://www.medel.com/

THE AUDITORY MODELING TOOLBOX

http://amtoolbox.sourceforge.net/

GRACIAS POR SU ATENCIÓN

César D. Salvador cesardsalvador.github.io