לוגיקה למדעי המחשב – שיעור 3 תורת ההוכחה, שלמות ונאותות

ס54-4511925 דוד קסלר

חזרה קצרה על השיעור הקודם

מודל / פירוש בלוגיקה פסוקית

- פירוש / מודל בשפה פונ' M מקב' הפסוקים האלמנטריים לערכי אמת $\{T,F\}$
- $M \vDash P$ או M(P) = T נסמן T נסמן P או P או Φ
- $M
 ot\models P$ או M(P) = F נסמן F נסמן F אם ערך האמת של P במודל Φ
 - נגדיר את ערך האמת של פסוקים מורכבים באינדוקציה מבנית:

$$M(\psi) = F$$
 אם"ם $M(\varphi) = T$ אזי $\phi = \neg \psi$ אם ϕ

T אם"ם שני הפסוקים מקבלים ערך $M \vDash \varphi = (\psi \land \theta)$ אם

T אם"ם אחד מהפסוקים לפחות מקבל ערך $M \vDash \varphi = (\psi \lor \theta)$ אם אחד מהפסוקים אחד מקבל אחד א

F אם"ם heta מקבל ערך $M \vDash arphi = (\psi
ightarrow heta)$ אם מקבל ערך או או

אם"ם לשני הפסוקים אותו ערך אמת $M \vDash \varphi = (\psi \leftrightarrow \theta)$ אם סאם

אמת לוגית ושקילות לוגית

- שאוטולוגיה: אמת לוגית, פסוק שעבור כל מודל M מקבל שאוטולוגיה: אמת לוגית בכל מודל. נסמן $\varphi \models \varphi$ אחרת נסמן $M \models \varphi$
 - <mark>סתירה לוגית</mark>: פסוק שקרי בכל מודל
 - סתירה $-\varphi$ טאוטולוגיה אם"ם φ •
- פסוקים שקולים לוגית φ : ϕ ו- ψ שקולים לוגית אם הם נכונים בדיוק $\varphi = \phi \leftrightarrow \psi$ אם"ם $\varphi \equiv \psi$
 - פסוק ספיק: פסוק ϕ נקרא ספיק אם הוא אינו סתירה, יש מודל המספק אותו

צורה נורמלית

- $\varphi_1 \wedge \varphi_2 \wedge \cdots \wedge \varphi_n$: קוניונקציה מרובה $M \vDash \varphi_1 \wedge \varphi_2 \wedge \cdots \wedge \varphi_n \iff \forall i \ M \vDash \varphi_i \circ$
- $\varphi_1 \lor \varphi_2 \lor \cdots \lor \varphi_n$:דיסיונקציה מרובה $M \vDash \varphi_1 \lor \varphi_2 \lor \cdots \lor \varphi_n \Leftrightarrow \exists i \ M \vDash \varphi_i \circ$
 - $\neg P$, P : פסוק בסיסי
 - $P_1 \wedge \neg P_2 \wedge \cdots \wedge P_n$: קוניונקציה פשוטה
- $(P_1 \land \neg P_2) \lor (P_1 \land P_2 \land \neg P_3) \lor P_4$: פסוק דיסיונקטיבי נורמלי
 - $P_1 \wedge P_2 \wedge \neg P_3 \wedge \neg P_4$: קוניונקציה פשוטה מלאה

קבוצות מלאות של קשרים

- קבוצה מלאה של קשרים היא קבוצת קשרים שניתן לבטא באמצעותה כל קשר שניתן לחשוב עליו / כל טבלת אמת
 - •כל קבוצה המכילה קבוצה מלאה היא קבוצה מלאה
 - כל קבוצה חלקית לקבוצה לא מלאה אינה מלאה
- •כל קבוצה שניתן לבטא בעזרתה את כל הקשרים של קבוצה מלאה היא מלאה
 - יהקבוצות מלאות $\{\neg, \rightarrow\}$ ו- $\{\neg, \lor\}$ הן הקבוצות מלאות •

א- נתונה קבוצת הקשרים הבאה: $\{\Delta, \neg, \Delta\}$. הקשר Δ מוגדר באופן הבא לכל זוג פסוקים ϕ, ψ ולכל מודל $M(\phi\Delta\psi) = M(\neg\phi \land \neg\psi)$: M ולכל מודל ϕ, ψ האם קבוצת הקשרים $\{\Delta, \neg, \Delta\}$ מלאה?

 $\{-,\Delta\}$ פתרון: נסמלץ את $\{-,\Delta\}$ פתרון: פתרון: פתרון

P	Q	$\neg P$	$(P \rightarrow Q)$	$\neg P \triangle Q$	\neg ($\neg P \triangle Q$)
F	F	Т	Т	F	T
F	Т	Т	Т	F	T
Т	F	F	F	Т	F
Т	Т	F	T	F	Т

ידוע ש $\{-, \rightarrow\}$ מערכת קשרים מלאה. שלילה כבר יש ואת $\{-, \rightarrow\}$ ידוע ש

- ב- האם ניתן לכתוב את הפסוק $(p o (q \land t))$ בעזרת מערכת הקשרים המתוארת בסעיף א'? אם כן, כיתבו, אם לא נמקו
 - פתרון: כמובן שאפשר לכתוב הוכחנו שקבוצת הקשרים מלאה.
 - : oבמיר \land ואז את ה- $(arphi o \psi) \equiv (arphi \land \lnot \psi)$ ואז את ה- \bullet

$$(p \to (q \land t)) \equiv (p \to (q \land \neg \neg t)) \equiv (p \to \neg(q \to \neg t)) \equiv (p \to \neg(\neg q \Delta \neg t)) \equiv (p \to (\neg q \Delta \neg t)) \equiv \neg(\neg p \Delta(\neg q \Delta \neg t))$$

- ג- האם קבוצת הקשרים $\{ o, o\}$ היא מלאה? הוכיחו את תשובתכם
 - פתרון זהה לפתרון של {∨, ∧} מהשיעור הקודם.
- מתקבל M_T מתקבל במינדוקציה מבנית שלא ניתן לבטא שום טבלת אמת שבה במודל פוכיח ערך F
 - M_T בסיס: עבור פסוק אלמנטרי P, אלמנטרי פסיס: עבור פסוק א
 - ψ ו φ נניח שנכון עבור הפסוקים •
 - טעבור $(\varphi o \psi)$: על פי הנחת האינדוקציה $(\varphi o \psi)$ ולכן גם $(\varphi o \psi)$: על פי טבלת האמת של $(\varphi o \psi)$
 - עבור ערך T בת האינדוקציה ϕ ו-לכן גם הנחת האינדוקציה ערך T בת ולכן גם ($\phi\leftrightarrow\psi$) על פי טבלת האמת של ϕ

נביעה לוגית ומשפט הקומפקטיות

- ϕ אם"ם ψ נובע לוגית מ- ϕ אם"ם ϕ גורר לוגית את ψ אם"ם ϕ הפסוק ϕ נובע לוגית מ- ϕ אם"ם. $\forall M \models \phi \Longrightarrow M \models \psi$
 - $\vDash (arphi
 ightarrow \psi)$ אמ"ם $arphi
 ightarrow \psi
 ightharphi$
 - $K = \{ \varphi_1, \varphi_2, \dots \}$ אם K קבוצת פסוקים K אם •
 - .נכון: ψ נכונים אמ"ם בכל מודל שבו K נכונים אמ $K \Longrightarrow \psi$
- סופית, K' אם K' אם K' אם K' אם K' אם K' סופית, K' שפט הקומפקטיות: אם K' אם K' שפט הקומפK' אם K' אם K'

יחידה 4 – לוגיקה פסוקית – תורת ההוכחה

מנגנון הוכחה פורמלי

- <mark>מנגנון הוכחה פורמלי</mark>: קב' אקסיומות וכללי היסק / צעדי גזירה
- <mark>סדרת הוכחה פורמלית</mark>: סדרה המתקבלת רק מהאקסיומות ומצעדי הגזירה נקראת סדרת הוכחה פורמלית של הפסוק האחרון
 - "מנגנון הוכחה פורמלי נקרא "תחשיב"

מנגנון הוכחה פורמלי - תכונות

- מה היינו רוצים ממנגנון הוכחה מוצלח?
 - סכל הוכחה באורך סופי
 - סכל הוכחה היא חד משמעית
 - סקל לבדוק נכונות של הוכחה
- סלכל טענה נכונה יש הוכחה (שלמות)
- סכל מה שניתן להוכחה הוא נכון (נאותות)

תחשיב הילברט

• האקסיומות הלוגיות:

$$(\varphi \to (\psi \to \varphi)) .1$$

$$((\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta))) .2$$

$$((\neg \varphi \to \neg \psi) \to (\psi \to \varphi)) .3$$

• כלל הגזירה היחיד MP:

$$\frac{\varphi,(\varphi\to\psi)}{\psi}$$

תרגיל – בחינה שפסוק הוא אקסיומה

$$\left((\neg \varphi \to \theta) \to ((\mu \to \neg \eta) \to (\neg \varphi \to \theta))\right)$$
האם הפסוק האם הפסוק ((ח $\varphi \to \theta)$) הוא אקסיומה?

• נתחיל לבנות את עץ הבניה של הפסוק:

$$\begin{pmatrix} (\neg \varphi \rightarrow \theta) \rightarrow ((\mu \rightarrow \neg \eta) \rightarrow (\neg \varphi \rightarrow \theta)) \end{pmatrix}$$

$$(\neg \varphi \rightarrow \theta) \qquad ((\mu \rightarrow \neg \eta) \rightarrow (\neg \varphi \rightarrow \theta))$$

$$(\mu \rightarrow \neg \eta) \qquad (\neg \varphi \rightarrow \theta)$$

$$(\mu \rightarrow \neg \eta) \qquad (\neg \varphi \rightarrow \theta)$$

$$\alpha = 0$$

הוכחה בתחשיב

- סדרת הוכחה מתוך K: כאשר K קבוצת פסוקים, סדרת הוכחה מתוך K היא סדרה בה כל פסוק הוא אקסיומה, פסוק מK או מתקבל מפסוקים קודמים בM. אם קיימת סדרת הוכחה לG מתוך גסמן G בקרא משפט של G נקרא משפט של G
 - סדרת הוכחה בתחשיב: סדרת הוכחה מהקבוצה הריקה. אם קיימת סדרת הוכחה ל φ נסמן φ . $\vdash \varphi$ נקרא משפט בתחשיב.

הוכחה בתחשיב - דוגמה

(P o P) הוכח את המשפט •

(Ax. 2) 1.
$$((P \rightarrow ((P \rightarrow P) \rightarrow P)) \rightarrow ((P \rightarrow (P \rightarrow P)) \rightarrow (P \rightarrow P)))$$

(Ax. 1) 2.
$$(P \rightarrow ((P \rightarrow P) \rightarrow P))$$

(MP 1,2) 3.
$$((P \rightarrow (P \rightarrow P)) \rightarrow (P \rightarrow P))$$

$$(Ax. 1) 4. (P \rightarrow (P \rightarrow P))$$

(MP3,4) 5.
$$(P \rightarrow P)$$

הוכחה מקבוצת פסוקים - דוגמה

 $\{(\psi o arphi), \psi, heta\}$ מתוך מתוך • הוכח את arphi

(הנחה) 1.
$$(\psi \rightarrow \varphi)$$

(הנחה)
$$2.\psi$$

(MP 1,2) 3. φ

תכונות של הוכחות

- כל רישא של סדרת הוכחה היא סדרת הוכחה
- K כל פסוק שמופיע בסדרת הוכחה הוא משפט של ullet
 - שרשור סדרות הוכחה הוא סדרת הוכחה
 - $K \vdash \varphi, K \subseteq L \implies L \vdash \varphi \bullet$
- $K \cup \{\varphi_1, ..., \varphi_n\} \vdash \psi$ אם $\{\varphi_1, ..., \varphi_n\}$ משפטים של א $\{\varphi_1, ..., \varphi_n\}$ אזי אזי $\{\varphi_1, ..., \varphi_n\}$
 - $\mathbf{K}' \vdash \varphi$ ער כך אב $\mathbf{K}' \subseteq \mathbf{K}$ סופית קב' סופית א $\mathbf{K} \vdash \varphi$ אם •

משפט הדדוקציה

- $K \vdash (\psi \rightarrow \varphi)$ אזי $K \cup \{\psi\} \vdash \varphi$ אם •
- ?(P o P) איך באמצעות משפט הדדוקציה נוכיח •

$$\{(\varphi o \psi), (\psi o \theta)\} \vdash (\varphi o \theta)$$
 דוגמה – טרנזיטיביות החץ: צ"ל ל $\{(\varphi o \psi), (\psi o \theta), (\psi o \theta), \varphi\} \vdash \theta$ ממשפט הדדוקציה מספיק להראות: $\{(\varphi o \psi), (\psi o \theta), \varphi\} \vdash \theta$

```
(הנחה) 1. \varphi
```

(הנחה) 2.
$$(\varphi \rightarrow \psi)$$

(MP1,2) 3.
$$\psi$$

(הנחה) 4.
$$(\psi \rightarrow \theta)$$

(MP3,4) 5.
$$\theta$$

לוגיקה למדעי המחשב – שיעור 3

משפט הדדוקציה - תרגיל

$$\vdash (\gamma \to ((\gamma \to \beta) \to (\beta \to \gamma)))$$
 הוכיחו •

• לפי משפט הדדוקציה מספיק להוכיח

$$\{\gamma\} \vdash ((\gamma \rightarrow \beta) \rightarrow (\beta \rightarrow \gamma))$$

• לפי משפט הדדוקציה (נשתמש שוב) מספיק להוכיח

$$\{\gamma,(\gamma\to\beta)\}\vdash(\beta\to\gamma)$$

• לפי משפט הדדוקציה (נשתמש שוב) מספיק להוכיח

$$\{\gamma,(\gamma \to \beta),\beta\} \vdash \gamma$$

• הוכחה:

$1. \gamma$ (הנחה)

עקביות

- קבוצת פסוקים K נקראת לא עקבית אם"ם קיים פסוק G כך ש-G וגם G אם לא קיים פסוק כזה, הקבוצה עקבית G וגם G אם לא קיים פסוק כזה, הקבוצה עקבית (קונסיסטנטית).
 - קבוצה עקבית אם"ם יש לה לפחות מודל אחד
 - קבוצה לא עקבית מוכיחה כל פסוק
 - $\{P,Q,(P
 ightarrow \neg Q)\}$ עקבית
 - $\{P, \neg Q\}$ עקבית •

עקביות

- נוכיח שקבוצה לא עקבית מוכיחה כל פסוק
- $: K \vdash \neg \varphi$ ו $K \vdash \varphi$ בהנחה ש- ψ (כלשהו) בהנחה ער •

(הנחה) 1.
$$\neg \varphi$$

(Ax.1) 2.
$$(\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi))$$

(MP1,2) 3.
$$(\neg \psi \rightarrow \neg \varphi)$$

(Ax.3) 4.
$$((\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi))$$

(MP3,4) 5.
$$(\varphi \rightarrow \psi)$$

(הנחה)
$$6. \varphi$$

(MP5,6) 7.
$$\psi$$

Principle of explosion

נביעה לוגית - תרגיל

- הוכח או הפרך: $\Sigma \Longrightarrow \alpha$ אם ורק אם אין מודל לקבוצת הפסוקים הוכח או הפרך: $\Sigma \hookrightarrow \alpha \mapsto \Sigma \cup \{ -\alpha \}$
 - נכון.
- Σ כיוון Γ : אם מתקיים Σ כיו אז בכל מודל M שבו קבוצת הפסוקים כיוון Γ גם מקבל ערך Γ ולכן Γ מקבל ערך Γ גם Γ גם Γ גם Γ מקבל ערך Γ ולכן Γ
- כיוון Σ : אם אין מודל לקבוצה $\Sigma\cup\{-\alpha\}$ או ש- Σ לא עיקבית ואז Σ או ש- Σ או ש- Σ או של Σ או של Σ או של Σ או של Σ הוא גם מודל של α ולכן α ולכן α

משפט ההוכחה בדרך השלילה

- $\mathbf{K} \vdash \varphi$ אם אזי $K \cup \{ \neg \varphi \}$ אם •
- $\mathsf{K} \vdash \varphi$ ונסיק $\mathsf{K} \cup \{\neg \varphi\}$ שימוש: נניח בשלילה φ , נגיע לסתירה ב

(דדוקציה) 1.
$$(\neg \varphi \rightarrow \neg \theta)$$

(Ax.3) 2.
$$((\neg \varphi \rightarrow \neg \theta) \rightarrow (\theta \rightarrow \varphi))$$

(MP1,2) 3.
$$(\theta \rightarrow \varphi)$$

(Ax.1) 4.
$$\theta$$

(MP3,4) 5.
$$\varphi$$

נאותות התחשיב

- $\mathrm{K}\Longrightarrow arphi$ אזי $\mathrm{K}\vdash arphi$ אם arphi אם אופסוקים K
- במילים אחרות כל פסוק שניתן להוכיח הוא נכון, ובפרט אם במילים אזי φ אזי להמשפטים שניתן להוכיח מהקבוצה הריקה הם טאוטולוגיות.
 - אם לקבוצת פסוקים יש מודל היא עקבית •
 - הוכחה: מוכיחים את נכונות האקסיומות ואת נכונות כללי המעבר, ואז באינדוקציה על אורך ההוכחה

שלמות התחשיב ותורה שלמה

- . K $\vdash \varphi$ אזי אזי $K \Longrightarrow \varphi$ אם φ אם $K \Longrightarrow \varphi$ לכל קבוצת פסוקים א ופסוק
- אזי אזי אחרות כל פסוק נכון ניתן להוכחה, ובפרט אם \bullet אזי אחרות כל פסוק נכון ניתן להוכחה מהקבוצה הריקה. $\vdash \varphi$
 - <mark>תורה / מערכת אקסיומות</mark>: קבוצת פסוקים עקבית
 - <mark>תורה שלמה</mark>: תורה שאם מניחים אותה כל פסוק ניתן להוכחה או להזמה (ניתן להוכיח את שלילתו) לתורה שלמה יש מודל אחד בדיוק

- $? (\neg(\varphi \rightarrow \theta) \rightarrow (\varphi \rightarrow \theta))$ האם ניתן להוכיח את הפסוק -
- $M(\phi)=T, M(\theta)=F$ לא. הפסוק לא טאוטולוגיה. למשל, עבור אוטולוגיה לא ישפט הנאותות לא ניתן להוכיח אותו.
- $? (\neg(\varphi \rightarrow \theta) \rightarrow (\varphi \rightarrow \neg\theta))$ האם ניתן להוכיח את הפסוק -
 - כן טאוטולוגיה (ניתן לבדוק עם טבלת אמת) ולכן לפי משפט השלמות ניתן להוכחה.

• נתונה מערכת הוכחה חדשה:

:סאקסיומות

$$Ax1: (\neg \alpha \rightarrow (\alpha \rightarrow \neg \alpha))$$

 $Ax2: ((\neg \alpha \rightarrow (\alpha \rightarrow \neg \alpha)) \rightarrow (\alpha \rightarrow \neg \alpha)))$
 MP כלל ההיסק

- $(\vdash \varphi \Longrightarrow \models \varphi$ האם המערכת נאותה? (האם האם האם -א
- $(M(\alpha)=T$ אבל אבל +Ax2 פתרון: מתקיים •

- ב- עבור כל פסוק φ נגדיר φ^* : כמו φ לאחר מחיקת כל קשרי ר $\varphi \Longrightarrow \vDash \varphi^*$ השלילה הוכיחו: $\varphi \Longrightarrow \vDash \varphi^*$
 - פתרון: נוכיח בעזרת אינדוקציה מבנית על מבנה ההוכחה.
 - בסיס: $Ax1^*$ וגם $Ax1^*$ ביוק בעזרת טבלת אמת כסיס:
 - $\perp \psi^*$ צריך להוכיח בייה: נניח ש ψ צריך להוכיח.
 - :על פי הנחת האינדוקציה MPהתקבל של ψ

וגם
$$\vdash \varphi \Longrightarrow \vDash \varphi^*$$

$$.\vdash (\varphi \to \psi) \Longrightarrow \vDash (\varphi \to \psi)^*$$

מתקיים $(\varphi o \psi)^* = (\varphi^* o \psi)^* = (\varphi^* o \psi^*)$ ומכיוון ש $(\varphi o \psi)^* = (\varphi^* o \psi^*)$ של $(\varphi o \psi)^* = (\varphi^* o \psi^*)$ של $(\varphi o \psi)^* = (\varphi^* o \psi^*)$

- ג- הוכיחו שהמערכת לא שלמה
- פתרון: נניח בשלילה שהמערכת שלמה. מכאן כל טאוטולוגיה פתרון: נניח בשלילה שהמערכת שלמה. מכאן כל טאוטולוגיה ניתנת להוכחה. $(B \to A) \to (B \to A)$ טאוטולוגיה (אקסיומה 3) ולכן ניתנת להוכחה במערכת. מכאן, לפי סעיף ב' φ^* אינה $\varphi^* = ((A \to B) \to (B \to A))$ טאוטולוגיה, והגענו לסתירה. הנחת השלילה אינה נכונה והמערכת לא שלמה.

משפט הקומפקטיות – נוסחים נוספים

- , אסופית $K'\subseteq K$ יש קבוצה א ψ איש סופית הנוסח שלמדנו: אם ψ כלומר א $\phi_1 \wedge \phi_2 \wedge \cdots \wedge \phi_n \to \psi$ כלומר כלומר א ψ
- אם $K' \subseteq K$ סופית הינה בעלת מודל אם קבוצת פסוקים וכל קבוצה אזי יש מודל שבו כל פסוקי אונים אזי יש מודל שבו כל פסוקי אונים
 - נוסח נוסף: קבוצת פסוקים היא עקבית אם"ם כל תת קבוצה סופית שלה עקבית

משפט הקומפקטיות - תרגיל

- הוכיחו או הפריכו: לכל קב' פסוקים Σ קיימת תת קבוצה סופית הוכיחו או הפריכו לכל קב' פסיקה $\Gamma \subseteq \Sigma$ ספיקה שמתקיים $\Gamma \subseteq \Sigma$
- כן. אם Σ ספיקה קיים מודל המספק אותה, ומימלא מודל זה מספק גם כל תת קבוצה שלה. אם Σ לא ספיקה היא מוכיחה פסוק ושלילתו. ממשפט הקומפקטיות לכל אחד מהם קיימת קבוצה סופית ממנה הוא נובע. איחוד הקבוצות האלה מוכיח פסוק ושלילתו והוא אינו ספיק

תחשיב הפסוקים תרגילים מסכמים

$$Ax1: (\alpha \vee \neg \alpha)$$

$$Ax2: ((\alpha \vee \beta) \rightarrow \neg(\neg \alpha \wedge \neg \beta))$$

MP כלל ההיסק

א- בדקו עבור כל אחד מהפסוקים הבאים האם הוא יכיח בD. אם כן הוכיחו ואם לא הסבירו

$$((P \land Q) \lor (P \rightarrow Q)) \circ$$

$$\neg(\neg P \land \neg \neg P) \circ$$

ב- הוכיחו או הפריכו כל אחת מהטענות הבאות:

$$\vdash_D \theta$$
 אז $\models \theta$ מתקיים אם θ אז \circ

$$\Sigma \vdash_D \theta$$
 אז $\Sigma \vDash \theta$ עבור כל פסוק θ מתקיים אם \circ

א- בדקו עבור כל אחד מהפסוקים הבאים האם הוא יכיח בD. אם כן הוכיחו ואם לא הסבירו

$$((P \land Q) \lor (P \to Q)) \circ \neg (\neg P \land \neg \neg P) \circ$$

- פתרון:
- כוכיח שהמערכת נאותה (נראה שהאקסיומות טאוטולוגיות ונציין שMP נכון ואפשר להוכיח
 כוכיח שהמערכת נאותה (נראה שהאקסיומות טאוטולוגיה (למשל M(P)=T, M(Q)=F) ולכן לא יכיח
 סדרת הוכחה:
 - $(Ax. 1 \alpha = P) \qquad 1. (P \lor \neg P)$ $(Ax. 2 \alpha = P, \beta = \neg P) \ 2.((P \lor \neg P) \rightarrow \neg(\neg P \land \neg \neg P))$ $(MP \ 1,2) \qquad 3. \neg(\neg P \land \neg \neg P)$

- ב- הוכיחו או הפריכו כל אחת מהטענות הבאות:
- $\vdash_D \theta$ אז $\vDash \theta$ מתקיים אם θ מחקיים סעבור כל
- $\Sigma \vdash_D \theta$ אז $\Sigma \vDash \theta$ עבור כל פסוק θ מתקיים אם \circ

• פתרון:

- לא ניתן להוכיח במערכת פסוקים שהקשרים הראשיים שלהם לא מופיעים באקסיומות. נבחר סלא ניתן להוכיח במערכת פסוקים שהקשרים הראשיים שלהם לא מופיעים באקסיומות. נבחר טאוטולוגיה כזו (למשל $(lpha\leftrightarrowlpha)$). מצאנו פסוק שהוא טאוטולוגיה אבל לא יכיח.
 - $\Sigma=\emptyset$ הטאוטולוגיה שמצאנו קודם סותרת עבור ס
- (למשל בפסוק את הפסוק לבשל בישל לבשל ברה: את הפסוק היימת בישל כך בישל בישל לבישל בישל לשים לבישל פסוק איימת בישל כ

• תהי Σ קבוצת פסוקים בשפה $L_{\{\neg,\rightarrow\}}$. קבוצת פסוקים Σ נקראת סגורה כאשר מתקיים בה: אם $\varphi \in \Sigma$ אזי $\varphi \in \Sigma$ תהי $\varphi \in \Sigma$ קבוצת פסוקים סגורה. הוכיחו או הפריכו: Σ עקבית אם"ם ישנו פסוק $\varphi \in \Sigma$ בשפה כך ש $\varphi \notin \Sigma$.

• פתרון:

כל הפסוקים כל הפסוקים $\varphi = \varphi, \neg \varphi \in \Sigma \iff \Sigma$ מיכיח מ- φ וגם וגם $\varphi \iff \varphi, \neg \varphi \in \Sigma$ כל הפסוקים ב- Σ כל הפסוקים ב- Σ

 Σ יש פסוק שלא ב φ או φ או φ כיוון Σ :2 עקבית Σ

- י בהינתן $\{ \to \}$ אוסף הפסוקים האלמנטריים בשפה עם קשר דו מקומי אחד $\Sigma = \{P_1, ... P_n ... \}$ ומערכת הוכחה המקיימת את משפט הדדוקציה. נגדיר באינדוקציה מבנית את R_Σ קבוצת הפסוקים הימניים של הוכחה: $(P_i \to \alpha)$ כלל יצירה: $(P_i \to \alpha)$ כאשר α פסוק בקבוצה. הוכיחו:
 - $\Sigma \vDash \varphi$ מתקיים $\varphi \in R_{\Sigma}$ -א
 - ס הוכחה באינדוקציה על אורך הפסוק בסדרת הבניה. לפסוק $(P_i o P_j)$ מתקיים כי שני הפסוקים כי T מקבל ערך α מקבל ערך של הבניה של הבניה של α . בהנחה ש α
 - $\Sigma \vdash \varphi$ מתקיים $\varphi \in R_{\Sigma}$ -ב
 - k-1 ניתן להשתמש במשפט הדדוקציה $\varphi=(P_1 o \left(P_2 o\cdots (...P_k)
 ight)))$ מהצורה במשפט הדדוקציה בפטוק ס פעמים ולכן מתקבל ב $\Sigma\vdash \varphi$

- י נגדיר מערכת הוכחה D בשפת הפסוקים בעלת 2 קשרים: $\{-, \to\}$, האקסיומות הן האקסיומות ($\alpha \to \beta$), של תחשיב הילברט, וכלל ההיסק היחיד הוא $\frac{(\alpha \to \beta), (\alpha \to \neg \beta)}{\neg \alpha}$
 - $?\models\theta$ אז $\vdash_D \theta$ מתקיים אם θ אז $\vdash_D \theta$ אז -א
 - כן. האקסיומות טאוטולוגיות וניתן לבדוק בטבלת אמת שאם שני הפסוקים בטבלת האמת סקבלים ערך α גם α מקבלים ערך α גם α
 - $?\Sigma \vDash \theta$ אז $\Sigma \vdash_D \theta$ מתקיים אם θ מתקיים עבור כל פסוק ב
- סכן. הוכחנו שהתחשיב נאות. כל פסוק שיתקבל יתקבל מההנחות או מכלל ההיסק ולכן הוא ינבע מההנחות.

- על של האקסיומות הן האקסיומות של - $\{\neg,\rightarrow\}$, האקסיומות הן האקסיומות של הדיר מערכת הוכחה בעלת בעלת 2 קשרים: אוא היסק היחיד הוא היסק היחיד היחיד
 - ?האם מערכת ההיסק D מערכת שלמה
- א. כל משפט של המערכת נובע מאקסיומה ובמבנה שלה או מכלל ההיסק ואז הקשר הראשי הוא $(\phi o \phi)$ לא ניתן להוכחה.
 - ?יתן להוכחה במערכת ההיסק-(p o ig((q o t) o pig)) ניתן להוכחה במערכת ההיסק
 - סלא. עבור מודל M(p)=F הפסוק הפנימי מקבל ערך T והפסוק כולו ערך M(p)=F. הוא לא טאוטולוגיה ולכן לא ניתן להוכחה כי הראינו נאותות (למעשה הפסוק סתירה).

נגדיר מערכת הוכחה N בשפת הפסוקים בעלת 2 קשרים:
$$\{\neg, \rightarrow\}$$
, האקסיומות הן N בשפת הוכחה ונגדיר מערכת הוכחה $((\varphi \rightarrow (\psi \rightarrow \theta)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \theta))), (\varphi \rightarrow (\psi \rightarrow \varphi))$ וכללי ההיסק הם
$$\frac{\alpha,(\alpha \rightarrow \beta)}{\beta} \vdash \frac{(\alpha \rightarrow (\beta \rightarrow \alpha))}{\alpha}$$

- ?האם מערכת ההיסק שלמה
- :סכן. יהי ϕ פסוק כלשהו. סדרת הוכחה \circ

(Ax. 1) 1.
$$(\varphi \rightarrow (\psi \rightarrow \varphi))$$

(Rule1 1) 2. φ

- ב- האם מערכת ההיסק נאותה?
- ס לא. הראינו בסעיף א' שכל פסוק ניתן להוכחה, ובפרט פסוקים שאינם טאוטולוגיות ס

- נגדיר מערכת הוכחה N בשפת הפסוקים בעלת 2 קשרים: $\{\neg, \rightarrow\}$, האקסיומות הן , $\neg((\varphi \rightarrow (\psi \rightarrow \theta)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \theta))), \neg(\varphi \rightarrow (\psi \rightarrow \varphi))$, $\neg((\varphi \rightarrow \psi) \rightarrow ((\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)))$ הוכיחו או הפריכו:
 - א- לכל ϕ אם ϕ יכיח במערכת אז הוא סתירה -
- $\neg lpha$ סתירה אזי lpha סתירה באינדוקציה על אורך ההוכחה. בסיס: האקסיומות סתירות. מעבר: אם $(\neg lpha
 ightarrow lpha)$ טאוטולוגיה ו- $(\neg lpha
 ightarrow lpha)$ סתירה
 - ב- כל סתירה ניתנת להוכחה במודל
- . כלל ההיסק רק מגדיל את אורך הפסוק. לכן הפסוק לכן להיות מוכח מוכח כלל ההיסק רק מגדיל את אורך הפסוק. לכן הפסוק
 - ג- מערכת ההוכחה שלמה
 - סלא. הראינו שכל פסוק הוא סתירה, ובפרט לא ניתן להוכיח שום טאוטולוגיה והמערכת לא שלמה

₪ תודה רבה