Метрические пространства: непрерывность

11-й "Д" КЛАСС 2012 г

Всюду в этом листке, где упоминается пространство \mathbb{R}^n , имеется в виду, что оно снабжено евклидовой метрикой d_2 .

Под словом «функция» подразумевается отображение в \mathbb{R} .

Определение 1. Подмножество U метрического пространства M называется *открытым*, если вместе с каждой своей точкой оно содержит какую-нибудь её ε -окрестность.

Определение 2. Подмножество B метрического пространства M называется $\mathit{замкнутым}$, если оно содержит все свои предельные точки.

Задача 1. Докажите, что $U \subset M$ открыто тогда и только тогда, когда $M \setminus U$ замкнуто.

Задача 2. Пусть M снабжено дискретной метрикой. Опишите все его открытые подмножества.

Задача 3. Множество X на плоскости обладает таким свойством, что его пересечение с любой прямой есть открытое подмножество этой прямой. Обязательно ли X открытое? Тот же вопрос, если все слова «открытое» заменить на «замкнутое».

Определение 3. Отображение $f: M \to N$ непрерывно в точке $m \in M$, если для любой последовательности (x_i) , сходящейся к m, последовательность $(f(x_i))$ сходится к f(m). Если f непрерывно во всех точках множества M, то говорят, что f непрерывно на M.

Определение 4. Отображение $f: M \to N$ непрерывно на M (или просто непрерывно), если прообраз любого открытого множества открыт.

Задача 4. Докажите эквивалентность определений 3 и 4.

Задача 5. Рассмотрим на \mathbb{R}^2 функции вычисления суммы, разности, произведения и частного координат. Докажите, что они непрерывны на своей области определения.

Задача 6. Докажите, что композиция непрерывных отображений непрерывна.

Задача 7. Докажите, что сумма и произведение непрерывных функций непрерывны.

Задача 8. Докажите, что отображение непрерывно тогда и только тогда, когда прообраз любого замкнутого множества замкнут.

Задача 9. Верно ли, что при непрерывном отображении открытые множества переходят в открытые? А замкнутые в замкнутые?

Задача 10. Пусть пространство M таково, что для любого метрического пространства N любое отображение $f: M \to N$ непрерывно. Что можно сказать об M?

Задача 11. Пусть пространство N таково, что для любого метрического пространства M любое отображение $f: M \to N$ непрерывно. Что можно сказать об N?

Определение 5. Множество X называется $censuremath{\mathit{censuremin}}$, если из того, что X принадлежит объединению двух открытых непересекающихся множеств, следует, что оно принадлежит одному из этих множеств.

Определение 6. Множество X называется линейно-связным, если для любых двух его точек x_0 и x_1 существует путь из x_0 в x_1 (то есть непрерывное отображение $f \colon [0;1] \to X$ такое, что $f(0) = x_0$ и $f(1) = x_1$).

Задача 12. Докажите, что образ связного множества при непрерывном отображении связен.

Задача 13. Докажите, что образ линейно-связного множества при непрерывном отображении линейно-связен.

Задача 14. Верно ли, что прообраз связного множества при непрерывном отображении связен?

Задача 15. Докажите, что если множество линейно-связно, то оно связно.

Задача 16. Пусть $U \subset \mathbb{R}^n$ открыто и связно. Докажите, что оно линейно-связно.

Задача 17. (задача- $wym\kappa a$) Множество X делит плоскость на две части (то есть его дополнение является несвязным объединением двух связных множеств). Обязательно ли X связно?

Задача 18. Приведите пример связного, но не линейно-связного подмножества в \mathbb{R}^n для какогонибудь n.

Задача 19. Пусть $f \colon M \to N$ непрерывное взаимно-однозначное отображение. Верно ли, что f^{-1} тоже непрерывно?

Определение 7. Непрерывное взаимно-однозначное отображение $f: M \to N$ называется гомеоморфизмом, если отображение f^{-1} непрерывно. В этом случае говорят, что M гомеоморфно N (обозначение: $M \cong N$).

Задача 20. Какие из следующих пар множеств гомеоморфны между собой:

а) открытый круг и открытый квадрат; б) открытый круг и плоскость; в) прямая и плоскость; г) прямая и окружность; д) сфера с выколотой точкой и плоскость; е) прямая и гипербола; ж) прямая и парабола; з) прямая и интервал; и) интервал и отрезок?

Задача 21. Пусть M и N таковы, что существуют непрерывное взаимно-однозначное отображение $f\colon M\to N$ и непрерывное взаимно-однозначное отображение $g\colon N\to M$. Верно ли, что $M\cong N$?

Определение 8. Множество называется *компактным* (или просто *компактом*), если из любого его открытого покрытия можно выделить конечное подпокрытие.

Задача 22. Докажите, что компактное множество замкнуто и ограничено. Верно ли обратное?

Задача 23. Докажите, что образ компакта при непрерывном отображении — компакт.

Задача 24. Докажите, что непрерывная функция достигает на компакте своего максимума и минимума.

Задача 25. Выполняется ли принцип вложенных компактов для произвольного метрического пространства?

Задача 26. Известно, что $f \colon [0;1] \to M$ непрерывно и взаимно-однозначно. Докажите, что f — гомеоморфизм.

1	2	3	4	5	6	$\lceil 7 \rceil$	8	9	10	11	12	13	14	15	16	17	18	19	$\begin{vmatrix} 20 \\ a \end{vmatrix}$	20 6	20 B	г	20 Д	e	20 ж	2	20 и	21	22	23	24	25	26