EMISSION SOURCES - EMISSION CAPS AND INDIVIDUAL EMISSION LIMITATIONS

Flexible Permit Numbers: 50607, PSD-TX-331M1,

PSD-TX-804, and PSD-TX-1017

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

See Attachment I for Source Name and Emission Point Number Index

VOC EMISSION CAP

Source Name	Voor			Emission	Rates* TPY**
Source Name	Year			lb/hr	IPY"
Combustion Units, Tanks,Initial Process Vents, Loading,Interir Flares, Fugitives (4), Wastewater, Cooling Towers)49.79 1187.30	
wastewater, Cooling Towers					
Subcap-Loading Rack Heavy and Kerosene and Diesel Storage	VOC	33.32	6.56		
	NO _x EMIS	SSION CA	ΛP		
Source Name	Year			lb/hr	TPY**

Combustion Units, Flares, Initial	until 7/1/05341.98 1462.61			
Process Vents	Interim 7/1/05 to 12/31/08	324.97	1387.96	
	Final 12/31/08			311.47
			1328.68	

CO EMISSION CAP

Source Name	Year	lb/hr	TPY**
Combustion Units, Flares,	Initial until 7/1/05	564.27	2132.41
Process Vents	Interim 7/1/05 to 12/31/08	579.32	2198.31

Flexible Permit Numbers: 50607, PSD-TX-331M1, PSD-TX-804, and PSD-TX-1017

Page 2

	2318.28	606.72	
	SO ₂ EMISSION CAP		
Source Name	Year	lb/hr	TPY**
Combustion Units, Flares, Process Vents	Initial until 7/1/05 466.38 1831.09 Interim 7/1/05 to 12/31/08 Final 12/31/08	5 237.84 251.61	716.14 772.39
	PM EMISSION CAP		
Source Name	Year	lb/hr	TPY**
Combustion Units, Process Vents Cooling Towers	s, Initial until 7/1/05 Interim 7/1/05 to 12/31/08 Final 12/31/08	69.21 67.10 68.33	264.44 255.09 260.29
	BENZENE EMISSION CAP		
Source Name	Year	lb/hr	TPY**
Combustion Units, Tanks, Loading, Flares, Fugitives (4), Wastewater, Cooling Towers Process Vents	Initial until 7/1/05 17.67 34.04 Interim 7/1/05 to 12/31/08 Final 12/31/08	17.67 18.28	34.04 36.74
	H₂S EMISSION CAP		
Source Name	Year	lb/hr	<u>TPY</u> **
Combustion Units, Tanks, Initial Flares, Process Vents, Fugitives		10.88 3.62	12.61
IN	DIVIDUAL EMISSION LIMITATIONS		
EPN (1) Source Name (2) Year Pollutant (3)	lb/hr	TPY**
F-028 DHT/ASU (4) Final	NH ₃ <0.01 <0.01		

Flexible Permit Numbers: 50607, PSD-TX-331M1,

PSD-TX-804, and PSD-TX-1017

Page 3

EMISSION SOURCES - EMISSION CAPS AND INDIVIDUAL EMISSION LIMITATIONS

F-100 No. 1 Crude (4) Final NH₃ <0.01 0.02

EPN (1)	Source	Name ((2)	Υ	ear		Polluta	ant (3)	lb/hr	TPY
F-850 South	h Merox Unit	(4)	Final	NH ₃	<0.01	<0.01				
F-1000POU	J (4) Fina	l NH₃	<0.01	<0.01						
F-1400Vacu	uum (4) Fina	l NH ₃	<0.01	<0.01						
F-1500HCU	J (4) Fina	l NH₃	<0.01	0.02						
F-2000ROS	SE Unit (4)	Final	NH_3	<0.01	<0.01					
F-2200	DOT/Refor	mate Sp	litter (4)	Final	NH_3	0.17	0.76		
F-2300	ATS (4)	Final	NH_3	<0.01	0.01					
F-2300	SWS (4)	Final	NH_3	<0.01	0.04					
F-2400	FCCU (4)	Final	NH_3	0.04	0.17					
F-2400	FCCU Gas	Con (4)	Final	NH_3	<0.01	<0.01				
F-2400	FCCU Mer	ox (4)	Final	NH_3	<0.01	<0.01				
F-3700	HCU (4)	Final	NH_3	<0.01	<0.01					
F-3800	No. 2 HDU	(4)	Final	NH_3	<0.01	0.02				
F-3900	LEU (4)	Final	NH_3	<0.01	0.01					
F-4000	No. 1 and N	lo. 2 SF	RU (4)	Final	NH ₃	<0.01	0.04			
V-002FCCU Regenerator VentInitial NH₃				59.58	104.3	8				
V-010FCCU	J Scrubber Ve	entFinal	7/1/05	NH_3	7.15	31.31				

Flexible Permit Numbers: 50607, PSD-TX-331M1,

PSD-TX-804, and PSD-TX-1017

Page 4

EPN

(4)

allowable emission rate.

EMISSION SOURCES - EMISSION CAPS AND INDIVIDUAL EMISSION LIMITATIONS

Source Name Year Pollutant lb/hr TPY

Final 7/1/05 H₂SO₄ 13.69 59.96

			. 10/111	
	_	0.40	0.02	
	-	0.01	0.04	
1 SRU Incinerator	Final	TRS	1.00	4.40
2 SRU Incinerator	Final	TRS	1.26	5.54
•	nt numbe	er fror	n a plot ive sou VOC compo Code : - - less th listed,	int identification - either specific equipment plan. Inces use area name or fugitive source name volatile organic punds as defined in Title 30 Texas Administrative \$101.1 total oxides of nitrogen sulfur dioxide particulate matter (PM) equal to or an 10 microns in diameter. Where PM is not it shall be assumed that no particulate matter r than 10 microns is emitted.
- sulfuric acid			- - -	carbon monoxide chlorine ammonia hydrogen sulfide total reduced sulfur
	No. 1 Reformer Regenerator No. 2 Reformer For Regenerator 1 SRU Incinerator 2 SRU Incinerator ation or emission point source nation	No. 1 Reformer FinalCl ₂ Regenerator Vent No. 2 Reformer Final Cl ₂ Regenerator Vent 1 SRU Incinerator Final 2 SRU Incinerator Final ation or emission point number scific point source names. For	No. 1 Reformer FinalCl ₂ 0.40 Regenerator Vent No. 2 Reformer Final Cl ₂ 0.01 Regenerator Vent 1 SRU Incinerator Final TRS 2 SRU Incinerator Final TRS Emisention or emission point number from exific point source names. For fugit	No. 2 Reformer Final Cl ₂ 0.01 0.04 Regenerator Vent 1 SRU Incinerator Final TRS 1.00 2 SRU Incinerator Final TRS 1.26 Emission polation or emission point number from a plot ecific point source names. For fugitive source composition of the composition of t

Fugitive emissions are an estimate only and should not be considered as a maximum

^{*} Emission rates are based on and the facilities are limited by the following maximum

Flexible Permit Numbers 50607 and PSD-TX-1017 Page 5

EMISSION SOURCES - EMISSION CAPS AND INDIVIDUAL EMISSION LIMITATIONS

	operating schedule:
	Hrs/dayDays/weekWeeks/year or <u>8,760</u> Hrs/year
**	Compliance with annual emission limits is based on a rolling 12-month period.
	Dated October 3, 2008