CS 207: Discrete Structures

Abstract algebra and Number theory — Cylic groups, Lagrange's theorem

Lecture 38 Oct 27 2015

Recap

Cyclic group

A group G is cyclic if there exists an element $x \in G$ such that every element of G is a power of x. x is called the generator and we write $G = \langle x \rangle$.

Examples: $(\mathbb{Z}, +)$, $(\mathbb{Z}_{\kappa}, +_n)$, rotational symmetries of a polygon.

).

Recap

Cyclic group

A group G is cyclic if there exists an element $x \in G$ such that every element of G is a power of x. x is called the generator and we write $G = \langle x \rangle$.

Examples: $(\mathbb{Z}, +)$, $(\mathbb{Z}_{\kappa}, +_n)$, rotational symmetries of a polygon.

Isomorphism

 $(G_1, *)$ and (G_2, \cdot) are isomorphic if there exists a bijection $f: G_1 \to G_2$ such that for all $g, g' \in G_1$, $f(g * g') = f(g) \cdot f(g')$.

▶ Show that every infinite cyclic group (where all powers are distinct) is isomorphic to $(\mathbb{Z}, +)$.

).

Recap

Cyclic group

A group G is cyclic if there exists an element $x \in G$ such that every element of G is a power of x. x is called the generator and we write $G = \langle x \rangle$.

Examples: $(\mathbb{Z}, +)$, $(\mathbb{Z}_{\kappa}, +_n)$, rotational symmetries of a polygon.

Isomorphism

 $(G_1, *)$ and (G_2, \cdot) are isomorphic if there exists a bijection $f: G_1 \to G_2$ such that for all $g, g' \in G_1$, $f(g * g') = f(g) \cdot f(g')$.

- ▶ Show that every infinite cyclic group (where all powers are distinct) is isomorphic to $(\mathbb{Z}, +)$.
- ▶ Which of the following are isomorphic: $(\mathbb{R}, +), (\mathbb{Z}, +), (\mathbb{R}^+, \times), (\mathbb{C}, +)$?

).

Refresher Quiz!

Consider group G and an element $g \in G$ of order m, i.e., m is the smallest no. s.t. $g^m = e$. Let $\langle g \rangle = \{e, g^1, g^2, \dots, g^{m-1}\}$.

- 1. Prove that $\langle g \rangle$ is a subgroup of G.
- 2. Consider the additive group $(\mathbb{Z}_6, +_6)$,
 - 2.1 What are the orders of the elements 2 and 1 in $(\mathbb{Z}_6, +_6)$?
 - 2.2 Describe the subgroups < 2 > and < 1 >, and their sizes.
- 3. Consider the multiplicative group $(\mathbb{Z}_7 \setminus \{0\}, \times_7)$.
 - 3.1 What are the orders of the elements 2 and 3 in (\mathbb{Z}_7, \times_7) ?
 - 3.2 Describe the subgroups < 2 > and < 3 >, and their sizes.

Regarding cyclic subgroups of a group

Consider group G and an element $g \in G$ of order m, i.e., m is the smallest no. s.t. $g^m = e$. Let $\langle g \rangle = \{e, g^1, g^2, \dots, g^{m-1}\}$.

- 1. Prove that $\langle g \rangle$ is a subgroup of G.
- 2. Consider the additive group $(\mathbb{Z}_6, +_6)$,
 - 2.1 What are the orders of the elements 2 and 1 in $(\mathbb{Z}_6, +_6)$?
 - 2.2 Describe the subgroups < 2 > and < 1 >, and their sizes.
- 3. Consider the multiplicative group $(\mathbb{Z}_7 \setminus \{0\}, \times_7)$.
 - 3.1 What are the orders of the elements 2 and 3 in (\mathbb{Z}_7, \times_7) ?
 - 3.2 Describe the subgroups < 2 > and < 3 >, and their sizes.
- \triangleright < g > is called the cyclic subgroup of G generated by g.
- ▶ Clearly, order of $\langle g \rangle$ is the order of the element g in G.

Definition

A group is a set S along with an operator * such that:

- ▶ Closure: $\forall a, b \in S, a * b \in S$.
- ▶ Associativity: $\forall a, b, c \in S, \ a * (b * c) = (a * b) * c.$
- ▶ Identity: $\exists e \in S \text{ s.t.}, \forall a \in S, a * e = e * a = a.$
- ▶ Inverse: $\forall a \in S, \exists a' \in S \text{ s.t.}, a * a' = a' * a = e.$

Notation: Often we write gh instead of g*h and 1 instead of e.

Definition

A group is a set S along with an operator * such that:

- ▶ Closure: $\forall a, b \in S, a * b \in S$.
- ▶ Associativity: $\forall a, b, c \in S, \ a * (b * c) = (a * b) * c.$
- ▶ Identity: $\exists e \in S \text{ s.t.}, \forall a \in S, a * e = e * a = a.$
- ▶ Inverse: $\forall a \in S, \exists a' \in S \text{ s.t.}, a * a' = a' * a = e.$

Notation: Often we write gh instead of g*h and 1 instead of e.

Egs: permutations, automorphisms, symmetries of geometrical figures, $(\mathbb{Z}, +)$, $(\mathbb{Q} \setminus 0, \times)$, $(\mathbb{Z}_p \setminus 0, \times_p)$, $GL_n(\mathbb{R})$, $SL_n(\mathbb{R})$.

Definition

A group is a set S along with an operator * such that:

- ▶ Closure: $\forall a, b \in S, a * b \in S$.
- ▶ Associativity: $\forall a, b, c \in S, \ a * (b * c) = (a * b) * c.$
- ▶ Identity: $\exists e \in S \text{ s.t.}, \forall a \in S, a * e = e * a = a.$
- ▶ Inverse: $\forall a \in S, \exists a' \in S \text{ s.t.}, a * a' = a' * a = e.$

Notation: Often we write gh instead of g*h and 1 instead of e.

Egs: permutations, automorphisms, symmetries of geometrical figures, $(\mathbb{Z}, +)$, $(\mathbb{Q} \setminus 0, \times)$, $(\mathbb{Z}_p \setminus 0, \times_p)$, $GL_n(\mathbb{R})$, $SL_n(\mathbb{R})$.

- ▶ The order of a finite group is the number of elements in it.
- ightharpoonup A subset H of a group G is called a subgroup if H is also a group under the same operation.

Definition

A group is a set S along with an operator * such that:

- ▶ Closure: $\forall a, b \in S, a * b \in S$.
- ► Associativity: $\forall a, b, c \in S, \ a * (b * c) = (a * b) * c.$
- ▶ Identity: $\exists e \in S \text{ s.t.}, \forall a \in S, a * e = e * a = a.$
- ▶ Inverse: $\forall a \in S, \exists a' \in S \text{ s.t.}, a * a' = a' * a = e.$

Notation: Often we write gh instead of g*h and 1 instead of e.

Egs: permutations, automorphisms, symmetries of geometrical figures, $(\mathbb{Z}, +)$, $(\mathbb{Q} \setminus 0, \times)$, $(\mathbb{Z}_p \setminus 0, \times_p)$, $GL_n(\mathbb{R})$, $SL_n(\mathbb{R})$.

- ▶ The order of a finite group is the number of elements in it.
- ightharpoonup A subset H of a group G is called a subgroup if H is also a group under the same operation.

Question: What is the relation between order of a group and the order of any subgroup? (other than $|H| \leq |G|...$)

Relating the size of a group and its subgroups

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

Relating the size of a group and its subgroups

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

An application

Relating the size of a group and its subgroups

Theorem (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G|.

An application

Fermat's little theorem

For any prime p, if gcd(a, p) = 1, then $a^{p-1} \equiv 1 \mod p$.