Prof.dr.sc. Bojana Dalbelo Bašić

Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave Fakultet elektrotehnike i računarstva

www.zemris.fer.hr/~bojana bojana.dalbelo@fer.hr

UMJETNA INTELIGENCIJA

Zaključivanje uporabom predikatne logike (2)

ZAMJENA (SUPSTITUCIJA)

Univerzalno kvantificirane varijable zamjenjivali smo konstantom.

Primjer

- [1] $\forall x(MUZ(x) \rightarrow VOLI(x, ZENA(x)))$
 - [2] MUŽ(Marko)
- [3] (MUŽ(Marko) → VOLI(Marko, ŽENA(Marko)).
- Općenito varijable mogu biti **zamijenjene (supstituirane)** čitavim izrazima
- Pojam izraz u širem smislu (engl. expression) označava: izraz (engl. term), atom, funkciju, predikat ili formulu
- Supstitucija je neophodna za primjenu rezolucijskog

ZAMJENA (SUPSTITUCIJA)

 α = {t₁/y₁, t₂/y₂, ..., t_n/y_n,}, gdje su t_i, i = 1, 2, ... n izrazi u širem smislu, y_i, i = 1, 2, ... n su <u>različite</u> varijable, i vrijedi t_i \neq y_i za bilo koji i = 1, 2, ... n. Skup uređenih parova čini zamjenu (supstituciju)

- Kad se zamjena α primjeni na neki izraz K, tada se svako pojavljivanje y_i u K istodobno zamijeni sa t_i.
- Dobiveni izraz označavamo sa Klpha i kažemo da je Klphaslučaj ili primjer izraza K (engl. instance).
- **Prazna zamjena** ϵ je takva da je $K\epsilon = K$

ZAMJENA (SUPSTITUCIJA)

Primjer:

- izraz GT(x, y),
- supstitucija α = {prosinac/x, travanj/y},
- rezultat K α = GT(prosinac, travanj).
- izraz K = P(w, f(x), z),
- supstitucija $\alpha = \{a/x, g(u)/z\},$
- rezultat $K\alpha = P(w, f(a), g(u))$
- vezivanje (engl. bindings) u smislu da je varijabla vezana Zamjena ili supstitucija u literaturi se još naziva i s vrijednošću kojom se zamjenjuje

KOMPOZICIJA ZAMJENA

- Neka su α i β dvije zamjene. **Kompozicija zamjena** je definirana kao nova zamjena $\alpha\circ\beta$ tako da je
- $K(\alpha \circ \beta) = (K\alpha)\beta$, za neki izraz K
- Uporaba zamjene $\alpha \circ \beta$ na izrazu K daje isti rezultat kao kad se prvo primjeni α na izrazu K, a onda se na tako dobiveni izraz primjeni β.
- Kompozicija zamjena $\alpha\circ\beta$ može biti izvedena na temelju sljedećeg postupka u dva koraka

KOMPOZICIJA ZAMJENA

- Neka su dane α i β zamjene

$$\alpha = \{t_1/y_1, t_2/y_2, \dots, t_n/y_n\},\ \beta = \{s_1/x_1, s_2/x_2, \dots, s_m/x_m\}$$

1. korak

- Iz α i β konstruiraj sljedeće skupove:

$$\lambda 1 = \{ \, t_1 \beta/y_1, \, t_2 \beta/y_2, \, \dots, \, t_n \beta/y_n, \, s_1/x_1, \, s_2/x_2, \, \dots, \, s_m/x_m \}$$

$$\lambda 2 = \{ \ t_i \beta/y_i \mid t_i \beta/y_i \in \lambda 1 \ i \ t_i \beta = y_i \ za \ 1 \le i \le n \},$$

$$\lambda 3 = \{ s_i / x_i \mid s_i / x_i \in \lambda 1 \ i \ x_i \in \{ \ y_1, \ y_2, \ \dots, \ y_n \} \};$$

2. korak

- Izvedi kompoziciju zamjena $\alpha \circ \beta$ uporabom formule

$$\alpha \circ \beta = \lambda 1 - \lambda 2 - \lambda 3$$

KOMPOZICIJA ZAMJENA - PRIMJER

Primjer

Neka su zadane zamjene

$$\alpha = \{z/u, h(u)/w\}$$

 $\beta = \{a/u, z/w, u/z\}$

Izvedi kompoziciju ($\alpha \circ \beta$) na temelju postupka u dva koraka, a zatim pokaži da vrijedi $K(\alpha \circ \beta) = (K\alpha)\beta$ za izraz K = P(u, w, w)

1. korak – konstrukcija skupova λ 1, λ 2 i λ 3.

$$\lambda 1 = \{z\beta/u, h(u)\beta/w, a/u, z/w, u/z\}$$

= $\{u/u, h(a)/w, a/u, z/w, u/z\}$

$$\lambda 2 = \{u/u\}$$

$$\lambda 3 = \{a/u, z/w\}$$

2.~korak – izvođenje kompozicije zamjena $lpha \circ eta$ uporabom formule

•
$$\alpha \circ \beta = \lambda 1 - \lambda 2 - \lambda 3 = \{h(a)/w, u/z\}$$

KOMPOZICIJA ZAMJENA - PRIMJER

Još treba pokazati da se isti rezultat dobije primjenom definicije zamjena tj. da je K $(\alpha \circ \beta) = (K\alpha)\beta$ za slučaj K = P(u, w, f(z))

 $(K\alpha)\beta = P(u, h(a), f(u))$

(i) prema definiciji:

•
$$K\alpha = P(z, h(u), f(z))$$

•
$$(K\alpha)\beta = P(u, h(a), f(u))$$

(ii) primjenom izvedene formule za $\alpha \circ \beta$:

$$\alpha \circ \beta = \{h(a)/w, u/z\}$$

$$K(\alpha \circ \beta) = P(u, h(a), f(u))$$

• Dakle vrijedi $K(\alpha \circ \beta) = (K\alpha)\beta$

SVOJSTVA KOMPOZICIJE ZAMJENA

Asocijativnost

$$(\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma)$$

ε je neutralni element s lijeva

$$\alpha = \alpha \circ 3$$

ε je neutralni element s desna

$$\mathfrak{D} = \mathfrak{Z} \circ \mathfrak{D}$$

Općenito ne vrijedi komutativnost

 $\alpha \circ \beta \neq \beta \circ \alpha$

UNIFIKACIJA

Općeniti izrazi K1 i K2 mogu se svesti na isti oblik akko postoji supstitucija y takva da vrijedi

$$\mathsf{K}_1 \ \gamma = \mathsf{K}_2 \ \gamma$$

- Supstitucija γ se naziva **unifikator** (*engl. unifier*)
- Izraz Κ_{, γ} , i =1, 2 naziva se **zajednički slučaj** ili primjer (engl. common instance)
- Kaže se da su opći izrazi K1 i K2 unificirani pomoću γ
- Izrazi mogu imati više unifikatora

UNIFIKACIJA - PRIMJER

- Atomi P(x) i P(y), gdje su x i y varijable, imaju unifikatore:
- $\gamma_1 = \{b/x, b/y\}$ koji daje zajednički slučaj P(b) i
- $\gamma_2 = \{z/x, z/y\}$ koji daje zajednički slučaj P(z).
- Ako je b konstanta, a z varijabla možemo reći da je P(z) općenitiji zajednički slučaj nego li je to P(b)
- Naime, P(b) je slučaj od P(z) uz supstituciju {b/z}, ali NE VRIJEDI OBRATNO. (Zašto?)
- Ako je u klauzuli P(z) istinito (podrazumijeva se da su sve varijable univerzalno kvantificirane), tada je i P(b) istinito (uporabom pravila univerzalne specifikacije).
- Ako je P(b) istinito, ne znači da je P(z) istinito ne možemo slučaj zamijeniti varijablom!

12

NAJOPĆENITIJI UNIFIKATOR

Za gornji primjer kažemo da je unifikator y2 **općenitiji** od unfikatora γ1 za atome P(x) i P(y). Naime, tada postoji zamjena γ3 takva da je

(P
$$\gamma$$
2) γ 3 = P γ 1

- P(x) i P(y) mogu imati više unifikatora zanima nas najopćenitiji unifikator
- Unifikator 8 se naziva najopćenitiji unifikator akko za svaki unifikator γ od K_1 i K_2 , zajednički primjer $K_i\delta$ je općenitiji od zajedničkog primjera K_iγ
- Izraz K_iŏ se naziva **najopćenitiji zajednički slučaj**
- $K_{i\gamma}$ je primjer od $K_{i\delta}$

NAJOPĆENITIJI UNIFIKATOR

 δ je **najopćenitiji unifikator** akko za svaki unifikator γ od K_i, i=1,2 postoji zamjena θ takva da je $K_{i} \gamma = (K_{i} \delta) \theta = K_{i} (\delta \circ \theta)$ tj. $\gamma = \delta \circ \theta$.

- najmanje moguće promjene da bi se unificirali izrazi MGU se može tumačiti kao da ima za posljedicu
- varijablom. Procedura nalaženja MGU će uvijek izabrati zajedničkog primjera dva izraza postoji izbor zamijeniti varijablu konstantom ili zamijeniti varijablu drugom Pretpostavnimo da tijekom postupka nalaženja ovo drugo
- Dva izraza mogu imati više najopćenitijih unifikatora u tom su slučaju svi najopćenitiji zajednički izrazi jednako

ALGORITAM ZA UNIFIKACIJU IZRAZA

- mogu unificirati i koji dojavljuju pogrešku ako se izrazi ne U literaturi postoji više poznatih algoritama za nalaženje najopćenitijeg unifikatora konačnog skupa izraza koji se mogu unificirati
- Razmotrit ćemo rekurzivni algoritam MGUNIFIER (Luger, Stubblefield, 1993; Shinghal, 1992)
- Algoritam koristi pojmove:
- glava općenitog izraza
- rep općenitog izraza
- elementi liste odvojeni prazninama, a svaki element liste Općeniti izraz možemo napisati kao listu gdje su je opet moguća lista nazvana podizraz

ALGORITAM ZA UNIFIKACIJU IZRAZA

Primjer

- su element liste P, x, y, (f b). Zadnji element liste je i sam P(x, y, f(b)) može biti napisano kao lista (P x y (f b)) gdje lista, sastavljen od elemenata f i b
- Glava liste (P x y (f b)) je P, dok je rep liste (x y (f b))
- Sintaksa lista je sintaksa programskog jezika LISP

Sintaksa FOPL	Sintaksa liste
P(a, b)	(P a b)
P(f(a), g(x,y))	(P (f a) (g x y))
EQUAL(Eva, MAJKA(Iva))	(EQUAL Eva (MAJKA Iva))
$P(x) \wedge Q(y)$	$((P \times) \wedge (Q \ y))$

REKURZIVNI ALGORITAM ZA NALAŽENJE NAJOPĆENITIJEG **ZAJEDNIČKOG UNIFIKATORA**

procedura MGUNIFIER (K1, K2)

ako ili K, ili K, simbolizira konstantu, varijablu, funkciju ili predikat tada: **ako** su K₁ i K₂ identični, **tada** vrati praznu supstituciju {}; **ako** K₁ predstavlja varijablu **tada**:

ako se K₁ pojavljuje u K₂ **tada** vrati *pogreška*;

and se K_1 pojavljuje u K_2 tada vrati \mathcal{L} inače vrati $\{K_2/K_1\}$;

ako K₂ predstavlja varijablu **tada**:

ako se K₂ pojavljuje u K₁ **tada** vrati *pogreška*;

inače vrati $\{K_1/K_2\}$;

 ${\bf ako}$ niti ${\bf K_1}$ niti ${\bf K_2}$ ne predstavlja varijablu ${\bf tada}$ vrati pogreška;

 $\alpha := MGUNIFIER(glava od K_1, glava od K_2);$

ako α = *pogreška* tada vrati *pogreška*;

17

REKURZIVNI ALGORITAM ZA NALAŽENJE NAJOPĆENITIJEG **ZAJEDNIČKOG UNIFIKATORA**

... (nastavak)

 $K_3 := rezultat primjene zamjene <math>\alpha$ na rep od K_1 ;

 $K_4 := rezultat primjene zamjene <math>\alpha$ na rep od K_2 ;

 $\beta := MGUNIFIER(K_3, K_4);$

ako β = pogreška tada vrati pogreška;

vrati kompoziciju zamjena $\alpha \mathrel{\circ} \beta$;

REKURZIVNI ALGORITAM ZA NALAŽENJE NAJOPĆENITIJEG **ZAJEDNIČKOG UNIFIKATORA**

- Procedura MGUNIFIER vraća pogrešku u slučajevima kada unifikacija nije moguća:
- zamjenjuje. Takva zamjena vodila bi beskonačnoj petlji. Provjerava se pojavljuje li se varijabla u izrazu kojim se varijabla treba biti zamjenjena izrazom koji ju sadrži.
- kada bi trebalo zamijeniti predikat ili funkciju što je u suprotnosti s definicijom supstitucije

Dani su literali

$$P(x, x) i P(f(z), z)$$
.

MGUNIFIER će prvo naći supstituciju {f(z)/x} koja daje P(f(z), f(z)) i P(f(z), z).

Kada ne bi bilo provjere uvjeta, sljedeća supstitucija bi dala P(f(f(z)), f(f(z))) i P(f(f(z)), f(z)) i tako u beskonačnost $\{f(z)/z\}$

Primieri izraza koji se ne mogu unificirati

gu aillicilati	Uzrok pogrešci kod unifikacije	Vidi prethodni primjer	(beskonačna petlja)	Predikat se ne može zamijeniti drugim predikatom.	Funkcija se ne može zamijeniti drugom funkcijom.
riiiijeii iziaza koji se ile iilogu uliiilciiali	K2	P(f(x))	P(x)	Q(x)	P(g(x))
r IIII ijeli izi aza	K1	P(x)	P(f(x))	P(x)	P(f(x))

PRIMJER

Nadi MGU izraza:

$$K1 = P(g(u), z, f(z)) i K2 = P(x,y,f(b))$$

{g(u)/x} unificira prve podizraze od K1 i K2 koji se ne slažu

$$K1\{g(u)/x\} = P(g(u), z, f(z))$$

$$K2\{g(u)/x\} = P(g(u), y, f(b))$$

{y/z} unificira sljedeće izraze koji se ne slažu

Kompozicija
$$\{g(u)/x\} \circ \{y/z\} = \{g(u)/x, y/z\}$$

K1 $\{g(u)/x, y/z\} = P(g(u), y, f(y))$

$$K2\{g(u)/x, y/z\} = P(g(u), y, f(b))$$

ΛΖ{Υ(α)/Α, γ/Ζ} - Γ(**Ϥ(α), γ** ,ι(υ))

{b/y} unificira sljedeće izraze koji se ne slažu

Kompozicija $\{g(u)/x, y/z\} \circ \{b/y\} = \{g(u)/x, b/z, b/y\}$ je MGU, koji označavamo s δ. Primjenom mgu $\delta = \{g(u)/x, b/z, b/y\}$ na K1 i K2 dobivamo najopćenitiji zajednički primjer

P(g(u), b, f(b))

PRIMJER

Ako za neka 2 izraza MGU nije jedinstven, tj. postoji više zajednički izrazi su alfabetske varijante – razlikuju se najopćenitijih unifikatora, odgovarajući najopćenitiji samo po imenima varijabli

Primjer

Skup izraza	Najopćenitiji zajednički primjer
{P(x), P(a)}	P(a)
{P(f(x), y, g(y)), P(f(x), z, g(x)}	P(f(x), x, g(x))
{P(f(x, g(a,y)), g(a, y)), P(f(x,z), z)}	g(a, y)), P(f(x,z), z)} P(f(x, g(a, y)), g(a, y))

UNIFIKACIJA LITERALA

Definicija

- Dva literala mogu se unificirati akko
- 1. oba označavaju negirane atome ili oba označavaju afirmativne atome
- 2. ti atomi se mogu unificirati.

Primjer

$$P(x) i P(y) ili \sim P(x) i \sim P(y)$$

Definicija

- Dva literala mogu se komplementarno unificirati akko
- 1. jedan od njih je negirani atom, a drugi je afirmativni atom
- 2. ti se atomi mogu unificirati.

Primjer

$$P(x) i \sim P(y) ili \sim P(x) i P(y)$$

REZOLUCIJA

- Rezolucija u FOPL slična je rezoluciji u propozicijskoj Odici
- Neka su L_k , $k=1,\ldots,i$ i M_l , $I=1,\ldots,j$ literali (neki negirani, a neki afirmativni)
- Neka su dane dvije klauzule

(11)
$$L_1 \vee L_2 \vee \ldots \vee L_i$$

(I2)
$$M_1 \vee M_2 \vee \vee M_1$$

- Prije primjene rezolucje klauzule trebaju biti standardizirane (preimenovati varijable)
- općenitosti vrijedi komutativnost) da su to literali L, i M, Pretpostavimo da u (I1) i (I2) postoje literali koji se mogu komplemenarno unificirati. Pretpostavimo (bez gubitka
- Pretpostavimo da se unifikacija L₁ i M₁ može obaviti sa

REZOLUCIJA

Sada možemo razriješiti roditeljske klauzule (I1) i (I2) po L, i M, i izvesti resolventnu klauzulu

3)
$$L_2\delta \vee L_3\delta \vee \dots \vee L_i\delta \vee M_2\delta \vee M_3\delta \vee \dots \vee M_j\delta$$
Ostatak (I1) Ostatak (I2)

Literali u resolventi dobiju se primjenom v na uniju literala u roditeljskim klauzulama izuzevši literale sa kojima se razrješavanje obavlja

Napomena

Razrješavanjem dviju jediničnih klauzula izvodi se prazna klauzula ML

PRIMJER REZOLUCIJE

Nadi resolventu za sljedeće klauzule

$$P(g(y), x, f(z)) \lor Q(z, b) \lor R(x)$$

$$S(x, y) \lor \sim P(x, y, f(a))$$

Klauzule nisu standadizirane! (simboli za varijable x i y pojavljuju se u obje klauzule)

Potrebno je preimenovati varijable u prvoj klauzuli:

Standardizirane klauzule:

(I1)
$$P(g(u), w, f(z)) \vee Q(z, b) \vee R(w)$$

(I2)
$$S(x, y) \vee \sim P(x, y, f(a))$$

Nadi mgu!

PRIMJER REZOLUCIJE

- (I1) P(g(u), y, f(a)) \land Q(a, b) \land R(y)
- (I2) $S(g(u), y) \lor \sim P(g(u), y, f(a))$
- Razrješavanjem po P(g(u), y, f(a)) i ~P(g(u), y, f(a)) dobiva se resolventna klauzula:

(I3) $S(g(u), y) \lor Q(a, b) \lor R(y)$

REZOLUCIJA

Rezolucijsko pravilo je ispravno (zdravo)

- Prema pravilu univerzalne specijalizacije 1,8 je logička posljedica od I₁. Slično, I₂δ je logička posljedica od I₂
- zaključujemo da je l₃ je logička posljedica l₁δ i l₂δ. Zaključivanjem istim kao i u propozicijskoj logici
- Dakle I₃ je logička posljedica I₄ i I₅ te je rezolucijsko pravilo u predikatnoj logici je ispravno.
- Literali L₁ i M₁ su unificirani pomoću mgu pa je resolventa l₃ u najopćenitijem mogućem obliku

REZOLUCIJA

Rezolucija opovrgavanjem je potpuna

- Kao i u propozicijskoj logici tako i u predikatnoj logici vrijedi da je rezolucija opovrgavanjem potpuna. (Robinson, 1965)
- ∼G nekonzistentan izvođenjem resolventne klauzule NIL. Formula G je logička posljedica premisa F1, F2, ..., Fn akko možemo pokazati da je ulazni skup F1, F2, ..., Fn,
- opovrgavanjem potpuna osigurava da možemo uvijek dokazati teorem G, ako je G teorem. Svojstvo da je rezolucija zdrava i da je rezolucija
- teorema rezolucijom opovrgavanjem može nikad ne Međutim ako G nije teorem postupak dokazivanja završiti – u tom je smislu predikatna logika poluodlučljiva

FEMELJNE KLAUZULE I ODLUČLJIVOST

- Literali koji sadrže samo konstante (bez varijabli) nazivaju disjunkcija naziva se temeljna klauzula (engl. ground se temeljni literali (engl. ground literals), a njihova clause)
- pojavljivanje konstanti, funkcija i predikata (a ne varijabli) Podrazred predikatne logike koji dopušta samo je ODLUČLJIV
- Ta potklasa ima istu moć zaključivanja kao i propozicijska

PRIMJER

Primjer rezolucije opovrgavanjem u podklasi predikatne logike koja ne dozvoljava pojavljivanje varijabli.

- Za isti ovaj primjer, cilj "Majka je zadovoljna" dokazali smo u propozicijskoj logici:
- 1. prirodnim zaključivanjem i
- 2. rezolucijom opovrgavanjem.
- [i] Ivan se probudio
- [ii] Ivan nosi pribor za čišćenje
- [iii] Majka je zadovoljna ako se Ivan probudi i čisti svoju sobu [iv] Ako Ivan nosi pribor za čišćenje, tada on čisti svoju sobu
- Dokažite rezolucijom opovrgavanjem cilj: Majka je zadovoljna

PRIMJER

Ulazni skup tvore premise i negacija cilja pretvorene u klauzalnu formu

[11] BUDAN(Ivan)

[I2] NOSI(Ivan, pribor)

[I3] ~BUDAN(Ivan) v ~ČISTI(Ivan, soba) v ZADOVOLJNA(majka)

[I4] ~NOSI(Ivan, pribor) v ČISTI (Ivan, soba)

[I5] ~ZADOVOLJNA(majka) CILJ

Iz ulaznog skupa izvodimo slijedeće resolvente:

[I3] ~BUDAN(Ivan) \(\simeq \times \t

~ZADOVOLJNA(majka)

[12]

[16] ~BUDAN(Ivan) \ \times \times \Circles \times \

[16] ~BUDAN(Ivan) ∨ ~ČISTI(Ivan, soba)

[11] BUDAN(Ivan)

[I7] ~ČISTI(Ivan, soba)

[I4] ~NOSI(Ivan, pribor) v ČISTI (Ivan, soba)

[18] ~NOSI(Ivan, pribor)

[12] NOSI(Ivan, pribor)

7/N [61]

LOGICI VAŽNOST FAKTORIZIRANJA KLAUZULA U PREDIKATNOJ

Slično kao i u propozicijskoj logici, klauzule u predikatnoj logici moraju biti faktorizirane kako bi se sačuvala potpunost postupka opovrgavanjem

Primjer kako rezolucija gubi svoju potpunost ako nema faktorizacije:

[11] $P(u) \vee P(w)$

 $[12] \sim P(x) \lor \sim P(y)$

Uz uporabu mgu = {u/x} i razrješavanjem po P(u) i ~P(u) dobivamo resolventu

[13] $P(w) \lor \sim P(y)$

(Razrješavanjem po drugim literalima dobivamo alfabetske varijante od 13)

FAKTORIZACIJA U PREDIKATNOJ LOGICI

- Klauzula u predikatnoj logici može biti faktorizirana akko sadrži literale koji se mogu unificirati
- [I] L1 \ L2 \ L3 \ ... \ Ln
- Pretpostavimo (bez gubitka općenitosti) da se literali L1 L2 mogu unificirati sa MGU 8. Gornja klauzula tada može biti faktorizirana dajući klauzulu l'
- [I'] L28 \ L38 \ \ \dots \ \Ln8
- Klauzula I' se naziva **faktor klauzula** od I
- Ako skup literala ima MGU ô tada je lô faktor klauzula od I, gdje su višestruka pojavljivanja literala u Iδ zamijenjena jednim pojavljivanjem literala

Primjer:

1]
$$P(u) > P(w)$$

[11]
$$P(u) \lor P(w)$$

[12] $\sim P(x) \lor \sim P(y)$

Faktoriziramo I2 uporabom mgu={y/x} dobivamo

[12'] $\sim P(y)$

Razrješavanjem jediničnih klauzula P(w) i ~P(y) uz uporabu mgu = {w/y} izvodimo praznu klauzulu

[[3']

Primjer

 $P(x, y, f(b)) \lor S(x, y) \lor P(g(u), w, f(z))$

gdje su: P i S - predikatini simboli,

f i g - funkcijski simboli,

x, y, u, w, z - varijable,

b - konstanta.

Prvi i treći literal mogu se unificirati pomoću mgu

 $\delta = \{g(u)/x, y/w, b/z\}$. Faktor klauzula je:

P(g(u), y, f(b)) \ S(g(u), y)

38

FAKTORIZACIJA U PREDIKATNOJ LOGICI

- Faktor koji se sastoji samo od jednog literala naziva se jedinični faktor.
- izvedena iz kluazula I1 i I2 akko dobivamo I3 na bilo koji Od sada pa na dalje će se smatrati da je resolventa 13 od sljedećih načina:
- razrješavanjem 11 i 12
- 2) razrješavanjem I1 i faktora od I2
- 3) razrješavanjem faktora 11 i 12
- razrješavajnjem faktora 11 i faktora 12

REZOLUCIJSKI POSTUPAK OPOVRGAVANJEM (ALGORITAM)

Da bi se dokazalo da je ciljna formula G deduktivna posljedica od F1, F2, ..., Fn, potrebno je primijeniti sljedeće korake:

- Pretvori F1, F2, F3, ..., Fn, ~G u klauzalni oblik.
- Izvedi resolventu i dodaj je skupu klauzula. Ponavljaj razrješive. Ako je potrebno, standardiziraj te klauzule. ovaj korak sve dok se ne ispuni jedan od uvjeta: Izaberi iz skupa klauzula dvije klauzule koje su
- Izvedena je prazna klauzula N/L. (Dokazano je da je cilj G teorem, ulazni skup je nekonzistentan.)
- može se izvesti niti jedna nova klauzula (Dokazano je Niti jedan par klauzula ne može se razriješiti ili ne da cilj G nije teorem)
- Neki unaprijed zadani resursi računala su iscrpljeni. (Nema odluke o G – predikatna logika je poluodlučljiva)

Primjer

[1]
$$\forall x(MU\check{Z}(x) \rightarrow VOLI(x, \check{z}ena(x)))$$

[2] MUŽ(Marko)

Dokaži uporabom rezolucije opovrgavanjem:

VOLI(Marko, žena(Marko)).

Premise i negacija ciljne formule pretvore se u klauzalni oblik

[I2] MUŽ(Marko)

Iz ulaznog skupa rezolucijom izvodimo:

Time je dokazano da je VOLI(Marko, žena(Marko)) teorem

Primjer

- Robot dostavlja pakete.
- Robot zna da su svi paketi u sobi 27 manji od svakog paketa u sobi 28.
- A i B su paketi.
- Paket A je u sobi 27 ili u sobi 28, ali robot ne zna u kojoj.
- Paket B je u sobi 27 i nije manji od paketa A.

Uporabom rezolucije opovrgavanjem pokaži kako robot može zaključiti da je paket A u sobi 27.

KONSTANTE

27, 28, A, B

PREDIKATI

U SOBI(x, y) - x je u sobi y - skraćeno U(x, y) x je paket - skraćeno P(x) MANJI(x, y) - x je manji od y - M(x,y)PAKET(x)

BAZA ZNANJA

 $\forall x \forall y ((P(x) \land P(y) \land U(x, 27) \land U(y, 28)) \rightarrow M(x, y))$

P(A) P(B) U(A, 27) ~ U(A, 28) U(B, 27) ^ ~M(B, A)

43

BAZA ZNANJA

 $\forall x \forall y (P(x) \land P(y) \land U(x, 27) \land U(y, 28)) \rightarrow M(x, y)$

P(A) P(B) U(A, 27) v U(A, 28) U(B, 27) n ~M(B, A)

BAZA ZNANJA u klauzalnoj formi

 $\sim P(x) \lor \sim P(y) \lor \sim U(x, 27) \lor \sim U(y, 28) \lor M(x, y)$

P(A) P(B) U(A, 27) v U(A, 28) U(B, 27) ~M(B, A)

~U(A, 27)

(negacija cilja)

STABLO DOKAZA

44

VRSTE REZOLUCIJA

Binarna rezolucija je kombiniranje dvije klauzule koje sadrže komplementarne literale

Primjer

$$Q(x) \lor \sim P(x, a)$$

$$\sim Q(b) \vee R(x)$$

Uz unifikaciju {b/x} resolventna klauzula je

$$\sim$$
P(b, a) \vee R(b)

Rezolucija s rezultirajućom jediničnom klauzulom (engl. unit resulting resolution)

jedinična klauzula. Sve roditeljske klauzule osim jedne Istodobno razrješavanje više klauzula kako bi se izvela su jedinične, a ta ima točno jedan literal više od ukupnog broja jediničnih klauzula

VRSTE REZOLUCIJA

Primjer

VJENČANI(Ana, Marko)

~OTAC(Marko, Ivan)

 \sim VJENČANI(x, y) \vee \sim MAJKA(x, z) \vee OTAC(y, z)

(uz supstituciju {Ana/x, Marko/y, Ivan/z} resolventa je jedinična klauzula)

~MAJKA(Ana, Ivan)

Linearna rezolucija

Ako je uvijek jedna od roditeljskih klauzula izvedena u prethodnom koraku

Linearna rezolucija na ulaznom skupu

Ako je jedna od roditeljskih klauzula uvijek iz izvornog ulaznog skupa klauzula

STRATEGIJE REZOLUCIJE

Unifikacija + rezolucija → automatsko zaključivanje

ALI

- Rezolucija je nedjelotvorna bez daljnjih razrada!
- Razrješavanje slučajno odabranih klauzula → kombinatorna eksplozija
- Važna uporaba metoda koje ograničavaju pretraživanje

Odabir redoslijeda razrješavanja klauzula kako bi postupak rezolucije bio djelotvorniji zove se STRATEGIJA

STRATEGIJE REZOLUCIJE

- Uredajne strategije (engl. ordering strategies) određuju slijed (poredak) kojim će se klauzule razrješavati
- uklanjanje iz skupa klauzula onih klauzula i literala koji Strategije skraćivanja (engl. pruning strategies) – nisu neophodni za dokaz
- propisuju primjenu rezolucije samo na one klauzule koje Strategije ograničavanja (engl. restriction strategies) – se smatraju vitalne za dokaz

STRATEGIJA SKUPA POTPORE

- Jedna od najvažnijih strategija (iz skupa strategija ograničavanja)
- podskup od S. Tada je T **skup potpore** od S ako je <mark>S T</mark> Neka je S kontradiktoran skup klauzula i neka je T konzistentan
- Rezolucija skupa potpore je rezolucija u kojoj nikad nisu obje klauzule iz S T. Za svaku resolventu barem je jedna roditeljska klauzula iz T.
- negaciju cilja kontradiktoran i može biti skup potpore. Ako je S konzistentan, tada je svaki skup koji sadrži
- pretpostavka: baza znanja je konzistentna, jer inače nam ni dokazivanje cilja ne znači puno
- dodatna prednost stabla dokaza su razumljiva jer su usmjerena cilju

50

EKSTRAKCIJA ODGOVORA POMOĆU REZOLUCIJE OPOVRGAVANJEM

Ako je neka formula oblika 3xG(x) logička posljedica nekih premisa tada to možemo dokazati rezolucijom opovrgavanjem. Za koje vrijednosti x je G(x) logička posljedica premisa? Rezolucijom opovrgavanjem možemo i više od toga tj. odgovoriti na pitanje:

Za koje vrijednosti x je G(x) logička posljedica premisa?

EKSTRAKCIJA ODGOVORA POMOĆU REZOLUCIJE OPOVRGAVANJEM

Primjer:

- Pas Fido je svagdje gdje je njegov gazda Ivan.
- Ivan je u knjižnici.

Gdje je Fido?

Aksiomi:

Klauzalna forma:

Hipoteza:

$$\exists z JE_U(Fido, z)$$
 (z?)

Negacija hipoteze:

52

EKSTRAKCIJA ODGOVORA POMOĆU REZOLUCIJE **OPOVRGAVANJEM**

EKSTRAKCIJA ODGOVORA

- supstitucije pod kojima je pretpostavka (hipoteza) istinita. Supstitucije pod kojima je nađena kontradikcija jesu
- Čuvanje informacije o unifikacijama tijekom dokaza omogućava odgovor na upit

Odgovor:

odgovor na pitanje supstitucije hipoteza

∃z JE_U(Fido, z) {x/z, knjižnica/x} = JE_U(Fido, knjižnica)

Napomena: Nademo li kompoziciju ovih dviju suspstitucija:

 $\alpha = \{x/z\}$ i $\beta = \{knjižnica/x\}$ (postupkom u dva koraka) dobit ćemo $\alpha \circ \beta = \{knjižnica/z, knjižnica/x\}$

Primjer

1. Ankica je mama od Branke	MAJKA(Ankica, Branka)
2. Za sve x i y vrijedi: Ako je x kćerka od y onda	$\forall x \forall y (KĆERKA(x, y) \rightarrow MAJKA(y, x))$
je y majka od x	
3. Zorica je kćerka od Branke.	KĆERKA (Zorica, Branka)
4. Za sve x, y, z vrijedi:	$\forall x \forall y \forall z (MAJKA(x, y) \land $
Ako je x majka od y, i y majka od z, tada je x baka od z.	$MAJKA(y, z)) \rightarrow BAKA(x, z))$

Dokaži rezolucijom opovrgavanjem: Zorica ima baku tj. ∃v(BAKA(v, Zorica))

Premise u klauzalnom obliku + negacija cilja:

[11] MAJKA(Ankica, Branka)

 \sim MAJKA(x, y) \vee \sim MAJKA(y, z) \vee BAKA(x, z) [12] ~KĆERKA(u, w) v MAJKA(w, u)
 [13] KĆERKA (Zorica, Branka)
 [14] ~MAJKA(x, y) v ~MAJKA(y, z) v B
 [15] ~BAKA(v, Zorica)

Izvodimo

[16] \sim MAJKA(x, y) $\vee \sim$ MAJKA(y, Zorica)	mgu={x/v, Zorica/z}, [I4] i [I5]
[17] ~KĆERKA(Zorica, y) v ~MAJKA(x, y) mgu={y/w, Zorica/u}, [12] i [16]	mgu={y/w, Zorica/u}, [12] i [16]
[18] ~MAJKA (x, Branka)	mgu={Branka/y} [I3] i [I7]
TIN [61]	mgu={Ankica/x} [11] i [18] 55

Uporaba rezolucije opovrgavanjem za odgovor na pitanje iz skupa premisa [11]-[14]

Tko je Zoričina baka?

baka od Zorice tj. ∃v (BAKA(v, Zorica)), nego nas zanima Ne zanima nas samo odgovor postoji li v tako da je v vrijednost varijable v

Postupak:

Svaka klauzula koja se dobije kao negacija cilja pretvara se u tautologiju. To se radi tako da klauzuli dodajemo negaciju svakog literala koji ona sadrži. (Ako je G(x) negacija cilja, tada je $G(x) \lor \neg G(x)$ tautologija)

 \sim MAJKA(x, y) \vee \sim MAJKA(y, z) \vee BAKA(x, z) ~BAKA(v, Zorica) v BAKA(v, Zorica) ~KĆERKA(u, w) < MAJKA(w, u) KĆERKA (Zorica, Branka) [J1] MAJKA(Ankica, Branka) [72] [J2] [J3] [74]

Sada ponavljamo potpuno isti postupak kao u dokazivanju formule ∃v(BAKA(v, Zorica)). Rezultat: umjesto NIL - odgovor na pitanje tko je Zoričina baka

1. \sim MAJKA(x, y) \vee \sim MAJKA(y, Zorica) \vee BAKA(x, Zorica)	mgu={x/v, Zorica/z}, [J4] i [J5]
2. ~KĆERKA(Zorica, y) v ~MAJKA(x, y) v BAKA(x, Zorica)	mgu={y/w, Zorica/u}, [J2] i [J6]
3. ~MAJKA (x, Branka) v BAKA(x, Zorica)	mgu={Branka/y} [J3] i [J7]
4. BAKA(Ankica, Zorica)	mgu={Ankica/x} [J1] i [J8]

Ankica je Zoričina baka

Primjer: Majmun i banane

U sobi se nalaze:

- majmun,
- stolica,
- banane koje vise sa sredine stropa, ali na visini koja nije na dohvat ruke majmunu.

Ako je majmun dovoljno bistar, on može:

- postaviti stolicu ispod snopa banana,
- popesti se na stolicu i
- dohvatiti banane.

Zadatak:

- 1. Uporabom FOPL prikaži činjenice iz svijeta "majmunbanane"
- Uporabom rezolucije opovrgavanjem dokaži da majmun može dohvatiti banane

- U kreiranju baze znanja važno je odrediti:
- sve relevantne objekte (majmun, banane, stolica, pod)
- odnose među njima (npr. banane nisu blizu poda, stolica se može pomaknuti ispod banana).
- Sve nevažno treba izostaviti (npr. prozori, vrata...)

KONSTANTE

pod, stolica, banana, majmun

VARIJABLE

x, y, z

PREDIKATI

MOŽE_DOHVATITI(x, y)
SPRETAN(x)
BLIZU(x, y)
JE_NA(x, y)

x može dohvatiti y x je spretan x je blizu y x je na y

ISPOD(x, y)

x je visok(a) x je ispod y

U SOBI(x)

VISOKA(x)

x je u sobi

MOŽE_POMAKNUTI_BLIZU(x, y, z) x može pomaknuti y blizu z

x se može popeti na y

AKSIOMI BAZE ZNANJA

MOŽE POPETI_NA(x, y)

U SOBI(banane)

U SOBI(stolica)

U_SOBI(majmun)

VISOKA(stolica)

SPRETAN(majmun)

MOŽE_POMAKNUTI_BLIZU(majmun, stolica, banane)

MOŽE_POPETI_NA(majmun, stolica)

~BLIZU(banane, pod)

U_SOBI(x) \land U_SOBI(y) \land U_SOBI(z) \land MOŽE_POMAKNUTI_BLIZU(x, y, z) \rightarrow BLIZU(z, pod) \lor ISPOD(y, z)

 $MO\check{Z}E_POPETI_NA(x, y) \rightarrow JE_NA(x, y)$

JE_NA(x, y) ∧ ISPOD(y, banane) ∧ VISOK(y) → BLIZU(x, banane)

SPRETAN(x) ∧ BLIZU(x, y) → MOŽE_DOHVATITI(x, y)

(uporabom De Morganovih zakona i ekvivalencije P ightarrowAksiomi se mogu pretvoriti u klauzalnu formu $Q = {}^{\sim}P \vee Q$

Klauzalni oblik baze znanja

- U_SOBI(banane)
 - U_SOBI(stolica)
- U_SOBI(majmun)
- VISOKA(stolica)
- SPRETAN(majmun)
- MOŽE_POMAKNUTI_BLIZU(majmun, stolica, banane)
- 7. MOŽE_POPETI_NA(majmun, stolica)
- ~BLIZU(banane, pod)
- MOŽE_POPETI_NA(x, y) ~ JE_NA(x, y)
- ~SPRETAN(x) \cdot ~BLIZU(x, y) \cdot MOŽE_DOHVATITI(x, y)
- ~JE_NA(x, y) < ~ISPOD(y, banane) < ~VISOK(y) < BLIZU(x, banane)
- ~U_SOBI(x) \circ ~U_SOBI(y) \circ ~U_SOBI(z) \circ \circ MOŽE_POMAKNUTI_BLIZU(x, y, z) \circ BLIZU(z, pod) \circ SPOD(y, z)
- MOŽE_DOHVATITI(majmun, banane) (negacija cilja) 13

Dokaz rezolucijom

14. ~MOŽE_POMAKNUTI_BLIZU(majmun, stolica, banane) ∨ BLIZU(banane, pod) v ISPOD(stolica, banane)

{majmun/x, stolica/y, banane/z}) (resolventa od [1], [2], [3] i [12] uz supstituciju

15. BLIZU(banane, pod) v ISPOD(stolica, banane)

(resolventa od [6], [14])

([8] i [15])

16. ISPOD(stolica, banane)

17. ~JE_NA(x, stolica) v ~VISOK(stolica) v BLIZU(x,banane) (supstitucija {stolica/y} i [16] i [11])

18. ~JE_NA(x, stolica) v BLIZU(x, banane) ([4] i [17])

19. ~JE_NA(majmun, stolica)

([6] i [2])

20. BLIZU(majmun, banane)

([18] i [19] supstitucija {majmun/x})

21. ~BLIZU(majmun, y) v MOŽE_DOHVATITI(majmun, y) ([10] i [5] supstitucija {majmun/x})

22. MOŽE_DOHVATITI(majmun, y)

([20] i [21] supstitucija {banane/y})

23. **(**

([13] i [22])

Ovaj dokaz nije vođen niti jednom posebnom strategijom suprotnom, puno nepotrebnih koraka može biti učinjeno. iako se vodilo računa o odabiru roditeljskih klauzula. I

Zadatak

Možete li komentirati koji su svi oblici rezolucije učinjeni kroz korake od [14] do [23]?

