Robust Vibration Localization with Swarm-Intelligent Systems

Swarm Intelligence Final Presentation Fall 2006

Nathan Evans
Jean-Christophe Fillion-Robin
{firstname.lastname}@epfl.ch

- Project Background
 - → Seismography + Swarm-Intelligent Systems
- Schematic Overview
- Multilateration
- Time Synchronization
- Data Acquisition / Processing
- Technical Limitations
- Results
- Future Research

Project Background (I)

Seismography

- Science of shock wave detection
- Seismographs

Project Background (II)

- Unique Seismographic Approach: Swarm-Intelligent Systems
- Advantages
 - Inexpensive individual units
 - Distributed nature
 - Improved accuracy
 - Robustness
- Obstacles
 - Communication / synchronization
 - Weak Computation

- Project Background
- Schematic Overview
 - → Experimental Setup
 - → Project Outline
- Multilateration
- Time Synchronization
- Data Acquisition / Processing
- Technical Limitations
- Results
- Future Research

Experimental Setup

System Schematic

- Project Background
- Schematic Overview
- Multilateration
 - → Formalisms
 - → Simplifications
 - → Finding solutions
- Time Synchronization
- Data Acquisition / Processing
- Technical Limitations
- Results
- Future Research

Multilateration (I)

Basic Principle:

 Given various receivers and their geographic coordinates, isolate signal origin using time difference of arrival (TDOA).

Formalism

- Robots: R_i
- Medium velocity: v_m
- Time of arrival (TOA)

- TDOA
$$T_{R12} = T_{R1} - T_{R2}$$

 $T_{R32} = T_{R3} - T_{R2}$

$$T_{RI} = \frac{1}{v_m} \sqrt{(x - x_{RI})^2 + (y - y_{RI})^2}$$

$$T_{R2} = \frac{1}{v_m} \sqrt{x^2 + y^2}$$

$$T_{R3} = \frac{1}{v_m} \sqrt{(x - x_{R3})^2 + (y - y_{R3})^2}$$

Multilateration (II)

- Assumptions
 - Stationary robots
 - Predetermined geographic locations
 - Homogeneous medium (constant v_m)
- Finding Solutions
 - Graphical
 - Bucher Method
 - Approximations

$$T_{R12} = T_{R1} - T_{R2}$$
 $T_{R32} = T_{R3} - T_{R2}$

$$T_{R12} = \frac{1}{v_{m}} \left[\sqrt{(x - x_{R1})^2 + (y - y_{R1})^2} - \sqrt{x^2 + y^2} \right]$$

$$T_{R32} = \frac{1}{v_m} \left[\sqrt{(x - x_{R3})^2 + (y - y_{R3})^2} - \sqrt{x^2 + y^2} \right]$$

Multilateration (III)

- Project Background
- Schematic Overview
- Multilateration
- Time Synchronization
 - → Necessity and Method
 - → Assumptions and Guarantee
- Data Acquisition / Processing
- Technical Limitations
- Results
- Future Research

Time Synchronization (I)

- Why synchronize?
 - Multilateration requires it!

Method

- (1) Robots "listen" on IR port for significant change
- (2) Flash robots with an intense flash of light
- (3) Disable interrupts
- (4) Change listening mode to "vibration detection"
- (5) Start counter
- (6) Re-enable interrupts
- (7) Acquire "significant" values, disable interrupts

Time Synchronization (II)

- Implicit Assumption
 - Light reaches each E-Puck at the "same time"
 - 300 km/s for distances less than 0.5m

- Time Synchrony Guarantees
 - Via PIC register manipulation, we sample IR channel at same frequency on each E-Puck
 - Combination of same controller and disabling of interrupts guarantees same code execution

- Project Background
- Schematic Overview
- Multilateration
- Time Synchronization
- Data Acquisition / Processing
 - → Pre-processing criteria
 - Communication to central unit
 - → Centralized processing
- Technical Limitations
- Results
- Future Research

Data Acquisition (I)

- What constitutes data as being "significant"?
 - Empirically-defined threshold
 - Not robust
 - Adaptive thresholding
 - Computationally expensive (floating point arithmetic)
 - Time Synchronization fails
 - Empirically-defined threshold + signal signature
 - Simple and sure to capture all important wave characteristics

Data Acquisition (II)

E-Puck on board process:

Pre-window buffer

Post-window buffer

Data Acquisition (III)

- Communication transmission order:
 - Turn E-Puck selector to "left"
- Pre/Post window buffer transmitted to CPU

Data Processing

Central processing schema

Central Processing Unit

- Project Background
- Schematic Overview
- Multilateration
- Time Synchronization
- Data Acquisition / Processing
- Technical Limitations
 - → Accelerometer woes...
- Results
- Future Research

Technical Limitations

- Micro controller
 - Emulated floating-point computation
- Autonomy
 - High power consumption
- Accelerometer bandwidth response !!!
 - $f_{-3db} = 150Hz$
 - Low-pass filter cuts out important frequency information
 - Timing information is inaccurate!

- Project Background
- Schematic Overview
- Multilateration
- Time Synchronization
- Data Acquisition / Processing
- Technical Limitations
- Results
 - → Medium velocity
 - → Triangular setup
- Future Research

Results: Medium Velocity (I)

- Shock wave velocity measurement
 - Material: wood composite
- Experimental Setup

Results: Medium Velocity (II)

Results: Medium Velocity (III)

Three experimental results

Experiment #	Measured Velocity
1	1697.1 m/s
2	802 m/s
3	752 m/s

- Clearly timing information is skewed!
- Wave alignment done manually because of improper timing.

Results: Multilateration (I)

Finding the epicenter

Results: Multilateration (II)

 Again, improper timing information (due to accelerometer readings) distorts multilateration results

- Project Background
- Schematic Overview
- Multilateration
- Time Synchronization
- Data Acquisition / Processing
- Technical Limitations
- Results
- Future Research

Future Research

- Hardware Changes
 - Appropriate signal capturing device
- Robot mobility
 - Honing in on "hot" epicenter zones
- Larger swarm size
 - Improved accuracy + analytical solution
 - Correlative models heterogeneous environments

Questions

References + Credits

References

- [1] Seismography. http://en.wikipedia.org/wiki/Seismograph
- [2] Multilateration. http://en.wikipedia.org/wiki/Multilateration
- [3] Bucher, Ralph. Exact Solution for Three Dimensional Hyperbolic Positioning Algorithm and Synthesizable VHDL Model for Hardware Implementation. New Jersey Center for Wireless and Telecommunication. http://ralph.bucher.home.att.net/project.html
- [4] B.T. Fang. Simple solutions for a hyperbolic and related position fixes. IEEE Trans. on Aerosp. and Elect. Systems, vol. 26, no. 5, pp. 748-753. Sept 1990.
- [5] Microchip: dsPIC30F6011/6012/6013/6014 Data Sheet.
- [6] Finwall, Bruce. Properties of Wood. Derby Tech. February, 1984. http://207.242.75.40/derbtech/wood.htm
- [7] Freescale Semiconductor: Accelerometer MMA7260Q-rev1 Data Sheet.
- [8] D T Pham. *Tangible Acoustic Interface Approaches*. Manufacturing Engineering Centre, Cardiff University, UK and Laboratoire Ondes et Acoustique, ESPCI, Paris, France.

Photos

[1] - http://www.wikipedia.org