Capitolo 1

Induzione strutturale

Introduzione

Sia A un insieme, sia \triangleleft una relazione binaria definita su A ($\triangleleft: A \times A$).

Def. \lhd è b.f. (ben fondata) se $\nexists \ldots \lhd a_i \lhd \ldots \lhd a_1 \lhd a_0$ ovvero non esistono catene infinite discendenti. (A, \lhd) è un insieme ben fondato se \lhd è b.f.

Sia \leq la chiusura riflessiva e transitiva di \leq b.f. su A.

Lemma 1. \leq non è mai b.f.

Dimostrazione. Sia $a_i \in A$. $\exists \ldots a_i \subseteq a_i \subseteq \ldots$

Def. Sia $a \in A$. $a \in minimale$ in A rispetto a \triangleleft se $\forall b \triangleleft a, b \notin A$.

Lemma 2. \lhd è ben fondato su A se e solo se ogni $B \subseteq A$ ha un elemento minimale rispetto $a \lhd$.

Dimostrazione. $\bullet \Rightarrow$) Da $B \subseteq A$ e (A, \lhd) b.f. si ha che non esiste ... $\lhd b_i \lhd$... $\lhd b_0$, quindi $\exists b_n$ t.c. $b_n \lhd \ldots \lhd b_i \lhd \ldots \lhd b_0$ ovvero b_n è minimale in B rispetto a \lhd .

• \Leftarrow) Per assurdo. Supponiamo che esista . . . $\lhd a_i \lhd$. . . $\lhd a_0$, ovvero $\neg(\lhd$ b.f.). Allora l'insieme $B = \{a_i | i \in \mathbb{N}\}$ (insieme degli elementi della sequenza) non ha un minimale, cosa che contraddice l'ipotesi. Quindi una tale sequenza non esiste, ovvero \lhd b.f.

1.1 Principio di induzione noetheriana

Teorema 1 (Principio di induzione noetheriana (prima forma)). Sia \mathcal{P} una proprietà su (A, \triangleleft) b.f. .

$$\forall a \in A.\mathcal{P}(a) \Leftrightarrow \forall a \in A.([\forall b \lhd a.\mathcal{P}(b)] \Rightarrow \mathcal{P}(a))$$

Dimostrazione. $\bullet \Rightarrow$) Ovvia.

• \Leftarrow) Per assurdo. Supponiamo

$$\forall a \in A.([\forall b \triangleleft a.\mathcal{P}(b)] \Leftarrow \mathcal{P}(a)) \tag{1.1}$$

е

$$\exists c \in A. \neg \mathcal{P}(c) \tag{1.2}$$

Sia $C = \{c \in A | \neg \mathcal{P}(c)\} \subseteq A$.

Per il lemma 2, $\exists \hat{c}$ minimale di C rispetto a \triangleleft , allora $\neg \mathcal{P}(\hat{c})$

Per \hat{c} minimale, $\forall b \lhd \hat{c}.b \notin C$, allora $\mathcal{P}(b)$, ovvero per (1.1) $\mathcal{P}(\hat{c})$

Def. base_A = $\{a \in A | a \text{ è minimale in } A \text{ rispetto a } \triangleleft \}$. Osserviamo che $\forall a \in \mathtt{base}_A, \forall b \in A.b \not \triangleleft a$.

Teorema 2 (Principio di induzione noetheriana - seconda forma). Sia \mathcal{P} una proprietà su (A, \triangleleft) b.f. .

$$\forall a \in A. \mathcal{P}(a) \Leftrightarrow \begin{pmatrix} \forall a \in \mathtt{base}_A. \mathcal{P}(a) \\ \land \\ \forall a \in (A \setminus \mathtt{base}_A). ([\forall b \lhd a. \mathcal{P}(b)] \Rightarrow \mathcal{P}(a)) \end{pmatrix}$$

Teorema 3 (Induzione matematica). Sia $A = \mathbb{N}$.

Sia $n \triangleleft m \Leftrightarrow m = n + 1$ $n, m \in \mathbb{N}$.

Osserviamo che \lhd è ben fondata: $0 \lhd 1 \lhd 2 \lhd \ldots$

 $Osserviamo base_{\mathbb{N}} = \{0\}.$

$$\forall m \in \mathbb{N}. \mathcal{P}(m) \Leftrightarrow \begin{pmatrix} \mathcal{P}(0) \\ \land \\ \forall m > 0. (\mathcal{P}(m-1) \Rightarrow \mathcal{P}(m)) \end{pmatrix}$$

Def. $a^{\triangleleft} = \{b \in A | b \triangleleft a\} \text{ con } (A, \triangleleft) \text{ b.f. }$

Def. Sia $f: A \to B$, sia $A' \subseteq A$. $f_{|A'} = \{(a, f(a)) | a \in A'\}$.

Teorema 4 (di ricorsione / delle definizione noetheriane). $Sia(A, \triangleleft)$ b.f.

$$\forall a \in A, \forall h : a^{\triangleleft} \to B.F(a,h) \in B$$

(F è detta operatore di composizione). Allora

$$\exists ! f: A \to B \text{ t.c. } \forall a \in A. f(a) = F(a, f_{|a|})$$

Esempio. Sia $A = \mathbb{N}$, sia $n \triangleleft m \Leftrightarrow m = n + 1$.

$$\mathtt{Fact}(n) = \begin{cases} 1 & \text{se } n = 0 \\ n \cdot \mathtt{Fact}(n-1) & \text{se } n > 0 \end{cases}$$

In questo caso, f = Fact e F è la moltiplicazione.

$$f(n) = F(n, f(n-1)) = n \cdot f(n-1)$$