Modeling Geospatial Machine Learning Problems

Amini Geospatial AI Series

Key Challenges of Geospatial Data

1. Data Volume

 High-resolution imagery, frequent acquisitions → big data storage & compute.

2. Complexity

Spatial, temporal, and spectral dimensions.

3. Domain-Specific Knowledge

 GIS expertise, remote sensing fundamentals, coordinate systems.

Geospatial data cube

Modelling Approaches

Geostatistical

- Kriging, variogram-based interpolation.
- Machine Learning Classical
 - Random Forest, XGBoost
- Deep Learning
 - CNN, RNN, 3D CNNs, Transformers, Diffusion Models

LULC Data Cube

Classical ML on "Flattened" Data Cubes

Treat each pixel (or grid cell) in the data cube as an independent sample, with each band/time step as a separate feature/column.

- Straightforward pipeline (raster → flatten → ML); easy to implement.
- Neglects spatial/contextual information and often temporal dependencies

Models

 Random Forest, Gradient Boosting, SVM, Logistic Regression, etc.

Use Cases

 Land cover classification, pixel-wise anomaly detection, basic regression tasks (e.g., yield prediction at the pixel level).

Geospatial Raster Stack

Spatiotemporal Modeling

• Models both spatial and temporal dependencies (e.g., changes over time at each location).

Approaches:

- CNN + RNN or CNN + LSTM pipeline: A CNN extracts spatial features, then an RNN (or LSTM, GRU) handles time series.
- Graph Neural Networks: If you think of pixels/regions as nodes with spatial adjacency, can be used for traffic or weather forecasting.

Use Cases:

- Weather prediction (e.g., Google's GraphCast), traffic flow/ETA, crop phenology monitoring through time-series imagery.
- Better captures the "when" as well as the "where" which is crucial for forecasting or event detection.

GraphCast: Al model for faster and more accurate global weather forecasting

14 NOVEMBER 2023

Remi Lam on behalf of the GraphCast team

Graphcast

Representation Learning

- Learning robust, reusable representations (embeddings) of data, often in an unsupervised or self-supervised way, before fine-tuning for a specific downstream task.
- Geospatial Foundation Models: Large-scale models trained on huge amounts of satellite imagery that can be fine-tuned for tasks like segmentation, classification, or object detection.
- Can drastically reduce labeled data requirements; the model "knows" a lot about generic geospatial features from large pretraining sets

Earth Foundation Models

Downscaling & Super-Resolution

Enhances resolution or translate coarse data into finer resolution imagery.

- Diffusion Models
- GANs (Generative Adversarial Networks)

Use Cases

 Upgrading coarse imagery for detailed mapping, bridging data from different sensors/resolutions.

Super resolution

Data Fusion / Multi-Modal Approaches

- Combine different data modalities (optical, radar, LiDAR, IoT sensor data, meteorological data) within a single model or pipeline.
- Each source adds complementary information (e.g., radar can penetrate clouds, optical offers spectral info, LiDAR provides height).

Approaches

- Feature-level fusion: Concatenate or colocate features from various sources.
- Model-level fusion: Separate backbones for each data type, merged at some layer.

Evaluation & Explainability

Uncertainty Quantification

• Guides risk-sensitive decisions (e.g flood management, crop failures).

Sources of Uncertainty

• Measurement noise (sensor, cloud), model assumptions, parameter variation.

Techniques

• Probabilistic models (Bayesian, Gaussian Processes), ensembles, MC Dropout in DL.

Visualization

Uncertainty maps, confidence intervals, calibration plots.

Conopy height uncerteinity quantification

Evaluation & Validation

Metrics

- Classification: Accuracy, F1, IoU.
- Regression: RMSE, MAE, R².
- Spatially aware metrics for boundary or object detection.

Cross-Validation Strategies

Spatial cross-validation, time-based splits.

Error Analysis

 Residual maps, identifying systematic spatial or spectral biases.

Model Interpretability

• Feature importance (SHAP), attention maps, domain expert feedback loops.

Visualizing attention maps