

NUMERICAL SOLUTION OF A SINGULAR INTEGRAL EQUATION ARISING FROM A SEQUENTIAL PROBABILITY RATIO TEST

Sherwood Samn

AEROSPACE MEDICINE DIRECTORATE
CLINICAL SCIENCES DIVISION
CLINICAL RESEARCH COORDINATION BRANCH
2507 Kennedy Circle
Brooks Air Force Base, TX 78235-5117

March 1995

Final Technical Report

Approved for public release; distribution is unlimited.

19950419 075

DITO QUALITY INEFFORED 5

AIR FORCE MATERIEL COMMAND BROOKS AIR FORCE BASE, TEXAS

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The Office of Public Affairs has reviewed this technical report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

SHERWOOD SAMN, Ph.D.

Project Scientist

JOE EDWARD BURTON, Colonel, USAF, MC, CFS

Chief, Clinical Sciences Division

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1204, Arington, VA 22202-4302, and to the Office of	i Management and budget, haperwork net	fuction i toject (0704-0100), 114	Simigron, DO 200		
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE March 1995	3. REPORT TYP Final	E AND DATE	S COVERED	
4. TITLE AND SUBTITLE	<u></u>		5. FUNDIN	G NUMBERS	
	Into and Counties Asiains	From a Cognoptial			
Numerical Solution of a Singula	ar integral Equation Ansing	From a Sequential		62202F	
Probability Ratio Test			PR -	7755	
,			TA -	28	
6. AUTHOR(S)	WU -	21			
İ			1		
Sherwood Samn			1		
Onorwood Gamer	1				
İ					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)				RMING ORGANIZATION	
Armstrong Laboratory (AFMC)				T NUMBER	
Arnstrong Laboratory (Armo) Aerospace Medicine Directorate			1 41/403	TD 1005 0000	
Clinical Sciences Division, Clin	ical Boscarch Coordination	Branch	ADAO-1	ΓR-1995-0020	
	ical nesearch coordination	Dianon			
2507 Kennedy Circle	005 5447		1		
Brooks Air Force Base, TX 78	235-5117				
9. SPONSORING/MONITORING AGEN	ICY NAMES(S) AND ADDRESS(I	ES)	10. SPONS	ORING/MONITORING AGENCY	
	• • • • • • • • • • • • • • • • • • • •	•	REPUR	TNUMBER	
			i		
			l .		
11. SUPPLEMENTARY NOTES			<u> </u>		
71. GOLT ELINEITIANT NOTES					
12a. DISTRIBUTION/AVAILABILITY ST	FATEMENT		10h DICTO	RIBUTION CODE	
12a. DISTRIBUTION/AVAILABILITY S	IAIEMENI		120. 01517	IIBU HON CODE	
			ŀ		
Approved for public release; distribution is unlimited.					
, ipproved to passe releases, as					
13. ABSTRACT (Maximum 200 words)					
,					
Integral equations arise nat	wells in problems in engine	poring and physics	and thair n	umarical colutions can be	
integral equations arise hat	urany in problems in engine	ering and physics, a	anu men n	differical solutions can be	
obtained directly using popular of	ommerciai soπware packag	es. The same cannot	be said of s	singular integral equations.	
This report proposes two numer	ical methods for solving a s	singular integral equa	ation that ar	rises in the computation of	
critical values for a sequential probability ratio test.					
Critical values for a sequential probability ratio tool.					
				•	
*					
14. SUBJECT TERMS			[1	15. NUMBER OF PAGES	
Numerical Solutions				20	
Sequential Probability Ratio Test			L		
Singular Integral Equation			1	16. PRICE CODE	
anigator integral adaption					
	OCCUPITY OF ACCIDINATION	La CECUPITY OF ACC	FICATION	20. LIMITATION OF ABSTRACT	
111 OEOO1111 OE010011 101111011 1111	SECURITY CLASSIFICATION	19. SECURITY CLASSI OF ABSTRACT	IFICATION		
OF REPORT Unclassified	OF THIS PAGE Unclassified	Unclassifie	d I	UL	
i unclassitied i	Uliciassilieu		u		

Contents

		Page
STATEMI	ENT OF PROBLEM	1 .
METHOD	OF SOLUTION	2
RESULTS	<u>. </u>	4
CONCLU	SIONS	5
References	3	5
APPENDI	X	7
	List of Figures	
Figure 1	Test Results	9
2	Determination of k and -b	10
3	q(y) at k* for two sigmas	11

Acces	ion For	v and			
NTIS	GRA&I	U			
DTIC :		므			
Unannounced \square					
Justification					
Ву					
Distribution/					
Availability Codes					
Avail and/or					
Dist	Spec	lah			
1					
N/		_ / G \$ V G \$ 9			
11.					

NUMERICAL SOLUTION OF A SINGULAR INTEGRAL EQUATION ARISING FROM A SEQUENTIAL PROBABILITY RATIO TEST

Sherwood Samn USAF Armstrong Laboratory

STATEMENT OF PROBLEM

In a recently derived sequential probability ratio test (SPRT) [1] to discriminate between the two simple hypotheses: $H_0: \sigma = \sigma_0$ and $H_1: \sigma = \sigma_1$ (0 < $\sigma_0 < \sigma_1$) the relevant probability distribution is given by

$$g_d(z;\sigma) = \begin{cases} \frac{1}{\sqrt{2\pi c}} \frac{1}{\sqrt{z+d}} e^{-\frac{z+d}{2c}}, & \text{for } z > -d \\ 0, & \text{otherwise.} \end{cases}$$

where $d = \ln \frac{\sigma_1}{\sigma_0} > 0$, and $c = c(\sigma) = \frac{\sigma^2}{2} \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2} \right) > 0$. The operating characteristic (OC), q, satisfies the integral equation [2]

$$q(-b;k,\sigma) = \int_{-\infty}^{b} g_d(z;\sigma) dz + \int_{0}^{k} g_d(z+b;\sigma) q(z;k,\sigma) dz, \qquad 0 < -b < k$$
 which in this case, with $y = -b$, reduces to

$$q(y;k,\sigma) = f_0(y;d,c) + c_1 \int_{k_0(y,d)}^k \frac{1}{\sqrt{z+d-y}} e^{-\frac{z+d-y}{2c}} q(z;k,\sigma) \, dz, \ 0 < y < k$$
(1)

where
$$k_0(y,d) = \max\{0, y-d\}, c_1 = c_1(\sigma) = \frac{1}{\sqrt{2\pi c(\sigma)}}$$
, and

$$f_0(y;d,c) = \left\{ egin{array}{ll} 2\Phi\left(\sqrt{rac{d-y}{c}}
ight) - 1, & ext{for } y < d, \ \ 0, & y \geq d. \end{array}
ight.$$

Here Φ is the distribution function of the standard normal distribution. The integral is singular for those values of y satisfying $k > y \ge d$.

For given values of α, β (0 < α, β < 1), σ_0 , and σ_1 (0 < σ_0 < σ_1), the problem is to find (unique) values (k^*, b^*) of (k, b) for which $q(-b^*; k^*, \sigma_0) = 1 - \alpha$, and $q(-b^*; k^*, \sigma_1) = \beta$.

METHOD OF SOLUTION

For given values of α, β (0 < α, β < 1), σ_0 , and σ_1 (0 < σ_0 < σ_1), let $b = b_{\alpha,\sigma_0}(k)$ denote the solution of $q(-b,k,\sigma_0) = 1-\alpha$, and $b = b_{\beta,\sigma_1}(k)$ the solution of $q(-b,k,\sigma_1) = \beta$. Then k^* will merely be the solution of $b_{\alpha,\sigma_0}(k) = b_{\beta,\sigma_1}(k)$. Once k^* is found, b^* is immediately given by $b^* = b_{\alpha,\sigma_0}(k^*)$. Thus, the basic problem is to solve Equation (1) for q(y) for each given k and σ .

By defining \tilde{q} as $qe^{-\frac{y}{2c}}$, \tilde{f}_0 as $f_0e^{-\frac{y}{2c}}$, and $c_2 = c_2(\sigma)$ as $c_1(\sigma)e^{-\frac{d}{2c(\sigma)}}$, Equation (1) becomes

$$\tilde{q}(y; k, \sigma) = \tilde{f}_0(y; d, c) + c_2 \int_{k_0(y, d)}^k \frac{\tilde{q}(z; k, \sigma)}{\sqrt{z + d - y}} dz, \ 0 < y < k$$
 (2)

With the change of variable s = k - z in the integral, Equation (2) becomes

$$\tilde{q}(y;k,\sigma) = \tilde{f}_0(y;d,c) + c_2 \int_0^{k-k_0(y,d)} \frac{\tilde{q}(k-s;k,\sigma)}{\sqrt{k+d-y-s}} ds, \ 0 < y < k$$
 (3)

Or,

$$\tilde{q}(y;k,\sigma) = \tilde{f}_0(y;d,c) + c_2 \begin{cases} \int_0^k \frac{\tilde{q}(k-s;k,\sigma)}{\sqrt{k+d-y-s}} ds, & 0 < y < \min\{d,k\} \\ \int_0^{k+d-y} \frac{\tilde{q}(k-s;k,\sigma)}{\sqrt{k+d-y-s}} ds, & d \le y < k \end{cases}$$
(4)

This integral equation is solved numerically. We have used two different methods. The first method solves the problem by interpolating the numerator in Equation (4) on each appropriate sub-interval by a quadratic polynomial and then integrating the resulting integrand to obtain a set of weights for the numerical scheme. Details of this method can be found in the Appendix. This method is relatively easy to implement and does not rely on any special software routines other than a solver for a system of linear equations.

The second method makes indirect use of special software routines available commercially. Here the sought function $\tilde{q}(y)$ is discretized on the interval [0,k] to yield the approximations \hat{q}_n of $\tilde{q}(nh), (n=0,1,\ldots,N)$, where h is the (uniform) mesh size and k=Nh. Because the integral equation (4) is only (weakly) singular when $d \leq y < k$, the manner in which it is discretized depends on y. For $y < \min\{d,k\}$, and using Adams method and Backward Differentiation Formulae method [3], one obtains a set of $N_1(=\min\{n_d=d/h,N\})$ equations of the form

$$\hat{q}_i = \tilde{f}_0(ih) + c_2 h \left\{ \sum_{j=0}^{p_1 - 1} \frac{W_{N,j} \hat{q}_{N-j}}{\sqrt{(N - i + n_d - j)h}} + \sum_{j=p_1}^{N} \frac{\omega_{N-j} \hat{q}_{N-j}}{\sqrt{(N - i + n_d - j)h}} \right\}$$
(5)

for $i = 0, 1, ..., N_1$. Here W and ω are the appropriate starting and convolution weights of the method respectively [3], and p_1 is the order of the method which we took to be 4.

For $y \geq d$ and using a different Backward Differentiation Formulae method [4], one obtains a set of $N - N_1$ equations of the form

$$\hat{q}_i = \tilde{f}_0(ih) + c_2 \sqrt{\pi h} \left\{ \sum_{j=0}^{2p_2 - 2} W_{N+n_d-i,j}^a \hat{q}_{N-j} + \sum_{j=2p_2 - 1}^{N+n_d-i} \omega_{N+n_d-i-j}^a \hat{q}_{N-j} \right\}$$
 (6)

for $i = N_1 + 1, ..., N$. Here W^a and ω^a are appropriate fractional starting and fractional convolution weights of the method respectively [4], and p_2 is the order of the BDF method which we took to be 4. The weights in both Equation (5) and Equation (6) are obtained from appropriate NAG routines. The two sets of equations constitute a set of N+1 linear equations in the N+1 unknowns $\{\hat{q}_i\}_{i=0}^N$. It can be solved using any number of standard linear equation solvers. We used one of IMSL's routines [5].

RESULTS

On the test problem (to be described) as well as the actual problem, the two numerical methods have yielded similar results. Thus we will not distinguish the two in the following discussion.

We tested the numerical method above on a simple problem whose analytical solution is known. The problem consists of solving Equation 1 with a new f_0 given by

$$f_0(y;d,c) = e^{\frac{y}{2c}} \left\{ 1 - 2c_2(\sqrt{k+d-y} - \sqrt{\max\{0,y-d\} - (y-d)}) \right\}$$
 (7)

The analytical solution for this problem is simply

$$q(y;k,\sigma)=e^{\frac{y}{2c}},$$

or,

$$\tilde{q}(y;k,\sigma) \equiv 1$$

The numerical result of solving this simple problem is displayed in Figure 1. Here \tilde{q} is plotted against y. In this particular test, the parameters are $k=4,\sigma_0=1,\sigma_1=2$. $\tilde{q}(y;k,\sigma)$ was calculated twice, once for $\sigma=1$ and once for $\sigma=2$. Both of these are shown in Figure 1. As the analytical solution of \tilde{q} does not depend on σ , they are exactly the same, and represent faithfully the analytical solution $\tilde{q}\equiv 1$. Note, however, that if we had plotted $q=\tilde{q}e^{\frac{y}{2c}}=e^{\frac{y}{2c}}$ instead, the two would definitely be different, since $c=c(\sigma)$ is a function of σ .

To illustrate how this method solves the real problem (Equation 1), we pick $\sigma_0 = 1$ in the null hypothesis H_0 and $\sigma_1 = 1.2$ in the alternative hypothesis H_1 . Assuming $\alpha = 0.05$ and $\beta = 0.1$, we calculated the curves (in the k-y plane) $q(y; k, \sigma_0) = 1 - \alpha$ and $q(y; k, \sigma_1) = \beta$. These are displayed in Figure 2. These curves intersect at $(k^*, y^*) = (4.75, 2.18)$. Finally, in Figure 3, we plotted $q(y; k^*, \sigma_0)$ and $q(y; k^*, \sigma_1)$. Indeed, when $y = y^*$, $q(y, k^*, \sigma_0) = 0.95$ and $q(y, k^*, \sigma_1) = 0.10$.

CONCLUSION

In this paper, we have proposed two numerical methods to solve a singular integral equation which arose in the study of a certain Sequential Probability Ratio Test. One method uses an easily-implemented scheme and the other method involves casting the singular portion of the problem into a weakly singular equation of Abel type and making use of proven software for this type of equation ([6] as implemented by NAG [4]) to solve the problem. Both methods have yielded similar results when tested (successfully) on a simple problem and when applied to the real problem.

References

- [1] Chou, Y. M., Anderson, M., and Samn, S. (In preparation) 1994.
- [2] Ghosh, B. K. Sequential Tests of Statistical Hypotheses. Addison-Wesley Publishing Company, 1970.
- [3] NAG Fortran Library Routine D05BWF.
- [4] NAG Fortran Library Routine D05BYF.
- [5] IMSL MATH/LIBRARY, Routine LSARG.
- [6] Lubich, Ch. Discretized Fractional Calculus. SIAM J. Math. Anal. 17, pp. 704-719, 1986.

APPENDIX

A Simple Method for Solving Weakly Singular Integrals

In solving Equation (4), the main difficulty is solving a weakly singular integral of the form

$$\int_{a}^{b} \frac{f(x)}{(x-c)^{\alpha}} dx \tag{A.1}$$

where $\alpha < 1$ and $c \le a < b$. For the problem in this paper $\alpha = \frac{1}{2}$. If we interpolate f(x) with a (the) polynomial $P(x) = \sum_{k=0}^{n} a_k x^k$ of degree n at the points $a = x_0 < x_1 < \cdots < x_n = b$, then the integral in (A.1) can be approximated by

$$\int_{a}^{b} \frac{\sum_{k=0}^{n} a_{k} x^{k}}{(x-c)^{\alpha}} dx = \sum_{k=0}^{n} a_{k} \int_{a}^{b} \frac{x^{k}}{(x-c)^{\alpha}} dx = \sum_{k=0}^{n} a_{k} w_{k} = \mathbf{w}^{T} \mathbf{a}, \quad (A.2)$$

where

$$w_k = \int_a^b \frac{x^k}{(x-c)^\alpha} \, dx,$$

 $\mathbf{w} = (w_0, \dots, w_n)^T$, and $\mathbf{a} = (a_0, \dots, a_n)^T$. It is straight forward to show that

$$w_k = Q_k(b,c) - Q_k(a,c),$$

where for all $y \leq x$,

$$Q_k(x,y) = \sum_{i=0}^k \frac{\binom{k}{i}}{i+1-\alpha} y^{k-i} (x-y)^{i+1-\alpha}.$$

Since the polynomial $P(x) = \sum_{k=0}^{n} a_k x^k$ interpolates f(x) at the n+1 points x_0, \ldots, x_n , each a_k depends only on $\{x_i\}_{i=0}^n$ and $\{f(x_i)\}_{i=0}^n$. In fact, if **V** is the Vandermonde matrix corresponding to $\{x_i\}_{i=0}^n$, then

$$\mathbf{Va} = \mathbf{f},\tag{A.3}$$

where $\mathbf{f} = (f(x_0), \dots, f(x_n))^T$. Recall the Vandermonde matrix corresponding to $\{x_i\}_{i=0}^n$ is

$$\mathbf{V} = \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}$$

Now by combining Equations (A.2) and (A.3), an approximation to the integral in (A.1) can be written compactly as

$$\mathbf{w}^T \mathbf{V}^{-1} \mathbf{f} \tag{A.4}$$

In solving Equation 4, we have chosen the degree n of the interpolating polynomial P(x) to be 3. We could have easily chosen it to be any other larger integer. By repeatedly using Equation (A.4) on successive sets of n+1 mesh points in a chosen partition $\{0=x_0,x_1,\ldots,x_N=k\}$ of the interval [0,k] (see Equation (4)), we immediately obtain a system of N+1 linear equations in the N+1 unknowns $\{f(x_0),f(x_1),\ldots,f(x_N)\}$. This system can now be solved by using any standard system of linear equations solver.

Figure 1. Test Results

Figure 3. q(y) at k^* for two sigmas

