HOMEWORK 3

1.

(1) Write Newton-Raphson algorithm to estimate logistic regression.

Reminder: you need to derive the equation

$$\frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^{\top}} = -\sum_i x_i x_i^{\top} p(x_i; \beta) \{ 1 - p(x_i; \beta) \}. \tag{0.1}$$

Generate $X = (1, X_1, X_2)$, where $X_j \sim N(0, I_N)$.

Set true parameter $\beta = (0.5, 1.2, -1)^{\top}$.

Set N = 200, 500, 800, 1000.

Estimate β using NR algorithm for R=200 rounds of simulation. For each round of simulation, terminate the iteration when $\max_j |\widehat{\beta}_j^{old} - \widehat{\beta}_j^{new}| < 10^{-5}$. Denote $\widehat{\beta}_j^{(r)}$ as the estimation of β_j in the rth round of simulation. Then please: for each j, draw $(\widehat{\beta}_j^{(r)} - \beta_j)$ in boxplot for N=200,500,800,1000.

(2) 假设有 m^+ 个正例和 m^- 个负例,令 D^+ 与 D^- 分别表示正例、负例集合。定义排序"损失"如下:

$$\ell_{rank} = \frac{1}{m^+ m^-} \sum_{x^+ \in D^+} \sum_{x^- \in D^-} \left(I(f(x^+) < f(x^-)) + \frac{1}{2} I(f(x^+) = f(x^-)) \right) \tag{0.2}$$

理解: 若正例的预测值小于负例,则记一个"罚分",若相等,则记 0.5 个罚分。定义 AUC:

$$AUC = 1 - \ell_{rank}. (0.3)$$

考虑一种简单的情况,即当数据中不存在 $f(x^+)=f(x^-)$ 时,定义排序"损失"如下

$$\ell_{rank} = \frac{1}{m^+ m^-} \sum_{x^+ \in D^+} \sum_{x^- \in D^-} \left(I(f(x^+) < f(x^-)) \right) \tag{0.4}$$

试证明以上定义的 AUC 即有限样本下 ROC 曲线下方的面积。

- 2. 客户流失预警数据分析及算法实现,编程语言可以使用 R/python。
- 针对附录中描述的客户流失预警数据,完成以下任务:
- (1) 读入训练数据;
- (2) 绘制因变量和各个自变量的箱线图 (提示:可以对右偏分布的数据取对数);
- (3) 以是否流失为因变量,对自变量进行标准化(使其均值为 0, 方差为 1, 提示:在 R 中可使用 scale 函数),建立逻辑回归模型,给出系数估计结果,并对结果进行解读(提示:使用 glm()函数建立逻辑回归模型);
- (4) 使用建立好的逻辑回归模型,分别对训练集和测试集进行预测,得到每个用户的预测流失概率值(提示:使用 predict()函数进行预测);
- (5) 借助问题 4 中预测的结果,分别绘制训练集和测试集上预测结果的 ROC 曲线,计算相应的 AUC 值,并根据 ROC 曲线和 AUC 值对模型进行评价(提示:使用 R包 pROC 中的 plot.roc() 函数绘制 ROC 曲线)。

提交时间: 10 月 28 日, 18:30 之前。请预留一定的时间,迟交作业扣 3 分, 作业抄袭 0 分。

附:客户流失预警数据集介绍

• 训练数据集: sampledata.csv

• 测试数据集: predata.csv

数据文件来自国内某运营商,数据已经进行了清理,数据集中的变量包括:是否流失(churn)、在网时长(tenure)、当月花费(expense)、个体的度(degree)、联系强度(tightness)、个体信息熵(entropy)、个体度的变化(chgdegree)、花费的变化(chgexpense) 共 8 个变量。具体的变量说明表如下所示:

	变量名		详细说明	备注
因变量 (下月)	churn	是否流失	1=流失 0=不流失	流失率 1.25%
自变量(当月)	tenure	在网时长	连续变量 单位:天	客户从入网到截止数据提取日期时在网时间
	expense	当月花费	连续变量 单位:元	客户在提取月份时的花费总额
	degree	个体的度	连续变量 单位:人数	和客户通话的总人数,去重之后的呼入与呼出加 总
	tightness	联系强度	连续变量 分钟/人	通话总时间除以总人数
	entropy	个体信息熵	连续变量	$E_i = -\sum_{a_{ij}=1} p_{ij} * \log(p_{ij})$,其中 E_i 为个体 i 的信息熵, $a_{ij}=1$ 代表个体 i 和 i 通话的分钟数据占 i 总通话分钟的比例
	chgdegree	个体度的变化	连续变量 单位:%	(本月个体的度-上月个体的度)/上月个体的度
	chgexpense	花费的变化	连续变量 单位:%	(本月花费-上月花费)/上月花费