With
$$\hat{\beta} := \frac{1}{2} (\hat{\mathbf{I}} + r_{x} \hat{\sigma}_{x} + r_{y} \hat{\sigma}_{y} + r_{z} \hat{\sigma}_{z})$$
, $\hat{\beta} := \frac{1}{2} (\hat{\mathbf{I}} + \hat{\mathbf{I}}_{z} \hat{\mathbf{I}}_{x} - \hat{\mathbf{I}}_{y})$
 $\langle \sigma_{z} \rangle = \text{Tr}(\hat{\beta} \hat{\sigma}_{z})$

- #1: Model $\hat{\rho}_f$ For phase f_{ip} : $\hat{\rho}_f = (1-\lambda)\hat{\rho}_i + \lambda \hat{\sigma}_z \hat{\rho}_i \hat{\sigma}_z$ and colonate $\langle \sigma_{xf} \rangle$, $\langle \sigma_{yf} \rangle$, $\langle \sigma_{zf} \rangle$
- #2: Model \hat{p}_f for depolarizing channel: $\hat{p}_f = (1-\lambda) \text{ Tr}[\hat{p}_f] \hat{1} + \hat{p}_f$: and calculate $\langle \sigma_{xf} \rangle$, $\langle \sigma_{yf} \rangle$, $\langle \sigma_{zf} \rangle$