Dendrograma

Ana Karen Martínez Marín

12/5/2022

Dendrograma

Es un diagrama de árbol que muestra los grupos que se forman al crear conglomerados de observaciones en cada paso y sus niveles de similitud.

Para esta práctica se ocupó una base de datos de la librería cluster.datasets

Se cargan las librerías que se necesitan.

```
library(cluster.datasets)
library(dendextend)
```

Base de datos

```
data("all.mammals.milk.1956")
AMM=all.mammals.milk.1956
```

Se usará el data set de "all.mammals.milk.1956", el cual contiene datos sobre la leche de diferentes especies de animales.

Revisión de la base de datos

Dimensión

dim(AMM)

```
## [1] 25 6
```

Esta base contiene 25 observaciones y 6 variables

• Datos faltantes

anyNA(AMM)

```
## [1] FALSE
```

La búsqueda arroja que no hay datos nulos, así que se prosegue con el análisis.

• Tipo de variables

str(AMM)

```
## 'data.frame': 25 obs. of 6 variables:
## $ name : chr "Horse" "Orangutan" "Monkey" "Donkey" ...
## $ water : num 90.1 88.5 88.4 90.3 90.4 87.7 86.9 82.1 81.9 81.6 ...
## $ protein: num 2.6 1.4 2.2 1.7 0.6 3.5 4.8 5.9 7.4 10.1 ...
## $ fat : num 1 3.5 2.7 1.4 4.5 3.4 1.7 7.9 7.2 6.3 ...
## $ lactose: num 6.9 6 6.4 6.2 4.4 4.8 5.7 4.7 2.7 4.4 ...
```

```
## $ ash : num 0.35 0.24 0.18 0.4 0.1 0.71 0.9 0.78 0.85 0.75 ...
```

En la base hay 5 variables numéricas y una de tipo caracter, en donde se encuentra registrado el nombre de los animales. En las numéricas está la cantidad de proteína, nivel de agua, grasa, lactosa y los minerales de la leche.

Cálculo de la matriz de distancias de Mahalonobis.

```
dist.AMM<-dist(AMM[,2:6])</pre>
```

Se calcula la distancia de Mahalanobis para las variables dos a la seis, que son variables numéricas.

Con la distancia de Mahalanobis se calcula la similitud que existe entre las variables teniendo en cuenta la correlación que hay entre ellas.

Redondeo

Se realiza un redondeo de los cálculos de la distancia de Mahalanobis y se convierte a una matriz, se proyecta e indica que sólo se usarán los primeros 6 individuos, así que se especifica la selección de las 6 filas y 6 columnas pertenecientes a dichos individuos.

Calculo del dendrograma

5 4.759 2.798 3.716 3.763 0.000 4.176 ## 6 4.107 2.592 2.348 4.007 4.176 0.000

```
dend.AMM<-as.dendrogram(hclust(dist.AMM))</pre>
```

Se calcula el Dendograma, donde se hace uso del método de agrupación por Clústers "hclust", el cual ofrece una agrupación jerárquica.

Gráfico del dendrograma

Se hace un vector para las etiquetas que le asignarán al Dendograma.

```
L=labels(dend.AMM)
labels(dend.AMM)=AMM$name[L]
```

Se grafica el Dendograma añadiendo las etiquedas anteriormente realizadas.

```
dend.AMM %>%
  set(what="labels_col", "blue") %>% #Colores etiqueta
  set(what="labels_cex", 0.8) %>%
  plot(main="Dendrograma de mamíferos")
```

Dendrograma de mamíferos

Visualizando el gráfico permite observar cómo se forman dos grupos princialmente, en donde la leche de la foca y el delfín es muy distinta al resto de los animales. El otro grupo está sub-dividido por otros dos grandes grupos, donde éstos se van ramificando y clasificando por las características muy similares y específicas que tiene la leche de cada uno de los animales, por ejemplo la leche de la ballena(whale), reno(reindeer) y ciervo(deer), la leche es muy parecida.