

MLGSA PROJECT KO – KL

Prepared by:

Prof. Dr. Michael Hinze M.Sc Rajit Sanghvi

Newton multigrid method for solving parabolic optimal control problems

NEWTON'S METHOD - OVERVIEW

Minimize
$$J(y, u)$$
 s. t $A(u, \theta) = R$
 $L := J - p(A(u, \theta) - R)$

Optimality conditions:

$$L_p : A(u, \theta) = R$$

$$L_u : A_u(u, \theta)p = J_u(u, \theta)$$

$$L_\theta : J_\theta(u, \theta)p = A_\theta(u, \theta)p$$

$$G := \begin{bmatrix} A(u,\theta) - R \\ A_u(u,\theta)p - J_u(u,\theta) \\ J_{\theta}(u,\theta)p - A_{\theta}(u,\theta)p \end{bmatrix} = 0$$

Newton step will take the following form,

$$G' \begin{bmatrix} \delta u \\ \delta p \\ \delta \theta \end{bmatrix} = -G$$

Final update,

$$\begin{pmatrix} y \\ p \\ \theta \end{pmatrix}_{iim} = \begin{pmatrix} y \\ p \\ \theta \end{pmatrix}_{iim} + \begin{bmatrix} \delta y \\ \delta p \\ \delta \theta \end{bmatrix}$$

Consider the following optimal control problem (P)

Minimize J(y, u)

$$\begin{aligned}
-\partial_t y + \sigma \Delta y &= u & \text{in } Q &= \Omega x (0, T) \\
y(x, 0) &= y^0 & \text{in } \Omega \\
y(x, t) &= 0 & \text{on } \Sigma &= \Gamma x (0, T)
\end{aligned}$$

$$J(y,u) := \frac{\alpha}{2} ||y - z||^2 + \frac{\beta}{2} ||y(\cdot,T) - z(\cdot,T)||^2 + \frac{\nu}{2} ||u||^2$$

Optimality system

Aw = f
$$\begin{cases} -\partial_t y + \sigma \Delta y = u & y(x,0) = y^0 \\ \partial_t p + \sigma \Delta p + \alpha (y - z) = 0 & p(x,T) = \beta (y(x,T) - z(x,T)) \\ vu - p = 0 \end{cases}$$

$$G := f - Aw = 0$$

The multigrid and the Newton solver

The Newton algorithm in space and time can be written in defect correction form as follows:

$$w_{i+1} := w_i + M^{-1}(f - Aw_i);$$

with M being the Fréchet derivative or Jacobian matrix of the operator A.

$$A_{m} = \begin{bmatrix} \left(-\frac{I}{\Delta t} + \sigma \Delta \right) & -\frac{1}{v} \\ \alpha & \left(-\frac{I}{\Delta t} + \sigma \Delta \right) \end{bmatrix} \qquad B_{m} = \begin{bmatrix} \frac{1}{\Delta t} & 0 \\ 0 & 0 \end{bmatrix} \qquad C_{m} = \begin{bmatrix} 0 & 0 \\ 0 & \frac{1}{\Delta t} \end{bmatrix} \qquad A_{N_{t}} = \begin{bmatrix} \left(-\frac{I}{\Delta t} + \sigma \Delta \right) & -\frac{1}{v} \\ \beta & 1 \end{bmatrix}$$

State equation:

$$-\left(\frac{y_{ijm} - y_{ijm-1}}{\delta t}\right) + \sigma\left(\frac{y_{i+1jm} + y_{i-1jm} + y_{ij-1m} + y_{ij+1m} - 4y_{ijm}}{\delta t}\right) - \frac{p_{ijm}}{v} = 0$$

$$-[1+4\sigma]y_{ijm} + \sigma \left(y_{i+1jm} + y_{i-1jm} + y_{ij-1m} + y_{ij+1m} - 4y_{ijm}\right) + y_{ijm-1} - \frac{\delta t \, p_{ijm}}{v} = 0$$

Adjoint equation:
$$\left(\frac{p_{ijm+1} - p_{ijm}}{\delta t} \right) + \sigma \left(\frac{p_{i+1jm} + p_{i-1jm} + p_{ij-1m} + p_{ij+1m} - 4p_{ijm}}{\delta t} \right) + \alpha \left(y_{ijm} - z_{ijm} \right) = 0$$

$$-[1+4\sigma]p_{ijm} + \sigma(p_{i+1jm} + p_{i-1jm} + p_{ij-1m} + p_{ij+1m} - 4p_{ijm}) + p_{ijm+1} + \delta t\alpha(y_{ijm} - z_{ijm}) = 0$$

Collective smoothing step:

$$\binom{y}{p}_{ijm} = \binom{y}{p}_{ijm} + M_{ijm}^{-1} \binom{r_y}{r_p}_{ijm}$$

Where,

$$M_{ijm} = \begin{bmatrix} -(1+4\sigma) & -\frac{\delta t}{v} \\ \delta t \alpha & -(1+4\sigma) \end{bmatrix}_{ijm}$$

$${y \choose p}_{ijm} = {y \choose p}_{ijm} + \begin{bmatrix} -(1+4\sigma) & -\frac{\delta t}{v} \\ \delta t \alpha & -(1+4\sigma) \end{bmatrix} \int_{ijm}^{-1} {r_y \choose r_p}_{ijm}$$

Considering the discrete optimality systems at any i, j and for all time steps, a block – tridiagonal system is obtained

$$W = (\delta y_0, \delta p_0, \delta y_1, \delta p_0, \dots, \delta y_N, \delta p_N)$$

$$M w_i = r_i$$

$$C_{N_{t-1}}$$

$$B_{N_t} \quad A_{N_t}$$

$$A_{m} = \begin{bmatrix} -(1+4\sigma) & -\frac{\delta t}{v} \\ \delta t \alpha & -(1+4\sigma) \end{bmatrix} \qquad B_{m} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad C_{m} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \qquad A_{N_{t}} = \begin{bmatrix} -(1+4\sigma) & -\frac{\delta t}{v} \\ \beta & -1 \end{bmatrix}$$

$$C_m = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$w = \begin{bmatrix} \delta y_0 \\ \delta p_0 \\ \delta y_1 \\ \delta p_1 \\ \vdots \\ \delta y_{N_t} \\ \delta p_{N_t} \end{bmatrix}$$

$$A_{N_t} = \begin{bmatrix} -(1+4\sigma) & -\frac{\delta t}{\upsilon} \\ \beta & -1 \end{bmatrix}$$
$$\beta(y_h^m - z_h^m) - p_h^m = 0$$

The multigrid solver to solve error equation

$$M w_i = r_i$$

Algorithm: Space-time multigrid

return w

End function

```
Function SpaceTimeMultigrid(w,r,k)

If (k = 1) then
return M^{-1}r

End if

While (not converged) do
w \leftarrow S(M^k, w, r, NSMpre)
d \leftarrow R(r - M^k w)
w \leftarrow w + I(SpaceTimeMultigrid(0; d; k - 1))
w \leftarrow S(M^k, w, r, NSMpost)
end while
```

presmoothing restriction. prolongation postsmoothing

SMOOTHING OPERATORS

Classical iterative schemes are based on a fixed point iteration for solving the linear system of equations.

$$Au = f$$
$$A = M - N$$

> The Jacobi and Damped Jacobi Method, M = diag(A) = D

$$u^{m+1} = u^m + \omega D^{-1} r^m$$

THE GAUSS-SEIDEL METHOD AND THE SOR METHOD

Gauss seidel.

$$M = D + L$$
and $N = -U$

SOR Method

$$M = \omega^{-1}D + L \text{ and } N = \omega^{-1}D - (D - U)$$

FORWARD-BACKWARD BLOCK-SOR SMOOTHER

```
Function FBSORSmoother (M^k, w, r, NSM)
       r \leftarrow r - M^k w
       \mathbf{x} \leftarrow 0
        for i = 1 to NSM do
                \mathbf{x}^{old} \leftarrow \mathbf{x}
                 for i = 0 to N do
                        d_i \leftarrow r_i - \widetilde{M}_i \left( \omega x_{i-1} + (1 - \omega) x_{i-1}^{old} \right) - M_i^k x_i^{old} - \widehat{M}_i x_{i+1}^{old}
                        x_i \leftarrow x_i^{old} + (M_i^k)^{-1} d_i
                end for
                \mathbf{x}^{old} \leftarrow \mathbf{x}
                for i = N downto 0 do
                        d_i \leftarrow r_i - \widetilde{M}_i x_{i-1}^{old} - M_i^k x_i^{old} - \widehat{M}_i (\omega x_{i+1} + (1-\omega) x_{i+1}^{old})
                                                                                                                                    Backward in time
                        x_i \leftarrow x_i^{old} + (M_i^k)^{-1} d_i
                end for
        end for
         w \leftarrow w + x
        return w
End function
```


2. Model problem 2 (P_{con})

Minimize J(y, u)

$$\partial_t y - y'' + u y = 0$$
 in $Q = \Omega x (0, T)$
 $y(x, 0) = y^0$ in Ω
 $y(x, t) = 0$ on $\Sigma = \Gamma x (0, T)$

$$J(y,u) := \frac{1}{2}||y-z||^2 + \frac{v}{2}||u||^2$$

Optimality system in terms of projections

$$\partial_t y - y'' + uy = 0$$

$$-\partial_t p - p'' + up = (y - z)$$

$$y(x, 0) = y^0$$

$$p(x, T) = 0$$

$$vu - py = 0$$

and conditions

$$u \in U_{ad} \coloneqq \{u \in L^2(Q) \colon u_a \le u \le u_b \text{ a.e in } Q\},$$

$$u = P_{[a,b]} \left\{ -\frac{py}{v} \right\}$$

1. Model problem 1 (P)

Minimize J(y, u)

$$\partial_t y - y'' = u$$
 in $Q = \Omega x (0, T)$
 $y(x, 0) = y^0$ in Ω
 $y(x, t) = 0$ on $\Sigma = \Gamma x (0, T)$

$$J(y,u) := \frac{1}{2}||y-z||^2 + \frac{\beta}{2}||y(\cdot,T)-z(\cdot,T)||^2 + \frac{\nu}{2}||u||^2$$

Optimality system

$$Aw = f$$

$$\begin{cases}
\partial_t y - y'' = u & y(x,0) = y^0 \\
-\partial_t p - p'' = (y - z) & p(x,T) = \beta(y(\cdot,T) - z(\cdot,T)) \\
vu + p = 0
\end{cases}$$

$$G := f - Aw = 0$$

State equation:

$$\left(\frac{y_{im+1} - y_{im}}{\delta t}\right) - D \quad y_{im+1} = u_{im+1}$$

$$0 \le m \le N-1$$

$$\left(\frac{1}{\delta t} - D\right) y_{im+1} - \frac{1}{\delta t} y_{im} = u_{im+1}$$

$$\begin{bmatrix} \left(\frac{1}{\delta t} - D\right) \\ -\frac{1}{\delta t} & \left(\frac{1}{\delta t} - D\right) \\ \vdots & \vdots & \vdots \\ -\frac{1}{\delta t} & \left(\frac{1}{\delta t} - D\right) \end{bmatrix} \begin{bmatrix} y_{i0} \\ y_{i1} \\ y_{i2} \\ \vdots \\ y_{iN} \end{bmatrix} = \begin{bmatrix} \left(\frac{1}{\delta t} - D\right) y^0 \\ u_{i1} \\ u_{i2} \\ \vdots \\ u_{iN} \end{bmatrix}$$

Adjoint equation:
$$-\partial_t p - p'' = (y - z)$$

$$\begin{bmatrix} \left(\frac{1}{\delta t} - D\right) & -\frac{1}{\delta t} \\ \left(\frac{1}{\delta t} - D\right) & \cdot \\ -\frac{1}{\delta t} \\ \left(\frac{1}{\delta t} - D\right) \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ \vdots \\ p_N \end{bmatrix} = \begin{bmatrix} y_0 - z_0 \\ y_1 - z_1 \\ y_2 - z_2 \\ \vdots \\ \beta(y_N - z_N) \end{bmatrix}$$

$$\left(\frac{1}{\delta t} - D\right) p_0 - \frac{1}{\delta t} p_1 = y_0 - z_0$$

$$\left(\frac{1}{\delta t} - D\right) p_{N-1} - \frac{1}{\delta t} p_N = y_{N-1} - z_{N-1}$$

$$-\left(\frac{p_{im}-p_{im-1}}{\delta t}\right)-D \ p_{im-1}=y_{im-1}-z_{im-1}$$

 $1 \le m \le N$

$$A = \begin{bmatrix} \left(\frac{1}{\delta t} - D\right) \\ -\frac{1}{\delta t} & \left(\frac{1}{\delta t} - D\right) \\ & \cdot \\ & -\frac{1}{\delta t} & \left(\frac{1}{\delta t} - D\right) \end{bmatrix}$$

$$A = \begin{bmatrix} \left(\frac{1}{\delta t} - D\right) & & & \\ -\frac{1}{\delta t} & \left(\frac{1}{\delta t} - D\right) & & \\ & & \ddots & \\ & & & -\frac{1}{\delta t} & \left(\frac{1}{\delta t} - D\right) \end{bmatrix} \qquad A^{T} = \begin{bmatrix} \left(\frac{1}{\delta t} - D\right) & -\frac{1}{\delta t} & & \\ & \left(\frac{1}{\delta t} - D\right) & & \\ & & & -\frac{1}{\delta t} & \\ & & & \left(\frac{1}{\delta t} - D\right) \end{bmatrix}$$

$$AA^{T} = \begin{bmatrix} \left(\frac{1}{\delta t} - D\right)^{2} & -\frac{1}{\delta t} \left(\frac{1}{\delta t} - D\right) \\ -\frac{1}{\delta t} \left(\frac{1}{\delta t} - D\right) & \left(\frac{1}{\delta t} - D\right)^{2} + \left(\frac{1}{\delta t}\right)^{2} \\ & \cdot & -\frac{1}{\delta t} \left(\frac{1}{\delta t} - D\right) \\ & \cdot & -\frac{1}{\delta t} \left(\frac{1}{\delta t} - D\right)^{2} + \left(\frac{1}{\delta t}\right)^{2} \end{bmatrix}$$

State equation:

$$\left(\frac{y_{im+1} - y_{im}}{\delta t}\right) - D \ y_{im+1} + \frac{p_{im+1}}{v} = 0$$

$$\left(\frac{I}{\delta t} - D\right) y_{im+1} - \frac{I}{\delta t} y_{im} + \frac{p_{im+1}}{v} = 0$$

Adjoint equation:

$$-\left(\frac{p_{im} - p_{im-1}}{\delta t}\right) - D \ p_{im-1} = y_{im-1} - z_{im-1}$$

$$\left(\frac{I}{\delta t} - D\right) p_{im-1} - \frac{I}{\delta t} p_{im} = y_{im-1} - z_{im-1}$$

$$A_{0} = \begin{bmatrix} 1_{ixi} & 0 \\ -1_{ixi} & \left(\frac{I}{\delta t} - D\right)_{ixi} \end{bmatrix} \qquad A_{m} = \begin{bmatrix} \left(\frac{I}{\delta t} - D\right)_{ixi} & \frac{1}{v_{ixi}} \\ -1_{ixi} & \left(\frac{I}{\delta t} - D\right)_{ixi} \end{bmatrix} \qquad A_{N_{t}} = \begin{bmatrix} \left(\frac{I}{\delta t} - D\right)_{ixi} & \frac{1}{v_{ixi}} \\ \beta & 1_{ixi} \end{bmatrix}$$

$$B_m = \begin{bmatrix} -\frac{1}{\delta t_{ixi}} & 0\\ 0 & 0 \end{bmatrix} \qquad C_m = \begin{bmatrix} 0 & 0\\ 0 & -\frac{1}{\delta t_{ixi}} \end{bmatrix}$$

Space time Smoothing scheme

State equation: $\left(\frac{y_{im+1}-y_{im}}{\delta t}\right)-D$ $y_{im+1}-\frac{p_{im+1}}{v}=0$

$$\left(-\frac{y_{im}}{\delta t}\right) - \left(\frac{y_{i+1\,m+1} - 3\,y_{i\,m+1} + y_{i-1\,m+1}}{\delta x^2}\right) - \frac{p_{i\,m+1}}{v} = 0$$

$$\left(-\frac{y_{im}}{\delta t}\right) - S_{im} = 0$$

Where,

$$S_{i m} = \left(\frac{y_{i+1 m+1} - 3 y_{i m+1} + y_{i-1 m+1}}{\delta x^2}\right) + \frac{p_{i m+1}}{v}$$

$$\left(r_{y}\right)_{im} = \left(-\frac{y_{im}}{\delta t}\right) - S_{im}$$

Space time Smoothing scheme

Adjoint equation:
$$-\left(\frac{p_{im}-p_{im-1}}{\delta t}\right) - D \ p_{im-1} = y_{im-1} - z_{im-1}$$

$$-\left(\frac{p_{im}-p_{im-1}}{\delta t}\right) - \left(\frac{p_{i+1\,m-1}-2\,p_{i\,m-1}+p_{i-1\,m-1}}{\delta x^2}\right) - y_{im-1} + z_{im-1} = 0$$

$$\left(-\frac{p_{im}}{\delta t}\right) - \left(\frac{p_{i+1\,m-1}-3\,p_{i\,m-1}+p_{i-1\,m-1}}{\delta x^2}\right) - y_{im-1} + z_{im-1} = 0$$

$$\left(-\frac{p_{im}}{\delta t}\right) - R_{i\,m} = 0$$
 Where,
$$R_{i\,m} = \left(\frac{p_{i+1\,m-1}-3\,p_{i\,m-1}+p_{i-1\,m-1}}{\delta x^2}\right) + y_{im-1} - z_{im-1}$$

$$\left(r_p\right)_{im} = \left(-\frac{p_{im}}{\delta t}\right) - R_{i\,m}$$

The multigrid solver to solve error equation

```
A w_i = f_i
Algorithm: Space-time multigrid
Function SpaceTimeMultigrid(w, f, k)
     If (k = 1) then
          return A^{-1}f
     End if
     While (not converged) do
          w \leftarrow S(A^k, w, f, NSMpre)
          d \leftarrow R(f - A^k w)
          w \leftarrow w + I(SpaceTimeMultigrid(0; d; k - 1))
          w \leftarrow S(A^k, w, f, NSMpost)
     end while
     return w
End function
```

presmoothing restriction. prolongation postsmoothing

BLOCK JACOBI SMOOTHER

$$Aw = f$$

$$(L + D + U) w = f$$

$$D w = -(L + U)w + f$$

$$D w^{i+1} = -(L + U)w^{i} + f$$

$$D w^{i+1} = -(A - D)w^{i} + f$$

$$D w^{i+1} = Dw^{i} + (f - Aw^{i})$$

$$w^{i+1} = w^{i} + D^{-1}(f - Aw^{i})$$

BLOCK JACOBI SMOOTHER

Algorithm : Space-time Block-Jacobi smoother

```
Function JacSmoother (A^k, w, f, NSM)

for j=0 to NSM do

d \leftarrow f - A^k w

d \leftarrow (D^k)^{-1} d

w \leftarrow w + \omega d

end for

return w

End function
```

Algorithm: Space-time Block-Jacobi smoother

```
Function JacSmoother (A^k, w, f, NSM) for j=0 to NSM do d \leftarrow f - A^k w for i = 0 to N do d_i \leftarrow (D_i^k)^{-1} d_i end for w \leftarrow w + \omega d end for return w
```


BLOCK JACOBI SMOOTHER RESIDUAL PLOT

Time step: 50 Δt : 0.020408 $Grid\ size$: 5 Δx : 0.25

Execution time: 94.919 Sec

Execution time: 0. 54606 Sec

ANALYTICAL SOLUTION

$$y(x,t) = (1-t)^{2} \sin(\pi x)$$

$$\partial_{t}y - y'' = u$$

$$u(x,t) = -2(1-t)\sin(\pi x) + \pi^{2}(1-t)^{2}\sin(\pi x)$$

$$vu + p = 0$$

$$p(x,t) = -v\left[-2(1-t)\sin(\pi x) + \pi^{2}(1-t)^{2}\sin(\pi x)\right]$$

$$p(x,T) = 0, \qquad T = 1$$

$$-\partial_{t}p - p'' = (y-z)$$

$$z(x,t) = (1-t)^{2}\sin(\pi x)\left[1 + v\pi^{4}\right] - 2v\sin(\pi x)$$

BLOCK JACOBI SMOOTHER RESIDUAL PLOT

Time step: 256 Δt : 0.003390

Tol: 1E - 05

Grid size: 16 Δx : 0.0625

BLOCK JACOBI SMOOTHER

Time step: 256 Δt : 0.00390 Space Grid size: 16 Δx : 0.0625

 $\nu = 0.1$

$$||y - y_h|| = 0.007344$$

$$||p - p_h|| = 0.002778$$

BLOCK JACOBI SMOOTHER

Time step: 256 Grid size: 16 Δt : 0.003906 Δx : 0.0625

	$ y-y_h $	$ p - p_h $
0.0625	0.007344	0.002778
0.125	0.014423	0.005465
0.1875	0.020909	0.007910
0.25	0.026590	0.010051
0.3125	0.031288	0.011836
0.375	0.034763	0.013153
0.4375	0.036879	0.013942
0.5	0.037629	0.014239
0.5625	0.036879	0.013942
0.625	0.034763	0.013153
0.6875	0.031288	0.011836
0.75	0.026590	0.010051
0.8125	0.020909	0.007910
0.875	0.014423	0.005465
0.9375	0.007344	0.002778

BLOCK JACOBI SMOOTHER RESIDUAL PLOT

Time step: 256

 Δt : 0.003390

Tol: 1E - 05

Grid size: 16 Δx : 0.0625

SPACE GRID VALUES FOR EACH TIME STEP

Time step: 256 Δt : 0.00390 Space Grid size: 16 Δx : 0.0625

 $\nu = 0.1$

PROLONGATION/RESTRICTION

$$P(w^{k}) := \left(P_{S}(w_{0}^{k}), \frac{P_{S}(w_{0}^{k}) + P_{S}(w_{1}^{k})}{2}, P_{S}(w_{1}^{k}), \frac{P_{S}(w_{1}^{k}) + P_{S}(w_{2}^{k})}{2}, \dots, P_{S}(w_{N}^{k})\right)$$

$$R(d^k) := \left(R_s\left(\frac{2d_0^k + d_1^k}{4}\right), R_s\left(\frac{d_1^k + 2d_2^k + d_3^k}{4}\right), \dots, R_s\left(\frac{d_{2N-1}^k + 2d_{2N}^k}{4}\right)\right)$$

RESTRICTION

RESTRICTION

$$R_{S}v^{h} = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \\ & 1 & 2 & 1 \\ & & 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} v_{1}^{h} \\ v_{2}^{h} \\ v_{3}^{h} \\ v_{4}^{h} \\ v_{5}^{h} \\ v_{6}^{h} \\ v_{7}^{h} \end{bmatrix} = \begin{bmatrix} v_{1}^{H} \\ v_{2}^{H} \\ v_{3}^{H} \end{bmatrix} = v^{H}$$

PROLONGATION

$$P_S = 2 * (R_S)^T$$

$$P_{S} = \frac{1}{2} \begin{bmatrix} 1 & & & & & & \\ 2 & & & & & \\ 1 & 1 & & & & \\ & & 1 & & & \\ & & & 2 & & \\ & & & 1 & & \\ & & & & \ddots & \\ & & & & & 1 \\ & & & & & 1 \end{bmatrix}$$

PROLONGATION

$$P_{s} v^{H} = \frac{1}{2} \begin{bmatrix} 1 & & & \\ 2 & & \\ 1 & 1 & \\ & 2 & \\ & 1 & 1 \end{bmatrix} \begin{bmatrix} v_{1}^{H} \\ v_{2}^{H} \\ v_{3}^{H} \end{bmatrix} = \begin{bmatrix} v_{1}^{h} \\ v_{2}^{h} \\ v_{3}^{h} \\ v_{5}^{h} \\ v_{7}^{h} \end{bmatrix} = v^{h}$$

MULTIGRID V CYCLE

"small residual, large error"

COARSE GRID RESIDUAL EQUATION

> Fine grid

Time step: 256 Space Grid size: 16 Δt : 0.003390 Δx : 0.0625

 $\Delta t = \Delta x^2$

Coarse grid

Time step: 128 Space Grid size: 8 Δt : 0.0078125 Δx : 0.125

 $\Delta t \neq \Delta x^2$

RESULTS

SINGLE CYCLE

$$-y'' = f$$
 in $\Omega = (0,1)$
 $y(0) = y(1) = 0$

MULTIGRID V-CYCLE

Fine grid: 64

Coarse grid: 32

MULTIGRID V-CYCLE

Fine grid: 128 Coarse grid: 64

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT