પ્રશ્ન 1(અ) [3 ગુણ]

સ્ટાર ટોપોલોજીનું સવિસ્તાર વર્ણન કરો.

જવાબ:

સ્ટાર ટોપોલોજીમાં બધા devices એક કેન્દ્રીય hub અથવા switch સાથે જોડાયેલા હોય છે. દરેક device નો કેન્દ્રીય device સાથે અલગ point-to-point connection હોય છે.

आङ्गति:

```
Computer A

Computer D ---- HUB ---- Computer B

Computer C
```

મુખ્ય લક્ષણો:

- કેન્દ્રીય હબ: બધા connections કેન્દ્રીય device મારફતે પસાર થાય છે
- સમર્પિત લિંક્સ: દરેક node નો અલગ connection હોય છે
- સરળ મેનેજમેન્ટ: devices ને add/remove કરવું સરળ હોય છે

મેમરી ટ્રીક: "સ્ટાર કેન્દ્રમાં યમકે" - બધા devices કેન્દ્રીય બિંદુ સાથે જોડાય છે

પ્રશ્ન 1(બ) [4 ગુણ]

ક્લાયન્ટ-સર્વર નેટવર્કનું વર્ણન કરો.

જવાબ:

ક્લાયન્ટ-સર્વર એ network architecture છે જ્યાં clients કેન્દ્રીકૃત servers પાસેથી services માંગે છે. સર્વર અનેક clients ને resources અને services પ્રદાન કરે છે.

કોષ્ટક: ક્લાયન્ટ vs સર્વર

ક્લાયન્ટ	સર્વર
Services માંગે છે	Services પ્રદાન કરે છે
หน่โย๊ส resources	શક્તિશાળી hardware
સર્વર પર આદ્યારિત	स्वतंत्र operation

મુખ્ય ઘટકો:

- **ક્લાયન્ટ**: સર્વરથી data/services માંગે છે
- **સર્વર**: કેન્દ્રીકૃત resources અને processing પ્રદાન કરે છે

• નેટવર્ક: ક્લાયન્ટ-સર્વર વચ્ચે communication નું માધ્યમ

મેમરી ટ્રીક: "ક્લાયન્ટ કહે, સર્વર સેવા આપે"

પ્રશ્ન 1(ક) [7 ગુણ]

TCP/IP મોડેલના દરેક લેયરના કાર્ય સાથે વર્ણન કરો.

જવાબ:

TCP/IP મોડેલમાં ચાર layers છે જે networks પર end-to-end communication પ્રદાન કરે છે.

કોષ્ટક: TCP/IP મોડેલ લેચર્સ

લેયર	รเช่	પ્રોટોકોલ્સ
Application	યુઝર interface, network services	HTTP, FTP, SMTP
Transport	End-to-end delivery, error control	TCP, UDP
Internet	Routing, logical addressing	IP, ICMP, ARP
Network Access	Physical transmission	Ethernet, WiFi

લેયર કાર્યો:

• **Application Layer**: યુઝર applications ને network services પ્રદાન કરે છે

• Transport Layer: processes વચ્ચે વિશ્વસનીય data delivery સુનિશ્ચિત કરે છે

• Internet Layer: IP વાપરીને multiple networks પર packets route કરે છે

• **Network Access Layer**: data નું physical transmission હેન્ડલ કરે છે

મેમરી ટ્રીક: "બધા પરિવહન ઇન્ટરનેટ નેટવર્ક" (ATIN)

પ્રશ્ન 1(ક OR) [7 ગુણ]

OSI રેફરન્સ મોડેલના ડેટા લિંક લેયર અને નેટવર્ક લેયરની વિશેષતાઓ વર્ણવો.

જવાબ:

ડેટા લિંક અને નેટવર્ક લેચર્સ OSI મોડેલમાં વિશ્વસનીય transmission અને routing capabilities પ્રદાન કરે છે.

કોષ્ટક: લેયર તુલના

લક્ષણ	ડેટા લિંક લેચર	નેટવર્ક લેયર
મુખ્ય કાર્ય	Node-to-node delivery	End-to-end delivery
Addressing	MAC addresses	IP addresses
Error Control	Frame-level	Packet-level

ડેટા લિંક લેચર કાર્યો:

• Framing: bits ને frames માં વ્યવસ્થિત કરે છે

• Error Control: transmission errors શોધે અને સુધારે છે

• Flow Control: data transmission rate મેનેજ કરે છે

નેટવર્ક લેચર કાર્યો:

• Routing: packets માટે શ્રેષ્ઠ path નક્કી કરે છે

• Logical Addressing: identification માટે IP addresses વાપરે છે

• Packet Forwarding: networks વચ્ચે packets route કરે છે

મેમરી ટ્રીક: "ડેટા સ્થાનિક રીતે લિંક કરે, નેટવર્ક વૈશ્વિક રીતે route કરે"

પ્રશ્ન 2(અ) [3 ગુણ]

રિપીટર અને હબની સરખામણી કરો.

જવાબ:

બંને devices signals ને amplify કરે છે પરંતુ network architecture માં અલગ રીતે કામ કરે છે.

કોષ્ટક: રિપીટર vs હબ

લક્ષણ	રિપીટર	હબ
પોર્ટ્સ	2 ports	અનેક ports
કાર્ય	Signal amplification	Signal distribution
Collision Domain	એક	એક shared

મુખ્ય તફાવતો:

• **પોર્ટ કાઉન્ટ**: રિપીટરમાં 2 ports, હબમાં અનેક હોય છે

• ઉપયોગ: રિપીટર distance વધારે છે, હબ અનેક devices જોડે છે

મેમરી ટ્રીક: "રિપીટર વિસ્તૃત કરે, હબ જોડે"

પ્રશ્ન 2(બ) [4 ગુણ]

વાયરલેસ LAN નું વર્ણન કરો.

જવાબ:

વાયરલેસ LAN ભૌતિક cables વિના network communication માટે radio waves વાપરે છે.

આકૃતિ:

મુખ્ય ઘટકો:

• એક્સેસ પોઇન્ટ: કેન્દ્રીય wireless communication device

• **વાયરલેસ ક્લાયન્ટ્સ**: WiFi capability વાળા devices

• **રેડિયો ફ્રીક્વન્સીઝ**: સામાન્ય રીતે 2.4GHz અને 5GHz bands વપરાય છે

ફાયદાઓ:

• ગતિશીલતા: coverage area માં યુઝર્સ મુક્તપણે ફરી શકે છે

• સરળ ઇન્સ્ટોલેશન: ભૌતિક cable installation ની જરૂર નથી

મેમરી ટ્રીક: "વાયરલેસ તરંગો જોડે"

પ્રશ્ન 2(ક) [7 ગુણ]

FDDI અને CDDI નું વર્ણન કરો.

જવાબ:

FDDI અને CDDI ring-based network technologies છે જે high-speed data transmission પ્રદાન કરે છે.

કોષ્ટક: FDDI vs CDDI તુલના

લક્ષણ	FDDI	CDDI
માધ્યમ	Fiber optic	Copper (UTP)
ઝડપ	100 Mbps	100 Mbps
અંતર	200 km	100 meters
ખર્ય	વધુ	ઓછો

FDDI લક્ષણો:

• દ્વિ રિંગ: fault tolerance માટે primary અને secondary rings

• સ્વ-નિકાલ: failures પાસેથી automatic recovery

CDDI લક્ષણો:

• ક્રોપર માધ્યમ: unshielded twisted pair cables વાપરે છે

- **સમાન પ્રોટોકોલ**: transmission medium સિવાય FDDI જેવું જ
- કિંમત અસરકારક: FDDI કરતાં ઓછી implementation cost

રિંગ સ્ટક્ચર:

```
Station A

|
Station D --+-- Station B

|
Station C
```

મેમરી ટ્રીક: "FDDI ફાઇબર ઝડપી, CDDI કોપર સસ્તું"

પ્રશ્ન 2(અ OR) [3 ગુણ]

ફાયરવોલ ડેટાને કેવી રીતે સુરક્ષિત કરે છે.

જવાબ:

ફાયરવોલ વિશ્વસનીય આંતરિક network અને અવિશ્વસનીય બાહ્ય networks વચ્ચે security barrier તરીકે કામ કરે છે.

સુરક્ષા પદ્ધતિઓ:

- પેકેટ ફિલ્ટરિંગ: security rules માટે packet headers તપાસે છે
- એક્સેસ કંટ્રોલ: અનધિકૃત access attempts ને block કરે છે
- ટ્રાફિક મોનિટરિંગ: બધા incoming અને outgoing traffic ની દેખરેખ કરે છે

મેમરી ટ્રીક: "ફાયરવોલ દુશ્મનોને ફિલ્ટર કરે"

પ્રશ્ન 2(બ OR) [4 ગુણ]

FDDI નું structure સમજાવો અને તેના ફાયદાઓ જણાવો.

જવાલ

FDDI high-speed, fault-tolerant networking માટે dual counter-rotating rings વાપરે છે.

સ્ટક્ચર ઘટકો:

- પ્રાઇમરી રિંગ: મુખ્ય data transmission path
- સેકન્ડરી રિંગ: fault recovery માટે backup path
- ક્યુઅલ એટેચમેન્ટ સ્ટેશન્સ: બંને rings સાથે જોડાય છે
- સિંગલ એટેચમેન્ટ સ્ટેશન્સ: એક ring સાથે જ જોડાય છે

કાયદાઓ:

- હાઇ સ્પીડ: 100 Mbps transmission rate
- ફોલ્ટ ટોલરન્સ: secondary ring વાપરીને automatic recovery
- **લાંબુ અંતર**: 200 km સુધીના networks સાપોર્ટ કરે છે

મેમરી ટ્રીક: "FDDI દ્વિ રિંગ વિશ્વસનીયતા આપે"

પ્રશ્ન 2(ક OR) [7 ગુણ]

ઇથરનેટ, ફાસ્ટ ઇથરનેટ, ગીગાબીટ ઇથરનેટ સમજાવો અને સરખામણી કરો.

જવાબ:

ઇથરનેટ standards નું વિકાસ વધતી bandwidth અને સુધારેલ performance પ્રદાન કરે છે.

કોષ્ટક: ઇથરનેટ તુલના

લક્ષણ	ઇથરનેટ	ફાસ્ટ ઇથરનેટ	ગીગાબીટ ઇથરનેટ
ઝડપ	10 Mbps	100 Mbps	1000 Mbps
સ્ટાન્ડર્ડ	802.3	802.3u	802.3z/ab
કેબલ	Coax/UTP	UTP/Fiber	UTP/Fiber
અંતર	500m (coax)	100m (UTP)	100m (UTP)

મુખ્ય તફાવતો:

• **બેન્ડવિડ્ય**: દરેક generation ઝડપને 10 ના ફેક્ટરથી વધારે છે

• મીડિયા સપોર્ટ: નવા standards વધુ cable types સાપોર્ટ કરે છે

• **બેકવર્ડ કમ્પેટિબિલિટી**: ઉચ્ચ standards ઓછી ઝડપને સાપોર્ટ કરે છે

એપ્લિકેશત્સ:

• ยี**ขะ** - ข่อ systems, basic connectivity

• ફાસ્ટ ઇથરનેટ: desktop connections, નાના networks

• วใวแผ่ใว ยีขะค่ว: server connections, backbone networks

મેમરી ટ્રીક: "ઇથરનેટ વિકાસ: 10-100-1000"

પ્રશ્ન 3(અ) [3 ગુણ]

DSL ના પ્રકાર સમજાવો.

જવાબ:

DSL વિધમાન telephone lines પર અલગ frequency bands વાપરીને high-speed internet પ્રદાન કરે છે.

કોષ્ટક: DSL પ્રકારો

уѕіғ	પૂરું નામ	ઝડપ
ADSL	Asymmetric DSL	8 Mbps સુધી down
SDSL	Symmetric DSL	બરાબર up/down
VDSL	Very-high-bit-rate DSL	52 Mbps સુધી

લાક્ષણિકતાઓ:

• ADSL: ઘરેલુ યુઝર્સ માટે અલગ upload/download ઝડપ

• SDSL: બિઝનેસ ઉપયોગ માટે બંને દિશામાં સમાન ઝડપ

મેમરી ટ્રીક: "DSL: અસમમિત, સમમિત, અતિ-ઝડપી"

પ્રશ્ન 3(બ) [4 ગુણ]

ARP અને RARP નું વર્ણન કરો.

જવાબ:

ARP અને RARP IP અને MAC addresses વચ્ચે address resolution પ્રદાન કરે છે.

કોષ્ટક: ARP vs RARP

લક્ષણ	ARP	RARP
હેતુ	IP to MAC	MAC to IP
વપરાશકર્તા	બધા devices	Diskless workstations
દિશા	Logical to Physical	Physical to Logical

ARP પ્રક્રિયા:

• **વિનંતી**: Broadcast "IP address X કોની પાસે છે?"

• જવાબ: લક્ષ્ય MAC address સાથે જવાબ આપે છે

• **કેશિંગ**: ARP table માં mapping સ્ટોર કરે છે

RARP પ્રક્રિયા:

• **વિનંતી**: "મારું IP address શું છે?"

• **સર્વર જવાબ**: RARP સર્વર IP address પ્રદાન કરે છે

મેમરી ટ્રીક: "ARP: એડ્રેસ રિઝોલ્યુશન પ્રોટોકોલ, RARP: વિપરીત ARP"

પ્રશ્ન 3(ક) [7 ગુણ]

સર્કિટ સ્વિચિંગ અને પેકેટ સ્વિચિંગનું વર્ણન કરો.

જવાબ:

નેટવર્ક્સમાં communication paths સ્થાપિત કરવાની બે મૂળભૂત પદ્ધતિઓ.

કોષ્ટક: સર્કિટ vs પેકેટ સ્વિચિંગ

લક્ષણ	સર્કિટ સ્વિચિંગ	પેકેટ સ્વિચિંગ
પાથ સેટઅપ	સમર્પિત path	સમર્પિત path નહીં
રિસોર્સ ઉપયોગ	આખા સમય દરમિયાન આરક્ષિત	ગતિશીલ રીતે shared
વિલંબ	સતત	પરિવર્તનશીલ
ઉદાહરણો	ટેલિફોન	ઇન્ટરનેટ

સર્કિટ સ્વિચિંગ:

- **પાથ સ્થાપના**: communication પહેલાં સમર્પિત circuit બનાવાય છે
- **રિસોર્સ આરક્ષણ**: આખા session માટે bandwidth આરક્ષિત રહે છે
- ગેરંટીડ સર્વિસ: આખા connection દરમિયાન સતત performance

પેકેટ સ્વિચિંગ:

- **સ્ટોર એન્ડ ફોરવર્ડ**: packets મધ્યવર્તી nodes પર અસ્થાયી રીતે સ્ટોર થાય છે
- **ડાયનેમિક રાઉટિંગ**: દરેક packet અલગ path લઈ શકે છે
- **રિસોર્સ શેરિંગ**: network resources અનેક connections વચ્ચે shared થાય છે

આકૃતિ: પેકેટ સ્વિચિંગ

મેમરી ટ્રીક: "સર્કિટ પ્રતિબદ્ધ, પેકેટ વિભાજિત"

પ્રશ્ન 3(અ OR) [3 ગુણ]

DHCP અને BOOTP પ્રોટોકોલનું વર્ણન કરો.

જવાબ:

બંને પ્રોટોકોલ્સ network devices ને આપમેળે IP addresses અસાઇન કરે છે.

ຣາ້າຂຣ: DHCP vs BOOTP

લક્ષણ	DHCP	воотр
એડ્રેસ પ્રકાર	ડાયનેમિક/સ્ટેટિક	માત્ર સ્ટેટિક
લીઝ ટાઇમ	અસ્થાયી	કાયમી
કોન્ફિગરેશન	આપમેળે	મેન્યુઅલ સેટઅપ

કાર્યો:

• DHCP: લીઝ મેનેજમેન્ટ સાથે ડાયનેમિક address assignment

• BOOTP: diskless workstations માટે bootstrap પ્રોટોકોલ

મેમરી ટ્રીક: "DHCP ડાયનેમિક, BOOTP બૂટસ્ટ્રેપ"

પ્રશ્ન 3(બ OR) [4 ગુણ]

IPv4 અને IPv6 પ્રોટોકોલનું વર્ણન કરો.

જવાબ:

ઇન્ટરનેટ પ્રોટોકોલ versions addressing અને routing capabilities પ્રદાન કરે છે.

ຣາ້າຂຣ: IPv4 vs IPv6

લક્ષણ	IPv4	IPv6
એડ્રેસ સાઇઝ	32 bits	128 bits
એડ્રેસ ફોર્મેટ	ડોટેડ ડેસિમલ	હેક્સાડેસિમલ
એડ્રેસ સ્પેસ	4.3 બિલિયન	340 અંડેસિલિયન
હેડર સાઇઝ	20-60 બાઇટ્સ	40 બાઇટ્સ

IPv4 લક્ષણો:

• એડ્રેસ ફોર્મેટ: 192.168.1.1 (4 octets)

• ક્લાસીસ: A, B, C, D, E address classes

• NAT જરૂરી: address shortage માટે NAT જરૂરી

IPv6 લક્ષણો:

• એડ્રેસ ફોર્મેટ: 2001:db8::1 (8 groups of 4 hex digits)

• NAT ની જરૂર નથી: પુષ્કળ address space

• **બિલ્ટ-ઇન સિક્યુરિટી**: IPSec સાપોર્ટ ફરજિયાત

મેમરી ટ્રીક: "IPv4 થાર ઓક્ટેટ્સ, IPv6 સોળ બાઇટ્સ"

પ્રશ્ન 3(ક OR) [7 ગુણ]

ટ્વિસ્ટેડ જોડી કેબલ, કોએક્સિયલ કેબલ અને ફાઇબર ઓપ્ટિક કેબલની લેબલ સાથે બાંધકામ વિગતો દોરો અને સમજાવો.

જવાબ

guided transmission media ના ત્રણ મુખ્ય પ્રકારો અલગ construction અને characteristics સાથે.

ટ્વિસ્ટેડ પેર કેબલ:

કોએક્સિયલ કેબલ:

```
Outer Jacket

|
+---+---+
| | Outer Conductor (Shield)
| +-+-+ | Dielectric Insulator
| | | | Inner Conductor (Copper)
+-+-+-+
```

કાઇબર ઓપ્ટિક કેબલ:

બાંધકામ વિગતો:

- **ટ્વિસ્ટેડ પેર**: interference ઘટાડવા માટે copper wires twisted કરેલા
- ક્રોએક્સિયલ: dielectric અને shield થી ઘેરાયેલું કેન્દ્રીય conductor
- ફાઇબર ઓપ્ટિક: total internal reflection માટે cladding સાથે glass core

લાક્ષણિકતાઓ:

- ટ્વિસ્ટેડ પેર: ઓછો ખર્ચ, સરળ installation, મર્યાદિત bandwidth
- ક્રોએક્સિયલ: વધુ સારી shielding, twisted pair કરતાં વધુ bandwidth
- ફાઇબર ઓપ્ટિક: સૌથી વધુ bandwidth, electromagnetic interference થી રક્ષિત

મેમરી ટ્રીક: "ટ્વિસ્ટેડ કોપર, કોએક્સ શીલ્ડેડ, ફાઇબર પ્રકાશ"

પ્રશ્ન 4(અ) [3 ગુણ]

કોઈપણ ત્રણ ડેટા લિંક લેચર પ્રોટોકોલને નામ આપો અને કોઈપણ એકને વિગતવાર સમજાવો.

જવાબ:

સામાન્ય data link layer પ્રોટોકોલ્સ: HDLC, PPP, Ethernet.

HDLC (High-Level Data Link Control):

• ફ્રેમ સ્ટ્રક્ચર: ફ્લેગ, એડ્રેસ, કંટ્રોલ, ડેટા, FCS, ફ્લેગ

• એરર કંટ્રોલ: sequence numbers અને acknowledgments વાપરે છે

• **ફલો કંટ્રોલ**: કાર્યક્ષમ transmission માટે sliding window પ્રોટોકોલ

મુખ્ય લક્ષણો:

• **બિટ-ઓરિએન્ટેડ**: characters કરતાં bit streams સાથે કામ કરે છે

• કુલ-ડ્રપ્લેક્સ: સાથે બંને દિશામાં communication

મેમરી ટ્રીક: "HDLC ડેટા લિંક કંટ્રોલ હેન્ડલ કરે"

પ્રશ્ન 4(બ) [4 ગુણ]

TCP અને UDP પ્રોટોકોલનું વર્ણન કરો.

જવાલ:

ટ્રાન્સપોર્ટ લેયર પ્રોટોકોલ્સ અલગ સ્તરની સર્વિસ વિશ્વસનીયતા પ્રદાન કરે છે.

ຣìષ્ટક: TCP vs UDP

લક્ષણ	ТСР	UDP
કનેક્શન	Connection-oriented	Connectionless
વિશ્વસનીયતા	વિશ્વસનીય	અવિશ્વસનીય
ઝડપ	ધીમું	ઝડપી
હેડર સાઇઝ	20+ બાઇટ્સ	8 બાઇટ્સ

TCP લક્ષણો:

- **કનેક્શન સેટઅપ**: થ્રી-વે હેન્ડશેક connection સ્થાપિત કરે છે
- એરર રિકવરી: ખોવાયેલા packets આપમેળે ફરીથી મોકલે છે
- ફ્લો કંટ્રોલ: receiver ને overwhelm થવાથી બચાવે છે

UDP લક્ષણો:

• કનેક્શન નહીં: connection સ્થાપિત કર્યા વિના data મોકલે છે

- બેસ્ટ એફર્ટ: delivery અથવા order ની કોઈ ગેરંટી નથી
- **લો ઓવરહેડ**: ઝડપી transmission માટે મિનિમલ હેડર

મેમરી ટીક: "TCP વિશ્વસનીય, UDP અવિશ્વસનીય પણ ઝડપી"

પ્રશ્ન 4(ક) [7 ગુણ]

ઉદાહરણ સાથે VoIP નું વર્ણન કરો.

જવાભ

વૉઇસ ઓવર ઇન્ટરનેટ પ્રોટોકોલ પરંપરાગત ટેલિફોન સિસ્ટમ્સ બદલે IP networks પર voice communications ટ્રાન્સમિટ કરે છે.

VoIP ઘટકો:

- IP ફ્રોન: VoIP કૉલ્સ માટે હાર્ડવેર device
- સોફ્ટફોન: કમ્પ્યુટર-બેસ્ડ કૉલ્સ માટે સોફ્ટવેર એપ્લિકેશન
- ગેટવે: VoIP ને પરંપરાગત phone networks સાથે જોડે છે
- PBX: બિઝનેસ phone systems માટે પ્રાઇવેટ બ્રાન્ય એક્સચેન્જ

VoIP પ્રક્રિયા:

- 1. **વૉઇસ કેપ્ચર**: માઇક્રોફોન voice ને analog signal માં convert કરે છે
- 2. **ડિજિટાઇઝેશન**: ADC analog ને digital samples માં convert કરે છે
- 3. **કમ્પ્રેશન**: કોડેક audio data ને compress કરે છે
- 4. **પેકેટાઇઝેશન**: voice data ને IP packets માં વિભાજિત કરે છે
- 5. **ટાન્સમિશન**: packets IP network પર મોકલવામાં આવે છે
- 6. **પુનર્નિર્માણ**: receiving end audio ને reassemble અને play કરે છે

ઉદાહરાગ એપ્લિકેશન્સ:

- સ્કાઇપ: વ્યક્તિગત કૉલ્સ માટે કન્ઝ્યુમર VoIP સર્વિસ
- **વોટ્સએપ કૉલિંગ**: મોબાઇલ VoIP એપ્લિકેશન
- બિઝનેસ PBX: VoIP વાપરતી કોર્પોરેટ phone systems

ફાયદાઓ:

- કિંમત અસરકારક: લાંબા અંતરની કૉલ્સની ઓછી કિંમત
- ફ્રીચર રિચ: વિડિયો કૉલિંગ, કોન્ફરન્સિંગ, કૉલ ફોરવર્ડિંગ
- સ્કેલેબિલિટી: નવા યુઝર્સ ઉમેરવા સરળ

ગેરકાયદાઓ:

- ઇન્ટરનેટ ડિપેન્ડન્સી: સ્થિર ઇન્ટરનેટ કનેક્શનની જરૂર
- ક્વોલિટી ઇશ્યુઝ: network congestion થી સમસ્યા આવી શકે છે
- પાવર ડિપેન્ડન્સી: પરંપરાગત ફોન્સ વિપરીત વીજળીની જરૂર

મેમરી ટ્રીક: "VoIP: ઇન્ટરનેટ પ્રોટોકોલ પર વૉઇસ"

પ્રશ્ન 4(અ OR) [3 ગુણ]

DNS (ડોમેન નેમ સિસ્ટમ) નું વર્ણન કરો.

જવાબ:

DNS માનવ-વાંચી શકાય તેવા domain names ને network communication માટે IP addresses માં translate કરે છે.

DNS ยรร):

• **ડોમેન નેમ્સ**: હાયરાર્કિકલ નામકરણ સિસ્ટમ (www.example.com)

• નેમ સર્વર્સ: DNS records સ્ટોર કરતા કમ્પ્યુટર્સ

• **રિઝોલ્વર્સ**: DNS servers ને query કરતા ક્લાયન્ટ સોફ્ટવેર

DNS પ્રક્રિયા:

1. યુઝર બ્રાઉઝરમાં domain name દાખલ કરે છે

2. સ્થાનિક resolver DNS server ને query કરે છે

3. DNS server અનુરૂપ IP address પરત કરે છે

મેમરી ટ્રીક: "DNS: ડોમેન નેમ થી IP એડ્રેસ"

પ્રશ્ન 4(બ OR) [4 ગુણ]

DSL વિષે ટૂંકી નોંધ લખો.

જવાબ:

ડિજિટલ સબ્સ્ક્રાઇબર લાઇન વિધમાન ટેલિફોન infrastructure પર high-speed ઇન્ટરનેટ access પ્રદાન કરે છે.

DSL ટેકનોલોજી:

• ફ્રીક્વન્સી ડિવિઝન: voice કૉલ્સ કરતાં વધુ ફ્રીક્વન્સીઝ વાપરે છે

• સાથે ઉપયોગ: ઇન્ટરનેટ અને કોન એકસાથે કામ કરી શકે છે

• અંતર મર્યાદા: exchange પાસેથી અંતર સાથે performance ઘટે છે

DSL પ્રકારો:

• ADSL: રહેવાસી યુઝર્સ માટે અસમમિત ઝડપ

• SDSL: બિઝનેસ એપ્લિકેશન્સ માટે સમમિત ઝડપ

• VDSL: ટૂંકા અંતર પર ખૂબ વધુ ઝડપ

કાયદાઓ:

• વિદ્યમાન ઇન્ફ્રાસ્ટ્રક્ચર: વિદ્યમાન ટેલિફોન લાઇન્સ વાપરે છે

• હંમેશા ચાલુ: સતત ઇન્ટરનેટ કનેક્શન

• કિંમત અસરકારક: સમર્પિત લાઇન્સ કરતાં ઓછો ખર્ચ

મેમરી ટ્રીક: "DSL: ફોન લાઇન્સ પર ડિજિટલ સબ્સ્ક્રાઇબર લાઇન"

પ્રશ્ન 4(ક OR) [7 ગુણ]

ફોરમ અને બ્લોગ્સ વિષે ટૂંકી નોંધ લખો.

જવાબ:

માહિતી શેરિંગ અને સમુદાયિક ક્રિયાપ્રતિક્રિયા માટે ઓનલાઇન પ્લેટફોર્મ્સ.

કોષ્ટક: ફોરમ vs બ્લોગ

લક્ષણ	ફોરમ	બ્લોગ
સ્ટ્રક્ચર	ચર્યા threads	รเผรษิร posts
ક્રિયાપ્રતિક્રિયા	બહુ-યુઝર ચર્ચાઓ	posts પર ટિપ્પણીઓ
મોડરેશન	સમુદાય દ્વારા મોડરેટ	લેખક દ્વારા નિયંત્રિત
હેતુ	સમુદાયિક સાપોર્ટ	માહિતી શેરિંગ

ફોરમ લાક્ષણિકતાઓ:

• થર્યા થ્રેડ્સ: વિષય પ્રમાણે વ્યવસ્થિત ટોપિક્સ

• યુઝર પાર્ટિસિપેશન: અનેક યુઝર્સ ચર્ચામાં યોગદાન આપે છે

• કેટેગરીઝ: વિવિધ વિભાગોમાં ટોપિક્સ વ્યવસ્થિત

• મોડરેશન: સમુદાયિક નિયમો અને મોડરેટર્સ વ્યવસ્થા જાળવે છે

બ્લોગ લાક્ષણિકતાઓ:

• વ્યક્તિગત પહિલશિંગ: વ્યક્તિ અથવા સંસ્થા content પ્રકાશિત કરે છે

• કાલક્રમિક ક્રમ: posts તારીખ પ્રમાણે દર્શાવવામાં આવે છે

• **ટિપ્પણીઓ**: વાચકો blog posts ને જવાબ આપી શકે છે

• RSS ફ્રીક્સ: વાચકો અપડેટ્સ માટે સબ્સ્ક્રાઇબ કરી શકે છે

ઉદાહરણો:

• ટેકનિકલ કોરમ્સ: પ્રોગ્રામિંગ પ્રશ્નો માટે Stack Overflow

• કમ્યુનિટી ફોરમ્સ: વિવિધ વિષયો માટે Reddit

• વ્યક્તિગત બ્લોગ્સ: અનુભવો શેર કરતી વ્યક્તિગત વેબસાઇટ્સ

• કોર્પોરેટ બ્લોગ્સ: માર્કેટિંગ અને અપડેટ્સ માટે કંપની બ્લોગ્સ

ફાયદાઓ:

• નોલેજ શેરિંગ: યુઝર્સ નિપુણતા અને અનુભવો શેર કરે છે

• કમ્યુનિટી બિલ્ડિંગ: સામાન્ય રૂચિઓવાળા લોકોને એકસાથે લાવે છે

• પ્રોબ્લેમ સોલ્વિંગ: ફોરમ્સ યુઝર્સને સોલ્યુશન્સ શોધવામાં મદદ કરે છે

• કન્ટેન્ટ ક્રિએશન: બ્લોગ્સ પ્રકાશન માટે પ્લેટફોર્મ પ્રદાન કરે છે

મેમરી ટ્રીક: "ફોરમ્સ ચર્ચા પ્રોત્સાહિત કરે, બ્લોગ્સ માહિતી પ્રસારિત કરે"

પ્રશ્ન 5(અ) [3 ગુણ]

"એન્ક્રિપ્શન" શબ્દોની વ્યાખ્યા કરો.

જવાબ:

એન્ક્રિપ્શન અનધિકૃત access પાસેથી માહિતીને સુરક્ષિત કરવા માટે plaintext data ને ciphertext માં convert કરે છે.

એન્ક્રિપ્શન પ્રક્રિયા:

• પ્લેઇનટેક્સ્ટ: મૂળ વાંચી શકાય તેવો ડેટા

• અભોરિધમ: transformation માટે ગાણિતિક પ્રક્રિયા

• ક્રી: એન્ક્રિપ્શન અલ્ગોરિધમમાં વપરાતો ગુપ્ત પેરામીટર

• સાઇફરટેક્સ્ટ: એન્ક્રિપ્ટેડ વાંચી ન શકાય તેવો ડેટા

હેતુ:

• **ગોપનીયતા**: અનધિકૃત ડેટા access અટકાવે છે

• **ડેટા પ્રોટેક્શન**: transmission દરમિયાન સંવેદનશીલ માહિતીને સુરક્ષિત કરે છે

મેમરી ટ્રીક: "એન્ક્રિપ્શન: કી સાથે પ્લેઇન થી સાઇફર"

પ્રશ્ન 5(બ) [4 ગુણ]

નીચેનામાંથી કોઈપણ બે સમજાવો: (1) WWW (2) FTP (3) SMTP

જવાબ:

WWW (વર્લ્ડ વાઇડ વેબ):

• હાઇપરટેક્સ્ટ સિસ્ટમ: હાઇપરલિંક્સ દ્વારા જોડાયેલા ડોક્યુમેન્ટ્સ

• HTTP પ્રોટોકોલ: વેબ કમ્યુનિકેશન માટે હાઇપરટેક્સ્ટ ટ્રાન્સફર પ્રોટોકોલ

• વેબ બ્રાઉઝર: વેબ પેજીસ access કરવા માટે ક્લાયન્ટ સોફ્ટવેર

• વેબ સર્વર: વેબસાઇટ્સ હોસ્ટ કરે છે અને વેબ પેજીસ સર્વ કરે છે

FTP (કાઇલ ટ્રાન્સકર પ્રોટોકોલ):

• ફાઇલ ટ્રાન્સફર: કમ્પ્યુટર્સ વચ્ચે ફાઇલો ટ્રાન્સફર કરવાનો પ્રોટોકોલ

• ક્લાયન્ટ-સર્વર: FTP ક્લાયન્ટ FTP સર્વર સાથે જોડાય છે

• **બે મોડ્સ**: ડેટા ટ્રાન્સફર માટે active અને passive મોડ્સ

• **ઓથેન્ટિકેશન**: access control માટે યુઝરનેમ અને પાસવર્ડ

લક્ષણો:

• **WWW**: ગ્રાફિકલ ઇન્ટરફેસ, મલ્ટિમીડિયા સાપોર્ટ, હાઇપરલિંક્સ

• FTP: મોટી ફાઇલ ટ્રાન્સફર, ડિરેક્ટરી નેવિગેશન, resume capability

મેમરી ટ્રીક: "WWW: વેબ વર્લ્ડ વાઇડ, FTP: ફાઇલ ટ્રાન્સફર પ્રોટોકોલ"

પ્રશ્ન 5(ક) [7 ગુણ]

સિમેટ્રિક અને એસિમેટ્રિક એન્ક્રિપ્શન અલ્ગોરિધમ્સ વચ્ચેનો તફાવત

જવાબ:

અલગ લાક્ષણિકતાઓ સાથે cryptographic key management ની બે મૂળભૂત પદ્ધતિઓ.

કોષ્ટક: સિમેટ્રિક vs એસિમેટ્રિક એન્ક્રિપ્શન

લક્ષણ	સિમેટ્રિક	એસિમેટ્રિક
કીઝ	એક shared કી	કી પેર (public/private)
ઝડપ	ઝડપી	ધીમું
કી ડિસ્ટ્રિબ્યુશન	મુશ્કેલ	સરળ
કી મેનેજમેન્ટ	મોટા ગ્રુપ્સ માટે જટિલ	સરળ
ઉદાહરણો	AES, DES	RSA, ECC

સિમેટિક એન્ક્રિપ્શન:

• સિંગલ કી: એન્ક્રિપ્શન અને ડિક્રિપ્શન માટે સમાન કી વપરાય છે

• ઝડપ: સરળ અલ્ગોરિધમ્સને કારણે ઝડપી પ્રોસેસિંગ

• કી શેરિંગ પ્રોબ્લેમ: સુરક્ષિત કી વિતરણની પડકાર

• **સેશન કીઝ**: ઘણીવાર bulk data એન્ક્રિપ્શન માટે વપરાય છે

એસિમેટિક એન્ક્રિપ્શન:

• ક્રી પેર: એન્ક્રિપ્શન માટે public કી, ડિક્રિપ્શન માટે private કી

• **ડિજિટલ સિગ્નેયર્સ**: private કી sign કરે છે, public કી verify કરે છે

• ક્રી એક્સચેન્જ: ક્રી વિતરણ સમસ્યાનું સમાધાન કરે છે

• કમ્પ્યુટેશનલી ઇન્ટેન્સિવ: સિમેટ્રિક એન્ક્રિપ્શન કરતાં ધીમું

ઉપયોગ સ્થિતિઓ:

• સિમેટ્રિક: bulk data એન્ક્રિપ્શન, સુરક્ષિત communications

• એસિમેટ્રિક: કી એક્સચેન્જ, ડિજિટલ સિગ્નેચર્સ, ઓથેન્ટિકેશન

હાઇબ્રિડ અભિગમ:

• **બંનેનું શ્રેષ્ઠ**: કી એક્સચેન્જ માટે એસિમેટ્રિક, ડેટા માટે સિમેટ્રિક

• SSL/TLS: સુરક્ષિત વેબ communications માટે બંને પ્રકારો વાપરે છે

સુરક્ષા વિચારણાઓ:

- સિમેટ્રિક: કી compromise બધા communications અસર કરે છે
- **એસિમેટ્રિક**: private કી compromise માત્ર એક પાર્ટીને અસર કરે છે

મેમરી ટીક: "સિમેટ્રિક સિંગલ કી, એસિમેટ્રિક કી પેર"

પ્રશ્ન 5(અ OR) [3 ગુણ]

સાયબર સિક્યુરિટી ઉપર ટૂંક નોંધ લખો.

જવાબ:

સાયબર સિક્યુરિટી ડિજિટલ attacks અને અનધિકૃત access પાસેથી ડિજિટલ સિસ્ટમ્સ, નેટવર્ક્સ અને ડેટાને સુરક્ષિત કરે છે.

મુખ્ય ઘટકો:

- નેટવર્ક સિક્યુરિટી: intrusions પાસેથી નેટવર્ક infrastructure ને સુરક્ષિત કરે છે
- ડેટા પ્રોટેક્શન: theft પાસેથી સંવેદનશીલ માહિતીને સુરક્ષિત રાખે છે
- એપ્લિકેશન સિક્યુરિટી: vulnerabilities પાસેથી સોફ્ટવેર એપ્લિકેશન્સને સુરક્ષિત કરે છે

સામાન્ય ધમકીઓ:

- મેલવેર: સિસ્ટમ્સને નુકસાન પહોંચાડતા વાયરસ, worms, trojans
- ફિશિંગ: credentials ચોરવાના કપટપૂર્ણ પ્રયાસો

મેમરી ટ્રીક: "સાયબર સિક્યુરિટી: ડિજિટલ અસ્કયામતોને સુરક્ષિત કરો"

પ્રશ્ન 5(બ OR) [4 ગુણ]

હેકિંગ અને તેની સાવચેતીઓ સમજાવો.

જવાબ:

હેકિંગમાં કમ્પ્યુટર સિસ્ટમ્સમાં અનધિકૃત access સામેલ છે, ઘણીવાર દુર્ભાવનાપૂર્ણ હેતુથી.

હેકિંગના પ્રકારો:

- વ્હાઇટ હેટ: સિક્યુરિટી ટેસ્ટિંગ માટે નૈતિક હેકિંગ
- બ્લેક હેટ: ગેરકાયદેસર હેતુઓ માટે દુર્ભાવનાપૂર્ણ હેકિંગ
- ગ્રે હેટ: નૈતિક અને દુર્ભાવનાપૂર્ણ હેકિંગ વચ્ચે

સામાન્ય હેકિંગ પદ્ધતિઓ:

- **પાસવર્ડ એટેક્સ**: બ્રુટ ફોર્સ, ડિક્શનરી attacks
- **સોશિયલ એન્જિનિયરિંગ**: માહિતી પ્રગટ કરવા માટે લોકોને ચાલાકીથી પ્રભાવિત કરવું
- મેલવેર: વાયરસ, trojans, ransomware
- નેટવર્ક એટેક્સ: મેન-ઇન-ધ-મિડલ, પેકેટ સ્નિફિંગ

સાવચેતીઓ:

• મજબૂત પાસવર્ડ્સ: બધા એકાઉન્ટ્સ માટે જટિલ, અનન્ય પાસવર્ડ્સ

- નિયમિત અપડેટ્સ: સોફ્ટવેર અને સિસ્ટમ્સને અપડેટ રાખો
- **ફાયરવોલ**: અનધિકૃત access block કરવા માટે ફાયરવોલ વાપરો
- એન્ટીવાયરસ: એન્ટીવાયરસ સોફ્ટવેર નિયમિત ઇન્સ્ટોલ અને અપડેટ કરો

મેમરી ટ્રીક: "હેકિંગ નુકસાન કરે, સાવચેતીઓ સુરક્ષિત કરે"

પ્રશ્ન 5(ક OR) [7 ગુણ]

સંક્ષિપ્તમાં Information Technology (Amendment) Act 2008, અને ભારતમાં સાયબર કાયદાઓ પર તેની અસરનું વર્ણન કરો.

જવાબ:

IT સુધારા કાયદો 2008 એ ભારતના સાયબર કાયદા ફ્રેમવર્કને નોંધપાત્ર રીતે મજબૂત બનાવ્યો અને સાયબર ક્રાઇમ કાયદાકીય વિસ્તારનો વિસ્તાર કર્યો.

મુખ્ય સુધારાઓ:

- ડેટા પ્રોટેક્શન: સંવેદનશીલ વ્યક્તિગત ડેટાને સુરક્ષિત કરવા માટે વધારેલી જોગવાઈઓ
- **સાયબર ક્રાઇમ વ્યાખ્યાઓ**: identity theft સહિત સાયબર ક્રાઇમની વિસ્તૃત વ્યાખ્યાઓ
- **દંડ**: વિવિધ સાયબર અપરાધો માટે વધારેલા દંડ
- સાયબર આતંકવાદ: સાયબર આતંકવાદ સાથે વ્યવહાર કરવા માટે જોગવાઈઓ દાખલ કરી

મુખ્ય જોગવાઈઓ:

- **કલમ 43A**: બેદરકારી માટે ડેટા પ્રોટેક્શન અને વળતર
- **કલમ 66A**: આક્રામક સંદેશાઓ માટે સજા (બાદમાં ૨દ કરાઈ)
- **કલમ 66C**: identity theft ଧର
- **કલમ 66D**: કમ્પ્યુટર રિસોર્સ વાપરીને વ્યક્તિત્વ દ્વારા છેતરપિંડી

સાયબર કાયદાઓ પર અસર:

- કાયદાકીય માળખું: સાયબર ક્રાઇમ માટે વ્યાપક કાયદાકીય માળખું પ્રદાન કર્યું
- **બિઝનેસ કમ્પ્લાયન્સ**: બિઝનેસ માટે ડેટા પ્રોટેક્શન પગલાં કરજિયાત બનાવ્યા
- કાયદા અમલીકરણ: તપાસ સાધનો સાથે સત્તાવાળાઓને સશક્ત બનાવ્યા
- **આંતરરાષ્ટ્રીય સહયોગ**: સાયબર ક્રાઇમ તપાસમાં સહયોગને સરળ બનાવ્યું

નિયમનકારી સંસ્થાઓ:

- CERT-In: ઘટના પ્રતિસાદ માટે કમ્પ્યુટર ઇમર્જન્સી રિસ્પોન્સ ટીમ
- સાયબર સેલ્સ: સાયબર ક્રાઇમ તપાસ માટે વિશેષ પોલીસ એકમો
- એડજુડિકેટિંગ ઓફિસર્સ: વળતર અને દંડ નિર્ધારણ માટે

ડેટા પ્રોટેક્શન આવશ્યકતાઓ:

- વાજબી સુરક્ષા: કંપનીઓએ વાજબી સુરક્ષા પ્રથાઓ અમલમાં મૂકવી જોઈએ
- લંગ અધિસૂચના: ડેટા ભંગની ફરજિયાત રિપોર્ટિંગ

• વળતર: ડેટા ભંગ માટે પીડિતો વળતરનો દાવો કરી શકે છે

પડકારો અને ટીકાઓ:

• અમલીકરણ: વિવિધ ડિજિટલ લેન્ડસ્કેપમાં અમલીકરણમાં મુશ્કેલી

• અધિકારક્ષેત્ર: સીમા પાર સાયબર ક્રાઇમ તપાસની પડકારો

• ટેકનોલોજી ગેપ: ઝડપથી વિકસતી ટેકનોલોજી સાથે તાલ મેળવવું

તાજેતરના વિકાસ:

• ડિજિટલ ઇન્ડિયા: ડિજિટલ ઇન્ડિયા પહેલ સાથે એકીકરણ

• પ્રાઇવસી લો: વ્યાપક ડેટા પ્રોટેક્શન કાયદા માટે તૈયારી

• ઉભરતી ટેકનોલોજીઓ: Al, IoT, blockchain થી પડકારોને સંબોધવું

મેમરી ટ્રીક: "IT એક્ટ 2008: ભારતના સાયબર કાયદાનો પાયો"