

Version with Markings to Show Changes Made

IN THE CLAIMS:

1 22. (Twice Amended) A DC to DC [switching circuit for
2 controlling power switching devices in a DC to DC] converter
3 having a plurality of converter circuits for operating into a
4 common load, comprising:

5 a plurality of buck converter circuits operating into the
6 common load, each buck converter circuit having an inductor for
7 alternately conducting between first and second power supply
8 terminals, and the second power supply terminal and the common
9 load;

10 a plurality of pulse width modulators driven by a common
11 oscillator in an interleaved manner, each pulse width modulator
12 controlling [power switching devices of] one of the plurality of
13 buck converter circuits, whereby the operation of the buck
14 converter circuits is interleaved;

15 a feedback circuit responsive to a voltage across the common
16 output [load];

17 a voltage control circuit [for] controlling the plurality of
18 pulse width modulators responsive to the feedback circuit and a
19 commanded output voltage; and

20 a current balance control circuit responsive to the
21 difference in current in the plurality of interleaved buck

*C1
Contd*

22 converter circuits and [for] controlling the pulse width
23 modulators to balance the current in the plurality of interleaved
24 buck converter circuits;
25 the plurality of pulse width modulators and the control
26 circuits being in a single integrated circuit.

*C2
Sub
Sect*

1 24. (Twice Amended) The DC to DC [switching circuit]
2 converter of claim 22 further comprised of an integrator having
3 an output responsive to the integral of an error signal, the
4 error signal being responsive to the voltage across the common
5 load and a desired voltage, the control circuits also being
6 responsive to the output of the integrator.

1 25. (Amended) The DC to DC [switching circuit] converter
2 of claim 24 wherein a time constant of the integrator is
3 adjustable by the selection of at least one component external to
4 the integrated circuit.

C3

1 26. (Amended) The DC to DC [switching circuit] converter
2 of claim 24 further comprised of a differentiator having an
3 output responsive to the rate of change of the voltage across the
4 common load, the control circuits also being responsive to the
5 output of differentiator.

1 27. (Amended) The DC to DC [switching circuit] converter
2 of claim 26 wherein the time constant of the differentiator is
3 adjustable by the selection of at least one component external to
4 the integrated circuit.

1 28. (Amended) The DC to DC [switching circuit] converter
2 of claim 22 wherein the control circuits are also responsive to
3 rapid decreases in the voltage across the common load to turn on
4 the plurality of buck converter circuits independent of the phase
5 of the plurality of pulse width modulators.

1 29. (Amended) The DC to DC [switching circuit] converter
2 of claim 28 wherein the control circuits are also responsive to
3 rapid increases in the voltage across the common load to turn off
4 the plurality of buck converter circuits independent of the phase
5 of the plurality of pulse width modulators.

1 30. (Amended) The DC to DC [switching circuit] converter
2 of claim 22, wherein the plurality of pulse width modulators
3 consist of a pair of pulse width modulators.

1 31. (Amended) The DC to DC [switching circuit] converter
2 of claim 22 wherein the feedback circuit is in the single
3 integrated circuit.

Subj A

1 32. (Twice Amended) A DC to DC [switching circuit for
2 controlling power switching devices in a DC to DC] converter
3 having a plurality of converter circuits operating into a common
4 load, comprising:

5 a plurality of buck converter circuits operating into the
6 common load, each buck converter circuit having an inductor for
7 alternately conducting between first and second power supply
8 terminals, and the second power supply terminal and the common
9 load;

10 a plurality of pulse width modulators each controlling
11 [power switching devices of] one of the plurality of buck
12 converter circuits, the operation of the pulse width modulators
13 and the buck converter circuits being interleaved;

14 a feedback circuit responsive to a voltage across the common
15 load;

16 control circuits responsive to the feedback circuit and a
17 commanded output voltage to control a nominal duty cycle of the
18 plurality of buck converter circuits, the control circuits also
19 being responsive to the difference in current in the plurality of
20 interleaved buck converter circuits to adjust [adjusting] a
21 relative duty cycle of the plurality of buck converter circuits
22 to balance the current in the buck converter circuits;
23 the plurality of pulse width modulators and the control
24 circuits being in a single integrated circuit.

AS

1 34. (Twice Amended) The DC to DC [switching circuit]
2 converter of claim 32 wherein the control circuits control the
3 plurality of pulse width modulators.

CG

1 35. (Amended) The DC to DC [switching circuit] converter
2 of claim 32 further comprising[:] an integrator having an output
3 responsive to the integral of an error signal, the error signal
4 being responsive to the voltage across the common load and a
5 desired voltage.

AS

1 36. (Twice Amended) The DC to DC [switching circuit]
2 converter of claim 35, wherein the control circuits are also
3 responsive to the output of the integrator.

CG

1 37. (Amended) The DC to DC [switching circuit] converter
2 of claim 35 wherein a time constant of the integrator is
3 adjustable by the selection of at least one component external to
4 the integrated circuit.

CG

1 38. (Amended) The DC to DC [switching circuit] converter
2 of claim 35 further comprising a differentiator having an output
3 responsive to a rate of change of the voltage across the common
4 load, the control circuits also being responsive to the output of
5 differentiator.

1 39. (Amended) The DC to DC [switching circuit] converter
2 of claim 38 wherein a time constant of the differentiator is
3 adjustable by the selection of at least one component external to
4 the integrated circuit.

1 40. (Amended) The DC to DC [switching circuit] converter
2 of claim 32 wherein the control circuits are also responsive to
3 rapid decreases in the voltage across the common load to turn on
4 the plurality of buck converter circuits, independent of the
5 phase of the plurality of pulse width modulators.

1 41. (Amended) The DC to DC [switching circuit] converter
2 of claim 32 wherein the control circuits are also responsive to
3 rapid increases in the voltage across the common load to turn off
4 the plurality of buck converter circuits, independent of the
5 phase of the plurality of pulse width modulators.

1 42. (Amended) The DC to DC [switching circuit] converter
2 of claim 32, wherein the plurality of pulse width modulators
3 consist of a pair of pulse width modulators.

1 43. (Amended) The DC to DC [switching circuit] converter
2 of claim 32 wherein the commanded output voltage is controllable
3 through an input to the integrated circuit.

C9
Claim Subst

1 44. (Amended) The DC to DC [switching circuit] converter

2 of claim 32 wherein the feedback circuit is in the single
3 integrated circuit.

1 45. (Twice Amended) A [circuit in a] DC to DC converter

2 having a plurality of converter circuits operating into a common
3 load, comprising:

4 a plurality of buck converter circuits operating into the
5 common load, each buck converter circuit having an inductor for
6 alternately conducting between first and second power supply
7 terminals, and the second power supply terminal and the common
8 load;

9 a plurality of pulse width modulators each controlling
10 [power switching devices of] one of the plurality of buck
11 converter circuits, the operation of the pulse width modulators
12 being interleaved;

13 control circuits for adjusting a nominal duty cycle of the
14 plurality of interleaved buck converter circuits, the control
15 circuits also being responsive to the difference in current in
16 the plurality of interleaved buck converter circuits to adjust
17 the relative duty cycle of the plurality of buck converter
18 circuits to balance the current therein;

19 the plurality of pulse width modulators and the control
20 circuits being in a single integrated circuit.

1 46. (Amended) A DC to DC [switching circuit for
2 controlling power switching devices in a DC to DC] converter
3 having first and second interleaved converter circuits operating
4 into a common load, comprising:

5 first and second buck converter circuits operating into the
6 common load, each buck converter circuit having an inductor for
7 alternately conducting between first and second power supply
8 terminals, and the second power supply terminal and the common
9 load;

10 a first pulse width modulator controlling the [power
11 switching devices of the] first buck converter circuit;

12 a second pulse width modulator controlling the [power
13 switching devices of the] second buck converter circuit;

14 a feedback circuit responsive to the voltage across the
15 common load;

16 control circuits for controlling the first and second pulse
17 width modulators responsive to the feedback circuit;

18 the control circuits also being responsive to current
19 measurements in [through] the first buck converter circuit and
20 the second buck converter circuit for adjusting the relative duty
21 cycle of the first and second pulse width modulators to balance
22 the currents in the buck converter circuits;

C10
Conc

23 the first pulse width modulator, the second pulse width
24 modulator, the feedback circuit and the control circuits being in
25 a single integrated circuit.

1 47. (Amended) A DC to DC [switching circuit for
2 controlling power switching devices in a DC to DC] converter
3 having a plurality of converter circuits operating into a common
4 load, comprising:

5 a plurality of buck converter circuits operating into the
6 common load, each buck converter circuit having an inductor for
7 alternately conducting between first and second power supply
8 terminals, and the second power supply terminal and the common
9 load;

10 a plurality of pulse width modulators driven by a common
11 oscillator in an interleaved manner, each pulse width modulator
12 controlling [power switching devices of] one of the plurality of
13 **buck** converter circuits, whereby the operation of the buck
14 converter circuits is interleaved;

15 a feedback circuit responsive to a voltage across the common
16 load;

17 a voltage control circuit for controlling the plurality of
18 pulse width modulators responsive to the feedback circuit and a
19 commanded output voltage; and

20 a current balance control circuit responsive to the
21 difference in current in the plurality of interleaved buck

22 converter circuits for controlling the pulse width modulators to
23 balance the current in the plurality of interleaved buck
24 converter circuits.

1 48. (Amended) A DC to DC [switching circuit for
2 controlling power switching devices in a DC to DC] converter
3 having a plurality of converter circuits operating into a common
4 load, comprising:

5 a plurality of buck converter circuits operating into the
6 common load, each buck converter circuit having an inductor for
7 alternately conducting between first and second power supply
8 terminals, and the second power supply terminal and the common
9 load;

10 a plurality of pulse width modulators each controlling power
11 switching devices of one of the plurality of interleaved buck
12 converter circuits, the operation of the pulse width modulators
13 and the buck converter circuits being interleaved;

14 a feedback circuit responsive to a voltage across the common
15 load;

16 control circuits responsive to the feedback circuit and a
17 commanded output voltage to control a nominal duty cycle of the
18 plurality of buck converter circuits, the control circuits also
19 being responsive to the difference in current in the plurality of
20 interleaved buck converter circuits to adjust the [adjusting a]

21 relative duty cycle of the plurality of buck converter circuits
22 to balance the current in the buck converter circuits.

1 49. (Amended) A [circuit for a] DC to DC converter having
2 a plurality of converter circuits operating into a common load,
3 comprising:

4 a plurality of buck converter circuits operating into the
5 common load, each buck converter circuit having an inductor for
6 alternately conducting between first and second power supply
7 terminals, and the second power supply terminal and the common
8 load;

9 a plurality of pulse width modulators each controlling
10 [power switching devices of] one of the plurality of buck
11 converter circuits, the pulse width modulators being driven by a
12 common oscillator signal so that the operation of the pulse width
13 modulators is interleaved;

14 control circuits for adjusting a nominal duty cycle of the
15 plurality of interleaved buck converter circuits to control a
16 voltage on the common load, and for responding to the difference
17 in current in the plurality of interleaved buck converter
18 circuits to adjust the [adjusting a] relative duty cycle of the
19 plurality of buck converter circuits to balance the current in
20 the buck converter circuits.

*C23
C44*

1 50. (Amended) A DC to DC [switching circuit for
2 controlling power switching devices in a DC to DC] converter
3 having first and second [interleaved] converter circuits
4 operating into a common load, comprising:

5 first and second buck converter circuits operating into the
6 common load, each buck converter circuit having an inductor for
7 alternately conducting between first and second power supply
8 terminals, and the second power supply terminal and the common
9 load;

10 a first pulse width modulator controlling the [power
11 switching devices of the] first buck converter circuit;

12 a second pulse width modulator controlling the [power
13 switching devices of the] second buck converter circuit;

14 a feedback circuit responsive to the voltage across the
15 common load;

16 control circuits for controlling the first and second pulse
17 width modulators responsive to the feedback circuit;

18 the control circuits also being responsive to current
19 measurements through the first buck converter circuit and the
20 second buck converter circuit to adjust [for adjusting] the
21 relative duty cycle of the first and second buck converter
22 circuits.

1 51. (Amended) A DC to DC [switching circuit for]
2 controlling power switching devices in a DC to DC] converter
3 [having a plurality of buck converter circuits operating into a
4 common load,] comprising:

5 a plurality of buck converter circuits operating into the
6 common load, each buck converter circuit having an inductor for
7 alternately conducting between first and second power supply
8 terminals, and the second power supply terminal and the common
9 load;

10 a plurality of pulse width modulators driven by a common
11 oscillator in an interleaved manner, each pulse width modulator
12 controlling [power switching devices of] one of the plurality of
13 buck converter circuits, whereby the operation of the buck
14 converter circuits is interleaved;

15 a feedback circuit responsive to a voltage on [across] the
16 common output [load];

17 a voltage control circuit for controlling the plurality of
18 pulse width modulators responsive to the feedback circuit and a
19 commanded output voltage; and

20 a current balance control circuit for controlling the pulse
21 width modulators responsive to a difference in current in the
22 inductors of the plurality of interleaved buck converter circuits
23 to balance the current in the plurality of interleaved buck
24 converter circuits;

25 the plurality of pulse width modulators and the control
26 circuits being in a single integrated circuit.

1 52. (Amended) A DC to DC [switching circuit for
2 controlling power switching devices in a DC to DC] converter
3 having a plurality of [buck] converter circuits operating into a
4 common load, comprising:

5 a plurality of buck converter circuits operating into the
6 common load, each buck converter circuit having an inductor for
7 alternately conducting between first and second power supply
8 terminals, and the second power supply terminal and the common
9 load;

10 a plurality of pulse width modulators each controlling power
11 switching devices of one of the plurality of buck converter
12 circuits, the operation of the pulse width modulators and the
13 buck converter circuits being interleaved;

14 a feedback circuit responsive to a voltage across the common
15 load;

16 control circuits being responsive to the feedback circuit
17 and a commanded output voltage to control a nominal duty cycle of
18 the plurality of buck converter circuits, the control circuits
19 also being responsive to the difference in currents in the
20 plurality of interleaved buck converter circuits to adjust the
21 [u]adjusting a] relative duty cycle of the plurality of buck

22 converter circuits to balance the current in the buck converter
23 circuits;

24 the plurality of pulse width modulators and the control
25 circuits being in a single integrated circuit.

C 22
Circuits

1 53. (Amended) A DC to DC [switching circuit for
2 controlling power switching devices in a DC to DC] converter
3 having first and second [interleaved buck] converter circuits
4 operating into a common load, comprising:

5 first and second buck converter circuits operating into the
6 common load, each buck converter circuit having an inductor for
7 alternately conducting between first and second power supply
8 terminals, and the second power supply terminal and the common
9 load;

10 a first pulse width modulator controlling the [power
11 switching devices of the] first buck converter circuit;

12 a second pulse width modulator controlling the [power
13 switching devices of the] second buck converter circuit;

14 a feedback circuit responsive to the voltage across the
15 common load;

16 control circuits for controlling the first and second pulse
17 width modulators responsive to the feedback circuit;

18 the control circuits also being responsive to current
19 measurements in [through] the first buck converter circuit and
20 the second buck converter circuit to adjust [for adjusting] the

21 relative duty cycle of the first and second buck converter
22 circuits;
23 the first pulse width modulator, the second pulse width
24 modulator, the feedback circuit and the control circuits being in
25 a single integrated circuit.

*C17
C18*

1 54. (Amended) A DC to DC [switching circuit for
2 controlling power switching devices in a DC to DC] converter
3 having a plurality of [buck] converter circuits operating into a
4 common load, comprising:
5 a plurality of buck converter circuits operating into the
6 common load, each buck converter circuit having an inductor for
7 alternately conducting between first and second power supply
8 terminals, and the second power supply terminal and the common
9 load;
10 a plurality of pulse width modulators driven by a common
11 oscillator in an interleaved manner, each pulse width modulator
12 controlling [power switching devices of] one of the plurality of
13 buck converter circuits, whereby the operation of the buck
14 converter circuits is interleaved;
15 a feedback circuit responsive to a voltage across the common
16 load;
17 a voltage control circuit for controlling the plurality of
18 pulse width modulators responsive to the feedback circuit and a
19 commanded output voltage; and

20 a current balance control circuit for controlling the pulse
21 width modulators to balance the current in the plurality of
22 interleaved buck converter circuits responsive to the difference
23 in current in the plurality of interleaved buck converter
24 circuits.

C-1
C-2
C-3

1 55. (Amended) A DC to DC [switching] circuit for
2 controlling power switching devices in a DC to DC] converter
3 having a plurality of [buck] converter circuits operating into a
4 common load, comprising:

5 a plurality of buck converter circuits operating into the
6 common load, each buck converter circuit having an inductor for
7 alternately conducting between first and second power supply
8 terminals, and the second power supply terminal and the common
9 load;

10 a plurality of pulse width modulators each controlling power
11 switching devices of one of the plurality of interleaved buck
12 converter circuits, the operation of the pulse width modulators
13 and the buck converter circuits being interleaved;

14 a feedback circuit responsive to a voltage across the common
15 load;

16 control circuits responsive to the feedback circuit and a
17 commanded output voltage to control a nominal duty cycle of the
18 plurality of buck converter circuits, the control circuits also
19 adjusting a relative duty cycle of the plurality of buck

20 converter circuits to balance the current in the buck converter
21 circuits responsive to the difference in current in the plurality
22 of interleaved buck converter circuits.

1 56. (Amended) A [circuit for a] DC to DC converter having
2 a plurality of [buck] converter circuits operating into a common
3 load, comprising:

4 a plurality of buck converter circuits operating into the
5 common load, each buck converter circuit having an inductor for
6 alternately conducting between first and second power supply
7 terminals, and the second power supply terminal and the common
8 load;

9 a plurality of pulse width modulators each controlling
10 [power switching devices of] one of the plurality of buck
11 converter circuits, the pulse width modulators being driven by a
12 common oscillator signal so that the operation of the pulse width
13 modulators is interleaved;

14 control circuits for adjusting a nominal duty cycle of the
15 plurality of interleaved buck converter circuits to control a
16 voltage on the common load, and for adjusting a relative duty
17 cycle of the plurality of buck converter circuits to balance the
18 current in the buck converter circuits.

1 57. (Amended) A DC to DC [switching circuit for
2 controlling power switching devices in a DC to DC] converter

3 having first and second [interleaved] buck converter circuits
4 operating into a common load, comprising:

5 first and second buck converter circuits operating into the
6 common load, each buck converter circuit having an inductor for
7 alternately conducting between first and second power supply
8 terminals, and the second power supply terminal and the common
9 load;

10 a first pulse width modulator controlling the [power
11 switching devices of the] first buck converter circuit;

12 a second pulse width modulator controlling the [power
13 switching devices of the] second buck converter circuit;

14 a feedback circuit responsive to the voltage across the
15 common load;

16 control circuits for controlling the first and second pulse
17 width modulators responsive to the feedback circuit;

18 the control circuits also being responsive to current
19 measurements in [through] the first buck converter circuit and
20 the second buck converter circuit to adjust [for adjusting] the
21 relative duty cycle of the first and second buck converter
22 circuits.

1 58. (New) A DC to DC converter having a plurality of
2 converter circuits for operating into a common load, comprising:
3 a plurality of buck converter circuits operating into the
4 common load, each buck converter circuit having an inductor for

5 alternately conducting between first and second power supply
6 terminals, and the second power supply terminal and the common
7 load;

8 a plurality of pulse width modulators driven by a common
9 oscillator in an interleaved manner, each pulse width modulator
10 controlling one of the plurality of buck converter circuits,
11 whereby the operation of the buck converter circuits is
12 interleaved;

13 a feedback circuit responsive to a voltage across the common
14 output;

15 a voltage control circuit controlling the plurality of pulse
16 width modulators responsive to the feedback circuit and a .
17 commanded output voltage,

18 the plurality of pulse width modulators and the control
19 circuits being in a single integrated circuit.

1
2 59. (New) The DC to DC converter of claim 58 further
3 comprising the common oscillator, the common oscillator also
4 being in the single integrated circuit.

1
2 60. (New) A DC to DC converter having a plurality of
3 converter circuits operating into a common load, comprising:
4 a plurality of buck converter circuits operating into the
5 common load, each buck converter circuit having an inductor for
6 alternately conducting between first and second power supply

6 terminals, and the second power supply terminal and the common
7 load;

8 a plurality of pulse width modulators each controlling one
9 of the plurality of buck converter circuits, the operation of the
10 pulse width modulators and the buck converter circuits being
11 interleaved;

12 a feedback circuit responsive to a voltage across the common
13 load;

14 control circuits responsive to the feedback circuit and a
15 commanded output voltage to control a nominal duty cycle of the
16 plurality of buck converter circuits;

17 the plurality of pulse width modulators and the control
18 circuits being in a single integrated circuit.

*C 12
Con'd
Sub E 16 2
3*
1 61. (New) The DC to DC converter of claim 58 further
comprising the common oscillator, the common oscillator also
being in the single integrated circuit.

*Sent D 10
1
2
3
4
5
6*
1 62. (New) A DC to DC converter comprising:
first and second buck converter circuits operating into a
common load, each buck converter circuit having an inductor for
alternately conducting between first and second power supply
terminals, and the second power supply terminal and the common
load;

7 first and second pulse width modulators driven by a common
8 oscillator in an interleaved manner, each pulse width modulator
9 controlling a respective one of the first and second buck
10 converter circuits, whereby the operation of the buck converter
11 circuits is interleaved;

12 a feedback circuit responsive to a voltage across the common
13 output;

14 a voltage control circuit controlling the first and second
15 pulse width modulators responsive to the feedback circuit and a
16 commanded output voltage;

17 the plurality of pulse width modulators and the control
18 circuits being in a single integrated circuit.

*C12
Cont'd
Sub E10*
63. (New) The DC to DC converter of claim 62 further
comprising the common oscillator, the common oscillator also
being in the single integrated circuit.

*Sink
D11*
64. (New) A DC to DC converter comprising:
first and second buck converter circuits operating into a
common load, each buck converter circuit having an inductor for
alternately conducting between first and second power supply
terminals, and the second power supply terminal and the common
load;

7 first and second pulse width modulators each controlling a
8 respective one of the buck converter circuits, the operation of

9 the pulse width modulators and the buck converter circuits being
10 interleaved;

11 a feedback circuit responsive to a voltage across the common
12 load;

13 control circuits responsive to the feedback circuit and a
14 commanded output voltage to control a nominal duty cycle of the
15 plurality of buck converter circuits;

16 the plurality of pulse width modulators and the control
17 circuits being in a single integrated circuit.

*C18
Concil
Sub E2D*
65. (New) The DC to DC converter of claim 58 further
comprising the common oscillator, the common oscillator also
3 being in the single integrated circuit.