



## Logistic Regression Model

Data:  $\{(X_{1,1}, X_{1,2}, \cdots, X_{1,p}), Y_1\}, \{(X_{2,1}, X_{2,2}, \cdots, X_{2,p}), Y_2\}, \cdots, \{(X_{n,1}, X_{n,2}, \cdots, X_{n,p}), Y_n\}$  where  $Y_1, \cdots, Y_n$  are binary responses

Model: We model the probability of success given the predictor(s)

$$p = p(X_1, \dots, X_p) = Pr(Y = 1 \mid X_1, \dots, X_p)$$

by linking p to the predicting variables through the *logit* link function g:

$$g(p) = \ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

OR

$$p(X_1, \dots, X_p) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

Georgia Tech

# Model Interpretation

- The probability of success given one predicting variable X = x is p = p(x) = Pr(Y = 1 | x)
- The logit function  $\ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x$  is the **log odds** function.
- The exponential of the logit function  $\frac{p(X)}{1-p(X)} = e^{\beta_0 + \beta_1 x}$  is the **odds** of Y = 1 at X = x
- The odds at X = a versus X = b is equal to the **odds ratio**:

$$\frac{\mathrm{e}^{\beta_0 + \beta_1 a}}{\mathrm{e}^{\beta_0 + \beta_1 b}} = \mathrm{e}^{\beta_1 (a - b)}$$

Georgia Tech

### **Model Interpretation**

If we calculate the odds ratio of the odds at X = b + 1 versus X = b, we have

$$\frac{\mathrm{e}^{\beta_0+\beta_1(b+1)}}{\mathrm{e}^{\beta_0+\beta_1b}}=\mathrm{e}^{\beta_1}$$

- The regression coefficient  $\beta_1$  can be interpreted as the log of the odds ratio for an increase of one unit in the predicting variable.
- If X a dummy variable of a categorical factor, interpret as the log of odds ratio of one category versus baseline.
- Interpret  $\beta$  with respect to the odds of success, not directly with respect to the response variable.

Georgia Tech

#### **Model Estimation**

Model the probability of success given predictor(s):

$$\operatorname{Logit}\!\left(\operatorname{Pr}\!\left(Y=1\mid X_1,\cdots,X_p\right)\right)=\operatorname{Logit}\!\left(\operatorname{p}\!\left(X_1,\cdots,X_p\right)\right)=\beta_0+\beta_1X_1+\cdots+\beta_pX_p$$

Parameters:  $\beta_0, \beta_1, \cdots, \beta_n$ 

**Approach:** Maximum Likelihood Estimation

$$\max_{\beta_0,\beta_1,\cdots,\beta_p} \mathcal{L}(\beta_0,\beta_1,\cdots,\beta_p) = \prod_{i=1}^n p(X_{i,1},X_{i,2},\cdots,X_{i,p})^{Y_i} \left(1 - p(X_{i,1},X_{i,2},\cdots,X_{i,p})\right)^{1-Y_i}$$

or

$$\begin{aligned} &\max_{\beta_0,\beta_1,\cdots,\beta_p} \ell(\beta_0,\beta_1,\cdots,\beta_p) = \max_{\beta_0,\beta_1,\cdots,\beta_p} \log(\mathcal{L}(\beta_0,\beta_1,\cdots,\beta_p)) \\ &= \max_{\beta_0,\beta_1,\cdots,\beta_p} \sum_{i=1}^n \left( Y_i \log\left(\frac{\mathrm{e}^{\beta_0+\beta_1 X_1+\cdots+\beta_p X_p}}{1+\mathrm{e}^{\beta_0+\beta_1 X_1+\cdots+\beta_p X_p}}\right) + (1-Y_i) \log\left(\frac{1}{1+\mathrm{e}^{\beta_0+\beta_1 X_1+\cdots+\beta_p X_p}}\right) \right) \end{aligned}$$

Georgia Tech

## Model Estimation (cont'd)

Approach: Maximum Likelihood Estimation

$$\max_{\beta_0,\beta_1,\cdots,\beta_p} \sum_{i=1}^{n} \left( Y_i \log \left( \frac{e^{\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p}} \right) + (1 - Y_i) \log \left( \frac{1}{1 + e^{\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p}} \right) \right)$$

- Maximizing the (log-)likelihood function with respect to  $\beta_0, \beta_1, \cdots, \beta_p$  in closed form expression is not possible because the (log-)likelihood function is a non-linear function in the model parameters.
- Use numerical algorithm to estimate  $\beta_0, \beta_1, \dots, \beta_p \Rightarrow \hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$

**Upshot**: The estimated parameters and their standard errors are approximate estimates. Do not attempt to do it yourself! Use statistical software to derive the estimated regression coefficients.

Georgia Tech

#### Summary



Georgia Tech