F20 PHYSICS 137B: HW 7

October 23 at 11:59 pm

October 13, 2020

1 Griffiths problems

Do the following problems from Griffiths: 11.27

2 Other problems

2.1

A harmonic oscillator of mass m, charge e, and classical frequency ω is in its ground state. A uniform electric field \mathbf{E} is turned on at t=0 and turned off at $t=\tau$. Use first-order time-dependent perturbation theory to estimate the probability that the system is excited to its nth state.

2.2

Suppose that an electron in a one-dimensional harmonic oscillator potential $\frac{1}{2}m\omega_0^2x^2$ is subjected to an oscillating electric field $E=E_0\cos(\omega t)$ pointing in the x-direction.

- a) If the electron is initially in the ground state, what is the probability that the electron will be in the nth excited state at time t?
- b) If $\omega = \omega_0$, perturbation theory will fail at some time t. What is the critical time?

2.3

At t < 0, an electron is assumed to be in the n = 3 eigenstate of an infinite square potential well, which extends from -a/2 < x < a/2. At t = 0, an electric field is applied, with the potential V = Ex. The electric field is then removed at time $\tau > 0$. Determine the probability that the electron is in any other state at $t > \tau$.

2.4

Justify the following version of the energy-time uncertainty principle (due to Landau): $\Delta E \Delta t \ge \hbar/2$, where Δt is the time it takes to execute a transition involving an energy change ΔE , under the influence of a constant perturbation (Δt is the time it takes for P(t) to reach a peak in its oscillation). Explain more precisely what ΔE and Δt mean in this context.