

FRB Hackathon

Machine Learning with AWS API

Agenda

- 1. Machine Learning
 - A. Introduction
 - B. Algorithms
 - C. Cased Studies
 - D. ML in Practice
- 2. Application Program Interface (API)
 - A. Introduction
 - B. ML using AWS API
 - I. Comprehend: Text Analytics
 - II. AWS Textract
 - III. SageMaker Classification
- 3. Summary

Machine Learning: Introduction (1/2)

What is Machine Learning?

Traditional Programing

Machine Learning

Write programs to automate the task; system will take input and execute the instructions to generate output

Automating automation; Getting computers to program themselves

- Machine Learning:
 - "Changes in a system that enable it to do the same task or tasks drawn from the same population more efficiently and more effectively the next time" (Simon 1983)
- Learning: "Learning is any process by which a system improves performance from experience." (Simon)

Machine Learning: Introduction (2/2)

- House Price Prediction Case Study: Predict the monetary value of a house located at the Boston's area
- Traditional Approach: From our experience, we would try to understand the house features which impact the house price and then generate the equation to come up with the final Value

Price = $X_0 + X_1$ * Floor Space + X_2 * No of Rooms + X_3 * Row House

Machine Learning:

n	n	П	t	I)	2	ta
	ν	u	L	\boldsymbol{L}	u	ιu

Price	Floor space	Rooms	Lot size	Row house	Corner house	Detached
250000	71	4	92	1	0	0
209500	98	5	123	1	0	0
349500	128	6	114	1	0	0
250000	86	4	98	1	0	0
419000	173	6	99	1	0	0
225000	83	4	67	1	0	0
549500	165	6	110	1	0	0
240000	71	4	78	1	0	0
340000	116	6	115	1	0	0

Types Of Machine Learning

- Below are the two main ways in which machine can learn:
 - 1. Supervised Learning
 - 2. Unsupervised Learning

- Supervised Learning: In Supervised learning, we train the machine using data which is well "labeled."
 - I. A supervised learning algorithm learns from labeled training data, helps you to predict outcomes for unforeseen data
 - II. Formal Definition: With input variables (x) and an output variable (Y) and you use an algorithm to learn the mapping function from the input to the output: Y = f(X)
 - III. The goal is to approximate the mapping function so well that when you have new input data (x) that you can predict the output variables (Y) for that data

Supervised Machine Learning: Regression

- Supervised Learning: Under Supervised learning, below are two main types of algorithms:
 - I. Regression
 - II. Classification
- Regression: A regression problem is when the output variable is a quantitative value value, such as house prices in Dollars, Travel Time in Minutes or Amount of rain in Centimeter
- Business use Case:
 - I. Predict the number of mortgage application coming in every day to provide assistance with the personnel planning
- Solution:
 - I. Build Regression model using past data with Application as dependent variables and below important features as independent variables:
 - i. Interest rate
 - ii. Changes in the interest rates
 - iii. The amount of mortgage applications on the previous day
 - iv. Holidays
 - v. The day of the year

Supervised Machine Learning: Classification (1/2)

- Classification: A classification problem is when the output variable is a category;
 - I. In short Classification either predicts categorical class labels or classifies data (construct a model) based on the training set and the values (class labels) and uses it in classifying new data
- For example, when filtering emails "spam" or "not spam", when looking at transaction data, "fraudulent", or "authorized"

Example 1: Classify Male & Female based upon their characteristics

Example 2: Loan Underwriting Use case

Supervised Machine Learning: Classification (2/2)

- Case Study:
 - I. Identify if the particular customer is creditworthy or not for the applied loan (Loan Underwriting)
- Input Data:
 Dependent Variables
 Independent Variable

Loan_ID	Gender	Married	Dependents Education	Self_Employed	Applicantincome	Coapplicantincome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status
LP001003	Male	Yes	1 Graduate	No	4583	1508	128	360	1	Rural	N
LP001005	Male	Yes	0 Graduate	Yes	3000	0	66	360	1	Urban	Y
LP001006	Male	Yes	0 Not Graduate	No	2583	2358	120	360	1	Urban	γ
LP001008	Male	No	0 Graduate	No	6000	0	141	360	1	Urban	γ
LP001011	Male	Yes	2 Graduate	Yes	5417	4196	267	360	1	Urban	Υ
LP001013	Male	Yes	0 Not Graduate	No	2333	1516	95	360	1	Urban	γ
LP001014	Male	Yes	3+ Graduate	No	3036	2504	158	360	0	Semiurban	N
LP001018	Male	Yes	2 Graduate	No	4006	1526	168	360	1	Urban	Υ
LP001020	Male	Yes	1 Graduate	No	12841	10968	349	360	1	Semiurban .	N
P001024	Male	Yes	2 Graduate	No	3200	700	70	360	1	Urban	Y
P001028	Male	Yes	2 Graduate	No	3073	8106	200	360	1	Urban	Y

- Solution:
 - I. Build a decision tree classifier with dependent variables to predict the Loan status with below features:
 - i. Credit History
 - ii. Education
 - iii. Applicant Income, Co-applicant Income
 - v. Loan Amount, Loan Amount Term

Machine Learning: In Practice

Below is the machine learning pipeline to build and deploy the machine learning model:

AWS – Building Applications

Application building tools

AWS – Application Architecture

Few AWS APIs

AWS Python SDK

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

S3 Download file example

```
import boto3

s3 = boto3.client('s3')
s3.download_file('BUCKET_NAME', 'OBJECT_NAME', 'FILE_NAME')
```

S3 Upload file example

```
import logging
import boto3
from botocore.exceptions import ClientError
def upload_file(file_name, bucket, object_name=None):
    """Upload a file to an S3 bucket
    :param file_name: File to upload
   :param bucket: Bucket to upload to
    :param object_name: S3 object name. If not specified then file_name is used
    :return: True if file was uploaded, else False
    # If S3 object_name was not specified, use file_name
   if object_name is None:
        object_name = file_name
    # Upload the file
    s3_client = boto3.client('s3')
    try:
        response = s3_client.upload_file(file_name, bucket, object_name)
    except ClientError as e:
        logging.error(e)
        return False
    return True
```


COMPREHEND API: Text Analytics

Text Analytics

Amazon Comprehend

Document Classification

- Ticket Routing
- Information Retrieval (Auditor from Annual Statements)

Sentiment Analysis

- Due Diligence Risk Assessment
- Targeted Campaign Voice of Customer

Entity Recognition

 Information Retrieval (Auditor from Annual Statements)

Document Classification – Annual Report (Proxy Statement) - Dataset

Amazon Comprehend

Ratification of the Appointment of Independent Registered Public Accounting Firm for 2019

sec.gov/Archives/edgar/data/66740/000120677419001068/mmm3460801-def14a.htm#proposal 2 42

- Ratify the appointment of PricewaterhouseCoopers LLP as 3M's independent registered public accounting firm for 2019.
- Based on its assessment of the qualifications and performance of PricewaterhouseCoopers LLP ("PwC") the Audit Committee believes that it is in the best interests of the Company and its stockholders to retain PwC.

The Audit Committee is directly responsible for the appointment, compensation (including approval of all fees), retention, and oversight of the Company's independent registered public accounting firm ("Independent Accounting Firm") retained to perform the audit of our financial statements and our internal control over financial reporting.

The Audit Committee has appointed PricewaterhouseCoopers LLP ("PwC") to serve as 3M's Independent Accounting Firm for 2019. PwC has been 3M's Independent Accounting Firm since 1998. Prior to that, 3M's Independent Accounting Firm was Coopers & Lybrand from 1975 until its merger with Price Waterhouse in 1998. In accordance with SEC rules and PwC policy, audit partners are subject to rotation requirements to limit the number of consecutive years an individual partner may provide service to our Company. For lead and concurring audit partners, the maximum number of consecutive years of service in that capacity is five years. The process for selection of the Company's lead audit partner pursuant to this rotation policy involves a meeting between the Chair of the Audit Committee and the candidate for the role, as well as discussion by the full Committee and with management.

The Audit Committee annually reviews PwC's independence and performance in connection with the Audit Committee's determination of whether to retain PwC or engage another firm as our Independent Accounting Firm. In the course of these reviews, the Audit Committee considers, among other things:

Document Classification – Annual Report (Proxy Statement) - Dataset

С		D	G	
filename	-	text	label	~
ABBOTT LABORATORIES.htm	nl	DEF 14A 1 a2222821zdef14a.htm DEF 14A.Use these links to rapidly review the do	1	0
ABBOTT LABORATORIES.htm	nl). Filed by the Registrant. Filed by a Party other than the Registrant o. Check the ap	1	0
ABBOTT LABORATORIES.htm	nl	(Name of Registrant as Specified In Its Charter).		0
ABBOTT LABORATORIES.htm	nl	(Name of Person(s) Filing Proxy Statement, if other than the Registrant). Paymen		0
ABBOTT LABORATORIES.htm	nl	(1). Title of each class of securities to which transaction applies.		0
ABBOTT LABORATORIES.htm	nl	(2). Aggregate number of securities to which transaction applies.		0
ABBOTT LABORATORIES.htm	nl	(3). Per unit price or other underlying value of transaction computed pursuant to	ł	0
ABBOTT LABORATORIES.htm	nl	(4). Proposed maximum aggregate value of transaction.		0
ABBOTT LABORATORIES.htm	nl	(5). Total fee paid.o. Fee paid previously with preliminary materials.o. Check box i		0
ABBOTT LABORATORIES.htm	nl	Identify the previous filing by registration statement number, or the Form or Sch	(0
ABBOTT LABORATORIES.htm	nl	(1).Amount Previously Paid.		0
ABBOTT LABORATORIES.htm	nl	(2).Form, Schedule or Registration Statement No.		0
ABBOTT LABORATORIES.htm	nl	(4).Date Filed.Table of Contents.Table of Contents.Abbott Laboratories 100 Abbo	i	0
ABBOTT LABORATORIES.htm	nl	Glucerna. Juliana Auler, S o Paulo, Brazil. Juliana Auler is an English teacher, transl	;	0
C C	.1	D	G	^
filename	_	text ▼	label	Ţ
ABBOTT LABORATORIES.htm	ıl	In October 2014, the Audit Committee appointed Ernst & Young LLP to act as audit		1
ABBOTT LABORATORIES.htm	ıl	If the shareholders do not ratify the appointment of Ernst & Young LLP as auditors	9	1
ABBOTT LABORATORIES.htm	ıl	2.Ratification of Ernst & Young LLP as auditors 3.		1
ABBOTT LABORATORIES.htm	ıl	Ratification of Ernst & Young LLP as auditors 1.		1
ALCOA INChtml		Based on its evaluation, the Audit Committee has appointed PricewaterhouseCo		1
ALCOA INChtml		The Audit Committee and the Board believe that the continued retention of Price	4	1
ALCOA INChtml		In addition, the Audit Committee has approved, subject to shareholder ratification		1
BIOGEN INChtml		Ratification of PricewaterhouseCoopers LLP.		1
BIOGEN INChtml		FOR the ratification of the selection of PricewaterhouseCoopers LLP as our indep		1
BIOGEN INChtml		Ratification of PricewaterhouseCoopers LLP.		1
BIOGEN INChtml		The affirmative vote of a majority of shares present in person or represented by		1

https://spacy.io/api/tokenizer

Document Classification – Dataset

Q Type a prefix and press Enter to search. Press ESC to clear.			
♣ Upload			US East (Ohio) 🤰
☐ № 786796469737-CLR-92bce333a8a26a778b9e30dfa84a593c			
☐ ► 786796469737-CLR-b8b60933da84a5aeaae7e841e013601f			
.write_access_check_file.temp	Dec 5, 2019 9:13:12 AM GMT+0530	0 B	Standard
finstmt.csv	Dec 5, 2019 9:11:44 AM GMT+0530	416.6 KB	Standard
ticket.csv	Dec 5, 2019 8:25:06 AM GMT+0530	12.5 MB	Standard

Document Classification – Training

Document Classification – Training

Document Classification – Endpoint

Document Classification – Endpoint

Document Classification – Endpoint

▼ Application integration

Request and response of ClassifyDocument API. See next steps in the Documentation

Request

```
1 {
2 "Text": "Our Audit Committee has appointed
PricewaterhouseCoopers LLP as our independent
registered public accounting firm for the year
ending December 31, 2015.",
3 "EndpointArn": "arn:aws:comprehend:us-east-2
:786796469737:document-classifier-endpoint
/finstmt-auditor-v2"
4 }
```

Response

Entity Recognition

```
string = 'Although ratification is not required by our By-Laws or otherwise, the Board is submitting the selection of D&T to our
r = comprehend_api_entities(string, key_id,secret_key)
r

{'Entities': [{'Score': 0.9996688365936279,
    'Type': 'ORGANIZATION',
    'Text': 'D&T',
    'BeginOffset': 108,
    'EndOffset': 111}],
'ResponseMetadata': {'RequestId': '29d6ba87-5689-4ddb-85ff-1ad8a75e1a3b',
    'HTTPStatusCode': 200,
    'HTTPHeaders': {'x-amzn-requestid': '29d6ba87-5689-4ddb-85ff-1ad8a75e1a3b',
    'content-type': 'application/x-amz-json-1.1',
    'content-length': '112',
    'date': 'Thu, 05 Dec 2019 06:14:46 GMT'},
'RetryAttempts': 0}}
```


Sentiment Analysis

```
string = 'All the key economic indicators have been on a downward swing for quite some time. If this slide is not checked India r = comprehend_api_sentiment(string, key_id,secret_key)
r

{'Sentiment': 'NEGATIVE',
    'SentimentScore': {'Positive': 0.12709932029247284,
        'Negative': 0.4827170670032501,
        'Neutral': 0.3885166645050049,
        'Mixed': 0.0016669268952682614},
        'ResponseMetadata': {'RequestId': '74a3f62f-cc53-43b5-ba77-5a50295eb36d',
        'HTTPStatusCode': 200,
        'HTTPHeaders': {'x-amzn-requestid': '74a3f62f-cc53-43b5-ba77-5a50295eb36d',
        'content-type': 'application/x-amz-json-1.1',
        'content-length': '163',
        'date': 'Thu, 05 Dec 2019 06:14:10 GMT'},
        'RetryAttempts': 0}
```


Al Services: AWS Textract

- Information in form of documents is major part of record keeping, collaborating and transacting in major domains such as Finance, Real-Estate, Medical, Legal, Insurance and Business management.
- There is a need to digitize and analyze these documents, for Search and Discovery, Compliance and Business process Automation.

Challenges

- Manual Processing took a lot of time and effort to categorize, filter and prepare documents for analysis
- Multiple Templates created a hurdle for generic extraction algorithms
- Difficult to capture information from Complex documents skewed, tilted
- Manual rules for Key Value pairs, Table Extraction and Form data Extraction

Solution

Accurate
Text Extraction
Line and
paragraph
Identification

Accurate

Table Extraction

Columns and

Cells

Identification

Accurate
Forms Extraction
Key Value pair
Identification

Machine Learning Model On Sage Maker: CLASSIFICATION

AWS SageMaker: ML Services

Build Algorithms and notebooks

One Click model training, Tuning, and Testing

One-click training and Hyperparameter

From Command Line or Python

One Click deployment and hosting

Collect and prepare training data	Choose and opti ML algorithr
SageMaker Built-in Algorithms	Bring Your Own Algorithm
K-means Clustering Neural Topic Modelling Linear Learner XGBoost Image Classification DeepAR Forecasting BlazingText (word2vec)	R MXNet Tensorflow PyTorch Keras Apache Spark

Set up and manage environments for training

optimization

AWS CLI

Algorithm Input Data Hardware

Specify Container

Train and tune ML models

Deploy models in production

Scale and manage the

One-click Deployment

Create an endpoint configuration for an HTTPS endpoint Create an HTTPS endpoint

Benefits

Cost

Reduce ML Training time **GPU** utilization Support large complex models Lower inference costs

Automatic data labeling for training Faster Data cleaning and Feature Engineering

Ease of Use

Pre defined models for training **Automatic Optimization** Methods for Accuracy and performance metrics

AWS SageMaker: End to End Build

Create an Amazon S3 Bucket

Stores:
Training data
Model artifacts

Create an Amazon SageMaker Notebook Instance

Fully managed EC2 instance
To create and manage
Jupyter notebooks

Create a Jupyter Notebook

Python 3 Notebook Needs name of S3 bucket

Deploy the Model to Amazon SageMaker

Creates deployable model, Configures the SageMaker hosting services endpoint, Launches endpoint

Train a Model

Choose the Training Algorithm

Set Hyperparameters and start model training

Create Training Dataset

Download dataset Transform and upload to S3 bucket

Validate the Model

validate accurate predictions on new data

Integrating SageMaker Endpoints into Applications

Call endpoint using set keys

Create Amazon S3 Bucket

From Services → Select Amazon S3 → Click on Create Bucket to open create bucket window

Create Amazon S3 Bucket

Specify a bucket name →

Select Region

 \rightarrow

Click on Create

An S3 bucket with default properties and permissions will be created. They can be changed later per requirement.

From Services → Select Amazon SageMaker → Click on **Notebook instances**→ Click on **Create notebook instance**

Specify a name for Notebook instance \rightarrow Select **Create a new role** from **Permissions and encryption** dropdown

Specify name of S3 bucket created earlier → Click on **Create role**

Click on **Create notebook instance**

→ Once instance's Status is InService, Click on Open Jupyter

Thank You

■ In case of any doubt/queries, please feel free to reach out to us at below contact details:

Saurabh Singh: saurabh.singh07@mphasis.com

Sai Barath Sunder: sai.sundar@mphasis.com

Rahul Gupta: rahul.gupta@mphasis.com

THANK YOU

About Mphasis

Mphasis (BSE: 526299; NSE: MPHASIS) applies next-generation technology to help enterprises transform businesses globally. Customer centricity is foundational to Mphasis and is reflected in the Mphasis' Front2Back™ Transformation approach. Front2Back™ uses the exponential power of doud and cognitive to provide hyperpersonalized (C=X2C²_{TM}=1) digital experience to clients and their end customers. Mphasis' Service Transformation approach helps 'shrink the core' through the application of digital technologies across legacy environments within an enterprise, enabling businesses to stay ahead in a changing world. Mphasis' core reference architectures and tools, speed and innovation with domain expertise and specialization are key to building strong relationships with marquee clients. Click here to know

Important Confidentiality Notice

This document is the property of, and is proprietary to Mphasis, and identified as "Confidential". Those parties to whom it is distributed shall exercise the same degree of custody and care afforded their own such information. It is not to be disclosed, in whole or in part to any third parties, without the express written authorization of Mphasis. It is not to be duplicated or used, in whole or in part, for any purpose other than the evaluation of, and response to, Mphasis' proposal or bid, or the performance and execution of a contract awarded to Mphasis. This document will be returned to Mphasis upon request.