1. The simple knapsack problem is:

Input: Positive integers $w_1, ..., w_n, W$.

Output: A subset $S \subseteq \{1, ..., n\}$ such that $K = \sum_{i \in S} w_i$ is as large as possible subject to the constraint $K \leq W$.

We are to give a greedy algorithm which solves the simple knapsack problem for the case that each weight w_i is a power of 2, and prove that the algorithm is correct.

Algorithm:

```
Knapsack(w_1, \ldots, w_n, W):
   Sort the weights in non-increasing order (so w_1 \ge w_2 \ge \ldots \ge w_n).
   S \leftarrow \emptyset # S is the current set of weight indices in the knapsack
   K \leftarrow 0 # K is the current total weight in the knapsack
   for i = 1, \ldots, n: # loop invariant: S can be extended to an optimum solution
   if w_i + K \le W:
   S \leftarrow S \cup \{i\}
   K \leftarrow K + w_i

return (K, S)
```

Running Time: Sorting takes time $\Theta(n \log n)$ in the worst-case; the main loop takes time $\Theta(n)$ in the worst-case; total worst-case time is $\Theta(n \log n)$.

Correctness: To prove the algorithm is correct, it suffices to show that the final value of K is the largest possible total weight that can be placed in the knapsack with $K \leq W$, and $K = \sum_{i \in S} w_i$ for the final value of S.

Let $S_0 = \emptyset$ and $K_0 = 0$ (the values of S and K before the first execution of the for loop), and for $1 \le i \le n$ let S_i be the value of S and S_i be the value of S and S and

Thus $K_n = K$ and $S_n = S$, where K and S are the outputs of the algorithm.

By an easy induction on i we have $K_i \leq W$ and $K_i = \sum_{j \in S_i} w_j$. Let (K^*, S^*) be an optimum solution. Thus $K^* \leq W$, and $\sum_{i \in S^*} w_i = K^*$ and for all $T \subseteq \{1, ..., n\}$, if $\sum_{i \in T} w_i \leq W$ then $\sum_{i \in T} w_i \leq K^*$. We must show $K^* = K_n$, where K_n is the final value of K in the algorithm.

Claim: For $0 \le i \le n$, there exists $OPT_i \subseteq \{1,...,n\}$ such that $\sum_{j \in OPT_i} w_j = K^*$ and $OPT_i \cap \{1,...,i\} = S_i$.

In other words, the Claim says that each set S_i can be extended to an optimum solution OPT_i by adding some elements from $\{i+1,...,n\}$.

Note that the correctness of the algorithm follows from the Claim when i = n, since $OPT_n = S_n \cap \{1, ..., n\} = S_n = S$, and $K^* = K_n = K$.

To prove the Claim we need the following Lemma.

Lemma: Let $w_1, ..., w_m$ be powers of 2, and let $k \in \mathbb{N}$ be such that $w_i \leq 2^k$ for $1 \leq i \leq m$. Suppose $\sum_i w_i \geq 2^k$. Then there is a subset $S \subseteq \{1, ..., m\}$ such that $\sum_{i \in S} w_i = 2^k$.

We prove the Lemma below.

But first, we prove the Claim by induction on *i*, using the Lemma.

The base case is i = 0. Let $OPT_0 = S^*$, where (K^*, S^*) is the optimum solution mentioned above. Then $OPT_0 \cap \{\} = \emptyset = S_0$.

For the induction step $i \to i+1$, let OPT_i be an optimum solution that extends S_i (i.e., $\sum_{j \in OPT_i} w_j = K^*$ and $OPT_i \cap \{1, ..., i\} = S_i$). There are several cases to consider.

Case 1: $i + 1 \notin S_{i+1}$.

Then by the algorithm we see that $w_{i+1} + K_i > W$, so $i + 1 \notin OPT_i$, since otherwise (by the induction hypothesis) we would have:

$$\sum_{j \in OPT_i} w_j \geqslant \sum_{j \in (OPT_i \cap \{1, \dots, i, i+1\})} w_j = \left(\sum_{j \in S_i} w_j\right) + w_{i+1} = K_i + w_{i+1} > W.$$

Thus we can let $OPT_{i+1} = OPT_i$.

Case 2: $i + 1 \in S_{i+1}$.

Subcase 2A: $i + 1 \in OPT_i$.

Then let $OPT_{i+1} = OPT_i$.

Subcase 2B: $i + 1 \notin OPT_i$.

Then $w_{i+1} = 2^k$ for some k. Apply the Lemma for this k, and the set of weights $\{w_{i+2}, \ldots, w_n\}$. Note that $w_{i+2} + \cdots + w_n \ge w_{i+1} = 2^k$, since otherwise the output solution K_n of the algorithm would exceed $\sum_{j \in OPT_i} w_j$, which contradicts our assumption that OPT_i is optimum. Therefore by the Lemma, there is $S \subseteq \{i+2,\ldots,n\}$ such that $\sum_{j \in S} = 2^k$.

Let $OPT_{i+1} = OPT_i \cup \{i+1\} - S$. Then $\sum_{j \in OPT_{i+1}} w_j = \sum_{j \in OPT_i} w_j = K^*$, and $OPT_{i+1} \cap \{1, ..., i+1\} = (OPT_i \cap \{1, ..., i\}) \cup \{i+1\} = S_{i+1}$.

This completes the proof of the Claim.

Proof of the Lemma: We use induction on k. The base case is k = 0: then each $w_i = 2^0 = 1$ and $\sum_i w_i \ge 1$. Let $S = \{1\}$ so that $\sum_{i \in S} w_i = w_1 = 1$.

The induction step is $k \to k+1$. Assume that whenever $\sum_i w_i \ge 2^k$ for $w_1, \dots, w_m \le 2^k$, there is some $S \subseteq \{1, \dots, m\}$ such that $\sum_{i \in S} w_i = 2^k$.

Assume $w_i \le 2^{k+1}$ for $1 \le i \le m$, and

$$\sum_{i=1}^{m} w_i \geqslant 2^{k+1}. \tag{1}$$

Case I: If there exists $j \le m$ such that $w_j = 2^{k+1}$, let $S = \{j\}$. Then $\sum_{i \in S} w_i = w_j = 2^{k+1}$.

Case II: If $w_i \le 2^k$ for $1 \le i \le m$, then by the Induction Hypothesis there exists $S_1 \subseteq \{1, ..., m\}$ such that

$$\sum_{i \in S_1} w_i = 2^k. \tag{2}$$

Let $S_2 = \{1, ..., m\} - S_1$. Then

$$\sum_{i \in S_2} w_i = \sum_{i=1}^m w_i - \sum_{i \in S_1} w_i \geqslant 2^{k+1} - 2^k = 2^k$$

so by the Induction Hypothesis and (1) and (2) and the Case II assumption, there exists $S_3 \subseteq S_2$ such that

$$\sum_{i \in S_3} w_i = 2^k \tag{3}$$

Let $S = S_1 \cup S_3$ and note that this is a union of disjoint sets. Hence by (2) and (3) we conclude

$$\sum_{i \in S} w_i = \sum_{i \in S_1} w_i + \sum_{i \in S_2} w_i = 2^k + 2^k = 2^{k+1}.$$

This completes the proof of the Lemma and hence the correctness of the algorithm.

2. The minimum heavyweight spanning tree problem is:

Input: A connected undirected graph G = (V, E) and a weight function $w : E \to \mathbb{N}$.

Output: A spanning tree T_{ℓ} for G with the property that *every* spanning tree T for G has some edge e' with $w(e') \ge w(e)$, for every edge $e \in T_{\ell}$.

(a) We are to give an efficient greedy algorithm solving this problem, analyze its running time, and prove that our algorithm is correct.

We will show the following:

Claim: Every minimum spanning tree is also a minimum heavyweight spanning tree (the latter is usually called a *minimum bottleneck spanning tree*).

It follows from the Claim that every algorithm that we've studied for finding minimum spanning trees also finds a minimum heavyweight spanning tree. Thus it suffices to prove the above Claim.

We will prove the contrapositive (which is equivalent):

(*) If (V, T) is not a minimum heavyweight spanning tree for G = (V, E) then it is not a minimum spanning tree.

Suppose that (V, T_h) is a spanning tree for the graph G = (V, E) with weight function $w : E \to \mathbb{N}$. Let e_h be a maximum weight edge in T_h , so $w(e_h) \ge w(e)$ for every edge $e \in T_h$.

Assume that T_h is not a minimum heavyweight spanning tree for G. Then there is a spanning tree T' for G such that $w(e') < w(e_h)$ for every $e' \in T'$. We will use the following variation on the Exchange Lemma to show that T_h is not a minimum spanning tree for G, thus completing the proof of (*) and hence of this question.

Lemma: If T and T' are spanning trees for G, then for every edge e in T - T' there is an edge e' in T' - T such that $T'' = T \cup \{e'\} - \{e\}$ is a spanning tree for G.

We apply the Lemma with $T = T_h$ and $e = e_h$ and T' as in the paragraph preceding the lemma. Let $e' \in (T' - T_h)$ be the edge stated to exist in the lemma. Then $w(e') < w(e_h)$ so w(T'') < w(T), so T is not a minimum spanning tree for G, as required.

Proof of the Lemma:

Let e = (u, v). Then the graph $T_e = (V, T - e)$ is a "cut" for T: the vertices V of T_e are partitioned into two connected components V_u and V_v , where V_u is the set of nodes connected to u in T - e and V_v is the set of nodes connected to v in T - e. Since (V, T') is connected, T' must contain an edge e' which connects T_u and T_v . By assumption $e \notin T'$, so $e' \ne e$. Thus $T \cup \{e'\} - \{e\}$ is connected, and has the same number of edges as T, and hence it is a spanning tree for G.

(b) The answer is **no**: there are minimum heavyweight spanning trees which are not minimum spanning trees. For example,

Let $T = \{(a,b),(b,c)\}$ and $T' = \{(a,b),(a,c)\}$. Then T is a minimum heavyweight spanning tree, with heaviest weight 3 and total weight 6, and T' is also a minimum heavyweight spanning tree with heaviest weight 3, but it has total weight 5. Hence T is a minimum heavyweight spanning tree but not a minimum spanning tree.

3. We are to write an efficient algorithm that takes as inputs two strings $x, y \in \{A, C, G, T\}^*$ along with a $[5 \times 5]$ scoring matrix δ (with $\delta(-, -) = -\infty$), and that returns the highest-scoring alignment between x and y.

Step 0: Recursive structure.

Let $x = x_1 \cdots x_m$ and $y = y_1 \cdots y_n$ where each x_i and each y_i is in $\{A, C, G, T\}$ and $m \ge 0$ and $n \ge 0$ (but not both m and n are 0).

Consider an optimum alignment of x and y. Either x_m is aligned with y_n , or x_m is aligned with a gap, or y_n is aligned with a gap. In every case, the alignment for the rest of x and y must have the maximum possible score—else it would be possible to increase the total score of the current optimum alignment.

Step 1: Array definition.

Let $C[k,\ell]$ be the score of the highest scoring alignment between the initial segments $x_1 \cdots x_k$ and $y_1 \cdots y_\ell$, where $0 \le k \le m$ and $0 \le \ell \le n$.

The highest score among all possible alignments of x and y is given by C[m, n].

Step 2: Recurrence relation.

$$C[k,\ell] = \begin{cases} 0 & \text{if } k = 0 \text{ and } \ell = 0, \\ \delta(x_k, -) + C[k - 1, \ell] & \text{if } k > 0 \text{ and } \ell = 0, \\ \delta(-, y_\ell) + C[k, \ell - 1] & \text{if } k = 0 \text{ and } \ell > 0, \\ \max\left(\delta(x_k, -) + C[k - 1, \ell], \\ \delta(-, y_\ell) + C[k, \ell - 1], \\ \delta(x_k, y_\ell) + C[k - 1, \ell - 1]\right) & \text{if } k > 0 \text{ and } \ell > 0, \end{cases}$$

for all $0 \le k \le m$ and $0 \le \ell \le n$, based on the recursive structure of optimum solutions discussed above.

Step 3: Iterative algorithm.

```
Score (x = x_1 \cdots x_m, y = y_1 \cdots y_n, \delta):

C[0,0] \leftarrow 0

for k = 1, ..., m:

C[k,0] \leftarrow \delta(x_k, -) + C[k-1,0]

for \ell = 1, ..., n:

C[0,\ell] \leftarrow \delta(-,y_\ell) + C[0,\ell-1]

for k = 1, ..., m:

C[k,\ell] \leftarrow \max(\delta(x_k, -) + C[k-1,\ell], \delta(-,y_\ell) + C[k,\ell-1], \delta(x_k,y_\ell) + C[k-1,\ell-1])
```

This computes the values of $C[k,\ell]$ directly from the recurrence above and runs in worst-case time $\Theta((n+1)(m+1)) = \Theta(nm)$.

Step 4: Optimum solution.

Once we have computed the array values $C[k,\ell]$, we can use them to print an optimum alignment as follows: starting at C[m,n], test the current value against all three possibilities in the recurrence relation to determine the best alignment for the last character(s) of x and y, until both sequences are completely aligned.

```
ALIGN(x = x_1 \cdots x_m, y = y_1 \cdots y_n, \delta, C):
      A = [] # current alignment, stored as a list of pairs
      (k,\ell) \leftarrow (m,n)
      while k > 0 and \ell > 0:
             if C[k, \ell] = \delta(x_k, -) + C[k - 1, \ell]:
                   A \leftarrow [(x_k, -)] + A
                   k \leftarrow k - 1
             elif C[k,\ell] = \delta(-,y_{\ell}) + C[k,\ell-1]:
                   A \leftarrow [(-, y_{\ell})] + A
                    \ell \leftarrow \ell - 1
             else:
                   A \leftarrow [(x_k, y_\ell)] + A
                   k \leftarrow k - 1
                   \ell \leftarrow \ell - 1
      while k > 0:
             A \leftarrow [(x_k, -)] + A
             k \leftarrow k - 1
      while \ell > 0:
             A \leftarrow [(-, y_{\ell})] + A
             \ell \leftarrow \ell - 1
      return A
```

This requires additional time $\Theta(m+n)$ in the worst case.

4. An edge in a flow network is called *critical* if decreasing the capacity of this edge reduces the maximum possible flow in the network.

We are to give an efficient algorithm that finds a critical edge in a network, argue its correctness, and analyse its running time.

Observation: First we note that if (S,T) is a minimum cut in a flow network G then any edge e = (u,v) with $u \in S$ and $v \in T$ is critical. This is because for every cut (S',T') in a flow network and for every flow f in the network, we have $|f| \le c(S',T')$, where |f| is the value of the flow and c(S',T') is the capacity of the cut. By the Max-Flow Min-Cut Theorem, if f is a maximum flow and and (S,T) is a minimum cut, then |f| = c(S,T). Since decreasing the capacity of any edge e crossing the cut reduces the capacity of the cut, it follows that no flow of value |f| or more is possible in the network G modified by reducing the capacity of e.

So it suffices to give an algorithm that, given a flow network G = (V, E), finds an edge e crossing some minimum cut (S, T) in G.

Algorithm: (a) Compute a maximum flow f in G.

- (b) Compute the residual graph G_f .
- (c) Compute the minimum cut (S,T) constructed as part of the proof of Theorem 26.6 (Max-Flow Min-Cut Theorem).
- (d) Output any edge $e_{crit} = (u, v)$ with $u \in S$ and $v \in T$.

Correctness: To prove the correctness of the algorithm it suffices to show that an edge e_{crit} in the last step exists.

Note that every cut (S,T) has at least one edge crossing it, since by definition $s \in S$ and $t \in T$, and for every node $u \in V$ there is a path in G from s to t which includes u. Now follow this path starting with s (which is in s) until it reaches an edge s, with s and s

This completes the proof that the algorithm is correct. It remains to explain how the four steps in the algorithm are implemented, and to estimate their run times.

Running Time: For steps (a) and (b) we use the Edmonds-Karp algorithm which runs in time $O(|V||E|^2)$ (p. 730 in the text).

For step (c) we use breadth first search in the residual graph G_f to make a Boolean array showing which nodes are reachable from s by paths in E_f . This defines the set S for the minimum cut and can be done in time O(|E|).

Now we find the edge e_{crit} using the following algorithm:

```
for each edge e = (u, v) \in E:
if u \in S and v \notin S:
return e
```

This takes time O(|E|) (assuming E is given by adjacency lists). Hence the entire algorithm runs in time $O(|V||E|^2)$.