## **Technology Stack**

| Date         | 12 November 2023                          |  |
|--------------|-------------------------------------------|--|
| Team ID      | Team-592258                               |  |
| Project Name | Project – River Water Quality Forecasting |  |

#### **Technical Architecture:**

A technical architecture for a river water quality forecasting project could involve several components, including data collection, data preprocessing, model development, and prediction. Here is the architecture based on various sources.



# **Components And Technologies:**

| Component                     | Description                                                                                                                                                          | Technologies                                                                                                                                                                                                               |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Collection               | Involves the use of sensors and data loggers to collect data on various water quality parameters.                                                                    | Sensors, Data Loggers                                                                                                                                                                                                      |
| Data<br>Preprocessing         | Tools and libraries are used for cleaning and preprocessing the collected data to make it suitable for the machine learning algorithms.                              | Pandas, NumPy, Scikit-learn                                                                                                                                                                                                |
| Model<br>Development          | Various machine learning algorithms are used for developing a model to predict the water quality. Other advanced techniques and deep learning methods are also used. | Naive Bayes (NB), Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), ARIMA, SARIMA, Prophet, Convolution Recurrent Basis Expansion Analysis Architecture, LSTM with Attention |
| Prediction                    | The developed model is used to predict future water quality changes.                                                                                                 | Machine Learning Models                                                                                                                                                                                                    |
| Evaluation                    | The performance of the model is evaluated using appropriate metrics.                                                                                                 | Determination Coefficient (R2)                                                                                                                                                                                             |
| Deployment                    | The model is deployed in a suitable environment for real-time forecasting.                                                                                           | Azure, AWS, Google Cloud, Docker, Kubernetes                                                                                                                                                                               |
| Monitoring and<br>Maintenance | The deployed model is continuously monitored and maintained to ensure its performance and accuracy.                                                                  | Grafana, Prometheus                                                                                                                                                                                                        |

## **Architecture Characteristics:**

| Application<br>Characteristic | Description                                                                                                                                                                                           |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Efficiency                    | AI in water quality monitoring and assessment is fast, efficient, and can be used for real-time monitoring and prediction of water quality.                                                           |  |
| Cost-effective                | By determining the Water Quality Index (WQI) with the least amount of input data (water quality parameters) this method can lower the cost of monitoring surface water quality.                       |  |
| Flexibility                   | Artificial Neural Networks (ANNs), a type of AI, have the ability to represent both linear and non-linear relationships, and learn these relationships directly from the data being modeled.          |  |
| Accuracy                      | Precision huge number of complex models have been developed to accurately forecast and evaluate surface water quality.                                                                                |  |
| Adaptability                  | Artificial intelligence (AI) models have been assessed for use in water quality forecasting since they are able to adjust to data gathered from rivers' continuous water quality monitoring stations. |  |
| Ability to Predict            | AI techniques have exhibited a remarkable ability to capture the nonlinearity pattern between predictors and predictand.                                                                              |  |

| Application<br>Characteristic        | Description                                                                                                                                            |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Selection of Important<br>Parameters | Some studies have used AI techniques like the Bayes method (BMA) to select important parameters (BOD5, NH4+, PO43-, turbidity, TSS, coliform, and DO). |

### **References:**

https://link.springer.com/article/10.1007/s40808-020-01041-z

https://ieeexplore.ieee.org/document/9528216/



Table-1 : Components & Technologies:

| S.No | Component                       | Description                                                                                             | Technology                                                        |
|------|---------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 1.   | User Interface                  | How user interacts with application e.g. Web UI, Mobile App, Chatbot etc.                               | HTML, CSS, JavaScript / Angular Js / React Js etc.                |
| 2.   | Application Logic-1             | Logic for a process in the application                                                                  | Java / Python                                                     |
| 3.   | Application Logic-2             | Logic for a process in the application                                                                  | IBM Watson STT service                                            |
| 4.   | Application Logic-3             | Logic for a process in the application                                                                  | IBM Watson Assistant                                              |
| 5.   | Database                        | Data Type, Configurations etc.                                                                          | MySQL, NoSQL, etc.                                                |
| 6.   | Cloud Database                  | Database Service on Cloud                                                                               | IBM DB2, IBM Cloudant etc.                                        |
| 7.   | File Storage                    | File storage requirements                                                                               | IBM Block Storage or Other Storage<br>Service or Local Filesystem |
| 8.   | External API-1                  | Purpose of External API used in the application                                                         | IBM Weather API, etc.                                             |
| 9.   | External API-2                  | Purpose of External API used in the application                                                         | Aadhar API, etc.                                                  |
| 10.  | Machine Learning Model          | Purpose of Machine Learning Model                                                                       | Object Recognition Model, etc.                                    |
| 11.  | Infrastructure (Server / Cloud) | Application Deployment on Local System / Cloud Local Server Configuration: Cloud Server Configuration : | Local, Cloud Foundry, Kubernetes, etc.                            |

#### **Table-2: Application Characteristics:**

| S.No | Characteristics          | Description                                          | Technology                         |
|------|--------------------------|------------------------------------------------------|------------------------------------|
|      |                          |                                                      |                                    |
| 1.   | Open-Source Frameworks   | List the open-source frameworks used                 | Technology of Opensource framework |
| 2.   | Security Implementations | List all the security / access controls implemented, | e.g. SHA-256, Encryptions, IAM     |
|      |                          | use of firewalls etc.                                | Controls, OWASP etc.               |
| 3.   | Scalable Architecture    | Justify the scalability of architecture (3 – tier,   | Technology used                    |
|      |                          | Micro-services)                                      |                                    |

| S.No | Characteristics | Description                                                                                                               | Technology      |
|------|-----------------|---------------------------------------------------------------------------------------------------------------------------|-----------------|
| 4.   | Availability    | Justify the availability of application (e.g. use of load balancers, distributed servers etc.)                            | Technology used |
| 5.   | Performance     | Design consideration for the performance of the application (number of requests per sec, use of Cache, use of CDN's) etc. | Technology used |

#### References:

https://c4model.com/

https://developer.ibm.com/patterns/online-order-processing-system-during-pandemic/

https://www.ibm.com/cloud/architecture

https://aws.amazon.com/architecture

https://medium.com/the-internal-startup/how-to-draw-useful-technical-architecture-diagrams-2d20c9fda90d