Representing Random Forests as

Artificial Neural Networks

History

Sethi 1990 - Decision Trees as ANNs

1990 -> 2014 ???

Welbl 2014 - RFs as ANNs, refine trees

Richmond 2015 - Cascaded RFs as CNNs

Decision Tree C num D dime

Input **x**

C num of classes = 2 D dimensionality = 4 Test xd >= bn

Single Neuron

Input x

Multiple Neurons

Decision Tree as ANN

Connect Input to Decision Nodes

Connect Decision Nodes to Leaves

Decision Tree Connect Decision Nodes to Leaves

Network Parameters

Example Feed Forward Pass

Decision Tree in 5 Lines of Python

```
1    op0 = np.dot(x, W0) + b0
2    op0 = 2*(op0 >= 0) - 1  # non linearity
3
4    op1 = np.dot(op0, W1) + b1
5    op1 = op1 >= 0
6
7    op_probability = np.dot(op1, W2)  # result
```

With no conditional statements!

RF as ANN

Experiments

	RF	ANN	Sparse	Relaxed	Vote
Wisconsin	4.8 (1.7)	3.4 (1.7)	2.9 (1.3)	3.5 (1.9)	4.1 (1.8)
Ionosphere	6.5 (2.2)	11.0 (3.3)	6.2 (2.0)	6.9 (2.7)	6.7 (1.9)
Sonar	21.5 (5.1)	18.0 (5.5)	14.4 (4.8)	16.0 (5.2)	14.8 (4.1)
Landsat	10.9 (0.3)	10.1 (0.4)	9.1 (0.3)	9.1 (0.4)	9.0 (0.4)
Pima	24.5 (2.1)	28.9 (3.0)	26.8 (3.1)	26.4 (2.3)	26.6 (2.6)
Heart	16.3 (4.4)	21.8 (4.3)	19.5 (4.1)	19.5 (4.3)	19.0 (4.1)
Credit	25.6 (2.2)	28.3 (2.7)	24.6 (1.8)	24.7 (2.9)	25.3 (2.7)

Cascaded RF as CNN

