Batch Effects

Technical, non-biological factors that affect variation in data

Mary O'Neill, Ph.D.
Director, Single Cell Genomics
ONeillMB@uw.edu
@ONeillMB1

Anh Vo, M.S. Bioinformatician athuyvo@uw.edu

How to deal with batch effects

- Best way to avoid batch effects is not to introduce them in the first place!
- If unavoidable, it is very important that study design does not confound batch and other variables
 - Nothing can salvage poor study design
- Make sure you have a batch effect
 - Sometimes (often?) batch correction introduces more artifacts than they alleviate
- Apply methods thoughtfully
 - Don't blindly trust methods
 - Know what they are doing, what to use them for, and where they can lead you astray

How to deal with batch effects

Illustration of a confounded (top panels) and balanced (bottom panels) designs. Shapes denote different sample types (e.g. tissues or patients) and colours processing batches. In the confounded design it's impossible to disentangle biological variation from variation due to the processing batch. In the balanced design, by using tissue replicates and mixing them across batches, it is possible to distinguish between biological and batch-related variation. Figure from Hicks et al..

https://www.singlecellcourse.org/introduction-to-single-cell-rna-seq.html

Batch Correction Methods

	BBKNN	Combat	Harmony	LIGER	MNN	Seurat	SCVI
Input	KNN graph	Normalized count matrix	Normalized count matrix	Normalized count matrix	Normalized count matrix	Normalized count matrix	Raw count matrix
Custom embedding	None	None	Corrected embedding	Metagene / factor loadings	None	CCA	Learned lower dimensional latent space
Correction object	KNN graph	Count matrix	Embedding	Embedding	Count matrix	Embedding	Embedding
Correction method	Umap on merged neighborhood graph	Empirical bayes - linear correction method on the count values	Soft k-means - linear batch correction within small clusters in the embedded space	Quantile alignment of factor loadings	Mutual nearest neighbors - linear correction	Aligning canonical basis vectors to correct the embedding - lift the correction of the embedding to count space	Variational autoencoder - models the batch effect in a low dimensional space using a deep learning model, a new count matrix is imputed from the model.
Returns	Corrected KNN graph	Corrected count matrix	Corrected embedding	Corrected embedding	Corrected count matrix	Corrected count matrix	Corrected count matrix and corrected embedding
Changes Count matrix	No	Yes	No	No	Yes	Yes	Yes / Imputes new values

Batch Correction Methods

Sidenote: we see minimal batch effects in sci-RNA-seq!

BICCN atlas

Meidan UMI = 1,918 (~ 6x times higher than BICCN)

Lessons from processing >1M PBMCs

AIMS

- 1. Characterize variability of the immune response to SARS-CoV-2 across human populations at single cell resolution (scRNA-seq)
- 2. Map genetic bases of immune variability in response to SARS-CoV-2 (eQTLs)
- 3. Uncover natural selection and archaic introgression signals associated to virus-induced immune reponses

Library design:

2 runs per week (16 runs total) 16 individuals/8 libraries per experimental run

Each library contains 12 samples (4 from each condition)

Each sample is done on two separate libraries

L1,L5L2,L6L3,L7L4,L8

10,14 11,15 12,16 9,13

3.7 12,16 9,13 10,14 11,15 9,13 10,14 11,15 12,16

Pooling design

target:

1,667 cells per individual/condition

After QC:

~1500 cells on average (median; IQR=558 cells)

General pipeline overview

Size factor normalization & Batch effect removal:

Use MultibatchNorm to allow for differences in mean size factor across libraries

Size factor normalization & Batch effect removal:

Use MultibatchNorm to allow for differences in mean size factor across libraries

Use $\mathtt{kBET}\,$ to estimate batch effects on cell mixing...

...and Harmony to correct for batch effects across experimental runs (for cell clustering purposes)

Size factor normalization & Batch effect removal:

Use MultibatchNorm to allow for differences in mean size factor across libraries

Use $\mathtt{kBET}\,$ to estimate batch effects on cell mixing...

...and Harmony to correct for batch effects across experimental runs (for cell clustering purposes)

Use linear mixed models (lme4) to estimate & correct for batch effects at pseudobulk level (differential expression/ eQTL mapping)

Tutorial

Background on the dataset

Combinatorial-indexing benchmarking (generated *in-house*)

Tutorial: random subsample of mixed sample of nuclei from two human hearts, processed with two different technologies

Will play with human heart data today

Each company has a pipeline

- Aggressively call cells inflate UMIs?
- Both pipelines cut off almost an entire cell population (e.g. PBMCs) in barnyard samples
 - So, we start with every barcode >= 100 UMIs