DÉVELOPPEMENTS LIMITÉS

FORMULES DE TAYLOR

1 Formule de Taylor avec reste intégral

Théorème 1 Soient $f:I o\mathbb{R}$ une fonction de classe \mathcal{C}^{n+1} , $(n\in\mathbb{N})$ et $x_0\in I$. Alors

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \int_{x_0}^x \frac{f^{(n+1)}(t)}{n!}(x - t)^n dt.$$

On note par $T_n(x)$ la partie polynomiale de la formule de Taylor (elle dépend de n, de f et x_0):

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

2 Formule de Taylor-Young

Théorème 2 Soient $f:I\to\mathbb{R}$ une fonction de classe \mathcal{C}^n , $(n\in\mathbb{N})$ et $x_0\in I$. Alors pour tout $x\in I$, on a

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + (x - x_0)^n \varepsilon(x),$$

 $o\dot{u}\lim_{x\to x_0}\varepsilon(x)=0.$

1 IONISX