6. 集合: 函数 (6-function)

姓名: 鲁权锋 **学号**: <u>201830168</u>

2021年4月15日

请独立完成作业,不得抄袭。 若得到他人帮助,请致谢。 若参考了其它资料,请给出引用。 鼓励讨论,但需独立书写解题过程。

1 作业 (必做部分)

题目 1 (等价关系 [3 分] **)

设 $R \neq X$ 上的等价关系。请证明,

$$\forall a, b \in X. ([a]_R = [b]_R \leftrightarrow aRb).$$

证明:

(i) 先证 $\forall a,b \in X. (aRb \rightarrow [a]_R = [b]_R).$ 因为 R 是等价关系,首先 aRb = bRa (1),对任意 x,

$$x \in [a]_R \iff xRa$$
 $\iff xRb \ (by(1))$
 $\iff x \in [b]_R$

 $\mathbb{P}[a]_R = [b]_R.$

(ii) 下面证 $[a]_R = [b]_R \rightarrow aRb$. 对任意 x,

$$x \in [a]_R \iff xRa$$
 $\iff aRx($ 対称性) (2)

又 $[a]_R = [b]_R$, 故有

$$x \in [b]_R \iff xRb$$
 (3)

又因为 a,b 具有传递性,结合(2)(3),必有

 $aRx \wedge xRb \Longrightarrow aRb$

3

此即 $[a]_R = [b]_R \rightarrow aRb$ 。

综上,

$$\forall a, b \in X. ([a]_R = [b]_R \leftrightarrow aRb).$$

题目 2 (函数与等价关系 [7 = 3 + 4 分] * * *)

设 $f: X \to Y$ 是满射。定义 X 上的二元关系 R 为 $(x,y) \in R$ 当且仅当 f(x) = f(y)。请证明,

- (1) $R \to X$ 上的等价关系。
- (2) 定义 $h \subseteq (X/R) \times Y$ 为 $h([x]_R) = f(x)$ 。请证明, h 是从商集 X/R 到 Y 的函数, 且是满射。

证明:

(1)

(i) 自反性:

对任意的 x, 因为 $f: X \to Y$, 必有 f(x) = f(x), 又

3 + 3.5 红线部分符号写的不大对

$$f(x) = f(x) \leftrightarrow (x, x) \in R$$

因而 R 在 X 上是自反的。

(ii) 对称性:

对任意有序对 (x,y),

$$(x,y) \in R \leftrightarrow f(x) = f(y)$$

$$\leftrightarrow f(y) = f(x)$$

$$\leftrightarrow (y,x) \in R$$

因而 R 在 X 上是对称的。

(iii) 传递性:

对任意有序对 (x,y), (y,z),

$$\begin{split} &(x,y) \in R \wedge (y,z) \in R \\ & \leftrightarrow (f(x) = f(y)) \wedge (f(y) = f(z)) \\ & \to f(x) = f(z) \\ & \leftrightarrow (x,z) \in R \end{split}$$

因而 R 在 X 上是传递的。

综上,结合(i)(ii)(iii),R是X上的等价关系。

- (2)
- (2.1) 下面先证明: h 是从商集 X/R 到 Y 的函数。
- (i) 存在性:

首先因为 $f: X \to Y$, 对于任意 x,

$$x \in X \iff \exists b \in Y. \ f(x) = b$$
 (*)

对任意 a,

$$a \in (X/R)$$
 $\iff \exists x \in X. \ a \in [x]_R$
 $\iff \exists x \in X. \ h(a) = f(x)$ (h 的定义)
 $\implies \exists b \in Y. \ h(a) = b$ (根据(*))

此即 $\forall a \in (X/R)$. $\exists b \in Y$. $(a,b) \in h$.

(ii) 下面用反证法说明唯一对应性:

对任意的 $a \in (X/R)$,

假设 $\exists b_1, b_2 \in Y$. $b_1 \neq b_2$, 使得 $h(a) = b_1 \land h(a) = b_2$ 成立.

又 $\exists x \in X$. h(a) = f(x) (h 的定义)

必有 $f(x) = b_1 \land f(x) = b_2$, 而这与 $(x, b_1) \in f$, $(x, b_2) \in f$ 的定义矛盾!

此即 $\forall b_1, b_2 \in Y. (a, b_1) \in h \land (a, b_2) \in h \Longrightarrow b_1 = b_2$

结合 (i)(ii) 可知, h 是从商集 X/R 到 Y 的函数。

(2.2) 下面证明 h 是从商集 X/R 到 Y 的满射。 首先对于任意的 $x \in X/R$,根据等价类"不空"的性质,必有:

$$[x]_R \iff x \in [x]_R \qquad (**)$$

对任意 b,

$$b \in Y$$
 $\iff \exists a \in X. \ f(a) = b \qquad (f: X \to Y$ 是满射)
 $\iff \exists a \in X. \ h([a]_R) = b \qquad \text{(h 的定义)}$
 $\implies \exists a \in (X/R). \ h(a) = b \qquad \text{(根据(**))}$

此即 $\forall b \in Y$. $(\exists a \in (X/R). \ h(a) = b)$,即 h 是从商集 X/R 到 Y 的满射。