第六章 Riemann-Stieltjes 积分

Riemann积分的定义依赖于实数的序关系

1 积分的定义和存在性

定义 1.1. 区间的分法. Riemann积分

分法
$$[a,b]$$
是给定区间, $[a,b]$ 的分法指有限点集 $\{x_1,\ldots,x_n\}$ $a=x_0\leqslant x_1\leqslant \cdots \leqslant x_{n-1}\leqslant x_n=b$ $\Delta x_i=x_i-x_{i-1}, i\in 1\ldots n$

Riemann积分

$$R$$
积分 f 是 $[a,b]$ 上的有界实函数. $\forall [a,b]$ 的分法 P .
$$M_i = \sup f(x). (x_{i-1} \leqslant x \leqslant x_i)$$

$$m_i = \inf f(x). (x_{i-1} \leqslant x \leqslant x_i)$$

达布上和
$$U(P,f) = \sum_{i=1}^{n} M_i \Delta x_i$$
 达布下和
$$L(P,f) = \sum_{i=1}^{n} m_i \Delta x_i$$

上积分
$$\int_a^{\bar{b}} f \, \mathrm{d}x = \inf U(P, f).$$
 下积分
$$\int_a^b f \, \mathrm{d}x = \sup L(P, f).$$

R积分的上下界问题

$$f有界 \to m \leqslant f \leqslant M. (a \leqslant x \leqslant b)$$

$$\to m(b-a) \leqslant L(P,f) \leqslant U(P,f) \leqslant M(b-a)$$
 →每个有界函数 f , f 的上积分和下积分都有意义.但它们不一定相等

定义 1.2. Stieltjes积分

函数
$$\alpha$$
是 $[a,b]$ 上的单调增函数. $\forall [a,b]$ 的分法 P $\Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1}), \Delta \alpha_i \geqslant 0$ 对于 $[a,b]$ 上的有界实函数 f . 达布上和
$$U(P,f,\alpha) = \sum_{i=1}^n M_i \Delta \alpha_i$$
 达布下和
$$L(P,f,\alpha) = \sum_{i=1}^m m_i \Delta \alpha_i$$
 上积分
$$\int_a^b f \mathrm{d}\alpha = \inf U(P,f,\alpha)$$
 下积分
$$\int_a^b f \mathrm{d}\alpha = \sup L(P,f,\alpha)$$
 S积分
$$\int_a^b f \mathrm{d}\alpha = \int_a^b f \mathrm{d}\alpha \rightarrow \int_a^b f \mathrm{d}\alpha$$
 定义合理. 称为Stieltjes积分

Remark: 一般情况下, α 不一定是连续的.

由于一阶微分的不变性, $d\alpha(x)$ 简记作 $d\alpha$.这样没有任何损失

定义 1.3. 分法的加细

分法P的加细 P^* . $P \subset P^*$. P_1 , P_2 是分法, $P_1 \cup P_2$ 称为共同加细

定理 1.4. P^* 是P的加细

$$L(P, f, \alpha) \leqslant L(P^*, f, \alpha)$$
 达布下和增长 $U(P, f, \alpha) \geqslant U(P^*, f, \alpha)$ 达布上和减小

证明.

设
$$P$$
* 比 P 增加了一个点 $x^*.x_{i-1} < x^* < x_i$

$$w_1 = \inf f(x), (x_{i-1} \le x \le x^*)$$

$$w_2 = \inf f(x), (x^* \le x \le x_i).$$

$$m_i = \inf f(x), (x_{i-1} \le x \le x_i).$$

$$\to w_1 \geqslant m_i, w_2 \geqslant m_i$$

$$\to L(P^*, f, \alpha) - L(P, f, \alpha)$$

$$= w_1[\alpha(x^*) - \alpha(x_{i-1})] + w_2[\alpha(x_i) - \alpha(x^*)] - m_i[\alpha(x_i) - \alpha(x_{i-1})]$$

$$= (w_1 - m_i)[\alpha(x^*) - \alpha(x_{i-1})] + (w_2 - m_i)[\alpha(x_i) - \alpha(x^*)]$$

$$\geqslant 0$$

$$\to L(P^*, f, \alpha) \geqslant L(P, f, \alpha)$$

对于任意分法 P^* ,是P添加了n个点 x^* 由数学归纳法可得一般结论

定理 1.5. $\int f d\alpha \leqslant \bar{\int} f d\alpha$

证明.

П

定理 1.6. f在[a,b]上 $f\in\mathfrak{R}(\alpha)\Leftrightarrow \forall \varepsilon>0, \exists P\to U(P,f,\alpha)-L(P,f,\alpha)<\varepsilon$

$$\begin{split} \forall \varepsilon > 0, \exists P \to U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon \to f \in \Re(\alpha) \\ \forall P, L(P, f, \alpha) \leqslant \underbrace{\int}_{} f \mathrm{d}\alpha \leqslant \overline{\int}_{} f \mathrm{d}\alpha \leqslant U(P, f, \alpha) \\ \to 0 \leqslant \overline{\int}_{} f \mathrm{d}\alpha - \underline{\int}_{} f \mathrm{d}\alpha < \varepsilon \\ \to f \in \Re(\alpha). \end{split}$$

$$\begin{split} f \in \mathfrak{R}(\alpha) &\rightarrow \forall \varepsilon > 0, \exists P \rightarrow U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon \\ & f \in \mathfrak{R}(\alpha), \forall \varepsilon > 0, \exists P_1, P_2 \\ & \rightarrow U(P_2, f, \alpha) - \int f \operatorname{d} \alpha < \frac{\varepsilon}{2} \\ & \int f \operatorname{d} \alpha - L(P_1, f, \alpha) < \frac{\varepsilon}{2} \\ & P \not\equiv P_1, P_2 \text{的共同加细} \\ & \rightarrow U(P, f, \alpha) \leqslant U(P_2, f, \alpha) < \int f \operatorname{d} \alpha + \frac{\varepsilon}{2} < L(P_1, f, \alpha) + \varepsilon \leqslant L(P, f, \alpha) + \varepsilon \\ & \rightarrow U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon \end{split}$$

定理 1.7.

$$U(P,f,\alpha)-L(P,f,\alpha)<\varepsilon$$

- 1. 对某个P和某个 ε 成立上式 \rightarrow 对此 ε , P的任意加细此式也成立
- 2. 上式对P成立, s_i, t_i 是 $[x_{i-1}, x_i]$ 内的任意点 $\to \sum_1^n |f(s_i) f(t_i)| \Delta \alpha_i < \varepsilon$

3.
$$f \in \mathfrak{R}(\alpha)$$
且2.成立 $\rightarrow \left| \sum_{1}^{n} f(t_{i}) \Delta \alpha_{i} - \int_{a}^{b} f d\alpha \right| < \varepsilon$

证明.

2.
$$s_i, t_i \in [x_{i-1}, x_i] \to f(s_i), f(t_i) \in [m_i, M_i]$$
$$\to \sum_{1}^{n} |f(s_i) - f(t_i)| \Delta \alpha_i \leq U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$$

3.
$$L(P, f, \alpha) \leqslant \sum_{i} f(t_i) \Delta \alpha_i \leqslant U(P, f, \alpha)$$

$$L(P, f, \alpha) \leqslant \int_{i} f d\alpha \leqslant U(P, f, \alpha)$$

$$\rightarrow |\sum_{i} f(t_i) \Delta \alpha_i - \int_{i} f d\alpha | < \varepsilon$$

定理 1.8. 闭区间上的函数连续则R可积

$$f$$
在 $[a,b]$ 上连续 \rightarrow f 在 $[a,b]$ 上 \in \mathfrak{R}

证明.

$$f \mathbf{E}[a,b] 上连续 \to f \mathbf{E}[a,b] \mathbf{L}$$
一致连续
$$\to \forall \eta > 0, \exists \delta > 0, x \in [a,b], t \in [a,b], |x-t| < \delta \to |f(x)-f(t)| < \eta$$

$$P \mathbb{E} \Delta x_i < \delta \mathbf{i} \mathbf{h} \mathcal{H} \to M_i - m_i \leqslant \eta$$

$$\to U(P,f,\alpha) - L(P,f,\alpha) = \sum_i (M_i - m_i) \Delta \alpha_i$$

$$\leqslant \eta \sum_i \Delta \alpha_i$$

$$= \eta[\alpha(b) - \alpha(a)] < \varepsilon$$

$$\to f \in \mathfrak{R}(\alpha)$$

定理 1.9. f在[a,b]上单调, α 在[a,b]上连续且单调 $\rightarrow f \in \mathfrak{R}(\alpha)$

证明.

$$\forall \varepsilon > 0, \forall n \in N^+, \text{分法}P \to \Delta \alpha_i = \frac{\alpha(b) - \alpha(a)}{n}. \text{ α连续, 所以这是能做到的}$$

$$f 单调增 \to M_i = f(x_i), m_i = f(x_{i-1})$$

$$\exists n \in N^+ \to U(P, f, \alpha) - L(P, f, \alpha) = \frac{\alpha(b) - \alpha(a)}{n} \sum_{1}^{n} [f(x_i) - f(x_{i-1})]$$

$$= \frac{\alpha(b) - \alpha(a)}{n} [f(b) - f(a)]$$

$$< \varepsilon$$

$$\to f \in \Re(\alpha)$$

定理 1.10. f有界且只有有限个间断点. α 在f的每个间断点处连续 $\rightarrow f \in \mathfrak{R}(\alpha)$

构造分法:
$$P = \{x_0, x_1, \dots, x_n\}$$
. $\{u_i\} \subset P, \{v_i\} \subset P. \forall x \in (u_i, v_i), x \not\subset P$ $\forall x_{i-1} \neq u_i \rightarrow \Delta x_i < \delta$
$$U(P, f, \alpha) - L(P, f, \alpha) \leqslant [\alpha(b) - \alpha(a)]\varepsilon + 2M\varepsilon$$
 $\rightarrow f \in \mathfrak{R}(\alpha)$

 $Remark: f和\alpha有一个公共间断点,则f不一定是R可积的$

定理 1.11. 闭区间内. 内函数可积, 外函数连续->复合可积

$$f$$
在 $[a,b]$ 上 $\in \mathfrak{R}(\alpha), m \leq f \leq M. \phi$ 在 $[m,M]$ 上连续. $\phi(f(x)) \in \mathfrak{R}(\alpha)$

证明.

$$\forall \varepsilon > 0. \phi \\ \alpha [a,b] \rightarrow \exists E \\ \beta = \{x_0,x_1,\ldots,x_n\} \rightarrow U(P,f,\alpha) - L(P,f,\alpha) < \delta^2 \\ M_i^*,m_i^* \\ \beta = \emptyset \\ M_i^*,m_i^* \\ \beta = \emptyset \\ M_i^* - m_i < \delta \\ \beta = i \in A. \\ M_i - m_i > \delta \\ \beta = i \in A. \\ M_i^* - m_i^* < \varepsilon \\ \forall i \in A. \\ M_i^* - m_i^* < 2K. \\ K = \sup |\phi(t)|, t \in [m,M] \\ \delta \\ \sum_{i \in B} \Delta \alpha_i \leqslant \sum_{i \in B} (M_i - m_i) \Delta \alpha_i < \delta^2 \\ \rightarrow \\ \sum_{i \in B} \Delta \alpha_i < \delta \\ \rightarrow U(P,f,\alpha) - L(P,f,\alpha) \\ = \\ \sum_{i \in A} (M_i^* - m_i^*) \Delta \alpha_i + \sum_{i \in B} (M_i^* - m_i^*) \Delta \alpha_i \\ \leqslant \varepsilon [\alpha(b) - \alpha(a)] + 2K\delta \\ < \varepsilon [\alpha(b) - \alpha(a) + 2K] \\ \rightarrow \phi(f(x)) \in \Re(\alpha)$$

2 积分的性质

定理 2.1. 积分的性质

 $[a,b] \perp f_1 \in \mathfrak{R}(\alpha), f_2 \in \mathfrak{R}(\alpha)$

```
f_1, f_2 \in \mathfrak{R} \rightarrow
1
                                                      \exists P_1 \rightarrow U(P_1, f_1, \alpha) - L(P_1, f_1, \alpha) < \varepsilon
                                                      \exists P_2 \rightarrow U(P_2, f_2, \alpha) - L(P_2, f_2, \alpha) < \varepsilon
                                                                        \mathrm{let}: P = P_1 \cup P_2
                                                            M_i(f_1) + M_i(f_2) \geqslant M_i(f_1 + f_2)
                                                            m_i(f_1) + m_i(f_2) \le m_i(f_1 + f_2)
    \rightarrow U(P_1, f_1, \alpha) + U(P_2, f_2, \alpha) \geqslant U(P, f_1 + f_2, \alpha) \geqslant L(P, f_1 + f_2, \alpha) \geqslant L(P_1, f_1, \alpha) + L(P_2, f_2, \alpha)
                                                  \rightarrow U(P, f_1 + f_2, \alpha) - L(P, f_1 + f_2, \alpha) < 2\varepsilon
                                                                          \rightarrow f_1 + f_2 \in \mathfrak{R}
2
                                                 f \in \mathfrak{R} \to \exists P \to U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon
                                                        m_i(cf) = cm_i(f), M_i(cf) = cM_i(f)
                                     {\rightarrow} cU(P,f,\alpha) \geqslant U(P,cf,\alpha) \geqslant L(P,cf,\alpha) \geqslant cL(P,f,\alpha)
                                                         \rightarrow U(P, cf, \alpha) - L(P, cf, \alpha) < c\varepsilon
                                                                              \rightarrow c f \in \Re
        U(P, f_1, \alpha) + U(P, f_2, \alpha) \geqslant U(P, f_1 + f_2, \alpha) \geqslant L(P, f_1 + f_2, \alpha) \geqslant L(P, f_1, \alpha) + L(P, f_2, \alpha)
                                        \rightarrow lim U(P, f_1, \alpha) + U(P, f_2, \alpha) = lim U(P, f_1 + f_2, \alpha)
                                                               \rightarrow \int f_1 + \int f_2 = \int (f_1 + f_2)
                                      cU(P, f, \alpha) \geqslant U(P, cf, \alpha) \geqslant L(P, cf, \alpha) \geqslant cL(P, f, \alpha)
                                                       \rightarrow \int c f = c \int f
                                                                                                                                                                            4
                                                                               f_1 \leqslant f_2
                                                        \rightarrow M_i(f_1) \leqslant M_i(f_2), m_i(f_1) \leqslant m_i(f_2)
                                                              \rightarrow U(P, f_2, \alpha) \geqslant U(P, f_1, \alpha)
                                                                           \rightarrow \int f_2 \geqslant \int f_1
                                                              U(P,f,\alpha)-L(P,f,\alpha)<\varepsilon
5
                                                                             P' = P \cup c
                                         U(P, f, \alpha) \geqslant U(P', f, \alpha) \geqslant L(P', f, \alpha) \geqslant L(P', f, \alpha)
                                           \rightarrow \lim (U(P_1', f, \alpha) + U(P_2', f, \alpha)) = \lim U(P, f, \alpha)
                                                                     \rightarrow \int_a^c f + \int_a^b f = \int_a^b f
6
                                                                              |f| \leq M
                                                              |m_i(f)| \leq M, |M_i(f)| \leq M
                                                               \rightarrow U(P, f) = \sum (b_i - a_i)M_i
                                                                          \leq \sum_{i} (b_i - a_i) M
                                                                             =(b-a)M
            U(P, f, \alpha) + U(P, f, \beta) = U(P, f, \alpha + \beta) \geqslant L(P, f, \alpha + \beta) \geqslant L(P, f, \alpha) + L(P, f, \beta)
7
                                                          \rightarrow \int f d(\alpha + \beta) = \int f d\alpha + \int f d\beta
8
                                                                     c \in \mathbb{R}^+ \to c \alpha 单调增
                                                        c\alpha(x_1) - c\alpha(x_2) = c(\alpha(x_1) - \alpha(x_2))
                                      cU(P, f, \alpha) \geqslant U(P, f, c\alpha) \geqslant L(P, f, c\alpha) \geqslant cL(P, f, \alpha)
                                                           \rightarrow \int f d(c\alpha) = c \int f d\alpha = \int c f d\alpha
```

定理 2.2. 闭区间上可积函数. 逐点乘函数也可积,绝对值可积,满足绝对值不等式

在
$$[a,b]$$
上, $f \in \mathfrak{R}$, $g \in \mathfrak{R}$
1. $fg \in \mathfrak{R}$
2. $|f| \in \mathfrak{R}(\alpha)$, $\left| \int_a^b f d\alpha \right| \leqslant \int_a^b |f| d\alpha$

证明.

1.
$$\varphi(t)=t^2$$
. φ 在 R 上连续 $\to \varphi(f(x))=(f(x))^2$ 连续 1.11
$$fg=\frac{(f+g)^2-(f-g)^2}{4} \\ \to fg\in\Re$$

2.
$$\varphi(t) = |t| \to \varphi 在 R \bot 连续 \to \varphi(f) \in \Re(\alpha)$$

$$\int f d\alpha \geqslant 0, \text{let: } c = 1; \int f d\alpha < 0, \text{letc} = -1$$

$$\to c \int f d\alpha \geqslant 0$$

$$cf \leqslant |f|$$

$$|\int f d\alpha| = c \int f d\alpha = \int c f d\alpha \leqslant \int |f| d\alpha$$

定义 2.3. 单位跃阶函数

$$I: R \to R, I(x) = \left\{ \begin{array}{ll} 0 & x \leq 0 \\ 1 & x > 0 \end{array} \right.$$

定理 2.4. 跃阶函数作为S积分的增函数, 在连续点处函数值是积分值

$$a < s < b.$$
 f在[a,b]有界, f在s连续 $\alpha(x) = I(x-s) \rightarrow \int_a^b f d\alpha = f(s)$

证明.

分法
$$P = \{x_0, x_1, x_2, x_3\}. x_0 = a, x_1 = s < x_2 < x_3 = b.$$

$$M_0 = 0, M_1 = 0, M_3 = 1$$

$$m_0 = 0, m_1 = 0, m_3 = 1$$

$$\rightarrow \int_a^b f \, d\alpha = \lim U(P, f, \alpha) = \lim L(P, f, \alpha)$$

$$U(P, f, \alpha) = M_2, L(P, f, \alpha) = m_2$$

$$f \, \text{在s} 连续 \rightarrow \lim_{x_2 \to s} M_2 = f(x_2) \cdot (I(x_2 - s) - I(x_1 - s))$$

$$= f(x_2) \cdot (1 - 0)$$

$$= f(s)$$

$$\rightarrow M_2(f) = f(s), m_2 = f(s)$$

定理 2.5. S积分与正项级数

$$n\in N^+, c_n\geqslant 0, \sum_{\infty}c_n$$
收敛. $\{s_n\}\in (a,b)$ 收敛的正项级数,且和在开区间内
$$\alpha(x)=\sum_{n=1}^{\infty}c_nI(x-s_n) \qquad \qquad \alpha(x)$$
是级数乘 s_n 的跃阶之和
$$f \in [a,b]$$
上连续
$$f \in G(s_n)$$
 和分等于级数乘函数在 s_n 点处的函数值

证明.

let: $\alpha_1 = \sum_{1}^{N} c_n I(x - s_n), \alpha_2 = \sum_{N}^{\infty} c_n I(x - s_n).$ $\int_a^b f d\alpha_1 = \int_a^b f d(\sum c_n I(x - s_n))$ $= \sum \left(\int_a^b f d(c_n I(x - s_n)) \right)$ $= \sum c_n \left(\int_a^b f d(I(x - s_n)) \right)$ $= \sum c_n f(s_n)$ $M = \sup_{x \in [a,b]} |f(x)|$ $\alpha_2(b) - \alpha_2(a) < \varepsilon \rightarrow |\int_a^b f d\alpha_2| \le M\varepsilon$ $\alpha = \alpha_1 + \alpha_2$ $\rightarrow |\int_a^b f d\alpha - \sum_{1}^{N} c_n f(s_n)| \le M\varepsilon$ $\lim_{N \to \infty} |\int_a^b f d\alpha - \sum_{1}^{N} c_n f(s_n)| \le M\varepsilon = 0$ $\rightarrow \int_a^b f d\alpha = \sum_{1}^{\infty} c_n f(s_n)$

定理 2.6. S积分中的a是可微的->a'可积. f在闭区间上有界。 f可积<=>f a'可积

$$lpha$$
单调增. 在 $[a,b]$ 上 $a' \in \mathfrak{R}$. f 在 $[a,b]$ 上有界
$$f \in \mathfrak{R} \Leftrightarrow f \alpha' \in \mathfrak{R}$$

$$\int_a^b f \mathrm{d}\alpha = \int_a^b f(x) \alpha'(x) \mathrm{d}x$$

对于下积分也同理可证

注意 2.7.

Stieltjes表现了比Riemann积分更一般的性质.若a是跃阶函数,那么积分就成了有限或无限的级数。若a可微,则积分变为Riemann积分.这使得级数和积分的研究可以在一定程度上得到统一

定理 2.8. 换元法

证明.

$$[a,b] 的分法P = \{x_0,\ldots,x_n\}, [A,B] 的分法Q = [y_0,\ldots,y_n].$$

$$x_i = \varphi(y_i)$$

$$f(x_i) = f(\varphi(y_i)) = g(y_i)$$

$$\to U(Q,g,\beta) = U(P,f,\alpha); L(Q,g,\beta) = L(P,f,\alpha)$$

$$f \in \Re(\alpha), \exists P \to U(P,f,\alpha) \geqslant \int f \mathrm{d}\alpha \geqslant L(P,f,\alpha)$$

$$\to g \in \Re(\beta)$$

$$\to \int_a^b f \mathrm{d}\alpha = \int_A^B g \mathrm{d}\beta$$
 特殊的
$$\alpha(x) = x.\beta = \varphi, \varphi' \in \Re.$$

$$\int_a^b f(x) \mathrm{d}x = \int_A^B f(\varphi(y)) \varphi'(y) \mathrm{d}y$$

注意 2.9. 这表明Stieltjes积分中的a可微和换元法是等价的

3 积分与微分

这表明某种程度上,实函数的积分和微分是互逆运算

$$f$$
在 $[a,b]$ 上 R 可积, $\forall a \leqslant x \leqslant b$
$$F(x) = \int_a^x f(t) dt$$
 1.
$$F$$
在 $[a,b]$ 上连续 2. f 在 x_0 连续 $\rightarrow F$ 在 x_0 可微 \land $F'(x_0) = f(x_0)$

证明.

$$\begin{split} 1. & f \in \mathfrak{R}, f$$
有界.
$$\forall t \in [a,b], \, |f(t)| \leqslant M.a \leqslant x < y \leqslant b \\ \rightarrow |F(y) - F(x)| = |\int_x^y f(t) \mathrm{d}t| \leqslant M(y-x) \\ |y-x| < \frac{\varepsilon}{M} \rightarrow |F(y) - f(x)| < \varepsilon \end{split}$$

2.
$$f$$
在 x_0 连续 $\rightarrow \forall \varepsilon > 0$, $\exists \delta > 0 \rightarrow |t - x_0| < \delta \land a \leqslant t \leqslant b \rightarrow |f(t) - f(x_0)| < \varepsilon$
 $s, x_0, t \in U_{x_0}(\delta) \land s \leqslant x_0 \leqslant t$

$$\left| \frac{F(t) - F(s)}{t - s} - f(x_0) \right| = \left| \frac{1}{t - s} \int_s^t (f(u) - f(x_0)) du \right| \leqslant \varepsilon$$

$$\left| \frac{1}{t - s} (F(t) - F(s)) - f(x_0) \right| = \left| \frac{1}{t - s} \int_s^t f(u) du - f(x_0) \right|$$

$$\left| f(u) - f(x_0) \right| < \varepsilon, t - s < \delta$$

$$\rightarrow \left| \frac{1}{t - s} \int_s^t f(u) du \right| \leqslant (f(x_0) + \varepsilon) \cdot \frac{1}{\delta}$$

$$\rightarrow \left| \frac{1}{t - s} \int_s^t f(u) du - f(x_0) \right| \leqslant \varepsilon$$

定理 3.2. 微积分基本定理

$$f$$
在闭区间 $[a,b]R$ 可积,在 $[a,b]$ 上有可微函数 $F \wedge F' = f$
$$\int_a^b f(x) \mathrm{d}x = F(b) - F(a)$$

证明.

$$\forall \varepsilon > 0. [a, b]$$
的分法 $P = \{x_0, \dots, x_n\} \to U(P, f) - L(P, f) < \varepsilon$ 由中值定理 $\to \exists t_i \in [x_{i-1}, x_i] \to F(x_i) - F(x_{i-1}) = f(t_i) \Delta x_i$
$$\to \sum_1^n f(t_i) \Delta x_i = F(b) - F(a)$$

$$\to \left| F(b) - F(a) - \int_a^b f(x) \mathrm{d}x \right| < \varepsilon$$

$$\to F(b) - F(a) = \int_a^b f(x) \mathrm{d}x$$

定理 3.3. 分部积分法

$$\begin{split} F,G\mathbb{E}[a,b] \bot 的 可微函数. & F'=f\in\Re, G'=g\in\Re\\ \to & \int_a^b F(x)g(x)\mathrm{d}x = F(b)G(b) - F(a)G(a) - \int_a^b f(x)G(x)\mathrm{d}x \end{split}$$

let:
$$H(x) = F(x)G(x)$$
.

 f 可积 $\rightarrow F$ 连续 $\rightarrow F$ 可积

 F 可积, g 可积 $\rightarrow Fg$ 可积

 $H' = (F(x)G(x))' = f(x)G(x) + F(x)g(x)$
 $\rightarrow H'$ 可积

$$H' = f(x)G(x) + F(x)g(x)$$
 $H(b) - H(a) = \int_a^b H'(x) dx$

$$= \int_a^b (f(x)G(x) + F(x)g(x)) dx$$

$$= \int_a^b f(x)G(x) dx + \int_a^b F(x)g(x) dx$$
 $\rightarrow \int_a^b F(x)g(x) dx = F(b)G(b) - F(a)G(a) - \int_a^b f(x)G(x) dx$

4 向量值函数的积分

定义 4.1.

$$f_1, \dots, f_k$$
是 $[a, b]$ 上的实函数. $\mathbf{f} : [a, b] \to R^k, \mathbf{f} = (f_1, \dots, f_k).$
 α 在 $[a, b]$ 上单调增 $\to \mathbf{f} \in \mathfrak{R}(\alpha) \Leftrightarrow f_i \in \mathfrak{R}(\alpha)$

$$\int_a^b \mathbf{f} d\alpha = \left(\int_a^b f_1 d\alpha, \dots, \int_a^b f_k d\alpha\right)$$

定理 4.2. 向量值函数也具有微积分学基本定理

$$f, F: [a, b] \to R^k$$
. f 可积 $\wedge F' = f$

$$\to \int_a^b f(t) dt = F(b) - F(a)$$

证明.

定理 4.3. 向量值函数的绝对值不等式等价于范数不等式

$$f: [a, b] \to R^k$$
. α 是 $[a, b]$ 上的增函数, f 可积 $\to |f|$ 可积
$$\left| \int_a^b f d\alpha \right| \leqslant \int_a^b |f| d\alpha$$

$$f_1, \dots, f_n$$
是 f 的分量

$$|f| = (f_1^2 + \dots + f_n^2)^{1/2}$$

$$f_i \in \mathfrak{R} \to f_i^2 \in \mathfrak{R} \to \sum f_i^2 \in \mathfrak{R} \to \sqrt{\sum (f_i^2)} \in \mathfrak{R}$$

$$|y|^2 = \sum y_i^2 = \sum y_i \int f_i d\alpha$$

$$= \int (\sum y_i f_i) d\alpha$$

$$= \int (\sum y_i f_i) d\alpha$$

$$\sum y_i f_i \leq |y| \cdot |f(t)|$$

$$\Rightarrow |y|^2 \leq |y| \cdot \int |f| d\alpha$$

$$\Rightarrow |y| \leq \int |f| d\alpha$$

$$\Rightarrow |y| \leq \int |f| d\alpha$$

$$y_i = \int_a^b f_i(x) d\alpha \to \mathbb{R}$$
式成立
????

5 可求长曲线

定义 5.1. 曲线、可求长曲线

$$\gamma$$
曲线 $\gamma: [a,b] \rightarrow R^k$ 弧 $\gamma \not\in 1-1$ 的 闭曲线 $\gamma(a) = \gamma(b)$

注意 5.2. 这里的曲线定义是映射而不是点集. \(\gamma\) 的值域是几何上的曲线, 但这里不同的曲线可以有相同的值域

$$[a,b] 给定分法 P = \{x_0,\dots,x_n\}$$
和曲线 γ
$$\Lambda(P,r) = \sum_{1}^{n} |\gamma(x_i) - \gamma(x_{i-1})|.$$
 其中 $|$ 为范数诱导的距离 这里可以理解为曲线上分点连接的折线长 曲线长
$$\Lambda(\gamma) = \sup_{P \in \mathcal{P}} \Lambda(P,\gamma)$$
 可求长
$$\Lambda(\gamma) < \infty$$
 R 积分表示曲线长
$$\gamma'$$
连续 $\rightarrow \gamma$ 的长可被 R 积分表示

定理 5.3. 曲线在闭区间上连续可微,则此曲线可求长

$$\gamma'$$
在[a , b]上连续, γ 可求长
$$\Lambda(\gamma) = \int_a^b |\gamma'(t)| dt$$

证明.

$$a \leqslant x_{i-1} < x_i \leqslant b$$

$$\to |\gamma(x_i) - \gamma(x_{i-1})| = \left| \int_{x_{i-1}}^{x_i} \gamma'(t) dt \right| \leqslant \int_{x_{i-1}}^{x_i} |\gamma'(t)| dt$$

$$\forall P \in \mathcal{P}. \Lambda(P, \gamma) \leqslant \int_a^b |\gamma'(t)| dt$$

$$\to \Lambda(\gamma) \leqslant \int_a^b |\gamma'(t)| dt$$

$$\forall \varepsilon > 0, \gamma' \\ \bar{\alpha}[a,b] \\ \bot \rightarrow P \\ \bar{\beta}[a,b] \\ \hat{b} \\ \hat{\beta} \\ \hat{b} \\ \hat{b} \\ \hat{b} \\ \hat{c} \\ \hat$$

对 R^2 上弧的微分: $ds = \sqrt{((dx)^2 + (dy)^2)} = \sqrt{dx^2 + dy^2}$ d^2x : d(dx). dx^2 : $(dx)^2$

习题

1. Proof: α 在[a,b]上增. $a\leqslant x_0\leqslant b,$ α 在 x_0 连续. $f(x_0)=1,$ $x\neq x_0\to f(x)=0.$ Proof: $f\in\Re(\alpha)\wedge\int f\mathrm{d}\alpha=0$

$$\begin{split} U(P,f,\alpha) &= \sum M(f(x_i)) \cdot \Delta \alpha_i \\ &= 1\Delta \alpha_{x_0} \\ &= \Delta \alpha (x-x_0) \\ \alpha 在x_0 连续 &\to \alpha (x-x_0) = 0 \\ &\to U(P,f,\alpha) = 0 \\ L(P,f,\alpha) &= \sum m(f(x_i)) \cdot \Delta \alpha_i \\ &= \sum 0 \cdot \Delta \alpha_i \\ &= 0 \\ \to U(P,f,\alpha) &= L(P,f,\alpha) = 0 \\ &\to \int f \mathrm{d}\alpha = 0 \end{split}$$

2.