Roll	No.:	 						

National Institute of Technology, Delhi

Name of the Examination: B.Tech.

Branch

: EEE

Semester

: 3rd

Title of the Course

: Electromagnetic Field Theory

Course Code : EEL 203

Time: 3 Hours

Maximum Marks: 50

Note: 1. This question paper has 3 sections. Section A consists of 10 parts of 1 mark each. Section B contains 5 questions of 5 marks each. Section C consists of 3 questions of 10 marks each.

2. All the symbols have their usual meaning. Make suitable assumptions wherever required.

Section A (All questions in this section are compulsory)

- Q1. (i) Given the field $\vec{E} = 2x\hat{a}_x + \hat{a}_y + yz\hat{a}_z$ and $\vec{F} = xy\hat{a}_x y^2\hat{a}_y + xyz\hat{a}_z$. Find a vector perpendicular to both \vec{E} and \vec{F} at (0, 1, -3) whose magnitude is unity.
 - (ii) How is the ratio of the magnitude of conduction current density to that of the displacement current density related to the loss tangent for the wave propagation in lossy medium?
 - (iii) Write the Poisson's equation for a nonhomogeneous medium.
 - (iv) Write the condition for a transmission line to be distortionless in terms of R, L, G and C.
 - (v) Determine the Laplacian of the scalar field $U = x^2y + xyz$.
 - (vi) For an electric dipole centered at $\vec{r_1}$ with dipole moment \vec{p} , the potential at \vec{r} is given by _____.
 - (vii) What is an equipotential surface?
- (viii) Given that $\vec{E} = xy\hat{a}_x + x^2\hat{a}_y$, find the electric flux density \vec{D} .
- (ix) Write the continuity of current equation.
- (x) The net magnetic flux through a closed surface is zero. True or False? Give reason in support of your answer.

Section B

(Answer any four (04) questions in this section)

Q2. An \vec{H} field travels in the $-\hat{a}_z$ direction in free space with a phaseshift constant of 30 rad/m and an amplitude of $\frac{1}{3\pi}$ A/m. If the field has the direction $-\hat{a}_y$ when t=0, z=0, write the expressions for \vec{E} and \vec{H} . Also, determine the frequency and wavelength.

- Q3. Given that $\vec{J} = 4.5e^{-2r}\hat{a}_z$ A/m² in the region 0 < r < 0.5 m and $\vec{J} = 0$ elsewhere. Use Ampere's law to find \vec{H} .
- Q4. Region 1, described by $3x + 4y \ge 10$, is free space whereas region 2, described by $3x + 4y \le 10$ is a magnetic material for which $\mu = 10\mu_0$. Assuming that the boundary between the material and free space is current free, find $\overrightarrow{B_2}$ if $\overrightarrow{B_1} = 0.1\hat{a}_x + 0.4\hat{a}_y + 0.2\hat{a}_z$ Wb/m².
- Q5. Given that the plane z = 0 carries uniform current $\vec{K} = K_y \hat{a}_y$. Obtain \vec{H} at points (0, 0, h) and (0, 0, -h) by using Biot-Savart's law.

Section C

(Answer any two (02) questions in this section)

- Q7. The region between x=0 and x=d is free space and has the volume charge density $\rho_v = \frac{\rho_0(x-d)}{d}$. If V(x=0)=0 and $V(x=d)=V_0$, find (a) V and \vec{E} (b) the surface charge densities at x=0 and x=d.
- Q8. A lossy material has $\mu = 5\mu_0$, $\epsilon = 5\epsilon_0$. If at 5 MHz, the phase constant is 10 rad/m, calculate:

 a) the loss tangent
 b) the conductivity of the material
 c) the complex permittivity
 d) the attenuation constant
 e) the intrinsic impedance
- Q9. (a) State Ampere's circuit law.
 - (b) A hollow conducting cylinder has inner radius a and outer radius b and carries current I along the positive z-direction. Determine \vec{H} everywhere.

Section B

Q6. A circular disc of radius a carries charge $\rho_s = \frac{1}{\rho}$ C/m². Calculate the potential at (0,0,h).