Lecture 12 – Object Oriented Design Example: SpMV

Prof. Brendan Kochunas

NERS/ENGR 570 - Methods and Practice of Scientific Computing (F20)

Outline

- Overview of HW 2 (to be assigned after lecture)
- Review of Lab 06
- Class Hierarchy Development
- Matrix State Machine

Mediator Design Pattern

Sparse Matrix Storage Formats: COOrdinate Storage

Cost: 5 memory reads, 1 write and 2 flops per iteration.

Sparse Matrix Storage Formats: Compressed Sparse Row (CSR) Storage

Sparse Matrix Storage Formats: ELLPACK Storage

access pattern).

10/12/2020 Lecture 12 - OOD Example 5

Class Hierarchy

Creational Pattern (Builder)

- InitializeToDefault(n)
 - Create some internal storage and default values
 - e.g. could initialize to identity
- BuildMatrix() Changes state
 - allows values to be set
- BuildUpCoefficients (*i*, *j*, *a*_{*ij*})
 - Assign coefficients to matrix
 - Perhaps overload to allow other formats
 - e.g. COO ia(:), ja(:), aa(:)
 - Store all internally as COO format
- AssembleStorage() Changes state
 - Converts internal representation of data to format suitable for solvers
- GetMatrix() would return the matrix object

Builder Design Pattern

Behavorial Pattern (State)

10/12/2020

Behavioral Pattern (Mediator)

- Support N matrix formats
 - That is N^2 different types of conversions
 - Don't implement them all!

- Use Mediator!
 - Move from fully connected graph to "star" graph

Notes on Mediator

