

Grundbegriffe der Informatik - Tutorium 21

Christian Jülg Wintersemester 2012/13 05. Februar 2013

http://gbi-tutor.blogspot.com

Übersicht

Motivation

Aufgabenblatt 13

Halbordnungen

Ordnungen

Klausur am 07.03.13

Grammatiken

Abschluss

Übersicht

Motivation

Aufgabenblatt 13

Halbordnungen

Ordnunger

Klausur am 07.03.13

Grammatiker

Abschluss

wozu soll das alles gut sein?

Grammatiken

- Spracherkenung
- Definition von Programmiersprachen
- lacktriangledown \Rightarrow Compiler

wozu soll das alles gut sein?

Grammatiken

- Spracherkenung
- Definition von Programmiersprachen
- ⇒ Compiler

Automaten

- Netzwerk-Protokolle
- Internet
- Modellierung "echter Automaten"

Codierungen

- Nachrichtentechnik
- \blacksquare \Rightarrow Internet
- Rechnerarchitektur

Codierungen

- Nachrichtentechnik
- ⇒ Internet
- Rechnerarchitektur

Relationen

- Grundlage verschiedener Konzepte wie
- Funktionen,
- Graphen

Graphen & Algorithmen auf ihnen

- Routenplanung
 - Kürzeste Wege
 - Wegfindung f
 ür KI
- Schaltpläne für Prozessoren/Mikrochips

Graphen & Algorithmen auf ihnen

- Routenplanung
 - Kürzeste Wege
 - Wegfindung f
 ür KI
- Schaltpläne für Prozessoren/Mikrochips

Vektoren Matrizen etc.

- Visualisierungen aller Art
- Bildkorrektur in Digicams
- MRT Magnetresonanztomographie

Reguläre Ausdrücke

- Wort(muster)erkennung
- Validierung von Adressen, Telefonnummern, Emailadressen

Reguläre Ausdrücke

- Wort(muster)erkennung
- Validierung von Adressen, Telefonnummern, Emailadressen

O-Kalkül

- Performanceabschätzung von Algorithmen
- wird sehr interessant sobald große Datenmengen verarbeitet werden
 - Bild/Video/Audiobearbeitung
 - Navigation
 - Suche

Rekursion

- eignet sich "intuitiv" für viele Problemstellungen
- erlaubt für viele Algorithmen eine sehr einfache Notation

Rekursion

- eignet sich "intuitiv" für viele Problemstellungen
- erlaubt für viele Algorithmen eine sehr einfache Notation

Turingmaschinen

- grundlegende Überlegungen zu Berechenbarkeit
- ermöglicht Vergleich der "Mächtigkeit"von
 - Programmiersprachen
 - Programmiermodellen

Übersicht

Motivation

Aufgabenblatt 13

Halbordnunger

Ordnungen

Klausur am 07.03.13

Grammatiker

Abschluss

Aufgabenblatt 13

Blatt 13

Abgaben: 10 / 18

Punkte: Durchschnitt 10,4 von 22

Ranking

Platz 1: 183,5 Punkte

Platz 2: 181 Punkte

Platz 3: 158,5 Punkte

Aufgabenblatt 13

Blatt 13

Abgaben: 10 / 18

Punkte: Durchschnitt 10,4 von 22

Ranking

Platz 1: 183,5 Punkte

Platz 2: 181 Punkte

Platz 3: 158,5 Punkte

Anmerkung

Meldet Euch für den ÜB-Schein an!

Übersicht

Motivation

Aufgabenblatt 13

Halbordnungen

Ordnunger

Klausur am 07.03.13

Grammatiker

Abschluss

WDH: Definition von Äquivalenzrelationen

Vorraussetzungen

WDH: Definition von Äquivalenzrelationen

Vorraussetzungen

reflexiv xRx transitiv Aus xRy und yRz folgt xRz symmetrisch Aus xRy folgt yRx

WDH: Definition von Äquivalenzrelationen

Vorraussetzungen

reflexiv xRx transitiv Aus xRy und yRz folgt xRz symmetrisch Aus xRy folgt yRx

Gelten alle diese Eigenschaften für alle $x, y, z \in M$, handelt es sich um eine Äquivalenzrelation.

Vorraussetzungen

reflexiv xRx transitiv Aus xRy und yRz folgt xRz

Vorraussetzungen

reflexiv xRxtransitiv Aus xRy und yRz folgt xRzantisymmetrisch Aus xRy und yRx folgt x = y

Vorraussetzungen

reflexiv xRxtransitiv Aus xRy und yRz folgt xRzantisymmetrisch Aus xRy und yRx folgt x = y

■ Gelten alle diese Eigenschaften für alle x, y, handelt es sich bei $R \subseteq MxM$ um eine **Halbordnung**.

Vorraussetzungen

reflexiv xRxtransitiv Aus xRy und yRz folgt xRzantisymmetrisch Aus xRy und yRx folgt x = y

- Gelten alle diese Eigenschaften für alle x, y, handelt es sich bei $R \subseteq MxM$ um eine **Halbordnung**.
- Wenn R Halbordnung auf Menge M ist, nennt man M eine halbgeordnete Menge.

Untersuchung der Mengeninklusion

Untersuchung der Mengeninklusion

Handelt es sich bei der Relation \subseteq (Mengeninklusion) um eine Äquivalenzrelation oder Halbordnung auf Potenzmenge $P=2^M$?

• relfexiv: $\forall A \in P$: $A \subseteq A$

Untersuchung der Mengeninklusion

Handelt es sich bei der Relation \subseteq (Mengeninklusion) um eine Äquivalenzrelation oder Halbordnung auf Potenzmenge $P = 2^M$?

• relfexiv: $\forall A \in P$: $A \subseteq A$

■ transitiv: $\forall A, B, C \in P$: $A \subseteq B$ und $B \subseteq C \Longrightarrow A \subseteq C$

Untersuchung der Mengeninklusion

- relfexiv: $\forall A \in P$: $A \subseteq A$
- transitiv: $\forall A, B, C \in P$: $A \subseteq B$ und $B \subseteq C \Longrightarrow A \subseteq C$
- symmetrisch: $\forall A, B \in P$: $A \subseteq B \Longrightarrow B \subseteq A$

Untersuchung der Mengeninklusion

- relfexiv: $\forall A \in P$: $A \subseteq A$
- transitiv: $\forall A, B, C \in P$: $A \subseteq B$ und $B \subseteq C \Longrightarrow A \subseteq C$
- symmetrisch: $\forall A, B \in P$: $A \subseteq B \Longrightarrow B \subseteq A$ gilt nicht. **ABER:** Aus **keiner Symmetrie** folgt nicht notwendig die Antisymmetrie!

Untersuchung der Mengeninklusion

- relfexiv: $\forall A \in P$: $A \subseteq A$
- transitiv: $\forall A, B, C \in P$: $A \subseteq B$ und $B \subseteq C \Longrightarrow A \subseteq C$
- symmetrisch: $\forall A, B \in P$: $A \subseteq B \Longrightarrow B \subseteq A$ gilt nicht. **ABER:** Aus **keiner Symmetrie** folgt nicht notwendig die Antisymmetrie!
- antisymmetrisch: $\forall A, B \in P$: $A \subseteq B$ und $B \subseteq A \Longrightarrow A = B$ (Analogie zur Mengengleichheit)

Untersuchung der Mengeninklusion

Handelt es sich bei der Relation \subseteq (Mengeninklusion) um eine Äquivalenzrelation oder Halbordnung auf Potenzmenge $P=2^M$?

- relfexiv: $\forall A \in P$: $A \subseteq A$
- transitiv: $\forall A, B, C \in P$: $A \subseteq B$ und $B \subseteq C \Longrightarrow A \subseteq C$
- symmetrisch: $\forall A, B \in P$: $A \subseteq B \Longrightarrow B \subseteq A$ gilt nicht. **ABER:** Aus **keiner Symmetrie** folgt nicht notwendig die Antisymmetrie!
- antisymmetrisch: $\forall A, B \in P$: $A \subseteq B$ und $B \subseteq A \Longrightarrow A = B$ (Analogie zur Mengengleichheit)

Die Mengeninklusion ist eine Halbordnung.

Aufgabe

Überprüft, ob es sich bei folgenden Relationen um Halbordnungen handelt:

 $\bullet \sqsubseteq_p \text{ auf } A^* \text{ mit } v \sqsubseteq_p w \Leftrightarrow \exists u : vu = w ?$

Aufgabe

Überprüft, ob es sich bei folgenden Relationen um Halbordnungen handelt:

- \sqsubseteq_p auf A^* mit $v \sqsubseteq_p w \Leftrightarrow \exists u : vu = w$?
 - **Reflexivität**: gilt wegen $w_1 \epsilon = w_1$
 - Antisymmetrie: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq w_1$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1u_1 = w_2$ und $w_2u_2 = w_1$. Also ist $w_1u_1u_2 = w_2u_2 = w_1$. Also muss $|u_1u_2| = 0$ sein, also $u_1 = u_2 = \epsilon$, also $w_1 = w_2$.
 - Transitivität: wenn $w_1 \sqsubseteq_\rho w_2$ und $w_2 \sqsubseteq w_3$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1u_1 = w_2$ und $w_2u_2 = w_3$. Also ist $w_1(u_1u_2) = (w_1u_1)u_2 = w_2u_2 = w_3$, also $w_1 \sqsubseteq w_3$.

Aufgabe

Uberprüft, ob es sich bei folgenden Relationen um Halbordnungen handelt:

- $\blacksquare \sqsubseteq_p \text{ auf } A^* \text{ mit } v \sqsubseteq_p w \Leftrightarrow \exists u : vu = w ?$
 - **Reflexivität**: gilt wegen $w_1 \epsilon = w_1$
 - **Antisymmetrie**: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq w_1$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1 u_1 = w_2$ und $w_2 u_2 = w_1$. Also ist $w_1 u_1 u_2 = w_2 u_2 = w_1$. Also muss $|u_1 u_2| = 0$ sein, also $u_1 = u_2 = \epsilon$, also $w_1 = w_2$.
 - **Transitivität**: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq w_3$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1u_1 = w_2$ und $w_2u_2 = w_3$. Also ist $w_1(u_1u_2) = (w_1u_1)u_2 = w_2u_2 = w_3$, also $w_1 \sqsubseteq w_3$.
- \blacksquare \sqsubseteq auf A^* mit $w_1 \sqsubseteq w_2 \Leftrightarrow |w_1| < |w_2|$?

Aufgabe

Überprüft, ob es sich bei folgenden Relationen um Halbordnungen handelt:

- \sqsubseteq_p auf A^* mit $v \sqsubseteq_p w \Leftrightarrow \exists u : vu = w$?
 - **Reflexivität**: gilt wegen $w_1 \epsilon = w_1$
 - Antisymmetrie: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq w_1$, dann gibt es u_1 , $u_2 \in A^*$ mit $w_1u_1 = w_2$ und $w_2u_2 = w_1$. Also ist $w_1u_1u_2 = w_2u_2 = w_1$. Also muss $|u_1u_2| = 0$ sein, also $u_1 = u_2 = \epsilon$, also $w_1 = w_2$.
 - Transitivität: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq w_3$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1u_1 = w_2$ und $w_2u_2 = w_3$. Also ist $w_1(u_1u_2) = (w_1u_1)u_2 = w_2u_2 = w_3$, also $w_1 \sqsubseteq w_3$.
- \sqsubseteq auf A^* mit $w_1 \sqsubseteq w_2 \Leftrightarrow |w_1| \le |w_2|$?
 - Antisymmetrie ist verletzt.

Aufgabe

Überprüft, ob es sich bei folgenden Relationen um Halbordnungen handelt:

- $\blacksquare \sqsubseteq_p \text{ auf } A^* \text{ mit } v \sqsubseteq_p w \Leftrightarrow \exists u : vu = w ?$
 - **Reflexivität**: gilt wegen $w_1 \epsilon = w_1$
 - Antisymmetrie: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq w_1$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1u_1 = w_2$ und $w_2u_2 = w_1$. Also ist $w_1u_1u_2 = w_2u_2 = w_1$. Also muss $|u_1u_2| = 0$ sein, also $u_1 = u_2 = \epsilon$, also $w_1 = w_2$.
 - Transitivität: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq w_3$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1u_1 = w_2$ und $w_2u_2 = w_3$. Also ist $w_1(u_1u_2) = (w_1u_1)u_2 = w_2u_2 = w_3$, also $w_1 \sqsubseteq w_3$.
- \sqsubseteq auf A^* mit $w_1 \sqsubseteq w_2 \Leftrightarrow |w_1| \le |w_2|$?
 - Antisymmetrie ist verletzt.
 - Reflexivität und Transitivität sind erfüllt.

Hassediagramm

Konstruktion

Zur **Veranschaulichung einer Halbordnung** lassen sich Hassediagramme folgendermaßen erstellen:

Hassediagramm

Konstruktion

Zur **Veranschaulichung einer Halbordnung** lassen sich Hassediagramme folgendermaßen erstellen:

1. Darstellung der Halbordnung als Graph

Hassediagramm

Konstruktion

Zur **Veranschaulichung einer Halbordnung** lassen sich Hassediagramme folgendermaßen erstellen:

- 1. Darstellung der Halbordnung als Graph
- 2. Entfernen aller reflexiven und transitiven Kanten

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$ minimale und maximale Elemente

• $x \in T$ heißt **minimales Element** von T, wenn es kein $y \in T$ gibt mit $y \sqsubseteq x$ und $y \ne x$.

Sei (M,\sqsubseteq) halbgeordnet und $T\subseteq M$

minimale und maximale Elemente

- $x \in T$ heißt **minimales Element** von T, wenn es kein $y \in T$ gibt mit $y \sqsubseteq x$ und $y \ne x$.
- $x \in T$ heißt maximales Element von T, wenn es kein $y \in T$ gibt mit $x \sqsubseteq y$ und $x \ne y$.

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$ minimale und maximale Elemente

- $x \in T$ heißt **minimales Element** von T, wenn es kein $y \in T$ gibt mit $y \sqsubseteq x$ und $y \ne x$.
- $x \in T$ heißt maximales Element von T, wenn es kein $y \in T$ gibt mit $x \sqsubseteq y$ und $x \neq y$.

kleinstes und größtes Element

• $x \in T$ heißt kleinstes Element von T, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$.

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$

minimale und maximale Elemente

- $x \in T$ heißt **minimales Element** von T, wenn es kein $y \in T$ gibt mit $y \sqsubseteq x$ und $y \ne x$.
- $x \in T$ heißt maximales Element von T, wenn es kein $y \in T$ gibt mit $x \sqsubseteq y$ und $x \neq y$.

kleinstes und größtes Element

- $x \in T$ heißt kleinstes Element von T, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$.
- $x \in T$ heißt größtes Element von T, wenn für alle $y \in T$ gilt: $y \sqsubseteq x$.

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$ minimale und maximale Elemente

- $x \in T$ heißt **minimales Element** von T, wenn es kein $y \in T$ gibt mit $y \sqsubseteq x$ und $y \ne x$.
- $x \in T$ heißt maximales Element von T, wenn es kein $y \in T$ gibt mit $x \sqsubseteq y$ und $x \ne y$.

kleinstes und größtes Element

- $x \in T$ heißt kleinstes Element von T, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$.
- $x \in T$ heißt größtes Element von T, wenn für alle $y \in T$ gilt: $y \sqsubseteq x$.

Eine Teilmenge T kann mehrere minimale (bzw. maximale) Elemente besitzen, aber nur ein kleinstes (bzw. größtes)!

Beispiel mit Hassediagramm

Beispiel

■ Male das Hassediagramm zur Halbordnung $(\{\{\}, a, b, c, ab, bc, ac\}, \subseteq)$

Beispiel mit Hassediagramm

Beispiel

- Male das Hassediagramm zur Halbordnung $(\{\{\}, a, b, c, ab, bc, ac\}, \subseteq)$
- woran erkennt man Minima?

Beispiel mit Hassediagramm

Beispiel

- Male das Hassediagramm zur Halbordnung $(\{\{\}, a, b, c, ab, bc, ac\}, \subseteq)$
- woran erkennt man Minima?
- woran Maxima?

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$

Sei (M,\sqsubseteq) halbgeordnet und $T\subseteq M$

Untere und obere Schranken

• $x \in M$ heißt untere Schranke von T, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$.

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$

Untere und obere Schranken

- $x \in M$ heißt untere Schranke von T, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$.
- $x \in M$ heißt **obere Schranke** von T, wenn für alle $y \in T$ gilt: $y \sqsubseteq x$.

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$

Untere und obere Schranken

- $x \in M$ heißt untere Schranke von T, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$.
- $x \in M$ heißt **obere Schranke** von T, wenn für alle $y \in T$ gilt: $y \sqsubseteq x$.

Also: Schranken von T dürfen außerhalb von T liegen.

Supremum und Infimum

■ Besitzt die Menge aller oberen Schranken einer Teilmenge T ein kleinstes Element, so heißt dies das **Supremum** von T (sup(T))

Supremum und Infimum

- Besitzt die Menge aller oberen Schranken einer Teilmenge T ein kleinstes Element, so heißt dies das **Supremum** von T (sup(T))
- Besitzt die Menge aller unteren Schranken einer Teilmenge T ein größtes Element, so heißt dies das **Infimum** von T (inf(T))

Supremum und Infimum

- Besitzt die Menge aller oberen Schranken einer Teilmenge T ein kleinstes Element, so heißt dies das **Supremum** von T (sup(T))
- Besitzt die Menge aller unteren Schranken einer Teilmenge T ein größtes Element, so heißt dies das **Infimum** von T (inf(T))
- Achtung: Existieren nicht, wenn
 - überhaupt keine oberen (unteren) Schranken vorhanden

Supremum und Infimum

- Besitzt die Menge aller oberen Schranken einer Teilmenge T ein kleinstes Element, so heißt dies das **Supremum** von T (sup(T))
- Besitzt die Menge aller unteren Schranken einer Teilmenge T ein größtes Element, so heißt dies das **Infimum** von T (inf(T))
- Achtung: Existieren nicht, wenn
 - überhaupt keine oberen (unteren) Schranken vorhanden
 - keine eindeutig kleinste (größte) Schranke aller oberer (unterer) Schranken

aufsteigende Kette

wird definiert als

- abzählbar unendliche Folge $(x_0, x_1, x_2, ...)$ von Elementen
- mit Eigenschaft: $\forall i \in N_0$: $x_i \sqsubseteq x_{i+1}$

aufsteigende Kette

wird definiert als

- **a** abzählbar unendliche Folge $(x_0, x_1, x_2, ...)$ von Elementen
- mit Eigenschaft: $\forall i \in N_0$: $x_i \sqsubseteq x_{i+1}$

vollständige Halbordnung

Eine Halbordnung heißt vollständig, wenn

- lacksquare sie ein kleinstes Element ot hat und
- jede aufsteigende Kette $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \dots$ ein Supremum x_i besitzt

- Beispiel aus dem Skript
- Gegeben sei:
- Terminalzeichenalphabet $T = \{a, b\}$,

- Beispiel aus dem Skript
- Gegeben sei:
- Terminalzeichenalphabet $T = \{a, b\}$,
- **D** die halbgeordnete Potenzmenge $D = 2^{T^*}$ der Menge aller Wörter
- mit Inklusion als Halbordnungsrelation.

- Beispiel aus dem Skript
- Gegeben sei:
- Terminalzeichenalphabet $T = \{a, b\}$,
- $lackbox{ } D$ die halbgeordnete Potenzmenge $D=2^{\mathcal{T}^*}$ der Menge aller Wörter
- mit Inklusion als Halbordnungsrelation.
- Elemente der Halbordnung sind also Mengen von Wörtern, d.h. formale Sprachen.

- Beispiel aus dem Skript
- Gegeben sei:
- Terminalzeichenalphabet $T = \{a, b\}$,
- $lackbox{ } D$ die halbgeordnete Potenzmenge $D=2^{T^*}$ der Menge aller Wörter
- mit Inklusion als Halbordnungsrelation.
- Elemente der Halbordnung sind also Mengen von Wörtern, d.h. formale Sprachen.
- Kleinstes Element der Halbordnung ist die leere Menge Ø.

- Beispiel aus dem Skript
- Gegeben sei:
- Terminalzeichenalphabet $T = \{a, b\}$,
- lacksquare D die halbgeordnete Potenzmenge $D=2^{T^*}$ der Menge aller Wörter
- mit Inklusion als Halbordnungsrelation.
- Elemente der Halbordnung sind also Mengen von Wörtern, d.h. formale Sprachen.
- Kleinstes Element der Halbordnung ist die leere Menge Ø.
- Wie weiter vorne erwähnt, ist diese Halbordnung vollständig.

Beweis

- Es sei $v \in T^*$ ein Wort und $f_v : D \to D$ die Abbildung $f_v(L) = \{v\}L$, die vor jedes Wort von L vorne v konkateniert.
- Behauptung: f_v ist stetig.
- Beweis: Es sei $L_0 \subseteq L_1 \subseteq L_2 \subseteq \cdots$ eine Kette und $L = \bigcup L_i$ ihr Supremum.

```
f_{v}(L_{i}) = \{vw | w \in L_{i}\}, \text{ also } \\ \bigcup_{i} f_{v}(L_{i}) = \{vw | \exists i \in N_{0} : w \in L_{i}\} = \{v\}\{w | \exists i \in N_{0} : w \in L_{i}\} \\ = \{v\}\bigcup_{i} L_{i} = f(\bigcup_{i} L_{i}).
```

analog f
ür Konkatenation von rechts

Übersicht

Motivation

Aufgabenblatt 13

Halbordnungen

Ordnungen

Klausur am 07.03.13

Grammatiker

Abschluss

Definition

Relation $R \subseteq M \times M$ ist eine Ordnung oder genauer **totale Ordnung**, wenn

R Halbordnung ist

Definition

Relation $R \subseteq M \times M$ ist eine Ordnung oder genauer **totale Ordnung**, wenn

- R Halbordnung ist
- und gilt: $\forall x, y \in M$: $xRy \lor yRx$

Definition

Relation $R \subseteq MxM$ ist eine Ordnung oder genauer **totale Ordnung**, wenn

- R Halbordnung ist
- und gilt: $\forall x, y \in M$: $xRy \lor yRx$

Anmerkungen

ightharpoonup \Rightarrow : Es gibt keine unvergleichbaren Elemente.

Beispiele

 (N_0, \leq)

Beispiele

- \bullet (N_0, \leq)
- lacksquare $(\{a,b\}^*,\sqsubseteq_1)$ mit $w_1\sqsubseteq_1 w_2$ "wie im Wörterbuch"

Beispiele

- (N_0, \leq)
- $(\{a,b\}^*,\sqsubseteq_1)$ mit $w_1\sqsubseteq_1 w_2$ "wie im Wörterbuch"
- $(\{a,b\}^*, \sqsubseteq_2)$ mit $w_1 \sqsubseteq_2 w_2$ genau dann, wenn

Beispiele

- (N_0, \leq)
- $(\{a,b\}^*,\sqsubseteq_1)$ mit $w_1\sqsubseteq_1 w_2$ "wie im Wörterbuch"
- lacksquare $(\{a,b\}^*,\sqsubseteq_2)$ mit $w_1\sqsubseteq_2 w_2$ genau dann, wenn
 - lacksquare entweder $|w_1| < |w_2|$

Totale Ordnung

Beispiele

- (N_0, \leq)
- $(\{a,b\}^*,\sqsubseteq_1)$ mit $w_1\sqsubseteq_1 w_2$ "wie im Wörterbuch"
- $(\{a,b\}^*,\sqsubseteq_2)$ mit $w_1\sqsubseteq_2 w_2$ genau dann, wenn
 - entweder $|w_1| < |w_2|$
 - oder $|w_1| = |w_2|$ und $w_1 \sqsubseteq_1 w_2$ gilt

Beispiele für \sqsubseteq_1 :

• Warum ist $aa \sqsubseteq_1 aabba$?

Beispiele für \sqsubseteq_1 :

- Warum ist $aa \sqsubseteq_1 aabba$?
- Warum ist $aa \sqsubseteq_1 bba$?

Beispiele für \sqsubseteq_1 :

- Warum ist $aa \sqsubseteq_1 aabba$?
- Warum ist $aa \sqsubseteq_1 bba$?
- Warum ist $aaaaa \sqsubseteq_1 bba$?

Beispiele für \sqsubseteq_1 :

- Warum ist $aa \sqsubseteq_1 aabba$?
- Warum ist $aa \sqsubseteq_1 bba$?
- Warum ist $aaaaa \sqsubseteq_1 bba$?
- Warum ist $aaaab \sqsubseteq_1 aab$?

Beispiele für \sqsubseteq_1 :

- Warum ist $aa \sqsubseteq_1 aabba$?
- Warum ist $aa \sqsubseteq_1 bba$?
- Warum ist $aaaaa \sqsubseteq_1 bba$?
- Warum ist $aaaab \sqsubseteq_1 aab$?

Beispiele für \sqsubseteq_2 :

• Warum ist $aa \sqsubseteq_2 aabba$?

Beispiele für \sqsubseteq_1 :

- Warum ist $aa \sqsubseteq_1 aabba$?
- Warum ist $aa \sqsubseteq_1 bba$?
- Warum ist $aaaaa \sqsubseteq_1 bba$?
- Warum ist $aaaab \sqsubseteq_1 aab$?

Beispiele für \sqsubseteq_2 :

- Warum ist $aa \sqsubseteq_2 aabba$?
- Warum ist $aa \sqsubseteq_2 bba$?

Beispiele für \sqsubseteq_1 :

- Warum ist $aa \sqsubseteq_1 aabba$?
- Warum ist $aa \sqsubseteq_1 bba$?
- Warum ist $aaaaa \sqsubseteq_1 bba$?
- Warum ist $aaaab \sqsubseteq_1 aab$?

Beispiele für \sqsubseteq_2 :

- Warum ist $aa \sqsubseteq_2 aabba$?
- Warum ist $aa \sqsubseteq_2 bba$?
- Warum ist *bba* \sqsubseteq_2 *aaaaa*? (vergleiche \sqsubseteq_1 !)

Beispiele für \square_1 :

- Warum ist $aa \sqsubseteq_1 aabba$?
- Warum ist $aa \sqsubseteq_1 bba$?
- Warum ist $aaaaa \sqsubseteq_1 bba$?
- Warum ist $aaaab \sqsubseteq_1 aab$?

Beispiele für \sqsubseteq_2 :

- Warum ist $aa \sqsubseteq_2 aabba$?
- Warum ist $aa \sqsubseteq_2 bba$?
- Warum ist *bba* \sqsubseteq_2 *aaaaa*? (vergleiche \sqsubseteq_1 !)
- Warum ist $aab \sqsubseteq_2 aaaab$? (vergleiche \sqsubseteq_1 !)

Bleibt dran...

Aufgabe

Ist die Relation \sqsubseteq_p auf $\{a, b\}^*$ eine totale Ordnung?

Definition

 \sqsubseteq_p auf A^* mit $v \sqsubseteq_p w \Leftrightarrow \exists u : vu = w$

Bleibt dran...

Aufgabe

Ist die Relation \sqsubseteq_p auf $\{a, b\}^*$ eine totale Ordnung?

Definition

 \sqsubseteq_p auf A^* mit $v \sqsubseteq_p w \Leftrightarrow \exists u : vu = w$

Lösung

Es handelt sich um eine Halbordnung, allerdings mit unvergleichbaren Element wie z.B. a, b. Daher ist die Relation \sqsubseteq_p **keine** totale Ordnung.

Übersicht

Motivation

Aufgabenblatt 13

Halbordnungen

Ordnungen

Klausur am 07.03.13

Grammatiker

Abschluss

Klausur am Dienstag, 7. März 2013

14:00 - 16:00

- Anmeldebeginn: schon möglich
- Anmeldung überprüfen: wenige Tage nach der Anmeldung sollte diese im Selbstbedienungsportal sichtbar sein.

Alle Angaben sind wie immer ohne Gewähr.

Themen

Themen

- siehe Vorlesungshinweis, bzw. alles was behandelt wurde
- **z**.B. :

Themen

Themen

- siehe Vorlesungshinweis, bzw. alles was behandelt wurde
- z.B.:
- Mengenlehre, Abbildungen, Aussagenlogik, Quantoren, Wörter,
- Palindrome, Formale Sprachen, Grammatiken,
- Zahlensysteme, Huffman-Codes,
- Graphen, Adjazenzliste, Adjazenzmatrix, Wegematrix,
- Mealy- / Moore- Automaten, Akzeptor, Regulärer Ausdruck,
- **Äquivalenzrelationen**, Nerode-Relation, Ordnungen

Anmerkung

WICHTIG!

■ Meldet Euch **rechtzeitig** zur Klausur an!

Übersicht

Motivation

Aufgabenblatt 13

Halbordnungen

Ordnunger

Klausur am 07.03.13

Grammatiken

Abschluss

Aufgabe

Gib zu den folgenden Sprachen L_1 , L_2 jeweils eine Grammatik höchstmöglichen Typs an (das heißt Typ i mit i möglichst groß aus 0,1,2,3), welche die Sprache erzeugt.

- (a) $L_1 = \{a^m(bc)^{2m} | m > 0\}$
- (b) $L_2 = \{a^n b^m c^m d^n | m >= 0, n >= 1\}$

Aufgabe

Gib zu den folgenden Sprachen L_1 , L_2 jeweils eine Grammatik höchstmöglichen Typs an (das heißt Typ i mit i möglichst groß aus 0,1,2,3), welche die Sprache erzeugt.

- (a) $L_1 = \{a^m(bc)^{2m} | m > 0\}$
- (b) $L_2 = \{a^n b^m c^m d^n | m >= 0, n >= 1\}$

Lösung:

- (a) $G = (\Sigma, N, P, A)$ mit $\Sigma = \{a, b, c\}$, $N = \{A\}$ und $P = \{A \rightarrow aAbcbc | abcbc\}$
- (b) $G = (\Sigma, N, P, A)$ mit $\Sigma = \{a, b, c, d\}N = \{\}$ und $P = \{A \rightarrow ad|aAd|aBd \ B \rightarrow bBc|bc\}$

Aufgabe

Die hawaiianische Sprache kennt nur die folgenden Buchstaben:

- die Vokale a, e, i, o, u
- die Konsonanten h, k, l, m, n, p, w

Es gelten dabei folgende Regeln: Ein Wort beginnt mit einem Konsonanten oder einem Vokal. Auf einen Konsonanten muss mindestens ein Vokal folgen. Es können beliebig viele Vokale aufeinander folgen. Konsonanten dürfen nicht am Ende eines Wortes stehen. Ein Wort hat mindestens einen Buchstaben.

- (a) Gib eine Grammatik des Typs 2 an, die diese Sprache erzeugt.

 Hinweis: Es gibt hier auch eine Typ-3 Grammatik, aber diese ist recht umfangreich und daher als Lösung nicht sinnvoll.
- (b) Erzeuge mittels der Grammatik aus (a) das Wort kaiulani.
- (c) Erstelle einen regulären Ausdruck für die hawaiianische Sprache.
- (d) Erstelle einen Akzeptor, der die hawaiianische Sprache akzeptiert.

Lösung

(a)
$$G = (\Sigma, N, P, S)$$

 $\Sigma = \{a, e, i, o, u, h, k, l, m, n, p, w\}$ $N = \{S, V, K\}$
 $P = \{S \rightarrow V | VS | KV | KVS$
 $V \rightarrow a | e | i | o | u$
 $K \rightarrow h | k | l | m | n | p | w\}$

Lösung

- (a) $G = (\Sigma, N, P, S)$ $\Sigma = \{a, e, i, o, u, h, k, l, m, n, p, w\}$ $N = \{S, V, K\}$ $P = \{S \rightarrow V | VS | KV | KVS$ $V \rightarrow a | e | i | o | u$ $K \rightarrow h | k | l | m | n | p | w\}$
- (b) $S \Rightarrow KVS \Rightarrow kVS \Rightarrow kaS \Rightarrow kaVS \Rightarrow kaiUS \Rightarrow kaiuKVS \Rightarrow kaiuIVS \Rightarrow kaiulaKV \Rightarrow kaiulaNV \Rightarrow kaiulanV$

Lösung

- (a) $G = (\Sigma, N, P, S)$ $\Sigma = \{a, e, i, o, u, h, k, l, m, n, p, w\}$ $N = \{S, V, K\}$ $P = \{S \rightarrow V | VS | KV | KVS$ $V \rightarrow a | e | i | o | u$ $K \rightarrow h | k | l | m | n | p | w\}$
- (b) $S \Rightarrow KVS \Rightarrow kVS \Rightarrow kaS \Rightarrow kaVS \Rightarrow kaiUS \Rightarrow kaiuKVS \Rightarrow kaiuIVS \Rightarrow kaiuIaS \Rightarrow kaiuIaKV \Rightarrow kaiuIanV \Rightarrow kaiuIani$
- ((a|e|i|o|u)|(h|k|I|m|n|p|w)(a|e|i|o|u))((a|e|i|o|u)|(h|k|I|m|n|p|w)(a|e|i|o|u)

Übersicht

Motivation

Aufgabenblatt 13

Halbordnungen

Ordnungen

Klausur am 07.03.13

Grammatiker

Abschluss

Was ihr nun wissen solltet!

• Wie unterscheiden sich Äquivalenzrelation und Halbordnung? Was sind typische Beispiele?

- Wie unterscheiden sich Äquivalenzrelation und Halbordnung? Was sind typische Beispiele?
- Warum Hassediagramme? Welche "extremen" Elemente treten bei Halbordnungen auf?

- Wie unterscheiden sich Äquivalenzrelation und Halbordnung? Was sind typische Beispiele?
- Warum Hassediagramme? Welche "extremen" Elemente treten bei Halbordnungen auf?
- Was besagt eine totale Ordnung?

- Wie unterscheiden sich Äquivalenzrelation und Halbordnung? Was sind typische Beispiele?
- Warum Hassediagramme? Welche "extremen" Elemente treten bei Halbordnungen auf?
- Was besagt eine totale Ordnung?
- Meldet euch bitte für Schein und KLAUSUR an!
 Solange ihr euch nicht für den Schein anmeldet, kann er euch auch nicht eingetragen werden.

Was ihr nun wissen solltet!

- Wie unterscheiden sich Äquivalenzrelation und Halbordnung? Was sind typische Beispiele?
- Warum Hassediagramme? Welche "extremen" Elemente treten bei Halbordnungen auf?
- Was besagt eine totale Ordnung?
- Meldet euch bitte für Schein und KLAUSUR an!
 Solange ihr euch nicht für den Schein anmeldet, kann er euch auch nicht eingetragen werden.

Ihr wisst was nicht? Stellt **jetzt** Fragen!

Ende

