Здесь будет титульник, листай ниже

# СОДЕРЖАНИЕ

| 1 ПОСТАНОВКА ЗАДАЧИ                     | 5  |
|-----------------------------------------|----|
| 1.1 Описание входных данных             | 5  |
| 1.2 Описание выходных данных            | 6  |
| 2 МЕТОД РЕШЕНИЯ                         | 7  |
| 3 ОПИСАНИЕ АЛГОРИТМОВ                   | 8  |
| 3.1 Алгоритм конструктора класса sort   | 8  |
| 3.2 Алгоритм метода set класса sort     | 8  |
| 3.3 Алгоритм метода get класса sort     | 9  |
| 3.4 Алгоритм метода reverse класса sort | 9  |
| 3.5 Алгоритм функции main               | 10 |
| 4 БЛОК-СХЕМЫ АЛГОРИТМОВ                 | 11 |
| 5 КОД ПРОГРАММЫ                         | 14 |
| 5.1 Файл main.cpp                       | 14 |
| 5.2 Файл sort.cpp                       | 14 |
| 5.3 Файл sort.h                         | 15 |
| 6 ТЕСТИРОВАНИЕ                          | 16 |
| СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ        | 17 |

### 1 ПОСТАНОВКА ЗАДАЧИ

Создать объект, который обрабатывает массив целых чисел не более 10 элементов.

Количество элементов определяются в момент конструирования объекта.

Объект обладает следующей функциональностью:

- в конструкторе считывает значение количества элементов массива, выводит значение количества элементов;
  - считывает значения элементов массива;
  - выводит значения элементов массива;
  - разворачивает последовательность значений элементов массива.

Написать программу, которая:

- 1. Создает объект и в конструкторе считывает количество элементов массива;
  - 2. Считывает элементы массива;
- 3. Выводит значения элементов массива согласно исходной последовательности;
  - 4. Разворачивает элементы массива;
- 5. Выводит значения элементов массива согласно новому их порядку следования.

#### 1.1 Описание входных данных

#### Первая строка:

целое число в десятичном формате.

#### Вторая строка:

последовательность целых чисел в десятичном формате разделенных пробелом.

## 1.2 Описание выходных данных

#### Первая строка:

N = «количество элементов»

Вторая строка (исходный порядок следования элементов):

Значения элементов массива, значение каждого элемента занимает 5 позиции, выравнивание по правому краю.

Третья строка (порядок следования элементов после разворота):

Значения элементов массива, значение каждого элемента занимает 5 позиции, выравнивание по правому краю.

## 2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект sort класса sort;
- функция main для Основная функция;
- Объект стандартного потока ввода/ вывода cin/cout;
- Оператор цикла со счётчиком;
- объект obj класса sort;
- Функция для форматированного вывода.

#### Класс sort:

- свойства/поля:
  - о поле Количество элементов:
    - наименование n;
    - тип int;
    - модификатор доступа private;
  - о поле Массив:
    - наименование a[i];
    - тип int;
    - модификатор доступа private;
- функционал:
  - о метод sort Конструктор;
  - о метод set Счёт элементов массива;
  - о метод get Вывод элементов массива;
  - о метод reverse Разворачивание элементов массива.

### 3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

### 3.1 Алгоритм конструктора класса sort

Функционал: Конструктор.

Параметры: нет.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса sort

| N₂ | Предикат | Действия                               |          |
|----|----------|----------------------------------------|----------|
|    |          |                                        | перехода |
| 1  |          | Ввод целочисленной переменной п        | 2        |
| 2  |          | Вывод "N = " , переход на новую строку | Ø        |

#### 3.2 Алгоритм метода set класса sort

Функционал: Ввод массива.

Параметры: нет.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода set класса sort

| N₂ | Предикат | Действия                            | N₂       |
|----|----------|-------------------------------------|----------|
|    |          |                                     | перехода |
| 1  |          | Иницилизация целой переменной i = 0 | 2        |
| 2  | i < n    | Ввод і-го элемента массива          | 3        |
|    |          |                                     | Ø        |
| 3  |          | i++                                 | 2        |

#### 3.3 Алгоритм метода get класса sort

Функционал: Вывод массива.

Параметры: нет.

Возвращаемое значение: целое.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода get класса sort

| No | Предикат | Действия                                    | No       |
|----|----------|---------------------------------------------|----------|
|    |          |                                             | перехода |
| 1  |          | Иницилизация целочисленной переменной i = 0 | 2        |
| 2  | i < n    | Вывод элементов массива                     | 3        |
|    |          |                                             | Ø        |
| 3  |          | i++                                         | 2        |

### 3.4 Алгоритм метода reverse класса sort

Функционал: Разворот элементов массива.

Параметры: нет.

Возвращаемое значение: Нет.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода reverse класса sort

| N₂ | Предикат | Действия                                         | No       |
|----|----------|--------------------------------------------------|----------|
|    |          |                                                  | перехода |
| 1  |          | Иницилизация целочисленной переменной b = 0 и    | 2        |
|    |          | i = 0                                            |          |
| 2  | i < n/2  | присваивание а эмента массива b на позиции b[i], | 3        |
|    |          | находящийся на той же позиции,если начинать      |          |
|    |          | отсчёт с конца массива, присваиваем элементу в   |          |
|    |          | позиции с конца значение а                       |          |
|    |          |                                                  | Ø        |

| N₂ | Предикат | Действия | No       |
|----|----------|----------|----------|
|    |          |          | перехода |
| 3  |          | i++      | 2        |

## 3.5 Алгоритм функции main

Функционал: Основная функция.

Параметры: нет.

Возвращаемое значение: Целое.

Алгоритм функции представлен в таблице 5.

Таблица 5 – Алгоритм функции таіп

| N₂ | Предикат | Действия                       | No       |
|----|----------|--------------------------------|----------|
|    |          |                                | перехода |
| 1  |          | Создание объекта obj           | 2        |
| 2  |          | Вызов методов set(), get()     | 3        |
| 3  |          | Вызов перехода на новую строку | 4        |
| 4  |          | Вызов методов reverse(), get() | Ø        |

### 4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-3.





Рисунок 2 – Блок-схема алгоритма



Рисунок 3 – Блок-схема алгоритма

## 5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

### 5.1 Файл таіп.срр

Листинг 1 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include "sort.h"
int main()
{
    sort sort;
    sort.set();
    sort.get();

    cout << "\n";

    sort.reverse();
    sort.get();
    return(0);
}</pre>
```

### 5.2 Файл sort.cpp

```
#include "sort.h"
sort::sort()
{
    cin >> n;
    cout <<"N = "<< n << "\n";
}
void sort::set()
{
    for (int i =0;i < n; i++)
    {
        cin >> a[i];
    }
}
void sort::get()
```

```
{
    for(int i = 0; i < n; i++)
    {
        printf("%5d", a[i]);
    }
}
void sort::reverse()
{
    int b;
    for(int i = 0; i < n/2; i++)
    {
        b = a[i];
        a[i] = a[n-1-i];
        a[n-1-i] = b;
    }
}</pre>
```

#### 5.3 Файл sort.h

Листинг 3 – sort.h

```
#ifndef __SORT__H
  #define __SORT__H
  #include <iostream>
  using namespace std;

class sort
  {
  private:
     int n, a[10];
  public:
     sort();
     void set();
     void get();
     void reverse();
  };

#endif
```

## 6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 6.

Таблица 6 – Результат тестирования программы

| Входные данные | Ожидаемые выходные<br>данные | Фактические выходные<br>данные |
|----------------|------------------------------|--------------------------------|
| 1 1            | N = 1<br>1<br>1              | N = 1<br>1<br>1                |

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe\_posobie\_dlya\_laboratornyh\_ra bot\_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye\_k\_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).