Лабораторная работа № 2 ДО

ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ *RC*-УСИЛИТЕЛЕЙ

Подготовка к работе

3.1. Рассматривая усилитель как «черный ящик», показать, как экспериментально определить его основные параметры.

- 3.2. Методика экспериментального получения АЧХ усилителя:
 - форма сигнала, подаваемого на вход усилителя: Синусоива
 - амплитуда этого сигнала: Ивк накс
 - частота этого сигнала: $f_{6\kappa}$.
- 3.3. Качественно показать, как выглядит АЧХ RC-усилителя и как по этой характеристике определить граничные частоты полосы пропускания усилителя $(f_{\rm H}, f_{\rm B})$.

3.4. Для *RC*-усилителя качественно изобразить его амплитудную характеристику и показать, как по снятой характеристике определить динамический диапазон входного сигнала.

- 3.5. Методика экспериментального получения АХ усилителя:
 - форма сигнала, подаваемого на вход усилителя: СИНУСО и дальный,
 - частота этого сигнала: постояния ф
 - в каких пределах надо менять амплитуду входного сигнала $\mathcal{U}_{\mathrm{fk}}$, нин $<\mathcal{U}_{\mathrm{fk}}$ $<\mathcal{U}_{\mathrm{fk}}$ мак с
- 3.6. Методика экспериментального получения временной характеристики усилителя:
 - форма сигнала, подаваемого на вход усилителя пряночностью ,
 - амплитуда этого сигнала: $U_{\it Ex} < U_{\it Ex}$, макс ,
 - длительность этого сигнала: $t_u < c$.
- 3.7. Качественно показать, как выглядит временная характеристика RC-усилителя и как по этой характеристике определить время установления усилителя (t_y) и спад плоской вершины (Δu) .

3.8. Для усилителя с параметрами своего варианта рассчитать коэффициент усиления (при $R_{\Gamma}=0$), граничные частоты полосы пропускания ($f_{\rm H}$, $f_{\rm B}$). Результаты расчетов, а также значения $R_{\rm BX}$ и $R_{\rm BMX}$, занести в итоговую таблицу рабочего задания.

Параметры схемы.

$$M = 8$$
, $N = 4$.

Коэффициент усиления ИНУН $8, 0$.

 $C1 = (1 + 0.11 \text{ M} + 0.07 \text{ N}) \text{ мк}\Phi = 2, 16$ $\text{мк}\Phi, \Xi C\rho_1$
 $C2 = (5 - 0.07 \text{ M} + 0.04 \text{ N}) \text{ н}\Phi = 4, 6$ $\text{н}\Phi, \Xi C\rho_2$
 $C3 = (5 + 0.05 \text{ M} + 0.03 \text{ N}) \text{ мк}\Phi = 5,52$ $\text{мк}\Phi, \Xi C\rho_2$
 $C4 = (5 - 0.07 \text{ M} + 0.04 \text{ N}) \text{ н}\Phi = 4, 6$ $\text{н}\Phi, \Xi C\rho_2$
 $R1 = (2 - 0.1L) \text{ к}OM = 4, 6$ $\text{к}OM, \Xi R\rho_2$
 $R2 = (100 + 10 \text{ L}) \text{ OM} = 400$ $\text{OM}, \Xi R\rho_2$
 $R3 = (200 + 30 \text{ N}) \text{ OM} = 320$ $\text{OM}, \Xi R\rho_2$

Вспомогательные расчеты. $C_{\ell} = (\ell + 0, 11 \cdot 8 + 0, 07 \cdot 4)_{NK}^{-2} = 2,16 \text{ Mr. } P$ $C_{3} = (5 + 9, 05 \cdot 8 + 0, 03 \cdot 4)_{NK}^{-2} = 5,52 \text{ Mr.} P$ $C_{2} = (5 - 0, 07 \cdot 8 + 0, 04 \cdot 4)_{NK}^{-2} = 4,6 \text{ HP}$ $C_{4} = (5 - 0, 07 \cdot 8 + 0, 04 \cdot 4)_{N}^{-2} = 4,6 \text{ HP}$ $R_{1} = 2 - 0, 14 = 1,6 \text{ KOM}$, $R_{2} = (100 + 10 \cdot 4)_{N}^{-2} = 1000 \text{ Mr.}$ $R_{3} = (200 + 30 \cdot 4)_{N}^{-2} = 200 \text{ OM}$ $R_{1} = 2 - 0, 14 = 1,6 \text{ KOM}$, $R_{2} = (100 + 10 \cdot 4)_{N}^{-2} = 1000 \text{ Mr.}$ $R_{2} = (100 + 10 \cdot 4)_{N}^{-2} = 2,600 \text{ Mr.}$ $R_{2} = (100 + 10 \cdot 4)_{N}^{-2} = 2,600 \text{ Mr.}$ $R_{1} = (R_{1} + R_{6K})_{N} \cdot C_{1} = (0 + 1,6 \text{ K})_{N}^{-2} \cdot 2,600 \text{ Mr.}$ $R_{2} = 3,400 \text{ Mr.}$ R

$$\begin{split} K_{\text{u0}} &= K_{\text{uxx}} \, \hat{\xi}_{\text{bx}} \, \hat{\xi}_{\text{bx}} \, \hat{\xi}_{\text{bcx}} \, = \, o, \, 6957 \, k_{\text{uxx}} \\ f_{\text{H}} &= \frac{1}{2\pi \, 2_{\text{H}}} \, = \, \frac{1}{2\pi \, .7,4638 \, \text{Mc}} \, = \, 108, \, 7272 \, f_{\text{g}} \\ f_{\text{B}} &= \, \frac{1}{2\pi \, .7 \, c_{\text{g}}} \, = \, \frac{1}{2\pi \, .7,37 \, \text{McC}} \, = \, 21, \, 595 \, \, \text{ke/g} \end{split}$$