Université d'Évry Val d'Essonne 2009-2010

M54 algèbre et arithmétique

Devoir à la maison — un corrigé

1 Préliminaires

1.1 Notons ϕ l'isomorphisme d'anneaux donné par le théorème chinois. Si x est inversible dans $\mathbf{Z}/ab\mathbf{Z}$, d'inverse x^{-1} , alors son image $\phi(x)$ est aussi inversible, d'inverse $\phi(x^{-1})$; la réciproque est vraie car ϕ est bijective. Ainsi, l'image par ϕ de $(\mathbf{Z}/ab\mathbf{Z})^{\times}$ est exactement $(\mathbf{Z}/a\mathbf{Z} \times \mathbf{Z}/b\mathbf{Z})^{\times}$, dont on a vu en exercice qu'il est égal à $(\mathbf{Z}/a\mathbf{Z})^{\times} \times (\mathbf{Z}/b\mathbf{Z})^{\times}$. On a donc par restriction de ϕ une application surjective

$$\phi^{\times} : (\mathbf{Z}/ab\mathbf{Z})^{\times} \to (\mathbf{Z}/a\mathbf{Z})^{\times} \times (\mathbf{Z}/b\mathbf{Z})^{\times}$$
.

Cette application est injective car ϕ l'est, c'est donc une bijection. De plus, c'est un morphisme de groupes car ϕ est un morphisme d'anneaux. C'est donc un isomorphisme de groupes.

1.2 Soit r un entier > 0. On considère la proposition de récurrence suivante :

« Pour tout entier $n \ge 0$ s'écrivant sous la forme $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ où les p_i sont des nombres premiers distincts et les α_i des entiers ≥ 1 , on a un isomorphisme de groupes

$$(\mathbf{Z}/n\mathbf{Z})^{ imes}pprox \prod_{i=1}^r (\mathbf{Z}/p_i^{lpha_i}\mathbf{Z})^{ imes}$$
 . »

Pour r=2, c'est la résultat de la question précédente. Supposons la proposition de récurrence vérifiée pour un entier $r\geqslant 2$. On considère $n=p_1^{\alpha_1}\cdots p_{r+1}^{\alpha_{r+1}}$ un entier naturel décomposé en un produit de r+1 puissances de nombres premiers distincts. On écrit $n=mp_{r+1}^{\alpha_{r+1}}$ où $m=p_1^{\alpha_1}\cdots p_r^{\alpha_r}$. On a alors

$$(\mathbf{Z}/n\mathbf{Z})^{\times} \approx (\mathbf{Z}/m\mathbf{Z})^{\times} \times (\mathbf{Z}/p_{r+1}^{\alpha_{r+1}}\mathbf{Z})^{\times}$$

d'après le théorème chinois (m et $p_{r+1}^{\alpha_{r+1}}$ sont premiers entre eux). Or d'après l'hypothèse de récurrence, on a

$$(\mathbf{Z}/m\mathbf{Z})^{\times} \approx \prod_{i=1}^{r} (\mathbf{Z}/p_i^{\alpha_i}\mathbf{Z})^{\times}.$$

On en déduit immédiatement l'isomorphisme

$$(\mathbf{Z}/n\mathbf{Z})^{\times} pprox \prod_{i=1}^{r+1} (\mathbf{Z}/p_i^{\alpha_i}\mathbf{Z})^{\times}$$
.

D'où la proposition par récurrence.

1.3 Le groupe G étant abélien, on a $(xy)^{ab} = x^a y^b = 1$. On en déduit que l'ordre de xy divise ab. Réciproquement, si $d \ge 1$ est un entier tel que $(xy)^d = 1$, alors, en élevant cette égalité à la

puissance a, on obtient $y^{ad} = 1$. On en déduit que b divise ad. Comme par ailleurs les entiers a et b sont premiers entre eux, b divise d (lemme de Gauss). De même, a divise d. En utilisant à nouveau le fait que a et b sont premiers entre eux, il vient que ab divise d. D'où le fait que l'ordre de xy est ab.

$\mathbf{2}$ Le cas $p \neq 2$

- **2.1** On a $\varphi(p^{\alpha}) = p^{\alpha} p^{\alpha-1} = p^{\alpha-1}(p-1)$. On en déduit que le groupe $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times}$ est d'ordre $p^{\alpha-1}(p-1)$. L'entier 1+p est premier avec p^{α} . Il est donc inversible dans $\mathbf{Z}/p^{\alpha}\mathbf{Z}$.
- **2.2** Soit i un entier compris entre 1 et p-1. On a l'égalité

$$iC_i^p = pC_{p-1}^{i-1}.$$

Les entiers p et i étant premiers entre eux, on en déduit que p divise C_p^i . Si $i \ge 3$, il est clair que p^3 divise $C_p^i p^i$. Et, si i = 2, comme p divise C_p^i on a encore $C_p^i p^i$ divisible par p^3 .

2.3 On écrit

$$(1+p)^p = \sum_{i=0}^p C_p^i p^i = 1 + p^2 + \sum_{i=2}^p C_p^i p^i.$$

Dans la seconde somme ci-dessus, tous les termes sont divisibles par p^3 d'après la question précédente. On écrit

$$\sum_{i=2}^{p} C_p^i p^i = up^3, \quad \text{avec } u \in \mathbf{N}^*.$$

On en déduit l'égalité demandée

$$(1+p)^p = 1 + p^2(1+up).$$

2.4 On considère, pour k entier ≥ 1 , la proposition de récurrence suivante. « Il existe λ_k , premier à p, tel que

$$(1+p)^{p^k} = 1 + \lambda_k p^{k+1} \ . \tag{1}$$

Pour k=1, c'est le résultat de la question précédente. Supposons donc la proposition vérifiée pour $k \geqslant 1$. On a alors

$$(1+p)^{p^{k+1}} = \left((1+p)^{p^k}\right)^p$$

$$= (1+\lambda_k p^{k+1})^p \quad \text{d'après l'hypothèse de récurrence}$$

$$= 1+\lambda_k p^{k+2} + \sum_{i=2}^p C_p^i \lambda_k^i (p^{k+1})^i.$$

Et, comme à la question 2.3, on montre que p^{k+3} divise $C_p^i(p^{k+1})^i$ dès que $i \ge 2$. On pose alors $\sum_{i=2}^p C_p^i \lambda_k^i(p^{k+1})^i = p^{k+3}u$. On en déuit l'égalité

$$(1+p)^{p^{k+1}} = 1 + (\lambda_k + up)p^{k+2}.$$

Les entiers λ_k et p étant premiers entre eux par hypothèse de récurrence, on a le résultat en posant $\lambda_{k+1} = \lambda_k + up$.

- **2.5** L'égalité (1) appliquée à $k = \alpha 1$ fournit la congruence $(1+p)^{p^{\alpha-1}} \equiv 1 \pmod{p^{\alpha}}$. On en déduit que l'ordre de 1+p dans le groupe multiplicatif $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times}$ est un diviseur de $p^{\alpha-1}$. Or, toujours d'après (1), $(1+p)^{p^{\alpha-2}} = 1 + \lambda p^{\alpha-1}$ avec λ et p premiers entre eux. D'où $(1+p)^{p^{\alpha-2}} \not\equiv 1 \pmod{p^{\alpha}}$ et le fait que 1+p est d'ordre $p^{\alpha-1}$ dans $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times}$.
- **2.6** Le groupe $(\mathbf{Z}/p\mathbf{Z})^{\times}$ est cyclique d'après le rappel fait au début de l'énoncé. Autrement dit, il contient un élément d'ordre p-1. L'application π étant surjective (on l'a admis car c'est évident), cet élément s'écrit $\pi(x)$ pour un certain x dans $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times}$.
- 2.7 Soit d'ordre de x. D'après les propriétés des morphismes de groupes, on a

$$1 = \pi(x^d) = \pi(x)^d$$
.

Or $\pi(x)$ est d'ordre p-1 donc p-1 divise d. On écrit d=(p-1)k. L'élément x^k est alors d'ordre exactement p-1.

2.8 Les éléments $y = x^k$ et (1+p) du groupe $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times}$ sont d'ordres respectifs p-1 et $p^{\alpha-1}$, donc d'après la question 1.3, l'élément y(1+p) est d'ordre $p^{\alpha-1}(p-1)$. Or le groupe $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times}$ est d'ordre $p^{\alpha-1}(p-1)$ d'après la question 2.1. On en déduit qu'il est cyclique (engendré par y(1+p)).

3 Le cas p = 2

- **3.1** On a $(\mathbf{Z}/2\mathbf{Z})^{\times} = \{1\}$ et $(\mathbf{Z}/4\mathbf{Z})^{\times} = \{1,3\} = \langle 3 \rangle$. Ces deux groupes sont donc cycliques.
- **3.2** L'ordre de $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^{\times}$ est $\varphi(2^{\alpha}) = 2^{\alpha-1}$.
- **3.3** On considère, pour k entier $\geqslant 1$, la proposition de récurrence suivante. « Il existe λ_k impair tel que $5^{2^k}=1+\lambda_k2^{k+2}$ ».

Pour k=1, c'est simplement l'égalité $25=1+3\cdot 8.$ Supposons la proposition de récurrence vérifiée pour k entier $\geqslant 1.$ On a

$$5^{2^{k+1}}=(5^{2^k})^2=(1+\lambda_k2^{k+2})^2\quad\text{par hypothèse de récurrence}$$

$$=1+2^{k+3}(\lambda_k+\lambda_k^22^{k+1}).$$

D'où le résultat en posant $\lambda_{k+1} = \lambda_k + \lambda_k^2 2^{k+1}$.

3.4 On a $5^{2^{\alpha-2}} \equiv 1 \pmod{2^{\alpha}}$ d'après la question précédente. On en déduit que 5 est d'ordre divisant $2^{\alpha-2}$. Par ailleurs, $5^{2^{\alpha-3}} = 1 + \lambda_{\alpha-3} 2^{\alpha-1} \not\equiv 1 \pmod{2^{\alpha}}$ ($\lambda_{\alpha-3}$ est impair). On en déduit comme à la question 2.5 que 5 est d'ordre $2^{\alpha-2}$.

3.5 Soient (ε, a) et (ε', a') dans $\mu_2 \times \mathbf{Z}/2^{\alpha-2}\mathbf{Z}$. Alors

$$f(\varepsilon, a)f(\varepsilon', a') = (\varepsilon \cdot 5^a)(\varepsilon' \cdot 5^{a'}) = \varepsilon \varepsilon' \cdot 5^{a+a'} = f((\varepsilon, a) \cdot (\varepsilon', a')).$$

L'application f est donc un morphisme de groupes.

3.6 Soit $a \in \mathbb{Z}/2^{\alpha-2}\mathbb{Z}$. On suppose que $5^a = 1$ dans $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^{\times}$. Or 5 est d'ordre $2^{\alpha-2}$ dans $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^{\times}$ d'après la question 3.4. On en déduit que a = 0 dans $\mathbb{Z}/2^{\alpha-2}\mathbb{Z}$. La réciproque est évidente. Soit $a \in \mathbb{Z}$ tel que $5^a \equiv -1 \pmod{2^{\alpha}}$. Alors, il existe k dans \mathbb{Z} tel que

$$5^a = 2^\alpha k - 1.$$

Or $\alpha \ge 3$ par hypothèse. En réduisant modulo 4 l'égalité ci-dessus, on obtient alors $1 \equiv -1 \pmod{4}$ ce qui est bien sûr absurde. On en déduit que la congruence $5^a \equiv -1 \pmod{2^{\alpha}}$ n'a jamais lieu.

- **3.7** Montrons que f est injective. On choisit un élément (ε, a) de $\ker(f)$. On a alors $f(\varepsilon, a) = \varepsilon \cdot 5^a = 1$. Or $\varepsilon = 1$ ou -1. Donc $5^a = 1$ ou $5^a = -1$ dans $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^{\times}$. La seconde égalité n'ayant jamais lieu d'après la question précédente, on a donc $5^a = 1$ et a = 0 dans $\mathbf{Z}/2^{\alpha-2}\mathbf{Z}$. Autrement dit, $\ker(f) = \{(1,0)\}$.
- 3.8 L'application f étant injective entre deux ensembles de même cardinal fini, elle est bijective. En particulier, tout élément de $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^{\times}$ s'écrit de manière unique sous la forme $\varepsilon \cdot 5^a$ avec $\varepsilon \in \mu_2$ et $a \in \mathbf{Z}/2^{\alpha-2}\mathbf{Z}$. Un tel élément étant d'ordre divisant l'ordre de 5 c'est le résultat voulu.

On en déduit, avec la question 3.2, que le groupe multiplicatif $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^{\times}$ n'est pas cyclique.

4 Conclusion

- **4.1** Supposons que les entiers a et b ne sont pas premiers entre eux. Si m désigne leur ppcm, alors pour tout couple $(x,y) \in \mathbf{Z}/a\mathbf{Z} \times \mathbf{Z}/b\mathbf{Z}$, on a $m \cdot (x,y) = (mx,my) = (0,0)$. En particulier, l'ordre de élément (x,y) divise m. Or m < ab car a et b ne sont pas premiers entre eux. On en déduit qu'il n'existe pas d'élément d'ordre ab dans $\mathbf{Z}/a\mathbf{Z} \times \mathbf{Z}/b\mathbf{Z}$. Ce groupe n'est donc pas cyclique.
- **4.2** D'après les questions 2.8 et 3.1, si $n=2, 4, p^{\alpha}$ ou $2p^{\alpha}$, $(p \text{ premier}, \alpha \geq 2)$, alors le groupe $(\mathbf{Z}/n\mathbf{Z})^{\times}$ est cyclique.

Réciproquement, si $(\mathbf{Z}/n\mathbf{Z})^{\times}$ est cyclique, alors n ne peut avoir deux facteurs premiers impairs distincts. En effet, si $p \neq q$ sont deux nombres premiers impairs distincts divisant n, alors (pour α et β deux entiers $\geqslant 1$), le groupe produit

$$(\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times} \times (\mathbf{Z}/q^{\beta}\mathbf{Z})^{\times}$$

n'est pas cyclique d'après la question précédente (2 divise $\varphi(p^{\alpha})$ et $\varphi(q^{\beta})$).

Si n est impair, on en déduit que $n = p^{\alpha}$ (pour un p premier et $\alpha \ge 1$).

Si n est pair. Alors, soit n=2 ou 4, soit n s'écrit sous la forme $2^{\gamma}p^{\alpha}$ (pour un p premier et $\alpha, \gamma \geqslant 1$). Or si $\gamma > 2$, le groupe $(\mathbf{Z}/2^{\gamma}\mathbf{Z})^{\times}$ n'est pas cyclique (question 4.1). On a donc $\gamma \leqslant 2$. Or le groupe produit

$$(\mathbf{Z}/4\mathbf{Z})^{\times} \times (\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times}$$

n'est pas cyclique d'après la question précédente. On en déduit que $\gamma = 1$. D'où le résultat.