LIST OF FIGURES

Figure	Title	Page
2.1(a)	Frequency marginal, time-frequency representation and time marginal of a low frequency signal followed by a high frequency signal	6
2.1(b)	Frequency marginal, time-frequency representation and time marginal of a high frequency signal followed by a low frequency signal	6
2.2	Classification of time-frequency representations	9
2.3	(a) Wigner distribution of a linear FM signal and (b)Instantaneous frequency of the linear FM signal	12
2.4	Illustration of cross terms in a monocomponent signal	12
2.5	The interference geometry in the time-frequency plane	13
2.6	Resolution and cross term comparison of (a) Wigner distribution (b) Choi – Williams distribution and (c) Spectrogram of a multicomponent signal	16-17
2.7	(a) A bat signal and (b) Adaptive optimal kernel time-frequency representation of the signal	22-23
2.8	(a) A rectangular pulse and (b) Its fractional Fourier transform at $\alpha = \pi/2$	26
2.9	(a) Energy spectral density, real part and STFT of a 128 point truncated sinusoid (b) STFT with 64 point Hamming window and (c) STFT with 7 point Hamming window	27-28
2.10	Time-frequency tilings in STFT analysis	29
2.11	(a) The db4 scaling function and (b) the db4 mother wavelet	30
2.12	Time-frequency tilings in the wavelet analysis	31

2.13	Wavelet transform a narrow rectangular pulse using db4 wavelet	31
3.1	Filter bank summation method of synthesis	34
3.2	Different sampling schemes for the TACF and the resulting repetitions in the SACF. On the left are the pictorial Representations of the continuous case, half, full and double outer product sampling schemes, and on the right are the resulting SACFs	41
4.1	Time-frequency locations and energy concentration of the atoms in the expansion set and equivalent representation as a rotation parameter	57
4.2	Modeling of slowly varying signals	57
4.3	(a)Envelope of the signal with different windows and (b)Magnitude response variation of the chirp transform at $\beta = 1$.	60
4.4(a)	Chirp transform of an impulse	61
4.4(b)	Chirp transform a rectangular gated sinusoid	62
4.4(c)	Chirp transform a Gaussian windowed chirp	62
4.5 A	test signal consisting of two impulses, two rectangular windowed sinusoids, two Gaussian windowed chirps and a Gaussian signal and the WVD of the test signal	64
4.6	Chirp transform of the test signal	65
4.7	Magnitude of the test signal and the estimated component	66
4.8	Chirp transform after the estimated component is removed	66
4.9	Chirp transform after four iterations	67
4.10	WVD of the residue	68
4.11	Window parameter estimated from Eqn. (4.28)	70
4.12(a)	STFT of a multicomponent signal consisting of a sinusoidal FM and a linear FM components	71
4.12(b)	Chirp transform of the multicomponent signal	71

4.13(a)	WVD of the estimated component	72
4.13(b)	Optimized STFT of the residue	72
4.14	System identification using chirp transform as a denoising tool	74
4.15	(a)True channel characteristics and (b) The estimated channel using cross-spectral estimation method	76
4.16	(a) Chirp transform of the received signal $\beta = 1$ and (b) The masked transform	76
4.17	(a) Estimated channel after denoising done using chirp transform and (b) True received signal \hat{y} and the received signal after	77
4.18	denoising \tilde{y} Mean SNR curves with mask (denoising) and without mask (conventional cross-spectral estimation using chirp signal)	77
5.1	Different atoms considered for signal analysis	82
5.2	Time-frequency tilings obtained by (a)STFT, (b)Wavelet analysis, (c) Chirptlet decomposition and (d) Shear - time representation	82-83
5.3	Comparison of incremental-based and standard EM algorithms	100
5.4	Spectrogram of the synthesized signal using mapping rules and the histogram of the mixture density	108
5.5	Spectrogram of the synthesized signal using mapping rules and the histogram of the mixture density with lager variance	108
5.6	The effect of ρ on the window duration of the chirplets synthesized from mapping rules with different ρ in each case	109
5.7	Impulses located at different time instants obtained from the mixture model having different mean vectors	110
5.8	Comparison of the spectrograms of two signals at different scales synthesized from mixture model	110
5.9	Modeling of sinusoids at different frequencies obtained from the mixture model with different mean vectors.	112
5.10	The effect of rotation obtained by a simultaneous shearing and scaling	112

5.11	WVD of a sinusoidal frequency modulated signal	113
5.12	WVD of the signal used in Fig.5.11, synthesized after ten passes of the EM algorithm	113
5.13	Real part of the signal (solid) and the synthesized signal (dashed) after thirty passes of incremental EM algorithm	114
5.14	(a) Magnitude of the rectangular windowed signal and the envelope of the estimated using a single component mixture density and (b) Time marginal obtained from spectrogram and the signal estimated from a five component mixture density	115
6.1	Architecture for DFT	120
6.2	Implementation of Eqn. (6.4) using real multipliers	120
6.3	Architecture of the pre-processor computing DFT of nonsequential data	122
6.4	Data flow for N=7 for WVD and GTFDs	127
6.5	Architectures for WVD and GTFDs	129
6.6	WVD of a linear FM signal computed using the time-recursive approach	131
6.7	Choi-Williams kernel with $\sigma = 4$	137
6.8	Choi-Williams distribution of a sinusoidal FM signal computed using time-recursive approach	138
6.9	(a) Data flow at two adjacent windows and (b) The effective data that has to be processed	142
7.1	Architecture for computing the running-windowed GTFDs	154