X2000 AloT Application Processor

Data Sheet

Release Date: June 21, 2022

X2000 AloT Application Processor

Data Sheet

Copyright © 2005-2022 Ingenic Semiconductor Co., Ltd. All rights reserved.

Disclaimer

This documentation is provided for use with Ingenic products. No license to Ingenic property rights is granted. Ingenic assumes no liability, provides no warranty either expressed or implied relating to the usage, or intellectual property right infringement except as provided for by Ingenic Terms and

Conditions of Sale.

Ingenic products are not designed for and should not be used in any medical or life sustaining or

supporting equipment.

All information in this document should be treated as preliminary. Ingenic may make changes to this document without notice. Anyone relying on this documentation should contact Ingenic for the current

documentation and errata.

Ingenic Semiconductor Co., Ltd.

Ingenic Headquarters, East Bldg. 14, Courtyard #10,

Xibeiwang East Road, Haidian District, Beijing 100193, China

Tel: 86-10-56345000 Fax: 86-10-56345001

Http://www.ingenic.com

CONTENTS

1	Overvi	ew	5
	1.1 Bloc	k Diagram	5
	1.2 Feat	tures	6
	1.2.1	CPU Core	6
	1.2.2	Video Process Unit(VPU)	6
	1.2.3	MIPI-CSI	6
	1.2.4	Video Input Control(VICx2)	7
	1.2.5	Image Signal Processor(ISPx2)	7
	1.2.6	Lite Camera	8
	1.2.7	Memory Interface	8
	1.2.8	Audio	8
	1.2.9	Display	9
	1.2.10	System Functions	9
	1.2.11	Peripherals	11
	1.2.12	Bootrom	13
2	PAD Ir	nformation	14
	2.1 Pin l	Мар	14
	2.2 Pin l	Description	16
	2.2.1	GPIO Group A	
	2.2.2	GPIO Group B	
	2.2.3	GPIO Group C	19
	2.2.4	GPIO Group D	21
	2.2.5	GPIO Group E	22
	2.3 X20	00 Analog PAD DESCRIPTION	23
		00 Digital PAD DESCRIPTION	
3	Electri	cal Specifications	34
	3.1 Abs	olute Maximum Ratings	34
	3.2 Rec	ommended operating conditions	35
	3.3 DC	Specifications	36
	3.4 Aud	io codec	42
	3.5 Pow	er On, Reset and BOOT	43
	3.5.1	Power-On Timing	43
	3.5.2	Reset procedure	44
	3.5.3	BOOT	45
4	Packa	ging Information	47
	4.1 Ove	rview	47
	4.2 Dev	ce Dimensions	47
	4.3 Sold	ler Ball Materials	48

1 Overview

X2000 is a low power consumption, high performance and high integrated application processor, the application is focus on AloT devices. And it can match the requirements of many other embedded products.

1.1 Block Diagram

Figure 1-1 X2000 Diagram

1.2 Features

1.2.1 CPU Core

- XBurst[®] 2, at 1.2GHz, Dual Core, Dual-issue, high performance and low power implementation of MIPS32 ISA R5
- MIPS32 ISA R5 plus MIPS SIMD instruction set architecture:128bit MSA
- Ingenic SIMD instruction set architecture: 128bit MXA
- Dual-issue, superscalar, super pipeline with Simultaneous Multi-Threading (SMT)
 - 2 hardware threads per physical core
 - Quad instruction fetches per cycle
 - Dual issue instructions per cycle per thread
- 32KB L1 D cache +32K L1 I cache, 512 KB L2 cache, 32KB SRAM
- High-performance Floating-point Unit and SIMD Engine: FSE
 - 32 x 128-bit register set, 128-bit loads/stores to/from SIMD unit
 - IEEE-754 2008 compliant
- Programmable Memory Management Unit (MMU)
 - 1st level mini-TLBs (MTLBs) 8 x 2 entry instruction TLB, 16 x 2 entry data TLB
 - 2nd level TLBs: 32 × 2 entry VTLB, 256 × 2 entry 4-way set associative FTLB
- The XBurst® processor system supports little endian only

1.2.2 Video Process Unit(VPU)

- H.264 Encoder
 - Input data format NV12/NV21
 - Encoding resolution and frame rate up to 1920x1080@30fps
 - Support hardware RBSP bytes insertion
 - Support auto-read of slice header
 - Support reference frame lossless compression
- H.264 Decoder
 - Output data format NV12/NV21
 - Decoding resolution and frame rate up to 1920x1080@30fps
 - Support hardware RBSP bytes eliminate
- JPEG Codec
 - JPEG compressing/decompressing up to 70Mega-pixels per second
 - Baseline ISO/IEC 10918-1 JPEG compliant
 - 8-bit pixel depth support
 - Up to four programmable Quantization tables
 - Fully programmable Huffman tables

1.2.3 MIPI-CSI

- MIPI-CSI2(v1.0) interface, resolution up to 1080P@120fps
 - Support dual 2-lane mode and single 4-lane mode
 - Support 1-lane, 2-lane and 4-lane mode

1.2.4 Video Input Control(VICx2)

The VIC module is a video input image preprocessing module to reorder the different kinds of input images to a uniform type then output to TIZIANO or write to DDR.

Work mode: image mode

Maximum working freq: 350Mhz input interface: BT、DVP、MIPI

Maximum input image size:

MIPI: 8M@30fps、6M@30fps、1080p@60fps

BT/DVP: 1080p@30fps、720p@60fps

Minimum input image size: 128*128

Image format

sensor port support

DVP: RAW8、RAW10、RAW12、YUV422 (Serial 8bit) BT601: YUV422 (Parallel 16bit)、YUV422 (Serial 8bit)

BT656: YUV422 (Serial 8bit)

BT1120: YUV422 (Parallel 16bit), YUV422 (Serial 8bit)

MIPI: RAW8、RAW10、RAW12

VIC output port format

Tiziano: RAW8、RAW10、RAW12

Scaler: YUV422 (8bit)

DMA: RAW8、RAW10、RAW12、YUV422 (8bit)

MIPI: RAW8、RAW10、RAW12

Fault tolerance

- DVP、BT601: frame start reset、every line of data within a fixed

- BT656 BT1120: error reset every line of data within a fixed

Support DVP8bit port flexible connection

VIC DMA output format: RAW16, NV12, NV21

1.2.5 Image Signal Processor(ISPx2)

- Data stream feature
 - DVP: raw8 / 10 / 12 / YUV422 input
 - MIPI: up to 1080P@60fps
 - Support dual-camera sync
 - Frame data check, make up for lost data and drop redundant data
- Advanced feature
 - 2A(Auto Exposure/Auto White Balance) supported
 - Advanced demosaic, color processing, lens shading, sharpen, static/dynamic defect pixel and other modules provide high image quality
 - 2-D noise reduction filter

1.2.6 Lite Camera

- Camera interface module(CIM)
 - Support DVP 8bit / MIPI input ,resolution up to 1280x720@30fps
 - Support snapshot control
 - Supported data format: RGB888, RGB565, YCbCr 4:2:2
 - Supports ITU656 (YCbCr 4:2:2) input

Support histogram output

1.2.7 Memory Interface

- DDR Controller
 - Support LPDDR3, 16Bit bus width, clock up to 800MHz
 - 128MB memory in package.
- SFC Controller
 - 1 group clock and CE pad
 - Two Quad SPI, one Octal SPI (SFC0/1)
 - Support Standard, Dual, Quad SPI and Octal DDR protocol
 - Clock frequency up to 80MHz in SDR mode
 - Support multiple transfer modes, standard SPI, dual-output/dual-Input SPI, Quad-Output/Quad-Input SPI, Dual-I/O SPI, Quad-I/O SPI, Full Dual-I/O SPI, Full Quad-I/O SPI, and Octal-I/O

1.2.8 **Audio**

- Digital Microphone Array Controller
 - Support 8 channels digital MIC
 - 24/16bit precision internal controller, sample rate support 8K, 16K, 32K, 48K and 96K
 - SNR: 90dB, THD: -90dB @ FS -20dB
 - Linear high pass filter included. Attenuation: -2.9dB@100Hz, -22dB@27Hz. -36dB@10Hz
 - Low power voice trigger when waiting to start talking.
 - Support voice data pre-fetch when trigger enable and the data interface disable, but do not increase the power dissipation.
 - Support low power voice trigger enable
- I2S(1~3) / I2S0
 - DMA transfer mode supported
 - Support share clock mode and split clock mode.
 - I2S0: Internal I2S CODEC supported
 - Support master mode and slave mode
 - Support number of data pin from 1 to 4
 - Support six modes of operation for TDM protocol
- PCM interface
 - Support master mode and slave mode
 - Support four modes of operation for PCM
 - DSP NORMAL\LEFT MODE

PCM NORMAL\LEFT MODE

- S/PDIF(IN and OUT)
 - Support IEC 60958-3 compliant, up to 2 channels
 - Sample bit support 20-bit and 24-bit two mode
 - Sample rate support, all of IEC60958-3 sample rate (44.1k up to 192k)
- Internal Audio Codec (DAC and ADC working together)
 - 24 bits DAC / ADC
 - Sample rate supported: 8k, 12k, 16k, 24k, 32k, 44.1k,48k,96k
 - Mono Differential input/output
 - DAC: SNR: 90dB A-Weighted, THD: -80dB @FS, -1dB; ADC: SNR 90dB

_

1.2.9 Display

- MIPI-DSI2(v1.0) interface
 Display size up to 1920x1080@40Hz
- SLCD controller
 - Display size up to 640x480@60Hz, 24BPP
 - Supports different size of display panel
- RGB controller
 - Display size up to 1280x720@60Hz, 24BPP
 - Support input format, ARGB8888, ARGB1555, RGB888, RGB565, RGB555, YUV422,
 YUV420
 - Support 4 modes parallel interface, 24-bit, 18-bit, 16-bit and 8-bit(third times)
 - Support frame buffer crop and dither

1.2.10 System Functions

- Clock generation and power management
 - On-chip oscillator circuit (support 24MHz)
 - Two phase-locked loops (PLL) with programmable multiplier
 - CCLK, HHCLK, H2CLK, PCLK, H0CLK, DDR_CLK frequency can be changed separately for software by setting registers
 - Functional-unit clock gating
 - Supply block power shut down

TCU

- 8 channels each channel has two pins
- Support posedge / negedge / dualedge clock counting
- Support gate counting(only count for gating signal)
- Support quadrature counting
- Support direction counting(add / sub because of input signal)
- Support counting after posedge / negedge signal
- Support capture counting, output signal high-level time and total cycle time
- Support exclk / pclk two clock source
- PWM

- 16 channels, output signal ~50MHz, signal precision ~500MHz
- CPU / dma mode to update config

OS timer

- One event timer for one logical core
- One global timer for system time

Interrupt controller

- Total 64 interrupt sources
- Each interrupt source can be independently enabled

Watchdog timer

- A 16-bit Data register and a 16-bit counter
- Programmable interrupt generation prior to timeout
- Counter clock uses the input clock selected by software
 - EXTAL / RTCCLK can be used as the clock for counter
 - The division ratio of the clock can be set to 1, 4, 16, 64, 256 and 1024 by software

PDMA Controller

- Support up to 32 independent DMA channels
- Descriptor or No-Descriptor Transfer mode
- Transfer data units: 1-byte, 2-byte, 4-byte, 16-byte, 32-byte, 64-byte, 128-byte
- Transfer number of data unit: 1 ~ 2²⁴ 1
- Independent source and destination port width: 8-bit, 16-bit, 32-bit
- Fixed three priorities of channel groups: 0~3, highest; 4~11: mid; 12~31: lowest

SAR A/D Controller

- 6 Channels
- Resolution: 10-bit

• RTC (Real Time Clock)

- Need external 32768Hz oscillator for 32KHz clock generation.
- 32-bits second counter
- Programmable and adjustable counter to generate accurate 1 Hz clock
- Alarm interrupt, 1Hz interrupt
- Stand alone power supply, work in hibernating mode
- Power down controller
- Alarm wakeup
- External pin wakeup with up to 2s glitch filter
- Power Detect to Shut down PMU (find Core without voltage then shut PMU other voltage)

1.2.11 Peripherals

- General-Purpose I/O ports
 - Input / output / function port configurable
 - Low/high, rising/falling edge triggering. Every interrupt source can be masked independent
- Six I2C Controller (I2C0~5)
 - Two-wire I2C serial interface consists of a serial data line (SDA) and a serial clock (SCL)
 - Three speeds mode
 - > Standard mode (100 Kb/s)
 - > Fast mode (400 Kb/s)
 - ➤ High speed mode (3.4Mb/s)
 - Programmable SCL generator
 - Master or slave I2C operation
 - 7-bit addressing/10-bit addressing
 - The number of devices that you can connect to the same I2C-bus is limited only by the maximum bus capacitance of 400pF
- One Smart Card Controller (SCC)
 - Supports normal card and UIM card.
 - Supports asynchronous character (T=0) communication modes.
 - Supports asynchronous block (T=1) communication modes.
 - Supports setting of clock-rate conversion factor F (372, 512, 558, etc.), and bit-rate adjustment factor D (1, 2, 4, 8, 16, 32, 12, 20, etc.).
 - Supports extra guard time waiting.
 - Auto-error detection in T=0 receive mode.
 - Auto-character repeat in T=0 transmit mode.
 - Transforms inverted format to regular format and vice versa.
 - Support stop clock function in some power consuming sensitive applications.
- Two Synchronous serial interfaces (SSI0~1)
 - 3 protocols support: National's Microwire, TI's SSP, and Motorola's SPI
 - Full-duplex or transmit-only or receive-only operation
 - Programmable transfer order: MSB first or LSB first
 - Configurable normal transfer mode or Interval transfer mode
 - Programmable clock phase and polarity for Motorola's SSI format
 - Two slave select signal (SSI0 CE0 / SSI1 CE0) supporting up to 2 slave devices
 - Back-to-back character transmission/reception mode
 - Loop back mode for testing
 - Data transfer up to 30Mbits/s
- Ten UARTs (UART0~9)
 - Full-duplex operation

- Baud rate supports 4800, 9600, 19200, 38400, 43000, 56000, 57600, 115200, 230400,
 460800, 576000, 921600, 1000000, 1152000, 1500000, 2000000, 2500000, 3000000,
 3500000, 4000000, 6000000, 8000000, 12000000
- 5-, 6-, 7- or 8-bit characters with optional no parity or even or odd parity and with 1, 1½,
 or 2 stop bits
- Internal diagnostic capability Loopback control and break, parity, overrun and framingerror is provided
- Separate DMA requests for transmit and receive data services in FIFO mode
- Supports modem flow control by software or hardware
- Three MMC/SD/SDIO controllers (MSC0, SDIO, MSC2)
 - All support eMMC 5.1 (command queueing)
 - Support SD Specification 3.0
 - Support SD I/O Specification 1.0 with 1 command channel and 4 data channels
 - Maximum clock speed is 104MHz
 - Both support MMC data width 1bit ,4bit, only MSC0 support 8bit
 - Single or multi block access to the card including erase operation
 - The maximum block length is 4096bytes

USB 2.0 OTG interface

- Complies with the USB 2.0 standard for high-speed (480 Mbps) functions and with the
 On-The-Go supplement to the USB 2.0 specification
- Support operating as USB peripheral, as USB host
- Support split transmission
- Support hub
- Support remote-wakeup

GMAC controller

- 10/100 Mbps and 1000Mbps operation
- Supports RMII and RGMII PHY interfaces
- Support IEEE 1588-2002

Security System

- XBurst®, 240MHz
- Secret ROM and RAM
- Up to 32KB SRAM
- True Random Number Generator
- Encryption Engine
 - > MD5, SHA, SHA2
 - > AES, support 256-bit, 192-bit, 128-bit key size Algorithm
 - RSA, support 1024/2048-bit key size
- Support secure boot

- OTP Slave Interface
 - Total 2Kb.

1.2.12 Bootrom

16KB Boot ROM memory and 16KB Security Boot ROM

2 PAD Information

2.1 Pin Map

	X2000 Ball Assignment Ver1.0																	
			r								.2mm, 0.65pitch, to							
A	PUARTO_ CTS_PD25	SDIO_CMD_SS IO_DT_PD09		SDIO_D2_I2C 1_SDA_PD12	5	_PCM_DO_T	7 I2C5_SCK _PCM_DI_ TMS_PD04	8 VSS	9 VDDMEM	10 VREF	DDR_VDD1	DDRPLL_VCCA	VSS	14	15 UART3_RTSI 2C5_SDA_PC28	16 SD15_SS10_CL K_UART9_TXD_ PB31	SD9_LCD_VSYN C_SLCD_DC_PB 25	SD3_LCD_D19_ RGMAC1_MDC_P B19
В	SSI1_DT_P D18	SDIO_CLK_SS IO_CLK_PD08	IO_DR_PD10	UART2_RXD_I 2C3_SCK_PWM 0_TCU0_IN0_ PD30	_I2C4_SCK_ PD00	UART3_RXD _PCM_CLK_ TDI_PD02	I2C5_SDA _PCM_SYN C_PD05	VDDMEM	VDDMEM	VSS	DDR_VDD1	DDR_VSSA	VSS	UART3_RXD_I 2C4_SCK_PC2 5	UART3_TXD_12 C4_SDA_PC26		24	SD2_LCD_D18_ RGMAC1_RX_DV _PB18
c	MSCO_D1_S FCO_DQ1_I 2C2_SCK_P D20 MSCO_CLK	MSCO_DO_SFC O_DQO_SSI1_ DR_PD19 MSCO_D2_SFC	DUARTO_R TS PD26	0_CEOPD13	UART2_TXD_ I2C3_SDA_P WM1_TCU0_I N1_PD31	UART3_RTS 12C4_SD A_TD0_PD0 1	VSS	VDDMEM	VDDMEM	ZQ	VSS	VDDMEM	VDDMEM	27	SD14_SS10_DT _UART9_RXD_P B30		SD7_LCD_D23_ I2C2_SDA_RGM AC1_PHY_CLK_ PB23	SD4_LCD_D20_ RGMAC1_MDI0_ PB20 SA12_LCD_D12
	SFC0_CLK_	0_DQ2_WPI 2C2_SDA_PD2 1	C1_DQO_UAR TO_RXD_PD2 3	O_DQ3_HOLD_ _SSI1_CEO PD22	AVDEFUSE	TRST	VSS	VSS	VSS	VSS	VSS	VDDMEM	VDDMEM	SD12_SS10_C E0UART8_R XD_PB28	SD13_SSI0_DR _UART8_TXD_P B29		SLCD_D14_RGM AC1_RXD2_PB1 4	_SLCD_D12_RG MAC1_RXD0_PB 12
E		RTC32K_PE23	EXCLK_CIM_ VIC_MCLK_P E24	MSCO_D5_SFC 1_DQ1_UARTO _TXD_PD24											5_SLCD_D15_R GMAC1_RXD3_P B15	12C2_SCK_RGM AC1_RX_CLK_P B22	SLCD_D13_RGM	
F		WKUPPE31	PWRON	DRV_VBUS_PE 22		VSS	VSS	VDD	VDD	VSS	VDD	VDD	VSS		SD1_LCD_D17_ RGMAC1_TX_EN _PB17	_SLCD_D11_RG	_SLCD_D10_RG MAC1_TXD2_PB 10 SD5_LCD_D21_	
G	0SC32_X0	OSC32_XI	PPRST_	TEST_TE		VDDIO	VSS	VDD	VDD	VSS	VDD	VDD	VSS		LCD_D6_PB06	LCD_D3_PB03 SA1_LCD_D1_S	K_PB21	LCD_D8_RGMAC 1_TXD0_PB08
J	EXCLK XI	PLL_AVDD EXCLK XO	VDD_RTC PLL_VDD	VSS_RTC PLL AVSS		VDDIO	VSS	VSS	VSS	VSS	VDD	VDD	VDD1033 VDD1018		LCD_D5_PB05 SA7_LCD_D7_S	LCD_D1_PB01 SA4_LCD_D4_S	LCD_D2_PB02 TX_DATAP1	TX DATAN1
	I2C3_SCK_ I2S3_TX_B CLK_PA16	BOOT_SEL2_P E27	PLL_VSS	BOOT_SEL1_P E26		VSS	VDD	VDD			VDD	VDD	VSS		LCD D7 PB07 SA0_LCD_D0_S LCD_D0_PB00	TX_DATAPO	TX_CLKP	TX_CLKN
L		CIM_EXPOSUR E_PA15	I2C3_SDA_I 2S2_RX_BCL K_PA17	BOOT_SELO_P E25		VSS	VDD	VDD	VSS	VSS	VDD	VDD	VSS		DSI_AVSS	DSI_AVD09	TX_DATANO	
м	CIM_VIC_V SYNC_I2S2 _RX_DATA3 _PA13	CIM_VIC_HSY NC_I2S2_RX_ DATA2_PA12	CIM_VIC_PC LK_PA14	VIC_D10_I2S 2_RX_DATAO_ PA10		VDD1033_C IM	VSS	VSS	vss	VSS	VDD	VDD	VSS		CSI_AVSS	DSI_AVD18	RX_DATAPO	RX_DATANO
N	VIC_D11_I 2S2_RX_DA TA1_PA11	VIC_D9_UART 7_TXD_I2S2_ RX_LRCK_PA0 9 CIM_VIC_D4	VIC_D8_UAR T7_RXD_PA0 8	CIM_VIC_D7_ UART6_TXD_I 2S2_RX_MCLK PA07		VDDIO18_C IM	VSS	VDDI018_ SD	VDD1033_ SD	VSS	VSS	VDD1018	VDDI033		CSI_AVD09	RX_CLKPO	RX_DATAP1	RX_DATAN1
Р		UART5_RXD_I 2S3_TX_DATA 1_PA04		UART6_RXD_I 2S3_TX_DATA 3_PA06											PWMO_TCUO_IN O_PCOO	CSI_AVD18	RX_CLKN0	
R	CIM_VIC_D 3_UART4_T XD_I2S3_T X_DATAO_P A03	CIM_VIC_D2_ UART4_RXD_I 2S3_TX_LRCK _PA02	CIM_VIC_D1 _UART4_RTS PA01	CIM_VIC_DO_ UART4_CTS I2S3_TX_MCL K_PA00	USB_AVSS	USB_ID	USB_BIAS	CODEC_AV SS	MSC2_D3_ PWM7_TCU 3_IN1_PE 05	MSC2_CLK _PWM2_TC U1_INO_P E00	PWM4_TCU2_IN O_RGMACO_TXD 2_I2S1_RX_DA TA_SCC_SDA_P CO4	TX_EN_SSI1_ DR_UART4_RT SPC10	IN1_RGMACO_ RX_DV_SSI1_ DT_UART4_RX D_PC11	N1_RGMACO_R XD3_SSI1_CE OUART4_CT SPC09	PWM12_TCU6_I NO_RGMACO_MD C_SSI1_CLK_U ART4_TXD_PC1 2	DMIC_IN3_UAR T1_TXD_I2C1_ SDA_NEMC_CS2 PC24	RX_DATAN2	RX_DATAP2
т	AUX4	AUX2	AUXO	SADC_AVSS	USB_VBUS	USB_AVD33	CODEC_MI CBIAS	CODEC_HP OUTN	MSC2_D2_ PWM6_TCU 3_INO_PE 04	SFCO_CLK _SSI1_CL K_PE16	SFCO_DQO_SSI 1_DR_PE18		N1_RGMACO_R XD1_I2S1_TX _DATA_UART6 _RXD_PC07	NO_RGMACO_R XDO_I2S1_TX _LRCK_UART5 _TXD_PC06	PWM13_TCU6_I N1_RGMACO_MD IO_SPDIF_IN_ I2CO_SCK_PC1 3	DMIC_IN2_UAR T1_RXD_I2C1_ SCK_NEMC_CS1 PC23	RX_DATAP3	RX_DATAN3
U	SADC_VREF P	AUX3	AUX5	USB_DMO	USB_AVD18	CODEC_MIC LN	CODEC_AV DD	CODEC_HP OUTP	MSC2_D1_ PWM5_TCU 2_IN1_PE 03	SFCO_CE_ _SSI1_DT _PE17	SFC0_DQ1_I2C 2_SCK_PE19		N1_RGMACO_T XD1_I2S1_RX _LRCK_SCC_S CK_PC03	N1_RGMACO_T XD3_I2S1_TX	PWM8_TCU4_IN 0_RGMACO_RXD 2_I2S1_TX_MC LK_UART6_TXD PC08		RX_CLKN1	RX_CLKP1
v	AUX1	SADC_AVDD	USB_DP0	USB_AVD09		CODEC_MIC LP	CODEC_VC M		MSC2_DO_ PWM4_TCU 2_INO_PE 02	MSC2_CMD _PWM3_TC U1_IN1_P E01		SFC0_DQ2_WP 12C2_SDA_ PE20	PWM2_TCU1_I NO_RGMACO_T XDO_I2S1_RX _BCLK_UART7 TXD_PC02		PWM15_TCU7_I N1_RGMACO_RX _CLK_CIM_VIC _MCLK_PC15	PWM1_TCUO_IN 1_RGMACO_PHY _CLK_I2S1_RX _MCLK_UART7_ RXD_PC01		DMIC_IN1_UAR T1_RTSPC22
7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

2.2 Pin Description

2.2.1 GPIO Group A

Ball No.	Ball Name	In/O ut	Pull	Slew Rate	Schmitt	GPIO	Func0	Func1	Func2	Power
R4	CIM_VIC_D0_ UART4_CTS I2S3_TX_MCLK_PA00	O	PU	Yes	Yes	GPA[0]	CIM/VIC_D0	UART4_CTS_	I2S3_TX_MCLK	VDDIO33_CIM
R3	CIM_VIC_D1_UART4_RTSPA01	10	PU	Yes	Yes	GPA[1]	CIM/VIC_D1	UART4_RTS_		VDDIO33_CIM
R2	CIM_VIC_D2_UART4_RXD_I2S3_TX_LRCK_PA02	OI	PU	Yes	Yes	GPA[2]	CIM/VIC_D2	UART4_RXD	I2S3_TX_LRCK	VDDIO33_CIM
R1	CIM_VIC_D3_UART4_TXD_I2S3_TX_DATA0_PA03	10	PU	Yes	Yes	GPA[3]	CIM/VIC_D3	UART4_TXD	I2S3_TX_DATA0	VDDIO33_CIM
P2	CIM_VIC_D4_UART5_RXD_I2S3_TX_DATA1_PA04	Ю	PU	Yes	Yes	GPA[4]	CIM/VIC_D4	UART5_RXD	I2S3_TX_DATA1	VDDIO33_CIM
P3	CIM_VIC_D5_UART5_TXD_I2S3_TX_DATA2_PA05	Ю	PU	Yes	Yes	GPA[5]	CIM/VIC_D5	UART5_TXD	I2S3_TX_DATA2	VDDIO33_CIM
P4	CIM_VIC_D6_UART6_RXD_I2S3_TX_DATA3_PA06	Ю	PU	Yes	Yes	GPA[6]	CIM/VIC_D6	UART6_RXD	I2S3_TX_DATA3	VDDIO33_CIM
N4	CIM_VIC_D7_UART6_TXD_I2S2_RX_MCLK_PA07	Ю	PU	Yes	Yes	GPA[7]	CIM/VIC_D7	UART6_TXD	I2S2_RX_MCLK	VDDIO33_CIM
N3	VIC_D8_UART7_RXD_PA08	Ю	PU	Yes	Yes	GPA[8]	VIC_D8	UART7_RXD		VDDIO33_CIM
N2	VIC_D9_UART7_TXD_I2S2_RX_LRCK_PA09	Ю	PU	Yes	Yes	GPA[9]	VIC_D9	UART7_TXD	I2S2_RX_LRCK	VDDIO33_CIM
M4	VIC_D10_I2S2_RX_DATA0_PA10	10	PU	Yes	Yes	GPA[10]	VIC_D10		I2S2_RX_DATA0	VDDIO33_CIM
N1	VIC_D11_I2S2_RX_DATA1_PA11	10	PU	Yes	Yes	GPA[11]	VIC_D11		I2S2_RX_DATA1	VDDIO33_CIM
M2	CIM_VIC_HSYNC_I2S2_RX_DATA2_PA12	Ю	PD	Yes	Yes	GPA[12]	CIM_VIC_HSYNC		I2S2_RX_DATA2	VDDIO33_CIM
M1	CIM_VIC_VSYNC_I2S2_RX_DATA3_PA13	Ю	PD	Yes	Yes	GPA[13]	CIM_VIC_VSYNC		I2S2_RX_DATA3	VDDIO33_CIM
МЗ	CIM_VIC_PCLK_PA14	10	PD	Yes	Yes	GPA[14]	CIM/VIC_PCLK			VDDIO33_CIM
L2	CIM_EXPOSURE_PA15	Ю	PD	Yes	Yes	GPA[15]	CIM_EXPOSURE			VDDIO33_CIM
K1	I2C3_SCK_I2S3_TX_BCLK_PA16	Ю	PU	Yes	Yes	GPA[16]	I2C3_SCK		I2S3_TX_BCLK	VDDIO33_CIM
L3	I2C3_SDA_I2S2_RX_BCLK_PA17	Ю	PU	Yes	Yes	GPA[17]	I2C3_SDA		I2S2_RX_BCLK	VDDIO33_CIM

2.2.2 GPIO Group B

Ball No.	Ball Name	In/ Out	Pull	Slew Rate	Sch mitt	GPIO	Func0	Func1	Func2	Func3	Power
K15	SA0_LCD_D0_SLCD_D0_PB00	Ю	PD	No	Yes	GPB[0]	SA0	LCD_D0	SLCD_D0		VDDIO33
H16	SA1_LCD_D1_SLCD_D1_PB01	Ю	PD	No	Yes	GPB[1]	SA1	LCD_D1	SLCD_D1		VDDIO33
H17	SA2_LCD_D2_SLCD_D2_PB02	Ю	PD	No	Yes	GPB[2]	SA2	LCD_D2	SLCD_D2		VDDIO33
G16	SA3_LCD_D3_SLCD_D3_PB03	Ю	PD	No	Yes	GPB[3]	SA3	LCD_D3	SLCD_D3		VDDIO33
J16	SA4_LCD_D4_SLCD_D4_PB04	Ю	PD	No	Yes	GPB[4]	SA4	LCD_D4	SLCD_D4		VDDIO33
H15	SA5_LCD_D5_SLCD_D5_PB05	Ю	PD	No	Yes	GPB[5]	SA5	LCD_D5	SLCD_D5		VDDIO33
G15	SA6_LCD_D6_SLCD_D6_PB06	Ю	PD	No	Yes	GPB[6]	SA6	LCD_D6	SLCD_D6		VDDIO33
J15	SA7_LCD_D7_SLCD_D7_PB07	0	PD	No	Yes	GPB[7]	SA7	LCD_D7	SLCD_D7		VDDIO33
G18	SA8_LCD_D8_SLCD_D8_RGM AC1_TXD0_PB08	0	PD	No	Yes	GPB[8]	SA8	LCD_D8	SLCD_D8	RGMAC1_TXD0	VDDIO33
F18	SA9_LCD_D9_SLCD_D9_RGM AC1_TXD1_PB09	0	PD	No	Yes	GPB[9]	SA9	LCD_D9	SLCD_D9	RGMAC1_TXD1	VDDIO33
F17	SA10_LCD_D10_SLCD_D10_R GMAC1_TXD2_PB10	O	PD	No	Yes	GPB[10]	SA10	LCD_D10	SLCD_D10	RGMAC1_TXD2	VDDIO33
F16	SA11_LCD_D11_SLCD_D11_R GMAC1_TXD3_PB11	O	PD	No	Yes	GPB[11]	SA11	LCD_D11	SLCD_D11	RGMAC1_TXD3	VDDIO33
D18	SA12_LCD_D12_SLCD_D12_R GMAC1_RXD0_PB12	O	PD	No	Yes	GPB[12]	SA12	LCD_D12	SLCD_D12	RGMAC1_RXD0	VDDIO33
E17	RD_LCD_D13_SLCD_D13_RG MAC1_RXD1_PB13	O	PU	No	Yes	GPB[13]	RD_	LCD_D13	SLCD_D13	RGMAC1_RXD1	VDDIO33
D17	WELCD_D14_SLCD_D14_R GMAC1_RXD2_PB14	Ю	PU	No	Yes	GPB[14]	WE_	LCD_D14	SLCD_D14	RGMAC1_RXD2	VDDIO33
E15	WAITLCD_D15_SLCD_D15_ RGMAC1_RXD3_PB15	Ю	PU	No	Yes	GPB[15]	WAIT_	LCD_D15	SLCD_D15	RGMAC1_RXD3	VDDIO33
C16	SD0_LCD_D16_PB16	Ю	PU	No	Yes	GPB[16]	SD0	LCD_D16	SLCDRD		VDDIO33
F15	SD1_LCD_D17_RGMAC1_TX_ EN_PB17	Ю	PU	No	Yes	GPB[17]	SD1	LCD_D17		RGMAC1_TX_EN	VDDIO33
B18	SD2_LCD_D18_RGMAC1_RX_	Ю	PU	No	Yes	GPB[18]	SD2	LCD_D18		RGMAC1_RX_D	VDDIO33

	DV PB18									V	
										V	
A18	SD3_LCD_D19_RGMAC1_MDC _PB19	Ю	PU	No	Yes	GPB[19]	SD3	LCD_D19		RGMAC1_MDC	VDDIO33
C18	SD4_LCD_D20_RGMAC1_MDI O_PB20	Ю	PU	No	Yes	GPB[20]	SD4	LCD_D20		RGMAC1_MDIO	VDDIO33
G17	SD5_LCD_D21_RGMAC1_TX_ CLK_PB21	0	PU	No	Yes	GPB[21]	SD5	LCD_D21		RGMAC1_TX_CL K_O	VDDIO33
E16	SD6_LCD_D22_I2C2_SCK_RG MAC1_RX_CLK_PB22	0	PU	No	Yes	GPB[22]	SD6	LCD_D22	I2C2_SCK	RGMAC1_RX_CL K_I	VDDIO33
C17	SD7_LCD_D23_I2C2_SDA_RG MAC1_PHY_CLK_PB23	Ю	PU	No	Yes	GPB[23]	SD7	LCD_D23	I2C2_SDA	RGMAC1_PHY_ CLK_O	VDDIO33
B17	SD8_LCD_PCLK_SLCD_CEP B24	Ю	PU	No	Yes	GPB[24]	SD8	LCD_PCLK	SLCD_CE_		VDDIO33
A17	SD9_LCD_VSYNC_SLCD_DC_ PB25	Ю	PU	No	Yes	GPB[25]	SD9	LCD_VSYNC	SLCD_DC		VDDIO33
B16	SD10_LCD_HSYNC_SLCD_WR _PB26	Ю	PU	No	Yes	GPB[26]	SD10	LCD_HSYNC	SLCD_WR		VDDIO33
D16	SD11_LCD_DE_SLCD_TE_PB2 7	Ю	PU	No	Yes	GPB[27]	SD11	LCD_DE	SLCD_TE		VDDIO33
D14	SD12_SSI0_CE0UART8_RX D_PB28	Ю	PU	No	Yes	GPB[28]	SD12	SSI0_CE0_		UART8_RXD	VDDIO33
D15	SD13_SSI0_DR_UART8_TXD_ PB29	Ю	PU	No	Yes	GPB[29]	SD13	SSI0_DR		UART8_TXD	VDDIO33
C15	SD14_SSI0_DT_UART9_RXD_ PB30	Ю	PU	No	Yes	GPB[30]	SD14	SSI0_DT		UART9_RXD	VDDIO33
A16	SD15_SSI0_CLK_UART9_TXD_ PB31	Ю	PU	No	Yes	GPB[31]	SD15	SSI0_CLK		UART9_TXD	VDDIO33

2.2.3 GPIO Group C

Ball No.	Ball Name	In/ Out	Pull	Slew Rate	Sch mitt	GPIO	Func0	Func1	Func2	Func3	Power
P15	PWM0_TCU0_IN0_PC00	Ю	PD	No	Yes	GPC[0]	PWM0_TCU0_IN0				VDDIO33
V16	PWM1_TCU0_IN1_RGMAC0_P HY_CLK_I2S1_RX_MCLK_UAR T7_RXD_PC01	Ю	PU	No	Yes	GPC[1]	PWM1_TCU0_IN1	RGMAC0_PHY_ CLK	I2S1_RX_ MCLK	UART7_RXD	VDDIO33
V13	PWM2_TCU1_IN0_RGMAC0_T XD0_I2S1_RX_BCLK_UART7_ TXD_PC02	Ю	PU	No	Yes	GPC[2]	PWM2_TCU1_IN0	RGMAC0_TXD0	I2S1_RX_B CLK	UART7_TXD	VDDIO33
U13	PWM3_TCU1_IN1_RGMAC0_T XD1_I2S1_RX_LRCK_SCC_SC K_PC03	Ю	PU	No	Yes	GPC[3]	PWM3_TCU1_IN1	RGMAC0_TXD1	I2S1_RX_L RCK	SCC_SCK	VDDIO33
R11	PWM4_TCU2_IN0_RGMAC0_T XD2_I2S1_RX_DATA_SCC_SD A_PC04	Ю	PU	No	Yes	GPC[4]	PWM4_TCU2_IN0	RGMAC0_TXD2	I2S1_RX_ DATA	SCC_SDA	VDDIO33
U14	PWM5_TCU2_IN1_RGMAC0_T XD3_I2S1_TX_BCLK_UART5_ RXD_PC05	Ю	PU	No	Yes	GPC[5]	PWM5_TCU2_IN1	RGMAC0_TXD3	I2S1_TX_B CLK	UART5_RXD	VDDIO33
T14	PWM6_TCU3_IN0_RGMAC0_R XD0_I2S1_TX_LRCK_UART5_ TXD_PC06	Ю	PU	No	Yes	GPC[6]	PWM6_TCU3_IN0	RGMAC0_RXD 0	I2S1_TX_L RCK	UART5_TXD	VDDIO33
T13	PWM7_TCU3_IN1_RGMAC0_R XD1_I2S1_TX_DATA_UART6_ RXD_PC07	Ю	PU	No	Yes	GPC[7]	PWM7_TCU3_IN1	RGMAC0_RXD 1	I2S1_TX_D ATA	UART6_RXD	VDDIO33
U15	PWM8_TCU4_IN0_RGMAC0_R XD2_I2S1_TX_MCLK_UART6_ TXD_PC08	Ю	PU	No	Yes	GPC[8]	PWM8_TCU4_IN0	RGMAC0_RXD	I2S1_TX_ MCLK	UART6_TXD	VDDIO33
R14	PWM9_TCU4_IN1_RGMAC0_R XD3_SSI1_CE0UART4_CTS PC09	Ю	PU	No	Yes	GPC[9]	PWM9_TCU4_IN1	RGMAC0_RXD	SSI1_CE0_	UART4_CTS	VDDIO33
R12	PWM10_TCU5_IN0_RGMAC0_ TX_EN_SSI1_DR_UART4_RTS	Ю	PU	No	Yes	GPC[10]	PWM10_TCU5_IN0	RGMAC0_TX_E N	SSI1_DR	UART4_RTS	VDDIO33

	PC10										
R13	PWM11_TCU5_IN1_RGMAC0_ RX_DV_SSI1_DT_UART4_RXD _PC11	Ю	PU	No	Yes	GPC[11]	PWM11_TCU5_IN1	RGMAC0_RX_ DV	SSI1_DT	UART4_RXD	VDDIO33
R15	PWM12_TCU6_IN0_RGMAC0_ MDC_SSI1_CLK_UART4_TXD_ PC12	Ю	PU	No	Yes	GPC[12]	PWM12_TCU6_IN0	RGMAC0_MDC	SSI1_CLK	UART4_TXD	VDDIO33
T15	PWM13_TCU6_IN1_RGMAC0_ MDIO_SPDIF_IN_I2C0_SCK_P C13	Ю	PU	No	Yes	GPC[13]	PWM13_TCU6_IN1	RGMAC0_MDIO	SPDIF_IN	I2C0_SCK	VDDIO33
T12	PWM14_TCU7_IN0_RGMAC0_ TX_CLK_SPDIF_OUT_I2C0_S DA_PC14	Ю	PU	No	Yes	GPC[14]	PWM14_TCU7_IN0	RGMAC0_TX_C LK	SPDIF_OU T	I2C0_SDA	VDDIO33
V15	PWM15_TCU7_IN1_RGMAC0_ RX_CLK_CIM_VIC_MCLK_PC1 5	Ю	PU	No	Yes	GPC[15]	PWM15_TCU7_IN1	RGMAC0_RX_ CLK	CIM/VIC_M CLK		VDDIO33
V17	DMIC_CLK_PC20	Ю	PD	No	Yes	GPC[20]	DMIC_CLK				VDDIO33
U16	DMIC_IN0_UART1_CTSPC2 1	Ю	PU	No	Yes	GPC[21]	DMIC_IN0	UART1_CTS_			VDDIO33
V18	DMIC_IN1_UART1_RTSPC2 2	Ю	PU	No	Yes	GPC[22]	DMIC_IN1	UART1_RTS_			VDDIO33
T16	DMIC_IN2_UART1_RXD_I2C1_ SCK_NEMC_CS1PC23	Ю	PU	No	Yes	GPC[23]	DMIC_IN2	UART1_RXD	I2C1_SCK	NEMC_CS1_	VDDIO33
R16	DMIC_IN3_UART1_TXD_I2C1_ SDA_NEMC_CS2PC24	Ю	PU	No	Yes	GPC[24]	DMIC_IN3	UART1_TXD	I2C1_SDA	NEMC_CS2_	VDDIO33
B14	UART3_RXD_I2C4_SCK_PC25	Ю	PU	No	Yes	GPC[25]	UART3_RXD	I2C4_SCK			VDDIO33
B15	UART3_TXD_I2C4_SDA_PC26	Ю	PU	No	Yes	GPC[26]	UART3_TXD	I2C4_SDA			VDDIO33
C14	UART3_CTSI2C5_SCK_PC2 7	Ю	PU	No	Yes	GPC[27]	UART3_CTS_	I2C5_SCK			VDDIO33
A15	UART3_RTSI2C5_SDA_PC2 8	Ю	PU	No	Yes	GPC[28]	UART3_RTS_	I2C5_SDA			VDDIO33

2.2.4 GPIO Group D

Ball No.	Ball Name	In/ Out	Pull	Slew Rate	Sch mitt	GPIO	Func0	Func1	Func2	Func 3	Power
B5	UART3_CTSI2C4_SCK_PD00	Ю	PU	No	No	GPD[0]		UART3_CTS_	I2C4_SCK		VDDIO
C6	UART3_RTSI2C4_SDA_TDO_PD01	Ю	PU	No	No	GPD[1]		UART3_RTS_	I2C4_SDA	TDO	VDDIO
B6	UART3_RXD_PCM_CLK_TDI_PD02	Ю	PU	No	No	GPD[2]		UART3_RXD	PCM_CLK	TDI	VDDIO
A6	UART3_TXD_PCM_DO_TCK_PD03	Ю	PU	No	No	GPD[3]		UART3_TXD	PCM_DO	TCK	VDDIO
A7	I2C5_SCK_PCM_DI_TMS_PD04	Ю	PU	No	No	GPD[4]		I2C5_SCK	PCM_DI	TMS	VDDIO
B7	I2C5_SDA_PCM_SYNC_PD05	Ю	PU	No	No	GPD[5]		I2C5_SDA	PCM_SYNC		VDDIO
B2	SDIO_CLK_SSI0_CLK_PD08	Ю	PU	No	No	GPD[8]	SDIO_CLK	SSI0_CLK			VDDIO
A2	SDIO_CMD_SSI0_DT_PD09	Ю	PU	No	No	GPD[9]	SDIO_CMD	SSI0_DT			VDDIO
В3	SDIO_D0_SSI0_DR_PD10	Ю	PU	No	No	GPD[10]	SDIO_D0	SSI0_DR			VDDIO
А3	SDIO_D1_I2C1_SCK_PD11	Ю	PU	No	No	GPD[11]	SDIO_D1	I2C1_SCK			VDDIO
A4	SDIO_D2_I2C1_SDA_PD12	Ю	PU	No	No	GPD[12]	SDIO_D2	I2C1_SDA			VDDIO
C4	SDIO_D3_SSI0_CE0PD13	Ю	PU	No	No	GPD[13]	SDIO_D3	SSI0_CE0_			VDDIO
D1	MSC0_CLK_SFC0_CLK_SSI1_CLK_PD17	Ю	PU	No	No	GPD[17]	MSC0_CLK	SFC0_CLK	SSI1_CLK		VDDIO
B1	MSC0_CMD_SFC0_CESSI1_DT_PD18	Ю	PU	No	No	GPD[18]	MSC0_CMD	SFC0_CE_	SSI1_DT		VDDIO
C2	MSC0_D0_SFC0_DQ0_SSI1_DR_PD19	Ю	PU	No	No	GPD[19]	MSC0_D0	SFC0_DQ0	SSI1_DR		VDDIO
C1	MSC0_D1_SFC0_DQ1_I2C2_SCK_PD20	Ю	PU	No	No	GPD[20]	MSC0_D1	SFC0_DQ1	I2C2_SCK		VDDIO
D2	MSC0_D2_SFC0_DQ2_WPI2C2_SDA_PD21	Ю	PU	No	No	GPD[21]	MSC0_D2	SFC0_DQ2_WP_	I2C2_SDA		VDDIO
D4	MSC0_D3_SFC0_DQ3_HOLDSSI1_CE0PD22	Ю	PU	No	No	GPD[22]	MSC0_D3	SFC0_DQ3_HOLD_	SSI1_CE0_		VDDIO
D3	MSC0_D4_SFC1_DQ0_UART0_RXD_PD23	Ю	PU	No	No	GPD[23]	MSC0_D4	SFC1_DQ0	UART0_RXD		VDDIO
E4	MSC0_D5_SFC1_DQ1_UART0_TXD_PD24	Ю	PU	No	No	GPD[24]	MSC0_D5	SFC1_DQ1	UART0_TXD		VDDIO
A1	MSC0_D6_SFC1_DQ2_WPUART0_CTSPD25	Ю	PU	No	No	GPD[25]	MSC0_D6	SFC1_DQ2_WP_	UARTO_CTS_		VDDIO
C3	MSC0_D7_SFC1_DQ3_HOLDUART0_RTSPD26	Ю	PU	No	No	GPD[26]	MSC0_D7	SFC1_DQ3_HOLD_	UART0_RTS_		VDDIO
B4	UART2_RXD_I2C3_SCK_PWM0_TCU0_IN0_PD30	Ю	PU	No	No	GPD[30]	UART2_RXD	I2C3_SCK	PWM0_TCU0_IN0		VDDIO
C5	UART2_TXD_I2C3_SDA_PWM1_TCU0_IN1_PD31	Ю	PU	No	No	GPD[31]	UART2_TXD	I2C3_SDA	PWM1_TCU0_IN1		VDDIO

2.2.5 GPIO Group E

Ball No.	Ball Name	In/ Out	Pull	Slew Rate	Schmitt	GPIO	Func0	Func1	Power
R10	MSC2_CLK_PWM2_TCU1_IN0_PE00	Ю	PU	Yes	Yes	GPE[0]	MSC2_CLK	PWM2/TCU1_IN0	VDDIO33_SD
V10	MSC2_CMD_PWM3_TCU1_IN1_PE01	Ю	PU	Yes	Yes	GPE[1]	MSC2_CMD	PWM3/TCU1_IN1	VDDIO33_SD
V9	MSC2_D0_PWM4_TCU2_IN0_PE02	Ю	PU	Yes	Yes	GPE[2]	MSC2_D0	PWM4/TCU2_IN0	VDDIO33_SD
U9	MSC2_D1_PWM5_TCU2_IN1_PE03	Ю	PU	Yes	Yes	GPE[3]	MSC2_D1	PWM5/TCU2_IN1	VDDIO33_SD
Т9	MSC2_D2_PWM6_TCU3_IN0_PE04	Ю	PU	Yes	Yes	GPE[4]	MSC2_D2	PWM6/TCU3_IN0	VDDIO33_SD
R9	MSC2_D3_PWM7_TCU3_IN1_PE05	Ю	PU	Yes	Yes	GPE[5]	MSC2_D3	PWM7/TCU3_IN1	VDDIO33_SD
T10	SFC0_CLK_SSI1_CLK_PE16	Ю	PU	No	Yes	GPE[16]	SFC0_CLK	SSI1_CLK	VDDIO33
U10	SFC0_CESSI1_DT_PE17	Ю	PU	No	Yes	GPE[17]	SFC0_CE_	SSI1_DT	VDDIO33
T11	SFC0_DQ0_SSI1_DR_PE18	Ю	PU	No	Yes	GPE[18]	SFC0_DQ0	SSI1_DR	VDDIO33
U11	SFC0_DQ1_I2C2_SCK_PE19	Ю	PU	No	Yes	GPE[19]	SFC0_DQ1	I2C2_SCK	VDDIO33
V12	SFC0_DQ2_WPI2C2_SDA_PE20	Ю	PU	No	Yes	GPE[20]	SFC0_DQ2_WP_	I2C2_SDA	VDDIO33
U12	SFC0_DQ3_HOLDSSI1_CE0PE21	Ю	PU	No	Yes	GPE[21]	SFC0_DQ3_HOLD_	SSI1_CE0_	VDDIO33
F4	DRV_VBUS_PE22	Ю	PD	No	No	GPE[22]	DRV_VBUS		VDDIO
E2	RTC32K_PE23	Ю	PD	No	No	GPE[23]	RTC32K		VDDIO
E3	EXCLK_CIM_VIC_MCLK_PE24	Ю	PD	No	No	GPE[24]	EXCLK	CIM/VIC_MCLK	VDDIO
L4	BOOT_SEL0_PE25	Ю	PD	No	No	GPE[25]	BOOT_SEL0		VDDIO
K4	BOOT_SEL1_PE26	Ю	PD	No	No	GPE[26]	BOOT_SEL1		VDDIO
K2	BOOT_SEL2_PE27	Ю	PD	No	No	GPE[27]	BOOT_SEL2		VDDIO
F2	WKUP_PE31	Ю	PU	No	No	GPE[31]	WKUP_PE31		VDDIO_RTC

2.3 X2000 Analog PAD DESCRIPTION

Table 2-1 X2000 function pin description

Ball No.	Pin Names	Ю	Power	Pin Description
Debug				
D6	TRST	I	VDDIO	JTAG reset
Memory				
A11	DDR_VDD1	Р	DDR_VDD1	For DDR supply
B11	DDR_VDD1	Р	-	For DDR supply
A12	DDRPLL_VCCA	Р	-	DDR PHY PLL supply 1.8v
B12	DDR_VSSA	Р	-	ground
A10	VREF	Р		for DDR, reference voltage
C10	ZQ	-		for DDR, external reference resistor for output calibrating
Power a	nd Ground			
A9	VDDMEM	Р	-	DDR PHY LPDDR2/3 IO 1.2v supply
B8	VDDMEM	Р	-	DDR PHY LPDDR2/3 IO 1.2v supply
B9	VDDMEM	Р	-	DDR PHY LPDDR2/3 IO 1.2v supply
C8	VDDMEM	Р	-	DDR PHY LPDDR2/3 IO 1.2v supply
C9	VDDMEM	Р	-	DDR PHY LPDDR2/3 IO 1.2v supply
C12	VDDMEM	Р	-	DDR PHY LPDDR2/3 IO 1.2v supply
C13	VDDMEM	Р	-	DDR PHY LPDDR2/3 IO 1.2v supply
D12	VDDMEM	Р	-	DDR PHY LPDDR2/3 IO 1.2v supply
D13	VDDMEM	Р	-	DDR PHY LPDDR2/3 IO 1.2v supply
G6	VDDIO	Р	-	GPIO 1.8v supply
H6	VDDIO	Р	-	GPIO 1.8v supply
J13	VDDIO18	Р	-	GPIO 1.8V supply for 3.3v PAD
N12	VDDIO18	Р	-	GPIO 1.8V supply for 3.3v PAD
N6	VDDIO18_CIM	Р	-	CIM Type PAD1.8V supply

N8	VDDIO18_SD	Р	-	Connect to 1uf capacity for SD type PAD
H13	VDDIO33	P	-	GPIO 3.3V supply for 3.3v PAD
N13	VDDIO33	P	-	GPIO 3.3V supply for 3.3v PAD
M6	VDDIO33_CIM	P	-	CIM GPIO 3.3V /1.8Vsupply
N9	VDDIO33 SD	Р	-	SD GPIO 3.3V/1.8V supply
A8	VSS	Р	-	Digital Ground
A13	VSS	Р	-	Digital Ground
B10	VSS	Р	-	Digital Ground
B13	VSS	Р	-	Digital Ground
C7	VSS	Р	-	Digital Ground
C11	VSS	Р	-	Digital Ground
D7	VSS	Р	-	Digital Ground
D8	VSS	Р	-	Digital Ground
D9	VSS	Р	-	Digital Ground
D10	VSS	Р	-	Digital Ground
D11	VSS	Р	-	Digital Ground
F6	VSS	Р	-	Digital Ground
F7	VSS	Р	ı	Digital Ground
F10	VSS	Р	ı	Digital Ground
F13	VSS	Р	•	Digital Ground
G7	VSS	Р	•	Digital Ground
G10	VSS	Р	•	Digital Ground
G13	VSS	Р	-	Digital Ground
H7	VSS	Р	-	Digital Ground
H8	VSS	Р	-	Digital Ground
H9	VSS	Р	-	Digital Ground
H10	VSS	Р	-	Digital Ground
J6	VSS	Р	-	Digital Ground
J7	VSS	Р	-	Digital Ground
J8	VSS	Р	-	Digital Ground
J11	VSS	Р	-	Digital Ground

J12	VSS	Р	-	Digital Ground
K6	VSS	Р	-	Digital Ground
K13	VSS	Р	-	Digital Ground
L6	VSS	Р	-	Digital Ground
L9	VSS	Р	-	Digital Ground
L10	VSS	Р	-	Digital Ground
L13	VSS	Р	-	Digital Ground
M7	VSS	Р	-	Digital Ground
M8	VSS	Р	-	Digital Ground
M9	VSS	Р	-	Digital Ground
M10	VSS	Р	-	Digital Ground
M13	VSS	Р	-	Digital Ground
N7	VSS	Р	-	Digital Ground
N10	VSS	Р	-	Digital Ground
N11	VSS	Р	-	Digital Ground
F8	VDD	Р	-	CORE digital power, 0.9V
F9	VDD	Р	-	CORE digital power, 0.9V
F11	VDD	Р	-	CORE digital power, 0.9V
F12	VDD	Р	-	CORE digital power, 0.9V
G8	VDD	Р	-	CORE digital power, 0.9V
G9	VDD	Р	-	CORE digital power, 0.9V
G11	VDD	Р	-	CORE digital power, 0.9V
G12	VDD	Р	-	CORE digital power, 0.9V
H11	VDD	Р	-	CORE digital power, 0.9V
H12	VDD	Р	-	CORE digital power, 0.9V
K7	VDD	Р	-	CORE digital power, 0.9V
K8	VDD	Р	-	CORE digital power, 0.9V
K11	VDD	Р	-	CORE digital power, 0.9V
K12	VDD	Р	-	CORE digital power, 0.9V
L7	VDD	Р	-	CORE digital power, 0.9V
L8	VDD	Р	-	CORE digital power, 0.9V

L11	VDD	Р	-	CORE digital power, 0.9V
L12	VDD	Р	-	CORE digital power, 0.9V
M11	VDD	P	-	CORE digital power, 0.9V
M12	VDD	Р	-	CORE digital power, 0.9V
Audio Co	odec			
U7	CODEC_AVDD	Р	CODEC_AVDD	1.8V supply
R8	CODEC_AVSS	Р	_	Ground
T7	CODEC_MICBIAS	AO	CODEC_AVDD	Electric microphone biasing voltage
T8	CODEC_HPOUTN	AO	CODEC_AVDD	DAC Differential output N
U8	CODEC_HPOUTP	AO	CODEC_AVDD	DAC Differential output P
U6	CODEC_MICLN	Al	CODEC_AVDD	ADC Differential input N end
V6	CODEC_MICLP	Al	CODEC_AVDD	ADC Differential input P end
V7	CODEC_VCM	AO	CODEC_AVDD	Reference voltage output
SADC				
T3	AUX0	Al	SADC_AVDD	Analog input 0
V1	AUX1	Al	SADC_AVDD	Analog input 1
T2	AUX2	Al	SADC_AVDD	Analog input 2
U2	AUX3	Al	SADC_AVDD	Analog input 3
T1	AUX4	Al	SADC_AVDD	Analog input 4
U3	AUX5	Al	SADC_AVDD	Analog input 5
U1	SADC_VREFP	Al	SADC_AVDD	Positive reference voltage input
T4	SADC_AVSS	Р	-	ground
V2	SADC_AVDD	Р	SADC_AVDD	1.8v supply
DSI				
L17	TX_DATAN0	AO	DSI_AVD09	Lane0 negative end
K16	TX_DATAP0	AO	DSI_AVD09	Lane0 positive end
J18	TX_DATAN1	AO	DSI_AVD09	Lane1 negative end
J17	TX_DATAP1	AO	DSI_AVD09	Lane1 positive end
K18	TX_CLKN	AO	DSI_AVD09	CLK negative end
K17	TX_CLKP	AO	DSI_AVD09	CLK positive end
L15	DSI_AVSS	Р	-	ground

L16	DSI_AVD09	Р	DSI_AVD09	0.9V Analog supply
M16	DSI_AVD18	Р	DSI_AVD18	1.8V Analog supply
CSI				
M18	RX_DATAN0	Al	CSI_AVD09	Lane0 negative end
M17	RX_DATAP0	Al	CSI_AVD09	Lane0 positive end
N18	RX_DATAN1	Al	CSI_AVD09	Lane1 negative end
N17	RX_DATAP1	Al	CSI_AVD09	Lane1 positive end
R17	RX_DATAN2	Al	CSI_AVD09	Lane2 negative end
R18	RX_DATAP2	Al	CSI_AVD09	Lane2 positive end
T18	RX_DATAN3	Al	CSI_AVD09	Lane3 negative end
T17	RX_DATAP3	Al	CSI_AVD09	Lane3 positive end
P17	RX_CLKN0	Al	CSI_AVD09	CLK lane0 negative end
N16	RX_CLKP0	Al	CSI_AVD09	CLK lane0 positive end
U17	RX_CLKN1	Al	CSI_AVD09	CLK lane1 negative end
U18	RX_CLKP1	Al	CSI_AVD09	CLK lane1 positive end
M15	CSI_AVSS	Р	-	ground
N15	CSI_AVD09	Р	CSI_AVD09	0.9V Analog supply
P16	CSI_AVD18	Р	CSI_AVD18	1.8V Analog supply
USB OT	3			
V3	USB_DP0(OTG_DP)	AIO	USB_AVD33	USB OTG data plus
U4	USB_DM0(OTG_DM)	AIO	USB_AVD33	USB OTG data minus
T5	USB_VBUS(OTG_VBUS)	Al	USB_AVD18	USB 3V power supply pin for USB OTG. An external charge pump must provide power to this pin.
R6	USB_ID(OTG_ID)	AI	USB_AVD18	Used to identify the device attached to the PHY. The state of the pin is one of: high impedance (>1M Ω), or low impedance (<10 Ω to ground).
R7	USB_BIAS	AIO	USB_AVD09	Connect to 135 ohm +/- 1% resistor, all internal bias base on it
R5	USB_AVSS	Р	-	USB analog ground
V4	USB_AVD09	Р	USB_AVD09	USB analog power.0.9V
U5	USB_AVD18	Р	USB_AVD18	USB analog power.1.8V
T6	USB_AVD33	Р	USB_AVD33	USB analog power.3.3V

EFUSE						
D5	AVDEFUSE	Р	AVDEFUSE	EFUSE programming power, 0V/1.8V		
СРМ						
G2	OSC32_XI	Al	VDDIO_RTC	RTC OSC input.		
G1	OSC32_XO	AO	VDDIO_RTC	RTC OSC output.		
J1	EXCLK_XI	Al	VDDIO	EXCLK OSC Input		
J2	EXCLK_XO	AO	VDDIO	EXCLK OSC Output		
J3	PLL_VDD	Р	-	PLL digital power, 0.9V		
K3	PLL_VSS	Р	-	PLL digital ground		
H2	PLL_AVDD	Р	-	PLL analog power, 1.8V		
J4	PLL_AVSS	Р	-	PLL analog ground		
RTC						
F3	PWRON	0	VDDIO_RTC	Power on/off control of main power		
G3	PPRST_	I	VDDIO_RTC	RTC power on reset and RESET-KEY reset input		
G4	TEST_TE		VDDIO_RTC	Manufacture test enable, program readable		
F1	VDDIO_RTC	Р	VDDIO_RTC	1.8V supply to RTC IO		
H3	VDD_RTC	Р	-	0.9V supply to RTC		
H4	VSS_RTC	Р	-	Ground		

2.4 X2000 Digital PAD DESCRIPTION

Table 2-2 X2000 Function Description

Signal Name	In/Out	Description
SLCD(Smart LCD)		
SLCD_D0	Output	Smart LCD data output bit 0
SLCD_D1	Output	Smart LCD data output bit 1
SLCD_D2	Output	Smart LCD data output bit 2
SLCD_D3	Output	Smart LCD data output bit 3

SLCD_D4	Output	Smart LCD data output bit 4
SLCD_D5	Output	Smart LCD data output bit 5
SLCD_D6	Output	Smart LCD data output bit 6
SLCD_D7	Output	Smart LCD data output bit 7
SLCD_D8	Output	Smart LCD data output bit 8
SLCD_D9	Output	Smart LCD data output bit 9
SLCD_D10	Output	Smart LCD data output bit 10
SLCD_D11	Output	Smart LCD data output bit 11
SLCD_D12	Output	Smart LCD data output bit 12
SLCD_D13	Output	Smart LCD data output bit 13
SLCD_D14	Output	Smart LCD data output bit 14
SLCD_D15	Output	Smart LCD data output bit 15
SLCD_RD	Output	Smart LCD read signal
SLCD_WR	Output	Smart LCD write signal
SLCD_CE_	Output	Smart LCD chip select signal
SLCD_TE	Input	Smart LCD tearing effect signal
SLCD_DC	Output	Smart LCD data/command select signal
LCD		
LCD_Dn	Output	LCD data output bit n
LCD_PCLK	Output	LCD pixel clock
LCD_VSYNC	Output	LCD frame sync
LCD_HSYNC	Output	LCD line sync
LCD_DE	Output	LCD data enable
CIM(Camera Interface	2)	
CIM_EXPOSURE	Output	CIM exposure signal to sensor to generate snapshot
CIM_VIC_PCLK	Input	CIM pixel clock input
CIM_VIC_HSYNC	Input	CIM line horizontal sync input
CIM_VIC_VSYNC	Input	CIM vertical sync input
CIM_VIC_MCLK	Output	CIM master clock output
VIC_D11	Input	CIM data input bit 11
VIC_D10	Input	CIM data input bit 10

VIC_D9	Input	CIM data input bit 9
VIC_D8	Input	CIM data input bit 8
CIM_VIC_D7	Input	CIM/VIC data input bit 7
CIM_VIC_D6	Input	CIM/VIC data input bit 6
CIM_VIC_D5	Input	CIM/VIC data input bit 5
CIM_VIC_D4	Input	CIM/VIC data input bit 4
CIM_VIC_D3	Input	CIM/VIC data input bit 3
CIM_VIC_D2	Input	CIM/VIC data input bit 2
CIM_VIC_D1	Input	CIM/VIC data input bit 1
CIM_VIC_D0	Input	CIM/VIC data input bit 0
128		
I2Sn_MCLK	Output	I2S n master clock out
I2Sn_BCLK	Bidirection	I2S n bit clock
I2Sn_LRCLK	Bidirection	I2S n LR clock
I2Sn_DI	Input	I2S n data input
I2Sn_DO	Output	I2S n data output
PCM		
PCM_CLK	Bidirection	PCM clock
PCM_DO	Output	PCM data out
PCM_DI	Input	PCM data in
PCM_SYN	Bidirection	PCM sync
DMIC		
DMIC_IN0	Input	DMIC data in for DMIC 0/1
DMIC_IN1	Input	DMIC data in for DMIC 2/3
DMIC_IN2	Input	DMIC data in for DMIC 4/5
DMIC_IN3	Input	DMIC data in for DMIC 6/7
DMIC_CLK	Output	Digital MIC clock output
SFC		
SFC0_CLK	Output	Serial Flash clock output
SFC0_CE_	Output	Serial Flash chip enable
SFCn_DQ0	Bidirection	Serial Flash data (n=0,1)

30

X2000 AIoT Application Processor Data Sheet

050 004	D: I: .:	0.15
SFCn_DQ1	Bidirection	Serial Flash data
SFCn_DQ2_WP_	Bidirection	Serial Flash n write protect signal
SRCn_DQ3_HOLD_	Bidirection	Serial Flash n hold signal
PWM		
PWM0/TCU0_IN0	Bidirection	PWM/TCU data output/input
PWM1/TCU0_IN1	Bidirection	PWM/TCU data output/input
PWM2/TCU1_IN0	Bidirection	PWM/TCU data output/input
PWM3/TCU1_IN1	Bidirection	PWM/TCU data output/input
PWM4/TCU2_IN0	Bidirection	PWM/TCU data output/input
PWM5/TCU2_IN1	Bidirection	PWM/TCU data output/input
PWM6/TCU3_IN0	Bidirection	PWM/TCU data output/input
PWM7/TCU3_IN1	Bidirection	PWM/TCU data output/input
PWM8/TCU4_IN0	Bidirection	PWM/TCU data output/input
PWM9/TCU4_IN1	Bidirection	PWM/TCU data output/input
PWM10/TCU5_IN0	Bidirection	PWM/TCU data output/input
PWM11/TCU5_IN1	Bidirection	PWM/TCU data output/input
PWM12/TCU6_IN0	Bidirection	PWM/TCU data output/input
PWM13TCU6_IN1	Bidirection	PWM/TCU data output/input
PWM14/TCU7_IN0	Bidirection	PWM/TCU data output/input
PWM15/TCU7_IN1	Bidirection	PWM/TCU data output/input
RTC		
RTC32K	Output	32768Hz clock output
I2C		
I2Cn_SCK	Bidirection	I2C n serial clock
I2Cn_SDA	Bidirection	I2C n serial data
SCC		
SCC_SCK	Bidirection	Smart Card clock
SCC_SDA	Bidirection	Smart Card data
SSI		
SSIn_CLK	Output	SSI n clock output
SSIn_CE0_	Output	SSI n chip enable 0

SSIn_DT	Output	SSI n data output
SSIn_DR	Input	SSI n data input
UART		
UARTn_RXD	Input	UART n receiving data
UARTn_TXD	Output	UART n transmitting data
UARTn_CTS_	Input	UART Clear to send control
UARTn_RTS_	Output	UART Request to send control
MSC		
MSCn_D7	Bidirection	MSC(MMC/SD) n data bit 7
MSCn_D6	Bidirection	MSC(MMC/SD) n data bit 6
MSCn_D5	Bidirection	MSC(MMC/SD) n data bit 5
MSCn_D4	Bidirection	MSC(MMC/SD) n data bit 4
MSCn_D3	Bidirection	MSC(MMC/SD) n data bit 3
MSCn_D2	Bidirection	MSC(MMC/SD) n data bit 2
MSCn_D1	Bidirection	MSC(MMC/SD) n data bit 1
MSCn_D0	Bidirection	MSC(MMC/SD) n data bit 0
MSCn_CLK	Output	MSC(MMC/SD) n clock output
MSCn_CMD	Bidirection	MSC(MMC/SD) n command
USB 2.0 OTG		
DRV_VBUS	Output	USB OTG VBUS driver control signal
RGMAC		
RGMACn_PHY_CLK	Output	Ethernet n PHY clock (50MHz) (n=0, 1)
RGMACn_RX_DV	Input	Rx data valid
RGMACn_RX_CLK	Input	Rx clk
RGMACn_RXD3	Input	receive data bit 3
RGMACn_RXD2	Input	receive data bit 2
RGMACn_RXD1	Input	receive data bit 1
RGMACn_RXD0	Input	receive data bit 0
RGMACn_TX_CLK	Output	Tx clk
RGMACn_TX_EN	Output	Ethernet n transmit enable

RGMACn_TXD3	Output	tx data bit 3
RGMACn_TXD2	Output	tx data bit 2
RGMACn_TXD1	Output	tx data bit 1
RGMACn_TXD0	Output	tx data bit 0
RGMACn_MDC	Output	Ethernet n management clock
RGMACn_MDIO	Bidirection	Ethernet n management data
NEMC		
SAn	Output	NEMC Address (n=12)
SDn	Bidirection	NEMC Data (n=16)
RD_	Output	NEMC read enable, low active
WE_	Output	NEMC write enable, low active
NEMC_CS1_	Output	NEMC chip select1
NEMC_CS2	Output	NEMC chip select2
WAIT_	Input	NEMC wait for external memory
DEBUG		
TDO	Output	JTAG serial data output
TDI	Input	JTAG serial data input
TCK	Input	JTAG clock
TMS	Input	JTAG mode select

NOTES:

- 1 The meaning of phases in IO cell characteristics are:
 - a PU: The IO cell contains a pull-up resistor.
 - b PD: The IO cell contains a pull-down resistor.
 - c Schmitt: The IO cell is Schmitt trig input.
- 2 All GPIO shared pins are reset to GPIO input.

3 Electrical Specifications

3.1 Absolute Maximum Ratings

The absolute maximum ratings for the processors are listed in Table 3-1. Do not exceed these parameters or the part may be damaged permanently. Operation at absolute maximum ratings is not guaranteed.

Table 3-1 Absolute Maximum Ratings

Parameter	Min	Max	Unit
Storage Temperature	-65	150	°C
Operation Temperature	-40	85	°C
VDDMEM power supplies voltage	-0.3	1.32	V
DDR_VDD1 power supplies voltage	-0.5	1.98	V
DDRPLL power supplies voltage	-0.5	1.98	V
VDDIO power supplies voltage	-0.5	1.98	V
VDDIO33 power supplies voltage	-0.5	3.63	V
VDDIO18 power supplies voltage	-0.5	1.98	V
VDDIO33 CIM power supplies voltage	-0.5	3.63	V
VDDIO18 CIM power supplies voltage	-0.5	1.98	V
VDDIO33 SD power supplies voltage	-0.5	3.63	V
VDD core power supplies voltage	-0.2	1.1	V
PLLVDD power supplies voltage	-0.2	1.1	V
PLLAVDD power supplies voltage	-0.5	1.98	V
AVDEFUSE power supplies voltage	-0.5	1.98	V
VDDIORTC power supplies voltage	-0.5	1.98	V
VDDRTC power supplies voltage	-0.2	1.1	V
USB AVD33 power supplies voltage	-0.5	3.6	V
USB AVD18 power supplies voltage	-0.5	1.98	V
USB AVD09 power supplies voltage	-0.2	1.1	V
CODEC AVDD power supplies voltage	-0.5	1.98	V
SADC AVDD	-0.5	1.98	V
CSI_AVD18	-0.5	1.98	V
CSI_AVD09	-0.2	1.1	V
DSI_AVD18	-0.5	1.98	V
DSI_AVD09	-0.2	1.1	V
Input voltage to VDDMEM supplied non-supply pins	-0.3	1.32	V
Input voltage to VDDIO supplied non-supply pins	-0.3	1.98	V
Input voltage to VDDIO33 supplied non-supply pins	-0.3	3.6	V
Input voltage to VDDIO33_CIM supplied non-supply pins	-0.3	3.6	V
Input voltage to VDDIO33_SD supplied non-supply pins	-0.3	3.6	V
Input voltage to VDDIORTC supplied non-supply pins	-0.3	1.98	V
Input voltage to USB AVD33 supplied non-supply pins	-0.3	3.6	V
Input voltage to CODEC_AVDD supplied non-supply pins	-0.3	1.98	V
Input voltage to SADC_AVDD supplied non-supply pins	-0.3	1.98	V
Input voltage to CSI_AVD18 supplied non-supply pins	-0.3	1.98	V
Output voltage from VDDMEM supplied non-supply pins	-0.3	1.32	V
Output voltage from VDDIO supplied non-supply pins	-0.3	1.98	V
Output voltage from VDDIO33 supplied non-supply pins	-0.3	3.6	V
Output voltage from VDDIO33_CIM supplied non-supply pins	-0.3	3.6	V

Output voltage from VDDIO18_CIM supplied non-supply pins	-0.3	1.98	V
Output voltage from VDDIORTC supplied non-supply pins	-0.3	1.98	V
Output voltage from USB_AVD33 supplied non-supply pins	-0.3	3.6	V
Output voltage from CODEC_AVDD supplied non-supply pins	-0.3	1.98	V
Output voltage from DSI_AVD18 supplied non-supply pins	-0.3	1.98	V
Maximum ESD stress voltage, Human Body Model; Any pin to any supply pin, either polarity, or Any pin to all non-supply pins together, either polarity. Three stresses maximum.		2000	V

3.2 Recommended operating conditions

Table 3-2 Recommended operating conditions for power supplies

Symbol	Description	Min	Typical	Max	Unit
\	VDDMEM voltage for LPDDR3	1.14	1.2	1.3	V
VMEM	VDDMEM voltage for LPDDR2	1.08	1.2	1.32	V
VDDR	DDR_VDD1 voltage	1.7	1.8	1.95	V
VDDRPLL	DDRPLL voltage	1.62	1.8	1.98	V
VIO(1.8V)	VDDIO voltage	1.71	1.8	1.89	V
VIO18	VDDIO18 voltage	1.71	1.8	1.89	V
VIO33	VDDIO33 voltage	3.135	3.3	3.465	V
VCIM33(3.3V)	VDDIO33_CIM voltage, use as 3.3V	3.135	3.3	3.465	V
VCIM33(1.8V)	VDDIO33_CIM voltage, use as 1.8V	1.71	1.8	1.89	
VCIM18	VDDIO18_CIM voltage	1.71	1.8	1.89	V
VSD33(3.3V)	VDDIO33_SD voltage, use as 3.3V	3.135	3.3	3.465	V
VSD33(1.8V)	VDDIO33_SD voltage, use as 1.8V	1.71	1.8	1.89	V
VCORE	VDD core voltage	0.9	0.9	1	V
VPLLVDD	PLLVDD voltage	0.9	0.9	1	V
VPLLAVDD	PLLAVDD voltage	1.71	1.8	1.89	
VEFUSE	AVDEFUSE voltage	1.71	1.8	1.89	V
VRTCIO18	VDDIORTC voltage	1.71	1.8	1.89	V
VRTC	VDDRTC voltage	0.9	0.9	1	
VUSB33	USB_AVD33 voltage	3.135	3.3	3.465	V
VUSB18	USB_AVD18 voltage	1.71	1.8	1.89	
VUSB09	USB_AVD09 voltage	0.9	0.9	1	V
VCDC	CODEC_AVDD voltage	1.71	1.8	1.89	V
VADC	SADC_AVDD voltage	1.71	1.8	1.89	V
VCSI18	CSI_AVD18 voltage	1.62	1.8	1.98	V
VCSI09	CSI_AVD09 voltage	0.9	0.9	1	V
VDSI18	DSI_AVD18 voltage	1.71	1.8	1.89	V
VDSI09	DSI_AVD09 voltage	0.9	0.9	1	V

Table 3-3 Recommended operating conditions for VDDIO/VDDIO33_VDDIO33_SD/VDDIO33_CIM/VDDIO33_SD/VDDIORTC supplied pins

Symbol	Parameter	Min	Typical	Max	Unit
VIH18	Input high voltage for 1.8V I/O application	1.17	1.8	1.98	V
VIL18	Input low voltage for 1.8V I/O application	-0.3	0	0.63	V
VIH33	Input high voltage for 3.3V I/O application	2.0	3.3	3.465	V
VIL33	Input low voltage for 3.3V I/O application	-0.3	0	8.0	V

Table 3-4 Recommended operating conditions for others

Symbol	Description	Min	Typical	Max	Unit
TA	Ambient temperature	-4 0		85	Ĉ

3.3 DC Specifications

The DC characteristics for each pin include input-sense levels and output-drive levels and currents. These parameters can be used to determine maximum DC loading, and also to determine maximum transition times for a given load. All DC specification values are valid for the entire temperature range of the device.

Table 3-5 DC characteristics for VREF

Symbol	Parameter	Min	Typical	Max	Unit
VREF	Reference voltage supply	0.49	0.5	0.51	VMEM

Table 3-6 DC characteristics for VDDIO/VDDIORTC supplied pins for 1.8V application

Symbol	Parameter	Min	Typical	Max	Unit
V_T	Threshold point	0.82	0.89	0.97	V
V_{T+}	Schmitt trig low to high threshold point	0.96	1.03	1.1	V
V_{T-}	Schmitt trig high to low threshold point	0.64	0.75	0.86	V
V_{TPU}	Threshold point with pull-up resistor enabled	0.81	0.88	0.97	V
V_{TPD}	Threshold point with pull-down resistor enabled	0.82	0.89	0.98	V
V_{TPU+}	Schmitt trig low to high threshold point with pull-up resistor enabled	0.95	1.02	1.09	V
V_{TPU-}	Schmitt trig high to low threshold point with pull-down resistor enabled	0.63	0.75	0.85	V
V_{TPD+}	Schmitt trig low to high threshold point with pull-down resistor enabled	0.96	1.05	1.11	V
V_{TPD-}	Schmitt trig high to low threshold point with pull-up resistor enabled	0.65	0.76	0.86	V
I _L	Input Leakage Current @ V _I =1.8V or 0V			±10	μA
l _{OZ}	Tri-State output leakage current @ V _I =1.8V or 0V			±10	μA
R _{PU}	Pull-up Resistor	60	89	137	kΩ
R _{PD}	Pull-down Resistor	61	104	196	kΩ
V_{OL}	Output low voltage			0.45	V
V_{OH}	Output high voltage	1.35			V
I _{OL}	Low level output current @ V _{OL} (max)	11.1	18.2	25.6	mA
I _{OH}	High level output current @ V _{OH} (min)	13.1	19.1	26.2	mA

Table 3-7 DC characteristics for VDDIO33_SD supplied pins for 1.8V application

Symbol	Paran	Min	Typical	Max	Unit	
V_{T}	Threshold point	Threshold point				V
V_{T+}	Schmitt trig low to high thres	0.94	1.09	1.36	V	
V_{T-}	Schmitt trig high to low thres	hold point	0.68	0.89	1.2	V
V_{TPU}	Threshold point with pull-up	resistor enabled	0.74	0.92	1.22	V
V_{TPD}	Threshold point with pull-dov	vn resistor enabled	0.76	0.95	1.25	V
V_{TPU+}	Schmitt trig low to high thres resistor enabled	hold point with pull-up	0.93	1.07	1.34	V
V_{TPU-}	Schmitt trig high to low thres resistor enabled	hold point with pull-down	0.66	0.88	1.18	٧
V_{TPD+}	Schmitt trig low to high thres resistor enabled	hold point with pull-down	0.95	1.1	1.388	V
V_{TPD-}	Schmitt trig high to low thres resistor enabled	hold point with pull-up	0.68	0.9	1.22	V
IL	Input Leakage Current @ Vi			±10	μA	
l _{oz}	Tri-State output leakage curi	Tri-State output leakage current @ V _I =1.8V or 0V				μA
R _{PU}	Pull-up Resistor			59	91	kΩ
R _{PD}	Pull-down Resistor			61	108	kΩ
V_{OL}	Output low voltage				0.225	V
V_{OH}	Output high voltage	1.35			V	
		(DS2,DS1,DS0) = 000	4.5	7.7	11.3	mA
	Low level output current @ V _{OL} (max)	(DS2,DS1,DS0) = 001	6.7	11.4	16.7	mA
		(DS2,DS1,DS0) = 010	9	15.2	22.1	mA
1		(DS2,DS1,DS0) = 011	11.2	18.8	27.3	mΑ
I _{OL}		(DS2,DS1,DS0) = 100	13.4	22.6	32.7	mΑ
		(DS2,DS1,DS0) = 101	15.6	26.2	37.8	mΑ
		(DS2,DS1,DS0) = 110	17.7	29.7	42.8	mΑ
		(DS2,DS1,DS0) = 111	19.9	33.2	47.7	mA
		(DS2,DS1,DS0) = 000	2.6	6.3	11.9	mA
I _{он}		(DS2,DS1,DS0) = 001	3.8	9.4	17.7	mΑ
		(DS2,DS1,DS0) = 010	5.1	12.6	23.7	mA
	High level output current @	(DS2,DS1,DS0) = 011	6.4	15.7	29.4	mA
	V _{OH} (min)	(DS2,DS1,DS0) = 100	7.6	18.8	35.2	mA
		(DS2,DS1,DS0) = 101	8.9	21.8	40.9	mA
		(DS2,DS1,DS0) = 110	10.1	24.9	46.6	mA
		(DS2,DS1,DS0) = 111	11.4	27.9	52.2	mΑ

Table 3-8 DC characteristics for VDDIO33_SD supplied pins for 3.3V application

Symbol	Parame	Parameter				Unit
V_T	Threshold point		1.39	1.5	1.65	V
V_{T+}	Schmitt trig low to high thresh	Schmitt trig low to high threshold point			1.9	V
V_{T-}	Schmitt trig high to low thresh	old point	1.18	1.29	1.44	V
V_{TPU}	Threshold point with pull-up re	esistor enabled	1.36	1.48	1.64	V
V_{TPD}	Threshold point with pull-dow	n resistor enabled	1.4	1.52	1.66	V
V_{TPU+}	Schmitt trig low to high thresh resistor enabled		1.62	1.75	1.89	V
V_{TPU-}	Schmitt trig high to low thresh resistor enabled	old point with pull-down	1.16	1.28	1.43	V
V_{TPD+}	Schmitt trig low to high thresh resistor enabled	old point with pull-down	1.64	1.77	1.91	V
V_{TPD-}	Schmitt trig high to low thresh resistor enabled	old point with pull-up	1.19	1.31	1.45	V
IL	Input Leakage Current @ VI=	Input Leakage Current @ VI=1.8V or 0V			±10	μA
l _{oz}	Tri-State output leakage curre	Tri-State output leakage current @ VI=1.8V or 0V			±10	μΑ
R_{PU}	Pull-up Resistor			51	81	kΩ
R_{PD}	Pull-down Resistor			51	88	kΩ
V_{OL}	Output low voltage				0.413	V
V_{OH}	Output high voltage					V
	Low level output current @ V _{OL} (max)	(DS2,DS1,DS0) = 000	2.8	5.4	9.8	mA
		(DS2,DS1,DS0) = 001	4.1	8.0	14.6	mA
		(DS2,DS1,DS0) = 010	5.5	10.7	19.4	mA
I _{OL}		(DS2,DS1,DS0) = 011	6.8	13.2	23.9	mA
IOL		(DS2,DS1,DS0) = 100	8.2	15.9	28.7	mA
		(DS2,DS1,DS0) = 101	9.6	18.4	33.2	mA
		(DS2,DS1,DS0) = 110	10.9	20.9	37.6	mA
		(DS2,DS1,DS0) = 111	12.2	23.4	42.0	mA
		(DS2,DS1,DS0) = 000	4.4	7.6	13.5	mA
l		(DS2,DS1,DS0) = 001	6.6	11.4	20.2	mA
		(DS2,DS1,DS0) = 010	8.8	15.2	26.9	mA
	High level output current @ V _{OH} (min)	(DS2,DS1,DS0) = 011	10.9	18.9	33.5	mA
I _{OH}		(DS2,DS1,DS0) = 100	13.1	22.6	40.1	mA
		(DS2,DS1,DS0) = 101	15.2	26.3	46.7	mA
		(DS2,DS1,DS0) = 110	17.4	30.1	53.3	mA
		(DS2,DS1,DS0) = 111	19.6	23.7	59.7	mA

Table 3-9 DC characteristics for VDDIO33/VDDIO18 supplied pins for 3.3V application

Symbol	Parame	eter	Min	Typical	Max	Unit
V _T	Threshold point		1.02	1.17	1.36	V
V_{T+}	Schmitt trig low to high thresh	old point	1.22	1.34	1.5	V
V_{T-}	Schmitt trig high to low thresh	old point	0.96	1.13	1.33	V
V_{TPU}	Threshold point with pull-up re	esistor enabled	1	1.15	1.34	V
V_{TPD}	Threshold point with pull-dow	n resistor enabled	1.03	1.19	1.38	V
V_{TPU+}	Schmitt trig low to high thresh resistor enabled	old point with pull-up	1.21	1.32	1.47	V
V_{TPU-}	Schmitt trig high to low thresh resistor enabled	old point with pull-down	0.94	1.1	1.3	V
V_{TPD+}	Schmitt trig low to high thresh resistor enabled	· · · · · · · · · · · · · · · · · · ·	1.23	1.35	1.52	V
V_{TPD-}	Schmitt trig high to low thresh resistor enabled	Schmitt trig high to low threshold point with pull-up resistor enabled			1.34	V
IL		Input Leakage Current @ VI=1.8V or 0V				μΑ
l _{OZ}	Tri-State output leakage curre	Tri-State output leakage current @ VI=1.8V or 0V				μΑ
R_{PU}	Pull-up Resistor	26	46	71	kΩ	
R_{PD}	Pull-down Resistor			48	103	kΩ
V_{OL}	Output low voltage				0.4	V
V_{OH}	Output high voltage					V
	Low level output current @ V _{OL} (max)	(DS2,DS1,DS0) = 000	4	6.3	8.9	mA
		(DS2,DS1,DS0) = 001	6	9.4	13.3	mA
		(DS2,DS1,DS0) = 010	8	12.5	17.6	mA
I _{OL}		(DS2,DS1,DS0) = 011	9.9	15.5	21.8	mA
IOL		(DS2,DS1,DS0) = 100	11.9	18.6	26.1	mA
		(DS2,DS1,DS0) = 101	13.9	21.6	30.2	mA
		(DS2,DS1,DS0) = 110	15.8	24.5	34.2	mA
		(DS2,DS1,DS0) = 111	17.7	27.4	38.1	mΑ
		(DS2,DS1,DS0) = 000	5.9	9.3	14.2	mA
		(DS2,DS1,DS0) = 001	8.8	13.9	21.2	mA
		(DS2,DS1,DS0) = 010	11.7	18.5	28.2	mA
ı	High level output current @ V _{OH} (min)	(DS2,DS1,DS0) = 011	14.6	23.1	35.2	mA
I _{OH}		(DS2,DS1,DS0) = 100	17.5	27.7	42.2	mA
		(DS2,DS1,DS0) = 101	20.3	32.2	49.1	mA
		(DS2,DS1,DS0) = 110	23.2	36.8	56	mA
		(DS2,DS1,DS0) = 111	26.1	41.3	62.8	mA

Table 3-10 DC characteristics for VDDIO33_CIM/VDDIO18_CIM supplied pins for 3.3V application

Symbol	Parameter		Min	Typical	Max	Unit
V _T	Threshold point		0.76	0.94	1.24	V
V_{T+}	Schmitt trig low to high threshold point			1.09	1.37	V
V_{T-}	Schmitt trig high to low threshold poir	nt	0.68	0.89	1.21	V
V_{TPU}	Threshold point with pull-up resistor e	enabled	0.74	0.93	1.22	V
V_{TPD}	Threshold point with pull-down resiste	or enabled	0.76	0.95	1.26	V
V_{TPU+}	Schmitt trig low to high threshold poir resistor enabled	nt with pull-up	0.93	1.08	1.34	V
V_{TPU-}	Schmitt trig high to low threshold poir resistor enabled	nt with pull-down	0.67	0.88	1.18	V
V_{TPD+}	Schmitt trig low to high threshold point with pull-down resistor enabled			1.1	1.38	V
V_{TPD-}	Schmitt trig high to low threshold point with pull-up resistor enabled			0.9	1.22	V
IL	Input Leakage Current @ VI=1.8V or 0V				±10	μΑ
l _{oz}	Tri-State output leakage current @ VI=1.8V or 0V				±10	μΑ
R_{PU}	Pull-up Resistor		33	59	91	kΩ
R_{PD}	Pull-down Resistor		34	61	108	kΩ
V_{OL}	Output low voltage				0.4	V
V_{OH}	Output high voltage		2.4			V
		(DS1,DS0) = 00	2.8	5.4	9.8	mA
I	Low level output current @ V _{OL} (max)	(DS1,DS0) = 01	4.1	8.0	14.6	mA
l _{OL}	Low level output current & vol(max)	(DS1,DS0) = 10	5.5	10.6	19.3	mA
		(DS1,DS0) = 11	6.8	13.2	23.8	mA
la		(DS1,DS0) = 00	4.4	7.6	13.5	mA
	High level output current @ V _{OH} (min)	(DS1,DS0) = 01	6.6	11.4	20.2	mA
Іон	ingriovor output current & von(min)	(DS1,DS0) = 10	8.8	15.2	26.9	mA
		(DS1,DS0) = 11	10.9	18.9	33.6	mA

Table 3-11 DC characteristics for VDDIO33_CIM/VDDIO18_CIM supplied pins for 1.8V application

Symbol	Parameter		Min	Typical	Max	Unit
V_T	Threshold point			0.95	1.08	V
V _{T+}	Schmitt trig low to high threshold poin	nt	0.97	1.06	1.17	V
V_{T-}	Schmitt trig high to low threshold poin	nt	0.7	0.82	0.94	V
V_{TPU}	Threshold point with pull-up resistor	enabled	0.85	0.95	1.07	V
V_{TPD}	Threshold point with pull-down resist	or enabled	0.86	0.96	1.09	V
V_{TPU+}	Schmitt trig low to high threshold point resistor enabled	nt with pull-up	0.97	1.06	1.16	V
V_{TPU-}	Schmitt trig high to low threshold point resistor enabled	nt with pull-down	0.69	0.81	0.93	V
V_{TPD+}	Schmitt trig low to high threshold point with pull-down resistor enabled			1.07	1.18	V
V_{TPD-}	Schmitt trig high to low threshold point with pull-up resistor enabled			0.82	0.95	V
I _L	Input Leakage Current @ VI=1.8V or 0V				±10	μA
loz	Tri-State output leakage current @ V	Tri-State output leakage current @ VI=1.8V or 0V			±10	μA
R _{PU}	Pull-up Resistor		33	59	90	kΩ
R _{PD}	Pull-down Resistor		34	61	95	kΩ
V_{OL}	Output low voltage				0.45	V
V _{OH}	Output high voltage		1.4			V
		(DS1,DS0) = 00	4.5	7.6	11.2	mA
l	Low level output current @ V _{OL} (max)	(DS1,DS0) = 01	6.7	11.4	16.6	mA
l _{OL}	Low level output current & vol(max)	(DS1,DS0) = 10	8.9	15.1	22	mA
		(DS1,DS0) = 11	11.1	18.7	27.2	mA
		(DS1,DS0) = 00	2.6	6.3	11.9	mA
lau	High level output current @ V _{OH} (min)	(DS1,DS0) = 01	3.8	9.5	17.8	mA
I _{OH}	ingriever output current & VOH(IIIIII)	(DS1,DS0) = 10	5.1	12.6	23.7	mA
		(DS1,DS0) = 11	6.4	15.7	29.4	mA

3.4 Audio codec

Measurement condition T = 25°C, AVDD = 1.8°	ns: V, DVDD = 0.9V, 1KHz Sine Input, F				
Parameter	Test conditions	Min.	Туре	Max.	Unit
Analog Supply		1.62	1.8	1.98	V
Digital Supply		0.81	0.9	0.99	V
Temperature		-40		125	$^{\circ}$
	ADC				
SNR	A-weighted		92		
THD			-81		
Bias Voltage		0.5*A VDD		0.85*AV DD	V
Bias Current				3	mA
Mic Gain		0		20	dB
ALC Gain		-18		28.5	dB
Gain Step Size			1.5		dB
input Resistance		8		88	ΚΩ
input Capacitance			10		pF
	DAC				
SNR	A-weighted		93		dB
	60mWΩ		-70		dB
THD	30mWΩ		-75		dB
	600Ω		-80		dB
Programmable Gain		-39		6	dB
Gain Step Size			1.5		
Output Resistance				1	Ω
Output Capacitance			20		рF
Power Supply Rejection	1KHZ		55		dB
	Power Consumption	n			
Standby			0.1		mA

3.5 Power On, Reset and BOOT

3.5.1 Power-On Timing

The external voltage regulator and other power-on devices must provide the X2000 processor with a specific sequence of power and reset to ensure proper operation. Figure 3-1 shows this sequence and Table 3-12 gives the timing parameters. Following are the name of the power.

VDDIORTC: VDDIORTC VDDRTC: VDDRTC

VDDIO18: all other 1.8V power supplies, include VDDIO, VDDIO18, PLLAVDD, VDDIO18_CIM, CSI_AVD18, DSI_AVD18, USB_AVD18, CODEC_AVDD, SADC_AVDD, DDRPLL, DDR_VDD1

VMEM: VDDMEM

VDDIO33: all 3.3V power supplies, include VDDIO33, VDDIO33_CIM, VDDIO33_SD,

AVDUSB33

VDD: all other 0.9V power supplies: VDD, PLLVDD, DSI AVD09, CSI AVD09, USB AVD09

AVDEFUSE: AVDEFUSE

Table 3-12 Power-On Timing Parameters

Symbol	Parameter	Min	Max	Unit
t _{D_VDDRTC}	Delay between VDDIORTC arriving 50% to VDDRTC arriving 90% ^[1]	0	-	ms
t _{D_VDDIO18}	Delay between VDDIORTC arriving 50% to VDDIO18 arriving 50% ^[1]	0	ı	ms
t _{D_VMEM}	Delay between VDDIO18 arriving 90% to VMEM to be turned on	0	ı	ms
t _{D_VDDIO33}	Delay between VDDIO18 arriving 90% to VDDIO33 to be turned on	20	ı	us
t _{D_VDD}	Delay between VDDIO18 arriving 50% to VDD arriving 90% ^[1]	0	ı	ms
t _{D_PPRST_}	Delay between all power rails get stable and power-on reset PPRST_ de-asserted ^[2]	TBD ^[3]	ı	ms ^[2]
t _{D_AVDEFUSE}	Delay between PPRST_ finished and E-fuse programming power apply	0		ms
t _{H AVDEFUSE}	E-fuse programming time	-	200	ms

NOTES:

- 1 The power rails have same skew.
- 2 The PPRST_ must be kept at least 1ms. After PPRST_ is deasserted, the corresponding chip reset will be extended at least 10ms.
- 3 It must make sure the EXCLK is stable and all power(except AVDEFUSE) is stable.

Figure 3-1 Power-On Timing Diagram

3.5.2 Reset procedure

There 3 reset sources: 1 PPRST_ pin reset; 2 WDT timeout reset; and 3 hibernating reset when exiting hibernating mode. After reset, program start from boot.

- 1 PPRST_ pin reset.
 - This reset is trigged when PPRST_ pin is put to logic 0. It happens in power on RTC power and RESET-KEY pressed to reset the chip from unknown dead state. The reset end time is about 10ms (512 clock whose frequence is exclk/512) after rising edge of PPRST_.
- 2 WDT reset.
 - This reset happens in case of WDT timeout.
- 3 Hibernating reset.
 - This reset happens in case of wakeup the main power from power down. The reset keeps for about 125ms as default and can be programed up to 1s, plus 10ms (512 clock whose frequence is exclk/512), start after WKUP_ signal is recognized.

After reset, all GPIO shared pins are put to GPIO input function, except JTAG relate TCK/TMS/TDI /TDO which reset to function mode, and most of their internal pull-up/down resistor are set to on. The PWRON is output 1. The oscillators are on.

3.5.3 BOOT

The boot sequence of the X2000 is controlled by boot_sel [2:0], GPIO PE27/26/25 PAD

Table 3-13 Boot Configuration of X2000

boot_sel[2]	boot_sel[1]	boot_sel[0]	Boot configuration
0	0	0	SFC0@PE 3.3v
0	0	1	MSC2@PE 3.3v
X	1	0	USB
0	1	1	Nor
1	0	0	SFC0@PD 1.8v
1	0	1	MSC0@PD 1.8v
1	1	1	MSC2@PE 1.8v

X: means "Don't Care"

After reset, the boot program on the internal boot ROM executes as follows:

- 1 Disable all interrupts, prepare the program running environment.
- 2 Read and save efuse values, efuse values to determine whether to improve system clock frequency, set MSC 4bit transmission data, gpio HI-Z, USB eye diagram.
- 3 Initialize clock and read boot_sel[2:0] to determine the boot method.
- 4 If it is boot from MMC/SD card at MSC0/MSC2, its function pins MSC_D0, MSC_CLK, MSC_CMD are initialized, the boot program loads the 24KB data from MMC/SD card to SRAM and jump to it. Only one data bus which is MSC_D0 is used. The clock EXTCLK/122 is used initially. When reading data, the clock EXTCLK/4 is used. If the msc_bus_width_4 efuse values is set to 1, function pins MSC_D0, MSC_D1, MSC_D2, MSC_D3 are initialized for 4bit data transmission.
- 5 If it is boot from USB, a block of code will be received through USB cable connected with host PC and be stored in tcsm. Then branch to this area in tcsm.
- 6 If it is boot from SPI nor/nand at SFC, its function pins SFC_CLK, SFC_CE, SFC_DR, SFC_DT, SFC_WP, SFC_HOL are initialized, the boot program loads the spl size bytes code from nor/nand to SRAM and jump to it.

NOTE: The X2000's SRAM is 32KB, its address is from 0xB2400000 to 0xB2408000.

4 Packaging Information

4.1 Overview

X2000 processor is offered in 270-pin BGA package, which is 12mm x 12mm x 1.2mm outline, 18 x 18 matrix ball grid array and 0.65mm ball pitch, show in Figure 4-1.

4.2 Device Dimensions

DETAIL A

symbol	Dimension in mm			Dimension in inch			
Symbol	MIN	NOM	MAX	MIN	NOM	MAX	
A			1. 270			0.050	
A1	0.160	0.210	0.260	0.006	0.008	0.010	
A2	0.910	0.960	1.010	0.036	0.038	0.040	
c	0. 220	0.260	0.300	0.009	0.010	0.012	
D	11.900	12.000	12. 100	0.469	0.472	0.476	
Е	11.900	12.000	12. 100	0.469	0.472	0.476	
D1		11.050			0.435		
E1		11.050		3	0. 435		
е	-	0.650			0.026		
b	0.250	0.300	0.350	0.010	0.012	0.014	
aaa		0.100		0.004			
bbb		0.100		0.004			
ddd		0.080		0.003			
eee		0.150		0.006			
fff	ff 0.080 0.003						
Ball Diam	0.300				0.012		
N	270			270			
MD/ME		18/18		18/18			

Figure 4-1 X2000 package outline drawing

Notes:

- 1. BALL PAD OPENING: 0.270mm;
- 2. PRIMARY DATUM C AND SEATING PLANE ARE THE SOLDER BALLS;
- 3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C:
 - 4. SPECIAL CHARACTERISTICS C CLASS: bbb, ddd;
 - 5. THE PATTERN OF PIN 1 FIDUCIAL IS FOR REFERENCE ONLY;
 - 6. BAN TO USE THE LEVEL 1 ENVIRONMENT-RELATED SUBSTANCES;

4.3 Solder Ball Materials

Both the top (joint) and bottom solder ball materials of X2000 are SAC125.

4.4 Moisture Sensitivity Level

X2000 package moisture sensitivity is level 3.