Bifurcación desde Autovalores Simples Tutor: Julián López Gómez

Daniel López Montero

Universidad Complutense de Madrid dlopez15@ucm.es

July 10, 2024

Presentation Overview

- 1 Introduction The case where a(x) is a positive constant.
- 2 Implicit Function Theorem
- 3 Crandall-Rabinowitz Theorem
- 4 Application
- S Numerical Method
 Continuation
 Bifurcation Detection
 Branch Switching
 Results

Introduction

Objetivo del TFG

Estamos interesados en estudiar la siguiente ODE con condiciones de contorno de Dirichlet

$$\begin{cases} -u'' = \lambda u - a(x)u^3 & \text{in } (0, L), \\ u(0) = u(L) = 0 \end{cases}$$
 (1)

donde $a \in C[0, L]$ y $\lambda \in \mathbb{R}$ es el parámetro de bifurcación.

Introduction

- En el primer capítulo utilizamos herramientas más rudimentarias para obtener propiedades de las soluciones de la ecuación.
- Se presentan dos resultados que caracterizan los ceros de la solución u.

Proposition

 $\it u$ admite un número finito de ceros en el interval [0.L]. Además, los ceros de $\it u$ son simples.

Proposition

Asumiendo que a > 0, si u tiene n - 1 ceros interiores, entonces

$$\lambda > \left(\frac{n\pi}{L}\right)^2$$

Introduction: The case where $a(x) \equiv a > 0$

• Empezamos describiendo la ODE original (1) de la siguiente manera:

$$\begin{cases} u' = v \\ v' = au^3 - \lambda u \\ u(x_0) = u_0, v(x_0) = v_0 \end{cases}$$
 (2)

- Las soluciones de este sistema están contenidos en las de la anterior ecuación.
- Operando y reagrupando términos, vemos que se puede expresar la conservación total de la energía del sistema

$$0 = \mathcal{E}(U, V) = \underbrace{\frac{1}{2}V^2}_{\text{kinetic energy}} + \underbrace{\Phi(U)}_{\text{potential energy}}$$
(3)

donde $\Phi(\xi) := \frac{\lambda}{2}\xi^2 - \frac{a}{4}\xi^4$.

Introduction: Phase Portait

Introduction: Symmetry

• Observamos que u es simétrica: u(x) = u(2T - x) donde T es el minimo tiempo en anularse u' = v

Figure: The graph of $u(x; 0, v_0)$.

Introduction: Bifurcation Points

Theorem

El problema original (1) tiene una solución positiva si y solo si

$$\lambda > \sigma_1 \equiv \left(\frac{\pi}{L}\right)^2$$

Implicit Function Theorem

Implicit Function Theorem

Sea $\mathfrak{F}(\lambda,u)$ función en espacios de Banach suficientemente regular tal que

- $\mathfrak{F}(\lambda_0, u_0) = 0$
- $D_u\mathfrak{F}(\lambda_0, u_0)$ es un isomorfismo topológico.

Entonces existe un entorno en el que $\lambda \to u(\lambda)$ cumple que

- $u(\lambda_0) = u_0$
- $\mathfrak{F}(\lambda, u(\lambda)) = 0$
- Es la única solución en ese entorno.

Además, se puede derivar implícitamente y conserva la regularidad.

Implicit Function Theorem: Proof

La demostración se basa en el método de Newton:

$$u_n = u_{n-1} - [D_u \mathfrak{F}(\lambda_0, u_0)]^{-1} \mathfrak{F}(\lambda, u_{n-1}), \quad n \ge 1$$
 (4)

- Se demuestra que el operator es una contracción y por el Toerema de punto fijo de Banach converge.
- Después, se demuestra la regularidad de las soluciones.

Crandall-Rabinowitz Theorem

- El Teorema de Crandall-Rabinowitz es uno de los resultados centrales de Teoría de Bifurcación.
- Estamos interesados en la siguiente familia de funciones:

$$\mathfrak{F}(\lambda, u) = \underbrace{\mathfrak{L}(\lambda)u}_{\text{linear part}} + \underbrace{\mathfrak{R}(\lambda, u)}_{\text{nonlinear terms}}, \qquad (\lambda, u) \in \mathbb{R} \times U, \qquad (5)$$

donde £ y R cumplen

(HL)
$$\mathfrak{L}(\lambda) \in \mathcal{C}^r(\mathbb{R}, \mathcal{L}(U, V))$$
 for some $r \geq 2$ and $\mathfrak{L}(\mathbb{R}) \subset \operatorname{Fred}_0(U, V)$.
(HN) $\mathfrak{R} \in \mathcal{C}^r(\mathbb{R} \times U, V)$ satisfies

$$\mathfrak{R}(\lambda,0)=0$$
 and $D_u\mathfrak{R}(\lambda,0)=0$ for all $\lambda\in\mathbb{R}$ (6)

Definimos el siguiente operator:

$$\mathfrak{L}_{j}(u) := \frac{1}{j!} \frac{d^{j} \mathfrak{L}(\lambda_{0})}{d \lambda^{j}}(u) \tag{7}$$

Crandall-Rabinowitz Theorem

Theorem (Part 1)

Assuming that $\mathfrak{F}(\lambda, u)$ is of class C^r with $r \geq 2$, and

$$N[\mathfrak{L}_0] = \text{Span}[\varphi_0], \qquad \mathfrak{L}_1(N[\mathfrak{L}_0]) \oplus R[\mathfrak{L}_0] = V$$
 (8)

Let *Y* be a closed subspace of *U* such that

$$N[\mathfrak{L}_0] \oplus Y = U \tag{9}$$

Then, there exists $\epsilon > 0$ and two maps of class \mathcal{C}^{r-1} , $\lambda : (-\epsilon, \epsilon) \to \mathbb{R}$, $y : (-\epsilon, \epsilon) \to Y$ such that $\lambda(0) = \lambda_0, y(0) = 0$, and, for every $s \in (-\epsilon, \epsilon)$,

$$\mathfrak{F}(\lambda(s),u(s))=0$$

where $u(s) := s(\varphi_0 + y(s))$.

Crandall-Rabinowitz Theorem: Proof

Theorem (Part 2)

Moreover, there exists $\rho > 0$ such that if

$$\mathfrak{F}(\lambda,u)=0$$
 and $(\lambda,u)\in B_{
ho,\mathbb{R}\times U}(\lambda_0,0),$

then, either u = 0 or $(\lambda, u) = (\lambda(s), u(s))$ for some $s \in (-\epsilon, \epsilon)$.

 La demostración se basa en la aplicación del Implicit Function Theorem al siguiente operator

$$\mathfrak{G}(s,\lambda,y) := \begin{cases} s^{-1}\mathfrak{F}(\lambda,s(\varphi_0+y)) & \text{if } s \neq 0 \\ D_u\mathfrak{F}(\lambda,0)(\varphi_0+y) & \text{if } s = 0 \end{cases}$$
(10)

 Después, se procede a probar la unicidad de la soluciones en un entorno.

Application

• Se define el operador que resuelve el problema u'' = -f

$$\mathcal{K}: \mathcal{C}[0,L] \to \mathcal{C}^2[0,L]$$

$$f(x) \mapsto \mathcal{K}f(x) := \int_0^x (s-x)f(s)ds - \frac{x}{L} \int_0^L (s-L)f(s)ds, x \in [0,L],$$

- Se demuestra que es lineal y contínuo (acotado).
- Se demuestra que la inclusión $j: \mathcal{C}^2_0[0,L] \hookrightarrow \mathcal{C}^1_0[0,L]$ es compacto
- La composición de $\mathcal{K} := j \circ \mathcal{K}|_{\mathcal{C}^1_0[0,L]}$ es compacta.
- Entonces $u = \mathcal{K}(\lambda u au^3)$ resuelve (1).

Application

Dada la siguiente función,

$$\mathfrak{F}: \mathbb{R} \times \mathcal{C}_0^1[0, L] \to \mathcal{C}_0^1[0, L]$$

$$(\lambda, u) \mapsto \mathfrak{F}(\lambda, u) := u - \mathcal{K}(\lambda u - au^3)$$
(11)

satisfies the requirement of the Crandall-Rabinowitz Theorem when setting

$$\mathfrak{L}(\lambda)u := u - \lambda \mathcal{K}u,$$

$$\mathfrak{R}(\lambda, u) := -\mathcal{K}(au^3)$$
(12)

• donde los eigenvectors son: $\phi_n(x) = \sin \frac{n\pi x}{L}$ y los autovalores del problema son: $\sigma_n \equiv \left(\frac{n\pi}{L}\right)^2$.

Application

 Utilizando la extensión de Taylor, se puede demostrar el comporamiento de la rama de bifurcación cerca del zero.

Figure: Local bifurcation diagram when a > 0 and a < 0, respectively, for every bifurcation point σ_n .

Numerical Methods

Los métodos numéricos usados en Teoría de Bifurcación abarcan las siguientes funcionalidades:

- Continuation: Dado un punto de solución, continuar una rama de soluciones.
- **Bifurcation Point Detection**: Detectar posibles puntos de bifurcación entre las ramas calculadas.
- Branch Switching: Una vez encontrado un punto de bifurcación en una rama, ser capáces de continuar la rama bifurcada.

Continuation using the Inverse Power Method

Este método es capaz de calcular la rama de bifuración un entorno cercano cuando λ es un autovalor simple de $A \in \mathbb{R}^{n \times n}$.

• Linear Eigenvalue Problems:

$$Au = \lambda u \tag{13}$$

• Nonlinear Eigenvalue Problems:

$$Au = \lambda u + N(\lambda, u) \tag{14}$$

donde $N(\lambda, u)$ satisface las condiciones (HN), i.e., las de $\mathfrak{R}(\lambda, u)$. El algoritmo resultante

$$\begin{cases}
(A - \sigma I)w_{k} = (\lambda_{k-1} - \sigma)v_{k-1} + R^{-1}N(\lambda_{k-1}, Rv_{k-1}) \\
v_{k} = |w_{k}|^{-1}w_{k}, \\
u_{k} = Rv_{k}, \\
\lambda_{k} = \sigma + |w_{k}|^{-1}(\lambda_{k-1} - \sigma)
\end{cases} (15)$$

Continuation: Inverse Power Method

• Debido a que el problema (1) es infinito dimensional, necesitamos una manera de expresarlo en dimensión finita.

$$\begin{cases} -u'' = \lambda u - a(x)u^3 & \text{in } (0, L), \\ u(0) = u(L) = 0 \end{cases}$$
 (1)

• Utilizamos un método de diferencias finitas para discretizarlo, en concreto el esquema de Numerov, con un error de $\mathcal{O}(h^4)$.

Continuation: Inverse Power Method

Plotting the solution u for different values of λ .

Continuation: Alternative Methods

$$ilde{y}^{j+1} := y^j + \eta rac{v^j}{|v^j|}$$
 (Prediction)

- Secant: $v^{j} := y^{j} y^{j-1}$
- Tangent: $D_{\nu}\mathfrak{F}(y^{j})v^{j}=0$

(a) Tangent and secant predictions.

$$\begin{cases} F(y) = 0 \\ g^{j}(y) = 0 \end{cases}$$
 (Correction)

- Natural: $g^{j}(y) := y_{i_0} \tilde{y}_{i_0}^{j+1}$
- Pseuco-Arclenght: $g^{j}(y) = \langle y \tilde{y}^{j+1}, v^{j} \rangle$

(b) Natural and pseudo-arclength corrections.

Bifurcation Point Detection

Defining the following test function

$$\psi(\mathbf{y}^k) = \lambda_1 \lambda_2 \dots \lambda_n \tag{16}$$

where λ_n are the eigenvalues of the $D_u\mathfrak{F}$.

 We can test whether two consecutive points are a fold bifurcation point when

$$\psi(\mathbf{y}^k)\psi(\mathbf{y}^{k+1}) < 0 \tag{17}$$

- Una vez se detecta un punto de bifurcación, se puede mejorar la precisión utilizando el método de bisección:
 - 1) $\tilde{y}^n := \frac{1}{2}(y^k + y^{k+1})$
 - 2 Se aplica un método de corrección sobre \tilde{y}^n para obtener y^n .
 - **3** Se calcula $\psi(y^n)$ y se testea nuevamente:

$$\begin{cases} \text{Bisection}(y^k, y^n) & \text{If } \psi(y^k)\psi(y^n) < 0\\ \text{Bisection}(y^n, y^{k+1}) & \text{If } \psi(y^n)\psi(y^{k+1}) < 0 \end{cases} \tag{18}$$

Branch Switching

 El algoritmo que hemos utilizado usa la construcción de la función usada en el Teorema de Crandall-Rabinowitz, a la que aplicamos el método de Newton

$$\mathfrak{G}(s,\lambda,y) := \begin{cases} s^{-1}\mathfrak{F}(\lambda,s(\varphi_0+y)) & \text{if } s \neq 0 \\ D_u\mathfrak{F}(\lambda,0)(\varphi_0+y) & \text{if } s = 0 \end{cases}$$
(19)

- Además, exigimos que $y \in Y$, i.e., $y \in N[\mathfrak{L}_0]^{\perp} = N[\mathfrak{F}_u(\lambda_0, u_0)]^{\perp}$.
- Se puede expresar la condición:

$$\langle y, \phi \rangle = 0$$

donde Span[ϕ] = $N[\mathfrak{F}_u^T(\lambda_0, u_0)]$.

• Entonces, para un $s\sim$ 0, el método de Newton debería converge a una solución en la nueva rama.

Numerical Method: Results

Utilizando como punto inicial: $(\lambda_0, u_0) = (0, 0)$

FIN

Code: https://github.com/dani2442/bifurcationjax