研究内容の紹介(20分)

東京理科大学理学研究科 小林 穂乃香

山口大学面接 於2022年9月5日

g: M上の対称(0,2)テンソル場

 $X, Y \in TM$

(*M*, *g*): リーマン多様体

g:M上のリーマン計量

… 正定値

i. e. $g(X,X) \ge 0$ for all X, and $g(X,X) = 0 \Leftrightarrow X = 0$

g: M 上の対称 (0,2) テンソル場 $X, Y \in TM$

(M,g): リーマン多様体

i. e.
$$g(X, X) \ge 0$$
 for all X , and $g(X, X) = 0 \Leftrightarrow X = 0$

$$g: M$$
 上の擬リーマン計量 i. e. $g(X,Y)=0$ for all $Y \in TM$ \cdots 非退化 $\Rightarrow X=0$

g : M 上の対称 (0, 2) テンソル場

 $X, Y \in TM$

(*M*, *g*): リーマン多様体

g: M 上のリーマン計量

i. e. $g(X,X) \geq 0$ for all X, and $g(X,X) = 0 \Leftrightarrow X = 0$

… 正定値

(M,g): 擬リーマン多様体

... 非退化

g: M 上の擬リーマン計量 i. e. g(X,Y) = 0 for all $Y \in TM$

 $\Rightarrow X = 0$

Definition

def ⇔ X : spacelike $\langle X, X \rangle > 0$ or X = 0

 $\stackrel{\text{def}}{\Leftrightarrow} \langle X, X \rangle < 0$ *X* : timelike

def X: null $\langle X, X \rangle = 0$ and $X \neq 0$ \Leftrightarrow

$$\mathbf{x} = (x_1, \dots, x_{m+1}), \quad \mathbf{y} = (y_1, \dots, y_{m+1}) \in \mathbb{E}_s^{m+1}$$

$$\langle \mathbf{x}, \mathbf{y} \rangle := -\sum_{i=1}^s x_i y_i + \sum_{j=s+1}^{m+1} x_j y_j$$

リーマン多様体

$$\mathbb{S}^2 := \{ \mathbf{x} \in \mathbb{E}^3 \, | \, \langle \mathbf{x}, \mathbf{x} \rangle = 1 \}$$

$$\mathbf{x} = (x_1, \dots, x_{m+1}), \quad \mathbf{y} = (y_1, \dots, y_{m+1}) \in \mathbb{E}_s^{m+1}$$

$$\begin{cases} s = 0: \, \mathbf{y} - \mathbf{v} \times \mathbf{s} \& \mathbf{k} \\ s = 1: \, \mathbf{u} - \mathbf{v} \times \mathbf{v} & \mathbf{s} \& \mathbf{k} \end{cases}$$

$$\langle \mathbf{x}, \mathbf{y} \rangle := -\sum_{i=1}^{s} x_i y_i + \sum_{j=s+1}^{m+1} x_j y_j$$
 s:指数

リーマン多様体

$$\mathbb{S}^2 := \{ \mathbf{x} \in \mathbb{E}^3 \, | \, \langle \mathbf{x}, \mathbf{x} \rangle = 1 \}$$

擬リーマン多様体

$$\mathbb{S}_1^2 := \{ \mathbf{x} \in \mathbb{E}_1^3 \, | \, \langle \mathbf{x}, \mathbf{x} \rangle = 1 \}$$

$$\mathbf{x} = (x_1, \dots, x_{m+1}), \quad \mathbf{y} = (y_1, \dots, y_{m+1}) \in \mathbb{E}_s^{m+1}$$

$$\begin{cases} s = 0: \, \mathbf{y} - \mathbf{v} > \mathbf{y} \\ s = 1: \, \mathbf{u} - \mathbf{v} > \mathbf{v} > \mathbf{y} \end{cases}$$

$$\langle \mathbf{x}, \mathbf{y} \rangle := -\sum_{i=1}^{s} x_i y_i + \sum_{i=s+1}^{m+1} x_j y_j$$
 s:指数

リーマン多様体

$$\mathbb{S}^2 := \{ \mathbf{x} \in \mathbb{E}^3 \mid \langle \mathbf{x}, \mathbf{x} \rangle = 1 \}$$
$$\mathbb{H}^2 := \{ \mathbf{x} \in \mathbb{E}^3_1 \mid \langle \mathbf{x}, \mathbf{x} \rangle = -1 \}$$

擬リーマン多様体

$$\begin{split} \mathbb{S}_1^2 &:= \{ \mathbf{x} \in \mathbb{E}_1^3 \, | \, \langle \mathbf{x}, \mathbf{x} \rangle = 1 \} \\ \mathbb{H}_1^2 &:= \{ \mathbf{x} \in \mathbb{E}_2^3 \, | \, \langle \mathbf{x}, \mathbf{x} \rangle = -1 \} \end{split}$$

$$\mathbf{x} = (x_1, \dots, x_{m+1}), \quad \mathbf{y} = (y_1, \dots, y_{m+1}) \in \mathbb{E}_s^{m+1}$$

$$\begin{cases} s = 0: \, \mathbf{y} - \mathbf{v} > \mathbf{s} \& \mathbf{k} \\ s = 1: \, \mathbf{u} - \mathbf{v} > \mathbf{v} & \mathbf{s} \& \mathbf{k} \end{cases}$$

$$\langle \mathbf{x}, \mathbf{y} \rangle := -\sum_{i=1}^{s} x_i y_i + \sum_{j=s+1}^{m+1} x_j y_j$$

s:指数

リーマン多様体

$$\mathbb{S}^2 := \{ \mathbf{x} \in \mathbb{E}^3 \mid \langle \mathbf{x}, \mathbf{x} \rangle = 1 \}$$
$$\mathbb{H}^2 := \{ \mathbf{x} \in \mathbb{E}^3_1 \mid \langle \mathbf{x}, \mathbf{x} \rangle = -1 \}$$

\mathbb{S}^n_s と \mathbb{H}^n_{n-s} は 反等長

擬リーマン多様体

$$S_1^2 := \{ \mathbf{x} \in \mathbb{E}_1^3 \mid \langle \mathbf{x}, \mathbf{x} \rangle = 1 \}$$

$$\mathbb{H}_1^2 := \{ \mathbf{x} \in \mathbb{E}_2^3 \mid \langle \mathbf{x}, \mathbf{x} \rangle = -1 \}$$

1905 特殊相対性理論(A. Einstein)

この世界を,空間3次元と時間1次元の"時空"として考える

正定値とは限らない計量を持つ多様体を導入

1908 ミンコフスキー幾何学(H. Minkowski)

特殊相対性理論を幾何学として再構成 時空は4次元の空間として記述される

1915-1916 一般相対性理論(A. Einstein)

重力を時空の曲がりとして捉える, リーマン幾何学を応用

擬リーマン幾何学

例2. 重力場における光の軌跡

例2. 重力場における光の軌跡

aの位置にある天体が、b 地点から見える(重力レンズ効果)

例2. 重力場における光の軌跡

aの位置にある天体が、b 地点から見える(重力レンズ効果)

- 光は常に"真っ直ぐ"進む
- 光の粒子の軌跡は null 測地線

 $(\tilde{M},\langle\,,
angle)$: 擬球面 \mathbb{S}_s^m または 擬双曲空間 \mathbb{H}_s^m

 $(M,\langle,\rangle): \tilde{M}$ の擬リーマン曲面,

形作用素が対角化不可能, 平均曲率とスカラー曲率が一定

 γ : \tilde{M} の null 曲線 i.e. $\langle \dot{\gamma}, \dot{\gamma} \rangle = 0$ かつ $\dot{\gamma} \neq 0$

 $(\tilde{M},\langle\,,
angle)$: 擬球面 \mathbb{S}_s^m または 擬双曲空間 \mathbb{H}_s^m

 $(M,\langle ,\rangle): ilde{M}$ の擬リーマン曲面,

形作用素が対角化不可能, 平均曲率とスカラー曲率が一定

 γ : \tilde{M} の null 曲線 i.e. $\langle \dot{\gamma}, \dot{\gamma} \rangle = 0$ かつ $\dot{\gamma} \neq 0$

Part I · · · 擬双曲的ガウス写像による分類

● B-scroll または complex circle の擬双曲的ガウス写像

 $(\tilde{M},\langle\,,
angle)$: 擬球面 \mathbb{S}^m_s または 擬双曲空間 \mathbb{H}^m_s

 (M,\langle , \rangle) : $ilde{M}$ の擬リーマン曲面,

形作用素が対角化不可能, 平均曲率とスカラー曲率が一定

 γ : \tilde{M} の null 曲線 i.e. $\langle \dot{\gamma}, \dot{\gamma} \rangle = 0$ かつ $\dot{\gamma} \neq 0$

Part I · · · 擬双曲的ガウス写像による分類

B-scroll または complex circle の擬双曲的ガウス写像

Part II \cdots generalizations of B-scroll in \tilde{M}_s^m

- ullet generalized umbilical hypersurface in $ilde{M}_1^{n+1}$
- ullet generalized umbilical hypersurface in \tilde{M}_2^{n+1}
- ullet generalized B-scroll in \mathbb{S}_2^5 or \mathbb{H}_2^5

 $(\tilde{M},\langle\,,
angle)$: 擬球面 \mathbb{S}_s^m または 擬双曲空間 \mathbb{H}_s^m

 (M,\langle , \rangle) : $ilde{M}$ の擬リーマン曲面,

形作用素が対角化不可能, 平均曲率とスカラー曲率が一定

 γ : \tilde{M} の null 曲線 i.e. $\langle \dot{\gamma}, \dot{\gamma} \rangle = 0$ かつ $\dot{\gamma} \neq 0$

Part I · · · 擬双曲的ガウス写像による分類

● B-scroll または complex circle の擬双曲的ガウス写像

Part II \cdots generalizations of B-scroll in \tilde{M}_s^m

- generalized umbilical hypersurface in $ilde{M}_1^{n+1}$ · · · 次元一般化
- ullet generalized umbilical hypersurface in $ilde{M}_2^{n+1}$ \cdots 指数及び次元一般化
- generalized B-scroll in S₂ or H₂ ···· 指数及び余次元一般化

Part I

擬双曲的ガウス写像による分類

擬双曲的ガウス写像による分類 ・・・・ 研究背景

部分多様体の平均曲率 H と部分多様体の type number の関係

- 1970 年代 ・ $\Delta H = \lambda H$ となるリーマン部分多様体の type number
 - ・null 2-type かつ H: const なローレンツ曲面の完全分類
- 1980 年代 ・部分多様体のガウス写像の type number
- 2007年 ・球面にはめ込まれた部分多様体の球面的ガウス写像

擬双曲的ガウス写像による分類 … 研究背景

部分多様体の平均曲率 H と部分多様体の type number の関係

- 1970 年代 ・ $\Delta H = \lambda H$ となるリーマン部分多様体の type number
 - ・null 2-type かつ H: const なローレンツ曲面の完全分類
- 1980 年代 ・部分多様体のガウス写像の type number
 - 2007年 ・球面にはめ込まれた部分多様体の球面的ガウス写像

 $\mathbf{x}: M \hookrightarrow \mathbb{S}^m$: 等長はめ込み

 (e_1^p,\ldots,e_n^p) :Mの向きと適合する T_pM の正規直交フレーム

ガウス写像 ν $\stackrel{\text{def}}{\Leftrightarrow} \nu(p) := e_1^p \wedge \cdots \wedge e_n^p$

球面的ガウス写像 \tilde{v} $\stackrel{\text{def}}{\Leftrightarrow}$ $\tilde{v}(p) := \mathbf{x}(p) \wedge e_1^p \wedge \cdots \wedge e_n^p$

Theorem (D. S. Kim-Y. H. Kim)

 $M_1^2 \subset \mathbb{S}^3_1$ (または \mathbb{H}^3_1): 向きづけられたローレンツ超曲面

 M_1^2 は B-scroll または complex circle どちらかの開部分

擬双曲的ガウス写像による分類

・・・修士課程における結果

Theorem (D. S. Kim-Y. H. Kim)

 $M_1^2 \subset \mathbb{S}_1^3$ (または \mathbb{H}_1^3): 向きづけられたローレンツ超曲面

形作用素が対角化不可能 かつ H,K が一定

1

 M_1^2 は B-scroll または complex circle どちらかの開部分

	M_1^2		$ ilde{ u}$	K	Н
in \mathbb{S}^3_1	(B–C–D 2017) $\mathcal{B}(k_2)$ B-scroll		null 2-type	≠ 0	≠ 0

į

… 修士課程における結果

擬双曲的ガウス写像による分類

Theorem (D. S. Kim-Y. H. Kim)

 $M_1^2 \subset \mathbb{S}_1^3$ (または \mathbb{H}_1^3): 向きづけられたローレンツ超曲面

形作用素が対角化不可能 かつ H,K が一定

 M_1^2 は B-scroll または complex circle どちらかの開部分

	M_1^2		$ ilde{ u}$	K	Н
	(Main Result 1) $S^1_{\mathbb{C}}(\kappa)$	$\kappa = -1$	1-type	0	0
in \mathbb{H}_1^3	complex circle	<i>κ</i> ≠ −1	∞-type	0	≠ 0
	(Main Result 2) $\mathcal{B}(k_2)$	$k_2 = \pm 1$	∞-type	0	≠ 0
	B-scroll	$k_2 \neq \pm 1$	null 2-type	≠ 0	≠ 0
in \mathbb{S}^3_1	(B–C–D 2017) $\mathcal{B}(k_2)$ B-scroll		null 2-type	≠ 0	≠ 0

 γ : \mathbb{S}^3_1 または \mathbb{H}^3_1 の null 曲線 (A,B,C): γ 上の Cartan frame field

i.e.
$$\begin{cases} \langle A,A\rangle = \langle B,B\rangle = 0, & \langle A,B\rangle = -1, \\ \langle A,C\rangle = \langle B,C\rangle = 0, & \langle C,C\rangle = 1, \\ \dot{\gamma}(s) = A(s), \\ \dot{A}(s) = k_1(s)C(s), \\ \dot{C}(s) = k_2(s)A(s) + k_1(s)B(s), \\ \dot{B}(s) = k_2(s)C(s) + \varepsilon\gamma(s). \end{cases}$$

擬双曲的ガウス写像による分類 ··· B-scroll

 γ : \mathbb{S}^3_1 または \mathbb{H}^3_1 の null 曲線 (A,B,C) : γ 上の Cartan frame field

i.e.
$$\begin{cases} \langle A,A\rangle = \langle B,B\rangle = 0, & \langle A,B\rangle = -1, \\ \langle A,C\rangle = \langle B,C\rangle = 0, & \langle C,C\rangle = 1, \\ \dot{\gamma}(s) = A(s), \\ \dot{A}(s) = k_1(s)C(s), \\ \dot{C}(s) = k_2(s)A(s) + k_1(s)B(s), \\ \dot{B}(s) = k_2(s)C(s) + \varepsilon\gamma(s). \end{cases}$$

Definition

M を,次のようにパラメータづけされたローレンツ曲面とする:

$$\mathbf{x}: M \hookrightarrow \mathbb{S}^3_1 \text{ or } \mathbb{H}^3_1 \stackrel{\text{def}}{\Leftrightarrow} \mathbf{x}(s,t) := \gamma(s) + tB(s)$$

このとき,

 $M: \gamma \perp \mathcal{O} \text{ B-scroll} \stackrel{\text{def}}{\Leftrightarrow} k_2: \text{const}$

擬双曲的ガウス写像による分類 ··· B-scroll

 γ : \mathbb{S}^3_1 または \mathbb{H}^3_1 の null 曲線 (A,B,C) : γ 上の Cartan frame field

i.e.
$$\begin{cases} \langle A,A\rangle = \langle B,B\rangle = 0, & \langle A,B\rangle = -1, \\ \langle A,C\rangle = \langle B,C\rangle = 0, & \langle C,C\rangle = 1, \\ \dot{\gamma}(s) = A(s), \\ \dot{A}(s) = k_1(s)C(s), \\ \dot{C}(s) = k_2(s)A(s) + k_1(s)B(s), \\ \dot{B}(s) = k_2(s)C(s) + \varepsilon\gamma(s). \end{cases}$$

Definition

M を,次のようにパラメータづけされたローレンツ曲面とする:

$$\mathbf{x}: M \hookrightarrow \mathbb{S}^3_1 \text{ or } \mathbb{H}^3_1 \stackrel{\text{def}}{\Leftrightarrow} \mathbf{x}(s,t) := \gamma(s) + tB(s)$$

このとき,

$$M: \gamma \perp \mathcal{O} \text{ B-scroll} \stackrel{\mathrm{def}}{\Leftrightarrow} k_2: \mathrm{const}$$

擬双曲的ガウス写像による分類 ··· B-scroll

Part II

generalizations of B-scroll in $ilde{M}_s^m$

 $\tilde{M}_1^{n+1} = \mathbb{E}_1^{n+1} \text{ or } \mathbb{S}_1^{n+1} \text{ or } \mathbb{H}_1^{n+1}$

 M_1^n : \tilde{M}_1^{n+1} のローレンツ超曲面,isoparametric

 $A: M_1^n$ の形作用素, 対角化不可能

P(x): A の最小多項式

A の固有値の個数が 1 or 2 個 かつ 0 でない固有値が 1 つ以下

 \downarrow

 M_1^n は次のいずれか:

 \bullet M_1^n : generalized cylinder

 $oldsymbol{0} M_1^n$: generalized umbilical hypersurface

 $\tilde{M}_1^{n+1} = \mathbb{E}_1^{n+1} \text{ or } \mathbb{S}_1^{n+1} \text{ or } \mathbb{H}_1^{n+1}$

 M_1^n : \tilde{M}_1^{n+1} のローレンツ超曲面,isoparametric

A: M_1^n の形作用素, 対角化不可能

P(x): A の最小多項式

A の固有値の個数が 1 or 2 個 かつ 0 でない固有値が 1 つ以下

 \downarrow

 M_1^n は次のいずれか:

● Mⁿ: generalized cylinder ···ゼロ固有値を持つ

❷ Mⁿ₁: generalized umbilical hypersurface ····ゼロ固有値を持たない

 $\tilde{M}_1^{n+1} = \mathbb{E}_1^{n+1} \text{ or } \mathbb{S}_1^{n+1} \text{ or } \mathbb{H}_1^{n+1}$

 M_1^n : $ilde{M}_1^{n+1}$ のローレンツ超曲面,isoparametric

A: M_1^n の形作用素, 対角化不可能

P(x): A の最小多項式

A の固有値の個数が 1 or 2 個 かつ 0 でない固有値が 1 つ以下

M_1^n は次のいずれか:

- Mⁿ: generalized cylinder ···ゼロ固有値を持つ
- ② M_1^n : generalized umbilical hypersurface \cdots ゼロ固有値を持たない

$$\begin{cases} degree 2 & P(x) = (x - a)^2 \\ degree 3 & P(x) = (x - a)^3 \end{cases}$$

 $\tilde{M}_1^{n+1} = \mathbb{E}_1^{n+1} \text{ or } \mathbb{S}_1^{n+1} \text{ or } \mathbb{H}_1^{n+1}$

 M_1^n : \tilde{M}_1^{n+1} のローレンツ超曲面,isoparametric

A: M_1^n の形作用素, 対角化不可能

P(x): A の最小多項式

A の固有値の個数が 1 or 2 個 かつ 0 でない固有値が 1 つ以下

M_1^n は次のいずれか:

- M₁ⁿ: generalized cylinder ···ゼロ固有値を持つ
- ② M_1^n : generalized umbilical hypersurface \cdots ゼロ固有値を持たない

$$\begin{cases}
\text{degree 2} & P(x) = (x - a)^2 ← B-\text{scroll} はこの型\\
\text{degree 3} & P(x) = (x - a)^3
\end{cases}$$

generalizations of B-scroll in \tilde{M}_s^m

 $ilde{M}$ が指数 1 のとき, 形作用素 A はある基底に関して次の 4 つのいずれかの形をとる.

(I)
$$\begin{pmatrix} a_1 & 0 \\ & \ddots & \\ 0 & a_n \end{pmatrix}$$
, (II) $\begin{pmatrix} a_0 & 0 & \\ 1 & a_0 & \\ & & a_1 & \\ & & & \ddots & \\ & & & & a_{n-2} \end{pmatrix}$,

(III)
$$\begin{pmatrix} a_0 & 0 & 0 & & & & & \\ 0 & a_0 & 1 & & & & & \\ -1 & 0 & a_0 & & & & & \\ & & & a_1 & & & & \\ & & & & \ddots & & \\ & & & & a_{n-3} \end{pmatrix}, \quad \text{(IV)} \begin{pmatrix} a_0 & b_0 & & & & \\ -b_0 & a_0 & & & & \\ & & & a_1 & & & \\ & & & & \ddots & & \\ & & & & & a_{n-2} \end{pmatrix},$$

ここで, $b_0 \neq 0$.

generalizations of B-scroll in $ilde{M}^m_{\mathfrak{s}}$ \cdots 次元一般化

Mⁿ の形作用素

$$\begin{pmatrix}
\lambda & & & & & \\
1 & \lambda & & & & \\
& & 1 & \lambda & & \\
& & & & 1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 0 & & & & \\
1 & \lambda & 0 & & & \\
& & & 1 & \lambda & & \\
& & & & & 1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 & \lambda & & & & \\
1 & \lambda & 0 & & & & \\
& & & & 1 & \lambda & & \\
& & & & & & 1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 & \lambda & & & & \\
& & & 1 & \lambda & & & \\
& & & & & 1 & \lambda & & \\
& & & & & & 1 & \lambda
\end{pmatrix}$$

 \tilde{M}_1^{n+1} : ローレンツ多様体, $\dim \tilde{M} = n+1$

 M_1^n : \tilde{M}_1^{n+1} のローレンツ超曲面, $\dim M = n$

 $: M_1^n$ の形作用素, 対角化不可能

Definition

 M_1^n : generalized umbilical hypersurface

 $\overset{\text{def}}{\Leftrightarrow} A が 0 でない唯一の$

実固有値を持つ

A の最小多項式が $P(x) = (x - a)^2$ のとき, M_1^n を degree 2 の generalized umbilical hypersurface という $(a \in \mathbb{R} : const)$.

generalizations of B-scroll in $ilde{M}^m_*$ \cdots 次元一般化

 \tilde{M}_{1}^{n+1} : ローレンツ多様体, $\dim \tilde{M} = n+1$

 M_1^n : \tilde{M}_1^{n+1} のローレンツ超曲面, $\dim M = n$

 $A: M_1^n$ の形作用素, 対角化不可能

Definition

 M_1^n : generalized umbilical hypersurface $\stackrel{\text{def}}{\Leftrightarrow}$ A が 0 でない唯一の

実固有値を持つ

A の最小多項式が $P(x) = (x - a)^2$ のとき, M_1^n を degree 2 の generalized umbilical hypersurface という ($a \in \mathbb{R}$: const).

Main Result 3 (H. Kobayashi–N. Koike)

 M_1^n : degree 2 の g. u. h., $S:M_1^n$ のスカラー曲率

S = 0 $\Rightarrow \tilde{v}$: infinite type

 $S \neq 0$ (一定) $\Rightarrow \tilde{v}$: null 2-type

generalizations of B-scroll in $ilde{M}^m_{\scriptscriptstyle ext{c}}$ \cdots 指数及び次元一般化

Cartan frame (E. Cartan): \mathbb{E}_1^3 における null 曲線に沿う

Frenet 型フレーム

一般次元ローレンツ多様体 M" に拡張

general Frenet frame (K. L. Duggal–A. Bejancu)

よりシンプルな形に再構成

natural Frenet frame (D. H. Jin)

generalizations of B-scroll in $ilde{M}_{s}^{m}$ \cdots 指数及び次元一般化

Cartan frame (E. Cartan) : \mathbb{E}^3_1 における null 曲線に沿う

Frenet 型フレーム

一般次元ローレンツ多様体 M^n_1 に拡張

general Frenet frame (K. L. Duggal-A. Bejancu)

よりシンプルな形に再構成

natural Frenet frame (D. H. Jin)

指数2に拡張

natural Frenet frame with index 2 (K. L. Duggal–A. Bejancu–D. H. Jin)

generalizations of B-scroll in $ilde{M}_{*}^{m}$ \cdots 指数及び次元一般化

Cartan frame (E. Cartan): \mathbb{E}^3_1 における null 曲線に沿う

Frenet 型フレーム

一般次元ローレンツ多様体 M" に拡張

general Frenet frame (K. L. Duggal-A. Bejancu)

よりシンプルな形に再構成

natural Frenet frame (D. H. Jin)

指数2に拡張

natural Frenet frame with index 2 (K. L. Duggal–A. Bejancu–D. H. Jin)

別証明

 $\begin{cases} \nabla_{\dot{\gamma}}A : \text{non-null} \ \mathcal{O}$ とき,Cartan frame (H. Kobayashi) $\end{cases} \nabla_{\dot{\gamma}}A : \text{null} \ \mathcal{O}$ とき,bi-null Cartan frame (M. Sakaki–A. Uçum–K. İlarslan)

${f generalizations}$ of B-scroll in $ilde{M}_s^m$ \cdots 指数及び次元一般化

Cartan frame (E. Cartan): \mathbb{E}^3_1 における null 曲線に沿う

Frenet 型フレーム

一般次元ローレンツ多様体 M" に拡張

general Frenet frame (K. L. Duggal-A. Bejancu)

よりシンプルな形に再構成

natural Frenet frame (D. H. Jin)

指数2に拡張

natural Frenet frame with index 2 (K. L. Duggal–A. Bejancu–D. H. Jin)

別証明

 $\begin{cases} \nabla_{\dot{\gamma}}A : \text{non-null} \ \mathcal{O}$ とき,Cartan frame (H. Kobayashi) $\\ \nabla_{\dot{\gamma}}A : \text{null} \ \mathcal{O}$ とき,bi-null Cartan frame (M. Sakaki–A. Uçum–K. İlarslan)

Main Result 4 (H. Kobayashi)

degree 2 の generalized umbilical hypersurface in \mathbb{S}_2^{n+1} or \mathbb{H}_2^{n+1} の具体例を 構成

Theorem (D. S. Kim-Y. H. Kim-D. W. Yoon)

 $M: \mathbb{E}_1^m \mathcal{O} \text{ null scroll}$

H:M の平均曲率ベクトル場

A_H: M の *H* 方向の形作用素

Theorem (D. S. Kim-Y. H. Kim-D. W. Yoon)

 $M: \mathbb{E}_1^m \mathcal{O} \text{ null scroll}$

H:M の平均曲率ベクトル場

A_H: M の H 方向の形作用素

 A_H の最小多項式が $(x-a^2)^2$ \Rightarrow M: generalized B-scroll

 $(a \in \mathbb{R} : const)$

Theorem (D. S. Kim-Y. H. Kim-D. W. Yoon)

 $M: \mathbb{E}_1^m \mathcal{O} \text{ null scroll}$

H: M の平均曲率ベクトル場

A_H: M の *H* 方向の形作用素

 $(a \in \mathbb{R} : const)$

※ M は 2 次元非退化ローレンツ線織面

 $M: \mathbf{x}(s,t) = \gamma(s) + tB(s)$

def

 A_H の最小多項式が $(x-a^2)^2 \Rightarrow M$: generalized B-scroll

沿う Cartan frame field
$$\frac{\overset{A}{B}}{\overset{B}{\overset{C}{C}}} \begin{pmatrix} 0 & -1 \\ -1 & 0 \\ & & 1 \\ \vdots \\ Z_m & & & 1 \end{pmatrix} \text{ and } \begin{cases} \overset{\dot{A}}{\dot{C}} = k_1 C \\ \overset{\dot{C}}{\dot{C}} = k_2 A + k_1 B \\ \overset{\dot{B}}{\dot{B}} = k_2 C + Z_1 \\ \overset{\dot{Z}}{\dot{Z}}_1 = k_3 A + k_4 Z_2 \\ \overset{\dot{Z}}{\dot{Z}}_2 = -k_4 Z_1 + k_5 Z_3 \\ \vdots \end{cases}$$

Theorem (D. S. Kim-Y. H. Kim-D. W. Yoon)

 $M: \mathbb{E}_1^m \mathcal{O} \text{ null scroll}$

H: M の平均曲率ベクトル場 *A_H: M* の *H* 方向の形作用素

※ M は 2 次元非退化ローレンツ線織面

 $M: \mathbf{x}(s,t) = \gamma(s) + tB(s)$

def

 A_H の最小多項式が $(x-a^2)^2 \Rightarrow M$: generalized B-scroll

 $(a \in \mathbb{R} : const)$

 A_H の最小多項式が $(x - k_2^2)^2 \leftarrow M$: generalized B-scroll

$$\begin{array}{c|c} A & \begin{pmatrix} A & 0 & -1 & & \\ B & C & & & \\ Z_1 & & & & \\ \vdots & & & \ddots & \\ & & Z_m & & & 1 \end{pmatrix} \quad \text{and} \quad \begin{cases} A = k_1 C \\ C = k_2 A + k_1 B \\ B = k_2 C + Z_1 \\ Z_1 = k_3 A + k_4 Z_2 \\ Z_2 = -k_4 Z_1 + k_5 Z_3 \\ \vdots \end{cases}$$

Theorem (D. S. Kim-Y. H. Kim-D. W. Yoon)

 $M: \mathbb{E}_1^m \mathcal{O} \text{ null scroll}$

※ M は 2 次元非退化ローレンツ線織面

H: M の平均曲率ベクトル場

 $M: \mathbf{x}(s,t) = \gamma(s) + tB(s)$

*A_H: M*の *H*方向の形作用素

def

 A_H の最小多項式が $(x-a^2)^2 \Rightarrow M$: generalized B-scroll

 $(a \in \mathbb{R} : const)$

 A_H の最小多項式が $(x - \frac{k^2}{2})^2 \leftarrow M$: generalized B-scroll

Theorem (D. S. Kim-Y. H. Kim-D. W. Yoon)

 $M: \mathbb{E}_1^m \mathcal{O} \text{ null scroll}$

H: M の平均曲率ベクトル場

*A_H: M*の *H*方向の形作用素

※ M は 2 次元非退化ローレンツ線織面

 $M: \mathbf{x}(s,t) = \gamma(s) + tB(s)$

def

 A_H の最小多項式が $(x-a^2)^2 \Rightarrow M$: generalized B-scroll

 $(a \in \mathbb{R} : const)$

 A_H の最小多項式が $(x - k_2^2)^2 \leftarrow M$: generalized B-scroll

$$\begin{array}{c} A \\ B \\ C \\ Z_1 \\ \vdots \\ Z_m \end{array} \left(\begin{array}{ccc} 0 & -1 \\ -1 & 0 \\ & & 1 \\ & & \ddots \\ & & & 1 \end{array} \right) \quad \text{and} \quad \begin{cases} \dot{A} = k_1 C \\ \dot{C} = k_2 A + k_1 B \\ \dot{B} = k_2 C + Z_1 \\ \dot{Z}_1 = k_3 A + k_4 Z_2 \\ \dot{Z}_2 = -k_4 Z_1 + k_5 Z_3 \\ \vdots \end{cases}$$

$$\dot{C} = k_1 C$$

$$\dot{B} = k_2 C + Z_1
\dot{Z}_1 = k_3 A + k_4 Z_1$$

$$\dot{Z}_2 = -k_4 Z_1 + k_5 Z$$

$$\vdots$$

generalizations of B-scroll in $ilde{M}_{\scriptscriptstyle ar{v}}^{m}$ \cdots 指数及び余次元一般化

Main Result 5 (H. Kobayashi)

 γ : \mathbb{S}_2^5 or \mathbb{H}_2^5 の null 曲線

 (A,B,C,Z_1,Z_2) : γ に沿う \mathbb{S}_2^5 or \mathbb{H}_2^5 の Cartan frame field s.t. k_2 : const

Main Result 5 (H. Kobayashi)

$$\gamma$$
 : \mathbb{S}_2^5 or \mathbb{H}_2^5 の null 曲線

 (A, B, C, Z_1, Z_2) : γ に沿う \mathbb{S}_2^5 or \mathbb{H}_2^5 の Cartan frame field s.t. k_2 : const

M が次の条件を満たすとする:

$$M: \gamma$$
 と γ に沿う Frenet 型フレーム場から構成される null scroll $M: 2$ 次元非退化ローレンツ線織面

Main Result 5 (H. Kobayashi)

$$\gamma$$
 : \mathbb{S}_2^5 or \mathbb{H}_2^5 の null 曲線

 (A, B, C, Z_1, Z_2) : γ に沿う \mathbb{S}_2^5 or \mathbb{H}_2^5 の Cartan frame field s.t. k_2 : const

M が次の条件を満たすとする:

$$M: \gamma$$
 と γ に沿う Frenet 型フレーム場から構成される null scroll $M: 2$ 次元非退化ローレンツ線織面

$$\Rightarrow M$$
 は $\mathbf{x}(s,t) = \gamma(s) + tB(s)$ によりパラメータづけされる.

Main Result 5 (H. Kobayashi)

 γ : \mathbb{S}_{2}^{5} or \mathbb{H}_{2}^{5} の null 曲線

 (A, B, C, Z_1, Z_2) : γ に沿う \mathbb{S}_2^5 or \mathbb{H}_2^5 の Cartan frame field s.t. k_2 : const

M が次の条件を満たすとする:

$$\Rightarrow M$$
は $\mathbf{x}(s,t) = \gamma(s) + tB(s)$ によりパラメータづけされる.

さらに, A_H の最小多項式 P(x) は

(i)
$$Z_1$$
: non-null $\Rightarrow P(x) = (x - (\varepsilon_C k_2^2 + \varepsilon_1 k_3^2))^2$,

(ii)
$$Z_1$$
: null $\Rightarrow P(x) = (x - \frac{k^2}{2})^2$.

Main Result 5 (H. Kobayashi)

γ : S⁵₂ or H⁵₂ の null 曲線

 (A, B, C, Z_1, Z_2) : γ に沿う \mathbb{S}_2^5 or \mathbb{H}_2^5 の Cartan frame field s.t. k_2 : const

M が次の条件を満たすとする:

$$M: \gamma$$
 と γ に沿う Frenet 型フレーム場から構成される null scroll $M: 2$ 次元非退化ローレンツ線織面

さらに, A_H の最小多項式 P(x) は

(i)
$$Z_1$$
: non-null $\Rightarrow P(x) = (x - (\varepsilon_C k_2^2 + \varepsilon_1 k_3^2))^2$,

(ii)
$$Z_1$$
: null $\Rightarrow P(x) = (x - k_2^2)^2$.

つまり, \mathbb{S}_2^5 または \mathbb{H}_2^5 における generalized B-scroll は (i), (ii) のどちらかである.