Tugas Proyek Akhir Microcredential Data Science

Analisis Prediksi Tingkat Curah Hujan Berdasarkan Data-data Sebelumnya

Kondisi cuaca merupakan hal penting yang perlu dipelajari karena cuaca di suatu daerah menentukan rangkaian aktifitas manusia. Sebagai contoh, informasi iklim dan klasifikasinya banyak menjadi acuan untuk bidang pertanian, transportasi, dan pariwisata seperti: pelayaran, penerbangan, dan masa pola tanam. Maka dari itu pengamatan terhadap kondisi cuaca, khususnya kondisi curah hujan sangat penting dilakukan.

Besarnya curah hujan yang terjadi tidak dapat ditentukan secara pasti, namun dapat diprediksi atau diperkirakan. Dengan menggunakan data historis besarnya curah hujan beberapa waktu yang lampau, maka dapat diprediksi berapa besarnya curah hujan yang terjadi pada masa yang akan datang. Banyak cara yang dapat dilakukan untuk memprediksi besarnya curah hujan di suatu tempat, salah satunya adalah menggunakan teknik regresi.

Dengan menggunakan data-data historis dari curah hujan yang lalu dan beberapa parameter data seperti tahun, tekanan udara, penyinaran matahari, kecepatan angin, kelembapan dan suhu maka prediksi curah hujan dapat dilakukan.

Data diambil dari website resmi Badan Pusat Statistik mengenai iklim Indonesia yang berupa :

- Jumlah Curah Hujan dan Jumlah Hari Hujan di Stasiun Pengamatan BMKG, 2011-2015 (https://www.bps.go.id/statictable/2017/02/08/1959/jumlah-curahhujan-dan-jumlah-hari-hujan-di-stasiun-pengamatan-bmkg-2011-2015.html)
- Tekanan Udara dan Penyinaran Matahari di Stasiun Pengamatan BMKG, 2011-2015 (https://www.bps.go.id/statictable/2017/02/09/1962/tekanan-udaradan-penyinaran-matahari-di-stasiun-pengamatan-bmkg-2011-2015.html)
- Kecepatan Angin dan Kelembaban di Stasiun Pengamatan BMKG, 2011-2015 (https://www.bps.go.id/statictable/2017/02/08/1960/kecepatanangin-dan-kelembaban-di-stasiun-pengamatan-bmkg-2011-2015.html)
- Suhu Minimum, Rata-Rata, dan Maksimum di Stasiun Pengamatan BMKG (oC), 2011-2015 (https://www.bps.go.id/statictable/2017/02/09/1961/suhuminimumrata-rata-dan-maksimum-di-stasiun-pengamatan-bmkg-oc-2011-2015.html)

Berikut proses prediksi yang dilakukan

basic computing
import pandas as pd

```
import numpy as np
# visualizing
import seaborn as sns
import matplotlib.pyplot as plt
# preprocessing
from scipy.stats.mstats import winsorize
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
from sklearn.decomposition import PCA
# modelling
from sklearn.pipeline import make pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor,
GradientBoostingRegressor
from sklearn.model selection import GridSearchCV
# evaluating
import sklearn.metrics as metrics
```

Load dan Explorasi data

karena data yang diambil dari beberapa sumber file yang berbeda dan memiliki strukturnya tersendiri maka dibutuhkan fungsi khusus yang akan memproses pengambilan data tersebut sekaligus merapikan datanya

```
def create df(da, year=[]):
  data = da.copy()
  nd = pd.DataFrame()
  data.drop(["Provinsi","Stasiun BMKG"], axis=1, inplace=True)
  length = int(data.shape[1]/5)
  col names = data.columns[0:length]
  for i in range (0,5):
    val = data.iloc[:,0:length]
    d = dict(zip(val.columns[0::1], col names))
    val = val.rename(columns=d)
    if(len(year)>0):
      val["year"] = year[i]
    nd = nd.append(val, ignore index=True)
    data.drop(data.columns[0:length], axis=1, inplace=True)
  return nd
da1 = create df(pd.read excel("data/Indo 151 15887472.xls"))
da2 = create_df(pd.read_excel("data/Indo 151 17952722.xls"))
da3 = create df(pd.read excel("data/Indo 151 18467275.xls"))
```

```
da4 = create df(pd.read excel("data/Indo 151 21445257.xls"), year =
[2011,2012,2013,2014,2015])
da list = [da1, da2, da3, da4]
data_cuaca = pd.concat(da_list, axis=1, join="inner")
col = ['tekanan_udara', 'penyinaran_matahari', 'suhu_minimum',
'suhu_rata_rata', 'suhu_maksimum', 'curah_hujan', 'hari_hujan',
'kecepatan_angin', 'kelembaban', 'tahun']
data cuaca.columns = col
data_cuaca = data_cuaca[['tahun', 'tekanan_udara',
'penyinaran matahari', 'suhu_minimum', 'suhu_rata_rata',
'suhu maksimum', 'kecepatan angin', 'kelembaban', 'hari hujan',
'curah hujan']]
data cuaca
     tahun tekanan_udara penyinaran_matahari suhu_minimum
suhu rata rata \
       2011
                     1009.4
                                              52.20
                                                               22.4
0
27.1
      2011
                                              44.40
                                                               21.7
                        NaN
27.2
2
      2011
                      990.8
                                              32.80
                                                               15.6
NaN
       2011
                                              42.30
3
                     1008.7
                                                               19.9
27.0
      2011
                     1010.2
                                              54.10
                                                               21.0
26.9
. .
      2015
                     1012.5
                                              78.00
                                                               20.4
165
27.9
166
                     1012.4
                                              66.52
                                                               20.1
      2015
26.5
167
      2015
                     1013.0
                                              84.07
                                                               21.6
27.3
168
      2015
                     1011.5
                                              61.63
                                                               21.8
27.4
169
      2015
                     1011.1
                                              64.47
                                                               20.9
27.8
      suhu maksimum kecepatan angin kelembaban hari hujan
curah hujan
                                                79.4
                34.4
                                   4.90
                                                             150.0
1268.0
1
                36.0
                                   1.80
                                                79.0
                                                             225.0
2042.0
               34.2
                                   0.50
                                                54.2
                                                               NaN
NaN
                35.8
                                   5.40
                                                74.5
                                                             211.0
3
2405.0
```

4 2295.0	34.8	5.50	82.5	209.0
 165 1167.9	35.6	1.93	77.2	93.0
166	35.3	2.35	83.6	167.0
1987.2 167 913.4	34.2	2.60	78.3	127.0
168 2844.6	33.8	1.54	83.6	218.0
169 1265.9	35.6	2.60	75.5	168.0
[170 rows x 1	0 columns]			
data_cuaca.in	fo()			
RangeIndex: 1 Data columns	s.core.frame.Da 70 entries, 0 t (total 10 colum No	o 169 ns):	Dtvpe	
# Column Non-Null Count Dtype 1 tahun 170 non-null int64 1 tekanan_udara 158 non-null float64 2 penyinaran_matahari 159 non-null float64 3 suhu_minimum 163 non-null float64 4 suhu_rata_rata 158 non-null float64 5 suhu_maksimum 162 non-null float64 6 kecepatan_angin 159 non-null float64 7 kelembaban 162 non-null float64 8 hari_hujan 155 non-null float64 9 curah_hujan 162 non-null float64 dtypes: float64(9), int64(1) memory usage: 13.4 KB print("Ukuran data yang diperoleh :", data_cuaca.shape) Ukuran data yang diperoleh : (170, 10)				
5 suhu_mak 6 kecepata 7 kelembab 8 hari_huj 9 curah_hu dtypes: float memory usage: print("Ukuran	udara 15 an_matahari 15 imum 16 a_rata 15 simum 16 n_angin 15 an 16 an 15 jan 16 64(9), int64(1) 13.4 KB	8 non-null 9 non-null 3 non-null 8 non-null 2 non-null 2 non-null 5 non-null 2 non-null	float64 float64 float64 float64 float64 float64 float64 float64	oe)

```
col duplicated =
['tekanan_udara','penyinaran_matahari','suhu_minimum','suhu_rata_rata','suhu_maksimum','kecepatan_angin','kelembaban','hari_hujan','curah_hu
data_cuaca[data_cuaca.duplicated(subset=col_duplicated,keep=False)]
     tahun tekanan_udara penyinaran_matahari suhu_minimum
suhu_rata_rata \
```

6 NaN	2011		NaN	NaN	NaN
23 NaN	2011		NaN	NaN	NaN
57	2012		NaN	NaN	NaN
NaN 61	2012		NaN	NaN	NaN
NaN 65	2012		NaN	NaN	NaN
NaN 98 NaN	2013		NaN	NaN	NaN
	—	imum	kecepatan_angin	kelembaban	hari_hujan
	h hujan				nar ±_najan
6 N = N		NaN	NaN	NaN	NaN
NaN 23	<u>_</u> a j a	NaN NaN	NaN NaN		
NaN 23 NaN 57				NaN	NaN
NaN 23 NaN		NaN	NaN	NaN NaN	NaN NaN

data_drop_duplicated =
data_cuaca.drop_duplicates(subset=col_duplicated,keep=False)
print("Ukuran data yang setelah duplicate data dihapus :",
data_drop_duplicated.shape)

NaN

NaN

NaN

Ukuran data yang setelah duplicate data dihapus : (164, 10)

Handling Missing Value

data drop duplicated.isna().sum()

NaN

98

NaN

tahun	0
tekanan_udara	6
penyinaran_matahari	5
suhu_minimum	1
suhu_rata_rata	6
suhu_maksimum	2
kecepatan_angin	5
kelembaban	2
hari_hujan	9
curah_hujan	2
dtype: int64	

data_drop_duplicated[data_drop_duplicated.isna().any(axis=1)]

			_udara	penyinara	n_matahari	suhu_minimum
1 _	rata_r 2011	ata \	NaN		44.40	21.7
27.20	2011		990.80		32.80	15.6
NaN 10	2011	1	.009.50		60.90	23.4
28.50 14	2011	1	010.10		69.10	20.0
NaN 17	2011	1	.009.70		68.00	20.7
NaN 20	2011		NaN		NaN	NaN
NaN 21	2011		968.00		NaN	20.4
27.10 25	2011	1	.009.90		54.40	22.8
27.60 27	2011		NaN		NaN	22.0
NaN 35	2012		NaN		48.00	21.0
27.30 48	2012	1	010.00		75.00	20.6
28.00 59	2012	1	010.30		62.80	23.1
27.70 69	2013		NaN		45.66	21.6
28.77 70	2013		996.57		43.30	22.7
25.13 71	2013	1	.008.96		NaN	21.2
26.00 85	2013	1	010.30		68.00	20.8
28.25 87	2013	1	010.27		61.83	21.6
26.90 93 26.70	2013	1	010.18		57.42	20.6
103 27.90	2014		NaN		38.00	20.0
119	2014	1	010.60		73.00	20.5
NaN 129 26.80	2014	1	010.10		NaN	20.7
:	_	aksimum	kecepa	tan_angin	kelembaban	hari_hujan
curah ₋ 1	_hujan	36.0		1.80	79.00	225.0

2042.0				
2	34.2	0.50	54.20	NaN
NaN 10 1274.0	35.4	2.40	74.30	NaN
14	34.8	7.20	71.50	NaN
1790.0 17 NaN	32.5	7.00	80.10	NaN
20 3434.6	NaN	NaN	NaN	218.0
21 2751.0	36.0	5.30	81.80	195.0
25 667.0	34.1	1.80	76.10	NaN
27 1511.0	33.0	2.00	84.00	121.0
35	36.9	0.60	76.00	227.0
3175.0 48	35.4	13.30	NaN	NaN
1389.0 59 760.0	35.0	3.80	76.00	NaN
69 2627.0	36.4	1.99	78.67	218.0
70 4627.4	NaN	1.06	86.91	232.0
71 2628.7	36.2	NaN	76.00	214.0
85 2098.9	35.2	NaN	80.00	160.0
87 3382.0	36.4	12.12	85.17	NaN
93	36.8	3.58	76.50	NaN
905.7 103 2148.0	35.2	NaN	79.00	200.0
119 1563.9	33.3	3.00	82.80	106.0
129 2263.6	33.1	NaN	74.70	172.0

menghapus nilai NaN pada kolom curah_hujan (target)

```
data_drop_null = data_drop_duplicated.dropna(subset=['curah_hujan'])
data_drop_null.isna().sum()
```

```
tahun 0
tekanan_udara 6
penyinaran_matahari 5
```

suhu_minimum	1
suhu_rata_rata	4
suhu_maksimum	2
kecepatan_angin	5
kelembaban	2
hari_hujan	7
curah_hujan	0
dtvpe: int64	

data_drop_null[data_drop_null.isna().any(axis=1)]

			penyinaran_matahari	suhu_minimum
1	rata_r 2011	ata \ NaN	44.40	21.7
27.20 10	2011	1009.50	60.90	23.4
28.50 14	2011	1010.10	69.10	20.0
NaN 20	2011	NaN	NaN	NaN
NaN 21	2011	968.00	NaN	20.4
27.10 25	2011	1009.90	54.40	22.8
27.60 27	2011	NaN	NaN	22.0
NaN 35	2012	NaN	48.00	21.0
27.30 48	2012	1010.00	75.00	20.6
28.00 59	2012	1010.30	62.80	23.1
27.70 69	2013	NaN	45.66	21.6
28.77 70	2013	996.57	43.30	22.7
25.13 71	2013	1008.96	NaN	21.2
26.00 85	2013	1010.30	68.00	20.8
28.25 87	2013	1010.27	61.83	21.6
26.90 93	2013	1010.18	57.42	20.6
26.70 103	2014	NaN	38.00	20.0
27.90 119	2014	1010.60	73.00	20.5
NaN 129 26.80	2014	1010.10	NaN	20.7

ˈsuhu_ma	ksimum	kecepatan_angin	kelembaban	hari_hujan
curah_hujan 1	36.0	1.80	79.00	225.0
2042.0 10 1274.0	35.4	2.40	74.30	NaN
14 14 1790.0	34.8	7.20	71.50	NaN
20 3434.6	NaN	NaN	NaN	218.0
21 2751.0	36.0	5.30	81.80	195.0
25 667.0	34.1	1.80	76.10	NaN
27 1511.0	33.0	2.00	84.00	121.0
35 3175.0	36.9	0.60	76.00	227.0
48 1389.0	35.4	13.30	NaN	NaN
59 760.0	35.0	3.80	76.00	NaN
69 2627.0	36.4	1.99	78.67	218.0
70 4627.4	NaN	1.06	86.91	232.0
71 2628.7	36.2	NaN	76.00	214.0
85 2098.9	35.2	NaN	80.00	160.0
87 3382.0	36.4	12.12	85.17	NaN
93 905.7	36.8	3.58	76.50	NaN
103 2148.0	35.2	NaN	79.00	200.0
119 1563.9	33.3	3.00	82.80	106.0
129 2263.6	33.1	NaN	74.70	172.0

Melakukan imputasi data pada missing value di kolom prediktor

```
missing_columns = data_drop_null.drop(["tahun","curah_hujan"],
axis=1).columns
clean = data_drop_null.loc[:,["tahun","curah_hujan"]]

def random_imputation(df, feature):
    number_missing = df[feature].isnull().sum()
    observed_values = df.loc[df[feature].notnull(), feature]
```

```
df.loc[df[feature].isnull(), feature + ' imp'] =
np.random.choice(observed values, number missing, replace = True)
    return df
for feature in missing columns:
    data_drop_null[feature + '_imp'] = data_drop_null[feature]
    data drop null = random imputation(data drop null, feature)
deter data = pd.DataFrame(columns = [name for name in
missing columns])
for feature in missing columns:
    deter_data[feature] = data_drop_null[feature + "_imp"]
    parameters = list(set(data drop null.columns) -
set(missing columns) - {feature + ' imp'})
    model = LinearRegression()
    model.fit(X = data_drop_null[parameters], y =
data drop null[feature + ' imp'])
    deter data.loc[data drop null[feature].isnull(), feature] =
model.predict(data drop null[parameters])
[data drop null[feature].isnull()]
deter data
     tekanan udara penyinaran matahari suhu minimum suhu rata rata
\
0
       1009.400000
                                   52.20
                                                  22.4
                                                                   27.1
                                                  21.7
                                                                   27.2
1
       1006.645665
                                   44.40
       1008.700000
3
                                                  19.9
                                                                   27.0
                                   42.30
4
       1010.200000
                                   54.10
                                                  21.0
                                                                   26.9
                                                  23.4
5
       1009.600000
                                   54.00
                                                                   27.3
                                     . . .
                                                   . . .
                                                                    . . .
       1012.500000
                                   78.00
                                                  20.4
                                                                   27.9
165
166
       1012.400000
                                   66.52
                                                  20.1
                                                                   26.5
167
       1013.000000
                                   84.07
                                                  21.6
                                                                   27.3
168
       1011.500000
                                   61.63
                                                  21.8
                                                                   27.4
```

27.8

	suhu_maksimum	kecepatan_angin	kelembaban	hari_hujan
0	34.4	4.90	79.4	150.0
1	36.0	1.80	79.0	225.0
3	35.8	5.40	74.5	211.0
4	34.8	5.50	82.5	209.0
5	34.6	2.70	84.8	217.0
165	35.6	1.93	77.2	93.0
166	35.3	2.35	83.6	167.0
167	34.2	2.60	78.3	127.0
168	33.8	1.54	83.6	218.0
169	35.6	2.60	75.5	168.0

[162 rows x 8 columns]

data_drop_null = pd.concat([clean, deter_data], axis=1)
data_drop_null

	tahun		tekanan_udara	penyinaran_matahari
suhu _. 0	_minimu 2011	m \ 1268.0	1009.400000	52.20
22.4				
1 21.7	2011	2042.0	1006.645665	44.40
3	2011	2405.0	1008.700000	42.30
19.9 4	2011	2295.0	1010.200000	54.10
21.0 5	2011	2593.0	1009.600000	54.00
23.4	2011	233310	1003.000000	31100
165	2015	1167.9	1012.500000	78.00
20.4 166	2015	1987.2	1012.400000	66.52
20.1 167	2015	913.4	1013.000000	84.07
21.6 168	2015	2844.6	1011.500000	61.63
21.8 169 20.9	2015	1265.9	1011.100000	64.47

suhu_rata_rata suhu_maksimum kecepatan_angin kelembaban hari_hujan 0 27.1 34.4 4.90 79.4 150.0

1 225.0	27.2	36.0	1.80	79.0
3 211.0	27.0	35.8	5.40	74.5
4	26.9	34.8	5.50	82.5
209.0 5 217.0	27.3	34.6	2.70	84.8
		• • •		
165 93.0	27.9	35.6	1.93	77.2
166 167.0	26.5	35.3	2.35	83.6
167 127.0	27.3	34.2	2.60	78.3
168 218.0	27.4	33.8	1.54	83.6
169 168.0	27.8	35.6	2.60	75.5

[162 rows x 10 columns]

Handling Outlier

permasalahan outlier diselesaikan dengan menggunakan metode winsorize yaitu menggeser nilai yang oulier ke dalam quartile data

data_drop_null.describe()

count mean std min 25% 50% 75% max	tahun 162.000000 2013.067901 1.410372 2011.000000 2012.000000 2013.000000 2014.000000 2015.000000	curah_hujan 162.000000 2298.672840 835.757699 460.900000 1682.275000 2267.200000 2832.400000 5041.000000	tekanan_udara 162.000000 1006.954416 15.711808 922.100000 1009.300000 1010.127027 1011.200000 1023.326206	penyinaran_matahari 162.000000 59.137645 11.970379 22.900000 50.625000 58.915000 67.620000 85.050000	\
count mean std min 25% 50% 75% max	suhu_minimum 162.000000 21.442099 2.020229 14.400000 20.425000 21.6000000 23.000000 26.000000	suhu_rata_ra 162.0000 27.0084 0.9112 23.4000 26.8000 27.1000 27.4000 28.7700	$ \begin{array}{r} 00 & 1\overline{6}2.000 \\ 84 & 34.340 \\ 91 & 1.758 \\ 90 & 30.100 \\ 90 & 33.100 \\ 90 & 34.200 \\ 90 & 35.575 \end{array} $	000 162.000000 573 3.814047 389 2.455706 000 0.070000 000 2.305000 000 3.325000 000 4.500000	\

```
kelembaban
                   hari hujan
count
      162.000000
                   162.000000
       80.576513
                  182.458811
mean
std
        3.907215
                  42.680784
       70.000000
min
                   68.000000
25%
       78.100000
                  154.250000
50%
       81.000000
                  178.500000
75%
       83.595000
                  217,000000
max
       97.800000
                  276.000000
# show boxplot
def boxplot feature(data):
    fig, ax = plt.subplots(4, 2, figsize=(16, 10))
    sns.boxplot(data=data, x='tekanan udara', ax=ax[0][0])
    sns.boxplot(data=data, x='penyinaran matahari', ax=ax[0][1])
    sns.boxplot(data=data, x='suhu minimum', ax=ax[1][0])
   sns.boxplot(data=data, x='suhu rata rata', ax=ax[1][1])
   sns.boxplot(data=data, x='suhu maksimum', ax=ax[2][0])
   sns.boxplot(data=data, x='kecepatan angin', ax=ax[2][1])
   sns.boxplot(data=data, x='kelembaban', ax=ax[3][0])
    sns.boxplot(data=data, x='hari hujan', ax=ax[3][1])
# defining outlier boundaries
def find outlier(df, variable name):
   q1 = df[variable name].quantile(0.25)
   q3 = df[variable name].quantile(0.75)
   iqr = q3-q1
   outer fence = 3*iqr
   outer_fence_le = q1-outer_fence
   outer fence ue = q3+outer fence
    return outer fence le, outer fence ue
boxplot feature(data drop null)
```


Seleksi Fitur

```
sns.set(rc = {'figure.figsize':(15,8)})
sns.heatmap(data_outlier.corr(), vmin=-1, vmax=1, annot=True,
cmap='RdYlBu')
<AxesSubplot:>
```


plt.figure(figsize=(16,8))
sns.pairplot(data=data_outlier)

<seaborn.axisgrid.PairGrid at 0x21de741d400>

<Figure size 1152x576 with 0 Axes>

variabel fitur diambil dari nilai korelasi yang tinggi terhadap data target

```
data_selection = data_outlier.copy()
data_selection = data_selection[["penyinaran_matahari",
    "suhu_rata_rata", "kelembaban", "hari_hujan", "curah_hujan"]]
data_selection.head()
```

penyinaran	_matahari	suhu_rata_rata	kelembaban	hari_hujan
curah_hujan				
0	52.2	27.1	79.4	150.0
1268.0				
1	44.4	27.2	79.0	225.0
2042.0	42.3	27.0	74.5	211 0
2405.0	42.3	27.0	74.5	211.0
4	54.1	26.9	82.5	209.0
2295.0	3111	2013	02.13	20310

Preprocessing

proses persiapan data dilakukan dengan standarisasi data dan splitting data sebelum masuk dalam training model

```
scaler = StandardScaler()
data scaled = scaler.fit transform(data selection)
data scaled[:5]
array([[-0.58136482, 0.05278938, -0.30204675, -0.7628599 , -
1.237043621,
       [-1.23499379, 0.19015481, -0.4047389, 0.99981997, -
0.30806623],
       [-1.41097081, -0.08457605, -1.56002563,
                                                 0.6707864 ,
0.12761696],
       [-0.42214751, -0.22194149, 0.49381744,
                                                 0.6237816 , -
0.00440825],
       [-0.43052737, 0.32752024, 1.08429732,
                                                 0.81180079,
0.35326005]])
X = data scaled[:, :-1]
y = data scaled[:, -1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
0.2, random_state=3)
visualisasi data dengan mereduksi fitur menjadi 1 fitur komponen
model pca = PCA(n components=1)
X_train_reduction = model_pca.fit_transform(X_train)
sns.scatterplot(x=X_train_reduction.T[0], y=y_train)
<AxesSubplot:>
```


Tune Parameter with Multiple Models

beberapa percobaan model yang akan digunakan yaitu:

- Linear Regression
- Polynomial Regression
- Support Vector Machine
- · Random Forest
- Gradient Boosting

```
Linear Regression
```

```
lin_reg = LinearRegression().fit(X_train, y_train)
lin_reg_pred = lin_reg.predict(X_test)

lin_reg_mae = metrics.mean_absolute_error(y_test, lin_reg_pred)
lin_reg_mse = metrics.mean_squared_error(y_test, lin_reg_pred)
lin_reg_rmse = np.sqrt(lin_reg_mse)
lin_reg_r2 = metrics.r2_score(y_test, lin_reg_pred)

print("Results of linear regression")
print("MAE:",lin_reg_mae)
print("MSE:", lin_reg_mse)
print("RMSE:", lin_reg_rmse)
print("R-Squared:", lin_reg_r2)

Results of linear regression
MAE: 0.4154313842060864
MSE: 0.2648324426169261
```

```
RMSE: 0.514618735198133
R-Squared: 0.6586902708376591
Polynomial Regression
pol reg = make pipeline(PolynomialFeatures(),
LinearRegression()).fit(X train, y train)
pol reg pred = pol reg.predict(X test)
pol reg mae = metrics.mean absolute error(y test, pol reg pred)
pol reg mse = metrics.mean squared error(y test, pol reg pred)
pol reg rmse = np.sqrt(pol reg mse)
pol reg r2 = metrics.r2 score(y test, pol reg pred)
print("Results of polynomial regression")
print("MAE:",pol_reg_mae)
print("MSE:", pol_reg_mse)
print("RMSE:", pol_reg_rmse)
print("R-Squared:", pol reg r2)
Results of polynomial regression
MAE: 0.4702594045227867
MSE: 0.32671395942288883
RMSE: 0.5715889776954143
R-Squared: 0.5789388494011674
Support Vector Machine
svr params = {'kernel': ['poly', 'rbf', 'linear'],
               'C': [0.06, 0.1, 0.3, 0.6, 1, 3, 6, 10],
               'gamma': [0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1],
               'degree': [1, 2, 3]}
svr = GridSearchCV(estimator=SVR(), param_grid=svr_params, cv=4)
svr.fit(X_train, y_train)
GridSearchCV(cv=4, estimator=SVR(),
             param grid={'C': [0.06, 0.1, 0.3, 0.6, 1, 3, 6, 10],
                          'degree': [1, 2, 3],
                          'gamma': [0.01, 0.03, 0.06, 0.1, 0.3, 0.6,
11,
                          'kernel': ['poly', 'rbf', 'linear']})
print("parameter terbaik dari model support vector machine :",
svr.best estimator )
print("score validation terbaik dari model support vector machine :",
svr.best score )
parameter terbaik dari model support vector machine : SVR(C=3,
degree=1, gamma=0.06)
score validation terbaik dari model support vector machine :
0.43270048804099515
```

```
svr pred = svr.predict(X test)
svr mae = metrics.mean absolute error(y test, svr pred)
svr mse = metrics.mean squared error(y test, svr pred)
svr rmse = np.sqrt(svr mse)
svr r2 = metrics.r2 score(y test, svr pred)
print("Results of support vector machine")
print("MAE:",svr_mae)
print("MSE:", svr_mse)
print("RMSE:", svr_rmse)
print("R-Squared:", svr_r2)
Results of support vector machine
MAE: 0.48213889428313816
MSE: 0.3362690944479732
RMSE: 0.5798871394055685
R-Squared: 0.5666244195099683
Random Forest
rf_params = {'bootstrap': [False, True], 'max_depth': [1, 2, 5, 10,
20, 30, 50, 70, 100, 150, None],
             'max_features': ['auto', 'log2', 'sqrt'],
             'n_estimators': [5, 10, 20, 50, 100, 150, 200, 300, 500]}
rf = GridSearchCV(estimator=RandomForestRegressor(),
param grid=rf params, cv=4)
rf.fit(X_train, y_train)
GridSearchCV(cv=4, estimator=RandomForestRegressor(),
             param grid={'bootstrap': [False, True],
                          'max depth': [1, 2, 5, 10, 20, 30, 50, 70,
100, 150,
                                        None],
                          'max_features': ['auto', 'log2', 'sqrt'],
                          'n_estimators': [5, 10, 20, 50, 100, 150,
200, 300,
                                           5001})
print("estimator terbaik dari model random forest :",
rf.best estimator )
print("score validation terbaik dari model random forest :",
rf.best score )
estimator terbaik dari model random forest :
RandomForestRegressor(max_depth=150, max_features='log2',
n estimators=10)
score validation terbaik dari model random forest: 0.5042314081553801
rf pred = rf.predict(X test)
rf mae = metrics.mean absolute error(y test, rf pred)
```

```
rf mse = metrics.mean squared error(y_test, rf_pred)
rf rmse = np.sqrt(rf mse)
rf r2 = metrics.r2 score(y test, rf pred)
print("Results of random forest")
print("MAE:",rf_mae)
print("MSE:", rf_mse)
print("RMSE:", rf rmse)
print("R-Squared:", rf r2)
Results of random forest
MAE: 0.547195760418061
MSE: 0.4502746032349228
RMSE: 0.6710250392011633
R-Squared: 0.4196968416702216
Gradient Boosting
gbm params = {'learning rate': [0.01, 0.03, 0.06, 0.1, 0.15, 0.3,
0.61.
              'subsample'
                            : [1, 0.6, 0.3, 0.1],
              'n_estimators': [10, 20, 50, 100, 300, 600],
              'max depth' : [1, 2, 3, 4]}
gbm = GridSearchCV(estimator=GradientBoostingRegressor(),
param grid=gbm params, cv=4)
gbm.fit(X train, y train)
GridSearchCV(cv=4, estimator=GradientBoostingRegressor(),
             param grid={'learning rate': [0.01, 0.03, 0.06, 0.1,
0.15, 0.3,
                                           0.6],
                         'max depth': [1, 2, 3, 4],
                         'n_estimators': [10, 20, 50, 100, 300, 600],
                         'subsample': [1, 0.6, 0.3, 0.1]})
print("estimator terbaik dari model gradient boosting :",
gbm.best estimator )
print("score validation terbaik dari model gradient boosting :",
gbm.best score )
estimator terbaik dari model gradient boosting :
GradientBoostingRegressor(learning rate=0.06, max depth=2,
n estimators=50,
                          subsample=0.3)
score validation terbaik dari model gradient boosting :
0.49452220160364285
gbm pred = gbm.predict(X test)
gbm mae = metrics.mean absolute error(y test, gbm pred)
gbm mse = metrics.mean squared error(y test, gbm pred)
gbm rmse = np.sqrt(gbm mse)
```

```
gbm r2 = metrics.r2 score(y test, gbm pred)
print("Results of gradient boosting")
print("MAE:", gbm_mae)
print("MSE:", gbm_mse)
print("RMSE:", gbm rmse)
print("R-Squared:", gbm_r2)
Results of gradient boosting
MAE: 0.4998806457315422
MSE: 0.3720945941598548
RMSE: 0.609995568967394
R-Squared: 0.5204533708161542
Select Model
data score = pd.DataFrame({"1-MAE": [1-lin reg mae, 1-pol reg mae, 1-
svr mae, 1-rf mae, 1-gbm mae],
                          "1-MSE": [1-lin reg mse, 1-pol reg mse, 1-
svr mse, 1-rf mse, 1-gbm mse],
                          "1-RMSE": [1-lin reg rmse, 1-pol reg rmse,
1-svr rmse, 1-rf rmse, 1-gbm rmse],
                          "R2 Score": [lin reg r2, pol reg r2, svr r2,
rf r2, gbm r2]},
                          index=['Linear Regression', 'Polynomial
Regression', 'Support Vector Machine', 'Random Forest', 'Gradient
Boosting'])
data score
                           1-MAE
                                     1-MSE
                                              1-RMSE
                                                      R2 Score
Linear Regression
                        0.584569 0.735168 0.485381 0.658690
Polynomial Regression
                        0.529741
                                 0.673286
                                           0.428411 0.578939
Support Vector Machine
                        0.517861
                                  0.663731
                                           0.420113
                                                      0.566624
Random Forest
                                            0.328975
                        0.452804
                                  0.549725
                                                      0.419697
Gradient Boosting
                        0.500119 0.627905 0.390004
                                                      0.520453
data score.plot.bar()
plt.xticks(rotation=0)
plt.show()
```


kesimpulan dari proses training model yang telah dibangun, Linear Regression memiliki nilai metrik evaluasi terbaik dengan nilai R-Square sebesar 65.8%, dilanjutkan dengan Polynomial Regression 57.8%, Support Vector Machine 56.6%, Gradient Boosting 52.0%, dan Random Forest 41.9%