Project Title: Effects of hydrogen peroxide (H₂O₂) on the growth of different bloom-forming cyanobacteria

1. Creating the "FACETED LINE PLOT" **#Load Necessary Packages** library(readxl) library(dplyr) library(writexl) library(ggplot2) library(scales) # Set the file path file_path <- "C:/Users/ASUS/Desktop/Exp_1.9.xlsx" # Read the data from the first sheet data <- read_excel(file_path, sheet = 1) # Calculate the average and standard deviation data_summary <- data %>% mutate(Average = rowMeans(select(., R1, R2), na.rm = TRUE), SD = apply(select(., R1, R2), 1, sd, na.rm = TRUE)) # View the result print(data_summary) # CREATING PLOT # Make sure variables are formatted correctly exp <- data_summary %>% mutate(Treatment = as.factor(Treatment), Pigment = as.factor(Pigment), Phytoplankton = as.factor(Phytoplankton) # Create the plot ggplot(exp, aes(x = Day, y = Average, color = Treatment, fill = Treatment)) + geom_point(size = 2) + geom_errorbar(aes(ymin = Average - SD, ymax = Average + SD), width = 0.3) + geom_smooth(method = "loess", se = FALSE) + facet_grid(Pigment ~ Phytoplankton, scales = "free") + theme(text = element_text(size = 14)) + labs(title = "Effects of Hydrogen Peroxide on Cyanobacteria",

subtitle = "Exp_1.9",

x = "Days",

```
y = "Pigment (RFU)",
 color = "Treatment",
 shape = "Treatment"
) +
scale_y_continuous(labels = comma) +
theme_minimal()
2. ANOVA
# Load required packages
library(readxl)
library(dplyr)
library(tidyr)
library(writexl)
library(ggplot2)
library(openxlsx)
# Load data
raw_data <- read_excel("C:/Users/ASUS/Desktop/Exp_1.9.xlsx", sheet = 1)
# Convert wide to long format
data <- raw_data %>%
pivot_longer(cols = starts_with("R"), names_to = "REP", values_to = "READ") %>%
mutate(
 REP = ifelse(REP == "R1", 1, 2),
 log10READ = log10(READ)
# Step 3: Load the existing workbook
wb <- loadWorkbook("C:/Users/ASUS/Desktop/Exp_1.9.xlsx")
addWorksheet(wb, "Sheet2")
writeData(wb, sheet = "Sheet2", data)
# Step 5: Save the updated workbook
saveWorkbook(wb, "C:/Users/ASUS/Desktop/Exp_1.9.xlsx", overwrite = TRUE)
#factor Treatment
data$Treatment <- as.factor(data$Treatment)
# Filter only Chl-a pigment
chl_data <- data %>%
filter(Pigment == "Chl-a")
# Calculate growth rate: slope of ln(Chl-a) vs Day for each Phytoplankton and Treatment
growth_rates <- chl_data %>%
group_by(Phytoplankton, Treatment, REP) %>%
```

```
arrange(Day) %>%
summarise(Growth_Rate = coef(lm(log10READ ~ Day))[2], .groups = "drop")
```

View results

print(growth_rates)

Save the growth rate data to an Excel file

write_xlsx(growth_rates, "Cyanobacteria_Growth_Rates.xlsx")

2.1 Filter by phytoplankton - MC first

MC_growth<- growth_rates %>% filter(Phytoplankton == "Microcystis LE21")

ANOVA (indicates that a single factor has a significant effect on your population)

MC_aov <- aov(Growth_Rate~Treatment, data=MC_growth) summary(MC_aov)

Create a formatted table

anova_table <- as.data.frame(anova(MC_aov))</pre>

Save the table as CSV

write.csv(format(anova_table, scientific = FALSE), "MC_anova_results_clean.csv")

2.2 Filter by phytoplankton - PLK

PLK_growth<- growth_rates %>% filter(Phytoplankton == "Planktothrix 1808")

ANOVA

PLK_aov <- aov(Growth_Rate~Treatment, data=PLK_growth) summary(PLK_aov)

Create a formatted table

anova_table <- as.data.frame(anova(PLK_aov))</pre>

Save the table as CSV

write.csv(format(anova_table, scientific = FALSE), "PLK_anova_results_clean.csv")

2.3 Filter by phytoplankton - FIS

FIS_growth<- growth_rates %>%
filter(Phytoplankton == "Fischerella 1.5")

ANOVA

FIS_aov <- aov(Growth_Rate~Treatment, data=FIS_growth) summary(FIS_aov)

Create a formatted table

anova_table <- as.data.frame(anova(FIS_aov))</pre>

Save the table as CSV

write.csv(format(anova_table, scientific = FALSE), "FIS_anova_results_clean.csv")