§1 Lecture 2019-09-09

Theorem 1.1

Suppose $f:A\to B$ and $g:B\to C$ are surjective then $g\circ f:A\to C$ is surjective Proof: $c\in C$

since $g:B\to C$ there exists $b\in B$ s.t. g(b)=c since $f:A\to B$ is surjective, exists $a\in A$ s.t. f(a)=b

thus $(g \circ f)(a) = g(f(a)) = g(b) = c$

Definition 1.2. A function $g:b\to A$ is inverse to function $f:A\to B$ if:

$$f \circ g = 1_B$$
$$g \circ f = 1_A$$

$$A \to^f B \to^g C$$
$$A \to^f B \to^g A$$
$$g \circ f = 1_A$$

$$B \to^g A \to^f B$$
$$f \circ g = 1_B$$

Note 1.3. They say f and g are inverible, use notation f^{-1} for inverse of f

Theorem 1.4

Let $f: A \to B$ be a map: f is invertible if and only if f is a bijection

$$P \Leftrightarrow Q$$
$$P \Leftarrow Q$$

 $P \Rightarrow Q$

Proof that f is invertible means f is a bijection:

let
$$g = f^{-1}$$
 f is surjective since for all $b \in B$
we have $f(g(b)) = f \circ g(b) = 1_B(b) = b$

f is injective since if
$$f(a_1) = f(a_2) \Rightarrow g(f(a_1)) = g(f(a_2))$$

injective: if $f(a_1) = f(a_2)$, then $a_1 = a_2$

Proof that f is a bijection means f is invertible define $f^{-1}: B \to A$ thus:

for each $b \in B$, there exists $a \in A$ s.t. f(a) = b and a is unique with this property (by injectivity)

define
$$f^{-1}(b) = a$$
 then $f \circ f^{-1}(b) = f(f^{-1}(b)) = f(a) = b$ $f^{-1} \circ f(a) = f^{-1}(f(a)) = f^{-1}(b)$ so $f \circ f^{-1} = 1_B$

Definition 1.5 (Equivalence Relation). Equivalence Relation on a set X is a relation $R \subset X \times X$

$$R$$
 is reflexive $(x,x) \in R$ for all $x \in X$
is symmetric $(x,y) \in R \to (y,x) \in R$
is transitive $(x,y) \in R$ and $(y,z) \in R \to (x,z) \in R$

Note 1.6. Usually denote equiv relations by $x \sim y$ instead of $(x,y) \in R$

or
$$x = y$$

 $x \equiv y$

Definition 1.7. A partition of X is a collection of disjoint nonempty subsets of X whose union is X

```
\{X_k : k \in K\} \ x_i \cap x_j = \emptyset \text{ for } i \neq j\{1, 2, 3, 4, 5, 6, 7, 8, 9, 0\} = \{1, 4, 5\} \cup \{6\} \cup \{9\} \cap \{2, 3, 7, 9, 0\}X = X_1 \cup X_2 \cup X_3 \cup X_4
```

§1.1 Creating a partition

let x be a set with equivalence relation \sim for $y \in X$, let $[y] = \{x \in X : x \sim y\}$ [y] is the equivalence class represented by y

Theorem 1.9

Theorem 1.25: The equivalence classes of an equivalence relation (\sim) form a partition

Proof:

1. each equiv class is nonempty since $y \in [y]$ 2. equiv classes are either disjoint or equal since if $y \in [a]$ and $y \in [b]$ then $[a] \subset [b]$ since $c \in [a] \Rightarrow c \sim a \Rightarrow^{transitivity} c \sim y \Rightarrow^{transitivity} c \sim b \Rightarrow c \in [b]$ similarly $[b] \subset [a]$ $3.X = \bigcup_{x \in X} [x]$

Conversely, given a partition of X you can define an equivalence relation by declaring $x \sim y \Rightarrow x, y$ lie in the same part of the partition

Note 1.10. An equivalence relation is a disguised version of a partition

Definition 1.11. Definition: congruence modulo n equivalence relation on Z

 $a \equiv_n b$ if n divides (b-a) i.e. b-a=mn for some $m \in Z$ do NOT use $(a \equiv b(modn))$ EX. \equiv_2 partition

$$\{, -4, -2, 0, 2, \cdot\} \\ \{, -3, -1, 1, 3, \cdot\}$$

Proof: \equiv_n is equiv relation

$$1.a \equiv_n a \text{ since } n | (a-a)$$

$$2.(a \equiv_n b) \Rightarrow (b \equiv_n a) \text{ since } n | (b-a) \text{ then } n | (a-b)$$

$$3.a \equiv_n b \text{ and } b \equiv_n c \text{ then } a \equiv_n c$$

$$n|(b-a)$$
 and $n|(c-b)$ so $n|(b-a)+(c-b)$