Lec 6: Self-Organizing Maps
Previous
Learning NN
D Supervised → desired ontput
MLP RBFN <u>error signal</u> — adjust weight
Critic
② Without a teacher -> reinforcement Learning -> { remard signal penalty
adjust weight
(no feed back) no critic
(no feed back) no critic
Biologically more adequate (so is RL)
Self-Organized Maps (SOMs)
change by how you train
Motivation (Brain) topographic map your brains
(SOM)
output, motor cortex input: Somatisensory cortex
,
learn by Fot
different regions,
different function: -> well-organized!

5. adjust paras { Learg rate neighborhood f

(3) Adaption (X is trang sample, i(X) -) winner index)

 $W_{\bar{j}}(n+1) = W_{\bar{j}}(n) + h(n) h_{\bar{j}}, i(x) (x - W_{\bar{j}}(n))$ Geometrically Δ Wj (n)= η (n) hj, i(x) (n) (X-Wj (n)) Move towards X / X - W (Mt) Win Min) All neurns in the neighbour hood of winner will all move towards x Synaptic weight vector tend to follow the dist. of supert n(n)= n. exp(- 1/2) pecay of learning rate 12: decay rate of n

$$\begin{cases} N(n): & \gamma_0 = 6.1 \\ 6(n): & \delta_0 = \frac{\sqrt{1+N^2}}{2} \end{cases}$$
 matrix $M \times N$

O y(u) -> maintain snral)

$$②$$
 neighbourhood $f^2 \Rightarrow$ only the nearest will be affected

- 1. Randonly initialize
- 2. Sample X
- 3. Winner neum k

$$W_{j}(n+1) = W_{j}(n) + \eta(n) h_{j,k}(n) (x-w_{j}(n))$$

Terminate: Conregence

How we use it?

O Visnalize

j-th neuron's minner signal (k)
then mark j-th neuron with k
this map: antexual map
(9. min)