НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ" ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ

Кафедра обчислювальної техніки

РОЗРАХУНКОВА РОБОТА

по курсу "Комп'ютерна логіка-2"
Виконала: Гарасимович Галина Володимирівна Група ІО-44, Факультет ІОТ,
Залікова книжка № 4406
Номер технічного завдання 1000100110110

(підпис керівника)

Завдання

- 1. Числа X_2 і Y_2 в прямому коді записати у формі з плаваючою комою (з порядком і мантисою, а також з характеристикою та мантисою), як вони зберігаються у пам'яті. На порядок (характеристику) відвести 8 розрядів, на мантису 16 розрядів (з урахуванням знакових розрядів).
- 2. Виконати 8 операцій з числами X_2 і Y_2 з плаваючою комою (чотири способи множення, два способи ділення, додавання та добування кореня з Y_2). Номери операцій (для п.3) відповідають порядку переліку (наприклад, 1 множення першим способом; 6 ділення другим способом; 8 добування кореня). Для обробки мантис кожної операції, подати:
- 2.1 теоретичне обгрунтування способу;
- 2.1 операційну схему;
- 2.2 змістовний мікроалгоритм;
- 2.3 таблицю станів регістрів (лічильника), довжина яких забезпечує одержання 15 основних розрядів мантиси результату;
- 2.4 функціональну схему з відображенням управляючих сигналів;
- 2.5 закодований мікроалгоритм (мікрооперації замінюються управл. сигналами);
- 2.6 граф управляючого автомата Мура з кодами вершин;
- 2.7 обробку порядків (показати у довільній формі);
- 2.8 форму запису нормалізованого результату з плаваючою комою в пам'ять.

Операцію додавання до етапу нормалізації результату можна проілюструвати у довільній формі. Вказані пункти виконати для етапу нормалізації результату з урахуванням можливого нулевого результату.

3. Для операції з двійковим номером $x_3x_2x_1+1$ побудувати управляючий автомат Мура на тригерах (тип тригера вибрати самостійно) і елементах булевого базису.

Визначення та обгрунтування варіанту:

Перевести номер залікової книжки в двійкову систему. Записати два двійкових числа:

$$X_2 = -1x_{10}x_91x_8x_7x_61, x_5x_40x_31x_2x_1$$
 i $Y_2 = +1x_{10}1x_9x_8, x_7x_61x_5x_40x_3x_2x_11,$

де x_i - двійкові цифри номера залікової книжки у двійковій системі числення (x_i - молодший розряд).

$$4406_{10} = 1000100110110_2;$$

$$X_2 = -1x_{10}x_91x_8x_7x_61, x_5x_40x_31x_2x_1 = -10110011,1001110;$$

$$Y_2 = +1x_{10}1x_9x_8, x_7x_61x_5x_40x_3x_2x_11 = +10110,0111001101;$$

Основна частина:

Завдання №1

$$X_{\pi\kappa} = 1.10110011,1001110;$$

$$Y_{\text{TIK}} = 0.10110,0111001101;$$

Представлення чисел у формі з плаваючою точкою з порядком і мантисою:

Представлення чисел у формі з плаваючою точкою з характеристикою і мантисою:

$$\begin{split} E &= P + 2^m \ , \\ m &= 7; \\ 2^7 &= 10000000_2 \end{split}$$

$$E_x = 100000000 + 111 = 10000111$$

Завдання №2

2.1 Перший спосіб множення.

2.1.1 Теоретичне обгрунтування першого способу множення:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення мантис першим способом здійснюється з молодших розрядів множника, сума часткових добутків зсувається вправо, а множене залишається нерухомим. Тоді добуток двох чисел представляється у вигляді:

$$Z=YX=Yx_n2^{-n}+Yx_{n-1}2^{-n+1}...+Yx_12^{-1}=$$

$$= ((...(0+Yx_n) 2^{-1} + Yx_{n-1}) 2^{-1} + ... + Yx_i) 2^{-1} + ... + Yx_1) 2^{-1};$$

$$Z = \sum_{i=1}^{n} (Z_{i-1} + Yx_{n-i+1}) 2^{-1};$$

2.1.2 Операційна схема:

Рисунок 2.1.1- Операційна схема.

2.1.3 Змістовний мікроалгоритм:

Рисунок 2.1.2 - Змістовний мікроалгоритм виконання операції множення першим способом.

2.1.4 Таблиця станів регістрів:

Таблиця 2.1.1-Таблиця станів регістрів для першого способу множення.

No	RG1	RG2	RG3	CT
пс	0	101100111001110	101100111001101	1111
1	0	010110011100111		1110
2	00010110011100110	101011001110011		1101
3	+	110101100111001		
	00101100111001101			
	1000011010110011			1100
	0100001101011001			1100
4	+	011010110011100		
	00101100111001101			1011
	1001110100100110			1011
	0100111010010011			
5	0010011101001001	101101011001110		1010
6	0001001110100100	110110101100111		1001
7	+	111011010110011		
	<u>00101100111001101</u>			1000
	0110110101110001			1000
	0011011010111000			
8	+	111101101011001		
	00101100111001101			
	1001000010000101			0111
	0100100001000010			
9	+	111110110101100		
	00101100111001101			0110
	1010001000001111			
10	0101000100000111	111111011010110		0101
11	0010100010000011	11111101101010		0100
12	+	0111111101101011		0100
12	00101100111001101	011111110110101		
	0110111000001110			0011
	00110111000001110			0011
13	+	001111111011010		
	00101100111001101			0010
	1001000011010100			0010
	0100100001101010			
14	0010010000110101	0001111111101101		0001
15	+	0000111111110110		
	00101100111001101			0000
	01111111000000010			0000
	00111111100000001			

2.1.5 Функціональна схема:

Рисунок 2.1.3- Функціональна схема.

2.1.6 Закодований мікроалгоритм

Таблиця 2.1.2-Таблиця кодування операцій і логічних умов.

Кодування мікрооперацій		Кодування логічних умов	
MO	УС	ЛУ	Позначення
G1:=0	R	RG2[0]	X1
RG2:=X	W2	CT=0	X2
RG3:=Y	W3		
CT:=15	W_{CT}		
RG1:=RG1+RG3	W1		
RG1:=0.r(RG1)	ShR1		
RG2:=RG1[0].r(RG2)	ShR2		
CT:=CT-1	dec		

Рисунок 2.1.4-Закодований мікроалгоритм.

2.1.7 Граф управляючого автомата Мура з кодами вершин:

Рисунок 2.1.5-Граф автомата Мура

2.1.8 Обробка порядків:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_z = P_x + P_y$;

$$P_x=8; P_y=5; P_z=13_{10}=1101_2$$

2.1.9 Нормалізація результату:

Отримали результат: 0111111000000010

Знак мантиси: $1 \oplus 0 = 1$.

Робимо зсув результату вліво, доки у першому розряді не буде одиниця,

Порядок зменшуємо на 1:

1111110000000100; P_z =12;

Запишемо нормалізований результат:

2.2 Другий спосіб множення.

2.2.1 Теоретичне обгрунтування другого способу множення:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення мантис другим способом здійснюється з молодших розрядів, множене зсувається вліво, а сума часткових добутків залишається нерухомою.

$$\begin{split} Z &= Y X_n 2^{-n} + Y X_{n-1} 2^{-n+1} \dots + Y X_1 2^{-1}; \\ Z &= ((0 + Y X_n 2^{-n}) + Y X_{n-1} 2^{-n+1}) \dots + Y X_1 2^{-1}; \\ Z &= \sum_{i=1}^n Z_{i-1} + Y X_{n-i+1} 2^{-n+i-1}; \\ Z_0 &= 0; \\ Y_0 &= 0 \end{split}$$

2.2.2 Операційна схема:

Рисунок 2.2.1- Операційна схема

2.2.3 Змістовний мікроалгоритм:

Рисунок 2.2.2 - Змістовний мікроалгоритм.

2.2.4 Таблиця станів регістрів:

Таблиця 2.2.1-Таблиця станів регістрів.

№	RG1	RG3←	RG2→
пс	0	0000000000000000101100111001101	101100111001110
1	0	0000000000000001011001110011010	010110011100111
2	000000000000001011001110011010	0000000000000010110011100110100	001011001110011
3	+ 0000000000000010110011100110100 0000000	0000000000000101100111001101000	000101100111001
4	+ 0000000000000101100111001101000 0000000	0000000000001011001110011010000	000010110011100
5	00000000001001110100100110110	000000000010110011100110100000	000001011001110

6	00000000001001110100100110110	000000000101100111001101000000	000000101100111
	000000000001001110100100110110		
7	+	000000001011001110011010000000	000000010110011
	000000000101100111001101000000		
	00000000110110101110001110110		
8	+	000000010110011100110100000000	000000001011001
	000000001011001110011010000000		
	000000010010000100001011110110		
9	+	000000101100111001101000000000	000000000101100
	000000010110011100110100000000		
	0000001010001000001111111110110		
10		000000101100111001101000000000	000000000010110
10	0000001010001000001111111110110	0000001011001110011010000000000	000000000010110
11	0000001010001000001111111110110	00000101100111001101000000000000	000000000001011
12	+	000010110011100110100000000000000	000000000000101
	00000101100111001101000000000000		
	0000110111000001110111111110110		
13	+	000101100111001101000000000000000	000000000000010
	000010110011100110100000000000000		
	0010010000110101000111111110110		
14	0010010000110101000111111110110	001011001110011010000000000000000	000000000000001
15	+	010110011100110100000000000000000	0000000000000000
	001011001110011010000000000000000		
	0111111000000010000111111110110		

2.2.5 Функціональна схема:

Рисунок 2.2.3- Функціональна схема.

2.2.6 Закодований мікроалгоритм

Таблиця 2.2.2-Таблиця кодування операцій і логічних умов.

Кодування мікрооперацій		Кодування логічних умов	
MO	УС	ЛУ	Позначення
RG1:=0	R	RG2[0]	X1
RG2:=X	W2	RG2=0	X2

RG3:=Y	W3
RG1:=RG1+RG3	W 1
RG2:=0.r(PG2)	ShR
RG3:=l(RG3).0	ShL

Рисунок 2.2.4-Закодований мікроалгоритм.

2.2.7 Граф управляючого автомата Мура з кодами вершин:

Рисунок 2.2.5 - Граф автомата Мура

2.2.8 Обробка порядків:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_z = P_x + P_y$;

$$P_x=8$$
; $P_v=5$; $P_z=13_{10}=1101_2$

2.2.9 Нормалізація результату:

Отримали результат: 0111111000000010

Знак мантиси: $1 \oplus 0 = 1$.

Робимо зсув результату вліво, доки у першому розряді не буде одиниця,

Порядок зменшуємо на 1:

1111110000000100; P_z =12;

Запишемо нормалізований результат:

2.3 Третій спосіб множення.

2.3.1Теоретичне обгрунтування третього способу множення:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення мантис третім способом здійснюється зі старших розрядів множника, сума часткових добутків і множник зсуваються вліво, а множене нерухоме.

$$\begin{split} Z &= Y X_n 2^{-n} + Y X_{n-1} 2^{-n+1} \ldots + Y X_1 2^{-1}; \\ Z &= Y X_n 2^{-n} + 2 (Y X_{n-1} 2^{-n} + 2 (Y X_{n-2} 2^{-n} \ldots + 2 Y X_1 2^{-n})); \\ Z &= \sum_{i=1}^n 2 Z_{i-1} + Y X_i 2^{-n}; \\ Z_0 &= 0; \\ Y_0 &= 0 \end{split}$$

2.3.2 Операційна схема:

Рисунок 2.3.1 - Операційна схема

2.3.3 Змістовний мікроалгоритм:

Рисунок 2.3.2 - Змістовний мікроалгоритм.

2.3.4 Таблиця станів регістрів:

Таблиця 2.3.1- Таблиця станів регістрів

No	RG1←	RG2←	RG3	CT
пс	000000000000000000000000000000000000000	101100111001110	101100111001101	1111
1	000000000000001011001110011010	011001110011100		1110
2	000000000000010110011100110100	110011100111000		1101
3	+	100111001110000		1100
	<u>00000000000000000101100111001101</u>			
	00000000000011100000100000001			
	00000000000111000001000000010			
4	+	001110011100000		1011
	<u>00000000000000000101100111001101</u>			
	000000000000111101101111001111			
	00000000001111011011110011110			
5	00000000011110110111100111100	011100111000000		1010
6	00000000111101101111001111000	111001110000000		1001
7	+	110011100000000		1000
	0000000000000000101100111001101			

	00000000111110011100001000101		
	000000001111100111000010001010		
8	+	100111000000000	0111
	0000000000000000101100111001101		
	0000000011111011001010010101111		
	0000000111110110010100101011110		
9	+	001110000000000	0110
	0000000000000000101100111001101		
	000000011111011110111001111011		
	000000111110111101110011110110		
10	000001111101111011100111101100	01110000000000	0101
11	000011111011110111001111011000	111000000000000	0100
12	+	110000000000000	0011
	0000000000000000101100111001101		
	0000111110111111100110110100101		
	0001111101111111001101101001010		
13	+	10000000000000	0010
	0000000000000000101100111001101		
	0001111101111111111010100010111		
	00111110111111111101010001011110		
14	+	00000000000000	0001
	000000000000000101100111001101		
	0011111100000001000011111111011		
	0111111000000010000111111110110		
15	1111110000000100001111111101100	000000000000000	0000

2.3.5 Функціональна схема:

Рисунок 2.3.3 - Функціональна схема.

2.3.6 Закодований мікроалгоритм:

Таблиця 2.3.2-Таблиця кодування операцій і логічних умов.

Кодування мікрооперацій		Кодування логічних умов	
MO	УС	ЛУ	Позначення
RG1:=0	R	RG2[n-1]	X1
RG2:=X	W2	CT=0	X2
RG3:=Y	W3		
CT:=15	W_{CT}		
RG1:=RG1+RG3	W1		
RG1:=l(RG1).0	ShL1		
RG2:=l(RG2).0	ShL2		
CT:=CT-1	dec		

Рисунок 2.3.4-Закодований мікроалгоритм.

2.3.7 Граф управляючого автомата Мура з кодами вершин:

Рисунок 2.3.5 - Граф автомата Мура

2.3.8 Обробка порядків:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_z = P_x + P_y$;

$$P_x = 8; P_y = 5; P_z = 13_{10} = 1101_2$$

2.3.9 Нормалізація результату:

Отримали результат: 01111111000000010

Знак мантиси: $1 \oplus 0 = 1$.

Робимо зсув результату вліво, доки у першому розряді не буде одиниця,

Порядок зменшуємо на 1:

1111110000000100; P_z =12;

Запишемо нормалізований результат:

2.4 Четвертий спосіб множення.

2.4.1 Теоритичне обгрунтування четвертого способу множення:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення здійснюється зі старших розрядів множника, сума часткових добутків залишається нерухомою, множене зсувається праворуч, множник ліворуч.

$$Z = Y \cdot x_n \cdot 2^{-n} + Y \cdot x_{n-1} \cdot 2^{-n+1} + \dots + Y \cdot x_1 \cdot 2^{-1} .$$

$$Z = ((\dots((0+Y\cdot 2^{-1}x_1) + Y\cdot 2^{-2}x_2) + \dots + Y\cdot 2^{-k}x_k) + \dots + Y\cdot 2^{-k}x_k).$$

$$Z_i = Z_{i-1} + 2^{-1}Y_{i-1} \cdot x_i \quad \text{3 початковими значеннями } i=1, Y_0=2^{-1}Y, Z_0=0.$$

2.4.2 Операційна схема:

Рисунок 2.4.1- Операційна схема

2.4.3 Змістовний мікроалгоритм:

Рисунок 2.4.2 - Змістовний мікроалгоритм.

2.4.4 Таблиця станів регістрів:

Таблиця 2.4.1- Таблиця станів регістрів

	1 to the period of the property of the propert		
$N_{\underline{0}}$	RG1	RG3 →	RG2 ←
ПС	000000000000000000000000000000000000000	001011001110011010000000000000000	101100111001110
1	00101100111001101000000000000000	000101100111001101000000000000000	011001110011100
2	00101100111001101000000000000000	000010110011100110100000000000000	110011100111000
	+	00000101100111001101000000000000	100111001110000
	000010110011100110100000000000000000000		
3	011100000100000001000000000000		
	+	0000001011001110011010000000000	001110011100000
	000001011001110011010000000000000000000		
4	0111101101111001111000000000000		
5	0111101101111001111000000000000	0000000101100111001101000000000	011100111000000
6	01111011011111001111100000000000	000000010110011100110100000000	111001110000000

		00000000101100111001101000000	11001110000000
	+	000000001011001110011010000000	110011100000000
	000000010110011100110100000000		
7	011111001110000100010100000000		
		00000000010110011100110100000	100111000000000
	+	000000000101100111001101000000	100111000000000
	000000001011001110011010000000		
8	0111110110010100101011110000000		
	+	000000000010110011100110100000	001110000000000
	000000000101100111001101000000		
9	011111011110111001111011000000		
10	011111011110111001111011000000	000000000001011001110011010000	011100000000000
11	011111011110111001111011000000	000000000000101100111001101000	111000000000000
	+	000000000000010110011100110100	1100000000000000
	000000000000101100111001101000		
12	011111011111100110110100101000		
	+	000000000000001011001110011010	1000000000000000
	0000000000000010110011100110100		
13	0111110111111111101010001011100		
	+	000000000000000101100111001101	0000000000000000
	0000000000000001011001110011010		
14	011111100000001000011111110110		
15	0111111000000010000111111110110	000000000000000010110011100110	000000000000000

2.4.5Функціональна схема:

Рисунок 2.4.3 - Функціональна схема.

2.4.6 Закодований мікроалгоритм

Таблиця 2.4.2-Таблиця кодування операцій і логічних умов.

	,	, ,	,			
Кодування	мікрооперацій	Кодування логічних умов				
MO	УС	ЛУ	Позначення			
RG1:=0	R	RG2[n-1]	X1			
RG2:=X	W2	RG2=0	X2			
RG3:=Y	W3					
RG1:=RG1+RG3	W1					
RG3:=0.r(RG3)	ShR					
RG2:=l(RG2).0	$\operatorname{ShL} olimits$					

Рисунок 2.4.4-Закодований мікроалгоритм.

2.4.7 Граф управляючого автомата Мура з кодами вершин:

Рисунок 2.4.5 - Граф автомата Мура

2.4.8 Обробка порядків:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_z = P_x + P_v$;

$$P_x=8; P_y=5; P_z=13_{10}=1101_2$$

2.4.9 Нормалізація результату:

Отримали результат: 0111111000000010

Знак мантиси: $1 \oplus 0 = 1$.

Робимо зсув результату вліво, доки у першому розряді не буде одиниця,

Порядок зменшуємо на 1:

1111110000000100; P_z =12;

Запишемо нормалізований результат:

2.5. Першиий спосіб ділення.

2.5.1Теоритичне обгрунтування першого способу ділення:

Нехай ділене X і дільник Y є n-розрядними правильними дробами, поданими в прямому коді. В цьому випадку знакові й основні розряди операндів обробляються окремо. Знак результату визначається шляхом підсумовування по модулю 2 цифр, записаних в знакових розрядах.

При реалізації ділення за першим методом здійснюється зсув вліво залишку при нерухомому дільнику. Черговий залишок формується в регістрі RG2 (у вихідному стані в цьому регістрі записаний X). Виходи RG2 підключені до входів СМ безпосередньо, тобто ланцюги видачі коду з RG2 не потрібні. Час для підключення n+1 цифри частки визначається виразом t=(n+1)(tt+tc), де tt - тривалість виконання мікрооперації додавання-віднімання; tc - тривалість виконання мікрооперації зсуву.

2.5.2 Операційна схема:

Рисунок 2.5.1- Операційна схема

2.5.3 Змістовний мікроалгоритм:

Рисунок 2.5.2-Змістовний мікроалгоритм

2.5.4 Таблиця станів регістрів:

N₂	RG3(Z)	RG2(X)	RG1(Y)
пс	0000000000000000	00101100111001110	101100111001101
1	0000000000000001	01011001110011100	
		+	
		11101001100011010	
		01000011010110110	
2	000000000000011	10000110101101100	
		+	
		000101100111001101	
		10110011100111001	
3	000000000000110	01100111001110010	
		+	
		11101001100011010	
		01010000110001100	
4	000000000001101	10100001100011000	
		+	
		000101100111001101	
		11001110011100101	
5	000000000011010	10011100111001010	
		+	
		000101100111001101	
		11001001110010111	
6	0000000000110100	10010011100101110	
		+	
		000101100111001101	
		11000000011111011	
7	0000000001101000	10000000111110110	
		+	
		000101100111001101	
	0000000011010000	10101101111000011	
8	0000000011010000	01011011110000110	
		+	
		11101001100011010	
	0000000110100001	01000101010100000	
9	0000000110100001	10001010101000000	
		+	
		000101100111001101	
10	0000001101000010	10110111100001101	
10	0000001101000010	01101111000011010	
		+ 11101001100011010	
		010110001100011010	
11	0000011010000101	1011000100110100	
11	0000011010000101		
		+	

	<u> </u>	
		000101100111001101
		11011110000110101
12	0000110100001010	10111100001101010
		+
		000101100111001101
		11101001000110111
13	0001101000010100	11010010001101110
		+
		000101100111001101
		11111111000111011
14	0011010000101000	11111110001110110
		+
		000101100111001101
		00101011001000011
15	0110100001010001	01010110010000110
		+
		11101001100011010
		00111111110100000
16		01111111101000000
		+
		11101001100011010
	1101000010100011	01101001001011010

2.5.5 Функціональна схема:

Рисунок 2.5.3 – Функціональна схема

2.5.6 Закодований мікроалгоритм

Таблиця 2.5.2-Таблиця кодування операцій і логічних умов.

Кодування мік	рооперацій	Кодування логічних умов				
MO	УС	ЛУ	Позначення			
RG3:=0	W3	RG2[n-1]	X1			
RG2:=X;	W2	RG2=0	X2			
RG1:=Y;	W1					

$RG3:=l(RG3).\overline{RG2[n+1]}$	ShL1	
RG2:=l(RG2).0	ShL2	
$RG2:=RG2+\overline{RG1}+1$	W4	
RG2:=RG2+RG1	W5	

Рисунок 2.5.4-Закодований мікроалгоритм.

2.5.7 Граф управляючого автомата Мура з кодами вершин:

Рисунок 2.5.5 - Граф управляючого автомата.

2.5.8 Обробка порядків:

Порядок частки буде дорівнювати: $P_z = P_x - P_y$;

В моєму випадку P_x =8; P_y =5; P_z =3;

2.5.8 Нормалізація результату:

Отримали результат: 1101000010100011

Знак мантиси: $1 \oplus 0 = 1$.

Нормалізація мантиси не потрібна.

0	0	0	0	0	0	1	1	1	1	1	0	1	0	0	0	0	1	0	1	0	0	0	1	Ī
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

2.6. Другий спосіб ділення.

2.6.1 Теоритичне обгрунтування другого способу ділення:

Нехай ділене X і дільник Y є n-розрядними правильними дробами, поданими в прямому коді. В цьому випадку знакові й основні розряди операндів обробляються окремо. Знак результату визначається шляхом підсумовування по модулю 2 цифр, записаних в знакових розрядах.

Остача нерухома, дільник зсувається праворуч. Як і при множенні з нерухомою сумою часткових добутків можна водночає виконувати підсумування і віднімання, зсув в регістрах Y,Z. Тобто 1 цикл може складатися з 1 такту, це дає прискорення відносно 1-го способу.

2.6.2 Операційна схема

2.6.3 Змістовний мікроалгоритм

Рисунок 2.6.2-Змістовний мікроалгоритм

2.6.4 Таблиця станів регістрів

Таблиия 2.6.1- Таблиия станів регістрів

		1 αθλαιγί 2	.0.1- Тиолиця станів регістрів
Nº	RG3 (Z)	RG2 (X)	RG1 (Y)
пс	00000000000000001	010110011100111000000000000000000000000	000101100111001101000000000000000000000
1	0000000000000011	010110011100111000000000000000000000000	
		+	
		111010011000110011000000000000000000000	
		010000110101101011000000000000000000000	000010110011100110100000000000000000000
2	000000000000110	010000110101101011000000000000000000000	
		+	
		111101001100011001100000000000000000000	
		0011100000100001001000000000000	00000101100111001101000000000000
3	000000000001101	001110000010000100100000000000000000000	
		+	
		111110100110001100110000000000000000000	
		0011001010000100010100000000000	0000001011001110011010000000000
4	0000000000011010	0011001010000100010100000000000	
		+	
		1111110100110001100110000000000	
		0010111110110101111101000000000	0000000101100111001101000000000
5	000000000110100	0010111110110101111101000000000	
		+	0000000010110011100110100000000

		111111101001100011001100000000	
		001011100100111010110100000000	
6	0000000001101000	001011100100111010110100000000	
	000000001101000	+	
		1111111110100110001100110000000	
		00101101100110110001101000000	0000000001011001110011010000000
7	000000011010000	001011011001101100011010000000	000000001011001110011010000000
	000000011010000	+	
		1111111111010011000110011000000	
		001011010100000101001101000000	000000000101100111001101000000
8	0000000110100001	001011010100000101001101000000	
	0000000110100001	+	
		1111111111101001100011001100000	
		001011010001010001100110100000	0000000000010110011100110100000
9	0000001101000010	001011010001010001100110100000	
		+	
		1111111111110100110001100110000	
		001011001111110111110011010000	000000000001011001110011010000
10	0000011010000101	001011001111110111110011010000	
		+	
		1111111111111010011000110011000	
		0010110011110010101111001101000	000000000000101100111001101000
11	0000110100001010	0010110011110010101111001101000	
		+	
		1111111111111101001100011001100	
		001011001110110100011100110100	0000000000000010110011100110100
12	0001101000010100	001011001110110100011100110100	
		+	
		1111111111111110100110001100110	
10		001011001110101001001110011010	0000000000000001011001110011010
13	0011010000101000	001011001110101001001110011010	
		+	
		1111111111111111010011000110011	0000000000000000101100111001101
14	0110100001010001	001011001110100011100111001101	0000000000000000101100111001101
14	0110100001010001	001011001110100011100111001101	
		+	
		1111111111111111101001100011011	0000000000000000010110011100110
15		001011001110100000110011100111 0010110011101111	00000000000000000010110011100110
		+ <u>111111111111111111110100110001101</u>	
	1101000010100011	00101100111001111101001100110101	00000000000000000001011001110011
	1101000010100011	\(\omega_10110011110111011011011010101\)	

2.6.5 Функціональна схема з відображенням управляючих сигналів

Рисунок 2.6.3-Функціональна схема

2.6.6 Закодований мікроалгоритм

Таблиця 2.6.2- Таблиця кодування мікрооперацій

Таблиця кодування	мікрооперацій		Таблиця кодування
			логічних умов
MO	УС	ЛУ	Позначення
RG3:=0	R	RG2[2n+1]	X1
RG1:=Y	W1	RG3[n]	X2
RG2:=X	W2		
RG2:=RG2+RG1	W3		
RG1:=0.r(RG1)	ShR		
RG3:=l(RG3).SM(p)	ShL		
$RG2:==RG2+\overline{RG1}+1$	W4		

Рисунок 2.6.4- Закодований мікроалгоритм

2.6.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 2.6.5- Граф автомата Мура

2.6.8 Обробка порядків:

Порядок частки буде дорівнювати: $P_z = P_x - P_y$;

В моєму випадку P_x =8; P_v =5; P_z =3;

2.6.8 Нормалізація результату:

Отримали результат: 1101000010100011

Знак мантиси: $1 \oplus 0 = 1$.

Нормалізація мантиси не потрібна.

2.7. Операція додавання чисел.

2.7.1 Теоретичне обгрунтування способу

В пам'яті числа зберігаються у ПК. На першому етапі додавання чисел з плаваючою комою виконують вирівнювання порядків до числа із старшим

порядком. На другому етапі виконують додавання мантис. Додавання мантис виконується у доповнювальних кодах, при необхідності числа у ДК переводяться в АЛП. Додавання виконується порозрядно на п-розрядному суматорі з переносом. Останній етап — нормалізація результату. Виконується за допомогою зсуву мантиси результату і коригування порядку результату. Порушення нормалізації можливо вліво і вправо, на 1 розряд вліво і на прозрядів вправо.

1. Порівняння порядків.

$$P_x = +8_{10} = +1000_2$$

$$P_y = +5_{10} = +0101_2$$

$$P_x > P_v =>$$

$$\Delta = P_x - P_y = 8_{10} - 5_{10} = 3_{10} = 11_2$$

2. Вирівнювання порядків.

Робимо зсув вправо мантиси числа Y, зменшуючи Δ на кожному кроці, доки Δ не стане 0.

Таблиця 2.7.1- Таблиця зсуву мантиси на етапі вирівнювання порядків

$M_{ m Y}$	Δ	Мікрооперація
0,101100111001101	11	Початковий стан
0,010110011100110	10	$M_y=0.r(M_y); \Delta:=\Delta-1$
0,001011001110011	01	$M_y=0.r(M_y); \Delta:=\Delta-1$
0,000101100111001	00	$M_y=0.r(M_y); \Delta:=\Delta-1$

3. Додавання мантис у модифікованому ДК.

 $X_{MJK} = 11.010011000110011$

 $Y_{MJK} = 00.000101100111001$

Таблиця 2.7.2-Додавання мантис(для додавання)

M_{X}	1	1,	0	1	0	0	1	1	0	0	0	1	1	0	0	1	1
M_{Y}	0	0,	0	0	0	1	0	1	1	0	0	1	1	1	0	0	1
$M_{\rm Z}$	1	1,	1	0	0	1	1	1	0	1	0	0	1	0	1	1	1

 $Z_{\text{MK}} = 1.1001110100101111$

 $Z_{\text{IIK}} = 1.011000101101100$

4. Нормалізація результату (В ПК).

$$P_z = 7_{10} = \!\! 111_2$$

2.7.2 Операційна схема

m-кількість розрядів мантиси n-кількість розрядів порядку q=]log₂m[

Рисунок 2.7.1-Операційна схема

Виконаємо синтез КС для визначення порушення нормалізації.

Таблиця 2.7.4-Визначення порушення нормалізації

Po3	эяди	регістру	Значення				
RGZ	Z		функцій				
Z' ₀	Z_0	Z_1	L	R			
0	0	0	0	1			
0	0	1	0	0			
0	1	0	1	1			
0	1	1	1	0			

$$L=Z_{0}$$
, $R=\overline{Z_{1}}$.

Результат беремо по модулю, знак встановлюємо за Z'₀ до нормалізації.

2.7.3 Змістовний алгоритм

Рисунок 2.7.2-Змістовний мікроалгоритм

2.7.4 Таблиця станів регістрів

1) Додавання

Таблиця 2.7.5- Таблиця станів регістрів

№	RGPZ	RGZ	ЛПН(L	ППН(R)	CT	Мікрооперація
такту)			
ПС	001000	11. 100111010010111	0	1	100	

2.7.5 Функціональна схема з відображенням керуючих сигналів

Рисунок 2.7.3 – Функціональна схема

2.7.6 Закодований мікроалгоритм

Таблиця кодування мікрооперацій						
MO	УС					
CT:=m;	W					
RGZ:=Z;	Wl					
$Z'_0 Z_0 := \overline{Z'_0 Z_0}$	W2					
RGZ:=RGZ(m+2).r(RGZ)	ShR					
RGPZ:=RGPZ+1	inc					
RGZ:=l(RGZ).0	ShL					
RGPZ:=RGPZ-1	dec					
CT:=CT-1;	dec					

Таблиця 2.7.7– Таблиця кодування

Таблиця кодування логічних								
умов								
ЛУ	Позначення							
$Z'_0 = 0$	Xl							
$L = Z_0$	X2							
$R = \overline{Z_1}$	X3							
CT = 0	X4							

2.7.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 2.7.5 – Граф автомата Мура

2.7.8 Обробка порядків

$$P_{X+Y} \!\!= 8_{10} \!=\! \! 1000_2$$

2.7.9 Форма запису результату з плаваючою комою

Результат додавання Z=X+Y.

$$\begin{split} Z_{\pi\kappa} &= 1.\,011000101101100 \\ P_z &= 7_{10}\,{=}111_2 \\ M_z &= {-}\,110001011011000_2 \end{split}$$

	0 1	1 1	1	0	1	0		0	1	1	1	1	1	1	0	0	0	0	0
--	-----	-----	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---

2.8. Операція добування кореня

2.8.1 Теоритичне обгрунтування операції обчислення квадратного кореня

Аргумент вводиться зі старших розрядів. Порядок результату дорівнює поділеному на два порядку аргумента. З мантиси добувається корінь завдяки нерівностям:

$$Z_i \le \sqrt{X} \le Z_i + 2^{-i}$$
;
 ${Z_i}^2 \le X \le {Z_i}^2 + 2^{-i}Z_i + 2^{-2i}$;
 $0 \le 2^{i-1}(X - {Z_i}^2) \le Z_i + 2^{-i-1}$.

Виконання операції зводиться до послідовності дій:

1. Одержання остачі.

$$R_{i+1}' = 2R_i - Z_i - 2^{-i-2};$$

2. Якщо
$$R_{i+1} \geq 0$$
, то $Z_{i+1} = 1$, $R_{i+1} = R_{i+1}$.

3. Якщо
$$R_{i+1}$$
 < 0, то $Z_{i+1} = 0$, $R_{i+1} = R_{i+1} + Z_i - 2^{-i-2}$.

Відновлення остачі додає зайвий такт, але можна зробити інакше:

 $R_{i+2} = 2R_{i+1}' + Z_i + 2^{-i-2} + 2^{-i-3}$, тоді корінь добувається без відновлення залишку.

Для цього R_i зсувається на 2 розряди ліворуч, а Z_i - на 1 розряд ліворуч, і формується як при діленні.

2.8.2 Операційна схема операції обчислення квадратного кореня

Рисунок 2.8.1 –Операційна схема

2.8.3 Змістовний мікроалгоритм

Рисунок 2.8.2 – Змістовний мікроалгоритм

2.8.4 Таблиця станів регістрів

Таблиця 2.8.1 – Таблиця станів регістрів

	T	<u>, , , , , , , , , , , , , , , , , , , </u>	, 1	
Νō	RZ	RR	RX	CT
пс		0000000000000000		
пз	000000000000000	00000000000000010	101100111001110	1111
1		0000000000000010	010110011100111	1110
		+		
		11111111111111111		
		00000000000000001		
	000000000000001	0000000000000111		
2		0000000000000111	001011001110011	1101
		+		
		11111111111111011		
		00000000000000010		
	000000000000011	0000000000001000		
3		0000000000001000	000101100111001	1100
		+		
		1111111111110011		
		11111111111111011		
	00000000000110	11111111111101111		

4		111111111111101111	000010110011100	1011
		+		
		00000000000011011		
		0000000000001010		
	00000000001101	00000000000101010		
5	000000000001101	00000000000101010	000001011001110	1010
		+	000001011001110	
		11111111111001011		
		11111111111110101		
	00000000011010	11111111111010101		
6	000000000011010	11111111111010101	000000101100111	1001
		+	000000101100111	
		00000000001101011		
		0000000001000000		
	000000000110101	0000000100000011		
7	00000000110101	0000000010000011	000000010110011	1000
		+	000000010110011	
		11111111100101011		
		00000000000101110		
	000000001101011	000000000101110		
8	00000001101011	00000000010111000	00000001011001	0111
		+	000000001011001	0111
		11111111001010011		
		11111111100001011		
	000000011010110	111111100001011		
9	0000001101010	11111110000101100	00000000101100	0110
		+		
		00000001101011011		
		11111111110000111		
	000000110101100	111111111000011100		
10		111111111000011100	00000000010110	0101
		+		
		00000011010110011		
		00000010011001111		
	000001101011001	00001001100111100		
11		00001001100111100	00000000001011	0100
		+		
		11111001010011011		
		00000010111010111		
	000011010110011	00001011101011100		
12		00001011101011100	00000000000101	0011
		+		
		11110010100110011		
		11111110010001111		
	000110101100110	11111001000111100		
13	001101011001101	11111001000111100	000000000000000000000000000000000000000	0010

		+		
		00011010110011011		
		00010011111010111		
		01001111101011100		
14		01001111101011100	000000000000001	0001
		+		
		11001010011001011		
		00011010000100111		
	011010110011011	01101000010011100		
15		01101000010011100	000000000000000	0000
		+		
		10010100110010011		
		11111101000101111		
	110101100110110	11110100010111100		

2.8.5 Функціональна схема операції обчислення квадратного кореня

Рисунок 2.8.3 – Функціональна схема

2.8.6 Закодований мікроалгоритм

Таблиця 2.8.2 – Таблиця кодування

Таблиця кодування мікрооперацій						
MO	УС					
RX:=X;	WX					
RR:=0;	R					
RZ:=0	R1					
CT:=15	WCT					
RR:=RR+RZ.11	W1					
$RR:=RR+\overline{RZ}.11$	W2					
RR=LL(RR).RX(n-1;n-2)	ShLL					
RX:=LL(RX).00	ShLL0					
$RZ:=L(RZ).\overline{RR(n+1)}$	ShL					
CT:=CT-1	dec					

Таблиця кодування логічних								
умов								
ЛУ	Позначення							
RR[n+1]	X1							
RZ[n]	X2							

Рисунок 2.8.4 – Закодований мікроалгоритм

2.8.7Граф управляючого автомата Мура з кодами вершин

Рисунок 2.8.5 – Граф управляючого автомата Мура

2.8.8 Обробка порядків

$$P_z = P_x/2;$$

В моєму випадку P_z =4;

2.8.9 Запис результату

Отримали результат Z = 110101100110110;

Результат нормалізований, готовий до запису у мантису:

 $x_3x_2x_1 = 6$ — операція додавання.

3.1 Таблиця співвідношення управляючих входів операційного автомата і виходів управляючого автомата

За закодованим мікроалгоритмом складемо таблицю:

Таблиця 3.1 Таблиця кодування сигналів

Входи операційного автомата	Виходи управляючого автомата
CLR1, W2, W3, W_{CT}	Y1
W1	Y2
SR1,SR2,DEC	Y3

3.2 Мікроалгоритм в термінах управляючого автомата

Зробимо автомат Мура циклічним задля зменшення кількості вершин.

Рисунок 3.1- Закодований мікроалгоритм

Будуємо граф автомата Мура 01 Q_1Q_2 00 <u>Z2</u> $\mathbf{Z}1$ **Y**1 $\overline{X1}$ X2 **X**1 2*X*1 <u>Z4</u> Y3 <u>Z3</u> $\overline{X2}X1$ 11 10 Рисунок 5.2- Граф автомата Мура

3.3 Структурна таблиця автомата

3.3.1Таблиця співвідношення управляючих входів операційного автомата і виходів управляючого автомата

Таблиця 3.1 - Таблиця співвідношення управляючих входів операційного автомата і виходів управляючого автомата

управляючі входи	виходи управляючого автомата
W _M ,W _P	Y1
SHR_M , inc_P	Y2
W_{CT}	Y3
SHL_{M} , inc_{P} , dec_{CT}	Y4

3.3.2Мікроалгоритм в термінах управляючого автомата

Рисунок 3.1 – Закодований мікроалгоритм додавання

3.3.3Структурна таблиця автомата

Таблиця 3.2 - Структурна таблиця автомата

$Q_3Q_2Q_1$	$Q_3Q_2Q_1$	OV F N	$Y_1Y_2Y_3Y_4$	J ₃ K ₃	J_2K_2	J_1K_1
0 0 0	0 0 1		0000	0 -	0 -	1 -
0 0 1	0 1 1	1	1000	0 -	1 -	- 0
0 0 1	1 0 1	0	1000	1 -	0 -	- 0
0 1 1	1 1 1		0100	1 -	- 0	- 0
1 0 1	1 1 0	- 0 0	0010	- 0	1 -	- 1
1 0 1	1 1 1	- 11	0010	- 0	1 -	- 0
1 1 0	1 1 0	- 0 0	0001	- 0	- 0	0 -
1 1 0	1 1 1	- 11	0001	- 0	- 0	1 -

3.4Синтез функцій виходів і переходів

Рисунок 3.2 – Діаграми Вейча для функцій виходу

Рисунок 3.3 – Діаграми Вейча для функцій переходу

3.5 Функціональна схема пристою (виходи управляючого автомата підключені до входів операційного автомата)

Рисунок 3.4 – Функціональна схема управляючого автомата

Висновок

У даній розрахунковій роботі було виконано операції з числами в двійковому коді з плаваючою комою, а саме: множення чотирма способами, ділення двома способами та додавання.

Було побудувано управляючий автомат Мура на тригерах JK і елементах булевого базиса для операції додавання.

Зроблено мінімізацію функцій тригерів і в середовищі AFDK побудована функціональна схема автомата.

Під час виконання даної розрахункової роботи я повторив для себе матеріал курсу «Компютерна логіка - 1», а також закріпив знання з курсу «Компютерна логіка - 2».

Було використано наступну літературу:

- 1) Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів: Навчальний посібник.–К.: Книжкове вид-во НАУ, 2009. 360 с.
- 2) Конспект лекцій з курсу «Комп'ютерна логіка 1»
- 3) Конспект лекцій з курсу «Комп 'ютерна логіка 2»