Capítulo 2

Modelado de Entidad-Relación Parte 1

- Un buen diseño de esquema de BD debe considerar:
 - Evitar la redundancia de información
 - Completitud:
 - Expresar todos los aspectos relevantes del problema (usando la notación de esquemas de BD).
 - Aquí nos referimos también a las restricciones de integridad.
 - Comprensibilidad: Esquema de BD fácil de entender.
 - Hay otras metas a lograr que veremos más adelante.

- En este capítulo vamos a estudiar el siguiente enfoque para diseño de esquemas de BD:
 - Diseño de entidad-relación (ER): modelado de entidades y relaciones con toma de buenas decisiones de modelado.

- Un proceso a seguir para diseño de esquemas de datos:
 - 1. Capturar las **necesidades de datos**.
 - Para esto hay que interactuar con clientes y usuarios.
 - Se obtiene así una descripción textual de los requisitos. El lenguaje natural suele tener algunos problemas a resolver como:
 - Ambigüedades: más de una interpretación posible.
 - Inconsistencias: partes que se contradicen entre sí.

Estos problemas deben ser **resueltos junto con los participantes.**

- Elegir modelo de datos (p.ej. modelo-ER) y se traducen los requisitos en un esquema de la BD (siguiendo ese modelo de datos).
- 3. Revisar el esquema de la BD producido
 - Chequear que estén todos los requisitos que se pueden expresar.
 - Chequear que no se contradiga esquema de BD con requisitos.
 - Eliminar redundancia de información del esquema de BD.

- En este capítulo aplicaremos el proceso anterior usando modelos de entidad-relación.
- Dividimos el estudio en dos partes:
 - 1. Primero estudiaremos los conceptos fundamentales de los modelos FR.
 - Además de los conceptos se irá explicando cómo se describen restricciones de integridad en modelos ER
 - 2. Luego consideraremos cómo tomar buenas decisiones de diseño durante el modelado ER.

Conjuntos de Entidades

- Una entidad es un objeto que existe y es distinguible de los otros objetos.
 - **Ejemplos**: persona específica, empresa, recital, planta.
- Las entidades tienen atributos.
 - Ejemplo: una persona tiene nombres y direcciones.
- Un *conjunto de entidades (CE)* es un conjunto de entidades del mismo tipo (i.e. Con los mismos atributos) que comparte las mismas propiedades.
 - Ejemplo: conjunto de todas las personas con los atributos del ejemplo anterior.

Conjuntos de Entidades

Ejemplo:

- Se quiere modelar una base de datos de estudiantes e instructores, identificados por número de matrícula y legajo, respectivamente.
 Une instructor puede instruir a varios estudiantes, pero un estudiante es instruido por un solo instructor.
- ¿Qué conjuntos de entidades tenemos aquí?

Conjuntos de Entidades

instructor_ID instructor_name

76766	Crick
45565	Katz
10101	Srinivasan
98345	Kim
76543	Singh
22222	Einstein

instructor

student-ID student_name

98988	Tanaka
12345	Shankar
00128	Zhang
76543	Brown
76653	Aoi
23121	Chavez
44553	Peltier

student

Atributos

- Dominio es el conjunto de valores permitidos para cada atributo
- ☐ Tipos de atributos:
 - ☐ Atributos *Simples* y *compuestos*.

Los atributos hoja son simples (no se siguen descomponiendo)

- ☐ Atributos *uni-valorados* (toman un valor) y *multi-valorados* (pueden tomar varios valores)
 - □ **Ejemplo**: *números-telefónicos* de una persona es atributo multivalorado, *nombre* de una persona es atributo univalorado.
- Atributos derivados
 - ☐ Pueden computarse de otros atributos.
 - ☐ **Ejemplo**: *edad* dada la *fecha de nacimiento*.

Claves

• **Ejemplo**: el CE *instructor* tiene atributos:

ID, name, dept_name, salary

- Con el ID y el name sabemos de qué instructor estamos hablando.
- Basta considerar el ID para saber a cuál instructor nos referimos.
- Con el salary no sabemos de qué instructor se habla.
- Una superclave de un CE es un conjunto de uno o más atributos cuyos valores unívocamente determinan cada entidad.

Claves

- Una clave candidata (CC) de un CE es una superclave minimal (i.e. si se quita atributo dejamos de tener superclave).
 - ID es clave candidata de instructor (y no tiene otra CC)
 - course_id es clave candidata de course
- Una clave candidata no necesariamente tiene cardinalidad mínima.
- Ejemplo: un CE biblioteca de las bibliotecas de una ciudad tiene los atributos: nombreBib, calle, número
 - nombreBib clave candidata
 - calle, número clave candidata

Claves

- Aunque varias claves candidatas pueden existir, una de las claves candidatas es seleccionada para ser la clave primaria.
- **Ejemplo**: en el CE biblioteca se puede elegir:
 - nombreBib clave primaria,

0

- calle, número clave primaria
- No necesariamente es la de menor cantidad de atributos

Modelado ER

- Propósito: diagramar conjuntos de entidades con sus atributos.
- Notaciones de diagramas que usaremos:
 - 1. La de las ediciones 4 y 5 del libro del Silberschatz
 - 2. La de la edición 6 del libro de Silberschatz
 - Principalmente difieren en cómo se representan los atributos de los conjuntos de entidades.
 - En las demás cosas son bastante similares.

Conjuntos de Entidades y Atributos

E
A1
A2
A2.1
A2.2
{A3}
A40

Notación de clases: sexta edición del Silberschatz

attributes: simple (A1), composite (A2) and multivalued (A3) derived (A4)

¿Qué ventajas tiene la segunda notación? ¿Qué ventajas tiene la primera notación?

Otra forma de decirlo: cuarta y quinta edición del Silberschatz

entity set E with simple attribute A1, composite attribute A2, multivalued attribute A3, derived attribute A4, and primary key A1

Conjuntos de Entidades y Atributos

• Ejercicio: representar la siguiente situación: hay docentes. Un docente tiene un identificador que es único entre los docentes. Además un docente tiene un nombre que consiste de: primer nombre, inicial del medio y apellido. Además un docente tiene un domicilio que se compone de posición de calle, ciudad, estado y código postal; la posición de calle consiste de número, nombre de calle y número de departamento (el cuál es opcional). Además un docente tiene cero o más números telefónicos. Finalmente un docente tiene una fecha de nacimiento y una edad.

Conjunto de relaciones supervisa

Una relación es una asociación entre varias entidades.

Ejemplo:

22222 (Einstein) 44553 (Peltier) entidad instructor entidad estudiante

- □ Tenemos la relación: ((22222, Einstein), (44553, Peltier))
- □ Un conjunto de relaciones (CR) es una relación matemática entre $n \ge 2$ conjuntos de entidades,

$$\{(e_1, e_2, \dots e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n\}$$
 donde (e_1, e_2, \dots, e_n) es una relación.

Por ejemplo: el CR supervisa entre instructor y estudiante.

- Un atributo puede ser también una propiedad de un conjunto de relaciones.
- □ Conjunto de relaciones *supervisor* entre *instructor y estudiante* con *a*ttributo *fecha* que indica cuándo a un alumno se le asignó un profesor supervisor.

Uno a uno

Uno a varios

Nota: Algunos elementos en *A* y *B* pueden no ser mapados a algunos elementos en el otro conjunto

Varios a uno

Varios a varios

Nota: Algunos elementos en *A* y en *B* pueden no ser mapeados a algunos elementos en el otro conjunto

- □ Requisito: quiero poder distinguir entre estos 4 casos y expresarlos como restricciones de integridad en el diagrama ER.
- ☐ Sea R un conjunto de relaciones de conjuntos de entidades E1 a conjunto de entidades E2:
- Conjuntos de relaciones uno-uno: una entidad de E1 está asociada con a lo más una entidad de E2 via R. Una entidad de E2 está asociada con a lo más una entidad de E1 via R.
- □ Conjuntos de relaciones uno-varios: una entidad de E1 está asociada con varias (incluyendo 0) entidades de E2 via R. Una entidad de E2 está asociada con a lo más una entidad de E1 via R.

- ☐ Sea R un CR de conjuntos de entidades E1 a conjunto de entidades E2:
- □ Conjuntos de relaciones varios-uno: una entidad de E1 está asociada con a lo más una entidad de E2 via R. Una entidad de E2 está asociada con varias (incluyendo 0) entidades de E1 via R.
- □ Conjuntos de relaciones varios-varios: una entidad de E1 está asociada con varias (incluyendo 0) entidades de E2 via R. Una entidad de E2 está asociada con varias (incluyendo 0) entidades de E1 via R.

Propósito: Diagramar conjuntos de relaciones binarios. Notación para correspondencia de cardinalidades.

- **Ejercicio 1**: representar el CR *supervisa* (trabajo especial) entre *instructor* y *estudiante*.
 - Un docente puede supervisar varios estudiantes y un estudiante puede tener a lo sumo un supervisor.
- **Ejercicio 2**: representar el CR *pertenece* entre *cliente* y *carrito de compras* de un sitio de comercio electrónico.
 - ¿Cómo conviene que sea la correspondencia de cardinalidades?
- **Ejercicio 3**: representar el CR *contiene* entre artículo y carrito de compras.
 - Reflejar además que para cada artículo en un carrito se tiene además una cantidad del artículo.

Solución ejercicio 1:

Solución ejercicio 2:

Solución ejercicio 3:

Formas de participación de CE en CR

 a_{7}

A participa parcialmente

A participa totalmente

- CE estudio, CR posee y CE película.
 - Toda película es poseída por un estudio.
- CE docente, CR supervisa y CE alumno.
 - Un docente puede no ser supervisor y un alumno puede no ser supervisado.
- Requisito: quiero poder distinguir entre estos dos casos y expresarlos como restricciones de integridad en un diagrama ER.

Formas de participación de CE en CR

- Participación total: (indicada por línea doble): toda entidad en el conjunto de entidades participa en al menos una relación en el conjunto de relaciones.
 - Ejemplo: participación de caja de ahorro en cliente es total.
 - o Toda caja de ahorro debe tener clientes asociados.

- Participación parcial: algunas entidades no participan en alguna relación en el conjunto de relaciones.
 - ☐ **Ejemplo**: participación de *instructor* en *supervisor* es parcial.

- Ejercicio: Indicar conjuntos de relaciones y restricciones de integridad (i.e. correspondencia de cardinalidades y forma de participación) para el siguiente enunciado.
 - "Un socio puede tener prestado varios libros y todo libro ha sido prestado a a lo sumo un socio. Una biblioteca puede tener varios libros, y todo libro debe pertenecer a a lo sumo una biblioteca. Un socio puede estar inscripto en varias bibliotecas y una biblioteca puede tener varios socios. Un bibliotecario trabaja en a lo más una biblioteca y en una biblioteca puede haber varios bibliotecarios".

Notación Alternativa **preferida** para Correspondencia de Cardinalidades

- Notación de intervalos o de cardinalidades
 - Usar [a..b] o [a..*].
- □ Los límites de cardinalidades también pueden expresar restricciones de participación. ¿Cómo?
- ☐ ¿Qué ventajas tiene la notación de cardinalidades frente a la anterior?

Importante: Notar que el lugar donde se pone la información es al revés (o sea, del otro lado) que en correspondencia de cardinalidades.

Notación Alternativa para Correspondencia de Cardinalidades

• **Ejercicio**: reflejar la siguiente situación usando notación de intervalos: en varios países árabes un hombre puede casarse con hasta 4 mujeres.

Notación Alternativa para Correspondencia de Cardinalidades

Solución:

Roles

- Los CE en un CR no necesariamente son distintos.
 - Cada occurrencia de un CE juega un "rol" en el CR.
- □ Las etiquetas "course_id" y "prereq_id" en prereq (correlatividades) son llamadas roles.

Conjuntos de Entidades Débiles

Situación: tenemos un *sistema de bibliotecas de una ciudad*. En cada Biblioteca se tienen *copias de libros*. Para reflejar estas entidades usamos CE *libro de biblioteca*. Cada copia tiene un *n° de inventario*.

libro de biblioteca es una copia de un libro. De un libro puede haber varias copias en distintas bibliotecas.

n° inventario no es clave primaria de libro de biblioteca.

El n° de inventario se puede repetir en distintas bibliotecas, pero no en una biblioteca.

Un libro de biblioteca depende de una biblioteca.

Conjuntos de Entidades Débiles

- Un CE que no tiene una clave primaria en el conjunto de sus atributos, se llama conjunto de entidades débiles.
 - Un CE débiles se representa con rectángulo de borde doble.
- La existencia de un CE débiles depende de la existencia de un CE fuertes llamado CE identificador.
- ¿En el caso de libro-biblioteca cuál sería el CE identificador?

Conjuntos de Entidades Débiles

- Hay un CR varios-uno entre CE débil y CE identificador, donde el CE débil tiene participación total.
 - A este CR se le llama CR de identificación.
 - El mismo se representa con un diamante doble.
- El discriminador de un CE débiles es un conjunto de atributos que
 - permite distinguir entre todas las entidades de un CE débiles asociadas a la misma entidad fuerte.
 - Los atributos del discriminador se subrayan con línea de guiones

- Problema: ¿cómo identificar entidades débiles?
- Idea de solución: considerar tanto atributos de CE débil como atributos del CE identificador.
- Solución: La clave primaria de un CE débiles se forma con la clave primaria del CE identificador más el discriminador del CE débiles.

- **Ejercicio**: modelar la siguiente situación reflejando CE débiles, discriminadores y CR de identificación:
 - materia con atributos: nombre y semestre;
 - carrera con atributos: nombre y duración;
 - facultad con atributos: nombre y universidad.
 - una materia puede ser dictada en diferentes carreras con significados diferentes.
 - una carrera puede ser dictada en diferentes facultades, con significados diferentes.

Solución:

• Un CE puede ser débil de varios CE fuertes.

Conjuntos de Relaciones de Grado > 2

Un empleado puede trabajar en distintas sucursales, en distintos trabajos.

Por ej. Amalia trabaja como repositora en la sucursal de Argüello, y como supervisora de cajas en la de Nueva. Córdoba.

- Contexto de problema: cuando en un diseño ER hay varios CE que son bastante similares en el sentido que:
 - comparten varios atributos en común, que tienen las mismas claves primarias y que participan en los mismos CR.

¿Qué sucede?

- Mucha repetición de atributos, de CR, y de claves primarias.
- Ejemplo: en la figura de la página previa aquellos elementos marcados con rojo son los que se repietn.

¿Por qué esto es malo?

- Modelos que ocupan demasiado espacio debido a todas las repeticiones.
 - Demasiados CR hacen el diagrama más intrincado.
- Esto se ve agravado cuando el esquema de la BD tiene muchos CE y CR
 - el ejemplo anterior muestra que puede pasar incluso con unos pocos elementos.
- Al cambiar un CE o CR muchas veces hay que propagar el cambio a otros CE o CRs.
 - Y el diseñador se olvida de hacerlo.

- Solución: usar especialización-generalización.
- Especialización hace referencia a un proceso de diseño descendiente (top-down) donde
 - designamos subgrupos dentro de un CE que son distintivos de otras entidades en el CE.
- Estos subgrupos son CE de más bajo nivel que
 - tienen atributos específicos (adicionales a los atributos del CE del que se saca el subgrupo), o
 - participan de CR que no aplican al CE de más alto nivel.

- Una especialización se denota con un triángulo etiquetado ISA (o ES) – e.g. instructor ES person.
 - La relación ISA o ES se
 llama también relación de superclase subclase.

- Herencia de atributos: un CE de más bajo nivel hereda:
 - todos los atributos,
 - la clave primaria, y
 - participaciones en CR

del CE de más alto nivel con el cual está relacionado.

- Generalización hace referencia a un proceso de diseño ascendiente (bottom up)
 - que generaliza unos cuantos CE que comparten las mismas propiedades en un CE de más alto nivel.

- Ventajas de usar especialización-generalización
 - Resuelve los problemas señalados anteriormente.
 - Da estrategias para diseñar esquemas de BD (i.e. diseño ascendente, diseño descendente, clasificar, generalizar, etc.)

Restricciones de integridad:

- Para indicar si una entidad pertenece o no a más de un CE de nivel más bajo dentro de la generalización.
 - Disjunto: una entidad puede pertenecer a solo un CE de nivel más bajo.
 Usar palabra reservada disj.
 - Solapado: una entidad puede pertenecer a más de un CE de nivel más bajo.
- Restricción de completitud: para indicar si una entidad en el CE de nivel más alto debe pertenecer a al menos uno de los CE de nivel más bajo en la generalización.
 - Total: una entidad debe pertenecer a un CE de nivel más bajo (usar línea doble para indicarlo).
 - Parcial: una entidad puede no pertenecer a un CE de nivel más bajo.

• **Ejercicio**: pensar las restricciones de integridad para el diagrama anterior.

Solución:

- Empleado generalización parcial y disjunta de oficial de cuentas, secretaria y cajero.
- Persona generalización total y solapada de empleado y cliente