Approfondimento di Intelligenza Artificiale

Studente: Tristano Munini

ANNO ACCADEMICO 2019-2020

1 GAN+RL per testi

In questa sezione vengono illustrati due modelli capaci di generare testi sintetici sfruttando un'architettura GAN in cui G viene allenato attraverso $Reinforce-ment\ Learning$. Il primo modello, chiamato SeqGAN, è stato presentato in [2] ed illustrato anche in [4]; il secondo è evoluzione del primo, permette di generare testi più lunghi, prende il nome di LeakGAN ed è descritto in [1]. Si vuole anche citare [3] in cui vengono illustrati alcuni modelli usati prima delle SeqGAN e quelli sviluppati successivamente fino ad arrivare alle LeakGAN. Nell'articolo si trova anche un confronto tra MaliGAN, RankGAN, MaskGAN e TextGAN.

1.1 SeqGAN

Come riportato nell'introduzione dell'articolo [2], per generare frasi che siano verosimili è necessario allenare un discriminatore che valuti frasi intere e che assegni a queste un punteggio. Purtroppo ciò rende molto difficile allenare il generatore, perché non è possible determinare se un punteggio basso corrisponde all'intera struttura della frase oppure soltanto ad una o poche parole. La problematica è ancora più evidente nel caso in cui il generatore è una RNN rendendo difficile, ad esempio aggiornare efficacemente il modo con cui vengono create le parti iniziali di frasi.

Le SeqGAN affrontano il problema in un modo molto interessante: se si considera il punteggio che D fornisce alle frasi come reward per G e se questo utilizza come stato la frase generata fino ad ora e come azione la scelta della parola successiva, allora è possibile sfruttare il Policy $\mathit{Gradient}$ sul generatore. Di fondamentale importanza la Monte Carlo Search con $\mathit{Rollout}$ che viene effettuata per valutare la bontà di frasi incomplete, così da alterare efficacemente la distribuzione della parola che ancora deve essere scelta: durante la generazione di una frase, G non può ricevere una valutazione da D perché il discriminatore è in grado di valutare soltanto frasi intere quindi vengono generate N frasi con prefisso la frase generata fino ad ora. Si sfrutta poi D per valutare tutte le N frasi e si effettua una media dei reward ottenuti, così si ottiene il valore atteso della bontà della frase che si sta generando. Ci si riferisce a questo furbo accorgimento come Monte Carlo $\mathit{state-action}$ search .

Riprendendo i formalismi usati nell'articolo si ha:

- un modello generativo G_{θ} , con θ si indica i parametri interni, in grado di generare sequenze $Y_{1:T} = (y_1, \dots, y_t, \dots, y_T)$ con gli y_t appartenenti all'insieme dei token validi \mathbb{T} :
- al tempo t lo stato s equivale ai token prodotti fino ad ora (y_1, \ldots, y_{t-1}) mentre l'azione a è il prossimo token da selezionare y_t ;
- con $G_{\theta}(y_t|Y_{1:t-1})$ si indica il modello non deterministico descritto.

mai introdotte per ora, TODO da fare sopra • Il modello discriminativo D_{ϕ} , con parametri ϕ , è in grado di fornire la probabilità $D_{\phi}(Y_{1:T})$ che $Y_{1:T}$ sia stato estratto dai dati reali.

Prima di continuare con la loss function e la formulazione della Monte Carlo Search, va sottolineato che il modello RNN è leggermente diverso da quello classico, infatti ad ogni passo la rete prende in input il token generato al passo precedente anziché riceverlo dall'esterno. Si può quindi dire che assomigli ai modelli RNN usati come decoder durante la traduzione di testi, nei quali lo stato interno e l'ultima parola tradotta vengono utilizzati per aggiornare lo stato e generare la parola successiva. Il primo token, o stato di partenza, è un token particolare che si indica con s_0 . Lo stato h_0 di partenza può essere fissato oppure selezionato casualmente in modo da modificare il punto di partenza (simili all'input z per i VAE). L'obiettivo del generatore G_{θ} è quello di produrre una sequenza a partire dallo stato s_0 che massimizzi il reward totale, in formule:

$$J(\theta) = \mathbb{E}[R_t|s_0, \theta] = \sum_{y_1 \in \mathbb{T}} G_{\theta}(y_1|s_0) \cdot Q_{D_{\phi}}^{G_{\theta}}(s_0, y_1)$$

in cui $Q_{D_{\phi}}^{G_{\theta}}(s,a)$ è la funzione che indica il reward accumulabile eseguendo l'azione a allo stato s e seguendo la policy G_{θ} nei passi successivi. Questa funzione dovrà necessariamente essere stimata, perché sappiamo che D_{ϕ} non può essere sfruttato su sequenze incomplete. Quindi si utilizza una N-Monte Carlo Search con Rollout per stimare N volte i T-t token mancanti

$$\{Y_{1:T}^1, \dots, Y_{1:T}^N\} = MC(Y_{1:t}; N)$$

Gli $Y_{t+1:T}^n$ con cui si completa la sequenza parziale sono campionati usando la stessa policy G_{θ} . Quindi la stima del reward atteso è data da

$$Q_{D_{\phi}}^{G_{\theta}}(s = Y_{1:t-1}, a = y_t) = \begin{cases} \frac{1}{N} \sum_{n=1}^{N} D_{\phi}(Y_{1:T}^n), Y_{1:T}^n \in MC(Y_{1:t}; N) & \text{for } t < T \\ D_{\phi}(Y_{1:t}) & \text{for } t = T \end{cases}$$

Per quanto riguarda il discriminatore D_{ϕ} viene specificato che l'aggiornamento dei suoi parametri ϕ viene effettuato solo quando il generatore ha creato un numero sufficiente di sequenze. In questo modo è possibile avere un discriminatore che si adatta e migliora assieme al generatore, pur lasciandogli il tempo di perfezionarsi. In formule D_{ϕ} viene allenato secondo:

$$min_{\phi} - \mathbb{E}_{Y \sim p_{real}}[log D_{\phi}(Y)] - \mathbb{E}_{Y \sim G_{\theta}}[log(1 - D_{\phi}(Y))]$$

L'algoritmo del train illustrato in [2] è riportato in 1. È molto importante sotto-lineare il pre-train effettuato per inizializzare la SeqGAN con alcune conoscenze basilari. In questo modo G e D saranno già capaci di svolgere i loro compiti e potranno migliorarsi più efficacemente. Il pre-train del generatore viene effettuato usando la $Maximum\ Likelihood\ Estimation(MLE)$ sul dataset di sequenze reali, G tenterà quindi di imitare nel miglior modo possibile la distribuzione

Algorithm 1 Sequence Generative Adversarial Nets

```
1: Initialize G_{\theta}, D_{\phi} with random weights \theta, \phi
 2: Pre-train G_{\theta} using MLE on real data
 3: Generate negative samples using G_{\theta} for training D_{\phi}
 4: Pre-train D_{\phi} via minimizing the cross entropy
 5: repeat
 6:
        for g-steps do
            Generate a sequence Y_{1:T} = (y_1, \dots, y_T) \sim G_{\theta}
 7:
 8:
            for t in 1:T do
                Compute Q_{D_{\phi}}^{G_{\theta}}(s = Y_{1:T}; a = y_t)
 9:
10:
            Update generator parameters via policy gradient
11:
        end for
12:
13:
        for d-steps do
            Use current G_{\theta} to generate negative examples and combine with given
14:
    positive examples
            Train D_{\phi} for k epochs
15:
        end for
16:
17: until
18: SeqGAN converges
```

dei token delle sequenze date. Mentre D viene allenato come un classificatore attraverso la $Cross\ Entropy\ Loss$ su dati reali e dati generati dal G appena creato. Ovviamente il train di D viene sempre effettuato su un insieme di sequenze per metà generato e per metà reale, così da non introdurre sbilanciamenti nelle probabilità. Interessate sottolineare che il discriminatore non è una $Deep\ Neural\ Network\ (DNN)$, come ci si potrebbe aspettare, ma una $Convolutional\ Neural\ Network\ (CNN)$. Nell'articolo viene spiegato come queste riescano a mantenere un'informazione localizza e quindi a creare legami tra parole vicine. Per poter applicare una CNN risulta necessario organizzare le frasi forma matriciale.

In [2] vengono utilizzate anche tecniche come *Dropout* e *L2 regularization* per evitare l'over-fitting. La prima è una tecnica molto conosciuta che permette di evitare che la rete impari "a memoria" la distribuzione target. Con il *Dropout* si va ad azzerare casualmente una percentuale dei pesi della rete, in questo modo la si obbliga ad astrarre maggiormente l'informazione. Inoltre questo rafforza la resistenza e l'efficienza della rete perché sarà in grado di portare a termine il compito anche in mancanza di nodi interni. Con la *L2 regularization* si effettua una scolatura dell'errore così da evitare il *gradient vanishing*. In [2] è anche possibile trovare una valutazione dettagliata delle prestazioni delle SeqGAN rispetto ad altri modelli e su tre casid'uso differenti.

maggiori dettagli sulla matrice

ripassare L2

magari mettere formula ed allungare spiegazione

1.2 LeakGAN

Le LeakGAN sono state create per far fronte alla principale debolezza delle SeqGAN, ossia la difficoltà nel generare sequenze lunghe che siano convincenti. Se gli esperimenti delle SeqGAN mostravano affidabilità con sequenze fino a 20 token, le LeakGAN riescono a raggiungere lunghezze di 40 token, pur mantenendo coerenza e verosimiglianza. Queste reti vengono presentate in [1] e si differenziano dalle precedenti per due motivi:

- si introduce una "perdita" (leak) di informazione dal discriminatore al generatore. Le feature che il primo estrae e su cui poi baserà la valutazione vengono fornite al secondo in modo da ricevere un'informazione molto più ricca di un semplice punteggio;
- si introduce anche un nuovo modulo all'interno del generatore in modo da elaborare l'informazione che giunge da D ed utilizzarla per poi decidere il token successivo.

inserire immagine rete TODO

Va subito fatto notare come la seconda modifica renda il generatore un generatore gerarchico, quindi composto da sottomoduli con specifici compiti. È altrettanto importante sottolineare che i sotto-compiti che il Manager richiede al Worker sono auto-determinati, infatti il Manger è in grado di richiedere punteggiature e particolari strutture.

La Linear Projection presente nello schema effettua una trasformazione lineare ψ , con pesi W_{ψ} , su un numero c di goal g_t recenti, così da generare un vettore w_t di dimensione adeguata per l'esecuzione del prodotto con O_t . I formule si ha

$$w_t = \psi\left(\sum_{i=1}^c g_{t-1}\right) \tag{1}$$

$$O_t, h_t = Worker(x_t, h_{t-1}; \theta)$$
(2)

$$G_{\theta}(\cdot|s_t) = softmax(O_t \cdot w_t/\alpha) \tag{3}$$

in cui h_t è hidden state del Worker, mentre α viene usato per bilanciare esplorazione e sfruttamento (exploration and exploitation). In generale avrà un valore alto durante il training per favorire l'esplorazione, avrà invece un valore basso durante la generazione di quelle sequenze che poi verranno usate per allenare D.

Un'altra importante modifica riguarda l'interleaved training: si alternano allenamento tramite GAN ed allenamento tramite metodo supervisionato (MLE), anziché effettuare soltanto GAN dopo il pre-train. Questo evita il $mode\ collapse$ obbligando G a rimanenre aderente alla vera dispribuzione degli esempi reali

TODO qua

sezione su train G? Rescaled R_t ?

Riferimenti bibliografici

- [1] Jiaxian Guo et al. Long Text Generation via Adversarial Training with Leaked Information. URL: https://arxiv.org/pdf/1709.08624.pdf.
- [2] Lantao Yu et al. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. URL: https://arxiv.org/pdf/1609.05473.pdf.
- [3] S. Lu et al. Neural Text Generation: Past, Present and Beyond. URL: https://arxiv.org/pdf/1803.07133.pdf.
- [4] Karthik Chintapalli. Generative Adversarial Networks for Text Generation. URL: https://becominghuman.ai/generative-adversarial-networks-for-text-generation-part-1-2b886c8cab10.