Discrete Mathematics

-- Chapter 3: Set Theory

Hung-Yu Kao (高宏宇)

Department of Computer Science and Information Engineering, National Cheng Kung University

Outline

- 3.1 Set and Subsets
- 3.2 Set Operations and the Laws of Set Theory
- 3.3 Counting and Venn Diagrams
- 3.4 A First Word on Probability
- 3.5 The Axioms of Probability
- 3.6 Conditional Probability: Independence
- 3.7 Discrete Random Variables

Why Set?

objects and properties can be defined by them.

•For us, sets are useful to understand the principles of counting and probability theory.

- Set: should be a well-defined collection of objects.
- **Elements** (members): These objects are called elements or members of the set.
 - could be another set, $1 \neq \{1\} \neq \{\{1\}\}$
- Capital letters represent sets: A, B, C lowercase letters represent elements: x, y
 - E.g., $x \in A$, $y \notin B$
- A set can be designated by listing its elements within <u>set braces</u> "{","}".
 - E.g., $A = \{1, 2, 3, 4, 5\}, B = \{x \mid x \text{ is an integer, and } 1 \le x \le 5\}$
- Cardinality (size): |A| denotes the number of elements in A.
 - for finite sets

- Universe (Universe of discourse): *U* denotes the range of all elements to form any set.
- Definition 3.1: If C and D are sets from a universe \mathcal{U}
 - Subset: $C \subseteq D(D \supseteq C)$, if every element of C is an element of D.
 - Proper subset: $C \subset D(D \subset C)$, if, in addition, D contains an element that is not in C.
 - $C \subseteq D \Leftrightarrow \forall x [x \in C \Rightarrow x \in D]$

 $C \not\subseteq D$ (i.e., C is not a subset of D)

$$\Leftrightarrow \neg \forall x [x \in C \Rightarrow x \in D]$$

$$\Leftrightarrow \exists x \neg [x \in C \Rightarrow x \in D]$$

$$\Leftrightarrow \exists x \neg [\neg (x \in C) \lor x \in D]$$

$$\Leftrightarrow \exists x [\neg \neg (x \in C) \land \neg (x \in D)]$$

$$\Leftrightarrow \exists x [x \in C \land x \notin D]$$

- Definition 3.2: The sets C and D are equal for a given universe \mathcal{O} , $C = D \Leftrightarrow (C \subseteq D) \land (D \subseteq C)$
- Let $A, B, C \subseteq \mathcal{U}$, a) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$ b) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$ c) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$ d) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$
- Let $\mathcal{U} = \{1, 2, 3, 4, 5\}$ with $A = \{1, 2, 3\}, B = \{3, 4\}$, and $C = \{1, 2, 3, 4\}$. Then the following subset relations hold:
 - a) A⊆C
 b) A⊂C
 c) B⊂C
 d) A⊆A
 e) B⊈A
 f) A⊈A ← A is not a proper subset of A

- Null set (empty set), \emptyset or $\{\}$: is the set containing no elements.
 - $|\varnothing|=0$ but $\{0\} \neq \varnothing$
 - Ø≠{Ø}
- Power set, P(A): is the collection (set) of all subsets of the set A from universe \mathcal{U} .
- Example: $A = \{1, 2, 3\}$
 - $P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, A\}$
- For any finite set A with |A|=n
 - A has 2^n subsets and $|P(A)| = 2^n$
 - There are $\binom{n}{k}$ subsets of size k, $0 \le k \le n$
 - Counting the subsets of A (binomial theorem)

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = \sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

• Theorem 3.2

For any universe \mathcal{U} , let $A \subseteq \mathcal{U}$. Then $\emptyset \subseteq A$, and if $A \neq \emptyset$, then $\emptyset \subset A$.

Proof: If the first result is not true, then $\emptyset \nsubseteq A$, so there is an element x from the universe with $x \in \emptyset$ but $x \notin A$. But $x \in \emptyset$ is impossible. So we reject the assumption $\emptyset \nsubseteq A$ and find that $\emptyset \subseteq A$. In addition, if $A \neq \emptyset$, then there is an element $a \in A$ (and $a \notin \emptyset$), so $\emptyset \subset A$.

$$\phi \subseteq \{\phi\}?_{\mathbf{T}} \phi \subset \{\phi\}?_{\mathbf{T}}$$

$$\phi \subseteq \phi?_{\mathbf{T}} \phi \subset \phi?_{\mathbf{F}}$$

$$\phi \subseteq \{\phi\}: \phi \text{ is included in } \{\phi\}$$

$$\phi \not\subset \phi: \phi \text{ is not subset of } \phi$$

• Ex 3.11

26

Composition 有考慮位置的順序性(partition 無)

Table 3.1

Composition of 7		Determining Subset of {1, 2, 3, 4, 5, 6}	
(i)	1+1+1+1+1+1+1	(i)	Ø
(ii)	1+2+1+1+1+1	(ii)	{2}
(iii)	1+1+3+1+1	(iii)	{3, 4}
(iv)	2 + 3 + 2	(iv)	$\{1, 3, 4, 6\}$
(v)	4 + 3	(v)	$\{1, 2, 3, 5, 6\}$
(vi)	7	(vi)	{1, 2, 3, 4, 5, 6}

3 + 4 : 1, 2, 4, 5, 6

• Ex 3.12

Let A = $\{x, a_1, a_2, \dots, a_n\}$ and consider all subsets of A that contain r elements.

There are
$$\binom{n+1}{r} = \binom{n}{r} + \binom{n}{r-1}$$
 subsets.

Figure 3.4

Figure 3.3

• Ex 3.13 the number of nonnegative integer solutions of the inequality $x_1 + x_2 + \cdots + x_6 < 10$

$$\forall k, 0 \le k \le 9, \text{ the number of solution to } x_1 + x_2 + \dots + x_6 = k \text{ is}$$

$$\binom{6+k-1}{k} = \binom{5+k}{k}$$

$$\binom{5}{0} + \binom{6}{1} + \binom{7}{2} + \binom{8}{3} + \dots + \binom{14}{9}$$

$$= \left[\binom{6}{0} + \binom{6}{1}\right] + \binom{7}{2} + \binom{8}{3} + \dots + \binom{14}{9}, \quad \text{since } \binom{5}{0} = 1 = \binom{6}{0}$$

$$= \left[\binom{7}{1} + \binom{7}{2}\right] + \binom{8}{3} + \dots + \binom{14}{9}, \quad \text{since } \binom{6}{0} + \binom{6}{1} = \binom{7}{1}$$

$$= \left[\binom{8}{2} + \binom{8}{3}\right] + \binom{9}{4} + \dots + \binom{14}{9}, \quad \text{since } \binom{7}{1} + \binom{7}{2} = \binom{8}{2}$$

$$= \left[\binom{9}{3} + \binom{9}{4}\right] + \dots + \binom{14}{9} = \dots = \binom{14}{8} + \binom{14}{9} = \binom{15}{9} = 5005.$$

$N \subseteq Z \subseteq Q \subseteq R \subseteq C$

a) **Z** = the set of *integers* =
$$\{0, 1, -1, 2, -2, 3, -3, \ldots\}$$

- b) N = the set of nonnegative integers or natural numbers = $\{0, 1, 2, 3, \ldots\}$
- c) \mathbb{Z}^+ = the set of positive integers = $\{1, 2, 3, \ldots\}$ = $\{x \in \mathbb{Z} \mid x > 0\}$
- d) Q = the set of rational numbers = $\{a/b \mid a, b \in \mathbb{Z}, b \neq 0\}$
- e) Q^+ = the set of positive rational numbers = $\{r \in Q \mid r > 0\}$
- f) Q^* = the set of nonzero rational numbers
- g) \mathbf{R} = the set of real numbers
- **h)** \mathbf{R}^+ = the set of positive real numbers
- i) R^* = the set of nonzero real numbers
- j) C = the set of complex numbers = $\{x + yi \mid x, y \in \mathbb{R}, i^2 = -1\}$
- k) C^* = the set of nonzero complex numbers
- I) For each $n \in \mathbb{Z}^+$, $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$
- m) For real numbers a, b with a < b, $[a, b] = \{x \in \mathbf{R} \mid a \le x \le b\}$, $(a, b) = \{x \in \mathbf{R} \mid a < x < b\}$, $[a, b) = \{x \in \mathbf{R} \mid a < x \le b\}$, $(a, b] = \{x \in \mathbf{R} \mid a < x \le b\}$. The first set is called a *closed interval*, the second set an *open interval*, and the other two sets *half-open intervals*.

- $R^+ \cap C = R^+$
- $X R^+ \subseteq Q$
- $\bigvee Q^* \cap Z = Z$

3.2 Set Operations and the Laws of Set Theory

- Definition 3.5: For *A* and $B \subseteq \mathcal{U}$
 - a) $A \cup B$ (the union of A and B) = $\{x \mid x \in A \lor x \in B\}$
 - b) $A \cap B$ (the intersection of A and B) = $\{x \mid x \in A \land x \in B\}$
 - c) $A\Delta B$ (the symmetric difference of A and B)

$$= \{x \mid (x \in A \lor x \in B) \land x \notin A \cap B\} = \{x \mid x \in A \cup B \land x \notin A \cap B\}$$

Union - intersection

• Definition 3.6: The sets $S, T \subseteq \mathcal{U}$, are called disjoint (mutually disjoint), when $S \cap T = \phi$. $\stackrel{\text{mix}}{=}$

Set Operations and the Laws of Set Theory

- Theorem 3.3: If S, $T \subseteq \mathcal{U}$ are disjoint if and only if $S \cup T = S\Delta T$
 - Proof: (1) $\underline{x \in S \cup T} \Rightarrow x \in S \cup x \in T$

But *S* and *T* disjoint, i.e., $x \notin S \cap T$, $\Rightarrow \underline{x \in S\Delta T}$

$$\therefore S \cup T \subseteq S\Delta T$$

$$(2) y \in S\Delta T \Rightarrow y \in S \cup y \in T$$

$$\Rightarrow y \in S \cup T$$

$$\therefore S\Delta T \subseteq S \cup T$$

$$S \cup T \subseteq S\Delta T$$
 and $S\Delta T \subseteq S \cup T$

$$\therefore S \cup T = S\Delta T$$

Prove the converse by the method of proof by contradiction

Set Operations and the Laws of Set Theory

補集

- Definition 3.7: For a set $A \subseteq \mathcal{U}$, the **complement** of A, denoted $\mathcal{U}-A$ or A, is given by $\{x \mid x \in \mathcal{U} \land x \notin A\}$
- Definition 3.8: For $A, B \subseteq \mathcal{U}$, the (relative) complement of A in B, denoted B A or, is given by $\{x \mid x \in B \land x \notin A\}$ $\mathbb{D}_{B A \cap B}$
- Ex 3.18: For $\mathcal{U} = \mathbb{R}$, A = [1, 2], B = [1, 3)

a)
$$A = \{x \mid 1 \le x \le 2\} \subseteq \{x \mid 1 \le x < 3\} = B$$

b) $A \cup B = ? = \{x \mid 1 \le x < 3\} = B$
c) $A \cap B = ? = \{x \mid 1 \le x \le 2\} = A$
d) $B = (-\infty,1) \cup [3,+\infty) \subseteq (-\infty,1) \cup (2,+\infty) = A$

• Theorem 3.4: The following statements are equivalent:

(a)
$$A \subseteq B$$
 (b) $A \cup B = B$ (c) $A \cap B = A$ (d) $\overline{B} \subseteq \overline{A}$

(a) = (b) = (c) = (d)

Logic and set theory go very well together.

The previous definitions can be made very succinct:

 $x \notin A$ if and only if $\neg(x \in A)$

 $A \subseteq B$ if and only if $(x \in A \rightarrow x \in B)$ is True

 $x \in (A \cap B)$ if and only if $(x \in A \land x \in B)$

 $x \in (A \cup B)$ if and only if $(x \in A \lor x \in B)$

 $x \in A-B$ if and only if $(x \in A \land x \notin B)$

 $x \in A \land B$ if and only if $(x \in A \land x \notin B) \lor (x \in B \land x \notin A)$

 $x \in A$ if and only if $\neg(x \in A)$

 $X \in P(A)$ if and only if $X \subseteq A$

- 1) Law of *Double Complement*: $\overline{A} = A$
- 2) DeMogran's Laws: $\begin{cases} \overline{A \cup B} = \overline{A} \cap \overline{B} \\ \overline{A \cap B} = \overline{A} \cup \overline{B} \end{cases}$ 3) Commutative Laws: $\begin{cases} A \cup B = B \cup A \\ A \cap B = B \cap A \end{cases}$
- 4) Associative Laws: $\begin{cases} A \cup (B \cup C) = (A \cup B) \cup C \\ A \cap (B \cap C) = (A \cap B) \cap C \end{cases}$
- 5) Distributive Laws: $\begin{cases} A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \\ A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \end{cases}$
- 6) Idempotent Laws: $\begin{cases} A \cup A = A \\ A \cap A = A \end{cases}$ 7) Identity Laws: $\begin{cases} A \cup \phi = A \\ A \cap U = A \end{cases}$
- 8) Inverse Laws: $\begin{cases} A \cup \overline{A} = U \\ A \cap \overline{A} = \phi \end{cases}$ 9) Domination Laws: $\begin{cases} A \cup U = U \\ A \cap \phi = \phi \end{cases}$
- 10) Absorption Laws: $\begin{cases} A \cup (A \cap B) = A \\ A \cap (A \cup B) = A \end{cases}$

- Ex 3.20
 - Simplify the expression $\overline{(A \cup B) \cap C \cup B}$

$\overline{(A \cup B) \cap C} \cup \overline{B}$	Reasons
$= \overline{((A \cup B) \cap C)} \cap \overline{\overline{B}}$	DeMorgan's Law
$= ((A \cup B) \cap C) \cap B$	Law of Double Complement
$= (A \cup B) \cap (C \cap B)$	Associative Law of Intersection
$= (A \cup B) \cap (B \cap C)$	Commutative Law of Intersection
$= [(A \cup B) \cap B] \cap C$	Associative Law of Intersection
$= B \cap C$	Absorption Law

How about expressing $\overline{A} - \overline{B}$ in terms of \cup and $\overline{?} \overline{A} \cap \overline{B} = \overline{A} \cup B$

Set Operations and the Laws of Set Theory

- Definition 3.9: The **dual** of s, s^d can be replaced mutually.
 - (1) \cup and \cap (2) ϕ and \mathcal{U}
- Theorem 3.5: The Principle of Duality, let s denote a theorem dealing with the equality of two set expressions. Then s^d is also a theorem.
- Ex 3.19: find a dual for statement $A \subseteq B$ (Th. 3.4)
 - $A \cup B = B \rightarrow A \cap B = B$ (duality) But $A \cap B = B \Leftrightarrow B \subseteq A$ (the dual of $A \subseteq B$)
 - or $A \cap B = A \rightarrow A \cup B = A \Leftrightarrow B \subseteq A$

Set Operations and the Laws of Set Theory

• Theorem 3.6: **Generalized DeMorgan's Laws**, let *I* be an index set, then

$$(1)\overline{\bigcup_{i\in I} A_i} = \bigcap_{i\in I} \overline{A_i} \quad (2)\overline{\bigcap_{i\in I} A_i} = \bigcup_{i\in I} \overline{A_i}$$

• Proof:

$$(1) x \in \overline{\bigcup_{i \in I} A_i} \Leftrightarrow x \notin \bigcup_{i \in I} A_i \Leftrightarrow x \notin A_i \text{ for all } i \in I \Leftrightarrow x \in \overline{A_i} \text{ for all } i \in I \Leftrightarrow x \in \bigcap_{i \in I} \overline{A_i}$$

3.3 Counting and Venn Diagrams

•Venn diagrams are used to depict the various unions, subsets, complements, intersections etc. of sets:

John Venn (1834~1923)

21

Venn Diagrams

22

Remember the Sum Rule

If we have sets of mutually disjoint **events** $E_1, E_2, ..., E_m$, where E_j can occur in n_j ways (with $E_j \cap E_k = \emptyset$ for all $j \neq k$), then there are $n_1 + n_2 + ... + n_m$ possible events.

Think union of sets:

Let $|E_j| = n_j$ for all $1 \le j \le m$, then $E_1 \cup E_2$, ... $\cup E_m$ has $n_1 + n_2 + ... + n_m$ elements.

•The Principle of Inclusion and Exclusion generalizes the Sum Rule to the cases where the events are not disjoint.

•We can use it when solving counting problems...

3.3 Counting and Venn Diagrams

$$(1) |A \cup B| = |A| + |B| - |A \cap B|$$

$$(2) |\overline{A} \cap \overline{B}| = |\overline{A} \cup B|$$

$$= |U| - |A \cup B|$$

$$= |U| - |A| - |B| + |A \cap B|$$

$$(3) |A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

$$(4) |\overline{A} \cap \overline{B} \cap \overline{C}| = |\overline{A} \cup B \cup C|$$

$$= |U| - |A \cup B \cup C|$$

$$= |U| - |A| - |B| - |C| + |A \cap B| + |A \cap C| + |B \cap C| - |A \cap B \cap C|$$

Figure 3.8

Using the various Laws for Sets:

$$|A \cup B \cup C| = |A \cup (B \cup C)|$$

$$= |A| + |B \cup C| - |A \cap (B \cup C)|$$

$$= |A| + |B| + |C| - |B \cap C| - |A \cap (B \cup C)|$$

$$= |A| + |B| + |C| - |B \cap C| - |(A \cap B) \cup (A \cap C)|$$

$$= |A| + |B| + |C| - |B \cap C| - |A \cap B| - |A \cap C| + |A \cap B \cap A \cap C|$$

$$= |A| + |B| + |C| - |B \cap C| - |A \cap B| - |A \cap C| + |A \cap B \cap C|$$

兩個不同骰子

Throw two dice, how many ways of throwing: a total of 8, value 6+not value 6, or two identical values?

Counting the possibilities: (2.6), (3, 5), (5, 3), (6, 2), (4, 4)

a total of eight:

value 6+not value 6: 10

two identical values: 6

total 8 and 6+not 6:

total 8 and two id-vs:

6+not 6 and two id-vs:

6+not 6, two id-vs, total 8: 0

