Class 14 –15 Support Vector Machines SVM

Prof. Pedram Jahangiry

Road map

Prof. Pedram Jahangiry

Topics

- 1. Geometry
- 2. SVM Motivation

Part II

- 1. Maximum Margin Classifier (MMC)
- 2. Support Vector Classifiers (SVC)
- 3. Support Vector Machines (SVM)

Part III

Support Vector Regressors (SVR)

Part IV

- 1. Tuning Hyperparameters
- 2. SVM pros and cons
- 3. SVM applications in Finance

Part I Geometry SVM Motivation

Geometry

- In geometry, a hyperplane is a subspace whose dimension is one less than that of its ambient space. A hyperplane separates the space into two spaces.
- If a space is 3-dimensional then its hyperplanes are the 2-dimensional planes,
- If the space is 2-dimensional, its hyperplanes are the 1-dimensional lines.
- If the space is 1-dimensional, its hyperplanes are single points.

Geometry

- The perpendicular distance between two objects is the distance from one to the other, measured along a line that is perpendicular to one or both.
- The distance between a point (x_0, y_0) and a line parameterized by ax + by + c = 0 is equal to:

SVM Motivation

Support vector machine (SVM) is one of the most popular algorithms in machine learning. It is a powerful supervised algorithm used for classification and regression.

Part II

Maximum Margin Classifier (MMC)
Support Vector Classifiers (SVC)
Support Vector Machines (SVM)

Maximum Margin Classifier (MMC) – Hard Margin

MMC is the hyperplane that among all separating hyperplanes, find the one that makes the biggest gap (margin) between two classes.

MMC optimization problem

- The core idea of hard margin is to maximize the margin, under the constraint that the classifier does not make any mistake.
- SVMs try to pick the most robust model (by finding the w^* and b^*) among all those that yield a correct classification. If we numerically define blue circles as +1 and green circles as -1, any **good** linear model is expected to satisfy:

$$\underset{w,b}{\text{Min}} \quad \frac{1}{2} ||w||^2$$

$$s. t. \quad y_i \left(\sum_{k=1}^K w_k x_{i,k} + b \right) \ge 1$$

$$\left\{egin{aligned} \sum_{k=1}^K w_k x_{i,k} + b \geq +1 & ext{when } y_i = +1 \ \sum_{k=1}^K w_k x_{i,k} + b \leq -1 & ext{when } y_i = -1 \end{aligned}
ight.$$

Support Vector Classifier (SVC) – Soft Margin

- The MMC optimization problem becomes infeasible whenever the condition cannot be satisfied, that is, when a simple line cannot perfectly separate the labels, no matter the choice of coefficients.
- This happens when:

1- The data is noisy MMC is very sensitive to outliers

2- The data is non-separable (overlap)

Support Vector Classifier (SVC) – Soft Margin

- **Solution**: we can extend the concept of a separating hyperplane in order to develop a hyperplane that **almost** separates the classes, using a so-called **soft margin**.
- The generalization of the maximal margin classifier using soft margin is known as the support vector classifier (SVC).
- It could be worthwhile to misclassify a few training observations in order to do a better job in classifying the remaining observations.

SVC optimization problem

- Soft margin classification adds a penalty (C) to the objective function for observations in the training set that are misclassified. In essence, the SVM algorithm will choose a decision boundary that optimizes the trade-off between a wider margin and a lower total error penalty.
- Slack variable ξ_i allow some observations to fall on the wrong side of the margin, but will penalized them by parameter C: Cost of misclassification

$$\underset{w,b}{\operatorname{Min}} \quad \frac{1}{2} \left| |w| \right|^2 + C \sum_{i=1}^{I} \xi_i$$

s.t.
$$y_i \left(\sum_{k=1}^K w_k x_{i,k} + b \right) \ge 1 - \xi_i, \qquad \xi_i \ge 0 \ \forall_i$$

$$\left\{egin{array}{ll} \sum_{k=1}^K w_k x_{i,k} + b \geq +1 - \xi_i & ext{when } y_i = +1 \ \sum_{k=1}^K w_k x_{i,k} + b \leq -1 + \xi_i & ext{when } y_i = -1 \end{array}
ight.$$

Regularization parameter

C: Cost of misclassification

Small C:

wide margin: high bias: low variance

Large C:

narrow margin: low bias: High variance

Kernel Trick!

- Non-linearly separable data: sometime a linear boundary simply won't work, no matter what value of C.
- We need a non-linear decision boundary!
- Mapping to higher dimensional space, finding the hyper plane and projecting it back to low dimensional space can be computationally expensive.
- Solution: Kernel Trick!

Support Vector Machines (SVM)

- SVM generalizes the SVC to a nonlinear model, via the kernel ϕ which is applied to the input points $x_{i,k}$.
- The Kernel $\phi(x_{i,k})$ is a function that quantifies the similarities between observations by summarizes the relationship between every single pairs in the training set.

$$\min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{I} \xi_i$$
s.t. $y_i \left(\sum_{k=1}^{K} w_k \phi(x_{i,k}) + b \right) \ge 1 - \xi_i, \quad \xi_i \ge 0 \ \forall_i$

The Gaussian RBF Kernel (Radial Basis Function)

Most common types of Kernel

Decision boundaries with different Kernels

Decision boundaries with different Kernels

Source https://www.kaggle.com/residentmario/kernels-and-support-vector-machine-regularization

Comparing classifiers (so far)

Source: https://scikit-learn.org/stable/auto examples/classification/plot classifier comparison.html

Comparing Logistic Regression and SVM

Source: http://gregorygundersen.com/blog/2019/12/23/random-fourier-features/

Part III Support Vector Regressors (SVR)

SVM for regression (Support Vector Regressors)

- The idea of SVM classification can be transposed to regression problems.
- However, the role of the margin is different. Our objective, is to basically find the hyperplane that holds maximum training observations within the margin ϵ (tolerance level).

SVR optimization

Minimize:

$$\min \frac{1}{2} \|\mathbf{w}\|^2$$

· Constraints:

$$y_i - wx_i - b \le \varepsilon$$
$$wx_i + b - y_i \le \varepsilon$$

Minimize:

$$\frac{1}{2} \left\| w \right\|^2 + C \sum_{i=1}^{N} \left(\xi_i + \xi_i^* \right)$$

Constraints:

$$y_i - wx_i - b \le \varepsilon + \xi_i$$

$$wx_i + b - y_i \le \varepsilon + \xi_i^*$$

$$\xi_i, \xi_i^* \ge 0$$

Source: https://www.saedsayad.com/support_vector_machine_reg.htm

Kernel SVR optimization

$$\underset{w,b}{\text{Min}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{I} (\xi_i + \xi_i^*)$$

$$\left(\sum_{k=1}^{K} w_k \phi(x_{i,k}) + b\right) - y_i \le \epsilon + \xi_i^*$$

$$y_i - \left(\sum_{k=1}^{K} w_k \phi(x_{i,k}) + b\right) \le \epsilon + \xi_i$$

$$\xi_i, \xi_i^* \ge 0 \ \forall_i$$

- Goal: minimize the sum of squared weights subject to the error being small enough
- This is somewhat the opposite of the penalized linear regressions which seek to minimize the error, subject to the weights being small enough

SVR using Linear and Non-linear Kernels

Source: Scikit learn documentation

Part IV Tuning hyperparameters SVM pros and cons

SVM applications in Finance

Tuning hyperparameters

SVM hyperparameters:

- 1) C, Cost of misclassification: controls bias variance trade off
- 2) Kernel
- 3) Gamma, controls how far the influence of a single training set reaches

Source: Machine learning with R, tidyverse, and mlr

variable 1

<u>Grid search</u> cross validation is used to tune the hyper parameters.

Kernel	С	Gamma	CV
Linear, rbf, poly,	0.1, 1, 10, 100,	0.001, 0.01, 0.1, 1,	5,10,

K-Multiple class SVM

- One-VS-All (OVA)
- 1. Fit K different 2-class SVM classifiers $\widehat{f}_k(x)$, each class versus the rest
- 2. Classify x_{te} to the class for which $\hat{f}_k(x_{te})$ is largest.

K-Multiple class SVM

- One-VS-One (OVO)
- 1. Fit all $\binom{K}{2}$ pairwise classifiers $\widehat{f_{kl}}(x)$, each class versus the rest
- 2. Classify x_{te} to the class that wins the most pairwise competitions.

SVM's Pros and Cons

Pros:

- SVM can be memory efficient! uses only a subset of the training data (support vectors)
- Can handle non-linear data sets
- Can handle high dimensional spaces (even when D>N)
- Used both for classification and regression
- Linear SVM are not very sensitive to overfitting (soft margin; regularization)
- Can have high accuracy (even compared to NN)

Cons:

- No probability outcome!
- Long training time when we have large data sets.
- Limited interpretability (specially for Kernel SVM)
- Does not perform well with noisy data
- Suited for small to medium size data

SVM's Applications in finance

- Corporate financial statements and bankruptcy (high dimensional)
- Identifying stressed companies to short sell (using many fundamental and technical features)
- Sentiment analysis (classify text from documents e.g., news articles, company announcements, and company annual reports into useful categories for investors)
- Money laundering analysis and spam detection
- Loan management

Appendix

MMC solution

$$rgmin_{\mathbf{w},b} \ rac{1}{2} ||\mathbf{w}||^2 \ ext{ s.t. } y_i \left(\sum_{k=1}^K w_k x_{i,k} + b
ight) \geq 1$$

$$L(\mathbf{w},b,oldsymbol{\lambda}) = rac{1}{2}{\left|\left|\mathbf{w}
ight|
ight|^2} + \sum_{i=1}^{I}{\lambda_i}\left(y_i\left(\sum_{k=1}^{K}{w_kx_{i,k}} + b
ight) - 1
ight)$$

$$rac{\partial L}{\partial \mathbf{w}} L(\mathbf{w}, b, oldsymbol{\lambda}) = \mathbf{0}, \quad rac{\partial L}{\partial b} L(\mathbf{w}, b, oldsymbol{\lambda}) = 0,$$

$$\mathbf{w}^* = \sum_{i=1}^I \lambda_i u_i \mathbf{x}_i.$$

Students' questions

1) Question

