LEVEL-I

1.	If equation of ellipse is $16x^2 + 25y^2 = 400$, (A) 2/5 (C) 3/5	then eccentricity of the ellipse (B) 4/5 (D) 1/5
2.	If any tangent to the ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in then	tercepts lengths h and k on the axes,
	$(A)\frac{h^2}{a^2} + \frac{k^2}{b^2} = 1$	$(B)\frac{h^{2}}{a^{2}} + \frac{k^{2}}{b^{2}} = 2$ $a^{2} b^{2}$
	(C) $\frac{a^2}{h^2} + \frac{b^2}{k^2} = 1$	(D) $\frac{a^2}{h^2} + \frac{b^2}{k^2} = 2$
3.	Two perpendicular tangents drawn to the el	
	(A) $x=4$ (C) $x^2 + y^2 = 41$	(B) $y = 5$ (D) $x^2 + y^2 = 9$
4.	Equation to an ellipse whose centre is (-2, major axis parallel to x-axis, is given by	
	to x-axis, is given by (A) $4x^2 + 9y^2 + 16x - 54y - 61 = 0$ (C) $4x^2 + 9y^2 + 16x - 54y + 61 = 0$	(B) $4x^2 + 9y^2 - 16x + 54y + 61 = 0$ (D) none of these
5.	is	in the point (1, 2) to the ellipse $3x^2 + 2y^2 = 5$
	(A) $\tan^{-1} \left(\frac{12}{5} \right)$	(B) $\tan^{-1}\left(\frac{6}{\sqrt{5}}\right)$
	(C) $\tan^{-1}\left(\frac{12}{\sqrt{5}}\right)$	(D) $\tan^{-1}\left(\frac{6}{5}\right)$
6.	Eccentric angle of a point on the ellipse x^2 -centre of the	$-3y^2 = 6$ at a distance 2 units from the
	ellipse is $(A) \frac{\pi}{4} \text{or} \frac{3\pi}{4} \qquad (B) \frac{\pi}{3} \text{or} \frac{2\pi}{3}$	$(C)\frac{\pi}{6}$ or $\frac{5\pi}{6}$ (D) none
_	of these	2 4 4 4 9 4 4 9 4 9 4 9 4 9 4 9 9 9 9 9
7.	If latus rectum of the ellipse $x^2 \tan^2 \alpha + y^2 \sec^2 (A) \frac{\pi}{12}$ (B) $\frac{\pi}{6}$	$(C)^{2\alpha} = 1$ is 1/2 then α ($0 < \alpha \le \pi$) is $(C)^{2\alpha} = 1$ (D) none of
	these	` 12

5

Equation of the ellipse whose minor axis is equal to the distance between foci and

(B) $2x^2 + 3y^2 = 80$ (D) none of these

8.

whose latus rectum is 10, is given by

(A) $2x^2 + 3y^2 = 100$ (C) $x^2 + 2y^2 = 100$

Area of the quadrilateral formed by the tangents to the ellipse $\frac{x^2}{4} + y^2 = 1$ at the end 17. points of its major and minor axes is

(A) 8

(B) 4

(C) 16

(D) 2

The centre of the ellipse $3x^2 + 6x + 4y^2 - 8y - 5 = 0$, is 18.

(A) (1, 1)

(B) (1, -1)

(C)(-1, 1)

(D) None of these

Length of major axis of the ellipse, $3x^2 - 6x + 4y^2 - 8y - 5 = 0$, is 19.

(C) $\sqrt{3}$

(D) 2

Length of minor axis of the ellipse, $3x^2 - 6x + 4y^2 - 8y - 5 = 0$, is 20.

 $(A) \tilde{4}$

(C) 3

(D) $2\sqrt{3}$

9. The area of the triangle formed by the points on the ellipse $25x^2 + 16y^2 = 400$ whose eccentric angles are $\pi/2$, π and $3\pi/2$ is

(B) y = -3 (D) x = -3.

(A) y = 3

(C) x = 3

	(A) 10 sq. units (C) 30 sq. units	(B) 20 sq. units (D) 40 sq. units
10.	If $(\sqrt{3})$ bx+ay = 2ab touched the ellip	pse $\frac{X^2}{a^2} + \frac{y^2}{b^2} = 1$ then eccentric angle θ is
	(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{4}$
	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{2}$
11.	_	is tangent to the ellipse $2x^2 + 3y^2 = 1$ is
	$(A)\sqrt{\frac{6}{7}}$	(B) $\sqrt{\frac{5}{6}}$
	$(C)\sqrt{\frac{2}{3}}$	(D) $\sqrt{\frac{3}{2}}$
12.	Foci of the ellipse; $25 (x + 1)^2 + 9(y + (A) (-1, -2))$ and $(-1, -6)$ (C) $(-1, 2)$ and $(-1, -6)$	2) ² = 225, are (B) (-2, 1) and (-2, 6) (D) (-1, 2) and (-1, -6)
13.		'C' be the circle $x^2 + y^2 = 9$. Let P and Q be points
	(1, 2) and (2, 1) respectively. Then(A) 'Q' lies in side 'C' but outside E(C) P lies inside both C and E	(B) 'Q' lies outside both C and E (D) P lies inside 'C' but outside E
14.	The equation $3 (x + y - 5)^2 + 2 (x - y (A) (-1, 6)$ (C) $(1, -6)$	$(x + 7)^2 = 6$ represents an ellipse, whose centre is (B) $(6, -1)$ (D) $(-6, 1)$
15.	Eccentricity of the ellipse 3 ($x + y - 5$	
	$(A)\frac{1}{\sqrt{2}}$	(B) $\sqrt{\frac{2}{3}}$
	$(C)\frac{1}{\sqrt{3}}$	(D) $\frac{1}{2}$

One foot of normal of the ellipse $4 x^2 + 9y^2 = 36$, that is parallel to the line 2 x + y = 3, is 16. $(A)\left(\frac{9}{5}, \frac{-8}{5}\right)$ (B) $\left(\frac{-9}{5}, \frac{8}{5}\right)$

 $(C)\left(\frac{-9}{5}, \frac{-8}{5}\right)$ (D) None of these

Equation of the ellipse whose axes are co-ordinate axes and whose length of latus 17. rectum, and eccentricity are equal and equal to $\frac{1}{2}$ each is (A) 6 x^2 + 12 y^2 = 1 (B) 12 x^2 + 6 y^2 = 1 (C) 3 x^2 + 12 y^2 = 1 (D) 9 x^2 + 12 y^2 = 1

(A)
$$6 x^2 + 12 y^2 = 1$$

(B)
$$12 x^2 + 6 v^2 = 1$$

(C)
$$3 x^2 + 12 y^2 = 1$$

19. The equation of common tangents to the curves
$$x^2 + 4y^2 = 8$$
 and $y^2 = 4x$ are

(A) $2y - x - 4 = 0$ and $2y + x + 4 = 0$

(B) $y - 2x - 4 = 0$ and $y + 2x + 4 = 0$

(C) $2y - x - 2 = 0$ and $2y + x + 2 = 0$

(D) $y - 2x - 2 = 0$ and $y + 2x + 2 = 0$

20. If the line
$$y = mx + c$$
 is a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ then corresponding point of contact is
$$(A) \left(\frac{a^2 m}{a^2} + \frac{b^2}{b^2} \right)$$

$$(B) \left(\frac{-a^2 m}{a^2} + \frac{-b^2}{b^2} \right)$$

$$(A)\left(\frac{a^2m}{c}, \frac{b^2}{c}\right)$$

$$(B)\left(\frac{-a^2m}{c}, \frac{-b^2}{c}\right)$$

$$(D)\left(\frac{-a^2m}{c}, \frac{b^2}{c}\right)$$

LEVEL-III

1. The length of the major axis of the ellipse $(5x-10)^2 + (5y+15)^2 = \frac{(3x-4y+7)^2}{4}$ is

(A) 10 (B) 20/3 (C) 20/7 (D) 4

2. An ellipse has eccentricity 1/2 and one focus at the point P(1/2, 1). One of Its directrix is the common tangent, nearer to the point P to the circle $x^2+y^2=1$ and the hyperbola $x^2-y^2=1$. Area of the ellipse is

(A)
$$\pi$$
 (B) $\frac{\pi}{2\sqrt{2}}$ (C) $\frac{2\pi}{3\sqrt{3}}$ (D) none of these.

3. If the normal at the point P(θ) to the ellipse $\frac{x^2}{14} + \frac{y^2}{5} = 1$ intersects it again at the point

Q(2 θ), then $\cos\theta =$ (A) 2/3 (B) -2/3 (C) 1/3 (D) -1/3

4. The equation of the ellipse centered at (1, 2) having the point (6, 2) as one of its focus and passing through the point (4, 6) is

$$(A)\frac{(x-1)^2}{36} + \frac{3(y-2)^2}{64} = 1$$

$$(B)\frac{(x-1)^2}{45} + \frac{(y-2)^2}{20} = 1$$

$$(C)\frac{(x-1)^2}{18} + \frac{(y-2)^2}{32} = 1$$

$$(D)\frac{(x-1)^2}{72} + \frac{7(y-2)^2}{128} = 1$$

The tangent drawn to the ellipse $\frac{x^2}{16} + \frac{11y^2}{256} = 1$ at the point P (θ); touches the circle 5.

 $(x - 1)^2 + y^2 = 16$; then '0' equal to

(A) $\pi/6$

(B) $\pi/4$

(C) $\pi/3$

- (D) None of these
- Length of latus rectum of the ellipse, $3(x + y 5)^2 + 2(x y + 7)^2 = 6$ is 6.
 - (A) $4\sqrt{\frac{2}{3}}$

(B) $2\sqrt{\frac{2}{3}}$

(C) $\frac{1}{\sqrt{2}}$

- (D) $\sqrt{\frac{2}{3}}$
- Focii of the ellipse; $3(x + y 5)^2 + 2(x y + 7)^2 = 6$ are 7.
 - (A) (-1/2, 13/2) and (-3/2, 11/2)
- (B) (-1/2, 11/2) and (-3/2, 13/2)
- (C) (-1/2, -11/2) and (-3/2, 11/2)
- (D) (1/2, 11/2) and (3/2, 13/2)
- Locus of the mid-point of chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ that are parallel to the line 8.
 - y = 2 x + c, is
 - (A) $2 b^2 y a^2 x = 0$ (C) $2 b^2 y + a^2 x = 0$

(B) $2 a^2 y - b^2 x = 0$ (D) $2 a^2 y + b^2 x = 0$

- Consider an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, centered at point 'O' and having AB and CD as its major 9. and minor axes respectively. If S₁ be one of the focus of the ellipse, radius of incircle of triangle $OCS_1 = 6$ units, then area of the ellipse is equal to
 - (A) 16π sq. units

(B) $\frac{65\pi}{4}$ sq. units

(C) $\frac{65}{2}$ sq. uints

- (D) 65π sq. units
- 'P' is any variable point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ having the points S_1 and S_2 as its foci. 10. maximum area of the triangle PS₁S₂ is
 - (A) b² c sq. units

(B) a² c sq. units

(C) ab sq. units

- (D) abc sq. units
- Consider an ellipse having its axes as co-ordinate axes and passing through the point 11. (4, -1). If the line x + 4y - 10 = 0 is one of its tangent, then area of ellipse is
 - (A) 10 π

(B) 20 π

(C) 25 π

(D) 15 π

 S_1 and S_2 are foci of an ellipse 'B' be one of the extremity of its minor axes. If Δ S_1 S_2 B

is right angled then eccentricity of the ellipse is equal to

A variable tangent of the ellipse $\frac{x^2}{16} + \frac{y^2}{36} = 1$ meets the tangents drawn at the extremities 17. of the major axis at point A₁ and A₂ Circle drawn on A₁A₂ as diameter will always pass through two fixed points whose co-ordinates are

(A)
$$(0, \pm 6)$$

12.

(B)
$$(0, \pm 5\sqrt{2})$$

(C)
$$(0, \pm 2\sqrt{5})$$

(C) x + 2y + 2 = 0

(D)
$$(0, \pm 4)$$

- 18. There are exactly two points on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose distance from the center of the ellipse are equal and equal to $\sqrt{\frac{a^2 + b^2}{2}}$. Eccentricity of this ellipse is
 - $(A)\sqrt{\frac{3}{2}}$

(B) $\sqrt{\frac{2}{3}}$

 $(C)\frac{1}{\sqrt{3}}$

- (D) $\sqrt{\frac{2}{3}}$
- 19. For all admissible values of the parameter 'a' the straight line 2 ax + $y\sqrt{1-a^2}$ = 1 will touch an ellipse whose eccentricity is equal to
 - $(A)\frac{\sqrt{3}}{2}$

(B) $\frac{\sqrt{2}}{3}$

(C) $\sqrt{\frac{3}{2}}$

- (D) $\sqrt{\frac{2}{3}}$
- 20. The normal to the ellipse $4 x^2 + 5 y^2 = 20$ at the point 'P' touches the parabola $y^2 = 4x$, the eccentric angle of 'P' is
 - (A) $\pi + \sin^{-1} \frac{1}{\sqrt{5}}$

(B) $\frac{\pi}{2} + \tan^{-1}\left(\frac{1}{\sqrt{5}}\right)$

(C) $\pi - \tan^{-1}\left(\frac{1}{\sqrt{5}}\right)$

(D) $\pi - \cos^{-1} \left(\frac{1}{\sqrt{5}} \right)$

ANSWERS

LEVEL -I									
1. 5.	С	2. 6.	C C	3. 7.	C A	4. 8.	C C		
9.	В	10.	Č	, . 11.		12			
13.		14.	В	15.		16			
17.		18.	C	19.		20			
LEVEL -II									
1.	С	2.	D	3.	С	4.	В		
5.	D	6.	С	7.	С	8.	Α		
9.	В	10.	Α	11.		12			
13.		14.	Α	15.		16			
17.	. D	18.	D	19.	Α	20). D		
LEVEL -III									
1.	В	2.	D	3.	В	4.	В		
5.	С	6.	В	7.	Α	8.	D		
9.	В	10.	Α	11.	Α	12			
13.		14.	Α	15.	В	16	5. A		
17.	. C	18.	D	19.	Α	20). D		