```
In [3]:
         # Importing numpy, pandas and matplot for visualization
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         sns.set_theme(rc = {'figure.figsize':(15,8)}, style='white')
```

In [6]: # read the dataset from a CSV file data = pd.read csv('Height of Male and Female by Country 2022.csv') data.head()

Out[6]: Male Height in Female Height in Male Height in Female Height in Rank **Country Name** Cm Cm Ft Ft 0 1 Netherlands 183.78 170.36 6.03 5.59 1 2 Montenegro 169.96 6.01 5.58 183.30 2 3 Estonia 6.00 5.53 182.79 168.66 Bosnia and 3 182.47 167.47 5.99 5.49 Herzegovina 5 Iceland 182.10 168.91 5.97 5.54

In [3]: # viewing data information data.info()

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 199 entries, 0 to 198 Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Rank	199 non-null	int64
1	Country Name	199 non-null	object
2	Male Height in Cm	199 non-null	float64
3	Female Height in Cm	199 non-null	float64
4	Male Height in Ft	199 non-null	float64
5	Female Height in Ft	199 non-null	float64
d+vn	es: $float64(4)$ int64	(1) object(1)	

dtypes: float64(4), int64(1), object(1)

memory usage: 9.5+ KB

Brief information about the dataset

- Categorical feature contains Country Name and Numerical features contains the other features
- No missing values
- Height in cm and ft convey the same information

```
In [7]:
         # viewing the statistical summary of the dataset
         data.describe()
```

Out[7]: Rank Male Height in Cm Female Height in Cm Male Height in Ft Female Height in Ft

coun			•			Male Height in Ft	- · · · · · · · · · · · · · · · · · · ·	
	t 19	99.000000	199.00	00000	199.000000	199.000000	199.000000	
meai	1 0	00.000000	173.08	89045	160.942915	5.678794	5.280402	
sto	1 5	7.590508	4.94	49832	4.076377	0.162510	0.133870	
miı	1	1.000000	160.13	30000	150.910000	5.250000	4.950000	
25%	5 5	50.500000	169.49	90000	158.240000	5.560000	5.190000	
50%	5 10	00.000000	173.53	30000	160.620000	5.690000	5.270000	
75%	5 14	19.500000	176.5	10000	163.870000	5.790000	5.375000	
max	(19	99.000000	183.78	80000	170.360000	6.030000	5.590000	
<pre># viewing the unique values on the datatset fonor the columns data.nunique()</pre>								
<pre>Male Height in Cm</pre>								
Fema dtyp data	le H e: i a.dr	eight in nt64 op([data	Ft 55 .columns[-1]				rue)	
data	le H e: i a.dr	eight in nt64 op([data	Ft 55 .columns[-1]				rue)	
data	le H e: i a.dr	eight in nt64 op([data lumns =	Ft 55 .columns[-1]	ountry'			rue)	
data data	le He: i	eight in nt64 op([data lumns =	.columns[-1]['Rank', 'Co	ountry'	', 'Male', 'Femal		rue)	
data data	le He: i	eight in nt64 op([data lumns =	.columns[-1]['Rank', 'Co	ountry'	', 'Male', 'Femal		rue)	
data data data	le He: i a.dr a.co a.he ank	eight in nt64 op([data lumns =	.columns[-1]['Rank', 'Co	Male 183.78	Female 170.36		rue)	
data data data R 0	le He: i a.dr a.co a.he 1 2	eight in nt64 op([data lumns =	.columns[-1]['Rank', 'Co	Male 183.78 183.30	Female 170.36 169.96		rue)	
data data data R 0 1	a.dr a.co	eight in nt64 op([data lumns =	.columns[-1] ['Rank', 'Co Country Netherlands Montenegro Estonia	Male 183.78 183.30 182.79	Female 170.36 169.96 168.66		rue)	

plt.legend();

• So there is mild change in ratio, but in acceptable level (the ratio range from 30.45 to 30.51)

```
genders = ['Male', 'Female']
sorted_male_height = data.sort_values(by='Male', ascending=False)
sorted_female_height = data.sort_values(by='Female', ascending=False)
sorted_heights = [sorted_male_height, sorted_female_height]
n = 10
```

In [10]: # writing a function to plot pie chart for the top 10 countries with tallest male and f for i in range(2): colors = sns.color_palette('bright') plt.pie(x=sorted_heights[i][genders[i]][:n], labels=sorted_heights[i].Country[:n],c plt.title('Tallest {} countries'.format(genders[i])) plt.show()

Tallest Female countries

In [11]:

writing a function to plot bar chart for the top 10 countries with tallest male and f
for i in range(2):
 sns.barplot(x=sorted_heights[i][genders[i]][:n], y=sorted_heights[i].Country[:n], c
 plt.title('Tallest {} countries'.format(genders[i]))
 plt.show()

In [12]: # writting a function to plot bar chart for the top 10 countries with shortest male and
 for i in range(2):
 sns.barplot(x=sorted_heights[i][genders[i]][-n:], y=sorted_heights[i].Country[-n:],
 plt.title('Shortest {} countries'.format(genders[i]))
 plt.show()


```
# writing a function to plot pie chart for the top 10 countries with shoetest male and
for i in range(2):
    colors = sns.color_palette('bright')
    plt.pie(x=sorted_heights[i][genders[i]][-n:], labels=sorted_heights[i].Country[-n:]
    plt.title('Shortest {} countries'.format(genders[i]))
    plt.show()
```

Shortest Male countries

Shortest Female countries

No surprise, there is exceedingly high correlation between height of Male and Female. Hence, the country with high average male height is likely to have high mean female's height.

Conclusion on my goals:

- Netherlands and Montenegro are the two countries with the tallest average height of both Male and Female
- Timor-Leste is the country with the shortest average height of Male and Guatemala is the country with the shortest average height of Female
- A country has one of the biggest average height of Male doesn't has to have the biggest of Female and vice versa, like the case of Bosnia and American Samoa
- Tallest countries are mostly from Europe
- Shortest countries are mostly from Asia and South Asia

In [14]:		