

Departamento de Ciência da Computação

Disciplina: Cálculo Diferencial e Integral

Prof^a Tânia Camila Kochmanscky Goulart

Esta atividade deverá ser entregue no dia da avaliação. Bom trabalho!

Lista 01 - Potência e radicais

- 1-) Coloque V (verdadeiro) ou F (falso):

 - () 5^{-6} . $5^{-6} = 1$ () 6^{-2} . $6^{-5} = 6^{-10}$ () 7^3 : $7^5 = 7^{-5}$. 7^3 () 2^5 : $2^3 = 1^2$ () 3^3 . $3^5 = 9^8$

 - $() \frac{5^{-1}}{7^{-1}} = \frac{7}{5}$
 - $\left(\right) \frac{1}{2^3 + 3^2} = 2^{-3} + 3^{-2}$
 - () $\pi^{7-3} = \frac{1}{\pi^{3-7}}$
 - () $(\pi + 3)^{-2} = \pi^{-2} + 3^{-2}$ () $7^2 + 7^3 = 7^5$ () $(3^5)^2 = 3^7$ () $(2^3)^2 = 2^{3^2}$

 - 2-) Simplifique as expressões, usando sempre que possível as propriedades da potência:
 - a-) $(2xy^2)^3 =$
 - b-) $(3xy^2)$. $(2x^2y^3)$ =
 - c-) $(5ab^2)^2$. $(a^2b)^3 =$
 - d-) $\frac{9x^2y^3}{-3xv} =$
 - e-) $\left(\frac{16ab^4}{-8a^2b^7}\right)^{-3} =$

3-) Simplifique as expressões:

a)
$$\frac{3^{n+2}-3^n}{3^{n+1}+3^{n-1}} =$$

b)
$$\frac{2^{2n+1}-4^n}{2^{2n}}$$
 =

c)
$$\frac{2^{n+1}-2^{n-2}}{2^n}$$
 =

4-) Usando potências de mesma base, e as propriedades das potências, resolva:

a)
$$\left(\frac{3}{4}\right)^5 \cdot (0.75)^{-2} =$$

b) $5^{m+2} : 5^{m-1} =$

b)
$$5^{m+2} \cdot 5^{m-1} =$$

c)
$$\frac{\left(\frac{1}{2}\right)^3.16}{\left(\frac{1}{4}\right)^3} =$$
d) $2^{m+1} \cdot 2^{m+2} : 4^{m-1} =$

d)
$$2^{m+1}$$
, 2^{m+2} : 4^{m-1}

e)
$$(0.25)^{-1}$$
. $\left(\frac{1}{4}\right)^3 =$

5-) Transforme em radical:

a)
$$9^{\frac{3}{2}} =$$

b)
$$16^{\frac{3}{4}}$$
 =

c)
$$1024^{0.4} =$$
 d) $625^{-0.25} =$

d)
$$625^{-0.25} =$$

e)
$$4^{\frac{-1}{2}}$$
=

f)
$$64^{\frac{-2}{3}}$$
 =