Definitions

Vector Space

A vector space is a set V with the following properties:

Commutativity: u + v = v + u for all $u, v \in V$

Associativity: (u+v)+w=u+(v+w) and (ab)v=a(bv) for all $u,v,w\in V$

Additive Identity: there exists $0 \in V$ such that v + 0 = v for all $v \in V$

Multiplicative Identity: for all $v \in V$, there exists $w \in V$ such that v + w = 0

Distributive Properties: a(u+v)=au+av and (a+b)v=av+bv for all $a,b\in\mathbb{R}$ and $u,v\in V$

Linear Combination

A linear combination of a list of vectors v_1, \ldots, v_n is itself a vector, taking the form:

$$a_1v_1 + \ldots + a_mv_m$$

where each $a_1, \ldots a_n \in \mathbb{R}$

Span

The set of all linear combinations of a list of vectors v_1, \ldots, v_n is called the **span** of v_1, \ldots, v_n , or $\operatorname{Span}(v_1, \ldots, v_n)$. Defined as:

$$span(v_1, ..., v_n) = \{a_1v_1 + \cdots + a_nv_n : a_1, ..., a_m \in \mathbb{R}\}\$$

If the span is equal to some space span $(v_1, \ldots, v_n) = V$, then you could say that v_1, \ldots, v_n spans V.

Linearly Independent

For $v_1, \ldots, v_n \in V$ and $a_1, \ldots, a_n \in \mathbb{R}$ such that:

$$a_1v_1 + \dots + a_nv_n = 0$$

The list of vectors v_1, \ldots, v_n is called **linearly independent** when

$$a_1 = \dots = a_n = 0$$

for all possible values of v_1, \ldots, v_n .

Inner Product

$$\vec{a} \cdot b = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n$$
$$\vec{a} \cdot b = \sum_{i \in n} a_i b_i$$

Proofs

Law of Cosines

TODO

Triangle Inequality

TODO

Cauchy-Schwartz Inequality

TODO