Grundlagen der Informatik

Prädikatenlogik

Erweiterung der Aussagenlogik

Formalisierung wissenschaftlicher Argumentation und Beweisführung

"Alle Menschen leben auf der Erde"

"Es gibt einen Mensch, der auf der Erde lebt"

Definition:

Sei $\mathcal M$ eine Menge (Gegenstandsbereich, Individuenbereich). Dann heißt eine Abbildung

Mⁿ → {wahr, falsch}

ein *n-stelliges Prädikat über der Menge* M

Bemerkung: für die Wahrheitswerte {wahr, falsch} wird auch {true, false} oder {T, F} verwendet.

Beispiele:

Sie $\mathcal{M} = N$ (Menge der natürlichen Zahlen), dann ist

- gerade (n) n ein 1-stelliges Prädikat, wobei gilt gerade(2) = T
- kleiner(n,m) ein 2-stelliges Prädikat, wobei gilt kleiner (10,5) = F
 (kleiner wird meist als n<m dargestellt)
- ist_eine_Folge_von_5_aufeinanderfolgenden_Zahlen(n,m,o,p,q) ein 5stelliges Prädikat, mit

ist_eine_Folge_von_5_aufeinanderfolgenden_Zahlen(3,4,5,6,7) = T

Beispiele:

Sie \mathcal{M} = Menge aller Menschen (lebende und bereits gestorbene) dann ist

- gestorben (n) n ein 1-stelliges Prädikat, wobei z.B. gilt gestorben(Albert Einstein) = T
- Vater(n,m) ein 2-stelliges Prädikat, wobei z.B. gilt

Vater(Johann Sebastian Bach, Friedemann Bach) = T

Definition:

Sei $\mathcal{M}_1, \ldots, \mathcal{M}_n$ Mengen (Gegenstandsbereiche, Individuenbereiche). Dann heißt eine Abbildung

$$\mathcal{M}_1 \times \mathcal{M}_2 \times \ldots \times \mathcal{M}_n \rightarrow \{\text{wahr, falsch}\}$$

ein <u>n-stelliges Prädikat über den Mengen</u> $\mathcal{M}_1, \ldots, \mathcal{M}_n$

Anmerkung:

Ein 0-stelliges Prädikat ist eine Aussage

Beispiele:

Sie \mathcal{M}_1 die Menge aller Menschen und \mathcal{M}_2 , die Menge der Planteten in unserem Sonnensystem, dann ist die Aussage

lebt_auf_Planet(m,p) ein 2-stelliges Prädikat, das für alle Menschen und den Planet Erde wahr ist, für alle anderen Planeten falsch

Verknüpfung von Prädikaten mit (den schon bekannten) logischen Operatoren ∧, ∨, ⇒, ⇔, ¬

Seien $P_1(x_1, ..., x_n)$ und $P_2(y_1, ..., y_m)$ n- bzw. m-stellige Prädikate. Dann erhält man

- das n+m-stellige Prädikat ($P_1 \Rightarrow P_2$)($x_1, ..., x_n, y_1, ..., y_m$) durch "Implizieren " der Prädikate P_1 und P_2 i.e. $P_1(x_1, ..., x_n) \Rightarrow P_2(y_1, ..., y_m)$
- das n+m-stellige Prädikat ($P_1 \Leftrightarrow P_2$)($x_1, ..., x_n, y_1, ..., y_m$) durch "Äquivalenzen" der Prädikate P_1 und P_2 i.e. $P_1(x_1, ..., x_n) \Leftrightarrow P_2(y_1, ..., y_m)$

Verknüpfung von Prädikaten mit (den schon bekannten) logischen Operatoren ∧, ∨, ⇒, ⇔, ¬

Seien $P_1(x_1, ..., x_n)$ und $P_2(y_1, ..., y_m)$ n- bzw. m-stellige Prädikate. Dann erhält man

- das n-stellige Prädikat ($\neg P_1$)($x_1, ..., x_n$) durch Negation des Prädikats P_1 , i.e. $\neg (P_1(x_1, ..., x_n))$
- das n+m-stellige Prädikat $(P_1 \land P_2)(x_1, ..., x_n, y_1, ..., y_m)$ durch "Verunden" der Prädikate P_1 und P_2 i.e. $P_1(x_1, ..., x_n) \land P_2(y_1, ..., y_m)$
- das n+m-stellige Prädikat ($P_1 \lor P_2$)($x_1, ..., x_n, y_1, ..., y_m$) durch "Verodern" der Prädikate P_1 und P_2 i.e. $P_1(x_1, ..., x_n) \lor P_2(y_1, ..., y_m)$

Anmerkung:

Durch Konstanthalten von Parametern oder durch mehrfaches Einsetzen eines Parameters kann die Stelligkeit eines Prädikats reduziert werden.

Beispiele:

 $\mathcal{M} = N$, teilt(n,m) ergibt gerade(m), falls n=2 konstant gesetzt wird

teilt(2,42) = T, gerade(42) = T

 $\mathcal{M} = \text{Menschen}$, Vater(m₁, m₂) \wedge Mutter(m₃, m₄) ergibt Eltern(m₁, m₃, m₄), falls das Kind m₄ identisch m₂ gesetzt wird

Eltern(Johann Sebastian Bach, Maria Barbara Bach, Friedemann Bach) = T

Quantoren:

Neben \land , \lor , \Rightarrow , \Leftrightarrow , \neg (Junktoren) werden zwei weitere Symbole (**Quantoren**) verwendet, um aus bekannten Prädikaten weitere Prädikate zu erzeugen:

Definition: Sei $P(x_1, ..., x_n)$ ein n-stelliges Prädikat. Sei $x \in eine der$ Parameter von P. Dann bezeichnet

$$\forall x \ P(x, y_1, y_2, ..., y_{n-1}) \ ein \ (n-1)\text{-stellige Prädikat mit folgender Abbildung:}$$

$$\forall x \ P(x, y_1, y_2, ..., y_{n-1}) = \mathsf{T} \ \text{für alle } x \in \mathcal{M}$$

$$\forall x \ P(x, y_1, y_2, ..., y_{n-1}) = \mathsf{T} \ \text{für alle } x \in \mathcal{M} \ \text{gibt mit}$$

$$\mathsf{F}, \ \text{falls es (mindestens) ein } x \in \mathcal{M} \ \text{gibt mit}$$

$$\mathsf{P}(x, y_1, y_2, ..., y_{n-1}) = \mathsf{F}$$

Quantoren:

Der ∀-Quantor heißt *Allquantor* oder *Generalisator*

Beispiele:

- M=N (Menge der nat. Zahlen)

 ∀ x größer (x,m) ist ein einstelliges Prädikat mit Wert F für alle m
- M=N (Menge der nat. Zahlen)
 ∀ x teilt (x,m) ist ein einstelliges Prädikat mit Wert F für alle m
- M=N (Menge der nat. Zahlen)

 ∀ m teilt (x,m) ist ein einstelliges Prädikat mit Wert T genau für x=1
- $\forall x \forall y Q(x,y)$ ist eine Aussage!

Quantoren:

Definition: Sei $P(x_1, ..., x_n)$ ein n-stelliges Prädikat. Sei $x \in eine der$ Parameter von P. Dann bezeichnet

 $\exists x \ P(x, y_1, y_2, ..., y_{n-1}) \ ein (n-1)-stellige Prädikat mit folgender Abbildung:$

$$\exists \ x \ P(x, \, y_1, \, y_2, \, ..., \, y_{n-1}) = T \ \text{für (mindestens)}$$

$$ein \ x \in \mathcal{M}$$

$$F, \, \text{falls es (mindestens) ein } x \in \mathcal{M} \ \text{gibt mit}$$

$$P(x, \, y_1, \, y_2, \, ..., \, y_{n-1}) = F$$

Der ∃-Quantor heißt *Existenzquantor* oder *Partikularisator*

Quantoren:

Beispiele:

- *M*=N (Menge der nat. Zahlen)
 - ∃ x größer (x,m) ist ein einstelliges Prädikat mit Wert T für alle m
- M=N (Menge der nat. Zahlen)
 - ∃ x kleiner (x,m) ist ein einstelliges Prädikat mit Wert T für alle m>1

Quantoren:

Definition: Variable, die an Quantoren gebunden sind, heißen **gebundene Variable**, alle anderen heißen **freie Variable**

Eine Variable darf in einer Verknüpfung von Prädikaten nicht gleichzeitig frei und gebunden sein.

Beispiel:

M Menge aller Menschen, es gelten folgende Axiome:

Vater(x,y) \Leftrightarrow x ist Vater von y Mutter(w,z) \Leftrightarrow w ist Mutter von z

daraus können folgende Prädikate definiert werden:

- Elternteil(x,y) ⇔ Vater(x,y) ∨ Mutter(x,y)
- Großvater(x,y) ⇔ ∃z Elternteil(z,y) ∧ Vater(x,z)
- Großmutter(x,y) $\Leftrightarrow \exists z \; \text{Elternteil}(z,y) \land \text{Mutter}(x,z)$
- Urgrossvater(x,y) $\Leftrightarrow \exists z \text{ Elternteil } (z,y) \land (Grossvater (x,z))$

Beispiel:

weiteres Prädikat:

- Vollgeschwister(x,y) ⇔ ∃v (Vater (v,x) ∧ Vater(v,y)) ∧ ∃m (Mutter (m,x) ∧ Mutter(m,y)) ∧ x ≠ y
- Bruder(x,y) ⇔ Bruder(y,x)

Definition:

Eine Formel ohne konstante Prädikate, die für jede Wahl der variablen Prädikate und dann für jede mögliche Wahl der Individuenvariablen immer den Wert T ergibt, heißt *Gesetz der Prädikatenlogik.*

Die folgenden prädikatenlogischen Formeln sind Gesetze der Prädikatenlogik:

- $\neg(\forall x P(x)) \Leftrightarrow \exists x (\neg P(x))$
- $\forall x (\neg P(x)) \Leftrightarrow \neg(\exists x (P(x)))$
- $\forall x P(x) \Rightarrow P(y)$
- $P(y) \Rightarrow \exists x P(x)$
- $\forall x (\forall y P(x,y)) \Leftrightarrow \forall y (\forall x P(x,y))$
- $\exists x (\exists y P(x,y)) \Leftrightarrow \exists y (\exists x P(x,y))$
- $\forall x(P(x) \Rightarrow Q(x)) \Rightarrow (\forall xP(x) \Rightarrow \forall xQ(x))$
- $\exists x (P(x) \Rightarrow Q(x)) \Rightarrow (\exists x P(x) \Rightarrow \exists x Q(x))$

Die folgenden prädikatenlogischen Formeln sind *keine* Gesetze der Prädikatenlogik:

•
$$\forall x \exists y P(x,y) \Rightarrow \exists x \forall y P(x,y)$$

Anwendung der Prädikatenlogik in der Informatik:

formale Beschreibungen von Spezifikationen.

Beispiel:

Sei \mathcal{M}_1 die Menge aller druckbaren Zeichen und \mathcal{M}_2 die Menge aller Texte über \mathcal{M}_1 , dann kann das Maximum der Vorkommen eines Buchstabens in einem Text vollgendermaßen formuliert werden:

```
max(b,t) := \forall b' \in t \ vorkommen(b',t) \leq vorkommen(b,t)
```

wobei vorkommen(b,t) die Anzahl angibt, wie oft ein Buchstabe b in einem Text t vorkommt

Anwendung der Prädikatenlogik in der Informatik:

formale Beschreibungen von Spezifikationen und Beweisen.

Beispiel:

Sei \mathcal{M}_1 die Menger der natürlichen Zahlen:

$$f(n,m) := teilt(n,m) \land \forall x(teilt(x,m) \Rightarrow (x \leq n))$$

Zum Schluss dieses Abschnitts ...

Noch Fragen 77