

TEKNOFEST 2020 ROKET YARIŞMASI ST FOCOUNT Atışa Hazırlık Raporu (AHR)

Takım Yapısı

KTR'den Değişimler 1/2

- 1. Ayrılma mekanizmasın yayı sıkıştırması için plastik kelepçe kullanması planlanmıştı. Fakat aynı işlem için dayanımı daha yüksek olan kevlar ip kullanılmıştır.
- 2. KTR'de kanatçıklara ve alt gövdeye ray açılacağı söylenmişti ama 3 mm fiberglasa ray açmak çok zor olacağı ve dayanımı düşüreceği için bundan vazgeçilmiştir. Rayların olacağı kısım düz bırakılıp akantçıklar epoksi yapıştırıcı ile yapıştırılmıştır.
- 3. birincil paraşüt 130 cm, ikincil paraşüt 300 cm ve faydalı yük paraşütü 200 cm çapında planlanmıştı. Fakat yer sıkıntısı olduğundan hesaplamalar ve simülasyonlar tekrar edilmiştir ve Birincil paraşüt çap değeri 133 cm, ikincil paraşüt çap değeri 273 cm ve faydalı yük paraşütü çap değeri 150 cm olarak değiştirilmiştir. Yeni hız değerleri isterleri karşılamaktadır. Sayfa 14'te simülasyon detayları ve sonuçları verilmiştir.
- 4. Roketimizin genel tasarımında ikincil motor kullanırsak diye motor bloğumuz uzun tutulmuştu. Paraşüt için yer sıkıntısı çektiğimizden ve M2020 motorunu kullanacağımız netleştiğinden bu boşluk kapatılarak ikincil paraşütümüze yer açılmıştır. Bu değişiklik roketimizin irtifa, stabilite, hız, CP, CG değerlerinde çok az oynamaya sebep olmuştur. Ama yine de yarışma isterlerinin dışına çıkılmamıştır. Bir sonraki sayfada farklar verilmiştir.

KTR'den Değişimler 2/2

Roket Alt Sistemleri

Alt Sistem	Durum
Burun Konisi	Üretimi tamamlandı, içerisine bulkhead ve mapa sabitlendi. Zımpara ve boya işlemleri kaldı. (%100, zımpara ve boya dahil edilmemiştir.)
Alt gövde	Üretimi tamamlandı. Bulkheadin sabitlenmesi için kullanılan vidaların çap değişimine sebep olmaması ve aerodinamiği bozmaması için havşa başı açılıp etrafı macunla doldurularak pürüz engellenecektir.(%95)
Üst gövde	Üretimi tamamlandı. Aviyonik sistemin sabitlenmesi için kullanılan vidaların çap değişimine sebep olmaması ve aerodinamiği bozmaması için havşa başı açılıp etrafı macunla doldurularak pürüz engelenecektir.(%95)
Aviyonik Sistem	Üretimi tamamlandı. Şuan çalışır durumda. Üretilen kartlara ek olarak daha temiz bir görüntü olması açısından smd malzeme kullanılarak pcbler tasarlanmıştır. Kartlar değiştirilecektir. Kablolama düzenlenecektir. (%100)
Ayrılma sistemleri	Mekanizma ve tetikleme devreleri tamamlanmıştır. Sistem nikrom tel ile ayrıldığından elektrik bandı ile yalıtılmıştır. (%100)
Kurtarma sistemleri	Paraşütler üretilmiştir. Birincil paraşütün açılması için kullanılan yaylı sistemin üretimi tamamlanmıştır. (%100)
Faydalı Yük	Faydalı yük kartları da aviyonik ile aynı durumdadır. Şu an çalışır durumdaki kartlarımıza ek olarak pcbler tasarlanmıştır. Kartlar değiştirilecektir. (%100)

OpenRocket / Roket Tasarımı Genel Görünüm

Kanatçık & Motor Kapağı

OpenRocket / Roket Tasarımı Genel Görünüm

Roket Alt Sistemleri Mekanik Görünümleri ve Detayları

Burun ve Faydalı Yük Mekanik Görünüm

Burun 3 Boyutlu Görünümü (CAD)

Üretilmiş Burun Görüntüsü

Faydalı Yük ve Faydalı Yük Bölümü 3 Boyutlu Görünümü (CAD)

Üretilmiş Faydalı Yük ve Faydalı Yük Bölümü Görüntüsü

Burun – Detay

Burun konimiz önceki raporlarda belirttiğimiz üzere fiberglas malzemeden el yatırması yöntemi ile yapılmıştır. Kalıp alındıktan sonra başlanmış ve 6 gün içerisinde tamamlanmıştır. Şu anda sadece zımpara ve boya işi beklemektedir. Boyama ve zımparalama işlemleri bayram sonunda tamamlanacaktır. Bulkhead ve birinci ayrılma sistemini içerisinde barındırmaktadır.

Burun konisinin takım arkadaşımızla fotoğrafı

Burun konisi iç görüntüsü

Burun konisi et kalınlığı: 3mm

Burun konisi dış çap: 130 mm iç çap: 124 mm

Faydalı Yük ve Faydalı Yük Bölümü – Detay

Faydalı yük bir model uydudur. İçerisinde telemetri verilerini yer istasyonuna iletecek haberleşme modülü, sensörler ve mikroişlemci bulunmaktadır. Ek olarak bir adet hava kalite sensörü eklenmiştir. Yüksekliğe bağlı olarak havanın kalitesinin durumu ölçülecektir.

Faydalı yükün takım arkadaşımızla fotoğrafı

Faydalı yük 1. kat

Faydalı yük 2. kat

Faydalı yük paraşütü

Faydalı yük iç görüntüsü

Faydalı yük ağırlığı: 4320g

Kurtarma Sistemi Mekanik Görünüm

Ayrılma Sistemi – Detay

Ayrılma Mekanizması

İki gövdeyi birbirinden ve burun konisini roketten ayıracak olan ayrılma mekanizmaları üretilmiştir. Alüminyum plakalar lazer kesimde üretilmiştir. Kestamit miller için delikler açılmıştır. Kestamit parçalar istenilen boy ve çap değerlerine getirilmiş olup deliklerden geçirilmiştir. Yay ise iki plaka arasına konumlandırılıp plastik kelepçeler ile sabitlenmiştir. IRFZ34 Mosfeti ile bir tetikleme devresi kurulmuştur. İşlemciden gelen pin gate bacağına bağlanarak kontrolü sağlanmıştır. Klemensler pil, nikrom tel ve tetik için konulmuştur.

Birincil Paraşüt Ayrılma Sistemi

Birincil paraşütü roketten ayıracak olan ayrılma sistemi üretilmiştir. İki fiberglas plaka üretilmiştir. Alt plaka aviyoniğin üstündeki mapaya denk geldiği için delik açılmıştır, ardından kullanılacak olan yay plakalar arasına konumlandırılıp plastik kelepçeler ile sabitlenmiştir. Bu sistem roket içine yay sıkışık halde olacak şekilde konumlandırılacaktır.

https://youtu.be/bCxh7f_QnMU

Paraşütler – Detay

Birincil paraşüt çap değeri 133 cm, ikincil paraşüt çap değeri 273 cm ve faydalı yük paraşütü çap değeri 150 cm olarak değiştirilmiştir. Bunun sebebi roket içerisinde beklediğimizden fazla yer kaplamasıdır. Yeni paraşüt çapları için hesaplamalar yapılmış olup yarışma isterlerinde belirtilen hız değerlerine uymaktadır. Yeni paraşüt çapları girilerek oluşturulan OpenRocket simülasyonu aşağıda verilmiştir. Paraşütlerin üretimi tamamlanmıştır. Birincil paraşüt turuncu, ikincil paraşüt siyah ve faydalı yük paraşütü ise kırmızıdır.

Birincil Paraşüt

İkincil Paraşüt

Faydalı Yük Paraşütü

Aviyonik Sistem Mekanik Görünüm

Aviyonik Sistem 3 Boyutlu Görünümü (CAD)

Üretilmiş Aviyonik Sistem Görüntüleri

Üretilmiş Devre Görüntüleri

Aviyonik sistem tanıtım videosu için tıklayınız

Ana aviyonik sistem çalışır videosu için tıklayınız

Yedek aviyonik sistem çalışır videosu için tıklayınız

Aviyonik Sistem – Detay1/2

Ana ve yedek Aviyonik genel şeması

Ana ve yedek aviyonik sistemler birbirinden tamamen bağımsız iki bloktan oluşmaktadır.

Aviyonik Sistem – Detay2/2

Uçuş bilgileri ve ayrılma algoritması

- Yükseklik kontrolü Arduino nanoya bağlı 10DOF İMU sensörü ile yapılacak ve 3000m de ayrılma gerçekleştirilecektir. Algoritma koşulları belirli yazılım üzerinden if komutları ile kontrol edilecek şekilde ayrılmayı geçekleştirecek şekilde ayarlanmıştır.
- Ayrılma gerçekleşmeme durumuna karşı yedek uçuş bilgisayarı(Arduino UNO) yükseklikte ki ivmenin sabit olup olmamasına bakarak yeniden ayrılma tetiği göndermektedir.
- Ana uçuş bilgisayarı ve Yedek uçuş bilgisayarı ve sensörlerden alınan veriler gerekli birim dönüşümleri yapıldıktan sonra XBee ile yer istasyonuna iletilecektir.

- Yer istasyonu arayüz yazılımlarının son halleri yukarıda gösterilmiştir.alınan telemetri verilerini grafik olarak yasıtırken aynı zamanda arka planda kayıt sağlamaktadırlar.
- ❖ Bağımsız olarak .exe formatında herhangi bir bilgisayarda çalıştırılabilmektedirler bu bize bilgisayar arızası durumunda başka bir bilgisayar ile çalışabilme imkanı sunmaktadır

Kanatçıklar Mekanik Görünüm

Kanatçıkların
3 Boyutlu Görünümü
(CAD)

Üretilmiş Kanatçıkların Görüntüsü

Kanatçıklar – Detay

Kanatçıklar önceki raporlarda belirtildiği üzere alüminyum sacdan belirtilen boyutlarda lazer kesimi yöntemi ile elde edilmiştir. Et kalınlığı 3mm'dir. Kesim işlemi sonucunda kalan pürüzler zımpara ile giderilmiştir. Kanatçıklarda belirttiğimiz ray açma işleminden vazgeçilmiş; yerine güçlü yapıştırıcılarla gövdeye bağlantısı gerçekleştirilmiştir. Kanatçıkların tüm işi bitmiş olup, daha sonrası için bir işlem gerçekleşmeyecektir. Sadece gövde boyanmadan önce zımparalanırken fazlalık epoksi de zımparalanacaktır.

Kanatçıklarımızın takım arkadaşımız ile fotoğrafı

Kanatçıkların gövde ile birleşim yeri görüntüsü

Üst gövde kanatçıkları görüntüsü

Alt gövde kanatçıkları görüntüsü

Roket Genel Montaji

Roket montaj sıralaması:

Roket Genel Montaji

☐ Roket genel montaj videomuzun linki: https://www.youtube.com/watch?v=syUjVAxCQoQ&feature=youtu.be

Roket Motoru Montaji

☐ Roket motoru videomuzun linki: https://www.youtube.com/watch?v=GTiSdNPLMRs&feature=youtu.be

Atış Hazırlık Videosu

☐ Atışa hazırlık videomuzun linki: https://www.youtube.com/watch?v=iIAYbyQW0hl&feature=youtu.be

Yapısal/Mekanik Mukavemet Testleri

Test	Test düzeneği	Test yöntemi	Sonuç
Çelik çekme testi	Basma-çekme makinesi	Numune makineye bağlanır ve çekilir.	St37 çekme dayanımı 373 mPa iken numunemiz 302 mPa'a dayanmıştır. Bu fark üretimden veya parça işlenmesinden kaynaklı olabilir.
Alüminyum çekme testi	Basma-çekme makinesi	Numune bakineye bağlanr ve çekilir.	6061 çekme dayanımı 310 mPa iken numunemiz 250 mPa'a dayanmıştır. Bu fark üretimden veya parça işlenmesinden kaynaklı olabilir.
Fiberglas çekme testi	Basma-çekme makinesi	Numune makineye bağlanır ve çekilir.	Fiberglas çekme dayanımı yaklaşık 800 mPa iken numunemiz 140 mPa'a dayanmıştır. Bu fark üretimden veya parça işlenmesinden kaynaklı olabilir. Bu hata gövde üretiminde giderilmiştir. Deatylar THR test videomuzda belirtilmiştir.
Motor kapağı dayanım testi	Motor kapağı numunesi	Motor kapağını kapama ve elle zorlama	Motor kapağımız montajlandığı zaman kendiliğinden açılma ve oynama gibi sorunlar oluşmamaktadır.
Mapa-şok kordonu- paraşüt iplerinin testi	Aviyonik kapaklarına montajlanan test numuneleri	Montajlanan parçaların insan gücü ile çekilmesi	Herhangi bir kopma veya oynama yaşanmamıştır.
Kanatçıkların eğilmesi	Masa numune ve yük	İki masa arasına koyulan numunenin yük uygulanarak eğilmeye zorlanması	Sadece elastik bölgede eğilme yaşanmıştır.
Burkulma testi	Gövde ve yük	Gövdenin üzerine yük konulması	Burkulma yaşanmamıştır.
Entegrasyon gövdesi dayanım testi	Entegrasyon gövdesi ve insan ağırlığı	Entegrasyon gövdesinin üzerine çıkılır	Entegrasyon gövdesi deformasyona uğramamıştır.
Gövde dayanım testi	Gövde ve insan ağırlığı	Gövdenin üzerine çıkılır	Deformasyona uğramamıştır.
Gövde sıcaklık testi	Fırın ve buzdolabı	Numune fırında ve buzdolabında sıcaklık değişimine maruz bırakılır.	Deformasyona uğramamıştır.

Kurtarma Sistemi Testleri

Test	Test düzeneği	Test yöntemi	Sonuç
Birincil ayrılma sistemi testi	Üst gövde –birincil ayrılma sistemi- temsili burun konisi	Asansör ile yükseklik verisi okunur ve ayrılma sağlanır.	Test başarılı olup ayrılma gerçekleşmiştir.
İkincil Ayrılma Sistemi Testi	Temsili üst gövde-alt gövde-ikincil ayrılma sistemi	Asansör ile yükseklik verisi okunur ve ayrılma sağlanır.	Test başarılı olup ayrılma gerçekleşmiştir.
Gövde yükü ve birincil paraşüt ayrılma testi	Üst gövde- temsili görev yükü-birincil paraşüt-gerdirilmiş bir yay	Yay serbest bırakılarak malzemelerin çıkışı beklenir	Test başarılı olmuştur.
Paraşüt açılma testleri	Yüksek bir bina- paraşütler-uygun ağırlıklar	Paraşüt katlanır. Ağırlığa bağlanarak yüksek bir bandan serbest bırakılır. Açılma süresi gözlemlenir.	Test başarılı olmuştur.

Yapısal ve paraşüt testleri aynen faydalı yük numunesine de uygulanmıştır. Linki mevcuttur.

Yapısal testler: https://www.youtube.com/watch?v=h_tTWNbBfjE&feature=youtu.be

Ayrılma-paraşütler: https://www.youtube.com/watch?v=oob_kbB4c1Y&feature=youtu.be

Paraşüt açılma: https://www.youtube.com/watch?v=kR0WdYqqX7A&feature=youtu.be

Ayrılma-payload: https://www.youtube.com/watch?v=o3-81PZ5EQg&feature=youtu.be

Aviyonik Sistem Yazılım ve Donanım Testleri

Test	Test düzeneği	Test yöntemi	Sonuç
Arduino nanodan alınna verilerin raspberrye aktarma testi	Breadboard-raspberry-arduino-sensörler	Sensörlerden alınan verilerin raspberrye iletilmesi	Test başarılı olmuştur.
Sensör karşılaştırma testi	Yedek ve ana aviyonik sistem testleri	İki sistemde de okunan sensör verileri karşılaştırılarak sonuçlar gözlenmiştir.	Sonuçlar uyumludur. Verilerin doğruluğu kanıtlanmıştır.
Kısa devre Testi	Üretilen Kartlar-multimetre	Multimetre probarın devre üzerinde gezdirilerek kısa devre olup olmadığı gözlemlenmiştir.	Kısa devre sorunun gözlenmemiştir.
Regülatör testleri	Kartlar üzerindeki regülatör devreleri ve multimtre	Regülatörün ınput ve output voltajları Ölçülmüştür.	İstenilen gerilim düşümü gerçekleşmiştir.
Ayrılma devresinin testi	Ayrılma devresi- ayrılma mekanizması- asansör	Ayrılma devresi asansör ile yükseklik verisi alınarak test edilmiştir.	Ayrılma sağlanmıştır.
Yer istasyonu matris kaydı	Yer istasyonu ve sensörler	Sensörler ve mikroişlemciden alınan veriler matris formunda kaydedilir. Yer istasyonunda gözlemlenir.	Kayıt sağlanmıştır.
Sensörlerden alınan verilerin seri port ekranında gösterilmesi ve sd karta kaydedilmesi	Sd kart slot –micro sd kart-sensörler	Sensörlerden alınan veriler seri port ekranında gözlmelnir ve sd kart kaydı kontrol edilir.	Test başarılı olmuştur.
Ana ve yedek aviyonik yer istasyonu yazılımının testi	Breadboard- ana ve yedek aviyonik devreleri-yer istayonları	Sensörlerden alınan veriler yer istasyonunda bütün halinde gözlemlenir.	Test başarılı olmuştur.
Basınç sensöründen alınan yükseklik verisinin testi	Yer istasyonu aviyonik devresi asansör	Asansörde yükseklik ve hız değişimi yer istasyonundan gözlenmiştir.	Test başatürılı olmuştur.

Üretilen devrelerin çalışır halde videosu eklenmemişti. Aviyonik kısımda linkini bulabilirsiniz.

Telekominikasyon Testleri

Test	Test düzeneği	Test yöntemi	Sonuç
Xbee por s2c modülünün konfigürasyon testi	Xctu ekranı	Konfigürasyonu yapılan xbeeler xctu aracılığıyla test edilir.	Test başarılı olmuştur.
Haberleşme uzaklık testi	Aviyonik sistem-antenler- yer istasyonu	Yaklaşık 3 km uzaklıktan xbee ile haberleşilebildiğinin testi gerçekleşmiştir.	Test başarılıdır.

Aviyonik donanım: https://www.youtube.com/watch?v=pZIJqhhrCso&feature=youtu.be

Aviyonik algoritma: https://www.youtube.com/watch?v=-3uDJ7ZOb0E&feature=youtu.be

Aviyonik telekomünikasyon: https://www.youtube.com/watch?v=_eR_W8jVRS4&feature=youtu.be

Yarışma Alanı Planlaması 1/3

Atış alanına gidecek maksimum yarışmacı 6 olarak belirlendiğinden montaj ve atış günü planlaması ktrden sonra yeniden ele alınmıştır.

Görev	İsim
Roket montajı	Enes Tutkun, Serhat Güler
Motor ve ray butonlarının teslim alınması	Feyza Gül,Emre Kalaycıoğlu
Roketin rampaya tasınması	Emre Kalaycıoğlu, Serhat Güler, Enes Tutkun
Roket kurtarma	Salih Çetin, Feyza Gül
Misyon kontrolü,İdari sorunlar,Check list	Feyza Gül
Yer istasyonu antenlerinin kurulumu	Mikail Çelik,Salih Çetin
Yer istasyonu bilgisayarının göreve hazır hale getirilmesi	Mikail Çelik
Yarışma anında oluşacak durumlara karşı yedek ekipmanların roket montajındaki arkadaşlara temin edilmesi	Salih Çetin Feyza Gül
Faydalı Yük Kurtarma	Emre Kalaycıoğlu

Yarışma Alanı Planlaması 2/3

- ☐ Acil Durumlara Karşı Alınan Önlemler:
- 1- Ana uçuş bilgisayarının tetik vermemesi durumunda yedek uçuş bilgisayarı ayrılmayı sağlayacaktır. Ana uçuş bilgisayarının basınç sensörünün sorunsuz çalışması için aviyonik sistem hava alacak şekilde tsaralanmıştır.
- 2- Montaj günü olabildiğince hızlı olabilmek ve lehim atmak zorunda kalmak gibi sorunlara karşı çalışır durumdaki aviyonik sistem ve faydalı yük devrelerimizden 10ar adet üretilmiştir ve yedek sensörlerimiz ile kurulacak ve 10 paket halinde alana getirilecektir.
- 3- Devrelerimizde headerlar kullanarak componentleri devreye sabitlemekteyiz bunun sebebi farkedilen bir sensör arızası durumunda paketlerin haricinde hızlı olabilmesi açısında direkt tak çıkar yapılabilmesidir.
- 4- Headerlar yüzünden yüksekte kalan componentler titreşim durumda görevini yerine getirememe durumuna karşı component altları strafor ile desteklendi ve çift taraflı bant ile componente yapıştırıldı.
- 5- Yer istasyonu bilgisayarımızda atış günü bir sorun ile karşılaşmamız durumuna karşı yer stasyonu .exe formatına dönüştürüldü ve takım drive hesabımmızdan paylaşıldı. Kodlarımız da drive hesabımızda yedeklenmiştir.
- 6- Paraşütler yedekli şekilde üretilmiştir. İplerinin montaj günü dolanma ihtimaline karşı alana ipleri kağıt bant ile yapıştırılmış şekilde getirilcektir.
- 7- Bağlantı ekipmanlarımızın tamamı yedekli üretilmiştir.
- 8- Ray butonu montajı için gerekli ekipmanlar alana getirilecektir.

Yarışma Alanı Planlaması 3/3

☐ Riskler:

- Roketimizin genel hatlarıyla bittiğini ve beklediğimiz bir parçanın olmadığının belirtmek isteriz.
- Roketimizin boya ve zımpara işlemleri bayram sonrası 10-20 eylül arasında bitirilecektir.
- Şok kordonunun tak çıkar şeklinde olmasının montaj anında hız kazandırdığını farkettik ve mapalara bağlanan şok kordonu karabinalar ile takılacaktır. 6 Eylül
- 3D baskı alınan parçalar yedeklenecektir. Aviyonik sistemler için bir önceki sayfada belirtilen paketlerin üretimi yapılacaktır. 5-10 Eylül
- Roketin gövdesindeki vidaların çap değişimine sebep olmaması için gövdeye havşa başları açılacaktır. Kısa vidalar alınacaktır. Çap değişimine engel olacak şekilde vidalar gövdeye sıfır hale getirilecektir. 5-10 eylül
- Uçuşa uygun hale getirilen roketin ağırlık merkezi tespit edilecektir. Open rocket ile karşılaştırılacaktır. 28 Eylül
- Roket Kanatlarının sarsılma ihtimaline karşı kanatlar tamamen sabitlenecek ve tekrar tekrar kontrol edilecektir.
- Entegrasyon gövdemiz alüminyumdan oluşmaktadır. Sıcak hava etkisiyle genleşme ihtimali az da olsa bulunmaktadır. Bunun ile karşılaşmamak adına roketi güneşten mümkün olduğunca uzak tutacağız.
- Altimetre kapağının etrafı montaj sonrası macunlanacaktır.
- Birincil paraşüt fırlatma sistemimizin plakaları montaj videomuzda bahsettiğimiz gibi biraz büyük kesilmiştir. Bayramdan sonra bu sorun da çözülecektir.