Perspectives on Probabilistic Graphical Models

Dong Liu

Information Science and Engineering KTH - Royal Institute of Technology

Profile page: https://firsthandscientist.github.io/

Slide is available at: https://github.com/FirstHandScientist/phdthesis

Summary and Q&A

Why are Probabilistic Graphical Models interested?

Learning

Control, reinforcement learning

DIRECTED GRAPH REPRESENTATION

Speech Recognition

UNDIRECTED GRAPH REPRESENTATIONS

Vision Perception

Digital communication

Physics (Ising or Potts model)

- Error-control codes
- Computational biology
- Natural language processing
- etc.

Inference

What are Probabilistic Graphical Models

Informally...

Motivation

- ullet attributes of our interests in a system o variable nodes
- relationship of these factors → structures of a graph

Intrinsic property: reasoning with uncertainty

A directed/undirected graph encoding dependencies/indepedencies of distribution $p(\mathbf{x}; \theta)$:

- A BN/Generative model is a directed graph
 - $p(\mathbf{x}; \theta) = \prod_{n=1}^{N} p(x_n | \mathcal{P}(x_n))$
 - $\mathcal{P}(\cdot)$ are parent nodes
 - the local functions are proper distributions
- An MRF denoted by an undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$
 - The probability distribution (Gibbs distribution) is $p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \prod_{a \in \mathcal{I}} \psi_a(\mathbf{x}_a; \theta_a)$
 - a indexes potential functions $\mathcal{I} = \{\psi_A, \psi_B, \cdots, \psi_M\}$
 - $Z(\theta) = \sum_{\mathbf{x}} \prod_{a} \psi_{a}(\mathbf{x}_{a}; \theta_{a}).$

WHAT ARE PROBABILISTIC GRAPHICAL MODELS

Informally...

Motivation

- ullet attributes of our interests in a system o variable nodes
- relationship of these factors → structures of a graph

Intrinsic property: reasoning with uncertainty

A directed/undirected graph encoding dependencies/indepedencies of distribution $p(\mathbf{x}; \theta)$:

- · A BN/Generative model is a directed graph
 - $p(\mathbf{x}; \theta) = \prod_{n=1}^{N} p(x_n | \mathcal{P}(x_n))$
 - $\mathcal{P}(\cdot)$ are parent nodes
 - the local functions are proper distributions
- An MRF denoted by an undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$
 - The probability distribution (Gibbs distribution) is
 ρ(x; θ) = ¹/_{Z(θ)} Π_{a∈Z} ψ_a(x_a; θ_a)
 - a indexes potential functions $\mathcal{I} = \{\psi_A, \psi_B, \cdots, \psi_M\}$
 - $Z(\theta) = \sum_{\mathbf{x}} \prod_{a} \psi_{a}(\mathbf{x}_{a}; \theta_{a}).$

- The common inference problems:
 - Computing the likelihood of observed data.
 - Computing the marginals distribution $p(\mathbf{x}_A)$ over particular subset $A \subset \mathcal{V}$ of nodes

Learning

- Computing the conditional distribution $p(\mathbf{x}_A|\mathbf{x}_B)$,
- Computing the partition function or the Helmholtz free energy (for MRFs)
- Learning:

Motivation

• To model or determine $p(\mathbf{x}; \theta)$.

- The common inference problems:
 - Computing the likelihood of observed data.
 - Computing the marginals distribution p(x_A) over particular subset A ⊂ V
 of nodes
 - Computing the conditional distribution $p(\mathbf{x}_A|\mathbf{x}_B)$,
 - Computing the partition function or the Helmholtz free energy (for MRFs)
- Learning:

• To model or determine $p(x; \theta)$.

Two key components interacting with each other:

What is the state of x?

A TOY EXAMPLE

Motivation

Assume that we are interested into the state of node *i* in an MRF, it can be answered by

- the probability $p(x_i)$, or
- an empirical version, a collection of samples $\{x_i^n\}_{n=1}^N$

It is similar for the case when \boldsymbol{x} is of interests, instead of x_i .

what is the state of x_4

Gibbs sampling: let us guess by sampling

Sample iteratively:

Motivation

$$x_i \sim p(x_i|\mathbf{x}_{-i}) \sim p(x_i,\mathbf{x}_{-i})$$

Queries by collected samples $\{x^n\}_1^N$.

Mean Field and BP: message in form of sample values \rightarrow message in form of belief

Propagating beliefs iteratively

Queries by collected samples $\{b_i\}$.

Intuition from Gibbs (variational) free energy

$$F_V(b) = KL(b(\mathbf{x})||p(\mathbf{x};\theta)) - \log Z(\theta)$$

with trial b(x). Instance: Bethe free energy.

Attempts with neural networks: an imitation game of message passing, or trials under free energy?

What is the state of x?

Motivation

YEDIDIA, FREEMAN, WEISS: A STEP TO GENERALIZATION Message among variables & factors \rightarrow message among regions

Generalized belief propagation (GBP) generalizes loopy BP

- usual better approximation than LBP
- higher complexity
- sensitive to scheduling of region messages

Corresponding to minimization of approximated variational free energy $F_V(b)$ with trial b including $\{b_B\}$.

A region R is a set V_{P} of variables nodes and a set A_{P} of factor nodes, such that if a factor node 'a' belongs to A_{P} , all the variables nodes neighboring a are in V_B .

Motivation

REGION REVISITED

- If you cannot collect true targets $(p(x_i))$
- If you are unwilling to be restricted to pre-defined inference

Factor graph representation of MRF (2-by-3 grid) with factor nodes.

Summary and Q&A

REGION REVISITED

- If you cannot collect true targets $(p(x_i))$
- If you are unwilling to be restricted to pre-defined inference

Factor graph representation of MRF (2-by-3 grid) with factor nodes.

Learning

RENN

Motivation

The region-based free energy of a region graph is

$$F_{R}(\mathcal{B}; \boldsymbol{\theta}) = \sum_{R \in \mathcal{R}} \underbrace{c_{R}}_{counting \ number} \sum_{\boldsymbol{x}_{R}} b_{R}(\boldsymbol{x}_{R}) (\underbrace{E_{R}(\boldsymbol{x}_{R}; \boldsymbol{\theta}_{R})}_{region \ average \ energy} + \ln b_{R}(\boldsymbol{x}_{R})),$$

- counting number: balance the contribution of each region
- region average energy: $-\sum_{a\in A_B} \ln \varphi_a(\mathbf{x}_a; \boldsymbol{\theta}_a)$

Motivation

The region-based free energy of a region graph is

$$F_{R}(\mathcal{B}; \boldsymbol{\theta}) = \sum_{R \in \mathcal{R}} \underbrace{c_{R}}_{counting \ number} \sum_{\boldsymbol{x}_{R}} b_{R}(\boldsymbol{x}_{R}) (\underbrace{E_{R}(\boldsymbol{x}_{R}; \boldsymbol{\theta}_{R})}_{region \ average \ energy} + \ln b_{R}(\boldsymbol{x}_{R})),$$

- counting number: balance the contribution of each region
- region average energy: $-\sum_{a\in A_B} \ln \varphi_a(\mathbf{x}_a; \theta_a)$

Motivation

The region-based free energy of a region graph is

$$F_{R}(\mathcal{B}; \boldsymbol{\theta}) = \sum_{R \in \mathcal{R}} \underbrace{c_{R}}_{\text{counting number}} \sum_{\boldsymbol{x}_{R}} b_{R}(\boldsymbol{x}_{R}) (\underbrace{E_{R}(\boldsymbol{x}_{R}; \boldsymbol{\theta}_{R})}_{\text{region average energy}} + \ln b_{R}(\boldsymbol{x}_{R})),$$

- counting number: balance the contribution of each region
- region average energy: $-\sum_{a\in A_B} \ln \varphi_a(\mathbf{x}_a; \theta_a)$

Objective of RENN1:

min region-based free energy(F_R) + panelty on belief consistency

along region graph struture

Learning alternatives of MRF

learn with customized optm

learn with auto-grads

$$\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{a}} = \frac{\partial \log \varphi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a})}{\partial \boldsymbol{\theta}_{a}} \qquad \max_{\boldsymbol{\theta}} \log p(\mathbf{x}; \boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \sum_{a} \log \psi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a}) \\ - \underbrace{\mathbb{E}_{p(\mathbf{x}_{a}; \boldsymbol{\theta})} \left[\frac{\partial \log \varphi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a})}{\partial \boldsymbol{\theta}_{a}} \right]}_{\text{est. beliefs}}. \qquad \max_{\boldsymbol{\theta}} \log p(\mathbf{x}; \boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \sum_{a} \log \psi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a}) \\ - \underbrace{\log Z(\boldsymbol{\theta})}_{\text{ets. free energy}},$$

More detail on RENN? Refer to, Dong Liu, Ragnar Thobaben, and Lars K. Rasmussen. Region-based energy

Objective of RENN1:

Learning alternatives of MRF

learn with customized optm

learn with auto-grads

$$\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{a}} = \frac{\partial \log \varphi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a})}{\partial \boldsymbol{\theta}_{a}} - \underbrace{\mathbb{E}_{p(\mathbf{x}_{a}; \boldsymbol{\theta})} \left[\frac{\partial \log \varphi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a})}{\partial \boldsymbol{\theta}_{a}} \right]}_{\text{est. beliefs}}.$$

natural naturals for annualiments informance and construction

$$\begin{aligned} \max_{\theta} \log p(\mathbfit{x}; \theta) &= \max_{\theta} \sum_{a} \log \psi_{a}(\mathbfit{x}_{a}; \theta_{a}) \\ &- \underbrace{\log Z(\theta)}_{\text{ets. free energy}} \end{aligned},$$

by
$$-\log Z(\theta) \simeq F_{\theta}$$

More detail on RENN? Refer to, Dong Liu, Ragnar Thobaben, and Lars K. Rasmussen. Region-based energy

Objective of RENN1:

Learning alternatives of MRFs

learn with customized optm.

$$\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{a}} = \frac{\partial \log \varphi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a})}{\partial \boldsymbol{\theta}_{a}} - \underbrace{\mathbb{E}_{p(\mathbf{x}_{a}; \boldsymbol{\theta})} \left[\frac{\partial \log \varphi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a})}{\partial \boldsymbol{\theta}_{a}} \right]}_{\text{est. beliefs}} \cdot \underbrace{\max_{\boldsymbol{\theta}} \log p(\mathbf{x}; \boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \sum_{a} \log \psi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a})}_{\boldsymbol{\theta}} \log \varphi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a})}_{\text{ets. free energy}}$$

More detail on RENN? Refer to, Dong Liu, Ragnar Thobaben, and Lars K. Rasmussen. Region-based energy natural naturals for annualiments informance and construction

Objective of RENN1:

min region-based free energy(
$$F_R$$
) + panelty on belief consistency

Learning alternatives of MRFs

natural naturals for annualiments informance and construction

learn with customized optm.

learn with auto-grads

$$\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_{a}} = \frac{\partial \log \varphi_{a}(\mathbf{x}_{a}; \theta_{a})}{\partial \theta_{a}} \qquad \max_{\boldsymbol{\theta}} \log p(\mathbf{x}; \boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \sum_{a} \log \psi_{a}(\mathbf{x}_{a}; \theta_{a}) \\ -\underbrace{\mathbb{E}_{p(\mathbf{x}_{a}; \boldsymbol{\theta})} \left[\frac{\partial \log \varphi_{a}(\mathbf{x}_{a}; \theta_{a})}{\partial \theta_{a}} \right]}_{\text{est. beliefs}}.$$

by $-\log Z(\theta) \simeq F_R$. More detail on RENN? Refer to, Dong Liu, Ragnar Thobaben, and Lars K. Rasmussen. Region-based energy

INFERENCE RESULTS

Motivation

Ising model:
$$p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \exp\left(\sum_{(i,j) \in \mathcal{E}_F} J_{ij} x_i x_j + \sum_{i \in \mathcal{V}} h_i x_i\right), \mathbf{x} \in \{-1,1\}^N$$
,

- J_{ij} is the pairwise log-potential between node i and j, $J_{ij} \sim \mathcal{N}(0,1)$
- h_i is the node log-potential for node i, $h_i \sim \mathcal{N}(0, \gamma^2)$

Inference on grid graph ($\gamma = 0.1$).

Metric	n	Mean Field	Loopy BP	Damped BP	GBP	Inference Net	RENN
ℓ_1 error	25 100 225 400	$\begin{array}{c} 0.271 \pm 0.051 \\ 0.283 \pm 0.024 \\ 0.284 \pm 0.019 \\ 0.279 \pm 0.014 \end{array}$	$\begin{array}{c} 0.086 \pm 0.078 \\ 0.085 \pm 0.041 \\ 0.100 \pm 0.025 \\ 0.110 \pm 0.016 \end{array}$	$\begin{array}{c} 0.084 \pm 0.076 \\ 0.062 \pm 0.024 \\ 0.076 \pm 0.025 \\ 0.090 \pm 0.016 \end{array}$	$\begin{array}{c} 0.057 \pm 0.024 \\ 0.064 \pm 0.019 \\ 0.073 \pm 0.013 \\ 0.079 \pm 0.009 \end{array}$	$\begin{array}{c} 0.111 \pm 0.072 \\ 0.074 \pm 0.034 \\ 0.073 \pm 0.012 \\ 0.083 \pm 0.009 \end{array}$	$\begin{array}{c} \textbf{0.049} \pm 0.078 \\ \textbf{0.025} \pm 0.011 \\ \textbf{0.046} \pm 0.011 \\ \textbf{0.061} \pm 0.009 \end{array}$
Corre- lation	25 100 225 400	$\begin{array}{c} 0.633 \pm 0.197 \\ 0.582 \pm 0.112 \\ 0.580 \pm 0.080 \\ 0.596 \pm 0.054 \end{array}$	$\begin{array}{c} 0.903 \pm 0.114 \\ 0.827 \pm 0.134 \\ 0.801 \pm 0.078 \\ 0.779 \pm 0.059 \end{array}$	$\begin{array}{c} 0.905 \pm 0.113 \\ 0.902 \pm 0.059 \\ 0.863 \pm 0.088 \\ 0.822 \pm 0.047 \end{array}$	$\begin{array}{c} 0.923 \pm 0.045 \\ 0.899 \pm 0.043 \\ 0.869 \pm 0.037 \\ 0.852 \pm 0.024 \end{array}$	0.866 ± 0.117 0.903 ± 0.049 0.873 ± 0.037 0.841 ± 0.028	$\begin{array}{c} \textbf{0.951} \pm 0.112 \\ \textbf{0.983} \pm 0.012 \\ \textbf{0.949} \pm 0.022 \\ \textbf{0.912} \pm 0.025 \end{array}$
log Z error	25 100 225 400	2.512 ± 1.060 13.09 ± 2.156 29.93 ± 4.679 51.81 ± 4.706	0.549 ± 0.373 1.650 ± 1.414 3.348 ± 1.954 5.738 ± 2.107	0.557 ± 0.369 1.457 ± 1.365 3.423 ± 2.157 5.873 ± 2.211	$\begin{array}{c} \textbf{0.169} \pm 0.142 \\ \textbf{0.524} \pm 0.313 \\ \textbf{1.008} \pm 0.653 \\ \textbf{1.750} \pm 0.869 \end{array}$	0.762 ± 0.439 2.836 ± 2.158 3.249 ± 2.058 3.953 ± 2.558	$\begin{array}{c} 0.240 \pm 0.140 \\ 1.899 \pm 0.495 \\ 4.344 \pm 0.813 \\ 7.598 \pm 1.146 \end{array}$

- ℓ₁ error of beliefs v.s. true
- correlation ρ between true and approximate marginals,
- log Z error, true v.s. free energy approximation.

LEARNING MRFS

Motivation

What is θ in $p(x; \theta)$? Table of negative log-likelihood of learned MRFs

n	True	Exact	Mean Field	Loopy BP	Damped BP	GBP	Inference Net	RENN
Grid Graph								
25	9.000	9.004	9.811	9.139	9.196	10.56	9.252	9.048
100	19.34	19.38	23.48	19.92	20.02	28.61	20. 29	19.76
225	63.90	63.97	69.01	66.44	66.25	92.62	68.15	64.79
Complete Graph								
9	3.276	3.286	9.558	5.201	5.880	10.06	5.262	3.414
16	4.883	4.934	28.74	13.64	18.95	24.45	13.77	5.178

INFERENCE ROUTINE IN LEARNING

What is
$$\theta$$
 in $p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \prod_{a} \psi_{a}(\mathbf{x}_{a}; \theta_{a})$?
A direct view:

$$\max_{\boldsymbol{\theta}} \log p(\boldsymbol{x}; \boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \sum_{a} \log \psi_{a}(\boldsymbol{x}_{a}; \boldsymbol{\theta}_{a}) \underbrace{-\log Z(\boldsymbol{\theta})}_{\textit{Helmholtz free energy}},$$

An alternative view

$$\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{a}} = \frac{\partial \log \varphi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a})}{\partial \boldsymbol{\theta}_{a}} - \mathbb{E}_{p(\mathbf{x}_{a}; \boldsymbol{\theta})} \left[\frac{\partial \log \varphi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a})}{\partial \boldsymbol{\theta}_{a}} \right].$$

Remark

Motivation

- This essentially requires estimation of Helmholtz free energy or marginal probabilities.
- Stationary points translate into moment matching

INFERENCE ROUTINE IN LEARNING

What is
$$\theta$$
 in $p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \prod_{a} \psi_{a}(\mathbf{x}_{a}; \theta_{a})$?
A direct view:

$$\max_{\boldsymbol{\theta}} \log p(\boldsymbol{x};\boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \sum_{a} \log \psi_{a}(\boldsymbol{x}_{a};\boldsymbol{\theta}_{a}) \underbrace{-\log Z(\boldsymbol{\theta})}_{\textit{Helmholtz free energy}},$$

An alternative view:

$$\frac{\partial \log p(\mathbf{\textit{x}}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{a}} = \frac{\partial \log \varphi_{a}(\mathbf{\textit{x}}_{a}; \boldsymbol{\theta}_{a})}{\partial \boldsymbol{\theta}_{a}} - \mathbb{E}_{p(\mathbf{\textit{x}}_{a}; \boldsymbol{\theta})} \left[\frac{\partial \log \varphi_{a}(\mathbf{\textit{x}}_{a}; \boldsymbol{\theta}_{a})}{\partial \boldsymbol{\theta}_{a}} \right].$$

Remark:

Motivation

- This essentially requires estimation of Helmholtz free energy or marginal probabilities.
- Stationary points translate into moment matching.

SUMMARY

00

- Brief on probabilistic graphic models
- Overview of inference methods
- · A focus on the message-passing
- Transition to inference methods with NN

Summary and Q&A

Thank you for your attention. Q&A.

Summary and Q&A