Part 1: Node2Vec and Logistic Regression

Evaluation Results:

Accuracy: 0.8088929889298892

Precision: 0.8117210268179236

Recall: 0.7808057009069094

Macro F1-score: 0.7935703554385498

Confusion Matrix:

[[52 3 4 2 1 3 1]

[0 73 6 1 2 0 0]

[1 3 129 8 1 1 11]

[2 0 12 65 0 0 9]

[2 1 8 2 39 0 1]

[2 0 2 0 1 20 4]

[4 0 6 4 1 0 55]]

Classification Report:

precision recall f1-score support

0	0.83	0.79	0.81	66
U	0.83	0.75	0.61	00
1	0.91	0.89	0.90	82
2	0.77	0.84	0.80	154
3	0.79	0.74	0.76	88
4	0.87	0.74	0.80	53
5	0.83	0.69	0.75	29
6	0.68	0.79	0.73	70

accuracy 0.80 542
macro avg 0.81 0.78 0.79 542
weighted avg 0.80 0.80 0.80 542

I have increased the number of epochs and accuracy also getting improved:

Accuracy: 0.8133579335793358

Precision: 0.798845873421475

Recall: 0.8057571155677504

Macro F1-score: 0.784223544479778

Confusion Matrix:

[[35 1 6 1 0 1 1]

[2 83 5 0 2 0 0]

[4 5 141 7 2 0 5]

[1 1 9 59 0 0 4]

[0 2 9 3 44 0 2]

[5 0 3 0 0 25 4]

[5 1 9 4 1 7 43]]

Classification Report:

precision recall f1-score support

0	0.77	0.78	0.72	45	
1	0.89	0.90	0.90	92	
2	0.77	0.86	0.82	164	
3	0.80	0.80	0.80	74	
4	0.90	0.73	0.81	60	
5	0.76	0.68	0.71	37	
6	0.73	0.61	0.67	70	

accuracy	0.81 542			
macro avg	0.80	0.77	0.77	542
weighted avg	0.80	0.79	0.79	542

Analysis:

- By increasing the number of epochs during training, the LR model's accuracy showed a slight improvement from approximately 80.9% to 81.3%.
- This observation suggests that allowing the model to train for more epochs enabled it to better capture the underlying patterns in the data, resulting in a marginal enhancement in classification performance.
- The LR model, being a simple linear classifier, exhibits relatively lower computational complexity compared to more complex models like Graph Convolutional Networks (GCNs).
- Despite its simplicity, the LR model achieves reasonable performance, demonstrating its effectiveness as a baseline model for node classification tasks on graph-structured data.
- However, the LR model's performance may plateau or reach a limit due to its linear nature, especially when dealing with complex relationships and dependencies among nodes.