RSA: brief review of number theory concepts

The math behind RSA involves modular arithmetic and a few other number-theoretic ideas:

Greatest common divisor (gcd): gcd(a, b) is the largest integer factor that divides perfectly into both a and b

Co-prime: a and b are co-prime if gcd(a, b) = 1.

Modular inverse: Given a number a and modulus N, the inverse of a is the integer b such that $ab \equiv 1 \mod N$. This exists only if a and N are co-prime.

Fermat's little theorem: if p prime and a is an integer, then $a^p = a \mod p$. If a is not divisible by p, then $a^{p-1} \equiv 1 \mod p$.

RSA: key generation

Step 1

Choose two prime numbers, p and q.

Step 2

Compute:

$$N = p \cdot q$$

$$\theta = (p-1)(q-1)$$

RSA: key generation

Step 3

Choose a value e that is co-prime with θ .

Step 4

Compute the inverse of $e \mod \theta$, i.e., find d s.t.

 $d \cdot e \equiv 1 \mod \theta$

The *public key* is the pair (e, N).

The *private key* is the pair (d, N).

RSA: the protocol

Encoding

Acquire the public key (e, N) of the party you wish to send something to. To send the message m, encode it as

$$c = m^e \mod N$$

Decoding

If you receive c and have the private key (d, N), decode like so:

$$c^d \mod N = (m^e)^d \mod N = m$$

Two cases to consider to understand why this works.

RSA: why it works

Since $ed = 1 \mod \theta$, there exists integer k such that $ed = 1 + k\theta$.

Case 1: *m* co-prime with *N*

$$c^d \mod N = (m^e)^d \mod N$$

= $m^{1+k\theta} \mod N$
= $mm^{k\theta} \mod N$

It is a known result in number theory that if m and N are co-prime, then $m^\theta \equiv 1 \mod N$ where $\theta = (p-1)(q-1)$. Thus,

$$c^d \mod N = mm^{k\theta} \mod N$$

= $m \mod N$

RSA: why it works

Case 2: m not co-prime with N

Then, gcd(m, N) > 1. Must be p or q, because those are the only two factors of N.

Suppose
$$gcd(m, N) = p$$
. Then, p also divides m , $m \equiv 0 \mod p$, $m^{ed} \equiv 0 \equiv m \mod p$

But q does not. q is prime, so gcd(q, m) = 1. So by Fermat's little theorem,

$$m^{(q-1)} \equiv 1 \mod q$$
, $m^{(p-1)(q-1)} = m^{\theta} \equiv 1 \mod q$

RSA: why it works

Case 2: m not co-prime with N

Again, since $ed = 1 \mod \theta$, there exists k such that $ed = 1 + k\theta$.

$$m^{ed} \mod q = mm^{k\theta} \mod q$$

= $m \mod q$

So we have

$$m^{ed} \equiv m \mod p$$

 $m^{ed} \equiv m \mod q$

It follows that

$$m^{ed} \equiv m \mod N$$

RSA: how to break it

- ▶ To decrypt the message, we must learn d
- We know e, and that $de \equiv 1 \mod \theta$

But we don't know θ ! We have only e, and N.

However, N and θ are based on the same two prime numbers:

$$N = p \cdot q$$
$$\theta = (p-1)(q-1)$$

So if we can factor N = pq, then we can decode the message!

The security of RSA relies on the fact that factoring for large numbers is computationally intractable.