Monday, March 19, 2018 14:16

$$Q_i + \alpha_i = \pi$$

$$\theta_1 + \theta_2 + \theta_3 = 2\pi$$

Let Y be a lop in C.

This mans Y: 5' - C+s C

Define $d: \mathbb{R} \longrightarrow \mathbb{C}$ by $\alpha(t) = \gamma(e^{it})$.

then a is cts & 217-periodic.

To say Y is C'-regular menns & is C'-regular.

Suppose Y is C'-regular. Then a': R-C' and a' is cts.

Remember $T_{\alpha} = \frac{\alpha'}{|\alpha'|} s_0 \quad T_{\alpha} : \mathbb{R} \longrightarrow S'$ and T_{α} is cts.

Q is 21- periodic so X' and To go as well.

K is contractible so Tx has a continuous Logarithm L: R - C.

 $\forall t \in \mathbb{R}, \ e^{L(t+2\pi)} = T_{\alpha}(t+2\pi) = T_{\alpha}(t). \ so \ t \mapsto L(t+2\pi) \text{ is also}$

a cts log of Tx. Thus Jn∈Zs.t. YteR, L(t+2t)=L(t)+2πni

n is called the votation index of n, and is denoted by is.

ly is the net # of full turns that To performs around 5' as timercoses

by 2TT (as eit travels around 5).

the tent tent tent tent Deem

Jermen let $f: \mathbb{R} \longrightarrow \mathbb{R}^d$ be C'. Define $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^d$ by $g(u,v) = \begin{cases} \frac{f(v) - f(u)}{v - u} & \text{if } v \neq u \\ f'(u) & \text{if } v = u \end{cases}$

Then g is continuous.

Proof Since we can treat each component of f separately, it soffices to consider the case where d=1. Then $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R}^2 \to \mathbb{R}$. The MVT says $\forall u,v \in \mathbb{R}$, if $u \neq V$ turn there is a number W(n,v) between $u \in V$ sit. $f'(w(u,v)) = \frac{f(v) - f(u)}{V - u}$. Let $U_0 \in \mathbb{R}$. If $(u,v) \to (u_0,u_0)$ with $u \neq V$, then $W(u,v) \to u_0$ so $\frac{f(v) - f(u)}{V - u} \to f'(u_0)$. Through points on the diagonal, $V = u_1$ $g(u,u) = f(u) \to f(u_0)$. So g is also everyhere.

The turning tangents theorem

Let Y be a simple C'-regular loop in C. Then $i_Y = \pm 1$. Pf Define $\alpha: \mathbb{R} \longrightarrow C'$ by $\alpha(t) = \gamma(e^{it})$. Let $D = \{(u,v) \in \mathbb{R}^2 : u < v < u + 2\pi i\}$

Since Y is simple, for each $(u,v) \in O$, we have $\alpha(u) \neq \alpha(v)$.

Define $\beta_0: D \longrightarrow S'$ by $\beta_0(u,v) = \frac{\alpha(v) - \alpha(u)}{(v - u)}$. Notice that $\forall (u,v) \in D$ we have u < v > 0 |v - u| = v - u $v = \frac{\alpha(v) - \alpha(u)}{(v - u)}$ $\frac{\alpha(v) - \alpha(u)}{(v - u)}$. (1)

By the learns and (1), $\forall u \in \mathbb{R}$, $\beta_0(u,v) \longrightarrow T_{\kappa}(u,v) = \frac{\alpha(v) - \alpha(u)}{(v - u)}$.

Next, $\forall (u,v) \in D$ we have $V < u+2\pi$ So $V-2\pi < U$ So $|V-2\pi| - \alpha(u)| = -\left(\frac{\alpha(V-2\pi)-\alpha(u)}{|K(V-2\pi)-\alpha(u)|} - \frac{\alpha(V-2\pi)-\alpha(u)}{|K(V-2\pi)-\alpha(u)|} - \frac{\alpha(V-2\pi)-\alpha(u)}{|V-2\pi|-\alpha(u)|} \right)$ Now for even $U_0 \in \mathbb{R}$, as $(u,v) \longrightarrow (u_0,u_0+2\pi)$ in D_0 $P_0(u,v) \longrightarrow -T_{\alpha}(u_0)$, (4).

 $\Delta = \{(u,u) : u \in \mathbb{R}\}.$ let $\tilde{\Delta} = \{(u,u+2\pi) : u \in \mathbb{R}\}.$

let $E = \triangle \cup D \cup \widehat{\triangle}$ and define $\beta : E \rightarrow S'$ by $\beta_0(u,v) = \begin{cases} \beta_0(u,v) & \text{if } (u,v) \in \mathcal{O} \\ T_{\alpha}(u) & \text{if } (u,v) \in \mathcal{O} \end{cases}$ By (2) and (4), β is continuous on E.

Since E is convex, & was a logarithm in E, coul it L.

Now the continuous function Im(X) achieves a minimum on S', say at $Z_i \in S'$. Let $L_i \in L_0, 2\pi$) by $Z_i = e^{it}$. Then $Im(\alpha(L_i)) \not\vdash L \in \mathbb{R}$.

hence $|m(\alpha'(t_1))| = 0$ So $Re(\alpha'(t_1)) \neq 0$ So $Re(\alpha)$ does not achieve its infimum here. litur $Re(\alpha(t_1)) > 0$ or $Re(\alpha(t_1)) < 0$. In first case, $(y=1, i_y=-1 \text{ in } 2nd)$. Its enough to consider first case (can reverse come). WTS $i_y=1$. The function $u \mapsto L(u,u)$ is a continuous log of T_u . So $i_y = L(t_1 + 2\pi, t_1 + 2\pi) - L(t_1, t_1) = \Theta(t_1 + 2\pi, t_1 + 2\pi) - \Theta(t_1, t_1)$ (5)

where $\Theta = lm(L)$. Now:

$$\Theta(t_1, t_2, t_1, t_2, t_3) - \Theta(t_1, t_1) = \Theta(t_1, t_2, t_3, t_4, t_2, t_3) - \Theta(t_1, t_1, t_2, t_3) - \Theta(t_1, t_1, t_2, t_3) - \Theta(t_1, t_1, t_3)$$

Note that $\beta(t_1, t_1) = T_{\alpha}(t_1) = 1$ and $\beta(t_1, t_1 + 2\pi) = -T_{\alpha}(t_1) = -1$ for $t_1 < v < t_1 + 2\pi$, the point $\beta(t_1, v) = \frac{\alpha(v) - \alpha(t_1)}{|\alpha(v) - \alpha(t_1)|} \in \{ z \in C^{\epsilon} : |m \in \mathbb{Z} \circ \}.$ Hence $\theta(t_1, t_1 + 2\pi) - \theta(t_1, t_1) = \pi$

Next
$$\beta(t, t, t, +2\pi) = -T_{\alpha}(t_{i}) = -1$$
, and $\beta(t_{i} + 2\pi, t_{i} + 2\pi) = T_{\alpha}(t_{i}) = 1$,
so for $t_{i} < u < t_{i} + 2\pi$, the point $\beta(u, t_{i} + 2\pi) = \frac{\alpha(t_{i}) - \alpha(u)}{|\alpha(t_{i}) - \alpha(u)|} \in \{2 \in \Gamma: |u_{i}t_{i}| \le 6\}$
So $\theta(t_{i} - 2\pi, t_{i} - 2\pi) - \theta(t_{i}, t_{i} - 2\pi) = \pi$. So $|x| = 1$.