For an excellent grade you have to get minimum of 9 questions accepted of each set, for a 'good' - at least 7, and for 'passed' - 5 questions.

Group definitions, morphisms, permutations group

Problem 1.1: Show, that any permutation can be represented

- as a product of permutations of the form (1, i);
- as a product of permutations of the form (i, i + 1).

Defenition 1.1. $sign(\pi) = (-1)^t$, where t is the amount of transpositions in π

Problem 1.2: Show that sign doesn't depend on product decomposition. Formulate the definition of sign based on amount of inversion in permutation.

Problem 1.3: Show that sign: $S_n \to \mathbb{Z}_2$ is an homomorphism

Problem 1.4: Prove that the following are isomorphism:

 $S_3 \simeq$ [Equilateral triangle symmetry group] $S_4 \simeq$ [Cube rotations group] $S_4 \times S_2 \simeq$ [Cube symmetry group]

Problem 1.5: Prove that the group of 6 element is either abelian or isomorphic to S_3

Defenition 1.2. Let f be isomorphism $G \to G$. Then f is called an automorphism of G. Group of some group's G automorphisms is denoted as $\operatorname{Aut} G$.

Problem 1.6: Show, that $\operatorname{Aut}(\mathbb{Z}_p) \simeq (\mathbb{Z}_p)$

Problem 1.7: Show that any infinite group has a non-trivial subgroup.

Problem 1.8: Show that any group of order 8 has the following form: $\{1, a, a^2, a^3, b, ab, a^2b, a^3b\}$.

Problem 1.9: Which is greater: number of elements of S_n of odd order or of even order?

Problem 1.10: Let G be a set with a following binary operation /:

$$G\times G\to G:(g,h)\mapsto g/h$$

$$\forall f,g,h\in G:(f/h)/(g/h)=f/g$$

$$\forall g,h\in G,\exists x\in G:g/x=h$$

Show, that G is group with respect to the following product: gh = g/((h/h)/h).