3.2.8. Релаксационные колебания.

Семёнов Андрей Б02-010 22 сентября 2021г. **Цель работы:** Изучение ВАХ нормального тлеющего разряда; исследование релаксационного генератора на стабилитроне.

В работе используются: стабилитрон СГ-2 (газонаполненный диод) на монтажной панели, магазин ёмкостей, магазин сопротивлений, источник питания, амперметр, вольтметр, осциллограф.

1 Теоретические сведения.

В работе исследуются релаксационные колебания, возбуждаемые в электрическом контуре, состоящем из ёмкости C, резистора R и газоразрядного диода с S-образной вольт-амперной характеристикой.

Автоколебания — незатухающие колебания в диссипативной динамической системе с нелинейной обратной связью, поддерживающиеся за счёт энергии постоянного, то есть непериодического внешнего воздействия.

В апериодической системе, в которой за период автоколебаний теряется вся накопленная энергия, автоколебания становятся релаксационными и могут по форме очень сильно отличаться от колебаний синусоидальных.

Автоколебательная система, не содержащая одного из накопителей колебательной энергии (например, индуктивности или емкости), называется вырожеденной. Колебания в такой системе могут быть только релаксационными.

Рис. 1: Зависимость тока от напряжения для газоразрядной лампы

На рисунке (2) представлена принципиальная схема вольт-амперной характеристики исследуемой газоразрядной лампы. Зависимость тока от напряжения для газоразрядной лампы не подчинятся закону Ома и характеризуется рядом особенностей, представленных на рисунке (2) вместе с нагрузочной прямой $I = I_0 \cdot (1 - U/\varepsilon)$ Найдем, когда автоколебания возможны:

$$\frac{dW}{dt} = -P(t)$$

где: W – энергия, запасенная в колебательном контуре; P(t) – мощность потерь. Интергируя по периоду колебаний T:

$$W = W_0 - \int_0^T P(t)dt$$

Если P(t) знакопеременна, то можно обеспечить энергетический баланс $\int\limits_0^T P(t)dt=0$ и, следовательно, возбудить автоколебания. Для выполнения таких условий необходимо на-

Рис. 2: ВАХ стабилитрона

личие элемента цепи с отрицательным дифференциальным сопротивлением:

$$R_{diff} = \frac{dU}{dI} < 0$$

Таким «сопротивлением» обладают системы на «падающих» участках вольт-амперных характеристик, например наша газоразрядная лампа.

Рассмотрим экспериментальную установку

Рис. 3: Схема установки для исследования релаксационных колебаний

Выясним, при каком условии в данном случае колебательный процесс возможен... В стационарном режиме dU/dt=0, а ток через лампу:

$$I = \frac{\varepsilon - U}{R + r}$$

Это происходит тогда, когда нагрузочная прямая пересекает «падающий» участок ВАХ-а стабилитрона, где $I_S'(U) < 0$. Если при этом выполняется условие

$$R + r < -\frac{1}{I_S'(U_A)}$$

Опишем колебательный процесс:

- 1. Отсчитываем время с момента, когда $U_C = U_2$.
- 2. При зарядке конденсатора через сопротивление R напряжение на нем увеличивается.
- 3. Как только оно достигает напряжения зажигания U_1 , лампа начинает проводить ток, причем прохождение тока сопровождается разядкой конденсатора. В самом деле, батарея ε , подключенная через R не может поддерживать необходимую для горения лампы величину тока.
- 4. Во время горения лампы конденсатор разряжается, и когда напряжение на нем достигает потенциала гашения U_2 , лампа перестает проводить ток, а конденсатор вновь начинает заряжаться.
- 5. Возникают релаксационные колебания с амплитудой $U_1 U_2$.

Расчитаем период колебаний: поскольку R сильно больше сопротивления заряженной лампы, то $\tau_3 >> \tau_p$

$$T = \tau_3 + \tau_p \approx \tau_3$$

Во время зарядки конденсатора лампа не горит (I(U) = 0), имеем

$$RC\frac{dU}{dt} = \varepsilon - U$$

Решая это уравнение:

$$U = \varepsilon - (\varepsilon - U_2) \exp(\frac{-t}{RC})$$

В момент зажигания $t = \tau_3$, $U = U_1$, поэтому

$$U_1 = \varepsilon - (\varepsilon - U_2) \exp(\frac{-\tau_3}{RC})$$

Теперь нетрудно найти период колеаний:

$$T \approx \tau_3 = RC \ln \frac{\varepsilon - U_2}{\varepsilon - U_1}$$

2 Выоплнение работы

Характеристика стабилитрона

$$r = 5.4 \text{ kOm}$$

Произведем измерения ВАХ-ки стабилитрона с сопротивлением r при возрастании и убывании напряжения U и выясним потенциалы гаешения и зажигания U_1 и U_2 , а также соответствующие им токи I_1 и I_2 . Теперь построим графики по этим значениям: Таким образом, потенциалы и токи зажигания и гашения: $U_1 = 98.6V$

$$U_2 = 77.6V$$

$$I_1 = 4.9mA$$

$$I_2 = 1.3mA$$

Рис. 4: Осциллограмма релаксационных колебаний

Осциллограммы релаксационных колебаний

Установим C = 50 нФ и R = 900 кОм. Выставим s = 118.1 В. Оценим соотношении времен зарядки и разрядки. Для этого определим по осциллографу: $\tau_3 = 42$ мс $\tau_p = 0.5$ мс Видим, что раздичия существенны, начит все нормально и можем вычислить частоту:

$$\nu = \frac{1}{T} \approx \frac{1}{\tau_3} = 24Hz$$

Определим критическое сопротивление, при котором пропадают колебания:

$$R_{crit} = 144kOhm$$

Далее фиксируем R и определяем ε критическое, когда R не слишком превышает(???) R_{crit} :

$$\varepsilon_{crit} = 152V$$

Теперь T(C), при изменении C от 2 до 50 нФ и постоянном ε : Далее зависимость T(R):

Фазовые траектории релаксационных колебаний

U, V	I mA	U, V	I. mA
<u> </u>	I_{up}, mA		I_{down}, mA
75.33	0.007	133.45	11.017
79.95	0.008	124.69	9.294
84.53	0.008	113.32	7.383
88.87	0.009	103.01	5.571
91.52	0.009	94.02	3.903
96.97	0.01	90.62	3.2
98.43	0.01	88.2	2.803
99.55	0.01	87	2.582
99.81	4.893	85.54	2.305
104.24	5.731	84.16	2.066
114.08	7.511	82.21	1.691
123.36	9.167	79.54	1.176
133.82	11.068	79.26	0
144.23	12.786	75.22	0

C, nF	T, ms
2	1.2
5	1.2
6	1.3
7	1.5
8	1.8
9	2.1
10	2.5
15	4.5
20	6.8
25	8.6
30	11.1
35	12.6
40	13.9
45	14.9
50	16.8

R, kOhm	T, ms
200	9.3
300	12.7
400	13.6
500	22
600	33
700	37
800	40
900	44
1000	49

Рис. 5: ВАХ стабилитрона при поднятии и опускании напряжения

Рис. 6: Зависимость T(C)

Рис. 7: Зависимость T(R)

Рис. 8: Фазовая траектория