

Differentiating Stopping Processes in Go/NoGo, Stop-Signal & Stop-Change Paradigm at The Behavioral Level in Pigeons

RUHR UNIVERSITÄT BOCHUM

Sarah C. Möser, Department of Biopsychology, Ruhr University Bochum

Background

The ability to flexibly interact with the environment is fundamental for everyday life situations.

→ Need to <u>stop</u> & <u>change</u> initiated responses

(Boecker et al., 2012)

Three paradigms to study response inhibition & response realignment:

- Go/NoGo-Paradigm (GNG)
 - Need to inhibit initiated response
- Stop-Signal Paradigm (SSP)
 - > GNG + variable stop signal delay (SSD)
 - Stop signal reaction time (SSRT)
- Stop-Change Paradigm (SCP)
 - > SSP + change stimulus
 - → response realignment

GO STOP CHANGE trial GO STOP CHANGE GO STOP GO CHANGE GO STOP GO CHANGE MS

How can we measure inhibition?

Serial or parallel processing?

- vary time delay of change signal
 → 'enforced serial
- 'enforced seria processing'

Background

Different stopping mechanisms?

- Global vs selective stopping process
 - → Selective process is more adequate for most everyday life situations.
- Hyperdirect pathway → (fast) global stopping
- Indirect pathway → (slow) selective stopping
- Different activation pattern in GNG/SSP sw

Swick et al. (2011)

Aron & Verbruggen (2008)

Objectives

- 1. Measure SSRT from video footage & compare with mathematical approximation (horse-race model)
- 2. Compare behavioral properties of delay/no delay conditions (parallel vs. serial processing) in SCP using unsupervised behavioral clustering method.
- **3. Identify** behavioral differences of the inhibition processes in GNG, SSP & SCP

Data Acquisition

Subjects: n=5 pigeons (*Columba livia*)
Setup:

• Skinner box equipped with various pecking keys and a feeder, suitable for the respective paradigms.

COUCUUS & DAUCUS O COUCUUS O COUCUUS

Procedure:

- The pigeons successively participate in GNG, SSP and SCP.
- Pecking responses are counted and stored for later analysis

Video Data:

 Sessions are filmed with two GoPro Hero5 action cameras that are attached to the front side of the skinnerbox

Data Analysis

1. Tracking (DeepLabCut):

→ measure the SSRT based on behavioral tracking

Nath et al. (2019)

2. Triangulation (Anipose):

3D pose estimation from different cameras based on DeepLabCut output

Karashchuk et al. (2021)

3. Clustering (VAME):

→ Compare behavioral characteristics of different stopping processes

Luxem et al. (2022)

References

Aron, A.R. & Verbruggen, F. (2008). Stop the Presses: Dissociating a Selective From a Globa Mechanism for Stopping. *Psychological Science*, 19(11), 1146-1153 https://doi.org/10.1111%2Fj.1467-9280.2008.02216.x

Boecker, M., Gauggel, S., & Drueke, B. (2012). Stop or stop-change — Does it make any difference for the inhibition process? *International Journal of Psychophysiology, 87*(3), 234-243. https://doi.org/10.1016/j.ijpsycho.2012.09.009

Karashchuk, P., Rupp, K.L., Dickinson, E.S., Walling-Bell, S., Sanders, E., Azim, E., Brunton, B.W., 8 Tuthill, J.C. (2021). Anipose: A toolkit for robust markerless 3D pose estimation. *Cell Reports*, 36(13), 109730. https://doi.org/10.1016/j.celrep.2021.109730

Luxem, K., Mocellin, P., Fuhrmann, F., Kürsch, J., Remy, S., & Bauer, P. (2022). Identifying Behavioral Structure from Deep Variational Embeddings of Animal Motion. *BioRxviv*. [Preprint.] January 14, 2022 [accessed 2022 January 25). https://doi.org/10.1101/2020.05.14.095430

Nath, T., Mathis, A., Chen, A. C., Patel, A., Bethge, M., & Mathis, M. W. (2019). Using DeepLabCut for 3D markerless pose estimation across species and behaviors. *Nature Protocols*, 14(7), 2152-2176. https://doi.org/10.1038/s41596-019-0176-0

Swick, D., Ashley, V., & Turken, U. (2011). Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. *NeuroImage*, 56(3), 1655-1665. https://doi.org/10.1016/j.neuroimage.2011.02.070