

PYNQ Automated System-on-Chip Builder & Remote RISC-V Learning Platform

Luke Canny 19339166 Masters Electronic and Computer Engineering GitHub.com/HDLGen-ChatGPT/PYNQ-SoC-Builder

Supervisor: Dr Fearghal Morgan Co-assessor: Mr Liam Kilmartin

Project Workflow

Project Overview and Objectives

The aim of this project is to:

- Create a remote PYNQ laboratory for students
- Extend the functionality of HDLGen-ChatGPT to automatically deploy projects to PYNQ-Z2 FPGAs
- Develop an interactive challenge-based RISC-V learning tool

Remote PYNQ FPGA Laboratory

The purpose of the remote FPGA laboratory is to make real PYNQ Z2 hardware available to students and enthusiasts.

This is achieved by using a tunnelling service called ngrok. This service runs as a background daemon on the PYNQ's ARM processor. Ngrok encrypts all data using HTTPS and authenticates users using OAuth 2.0. OAuth allows users to authenticate using their @universityofgalway.ie Microsoft accounts.

PYNQ SoC Builder

HDLGen-ChatGPT is an open-source Python tool developed in the University of Galway to enable fast capture of HDL-based SoC capture and implementation, by automated VHDL/Verilog, testbench and waveform generation. PYNQ SoC Builder is a Python application which builds HDLGen-ChatGPT projects.

PYNQ SoC Builder completes the following:

- Generates and imports PYNQ-Z2 constraints and configuration
- Creates and populates a Vivado Block Design
- Configures PYNQ board I/O Connections
- Performs synthesis, implementation and bitstream generation
- Generates a Jupyter Notebook project based on test plan

Block Diagram generated by SoC Builder for a 4-bit Counter

RISC-V Assembly/C Challenge-Based Learning Platform

- The purpose of the RISC-V learning platform through the remote laboratory is to encourage interaction and exploration of RISC-V ISA on real hardware, rather than simulation
- The learning platform will consist of two RISC-V cores. One of which the user will program using assembly or C, The other will remain hidden, only visible to the core #1 by I/O ports. Core #2 will imitate a peripheral device.
- The goal of the user is to interface with the hidden peripheral. The hidden peripheral changes depending on the difficulty level. For example, an interrupt controller or I2C device.

Future Work

- **Automate RISC-V Core Bitstream Creation**
- Develop a range of RISC-V challenges of varying difficulty
- Gather feedback from potential users of RV learning platform

Acknowledgements

I would like to thank Dr. Fearghal Morgan for his support and quidance, and Roshan George, JP Byrne and Abishek Bupathi for their previous work on HDLGen-ChatGPT, PYNQ and RISC-V.