





# Ensemble of Students Taught by Probabilistic Teachers to Improve Speech Emotion Recognition

Kusha Sridhar & Carlos Busso







## Outline

- 1. Introduction (MC dropout → Uncertainty estimation)
- 2. Proposed T-S formulation for SER
- 3. Dataset: MSP-Podcast corpus
- 4. Experimental evaluations and analysis
- 5. Conclusion





# Scalability and Consistency of SER Models



- Application areas: Security and Defense, healthcare > mission critical
  - SER should generalize well to new conditions
  - Be scalable and provide high test-retest reliability
- Knowledge of uncertainty in model predictions
  - It introduces diversity in model prediction
  - It creates robust models that are stable across diverse inputs
- Knowledge transfer from deep to lighter models
  - Flexible approach for generalization
    - Train deep, complex models on huge training data
    - Use light, shallow models at inference → PREFERRED!
  - Adapt to new conditions by learning from unlabeled data



**Bayesian Inference with a Teacher-Student (T-S) Framework** 





### **Related Works**



### Speech, Language & Image tasks

Image Classification → Distilled Dropout Network (DDN) to transfer knowledge from T to S via MC samples of soft-targets generated by teacher

[Gaurau et. al. 2018]

ASR → Multi-task ensembles of T to reduce WER on telephone speech

[Wong et. al. 2017]

**NLP** → Multi-layer Knowledge distillation (KD) using embeddings from multiple intermediate layers of T (BERT) to train S

[Sun et. al. 2019]

# Speech Emotion Recognition

Audio-visual SER with cross-modal distillation → Learn facial embeddings from T to train S on SER task.

Reduction in labels noise with KD from faces to speech and robustness to ambiguous annotations

[Albaine et. al. 2018]

Preprocessing with emotion distillation to detect emotionally salient regions in audio-visual inputs

[Mower Provost et. al. 2012]



## Motivation



#### Three main motivations:

- Transfer knowledge to a shallow, flexible model during inference
  - Leverage T-S framework in speech emotion recognition
  - Teacher is trained with deep, complex models trained on large amounts of training data
- Create probabilistic distribution of embeddings to train student models
  - Use of an ensemble of teacher models
- Capture model's uncertainty in its predictions
  - Use of MC dropout in T-S framework
  - Handle out-of-distribution inputs or inputs from sparse regions of the in-domain data
  - Obtain information about the reliability of the prediction

# Monte Carlo Dropout



- DNNs with dropout regularization can be used to quantify prediction uncertainty [Gal et al., 2016]
  - Change the weights setup randomly by applying dropout
  - As such, different configurations of the network lead to slightly different prediction
  - Prediction uncertainty will be the variance of *N* step predictions
  - Multiple iterations through a network with dropout is analogous to obtaining predictions from an ensemble of thinner networks.
- We can estimate the posterior distribution on the predictions during inferences by sampling weights in a Monte Carlo fashion





#### Posterior predictive distribution

 $p(x_{test}|X) \approx \int p(x_{test}|\omega)p(\omega|X)d\omega$ 



## Teachers and Students



#### Teacher

- N (N = 5) teachers with different dropouts (MC dropout)
  - Model diversity giving complementary information

### Average 100 MC teacher embeddings

 Preserves mean of the ensemble as well as captured uncertainty in predictions

#### Student

- N(N = 5) students learn from feature representations learned by teachers
- Use unlabeled data + supervision from teachers
- Final prediction is the average of the student ensemble predictions







## The MSP-Podcast Database



- Use existing podcast recordings
- Divide into speaker turns
- Emotion retrieval to balance the emotional content
- Annotate using crowdsourcing framework







## The MSP-Podcast Database



#### MSP-Podcast

- Collection of publicly available podcasts (naturalness and the diversity of emotions)
  - Interviews, talk shows, news, discussions, education, storytelling, comedy, science, technology, politics.
- Creative Commons copyright licenses (Available for sharing!)
- Single speaker segments, High SNR, no music, no phone quality
- Developing and optimizing different machine learning framework using existing databases
  - Balance the emotional content
- Emotional annotation using crowdsourcing platform





# MSP-Podcast corpus version 1.6







### Primary emotional classes











## **MSP-Podcast Database**



- Version 1.6 of the MSP-Podcast corpus
  - 50,362 (83h,29m)
- Corpus partition with aims to reduced speaker overlap in the sets:
  - Test data
    - 10,124 samples from 50 speakers (25 males, 25 females)
  - Validation data
    - 5,958 samples from 40 speakers (20 males, 20 females)
  - Train data
    - Remaining 34,280 samples





### **Acoustic Features**



### Interspeech 2013 Feature set

- 65 low level descriptors (LLD)
- High Level Descriptors (HLDs) are calculated on LLDs resulting in total of 6,373 features
- HLDs include:
  - Quartile ranges
  - Arithmetic mean
  - Root quadratic mean
  - Moments
  - Mean/std. of rising/ falling slopes

| 4 energy related LLD                                  | Group       |
|-------------------------------------------------------|-------------|
| Sum of auditory spectrum (loudness)                   | prosodic    |
| Sum of RASTA-filtered auditory spectrum               | prosodic    |
| RMS Energy, Zero-Crossing Rate                        | prosodic    |
| 55 spectral LLD                                       | Group       |
| RASTA-filt. aud. spect. bds. 1–26 (0–8 kHz)           | spectral    |
| MFCC 1–14                                             | cepstral    |
| Spectral energy 250–650 Hz, 1 k–4 kHz                 | spectral    |
| Spectral Roll-Off Pt. 0.25, 0.5, 0.75, 0.9            | spectral    |
| Spectral Flux, Centroid, Entropy, Slope               | spectral    |
| Psychoacoustic Sharpness, Harmonicity                 | spectral    |
| Spectral Variance, Skewness, Kurtosis                 | spectral    |
| 6 voicing related LLD                                 | Group       |
| F <sub>0</sub> (SHS & Viterbi smoothing)              | prosodic    |
| Prob. of voicing                                      | voice qual. |
| log. HNR, Jitter (local & $\delta$ ), Shimmer (local) | voice qual. |



## Implementation Details



#### Train separate regression models each for arousal, valence and dominance

#### Teacher:

- 5 teachers → DNN with 4 dense layers, 512 nodes per layer
- MC dropout models with dropout rates: 0.45, 0.5, 0.55, 0.6, 0.65
- SDG optimizer with learning rate equals to 0.001
- Cost function: (1 CCC)
- Input: 6,373D feature vector
- Output: 100 MC samples of the feature embeddings from the 4<sup>th</sup> dense layer

#### Student:

- 5 students → DNN with 2 dense layers, 512 nodes per layer
- NADAM optimizer with learning rate equals to 0.0001
- Loss = supervised loss + unsupervised loss  $\rightarrow \alpha$ . (1 CCC) +  $\beta$ . (MSE)
- Input: Feature embeddings from teacher (labeled) + Unlabeled data
- Output: Predicted ensemble average score for arousal, valence and dominance







### Performance or T-S models



#### Frameworks

- Baseline = 1 T without MC dropout
- Teachers' MC ensemble = 5 T MC ensemble without S
- T-S (test) = 5 T-S ensemble with test as unlabeled data
- T-S (unlabeled) = 5 T-S ensemble with true unlabeled data
- T-S (pseudo-label) = use S predictions on unlabeled data as labels and re-train S
- T-S (top 75%) = use 75% of samples with lowest std.dev in the predictions from MC ensembles

| Methods                      | Arousal | Valence | Dominance |
|------------------------------|---------|---------|-----------|
| Baseline                     | 0.7045  | 0.3146  | 0.6336    |
| Teachers' MC ensemble        | 0.7217  | 0.3184  | 0.6480    |
| T-S framework (test)         | 0.7345  | 0.3230  | 0.6652    |
| T-S framework (unlabeled)    | 0.7322  | 0.3219  | 0.6625    |
| T-S framework (Pseudo-Label) | 0.7290  | 0.3213  | 0.6558    |
| T-S framework (Top 75%)      | 0.7279  | 0.3205  | 0.6508    |

#### **Observations**

- Significant improvements (p < 0.01) over the baseline in terms of CCC with the use of unlabeled data at S training stage
- Relative increase in CCC:
  - 4.25% for arousal, 2.67% for valence & 4.98% for dominance
- Advantage of adding S (comparing row2 and row3)
  - Relative increase in CCC upto 1.77% for arousal, 1.44% for valence & 2.65% for dominance

## **Ablation Studies**



- Systematic removal of contributing factors for our model
  - Best with both labeled + unlabeled data, MC dropout and 5 T-S ensembles (row1)
  - Influence of unlabeled data on the generalization ability of our model (row2)
  - Importance of MC dropout ensembles → it contributes significantly to improvements over the baseline (row 3)
  - Usefulness of the ensemble approach (row 4)
  - Without MC dropout & ensemble → loss in CCC between 6.4% and 17.2% across A, V & D

| A        | В        | С | Arousal | Valence | Dominance |
|----------|----------|---|---------|---------|-----------|
| ✓        | ✓        | 5 | 0.7345  | 0.3230  | 0.6652    |
| -        | ✓        | 5 | 0.7300  | 0.3211  | 0.6585    |
| ✓        | -        | 5 | 0.7205  | 0.3154  | 0.6480    |
| ✓        | ✓        | 1 | 0.7240  | 0.3172  | 0.6512    |
| -        | <b>√</b> | 1 | 0.7219  | 0.3166  | 0.6556    |
| <b>√</b> | -        | 1 | 0.6873  | 0.2673  | 0.6198    |

A → Unlabeled data

B → MC dropout

C → No. of teachers and students in the ensemble



# Analysis of Uncertainty in Predictions



- Standard deviation (std.dev) in predictions to quantify uncertainty
  - Teacher: select one MC sample per T and calculate std.dev across ensemble
  - Student: calculate std.dev across ensemble

#### Observations

- Std.dev for T are higher and dispersed
- S predictions are more consistent
- MC dropout is effective in guiding the student ensembles to give consistent predictions







(c) Dominance



### **Conclusions**



- Novel T-S framework for SER that:
  - Improves prediction of emotional attributes
  - Gives consistent predictions
- Knowledge distillation from T to S via MC ensemble of probabilistic features embeddings of T
  - It leverages the learning of S on unlabeled data
- Overall improvements in performance, generalizability and consistency in predictions
- Power of using MC ensembles + unlabeled data → up to 5% increase in CCC





# Release of the MSP-Podcast Corpus



#### Academic license

- Federal Demonstration Partnership (FDP)
   Data Transfer and Use Agreement
- Free access to the corpus

#### Commercial license

Commercial license through UT Dallas



https://msp.utdallas.edu



# Thank you



### This work was funded by NSF CAREER Grant IIS-1453781



Questions or Contact: Kusha Sridhar Kusha.Sridhar@utdallas.edu

Our Research: msp.utdallas.edu



