Key Distribution

Riccardo Longo

Distribuzione delle Chiavi

La gestione delle chiavi è una questione critica:

- Le chiavi simmetriche richiedono condivisione privata ed autenticata
 - Scambio chiavi di persona
 - Corriere fidato
 - Canale cifrato (dipende da scambio precedente)
- Le chiavi pubbliche richiedono verificabilità e autenticazione
 - Identità corretta
 - Informazioni aggiornate

Public Key Infrastructure

- È un insieme di ruoli, regole e procedure per la gestione di certificati:
 - Creazione
 - Distribuzione
 - Gestione
 - Uso
 - Revoca
- Cura l'associazione di chiavi pubbliche ad identità

PKI

Certification Authority

- Trusted Third Party
- Considerata affidabile sia da mittente che destinatario
- Assicura la validità dei certificati firmandoli
- Verifica l'identità di chi richiede un certificato
- Distribuisce i certificati a chi li usa

Web of Trust

- Gli utenti si autenticano reciprocamente
- Mi fido di chiavi firmate da chi mi fido
- Fiducia distribuita
- Basato su keyserver
- Espone relazioni tra utenti
- Può essere difficile entrare
- Standard PGP

Certificati

- Contengono:
 - Informazioni sull'identità del proprietario
 - Chiave pubblica del proprietario
 - Periodo di validità
 - Info sulla CA
 - Firma della CA
- Gerarchia di CA per firmare certificati di diversa importanza

Revoca

- Un certificato può non essere più valido prima della scadenza:
 - Compromissione o perdita della chiave privata
 - Emissione errata o malevola
 - Cambio identità o permessi
 - Sostituzione con chiavi più nuove
- CRL: Certificate Revocation List
 - Lista di certificati revocati firmata dalla CA
 - Controllo online
 - Pesante da mantenere
- OCSP: Online Certificate Status Protocol
 - Client richiede verifica di validità del singolo certificato
 - Espone cronologia alla CA
 - Pesante per la CA
- OCSP Stapling: al certificato viene allegato una verifica aggiornata della sua validità

Key Agreement

- Gli interlocutori si accordano su una chiave simmetrica
- Scambio sicuro su canale insicuro
- Entrambi influenzano il risultato
- Per avere sicurezza l'accordo dev'essere autenticato
 - Chiavi pubbliche
 - Segreto (password) condivisa
 - Verifica successiva via altri canali

Diffie-Hellman Key Exchange

- Scambio di chiavi non autenticato
- Va integrato con autenticazione per evitare attacchi attivi
- Progenitore della crittografia a chiave pubblica, basato su DLOG
- Varianti basate su gruppi \mathbb{Z}_p o curve ellittiche (ECDH)
- Standard alla base di molti protocolli

privato pubblico

- Parametri di sistema: \mathbb{G} gruppo di ordine n, g generatore
- Alice sceglie 1 < a < n random, pubblica $A = g^a$
- Bob sceglie 1 < b < n random, pubblica $B = g^b$
- Alice calcola il segreto $S_a = B^a$
- **Bob** calcola il segreto $S_b = A^b$
- I segreti coincidono:

$$S_a = B^a = (g^b)^a = g^{ba} = g^{ab} = (g^a)^b = A^b = S_b$$

Station To Station Protocol

- Basato su DH
- Aggiunge autenticazione e verifica della chiave
- Ha alcune varianti
 - Per fornire solo mutua autenticazione
 - Usando un MAC per verificare la chiave
 - Evitare unknown key-share attacks

STS base

- Setup:
 - Alice e Bob hanno coppia di chiavi asimmetriche per firmare e conoscono la chiave pubblica dell'altro
 - Sono stati stabiliti i parametri per DH
- Alice genera x random, invia g^x a Bob
- Bob genera y random, calcola g^y ed il segreto $K = (g^x)^y$
- **Bob** firma la coppia **ordinata** (g^y, g^x) , cifra la firma usando K, invia ad Alice:

$$g^y$$
, $E_K(S_B(g^y,g^x))$

- Alice calcola il segreto $K = (g^y)^x$, decifra e controlla la firma di Bob
- Alice firma la coppia ordinata (g^x, g^y) , cifra la firma usando K, invia a Bob:

$$E_K(S_A(g^x, g^y))$$

Man In The Middle

- Attaccante attivo
- Posto tra i due interlocutori
- Intercetta e modifica il traffico
- Sventato principalmente con autenticazione
- Varianti:
 - Man in the Browser: particolarmente pericoloso: si inserisce prima della cifratura TLS
 - Boy in the Browser: Malware che cambia il routing per effettuare un classico MITM
 - Man on the Side: attaccante vede il traffico, può inserire messaggi ma non cancellarli o modificarli

Forward Secrecy

- Requisito di sicurezza per i protocolli di comunicazione moderni
- Prevede che le sessioni passate restino sicure anche se la chiave a lungo termine viene compromessa e in presenza di attaccanti attivi
- Ogni sessione dev'essere cifrata con chiavi effimere random ed indipendenti dalla chiave a lungo termine
- La sicurezza si riferisce alle chiavi, quindi il cifrario deve resistere alla crittanalisi