ત્રિપરિમાણીય ભૂમિતિ

As far as the laws of mathematics refer to reality they are not certain and as far as they are certain they do not refer to reality.

- Albert Einstein

9.1 પ્રાસ્તાવિક

સત્તરમી સદીની શરૂઆતમાં ફ્રેન્ચ ગણિતશાસ્ત્રી રેને દ'કાર્તે (René Descartes) અને તે જ સમયગાળામાં ફર્મા (Fermat) એ સમતલમાં યામભૂમિતિની શરૂઆત કરી હતી. તેને વ્યવસ્થિત કરવાનું કાર્ય 18મી સદીમાં બર્નુલી (Bernoulli) અને ઓઇલર (Euler) દ્વારા કરવામાં આવ્યું હતું. 19મી સદીમાં તેનું ઉચ્ચ પરિમાણમાં વ્યાપ્ત સ્વરૂપ ઉપયોગમાં આવ્યું હતું. અને તેનો રસપ્રદ ઉપયોગ ગઈ સદીમાં કરવામાં આવ્યો હતો.

આ પ્રકરણમાં ગણિત તથા વિજ્ઞાનમાં ઉપયોગી એવા સિંદશોની પાયાની સમજણ મેળવીશું. આ ઉપરાંત સમતલમાંની યામભૂમિતિનો ત્રિપરિમાણમાં વિસ્તાર કરીશું એટલે કે અવકાશમાં યામભૂમિતિની ચર્ચા કરીશું. અવકાશમાં આવેલ ઘન પદાર્થો અને આપણી આસપાસના અવકાશમાં આવેલી વસ્તુઓના અભ્યાસમાં આ સમજણ ઉપયોગી છે. ત્રિપરિમાણીય ભૂમિતિ માટે આપણે સિંદશોનો સાધન તરીકે ઉપયોગ કરીશું.

9.2 સદિશો

અમુક ભૌતિક રાશિઓના પૂર્ણ વર્ણન તેમજ તેના ઉપયોગ માટે દિશા અને માન બંનેની જરૂર પડે. આવી રાશિને સિંદિશ (vectors) કહેવાય છે. વેગ એ સિંદશ છે કારણ કે તેના પૂર્ણ અર્થ માટે માન તેમજ દિશા બંનેની જરૂર પડે. અન્યથા તેનો અર્થ અધૂરો રહે. સંકર સંખ્યાની આર્ગન્ડ સમતલમાં રજુઆત વિષે તો આપણે જાણીએ જ છીએ. તેની ધ્રુવીય રજુઆત $z = r(\cos\theta + i\sin\theta)$ માં બે અગત્યના પ્રચલ r તથા θ છે. r તેનું માન છે તથા θ પરથી દિશા નક્કી થાય છે અને સંકર સંખ્યાની રજુઆત મળે છે. આમ પ્રત્યેક શૂન્યેતર સંકર સંખ્યા એક સિંદશ છે અને તેને માન તથા દિશા બંને છે. ધારો કે દેવ પૂર્વ તરફ 300 મી ચાલે તથા ઉત્તર તરફ 400 મીટર ચાલે છે. આમ તેના મૂળ સ્થાનથી અંતિમ સ્થાનની માહિતી મેળવવા તેણે ચાલેલાં બંને અંતર તથા દિશા જાણવા જરૂરી છે. આ પણ સિંદશની એક પ્રાથમિક ઘટના છે.

ગણિતમાં પણ જેમને માન અને દિશા બંને હોય તેવી રાશિઓનો વિચાર કરી શકાય. દાખલા તરીકે, આપણે વાસ્તવિક સંખ્યાઓની ક્રમયુક્ત જોડીઓના ગણ તરીકે \mathbb{R}^2 થી માહિતગાર છીએ. આપણે જાણીએ છીએ કે, \mathbb{R}^2 અને સમતલના બિંદુઓ

વચ્ચે એક-એક સંગતતા છે. બિંદુ O(0, 0)ને ઊગમબિંદુ લઈ, O સિવાયના કોઈ પણ ઘટક દા.ત, (1, -2) સાથે માન અને દિશા સાંકળી શકીએ. ધારો કે બિંદુ P એ (1, -2)નું સમતલમાં નિરૂપણ કરે છે, તો (1, -2) સાથે \overline{OP} લંબાઈ (એટલે કે $OP = \sqrt{(1)^2 + (-2)^2}$) અને \overline{OP} ની દિશા સાંકળી શકાય. આમ, (1, -2) ને સદિશ તરીકે લઈ શકાય. તે જ રીતે ક્રમયુક્ત ત્રયના ગણ \mathbb{R}^3 ના ઘટકોને પણ સદિશ તરીકે લઈ શકાય.

 R^2 અથવા R^3 ના ઘટકોને સદિશ તરીકે લઈ તેમના સમુચ્ચય R^2 અથવા R^3 ને 'સદિશ અવકાશ' તરીકે લઈ શકાય. 9.3 R^2 અને R^3 માં સદિશો

 R^2 અને R^3 ને અનુક્રમે વાસ્તવિક સંખ્યાઓની ક્રમયુક્ત યુગ્મ તથા ત્રયના ગણ તરીકે લઈ, R^2 અથવા R^3 ના ઘટકોને \overline{x} થી દર્શાવીશું. આમ, R^3 નો ઘટક $\overline{x}=(x_1,\,x_2,\,x_3)$, જ્યારે R^2 નો ઘટક $\overline{x}=(x_1,\,x_2)$ લઈશું.

સૌ પ્રથમ આપણે \mathbb{R}^2 અને \mathbb{R}^3 માં બે ઘટકોની સમાનતા વ્યાખ્યાયિત કરીશું,

 R^2 માં જો $x_1 = y_1$ અને $x_2 = y_2$ હોય, તો $(x_1, x_2) = (y_1, y_2)$ લઈશું.

 \mathbb{R}^3 માં જો $x_1 = y_1, x_2 = y_2$ અને $x_3 = y_3$ હોય, તો $(x_1, x_2, x_3) = (y_1, y_2, y_3)$ લઈશું.

આમ, \mathbb{R}^2 માં (1, 2) અને (2, 1) ભિન્ન ઘટકો છે.

હવેની ચર્ચામાં આપણે \mathbb{R}^3 નો વિચાર કરીશું. આ બધાં જ પરિણામો \mathbb{R}^2 માં પણ સત્ય છે.

વ્યાખ્યા : ધારો કે, $\overline{x}=(x_1,\,x_2,\,x_3)$ અને $\overline{y}=(y_1,\,y_2,\,y_3)$ એ \mathbf{R}^3 ના બે ઘટકો છે. તેમનો સરવાળો $\overline{x}+\overline{y}=(x_1+y_1,\,x_2+y_2,\,x_3+y_3)$ થી વ્યાખ્યાયિત થાય છે. આમ, જો $\overline{z}=(z_1,\,z_2,\,z_3)$ તથા $\overline{z}=\overline{x}+\overline{y}$ હોય, તો $z_1=x_1+y_1,\,z_2=x_2+y_2,\,z_3=x_3+y_3$.

સ્પષ્ટ છે કે, જો $\overline{x} \in \mathbb{R}^3$, $\overline{y} \in \mathbb{R}^3$ હોય, તો $\overline{x} + \overline{y} \in \mathbb{R}^3$ એટલે કે, ઉપર વ્યાખ્યાયિત કરેલ સરવાળો સંવૃત્તતાનો ગુણધર્મ ધરાવે છે. $\overline{x} + \overline{y}$ ને \overline{x} અને \overline{y} નો સરવાળો કહેવાય છે.

વ્યાખ્યા : ધારો કે $\overline{x}=(x_1,\,x_2,\,x_3).$ $k\in\mathbb{R}.$ k વડે \overline{x} નો ગુણાકાર, $k\overline{x}=(kx_1,\,kx_2,\,kx_3)$ દ્વારા વ્યાખ્યાયિત થાય છે.

દેખીતું છે કે, $k \in \mathbb{R}$ અને $\overline{x} \in \mathbb{R}^3$ તો $k\overline{x} \in \mathbb{R}^3$.

કેટલાંક દેખીતાં પરિણામો :

કોઈ પણ \overline{x} , \overline{y} , $\overline{z} \in \mathbb{R}^3$ અને $k, l \in \mathbb{R}$ માટે,

(i)
$$\overline{x} + \overline{y} = \overline{y} + \overline{x}$$

(ક્રમનો નિયમ)

(ii)
$$\overline{x} + (\overline{y} + \overline{z}) = (\overline{x} + \overline{y}) + \overline{z}$$

(જૂથનો નિયમ)

(iii) એક ઘટક $\overline{0} = (0, 0, 0)$ મળે છે, જેથી $\overline{0} = (0, 0, 0)$ માટે $\overline{x} + \overline{0} = \overline{x}$ (તટસ્થ ઘટકનું અસ્તિત્વ) તટસ્થ ઘટક $\overline{0}$ અનન્ય છે.

(iv) પ્રત્યેક
$$\overline{x} \in \mathbb{R}^3$$
 માટે $\overline{y} \in \mathbb{R}^3$ મળે જેથી $\overline{x} + \overline{y} = \overline{0}$

(વિરોધી ઘટકનું અસ્તિત્વ)

જો $\overline{x}=(x_1,\,x_2,\,x_3)$ હોય, તો $\overline{y}=(-x_1,\,-x_2,\,-x_3)$ લેવાથી $\overline{x}+\overline{y}=\overline{0}$ સાબિત કરી શકાય.

 \overline{y} ને \overline{x} નો વિરોધી ઘટક કહે છે અને તે પ્રત્યેક \overline{x} ને સંગત અનન્ય છે. \overline{x} ના વિરોધી ઘટક માટે સંકેત $(-\overline{x}$) વપરાય છે.

$$\therefore \quad -\overline{x} = (-x_1, \, -x_2, \, -x_3)$$

(v)
$$k(\overline{x} + \overline{y}) = k\overline{x} + k\overline{y}$$

(vi)
$$(k+l)\overline{x} = k\overline{x} + l\overline{x}$$

(vii)
$$(kl)\overline{x} = k(l\overline{x})$$

(viii)
$$1 \overline{x} = \overline{x}$$
.

ઉપરોક્ત ગુણધર્મો વાળા ગણ R^3 ને R ઉપરનો સદિશ અવકાશ (Vector Space) કહે છે. યોગ્ય રીતે વ્યાખ્યાયિત સરવાળા અને Rના ઘટકો વડે અદિશ ગુણાકાર વાળા આ ગુણધર્મોવાળા ઘણા સદિશ અવકાશો હોય છે. ગણિતશાસની પરિભાષામાં સદિશ અવકાશના ઘટકોને સદિશ (Vector) કહેવાય છે. આમ R^3 નો કોઈ પણ ઘટક સદિશ કહેવાય છે. R^2 પણ R ઉપરનો સદિશ અવકાશ છે.

 \mathbf{R}^3 (અથવા \mathbf{R}^2) માં વ્યાખ્યાયિત ઉપરના સરવાળાને સદિશ સરવાળો (Vector Addition) કહેવાય છે. જ્યારે \mathbf{R}^3 ને (અથવા \mathbf{R}^2) \mathbf{R} ઉપરના સદિશ અવકાશ તરીકે લઈએ ત્યારે \mathbf{R} ના ઘટકોને અદિશ (Scalar) કહેવાય છે, આ પરિપ્રેક્ષ્યમાં વાસ્તવિક સંખ્યાઓ અદિશ રાશિઓ છે. આથી, $k \in \mathbf{R}$, $\overline{x} \in \mathbf{R}^3$ માટે $k\overline{x}$ ને સદિશનો અદિશ વડે ગુણાકાર કહે છે. અહીં ગુણાકાર $k\overline{x}$ એ સદિશ છે. $\overline{0} = (0,0,0)$ ને શૂન્ય સદિશ કહે છે.

9.4 સદિશનું માન

જો $\overline{x}=(x_1,x_2,x_3)$ હોય તો \overline{x} ના માનની વ્યાખ્યા $\sqrt{x_1^2+x_2^2+x_3^2}$ તરીકે આપવામાં આવે છે અને \overline{x} ના માનને $|\overline{x}|$ વડે દર્શાવવામાં આવે છે.

આમ,
$$|\overline{x}| = \sqrt{x_1^2 + x_2^2 + x_3^2}$$

આ જ રીતે, \mathbb{R}^2 માંના સદિશ \overline{x} , એટલે કે $\overline{x}=(x_1,x_2)$ માટે, $|\overline{x}|=\sqrt{x_1^2+x_2^2}$.

નીચેનાં પરિણામો સ્વયં સ્પષ્ટ છે :

(1)
$$|\overline{x}| \ge 0$$
 sizes $3, |\overline{x}| = \sqrt{x_1^2 + x_2^2 + x_3^2} \ge 0$

(2)
$$|\overline{x}| = 0 \Leftrightarrow \overline{x} = \overline{0}$$

(3)
$$| k\overline{x} | = | (kx_1, kx_2, kx_3) |$$

 $= \sqrt{k^2 x_1^2 + k^2 x_2^2 + k^2 x_3^2}$
 $= \sqrt{k^2 (x_1^2 + x_2^2 + x_3^2)}$
 $= \sqrt{k^2} \sqrt{x_1^2 + x_2^2 + x_3^2}$
 $| k\overline{x} | = | k | | \overline{x} |$

અહીં $\sqrt{k^2}=|k|$ એ વાસ્તવિક સંખ્યા k નો માનાંક છે અને

$$|\bar{x}| = \sqrt{x_1^2 + x_2^2 + x_3^2}$$
 સદિશ \bar{x} નું માન છે.

વ્યાખ્યા : કોઈ સદિશ \overline{x} માટે $|\overline{x}|=1$ હોય તો તેને એકમ સદિશ કહેવાય છે.

 \mathbb{R}^2 માં એકમ સદિશના કેટલાંક ઉદાહરણો આ પ્રમાણે છે. $\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$, (1,0), (0,-1), $\alpha\in\mathbb{R}$ માટે $(sin\alpha,cos\alpha)$

 R^2 માં એકમ સદિશો છે. R^3 માં કેટલાંક ઉદાહરણો આ પ્રમાણે છે. $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$, (1, 0, 0), $\left(0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$. $\alpha \in \mathbb{R}$ માટે $(\cos\theta \ \sin\alpha, \ \cos\theta \ \cos\alpha, \ \sin\theta)$ એ \mathbb{R}^3 માં એકમ સદિશો છે.

ઉદાહરણ 1 : જો $\overline{u} = (3, -1, 4), \overline{v} = (1, -2, -3)$ હોય, તો $3\overline{u} + \overline{v}$ મેળવો.

634:
$$3\overline{u} + \overline{v} = 3(3, -1, 4) + (1, -2, -3)$$

= $(9, -3, 12) + (1, -2, -3)$
= $(9 + 1, -3 - 2, 12 - 3) = (10, -5, 9)$

ઉદાહરણ $2: \overline{x} = (1, -1, 3), \overline{y} = (1, 1, 1)$ હોય, તો $\overline{x} - 2\overline{y}$ મેળવો.

Gza:
$$\overline{x} - 2\overline{y} = \overline{x} + (-2)\overline{y}$$

= $(1, -1, 3) + (-2)(1, 1, 1)$
= $(1, -1, 3) + (-2, -2, -2)$
= $(1 - 2, -1 - 2, 3 - 2) = (-1, -3, 1)$

ઉદાહરણ 3 : સાબિત કરો કે, \mathbb{R}^3 ના સદિશો \overline{x} , \overline{y} , \overline{z} માટે $\overline{x}+\overline{y}=\overline{x}+\overline{z} \Rightarrow \overline{y}=\overline{z}$

ઉકેલ : ધારો કે
$$\overline{x}=(x_1,\,x_2,\,x_3),\,\,\overline{y}=(y_1,\,y_2,\,y_3)$$
 અને $\overline{z}=(z_1,\,z_2,\,z_3)$ અને $\overline{x}+\overline{y}=\overline{x}+\overline{z}$

$$(x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1, x_2, x_3) + (z_1, z_2, z_3)$$

$$(x_1 + y_1, x_2 + y_2, x_3 + y_3) = (x_1 + z_1, x_2 + z_2, x_3 + z_3)$$

$$\therefore$$
 $x_1 + y_1 = x_1 + z_1, x_2 + y_2 = x_2 + z_2, x_3 + y_3 = x_3 + z_3$

$$\therefore$$
 $y_1 = z_1, y_2 = z_2, y_3 = z_3$

$$\therefore$$
 $(y_1, y_2, y_3) = (z_1, z_2, z_3)$

$$\therefore \overline{y} = \overline{z}$$

બીજી રીત :

$$\overline{x} + \overline{y} = \overline{x} + \overline{z}$$

$$\therefore (-\overline{x}) + (\overline{x} + \overline{y}) = (-\overline{x}) + \overline{x} + \overline{z}$$

(−x અનન્ય છે.)

$$\therefore$$
 $(-\overline{x} + \overline{x}) + \overline{y} = (-\overline{x} + \overline{x}) + \overline{z}$

$$\therefore \quad \overline{0} + \overline{y} = \overline{0} + \overline{z}$$

$$\therefore \overline{y} = \overline{z}$$

ઉદાહરણ 4 : ઉકેલો : x(3, 1) + y(4, 2) = (1, 0)

$$\Leftrightarrow$$
 (3x + 4y, x + 2y) = (1, 0)

$$\Leftrightarrow$$
 3x + 4y = 1, x + 2y = 0

$$x = 1, y = -\frac{1}{2}$$

સ્વાધ્યાય 9.1

- 1. નીચેના સરવાળા મેળવો :
 - (1) $x_1(1, 0) + x_2(0, 1); (x_1, x_2 \in \mathbb{R})$
 - (2) $x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1); (x, y, z \in \mathbb{R})$
 - (3) 2(1, 2, 1) + 3(1, -2, 0)
- (4) 2(1, -1, -1) 2(-1, 1, 1)
 - (5) -2(1, 2, 3) + (1, 0, -1) (6) 3(1, -1, 0) (2, 2, 2)
- 2. નીચેનાં સમીકરણો x અને y માટે ઉકેલો :

 - (1) x(3, 2) + y(1, -1) = (2, 3) (2) x(1, 1) + y(1, -1) = (0, 0)
 - (3) y(1, 2) = x(3, 1) + (1, 3) (4) $x(1, 0) + y(0, 1) = \overline{0}$
- 3. નીચેના સદિશોનાં માન મેળવો :
 - (1) (1, 1, 1)
- (2) (1, -1, -1)
- (3) (3, -4, 0)
- $(4) \quad (-1, -2, -3) \qquad \qquad (5) \quad (2, 3, -5)$
- (6) $\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

- **4.** નીચે આપેલા સદિશો \overline{x} અને \overline{y} માટે $|\overline{x} + \overline{y}| \le |\overline{x}| + |\overline{y}|$ ચકાસો.
 - (1) $\overline{x} = (1, -1, 2), \overline{y} = (1, 2, 4)$
 - (2) $\overline{x} = \left(\frac{-3}{2}, 9, -9\right), \ \overline{y} = (-1, 6, -6)$
- 5. $\overline{u} = (2, 3)$ અને $\overline{v} = (2k, k + 2)$ સમાન સદિશો હોય, તો kનું મૂલ્ય શોધો.
- **6.** $\overline{u}=\left(\frac{-1}{2},\frac{3}{5},0\right)$ અને $\overline{v}=\left(\frac{1}{6},\frac{-2}{3},0\right)$ હોય, તો $3\overline{u}-2\overline{v}$ શોધો.

*

9.5 સદિશની દિશા

અગાઉ જણાવ્યા મુજબ ભૌતિકશાસ્ત્રમાં સિંદશની સાથે તેના માન અને દિશા સંગત કરવામાં આવે છે. હવે આપણે પ્રત્યેક શૂન્યેતર સિંદશ સાથે દિશાને સાંકળીશું. આપણે આ ચર્ચાને બે શૂન્યેતર સિંદશોની દિશાની સમાનતા, વિરુદ્ધ દિશા ધરાવતાં બે શૂન્યેતર સિંદશો વ્યાખ્યાયિત કરવા પૂરતું સીમિત રાખીશું. આ ચર્ચા \mathbf{R}^2 અથવા \mathbf{R}^3 માં સિંદશોની ભૌમિતિક સમજણમાં ઉપયોગી થશે.

ધારો કે, \overline{x} અને \overline{y} એ \mathbf{R}^2 અથવા \mathbf{R}^3 માં શૂન્યેતર સિંદશો છે. જો કોઈ k>0 માટે $\overline{y}=k\overline{x}$ થાય તો \overline{x} તથા \overline{y} ની દિશા સમાન છે તેમ કહેવાય અને k<0 માટે $\overline{y}=k\overline{x}$ થાય તો \overline{x} અને \overline{y} ની દિશાઓ પરસ્પર વિરુદ્ધ છે તેમ કહેવાય. વધુમાં જો \overline{x} અને \overline{y} ની દિશાઓ સમાન કે વિરુદ્ધ ન હોય તો તેમની દિશાઓ ભિન્ન છે તેમ કહેવાય. જો \overline{x} તથા \overline{y} ની દિશા સમાન હોય તો તેમને સમિદિશ સિંદશો પણ કહેવાય છે. \overline{x} તથા \overline{y} ની દિશા પરસ્પર વિરુદ્ધ હોય તો તેમને વિરુદ્ધ દિશાના સિંદશો કહે છે.

આમ, (1, -1, 1) અને (2, -2, 2)ની દિશાઓ સમાન છે, કારણ કે,

$$(2, -2, 2) = 2(1, -1, 1)$$
 અને $2 > 0$

વધુમાં, (-1, 1, -1) = (-1)(1, -1, 1) હોવાથી (1, -1, 1) અને (-1, 1, -1)ની દિશાઓ પરસ્પર વિરુદ્ધ છે.

સદિશો (1, -1, 1) અને (2, 0, 2) ને ભિન્ન દિશાઓ છે કારણ કે, (1, -1, 1) = k(2, 0, 2) થાય તેવો $k \in \mathbb{R}$ મળે નહિ. (કેમ ?)

શૂન્યેતર સિંદેશ (x_1, x_2, x_3) વડે નક્કી થતી દિશાને $< x_1, x_2, x_3 >$ થી દર્શાવવામાં આવે છે. $< x_1, x_2, x_3 >$ ની વિરુદ્ધ દિશાને $-< x_1, x_2, x_3 >$ થી દર્શાવવામાં આવે છે.

જો k > 0 હોય, તો $< kx_1, kx_2, kx_3 > = < x_1, x_2, x_3 > અને$

જો k < 0 હોય, તો $<\!\!kx_1$, kx_2 , $kx_3\!\!> = <\!\!-x_1$, $-x_2$, $-x_3\!\!>$.

અહીં નોંધીએ કે k=1 સિવાય $(kx_1,\ kx_2,\ kx_3)=(x_1,\ x_2,\ x_3)$ લખી શકાય નહિ.

9.6 સદિશનાં માન અને દિશા અને એકમ સદિશ

પ્રમેય 1 : જો શૂન્યેતર સદિશો \overline{x} અને \overline{y} માટે $|\overline{x}| = |\overline{y}|$ અને \overline{x} તથા \overline{y} ની દિશાઓ સમાન હોય તો અને તો જ \overline{x} તથા \overline{y} સમાન સદિશો થાય.

સાબિતી : ધારો કે, $\overline{x} = \overline{y}$

$$\therefore$$
 $(x_1, x_2, x_3) = (y_1, y_2, y_3)$

$$x_1 = y_1, x_2 = y_2, x_3 = y_3$$

$$|\overline{x}| = \sqrt{x_1^2 + x_2^2 + x_3^2} = \sqrt{y_1^2 + y_2^2 + y_3^2} = |\overline{y}|$$

તેમજ, $\overline{x} = \overline{y}$ હોવાથી, k = 1 > 0 માટે $\overline{x} = k\overline{y}$

 $\therefore \quad \overline{x} \text{ with } \overline{y}$ ની દિશાઓ સમાન છે.

એટલે કે,
$$\langle x_1, x_2, x_3 \rangle = \langle y_1, y_2, y_3 \rangle$$

આમ,
$$\overline{x} = \overline{y} \implies |\overline{x}| = |\overline{y}|$$
 અને \overline{x} અને \overline{y} ની દિશાઓ સમાન છે.

આથી ઉલટું, ધારો કે, $\overline{x} \neq \overline{0}$, $\overline{y} \neq \overline{0}$, $|\overline{x}| = |\overline{y}|$ અને \overline{x} અને \overline{y} ની દિશાઓ સમાન છે.

હવે, \overline{x} અને \overline{y} ની દિશાઓ સમાન હોવાથી કોઈક k>0 માટે $\overline{y}=k\overline{x}$.

$$\therefore |\overline{y}| = |k\overline{x}| = |k| |\overline{x}|$$

પરંતુ
$$|\overline{x}| = |\overline{y}|$$
 આપેલું છે. આથી $|\overline{x}| = |k| |\overline{x}|$

વળી $\overline{x} \neq \overline{0}$ હોવાથી $|\overline{x}| \neq 0$.

$$|k| = 1.$$

$$\therefore k = \pm 1. \ \forall \dot{\lambda} \dot{\lambda} k > 0$$

$$\therefore k = 1$$

$$\therefore \quad \overline{y} = k\overline{x} = 1\overline{x} = \overline{x}$$

∴
$$|\overline{x}| = |\overline{y}|$$
 અને \overline{x} , \overline{y} ની દિશાઓ સમાન છે $\Rightarrow \overline{x} = \overline{y}$.

આ પ્રમેય, ભૌતિકશાસ્ત્રમાં આપવામાં આવતી સદિશની વ્યાખ્યાને પ્રસ્થાપિત કરે છે.

પ્રમેય 2 : જો $\overline{x} \neq \overline{0}$ હોય તો \overline{x} ની દિશામાં અનન્ય એકમ સદિશનું અસ્તિત્વ હોય.

સાબિતી : $\overline{x} \neq \overline{0}$ હોવાથી $|\overline{x}| \neq 0$.

ધારો કે,
$$\overline{y} = \frac{\overline{x}}{|\overline{x}|} = k\overline{x}$$
, જ્યાં $k = \frac{1}{|\overline{x}|} > 0$

$$\therefore |\overline{y}| = |k\overline{x}| = |k| |\overline{x}| = \left| \frac{1}{|\overline{x}|} |\overline{x}| = \frac{1}{|\overline{x}|} |\overline{x}| = 1 \qquad (|\overline{x}| = |\overline{x}|)$$

 \therefore \overline{y} નું માન 1 છે. વળી, k > 0 માટે $\overline{y} = k\overline{x}$ હોવાથી \overline{y} તથા \overline{x} ની દિશા સમાન છે.

આવો એકમ સિંદશ અનન્ય હોય તેવું સાબિત કરવા માટે ધારો કે \overline{z} પણ \overline{x} ની દિશામાં એકમ સિંદશ છે. હવે, $|\overline{y}|=|\overline{z}|=1$ અને \overline{y} અને \overline{z} ની દિશા સમાન છે. $(\overline{x}$ ની દિશા).

∴ પ્રમેય-1 પરથી,
$$\overline{v} = \overline{z}$$

આમ, આપેલા શૂન્યેતર સદિશની દિશામાં એકમ સદિશ અનન્ય હોય.

આપણે $\overline{x} = (2, 1, 2)$ ની દિશામાં એકમ સદિશ મેળવીએ.

$$|\overline{x}| = \sqrt{2^2 + 1^2 + 2^2} = \sqrt{4 + 1 + 4} = 3$$

આમ, $\overline{y} = \frac{\overline{x}}{|\overline{x}|} = \left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$ માંગેલ \overline{x} ની દિશાનો એકમ સદિશ છે.

9.7 ત્રિપરિમાણીય યામ ભૂમિતિ

આપણો અત્યાર સુધીનો ભૂમિતિનો અભ્યાસ સમતલ સુધી સીમિત હતો. ઘણી વખત આપણે સમતલમાં ન હોય તેવી વસ્તુઓનો અભ્યાસ કરવાનો હોય છે. ખરેખર તો રોજબરોજના જીવનમાં સમતલનો ખ્યાલ અપૂરતો છે. દાખલા તરીકે, અવકાશમાં ફેંકેલ દડાની પ્રત્યેક ક્ષણે સ્થિતિનો વિચાર કરીએ અથવા જયારે આકાશમાં પતંગ ઊડતો હોય ત્યારે તેની સ્થિતિ અવકાશમાં સતત બદલાતી હોય છે. યાદ કરો કે, સમતલમાં કોઈ બિંદુનું સ્થાન નક્કી કરવા માટે સમતલમાંની પરસ્પર લંબ હોય તેવી બે રેખાઓની જરૂર પડે છે. આ રેખાઓને યામાક્ષો અથવા અક્ષો કહે છે અને તેમને X-અક્ષ અને Y-અક્ષ એવાં નામ અપાય છે. અને બિંદુના યામનું નિરપેક્ષ મૂલ્ય એટલે યામાક્ષોથી બિંદુનું લંબઅંતર. આમ, આ રેખાઓની મદદથી સમતલના કોઈ પણ બિંદુ સાથે વાસ્તવિક સંખ્યાનું અનન્ય ક્રમયુક્ત યુગ્મ સંગત કરી શકાય છે. તેમજ વાસ્તવિક સંખ્યાના કોઈ પણ ક્રમયુક્ત યુગ્મને સંગત સમતલમાં એક અનન્ય બિંદુ મળે, જેના યામ આપેલ વાસ્તવિક સંખ્યાનું ક્રમયુક્ત યુગ્મ હોય. આમ, સમતલનાં બિંદુઓ અને R² વચ્ચે એક-એક સંગતતા મળે છે.

જો અવકાશમાંના કોઈ બિંદુનું સ્થાન નક્કી કરવું હોય તો બે વાસ્તવિક સંખ્યાઓ પૂરતી નથી. દાખલા તરીકે છત પર લટકતા પંખાનું કેન્દ્ર નક્કી કરવા માટે ઓરડાની પરસ્પર લંબ હોય તેવી બે દીવાલોથી તેનું અંતર તેમજ કેન્દ્રની ભોંયતિળયાથી ઊંચાઈની જરૂર પડે. આમ, ત્રણ પરસ્પર લંબ સમતલો, એટલે કે ભોંયતિળયું તથા અન્ય બે પરસ્પર લંબ દીવાલોથી અંતર એમ કુલ ત્રણ સંખ્યાની જરૂરત પડે. વ્યાપક રીતે, અવકાશના કોઈ પણ બિંદુનું સ્થાન પરસ્પર લંબ હોય તેવા ત્રણ સમતલથી બિંદુના લંબઅંતર દ્વારા નક્કી કરી શકાય. આ લંબઅંતરો પરથી બિંદુના યામ નિશ્ચિત કરી શકાય. આ પરસ્પર લંબ સમતલોને યામ સમતલ કહેવાય છે. XY-સમતલમાંના બિંદુના યામની માફક અવકાશમાંના બિંદુ માટે પણ યામ ધન અથવા ઋણ હોઈ શકે છે. આથી, અવકાશના કોઈ પણ બિંદુને ત્રણ યામ હોય છે. તેમજ, વાસ્તવિક સંખ્યાઓના આપેલ ક્રમયુક્ત ત્રય માટે અવકાશમાં એક બિંદુ એવું મળે કે જેના યામ આપેલ ત્રય હોય. આ પ્રકરણમાં આપણે ત્રિપરિમાણીય (Three dimentional) અવકાશની ભૂમિતિની પ્રાથમિક ચર્ચા કરીશું. અહીં નોંધીએ કે R³ ના ઘટકો અને ત્રિપરિમાણીય અવકાશનાં બિંદુઓ વચ્ચે એક-એક સંગતતા છે.

9.8 ત્રિપરિમાણીય અવકાશમાં યામાક્ષો અને યામ સમતલો

સમતલના કિસ્સામાં બે પરસ્પર લંબ રેખાઓને સંદર્ભ રેખાઓ તરીકે લેવામાં આવે છે. અવકાશમાંના બિંદુના યામ નક્કી કરવા માટે પરસ્પર લંબ હોય, તેવા ત્રણ સમતલોને સંદર્ભ તરીકે લેવામાં આવે છે. બિંદુ O માં પરસ્પર છેદતાં અને પરસ્પર લંબ હોય તેવા ત્રણ સમતલોનો વિચાર કરીએ. (આકૃતિ 9.1). આ ત્રણ સમતલો પૈકી બબ્બેની જોડમાં સમતલો રેખા X'OX, Y'OY અને Z'OZ માં છેદે છે. આ રેખાઓને અનુક્રમે X-અક્ષ, Y-અક્ષ અને Z-અક્ષ કહેવાય છે. અહીં નોંધીએ કે આ રેખાઓ પરસ્પર લંબ છે. આ રેખાઓ પરસ્પર લંબ

હોવાથી તેઓ **લંબ યામ પદ્ધતિ (Rectangular Co-ordinate System)**નું નિર્માણ કરે છે. બિંદુ O માંથી પસાર થતી આ પરસ્પર લંબરેખાઓને **યામાક્ષો** અથવા સરળતા ખાતર અ**ક્ષો** કહીશું. (આકૃતિ 9.2).

બિંદુ O ને યામ પદ્ધતિનું ઊગમબિંદુ કહેવાય છે. સમતલો XOY, YOZ અને ZOXને અનુક્રમે XY-તલ, YZ-તલ અને ZX-તલ કહેવાય છે અને તેમને યામ સમતલો તરીકે ઓળખવામાં આવે છે. આપણે આ કાગળના સમતલને XOY સમતલ તરીકે લઈશું અને O માંથી પસાર થતી તેને લંબરેખાને Z'OZ તરીકે લઈશું. જો કાગળનું સમતલ સમક્ષિતિજ હોય, તો રેખા Z'OZ શિરોલંબ રેખા થશે.

સમતલના કિસ્સામાં આપશે જોયું છે કે યામાક્ષો સમતલને ચાર ભાગમાં વહેંચે છે, જેને ચરણ કહે છે. તે જ રીતે યામ સમતલો અવકાશને અપ્ટાંશ (Octant) તરીકે ઓળખાતા આઠ ભાગમાં વહેંચે છે. આ અપ્ટાંશોને XOYZ, X'OYZ, X'OY'Z, XOY'Z, XOYZ', X'OYZ', X'OYZ' એમ નામ આપી શકાય. તે અનુક્રમે I, II, III, ..., VIII અપ્ટાંશ તરીકે દર્શાવાય છે.

નોંધ : ઉપર ચર્ચા કરેલી યામ પદ્ધતિ, અવકાશમાં કોઈ બિંદુના યામ આપવાની પદ્ધતિઓમાંની એક છે. આ યામ પદ્ધતિને ફ્રેન્ચ ગણિતશાસ્ત્રી રેને દ'કાર્તે (René Descartes)ના નામ ઉપરથી કાર્તેઝીય યામપદ્ધતિ કહેવાય છે. આ સિવાયની યામ પદ્ધતિઓ પણ પ્રચલિત છે.

અવકાશમાંના બિંદુના યામ :

ઊગમબિંદુ અને યામાક્ષોની મદદથી સમતલમાં આવેલ કોઈ પણ બિંદુના યામ નક્કી કરવાની પદ્ધતિને અનુસરીને, અવકાશમાં આવેલ કોઈ બિંદુના ત્રણ યામ કેવી રીતે નક્કી કરવા તેની હવે ચર્ચા કરીશું. તેમજ વાસ્તવિક સંખ્યાઓના આપેલ ક્રમયુક્ત ત્રયને સંગત અવકાશમાં બિંદુ કેવી રીતે મેળવી શકાય તે જોઈશું.

બિંદુ P માંથી આકૃતિ 9.3માં બતાવ્યા પ્રમાશે યામ સમતલોને સમાંતર ત્રણ સમતલો દોરો. ધારો કે, તે X-અક્ષ, Y-અક્ષ અને Z-અક્ષને અનુક્રમે બિંદુઓ A, B અને Cમાં છેદે છે. જો A(x, 0, 0), B(0, y, 0) અને C(0, 0, z), હોય તો બિંદુ P ના યામ x, y અને z થશે. P ને આપણે P(x, y, z) તરીકે લખીશું. આથી ઉલટું આપણે વાસ્તવિક સંખ્યાઓ x, y અને z ને સંગત X-અક્ષ, Y-અક્ષ અને Z-અક્ષ ઉપર અનુક્રમે બિંદુઓ A(x, 0, 0), B(0, y, 0) અને C(0, 0, z) મેળવીશું. હવે, A, B અને C માંથી અનુક્રમે X-અક્ષ, Y-અક્ષ અને Z-અક્ષને લંબ સમતલો દોરો. આ ત્રણ સમતલો ADPF, BDPE અને CEPF નું છેદબિંદુ P છે. તે વાસ્તવિક સંખ્યાઓના ક્રમયુક્ત ત્રય (x, y, z) ને સંગત બિંદુ છે. અહીં જુઓ કે P(x, y, z) અવકાશનું કોઈ પણ બિંદુ હોય તો |x|, |y| અને |z| અનુક્રમે YZ, ZX

અને XY સમતલથી અંતરો છે. આમ, સમતલના બિંદુઓ અને વાસ્તવિક સંખ્યાઓના ક્રમયુક્ત ત્રય વચ્ચે એક-એક સંગતતા મળે. આમ, અવકાશ અને ક્રમયુક્ત ત્રયનો ગણ \mathbb{R}^3 સમરૂપ છે.

નોંધ : ઊગમબિંદુના યામ (0, 0, 0) છે. X-અક્ષ પરના કોઈ પણ બિંદુના યામ (x, 0, 0) અને YZ-સમતલના કોઈ પણ બિંદુના યામ (0, y, z) થાય. આ જ રીતે અન્ય યામાક્ષ અને યામ સમતલના બિંદુઓના યામ લખી શકાય.

નોંધ : ધન અને ઋણ યામોની ગોઠવણી પરથી બિંદુને સમાવતું અષ્ટાંશ નક્કી કરી શકાય. નીચેના કોષ્ટકમાં આ માહિતી દર્શાવી છે :

કોષ્ટક 9.1

અષ્ટાંશ → યામ ↓	I OXYZ	II OX'YZ	III OX'Y'Z	IV OXY'Z	V OXYZ'	VI OX'YZ'	VII OX'Y'Z'	VIII OXY'Z'
x	+	1	1	+	+	1	1	+
у	+	+	_	_	+	+	_	_
z	+	+	+	+	_	_	_	_

ઉદાહરણ 5: આકૃતિ 9.4 માં બતાવ્યા મુજબ લંબઘનનું એક શિરોબિંદુ A(1,3,2) છે. તેની બાજુ \overline{AB} એ Z-અક્ષને લંબ છે. શિરોબિંદુ Bનો z-યામ શોધો. બાજુ \overline{AB} ની લંબાઈ 3 હોય, તો બિંદુ B નો y-યામ શોધો.

 $\overrightarrow{63}$ લ : \overrightarrow{AB} એ Z-અક્ષને લંબ હોવાથી A તથા B ના z-યામ સમાન થાય. આમ બિંદુ Bનો z-યામ 2 છે.

હવે, \overline{AB} એ Y-અક્ષને સમાંતર છે.

આમ, B નો y-યામ = Aનો y-યામ + 3 = 3 + 3 = 6.

स्वाध्याय 9.2

નીચેના કોષ્ટકમાં પ્રથમ સ્તંભમાં આપેલ બિંદુને સમાવતા અષ્ટાંશનું નામ બીજા સ્તંભમાં પૂરો :

બિંદુ	અષ્ટાંશ
(1, 2, 3)	
(1, -2, -4)	
$(\sqrt{2}, 2, -1)$	
(-1, -2, 0)	
(-1, -1, -1)	

2. રામ, બિંદુ (-1, 2, 0)થી ચાલવાનું શરૂ કરે છે. તે \overrightarrow{OX} ની દિશામાં 1 એકમ ચાલે છે. ત્યારબાદ \overrightarrow{OY}' દિશામાં વધુ 2 એકમ ચાલે છે. રામનું અંતિમ સ્થાન શું હશે ?

*

9.9 સદિશનું ભૌમિતિક નિરૂપણ

ધારો કે, બિંદુ P યામ સમતલનું ઊગમબિંદુ સિવાયનું કોઈ પણ બિંદુ છે. O થી P ની દિશા એટલે કે, \overrightarrow{OP} ની દિશાના \overrightarrow{OP} ને \overrightarrow{OP} વડે દર્શાવીશું. આમ, \overrightarrow{OP} એ \overrightarrow{OP} ની દિશામાંનો દિશાયુક્ત રેખાખંડ છે.

આપણે જાણીએ છીએ કે યામ સમતલમાંના કોઈ પણ બિંદુ P ને વાસ્તવિક સંખ્યાઓના ક્રમયુક્ત યુગ્મ (x_1, x_2) સાથે સંગત કરી શકાય, આથી ઉલટું વાસ્તવિક સંખ્યાઓના ક્રમયુક્ત યુગ્મને સંગત સમતલમાં એક બિંદુ મળે. બિંદુના યામ (x_1, x_2) છે તેમ કહેવાય. આમ, સમતલ અને ક્રમયુક્ત યુગ્મનો ગણ \mathbb{R}^2 એકરૂપ છે, આથી આપણે \mathbb{R}^2 અને સમતલનો સમાનાર્થી શબ્દ તરીકે ઉપયોગ કરીશું.

સ્થાનસદિશ : ધારો કે સમતલમાં Pના યામ (x_1,x_2) છે. P ઊગમબિંદુ નથી. દિશાયુક્ત રેખાખંડ \overrightarrow{OP} ને, ઊગમબિંદુ O ને સાપેક્ષ બિંદુ P નો સ્થાનસદિશ (Position Vector) કહેવાય છે. x_1 તથા x_2 ને \overrightarrow{OP} ના ઘટક કહે છે. સરળતા ખાતર (x_1,x_2) ને બિંદુ P નો સ્થાનસદિશ કહીશું.

ઊગમબિંદુના સ્થાનસદિશના ઘટકો 0 અને 0 થાય. બે સદિશોના સરવાળા અને અદિશ દ્વારા ગુણાકારની વ્યાખ્યાની મદદથી બે સ્થાનસદિશોના સરવાળા અને અદિશ વડે ગુણાકાર સરળતાથી વ્યાખ્યાયિત કરી શકાય.

હવે કોઈ રેખાખંડ \overline{AB} નો વિચાર કરો. તો તેની સાથે પણ સ્થાનસિંદશની માફક દિશા સાંકળી શકાય. રેખાખંડ \overrightarrow{AB} ની દિશા પણ બિંદુ A થી બિંદુ B તરફના કિરણ \overrightarrow{AB} ની દિશા થાય. આમ, AB લંબાઈવાળા અને કિરણ \overrightarrow{AB} ની દિશાવાળા દિશાયુક્ત રેખાખંડ \overrightarrow{AB} ને બિંદુ B ના બિંદુ A ને સાપેક્ષ સ્થાનસિંદશ તરીકે વ્યાખ્યાયિત કરી શકાય. કોઈ પણ બિંદુનો પોતાના સાપેક્ષ સ્થાનસિંદશ શૂન્ય સિંદશ થાય.

નીચેની આકૃતિ જુઓ :

બે સિંદિશોની સમાનતાની વ્યાખ્યા અનુસાર બે દિશાયુક્ત રેખાખંડોની સમાનતા વ્યાખ્યાયિત કરીશું. આમ, જો $\overrightarrow{AB} = \overrightarrow{CD}$ અને \overrightarrow{AB} અને \overrightarrow{CD} ની દિશા સમાન હોય તો $\overrightarrow{AB} = \overrightarrow{CD}$ લઈશું. પ્રત્યેક \overrightarrow{AB} માટે એવો દિશાયુક્ત રેખાખંડ \overrightarrow{OP} એવો મળે કે જેથી $\overrightarrow{AB} = \overrightarrow{OP}$. આકૃતિમાં $\overrightarrow{AB} = \overrightarrow{OP}$ તેમજ $\overrightarrow{CD} = \overrightarrow{OP}$. સમતલમાં સમાન હોય તેવા અનંત દિશાયુક્ત રેખાખંડો મળે પણ રેખાખંડ તરીકે તેઓ ભિન્ન હોય. પ્રત્યેક દિશાયુક્ત રેખાખંડ \overrightarrow{AB} માટે $\overrightarrow{AB} = \overrightarrow{OP}$ થાય તેવો સ્થાનસદિશ \overrightarrow{OP} મળે. આમ, \overrightarrow{OP} એ દિશાયુક્ત રેખાખંડ \overrightarrow{AB} ને સમાન હોય તેવા રેખાખંડોના સમૂહનું પ્રતિનિધિત્વ કરે છે. \overrightarrow{OP} જેવા સ્થાનસદિશો નિયત સદિશો (bound vectors) કહેવાય છે. કારણ કે તેમનું એક અંત્યબિંદુ \overrightarrow{OP} ને સમાન અન્ય દિશાયુક્ત રેખાખંડો (જેમકે \overrightarrow{AB}) ને મુક્ત સદિશો (free vectors) કહેવાય છે કારણ કે તેમનાં બંને અંત્યબિંદુઓ, સદિશ બદલ્યા વિના યથેચ્છ રીતે પસંદ કરી શકાય છે.

હવે આકૃતિ 9.6 જુઓ :

આકૃતિ 9.6

અહીં તમામ રેખાખંડો સમાન રીતે દિશાયુક્ત છે અને તેના શરૂઆતના બિંદુને જમણી તરફ 2 એકમ અને ત્યારબાદ 1 એકમ ઉપરની દિશામાં (જાણે ચેસ બોર્ડના ઘોડાની ચાલ) ચાલી અંત્યબિંદુ મળે છે. આનો અર્થ એ કે આ બધાં જ સ્થાનસદિશ (2, 1)ને સમાન છે. બીજા શબ્દોમાં (2, 1), આકૃતિ 9.6ના બધા જ સદિશો દર્શાવે છે.

ધારો કે $A(x_1, x_2)$, $B(y_1, y_2)$ તથા $P(y_1 - x_1, y_2 - x_2)$ સમતલનાં બિંદુઓ છે.

આકૃતિ 9.6માં દર્શાવ્યા પ્રમાણે \overrightarrow{AB} ની દિશા $=\overrightarrow{OP}$ ની દિશા અને

AB = OP =
$$\sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2}$$
.

આમ, મુક્ત સદિશ 献 અને નિયત સદિશ ᆎ સમાન સદિશો છે. તેમજ,

$$\overrightarrow{AB} = \overrightarrow{OP} = (y_1 - x_1, y_2 - x_2)$$

$$= (y_1, y_2) - (x_1, x_2)$$

$$= \overrightarrow{Brl} \quad \text{Regulation} \quad - \overrightarrow{Arrl} \quad \text{Regulation}$$

આ જ રીતે, આપણે અવકાશમાં સ્થાનસદિશની વ્યાખ્યા આપી શકીએ, તેમજ અવકાશમાં મુક્ત સદિશ તેમજ નિયત સદિશની વ્યાખ્યા આપીશું. ધારો કે $A(x_1,\,x_2,\,x_3)$, $B(y_1,\,y_2,\,y_3)$ તથા $P(y_1-x_1,\,y_2-x_2,\,y_3-x_3)$ બિંદુઓ હોય, તો મુક્ત સદિશ \overrightarrow{AB} માટે,

$$\overrightarrow{AB} = \overrightarrow{OP} = (y_1 - x_1, y_2 - x_2, y_3 - x_3)$$

$$= (y_1, y_2, y_3) - (x_1, x_2, x_3)$$

$$= \overrightarrow{B-1} \quad \text{Relation} - \overrightarrow{A-1} \quad \text{Relation}$$

વધુમાં, આ મુક્ત સદિશ \overrightarrow{AB} ને સંગત, \overrightarrow{AB} = \overrightarrow{OP} થાય તેવો સ્થાનસદિશ \overrightarrow{OP} મળે.

આ રીતે અવકાશમાંના સદિશનું ભૌમિતિક નિરૂપણ થાય.

ઉદાહરણ 5 : નીચે આપેલ સદિશોની પ્રત્યેક જોડ માટે સદિશોની દિશા સમાન, વિરુદ્ધ કે ભિન્ન છે તે નક્કી કરો :

- (1) (1, 1, 1), (2, 2, 2)
- (2) (1, -1, 2), (0.5, -0.5, 1)
- (3) (1, -1, 0), (0, 1, -1)
- (4) (3, 6, -9), (-1, -2, 3)
- (5) (1, 0, 0), (0, 1, 0)
- (6) (2, 5, 7), (-2, 5, -7)

ઉકેલ: (1) (2, 2, 2) = 2(1, 1, 1). અહીં,
$$k = 2 > 0$$

- ∴ સદિશોની દિશા સમાન છે. <2, 2, 2> = <1, 1, 1>
- (2) (0.5, -0.5, 1) = (0.5)(1, -1, 2), અહીં, k = 0.5 > 0
- ∴ સિંદશોની દિશા સમાન છે. <0.5, -0.5, 1> = <1, -1, 2>
- (3) શક્ય હોય, તો ધારો કે, કોઈક $k \in \mathbb{R} \{0\}$ માટે (0, 1, -1) = k(1, -1, 0),
- \therefore 0 = k, 1 = -k, -1 = 0 જે શક્ય નથી.

આમ, કોઈ પણ $k \in \mathbb{R} - \{0\}$ ના મળે જેથી (0, 1, -1) = k(1, -1, 0).

આથી આ સદિશોની દિશાઓ ભિન્ન છે.

(4)
$$(3, 6, -9) = -3(-1, -2, 3)$$
; અહીં, $k = -3 < 0$

- ∴ સિંદશો વિરુદ્ધ દિશાઓ ધરાવે છે. <3, 6, -9> = -<-1, -2, 3>
- (5) ઉપર (3)માં દર્શાવ્યા પ્રમાણે કોઈ પણ $k \in \mathbb{R}$ માટે, (1, 0, 0) = k(0, 1, 0) +થાય.
- ∴ સિંદશો (1, 0, 0) તથા (0, 1, 0)ની દિશાઓ ભિન્ન છે.
- (6) શક્ય હોય તો ધારો કે, કોઈક $k \in \mathbb{R} \{0\}$ માટે, (2, 5, 7) = k(-2, 5, -7)2 = -2k, 5 = 5k, 7 = -7k

આ શક્ય નથી કારણ કે પ્રથમ સમીકરણનું k=-1 માટે સમાધાન થાય છે. પરંતુ બીજા સમીકરણનું સમાધાન થતું નથી. આમ સિદશોની દિશાઓ ભિન્ન છે.

નોંધ : (1) ધારો કે
$$\overline{x}$$
 અને \overline{y} શૂન્યેતર સદિશો છે અને $x_i \neq 0, y_i \neq 0 \ (i=1,\,2,\,3)$

જો $\frac{y_1}{x_1} = \frac{y_2}{x_2} = \frac{y_3}{x_3} = k$ હોય, તો k > 0 અથવા k < 0 હોય તે અનુસાર \overline{x} અને \overline{y} ની દિશા સમાન હોય કે વિરુદ્ધ હોય. જો $\frac{y_1}{x_1} \neq \frac{y_2}{x_2}$ અથવા $\frac{y_2}{x_2} \neq \frac{y_3}{x_3}$ અથવા $\frac{y_3}{x_3} \neq \frac{y_1}{x_1}$ હોય તો તેમની દિશાઓ ભિન્ન થાય.

(2) જો $x_1 = 0 = y_1$ અને $\frac{y_2}{x_2} = \frac{y_3}{x_3} = k > 0$, તો \overline{x} અને \overline{y} ને સમાન દિશા હોય અને જો k < 0 હોય તો

 \overline{x} અને \overline{y} વિરુદ્ધ દિશાઓ ધરાવે છે. $\frac{y_2}{x_2} \neq \frac{y_3}{x_3}$ હોય તો તેમની દિશાઓ ભિન્ન થાય.

 $x_2 = 0 = y_2$ અથવા $x_3 = 0 = y_3$ માટે પણ આવાં જ પરિણામો સત્ય છે.

(3) જો $x_1=x_2=y_1=y_2=0$ હોય, તો $\frac{y_3}{x_3}>0$ માટે તેમની દિશા સમાન થાય અને $\frac{y_3}{x_3}<0$ માટે તેમની દિશાઓ વિરુદ્ધ થાય.

211

 $\overline{0} = (0, 0, 0)$ ની દિશા વ્યાખ્યાયિત નથી તે ફરી યાદ કરીએ.

ઉદાહરણ $6: \overline{u} = (6, -7, 6)$ ની દિશામાં એકમ સદિશ મેળવો.

ઉકેલ: અહીં,
$$|\overline{u}| = \sqrt{6^2 + (-7)^2 + 6^2} = \sqrt{121} = 11$$

∴ \overline{u} ની દિશામાં એકમ સદિશ, $\frac{\overline{u}}{|\overline{u}|} = \left(\frac{6}{11}, \frac{-7}{11}, \frac{6}{11}\right)$.

ઉદાહરણ $7: \overline{x} = (4, 7, -2), \overline{y} = (1, 2, 2)$ આપેલ છે. $\overline{x} - 2\overline{y}$ ની દિશાની વિરુદ્ધ દિશામાં એકમ સદિશ મેળવો.

ઉકેલ :
$$\overline{x} - 2\overline{y} = (4, 7, -2) - 2(1, 2, 2) = (2, 3, -6) = \overline{z}$$
 (ધારો)

હવે,
$$|\overline{z}| = \sqrt{2^2 + 3^2 + (-6)^2} = \sqrt{49} = 7$$

 \overline{z} ની દિશાની વિરુદ્ધ દિશામાં એકમ સદિશ, $-\frac{\overline{z}}{|\overline{z}|} = \left(-\frac{2}{7}, -\frac{3}{7}, \frac{6}{7}\right)$.

ઉદાહરણ 8 : નીચે આપેલ બિંદુઓ A અને B માટે 👬 મેળવો :

- (1) A(1, -1), B(1, 2)
- (2) A(1, -1, 1), B(1, 1, -1)
- (3) A(1, 2, 3), B(4, 5, 6)
- (4) A(1, -2, 1), B(-1, 1, 1)

ઉકેલ : \overrightarrow{AB} = Bનો સ્થાનસદિશ - Aનો સ્થાનસદિશ

(1)
$$\overrightarrow{AB} = (1, 2) - (1, -1) = (0, 3).$$

(2)
$$\overrightarrow{AB} = (1, 1, -1) - (1, -1, 1) = (0, 2, -2).$$

(3)
$$\overrightarrow{AB} = (4, 5, 6) - (1, 2, 3) = (3, 3, 3).$$

(4)
$$\overrightarrow{AB} = (-1, 1, 1) - (1, -2, 1) = (-2, 3, 0).$$

સ્વાધ્યાય 9.3

- 1. નીચે આપેલ સદિશોના યુગ્મ માટે તેમની દિશા સમાન, વિરુદ્ધ કે ભિન્ન છે તે નક્કી કરો ઃ
 - (1) A(2, -5, 3), B(0.4, -1, 0.6) (2) (1, 2, 4), (3, 4, 6)
- - (3) A(2, 4, -6), B(-1, -2, 3) (4) (1, 0, 1), (0, 1, 1)
- 2. નીચેના સદિશોની દિશામાં એકમ સદિશ મેળવો :
 - (1) $\bar{x} = (3, -4)$
- (2) $\overline{y} = (-3, -4)$
- (3) $\overline{x} = (1, 3, 5)$

- $(4) \quad \overline{y} = \left(1, \frac{1}{2}, \frac{1}{3}\right)$
- (5) $\overline{y} = (1, 0, 0)$
- (6) $\overline{y} = (-5, 12)$
- 3. જો $\overline{x}=(x_1,x_2)$ અને $\overline{x}=\alpha(1,2)+\beta(2,1)$ હોય, તો α અને β શોધો.

9.10 અંતરસૂત્ર

ધારો કે બિંદુઓ ${\bf A}$ અને ${\bf B}$ ના સ્થાનસદિશો અનુક્રમે $\vec r_1$ અને $\vec r_2$ છે અને $\vec r_1=(x_1,\ y_1,\ z_1)$ અને $\vec r_2=(x_2,\ y_2,\ z_2)$ છે. આપણે જાણીએ છીએ કે,

 \overrightarrow{AB} = Bનો સ્થાનસદિશ — Aનો સ્થાનસદિશ

$$= (x_2, y_2, z_2) - (x_1, y_1, z_1)$$

$$=(x_2-x_1, y_2-y_1, z_2-z_1)$$

: AB =
$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

આને અંતરસૂત્ર કહેવાય છે અને તે \mathbb{R}^3 ના બે બિંદુઓ $A(x_1,\ y_1,\ z_1)$ અને $B(x_2,\ y_2,\ z_2)$ વચ્ચેનું અંતર દર્શાવે છે.

નોંધ: XY-સમતલમાં કોઈ પણ બિંદુનો z-યામ શૂન્ય હોય છે. આમ ઉપરોક્ત અંતરસૂત્રમાં $z_1=z_2=0$ લેતાં સમતલમાં અંતરસૂત્ર મળે, જેનો આપણે ધોરણ 10 માં અભ્યાસ કર્યો હતો.

ઉદાહરણ 9 : બિંદુઓ (1, -1, 2) અને (-2, 1, 8) વચ્ચેનું અંતર મેળવો.

6કેલ : P(1, -1, 2) અને Q(-2, 1, 8) લેતાં,

$$PQ = \sqrt{(1 - (-2))^2 + (-1 - 1)^2 + (2 - 8)^2}$$
$$= \sqrt{3^2 + (-2)^2 + (-6)^2} = \sqrt{49} = 7$$

આમ, બે બિંદુઓ વચ્ચેનું અંતર 7 છે.

ઉદાહરણ 10 : અંતરસૂત્ર દ્વારા બિંદુઓ P(4, -3, -1), Q(5, -7, 6) અને R(3, 1, -8) સમરેખ છે, તેમ સાબિત કરો.

ઉંકેલ: અહીં, PQ =
$$\sqrt{(4-5)^2 + (-3+7)^2 + (-1-6)^2} = \sqrt{1+16+49} = \sqrt{66}$$

QR = $\sqrt{(5-3)^2 + (-7-1)^2 + (6+8)^2} = \sqrt{4+64+196} = 2\sqrt{66}$
PR = $\sqrt{(4-3)^2 + (-3-1)^2 + (-1+8)^2} = \sqrt{1+16+49} = \sqrt{66}$

આમ, PQ + PR = QR એટલે કે Q-P-R.

∴ આપેલ બિંદુઓ સમરેખ છે.

ઉદાહરણ 11 : બિંદુઓ A(1, 2, 4), B(1, 2, 0) અને C(1, 5, 0) માટે ΔABC કાટકોણ ત્રિકોણ છે તેમ સાબિત કરો.

ઉકેલ:
$$AB^2 = (1-1)^2 + (2-2)^2 + (4-0)^2 = 16$$
. તેથી $AB = 4$
 $BC^2 = (1-1)^2 + (2-5)^2 + (0-0)^2 = 9$. તેથી $BC = 3$
 $AC^2 = (1-1)^2 + (5-2)^2 + (0-4)^2 = 25$. તેથી $AC = 5$

∴ બિંદુઓ સમરેખ નથી અને તેઓ ત્રિકોણ રચે છે.

અને $AC^2 = AB^2 + BC^2$. આથી $\triangle ABC$ કાટકોણ ત્રિકોણ છે અને $\angle B$ કાટખૂણો છે.

ઉદાહરણ 12 : બિંદુ A(2, -1, 1) થી $3\sqrt{3}$ અંતરે આવેલ X-અક્ષ પરના બિંદુઓ શોધો.

6કેલ : X-અક્ષ પરનું કોઈ પણ બિંદુ P(x, 0, 0) હોય. હવે,

$$\sqrt{(x-2)^2 + (0+1)^2 + (0-1)^2} = 3\sqrt{3}$$

$$x^2 - 4x + 4 + 1 + 1 = 27$$

$$x^2 - 4x + 4 = 25$$

$$(x-2)^2 = 25$$

$$x - 2 = \pm 5$$

$$x = 7$$
 અથવા $x = -3$

આમ, x પર બે બિંદુઓ P(7, 0, 0) અને P(-3, 0, 0) માંગ્યા પ્રમાણે મળે.

ઉદાહરણ 13: બિંદુઓ (2, -1, 1) અને (1, 3, 1)થી સમાન અંતરે આવેલ બિંદુઓના બિંદુગણનું સમીકરણ મેળવો.

6કેલ : ધારો કે આપેલ બિંદુઓ (2, -1, 1) અને (1, 3, 1) થી સમાન અંતરે આવેલ કોઈ બિંદુ યામ (x, y, z) છે. આમ, $(x-2)^2 + (y+1)^2 + (z-1)^2 = (x-1)^2 + (y-3)^2 + (z-1)^2$

$$x^2 - 4x + 4 + y^2 + 2y + 1 + z^2 - 2z + 1$$

$$= x^2 - 2x + 1 + y^2 - 6y + 9 + z^2 - 2z + 1$$

- \therefore -4x + 2y + 5 = -2x 6y + 10
- \therefore 2x 8y + 5 = 0 માંગેલ બિંદુગણનું આ સમીકરણ છે.

નોંધ : સમતલમાં આ પ્રકારના બિંદુગણને આપેલ રેખાખંડનો **લંબદ્વિભાજક (Perpendicular Bisector)** કહેવામાં આવે છે. અવકાશમાં આને આપેલ રેખાખંડનું લંબદ્વિભાજક સમતલ (Perpendicular Bisector Plane) કહેવાય છે. તે આપેલ રેખાખંડના મધ્યબિંદુમાંથી પસાર થતું રેખાખંડને લંબ હોય તેવું સમતલ છે.

स्वाध्याय 9.4

- નીચે આપેલ બિંદુયુગ્મ વચ્ચેનું અંતર શોધો :
 - (1) (1, -1, 3), (1, -1, 3)
- (2) (1, 2, 3), (3, 4, 5)
- (3) (2, -3, 18), (0, 1, 14) (4) $(1, \sqrt{2}, -1), (3, 3\sqrt{2}, 1)$
- (5) (1, -2, 5014), (4, 2, 5014) (6) (1, 1, 0), (0, 1, 0)
- 2. નીચે આપેલાં બિંદુઓ સમરેખ છે કે નહિ તે અંતરસૂત્રની મદદથી નક્કી કરો :
 - (1) P(1, 3, 2), Q(1, 2, 1), R(2, 3, 1)
 - (2) A(0, 1, 0), B(0, -1, 0), C(0, 2, 0)
 - (3) L(1, 2, 3), M(-3, -1, 1), A(-3, 2, 7)
 - (4) V(1, 2, 3), A(2, 3, 1), H(3, 1, 2)
- આપેલ બિંદુઓ A(0, 7, 10), B(−1, 6, 6), C(−4, 9, 6), માટે ΔABCનો પ્રકાર નક્કી કરો.
- **4.** બિંદુઓ (−2, 1, 3) થી $\sqrt{14}$ અંતરે આવેલ Z-અક્ષ પરનાં બિંદુઓ શોધો.
- બિંદુઓ A(3, 4, 5), B(-1, 2, 7) માટે $PA^2 + PB^2 = 2k^2$ થાય તેવા બિંદુગણનું સમીકરણ મેળવો. $k \in \mathbb{R}$
- O(0, 0, 0), A(2, -3, 6), B(0, -7, 0) સમદિભૂજ ત્રિકોશનાં શિરોબિંદુઓ છે તેમ દર્શાવો.

9.11 વિભાજન સૂત્ર

 ${f R}^2$ માં બે બિંદુઓને જોડતા રેખાખંડના વિભાજન સૂત્રની ચર્ચા અગાઉ કરેલ છે. હવે આપણે ${f R}^3$ ના બે બિંદુઓને જોડતા રેખાખંડના વિભાજનનું સૂત્ર સદિશોની મદદથી મેળવીશું.

ધારો કે અવકાશનાં બિંદુઓ અનુક્રમે A અને B ના સ્થાનસિંદશો $\bar{r}_1=(x_1,\ y_1,\ z_1)$ અને $\bar{r}_2=(x_2,\ y_2,\ z_2)$ છે. ધારો કે, $P \in \stackrel{\longleftrightarrow}{AB} (P \neq A, P \neq B)$. બિંદુઓ A, B અને P એક જ રેખા પર આવેલા હોવાથી \overrightarrow{AP} અને \overrightarrow{PB} ની દિશાઓ સમાન અથવા વિરુદ્ધ હોય. આમ, $\overrightarrow{AP} = \overrightarrow{kPB}$, જ્યાં, $k \neq 0$.

$$\therefore$$
 $|\overrightarrow{AP}| = |k| |\overrightarrow{PB}|$ અથવા $AP = |k| PB$

$$\therefore \quad \frac{AP}{PB} = |k|$$

ધારો કે, બિંદુ P નો સ્થાનસદિશ $\overline{r} = (x, y, z)$.

(i) જો A-P-B અને $\frac{AP}{PB} = \lambda$ અને $\lambda > 0$ તો બિંદુ P એ \overline{AB} નું A તરફથી અંતઃવિભાજન કરે છે તેમ કહીશું. (આકૃતિ 9.8)

$$AP \over PB} = |k| = \lambda$$
 વધુમાં, $AP \over PB}$ અને $AP \over PB}$ ની દિશા સમાન હોવાથી $k > 0$. આથી, $|k| = k$. આથી, $|k| = \lambda$ હોવાથી $k = \lambda$. આમ, $AP = \lambda$ $AP \over PB}$.

(ii) જો P-A-B અથવા A-B-P તથા $\frac{AP}{PB}=-\lambda$ અને $\lambda<0$ હોય તો આ કિસ્સામાં P એ \overline{AB} નું A તરફથી λ ગુશોત્તરમાં બહિર્વિભાજન કરે છે તેમ કહેવાય. આકૃતિ 9.9 અને 9.10માં દર્શાવ્યા પ્રમાણે \overrightarrow{AP} અને \overrightarrow{PB} ની દિશાઓ વિરુદ્ધ હોય. આથી k<0.

PB

P-A-B

$$|k| = -k$$

$$\therefore \quad \frac{AP}{PB} = -\lambda = -k$$

$$(|k| = -k)$$
 અને $\frac{AP}{PB} = -\lambda$)

આથી, $k = \lambda$.

$$\overrightarrow{AP} = \lambda \overrightarrow{PB}$$
.

આમ, બંને કિસ્સામાં $\overrightarrow{AP} = \lambda \overrightarrow{PB}$.

$$(\overrightarrow{AP} = k \overrightarrow{PB})$$

$$\therefore \quad \overline{r} - \overline{r}_1 = \lambda(\overline{r}_2 - \overline{r})$$

$$\therefore \quad \overline{r} - \overline{r}_1 = \lambda \overline{r}_2 - \lambda \overline{r}$$

$$\therefore (1 + \lambda) \, \bar{r} = \lambda \bar{r}_2 + \bar{r}_1$$

વિભાજનની વ્યાખ્યા પ્રમાણે $\lambda \neq -1$ હોવાથી,

$$\therefore \quad \overline{r} = \frac{1}{\lambda + 1} \ (\lambda \overline{r}_2 + \overline{r}_1)$$

$$(x, y, z) = \frac{1}{\lambda + 1} (\lambda(x_2, y_2, z_2) + (x_1, y_1, z_1))$$
$$= \frac{1}{(\lambda + 1)} (\lambda x_2 + x_1, \lambda y_2 + y_1, \lambda z_2 + z_1)$$

$$\therefore (x, y, z) = \left(\frac{\lambda x_2 + x_1}{\lambda + 1}, \frac{\lambda y_2 + y_1}{\lambda + 1}, \frac{\lambda z_2 + z_1}{\lambda + 1}\right)$$

આને વિભાજન સૂત્ર કહે છે અને તે રેખાખંડ \overline{AB} નું $A(x_1, y_1, z_1)$ તરફથી λ ગુણોત્તરમાં વિભાજન કરતા બિંદુના યામ આપે છે.

જો ગુણોત્તર $\lambda = m: n$ હોય, તો ઉપરોક્ત સૂત્ર પરથી,

$$\bar{r} = \frac{1}{\frac{m}{n}+1} \left(\frac{m}{n} \bar{r}_2 + \bar{r}_1 \right) = \frac{1}{m+n} (m \bar{r}_2 + n \bar{r}_1); \quad m+n \neq 0$$

9.12 વિભાજન સૂત્રના ઉપયોગો

(i) મધ્યબિંદુના યામ : જો P એ AB નું મધ્યબિંદુ હોય, તો AP = PB અને A-P-B.

$$\therefore \quad \frac{AP}{PB} = \lambda = 1$$

∴ P નો સ્થાનસદિશ r નીચે મુજબ મળે :

જો $\overline{r}_1=(x_1,\ y_1,\ z_1)$ અને $\overline{r}_2=(x_2,\ y_2,\ z_2)$ અને $\overline{r}=(x,\ y,\ z)$ હોય, તો વિભાજન સૂત્રની મદદથી

$$(x, y, z) = \frac{1}{2} ((x_1, y_1, z_1) + (x_2, y_2, z_2))$$

$$= \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$$
(\lambda = 1)

$$Arr$$
 ના મધ્યબિંદુનો સ્થાનસદિશ $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$ થી મળે.

(ii) ત્રિકોણનું મધ્યકેન્દ્ર : ધારો કે \mathbb{R}^3 માં ΔABC આપેલ છે. ધારો કે, A, B અને C ના સ્થાનસદિશો અનુક્રમે

$$\overline{r}_1 = (x_1, y_1, z_1), \ \overline{r}_2 = (x_2, y_2, z_2) \ \text{and} \ \overline{r}_3 = (x_3, y_3, z_3) \ \text{a.s.}$$

આકૃત્તિ 9.11 માં દર્શાવ્યા પ્રમાણે, \overline{BC} નું મધ્યબિંદુ D છે.

આથી તેનો સ્થાનસદિશ $\frac{\overline{r_2}+\overline{r_3}}{2}$ થશે.

 \overline{AD} નું A તરફથી 2:1 ગુણોત્તરમાં વિભાજન કરતું બિંદુ G હોય તો G નો સ્થાનસદિશ,

$$\frac{1}{2+1}\left(2\cdot\frac{1}{2}(\vec{r}_2+\vec{r}_3)+\vec{r}_1\right)=\frac{1}{3}(\vec{r}_1+\vec{r}_2+\vec{r}_3)$$
 થાય.

ઉપરોક્ત પરિણામની સંમિતતા ઉપરથી જોઈ શકાય છે કે બિંદુ G ત્રણેય મધ્યગાઓ ઉપર હોય. આમ, કોઈ પણ ત્રિકોણની ત્રણેય મધ્યગાઓ સંગામી હોય છે અને તેઓ પરસ્પર G માં છેદે છે.

G એ \triangle ABC નું મધ્યકેન્દ્ર કહેવાય છે અને તેનો સ્થાનસદિશ $\frac{1}{3}(\bar{r}_1 + \bar{r}_2 + \bar{r}_3)$ છે.

આથી
$$G$$
 ના યામ $\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}\right)$ છે.

ઉદાહરણ 14 : બિંદુઓ A(2, 3, -1) અને B(1, -3, 5) ને જોડતા \overline{AB} નું A તરફથી (i) 3 : 5 ગુણોત્તરમાં અંતઃવિભાજન કરતાં (ii) 3 : 5 ગુણોત્તરમાં બહિર્વિભાજન કરતાં બિંદુઓના યામ શોધો.

ઉદ્દેવ : (i) ધારો કે, P(x, y, z) એ \overline{AB} નું A તરફથી 3:5 ગુણોત્તરમાં અંતઃવિભાજન કરે છે, આમ m=3, n=5. હવે, A તરફથી વિભાજન સૂત્ર,

$$x = \frac{3(1) + 5(2)}{3 + 5} = \frac{3 + 10}{8} = \frac{13}{8}$$
$$y = \frac{3(-3) + 5(3)}{3 + 5} = \frac{-9 + 15}{8} = \frac{6}{8} = \frac{3}{4}$$

$$z = \frac{3(5) + 5(-1)}{3 + 5} = \frac{15 - 5}{8} = \frac{10}{8} = \frac{5}{4}$$

આમ, બિંદુ $\left(\frac{13}{8}, \frac{3}{4}, \frac{5}{4}\right)$ એ \overline{AB} નું A તરફથી 3:5 ગુણોત્તરમાં અંતઃવિભાજન કરે છે.

(ii) અહીં બહિર્વિભાજન હોવાથી,

$$m = -3, n = 5$$

$$x = \frac{-3(1) + 5(2)}{-3 + 5} = \frac{-3 + 10}{2} = \frac{7}{2}$$

$$y = \frac{-3(-3) + 5(3)}{-3 + 5} = \frac{9 + 15}{2} = 12$$

$$z = \frac{-3(5) + 5(-1)}{-3 + 5} = \frac{-15 - 5}{2} = -10$$

આમ, $\overline{\mathrm{AB}}$ નું A તરફથી 3:5 ગુશોત્તરમાં બહિર્વિભાજન કરતાં બિંદુના યામ $\left(\frac{7}{2},12,-10\right)$ છે.

ઉદાહરણ 15 : વિભાજન સૂત્રનો ઉપયોગ કરી બિંદુઓ (1, -3, 3), (3, 7, 1), (1, 1, 1) સમરેખ છે કે નહિ તે ચકાસો. ઉકેલ : જો બિંદુઓ A(1, -3, 3), B(3, 7, 1) અને C(1, 1, 1) સમરેખ બિંદુઓ હોય, તો તે પૈકી કોઈ એક બિંદુ બાકીના બે બિંદુઓને જોડતા રેખાખંડનું કોઈક ગુણોત્તર k:1 માં વિભાજન કરે. ધારો કે B એ \overline{AC} નું કોઈક ગુણોત્તર k માં અંતઃવિભાજન કે બહિવિભાજન કરે છે.

$$\therefore 3 = \frac{k(1)+1}{k+1} = \frac{k+1}{k+1} = 1$$

જે શક્ય નથી. આથી બિંદુઓ સમરેખ નથી.

ઉદાહરણ 16 : સાબિત કરો કે (-1, 6, 6), (-4, 9, 6) અને (0, 7, 10) શિરોબિંદુઓ વાળો ત્રિકોશ કાટકોશ ત્રિકોશ છે. વધુમાં ચકાસો કે કર્શનું મધ્યબિંદુ તમામ શિરોબિંદુઓથી સમાન અંતરે આવેલું છે.

ઉકેલ : ધારો કે, A(-1, 6, 6), B(-4, 9, 6) અને C(0, 7, 10).

eq.
$$AB^2 = (-4 + 1)^2 + (9 - 6)^2 + (6 - 6)^2 = 9 + 9 = 18$$

 $BC^2 = (0 + 4)^2 + (7 - 9)^2 + (10 - 6)^2 = 16 + 4 + 16 = 36$
 $AC^2 = (0 + 1)^2 + (7 - 6)^2 + (10 - 6)^2 = 1 + 1 + 16 = 18$

$$\therefore$$
 AB² + AC² = BC²

આમ, $\triangle ABC$ કાટકોણ ત્રિકોણ છે અને \overline{BC} કર્ણ છે.

ધારો કે $\overline{\mathrm{BC}}$ નું મધ્યબિંદુ $\mathrm{M}(x,\ y,\ z)$ છે, તો

$$(x, y, z) = \left(\frac{0-4}{2}, \frac{7+9}{2}, \frac{10+6}{2}\right) = (-2, 8, 8).$$

હવે, M એ \overline{BC} નું મધ્યબિંદુ હોવાથી અને BC = $\sqrt{36}$ = 6 હોવાથી,

$$BM = CM = 3$$

તેમજ, AM =
$$\sqrt{(-2+1)^2 + (8-6)^2 + (8-6)^2} = \sqrt{1+4+4} = 3$$

આમ, AM = BM = CM એટલે કે, M, ΔABC નાં શિરોબિંદુઓથી સમાન અંતરે છે.

પ્રકીર્ણ ઉદાહરણો :

સમતલમાં આપેલ ચાર બિંદુઓ પૈકી કોઈ પણ ત્રણ સમરેખ ન હોય તો તેઓ એક ચતુષ્કોણ (quadrilateral) રચે. અંતર-સૂત્ર અને વિભાજન સૂત્રની મદદથી ચતુષ્કોણનો પ્રકાર નક્કી કરી શકાય. અવકાશના કિસ્સામાં જો આપેલ ચાર બિંદુઓ સમતલીય (coplanar) હોય તો તેઓ ચતુષ્કોણ રચી શકે. આમ, ચતુષ્કોણનો પ્રકાર નક્કી કરતા પહેલા તેઓ સમતલીય હોવાની ખાતરી કરવી પડે. નીચેના ઉદાહરણો આ હકીકત ઉપર આધારિત છે :

ઉદાહરણ 17 : બિંદુઓ A(0, 0, 0), B(1, 0, 0), C(0, 1, 0), D(0, 0, 1) ચતુષ્કોણના શિરોબિંદુઓ છે કે કેમ તે નક્કી કરો. જો તેઓ ચતુષ્કોણ બનાવે તો તેનો પ્રકાર નક્કી કરો.

$$\overrightarrow{BC} = (0, 1, 0), \overrightarrow{BD} = (-1, 0, 1).$$

 \overrightarrow{AC} અને \overrightarrow{BD} ની દિશા ભિન્ન છે. તેથી \overrightarrow{AC} # \overrightarrow{BD} .

હવે આપણે ચકાસીશું કે તે એક બિંદુમાં છેદે છે કે નહિ.

જો તે એક બિંદુમાં છેદે તો શક્ય છે કે છેદબિંદુ A અથવા B અથવા C અથવા D હોય.

$$\overrightarrow{AC} = (0, 1, 0), \overrightarrow{AD} = (0, 0, 1).$$
 (i)

AC અને AD ની દિશા ભિન્ન છે.

∴ A, C, D સમરેખ ન હોઈ શકે.

$$\overrightarrow{BC} = (-1, 1, 0), \overrightarrow{BD} = (-1, 0, 1).$$
 (ii)

∴ B, C અને D સમરેખ ન હોઈ શકે.

તે જ રીતે, (i) અને (ii) પરથી A, B, C અથવા A, B, D સમરેખ નથી.

હવે, ધારો કે \overrightarrow{AB} અને \overrightarrow{CD} A અથવા B અથવા C અથવા D સિવાયના કોઈ બિંદુ P માં છેદે છે.

આમ $P \in \overrightarrow{AC}$ અને $P \in \overrightarrow{BD}$. ધારો કે બિંદુ P, \overrightarrow{AC} નું A તરફથી λ ગુશોત્તરમાં અને તે \overrightarrow{BD} નું B તરફથી μ ગુશોત્તરમાં વિભાજન કરે છે. $(\lambda \in R - \{0, -1\})$, $\mu \in R - \{0, -1\})$. વિભાજન સૂત્ર ઉપરથી,

$$P \in \stackrel{\longleftrightarrow}{AC} \implies x = \frac{\lambda(0) + 0}{\lambda + 1} = 0$$

$$y = \frac{\lambda(1) + 0}{\lambda + 1} = \frac{\lambda}{\lambda + 1}$$

$$z = \frac{\lambda(0) + 0}{\lambda + 1} = 0$$

અને
$$P \in \stackrel{\longleftrightarrow}{BD} \Rightarrow x = \frac{\mu(0)+1}{\mu+1} = \frac{1}{\mu+1}$$

$$y = \frac{\mu(0)+0}{\mu+1} = 0$$

$$z = \frac{\mu(1)+0}{\mu+1} = \frac{\mu}{\mu+1}$$

(iii)

(iv)

આમ, (iii) અને (iv) ઉપરથી $x=0=\frac{1}{\mu+1}$ જે શક્ય નથી આથી \overrightarrow{AC} અને \overrightarrow{BD} એકબીજાને છેદે નહીં. આમ, \overrightarrow{AC} અને \overrightarrow{BD} પરસ્પર સમાંતર નથી કે એકબીજીને છેદતી નથી. આમ, બિંદુઓ A, B, C અને D સમતલીય નથી. આથી તેઓ ચતુષ્કોણના શિરોબિંદુઓ નથી.

નોંધ: અવકાશના ચાર અસમતલીય બિંદુઓ **ચતુષ્કલક** (Tetrahedron) નામની ભૌમિતિક આકૃતિ બનાવે છે. (આકૃતિ 9.12(v)) ચતુષ્કલકને ચાર ત્રિકોણાકાર સપાટીઓ અને છ બાજુઓ હોય છે.

ઉદાહરણ 18 : બિંદુઓ P(1, 1, 1), Q(-2, 4, 1), R(-1, 5, 5) અને S(2, 2, 5)ની સમતલીયતા ચકાસો. જો તેઓ ચતુષ્કોણ રચતા હોય તો તેનો પ્રકાર નક્કી કરો.

ઉકેલ : PR નું મધ્યબિંદુ M(0, 3, 3) છે.

 \overline{QS} નું મધ્યબિંદુ M(0, 3, 3) છે.

 \therefore \overrightarrow{PR} અને \overrightarrow{QS} બિંદુ M માં છેદે છે.

∴ P, Q, R, S સમતલીય છે.

$$\vec{eq}, \quad \vec{pq} = (-2, 4, 1) - (1, 1, 1) = (-3, 3, 0)$$

$$\overrightarrow{OR} = (-1, 5, 5) - (-2, 4, 1) = (1, 1, 4)$$

$$\overrightarrow{SR} = (-1, 5, 5) - (2, 2, 5) = (-3, 3, 0)$$

$$\overrightarrow{\mathbf{R}} = (2, 2, 5) - (1, 1, 1) = (1, 1, 4)$$

હવે, 🙀 અને 就 ની દિશા સમાન છે; અને ℟ અને 🕏 ની દિશા સમાન છે. વધુમાં,

$$PQ = \sqrt{(-3)^2 + (3)^2 + 0} = \sqrt{18} = RS$$

$$QR = \sqrt{1^2 + 1^2 + 4^2} = \sqrt{18} = PS$$

તેમજ ઉપર જણાવ્યા મુજબ વિકર્ણો PR અને OS એકબીજાને દુભાગે છે.

$$PR = \sqrt{(1+1)^2 + (1-5)^2 + (1-5)^2} = \sqrt{4+16+16} = 6$$

QS =
$$\sqrt{(-2-2)^2 + (4-2)^2 + (1-5)^2}$$
 = $\sqrt{16+4+16}$ = 6

આમ, સમાંતરબાજુ ચતુષ્કોણ PQRSની ચારેય બાજુઓની લંબાઈ સરખી છે. તેમજ તે વિકર્ણો એકબીજાને દુભાગે છે તેમજ તેમની લંબાઈ સમાન છે. આમ, \(\sum \text{PQRS}\) ચોરસ છે.

અત્યાર સુધી ત્રણ બિંદુઓની સમરેખતાની ચકાસણી અંતર-સૂત્ર અને વિભાજન સૂત્રથી પણ કરી હતી. જો ત્રણ બિંદુઓ A, B અને C આપેલા હોય, તો તેઓ નીચેનું કોઈ એક સાચું હોય તો જ સમરેખ થાય.

આ ત્રણેય કિસ્સામાં \overrightarrow{AB} અને \overrightarrow{BC} ને સમાન અથવા વિરુદ્ધ દિશાઓ હોય. આથી જો \overrightarrow{AB} અને \overrightarrow{BC} ની દિશાઓ સમાન અથવા વિરુદ્ધ હોય તો જ બિંદુઓ A, B અને C સમરેખ થાય. નીચેના ઉદાહરણો આ હકીકત પર આધારિત છે : 6દાહરણ 19: નીચે આપેલ બિંદુઓના ત્રયની સમરેખતા દિશાની મદદથી ચકાસો :

(2)
$$P(1, -1, 0), Q(-3, 1, 2), R(-1, 0, 1)$$

Geometric (1)
$$\overrightarrow{AB} = (2, 4) - (0, 2) = (2, 2)$$

 $\overrightarrow{BC} = (-2, 0) - (2, 4) = (-4, -4)$

સ્પષ્ટ છે કે,
$$\overrightarrow{BC} = (-2)\overrightarrow{AB}$$

આથી, \overrightarrow{AB} અને \overrightarrow{BC} ની દિશાઓ વિરુદ્ધ છે. આમ, બિંદુઓ A, B અને C સમરેખ છે. $(\overrightarrow{AB} \neq \overrightarrow{BC})$

(2)
$$\overrightarrow{PQ} = (-3, 1, 2) - (1, -1, 0) = (-4, 2, 2)$$

 $\overrightarrow{QR} = (-1, 0, 1) - (-3, 1, 2) = (2, -1, -1)$

અહીં $\overrightarrow{PQ} = (-2)\overrightarrow{OR}$. સદિશ \overrightarrow{PO} તથા \overrightarrow{OR} ની દિશા પરસ્પર વિરુદ્ધ છે. આથી P, Q, R સમરેખ છે.

(3)
$$\overrightarrow{AP} = (5, 2, 2) - (1, 2, 3) = (4, 0, -1)$$

 $\overrightarrow{PS} = (2, 3, 1) - (5, 2, 2) = (-3, 1, -1)$

શક્ય હોય તો ધારો કે, કોઈ શૂન્યેતર $k\in R$ માટે

$$\overrightarrow{AP} = k(\overrightarrow{PS})$$

$$\therefore$$
 (4, 0, -1) = $k(-3, 1, -1)$

$$4 = -3k$$
, $0 = k$, $-1 = -k$

કોઈ પણ $k \in \mathbb{R}$ આ તમામને સંતોષે નહીં. આથી \overrightarrow{AP} તથા \overrightarrow{PS} ની દિશા ભિન્ન છે. આથી A, P અને S અસમરેખ છે.

(4)
$$\overrightarrow{LM} = (1, 0) - (0, 0) = (1, 0)$$

 $\overrightarrow{MN} = (0, 1) - (1, 0) = (-1, 1)$

શક્ય હોય તો ધારો કે $k \in \mathbb{R} - \{0\}$ માટે,

$$\overrightarrow{LM} = k(\overrightarrow{MN})$$

$$\therefore$$
 (1, 0) = $k(-1, 1)$

$$\therefore \quad 1 = -k, \ k = 0$$

જે શક્ય નથી. આથી 就 તથા ዂ ની દિશા ભિન્ન છે. આથી આપેલ બિંદુઓ અસમરેખ છે.

<mark>ઉદાહરણ 20 :</mark> સાબિત કરો કે A(1, 2, 3), B(−1, −2, −1), C(2, 3, 2) તથા D(4, 7, 6) સમાંતરબાજુ ચતુષ્કોણ રચે છે.

ઉકેલ :
$$\overline{AC}$$
 નું મધ્યબિંદુ = $(\frac{3}{2}, \frac{5}{2}, \frac{5}{2})$, \overline{BD} નું મધ્યબિંદુ = $(\frac{3}{2}, \frac{5}{2}, \frac{5}{2})$.

- $ightharpoonup \overline{AC}$ તથા \overline{BD} પરસ્પર દુભાગે છે અને મધ્યબિંદુમાં છેદતી હોવાથી \overrightarrow{AC} તથા \overrightarrow{BD} સમતલીય છે.
- ∴ A, B, C, D સમતલીય ચતુષ્કોણ રચે છે અને તેના વિકર્ણો પરસ્પર દુભાગતા હોવાથી □ ABCD સ.બા.ચ. છે.

બીજી રીત :

$$\overrightarrow{AB} = (-2, -4, -4), \overrightarrow{BC} = (3, 5, 3), \overrightarrow{DC} = (-2, -4, -4)$$

- ∴ AB તથા DC સમદિશ છે.
- ∴ $\overrightarrow{AB} \parallel \overrightarrow{CD}$ અથવા A, B, C, D સમરેખ છે. પરંતુ \overrightarrow{AB} અને \overrightarrow{DC} ની દિશા ભિન્ન છે.
- \therefore C $\not\in$ \overrightarrow{AB}
- $\therefore \overrightarrow{AB} \parallel \overrightarrow{CD}$

તે જ રીતે
$$\overrightarrow{AD} \parallel \overrightarrow{BC}$$
.

 $(\overrightarrow{AD} = (3, 5, 3))$

∴ A, B, C, D સમતલીય છે અને 🗆 ABCD સ.બા.ચ. છે.

$$AB = \sqrt{4+16+16} = 6$$
, $CD = \sqrt{4+16+16} = 6$, $AD = \sqrt{9+25+9} = \sqrt{43} = BC$

∴ સામસામેની બાજુઓ એકરૂપ હોવાથી □ ABCD સ.બા.ચ. છે. □ ABCD સમતલીય હોય તો જ આ નિર્ણય યોગ્ય ઠરે. A, B, C, Dની સમતલીયતા સિદ્ધ કરવી જરૂરી છે. નીચેનું ઉદાહરણ જુઓ :

ઉદાહરણ 21 : સાબિત કરો કે O(0, 0, 0), A(1, 1, 0), B(1, 0, 1), C(0, 1, 1) માટે OA = AB = BC = AC = OB = OC, પરંતુ O, A, B, C દ્વારા સ.બા.ચ. ન બને.

634:
$$\overrightarrow{OA} = (1, 1, 0), \overrightarrow{OB} = (1, 0, 1), \overrightarrow{OC} = (0, 1, 1)$$

 $\overrightarrow{AB} = (0, -1, 1), \overrightarrow{BC} = (-1, 1, 0), \overrightarrow{AC} = (-1, 0, 1)$

$$\therefore$$
 OA = OB = OC = AB = BC = AC = $\sqrt{2}$.

પરંતુ કોઈ પણ બે સદિશની દિશા સમાન કે વિરુદ્ધ નથી.

∴ O, A, B, C દ્વારા સ.બા.ચ. ન બને.

આ બિંદુઓ સમતલીય નથી તે સિદ્ધ કરી શકાય. આ બિંદુઓ

O, A, B, C ચતુષ્કલક (Tetrahedron) બનાવે છે.

આકૃતિ 9.15

स्वाध्याय 9.5

- 1. જો A(1, 3, -2), B(2, 4, -1) તો \overline{AB} નું ત્રિ-વિભાજન કરતાં બિંદુઓના યામ મેળવો.
- 2. વિભાજન સૂત્રનો ઉપયોગ કરી નીચેના બિંદુઓ સમરેખ છે કે નહિ તે ચકાસો :
 - (1) P(1, -1, 1), Q(1, 0, 3), R(2, 0, 0)
- (2) A(5, 6, -1), B(1, -1, 3), C(1, 1, 1)
- (3) L(2, -3, 4), M(-1, 2, 1), $N(-\frac{1}{4}, \frac{3}{4}, \frac{5}{4})$
- (4) O(0, 0, 0), A(1, 1, 1), B(2, 2, 2)
- (5) L(1, 2, 3), M(-1, -2, -3), N(1, -2, 3)

स्वाध्याय 9

1.	બિંદુઓ A(-2, -3, -1), E દર્શાવો. શું તે લંબચોરસ છે		-2) અને D(-7, -6, -	4) સમાંતરબાજુ ચતુષ્કોણ રચે	છે તેમ	
2			2 1) 2113 AADC-1) 214	un -1481 (n)		
2.	આપેલ બિંદુઓ $A(0, 1, 2)$, $B(2, -1, 3)$, $C(1, -3, 1)$ માટે $\triangle ABC$ નો પ્રકાર નક્કી કરો.					
3.	બિંદુઓ (1, 2, 3) અને (3, 2, -1)થી સમાન અંતરે આવેલ બિંદુઓના ગણનું સમીકરણ મેળવો.					
4.	નીચેના ત્રિકોણો માટે મધ્યગ		ધ્યકન્દ્રના યામ મળવા :			
	(1) A(1, 0, 1), B(1, 2,					
	(2) P(1, 2, 3), Q(-1, 1					
	(3) L(-1, -2, -3), M(
5.		જુઓના મધ્યબિંદુઓ F	P(1, 2, -3), Q(3, 0, 0)	, 1) અને R(-1, 1, 4)	છે તો	
	ΔABCનું મધ્યકેન્દ્ર શોધો.					
6.				ોય તો તેમાંનું કોઈ પણ બિંદુ -	બાકીના	
	બેને જોડતા રેખાખંડનું કયા	ગુણોત્તરમાં કોના તરફથી	! વિભાજન <i>કરે</i> છે તે શો ^હ	યો :		
	(1) $A(5, 4, 6), B(1, -1)$, 3), C(4, 3, 2)				
	(2) A(2, 3, 4), B(-4, 1	, -10), C(-1, 2, -3)				
	(3) A(1, 2, 3), B(0, 4,	1), C(-1, -1, -1)				
	(4) $L(3, 2, -4), M(5, 4)$	1, -6), N(9, 8, -10)				
	(5) P(2, 3, 4), Q(3, 4,		_	_		
7.		ાચું બને તે રીતે આપેલ	ા વિકલ્પો (a), (b), (c) :	અથવા (d) માંથી યોગ્ય વિ <i>કલ</i>	૫ પસંદ	
	કરીને <u> </u>	_				
	(1) $(1, -\sqrt{2})$ અને $(2, \sqrt{2})$ સદિશોના સરવાળાનું માન છે.					
	(a) -3	(b) 3	(c) 9	(d) -9		
	(2) બિંદુઓ A(1, 0, 1), B	(2, -1, 3) અને C(3, -	−2, 5) સમરેખ છે તો C ર	બે $\overline{ m AB}$ નું $ m A$ તરફથી ગુ $^{ m p}$	શોત્તરમાં	
	વિભાજન કરે છે.					
	(a) 2:1	(b) $-3:2$	(c) 1:2	(d) -2 : 1		
	(3) જેના શિરોબિંદુઓ P(1,	-2, 1), Q(2, 3, -1)	, R(1, −1, −1) હોય તે	ત્રિકોણનું મધ્યકેન્દ્ર છે.		
	(a) (1, 2, 1)	(b) $\left(\frac{4}{3}, 0, -\frac{1}{3}\right)$	(c) $\left(\frac{3}{2},\frac{1}{2},0\right)$	(d) $\left(-\frac{4}{3}, -\frac{4}{3}, -\frac{1}{3}\right)$		
	(4) જો A તથા B ના સ્થાનસદિશો અનુક્રમે $(1, 1, 0)$ તથા $(0, 1, 1)$ હોય, તો $\overrightarrow{AB} =$					
			(c) $(-1, 0, 1)$			
	(5) (1, 1, 2) તથા (2, 1,	0) ની દિશા છે.				
	(a) સમાન	(b) વિરુદ્ધ	(c) ભિન્ન	(d) અવ્યાખ્યાયિત		
	(6) <2, 2, 2> =	-				
		(b) <1, 1, -1>	(c) <-1, 1, -1>	(d) <0, 0, 0>		
	(7) $\left\langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right\rangle = \dots$					

(b) $\langle \cos\theta \cos\alpha, \cos\theta \sin\alpha, \sin\theta \rangle$

ગણિત-2

(d) <3, 3, -3>

(a) <1, 1, -1>

(c) <5, 5, 5>

(8)	(2, 2, −1) ની દિશામ	ાં એકમ સદિશ છે.			
	(a) $\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right)$	(b) $\left(\frac{-2}{3}, \frac{-2}{3}, \frac{1}{3}\right)$	(c) (2, 2, 1)	(d) $\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$	
(9)	(1, 0, 0) ની દિશામાં	એકમ સદિશ છે.			
	(a) (0, 1, 0)	(b) (0, 0, 1)	(c) (-1, 0, 0)	(d) (1, 0, 0)	
(10)	A(1, 1, 1), B(2, 1 =	, 2), C(x, y, z) થી બ	નતા ∆ABC નું મધ્યકેન્ડ્ર	લ (0, 0, 0) હોય, તો (<i>x</i> ,	y, z)
	(a) (3, 2, 3)	(b) (0, 0, 0)	(c) $(-3, -2, -3)$	(d) $(1, -1, 1)$	
(11)	જો A(1, 1, 2), B(2,	1, 2), C(2, 2, 1) તો A	, B, C છે.		
	(a) ત્રિકોણના શિરોબિંદ્		. ,	(d) અસમતલીય	
(12)	જો A(1, 2, 1), B(2,	3, 2), C(2, 1, 3), D(3	, 2, 4) માટે 귦 તથા 🕻	📆 ની દિશા છે.	
	(a) સમાન	(b) પરસ્પર વિરુદ્ધ	(c) ભિન્ન	(d) અવ્યાખ્યાયિત	
(13)	જો A(1, 2, 1), B(2,	3, 2), C(2, 1, 3), D(3,	, 2, 4) તો		
	(a) $\overrightarrow{AB} \parallel \overrightarrow{CD}$		(b) $\overrightarrow{AB} = \overrightarrow{CD}$		
	(c) $\overrightarrow{AB} \cap \overrightarrow{CD}$ એક	ાકી ગણ છે.	(d) $C \in \stackrel{\longleftrightarrow}{AB}$		
(14)	(0, 0, 0) સદિશ				
	(a) ને દિશા નથી		(b) ને માન નથી		
	(c) (1, 1, 1) ને સમક્	દેશ છે	(d) (−1, −1, −1) - 1	વિરુદ્ધ દિશાનો સદિશ છે.	
(15)	P(2, 3, 1) તથા Q(7,	15, 1) તો =			
	(a) 5		(c) 13	(d) 17	
(16)	(3, 6, 2) ની દિશામાં	4 માનવાળો સદિશ	છે.		
	(a) $\left(\frac{3}{7}, \frac{6}{7}, \frac{2}{7}\right)$	(b) (12, 24, 8)	(c) $\left(\frac{12}{7}, \frac{24}{7}, \frac{8}{7}\right)$	(d) (-12, -24, -8)	
(17)	(2, -2, 1) ની વિરુદ્ધ	દિશામાં એકમ સદિશ	છે.		
	(a) $\left(\frac{-2}{3}, \frac{2}{3}, \frac{-1}{3}\right)$	(b) (-2, 2, -1)	(c) $\left(\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}\right)$	(d) $\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$	
(18)	(cosα, sinα) તથા (c	$\cos(\pi + \alpha)$, $\sin(\pi +$	α)) ($\alpha \in R$) ની દિશા	ઓ	
	(a) સમાન છે	(b) પરસ્પર વિરુદ્ધ છે	(c) ભિન્ન છે	(d) (1, 0) ને સમાન છે	
(19)	જો \overline{x} શૂન્યેતર સદિશ	હોય તથા $k>0, k eq 1$	ા તો $\frac{-k\overline{x}}{ \overline{x} }$		
	(a) \overline{x} ની દિશાનો એક				
	(b) \overline{x} ની દિશાનો k	માનવાળો સદિશ છે.			
	(c) \overline{x} ની વિરુદ્ધ દિશા	નો એકમ સદિશ છે.			
	(d) \overline{x} ની વિરુદ્ધ દિશા	નો k માનવાળો સદિશ ℓ	9 .		
(20)	જો \overline{x} શૂન્યેતર સદિશ	હોય તથા $k < 0, k eq$ -	-1 તો $\frac{k\overline{x}}{ \overline{x} }$		
	(a) \overline{x} ની દિશાનો એક				
	(b) \overline{x} ની વિરુદ્ધ દિશા	નો એકમ સદિશ છે.			
	(c) \overline{x} ની વિરુદ્ધ દિશા	નો $ \mathit{k} $ માનવાળો સદિશ	છે.		
	(d) \bar{x} ની દિશાનો $ k $	ા માનવાળો સદિશ છે.			

ત્રિપરિમાણીય ભૂમિતિ

*

સારાંશ

આ પ્રકરણમાં આપણે નીચેના મુદ્દાઓની ચર્ચા કરી :

- 1. વાસ્તવિક સંખ્યાઓના ક્રમયુક્ત યુગ્મ અને ક્રમયુક્ત ત્રયના ગણ અનુક્રમે \mathbb{R}^2 અને \mathbb{R}^3 ગણ \mathbb{R} ઉપર સદિશ અવકાશ બનાવે છે.
- 2. સદિશ $\overline{x} = (x_1, x_2, x_3)$ નું માન $|\overline{x}| = \sqrt{x_1^2 + x_2^2 + x_3^2}$ છે. જો $\overline{x} \in \mathbb{R}^2$ અને $\overline{x} = (x_1, x_2)$ હોય, તો $|\overline{x}| = \sqrt{x_1^2 + x_2^2}$.
- 3. $|\overline{x}| = 0 \Leftrightarrow \overline{x} = \overline{0}$ $|k\overline{x}| = |k| |\overline{x}|$
- 4. બે શૂન્યેતર સદિશો \overline{x} અને \overline{y} માટે જો $\overline{x}=k\overline{y}$ હોય અને k>0 હોય, તો \overline{x} અને \overline{y} ની દિશા સમાન છે અને જો k<0 હોય, તો તેમની દિશાઓ વિરુદ્ધ છે. આમ ન બને તો \overline{x} , \overline{y} ની દિશા ભિન્ન છે.
- 5. બિંદુઓ A અને B માટે $\overrightarrow{AB} = B$ નો સ્થાનસદિશ -Aનો સ્થાનસદિશ
- 6. બે બિંદુઓ $A(x_1, y_1, z_1)$ અને $B(x_2, y_2, z_2)$ વચ્ચેનું અંતર $AB = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$ છે.
- 7. બિંદુઓ A અને B ના સ્થાનસદિશો અનુક્રમે \bar{r}_1 અને \bar{r}_2 હોય અને બિંદુ P એ \overline{AB} નું A તરફથી λ ગુણોત્તરમાં વિભાજન કરતું હોય તો તેનો સ્થાનસદિશ $\frac{\lambda \, \bar{r}_2 + \bar{r}_1}{\lambda + 1}$ છે.
- 8. $A(x_1,\ y_1,\ z_1),\ B(x_2,\ y_2,\ z_2)$ અને $C(x_3,\ y_3,\ z_3)$ તો ΔABC ના મધ્યકેન્દ્રનો સ્થાનસદિશ $\left(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3},\frac{z_1+z_2+z_3}{3}\right)$ છે.

Bhaskara II

- Solutions of Diophantine equations of the second order, such as $61x^2 + 1 = y^2$. This very equation was posed as a problem in 1657 by the French mathematician Pierre de Fermat, but its solution was unknown in Europe until the time of Euler in the 18th century.
- Solved quadratic equations with more than one unknown, and found negative and irrational solutions.
- Preliminary concept of infinitesimal calculus, along with notable contributions towards integral calculus.
- Conceived differential calculus, after discovering the derivative and differential coefficient.
- Stated Rolle's theorem, a special case of one of the most important theorems in analysis, the mean value theorem. Traces of the general mean value theorem are also found in his works.
- Calculated the derivatives of trigonometric functions and formulae.
- In Siddhanta Shiromani, Bhaskara developed spherical trigonometry along with a number of other trigonometric results.

Bhaskara II gave the formula :
$$\sqrt{a \pm \sqrt{b}} = \sqrt{\frac{a + \sqrt{a^2 - b}}{2}} \pm \sqrt{\frac{a - \sqrt{a^2 - b}}{2}}$$

Bhaskaracharya studied Pell's equation $px^2 + 1 = y^2$ for p = 8, 11, 32, 61 and 67. When p = 61, he found the solutions x = 226153980, y = 1776319049. When p = 67 he found the solutions x = 5967, y = 48842. He studied many Diophantine problems.

The topics covered in Lilavati thirteen chapters of the book are: definitions; arithmetical terms; interest; arithmetical and geometrical progressions; plane geometry; solid geometry; the shadow of the gnomon; the kuttaka; combinations.