GIS Extensions for Dremio - SQL Functions Reference

Brian K. Holman

Abstract

Complete Reference to the 72 GIS-related functions in the GIS Extensions for Dremio implementation including syntax, return type, and examples.

Contents

IS Extensions for Dremio - SQL Function Reference	13
Author	13
Legal Disclaimer	13
Third-Party Libraries	13
(1) H3_AsText	15
Definition	15
Syntax	
Return Type	15
Examples	15
(2) H3_Boundary	
Definition	
Syntax	
Return Type	16
Examples	16
(3) H3_Center	
Definition	16
Syntax	16
Return Type	
Examples	16
(4) H3_Compact	17
Definition	
Syntax	
Return Type	17

Examples	
(5) H3_Distance	
Definition	 17
Syntax	 17
Return Type	 17
Examples	 17
(6) H3_FromGeomPoint	 18
Definition	
Syntax	 18
Return Type	 18
Examples	 18
(7) H3_FromLongLat	 18
Definition	 18
Syntax	 18
Return Type	 19
Examples	 19
(8) H3_FromText	 19
Definition	 19
Syntax	 19
Return Type	 19
Examples	 19
(9) H3_HexRing	 19
Definition	 19
Syntax	 20
Return Type	 20
Examples	
(10) H3_IsPentagon	
Definition	 20
Syntax	 20
Return Type	 20
Examples	 20
(11) H3_IsValid	 20
Definition	 21
Syntax	 21
Return Type	 21
Examples	 21
(12) H3_KRing	 21
Definition	 21
Syntax	 21

	eturn Type . .	
	xamples	. 21
(13) F	3_KRing_Distances	. 22
	efinition	. 22
	yntax	. 22
	eturn Type 22
	xamples	
	3_Polyfill	
	efinition	
	yntax	
	, eturn Type 	
	xamples	
	3_Resolution	
	 efinition	
	yntax	. 23
	, eturn Type	
	xamples	
	3 ToChildren	
	 efinition	
	yntax	
	, eturn Type	
	xamples	
	3_ToParent	
	 efinition	
	yntax	
	, eturn Type	
	xamples	
	3_Uncompact	
	 efinition	
	yntax	
	, eturn Type	
	xamples	
	3_W ^r ap	
	 efinition	
	yntax	
	, eturn Type	
	xamples	
	AggrConvexHull	
	efinition	

	Syntax	
	Return Type	
	Examples	
(21)	ST_AggrIntersection	 26
	Definition	 26
	Syntax	 26
	Return Type	 27
	Examples	 27
(22)	ST_AggrUnion	 27
	Definition	 27
	Syntax	 27
	Return Type	 27
	Examples	 27
(23)	ST_Area	 28
	Definition	 28
	Syntax	 28
	Return Type	 28
	Examples	 28
(24)	ST_AsGeoJSON	 28
	Definition	 28
	Syntax	 29
	Return Type	 29
	Examples	 29
(25)	ST_AsText	 29
	Definition	 29
	Syntax	 29
	Return Type	
	Examples	
	ST_Boundary	
	Definition	
	Syntax	 30
	Return Type	 30
	Examples	 30
(27)	ST_Buffer	 30
	Definition	 30
	Syntax	 30
	Return Type	 30
	Examples	 30
(28)	ST_Centroid	 31

	Definition		
	Syntax	3	1
	Return Type	3	1
	Examples	3	1
(29)	ST_Contains	3	1
	Definition	3	32
	Syntax	3	32
	Return Type		
	Examples	3	32
(30)) ST_ConvexHull		
	Definition	3	32
	Syntax	3	32
	Return Type	3	32
	Examples	3	32
(31)	ST_CoordDim	3	3
	Definition	3	3
	Syntax	3	3
	Return Type	3	3
	Examples		
(32)	ST_Crosses	3	3
	Definition	3	3
	Syntax	3	3
	Return Type		
	Examples	3	4
(33)	ST_Densify	3	4
	Definition	3	4
	Syntax	3	4
	Return Type	3	4
	Examples	3	4
(34)	ST_Difference	3	5
	Definition	3	5
	Syntax	3	5
	Return Type	3	5
	Examples	3	5
(35)	ST_Dimension	3	5
	Definition	3	5
	Syntax	3	5
	Return Type		
	Examples	3	6

(36)	ST_Disjoint	
	Definition	36
	Syntax	36
	Return Type	36
	Examples	36
(37)	ST_Distance	36
	Definition	36
	Syntax	37
	Return Type	37
	Examples	37
(38)	ST_DWithin	37
	Definition	37
	Syntax	37
	Return Type	37
	Examples	37
(39)	ST_EndPoint	38
	Definition	38
	Syntax	38
	Return Type	38
	Examples	38
(40)	ST_Envelope	38
	Definition	38
	Syntax	38
	Return Type	38
	Examples	38
(41)	ST_EnvIntersects	39
	Definition	
	Syntax	
	Return Type	
	Examples	39
(42)	ST_Equals	39
	Definition	39
	Syntax	40
	Return Type	40
	Examples	40
(43)	ST_ExteriorRing	40
	Definition	
	Syntax	40
	Return Type	40

	Examples	
(44)	ST_Generalize	41
	Definition	41
	Syntax	41
	Return Type	41
	Examples	41
(45)	ST_GeodesicAreaWGS84	41
	Definition	41
	Syntax	42
	Return Type	42
	Examples	
(46)	ST_GeodesicLengthWGS84	42
	Definition	42
	Syntax	42
	Return Type	
	Examples	
	ST_GeometryN	
	Definition	
	Syntax	
	Return Type	
	Examples	
	ST_GeometryType	
	Definition	
	Syntax	
	Return Type	
	Examples	
	ST_GeomFromEWKB	
	Definition	
	Syntax	
	Return Type	
	Examples	
` '	ST_GeomFromGeoJSON	
	Definition	
	Syntax	
	Return Type	
	Examples	
	ST_GeomFromText	
	Definition	
	Syntax	46

	Return Type	
(52)	ST_GeomFromText	46
	Definition	46
	Syntax	46
	Return Type	46
(53)	ST_GeomFromWKB	46
	Definition	
	Syntax	46
	Return Type	45
(54)	ST_GeomFromWKB	45
	Definition	45
	Syntax	45
	Return Type	
(55)	ST_GeoSize	45
	Definition	45
	Syntax	
	Return Type	
(56)	ST_InteriorRingN	48
	Definition	48
	Syntax	48
	Return Type	
	Examples	
	ST_Intersection	
	Definition	
	Syntax	
	Return Type	
	Examples	
	ST_Intersects	
	Definition	
	Syntax	
	Return Type	
	Examples	
. ,	ST_Is3D	
	Definition	
	Syntax	
	Return Type	
	Examples	
	ST_IsClosed	
	Definition	50

	Syntax	
	Return Type	50
	Examples	
(61)	ST_IsEmpty	51
	Definition	51
	Syntax	51
	Return Type	51
	Examples	
(62)	ST_IsMeasured	
	Definition	
	Syntax	
	Return Type	
	Examples	
(63)	ST_IsRing	
	Definition	
	Syntax	
	Return Type	
	Examples	
(64)	ST_IsSimple	
	Definition	
	Syntax	
	Return Type	
	Examples	
(65)	ST_JSONPath	
	Definition	
	Syntax	
	Return Type	
	Examples	
(66)	ST_Length	
	Definition	
	Syntax	
	Return Type	
	Examples	
(67)	ST_M	
	Definition	
	Syntax	
	Return Type	
,	Examples	
(68)	ST_MaxM	56

	Definition	
	Syntax	56
	Return Type	56
	Examples	56
(69)	· ST_MaxX	56
	Definition	56
	Syntax	
	Return Type	
	Examples	
(70)	ST MaxY	
,	 Definition	
	Syntax	
	Return Type	
	Examples	
(71)	ST MaxZ	
(/	Definition	
	Syntax	
	Return Type	
	Examples	
(72)	ST MinM	
(, _)	Definition	
	Syntax	
	Return Type	
	Examples	
(73)	ST_MinX	
(70)	Definition	
	Syntax	
	Return Type	
	Examples	
(74)	ST MinY	
(7-7)	Definition	
	Syntax	
	Return Type	
	Examples	
(75)	ST_MinZ	
(73)	Definition	
	Syntax	
	Return Type	
	Examples	
	<u> </u>	00

(76)	ST_NumGeometries	
	Definition	
	Syntax	61
	Return Type	61
	Examples	61
(77)	ST_NumInteriorRing	61
	Definition	61
	Syntax	61
	Return Type	61
	Examples	61
(78)	ST_NumPoints	62
	Definition	62
	Syntax	62
	Return Type	62
	Examples	62
(79)	ST_Overlaps	62
	Definition	62
	Syntax	63
	Return Type	63
	Examples	63
(80)	ST_Point	63
	Definition	63
	Syntax	63
	Return Type	63
(81)	ST_PointN	63
	Definition	63
	Syntax	64
	Return Type	64
	Examples	64
(82)	ST_PointZ	64
	Definition	64
	Syntax	64
	Return Type	64
(83)	ST_Relate	64
	Definition	64
	Syntax	65
	Return Type	65
	Examples	65
(84)	ST_SetSRID	65

	Definition	65
	Syntax	65
	Return Type	65
(85)	ST_Simplify	66
	Definition	66
	Syntax	66
	Return Type	66
(86)	ST_StartPoint	66
` /	Definition	
	Syntax	
	Return Type	
	Examples	
(87)	ST_SymmetricDiff	
. ,	Definition	
	Syntax	
	Return Type	
	Examples	
(88)	ST_Touches	
` /	Definition	
	Syntax	68
	Return Type	
	Examples	
(89)	ST Transform	
` /	Definition	
	Syntax	
	Return Type	
	Examples	
(90)	ST_Union	
. ,	Definition	
	Syntax	
	Return Type	
	Examples	
(91)	ST_Union	
` /	Definition	
	Syntax	
	Return Type	
	Examples	
(92)	ST_Within	
. /	Definition	

Syntax	7	0
Return Type	7	0'
Examples	7	0'
(93) ST_X	7	1
Definition	7	1
Syntax	7	1
Return Type	7	1
Examples	7	1
(94) ST_Y	7	1
Definition	7	1
Syntax	7	1
Return Type	7	2
Examples	7	2
(95) ST_Z	7	2
Definition	7	2
Syntax	7	2
Return Type	7	2
Examples	7	2

GIS Extensions for Dremio - SQL Function Reference

Author

Brian Holman

Legal Disclaimer

This independent project is not affiliated with, sponsored, or endorsed by Dremio Corporation. Dremio is a registered trademark of Dremio Corporation and they retain all trademark and other intellectual property rights. "Dremio" is used here by reference to integrating with their published User-Defined Functions Specification for advanced users to develop their own custom functions for use in SQL queries.

Third-Party Libraries

The **GIS Extensions** allow Dremio to perform standard GIS functions within Dremio SQL with 72 industry-standard GIS functions. These extensions use the *Esri Java Geometry Library* for the underlying implementation of the core geometry functions. The author made heavy use of Esri's *Spatial Framework for Hadoop* as a reference for a similar implementation that also relies on the same library.

Figure 1: DAC with GIS extensions

There were two significant gaps in the Geometry Library supplied by Esri that limited transforming geometries from EPSG: 4326 to other coordinate systems and performing geodesic rather than 2D area and length calculations. Geodesic area function helpers backing the ST_GeodesicAreaWGS84 function are copied almost exactly from the *Trino Geospatial Library* as found in our FunctionHelpers.stSphericalArea() and Function-Helpers.computeSphericalExcess(). Conversion to other coordinate systems in the ST_Transform function leverages the Proj4J Library. All of the referenced works are also published under the *Apache 2.0 License*.

(1) H3_AsText

Definition

Returns a Hex representation of the H3 value as a string.

Syntax

H3_AsText(bigint h3Value)

Return Type

string

Examples

Query	Result
<pre>SELECT H3_AsText(H3_FromGeomPoint(ST_Point(40.4168, -3.7038), 4))</pre>	'847b59dffffffff'

(2) H3_Boundary

Definition

Returns a polygon geography representing the H3 cell.

Syntax

H3_Boundary(bigint h3Value)

binary

Examples

Query	Result
SELECT ST_AsText(H3_Boundary(H3_FromLongLat(40.4168, -3.7038, 15)))	'POLYGON ((-3.703802360352346 40.41680913267208, -3.7038075007518416 40.41680558484906, -3.703806130063667 40.41680018598506, -3.7037996189769617 40.41679833494421, -3.7037944785779335 40.41680188276699, -3.7037958492651386 40.416807281630845, -3.703802360352346 40.41680913267208))'

(3) H3_Center

Definition

Returns the center of the H3 cell as a point. It will throw an error if the h3Value is not valid as an H3 Value.

Syntax

H3_Center(bigint h3Value)

Return Type

binary

Query	Result
SELECT	'POINT (40.305476423174326 -3.743203325561687)'
<pre>ST_AsText(H3_Center(H3_FromText('847b59dffffffff')))</pre>	

(4) H3_Compact

Definition

Returns an array with the indexes of a set of hexagons across multiple resolutions that represent the same area as the input set of hexagons.

Syntax

H3_Compact(bigint h3Value)

Return Type

bigint[]

Examples

Query	Result	
SELECT	[596645165859340300]	
H3_Compact(H3_Uncompact(H3_Wrap(H3_FromText('847b59dffffffff')),5))		

(5) H3_Distance

Definition

Returns the grid distance between two hexagon indexes. This function may fail to find the distance between two indexes if they are very far apart or on opposite sides of a pentagon.

Syntax

H3_Distance(bigint h3Value1, bigint h3Value2)

Return Type

numeric

Query	Result
SELECT H3_Distance(H3_FromText('847b591ffffffff'), H3_FromText('847b59bffffffff'))	1

(6) H3_FromGeomPoint

Definition

Returns the H3 cell index that the point belongs to in the required *resolution*. It will return **null** for non-point geometry and throw an error for resolution outside the valid range [0,15].

Syntax

H3_FromGeomPoint(binary pointGeom, number resolution)

Return Type

bigint

Examples

Query	Result
SELECT H3_AsText(H3_FromGeomPoint(ST_Point(40.4168, -3.7038), 4))	'847b59dffffffff'

(7) H3_FromLongLat

Definition

Returns the H3 cell index specified by lon and lat at the specified resolution. It will throw an error for resolution outside the valid range [0,15].

Syntax

H3_FromLongLat(number lon, number lat, number resolution)

bigint

Examples

Query	Result
SELECT H3_AsText(H3_FromLongLat(40.4168, -3.7038, 4))	'84390cbffffffff'

(8) H3_FromText

Definition

Converts from String representation of H3 cell value to the bigint representation. It will throw an error if the hex representation is not valid as an H3 Value.

Syntax

H3_FromText(string h3Text)

Return Type

bigint

Examples

Query	Result
SELECT	'POINT (40.305476423174326 -3.743203325561687)'
<pre>ST_AsText(H3_Center(H3_FromText('847b59dfffffffff')))</pre>	

(9) H3_HexRing

Definition

Returns all cell indexes in a hollow hexagonal ring centered at the origin in no particular order. Unlike H3_Kring, this function will throw an exception if there is a pentagon anywhere in the ring.

Syntax

H3_HexRing(bigint h3Origin, int ringSize)

Return Type

bigint[]

Examples

Query	Result
SELECT H3_Hexring(H3_FromText('837b59fffffffff'), 1)	[592141849699811300,592141506102427600,592141712260857900,5921248

(10) H3_IsPentagon

Definition

Returns true if given H3 index is a pentagon. Returns false otherwise, even on invalid input.

Syntax

H3_IsPentagon(bigint h3Value)

Return Type

boolean

Examples

Query	Result
SELECT H3_IsPentagon(H3_FromText('837b59fffffffff')) SELECT H3_IsPentagon(H3_FromText('8075ffffffffff'))	false true

(11) H3_IsValid

Definition

Returns *true* when the given index is valid, *false* otherwise.

Syntax

H3_IsValid(bigint h3Value)

Return Type

boolean

Examples

Query	Result
SELECT H3_IsValid(8675309)	false
<pre>SELECT H3_IsValid(H3_FromText('837b59fffffffff'))</pre>	true

(12) H3_KRing

Definition

Returns all cell indexes in a filled hexagonal k-ring centered at the origin in no particular order.

Syntax

H3_KRing(bigint h3Origin, int ringSize)

Return Type

bigint[]

Query	Result
SELECT H3_KRing(H3_FromText('837b59fffffffff'), 1)	[592141574821904400,592141506102427600,592141712260857900,59212487

(13) H3_KRing_Distances

Definition

Returns all cell indexes and their distances in a filled hexagonal k-ring centered at the origin in no particular order.

Syntax

H3_KRing_Distances(bigint h3Origin, int ringSize)

Return Type

struct{index, distance}

Examples

Query	Result
SELECT H3_KRingDistances(H3_FromText('837b59fffffffff'), 1)	[{"index":592141574821904383,"distance":0},{"index":5921415061024

(14) H3_Polyfill

Definition

Returns an array with all the H3 cell indexes for the given polygon or multipolygon including automatically handling the inner holes.

Syntax

H3_Polyfillbinary geometry, number resolution

Return Type

bigint[]

Examples

Query	Result
SELECT H3_Polyfill(ST_GeomFromText('POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))',false), 1)	[582059465512058900,582072659651592200,582068261605081100,58208145

(15) H3_Resolution

Definition

Returns the H3 cell resolution as an integer. It will throw an error if the h3Value is not valid as an H3 Value.

Syntax

H3_Resolution(bigint h3Value)

Return Type

integer

Examples

Query	Result
SELECT H3_Resolution(H3_FromText('847b59dffffffff'))	4

(16) H3_ToChildren

Definition

Returns an array with the indexes of the children/descendents of the given hexagon at the given resolution.

Syntax

H3_ToChildren(bigint h3Value, number childResolution)

bigint[]

Examples

Query	Result
WITH H3Children AS (SELECT FLATTEN(H3_ToChildren(H3_FromText('837b59fffffffff'), 4)) AS H3Values) SELECT H3_AsText(H3Values) FROM H3Children	'847b591ffffffff' '847b593fffffffff' '847b595fffffffff' '847b597ffffffff' '847b599ffffffff' '847b59dffffffff' '847b59dffffffff

(17) H3_ToParent

Definition

Returns the H3 cell index of the parent of the given hexagon at the given resolution.

Syntax

H3_ToParent(bigint h3Value, number resolution)

Return Type

bigint

Examples

Query	Result
SELECT H3_AsText(H3_ToParent(H3_FromText('847b59dffffffff'),	'837b59fffffffff'
3))	

(18) H3_Uncompact

Definition

Returns an array with the indexes of a set of hexagons of the same *resolution* that represent the same area as the compacted input hexagons.

Syntax

H3_Uncompact(bigint h3Value, number resolution)

Return Type

bigint[]

Examples

Query	Result
SELECT	[601148757970518000,601148759044259800,601148760118001700,60114876
<pre>H3_Uncompact(H3_Wrap(H3_FromText('847b59dffffffff')),5)</pre>	

(19) H3_Wrap

Definition

Takes a single H3 value and wraps it in a list

Syntax

H3_Wrap(bigint h3Value)

Return Type

bigint[]

Query	Result
SELECT H3_Wrap(H3_FromText('847b59dffffffff'))[0]	596645165859340287

(20) ST_AggrConvexHull

Definition

Creates a single geometry that is a convex hull of a geometry that resulted from a union of all aggregate input geometries.

Syntax

ST_AggrConvexHull(binary geometry)

Return Type

binary

Examples

Query	Result
WITH GEOMLIST AS (SELECT ST_GeomFromText('polygon ((40 40, 40 60, 60 60, 60 40, 40 40))', true) AS GEOM1, ST_GeomFromText('polygon ((20 30, 30 30, 30 40, 20 40, 20 30))', true) AS GEOM2) SELECT ST_ASText(ST_AggrConvexHull(GEOM)) FROM GEOMLIST UNPIVOT ("GEOM" for "COL" in (GEOM1, GEOM2))	'POLYGON ((20 30, 30 30, 60 40, 60 60, 40 60, 20 40, 20 30))'

(21) ST_AggrIntersection

Definition

Returns a single geometry that is an intersection of all aggregate input geometries.

Syntax

ST_AggrIntersection(binary geometry)

binary

Examples

Query	Result
WITH GEOMLIST AS (SELECT ST_GeomFromText('polygon ((5 5, 12 5, 12 10, 5 10, 5 5))', true) AS GEOM1, ST_GeomFromText('polygon ((10 8, 14 8, 14 15, 10 15, 10 8))', true) AS GEOM2, ST_GeomFromText('polygon ((6 8, 20 8, 20 20, 6 20, 6 8))', true) AS GEOM3) SELECT ST_ASText(ST_AggrIntersection(GEOM)) FROM GEOMLIST UNPIVOT ("GEOM" for "COL" in (GEOM1, GEOM2, GEOM3))	'POLYGON ((10 8, 12 8, 12 10, 10 10, 10 8))'

(22) ST_AggrUnion

Definition

Returns a single geometry that is the union of all aggregate input geometries.

Syntax

ST_AggrUnion(binary geometry)

Return Type

binary

Query	Result
WITH GEOMLIST AS (SELECT ST_GeomFromText('polygon ((20 30, 30 30, 30 40, 20 40, 20 30))', true) AS GEOM1, ST_GeomFromText('polygon ((40 40, 40 60, 60 60, 60 40, 40 40))', true) AS GEOM2) SELECT ST_AsText(ST_AggrUnion(GEOM)) FROM GEOMLIST UNPIVOT ("GEOM" for "COL" in (GEOM1, GEOM2))	'MULTIPOLYGON (((20 30, 30 30, 30 40, 20 40, 20 30)), ((40 40, 60 40, 60 60, 40 60, 40 40)))'

(23) ST_Area

Definition

Returns the area of polygon or multipolygon

Syntax

ST_Area(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_Area(ST_GeomFromText('POLYGON ((0 0, 8 0, 0 8, 0 0), (1 1, 1 5, 5 1, 1 1))'))	24.0

(24) ST_AsGeoJSON

Definition

Returns the GeoJSON representation of geometry.

Syntax

ST_AsGeoJSON(binary geometry)

Return Type

string

Examples

Query	Result
SELECT ST_AsGeoJSON(ST_Point(1, 2))	'{"type":"Point","coordinates":[1,2],"crs":{"type":"name","propert

(25) ST_AsText

Definition

Returns the Well-Known Text (WKT) representation of geometry.

Syntax

ST_AsText(binary geometry)

Return Type

string

Examples

Query			Result	
SELECT	<pre>ST_AsText(ST_Point(1,</pre>	2))	'POINT	(1 2) '

(26) ST_Boundary

Definition

Returns the closure of the combinatorial boundary of this Geometry.

Syntax

ST_Boundary(binary geometry)

Return Type

binary

Examples

Query	Result
SELECT	'MULTIPOINT ((0 1), (1 0))'
ST_AsText(ST_Boundary(ST_GeomFromText('LINESTRING (0	
1, 1 0)')))	
SELECT ST_AsText(ST_Boundary(ST_GeomFromText('POLYGON	'MULTILINESTRING ((1 1, 4 1, 1 4, 1 1))'
((1 1, 4 1, 1 4))')))	

(27) ST_Buffer

Definition

Returns geometry object that is the buffer surrounding source *geometry* at specified *distance*.

Syntax

ST_Buffer(binary geometry, number distance)

Return Type

binary

Query	Result
SELECT ST_Buffer(ST_Point(0, 0), 1)	polygon approximating a unit circle

(28) ST_Centroid

Definition

Takes a polygon, multipolygon, or multilinestring and returns the point that is in the center of the geometry's envelope. That means that the centroid point is halfway between the geometry's minimum and maximum x and y extents.

Syntax

ST_Centroid(binary geometry)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_Centroid(ST_GeomFromText('point	'POINT(2 3)'
(2 3)'))) SELECT	'POINT(2 0)'
<pre>ST_AsText(ST_Centroid(ST_GeomFromText('MULTIPOINT ((0 0), (1 1), (1 -1), (6 0))')))</pre>	
SELECT	'POINT(3 0)'
<pre>ST_AsText(ST_Centroid(ST_GeomFromText('linestring (0 0, 6 0)')))</pre>	
SELECT ST_AsText(ST_Centroid(ST_GeomFromText('POLYGON	'POINT(4 4)'
<pre>((0 0, 0 8, 8 8, 8 0, 0 0))'))) SELECT ST_AsText(ST_Centroid(ST_GeomFromText('POLYGON')))</pre>	'POINT(3 2)'
$((1\ 1,\ 5\ 1,\ 3\ 4))')))$	

(29) ST_Contains

Definition

Returns true if geometry1 contains geometry2.

Syntax

ST_Contains(binary geometry1, binary geometry2)

Return Type

boolean

Examples

Query	Result
<pre>SELECT ST_Contains(ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'), ST_Point(2, 3))</pre>	true
SELECT ST_Contains(ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'), ST_Point(8, 8))	false

(30) ST_ConvexHull

Definition

Computes the convex hull of *geometry*. The convex hull is the smallest convex geometry that encloses all geometries in the input. One can think of the convex hull as the geometry obtained by wrapping an rubber band around a set of geometries.

Syntax

ST_ConvexHull(binary geometry)

Return Type

binary

Query	Result
SELECT ST_AsText(ST_ConvexHull(ST_GeomFromText('polygon ((0 0, 8 0, 0 8, 0 0), (1 1, 1 5, 5 1, 1 1))')))	'POLYGON ((0 0, 8 0, 0 8, 0 0))'

(31) ST_CoordDim

Definition

Returns count of coordinate components.

Syntax

ST_CoordDim(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_CoordDim(ST_Point(1.5, 2.5)) SELECT ST_CoordDim(ST_GeomEromText('POINT7 (1.5, 2.5, 3)'))	2
SELECT ST_CoordDim(ST_GeomFromText('POINTZ (1.5 2.5 3)'))	3

(32) ST_Crosses

Definition

Returns true if geometry1 crosses geometry2, otherwise false.

Syntax

ST_Crosses(binary geometry1, binary geometry2)

boolean

Examples

Query	Result
SELECT ST_Crosses(ST_GeomFromText('LINESTRING (0 0, 1 1)'), ST_GeomFromText('LINESTRING (1 0, 0 1))'))	true
<pre>SELECT ST_Crosses(ST_GeomFromText('LINESTRING (2 0, 2 3)'), ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'))</pre>	true
SELECT ST_Crosses(ST_GeomFromText('LINESTRING (0 2, 0 1)'), ST_GeomFromText('LINESTRING (2 0, 1 0)'))	false

(33) ST_Densify

Definition

Densifies a MultiPath (polygons and polylines) geometry by maxLength so that no segments are longer than given threshold value.

Syntax

ST_Densify(binary geometry, number maxLength)

Return Type

binary

Query	Result
SELECT ST_AsText(ST_Densify(ST_GeomFromText('POLYGON ((0 0, 8 0, 0 8, 0 0))'),4))	'POLYGON ((0 0, 4 0, 8 0, 5.333 2.667, 2.667 5.333, 0 8, 0 4, 0 0))'

(34) ST_Difference

Definition

Returns a geometry object that is the difference of the source objects.

Syntax

ST_Difference(binary geometry1, binary geometry2)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_Difference(ST_GeomFromText('MULTIPOINT (1 1, 1.5 1.5, 2 2)'), ST_Point(1.5, 1.5)))	'MULTIPOINT ((1 1), (2 2))'
SELECT ST_AsText(ST_Difference(ST_GeomFromText('POLYGON ((0 0, 0 10, 10 10, 10 0))'), ST_GeomFromText('POLYGON ((0 0, 0 5, 5 5, 5 0))')))	'POLYGON ((5 0, 10 0, 10 10, 0 10, 0 5, 5 5, 5 0))'

(35) ST_Dimension

Definition

Returns spatial dimension of geometry.

Syntax

ST_Dimension(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_Dimension(ST_Point(1.5, 2.5))	0
<pre>SELECT ST_Dimension(ST_GeomFromText('LINESTRING (1.5 2.5, 3.0 2.2)'))</pre>	1
<pre>SELECT ST_Dimension(ST_GeomFromText('POLYGON ((2 0, 2 3, 3 0))'))</pre>	2

(36) ST_Disjoint

Definition

Returns true if the intersection of the two geometries produces an empty set; otherwise, it returns false.

Syntax

ST_Disjoint(binary geometry1, binary geometry2)

Return Type

boolean

Examples

Query	Result
SELECT ST_Disjoint(ST_GeomFromText('LINESTRING (0 0, 0 1)'), ST GeomFromText('LINESTRING (1 1, 1 0)'))	true
<pre>SELECT ST_Disjoint(ST_GeomFromText('LINESTRING (0 0, 1 1)'), ST_GeomFromText('LINESTRING (1 0, 0 1)'))</pre>	false

(37) ST_Distance

Definition

Returns the distance between two geometry objects.

ST_Distance(binary geometry1, binary geometry2)

Return Type

number

Examples

Query		Result
SELECT ST_Distance(ST_Point(0.0,0.0),	ST_Point(3.0,4.0))	5.0

(38) ST_DWithin

Definition

Returns true if the two geometries are within the specified distance of one another; otherwise, it returns false.

Syntax

ST_DWithin(binary geometry1, binary geometry2, number distance)

Return Type

boolean

Query	Result
SELECT ST_DWithin(ST_GeomFromText('POLYGON ((10.02 20.01, 11.92 35.64, 25.02 34.15, 19.15 33.94, 10.02 20.01))'), ST_Point (1,2),100)	true
SELECT ST_DWithin(ST_GeomFromText('POLYGON ((101.02 200.01, 111.92 350.64, 250.02 340.15, 190.15 330.94, 101.02 200.01))'), ST_Point (10.02,20.01), 100)	false

(39) ST_EndPoint

Definition

Returns the last point of a Linestring.

Syntax

ST_EndPoint(binary geometry)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_EndPoint(ST_GeomFromText('LINESTRING (1.5 2.5, 3.0 2.2)')))	'POINT(3.0 2.2)'

(40) ST_Envelope

Definition

Returns the minimum bounding box of the geometry object as a polygon

Syntax

ST_Envelope(binary geometry)

Return Type

binary

Query	Result
SELECT ST_AsText(ST_Envelope(ST_GeomFromText('LINESTRING (0 0, 2 2))')))	'POLYGON ((0 0, 2 0, 2 2, 0 2, 0 0))'
SELECT ST_AsText(ST_Envelope(ST_GeomFromText('POLYGON ((2 0, 2 3, 3 0))')))	'POLYGON ((2 0, 3 0, 3 3, 2 3, 2 0))'

(41) ST_EnvIntersects

Definition

Returns true if the envelopes of *geometry1* and *geometry2* intersect, otherwise returns false.

Syntax

ST_EnvIntersects(binary geometry1, binary geometry2)

Return Type

boolean

Examples

Query	Result
SELECT ST_EnvIntersects(ST_GeomFromText('LINESTRING (0 0, 1 1)'), ST_GeomFromText('LINESTRING (1 3, 2 2)'))	false
SELECT ST_EnvIntersects(ST_GeomFromText('LINESTRING (0 0, 2 2)'), ST_GeomFromText('LINESTRING (1 0, 3 2)'))	true

(42) ST_Equals

Definition

Returns true if the two geometries occupy the same space even if they have a different number of vertices, otherwise it returns false.

ST_Equals(binary geometry1, binary geometry2)

Return Type

boolean

Examples

Query	Result
SELECT ST_Equals(ST_GeomFromText('LINESTRING (0 0, 1 1)'),ST_GeomFromText('LINESTRING (1 1, 0 0)'))	true
SELECT ST_Equals(ST_GeomFromText('LINESTRING (0 0, 1 1)'),ST_GeomFromText('LINESTRING (1 0, 0 1)'))	false
SELECT ST_Equals(ST_GeomFromText('LINESTRING (0 0, 3 3)'),ST_GeomFromText('LINESTRING (3 3, 2 2, 1 1, 0 0)'))	true

(43) ST_ExteriorRing

Definition

Returns the exterior ring of a polygon as a linestring.

Syntax

ST_ExteriorRing(binary geometry)

Return Type

binary

Query	Result
SELECT	'LINESTRING (1 1, 4 1, 1 4, 1 1)'
<pre>ST_AsText(ST_ExteriorRing(ST_GeomFromText('POLYGON</pre>	
((1 1, 1 4, 4 1))')))	
SELECT	'LINESTRING (0 0, 8 0, 0 8, 0 0)'
ST_AsText(ST_ExteriorRing(ST_GeomFromText('POLYGON	
((0 0, 8 0, 0 8, 0 0), (1 1, 1 5, 5 1, 1 1))')))	

(44) ST_Generalize

Definition

Simplifies geometries using the Douglas-Peucker algorithm. *maxDeviation* is the maximum allowed deviation from the generalized geometry to the original geometry. When *removeDegenerateParts* is true, the degenerate parts of the geometry will be removed from the output.

Syntax

ST_Generalize(binary geometry, number maxDeviation, boolean removeDegenerateParts)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_Generalize(ST_GeomFromText('POLYGON ((0 0, 1 1, 2 0, 3 2, 4 1, 5 0, 5 10, 0 10))'), 2, true))	'POLYGON ((0 0, 5 0, 5 10, 0 10, 0 0))'

(45) ST_GeodesicAreaWGS84

Definition

Returns the area in square meters of a geometry on the Earth's surface using spherical model. Requires the geometry to be in the WGS84 spatial reference.

ST_GeodesicAreaWGS84(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_GeodesicAreaWGS84(ST_GeomFromText('POLYGON ((-114.04702599994988 39.90609700007656, -114.0500520000997 37.00019099997149, -109.04517199998776 36.99897700038832, -109.05002599989996 41.000691000389395, -111.04681499981234 40.997875000031286, -111.04671399965133 42.00170200004732, -114.04147700036322 41.99387299963928, -114.04702599994988 39.90609700007656))'))/4047 AS utah_acreage	5.416484897473004E7

(46) ST_GeodesicLengthWGS84

Definition

Returns distance along line on WGS84 spheroid, in meters, for geographic coordinates. Requires the geometry to be in the WGS84 spatial reference.

Syntax

ST_GeodesicLengthWGS84(binary geometry)

Return Type

number

Query	Result
SELECT ST_GeodesicLengthWGS84(ST_GeomFromText('MultiLineStrin	45026.96274781222 g((0.0
80.0, 0.3 80.4))', 4326))	

(47) ST_GeometryN

Definition

Takes a geometry collection and an integer index (1-based index) and returns the nth geometry object in the collection.

Syntax

ST_GeometryN(binary geometry, number index)

Return Type

binary

Examples

Query	Result
SELECT	'POINT (20 20)'
<pre>ST_AsText(ST_GeometryN(ST_GeomFromText('MULTIPOINT</pre>	
(10 40, 40 30, 20 20, 30 10)'), 3))	
SELECT	'LINESTRING (20 20, 7 8)'
ST_AsText(ST_GeometryN(ST_GeomFromText('MULTILINESTRIN	G
((2 4, 10 10), (20 20, 7 8))'), 2))	

(48) ST_GeometryType

Definition

Takes a geometry object and returns its geometry type (for example, Point, Line, Polygon, MultiPoint) as a string.

ST_GeometryType(binary geometry)

Return Type

string

Examples

Query	Result
SELECT ST_GeometryType(ST_Point(1.5, 2.5)) SELECT ST_GeometryType(ST_GeomFromText('LINESTRING (1.5 2.5, 3.0 2.2)'))	'ST_POINT' 'ST_LINESTRING'
<pre>SELECT ST_GeometryType(ST_GeomFromText('POLYGON ((2 0, 2 3, 3 0))'))</pre>	'ST_POLYGON'

(49) ST_GeomFromEWKB

Definition

Converts a Hex encoded binary string from Postgres/PostGIS geometry to native geometry including embedded SRID.

Syntax

ST_GeomFromEWKB(string hexEncodedGeometry)

Return Type

binary

Query	Result
SELECT ST_AsText(ST_GeomFromEWKB(the_geom)) FROM table("postgis".external_query('SELECT ST_GeomFromText(''POINT(-71.064544 42.28787)'',4326) AS the_geom'))	'POINT (-71.064544 42.28787)'

(50) ST_GeomFromGeoJSON

Definition

Constructs a geometry from GeoJSON.

Syntax

ST_GeomFromGeoJSON(string geoJsonString)

Return Type

binary

Examples

Query	Result
<pre>SELECT ST_AsText(ST_GeomFromGeoJSON('{"type":"Point", "coordinates":[1.2, 2.4]}'))</pre>	'POINT (1.2 2.4)'
<pre>SELECT ST_AsText(ST_GeomFromGeoJSON('{"type":"LineString",</pre>	'LINESTRING (1 2, 3 4)'

(51) ST_GeomFromText

Definition

Takes a well-known text representation and returns a geometry object. Set *ignoreErrors* to *true* to ignore bad data or *false* to fail and show the bad WKT value.

Syntax	
ST_GeomFromText(string wktString, boolean ignoreErrors)	
Return Type	
binary	
(52) ST_GeomFromText	
Definition	
Takes a well-known text representation and a spatial reference ID and re to fail and show the bad WKT value.	eturns a geometry object. Set <i>ignoreErrors</i> to <i>true</i> to ignore bad data or <i>false</i>
Syntax	
ST_GeomFromText(string wktString, boolean ignoreErrors, number SRID)	
Return Type	
binary	
(53) ST_GeomFromWKB	
Definition	
Takes a well-known binary (WKB) representation and returns a geometry	object.

ST_GeomFromWKB(binary wkbValue)

Return Type
binary
(54) ST_GeomFromWKB
Definition
Takes a well-known binary (WKB) representation and a spatial reference ID and returns a geometry object.
Syntax
ST_GeomFromWKB(binary wkbValue, number SRID)
Return Type
binary
(55) ST_GeoSize
Definition
Takes a geometry object and returns its size in bytes.
Syntax
ST_GeoSize(binary geometry)
Return Type
number

(56) ST_InteriorRingN

Definition

Returns a LineString which is the nth interior ring of the input Polygon (1-based index)

Syntax

ST_InteriorRingN(binary geometry, number index)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_InteriorRingN(ST_GeomFromText('polygon ((0 0, 8 0, 0 8, 0 0), (1 1, 1 5, 5 1, 1 1))'), 1))	'LINESTRING (1 1, 1 5, 5 1, 1 1)'

(57) ST_Intersection

Definition

Returns a geometry object that is the geometric intersection of the source objects.

Syntax

ST_Intersection(binary geometry1, binary geometry2)

Return Type

binary

Query	Result
SELECT ST_AsText(ST_Intersection(ST_Point(1,1),	'POINT (1 1)'
ST_Point(1,1)))	
SELECT	'MULTILINESTRING ((1 0, 2 0), (0 2, 0 1))'
ST_AsText(ST_Intersection(ST_GeomFromText('LINESTRING(G	
2, 0 0, 2 0)'), ST_GeomFromText('LINESTRING(0 3, 0 1,	
1 0, 3 0)')))	
SELECT	'POLYGON ((2 1, 2.66666666666667 1, 2 3, 2 1))'
ST_AsText(ST_Intersection(ST_GeomFromText('POLYGON	
((2 0, 2 3, 3 0))'), ST_GeomFromText('POLYGON ((1 1, 4	
1, 4 4, 1 4))')))	

(58) ST_Intersects

Definition

Returns true if *geometry1* intersects with *geometry2*, otherwise returns false.

Syntax

ST_Intersects(binary geometry1, binary geometry2)

Return Type

boolean

Query	Result
SELECT ST_Intersects(ST_GeomFromText('LINESTRING (2 0, 2 3)'), ST_GeomFromText('POLYGON ((1 1, 4 1, 4 4, 1 4))'))	true
<pre>SELECT ST_Intersects(ST_GeomFromText('LINESTRING (8 7, 7 8)'), ST_GeomFromText('POLYGON ((1 1, 4 1, 4 4, 1 4))'))</pre>	false

(59) ST_Is3D

Definition

Returns true if the geometry object is three-dimensional including height 'Z', otherwise returns false.

Syntax

ST_Is3D(binary geometry)

Return Type

boolean

Examples

Query	Result
SELECT ST_Is3D(ST_GeomFromText('POLYGON ((1 1, 1 4, 4	false
4, 4 1))')) SELECT ST_Is3D(ST_GeomFromText('LINESTRING (0 0, 3 4, 0 4, 0 0)'))	false
SELECT ST_Is3D(ST_Point(3, 4)) SELECT ST_Is3D(ST_PointZ(3, 4, 2))	false true

(60) ST_IsClosed

Definition

Return true if the linestring or multi-line has start and end points that are coincident.

Syntax

ST_IsClosed(binary geometry)

Return Type

boolean

Examples

Query	Result
	true
4, 0 4, 0 0)')) SELECT ST_IsClosed(ST_GeomFromText('LINESTRING(0 0, 3	false
4)'))	

(61) ST_IsEmpty

Definition

Return true if the geometry object is empty of geometric information.

Syntax

ST_IsEmpty(binary geometry)

Return Type

boolean

Examples

Query	Result
SELECT ST_IsEmpty(ST_Point(1.5, 2.5)) SELECT ST_IsEmpty(ST_GeomFromText('POINT EMPTY'))	false true

(62) ST_IsMeasured

Definition

Returns true if the geometry object is measured including an additional dimension 'M', otherwise returns false.

ST_IsMeasured(binary geometry)

Return Type

boolean

Examples

Query	Result
SELECT ST_IsMeasured(ST_PointZ(3, 4, 2))	false
<pre>SELECT ST_IsMeasured(ST_GeomFromText('POINT M (1 1 80)'))</pre>	true
<pre>SELECT ST_IsMeasured(ST_GeomFromText('POINT ZM (1 1 5 60)'))</pre>	true

(63) ST_IsRing

Definition

Returns true if the geometry is a linestring and the linestring is closed and simple.

Syntax

ST_IsRing(binary geometry)

Return Type

boolean

Query	Result
SELECT ST_IsRing(ST_GeomFromText('LINESTRING (0 0, 3 4, 0 4, 0 0)'))	true

Query	Result
SELECT ST_IsRing(ST_GeomFromText('LINESTRING (0 0, 1 1, 1 2, 2 1, 1 1, 0 0)'))	false
<pre>SELECT ST_IsRing(ST_GeomFromText('LINESTRING (0 0, 3 4)'))</pre>	false

(64) ST_IsSimple

Definition

Returns true if the geometry object is simple as defined by the Open Geospatial Consortium (OGC), otherwise, it returns false

Syntax

ST_IsSimple(binary geometry)

Return Type

boolean

Examples

Query	Result
SELECT ST_IsSimple(ST_Point(1.5, 2.5)) SELECT ST_IsSimple(ST_GeomFromText('LINESTRING (0 0, 1 1, 0 1, 1 0)'))	true false

(65) ST_JSONPath

Definition

Extract a portion of *jsonData* as a string by following the specified path in the JSON Object from *jsonPath*.

Syntax

ST_JSONPath(string jsonPath, string jsonData)

Return Type

string

Examples

Query	Result
SELECT	
ST_JSONPath('/coordinates[Array][0]',ST_AsGeoJSON(S	Γ_Envelope(the_geom)))
FROM utah_county_taxparcels	
SELECT	CT Acces (CON/CT Francisco (the grown)))
<pre>ST_JSONPath('/crs[Object]/properties[Object]/name',S FROM utah_county_taxparcels</pre>	SI_ASGEOJSUN(SI_ENVELOPE(The_geom)))
' Example JSON Path Syntax (similar to XPath for XML):	I
'/data[Array]' '/data[Array][1]/id[String]'	
'/data[Array][1]/likes[Object]'	
'/data[Array][1]/likes[Object]/summary[Object]/total_count[String]'	
'/data[Array][3]'	
'/data[Array][id=131272076894593_1420960724592382]/likes[C	bject]/summary[Object]/total_count'
'/fbids[String]'	
['/quoteSummary[Object]/result[Array][0]/defaultKeyStatistics[Object	t]/enterpriseValue[Object]/fmt[String]^
 '/quoteSummary[Object]/result[Array][0]/defaultKeyStatistics[Objec	t]/forwardPE[Object]/raw[Double]*
	Ij/ioi wardi E[Object]/raw[Double]
'quoteSummary[6]/result[4][0]/defaultKeyStatistics[6]/sharesOutsta	nding[6]/raw[1]'
'quoteSummary[6]/result[Array]'	
'quoteSummary[6]/result[Array][0]'	
['quoteSummary[Object]/result[Array][0]/defaultKeyStatistics[Object	/lastSplitDate[Object]/raw1[Long]'
	1/1 0 1 1 1 10 1 11 11 11 11
['quoteSummary[Object]/result[Array][0]/defaultKeyStatistics[Object	/sharesUutstanding[Ubject]/raw[Integer]''

(66) ST_Length

Definition

Returns the length of a line string or multiline string.

ST_Length(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_Length(ST_GeomFromText('LINESTRING (0 0, 3 4)'))	5.0
<pre>SELECT ST_Length(ST_GeomFromText('MULTILINESTRING ((1 0, 2 0), (0 2, 0 1))'))</pre>	2.0

(67) ST_M

Definition

Takes a Point as an input parameter and returns its measure m-coordinate.

Syntax

ST_M(binary geometry)

Return Type

number

Query		Result
	<pre>ST_M(ST_GeomFromText('POINT M (1 1 80)')) ST_M(ST_GeomFromText('POINT ZM (1 1 5 60)'))</pre>	80.0

(68) ST_MaxM

Definition

Takes a geometry as an input parameter and returns its maximum measure m-coordinate.

Syntax

ST_MaxM(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_MaxM(ST_GeomFromText('LINESTRING M (1.5 2.5	2.0
2, 3.0 2.2 1)')) SELECT ST_MaxM(ST_GeomFromText('POINT M (1.5 2.5 3)'))	3.0

(69) ST_MaxX

Definition

Takes a geometry as an input parameter and returns its maximum x-coordinate.

Syntax

ST_MaxX(binary geometry)

Return Type

number

Query	Result
SELECT ST_MaxX(ST_GeomFromText('LINESTRING M (1.5 2.5 2, 3.0 2.2 1)'))	3.0
SELECT ST_MaxX(ST_GeomFromText('POINT M (1.5 2.5 3)'))	1.5

(70) ST_MaxY

Definition

Takes a geometry as an input parameter and returns its maximum y-coordinate.

Syntax

ST_MaxY(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_MaxY(ST_GeomFromText('LINESTRING M (1.5 2.5 2, 3.0 2.2 1)'))	2.5
SELECT ST_MaxY(ST_GeomFromText('POINT M (1.5 2.5 3)'))	2.5

(71) ST_MaxZ

Definition

Takes a geometry as an input parameter and returns its maximum z-coordinate.

Syntax

ST_MaxZ(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_MaxZ(ST_GeomFromText('LINESTRING ZM (1.5 2.5 2 60, 3.0 2.2 1 80)'))	2.0
SELECT ST_MaxZ(ST_GeomFromText('LINESTRING Z (1.5 2.5 3, 3.0 2.2 4)'))	4.0

(72) ST_MinM

Definition

Takes a geometry as an input parameter and returns its minimum m-coordinate.

Syntax

ST_MinM(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_MinM(ST_GeomFromText('LINESTRING M (1.5 2.5	1.0
2, 3.0 2.2 1)')) SELECT ST_MinM(ST_GeomFromText('POINT M (1.5 2.5 3)'))	3.0

(73) ST_MinX

Definition

Takes a geometry as an input parameter and returns its minimum x-coordinate.

Syntax

ST_MinX(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_MinX(ST_GeomFromText('LINESTRING M (1.25 2.5 2, 3.0 2.2 1)'))	1.25
<pre>SELECT ST_MinX(ST_GeomFromText('POINT M (1.75 2.5 3)'))</pre>	1.75

(74) ST_MinY

Definition

Takes a geometry as an input parameter and returns its minimum y-coordinate.

Syntax

ST_MinY(binary geometry)

Return Type

number

Query	Result
SELECT ST_MinY(ST_GeomFromText('LINESTRING M (1.5 2.5 2, 3.0 2.2 1)'))	2.2
SELECT ST_MinY(ST_GeomFromText('POINT M (1.5 2.25 3)'))	2.25

(75) ST_MinZ

Definition

Takes a geometry as an input parameter and returns its minimum z-coordinate.

Syntax

ST_MinZ(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_MinZ(ST_GeomFromText('LINESTRING ZM (1.5 2.5 2 60, 3.0 2.2 1 80)'))	1.0
<pre>SELECT ST_MinZ(ST_GeomFromText('LINESTRING Z (1.5 2.5 3, 3.0 2.2 4)'))</pre>	3.0

(76) ST_NumGeometries

Definition

Returns the number of geometries in the geometry collection.

ST_NumGeometries(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_NumGeometries(ST_GeomFromText('MULTIPOINT ((10 40), (40 30), (20 20), (30 10))'))	4
<pre>SELECT ST_NumGeometries(ST_GeomFromText('MULTILINESTRING ((2 4, 10 10), (20 20, 7 8))'))</pre>	2

(77) ST_NumInteriorRing

Definition

Returns the number of interior rings in the polygon geometry.

Syntax

ST_NumInteriorRing(binary geometry)

Return Type

number

Query	Result
SELECT ST_NumInteriorRing(ST_GeomFromText('POLYGON ((0 0, 8 0, 0 8, 0 0), (1 1, 1 5, 5 1, 1 1))'))	1

(78) ST_NumPoints

Definition

Returns the number of points (vertices) in the geometry. For polygons, both the starting and ending vertices are counted, even though they occupy the same location.

Syntax

ST_NumPoints(binary geometry)

Return Type

number

Examples

Query	Result
SELECT ST_NumPoints(ST_Point(1.5, 2.5))	1
<pre>SELECT ST_NumPoints(ST_GeomFromText('LINESTRING (1.5 2.5, 3.0 2.2)'))</pre>	2
SELECT ST_NumPoints((ST_GeomFromText('POLYGON ((0 0, 10 0, 0 10, 0 0))')))	4

(79) ST_Overlaps

Definition

Returns true if geometry1 overlaps geometry2.

ST_Overlaps(binary geometry1, binary geometry2)

Return Type

boolean

Examples

Query	Result
SELECT ST_Overlaps(ST_GeomFromText('POLYGON ((2 0, 2 3, 3 0))'), ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'))	true
SELECT ST_Overlaps(ST_GeomFromText('POLYGON ((2 0, 2 1, 3 1))'), ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'))	false

(80) ST_Point

Definition

Returns a 2D point geometry from the provided lon (x) and lat (y) values.

Syntax

ST_Point(number lon, number lat)

Return Type

binary

(81) ST_PointN

Definition

Returns the point that is the nth vertex in an LineString or MultiPoint (1-based index)

ST_PointN(binary geometry, number index)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_PointN(ST_GeomFromText('LINESTRING (1.5 2.5, 3.0 2.2)'), 2))	'POINT (3 2.2)'

(82) ST_PointZ

Definition

Returns a 3D point geometry from the provided lon (x), lat (y), and elev (z) values.

Syntax

ST_PointZnumber lon, number lat, number elev

Return Type

binary

(83) ST_Relate

Definition

Compares the two geometries and returns true if the geometries meet the conditions specified by the DE-9IM pattern matrix string, otherwise, false is returned.

ST_Relate(binary geometry1, binary geometry2, string relation)

Return Type

binary

Examples

Query	Result
<pre>SELECT ST_Relate(ST_GeomFromText('POLYGON ((2 0, 2 1, 3 1))'), ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'), '****T****')</pre>	true
<pre>SELECT ST_Relate(ST_GeomFromText('POLYGON ((2 0, 2 1, 3 1))'), ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'), 'T********')</pre>	false
<pre>SELECT ST_Relate(ST_GeomFromText('LINESTRING (0 0, 3 3)'), ST_GeomFromText('LINESTRING (1 1, 4 4)'), 'T*******')</pre>	true
<pre>SELECT ST_Relate(ST_GeomFromText('LINESTRING (0 0, 3 3)'), ST_GeomFromText('LINESTRING (1 1, 4 4)'), '****T****')</pre>	false

(84) ST_SetSRID

Definition

Sets the Spatial Reference ID of *SRID* of the geometry.

Syntax

ST_SetSRID(binary geometry, number SRID)

Return Type

binary

Query	Result
SELECT ST_AsText(ST_StartPoint(ST_GeomFromText('LINESTRING (1.5 2.5, 3.0 2.2)')))	'POINT(1.5 2.5)'

(87) ST_SymmetricDiff

Definition

Returns a geometry object that is the symmetric difference of the source objects.

Syntax

ST_SymmetricDiff(binary geometry1, binary geometry2)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_SymmetricDiff(ST_GeomFromText('LINESTRING (0 2, 2 2)'), ST_GeomFromText('LINESTRING (1 2, 3 2)'))) SELECT ST_AsText(ST_SymmetricDiff(ST_GeomFromText('POLYGON ((0 0, 2 0, 2 2, 0 2, 0 0))'), ST_GeomFromText('POLYGON ((1 1, 3 1, 3 3, 1 3, 1 1))')))> 'MULTIPOLYGON (((0 0, 2 0, 2 1, 1 1, 1 2, 0 2, 0 0)), ((2 1, 3 1, 3 3, 1 3, 1 2, 2 2, 2 1)))'	'MULTILINESTRING ((0 2, 1 2), (2 2, 3 2))'

(88) ST_Touches

Definition

Returns true if none of the points common to both geometries intersect the interiors of both geometries, otherwise, it returns false. At least one geometry must be a LineString, Polygon, MultiLineString, or MultiPolygon.

Syntax

ST_Touches(binary geometry1, binary geometry2)

Return Type

boolean

Examples

Query	Result
SELECT ST_Touches(ST_Point(1, 2), ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'))	true
<pre>SELECT ST_Touches(ST_Point(8, 8), ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'))</pre>	false

(89) ST_Transform

Definition

Takes the two-dimensional geometry as input and returns values converted from the spatial source reference specified by *sourceSRID* to the one specified by *targetSRID*.

Syntax

ST_Transform(binary geometry, number sourceSRID, number targetSRID)

Return Type

binary

Query	Result
SELECT ST_AsText(ST_Transform(ST_GeomFromText('POLYGON ((-114.04702599994988 39.90609700007656, -114.0500520000997 37.00019099997149, -109.04517199998776 36.99897700038832, -109.05002599989996 41.000691000389395, -111.04681499981234 40.997875000031286, -111.04671399965133 42.00170200004732,	'POLYGON ((-12695656.860801652 4852305.919673687, -12695993.71359747 4439133.410181124, -12138853.020503571 4438964.195256694, -12139393.365302108 5012443.58678148, -12361674.89993964 5012028.231889712, -12361663.65670747 5161234.398812287, -12695039.148993252 5160061.69329091, -12695656.860801652 4852305.919673687))'
-114.04147700036322 41.99387299963928, -114.04702599994988 39.90609700007656))'), 4326, 3857))	120/0000.00001002 4002000.71707000777

(90) ST_Union

Definition

Returns a geometry as the union of the two supplied geometries.

Syntax

ST_Union(binary geometry1, binary geometry2)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_Union(ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'), ST_GeomFromText('POLYGON ((4 1, 4 4, 4 8, 8 1))')))	'POLYGON ((1 1, 4 1, 8 1, 4 8, 4 4, 1 4, 1 1))'

(91) ST_Union

Definition

Returns a geometry as the union of the supplied geometry.

Syntax

ST_Union(binary geometry)

Return Type

binary

Examples

Query	Result
SELECT ST_AsText(ST_Union(ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'), ST_GeomFromText('POLYGON ((4 1, 4 4, 4 8, 8 1))')))	'POLYGON ((1 1, 4 1, 8 1, 4 8, 4 4, 1 4, 1 1))'

(92) ST_Within

Definition

Returns true if geometry1 is completely inside geometry2.

Syntax

ST_Within(binary geometry1, binary geometry2)

Return Type

boolean

Query	Result
SELECT ST_Within(ST_Point(2, 3),	true
ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'))	
<pre>SELECT ST_Within(ST_Point(8, 8),</pre>	false
ST_GeomFromText('POLYGON ((1 1, 1 4, 4 4, 4 1))'))	

(93) ST_X

Definition

Takes a Point as an input parameter and returns its longitude (x) coordinate.

Syntax

ST_X(binary geometry)

Return Type

number

Examples

Query		Result	
SELECT	ST_X(ST_Point(5,	7))	5.0

(94) ST_Y

Definition

Takes a Point as an input parameter and returns its latitude (y) coordinate.

Syntax

ST_Y(binary geometry)

Return Type

number

Examples

Query		
SELECT	<pre>ST_Y(ST_GeomFromText('POINT (5 7)'))</pre>	7.0

(95) ST_Z

Definition

Takes a Point as an input parameter and returns its elevation (z) coordinate.

Syntax

ST_Z(binary geometry)

Return Type

number

Query	Result
SELECT ST_Z(ST_GeomFromText('POINT Z (5 7 9)'))	9.0