

## BIOTECHNOLOGY PROCESS (PRINCIPLE)

- 1. EFB stands for **[Pg-193,E]** 
  - (A) English Federation of Biology
  - (B) European federation of Biology
  - (C) English Federation of Biotechnology
  - (D) European federation of Biotechnology Biosphere.

# PARAGRAPH - 11.1 PRINCIPLES OF BIOTECHNOLOGY

- 2. Two core techniques that enabled birth of modern biotechnology are [Pg-193,E]
  - (A) Physical & biological engineering
  - (B) Bioprocess & genetic engineering
  - (C) Molecular & cellular genetics
  - (D) None of these
- 3. Biotechnology uses techniques to alter chemistry of [Pg- 193,E]
  - (A) Protein & Lipid
  - (B) Protein & RNA
  - (C) Lipid & DNA
  - (D) RNA & DNA
- 4. In chemical engineering processes, it is important to maintain [Pg-194,E]
  - (A) maintain microbe-free environment
  - (B) microbe-full environment
  - (C) sterile environment
  - (D) more than one option
- 5. Unique combinations of genetic setup is naturally provided by **[Pg-194,E]** 
  - (A) Sexual reproduction
  - (B) Asexual reproduction
  - (C) Biotechnology
  - (D) More than one option
- 6. All genetic changes occurring naturally are [Pg-194,M]
  - (A) harmful to organism & its population
  - (B) beneficial for organism & its population
  - (C) not harmful for organism & its population
  - (D) Both A & C
- 7. Genetic information is preserved by

#### [Pg-194,E]

- (A) sexual reproduction
- (B) asexual reproduction
- (C) Both of these
- (D) none of these

- 8. When a piece of DNA is transferred to an alien organism as it is **[Pg-194,M]** 
  - (A) it will multiply itself
  - (B) it will not be able to multiply itself
  - (C) it will be present in progeny cells of organism.
  - (D) Both (A) & (C)
- 9. Chromosome replication is initiated at **[Pg-194,M]** 
  - (A) gateway of replication a specific RNA sequence
  - (B) origin of replication a specific RNA sequence
  - (C) path of replication a specific RNA sequence
  - (D) None of these
- 10. For alien DNA to replicate it needs to be a part of **[Pg-194,H]** 
  - (A) chromosome without origin of replication site
  - (B) mitochondrial DNA with origin of replication site
  - (C) chromosome with origin of replication site
  - (D) cytoplasmic DNA with origin of replication site
- 11. Plasmid is- [Pg-194,E]
  - (A) autonomously replicating, extra chromosomal
  - (B) non- autonomously replicating extra chromosomal
  - (C) autonomously replicating chromosomal
  - (D) non-autonomously replicating extrachromosomal
- 12. Plasmid is [Pg-194,E]
  - (A) Linear RNA
  - (B) Circular RNA
  - (C) Linear DNA
  - (D) Circular DNA
- 13. First recombinant DNA involved native plasmid of **[Pg-194,E]** 
  - (A) Escherichia coli
  - (B) Salmonella typhimurium
  - (C) Streptococcus pneumonia
  - (D) Clostridium butylicom
- 14. First recombinant DNA was made by [Pg194,E]

- (A) Herbert Cohen & Stanley Boyer, 1972
- (B) Stanley Cohen & Herbert Boyer, 1992
- (C) Stanley Cohen & Herbert Boyer, 1972
- (D) Herbert Cohen & Stanley Boyer, 1992
- 15. The recombinant DNA was made

## [Pg-194,195,H]

- (A) before discovery of DNA cutting restriction enzymes
- (B) after discovery of DNA cutting restriction enzymes
- (C) after discovery of DNA cutting Ligases
- (D) before discovery of DNA cutting Ligases
- 16. The plasmid DNA linked with cut piece of DNA acts as [Pg-195,M]
  - (A) host
  - (B) vector
  - (C) medium to transfer the DNA piece
  - (D) more than one option
- 17. Linking of antibiotic resistance gene with plasmid is done using enzyme

### [Pg-195,M]

- (A) Ligase
- (B) Lyase
- (C) Hydrolase
- (D) Nuclease
- 18. The plasmid joined with required DNA of interest is transferred into...... by Boyer. [Pg-195,E]
  - (A) Escherichia coli
  - (B) Salmonella typhimurium
  - (C) Streptococcus pneumonia
  - (D) Clostridium butylicom

# PARAGRAPH-11.2 TOOLS OF RECOMBINANT DNA TECHNOLOGY

- 19. The key tools for recombinant DNA technology are **[Pg-195,E]** 
  - (A) Restrication enzyme, polymerase, hydrolase, vectors
  - (B) Recognition enzyme, polymerase, ligase, vector
  - (C) Restriction endonuclease, polymerase, ligase, vector
  - (D) Restriction enzyme, polymerase, dehydrogenase vector

# PARAGRAPH-11.2.1 RESTRICTION ENZYME

- 20. In 1963, two restriction endonucleases were isolated in E. Coli that restricted growth of bacteriophage by [Pg-195,M]
  - (A) cutting DNA
  - (B) adding methyl group to DNA
  - (C) removing methyl group to DNA
  - (D) more than one option
- 21. The first restriction endonuclease was

# [Pg-195,E]

- (A) Hind-III
- (B) Hind-II
- (C) Hind-I
- (D) Hind-IV
- 22. EcoRI comes from
- [Pg-195,E]
- (A) genus Eichhonia
  - (B) species coli
  - (C) genus Echinus
  - (D) species crispus
- 23. Recognition sequence is **[Pg-195,H]** 
  - (A) Specific sugar sequence in DNA which is recognized by restriction endonuclease
  - (B) Specific protein sequence which is recognized by restriction endonuclease
  - (C) Specific lipase sequence which is recognized by restriction endonuclease
  - (D) Specific base sequence in DNA which is recognized by restriction enconulcease
- 24. The convention for naming restriction endonucleases is **[Pg-195,H]** 
  - (A) First two letters come from genus & third from species of prokaryotic cell from which they were isolated.
  - (B) First two letters come from species & third from genus of prokaryotic cell from which they were isolated.
  - (C) First letter come from genus & second two from species of prokaryotic cell from which they were isolated.
  - (D) First letter come from species & second two from genus of prokaryotic cell from which they were isolated
- 25. Roman number indicate [Pg-196,E]
  - (A) order in which enzyme were isolated
  - (B) strain of bacteria
  - (C) lab number in which enzyme was isolated
  - (D) none of these

- 26. Restriction enzymes belong to [Pg-196,E]
  - (A) Exonucleases
  - (B) Endonucleases
  - (C) Both
  - (D) None
- 27. Exonuclease cuts DNA from [Pg-196,E]
  - (A) specific position within DNA
  - (B) ends of DNA
  - (C) Both (A) & (B)
  - (D) None of these
- 28. Restriction enzyme recognize [Pg-196,M]
  - (A) Paleondromic sequence of nucleoside in DNA
  - (B) Palindromic sequence of nucleoside in DNA
  - (C) Paleondromic sequence of nucleotide in DNA
  - (D) Palindromic sequence of nucleotide in DNA
- 29. ECoRI cuts DNA at

[Pg-196,H]

33.

A)

5' G AATTC 3' 3' CTTAA G 5'

B)

3' GAAT TC 5'

5' CTTA AG 3'

C)

3' G AATTC 5'

5' CTTTAA G 3'

D) All of these
30. Which of the following is a palindrome?

[Pg-197,H]

(A) 5' - GAATAC - 3'

3' - CTTATG - 5'

(B) 5' - GATATAC - 3'

3' - CTATATG - 5'

(C) 5' - GAATTC - 3'

3' - CTTAAG - 5'

(D) All of these

- 31. Restriction enzyme cuts DNA [Pg-197,H]
  - (A) between same two bases on opposite strands, in centre of DNA sequence recognized
  - (B) between same two bases on opposite strands, a little away from centre of DNA sequence recognized

- (C) between different two bases on opposite strands, in centre of DNA sequence recognized
- (D) between different two bases on opposite strands, living away from centre of DNA sequence recognized.
- 32. Same restriction enzyme produce

#### [Pg-197,M]

- (A) same kind sticky ends joined using endonucleases
- (B) different kinds of sticky ends joined using ligase
- (C) same kind of sticky ends joined using ligase
- (D) different kind of sticky ends joined using endonucleases



Identify correct labelling

| 3 1 3 1 1 1 1 1 8 |           |           |             |  |  |  |  |
|-------------------|-----------|-----------|-------------|--|--|--|--|
|                   | (i)       | (ii)      | (iii)       |  |  |  |  |
| (A)               | vector    | Recombina | Foreign DNA |  |  |  |  |
|                   | plasmid   | nt DNA    |             |  |  |  |  |
| (B)               | Foreign   | vector    | Recombinant |  |  |  |  |
|                   | DNA       | plasmid   | DNA         |  |  |  |  |
| (C)               | Recombina | vector    | Foreign DNA |  |  |  |  |
|                   | nt DNA    | plasmid   |             |  |  |  |  |
| (D)               | vector    | Foreign   | Recombinant |  |  |  |  |
|                   | plasmid   | DNA       | DNA         |  |  |  |  |

- 34. The process of 'Transformation' is taking place when **[Pg-197,M]** 
  - (A) bacteria replicates and makes copies of rDNA with it
  - (B) bacteria picks up rDNA

- (C) foreign gene is added to cloning host prokaryote cell
- (D) more than one option

# SEPARATION & ISOLATION OF DNA FRAGMENTS

- 35. Technique used for separation of DNA fragments are **[Pg-198,M]** 
  - (A) Gel electrophoresis
  - (B) DNA fingerprinting
  - (C) PCR
  - (D) DNA cloning
- 36. DNA fragments are **[Pg-198,E]** 
  - (A) negatively charged
  - (B) positively charged
  - (C) neutral
  - (D) none of these
- 37. In gel electrophoresis, DNA are forced to move towards **[Pg-198,M]** 
  - (A) anode under magnetic field
  - (B) cathode under magnetic field
  - (C) anode under electric field
  - (D) cathode under electric field
- 38. Matrix used in electrophoresis is

[Pg-198,E]

- (A) ethidium bromide
- (B) agarose gel
- (C) natural polymer extracted from sea weeds
- (D) more than one option
- 39. Ethidium bromide is used to stain because [Pg-198,H]
  - (A) DNA fragments are visible without staining
  - (B) DNA fragments are not visible under staining
  - (C) DNA fragments are not visible without staining
  - (D) DNA fragments are visible under staining
- 40. Stained DNA is exposed to [Pg-198,H]
  - (A) visible light
- (B) UV light
- (C) IR light
- (D) Radio wave
- 41. Colour of DNA visible under UV light after Ethidium bromide staining is

[Pg-198,H]

- (A) blue (B) black
- (C) orange (D) green

- 42. The extraction of separated bands of DNA from agarose gel are **[Pg-198,H]** 
  - (A) Dilution (B) Elition
  - (C) Elution (D) Delution

43. [**Pg-197,E**]



Identify labels correctly

|     | (i)                   | (ii)                 | (iii)                 |
|-----|-----------------------|----------------------|-----------------------|
| (A) | Largest<br>DNA band   | Smallest<br>DNA band | Wells                 |
| (B) | Wells                 | Largest DNA<br>bands | Smallest DNA<br>bands |
| (C) | Smallest<br>DNA bands | Largest DNA<br>bands | Wells                 |
| (D) | Smallest<br>DNA bands | Wells                | Largest DNA<br>bands  |

## PARAGRAPH-11.2.2 CLONING VECTORS

44. Plasmids in bacterial cells replicate

[Pg-197,M]

- (A) depending on chromosomal DNA
- (B) independent of chromosomal DNA
- (C) depending on extra-nuclear DNA
- (D) more than one option
- 45. Bacteriophages [Pg-197,E]
  - (A) replicate independent of other organisms
  - (B) replicate inside bacterial cell, controlled by chromosomal DNA of bacteria.
  - (C) replicate inside bacterial cell autonomously
  - (D) more than one option
- 46. Bacteriophages serve as \_\_\_\_ in biotechnology. [Pg-197,E]
  - (A) host
  - (B) vector
  - (C) molecular marker
  - (D) enzyme

Figure for question. (47 to 53)



- 47. Identify Bam HI in given plasmid figure [Pg-199,E]
  - (A) (i)
- (B) (ii)
- (C) (iii)
- (D) (iv)
- 48. Identify antibiotic resistance gene in figure [Pg-199,E]
  (A) Sal I (B) EcoRI
  - (A) Sal I(C) amp<sup>R</sup>
- (D) pBR322
- 49. Identify ECoRI in the plasmid [Pg-199,E]
  - (A) (iv)
- (B) (v)
- (C) (iii)
- (D) (ii)
- 50. 'A' & 'B' in figure are **[Pg-199E]** 
  - (A) ampR & tetR (B) ori & amp $^R$
  - (C)  $tet^R$  &  $amp^R$  (D) rop &  $tet^R$
- 51. 'rop' codes for  $\underline{i}$  & is shown in figure by  $\underline{ii}$  [Pg-199,M]
  - (A) proteins involved in replication; D
  - (B) proteins involved in transcription, C
  - (C) proteins involved in transcription, D
  - (D) proteins involved in replication, C
- 52. 'Ori' means \_\_\_\_ & is shown in figure by **[Pg-199,E]** 
  - (A) origin of translocation; C
  - (B) origin of replication; D
  - (C) origin of translation; D
  - (D) origin of replication; C
- 53. Identify pvu II in given figure of plasmid

#### [Pg-199,E]

- (A) i
- (B) ii
- (C) vi
- (D) iv
- 54. Which of the following is correct?

#### [Pg-199,M]

- (A) Any piece of DNA linked to ori gene will be replicated
- (B) Number of replication copies is under control of recognition site
- (C) Vector should not be chosen based on number of copies supported by it
- (D) More than one option
- 55. Transformants include [Pg-199,M]

- (A) cells which have picked vector with foreign DNA ligated to it.
- (B) cells which have picked up vector without foreign DNA ligated to it
- (C) cells which have not picked up vector
- (D) Both (A) & (B)
- 56. Recombinants are [Pg-199,M]
  - (A) cells which have picked vector with foreign DNA ligated to it.
  - (B) cells which have picked up vector without foreign DNA ligated to it
  - (C) cells which have not picked up vector
  - (D) Both (A) & (B)
- 57. Which is true about recombinant & transformant? [Pg-199,H]
  - (A) All transformants are recombinants
  - (B) All recombinants are transformants
  - (C) no relation between these two
  - (D) Both are same thing
- 58. Normal E.coli cell- [Pg-199,M]
  - (A) Carries resistance against antibiotics ampicillin, tetracycline and kanamycin
    - (B) Does not carry resistance against antibiotics ampicillin, tetracycline and kanamycin
    - (C) Carries resistance against ampicillin but not tetracycline and kanamycin
    - (D) Carries resistance against tetracycline but not ampicillin and kanamycin
- 59. In order to link alien DNA, vector needs to have \_\_\_\_ recognition sites for commonly used restriction enzymes.

[Pg-199,E]

- (A) very few
- (B) preferably single
- (C) many
- (D) more than one option
- 60. Assertion- Vector should have many recognition sites for commonly used restriction enzymes.

Reason- Lot of recognition sites generate several fragments, which make gene cloning easy. [Pg-200,H]

- (A) Assertion and Reason are both correct and Reason is correct explanation for Assertion
- (B) Assertion and Reason are both correct but Reason is not correct explanation for Assertion

- (C) Assertion and Reason both are incorrect
- (D) Assertion is correct but Reason is incorrect
- 61. If a foreign gene is ligated at Bam HI site of vector PBR322, then the resistance for

[Pg-199,M]

- (A) tetracycline is lost
- (B) ampicillin is lost
- (C) tetracycline is not lost
- (D) more than one option
- 62. The recombinants mentioned previous question non-recombinants by-

## [Pg-199,M]

- (A) Plating the transformants on tetracycline
- (B) Planting the transformants on ampicillin
- (C) Both of these are necessary
- (D) None of these
- 63. Recombinants mentioned in 'If a foreign gene is ligated at Bam HI site of vector PBR322' will- [Pg-199,H]
  - (A) Grow in ampicillin and tetracycline both
  - (B) Grow in ampicillin but not tetracycline
  - (C) Grow in tetracycline but not ampicillin
  - (D) Grow neither in tetracycline nor in ampicillin
- 64. Non-recombinants transformants will

# [Pg-199,M]

- (A) Grow in ampicillin and tetracycline both
- (B) Grow in ampicillin but not tetracycline
- (C) Grow in tetracycline but not ampicillin
- (D) Grow neither in tetracycline nor in ampicillin
- 65. Non-transformants E.coli will-

#### [Pg-199,M]

- (A) Grow in ampicillin and tetracycline both
- (B) Grow in ampicillin but not tetracycline
- (C) Grow in tetracycline but not ampicillin
- (D) Grow neither in tetracycline nor in ampicillin

- 66. When rDNA is inserted in coding sequence of  $\beta$ -galactosidase, [**Pg-200,H**]
  - (A) The enzyme gets synthesized
  - (B) Blue coloured colonies are produced
  - (C) Colourless colonies are produced
  - (D) Orange colonies are produced
- 67. Ti-plasmid stands for \_\_\_\_ and are present in \_\_\_\_. [Pg-200,E]
  - (A) Tumor inhibiting, Agrobacterium speciense
  - (B) Tumor inducing, Agrobacterium speciense
  - (C) Tumor inhibiting, Agrobacterium tumifaciens
  - (D) Tumor inducing, Agrobacterium tumifaciens
- 68. The Ti-plasmid being used as cloning vector- [Pg-200,M]
  - (A) causes crown gall disease
  - (B) is not pathogenic
  - (C) is pathogenic
  - (D) More than one option

# PARAGRAPH-11.2.3 COMPETENT HOST (For transformation with recombinant DNA)

- 69. DNA is- [Pg-200,E]
  - (A) hydrophilic and can pass through cell membrane
  - (B) hydrophobic and can pass through cell membrane
  - (C) hydrophilic and cannot pass through cell membrane
  - (D) hydrophobic and cannot pass through cell membrane
- 70. Bacterial host cells are made competent to take up rDNA by- [Pg-200,H]
  - (A) Treating with  $Na^+$
  - (B) Treating with  $Al^{3+}$
  - (C) Treating with  $Ca^{2+}$
  - (D) More than one options
- 71. Choose the correct sequence to be followed to enable bacteria to take up rDNA. [Pg-201, 202,M]
  - (i) Treating with divalent cation.
  - (ii) Heat shock (42°C).
  - (iii) Incubating on ice.
  - (A) i-ii-iii-ii
- (B) i-iii-iii
- (C) ii-iii-i-ii
- (D) iii-ii-i-iii

- 72. Other methods for introducing foreign DNA into host cells are-[Pg-201,E]
  - (A) Micro-injection for animal cells
  - (B) Gene gun for plant cells
  - (C) Disarmed pathogens
  - (D) All of these
- In micro-injection technique, rDNA is 73. injected into-[Pg-201,E]
  - (A) Cytoplasm
- (B) Nucleus
- (C) Cell membrane (D) Lysosomes
- 74. In biolistics, cells are bombarded with high velocity-[Pg-201,E]
  - (A) Micro-particles of iron
  - (B) Macro-particles of tungsten
  - (C) Micro-particles of gold
  - (D) More than one option

# PARAGRAPH-11.3 PROCESSES OF RECOMBINANT DNA TECHNOLOGY

- 75. Identity correct sequence of process of rDNA technology: [Pg-201,M]
  - transferring rDNA into host (i)
  - isolation of DNA fragment desired (ii)
  - isolation of DNA (iii)
  - culturing host cells in medium at (iv) large scale
  - (v) fragmentation of DNA by restriction enzyme
  - (vi) ligation of DNA fragment into a
  - extraction of desired product (vii)
  - (A) (iii) (ii) (v) (vi) (i) (iv) (vii)
  - (B) (iii) (v) (i) (vi) (ii) (iv) (vii)
  - (C) (iii) (v) (ii) (vi) (i) (iv) (vii)
  - (D) (iii) (v) (vi) (i) (ii) (iv) (vii)

# PARAGRAPH-11.3.1 ISOLATION OF THE **GENETIC MATERIAL (DNA)**

76. Nucleic acid is genetic material of:

[Pg-201,E]

- (A) some organisms
- (B) no organism
- (C) all organisms without exception
- (D) most organisms with some exception
- How many of given enzymes involved in 77. extraction of genetic material from cell of organisms are: [Pg-201,M]
  - (i) cellulase

(ii) chitinase

(iii) lysozyme

- (iv) Ribonuclease (vi) deoxyribonuclease
  - (B) 2
- (C) 5

(A) 3

- (D) 6
- 78. Match the following:
- [Pg-201,E]

(v) protease

- (i) cellulase
- I. plant
- (ii) chitinase
- II. Bacteria
- (iii) lysozyme
- III. Fungi
- (iii) (i) (ii)
- (A) Ι III II
- (B) II III Ι
- (C) III T Π
- III (D) I II
- 79. Purified DNA is precipitated out by addition of: [Pg-201,H]
  - (A) warm acetic acid
  - (B) chilled acetic acid
  - (C) warm ethanol
  - (D) chilled ethanol

80.

[Pg-201,E]



The figure shows DNA separated out, removed by:

- (A) spooning
- (B) spooling
- (C) spilling
- (D) speeling
- 81. The precipitated DNA is seen as:

[Pg-201,M]

- (A) collection of fine threads suspension
- (B) collection of fine threads in solution
- (C) coagulated mass in suspension
- (D) coagulated mass in solution

# PARAGRAPH-11.3.2 CUTTING OF DNA AT SPECIFIC LOCATION

82. To check the progression of restriction enzyme digestion, is used.

[Pg-202,M]

- (A) PCR
- (B) gel electrophoresis
- (C) DNA fingerprinting
- (D) Selectable marker gene

- 83. Preparation of rDNA involves the enzymes: [Pg-202,E]
  - (A) specific restriction enzyme
  - (B) gene of interest
  - (C) vector DNA
  - (D) all of these

# PARAGRAPH-11.3.3 AMPLIFICATION OF GENE OF INTEREST USING PCR

- 84. PCR stands for: **[Pg-202,E]** 
  - (A) Polynuclease chain reaction
  - (B) Polylipase chain reaction
  - (C) Polyamide chain reaction
  - (D) None of these
- 85. PCR is an: [Pg-202,E]
  - A) in vitro process
  - B) in vivo process
  - C) both
  - D) none
- 86. How many sets of primers are used in PCR? [Pg-202,E]
  - (A) 1
- (B) 2
- (C) 3
- (D) 4
- 87. Enzyme involved in PCR is: [Pg-203,E]
  - (A) DNA endonuclease
  - (B) RNA polymerase
  - (C) DNA polymerase
  - (D) DNase
- 88. The enzyme involved in PCR with thermostability is isolated from:

#### [Pg-203,E]

- (A) Thermus aquaticus fungi
- (B) Escherechia coli bacteria
- (C) Agrobacterium tumefaciense bacteria
- (D) None of these

89. **[Pg-202,E]** 



Identify correct labeling of sequence:

|    | (i)          | (ii)         | (iii)        |  |  |
|----|--------------|--------------|--------------|--|--|
| A) | Annealing    | Denaturation | Extension    |  |  |
| B) | Denaturation | Extension    | Annealing    |  |  |
| C) | Denaturation | Annealing    | Extension    |  |  |
| D) | Extension    | Annealing    | Denaturation |  |  |

#### PARAGRAPH-11.3.4

# INSERTION OF RECOMBINANT DNA INTO THE HOST CELL / ORGANISM

- 90. A-Ampicillin resistance gene is called selectable marker in case E.coli is made to take up rDNA bearing ampicillin resistance gene.
  - B-Such E.coli coil grow on amplicillin containing agar plates.
  - Choose right option with regards to above statements. [Pg-203,H]
  - (A) Both are correct
  - (B) Only A is correct
  - (C) Only B is correct
  - (D) None is correct

#### PARAGRAPH-11.3.5

## PARAGRAPH- 11.3.5 OBTAINING FOREIGN GENE PRODUCT

91. If a protein encoding gene is expressed in a heterologous host, it is called:

[Pg-203,M]

- (A) secondary protein
- (B) recombinant protein
- (C) transmitted protein
- (D) tertiary protein
- 92. In continuous culture system:

#### [Pg-203,M]

- (A) used medium is drained at the end
- (B) used medium is drained twice in the whole process
- (C) used medium is continuously drained out
- (D) none of these
- 93. Bioreactors are:

[Pg-204,E]

- (A) large vessels
- (B) used for large quantity production
- (C) used for biological conversion of raw materials into products
- (D) all of these

## PARAGRAPH-11.3.6 DOWNSTREAM **PROCESSING**

94. Downstream processing includes:

[Pg-205,E]

- (A) separation
- (B) purification
- (C) both the above (D) none of these
- 95. A- Suitable preservatives are added B- These formulations need clinical
  - trials.
  - C- Quality control testing is uniform for all the products.

How many of the above statements is incorrect? [Pg-205,M]

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- 96. Optimal conditions for growth include. How many of the following- [Pg-205,H] pH, Salt, Temperature, Vitamin, Oxygen
  - (A) 5
- (B) 6
- (C) 7
- (D) 4
- 97. [Pg-204,E]





Identify types of stirred-tank bioreactor-

|     | (i)                                | (ii)                                |  |  |  |
|-----|------------------------------------|-------------------------------------|--|--|--|
| (A) | Simple stirred-tank<br>bioreactor  | complex stirred-<br>tank bioreactor |  |  |  |
| (B) | Complex stirred-tank<br>bioreactor | simple stirred-<br>tank bioreactor  |  |  |  |
| (C) | Simple                             | Sparged                             |  |  |  |
| (D) | Sparged                            | Simple                              |  |  |  |

98. [Pg-204,E]



Identify the correct labels-

|     | (i)              | (ii)             | (iii)            |
|-----|------------------|------------------|------------------|
| (A) | Motor            | Culture<br>broth | Sterile air      |
| (B) | Culture<br>broth | Motor            | Sterile air      |
| (C) | Motor            | Sterile air      | Culture<br>broth |
| (D) | Sterile air      | Culture<br>broth | Motor            |

99. Samling ports are mainly required to-

[Pg-204,M]

- (A) Keep adding samples into Bioreactors
- (B) Withdraw small volume of culture
- (C) Add Acid/Base for pH control
- (D) All of these
- 100. Sterile air bubbles are sprayed in the biovector in a type of bioreactor. That is because-[Pg-204,M]
  - (A) air bubbles makes it easier to agitate the system
  - (B) air bubbles increase surface area for oxygen transfer
  - (C) air bubbles enable microbes to grow
  - (D) none of these

ANSWER KEY
BIOTECHNOLOGY PROCESS (PRINCIPLE)

| Q   | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10  |
|-----|----|----|----|----|----|----|----|----|----|-----|
| Ans | D  | В  | D  | D  | A  | C  | В  | В  | D  | C   |
| Q   | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20  |
| Ans | A  | D  | В  | С  | В  | В  | A  | В  | C  | D   |
| Q   | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30  |
| Ans | В  | В  | D  | C  | A  | В  | В  | D  | A  | C   |
| Q   | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40  |
| Ans | В  | C  | D  | D  | A  | A  | С  | В  | C  | В   |
| Q   | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50  |
| Ans | C  | C  | В  | В  | C  | В  | С  | C  | В  | A   |
| Q   | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60  |
| Ans | A  | D  | С  | A  | D  | A  | В  | В  | D  | C   |
| Q   | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70  |
| Ans | A  | A  | В  | A  | D  | В  | D  | В  | A  | C   |
| Q   | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80  |
| Ans | В  | D  | В  | C  | C  | C  | C  | A  | D  | В   |
| Q   | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90  |
| Ans | A  | В  | D  | D  | A  | В  | С  | D  | С  | A   |
| Q   | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
| Ans | В  | C  | D  | С  | В  | A  | C  | A  | В  | В   |

**NEET MBBS DOCTORS**