EXERCISE 1: Experimental Analysis Review

Suppose that you collect the following timing data for a program as a function of the input size n.

n	T(n)	
125	0.03 sec	
1,000	1.00 sec	
8,000	32.00 sec	
64,000	1,024.00 sec	
512,000	32,768.00 sec	

Estimate the running time of the program as a function of $\it n$ and use tilde notation.

EXERCISE 2: Experimental Analysis Hands-on Activity

- (a) Download the precept project folder (precept1.zip) from the precepts page and unzip it. Launch IntelliJ, click on open and then choose the project folder you have just unzipped.
- (b) Discuss with your group what the **ErdosRenyi.java** program does.

(c) Run ErdosRenyi.java with a fixed number of experiments k=100. Start with the input size n=12500 and double n as appropriate. Complete the table below. Compute b, assuming that the running time follows the form an^b .

n	T(n)	$\frac{T(2n)}{T(n)}$	$\lg \frac{T(2n)}{T(n)}$
12,500			
25,000			
50,000			
100,000			
200,000			

(d) Run **ErdosRenyi.java** with a fixed n=50000. Start with k=25 and double k as appropriate and complete the table below. Assuming that the running time follows the form ak^c , compute c.

k	T(k)	$\frac{T(2k)}{T(k)}$	$\lg \frac{T(2k)}{T(k)}$
25			
50			
100			
200			
400			

(e) Based on your answers in the two previous questions, come up with a formula in the form $T(n,k)=an^bk^c$ to express the running time of the program as a function of n and k.

(f) Why is it not a good idea to use data with running times that are too small (e.g. less than 0.25~sec)?