深圳大学期末考试试卷

:	开/闭卷	· F]卷									A/B 卷	В
•	课程编	号 13	00530001	课序	号 (01-10 诗	果程名和	称 概	率论与	数理统	计	学分	3
	命题人(签字)年月											月日	
	题号	_	=	三	四	五	六	七	八	九	+	基本题 总分	附加题
	得分												
	评卷人												
**	注意: 7	在部分	题目的	」计算に	过程中,	可能	需要使	用标准	正态を	计 布表	如下		

x	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0.500 0	0.504 0	0.508 0	0.512 0	0.516 0	0. 519 9	0, 523 9	0.527 9	0.531 9	0. 535 9
0, 1	0, 539 8	0, 543 8	0.547 8	0.551 7	0.555 7	0, 559 6	0.563 6	0.567 5	0.571 4	0, 575 3
0. 2	0.579 3	0.583 2	0.587 1	0.591 0	0.594 8	0.598 7	0.602 6	0.606 4	0.610 3	0.614 1
0.3	0.617 9	0.621 7	0.625 5	0.629 3	0.633 1	0.636 8	0.640 4	0.644 3	0.648 0	0, 651 7
0.4	0.655 4	0.659 1	0.662 8	0.666 4	0.670 0	0.673 6	0.677 2	0.680 8	0.684 4	0.687 9
0. 5	0.691 5	0.695 0	0.698 5	0.701 9	0.705 4	0.708 8	0.712 3	0.715 7	0.719 0	0.722
0.6	0.725 7	0.729 1	0.732 4	0.735 7	0.738 9	0.742 2	0.745 4	0.748 6	0.751 7	0.754 9
0.7	0.758 0	0.761 1	0.764 2	0.767 3	0.770 3	0.773 4	0.776 4	0.779 4	0.782 3	0. 785
0.8	0.788 1	0.791 0	0.793 9	0.796 7	0.799 5	0.802 3	0.805 1	0.807 8	0.810 6	0.813
0.9	0.815 9	0.818 6	0.821 2	0.823 8	0.826 4	0.828 9	0.835 5	0.834 0	0.836 5	0.838 9
1	0.841 3	0.843 8	0.846 1	0.848 5	0.850 8	0.853 1	0.855 4	0.857 7	0.859 9	0.862
1.1	0.864 3	0.866 5	0.868 6	0.870 8	0.872 9	0.874 9	0.877 0	0.879 0	0.881 0	0.883
1. 2	0.884 9	0.886 9	0.888 8	0.890 7	0.892 5	0.894 4	0.896 2	0.898 0	0.899 7	0.901
1.3	0.903 2	0.904 9	0.906 6	0.908 2	0.909 9	0.911 5	0.913 1	0.914 7	0.916 2	0.917
1.4	0.919 2	0.920 7	0.922 2	0.923 6	0.925 1	0.926 5	0.927 9	0.929 2	0.930 6	0.931
1. 5	0.933 2	0.934 5	0.935 7	0.937 0	0.938 2	0.939 4	0.940 6	0.941 8	0.943 0	0.944
1.6	0.945 2	0.946 3	0.947 4	0.948 4	0.949 5	0.950 5	0.951 5	0.952 5	0.953 5	0. 953
1.7	0.955 4	0.956 4	0.957 3	0.958 2	0.959 1	0.959 9	0.960 8	0.961 6	0.962 5	0.963
1.8	0.964 1	0,964 8	0.965 6	0.966 4	0.967 2	0.967 8	0.968 6	0.969 3	0.970 0	0.970
1.9	0.971 3	0.971 9	0.972 6	0.973 2	0.973 8	0.974 4	0.975 0	0.975 6	0.976 2	0.976
2	0.977 2	0.977 8	0.978 3	0.978 8	0.979 3	0.979 8	0.980 3	0.980 8	0.981 2	0.981
2. 1	0.982 1	0.982 6	0.983 0	0.983 4	0.983 8	0.984 2	0.984 6	0.985 0	0.985 4	0.985
2. 2	0.986 1	0.986 4	0.986 8	0.987 1	0.987 4	0.987 8	0.988 1	0.988 4	0.988 7	0.989
2. 3	0.989 3	0.989 6	0.989 8	0.990 1	0.990 4	0.990 6	0.990 9	0.991 1	0.991 3	0.991
2. 4	0.991 8	0.992 0	0.992 2	0.992 5	0.992 7	0.992 9	0.993 1	0.993 2	0.993 4	0.993
2. 5	0.993 8	0.994 0	0.994 1	0.994 3	0.994 5	0.994 6	0.994 8	0.994 9	0.995 1	0.995
2. 6	0.995 3	0.995 5	0.995 6	0.995 7	0.995 9	0.996 0	0.996 1	0.996 2	0.996 3	0.996
2. 7	0.996 5	0.996 6	0.996 7	0.996 8	0.996 9	0.997 0	0.997 1	0.997 2	0.997 3	0.997
2.8	0.997 4	0.997 5	0.997 6	0.997 7	0.997 7	0.997 8	0.997 9	0.997 9	0.998 0	0.998
2. 9	0.998 1	0.998 2	0.998 2	0.998 3	0.998 4	0.998 4	0.998 5	0.998 5	0.998 6	0.998
x	0	0.1	0. 2	0.3	0.4	0. 5	0.6	0.7	0.8	0.9
3	0.998 7	0.999 0	0.999 3	0.999 5	0.999 7	0.999 8	0.999 8	0.999 9	0.999 9	1.000

一. 选择题(每题4分,共24分)

箚

 $\overline{\mathbb{K}}$

) 例

1,	设随机事件 A 与 B 互不相容,	且 $P(A) > 0, P(B) > 0$,则(В)。
	A. P(AB) = P(A)P(B)	B. $P(\overline{AB}) = 1$		
	C. $P(A) = 1 - P(B)$	$D. P(A \cup B) = 1$		

2、假设从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则组成的这个 三位数是奇数的概率为(C)。

A. 0.2 B. 0.4 C. 0.6 D. 0.8

3、设 $X \sim N(0,1)$,又常数 c 满足 $P\{X \ge c\} = P\{X < C\}$,则 c 等于(A.)。

C. $\frac{1}{2}$ A. 0 B. 1 D. -1

4、设随机变量 X 与 Y 相互独立, 其概率分布分别为:

X	0	1	
p	0.3	0.7	

Y	0	1
p	0.3	0.7

则有(D.)。

A.
$$P(X = Y) = 0$$

B.
$$P(X = Y) = 1$$

C.
$$P(X = Y) = 0.5$$

D.
$$P(X = Y) = 0.58$$

5、己知
$$E(X) = -2$$
, $D(X) = 3$,则 $E[2(X^2 - 3)] = ($ B.)。

A. 6

B. 8 C. 30

D. 64

6、设随机变量 $X \sim U[0,6]$, $Y \sim B(12,\frac{1}{4})$,且X,Y相互独立,根据切比雪夫不等式 P(X - 3 < Y < X + 3) (C.).

A.
$$\leq \frac{5}{12}$$

A. $\leq \frac{5}{12}$ B. ≤ 0.25 C. $\geq \frac{5}{12}$ D. ≥ 0.75

二、甲、乙袋中各有20个球,甲袋中有3只白球、7只红球、10只黑球,乙袋中有10 《概率论与数理统计》试卷 B 卷 第 2 页 共 7 页

只白球、6只红球、4只黑球,现从两袋中各取一球,求两球颜色相同的概率。

(10分)

答:

$$P\{$$
两球颜色相同 $\} = P\{$ 两球均为白色 $\} + P\{$ 两球均为红色 $\} + P\{$ 两球均为黑色 $\}$

$$= \frac{3 \times 10}{20 \times 20} + \frac{7 \times 6}{20 \times 20} + \frac{10 \times 4}{20 \times 20} = \frac{30 + 42 + 40}{400} = \frac{112}{400} = 0.28$$

- 三、假如一个人口袋里有 10 枚硬币,其中 9 个是普通的正反面的硬币,另一个硬币是一个特殊的双正面的硬币。请问:
- (1) 如果随机从口袋里拿出一个硬币,该硬币恰好是双正面硬币的概率?
- (2) 如果抛一枚硬币,结果是正面,则该硬币是双正面硬币的概率是?

(12分)

- 答: (1) 假设事件 A 是双正面的硬币,则 P(A) = 1/10.
 - (2) 假设事件 B 是抛一个硬币其结果是正面,则所求为 P(A|B)。根据贝叶斯公式:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

由题 P(B|A)=1, P(A)=1/10,

$$P(B) = P(A \cap B) + P(\bar{A} \cap B) = P(B|A)P(A) + P(B|\bar{A})P(\bar{A})$$

= 1 × 1/10 + (1/2) × (9/10) = 11/20,因此:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{1 \times 1/10}{11/20} = \frac{2}{11}$$

四、某电子元器件的寿命 X 是一个随机变量,其概率密度为: $f(x) = \begin{cases} \frac{c}{x^2}, & x \ge 150 \\ 0, & x < 150 \end{cases}$

求:

- (1) 常数 C;
- (2) 若将 3 个该元器件串联组成一条电子线路, 求该线路在使用 200 小时后仍然能正常工作的概率。 (12 分)

答: (1) 由
$$\int_{-\infty}^{+\infty} f(x) d(x) = 1$$
 得: $\int_{150}^{+\infty} \frac{c}{x^2} d(x) = -\frac{c}{x} \Big|_{150}^{+\infty} = \frac{c}{150} = 1$, 因此 C=150。

(2) 串联电路正常工作的充要条件是每个元件都能正常工作。设 A 表示线路正常工作,则 $P(A) = [P\{X > 200\}]^3$ 。

$$P\{X > 200\} = \int_{200}^{+\infty} \frac{150}{x^2} d(x) = \frac{150}{200} = \frac{3}{4}$$

则
$$P(A) = [P{X > 200}]^3 = (\frac{3}{4})^3 = \frac{27}{64}$$

五、已知离散型随机变量(X,Y)的联合概率分布为:

Х	-1	0	1
1	1/6	0	1/3
2	0	1/2	0

求: (1)
$$E(X)$$
, $E(Y)$; (2) $D(X)$, $D(Y)$; (3) $cov(X,Y)$; (4) $D(X+Y)$ 。 (12 分)

答:分别求出 X, Y 的边缘分布:

Х	-1	0	1	$P\{Y = y_i\} = p_{gj}$
ү				
1	1/6	0	1/3	1/2
2	0	1/2	0	1/2
$P\{X = x_i\} = p_{ig}$	1/6	1/2	1/3	1

(1)
$$E(X) = \sum_{i} x_{i} p_{ig} = (-1) \times \frac{1}{6} + 1 \times \frac{1}{3} = \frac{1}{6}$$
; $E(Y) = \sum_{j} y_{j} p_{gj} = 1 \times \frac{1}{2} + 2 \times \frac{1}{2} = \frac{3}{2}$

(2)
$$E(X^2) = \sum_i x_i^2 p_{ig} = (-1)^2 \times \frac{1}{6} + 1^2 \times \frac{1}{3} = \frac{1}{2}$$
;

$$E(Y^2) = \sum_{i} y_i^2 p_{gj} = 1^2 \times \frac{1}{2} + 2^2 \times \frac{1}{2} = \frac{5}{2}$$

--->
$$D(X) = E(X^2) - [E(X)]^2 = \frac{1}{2} - \left(\frac{1}{6}\right)^2 = \frac{17}{36}$$
; $D(Y) = E(Y^2) - [E(Y)]^2 = \frac{5}{2} - \left(\frac{3}{2}\right)^2 = \frac{1}{4}$

(3)
$$E(XY) = \sum_{i} \sum_{j} x_{i} y_{j} p_{ij} = (-1) \times 1 \times \frac{1}{6} + (-1) \times 2 \times 0 + 0 \times 1 \times 0 + 0 \times 2 \times \frac{1}{2} + 1 \times 1 \times \frac{1}{3} + 1 \times 2 \times 0 = \frac{1}{6} \quad \Rightarrow cov(X, Y) = E(XY) - E(X)E(Y) = \frac{1}{6} - \frac{1}{6} \times \frac{3}{2} = -\frac{1}{12}$$
(4) $D(X + Y) = D(X) + D(Y) + 2cov(X, Y) = \frac{17}{36} + \frac{1}{4} + 2\left(-\frac{1}{12}\right) = \frac{5}{18}$

六、某超市每天接待 1000 名顾客, 设每位顾客的消费额(元)服从[100,400]上的均匀分布,且顾客的消费额是相互独立的。求:

- (1) 该超市的销售额均值(数学期望);
- (2) 该超市的销售额在销售额均值上下浮动不超过3000元的概率。 (15分)

答: 设顾客i的消费额为 V_i 元,则商场的一天的销售额为 $V = \sum_{i=1}^{1000} V_i$ 。由于 V_i 独立同分布于均匀分布U[100,400],则:

$$E(V_i) = \frac{100+400}{2} = 250$$
, $D(V_i) = \frac{(400-100)^2}{12} = 7500$, 该超市的平均销售额为 $E(V) = E(\sum_{i=1}^{1000} V_i) = \sum_{i=1}^{1000} E(V_i) = 1000 \times 250 = 250000$ 。

(1) 由中心极限定理,随机变量
$$Z = \frac{\sum_{i=1}^{1000} v_i - 1000 \times 250}{\sqrt{1000}\sqrt{7500}} = \frac{v - 250000}{\sqrt{1000}\sqrt{7500}}$$
近似服从正态分 $\pi N(0,1)$,于是, $P\{|V-250000| \leq 3000\} = P\left\{\frac{|V-250000|}{\sqrt{1000}\sqrt{7500}} \leq \frac{3000}{\sqrt{1000}\sqrt{7500}}\right\} = 2\emptyset\left(\frac{3000}{\sqrt{1000}\sqrt{7500}}\right) - 1 = 2\emptyset(1.10) - 1 = 2 \times 0.8643 - 1 = 0.7286$

因此, 该超市的销售额在销售额均值上下浮动不超过 3000 元的概率为 0.7282。

七、设总体 X的概率密度函数为: $f(x) = \begin{cases} \theta^2 x e^{-\theta x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$, 现从 X中取出 10 个个体,得数据如下: 105, 110, 108, 120, 130, 125, 134, 106, 115, 117.

求: θ 的最大似然估计量 $\hat{\theta}$ 和最大似然估计值。 (15 分)

答: 设 $X_1, X_2, X_3, \dots \dots X_n$ 是从总体中抽出的一组观察值,则似然函数为:

$$L(X_1, X_2, X_3, \dots X_n; \theta) = \prod_{i=1}^n \theta^2 x e^{-\theta x} \qquad (x_i \ge 0, i = 1, 2, 3, \dots, n)$$
$$= \theta^{2n} (\prod_{i=1}^n x_i) e^{-\theta \sum_{i=1}^n x_i}$$

《 概率论与数理统计 》试卷 B 卷 第 5 页 共 7 页

$$\ln(L) = 2n\ln\theta + \sum_{i=1}^{n} \ln(x_i) - \theta \sum_{i=1}^{n} x_i$$
$$\frac{d\ln(L)}{d\theta} = \frac{2n}{\theta} - \sum_{i=1}^{n} x_i = 0$$

则:
$$\hat{\theta} = \frac{2n}{\sum_{i=1}^{n} x_i} = \frac{2}{\bar{X}}$$
 。

由题, 当n = 10时, 由已知数据知:

$$\bar{X} = \frac{105 + 110 + 108 + 120 + 130 + 125 + 134 + 106 + 115 + 117}{10} = 117$$

$$\theta = \frac{2}{117} = 0.0171$$

附加题 (每小题 15 分, 共 30 分)

1、设随机变量 ξ 和 η 独立,并服从相同的分布 $N(\alpha,\sigma^2)$ 。

《 概率论与数理统计 》试卷 B 卷 第 6 页 共 7 页

证明: $E[\max(\xi,\eta)] = a + \frac{\sigma}{\sqrt{\pi}}$

则 $\max(\xi, \eta) = a + \sigma \max(X, Y)$

$$E[\max(X,Y) = \iint_{R^2} \max(x,y) \, \varphi(x,y) dx dy$$

$$= \int_{-\infty}^{+\infty} \int_{y}^{+\infty} x \varphi(x,y) dx dy + \int_{-\infty}^{+\infty} \int_{x}^{+\infty} y \varphi(x,y) dx dy$$

$$= 2 \int_{-\infty}^{+\infty} \int_{y}^{+\infty} x \frac{1}{2\pi} e^{-\frac{1}{2}(x^2 + y^2)} dx dy = \frac{1}{\pi} \int_{-\infty}^{+\infty} e^{-y^2} dy = \frac{1}{\sqrt{\pi}}$$

因此,

$$E[\max(\xi,\eta)] = E[a + \sigma \max(X,Y)] = a + \sigma E[\max(X,Y)] = a + \frac{\sigma}{\sqrt{\pi}}.$$

- 2、设随机变量X和Y相互独立,并且同服从(-b,b)上的均匀分布,求:
- (1) 方程 $t^2 + tX + y = 0$ 有实根的概率;
- (2) 当 $b \to \infty$ 时,方程 $t^2 + tX + y = 0$ 有实根的概率的极限。

答:

(1) 要使方程 $t^2 + tX + y = 0$ 有实根,必须满足: $X^2 - 4Y \ge 0$

$$\overrightarrow{m}P(X^{2} - 4Y \ge 0) = \begin{cases}
\int_{-b}^{b} dx \int_{-b}^{\frac{x^{2}}{4}} \frac{dy}{4b^{2}}, & \pm 0 < b \le 4 \\
\int_{-b}^{-2\sqrt{b}} 2dx \int_{-b}^{b} \frac{dy}{4b^{2}} + \int_{-2\sqrt{b}}^{2\sqrt{b}} dx \int_{-b}^{\frac{x^{2}}{4}} \frac{dy}{4b^{2}}, & \pm b > 4
\end{cases}$$

$$= \begin{cases}
\frac{1}{4b^{2}} \int_{-b}^{b} (\frac{x^{2}}{4} + b) dx, & \pm 0 < b \le 4 \\
1 - \frac{2}{\sqrt{b}} + \int_{-2\sqrt{b}}^{2\sqrt{b}} \frac{1}{4b^{2}} (\frac{x^{2}}{4} + b) dx, & \pm b > 4
\end{cases}$$

$$= \begin{cases}
\frac{1}{2} + \frac{b}{24}, & \pm 0 < b \le 4 \\
1 - \frac{2}{3\sqrt{b}}, & \pm b > 4
\end{cases}$$

(2)
$$\lim_{b \to \infty} P(X^2 - 4Y \ge 0) = \lim_{b \to \infty} P(X^2 \ge 4Y) = \lim_{b \to \infty} \left(1 - \frac{2}{3\sqrt{b}}\right) = 1$$