Correction to Galais Thm

L₁∩L₂ ← ← ← ← ← NOT H₁H₂.

Example 3 Gal
$$(F_{p^n}/F_p) = \langle \Phi \rangle \cong \mathbb{Z}_n$$

Page 1

$$\int_{0}^{\infty} N = 18$$

$$\mathbb{Z}_{r_d} \longleftrightarrow \mathbb{F}_{p^d}$$

Fig. is fixed by
$$P^d : \alpha : \alpha^{p^d} = \alpha$$
.

 $L_1 L_2 = K$ $n_2 / | n_1 |$ $L_1 / n_2 |$ $F = L_1 n_1 l_2$

Theorem Let K/F be Galois let $F \subseteq L_1, L_2 \subseteq K$. Such that $K = L_1 L_2$ and $L_1 n L_2 = F$. Let L_1/F be normal. Then $[K:F] = [L_1:F] \cdot [L_2:F]$, $Gal(K/F) = Gal(K/L_1) \times Gal(L_1/F)$, and $Gal(L_1/F) \cong Gal(K/L_1)$.

Proof Draw the Diagram of subgroups:

H₁ H₂

$$G = H_1H_2 \text{ since } H_1 \neq G$$

$$S_0 G = H_1 \times H_2 \text{ and } H_2 \cong G/H_1.$$

$$Gal(K/F) \cong Gal(K/L_1) \times Gal(K/L_2) \text{ and } Gal(K/L_2) \cong Gal(L_1/F).$$

$$In particular, (K:F) = |G| = |H_1| \cdot |H_2| = |G|/|H_2| \cdot |G|/|H_1| = [L_2:F] \cdot [L_1:F]. \square$$

Example K is a splitting field of χ^n-2 over \mathbb{Q} . Then $K=\mathbb{Q}(\omega,\omega)$ where $\alpha=\sqrt[n]{2}$ and $\omega=e^{2\pi i/h}=\sqrt[n]{1}$.

$$Q(\alpha, \omega) = K$$

$$Q(\alpha)$$

$$Q(\omega)$$

$$q(n)$$

$$Q(n)$$

If
$$n=8$$
, $\omega=\frac{1+i}{\sqrt{2}}$ so $\mathbb{Q}(\omega)\ni\sqrt{2}$, and $\mathbb{Q}(\sqrt[8]{2})\ni\sqrt{2}$
So the theorm doesn'd apply.

Page 3

Assuming
$$\mathbb{Q}(x) \cap \mathbb{Q}(\omega) = \mathbb{Q}$$
, we have $Gal(K/a) \cong Gal(K/a(\omega)) \times Gal(\mathbb{Q}(\omega)/a)$

$$\mathbb{Q}$$

Theorem If $L_1, L_2 \subseteq K$, $L_1L_2 = K$, $L_1 \cap L_2 = F$, L_1/F , L_2/F are Galois, then $[K:F] = [K:L_1] \cdot [K:L_2]$, $Gal(K/F) \cong Gal(L_1/F) \times Gal(L_2/F)$, and $Gal(K/L_2) \cong Gal(L_1/F)$, $Gal(K/L_1) \cong Gal(L_2/F)$.

$$K = L_1 L_2$$
 L_1
 L_2
 H_1
 H_2
 $G = H_1 H_2$

So
$$G = H_1 \times H_2$$
, $Gal(K/F) = Gal(K/L_1) \times Gal(K/L_2)$
and $G/H_2 = H_1$, $G/H_1 = H_2$,
So $Gal(L_1/F) = G/H_1 = H_2 = Gal(K/L_2)$
 $Gal(L_1/F) = G/H_2 = H_1 = Gal(K/L_1)$
 $Gal(K/F) = Gal(L_1/F) \times Gal(L_2/F)$

Examples on Gal (Q(12, 13)/10) = (000 (Q(12)/10) x (000 (D(12)/1))

Examples of Gal (
$$\mathbb{Q}(\sqrt{z},\sqrt{s})/\mathbb{Q}$$
) \cong Gal($\mathbb{Q}(\sqrt{s})/\mathbb{Q}$) \times Gal($\mathbb{Q}(\sqrt{s})/\mathbb{Q}$).

(2) $K = \mathbb{Q}(\sqrt{z},\sqrt[3]{z}, \ \omega = e^{2\pi i/s})$, Splitting field of $(\chi^2 - z)(\chi^3 - z)$

(Sal(K/\mathbb{Q}) \cong $\mathbb{Z}_2 \times S_3$, (if the intersection $\mathbb{Q}(\sqrt{s}) \cap \mathbb{Q}(\sqrt{s},\omega)$) is trivial. And it is.

In the last theorem, if If Linlz 7 F,

We have

$$K = L_1 L_2$$

$$\sum_{\substack{n_2/3\\ n_2/3}} N_{1/3} L_2$$

$$\sum_{\substack{n_1/3\\ l_1 \cap l_2\\ n_1}} N_1 = Gal(L_1/F)$$

$$\sum_{\substack{n_1/3\\ l_1 \cap l_2\\ n_1}} N_2 = Gal(L_2/F),$$

$$N_1 = G/H_1, N_2 = G$$

so
$$\left(K^{:}F\right] = \frac{n_1 n_2}{d}$$
.

If
$$N_1 = Gal(L_1/F)$$

 $N_2 = Gal(L_2/F)$,

$$N_1 = G/H_1$$
, $N_2 = G/H_2$

So
$$N = Gal(Linl_2/F)$$
 is a Connon factor of $N_1 \rightarrow N_2$.

Gal(K/L,)
$$\cong$$
 Gal(L₂/(L₁ nL₂))
Gal(K/L₂) \cong Gal(L₁/(L₁ nL₂))
Gal(K/F) = N₁ ×_N N₂
relative direct product over N.

$$N_1$$
, N_2 , N - common factor of N , ℓ N_2 .

Then N_1 X_N N_2 = $\left\{ (\varphi_1, \varphi_2) \in N_1 \times N_2 \text{ s.t. } \overline{\varphi}_1 = \overline{\varphi}_2 \text{ in } N \right\}$

(N = N./P2, N = N2/P2, (p, mod P, = 42 mod P2)

"multiplying 2 squares over an interval"