Modelos IA para Perforación y Workover

Introducción al uso de IA

Día 3

Repaso

Que aprendimos ayer

Regresion

- Es una técnica estadística que permite modelar la relación entre una variable dependiente (respuesta) y una o más variables independientes (predictoras)
 - Entender cómo cambia la variable objetivo cuando cambian las variables de entrada
 - Predecir valores futuros basados en datos históricos

 Ejemplo: Predecir la producción de un pozo (respuesta) a partir de su profundidad y presión (predictoras)

Repaso

- Programación orientada a objetos
 - Classes
 - Objetos
- Cargar data en formatos utilizados en perforación y workover
- Modelos predictivos
 - Aprendizaje/training

Agenda

Lo que veremos esta semana

Lunes	

Introducción

Inteligencia Artificial

Tecnologias

Manejo de Datos

Ambiente de trabajo (IDE)

Martes

IA Supervisada

Regresiones

Modelos Predictivos

Miércoles

IA Supervisada

Modelos Estadísticos

Jueves

IA No-Supervisada

Clasificación

Generativa

Modelos de Gran Escala

Viernes

IA Generativa

Algoritmos de Búsqueda

Flujos de Trabajo

Gestionando Operaciones

Usando modelos estadísticos

- ¿Se ejecutó este pozo según lo esperado?
- Determinar si se debe utilizar una nueva herramienta de perforación
- En un nuevo contrato, ¿cuáles son las métricas esperadas?
- ¿Qué paquete de perforación necesita mejorar su desempeño?
- ¿Qué se debe hacer para aumentar el rendimiento de un paquete de perforación?

Gestionando Operaciones

Usando modelos estadísticos

- Métricas
 - Lo que se puede medir
- KPI Indicadores Clave de Desempeño
 - Métrica con límites operativos
- OKR Objetivos y Resultados Clave
 - Objetivo: lo que queremos lograr
 - Resultado Clave: avance hacia el objetivo
 - Iniciativa: lo que haremos para alcanzar el objetivo

Métricas

Monitoreo de operaciones

Definida por:

- Media
- Desviación estándar

Ejemplos:

- ROP promedio (m/h)
- NPT promedio (%)
- Días hasta alcanzar la profundidad total (m)
- Metros totales perforados por pozo (m)
- Tortuosidad del pozo
- Porcentaje de contacto en el metraje (%)
- Velocidad de tripeo (m/h)
- Tiempo de slip a slip (min)
- Tiempo de slip a fondo (min)
- Tiempo de fondo a slip (min)

KPI - Indicadores Clave de Desempeño

Definiendo resultados operativos con límites

- Agregamos intervalos de confianza a las métricas.
- Los rangos de confianza nos indican que la métrica tiene una probabilidad de que su valor poblacional esté dentro de ese rango con una probabilidad de X%.
- Típicamente, X es 90%, 95% o 99% (en medicina).
- Este porcentaje representa el riesgo que estamos dispuestos a asumir.

KPI - Indicadores Clave de Desempeño Ejemplo

- After drilling 600 wells:
 - The average to complete a well is: 25 days
 - Standard deviation is: 6 days
- With a confidence of 90%, how many days will it take to drill the next well?
 - It will take between 14.54 and 35.33 days

OKR - Objetivos y Resultados Clave

Gestionando activamente mediante resultados

- Objetivo
 Lo que queremos lograr
- Resultado Clave
 Métrica orientada al objetivo

Iniciativas
 Acciones que debemos tomar para alcanzar los resultados clave

OKR - Objetivos y Resultados Clave

Gestionando activamente mediante resultados

Iniciativas

- · Agregar un nuevo paquete de perforación
 - ¿Hay suficiente evidencia para no contratar ese paquete?
 - ¿El promedio de días requeridos para completar un pozo es menor que el promedio general?
- ¿Implementar entrenamiento para conexiones?
 - ¿Hay suficiente evidencia para implementar el entrenamiento?
 - ¿El tiempo de conexión es estadísticamente mejor?

OKR - Objetivos y Resultados Clave Ejemplo

- Objetivo
 - Ser el mejor operador en el campo Melones
- Resultado Clave
 - Reducir el tiempo de conexión de 9 a 6 minutos
- Iniciativas
 - Enviar al equipo al curso de "Prácticas Eficientes de Conexión"

Modelos Estadísticos para la Gestión Operativa Como son implementados

- Los modelos estadísticos permiten:
 - Cuantificar el desempeño operacional
 - Identificar patrones y variabilidad
 - Tomar decisiones basadas en evidencia
- Se construyen usando:
 - Datos históricos
 - Variables predictoras (entradas)
 - Métricas clave (salidas)

¿Por qué usar modelos estadísticos?

Reemplazan la intuición por análisis objetivo

- Nos permiten responder preguntas como:
 - ¿Este resultado es normal?
 - ¿Debo intervenir esta operación?
 - ¿Qué variable influye más en el desempeño?
- Aplicables en:
 - Tiempo de conexión
 - Eficiencia de tripeo
 - Tiempo de perforación por etapa
 - Consumo de combustible
 - Producción post-intervención

Intervalos de Confianza: Qué son y cómo usarlos

Base teórica

 Representan un rango donde es probable que se encuentre el valor verdadero de una métrica poblacional

• Basados en la distribución del muestreo y su variabilidad

- Se expresan con un nivel de confianza:
 - 90%, 95% o 99%

¿Cómo interpretarlos?

Intervalos de confianza

Con 95% de confianza, el tiempo promedio de conexión está entre 5.8 y 6.3 minutos.

- Ayudan a responder:
 - ¿Mi desempeño actual está dentro de lo esperado?
 - ¿Hay evidencia estadística de mejora tras una iniciativa?
 - ¿Vale la pena escalar o detener una práctica?

Aplicación en Operaciones

Modelos estadísticos y modeles de gestión

- Antes de actuar, preguntamos:
 - ¿La diferencia observada es estadísticamente significativa o parte de la variabilidad natural?
- Durante la ejecución, usamos intervalos para:
 - Establecer límites de control
 - Detectar desviaciones tempranas
- Después de implementar una mejora:
 - Medimos si los resultados están fuera del intervalo anterior

Intervalos de Confianza del 95%

Intervalos de Confianza del 95%

Interpretación:

La media después del entrenamiento es visiblemente más baja.

Los intervalos no se superponen significativamente, lo que sugiere una mejora estadísticamente significativa

Intervalos de Confianza del 95% - caso extremo

Interpretación:

La media después del entrenamiento no es visiblemente más baja.

Los intervalos se **superponen** significativamente, lo que sugiere que la mejora **no es estadísticamente significativa**

Intervalos de Confianza del 95%

Interpretación:

La media después del entrenamiento más baja.

Los intervalos se no superponen significativamente, lo que sugiere que la mejora es estadísticamente significativa

Intervalos de Confianza del 95%

Interpretación:

La media después del entrenamiento más baja.

Los intervalos se no superponen significativamente, lo que sugiere que la mejora es estadísticamente significativa

Intervalos de Confianza del 95%

Interpretación:

La media después del entrenamiento más baja.

Los intervalos se no superponen significativamente, lo que sugiere que la mejora es estadísticamente significativa

Confiabilidad y mantenimiento predictivo

Mas allá de la gestión de operaciones

- Existen otros modelos estadísticos usados para detectar anormalidades en las operaciones, entre ellos:
 - CUSUM (Cumulative Sum Control Chart) es una técnica estadística que monitorea cambios pequeños y sostenidos en una variable clave.
 - Detecta desviaciones acumulativas con respecto a un valor esperado o promedio.

CUSUM

¿Cómo se calcula?

CUSUM consiste en ir sumando las desviaciones respecto a un valor de referencia, i.e. el promedio esperado

- Se calculan dos sumas acumuladas:
 - Suma acumulativa superior (C+): Detecta aumentos en la media C+(i) = max(0, C+(i-1) + (X(i) (µ + k)))
 - Suma acumulativa inferior (C⁻): Detecta disminuciones en la media C⁻(i) = min(0, C⁻(i-1) + (X(i) (μ k)))
 - Donde:
 - X(i) = Valor observado en el punto i
 - μ = Valor objetivo o promedio de referencia
 - k = Sensibilidad o el tamaño mínimo de cambio que quieres detectar
 - Si C⁺ o C⁻ sobrepasan un límite de control predefinido, se considera que el proceso ha cambiado de manera significativa

CUSUM

Ejemplo en workover

Eemplo práctico:

Detectar una desvíación sutil pero constante en la présión de circulación durante una operación de workcver, que podría indicar el Início de una fuga o una obstrucción progresiva

CUSUM

Ejemplo en workover

Well Workover Pressure CUSUM Analysis

