МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Функциональный анализ

Лабораторная работа №2

(Кольцо, полукольцо, мера на полукольце)

Студентки 3 курса 3 группы

 Работа сдана 15.11.2013 г.
 Преподаватель

 Зачтена ______ 2013 г.
 Дайняк Виктор Владимирович

 Доцент кафедры МФ

канд. физ.-мат. наук

Задание 1

Постановка задачи

Образуют ли полукольцо, кольцо, σ -кольцо, алгебру, σ -алгебру следующие все ограниченные множества на прямой.

Решение

- 1) Любое ограниченное множество на прямой является объединением непересекающихся ограниченных множеств и замкнуто относительно разности => полукольцо.
- 2) $A, B = \{x \mid a < x < b\}$. Тогда $A \cup B$ и $A \setminus B$ тоже ограниченные на прямой множества => кольцо.
- 3) $\prod_k A_k$ может быть не ограничено => не является σ -кольцом.
- 4) $R \setminus A$ не является ограниченным множеством => не является алгеброй
- 5) Так как не является алгеброй, то не является и σ -алгеброй.

Задание 2

Постановка задачи

Пусть $X = \{a, b, c\}$, полукольцо $S = \mathcal{P}(X)$. Построить, если возможно, меру на S так, чтобы $m(\{a\}) = 2$, $m(\{a, b\}) = 5$, $m(\{a, b, c\}) = 8$.

Решение

Пусть $f(x,A) = \begin{cases} 1, \text{если } x \in A \\ 0, \text{если } x \notin A \end{cases}$. Тогда возьмем m(A) = 2f(a,A) + 3f(b,A) + 3f(c,A). Покажем, что m(A) задает меру на множестве X.

- 1) $m(A) \ge 0 \ \forall A, m(A) = 0 \Leftrightarrow A = \emptyset$
- 2) $m(A \cup B) = 2f(a, A \cup B) + 3f(b, A \cup B) + 3f(c, A \cup B) = [\text{ так как } A \cap B = \emptyset] = 2f(a, A) + 3f(b, A) + 3f(c, A) + 2f(a, B) + 3f(b, B) + 3f(c, B) = m(A) + m(B)$

Задание 3

Постановка задачи

Пусть $X=\mathbb{N}$, K – кольцо, состоящее из конечных подмножеств множества \mathbb{N} . Задает ли $m(A)=\sum_{n\in A}\frac{1}{n}$ меру на K?

Решение

- 1. $m(A) \ge 0$, так как является суммой неотрицательных чисел.
- 2. $m(A) = 0 \Leftrightarrow A = \emptyset$
- 3. $m(A \cup B) = \sum_{n \in A \cup B} \frac{1}{n} = [\text{ так как } A \cap B = \emptyset] = \sum_{n \in A} \frac{1}{n} + \sum_{n \in B} \frac{1}{n} = m(A) + m(B)$

Таким образом, $m(A) = \sum_{n \in A} \frac{1}{n}$ задает меру на множестве K.

Задание 4

Постановка задачи

Пусть X = [-1,1), полукольцо $S = \{[a,b) \subset X\}$, m([a,b)) = F(b) - F(a). При каких значениях параметра α эта формула задает меру, σ -аддитивную меру. Если мера не является σ -аддитивной, то указать полуинтервал $[\alpha,\beta)$ и его разбиение $[\alpha,\beta) = \coprod_{k=1}^{\infty} [\alpha_k,\beta_k)$ такое, что $m([\alpha,\beta)) \neq \sum_{k=1}^{\infty} m([\alpha_k,\beta_k))$.

$$F(x) = \begin{cases} x + 2, x \in [-1, -\frac{1}{2}) \\ \alpha, x = -\frac{1}{2} \\ x + 4, x \in (-\frac{1}{2}, 1) \end{cases}$$

Решение

- 1) $m([a,b)) \in \mathbb{R}: |\alpha| < +\infty$.
- 2) $m([a,b)) \ge 0$: $F(b) F(a) \ge 0$ при условии что $b \ge a$

m(x)	$a \in [-1, -\frac{1}{2})$	$a=-rac{1}{2}$	$a \in (-\frac{1}{2}, 1)$
$b\in[-1,-\frac{1}{2})$	b-a		
$b=-rac{1}{2}$	$\alpha - a - 2$	0	
$b\in(-\frac{1}{2},1)$	b - a + 2	$b+4-\alpha$	b-a

Значит

$$\begin{cases} \alpha - a - 2 \ge 0, & a \in [-1, -\frac{1}{2}) \\ b + 4 - \alpha \ge 0, & b \in (-\frac{1}{2}, 1) \end{cases}$$
$$\begin{cases} \alpha \ge a + 2 \\ \alpha \le b + 4 \\ \frac{3}{2} \le \alpha \le \frac{7}{2} \end{cases}$$

3)
$$m([a,b) \cup [b,c)) = m([a,c)) = F(c) - F(a) = F(c) - F(b) + F(b) - F(a) = m([b,c)) + m([a,b))$$

Таким образом m([a,b)) задает меру на множестве S.

4) Пусть A = [-1,0). Представим A в виде:

$$A = \left(\prod_{k=1}^{\infty} A_k\right) \coprod \left(\prod_{k=1}^{\infty} B_k\right)$$

$$A_k = \left[-\frac{1}{2} - \frac{1}{2^k}, -\frac{1}{2} - \frac{1}{2^{k+1}}\right) \qquad B_k = \left[-\frac{1}{2} + \frac{1}{2^{k+1}}, -\frac{1}{2} + \frac{1}{2^k}\right)$$

Вычислим меры этих множеств:

$$m(A_k) = -\frac{1}{2} - \frac{1}{2^{k+1}} + 2 + \frac{1}{2} + \frac{1}{2^k} + 2 = \frac{1}{2^k} - \frac{1}{2^{k+1}}$$

$$m(B_k) = -\frac{1}{2} + \frac{1}{2^k} + 4 + \frac{1}{2} - \frac{1}{2^{k+1}} + 4 = \frac{1}{2^k} - \frac{1}{2^{k+1}}$$

Проверим σ -аддитивность:

$$\sum_{k=1}^{\infty} m(A_k) + \sum_{k=1}^{\infty} m(B_k) = 2 \sum_{k=1}^{\infty} \frac{1}{2^k} - \frac{1}{2^{k+1}} = 2 \sum_{k=1}^{\infty} \frac{1}{2^{k+1}} = 1$$

$$m(A) = F(0) - F(-1) = 4 - 1 = 3$$

$$\sum_{k=1}^{\infty} m(A_k) + \sum_{k=1}^{\infty} m(B_k) \neq m(A)$$

При $\forall \alpha \ m([a,b))$ не является σ -аддитивной мерой.