Лекция 14

Ilya Yaroshevskiy

16 января 2021 г.

Содержание

1	Теория меры	ĺ
	1.1 Мера Лебега	l

1 Теория меры

Определение. $\mu_0:\mathcal{P}_0 o\overline{\mathbb{R}}$ $\mathcal{P}_0\subset\mathcal{P}$ $\mu:\mathcal{P}\to\mathbb{R}$ продолжает u_0 $\mu\Big|_{\mathcal{P}_0}=\mu_0$

Теорема 1.1 (о Лебеговском продлжении меры). \mathcal{P}_0 — полукольцо подмножеств пространства X, $\mu_0: \mathcal{P}_0 \to \overline{\mathbb{R}} - \delta$ -конечная мера

Тогда $\exists \sigma$ -алгебра $\mathfrak{A} \supset \mathcal{P}_0$, $\exists \mu$ — мера на \mathfrak{A} :

- 1. μ продолжение μ_0 на \mathfrak{A}
- 2. μ полная мера
- 3. Если $\tilde{\mu}$ полная мера на σ -алгебре $\tilde{\mathfrak{A}}$ и $\tilde{\mu}$ продолжение μ_0 , то $\tilde{\mathfrak{A}} \supset \mathfrak{A}$ и при этом $\tilde{\mu}$ продолжение меры μ : $\tilde{\mu}\Big|_{\mathfrak{A}} = \mu$
- 4. Если $\mathcal{P}-$ полукольцо: $\mathcal{P}_0\subset\mathcal{P}\subset\mathfrak{A},$ мера $\nu-$ продолжение μ_0 на \mathcal{P} Тогда $\forall A\in\mathcal{P}\quad \nu(A)=\mu(A)$

5.

$$\forall A \in \mathfrak{A} \quad \mu A = \inf\{\sum \mu P_k : P_k \in \mathcal{P} \middle| A \subset \bigcup_{k=1}^{+\infty} P_k\}$$
 (1)

Доказательство. нет

$$\forall \mu^* = \inf\{\dots\} \quad \mu^* s^X \to \overline{\mathbb{R}} - \text{не аддитивна}
A \subset \bigcup A_k \quad \mu^* A \leq \sum \mu^* A_k$$

Следствие 1.1.1. $A \in \mathfrak{A}, \ \mu A < +\infty, \ \forall \varepsilon > 0, \ \exists P_k \in \mathcal{P}: \ A \subset \bigcup P_k \quad \mu A < \sum \mu P_k < \mu A + \varepsilon$

1.1 Мера Лебега

Теорема 1.2. $\mu: \mathcal{P}^m \to \mathbb{R}$ — классический объем в \mathbb{R}^m Тогда μ — σ -конечная мера

 $Доказательство. \ \sigma$ -конечность очевидна

Проверим, что μ — счетно адддитивна, для этого достаточно проверить счетную полуаддитивность $P = [a,b), \ P_n = [a_n,b_n) \ P \subset \bigcup P_n$, проверить $\mu P \leq \sum \mu P_n$

 $P=\emptyset \Rightarrow$ утверждение тривиально

 $P \neq \emptyset$ Фиксируем $\varepsilon > 0$. Чуть уменьшим координаты вектора b: $[a,b'] \subset [a,b)$ и $\mu P - \mu[a,b') < \varepsilon$ Уменьшим слегка координаты векторов a_n :

- $(a'_n, b_n) \supset [a_n, b_n]$ $\mu[a'_n, b_n) \mu[a_n, b_n) < \frac{\varepsilon}{2^n}$
- $[a,b']\subset\bigcup(a'_n,b_n)\Rightarrow\exists$ конечное подпокрытие: $[a,b']\subset\bigcup_{n=1}^N(a'_n,b_n)\Rightarrow[a,b')\subset\bigcup_{n=1}^N[a'_n,b_n)$

Тогда

$$\mu[a,b') \le \sum_{1 \le n \le N} \mu[a'_n, b_n) \tag{2}$$

$$\mu P - \varepsilon \le \sum_{n=1}^{N} (\mu P_n + \frac{\varepsilon}{2^n}) \tag{3}$$

$$\mu P - \varepsilon \le \sum_{n=1}^{+\infty} \mu P_n + \varepsilon \tag{4}$$

Определение. Мера Лебега в \mathbb{R}^m — Лебеговское продлжение классического объема получается σ -алгебра \mathfrak{M}^m , на которой задана мера Лебега — множества измеримые по Лебегу

Обозначение. Мера Лебега — λ или λ_m

Свойства меры Лебега

- 1. (a) A_1, A_2, \ldots измеримые $\Rightarrow A_1 \cup A_2, A_1 \cap A_2$ измеримые $A_1 \cup A_2 \cup A_3 \cup \ldots, A_1 \cap A_2 \cap A_3 \cap \ldots$ измеримые
 - (b) $\forall n \ \lambda A_n = 0 \Rightarrow \lambda(\bigcup A_n) = 0$
 - (c) $\lambda A=0,\ B\subset A\Rightarrow B$ измеримо, $\lambda B=0$

 $\Pi pumep. \ \mathbb{Q} \subset \mathbb{R}$ — измеримо, $\lambda_1 \mathbb{Q} = 0$

Доказательство. $\forall x \in R \quad \{x\} = \bigcap_n [x, x + \frac{1}{n})$

$$0 \le \lambda \{x\} \le \lambda \left[x, x + \frac{1}{n} \right] = \frac{1}{n} \Rightarrow \lambda \{x\} = 0 \tag{5}$$

 $\mathbb{Q}-$ счетное объединение одноточечных множеств

2. \mathfrak{M}^m содержит все открытые и замкнцтые множества

Лемма 1.

- (a) $O \subset \mathbb{R}^m$ открыто Тогда $O = \coprod Q_i$, где Q_i — ячейки с рациональными координатами(можно считать Q_i — кубические ячейки, двоичные рациональные координаты)
- (b) Можно считать, что $\overline{Q_i} \subset O$
- (c) E- измеримо, $\lambda E=0$ Тогда $\forall \varepsilon>0$ $E\subset\bigcup Q_i:\ Q_i-$ кубическая ячейка $u\sum\lambda Q_i<\varepsilon$

Примечание. $\forall \varepsilon > 0 \quad \exists (B_i) - \text{шары: } E \subset \bigcup B_i, \ \sum \lambda B_i M \varepsilon$ $Q(x, \frac{R}{\sqrt{m}}) \subset B(x, R) \subset Q(x, R)$ $\left(\frac{2R}{\sqrt{m}}\right)^m \leq \lambda B \leq \lambda Q(x, R) = (2R)^m$

Доказательство

(a) $\forall x \in O$, пусть Q(x) — какая-то ячейка с рациональными координатами, $Q(x) \subset O$ (можно потребовать $\overline{Q(x)} \subset O$; Q — куб; двоично рациональные координаты) $O = \bigcup_{x \in O} Q(x)$ — здесь не более чем счетное множество различных ячеек $\Rightarrow O = \bigcup_{i=1}^{\infty} Q(x_i)$ — сделаем ячейки дизъюнктными

$$Q_1 := Q(x_1) \quad Q(x_2) \setminus Q(x_1) \xrightarrow{\text{CB-BO } \Pi/K} \bigsqcup D_j$$
 (6)

Переобозначим D_j как Q_2, Q_3, \ldots, Q_k

$$Q(x_3) \setminus (\bigsqcup_{i=1}^k Q_i) = \bigsqcup P_l \tag{7}$$

переобозначим P_l , как Q_{k+1}, \ldots, Q_s и так далее.

Можно считать что координаты всех ячеек двоично рациональны

 $\mathbf{B} \coprod Q_i$ — можно подразбить эти ячейки, чтобы они стали кубическими

 $[a_i,b_i)$ — двоично рациональные координаты. $\frac{1}{2^l}$ — самый крупный знаенатель

 $[a_i,b_i]$ — конечное объединение кубических ячеек со стороной $\frac{1}{2^l}$

- (b) уже доказано
- (с) Следует из теоремы о Лебеговском продолжении(п. 5) orall arepsilon > 0 \exists ячейки $P_k \quad E \subset P_k \quad 0 = \lambda E \leq \sum \lambda P_k \leq arepsilon$ $\exists \tilde{P}_k$ — двоично рациональные ячейки: $P_k \subset \tilde{P}_k$ $0 = \lambda E \leq \sum \lambda_k \tilde{P}_k \leq 2\varepsilon$

Можно разбить P_k на конечное число кубов

Определение. \mathfrak{B} — **борелевская** σ **-алгебра** (в \mathbb{R}^m или в метрическом пространстве) минимальная σ -алгебра, которая содержит все открытые множества $\mathfrak{M}^m\supset \mathfrak{B}$

 Π ример. Канторово множество в \mathbb{R} — последовательность множетсв вида:

$$K_0 = [0,1]$$
 $K_1 = [0,\frac{1}{3}] \cup [\frac{2}{3},1]$ $K_2 = [0,\frac{1}{9}] \cup [\frac{2}{9},\frac{1}{3}] \cup [\frac{2}{3},\frac{7}{3}] \cup [\frac{8}{9},1]$

 $\mathfrak{K} = \bigcap K_i$ — измеримо $\lambda \mathfrak{K} = 0$

$$\lambda(K_i) = (\frac{2}{3})^i$$

 $\mathfrak{K} = \{x \in [0,1] | x$ можно записать в троичной системе использую только цифры 0 и $2\}$

При этом \mathfrak{K} — континуум

 \mathfrak{K} — замкнутое

3. ∃ неизмеримые по Лебегу множества(т.е. не принадлежат 𝔐)

$$x,y \in \mathbb{R}$$
 $x \sim y$ если $x-y \in \mathbb{Q}$

 $\mathbb{R}|_{\mathbb{Q}}=A$ — из каждого класса эквивалентности взяли по одной точке. Можно считать $A\subset [0,1]$ Очевидно, что:

$$\bigsqcup_{q \in \mathbb{O}} (A+q) = \mathbb{R} \tag{8}$$

$$\bigsqcup_{q \in \mathbb{Q}} (A+q) = \mathbb{R}$$

$$[0,1] \stackrel{(1*)}{\subset} \bigsqcup_{q \in \mathbb{Q} \cap [-1,1]} (A+q) \stackrel{(2*)}{\subset} [-1,2]$$

$$(9)$$

Верно ли что A измеримо? т.е. $A \in \mathfrak{M}^1$?

Допустим, что да: очевидно $\forall q \ \lambda A = \lambda (A+q)$ (по п.5 Т. о продолжении меры)

из (1*):
$$\lambda[0,1]=1\leq \sum_{q}\lambda(A+q)=\sum_{q}\lambda(A)\Rightarrow \lambda A>0$$
 из (2*): $\lambda((A+q))=\sum_{q}\lambda A\leq \lambda[-1,2]=3\Rightarrow \lambda A=0$ Противречие $\Rightarrow A$ — не измеримо

из
$$(2^*)$$
: $\lambda((A+q)) = \sum_{q} \lambda A \le \lambda[-1,2] = 3 \Rightarrow \lambda A = 0$

- $4. A \in \mathfrak{M}$
 - A ограничено $\Rightarrow \lambda A < +\infty$
 - ullet A- открыто $\Rightarrow \lambda A>0-$ из леммы
 - $\lambda A = 0 \Rightarrow A$ не имеет внутренних точек
- 5. $A \in \mathfrak{M}^m$ измеримое множество

Тогда $\forall \varepsilon > 0$:

- \exists открытое $G_{\varepsilon} \supset A : \lambda(G_{\varepsilon} \setminus A) < \varepsilon$
- \exists замкнутое $F_{\varepsilon} \subset A : \lambda(A \setminus F_{\varepsilon}) < \varepsilon$

Доказательство. (a) λA — конечная

$$\lambda A = \inf\{\sum \lambda P_i | A \subset \bigcup P_i, P_i \in \mathcal{P}\}\$$

$$\forall \varepsilon > 0 \exists P_i \quad \lambda A \leq \sum \lambda P_i \leq \lambda A + \varepsilon, \ A \subset \bigcup P_i$$

Чуть увеличим эти $P_i = [a_i, b_i) \rightarrow (a'_i, b_i) \subset [a'_i, b_i)$

$$\lambda[a_i', b_i) \le \lambda P_i + \frac{\varepsilon}{2^i} \tag{10}$$

$$A \subset \underbrace{\bigcup (a'_i, b_i)}_{G_{2\varepsilon}} \subset \bigcup [a_i, b_i) \tag{11}$$

$$\lambda A \le \lambda G_{2\varepsilon} \le \sum \lambda [a_i', b_i) \le \sum \lambda (P_i + \frac{\varepsilon}{2^i}) \le \lambda A + 2\varepsilon$$
 (12)

(b) $\lambda A = +\infty$ используем σ -конечность

$$\mathbb{R}^m = \bigsqcup_{j=1}^{+\infty} Q_j \tag{13}$$

 $\exists G_{arepsilon,j}$ — открытое $(A \cup Q_j) \subset G_{arepsilon,j}$

$$\lambda(G_{\varepsilon,j} \setminus (A \cup Q_j)) < \frac{\varepsilon}{2^j} \tag{14}$$

$$A = \left| \begin{array}{c} (A \cup Qj) \subset \bigcup G_{\varepsilon,j} = G_{\varepsilon} \end{array} \right. \tag{15}$$

$$\lambda(G_{\varepsilon} \setminus A) \le \sum \lambda(G_{\varepsilon,j} \setminus (A \cup Q_j)) \le \varepsilon \tag{16}$$

$$G_{\varepsilon} \setminus A \subset \bigcup_{j} (G_{\varepsilon,j} \setminus (A \cup Q_j))$$
 (17)

(c) Для F_{ε} переходим к дополнению A^{C} — для него подбираем G_{ε}

 $A^C \subset G_{\varepsilon} \tag{18}$

$$A \supset (G_{\varepsilon})^C =: F_{\varepsilon} \tag{19}$$

$$G_{\varepsilon} \setminus A^C = A \setminus (G_{\varepsilon})^C \tag{20}$$

 $\lambda(G_{\varepsilon} \setminus A^{C}) < \varepsilon \Rightarrow \lambda(A \setminus F_{\varepsilon}) < \varepsilon \tag{21}$