Chapter 1

Progression

1.1 Arithmetic Progression (A.P.)

An arithmetic sequence is $a, a+n, a+2n, ...\infty$ or $t_n=a+(n-1)d$, where a is the first term, d is the common difference, and n is the n^{th} -term.

An arithmetic series is $a + (a + d) + (a + 2d) + ...\infty$.

1.1.1 Sum of A.P. Series

$$S_{n} = a + (a + d) + \dots + (a + \overline{n - 2}d) + (a + \overline{n - 1}d)$$

$$S_{n} = (a + \overline{n - 1}d) + (a + \overline{n - 2}d + \dots + (a + d) + a$$

$$\Rightarrow 2S_{n} = n(2a + \overline{n - 1}d)$$

$$\Rightarrow S_{n} = \frac{n}{2}(2a + \overline{n - 1}d)$$
(1.1)

1.1.2 Important Relation

If the three terms a, b, c are in A.P., then

$$2b = a + c \tag{1.2}$$

1.2 Geometric Progression (G.P.)

An geometric sequence is $a, ar, ar^2, ...\infty$ or $t_n = ar^{n-1}$, where a is the first term, r is the common ratio, and n is the n^{th} -term. An geometric series is $a + ar + ar^2 + ...\infty$.

1.2.1 The Value of 'r'

$$r = \frac{t_2}{t_1} = \frac{t_3}{t_2} = \dots = \frac{t_n}{t_{n-1}}$$
 (1.3)

1.2.2 Sum of a G.P. Series

For a definite G.P. series, where there are n terms in the series, the sum of the series is:

$$S_n = \frac{a|r^n - 1|}{|r - 1|} \tag{1.4}$$

For an infite G.P. series the sum of the series is defined for r < 1. Sum of such a series is:

$$S_{\infty} = \frac{a}{1 - r} \tag{1.5}$$

1.2.3 Important relations

If the three terms a, b, c are in G.P., then:

$$b^2 = ac (1.6)$$

1.3 Harmonic Progression (H.P.)

If a, b, c are terms of an H.P. then $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.

$$\frac{2}{b} = \frac{1}{a} + \frac{1}{c} \tag{1.7}$$

$$\Rightarrow b = \frac{2ac}{a+c} \tag{1.8}$$

1.4 Arithmetico-Geometric Progression (A.G.P.)

Sequence $a, (a+d)r, (a+2d)r^2, ..., (a+\overline{n-1}d)r^{n-1}$, where $a \to \text{first term of A.G.P.}, d \to \text{common difference}$, and $r \to \text{common ratio}$.

1.4.1 Sum of A.G.P.:

For an infinite A.G.P. series, the sum is defined for r < 1:

$$S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2} \tag{1.9}$$

1.5 Special Series

For $n \in \mathbb{N}$

$$1 + 2 + 3 + \dots + (n-1) + n = \frac{n(n-1)}{2}$$
 (1.10)

$$1^{2} + 2^{2} + 3^{2} + \dots + (n-1)^{2} + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
(1.11)

$$1^{3} + 2^{3} + 3^{3} + \dots + (n-1)^{3} + n^{3} = \left[\frac{n(n-1)}{2}\right]^{2}$$
 (1.12)

1.5.1 Riemann Zeta Function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \tag{1.13}$$

1.5.2 Riemann's Infinite Series as an Integration

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=r_1}^{r_2} f(\frac{i}{n}) = \int_{\frac{r_1}{n}}^{\frac{r_2}{n}} f(x) dx \tag{1.14}$$