Notes

Ryan Heslin

2021 - 08 - 26

1.

The least squares solution to

$$3x = 10$$
$$4x = 5$$

is

```
fit <- function(A) {
    (solve(t(A) %*% A) %*% t(A))
}
fitted <- c(3, 4) %*% fit(c(3, 4)) %*% c(10, 5)
t((c(10, 5) - fitted)) %*% c(3, 4)</pre>
```

```
[,1]
[1,] 0
```

I check the solution is orthogonal, jsut to be safe.

7.

Find a projection matrix:

```
A <- cbind(c(1, 1, -2), c(1, -1, 4))
matador::mat2latex(A %*% fit(A))
```

8.

If P projects onto the k-dimensional subspace, then P's image is k, and its rank is the dimension of k.

9.

IF $P = P^T P$, then P is a projection matrix. Projection matrices are both symmetric and respect unit length, so $P^T P = P^2 = P$.

b. P=0 projects into the kernel of the transpose, since 0_n (from the right-hand matrix) resides there.

10.

Say v, w, and b are orthogonal, then $A^TA = I_m$ and A^Tb maps b onto A's column space.

11.

Say P projects onto S and Q onto S^{\perp} . Then P+Q=I because every vector consists of Px+Qx, so (P+Q)x=x PQ=0 because $Px\cdot Qx=0$. Then

$$(P-Q)^2 = I$$

$$P^2 - QP - PQ + Q^2 = I$$

$$P + Q = I$$

$$I = I$$

12.

The kernel of the transpose is

$$\begin{bmatrix} -1 & -1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

```
A <- cbind(c(-1, 1, 0, 0), c(-1, 0, 0, 1))

A %*% fit(A)
```

Since all vectors in V and V^{\perp} are orthogonal, the projection of a vector in one onto the other is 0.

15.

Show the reflection matrix R is involutory:

$$R^{2} = (I - 2P)^{2}$$

= $I^{2} + 4P^{2} - 2PI - 2IP + I^{2}$
= I^{2}
= I

16.

Show $P = uu^T$.

Symmetri is obvious. For idempotence, consider the first element of P^2 :

$$= (u_1^2)^2 + (u_1 + u_2)^2$$

= $u_1^2(u_1^2 + u_2^2)$
= u_1^2

17.

That matrix is 0.5, -0.5, -0.5, 0.5

19.

The row space projection is of course $A^T(AA^T)^{-1}A$

23.

The best fit to a constant function is the average. Then $||\hat{x} - x|| = ||\bar{x} - x|| = \sqrt{\bar{x} - x}$, which is the exact definition of the residual sum of squares.

24.

Quadratic fit:

```
A <- matrix(c(1, -1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 4), nrow = 4)
fit(A) %*% c(2, 0, -3, -5)
```

[,1]

- [1,] 1.00000000000006661338
- [2,] -5.00000000000017763568
- [3,] 0.00000000000004440892

The equation is 1-5t; the coefficient on t^2 is barely significant.