MA3238 Midterm Cheatsheet

by Devansh Shah

Probability Review Definition of Expectation

$$E[X] = \sum_{x \in R_X} x P(X = x)$$

Property of Expectation:

$$E[a+bX] = a+bE[X]$$

Linearity of Expectation does not require independence - it always holds true.

$$E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$$

Minimization of Variance: E[X] is the constant c that minimizes the squared loss $E[(X-c)^2]$.

Variance:

$$Var(X) = E[(X - E(X))^{2}] = E[X^{2}] - (E[X])^{2}$$

Properties of Variance:

$$Var(a+bX) = b^2 Var(X)$$

Moment Generating Function:

$$M_X(t) = E[e^{tX}]$$

There is a 1-1 mapping between X and $M_X(t)$, i.e, the MGF completely describes the distribution of the random variable. Usefulness of MGF:

$$E[X^k] = \frac{d^k}{dt^k} M_X(t)|_{t=0}$$

MGF of Linear Transformation of Variable:

$$M_{aX+b}(t) = e^{bt} M_X(at)$$

Summary of Distributions

	Probability mass function, $p(x)$	Moment generating function, $M(t)$	Mean	Variance
Binomial with parameters n, p ; $0 \le p \le 1$	$\binom{n}{x} p^{x} (1-p)^{n-x}$ $x = 0, 1, \dots, n$	$(pe^t+1-p)^n$	np	np(1-p)
Poisson with parameter $\lambda > 0$	$e^{-\lambda} \frac{\lambda^x}{x!}$	$\exp\{\lambda(e^t - 1)\}$	λ	λ
Geometric with parameter $0 \le p \le 1$	$x = 0, 1, 2, \dots$ $p(1 - p)^{x-1}$ $x = 1, 2, \dots$	$\frac{pe^t}{1-(1-p)e^t}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Negative binomial with parameters r, p ; $0 \le p \le 1$	$\binom{n-1}{r-1}p^r(1-p)^{n-r}$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
	$n = r, r + 1, \dots$			

Joint Distribution

$$p_{X,Y}(x,y) = P(X = x, Y = y) = P(\{\omega : X(\omega) = x \land Y(\omega) = y\})$$

Marginal Distribution

$$p_X(x) = P(X = x) = \sum_y P(X = x, Y = y) = P(\{\omega : X(\omega) = x\})$$

Covariance

$$Cov(X, Y) = E[(X - E(X))(Y - E(Y))] = E[XY] - E[X]E[Y]$$

Correlation

$$Cor(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$$

Variance on linear combination of RVs:

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$$

When X_i 's are independent, then $Var(\sum_{i=1}^n X_i) = \sum_{i=1}^n Var(X_i)$ since the pairwise covariance is zero.

Also, when the RVs are independent,

$$M_{\sum_{i=1}^{n} X_i}(t) = \prod_{i=1}^{n} M_{X_i}(t)$$

That is, under independence of RVs, variance becomes additive and MGF becomes multiplicative.

Conditional Probability

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Multiplication Law

$$p_{X,Y}(x,y) = p_{X|Y}(x|y) \times p_Y(y) = p_{Y|X}(y|x) \times p_X(x)$$

Law of Total Probability

$$p_X(x) = \sum_{y} p_Y(y) p_{X|Y}(x|y)$$

Bayes Theorem

$$p_{Y|X}(y|x) = \frac{p_{X,Y}(x,y)}{p_X(x)} = \frac{p_{X|Y}(x|y) \times p_Y(y)}{\sum_{y} p_Y(y) p_{X|Y}(x|y)}$$

Conditional Independence We say $X \perp Y$ given Z if for any x, y, z:

$$P(X = x, Y = y|Z = z) = P(X = x|Z = z)P(Y = y|Z = z)$$

Note: Independence and Conditional Independence are unrelated.

Law of Iterated Expectation

$$E[X] = E[E(X|Y)]$$

Law of Total Variance

$$Var(X) = E[Var(X|Y)] + Var(E[X|Y])$$

Random Sum: $Y = \sum_{i=1}^{N} X_i$ where X_i 's are i.i.d with mean μ and variance σ^2 , and N is also random. Expectation:

$$E[Y] = \mu E[N]$$

Variance:

$$Var(Y) = \sigma^2 E[N] + \mu Var(N)$$

Moment Generating Function:

$$M_Y(t) = M_N(ln(M_X(t)))$$

Markov Chain

Markovian Property: What happens afterwards t > n is conditionally independent of what happened before t < n given X_n .

Chapman-Kolmogorov Equations for higher order transition matrices:

$$P^{n,n+m+1} = P^{n,k} * P^{k,n+m+1} \quad \forall n < k < n+m+1$$

Stationary MC: Transition Probability Matrix P does not depend on time n.

First Step Analysis

Express the quantity of interest as:

$$a_i = E[\sum_{n=0}^{T} g(X_n)|X_0 = i]$$

for every state i, and see what happens after one-step transitions.

General Solution to Gambler's Ruin

Case 1: When p = 1/2,

$$P(broke) = 1 - \frac{k}{N}$$

$$E[\text{games played}] = k(N-k)$$

Case 2: When $p \neq 1/2$.

P(broke) =
$$1 - \left(\frac{1 - (q/p)^k}{1 - (q/p)^N}\right)$$

$$E[\text{games played}] = \frac{1}{(p-q)} \left[\frac{N(1-(q/p)^k)}{1-(q/p)^N} - k \right]$$

A drunk man will find his home, but a drunk bird may get lost forever.

Classification of States

Accessible: $i \to j \implies \exists m > 0, P_{ij}^{(m)} > 0$

Communication: $i \longleftrightarrow j \implies i \to j \land j \to i$

Communication is an equivalence relation.

Irreducible MC: Only one communication class.

Reducible MC: Multiple communication classes.

Return Probability

$$P_{ii}^{(n)} = P(X_n = i | X_0 = i)$$

If $P_{ii}^{(n)} \to 0$ when $n \to \infty$, then the state i is transient.

First Return Probability

$$f_{ii}^{(n)} = P(X_1 \neq i, X_2 \neq i, \dots, X_{n-1} \neq i, X_n = i | X_0 = i)$$

Relation between return probability and first return probability:

$$P_{ii}^{(n)} = \sum_{k=0}^{n} f_{ii}^{(k)} P_{ii}^{(n-k)}$$

Define f_{ii} as the total probability of revisiting i in the future:

$$f_{ii} = \sum_{n=0}^{\infty} f_{ii}^{(n)} = \lim_{N \to \infty} \sum_{n=0}^{N} f_{ii}^{(n)}$$

A state i is said to be **recurrent** if $f_{ii} = 1$, and **transient** if $f_{ii} < 1$

Note: If i is a recurrent state, it does NOT imply that $P_{ii}^{(n)} \to 1$ as $n \to \infty$.

Number of Revisits

$$N_i = \sum_{i=0}^{\infty} I(X_n = i)$$

Theorem of Number of Revisits

- For transient state,

$$E[N_i|X_0=i] = \frac{f_{ii}}{1-f_{ii}}$$

- For recurrent state,

$$E[N_i|X_0=i]=\infty$$

Number of Revisits and Return Probability:

$$E[N_i|X_0 = i] = \sum_{i=1}^{\infty} P_{ii}^{(n)}$$

Summary of Recurrent and Transient States

$$R \iff f_{ii} = 1 \iff \sum_{n=1}^{\infty} P_{ii}^{(n)} = \infty \iff E[N_i | X_0 = i] = \infty$$

$$T \iff f_{ii} < 1 \iff \sum_{n=1}^{\infty} P_{ii}^{(n)} < \infty \iff E[N_i | X_0 = i] < \infty$$

State in the same communication class are either all recurrent or all transient.

An MC with finite states must have at least one recurrent class.

Long Run Performance

Period: For a state i, let d(i) be the greatest common divisor of $\{n: n \geq 1, P_{ii}^{(n)} > 0\}$. If $\{n: n \geq 1, P_{ii}^{(n)} > 0\}$ is empty (starting from i, the chain will never revisit i), then we define d(i) = 0.

Aperiodic: State *i* is aperiodic \iff d(i) = 1

Periodicity Theorem For a MC, let d(i) be the period of state i, then:

- 1. If i and j can communicate, d(i) = d(j)
- 2. There is an N such that $P_{ii}^{(N*d(i))}>0$, and for any $n\geq N,$ $P_{ii}^{(n*d(i))}>0$
- 3. There is m > 0 such that $P_{ji}^{(m)} > 0$, and when n is sufficiently large, we have $P_{ji}^{(m+nd(i))} > 0$

Regular Markov Chain

A MC with transition probability matrix ${f P}$ is regular if $\exists k>0, \forall i,j,\ P^k_{ij}>0.$

If a MC is irreducible, aperiodic, with finite states, then it is a regular $\overline{\text{MC}}$.

Main Theorem: Suppose P is a regular transition probability matrix with states $S = \{1, 2, ..., N\}$. Then,

- 1. The limit $\lim_{n\to\infty} p_{ij}^{(n)}$ exists. Meaning, as $n\to\infty$, the marginal probability of $P(X_n=j|X_0=i)$ will converge to a finite value.
- 2. The limit does not depend on the initial state, and we write:

$$\pi_j = \lim_{n \to \infty} P_{ij}^{(n)}$$

3. The distribution of all of the π_k is a probability distribution, i.e., $\sum_{k=1}^{N} \pi_k = 1$, and this is the **limiting** distribution

4. The limits $\pi = (\pi_1, \pi_2, \dots, \pi_n)$ are the solution of the system of equations:

$$\pi_j = \sum_{k=1}^{N} \pi_k P_{kj}, \quad j = 1, 2, \dots, N$$

$$\sum_{k=1}^{N} \pi_k = 1$$

In matrix form,

$$\pi P = \pi, \quad \sum_{k=1}^{N} \pi_k = 1$$

5. The limiting distribution π is unique.

Interpretations of π

- π_j is the (marginal) probability that the MC is in state
 j for the long run (regardless of the actual instant of
 time, and the initial state, hence "marginal").
- π gives the limit of \mathbf{P}^n
- π can be seen as the long run proportion of time in every state. That is,

$$E\left[\frac{1}{m}\sum_{k=0}^{m-1}I(X_k=j)|X_0=i\right]\to\pi_j \text{ as } m\to\infty$$

Until time m (for a large value of m), the chain visits state j around $m \times \pi_j$ times.

Irregular Markov Chain

2 possibilities:

- 1. $|S| = \infty$ and $\pi_i = 0$ for all *i* (which means that all the states are transient).
- 2. We find a solution π for $\pi P = \pi$ (the distribution doesn't "move")

Stationary Distribution A distribution $(p_1, p_2, ...)$ on S is called a stationary distribution, if it satisfies for all i = 1, 2, ... that:

$$P(X_n = i) = p_i \implies P(X_{n+1} = i) = p_i$$

Note that if the initial distribution of X_0 is not π , we cannot claim any

For a regular MC, the stationary distribution is also a limiting distribution.

A key observation is that the stationary distribution must have $\pi_i=0$ for all transient states i

Notes from tutorials