

А. Генералът на карнавала

Име на задачата	Генералът на карнавала
Time Limit	1 second
Memory Limit	1 gigabyte

На всеки четири години студентите от Лунд се събират, за да организират карнавала в Лунд. За няколко дни паркът се изпълва с шатри, където се провеждат всякакви празнични дейности.

Човекът, който отговаря за това да се случи, е генералът на карнавала.

Общо са проведени N карнавала, всеки с различен генерал. Генералите са номерирани от 0 до N-1 в хронологичен ред. Всеки генерал i е дал мнението си за това колко добри са били неговите предшественици, като е публикувал класация на генералите $0,1,\ldots,i-1$ в ред от най-добрия до най-лошия.

Следващият карнавал в Лунд ще бъде през 2026 г. Междувременно, всички минали генерали на карнавални ще се събрат, за да си направят групова снимка. Въпреки това би било неудобно, ако генералите i и j (където i < j) се окажат един до друг, ако i е **строго** във втората половина на класацията на j.

Например:

- Ако генерал 4 е дал класацията $3\ 2\ 1\ 0$, тогава 4 може да стои до 3 или 2, но не и до 1 или 0.
- Ако генерал 5 е дал класацията 4 3 2 1 0, тогава 5 може да стои до 4,3 или 2, но не и до 1 или 0. Имайте предвид, че ако един генерал е точно в средата на класацията на друг, то те могат да седят един до друг.

Следната фигура илюстрира пример 1. Тук генерал 5 стои до генерали 2 и 3, а генерал 4 стои само до генерал 2.

Дадени са ви класациите, публикувани от генералите. Вашата задача е да подредите генералите $0,1,\ldots,N-1$ в ред, така че ако i и j са съседни (където i< j), тогава i **не е** във втората половина на класацията на j.

Вход

Първият ред съдържа положителното число N, броят на генералите.

Следващите N-1 реда съдържат класирането. Първият от тези редове съдържа класирането на генерал 1, вторият ред съдържа класирането на генерал 2 и така нататък до генерал N-1. Генерал 0 отсъства, тъй като той не е имал предшественици за класиране.

Класирането на i е списък с i цели $p_{i,0}, p_{i,1}, \ldots, p_{i,i-1}$, в които всяко цяло число от 0 до i-1 се среща точно веднъж.

 $p_{i,0}$ е най-добрият и $p_{i,i-1}$ е най-лошият генерал според генерала i .

Изход

Отпечатайте списък с цели числа, подреждането на генералите $0,1,\dots N-1$, така че за всяка двойка съседни генерали, единият не е точно във втората половина на класацията на другия.

Ако има няколко решения, можете да отпечатате кое да е от тях.

Може да се докаже, че решение винаги съществува.

Ограничения и оценяване

- 2 < N < 1000.
- $0 \leq p_{i,0}, p_{i,1}, \ldots p_{i,i-1} \leq i-1$ за $i=0,1,\ldots,N-1$.

Вашето решение ще бъде тествано върху няколко тестови групи, като всяка група се оценява с определен брой точки. Всяка тестова група се състои от няколко тестови случаи.

За да получите точките за дадена тестова група, трябва решението ви успешно да преминава всички тестови случаи в групата.

Група	Точки	Ограничения	
1	11	$p_{i,0}>p_{i,1}>\ldots>p_{i,i-1}$ за всички i , такива че $1\leq i\leq N-1$	
2	23	$p_{i,0} < p_{i,1} < \ldots < p_{i,i-1}$ за всичкиІ i , такива че $1 \leq i \leq N-1$	
3	29	$N \leq 8$	
4	37	Няма допълнителни ограничения	

Примери

Първият пример отговаря на условието на тестовата група 1. В тази извадка нито генерал 2, нито 3 могат да стоят до генерал 0, както и нито генерал 4, нито 5 могат да стоят до генерали 0 и 1. (Примерният резултат е илюстриран на фигурата по-горе).

Вторият пример съответства на условието на тестовата група 2. В тази извадка генерал 2 не може да стои до генерал 4 не може да стои до генерал 4 не може да стои до генерали 4 и 2.

Третият пример отговаря на условието на тестова група 3. В тази извадка единствените двойки генерали, които не могат да стоят един до друг, са (1,3) и (0,2). Следователно няма конфликти, ако са подредени $3\ 0\ 1\ 2$. Друг възможен отговор е $0\ 1\ 2\ 3$.

Вход	Изход
6 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0	4 2 5 3 1 0
5 0 0 1 0 1 2 0 1 2 3	2 0 4 1 3
4 0 1 0 0 2 1	3 0 1 2