Osztályozás iósága

Üzleti Elemzések Módszertana 2. Előadás: Osztályozás

Kuknyó Dániel Budapesti Gazdasági Egyetem

> 2023/24 2.félév

- Bevezetés
- Osztályozás
- Osztályozás vagy regresszió?
- Osztályozás jósága
- 6 Logisztikus regresszió

- Bevezetés
- Osztályozás
- Osztályozás vagy regresszió?
- Osztályozás jósága
- 6 Logisztikus regresszió

A determinisztikus szemléletmód

A hagyományos szoftverfejlesztési folyamatmodell eljárása:

- Az adott jelenség megfigyelése és adatok rögzítése
- A megfigyelésekre olyan szabályok kidolgozása, amelyek jól leírják azt
- A létrejött szabályrendszer kiértékelése
- Rendszer fejlesztése a hibák alapján
- Iteráció

A gépi tanulás szemléletmód

A gépi tanulás szemléletének folyamatmodellje:

- Adott jelenség megfigyelése és adatok rögzítése
- Gépi tanulási modell tanítása az adatokon a szakterületi tudás segítségével
- Modell kiértékelése
- Hibák elemzése és kiértékelése
- Iteráció

Tanítás automatizálása adatalapúan

Az gépi tanuló modellek tanítása és kiértékelése hosszú távon egy iteratív folyamat már létező keretrendszerekkel, mint az MLOps. Ennek számos területen vannak előnyei:

- Adaptáció az új adatokhoz
- Javuló modell teljesítmény
- Hibák és problémák azonosítása
- Új technológiai fejlődés integrálása
- Skálázhatóság és rugalmasság
- Szakterületi következtetések az elemzések által

Az adatok észszerűtlen hatékonysága

2001-es kutatásukban Michele Blanko és Eric Brill kimutatták, hogy a különböző ML algoritmusok hasonlóan jól teljesítenek a természetes nyelvfelismerés területén mint a hagyományos algoritmusok, ha elég sok adaton tanítják a modelleket. Ahogy ők fogalmaztak:

"Az eredmények azt mutatják, hogy újra kell gondolnunk, mire fordítjuk a pénzünket és erőforrásainkat: algoritmusok fejlesztésére, vagy adatgyűjtésre."

- 1 Bevezetés
- Osztályozás
- 3 Osztályozás vagy regresszió?
- Osztályozás jósága
- 5 Logisztikus regresszió

Osztályozás

Osztályozás

Az osztályozás a felügyelt gépi tanulás egyik alapvető feladata, amelynek célja, hogy megtanuljon egy modellt vagy szabályrendszert egy adott bemeneti adat alapján annak besorolására előre meghatározott kategóriákba vagy csoportokba.

Five Kingdom system classification

Az osztályozó modell feladata, hogy a tanító adathalmaza alapján olyan szabályrendszert hozzon létre, ami képes elszeparálni egymástól az egyedeket.

Amennyiben érkezik egy új adatpont, a modell a saját szabályrendszere segítségével már képes lesz becslést adni annak osztályára vonatkozóan.

Modellalapú osztályozás

Döntési határ

Olyan határérték, amelyet a modell állít be az adatpontok különböző osztályokba való besorolásához.

A határ lehet egy vonal, egy sík vagy akár egy sokdimenziós felület, attól függően, hogy milyen típusú osztályozó modellt használunk és milyen a bemeneti adatok dimenzionalitása.

Az osztályozás fajtái

Bináris osztályozás

A modell két lehetséges osztály közül valamelyikbe sorolja be az egyedeket. Minden egyedhez csakis 1 osztály tartozhat.

Logisztikus regresszió

Multiosztályos osztályozás

Több, mint két lehetséges kategória létezik, amibe az egyedek besorolhatók, ezek közül az egyikbe fog sorolódni az egyed. Minden egyedhez legalább és legfeljebb 1 osztály tartozik.

Az osztályozás fajtái

Multicímkés osztályozás

Minden mintaegyedhez több bináris vagy multicímkés címkekategóriából tartozhat osztály.

Az osztályozás fajtái

Multioutput osztályozás

A multicímkés osztályozás generalizált változata. Egy egyedhez egy multicímkés halmazból több elem is tartozhat.

- 1 Bevezeté
- Osztályozás
- Osztályozás vagy regresszió?
- Osztályozás jósága
- Logisztikus regresszió

Példa: a probléma bemutatása

A következő kis adathalmaz három sakkjátszmának rögzítette az eredményét. Minden meccs esetén rögzítésre kerültek a következő rekordok:

Különbség	Nyertes
200	0
-200	1
300	0

Ebben az esetben az x változó, a **két játékos rangjának különbsége** a fehér és fekete játékos különbségét jelzi, az y célváltozó pedig egy azt a valószínűséget jelenti, hogy **a fehér nyert-e**.

Példa: lineáris predikció

Az adathalmazra egy lineáris regresszor modellt illesztve az eredmény a következő:

Különbség	Nyertes	Predikció
200	0	0.11
-200	1	0.97
300	0	-0.1

Ebben az estben a lineáris modell:

$$\hat{y} = \theta_0 + \theta_1 \cdot x$$

Ahol \hat{y} a modell predikciója a nyertesre vonatkozóan, θ_0 a konstans torzítás, θ_1 a függvény meredeksége és x a két játékos rangjának különbsége.

Az adatpontokra egy lineáris regressziós függvényt illesztve az illesztett modell a következő lesz:

Osztályozás iósága

A lineáris modell nem minden esetben ad racionális predikciót az adathalmazra vonatkozóan.

Negatív valószínűségeket nem értelmezettek!

Éppen ezért ha a modellezés célváltozója egy valószínűség, szükség van arra, hogy az illesztett modell szélsőértéke 0 legyen ha a hely $-\infty$ és 1 ha a hely ∞ .

Osztályozás jósága ●○○

- Osztályozás vagy regresszió?
- Osztályozás jósága
- **(5)** Logisztikus regresszió

Az osztályozás teljesítményének mérése

- Valós pozitív (TP): Pozitív egyed, és annak is van osztályozva
- Valós negatív (TN): Negatív egyed, és annak is van osztályozva
- Hamis pozitív (FP): Negatív egyed, de pozitívnak van osztályozva
- Hamis negatív (FN): Pozitív egyed, de negatívnak van osztályozva

Ennek alapján két fő mutatószám áll elő, amellyel egy osztályozó modellt lehetséges értékelni:

Logisztikus regresszió

Az osztályozás teljesítményének mérése

Ennek alapján két fő mutatószám áll elő, amellyel egy osztályozó modellt lehetséges értékelni:

Pontosság

Megadja, hogy a pozitívnak osztályozott egyedek közül mekkora hányad volt ténylegesen pozitív:

$$P = \frac{TP}{TP + FP}$$

Az osztályozás teljesítményének mérése

Ennek alapján két fő mutatószám áll elő, amellvel egy osztályozó modellt lehetséges értékelni:

Visszahívás

Megadja, hogy az összes pozitív egyed mekkora hányadát osztályozta a modell pozitívnak:

$$R = \frac{TP}{TP + FN}$$

Konfúziós mátrix

A konfúziós mátrix vagy zavarmátrix a statisztikában és gépi tanulásban használatos egy gépi tanulási algoritmus teliesítményének mérésére.

A mátrix segít megérteni, hogy milven hibákat követett el a modell és ezáltal segíti a modell finomhangolását és tovább tanítását.

A mátrix általánosítható tetszőleges címke számra.

- Osztályozás vagy regresszió?
- 4 Osztályozás jósága
- **5** Logisztikus regresszió

Logisztikus regresszió

Gépi tanulási módszer kétosztályos (bináris) kimenetelek előrejelzésére, amely valószínűségek megbecslésére szolgál. A logisztikus regresszió eljárása:

- Adott mintaegyedre annak a valószínűségnek a megbecslése, hogy a modell a pozitív osztályba tartozik-e.
- Ha a becsült valószínűség magasabb mint egy küszöbérték, a becsült osztály pozitív, egyébként negatív.

$$\hat{y} \begin{cases} 0 & ha \ \hat{p} > \theta \\ 1 & ha \ \hat{p} \le \theta \end{cases}$$

Ahol \hat{p} a modell által becsült valószínűség, \hat{y} a becsült osztály és θ a küszöbérték.

A logisztikus függvény a valószínűségek meghecslésére használt modell tínus. A

megbecslésére használt modell típus. A predikció előállításához először az eljárás előállítja z lineáris predikciót:

$$z = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_r x_r$$

Majd ezt behelyettesíti a logisztikus függvénybe:

$$\sigma\left(z\right) = \frac{1}{1 + e^z}$$

Ahol σ a logisztikus függvény és e a természetes logaritmus értéke.

A logisztikus regresszió költségfüggvénye

A logisztikus regresszió célja, hogy magas valószínűséggel osztályozzon pozitív egyedeket és alacsony valószínűséggel osztályozzon negatív egyedeket.

A költségfüggvény egy mintaegyedre:

$$J\left(\theta\right) = \begin{cases} -\log(\hat{p}) & \text{ha } \hat{y}=1\\ -\log(1-\hat{p}) & \text{ha } \hat{y}=0 \end{cases}$$

Az összes mintaegyedre kiszámított költségfüggvény az egyedi költségfüggvények összege:

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \cdot \log(\hat{p}_i) + (1 - y_i) \cdot \log(1 - \hat{p}_i)]$$

A költségfüggvény konvex, de nem létezik a minimum megtalálására zárt formájú számítás. Ennek megfelelően a minimum közelítése iteratív algoritmusokkal lehetséges.

- 1 Bevezetés
- Osztályozás
- 3 Osztályozás vagy regresszió?
- Osztályozás jósága
- 5 Logisztikus regresszió

Írisz adathalmaz

A következő példában a minta adathalmaz Írisz virágokról tartalmaz információkat. Az adathalmazban található oszlopok a virág fajtája (Setosa, Versicolor, Virginica) a csészelevelek hossza és a sziromlevelek hossza.

Iris setosa Iris versicolor Iris virginica

Petal

Sepal

Petal

Petal

Petal

Petal

Petal

Petal

Petal