

Ecological Niche Models

Sebastian Fernandez University of Florida

Ecological Niche

Fundamental Niche

 abiotic conditions a species could potentially occupy in the absence of biotic interactions

Realized Niche

 abiotic conditions that a species can occupy with the presence of biotic interactions Precipitation

Temperature

Ecological Niche Modeling

Fundamental Niche

 abiotic conditions a species could potentially occupy in the absence of biotic interactions

Niche
Modeling
Algorithm

Niche Modeling Algorithms

Generalized Linear Model

Requires absence data

Requires absence data

Maxent

Does not require absence data

Background Points

Maxent only uses presence data and the algorithm compares the locations of where a species has been found to all the environments that are available in the study region.

- Most niche modeling algorithms use presence data to weigh the influence of environmental conditions
- Background points define the available environment
- Background points can include areas where species occur
- Maxent then calculates the ratio between these two probability densities, which gives the relative environmental suitability for presence of a species for each point in the study area.

Adapted from Elith et al. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57.

ENMeval

ENMeval: Partitions

- Cross validation
 - a resampling procedure
 used to evaluate machine
 learning models on a limited
 data sample.
- Model trained on three blocks and tested on the fourth
- Process rotates between blocks

```
eval <- ENMevaluate(
  occs = Galax_urceolata[, c("longitude", "latitude")],
  envs = vifStack,
  tune.args = list(fc = c("L", "Q"), rm = 1:2),
  partitions = "block",
  n.bg = 10000,
  parallel = FALSE,
  algorithm = 'maxent.jar',
}</pre>
```


4-fold cross-validation

ENMeval: Partitions


```
eval <- ENMevaluate(
  occs = Galax_urceolata[, c("longitude", "latitude")],
  envs = vifStack,
  tune.args = list(fc = c("L", "Q"), rm = 1:2),
  partitions = "block",
  n.bg = 10000,
  parallel = FALSE,
  algorithm = 'maxent.jar',
)</pre>
```

Jackknife

ENMeval: Feature Classes


```
eval <- ENMevaluate(
  occs = Galax_urceolata[, c("longitude", "latitude")],
  envs = vifStack,
  tune.args = list(fc = c("L", "Q"), rm = 1:2),
  partitions = "block",
  n.bg = 10000,
  parallel = FALSE,
  algorithm = 'maxent.jar',
)</pre>
```

ENMeval: Regularization Multiplier

Complexity Penalization

RM too high! RM too low!

```
eval <- ENMevaluate(
  occs = Galax_urceolata[, c("longitude", "latitude")],
  envs = vifStack,
  tune.args = list(fc = c("L", "Q"), rm = 1:2),
  partitions = "block",
  n.bg = 10000,
  parallel = FALSE,
  algorithm = 'maxent.jar',
)</pre>
```

ENMeval: Models

Complexity

ENMeval: Model Evaluation

Akaike Information Criterion

$$AIC = -2\ln(L) + 2k$$

$$\downarrow \qquad \qquad \downarrow$$
Maximum likelihood of model # of feature coefficients

```
opt.seq <- results %>%
  filter(!is.na(AICc)) %>%
  filter(AICc == min(AICc)) %>%
  filter(or.10p.avg != 0) %>%
  filter(or.10p.avg == min(or.10p.avg)) %>%
  filter(auc.val.avg == max(auc.val.avg))
```

Low AIC = Better Model Fit + Less Overfitting

ENMeval: Model Evaluation

Area Under the Curve (AUC)

Omission Rate (OM)

ENMeval: Optimal Model

Lowest AIC Lowest OM Highest AUC

ENMeval: Optimal Model

Variable Contribution - Optimal Model

Predicted Suitability (Optimal ENMeval Model)

