

School of Science & Technology

www.city.ac.uk

Systems Architecture

IN1006

Logic Gates and Circuits

Contents

- Boolean Algebra
- The Hardware Hierarchy
- Digital Logic
- Applications of Logic Gates
- Combinational Circuits
- Sequential Circuits

Question?

What do you think the following addition is implemented inside a computer using circuits?

$$X = 347 + 589$$

Boolean Algebra

- Boolean algebra is a mathematical system for the manipulation of variables that can have one of two values.
- In formal logic, these values are "true" and "false."
- In digital systems, these values are "on" and "off," 1 and 0, or "high" and "low."
- Boolean expressions are created by performing operations on Boolean variables.
- Common Boolean operators include AND, OR, and NOT.

AND & OR Operators

A Boolean operator can be completely described using a **truth table**.

The truth tables for the Boolean operators **AND** and **OR** are shown on the right.

- X AND Y is true (1) when both X and Y are true.
- X OR Y is true (1) when at least one of X and Y is true
- The AND operator is also known as a Boolean product.
- The OR operator is the Boolean sum.

X AND Y						
X	Υ	XY				
0	0	0				
0	1	0				
1	0	0				
1	1	1				

A UR Y								
Х	Υ	X+Y						
0	0	0						
0	1	1						
1	0	1						
1	1	1						

Boolean Algebra and Digital Computers

- Digital computers contain circuits that implement Boolean functions.
- The simpler that we can make a Boolean function, the smaller the circuit that will result.
- Simpler circuits are cheaper to build, consume less power, and run faster than complex circuits.

The Hardware Hierarchy

Silicon → Transistors → Logic Gates

Transistors Logic Gates build:

- Combinational Circuits
 - the output depends on the combination of inputs at that point
 - Total disregard to the past state of the inputs.
 - Functional units; adder/subtractor/Logical
- Sequential Circuits
 - outputs depend on a combination of both the present inputs as well as the previous outputs.
 - Memory units

How to build circuits to implement Boolean logic?

Logic Gates

- Boolean functions are implemented in digital computer circuits called gates.
- A gate is an electronic device that produces a result based on two or more input values.
- Gates consist of one to six transistors, but digital designers think of them as a single unit.
- Integrated circuits contain collections of gates suited to a particular purpose.
- Transistor: the basic physical component of a computer.
- Gate: the basic logic element.

Fundamental Logic Gates AND, OR, NOT, NAND, NOR, XOR

Logic Gates

Name	N	TC	-	ANI)	1	IAN	D		OR		į.	NOI	₹		XOI	₹	2	NO	R
Alg. Expr.		Ā		AB			\overline{AB}			A + L	3		$\overline{A+I}$	3		$A \oplus B$	3		$A \oplus B$	3
Symbol	<u>A</u>	>> <u>×</u>	A B) <u> </u>)o—			<u> </u>			> <u>~</u>	15-		<u>></u>			>
Truth	A 0	X	B	A	X	B	A	X 1	B 0	A	X	B	A	X	B	A	X	B	A	X
Table	1	0	0	1	0	0	1 0	1	0	1	1	0	1	0	0	1	1	0	1	0
			1	1	1	1	1	0	1	1	1	ī	1	0	1	1	0	1	1	1

Constructing an AND Gate

- How could an AND gate be built from transistors?
 - Transistors are switches that control the flow of electricity
 - Transistors are controlled by electrical signals from inputs
- AND gate can be built using two switches in series

A representation of a two-input AND gate as switches in serial controlled by inputs A and B.

The AND Gate

- The output of an **AND** gate is **true**,1, if **all** of its inputs are true.
 - Therefore: The output of an AND gate is false, 0, if any of its inputs are false.
- AND is a multiplicative operator
- A AND B can also be written as A-B, or simply AB (so in an expression AND is written as a dot)

The AND Gate: Circuit Symbols

- Truth table describes relationship between inputs and outputs
 - How many entries are there in a truth table with n inputs?
 - For an **n-input gate** the truth table will have 2ⁿ entries.

Ing	outs	Outputs			
Α	В	AB			
0	0	0			
0	1	0			
1	0	0			
1	1	1			
Truth table for 2 input AND					

A three-input AND gate

ı	nput	Outputs			
Α	В	С	ABC		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	0		
1	0	0	0		
1	0	1	0		
1	1	0	0		
1	1	1	1		
Truth table for 3 input					

Constructing an OR Gate

OR gate can be built using two switches in parallel

A representation of a two-input OR gate as switches in parallel controlled by inputs A and B.

The OR Gate

- The output of an **OR** gate is **true**, 1, if **any** of its inputs are true.
 - Therefore: The output of an OR gate is false, 0, if all of its inputs are false.
- OR is an additive operator
- In a Boolean expression, A OR B can also be written as A+B

The OR Gate: Circuit Symbols, Truth Table & Word level

OR applied to 8-bit input words A and B to produce C = A+B

A two-input OR gate

Ing	outs	Outputs			
Α	В	A+B			
0	0	0			
0	1	1			
1	0	1			
1	1	1			
Truth table for 2 input OR					

1	1	0	1	1	1	0	0	\neg word A
0	1	1	0	0	1	0	1	¬ word B
1	1	1	1	1	1	0	1	¬ word C=A

A three-input OR gate

	Input	Outputs					
Α	В	С	A+B+C				
0	0	0	0				
0	0	1	1				
0	1	0	1				
0	1	1	1				
1	0	0	1				
1	0	1	1				
1	1	0	1				
1	1	1	1				
Tru	Truth table for 3 input OR						

Exclusive OR --- XOR Logic, Symbol & Truth Table

- Logical OR is unlike "or" in English
 - "Would you like tea or coffee?"
 - English: "Would you like one of tea or coffee but not both?"
 - Logical: "Would you like tea, coffee or both?"
- English "or" is like Logical Exclusive OR
 - The output of an Exclusive OR (XOR) gate is **true** if **one and only one** of its inputs is true.
 - XOR is written as A ⊕ B

A two-input XOR gate

Inp	outs	Outputs				
Α	В	A XOR B				
0	0	0				
0	1	1				
1	0	1				
1	1	0				
Touch table for Olivery VOD						

Truth table for 2 input XOR

The NOT Gate or Inverter

- NOT gates have only one input
 - NOT gates are also known as **inverters**
- The output of a NOT gate is true if its input is false.
 - Corollary: The output of a NOT gate is false if its input is true.
- In a formula, the logical symbol for negation is a bar over the expression
 - NOT A can be written as A or A'

NOT gate circuit symbol

Inputs	Outputs				
Α	A'				
0	1				
1	0				
Truth table for NOT					

NOT applied to an 8-bit input word A to produce B

0	1	1	0	0	1	0	1	¬ word A
1	0	0	1	1	0	1	0	¬word B

Constructing a NOT Gate

- NOT gate can be built using an inverted switch
 - i.e. a switch that is closed when its input is false and open when its input is true

A representation of a NOT gate as an inverted switch.

The NAND and NOR Gates

- Not logically fundamental: derived from AND, OR, and NOT
 - **NAND** = NOT AND
 - **NOR** = NOT OR
- But they are universal
- I.e., we can build any logic function with NAND/NOR
- Thus, they are widely used gates in real circuits

The NAND and NOR Gates: Symbols

A NAND gate

Inp	uts	Outputs			
Α	В	(A.B)			
0	0	1			
0	1	1			
1	0	1			
1	1	0			
Truth table for 2 input NAND					

A NOR gate

uts	Outputs
В	(A+B)
0	1
1	0
0	0
1	0
	B 0 1

Truth table for 2 input NAND

Exercise @Home

- Q1) Work out how the NAND gate in the previous slide can be either written as (xy)' or x' + y'.
- Q2) Do the same for the NOR gate.
- Q3)Assembly programmers use Boolean operators to speedup program performance. For example:
 - Can you use the XOR gate to clear the value of a storage location? (Hint: Think of A XOR A)
 - The XOR operator can be used to swap the values of two variables A and B

(Hint:
$$A = A XOR B$$
, $B = A XOR B$, $A = A XOR B$)

School of Science & Technology

www.city.ac.uk

Systems Architecture

IN1006

-Dr H. Asad

Combinational Circuits, Example 1

X Y Sum Carry 0 0 0 0 0 1 1 0 1 0 1 0	Inpu	uts	Outp	outs
0 1 1 0 1 0	X	Υ	Sum	Carry
1 0 1 0	0	0	0	0
	0	1	1	0
1 1 0 1	1	0	1	0
	1	1	0	1

As we can see the sum can be found using the XOR operation and the carry using the AND operation.

Example 2: Circuit Diagram: From Circuit to Boolean Expression

What does it do? What does F mean?

From the circuit diagram:

 $P = A \cdot B$

Q= B-C

 $R = C \cdot A$

F= P+Q+R

Substituting P, Q, and R into equation for F:

 $F = A \cdot B + B \cdot C + C \cdot A$

Example 2: Circuit Diagram → Truth table

Inputs			Intermediate values			Output
Α	В	С	P=A·B	Q=B-C	R=C-A	F=P+Q+R
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	1
1	0	0	0	0	0	0
1	0	1	0	0	1	1
1	1	0	1	0	0	1
1	1	1	1	1	1	1

	Inputs			Intermediate values		
х	Y	Z	P=X'	Q=(P-Y)'	R=(X-Z)'	F=(Q.R)'
0	0	0	1	1	1	0
0	0	1	1	1	1	0
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	0
1	0	1	0	1	0	1
1	1	0	0	1	1	0
1	1	1	0	1	0	1

Inputs			Intermediate values			Output
х	Υ	z	P=X'	Q=(P-Y)'	R=(X-Z)'	F=(Q.R)'
0	0	0	1	1	1	0
0	0	1	1	1	1	0
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	0
1	0	1	0	1	0	1
1	1	0	0	1	1	0
1	1	1	0	1	0	1

	Inputs			Intermediate values		
х	Y	z	P=X'	Q=(P-Y)'	R=(X-Z)'	F=(Q.R)'
0	0	0	1	1	1	0
0	0	1	1	1	1	0
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	0
1	0	1	0	1	0	1
1	1	0	0	1	1	0
1	1	1	0	1	0	1

	Inputs			Intermediate values		
х	Y	Z	P=X'	Q=(P-Y)'	R=(X-Z)'	F=(Q.R)'
0	0	0	1	1	1	0
0	0	1	1	1	1	0
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	0
1	0	1	0	1	0	1
1	1	0	0	1	1	0
1	1	1	0	1	0	1

	Inputs			Intermediate values		
х	Y	z	P=X'	Q=(P-Y)'	R=(X-Z)'	F=(Q.R)'
0	0	0	1	1	1	0
0	0	1	1	1	1	0
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	0
1	0	1	0	1	0	1
1	1	0	0	1	1	0
1	1	1	0	1	0	1

Inputs			Intermediate values			Output
х	Y	z	P=X'	Q=(P-Y)'	R=(X-Z)'	F=(Q.R)'
0	0	0	1	1	1	0
0	0	1	1	1	1	0
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	0
1	0	1	0	1	0	1
1	1	0	0	1	1	0
1	1	1	0	1	0	1

Inputs			Interr	Output		
x	Y	z	P=X'	Q=(P-Y)'	R=(X-Z)'	F=(Q.R)'
0	0	0	1	1	1	0
0	0	1	1	1	1	0
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	0
1	0	1	0	1	0	1
1	1	0	0	1	1	0
1	1	1	0	1	0	1

Let's highlight the rows of the truth table to show:

All the 0s for X together.

All the 1s for X together.

Inputs			Intermediate values			Output
х	Y	z	P=X'	Q=(P·Y)'	R=(X-Z)'	F=(Q.R)'
0	0	0	1	1	1	0
0	0	1	1	1	1	0
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	0
1	0	1	0	1	0	1
1	1	0	0	1	1	0
1	1	1	0	1	0	1

Inspecting the truth table:

F=Y when X is false (0)

Inputs			Intermediate values			Output
х	Y	z	P=X'	Q=(P·Y)'	R=(X-Z)'	F=(Q.R)'
0	0	0	1	1	1	0
0	0	1	1	1	1	0
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	0
1	0	1	0	1	0	1
1	1	0	0	1	1	0
1	1	1	0	1	0	1

Inspecting the truth table:

F=Y when X is false (0)

F=Z when X is true (1)

Inputs			Intermediate values			Output
X	Υ	Z	P=X'	Q=(P·Y)'	R=(X-Z)'	F=(Q.R)'
0	0	0	1	1	1	0
0	0	1	1	1	1	0
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	0
1	0	1	0	1	0	1
1	1	0	0	1	1	0
1	1	1	0	1	0	1

Inspecting the truth table:

F=Y when X is false (0)

F=Z when X is true (1)

The circuit acts like a switch connecting the output, F, to one of two inputs, Y or Z, depending on the control input X.

Inputs			Intermediate values			Output
х	Y	z	P=X'	Q=(P·Y)'	R=(X-Z)'	F=(Q.R)'
0	0	0	1	1	1	0
0	0	1	1	1	1	0
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	0
1	0	1	0	1	0	1
1	1	0	0	1	1	0
1	1	1	0	1	0	1

Inspecting the truth table:

F=Y when X is false (0)

F=Z when X is true (1)

The circuit acts like a switch connecting the output, F, to one of two inputs, Y or Z, depending on the control input X.

The circuit is a two-input multiplexer or MUX for short. It selects a single output from several inputs. The particular input chosen for output is determined by the value of the multiplexer's control lines.

- F=(Q⋅R)'
- Q=(Y-P)'
- P=X'
- R=(X·Z)'

Substituting P into Q:

 $Q=(Y\cdot X')'$

Substituting Q and R into F:

 $F=((Y\cdot X')'\cdot (X\cdot Z)')'$

Boolean Expression	Description	Equivalent Switching Circuit	Boolean Algebra Law or Rule
A + 1 = 1	A in parallel with closed = "CLOSED"	A	Annulment
A+0=A	A in parallel with open = "A"	A	Identity
A.1 = A	A in series with closed = "A"		Identity
A.0=0	A in series with open = "OPEN"		Annulment
A + A = A	A in parallel with A = "A"	A	Idempotent
A . A = A	A in series with $A = "A"$	A A	Idempotent
NOT A = A	NOT NOT A (double negative) = "A"		Double Negation
A + A = 1	A in parallel with NOT A = "CLOSED"	Ā	Complement
A. $\overline{A} = 0$	A in series with NOT A = "OPEN"	A Ā	Complement
A+B = B+A	A in parallel with B = B in parallel with A	A	Commutative
A.B = B.A	A in series with B = B in series with A	AB	Commutative
$\overline{A+B} = \overline{A}.\overline{B}$	invert and replace OR with AND		de Morgan's Theorem
$\overline{A.B} = \overline{A} + \overline{B}$	invert and replace AND with OR		de Morgan's Theorem

Shifter Circuit (@home)

- This shifter moves the bits of a nibble (4-bits) one position to the left or right.
- Why is this a useful operator to have in programming?

Combinational Circuits: A simple ALU

- Combinational logic circuits produce a specified output (almost) at the instant when input values are applied.
- ■Example: Arithmetic Logic Unit (ALU)

School of Science & Technology

www.city.ac.uk

Systems Architecture

IN1006

Logic Gates and Circuits: Sequential Circuits

—Dr H. Asad

Combinational circuit vs Sequential (Logic) Circuits

The logic circuits can be characterised as:

- Combinational circuits are memoryless elements.
- Sequential logic elements: these are circuits which remember their previous inputs
- the output of a sequential circuit depends not only on its current inputs but also its previous inputs/outputs
- Sequential circuits are memory elements

Sequential Logic Circuit

A sequential circuit consists of:

- a combinational circuit that transforms a set of inputs into an output
- a sequential logic element that acts as a memory, storing the data to feedback into the combinational circuit.

The data held in **memory** is called the **internal state** of the circuit.

Sequential Circuits

- The previous output of a sequential circuit together with its current input is used to generate the next output and the next state in the circuit.
- To retain their state values, sequential circuits rely on feedback.
- Feedback in digital circuits occurs when an output is **looped** back to the input.
- A simple example of this concept is shown below.
 - If Q is 0 it will always be 0, if it is 1, it will always be 1. Why?

Two Cross-Coupled NOR Gates -- SR flip-flop (latch)

- You can see how feedback works by examining the most basic sequential logic components: the SR flip-flop or SR latch
- The "SR" stands for Set/Reset.
- The internals of an SR latch are shown, along with its block diagram.

 To analyse a sequential circuit, like the cross-coupled NOR gates, we first assume some initial conditions:

e.g. Q=1 and S=R=0.

 Following through the circuit, we see that this is a **stable state** with Q continuing to be 1 after an iteration.

- If we assumed an initial condition with Q=0 and S=R=0, we find that this is also a stable state with Q continuing to be 0 after each iteration.
- What happens if we change the inputs S and R?
- If Q=0 and S=0 while R=1, what happens?

Q' = NOR(0,0) = 1 and Q = NOR(1,1) = 0, so changing R to 1 resets Q from 0 to 0.

- If we assumed an initial condition with Q=0 and S=R=0, we find that this is also a stable state with Q continuing to be 0 after each iteration.
- What happens if we change the inputs S and R?
- If Q=0 and S=0 while R=1, what happens?

Q' = NOR(0,0) = 1 and Q = NOR(1,1) = 0, so changing R to 1 resets Q from 0 to 0.

- If we assumed an initial condition with Q=0 and S=R=0, we find that this is also a stable state with Q continuing to be 0 after each iteration.
- What happens if we change the inputs S and R?
- If Q=0 and S=0 while R=1, what happens?

Q' = NOR(0,0) = 1 and Q = NOR(1,1) = 0, so changing R to 1 resets Q from 0 to 0.

If Q=1 and S=0 while R=1, what happens?

Q' = NOR(0,1) = 0 and Q = NOR(1,0) = 0, so changing **R** to 1 resets **Q** from 1 to 0.

If Q=1 and S=0 while R=1, what happens?

Q' = NOR(0,1) = 0 and Q = NOR(1,0) = 0, so changing **R to 1 resets Q from 1 to 0.**

If Q=1 and S=0 while R=1, what happens?

Q' = NOR(0,1) = 0 and Q = NOR(1,0) = 0, so changing **R** to 1 resets **Q** from 1 to 0.

If Q=1 and S=0 while R=1, what happens?

Q' = NOR(0,1) = 0 and Q = NOR(1,0) = 0, so changing **R** to 1 resets **Q** from 1 to 0.

Question: What happens when S=1, R=0 and Q= 0?

@Home: Can you work out what happens when S=1, R=0 and Q= 1? (These is the **set** part of the SR latch).

Question: What happens when S=1, R=1 and Q=1/Q=0?

- The SR flip-flop actually has three inputs: S, R, and its current output, Q.
- Q(t) means the value of the output at time t. Q(t+1) is the value of Q after the next clock pulse.
- Thus, we can construct a truth table for this circuit, as shown at the right
- Notice the two undefined values. When both S and R are 1, the SR flip-flop is unstable.

	Present State		Next State
S	R	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	undefined
1	1	1	undefined

Clocks

- As the name implies, **sequential logic circuits** require a means by which events can be sequenced.
- State changes are controlled by clocks.
 - A "clock" is a special circuit that sends electrical pulses through a circuit.
- Clocks produce electrical waveforms such as the one shown below.

Clocks and Sequential Circuits

- State changes occur in sequential circuits only when the clock ticks.
- Circuits can change state on the rising edge, falling edge, or when the clock pulse reaches its highest voltage.

The Clocked SR Flip-Flop

 Clocked SR flip-flops only change state when clocked

 An SR flip-flop extended so its inputs R' and S' are derived from the external inputs R and S by AND - ing them with a clock input C

The D-type Flip-Flop

- The D flip-flop has two inputs, D and C.
 - D = data input, C = clock input.
- When a D flip-flop is clocked, the value of the D input is set to its Q output and the output remains constant until the next time is clocked
- The D flip-flop is actually a modified SR flip-flop which removes the non determinism of SR flip flop

The D-type Flip-Flop (cont'd)

When C=0

The circuit is not active so at the next state it continues to store what it had $(\rightarrow Q(t+1) = Q(t))$

When C=1

■ When D=0 then

$$R = 1 (S=0)$$
 and $Q(t+1) = 0$

■ When D =1 then

$$S = 1 (R=0)$$
 and $Q(t+1) = 1$

■ The D flip-flop stores one bit of information → memory

D Flip-Flops Create Registers

- Groups of flip-flops called registers are used as on-chip storage
- This illustration shows a 4-bit register consisting of D flip-flops. You will usually see its block diagram (below) instead.

Summary

- Computer systems are built from a few simple types of circuit elements,
 - Combinational circuits (Logic)
 - Sequential elements (Memory)
 - The circuits in real-world computers are much more complex than the simple circuits we've looked at but they fall into these categories

School of Science & Technology

City, University of London Northampton Square London EC1V 0HB United Kingdom

T: +44 (0)20 7040 5060 E: SST-ug@city.ac.uk www.city.ac.uk/department

