

Изменение пластового давления в скважинах

Отчет по модулю: phase_permeability

Модель успешно оптимизирована.

Параметры относительных фазовых проницаемостей:

- Остаточная водонасыщенность (Swo): 0.4200
- Водонасыщенность при остаточной нефтенасыщенности (Swk): 0.6770
- Конечное значение относительной водопронецаемости (krwk): 0.1350
- Конечное значение относительной нефтепронецаемости (krok): 1.0000
- Показатель степени для воды (nw): 1.0000
- Показатель степени для нефти (no): 0.1000

Отчет по модулю: regression_model

Результаты итеративного подбора регрессионной моделью:

- Среднеквадратичная ошибка (RMSE): 0.308504
- Достигнута требуемая точность (<0.001): Нет

Адаптация на историю добычи не выполнена.

Оптимальные параметры:

- Srw: 0.167952

- krw_max: 0.237760

- Sro: 0.530944

kro_max: 0.232928

Отчет по модулю: pressure calculation

Результаты расчета пластовых давлений с учетом граничных условий:

Общая статистика:

- Количество скважин: 10
- Среднее начальное давление: 223.53 атм
- Среднее рассчитанное давление: 204.47 атм
- Среднее скорректированное давление: 216.14 атм

- Количество скважин с примененными граничными условиями: 6

Пример результатов (первые 5 скважин):

	Well Initial_Pressure Calculated_Pressure			Difference	Adjusted_Pressure	Boundary_Applied
0	Well_1	225.497964	192.959940	32.538023	210.497964	True
1	Well_2	232.287768	229.646369	2.641399	229.646369	False
2	Well_3	200.808220	208.275165	-7.466945	208.275165	False
3	Well_4	228.945491	180.123986	48.821506	213.945491	True
4	Well_5	244.816591	201.835037	42.981555	229.816591	True

Отчет по модулю: pressure_recovery

Результаты расчета времени восстановления давления:

Общая статистика:

- Количество скважин: 10
- Минимальное время восстановления: 0.00 сут.
- Максимальное время восстановления: 0.00 сут.
- Среднее время восстановления: 0.00 сут.

Пример результатов (первые 5 скважин):

Well Permeability Porosity Viscosity Skin_Factor Recovery_Time									
0	Well_1	92.683844	0.194811	6.145380	-1.801009	NaN			
1	Well_2	67.454819	0.192485	3.232127	2.175679	0.000050			
2	Well_3	43.847068	0.115615	1.146280	0.621940	0.000021			
3	Well_4	87.447726	0.104498	1.564508	4.784709	0.000031			
4	Well 5	64.191881	0.183085	9.536665	4.774375	0.000117			

Интерпретация результатов:

- Время восстановления давления зависит от проницаемости, пористости, вязкости флюида и скин-фа
- Скважины с высоким скин-фактором требуют больше времени для восстановления давления.
- Скважины с низкой проницаемостью также требуют больше времени для восстановления давления.

Отчет по модулю: skin_curve

Результаты подбора кривой увеличения SKIN после ГРП:

Оптимальные параметры модели:

- Начальный скин-фактор: -2.7540

- Максимальный скин-фактор: -0.3095

- Скорость роста скин-фактора: 0.012453

Прогноз изменения скин-фактора:

- Через 0 дней: -2.7540

- Через 30 дней: -1.9920

- Через 90 дней: -1.1065

- Через 180 дней: -0.5693

- Через 365 дней: -0.3354

- Через 730 дней: -0.3098

Отчет по модулю: filter reduction

Результаты подбора коэффициента уменьшения работающей части фильтра:

Оптимальные параметры модели:

- Начальный коэффициент: 0.9969

- Минимальный коэффициент: 0.4783

- Скорость уменьшения: 0.002874

Прогноз изменения коэффициента работающей части фильтра:

- Через 0 дней: 0.9969

- Через 90 дней: 0.8787

- Через 180 дней: 0.7875

- Через 365 дней: 0.6600

- Через 730 дней: 0.5420

- Через 1095 дней: 0.5006

- Через 1825 дней: 0.4811

Физическая интерпретация:

- Начальное значение коэффициента близко к 1.0, что соответствует полностью работающему фильтр
- Минимальное значение 0.48 означает, что со временем эффективная длина фильтра уменьшается до 47.8% от начальной длины.

- При текущей скорости уменьшения через 1 год коэффициент составит 0.66, а через 5 лет - 0.48.

Отчет по модулю: fracture_length

Результаты подбора коэффициентов для расчета полудлин трещин:

Оптимальные коэффициенты модели:

- Коэффициент a: 3.5249 ± 0.4386
- Коэффициент b: 0.3233 ± 0.0202

Формула для расчета полудлины трещины:

 $L = 3.5249 * V^0.3233$

где L - полудлина трещины [м], V - объем закачки воды [м³]

Прогноз полудлин трещин для различных объемов закачки:

- Объем 100 м³: полудлина 15.6 м
- Объем 200 м³: полудлина 19.5 м
- Объем 500 м³: полудлина 26.3 м
- Объем 1000 м³: полудлина 32.9 м
- Объем 2000 м³: полудлина 41.2 м
- Объем 5000 м³: полудлина 55.3 м

Примечание:

Трещина авто ГРП имеет иную физику формирования -- описанная методика может использоваться для приблизительного подсчёта эффекта, но будет иметь отклонения для низкодебитных скважин.

Отчет по модулю: production_wells

Результаты расчета добывающих скважин:

Общая статистика по скважинам:

- Количество скважин: 10
- Средний начальный дебит: 57.57 м³/сут
- Средний текущий дебит: 49.87 м³/сут

- Средняя обводненность: 27.60 %

- Среднее пластовое давление: 225.63 атм - Среднее забойное давление: 181.21 атм

- Средний скин-фактор: -0.86

- Средняя эффективность фильтра: 0.72

Пример результатов расчета (первые 5 скважин):

Well Initial_Flow_Rate Current_Flow_Rate Water_Cut Reservoir_Pressure Bottomhole_Pressure Skin_Fact 75.357443 17.923766 0 Well 1 36.518169 217.713017 179.378708 0.536003 1 Well 2 94.563108 27.066521 23.336659 228.801478 198.007920 -0.724690 2 Well 3 72.877897 17.804869 11.732133 217.958836 197.382577 -2.822883 3 Well 4 47.204093 33.113745 36.896935 239.771883 180.624106 -2.109111 4 Well 5 67.701899 68.150407 35.031746 241.444767 182.665336 1.489543

Прогноз добычи на 365 дней:

- Средний дебит жидкости: 33.81 м³/сут - Средний дебит нефти: 22.42 м³/сут - Средняя обводненность: 31.25 %

- Накопленная добыча жидкости: 151470 м³ - Накопленная добыча нефти: 103760 м³

Выводы и рекомендации:

- 1. Результаты расчета показывают текущее состояние добывающих скважин.
- 2. Для оптимизации добычи рекомендуется обратить внимание на скважины с высоким скин-фактором
- 3. Скважины с низкой эффективностью фильтра могут требовать проведения ремонтных работ.
- 4. Прогнозные данные позволяют оценить динамику изменения добычи и обводненности.
