Competição em Equipes

Guilherme Zeus Moura zeusdanmou@gmail.com

1 Instruções

- I. Os problemas tem dificuldades variadas e a ordem foi aleatorizada usando random.org.
- II. Essa competição será feita com três equipes: Alvin (A), Simon (S) e Theodore (T).
- III. Essa competição terá duração de 3 horas e 30 minutos. Começaremos às 15:15 e terminaremos às 18:45. (Se a minha internet voltar, vou conversar com vocês às 18:45.)
- IV. Vocês enviarão as suas submissões para os problemas através desse formulário:

https://forms.gle/aeeKao7s7HecVTXT9

V. Vocês poderão acessar o placar de pontuações e submissões através dessa planilha: (se tudo der certo, ele será atualizado automaticamnte.)

https://docs.google.com/spreadsheets/d/11wVlXJKQ8NdgT22gWyoIn-DPHg_YJTcC3qe2CAPJDbU/edit?usp=sharing

- VI. Para cada problema, uma equipe pode submeter quantas soluções quiser: apenas a última submissão será contabilizada.
 - VI.1. a equipe que enviar a primeira solução correta ganha 10 pontos, menos a quantidade de submissões que enviou anteriormente;
 - VI.2. a equipe que enviar a segunda solução correta ganha 7 pontos, menos a quantidade de submissões que enviou anteriormente;
 - VI.3. a equipe que enviar a terceira solução correta ganha 4 pontos, menos a quantidade de submissões que enviou anteriormente.
- VII. No item anterior, uma equipe nunca ganha menos que 3 pontos numa questão, caso a última submissão esteja correta.
- VIII. Poderão ser disponibilizadas pontuações parciais, dependendo dos conteúdos de todas as submissões.
 - VIII.1. Caso nenhuma equipe tenha enviado uma solução correta, cada equipe pode ganhar no máximo 7 (de 10) pontos em pontuações parciais.
 - VIII.2. Caso uma equipe tenha enviado uma solução correta, cada equipe pode ganhar no máximo 5 (de 7) pontos em pontuações parciais.
 - VIII.3. Caso duas equipes tenham enviado soluções corretas, a terceira equipe pode ganhar no máximo 3 (de 4) pontos em pontuações parciais.

Competição em Equipes

Guilherme Zeus Moura zeusdanmou@gmail.com

Problema 1 (USAMO 1998, 3). Sejam a_0, a_1, \dots, a_n números reais no intervalo $(0, \pi/2)$ tais que

$$\tan\left(a_0 - \frac{\pi}{4}\right) + \tan\left(a_1 - \frac{\pi}{4}\right) + \dots + \tan\left(a_n - \frac{\pi}{4}\right) \ge n - 1.$$

Prove que

$$\tan a_0 \tan a_1 \cdots \tan a_n \ge n^{n+1}.$$

Problema 2 (Putnam 2018, A1). Ache todos os pares ordenados de inteiros positivos (a, b) tais que

$$\frac{1}{a} + \frac{1}{b} = \frac{3}{2018}.$$

Problema 3 (China Girls MO 2018, 2). Sejam D, E pontos nos lados AB, AC do triângulo $\triangle ABC$ tais que $DE \parallel BC$. Sejam O_1, O_2 os circumcentros dos triângulos $\triangle ABE, \triangle ACD$, respectivamente. A reta O_1O_2 encontra AC, AB em P, Q, respectivamente. Se O é o circumcentro do triângulo $\triangle APQ$, prove que AO corta o segmento BC em seu ponto médio.

Problema 4 (Reino Unido 2017, Fase 1). Seja ABC um triângulo com $\angle A < \angle B < 90^{\circ}$ e seja Γ o círculo que passa por A, B e C. As tangentes a Γ por A e C se intersectam em P. As retas AB e PC se intersectam em Q. É dado que

$$[ACP] = [ABC] = [BQC].$$

Prove que $\angle BCA = 90^{\circ}$.

Problema 5 (RMM 2015, 1). Determine se existe uma sequência infinita de inteiros positivos $a_1, a_2, a_3, ...$ tais que a_m e a_n são coprimos se, e somente se, |m-n|=1?

Problema 6 (APMO 2006, 2). Prove que todo inteiro positivo pode ser escrito como soma de um número finito de potências inteiras distintas da razão áurea $\phi = \frac{1+\sqrt{5}}{2}$. Aqui, uma potência inteira de ϕ é um número da forma ϕ^i , onde i é um inteiro (não necessariamente positivo).

Problema 7 (RMM 2011, 1). Prove que existem funções $f, g : \mathbb{R} \to \mathbb{R}$, tais que $f \circ g$ é estritamente decrescente e $g \circ f$ é estritamente crescente.