$\int ext{http://myismail.net}$

Polynômes de Chebyshev

On définit une suite de polynômes $(T_n)_{n\in\mathbb{N}}$, de la manière suivante :

$$T_0(X) = 1, \quad T_1(X) = X, \quad \text{et } \forall n \in \mathbb{N} : T_{n+2}(X) = 2XT_{n+1}(X) - T_n(X)$$

Première partie

- 1. Calculer T_2 , T_3 , T_4 et T_5 .
- 2. Montrer que pour tout entier n:
 - (a) T_n est de degré n et son terme dominant est $2^{n-1}X^n$.
 - (b) T_n a la parité de n.
 - (c) $T_n(1) = 1$.
- 3. Montrer que : $\forall (m,n) \in \mathbb{N}^2, m \leq n \Rightarrow 2T_nT_m = T_{n+m} + T_{n-m}$.
- 4. Prouver que : $\forall (m, n) \in \mathbb{N}^2$, $T_m(T_n(X)) = T_{mn}(X)$. En déduire un isomorphisme entre (\mathbb{N}, \times) et $\{T_n, n \in \mathbb{N}\}$.

Deuxième partie

- 1. Montrer que : $\forall \alpha \in \mathbb{R}, \forall n \in \mathbb{N}, T_n(\cos \alpha) = \cos(n\alpha) \text{ et } T_n(\cosh \alpha) = \cosh(n\alpha).$
- 2. Etablir que, pour tout $n \ge 1$, les zéros de T_n sont réels, distincts deux à deux, qu'ils sont dans]-1,1[, et qu'ils sont donnés par $\forall\,k=0,\ldots,n-1\,:\,x_k=\cos\Bigl(\frac{\pi}{2n}+\frac{k\pi}{n}\Bigr).$
- 3. (a) Montrer que : $\forall \alpha \in]0, \pi[, \forall n \in \mathbb{N}, T'_n(\cos \alpha) = n \frac{\sin(n\alpha)}{\sin \alpha}.$
 - (b) En déduire les extrémums de T_n (avec $n \ge 2$) et en quels points ils sont atteints.
- 4. Pour $n \ge 1$, décomposer la fraction rationnelle $\frac{1}{T_n}$ en éléments simples.
- 5. Montrer que : $\forall n \in \mathbb{N}, (1 X^2)T_n'' XT_n' + n^2T_n = 0.$

Troisième partie

Dans cette partie, P est un polynôme à coefficients réels de monôme dominant λX^n , avec $n \ge 1$.

1. Montrer que $\sup\{|P(x)|, x \in [-1,1]\} \ge \frac{|\lambda|}{2^{n-1}}$

Indication : Raisonner par l'absurde et considérer le polynôme $Q=2^{n-1}P-\lambda T_n.$

2. Plus généralement, montrer que $\forall a, b : \sup\{|P(x)|, a \leq x \leq b\} \geq \left(\frac{b-a}{2}\right)^n \frac{|\lambda|}{2^{n-1}}$ Indication : Utiliser un changement de variable pour se ramener au segment [-1, 1].

2017 - 2018

My Ismail Mamouni

http://myismail.net

Corrigé

Première partie

1. On trouve successivement:

$$\begin{split} T_2(\mathbf{X}) &= 2\mathbf{X} \, T_1(\mathbf{X}) - T_0(\mathbf{X}) = 2\mathbf{X}^2 - 1. \\ T_3(\mathbf{X}) &= 2\mathbf{X} \, T_2(\mathbf{X}) - T_1(\mathbf{X}) = 2\mathbf{X}(2\mathbf{X}^2 - 1) - \mathbf{X} = 4\mathbf{X}^3 - 3\mathbf{X}. \\ T_4(\mathbf{X}) &= 2\mathbf{X} \, T_3(\mathbf{X}) - T_2(\mathbf{X}) = 2\mathbf{X}(4\mathbf{X}^3 - 3\mathbf{X}) - (2\mathbf{X}^2 - 1) = 8\mathbf{X}^4 - 8\mathbf{X}^2 + 1. \\ T_5(\mathbf{X}) &= 2\mathbf{X} \, T_4(\mathbf{X}) - T_3(\mathbf{X}) = 2\mathbf{X}(8\mathbf{X}^4 - 8\mathbf{X}^2 + 1) - (4\mathbf{X}^3 - 3\mathbf{X}) = 16\mathbf{X}^5 - 20\mathbf{X}^3 + 5\mathbf{X}. \end{split}$$

2. (a) Pour tout entier $n \ge 1$, on va montrer la propriété suivante :

 $\mathcal{P}(n)$: "Il existe U_n dans $\mathbb{R}_{n-1}[X]$ tel que $T_n(X) = 2^{n-1}X^n + U_n(X)$ ".

La propriété est vraie si n=1 et n=2, avec $U_1=0$ et $U_2=-1$.

On se donne maintenant $n \ge 1$ et on suppose que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies.

Dans ces conditions:

$$T_{n+2}(X) = 2X T_{n+1}(X) - T_n(X) = 2X(2^n X^{n+1} + U_{n+1}(X)) - 2^{n-1} X^n - U_n(X)$$

= $2^{n+1} X^{n+2} + U_{n+2}(X)$ avec $U_{n+2}(X) = 2X U_{n+1}(X) - 2^{n-1} X^n - U_n(X)$

Puisque $\deg(U_n) \leq n-1 \deg(U_{n+1}) \leq n$, U_{n+2} est bien dans $\mathbb{R}_{n+1}[X]$.

Cela montre la propriété au rang n + 2 et achève la récurrence.

Ainsi, pour tout n de \mathbb{N}^* , T_n est de degré n et de terme dominant $2^{n-1}X^n$.

(b) Il suffit de prouver, pour tout n de \mathbb{N} , la propriété $\mathcal{P}(n): T_n(-X) = (-1)^n T_n(X)$.

Elle est vraie si n = 0 (car T_0 est pair) et si n = 1 (car T_1 est impair).

On se donne $n \ge 0$ et on suppose que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies.

On en déduit :

$$T_{n+2}(-X) = 2(-X)T_{n+1}(-X) - T_n(-X) = 2(-X)(-1)^{n+1}T_{n+1}(X) - (-1)^nT_n(X)$$
$$= (-1)^{n+2}(2XT_{n+1}(X) - T_n(X)) = (-1)^{n+2}T_{n+2}(X)$$

Cela montre la propriété au rang n+2 et achève la récurrence.

Ainsi, pour tout n de \mathbb{N} , le polynôme T_n a la parité de n.

- (c) La relation $T_{n+2}(X) = 2XT_{n+1}(X) T_n(X)$ donne $T_{n+2}(1) = 2T_{n+1}(1) T_n(1)$. Or $T_0(1) = T_1(1) = 1$. Une récurrence évidente donne alors : $\forall n \in \mathbb{N}, T_n(1) = 1$.
- 3. On note $\mathcal{P}(m)$ la propriété : " $\forall n \in \mathbb{N}, \ n \geq m \Rightarrow 2T_nT_m = T_{n+m} + T_{n-m}$ ".

On va montrer la propriété $\mathcal{P}(m)$ par récurrence sur $m \geq 0$.

La propriété $\mathcal{P}(0)$ est évidente (car $T_0 = 1$), et la propriété $\mathcal{P}(1)$ n'est autre que la relation connue entre les polynômes T_{n-1} , T_n et T_{n+1} (car $T_1 = X$).

On se donne $m \ge 0$ et on suppose que $\mathcal{P}(m)$ et $\mathcal{P}(m+1)$ sont vraies.

On a donc les égalités
$$\begin{cases} (E_0): 2T_nT_m = T_{n+m} + T_{n-m} \\ (E_1): 2T_nT_{m+1} = T_{n+m+1} + T_{n-m-1} \end{cases}$$
 valables pour $n \ge m+2$.

On forme alors $2X(E_1) - (E_0)$ et on obtient :

$$2T_n(2XT_{m+1}-T_m)=(2XT_{n+m+1}-T_{n+m})+(2XT_{n-m-1}-T_{n-m}),$$
 c'est-à-dire

 $2T_nT_{m+2} = T_{n+m+2} + T_{n-(m+2)}$, ce qui prouve $\mathcal{P}(m+2)$ et achève la récurrence.

2017-2018

My Ismail Mamouni

http://myismail.net

 $\overline{4}$. On note $\mathcal{P}(m)$ la propriété: $\forall n \in \mathbb{N}, T_m(T_n(X)) = T_{mn}(X)$.

On va montrer la propriété $\mathcal{P}(m)$ par récurrence sur $m \geq 0$.

Les propriétés $\mathcal{P}(0)$ et $\mathcal{P}(1)$ sont évidentes car $T_0 = 1$ et $T_1 = X$.

On se donne $m \ge 0$ et on suppose que $\mathcal{P}(m)$ et $\mathcal{P}(m+1)$ sont vraies.

On substitue $T_n(X)$ à X dans l'égalité $T_{m+2}(X) = 2X T_{m+1}(X) - T_m(X)$.

On en déduit, pour tout n de \mathbb{N} , et en utilisant $\mathcal{P}(m)$ et $\mathcal{P}(m+1)$:

$$T_{m+2}(T_n(X)) = 2T_n(X) T_{m+1}(T_n(X)) - T_m(T_n(X)) = 2T_n(X) T_{(m+1)n}(X) - T_{mn}(X)$$

Mais d'après (3) on a $2T_n T_{(m+1)n} = T_{(m+2)n} - T_{mn}$.

On en déduit $T_{m+2}(T_n(X)) = T_{(m+2)n}(X)$, ce qui prouve $\mathcal{P}(m+2)$ et achève la récurrence.

Ainsi, pour tout m, n de \mathbb{N} , on a : $T_m(T_n(X)) = T_{mn}(X)$.

L'application $\varphi: n \to T_n$ est injective $(n < m \Rightarrow \deg(T_n) < \deg(T_n) \Rightarrow T_n \neq T_n)$.

Elle est donc bijective de \mathbb{N} sur $\mathcal{T} = \{T_n, n \in \mathbb{N}\}.$

De plus elle vérifie $\varphi(mn) = T_{mn} = T_m(T_n) = \varphi(m) \circ \varphi(n)$.

L'application φ est donc un isomorphisme de (\mathbb{N}, \times) sur (\mathcal{T}, \circ) .

Deuxième partie

1. Soit α un réel donné. Posons $u_n = \cos(n\alpha)$.

On va prouver $T_n(u_1) = u_n$ par récurrence sur n. C'est évident si n = 0 et si n = 1.

On suppose que la propriété est vraie aux rangs n et n+1, avec $n \ge 0$.

Alors pour tout $n \ge 0$, et en utilisant la relation $2\cos x \cos y = \cos(x+y) + \cos(x-y)$:

$$T_{n+2}(u_1) = 2u_1T_{n+1}(u_1) - T_n(u_1) = 2u_1u_{n+1} - u_n = (u_{n+2} + u_n) - u_n = u_{n+2}$$

Ce qui démontre la propriété au rang n+2 et achève la récurrence.

Pour l'égalité $T_n(\cosh \alpha) = \cosh(n\alpha)$, c'est exactement la même méthode, en utilisant cette fois la relation $2\cosh x \cosh y = \cosh(x+y) + \cosh(x-y)$.

2. Comme le suggère l'énoncé, on recherche des racines de T_n sur]-1,1[.

Pour tout x de]-1,1[, il existe α dans]0, π [tel que $x=\cos\alpha$.

Alors:
$$T_n(x) = 0 \Leftrightarrow T_n(\cos \alpha) = 0 \Leftrightarrow \cos(n\alpha) = 0 \Leftrightarrow n\alpha = \frac{\pi}{2} [\pi].$$

Cette dernière condition s'écrit $n\alpha = \frac{\pi}{2} + k\pi$, avec $0 \le k < n$ (car $0 < n\alpha < n\pi$).

On a donc obtenu les $x_k = \cos \alpha_k$, avec $\alpha_k = \frac{(2k+1)\pi}{2n}$, et $0 \le k \le n-1$.

Les α_k forment une suite strictement croissante de]0, π [.

Les x_k forment donc une suite strictement décroissante de]-1,1[.

Dans l'intervalle]-1,1[, on a ainsi obtenu n racines distinctes de T_n .

Mais, comme T_n est de degré n, on a obtenu toutes les racines de T_n .

Ainsi, pour tout $n \ge 1$, le polynôme T_n possède n racines réelles distinctes, toutes dans l'intervalle]-1,1[, et données par $x_k=\cos\alpha_k$, avec $\alpha_k=\frac{(2k+1)\pi}{2n}$, et $0 \le k \le n-1$.

My Ismail Mamouni

2017 - 2018

http://myismail.net

3. (a) Pour tout α de \mathbb{R} , et pour tout n de \mathbb{N} , on a $T_n(\cos \alpha) = \cos(n\alpha)$.

On dérive cette égalité par rapport à α et on obtient : $(\sin \alpha)T'_n(\cos \alpha) = n\sin(n\alpha)$.

En particulier, pour tout α de $]0,\pi[$ et n de \mathbb{N} , on a $T'_n(\cos\alpha) = \frac{n\sin(n\alpha)}{\sin\alpha}$.

(b) Pour $n \ge 2$, T_n a n racines distinctes x_k avec $1 > x_0 > x_1 > \cdots > x_{n-1} > -1$.

Par "Rolle", T'_n s'annule sur chacun des n-1 intervalles ouverts $]x_{k+1}, x_k[$.

Mais T'_n est de degré n-1. On obtient ainsi toutes ses racines.

On remarque que si $x'_k = \cos \frac{k\pi}{n}$ (avec $1 \le k \le n-1$) on a $T'_n(x'_k) = \frac{n\sin(k\pi)}{\sin(k\pi/n)} = 0$.

Pour tout k de $\{1,\ldots,n-1\}$, on a $\alpha_{k-1}<\frac{k\pi}{n}<\alpha_k$ donc $x_{k-1}>x_k'>x_k$.

Ainsi $1 > x_0 > x_1' > x_1 > x_2' > x_2 > \dots > x_{n-1}' > x_{n-1} > -1$.

Les réels x'_1, \ldots, x'_n sont donc les n racines de T'_n .

En ces points, T'_n change de signe (racine simple) donc T_n présente un extrémum.

Pour tout k de $\{1,\ldots,n\}$, on a $T_n(x'_k) = T_n\left(\cos\frac{k\pi}{n}\right) = \cos(k\pi) = (-1)^k$.

On a ainsi obtenu tous les extrémums de T_n sur [-1,1].

NB : on savait déjà que $|T_n(x)| \le 1$ sur [-1,1], à cause $T_n(\cos \alpha) = \cos(n\alpha)$ qui peut s'écrire $T_n(x) = \cos(n \arccos x)$ pour tout x de [-1,1].

4. Pour $n \ge 1$, T_n a n racines distinctes x_k avec $1 > x_0 > x_1 > \cdots > x_{n-1} > -1$.

La décomposition en éléments simples de la fraction $\frac{1}{T_n}$ s'écrit donc $\frac{1}{T_n} = \sum_{k=0}^{n-1} \frac{\lambda_k}{X - x_k}$.

On a alors $\lambda_k = \frac{1}{T'_n(x_k)} = \frac{1}{T'_n(\cos \alpha_k)} = \frac{\sin \alpha_k}{n \sin(n\alpha_k)}$.

Or $\sin(n\alpha_k) = \sin\frac{(2k+1)\pi}{2} = (-1)^k \operatorname{donc} \lambda_k = \frac{(-1)^k \sin\alpha_k}{n}$.

On a donc obtenu la décomposition en éléments simples $\frac{1}{T_n} = \frac{1}{n} \sum_{k=0}^{n-1} \frac{(-1)^k \sin \alpha_k}{X - x_k}$

5. Pour tout α de \mathbb{R} , et pour tout n de \mathbb{N} , on a $T_n(\cos \alpha) = \cos(n\alpha)$.

On dérive une première fois par rapport à α et on obtient : $(\sin \alpha)T'_n(\cos \alpha) = n\sin(n\alpha)$.

On dérive une deuxième fois par rapport à α et on obtient :

$$(\cos \alpha)T'_n(\cos \alpha) - (\sin^2 \alpha)T'_n(\cos \alpha) = n^2 \cos(n\alpha).$$

Autrement dit : $\forall n \in \mathbb{R}, \ \forall \alpha \in \mathbb{R}, \ (\cos \alpha) T'_n(\cos \alpha) + (\cos^2 \alpha - 1) T'_n(\cos \alpha) = n^2 T_n(\cos \alpha).$

Quand α parcourt \mathbb{R} , $x = \cos \alpha$ parcourt [-1, 1].

On a donc obtenu $xT_n'(x) + (x^2 - 1)T_n'(x) = n^2T_n(x)$ pour tout n de \mathbb{N} et tout x de [-1, 1].

Mais quand une égalité de fonctions polynomiales est vraie sur [-1,1] (ou plus généralement sur un ensemble infini) alors elle est vraie partout.

On a donc obtenu : $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ (1 - x^2)T_n''(x) - xT_n'(x) + n^2T_n(x) = 0.$

Ou encore (égalité entre polynômes) : $\forall\,n\in\mathbb{N},\;(1-\mathbf{X}^2)T_n''-\mathbf{X}\,T_n'(\mathbf{X})+n^2T_n=0.$

2017-2018

My Ismail Mamouni

http://myismail.net

Troisième partie

1. On se donne P dans $\mathbb{R}_n[X]$, de monôme dominant λX^n , avec $n \geq 1$.

Par l'absurde, on suppose que $\sup\{|P(x)|, x \in [-1,1]\} < \frac{|\lambda|}{2^{n-1}}$.

On considère alors le polynôme $Q = 2^{n-1}P - \lambda T_n$, visiblement dans $\mathbb{R}_n[X]$.

En fait $\deg Q\leqslant n-1$ car $2^{n-1}P$ et λT_n ont deux $2^{n-1}\lambda X^n$ pour terme dominant.

Rappelons que si $x'_k = \cos \frac{k\pi}{n}$ (avec $1 \le k \le n-1$), on a $T_n(x'_k) = (-1)^k$.

Cette égalité est encore vraie si k=0 car alors $x_0'=1$ et on sait que $T_n(0)=1$.

Elle est encore vraie si k = n donc $x'_n = -1$ car $T_n(-1) = (-1)^n T_n(1) = (-1)^n$.

Ainsi on a $T_n(x'_k) = (-1)^k$ pour tout k de $\{0, \ldots, n\}$, avec $x'_k = \cos \frac{k\pi}{n}$.

On a alors $Q(x'_k) = 2^{n-1} \Big(P(x'_k) - \frac{\lambda}{2^{n-1}} (-1)^k \Big).$

Or on sait que $|P(x_k')| < \frac{|\lambda|}{2^{n-1}}$ pour tout k.

Il en résulte que les quantités $Q(x_k')$ sont alternativement strictement positives et strictement négatives. En particulier le polynôme Q s'annule au moins une fois sur chacun des n intervalles $]x'_{k+1}, x'_k[$, avec $0 \le k \le n-1$.

Mais $\deg Q < n$, et on vient de trouve au moins n racines distinctes pour Q.

La seule possibilité est donc Q = 0, c'est-à-dire $P = \frac{\lambda}{2^{n-1}} T_n$.

Mais c'est absurde car cela donne $\sup\{|P(x)|, x \in [-1, 1]\} = \frac{|\lambda|}{2^{n-1}}$.

Conclusion : avec les hypothèses de départ, on a $\sup\{|P(x)|,\ x\in[-1,1]\}\geqslant \frac{|\lambda|}{2^{n-1}}$.

Remarque : on peut choisir $P = T_n$, auquel cas $\lambda = 2^{n-1}$. Dans ce cas, on voit que l'inégalité précédente est en fait une égalité. On peut prouver que cette égalité caractérise le polynôme de Chebyshev T_n parmi tous les polynômes de degré n.

2. On se place cette fois-ci sur [a, b], avec a < b.

On définit un polynôme R de degré n par R(x) = P(t), avec $t = \frac{a+b}{2} + x\frac{b-a}{2}$.

(on voit bien que quand x parcourt [-1,1], t parcourt [a,b]).

R est un polynôme de degré n et dont le terme dominant est $\mu = \lambda \left(\frac{b-a}{2}\right)^n$.

D'après (III.1) on a $\sup\{|R(x)|, x \in [-1, 1]\} \geqslant \frac{|\mu|}{2^{n-1}}$.

Mais $\sup\{|R(x)|, x \in [-1, 1]\} = \sup\{|P(t)|, t \in [a, b]\}.$

On a donc finalement obtenu l'inégalité $\sup\{|P(t)|, a \le t \le b\} \ge \left(\frac{b-a}{2}\right)^n \frac{|\lambda|}{2^{n-1}}$.