Derivação e Integração Numérica

Análise Numérica & Cálculo Numérico Gesil S. Amarante II

Departamento de Ciências Exatas (DCEx) - UESC

Revisando a derivada (definição)

Relembrando o processo do limite

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$$

Derivada progressiva

Conjunto discreto de pontos...
$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

Derivada retardada

Conjunto discreto de pontos...
$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

$$f(x_i) - f(x_{i-1})$$

Conjunto discreto de pontos...
$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Ou ainda Derivada centrada

$$= \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$$

Por Séries de Taylor

$$f(x_{i+1}) = f(x_i) + f'(x)h + \frac{f''(x_i)}{2}h^2 + \cdots$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f''(x_i)}{2}h + O(h^2)$$

Truncando por exclusão dos termos da segunda derivada (e superior),

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} + O(h)$$

Derivada avançada

Subtraindo

$$f(x_{i-1}) = f(x_i) - f'(x_i) + \frac{f''(x_i)}{2!}h^2 - \cdots$$

de

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \cdots$$

obtemos

$$f(x_{i+1}) - f(x_{i-1}) = 2f'(x_i)h + \frac{2f'''(x_i)}{3!}h^3 + \cdots$$

que pode ser reescrita como

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} - \frac{f^{(3)}(x_i)}{3!}h^2 + \cdots$$

 $f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} - O(h^2)$

Derivada centrada

Derivação Numérica

Importante ressaltar que as formas baseadas nas séries de Taylor trazem informações úteis acerca da propagação de erros, tanto no cálculo das derivadas quanto nas integrações, que veremos a seguir.

$$f(x) = f(\tilde{x}) + f'(\tilde{x})(x - \tilde{x}) + \frac{f''(\tilde{x})}{2}(x - \tilde{x})^2 + \cdots$$

 $f(x_{i+2}) = f(x_i) + f'(x_i)(2h) + \frac{f''(x_i)}{2!}(2h)^2 + \cdots$ Da série progressiva com salto 2h

menos $2 \times$ a série com salto h

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \cdots$$

obtemos

$$f(x_{i+2}) - 2f(x_{i+1}) = -f(x_i) + f''(x_i)h^2 + \cdots$$

que pode ser reescrita como

$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2} + O(h) \dots$$

Essa é a derivada segunda diferença dividida finita progressiva.

Fazendo o mesmo tipo de manipulação, podemos obter a versão regressiva e à versão centrada, mais utilizada:

$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2} + O(h^2) \dots$$

Que também pode ser obtida como a "derivada da derivada":
$$\frac{f(x_{i+1}) - f(x_i)}{h} = \frac{f(x_i) - f(x_{i-1})}{h}$$

Integração Numérica: Fórmulas de Newton-Cotes

$$I = \int_{a}^{b} f(x) dx \cong \int_{a}^{b} f_{n}(x) dx$$

onde $f_n(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n$

Fórmulas fechadas ou abertas

Regra do Trapézio

$$I = \int_{a}^{b} f(x) dx \cong \int_{a}^{b} f_{1}(x) dx$$

$$f_1(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

$$I = \int_{a}^{b} \left[f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right] dx$$

$$I = (b-a)\frac{f(a) + f(b)}{2}$$

$$I = \underbrace{h \frac{f(a) + f(b)}{2}}_{\text{Regra do trapézio}} \underbrace{-\frac{1}{12} f''(\xi) h^3}_{\text{Erro de truncamento}}$$

$$E_t = -\frac{1}{12}f''(\xi)(b-a)^3$$

Demonstração do erro teórico na página 335 do livro de Neide Franco

Exemplo

$$f(x) = 0.2 + 25 x - 200 x^2 + 675 x^3 - 900 x^4 + 400 x^5$$

Valor correto da integral é 1,640533.

$$f(0) = 0.2$$

 $f(0,8) = 0.232$ $I = 0.8 \frac{0.2 + 0.232}{42} = 0.1728$

$$E_t = 1,640533 - 0,1728 = 1,467733$$

$$f''(x) = -400 + 4.050x - 10.800x^2 + 8.000x^3$$

Média de uma função num intervalo: $\bar{f} = \int_a^b \frac{f(x)dx}{b-a}$

$$\overline{f}''(x) = \frac{\int_a^b (-400 + 4.050x - 10.800x^2 + 8.000x^3) dx}{0.8 - 0}$$

$$= -60$$

$$E_a = \frac{-1}{12} (-60)(0.8)^3 = 2.56$$

Integração por múltiplos trapézios

$$h = \frac{b - a}{n}$$

$$h = \frac{b-a}{n}$$

$$I = \int_{x_0}^{x_1} f(x) \, dx + \int_{x_1}^{x_2} f(x) \, dx + \dots + \int_{x_{n-1}}^{x_n} f(x) \, dx$$

$$I = h \frac{f(x_0) + f(x_1)}{2} + h \frac{f(x_1) + f(x_2)}{2} + \dots + h \frac{f(x_{n-1}) + f(x_n)}{2}$$

$$I = \frac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right]$$

Integração por múltiplos trapézios

$$I = \underbrace{(b-a)}_{\text{Largura}} \underbrace{\frac{f(x_0) + 2\sum\limits_{i=1}^{n-1} f(x_i) + f(x_n)}{2n}}_{\text{Altura média}}$$

$$E_t = -\frac{(b-a)^3}{12n^3} \sum_{i=1}^n f''(\xi_i)$$

$$\bar{f}'' \cong \frac{\sum_{i=1}^{n} f''(\xi_i)}{n}$$

$$E_a = -\frac{(b-a)^3}{12n^2} \bar{f}''$$

Exemplo

$$f(x) = 0.2 + 25x - 200x^{2} + 675x^{3} - 900x^{4} + 400x^{5}$$

$$\begin{cases}
f(0) = 0.2 \\
f(0.4) = 2.456 \\
f(0.8) = 0.232
\end{cases}$$

$$f(0) = 0.2$$

$$f(0,4) = 2.456$$

$$f(0,8) = 0.232$$

$$I = 0.8 \frac{0.2 + 2(2.456) + 0.232}{4} = 1.0688$$

$$E_a = \frac{(0.8)^5}{12(2)^2}(-60) = 0.64$$

$$E_t = 1.640533 - 1.0688 = 0.57173$$

$$\varepsilon_t = 34.9\%$$

n	h	ı	ε _t (%)
2	0,4	1,0688	34,9
3	0,2667	1,3695	16,5
4 5	0,2	1,4848	9,5
5	0,16	1,5399	6,1
6	0,1333	1,5703	4,3
7	0,1143	1,5887	3,2
8	0,1	1,6008	2,4
9	0,0889	1,6091	1,9
10	0,08	1,6150	1,6

Regras de Simpson

Thomas Simpson 1710-1761

Regra de Simpson de 1/3

$$I = \int_{a}^{b} f(x) dx \cong \int_{a}^{b} f_{2}(x) dx$$

$$I = \int_{x_0}^{x_2} \left[\frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) \right] dx$$

$$+ \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2) dx$$

$$I \cong \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

Regra de Simpson de 1/3

$$I \cong \underbrace{(b-a)}_{\text{Largura}} \underbrace{\frac{f(x_0) + 4f(x_1) + f(x_2)}{6}}_{\text{Altura média}}$$

$$I = \underbrace{\frac{h}{3} \left[f(x_0) + 4f(x_1) + f(x_2) \right]}_{\text{Regra 1/3 de Simpson}} - \underbrace{\frac{1}{90} f^{(4)}(\xi) h^5}_{\text{Erro de truncamento}}$$

$$E_t = -\frac{(b-a)^5}{2.880} f^{(4)}(\xi)$$

Exemplo

$$f(x) = 0.2 + 25x - 200x^{2} + 675x^{3} - 900x^{4} + 400x^{5}$$

$$\begin{cases}
f(0) = 0.2 \\
f(0.4) = 2.456 \\
f(0.8) = 0.232
\end{cases}$$

$$I = 0.8 \frac{0.2 + 4(2.456) + 0.232}{6} = 1.367467$$

$$E_t = 1,640533 - 1,367467 = 0,2730667$$
 $\varepsilon_t = 16,6\%$

$$E_a = \frac{(0.8)^5}{2.880}(-2400) = 0.2730667$$

Aplicação múltipla da regra de 1/3

$$h = \frac{b - a}{n}$$

$$I = \int_{x_0}^{x_2} f(x) \, dx + \int_{x_2}^{x_4} f(x) \, dx + \dots + \int_{x_{n-2}}^{x_n} f(x) \, dx$$

$$I \cong 2h \frac{f(x_0) + 4f(x_1) + f(x_2)}{6} + 2h \frac{f(x_2) + 4f(x_3) + f(x_4)}{6} + \dots + 2h \frac{f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)}{6}$$

$$I \cong (b-a) \underbrace{\int f(x_0) + 4 \sum_{i=1,3,5}^{n-1} f(x_i) + 2 \sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n)}_{\text{Largura}}$$
Altura média

$$E_a = -\frac{(b-a)^5}{180n^4} \bar{f}^{(4)}$$

Exemplo

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

$$f(0) = 0.2$$

$$f(0,2) = 1,288$$

$$f(0,4) = 2,456$$

$$f(0,6) = 3,464$$

$$f(0,8) = 0,232$$

$$I = 0.8 \frac{0.2 + 4(1.288 + 3.464) + 2(2.456) + 0.232}{12} = 1.623467$$

$$E_t = 1,640533 - 1,623467 = 0,017067$$
 $\varepsilon_t = 1,04\%$

$$E_a = -\frac{(0.8)^5}{180(4)^4}(-2.400) = 0.017067$$

Regra de Simpson de 3/8

$$I = \int_{a}^{b} f(x) dx \cong \int_{a}^{b} f_{3}(x) dx$$

$$I \cong \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)]$$

$$I \cong \underbrace{(b-a)}_{\text{Largura}} \underbrace{\frac{f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)}{8}}_{\text{Altura média}}$$

$$E_t = -\frac{3}{80}h^5 f^{(4)}(\xi)$$

$$E_t = -\frac{(b-a)^5}{6.480} f^{(4)}(\xi)$$

$$h = (b - a)/3$$

Exemplo

$$f(x) = 0.2 + 25x - 200x^{2} + 675x^{3} - 900x^{4} + 400x^{5}$$

$$f(0) = 0.2$$

$$f(0,266667) = 1.432724$$

$$f(0,5333333) = 3.487177$$

$$f(0,8) = 0.2$$

$$I \cong 0.8 \frac{0.2 + 3(1.432724 + 3.487177) + 0.232}{8} = 1.519170$$

$$E_t = 1,640533 - 1,519170 = 0,1213630$$
 $\varepsilon_t = 7,4\%$

$$E_a = -\frac{(0.8)^5}{6.480}(-2.400) = 0.1213630$$

Exemplo

$$f(x) = 0.2 + 25x - 200x^{2} + 675x^{3} - 900x^{4} + 400x^{5} \quad n = 5$$

$$\begin{cases} f(0) = 0.2 \\ f(0.16) = 1.29692 \\ f(0.32) = 1.74339 \\ f(0.48) = 3.18601 \end{cases} \quad I_{1} \approx 0.32 \frac{0.2 + 4(1.29692) + 1.74339}{6} \\ f(0.64) = 3.18193 \\ f(0.8) = 0.232 \end{cases}$$

$$I_{2} \approx 0.48 \frac{1.74339 + 3(3.18601 + 3.18193) + 0.232}{8} = 1.264754$$

$$I \approx I_{1} + I_{2} = 0.3803237 + 1.264754 = 1.645077$$
Regra de Simpson de 3/8

 $E_t = 1,640533 - 1,645077 = -000454383$

 $\varepsilon_t = -0.28\%$

Fórmulas fechadas de Newton-Cotes de mais alta ordem

Segmentos (<i>n</i>)	Pontos	Nome	Fórmula	Erro de Truncamento
1	2	Regra do trapézio	$(b-a) \frac{f(x_0) + f(x_1)}{2}$	− (1/12)h³f″(ξ)
2	3	Regra 1/3 de Simpson	$(b-a) \frac{f(x_0) + 4f(x_1) + f(x_2)}{6}$	- (1/90)h ⁵ f ⁽⁴⁾ (ξ)
3	4	Regra 3/8 de Simpson	$(b-a) \frac{f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)}{8}$	$-(3/80)h^5f^{(4)}(\xi)$
4	5	Regra de Boole	$(b-a) \frac{7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4)}{90}$	– (8/945)h ⁷ f ⁽⁶⁾ (ξ)
5	6		$(b-a) \frac{19f(x_0) + 75f(x_1) + 50f(x_2) + 50f(x_3) + 75f(x_4) + 19f(x_5)}{288}$	<u> </u>

Integração de funções

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

A integração da função acima usando dois métodos diferentes tem o erro relativo diminuído conforme aumentamos o número de pontos no mesmo intervalo (de forma dependente do método empregado) até chegarmos a um limite em que os erros gerados pela proximidade dos pontos (o que depende do dispositivo mas eventualmente vai acontecer) se tornam dominantes e o aumento no número de pontos deixa de ser uma medida eficaz.

Extrapolação de Richards

$$I = I(h) + E(h)$$

$$I(h_1) + E(h_1) = I(h_2) + E(h_2)$$

$$E \cong -\frac{b-a}{12}h^2\bar{f}''$$

$$\frac{E(h_1)}{E(h_2)} \cong \frac{h_1^2}{h_2^2}$$

$$\frac{E(h_1)}{E(h_2)} \cong \frac{h_1^2}{h_2^2}$$

$$E(h_1) \cong E(h_2) \left(\frac{h_1}{h_2}\right)^2$$

$$I(h_1) + E(h_2) \left(\frac{h_1}{h_2}\right)^2 \cong I(h_2) + E(h_2)$$

$$E(h_2) \cong \frac{I(h_1) - I(h_2)}{1 - (h_1/h_2)^2}$$

Extrapolação de Richards

$$I = I(h_2) + E(h_2)$$

$$I = I(h_2) + E(h_2)$$

$$I \cong I(h_2) + \frac{1}{(h_1/h_2)^2 - 1} [I(h_2) - I(h_1)]$$

Para
$$h_1 = 2h_2$$
:

$$I \cong I(h_2) + \frac{1}{2^2 - 1} [I(h_2) - I(h_1)] = \frac{4}{3} I(h_2) - \frac{1}{3} I(h_1)$$

Para
$$h_1 = 4h_2$$
:

$$I = I(h_2) + \frac{1}{15} [I(h_2) - I(h_1)] = \frac{16}{15} I(h_2) - \frac{1}{15} I(h_1)$$

Extrapolação de Richards

Usando como base as integrações por trapézios, com 1,2 e 4 segmentos:

_			
Segmentos	h	Integral	ε _t , %
1	0,8	0,1728	89,5
2	0,4	1,0688	34,9
4	0,2	1,4848	9,5
1		1	
$I \cong \frac{4}{3}$	1,0688) —	$\frac{1}{5}(0,1728) = 1,3$	367467
$I \cong \frac{4}{3}$	1,0688) —	$\frac{1}{3}(0,1728) = 1,3$	367467
1	1		
1	1	$\frac{1}{3}(0,1728) = 1,3$ $(1,0688) = 1,6$	

 $I = \frac{4}{3}I(h_2) - \frac{1}{3}I(h_1)$

$$E_t = 1,640533 - 1,623467 = 0,017067 (\varepsilon_t = 1,0\%).$$

$$I = \frac{16}{15}I(h_2) - \frac{1}{15}I(h_1) \qquad I = \frac{16}{15}(1,623467) - \frac{1}{15}(1,367467) = \boxed{1,640533}$$

Regra de Integração de Romberg

$$I_{j,k} \cong \frac{4^{k-1}I_{j+1,k-1} - I_{j,k-1}}{4^{k-1} - 1}$$

$$I_{1,2} \cong \frac{4I_{2,1} - I_{1,1}}{3}$$

Quadratura de Gauss

$$I \cong (b-a) \frac{f(a) + f(b)}{2}$$

$$I \cong c_0 f(a) + c_1 f(b)$$

$$c_0 + c_1 = \int_{-(b-a)/2}^{(b-a)/2} 1 \, dx$$

$$-c_0 \frac{b-a}{2} + c_1 \frac{b-a}{2} = \int_{-(b-a)/2}^{(b-a)/2} x \, dx$$

$$c_0 + c_1 = b - a$$

$$-c_0 \frac{b-a}{2} + c_1 \frac{b-a}{2} = 0 \quad c_0 = c_1 = \frac{b-a}{2}$$

$$I = \frac{b-a}{2}f(a) + \frac{b-a}{2}f(b)$$

Quadratura de Gauss

Dedução da Fórmula de Gauss-Legendre de Dois Pontos

$$c_0 f(x_0) + c_1 f(x_1) = \int_{-1}^{1} 1 \, dx = 2$$

$$c_0 f(x_0) + c_1 f(x_1) = \int_{-1}^1 x \ dx = 0$$

$$c_0 f(x_0) + c_1 f(x_1) = \int_{-1}^1 x^2 dx = \frac{2}{3}$$

$$c_0 f(x_0) + c_1 f(x_1) = \int_{-1}^1 x^3 dx = 0$$

$$c_0 = c_1 = 1$$

 $x_0 = -\frac{1}{\sqrt{3}} = -0,5773503...$

$$x_1 = \frac{1}{\sqrt{3}} = 0,5773503\dots$$

$$I \cong c_0 f(x_0) + c_1 f(x_1)$$

$$I \cong f\left(\frac{-1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$

Quadratura de Gauss (mudança de variáveis)

$$x = a_0 + a_1 x_d$$

$$a = a_0 + a_1(-1)$$

$$b = a_0 + a_1(1)$$

$$a_0 = \frac{b+a}{2}$$

$$a_1 = \frac{b-a}{2}$$

$$x = \frac{(b+a) + (b-a)x_d}{2}$$
 $dx = \frac{b-a}{2} dx_d$

$$dx = \frac{b-a}{2} \, dx_d$$

Exemplo

$$f(x) = 0.2 + 25x - 200x^{2} + 675x^{3} - 900x^{4} + 400x^{5}$$

$$\begin{cases} x = 0.4 + 0.4x_{d} \\ dx = 0.4 dx_{d} \end{cases}$$

$$\int_0^{0.8} (0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5) \, dx$$

$$= \int_{-1}^{1} \left[0.2 + 25(0.4 + 0.4x_d) - 200(0.4 + 0.4x_d)^2 + 675(0.4 + 0.4x_d)^3 - 900(0.4 + 0.4x_d)^4 + 400(0.4 + 0.4x_d)^5 \right] 0.4 dx_d$$

$$f(x_d) = [0,2 + 25 (0,4+0,4x_d) - 200 (0,4+0,4x_d)^2 + 675 (0,4+0,4x_d)^3 - 900 (0,4+0,4x_d)^4 + 400 (0,4+0,4x_d)^5]0,4$$

$$I \cong f\left(\frac{-1}{\sqrt{3}}\right) + f\left(\frac{-1}{\sqrt{3}}\right)$$

Erro de -11,1%

Ordens mais altas (mais pontos)

Mesmo caso para terceira ordem, ver tabela a lado:

I = 0.55555556 f(-0.7745967)

+ 0,8888889 f(0)

+ 0,5555556 f(0,7745967)

= 0.281301290+ 0.872444444+ 0.485987599 =**1.64053334** exato.

Pontos	Fatores de Peso	Argumentos da Função	Erro de Truncamento
2	$c_0 = 1,0000000$ $c_1 = 1,0000000$	$x_0 = -0.577350269$ $x_1 = 0.577350269$	$\cong f^{(4)}(\xi)$
3	$c_0 = 0,5555556$ $c_1 = 0,8888889$ $c_2 = 0,5555556$	$x_0 = -0.774596669$ $x_1 = 0.0$ $x_2 = 0.774596669$	$\cong f^{(6)}(\xi)$
4	$c_0 = 0.3478548$ $c_1 = 0.6521452$ $c_2 = 0.6521452$ $c_3 = 0.3478548$	$x_0 = -0.861136312$ $x_1 = -0.339981044$ $x_2 = 0.339981044$ $x_3 = 0.861136312$	$\cong f^{(8)}(\xi)$
5	$c_0 = 0.2369269$ $c_1 = 0.4786287$ $c_2 = 0.5688889$ $c_3 = 0.4786287$ $c_4 = 0.2369269$	$x_0 = -0.906179846$ $x_1 = -0.538469310$ $x_2 = 0.0$ $x_3 = 0.538469310$ $x_4 = 0.906179846$	≅ <i>f</i> ⁽¹⁰⁾ (<i>ξ</i>)
6	$c_0 = 0,1713245$ $c_1 = 0,3607616$ $c_2 = 0,4679139$ $c_3 = 0,4679139$ $c_4 = 0,3607616$ $c_5 = 0,1713245$	$x_0 = -0.932469514$ $x_1 = -0.661209386$ $x_2 = -0.238619186$ $x_3 = 0.238619186$ $x_4 = 0.661209386$ $x_5 = 0.932469514$	≃f ⁽¹²⁾ (<i>ξ</i>)

Polinômios Ortogonais

Propriedade que define os polinômios ortogonais:

Seja $\phi_i(x)$ polinômios ortogonais quaisquer de ordem i:

$$\begin{cases} e & (\phi_i(x), \phi_j(x)) = 0 , \text{ para } i \neq j , \\ (\phi_i(x), \phi_i(x)) \neq 0 , \text{ para } \phi_i \neq 0 , \end{cases}$$

Considerando o produto escalar como

$$(f,g) = \int_a^b \omega(x) f(x) g(x) dx$$

com $\omega(x) \ge 0$ e contínua em [a, b], onde $\omega(x)$ é a função peso.

Principais Polinômios Ortogonais

Polinômios de Legendre

$$\omega(x) = 1$$

$$\omega(x) = 1$$
 $(f,g) = \int_{-1}^{1} f(x) g(x) d(x),$

Estes foram os usados na quadratura de Gauss nos slides anteriores

Polinômios de Tchebyshev

$$\omega(x) = \frac{1}{\sqrt{1 - x^2}}$$

$$\omega(x) = \frac{1}{\sqrt{1 - x^2}} \qquad (f, g) = \int_{-1}^{1} \frac{1}{\sqrt{1 - x^2}} f(x) g(x) dx ,$$

Polinômios de Laguerre

$$\omega(x) = e^{-x}$$

$$\omega(x) = e^{-x}$$
 $(f,g) = \int_0^\infty e^{-x} f(x) g(x) dx,$

Polinômios de Hermite

$$\omega(x) = e^{-x^2}$$

$$\omega(x) = e^{-x^2}$$
 $(f,g) = \int_{-\infty}^{\infty} e^{-x^2} f(x) g(x) dx$

Polinômios de Tchebyshev

TABELA 2 $\int_{-1}^{1} \ \left(1-x^2\right)^a f(x) dx$

x_i	a = -1/2	A_i
0.7071067811	N = 2	(1)0.1570796326
0.8660254037 0.00000000000	N = 3	(1)0.1047197551 (1)0.1047197551
0.9238795325 0.3826834323	N = 4	0.7853981633 0.7853981633
0.9510565162 0.5877852522 0.000000000000	N = 5	0.6283185307 0.6283185307 0.6283185307
0.9659258262 0.7071067811 0.2588190451	N = 6	0.5235987755 0.5235987755 0.5235987755
0.9749279121 0.7818314824 0.4338837391 0.00000000000	N = 7	0.4487989505 0.4487989505 0.4487989505 0.4487989505
0.9807852804 0.8314696123 0.5555702330 0.1950903220	N = 8	0.3926990816 0.3926990816 0.3926990816 0.3926990812

Polinômios de Laguerre

TABELA 3 $\int_0^\infty \ e^{-x} f(x) dx$

x_i 0.5857864376 (1)0.3414213562	N = 2	$A_i \\ 0.8535533905 \\ 0.1464466094$
0.4157745567 (1)0.2294280360 (1)0.6289945082	N = 3	0.7110930099 0.2785177335 (-1)0.1038925650
0.3225476896 (1)0.1745761101 (1)0.4536620296 (1)0.9395070912	N = 4	0.6031541043 0.3574186924 (-1)0.3888790851 (-3)0.5392947055
0.2635603197 (1)0.1413403059 (1)0.3596425771 (1)0.7085810005 (2)0.1264080084	N = 5	0.5217556105 0.3986668110 (-1)0.7594244968 (-2)0.3611758679 (-4)0.2336997238
0.2228466041 (1)0.1188932101 (1)0.2992736326 (1)0.5775143569 (1)0.9837467418 (2)0.1598297398	N = 6	0.4589646739 0.4170008307 0.1133733820 (-1)0.1039919745 (-3)0.2610172028 (-6)0.8985479064

Polinômios de Hermite

TABELA 4 $\int_{-\infty}^{\infty} e^{-x^2} f(x) dx$

x_i	N = 2	A_i
0.7071067811		0.8862269254
(1)0.1224744871 0.000000000000	N = 3	0.2954089751 (1)0.1181635900
	N = 4	
(1)0.1650680123		(-1)0.8131283544
0.5246476323		0.8049140900
(1)0.2020182870 0.9585724646 0.00000000000	N = 5	(-1)0.1995324205 0.3936193231 0.6453087204
(1)0.2350604973 (1)0.1335849074 0.4360774119	N = 6	(-2)0.4530009905 0.1570673203 0.7246295952
	N = 7	
(1)0.2651961356		(-3)0.9717812450
(1)0.1673551628		(-1)0.5451558281
0.8162878828		0.4256072526
0.0000000000		0.8102646175
(1)0.2930637420 (1)0.1981656756 (1)0.1157193712 0.3811869902	N = 8	(-3)0.1996040722 (-1)0.1707798300 0.2078023258 0.6611470125

Exemplo:

Polinômios de Tchebyshev:

$$\omega(x) = \frac{1}{\sqrt{1-x^2}}$$

$$\omega(x) = \frac{1}{\sqrt{1-x^2}} \int_{-2}^{2} \frac{t^3 + 2t^2}{4\sqrt{4-t^2}} dt = \int_{-1}^{1} \frac{f(x)dx}{\sqrt{1-x^2}}$$

$$= \int_{-1}^{1} \frac{f(x)dx}{\sqrt{1-x^2}}$$

Fazendo a mudança de variáveis para limites -1 e 1:

$$t=2x e dt=2dx$$

$$\int_{-2}^{2} \frac{t^3 + 2t^2}{4\sqrt{4 - t^2}} dt = 2 \int_{-1}^{1} \frac{x^3 + x^2}{\sqrt{1 - x^2}} dx.$$

Fazendo 2n + 1 = 3 obtemos que n = 1, ou seja, devemos tomar 2 pontos. Da tabela 2, com N = 2, obtemos:

$$x_0 = -0.7071$$
, $x_1 = 0.7071$, $A_0 = A_1 = 1.5708$

$$f(x_0) = (-0.7071)^3 + (-0.7071)^2 = 0.1464$$
, $f(x_1) = (0.7071)^3 + (0.7071)^2 = 0.8535$

$$\int_{2}^{2} \frac{t^{3} + 2t^{2}}{4\sqrt{4 - t^{2}}} dt = 2 \times 1.5708 (0.1464 + 0.8535) = 3.1413.$$