Blockchains & Cryptocurrencies

Crypto Background

Instructors: Matt Green & Abhishek Jain Johns Hopkins University - Spring 2023

This lecture

Crypto background
hash functions
random oracle model
digital signatures
... and applications

Cryptographic Hash Functions

Hash function

- takes a string of arbitrary length as input.
- fixed-size output (i.e., hash function "compresses" the input)
- efficiently computable

Hash function

- takes a string of arbitrary length as input
- fixed-size output (i.e., hash function "compresses" the input)
- efficiently computable

Security properties:

- Collision resistance
- Preimage resistance (one-way)

Property I: Collision resistance

What's a collision?

Property I: Collision resistance

Do collisions exist in common hash functions?

Collisions do exist ...

... but can a real-world adversary find them?

Property I: Collision resistance

No <u>real-world adversary</u> can find x and y such that x := y and H(x) = H(y)

How to find a collision (for 256 bit output)

- try 2¹³⁰ randomly chosen inputs
- 99.8% chance that two of them will collide

How to find a collision (for 256 bit output)

- try 2130 randomly chosen inputs
- 99.8% chance that two of them will collide

This works no matter what H is, but it takes too long to matter

If a computer calculates 10,000 hashes/sec, it would take 10²⁷ years to compute 2¹²⁸ hashes

How to find a collision (for 256 bit output)

- try 2130 randomly chosen inputs
- 99.8% chance that two of them will collide

This works no matter what H is, but it takes too long to matter

If a computer calculates 10,000 hashes/sec, it would take 10²⁷ years to compute 2¹²⁸ hashes

Is there a faster way to find collisions?

- For some possible H's, yes.
- For others (like SHA-256), we don't know of one.

Is there a faster way to find collisions?

- For some possible H's, yes.
- For others (like SHA-256), we don't know of one.

Provably secure collision-resistant hash functions can be constructed based on "hard" number-theoretic problems.

Defining Collision Resistance

- Real-world adversaries
 - o In practice, everyone has finite resources
 - o Therefore, reasonable to model a real-world adversary as such an entity
 - o However, we do not make any assumptions about the adversarial strategy. They can use their resources in any way

Formally:

A probabilistic polynomial-time (PPT) algorithm

Defining Collision Resistance...

 Collision Resistance (informal): A hash function H is collision-resistant if for all PPT adversaries A,

```
Pr[A \text{ outputs } x,y \text{ s.t. } x!=y \text{ and } H(x)=H(y)]
= "very small"
```

Defining Collision Resistance...

• Collision Resistance (informal): A hash function H is collision-resistant if for all PPT adversaries A,

```
Pr[A \text{ outputs } x,y \text{ s.t. } x!=y \text{ and } H(x)=H(y)]
= "very small"
```

- "Very small" captured via a function that tends to 0.
- Formal definition: Modern Cryptography (601.441/641)

Application: Hash as message digest

If we know H(x) = H(y), and H is collision resistant it's safe to assume that x = y.

To recognize a file that we saw before, just remember its hash.

Useful because the hash is small.

Property 2: Pre-image Resistance

Intuition: Given H(x), no efficient adversary can find x, except with very small probability

Property 2: Pre-image Resistance

Intuition: Given H(x), no efficient adversary can find x, except with very small probability

<u>Problem</u>: What if input space of x is very small, or some inputs are much more likely than others?

Property 2: Pre-in This definition is useless in this setting. How can we specify a meaningful version of the definition?

Intuition: Given H(very small proba

<u>Problem</u>: What if input space of x is very small, or some inputs are much more likely than others?

Defining Preimage Resistance

 Preimage Resistance: A hash function H is preimageresistant if for all PPT adversaries A,

$$Pr[x \leftarrow \{0,1\}^k, A(H(x)) \text{ outputs } x' \text{ s.t. } H(x') = H(x)] = small$$

x is drawn from uniform distribution over {0,1}k for some sufficiently large k

Preimage Resistance (contd.)

- If x is drawn from the uniform distribution, then inverting H(x) is hard
- But what if x is drawn from <u>low-entropy</u> distribution?

Preimage Resistance (contd.)

- If x is drawn from the uniform distribution, then inverting H(x) is hard
- But what if x is drawn from <u>low-entropy</u> distribution?
- Can append a random string r to x and then compute $H(r \mid x)$ to prevent enumeration attacks

Preimage Resistance (contd.)

- If x is drawn from the uniform distribution, then inverting H(x) is hard
- But what if x is drawn from <u>low-entropy</u> distribution?
- Can append a random string r to x and then compute $H(r \mid x)$ to prevent enumeration attacks

Collision Resistance vs Preimage Resistance

<u>Theorem</u>: Collision resistance implies preimage resistance if the hash function is sufficiently compressing

Application: Commitment

Want to "seal a value in an envelope", and "open the envelope" later.

Commit to a value, reveal it later.

Commitment Schemes

```
(com, key) := commit(msg)
match := verify(com, key, msg)
```

```
To seal msg in envelope:
```

```
(com, key) := commit(msg) -- then publish com
```

To open envelope:

```
publish key, msg anyone can use verify() to check validity
```

Commitment Schemes

```
(com) ← commit(msg; key)
match ← verify(com, key, msg)
```

Security properties:

• Hiding: Given *com*, no PPT adversary can find* *msg*

* Except with very small probability

Commitment Schemes

```
(com) ← commit(msg; key)
match ← verify(com, key, msg)
```

Security properties:

- Hiding: Given *com*, no PPT adversary can find* *msg*
- Binding: No PPT adversary can find* (msg, key) != (msg',key')
 such that verify(commit(msg; key), key',msg') == true

^{*} Except with very small probability

Commitment Schemes from Hash Functions

```
commit(msg; key) \rightarrow (H(key \mid msg))

where key is a random 256-bit value

verify(com, key, msg) \rightarrow (H(key \mid msg) == com)
```

Commitment Schemes from Hash Functions

```
commit(msg; key) \rightarrow ( H(key \mid msg) )

where key is a random 256-bit value verify(com, key, msg) \rightarrow ( H(key \mid msg) == com )
```

Security properties:

Binding: Collision-resistance → Hard to find (key,msg) !=
 (key',msg') such that H(key | msg) == H(key | msg')

Commitment Schemes from Hash Functions

```
commit(msg; key) \rightarrow (H(key \mid msg))

where key is a random 256-bit value

verify(com, key, msg) \rightarrow (H(key \mid msg) == com)
```

Security properties:

- Binding: Collision-resistance → Hard to find (key,msg) !=
 (key',msg') such that H(key | msg) == H(key | msg')
- Hiding: If H is a random oracle, given H(key | msg), hard to find msg.

Random Oracle (RO)

- Imagine an elf in a box with an infinite writing scroll
- Upon receiving an input x, the elf checks the scroll if there is an entry y corresponding to x. If yes, it returns y.
- Otherwise, elf chooses a random value y (from the output space) and returns it. It adds an entry (x,y) to the scroll.

Random Oracle (RO)

- In practice-oriented provable security, hash functions are often modeled as a random oracle
- Each party (including adversary) is given black-box access to the random oracle. They can query the random oracle any polynomial number of times
- By definition, the answers of random oracle answers are unpredictable
- Random oracle captures many security properties such as onewayness, collision-resistance.

SHA-256 hash function

Suppose msg is of length L s.t. L is a multiple of 512 (pad with 0s otherwise)

Theorem [Merkle-Damgard]: If c is collision-resistant, then SHA-256 is collision-resistant.

SHA-256 hash function

Q:What the heck is inside of c?

Fig. 3 SHA 256 hash function Base transformation round

Hash Pointers and Data Structures

Hash pointer

- pointer to where some info is stored, and
- cryptographic hash of the info

If we have a hash pointer, we can

- ask to get the info back, and
- verify that it hasn't changed

Building data structures with hash pointers

Linked list with hash pointers = "Blockchain"

use case: tamper-evident log

Detecting Tampering

use case: tamper-evident log

Binary tree with Hash pointers = "Merkle tree"

Proving membership in a Merkle tree

Advantages of Merkle trees

- Tree holds many items, but just need to remember the root hash
- Can verify membership in O(log n) time/space

Variant: sorted Merkle tree

- can verify non-membership in O(log n)
- show items before, after the missing one

More generally ...

Can use hash pointers in any pointer-based data structure that has no cycles

Digital Signatures

What we want from signatures

- Only you can sign, but anyone can verify
- Signature is tied to a particular document
 (can't be cut-and-pasted to another doc)
- Even if one can see your signature on some documents, he cannot "forge" it

Digital signatures

sig ← sign(sk, message)

isValid verify(pk, message, sig)

randomness

randomized algorithm

Typically randomized

Requirements for signatures

- Correctness: "valid signatures verify"
 - o verify(pk, message, sign(sk, message)) == true
- Unforgeability under chosen-message attacks (UF-CMA): "can't forge signatures"
 - o adversary who knows pk, and gets to see signatures on messages of his choice, can't produce a verifiable signature on another message

UF-CMA Security

ifValid, attacker wins

<u>Definition</u>: A signature scheme (keygen,sign,verify) is UF-CMA secure if for every PPT adversary A, Pr[A wins in above game] = very small

Notes

- Algorithms are randomized: need good source of randomness. Bad randomness may reveal the secret key
- fun trick: sign a hash pointer signature "covers" the whole structure
- Bitcoin uses Elliptic Curve Digital Signature Algorithm (ECDSA), a close variant of Schnorr over Elliptic curves