Projeto 1: "Churn" de clientes em uma empresa de telecomunicações

Ciência de Dados e Inteligência Artificial - PUC-SP

Pontifícia Universidade Católica de São Paulo

Marina Rodrigues - RA 00274375

Sumário

1. Introdução

2. Pré-processamento

- 2.1 Importação de bibliotecas
- 2.2 Importação do dataset
- 2.3 Limpeza dos dados
- 2.4 Definição das Features e do Target

3. Modelo de Árvore de Decisão

- 3.1 Criação do modelo
- 3.2 Segmentação dos dados e treinamento do modelo

4. Validação do modelo

- 4.1 Importância da feature
- 4.2 Acurácia e precisão
- 4.3 Matriz de confusão

▼ 1. Introdução

Muitos clientes migram entre operadoras de telecomunicações devido a fatores diversos, sendo essa prática conhecida como "Churn". Com uma análise do banco de dados dos clientes é possível desenvolver um modelo de aprendizagem de máquina que seja capaz de prever os clientes que são mais propensos amigrar de operadora e assim oferece-los promoções diferenciadas visando retê-los.

Uma empresa de telecomunicações está preocupada com o número de clientes que trocam seus negócios de telefonia fixa por concorrentes a cabo. Eles precisam entender quem está saindo.

▼ 2. Pré-processamento

▼ 2.1 Importação de bibliotecas

```
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn.metrics import average_precision_score
from sklearn.metrics import plot_confusion_matrix
import matplotlib.pyplot as plt
import numpy as np
```

2.2 Importação do dataset

A organização do dataset é feita seguindo as seguintes colunas:

- Clientes que saíram no último mês: a coluna é chamada Churn, esse é o valor a ser previsto no modelo.
- Serviços para os quais cada cliente se inscreveu: telefone, várias linhas, internet, segurança online, backup online, proteção de dispositivo, suporte técnico, streaming de TV e filmes.
- Informações da conta do cliente: há quanto tempo eles são clientes (tenure), contrato, forma de pagamento, faturamento sem papel, cobranças mensais e cobranças totais.
- Informações demográficas sobre clientes: sexo, faixa etária e se têm parceiros e dependentes.

```
df = pd.read_csv('_/content/WA_Fn-UseC_-Telco-Customer-Churn.csv')
df
```

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService
0	7590- VHVEG	Female	0	Yes	No	1	Nc
1	5575- GNVDE	Male	0	No	No	34	Yes
2	3668- QPYBK	Male	0	No	No	2	Yes
3	7795- CFOCW	Male	0	No	No	45	Nc
4	9237- HQITU	Female	0	No	No	2	Yes
7038	6840- RESVR	Male	0	Yes	Yes	24	Yes

▼ 2.3 Limpeza dos dados

 $\Lambda\Lambda$

Abaixo está a informação dos dados do dataframe, como o tipo de dado em cada coluna.

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	customerID	7043 non-null	object
1	gender	7043 non-null	object
2	SeniorCitizen	7043 non-null	int64
3	Partner	7043 non-null	object
4	Dependents	7043 non-null	object
5	tenure	7043 non-null	int64
6	PhoneService	7043 non-null	object
7	MultipleLines	7043 non-null	object
8	InternetService	7043 non-null	object
9	OnlineSecurity	7043 non-null	object
10	OnlineBackup	7043 non-null	object
11	DeviceProtection	7043 non-null	object
12	TechSupport	7043 non-null	object
13	StreamingTV	7043 non-null	object
14	StreamingMovies	7043 non-null	object
15	Contract	7043 non-null	object
16	PaperlessBilling	7043 non-null	object
17	PaymentMethod	7043 non-null	object
18	MonthlyCharges	7043 non-null	float64
19	TotalCharges	7043 non-null	object
20	Churn	7043 non-null	object

dtypes: float64(1), int64(2), object(18)

memory usage: 1.1+ MB

A maioria dos dados presentes no dataset são do tipo "object", ou seja, categóricos. Para a implementação do modelo, os dados categóricos foram transformados em fatores (dados numéricos) por meio do método factoriza()

```
df['customerID'], customerID = df['customerID'].factorize()
df['gender'], gender = df['gender'].factorize()
df['Partner'], Partner = df['Partner'].factorize()
df['Dependents'], Dependents = df['Dependents'].factorize()
df['PhoneService'], PhoneService = df['PhoneService'].factorize()
df['MultipleLines'], MultipleLines = df['MultipleLines'].factorize()
df['InternetService'], InternetService = df['InternetService'].factorize()
df['OnlineSecurity'], OnlineSecurity = df['OnlineSecurity'].factorize()
df['OnlineBackup'], OnlineBackup = df['OnlineBackup'].factorize()
df['DeviceProtection'], DeviceProtection = df['DeviceProtection'].factorize()
df['TechSupport'], TechSupport = df['TechSupport'].factorize()
df['StreamingTV'], StreamingTV = df['StreamingTV'].factorize()
df['StreamingMovies'], StreamingMovies = df['StreamingMovies'].factorize()
df['Contract'], Contract = df['Contract'].factorize()
df['PaperlessBilling'], PaperlessBilling = df['PaperlessBilling'].factorize()
df['PaymentMethod'], PaymentMethod = df['PaymentMethod'].factorize()
df['MonthlyCharges'], MonthlyCharges = df['MonthlyCharges'].factorize()
df['TotalCharges'], TotalCharges = df['TotalCharges'].factorize()
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 7043 entries, 0 to 7042
     Data columns (total 21 columns):
                      Non-Null Count Dtype
         Column
                            -----
         -----
      0 customerID 7043 non-null
1 gender 7043 non-null
2 SeniorCitizen 7043 non-null
7043 non-null
                           7043 non-null
7043 non-null
                                              int64
                                              int64
                                              int64
      3 Partner
                            7043 non-null int64
                          7043 non-null int64
7043 non-null int64
      4 Dependents5 tenure
      5
          tenure
      6 PhoneService 7043 non-null 7 MultipleLines 7043 non-null
                                              int64
                                              int64
      8 InternetService 7043 non-null
                                              int64
      9
         OnlineSecurity 7043 non-null OnlineBackup 7043 non-null
                                              int64
      10 OnlineBackup
                                              int64
      11 DeviceProtection 7043 non-null
                                              int64
      12 TechSupport 7043 non-null 13 StreamingTV 7043 non-null
                                              int64
                                              int64
      14 StreamingMovies 7043 non-null
                                              int64
      15 Contract
                      7043 non-null
                                              int64
      16 PaperlessBilling 7043 non-null
                                              int64
      17 PaymentMethod 7043 non-null18 MonthlyCharges 7043 non-null
                                              int64
                                              int64
      19 TotalCharges
                             7043 non-null
                                              int64
      20 Churn
                             7043 non-null
                                              object
     dtypes: int64(20), object(1)
     memory usage: 1.1+ MB
```

▼ 2.4 Definição das Features e do Target

Foram definidas as Features do modelo, que são todas as colunas do dataset menos a coluna Churn, que é o Target.

▼ 3. Modelo de Árvore de Decisão

▼ 3.1 Criação do modelo

O modelo foi criado e inicialmente treinado com a integridade dos dados para demonstrar na figura a árvore de decisão.

3.2 Segmentação dos dados e treinamento do modelo

O dataset foi dividido entre os dados de treinamento (80%) e os dados de teste (20%).

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=1)
x_train.head()
```

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService
1814	1814	1	0	0	1	12	1
5946	5946	0	0	1	0	42	1
3881	3881	1	0	0	0	71	1
2389	2389	1	0	0	1	71	1
3676	3676	1	0	1	0	30	1

```
y_train.head()
```

1814	No
5946	Yes
3881	No
2389	No
3676	No

Name: Churn, dtype: object

Treinamento do modelo:

```
dtm = dtm.fit(x_train, y_train)
dtm
```

4. Validação do modelo

▼ 4.1 Importância da feature

O gráfico abaixo mostra a importância de cada feature na decisão do modelo. As features mais importante são:

- 1. Total Charges
- 2. Monthly Charges
- 3. Payment Method
- 4. Paperless Billing
- 5. Contract

```
new_features = dtm.feature_importances_.argsort()
plt.barh(features, dtm.feature_importances_[new_features])
plt.xlabel("Importância da feature")
```

Text(0.5, 0, 'Importância da feature')

▼ 4.2 Acurácia e precisão

Foi realizado o cálculo da acurácia e da precisão do modelo.

```
y_pred = dtm.predict(x_test)
y_score = dtm.score(x_test, y_test)
print('Acurácia: ', y_score)

Acurácia: 0.7154009936124911

micro_precision = precision_score(y_pred, y_test, average='micro')
print('Precisão micro média: {0:0.2f}'.format(micro_precision))

Precisão micro média: 0.72
```

▼ 4.3 Matriz de confusão

A matriz de confusão abaixo demonstra as classificações incorretas.

plot_confusion_matrix(dtm, x_test, y_test)

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f84fb8dacd0>

√ 4m11s conclusão: 21:39

X