

Module 9

Digital Filter Banks, Part I

Overview

- Analysis filter bank
- Synthesis filter bank
- DFT filter bank
- Polyphase implementation of uniform filter banks
- MATLAB examples

MATLAB Examples

- Uniform Filter Bank with 5 Subbands
 - o DFT
 - Prototype filter H₀(z) designed using Parks-McClellan algorithm
 - o Passband/stopband ripple
 - Overlap between subbands
 - Prototype filter H₀(z) designed using eigenfilter technique
 - Overlap between subbands
 - Relative weight of passband/stopband errors

DFT Filter Bank

Uniform Filter Bank (Parks-McClellan)

- Design parameters
 - o Passband ripple 1dB
 - Stopband attenuation 40dB
 - \circ Passband cutoff frequency $\omega_p = \pi/M \pi/20$
 - \circ Stopband cutoff frequency $\omega_s = \pi/M$
- Required filter order N=46

Uniform Filter Bank (Parks-McClellan)

Uniform Filter Bank (Eigenfilter)

- Design parameters
 - o Filter order N=46
 - \circ Passband cutoff frequency $ω_p = π/M π/20$
 - \circ Stopband cutoff frequency $-\omega_s = \pi/M + \pi/20$
 - \circ Stopband error weight α =0.2 (passband error weight is 1- α)

Uniform Filter Bank (Eigenfilter)

