Vehicle Routing Problem (VRP)

$$V = \{1, ..., n\}$$
 - fleet of vehicles

$$D = \{1, ..., k\}$$

- set of depots (usually there is one)

$$C = \{k+1,...,k+m\}$$
 - set of clients (requests)

$$location_i \in R^2$$

 $location_i \in R^2$ - coordinates of a client/depot

$$\mathcal{G}(i,j)$$

- distance between locations i and j

$$r_i = (i_1, ..., i_{p(i)})$$

- permutation of requests assigned to vehicle i ($\vec{\boldsymbol{z}}_1$ and $i_{p(i)}$ are depots)

$$COST(VRP) = \min_{(r_1,...,r_n)} \sum_{i=1}^{n} \sum_{j=2}^{p(i)} \mathcal{G}(i_j, i_{j-1})$$

$$\forall_{l \in \{1,\dots,m\}} \exists !_{i \in \{1,\dots,n\}} (l+k) \in r_i$$

Capacitated VRP ((C)VRP)

Additional capacity constraints:

capacity

capacity of each vehicle (fleet V is homogeneous)

 $size_1 \leq capacity$

- size of request of client l

A sum of requests' sizes between consecutive visits to the depots (for a given vehicle) must not exceed its *capacity*.

Dynamic Capacitated VRP (D(C)VRP)

Various additional time constraints imposed:

working hours of depots

time window for delivery at a certain location

time for unloading a cargo

time of availability (for the solver) of a given request

traffic jams

VRPDR [Kilby et al., 1998]

$$(start_j, end_j), \quad 0 \le start_j < end_j \quad - \text{ working hours of depot } j$$

 $unld_1 \in R$ - time required to unload a cargo for client l

 $time_l \in R$ - point in time at which request for client l becomes available

VRPDR

Additional constraints:

$$\forall_{i \in \{1, \dots, n\}} \forall_{j \in r_i \setminus i_1} \ arv_{i_j} \geq time_{i_j} + \mathcal{G}(i_j, i_{j-1})$$

$$\forall_{i \in \{1, \dots, n\}} \forall_{j \in r_i \setminus i_1} \ arv_{i_j} \geq arv_{i_{j-1}} + unld_{i_{j-1}} + \mathcal{G}(i_j, i_{j-1})$$

$$\forall_{i \in \{1,\dots,n\}} arv_{i_{p(i)}} \leq end_{i_{p(i)}}$$

D(C)VRP vs. (C)VRP

Clients

- Location
- Request size
- Request availability time
- Unload time
- Vehicles
 - Capacity
- Depot
 - Location
 - Opening hours
- Distances between locations
- Goal
 - Minimize total length of vehicles' routes
- Constraints
 - Each route starts and ends in a depot
 - Each request is served by one vehicle
 - Vehicles must return to the depot before it is closed

Difficulty of DVRP

- A challenging NP-Hard problem
- Natural environment for testing efficient combinations of various optimization approaches
- Difficulty stems from several types of time conditions imposed on the test instances
- Practical relevance close-to-reality problem definition
- Reality ~ Multi-depot Pickup & Delivery VRP with Dynamic Requests, Time Windows and Traffic Jams

Solution Methods

DVRP - CI-based metaheuristics

- Kilby et al. 1998 standard benchmark sets
- Tabu Search (TS) 1999 and 2007
- Ant Colony Systems (ACS) 2005
- Genetic algorithms (GA) 2007
- Particle Swarm Optimization (PSO) 2010

DVRP - Solution scheme

The "degree of dynamicity"

$$T_{co}$$

- cut-off time

$$(T_{co} = 0.5)$$

$$n_{ts}$$

- number of time slices

$$(n_{ts} = 25, 50, 100)$$

$$T_{ac}$$

- advanced commitment time
$$\left(T_{ac} = 2\frac{end - start}{n_{ts}}\right)$$

$$start := \min_{j \in \{1, \dots, k\}} start_j$$

$$end := \max_{j \in \{1, \dots, k\}} end_j$$

A general schema of one-phase methods

- The initial problem = all the requests received after the cut_off time
- For each time slice
 - Solve the current VRP instance
 - Select the best solution found (for this time slice)
 - Commit orders to respective vehicles (with processing time within the next $\frac{T}{n_{cc}} + T_{ac}$ seconds)
 - Include requests received during this time slice in the next static instance (next time slice)
 - Send back to the depot any vehicle which might otherwise be late at the depot closing
 - Send back to the depot any vehicle that used its capacity

Genetic Algorithms - one phase method

[Hanshar and Obuki-Berman (2007)]

- A genotype is a sequence of requests assigned to each vehicle > variable length
- Negative values represent vehicles and the parts of routes already committed to them

Straightforward cost function:

$$COST_{3}(r_{1}, r_{2}, ..., r_{n}) = \sum_{i=1}^{n} \sum_{j=2}^{|r_{i}|} \mathcal{G}(i_{j}, i_{j-1})$$

 K-tournament selection. Pre-defined threshold for promoting the best one.

GA - representation, crossover and mutation

Assignment & route

Mutation - inversion

Greedy insertion

MAPSO - one phase method [Khouadjia et al. (2010-13)]

- Multi-swarm optimization
- The route for each vehicle is constructed by a combination of PSO and greedy algorithm and optimized with 2-OPT
- Fitness function is the sum of routes for all vehicles

$$COST_2(r_1, r_2, ..., r_n) = \sum_{i=1}^{n} \sum_{j=2}^{|r_i|} \mathcal{G}(i_{2OPT(j)}, i_{2OPT(j-1)})$$

Yields better results than GA approach

MAPSO

- Integer search space and particles velocity
- Re-initialization preserves previous best particles positions

Assignment of requests

Every particle represents associations of client's requests to vehicles

- each element of a vector corresponds to one request
- its value is the vehicle id

Velocity vector is calculated in real values, rounded to the nearest integer and added to the position vector modulo m (m=3 in this case)

2MPSO [Okulewicz, Mańdziuk]

- Multi-swarm optimization
- Initialization with previous solutions
- Continuous search space and particles velocity
- 2-phase PSO algorithm. In each time slice:
 - Partition of the requests optimized as a clustering task
 - Finding the shortest route for each vehicle as a separate optimization task

2MPSO - clustering phase (phase 1)

- Every particle represents coordinates of cluster centers
 - search space dimensionality is equal to the number of vehicles times two
 - the number of required vehicles is estimated with minimum spanning forest method (+buffer)
 - requests are associated with the vehicle corresponding to the closest cluster center
 - one of the particles is initialized at cluster centers generated by capacitated minimum spanning forest
- A fitness function:

$$COST_2(r_1, r_2, ..., r_n) = \sum_{i=1}^{n} \sum_{j=2}^{|r_i|} \mathcal{G}(i_{2OPT(j)}, i_{2OPT(j-1)})$$

2MPSO - route optimization phase (phase

- Every particle represents the order of requests in the vehicle's route
 - search space dimensionality is equal to the number of requests to be served by the vehicle
 - requests are ordered ascending according to their respective values in a vector
- Fitness function is the length of the route optimized with 2-OPT

2MPSO - encoding

Assignment – phase 1 1,1,-1,0,-1,0.1

Route - phase 2 0.5, 0.7, 0.2, 0.1,0.6 0.25, 0.3, 0.33 0.5, 0.4

Summary of (D)VRP encodings inmetaheur

DAPSO/MAPSO

- Assignment
 - 1,1,1,1,1,2,2,2,3,3

2MPSO

- Assignment
 - 1,1,-1,0,-1,0.1
- Route
 - 0.5, 0.7, 0.2, 0.1
 - 0.25, 0.3, 0.33
 - 0.5, 0.4

Knowledge transfer

Between consecutive time slices

- Critical issue in dynamic problems
- It is assumed that solutions in the neighboring slices are linked
- The initial swarm location is defined around the cluster centers of the previous best known solution within a given radius

Between swarms (within a given time slice)

- Each swarm works in isolation
- One swarm per thread
- At the end of allotted time all the best overall solution (among all swarms) is selected as the current best solution and spread among the threads
- MAPSO migration of particles (with some probability).

Benchmark Sets

Benchmark sets [Kilby et al., 1998]

Christofides – 7 problems

N. Christofides and J. Beasley, The period routing problem. *Networks*, 14:237-256, 1984

Fisher – 2 problems

M. Fisher and R. Jakumar, A generalized assignment heuristic for vehicle routing. *Networks*, 11:109-124, 1981

Taillard – 12 problems

E. Taillard, Parallel iterative search methods for vehicle-routing problems. *Networks*, 23:661-673, 1993

Benchmarks' structure

COMMENT: by convert2vt COMMENT: Best known objective: 30 55.23 NAME: tai150a NUM_DEPOTS: 1 NUM_CAPACITIES: 1 NUM_VISITS: 150 NUM_LOCATIONS: 151 NUM_VEHICLES: 50 CAPACITIES: 1544 DATA_SECTION DEPOTS 0 DEMAND_SECTION 1 13	1 -4 106 2 -11 106 3 -12 115 4 4 123 5 7 113 6 -13 125 150 -35 92 DEPOT_LOCATION_SECTION 0 0 VISIT_LOCATION_SECTION 1 1 2 2 3 3 4 4 5 5 6 6
2 122 3 30 4 3 5 5	150 150 DURATION_SECTION 1 30 2 30
6 422	3 30 4 30 5 30

```
DEPOT_TIME_WINDOW_SECTION
 0 0 1062
COMMENT: TIMESTEP: 21
TIME_AVAIL_SECTION
 1 10
 2 19
 3 21
 4 31
 5 33
 6 35
150 1056
EOF
```

150 32

26

6 30

Results

8 swarms of 40 particles each 50 time slices

Phase 1: 50 iter./ts

Phase 2: 12 iter./ts

Results overview - 2MPSO vs. other method

name	MAPSO	MEMSO	GA	TABU
c50	+		•	+
c75	+	+	+	+
c100	•	•		+
c100b	•	•	+	+
c120	+	+	+	+
c150	+	+	+	+
c199	+	+	+	+
f71	•	•	•	•
f134	+	+	+	+
tai75a	•	•		•
tai75b	-	-		+
tai75c	•		•	•
tai75d	-		•	•
tai100a	-	-		
tai100b	•	•	•	+
tai100c	•	•	•	•
tai100d	+	+	+	+
tai150a	-	-	-	•
tai150b	-	-		+
tai150c	-	-		+
tai150d	-	-		
sum	+	+	+	+

2MPSO vs. MAPSO/MEMSO - 106 evaluation

	MPSO ₂		MPSO ₃		MAP	MAPSO		MEMSO	
name	Min	Avg	Min	Avg	Min	Avg	Min	Avg	
c50	558,07	599,73	573,17	587,14	571,34	610,67	577,6	592,95	
c75	894,96	926,25	888,66	914,82	931,59	965,53	928,53	962,54	
c100	918,79	961,47	898,16	960	953,79	973,01	949,83	968,92	
c100b	827,85	861,92	825,65	856,95	866,42	882,39	864,19	878,81	
c120	1068,69	1110,24	1076,72	1112,56	1223,49	1295,79	1164,63	1284,62	
c150	1129,86	1185,4	1123,1	1175,65	1300,43	1357,71	1274,33	1327,24	
c199	1389,48	1451,61	1393,47	1432,69	1595,97	1646,37	1600,57	1649,17	
f71	280,78	298,59	279,95	298,71	287,51	296,76	283,43	294,85	
f134	11997,78	12540,97	12054,18	12501,29	15150,5	16193	14814,1	16083,82	
tai75a	1739,35	1870,45	1745,65	1882,97	1794,38	1849,37	1785,11	1837	
tai75b	1450,61	1530,9	1428,16	1515,81	1396,42	1426,67	1398,68	1425,8	
tai75c	1465,14	1569,98	1470,97	1536,12	1483,1	1518,65	1490,32	1532,45	
tai75d	1434,41	1472,95	1428,45	1470,86	1391,99	1413,83	1342,26	1448,19	
tai100a	2195,04	2302,25	2252,76	2301,82	2178,86	2214,61	2170,54	2213,75	
tai100b	2064,5	2175,12	2068,86	2168,1	2140,57	2218,58	2093,54	2190,01	
tai100c	1517,45	1593,97	1526,07	1598,64	1490,4	1550,63	1491,13	1553,55	
tai100d	1746,34	1819,1	1753,79	1823,46	1838,75	1928,69	1732,38	1895,42	
tai150a	3495,08	3724,91	3490,06	3628,22	3273,24	3389,97	3253,77	3369,48	
tai150b	3072,9	3158,09	3017,35	3128,64	2861,91	2956,84	2865,17	2959,15	
tai150c	2618,44	2769,2	2631,67	2727,57	2512,01	2671,35	2510,13	2644,69	
tai150d	2996	3134,44	3023,47	3103,75	2861,46	2989,24	2872,8	3006,88	

44861,52 47057,53 44950,32 **46725,74** 48104,13 50349,66 47463,04 50119,29

sum

2MPSO [2.2*10⁷ evaluations] vs. MAPSO/ME

	MPSO ₂		MPSO ₃		MAPSO		MEMSO	
name	Min	Avg	Min	Avg	Min	Avg	Min	Avg
c50	571,53	614,61	571,53	610,89	571,34	610,67	577,6	592,95
c75	896,33	930,94	906,72	933,4	931,59	965,53	928,53	962,54
c100	920,11	957,49	918,61	953,13	953,79	973,01	949,83	968,92
c100b	848,5	881,7	823,19	871,07	866,42	882,39	864,19	878,81
c120	1057,94	1174,65	1112,73	1174,04	1223,49	1295,79	1164,63	1284,62
c150	1121,5	1168,59	1150,13	1187,27	1300,43	1357,71	1274,33	1327,24
c199	1404,46	1461,58	1427,73	1487,29	1595,97	1646,37	1600,57	1649,17
f71	302,5	317,66	311,59	319,23	287,51	296,76	283,43	294,85
f134	11988,76	12324,98	12022,64	12312,74	15150,5	16193	14814,1	16083,82
tai75a	1727,89	1812,55	1760,27	1821,01	1794,38	1849,37	1785,11	1837
tai75b	1400,33	1438,5	1391,74	1426,39	1396,42	1426,67	1398,68	1425,8
tai75c	1440,2	1491,64	1446,85	1529,36	1483,1	1518,65	1490,32	1532,45
tai75d	1439,27	1470,93	1435,92	1465,55	1391,99	1413,83	1342,26	1448,19
tai100a	2146,53	2260,21	2169,24	2248,91	2178,86	2214,61	2170,54	2213,75
tai100b	2045,24	2119,37	2039,31	2094,49	2140,57	2218,58	2093,54	2190,01
tai100c	1469,12	1516,97	1463,83	1516,35	1490,4	1550,63	1491,13	1553,55
tai100d	1685,53	1775,09	1690,89	1778,74	1838,75	1928,69	1732,38	1895,42
tai150a	3345,88	3402,23	3319,48	3430,9	3273,24	3389,97	3253,77	3369,48
tai150b	2885,21	2942,49	2901,2	2973,39	2861,91	2956,84	2865,17	2959,15
tai150c	2472,7	2543,47	2483,39	2525,04	2512,01	2671,35	2510,13	2644,69
tai150d	2844,7	2949,2	2868,94	2956,74	2861,46	2989,24	2872,8	3006,88
sum	44014,23	45554,84	44215,93	45615,94	48104,13	50349,66	47463,04	50119,29

Summary of Results

- 2-phase PSO approach proved its efficiency.
- The 2MPSO method is on average better by 1.8% in the best routes and 1.9% in the averages than MEMSO (for the same number of function evaluations)
- It is possible to furher improve the results with the higher number of evaluations
- We were able to report 17 (out of 21) new best literature solutions for the given benchmark set with cut-off time set to 0.5

Swarm Robotics ...

