$\begin{array}{c} {\rm Maths\ refreshing\ course} \\ {\rm HSLU,\ Semester\ 1} \end{array}$

Matteo Frongillo

September 3, 2024

Contents

Ι	Lesson 1	3
1	Algebraic definitions	3
2	Prime numbers	3
3	Positive powers 3.1 Property 1 3.2 Property 2 3.3 Property 3	3 3 3
4	Fractions 4.1 Property 1 4.2 Property 2 4.3 Property 3	4 4 4
5	Negative powers 5.1 Definition 5.2 Property 4 5.3 Property 5	4 4 4
6	Fractions and percentages (and back)	5
II	Lesson 2	6
7	Symbols	6
8	Brackets	6
9	Latin notations	6
10	The real line (not completed) 10.1 Exercises	6
11	Properties of real numbers 11.1 Property 1 - Closure of "+" and "·" 11.2 Property 2 - Commutativity	7 7 7 7 7 7
12	The order of operations	7

14 Absolute value	8	
14.1 Property	8	

Part I

Lesson 1

1 Algebraic definitions

- $\mathbb{N} := \text{Natural numbers (including 0)}$
- $\mathbb{Z} := \text{Integer numbers}$
- $\mathbb{Q} := \text{Rational numbers}$
- $\mathbb{R} := \text{Real numbers}$

Notation: The "*" symbol means that the set does not include 0.

We have that:

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$

2 Prime numbers

A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself.

$$n \in \mathbb{N}, \ n \neq \{0, 1\}$$

3 Positive powers

Let $a \in \mathbb{R}, n \in \mathbb{R}^*$ and $a \subset \mathbb{R}$, then

$$a^1 := a \quad | \quad a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ times}}$$

3.1 Property 1

Let $a, b \in \mathbb{R}, n, m \in \mathbb{N}$, then

$$a^n \cdot a^m = a^{n+m}$$

3.2 Property 2

Let $a, b \in \mathbb{R}, n \in \mathbb{N}$, then

$$(a \cdot b)^n = a^n \cdot b^n$$

Notation: The power a^n , a is the base and n is the exponent.

3.3 Property 3

Let $a \in \mathbb{R}, \ m, n \in \mathbb{N}^*$, then

$$(a^n)^m = a^{n \cdot m}$$
, which is $\neq a^{(n^m)}$

3

4 Fractions

Notation 2: "a" is called numerator, "b" is called denominator.

 $\underline{\text{Notation 3}} \colon \tfrac{a}{b}, \ a,b \in \mathbb{R}, \ b \neq 0$

4.1 Property 1

Let $a, b \in \mathbb{R}^*$ and $c, d \in \mathbb{R}$, then

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

4.2 Property 2

Let $a, b \in \mathbb{R}^*$ and $c, d \in \mathbb{R}$, then

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$$

4.3 Property 3

Let $a, b \in \mathbb{R}^*$ and $c, d \in \mathbb{R}$, then

$$\frac{a}{b} \pm \frac{c}{d} = \frac{a \cdot d \pm c \cdot b}{b \cdot d}$$

5 Negative powers

5.1 Definition

$$\forall a \in \mathbb{R}^*; \quad a^{-1} := \frac{1}{a}$$

5.2 Property 4

Let $\forall n \in \mathbb{N}, \ \forall a \in \mathbb{R}$, then

$$a^{-n} = \left(\frac{1}{a}\right)^n$$

This property implies that $\forall z \in \mathbb{Z}, \ \forall a \in \mathbb{R}, \ z \neq 0$ We can compute a^z

5.3 Property 5

Let $\forall a \in \mathbb{R}, \ a \neq 0, \ \forall n, m \in \mathbb{Z}$, then

$$\frac{a^n}{a^m} = a^{n-m}$$

4

Consequences:

- 1. Properties 1, 2 and 3 also hold for integer exponents:
 - $\forall a \in \mathbb{R}, \ \forall n, m \in \mathbb{Z} \Rightarrow a^n \cdot a^m = a^{n+m}$
 - $\forall b \in \mathbb{R}, \ (a \cdot b)^n = a^n \cdot b^n$
 - $(a^n)^m = a^{n \cdot m}$
- 2. $\forall a \in \mathbb{R}^*, \ a^0 = a^{1-1} = \frac{a^1}{a^1} = 1 \Rightarrow a^0 = 1$

6 Fractions and percentages (and back)

$$\alpha \in \mathbb{R}, \ n\% \text{ of } \alpha \Longleftrightarrow \frac{n}{100} \cdot \alpha$$

Part II

Lesson 2

7 Symbols

Let $a, b \in \mathbb{R}$, then

- $a = b \rightarrow \text{equality}$;
- $a \neq b \rightarrow$ inequality (a is not equal to b);
- $-a < b \rightarrow \text{minor (a is strictly less than b)};$
- $a \leq b \rightarrow \text{minor or equal } (a \text{ is less or equal than } b);$
- $-a > b \rightarrow \text{major } (a \text{ is strictly greater than } b);$
- $-a \ge b \to \text{major } (a \text{ is greater or equal than } b).$

Example: $x \in \mathbb{R}, \ x \ge 2 \to 2 \le x < \infty$

8 Brackets

() Parenthesis (round brackets) (1)

[] Square brackets (2)

 $\{ \}$ Braces (3)

9 Latin notations

- e.g. = for example;
- i.e. = that is / that implies;
- q.e.d. = we finally prove it;
- \square = we finally prove it.

10 The real line (not completed)

10.1 Exercises

- 1) $\forall x \in \mathbb{R}, -3 \le x \le 2$
- 2) $\forall x \in \mathbb{R}, -2 \le x \le 1$ and $x > \frac{3}{2}$

11 Properties of real numbers

11.1 Property 1 - Closure of "+" and "."

 $\begin{aligned} \forall x,y \in \mathbb{R} \\ x+y \in \mathbb{R} \\ x \cdot y \in \mathbb{R} \end{aligned}$

Remark: for $\mathbb Z$ this property does not work.

11.2 Property 2 - Commutativity

 $\forall x, y \in \mathbb{R}$ x + y = y + x $x \cdot y = y \cdot x$

Remark: commutativity does not hold for divisions and subtractions.

11.3 Property 3 - Associative

 $\begin{aligned} \forall x, y, z \in \mathbb{R} \\ x + (y + z) &= (x + y) + z \\ x \cdot (y \cdot z) &= (x \cdot y) \cdot z \end{aligned}$

Remark: associativity does not hold for divisions and subtractions.

11.4 Property 4 - Distributive

 $\forall x, y, z \in \mathbb{R}$ $x(y \pm z) = xy \pm xz$

11.5 Property 5 - Identity

 $\forall x \in \mathbb{R}$

a) 0 + x = x

b) $1 \cdot x = x$

Remark: $\forall x \in \mathbb{R}, x \cdot 0 = 0$ is NOT an identity property.

11.6 Property 6 - Inverses and opposites

 $\forall x \in \mathbb{R}$

a) x + (-x) = 0 (inverse)

b) when $x \neq 0$, $x \cdot \frac{1}{x} = 1$ (opposite)

Remark 1: $\forall x \in \mathbb{N}$ does not exist either inverse nor opposite.

Remark 2: $\forall x \in \mathbb{Z}$ has inverses, but not opposites.

12 The order of operations

- Perform all operations inside grouping symbols beginning with the innermost set:
 () inside brackets operations;
- 2. Perform all exponential operations as you come to them, moving left-to-right: x^a ;
- 3. Perform all multiplications and divisions as you come to them, moving left-to-right: " \cdot " and " \div ";
- 4. Perform all additions and subtractions as you come to them, moving left-by-right: "+" and "-":
- 5. When the level of priority is the same (e.g. multiplications and divisions) solve them as you come to them.

Signed numbers **13**

A number is denoted as positive if it is directly preceded by a + sign or no sign at all. A number is denoted as negative if it is directly preceded by a - sign.

 $\forall x \in \mathbb{R}$

$$-(-x) = x$$

$$+(-x)=-x$$

$$+(+x)=x$$

$$+(-x) = -x$$
 $+(+x) = x$ $-(+x) = -x$

Absolute value 14

Let $x \in \mathbb{R}$, then

$$|x| = \begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x < 0 \end{cases}$$

14.1 Property

$$\forall x \in \mathbb{R}$$

$$|x| > 0$$
 if $y \neq 0$

$$|x| = 0$$
 if $x = 0$