

FUNCIONES

Ing. Civil Adolfo Vignoli – 2023 -

FUNCIONES

Par Ordenado

Definición

Es un ente matemático denotado (a, b), compuesto por dos elementos dados en un cierto orden.

a: 1° coordenada del Par Ordenado.

b: 2° coordenada del Par Ordenado.

Ejemplo

Par ordenado de

números reales:

$$(3, \sqrt{2})$$

Producto Cartesiano

Definición

Sean A y B conjuntos.

$$A \times B = \{(a,b) / a \in A \land b \in B\}$$

Producto Cartesiano de A y B.

Sean
$$A = \{1,2,3\},\ B = \{a,b\}$$
 conjuntos

$$A \times B = \{(1,a); (1,b); (2,a); (2,b); (3,a); (3,b)\}$$

Relación

Definición

Sean A y B conjuntos. R es una Relación de A en B si $R \subset A \times B$.

Ejemplo

Sean $A = \{1,2,3\}, B = \{a,b\}$

$$A \times B = \{(1,a); (1,b); (2,a); (2,b); (3,a); (3,b)\}$$

 $R = \{(1,a); (1,b)\}$

A: Conjunto de Partida

B: Conjunto de Llegada

Dominio de R:

$$D_R = \{x \in A/\exists \ y \in B \ tal \ que \ (x,y) \in R \ \}$$

Conjunto Imagen de R:

$$I_R = \{ y \in B / \exists x \in A \ tal \ que (x, y) \in R \}$$

Si $(x, y) \in R$, se dice que y es imagen de x por R.

Sean $A = \{1,2,3\}$, $B = \{a,b\}$; conjuntos. A $R = \{(1,a); (1,b)\}$ Relación de A en B $D_R = \{1\}$ Dominio de R $I_R = \{a,b\}$ Conjunto imagen de R a es imagen de 1 por R Conjunto es imagen de 1 por R

Conjunto de partida

Conjunto de llegada

Relación inversa

Definición

Sea R relación de A en B.

$$R^{-1} = \{(x, y) \in B \times A/(y, x) \in R\}$$
 es la relación inversa de R .

$$D_{R^{-1}} = I_R$$

$$I_{R^{-1}} = D_R$$

Sean
$$A = \{1,2,3\}, B = \{a,b\}, conjuntos.$$

$$R = \{(1, a); (1, b)\}$$
 Relación de A en B

$$R^{-1} = \{(a, 1); (b, 1)\}$$
 Relación inversa de R

$$D_{R^{-1}} = I_R = \{a, b\}$$
 Dominio de R⁻¹

$$I_{R^{-1}} = D_R = \{1\}$$
 Conjunto imagen de R⁻¹

Función

Definición

Sean *A* y *B* conjuntos.

Una función de *A* en *B* es una Relación de *A* en *B* en la que a cada elemento de *A* le corresponde uno y solo un elemento de *B*.

Pregunta: ¿Toda Relación de A en B es una Función de A en B?

A

R no es función porque a 3 no B corresponde ningún elemento de B.

 $\begin{array}{c}
R \\
B \\
A \\
C
\end{array}$ $\begin{array}{c}
R \\
B \\
C
\end{array}$

Rno es función

Porque a 2
corresponden
dos elementos de
B.

Res función.

Res función.

Notación:
$$f: A \longrightarrow B; y = f(x)$$

f : Nombre de la función.

A : Conjunto de partida.

B: Conjunto de llegada.

y = f(x): Regla de asignación.

Una función queda determinada

especificando el Dominio, el Conjunto de

llegada y la Regla de asignación.

Ejemplo

Sea f una función de R en \mathbb{R} tal que $y = x^2$.

$$f: \mathbb{R} \to \mathbb{R}; y = x^2$$

Función real de variable real

Sea
$$f: A \to B; y = f(x)$$

 f es una función real
si $A \subset \mathbb{R} \ y \ B \subset \mathbb{R}$.

Se puede decir "función real".

Ejemplo

$$f: \mathbb{N} \longrightarrow \mathbb{R}; y = 2x + 1$$

f es una función de \mathbb{N} en \mathbb{R} tal que y = 2x + 1.

Es una función real.

Gráfica de una función

Sea f función real.

Gráfica de *f* :

$$G_f = \{(x, y) \in \mathbb{R}^2 / x \in D_f \land y = f(x)\}$$

Representamos una función mediante un sistema de coordenadas cartesianas.

Sea
$$f: \mathbb{R} \to \mathbb{R}$$
; $y = e^x$

Para que una relación *R* sea función deben cumplirse las condiciones de existencia y de unicidad.

Condición de existencia

$$\forall x \in A: \exists y \in B / (x, y) \in f$$

En el gráfico: Toda recta paralela al eje y, x = a, con $a \in A$, corta a la curva de f en al menos un punto.

Ejemplo

El gráfico no representa una función de A en B porque existe al menos una recta x = a, con $a \in A$, que no intersecta al gráfico de la relación en ningún punto.

Condición de unicidad

Si
$$(x, y) \in f$$
 y $(x, z) \in f \Longrightarrow y = z$

Si a x le corresponden los elementos y y z, entonces debe ser y = z.

En el gráfico: Toda recta paralela al eje y, x = a, con $a \in A$, corta a la curva de f en no más de un punto.

Ejemplo

El gráfico no representa una función porque existe al menos una recta x = a, con $a \in A$, que corta al gráfico de la relación en más de un punto.

El gráfico representa una función de A en B porque toda recta x = a, con a $\in A$, corta al gráfico de la relación en uno y solo un punto.

Restricción del dominio

Sean
$$F: A \longrightarrow B; y = F(x)$$

 $f: A_0 \longrightarrow B; y = f(x)$
 $A_0 \subset A$

Si f(x) = F(x) $\forall x \in A_0$; entonces f es una "Restricción de F a A_0 ", se escribe $F|A_0$, y F es una "Extensión de f sobre Arelativa a B".

Ejemplo

Sean
$$F: \mathbb{R} \to \mathbb{R}; y = x^2$$

$$\mathbb{R}_{\geq 0} \subset \mathbb{R}$$

$$f: \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}; y = x^2$$

Dado que $f(x) = F(x) \forall x \in \mathbb{R}_{\geq 0}$; entonces f es una "Restricción de F a $\mathbb{R}_{\geq 0}$ ", y F es una "Extensión de f sobre \mathbb{R} relativa a \mathbb{R} ".

Álgebra de funciones

<u>Igualdad de funciones</u>

Sean

$$f: A \longrightarrow B; y = f(x)$$

$$g: A \longrightarrow C$$
; $y = g(x)$

$$f = g \operatorname{si} f(x) = g(x) \ \forall x \in A$$

Sean
$$f: [0,10] \rightarrow \mathbb{R}; y = x - 1$$

$$g:[0,10] \to \mathbb{R}; y = \frac{x^2-1}{x+1}$$

$$f = g$$
 ya que

$$g(x) = \frac{x^2 - 1}{x + 1} = x - 1 = f(x)$$

$$\forall x \in [0,10].$$

Suma y producto de funciones

Sean

$$f: D_f \to \mathbb{R}; y = f(x)$$
 $g: D_q \to \mathbb{R}; y = g(x)$

$$[f+g]: D_f \cap D_g \longrightarrow \mathbb{R}; y = f(x) + g(x)$$

$$[fg]: D_f \cap D_g \longrightarrow \mathbb{R}; y = f(x)g(x)$$

Sean
$$f: \mathbb{R} \to \mathbb{R}$$
; $y = x^2$

$$g: \mathbb{R} \longrightarrow \mathbb{R}; y = e^x$$

$$[f+g]: \mathbb{R} \to \mathbb{R};$$

$$y = x^2 + e^x$$

$$[fg]: \mathbb{R} \to \mathbb{R};$$

$$y = x^2 e^x$$

 $\mathbb{R}^{\mathbb{R}}$: Conjunto de funciones reales

Propiedades de la suma y producto de funciones

Sean
$$f, g, h \in \mathbb{R}^{\mathbb{R}}$$

A1.
$$f + g \in \mathbb{R}^{\mathbb{R}}$$

M1.
$$fg \in \mathbb{R}^{\mathbb{R}}$$

A2.
$$(f + g) + h = f + (g + h)$$

$$M2. (fg)h = f(gh)$$

A3.
$$f + g = g + f$$

M3.
$$fg = gf$$

A4.
$$f + 0 = f$$

M4.
$$f1 = f$$

$$D. f(g+h) = fg + fh$$

$$0: \mathbb{R} \longrightarrow \mathbb{R}; y = 0$$

$$1: \mathbb{R} \longrightarrow \mathbb{R}; y = 1$$

Recíproca de una función

Sea
$$g: D_g \to \mathbb{R}; y = g(x)$$

$$\left[\frac{1}{g}\right] \colon D_{\frac{1}{g}} \to \mathbb{R}; \ y = \frac{1}{g(x)}$$

$$D_{\frac{1}{g}} = D_g - \{x \in D_g/g(x) = 0\}$$

Cociente de funciones

Sean
$$f: D_f \to \mathbb{R}; y = f(x)$$

$$\left[\frac{f}{g}\right] \colon D_{\underline{f}} \to \mathbb{R}; \ y = \frac{f(x)}{g(x)}$$

$$g: D_g \to \mathbb{R}; y = g(x)$$

$$\left[\frac{f}{g}\right]: D_{\frac{f}{g}} \to \mathbb{R}; y = \frac{f(x)}{g(x)}; \quad D_{\frac{f}{g}} = D_f \cap D_g - \{x \in D_g/g(x) = 0\}$$

Composición de funciones

Sean
$$f: D_f \to \mathbb{R}$$
; $y = f(x)$

$$g: D_g \to \mathbb{R}; y = g(x)$$

$$D_g \cap I_f \neq \emptyset$$

$$g \circ f: D_{g \circ f} \longrightarrow \mathbb{R}; y = g(f(x)) = [g \circ f](x)$$

 $g \circ f$

en donde

$$D_{g \circ f} = \left\{ x \in D_f / f(x) \in D_g \right\}$$

Sean
$$f: \mathbb{R} \to \mathbb{R}$$
; $y = x + 3$

$$g: \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}; y = \sqrt{x}$$

$$D_g \cap I_f = \mathbb{R} \cap \mathbb{R}_{\geq 0} = \mathbb{R}_{\geq 0} \neq \emptyset$$

Determinación de
$$D_{g \circ f}$$
: $x + 3 \ge 0 \implies x \ge -3 \implies D_{g \circ f} = [-3, \infty)$

$$g \circ f: [-3, \infty) \longrightarrow \mathbb{R}; y = \sqrt{x+3}$$

Propiedades de la composición de funciones

Sean
$$f, g, h \in \mathbb{R}^{\mathbb{R}}$$

1.
$$f \circ g \in \mathbb{R}^{\mathbb{R}}$$

$$2. (f \circ g) \circ h = f \circ (g \circ h)$$

3.
$$f \circ I = I \circ f = f$$
 en donde $I: \mathbb{R} \to \mathbb{R}; y = x$ (función identidad)

$$4. (f + g) \circ h = f \circ h + g \circ h$$

$$5. (fg) \circ h = (f \circ g)(g \circ h)$$

En general: $f \circ g \neq g \circ f$

Sean $f: \mathbb{R} \to \mathbb{R}$; $y = x^2$, $g: \mathbb{R} \to \mathbb{R}$; y = x + 1

Halle, si es posible, el dominio y regla de asignación de $g \circ f$ y de $f \circ g$.

¿Está definida $g \circ f$? $I_f = \mathbb{R}_{\geq 0} \Longrightarrow D_g \cap I_f = \mathbb{R}_{\geq 0} \neq \emptyset$; está definida.

¿Está definida $f \circ g$? $I_g = \mathbb{R} \Longrightarrow D_f \cap I_g = \mathbb{R} \neq \emptyset$; está definida.

$$g \circ f: \mathbb{R} \longrightarrow \mathbb{R}; y = g(f(x)) = g(x^2) = x^2 + 1$$

$$f \circ g: \mathbb{R} \to \mathbb{R}; y = f(g(x)) = f(x+1) = (x+1)^2$$

$$g \circ f \neq f \circ g$$

Función inversa. Inyectividad y Suryectividad

Función inyectiva

Sea $f: A \longrightarrow B$; f es inyectiva si $\forall x_1, x_2 \in A: x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$

f es inyectiva si toda recta y = b, con $b \in B$, corta a la curva en no más de un punto.

f es inyectiva si toda recta y = b, con $b \in B$, corta a la curva en no más de un punto.

Función suryectiva

Sea $f: A \rightarrow B$; f es suryectiva si $\forall y \in B: \exists x \in A/y = f(x)$.

f es suryectiva si toda recta y = b, con $b \in B$, corta a la curva en al menos un punto.

Ejemplo Muestre con gráficos que la relación inversa de una función no suryectiva y de una función no inyectiva no es función.

Función biyectiva

Sea $f: A \longrightarrow B$; f es biyectiva si f es inyectiva y suryectiva.

f es biyectiva si toda recta y = b, con $b \in B$, corta a la curva en uno y solo un punto.

1. Sea $f: \mathbb{R} \to \mathbb{R}$; $y = x^2$. Determine si f es inyectiva.

Despejamos
$$x$$
: $x = \pm \sqrt{y}$

Para cada $y \in I_f$ existe más de un $x \in D_f$ tal que y = f(x); por tanto, f no es inyectiva.

- 2. Sea $f: \left| -\frac{\pi}{2}, \frac{\pi}{2} \right| \to \mathbb{R}$; $y = \sin x$. Determine si f es inyectiva.
- Despejamos x: x = arc sen y
- Para cada valor de y en el intervalo

de definición de la función, x es único, por tanto f es inyectiva.

- 1. Sea $f: \mathbb{R} \to \mathbb{R}$; $y = x^3$. Determine si f es suryectiva.
- Despejamos x: $x = \sqrt[3]{y}$
- Para cada $y \in I_f$ existe algún $x \in D_f$ tal que y = f(x); por tanto, f es suryectiva.
- 2. Sea $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$; y = tg x. Determine si f es suryectiva.
- Despejamos x: x = arc tg y
- Para cada valor de $y \in I_f = \mathbb{R}$, existe algún x tal que y = f(x), por tanto f es suryectiva.

Función inversa

Sea $f: A \longrightarrow B$; función biyectiva.

$$f^{-1} = \{(f(x), x)/x \in A\}$$
 es la función inversa de f .

El gráfico de f^{-1} es simétrico al de f con respecto a la recta y = x.

Sea
$$f: \mathbb{R} - \{-2\} \longrightarrow \mathbb{R}; y = \frac{x-1}{x+2}$$
. Determine si f es

biyectiva. Si no lo fuera, modifique D_f y B para que lo sea y defina la función inversa. Grafique.

Despejamos x: $x = \frac{-2(y-\frac{1}{2})}{y-1}$ (*). Debe cumplirse $y \neq 1$ para que f sea survectiva. f es inyectiva. Modificamos B para que sea biyectiva:

$$f: \mathbb{R} - \{-2\} \longrightarrow \mathbb{R} - \{1\}; y = \frac{x-1}{x+2}$$

En (*) cambiamos y por x: $y = \frac{-2(x-\frac{1}{2})}{x-1}$ Regla de asignación de f^{-1} .

Definition
$$f^{-1}$$
: f^{-1} : $\mathbb{R} - \{1\} \to \mathbb{R} - \{-2\}$; $y = \frac{-2(x - \frac{1}{2})}{x - 1}$

