Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 3, zadanie nr 10

Stanislau Stankevich, Rafał Bednarz, Ostrysz Jakub

Spis treści

1. Sprawdzenie punktu pracy

Podając za wejścia same zera, po 300 iteracjach dostajemy następujący przebieg wyjść:

Rys. 1.1. Przebieg wyjść obiektu przy stałyćh wejściach: $u_1=0, u_2=0, u_3=0$

Każde wyjście ustabilizowało się na wartości0, więc podany w zadaniu punkt pracy jest zgodny z rzeczywistością.

2. Odpowiedzi skokowe poszczególnych torów

Rys. 2.1. Odpwiedzi poszczególnych torów dla skoku0 - $1\,$

3. Eksperymentalne wyznaczenie nastaw

3.1. PID

W przedstawionych poniżej eksperymentach została przyjęcta następująca konwencja nazewnictwa:

 PID_1 - pid, kontrolujący wyjście numer 1.

 PID_2 - pid, kontrolujący wyjście numer 2.

 PID_3 - pid, kontrolujący wyjście numer 3.

 K^i, T^i_i, T^i_d - parametry pida i.

Patrząc na wykresy z poprzedniego zadania można zobaczyć że wejście 3 ma największy wpływ zarówno na wyjścia 1 i 3. Biorąc to pod uwage najpierw spróbowaliśmy ustawić stałą (zero) na to wejście i nie podłączać do niego regulatora, żeby nie regulować jednym wejściem dwóch wyjść jednocześnie.

3.1.1. $u_1 - y_2; u_2 - y_3; u_3 = const = 0; u_4 - y_1$

Rys. 3.1. $u_3 = 0$; $K_1 = 0, 1$; $Ti_1 = 0, 1$; $Td_1 = 0, 1$; $K_2 = 0, 01$; $Ti_2 = 0, 1$, $Td_2 = 0, 1$; $K_3 = 0, 1$; $Ti_3 = 0, 1$;

$$E = 370,8381 \tag{3.1}$$

 $\text{Rys. 3.2. newPID}_u 1_t o_y 2_u 2_t o_y 3_u 3_i s_0.00_u 4_t o_y 1_K 1_i s_0.10_T i 1_i s_0.10_T d 1_i s_0.10_K 2_i s_0.10_T i 2_i s_0.10_T d 2_i s_0.10_K 3_i s_0.10_T i 3_i s_0.10_T d 2_i s_0.10_T$

$$E = 242,6835 \tag{3.2}$$

 $\text{Rys. 3.3. } ../\text{images/newPID}_u 1_t o_y 2_u 2_t o_y 3_u 3_i s_0.00_u 4_t o_y 1_K 1_i s_0.10_T i 1_i s_0.10_T d 1_i s_0.10_K 2_i s_0.10_T i 2_i s_1.00_T d 2_i s_0.10_K 3_i s_0.10_T d 1_i s_0.10_T$

$$E = 349,5016 (3.3)$$

 $\text{Rys. 3.4. } ../\text{images/newPID}_u 1_t o_y 2_u 2_t o_y 3_u 3_i s_0.00_u 4_t o_y 1_K 1_i s_0.50_T i 1_i s_2.00_T d 1_i s_0.20_K 2_i s_4.00_T i 2_i s_1.50_T d 2_i s_0.20_K 3_i s_1.00_T d 1_i s_0.50_T i 1_i s_0.50_T d 1_i s_0.50_T$

$$E = 96,3728 (3.4)$$

 $\text{Rys. 3.5. } ../\text{images/newPID}_u 1_t o_y 2_u 2_t o_y 3_u 3_i s_0.00_u 4_t o_y 1_K 1_i s_0.50_T i 1_i s_2.00_T d 1_i s_0.80_K 2_i s_3.00_T i 2_i s_0.10_T d 2_i s_2.00_K 3_i s_1.00_T d 2_i s_0.00_T d 2_i s_0.00_T$

$$E = 93,0067 (3.5)$$

 $\text{Rys. 3.6. } ../\text{images/newPID}_u 1_t o_y 2_u 2_t o_y 3_u 3_i s_0.00_u 4_t o_y 1_K 1_i s_0.60_T i 1_i s_1.00_T d 1_i s_1.00_K 2_i s_3.00_T i 2_i s_0.10_T d 2_i s_1.00_K 3_i s_1.00_T d 1_i s_1.00_T$

3.1.2. PID u1 = const; u2 -; y3; u3 = y1; u4 -; y2

 $\text{Rys. 3.7. } ../\text{images/newPID}_u 1_i s_0.00_u 2_t o_y 3_u 3_t o_y 1_u 4_t o_y 2_K 1_i s_0.10_T i 1_i s_0.10_T d 1_i s_0.10_K 2_i s_0.10_T i 2_i s_0.10_T d 2_i s_0.10_K 3_i s_0.10_T d 2_i s_0.10_T$

$$E = 2561,8711 \tag{3.7}$$

 $\text{Rys. 3.8. } \text{K1}_{i}s_{0}.10_{T}i1_{i}s_{0}.10_{T}d1_{i}s_{1}.00_{K}2_{i}s_{0}.10_{T}i2_{i}s_{0}.10_{T}d2_{i}s_{1}.00_{K}3_{i}s_{0}.10_{T}i3_{i}s_{0}.10_{T}d3_{i}s_{1}.00$

 $\text{Rys. 3.9. } ../\text{images/newPID}_u 1_i s_0.00_u 2_t o_y 3_u 3_t o_y 1_u 4_t o_y 2_K 1_i s_0.10_T i 1_i s_0.30_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_1.00_K 3_i s_0.03_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_1.00_K 3_i s_0.03_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_1.00_K 3_i s_0.03_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_1.00_K 3_i s_0.03_T d 2_i s_0.00_K 2_i s_0$

 $\text{Rys. 3.10. } ../\text{images/newPID}_u 1_i s_0.00_u 2_t o_y 3_u 3_t o_y 1_u 4_t o_y 2_K 1_i s_0.10_T i 1_i s_0.30_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_1.00_K 3_i s_0.03_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_1.00_K 3_i s_0.03_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_1.00_K 3_i s_0.03_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_0.03_T d 1_i s_0.00_K 2_i s_0.00_K 2_i s_0.03_T d 2_i s_0.03_$

 $\text{Rys. 3.11. } ../\text{images/newPID}_u 1_i s_0.00_u 2_t o_y 3_u 3_t o_y 1_u 4_t o_y 2_K 1_i s_0.10_T i 1_i s_0.30_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_1.00_K 3_i s_0.03_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_1.00_K 3_i s_0.03_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_1.00_K 3_i s_0.03_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_0.03_T d 1_i s_0.00_K 2_i s_0.00_K 2_i s_0.03_T d 2_i s_0.00_K 2_i s_0.03_T d 2_i s_0.00_K 2_i s_0.03_T d 2_i s_0.03_T d 2_i s_0.00_K 2_i s_0.03_T d 2_$

$$E = 37,0808 \tag{3.11}$$

 $\text{Rys. 3.12. } ../\text{images/newPID}_u 1_i s_0.00_u 2_t o_y 3_u 3_t o_y 1_u 4_t o_y 2_K 1_i s_0.10_T i 1_i s_0.30_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_1.00_K 3_i s_0.03_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_1.00_K 3_i s_0.03_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_1.00_K 3_i s_0.03_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_0.03_T d 1_i s_0.00_K 2_i s_0.00_K 2_i s_0.03_T d 2_i s_0.03_$

$$E = 35,5433 \tag{3.12}$$

 $\text{Rys. 3.13. } ../\text{images/newPID}_u 1_i s_0.00_u 2_t o_y 3_u 3_t o_y 1_u 4_t o_y 2_K 1_i s_0.10_T i 1_i s_0.30_T d 1_i s_0.00_K 2_i s_0.10_T i 2_i s_0.20_T d 2_i s_1.00_K 3_i s_0.10_T i 2_i s_0.20_T d 2_i s_1.00_K 3_i s_0.10_T i 2_i s_0.20_T d 2_i s_0.20_T d$

$$E = 34,9696 (3.13)$$

 $\text{Rys. 3.14. } ../\text{images/newPID}_u 1_i s_0.00_u 2_t o_y 3_u 3_t o_y 1_u 4_t o_y 2_K 1_i s_1.00_T i 1_i s_1.00_T d 1_i s_1.00_K 2_i s_1.00_T i 2_i s_1.00_T d 2_i s_1.00_K 3_i s_1.00_T d 2_i s_1.00_T$

3.2. DMC

3.3. DMC oszczędny

