

## Programación III Práctica Calificada 2 Pregrado

2022-II

Profesor: José A. Chávez Álvarez

Lab 1.03

## Indicaciones específicas:

- Esta evaluación contiene 6 páginas (incluyendo esta página) con 3 preguntas. El total de puntos son 20.
- El tiempo límite para la evaluación es 100 minutos.
- Cada pregunta deberá ser respondida en un solo archivo con el número de la pregunta.
  - − p1.cpp
  - − p2.cpp
  - p3.cpp
- Deberás subir estos archivos directamente a www.gradescope.com, uno en cada ejercicio. También puedes crear un .zip

### Competencias:

• Para los alumnos de la carrera de Ciencia de la Computación

Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)

Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución.(Usar)

Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)

• Para los alumnos de las carreras de Ingeniería

Capacidad de aplicar conocimientos de matemáticas (nivel 3)

Capacidad de aplicar conocimientos de ingeniería(nivel 2)

Capacidad para diseñar un sistema, un componente o un proceso para satisfacer las necesidades deseadas dentro de restricciones realistas (nivel 2)

# Calificación:

Tabla de puntos (sólo para uso del professor)

| Question | Points | Score |
|----------|--------|-------|
| 1        | 6      |       |
| 2        | 7      |       |
| 3        | 7      |       |
| Total:   | 20     |       |

### 1. (6 points) Librería Estandar

Genere un vector con 1000 números enteros aleatorios entre 1 y 99.

- Utilizar la librería algorithm para generar los números aleatorios del 1 al 99.
- Implemente una función que permita imprimir los elementos de un vector en una linea.
- Genere un mapa con los números aleatorios generados como claves. Los valores deben indicar si el número es primo (true) o computesto (false).
- Genere otro mapa con los números aleatorios generados como claves y las veces que se repiten como valores. Luego, imprima los números de acuerdo a las repeticiones (descendente).

Algunos ejemplos de diálogo de este programa serían:

Listing 1: Ejemplo 1

```
vector generado... Done.
Numero
            Primo
     4
             false
     5
             true
     6
             false
Orden:
6
          10 veces
4
           5 vez
5
           3 veces
      ->
```

La rúbrica para esta pregunta es:

| Criterio     | Excelente       | Adecuado          | Mínimo            | Insuficiente      |
|--------------|-----------------|-------------------|-------------------|-------------------|
| Librería Es- | Selección del   | Selección del     | Selección del     | No se selección   |
| tandar       | contenedor de   | contenedor        | contenedor        | ni el contene-    |
|              | acuerdo con lo  | correcto, estruc- | correcto, estruc- | dor ni se de-     |
|              | solicitado, uso | turas genéricas   | turas genéricas   | sarrolló algorit- |
|              | adecuado de     | basados en        | basados en        | mos y estruc-     |
|              | los iteradores, | contenedores.     | contenedores,     | turas genéricas.  |
|              | estructuras     | (4pts)            | errores en el     | (Opts)            |
|              | genéricas basa- |                   | funcionamiento    |                   |
|              | dos en contene- |                   | pasa algunas      |                   |
|              | dores. (6pts)   |                   | pruebas. (2pts).  |                   |

### 2. (7 points) Complejidad Algorítmica

Listing 2: Algoritmo 1

```
int foo(int a, int b){
    while (b > 0){
        int q = a / b;
        int r = a - q * b;

        a = b;
        b = r;
    }
    return a;
}
```

La función foo, en el Algoritmo 1, retorna un número entero (a y b no-negativos). Dentro de el archivo p2.cpp:

- A modo de comentario, indique que representa la salida de la función con respecto a los valores de a y b. De una explicación de su respuesta.
- Imprima el Invariante de Bucle del Algoritmo 1 en cada iteración.

La rúbrica para esta pregunta es:

| Criterio        | Excelente        | Adecuado          | Mínimo           | Insuficiente       |
|-----------------|------------------|-------------------|------------------|--------------------|
| Complejidad Al- | Buen nivel de    | Buen nivel de     | Programa no      | Se intento pero    |
| gorítmica       | abstracción, el  | abstracción,      | funciona ade-    | no se logró que    |
|                 | problema logro   | el problema       | cuadamente,      | funcione lo solic- |
|                 | realizar con la  | logro realizar    | bajo nivel de    | itado. (1pts)      |
|                 | complejidad al-  | lo solicitado sin | abstracción,     |                    |
|                 | gorítmica solic- | lograr alcanzar   | más de 3 er-     |                    |
|                 | itado, funciona  | la complejidad    | rores, nivel de  |                    |
|                 | correctamente    | algorítmica       | complejidad      |                    |
|                 | y sin errores.   | solicitado,       | algorítmica in-  |                    |
|                 | (7pts)           | funciona correc-  | correcta. (3pts) |                    |
|                 |                  | tamente y sin     |                  |                    |
|                 |                  | errores. (5pts)   |                  |                    |

### 3. (7 points) Programación Concurrente

Utilizando matrices dinámicas, implemente un programa que permita generar dos matrices A y B con números aleatorios entre 0 y 99. El programa debe solicitar la columna y fila para A, necesariamente la columna y fila deben ser distintos. Si A es una matriz de  $m \times n$ , entonces automáticamente B debe ser de  $n \times m$ . Luego calcule

$$X = A \times B + \text{mean}(A),$$

donde mean calcula el promedio de todos los elementos de A, y el operador + adiciona mean(A) a cada elemento de  $A \times B$ . Calcule X de dos formas:

- Paralelizando con respecto a los datos. Cada hilo debe operar a través de una parte de las matrices.
- Paralelizando con respecto a las tares. Un hilo debe calcular  $A \times B$  y otro mean(A).

Utilice únicamente dos hilos para este problema.

La rúbrica para esta pregunta es:

| Criterio     | Excelente          | Adecuado         | Mínimo           | Insuficiente     |
|--------------|--------------------|------------------|------------------|------------------|
| Programación | Buen nivel de      | Buen nivel de    | Programa no      | Contiene errores |
| Concurrente  | abstracción,       | abstracción, el  | funciona, bajo   | que no hace que  |
|              | el problema        | problema no se   | nivel de ab-     | funcione el pro- |
|              | se desarrolla      | utiliza la can-  | stracción, más   | grama. (1pts)    |
|              | utilizando la      | tidad de hilos   | de 3 errores     |                  |
|              | cantidad de        | solicitados, no  | visibles , no se |                  |
|              | hilos solicitados, | se controla los  | usa los hilos    |                  |
|              | se controla ade-   | race condition   | adecuadamente    |                  |
|              | cuadamente los     | adecuadamente,   | ni un control de |                  |
|              | race condition,    | funciona correc- | race condition.  |                  |
|              | funciona correc-   | tamente y sin    | (3pts)           |                  |
|              | tamente y sin      | errores. (5pts)  |                  |                  |
|              | errores. (7pts)    |                  |                  |                  |