NATIONAL UNIVERSITY OF SINGAPORE

CS1231 - DISCRETE STRUCTURES

(SEMESTER 2 AY 2017/2018)

Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This assessment paper contains **FIVE** questions and comprises **EIGHT** printed pages, including this page.
- 2. Answer **ALL** questions within the space in this booklet.
- 3. This is a Closed Book assessment.
- 4. Candidates are allowed to bring in an A4-sized help sheet, written on both sides.
- 5. Calculators are allowed.
- 6. Please write your Student Number below. Do not write your name.

Student NO:

Question	Marks	Remarks
A(1-6, Pg 2)		
A(7-10, Pg 2)		
A(Pg 3)		
В		
C		
D		
E		
Total		

PAGE 2 CS1231

written as integers or powers of a single integer. For example, you can a but neither $\binom{5}{1}\binom{3}{1}$ nor $3!$.	write 2300 or 3 ²⁷
(1) Find -5295 Div 29.	
(2) Find an integer x so that $0 < x < 104$ and $9x \equiv 1 \mod 104$.	
(3) Find the coefficient of x^2 in the expansion of $\left(x - \frac{1}{\sqrt{x}} + \frac{1}{x}\right)^5$.	
(4) Find the number of integers in $\{1, 2, 3, \dots, 2018\}$ which are	
(i) multiples of 3 and 4.	
(ii) multiples of 4 or 6 but not 5.	
(5) How many ways are there to choose 5 integers x, y, z, t, w from the so that $x < y < z < t < w$ and $y - x \ge 10$, $z - y \ge 9$, $t - z \ge 8$, $w - t \ge 7$?	set $\{1, 2, \dots, 40\}$
(6) An integer n is a perfect square if $n = k^2$ for some $k \in \mathbb{Z}$. Is there a both a multiple of 2 and a perfect square but not a multiple of 4?	
(7) Consider functions from a set with 6 elements to a set with 3 elements	nts.
(i) How many one-to-one functions are there?	
(ii) How many onto functions are there?	
(8) Let G be a simple graph with 101 vertices.	
(i) Is it possible that 50 vertices are of degree 100 and 51 vertices are of	degree 20?
	Yes / No
(ii) If G has exactly 50 vertices of degree 100, then is it true that such a Euler circuit?	G must have an Yes / No
(9) Find the number of edges in the hypercube Q_5 .	
(10) Suppose the universal address of a vertex v in a rooted tree is 2.5.	2.1.7. Find
(i) The level of v .	
(ii) The minimum number of vertices in the tree.	

Question A [40 marks]. For each of the following, just write down the answers in the spaces provided. Detailed workings are not required. Also numerical answers are to be

(11) Let T be a full 40-ary tree. How many among the numbers 121, 202, 313, 434, can be the number of vertices of T? (Your answer ranges from 0 to 4.)

(12) How many edges are there in a forest of t trees containing a total of n vertices?

THE PARTY OF THE P

(13) (i) Find the minimum values of m if an m-ary tree has at least 600 leaves and height 4.

(ii) Find the value(s) of n if a full and balanced n-ary tree has 81 leaves and height 4.

(14) Find the weight of a minimum spanning tree in the following graph.

(15) Let G be the following graph. Using the alphabetical ordering, find a spanning tree by **depth first** search. Draw the tree below.

Graph G

Question B [5 marks]. Prove by using mathematical induction that for any integer $n \ge 1$,

$$1 + \frac{1}{4} + \frac{1}{9} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}.$$

Question C [5 marks]. Prove that for any positive integer n,

$$\sum_{r=0}^{n} \binom{n}{r}^2 = \binom{2n}{n}.$$

PAGE 6 CS1231

Question D [5 marks]. Suppose that T_1 and T_2 are spanning trees of a simple graph G with at least 3 vertices. Moreover, suppose that e_1 is an edge in T_1 that is not in T_2 . Show that there is an edge e_2 in T_2 that is not in T_1 such that T_1 remains a spanning tree if e_1 is removed from it and e_2 is added to it, and T_2 remains a spanning tree if e_2 is removed from it and e_1 is added to it.

PAGE 7 CS1231

Question E [5 marks]. How many primes among the positive integers, written as usual in base 10, are alternating 1's and 0's, beginning and ending with 1? Justify your answer.