

Linear Combinations and Span

Source: Linear combinations and span (video) | Khan Academy

What Is a Linear Combination? 🧐

Imagine vectors as arrows in space—each pointing in a direction with a certain magnitude. Now, a linear combination is just a way of mixing these arrows using:

- Scaling (multiplying each vector by a real number),
- Adding them together.

Definition

Given vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \in \mathbb{R}^n$, a linear combination looks like this:

$$c_1\vec{v}_1+c_2\vec{v}_2+\cdots+c_n\vec{v}_n$$
,

where each $c_i \in \mathbb{R}$.

You're just stretching (scaling) and stacking (adding) the vectors.

Visualizing Linear Combinations with Examples \(\phi\)

Example 1: Two Vectors in \mathbb{R}^2

Let:

$$ullet \ ec{a} = egin{bmatrix} 1 \ 2 \end{bmatrix}$$

$$ullet \ ec{b} = egin{bmatrix} 0 \ 3 \end{bmatrix}$$

a A **linear combination** of \vec{a} and \vec{b} is any vector of the form:

$$c_1 \vec{a} + c_2 \vec{b}$$

Try this:

•
$$c_1 = 3$$
, $c_2 = -2$

$$3ec{a}+(-2)ec{b}=3egin{bmatrix}1\2\end{bmatrix}-2egin{bmatrix}0\3\end{bmatrix}=egin{bmatrix}3\6\end{bmatrix}-egin{bmatrix}0\6\end{bmatrix}=egin{bmatrix}3\0\end{bmatrix}$$

 \mathscr{A} So $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$ is one possible result—a linear combination!

YES—if the two vectors are **not collinear** (not scalar multiples of each other), their combinations fill the whole plane!

Span: The Universe of Reachable Vectors

The span of a set of vectors is the entire collection of all their linear combinations.

Formal Definition \

Think of **span** as the **territory** these vectors can explore if they work together

Analogy

You're on a grid. \vec{a} lets you move diagonally. \vec{b} sends you straight up. If you can stack movements using both, you can walk to any square. That's span!

Visual Interpretations

Case 1: Vectors That Span \mathbb{R}^2

Given
$$ec{a} = egin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 , $ec{b} = egin{bmatrix} 0 \\ 3 \end{bmatrix}$:

- These are **not** multiples of each other.
- Their span = entire plane \mathbb{R}^2
- You can reach any point in the 2D world using combinations of these two!

Case 2: Vectors That Don't Span \mathbb{R}^2

Let:

•
$$ec{a}=egin{bmatrix}2\\2\end{bmatrix}$$
, $ec{b}=egin{bmatrix}-2\\-2\end{bmatrix}$

- Their span = a line in \mathbb{R}^2
- You can only move along that line. Try to escape → You're stuck.

Case 3: The Zero Vector

If all you have is the zero vector:

•
$$\vec{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- Every combination is still $\vec{0}$
- So the span is just $\{\vec{0}\}$ X

Sad, limited world. No adventure 😢

Span of a Single Vector 🔁 A Line

If $ec{v} \in \mathbb{R}^2$, then:

$$\mathrm{span}(ec{v}) = \{cec{v} \mid c \in \mathbb{R}\}$$

 \checkmark That's just a line through the origin in the direction of \vec{v} .

The Famous Duo: Unit Vectors i & j 💥

These guys are your standard base for 2D space.

•
$$\hat{i} = egin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $ightarrow$ unit step along x-axis

•
$$\hat{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 $ightarrow$ unit step along y-axis

 \divideontimes Any vector in \mathbb{R}^2 can be built with them:

$$ec{x}=x_1\hat{i}+x_2\hat{j}$$

So they **span** \mathbb{R}^2 and also form a **basis** (fancy term for later \clubsuit).

Proving It Algebraically

Let's prove that $ec{a}=egin{bmatrix}1\\2\end{bmatrix}$ and $ec{b}=egin{bmatrix}0\\3\end{bmatrix}$ can reach any point $ec{x}=egin{bmatrix}x_1\\x_2\end{bmatrix}\in\mathbb{R}^2.$

We want:

$$c_1ec{a}+c_2ec{b}=ec{x}\Rightarrow c_1egin{bmatrix}1\2\end{bmatrix}+c_2egin{bmatrix}0\3\end{bmatrix}=egin{bmatrix}x_1\x_2\end{bmatrix}$$

Break it into equations:

•
$$c_1 = x_1$$

•
$$2c_1 + 3c_2 = x_2$$

Substitute $c_1=x_1$ into the second:

$$2x_1 + 3c_2 = x_2 \Rightarrow c_2 = rac{x_2 - 2x_1}{3}$$

So for any (x_1, x_2) , we have a solution $\Rightarrow \vec{a}$ and \vec{b} span \mathbb{R}^2 !

Quick Example

Target vector: $ec{x} = egin{bmatrix} 2 \\ 2 \end{bmatrix}$

•
$$c_1 = 2$$

•
$$c_2 = \frac{2-2(2)}{3} = \frac{-2}{3}$$

$$ec{x} = 2ec{a} - rac{2}{3}ec{b}$$

$$ightarrow 2 egin{bmatrix} 1 \ 2 \end{bmatrix} - rac{2}{3} egin{bmatrix} 0 \ 3 \end{bmatrix} = egin{bmatrix} 2 \ 4 \end{bmatrix} - egin{bmatrix} 0 \ 2 \end{bmatrix} = egin{bmatrix} 2 \ 2 \end{bmatrix}$$

Boom. Landed at $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ via linear combo!

Key Takeaways 💡 🧠

- A linear combination is a weighted sum of vectors using real coefficients.
- The **span** of vectors is the set of all possible linear combinations—aka the "territory" they can cover.
- Two vectors $\operatorname{\mathbf{span}} \mathbb{R}^2$ if they're not collinear.
- The span of a single vector is a line, and the span of the zero vector is just the zero vector.
- Vectors like \hat{i} and \hat{j} form a **basis**—they both span \mathbb{R}^2 and are orthogonal (90° apart).

Linear Combinations and Span