Coding Theory Homework

Week 11 (Section 3.1)

Exercise 3.1.2

Illustrate Theorem 3.1.1 for v = 10110 and t = 3 by listing all words in K^5 of distance of at most 3 from v, and then check that Theorem 3.1.1 does give the correct number of such words.

Word	Distance from v	Word	Distance from v
00000	3	10000	2
00001	4	10001	3
00010	2	10010	1
00011	3	10011	2
00100	2	10100	1
00101	3	10101	2
00110	1	10110	0
00111	2	10111	1
01000	4	11000	3
01001	5	11001	4
01010	3	11010	3
01011	4	11011	3
01100	3	11100	2
01101	4	11101	3

01110	2	11110	1
01111	3	11111	2

26 words in k^5 of a distance of at most 3 from v.

Checking this with theorem 3.1.1 we get the same result.

$$\binom{5}{0} + \binom{5}{1} + \binom{5}{2} + \binom{5}{3} = 26$$

Exercise 3.1.5 (b)

Find an upper bound for the size or dimension of a linear code with the given values of n and d.

b.
$$n = 7$$
, $d = 3$

$$t = (d-1)/2 = 1$$

$$|C| \le \frac{2^7}{\binom{7}{0} + \binom{7}{1}} = \frac{128}{8} = 16$$

Exercise 3.1.6 (b)

Verify the Hamming bound for the linear code *C* with the given generator matrix.

b.

$$\binom{5}{0} + \binom{5}{1} + \binom{5}{2} + \binom{5}{3} = 26$$

Exercise 3.1.10

Columns 2,3 and 5 of the generator matrix *G* below are linearly dependent. Find a codeword which has zeros in position 2,3 and 5.

$$G = \begin{pmatrix} 11001\\01110\\00101 \end{pmatrix} \times 111 = 10010$$

Exercise 3.1.11

Show that if a $k \times n$ generator matrix has k linearly depedent columns then there is a nonzero codeword with zeroes in those k position.

Exercise 3.1.18 (b)

For each part of Exercise 3.1.5, let $k = 2_d$ and decide, if possible, whether or not a linear code with the given parameters exists. Find a lower and upper bound for the maximum number of codewords such a code can have, assuming that k is unrestricted.

b.
$$n = 7$$
, $d = 3$

$$_t_ = (d-1)/2 = 1$$

 $_k_ = 2_d_ = 14$

Lower bound:

$$|C| \ge \frac{2^{7-1}}{\binom{6}{0} + \binom{6}{1}} = \frac{2^6}{1+7} = \frac{64}{8} = 8$$

Upper bound:

$$|C| \le \frac{2^7}{\binom{7}{0} + \binom{7}{1}} = \frac{128}{1+7} = \frac{128}{8} = 16$$

Exercise 3.1.19 (b)

Find a lower and upper bound for the maximum number of codewords in a linear code of length *n* and distance *d* where:

b.
$$n = 15$$
, $d = 3$

$$t = (d-1)/2 = 1$$

Lower bound:

$$|C| \ge \frac{2^{15-1}}{\binom{14}{0} + \binom{14}{1}} = \frac{2^{14}}{1+15} = \frac{16384}{16} = 1024$$

Upper bound:

$$|C| \le \frac{2^{15}}{\binom{15}{0} + \binom{15}{1}} = \frac{32768}{1 + 16} = \frac{32768}{16} = 2048$$

Exercise 3.1.20

Is it possible to have a linear code with parameters (8, 3, 5)