TERMIN 4 - zadaci za samostalan rad

* * *

Zadatak 1.

Dopuniti skup vektora $\{(1,1,1,2),(1,2,3,-3)\}$ do ortogonalne baze vektorskog prostora \mathbb{R}^4 .

* * *

Zadatak 2.

Neka je

$$\begin{bmatrix} 0 & 1 \\ 1 & 3 \\ -1 & 1 \\ 0 & 0 \\ -1 & 1 \end{bmatrix}.$$

Odrediti baze fundamentalnih potprostora matrice A pa provjeriti da li su ispunjeni odgovarajući uslovi njihove ortogonalnosti.

* * *

Zadatak 3.

Neka je

$$A = \begin{bmatrix} 1 & -2 & a \\ -2 & 1 & b \\ -2 & -2 & c \end{bmatrix}.$$

Odrediti $a, b, c \in \mathbb{R}$ tako da matrica A ima ortogonalne kolone.

Zadatak 4.

Odrediti jednu ortonormiranu bazu prostora kolona matrice

$$A = \begin{bmatrix} 1 & 3 & 8 \\ 1 & 3 & 0 \\ 1 & -1 & 0 \\ 1 & -1 & 0 \end{bmatrix}$$

a onda odrediti ortogonalnu dopunu od C(A).

* * * *

Zadatak 5.

Da li postoji ortogonalna matrica $Q \in \mathcal{M}_3$ čija je prva kolona $\overrightarrow{q_1} = \begin{bmatrix} \frac{3}{5} & 0 & -\frac{4}{5} \end{bmatrix}^T$? Obrazložiti odgovor.

Zadatak 6.

Neka je

$$V = Lin \left\{ \begin{bmatrix} 0 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 4 \\ 5 \end{bmatrix} \right\}.$$

Odrediti ortonormiranu bazu prostora V^{\perp} .

* * * *

Zadatak 7.

Odrediti ortogonalnu projekciju i ortogonalnu komponentu vektora $\overrightarrow{x} = (4, -1, -3, 4)$ na potprostor generisan vektorima $\overrightarrow{a} = (1, 1, 1, 1)$, $\overrightarrow{b} = (1, 2, 2, -1)$ i $\overrightarrow{c} = (1, 0, 0, 3)$.

$\star\star\star\star$

Zadatak 8.

Odrediti matricu ortogonalnog projektovanja na prostor $Lin \left\{ \begin{bmatrix} 1\\1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} \right\}$

Zadatak 9.

Data je matrica

Odrediti projekcije vektora $\begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \end{bmatrix}$

$$\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \in \mathbb{R}^4 \text{ na potprostore } N(A) \text{ i } C\left(A^T\right).$$

Zadatak 10.

Neka je $\mathbb{R}_2(x)$ vektorski prostor realnih polinoma stepena ne većeg od 2 i neka je u tom vektorskom prostoru skalarni proizvod definisan sa

$$(p(x), q(x)) = \int_0^{+\infty} e^{-x} p(x) q(x) dx.$$

Odrediti ortonormiranu bazu tog prostora pomoću Gram-Šmitovog postupka ortogonalizacije polazeći od standardne baze tog prostora $\{1, x, x^2\}$.