I put filtered images and my own convolution kernels in the experiments folder.

When the program convolve, I get the maximum value of either sum of positive weights and the sum of the negative weights. Using the absolute value of maximum value as a scale factor. I need to make sure the scale factor is equal to 1 if the maximum value is equal to 0. I clamp both the scale factor and final pixel value between 0 and 255.

For boundary condition, I use reflection. I reflect pixels index beyond the boundary.

Basic Requirements

original vs pulse.filt

The image blurred by pulse filter

original vs tent.filt

The image blurred by tent filter

original vs hp.filt

hp filter draw the outline of origin image

original vs sobol-horiz.filt

sobol-horiz filter compress the rectangle to a line and rotate it

original vs sobol-vert.filt

sobol-vertfilter compress the rectangle to a line

original vs new_sharpen.filt

new_sharpen filter make the outline more clear

original vs new_outline .filt

new_outline draw the outline of original image

Advanced Extension

original vs Gaussian filter [sigma = 2]

greater sigma make original image blurrier

original vs Gaussian filter [sigma = 4]

greater sigma make original image blurrier

original vs Gaussian filter [theta = 0, sigma = 4, periods = 4]

It's hard to identify the original image

original vs Gaussian filter [theta = 45, sigma = 4, periods = 8]

we can see some outlines from upper right to bottom left

