16-350 Planning Techniques for Robotics

Planning Representations: Skeletonization- and Grid-based Graphs

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

2D Planning for Omnidirectional Point Robot

Planning for omnidirectional point robot:

```
What is M^R = \langle x, y \rangle

What is M^W = \langle obstacle/free \ space \rangle

What is s^R_{current} = \langle x_{current}, y_{current} \rangle

What is s^W_{current} = constant

What is C = Euclidean \ Distance

What is G = \langle x_{goal}, y_{goal} \rangle
```


Planning as Graph Search Problem

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Planning as Graph Search Problem

1. Construct a graph representing the planning problem

This class

2. Search the graph for a (hopefully, close-to-optimal) path

Next class

The two steps above are often interleaved

More on this in later classes

2D Planning for Omnidirectional Point Robot

Planning for omnidirectional point robot:

```
What is M^R = \langle x, y \rangle

What is M^W = \langle obstacle/free \ space \rangle

What is s^R_{current} = \langle x_{current}, y_{current} \rangle

What is s^W_{current} = constant

What is C = Euclidean \ Distance

What is G = \langle x_{goal}, y_{goal} \rangle
```

Any ideas on how to construct a graph for planning?

- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps

- Cell decomposition
 - X-connected grids
 - lattice-based graphs

- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams

- X-connected grids

- lattice-based graphs

- Probabilistic roadmaps

Will be covered in later classes

• Cell decomposition

Carnegie Mellon University

- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps

- Cell decomposition
 - X-connected grids
 - lattice-based graphs

- Visibility Graphs [Wesley & Lozano-Perez '79]
 - based on idea that the shortest path consists of obstacle-free straight line segments connecting all obstacle vertices and start and goal

- Visibility Graphs [Wesley & Lozano-Perez '79]
 - based on idea that the shortest path consists of obstacle-free straight line segments connecting all obstacle vertices and start and goal

- Visibility Graphs [Wesley & Lozano-Perez '79]
 - construct a graph by connecting all vertices, start and goal by obstacle-free straight line segments (graph is $O(n^2)$, where n # of vert.)

- Visibility Graphs [Wesley & Lozano-Perez '79]
 - construct a graph by connecting all vertices, start and goal by obstacle-free straight line segments (graph is O(n²), where n # of vert.)

- Visibility Graphs
 - advantages:
 - independent of the size of the environment
 - disadvantages:
 - path is too close to obstacles
 - hard to deal with the cost function that is not distance
 - hard to deal with non-polygonal obstacles
 - hard to maintain the polygonal representation of obstacles
 - can be expensive in spaces higher than 2D

- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps

- Cell decomposition
 - X-connected grids
 - lattice-based graphs

- Voronoi diagram [Rowat '79]
 - set of all points that are equidistant to two nearest obstacles (can be computed O (n log n), where n # of points that represent obstacles)

- Voronoi diagram-based graph
 - Edges: Boundaries in Voronoi diagram
 - Vertices: Intersection of boundaries
 - Add start and goal vertices
 - Add edges that correspond to:
 - shortest path segment from start to the nearest segment on the Voronoi diagram
 - shortest path segment from goal to the nearest segment on the Voronoi diagram

- Voronoi diagram-based graph
 - Edges: Boundaries in Voronoi diagram
 - Vertices: Intersection of boundaries
 - Add start and goal vertices
 - Add edges that correspond to:
- Disadvantages of the Voronoi diagram-based Graphs?
- shortest path segment from start to the nearest segment on the Voronoi diagram
- shortest path segment from goal to the nearest segment on the Voronoi diagram

- Voronoi diagram-based graph
 - advantages:
 - tends to stay away from obstacles
 - independent of the size of the environment
 - can work with any obstacles represented as set of points
 - disadvantages:
 - can result in highly suboptimal paths
 - hard to deal with the cost function that is not distance
 - hard to use/maintain beyond 2D

- Skeletonization
 - -Visibility graphs
 - -Voronoi diagrams
 - Probabilistic roadmaps

- Cell decomposition
 - X-connected grids
 - lattice-based graphs

- Approximate Cell Decomposition:
 - overlay uniform grid (discretize)

- Approximate Cell Decomposition:
 - construct a graph

- Approximate Cell Decomposition:
 - what to do with partially blocked cells?

- Approximate Cell Decomposition:
 - what to do with partially blocked cells?
 - make it untraversable incomplete (may not find a path that exists)

- Approximate Cell Decomposition:
 - what to do with partially blocked cells?
 - make it traversable unsound (may return invalid path)

so, what's the solution?

- Approximate Cell Decomposition:
 - solution 1:
 - make the discretization very fine
 - expensive, especially in high-D

- Approximate Cell Decomposition:
 - solution 2:
 - make the discretization adaptive
 - various ways possible

- Graph construction:
 - connect neighbors

8-connected grid

- Graph construction:
 - connect neighbors
 - path is restricted to 45° degrees

- Graph construction:
 - connect neighbors
 - path is restricted to 45° degrees

Ideas to improve it?

- Graph construction:
 - connect cells to neighbor of neighbors

- path is restricted to 22.5° degrees

16-connected grid

convert into a graph

• Graph construction:

- connect cells to neighbor of neighbors

- path is restricted to 26.6°/63.4° degrees

16-connected grid

convert into a graph

• Graph construction:

- connect cells to neighbor of neighbors

- path is restricted to 26.6°/63.4° degrees

Cell Decomposition-based Graphs

- Grid-based graph
 - advantages:
 - very simple to implement (super popular)
 - can represent any dimensional space
 - works well with obstacles represented as set of points
 - works with any cost function
 - disadvantages:
 - size does depend on the size of the environment
 - expensive to maintain/compute grids of dimensions > 3

Cell Decomposition-based Graphs

- Grid-based graph
 - advantages:
 - very simple to implement (super popular)
 - can represent any dimensional space
 - works well with obstacles represented as set of points
 - works with any cost function
 - disadvantages:
 - size does depend on the size of the environment
 - expensive to maintain/compute grids of dimensions > 3

More on this in a later class on Implicit Graph representations for high-dimensional planning problems

Planning for omnidirectional point robot:

What is
$$M^R = \langle x, y \rangle$$

What is $M^W = \langle obstacle/free \ space \rangle$
What is $s^R_{current} = \langle x_{current}, y_{current} \rangle$
What is $s^W_{current} = constant$
What is $C = Euclidean \ Distance$
What is $G = \langle x_{goal}, y_{goal} \rangle$

Configuration Space

• Configuration is legal if it does not intersect any obstacles and is valid

Configuration Space is the set of legal configurations

Legal configurations for the base of the robot:

Configuration Space

• Configuration is legal if it does not intersect any obstacles and is valid

Configuration Space is the set of legal configurations

- Configuration space for a robot base in 2D world is:
 - 2D if robot's base is circular

- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

• Configuration space for a robot base in 2D world is:

- 2D if robot's base is circular

C-Space Transform

- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

• Configuration space for a robot base in 2D world is:

- 2D if robot's base is circular

- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

How to perform expansion of

Configuration space for a robot be O(n) methods exist to compute
 2D if robot's base is circular distance transforms efficiently

C-Space
Transform

R

C-Space
Transform

- expand all obstacles by radius r of the robot's base
- graph construction can then be done assuming point robot

Planning for omnidirectional circular robot:

What is
$$M^R = \langle x, y \rangle$$

What is $M^W = \langle obstacle/free \ space \rangle$
What is $s^R_{current} = \langle x_{current}, y_{current} \rangle$
What is $s^W_{current} = constant$
What is $C = Euclidean \ Distance$
What is $G = \langle x_{goal}, y_{goal} \rangle$

Planning for omnidirectional circular robot:

What is
$$M^R = \langle x, y \rangle$$

What is $M^W = \langle obstacle/free \ space \rangle$
What is $s^R_{current} = \langle x_{current}, y_{current} \rangle$
What is $s^W_{current} = constant$
What is $C = Euclidean \ Distance$
What is $G = \langle x_{goal}, y_{goal} \rangle$

We can now construct a graph using previously discussed methods (grids, Voronoi graphs, Visibility graphs)

- Configuration space for a robot base in 2D world is:
 - 3D if robot's base is non-circular

Planning for omnidirectional non-circular robot:

What is
$$M^R = \langle x, y, \Theta \rangle$$

What is $M^W = \langle obstacle/free \ space \rangle$
What is $s^R_{current} = \langle x_{current}, y_{current}, \Theta_{current} \rangle$
What is $s^W_{current} = constant$
What is $C = Euclidean \ Distance$
What is $G = \langle x_{goal}, y_{goal}, \Theta_{goal} \rangle$

Interleave
Graph Construction and Graph Search steps!

Construct a 3D grid (x,y,Θ) assuming point robot (i.e., a cell (x,y,Θ) is free whenever its (x,y) is free) and compute the **actual** validity of only those cells that get computed by the graph search

Planning for omnidirectional non-circular robot:

What is $M^R = \langle x, y, \Theta \rangle$ What is $M^W = \langle obstacle/free \ space \rangle$ What is $s^R_{current} = \langle x_{current}, y_{current}, \Theta_{current} \rangle$ What is $s^W_{current} = constant$ What is $C = Euclidean \ Distance$ What is $G = \langle x_{goal}, y_{goal}, \Theta_{goal} \rangle$

Interleave
Graph Construction and Graph Search steps!

Construct a 3D grid (x,y,Θ) assuming point robot (i.e., a cell (x,y,Θ) is free whenever its (x,y) is free) and compute the **actual** validity of only those cells that get computed by the graph search

How to compute the actual validity of cell (x,y,Θ) ?

Planning for omnidirectional non-circular robot:

```
What is M^R = \langle x, y, \Theta \rangle

What is M^W = \langle obstacle/free \ space \rangle

What is s^R_{current} = \langle x_{current}, y_{current}, \Theta_{current} \rangle

What is s^W_{current} = constant

What is C = Euclidean \ Distance

What is G = \langle x_{goal}, y_{goal}, \Theta_{goal} \rangle
```

Interleave
Graph Construction and Graph Search steps!

Summary

- Planning:
 - 2-step process
 - graph construction + graph search
 - Often interleaved
- Two graph construction classes
 - Skeletonization-based graphs
 - Visibility graphs
 - Voronoi diagram-based graphs
 - Cell decomposition-based graphs
 - X-connected grids