Efficiency, Utility, Security, and Privacy Trade-Offs

Dr. Chen Zhang

Department of Computer Science

The Hang Seng University of Hong Kong

Data Analytics Over Encrypted Data

Why Encrypted Search?

 Sensitive data demands encrypted storage.

Encrypted search reduces
 risks of data breaches

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

Cloud Storage

Symmetric Searchable Encryption (SSE) in a Nutshell

SSE: enable untrusted servers to directly search over encrypted data without server-side decryption.

Not enough in Security!

- Vulnerable to volume attack.
 - Attackers can know how many files corresponding to a keyword.
 - Defense: append files to ensure that the number of files corresponding to all keys is the same.
- Update operations introduce additional privacy concerns, e.g., vulnerable to injection attacks:
 - The data addition can reveal the associations between newly added data and previous search results.
 - Defense: User maintains a counter for each key and updates the counter after each addition operation.

Not enough in Security!

- The server may provide unfaithful query result.
 - Attackers can know how many files corresponding to a keyword.
 - Defense: the data owners to maintain the digests for predefined search results and conduct result verification locally.

Adversary servers provide unfaithful query execution for saving computational cost

Not enough in Security!

- Vulnerable to frequency-analysis attack.
 - Attackers can know how many files corresponding to a keyword.
 - Defense: add fake queries in the sequence of real queries to disrupt the original access pattern

Example of Frequency-Analysis Attacks

Resisting Frequency-Analysis Attack

Problem: May incur high bandwidth overhead

Resisting Frequency-Analysis Attack

Trade-off between security overhead and bandwidth overhead

Not Enough in Terms of Functionality!

- Only support put/get requests to access single encrypted value is not enough.
- Supporting rich queries (such as range query, Boolean query) is important.
- Conflict to the initial idea of encryption.
- More storage, bandwidth, and computational overheads are needed.

To ensure security, more complex functions incur more overhead.

Other Trade-Off Examples

- Data backup & data protection: Data backup is an important measure for data protection, but managing and storing backup data also increases storage overhead and system maintenance overhead.
- Access control & data sharing: Access control ensures that only authorized users can access sensitive data, but they can also limit data sharing and collaboration.
- Authentication & user experience: Strong authentication measures (such as multi-factor authentication) can enhance account security, but they can also make it more difficult for users to access their accounts.
- Firewall & data transfer speed: Firewalls are essential for protecting networks from cyber threats, but they can also slow down data transfer speeds.