Ejercicio 1

1. Completa la tabla siguiente:

Valor exacto	4	3.9	0.0004	400	390
Valor aproximado	3.9	4	0.00039	390	400
Error absoluto	0.1	0.1	0.00001	10	10
Error relativo	0.025	0.025641	0.025	0.025	0.025641
Error porcentual	2.5	2.5641	2.5	2.5	2.5641

Veamos como ejemplo el último de los casos de la tabla.

■ El error absoluto es:

$$|x - x^*| = |390 - 400| = |-10| = 10.$$

■ El error relativo es:

$$\frac{|x - x^*|}{|x|} = \frac{|391 - 400|}{|390|} = \frac{|-10|}{390} = \frac{10}{390} = 0.025641.$$

• El error porcentual es el error relativo multiplicado por 100, así que:

$$0.025641 \cdot 100 = 2.5641.$$

2. Se sabe que $x^* = 1.1$ aproxima a x con al menos 3 dígitos de precisión (error relativo menor o igual que $5 \cdot 10^{-3}$. Calcular el intervalo al que pertenece x.

Como queremos aproximar x con al menos 3 dígitos de precisión se tiene que:

$$\frac{|x - x^*|}{|x|} \le 5 \cdot 10^{-3} \Rightarrow |x - 1.1| \le 5 \cdot 10^{-3} |x|.$$

Distinguinmos dos casos:

- $Si \ x < 0 \Rightarrow -(x-1.1) \le 5 \cdot 10^{-3} (-x) \Rightarrow 1.1 \le (1-5 \cdot 10^{-3}) x \le 0$. Llegamos a contradicción $(1.1 \le 0)$.
- $Si \ x > 0 \Rightarrow |x 1.1| \le 5 \cdot 10^{-3} x \Rightarrow -5 \cdot 10^{-3} x \le x 1.1 \le 5 \cdot 10^{-3} x$. Por tanto, tenemos que:

•
$$x - 1.1 \le 5 \cdot 10^{-3} x \Rightarrow (1 - 5 \cdot 10^{-3}) x \le 1.1 \Rightarrow x \le \frac{1.1}{1 - 5 \cdot 10^{-3}} = 1.1055.$$

•
$$x - 1.1 \ge -5 \cdot 10^{-3} x \Rightarrow (1 + 5 \cdot 10^{-3}) x \ge 1.1 \Rightarrow x \ge \frac{1.1}{1 + 5 \cdot 10^{-3}} = 1.0945.$$

$$Asi, x \in [1.0945, 1.1055].$$

- 3. Redondea el número x = 0.001036725580... en una máquina con aritmética de 4 dígitos, 5 dígitos, 6 dígitos y 7 dígitos.
 - 4 dígitos, x = 0.001037.
 - 5 dígitos, x = 0.0010367.
 - 6 dígitos, x = 0.00103673.
 - 7 dígitos, x = 0.001036726.
- 4. Evalúa el polinomio $p(x) = 0.5200 2x^2 + x^3$ en x = 1.52 usando aritmética de 3 dígitos. Sabiendo que el valor exacto es p(1.52) = -0.588992000, calcula el error absoluto, el error relativo y el error porcentual.

Evaluando el polinomio con aritmética de tres dígitos tenemos lo siguiente:

$$x^* = 1.52; (x^*x^*)^* = (1.52 \cdot 1.52)^* = (2.3104)^* = 2.31; (2(x^*x^*)^*)^* = (2 \cdot 2.31)^* = 4.62.$$

$$(x^*(x^*x^*)^*)^* = (1.52 \cdot 2.31)^* = (3.5112)^* = 3.51.$$

Por lo tanto, tenemos que $(p(1.52))^* = (0.5200 - 4.62 + 3.51)^* = -0.59$.

El error absoluto cometido es $|p(1.52) - p(1.52)^*| = |-0.588992000 - (-0.59)| = 0.001008$.

El error relativo cometido es
$$\frac{|p(1.52) - p(1.52)^*|}{p(1.52)} = \frac{0.001008}{0.588992000} = 0.0017114.$$

El error porcentual cometido es $0.0017114 \cdot 100 = 0.17114\%$.

5. Comprueba usando aritmética de 6 dígitos que la media de a = 72.8717 y b = 72.8719 no está entre ellos.

$$(a+b)^* = (72.8717 + 72.8719)^* = (145.7436)^* = 145.744; \left(\frac{(a+b)^*}{2}\right)^* = \left(\frac{145.744}{2}\right)^* = (72.872)^* = 72.872 \notin [a,b]$$

Ejercicio 2 Se considera la función $f(x) = x - \sqrt{x^2 - 0.391}$. Suponiendo que se trabaja con aritmética finita de 3 cifras, calcular f(3).

$$x^* = 3; (x^*x^*)^* = (3 \cdot 3)^* = 9; ((x^*x^*)^* - 0.391)^* = (9 - 0.391)^* = (8.609)^* = 8.61.$$
$$\left(\sqrt{((x^*x^*)^* - 0.391)^*}\right)^* = \left(\sqrt{8.61}\right)^* = (2.93428)^* = 2.93 \Rightarrow (f(3))^* = (3 - 2.93)^* = (0.07)^* = 0.07.$$

Sabiendo que la solución exacta es f(3) = 0.065890254268, calcula el error absoluto, relativo y porcentual obtenido.

El error absoluto cometido es $|f(3) - f(3)^*| = |0.065890254268 - 0.07| = 0.0041097456$. El error relativo cometido es $\frac{|f(3) - f(3)^*|}{f(3)} = \frac{0.0041097456}{0.065890254268} = 0.06237258875$. El error porcentual cometido es $0.06237258875 \cdot 100 = 6.237258875 \%$.

Modificando la función como sigue $f(x) = x - \sqrt{x^2 - 0.391} = \frac{\left(x - \sqrt{x^2 - 0.391}\right)\left(x + \sqrt{x^2 - 0.391}\right)}{x + \sqrt{x^2 - 0.391}} = \frac{0.391}{x + \sqrt{x^2 - 0.391}}$ vuelve a calcular el valor de f(3) y los tres errores anteriores.

$$x^* = 3; (x^*x^*)^* = (3 \cdot 3)^* = 9; ((x^*x^*)^* - 0.391)^* = (9 - 0.391)^* = (8.609)^* = 8.61.$$

$$\left(\sqrt{((x^*x^*)^* - 0.391)^*}\right)^* = \left(\sqrt{8.61}\right)^* = (2.93428)^* = 2.93; \left(x^* + \left(\sqrt{((x^*x^*)^* - 0.391)^*}\right)^*\right)^* = (3 + 2.93)^* = 5.93.$$

$$\Rightarrow (f(3))^* = \left(\frac{0.391}{5.93}\right)^* = (0.065935919)^* = 0.0659.$$

 $\begin{aligned} &\textit{El error absoluto cometido es} \ |f(3) - f(3)^*| = |0.065890254268 - 0.0659| = 0.00000974574. \\ &\textit{El error relativo cometido es} \ \frac{|f(3) - f(3)^*|}{f(3)} = \frac{0.00000974574}{0.065890254268} = 0.0001479086. \\ &\textit{El error porcentual cometido es} \ 0.0001479086 \cdot 100 = 0.01479086 \%. \end{aligned}$

Ejercicio 3 Utilizando el desarrollo de Taylor de la función $f(x) = \frac{1}{1-\frac{x}{2}} = \sum_{k=0}^{\infty} \left(\frac{x}{5}\right)^k con \ x \in (-5,5)$, calcula el número de cifras significativas y el error relativo obtenido aproximando f(2.5) por $\sum_{n=0}^{\infty} \left(\frac{x}{5}\right)^{n}$.

$$f(2.5) = \frac{1}{1 - \frac{2.5}{5}} = \frac{1}{1 - \frac{1}{2}} = \frac{1}{\frac{1}{2}} = 2.$$

Utilizando el polinomio de Taylor se tiene que:

$$f(2.5) \approx \sum_{k=0}^{3} \left(\frac{x}{5}\right)^{k} = \left(\frac{2.5}{5}\right)^{0} + \left(\frac{2.5}{5}\right)^{1} + \left(\frac{2.5}{5}\right)^{2} + \left(\frac{2.5}{5}\right)^{3} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 1.875.$$

Así, el error relativo cometido es:

$$\frac{|2 - 1.875|}{|2|} = \frac{0.125}{2} = 0.0625 \le 5 \cdot 10^{-1}.$$

Por tanto, el número de cifras significativas obtenido es de 1.