

DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised Domain-Classifier Guided Network

Yeying Jin¹, Aashish Sharma¹, Robby T. Tan^{1,2}

¹National University of Singapore; ²Yale-NUS College

Soft Shadow Problem

(a) Hard Shadow

(b) Soft Shadow

[1] Learning to Remove Soft Shadows. ACM TOG 2015

Motivation

- Physics-based methods fail to handle **soft** shadows and **achromatic** surfaces.
- Supervised learning methods require shadow and non-shadow pairs.
- > The current unsupervised method fails to remove **soft** shadows.

Main task: remove hard and soft shadows using an unsupervised method.

Network Architecture

Shadow-Free Chromaticity Loss

- [2] Recovery of chromaticity image free from shadows via illumination invariance. ICCV 2003
- [3] On the removal of shadows from images. TPAMI 2005

Shadow-Free Chromaticity Loss

Shadow-Free Chromaticity Loss

7

Domain Classifier

Domain Classifier

Shadow-Robust Feature Loss

where $V(\mathbf{I}_s)$ and $V(\mathbf{Z}_{sf})$ denote the feature maps extracted from the Conv layer of the pre-trained VGG-16 network.

Boundary Smoothness Loss

Results: Hard Shadows

Results: Hard Shadows

Results: Soft Shadows

Results: Soft Shadows

Quantitative Results

RMSE (lower is better) results on the SRD (left), AISTD (right), LRSS (below) datasets. All, S and NS represent entire, shadow and non-shadow regions, respectively.

Method	Training	All	S	NS
Our DC-ShadowNet	Unpaired	4.66	7.70	3.39
Mask-ShadowGAN [13]	Unpaired	6.40	11.46	4.29
DSC [14]	Paired	4.86	8.81	3.23
DeShadowNet [24]	Paired	5.11	3.57	8.82
Gong et al. [8]	-	12.35	25.43	6.91
Input Image	-	13.77	37.40	3.96

Method	Training	All	S	NS
Our DC-ShadowNet	Unpaired	4.6	10.3	3.5
Mask-ShadowGAN [13]	Unpaired	5.3	12.5	4.0
DeshadowNet [24]	Paired	7.6	15.9	6.0
ST-CGAN [27]	Paired+M	8.7	13.4	7.7
Gong <i>et al</i> . [8]	-	-	13.3	-
Guo et al. [10]	Paired+M	6.1	22.0	3.1
Yang et al. [32]	-	16.0	24.7	14.4
Input Image	-	8.5	40.2	2.6

Method	Input	Guo [11]	Guo [11] (auto)	Gryka [9]	DHAN [1]	SP+M-Net[20]	MaskShadowGAN[13]	Ours
RMSE	12.26	6.02	5.87	4.38	7.92	7.48	7.13	3.48
PSNR	18.05	27.88	28.02	29.25	25.57	23.93	25.12	31.01
Training	-	P+M	P	P+M+S	P+M+S	P+M	UP	UP

^[4] Deshadownet: A multi-context embedding deep network for shadow removal. ICCV 2017

^[5] Shadow removal via shadow image decomposition. ICCV 2019

Conclusion

- We introduce DC-ShadowNet, a new unsupervised single-image shadow removal network guided by a **domain classifier** to focus on shadow regions.
- We propose novel **unsupervised losses** based on physics, perceptual features, and boundary smoothness losses for robust shadow removal.
- To our knowledge, our method is the **first** unsupervised method to perform shadow removal robustly for both **hard** and **soft** shadow in a single image.

Thank you!

JINYEYING@U.NUS.EDU

CODES AND MODEL:

HTTPS://GITHUB.COM/JINYEYING/DC-SHADOWNET-HARD-AND-SOFT-SHADOW-REMOVAL