Visualizing nucleosome cluster dynamics with dense single molecule localization microscopy

Clayton W. Seitz

August 1, 2023

Introduction

Visualizing nucleosome cluster dynamics

Methods

Direct stochastic optical reconstruction microscopy

Direct stochastic optical reconstruction microscopy

Direct stochastic optical reconstruction microscopy

Readout noise of sCMOS cameras

Hamamatsu ORCA v3 CMOS, air cooled to -10C

Measured signal: $H_k = S_k + \xi_k$, $S_k \sim \text{Poisson}(\mu_k), \xi_k \sim \mathcal{N}(o_k, \sigma_k^2)$

Maximum likelihood localization of an isolated fluorescent emitter

Localization:
$$\theta^* = \operatorname*{argmax}_{\theta} \prod_k P(H_k | \theta) = \operatorname*{argmin}_{\theta} - \sum_k \log P(H_k | \theta)$$

$$\mu_k = g_k \frac{\eta}{N_0} \Delta \int_{\text{pixel}} G(x, y) dA$$

 η – quantum efficiency

 N_0 – emission rate

 Δ – exposure time

$$P(H_k|\theta) = A \sum_{r=0}^{\infty} \frac{1}{q!} e^{-\mu_k} \mu_k^q \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{(H_k - g_k q - o_k)}{2\sigma_k^2}}$$

 $P(H_k|\theta)$ can be approximated as Poisson at high signal-to-noise (SNR)

Quality of the Poisson approximation depends on SNR

$$P(H_k|\theta) \approx \mathrm{Poisson}(\mu_k + \sigma_k^2)$$
 for $N_0 > 500$ asssuming $\Delta = 100$ ms

Using the approximation we can write

$$\ell(\vec{H}|\theta) = -\log \prod_{k} \frac{e^{-\left(\mu_{k}^{\prime}\right)} \left(\mu_{k}^{\prime}\right)^{n_{k}}}{n_{k}!} = \sum_{k} \log n_{k}! + \mu_{k}^{\prime} - n_{k} \log \left(\mu_{k}^{\prime}\right)$$

Estimator precision sets the resolution limit in localization microscopy

Estimator precision sets the resolution limit in localization microscopy

- ▶ Localization uncertainty can be quantified with Metropolis-Hastings MCMC
- ► MCMC is asymptotically exact, but slow

Deep learning beats MLE at 2D and 3D localization

Deep learning beats MLE at 2D and 3D localization

The metastable OFF state can be maintained with high laser power

Resolution is dependent on photoswitching kinetics

Resolution is dependent on photoswitching kinetics

A molecule is considered "detected" in principle if the measured ADU signal satisfies $\tilde{s} = \mu \tau \geq \delta$ where δ is a number of photons which satisfy a criterion on localization accuracy.

$$\alpha = \int_{\delta}^{\Delta} \left(\sum_{n=0}^{\infty} Q(N=n) \psi(\tau|n; \vec{k}) \right) d\tau \approx \underset{\tau \sim P(\tau)}{\mathbb{E}} (\mathbb{I}[\tau > \delta])$$

 $P(\tau)$ is usually obtained by Monte Carlo simulation. This is useful for computing density measures and the total acquisition time:

$$D = lpha K \left(rac{\lambda}{2 \mathrm{NA}}
ight) \ \ T = \left(\Delta_{SR} + rac{2N}{\log(1 - lpha)}
ight)^2$$

For actually inferring k_1, k_2 , we need a measure of distance between $P(\tilde{s})$ and $P(s|k_1, k_2)$ for many k_1, k_2 pairs. Luckily we only need to compute $P(s|k_1, k_2)$ once, and we can then perform a grid search

Resolution is dependent on photoswitching kinetics

Results

Diffusion of H2B-JF549 depends on local nucleosome organization