34. Продолжения высот остроугольного треугольника ABC пересекают описанную окружность в точках A_1 , B_1 и C_1 соответственно. Докажите, что биссектрисы треугольника $A_1B_1C_1$ лежат на прямых AA_1 , BB_1 , CC_1 .

Решение. Дуги AC_1 и AB_1 равны, так как на них опираются равные вписанные углы ACC_1 и ABB_1 (каждый из них в сумме с углом BAC составляет 90°). Следовательно,

$$\angle AA_1C_1 = \angle AA_1B_1$$
,

т. е. луч A_1A — биссектриса угла $C_1A_1B_1$. Остальное аналогично.

226. Какова угловая величина дуги, если радиус, проведённый в её конец, составляет с её хордой угол в 40°?

Peшение. Пусть O — центр окружности, AB — хорда. Угловая величина дуги равна угловой величине центрального угла AOB, т. е.

$$180^{\circ} - 2 \cdot 40^{\circ} = 100^{\circ}$$
.

229. Хорда делит окружность в отношении 7:11. Найдите вписанные углы, опирающиеся на эту хорду.

Решение. Угловая величина полной окружности равна 360° . На одну часть приходится $\frac{360^{\circ}}{7+11} = 20^{\circ}$. Следовательно, угловые величины дуг равны 140° и 220° , а соответствующие углы равны 70° и 110° .

264. Дана окружность с хордой и касательной, причём точка касания лежит на меньшей из двух дуг, стягиваемых хордой. Найдите на касательной точку, из которой хорда видна под наибольшим углом.

Решение. Пусть M — точка касания, AB — хорда, X — произвольная точка касательной, отличная от M. Предположим, что отрезок AX пересекает дугу AMB в точке K. Тогда AKB — внешний угол треугольника KXB. Поэтому $\angle AMB = \angle AKB > \angle AXB$.

- **366.** Точки M и N принадлежат боковым сторонам соответственно AB и AC равнобедренного треугольника ABC, причём MN параллельно BC, а в трапецию BMNC можно вписать окружность. Её радиус равен R, а радиус окружности, вписанной в треугольник AMN, равен r. Найдите:
 - а) основание BC;
 - б) расстояние от точки A до ближайшей точки касания;
- в) расстояние между хордами окружностей, соединяющими точки касания с боковыми сторонами трапеции *BMNC*.

Решение. Треугольник *ABC* подобен треугольнику *AMN* с коэффициентом $\frac{R}{r}$. Следовательно (см. задачу **365**).

$$BC = \frac{R}{r} \cdot MN = \frac{R}{r} \cdot 2\sqrt{rR} = \frac{2R\sqrt{rR}}{r}.$$

Пусть O_1 и O_2 — центры меньшей и большей окружностей соответственно; Q — точка касания большей окружности с AB, P — основание перпендикуляра, опущенного из O_1 на O_2Q , K — точка касания меньшей окружности с AB. Тогда

$$O_2 P = O_2 Q - PQ = O_2 Q - O_1 K = R - r.$$

Треугольники AKO_1 и O_1PO_2 подобны с коэффициентом $\frac{O_1K}{O_2P}=\frac{r}{R-r}$. Следовательно,

$$AK = \frac{r}{R-r} \cdot O_1 P = \frac{r}{R-r} \cdot KQ = \frac{2r\sqrt{rR}}{R-r}.$$

Пусть F — основание перпендикуляра, опущенного из точки K на хорду QS, соединяющую точки касания большей окружности со сторонами AB и AC. Из подобия треугольников KFQ и O_1PO_2 находим, что

$$KF = \frac{KQ}{O_1O_2} \cdot O_1P = \frac{2\sqrt{rR}}{R+r} \cdot 2\sqrt{rR} = \frac{4rR}{R+r}.$$

532. Каждое из оснований высот проектируется на две соседние стороны треугольника. Докажите, что длина отрезка, соединяющего эти проекции, не зависит от выбора высоты.

Решение. Пусть отрезки, соединяющие проекции на две соседние стороны оснований высот h_a , h_b и h_c треугольника ABC, проведённых из вершин соответственно A, B и C, равны a, b и c соответственно.

Поскольку вершина треугольника, основание соответствующей высоты и проекции основания этой высоты на две соседние стороны треугольника лежат на одной окружности, то по теореме синусов

$$a = h_a \sin \angle A$$
, $b = h_b \sin \angle B$,

а так как

$$\frac{h_a}{\sin \angle B} = \frac{h_b}{\sin \angle A} = AB,$$

то a = b. Аналогично a = c.

665. В треугольнике KLM угол L тупой, а сторона KM равна 6. Найдите радиус описанной около треугольника KLM окружности, если известно, что её центр лежит на окружности, проходящей через вершины K, M и точку пересечения высот треугольника KLM.

Решение. Пусть H — точка пересечения высот треугольника ABC. Обозначим $\angle KLM = \alpha$, R и R_1 — радиусы окружностей, описанных около треугольников KLM и KHM соответственно. Тогда $\angle KHM = 180^{\circ} - \alpha$.

По теореме синусов

$$\begin{split} R &= \frac{KM}{2 \sin \angle KLM} = \frac{KM}{2 \sin \alpha}, \\ R_1 &= \frac{KM}{2 \sin \angle KHM} = \frac{KM}{2 \sin (180^\circ - \alpha)} = \frac{KM}{2 \sin \alpha} = R, \end{split}$$

Поскольку центр O описанной окружности треугольника KLM, лежит на описанной окружности треугольника KHM, четырёхугольник OKHM вписанный, поэтому

$$\angle KOM = 180^{\circ} - \angle KHM = \alpha$$
.

Дуги КОМ и КLM равны как дуги равных окружностей с общей хордой КМ, а КОМ — центральный угол, поэтому

$$\angle KOM = \checkmark KLM = 2(180^{\circ} - \angle KLM) = 360^{\circ} - 2\alpha$$

значит, $\alpha = 360^{\circ} - 2\alpha$. Отсюда находим, что $\alpha = 120^{\circ}$. Следовательно,

$$R = \frac{KM}{2\sin 120^{\circ}} = \frac{6}{\sqrt{3}} = 2\sqrt{3}.$$

698. Окружность радиуса $1+\sqrt{2}$ описана около равнобедренного прямоугольного треугольника. Найдите радиус окружности, которая касается катетов этого треугольника и внутренним образом касается окружности, описанной около него.

Pешение. Пусть r — радиус искомой окружности, Q — её центр, M, N — точки касания с катетами соответственно AC и BC треугольника ABC, O — центр описанной окружности, P — точка касания окружностей.

Тогда точки O и Q лежат на диаметре CP, а четырёхугольник QMCN — квадрат со стороной r. Поэтому

$$CQ = r\sqrt{2}$$
, $CQ + QP = CP$, $r\sqrt{2} + r = 2(1 + \sqrt{2})$.

Отсюда находим, что

$$r = \frac{2(1+\sqrt{2})}{\sqrt{2}+1} = 2.$$

744. Окружность, проведённая через вершины A, B и D прямоугольной трапеции ABCD ($\angle A = \angle B = 90^\circ$) пересекает продолжение основания BC и продолжение боковой стороны CD в точках M и N соответственно, причём CM:CB=CN:CD=1:2. Найдите отношение диагоналей BD и AC трапеции.

Решение. Обозначим CM=a, CN=b. Тогда BC=2a, CD=2b, а так как $CM \cdot BC=CN \cdot CD$, то $2a^2=2b^2$. Поэтому CD=BC=2a.

Поскольку $\angle BAD = 90^\circ$, то BD — диаметр данной окружности. Поэтому $\angle BMD = 90^\circ$. Поскольку, $\frac{CM}{CD} = \frac{1}{2}$, то

$$\angle CDM = 30^{\circ}, \quad AB = DM = a\sqrt{3}, \quad AC = \sqrt{3a^2 + 4a^2} = a\sqrt{7},$$

 $BD = \sqrt{MD^2 + MB^2} = \sqrt{3a^2 + 9a^2} = 2a\sqrt{3}$

Следовательно,
$$\frac{BD}{AC} = 2\sqrt{\frac{3}{7}}$$
.

769. Две окружности с центрами O_1 и O_2 пересекаются в точках A и B. Первая окружность проходит через центр второй и её хорда BD пересекает вторую окружность в точке C и делит дугу ACB в отношении AC:CB=n. В каком отношении точка D делит дугу ADB?

Решение. Обозначим через O_1 и O_2 центры окружностей. Пусть угловые величины дуг AC и BC второй окружности равны nx и x. Тогда $\angle ABD = \frac{nx}{2}$ и угловая величина дуги AD первой окружности равна nx.

Из равнобедренного треугольника AO_9B находим, что

$$\angle O_2 AB = \frac{1}{2} (180^\circ - (n+1)x).$$

Тогда угловая величина дуги AB первой окружности в четыре раза больше, т. е.

$$\sim AB = 2(180^{\circ} - (n+1)x),$$

а угловая величина дополнительной к ней дуги первой окружности равна 2(n+1)x. Следовательно, искомое отношение равно

$$\frac{nx}{2(n+1)x - nx} = \frac{n}{n+2}.$$

1135. Точки M и N — середины равных сторон AD и BC четырёхугольника ABCD. Серединные перпендикуляры к сторонам AB и CD пересекаются в точке P. Докажите, что серединный перпендикуляр к отрезку MN проходит через точку P.

Решение. Медианы PM и PN равных треугольников APD и BPC равны, поэтому точка P равноудалена от концов отрезка MN, и следовательно, лежит на его серединном перпендикуляре.

1227. Сумма углов при одном из оснований трапеции равна 90°. Докажите, что отрезок, соединяющий середины оснований трапеции, равен полуразности оснований.

Решение. Первый способ. Пусть M и N — середины оснований соответственно BC и AD трапеции ABCD, P и Q — середины диагоналей AC и BD соответственно, а прямые AB и CD пересекаются в точке F. По условию $∠A + ∠D = 90^\circ$, поэтому

$$\angle AFD = 180^{\circ} - (\angle A + \angle D) = 180^{\circ} - 90^{\circ} = 90^{\circ}.$$

Следовательно, $AB \perp CD$.

Предположим, что AD > BC. Отрезки PM и QN — средние линии треугольников ABC и ABD, поэтому $PM = \frac{1}{2}AB$ и $QN = \frac{1}{2}AB$, значит, PM = QN. Аналогично, QM = PN, поэтому PMQN — параллелограмм. Кроме того, $PM \parallel AB$ и $QM \parallel CD$, а так как $AB \perp CD$, то $PM \perp QM$, значит, PMQN — прямоугольник. Его диагонали MN и PQ равны, следовательно, $MN = PQ = \frac{AD - BC}{2}$ (см. задачу **1226**).

Второй способ. Пусть M и N — середины оснований BC и AD трапеции ABCD $(AD=a,\ BC=b,\ a>b)$ и $\angle A+\angle D=90^\circ.$

Через точку M проведём прямые, параллельные AB и CD. Пусть K и L — точки их пересечения с основанием AD. Тогда

$$\angle MKL + \angle MLK = \angle A + \angle D = 90^{\circ}$$
.

Поэтому $\angle KML = 90^{\circ}$. Кроме того,

$$NK = AN - AK = AN - BM = DN - CM = DN - DL = NL$$

Значит, MN — медиана прямоугольного треугольника KML, проведённая из вершины прямого угла. Поэтому $MN = \frac{1}{2}KL$ (см. задачу 1109), а так как

$$KL = AD - AK - LD = a - \frac{1}{2}b - \frac{1}{2}b = a - b,$$

TO,

$$MN = \frac{1}{2}KL = \frac{a-b}{2}.$$

1731. В прямой угол вписана окружность радиуса R, касающаяся сторон угла в точках A и B. Через некоторую точку на меньшей дуге AB окружности проведена касательная, отсекающая от данного угла треугольник. Найдите его периметр.

Pешение. Пусть окружность с центром O вписана в прямой угол ACB (A и B — точки касания), а прямая, касающаяся окружности в точке M, лежащей на меньшей дуге AB, пересекает стороны CA и CB угла ACB в точках P и Q соответственно. Тогда четырёхугольник AOBC — квадрат. Поэтому

$$CP + PQ + QC = CP + (PM + MQ) + QC = (CP + PM) + (MQ + QC) =$$

= $(CP + PA) + (MQ + QB) = CA + CB = R + R = 2R$.

1801. Угол при вершине равнобедренного треугольника равен 20°. Докажите, что боковая сторона больше удвоенного основания, но меньше утроенного.

Pешение. На боковой стороне AC данного равнобедренного треугольника ABC отложим отрезок CD, равный основанию BC. Тогда

$$\angle ABD = 80^{\circ} - 50^{\circ} = 30^{\circ},$$

значит, в треугольнике ABD угол ABD больше угла BAD, поэтому AD > BD > BC (в равнобедренном треугольнике BDC основание BD лежит против большего угла C). Следовательно,

$$AC = AD + CD > BC + CD = 2BC$$
.

Пусть точка B_1 симметрична точке B относительно прямой AC, а точка B_2 симметрична C относительно AB_1 . Тогда

$$\angle BAB_1 = 3\angle BAC = 60^\circ$$
, $AB_2 = AB$,

поэтому треугольник ВАВ₂ — равносторонний. Следовательно,

$$AB = BB_2 < BC + CB_1 + B_1B_2 = 3BC.$$

1809. Дан равнобедренный треугольник ABC с вершиной A. Длина прыжка кузнечика равна основанию BC. Известно, что начиная движение из точки C, кузнечик за 22 прыжка оказался в точке A, приземляясь после каждого прыжка на боковой стороне треугольника ABC и чередуя стороны при каждом прыжке, кроме

последнего. Найдите углы треугольника ABC, если известно, что с каждым прыжком кузнечик приближался к точке A.

Решение. Обозначим через $A_0,\ A_1,\ A_2,\ \dots,\ A_{22}$ точки, в которых побывал кузнечик (A_0 — это точка C, A_{22} — точка A). Перед последним прыжком кузнечик оказался в точке A_{21} стороны AB. Если $\angle BAC = \alpha$, то $\angle A_{20}A_{21}B = 2\alpha$ как внешний угол равнобедренного треугольника $AA_{21}A_{20}$, а так как

$$\angle A_{20}A_{19}A_{21} = \angle A_{20}A_{21}B = 2\alpha,$$

то $\angle A_{19}A_{20}C = 3\alpha$. Рассуждая аналогично, найдём, что

$$\angle ACB = \angle ABC = \angle BA_1C = 22\alpha$$
.

Поэтому

$$22\alpha + 22\alpha + \alpha = 180^{\circ}.$$

Откуда

$$\alpha = \frac{180^{\circ}}{45} = 4^{\circ}.$$

2110. На продолжении стороны AD прямоугольника ABCD за точку D взята точка E, причём DE = 0,5AD и $\angle BEC = 30^{\circ}$. Найдите отношение сторон прямоугольника ABCD.

Решение. Обозначим

$$\angle BEA = \alpha$$
, $\angle CEA = \beta$, $AB = CD = x$, $BC = AD = y$.

Тогда

$$\operatorname{tg} \alpha = \frac{AB}{AE} = \frac{2x}{3y}, \ \operatorname{tg} \beta = \frac{CD}{DE} = \frac{2x}{y},$$

$$\label{eq:tg30} \operatorname{tg} 30^\circ = \operatorname{tg}(\alpha - \beta) = \frac{\operatorname{tg} \alpha - \operatorname{tg} \beta}{1 + \operatorname{tg} \alpha \operatorname{tg} \beta}.$$

Подставим в правую часть этого равенства найденные выражения для $\lg \alpha$ и $\lg \beta$ через x и y. После упрощения получим уравнение

$$4x^2\sqrt{3} - 12xy + 3\sqrt{3}y^2 = 0$$
, или $4\sqrt{3}\left(\frac{x}{y}\right)^2 - 12\left(\frac{x}{y}\right) + 3\sqrt{3} = 0$.

Отсюда находим, что $\frac{x}{y} = \frac{\sqrt{3}}{2}$.

2131. В параллелограмме ABCD биссектриса угла A пересекает сторону BC в точке M, а биссектриса угла C пересекает сторону AD в точке N. Площадь четырёхугольника, образованного пересечением биссектрис AM и CN с отрезками BN и DM, равна $\frac{6}{5}$. Найдите углы параллелограмма ABCD, если AB=3, AD=5.

Pешение. Пусть P — точка пересечения прямых CN и DM, а Q — прямых AM и BN. Поскольку

$$\angle BMA = \angle DAM = \angle BAM$$
,

то треугольник АВМ — равнобедренный,

$$BM = AB = 3$$
, $MC = BC - BM = 5 - 3 = 2$.

Аналогично докажем, что DN=3 и AN=2. Отсюда следует, что BMDN — параллелограмм. Поэтому $MP \parallel NQ$, а так как $AM \parallel CN$, то MPNQ — также параллелограмм. Значит,

$$S_{\triangle MPN} = \frac{1}{2} S_{MPNQ} = \frac{3}{5}.$$

Кроме того,

$$\frac{MP}{PD} = \frac{CP}{PN} = \frac{MC}{ND} = \frac{2}{3},$$

поэтом

$$S_{\triangle MPC} = \frac{CP}{PN} S_{\triangle MPN} = \frac{2}{3} \cdot \frac{3}{5} = \frac{2}{5},$$

$$S_{\triangle CDP} = \frac{DP}{PM} S_{\triangle MPC} = \frac{3}{2} \cdot \frac{2}{5} = \frac{3}{5},$$

$$S_{\triangle DPN} = \frac{DP}{PM} S_{\triangle MPN} = \frac{3}{2} \cdot \frac{3}{5} = \frac{9}{10}$$

$$S_{ABCD} = 2S_{CDMN} = 2(S_{\triangle MPN} + S_{\triangle MPC} + S_{\triangle CDP} + S_{\triangle DPN}) = 2\left(\frac{3}{5} + \frac{2}{5} + \frac{3}{5} + \frac{9}{10}\right) = 5$$

С другой стороны,

$$S_{ABCD} = AB \cdot AD \sin \angle BAD = 3 \cdot 5 \sin \angle BAD$$
.

Из уравнения 15 sin $\angle BAD = 5$ находим, что sin $\angle BAD = \frac{1}{3}$.

2764. В треугольнике ABC сторона AB равна 21, биссектриса BD равна $8\sqrt{7}$, а DC = 8. Найдите периметр треугольника ABC.

Решение. Обозначим AD = x, BC = y, $\angle ABD = \angle CBD = \alpha$.

По свойству биссектрисы треугольника $\frac{AB}{BC} = \frac{AD}{DC}$, или $\frac{21}{y} = \frac{x}{8}$, откуда находим, что $y = \frac{21 \cdot 8}{x}$. По теореме синусов для треугольников ABC и DBC имеем:

$$\frac{AC}{\sin \angle ABC} = \frac{AB}{\sin \angle C}, \quad \frac{DC}{\sin \angle CBD} = \frac{BD}{\sin \angle C},$$

ИЛИ

$$\frac{x+8}{\sin 2\alpha} = \frac{21}{\sin \angle C}, \quad \frac{8}{\sin \alpha} = \frac{8\sqrt{7}}{\sin \angle C}.$$

Разделив почленно первое уравнение на второе и применив формулу $\sin 2\alpha = 2 \sin \alpha \cos \alpha$, получим, что

$$\frac{x+8}{2\cos\alpha} = \frac{21}{\sqrt{7}},$$

откуда $\cos \alpha = \frac{x+8}{6\sqrt{7}}$.

По теореме косинусов из треугольника ABD находим, что

$$x^2 = 21^2 + (8\sqrt{7})^2 - 2 \cdot 21 \cdot 8\sqrt{7} \cdot \frac{x+8}{6\sqrt{7}},$$

или

$$x^2 + 56x - 441 = 0$$
,

откуда x = 7. Тогда $y = \frac{21 \cdot 8}{x} = 24$. Следовательно, периметр треугольника ABC равен

$$AB + AC + BC = AB + (AD + CD) + BC = 21 + 7 + 8 + 24 = 60.$$

3174. Пусть AA_1 и BB_1 — высоты остроугольного неравнобедренного треугольника ABC. Известно, что отрезок A_1B_1 пересекает среднюю линию, параллельную AB, в точке C'. Докажите, что отрезок CC' перпендикулярен прямой, проходящей через точку пересечения высот и центр описанной окружности треугольника ABC.

Решение. Пусть M и N — середины сторон соответственно AC и BC треугольника ABC, H — точка пересечения высот, O — центр описанной окружности. Предположим, что BC > AC

Поскольку AA_1 и BB_1 — высоты треугольника, а MN — средняя линия,

$$\angle A_1 B_1 M = \angle ABC = \angle A_1 NM$$
,

значит, точки $A_1,\ B_1,\ M$ и N лежат на одной окружности. Обозначим её $\omega_1.$

Из точек A_1 и B_1 отрезок CH виден под прямым углом, значит, эти точки лежат на окружности с диаметром CH. Обозначим её ω_9 .

Из точек M и N отрезок $C\tilde{O}$ виден под прямым углом, значит, эти точки лежат на окружности с диаметром CO. Обозначим её ω_3 .

Отрезок A_1B_1 — общая хорда окружностей ω_1 и ω_2 , отрезок MN — общая хорда окружностей ω_1 и ω_3 . Эти отрезки пересекаются в точке C', следовательно, общая хорда CK окружностей ω_2 и ω_3 также проходит через точку C'.

Пусть P и Q — середины отрезков CH и CO. Тогда P — центр окружности ω_2 , а Q — центр окружности ω_3 . Отрезок PQ перпендикулярен общей хорде CK этих окружностей, а так как PQ — средняя линия треугольника COH, то $CK \perp OH$. Что и требовалось доказать.

Аналогично для случая, когда BC < AC.

4585. Угол при основании равнобедренного треугольника равен 2 агссtg 2. Внутри треугольника расположены три окружности так, что каждая из них касается двух других окружностей и двух сторон треугольника. Найдите отношение радиусов этих окружностей.

Решение. Пусть окружность радиуса x с центром O_1 касается основания BC равнобедренного треугольника ABC в точке D, а боковой стороны AB — в точке E; окружность радиуса y с центром O_2 касается основания BC в точке F, а боковой стороны AC — в точке G; окружность радиуса z с центром O_3 касается боковых сторон AB и AC в точках K и L соответственно.

Из прямоугольных треугольников BO_1D , CO_2F и AO_3K находим, что

$$BD = O_1 D \operatorname{ctg} \frac{1}{2} \angle ABC = x \operatorname{ctg}(\operatorname{arcctg} 2) = 2x,$$

$$CF = O_2F$$
 etg $\frac{1}{2} \angle ACB = y$ etg(arcetg 2) = 2y.
 $AK = O_3K$ tg $\angle AO_3K = O_3K$ tg $\angle ABC = O_3K$ tg(2 arcetg 2) =

$$= O_3 K \operatorname{tg} \left(2 \operatorname{arctg} \frac{1}{2} \right) = z \cdot \frac{2 \cdot \frac{1}{2}}{1 - \frac{1}{4}} = \frac{4}{3} z,$$

$$AO_3 = \sqrt{AK^2 + O_3K^2} = \sqrt{\frac{16}{9}z^2 + z^2} = \frac{5}{3}z.$$

Тогда

$$AB = AK + KE + BE = AK + KE + BD = \frac{4}{3}z + 2\sqrt{xz} + 2x$$

(см. задачу 365),

$$AC = AL + LG + CG = AK + LG + CF = \frac{4}{3}z + 2\sqrt{yz} + 2y,$$

а так как AB = AC, то

$$\frac{4}{3}z + 2\sqrt{xz} + 2x = \frac{4}{3}z + 2\sqrt{yz} + 2y, \quad 2\sqrt{xz} + 2x = 2\sqrt{yz} + 2y,$$

$$\sqrt{xz} + x = \sqrt{yz} + y$$
, $\sqrt{xz} - \sqrt{yz} + x - y = 0$,

$$\sqrt{z}(\sqrt{x}-\sqrt{y})+(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})=0,\ (\sqrt{x}-\sqrt{y})(\sqrt{z}+\sqrt{x}+\sqrt{y})=0,$$

откуда следует, что x=y, значит, окружности с центрами O_1 и O_2 равны. Тогда высота AH равнобедренного треугольника ABC проходит через точку P касания этих окружностей, а O_3P — высота равнобедренного треугольника $O_1O_2O_3$ с основанием $O_1O_2=2x$ и боковыми сторонами $O_1O_3=O_2O_3=x+z$. Из прямоугольного треугольника AHB находим, что

$$AH = BH \text{ tg } \angle ABC = (BD + DH) \text{ tg} \left(2 \text{ arctg } \frac{1}{2}\right) = (2x + x) \cdot \frac{4}{3} = 4x.$$

В прямоугольном треугольнике O_3O_1P известно, что

$$O_3P = AH - AO_3 - PH = 4x - \frac{5}{3}z - x = 3x - \frac{5}{3}z$$
, $O_1P = x$, $O_1O_3 = x + z$,

причём $x > \frac{5}{9}z$, так как $3x - \frac{5}{3}z > 0$. По теореме Пифагора

$$O_3P^2 + O_1P^2 = O_1O_3^2$$
, $\left(3x - \frac{5}{3}z\right)^2 + x^2 = (x+z)^2$, $9x^2 - 12xz + \frac{16}{9}z^2 = 0$,

откуда
$$\frac{x}{z} = \frac{2(3 \pm \sqrt{5})}{9}$$
, а так как $\frac{x}{z} > \frac{5}{9}$, то $\frac{x}{z} = \frac{2(3 + \sqrt{5})}{9}$.

4595. На высоте правильного треугольника, сторона которого равна b, как на диаметре построена окружность. Найдите площадь той части треугольника, которая лежит внутри окружности.

Решение. Пусть окружность с центром O радиуса R, построенная на высоте AM равностороннего треугольника ABC, пересекает стороны AB и AC в точках D и E соответственно. Тогда

$$R = \frac{1}{2}AM = \frac{b\sqrt{3}}{4}, \quad OE = OM = OD = R, \quad \angle EOD = 2\angle DAE = 120^{\circ}.$$

Пусть S_1 — площадь сектора $DOE,\ S_2$ — площадь круга радиуса $R,\ S$ — искомая площадь части треугольника, заключённой внутри окружности. Тогда

$$S_2 = \pi R^2$$
, $S_1 = \frac{1}{3}S_2 = \frac{1}{3}\pi R^2$.

Следовательно

$$\begin{split} S &= S_1 + 2S_{\triangle AOD} = \frac{1}{3}\pi R^2 + 2\cdot\frac{1}{2}R^2\sin\angle AOD = \\ &= \frac{1}{3}\pi R^2 + R^2\sin 60^\circ = \frac{1}{3}\pi R^2 + \frac{R^2\sqrt{3}}{2} = \frac{1}{6}R^2(2\pi + 3\sqrt{3}) = \\ &= \frac{1}{6}\cdot\left(\frac{b\sqrt{3}}{4}\right)^2\cdot(2\pi + 3\sqrt{3}) = \frac{b^2(2\pi + 3\sqrt{3})}{32}. \end{split}$$

4605. Две окружности касаются внешним образом. Их радиусы относятся как 3:1, а длина их общей внешней касательной равна $6\sqrt{3}$. Найдите периметр фигуры, образованной внешними касательными и внешними частями окружностей.

Pешение. Пусть O_1 и O_2 — центры окружностей радиусов r и 3r соответственно, M — точка касания окружностей, AB — общая внешняя касательная этих окружностей (точка A лежит на первой окружности, B — на второй).

Опустим перпендикуляр O_1F из центра первой окружности на радиус O_2B второй окружности. В прямоугольном треугольнике O_1O_2F известно, что

$$\begin{split} O_1O_2 &= O_1M + O_2M = r + 3r = 4r, \\ O_2F &= O_2B - BF = O_2F - O_1A = 3r - r = 2r, \end{split}$$

поэтому

$$\angle FO_2O_1=60^\circ, \ \ \angle AO_1O_2=120^\circ, \ \ AB=O_1F=2r\sqrt{3}=6\sqrt{3},$$
 откуда $r=3,\ 3r=9.$

Пусть P — периметр искомой фигуры, l_1 и l_2 — длины внешних частей первой и второй окружностей соответственно.

$$l_1 = \frac{1}{3} \cdot 2\pi r = \frac{1}{3} \cdot 2\pi \cdot 3 = 2\pi, \quad l_2 = \frac{2}{3} \cdot 2\pi \cdot 3r = \frac{2}{3} \cdot 2\pi \cdot 9 = 12\pi$$

Следовательно,

$$P = 2AB + l_1 + l_2 = 12\sqrt{3} + 14\pi.$$

4726. Общая внутренняя касательная к окружностям с радиусами R и r пересекает их общие внешние касательные в точках A и B и касается одной из окружностей в точке C. Докажите, что $AC \cdot CB = Rr$.

Pешение. Пусть прямая AB касается окружностей в точках C и D. Тогда BC = AD.

Если O_1 и O_2 — центры окружностей, то $\angle O_1AO_2=90^\circ$. Тогда прямоугольные треугольники AO_1C и O_2AD подобны. Поэтому $\frac{O_1C}{AC}=\frac{AD}{DO_2}$. Следовательно,

$$AC \cdot CB = AC \cdot AD = O_1C \cdot DO_2 = Rr.$$

6451. На сторонах единичного квадрата как на гипотенузах построены во внешнюю сторону прямоугольные треугольники. Пусть $A,\ B,\ C$ и D — вершины их прямых углов, а $O_1,\ O_2,\ O_3$ и O_4 — центры вписанных окружностей этих треугольников. Докажите, что

- а) площадь четырёхугольника АВСО не превосходит 2;
- б) площадь четырёхугольника $O_1O_2O_3O_4$ не превосходит 1.

Рис. 1

Решение. Докажем сначала вспомогательный факт: площадь четырёхугольника *KLMN*, лежащего в круге радиуса R не превосходит $2R^2$.

Пусть Q — центр круга (рис. 1). Площадь каждого из треугольников QKL, QLM, QMN и QNK равна половине произведения сторон, исходящих из общей вершины Q, на синус угла между ними, а значит, не превосходит $\frac{1}{2}R^2$. Поскольку четыре указанных треугольника покрывают четырёхугольник KLMN, то его площадь не больше $2R^2$.

Другое доказательство этого факта: пусть φ — угол между диагоналями KM и LN; тогда

$$S_{\mathit{KLMN}} = \frac{1}{2}\mathit{KM} \cdot \mathit{LN} \, \sin \varphi \leqslant \frac{1}{2} \cdot 2R \cdot 2R \cdot 1 = 2R^2.$$

Перейдём к нашей задаче. Пусть О— центр квадрата XYZT (рис. 2).

а) Если P — середина гипотенузы прямоугольного треугольного треугольника AXY с вершиной прямого угла A, то

$$OA \le OP + PA = OP + \frac{1}{2}XY = \frac{1}{2} + \frac{1}{2} = 1.$$

Значит, точка A лежит внутри круга с центром O радиуса 1. Аналогично для точек B, C и D. Таким образом, четырёхугольник ABCD лежит внутри круга радиуса 1. По ранее доказанному его площадь не превосходит 2.

б) Рассмотрим окружность γ , описанную вокруг квадрата XYZT (её радиус равен $\frac{\sqrt{2}}{2}$). Пусть O_1 — центр вписанной окружности треугольника XAY (рис. 3). Поскольку XO_1 и YO_1 — биссектрисы углов AXY и AYX, то

$$\angle XO_1Y = 90^{\circ} + \frac{1}{2}\angle XAY = 90^{\circ} + 45^{\circ} = 135^{\circ}$$

(см. задачу 4770), а так как

$$\angle XZY + \angle XO_1Y = 45^{\circ} + 135^{\circ} = 180^{\circ},$$

то точка O_1 лежит на окружности γ . Аналогично докажем, что точки O_2 , O_3 и O_4 также лежат на окружности γ . Значит, четырёхугольник $O_1O_2O_3O_4$ расположен в круге радиуса $\frac{\sqrt{2}}{2}$. Следовательно, его площадь не превосходит $2\left(\frac{\sqrt{2}}{2}\right)^2=1$, что и требовалось доказать.

6459. Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке. Докажите, что $\angle APB = \angle CQD$.

Решение. По теореме о вписанных углах

$$\angle PAC = \angle PQC$$
, $\angle PBD = \angle PQD$.

Поскольку PBD — внешний угол треугольника ABP, то

$$\angle PBD = \angle PAB + \angle APB$$
.

Следовательно,

$$\angle APB = \angle PBD - \angle PAB = \angle PBD - \angle PAC = \angle PQD - \angle PQC = \angle CQD$$
, что и требовалось доказать.

6475. Окружности S_1 и S_2 с центрами O_1 и O_2 соответственно пересекаются в точках A и B. Касательные к S_1 и S_2 в точке A пересекают отрезки BO_2 и BO_1 в точках K и L соответственно. Докажите, что $KL \parallel O_1O_2$.

Решение. Обозначим $\angle BAL = \alpha$, $\angle BAK = \beta$. Из теоремы об угле между касательной и хордой следует, что $\angle AO_2B = 2\angle BAL = 2\alpha$, $\angle AO_1B = 2\angle BAK = 2\beta$, поэтому

$$\angle BO_2O_1 = \frac{1}{2}\angle AO_2B = \alpha, \quad \angle BO_1O_2 = \frac{1}{2}\angle AO_1B = \beta.$$

Из треугольника O_1BO_2 находим, что

$$\angle O_1 B O_2 = 180^\circ - \alpha - \beta = 180^\circ - \angle LAK.$$

Значит, четырёхугольник АКВ — вписанный. Тогда

$$\angle KLB = \angle KAB = \beta = \angle O_2O_1B.$$

Следовательно, $KL \parallel O_1 O_2$.