Naloga:

Izmeri koeficient trenja ter koeficient lepenja.

Potrebščine:

Klada z utežmi, silomer, podlaga z različnimi prevlekami.

Skica:

Meritve:

Klado, ki si ji izmeril maso, vleci s silo, ki je vzporedna s tlemi. Odčitaj vrednost sile v trenutku, ko se klada premakne. Ta sila je nasprotno enaka sili lepenja. Nato vleci klado s silo, ki je vzporedna s tlemi tako, da bo drsela enakomerno. Sila, ki jo odčitaš na silomeru, je nasprotno enaka sili trenja. Meritve vnašaj v tabelo. Meritve izvedi za dve različni podlagi, za štiri različne teže klade (na klado polagaš uteži).

Podlaga 1 Podlaga 2

m(klade)[g]	$F_{lepenja}[N]$	$F_{trenja}[N]$	m(klade)[g]	$F_{lepenja}[N]$	$F_{trenja}[N]$
435	2	1	435	3	2
925	4	2	925	6	5
1415	6	3	1415	9	7
1905	8	4	1905	13	10

Rezultati in obdelava podatkov:

k lahko izračunamo s pomočjo formule:

Kjer lahko uporabimo parametre:

$$k = \frac{F}{mq}$$
 (1) $g = 9.81ms^{-2}$

Iz tega sledijo rezultati:

Podlaga 1

m(klade)[kg]		$F_{trenja}[N]$	$k_{lepenja}$	k_{trenja}		
0,435	2	1	0,70	0,23	$k_{trenja} = 0,22 \pm 0,01$	(3)
0,925	4	2	0,44	0,22		
1,415	6	3	0,43	0,22	$k_{trenja} = 0,22(1 \pm 0.05)$	(4)
1,905	8	4	0,43	0,21	$k_{lepenja} = 0,44 \pm 0.03$	(5)
					$k_{lepenja} = 0,44(1 \pm 0.7)$	(6)
						(7)

Podlaga 2

m(klade)[kg] 0,435	$F_{lepenja}[N]$ 3	$F_{trenja}[N]$ 2	$k_{lepenja} 0,70$	$k_{trenja} = 0.52$		
0,925	6	5	0,66	0,55	$k_{trenja} = 0,53 \pm 0,05$	(8)
1,415	9	7	0,65	0,50	$k_{trenja} = 0.53(1 \pm 0.01)$	(9)
1,905	13	10	0,70	0,54	$k_{lepenja} = 0,68 \pm 0.03$	(10)
					$k_{lepenja} = 0,68(1 \pm 0.04)$	(11)
						(12)

Interpretacija:

Napaka je glede na pogoje eksperimenta sprejemljiva. Eden izmed glavnih razlogov za njen obstoj je nenatančnost merjenja s silo mera, branja direktno ob zdrsu in neenakomernost vleke v času merjenja trenja.