Lectures 3-5: Tectonics on a Sphere

Lecturer: Supriyo Mitra (IISER Kolkata)

Lecture Schedule

Date	Day	Time	L/R	Broad Topic(s)				
Module	Module 1: Earth Structure and Plate Tectonics							
				Internal structure of the Earth				
			L1	Plate Tectonics: kinematic Earth, analyzing plate boundaries				
			L2	Tectonics on a sphere: Geometry of Plate Tectonics				
			L3	Triple Junction of plates: stability and significance				
			L4	Absolute plate motion and plate driving forces				

Tectonics on a Sphere

Chapter 2

Geometry of Plate Tectonics

Geometry of Plate Tectonics

Representation of Plate boundaries on A Flat Earth

Trench (T)

Transform Fault (F)

Relative Velocities along plate boundaries: The Velocity Vector

Relative Velocity of B w.r.t A: $_{A}V_{B} = V_{B} - V_{A}$ and $_{A}V_{B} = -_{B}V_{A}$

Two Plate Model

- **Eastern Boundary of Plate B:** Subduction at a rate of 4 cm/yr
- 1. A subducts (Plate B grows in size) or
- 2. B subducts (Plate B will be totally consumed after a while)

Three Plate Model

Net rate of destruction of Plate B = 10 - 2 = 8 cm/yr

Three Plate Model

Oblique Subduction

Common Terms (which you already know)

Great Circle

Small Circle

Common Terms (which you already know)

Great Circle

Small Circle

Latitude (λ)

Longitude (ϕ)

Common Terms (which you already know)

Great Circle

Small Circle

Latitude (λ)

Longitude (ϕ)

Azimuth (Az)

Back-Azimuth (BAz)

Spherical Trigonometry

Spherical Triangle?

Sum of internal angles?

180 < SIA < 540

Euler's fixed point theorem

"The most general displacement of a rigid body (plates) with a fixed point (center of the Earth) is equivalent to a rotation about an axis through that fixed point"

Corollary: "Every displacement from one position to another on the surface of the Earth can be regarded as a rotation about a <u>suitably chosen axis</u> (Rotation axis) passing through the center of the Earth"

Euler's fixed point theorem

"The most general displacement of a rigid body (plates) with a fixed point (center of the Earth) is equivalent to a rotation about an axis through that fixed point"

Corollary: "Every displacement from one position to another on the surface of the Earth can be regarded as a rotation about a <u>suitably chosen axis</u> (Rotation axis) passing through the center of the Earth"

The Rotation Axis cuts the surface of the Earth at two points called the Rotation Poles +ve anti-clockwise rotation and -ve clockwise rotation when viewed from outside

- Their position describes the direction of motion of all points along the plate boundary
- The magnitude of angular velocity (ω) about the axis defines the magnitude of the relative motion between the two plates

Linear velocity: _BV_A?

at
$$\theta$$
 = 90° (equator of rotation):
 $v = \omega R$ (maximum)

at
$$\theta = 0^{\circ}$$
 (pole of rotation):
 $v = 0$ (minimum)

Linear velocity: $\mathbf{v} = \boldsymbol{\omega} R \sin \theta$

Varies along plate boundary

Present Day Plate Motions

Determination of Rotation Poles and Rotation Vectors

- **☐** From strike of transform faults
- **□** Spreading rate of accreting plate boundaries
- ☐ Fault plane solution for earthquakes along a plate boundary
- ☐ Plate boundaries crossing land by direct measurements

Present Day Plate Motions

Determination of Rotation Poles and Rotation Vectors

☐ GPS, satellite laser-ranging system, very long baseline interferometry (VLBI)

Symbol	Meaning	Sign convention	
λ_{p}	Latitude of rotation pole P	°N positive	
λ_{X}	Latitude of point X on plate boundary	°S negative	
ϕ_{p}	Longitude of rotation pole P	°W negative	
ϕ_{X}	Longitude of point X on plate boundary	°E positive	
V	Velocity of point X on plate boundary		
V	Amplitude of velocity v		
β	Azimuth of the velocity with respect to north N	Clockwise positive	
R	Radius of the Earth		
ω	Angular velocity about rotation pole P		

Given the Positive rotation pole (P) can you find the linear velocity (v) at X on the plate boundary?

$$P (\lambda_{\rm p}, \phi_{\rm p}) \&_{\rm B} \omega_{\rm A}$$

 $\lambda_n \rightarrow Latitude of Rotation Pole$

 ϕ_{n} \rightarrow Longitude of Rotation Pole

 $_{\mathrm{B}}\omega_{\mathrm{A}}$ ightarrowAngular velocity about rotation pole P

Step 1: Plot P, X and Geographic N pole on a sphere

Given the Positive rotation pole (P) can you find the linear velocity (v) at X on the plate boundary?

NPX → Spherical triangle

Angles of the Spherical Triangle

$$A = XNP$$
, $B = NPX$, $C = PXN$

Angular lengths of sides of S Triangle

$$a = PX$$
, $b = XN$, $c = NP$

Unknowns → a, B, C

Known values

$$b = 90 - \lambda_{x}$$

$$c = 90 - \lambda_c$$

$$c = 90 - \lambda_p$$
$$A = \phi_p - \phi_x$$

Known relations

1.
$$v = \omega R \sin a$$

2.
$$\beta = 90 + C$$

Step 5: Find angles a & C

NPX → Spherical triangle

Angles of the Spherical Triangle

$$A = XNP$$
, $B = NPX$, $C = PXN$

Angular lengths of sides of S Triangle

$$a = PX$$
, $b = XN$, $c = NP$

Unknowns → a, B, C

Known values

$$b = 90 - \lambda_{x}$$

$$c = 90 - \lambda_{r}$$

$$c = 90 - \lambda_p$$
$$A = \phi_p - \phi_x$$

Known relations

1.
$$v = \omega R \sin a$$

2.
$$\beta = 90 + C$$

To find angles *a* and *C* we use spherical trigonometry

To find angles *a* and *C* we use spherical trigonometry

Cos a = Cos b Cos c + Sin b Sin c Cos A

Sin a / Sin A = Sin c / Sin C

Step 6: Put the values from the S triangle

Flat Earth

$$CV_B = CV_A + AV_B$$

$$0 \qquad 4 \qquad 0$$

$$C^{\mathbf{v}_A} + A^{\mathbf{v}_B} \qquad 0$$

$$C^{\mathbf{v}_B} \qquad 0$$

Spherical Earth

$$_{C}\omega_{B} = _{C}\omega_{A} + _{A}\omega_{B}$$

The three rotation vectors lie on a plane

Table 2.3 Notation used in addition of rotation vectors

Rotation vector	Magnitude	Latitude of pole	Longitude of pole
ΒωΑ	В ω А	λ_{BA}	ϕ_{BA}
$C \omega_B$	$c\omega_{B}$	λ_{CB}	ϕ_{CB}
$c\omega_A$	$c\omega_{A}$	λ_{CA}	ϕ_{CA}

Given $_{c}\omega_{_{B}}$ & $_{_{B}}\omega_{_{A}}$

Find: $_{C}\omega_{A}$

We use rectangular coordinate system through the center of the earth

x-y plane \rightarrow equatorial plane.

X-axis – passing through Greenwich meridian

Z-axis – passing through North pole

We use rectangular coordinate system through the center of the earth

x-y plane → equatorial plane.

$$x_{\rm CB} = {}_{\rm C}\omega_{\rm B}\cos\lambda_{\rm CB}\cos\phi_{\rm CB}$$

$$y_{\rm CB} = {}_{\rm C}\omega_{\rm B}\cos\lambda_{\rm CB}\sin\phi_{\rm CB}$$

$$z_{\rm CB} = {}_{\rm C}\omega_{\rm B}\sin\lambda_{\rm CB}$$

We use rectangular coordinate system through the center of the earth x-y plane → equatorial plane.

$$A\omega_{C} = c\omega_{B} + \omega_{A}$$

$$x_{CA} = x_{CB} + x_{BA}$$

$$y_{CA} = y_{CB} + y_{BA}$$

$$z_{CA} = z_{CB} + z_{BA}$$

Combination of Rotation Vectors

We use rectangular coordinate system through the center of the earth x-y plane \rightarrow equatorial plane.

$$x_{\text{CA}} = x_{\text{CB}} + x_{\text{BA}}$$

$$y_{\text{CA}} = y_{\text{CB}} + y_{\text{BA}}$$

$$z_{\text{CA}} = z_{\text{CB}} + z_{\text{BA}}$$

$$x_{\text{CA}} = c\omega_{\text{B}} \cos \lambda_{\text{CB}} \cos \phi_{\text{CB}} + {}_{\text{B}}\omega_{\text{A}} \cos \lambda_{\text{BA}} \cos \phi_{\text{BA}}$$

$$y_{\text{CA}} = c\omega_{\text{B}} \cos \lambda_{\text{CB}} \sin \phi_{\text{CB}} + {}_{\text{B}}\omega_{\text{A}} \cos \lambda_{\text{BA}} \sin \phi_{\text{BA}}$$

$$z_{\text{CA}} = c\omega_{\text{B}} \sin \lambda_{\text{CB}} + {}_{\text{B}}\omega_{\text{A}} \sin \lambda_{\text{BA}}$$

Combination of Rotation Vectors

We use rectangular coordinate system through the center of the earth x-y plane \rightarrow equatorial plane.

$$x_{CA} = x_{CB} + x_{BA}$$
 $y_{CA} = y_{CB} + y_{BA}$
 $z_{CA} = z_{CB} + z_{BA}$
 $X_{CA} = c_{CB} + c_{CB} +$

Combination of Rotation Vectors

Magnitude of the resultant rotation vector $_{c}\omega_{A}$ is

$$_{C}\omega_{A} = [X_{CA}^{2} + Y_{CA}^{2} + Z_{CA}^{2}]^{1/2}$$

Pole position given by:

$$\lambda_{CA} = \sin^{-1}(Z_{CA}/_{C}\omega_{A})$$

$$\varphi_{CA} = \tan^{-1}(Y_{CA}/X_{CA})$$

Sign convection in φ_{CA} , ambiguity of 180°

i. e.
$$tan 30^{\circ} = tan 210^{\circ} = 0.5774$$

 $tan 110^{\circ} = tan 290^{\circ} = -2.747$

Resolve this by adding or subtracting 180°

$$X_{CA} > 0$$
 when $-90^{\circ} < \varphi_{CA} < +90^{\circ}$
 $X_{CA} < 0$ when $|\varphi_{CA}| > 90^{\circ}$

Changes in Plate Boundaries with Time

Global Plate Boundary Change

- Plates and Plate boundaries do not stay the same for all time.
- Formation of new Plates and destruction of existing Plates are obvious global reasons why Plate boundaries and relative motion changes
- Changes in position of rotation pole changes the relative motion between Plates: e.g 90° change in pole position: Transform fault → Ridges and vice versa.

Indicators of Plate Boundary changes with Time

Changes in the trends of Transform faults

• Magnetic anomalies pattern changes E.g.:Pacific plate.

The direction of seafloor spreading has changed a number of times during the tertiary. This indicates that the Pacific-Farallon pole position changed over time.

Parts of plate boundaries may change locally without any major Plate or pole event occurring.

Local change in Plate Boundary

$$_{B}\mathbf{v}_{C}$$
 $6 = \begin{array}{c} 4 \\ 2 \end{array} \begin{array}{c} _{B}\mathbf{v}_{A} \\ _{+} \\ _{A}\mathbf{v}_{C} \end{array}$

TRIPLE JUNCTIONS

* Point at which three plates meet.

Stable and Unstable Triple Junctions

Stable

Relative motion of the three plates and azimuth of their boundaries are such that the configuration of the junction does not change with time.

Unstable

Triple junction exists only momentarily before evolving to a stable geometry

Stable and Unstable Triple Junctions

Stable

Relative motion of the three plates and azimuth of their boundaries are such that the configuration of the junction does not change with time.

Unstable

Triple junction exists only momentarily before evolving to a stable geometry

Example: Trench-Trench (TTT)

Stable or Unstable?

Stable and Unstable Triple Junctions

Example: Trench-Trench (TTT)

Stable or Unstable?

Evolution of a Stable Triple Junction from an unstable configuration

Conditions of Stability

1. If ${}_{A}V_{C}$ were parallel to the boundary between plates B and C.

Boundary between B and C would not move in the N-S direction relative to plate A implies geometry of triple junction would not change with time.

2. Edges of plate A on both sides of the triple junction is straight.

Step 1: Construct the Velocity Vector Triangle

Step 1: Construct the Velocity Vector Triangle

Step 2: Mark the Plates (common corners)

Step 3: Draw the Plate Boundaries

Conditions of Stability

Conditions of Stability

Example: Ridge-Ridge-Fault (RFF)

Condition-1

- ab is the perpendicular bisector of AB (i.e. Ridge spreads symmetrically & at right angles to its strike)
- bc and ac are collinear with BC and AC (i.e. represent motion along faults)

Example: Ridge-Ridge-Fault (RFF)

ab

Condition-2

- ab goes through C
 (i.e both transform faults have the same slip rate)
- ac and bc are collinear (i.e the boundary of plate C is straight)

16 possible Combinations of Triple Junctions

• To understand the past and predict the future evolution of plate configuration.

• To understand the evolution through time of the geodynamic setting of any given area on the Earth.

Example:

Mendocino triple junction

Fault-Trench (FFT)

Example:

Mendocino triple junction

Fault-Fault-Trench (FFT)

Stable if **ab** and **bc** form a straight line

Example:

Mendocino triple junction

Fault-Trench (FFT)

Stable if ac and bc form a straight line

Example:

Mendocino triple junction

Fault-Trench (FFT)

Result in northwards migration of the triple junction

Absolute Plate Motions: hotspot reference frame

Absolute Plate Motions: The Hawaiian Plume

Measures with respect to Plumes/Hot Spots which are considered to be stationary

Hot Spot Track and Flow Line

Hot Spot Track and Flow Line

What Drives the Plates?

1. Convection cell or Convective flow?

Driven by the Earth's Heat Engine?

2. Ridge Push?

3. Slab Pull?

The gravity-controlled sinking of a cold, denser oceanic slab into the subduction zone (called "slab pull") -- dragging the rest of the plate along with it -- is now considered to be the driving force of plate tectonics.

