Серия 12. Направленные углы.

 $Hanpaвленным углом \not \leq (\ell_1,\ell_2)$ между прямыми ℓ_1 и ℓ_2 называют угол, на который надо повернуть прямую ℓ_1 против часовой стрелки, чтобы получить прямую, параллельную ℓ_2 . Значение направленного угла определено с точностью до 180° . Определим $\not \leq ABC$ как $\not \leq (AB,BC)$. Основные свойства направленных углов:

- $\not \preceq (\ell_1, \ell_2) \equiv \not \preceq (\ell_2, \ell_1); \quad \not \preceq ABC \equiv \not \preceq CBA;$
- $\not \preceq (\ell_1, \ell_2) + \not \preceq (\ell_2, \ell_3) \equiv \not \preceq (\ell_1, \ell_3); \quad \not \preceq AOB + \not \preceq BOC = \not \preceq AOC;$
- $\not \preceq (\ell_1,\ell_2) \equiv 0^\circ \Longleftrightarrow \ell_1 \parallel \ell_2; \quad \not \preceq ABC \equiv 0^\circ \Longleftrightarrow A,\,B,\,C$ лежат на одной прямой;
- $\angle ABC \equiv \angle ADC \Longleftrightarrow A, B, C, D$ лежат на одной окружности или прямой.
- $\angle ABC = -\angle ACB \iff AB = AC$ или A, B, C на одной прямой.

Отныне и навсегда описанная окружность треугольника XYZ будет обозначаться (XYZ).

- **1.** Дан треугольник ABC; точки A', B', C' лежат на прямых BC, CA, AB соответственно. Докажите, что окружности (A'BC'), (B'CA'), (C'AB') имеют общую точку.
- **2.** Две окружности ω_1 и ω_2 с центрами O_1 и O_2 соответственно пересекаются в точках A и B. Окружность (O_1AO_2) второй раз пересекает ω_2 в точке C. Докажите, что точки O_1 , B, C лежат на одной прямой.
- **3.** На стороне BC треугольника ABC отмечены точки P и Q так, что $\angle BAP = \angle CAQ$. Докажите, что центры окружностей (ABP), (ABQ),(ACP), (ACQ) лежат на одной окружности.
- **4.** Окружности ω_1 и ω_2 пересекаются в точках A_1 и B_1 , окружности ω_2 и ω_3 в точках A_2 и B_2 , окружности ω_3 и ω_4 в точках A_3 и B_3 , окружности ω_4 и ω_1 в точках A_4 и B_4 . Докажите, что если точки A_1, A_2, A_3, A_4 лежат на одной окружности или прямой, то точки B_1, B_2, B_3, B_4 лежат на одной окружности или прямой.
- **5. Точка Микеля.** Четыре прямые общего положения образуют четыре треугольника. Докажите, что описанные окружности этих треугольников имеют общую точку.
- **6.** Let ABC be a triangle with A_1 , B_1 , C_1 the feet of the altitudes lying on BC, CA, AB respectively. One of the intersection points of the line B_1C_1 and the circumcircle is P. The lines BP and A_1C_1 meet at point Q. Prove that AP = AQ.
 - Altitude-высота, respectively-coomветственно, circumcircle-onuc. окружность.
- 7. (10.4 региона 2018) Треугольник ABC ($\angle C \neq 90^{\circ}$) вписан в окружность с центром O, на окружности отмечена точка D. Перпендикуляр, опущенный из D на BC, пересекает прямую AC в точке E. Докажите, что центр окружности (AED) лежит на окружности (AOB).
- 8. Внутри вписанного четырёхугольника ABCD нашлась такая точка X, что выполнено равенство $\angle XAB = \angle XBC = \angle XCD = \angle XDA$. Продолжения пар противоположных сторон AB и CD, BC и DA пересекаются в точках P и Q соответственно. Докажите, что $\angle PXQ$ равен углу между диагоналями BD и AC.