代码段:

addi x6,x6,2 loop: beq x6,x0,fi addi x6,x6,-1 addi x5,x5,3 j loop

fi: add x4,x4,x5

四种模式的仿真结果

	EXECUTION TABLE																		
FULL LOOPS V		CPU Cycles																	
Instruction	1	2	3	4	5	6	7	8					13	14	15	16	17	18	19
addi t1, t1, 2	F	D	Χ	М	W														
beq t1, x0, 32		F	-	D	X	М	W												
addi t1, t1, -1				F	D	Χ	М	W											
addi t0, t0, 3					F	D	X	М	W										
jal x0, -24						F	D	Χ	М	W									
add tp, tp, t0							F												
beq t1, x0, 32								F	D	Χ	М	W							
addi t1, t1, -1									F	D	Χ	М	W						
addi t0, t0, 3										F	D	Х	М	W					
jal x0, -24											F	D	X	М	W				
add tp, tp, t0												F							
beq t1, x0, 32													F	D	Χ	М	W		
addi t1, t1, -1														F					
add tp, tp, t0															F	D	Χ	М	W

图1: Mode 1 - With forward with flush

EXECUTION TABLE																				
FULL LOOPS V		CPU Cycles																		
Instruction	1	2	3	4	5	6	7	8		10				14	15	16	17	18	19	20
addi t1, t1, 2	F	D	Χ	М	W															
beq t1, x0, 32		F	-	-	D	Χ	M	W												
addi t1, t1, -1					F	D	X	М	W											
addi t0, t0, 3						F	D	Χ	М	W										
jal x0, -24							F	D	Χ	М	W									
add tp, tp, t0								F												
beq t1, x0, 32									F	D	Χ	М	W							
addi t1, t1, -1										F	D	X	М	W						
addi t0, t0, 3											F	D	Χ	M	W					
jal x0, -24												F	D	Χ	М	W				
add tp, tp, t0													F							
beq t1, x0, 32														F	D	Χ	М	W		
addi t1, t1, -1															F					
add tp, tp, t0																F	D	X	М	W

图2: Mode 2 - No forward with flush

	EXECUTION TABLE																		
FULL LOOPS V		CPU Cycles																	
Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
addi t1, t1, 2	F	D	Χ	М	W														
beq t1, x0, 32		F	-	D	Χ	М	W												
addi t1, t1, -1				F	D	Χ	M	W											
addi t0, t0, 3					F	D	Χ	М	W										
jal x0, -24						F	D	X	М	W									
add tp, tp, t0							F	D	X	М	W								
beq t1, x0, 32								F	D	Χ	М	W							
addi t1, t1, -1									F	D	X	М	W						
addi t0, t0, 3										F	D	Χ	М	W					
jal x0, -24											F	D	Χ	М	W				
add tp, tp, t0												F	D	Χ	М	W			
beq t1, x0, 32													F	D	X	М	W		
addi t1, t1, -1														F	D	X	М	W	
add tp, tp, t0															F	D	Χ	М	W

图3: Mode 3 - With forward no flush

	EXECUTION TABLE																					
FULL LOOPS V		CPU Cycles																				
Instruction	1	2	3	4	5	6	7	8	9						15	16	17	18	19	20	21	22
addi t1, t1, 2	F	D	Х	М	W																	
beq t1, x0, 32		F	-	-	D	Χ	M	W														
addi t1, t1, -1					F	D	X	М	W													
addi t0, t0, 3						F	D	Χ	М	W												
jal x0, -24							F	D	X	М	W											
add tp, tp, t0								F	-	D	X	М	W									
beq t1, x0, 32										F	D	X	М	W								
addi t1, t1, -1											F	D	X	М	W							
addi t0, t0, 3												F	D	Χ	М	W						
jal x0, -24													F	D	X	М	W					
add tp, tp, t0														F	-	D	Χ	М	W			
beq t1, x0, 32																F	D	Χ	М	W		
addi t1, t1, -1																	F	D	Х	М	W	
add tp, tp, t0																		F	D	Χ	М	W

图4: Mode 4 - No forward no flush 填表分析

表 1

	模式 1:	模式 2:	模式 3:	模式 4:
代码段1	with forward	no forward with	with forward	no forward
	with flush	flush	no flush	no flush
执行周期数	19	20	19	22
	addi x6,x6,2		addi x6,x6,2	
	beq x6,x0,fi		beq x6,x0,fi	
被执行 forward	执行1次		执行1次	
的指令,执行	不需要等待addi		不需要等待addi	
forward 次数和	指令将 x6 写回	/	指令将 x6 写回	/
原因	寄存器就直接		寄存器就直接	
	从 ALU 将结果		从 ALU 将结果	
	前递给 beq 使		前递给 beq 使	
	用。		用。	
	j loop	j loop		
	fi: add x4,x4,x5	fi: add x4,x4,x5		
被执行 flush 操	执行3次	执行3次		
作的指令和原	默认分支不跳	默认分支不跳	/	/
因	转, 当发现分支	转, 当发现分支		
	需要跳转时清	需要跳转时清		
	除已有指令。	除已有指令。		

表 2

		表 2					
代码段1	分析: 单周期 CF	VU 架构下,执行需	(70) 个时钟	周期,			
10円权 1	执行后, x6=(0), x5= (6), x4= (6)				
实际执行仿真	模式 1:	模式 2:	模式 3:	模式 4:			
安欧54.17 17 具 情况	with forward	no forward with	with forward	no forward			
月切	with flush	flush	no flush	no flush			
Reg X6=	0	0	-1	-1			
Reg X5=	6	6	6	6			
Reg X4=	6	6	15	15			
执行结果正确	正确	正确	不正确	不正确			
与否	112.1978	11.19/11	>1.777.104	21,117,100			
				致默认的分支不			
			跳转预判每次都被完整执行。即每				
				执行一遍 fi: add			
			x4,x4,x5 指令(長				
若不正确	\	\	addi x6,x6,-1 指令	户也被多执行了一			
如何修改	,	,	次(导致 x6 错误).			
			一种解决方案是均	曾加冗余的指令。			
			如在 beq 语句后加	л addi x6, x6,0;			
			在j语句后加 add	li x4, x4, 0。(时钟			
			周期数会增加)				

修改后代码段:

```
addi x6,x6,2
loop: beq x6,x0,fi
addi x6, x6,0
addi x6,x6,-1
addi x5,x5,3
j loop
addi x4, x4, 0
fi: add x4,x4,x5
```

修改后结果正确:

4	tp	6
5	t0	6
6	t1	0

图5: 结果正确的寄存器x4, x5, x6的值

选做: 另找代码验证冒险处理

测试代码段:

```
addi x1, x0, 1
addi x4, x0, 1024
sw x1, 0(x4)
lw x2, 0(x4)
and x4, x1, x2
```

	1			_	_	. , .				
Instruction	1	2	3	4	5	6	7	8	9	10
addi ra, x0, 1	F	D	Χ	М	W					
addi tp, x0, 1024		F	D	Χ	М	W				
sw ra, 0(tp)			F	D	Х	М	W			
lw sp, 0(tp)				F	D	Χ	М	W		
and tp, ra, sp					F	-	D	X	М	W

图6: 执行情况 **分析: **

在取数指令后紧接着执行and操作,理论上需要停顿三个时钟周期,待取数写回寄存器x2,但由于forwarding开启,取数结果从memory前递到and指令的ALU,故只需停顿一个周期,大大提升了执行效率。

代码段

```
lui x10, 0
ori x4, x10, 1024
addi x25, x0, 1
addi x26, x0, 2
addi x27, x0, 3
addi x28, x0, 4
sw x25, 0(x4)
sw x26, 4(x4)
sw x27, 8(x4)
sw x28, 12(x4)
addi x5, x0, 4
call:
jal sum
sw x12, 0(x4)
1w x19, 0(x4)
sub x18, x19, x12
addi x5, x0, 3
loop2:
addi x5, x5, -1
ori x18, x5, -1
xori x18, x18, 1365
addi x19, x0, -1
andi x20, x19, -1
or x16, x20, x19
xor x18, x20, x19
and x17, x20, x16
beq x5, x0, shift
j loop2
shift:
addi x5, x0, -1
slli x18, x5, 15
slli x18, x18, 16
srai x18, x18, 16
srli x18, x18, 15
fi:
j fi
sum:
add x18, x0, x0
loop:
1w x19, 0(x4)
addi x4, x4, 4
add x18, x18, x19
addi x5, x5, -1
bne x5, x0, loop
slli x12, x18, 0
jr ra
```

填表分析仿真结果

表 3

PC 值	指令	冒险的种类	执行的操作
04	ori x4, x10, 0	数据冒险	从 00 指令前递 x10 的值
30	sw x12, 0(x4)	控制冒险	flush 清除指令
8c	add x18, x18, x19	数据冒险	从 84 指令前递 x19 的值
94	bne x5, x0, loop	数据冒险	从 90 指令前递 x5 的值,并 stall 一个周期
98	slli x12, x18, 0	控制冒险	flush 清除指令
38	sub x18, x19, x12	数据冒险	从 34 指令前递 x19 的值,并 stall 一个周期
40	loop2:addi x5, x5, -1	数据冒险	从 3c 指令前递 x5 的值
44	ori x18, x5, -1	数据冒险	从 40 指令前递 x5 的值
48	xori x18, x18, 1365	数据冒险	从 44 指令前递 x18 的值
50	andi x20, x19, -1	数据冒险	从 4c 指令前递 x19 的值
54	or x16, x20, x19	数据冒险	从 50 指令前递 x20 的值
5c	and x17, x20, x16	数据冒险	从 54 指令前递 x16 的值
68	shift:addi x5, x0, -1	控制冒险	flush 清除指令
6c	slli x18, x5, 15	数据冒险	从 68 指令前递 x5 的值
70	slli x18, x18, 16	数据冒险	从 6c 指令前递 x18 的值
74	srai x18, x18, 16	数据冒险	从 70 指令前递 x18 的值
78	srli x18, x18, 15	数据冒险	从 74 指令前递 x18 的值
80	sum:add x18, x0, x0	控制冒险	flush 清除指令

选做:不同模式执行周期对比分析

模式1: With	模式2: No	模式3: With	模式4: No	单周期
forward with	forward with	forward no	forward no	
flush	flush	flush	flush	
91 cycles	139 cycles	96 cycles	142 cycles	425cycles

修改后的代码段:

```
loop2:
beq x5, x0, shift //条件判断提前到此处
addi x5, x5, -1
ori x18, x5, -1
xori x18, x18, 1365
addi x19, x0, -1
andi x20, x19, -1
or x16, x20, x19
xor x18, x20, x19
```

```
and x17, x20, x16
j loop2
shift:
addi x6, x0, -1 //x5改为x6
slli x18, x6, 15
slli x18, x18, 16
srai x18, x18, 16
srli x18, x18, 15
```

分析结果:

与3.1的执行结果类似,且符合预期。总体而言,前递和flush都会提高这段代码的执行效率,而是否支持前递是主要影响因素。由之前的分析可知,代码段2的数据冒险较多,因此通过forwarding会带来很大的性能提升(35%左右),支持flush也会带来5%左右的提升。与单周期相比,无论采取哪种模式,流水线执行都可以大幅提高效率。

拓展思考

- 1. 左侧四选一 MUX 应算作 IF级。
- 2. 右上方两个加法器中:计算branchpc的可以放到ID级,而计算jalpc的不能,因为后者的输入需要在EX级由ALU计算结果提供。
- 3. 最右侧的二选一MUX不能在EX实现,因为其输入需要等待ME级的存储器输出。
- 4. forward操作不能在ID级实现,因为ID级进行冒险检测后才能决定是否前递。
- 5. stall操作将ID指令清除,即RegWrite和MemWrite信号置零即可。
- 6. flush操作要将IF、ID、EX阶段的指令全部清除,将所有控制信号置零。
- 7. 后面几级寄存器位置如图