Hyperspace Travel

A group of n friends living in an m-dimensional hyperspace want to meet up at some central location. The hyperspace is in the form of an m-dimensional grid, and each person can only move along grid lines. For example, to go from $(0,0) \to (1,1)$ in a 2-dimensional space, one possible route is $(0,0) \to (0,1) \to (1,1)$ for a total distance traveled of 2 units.

Given the coordinates, $(X[0,1,\ldots,m-1])$, for n friends, find a point at which all n friends can meet such that the total sum of the distances traveled by all n friends is minimal. If there are multiple such points, choose the lexicographically smallest one. The point $P_1[0,1,\ldots,m-1]$ is lexicographically smaller than $P_2[0,1,\ldots,m-1]$ if there exists such j < m that $\forall i < j P_1[i] = P_2[i]$ and $P_1[j] < P_2[j]$.

Input Format

The first line contains two space-separated integers describing the respective values of n and m. Each line i of the n subsequent lines contains m space-separated integers describing the respective coordinates (i.e., $x_0, x_1, \ldots, x_{m-1}$) for friend i.

Constraints

- $1 \le n \le 10^4$
- $1 < m < 10^2$
- $-10^9 \le x_i \le 10^9$

Output Format

Print m space-separated integers describing the coordinates of the meeting point.

Sample Input

3 2 1 1 2 2 3 3

Sample Output

2 2

Explanation

There are n=3 friends (we'll call them a, b, and c) located at points a=(1,1), b=(2,2), and c=(3,3). The minimal solution is for friends a and c to meet at friend b's current location; this means a travels a units from a0, a1 to a2, a3 to a4, a5, a6 to a6, a7, a8 travels a8 units from a8, a8 travels a9 units from a9, a9