

Convolutional Neural Networks

More edge detection

Vertical edge detection examples

*

*

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

					· v
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

1	0	-1
1	0	-1
1	0	-1

0	-30	-30	0
0	-30	-30	0
0	-30	-30	0
0	-30	-30	0

IJ you don't care about dark V/s light, you could take an absolute value Andrew Ng

Vertical and Horizontal Edge Detection

1	0	-1
1	0	-1
1	0	-1

T 7	-	, •		1
V	er	11	Ca	
V	$\mathcal{O}_{\mathbf{T}}$	\mathbf{OI}	.Ca	

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

*

1	1	1
0	0	0
-1	-1	-1

1	1	1	pixels are bright relatively bright
0	0	0	Out of
-1	-1	-1	pixels are relatively dark at the bottom then we have a horizontal
		_	esge

Horizontal

0	0	0	0
30	10	-10	-30
30	10	-10	-30
0	0	0	0

Learning to detect edges

We can USE this for edge detection

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	ന	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

	0	-	
2	Ó	-2	
	0	-1	Sobel filter
We us	can als e this f ertical e	Other for later date	dien

3	0	-3		
10	0	-10		
3	Ó	-3		
(Lackiller				

Scharfiller as

ı	v_1	w_2	w_3
1	\mathcal{N}_4	W_5	w_6
I	N_7	W_8	W_9

But why these them Hand Pick theor Learn thead grumbers, learn thead using back pr

