Sprawozdanie

Kajetan Bilski 244942

8 listopada 2019

1 Zadanie 1.

W tym zadaniu trzeba powtórzyć operacje z zadania 5. na poprzedniej liście ze zmienionymi danymi i wyniki porównać z oryginalnymi.

Tabela 1: Float32

	Stare wyniki	Nowe wyniki
W przód	-0.4999443	-0.4999443
W tył	-0.4543457	-0.4543457
Od największego do najmniejszego	-0.5	-0.5
Od najmniejszego do największego	-0.5	-0.5

Tabela 2: Float64

	Stare wyniki	Nowe wyniki
W przód	1.0251881368296672e-10	-0.004296342739891585
W tył	-1.5643308870494366e-10	-0.004296342998713953
Od największego do najmniejszego	0.0	-0.004296342842280865
Od najmniejszego do największego	0.0	-0.004296342842280865

Jak widać o ile nieznaczna zmiana danych wpływa na wynik dla Float64, to przez mniejszą ilość bitów mantysy w Float32 różnica ta zostaje zgubiona w trakcie obliczeń.

2 Zadanie 2.

W tym zadaniu trzeba użyć 2 różnych programów do wizualizacji, żeby narysować wykresy podanej funkcji $f(x) = e^x * ln(1 + e^{-x})$, policzyć jej faktyczną granicę i stwierdzić przyczynę rozbieżności. Do wykresów użyłem Wolframa Alpha i Julia Plots.

Rysunek 1: Wykres wygenerowany przez Wolfram Alpha.

Rysunek 2: Wykres wygenerowany przez Julia Plots.

Z reguły de l'Hospitala możemy wyliczyć, że:

$$\lim_{x\to\infty}f(x)=\lim_{x\to-\infty}\frac{\ln(1+e^x)}{e^x}=\lim_{x\to-\infty}\frac{\frac{e^x}{1+e^x}}{e^x}=\lim_{x\to-\infty}\frac{1}{1+e^x}=1$$

Widać to na wykresie do pewnego momentu.

3 Zadanie 3.

W tym zadaniu trzeba obliczyć błędy względne dla różnych metod wyliczania (gaussa i z inwersją) wektora x dla różnych macierzy (hilberta i losowych z ustalonym uwarunkowaniem).

Rysunek 3: Wykres pokazuje zależność błędu względnego od stopnia macierzy Hilberta dla eliminacji Gaussa.

Rysunek 4: Wykres pokazuje zależność błędu względnego od stopnia macierzy Hilberta dla metody z inwersją.

Stopień macierzy	Wskaźnik uwarunkowania	Błąd względny
5	1	1.8069483804808453e-16
5	10	2.610231485628412e-16
5	1000	1.7850626913591223e-14
5	10000000	1.874017099962223e-10
5	1000000000000	1.8415994614712902e-5
5	10000000000000000	0.21524923010299854
10	1	3.0281309651395125e-16
10	10	3.776565784367373e-16
10	1000	1.8588779969361988e-14
10	10000000	1.9768523600922126e-10
10	1000000000000	1.9299211265428995e-5
20	1	5.218868153878846e-16
20	10	5.494955761376869e-16
20	1000	1.9587732575698833e-14
20	10000000	2.0445268570043338e-10
20	1000000000000	1.9770797724894753e-5
20	10000000000000000	0.22913031750055315

Tabela 3: Średni błąd względny dla macierzy losowych i eliminacji Gaussa.

Stopień macierzy	Wskaźnik uwarunkowania	Błąd względny
5	1	1.7197883667743765e-16
5	10	2.7034404952967657e-16
5	1000	1.9787177640213087e-14
5	10000000	1.9319125095340643e-10
5	1000000000000	1.9296324377022153e-5
5	100000000000000000	0.226122272943526
10	1	2.7241376517119966e-16
10	10	3.456828206193868e-16
10	1000	2.0004831946571534e-14
10	10000000	1.9879938840962724e-10
10	1000000000000	1.9513353162458144e-5
10	10000000000000000	0.23426619971131585
20	1	4.3952596450712084e-16
20	10	5.215960491778062e-16
20	1000	2.0355416302226235e-14
20	10000000	2.0937139806143022e-10
20	1000000000000	2.1164069434250632e-5
20	10000000000000000	0.23626534301845925

Tabela 4: Średni błąd względny dla macierzy losowych i metody z inwersją.

- 4 Zadanie 4.
- 5 Zadanie 5.
- 6 Zadanie 6.