Оглавление

	Векторные пространства 1.1 Продолжение чего-то	2 2
2	Линейные отображения	4
	2.1 Матрица линейного отображения	4
	2.2 Ядро и образ	5

Глава 1

Векторные пространства

1.1 Продолжение чего-то

Доказательство. $\operatorname{rk} A = \dim \operatorname{пространства} \operatorname{строк} \coloneqq U$

Элементарные преобразования строк и перестановка столбцов: $A \to A'$

Докажем, что $\dim U = \dim U'$

Если строки ЛНЗ, то при элементарных преобразованиях получаются ЛНЗ

Если строки ЛЗ, то получаются ЛЗ

Значит, при элементарных преобразованиях строк, dim не меняется

$$u_1,...,u_m, \qquad u_1',...,u_m'$$

$$u_i = (x_1^{(i)},...,x_n(i)), \qquad u_i' = (x_{\sigma(1)}^{(i)},...,x_{\sigma(m)}^{(i)})$$

где σ — перстановка

Рассмотрим ЛК $\sum c_i u_i$, $\sum c_i u'_i$:

$$c_1u_1 + c_2u_2 + \dots = (\dots, c_1x_k^{(1)} + c_2x_k^{(i)}, \dots), \qquad c_1u_1' + c_2u_2' + \dots = (\dots, c_1x_{\sigma(k)}^{(1)} + c_2x_{\sigma(k)}^{(i)}, \dots)$$

 $\sum c_i u_i$ и $\sum c_i u_i'$ отличаются перестановкой координат

ЛНЗ/ЛЗ наборы соответствуют друг другу

Достаточно доказать утверждение для трапецевидной матрицы

$$A' = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1r} & | & a_{1,r+1} & \dots \\ 0 & a_{22} & & a_{2r} & | & a_{2,r+1} & \dots \\ & . & & | & a_{3,r+1} & \dots \\ & . & & | & \dots & \\ & & . & | & a_{rr} & | & a_{r,r+1} & \dots \\ - & - & - & - & - & \dots & \\ 0 & 0 & \dots & & \end{pmatrix}$$

$$\operatorname{rk} A' := r$$

Рассмотрим минор порядка > r

Есть нулевая строка, определитель равен 0

Пусть $u_i - i$ -я строка матрицы A' Докажем, что $\dim u' = r$:

Достаточно доказать, что $u_1, u_2, ..., u_r$ ЛНЗ

$$(0,0,...,0) = c_1u_1 + c_2u_2 + ... + c_ru_r = (c_1a_{11},c_1a_{12} + c_2a_{22},...,c_1a_{11} + c_2a_{21} + ... + c_1a_{rr},...)$$

$$\begin{vmatrix} c_1 a_{11} = 0 \\ a_{11} \neq 0 \end{vmatrix} \implies c_1 = 0$$

$$\begin{vmatrix} c_1 a_{11} = 0 \\ c_2 a_{21} = 0 \end{vmatrix} \implies c_3 = 0 \Rightarrow c_4 = 0 \Rightarrow c_5 = 0$$

 $c_1a_{12} + c_2a_{22} = 0 \implies c_2a_{22} = 0 \implies c_2 = 0$

Теорема 1 (Кронекера-Капелли). Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы

Доказательство. Приведём матрицу системы к трапецевидной элементарными преобразованиями строк и перестановкой столбцов

$$\begin{pmatrix} a_{11} & a_{12} & \dots & \dots & a_{1n} & b_1 \\ 0 & . & . & . & . & | & . \\ . & . & . & . & . & | & . \\ . & . & . & . & . & | & . \\ 0 & . & a_{rr} & . & a_{rn} & | & b_r \\ 0 & . & . & . & 0 & | & b_{r+1} \\ . & . & . & . & . & . & | & . \end{pmatrix}$$

Система совметсна $\iff b_i = 0$ при i > r

Глава 2

Линейные отображения

2.1 Матрица линейного отображения

Определение 1. U,V – векторные пространства над K Отображение $f:U\to V$ называется линейным, если

- 1. $\forall u_1, u_2 \in U$ $f(u_1 + u_2) = f(u_1) + f(u_2)$
- 2. $\forall u \in U, k \in K \quad f(ku) = kf(u)$

Замечание. Линейное отображение из U в U иногда называют линейным преобразованием

Свойства.

- 1. $f:U \to V, \quad g:V \to W$ линейны $\implies g \circ f:U \to W$ линейно
- 2. $f:U \to V$ линейно, U_1 подпространство $U \implies f\Big|_{U_1}:U_1 \to V$ линейно

Определение 2. Пусть U,V – конечномерные, $e_1,...,e_n$ – базис $U,g_1,...,g_m$ – базис V,f – линейное отображение $U\to V$

Матрицей f в данных базисах называется матрица, в i-м столбце которой записаны координаты $f(e_i)$ в базисе $g_1,...,g_m$, то есть

$$\begin{pmatrix} a_1 1 & \dots & a_{1m} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

$$f(e_i) = \sum_{k=1}^{m} a_{ki} g_k$$

Лемма 1 (матричная запись линейного оторажения). U, V – конечномерные, $e_1, ..., e_n$ – базис $U, g_1, ..., g_m$ – базис $V, f: U \to V$ – линейное

- 1. Пусть A матрица f в данных базисах, $u \in U, \quad v \in V,$ такие, что f(u) = v,
 - X столбец координат u в базисе $e_1, ..., e_n$
 - Y столбец координат v в базисе $g_1, ..., g_m$

Тогда Y = AX

Доказательство. Пусть
$$X=\begin{pmatrix}x_1\\ \cdot\\ \cdot\\ \cdot\\ x_n\end{pmatrix}, \qquad Y=\begin{pmatrix}y_1\\ \cdot\\ \cdot\\ \cdot\\ y_m\end{pmatrix}$$

$$\begin{split} v &= f(u) = f(x_1e_1 + \ldots + x_ne_n) = x_1f(e_1) + \ldots + x_nf(e_n) = \\ &= x_1(a_{11}g_1 + \ldots + a_{m1}g_m) + \ldots + x_i(a_{1i}g_1 + \ldots + a_{mi}g_m) + \ldots + x_n(a_{1n}g_1 + \ldots + a_{mn}g_m) = \\ &= (a_{11}x_1 + \ldots + a_{i1}x_i + \ldots + a_{1m}x_n)g_1 + \ldots + (a_{mn}x_1 + \ldots + a_{mi}x_i + \ldots + a_{mn}x_n)g_m \implies \\ &\implies g_1 = y_{11}x_1 + \ldots + a_{1n}x_n + \ldots + a_{1n}x_m, \qquad y_m = a_{m1}x_1 + \ldots + a_{mn}x_n \end{split}$$

2. Пусть A – такая матрица, что $\forall u,v:f(u)=v,$ и их столбцов координат X,Y выполнено Y=AX, то A – матрица f в этих базисах

Доказательство. Аналогично

Теорема 2 (Изменение матрицы при замене базисов). U,V – конечномерные, $f:U\to V$ – линейное, e_i,e_i' – базисы U,g_i,g_i' – базисы V,A – матрица f в базисах e_i,g_i,A' – матрица f в базисах e_i',g_i' Тогда $A'=C_{g_i\to g_i'}^{-1}\cdot A\cdot C_{e_i\to e_i'}$

Доказательство. Пусть $u \in U$, $v \in V$, f(u) = v X, X' – столбцы координат u в e_i, e_i' Y, Y' – столбцы координат v в g_i, g_i'

2.2 Ядро и образ

Определение 3. Пусть $f:U\to V$ – линейное отображение

Ядром f называется множество $\{u \mid f(u) = 0\}$

Обозначение. $\ker f$

Образом f называется множество $\{f(u) \mid u \in U\}$

Обозначение. $\operatorname{Im} f$

Свойства.

- 1. $\ker f$ подпространство U
- 2. Im f подпространство V

Определение 4. $f: U \to V$ называется изоморфизмом, если

- 1. f линейно
- 2. f биекция

Если существует изоморфизм $f:U\to V$, то пространства называются изоморфными

Обозначение. $U\cong V\;(U\simeq V,U\sim V)$

Свойства.

- 1. Если f изоморфизм, то $\exists \, f^{-1}$ и f^{-1} изоморфизм
 - $\bullet\:$ Если $f:U\to V, g:V\to W$ изоморфизмы, то $g\circ f:U\to W$ изоморфизм