WE CLAIM:

1. A method for forming a MOS transistor gate dielectric layer comprising:

5

providing a semiconductor substrate;

forming an oxide layer on the semiconductor substrate;

10

exposing the oxide layer to a high-density nitrogen plasma to incorporate nitrogen into the oxide layer thereby converting the oxide layer to an oxynitride layer; and

15

annealing said oxynitride layer in $N_2\text{O}$ to form an oxynitride layer with a uniform nitrogen concentration profile.

- 2. The method of claim 1 wherein the exposing the oxide layer to a high-density nitrogen plasma comprises a plasma power level of 700 900 watts.
- 3. The method of claim 1 wherein annealing the oxynitride layer in N_2O comprises rapid thermal annealing at a temperature of $800^{\circ}C$ $1100^{\circ}C$ for 10-60 seconds.

		4. A method of forming a MOS transistor comprising:
	5	providing a semiconductor substrate;
		forming a gate dielectric layer on the
		semiconductor substrate wherein the gate
		dielectric layer has a uniform nitrogen
	10	concentration;
		forming a conductive layer on said gate
		dielectric layer,
	15	forming sidewall structures adjacent to said
		conductive layer; and
		forming source and drain regions in the
		semiconductor substrate adjacent to said sidewall
1	20	structures.
		5. The method of claim 4 wherein said forming a gate
		dielectric layer with a uniform nitrogen concentration
		comprises:
	25	-
		forming an oxide layer on the semiconductor
		substrate;
		exposing the oxide layer to a high-density
	30	nitrogen plasma to incorporate nitrogen into the

an oxynitride layer; and

oxide layer thereby converting the oxide layer to

annealing said oxynitride layer in $N_2{\text{O}}$ to form an oxynitride layer with a uniform nitrogen concentration profile.

5

- 6. The method of claim 5 wherein the exposing the oxide layer to a high-density nitrogen plasma comprises a plasma power level of 700 900 watts.
- 7. The method of claim 5 wherein annealing the oxynitride layer in N_2O comprises rapid thermal annealing at a temperature of 800°C 1100°C for 10--60 seconds.
 - 8. The method of claim 4 wherein said uniform nitrogen concentration is greater than 6 atomic percent.
 - 9. The method of claim 4 wherein gate dielectric layer is less than 40 angstroms thick.

20

15

10. The method of claim 4 wherein said uniform nitrogen concentration describes a nitrogen concentration with less than 10% variation across the gate dielectric layer.

Substantial Property of the Parket
J
4.545
27.25. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
ania mina
कार्केस्स उद्याप इत्याप इत्याप
碳.
Patrick Scattle
1000
William.
M
1 3
Li

10

15

20

11. A MOS transistor, comprising:

providing a silicon substrate;

a gate dielectric layer on the silicon substrate wherein the gate dielectric layer is less than 40 angstroms thick and wherein the gate dielectric layer has a uniform nitrogen concentration;

a conductive layer on the gate dielectric layer;

sidewall structures adjacent to said conductive layer; and

source and drain regions in the silicon substrate adjacent to the sidewall structures.

- 12. The MOS transistor of claim 10 wherein the uniform nitrogen concentration is greater than 6 atomic percent.
- 13. The MOS transistor of claim 12 wherein the uniform nitrogen concentration has a variation of less than 10% across the gate dielectric layer.

17

25

30