L3 A, intégration: M363

- I - Exercices préliminaires

Exercice 1 Soient A, B deux parties de X. Exprimer $\mathbf{1}_{X\setminus A}$, $\mathbf{1}_{A\cap B}$, $\mathbf{1}_{AUB}$, $\mathbf{1}_{B\setminus A}$, $\mathbf{1}_{A\Delta B}$, en fonction de $\mathbf{1}_A$ et $\mathbf{1}_B$.

Plus généralement, pour toute suite finie $(A_k)_{1 \le k \le n}$ de parties de X, exprimer $\mathbf{1}_{k=1}^n A_k$ et $\mathbf{1}_{k=1}^n A_k$ en fonction des $\mathbf{1}_{A_k}$.

Solution. Les fonctions indicatrices (ou caractéristiques) permettent de transformer des opérations ensemblistes en opérations algébriques.

Pour tout $x \in X$, on a:

$$\mathbf{1}_{X \setminus A}(x) = \begin{cases} 1 \text{ si } x \notin A \\ 0 \text{ si } x \in A \end{cases} = 1 - \mathbf{1}_{A}(x)$$

$$\mathbf{1}_{A \cap B}(x) = \begin{cases} 1 \text{ si } x \in A \cap B \\ 0 \text{ si } x \notin A \cap B \end{cases} = \mathbf{1}_{A}(x) \mathbf{1}_{B}(x)$$

donc:

$$\mathbf{1}_{X \setminus A} = 1 - \mathbf{1}_A$$

et:

$$\mathbf{1}_{A\cap B} = \mathbf{1}_A \mathbf{1}_B = \min\left(\mathbf{1}_A, \mathbf{1}_B\right)$$

Avec:

$$X \setminus (AUB) = (X \setminus A) \cap (X \setminus B)$$

on déduit que :

$$\mathbf{1}_{X\setminus (AUB)} = \mathbf{1}_{X\setminus A}\mathbf{1}_{X\setminus B}$$

soit:

$$1 - \mathbf{1}_{AUB} = (1 - \mathbf{1}_A)(1 - \mathbf{1}_B)$$

et:

$$\mathbf{1}_{AUB} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B = \max(\mathbf{1}_A, \mathbf{1}_B)$$

Avec:

$$B \setminus A = (X \setminus A) \cap B$$

on déduit que :

$$\mathbf{1}_{B \setminus A} = \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B = \max \left(\mathbf{1}_B - \mathbf{1}_A, 0 \right)$$

Avec:

$$A\Delta B = (AUB) \setminus A \cap B$$

on déduit que :

$$\mathbf{1}_{A\Delta B} = \mathbf{1}_{AUB} (1 - \mathbf{1}_{A\cap B}) = (\mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B) (1 - \mathbf{1}_A \mathbf{1}_B)$$

$$= \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B + \mathbf{1}_A \mathbf{1}_B$$

$$= \mathbf{1}_A + \mathbf{1}_B - 2\mathbf{1}_A \mathbf{1}_B$$

$$= (\mathbf{1}_A - \mathbf{1}_B)^2 = |\mathbf{1}_A - \mathbf{1}_B|$$

On vérifie facilement par récurrence sur $n \ge 1$ que :

$$\mathbf{1}_{igcap_{k-1}^n A_k}^n = \prod_{k=1}^n \mathbf{1}_{A_k} = \min_{1 \leq k \leq n} \mathbf{1}_{A_k}$$

C'est vrai pour n=1 et n=2. En supposant le résultat acquis pour $n-1\geq 2$, on a :

$${f 1}_{ ightarrow k=1}^n A_k = {f 1}_{ ightarrow k=1}^n A_k {f 1}_{A_n} = \prod_{k=1}^n {f 1}_{A_k}$$

et on vérifie facilement que pour tout $x \in X$, on a :

$$\prod_{k=1}^{n} \mathbf{1}_{A_k} (x) = \min_{1 \le k \le n} \mathbf{1}_{A_k} (x)$$

Pour ce qui est de la réunion, on vérifie facilement que :

$$\mathbf{1}_{\bigcup\limits_{k=1}^{n}A_{k}}=\max_{1\leq k\leq n}\mathbf{1}_{A_{k}}$$

En effet, soit $x \in X$. Si $x \in \bigcup_{k=1}^{n} A_k$, il existe alors un indice k tel que $x \in A_k$ et on a :

$$1 = \mathbf{1} \bigcup_{k=1}^{n} A_k \left(x \right) = \mathbf{1}_{A_k} \left(x \right) = \max_{1 \le j \le n} \mathbf{1}_{A_j} \left(x \right)$$

Si $x \notin \bigcup_{k=1}^{n} A_k$, on a alors $x \notin A_k$ pour tout k comprisentre 1 et n et :

$$0 = \mathbf{1} \underset{k=1}{\overset{n}{\bigcup}} A_k (x) = \max_{1 \le j \le n} \mathbf{1}_{A_j} (x)$$

On peut aussi généraliser la formule $\mathbf{1}_{AUB} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B$.

Avec:

$$X \setminus \bigcup_{k=1}^{n} A_k = \bigcap_{k=1}^{n} (X \setminus A_k)$$

on déduit que :

$$1 - \mathbf{1}_{\bigcup_{k=1}^{n} A_k}^{n} = \prod_{k=1}^{n} (1 - \mathbf{1}_{A_k})$$

donc:

$$\mathbf{1}_{\bigcup_{k=1}^{n} A_k} = 1 - \prod_{k=1}^{n} (1 - \mathbf{1}_{A_k})$$

On rappelle que pour tout entier naturel non nul n, les fonctions symétriques élémentaires $\sigma_{n,k}: \mathbb{R}^n \to \mathbb{R}$, l'entier k étant compris entre 0 et n, sont définies par :

$$\forall \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n, \ \sigma_{n,k}(\alpha) = \begin{cases} 1 \text{ si } k = 0 \\ \sum_{1 \le i_1 \le \dots \le i_k \le n} \alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_k} \text{ si } k \in \{1, \dots, n\} \end{cases}$$

et on a:

$$\prod_{k=1}^{n} (X - \alpha_k) = \sum_{k=0}^{n} a_{n-k} X^k$$

avec:

$$\forall k \in \{0, 1, \dots, n\}, \ a_{n-k} = (-1)^k \, \sigma_{n,k} \, (\alpha_1, \dots, \alpha_n)$$

L'évaluation en 1 nous donne :

$$\prod_{k=1}^{n} (1 - \alpha_k) = 1 + \sum_{k=1}^{n} (-1)^k \sum_{1 \le i_1 < \dots < i_k \le n} \alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_k}$$

donc:

$$\begin{split} \prod_{k=1}^{n} \left(1 - \mathbf{1}_{A_k}\right) &= 1 + \sum_{k=1}^{n} \left(-1\right)^k \sum_{1 \leq i_1 < \dots < i_k \leq n} \mathbf{1}_{A_{i_1}} \mathbf{1}_{A_{i_2}} \dots \mathbf{1}_{A_{i_k}} \\ &= 1 + \sum_{k=1}^{n} \left(-1\right)^k \sum_{1 \leq i_1 < \dots < i_k \leq n} \mathbf{1}_{A_{i_1} \cap A_{i_2} \dots A_{i_k}} \end{split}$$

et:

$$\mathbf{1}_{\bigcup_{k=1}^{n} A_{k}} = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < \dots < i_{k} \le n} \mathbf{1}_{A_{i_{1}} \cap A_{i_{2}} \dots A_{i_{k}}}$$

(voir la formule de Poincaré, exercice 9).

Exercice 2 Soient $(A_k)_{1 \le k \le n}$ une suite finie de parties d'un ensemble non vide X et A une partie de X. Montrer que :

$$((A_k)_{1 \le k \le n} \text{ est une partition de } A) \Leftrightarrow \left(\mathbf{1}_A = \sum_{k=1}^n \mathbf{1}_{A_k}\right)$$

Solution. Supposons que $(A_k)_{1 \le k \le n}$ soit une partition de A, c'est-à-dire que $A = \bigcup_{k=1}^{n} A_k$, les A_k étant deux à deux disjoints.

Pour tout $x \in A$, il existe un unique j compris entre 1 et n tel que $x \in A_j$, donc $\mathbf{1}_{A_k}(x) = 0$ pour $k \neq j$,

$$\mathbf{1}_{A_{j}}(x) = 1 \text{ et } 1 = \mathbf{1}_{A}(x) = \sum_{k=1}^{n} \mathbf{1}_{A_{k}}(x).$$

Pour $x \notin A$, x n'est dans aucun des A_k et $0 = \mathbf{1}_A(x) = \sum_{k=1}^n \mathbf{1}_{A_k}(x)$.

Réciproquement supposons que $\mathbf{1}_A = \sum_{k=1}^n \mathbf{1}_{A_k}$.

Si $x \in \bigcup_{k=1}^{n} A_k$, il existe un indice j compris entre 1 et n tel que $x \in A_j$, donc $\mathbf{1}_{A_j}(x) = 1$ et $\mathbf{1}_{A_j}(x) = 1$

 $\sum_{k=1}^{\infty}\mathbf{1}_{A_{k}}\left(x\right)\geq1,\text{ ce qui impose }\mathbf{1}_{A_{k}}\left(x\right)=0\text{ pour }k\neq j\text{ et }\mathbf{1}_{A}\left(x\right)=1,\text{ ce qui signifie que les }A_{k}\text{ sont deux à }A_{k}$

deux disjoints et $\bigcup_{k=1}^{n} A_k \subset A$.

Pour $x \in A$, on a $1 = \mathbf{1}_A(x) = \sum_{k=1}^n \mathbf{1}_{A_k}(x)$, donc il existe un unique j compris entre 1 et n tel que $\mathbf{1}_{A_j}(x) = 1$,

ce qui signifie que x est dans un unique A_k et $x \in \bigcup_{k=1}^n A_k$, donc $A \subset \bigcup_{k=1}^n A_k$ et on a l'égalité $A = \bigcup_{k=1}^n A_k$, les A_k étant deux à deux disjoints.

Exercice 3 Montrer que l'application qui associe à une partie A de X sa fonction caractéristique $\mathbf{1}_A$ réalise une bijection de $\mathcal{P}(X)$ sur $\{0,1\}^X$ (ensemble des applications de X dans $\{0,1\}$). Préciser son inverse.

Solution. Notons :

$$\begin{array}{cccc} \chi: & \mathcal{P}\left(X\right) & \rightarrow & \left\{0,1\right\}^{X} \\ & A & \mapsto & \mathbf{1}_{A} \end{array}$$

Si A, B dans $\mathcal{P}(X)$ sont tels que $\mathbf{1}_A = \mathbf{1}_B$, on a alors pour tout $x \in A$, $\mathbf{1}_B(x) = 1$ et $x \in B$, donc $A \subset B$. Comme A et B jouent des rôles symétriques, on en déduit que A = B.

L'application χ est donc injective.

Pour toute application $\gamma \in \{0,1\}^X$, en notant $A = \gamma^{-1}\{1\}$, on a $\mathbf{1}_A = \gamma$, donc χ est surjective.

En conclusion, χ est bijective d'inverse :

$$\begin{array}{cccc} \chi^{-1}: & \{0,1\}^X & \rightarrow & \mathcal{P}\left(X\right) \\ \gamma & \mapsto & \gamma^{-1}\left\{1\right\} \end{array}$$

Exercice 4 Montrer qu'il n'existe pas de bijection de X sur $\mathcal{P}(X)$ (théorème de Cantor). On en déduit en particulier que $\mathcal{P}(\mathbb{N})$ et $\{0,1\}^{\mathbb{N}}$ ne sont pas dénombrables.

Solution. Supposons qu'il existe une bijection φ de X sur $\mathcal{P}(X)$. Le sous-ensemble A de X défini par :

$$A = \{ x \in X \mid x \notin \varphi(x) \}$$

a alors un antécédent x_0 par φ et on a :

$$(x_0 \in A) \Leftrightarrow (x_0 \in \varphi(x_0)) \Leftrightarrow (x_0 \notin A)$$

ce qui n'est pas possible.

En particulier, $\mathcal{P}(\mathbb{N})$ n'est pas équipotent à \mathbb{N} et il en est de même de $\{0,1\}^{\mathbb{N}}$ qui est équipotent à $\mathcal{P}(\mathbb{N})$. On peut aussi vérifier, en utilisant les développements dyadiques que $\{0,1\}^{\mathbb{N}}$ est équipotent à [0,1].

Exercice 5 Soit σ une bijection de \mathbb{N} dans \mathbb{N} et $\sum u_n$ une série réelle absolument convergente.

Montrer que la série $\sum u_{\sigma(n)}$ converge absolument avec $\sum_{n=0}^{\infty} u_{\sigma(n)} = \sum_{n=0}^{\infty} u_n$.

Cela justifie l'écriture $\sum_{n=0}^{\infty} u_n$ dans le cas d'une série absolument convergente, ce qui est le cas pour une série à termes positifs convergente, ce qui est utilisé implicitement dans la définition d'une mesure.

Solution. Pour tout $n \in \mathbb{N}$, on a :

$$\sum_{k=0}^{n} |u_{\sigma(k)}| \le \sum_{j=0}^{\max \atop 0 \le k \le n} |u_{j}| \le \sum_{n=0}^{+\infty} |u_{n}| = S$$

donc la série $\sum u_{\sigma(n)}$ est absolument convergente.

Il reste à montrer que $\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_n$. On montre tout d'abord le résultat pour les séries à termes positifs.

On vient de voir que $\sum u_{\sigma(n)}$ converge et que :

$$\sum_{n=0}^{+\infty} u_{\sigma(n)} \le \sum_{n=0}^{+\infty} u_n$$

En appliquant le résultat précédent à la série de terme général $v_n = u_{\sigma(n)}$ et à la permutation σ^{-1} , on a aussi:

$$\sum_{n=0}^{+\infty} v_{\sigma^{-1}(n)} = \sum_{n=0}^{+\infty} u_{\sigma(\sigma^{-1}(n))} = \sum_{n=0}^{+\infty} u_n \le \sum_{n=0}^{+\infty} v_n = \sum_{n=0}^{+\infty} u_{\sigma(n)}$$

ce qui nous donne l'égalité $\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_n$.

Pour le cas général, on introduit les séries de terme général $u_n^+ = \max(u_n, 0)$ et $u_n^- = \max(-u_n, 0)$. On a $0 \le u_n^+ \le |u_n|$, $0 \le u_n^- \le |u_n|$, $u_n = u_n^+ - u_n^{-1}$, donc les séries à termes positifs $\sum u_n^+$ et $\sum u_n^-$ sont convergentes si $\sum u_n$ est absolument convergente et on a :

$$\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_{\sigma(n)}^+ - \sum_{n=0}^{+\infty} u_{\sigma(n)}^- = \sum_{n=0}^{+\infty} u_n^+ - \sum_{n=0}^{+\infty} u_n^- = \sum_{n=0}^{+\infty} u_n$$

Ce résultat est encore valable pour les séries à valeurs dans un espace normé de dimension finie (on raisonne sur les composantes).

Exercice 6 La longueur d'un intervalle réel I est définie par :

$$\ell(I) = \sup(I) - \inf(I) \in [0, +\infty] = \mathbb{R}^+ \cup \{+\infty\}$$

1. Soient I = [a, b] un intervalle fermé, borné et $(I_k)_{1 \le k \le n}$ une famille finie d'intervalles telle que :

$$I \subset \bigcup_{k=1}^{n} I_k$$

Montrer que:

$$\ell\left(I\right) \le \sum_{k=1}^{n} \ell\left(I_{k}\right)$$

2. Soient I=[a,b] un intervalle fermé, borné et $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles telle que :

$$I \subset \bigcup_{n \in \mathbb{N}} I_n$$

Montrer que :

$$\ell\left(I\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

3. Soient I un intervalle et $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles telle que :

$$I \subset \bigcup_{n \in \mathbb{N}} I_n$$

Montrer que :

$$\ell\left(I\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

4. Soit $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles deux à deux disjoints inclus dans un intervalle I. Montrer que :

$$\ell\left(I\right) \ge \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

Solution. Si I est un intervalle borné d'extrémités a < b, on a alors :

$$\ell(I) = b - a$$

En particulier, on a pour tout réel a:

$$\ell(\emptyset) = \ell([a, a]) = 0$$
 et $\ell([a, a]) = 0$

Si I est non bornée, on a alors $a=-\infty$ ou $b=+\infty$ et $\ell(I)=+\infty$.

1. Si l'un des intervalles I_j , pour j compris entre 1 et n, est non borné, on a alors $\ell(I_j) = +\infty$ et :

$$\ell(I) = b - a \le \sum_{k=1}^{n} \ell(I_k) = +\infty$$

On suppose donc que chaque intervalle I_k , pour k compris entre 1 et n, est borné et on note $\alpha_k \leq \beta_k$ ses extrémités.

On raisonne par récurrence sur $n \ge 1$.

Pour n = 1, on a $I \subset I_1$, donc $\alpha_1 \le a \le b \le \beta_1$ et :

$$\ell(I) = b - a \le \beta_1 - \alpha_1 = \ell(I_1)$$

Supposons le résultat acquis pour $n-1 \ge 1$ et soit $I \subset \bigcup_{k=1}^n I_k$ un recouvrement fini de l'intervalle

I = [a, b] par des intervalles I_k bornés.

L'extrémité b de I est contenue dans l'un des I_k et, en modifiant au besoin la numérotation, on peut supposer que k = n.

Si $\alpha_n \leq a$, on a alors $\alpha_n \leq a \leq b \leq \beta_n$, soit $I \subset I_n$ et:

$$\ell(I) \le \ell(I_n) \le \sum_{k=1}^{n} \ell(I_k)$$

Sinon, on a $a < \alpha_n \le b \le \beta_n$, donc :

$$[a, \alpha_n] \subset \bigcup_{k=1}^{n-1} I_k$$

et par hypothèse de récurrence, on a :

$$\alpha_n - a \le \sum_{k=1}^{n-1} \ell\left(I_k\right)$$

et tenant compte de :

$$b - \alpha_n \le \beta_n - \alpha_n = \ell\left(I_n\right)$$

on déduit que :

$$\ell(I) = b - a = (b - \alpha_n) + (\alpha_n - a) \le \sum_{k=1}^n \ell(I_k)$$

2. Si l'un des I_n est non borné, le résultat est évident.

On suppose que chaque intervalle I_n , pour $n \in \mathbb{N}$, est borné et on note $\alpha_n \leq \beta_n$ ses extrémités. Pour $\varepsilon > 0$ donné, on désigne par $(I_n(\varepsilon))_{n \in \mathbb{N}}$ la suite d'intervalles ouverts définie par :

$$\forall n \in \mathbb{N}, \ I_n\left(\varepsilon\right) = \left]\alpha_n - \frac{\varepsilon}{2^{n+2}}, \beta_n + \frac{\varepsilon}{2^{n+2}}\right[$$

et on a un recouvrement ouvert du compact I = [a, b] :

$$I\subset\bigcup_{n\in\mathbb{N}}I_{n}\left(\varepsilon\right)$$

duquel on peut extraire un sous-recouvrement fini:

$$I \subset \bigcup_{k=1}^{n_{\varepsilon}} J_k$$

On déduit alors de la question précédente que :

$$\ell(I) \le \sum_{k=1}^{n_{\varepsilon}} \ell(J_k) \le \sum_{n \in \mathbb{N}} \ell(I_n(\varepsilon))$$

avec:

$$\forall n \in \mathbb{N}, \ \ell\left(I_n\left(\varepsilon\right)\right) = \beta_n - \alpha_n + \frac{\varepsilon}{2^{n+1}} = \ell\left(I_n\right) + \frac{\varepsilon}{2^{n+1}}$$

ce qui nous donne :

$$\ell(I) \le \sum_{n \in \mathbb{N}} \ell(I_n) + \varepsilon \sum_{n \in \mathbb{N}} \frac{1}{2^{n+1}} = \sum_{n \in \mathbb{N}} \ell(I_n) + \varepsilon$$

Faisant tendre ε vers 0, on en déduit que :

$$\ell\left(I\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

3. Si $\ell(I) = 0$ ou si $\sum_{n \in \mathbb{N}} \ell(I_n) = +\infty$, le résultat est alors évident.

Si $\ell(I) > 0$ et la série $\sum_{n \in \mathbb{N}} \ell(I_n)$ est convergente, tous les I_n et I sont bornés. En notant a < b les extrémités de I, pour tout segment I' = [a', b'] contenu dans I, on a $I' \subset \bigcup_{n \in \mathbb{N}} I_n$ et de la question précédente, on déduit que :

$$\ell\left(I'\right) = b' - a' \le \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

Faisant tendre (a', b') vers (a, b), on en déduit le résultat annoncé.

4. Si $\ell(I) = +\infty$, le résultat est alors évident. On suppose que I est borné d'extrémités $a \leq b$.

Comme $I_n \subset I$ pour tout $n \in \mathbb{N}$, tous ces intervalles sont bornés et on a $\bigcup_{k=0}^{n} I_k \subset I$ pour tout $n \in \mathbb{N}^*$.

En modifiant au besoin la numérotation et en notant $\alpha_n \leq \beta_n$ les extrémités de chaque intervalle I_n , comme ils sont deux à deux disjoints, on peut supposer que :

$$a \le \alpha_0 \le \beta_0 < \alpha_1 \le \beta_1 < \dots < \alpha_{n-1} \le \beta_{n-1} < \alpha_n \le \beta_n \le b$$

et on a:

$$\sum_{k=0}^{n} \ell(I_k) = \sum_{k=0}^{n} (\beta_k - \alpha_k) \le \sum_{k=0}^{n-1} (\alpha_{k+1} - \alpha_k) + (\beta_n - \alpha_n)$$

$$\le \alpha_n - \alpha_0 + b - \alpha_n \le b - a = \ell(I)$$

Faisant tendre n vers l'infini, on en déduit le résultat annoncé.

Exercice 7 Pour tous réels a < b, on désigne par $C^0([a,b],\mathbb{R})$ l'espace des fonctions continues de [a,b] dans \mathbb{R} .

1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite croissante dans $C^0([a,b],\mathbb{R})$ qui converge simplement vers une fonction $f\in C^0([a,b],\mathbb{R})$.

Montrer que la convergence est uniforme sur [a,b] (théorème de Dini). On donnera deux démonstrations de ce résultat, l'une utilisant la caractérisation des compacts de Bolzano-Weierstrass et l'autre utilisant celle de Borel-Lebesgue.

- 2. Le résultat précédent est-il encore vrai dans $C^0(I,\mathbb{R})$ si on ne suppose plus l'intervalle I compact?
- 3. Soit $(f_n)_{n\in\mathbb{N}}$ une suite dans $C^0([a,b],\mathbb{R}^+)$ telle que la série de fonctions $\sum f_n$ converge simplement vers une fonction $f \in C^0([a,b],\mathbb{R})$.

 Montrer que:

$$\int_{a}^{b} f(t) dt = \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t) dt$$

4. On désigne par $\mathcal A$ la famille des parties de $\mathbb R^2$ de la forme :

$$A(f,g) = \{(x,y) \in [a,b] \times \mathbb{R} \mid f(x) \le y \le g(x)\}$$

où f,g sont dans $\mathcal{C}^{0}\left(\left[a,b\right],\mathbb{R}\right)$ telles que $f\leq g$ et on note :

$$\mu\left(A\left(f,g\right)\right) = \int_{a}^{b} \left(g\left(t\right) - f\left(t\right)\right) dt$$

Montrer que cette application μ est σ -additive sur A.

Solution.

1.

(a) Solution utilisant la caractérisation des compacts de Bolzano-Weierstrass : « un espace métrique E est compact si et seulement si de toute suite de points de E on peut extraire une sous suite convergente ».

Pour tout $x \in I$, la suite $(f_n(x))_{n \in \mathbb{N}}$ converge en croissant vers f(x). On a donc $f(x) - f_n(x) \ge 0$ pour tout $x \in I$ et tout $n \in \mathbb{N}$.

De la continuité de chaque fonction f_n sur le compact [a,b], on déduit que :

$$\forall n \in \mathbb{N}, \exists x_n \in [a, b] \mid ||f - f_n||_{\infty} = f(x_n) - f_n(x_n)$$

et pour tout $n \in \mathbb{N}$:

$$||f - f_{n+1}||_{\infty} = f(x_{n+1}) - f_{n+1}(x_{n+1})$$

$$\leq f(x_{n+1}) - f_n(x_{n+1}) \leq ||f - f_n||_{\infty}$$

donc la suite $(\|f - f_n\|_{\infty})_{n \in \mathbb{N}}$ est décroissante et minorée et elle converge vers un réel $\lambda \geq 0$. Il s'agit alors de montrer que $\lambda = 0$.

Dans le compact [a, b], on peut extraire de la suite $(x_n)_{n \in \mathbb{N}}$ une sous suite $(x_{\varphi(n)})_{n \in \mathbb{N}}$ qui converge vers $x \in [a, b]$.

Soit p un entier positif. La fonction φ étant strictement croissante de \mathbb{N} dans \mathbb{N} , on peut trouver un entier n_p tel que φ $(n) \geq p$ pour tout $n \geq n_p$. On a alors pour tout $n \geq n_p$:

$$0 \le \lambda \le \|f - f_{\varphi(n)}\|_{\infty} = f(x_{\varphi(n)}) - f_{\varphi(n)}(x_{\varphi(n)})$$

$$\le f(x_{\varphi(n)}) - f_p(x_{\varphi(n)})$$

En faisant tendre n vers l'infini (à p fixé) et en utilisant la continuité de f, on déduit que :

$$\forall p \in \mathbb{N}, \ 0 \le \lambda \le f(x) - f_p(x)$$

Enfin, en faisant tendre p vers l'infini, en utilisant la convergence de $(f_n(x))_{n\in\mathbb{N}}$ vers f(x), on déduit que $\lambda=0$.

(b) Solution utilisant la caractérisation de Borel-Lebesgue : « un espace métrique E est compact si et seulement si de tout recouvrement ouvert de E on peut extraire un sous recouvrement fini ». Pour tout $x \in [a,b]$, la suite $(f_n(x))_{n \in \mathbb{N}}$ converge en croissant vers f(x). Donc, pour tout $\varepsilon > 0$, on a :

$$\forall x \in I, \exists n_x \in \mathbb{N} \mid \forall n \geq n_x, \ 0 \leq f(x) - f_n(x) \leq \varepsilon$$

De la continuité de f et f_{n_x} , on déduit qu'il existe un voisinage ouvert V_x de x dans [a,b] tel que :

$$\forall t \in V_x$$
, $|f(x) - f(t)| \le \varepsilon$, $|f_{n_x}(x) - f_{n_x}(t)| \le \varepsilon$

On déduit alors que pour tout $t \in V_x$:

$$0 \le f(t) - f_{n_x}(t) \le |f(t) - f(x)| + |f(x) - f_{n_x}(x)| + |f_{n_x}(x) - f_{n_x}(t)| \le 3\varepsilon$$

Du recouvrement de [a, b] par les ouverts V_x , on peut extraire un sous recouvrement fini $\bigcup_{i=1}^p V_{x_i}$.

On pose alors $n_0 = \max_{1 \le i \le p} n_{x_i}$ et on a :

$$\forall n \geq n_0, \ \forall t \in I, \quad 0 \leq f(t) - f_n(t) \leq f(t) - f_{n_r}(t) \leq 3\varepsilon$$

l'indice i étant tel que $t \in V_{x_i}$. Ce qui prouve bien la convergence uniforme de $(f_n)_{n \in \mathbb{N}}$ vers f sur I.

- 2. La suite $(f_n)_{n\in\mathbb{N}}$ définie sur]0,1[par $f_n(x)=\frac{-1}{1+nx}$ converge en croissant vers la fonction nulle et la convergence n'est pas uniforme sur]0,1[puisque $f_n\left(\frac{1}{n}\right)=\frac{-1}{2}.$
- 3. La suite $(S_n)_{n\in\mathbb{N}}$ des sommes partielles de la série de fonctions $\sum f_n$ est croissante (puisque les f_n sont à valeurs positives) et converge simplement vers la fonction $f \in \mathcal{C}^0([a,b],\mathbb{R})$. Le théorème de Dini nous dit alors que la convergence est uniforme et :

$$\int_{a}^{b} f(t) dt = \lim_{n \to +\infty} \int_{a}^{b} S_n(t) dt = \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t) dt$$

4. Pour f, g dans $C^{0}\left(\left[a, b\right], \mathbb{R}\right)$ telles que $f \leq g$ on a :

$$\mu\left(A\left(f,g\right)\right) = \int_{a}^{b} \left(g\left(t\right) - f\left(t\right)\right) dt = \int_{a}^{b} \ell\left(\left[f\left(t\right), g\left(t\right)\right]\right) dt$$

Soient $(f_n)_{n\in\mathbb{N}}$, $(g_n)_{n\in\mathbb{N}}$ deux suites dans $\mathcal{C}^0([a,b],\mathbb{R})$ telles que $f_n\leq g_n$ pour tout $n\in\mathbb{N}$, et f,g dans $\mathcal{C}^0([a,b],\mathbb{R})$ telles que $f\leq g$ et :

$$A(f,g) = \bigcup_{n \in \mathbb{N}} A(f_n, g_n)$$

étant deux à deux disjoints.

Dans ces conditions, on a:

$$\forall t \in [a, b], [f(t), g(t)] = \bigcup_{n \in \mathbb{N}} [f_n(t), g_n(t)]$$

En effet, pour tout $t \in [a, b]$ et tout $y \in [f(t), g(t)]$, on a $(t, y) \in A(f, g)$, donc il existe un unique entier $n \in \mathbb{N}$ tel que $(t, y) \in A(f_n, g_n)$, ce qui signifie que $y \in [f_n(t), g_n(t)]$. Réciproquement si $y \in \bigcup_{n \in \mathbb{N}} [f_n(t), g_n(t)]$, il existe alors un unique entier $n \in \mathbb{N}$ tel que $y \in [f_n(t), g_n(t)]$, donc $(t, y) \in A(f_n, g_n) \subset A(f, g)$ et $y \in [f(t), g(t)]$.

On en déduit alors que :

$$\forall t \in [a, b], \ \ell\left(\left[f\left(t\right), g\left(t\right)\right]\right) = \sum_{n \in \mathbb{N}} \ell\left(\left[f_n\left(t\right), g_n\left(t\right)\right]\right)$$

les fonctions $t \mapsto \ell([f_n(t), g_n(t)])$ étant continues et positives. Il en résulte que :

$$\mu\left(A\left(f,g\right)\right) = \int_{a}^{b} \ell\left(\left[f\left(t\right),g\left(t\right)\right]\right) dt = \sum_{n \in \mathbb{N}} \int_{a}^{b} \ell\left(\left[f_{n}\left(t\right),g_{n}\left(t\right)\right]\right) dt = \sum_{n \in \mathbb{N}} \mu\left(A\left(f_{n},g_{n}\right)\right)$$

La fonction μ est donc σ -additive sur \mathcal{A} .

- II - Les mesures

X est un ensemble non vide et $\mathcal{P}(X)$ est l'ensemble des parties de X.

Définition : Une σ -algèbre (ou tribu) sur X est une partie \mathcal{A} de $\mathcal{P}(X)$ telle que :

- $-\emptyset\in\mathcal{A}$;
- $\forall A \in \mathcal{A}, X \setminus A \in \mathcal{A}$ (\mathcal{A} est stable par passage au complémentaire);
- Si $I \subset \mathbb{N}$ et $(A_i)_{i \in I}$ est une famille d'éléments de \mathcal{A} alors $\bigcup_{i \in I} A_i \in \mathcal{A}$ (\mathcal{A} est stable par réunion dénombrable).

Définition: Si \mathcal{A} est une σ -algèbre sur X, on dit alors que le couple (X, \mathcal{A}) est un espace mesurable.

Définition: Une mesure sur l'espace mesurable (X, \mathcal{A}) est une application

$$\mu: \mathcal{A} \to [0, +\infty] = \mathbb{R}^+ \cup \{+\infty\}$$

telle que :

- $-\mu(\emptyset)=0$;
- pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{A} deux à deux disjoints (i. e. $A_n\cap A_m=\emptyset$ pour $n\neq m$ dans \mathbb{N}), on a :

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu\left(A_n\right)$$

 $(\sigma$ -additivité de μ).

Avec ces conditions, on dit que le triplet (X, \mathcal{A}, μ) est un espace mesuré.

Définition : Si \mathcal{A} est une famille de parties de X, on dit alors que l'intersection de toutes les σ -algèbres sur X qui contiennent \mathcal{A} est la σ -algèbre engendrée par \mathcal{A} . C'est aussi la plus petite σ -algèbre sur X (pour l'ordre de l'inclusion sur $\mathcal{P}(X)$) qui contient \mathcal{A} .

On la note $\sigma(A)$ et on a :

$$\sigma\left(\mathcal{A}\right) = \bigcap_{\substack{\mathcal{B} \text{ tribu sur } X\\ \mathcal{A} \subset \mathcal{B}}} \mathcal{B}$$

Définition : Si X est un espace topologique, la tribu de Borel sur X est la σ -algèbre engendrée par les ouverts de X.

On la note $\mathcal{B}(X)$ et ses éléments sont les boréliens de X.

Une mesure de Borel sur X est une mesure sur $\mathcal{B}(X)$.

Exercice 8 Soit A une tribu sur X. Montrer que :

- 1. $X \in \mathcal{A}$;
- 2. $si\ A, B\ sont\ dans\ A,\ alors\ A\cup B,\ A\cap B,\ A\setminus B\ et\ A\triangle\ B\ sont\ dans\ A$;
- 3. $si\ (A_n)_{n\in\mathbb{N}}$ est une suite d'éléments de \mathcal{A} alors $\bigcap_{n\in\mathbb{N}} A_n \in \mathcal{A}$ (\mathcal{A} est stable par intersection dénombrable).

Solution.

- 1. $X = X \setminus \emptyset \in \mathcal{A}$.
- 2. $A \cup B = \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$ en posant $A_0 = A$, $A_1 = B$ et $A_n = \emptyset$ pour $n \ge 2$. $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B) \in \mathcal{A}$, donc $A \cap B = X \setminus (X \setminus (A \cap B)) \in \mathcal{A}$. $A \setminus B = A \cap (X \setminus B) \in \mathcal{B}$ et $A \triangle B = (A \setminus B) \cup (B \setminus A) \in \mathcal{B}$.

3. On a:

$$\bigcap_{n\in\mathbb{N}} A_n = X \setminus \left(\bigcup_{n\in\mathbb{N}} X \setminus A_n\right) \in \mathcal{A}$$

Exercice 9 Soient (X, \mathcal{A}, μ) un espace mesuré et $(A_k)_{1 \leq k \leq n}$ une suite d'éléments de \mathcal{A} telle que $\mu\left(\bigcup_{k=1}^n A_k\right) < +\infty$. Montrer que :

$$\mu\left(\bigcup_{k=1}^{n} A_{k}\right) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} \mu\left(A_{i_{1}} \cap \dots \cap A_{i_{k}}\right)$$

(formule de Poincaré).

Solution. Comme $\bigcup_{k=1}^{n} A_k$ contient toutes les intersections $A_{i_1} \cap \cdots \cap A_{i_k}$, l'hypothèse $\mu\left(\bigcup_{k=1}^{n} A_k\right) < +\infty$

nous dit que tous ces ensembles $A_{i_1} \cap \cdots \cap A_{i_k}$ sont de mesure finie.

On peut prouver la formule de Poincaré par récurrence sur $n \ge 1$.

Pour n = 1, c'est clair.

Pour n=2, on utilise les partitions :

$$\begin{cases}
A_1 = (A_1 \cap A_2) \cup (A_1 \setminus A_2) \\
A_2 = (A_1 \cap A_2) \cup (A_2 \setminus A_1) \\
A_1 \cup A_2 = (A_1 \cap A_2) \cup (A_1 \setminus A_2) \cup (A_2 \setminus A_1)
\end{cases}$$

ce qui nous donne :

$$\mu(A_1) = \mu(A_1 \cap A_2) + \mu(A_1 \setminus A_2)$$

 $\mu(A_2) = \mu(A_1 \cap A_2) + \mu(A_2 \setminus A_1)$

$$\mu(A_1 \cup A_2) = \mu(A_1 \cap A_2) + \mu(A_1 \setminus A_2) + \mu(A_2 \setminus A_1)$$

= $\mu(A_1 \cap A_2) + \mu(A_1) - \mu(A_1 \cap A_2) + \mu(A_2) - \mu(A_1 \cap A_2)$
= $\mu(A_1) + \mu(A_2) - \mu(A_1 \cap A_2)$

Supposons le résultat acquis pour $n \geq 2$ et soit $(A_k)_{1 \leq k \leq n+1}$ une suite d'éléments de $\mathcal A$ telle que $\mu\left(\bigcup_{k=1}^{n+1}A_k\right) < +\infty$.

En notant $B = \bigcup_{k=1}^{n} A_k$, le cas n = 2, nous donne :

$$\mu\left(\bigcup_{k=1}^{n+1} A_k\right) = \mu\left(A_{n+1}\right) + \mu\left(B\right) - \mu\left(A_{n+1} \cap B\right)$$

En utilisant l'hypothèse de récurrence, on a :

$$\mu(B) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} \mu(A_{i_1} \cap \dots \cap A_{i_k})$$

donc:

$$\mu(A_{n+1}) + \mu(B) = \sum_{i_1=1}^{n+1} \mu(A_{i_1}) + \sum_{k=2}^{n} (-1)^{k-1} \sum_{1 \le i_1 \le \dots \le i_k \le n+1} \mu(A_{i_1} \cap \dots \cap A_{i_k})$$

et:

$$\mu(A_{n+1} \cap B) = \mu\left(\bigcup_{k=1}^{n} A_k \cap A_{n+1}\right)$$

$$= \sum_{j=1}^{n} (-1)^{j-1} \sum_{1 \le i_1 < \dots < i_j \le n} \mu\left(A_{i_1} \cap \dots \cap A_{i_j} \cap A_{n+1}\right)$$

$$= \sum_{j=1}^{n} (-1)^{j-1} \sum_{1 \le i_1 < \dots < i_j < i_{j+1} = n+1} \mu\left(A_{i_1} \cap \dots \cap A_{i_j} \cap A_{i_{j+1}}\right)$$

Le changement d'indice k = j + 1 dans cette dernière somme nous donne :

$$\mu(A_{n+1} \cap B) = \sum_{k=2}^{n+1} (-1)^k \sum_{1 \le i_1 < \dots < i_{k-1} < i_k = n+1} \mu(A_{i_1} \cap \dots \cap A_{i_{k-1}} \cap A_{i_k})$$

Donc:

$$\mu\left(\bigcup_{k=1}^{n+1} A_k\right) = \sum_{i_1=1}^{n+1} \mu\left(A_{i_1}\right) + \sum_{k=2}^{n} (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k < n+1} \mu\left(A_{i_1} \cap \dots \cap A_{i_k}\right)$$

$$+ \sum_{k=2}^{n+1} (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_{k-1} < i_k = n+1} \mu\left(A_{i_1} \cap \dots \cap A_{i_{k-1}} \cap A_{i_k}\right)$$

$$= \sum_{k=1}^{n+1} (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n+1} \mu\left(A_{i_1} \cap \dots \cap A_{i_k}\right)$$

en utilisant, pour tout k compris entre 2 et n+1 la partition :

$$\{(i_1, \cdots, i_k) \mid 1 \le i_1 < \cdots < i_k \le n+1\} = \{(i_1, \cdots, i_k) \mid 1 \le i_1 < \cdots < i_k < n+1\}$$

$$\cup \{(i_1, \cdots, i_{k-1}, n+1) \mid 1 \le i_1 < \cdots < i_{k-1} < n+1\}$$

Exercice 10

1. Montrer que, pour tout $x \in X$, l'application :

$$\delta_x: \mathcal{P}(X) \rightarrow \{0, 1\}$$

 $A \mapsto \mathbf{1}_A(x)$

est une mesure finie sur $\mathcal{P}(X)$ (mesure de Dirac en x).

2. Soit $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ une suite de réels positifs ou nuls indexée par (n,m) dans \mathbb{N}^2 . On suppose que, pour tout $n\in\mathbb{N}$, la série $\sum_{m\in\mathbb{N}}u_{n,m}$ est convergente de somme S_n et que la série $\sum_{m\in\mathbb{N}}S_n$ est convergente de somme S.

Montrer que pour tout $m\in\mathbb{N}$, la série $\sum_{n,m}u_{n,m}$ est convergente de somme T_m , que la série

 $\sum T_m$ est convergente et qu'on a :

$$\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m} \right) = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m} \right)$$

(en fait cette égalité valable dans $\mathbb{R}^+ \cup \{+\infty\}$ pour toute suite double $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ de réels positifs).

3. Calculer:

$$\sum_{m=2}^{+\infty} \sum_{n=2}^{+\infty} \frac{1}{n^m}$$

4. Pour cette question et la suivante, on suppose que $X = \{x_n \mid n \in \mathbb{N}\}$ est un ensemble dénombrable. Montrer que pour toute suite $(p_n)_{n \in \mathbb{N}}$ de réels positifs ou nuls tels que la série $\sum p_n$ soit convergente, l'application :

$$\mu: \mathcal{P}(X) \to \mathbb{R}^+$$

$$A \mapsto \sum_{n=0}^{+\infty} p_n \delta_{x_n}(A) \tag{1}$$

est une mesure finie sur $\mathcal{P}(X)$.

5. Montrer que toute mesure finie μ sur $\mathcal{P}(X)$ peut s'exprimer sous la forme (1) (pour X dénombrable, toute mesure finie est une série pondérée de masses de Dirac).

Solution.

1. Comme $x \notin \emptyset$, on a $\delta_x(\emptyset) = 0$.

Soient $(A_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathcal{A} deux à deux disjoints et $A=\bigcup_{n\in\mathbb{N}}A_n$.

Si $x \notin A$, on a alors $x \notin A_n$ pour tout $n \in \mathbb{N}$, donc $\delta_x(A_n) = 0$ et :

$$\sum_{n \in \mathbb{N}} \delta_x (A_n) = 0 = \delta_x (A)$$

Si $x \in A$, il existe alors un unique entier n_0 tel que $x \in A_{n_0}$, donc $\delta_x(A_{n_0}) = 1$ et $\delta_x(A_n) = 0$ pour tout $n \neq n_0$, ce qui nous donne :

$$\sum_{n\in\mathbb{N}} \delta_x \left(A_n \right) = 1 = \delta_x \left(A \right)$$

En définitive, δ_x est bien une mesure sur $\mathcal{P}(X)$.

Comme $\delta_x(X) = 1$, cette mesure est finie (c'est une probabilité).

2. Pour tout entier naturel m, on a:

$$\forall n \in \mathbb{N}, \ 0 \le u_{n,m} \le S_n = \sum_{k=0}^{+\infty} u_{n,k}$$

avec $\sum_{n=0}^{+\infty} S_n = S < +\infty$, ce qui entraı̂ne la convergence de la série $\sum_{n \in \mathbb{N}} u_{n,m}$.

En notant $T_m = \sum_{n=0}^{+\infty} u_{n,m}$, on a pour tout m:

$$\sum_{k=0}^{m} T_k = \sum_{k=0}^{m} \left(\lim_{n \to +\infty} \sum_{j=0}^{n} u_{j,k} \right) = \lim_{n \to +\infty} \sum_{k=0}^{m} \sum_{j=0}^{n} u_{j,k}$$

avec:

$$\sum_{k=0}^{m} \sum_{j=0}^{n} u_{j,k} = \sum_{j=0}^{n} \sum_{k=0}^{m} u_{j,k} \le \sum_{j=0}^{n} \sum_{k=0}^{+\infty} u_{j,k} = \sum_{j=0}^{n} S_{j} \le \sum_{n=0}^{+\infty} S_{n} = S$$

donc:

$$\sum_{k=0}^{m} T_k \le S$$

ce qui signifie que la suite croissante $\left(\sum_{k=0}^{m} T_k\right)_{m\in\mathbb{N}}$ est majorée et en conséquence convergente. La série $\sum T_m$ est donc convergente avec $T=\sum_{m=0}^{+\infty} T_m \leq S$. En permutant les rôles de n et m, on aboutit de manière analogue à $S\leq T$ et T=S.

Dans le cas où l'une des sommes positives $\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m}\right) \text{ ou } \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m}\right) \text{ est infinie, il en est de même de l'autre, puisque si l'une est finie l'autre l'est. L'égalité } \sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m}\right) = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m}\right) \text{ est donc valable pour toute suite double } (u_{n,m})_{(n,m)\in\mathbb{N}^2} \text{ de réels positifs.}$

3. Dans $\mathbb{R}^+ \cup \{+\infty\}$, on a :

$$\sum_{m=2}^{+\infty} \sum_{n=2}^{+\infty} \frac{1}{n^m} = \sum_{n=2}^{+\infty} \sum_{m=2}^{+\infty} \left(\frac{1}{n}\right)^m = \sum_{n=1}^{+\infty} \frac{1}{n^2} \frac{1}{1 - \frac{1}{n}}$$
$$= \sum_{n=1}^{+\infty} \frac{1}{n(n-1)} = 1$$

(en écrivant que $\frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}$).

On peut donc calculer $\sum_{m=2}^{+\infty} \sum_{n=2}^{+\infty} \frac{1}{n^m}$ alors qu'on ne connaît pas toutes les valeurs de $\sum_{n=2}^{+\infty} \frac{1}{n^m}$ pour $m \ge 2$.

4. Comme $\sum p_n$ converge et $0 \le p_n \delta_{x_n}(A) \le p_n$ pour tout $A \in \mathcal{P}(X)$ et tout $n \in \mathbb{N}$, la série définissant $\mu(A)$ est bien définie et en particulier :

$$\mu\left(X\right) = \sum_{n=0}^{+\infty} p_n < +\infty$$

Pour tout $n \in \mathbb{N}$, on a $\delta_{x_n}(\emptyset) = 0$, donc $\mu(\emptyset) = 0$.

Soient $(A_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathcal{A} deux à deux disjoints et $A=\bigcup_{n\in\mathbb{N}}A_n$.

En notant $u_{n,m} = p_n \delta_{x_n} (A_m)$ pour tout $(n,m) \in \mathbb{N}^2$, on a :

$$\forall n \in \mathbb{N}, \ \sum_{m=0}^{+\infty} u_{n,m} = \sum_{m=0}^{+\infty} p_n \delta_{x_n} \left(A_m \right) = p_n \sum_{m=0}^{+\infty} \delta_{x_n} \left(A_m \right) = p_n \delta_{x_n} \left(A \right) < +\infty$$

et:

$$\sum_{n=0}^{+\infty} p_n \delta_{x_n} (A) \le \sum_{n=0}^{+\infty} p_n < +\infty$$

donc:

$$\mu(A) = \sum_{n=0}^{+\infty} p_n \delta_{x_n}(A) = \sum_{n=0}^{+\infty} \sum_{m=0}^{+\infty} p_n \delta_{x_n}(A_m)$$
$$= \sum_{m=0}^{+\infty} \sum_{n=0}^{+\infty} p_n \delta_{x_n}(A_m) = \sum_{m=0}^{+\infty} \mu(A_m)$$

En conclusion μ est une mesure finie sur $\mathcal{P}(X)$.

5. Il suffit de poser $p_n = \mu(\{x_n\})$ pour tout $n \in \mathbb{N}$. On a bien :

$$\sum_{n=0}^{+\infty} p_n = \sum_{n=0}^{+\infty} \mu\left(\left\{x_n\right\}\right) = \mu\left(X\right) < +\infty$$

et pour tout $A \in \mathcal{P}(X)$:

$$\mu(A) = \sum_{\substack{n \in \mathbb{N} \\ x_n \in A}} \mu(\{x_n\}) = \sum_{n=0}^{+\infty} p_n \delta_{x_n}(A)$$

En fait, ce résultat est encore valable pour $\mu(X) = +\infty$.

Exercice 11 Soient A une partie de P(X) telle que :

- $-\emptyset\in\mathcal{A}$;
- $\forall A \in \mathcal{A}, X \setminus A \in \mathcal{A} \ (A \ est \ stable \ par \ passage \ au \ complémentaire);$
- $\forall (A, B) \in A^2$, $A \cap B \in A$ (A est stable par intersection finie);

 $(A \text{ est une algèbre de Boole}) \text{ et } \mu : A \to [0, +\infty] \text{ une application telle que } :$

- $-\mu\left(\emptyset\right)=0;$
- μ est σ -additive (i. e. $\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu\left(A_n\right)$ pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{A} deux à deux disjoints telle que $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$).
- 1. Montrer que, pour toute suite finie $(A_k)_{1 \leq k \leq n}$ d'éléments de \mathcal{A} , on a $\bigcap_{k=1}^n A_k \in \mathcal{A}$, $\bigcup_{k=1}^n A_k \in \mathcal{A}$ et $A_n \setminus \bigcup_{k=1}^{n-1} A_k \in \mathcal{A}$ (dans le cas où $n \geq 2$).
- 2. Montrer que μ est croissante.
- 3. Soient $A \in \mathcal{A}$ et $(A_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathcal{A} telle que $A \subset \bigcup_{n \in \mathbb{N}} A_n$. Montrer que :

$$\mu\left(A\right) \leq \sum_{n \in \mathbb{N}} \mu\left(A_n\right)$$

Solution.

1. On vérifie par récurrence sur $n \geq 1$ que, pour toute suite finie $(A_k)_{1 \leq k \leq n}$ d'éléments de \mathcal{A} , on a $\bigcap_{k=1}^n A_r \in \mathcal{A}, \text{ donc}:$

$$X \setminus \bigcup_{k=1}^{n} A_r = \bigcap_{k=1}^{n} (X \setminus A_r) \in \mathcal{A}$$

et
$$\bigcup_{k=1}^{n} A_r = X \setminus \left(X \setminus \bigcup_{k=1}^{n} A_r\right) \in \mathcal{A}.$$

Pour A, B dans A, on a $B \setminus A = (X \setminus A) \cap B \in A$, donc $A_n \setminus \bigcup_{k=1}^{n-1} A_k \in A$.

2. Pour $A \subset B$ dans A, on a $B \setminus A \in A$ et :

$$\mu\left(B\right) = \mu\left(A \cup \left(B \setminus A\right)\right) = \mu\left(A\right) + \mu\left(B \setminus A\right) \ge \mu\left(A\right)$$

ce qui signifie que μ est croissante.

3. La suite $(B_n)_{n\in\mathbb{N}}$ de parties de X définie par $B_0=A_0$ et :

$$\forall n \in \mathbb{N}^*, \ B_n = A_n \setminus \bigcup_{k=1}^{n-1} A_k$$

est une suite d'éléments de A deux à deux disjoints (pour $0 \le n < m$, on a $B_n \subset A_n$ et un élément de B_m n'est pas dans A_n).

Comme
$$B_n \subset A_n$$
 pour tout $n \in \mathbb{N}$, on a $\bigcup_{n \in \mathbb{N}} B_n \subset \bigcup_{n \in \mathbb{N}} A_n$.

Comme $B_n \subset A_n$ pour tout $n \in \mathbb{N}$, on a $\bigcup_{n \in \mathbb{N}} B_n \subset \bigcup_{n \in \mathbb{N}} A_n$. Pour tout $x \in \bigcup_{n \in \mathbb{N}} A_n$ il existe un plus petit entier $n \in \mathbb{N}$ tel que $x \in A_n$. Si n = 0, on a alors

 $x \in A_0 = B_0$. Si $n \ge 1$, on a alors $x \in A_n$ et $x \notin A_k$ pour tout k comprisentre 0 et n-1, soit $x \in B_n$. On a donc $A \subset \bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} B_n$ et $A = \bigcup_{n \in \mathbb{N}} A \cap B_n$ dans A. Comme μ est σ -additive et croissante, il en résulte que :

$$\mu(A) = \sum_{n \in \mathbb{N}} \mu(A \cap B_n) \le \sum_{n \in \mathbb{N}} \mu(B_n) \le \sum_{n \in \mathbb{N}} \mu(A_n)$$

(puisque $A \cap B_n \subset B_n \subset A_n$ pour tout $n \in \mathbb{N}$).

Exercice 12 Soit A une σ -algèbre sur X supposée dénombrable (i. e. en bijection avec une partie, finie ou infinie, de \mathbb{N}). Pour tout $x \in X$, on note :

$$A\left(x\right) = \bigcap_{\substack{A \in \mathcal{A} \\ x \in A}} A$$

 $(atome \ de \ x).$

- 1. Montrer que, pour tout $x \in X$, A(x) est le plus petit élément de A qui contient x.
- 2. Soient x, y dans X. Montrer que si $y \in A(x)$, on a alors A(x) = A(y).
- 3. Montrer que, pour tous x, y dans X, on a $A(x) \cap A(y) = \emptyset$ ou A(x) = A(y).
- 4. En désignant par $(x_i)_{i\in I}$ la famille des éléments de X telle que les $A(x_i)$ soient deux à deux disjoints, montrer que cette famille est dénombrable et que pour tout $A \in \mathcal{A}$, on a une partition $A = \bigcup A(x_j)$, où J est une partie de I.
- 5. En déduire que A est finie, son cardinal étant une puissance de 2.

Solution.

- 1. Comme $x \in X \in \mathcal{A}$, il existe des éléments de \mathcal{A} qui contiennent x et A(x) est bien défini contenant x. Comme \mathcal{A} est dénombrable, l'ensemble A(x) qui est une intersection dénombrable d'éléments de \mathcal{A} est dans \mathcal{A} .
 - Si B est un élément de A qui contient x, il fait partie des éléments de A qui apparaissent dans l'intersection A(x), donc $A(x) \subset B$.
- 2. Si $y \in A(x)$, l'ensemble A(x) est un élément de A qui contient x, donc $A(y) \subset A(x)$. Si $x \notin A(y)$, l'ensemble $A(x) \setminus A(y)$ est dans \mathcal{A} contenant x, donc :

$$A(x) \subset A(x) \setminus A(y)$$

ce qui contredit le fait que $y \in A(x)$ et $y \in A(y)$.

On a donc $x \in A(y)$ et $A(x) \subset A(y)$, d'où l'égalité A(x) = A(y).

3. Si $A(x) \cap A(y) = \emptyset$, c'est alors terminé. Sinon, pour tout $z \in A(x) \cap A(y)$, on a A(x) = A(z) = A(y).

- 4. Comme les A(x) sont dans \mathcal{A} qui est dénombrable, la famille $(A(x))_{x\in X}$ est aussi dénombrable et comme deux de ces ensembles sont disjoints ou confondus, il existe une partie I de \mathbb{N} telle que $(A(x))_{x\in X}=(A(x_i))_{i\in I}$ (axiome du choix dénombrable : on choisit un représentant de chaque classe dans la relation d'équivalence « être dans le même A(x) »), les $A(x_i)$ étant deux à deux disjoints.
 - On a alors une partition $X = \bigcup A(x_i)$ et tout $A \in \mathcal{A}$ s'écrit $A = \bigcup A(x_j)$ où $J \subset I$.
- 5. Si I est infini, on peut prendre $I = \mathbb{N}$ et l'application :

$$\varphi: \mathcal{P}(\mathbb{N}) \to \mathcal{A}$$

$$J \mapsto \bigcup_{j \in J} A(x_j)$$

est bijective.

En effet, elle est surjective car tout $A \in \mathcal{A}$ s'écrit $A = \bigcup_{j \in J} A(x_j)$ où $J \in \mathcal{P}(\mathbb{N})$ et pour $J \neq K$ dans

 $\mathcal{P}(\mathbb{N})$, on a $\varphi(J) \neq \varphi(K)$ puisque les $A(x_i)$, pour $i \in \mathbb{N}$, sont non vides et deux à deux disjoints. Comme $\mathcal{P}(\mathbb{N})$ est non dénombrable, on aboutit à une contradiction.

Donc I est fini et il en est de même de $\mathcal{A} = \left\{ \bigcup_{j \in J} A(x_j) \mid J \subset I \right\}$. Précisément, on a :

$$\operatorname{card}(\mathcal{A}) = \operatorname{card}(\mathcal{P}(I)) = 2^{\operatorname{card}(I)}$$

En conclusion, une tribu dénombrable sur X est nécessairement finie de cardinal égal à une puissance de 2.

Exercice 13 Soit X un ensemble dénombrable. Quelle est la σ-algèbre engendrée par les singletons de X ?

Solution. Soit $\mathcal{A} \subset \mathcal{P}(X)$ la σ -algèbre engendrée par les singletons de X. Tout $A \in \mathcal{P}(X)$ s'écrivant comme réunion dénombrable de singletons, il est dans \mathcal{A} , donc $\mathcal{P}(X) \subset \mathcal{A}$ et $\mathcal{A}\subset\mathcal{P}\left(X\right) .$

Exercice 14 Soit X un ensemble non dénombrable.

- 1. Quelle est la σ -algèbre \mathcal{A} engendrée par les singletons de X?
- 2. Montrer que l'application :

$$\begin{array}{cccc} \mu: & \mathcal{A} & \to & \{0,1\} \\ & A & \mapsto & \left\{ \begin{array}{l} 0 \ si \ A \ est \ d\'{e}nombrable} \\ 1 \ si \ X \setminus A \ est \ d\'{e}nombrable} \end{array} \right. \end{array}$$

est une mesure sur (X, A).

Solution.

1. Soit $\mathcal{A} \subset \mathcal{P}(X)$ la σ -algèbre engendrée par les singletons de X. On note:

$$\mathcal{B} = \{ A \in \mathcal{P}(X) \mid A \text{ ou } X \setminus A \text{ est dénombrable} \}$$

On vérifie que \mathcal{B} est une σ -algèbre sur X qui contient les singletons de X, donc $\mathcal{A} \subset \mathcal{B}$.

Comme \emptyset est dénombrable, il est dans \mathcal{B} .

Soit $A \in \mathcal{B}$. Si A est dénombrable, alors $X \setminus A$ est de complémentaire dénombrable, donc $X \setminus A \in \mathcal{B}$, sinon $X \setminus A$ est dénombrable et $X \setminus A \in \mathcal{B}$.

La famille \mathcal{B} est donc stable par passage au complémentaire. Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathcal{A} . On a :

$$A = \bigcup_{n \in \mathbb{N}} A_n = \bigcup_{\substack{n \in \mathbb{N} \\ A_n \text{ dénombrable}}} A_n \cup \bigcup_{\substack{n \in \mathbb{N} \\ X \setminus A_n \text{ dénombrable}}} A_n = B \cup C$$

avec B dénombrable et C de complémentaire dénombrable $(X \setminus C = \bigcap_{n \in \mathbb{N}} (X \setminus A_n))$

Si $C = \emptyset$, on a alors $A = B \in \mathcal{B}$, sinon $X \setminus A = (X \setminus B) \cap (X \setminus C) \subset X \setminus C$ est dénombrable, donc $A \in \mathcal{B}$.

Un singleton qui est dénombrable est dans \mathcal{B} .

Soit $A \in \mathcal{B}$. Si A est dénombrable, il est alors réunion dénombrable de singletons, donc dans \mathcal{A} , sinon c'est $X \setminus A$ qui est dans \mathcal{A} et $A = X \setminus (X \setminus A)$ est aussi dans \mathcal{A} .

On a donc $\mathcal{B} \subset \mathcal{A}$ et $\mathcal{A} = \mathcal{B}$.

2. On a $\mu(\emptyset) = 0$ car \emptyset est dénombrable.

Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathcal{A} deux à deux disjoints. Si tous les A_n sont dénombrables, il en est alors de même de $A=\bigcup A_n$ et :

$$\mu\left(A\right) = 0 = \sum_{n \in \mathbb{N}} \mu\left(A_n\right)$$

Sinon, il existe un A_n non dénombrable et $X \setminus A_n$ est dénombrable. Comme $A_m \cap A_n = \emptyset$ pour $m \neq n$, on a $A_m \subset X \setminus A_n$ et dénombrable, donc :

$$\mu\left(A\right) = 1 = \sum_{n \in \mathbb{N}} \mu\left(A_n\right)$$

(A qui contient A_n est non dénombrable, donc $X \setminus A$ est dénombrable puisque $A \in \mathcal{A}$).

Exercice 15 Soit (X, \mathcal{A}, μ) un espace mesuré.

1. Montrer que si A, B sont des éléments de A tels que $A \subset B$ et $\mu(B) < +\infty$, on a alors :

$$\mu(B \setminus A) = \mu(B) - \mu(A)$$

- 2. Soient $(A_n)_{n\in\mathbb{N}}$ une suite croissante d'éléments de \mathcal{A} et $A=\bigcup_{n\in\mathbb{N}}A_n$. Montrer que la suite $(\mu(A_n))_{n\in\mathbb{N}}$ converge en croissant vers $\mu(A)$.
- 3. Soient $(A_n)_{n\in\mathbb{N}}$ une suite décroissante d'éléments de A et $A=\bigcap_{n\in\mathbb{N}}A_n$. En supposant qu'il existe $n_0\in\mathbb{N}$ tel que $\mu(A_{n_0})<+\infty$, montrer que la suite $(\mu(A_n))_{n\in\mathbb{N}}$ converge en décroissant vers $\mu(A)$.

Solution.

1. Pour $A \subset B$ dans A, on a la partition $B = A \cup (B \setminus A)$, donc :

$$\mu(B) = \mu(A) + \mu(B \setminus A)$$

Avec $\mu(A) \leq \mu(B) < +\infty$, on en déduit que :

$$\mu(B \setminus A) = \mu(B) - \mu(A)$$

2. On a:

$$A = \bigcup_{n \in \mathbb{N}} A_n = A_0 \cup \bigcup_{n \in \mathbb{N}^*} (A_n \setminus A_{n-1})$$

En effet si $x \in A$, il existe un entier n tel que $x \in A_n$. Si n = 0, on a bien $x \in A_0 \cup \bigcup_{n \in \mathbb{N}^*} (A_n \setminus A_{n-1})$, sinon en désignant par $n \in \mathbb{N}^*$ le plus petit entier tel que $x \in A_n$, on a $x \in A_n \setminus A_{n-1}$ et $x \in A_0 \cup \bigcup_{n \in \mathbb{N}^*} (A_n \setminus A_{n-1})$.

Comme la suite $(A_n)_{n \in \mathbb{N}}$ est croissante, cette réunion est une partition. En effet, pour $0 \le n < m$, on a $A_n \subset A_{m-1}$ et $(A_m \setminus A_{m-1}) \cap A_n = \emptyset$, donc $(A_m \setminus A_{m-1}) \cap (A_n \setminus A_{n-1}) = \emptyset$ (en posant $A_{-1} = \emptyset$). Il en résulte que :

$$\mu(A) = \mu(A_0) + \sum_{n=1}^{+\infty} \mu(A_n \setminus A_{n-1})$$

$$= \lim_{n \to +\infty} \left(\mu(A_0) + \sum_{k=1}^{n} \mu(A_k \setminus A_{k-1}) \right)$$

$$= \lim_{n \to +\infty} \mu\left(A_0 \cup \bigcup_{k=1}^{n} (A_k \setminus A_{k-1})\right)$$

$$= \lim_{n \to +\infty} \mu(A_n)$$

la suite $(\mu(A_n))_{n\in\mathbb{N}}$ étant croissante.

3. Comme la suite $(A_n)_{n\in\mathbb{N}}$ est décroissante, on a :

$$A = \bigcap_{n \in \mathbb{N}} A_n = \bigcap_{n=n_0+1}^{+\infty} A_n \subset A_{n_0}$$

et:

$$\mu(A) = \mu(A_{n_0}) - \mu(A_{n_0} \setminus A)$$

(puisque $\mu(A_{n_0}) < +\infty$) avec :

$$A_{n_0} \setminus A = A_{n_0} \setminus \bigcap_{n=n_0+1}^{+\infty} A_n = \bigcup_{n=n_0+1}^{+\infty} (A_{n_0} \setminus A_n)$$

la suite $(A_{n_0} \setminus A_n)_{n \ge n_0+1}$ étant croissante dans \mathcal{A} , ce qui nous donne :

$$\mu\left(A_{n_0} \setminus A\right) = \lim_{n \to +\infty} \mu\left(A_{n_0} \setminus A_n\right) = \mu\left(A_{n_0}\right) - \lim_{n \to +\infty} \mu\left(A_n\right)$$

et:

$$\mu\left(A\right) = \lim_{n \to +\infty} \mu\left(A_n\right)$$

la suite $(\mu(A_n))_{n\in\mathbb{N}}$ étant croissante.

Si tous les $\mu(A_n)$ sont infinis, ce résultat n'est plus vrai comme le montrer de $A_n = [n, +\infty[$ sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ muni de la mesure de Lebesgue. On a $\mu(A_n) = +\infty$ pour tout $n \in \mathbb{N}$ et $\bigcap_{n=0}^{\infty} A_n = \emptyset$.

Exercice 16 Soient μ une mesure finie sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et F la fonction définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \ F(x) = \mu([x, +\infty[)])$$

1. Montrer que F est décroissante avec, pour tout réel x :

$$\lim_{\substack{t \to x \\ t < x}} F\left(t\right) = F\left(x\right), \ \lim_{\substack{t \to x \\ t > x}} F\left(t\right) = F\left(x\right) - \mu\left(\left\{x\right\}\right)$$

et:

$$\lim_{t \to -\infty} F\left(t\right) = \mu\left(\mathbb{R}\right), \ \lim_{t \to +\infty} F\left(t\right) = 0$$

2. Montrer que l'ensemble :

$$\mathcal{D} = \{ x \in \mathbb{R} \mid \mu(\{x\}) > 0 \}$$

est dénombrable.

Solution. Comme μ est finie, on a pour tout réel x:

$$F(x) = \mu([x, +\infty[) \le \mu(\mathbb{R}) < +\infty$$

1. Pour $x \leq y$, on a $[y, +\infty[$ $\subset [x, +\infty[$ et en conséquence $F(y) \leq F(x)$. Pour $x \in \mathbb{R}$, la suite $\left(\left[x - \frac{1}{n}, +\infty\right[\right)_{n \geq 1}$ est décroissante dans $\mathcal{B}(\mathbb{R})$ avec $\mu([x - 1, +\infty[) \leq \mu(\mathbb{R}) < +\infty]$ et :

$$[x, +\infty[$$
 = $\bigcap_{n>1} \left[x - \frac{1}{n}, +\infty\right[$

donc:

$$F\left(x\right) = \mu\left(\left[x, +\infty\right[\right) = \lim_{n \to +\infty} \mu\left(\left[x - \frac{1}{n}, +\infty\right[\right]\right) = \lim_{n \to +\infty} F\left(x - \frac{1}{n}\right)$$

et comme F est décroissante, on en déduit que $\lim_{t\to x^{-}}F\left(t\right)=F\left(x\right)$, c'est-à-dire que continue à gauche en x.

Avec les mêmes arguments, on a :

$$\begin{split} \mu\left(]x,+\infty[\right) &= \mu\left(\bigcup_{n\geq 1}\left[x+\frac{1}{n},+\infty\right[\right) = \lim_{n\to +\infty}\mu\left(\left[x+\frac{1}{n},+\infty\right[\right)\right) \\ &= \lim_{n\to +\infty}F\left(x+\frac{1}{n}\right) \end{split}$$

et:

$$\lim_{t \to x^{+}} F(t) = \mu(]x, +\infty[) = \mu([x, +\infty[\setminus \{x\}) = F(x) - \mu(\{x\})]$$

Comme $\left(\left[-n,+\infty\right[\right)_{n\geq 1}$ est croissante et $\left(\left[n,+\infty\right[\right)_{n\geq 1}$ est décroissante dans $\mathcal{B}\left(\mathbb{R}\right),$ on a :

$$\mu\left(\mathbb{R}\right) = \mu\left(\bigcup_{n\geq 1}\left[-n, +\infty\right[\right) = \lim_{n\to +\infty}\mu\left(\left[-n, +\infty\right[\right) = \lim_{n\to +\infty}F\left(-n\right)\right)$$

et:

$$0 = \mu\left(\emptyset\right) = \mu\left(\bigcap_{n \ge 1} [n, +\infty[\right)] = \lim_{n \to +\infty} \mu\left([n, +\infty[\right)] = \lim_{n \to +\infty} F\left(n\right)$$

soit avec la décroissance de F, $\lim_{x \to -\infty} F(x) = \mu(\mathbb{R})$ et $\lim_{x \to +\infty} F(x) = 0$.

2. L'ensemble des points de discontinuité de F est dénombrable puisque cette fonction est décroissante (donc réglée).

Mais F est continue en x si, et seulement si, $\lim_{t\to x^+} F(t) = \lim_{t\to x^-} F(t) = F(x)$, ce qui revient à dire que $\mu(\{x\}) = 0$, donc l'ensemble \mathcal{D} est exactement l'ensemble des points de discontinuité de F et il est dénombrable.

- III - Fonctions mesurables

Définition. Soient (X, \mathcal{A}) et (Y, \mathcal{B}) deux espaces mesurables. On dit qu'une fonction $f: X \to Y$ est mesurable si, pour tout $B \in \mathcal{B}$, $f^{-1}(B) \in \mathcal{A}$.

Dans le cas où X, Y sont deux espaces topologiques et \mathcal{A}, \mathcal{B} sont les tribus de Borel, une fonction mesurable de X dans Y est dite borélienne.

La composée, la somme, le produit et une limite simple de fonctions mesurables est mesurable.

Les fonctions réglées de [a, b] dans un espace de Banach sont mesurables (par exemples, les fonctions continues par morceaux et les fonctions monotones de [a, b] dans \mathbb{R}).

Si $f:(X,\mathcal{A},\mu)\to\mathbb{R}^+$ est mesurable, il existe alors une suite $(a_n)_{n\in\mathbb{N}}$ de réels positifs et une suite $(A_n)_{n\in\mathbb{N}}$ de parties mesurables de X telles que $f=\sum_{n\in\mathbb{N}}a_n\mathbf{1}_{A_n}$ et :

$$\int_{X} f d\mu = \sum_{n \in \mathbb{N}} a_n \mu \left(A_n \right) \le +\infty$$

Définition. Soit (X, \mathcal{A}, μ) un espace mesuré. On dit que $f: X \to \mathbb{R}$ est intégrable (ou sommable) si elle est mesurable et $\int_X |f| d\mu < +\infty$.

Dans ce cas, on a:

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$$

L'ensemble des fonctions intégrables de (X, \mathcal{A}, μ) dans \mathbb{R} est un espace vectoriel et l'application $f \mapsto \int_X f d\mu$ est une forme linéaire positive avec :

$$\left| \int_X f d\mu \right| \le \int_X |f| \, d\mu < +\infty$$

Exercice 17 La mesure ℓ des intervalles réels se prolonge de manière unique en une mesure sur la tribu $\mathcal{B}(\mathbb{R})$ des boréliens, cette mesure étant invariante par translation. C'est la mesure de Lebesgue sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Nous allons vérifier que cette mesure ne peut pas se prolonger en une mesure invariante par translation sur $\mathcal{P}(\mathbb{R})$.

On désigne par C le groupe quotient \mathbb{R}/\mathbb{Q} .

1. Vérifier que, pour toute classe d'équivalence $c \in \mathcal{C}$, on peut trouver un représentant x dans [0,1[.

Pour tout $c \in \mathcal{C}$, on se fixe un représentant x_c de c dans [0,1[(axiome du choix) et on désigne par A l'ensemble de tous ces réels x_c .

2. Montrer que les translatés r+A, où r décrit $[-1,1]\cap \mathbb{Q}$, sont deux à deux disjoints et que :

$$[0,1] \subset \bigcup_{r \in [-1,1] \cap \mathbb{Q}} (r+A) \subset [-1,2]$$

- 3. En déduire que A n'est pas borélien et que ℓ ne peut pas se prolonger en une mesure invariante par translation sur $\mathcal{P}(\mathbb{R})$.
- 4. Donner un exemple de fonction $f : \mathbb{R} \to \mathbb{R}$ non mesurable (\mathbb{R} étant muni de la tribu de Borel) telle que |f| soit mesurable.

Solution. La relation:

$$(x \mathcal{R} y) \Leftrightarrow (y - x \in \mathbb{Q})$$

est une relation d'équivalence puisque \mathbb{Q} est un sous-groupe additif de \mathbb{R} et l'ensemble quotient \mathbb{R}/\mathbb{Q} est un groupe puisque le groupe $(\mathbb{R}, +)$ est commutatif.

1. Soit $c = \overline{x} \in \mathcal{C}$. En désignant par $n = [x] \in \mathbb{Z}$ la partie entière de x, on a $0 \le x_c = x - n < 1$ et $c = \overline{x_c}$ puisque $x - x_c = n \in \mathbb{Q}$.

L'axiome du choix nous permet de choisir, pour toute classe d'équivalence un représentant $x_c \in [0, 1]$. Ces choix étant faits, on a c = c' dans C si, et seulement si $x_c = x_{c'}$.

2. Si r, r' dans $[-1, 1] \cap \mathbb{Q}$ sont tels que $(r + A) \cap (r' + A) \neq \emptyset$, il existe alors y dans $(r + A) \cap (r' + A)$, donc $y = r + x_c = r' + x_{c'}$ et $c = \overline{x_c} = \overline{x_{c'}} = c'$, ce qui nous donne $x_c = x_{c'}$ et r = r'.

Donc les ensembles r + A, où r décrit $[-1, 1] \cap \mathbb{Q}$, sont deux à deux disjoints.

$$\text{Comme } A \subset [0,1[\,,\,\text{on a } r+A \subset [-1,2] \text{ pour tout } r \in [-1,1] \cap \mathbb{Q} \text{ et } \bigcup_{r \in [-1,1] \cap \mathbb{Q}} (r+A) \subset [-1,2]\,.$$

Pour tout $x \in [0,1]$ il existe $x_c \in A$ tel que $\overline{x} = \overline{x_c}$, donc il existe un rationnel r tel que $x = r + x_c$ et comme $|r| = |x - x_c| \le 1$ (x et x_c sont dans [0,1]), on a $r \in [-1,1] \cap \mathbb{Q}$. On a donc $[0,1] \subset \bigcup_{r \in [-1,1] \cap \mathbb{Q}} (r+A)$.

3. Si A est borélien, il en est alors de même de tous les r+A (image réciproque de A par l'application continue, donc mesurable, $x\mapsto x-r$) et la réunion dénombrable $\bigcup_{r\in [-1,1]\cap\mathbb{O}} (r+A)$ est un borélien,

mais alors:

$$\ell\left([0,1]\right) = 1 \le \ell\left(\bigcup_{r \in [-1,1] \cap \mathbb{Q}} (r+A)\right) = \sum_{r \in [-1,1] \cap \mathbb{Q}} \ell\left(r+A\right) = \sum_{r \in [-1,1] \cap \mathbb{Q}} \ell\left(A\right) \le \ell\left([-1,2]\right) = 3$$

ce qui impose $\ell(A) > 0$ et $\sum_{r \in [-1,1] \cap \mathbb{Q}} \ell(A) = +\infty$, ce qui est impossible.

On a donc ainsi prouvé que l'ensemble A est borné, non borélien et que ℓ ne peut se prolonger à $\mathcal{P}(\mathbb{R})$.

4. La fonction $f = 2\mathbf{1}_A - 1$ définie par :

$$\forall x \in \mathbb{R}, \ f(x) = \begin{cases} 1 \text{ si } x \in A \\ -1 \text{ si } x \notin A \end{cases}$$

est non borélienne $(f^{-1}(\{1\}) = A$ est non borélien) et |f| = 1 est mesurable.

Exercice 18 \mathbb{R} est muni de la tribu de Borel.

Soit $f : \mathbb{R} \to \mathbb{R}$. Montrer que f est mesurable si, et seulement si, la restriction de f à tout segment [a,b] est mesurable.

Solution. Notons $f_{a,b} = f_{|[a,b]}$.

Si f est mesurable, pour tout borélien A de \mathbb{R} :

$$f_{a,b}^{-1}\left(A\right)=\left\{ x\in\left[a,b\right]\mid f\left(x\right)\in A\right\} =\left[a,b\right]\cap f^{-1}\left(A\right)$$

est un borélien de A, donc $f_{a,b}$ est mesurable.

Réciproquement, supposons que toutes les restrictions $f_{a,b}$ soient mesurables.

Pour tout borélien A de \mathbb{R} :

$$f^{-1}(A) = \{x \in \mathbb{R} \mid f(x) \in A\} = \bigcup_{n \in \mathbb{N}} \{x \in [-n, n] \mid f(x) \in A\}$$
$$= \bigcup_{n \in \mathbb{N}} f_{-n, n}^{-1}(A)$$

est un borélien de A, donc f est mesurable.

Exercice 19 Soient E un espace vectoriel normé complet et a < b deux réels.

Une fonction $f:[a,b] \to E$ est dite réglée si elle admet une limite à droite en tout point de [a,b[et une limite à gauche en tout point de [a,b[et

On notera $f(x^-)$ [resp. $f(x^+)$] la limite à gauche [resp. à droite] en $x \in [a, b]$ [resp. en $x \in [a, b]$].

- 1. Montrer qu'une fonction réglée est bornée.
- 2. Montrer qu'une limite uniforme de fonctions réglées de [a,b] dans E est réglée.
- 3. Soit $f:[a,b] \to E$ une fonction réglée et $\varepsilon > 0$. On note :

$$E_{\varepsilon} = \left\{ x \in \left[a, b \right] \mid il \text{ existe } \varphi \text{ en escaliers sur } \left[a, x \right] \text{ telle que } \sup_{t \in \left[a, x \right]} \left\| f \left(t \right) - \varphi \left(t \right) \right\| < \varepsilon \right\}$$

Montrer que $E_x \neq \emptyset$, puis que $b = \max(E_{\varepsilon})$.

- 4. Montrer qu'une fonction $f:[a,b] \to E$ est réglée si, et seulement si, elle est limite uniforme sur [a,b] d'une suite de fonctions en escaliers.
- 5. Montrer qu'une fonction réglée $f:[a,b] \to E$ est borélienne et qu'elle est continue sur [a,b] privé d'un ensemble D dénombrable (éventuellement vide).
- 6. La fonction $f = \mathbf{1}_{\mathbb{O} \cap [0,1]}$ est-elle réglée?
- 7. En désignant par E(t) la partie entière d'un réel t, montrer que la fonction f définie sur [0,1] par :

$$f\left(x\right) = \sum_{n=1}^{+\infty} \frac{E\left(nx\right)}{2^{n}}$$

est réglée, puis calculer $\int_0^1 f(x) dx$ (il s'agit d'une intégrale de Riemann).

Solution.

1. Soit $f:[a,b]\to E$ réglée.

Si elle n'est pas bornée, pour tout entier $n \geq 1$, on peut trouver un réel $x_n \in [a,b]$ tel que $||f(x_n)|| \geq n$. Dans le compact [a,b], on peut extraire de la suite $(x_n)_{n\in\mathbb{N}}$ une sous-suite $(x_{\varphi(n)})_{n\in\mathbb{N}}$ qui converge vers $\alpha \in [a,b]$.

Supposons que $\alpha \in [a, b]$. Il existe un réel $\eta > 0$ tel que :

$$\forall x \in [a, b] \cap]\alpha - \eta, \alpha[, ||f(x) - f(\alpha^{-})|| < 1$$

et:

$$\forall x \in [a, b] \cap]\alpha, \alpha + \eta[, \|f(x) - f(\alpha^{+})\| < 1$$

Il existe aussi un entier $n_0 \ge 1$ tel que :

$$\forall n \geq n_0, \ x_{\varphi(n)} \in]\alpha - \eta, \alpha + \eta[$$

ce qui nous donne pour tout $n \geq n_0$:

$$||f(x_{\varphi(n)}) - f(\alpha^{-})|| < 1 \text{ ou } ||f(x_{\varphi(n)}) - f(\alpha^{+})|| < 1$$

et en conséquence :

$$||f(x_{\varphi(n)})|| < 1 + ||f(\alpha^{-})|| \text{ ou } ||f(x_{\varphi(n)})|| < 1 + ||f(\alpha^{+})||$$

en contradiction avec $||f(x_{\varphi(n)})|| \ge \varphi(n) \ge n$.

Pour $\alpha = a$ [resp. $\alpha = b$], on procède de manière analogue en utilisant seulement la limite à droite [resp. à gauche].

La fonction f est donc bornée.

2. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions réglées de [a,b] dans E qui converge uniformément vers une fonction f.

Pour tout réel $\varepsilon > 0$, on peut trouver un entier n_{ε} tel que :

$$\forall n \geq n_{\varepsilon}, \sup_{x \in [a,b]} \|f_n(x) - f(x)\| < \varepsilon$$

La fonction $f_{n_{\varepsilon}}$ ayant une limite à gauche en $\alpha \in]a,b]$, il existe un réel $\eta > 0$ tel que :

$$\forall x \in [a, b] \cap [\alpha - \eta, \alpha[, \|f_{n_{\varepsilon}}(x) - f_{n_{\varepsilon}}(\alpha^{-})\| < \varepsilon$$

ce qui nous donne, pour tout x, y dans $[a, b] \cap]\alpha - \eta, \alpha[$:

$$||f(x) - f(y)|| \le ||f(x) - f_{n_{\varepsilon}}(x)|| + ||f_{n_{\varepsilon}}(x) - f_{n_{\varepsilon}}(\alpha^{-})|| + ||f_{n_{\varepsilon}}(\alpha^{-}) - f_{n_{\varepsilon}}(y)|| + ||f_{n_{\varepsilon}}(y) - f(y)||$$

$$\le 4\varepsilon$$

On déduit alors du critère de Cauchy que f admet une limite à gauche en α . De plus avec :

$$\left\| f_n\left(\alpha^-\right) - f\left(\alpha^-\right) \right\| = \lim_{x \to \alpha^-} \left\| f_n\left(x\right) - f\left(x\right) \right\| \le \sup_{x \in [a,b]} \left\| f_n\left(x\right) - f\left(x\right) \right\|$$

on déduit que :

$$f\left(\alpha^{-}\right) = \lim_{n \to +\infty} f_n\left(\alpha^{-}\right)$$

On procède de même pour la limite à droite.

3. Comme f admet une limite à droite en a, il existe un réel $\eta_a \in [0, b-a[$ tel que :

$$\forall t \in \left] a, a + \eta_a \right], \left\| f(t) - f(a^+) \right\| < \varepsilon$$

donc en désignant par φ la fonction en escaliers définie sur $[a, a + \eta_a]$ par $\varphi(a) = f(a)$ et $\varphi(t) = f(a^+)$ pour tout $t \in]a, a + \eta_a]$, on a $\sup_{t \in [a, a + \eta_a]} ||f(t) - \varphi(t)|| < \varepsilon$, ce qui signifie que $a + \eta_a \in E_{\varepsilon}$.

L'ensemble E_{ε} est donc non vide majorée par b, donc il admet une borne supérieure $\beta \in]a,b]$ (on a $a + \eta_a \leq \beta$).

Supposons que $\beta < b$. Comme f admet une limite à droite et à gauche en β , il existe un réel $\eta > 0$ tel que $[\beta - \eta, \beta + \eta] \subset]a, b[$ et :

$$\forall t \in [\beta - \eta, \beta[, \|f(t) - f(\beta^{-})\| < \varepsilon$$

$$\forall t \in \left[\beta, \beta + \eta\right], \left\|f(t) - f(\beta^{+})\right\| < \varepsilon$$

Par définition de la borne supérieure β , il existe $x \in]\beta - \eta, \beta] \cap E_{\varepsilon}$. On désigne alors par φ une fonction en escaliers sur [a,x] telle que $\sup_{t \in [a,x]} \|f(t) - \varphi(t)\| < \varepsilon$ et on la prolonge en une fonction en

escaliers sur $[a, \beta + \eta]$ en posant $\varphi(t) = f(\beta^-)$ pour $t \in]x, \beta[, \varphi(\beta) = f(\beta)$ et $\varphi(t) = f(\beta^+)$ pour $t \in [\beta, \beta + \eta]$.

On a donc $\sup_{t\in[a,\beta+\eta]} \|f(t) - \varphi(t)\| < \varepsilon$, soit $\beta + \eta \in E_x$, ce qui contredit le fait que β est la borne supérieure de E_{ε} .

En définitive, on a $\beta = b$.

Comme f admet une limite à gauche en b, il existe un réel $\eta_b > 0$ tel que $[b - \eta_b, b] \subset [a, b]$ et :

$$\forall t \in [b - \eta_b, b[, \|f(t) - f(b^-)\| < \varepsilon$$

Prenant $x \in]b - \eta_b, b] \cap E_{\varepsilon}$, on désigne par φ une fonction en escaliers sur [a, x] telle que $\sup_{t \in [a, x]} \|f(t) - \varphi(t)\| < 1$

 ε et on la prolonge en une fonction en escaliers sur [a,b] en posant $\varphi(t)=f(b^-)$ pour $t\in]x,b[$ et $\varphi(b)=f(b)$ (si x=b, il n'y a rien à faire), ce qui nous donne φ en escaliers sur [a,b] telle que $\|f(t)-\varphi(t)\|<\varepsilon$ pour tout $t\in [a,b]$.

On a donc $b \in E_{\varepsilon}$ et $\beta = b$.

4. Si f est limite uniforme sur [a,b] d'une suite de fonctions en escaliers, elle est réglée comme limite uniforme d'une suite de fonctions réglées (une fonction en escaliers est réglée).

Réciproquement, soit $f:[a,b]\to E$ une fonction réglée.

Pour tout entier $n \geq 1$, on a $b \in E_{\frac{1}{n}}$, donc il existe φ_n en escaliers sur [a,b] telle que $\sup_{x \in \mathbb{R}^n} \|f(t) - \varphi_n(t)\| < 1$

 $\frac{1}{n}.$ La suite $(\varphi_n)_{n\geq 1}$ converge donc uniformément vers f sur [a,b]. 5. Une limite simple de fonctions boréliennes étant borélienne, on en déduit qu'une fonction réglée est borélienne.

En particulier, les fonctions en escaliers, monotones, continues par morceaux, sont boréliennes.

Soit $f:[a,b]\to E$ une fonction réglée et $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions en escaliers qui converge uniformément vers f sur [a, b].

Pour tout $n \in \mathbb{N}$ l'ensemble D_n des points de discontinuité de f_n est fini et la réunion $D = \bigcup D_n$ est

une partie dénombrable de de [a, b].

Toutes les fonctions f_n sont continues sur l'ouvert $[a,b] \setminus D$, donc il en est de même de f puisque cette fonction est limite uniforme de la suite $(f_n)_{n\in\mathbb{N}}$ sur $[a,b]\setminus D$.

Les points de discontinuité de f sont tous de première espèce.

6. La fonction $f = \mathbf{1}_{\mathbb{Q} \cap [0,1]}$ n'est pas réglée puisqu'elle est discontinue en tout point de [0,1]. En effet, si $a \in [0,1]$ est un nombre rationnel [resp. irrationnel], alors pour tout réel $\eta > 0$, on peut trouver un nombre irrationnel [resp. rationnel] x dans $|a-\eta,a+\eta| \cap [0,1]$ et on a |f(x)-f(a)|=1, ce qui prouve la discontinuité de f en a.

Comme $\mathbb{Q} \cap [0,1]$ est un borélien de \mathbb{R} , cette fonction f est étagée.

7. Pour tout entier $n \ge 1$ et tout réel $x \in [0,1]$, on a :

$$0 \le \frac{E\left(nx\right)}{2^n} \le \frac{n}{2^n}$$

avec $\sum_{n=0}^{+\infty} \frac{n}{2^n} < +\infty$, donc la série de fonctions $\sum_{n=0}^{+\infty} \frac{E(nx)}{2^n}$ converge uniformément sur [0,1].

Pour montrer que f est réglée, il nous suffit de vérifier que les sommes partielles de cette série de fonctions sont des fonctions en escaliers. Comme l'ensemble des fonctions en escaliers sur [0, 1] est un \mathbb{R} -espace vectoriel, il suffit de vérifier que chaque fonction :

$$f_n: x \in [0,1] \mapsto E(nx)$$

est en escaliers.

Pour tout entier k compris entre 0 et n-1 et tout $x \in \left[\frac{k}{n}, \frac{k+1}{n}\right]$, on a E(nx) = k et pour x = 1, E(nx) = n, donc:

$$f_n = \sum_{k=0}^{n-1} k \cdot \mathbf{1}_{\left[\frac{k}{n}, \frac{k+1}{n}\right]} + n \cdot \mathbf{1}_{\{1\}}$$

est en escaliers.

La fonction f est don réglée sur [0,1] et en conséquence Riemann-intégrable.

Comme la série de fonctions définissant f est uniformément convergente, on a :

$$\int_{0}^{1} f(x) dx = \sum_{n=1}^{+\infty} \int_{0}^{1} \frac{E(nx)}{2^{n}} dx$$

avec:

$$\int_{0}^{1} E(nx) dx = \sum_{k=0}^{n-1} \frac{k}{n} = \frac{n-1}{2}$$

ce qui nous donne :

$$\int_{0}^{1} f(x) dx = \sum_{n=1}^{+\infty} \frac{n-1}{2^{n+1}} = \sum_{n=1}^{+\infty} \frac{n}{2^{n+2}} = \frac{1}{2^{3}} \sum_{n=1}^{+\infty} n \left(\frac{1}{2}\right)^{n-1}$$
$$= \frac{1}{2^{3}} \frac{1}{\left(1 - \frac{1}{2}\right)^{2}} = \frac{1}{2}$$

Exercice 20 [a, b] est un intervalle fermé borné fixé avec a < b réels.

1. Montrer que les fonctions en escaliers positives sur [a,b] sont exactement les fonctions du type :

$$\varphi = \sum_{k=1}^{n} a_k \mathbf{1}_{I_k}$$

où $n \in \mathbb{N}^*$, les a_k sont des réels positifs ou nuls et les I_k sont des intervalles contenus dans [a,b].

- 2. Montrer que si $(\varphi_k)_{1 \le k \le n}$ est une suite finie de fonctions en escaliers sur [a,b], alors la fonction $\varphi = \max_{1 \le k \le n} \varphi_k$ est aussi en escaliers.
- 3. Soit f une fonction réglée définie sur [a,b] et à valeurs positives.
 - (a) Montrer qu'il existe une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions en escaliers qui converge uniformément vers f sur [a,b] et telle que :

$$\forall n \in \mathbb{N}, \ \forall x \in [a, b], \ \varphi_n(x) \le f(x)$$

(b) On désigne par $(\psi_n)_{n\in\mathbb{N}}$ la suite de fonctions définie sur [a,b] par $\psi_0=0$ et pour tout $n\geq 1$:

$$\psi_n = \max\left(0, \varphi_1, \cdots, \varphi_n\right)$$

Monter que $(\psi_n)_{n\in\mathbb{N}}$ est une suite croissante de fonctions en escaliers qui converge uniformément vers f sur [a,b].

- (c) Montrer qu'il existe une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions en escaliers à valeurs positives telle que la série $\sum f_n$ converge uniformément vers f sur [a,b].
- 4. Montrer que les fonctions réglées à valeurs positives sur [a, b] sont exactement les fonctions de la forme :

$$f = \sum_{n=0}^{+\infty} a_n \mathbf{1}_{I_n}$$

où les $(a_n)_{n\in\mathbb{N}}$ est une suite de réels positifs ou nuls, $(I_n)_{n\in\mathbb{N}}$ est une suite d'intervalles contenus dans [a,b] et la série considérée converge uniformément sur [a,b].

Solution.

1. Si φ est une fonction en escaliers sur [a,b], il existe alors un entier $p \in \mathbb{N}^*$ et une subdivision :

$$a_0 = a < a_1 < \cdots < a_n = b$$

telle que φ soit constante sur chacun des intervalles a_k, a_{k+1} ($0 \le k \le p-1$), ce qui peut s'écrire :

$$\varphi = \sum_{k=1}^{n} a_k \mathbf{1}_{I_k}$$

où $(I_k)_{1 \le k \le n}$ est une partition de [a,b] en n intervalles (les I_k sont les $]a_j, a_{j+1}[$, pour j compris entre 0 et p-1 et les $\{a_j\} = [a_j, a_j]$, pour j compris entre 0 et p, les a_k étant les valeurs constantes prises par φ sur chacun de ces intervalles).

Si φ est à valeurs positives, les a_k sont tous positifs ou nuls.

Réciproquement une telle fonction est en escaliers puisque l'ensemble des fonctions en escaliers sur [a,b] est un espace vectoriel et elle est à valeurs positives si les a_k sont tous positifs ou nuls (en dehors de la réunion des I_k , la fonction φ est nulle).

2. Si $\varphi = \sum_{k=1}^{n} a_k \mathbf{1}_{I_k}$ est une fonction en escaliers sur [a, b], alors la fonction $|\varphi| = \sum_{k=1}^{n} |a_k| \mathbf{1}_{I_k}$ est aussi en escaliers.

Il en résulte que, si ψ est une autre fonction en escaliers sur [a,b], la fonction :

$$\max(\varphi, \psi) = \frac{\varphi + \psi}{2} + \frac{|\psi - \varphi|}{2}$$

en escaliers, puis par récurrence on en déduit que si $(\varphi_k)_{1 \le k \le n}$ est une suite de fonctions en escalier sur [a,b], alors la fonction $\max_{1 \le k \le n} \varphi_k$ est aussi en escaliers.

3.

(a) Comme f réglée sur [a,b], pour tout entier $n \in \mathbb{N}$, on peut trouver une fonction en escaliers f_n telle que :

$$\sup_{x \in [a,b]} \left| f(x) - f_n(x) \right| < \frac{1}{n+1}$$

La fonction $\varphi_n = f_n - \frac{1}{n+1}$ est aussi en escaliers et pour tout $x \in [a,b]$, on a :

$$-\frac{1}{n+1} < f(x) - f_n(x) < \frac{1}{n+1}$$

donc:

$$0 < f(x) - \varphi_n(x) < \frac{2}{n+1}$$

donc $\varphi_n < f$ et :

$$\sup_{x \in [a,b]} |f(x) - \varphi_n(x)| = \sup_{x \in [a,b]} (f(x) - \varphi_n(x)) \le \frac{2}{n+1}$$

ce qui signifie que $(\varphi_n)_{n\in\mathbb{N}^*}$ converge uniformément vers f par valeurs inférieures.

(b) Pour tout entier $n \in \mathbb{N}^*$, la fonction :

$$\psi_n = \max(0, \varphi_1, \cdots, \varphi_n)$$

est en escaliers et pour tout $x \in [a, b]$, on a :

$$\psi_0 = 0 \le \psi_n(x) \le \psi_{n+1}(x) < f(x)$$

(puisque $f \ge 0$ et $f \ge \varphi_k$ pour tout entier k) et :

$$0 < f(x) - \psi_n(x) \le f(x) - \varphi_n(x) < \frac{2}{n+1}$$

donc $(\psi_n)_{n\in\mathbb{N}}$ converge uniformément en croissant vers f sur [a,b].

(c) On pose $f_0 = 0$ et $f_n = \psi_n - \psi_{n-1}$ pour tout $n \in \mathbb{N}^*$, ce qui définit une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions en escaliers à valeurs positives.

Avec:

$$\sum_{k=0}^{n} f_k = \sum_{k=1}^{n} (\psi_k - \psi_{k-1}) = \psi_n - \psi_0 = \psi_n$$

on déduit que la série $\sum f_n$ converge uniformément vers f sur [a,b] .

4. Si $f = \sum_{n=0}^{+\infty} a_n \mathbf{1}_{I_n}$, où la série est uniformément convergentes, les a_n sont positifs et les I_n des intervalles contenus dans [a, b], la fonction :

$$f = \lim_{n \to +\infty} \sum_{k=0}^{n} a_k \mathbf{1}_{I_k}$$

est alors limite uniforme d'une suite de fonctions réglées positives et en conséquence, elle est réglée positive.

Soit f une fonction réglée positive sur [a, b].

Il existe alors une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions en escaliers à valeurs positives telle que la série $\sum f_n$ converge uniformément vers f sur [a,b].

En écrivant chaque fonction en escaliers f_n sous la forme :

$$f_n = \sum_{k=1}^{p_n} a_{n,k} \mathbf{1}_{I_{n,k}}$$

où les $a_{n,k}$ sont des réels positifs ou nuls et les $I_{n,k}$ sont des intervalles contenus dans [a,b], en notant $p_0 = 0$, on utilise la partition :

$$\mathbb{N}^* = \bigcup_{n>1} \{ p_1 + \dots + p_{n-1} + 1, \dots, p_1 + \dots + p_{n-1} + p_n \}$$

et le fait qu'il s'agit d'une séries de fonctions positives pour écrire que :

$$f = \sum_{j=1}^{+\infty} a_j \mathbf{1}_{I_j}$$

où pour $j = p_1 + \cdots + p_{n-1} + k$ avec $1 \le k \le p_n$, on note :

$$a_j \mathbf{1}_{I_j} = a_{n,k} \mathbf{1}_{I_{n,k}}$$

ce qui définit bien une suite $(a_j)_{j\in\mathbb{N}}$ de réels positifs ou nuls et une suite $(I_j)_{j\in\mathbb{N}}$ d'intervalles contenus dans [a,b].

A priori la convergence de cette série est simple.

Pour tout entier $m \ge 1$ il existe un unique entier $n \ge 1$ tel que $m \in \{p_1 + \dots + p_{n-1} + 1, \dots, p_1 + \dots + p_{n-1} + p_n\}$ et on a :

$$R_m = \sum_{j=m}^{+\infty} a_j \mathbf{1}_{I_j} \le \sum_{j=p_1+\dots+p_{n-1}+1}^{+\infty} a_j \mathbf{1}_{I_j} = \sum_{p=n}^{+\infty} f_p = R'_n$$

ce qui assure la convergence uniforme (pour $\varepsilon > 0$, il existe $n_{\varepsilon} \in \mathbb{N}^*$ tel que $R'_n < \varepsilon$ pour tout $n \ge n_{\varepsilon}$, donc pour tout $m \ge m_{\varepsilon} = p_1 + \dots + p_{n_{\varepsilon}-1} + 1$, on aura $R_m < \varepsilon$).

Exercice 21 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable. Montrer que sa dérivée f' est borélienne.

Solution. On a $f = \lim_{n \to +\infty} f_n$, où $(f_n)_{n \ge 1}$ est la suite de fonctions définies sur]0,1[par :

$$f_n(x) = n\left(f\left(x + \frac{1}{n}\right) - f(x)\right)$$

Chaque fonction f_n étant continue par morceaux est borélienne, donc f' est borélienne comme limite simple de fonctions boréliennes.

Exercice 22

- 1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues de \mathbb{R} dans \mathbb{R} . L'ensemble des réels x tels que la suite $(f_n(x))_{n\in\mathbb{N}}$ soit convergente est-il ouvert? fermé?
- 2. Soient (X, A) un espace mesurable et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables de X dans \mathbb{R} $(\mathbb{R} \text{ \'etant muni de la tribu bor\'elienne}).$

Montrer que l'ensemble des éléments x de X tels que la suite $(f_n(x))_{n\in\mathbb{N}}$ soit convergente est mesurable.

Solution.

1. On désigne par $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions affines par morceaux et continues de \mathbb{R} dans \mathbb{R} définies par :

$$f_n(x) = \begin{cases} n \text{ si } x \le -\frac{1}{n} \text{ ou } x \ge 1\\ 0 \text{ si } 0 \le x \le 1 - \frac{1}{n} \end{cases}$$

(faire un dessin). L'ensemble des réels x tels que la suite $(f_n(x))_{n\in\mathbb{N}}$ soit convergente est l'intervalle [0,1[qui n'est ni ouvert ni fermé.

2. Notons:

$$A = \left\{ x \in X \mid (f_n(x))_{n \in \mathbb{N}} \text{ est convergente} \right\}$$

Dire que la suite de réels $(f_n(x))_{n\in\mathbb{N}}$ est convergente équivaut à dire qu'elle est de Cauchy, ce qui équivaut aussi à dire que :

$$\forall k \in \mathbb{N}^*, \ \exists n_k \in \mathbb{N} \mid \forall p \ge n_k, \ \forall q \ge n_k, \ |f_q(x) - f_p(x)| < \frac{1}{k}$$

ou encore:

$$\forall k \in \mathbb{N}^*, \ \exists n_k \in \mathbb{N} \mid \forall p \ge n_k, \ \forall q \ge n_k, \ x \in (f_q - f_p)^{-1} \left(\left] - \frac{1}{k}, \frac{1}{k} \right[\right)$$

donc:

$$A = \bigcap_{k \in \mathbb{N}^*} \bigcap_{\substack{n \in \mathbb{N} p \ge n \\ q \ge n}} (f_q - f_p)^{-1} \left(\left] - \frac{1}{k}, \frac{1}{k} \right[\right)$$

et cet ensemble est mesurable dans (X, A).

- IV - Intégration

Exercice 23 On se place sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ muni de la mesure de comptage :

$$\forall A \in \mathcal{P}(\mathbb{N}), \ \mu(A) = \operatorname{card}(A) \in \mathbb{N} \cup \{+\infty\}$$

- 1. Calculer $\int_{\mathbb{N}} x d\mu$ pour toute suite réelle positive $x = (x_n)_{n \in \mathbb{N}}$.
- 2. Donner une condition nécessaire et suffisante pour qu'une suite $x = (x_n)_{n \in \mathbb{N}}$ à valeurs complexes soit sommable.

Solution.

1. En écrivant que $x = \sum_{n \in \mathbb{N}} x_n \mathbf{1}_{\{n\}}$, les x_n étant positifs, on a :

$$\int_{\mathbb{N}} x d\mu = \sum_{n \in \mathbb{N}} x_n \int_{\mathbb{N}} \mathbf{1}_{\{n\}} d\mu = \sum_{n \in \mathbb{N}} x_n \mu \{n\} = \sum_{n \in \mathbb{N}} x_n$$

2. Une suite $x: \mathbb{N} \to \mathbb{C}$ est sommable si, et seulement si, $\int_{\mathbb{N}} |x| d\mu < +\infty$, ce qui revient à dire que $\sum_{n \in \mathbb{N}} |x_n| < +\infty.$

Exercice 24 On se place sur $(X, \mathcal{P}(X))$ muni d'une mesure de Dirac $\mu = \delta_x$, où $x \in X$ est fixé. Calculer $\int_X f d\mu$ pour toute fonction $f: X \to \mathbb{R}^+$.

Solution. Toute fonction $f: X \to \mathbb{R}$ est mesurable car pour tout borélien B de \mathbb{R} , on a $f^{-1}(B) \in \mathcal{P}(X)$. Pour toute fonction $f: X \to \mathbb{R}^+$, il existe une suite $(a_n)_{n \in \mathbb{N}}$ de réels positifs et une suite $(A_n)_{n \in \mathbb{N}}$ de parties de X telles que $f = \sum_{n \in \mathbb{N}} a_n \mathbf{1}_{A_n}$ et on a par définition de l'intégrale :

$$\int_{X} f d\mu = \sum_{n \in \mathbb{N}} a_{n} \delta_{x} (A_{n}) = \sum_{n \in \mathbb{N}} a_{n} \mathbf{1}_{A_{n}} (x) = f (x)$$

Exercice 25 Soient X, Y deux espaces métriques munis de leur tribu borélienne respective. Montrer qu'une fonction $f: X \to Y$ qui est continue sur X privé d'un ensemble D dénombrable est borélienne.

Solution. Si \mathcal{O} est un ouvert de Y, en notant :

$$\mathcal{U} = \left(f^{-1}\left(\mathcal{O}\right)\right) \cap \left(X \setminus D\right) \text{ et } \mathcal{V} = \left(f^{-1}\left(\mathcal{O}\right)\right) \cap D$$

on a alors $f^{-1}(\mathcal{O}) = \mathcal{U} \cup \mathcal{V}$.

L'ensemble \mathcal{V} qui est contenu dans D est dénombrable, donc borélien.

La restriction g de f à $X \setminus D$ est continue, donc :

$$\mathcal{U} = \{x \in X \setminus D \mid f(x) \in \mathcal{O}\} = \{x \in X \setminus D \mid g(x) \in \mathcal{O}\} = g^{-1}(\mathcal{O})$$

est un ouvert de $X \setminus D$, ce qui signifie qu'il existe un ouvert W de X tel que $\mathcal{U} = (X \setminus D) \cap W$ et cet ensemble est un borélien de X comme intersection de deux boréliens $(X \setminus D)$ est le complémentaire d'un borélien, donc un borélien et W est ouvert dans X, donc borélien).

En définitive, $f^{-1}(\mathcal{O}) = \mathcal{U} \cup \mathcal{V}$ est un borélien comme union de deux boréliens.

Exercice 26 On se place sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, où λ est la mesure de Lebesgue.

- 1. Montrer que pour tout réel $\varepsilon > 0$, on peut trouver un ouvert \mathcal{O} dense dans \mathbb{R} tel que $\lambda(\mathcal{O}) < \varepsilon$.
- 2. Montrer qu'une partie mesurable bornée de R est de mesure finie. La réciproque est-elle vraie?
- 3. Montrer qu'une partie mesurable de \mathbb{R} d'intérieur non vide est de mesure non nulle. La réciproque est-elle vraie?
- 4. Montrer qu'une partie mesurable A de [0, 1] de mesure égale à 1 est dense dans [0, 1] . Réciproquement un ouvert dense de [0, 1] est-il de mesure égale à 1 ?

Solution.

1. En désignant par $(r_n)_{n\in\mathbb{N}}$ la suite des nombres rationnels, pour tout réel $\varepsilon > 0$, on désigne par $(I_n(\varepsilon))_{n\in\mathbb{N}}$ la suite d'intervalles définie par :

$$I_n\left(\varepsilon\right) = \left[r_n - \frac{\varepsilon}{2^{n+2}}, r_n + \frac{\varepsilon}{2^{n+2}}\right]$$

et on désigne par \mathcal{O} l'ouvert défini par :

$$\mathcal{O} = \bigcup_{n \in \mathbb{N}} I_n\left(\varepsilon\right)$$

Comme \mathcal{O} contient \mathbb{Q} , il est dense dans \mathbb{R} et :

$$\lambda\left(\mathcal{O}\right) \leq \sum_{n \in \mathbb{N}} \lambda\left(I_n\left(\varepsilon\right)\right) = \sum_{n \in \mathbb{N}} \frac{\varepsilon}{2^{n+1}} = \varepsilon$$

2. Si A est bornée, elle est alors contenue dans un segment [a,b] et si de plus, elle est mesurable, on a alors $\lambda(A) \leq \lambda([a,b]) = b - a < +\infty$.

La réciproque est fausse : l'ensemble $\mathbb Q$ est de mesure nulle non borné.

L'exemple précédent nous donne un exemple d'ouvert non borné de mesure finie aussi petite que l'on veut.

3. Si A est mesurable d'intérieur \mathcal{O} non vide, il existe alors $x \in \mathcal{O}$ et $\varepsilon > 0$ tel que $]x - \varepsilon, x + \varepsilon[\subset \mathcal{O} \text{ dans } \mathcal{B}(\mathbb{R}), \text{ donc}:$

$$\lambda(A) \ge \lambda(\mathcal{O}) \ge \lambda(]x - \varepsilon, x + \varepsilon[) = 2\varepsilon > 0$$

La réciproque est fausse.

Par exemple $A=[0,1]\setminus\mathbb{Q}$ est tel que $\lambda\left(A\right)=\lambda\left([0,1]\right)-\lambda\left([0,1]\cap\mathbb{Q}\right)=1$ et :

$$\overset{\circ}{A} = [0,1] \setminus \overline{[0,1] \cap \mathbb{Q}} = \emptyset$$

On rappelle que si E est un espace métrique (ou topologique) et F une partie de E, on a :

$$\widehat{E \setminus F} = E \setminus \overline{F}$$

En effet si \mathcal{O} est un ouvert de E contenu dans $E \setminus F$, le fermé $E \setminus \mathcal{O}$ contient F, donc aussi son adhérence, soit $\overline{F} \subset E \setminus \mathcal{O}$ et $\mathcal{O} \subset E \setminus \overline{F}$. Comme $E \setminus \overline{F}$ est un ouvert de E contenu dans $E \setminus F$, on en déduit l'égalité $\widehat{E \setminus F} = E \setminus \overline{F}$.

4. Si A est mesurable de mesure égale à 1 dans [0,1], son complémentaire $[0,1]\setminus A$ est de mesure nulle donc d'intérieur vide et comme :

$$\widehat{[0,1]\setminus A}=[0,1]\setminus \overline{A}$$

on en déduit que $\overline{A}=[0,1]\,,$ ce qui signifie que A est dense dans $[0,1]\,.$

Une partie dense mesurable de [0,1] n'est pas nécessairement de mesure égale à 1 comme le montre l'exemple de $[0,1] \cap \mathbb{Q}$.

Exercice 27 (X, \mathcal{A}, μ) est un espace mesuré avec $\mu \neq 0$, \mathbb{R} est muni de la tribu de Borel et les fonctions considérées sont à valeurs réelles.

- 1. Montrer que si f, g sont deux fonctions mesurables de X dans \mathbb{R} , les fonctions f + g et fg sont mesurables.
- 2. Montrer que la somme de deux fonctions intégrables est intégrable.
- 3. Le produit de deux fonctions intégrables est-il intégrable?
- 4. La composée de deux fonctions intégrables est-il intégrable?
- 5. Soit $f: X \to \mathbb{R}$ une fonction intégrable positive. Montrer que pour tout réel $\varepsilon > 0$, il existe un réel $\eta > 0$ tel que :

$$(A \in \mathcal{A} \ et \ \mu(A) < \eta) \Rightarrow \int_{A} f d\mu < \varepsilon$$

- 6. Soit $f: X \to \mathbb{R}$ une fonction mesurable. Montrer que pour tout réel $\varepsilon > 0$, il existe une partie mesurable A de X telle que $\mu(A) > 0$ et $|f(y) f(x)| < \varepsilon$ pour tous x, y dans A.
- 7. Soit $f: X \to \mathbb{R}$ une fonction mesurable positive. Montrer que pour tout réel $\alpha > 0$, on a :

$$\mu\left(f^{-1}\left(\left[\alpha,+\infty\right[\right)\right) \le \frac{1}{\alpha} \int_{X} f d\mu$$

- 8. Soit $f: X \to \mathbb{R}$ une fonction mesurable positive. Montrer que $\int_X f d\mu = 0$ si, et seulement si, f est nulle presque partout.
- 9. Soit $f: X \to \overline{\mathbb{R}^+}$ une fonction mesurable positive. Montrer que si $\int_X f d\mu < +\infty$, on a alors $f(x) < +\infty$ presque partout.
- 10. Soient f, g deux fonctions mesurables positives sur X. Montrer que si f = g presque partout, alors $\int_X f d\mu = \int_X g d\mu$.
- 11. Soit $f: X \to \mathbb{R}$ une fonction mesurable. Montrer qu'il existe une partie mesurable A de X telle que $\mu(A) > 0$ et f est bornée sur A.
- 12. Soit $f: X \to \mathbb{R}$ une fonction mesurable telle que $f \neq 0$ presque partout. Montrer qu'il existe une partie mesurable A de X telle que $\mu(A) > 0$ et |f| est minorée sur A par une constante strictement positive.
- 13. Soit $f: X \to \mathbb{R}$ une fonction intégrable. Montrer que si $\int_A f d\mu = 0$ pour toute partie A mesurable dans X, alors la fonction f est nulle presque partout.

Solution.

1. L'application:

$$\begin{array}{ccc} \varphi & X & \to & \mathbb{R}^2 \\ & x & \mapsto & (f(x), g(x)) \end{array}$$

est mesurable du fait que pour tout pavé $[a,b] \times [c,d]$ de \mathbb{R}^2 , l'ensemble :

$$\varphi^{-1}([a,b] \times [c,d]) = f^{-1}([a,b]) \cap g^{-1}([c,d])$$

est mesurable (on rappelle que la tribu borélienne $\mathcal{B}\left(\mathbb{R}^{2}\right)$ est engendré par les pavés).

Comme la composée de deux fonctions mesurables est mesurable et les opérations d'addition et de multiplication sont continues (donc mesurables) de \mathbb{R}^2 dans \mathbb{R} , on en déduit que f+g et fg sont mesurables.

2. Si f, g sont intégrables, on a alors :

$$\int_{X} |f + g| \, d\mu \le \int_{X} |f| \, d\mu + \int_{X} |g| \, d\mu < +\infty$$

et f + q est intégrable.

- 3. La fonction $f: x \mapsto \frac{1}{\sqrt{x}}$ est intégrable sur]0,1[et son carré ne l'est pas.
- 4. Les fonctions $f: x \mapsto \frac{1}{\sqrt{x}}$ et $g: x \mapsto x^2$ sont intégrables sur]0,1[et la composée $g \circ f: x \mapsto \frac{1}{x}$ ne l'est pas.
- 5. On rappelle que, pour tout mesurable $A \in \mathcal{A}$, et toute fonction $f: X \to \mathbb{R}$ mesurable positive, l'intégrale de f sur A est :

$$\int_{A} f d\mu = \int_{Y} f \cdot \mathbf{1}_{A} d\mu$$

Si $f = \sum_{k=1}^{n} a_k \mathbf{1}_{A_k}$ est une fonction étagée intégrable positive, les réels a_k étant tous strictement positifs, pour tout réel $\eta > 0$ et tout $A \in \mathcal{A}$ tel que $\mu(A) < \eta$, on a :

$$\int_{A} f d\mu = \int_{X} \left(\sum_{k=1}^{n} a_{k} \mathbf{1}_{A_{k}} \cdot \mathbf{1}_{A} \right) d\mu = \sum_{k=1}^{n} a_{k} \int_{X} \mathbf{1}_{A_{k} \cap A} d\mu$$
$$= \sum_{k=1}^{n} a_{k} \mu \left(A_{k} \cap A \right) \leq \left(\sum_{k=1}^{n} a_{k} \right) \eta$$

donc, pour $\varepsilon>0$ donné, en prenant $\eta=\frac{\varepsilon}{\sum\limits_{k=1}^n a_k},$ on a $\int_A f d\mu<\varepsilon.$

Si $f: X \to \mathbb{R}^+$ est intégrable, il existe une suite $(a_n)_{n \in \mathbb{N}}$ de réels positifs et une suite $(A_n)_{n \in \mathbb{N}}$ de parties mesurables de X telles que $f = \sum_{n \in \mathbb{N}} a_n \mathbf{1}_{A_n}$ et on a par définition de l'intégrale :

$$\int_{A} f d\mu = \int_{X} f \cdot \mathbf{1}_{A} d\mu = \sum_{n \in \mathbb{N}} a_{n} \mu \left(A_{n} \cap A \right) < +\infty$$

Pour $\varepsilon > 0$, il existe un entier n tel que :

$$0 \le \int_A f d\mu - \sum_{k=1}^n a_k \mu \left(A_k \cap A \right) = \int_A \left(f - \sum_{k=1}^n a_k \mathbf{1}_{A_k} \right) d\mu < \frac{\varepsilon}{2}$$

et il existe $\eta > 0$ tel que tout $A \in \mathcal{A}$ tel que $\mu(A) < \eta$, on a :

$$\int_{A} \left(\sum_{k=1}^{n} a_k \mathbf{1}_{A_k} \right) d\mu < \frac{\varepsilon}{2}$$

ce qui nous donne $\int_A f d\mu < \varepsilon$.

6. En désignant par $(r_n)_{n\in\mathbb{N}}$ la suite des nombres rationnels, pour tout réel $\varepsilon>0$, on désigne par $(A_n(\varepsilon))_{n\in\mathbb{N}}$ la suite de parties mesurables de X définie par :

$$A_n(\varepsilon) = f^{-1}\left(\left]r_n - \frac{\varepsilon}{2}, r_n + \frac{\varepsilon}{2}\right[\right)$$

Comme \mathbb{Q} est dense dans \mathbb{R} , on a :

$$X = \bigcup_{n \in \mathbb{N}} A_n\left(\varepsilon\right)$$

Si tous les $A_n(\varepsilon)$ sont de mesure nulle, on a alors $\mu(X) = 0$, ce qui n'est pas. Il existe donc un rationnel r_n tel que $\mu(A_n(\varepsilon)) > 0$ et pour tous x, y dans $A_n(\varepsilon)$, on a :

$$|f(y) - f(x)| \le |f(y) - r_n| + |r_n - f(x)| < \varepsilon$$

7. Pour $\alpha > 0$, on note A_{α} l'ensemble mesurable :

$$A_{\alpha} = f^{-1}\left(\left[\alpha, +\infty\right[\right)\right)$$

Comme f est mesurable à valeurs positives, on a :

$$f \geq \alpha \mathbf{1}_{A_{\alpha}}$$

ce qui nous donne :

$$\int_{X} f d\mu \ge \alpha \int_{X} \mathbf{1}_{A_{\alpha}} d\mu = \alpha \mu \left(A_{\alpha} \right)$$

soit l'inégalité de Tchebychev :

$$\mu\left(f^{-1}\left([\alpha,+\infty[)\right) \le \frac{1}{\alpha} \int_{Y} f d\mu\right)$$

8. Si $\int_X f d\mu = 0$, on a alors $\mu(A_\alpha) = \mu\left(f^{-1}\left([\alpha, +\infty[)\right) = 0 \text{ pour tout r\'eel } \alpha > 0$. La suite $\left(\mu\left(A_{\frac{1}{n}}\right)\right)_{n \in \mathbb{N}^*}$ est alors une suite croissante d'ensemble de mesures nuls donc leur réunion :

$$A = \bigcup_{n \in \mathbb{N}^*} A_{\frac{1}{n}} = f^{-1} \left(\mathbb{R}^{+,*} \right)$$

est mesurable de mesure nulle, ce qui signifie que f est nulle presque partout.

Réciproquement si f est nulle presque partout, l'ensemble $A = f^{-1}(\mathbb{R}^{+,*})$ est alors de mesure nulle. On a alors $f = f \cdot \mathbf{1}_A$ et en écrivant que $f = \sum_{n \in \mathbb{N}} a_n \mathbf{1}_{A_n}$, où $(a_n)_{n \in \mathbb{N}}$ est une suite de réels positifs et

 $(A_n)_{n\in\mathbb{N}}$ une suite de parties mesurables de X, on a :

$$f = \sum_{n \in \mathbb{N}} a_n \mathbf{1}_{A_n \cap A}$$

et:

$$\int_{X} f d\mu = \sum_{n \in \mathbb{N}} a_{n} \mu \left(A_{n} \cap A \right) = 0$$

9. En notant $A_{\infty} = f^{-1}(\{\infty\})$, comme f est à valeurs positives, on a $f \ge n\mathbf{1}_{A_{\infty}}$ pour tout entier $n \ge 1$, donc $\int_X f d\mu \ge n\mu(A_{\infty})$ et :

$$0 \le \mu(A_{\infty}) \le \frac{1}{n} \int_{X} f d\mu \underset{n \to +\infty}{\to} 0$$

si $\int_X f d\mu < +\infty$, ce qui nous donne $\mu(A_\infty) = 0$ et signifie que $f(x) < +\infty$ presque partout.

10. L'ensemble:

$$A = \{x \in X \mid f(x) = g(x)\} = (f - g)^{-1} \{0\}$$

est mesurable. En écrivant que :

$$f = f \cdot \mathbf{1}_A + f \cdot \mathbf{1}_{X \setminus A}$$

on a:

$$\int_X f d\mu = \int_X f \cdot \mathbf{1}_A d\mu + \int_X f \cdot \mathbf{1}_{X \setminus A} d\mu$$

La fonction $f \cdot \mathbf{1}_{X \backslash A}$ est mesurable positive et nulle presque partout car :

$$\{x \in X \mid f \cdot \mathbf{1}_{X \setminus A}(x) \neq 0\} \subset X \setminus A$$

avec $X \setminus A$ de mesure nulle, donc :

$$\int_{X} f d\mu = \int_{X} f \cdot \mathbf{1}_{A} d\mu$$

ce résultat étant également valable pour g. Comme $f \cdot \mathbf{1}_A = g \cdot \mathbf{1}_A$, on en déduit que $\int_X f d\mu = \int_X g d\mu$. La réciproque est bien évidemment fausse.

11. Pour tout entier naturel n, l'ensemble :

$$A_n = \{x \in X \mid |f(x)| \le n\} = f^{-1}([-n, n])$$

est mesurable et $X=\bigcup_{n\in\mathbb{N}}A_n,$ la suite $(A_n)_{n\in\mathbb{N}}$ étant croissante, donc :

$$\mu\left(X\right) = \lim_{n \to +\infty} \mu\left(A_n\right)$$

et comme $\mu(X) > 0$, il existe un entier n tel que $\mu(A_n) > 0$, la fonction f étant bornée sur A_n (on peut aussi se contenter d'écrire que $0 < \mu(X) \le \sum_{n \in \mathbb{N}} \mu(A_n)$).

12. Pour tout entier naturel non nul n, l'ensemble :

$$A_n = \left\{ x \in X \mid |f(x)| \ge \frac{1}{n} \right\} = |f|^{-1} \left(\left[\frac{1}{n}, +\infty \right] \right)$$

est mesurable et $f^{-1}(\mathbb{R}^{+,*}) = \bigcup_{n \in \mathbb{N}^*} A_n$, la suite $(A_n)_{n \in \mathbb{N}}$ étant croissante, donc :

$$\mu\left(f^{-1}\left(\mathbb{R}^{+,*}\right)\right) = \lim_{n \to +\infty} \mu\left(A_n\right)$$

En supposant que $f \neq 0$ presque partout, on a $\mu\left(f^{-1}\left(\mathbb{R}^{+,*}\right)\right) > 0$, donc il existe un entier n tel que $\mu\left(A_n\right) > 0$, la fonction f étant minorée par $\frac{1}{n}$ sur A_n (on peut aussi se contenter d'écrire que $0 < \mu\left(f^{-1}\left(\mathbb{R}^{+,*}\right)\right) \leq \sum_{n \in \mathbb{N}} \mu\left(A_n\right)$).

13. On suppose d'abord que f est à valeurs positive.

Pour tout entier naturel non nul n, l'ensemble :

$$A_n = \left\{ x \in X \mid f(x) \ge \frac{1}{n} \right\} = f^{-1} \left(\left[\frac{1}{n}, +\infty \right] \right)$$

est mesurable et on a :

$$0 = \int_{A_n} f d\mu \ge \int_{A_n} \frac{1}{n} d\mu = \frac{1}{n} \mu \left(A_n \right)$$

donc $\mu(A_n)$ et $\mu(f^{-1}(\mathbb{R}^{+,*})) = \lim_{n \to +\infty} \mu(A_n) = 0$, ce qui signifie que f est nulle presque partout. Pour le cas général, on introduit les ensembles mesurables :

$$A^{+} = \{x \in X \mid f(x) > 0\} \text{ et } A^{-} = \{x \in X \mid f(x) < 0\}$$

et les fonctions mesurables $f^+ = f \cdot \mathbf{1}_{A^+} \ge 0$ et $f^- = f \cdot \mathbf{1}_{A^-} \le 0$. Pour toute partie A mesurable dans X, on a :

$$\int_A f^\pm d\mu = \int_A f \cdot \mathbf{1}_{A^\pm} d\mu = \int_X f \cdot \mathbf{1}_{A^\pm} \mathbf{1}_A d\mu = \int_X f \cdot \mathbf{1}_{A^\pm \cap A} d\mu = \int_{A^\pm \cap A} f d\mu = 0$$

Il en résulte que f^{\pm} est nulle presque partout, ce qui signifie que $\mu(A^{\pm}) = 0$ ou encore que f est nulle presque partout $(f^{-1}(\mathbb{R}^*))$ est la réunion de A^+ et A^- .

La réciproque est bien évidemment vraie (si f est nulle presque partout, il en est alors de même de |f|, donc $\int_A |f| \, d\mu = 0$ pour tout \mathcal{A} , et avec $\left| \int_A f \, d\mu \right| \leq \int_A |f| \, d\mu$, on déduit que $\int_A f \, d\mu = 0$).

Exercice 28 Soient (X, \mathcal{A}, μ) un espace mesuré, la mesure μ étant finie, et f une fonction mesurable de X dans \mathbb{R}^+ (\mathbb{R} est muni de la tribu de Borel). On définit les suites $(A_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ de parties mesurables de X par :

$$A_n = f^{-1}([n, +\infty[), B_n = f^{-1}([n, n+1[)$$

et g est la fonction définie sur X par :

$$g = \sum_{n=1}^{+\infty} n \mathbf{1}_{B_n}$$

1. Montrer que, pour tout entier $n \in \mathbb{N}$, on a :

$$\mu\left(A_n\right) = \sum_{k=n}^{+\infty} \mu\left(B_k\right)$$

- 2. Montrer que $g \le f < g + 1$.
- 3. Montrer que f est intégrable si, et seulement si, la série $\sum_{n\geq 1} n\mu\left(B_n\right)$ est convergente.
- 4. Montrer que, pour tout entier $n \in \mathbb{N}^*$, on a :

$$\sum_{k=1}^{n} k\mu(B_k) = \sum_{k=1}^{n} \mu(A_k) - n\mu(A_{n+1})$$

- 5. Montrer que la suite $(\mu(A_n))_{n\in\mathbb{N}}$ est décroissante et converge vers 0.
- 6. Montrer que f est intégrable si, et seulement si, la série $\sum_{n\geq 1} \mu\left(A_n\right)$ est convergente.
- 7. Le résultat précédent est-il valable dan le cas où $\mu(X) = +\infty$?

Solution. Comme $\mu(X) < +\infty$, toutes les parties mesurables de X sont de mesure finie. C'est donc le cas pour tous les ensembles A_n et B_n .

1. Pour tout entier $n \in \mathbb{N}$, on a la partition :

$$A_n = \bigcup_{k=n}^{+\infty} B_k$$

donc:

$$\mu\left(A_{n}\right) = \sum_{k=n}^{+\infty} \mu\left(B_{k}\right)$$

la série considérée étant convergente (puisque $\mu(A_n) < +\infty$).

2. Pour tout $x \in X$, en désignant par $n_x \in \mathbb{N}$ la partie entière de f(x), on a :

$$n_x \le f(x) < n_x + 1$$

donc $x \in B_{n_n}$ et $g(x) = n_x$, ce qui nous donne l'encadrement :

$$g\left(x\right) \le f\left(x\right) < g\left(x\right) + 1$$

3. La fonction f qui est mesurable positive est intégrable si, et seulement si, $\int_X f d\mu < +\infty$, ce qui équivaut, compte tenu de l'encadrement $g \leq f < g+1$, à :

$$\int_{X} g d\mu = \sum_{n=1}^{+\infty} n\mu \left(B_{n} \right) < +\infty$$

4. Pour tout entier $n \in \mathbb{N}^*$ et tout entier k compris entre 1 et n, on a :

$$\mu(A_k) = \sum_{j=k}^{+\infty} \mu(B_j) = \sum_{j=k}^{n} \mu(B_j) + \sum_{j=n+1}^{+\infty} \mu(B_j) = \sum_{j=k}^{n} \mu(B_j) + \mu(A_{n+1})$$

donc:

$$\begin{split} \sum_{k=1}^{n} \mu\left(A_{k}\right) &= \sum_{k=1}^{n} \sum_{j=k}^{n} \mu\left(B_{j}\right) + n\mu\left(A_{n+1}\right) \\ &= \sum_{j=1}^{n} \sum_{k=1}^{j} \mu\left(B_{j}\right) + n\mu\left(A_{n+1}\right) \\ &= \sum_{j=1}^{n} j\mu\left(B_{j}\right) + n\mu\left(A_{n+1}\right) \end{split}$$

5. Pour tout entier $n \in \mathbb{N}$, on a $A_{n+1} \subset A_n$, donc $\mu(A_{n+1}) \leq \mu(A_n)$ et la suite $(\mu(A_n))_{n \in \mathbb{N}}$ est décroissante. Comme $\mu(A_0) = \mu(X)$ est fini et $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$, on en déduit que :

$$0 = \mu\left(\emptyset\right) = \mu\left(\bigcap_{n \in \mathbb{N}} A_n\right) = \lim_{n \to +\infty} \mu\left(A_n\right)$$

(si tous les $\mu(A_n)$ sont infinis, ce résultat n'est plus vrai comme le montre l'exemple de $A_n = [n, +\infty[$ sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ muni de la mesure de Lebesgue. On a $\mu(A_n) = +\infty$ pour tout $n \in \mathbb{N}$ et $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$).

6. Si f est intégrable, la série $\sum_{n\geq 1}n\mu\left(B_{n}\right)$ est alors convergente et avec l'inégalité :

$$n\mu(A_{n+1}) = n \sum_{k=n+1}^{+\infty} \mu(B_k) \le \sum_{k=n+1}^{+\infty} k\mu(B_k)$$

on déduit que :

$$\lim_{n \to +\infty} n\mu \left(A_{n+1} \right) = 0$$

ce qui entraı̂ne la convergence de la série $\sum_{n\geq 1} \mu\left(A_n\right)$ avec l'égalité :

$$\sum_{n=1}^{+\infty} \mu(A_n) = \sum_{n=1}^{+\infty} n\mu(B_n)$$

Réciproquement si la série $\sum_{n\geq 1} \mu\left(A_n\right)$ est convergente, des inégalités :

$$\sum_{k=1}^{n} k\mu(B_k) = \sum_{k=1}^{n} \mu(A_k) - n\mu(A_{n+1}) \le \sum_{k=1}^{n} \mu(A_k)$$

on déduit alors que la série $\sum_{n\geq 1} n\mu\left(B_n\right)$ est convergente, ce qui revient à dire que f est intégrable.

7. En se plaçant sur $X = \mathbb{R}$ muni de la tribu de Borel, la fonction constante égale à $\frac{1}{2}$ est telle que $\sum_{n=0}^{+\infty} \mu(A_n) = 0 \text{ et } \int_{\mathbb{R}} f(x) \, dx = +\infty.$

Exercice 29 Soient (X, \mathcal{A}, μ) un espace mesuré et $f: X \to \mathbb{R}$ une fonction mesurable.

- 1. Montrer que s'il existe une fonction intégrable $\varphi: X \to \mathbb{R}^+$ telle $|f| \leq \varphi$ presque partout, la fonction f est alors intégrable.
- 2. Montrer que si f est bornée presque partout et $\mu(X)$ est fini, la fonction f est alors intégrable. En particulier, une fonction $f:[a,b] \to \mathbb{R}$ qui est mesurable et bornée presque partout est intégrable.

Solution.

1. En notant:

$$A = \{x \in X \mid |f(x)| \le \varphi(x)\} = (\varphi - |f|)^{-1} (\mathbb{R}^+)$$

on définit un ensemble mesurable et $\mu(X \setminus A) = 0$. On a alors :

$$\int_{X} |f| \, d\mu = \int_{X} |f| \cdot \mathbf{1}_{A} d\mu + \int_{X} |f| \cdot \mathbf{1}_{X \setminus A} d\mu$$

avec $|f| \cdot \mathbf{1}_{X \setminus A} = 0$ presque partout (cette fonction est nulle sur A, donc l'ensemble des points où elle est non nulle est contenu dans $X \setminus A$ qui est de mesure nulle), donc :

$$\int_{Y} |f| \, d\mu = \int_{Y} |f| \cdot \mathbf{1}_{A} d\mu \le \int_{Y} \varphi \cdot \mathbf{1}_{A} d\mu \le \int_{Y} \varphi d\mu < +\infty$$

et f est intégrable.

2. Si f est presque partout bornée sur X, il existe une constante $M \geq 0$ telle que $|f| \leq M$ presque partout et dans le cas où $\mu(X)$ fini, la fonction constante égale à M est intégrable $(M = M \cdot \mathbf{1}_X, \text{ donc } \int_X M d\mu = \mu(X) < +\infty)$, ce qui entraı̂ne l'intégrabilité de f.

Exercice 30

1. Soient I un intervalle réel non réduit à un point et $a \in I$.

Pour tout $x \in I$, on désigne par $I_{a,x}$ l'intervalle fermé d'extrémités a et x.

On se donne une fonction mesurable bornée, $f: I \to \mathbb{R}$ et on désigne par F la fonction définie sur I par :

$$\forall x \in I, \ F(x) = \int_{I_{a,x}} f(t) dt$$

soit:

$$F(x) = \begin{cases} \int_{a}^{x} f(t) dt & \text{si } a \leq x \\ \int_{x}^{a} f(t) dt & \text{si } x \leq a \end{cases}$$

Montrer que F est lipschitzienne (donc uniformément continue) sur I et qu'elle est dérivable en tout point $x_0 \in I$ où la fonction f est continue avec $F'(x_0) = f(x_0)$.

2. Montrer que si $f:[a,b] \to \mathbb{R}$ est une fonction dérivable de dérivée bornée, alors f' est intégrable sur [a,b] et :

$$\int_{a}^{b} f'(t) dt = f(b) - f(a)$$

3. En considérant la fonction f définie $sur\left[-\frac{1}{2},\frac{1}{2}\right]$ par $f\left(0\right)=0$ et :

$$f(x) = \frac{x}{\ln(|x|)}\cos\left(\frac{1}{x}\right)$$

pour $x \neq 0$, vérifier que le résultat précédent n'est plus valable pour f dérivable de dérivée non bornée.

Solution.

1. Comme f est mesurable et bornée, elle est intégrable sur tout segment $I_{a,x}$ contenu dans I et la fonction F est bien définie.

Pour tous x < y dans [a, b], on a :

$$F(y) = \int_{a}^{y} f(t) dt = \int_{a}^{x} f(t) dt + \int_{x}^{y} f(t) dt = F(x) + \int_{x}^{y} f(t) dt$$

donc:

$$F(y) - F(x) = \int_{x}^{y} f(t) dt$$

et:

$$|F(y) - F(x)| = \left| \int_{x}^{y} f(t) dt \right| \le \int_{x}^{y} |f(t)| dt \le M(y - x)$$

où M est un majorant de |f|.

De même, pour y < x, on a :

$$|F(y) - F(x)| \le M(x - y)$$

On a donc $|F(y) - F(x)| \le M|y - x|$ pour tous x, y dans I, ce qui signifie que la fonction F est lipschitzienne sur I et en conséquence, elle est uniformément continue.

Supposons que f soit continue en un point $x_0 \in I$.

Pour tout réel $\varepsilon > 0$, il existe un réel $\eta > 0$ tel que :

$$(t \in I \text{ et } |t - x_0| < \eta) \Rightarrow |f(t) - f(x_0)| < \varepsilon$$

donc pour $x \in I$ tel que $0 < |x - x_0| < \eta$ et tout t compris entre x_0 et x, on a :

$$|t - x_0| \le |x - x_0| < \eta$$

(le segment d'extrémités t et x_0 est contenu dans le segment d'extrémités x_0 et x qui a une longueur strictement inférieure à η) et :

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| = \frac{1}{|x - x_0|} \left| \int_{I_{x_0, x}} (f(t) - f(x_0)) dt \right|$$

$$\leq \frac{1}{|x - x_0|} \int_{I_{x_0, x}} |f(t) - f(x_0)| dt$$

$$\leq \frac{1}{|x - x_0|} \varepsilon |x - x_0| = \varepsilon$$

On a donc ainsi prouvé que :

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0)$$

ce qui signifie que F est dérivable en x_0 de nombre dérivé $F'(x_0) = f(x_0)$.

Si F est dérivable, sa dérivée F' doit vérifier la propriété des valeurs intermédiaires (théorème de Darboux), donc l'égalité F'=f ne sera pas réalisée pour f ne vérifiant pas la propriété des valeurs intermédiaires.

Par exemple la fonction en escaliers $f=0\cdot \mathbf{1}_{\left[0,\frac{1}{2}\right]}+1\cdot \mathbf{1}_{\left[\frac{1}{2},1\right]}$ est mesurable bornée sur $\left[0,1\right]$ et

$$F\left(x\right) = 0 \cdot \mathbf{1}_{\left[0,\frac{1}{2}\right]} + \left(x - \frac{1}{2}\right) \cdot \mathbf{1}_{\left[\frac{1}{2},1\right]} \text{ est non dérivable en } \frac{1}{2}.$$

2. On a $f' = \lim_{n \to +\infty} f_n$, où $(f_n)_{n \ge 2}$ est la suite de fonctions définies sur [a, b] par :

$$f_n(x) = \begin{cases} \frac{n}{b-a} \left(f\left(x + \frac{b-a}{n}\right) - f(x) \right) & \text{si } a \le x \le b - \frac{b-a}{n} \\ 0 & \text{si } b - \frac{b-a}{n} \le x \le b \end{cases}$$

Chaque fonction f_n étant continue par morceaux est borélienne, donc f' est borélienne comme limite simple de fonctions boréliennes.

Si de plus f' est bornée, elle est intégrable sur [a, b].

En notant M un majorant de |f'|, le théorème des accroissements finis nous dit que $|f_n| \leq M$ pour tout $n \geq 2$ et le théorème de convergence dominée nous dit que :

$$\int_{a}^{b} f'(t) dt = \lim_{n \to +\infty} \int_{a}^{b} f_n(t) dt$$

En désignant par :

$$F\left(x\right) = \int_{a}^{x} f\left(t\right) dt$$

la primitive de f nulle en a (f est continue et on utilise la convention $\int_a^x f(t) dt = -\int_x^a f(t) dt$ pour x < a), on a :

$$\int_{a}^{b} f_{n}(t) dt = \frac{n}{b-a} \int_{a}^{b-\frac{b-a}{n}} \left(f\left(t + \frac{b-a}{n}\right) - f(t) \right) dt$$

$$= \frac{n}{b-a} \left(\int_{a}^{b-\frac{b-a}{n}} f\left(t + \frac{b-a}{n}\right) dt - \int_{a}^{b-\frac{b-a}{n}} f(t) dt \right)$$

$$= \frac{n}{b-a} \left(\int_{a+\frac{b-a}{n}}^{b} f(x) dx - F\left(b - \frac{b-a}{n}\right) \right)$$

$$= \frac{n}{b-a} \left(F(b) - F\left(a + \frac{b-a}{n}\right) - F\left(b - \frac{b-a}{n}\right) \right)$$

$$= \frac{n}{b-a} \left(F(b) - F\left(b - \frac{b-a}{n}\right) - \frac{n}{b-a} \left(F\left(a + \frac{b-a}{n}\right) - F(a) \right)$$

et comme F est dérivable de dérivée F'=f, on déduit que :

$$\int_{a}^{b} f'(t) dt = \lim_{n \to +\infty} \int_{a}^{b} f_n(t) dt = F'(b) - F'(a)$$
$$= f(b) - f(a)$$

3. La fonction f est dérivable sur $\left[-\frac{1}{2},\frac{1}{2}\right]$ avec :

$$f'(x) = \frac{1}{\ln(|x|)}\cos\left(\frac{1}{x}\right) - \frac{1}{\ln^2(|x|)}\cos\left(\frac{1}{x}\right) + \frac{1}{x\ln(|x|)}\sin\left(\frac{1}{x}\right)$$

pour $x \neq 0$ et :

$$f'(0) = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{1}{\ln(|x|)} \cos\left(\frac{1}{x}\right) = 0$$

(on a
$$\left| \frac{1}{\ln(|x|)} \cos\left(\frac{1}{x}\right) \right| \le \frac{1}{\ln(|x|)} \underset{x \to 0}{\to} 0$$
).

La fonction g définie sur $\left[-\frac{1}{2}, \frac{1}{2}\right]$ par $g\left(0\right) = 0$ et :

$$g: x \mapsto \frac{1}{\ln(|x|)} \cos\left(\frac{1}{x}\right) \left(1 - \frac{1}{\ln(|x|)}\right)$$

pour $x \neq 0$ est continue sur $\left[-\frac{1}{2}, \frac{1}{2}\right]$ (on a $|g(x)| \leq \frac{1}{\ln(|x|)} \left(1 - \frac{1}{\ln(|x|)}\right) \xrightarrow[x \to 0]{} 0$) donc intégrable, mais la fonction

$$h: x \mapsto \frac{1}{x \ln(|x|)} \sin\left(\frac{1}{x}\right)$$

ne l'est pas. En effet, le changement de variable $t = \frac{1}{x}$ nous donne :

$$\int_{0}^{\frac{1}{2}} \left| h\left(x\right) dx \right| = \int_{2}^{+\infty} \frac{\left| \sin\left(t\right) \right|}{t \cdot \ln\left(t\right)} dt \ge \sum_{n=1}^{+\infty} \int_{n\pi}^{(n+1)\pi} \frac{\left| \sin\left(t\right) \right|}{t \cdot \ln\left(t\right)} dt$$

et pour tout $n \ge 1$, le changement de variable $t = n\pi + u$ nous donne :

$$\int_{n\pi}^{(n+1)\pi} \frac{|\sin(t)|}{t \cdot \ln(t)} dt = \int_{0}^{\pi} \frac{\sin(u)}{(n\pi + u)\ln(n\pi + u)} du$$

$$\geq \frac{1}{(n+1)\pi\ln((n+1)\pi)} \int_{0}^{\pi} \sin(u) du = \frac{2}{(n+1)\pi\ln((n+1)\pi)}$$

la série $\sum \frac{1}{n\ln\left(n\pi\right)}$ étant divergente, donc $\int_{0}^{\frac{1}{2}}\left|h\left(x\right)dx\right|=+\infty.$

La dérivée f' n'est pas bornée sur $\left[-\frac{1}{2},\frac{1}{2}\right]$ puisque :

$$\lim_{n\to +\infty} h\left(\frac{1}{\frac{\pi}{2}+2n\pi}\right) = -\lim_{n\to +\infty} \frac{\frac{\pi}{2}+2n\pi}{\ln\left(\frac{\pi}{2}+2n\pi\right)} = -\infty$$

- V - Convergence monotone, dominée

Exercice 31 Soit (X, \mathcal{A}, μ) un espace mesuré.

- 1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de X dans \mathbb{R}^+ qui converge vers une fonction f. Montrer que s'il existe une constante M>0 telle que $\int_X f_n d\mu \leq M$ pour tout $n\in\mathbb{N}$, on a alors $\int_X f d\mu \leq M$.
- 2. Soit $(f_n)_{n\in\mathbb{N}}$ une suite décroissante de fonctions mesurables de X dans \mathbb{R}^+ qui converge presque partout vers une fonction f.

Montrer que si f_0 est intégrable, il en est alors de même de toutes les fonctions f_n ainsi que de f et qu'on a:

$$\lim_{n \to +\infty} \int_X f_n d\mu = \int_X f d\mu$$

Le résultat subsiste-t-il si $\int_X f_0 d\mu = +\infty$?

3. Soient $f: X \to \overline{\mathbb{R}}$ une fonction intégrable et $(A_n)_{n \in \mathbb{N}}$ la suite de parties mesurables de X définie par :

$$A_n = |f|^{-1} \left([n, +\infty[\right)$$

(a) Montrer que f est finie presque partout et que :

$$\lim_{n \to +\infty} \int_{A_n} |f| \, d\mu = 0$$

(b) Montrer que pour tout réel $\varepsilon > 0$, il existe un réel $\eta > 0$ tel que :

$$(A \in \mathcal{A} \ et \ \mu(A) < \eta) \Rightarrow \int_{A} |f| \, d\mu < \varepsilon$$

(c) En prenant $(X, \mathcal{A}, \mu) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ où λ est la mesure de Lebesgue, montrer que la fonction F définie sur \mathbb{R} par :

$$F(x) = \int_0^x f(t) dt$$

est uniformément continue sur \mathbb{R} $(\int_0^x f(t) dt$ désigne l'intégrale de f sur l'intervalle d'extrémités 0 et x).

Solution.

1. En utilisant le lemme de Fatou, on a :

$$\int_{X} f d\mu = \int_{X} \lim_{n \to +\infty} (f_n) d\mu = \int_{X} \liminf_{n \to +\infty} (f_n) d\mu \le \liminf_{n \to +\infty} \int_{X} f_n d\mu \le M$$

On rappelle que :

$$\lim_{n \to +\infty} \inf u_n = \sup_{n \in \mathbb{N}} \left(\inf_{p \ge n} u_p \right) \text{ et } \lim_{n \to +\infty} \sup u_n = \inf_{n \in \mathbb{N}} \left(\sup_{p \ge n} u_p \right)$$

2. Comme $(f_n)_{n\in\mathbb{N}}$ converge presque partout en décroissant vers f, on a $0 \le f \le f_n \le f_0$ presque partout pour tout $n \in \mathbb{N}$ et l'intégrabilité de f_0 entraı̂ne celle des f_n et de f.

Comme $(f_0 - f_n)_{n \in \mathbb{N}}$ est une suite croissante de fonctions intégrables positives qui converge presque partout vers la fonction intégrable $f_0 - f$, le théorème de convergence monotone (Beppo Levi) nous dit que :

$$\lim_{n \to +\infty} \int_X (f_0 - f_n) d\mu = \int_X (f_0 - f) d\mu$$

et donc $\lim_{n \to +\infty} \int_X f_n d\mu = \int_X f d\mu$.

On peut aussi utiliser le théorème de convergence dominée : les f_n et f sont mesurables avec $|f_n| = f_n \le f_0$, la fonction f_0 étant positive intégrable, donc $\lim_{n \to +\infty} \int_{\mathcal{X}} f_n d\mu = \int_{\mathcal{X}} f d\mu$.

En considérant la suite de fonctions $(f_n)_{n\in\mathbb{N}} = (\mathbf{1}_{[n,+\infty[})_{n\in\mathbb{N}} \operatorname{sur} \mathbb{R}^+, \operatorname{on a} \lim_{n\to+\infty} (f_n) = 0 \operatorname{et} \int_{\mathbb{R}^+} f_n d\mu = +\infty$ pour tout $n\in\mathbb{N}$.

3.

(a) Comme f est intégrable, elle est finie presque partout. En effet, dans le cas contraire l'ensemble mesurable :

$$A_{\infty} = |f|^{-1} \left(\{ +\infty \} \right)$$

est de mesure strictement positive et :

$$\int_{X} |f| \, d\mu \ge \int_{A_{\infty}} |f| \, d\mu = \int_{A_{\infty}} (+\infty) \, d\mu = +\infty \cdot \mu \, (A_{\infty}) = +\infty$$

On a alors:

$$\lim_{n \to +\infty} \mathbf{1}_{A_n} = \mathbf{1}_{A_\infty} = 0 \ p.p.$$

(on a $\int_X \mathbf{1}_{A_\infty} d\mu = \mu(A_\infty) = 0$, ce qui revient à dire que $\mathbf{1}_{A_\infty} = 0$ p.p.), ce qui entraı̂ne que $\lim_{n \to +\infty} |f| \cdot \mathbf{1}_{A_n} = 0$ presque partout avec $|f| \cdot \mathbf{1}_{A_n} \leq |f|$ pour tout $n \in \mathbb{N}$, la fonction |f| étant intégrable. On déduit alors du théorème de convergence dominée que :

$$\lim_{n \to +\infty} \int_{A_n} |f| \, d\mu = \lim_{n \to +\infty} \int_X |f| \cdot \mathbf{1}_{A_n} d\mu = 0$$

(b) Ce résultat a été montré en approchant |f| par des fonctions étagées positives. On va le retrouver en utilisant la question précédente. Pour tout réel $\varepsilon > 0$, on peut trouver un entier n_{ε} tel que :

$$\forall n \ge n_{\varepsilon}, \ \int_{A_n} |f| \, d\mu < \frac{\varepsilon}{2}$$

Pour tout $A \in \mathcal{A}$ tel que $\mu(A) < \eta$, où η est à préciser, on a :

$$\int_{A}\left|f\right|d\mu=\int_{A\cap A_{n}}\left|f\right|d\mu+\int_{A\cap\left(X\backslash A_{n}\right)}\left|f\right|d\mu$$

avec:

$$\int_{A\cap A_n} |f| \, d\mu \le \int_{A_n} |f| \, d\mu$$

et:

$$\int_{A \cap (X \setminus A_n)} \left| f \right| d\mu \le n \int_{A \cap (X \setminus A_n)} d\mu \le n \int_A d\mu = n\mu \left(A \right) < n \cdot \eta$$

ce qui nous donne :

$$\int_{A} |f| \, d\mu \le \int_{A_{\pi}} |f| \, d\mu + n \cdot \eta$$

Prenant $n = n_{\varepsilon}$ et $\eta = \frac{\varepsilon}{2n_{\varepsilon}}$, on obtient $\int_{A} |f| d\mu < \varepsilon$.

(c) Soient $\varepsilon > 0$ et $\eta > 0$ tels que $\int_A |f| d\mu < \varepsilon$ pour tout $A \in \mathcal{A}$ tel que $\lambda(A) < \eta$. Pour x, y dans \mathbb{R} tels que $0 < y - x < \eta$, on a :

$$|F(y) - F(x)| = \left| \int_{[x,y]} f(t) dt \right| \le \int_{[x,y]} |f(t)| dt < \varepsilon$$

puisque $\lambda\left([x,y]\right) = y - x < \eta$. Cette inégalité étant encore valable pour $0 < x - y < \eta$. On a donc $|F\left(y\right) - F\left(x\right)| < \varepsilon$ pour tous réels x,y tels que $|y-x| < \eta$, ce qui signifie que F est uniformément continue sur \mathbb{R} .

Exercice 32 On se place sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ muni de la mesure de comptage :

$$\forall A \in \mathcal{P}(\mathbb{N}), \ \mu(A) = \operatorname{card}(A) \in \mathbb{N} \cup \{+\infty\}$$

Pour tout $n \in \mathbb{N}$, on désigne par δ_n la mesure de Dirac en n.

1. Montrer que :

$$\mu = \sum_{n \in \mathbb{N}} \delta_n$$

2. Montrer que pour toute suite réelle positive $x=(x_n)_{n\in\mathbb{N}}$, on a :

$$\int_{\mathbb{N}} x d\mu = \sum_{n \in \mathbb{N}} x_n$$

3. Calculer:

$$\lim_{n \to +\infty} \sum_{k=1}^{+\infty} \frac{n}{k} \sin\left(\frac{1}{kn}\right)$$

Solution.

1. Pour tout $A \in \mathcal{P}(\mathbb{N})$, on a:

$$\mu\left(A\right)=\operatorname{card}\left(A\right)=\sum_{n\in A}1=\sum_{n\in \mathbb{N}}\mathbf{1}_{A}\left(n\right)=\sum_{n\in \mathbb{N}}\delta_{n}\left(A\right)$$

2. En écrivant que $x = \sum_{n \in \mathbb{N}} x_n \mathbf{1}_{\{n\}}$, les x_n étant positifs, on a par définition de l'intégrale des fonctions mesurables positives :

$$\int_{\mathbb{N}} x d\mu = \sum_{n \in \mathbb{N}} x_n \mu\left(\{n\}\right) = \sum_{n \in \mathbb{N}} x_n$$

3. Pour tout $n \in \mathbb{N}^*$, on désigne par x_n la suite définie sur \mathbb{N}^* par :

$$x_n(k) = \frac{n}{k} \sin\left(\frac{1}{kn}\right)$$

et on a:

$$\int_{\mathbb{N}} x_n d\mu = \sum_{k \in \mathbb{N}^*} x_n(k) = \sum_{k \in \mathbb{N}^*} \frac{n}{k} \sin\left(\frac{1}{kn}\right)$$

cette série à termes positifs étant convergente puisque :

$$\frac{n}{k}\sin\left(\frac{1}{kn}\right) \underset{k\to+\infty}{\sim} \frac{1}{k^2}$$

Pour tout $n \in \mathbb{N}^*$, la suite x_n est sommable et pour tout $k \in \mathbb{N}^*$ on a :

$$\lim_{n \to +\infty} x_n(k) = \lim_{n \to +\infty} \frac{n}{k} \sin\left(\frac{1}{kn}\right) = \frac{1}{k^2}$$

c'est-à-dire que la suite $(x_n)_{n\in\mathbb{N}^*}$ converge simplement vers la suite $x:k\mapsto \frac{1}{k^2}$.

Comme $|x_n(k)| \le \frac{1}{k^2}$ (on a $0 \le \sin(x) \le x$ pour tout $x \in [0,1]$), la suite x étant sommable, on déduit du théorème de convergence dominée que :

$$\lim_{n \to +\infty} \int_{\mathbb{N}} x_n d\mu = \int_{\mathbb{N}} \lim_{n \to +\infty} x_n d\mu = \int_{\mathbb{N}} x d\mu$$

soit:

$$\lim_{n\to +\infty}\sum_{k=1}^{+\infty}\frac{n}{k}\sin\left(\frac{1}{kn}\right)=\sum_{k=1}^{+\infty}\frac{1}{k^2}=\frac{\pi^2}{6}$$

Exercice 33 Calculer

$$\lim_{n \to +\infty} \int_0^1 n^2 x \left(1 - x\right)^n dx$$

et conclure.

Solution. Soit $(f_n)_{n\in\mathbb{N}}$ définie par $f_n(x) = n^2x(1-x)^n$ sur I = [0,1]. Cette suite de fonctions converge simplement vers la fonction nulle et :

$$\int_{0}^{1} f_{n}(x) dx = \frac{n^{2}}{(n+1)(n+2)} \underset{n \to +\infty}{\longrightarrow} 1$$

On peut conclure qu'il est impossible de dominer la convergence.

Exercice 34 Pour tout réel $\alpha > 0$, on désigne par $(I_n(\alpha))_{n \in \mathbb{N}^*}$ la suite réelle définie par :

$$I_n(\alpha) = \int_0^{n^{\frac{1}{\alpha}}} \left(1 - \frac{x^{\alpha}}{n}\right)^n dx$$

Montrer que cette suite est convergente et calculer sa limite.

Solution. On désigne par $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définies sur $]0,+\infty[$ par :

$$f_n(x) = \begin{cases} \left(1 - \frac{x^{\alpha}}{n}\right)^n & \text{si } x \in \left]0, n^{\frac{1}{\alpha}}\right[\\ 0 & \text{si } x \ge n^{\frac{1}{\alpha}} \end{cases}$$

Chaque fonction f_n est continue et intégrable sur $]0, +\infty[$ avec :

$$\forall x \in]0, +\infty[, \begin{cases} \lim_{n \to +\infty} f_n(x) = e^{-x^{\alpha}} \\ \forall n \ge 1, |f_n(x)| \le e^{-x^{\alpha}} \end{cases}$$

et:

$$\int_{0}^{+\infty} e^{-x^{\alpha}} dx = \int_{0}^{+\infty} e^{-t} \frac{t^{\frac{1}{\alpha}-1}}{\alpha} dt = \frac{\Gamma\left(\frac{1}{\alpha}\right)}{\alpha}$$

On déduit alors du théorème de la convergence dominée que :

$$\lim_{n \to +\infty} I_n\left(\alpha\right) = \frac{\Gamma\left(\frac{1}{\alpha}\right)}{\alpha}$$

Exercice 35 Pour tout réel $\alpha > 0$, on désigne par $(I_n(\alpha))_{n \in \mathbb{N}^*}$ la suite réelle définie par :

$$I_n(\alpha) = \int_1^{+\infty} n^{\alpha} \sin\left(\frac{x}{n}\right) e^{-n^2 x^2} dx$$

Montrer que cette suite est convergente et calculer sa limite.

Solution. Soit $(f_n)_{n\in\mathbb{N}}$ définie par $f_n(x) = n^{\alpha} \sin\left(\frac{x}{n}\right) e^{-n^2 x^2}$ sur $I = [1, +\infty[$. On a :

$$\forall x \ge 1, |f_n(x)| \le n^{\alpha} e^{-n^2} \underset{n \to +\infty}{\longrightarrow} 0$$

avec:

$$\forall x \ge 1, |f_n(x)| \le n^{\alpha} e^{-\frac{n^2}{2}} e^{-\frac{x^2}{2}} \le \lambda e^{-\frac{x^2}{2}}$$

(la suite $\left(n^{\alpha}e^{-\frac{n^2}{2}}\right)_{n\geq 1}$ est majorée puisque convergente vers 0). On déduit alors du théorème de la convergence dominée que :

$$\lim_{n \to +\infty} I_n\left(\alpha\right) = 0$$

Exercice 36

1. Montrer que :

$$\lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n \ln\left(t\right) dt = \int_0^{+\infty} e^{-t} \ln\left(t\right) dt$$

2. Montrer que :

$$\int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} \ln(t) dt = \frac{n}{n+1} \left(\ln(n) - \sum_{k=1}^{n+1} \frac{1}{k}\right)$$

En déduire la valeur de $\int_0^{+\infty} e^{-t} \ln(t) dt$.

Solution.

1. On désigne par $(f_n)_{n>1}$ la suite de fonctions définies sur $]0,+\infty[$ par :

$$f_n(t) = \begin{cases} \left(1 - \frac{t}{n}\right)^n \ln(t) & \text{si } t \in]0, n[\\ 0 & \text{si } t \ge n \end{cases}$$

Chaque fonction f_n est continue et intégrable sur $]0, +\infty[$ avec :

$$\forall t \in]0, +\infty[, \lim_{n \to +\infty} f_n(t) = f(t) = e^{-t} \ln(t)$$

et:

$$\forall t \in]0, n[, |f_n(t)| = \left(1 - \frac{t}{n}\right)^n |\ln(t)| \le \varphi(t) = e^{-t} |\ln(t)|$$
$$\forall t \ge n, |f_n(t)| = 0 \le \varphi(t)$$

(pour 0 < x < 1, on a $\ln(1-x) \le -x$, donc $\ln\left(1-\frac{t}{n}\right) \le -\frac{t}{n}$ pour $t \in]0,n[$ et $\left(1-\frac{t}{n}\right)^n \le e^{-t})$ la fonction φ étant continue et intégrable sur $]0,+\infty[$. On déduit alors du théorème de la convergence dominée que :

$$\lim_{n \to +\infty} \int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} \ln\left(t\right) dt = \lim_{n \to +\infty} \int_{0}^{+\infty} f_{n}\left(t\right) dt = \int_{0}^{+\infty} e^{-t} \ln\left(t\right) dt$$

2. On a:

$$I_n = \int_0^n \left(1 - \frac{t}{n}\right)^n \ln(t) dt = \int_0^1 (1 - x)^n \ln(nx) n dx = \frac{n \ln(n)}{n + 1} + n J_n$$

et une intégration par parties donne :

$$J_{n+1} = \int_0^1 (1-x)^{n+1} \ln(x) \, dx = (n+1) \int_0^1 (1-x)^n \, (x \ln(x) - x) \, dx$$
$$= -(n+1) J_{n+1} + (n+1) J_n - (n+1) \int_0^1 x \, (1-x)^n \, dx$$

On a donc la relation de récurrence $(n+2) J_{n+1} = (n+1) J_n - \frac{1}{n+2}$, avec $J_0 = \int_0^1 \ln(x) dx = -1$, ce qui donne $(n+1) J_n = -\sum_{k=1}^{n+1} \frac{1}{k}$ et $I_n = \frac{n}{n+1} \left(\ln(n) - \sum_{k=1}^{n+1} \frac{1}{k} \right)$. On a alors :

$$\int_{0}^{+\infty} e^{-t} \ln(t) dt = \lim_{n \to +\infty} I_n = \lim_{n \to +\infty} \frac{n}{n+1} \left(\ln(n) - \sum_{k=1}^{n+1} \frac{1}{k} \right)$$
$$= -\gamma \simeq -0.577215664$$

Exercice 37

1. Montrer que, tout réel x et tout réel $t \in]-1,1[$ la série $\sum t^{n-1}\sin(nx)$ est convergente et calculer sa somme. On notera f(x,t) cette somme.

2. Montrer que, pour tout réel $x \in [0, \pi[$, on a :

$$\int_0^1 f(x,t) dt = \frac{\pi - x}{2}$$

3. Monter que, pour tout réel $x \in [0, \pi[$, on a :

$$\sum_{n=1}^{+\infty} \frac{\sin(nx)}{n} = \frac{\pi - x}{2}$$

Solution.

1. Pour tout entier $n \ge 1$, tout réel x et tout réel $t \in]-1,1[$, on note :

$$S_n(x,t) = \sum_{k=1}^{n} t^{k-1} \sin(kx)$$

la somme partielle de la série considérée.

On a:

$$S_{n}(x,t) = \Im\left(\sum_{k=1}^{n} t^{k-1} e^{ikx}\right) = \Im\left(e^{ix} \sum_{k=1}^{n} (te^{ix})^{k-1}\right) = \Im\left(e^{ix} \sum_{k=0}^{n-1} (te^{ix})^{k}\right)$$
$$= \Im\left(e^{ix} \frac{1 - t^{n} e^{inx}}{1 - te^{ix}}\right)$$

et comme |t| < 1, on obtient :

$$\lim_{n \to +\infty} S_n(x,t) = \Im\left(\frac{e^{ix}}{1 - te^{ix}}\right) = \frac{1}{\left|1 - te^{ix}\right|^2} \Im\left(e^{ix} - t\right)$$
$$= \frac{\sin(x)}{1 - 2t\cos(x) + t^2} = f(x,t)$$

2. Pour tout $x \in [0, \pi[$, on a :

$$\int_0^1 f(x,t) dt = \sin(x) \int_0^1 \frac{dt}{1 - 2t \cos(x) + t^2} = \sin(x) \int_0^1 \frac{dt}{(t - \cos(x))^2 + \sin^2(x)}$$
$$= \frac{1}{\sin(x)} \int_0^1 \frac{dt}{1 + \left(\frac{t - \cos(x)}{\sin(x)}\right)^2}$$

 $(\sin(x) \neq 0 \text{ pour } x \in]0, \pi[)$ et le changement de variable $u = \frac{t - \cos(x)}{\sin(x)}$ nous donne :

$$\int_{0}^{1} f(x,t) dt = \int_{-\frac{\cos(x)}{\sin(x)}}^{\frac{1-\cos(x)}{\sin(x)}} \frac{du}{1+u^{2}} = \int_{-\cot(x)}^{\tan(\frac{x}{2})} \frac{du}{1+u^{2}}$$

$$= \arctan\left(\tan\left(\frac{x}{2}\right)\right) + \arctan\left(\cot(x)\right)$$

$$= \frac{x}{2} + \arctan\left(\cot(x)\right)$$

et avec $\arctan\left(\cot a\left(x\right)\right)=\frac{\pi}{2}-x$ (cette fonction est définie et dérivable sur $]0,\pi[$ de dérivée $-\frac{1}{\sin^2\left(x\right)}\frac{1}{1+\frac{\cos^2\left(x\right)}{\sin^2\left(x\right)}}=-1,$ elle est donc égale à -x+c et $x=\frac{\pi}{2}$ donne $c=\frac{\pi}{2}$), on déduit que $\int_0^1 f\left(x,t\right)dt=\frac{\pi-x}{2}.$

3. Pour x fixé dans $]0, \pi[$, la suite de fonctions $(S_n(x,\cdot))_{n\geq 1}$ converge simplement sur]0, 1[vers la fonction $t\mapsto f(x,t)$, toutes les fonctions considérées étant continues sur]0, 1[avec :

$$|S_n(x,t)| = \left|\Im\left(e^{ix}\frac{1 - t^n e^{inx}}{1 - t e^{ix}}\right)\right| \le \left|e^{ix}\frac{1 - t^n e^{inx}}{1 - t e^{ix}}\right|$$
$$\le \frac{2}{|1 - t e^{ix}|} = \frac{2}{\sqrt{1 - 2t\cos(x) + t^2}} = \varphi(t)$$

la fonction φ étant continue sur [0,1], donc intégrable. On déduit alors du théorème de convergence dominée que :

$$\frac{\pi - x}{2} = \int_0^1 f(x, t) dt = \lim_{n \to +\infty} \int_0^1 S_n(x, t) dt = \lim_{n \to +\infty} \int_0^1 \left(\sum_{k=1}^n t^{k-1} \sin(kx) \right) dt$$
$$= \lim_{n \to +\infty} \sum_{k=1}^n \frac{\sin(kx)}{k} = \sum_{n=1}^{+\infty} \frac{\sin(nx)}{n}.$$

Exercice 38 Soient a < b deux réels et $(a_n)_{n \ge 1}$, $(b_n)_{n \ge 1}$ deux suites réelles telles que :

$$\forall x \in]a, b[, \lim_{n \to +\infty} (a_n \cos(nx) + b_n \sin(nx)) = 0$$

Montrer que $\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} b_n = 0$ (lemme de Cantor).

On peut raisonner par l'absurde en utilisant une suite de fonctions définie par :

$$f_k(x) = \frac{(a_{n_k}\cos(n_k x) + b_{n_k}\sin(n_k x))^2}{a_{n_k}^2 + b_{n_k}^2}$$

où la suite d'entiers $(n_k)_{k>1}$ est judicieusement choisie.

Solution. Supposons que l'une des suites $(a_n)_{n\geq 1}$ ou $(b_n)_{n\geq 1}$ ne converge pas vers 0. La suite $\left(a_n^2+b_n^2\right)_{n\geq 1}$ ne peut alors converger vers 0 et il existe alors un réel $\varepsilon>0$ tel que pour tout entier $k\geq 1$, il existe un entier n>k tel que $a_n^2+b_n^2>\varepsilon$. On peut alors construire une suite strictement croissante d'entier $(n_k)_{k\geq 1}$ telle que $a_{n_k}^2+b_{n_k}^2>\varepsilon$ pour tout $k\geq 1$. On définit alors la suite de fonctions $(f_k)_{k\geq 1}$ par $f_k\left(x\right)=\frac{\left(a_{n_k}\cos\left(n_kx\right)+b_{n_k}\sin\left(n_kx\right)\right)^2}{a_{n_k}^2+b_{n_k}^2}$. En utilisant l'inégalité de Cauchy-Schwarz dans \mathbb{R}^2 , on a pour tout $x\in]a,b[$:

$$0 \le f_k(x) \le \frac{\left(a_{n_k}^2 + b_{n_k}^2\right) \left(\cos^2\left(n_k x\right) + \sin^2\left(n_k x\right)\right)}{a_{n_k}^2 + b_{n_k}^2} = \varphi(x) = 1$$

et par hypothèse, la suite $(f_k)_{k\geq 1}$ converge simplement vers 0 puisque :

$$0 \le f_k(x) \le \frac{\left(a_{n_k}\cos\left(n_k x\right) + b_{n_k}\sin\left(n_k x\right)\right)^2}{\varepsilon}$$

On déduit alors du théorème de convergence dominée que :

$$\lim_{n \to +\infty} \int_{a}^{b} f_{k}(x) dx = 0.$$

En développant $(a_{n_k}\cos(n_k x) + b_{n_k}\sin(n_k x))^2$, on a :

$$\int_{a}^{b} f_{k}(x) dx = \int_{a}^{b} \frac{a_{n_{k}}^{2} \cos^{2}(n_{k}x) + 2a_{n_{k}} b_{n_{k}} \cos(n_{k}x) \sin(n_{k}x) + b_{n_{k}}^{2} \sin(n_{k}x)^{2}}{a_{n_{k}}^{2} + b_{n_{k}}^{2}} dx$$

$$= \int_{a}^{b} \frac{a_{n_{k}}^{2} + a_{n_{k}} b_{n_{k}} \sin(2n_{k}x) + \left(b_{n_{k}}^{2} - a_{n_{k}}^{2}\right) \sin(n_{k}x)^{2}}{a_{n_{k}}^{2} + b_{n_{k}}^{2}} dx$$

soit:

$$\begin{split} \int_{a}^{b} f_{k}\left(x\right) dx &= \frac{a_{n_{k}}^{2}\left(b-a\right)}{a_{n_{k}}^{2} + b_{n_{k}}^{2}} + \frac{a_{n_{k}}b_{n_{k}}}{a_{n_{k}}^{2} + b_{n_{k}}^{2}} \frac{\cos\left(2n_{k}a\right) - \cos\left(2n_{k}b\right)}{2n_{k}} + \frac{\left(b_{n_{k}}^{2} - a_{n_{k}}^{2}\right)}{a_{n_{k}}^{2} + b_{n_{k}}^{2}} \int_{a}^{b} \frac{1 - \cos\left(2n_{k}x\right)}{2} dx \\ &= \frac{a_{n_{k}}^{2}\left(b-a\right)}{a_{n_{k}}^{2} + b_{n_{k}}^{2}} + \frac{a_{n_{k}}b_{n_{k}}}{a_{n_{k}}^{2} + b_{n_{k}}^{2}} \frac{\cos\left(2n_{k}a\right) - \cos\left(2n_{k}b\right)}{2n_{k}} \\ &+ \frac{\left(b_{n_{k}}^{2} - a_{n_{k}}^{2}\right)}{a_{n_{k}}^{2} + b_{n_{k}}^{2}} \frac{1}{2} \left(b - a - \frac{\sin\left(2n_{k}b\right) - \sin\left(2n_{k}a\right)}{2n_{k}}\right) \\ &= \frac{b - a}{a_{n_{k}}^{2} + b_{n_{k}}^{2}} \left(a_{n_{k}}^{2} + \frac{b_{n_{k}}^{2} - a_{n_{k}}^{2}}{2}\right) + \frac{a_{n_{k}}b_{n_{k}}}{a_{n_{k}}^{2} + b_{n_{k}}^{2}} \frac{\cos\left(2n_{k}a\right) - \cos\left(2n_{k}a\right) - \cos\left(2n_{k}b\right)}{2n_{k}} \\ &- \frac{\left(b_{n_{k}}^{2} - a_{n_{k}}^{2}\right)}{a_{n_{k}}^{2} + b_{n_{k}}^{2}} \frac{\sin\left(2n_{k}b\right) - \sin\left(2n_{k}a\right)}{4n_{k}} \\ &= \frac{b - a}{2} + \frac{a_{n_{k}}b_{n_{k}}}{a_{n_{k}}^{2} + b_{n_{k}}^{2}} \frac{\cos\left(2n_{k}a\right) - \cos\left(2n_{k}b\right)}{2n_{k}} - \frac{b_{n_{k}}^{2} - a_{n_{k}}^{2}}{a_{n_{k}}^{2} + b_{n_{k}}^{2}} \frac{\sin\left(2n_{k}b\right) - \sin\left(2n_{k}a\right)}{4n_{k}} \\ &= \frac{b - a}{2} + \frac{a_{n_{k}}b_{n_{k}}}{a_{n_{k}}^{2} + b_{n_{k}}^{2}} \frac{\cos\left(2n_{k}a\right) - \cos\left(2n_{k}b\right)}{2n_{k}} - \frac{b_{n_{k}}^{2} - a_{n_{k}}^{2}}{a_{n_{k}}^{2} + b_{n_{k}}^{2}} \frac{\sin\left(2n_{k}b\right) - \sin\left(2n_{k}a\right)}{4n_{k}} \end{aligned}$$

avec:

$$\left|\frac{a_{n_k}b_{n_k}}{a_{n_k}^2+b_{n_k}^2}\frac{\cos\left(2n_ka\right)-\cos\left(2n_kb\right)}{2n_k}\right|\leq \frac{1}{2n_k}\underset{k\to+\infty}{\to}0$$

(en utilisant $|a_{n_k}b_{n_k}| \le \frac{a_{n_k}^2 + b_{n_k}^2}{2}$) et :

$$\left| \frac{b_{n_k}^2 - a_{n_k}^2}{a_{n_k}^2 + b_{n_k}^2} \frac{\sin(2n_k b) - \sin(2n_k a)}{4n_k} \right| \le \frac{1}{2n_k} \underset{k \to +\infty}{\to} 0$$

ce qui entraı̂ne $\lim_{n\to+\infty}\int_{a}^{b}f_{k}\left(x\right)dx=\frac{b-a}{2}>0$ et une contradiction.

Exercice 39 On désigne par \mathcal{H} le demi plan complexe défini par :

$$\mathcal{H} = \{ z \in \mathbb{C} \mid \Re(z) > 0 \}$$

- 1. Montrer que, pour tout nombre complexe z, la fonction $t \mapsto t^{z-1}e^{-t}$ est intégrable sur $]1, +\infty[$.
- 2. Soit z un nombre complexe. Montrer que la fonction $t\mapsto t^{z-1}e^{-t}$ est intégrable sur]0,1[si, et seulement si, $z\in\mathcal{H}$.

La fonction gamma d'Euler est la fonction définie sur \mathcal{H} par :

$$\forall z \in \mathcal{H}, \ \Gamma(z) = \int_{0}^{+\infty} t^{z-1} e^{-t} dt$$

3. Montrer que :

$$\Gamma(1) = 1 \ et \ \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

4. Montrer que la fonction gamma vérifie l'équation fonctionnelle :

$$\forall z \in \mathcal{H}, \ \Gamma(z+1) = z\Gamma(z)$$
 (2)

5. Montrer que pour tout entier naturel n, on a :

$$\Gamma(n+1) = n! \ et \ \Gamma\left(n + \frac{1}{2}\right) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$$

- 6.
- (a) Soient z et α deux nombres complexes. Montrer que la fonction $t \mapsto \frac{t^z e^{-\alpha t}}{1 e^{-t}}$ est intégrable $sur\]0, +\infty[$ si, et seulement si, $(z, \alpha) \in \mathcal{H}^2$.
- (b) Montrer que:

$$\forall (z, \alpha) \in \mathcal{H} \times \mathbb{R}^{+,*}, \ \int_0^{+\infty} \frac{t^z e^{-\alpha t}}{1 - e^{-t}} dt = \Gamma(z + 1) \zeta(z + 1, \alpha)$$

où ζ est la fonction dzéta de Hurwitz définie par :

$$\forall (z, \alpha) \in \mathcal{H} \times \mathbb{R}^{+,*}, \ \zeta(z+1, \alpha) = \sum_{n=0}^{+\infty} \frac{1}{(n+\alpha)^{z+1}}$$

En particulier, pour $\alpha = 1$, on a:

$$\forall z \in \mathcal{H}, \ \int_{0}^{+\infty} \frac{t^{z}}{e^{t} - 1} dt = \Gamma(z + 1) \zeta(z + 1)$$

 $où \zeta$ est la fonction dzéta de Riemann.

7. Pour tout entier $n \ge 1$ et tout $z \in \mathcal{H}$, on note :

$$I_n(z) = \frac{n!n^z}{z(z+1)\cdots(z+n)}$$

(a) Montrer que :

$$\forall z \in \mathcal{H}, \ \int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} t^{z-1} dt = I_{n}\left(z\right)$$

(b) En déduire que :

$$\forall z \in \mathcal{H}, \ \Gamma(z) = \lim_{n \to +\infty} \frac{n! n^z}{z(z+1)\cdots(z+n)}$$

 $(formule\ d'Euler).$

8. Montrer que :

$$\sqrt{\pi} = \lim_{n \to +\infty} \frac{2^{2n}}{\sqrt{n} \binom{2n}{n}}$$

soit:

$$\binom{2n}{n} \underset{n \to +\infty}{\backsim} \frac{1}{\sqrt{\pi}} \frac{2^{2n}}{\sqrt{n}}$$

(formule de Wallis).

- 9.
- (a) Montrer que, pour tout entier $n \ge 1$ et tout $z \in \mathcal{H}$, on a :

$$I_{2n}\left(z\right) = 2^{z-1} \left(1 + \frac{z}{2n+1}\right) \frac{I_n\left(\frac{z}{2}\right) I_n\left(\frac{z+1}{2}\right)}{I_n\left(\frac{1}{2}\right)}$$

(b) Montrer que, pour tout $z \in \mathcal{H}$, on a :

$$\Gamma\left(z\right) = \frac{2^{z-1}}{\sqrt{\pi}} \Gamma\left(\frac{z}{2}\right) \Gamma\left(\frac{z+1}{2}\right)$$

(formule de Legendre).

10. On désigne par f la fonction définie sur $\mathbb{R}^{+,*} \times \mathbb{R}$ par :

$$\forall (x, u) \in \mathbb{R}^{+,*} \times \mathbb{R}, \ f(x, u) = \begin{cases} 0 \ si \ u \le -\sqrt{x} \\ \left(1 + \frac{u}{\sqrt{x}}\right)^x e^{-u\sqrt{x}} \ si \ u > -\sqrt{x} \end{cases}$$

(a) Montrer que pour tout réel x > 0, on a :

$$\Gamma(x+1) = \sqrt{x} \left(\frac{x}{e}\right)^x \int_{-\infty}^{+\infty} f(x, u) du$$

(b) Montrer que, pour tout réel u, on a :

$$\lim_{x \to +\infty} f(x, u) = e^{-\frac{u^2}{2}}$$

(c) Montrer que pour tout $(x, u) \in [1, +\infty[\times \mathbb{R}, \text{ on } a :$

$$0 \le f(x, u) \le \varphi(u) = \begin{cases} e^{-\frac{u^2}{2}} \sin u \le 0\\ (1+u) e^{-u} \sin u > 0 \end{cases}$$

(d) En déduire la formule de Stirling :

$$\Gamma\left(x+1\right) \underset{x\to+\infty}{\backsim} \sqrt{2\pi x} \left(\frac{x}{e}\right)^x$$

Pour x = n entier naturel non nul, on retrouve la formule usuelle :

$$n! \underset{n \to +\infty}{\backsim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

11. Montrer que la fonction gamma est continue sur \mathcal{H} et indéfiniment dérivable sur $\mathbb{R}^{+,*}$ avec pour tout entier naturel non nul n et tout réel strictement positif x:

$$\Gamma^{(n)}(x) = \int_0^{+\infty} (\ln(t))^n t^{x-1} e^{-t} dt$$

- 12. En utilisant l'équation fonctionnelle (2), montrer que la fonction Γ peut être prolongée en une fonction continue sur $\mathbb{C} \setminus \mathbb{Z}^-$ et que ce prolongement vérifie la même équation fonctionnelle. Pour tout $z \in \mathbb{C} \setminus \mathbb{Z}^-$, on notera encore $\Gamma(z)$ ce prolongement.
- 13. Montrer que, pour tout entier naturel n, on a :

$$\Gamma(z) \underset{z \to -n}{\backsim} \frac{(-1)^n}{n!} \frac{1}{z+n}$$

14. La formule des compléments.

On désigne par φ la fonction définie sur \mathcal{H} par :

$$\forall z \in \mathcal{H}, \ \varphi(z) = \int_0^1 \frac{t^{z-1}}{1+t} dt$$

et par \mathcal{D} la bande ouverte du plan complexe définie par :

$$\mathcal{D} = \{ z \in \mathbb{C} \mid 0 < \Re(z) < 1 \}$$

(a) Montrer que, pour tout $z \in \mathcal{D}$, on a :

$$\int_{0}^{+\infty} \frac{t^{z-1}}{1+t} dt = \varphi(z) + \varphi(1-z)$$

(b) Montrer que, pour tout $z \in \mathcal{D}$, on a :

$$\Gamma(z)\Gamma(1-z) = \varphi(z) + \varphi(1-z)$$

(c) Montrer que, pour tout $z \in \mathcal{H}$, on a :

$$\varphi(z) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+z}$$

(d) Montrer que, pour tout $z \in \mathcal{D}$, on a :

$$\Gamma(z)\Gamma(1-z) = \frac{1}{z} - 2z\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2}$$

(e) Montrer que, pour tout nombre complexe $z \in \mathbb{C} \setminus \mathbb{Z}$ et tout réel $t \in [0, \pi]$, on a :

$$\cos(zt) = \frac{\sin(\pi z)}{\pi} \left(\frac{1}{z} - 2z \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2} \cos(nt) \right)$$

(f) Montrer que, pour tout $z \in \mathbb{C} \setminus \mathbb{Z}$, on a :

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$

(g) Montrer que, pour tout $z \in \mathbb{C} \setminus \mathbb{Z}$, on a :

$$\Gamma(z)\Gamma(-z) = -\frac{\pi}{z\sin(\pi z)}$$

(h) En déduire que, pour tout $z \in \mathbb{C}$, on a :

$$\sin\left(\pi z\right) = \pi z \prod_{n=1}^{+\infty} \left(1 - \frac{z^2}{n^2}\right)$$

Solution.

- 1. Pour tout nombre complexe z, la fonction $t\mapsto t^{z-1}e^{-t}$ est continue sur $]0,+\infty[$. Avec $\left|t^{z-1}e^{-t}\right|=t^{\Re(z)-1}e^{-t}=\mathop{o}\limits_{t\to+\infty}\left(e^{-\frac{t}{2}}\right)$, on déduit que l'intégrale $\int_{1}^{+\infty}t^{z-1}e^{-t}dt$ converge absolument pour tout nombre complexe z.
- 2. Avec $\left|t^{z-1}e^{-t}\right|=t^{\Re(z)-1}e^{-t} \underset{t\to 0^+}{\sim} t^{\Re(z)-1}$, on déduit que l'intégrale $\int_0^1 t^{z-1}e^{-t}dt$ converge absolument si, $\Re\left(z\right)>0$.
- 3. On a:

$$\Gamma(1) = \int_0^{+\infty} e^{-t} dt = 1$$

En effectuant le changement de variable $t=x^2$, le calcul de $\Gamma\left(\frac{1}{2}\right)$ se ramène au calcul de l'intégrale de Gauss :

$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt = 2 \int_0^{+\infty} e^{-x^2} dx = \sqrt{\pi}$$

(voir l'exercice 9).

4. Une intégration par parties donne pour $z \in \mathcal{H}$ et $0 < \varepsilon < R$:

$$\int_{\varepsilon}^{R} t^{z} e^{-t} dt = \left[-t^{z} e^{-t} \right]_{\varepsilon}^{R} + z \int_{\varepsilon}^{R} t^{z-1} e^{-t} dt$$

et le passage à la limite quand (ε, R) tend vers $(0, +\infty)$ donne le résultat.

5. De l'équation fonctionnelle (2), on déduit facilement par récurrence que, pour tout $n \in \mathbb{N}$, on a :

$$\Gamma(n+1) = n!\Gamma(1) = n!$$

et:

$$\Gamma\left(n+\frac{1}{2}\right) = \left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)\cdots\frac{1}{2}\Gamma\left(\frac{1}{2}\right)$$
$$= \frac{(2n)!}{2^{2n}n!}\Gamma\left(\frac{1}{2}\right) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$$

6.

(a) Pour tous nombres complexes z et α , la fonction $t \mapsto \frac{t^z e^{-\alpha t}}{1 - e^{-t}}$ est continue sur $]0, +\infty[$.

 $\text{Avec } \left| \frac{t^z e^{-\alpha t}}{1 - e^{-t}} \right| = \frac{t^{\Re(z)} e^{-\Re(\alpha)t}}{1 - e^{-t}} \underset{t \to 0^+}{\sim} \frac{1}{t^{1 - \Re(z)}}, \text{ on déduit que l'intégrale } \int_0^1 \frac{t^z e^{-\alpha t}}{1 - e^{-t}} dt \text{ converge absolument si, et seulement si, } \Re(z) > 0.$

absolument si, et seulement si, $\Re(z) > 0$. Pour $\Re(z) > 0$, on a $\left| \frac{t^z e^{-\alpha t}}{1 - e^{-t}} \right| = \frac{t^{\Re(z)} e^{-\Re(\alpha)t}}{1 - e^{-t}} \underset{t \to +\infty}{\sim} t^{\Re(z)} e^{-\Re(\alpha)t}$, donc l'intégrale $\int_1^{+\infty} \frac{t^z e^{-\alpha t}}{1 - e^{-t}} dt$ converge absolument si, et seulement si, $\Re(\alpha) > 0$ (pour $\Re(\alpha) > 0$, on a $t^{\Re(z)} e^{-\Re(\alpha)t} = 0$ of $t \to +\infty$ et pour $\Re(\alpha) \le 0$, on a $t^{\Re(z)} e^{-\Re(\alpha)t} > 0$ pour $t \to +\infty$ et pour $t \to +\infty$ et

(b) Pour tout $(z, \alpha) \in \mathcal{H} \times \mathbb{R}^{+,*}$, et tout réel t > 0, on a $0 < e^{-t} < 1$ et :

$$\frac{t^z e^{-\alpha t}}{1 - e^{-t}} = \sum_{n=0}^{+\infty} t^z e^{-(n+\alpha)t}$$

Les fonctions $t \mapsto \frac{t^z e^{-\alpha t}}{1 - e^{-t}}$ et $t \mapsto t^z e^{-(n+\alpha)t}$, pour $n \ge 0$, sont continues et intégrables sur $\mathbb{R}^{+,*}$ avec :

$$\int_{0}^{+\infty} \left| t^{z} e^{-(n+\alpha)t} \right| dt = \int_{0}^{+\infty} t^{\Re(z)} e^{-(n+\alpha)t} dt = \int_{0}^{+\infty} \frac{x^{\Re(z)}}{(n+\alpha)^{\Re(z)}} e^{-x} \frac{dx}{n+\alpha}$$
$$= \frac{1}{(n+\alpha)^{\Re(z)+1}} \Gamma\left(\Re\left(z\right)+1\right)$$

et on a:

$$\sum_{n=0}^{+\infty}\int_{0}^{+\infty}\left|t^{z}e^{-nt}\right|dt=\Gamma\left(\Re\left(z\right)+1\right)\sum_{n=0}^{+\infty}\frac{1}{\left(n+\alpha\right)^{\Re\left(z\right)+1}}<+\infty$$

On déduit alors du théorème de convergence dominée que :

$$\int_{0}^{+\infty} \frac{t^{z} e^{-\alpha t}}{1 - e^{-t}} dt = \sum_{n=0}^{+\infty} \int_{0}^{+\infty} t^{z} e^{-(n+\alpha)t} dt = \sum_{n=0}^{+\infty} \Gamma(z+1) \frac{1}{(n+\alpha)^{z+1}}$$
$$= \Gamma(z+1) \zeta(z+1,\alpha)$$

Pour $\alpha = 1$ et z = 1, on obtient :

$$\int_{0}^{+\infty} \frac{t}{e^{t} - 1} dt = \Gamma(2) \zeta(2) = \sum_{n=1}^{+\infty} \frac{1}{n^{2}} = \frac{\pi^{2}}{6}$$

7.

(a) Pour $n \geq 1$ et $z \in \mathcal{H}$, le changement de variable t = nx nous donne :

$$\int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} t^{z-1} dt = \int_{0}^{1} (1 - x)^{n} x^{z-1} n^{z} dx = n^{z} J_{n}(z)$$

Une intégration par parties nous donne :

$$J_{n+1}(z) = \int_0^1 (1-x)^{n+1} x^{z-1} dx = \frac{n+1}{z} \int_0^1 (1-x)^n x^z dx = \frac{n+1}{z} J_n(z+1)$$

et par récurrence, on déduit que :

$$J_{n}(z) = \frac{n!}{z(z+1)\cdots(z+n-1)} J_{0}(z+n)$$

$$= \frac{n!}{z(z+1)\cdots(z+n-1)} \int_{0}^{1} t^{z+n-1} dt$$

$$= \frac{n!}{z(z+1)\cdots(z+n-1)(z+n)}$$

On peut aussi écrire que :

$$\int_0^n \left(1 - \frac{t}{n}\right)^n t^{z-1} dt = \int_0^n \sum_{k=0}^n \binom{n}{k} (-1)^k \frac{t^{k+z-1}}{n^k} dt = n^z \sum_{k=0}^n \frac{\binom{n}{k} (-1)^k}{k+z}$$

et constater que la décomposition en éléments simples de la fraction rationnelle $P_n(z) = \frac{1}{z(z+1)\cdots(z+n)}$ s'écrit $P_n(z) = \sum_{k=0}^n \frac{\alpha_k}{k+z}$, les coefficients α_k étant donnés par :

$$\alpha_k = ((z+k) P_n(z))_{|z=-k} = \frac{(-1)^k}{k! (n-k)!} = \frac{(-1)^k \binom{n}{k}}{n!}$$

(b) On désigne par $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définies sur $\mathbb{R}^{+,*}$ par :

$$f_n(t) = \begin{cases} \left(1 - \frac{t}{n}\right)^n t^{z-1} & \text{si } t \in]0, n[\\ 0 & \text{si } t \ge n \end{cases}$$

Chaque fonction f_n est continue et intégrable sur $]0, +\infty[$ avec :

$$\forall t \in]0, +\infty[, \begin{cases} \lim_{n \to +\infty} f_n(t) = e^{-t}t^{z-1} \\ \forall n \ge 1, |f_n(t)| \le e^{-t}t^{\Re(z)-1} = f(t) \end{cases}$$

la fonction f étant continue et intégrable sur $]0,+\infty[$. On déduit alors du théorème de convergence dominée que :

$$\lim_{n\rightarrow+\infty}\int_{0}^{n}\left(1-\frac{t}{n}\right)^{n}t^{z-1}dt=\int_{0}^{+\infty}e^{-t}t^{z-1}dt=\Gamma\left(z\right)$$

soit:

$$\Gamma(z) = \lim_{n \to +\infty} I_n(z) = \lim_{n \to +\infty} \frac{n! n^z}{z(z+1)\cdots(z+n)}$$

8. Pour $z = \frac{1}{2}$, on a pour tout entier $n \ge 1$:

$$I_n\left(\frac{1}{2}\right) = \frac{n!\sqrt{n}}{\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)\cdots\left(\frac{2n+1}{2}\right)} = \frac{2^{2n+1}\left(n!\right)^2\sqrt{n}}{(2n+1)!} = \frac{2^{2n+1}\sqrt{n}}{(2n+1)\binom{2n}{n}}$$

et de la formule d'Euler, on déduit la formule de Wallis :

$$\sqrt{\pi} = \Gamma\left(\frac{1}{2}\right) = \lim_{n \to +\infty} I_n\left(\frac{1}{2}\right) = \lim_{n \to +\infty} \frac{2^{2n+1}\sqrt{n}}{(2n+1)\binom{2n}{n}}$$

Comme:

$$\frac{2^{2n+1}}{2n+1} \underset{n \to +\infty}{\backsim} \frac{2^{2n+1}}{2n} = \frac{2^{2n}}{n}$$

on a aussi:

$$\sqrt{\pi} = \lim_{n \to +\infty} \frac{2^{2n}}{\sqrt{n} \binom{2n}{n}}$$

soit:

$$\binom{2n}{n} \underset{n \to +\infty}{\backsim} \frac{1}{\sqrt{\pi}} \frac{2^{2n}}{\sqrt{n}}$$

9.

(a) On a:

$$I_{2n}(z) = \frac{(2n)!2^{z}n^{z}}{z(z+1)\cdots(z+n)(z+n+1)\cdots(z+2n)}$$

$$= \frac{(2n)!2^{z}n^{z}}{z(z+2)\cdots(z+2n)(z+1)\cdots(z+1+2(n-1))}$$

$$= \frac{(2n)!2^{z}n^{z}(\frac{z+1}{2}+n)}{2^{2n+1}\frac{z}{2}(\frac{z}{2}+1)\cdots(\frac{z}{2}+n)(\frac{z+1}{2})\cdots(\frac{z+1}{2}+(n-1))(\frac{z+1}{2}+n)}$$

avec:

$$\frac{z}{2}\left(\frac{z}{2}+1\right)\cdots\left(\frac{z}{2}+n\right) = \frac{n!n^{\frac{z}{2}}}{I_n\left(\frac{z}{2}\right)}$$

et:

$$\left(\frac{z+1}{2}\right)\cdots\left(\frac{z+1}{2}+n\right) = \frac{n!n^{\frac{z+1}{2}}}{I_n\left(\frac{z+1}{2}\right)}$$

ce qui nous donne :

$$I_{2n}(z) = \frac{(2n)! 2^{z} n^{z} \left(\frac{z+1}{2} + n\right)}{2^{2n+1} (n!)^{2} n^{\frac{2z+1}{2}}} I_{n}\left(\frac{z}{2}\right) I_{n}\left(\frac{z+1}{2}\right)$$
$$= \frac{(2n)!}{(n!)^{2}} \frac{2^{z}}{2^{2n+1}} \frac{1}{\sqrt{n}} \left(\frac{z+1}{2} + n\right) I_{n}\left(\frac{z}{2}\right) I_{n}\left(\frac{z+1}{2}\right)$$

et tenant compte de :

$$I_n\left(\frac{1}{2}\right) = \frac{2^{2n+1} (n!)^2 \sqrt{n}}{(2n+1)!}$$

on déduit que :

$$I_{2n}(z) = \frac{1}{I_n(\frac{1}{2})} \frac{2^z}{2n+1} \left(\frac{z+1}{2} + n\right) I_n(\frac{z}{2}) I_n(\frac{z+1}{2})$$
$$= 2^{z-1} \left(1 + \frac{z}{2n+1}\right) \frac{I_n(\frac{z}{2}) I_n(\frac{z+1}{2})}{I_n(\frac{1}{2})}$$

(b) En faisant tendre n vers l'infini dans ce qui précède, on obtient :

$$\Gamma\left(z\right)=2^{z-1}\frac{\Gamma\left(\frac{z}{2}\right)\Gamma\left(\frac{z+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}=\frac{2^{z-1}}{\sqrt{\pi}}\Gamma\left(\frac{z}{2}\right)\Gamma\left(\frac{z+1}{2}\right)$$

10.

(a) Pour x > 0 fixé, le changement de variable $t = x + u\sqrt{x}$ nous donne :

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt = \int_{-\sqrt{x}}^{+\infty} \left(x + u\sqrt{x} \right)^x e^{-\left(x + u\sqrt{x} \right)} \sqrt{x} du$$
$$= \sqrt{x} \left(\frac{x}{e} \right)^x \int_{-\sqrt{x}}^{+\infty} \left(1 + \frac{u}{\sqrt{x}} \right)^x e^{-u\sqrt{x}} du$$
$$= \sqrt{x} \left(\frac{x}{e} \right)^x \int_{-\infty}^{+\infty} f(x, u) du$$

(b) Pour u = 0 et x > 0, on a $u > -\sqrt{x}$ et :

$$f(x,u) = \left(1 + \frac{u}{\sqrt{x}}\right)^x e^{-u\sqrt{x}} = 1 \underset{x \to +\infty}{\to} 1 = e^{-\frac{u^2}{2}}$$

On se fixe un réel $u \neq 0$ et on désigne par x_u un réel strictement positif tel que $\sqrt{x_u} > -u$. Pour tout réel $x > x_u$, on a $u > -\sqrt{x_u} > -\sqrt{x}$ et :

$$f(x,u) = \left(1 + \frac{u}{\sqrt{x}}\right)^x e^{-u\sqrt{x}}$$

de sorte que :

$$\ln (f(x, u)) = x \left(\ln \left(1 + \frac{u}{\sqrt{x}} \right) - \frac{u}{\sqrt{x}} \right)$$
$$= x \left(-\frac{u^2}{2x} + o\left(\frac{1}{x}\right) \right)$$
$$= -\frac{u^2}{2} + o\left(1\right) \underset{x \to +\infty}{\to} -\frac{u^2}{2}$$

et:

$$\lim_{x \to +\infty} f(x, u) = e^{-\frac{u^2}{2}}$$

(c) On se fixe $x \ge 1$.

Pour $u \le -\sqrt{x}$, on a $f(x, u) = 0 \le e^{-\frac{u^2}{2}}$.

Pour $u > -\sqrt{x}$, on a :

$$f(x,u) = \left(1 + \frac{u}{\sqrt{x}}\right)^x e^{-u\sqrt{x}} = \left(\left(1 + \frac{u}{\sqrt{x}}\right)e^{-\frac{u}{\sqrt{x}}}\right)^x$$

Pour $-\sqrt{x} < u \le 0$, on a $\frac{u}{\sqrt{x}} \in]-1,0]$ et de **I.9** on déduit que :

$$0 \le f\left(x, u\right) \le e^{-\frac{u^2}{2}}$$

(la fonction $f: t \mapsto (1+t) e^{\frac{t^2}{2}-t}$ est de classe \mathcal{C}^{∞} sur \mathbb{R} avec $f'(t) = e^{\frac{t^2}{2}-t} (1+(1+t)(t-1)) = t^2 e^{\frac{t^2}{2}-t} \geq 0$, donc f est croissante et $f(t) \leq f(0) = 1$ pour tout $t \leq 0$, soit $(1+t) e^{-t} \leq e^{-\frac{t^2}{2}}$ et $0 \leq (1+t) e^{-t} \leq e^{-\frac{t^2}{2}}$ pour tout $t \in [-1,0]$).

Pour u > 0, avec la décroissance sur \mathbb{R}^+ de l'application $t \mapsto (1+t) e^{-t}$, on déduit que :

$$\left(1 + \frac{u}{\sqrt{x}}\right)e^{-\frac{u}{\sqrt{x}}} \le (1+u)e^{-u} \le 1$$

et:

$$0 \le f(x, u) \le ((1+u)e^{-u})^x \le (1+u)e^{-u}$$

On a donc pour tout réel $x \ge 1$ et tout réel u:

$$0 \le f(x, u) \le \varphi(u) = \begin{cases} e^{-\frac{u^2}{2}} & \text{si } u \le 0\\ (1+u)e^{-u} & \text{si } u > 0 \end{cases}$$

(d) Pour tout réel u, on a :

$$\lim_{x \to +\infty} f(x, u) = e^{-\frac{u^2}{2}}$$

les fonctions $u \mapsto f(x, u)$ étant continues et intégrables sur \mathbb{R} pour tout réel $x \ge 1$, avec :

$$0 \le f(x, u) \le \varphi(u)$$

pour tout réel $x \ge 1$ et tout réel u, la fonction φ étant continue intégrable sur \mathbb{R} . On déduit alors du théorème de convergence dominée que :

$$\lim_{x \to +\infty} \int_{-\infty}^{+\infty} f(x, u) \, du = \int_{-\infty}^{+\infty} e^{-\frac{u^2}{2}} du = 2 \int_{0}^{+\infty} e^{-\frac{u^2}{2}} du$$
$$= 2\sqrt{2} \int_{0}^{+\infty} e^{-t^2} dt = \sqrt{2\pi}$$

et:

$$\Gamma\left(x+1\right) = \sqrt{x} \left(\frac{x}{e}\right)^x \int_{-\infty}^{+\infty} f\left(x,u\right) du \underset{x \to +\infty}{\backsim} \sqrt{2\pi x} \left(\frac{x}{e}\right)^x$$

11. La fonction $(z,t) \mapsto t^{z-1}e^{-t}$ est continue sur $\mathcal{H} \times \mathbb{R}^{+,*}$ et pour tous réels 0 < a < b, tout nombre complexe $z \in \mathcal{H}$ tel que $a \leq \Re(z) \leq b$, tout réel t > 0, on a :

$$\left|t^{z-1}e^{-t}\right| = t^{\Re(z)-1}e^{-t} \leq \varphi\left(t\right) = \left\{\begin{array}{l} t^{a-1} \text{ si } 0 < t \leq 1 \\ t^{b-1}e^{-t} \text{ si } t > 1 \end{array}\right.$$

la fonction φ étant continue par morceaux et intégrable sur $\mathbb{R}^{+,*}$ (pour a>0, la fonction t^{a-1} est intégrable sur]0,1[et avec $\lim_{t\to+\infty}t^{b-1}e^{-\frac{t}{2}}=0$, on déduit que $\varphi(t)\leq e^{-\frac{t}{2}}$ pour t assez grand, la fonction $e^{-\frac{t}{2}}$ étant intégrable sur $]1,+\infty[)$. Il en résulte que la fonction Γ est continue sur toute bande fermée $\mathcal{H}_{a,b}=\{z\in\mathcal{H}\mid a\leq\Re(z)\leq b\}$, donc sur \mathcal{H} . On peut aussi procéder comme suit.

Pour tout entier $n \geq 1$, la fonction $(z,t) \mapsto t^{z-1}e^{-t}$ est continue sur $\mathcal{H}_{a,b} \times \left[\frac{1}{n}, n\right]$, donc la fonction $\Gamma_n : z \mapsto \int_{\frac{1}{n}}^n t^{z-1}e^{-t}dt$ est continue sur $\mathcal{H}_{a,b}$ et avec :

$$|\Gamma(z) - \Gamma_n(z)| \le \int_0^{\frac{1}{n}} t^{\Re(z) - 1} e^{-t} dt + \int_n^{+\infty} t^{\Re(z) - 1} e^{-t} dt$$

$$\le \int_0^{\frac{1}{n}} t^{a - 1} e^{-t} dt + \int_n^{+\infty} t^{b - 1} e^{-t} dt$$

$$\le \int_0^{\frac{1}{n}} t^{a - 1} dt + e^{-n} \int_n^{+\infty} t^{b - 1} dt = \frac{1}{a \cdot n^a} + \frac{n^b}{b \cdot e^n}$$

on déduit que la suite de fonctions $(\Gamma_n)_{n\in\mathbb{N}^*}$ converge uniformément vers Γ sur $\mathcal{H}_{a,b}$. Il en résulte que Γ est continue sur $\mathcal{H}_{a,b}$.

La fonction $f:(x,t)\mapsto t^{x-1}e^{-t}$ est indéfiniment dérivable sur $(\mathbb{R}^{+,*})^2$ avec pour $n\in\mathbb{N}^*$, $[a,b]\subset\mathbb{R}^{+,*}$ (avec a< b) et $x\in[a,b]$:

$$\left| \frac{\partial^n f}{\partial x^k} (x, t) \right| = \left| \ln (t) \right|^n t^{x-1} e^{-t} \le g_n (t) = \begin{cases} \left| \ln (t) \right|^n t^{a-1} & \text{si } 0 < t \le 1 \\ \left| \ln (t) \right|^n t^{b-1} e^{-t} & \text{si } t > 1 \end{cases}$$

la fonction g_n étant continue et intégrable sur $\mathbb{R}^{+,*}$ (on a $\lim_{t\to 0^+} |\ln(t)|^n t^{\frac{a}{2}} = 0$, donc pour t>0 assez petit on a $|g_n(t)| \leq t^{\frac{a}{2}-1}$, la fonction $t^{\frac{a}{2}-1}$ étant intégrable sur]0,1[et $\lim_{t\to +\infty} |\ln(t)|^n t^{b-1} e^{-\frac{t}{2}} = 0$, donc $|g_n(t)| \leq e^{-\frac{t}{2}}$ pour t assez grand, la fonction $e^{-\frac{t}{2}}$ étant intégrable sur $]1,+\infty[$). On en déduit alors que la fonction Γ est indéfiniment dérivable sur $\mathbb{R}^{+,*}$ et qu'on peut dériver sous le signe d'intégration.

12. On utilise le découpage :

$$\mathbb{C}\setminus\mathbb{Z}^-=\bigcup_{n=0}^{+\infty}\mathcal{H}_n$$

où on a noté:

$$\mathcal{H}_0 = \mathcal{H}$$

et pour tout entier $n \geq 1$:

$$\mathcal{H}_n = \{ z \in \mathbb{C} \mid -n < \Re(z) \le -(n-1) \} \setminus \{ -(n-1) \}$$

On peut définir, pour tout entier $n \geq 1$, la fonction Γ_n sur \mathcal{H}_n par :

$$\forall z \in \mathcal{H}_n, \ \Gamma_n(z) = \frac{\Gamma(z+n)}{z(z+1)\cdots(z+n-1)} = \frac{1}{z(z+1)\cdots(z+n-1)} \int_0^{+\infty} t^{z+(n-1)} e^{-t} dt$$

 $(\Gamma(z+n))$ est bien défini puisque $\Re(z+n)=\Re(z)+n>0$ et $z\notin\{-(n-1),\cdots,-1,0\}$ valide la division par $z(z+1)\cdots(z+n-1)$.

Comme Γ est continue sur \mathcal{H} , chaque fonction Γ_n est continue sur \mathcal{H}_n , comme quotient de deux fonctions continues.

On peut donc prolonger la fonction Γ en une fonction continue sur $\mathbb{C} \setminus \mathbb{Z}^-$ en posant :

$$\forall z \in \mathbb{C} \setminus \mathbb{Z}^{-}, \ \widetilde{\Gamma}(z) = \left\{ \begin{array}{l} \Gamma(z) \ \text{si } \Re(z) > 0 \\ \Gamma_{n}(z) \ \text{si } -n < \Re(z) \le -(n-1) \ \text{et } z \ne -(n-1) \end{array} \right.$$

Pour tout $z \in \mathbb{C} \setminus \mathbb{Z}^-$ tel que $\Re(z) > 0$, on a $\Re(z+1) > 0$ et :

$$\widetilde{\Gamma}(z+1) = \Gamma(z+1) = z\Gamma(z) = z\widetilde{\Gamma}(z)$$

et pour tout $z \in \mathbb{C} \setminus \mathbb{Z}^-$ tel que $-n < \Re\left(z\right) \le -\left(n-1\right)$, on a $-\left(n-1\right) < \Re\left(z+1\right) \le -\left(n-2\right)$ et :

$$\widetilde{\Gamma}(z+1) = \Gamma_{n-1}(z+1) = \frac{\Gamma(z+1+n-1)}{(z+1)(z+2)\cdots(z+1+n-1)} = \frac{\Gamma(z+n)}{(z+1)(z+2)\cdots(z+n)} = z\Gamma_n(z) = z\widetilde{\Gamma}(z)$$

13. Pour $z \in \mathbb{C} \setminus \mathbb{Z}^-$ tel que $-(n+1) < \Re(z) \le -(n-1)$, on a :

$$\Gamma(z) = \Gamma_{n+1}(z) = \frac{\Gamma(z+n+1)}{z(z+1)\cdots(z+n-1)(z+n)}$$

donc:

$$\lim_{z \to -n} (z+n) \Gamma(z) = \lim_{z \to -n} \frac{\Gamma(z+n+1)}{z(z+1)\cdots(z+n-1)}$$
$$= \frac{\Gamma(1)}{(-n)(-n+1)\cdots(-1)} = \frac{(-1)^n}{n!}$$

soit:

$$\Gamma(z) \underset{z \to -n}{\backsim} \frac{(-1)^n}{n!} \frac{1}{z+n}$$

En particulier:

$$\Gamma\left(z\right) \underset{z\to 0}{\backsim} \frac{1}{z}$$

14.

(a) La condition $0 < \Re(z) < 1$ nous assure que la fonction $t \mapsto \frac{t^{z-1}}{1+t}$ est intégrable sur $\mathbb{R}^{+,*}$.

Le changement de variable $t = \frac{1}{\theta}$, nous donne :

$$\int_{1}^{+\infty} \frac{t^{z-1}}{1+t} dt = \int_{0}^{1} \frac{\theta^{-z}}{1+\theta} d\theta = \varphi \left(1-z\right)$$

et le résultat annoncé.

(b) En utilisant le théorème de Fubini-Lebesgue, on a pour tout $z \in \mathcal{D}$:

$$\Gamma(z)\Gamma(1-z) = \int_0^{+\infty} u^{z-1} e^{-u} du \int_0^{+\infty} v^{-z} e^{-v} dv$$

$$= \int_0^{+\infty} \left(\int_0^{+\infty} u^{z-1} e^{-u} v^{-z} e^{-v} du \right) dv$$

$$= \int_0^{+\infty} e^{-v} \left(\int_0^{+\infty} \left(\frac{u}{v} \right)^{z-1} e^{-u} \frac{du}{v} \right) dv$$

et en faisant, pour tout v > 0 fixé, le changement de variable $w = \frac{u}{v}$, $dw = \frac{du}{v}$, on obtient, en utilisant encore le théorème de Fubini-Lebesgue :

$$\Gamma(z)\Gamma(1-z) = \int_0^{+\infty} e^{-v} \left(\int_0^{+\infty} w^{z-1} e^{-vw} dw \right) dv$$

$$= \int_0^{+\infty} \left(\int_0^{+\infty} e^{-v} e^{-vw} dv \right) w^{z-1} dw$$

$$= \int_0^{+\infty} \left(\int_0^{+\infty} e^{-(w+1)v} dv \right) w^{z-1} dw$$

$$= \int_0^{+\infty} \frac{w^{z-1}}{1+w} dw = \varphi(z) + \varphi(1-z)$$

(c) Pour tout entier $n \geq 1$, tout $z \in \mathcal{H}$ et tout réel $t \in \]0,1[\ ,$ on a :

$$\sum_{k=0}^{n-1} (-1)^k t^{z+k-1} = t^{z-1} \sum_{k=0}^{n-1} (-t)^k = t^{z-1} \frac{1 - (-t)^n}{1+t}$$

$$\frac{t^{z-1}}{1+t} = t^{z-1} \frac{(1-(-t)^n)}{1+t} + \frac{(-1)^n t^{z+n-1}}{1+t} = t^{z-1} \sum_{k=0}^{n-1} (-t)^k + \frac{(-1)^n t^{z+n-1}}{1+t}$$
$$= \sum_{k=0}^{n-1} (-1)^k t^{z+k-1} + \frac{(-1)^n t^{z+n-1}}{1+t}$$

et:

$$\varphi(z) = \sum_{k=0}^{n-1} (-1)^k \int_0^1 t^{z+k-1} dt + (-1)^n \int_0^1 \frac{t^{z+n-1}}{1+t} dt$$
$$= \sum_{k=0}^{n-1} \frac{(-1)^k}{k+z} + (-1)^n \int_0^1 \frac{t^{z+n-1}}{1+t} dt$$

avec:

$$0 \leqslant \left| \int_0^1 \frac{t^{z+n-1}}{1+t} dt \right| \leqslant \int_0^1 t^{\operatorname{Re}(z)+n-1} dt = \frac{1}{\operatorname{Re}(z)+n} \underset{n \to +\infty}{\to} 0$$

Ce qui nous donne:

$$\forall z \in \mathcal{H}, \ \varphi(z) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+z}$$

(d) Pour tout $z \in \mathcal{D}$, on a $1 - z \in \mathcal{D}$ et en utilisant la question précédente, on obtient :

$$\Gamma(z) \Gamma(1-z) = \varphi(z) + \varphi(1-z)$$

$$= \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+z} + \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1-z}$$

$$= \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+z} - \sum_{n=1}^{+\infty} \frac{(-1)^n}{n-z}$$

$$= \frac{1}{z} + \sum_{n=1}^{+\infty} (-1)^n \left(\frac{1}{n+z} - \frac{1}{n-z}\right)$$

$$= \frac{1}{z} - 2z \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2}$$

(e) Pour $z \in \mathbb{C} \setminus \mathbb{Z}$ fixé, on désigne par f la fonction définie sur \mathbb{R} , qui est 2π -périodique et telle que :

$$\forall t \in \left[-\pi, \pi \right], \ f\left(t \right) = \cos\left(zt \right)$$

Cette fonction est continue et de classe C^1 par morceaux sur \mathbb{R} , elle est donc développable en série de Fourier, soit :

$$\forall t \in \mathbb{R}, \ f(t) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(nt) + \sum_{n=1}^{+\infty} b_n \sin(nt)$$

Comme f est paire, on a $b_n = 0$ pour tout $n \ge 1$ et pour tout $n \ge 0$:

$$a_n = \frac{2}{\pi} \int_0^{\pi} \cos(zt) \cos(nt) dt$$

$$= \frac{1}{\pi} \int_0^{\pi} (\cos((z+n)t) + \cos((n-z)t)) dt$$

$$= \frac{(-1)^n \sin(z\pi)}{\pi} \left(\frac{1}{z+n} - \frac{1}{n-z}\right)$$

$$= -2\frac{(-1)^n z \sin(z\pi)}{\pi} \frac{1}{n^2 - z^2}$$

On a donc:

$$\forall t \in [0, \pi], \cos(zt) = \frac{\sin(\pi z)}{\pi} \left(\frac{1}{z} - 2z \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2} \cos(nt) \right)$$

(f) Prenant t=0 dans le développement en série de Fourier précédent, on a pour tout $z\in\mathcal{D}$:

$$1 = \frac{\sin(\pi z)}{\pi} \left(\frac{1}{z} - 2z \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2} \right)$$

et:

$$\Gamma(z)\Gamma(1-z) = \frac{1}{z} - 2z \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2} = \frac{\pi}{\sin(\pi z)}$$

(g) En désignant par θ la fonction définie sur $\mathbb{C} \setminus \mathbb{Z}$ par :

$$\forall z \in \mathbb{C} \setminus \mathbb{Z}, \ \theta(z) = \Gamma(z) \Gamma(1-z) \sin(\pi z)$$

le résultat précédent nous dit que cette fonction est constante égale à π sur \mathcal{D} . Comme, pour tout $z \in \mathbb{C} \setminus \mathbb{Z}$, on a $z+1 \in \mathbb{C} \setminus \mathbb{Z}$ et :

$$\theta(z+1) = \Gamma(z+1)\Gamma(-z)\sin(-\pi z)$$
$$= z\Gamma(z)\frac{\Gamma(1-z)}{-z}(-\sin(\pi z)) = \theta(z)$$

on déduit que θ est constante égale à π sur $\bigcup_{n=-\infty}^{+\infty} \mathcal{D}_n$, en notant, pour tout $n \in \mathbb{Z}$:

$$\mathcal{D}_{n} = \{ z \in \mathbb{C} \mid n < \Re(z) < n+1 \}$$

puis, par continuité, que θ est constante égale à π sur $\mathbb{C} \setminus \mathbb{Z}$.

On en déduit en particulier que $\Gamma(z) \neq 0$ pour tout $z \in \mathbb{C} \setminus \mathbb{Z}^-$ (pour $z \in \mathbb{N}$, on a $\Gamma(n) = n! \neq 0$).

Prenant
$$z = \frac{1}{2}$$
, on retrouve les égalités $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ et $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

(h) En écrivant que $\Gamma\left(1-z\right)=-z\Gamma\left(-z\right),$ la formule des compléments s'écrit aussi :

$$\forall z \in \mathbb{C} \setminus \mathbb{Z}, \ \Gamma(z)\Gamma(-z) = -\frac{\pi}{z\sin(\pi z)}$$

(i) Avec:

$$\Gamma(z) = \lim_{n \to +\infty} \frac{n! n^z}{z(z+1)\cdots(z+n)} = \frac{1}{z} \lim_{n \to +\infty} \frac{n^z}{(1+z)\cdots(1+\frac{z}{n})}$$

et:

$$\Gamma(-z) = -\frac{1}{z} \lim_{n \to +\infty} \frac{n^{-z}}{(1-z)\cdots\left(1-\frac{z}{n}\right)}$$

on déduit que :

$$-\frac{\pi}{z\sin(\pi z)} = \Gamma(z)\Gamma(-z) = -\frac{1}{z^2} \lim_{n \to +\infty} \frac{1}{(1-z^2)\cdots\left(1-\frac{z^2}{n^2}\right)}$$

et:

$$\sin(\pi z) = \pi z \lim_{n \to +\infty} (1 - z^2) \cdots \left(1 - \frac{z^2}{n^2}\right)$$
$$= \pi z \prod_{n=1}^{+\infty} \left(1 - \frac{z^2}{n^2}\right)$$

cette formule étant valable pour tout $z \in \mathbb{C}$ (pour $z \in \mathbb{Z}$, tout est nul).

Exercice 40 Utilisation d'une intégrale double pour calculer $\sum_{n=1}^{+\infty} \frac{1}{n^2}$

1. Montrer que:

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = -\int_0^1 \frac{\ln(1-y)}{y} dy$$

2. En déduire que :

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \int \int_{[0,1]^2} \frac{dxdy}{1 - xy}$$

- 3. Montrer que l'application $\varphi:(u,v)\mapsto (u-v,u+v)$ est un \mathcal{C}^1 -difféomorphisme de \mathbb{R}^2 sur lui même et préciser son inverse.
- 4. Déterminer l'image par φ^{-1} du carré $[0,1]^2$.

5. Montrer que pour tout $u \in [0, 1]$, on a :

$$\arctan\left(\frac{u}{\sqrt{1-u^2}}\right) = \arcsin\left(u\right)$$

et:

$$\arctan\left(\frac{1-u}{\sqrt{1-u^2}}\right) = \frac{\pi}{4} - \frac{\arcsin\left(u\right)}{2}$$

6. En utilisant le changement de variable $(x,y) = \varphi(u,v)$, montrer que $\iint \frac{dxdy}{1-xy} = \frac{\pi^2}{6}$ et en conséquence $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Solution.

1. Pour tout $y \in [0, 1[$, on a:

$$-\frac{\ln\left(1-y\right)}{y} = \sum_{n=1}^{+\infty} \frac{y^{n-1}}{n}$$

les fonctions considérées étant toutes à valeurs positives et continues sur [0, 1]. Tenant compte de :

$$\sum_{n=1}^{+\infty} \int_0^1 \frac{y^{n-1}}{n} dy = \sum_{n=1}^{+\infty} \frac{1}{n^2} < +\infty$$

on déduit du théorème de convergence monotone que :

$$-\int_0^1 \frac{\ln(1-y)}{y} dy = \sum_{n=1}^{+\infty} \int_0^1 \frac{y^{n-1}}{n} dy = \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

2. Pour y fixé dans]0,1[, on a:

$$\int_{0}^{1} \frac{dx}{1 - xy} = \left[-\frac{\ln(1 - xy)}{y} \right]_{0}^{1} = -\frac{\ln(1 - y)}{y}$$

et le théorème de Fubini-Tonelli nous donne :

$$\int \int_{[0,1]^2} \frac{dxdy}{1 - xy} = \int_0^1 \left(\int_0^1 \frac{dx}{1 - xy} \right) dy = -\int_0^1 \frac{\ln(1 - y)}{y} dy = \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

- 3. L'application $\varphi:(u,v)\mapsto (u-v,u+v)$ est linéaire bijective de \mathbb{R}^2 sur lui même (son déterminant vaut $2\neq 0$) d'inverse $\varphi^{-1}:(x,y)\mapsto \left(\frac{x+y}{2},\frac{y-x}{2}\right)$ et en conséquence réalise un \mathcal{C}^1 -difféomorphisme de \mathbb{R}^2 sur lui même.
- 4. L'image par φ^{-1} du carré $[0,1]^2$ est le carré \mathcal{C} de sommets $\varphi^{-1}(0,0) = (0,0)$, $\varphi^{-1}(1,0) = \left(\frac{1}{2}, -\frac{1}{2}\right)$, $\varphi^{-1}(1,1) = (1,0)$ et $\varphi^{-1}(0,1) = \left(\frac{1}{2}, \frac{1}{2}\right)$.

En effet, en désignant par (e_1, e_2) la base canonique de \mathbb{R}^2 , un point du carré $[0, 1]^2$ s'écrit $xe_1 + ye_2$ avec $0 \le x, y \le 1$ et son image par φ^{-1} est $x\left(\frac{1}{2}e_1 - \frac{1}{2}e_2\right) + y\left(\frac{1}{2}e_1 + \frac{1}{2}e_2\right)$, elle est donc dans le carré \mathcal{C} et réciproquement tout point de \mathcal{C} s'écrit $\varphi^{-1}(xe_1 + ye_2)$ avec $xe_1 + ye_2 \in [0, 1]^2$).

5. Si $g(u) = \arctan\left(\frac{u}{\sqrt{1-u^2}}\right)$, on a pour $u \in]0,1[$:

$$g'(u) = \frac{\sqrt{1 - u^2} - u \frac{-u}{\sqrt{1 - u^2}}}{1 - u^2} \frac{1}{1 + \frac{u^2}{1 - u^2}} = \frac{1}{\sqrt{1 - u^2}} = \arcsin'(u)$$

donc $g(u) = \arcsin(u) + c$, où c est une constante réelle. Faisant tendre u vers 0, on a c = 0 et $g(u) = \arcsin(u)$.

De même, si $h(u) = \arctan\left(\frac{1-u}{\sqrt{1-u^2}}\right)$, on a pour $u \in]0,1[$:

$$h'(u) = \frac{-\sqrt{1 - u^2} - (1 - u)\frac{-u}{\sqrt{1 - u^2}}}{1 - u^2} \frac{1}{1 + \frac{(1 - u)^2}{1 - u^2}} = -\frac{1}{2\sqrt{1 - u^2}} = -\frac{1}{2}\arcsin'(u)$$

donc $h(u) = -\frac{1}{2}\arcsin(u) + c$, où c est une constante réelle. Faisant tendre u vers 0, on a $c = \frac{\pi}{4}$ et $h(u) = \frac{\pi}{4} - \frac{1}{2}\arcsin(u)$.

6. Le changement de variable $(x,y)=\varphi\left(u,v\right)=(u-v,u+v)$ nous donne dxdy=2dudv et :

$$\begin{split} I &= \iint_{[0,1]^2} \frac{dxdy}{1 - xy} = 2 \iint_{\varphi^{-1}\left([0,1]^2\right)} \frac{dudv}{1 - u^2 + v^2} \\ &= 2 \left(\int_0^{\frac{1}{2}} \left(\int_{-u}^u \frac{dv}{1 - u^2 + v^2} \right) du + \int_{\frac{1}{2}}^1 \left(\int_{-(1-u)}^{1-u} \frac{dv}{1 - u^2 + v^2} \right) du \right) \\ &= 4 \left(\int_0^{\frac{1}{2}} \left(\int_0^u \frac{dv}{1 - u^2 + v^2} \right) du + \int_{\frac{1}{2}}^1 \left(\int_0^{1-u} \frac{dv}{1 - u^2 + v^2} \right) du \right) \end{split}$$

avec, pour u fixé dans]0,1[:

$$\int \frac{dv}{1 - u^2 + v^2} = \frac{1}{1 - u^2} \int \frac{dv}{1 + \frac{v^2}{1 - u^2}} = \frac{1}{1 - u^2} \int \frac{dv}{1 + \left(\frac{v}{\sqrt{1 - u^2}}\right)^2}$$
$$= \frac{1}{\sqrt{1 - u^2}} \arctan\left(\frac{v}{\sqrt{1 - u^2}}\right)$$

ce qui donne :

$$\begin{split} &\frac{I}{4} = \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1 - u^2}} \arctan\left(\frac{u}{\sqrt{1 - u^2}}\right) du + \int_{\frac{1}{2}}^{1} \frac{1}{\sqrt{1 - u^2}} \arctan\left(\frac{1 - u}{\sqrt{1 - u^2}}\right) du \\ &= \int_{0}^{\frac{1}{2}} \frac{\arcsin\left(u\right)}{\sqrt{1 - u^2}} du + \int_{\frac{1}{2}}^{1} \frac{1}{\sqrt{1 - u^2}} \left(\frac{\pi}{4} - \frac{1}{2}\arcsin\left(u\right)\right) du \\ &= \left[\frac{\arcsin^2\left(u\right)}{2}\right]_{0}^{\frac{1}{2}} + \frac{\pi}{4} \left[\arcsin\left(u\right)\right]_{\frac{1}{2}}^{\frac{1}{2}} - \frac{1}{2} \left[\frac{\arcsin^2\left(u\right)}{2}\right]_{\frac{1}{2}}^{1} \\ &= \frac{\pi^2}{72} + \frac{\pi}{4} \left(\frac{\pi}{2} - \frac{\pi}{6}\right) - \frac{1}{2} \left(\frac{\pi^2}{8} - \frac{\pi^2}{72}\right) = \frac{\pi^2}{24} \end{split}$$

et $I = \frac{\pi^2}{6}$.

 $\mathcal{P}(\mathbb{R})$ désigne la tribu de toutes les parties de \mathbb{R} et $\mathcal{B}(\mathbb{R}) \subset \mathcal{P}(\mathbb{R})$ la tribu de Borel sur \mathbb{R} (i. e. la tribu engendrée par les intervalles ouverts).

Pour tout partie A de \mathbb{R} , on note :

$$\ell^* (A) = \inf_{A \subset \bigcup_{n \in \mathbb{N}} I_n} \sum_{n \in \mathbb{N}} \ell (I_n) \in \overline{\mathbb{R}^+}$$

la borne inférieure étant prise sur toutes les suites d'intervalles $(I_n)_{n\in\mathbb{N}}$ tels que $A\subset\bigcup_{n\in\mathbb{N}}I_n$.

On dit qu'une partie A de \mathbb{R} est négligeable si $\ell^*(A) = 0$, ce qui revient à dire que pour tout réel $\varepsilon > 0$ il existe une suite $(I_n)_{n \in \mathbb{N}}$ d'intervalles telle que :

$$A \subset \bigcup_{n \in \mathbb{N}} I_n \text{ et } \sum_{n \in \mathbb{N}} \ell(I_n) < \varepsilon$$

On dit qu'une partie A de \mathbb{R} est Lebesgue-mesurable (on dira simplement mesurable) si pour toute partie E de \mathbb{R} , on a :

$$\ell^* (E) = \ell^* (E \cap A) + \ell^* (E \setminus A)$$

où $E \setminus A = E \cap (\mathbb{R} \setminus A)$ (condition de Carathéodory).

La famille de toutes les parties de \mathbb{R} qui sont Lebesgue-mesurable est une tribu qui contient la tribu de Borel $\mathcal{B}(\mathbb{R})$. On la note $\mathcal{L}(\mathbb{R})$.

Pour toute partie mesurable $A \in \mathcal{L}(\mathbb{R})$, on note $\lambda(A) = \ell^*(A)$ et λ est une mesure sur $\mathcal{L}(\mathbb{R})$ (mesure de Lebesgue sur $(\mathbb{R}, \mathcal{L}(\mathbb{R}))$).

Exercice 41 Montrer que $\ell^*(I) = \ell(I)$ pour tout intervalle réel I et que ℓ^* est une mesure extérieure sur $\mathcal{P}(\mathbb{R})$, c'est-à-dire que :

$$\ell^* (\emptyset) = 0$$
$$A \subset B \Rightarrow \ell^* (A) \le \ell^* (B)$$

et pour toute partie A de \mathbb{R} , toute suite $(A_n)_{n\in\mathbb{N}}$ de parties de \mathbb{R} , telles que $A\subset\bigcup_{n\in\mathbb{N}}A_n$, on a :

$$\ell^*(A) \le \sum_{n \in \mathbb{N}} \ell^*(A_n)$$

Solution. Si I est un intervalle réel, il fait alors partie des recouvrements possibles de I par des intervalles et on a $\ell^*(I) \leq \ell(I)$.

Du fait de la sous-additivité de ℓ , on a $\ell(I) \leq \sum_{n \in \mathbb{N}} \ell(I_n)$ pour tout recouvrement de I par des intervalles,

donc $\ell(I) \leq \ell^*(I)$ et on a l'égalité $\ell^*(I) = \ell(I)$.

En particulier, on a $\ell^*(\emptyset) = \ell(\emptyset) = 0$.

Supposons que $A \subset \bigcup_{n \in \mathbb{N}} A_n$, où A et les A_n sont des parties de \mathbb{R} .

S'il existe un entier p tel que $\ell^*(A_p) = +\infty$, l'inégalité $\ell^*(A) \leq \sum_{n \in \mathbb{N}} \ell^*(A_n) = +\infty$ est alors assurée.

En supposant que $\ell^*(A_n) < +\infty$, pour tout entier naturel n, étant donné un réel $\varepsilon > 0$, on peut trouver pour chacun de ces entiers n, une suite d'intervalles $(I_{n,k})_{n\in\mathbb{N}}$ tels que $A_n \subset \bigcup_{k\in\mathbb{N}} I_{n,k}$ et :

$$\ell^*\left(A_n\right) \le \sum_{k \in \mathbb{N}} \ell\left(I_{n,k}\right) < \ell^*\left(A_n\right) + \frac{\varepsilon}{2^{n+1}}$$

(définition de la borne inférieure), ce qui nous donne :

$$A \subset \bigcup_{n \in \mathbb{N}} A_n \subset \bigcup_{n \in \mathbb{N}} \bigcup_{k \in \mathbb{N}} I_{n,k}$$

et:

$$\ell^* (A) \leq \sum_{(n,k) \in \mathbb{N}^2} \ell (I_{n,k}) = \sum_{n \in \mathbb{N}} \left(\sum_{k \in \mathbb{N}} \ell (I_{n,k}) \right)$$
$$\leq \sum_{n \in \mathbb{N}} \left(\ell^* (A_n) + \frac{\varepsilon}{2^{n+1}} \right) = \sum_{n \in \mathbb{N}} \ell^* (A_n) + \varepsilon$$

Faisant tendre ε vers 0, on en déduit que $\ell^*(A) \leq \sum_{n \in \mathbb{N}} \ell^*(A_n)$.

Exercice 42

- 1. Montrer qu'une partie négligeable de \mathbb{R} est mesurable de mesure nulle.
- 2. Montrer que toute partie d'un sous-ensemble négligeable de \mathbb{R} est négligeable et qu'une réunion dénombrable de parties négligeables est négligeable.
- 3. Montrer qu'une partie négligeable de $\mathbb R$ est d'intérieur vide. La réciproque est-elle vraie ?
- 4. Montrer qu'une partie de \mathbb{R} est négligeable si, et seulement si, elle est contenue dans un borélien de mesure nulle.

Solution.

1. Soit $A \subset \mathbb{R}$ telle $\ell^*(A) = 0$.

Comme ℓ^* est sous-additive, pour toute partie E de \mathbb{R} , on a :

$$\ell^* (E) = \ell^* ((E \cap A) \cup (E \setminus A))$$

$$\leq \ell^* (E \cap A) + \ell^* (E \setminus A)$$

Puis avec:

$$E \cap A \subset A \Rightarrow \ell^* (E \cap A) \le \ell^* (A) = 0$$

$$E \setminus A \subset E \Rightarrow \ell^* (E \setminus A) \le \ell^* (E)$$

on déduit que :

$$\ell^* (E \cap A) + \ell^* (E \setminus A) \le \ell^* (E)$$

et l'égalité:

$$\ell^* (E) = \ell^* (E \cap A) + \ell^* (E \setminus A)$$

Donc A est mesurable et $\lambda(A) = 0$.

2. Si B est négligeable et $A \subset B$, on a alors $0 \le \ell^*(A) \le \ell^*(B) = 0$ et $\ell^*(A) = 0$, ce qui signifie que A est négligeable.

Si $A = \bigcup_{n \in \mathbb{N}} A_n$, où $(A_n)_{n \in \mathbb{N}}$ est une suite de négligeables, on a alors :

$$0 \le \ell^* (A) \le \sum_{n \in \mathbb{N}} \ell^* (A_n) = 0$$

donc $\ell^*(A) = 0$ et A est négligeable.

3. C'est déjà vu avec l'exercice 26.

Si A est mesurable d'intérieur \mathcal{O} non vide, il existe alors $x \in \mathcal{O}$ et $\varepsilon > 0$ tel que $]x - \varepsilon, x + \varepsilon[\subset \mathcal{O}$ dans $\mathcal{B}(\mathbb{R})$, donc :

$$\lambda(A) \ge \lambda(\mathcal{O}) \ge \lambda(|x - \varepsilon, x + \varepsilon|) = 2\varepsilon > 0$$

La réciproque est fausse.

Par exemple $A = [0,1] \setminus \mathbb{Q}$ est d'intérieur vide $(\stackrel{\circ}{A} = [0,1] \setminus \overline{[0,1] \cap \mathbb{Q}} = \emptyset)$ et $\lambda(A) = \lambda([0,1]) - \lambda([0,1] \cap \mathbb{Q}) = 1$ (λ est une mesure).

4. Si A est contenu dans un borélien négligeable, il est lui même négligeable.

Soit A négligeable. Pour tout entier $m \geq 1$, il existe une suite $(I_{n,m})_{n \in \mathbb{N}}$ d'intervalles telle que :

$$A \subset B_m = \bigcup_{n \in \mathbb{N}} I_{n,m} \text{ et } \sum_{n \in \mathbb{N}} \ell\left(I_{n,m}\right) < \frac{1}{m}$$

L'ensemble:

$$B = \bigcap_{m \ge 1} \left(B_1 \cap \dots \cap B_m \right)$$

est un borélien qui contient A et on a :

$$\lambda(B) = \lim_{m \to +\infty} \lambda(B_1 \cap \dots \cap B_m)$$

(suite décroissante de boréliens) avec :

$$0 \le \lambda \left(B_1 \cap \dots \cap B_m \right) \le \lambda \left(B_m \right) \le \sum_{n \in \mathbb{N}} \ell \left(I_{n,m} \right) < \frac{1}{m} \underset{m \to +\infty}{\longrightarrow} 0$$

donc $\lambda(B) = 0$.

Exercice 43 Montrer que, pour toutes parties A, B de \mathbb{R} , on a :

$$\ell^* (A \cup B) + \ell^* (A \cap B) \le \ell^* (A) + \ell^* (B)$$

Solution. Si $\ell^*(A) + \ell^*(B) = +\infty$, l'inégalité est alors vérifiée.

Supposons que $\ell^*(A) < +\infty$ et $\ell^*(B) < +\infty$.

Dans le cas où A et B sont mesurables (de mesure finie), on a :

$$\ell^* (A \cup B) = \lambda (A \cup B) = \lambda ((A \cap B) \cup (A \setminus A \cap B) \cup (B \setminus A \cap B))$$
$$= \lambda (A \cap B) + \lambda (A \setminus A \cap B) + \lambda (B \setminus A \cap B)$$

avec:

$$\lambda(A \setminus A \cap B) = \lambda(A) - \lambda(A \cap B)$$

et:

$$\lambda(B \setminus A \cap B) = \lambda(B) - \lambda(A \cap B)$$

(exercice ??), ce qui nous donne :

$$\lambda (A \cup B) = \lambda (A) + \lambda (B) - \lambda (A \cap B)$$

Dans le cas général pour tout réel $\varepsilon > 0$, il existe des suites d'intervalles $(I_n)_{n \in \mathbb{N}}$ et $(J_n)_{n \in \mathbb{N}}$ telles que $A \subset A' = \bigcup_{n \in \mathbb{N}} I_n$, $A \subset B' = \bigcup_{n \in \mathbb{N}} I_n$ et :

$$\ell^*(A) \le \sum_{n \in \mathbb{N}} \ell(I_n) < \ell^*(A) + \varepsilon$$

$$\ell^*(B) \le \sum_{n \in \mathbb{N}} \ell(J_n) < \ell^*(B) + \varepsilon$$

On a alors $A \cup B \subset A' \cup B'$ et $A \cap B \subset A' \cap B'$, les ensembles A' et B' étant mesurables (comme réunions de boréliens), donc :

$$\ell^{*}(A \cup B) + \ell^{*}(A \cap B) \leq \ell^{*}(A' \cup B') + \ell^{*}(A' \cap B') = \lambda (A' \cup B') + \lambda (A' \cap B')$$

$$\leq \lambda (A') + \lambda (B')$$

$$\leq \sum_{n \in \mathbb{N}} \lambda (I_{n}) + \sum_{n \in \mathbb{N}} \lambda (J_{n}) = \sum_{n \in \mathbb{N}} \ell (I_{n}) + \sum_{n \in \mathbb{N}} \ell (J_{n})$$

$$< \ell^{*}(A) + \ell^{*}(B) + 2\varepsilon$$

et faisant tendre ε vers 0, on a l'inégalité annoncée.

Exercice 44 Soit A une partie de \mathbb{R} contenu dans un mesurable B. Montrer que pour toute partie C de \mathbb{R} telle que $B \cap C = \emptyset$, on a:

$$\ell^* (A \cup C) = \ell^* (A) + \ell^* (C)$$

Solution. Comme $A \subset B$ avec B mesurable, la caractérisation de Carathéodory des mesurables nous donne :

$$\ell^* (A \cup C) = \ell^* ((A \cup C) \cap B) + \ell^* ((A \cup C) \setminus B)$$

avec:

$$(A \cup C) \cap B = (A \cap B) \cup (C \cap B) = A \cap B = A$$

et:

$$(A \cup C) \setminus B = (A \setminus B) \cup (C \setminus B) = \emptyset \cup C = C$$

donc:

$$\ell^* (A \cup C) = \ell^* (A) + \ell^* (C)$$

Exercice 45 Soient A, B deux parties de \mathbb{R} telles que d(A, B) > 0. Montrer que :

$$\ell^* (A \cup B) = \ell^* (A) + \ell^* (B)$$

Solution. Soit $\delta = d(A, B) = \inf_{(x,y) \in A \times B} |x - y| > 0$. L'ouvert :

$$\mathcal{O} = \bigcup_{x \in A} \left[x - \frac{\delta}{2}, x + \frac{\delta}{2} \right[$$

est disjoint de B et mesurable (un ouvert est réunion dénombrable d'intervalles deux à deux disjoints, donc mesurable), donc :

$$\ell^* (A \cup B) = \ell^* (A) + \ell^* (B)$$

De ce résultat, on déduit que la restriction de ℓ^* à $\mathcal{B}(\mathbb{R})$ est une mesure.

Exercice 46 Soit B une partie négligeable de \mathbb{R} . Montrer que pour toute partie A de \mathbb{R} on a :

$$\ell^* (A \cup B) = \ell^* (A) = \ell^* (A \setminus B)$$

Solution. On a:

$$\ell^*(A) \le \ell^*(A \cup B) \le \ell^*(A) + \ell^*(B) = \ell^*(A)$$

donc:

$$\ell^* (A \cup B) = \ell^* (A)$$

En écrivant que $A = (A \setminus B) \cup (A \cap B)$ avec $\ell^*(A \cap B) = 0$, on en déduit que :

$$\ell^* (A) = \ell^* (A \setminus B)$$

Exercice 47 Soit A une partie de \mathbb{R} . Montrer que les propriétés suivantes sont équivalentes :

- 1. A est mesurable;
- 2. pour tout réel $\varepsilon > 0$, il existe un ouvert \mathcal{O} de \mathbb{R} qui contient A tel que $\ell^*(\mathcal{O} \setminus A) < \varepsilon$;
- 3. pour tout réel $\varepsilon > 0$, il existe un fermé \mathcal{F} de \mathbb{R} contenu dans A tel que $\ell^*(A \setminus \mathcal{F}) < \varepsilon$.

Solution.

 $(1) \Rightarrow (2)$ Soit A mesurable de mesure finie.

Pour tout réel $\varepsilon > 0$ il existe une suite $(I_n)_{n \in \mathbb{N}}$ d'intervalles telle que :

$$A \subset \bigcup_{n \in \mathbb{N}} I_n \text{ et } \lambda\left(A\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\right) < \lambda\left(A\right) + \frac{\varepsilon}{2}$$

Pour tout entier $n \geq 0$, l'intervalle I_n est borné et on peut trouver un intervalle ouvert $I_n(\varepsilon)$ tel que :

$$I_n \subset I_n(\varepsilon)$$
 et $\ell(I_n(\varepsilon)) = \ell(I_n) + \frac{\varepsilon}{2^{n+2}}$

(pour I_n d'extrémités $\alpha < \beta$, on prend $I_n(\varepsilon) = \left] \alpha - \frac{\varepsilon}{2^{n+3}}, \beta + \frac{\varepsilon}{2^{n+3}} \right[$).

L'ensemble $\mathcal{O} = \bigcup_{n \in \mathbb{N}} I_n(\varepsilon)$ est alors un ouvert qui contient A et on a :

$$\lambda\left(\mathcal{O}\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\left(\varepsilon\right)\right) = \sum_{n \in \mathbb{N}} \ell\left(I_n\right) + \frac{\varepsilon}{2} < \lambda\left(A\right) + \varepsilon$$

Comme A est mesurable de mesure finie, on a pour toute partie B de \mathbb{R} qui contient A:

$$\ell^* (B \setminus A) = \ell^* (B) - \lambda (A)$$

En effet, en utilisant la caractérisation de Carathéodory, on a :

$$\ell^*(B) = \ell^*(B \cap A) + \ell^*(B \setminus A)$$

et pour B contenant A, cela donne :

$$\ell^*(B) = \ell^*(A) + \ell^*(B \setminus A) = \lambda(A) + \ell^*(B \setminus A)$$

soit, puisque $\lambda(A)$ est fini :

$$\ell^* (B \setminus A) = \ell^* (B) - \lambda (A)$$

Pour $B = \mathcal{O}$, cela nous donne :

$$\ell^* (\mathcal{O} \setminus A) = \ell^* (\mathcal{O}) - \lambda (A) = \lambda (\mathcal{O}) - \lambda (A) < \varepsilon$$

Pour le cas général, on écrit que :

$$A = \bigcup_{n \in \mathbb{N}^*} A_n$$

où:

$$A_n = A \cap [-n, n]$$

Chaque ensemble A_n étant mesurable de mesure finie, pour tout réel $\varepsilon > 0$, il existe un ouvert \mathcal{O}_n de \mathbb{R} qui contient A_n tel que $\ell^* \left(\mathcal{O}_n \setminus A_n \right) < \frac{\varepsilon}{2^n}$. L'ouvert $\mathcal{O} = \bigcup_{n \in \mathbb{N}^*} \mathcal{O}_n$ contient alors A et :

$$\ell^* (\mathcal{O} \setminus A) = \ell^* \left(\bigcup_{n \in \mathbb{N}^*} (\mathcal{O}_n \setminus A) \right) \le \sum_{n \in \mathbb{N}^*} \ell^* (\mathcal{O}_n \setminus A_n)$$
$$\le \sum_{n \in \mathbb{N}^*} \frac{\varepsilon}{2^n} = \varepsilon$$

(1) \Rightarrow (3) Si A est mesurable, il en est alors de même $\mathbb{R} \setminus A$, donc pour tout réel $\varepsilon > 0$, il existe un ouvert \mathcal{O} de \mathbb{R} qui contient $\mathbb{R} \setminus A$ tel que ℓ^* ($\mathcal{O} \setminus (\mathbb{R} \setminus A)$) $< \varepsilon$.

L'ensemble $\mathcal{F} = \mathbb{R} \setminus \mathcal{O}$ est alors un fermé contenu dans A avec :

$$\ell^*(A \setminus \mathcal{F}) = \ell^*(A \setminus (\mathbb{R} \setminus \mathcal{O})) = \ell^*(\mathcal{O} \setminus (\mathbb{R} \setminus A)) < \varepsilon$$

 $(2) \Rightarrow (1)$ Si (2) est vérifie, pour tout entier $n \geq 1$, on peut trouver un ouvert \mathcal{O}_n de \mathbb{R} qui contient A tel que $\ell^* (\mathcal{O}_n \setminus A) < \frac{1}{n}$. L'ensemble $B = \bigcap_{n \in \mathbb{N}^*} \mathcal{O}_n$ est alors un borélien qui contient A et on a :

$$\ell^*(B \setminus A) = \ell^* \left(\bigcap_{n \in \mathbb{N}^*} (\mathcal{O}_n \setminus A) \right) \le \ell^*(\mathcal{O}_n \setminus A) < \frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0$$

ce qui nous donne $\ell^*(B \setminus A) = 0$. L'ensemble $B \setminus A$ est donc négligeable et en conséquence mesurable. Il en résulte que $A = B \setminus (B \setminus A)$ est mesurable.

 $(3) \Rightarrow (1)$ Si (3) est vérifie, pour tout entier $n \geq 1$, on peut trouver un fermé \mathcal{F}_n de \mathbb{R} contenu dans A tel que $\ell^*(A \setminus \mathcal{F}_n) < \frac{1}{n}$. L'ensemble $B = \bigcup_{n \in \mathbb{N}^*} \mathcal{F}_n$ est alors un borélien contenu dans A et on a :

$$\ell^*(A \setminus B) = \ell^* \left(\bigcap_{n \in \mathbb{N}^*} (A \setminus \mathcal{F}_n) \right) \le \ell^*(A \setminus \mathcal{F}_n) < \frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0$$

ce qui nous donne $\ell^*(A \setminus B) = 0$. L'ensemble $A \setminus B$ est donc négligeable et en conséquence mesurable. Il en résulte que $A = B \cup (A \setminus B)$ est mesurable.

Exercice 48 Soit A une partie de \mathbb{R} . Montrer que A est mesurable de mesure finie si, et seulement si, pour tout réel $\varepsilon > 0$, il existe un compact K de \mathbb{R} contenu dans A et un ouvert \mathcal{O} de \mathbb{R} qui contient A tels que ℓ^* ($\mathcal{O} \setminus K$) $< \varepsilon$.

Solution. Soit $\varepsilon > 0$.

Comme A est mesurable, il existe un fermé \mathcal{F} de \mathbb{R} contenu dans A tel que $\ell^*(A \setminus \mathcal{F}) < \frac{\varepsilon}{2}$.

On notant, pour tout entier $n \geq 1$, $K_n = \mathcal{F} \cap [-n, n]$, on définit une suite croissante de compacts de \mathbb{R} (les K_n sont fermés et bornés) telle que $\mathcal{F} = \bigcup_{n \in \mathbb{N}^*} K_n$ et :

$$\ell^*\left(\mathcal{F}\right) = \lambda\left(\mathcal{F}\right) = \lim_{n \to +\infty} \lambda\left(K_n\right)$$

Dans le cas où A est de mesure finie, $\lambda(\mathcal{F})$ est fini et il existe un entier $n_0 \geq 1$ tel que :

$$\lambda\left(\mathcal{F}\right) - \frac{\varepsilon}{2} < \lambda\left(K_{n_0}\right) < \lambda\left(\mathcal{F}\right) + \frac{\varepsilon}{2}$$

Donc $K = K_{n_0}$ est un compact de \mathbb{R} contenu dans A tel que :

$$\lambda (A \setminus K) = \lambda (A) - \lambda (K) = (\lambda (A) - \lambda (\mathcal{F})) + (\lambda (\mathcal{F}) - \lambda (K))$$

$$= \lambda (A \setminus \mathcal{F}) + (\lambda (\mathcal{F}) - \lambda (K))$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

En désignant par \mathcal{O} un ouvert de \mathbb{R} qui contient A et tel que $\ell^*(\mathcal{O} \setminus A) < \varepsilon$, on aboutit à :

$$\ell^* (\mathcal{O} \setminus K) = \lambda (\mathcal{O} \setminus K) = \lambda ((\mathcal{O} \setminus A) \cup (A \setminus K))$$
$$= \lambda (\mathcal{O} \setminus A) + \lambda (A \setminus K) < 2\varepsilon$$

Réciproquement soit $A \subset \mathbb{R}$ tel que pour tout $\varepsilon > 0$, il existe un compact K de \mathbb{R} contenu dans A et un ouvert \mathcal{O} de \mathbb{R} qui contient A tels que $\ell^*(\mathcal{O} \setminus K) < \varepsilon$.

Dans ces conditions, pour tout entier $n \ge 1$, il existe un compact K_n contenu dans A et un ouvert \mathcal{O}_n qui contient A tels que ℓ^* ($\mathcal{O}_n \setminus K_n$) $< \frac{1}{n}$.

L'ensemble $B = \bigcup_{n \in \mathbb{N}^*} K_n$ est alors un borélien contenu dans A et on a, pour tout entier $n \ge 1$:

$$A \setminus B = \bigcap_{n \in \mathbb{N}^*} (A \setminus K_n) \subset \bigcap_{n \in \mathbb{N}^*} (\mathcal{O}_n \setminus K_n) \subset \mathcal{O}_n \setminus K_n$$

donc:

$$\ell^*(A \setminus B) \le \ell^*(\mathcal{O}_n \setminus K_n) < \frac{1}{n} \underset{n \to +\infty}{\to} 0$$

ce qui nous donne ℓ^* $(A \setminus B) = 0$. L'ensemble $A \setminus B$ est alors négligeable et en conséquence mesurable. Il en résulte que $A = B \cup (A \setminus B)$ est mesurable.

En écrivant que :

$$A = K_1 \cup (A \setminus K_1) \subset K_1 \cup (\mathcal{O}_1 \setminus K_1)$$

on déduit que :

$$\lambda(A) < \lambda(K_1) + \lambda(\mathcal{O}_1 \setminus K_1) < \lambda(K_1) + 1 < +\infty$$

(un compact est mesurable de mesure finie).

Exercice 49 Fonctions Riemann-intégrables.

On se donne deux réels a < b et une fonction bornée $f : [a,b] \to \mathbb{R}$. Pour tout $x \in [a,b]$, l'oscillation de f en x est le réel :

$$\omega\left(x\right) = \inf_{\eta > 0} \sup_{|x - \eta, x + \eta \cap [a, b]} \left| f\left(y\right) - f\left(z\right) \right|$$

1. Montrer que l'ensemble des points de continuité de f est :

$$C = \{x \in [a, b] \mid \omega(x) = 0\}$$

- 2. Montrer que la fonction ω est semi-continue supérieurement.
- 3. Montrer que, pour tout entier $n \geq 1$, l'ensemble :

$$D_n = \left\{ x \in [a, b] \mid \omega(x) \ge \frac{1}{n} \right\}$$

est un fermé et en déduire que l'ensemble D des points de discontinuité de f est mesurable.

4. On se propose de montrer dans cette question, qu'une fonction Riemann-intégrable est continue presque partout.

On suppose que la fonction bornée $f:[a,b]\to\mathbb{R}$ est Riemann-intégrable.

On se donne un réel $\varepsilon > 0$ et un entier $n \geq 1$.

(a) Justifier l'existence de deux fonctions en escaliers φ et ψ telles que $|f - \varphi| \leq \psi$ et $\int_a^b \psi(x) \, dx < \frac{\varepsilon}{2n}.$

On se donne une subdivision $a_0 < a_1 < \dots < a_p = b$ de [a,b] telle que $\varphi = \sum_{k=0}^{p-1} \varphi_k \mathbf{1}_{[a_k,a_{k+1}[}$

et $\psi = \sum_{k=0}^{p-1} \psi_k \mathbf{1}_{[a_k, a_{k+1}[}$ (la valeur de ces fonctions en b est sans importance).

(b) Montrer que:

$$\forall x \in [a, b] \setminus \{a_0, a_1, \cdots, a_p\}, \ \omega(x) < 2\psi(x)$$

- (c) En déduire que $0 \le \lambda(D_n) < \varepsilon$ et conclure.
- 5. On se propose de montrer dans cette question, la réciproque du résultat précédent, à savoir qu'une fonction bornée $f:[a,b] \to \mathbb{R}$ qui est continue presque partout est Riemann-intégrable. On suppose que l'ensemble D des points de discontinuité de la fonction bornée $f:[a,b] \to \mathbb{R}$ est négligeable et pour tout réel $\varepsilon > 0$, on note :

$$D_{\varepsilon} = \{ x \in [a, b] \mid \omega(x) \ge \varepsilon \}$$

(a) Montrer qu'il existe une suite finie $(I_k)_{1 \le k \le p}$ d'intervalles ouverts telle que :

$$D_{\varepsilon} \subset \bigcup_{k=1}^{p} I_{k} \ et \ \sum_{k=1}^{p} \ell\left(I_{k}\right) < \varepsilon$$

(b) Montrer qu'il existe une suite $(J_k)_{1 \le k \le m}$ d'intervalles ouverts telle que :

$$K_{\varepsilon} = [a, b] \setminus \bigcup_{k=1}^{p} I_k \subset \bigcup_{k=1}^{m} J_k$$

avec:

$$\forall k \in \{1, \dots, m\}, \sup_{(y,z) \in J_k^2} |f(y) - f(z)| < \varepsilon$$

(c) On ordonne les extrémités des intervalles de $R_1 = (I_k)_{1 \le k \le p}$ et de $R_2 = (J_k)_{1 \le k \le m}$ en une subdivision $\sigma = (a_k)_{0 \le k \le r}$ de [a,b], chaque intervalle ouvert $]a_k, a_{k+1}[$ étant dans au moins un des I_i ou un des J_i .

On note E_1 l'ensemble des indices k compris entre 0 et r-1 tels que $]a_k, a_{k+1}[$ est dans au moins un des I_j et E_2 le complémentaire de cet ensemble.

On note M la borne supérieure de |f| sur [a,b] et on définit les fonctions en escaliers φ et ψ par :

$$\forall k \in E_1 \ et \ \forall t \in \left] a_k, a_{k+1} \right[, \ \varphi(t) = 0, \ \psi(t) = M$$

$$\forall k \in E_2 \ et \ \forall t \in \left] a_k, a_{k+1} \right[, \ \varphi(t) = f\left(\frac{a_k + a_{k+1}}{2}\right), \ \psi(t) = \varepsilon$$

(la définition de ces fonctions aux points de la subdivision σ n'ayant pas d'importance).

Montrer que
$$|f - \varphi| \le \psi$$
 et $\int_a^b \psi(x) dx < (M + b - a) \varepsilon$. Conclure.

Solution. Pour tout $x \in [a, b]$ et tout réel $\eta > 0$, on note :

$$\mathcal{V}_{x,\eta} =]x - \eta, x + \eta[\cap [a, b]]$$

Le diamètre de $f(\mathcal{V}_{x,\eta})$ est le réel :

$$\delta\left(f\left(\mathcal{V}_{x,\eta}\right)\right) = \sup_{y,z \in \mathcal{V}_{x,\eta}} \left| f\left(y\right) - f\left(z\right) \right|$$

Comme la fonction f est supposée bornée, il existe un réel M > 0 tel que $|f(t)| \leq M$ pour tout $t \in [a, b]$, donc l'ensemble $\{|f(y) - f(z)| \mid (y, z) \in (\mathcal{V}_{x,\eta})^2\}$ est borné et le diamètre $\delta(f(\mathcal{V}_{x,\eta}))$ est bien définie. Il en résulte que l'oscillation de f en $x \in [a, b]$:

$$\omega\left(x\right) = \inf_{\eta > 0} \delta\left(f\left(\mathcal{V}_{x,\eta}\right)\right)$$

est bien définie.

1. La fonction f est continue en $x \in [a, b]$ si, et seulement si, pour tout réel $\varepsilon > 0$, il existe un réel $\eta > 0$ tel que :

$$\forall t \in \mathcal{V}_{x,\eta}, |f(t) - f(x)| < \frac{\varepsilon}{2}$$

Il en résulte que pour tous y, z dans $\mathcal{V}_{x,\eta}$, on a $|f(y) - f(z)| < \varepsilon$, donc $\delta(f(\mathcal{V}_{x,\eta})) \le \varepsilon$ et $0 \le \omega(x) \le \varepsilon$. Faisant tendre ε vers 0^+ , on en déduit que $\omega(x) = 0$.

Réciproquement la condition $\omega(x)=0$ signifie que pour tout réel $\varepsilon>0$, il existe un réel $\eta>0$ tel que :

$$0 \le \delta \left(f \left(\mathcal{V}_{x,\eta} \right) \right) < \varepsilon$$

ce qui nous donne pour tout réel $t \in \mathcal{V}_{x,\eta}$:

$$|f(t) - f(x)| \le \delta (f(\mathcal{V}_{x,\eta})) < \varepsilon$$

et cela signifie que f est continue en x.

2. On rappelle qu'une fonction $\varphi:[a,b]\to\mathbb{R}$ est dite est semi-continue supérieurement si, pour tout réel α l'ensemble :

$$\varphi^{-1}(]-\infty,\alpha[)=\{x\in[a,b]\mid\varphi(x)<\alpha\}$$

est un ouvert de [a, b].

Pour $\alpha \leq 0$, l'ensemble $\omega^{-1}(]-\infty,\alpha[)$ est vide, donc ouvert.

Pour $\alpha > 0$ et $x \in [a, b]$ tel que $\omega(x) < \alpha$, il existe un réel $\eta > 0$ tel que :

$$\omega(x) < \delta(f(\mathcal{V}_{x,n})) < \alpha$$

Pour tout réel $t \in \left[x - \frac{\eta}{2}, x + \frac{\eta}{2}\right]$, on a :

$$\left]t - \frac{\eta}{2}, t + \frac{\eta}{2}\right[\subset]x - \eta, x + \eta[$$

donc:

$$\mathcal{V}_{t,\frac{\eta}{2}} \subset \mathcal{V}_{x,\eta} \text{ et } \delta\left(f\left(\mathcal{V}_{t,\frac{\eta}{2}}\right)\right) \leq \delta\left(f\left(\mathcal{V}_{x,\eta}\right)\right) < \alpha$$

ce qui nous donne $\omega(t) < \alpha$.

On a donc $\left]x - \frac{\eta}{2}, x + \frac{\eta}{2}\right[\cap [a, b] \subset \omega^{-1}(] - \infty, \alpha[) \text{ et l'ensemble } \omega^{-1}(] - \infty, \alpha[) \text{ est un ouvert.} \right]$

3. De la semi-continuité supérieure de ω , on déduit que, pour tout entier $n \geq 1$, l'ensemble :

$$D_{n} = \left\{ x \in [a, b] \mid \omega(x) \ge \frac{1}{n} \right\}$$

est un fermé de [a,b] et en particulier, il est mesurable. En écrivant que l'ensemble des points de discontinuité de f est :

$$D = [a, b] \setminus C = \{x \in [a, b] \mid \omega(x) > 0\} = \bigcup_{n \in \mathbb{N}^*} D_n$$

on en déduit que D est mesurable.

- 4.
- (a) Comme f est Riemann-intégrable, il existe deux fonctions en escaliers φ et ψ telles que $|f \varphi| \le \psi$ et $\int_a^b \psi(x) \, dx < \frac{\varepsilon}{2n}$.
- (b) Pour tout entier k compris entre 0 et p-1 et tout réel $x \in [a_k, a_{k+1}]$, on a :

$$|f(x) - \varphi_k| = |f(x) - \varphi(x)| \le \psi(x) = \psi_k$$

donc pour $\eta > 0$ tel que $]x - \eta, x + \eta[$ \subset $]a_k, a_{k+1}[$ et y, z dans $]x - \eta, x + \eta[$, on a $|f(y) - f(z)| < 2\psi_k = 2\psi(x)$, ce qui nous donne :

$$\omega(x) \le \delta(f(\mathcal{V}_{x,\eta})) < 2\psi_k = 2\psi(x)$$

En conclusion, on a:

$$\forall x \in [a, b] \setminus \{a_0, a_1, \cdots, a_p\}, \ \omega(x) < 2\psi(x)$$

(c) De la question précédente, on déduit que :

$$D_{n} = \left\{ x \in [a, b] \mid \omega(x) \ge \frac{1}{n} \right\}$$

$$\subset \left\{ x \in [a, b[\mid \psi(x) \ge \frac{1}{2n} \right\} \cup \{a_{0}, a_{1}, \dots, a_{p}\}$$

ce qui nous donne, en notant :

$$\Delta_n = \left\{ x \in [a, b[\mid \psi(x) \ge \frac{1}{2n} \right\}$$
$$\lambda(D_n) \le \lambda(\Delta_n)$$

 $(\{a_0, a_1, \dots, a_p\})$ est négligeable et les ensembles D_n et Δ_n sont mesurables).

Comme:

$$\Delta_n = \bigcup_{k|\psi_k \ge \frac{1}{2n}} \left[a_k, a_{k+1} \right]$$

on a:

$$\lambda (\Delta_n) = \sum_{k | \psi_k \ge \frac{1}{2n}} (a_{k+1} - a_k) \le 2n \sum_{k | \psi_k \ge \frac{1}{2n}} \psi_k (a_{k+1} - a_k)$$
$$\le 2n \sum_{k=0}^{p-1} \psi_k (a_{k+1} - a_k) = 2n \int_a^b \psi(x) \, dx < \varepsilon$$

En définitive, on a $0 \le \lambda(D_n) < \varepsilon$ pour tout réel $\varepsilon > 0$, ce qui revient à dire que $\lambda(D_n) = 0$. On a donc montré que tous les ensembles D_n , pour $n \in \mathbb{N}^*$, sont négligeables et en conséquence l'ensemble D des points de discontinuité de la fonction f est négligeable, ce qui revient à dire que f est continue presque partout.

- 5.
- (a) L'ensemble :

$$D_{\varepsilon} = \{ x \in [a, b] \mid \omega(x) \ge \varepsilon \}$$

est un compact négligeable (ω est semi-continue supérieurement, donc D_{ε} est fermé et comme il est borné, il est compact; D_{ε} étant contenu dans D est négligeable), donc on peut le recouvrir par une réunion d'intervalles ouverts dont la somme des longueurs est inférieure à ε et de ce recouvrement, on extrait un sous-recouvrement fini, ce qui signifie qu'il existe une suite $(I_k)_{1 \leq k \leq p}$ d'intervalles ouverts telle que :

$$D_{\varepsilon} \subset \bigcup_{k=1}^{p} I_{k} \text{ et } \sum_{k=1}^{p} \ell\left(I_{k}\right) < \varepsilon$$

(b) L'ensemble:

$$K_{\varepsilon} = [a, b] \setminus \bigcup_{k=1}^{p} I_k = [a, b] \cap \left(\mathbb{R} \setminus \bigcup_{k=1}^{p} I_k \right)$$

est fermé, borné, donc compact.

Pour tout $x \in K_{\varepsilon}$, on a $\omega(x) < \varepsilon$ (puisque $x \notin D_{\varepsilon}$), donc il existe un réel $\eta_x > 0$ tel que :

$$\omega\left(x\right) \le \delta\left(f\left(\mathcal{V}_{x,\eta_{x}}\right)\right) = \sup_{\left(y,z\right) \in \left(\mathcal{V}_{x,\eta_{x}}\right)^{2}} \left|f\left(y\right) - f\left(z\right)\right| < \varepsilon$$

Du recouvrement ouvert du compact K_{ε} par la réunion des $]x - \eta_x, x + \eta_x[$, pour x décrivant K_{ε} , on extrait un sous recouvrement fini, ce qui signifie qu'il existe une suite $(J_k)_{1 \leq k \leq m} = (]x_k - \eta_{x_k}, x_k + \eta_{x_k}[)_{1 \leq k \leq m}$ d'intervalles ouverts telle que :

$$K_{\varepsilon} = [a, b] \setminus \bigcup_{k=1}^{p} I_k \subset \bigcup_{k=1}^{m} J_k$$

avec:

$$\forall k \in \{1, \dots, m\}, \sup_{(y,z) \in J_k^2} |f(y) - f(z)| < \varepsilon$$

(c) Pour $k \in E_1, t \in]a_k, a_{k+1}[$, on a:

$$|f(t) - \varphi(t)| = |f(t)| \le M = \psi(t)$$

et pour $k \in E_2$, $t \in]a_k, a_{k+1}[$, on a $t \in \bigcup_{k=1}^m J_k$, donc :

$$|f(t) - \varphi(t)| = \left| f(t) - f\left(\frac{a_k + a_{k+1}}{2}\right) \right| \le \varepsilon = \psi(t)$$

avec:

$$\int_{a}^{b} \psi(t) dt = \sum_{k \in E_{1}} M(a_{k+1} - a_{k}) + \sum_{k \in E_{2}} \varepsilon (a_{k+1} - a_{k})$$

$$\leq M \sum_{k=1}^{p} \ell(I_{k}) + \varepsilon (b - a) \leq (M + b - a) \varepsilon$$

La fonction f est donc Riemann-intégrable.

Exercice 50 Montrer que la fonction $f = \mathbf{1}_{\mathbb{Q} \cap [0,1]}$ est Lebesgue-intégrable et non Riemann-intégrable sur [0,1].

Solution. Comme $\mathbb{Q} \cap [0,1]$ est dénombrable, il est négligeable et en conséquence mesurable de mesure nulle, donc $f = \mathbf{1}_{\mathbb{Q} \cap [0,1]}$ est Lebesgue-intégrable d'intégrale nulle.

Comme f est discontinue en tout point de [0,1] (si $a \in [0,1]$ est rationnel [resp. irrationnel], pour tout réel $\eta > 0$, on peut trouver un nombre irrationnel [resp. rationnel] x dans $]a - \eta, a + \eta[$ et on a |f(x) - f(a)| = 1, donc f est discontinue en a), elle n'est pas Riemann-intégrable sur [0,1].

Exercice 51 Soient I, un intervalle réel d'intérieur non vide, a un point de I et f, g deux fonctions intégrables de I dans \mathbb{R} . Montrer f = g presque partout si, et seulement si, $\int_a^x f(t) dt = \int_a^x g(t) dt$ pour tout $x \in I$.

Solution. Avec la linéarité de l'intégrale, il revient au même de montrer que, pour toute fonction intégrable $f: I \to \mathbb{R}$, on a :

 $(f = 0 \ p.p.) \Leftrightarrow \left(\forall x \in I, \ \int_{a}^{x} f(t) \ dt = 0 \right)$

Si f est nulle presque partout, il en est alors de même de |f|, ce qui signifie que l'ensemble $A = |f|^{-1}$ ($\mathbb{R}^{+,*}$) est de mesure nulle.

Comme |f| est mesurable, il existe une suite $(a_n)_{n\in\mathbb{N}}$ de réels positifs et une suite $(A_n)_{n\in\mathbb{N}}$ de parties mesurables de I telles que $|f| = \sum_{n\in\mathbb{N}} a_n \mathbf{1}_{A_n}$ et en écrivant que $|f| = |f| \cdot \mathbf{1}_A$, on obtient :

$$\int_{I} |f| d\lambda = \int_{I} |f| \cdot \mathbf{1}_{A} d\lambda = \int_{I} \left(\sum_{n \in \mathbb{N}} a_{n} \mathbf{1}_{A_{n} \cap A} \right) d\lambda$$
$$= \sum_{n \in \mathbb{N}} a_{n} \mu (A_{n} \cap A) = 0$$

En utilisant les inégalités $\int_a^x |f(t)| dt \leq \int_I |f| d\lambda$ pour $x \leq a$ et $\int_x^a |f(t)| dt \leq \int_I |f| d\lambda$ pour $x \geq a$, on en déduit que $\int_a^a |f(t)| dt = 0$ pour tout $x \in I$.

Enfin avec $\left| \int_{a}^{x} f(t) dt \right| \leq \int_{x}^{a} |f(t)| dt$, on en déduit que $\int_{x}^{a} f(t) dt = 0$ pour tout $x \in I$.

Réciproquement, si $\int_x^a f(t) dt = 0$ pour tout $x \in I$, comme la fonction $x \mapsto \int_x^a f(t) dt$ est dérivable de dérivée égale à f presque partout (théorème de différentiation de Lebesgue), on en déduit que f = 0 presque partout.

- VII - Fonction définie par une intégrale

Exercice 52 Théorème de Fubini pour les fonctions continues sur un rectangle.

Étant donnée une fonction $f \in C^0([a,b] \times [c,d], \mathbb{C})$, où a < b et c < d, on lui associe les fonctions α et β définies sur[c,d] par :

$$\forall z \in [c, d], \begin{cases} \alpha(z) = \int_{c}^{z} \left(\int_{a}^{b} f(t, x) dt \right) dx \\ \beta(z) = \int_{a}^{b} \left(\int_{c}^{z} f(t, x) dx \right) dt \end{cases}$$

- 1. Montrer que la fonction α est de classe C^1 sur [c,d] et donner une expression de sa dérivée α' .
- 2. On désigne par γ la fonction définie sur le rectangle $R = [a, b] \times [c, d]$ par :

$$\gamma(t, z) = \int_{c}^{z} f(t, x) dx$$

Montrer que la fonction γ est continue sur R et qu'elle admet une dérivée partielle par rapport à z en tout point de R, cette dérivée $\frac{\partial \gamma}{\partial z}$ étant continue sur R.

- 3. Montrer que la fonction β est de classe C^1 sur [c,d] et donner une expression de sa dérivée β' .
- 4. Déduire de ce qui précède que :

$$\forall z \in [c, d], \int_{c}^{z} \left(\int_{a}^{b} f(t, x) dt \right) dx = \int_{a}^{b} \left(\int_{c}^{z} f(t, x) dx \right) dt$$

et en particulier:

$$\int_{c}^{d} \left(\int_{a}^{b} f(t, x) dt \right) dx = \int_{a}^{b} \left(\int_{c}^{d} f(t, x) dx \right) dt$$

Solution.

1. La fonction f est continue des deux variables et l'intégration se fait sur un intervalle compact, donc la fonction :

$$\varphi: x \mapsto \int_{a}^{b} f(t, x) dt$$

est continue sur [c,d]. La fonction α qui est une primitive de φ est de classes C^1 sur [c,d], avec :

$$\forall z \in [c, d], \ \alpha'(z) = \varphi(z) = \int_a^b f(t, z) dt$$

2. Pour $(t,z) \in [a,b] \times [c,d]$, le changement de variable $x = c + \theta (z - c)$ avec $0 \le \theta \le 1$ donne :

$$\gamma(t, z) = (z - c) \int_0^1 f(t, c + \theta(z - c)) d\theta$$

ce résultat étant encore valable pour z=c.

Comme la fonction $(\theta, t, z) \mapsto f(t, c + \theta(z - c))$ est continue sur $[0, 1] \times [a, b] \times [c, d]$ et l'intégration se fait sur un segment, on en déduit que la fonction γ est continue sur $R = [a, b] \times [c, d]$. La fonction γ est dérivable par rapport à z avec :

$$\frac{\partial \gamma}{\partial z}(t, z) = f(t, z)$$

qui est continue sur R.

3. Les fonctions γ et $\frac{\partial \gamma}{\partial z}$ sont continues sur R et l'intégration se fait sur un segment, donc la fonction β est de classe C^1 sur [c,d] avec :

$$\beta'(z) = \int_{a}^{b} \frac{\partial \gamma}{\partial z}(t, z) dt = \int_{b}^{b} f(t, z) dt$$

4. On a $\alpha'=\beta'$ sur [c,d] avec $\alpha\left(c\right)=\beta\left(c\right)=0,$ ce qui équivaut à $\alpha=\beta,$ soit à :

$$\forall z \in [c, d], \int_{c}^{z} \left(\int_{a}^{b} f(t, x) dt \right) dx = \int_{a}^{b} \left(\int_{c}^{z} f(t, x) dx \right) dt$$

Exercice 53 Théorème de Fubini pour les fonctions continues sur un triangle.

Soient deux réels a < b et φ une fonction à valeurs réelles définie et continue sur le triangle :

$$T = \left\{ (x, y) \in \mathbb{R}^2 \mid a \le x \le y \le b \right\}$$

1. Montrer que la fonction ψ définie sur le carré $C = [a,b]^2$ par :

$$\forall (x,y) \in C, \ \psi(x,y) = \left\{ \begin{array}{ll} \varphi(x,y) - \varphi(x,x) & si \ (x,y) \in T \\ 0 & si \ (x,y) \notin T \end{array} \right.$$

est continue sur C.

2. Soit $k \in C^0([a,b], \mathbb{R})$. Montrer que:

$$\forall z \in [a, b], \int_{a}^{z} \left(\int_{a}^{y} k(x) dx \right) dy = \int_{a}^{z} \left(\int_{x}^{z} k(x) dy \right) dx$$

76

3. Déduire de ce qui précède que :

$$\forall z \in [a, b], \int_{a}^{z} \left(\int_{a}^{y} \varphi(x, y) dx \right) dy = \int_{a}^{z} \left(\int_{x}^{z} \varphi(x, y) dy \right) dx$$

et en particulier:

$$\int_{a}^{b} \left(\int_{a}^{y} \varphi(x, y) \, dx \right) dy = \int_{a}^{b} \left(\int_{x}^{b} \varphi(x, y) \, dy \right) dx$$

Solution.

1. On désigne par :

$$\Delta = \{(x, x) \mid a \le x \le b\}$$

la diagonale du carré C.

La continuité de la fonction ψ sur $C \setminus \Delta$ ne pose pas de problème.

On se donne un point $(x_0, x_0) \in \Delta$.

La fonction φ étant continue en $(x_0, x_0) \in T$, pour tout réel $\varepsilon > 0$ il existe un réel $\eta > 0$ tel que :

$$(x,y) \in T, |x-x_0| \le \eta, |y-x_0| \le \eta, \Rightarrow |\varphi(x,y)-\varphi(x_0,x_0)| < \varepsilon$$

Pour $(x,y) \in C$ tel que $|x-x_0| \le \eta$ et $|y-x_0| \le \eta$, on a soit $(x,y) \notin T$ et dans ce cas $\psi(x,y) - \psi(x_0,x_0) = 0$, soit $(x,y) \in T$ et dans ce cas :

$$|\psi(x,y) - \psi(x_0,x_0)| = |\psi(x,y)| = |\varphi(x,y) - \varphi(x,x)|$$

$$\leq |\varphi(x,y) - \varphi(x_0,x_0)| + |\varphi(x,x) - \varphi(x_0,x_0)| < 2\varepsilon$$

On a donc ainsi prouvé la continuité de ψ en (x_0, x_0) .

2. On définit les fonctions α et β sur [a, b] par :

$$\begin{cases} \alpha(z) = \int_{a}^{z} \left(\int_{a}^{y} k(x) dx \right) dy \\ \beta(z) = \int_{a}^{z} \left(\int_{x}^{z} k(x) dy \right) dx = \int_{a}^{z} (z - x) k(x) dx = z \int_{a}^{z} k(x) dx - \int_{a}^{z} x k(x) dx \end{cases}$$

Ces fonctions sont de classe C^1 sur [a, b] avec :

$$\begin{cases} \alpha'(z) = \int_{a}^{z} k(x) dx \\ \beta'(z) = \int_{a}^{z} k(x) dx + zk(z) - zk(z) = \int_{a}^{z} k(x) dx \end{cases}$$

On a donc $\alpha' = \beta'$ avec $\alpha(a) = \beta(a) = 0$, ce qui équivaut à $\alpha = \beta$ sur [a, b].

3. Le théorème de Fubini appliqué à la fonction continue ψ sur le rectangle $[a,b] \times [a,z]$ donne :

$$\forall z \in [a, b], \int_{a}^{z} \left(\int_{a}^{b} \psi(x, y) \, dx \right) dy = \int_{a}^{b} \left(\int_{a}^{z} \psi(x, y) \, dy \right) dx$$

avec:

$$\int_{a}^{z} \left(\int_{a}^{b} \psi(x, y) \, dx \right) dy = \int_{a}^{z} \left(\int_{a}^{y} \psi(x, y) \, dx \right) dy$$
$$= \int_{a}^{z} \left(\int_{a}^{y} \varphi(x, y) \, dx \right) dy - \int_{a}^{z} \left(\int_{a}^{y} \varphi(x, x) \, dx \right) dy$$

et:

$$\int_{a}^{b} \left(\int_{a}^{z} \psi(t, x) \, dx \right) dt = \int_{a}^{z} \left(\int_{a}^{z} \psi(t, x) \, dx \right) dt = \int_{a}^{z} \left(\int_{t}^{z} \psi(t, x) \, dx \right) dt$$
$$= \int_{a}^{z} \left(\int_{t}^{z} \varphi(t, x) \, dx \right) dt - \int_{a}^{z} \left(\int_{t}^{z} \varphi(t, t) \, dx \right) dt$$

En utilisant l'égalité:

$$\int_{a}^{z} \left(\int_{a}^{y} \varphi(x, x) dx \right) dy = \int_{a}^{z} \left(\int_{x}^{z} \varphi(x, x) dy \right) dx$$

 $(k(x) = \varphi(x, x))$, on déduit que

$$\int_{a}^{z} \left(\int_{a}^{y} \varphi \left(x,y \right) dx \right) dy = \int_{a}^{z} \left(\int_{x}^{z} \varphi \left(x,y \right) dy \right) dx$$

Exercice 54 L'intégrale de Gauss $\int_{0}^{+\infty} e^{-t^2} dt$

- 1. Montrer que la fonction $f: t \mapsto e^{-t^2}$ est intégrable sur \mathbb{R}^+ .
- 2. Pour tout réel R > 0, on note :

$$I_R = \int_0^R e^{-t^2} dt$$

$$C_R = \left\{ (x,y) \in \mathbb{R}^2 \mid 0 \le x, y \le R \right\} \ et \ T_R = \left\{ (x,y) \in \mathbb{R}^2 \mid 0 \le y \le x \le R \right\}$$

(a) Montrer que :

$$I_R^2 = 2 \iint_{T_R} e^{-(x^2 + y^2)} dx dy$$

(b) Montrer que:

$$I_R^2 = \frac{\pi}{4} - \int_0^{\frac{\pi}{4}} e^{-\frac{R^2}{\cos^2(\theta)}} d\theta$$

et en déduire que $\int_{0}^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

3. En munissant, pour tout entier $n \geq 1$, \mathbb{R}^n de sa structure euclidienne canonique, calculer $\int_{\mathbb{T}^n} e^{-\|x\|^2} dx.$

Solution.

1. La fonction f est continue sur \mathbb{R} et pour tout $t \geq 1$ on a $0 \leq e^{-t^2} \leq e^{-t}$ avec $\int_1^{+\infty} e^{-t} dt = e^{-1}$, donc $\int_{1}^{+\infty} e^{-t^2} dt < +\infty.$

(a) Pour tout réel R > 0, en utilisant le théorème de Fubini sur un carré, on a :

$$I_R^2 = \int_0^R e^{-x^2} dx \int_0^R e^{-y^2} dy = \iint_{C_R} e^{-(x^2+y^2)} dx dy$$

où $C_R = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x, y \le R\}$. La fonction $\varphi : (x,y) \mapsto e^{-\left(x^2+y^2\right)}$ étant symétrique (on a $\varphi(y,x) = \varphi(x,y)$ pour tout $(x,y) \in \mathbb{R}^2$ \mathbb{R}^2), on en déduit que :

$$I_R^2 = 2 \iint_{T_R} e^{-(x^2 + y^2)} dx dy$$

où $T_R = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le x \le R\}$.

(b) Le changement de variable $(x, y) = (r \cos(\theta), r \sin(\theta))$ nous donne :

$$(0 < y \le x \le R) \Leftrightarrow (0 < r\sin(\theta) \le r\cos(\theta) \le R)$$
$$\Leftrightarrow \left(0 < \tan(\theta) \le 1 \text{ et } 0 < r \le \frac{R}{\cos(\theta)}\right)$$
$$\Leftrightarrow \left(0 < \theta \le \frac{\pi}{4} \text{ et } 0 < r \le \frac{R}{\cos(\theta)}\right)$$

donc:

$$\iint_{T_R} e^{-(x^2+y^2)} dx dy = \int_0^{\frac{\pi}{4}} \left(\int_0^{\frac{R}{\cos(\theta)}} e^{-r^2} r dr \right) d\theta
= \int_0^{\frac{\pi}{4}} \left[-\frac{e^{-r^2}}{2} \right]_0^{\frac{R}{\cos(\theta)}} d\theta = \frac{1}{2} \int_0^{\frac{\pi}{4}} \left(1 - e^{-\frac{R^2}{\cos^2(\theta)}} \right) d\theta
= \frac{1}{2} \left(\frac{\pi}{4} - \int_0^{\frac{\pi}{4}} e^{-\frac{R^2}{\cos^2(\theta)}} d\theta \right)$$

et:

$$I_R^2 = \frac{\pi}{4} - \int_0^{\frac{\pi}{4}} e^{-\frac{R^2}{\cos^2(\theta)}} d\theta$$

Pour $0 \le \theta \le \frac{\pi}{4}$, on a $\frac{\sqrt{2}}{2} \le \cos(\theta) \le 1$ et $0 \le e^{-\frac{R^2}{\cos^2(\theta)}} \le e^{-R^2}$, ce qui nous donne :

$$0 \le \int_0^{\frac{\pi}{4}} e^{-\frac{R^2}{\cos^2(\theta)}} d\theta \le \int_0^{\frac{\pi}{4}} e^{-R^2} d\theta = \frac{\pi}{4} e^{-R^2} \underset{R \to +\infty}{\longrightarrow} 0$$

donc $\lim_{R\to+\infty}I_R^2=\frac{\pi}{4}$ et :

$$\int_0^{+\infty} e^{-t^2} dt = \lim_{R \to +\infty} I_R = \frac{\sqrt{\pi}}{2}$$

Par parité, on en déduit que :

$$\int_{\mathbb{R}} e^{-t^2} dt = \sqrt{\pi}$$

3. On a:

$$\int_{\mathbb{R}^n} e^{-\|x\|^2} dx = \int_{\mathbb{R}^n} \exp\left(-\sum_{k=1}^n x_k^2\right) dx_1 \cdots dx_n$$

$$= \int_{\mathbb{R}^n} \prod_{k=1}^n e^{-x_k^2} dx_1 \cdots dx_n = \prod_{k=1}^n \int_{\mathbb{R}} e^{-x_k^2} dx_k = \pi^{\frac{n}{2}}$$

Exercice 55 *L'intégrale de Gauss* $\int_0^{+\infty} e^{-t^2} dt$

On considère les fonctions F et G définies sur \mathbb{R}^+ par :

$$F(x) = \left(\int_0^x e^{-t^2} dt\right)^2, \ G(x) = \int_0^1 \frac{e^{-x^2(t^2+1)}}{t^2+1} dt$$

- 1. Montrer que ces fonctions sont de classe C^{∞} sur \mathbb{R}^+ et que F' + G' = 0.
- 2. En déduire la valeur de l'intégrale de Gauss.

Solution.

1. Les fonctions F et G sont de classe \mathcal{C}^{∞} sur \mathbb{R}^+ avec :

$$F'(x) = 2e^{-x^2} \int_0^x e^{-t^2} dt$$
 et $G'(x) = -2xe^{-x^2} \int_0^1 e^{-x^2t^2} dt$

(la fonction $(x,t) \mapsto \frac{e^{-x^2(t^2+1)}}{t^2+1}$ est de classe \mathcal{C}^{∞} sur \mathbb{R}^2 et on intègre sur un segment). Le changement de variable y=xt, pour x>0, dans G'(x) donne :

$$G'(x) = -2e^{-x^2} \int_0^x e^{-y^2} dy = -F'(x)$$

ce résultat étant encore valable pour x = 0. On a donc :

$$\forall x \in \mathbb{R}^+, \ F'(x) + G'(x) = 0$$

2. Il en résulte que :

$$\forall x \in \mathbb{R}^+, \ F(x) + G(x) = F(0) + G(0) = \int_0^1 \frac{dt}{t^2 + 1} = \frac{\pi}{4}$$

Puis avec:

$$0 \le G(x) \le e^{-x^2} \int_0^1 \frac{dt}{t^2 + 1} = \frac{\pi}{4} e^{-x^2} \underset{x \to +\infty}{\longrightarrow} 0$$

on déduit que $\lim_{x\to+\infty} F(x) = \frac{\pi}{4} - \lim_{x\to+\infty} G(x) = \frac{\pi}{4}$, soit :

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$

Exercice 56 *L'intégrale de Gauss* $\int_0^{+\infty} e^{-t^2} dt$

On désigne par f la fonction définie sur $\mathbb{R}^{+,*}$ par :

$$\forall t \in \mathbb{R}^{+,*}, \ f(t) = \frac{1}{\sqrt{t}(1+t)}$$

1. Montrer que la fonction :

$$F: x \in \mathbb{R}^+ \mapsto F(x) = \int_0^{+\infty} e^{-xt} f(t) dt$$

est bien définie et continue sur \mathbb{R}^+ .

- 2. Montrer que F est de classe C^1 sur $\mathbb{R}^{+,*}$ et solution d'une équation différentielle de la forme $y'-y=-\frac{\lambda}{\sqrt{x}}$, où λ est une constante réelle.
- 3. Résoudre cette équation différentielle et en déduire la valeur de l'intégrale de Gauss.

Exercice 57 L'intégrale de Dirichlet $\int_0^{+\infty} \frac{\sin(t)}{t} dt$.

On désigne par f la fonction définie sur \mathbb{R}^+ par :

$$\forall t \in \mathbb{R}^+, \ f(t) = \frac{1}{1+t^2}$$

80

1. Montrer que la fonction :

$$F: x \in \mathbb{R}^+ \mapsto F(x) = \int_0^{+\infty} e^{-xt} f(t) dt$$

est bien définie et continue sur \mathbb{R}^+ .

- 2. Montrer que F est de classe C^2 sur $\mathbb{R}^{+,*}$ et solution de l'équation différentielle $y'' + y = \frac{1}{x}$.
- 3. Résoudre cette équation différentielle et en déduire la valeur de l'intégrale de Dirichlet.

Exercice 58 $\mathcal{L}^1(\mathbb{R})$ est l'espace vectoriel des fonctions Lebesgue-intégrables de \mathbb{R} dans \mathbb{C} . Pour toute fonction $f \in \mathcal{L}^1(\mathbb{R})$, on note :

$$\|f\|_{1} = \int_{\mathbb{R}} |f(t)| dt$$

- 1. Soient f, g deux fonctions dans $\mathcal{L}^1(\mathbb{R})$. Montrer que :
 - (a) pour tout $x \in \mathbb{R}$, la fonction $t \mapsto f(x t) g(t)$ est intégrable sur \mathbb{R} ;
 - (b) la fonction $f * g : x \mapsto \int_{\mathbb{R}} f(x t) g(t) dt$ est intégrable sur \mathbb{R} ;
 - (c) $||f * g||_1 \le ||f||_1 ||f||_1$.

La fonction f * g est le produit de convolution de f et g.

2. Montrer que la loi de composition interne * est commutative et associative sur $\mathcal{L}^1(\mathbb{R})$.

Exercice 59 Pour tout intervalle réel I non réduit à un point, on désigne par $C^0(I,\mathbb{R})$ l'espace vectoriel des fonctions continues de I dans \mathbb{R} .

 $I = \mathbb{R}^+$ ou I = [0, X] pour un réel X > 0, E est l'espace vectoriel $\mathcal{C}^0(I, \mathbb{R})$ et T est l'opérateur de Volterra (ou opérateur de primitivation) défini par :

$$\forall f \in E, \ \forall x \in I, \ T(f)(x) = \int_0^x f(t) dt$$

Pour toutes fonctions f, g dans E, on définit le produit de convolution f * g par :

$$\forall x \in I, \ f * g(x) = \int_0^x f(x-t) g(t) dt$$

- 1. Montrer que :
 - (a) la loi * est une loi de composition interne sur E;
 - (b) cette loi est commutative;
 - (c) cette loi est associative;
 - (d) il n'existe pas d'élément neutre pour cette loi.
- 2. Montrer que pour toutes fonctions f, g dans E, on a:

$$T\left(f\ast g\right) = T\left(f\right)\ast g = f\ast T\left(g\right)$$

et pour tout entier naturel n :

$$T^{n}\left(f\ast g\right) = T^{n}\left(f\right)\ast g = f\ast T^{n}\left(g\right)$$

3. On suppose que f et g sont des fonctions de classe C^1 sur I. Montrer que f * g est de classe C^1 sur I avec :

$$(f * g)' = f(0) g + f' * g = g(0) f + f * g'$$

- 4. On prend ici I = [0, 1] et on se propose de montrer le cas particulier suivant du théorème de Titchmarsh : si f, g sont deux fonctions développables en série entière sur un intervalle]-R, R[où R > 1 telles que f * g = 0, on a alors f = 0 ou g = 0.
 - (a) On suppose que f et g sont des fonctions de classe C^{∞} sur [0,1] avec $f(0) \neq 0$. Montrer que si f * g = 0, on a alors $g^{(n)}(0) = 0$ et $f * g^{(n+1)} = 0$ pour tout $n \in \mathbb{N}$.
 - (b) On suppose que f et g sont des fonctions de classe C^{∞} sur [0,1] telles que f(0) = 0, $f'(0) \neq 0$ et f * g = 0. Montrer qu'on a f' * g = 0 et $g^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$.
 - (c) Soient f, g deux fonctions de classe C^{∞} sur [0,1]. Montrer que si f * g = 0, on a alors $f^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$, ou $g^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$.
 - (d) Soient f, g deux fonctions développables en série entière sur un intervalle]-R, R[où R > 1. Montrer que si f * g = 0, on a alors f = 0 ou g = 0.

Solution.

1.

(a) Pour f, g dans E, la fonction :

$$x \in I \mapsto f * g(x) = \int_0^x f(x - t) g(t) dt = x \int_0^1 f((1 - \theta) x) g(\theta x) d\theta$$

est continue (la fonction $(\theta, x) \mapsto f((1 - \theta) x) g(\theta x)$ est continue sur $[0, 1] \times I$ et on intègre sur un segment), donc * est une loi de composition interne sur E.

(b) Le changement de variable y = x - t donne pour tout $x \in I$:

$$f * g(x) = \int_{0}^{x} f(y) g(x - y) dy = g * f(x)$$

D'où la commutativité du produit de convolution.

(c) Soient f, g, h dans E. Pour tout réel $z \in I$, on a :

$$f * (g * h) (z) = \int_0^z f(z - x) g * h(x) dx = \int_0^z \left(\int_0^x f(z - x) g(x - t) h(t) dt \right) dx$$
$$= \iint_{0 \le t \le x \le z} f(z - x) g(x - t) h(t) dt dx$$

et en utilisant le théorème de Fubini sur le triangle $T = \{(t, x) \in \mathbb{R}^2 \mid 0 \le t \le x \le z\}$, on aboutit à :

$$f * (g * h) (z) = \int_0^z \left(\int_t^z f(z - x) g(x - t) dx \right) h(t) dt$$

Le changement de variable y = x - t, à t fixé dans [0, z] donne :

$$f * (g * h) (z) = \int_0^z \left(\int_0^{z-t} f((z-t) - y) g(y) dy \right) h(t) dt$$
$$= \int_0^z (f * g) (z - t) h(t) dt = (f * g) * h(z)$$

Ce qui montre que le produit de convolution est associatif.

(d) Si $g \in E$ est un élément neutre pour la loi *, on a alors f * g = f pour tout $f \in E$, donc f(0) = f * g(0) = 0, ce qui n'est pas vérifié par toutes les fonctions f de E.

2. Pour $f \in E$, T(f) est la primitive de f nulle en 0. On peut aussi remarquer que :

$$\forall f \in E, \ \forall x \in I, \ T(f)(x) = \int_0^x f(t) dt = (T * 1)(x)$$

Pour f, g dans E, du fait de l'associativité et de la commutativité du produit de convolution, on a :

$$T(f * g) = (f * g) * 1 = f * (g * 1) = f * T(g)$$

et:

$$T(f * g) = T(g * f) = T(g) * f = f * T(g)$$

On peut aussi le vérifier directement par le calcul en utilisant le théorème de Fubini sur un triangle :

$$T(f * g)(x) = \int_{0}^{x} (f * g)(t) dt = \int_{0}^{x} \left(\int_{0}^{t} f(t - y) g(y) dy \right) dt$$
$$= \int_{0}^{x} \left(\int_{y}^{x} f(t - y) dt \right) g(y) dy = \int_{0}^{x} \left(\int_{0}^{x - y} f(u) du \right) g(y) dy$$
$$= \int_{0}^{x} T(f)(x - y) g(y) dy = (T(f) * g)(x)$$

Par récurrence, on en déduit que :

$$\forall n \in \mathbb{N}, \ T^n(f * g) = T^n(f) * g = f * T^n(g)$$

C'est vrai pour n=0 et n=1 et supposant le résultat acquis pour $n\geq 1$, on a :

$$T^{n+1}(f * g) = T(T^{n}(f * g)) = T(T^{n}(f) * g) = T^{n+1}(f) * g$$

Puis par commutativité du produit de convolution, on a la deuxième égalité.

3. On suppose d'abord que f(0) = 0. Dans cas, on a :

$$f(x) = \int_0^x f'(t) dt = T(f')(x)$$

et:

$$f * g = T(f') * g = T(f' * g)$$

ce qui donne par dérivation (la fonction T(f'*g) est de classe \mathcal{C}^1 , donc aussi f*g):

$$(f * g)' = (T (f' * g))' = f' * g$$

Dans le cas général, en notant h = f - f(0), on a :

$$(f * g)' = ((h + f(0)) * g)' = (h * g)' + f(0) (1 * g)'$$

= h' * g + f(0) (T(g))' = f' * g + f(0) g

Puis par commutativité du produit de convolution, on a la deuxième égalité.

4.

(a) Si f * g = 0, on a alors:

$$0 = (f * g)' = f(0) g + f' * g = g(0) f + f * g'$$

donc:

$$g = -\frac{1}{f(0)}f' * g$$

ce qui nous donne :

$$g(0) = -\frac{1}{f(0)} (f' * g)(0) = 0 \text{ et } f * g' = 0$$

On en déduit alors que $g^{(n)}(0) = 0$ et $f * g^{(n+1)} = 0$ pour tout $n \in \mathbb{N}$. En effet, c'est vrai pour n = 0 et supposant le résultat acquis pour n, on a :

$$0 = \left(f * g^{(n+1)}\right)' = f(0)g^{(n+1)} + f' * g^{(n+1)} = g^{(n+1)}(0)f + f * g^{(n+2)}$$

donc:

$$g^{(n+1)} = -\frac{1}{f(0)}f' * g^{(n+1)}$$

ce qui nous donne :

$$g^{(n+1)}(0) = -\frac{1}{f(0)} \left(f' * g^{(n+1)} \right)(0) = 0 \text{ et } f * g^{(n+2)} = 0$$

(b) Si f * g = 0 et f(0) = 0, on a alors :

$$f' * g = (f * g)' - f(0) g = 0$$

et dans le cas où $f'(0) \neq 0$, on déduit de la question précédente que $g^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$.

(c) Dans le cas où $f(0) \neq 0$ [resp. f(0) = 0 et $f'(0) \neq 0$] on a vu que $g^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$. Supposons que f(0) = 0 et qu'il existe un entier $n \in \mathbb{N}$ tel que $g^{(n)}(0) \neq 0$. On a alors nécessairement f'(0) = 0 (sinon $g^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$) et f' * g = (f * g)' - f(0) g = 0. Vérifions que $f^{(k)}(0) = 0$ et $f^{(k)} * g = 0$ pour tout $k \in \mathbb{N}$. C'est vrai pour k = 0 et k = 1. Supposant le résultat acquis jusqu'au rang $k \geq 1$, on a :

$$f^{(k+1)} * g = (f^{(k)} * g)' - f(0) g = 0$$

et $f^{(k+1)}(0) = 0$ (puisque $f^{(k)} * g = 0$, $f^{(k)}(0) = 0$ et $f^{(k+1)}(0) \neq 0$ entraı̂nent $g^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$).

(d) Résulte du fait que $f\left(x\right)=\sum_{n=0}^{+\infty}\frac{f^{(n)}\left(0\right)}{n!}x^{n}$ (et même chose pour g) pour tout $x\in\left[0,1\right]$.

Exercice 60 Opérateurs de Volterra

On se donne deux réels a < b et E est l'espace vectoriel $C^0([a,b],\mathbb{R})$.

On dit que $\lambda \in \mathbb{R}$ est une valeur propre de $u \in \mathcal{L}(E)$ si $\ker(\lambda Id - u) \neq \{0\}$.

On dit que $\lambda \in \mathbb{R}$ est une valeur spectrale de $u \in \mathcal{L}(E)$ si $\lambda Id - u$ n'est pas bijective.

Le spectre de u est l'ensemble $\sigma(u)$ des valeurs spectrales de u.

Étant donnée une fonction $K \in \mathcal{C}^{0}\left([a,b]^{2},\mathbb{R}\right)$, où a < b, on lui associe les endomorphismes de E, T_{K} et T_{K}^{*} définis par :

$$\forall f \in E, \ \forall x \in [a, b], \ T_K(f)(x) = \int_a^x f(t) K(t, x) dt$$
(3)

et:

$$\forall f \in E, \ \forall x \in [a,b], \ T_K^*(f)(x) = \int_x^b f(t) K(x,t) dt$$

On dit que T_K est un opérateur de Volterra de noyau K.

Pour K constante égale à 1 sur $[0,1]^2$, on notera simplement T l'opérateur de Volterra correspondant et T^* l'opérateur T_K^* .

1. Montrer que T_K^* est l'unique endomorphisme de E tel que pour toutes fonctions f,g dans E, on ait :

$$\langle T_K(f) \mid g \rangle = \langle f \mid T_K^*(g) \rangle$$

2. On se propose de montrer que T_K est continue de $(E, \|\cdot\|_{\infty})$ dans $(E, \|\cdot\|_{\infty})$ avec :

$$||T_K||_{\infty} = \sup_{x \in [a,b]} \int_a^x |K(t,x)| dt$$

- (a) Montrer le résultat pour K à valeurs positives.
- (b) Montrer que T_K est continue de $(E, \|\cdot\|_{\infty})$ dans $(E, \|\cdot\|_{\infty})$ avec :

$$||T_K||_{\infty} \le ||T_{|K|}||_{\infty}$$

(c) Justifier l'existence de $x_0 \in [a, b]$ tel que :

$$||T_{|K|}||_{\infty} = \sup_{x \in [a,b]} \int_{a}^{x} |K(t,x)| dt = \int_{a}^{x_0} |K(t,x_0)| dt$$

(d) On désigne par $(\varepsilon_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs telle que $\lim_{n\to+\infty} \varepsilon_n = 0$ et par $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions continues définie par :

$$\forall n \in \mathbb{N}, \ \forall t \in [a, b], \ f_n(t) = \frac{K(t, x_0)}{|K(t, x_0)| + \varepsilon_n}$$

Montrer que $\lim_{n\to+\infty} T_K(f_n)(x_0) = ||T_{|K|}||_{\infty}$ et conclure.

3. On suppose que K est à valeurs positives et on se propose de montrer que T_K est continue de $(E, \|\cdot\|_1)$ dans $(E, \|\cdot\|_1)$ avec :

$$||T_K||_1 = \sup_{x \in [a,b]} \int_x^b K(x,t) dt$$

(a) Montrer que T_K est continue de $(E, \|\cdot\|_1)$ dans $(E, \|\cdot\|_1)$ avec :

$$||T_K||_1 \le \sup_{x \in [a,b]} \int_x^b K(x,t) dt$$

(b) Justifier l'existence de $x_0 \in [a, b]$ tel que :

$$\sup_{x \in [a,b]} \int_{x}^{b} K(x,t) dt = \int_{x_{0}}^{b} K(x_{0},t) dt$$

(c) Montrer que :

$$||T_K||_1 = \sup_{x \in [a,b]} \int_x^b K(x,t) dt$$

4. Montrer que T_K est continue de $(E, \|\cdot\|_2)$ dans $(E, \|\cdot\|_2)$ et que :

$$\left\|T_K\right\|_2 \le \frac{b-a}{\sqrt{2}} \left\|K\right\|_{\infty}$$

$$o\grave{u} \ \|K\|_{\infty} = \sup_{(x,t) \in [a,b]^2} \left| K\left(x,t\right) \right|.$$

- 5. On se propose de montrer que l'opérateur T_K n'a pas de valeur propre réelle non nulle.
 - (a) On suppose que K = 1. Montrer que T n'admet pas de valeur propre.

(b) On revient au cas général.

Comme pour K = 0 le résultat est évident, on suppose que $K \neq 0$.

On raisonne par l'absurde en supposant qu'il existe un réel $\lambda \in \mathbb{R}^*$ et une onction $f \in E \setminus \{0\}$ tels que $K(f) = \lambda f$.

On désigne par g la fonction définie par $g = T(f^2)$.

- i. Montrer que la fonction g est croissante et qu'il existe un réel $\alpha \in [a,b[$ tel que g(x)=0 pour tout $x \in [a,\alpha]$ et g(x)>0 pour tout $x \in [\alpha,b]$.
- ii. Montrer qu'il existe un réel $\beta > 0$ tel que :

$$\forall x \in [a, b], \ \lambda^2 g'(x) \le \beta g(x)$$

iii. Conclure.

(c) On suppose que [a,b] = [0,1] et T_K est l'opérateur défini par :

$$\forall f \in E, \ \forall x \in [0,1], \ T_K(f)(x) = \int_0^x f(t) \cos(x-t) dt$$

(opérateur de convolution par la fonction cos).

- i. Montrer que, pour toute fonction $f \in E$, la fonction $T_K(f)$ est de classe C^1 sur [0,1].
- ii. Montrer que T_K n'a pas de valeur propre.
- 6. Montrer que si K_1 et K_2 sont deux fonctions continues sur $[a,b]^2$, alors la composée $T_{K_1} \circ T_{K_2}$ est un opérateur de Volterra sur E.
- 7. On se propose de montrer que $\sigma(T_K) = \{0\}$.
 - (a) Montrer que, pour tout entier naturel non nul n, l'application T_K^n est un opérateur de Volterra, c'est-à-dire qu'il existe une fonction $K_n \in \mathcal{C}^0([a,b]^2,\mathbb{R})$ telle que :

$$\forall f \in E, \ \forall x \in [a,b], \ T_K^n(f)(x) = \int_a^x f(t) K_n(t,x) dt$$

(b) Montrer que, pour tout entier naturel non nul n, on a :

$$\forall (x,y) \in [a,b]^2, |K_n(x,y)| \le \frac{\|K\|_{\infty}^n}{(n-1)!} |x-y|^{n-1}$$

(c) Montrer que pour tout entier naturel non nul n, on a :

$$\|T_K^n\|_2 \le \frac{\|K\|_{\infty}^n (b-a)^n}{n!}$$

- (d) Montrer que la série $\sum T_K^n$ est convergente dans $(\mathcal{L}(E), \|\cdot\|_2)$, que $Id T_K$ est inversible dans $\mathcal{L}(E)$ et donner une expression de $(Id T_K)^{-1}$.
- (e) Montrer que, pour tout réel non nul λ , l'opérateur $\lambda Id T_K$ est inversible dans $\mathcal{L}(E)$ et retrouver le fait que T_K n'a pas de valeur propre non nulle.
- (f) Montrer que $\sigma(T_K) = \{0\}$.
- 8. Pour cette question et les suivantes, K = 1.
 - (a) Montrer que, pour tout $f \in E$, tout $n \in \mathbb{N}^*$ et tout $x \in [0,1]$, on a :

$$T^{n}(f)(x) = \int_{0}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f(t) dt$$

la fonction $T^{n}(f)$ étant de classe C^{n} sur [a,b].

- (b) Calculer $||T^n||_{\infty}$ et $||T^n||_1$, pour tout $n \in \mathbb{N}$.
- (c) Donner une expression de $(\lambda Id T)^{-1}$ pour $\lambda \in \mathbb{R}^*$.
- (d) Montrer que, pour tout $f \in E$, tout $n \in \mathbb{N}^*$ et tout $x \in [a, b]$, on a :

$$(T^*)^n(f)(x) = \int_x^b \frac{(t-x)^{n-1}}{(n-1)!} f(t) dt$$

(e) Montrer que, pour tout $f \in E$, tout $n \in \mathbb{N}^*$ et tout $x \in [a, b]$, on a :

$$T^{n}(f)(x) + (T^{*})^{n}(f)(x) = \int_{a}^{b} \frac{|t - x|^{n-1}}{(n-1)!} f(t) dt$$

- 9. Soit H un sous-espace vectoriel de dimension finie de E stable par T. Montrer que $H = \{0\}$.
- 10. Soient f une fonction de classe C^1 sur [a,b] telle que f(a) = 0 et φ la fonction définie sur l'intervalle ouvert [a,b] par :

$$\varphi(t) = \frac{\pi}{2(b-a)\tan\left(\frac{\pi}{2}\frac{t-a}{b-a}\right)}$$

- (a) Montrer que la fonction φ se prolonge par continuité en b et que la fonction $\varphi \cdot f$ se prolonge par continuité en a.
- (b) Montrer que:

$$\forall t \in]a, b[, \varphi^{2}(t) + \varphi'(t) = -\frac{\pi^{2}}{4(b-a)^{2}}$$

(c) Montrer que :

$$\|f' - \varphi \cdot f\|_{2}^{2} = \|f'\|_{2}^{2} - \frac{\pi^{2}}{4(b-a)^{2}} \|f\|_{2}^{2}$$

(d) En déduire que :

$$||f||_2 \le \frac{2(b-a)}{\pi} ||f'||_2$$

l'égalité étant réalisée uniquement pour les fonctions $f: t \in [a,b] \mapsto \lambda \sin\left(\frac{\pi}{2}\frac{t-a}{b-a}\right)$, où λ est une constante réelle.

11. Calculer $||T||_2$.

Solution.

1. Comme pour l'opérateur T_K , on vérifie que $T_K^* \in \mathcal{L}(E)$. Pour f, g dans E, on déduit du théorème de Fubini sur un triangle que :

$$\langle T_K(f) \mid g \rangle = \int_a^b T_K(f)(x) g(x) dt = \int_a^b \left(\int_a^x f(t) K(t, x) dt \right) g(x) dx$$

$$= \int_a^b f(t) \left(\int_t^b g(x) K(t, x) dx \right) dt = \int_a^b f(t) T_K^*(g)(t) dt$$

$$= \langle f \mid T_K^*(g) \rangle$$

Si $u \in \mathcal{L}(E)$ est tel que :

$$\forall (f,g) \in E^2, \langle T_K(f) \mid g \rangle = \langle f \mid u(g) \rangle$$

on a alors:

$$\forall (f,g) \in E^2, \langle f \mid T_K^*(g) \rangle = \langle f \mid u(g) \rangle$$

ou encore:

$$\forall (f,g) \in E^2, \ \langle f \mid (T_K^* - u)(g) \rangle = 0$$

ce qui équivaut à $u=T_K^*$ puisque $\langle\cdot\mid\cdot\rangle$ est un produit scalaire.

(a) Pour tout $f \in E$ et tout $x \in [a, b]$, on a :

$$|T_K(f)(x)| = \left| \int_a^x f(t) K(t, x) dt \right| \le \left(\int_a^x K(t, x) dt \right) ||f||_{\infty}$$

$$\le \left(\sup_{x \in [a, b]} \int_a^x K(t, x) dt \right) ||f||_{\infty}$$

donc:

$$||T_K(f)||_{\infty} \le \left(\sup_{x \in [a,b]} \int_a^x K(t,x) dt\right) ||f||_{\infty}$$

et l'application linéaire T_K est continue de $(E, \|\cdot\|_{\infty})$ dans $(E, \|\cdot\|_{\infty})$ avec :

$$||T_K||_{\infty} \le \sup_{x \in [a,b]} \int_a^x K(t,x) dt$$

Comme:

$$||T_K(1)||_{\infty} = \sup_{x \in [a,b]} |T_K(1)(x)| = \sup_{x \in [a,b]} \int_a^x K(t,x) dt$$

on en déduit que :

$$||T_K||_{\infty} = \sup_{x \in [a,b]} \int_a^x K(t,x) dt$$

En particulier, pour K = 1, on a $||T||_{\infty} = b - a$.

(b) Pour tout $f \in E$ et tout $x \in [a, b]$, on a :

$$\left|T_{K}\left(f\right)\left(x\right)\right| = \left|\int_{a}^{x} f\left(t\right)K\left(t,x\right)dt\right| \leq \left(\int_{a}^{x} \left|f\left(t\right)\right|\left|K\left(t,x\right)\right|dt\right) = T_{\left|K\right|}\left(\left|f\right|\right)\left(x\right)$$

donc:

$$||T_K(f)||_{\infty} \le ||T_{|K|}(|f|)||_{\infty} \le ||T_{|K|}||_{\infty} ||f|||_{\infty} = ||T_{|K|}||_{\infty} ||f||_{\infty}$$

et:

$$||T_K||_{\infty} \le ||T_{|K|}||_{\infty}$$

(c) La fonction:

$$\varphi: x \mapsto \int_{a}^{x} |K(t, x)| dt = T_{|K|}(1)(x)$$

étant continue sur le segment [a,b], elle y est bornée et atteint ses bornes, il existe donc un réel $x_0 \in [a,b]$ tel que :

$$\alpha = \sup_{x \in [a,b]} \varphi(x) = \varphi(x_0)$$

(d) La suite $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions continues sur [a,b] qui converge simplement sur [a,b] vers la fonction (en général non continue) $t\mapsto \operatorname{signe}(K(x_0,t))$.

Pour tout $n \in \mathbb{N}$ et tout $t \in [a, b]$, on a $|f_n(t)| = \frac{|K(t, x_0)|}{|K(t, x_0)| + \varepsilon_n} < 1$, donc $||f_n||_{\infty} \le 1$.

De plus, pour tout $t \in [a, b]$, on a :

$$|f_{n}(t) K(t, x_{0}) - |K(t, x_{0})|| = \left| \frac{K^{2}(t, x_{0})}{|K(t, x_{0})| + \varepsilon_{n}} - |K(t, x_{0})| \right| = \frac{\varepsilon_{n} |K(t, x_{0})|}{|K(t, x_{0})| + \varepsilon_{n}} < \varepsilon_{n}$$

donc la suite de fonctions $(f_n \cdot K(\cdot, x_0))_{n \in \mathbb{N}}$ converge uniformément sur [a, b] vers la fonction $|K(\cdot, x_0)|$ et :

$$\lim_{n \to +\infty} T_K\left(f_n\right)\left(x_0\right) = \lim_{n \to +\infty} \int_a^{x_0} f_n\left(t\right) K\left(t, x_0\right) dt = \int_a^{x_0} \left|K\left(t, x_0\right)\right| dt = \left\|T_{|K|}\right\|_{\infty}$$

Avec $|T_K(f_n)(x_0)| \leq ||T_K(f_n)||_{\infty} \leq ||T_K||_{\infty} ||f_n||_{\infty} \leq ||T_K||_{\infty}$ pour tout $n \in \mathbb{N}$, on en déduit en faisant tendre n vers l'infini, que $||T_{|K|}||_{\infty} \leq ||T_K||_{\infty}$ et l'égalité :

$$||T_K||_{\infty} = ||T_{|K|}||_{\infty} = \sup_{x \in [a,b]} \int_a^x |K(t,x)| dt$$

Dans le cas particulier où $K(t,x) = \varphi(x)$ avec φ continue sur [a,b], on a :

$$||T_K||_{\infty} = \sup_{x \in [a,b]} (x - a) |\varphi(x)|$$

3.

(a) Pour toute function $f \in E$, on a:

$$||T_K(f)||_1 = \int_a^b |T_K(f)(x)| \, dx \le \int_a^b \left(\int_a^x |f(t)| \, |K(t,x)| \, dt \right) dx$$

$$\le \int_a^b \left(\int_t^b |K(t,x)| \, dx \right) |f(t)| \, dt$$

$$\le \left(\sup_{t \in [a,b]} \int_t^b |K(t,x)| \, dx \right) ||f||_1$$

(théorème de Fubini sur un triangle), donc l'application linéaire T_K est continue de $(E, \|\cdot\|_1)$ dans $(E, \|\cdot\|_1)$ avec :

$$\left\|T_{K}\right\|_{1} \leq \sup_{t \in [a,b]} \int_{t}^{b} \left|K\left(t,x\right)\right| dx$$

(b) La fonction:

$$\varphi: t \mapsto \int_{t}^{b} |K(t, x)| dx = T_{|K|}^{*}(1)(t)$$

étant continue sur le segment [a, b], elle y est bornée et atteint ses bornes, il existe donc un réel $t_0 \in [a, b]$ tel que :

$$\sup_{t\in[a,b]}\varphi\left(t\right)=\varphi\left(t_{0}\right)$$

(c) Si $\varphi(t_0) = 0$, on a alors $||T_K||_1 = 0 = \sup_{t \in [a,b]} \varphi(t)$.

Si
$$\varphi(t_0) = \int_{t_0}^{b} |K(t_0, x)| dx > 0.$$

Par continuité de φ en t_0 , on peut trouver, pour tout entier naturel n, un réel $\eta_n > 0$ tel que :

$$\forall t \in [a_n, b_n] = [a, b] \cap [t_0 - \eta_n, t_0 + \eta_n], \ \varphi(t) > 0 \text{ et } |\varphi(t) - \varphi(t_0)| < \frac{1}{n+1}$$

On désigne alors par $f_n:[a,b]\to\mathbb{R}^+$ une fonction affine par morceaux et continue qui est nulle en dehors de $[a_n,b_n]$ et telle que :

$$||f_n||_1 = \int_a^b f_n(x) dx = \int_{a_n}^{b_n} f_n(x) dx = 1$$

(voir la figure 1)

FIGURE 1 – graphe de f_n

Pour K à valeurs positives, comme f_n est aussi à valeurs positives, on a :

$$||T_{K}(f_{n})||_{1} - \beta = \int_{a}^{b} |T_{K}(f_{n})(t)| dt - \int_{x_{0}}^{b} |K(t, x_{0})| dt$$

$$= \int_{a}^{b} \left(\int_{a}^{t} K(t, x) f_{n}(x) dx \right) dt - \int_{x_{0}}^{b} K(t, x_{0}) dt$$

$$= \int_{a}^{b} \left(\int_{x}^{b} K(t, x) dt \right) f_{n}(x) dx - \int_{x_{0}}^{b} K(t, x_{0}) dt \int_{a}^{b} f_{n}(x) dx$$

$$= \int_{a}^{b} \left(\int_{x}^{b} K(t, x) dt - \int_{x_{0}}^{b} K(t, x_{0}) dt \right) f_{n}(x) dx$$

$$= \int_{a_{n}}^{b_{n}} \left(\int_{x}^{b} K(t, x) dt - \int_{x_{0}}^{b} K(t, x_{0}) dt \right) f_{n}(x) dx$$

$$= \int_{a_{n}}^{b_{n}} (\varphi(x) - \varphi(x_{0})) f_{n}(x) dx$$

et:

$$\left|\left\|T_{K}\left(f_{n}\right)\right\|_{1}-\beta\right| \leq \int_{a_{n}}^{b_{n}}\left|\varphi\left(x\right)-\varphi\left(x_{0}\right)\right| f_{n}\left(x\right) dx \leq \varepsilon_{n} \int_{a_{n}}^{b_{n}} f_{n}\left(x\right) dx = \varepsilon_{n}$$

de sorte que $\lim_{n \to +\infty} \|T_K\left(f_n\right)\|_1 = \beta$. Avec $\|T_K\left(f_n\right)\|_1 \le \|T_K\|_1 \|f_n\|_1 = \|T_K\|_1$, on en déduit que $\varphi\left(x_0\right) \le \|T_K\|_1$ et :

$$\left\|T_{K}\right\|_{1} = \varphi\left(x_{0}\right) = \sup_{x \in [a,b]} \int_{x}^{b} K\left(t,x\right) dt$$

4. On a:

$$\int_{a}^{b} \left(T_{K}\left(f\right)\left(x\right)\right)^{2} dx = \int_{a}^{b} \left(\int_{a}^{x} K\left(x,t\right) f\left(t\right) dt\right)^{2} dx$$

et en utilisant l'inégalité de Cauchy-Schwarz sur [a, x], à x fixé dans [a, b], on a :

$$\left(\int_{a}^{x} K(x,t) f(t) dt\right)^{2} \leq \int_{a}^{x} \left(K(x,t)\right)^{2} dt \int_{a}^{x} f^{2}(t) dt \leq \int_{a}^{x} \left(K(x,t)\right)^{2} dt \|f\|_{2}^{2}$$

cette inégalité étant encore vraie pour x=a, donc :

$$||T_K(f)||_2^2 \le \left(\int_a^b \left(\int_a^x (K(x,t))^2 dt\right) dx\right) ||f||_2^2$$

et on en déduit que T_K est linéaire continue de $(E, \|\cdot\|_2)$ dans $(E, \|\cdot\|_2)$ avec

$$||T||_{2}^{2} \leq \int_{a}^{b} \left(\int_{a}^{x} \left(K(x,t) \right)^{2} dt \right) dx \leq ||K||_{\infty}^{2} \int_{a}^{b} \left(\int_{a}^{x} dt \right) dx = ||K||_{\infty}^{2} \frac{(b-a)^{2}}{2}$$

5.

(a) Pour $f \in E$, T(f) est la primitive de f nulle en a. Elle est donc de classe \mathcal{C}^1 sur [a,b]. Supposons que T admette une valeur propre $\lambda \in \mathbb{R}$ (ou même $\lambda \in \mathbb{C}$). Il existe alors une fonction $f \in E \setminus \{0\}$ (ou $f \in \mathcal{C}^0([a,b],\mathbb{C}) \setminus \{0\}$) telle que :

$$\forall x \in [a,b], \ T(f)(x) = \int_{a}^{x} f(t) dt = \lambda f(x) = \lambda T(f)'(x)$$

Si $\lambda = 0$, on a alors T(f) = 0 et f = T(f)' = 0, ce qui n'est pas.

Si $\lambda \neq 0$, on a alors $T(f)(x) = \alpha e^{\frac{1}{\lambda}(x-a)}$ avec $\alpha = T(f)(a) = 0$, donc T(f) = 0 et f = T(f)' = 0, ce qui n'est pas.

Dans les deux cas, on a une impossibilité, donc T n'admet pas de valeur propre réelle (ou même complexe).

(b)

i. On a, pour tout $x \in [a, b]$:

$$g(x) = T(f^{2})(x) = \int_{a}^{x} f^{2}(t) dt$$

donc g est de classe \mathcal{C}^1 et à valeurs positives sur [a,b] avec :

$$g'(x) = f^2(x) \ge 0$$

donc g est croissante sur [a, b].

Comme g(a) = 0, l'ensemble $A = \{x \in [a, b] \mid g(x) = 0\}$ est non vide majoré par b, il admet donc une borne supérieure α .

Par continuité de g, on a $g(\alpha) = 0$ (si $\alpha = a$, c'est clair, sinon, pour tout $n \ge 1$, il existe $x_n \in A$ tel que $\alpha - \frac{1}{n} < x_n \le \alpha$ et $g(\alpha) = \lim_{n \to +\infty} g(x_n) = 0$).

Si $\alpha = b$, on a alors $g(b) = \int_a^b f^2(t) dt = 0$ et f = 0, ce qui n'est pas. On a donc $\alpha \in [a, b[$.

Pour tout $x \in [a, \alpha]$, on a $0 \le g(x) \le g(\alpha) = 0$, donc g(x) = 0.

Un réel $x \in]\alpha, b]$ n'est pas dans A, donc g(x) > 0.

ii. Pour tout $x \in [a, b]$, on a :

$$\lambda f(x) = T_K(f)(x) = \int_a^x K(x, t) f(t) dt$$

et en utilisant l'inégalité de Cauchy-Schwarz, on déduit que :

$$\lambda^{2} f^{2}(x) \leq \int_{a}^{x} K^{2}(x, t) dt \int_{a}^{x} f^{2}(t) dt \leq (b - a) \|K\|_{\infty}^{2} g(x)$$

soit:

$$\lambda^2 g'(x) \le \beta g(x)$$

où $\beta = (b-a) \|K\|_{\infty}^2 > 0$ puisque $K \neq 0$.

iii. Pour tout $x\in\left]\alpha,b\right]$, on a $\lambda^{2}\frac{g'\left(x\right)}{g\left(x\right)}\leq\beta,$ ce qui signifie que la fonction :

$$h: x \mapsto \beta(x - \alpha) - \lambda^{2} \ln(g(x))$$

est croissante sur $[\alpha, b]$, donc :

$$\forall x \in [\alpha, b], h(x) = \beta(x - \alpha) - \lambda^2 \ln(g(x)) \le h(b) = \beta(b - \alpha) - \lambda^2 \ln(g(b))$$

ce qui contredit:

$$\lim_{x \to \alpha^{+}} h\left(x\right) = +\infty$$

pour $\lambda \neq 0$.

En définitive, T_K n'a pas de valeur propre réelle non nulle.

(c)

i. Pour $f \in E$ et $x \in [0, 1]$, on a :

$$T_K(f)(x) = \cos(x) \int_0^x f(t) \cos(t) dt + \sin(x) \int_0^x f(t) \sin(t) dt$$

donc $T_K(f)$ est de classe \mathcal{C}^1 sur [0,1] avec :

$$T_K(f)'(x) = -\sin(x) \int_0^x f(t)\cos(t) dt + \cos(x) \int_0^x f(t)\sin(t) dt + f(x) (\cos^2(x) + \sin^2(x))$$
$$= \cos(x) \int_0^x f(t)\sin(t) dt - \sin(x) \int_0^x f(t)\cos(t) dt + f(x)$$

ii. On sait déjà que T_K n'a pas de valeur propre non nulle.

Il s'agit donc d'étudier le noyau de T_K .

Si $T_K(f) = 0$, on a aussi $T_K(f)' = 0$, soit :

$$f(x) = \sin(x) \int_0^x f(t) \cos(t) dt - \cos(x) \int_0^x f(t) \sin(t) dt$$

et f est de classe C^1 sur [0,1] avec :

$$f'(x) = \cos(x) \int_0^x f(t) \cos(t) dt + \sin(x) \int_0^x f(t) \sin(t) dt + f(x) (\sin(x) \cos(x) - \cos(x) \sin(x)) = T_K(f)(x) = 0$$

ce qui nous donne f = f(0) = 0.

Donc $\ker (T_K) = \{0\}$ et T_K n'a pas de valeur propre.

6. Pour $f \in E$ et $x \in [a, b]$, on a :

$$T_{K_{1}} \circ T_{K_{2}}(f)(x) = \int_{a}^{x} K_{1}(x,t) T_{K_{2}}(f)(t) dt = \int_{a}^{x} \left(\int_{a}^{t} f(y) K_{1}(x,t) K_{2}(t,y) dy \right) dt$$
$$= \int_{a}^{x} \left(\int_{y}^{x} K_{1}(x,t) K_{2}(t,y) dt \right) f(y) dy = \int_{a}^{x} K_{3}(x,y) f(y) dy$$

(théorème de Fubini sur un triangle) où on a posé :

$$K_{3}(x,y) = \int_{y}^{x} K_{1}(x,t) K_{2}(t,y) dt$$
$$= (x - y) \int_{0}^{1} K_{1}(x,y + \theta(x - y)) K_{2}(y + \theta(x - y),y) d\theta$$

pour $(x, y) \in [a, b]^2$.

Comme la fonction:

$$(\theta, x, y) \mapsto K_1(x, y + \theta(x - y)) K_2(y + \theta(x - y), y)$$

est continue sur $[0,1] \times [a,b]^2$ et l'intégration se fait sur un segment, on déduit que l'application K_3 est continue sur $[a,b]^2$ et $T_{K_1} \circ T_{K_2}$ est un opérateur de Volterra sur E.

7.

(a) Du résultat précédent, on déduit par récurrence sur $n \in \mathbb{N}^*$ que les T_K^n sont des opérateurs de Volterra, les noyaux associés étant définis par $K_1 = K$ et :

$$K_{n+1}(x,y) = \int_{y}^{x} K_{n}(t,y) K(x,t) dt$$

(b) On procède par récurrence sur $n \ge 1$. C'est vrai pour n = 1 et supposant le résultat acquis pour $n \ge 1$, on a, pour $(x, y) \in [a, b]^2$:

$$|K_{n+1}(x,y)| = \left| \int_{y}^{x} K_{n}(t,y) K(x,t) dt \right| \le ||K||_{\infty} \frac{||K||_{\infty}^{n}}{(n-1)!} \left| \int_{y}^{x} |t-y|^{n-1} dt \right|$$

$$\le ||K||_{\infty} \frac{||K||_{\infty}^{n}}{(n-1)!} \frac{|x-y|^{n}}{n} = \frac{||K||_{\infty}^{n+1}}{n!} |x-y|^{n}$$

(distinguer les cas $x \leq y$ et x > y).

(c) En utilisant l'inégalité de Cauchy-Schwarz, on a pour $n \in \mathbb{N}^*$, $f \in E$ et $x \in [a, b]$:

$$(T_K^n(f)(x))^2 = \left(\int_a^x f(t) K_n(x,t) dt\right)^2 \le \int_a^x f^2(t) dt \int_a^x K_n^2(x,t) dt$$

$$\le \|f\|_2^2 \left(\frac{\|K\|_{\infty}^n}{(n-1)!}\right)^2 \int_a^x (x-t)^{2(n-1)} dt$$

$$\le \|f\|_2^2 \left(\frac{\|K\|_{\infty}^n}{(n-1)!}\right)^2 \frac{(x-a)^{2n-1}}{2n-1}$$

donc:

$$||T_K^n(f)||_2^2 \le ||f||_2^2 \left(\frac{||K||_\infty^n}{(n-1)!}\right)^2 \int_a^b \frac{(x-a)^{2n-1}}{2n-1} dx = ||f||_2^2 \left(\frac{||K||_\infty^n}{(n-1)!}\right)^2 \frac{(b-a)^{2n}}{2n(2n-1)}$$

$$\le ||f||_2^2 \left(\frac{||K||_\infty^n}{(n-1)!}\right)^2 \frac{(b-a)^{2n}}{n^2}$$

 $(2n\left(2n-1\right)\geq n^2$ équivaut à $3n\geq 2$ pour $n\geq 1)$ et :

$$\|T_K^n\|_2 \le \frac{\|K\|_{\infty}^n (b-a)^n}{n!}$$

(d) De $\|T_K^n\|_2 \leq \frac{\|K\|_\infty^n (b-a)^n}{n!}$ pour tout $n \geq 1$, on déduit que la série $\sum T_K^n$ est normalement convergente dans $(\mathcal{L}(E), \|\cdot\|_2)$ et avec :

$$(Id - T_K) \circ \sum_{n=0}^{+\infty} T_K^n = (Id - T_K) \circ \lim_{n \to +\infty} \sum_{k=0}^n T_K^k = \lim_{n \to +\infty} (Id - T_K) \circ \sum_{k=0}^n T_K^k$$
$$= \lim_{n \to +\infty} (Id - T_K^{n+1}) = Id$$

(continuité de la composition), on déduit que :

$$(Id - T_K)^{-1} = \sum_{n=0}^{+\infty} T_K^n$$

soit, pour $f \in E$ et $x \in [a, b]$:

$$(Id - T_K)^{-1}(f)(x) = f(x) + \sum_{n=1}^{+\infty} T_K^n(f)(x)$$

$$= f(x) + \sum_{n=1}^{+\infty} \int_a^x f(t) K_n(x, t) dt$$

$$= f(x) + \int_a^x f(t) \left(\sum_{n=1}^{+\infty} K_n(x, t)\right) dt$$

$$= f(x) + \int_a^x f(t) L(x, t) dt$$

où:

$$L\left(x,t\right) = \sum_{n=1}^{+\infty} K_n\left(x,t\right)$$

la convergence uniforme de cette série étant assurée par les inégalités :

$$|K_n(x,t)| \le \frac{\|K\|_{\infty}^n (b-a)^{n-1}}{(n-1)!}$$

- (e) En écrivant que $\lambda Id T_K = \lambda \left(Id \frac{1}{\lambda}T_K\right) = \lambda \left(Id T_{\frac{1}{\lambda}K}\right)$ et en remplaçant la fonction K par $\frac{1}{\lambda}K$, on déduit que $\lambda Id T_K$ est inversible dans $\mathcal{L}(E)$. Pour $\lambda \in \mathbb{R}^*$, l'endomorphisme $\lambda Id - T_K$ est en particulier injectif, donc λ ne peut être valeur propre de T_K
- (f) Comme $T_K(f)(a) = 0$, l'opérateur T_K n'est pas surjectif et en conséquence n'est pas inversible, donc $\sigma(T_K) = \{0\}$.

8.

(a) C'est vrai pour n=1 et supposant le résultat acquis pour $n\geq 1$, une intégration par parties nous donne :

$$T^{n+1}(f)(x) = \int_{a}^{x} \frac{(x-t)^{n-1}}{(n-1)!} T(f)(t) dt = \left[-\frac{(x-t)^{n}}{n!} T(f)(t) \right]_{a}^{x} + \int_{a}^{x} \frac{(x-t)^{n}}{n!} f(t) dt$$
$$= \int_{a}^{x} \frac{(x-t)^{n}}{n!} f(t) dt$$

La fonction $T^{n+1}(f)$ est de classe \mathcal{C}^1 sur [a,b] de dérivée $T^n(f)$ qui est de classe \mathcal{C}^n , donc $T^{n+1}(f)$ est de classe \mathcal{C}^{n+1} sur [a,b].

On a aussi $(T^n(f))^{(k)}(a) = 0$ pour k comprisentre 0 et n-1.

(b) On a donc $T^n = T_{K_n}$, où $K_n(x,t) = \frac{(x-t)^n}{n!} \operatorname{sur} [a,b]^2$ et :

$$||T^n||_{\infty} = ||T_{K_n}||_{\infty} = \sup_{x \in [a,b]} \int_a^x \frac{(x-t)^{n-1}}{(n-1)!} dt = \sup_{x \in [a,b]} \frac{(x-a)^n}{n!} = \frac{(b-a)^n}{n!}$$

En remarquant qu'on peut aussi écrire $T^n = T_{K_n}$, avec $K_n(x,t) = \frac{|x-t|^n}{n!} \ge 0$ sur $[a,b]^2$, on déduit que :

$$||T^n||_1 = \sup_{t \in [a,b]} \int_t^b \frac{(x-t)^{n-1}}{(n-1)!} dx = \sup_{t \in [a,b]} \frac{(b-t)^n}{n!} = \frac{(b-a)^n}{n!}$$

(c) On a $K_n(x,y) = \frac{(x-t)^{n-1}}{(n-1)!}$ pour tout $n \ge 1$ et $(Id-T)^{-1} = Id + T_L$ avec :

$$L(x,t) = \sum_{n=1}^{+\infty} \frac{(x-t)^{n-1}}{(n-1)!} = e^{x-t}$$

donc:

$$(Id - T)^{-1}(f)(x) = f(x) + \int_{a}^{x} e^{x-t} f(t) dt$$

et, pour $\lambda \in \mathbb{R}^*$:

$$(\lambda Id - T)^{-1}(f)(x) = \frac{1}{\lambda} \left(Id - \frac{1}{\lambda} T \right)^{-1}(f)(x) = \frac{1}{\lambda} \sum_{n=0}^{+\infty} \frac{1}{\lambda^n} T^n(f)(x)$$

$$= \frac{1}{\lambda} \left(f(x) + \sum_{n=1}^{+\infty} \frac{1}{\lambda^n} \int_a^x \frac{(x-t)^{n-1}}{(n-1)!} f(t) dt \right)$$

$$= \frac{1}{\lambda} \left(f(x) + \frac{1}{\lambda} \int_a^x \left(\sum_{n=1}^{+\infty} \frac{1}{\lambda^{n-1}} \frac{(x-t)^{n-1}}{(n-1)!} \right) f(t) dt \right)$$

$$= \frac{1}{\lambda} f(x) + \frac{1}{\lambda^2} \int_a^x e^{\frac{1}{\lambda}(x-t)} f(t) dt$$

(d) C'est vrai pour n=1 et supposant le résultat acquis pour $n\geq 1$, une intégration par parties nous donne :

$$(T^*)^{n+1}(f)(x) = \int_x^b \frac{(t-x)^{n-1}}{(n-1)!} T^*(f)(t) dt = \left[\frac{(x-t)^n}{n!} T^*(f)(t) \right]_x^b + \int_x^b \frac{(x-t)^n}{n!} f(t) dt$$
$$= \int_x^b \frac{(t-x)^n}{n!} f(t) dt$$

(e) On a:

$$T^{n}(f)(x) + (T^{*})^{n}(f)(x) = \int_{a}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f(t) dt + \int_{x}^{b} \frac{(t-x)^{n-1}}{(n-1)!} f(t) dt$$
$$= \int_{a}^{x} \frac{|x-t|^{n-1}}{(n-1)!} f(t) dt + \int_{x}^{b} \frac{|x-t|^{n-1}}{(n-1)!} f(t) dt$$
$$= \int_{a}^{b} \frac{|t-x|^{n-1}}{(n-1)!} f(t) dt$$

9. Supposons que $H \neq \{0\}$, notons $n = \dim(H) \geq 1$ et $\pi(X) = \sum_{k=0}^{p} a_k X^k$ le polynôme minimal de la restriction de T à H avec $1 \leq p \leq n$ et $a_p = 1$.

Pour toute fonction $f \in E$, on a $\sum_{k=0}^{p} a_k T^k(f) = 0$. La fonction $y = T^p(f)$ est de classe \mathcal{C}^p sur [a, b] avec $y^{(k)} = T^{p-k}(f)$ pour $1 \le k \le p$ et $y^{(k)}(a) = 0$ pour $0 \le k \le p-1$, donc y est solution du problème de Cauchy:

$$\sum_{k=0}^{p} a_k y^{(p-k)} = 0 \text{ avec } y^{(k)}(a) = 0 \text{ pour } 0 \le k \le p-1$$

ce qui impose y=0 par unicité de cette solution, ce qui contredit $H\neq\{0\}$.

En définitive, $H = \{0\}$ est l'unique sous-espace vectoriel de dimension finie de E stable par T.

10.

(a) Comme $\lim_{t\to b^-} \varphi(t) = 0$, la fonction φ se prolonge par continuité en b en posant $\varphi(b) = 0$. Comme f est de classe \mathcal{C}^1 sur [a,b] avec f(a) = 0, on a :

$$\lim_{t \to a^{+}} \frac{f(t)}{t - a} = \lim_{t \to a^{+}} \frac{f(t) - f(a)}{t - a} = f'(a)$$

et:

$$\varphi(t) \cdot f(t) = \frac{\frac{\pi}{2} \frac{t-a}{b-a}}{\tan\left(\frac{\pi}{2} \frac{t-a}{b-a}\right)} \frac{f(t)}{t-a} \underset{t \to a^{+}}{\longrightarrow} f'(a)$$

donc $\varphi \cdot f$ se prolonge par continuité en a en posant $(\varphi \cdot f)(a) = f'(a)$

(b) Pour tout $t \in]a, b[$, on a $\frac{1}{\tan\left(\frac{\pi}{2}\frac{t-a}{b-a}\right)} = \frac{1}{\tan\left(\frac{\pi}{2} - \frac{\pi}{2}\frac{b-t}{b-a}\right)} = -\tan\left(\frac{\pi}{2}\frac{b-t}{b-a}\right)$ et :

$$\varphi'(t) = -\frac{\pi^2}{4(b-a)^2} \left(1 + \tan^2 \left(\frac{\pi}{2} \frac{b-t}{b-a} \right) \right) = -\frac{\pi^2}{4(b-a)^2} - \varphi^2(t)$$

(c) On a:

$$\|f' - \varphi \cdot f\|_{2}^{2} = \int_{a}^{b} (f'(t) - \varphi(t) \cdot f(t))^{2} dt$$
$$= \|f'\|_{2}^{2} + \int_{a}^{b} (\varphi^{2}(t) f^{2}(t) - 2\varphi(t) f(t) f'(t)) dt$$

avec:

$$\varphi^{2} f^{2} - 2\varphi \cdot f \cdot f' = -\frac{\pi^{2}}{4(b-a)^{2}} f^{2} - (\varphi' f^{2} + 2\varphi \cdot f \cdot f')$$
$$= -\frac{\pi^{2}}{4(b-a)^{2}} f^{2} - (\varphi f^{2})'$$

sur l'intervalle [a, b], ce qui nous donne pour $a < \alpha < \beta < b$:

$$\int_{\alpha}^{\beta} \left(\varphi^{2}(t) f^{2}(t) - 2\varphi(t) f(t) f'(t) \right) dt = -\frac{\pi^{2}}{4(b-a)^{2}} \int_{\alpha}^{\beta} f^{2}(t) dt - \int_{\alpha}^{\beta} \left(\varphi f^{2} \right)'(t) dt$$
$$= -\frac{\pi^{2}}{4(b-a)^{2}} \int_{\alpha}^{\beta} f^{2}(t) dt - \left(\varphi(\beta) f^{2}(\beta) - \varphi(\alpha) f^{2}(\alpha) \right)$$

et faisant tendre (α, β) vers (a, b), on aboutit à :

$$||f' - \varphi \cdot f||_{2}^{2} = ||f'||_{2}^{2} - \frac{\pi^{2}}{4(b-a)^{2}} ||f||_{2}^{2} - (\varphi(b) f^{2}(b) - (\varphi \cdot f)(a) f(a))$$

$$= ||f'||_{2}^{2} - \frac{\pi^{2}}{4(b-a)^{2}} ||f||_{2}^{2}$$

(d) On en déduit que $\|f'\|_2^2 - \frac{\pi^2}{4\left(b-a\right)^2} \|f\|_2^2 \ge 0$, soit que $\|f\|_2 \le \frac{2\left(b-a\right)}{\pi} \|f'\|_2$. L'égalité $\|f\|_2 = \frac{2\left(b-a\right)}{\pi} \|f'\|_2$ est réalisée si, et seulement si, $f' = \varphi \cdot f$, ce qui équivaut à :

$$f(t) = \lambda e^{\Phi(t)}$$

pour tout $t \in [a, b]$, où Φ est la primitive de φ nulle en b, soit :

$$\begin{split} \Phi\left(t\right) &= -\int_{t}^{b} \varphi\left(x\right) dx = -\frac{\pi}{2\left(b-a\right)} \int_{t}^{b} \frac{\cos\left(\frac{\pi}{2} \frac{x-a}{b-a}\right)}{\sin\left(\frac{\pi}{2} \frac{x-a}{b-a}\right)} dx = -\left[\ln\left(\sin\left(\frac{\pi}{2} \frac{x-a}{b-a}\right)\right)\right]_{t}^{b} \\ &= \ln\left(\sin\left(\frac{\pi}{2} \frac{t-a}{b-a}\right)\right) \end{split}$$

On a donc:

$$f(t) = \lambda \sin\left(\frac{\pi}{2} \frac{t-a}{b-a}\right)$$

pour tout $t \in [a, b]$, cette égalité étant également assurée en a par continuité.

11. Pour toute fonction $f \in E$, la fonction T(f) est de classe C^1 sur [a, b] avec (T(f))' = f et (T(f))(a) = a. On déduit alors de la question précédente que :

$$||T(f)||_2 \le \frac{2(b-a)}{\pi} ||(T(f))'||_2 = \frac{2(b-a)}{\pi} ||f||_2$$

$$\begin{aligned} & \text{donc } \|T\|_2 \leq \frac{2 \, (b-a)}{\pi}. \\ & \text{Pour } f\left(t\right) = \cos\left(\frac{\pi}{2} \frac{t-a}{b-a}\right), \text{ on a } T\left(f\right)\left(t\right) = \frac{2 \, (b-a)}{\pi} \sin\left(\frac{\pi}{2} \frac{t-a}{b-a}\right) \text{ et } \|T\left(f\right)\|_2 = \frac{2 \, (b-a)}{\pi} \, \|f\|_2, \\ & \text{donc } \|T\|_2 = \frac{2 \, (b-a)}{\pi}. \end{aligned}$$

- VIII - Théorèmes de changement de variables et de Fubini sur \mathbb{R}^n

Exercice 61 Quelle est l'image de $\mathcal{U} = (\mathbb{R}_+^*)^2$ par l'application qui à (x,y) associe (x+y,y)? Montrer que cette application est un \mathcal{C}^1 -difféomorphisme de \mathcal{U} sur son image. En déduire la valeur de $\int_{\mathcal{U}} e^{-(x+y)^2} dx \, dy$.

Solution. Notons

$$\mathcal{U} = \mathbb{R}_+^{\star} \times \mathbb{R}_+^{\star} \text{ et } \mathcal{V} = \{(u, v) \in \mathbb{R}_+^{\star} \times \mathbb{R}_+^{\star} \mid u > v\}$$

L'application $\varphi:(x,y)\mapsto (x+y,y)$ est de classe \mathcal{C}^1 de \mathcal{U} dans \mathcal{V} . Elle est injective ((x+y,y)=(x'+y',y') impose y=y' et x=x') et surjective (tout $(u,v)\in\mathcal{V}$ s'écrit (u,v)=(x+y,y) avec y=v>0 et x=u-v>0), c'est donc une bijection. Comme $\varphi^{-1}:(u,v)\mapsto (u-v,v)$ est aussi de classe \mathcal{C}^1 , cette application φ est un \mathcal{C}^1 -difféomorphisme de \mathcal{U} sur \mathcal{V} .

On peut utiliser le théorème de changement de variables pour écrire que :

$$I = \int_{\mathcal{U}} e^{-(x+y)^2} dx \, dy = \int_{\mathcal{V}} e^{-u^2} \left| J_{\varphi^{-1}}(u,v) \right| du \, dv = \int_{\mathcal{V}} e^{-u^2} du \, dv$$
$$= \int_0^{+\infty} \left(\int_0^u e^{-u^2} dv \right) du = \int_0^{+\infty} u e^{-u^2} du = \frac{1}{2}$$

Exercice 62 Soient a et b deux réels tels que -1 < a < b.

- 1. Montrer que la fonction la fonction $(x,y) \mapsto f(x,y) = y^x$ est intégrable sur le rectangle $[a,b] \times [0,1]$.
- 2. En déduire la valeur de $\int_0^1 \frac{y^b y^a}{\ln(y)} dy$.

Solution.

1. La fonction $f: (\underline{x}, \underline{y}) \mapsto y^x = e^{x \ln(y)}$ est continue sur $\mathbb{R} \times \mathbb{R}^{+,*}$, donc mesurable, à valeurs strictement positives. Dans $\overline{\mathbb{R}^+}$, on a :

$$\int_{[a,b]\times[0,1]} f(x,y) \, dx dy = \int_{a}^{b} \left(\int_{0}^{1} y^{x} dy \right) dx = \int_{a}^{b} \left[\frac{y^{x+1}}{x+1} \right]_{0}^{1} dx$$
$$= \int_{a}^{b} \frac{dx}{x+1} = \ln\left(\frac{b+1}{a+1}\right) \in \mathbb{R}^{+}$$

donc f est intégrable sur $[a, b] \times [0, 1]$ avec :

$$\int_{[a,b]\times[0,1]} f(x,y) \, dx dy = \ln\left(\frac{b+1}{a+1}\right)$$

2. On a aussi:

$$\begin{split} \int_{[a,b]\times[0,1]} f(x,y) \, dx dy &= \int_0^1 \left(\int_a^b e^{x \ln(y)} dx \right) dy = \int_0^1 \left[\frac{e^{x \ln(y)}}{\ln(y)} \right]_a^b dy \\ &= \int_0^1 \frac{y^b - y^a}{\ln(y)} \, dy \end{split}$$

donc:

$$\int_{0}^{1} \frac{y^{b} - y^{a}}{\ln(y)} dy = \ln\left(\frac{b+1}{a+1}\right)$$

Exercice 63 La fonction $f:(x,y)\mapsto e^{-xy}\sin(x)\sin(y)$ est-elle intégrable sur $\mathcal{U}=\left(\mathbb{R}_+^\star\right)^2$?

Solution. La fonction f est continue, donc mesurable sur \mathbb{R}^2 .

On partitionne l'ouvert \mathcal{U} sous la forme $\mathcal{U} = \bigcup_{k=1}^{4} R_k$, où :

$$R_1 = \{(x, y) \in \mathbb{R}^2 \mid 0 < x \le 1 \text{ et } 0 < y \le 1\}$$

$$R_2 = \{(x, y) \in \mathbb{R}^2 \mid x > 1 \text{ et } 0 < y \le 1\}$$

$$R_3 = \{(x, y) \in \mathbb{R}^2 \mid 0 < x \le 1 \text{ et } y > 1\}$$

$$R_4 = \{(x, y) \in \mathbb{R}^2 \mid x > 1 \text{ et } y > 1\}$$

Comme f est continue sur le compact $[0,1]^2$, elle y est intégrable, donc f est intégrable sur $R_1 \subset [0,1]^2$.

$$\int_{1}^{1} \int_{0}^{1} e^{-xy} \sin(x) \sin(y) dxdy$$

Pour tout $(x, y) \in R_2$, on a $|f(x, y)| \le ye^{-xy}$ avec :

$$\int_{R_2} y e^{-xy} dx dy = \int_0^1 \left(\int_1^{+\infty} y e^{-xy} dx \right) dy = \int_1^{+\infty} \left[-e^{-xy} \right]_{x=1}^{x=+\infty} dy$$
$$= \int_1^{+\infty} e^{-y} dy = \frac{1}{e}$$

donc f est intégrable sur R_2 .

Comme x et y jouent des rôles symétrique, f est intégrable sur R_3 .

Pour tout $(x,y) \in R_4$, on a $|f(x,y)| \le e^{-xy}$ avec :

$$\int_{R_4} e^{-xy} dx dy = \int_1^{+\infty} \left(\int_1^{+\infty} e^{-xy} dx \right) dy = \int_1^{+\infty} \left[-\frac{e^{-xy}}{y} \right]_{x=1}^{x=+\infty} dy$$
$$= \int_1^{+\infty} \frac{e^{-y}}{y} dy < +\infty$$

donc f est intégrable sur R_4 .

En conclusion, f est intégrable sur $\left(\mathbb{R}_+^{\star}\right)^2$.

Exercice 64 Soit f la fonction définie sur $R = [0, 1]^2$ par :

$$f(x,y) = \frac{x-y}{(x^2+y^2)^{\frac{3}{2}}}$$

- 1. La fonction f est-elle intégrable sur R?
- 2. Calculer une primitive de $\frac{1}{(1+t^2)^{\frac{3}{2}}}$ sur \mathbb{R} .
- 3. Calculer, pour tout $y \in]0,1[$:

$$\varphi\left(y\right) = \int_{0}^{1} f\left(x, y\right) dx$$

4. Montrer que :

$$\int_{0}^{1} \left(\int_{0}^{1} f(x, y) dx \right) dy \neq \int_{0}^{1} \left(\int_{0}^{1} f(x, y) dy \right) dx$$

Exercice 65 Soient f, g les fonctions définies sur $R = [0, 1]^2$ par :

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
 et $g(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$

- 1. Montrer que f est intégrable sur R et calculer $\int_{R} f(x,y) dxdy$.
- 2.
- (a) Calculer, pour tout $y \in]0,1[$:

$$\varphi\left(y\right) = \int_{0}^{1} g\left(x, y\right) dx$$

(b) Calculer:

$$\int_0^1 \left(\int_0^1 g(x,y) \, dx \right) dy \ et \ \int_0^1 \left(\int_0^1 g(x,y) \, dy \right) dx$$

et conclure.

Exercice 66 Fonction Béta.

On désigne par \mathcal{H} le demi plan complexe défini par :

$$\mathcal{H} = \{ z \in \mathbb{C} \mid \Re(z) > 0 \}$$

1. Soient u, v deux nombres complexes. Montrer que la fonction $t \mapsto t^{u-1} (1-t)^{v-1}$ est intégrable sur]0,1[si, et seulement si, $(u,v) \in \mathcal{H}^2$.

Définition : la fonction béta (ou fonction de Bessel de seconde espèce) est la fonction définie sur \mathcal{H}^2 par :

$$\forall (u, v) \in \mathcal{H}^2, \ B(u, v) = \int_0^1 t^{u-1} (1-t)^{v-1} dt$$

2. Montrer que, pour tous nombres complexes u, v dans \mathcal{H} , on a :

$$B(u, v) = B(v, u)$$
 et $B(u + 1, v) = \frac{u}{u + v} B(u, v)$

3. Montrer que, pour tous nombres complexes u, v dans \mathcal{H} , on a:

$$\lim_{n \to +\infty} n^{u} B\left(u, v + n + 1\right) = \Gamma\left(u\right)$$

- 4. Montrer que, pour tous nombres complexes u, v dans \mathcal{H} , on a $B(u, v) = \frac{\Gamma(u)\Gamma(v)}{\Gamma(u+v)}$.
- 5. Calculer B(n+1, m+1), pour n, m entiers naturels.

- IX - Espaces L^p

Exercice 67 Soient (X, \mathcal{M}, μ) un espace mesuré, $1 \leq p < \infty$ et $\mathcal{L}^p = \mathcal{L}^p(X, \mathcal{M}, \mu)$.

 $\mathcal{L}^{\infty} = \mathcal{L}^{\infty}(X, \mathcal{M}, \mu)$ est l'espace vectoriel des fonctions qui s'écrivent comme la somme d'une fonction mesurable bornée et d'une fonction nulle presque partout.

Pour $1 \leq p \leq \infty$, $L^p = L^p(X, \mathcal{M}, \mu)$ est l'espace vectoriel quotient $\frac{\mathcal{L}^p(X, \mathcal{M}, \mu)}{\mathcal{N}(X, \mathcal{M}, \mu)}$ où $\mathcal{N}(X, \mathcal{M}, \mu)$ est le sous-espace vectoriel de $\mathcal{L}^p(X, \mathcal{M}, \mu)$ formé des fonctions nulles presque partout. Une fonction $f \in \mathcal{L}^p(X, \mathcal{M}, \mu)$ est identifiée à sa classe d'équivalence $\overline{f} \in L^p(X, \mathcal{M}, \mu)$. On se donne $p \in [1, \infty]$.

- 1. Montrer que, si f, g sont à valeurs réelles et dans \mathcal{L}^p , alors $\max(f, g)$ et $\min(f, g)$ sont aussi dans \mathcal{L}^p .
- 2. Soient $(f_n)_{n\in\mathbb{N}}$ et. $(g_n)_{n\in\mathbb{N}}$ deux suites d'éléments de L^p à valeurs réelles qui convergent dans L^p vers f et g respectivement. Montrer que la suite $(\max(f_n, g_n))_{n\in\mathbb{N}}$ converge dans L^p vers $\max(f, g)$.
- 3. Soient $q \in [1,\infty]$ tel que $\frac{1}{p} + \frac{1}{q} \le 1$ et $r \in [1,\infty]$ défini par $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$.
 - $(a) \ \ \textit{Montrer que si} \ f \in L^p \ \ \textit{et} \ g \in L^q, \ \ \textit{on a alors} \ fg \in L^r \ \ \textit{et} \ \|fg\|_r \leq \|f\|_p \, \|g\|_q \, .$
 - (b) Si $(f_n)_{n\in\mathbb{N}}$ est une suite d'éléments de L^p qui convergent dans L^p vers f et $(g_n)_{n\in\mathbb{N}}$ une suite d'éléments de L^q qui convergent dans L^q vers g montrer alors que $(f_ng_n)_{n\in\mathbb{N}}$ converge vers fg dans L^r .
- 4. On suppose que p est fini. Si $(f_n)_{n\in\mathbb{N}}$ converge vers f dans L^p et si $(g_n)_{n\in\mathbb{N}}$ est une suite bornée dans L^∞ qui converge vers g presque partout, montrer alors que $(f_ng_n)_{n\in\mathbb{N}}$ converge vers fg dans L^p .

Exercice 68 Soit (X, \mathcal{M}, μ) un espace mesuré, avec μ finie.

1. Montrer que pour tout $f \in L^{\infty}$, on a :

$$\lim_{p \to +\infty} \|f\|_p = \|f\|_{\infty}$$

- 2. Soit $f \in \bigcap_{1 \le p < \infty} L^p$ telle que $\sup_{1 \le p < \infty} \|f\|_p < \infty$. Montrer que $f \in L^{\infty}$.
- 3. Donner un exemple de fonction $f \in \bigcap_{1 \le p \le \infty} L^p$ telle que $f \notin L^{\infty}$.

Exercice 69 Pour cet exercice, \mathbb{R}_{+}^{\star} est muni de la tribu de Borel et de la mesure de Lebesgue. Soit $p \in]1, \infty[$. À toute fonction $f \in \mathcal{L}^{p}(\mathbb{R}_{+}^{\star}, \mathbb{R})$, on associe les fonctions F, G, H définies sur \mathbb{R}_{+}^{\star} par :

$$\forall x \in \mathbb{R}_{+}^{\star}, \ F\left(x\right) = \int_{0}^{x} f\left(t\right) dt, \ G\left(x\right) = \frac{F\left(x\right)}{x^{\frac{1}{q}}}, \ H\left(x\right) = \frac{F\left(x\right)}{x}$$

où $q = \frac{p}{p-1}$ désigne l'exposant conjugué de p.

1. Montrer que $|F(x) - F(y)| \le \|f\|_p |x - y|^{\frac{1}{q}}$ pour tous réels x > 0 et y > 0. En déduire que F, G et H sont continues sur \mathbb{R}_+^{\star} et que $\|G\|_{\infty} \le \|f\|_p$.

- 2. Montrer que $\lim_{x\to 0^+} G(x) = 0$.
- 3. Montrer que $\lim_{x\to +\infty} G(x)=0$ (on pourra commencer par supposer que f est continue et à support compact, puis utiliser le fait que l'espace des fonctions de \mathbb{R}_+^{\star} dans \mathbb{R} continues et à support compact est dense dans $\left(L^p\left(\mathbb{R}_+^{\star},\mathbb{R}\right),\|\cdot\|_p\right)$).
- 4. On veut montrer que $\|H\|_p \leq q\, \|f\|_p\,,$ c'est-à-dire que :

$$\int_0^\infty \frac{|F(x)|^p}{x^p} dx \le \left(\frac{p}{p-1}\right)^p \int_0^\infty |f(x)|^p dx \tag{4}$$

(inégalité de Hardy).

(a) Montrer que, si $f: \mathbb{R}_+^{\star} \to \mathbb{R}$ est continue, positive, et à support compact dans \mathbb{R}_+^{\star} , on a alors:

$$\int_{0}^{\infty} \frac{F(x)^{p}}{x^{p}} dx = \frac{p}{p-1} \int_{0}^{\infty} \frac{F(x)^{p-1}}{x^{p-1}} f(x) dx$$

En déduire que f vérifie l'inégalité (4).

- (b) On suppose que $f: \mathbb{R}_+^{\star} \to \mathbb{R}$ est continue et à support compact dans \mathbb{R}_+^{\star} . Montrer que f vérifie l'inégalité (4).
- (c) Par un argument de densité, montrer que (4) est vraie pour toute fonction $f \in \mathcal{L}^p\left(\mathbb{R}_+^{\star}, \mathbb{R}^+\right)$, puis montrer qu'elle est vraie pour toute fonction $f \in \mathcal{L}^p\left(\mathbb{R}_+^{\star}, \mathbb{R}\right)$.
- (d) En utilisant la suite de fonctions $(f_n)_{n\geq 2}$ définie par :

$$\forall n \geq 2, \ \forall t \in \mathbb{R}_{+}^{\star}, \ f_{n}(t) = t^{-\frac{1}{p}} \mathbf{1}_{]1,n[}(t)$$

montrer que la constante $\frac{p}{p-1}$ est optimale dans l'inégalité de Hardy (4).

(e) Etudier les cas p = 1 et $p = \infty$.