Question-1:

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Answer:

Optimal value of alpha for: Ridge = 0.5 and Lasso = 0.0001

Comparison of different metrics by doubling the alpha i.e. for Ridge = 1.0 and Lasso = 0.0002

	Metric	RidgeRegression	RidgeRegression - Double Alpha	LassoRegression	LassoRegression - Double Alpha
0	R2 Score (train)	0.914018	0.913124	0.914039	0.913124
1	R2 Score (test)	0.883073	0.882296	0.884025	0.882296
2	RSS (train)	13.795274	13.938823	13.791905	13.938823
3	RSS (test)	8.460091	8.516347	8.391192	8.516347
4	RMSE (train)	0.116239	0.116842	0.116225	0.116842
5	RMSE (test)	0.138821	0.139282	0.138255	0.139282

- We can see that that there is slight reduction in R2 score for train and test data for both Ridge and Lasso regression.
- There is very slight changes in RSS and RMSE as well for train and test data.

Comparison of Top 10 predictor variable after doubling the alpha:

	Ridge(0.5)		Ridge(1.0)
1stFirSF	0.525623	1stFlrSF	0.512977
2ndFlrSF	0.456926	OverallQua	0.452988
OverallQual	0.451886	2ndFlrSF	0.449361
MSZoning_RL	0.324437	MSZoning_RL	0.272202
MSZoning_FV	0.309946	MSZoning_FV	0.250364
MSZoning_RH	0.306806	MSZoning_RF	0.246920
MSZoning_RM	0.270257	MSZoning_RN	0.215045
BsmtFinSF1	0.190318	BsmtFinSF1	0.192785
OverallCond	0.182855	OverallCond	0.181994
Neighborhood_Crawfor	0.149072	GarageArea	0.152681

- Most important predictor variable remains same as 1stFloorSF after doubling the alpha for Ridge
- Coefficients of the features slightly changing by doubling the alpha

	Lasso(0.0001)		Lasso(0.0002)
1stFlrSF	0.543195	1stFlrSF	0.546482
OverallQual	0.464513	OverallQual	0.482088
2ndFlrSF	0.462720	2ndFlrSF	0.460452
MSZoning_RL	0.349905	MSZoning_RL	0.289310
MSZoning_FV	0.342461	MSZoning_FV	0.275658
MSZoning_RH	0.334819	MSZoning_RH	0.264836
MSZoning_RM	0.295368	MSZoning_RM	0.231106
BsmtFinSF1	0.184289	OverallCond	0.183914
OverallCond	0.182591	BsmtFinSF1	0.181433
GarageArea	0.146617	GarageArea	0.147205

- Most important predictor variable remains same as 1stFloorSF after doubling the alpha for Lasso
- Coefficients of the features slightly changing by doubling the alpha for Lasso

Question-2:

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Answer:

We select the Lasso Regression model coefficients for its slight better score of r2 score for test data (0.884 over 0.883). Also Lasso regression eliminates some features without affecting the model accuracy.

Question-3:

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Answer:

Ridge after drop

LotArea	0.358559
GarageArea	0.340567
BsmtFinSF1	0.313898
Neighborhood_NoRidge	0.299101
BsmtUnfSF	0.251378
Neighborhood_Crawfor	0.234052
Neighborhood_StoneBr	0.233473
OverallCond	0.175753
Exterior1st_BrkFace	0.175132
Neighborhood_NridgHt	0.157020

Five most important predictor variable after dropping the top 5 features in Ridge regression are:

- 1. LotArea Lot size in square feet
- 2. GarageArea Size of garage in square feet
- 3. BsmtFinSF1 Type 1 finished square feet
- 4. Neighbourhood_NoRidge Physical locations within Ames city limits (Northridge)
- 5. BsmtUnfSF Unfinished square feet of basement area

Lasso after drop

LotArea	0.373219
GarageArea	0.339953
BsmtFinSF1	0.324851
Neighborhood_NoRidge	0.311531
Neighborhood_StoneBr	0.265364
BsmtUnfSF	0.258443
Neighborhood_Crawfor	0.246146
OverallCond	0.183246
Exterior1st_BrkFace	0.183093
Neighborhood_NridgHt	0.157626

Five most important predictor variable after dropping the top 5 features in Lasso regression are:

- 1. LotArea Lot size in square feet
- 2. GarageArea Size of garage in square feet
- 3. BsmtFinSF1 Type 1 finished square feet
- 4. Neighbourhood_NoRidge Physical locations within Ames city limits (Northridge)
- 5. Neighbourhood_StoneBr Physical locations within Ames city limits (Stone Brook)

Question-4:

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Answer:

Model is considered to be robust if the model is not overfitting or underfitting. Linear regression can give a good r2 score for training data but it might be overfitting and hence the prediction on test data will not be accurate. To avoid overfitting, regularization is done. After regularization, the r2score of test data comes near to train data and hence we can say the prediction will be better on test data. If the model is not robust then the accuracy of the model will not be good.