Métodos Bayesianos

(Grado en Economía. Cuarto curso)

Curso 16/17

Ejercicio Propuesto

EJERCICIO. Supongamos que las pérdidas sufridas por una compañía aseguradora respecto de diversos siniestros para una misma cartera de asegurados pueden ajustarse adecuadamente por la distribución Gamma siguiente:

$$f(x|\theta) = \theta^2 \cdot x \cdot \exp(-\theta x), \quad x > 0, \ \theta > 0,$$

cuya media es $\frac{2}{\theta}$ y varianza $\frac{2}{\theta^2}$. Es decir, una distribución Gamma $(2, \theta)$. Deseamos hacer inferencia sobre el parámetro θ . Si disponemos de una muestra aleatoria simple de tamaño $n, x_1, ..., x_n$, de dicha población, se pide:

- 1. Obtener una distribución a priori no informativa de tipo Jeffreys, $\pi^J(\theta)$.
- Obtener la distribución a posteriori con la a priori anterior e identificar con alguna densidad conocida.
- 3. Para una caso no informativo, realizar (en general) el test de hipótesis: $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$.

Se han observado (n = 10) los siguientes datos: 0.86, 0.57, 3.15, 0.83, 0.50, 0.25, 2.34, 0.22, 0.84, 0.66. En lo que sigue, se utilizarán los datos anteriores para el análisis que se pida.

- 4. Obtener el factor Bayes, B_{01} , en el test de hipótesis del apartado (3) para: $H_0: \theta = 2$ vs $H_1: \theta = 3$. Comentar.
- 5. Determinar el estimador puntual bayesiano de θ que corresponde a unas pérdidas cuadráticas y comparar con el estimador de máxima verosimilitud.
- 6. Calcular las probabilidades a posteriori de $H_0: 1 \le \theta < 2$ vs $H_1: \theta \ge 2$.