Differential Geometry Notes of 02/17/2013

Pramook Khungurn

April 1, 2013

1 The Tangent Plane

- By a **tangent vector** to a regular surface S, at a point $p \in S$, we mean the tangent vector $\alpha'(0)$ of a differentiable parameterized curve $\alpha: (-\epsilon, \epsilon) \to S$ with $\alpha(0) = p$.
- Proposition 1.1. Let $\mathbf{x}: U \subseteq \mathbb{R}^2 \to S$ be a parameterization of regular surface S. Let $q \in U$. The vector subspace of dimension 2.

$$\mathrm{d}\mathbf{x}_q(\mathbb{R}^2) \subseteq \mathbb{R}^3$$

coincides with the set of tangent vectors to S at $\mathbf{x}(q)$.

Proof. Let w be a tangent vector at \mathbf{x} . That is, let $w = \alpha'(0)$, where $\alpha : (\epsilon, -\epsilon) \to \mathbf{x}(U) \subseteq S$ is differentiable and $\alpha(0) = \mathbf{x}(q)$. Because \mathbf{x}^{-1} is a differentiable function (See Example 2 of Section 2-3 of Do Carmo.), we have that $\beta = \mathbf{x}^{-1} \circ \alpha : (-\epsilon, \epsilon) \to U$ is a differentiable function. By the definition of differentials, we have that $d\mathbf{x}_q(\beta'(0)) = w$. Hence, $w \in d\mathbf{x}_q(\mathbb{R}^2)$.

On the other hand, let $w = d\mathbf{x}_q(v)$, where $v \in \mathbb{R}^2$. It is licear that v is the velocity vector of the curve $\gamma: (-\epsilon, \epsilon) \to U$ given by:

$$\gamma(t) = tv + q.$$

By the definition of the differential, $w = \alpha'(0)$ where $\alpha = \mathbf{x} \circ \gamma$.

- By the above proposition, the plane $d\mathbf{x}_q(\mathbb{R}^2)$ does not depend on the parametermization \mathbf{x} . We call this plane the **tangent plane** to S at p. We denote the plane by the symbol $T_p(S)$.
- The choice of parametermization **x** around p determine the basis vectors $(\partial \mathbf{x}/\partial u)(q)$ and $(\partial \mathbf{y}/\partial v)(q)$ of $T_p(S)$.

We call them the basis associated to x.

- We sometimes write $\partial \mathbf{x}/\partial u$ as \mathbf{x}_u and $\partial \mathbf{x}/\partial v$ as \mathbf{x}_v .
- If $\alpha = \mathbf{x} \circ \beta$ where $\beta : (-\epsilon, \epsilon) \to U$ is given by $\beta(t) = (u(t), v(t))$, then the tangent vector $\alpha'(0)$ can be written in terms of the above basis vectors as follows:

$$\alpha'(0) = \frac{\mathrm{d}(\mathbf{x} \circ \beta)}{\mathrm{d}t}(0) = \frac{\mathrm{d}\mathbf{x}(u(t), v(t))}{\mathrm{d}t}(0) = \frac{\partial\mathbf{x}}{\partial u}\bigg|_{q} u'(0) + \frac{\partial\mathbf{x}}{\partial v}\bigg|_{q} v'(0) = \mathbf{x}_{u}(q)u'(0) + \mathbf{x}_{v}(q)v'(0).$$

So, the vector $\alpha'(0)$ has coordinate (u'(0), v'(0)) in the basis $\{\mathbf{x}_u(q), \mathbf{x}_v(q)\}$.

2 Differentials of Maps between Surfaces

- Let S_1 and S_2 be two regular surfaces. Let $\varphi: V \subseteq S_1 \to S_2$ be a differentiable mapping of an open set V of S_1 to S_2 .
- If $p \in V$, we know that every tangent vector $w \in T_p(S)$ is the velocity vector $\alpha'(0)$ for a differentiable curve $\alpha : (-\epsilon, \epsilon) \to V$ where $\alpha(0) = p$.
- Let $\beta = \varphi \circ \alpha$. We have that $\beta(0) = \varphi(p)$. As a result $\beta'(0)$ is a vector of $T_{\varphi(p)}(S_2)$
- We now define $d\varphi_p: T_p(S_1) \to T_{\varphi(p)}(S_2)$ as follows:

$$d\varphi_p(w) = \beta'(0)$$

for any differentiable curve $\alpha: (-\epsilon, \epsilon) \to S_1$ such that $\alpha(0) = p$ and $\alpha'(0) = w$ and $\beta = \varphi \circ \alpha$.

• Proposition 2.1. Given w, the definition above does not depend on the choice of α . Moreover, the map $d\varphi_p$ is linear.