Table 1. More comparison results on two benchmarks demonstrate the SOTA performance of GDformer.

				1			
Dataset	NIP	S_TS_GECC	O[1]	ASD[2]			
Metric	P	R	F1	P	R	F1	
AnomalyTrans	28.42	45.48	34.98	73.7	99.74	84.76	
DCdetector	32.23	45.21	37.63	91.83	99.81	95.66	
GDformer	63.10	55.80	59.20	97.18	99.85	98.50	

Table 2. Comparison results on additional metrics (affiliation precision/recall[3] and VUS[4]).

Dataset	•	Method Aff-P[3] Aff-R[3]		R_AUC_ROC[4]	R_AUC_PR[4]	VUS ROC[4]	VUS_PR[4]
Dutuset							
	AnomalyTrans	84.51	98.82	90.17	87.96	88.57	86.54
MSL	DCdetector	83.49	98.45	89.98	87.87	88.2	86.31
	GDformer	88.24	99.14	90.89	89.33	90.22	88.78
	AnomalyTrans	80.66	97.7	85.76	85.76	85.8	85.8
SMAP	DCdetector	82.68	99.51	95.87	93.99	94.78	93.03
	GDformer	84.00	99.73	96.81	94.51	96.23	94.01
	AnomalyTrans	78.56	90.27	84.42	79.91	84.37	79.87
SWaT	DCdetector	89.32	99.85	96.61	94.03	96.81	94.21
	GDformer	93.97	99.92	98.37	96.96	98.09	96.72
	AnomalyTrans	75.16	75.21	89.38	92.2	87.81	91.07
PSM	DCdetector	63.49	80.93	86.66	89.36	82.38	86.14
	GDformer	69.86	84.79	92.90	94.17	89.81	91.95

Table 3. Error bars.

Tuote 3. Enfort data.										
Method	MSL	SMAP	SWaT	PSM						
AnomalyTrans	93.83±0.32	95.75±0.07	93.14±1.07	97.46±0.1						
DCdetector	94.7±0.76	95.94±0.39	96.4±0.06	97.42±0.45						
GDformer	95.7±0.14	96.47±0.04	97.69±0.31	98.43±0.44						

Table 4. Comparison with SOTA baselines.

SMAP				SWaT	PSM			
P	R	F1	P	R	F1	P	R	F
	05.50	0 < 50	06.20	00.02	00.00	0= 0=	00.50	00.1

AVG

Metric	P	R	F1	F1									
GDformer	93.70	98.07	95.83	95.55	97.52	96.52	96.28	99.82	98.02	97.97	99.52	98.74	97.28
MEMTO[5]	92.07	96.76	94.36	93.76	99.63	96.61	94.18	97.54	95.83	97.46	99.23	98.34	96.28
DiffAD[6]	92.97	95.44	94.19	96.52	97.38	96.95	98.44	96.9	97.66	97.00	98.92	97.95	96.69
EH-GAM- EGAN[7]	89.49	94.29	91.83	8.34	1.00	9.10	4.51	1.00	8.63	94.66	98.45	96.51	51.52

Table 5. Ablation study on SMD dataset.

Variants	A.1	A.2	A.3	A.4	A.5	GDformer	B.1	B.2	C.1	C.2
P	83.86	83.34	81.53	83.07	83.9	86.33	84.47	84.32	81.58	85.54
R	82.52	88.31	77.56	88.01	93.26	94.89	86.82	83.43	70.07	89.7
F1	83.18	85.75	79.5	85.47	88.34	90.41	85.63	83.88	75.39	87.57

Reference:

Dataset

- [1] DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection
- [2] Multivariate Time Series Anomaly Detection and Interpretation using Hierarchical Inter-Metric and Temporal Embedding
- [3] Local Evaluation of Time Series Anomaly Detection Algorithms

MSL

- [4] Volume under the surface: a new accuracy evaluation measure for time-series anomaly detection
- [5] Memto: Memory-guided transformer for multivariate time series anomaly detection, 2023
- [6] Imputation-based Time-Series Anomaly Detection with Conditional Weight-Incremental Diffusion Models, 2023
- [7] Graph-enhanced anomaly detection framework in multivariate time series using Graph Attention and Enhanced Generative Adversarial Networks, 2025