- ▶ Let $\varphi = a \cup b$.
- Subformulae of φ : $\{a, b, a \cup b\}$. Let $B = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$.
- Possibilities at each state : maximally consistent subsets of B
 - {a,¬b, a Ub}
 {¬a, b, a Ub}
 {a, b, a Ub}
 {a,¬b,¬(a Ub)}
 {¬a,¬b,¬(a Ub)}
- ► The invariant to be fulfilled : all accepted words starting from a state *B_i*, satisfy formulae in *B_i*.
- ightharpoonup All words accepted by the automaton must satisfy φ

- Our initial state(s) must guarantee truth of a Ub. Thus, initial states: $\{a, b, a \cup b\}$ and $\{\neg a, b, a \cup b\}$ and $\{a, \neg b, a \cup b\}$.
- ▶ All transitions outgoing from a state B are labeled with $B \cap AP$

2/1

$$\rightarrow \{a, b, a \cup b\}$$

 $\{a, \neg b, \neg (a \cup b)\}$

 $\{\neg a, \neg b, \neg (a \cup b)\}$

 \rightarrow {a, b, a Ub}

LTL to GNBA : Accepting States

$$\rightarrow \boxed{\{a, b, a \cup b\}}$$

 $\{a, \neg b, \neg (a \cup b)\}$

 $\{\neg a, \neg b, \neg (a \cup b)\}$

Construct GNBA for $\neg(a \cup b)$.

9/16

- ▶ Let $\varphi = a U(\neg a Uc)$. Let $\psi = \neg a Uc$
- Subformulae of φ : $\{a, \neg a, c, \psi, \varphi\}$. Let $B = \{a, \neg a, c, \neg c, \psi, \neg \psi, \varphi, \neg \varphi\}$.
- ▶ Possibilities at each state : some consistent subset of B holds
 - \triangleright { a, c, ψ, φ }
 - $\{\neg a, c, \psi, \varphi\}$
 - $\{a, \neg c, \neg \psi, \varphi\}$
 - $\{a, \neg c, \neg \psi, \neg \varphi\}$
 - $\blacktriangleright \{ \neg a, \neg c, \psi, \varphi \}$
 - $\{\neg a, \neg c, \neg \psi, \neg \varphi\}$

$$\longrightarrow \{a, c, \psi, \varphi\}$$

$$\left[\left\{ \neg \mathbf{a}, \neg \mathbf{c}, \psi, \varphi \right\} \right] \longleftarrow$$

$$\rightarrow \left[\{ \neg a, c, \psi, \varphi \} \right]$$

$$\{ \pmb{a}, \neg \pmb{c}, \neg \psi, \neg \varphi \}$$

$$\{\neg a, \neg c, \neg \psi, \neg \varphi\}$$

$$\rightarrow \boxed{\{a, \neg c, \neg \psi, \varphi\}}$$

11/16

GNBA Acceptance Condition

- $\psi = \neg a Uc$
- $ightharpoonup \varphi = a U \psi$
- ▶ $F_1 = \{B \mid \psi \in B \to c \in B\}$
- $F_2 = \{B \mid \varphi \in B \rightarrow \psi \in B\}$
- ▶ $\mathcal{F} = \{F_1, F_2\}$

Final States

$$\rightarrow$$
 $\{a, c, \psi, \varphi\} \in F_1, F_2$

$$|\{\neg a, \neg c, \psi, \varphi\} \in F_2|$$
 \longleftarrow

$$\{a, \neg c, \neg \psi, \neg \varphi\} \in F_1, F_2$$

$$\rightarrow \left[\{ \neg a, c, \psi, \varphi \} \in F_1, F_2 \right]$$

$$\{\neg a, \neg c, \neg \psi, \neg \varphi\} \in F_1, F_2$$

$$\rightarrow$$
 $\{a, \neg c, \neg \psi, \varphi\} \in F_1$

Putting Together

- ▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq CI(\varphi)$ which are consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \rightarrow \neg \psi \notin B \text{ and } \psi \notin B \rightarrow \neg \psi \in B$
 - Whenever $\psi_1 \cup \psi_2 \in Cl(\varphi)$,
 - $\psi_2 \in B \rightarrow \psi_1 \cup \psi_2 \in B$
 - $\psi_1 \cup \psi_2 \in B$ and $\psi_2 \notin B \rightarrow \psi_1 \in B$

Putting Together

Given φ over AP, construct $A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$,

- ▶ $Q = \{B \mid B \subseteq CI(\varphi) \text{ is consistent } \}$
- $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that
 - ▶ For $C = B \cap AP$, $\delta(B, C)$ is enabled and is defined as :
 - If $\bigcirc \psi \in Cl(\varphi)$, $\bigcirc \psi \in B$ iff $\psi \in \delta(B,C)$
 - ▶ If $\varphi_1 \cup \varphi_2 \in Cl(\varphi)$, $\varphi_1 \cup \varphi_2 \in B$ iff $(\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \cup \varphi_2 \in \delta(B, C)))$
- $\mathcal{F} = \{ F_{\varphi_1 \cup \varphi_2} \mid \varphi_1 \cup \varphi_2 \in Cl(\varphi) \}, \text{ with }$ $F_{\varphi_1 \cup \varphi_2} = \{ B \in Q \mid \varphi_1 \cup \varphi_2 \in B \rightarrow \varphi_2 \in B \}$
- ▶ Prove that $L(\varphi) = L(A_{\varphi})$

• States of A_{φ} are subsets of $CI(\varphi)$

- States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$

- States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$
- ▶ Number of sets in $\mathcal{F} = |\varphi|$

- ▶ States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$
- Number of sets in $\mathcal{F} = |\varphi|$
- ▶ LTL $\varphi \sim \text{NBA } A_{\varphi}$: Number of states in $A_{\varphi} \leqslant |\varphi|.2^{|\varphi|}$
- ▶ Lower Bound : Find a family of LTL formulae φ_n such that the state space of $A_{\varphi_n} \geqslant |\varphi|.2^{|\varphi|}$

- ▶ States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$
- Number of sets in $\mathcal{F} = |\varphi|$
- ▶ LTL $\varphi \sim \text{NBA } A_{\varphi}$: Number of states in $A_{\varphi} \leqslant |\varphi|.2^{|\varphi|}$
- ▶ Lower Bound : Find a family of LTL formulae φ_n such that the state space of $A_{\varphi_n} \geqslant |\varphi|.2^{|\varphi|}$
- $ho \varphi_n = \lozenge[a \wedge \bigcirc^n \Box \phi] \text{ over } AP = \{a\}.$