- 6. Скопируйте на кальку спектры цугов с параметрами: $\tau=100$ мкс, $m_x=5$ к Γ ц/дел; а) $f_{\text{повт}}=1$ к Γ ц; б) $f_{\text{повт}}=2$ к Γ ц. Запишите на кальках эти параметры и приложите кальки к отчёту.
- 7. Постройте график $\delta \nu(f_{\text{повт}})$ и по его наклону убедитесь в справедливости соотношения неопределённости.
- 8. Сравните зарисованные на кальку спектры: а) прямоугольных импульсов при одинаковых периодах и разных длительностях импульса τ ; б) цугов при одинаковых τ и разных периодах; в) цугов и прямоугольных импульсов при одинаковых значениях τ и T.

IV. ИССЛЕДОВАНИЕ СПЕКТРА ГАРМОНИЧЕСКИХ СИГНАЛОВ, МОДУЛИРОВАННЫХ ПО АМПЛИТУДЕ.

А. Экспериментальная установка

Схема для исследования амплитудномодулированного сигнала представлена на рис. 4. Модуляционный генератор встроен в левую часть генератора сигналов $\Gamma6$ -34. Синусоидальный сигнал с частотой модуляции $f_{\text{мод}}=1$ к Γ ц подаётся с модуляционного генератора на вход AM (амплитудная модуляция) генератора, вырабатывающего синусоидальный сигнал высокой частоты (частота несущей $\nu_0=25$ к Γ ц). Амплитудномодулированный сигнал с основного выхода генератора поступает на осциллограф и на анализатор спектра.

Рис. 4. Схема для исследования спектра высокочастотного гармонического сигнала, промодулированного по амплитуде низкочастотным гармоническим сигналом

В. Задание

В этом упражнении исследуется зависимость отношения амплитуд спектральных линий синусоидального сигнала, модулированного низкочастотными гармоническими колебаниями, от коэффициента модуляции, который определяется с помощью осциллографа.

- 1. Соберите схему, изображённую на рис. 4.
- 2. Подготовьте приборы к работе, следуя техническому описанию (${
 m TO}$, раздел III, ${
 m C}$).
- 3. Изменяя глубину модуляции (ручка 11 на Γ 6-34), исследуйте зависимость отношения амплитуды боковой линии спектра к амплитуде основной линии $(A_{\text{бок}}/A_{\text{осн}})$ от глубины модуляции m (5–6 значений

- в диапазоне $0 < m \leqslant 1$); для расчёта глубины модуляции m по формуле (П.13) измеряйте максимальную $2A_{max}$ и минимальную $2A_{min}$ амплитуды сигнала на экране осциллографа (см. рис. П.6 и П.7).
- 4. При 100% глубине модуляции ($A_{min}=0$) посмотрите, как меняется спектр при увеличении частоты модулирующего сигнала (ручка 10 на Γ 6-34 поворачивается по часовой стрелке).
- 5. Постройте график отношения $A_{\rm fok}/A_{\rm och}$ в зависимости от m. Определите угол наклона графика и сравните с рассчитанным с помощью формулы (П.14).

V. ОБРАБОТКА ИЗМЕРЕНИЙ.

A. II

По измеренной зависимости $\Delta \nu(1/ au)$ построим график и построим невзвешенный метод наименьших квадратов.

Результаты построения модели $\Delta \nu = \alpha + \beta(1/\tau)$:

$$\beta = 1.01 \pm 0.03$$
, $\alpha = 0.00 \pm 0.04$

Что позволяет нам говорить о справедливости соотношения неопределённостей.

B. III

По измеренной зависимости $\delta \nu(f_{\text{повт}})$ построим график и аналогично построим невзвешенный метод наименьших квадратов.

Результаты построения модели $\delta \nu = \alpha + \beta(f_{\text{повт}})$:

$$\beta = 0.99 \pm 0.06, \quad \alpha = 0.00 \pm 0.3$$

Что позволяет нам аналогично говорить о справедливости соотношения неопределённостей.

C. IV

Построим график измеренной зависимости отношения амплитуды боковой линии спектра к амплитуде основной линии $(A_{\text{бок}}/A_{\text{осн}})$ от глубины модуляции m.

Построим невзвешенный метод наименьших квадратов и определим угол наклона графика. Стоит на-

помнить, что согласно теоретической модели значение угла наклона должно быть равным 1/2.

Результат построения:

$$\beta = 0.54 \pm 0.04$$
, $\alpha = 0.00 \pm 0.2$

Предпологаемое значение лежит в 67% доверительном интервале, на этом уровне значимости можно утверждать совпадение результатов измерения с теорией.

VI. ОПИСАНИЕ СПЕКТРОВ.