Measure & Ergodic Theory

Kai Prince SFHEA

2025-08-06

Table of contents

The foundational knowledge relating to Measure & Ergodic Theory, that has not been covered elsewhere, was provided by Robertson (2023).

Definition 0.1 (Gleason (2010)). A topological measure space (X, \mathcal{B}, μ) is a topological space (X, τ) such that \mathcal{B} is generated by the open sets defined by the topology τ , i.e., $\mathcal{B} = \text{Borel}(X) = \sigma(\tau)$, and μ is a measure on this space.

A Borel measure is the measure μ on a topological measure space (X,\mathcal{B},μ) where (X,τ) is Hausdorff.

A regular (Borel) measure is a measure on a Borel measure space (X, \mathcal{B}, μ) such that the following hold:

- 1. *Finite Compact Measure*: For any compact subset $K\subseteq X$, then $\mu(K)<\infty$.
- 2. *Outer Regularity*: For any $B \in \mathcal{B}$, then

$$\mu(B) = \inf{\{\mu(C) \mid B \subseteq C, C \text{ is open}\}}.$$

3. *Inner Regularity*: For any $U \in \tau$, or, in other words, any open subset $U \subseteq X$, then

$$\mu(U) = \sup{\{\mu(K) \mid K \subseteq U, K \text{ compact}\}}.$$

A left-Haar measure [or right-Haar measure] on a topological group (G, τ) is a non-zero regular Borel measure μ on G such that $\mu(g \cdot B) = \mu(B)$ [or $\mu(B \cdot g) = \mu(B)$] for all $g \in G$ and $B \in \sigma(\tau)$.

Robertson, D. (2023). 'MATH41021/61021 measure and ergodic theory', Available at: https://personalpages.manchester.ac.uk/staff/donald.robertson/teaching/23-24/41021 (Accessed: 22 January 2024).

Gleason, J. (2010). 'Existence and uniqueness of haar measure',..