MA 16200: Plane Analytic Geometry and Calculus II

Lecture 5: The Shell Method

Zachariah Pence

Purdue University

Sections Covered: 6.4

What happens when we try to revolve R about the y-axis and find the volume of the solid of revolution using Disk/Washers?

Motivation and Definition

Can we find a way to revolve around the y-axis, but integrate w.r.t. x?

Volume of a Cylindrical Shell

Shell Method Derivation

Motivation and Definition

0000

The Shell Method

Definition 1

Let f and g be continuous functions with $f(x) \ge g(x)$ on [a, b]. If R is the region bounded by the curves y = f(x) and y = g(x) between the lines x = a and x = b, the volume of the solid generated when R is revolved about the y-axis is:

$$V = \int_a^b 2\pi x (f(x) - g(x)) \ dx$$

When R is bounded by the x-axis $(g(x) \equiv 0)$, then

$$V = \int_a^b 2\pi x \ f(x) \ dx$$

Let R be the region bounded by $y = x^2 - x^3$ and the x-axis. Find the volume of the solid when R is revolved around the y-axis. Draw the region and a typical shell.

Examples

Problem 3

Let R be the region bounded by $f(x) = \sin x^2$, $x = \sqrt{\pi/2}$, and the x-axis. Find the volume of the solid when R is revolved around the y-axis. Draw the region and a typical shell.

Find the volume of the solid obtained by rotating about the y-axis the region between y = x and $y = x^2$. Draw the region and a typical shell.

Example

Problem 5

A cylindrical hole with radius r is drilled symmetrically through the center of a sphere with radius a, where $0 \le r \le a$. What is the volume of the remaining material?

Formulas for Rotating about the x-axis

Definition 6

Let p and q be continuous functions with $p(y) \geq q(y)$ on [c, d]. If R is the region bounded by the curves x = p(y) and x = q(y)between the lines y = c and y = d, the volume of the solid generated when R is revolved about the x-axis is:

$$V = \int_{C}^{d} 2\pi y (p(y) - q(y)) dy$$

When R is bounded by the y-axis $(q(y) \equiv 0)$, then

$$V = \int_{c}^{d} 2\pi y p(y) \ dy$$

Use cylindrical shells to find the volume of the solid obtained by rotating about the x-axis the region under the curve $y = \sqrt{x}$ from 0 to 1. Draw the region and a typical shell.

Example

Problem 8

Let R be the region in the first quadrant bounded by the graph of $y = \sqrt{x-2}$ and the line y = 2. Find the volume of the solid generated when R is revolved about the x-axis. Draw the region and a typical shell.

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by $y = x^3$, y = 8, and x = 0 about the x-axis. Draw the region and a typical shell.

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by $y = 4x^2$ and 2x + y = 6 about the x-axis. Draw the region and a typical shell.

Example

Problem 11

Find the volume of the solid obtained by rotating the region bounded by $y = x - x^2$ and y = 0 about the line x = 2.

Let R be the region bounded by the curve $y = \sqrt{x-1}$, the line y = 0, and x = 5. Use the shell method to find the volume of the solid generated when R is revolved about the line y = 3.

Example (if time allows)

Problem 13

Let R be the region bounded by the curve $y=\sqrt{x}$, the line y=1, and the y-axis. Use the shell method to find the volume of the solid generated when R is revolved about the line $x=-\frac{1}{2}$.

Example (if time allows)

Problem 14

Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis.

$$x = \sqrt{\sin y}$$
; $0 \le y \le \pi$; $x = 0$; about $y=4$

Summary

Disk/washer method about the y-axis Disks/washers are perpendicular to the y-axis.

$$\int_{c}^{d} \pi \underbrace{(p(y)^{2} - q(y)^{2})}_{\text{outer}} dy$$

$$\underbrace{q(y)^{2}}_{\text{inner}} dy$$

$$\underbrace{q(y)^{2}}_{\text{radius}} dy$$

Shell method about the x-axis Shells are parallel to the x-axis.

$$\int_{c}^{d} \frac{2\pi y (p(y) - q(y))}{\text{shell}} dy$$
ircumference height