Nomenclatura

PCI [kcal / kg_{comb}] Poder calorífico inferior

PCS [kcal / kg_{comb}] Poder calorífico superior

H, S, C, O % en peso del elemento por kilogramo de combustible (cant. centesimal)

H₂O % de humedad en el combustible

G Peso

m Masa

C Calor latente

c_p Calor específico

g Composición gravimétrica (% generalmente)

r Composición volumétrica (% generalmente)

Unidad 2 COMBUSTIÓN

Poder calorífico

 $Combustible + Aire \rightarrow Gases \ de \ combustión + \underbrace{Q_{comb} + Q_{vapor}}_{\text{PODER CALORÍFICO}}$

Relación entre los poderes caloríficos

$$PCI = PCS - Q_{vapor} = PCS - 579G$$

$$PCI = PCS - 579(9H + H_2O)$$

Q_{vapor} Calor de condensación del vapor de agua

G % en peso del agua formada por la combustión más la humedad del combustible.

597 Calor de condensación del agua a $0^{\circ}C$.

HIDRÓGENO

Reacción química de la combustión completa del hidrógeno

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O + \boxed{34400} \left[\frac{kcal}{kg_H}\right]$$

CARBONO

Reacción química de la combustión completa del carbono

$$C + O_2 \rightarrow CO_2 + \boxed{8140} \left[\frac{kcal}{kg_C} \right]$$

Reacción química de la combustión incompleta del carbono

$$C + \frac{1}{2}O_2 \rightarrow CO + \boxed{2440} \left[\frac{kcal}{kg_C}\right]$$

Azufre

Reacción química de la combustión para el azufre.

$$S + O_2 \rightarrow SO_2 + \boxed{2220} \left[\frac{kcal}{kg_S} \right]$$

PC Método analítico

FÓRMULA DE DULONG

PC de un combustible seco

$$PCS = PCI = 8140C + 34400 \left(H - \frac{O}{8}\right) + 2220S$$

PCI de un combustible húmedo

$$PCI = 8140C + 34400 \left(H - \frac{O}{8}\right) + 2220S - 600H_2O$$

FÓRMULA DE HUTTE

PCS de un combustible húmedo

$$PCI = 8100C + 29000 \left(H - \frac{O}{8} \right) + 2500S - 600H_2O$$

FÓRMULA DE LA ASOCIACIÓN DE INGENIEROS ALEMANES

PCI de un combustible húmedo

$$PCI = 8080C + 29000 \left(H - \frac{O}{8} \right) + 2500S - 600H_2O$$

 $\frac{O}{8}$ % de H_2 en peso combinado con el O_2 del combustible dando agua de combinación

 $H - \frac{O}{8}$ % de *hidrógeno disponible* en peso que se oxida con el aire (O_2) para dar *agua de formación*

PC Método práctico

CALORÍMETRO DE MAHLER Y KROEKER

Supone que el calor Q generado dentro de la bomba calorimétrica es absorbido por los elementos que la

- Agua contenida
- Agitador
- Termómetro
- Bomba
- Recipiente

Y dicho calor es cedido por la combustión y el alambre:

$$Q = Q_{combustible} + Q_{alambre}$$
$$= (m_w c_{p_w} + E_{aparato}) \Delta t$$

$$PCS = \frac{Q_{comb}}{G_{comb}}$$

$$PCS = \frac{Q_{comb}}{G_{comb}}$$

$$PCS = \frac{\left(m_w c_{p_w} + E_{aparato}\right) \Delta t - m_{alam} C_{alam}}{G_{comb}}$$

$$PCI = PCS - 600 \frac{G_w}{G_{comb}}$$

$$PCI = PCS - 600 \frac{G_w}{G_{comb}}$$

Peso total de agua existente = papel húmedo - papel seco Peso de combustible quemado G_{comb}

Aire mínimo

COMPOSICIÓN DEL AIRE ATMOSFÉRICO

En volumen 21% O₂

 $79\,\%\ N_2$

En peso 23% O₂

77% N₂

HIDRÓGENO DISPONIBLE

$$g_{Hd} = g_H - \frac{g_{O_2}}{8}$$

Exceso de aire

En la práctica se trabaja con un exceso de aire de 3-4% para una combustión completa.

$$V_{exc} = V_{at} (1 + e)$$

e Porcentaje de exceso de aire

CANTIDAD TEÓRICA O MÍNIMA DE AIRE

$$V_{at} = 8,89g_C + 26,27g_{Hd} + 3,34g_S$$

$$G_{at} = 11,6g_C + 34,78g_{Hd} + 4,35g_S$$

Donde:

$$V_{at} \left[\frac{m_{aire}^3}{k g_{comb}} \right]$$

 $V_{at} \left[rac{m_{aire}^3}{kg_{comb}}
ight]$ Porcentaje en volumen del aire teórico $G_{at} \left[rac{kg_{aire}}{kg_{comb}}
ight]$ Porcentaje en peso del

aire teórico

Gases de combustión

$$g_{humo} = (3,67g_C + 9g_{Hd} + 2g_S) + 3,35(2,67g_C + 8g_{Hd} + g_S) + g_w \label{eq:ghumo}$$

$$V_{humo} = 1,897g_C + 11,2g_{Hd} + 0,7g_S + 3,76(1,867g_C + 5,6g_{Hd} + 0,7g_S) + 1,24g_W$$

$$g_{humo}\left[\frac{kg_{humo}}{kg_{comb}}\right]$$

 $g_{humo}\left[\frac{kg_{humo}}{kg_{comb}}\right]$ Porcentaje en peso de los humos

$$V_{humo} \left[\frac{m_{humo}^3}{k g_{comb}} \right]$$

 $V_{humo}\left[\frac{m_{humo}^3}{kg_{comb}}\right]$ Porcentaje en volumen de los humos

Exceso de aire

$$g_{hum} = 1 + e \ G_{at}$$

$$G_{at} = 11.6 g_C + 37.38 g_{Hd} + 4.35 g_S$$

$$g_{hum} = g_{sec} + 9 \ g_{H_2O}$$

$$g_{sec} = g_C \ g_{sec/C} = g_C \ \left(\frac{\sum \mu_i \ r_i}{\mu_{CO_2} \ r_{CO_2}}\right)$$

(kg de gases húmedos/ kg de combustible) g_h

(coeficiente de exceso de aire) e

 g_S' (kg gases secos / kg carbono)

(kg gases secos / kmol combustible)

(masa molecular) (kg/kmol)

(kg de aire teórico / kg de combustible) G_{AT}

(kg gases secos/ kg de combustible) gs

kg de carbono / kg de combustible) g_C

(kg carbono / kmol combustible)

(kg de aire teórico/ kg combustible)

composición volumentrica r

$$g_h = 1 + e G_{AT}$$

$$e = \frac{g_h - 1}{G_{AT}}$$

$$g_h = g_s + g_w$$

$$g_S = g'_S g_C$$

$$g_h = g_s + g_u$$

$$g_S = g_S' g_C$$

Porcentaje de exceso de aire

Peso molecular (kg / kmol)

(kg de gases húmedos / kg de combustible) g_{hum}

(kg de gases secos / kg de combustible) gsec

(kg de gases secos / kg de carbono) g_{sec/C}

$$g_S' = \frac{G_S''}{g_C'}$$

$$g_i = \mu_i r_i$$

$$g_S'' = \sum_{i=1}^n \mu_i \ r_i$$

$$g_C' = \sum_{i=1}^n \mu_C \ r_{iC}$$

$$g'_{S} = \frac{\sum_{i=1}^{n} \mu_{i} \ r_{i}}{\sum_{i=1}^{n} \mu_{i} \ r_{i}}$$

$$g''_{S} = \sum_{i=1}^{n} \mu_{i} \ r_{i}$$

$$g'_{C} = \sum_{i=1}^{n} \mu_{C} \ r_{iC}$$

$$g'_{S} = \frac{\sum_{i=1}^{n} \mu_{i} \ r_{i}}{\sum_{i=1}^{n} \mu_{C} \ r_{iC}}$$

$$g_{h} = \frac{\sum_{i=1}^{n} \mu_{C} \ r_{iC}}{\sum_{i=1}^{n} \mu_{C} \ r_{iC}} g_{C} + g_{w}$$

$$g_w = 9 g_{he}$$

$$G_{AT} = 11.6 g_C + 37.38 g_{hd} + 4.35 g_S$$

para mi aca gs es del azufre, no gases secos/comb.

Yo copié las formulas, pero los analisis dimensionales no dan en algunos...

Caracteristica de una caldera

G_r R_e	relacion estequio 9,7 para gas natural		Calor absorbido por agua	$Q = \frac{G_v \Delta h_{agua}}{G_{comb}}$
λ	λ exceso de aire $\frac{21}{21 - O_2}$		Capacidad	$Q = G_r \Delta h$
υ	velocidad gas		Potencia (HP)	$P = \frac{G_v (\Delta h)}{543,4(kcal/kg) \ 15,66(kg)}$
A_2 y B parametros dep		oenden gas/caldera?		$= \frac{G_v (\Delta h)}{8510(kcal/hp h)}$
P_{ab} va en MCA				$-\frac{1}{8510(kcal/hp\ h)}$
P_C		e sin quemar es la potencia arbono, 8140 <i>kcal/kg</i>	Aire combustion	$A_c = G_c Re \lambda$
%C	es Carbono sin quemar, en las cenizas		Ejercicio dimensionamieto?	
$C_{p\ humo}$ C_{v}	$C_{p\ humo}$ se puede aproximar 0.24 $\frac{kCal}{kg\ ^{\circ}C}$ C_{v} vapor sobrecalentado 0.46 $\frac{kCal}{kg\ ^{\circ}C}$		Diametro tubo gas	$D = \sqrt{\frac{365,35 G_c}{v P_{ab}}} (v < 40 m/s)$
PERDIDAS		Presión abs gas Perdida gases	$P_{ab} = P_{atm} + P_{carga} + P_{contra}$ $pg = (T_{gas} - T_{amb}) \left(\frac{A_2}{21 - O_2} + B \right)$	
gases combustión		$Q = G_g c_{p\ humo} (t_{gas} - t_{aire})$	-	(=1 32)
humedad comb		$Q = G_{h2o} \Delta h_{agua}$	Rendimiento	$\eta = 100 - pg$
comb sin quemar		$Q = \frac{G_{escoria}}{G_{combustible}} P_C \%C$	Calor quemador	$Q = \frac{G_{\nu}(\Delta H)}{\eta_{caldera} n_{quemadores}}$
humedad comb durante combustión		$Q = 9 G_{humedad} \Delta h_{agua}$		
exceso aire		$Q = G_{aire} \ c_{p \ humo}(t_{gas} - t_{aire})$		
humedad aire		$Q = G_{aire} \ c_v \ (t_{gas} - t_{aire})$		

Intercambiador (superficies de intercambio)

S superficie de intercambio

$$S = n l \pi d$$

$$Q = S K \Delta T_m$$

$$\Delta T_m = \frac{\Delta T_1 - \Delta T_2}{ln\left(\frac{\Delta T_1}{\Delta T_2}\right)}$$

$$K = \frac{1}{\frac{1}{\alpha_1} + \frac{e}{\lambda} + \frac{1}{\alpha_2}}$$

e espesor tubo

 ΔT_m diferencia log de temp

 λ conductividad térmica tubo