Some Statistical Problems in Climate Reconstruction

Dan Cervone

April 15, 2014

Data: CRUTEMv3

Northern hemisphere temperature anomolies

Data: CRUTEMv3

Northern hemisphere temperature anomolies

Data: CRUTEMv3

Northern hemisphere temperature anomolies

Northern hemisphere temperature sites

Dan Cervone ()

STAT 300: Research in Statistics

April 15, 2014

Data: CRUTEMv3

Northern hemisphere temperature anomolies

Northern hemisphere temperature sites

What is the estimand?

- Interpolate gaps in observational record
- Extrapolate before 1850

Data: CRUTEMv3

Northern hemisphere temperature anomolies

Northern hemisphere temperature sites

1950

2000

What is the estimand?

- Interpolate gaps in observational record
 - Extrapolate before 1850

Dan Cervone ()

1850

1900

STAT 300: Research in Statistics

April 15, 2014

All the moments each moment

Image: NASA/GISS

[image source: wikimedia commons]

Proxies:

- \bullet ¹⁸O/¹⁶O, ocean sediment
- Ice cores
- Varves (rock sediment)
- Tree rings

Tingley & Huybers 2010, 2013

Spatiotemporal temperature reconstruction using temperature record and proxies:

$$\mathbf{T}_t = \begin{pmatrix} \mathbf{T}_{o,t} \\ \mathbf{T}_{p,t} \end{pmatrix}$$
 at locations $\mathbf{S} = \begin{pmatrix} \mathbf{S}_o \\ \mathbf{S}_p \end{pmatrix}$

Tingley & Huybers 2010, 2013

Spatiotemporal temperature reconstruction using temperature record and proxies:

$$\mathbf{T}_t = \begin{pmatrix} \mathbf{T}_{o,t} \\ \mathbf{T}_{p,t} \end{pmatrix}$$
 at locations $\mathbf{S} = \begin{pmatrix} \mathbf{S}_o \\ \mathbf{S}_p \end{pmatrix}$

- \mathbf{T}_o are temperatures at locations of temperature records \mathbf{S}_o .
- \mathbf{T}_p are temperatures at locations of proxy records \mathbf{S}_p .

Tingley & Huybers 2010, 2013

Spatiotemporal temperature reconstruction using temperature record and proxies:

$$\mathbf{T}_t = \begin{pmatrix} \mathbf{T}_{o,t} \\ \mathbf{T}_{p,t} \end{pmatrix}$$
 at locations $\mathbf{S} = \begin{pmatrix} \mathbf{S}_o \\ \mathbf{S}_p \end{pmatrix}$

- \mathbf{T}_o are temperatures at locations of temperature records \mathbf{S}_o .
- \mathbf{T}_p are temperatures at locations of proxy records \mathbf{S}_p .

With t indexing years,

$$\mathbf{T}_{t} - \mu \mathbf{1} = \alpha (\mathbf{T}_{t-1} - \mu \mathbf{1}) + \epsilon_{t}$$

$$\epsilon_{t} \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, K(\mathbf{S}, \mathbf{S}))$$

$$K(\mathbf{s}, \mathbf{s}^{*}) = \tau^{2} \exp(-\gamma ||\mathbf{s} - \mathbf{s}^{*}||^{2})$$

Tingley & Huybers 2010, 2013

"Errors in variables":

- ullet True temperatures ${f T}$ are not observed.
- Measurement error for temperature sites $\mathbf{W}_{o,t} \sim \mathcal{N}(\mathbf{T}_{o,t}, \sigma_o^2 \mathbf{I})$.
- Linear model for proxies $\mathbf{W}_{p,t} \sim \mathcal{N}(\mu_p \mathbf{1} + \mathbf{T}_{p,t} \beta_p, \sigma_p^2 \mathbf{I})$.

Tingley & Huybers 2010, 2013

"Errors in variables":

- \bullet True temperatures **T** are not observed.
- Measurement error for temperature sites $\mathbf{W}_{o,t} \sim \mathcal{N}(\mathbf{T}_{o,t}, \sigma_o^2 \mathbf{I})$.
- Linear model for proxies $\mathbf{W}_{p,t} \sim \mathcal{N}(\mu_p \mathbf{1} + \mathbf{T}_{p,t} \beta_p, \sigma_p^2 \mathbf{I})$.
- \bullet (**W T**)' is just a huge multivariate normal!

Tingley & Huybers 2010, 2013

"Errors in variables":

- \bullet True temperatures **T** are not observed.
- Measurement error for temperature sites $\mathbf{W}_{o,t} \sim \mathcal{N}(\mathbf{T}_{o,t}, \sigma_o^2 \mathbf{I})$.
- Linear model for proxies $\mathbf{W}_{p,t} \sim \mathcal{N}(\mu_p \mathbf{1} + \mathbf{T}_{p,t} \beta_p, \sigma_p^2 \mathbf{I})$.
- $(\mathbf{W} \ \mathbf{T})'$ is just a huge multivariate normal!

Inference with Gibbs sampling or EM:

- Update latent **T**.
- Update parameters $\tau^2, \gamma, \mu, \alpha, \mu_p, \beta_p, \sigma_o^2, \sigma_p^2$.

Tingley & Huybers 2010, 2013

Difficulties:

• Spatiotemporal nonstationarity and anisotropy.

Tingley & Huybers 2010, 2013

Difficulties:

- Spatiotemporal nonstationarity and anisotropy.
- Model inhomogeneity.

Tingley & Huybers 2010, 2013

Difficulties:

- Spatiotemporal nonstationarity and anisotropy.
- Model inhomogeneity.
- Uncertainty in spatial referencing.

Tingley & Huybers 2010, 2013

Difficulties:

- Spatiotemporal nonstationarity and anisotropy.
- Model inhomogeneity.
- Uncertainty in spatial referencing.
- o ...

Location uncertainty

- Tree locations uncertain for many older specimens
- Ice cores subject to glacial flow

For $\mathbf{s} \in \mathcal{S}$, $X(\mathbf{s}) \sim \mathcal{GP}(0, K(\mathbf{s}, \mathbf{s}))$ means for any $\mathbf{s}_1, \dots \mathbf{s}_p \in \mathcal{S}$,

$$\begin{pmatrix} X(\mathbf{s}_1) \\ \vdots \\ X(\mathbf{s}_p) \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \mathbf{0}, \begin{pmatrix} K(\mathbf{s}_1, \mathbf{s}_1) & \dots & K(\mathbf{s}_1, \mathbf{s}_p) \\ \vdots & \ddots & \\ K(\mathbf{s}_p, \mathbf{s}_1) & & K(\mathbf{s}_p, \mathbf{s}_p) \end{pmatrix} \end{pmatrix},$$

 $K(\cdot, \cdot)$ is a covariance function, e.g. $K(\mathbf{s}, \mathbf{s}^*) = \tau^2 \exp(-\gamma ||\mathbf{s} - \mathbf{s}^*||^2)$.

For $\mathbf{s} \in \mathcal{S}$, $X(\mathbf{s}) \sim \mathcal{GP}(0, K(\mathbf{s}, \mathbf{s}))$ means for any $\mathbf{s}_1, \dots \mathbf{s}_p \in \mathcal{S}$,

$$\begin{pmatrix} X(\mathbf{s}_1) \\ \vdots \\ X(\mathbf{s}_p) \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \mathbf{0}, \begin{pmatrix} K(\mathbf{s}_1, \mathbf{s}_1) & \dots & K(\mathbf{s}_1, \mathbf{s}_p) \\ \vdots & \ddots & \\ K(\mathbf{s}_p, \mathbf{s}_1) & & K(\mathbf{s}_p, \mathbf{s}_p) \end{pmatrix} \end{pmatrix},$$

 $K(\ ,\)$ is a covariance function, e.g. $K(\mathbf{s},\mathbf{s}^*)=\tau^2\exp(-\gamma||\mathbf{s}-\mathbf{s}^*||^2).$

• Interpolation of X at unobserved location \mathbf{s}^*

For $\mathbf{s} \in \mathcal{S}$, $X(\mathbf{s}) \sim \mathcal{GP}(0, K(\mathbf{s}, \mathbf{s}))$ means for any $\mathbf{s}_1, \dots \mathbf{s}_p \in \mathcal{S}$,

$$\begin{pmatrix} X(\mathbf{s}_1) \\ \vdots \\ X(\mathbf{s}_p) \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \mathbf{0}, \begin{pmatrix} K(\mathbf{s}_1, \mathbf{s}_1) & \dots & K(\mathbf{s}_1, \mathbf{s}_p) \\ \vdots & \ddots & \\ K(\mathbf{s}_p, \mathbf{s}_1) & & K(\mathbf{s}_p, \mathbf{s}_p) \end{pmatrix} \end{pmatrix},$$

K(,) is a covariance function, e.g. $K(\mathbf{s}, \mathbf{s}^*) = \tau^2 \exp(-\gamma ||\mathbf{s} - \mathbf{s}^*||^2)$.

- Interpolation of X at unobserved location \mathbf{s}^*
- $X(\mathbf{s}^*)|X(\mathbf{s}) \sim \mathcal{N}(K(\mathbf{s}^*,\mathbf{s})K(\mathbf{s},\mathbf{s})^{-1}X(\mathbf{s}),K(\mathbf{s}^*,\mathbf{s}^*)-K(\mathbf{s}^*,\mathbf{s})K(\mathbf{s},\mathbf{s})^{-1}K(\mathbf{s},\mathbf{s}^*))$

For $\mathbf{s} \in \mathcal{S}$, $X(\mathbf{s}) \sim \mathcal{GP}(0, K(\mathbf{s}, \mathbf{s}))$ means for any $\mathbf{s}_1, \dots \mathbf{s}_p \in \mathcal{S}$,

$$\begin{pmatrix} X(\mathbf{s}_1) \\ \vdots \\ X(\mathbf{s}_p) \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \mathbf{0}, \begin{pmatrix} K(\mathbf{s}_1, \mathbf{s}_1) & \dots & K(\mathbf{s}_1, \mathbf{s}_p) \\ \vdots & \ddots & \\ K(\mathbf{s}_p, \mathbf{s}_1) & & K(\mathbf{s}_p, \mathbf{s}_p) \end{pmatrix} \end{pmatrix},$$

 $K(\ ,\)$ is a covariance function, e.g. $K(\mathbf{s},\mathbf{s}^*)=\tau^2\exp(-\gamma||\mathbf{s}-\mathbf{s}^*||^2).$

- Interpolation of X at unobserved location s^*
 - $X(\mathbf{s}^*)|X(\mathbf{s}) \sim \mathcal{N}(K(\mathbf{s}^*,\mathbf{s})K(\mathbf{s},\mathbf{s})^{-1}X(\mathbf{s}),K(\mathbf{s}^*,\mathbf{s}^*)-K(\mathbf{s}^*,\mathbf{s})K(\mathbf{s},\mathbf{s})^{-1}K(\mathbf{s},\mathbf{s}^*))$
 - Kriging: BLUP without normality assumption

Errors in variables: $X(\mathbf{s}^*)|X(\mathbf{s}) \sim \mathcal{N}(\mathbf{b}'X(\mathbf{s}), v^2)$

• Observe $\tilde{X}(\mathbf{s}) = X(\mathbf{s}) + \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon} \perp X(\mathbf{s})$.

Errors in variables: $X(\mathbf{s}^*)|X(\mathbf{s}) \sim \mathcal{N}(\mathbf{b}'X(\mathbf{s}), v^2)$

- Observe $\tilde{X}(\mathbf{s}) = X(\mathbf{s}) + \epsilon$ where $\epsilon \perp X(\mathbf{s})$.
- Still a regression problem: $X(\mathbf{s}^*)|\tilde{X}(\mathbf{s}) \sim \mathcal{N}(\tilde{\mathbf{b}}'\tilde{X}(\mathbf{s}), \tilde{v}^2)$

Errors in variables: $X(\mathbf{s}^*)|X(\mathbf{s}) \sim \mathcal{N}(\mathbf{b}'X(\mathbf{s}), v^2)$

- Observe $\tilde{X}(\mathbf{s}) = X(\mathbf{s}) + \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon} \perp X(\mathbf{s})$.
- Still a regression problem: $X(\mathbf{s}^*)|\tilde{X}(\mathbf{s}) \sim \mathcal{N}(\tilde{\mathbf{b}}'\tilde{X}(\mathbf{s}), \tilde{v}^2)$
- Berkson errors: $\epsilon \perp X(\mathbf{s})$ (not satisfied)

Errors in variables: $X(\mathbf{s}^*)|X(\mathbf{s}) \sim \mathcal{N}(\mathbf{b}'X(\mathbf{s}), v^2)$

- Observe $\tilde{X}(\mathbf{s}) = X(\mathbf{s}) + \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon} \perp X(\mathbf{s})$.
- Still a regression problem: $X(\mathbf{s}^*)|\tilde{X}(\mathbf{s}) \sim \mathcal{N}(\tilde{\mathbf{b}}'\tilde{X}(\mathbf{s}), \tilde{v}^2)$
- Berkson errors: $\epsilon \perp \tilde{X}(\mathbf{s})$ (not satisfied)

Is i.i.d. error in **s** just i.i.d. error in $X(\mathbf{s})$?

$$X(\mathbf{s} + \mathbf{u}) = X(\mathbf{s}) + \epsilon$$

Errors in variables: $X(\mathbf{s}^*)|X(\mathbf{s}) \sim \mathcal{N}(\mathbf{b}'X(\mathbf{s}), v^2)$

- Observe $\tilde{X}(\mathbf{s}) = X(\mathbf{s}) + \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon} \perp X(\mathbf{s})$.
- Still a regression problem: $X(\mathbf{s}^*)|\tilde{X}(\mathbf{s}) \sim \mathcal{N}(\tilde{\mathbf{b}}'\tilde{X}(\mathbf{s}), \tilde{v}^2)$
- Berkson errors: $\epsilon \perp \tilde{X}(\mathbf{s})$ (not satisfied)

Is i.i.d. error in **s** just i.i.d. error in $X(\mathbf{s})$?

- $X(\mathbf{s} + \mathbf{u}) = X(\mathbf{s}) + \epsilon$
- $\epsilon \sim \mathcal{N}((K_{u,s}K_{s,s}^{-1} \mathbf{I})X(\mathbf{s}), K_{u,u} K_{u,s}K_{s,s}^{-1}K_{s,u})$ where $K_{u,s} = K(\mathbf{s} + \mathbf{u}, \mathbf{s})$, etc.
- $\epsilon \not\perp X(\mathbf{s})$ and $\epsilon \not\perp X(\mathbf{s} + \mathbf{u})$

Illustration

i.i.d. additive error for **measurements** X

i.i.d. additive error for **measurements** X

Illustration

i.i.d. additive error for **measurements** X

Illustration

i.i.d. additive error for **locations** s

Illustration

Illustration

i.i.d. additive error for **locations** s

Cressie & Kornak 2003; Fanshawe & Diggle 2010

Location errors induce (non-Gaussian) process by convolution:

•
$$X_g(\mathbf{s}) = X(\mathbf{s} + \mathbf{u}), \mathbf{u} \sim g(\mathbf{u})$$

Cressie & Kornak 2003; Fanshawe & Diggle 2010

Location errors induce (non-Gaussian) process by convolution:

- $X_g(\mathbf{s}) = X(\mathbf{s} + \mathbf{u}), \mathbf{u} \sim g(\mathbf{u})$
- $X_g(\mathbf{s})$ is mean 0 with covariance function: $K_g(\mathbf{s},\mathbf{s}) = \int K(\mathbf{s} + \mathbf{u}, \mathbf{s} + \mathbf{u})g(\mathbf{u})$, or $K_g(\mathbf{s}, \mathbf{s}^*) = \int K(\mathbf{s} + \mathbf{u}, \mathbf{s}^*)g(\mathbf{u})$

Cressie & Kornak 2003; Fanshawe & Diggle 2010

Location errors induce (non-Gaussian) process by convolution:

- $X_g(\mathbf{s}) = X(\mathbf{s} + \mathbf{u}), \mathbf{u} \sim g(\mathbf{u})$
- $X_g(\mathbf{s})$ is mean 0 with covariance function: $K_g(\mathbf{s},\mathbf{s}) = \int K(\mathbf{s} + \mathbf{u}, \mathbf{s} + \mathbf{u})g(\mathbf{u})$, or $K_g(\mathbf{s}, \mathbf{s}^*) = \int K(\mathbf{s} + \mathbf{u}, \mathbf{s}^*)g(\mathbf{u})$
- Kriging gives BLUP for $X(\mathbf{s}^*)$ given $X_g(\mathbf{s})$.

Typically $K_q(\mathbf{s}, \mathbf{s})$ evaluated by Monte Carlo.

With measurement error in locations, the BLUP:

- Inadmissible under squared error loss
- First two moments give invalid interval coverage
- Requires Monte Carlo, generally $\mathcal{O}(n^3)$

With measurement error in locations, the BLUP:

- Inadmissible under squared error loss
- First two moments give invalid interval coverage
- Requires Monte Carlo, generally $\mathcal{O}(n^3)$

We should use the BnLUP $E[X(\mathbf{s}^*)|X_g(\mathbf{s})]!$

- Dominates BLUP
- First two moments give valid interval coverage
- Easily implemented with HMC, generally $\mathcal{O}(n^3)$
- Easily extends to inference for parameters

Simulation

Compare interpolation using BLUP, BnLUP, and no adjustment for location measurement error.

- $\mathbf{s} = \{0, 1, \dots, 4, 6, \dots, 10\} \text{ and } \mathbf{s}^* = \{5, 11\}$
- $\mathbf{u} \sim \text{Unif}(-\theta_u, \theta_u)$.
- Other combinations of all other parameters.

Simulation

Compare interpolation using BLUP, BnLUP, and no adjustment for location measurement error.

- $\mathbf{s} = \{0, 1, \dots, 4, 6, \dots, 10\} \text{ and } \mathbf{s}^* = \{5, 11\}$
- $\mathbf{u} \sim \text{Unif}(-\theta_u, \theta_u)$.
- Other combinations of all other parameters.

Two cases of particular interest:

- Strong signal: high autocorrelation (γ small) and small "nugget" variance σ^2
- Weak signal: low autocorrelation (γ large) or large "nugget" variance σ^2

All parameters fixed and known in simulations.

Mean squared prediction error vs. oracle predictor

Mean squared prediction error vs. oracle predictor

95% Interval coverage

95% Interval coverage

Next steps

Application to climate data:

- Location errors in covariates referencing
- Large-scale model
- Influence of extreme value estimation

Next steps

Application to climate data:

- Location errors in covariates referencing
- Large-scale model
- Influence of extreme value estimation

Also:

- (Stochastic) EM implementation
- BnLUP without normality assumption?