Recursive Polynomials and Combinatorics

Aklilu Zeleke

Michigan State University

Joint work with the 2023 summer SURIEM REU Participants

Presented at the 15th Nordic Combinatorial Conference

June 16 2025

Acknowledgement

This work was supported by

 A summer REU grant from the National Security Agency (NSA- grant number H98230-23-1-0005)

Funds from the Michigan State University

Polynomial Sequences

$$F_n(x) = xF_{n-1}(x) + F_{n-a}(x), \ a \in Z^+,$$

 $F_i(x) = x^i, 0 \le i \le a - 1$

$$C_n(x) = xC_{n-1}(x) + C_{n-a}(x), \ a \in Z^+,$$

 $C_0 = a, \ C_i(x) = x^j, \ 0 \le i \le a-1$

Examples

$$a = 2 : F_0 = 1, F_1 = x, F_n = xF_{n-1} + F_{n-2}$$

The first few polynomials are

- $F_0 = 1$
- $F_1 = x$
- $F_2 = x^2 + 1$
- $F_3 = x^3 + 2x$
- $F_4 = x^4 + 3x^2 + 1$

Examples

$$a = 3 : F_0 = 1, F_1 = x, F_2 = x^2, F_n = xF_{n-1} + F_{n-3}$$

The first few polynomials are

- $F_0 = 1$
- $F_1 = x$
- $F_2 = x^2$
- $F_3 = x^3 + 1$
- $F_4 = x^4 + x + 1$
- $F_5 = x^5 + 2x^2 + x$
- $F_6 = x^6 + 3x^3 + x^2 + 1$

Combinatorial Interpretations

- The $F'_n s$ with a = 2 and x = 1 yield the Fibonacci numbers.
- The $F'_n s$ with a=3 and x=1 yield the Narayana's numbers.
- The polynomials F_n count the number of ways to tile a $1 \times n$ board using 1×1 tiles ("monominos") that come in x colors and $1 \times a$ tiles ("a-ominos")
- The polynomials C_n count the number of ways to tile a bracelet of length n using monominos in x colors and a-ominos

Combinatorial Interpretation of F_n

Relate F_n to tiling of a board.

- Start with the polynomials F_1 through F_a
 - F₁: Tile a 1 × 1 board with monominoes of x colors and a-ominoes
 - Note that an a-omino cannot fit onto this board and
 - Only one monomino can fit onto this board.
 - Monominoes come in x colors, and there are x ways to tile this board.
 - Hence $F_1 = x$

- F₂: Tile a 1 × 2 board with monominoes of x colors and a-ominoes
- By the same reasoning, we get x^2 to tile this board.
- Hence $F_2 = x^2$
- Similar reasoning can be applied to all initial conditions to relate F_{a-1} to tiling of $1 \times (a-1)$ board.
- Next we relate F_a to tiling a $1 \times a$ board.
- We consider two distinct cases to tiling it.
 - Case 1: Place a monominoes
 - Case 2: Put one a-omino.

- Case 1: There are x choices of colors for the monominoes,
 - Hence we have x^a ways of tiling using monominoes
- Case 2: One way of tiling using an a-omino
- A total of $x^a + 1$ ways to tile this $1 \times a$ board

The Tilings of the F_a board

The General Case

- Assume: For k < n, F_k can be represented as the number of ways to tile a $1 \times k$ board with monominoes in x colors and a-ominoes.
- Consider the 1 × n board which can be covered by two types of tiles: by monomino or by the right end of an a-omino

- Cover by a monomino: Treat the rest of the board as a separate $1 \times (n-1)$ board, which is equivalent to F_{n-1} by the inductive hypothesis.
- Since there are x monomino colors, we know that this case has $x \cdot F_{n-1}$ different tilings.
- Place an a-omino at the right end of the board.
- Treat the rest of the board as a separate $1 \times (n-a)$ board
- This is equivalent to F_{n-a} by the inductive hypothesis
- Has F_{n-a} different tilings.
- Combining: the number of ways to tile a $1 \times n$ board is

$$xF_{n-1} + F_{n-a} = F_n$$

Combinatorial Interpretation of F_n

Closed Forms

$$F_n = \sum_{k=0}^{\lfloor \frac{a}{a} \rfloor} \binom{n - (a-1)k}{k} x^{n-ak}$$

$$C_n = \sum_{k=0}^{\lfloor \frac{n}{a} \rfloor} \left(a \binom{n-1-(a-1)k}{k-1} + \binom{n-1-(a-1)k}{k} \right) x^{n-ak}$$

$$C_n = F_n + (a-1)F_{n-a}$$

Analytic Results: The Zeros of F_n and C_n

Proposition 1. Polynomials in F_n and C_n with even a in their recurrence will have no real roots other than x = 0.

Analytic Results: Minimum Real Roots

• a is odd: F_n will always have a nonzero real root

 The sequence of minimum real roots is a bounded monotonically decreasing sequence

the sequence of minimum real roots converge to

$$L_a = \frac{-a}{\sqrt[a]{(a-1)^{(a-1)}}}$$

THANK YOU

References

- [1] A.T. Benjamin and J.J. Quinn. Proofs That Really Count: The Art of Combinatorial Proof. Mathematical Association of America, 2003. isbn: 9781614442080.
- [2] Robert Boyer and Khang Tran. Zero attractor of polynomials with rational generating functions". In: preprint (2012).
- [3] Johann Cigler. "Some remarks on generalized Fibonacci and Lucas polynomials". In: arXiv preprint: arXiv:1912.06651 (2019).
- [4] Khang Tran. "Connections between discriminants and the root distribution of polynomials with rational generating function". en. In: Journal of Mathematical Analysis and Applications 410.1 (Feb. 2014),