

Agenda

- Performance evaluation (40 minutes)
- ROC, AUC, cumulative response, lift curves (40 minutes)
- Collaborative filtering (20 minutes)

Evaluating Performance

Performance Metrics

Measure performance in a meaningful way

Performance measures differ for various applications

Common themes, issues, and solutions which apply broadly

Performance Metrics

Distribution of Kaggle competitions according to performance metrics

Source: Drori et al, 2018

Accuracy

Fraction of correct predictions

$$accuracy = \frac{\#\ correct\ decisions}{total\ \#\ of\ decisions} = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + FP + TN + FN}$$

$$error rate = 1 - accuracy$$

may be very misleading

Binary Classification

Positive and negative classes

True positive (TP): correctly predicted as positive

True negative (TN): correctly predicted as negative

False positive (FP): incorrectly predicted as positive (type 1 error)

False negative (FN): incorrectly predicted as negative (type 2 error)

Confusion Matrix and Probabilities

actual

predicted

		р	n
		True positive (56)	False positive (7)
		False negative (5)	True negative (42)

T = 110

$$p(\mathbf{Y}, \mathbf{p}) = 56/110 = 0.51$$
 $p(\mathbf{Y}, \mathbf{n}) = 7/110 = 0.06$
 $p(\mathbf{N}, \mathbf{p}) = 5/110 = 0.05$ $p(\mathbf{N}, \mathbf{n}) = 42/110 = 0.38$

Multi-class Confusion Matrix

Training and Testing Populations

Confusion Matrix and Rates

actual

predicted

	р	n
Y	True positive (56)	False positive (7)
N	False negative (5)	True negative (42)

$$T = 110$$

$$P = 61$$

$$N = 49$$

$$p(\mathbf{p}) = 0.55$$

$$p(\mathbf{n}) = 0.45$$

$$tp \ rate = 56/61 = 0.92 \quad fp \ rate = 7/49 = 0.14$$

$$fp \ rate = 7/49 = 0.14$$

$$fn \ rate = 5/61 = 0.0$$

$$fn \ rate = 5/61 = 0.08$$
 $tn \ rate = 42/49 = 0.86$

Expected Value Example

$$Presponse(x)$99 + (1-Presponse(x))(-$1) > 0$$

$$Presponse(x)$99 > (1-Presponse(x))$1$$

Expected Value

Confusion Probabilities

	p	n	T = 110	
Y	56	7	$p(\mathbf{Y}, \mathbf{p}) = 56/110 = 0.51$	$p(\mathbf{Y,n}) = 7/110 = 0.06$
N	5	42	$p(\mathbf{N}, \mathbf{p}) = 5/110 = 0.05$	$p(\mathbf{N,n}) = 42/110 = 0.38$

Cost-Benefit Matrix

actual

predicted

	р	n
Y	b(Y,p)	c(Y,n)
N	c(N,p)	b(N,n)

	р	n
Y	\$99	-\$1
N	0	0

Expected Profit

Expected profit =
$$p(\mathbf{Y}, \mathbf{p}) \cdot b(\mathbf{Y}, \mathbf{p}) + p(\mathbf{N}, \mathbf{p}) \cdot b(\mathbf{N}, \mathbf{p}) + p(\mathbf{N}, \mathbf{n}) \cdot b(\mathbf{N}, \mathbf{n}) + p(\mathbf{Y}, \mathbf{n}) \cdot b(\mathbf{Y}, \mathbf{n})$$

$$p(x, y) = p(y) \cdot p(x \mid y)$$

Expected profit =
$$p(\mathbf{Y} \mid \mathbf{p}) \cdot p(\mathbf{p}) \cdot b(\mathbf{Y}, \mathbf{p}) + p(\mathbf{N} \mid \mathbf{p}) \cdot p(\mathbf{p}) \cdot b(\mathbf{N}, \mathbf{p}) + p(\mathbf{N} \mid \mathbf{n}) \cdot p(\mathbf{n}) \cdot b(\mathbf{N}, \mathbf{n}) + p(\mathbf{Y} \mid \mathbf{n}) \cdot p(\mathbf{n}) \cdot b(\mathbf{Y}, \mathbf{n})$$

Expected profit =
$$p(\mathbf{p}) \cdot [p(\mathbf{Y} \mid \mathbf{p}) \cdot b(\mathbf{Y}, \mathbf{p}) + p(\mathbf{N} \mid \mathbf{p}) \cdot c(\mathbf{N}, \mathbf{p})] + p(\mathbf{n}) \cdot [p(\mathbf{N} \mid \mathbf{n}) \cdot b(\mathbf{N}, \mathbf{n}) + p(\mathbf{Y} \mid \mathbf{n}) \cdot c(\mathbf{Y}, \mathbf{n})]$$

Expected Profit

Precision

Accuracy of positive predictions

TP / (TP+FP)

High precision: if you test positive you're probably positive

% of documents offered as relevant that are actually relevant

Recall = Sensitivity

True positive rate

Accuracy of positive class

$$TP/(TP + FN)$$

Hi	gh	ı recal	l is	not	missing	many	positives
	J					,	1

	Condition positive	Condition negative	
Test outcome positive	True positive (TP) = 20	False positive (FP) = 180	Positive predictive value = TP / (TP + FP) = 20 / (20 + 180) = 10%
Test outcome negative	False negative (FN) = 10	True negative (TN) = 1820	Negative predictive value = TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%
	Sensitivity = TP / (TP + FN) = 20 / (20 + 10) ≈ 67%	Specificity = TN / (FP + TN) = 1820 / (180 + 1820) = 91%	

% of relevant documents that were found

What fraction of people with disease are identified

How sensitive is the test to indicators of disease

Precision and Recall

F1 Score

$$\frac{2 \cdot precision \cdot recall}{precision + recall}$$

Harmonic mean of precision and recall in [0,1]

Goal is high precision and high recall

F-Beta Score

$$\frac{(1+\beta^2) \cdot precision \cdot recall}{\beta^2 \cdot precision + recall}$$

Weight precision and recall

Specificity

True negative rate

Accuracy on negative class

TN/(FP + TN)

	Condition positive	Condition negative	
Test outcome positive	True positive (TP) = 20	False positive (FP) = 180	Positive predictive value = TP / (TP + FP) = 20 / (20 + 180) = 10%
Test outcome negative	False negative (FN) = 10	True negative (TN) = 1820	Negative predictive value = TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%
	Sensitivity = TP / (TP + FN) = 20 / (20 + 10) ≈ 67%	Specificity = TN / (FP + TN) = 1820 / (180 + 1820) = 91%	

What fraction of people without disease are identified

High specificity: few false alarms

Sensitivity and Specificity: Airport Security

Sensitivity: quantifies avoiding of false negatives

Specificity: quantifies avoiding false positives

For a test there is usually a trade-off between them.

Low specificity and high sensitivity:

Testing passengers for potential safety threats

Scanners may be set to trigger alarms on low-risk items like buckles, keys (low specificity) to increase probability of identifying dangerous objects and minimize risk of missing objects that pose a threat (high sensitivity).

Sensitivity and Specificity: Medical Diagnosis

Goal to have high sensitivity and high specificity

Perfect predictor is both:

100% sensitive: all sick people are correctly identified as sick

100% specific: no healthy individuals are incorrectly identified as sick

Sensitivity and Specificity Trade-off

Sensitivity and Specificity Trade-off

False Positive Rate = Fall Out = False Alarm Rate

Error rate on negative class

$$FP/(FP + TN)$$

False Negative Rate = Miss Rate

$$FN/(FN + TP)$$

False Discovery Rate

$$FP/(FP + TP)$$

Positive Predictive Value

$$TP/(TP + FP)$$

$$PPV = 1 - FDR$$

	Condition positive	Condition negative	
Test outcome positive	True positive (TP) = 20	False positive (FP) = 180	Positive predictive value = TP / (TP + FP) = 20 / (20 + 180) = 10%
Test outcome negative	False negative (FN) = 10	True negative (TN) = 1820	Negative predictive value = TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%
	Sensitivity = TP / (TP + FN) = 20 / (20 + 10) ≈ 67%	Specificity = TN / (FP + TN) = 1820 / (180 + 1820) = 91%	

Small positive predictive value of 10% indicates many of positive results from testing procedure are false positives.

Follow up any positive result with more reliable test to obtain more accurate assessment. Test may be useful if it is inexpensive and convenient.

Summary of Performance Measures

		True cond	ition			
	Total population	Condition positive	Condition negative	$Prevalence = \frac{\sum Condition positive}{\sum Total population}$	Accuracy (, Σ True positive + Σ Σ Total pop	True negative
Predicted	Predicted condition positive Power		False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery Σ False po Σ Predicted cond	ositive
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio	F ₁ score =
		False negative rate (FNR), Miss rate = $\frac{\Sigma}{\Sigma}$ False negative $\frac{\Sigma}{\Sigma}$ Condition positive	True negative rate (TNR), Specificity (SPC) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR	(DOR) = LR+ LR-	Recall + Precision

Comparison with Base Rate

Random

Majority classifier

Weather forecasting: persistence, climatology.

Decision tree stump

Evaluating Performance

Probability Threshold

Different thresholds result in different confusion matrices

Decreasing threshold increases recall: TP / (TP + FN)

Increasing threshold may increase precision: TP / (TP + FP)

Receiver Operating Characteristic (ROC) Curve

Best curve would go straight up and left Non-increasing slope

(0,0) (1,1) (0,1) diagonal above diagonal below diagonal

Source: DSB

38

Area Under ROC Curve (AUC)

Single number used to summarize classifier performance Perfect prediction is 1 Random prediction is 1/2, ROC along diagonal

Distribution of Kaggle competitions solutions by AUC performance metric

Source: Drori et al, 2018

Cumulative Response Curve

hit rate = tp rate % of positives correctly classified

% of population targeted

Lift

% of population targeted

Churn Example

- Customers switch carriers: churn
- Cheaper to retain customer than acquire new customer
- Retain customer by promotion or discount
- Giving discount to customer who is about to churn saves resources
- Giving discount to customer who is not going to churn wastes resources
- Train classifiers to predict churn.
- Select score threshold for giving discount.

Churn Example

Training accuracy

Model	Accuracy	
Classification tree	95%	
Logistic regression	93%	
k-Nearest Neighbor	100%	
Naive Bayes	76%	

Test accuracy and AUC

Model	Accuracy (%)	AUC
Classification Tree	91.8 ± 0.0	0.614 ± 0.014
Logistic Regression	93.0 ± 0.1	0.574 ± 0.023
k-Nearest Neighbor	93.0 ± 0.0	0.537 ± 0.015 Y 3 (0%) 15 (0%) N 324 (7%) 4351 (93%)
Naive Bayes	76.5 ± 0.6	0.632 ± 0.019
		Y 127 (3%) 848 (18%) N 200 (4%) 3518 (75%

Fitting Curves

Profit Curve

% of population targeted

Profit Curve

9:1 benefit to cost ratio

Profit Curve

Source: DSB 12:1 benefit to cost ratio

Collaborative Filtering

Example Problem

- Items i=1..n
- Users *j=1..p*
- Ratings Y_{ij}
- Binary mask if rating is available M_{ij}
- Problem: matrix completion

Naive Solution

• If k dimensional feature vectors $x^{(i)}$ are known for each item i=1...n

- Learn parameter vectors $\theta^{(j)}$ for each user j=1...p
- Predict user j rating item i by $\theta^{(j)} x^{(i)}$

minimize
$$\frac{1}{2} \sum_{i:M_{i,j}=1} \left(\theta^{(j)} x^{(i)} - Y_{i,j}\right)^2 + \frac{\lambda}{2} \sum_{k} \theta^{(j)}$$

Naive Solution

- If k dimensional feature vectors $x^{(i)}$ are known for each item i=1...n
- Learn parameter vectors $\theta^{(j)}$ for all users j=1...p using gradient descent
- Predict user *j* rating item *i* by $\theta^{(j)} x^{(i)}$

$$\underset{\theta^{(1)}...\theta^{(p)}}{\text{minimize}} \frac{1}{2} \sum_{i,j:M_{ij}=1} \left(\theta^{(j)^T} x^{(i)} - Y_{ij} \right)^2 + \frac{\lambda}{2} \sum_{j} \sum_{k} \theta^{(j)^2}$$

Problem

• If k dimensional feature vectors $x^{(i)}$ are unknown

• Given parameter vectors $\theta^{(j)}$ for all users j=1...p learn feature vectors $x^{(i)}$

$$\underset{x^{(1)}...x^{(n)}}{\text{minimize}} \frac{1}{2} \sum_{i,j:M_{ij}=1} \left(\theta^{(j)^T} x^{(i)} - Y_{ij} \right)^2 + \frac{\lambda}{2} \sum_{i} \sum_{k} x_k^{(i)^2}$$

Iterative Solution

• Given $\{x^{(1)},...,x^{(n)}\}$ learn $\{\theta^{(1)},...,\theta^{(p)}\}$

• Given $\{\theta^{(1)}, ..., \theta^{(p)}\}$ learn $\{x^{(1)}, ..., x^{(n)}\}$

Collaborative Filtering Solution

• Learn $\{x^{(1)},...,x^{(n)}\}$ and $\{\theta^{(1)},...,\theta^{(p)}\}$ together

$$\underset{x^{(1)} \dots x^{(n)}, \theta^{(1)} \dots \theta^{(p)}}{\text{minimize}} \sum_{i,j: M_{ij} = 1} \left(\theta^{(j)^T} x^{(i)} - Y_{ij} \right)^2 + \frac{\lambda}{2} \sum_{i} \sum_{k} x_k^{(i)^2} + \frac{\lambda}{2} \sum_{j} \sum_{k} \theta_k^{(j)^2}$$

• Predictions $\theta^{(j)^T} x^{(i)}$

Collaborative Filtering Solution

 Low rank factorization of rating into product of feature matrix and parameter matrix

$$\begin{bmatrix} \theta^{(1)}{}^T x^{(1)} & \cdots & \theta^{(p)}{}^T x^{(1)} \\ \vdots & \ddots & \vdots \\ \theta^{(1)}{}^T x^{(n)} & \cdots & \theta^{(p)}{}^T x^{(n)} \end{bmatrix}$$