

Confiabilidade: Segurança

• Autenticidade

- Os usuários comprovam suas identidades
- senhas, chaves, etc.

• Autorização

- estabelecimento de controles de acesso aos recursos
- listas de controle de acesso

Privacidade

- As informações somente podem ser lidas por quem tiver direito.
- mecanismos de criptografia

Integridade

- os dados não podem ser destruídos ou corrompidos por terceiros
- Não-repudiação
 - Todas as ações podem ser imputadas a seus autores.
 - mecanismos de auditoria

Confiabilidade: Tolerância a Faltas

- O que fazer em caso de falha de um servidor?
- Sistemas distribuídos podem ser projetados para mascarar falhas.
- Abordagens:
 - replicação de servidores
 - execução sem estado (stateless execution)

Faltas, erros e falhas

Faltas

- Situações incorretas no estado interno de um sistema
- Ex: um bit de memória inválido, um cabo de rede rompido

Erro

- Decorrência da falta
- Estado interno incorreto do software
- Ex: queda de uma conexão TCP, variável com valor errado

Falha

- Decorrência do erro
- Serviço oferecido ao usuário não cumpre sua especificação
- Ex: banco de dados fora do ar, aplicação mostrando dados incorretos

Portanto:

Desempenho

- Métricas para medir desempenho:
 - Número de mensagens trocadas
 - **Tempo** de resposta
 - *Throughput* (número de tarefas executadas / tempo)
 - Utilização do sistema
- Em um sistema qualquer:
 - + processadores, + memória, + capacidade de armazenamento ⇒ melhoria do desempenho
- Ao se distribuir os processos entre os processadores na rede:
 - + **velocidade** final de computação?
 - + custo de **comunicação**!

Desempenho: Custos de Comunicação

- Componentes do custo de comunicação:
 - Tempo de **processamento** do protocolo/*middleware*
 - Tempo de **latência** do *hardware* e *software* de rede
 - Tempo de **transmissão** da mensagem
- Para obter um bom desempenho:
 - Reduzir a comunicação entre as entidades
 - Buscar manter um bom nível de paralelismo
 - Encontrar um ponto de **equilíbrio** entre ambos:
 - + evitando: sobrecarga da máquina e comunicação excessiva

Aspectos de Projeto de Sistemas Distribuídos

Escalabilidade

- Noção intuitiva:
 - Um sistema distribuído que opera bem com 10 máquinas também deve funcionar bem com 10.000 máquinas.
- O desempenho do sistema não deve ser degradado de forma acelerada à medida em que o número de processos distribuídos cresce.

Inimigos da Escalabilidade

- Componentes centralizados
 - por exemplo, um único servidor para todos os usuários
- Tabelas/BD centralizadas
 - por exemplo, um único arquivo com as informações acessadas pelo servidor
- Algoritmos centralizados
 - por exemplo, o roteamento de mensagens baseado em informações completas de caminho

Melhorando a Escalabilidade

- Algoritmos descentralizados com as seguintes características:
 - Nenhuma máquina possui informações completas sobre o estado do sistema.
 - Máquinas tomam decisões baseadas apenas nas informações disponíveis **localmente**.
 - Falha de **uma das máquinas** não impede o funcionamento do algoritmo.
 - Não existe um relógio global implícito.