CLAIMS

What is claimed is:

	1	بلر	An apparatus for maintaining a stable RF level in an optical link, said apparatus
	2	comp	rising:
	3		a transmitter section;
	4		a receiver section;
i.	5		a plurality of feedback loops operationally connected to said transmitter section;
	6	and	
	7		a plurality of feedback loops operationally connected to said receiver section.
=			
į	1	2.	The apparatus of claim 1, wherein the feedback loops perform at least one
	2	functi	on selected from the group consisting of:
	3		i. RF level stabilization effects;
•	4		ii. preserve or change optical modulation index (OMI);
	5		iii. adjust output power;
	6		iv. compensate for temperature changes;
	7		v. compensate for laser or system tracking errors;
	8		vi. provide gain at proper places in circuitry; and
	9		vii. provide RF input changes.

- The apparatus of claim 2, wherein the feedback loops operationally connected to said transmitter section include a first, second, and third transmitter section feedback loops.
- 4. The apparatus of claim 2, wherein the feedback loops operationally
 connected to said receiver section include a first and second receiver section feedback
 loops.
- 1 5. The apparatus of claim 3, wherein the first transmitter feedback loop is a constant 2 power feedback loop.
- 1 6. The apparatus of claim 3, wherein the second transmitter feedback loop is a bias current feedback loop connected between the transmitter section and an attenuation circuit in an RF path.
- 7. The apparatus of claim 5, wherein the attenuation circuit is a PIN transistor circuit.
- 8. The apparatus of claim 3, wherein the second transmitter feedback loop is a bias
 current feedback loop.

- 1 9. The apparatus of claim 3, wherein the third transmitter feedback loop provides an
- 2 RF level from a back facet monitor.
- 1 10. The apparatus of claim 9, further including an oscillator operationally connected
- 2 to said third transmitter feedback loop.
- 1 11. The apparatus of claim 10, wherein said oscillator is characterized by an
- 2 operational frequency of about 100 kHz.
- 1 12. The apparatus of claim 10, wherein said oscillator has an output signal, said
- 2 output signal coupled to an input of an RF detector, said RF detector having an
- 3 attenuating output proportional to said input, and said attenuating output coupled to the
- 4 attenuation circuit.
- 1 13. The apparatus of claim 4, wherein the first receiver feedback loop is an optical
- 2 modulation voltage (OMV) feedback loop, said optical modulation voltage feedback loop
- 3 connected to RF circuitry in said receiver section.
- 1 14. The apparatus of claim 4, wherein the second receiver feedback loop is an
- 2 oscillator signal feedback loop, said oscillator feedback loop connected to RF circuitry in
- 3 said receiver section.

- 4 15. The apparatus of claim 14, wherein said oscillator feedback loop includes an
- 5 oscillator tuned to a frequency of about 100 kHz.
- 1 16. The apparatus of claim 14, wherein said oscillator feedback loop includes a device
- 2 to modulate said oscillator feedback.

	1	ìV.	A method of stabilizing an RF level in an optical link, said method comprising:
	2		providing an optical signal transmitter section;
	3 .		providing an optical signal receiver section;
	4		providing a plurality of feedback loops to said optical signal transmitter section;
	5	and	
	6		providing a plurality of feedback loops to said optical signal receiver section.
	1	18.	The method of claim 17, wherein the feedback loops perform at least one
	2	functi	on selected from the group consisting of:
D Ti	3		i. RF level stabilization effects;
e ė	4		ii. preserve or change optical modulation index (OMI);
	5		iii. adjust output power;
	6		iv. compensate for temperature changes;
]]	7		v. compensate for laser or system tracking errors;
	8		vi. provide gain at proper places in circuitry; and
	9		vii. provide RF input changes.

- 1 19. The method of claim 17, wherein the feedback loops operationally connected to
- 2 said transmitter section include a first, second, and third transmitter feedback loops.
- 1 20. The method of claim 17, wherein the feedback loops operationally

US010299

- 2 connected to said receiver section include a first and second receiver feedback loops.
- 1 21. The method of claim 18, wherein the first transmitter feedback loop is a
- 2 constant power feedback loop.
- 1 22. The method of claim 18, wherein the second transmitter feedback loop is a bias
- 2 current feedback loop connected between the transmitter section and an attenuation
- 3 circuit in an RF path.
- 1 23. The method of claim 21, wherein the attenuation circuit is a PIN transistor circuit.
- 1 24. The method of claim 18, wherein the second transmitter feedback loop is a bias
- 2 current feedback loop.
- 1 25. The method of claim 18, wherein the third transmitter feedback loop provides
- 2 an RF level from a back facet monitor.
- 1 26. The method of claim 24, further including an oscillator operationally connected
- 2 to said third transmitter feedback loop.
- 1 27. The method of claim 25, wherein said oscillator is characterized by an

- 2 operational frequency of about 100 kHz.
- 1 28. The method of claim 25, wherein said oscillator has an output signal, said
- 2 output signal coupled to an input of an RF detector, said RF detector having an
- 3 attenuating output proportional to said input, and said attenuating output coupled to the
- 4 attenuation circuit.
- 1 29. The method of claim 19, wherein the first receiver feedback loop is an optical
- 2 modulation voltage (OMV) feedback loop, said optical modulation voltage feedback loop
- 3 connected to RF circuitry in said receiver section.
- 1 30. The method of claim 19, wherein the second receiver feedback loop is an
- 2 oscillator signal feedback loop, said oscillator feedback loop connected to RF circuitry in
- 3 said receiver section.
- 1 31. The method of claim 29, wherein said oscillator feedback loop includes an
- 2 oscillator tuned to a frequency of about 100 kHz.
- 1 32. The method of claim 29, wherein said oscillator feedback loop includes a device to modulate said oscillator feedback.

1	333.	An optical transmission system comprising:		
2	•	an optical signal transmitter section;		
3		an optical signal receiver section;		
4		an RF stabilization system operationally connected to said optical signal		
5	transmitter section; and			
6		an RF stabilization system operationally connected to said optical signal receiver		
7	section.			
1	34.	The optical transmission system of claim 33, wherein the optical transmission		
2	systen	n is a cable television (CATV) system.		