CORRIGÉ DM N°10 CCP MP 2001

I. Propriétés générales

1. Par développement par rapport à la première ligne, on obtient directement

$$\det C_{P} = (-1)^{n+1} (-a_{0}) = (-1)^{n} a_{0} = (-1)^{n} P(0).$$

Donc : C_P est inversible si et seulement si $P(0) \neq 0$.

2. En développant par rapport à la dernière colonne, on obtient :

$$\chi_{C_p} = \begin{vmatrix} -X & 0 & \cdots & 0 & -a_0 \\ 1 & -X & \ddots & \vdots & -a_1 \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & 1 & -X & -a_{n-1} \\ 0 & \cdots & 0 & 1 & -X - a_{n-1} \end{vmatrix} = (-X - a_{n-1}) \begin{vmatrix} -X & 0 & \cdots & 0 \\ 1 & -X & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 1 & -X \end{vmatrix} + \cdots$$

$$+(-1)^{n+k+1}(-a_k) \begin{bmatrix} -X & 0 & \cdots & 0 & 0 & \cdots & \cdots & 0 \\ 1 & -X & \ddots & \vdots & \vdots & & & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & & & \vdots \\ 0 & \cdots & 1 & -X & 0 & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & 0 & 1 & -X & \cdots & 0 \\ \vdots & & & \vdots & \vdots & \ddots & 1 & -X \\ 0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

$$+\cdots + (-1)^{n+1}(-a_0) \begin{vmatrix} 1 & -X & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & -X \\ 0 & \cdots & 0 & 1 \end{vmatrix}$$

$$= (-X - a_{n-1})(-X)^{n-1} + \dots + (-1)^{n+k+1}(-a_k)(-X)^k + \dots + (-1)^{n+1}(-a_0)$$

$$= (-1)^n \left[X^n + a_{n-1}X^{n-1} + \dots + a_kX^k + \dots + a_0 \right]$$

soit
$$\chi_{C_p} = (-1)^n P$$
.

Rem : Cette méthode est loin d'être la plus agréable, mais « bizarrement » tout le monde a fait ainsi...

Il y a bien plus rapide : on multiplie la dernière ligne par X^{n-1} , l'avant-dernière par X^{n-2} etc... la seconde par X et on ajoute le tout à la première ligne; la première ligne devient alors $\begin{pmatrix} 0 & 0 & \dots & 0 & -P(X) \end{pmatrix}$ et il ne reste plus qu'à développer suivant cette ligne...

Une autre solution consiste à développer selon la première ligne puis à raisonner par récurrence...

3. Si $Q = \chi_A$ alors $\deg Q = n$ et son coefficient dominant est $(-1)^n$. Réciproquement, si $\deg Q = n$ et son coefficient dominant est $(-1)^n$, posons $P = (-1)^n Q$: on a alors $Q = \chi_{C_P}$ d'après la question précédente.

Il existe $A \in \mathcal{M}_n(\mathbb{K})$ telle que $Q = \chi_A$ si et seulement si Q a pour terme dominant $(-1)^n X^n$.

4. a) $\chi_{{}^tC_p} = \chi_{C_p}$ (cf. cours) donne $Sp({}^tC_p) = Sp(C_p)$.

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \operatorname{Ker}({}^tC_P - \lambda I_n) \iff \begin{pmatrix} 0 & 1 & & 0 \\ \vdots & \ddots & \ddots & \\ 0 & \cdots & 0 & 1 \\ -a_0 & \cdots & -a_{n-2} & -a_{n-1} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

ce qui donne le système

$$\begin{cases} \lambda x_1 &= x_2 \\ \lambda x_2 &= x_3 \\ &\vdots \\ \lambda x_{n-1} &= x_n \\ \lambda x_n &= -a_0 x_1 - \dots - a_{n-2} x_{n-1} - a_{n-1} x_n \end{cases}$$
 soit
$$\begin{cases} x_2 &= \lambda x_1 \\ x_3 &= \lambda^2 x_1 \\ &\vdots \\ x_n &= \lambda^{n-1} x_1 \\ 0 &= P(\lambda) x_1 \end{cases}$$

et on a
$$P(\lambda) = 0$$
 donc $\operatorname{Ker}({}^{t}C_{P} - \lambda I_{n}) = \mathbb{K}.\begin{pmatrix} 1 \\ \lambda \\ \vdots \\ \lambda^{n-1} \end{pmatrix}.$

c) Si P est scindé à racines simples alors $\chi_{{}^tC_p}$ aussi et donc tC_p est diagonalisable (car $\chi_{{}^tC_p}$ est annulateur de C_p d'après le th. de Cayley-Hamilton).

Réciproquement, si tC_P est diagonalisable alors $\chi_{{}^tC_P}$ est scindé donc P aussi et, pour tout λ racine de P, on a $\lambda \in Sp({}^tC_P)$ et la multiplicité de λ est égale à $dim\Big(Ker\big({}^tC_P - \lambda I_n\big)\Big)$. Or, on a vu au b) que $dim\Big(Ker\big({}^tC_P - \lambda I_n\big)\Big) = 1$. Donc P est scindé à racines simples.

Ainsi tC_P est diagonalisable si et seulement si P est scindé à racines simples.

- d) \diamond Puisque $\deg P = n$, si P a n racines deux à deux distinctes alors P est scindé à racines simples et donc tC_P est diagonalisable. d'après la question précédente.
 - $\diamond \text{ La famille } \left\{ \begin{pmatrix} 1 \\ \lambda_1 \\ \vdots \\ \lambda_n^{n-1} \end{pmatrix}, \dots, \begin{pmatrix} 1 \\ \lambda_n \\ \vdots \\ \lambda_n^{n-1} \end{pmatrix} \right\} \text{ est formée de vecteurs propres associés à des valeurs }$

 $\left(\begin{array}{cccc} \left(\begin{array}{ccccc} \lambda_1^{n-1} \end{array}\right) & \left(\begin{array}{ccccccc} \lambda_n^{n-1} \end{array}\right) \end{array}\right)$ propres distinctes. Elle est donc libre et donc on a bien : $\begin{vmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \vdots & \vdots & & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{vmatrix} \neq 0$

5. a) Il suffit de prendre n=2002, $P=X^{2002}-X^{2001}-X^{2000}-1999$ et $A=C_P$. On a $\chi_A=P$ et le théorème de Cayley-Hamilton donne $P(A)=0_n$.

Question sans aucun intérêt, cela a déjà été fait dans le cas général à la question 3!

b) Puisque $f^{n-1} \neq 0$, on a Ker $f^{n-1} \neq E$ et on peut choisir $e_1 \notin \operatorname{Ker} f^{n-1}$ puis poser, pour $k \in [2, n]$, $e_k = f^{k-1}(e_1)$. Montrons 1 que (e_1, \dots, e_n) est une base de E:

si il existe $(\lambda_1,\ldots,\lambda_n)\in\mathbb{K}^n$ et $(\lambda_1,\ldots,\lambda_n)\neq(0,\ldots,0)$ tel que $\sum_{k=1}^n\lambda_ke_k=0$, posons $r=\min\{k\ \mathrm{tq}\ \lambda_k\neq 0\}$; on a alors

$$\begin{split} 0 &= f^{n-r} \left(\sum_{k=1}^{n} \lambda_k e_k \right) = f^{n-r} \left(\sum_{k=r}^{n} \lambda_k e_k \right) = \sum_{k=r}^{n} \lambda_k f^{n-r+k-1}(e_1) \\ &= \lambda_r f^{n-1}(e_1) + f^n \left(\sum_{k=r+1}^{n} \lambda_k f^{k-r}(e_1) \right) = \lambda_r f^{n-1}(e_1) \end{split}$$

^{1.} ou plutôt, re-montrons : cela a été fait en cours...

donc, puisque $f^{n-1}(e_1) \neq 0$, $\lambda_r = 0$ ce qui contredit la définition de r. Donc (e_1, \ldots, e_n) est une famille libre de E donc une base de E et, pour $k \in [1, n-1]$, $f(e_k) = f^k(e_1) = e_{k+1}$ et $f(e_n) = f^n(e_1) = 0$.

Donc il existe une base
$$\mathscr{B}$$
 de E telle que Mat $(f,\mathscr{B})=\begin{pmatrix}0&&&0\\1&0&&0\\&\ddots&\ddots&\vdots\\&&1&0\end{pmatrix}=\mathsf{C}_{\mathsf{X}^n}.$

II. Localisation des racines d'un polynôme

6. On a
$$\lambda X = AX$$
 donc $\forall i \in [1, n]$, $\lambda x_i = \sum_{k=1}^n a_{ik} x_k$ donc

$$\left| \lambda x_i \right| = \left| \sum_{k=1}^n a_{ik} x_k \right| \le \sum_{k=1}^n \left| a_{ik} \right| \left| x_k \right| \le \sum_{k=1}^n \left| a_{ik} \right| \|X\|_{\infty}$$

ďoù

$$\forall i \in [1, n], \quad |\lambda x_i| \leq r_i ||X||_{\infty}.$$

7. Appliquons le résultat de **6)** à i_0 tel que $|x_{i_0}| = ||X||_{\infty}$: on obtient $|\lambda| ||X||_{\infty} \le r_{i_0} ||X||_{\infty}$ donc, puisque $X \ne 0$, $|\lambda| \le r_{i_0}$ donc $\lambda \in D_{i_0}$.

Ainsi
$$\forall \lambda \in \operatorname{Sp}(A), \exists i_0 \in \llbracket 1, n \rrbracket \text{ tq } \lambda \in D_{i_0} \text{ donc } \boxed{\operatorname{Sp}(A) \subset \bigcup_{k=1}^n D_k.}$$

Rem : cela est moins précis que ce que l'on obtient grâce au théorème de Hadamard, cf. exercice n°x corrigé en TD.

8. On a vu au 2) que les racines de P sont les valeurs propres de C_P et on peut appliquer 7) à $A = C_P$ avec $r_1 = \left|a_0\right|$ et pour $i \in [2, n]$, $r_i = 1 + \left|a_{i-1}\right|$. Or, $\bigcup_{k=1}^n D_k$ est le disque fermé de centre 0 et de rayon $\max_{1 \le i \le n} r_i$ donc

toutes les racines de P appartiennent à
$$B_f(0,R)$$
 où $R = \max\{|a_0|, 1+|a_1|, \dots, 1+|a_{n-1}|\}$.

9. Supposons par exemple que $a = \max\{a, b, c, d\}$. Si $n \in \mathbb{N}$ est solution de l'équation proposée, il est racine de $P = X^a + X^b - X^c - X^d \in \mathbb{C}_a[X]$ donc, avec les notations de 8), on a $|n| \le R$ avec R = 2 car $\left|a_0\right| = 0$ et $1 + \left|a_k\right| = \begin{cases} 2 & \text{si } k \in \{b, c, d\} \\ 1 & \text{sinon} \end{cases}$.

Mais, si 2 était solution, on aurait, en supposant, par exemple, c > d, $2^b (2^{a-b} + 1) = 2^d (2^{c-d} + 1)$ donc, par unicité de la décomposition en produit de nombres premiers (ou tout simplement en raisonnant sur la parité), b = d ce qui est exclu. 0 et 1 étant clairement solutions, on peut conclure que :

les seules solutions
$$n \in \mathbb{N}$$
 de $n^a + n^b = n^c + n^d$ sont 0 et 1.

III. Suites récurrentes linéaires

10. Si $u(n) = \lambda^n$ pour tout n (avec $\lambda \neq 0$)) alors

$$\forall n \in \mathbb{N}, u(n+p) + a_{p-1}u(n+p-1) + \dots + a_0u(n) = \lambda^n \left(\lambda^p + a_{p-1}\lambda^{p-1} + \dots + a_0\right) = \lambda^n P(\lambda).$$

Donc la suite $n\mapsto \lambda^n$ appartient à F si et seulement si λ est racine de P .

11. $\diamond \varphi$ est clairement linéaire et si $\alpha = (\alpha_0, \dots, \alpha_{p-1}) \in \mathbb{C}^p$, il existe une et une seule suite $u \in F$ telle que $\varphi(u)=\alpha$: c'est la suite définie par $u(0)=\alpha_0,\ldots\,u(p-1)=\alpha_{p-1}$ et, pour $n\geqslant p$, $u(n) = -a_{p-1}u(n-1) - \cdots - a_0u(n-p).$

Donc φ est bijective et donc $\boxed{\varphi}$ est un isomorphisme de F sur \mathbb{C}^p .

- \diamond On a donc dim $F = \dim \mathbb{C}^p$ soit $\dim F = p$.
- **12.** a) $e_i(p) = -a_{p-1}e_i(p-1) \cdots a_ie_i(1) \cdots a_0e_i(0)$ donc $e_i(p) = -a_i$.
 - **b)** Notons $(\varepsilon_1,\ldots,\varepsilon_p)$ la base canonique de \mathbb{C}^p . On a $e_i=\varphi^{-1}(\varepsilon_{i+1})$ donc la famille (e_0,\ldots,e_{p-1}) est l'image par l'isomorphisme φ^{-1} de la base $(\varepsilon_1,\ldots,\varepsilon_p)$. Ainsi

$$(e_0,\ldots,e_{p-1})$$
 est une base de F.

- c) Soit v la suite $v = \sum_{i=0}^{p-1} u(i)e_i$. Alors $v \in \mathbb{F}$ et v(k) = u(k) pour tout $k \in [0, p-1]$ donc v = u, c'est-à-dire $\forall u \in \mathbb{F}, \ u = \sum_{i=0}^{p-1} u(i) e_i$.
- **13.** $f \in \mathcal{L}(E)$ est évident.

La relation de récurrence linéaire de l'énoncé étant vraie pour tout n elle l'est aussi pour n+1 donc est aussi vérifiée par f(u) lorsque $u \in F$, c'est-à-dire | F | est stable par f.

14. Pour $u \in F$, $f(u) \in F$ donc **12.c** donne

$$f(u) = \sum_{k=0}^{p-1} f(u)(k) e_k = \sum_{k=0}^{p-1} u(k+1) e_k = \sum_{k=0}^{p-2} u(k+1) e_k + u(p) e_{p-1} = u(1) e_0 + \sum_{k=1}^{p-1} u(k) e_{k-1} + u(p) e_{p-1}.$$

En particulier,
$$f(e_i) = \begin{cases} e_{i-1} - a_i \, e_{p-1} & \text{si } 1 \leqslant i \leqslant p-1 \\ -a_0 \, e_{p-1} & \text{si } i = 0 \end{cases}$$
 donc
$$\text{Mat} \left(f, (e_0, \dots, e_{p-1}) \right) = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & & 1 \\ -a_0 & -a_1 & \cdots & -a_{p-1} \end{pmatrix} = {}^t \mathbf{C}_\mathbf{P} \; .$$

15. a) D'après **4.d.**, une base de vecteurs propres pour ${}^{t}C_{p}$ est $\left\{ \begin{pmatrix} 1 \\ \lambda_{1} \\ \vdots \\ 2^{n-1} \end{pmatrix}, \dots, \begin{pmatrix} 1 \\ \lambda_{n} \\ \vdots \\ 2^{n-1} \end{pmatrix} \right\}$ donc une

base de vecteurs propres pour g est (v_0, \dots, v_{p-1}) avec $v_i = \sum_{k=0}^{p-1} \lambda_i^k e_k$. Mais la suite $w_i : n \mapsto \lambda_i^n$

appartient à F d'après **10.** et s'écrit $w_i = \sum_{k=0}^{p-1} \lambda_i^k e_k$ d'après **12.**. Donc $v_i = w_i$ et une base de vecteurs propres pour g est (v_0, \dots, v_{p-1}) avec $\forall n, v_i(n) = \lambda_i^n$.

b) Donc $\forall u \in \mathbb{F}$, $\exists (k_0, \dots, k_{p-1}) \in \mathbb{C}^p$, $u = \sum_{i=0}^{p-1} k_i v_i$ soit

$$\exists (k_0,\ldots,k_{p-1}) \in \mathbb{C}^p, \quad \forall n \in \mathbb{N}, \ u(n) = \sum_{i=0}^{p-1} k_i \, \lambda_i^n \ .$$

Rem: « comment faire simple quand on peut faire compliqué »!

En effet, si P a p racines distinctes λ_i , les suites $n \mapsto \lambda_i^n$ sont dans F d'après la question 10; elles sont linéairement indépendantes par Vandermonde, et comme F est de dimension p, elles forment une base de F et c'est fini.

En fait, l'utilisation de cet endomorphisme f et de la matrice C_p n'ont justement de véritable intérêt que lorsqu'on ne peut pas conclure directement ainsi!

16. Ici, $P = X^3 - (a+b+c)X^2 + (ab+ac+bc)X - abc = (X-a)(X-b)(X-c)$ avec a, b, c distincts donc **15.** donne :

une base de F est
$$((a^n)_{n\in\mathbb{N}},(b^n)_{n\in\mathbb{N}},(c^n)_{n\in\mathbb{N}})$$
.

Rem: encore une question sans aucun intérêt

IV. Matrices vérifiant : rg(U - V) = 1

17. Non! (si $n \ge 2$) car $\operatorname{rg}(C_A) \ge n-1$ donc si $\operatorname{rg}(A) < n-1$ alors A ne saurait être semblable à C_A (si n-1 $A-C_A$) n = 1, $A = C_A$).

On peut aussi, selon 4.c., prendre A diagonalisable mais avec une valeur propre au moins double.

- **18.** Si on a (**) alors $U V = P^{-1}(C_U C_V)P$. Or, les (n-1) premières colonnes de $C_U C_V$ sont nulles donc $rg(C_U - C_V) \le 1$ et si on avait $rg(C_U - C_V) = 0$ alors $C_U - C_V = 0$ donc U - V = 0 ce qui est exclu (U et V distinctes) donc $rg(C_U - C_V) = 1$. Donc rg(U - V) = 1. On a donc montré que $(**) \Longrightarrow (*)$.
- 19. $U = I_2$, $V = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ vérifient (*) mais pas (**) : On a bien rg(U V) = 1 et, d'autre part $\chi_U = \chi_V$ donc $C_U = C_V$ et, si on avait (**), on aurait U = V ce

- **20.** rg(u-v) = rg(U-V) = 1 et le théorème du rang donne dim(Ker(u-v)) = n-1 : H est un hyperplan de E .
- **21.** a) Si on avait $F \subset H$ alors $\forall x \in F$, (u-v)(x) = 0 donc $\forall x \in F$, u(x) = v(x) c'est-à-dire que $u_F = v_F$. On a donc $\chi_{u_F}=\chi_{\nu_F}$. Posons $P=\chi_{u_F}=\chi_{\nu_F}$, on a $\deg P=\dim F\geqslant 1$ et P divise χu et χv ce qui contredit le fait que χ_{ν} et χ_{ν} sont premiers entre eux. Donc $| F \not\subset H |$.
 - **b)** ♦ On a donc $F \neq F \cap H$ donc dim $F > \dim(F \cap H)$ et donc dim $(F + H) = \dim H + \dim F \dim(F \cap H) > \dim H = n 1$ donc dim(F + H) = n et F + H = E.

 \diamond Notons $p=\dim F$. Soit $\mathscr{B}_F=\left(u_1,\ldots,u_p\right)$ une base de F, $\mathscr{B}_H=\left(v_1,\ldots,v_{n-1}\right)$ une base de H.

Tout élément de E s'écrit $x = \sum_{i=1}^p \lambda_i u_i + \sum_{j=1}^{n-1} \mu_j v_j$ donc $(u_1, \dots, u_p, v_1, \dots, v_{n-1})$ est génératrice de

E et (u_1,\ldots,u_p) est libre donc le théorème de la base incomplète montre que

on peut compléter \mathscr{B}_{E} par des vecteurs de H en une base \mathscr{B}' de E .

 \diamond On a donc $\mathscr{B}' = (u_1, \dots, u_p, u_{p+1}, \dots, u_n)$ avec $u_k \in H$ pour $k \geqslant p+1$. Or, si $x \in H$, u(x) = v(x)et F est stable par u et par v donc on a

$$\operatorname{Mat} \left(u, \mathscr{B}' \right) = \begin{bmatrix} \mathsf{A}_1 & \mathsf{B} \\ \mathsf{O} & \mathsf{C} \end{bmatrix} \qquad \operatorname{Mat} \left(v, \mathscr{B}' \right) = \begin{bmatrix} \mathsf{A}_2 & \mathsf{B} \\ \mathsf{O} & \mathsf{C} \end{bmatrix} \qquad \operatorname{avec} \, \mathsf{A}_i \in \mathscr{M}_p(\mathbb{K}) \,.$$

Donc $\chi_C \mid \chi_U$, $\chi_C \mid \chi_V$ et $\deg(\chi_C) = n - p \geqslant 1$ puisque $F \neq E$, ce qui contredit le fait que χ_u et χ_v sont premiers entre eux. Donc F = E.

- c) {0} et E sont stables par u et par v et on vient de montrer que si F est stable par u et par v et $F \neq \{0\}$ alors F = E. Donc les seuls sous-espaces stables par u et par v sont E et $\{0\}$.
- **22.** a) Par définition, $G_j = (u^j)^{-1}(H)$ et $U \in GL_n(\mathbb{K})$ donc $u \in GL(E)$ et donc $u^j \in GL(E)$ donc $\dim G_j = \dim H$. Ainsi, pour tout $j \in \mathbb{N}$, G_j est un hyperplan de E.
 - **b)** On a donc $G_i = \text{Ker } \varphi_i$ où φ_i est une forme linéaire non nulle sur E.

On a alors dim
$$\binom{n-2}{\bigcap\limits_{j=0}^{n-2}G_j}=\dim\left(\bigcap\limits_{j=0}^{n-2}\operatorname{Ker}\phi_j\right)=n-\operatorname{rg}(\phi_0,\ldots,\phi_{n-2})\geqslant n-(n-1)=1.$$
 Donc $\bigcap\limits_{j=0}^{n-2}G_j\neq\{0\}$.

c) Supposons le résultat faux, i.e (e_0,\ldots,e_{n-1}) liée, et considérons comme le suggère l'énoncé, $F = \text{Vect}\{y,u(y),\ldots,u^{p-1}(y)\}$ où p est le plus grand entier naturel non nul pour lequel la famille $(y,u(y),\ldots,u^{p-1}(y))$ est libre (p est bien défini car $\{k\geqslant 1 \text{ tq } (y,u(y),\ldots,u^{k-1}(y)) \text{ est libre}\}$ est non vide car (y) est libre, et majoré par n-1).

Par définition de p, $(y, u(y), ..., u^{p-1}(y))$ est libre et $(y, u(y), ..., u^{p-1}(y), u^p(y))$ est liée donc $\exists (\alpha_0, ..., \alpha_{p-1}) \in \mathbb{K}^p$ tel que $u^p(y) = \sum_{k=0}^{p-1} \alpha_k u^k(y)$. Ceci montre que $u^p(y) \in F$ et donc $u(F) = \text{Vect}\{u(y), u^2(y), ..., u^p(y)\} \subset F$.

D'autre part, $\forall k \in \llbracket 0, n-2 \rrbracket$, $y \in G_k$ donc $u^k(y) \in H$ et et donc $v(u^k(y)) = u(u^k(y))$ donc, puisque $p-1 \le n-2$, $v(F) = \text{Vect}\{u(y), u^2(y), \dots, u^p(y)\} = u(F) \subset F$. On a donc F stable par u et par v avec $1 \le \dim F \le n-1$ ce qui impossible d'après **21.**. Donc \mathscr{B}'' est une base de E.

- **d)** On a $u(e_k) = e_{k+1}$ pour $k \in [0, n-2]$ donc Mat $(u, \mathcal{B}'') = C_P$ où $P = X^n \sum_{k=0}^{n-1} e_k^* (u(e_{n-1})) X^k$. Mais alors, d'après **2.**, $P = (-1)^n \chi_u$ donc $C_P = C_U$. D'autre part, comme vu au **(c)**, $\forall k \in [0, n-2]$, $v(e_k) = u(e_k) = e_{k+1}$ donc Mat (v, \mathcal{B}'') est aussi une matrice compagnon et, de même que ci-dessus, c'est C_V .

 On a donc $Mat(u, \mathcal{B}'') = C_U$ et $Mat(v, \mathcal{B}'') = C_V$.
- e) En notant P la matrice de passage de \mathscr{B}'' à \mathscr{B} , on a donc $U = P^{-1}C_UP$ et $V = P^{-1}C_VP$. On peut donc conclure que : $\forall (U,V) \in \left(GL_n(\mathbb{K})\right)^2$, $\left((*) \text{ et } \chi_u, \chi_v \text{ premiers entre eux }\right) \Longrightarrow (**)$.

