Université Mohammed V.	Année 2019-2020.
Faculté des sciences	
Dep. de Mathématiques -Rabat.	
Algèbre 3	

COURS D'ALGEBRE 3 Filière : (SMIA)

BENLARBI-DELAI M' HAMMED HANINE ABDELOUAHAB

Chapitre 1

ESPACES VECTORIELS

1. Définition d'un espace vectoriel

Un espace vectoriel est un ensemble formé de vecteurs, de sorte que l'on puisse additionner (et soustraire) deux vecteurs u,v pour en former un troisième u+v (ou u-v) et aussi afin que l'on puisse multiplier chaque vecteur u d'un facteur λ pour obtenir un vecteur $\lambda \cdot u$.

Définition 1

Un \mathbb{K} -espace vectoriel est un ensemble non vide E muni :

– d'une loi de composition interne, c'est-à-dire d'une application de $E \times E$ dans E :

$$E \times E \rightarrow E$$

$$(u,v) \mapsto u+v$$

- d'une loi de composition externe, c'est-à-dire d'une application de $\mathbb{K} \times E$ dans E:

$$\mathbb{K} \times E \quad \to \quad E$$
$$(\lambda, u) \quad \mapsto \quad \lambda \cdot u$$

qui vérifient les propriétés suivantes :

- 1. u + v = v + u (pour tous $u, v \in E$)
- 2. u + (v + w) = (u + v) + w (pour tous $u, v, w \in E$)
- 3. Il existe un *élément neutre* $0_E \in E$ tel que $u + 0_E = u$ (pour tout $u \in E$)
- 4. Tout $u \in E$ admet un **symétrique** u' tel que $u + u' = 0_E$. Cet élément u' est noté -u.
- 5. $1 \cdot u = u$ (pour tout $u \in E$)
- 6. $\lambda \cdot (\mu \cdot u) = (\lambda \mu) \cdot u$ (pour tous $\lambda, \mu \in \mathbb{K}, u \in E$)
- 7. $\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$ (pour tous $\lambda \in \mathbb{K}$, $u, v \in E$)
- 8. $(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$ (pour tous $\lambda, \mu \in \mathbb{K}, u \in E$)

Nous reviendrons en détail sur chacune de ces propriétés juste après des exemples.

1.1. Premiers exemples

Exemple 1: Le \mathbb{R} -espace vectoriel \mathbb{R}^2

Posons $\mathbb{K} = \mathbb{R}$ et $E = \mathbb{R}^2$. Un élément $u \in E$ est donc un couple (x, y) avec x élément de \mathbb{R} et y élément de \mathbb{R} . Ceci s'écrit

$$\mathbb{R}^2 = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}.$$

- Définition de la loi interne. Si (x, y) et (x', y') sont deux éléments de \mathbb{R}^2 , alors :

$$(x, y) + (x', y') = (x + x', y + y').$$

- Définition de la loi externe. Si λ est un réel et (x,y) est un élément de \mathbb{R}^2 , alors :

$$\lambda \cdot (x, y) = (\lambda x, \lambda y).$$

L'élément neutre de la loi interne est le vecteur nul (0,0). Le symétrique de (x,y) est (-x,-y), que l'on note aussi -(x,y).

L'exemple suivant généralise le précédent. C'est aussi le bon moment pour lire ou relire le chapitre « L'espace vectoriel \mathbb{R}^n ».

Exemple 2: Le \mathbb{R} -espace vectoriel \mathbb{R}^n

Soit n un entier supérieur ou égal à 1. Posons $\mathbb{K} = \mathbb{R}$ et $E = \mathbb{R}^n$. Un élément $u \in E$ est donc un n-uplet (x_1, x_2, \dots, x_n) avec x_1, x_2, \dots, x_n des éléments de \mathbb{R} .

- Définition de la loi interne. Si (x_1,\ldots,x_n) et (x'_1,\ldots,x'_n) sont deux éléments de \mathbb{R}^n , alors :

$$(x_1,\ldots,x_n)+(x'_1,\ldots,x'_n)=(x_1+x'_1,\ldots,x_n+x'_n).$$

- Définition de la loi externe. Si λ est un réel et $(x_1,...,x_n)$ est un élément de \mathbb{R}^n , alors :

$$\lambda \cdot (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n).$$

L'élément neutre de la loi interne est le vecteur nul $(0,0,\ldots,0)$. Le symétrique de (x_1,\ldots,x_n) est $(-x_1,\ldots,-x_n)$, que l'on note $-(x_1,\ldots,x_n)$.

De manière analogue, on peut définir le \mathbb{C} -espace vectoriel \mathbb{C}^n , et plus généralement le \mathbb{K} -espace vectoriel \mathbb{K}^n .

Exemple 3

Tout plan passant par l'origine dans \mathbb{R}^3 est un espace vectoriel (par rapport aux opérations habituelles sur les vecteurs). Soient $\mathbb{K} = \mathbb{R}$ et $E = \mathscr{P}$ un plan passant par l'origine. Le plan admet une équation de la forme :

$$ax + by + cz = 0$$

où a, b et c sont des réels non tous nuls.

Un élément $u \in E$ est donc un triplet (noté ici comme un vecteur colonne) $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ tel que ax + by + cz = 0.

Soient $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ deux éléments de \mathscr{P} . Autrement dit,

$$ax + by + cz = 0,$$

et $ax' + by' + cz' = 0.$

Alors $\begin{pmatrix} x+x' \\ y+y' \\ z+z' \end{pmatrix}$ est aussi dans \mathscr{P} car on a bien :

$$a(x + x') + b(y + y') + c(z + z') = 0.$$

Les autres propriétés sont aussi faciles à vérifier : par exemple l'élément neutre est $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$; et si $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ appartient à \mathscr{P} , alors ax + by + cz = 0, que l'on peut réécrire a(-x) + b(-y) + c(-z) = 0 et ainsi

 $-\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ appartient à \mathscr{P} .

Attention! Un plan ne contenant pas l'origine n'est pas un espace vectoriel, car justement il ne contient pas le vecteur nul $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

Notations

Rassemblons les définitions déjà vues.

- On appelle les éléments de E des *vecteurs*. Au lieu de \mathbb{K} -espace vectoriel, on dit aussi espace vectoriel sur \mathbb{K} .
- Les éléments de K seront appelés des *scalaires*.
- L'élément neutre 0_E s'appelle aussi le *vecteur nul*. Il ne doit pas être confondu avec l'élément 0 de \mathbb{K} . Lorsqu'il n'y aura pas de risque de confusion, 0_E sera aussi noté 0.
- Le **symétrique** -u d'un vecteur $u \in E$ s'appelle aussi l'**opposé**.
- La loi de composition interne sur E (notée usuellement +) est appelée couramment l'addition et u + u' est appelée somme des vecteurs u et u'.
- La loi de composition externe sur E est appelée couramment multiplication par un scalaire. La multiplication du vecteur u par le scalaire λ sera souvent notée simplement λu , au lieu de $\lambda \cdot u$.

Somme de n **vecteurs.** Il est possible de définir, par récurrence, l'addition de n vecteurs, $n \ge 2$. La structure d'espace vectoriel permet de définir l'addition de deux vecteurs (et initialise le processus). Si maintenant la somme de n-1 vecteurs est définie, alors la somme de n vecteurs v_1, v_2, \ldots, v_n est définie par

$$v_1 + v_2 + \cdots + v_n = (v_1 + v_2 + \cdots + v_{n-1}) + v_n$$
.

L'associativité de la loi + nous permet de ne pas mettre de parenthèses dans la somme $v_1+v_2+\cdots+v_n$.

On notera
$$v_1 + v_2 + \dots + v_n = \sum_{i=1}^{n} v_i$$
.

1.2. Détail des axiomes de la définition

Revenons en détail sur la définition d'un espace vectoriel. Soit donc E un \mathbb{K} -espace vectoriel. Les éléments de E seront appelés des *vecteurs*. Les éléments de \mathbb{K} seront appelés des *scalaires*.

Loi interne.

La loi de composition interne dans E, c'est une application de $E \times E$ dans E:

$$E \times E \rightarrow E$$

$$(u,v) \mapsto u+v$$

C'est-à-dire qu'à partir de deux vecteurs u et v de E, on nous en fournit un troisième, qui sera noté u+v.

La loi de composition interne dans E et la somme dans \mathbb{K} seront toutes les deux notées +, mais le contexte permettra de déterminer aisément de quelle loi il s'agit.

Loi externe.

La loi de composition externe, c'est une application de $\mathbb{K} \times E$ dans E:

$$\mathbb{K} \times E \to E$$
$$(\lambda, u) \mapsto \lambda \cdot u$$

C'est-à-dire qu'à partir d'un scalaire $\lambda \in \mathbb{K}$ et d'un vecteur $u \in E$, on nous fournit un autre vecteur, qui sera noté $\lambda \cdot u$.

Axiomes relatifs à la loi interne.

- 1. *Commutativité*. Pour tous $u, v \in E$, u + v = v + u. On peut donc additionner des vecteurs dans l'ordre que l'on souhaite.
- 2. **Associativité.** Pour tous $u, v, w \in E$, on a u + (v + w) = (u + v) + w. Conséquence : on peut « oublier » les parenthèses et noter sans ambiguïté u + v + w.
- 3. Il existe un *élément neutre*, c'est-à-dire qu'il existe un élément de E, noté 0_E , vérifiant : pour tout $u \in E$, $u + 0_E = u$ (et on a aussi $0_E + u = u$ par commutativité). Cet élément 0_E s'appelle aussi le *vecteur nul*.
- 4. Tout élément u de E admet un **symétrique** (ou **opposé**), c'est-à-dire qu'il existe un élément u' de E tel que $u + u' = 0_E$ (et on a aussi $u' + u = 0_E$ par commutativité). Cet élément u' de E est noté -u.

Proposition 1

- S'il existe un élément neutre 0_E vérifiant l'axiome (3) ci-dessus, alors il est unique.
- Soit u un élément de E. S'il existe un élément symétrique u' de E vérifiant l'axiome (4), alors il est unique.

Démonstration

– Soient 0_E et $0_E'$ deux éléments vérifiant la définition de l'élément neutre. On a alors, pour tout élément u de E:

$$u + 0_E = 0_E + u = u$$
 et $u + 0'_E = 0'_E + u = u$

- Alors, la première propriété utilisée avec $u=0_E'$ donne $0_E'+0_E=0_E+0_E'=0_E'$.
- La deuxième propriété utilisée avec $u=0_E$ donne $0_E+0_E'=0_E'+0_E=0_E$.
- En comparant ces deux résultats, il vient $0_E = 0_E'$.
- Supposons qu'il existe deux symétriques de u notés u' et u''. On a :

$$u + u' = u' + u = 0_E$$
 et $u + u'' = u'' + u = 0_E$.

Calculons u' + (u + u'') de deux façons différentes, en utilisant l'associativité de la loi + et les relations précédentes.

- $-u'+(u+u'')=u'+0_E=u'$
- $u' + (u + u'') = (u' + u) + u'' = 0_E + u'' = u''$
- On en déduit u' = u''.

Remarque

Les étudiants connaissant la théorie des groupes reconnaîtront, dans les quatre premiers axiomes ci-dessus, les axiomes caractérisant un groupe commutatif.

Axiomes relatifs à la loi externe.

5. Soit 1 l'élément neutre de la multiplication de \mathbb{K} . Pour tout élément u de E, on a

$$1 \cdot u = u$$
.

6. Pour tous éléments λ et μ de \mathbb{K} et pour tout élément u de E, on a

$$\lambda \cdot (\mu \cdot u) = (\lambda \times \mu) \cdot u$$
.

5

Axiomes liant les deux lois.

7. **Distributivité** par rapport à l'addition des vecteurs. Pour tout élément λ de \mathbb{K} et pour tous éléments u et v de E, on a

$$\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$$
.

8. *Distributivité* par rapport à l'addition des scalaires. Pour tous λ et μ de \mathbb{K} et pour tout élément u de E, on a :

$$(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$$
.

La loi interne et la loi externe doivent donc satisfaire ces huit axiomes pour que $(E, +, \cdot)$ soit un espace vectoriel sur \mathbb{K} .

1.3. Exemples

Dans tous les exemples qui suivent, la vérification des axiomes se fait simplement et est laissée au soin des étudiants. Seules seront indiquées, dans chaque cas, les valeurs de l'élément neutre de la loi interne et du symétrique d'un élément.

Exemple 4: L'espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$

L'ensemble des fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ est noté $\mathscr{F}(\mathbb{R}, \mathbb{R})$. Nous le munissons d'une structure de \mathbb{R} -espace vectoriel de la manière suivante.

- Loi interne. Soient f et g deux éléments de $\mathscr{F}(\mathbb{R},\mathbb{R})$. La fonction f+g est définie par :

$$\forall x \in \mathbb{R} \quad (f+g)(x) = f(x) + g(x)$$

(où le signe + désigne la loi interne de $\mathscr{F}(\mathbb{R},\mathbb{R})$ dans le membre de gauche et l'addition dans \mathbb{R} dans le membre de droite).

- Loi externe. Si λ est un nombre réel et f une fonction de $\mathscr{F}(\mathbb{R},\mathbb{R})$, la fonction $\lambda \cdot f$ est définie par l'image de tout réel x comme suit :

$$\forall x \in \mathbb{R} \quad (\lambda \cdot f)(x) = \lambda \times f(x).$$

(Nous désignons par · la loi externe de $\mathscr{F}(\mathbb{R},\mathbb{R})$ et par × la multiplication dans \mathbb{R} . Avec l'habitude on oubliera les signes de multiplication : $(\lambda f)(x) = \lambda f(x)$.)

- Elément neutre. L'élément neutre pour l'addition est la fonction nulle, définie par :

$$\forall x \in \mathbb{R} \quad f(x) = 0.$$

On peut noter cette fonction $0_{\mathscr{F}(\mathbb{R},\mathbb{R})}$.

- Symétrique. Le symétrique de l'élément f de $\mathcal{F}(\mathbb{R},\mathbb{R})$ est l'application g de \mathbb{R} dans \mathbb{R} définie par :

$$\forall x \in \mathbb{R} \quad g(x) = -f(x).$$

Le symétrique de f est noté -f.

Exemple 5: Le R-espace vectoriel des suites réelles

On note $\mathscr S$ l'ensemble des suites réelles $(u_n)_{n\in\mathbb N}$. Cet ensemble peut être vu comme l'ensemble des applications de $\mathbb N$ dans $\mathbb R$; autrement dit $\mathscr S=\mathscr F(\mathbb N,\mathbb R)$.

- Loi interne. Soient $u = (u_n)_{n \in \mathbb{N}}$ et $v = (v_n)_{n \in \mathbb{N}}$ deux suites appartenant à \mathscr{S} . La suite u + v est la suite $w = (w_n)_{n \in \mathbb{N}}$ dont le terme général est défini par

$$\forall n \in \mathbb{N} \quad w_n = u_n + v_n$$

(où $u_n + v_n$ désigne la somme de u_n et de v_n dans \mathbb{R}).

- Loi externe. Si λ est un nombre réel et $u=(u_n)_{n\in\mathbb{N}}$ un élément de $\mathscr{S},\ \lambda\cdot u$ est la suite $v=(v_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N} \quad v_n = \lambda \times u_n$$

où \times désigne la multiplication dans \mathbb{R} .

- Élément neutre. L'élément neutre de la loi interne est la suite dont tous les termes sont nuls.
- Symétrique. Le symétrique de la suite $u = (u_n)_{n \in \mathbb{N}}$ est la suite $u' = (u'_n)_{n \in \mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N} \quad u'_n = -u_n.$$

Elle est notée -u.

Autres exemples:

- 1. L'espace vectoriel $\mathbb{R}[X]$ des polynômes $P(X) = a_n X^n + \dots + a_2 X^2 + a_1 X + a_0$. L'addition est l'addition de deux polynômes P(X) + Q(X), la multiplication par un scalaire $\lambda \in \mathbb{R}$ est $\lambda \cdot P(X)$. L'élément neutre est le polynôme nul. L'opposé de P(X) est -P(X).
- 2. L'ensemble des fonctions continues de $\mathbb R$ dans $\mathbb R$; l'ensemble des fonctions dérivables de $\mathbb R$ dans $\mathbb R$,...
- 3. \mathbb{C} est un \mathbb{R} -espace vectoriel : addition z+z' de deux nombres complexes, multiplication λz par un scalaire $\lambda \in \mathbb{R}$. L'élément neutre est le nombre complexe 0 et le symétrique du nombre complexe z est -z.

1.4. Règles de calcul

Proposition 2

Soit *E* un espace vectoriel sur un corps \mathbb{K} . Soient $u \in E$ et $\lambda \in \mathbb{K}$. Alors on a :

- 1. $0 \cdot u = 0_E$
- 2. $\lambda \cdot 0_E = 0_E$
- 3. $(-1) \cdot u = -u$
- 4. $\lambda \cdot u = 0_E \iff \lambda = 0$ ou $u = 0_E$

L'opération qui à (u,v) associe u+(-v) s'appelle la **soustraction**. Le vecteur u+(-v) est noté u-v. Les propriétés suivantes sont satisfaites : $\lambda(u-v)=\lambda u-\lambda v$ et $(\lambda-\mu)u=\lambda u-\mu u$.

Démonstration

Les démonstrations des propriétés sont des manipulations sur les axiomes définissant les espaces vectoriels.

- 1. Le point de départ de la démonstration est l'égalité dans $\mathbb{K}: 0+0=0$.
 - D'où, pour tout vecteur de E, l'égalité $(0+0) \cdot u = 0 \cdot u$.
 - Donc, en utilisant la distributivité de la loi externe par rapport à la loi interne et la définition de l'élément neutre, on obtient $0 \cdot u + 0 \cdot u = 0 \cdot u$. On peut rajouter l'élément neutre dans le terme de droite, pour obtenir : $0 \cdot u + 0 \cdot u = 0 \cdot u + 0_E$.
 - En ajoutant $-(0 \cdot u)$ de chaque côté de l'égalité, on obtient : $0 \cdot u = 0_E$.
- 2. La preuve est semblable en partant de l'égalité $0_E + 0_E = 0_E$.
- 3. Montrer $(-1) \cdot u = -u$ signifie exactement que $(-1) \cdot u$ est le symétrique de u, c'est-à-dire vérifie $u + (-1) \cdot u = 0_E$. En effet :

$$u + (-1) \cdot u = 1 \cdot u + (-1) \cdot u = (1 + (-1)) \cdot u = 0 \cdot u = 0_E$$
.

4. On sait déjà que si $\lambda=0$ ou $u=0_E$, alors les propriétés précédentes impliquent $\lambda \cdot u=0_E$. Pour la réciproque, soient $\lambda \in \mathbb{K}$ un scalaire et $u \in E$ un vecteur tels que $\lambda \cdot u=0_E$.

Supposons λ différent de 0. On doit alors montrer que $u = 0_E$.

- Comme $\lambda \neq 0$, alors λ est inversible pour le produit dans le corps \mathbb{K} . Soit λ^{-1} son inverse.
- En multipliant par λ^{-1} les deux membres de l'égalité $\lambda \cdot u = 0_E$, il vient : $\lambda^{-1} \cdot (\lambda \cdot u) = \lambda^{-1} \cdot 0_E$.
- D'où en utilisant les propriétés de la multiplication par un scalaire $(\lambda^{-1} \times \lambda) \cdot u = 0_E$ et donc $1 \cdot u = 0_E$.
- D'où $u = 0_E$.

2. Sous-espace vectoriel

Il est vite fatiguant de vérifier les 8 axiomes qui font d'un ensemble un espace vectoriel. Heureusement, il existe une manière rapide et efficace de prouver qu'un ensemble est un espace vectoriel : grâce à la notion de sous-espace vectoriel.

2.1. Définition d'un sous-espace vectoriel

Définition 2

Soit E un \mathbb{K} -espace vectoriel. Une partie F de E est appelée un sous-espace vectoriel si :

- 0_E ∈ F,
- $u + v \in F$ pour tous $u, v \in F$,
- $\lambda \cdot u \in F$ pour tout $\lambda \in \mathbb{K}$ et tout $u \in F$.

Remarque

Expliquons chaque condition.

- La première condition signifie que le vecteur nul de *E* doit aussi être dans *F*. En fait il suffit même de prouver que *F* est non vide.
- La deuxième condition, c'est dire que F est stable pour l'addition : la somme u+v de deux vecteurs u,v de F est bien sûr un vecteur de E (car E est un espace vectoriel), mais ici on exige que u+v soit un élément de F.
- La troisième condition, c'est dire que F est stable pour la multiplication par un scalaire.

Exemple 6: Exemples immédiats

- 1. L'ensemble $F = \{(x, y) \in \mathbb{R}^2 \mid x + y = 0\}$ est un sous-espace vectoriel de \mathbb{R}^2 . En effet :
- (a) $(0,0) \in F$,
- (b) si $u = (x_1, y_1)$ et $v = (x_2, y_2)$ appartiennent à F, alors $x_1 + y_1 = 0$ et $x_2 + y_2 = 0$ donc $(x_1 + x_2) + (y_1 + y_2) = 0$ et ainsi $u + v = (x_1 + x_2, y_1 + y_2)$ appartient à F,
- (c) si $u = (x, y) \in F$ et $\lambda \in \mathbb{R}$, alors x + y = 0 donc $\lambda x + \lambda y = 0$, d'où $\lambda u \in F$.
- 2. L'ensemble des fonctions continues sur $\mathbb R$ est un sous-espace vectoriel de l'espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$. Preuve : la fonction nulle est continue; la somme de deux fonctions continues est continue; une constante fois une fonction continue est une fonction continue.
- 3. L'ensemble des suites réelles convergentes est un sous-espace vectoriel de l'espace vectoriel des suites réelles.

Exemple 7

- 1. L'ensemble $F_1 = \{(x, y) \in \mathbb{R}^2 \mid x + y = 2\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 . En effet le vecteur nul (0,0) n'appartient pas à F_1 .
- 2. L'ensemble $F_2 = \{(x, y) \in \mathbb{R}^2 \mid x = 0 \text{ ou } y = 0\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 . En effet les vecteurs u = (1, 0) et v = (0, 1) appartiennent à F_2 , mais pas le vecteur u + v = (1, 1).
- 3. L'ensemble $F_3 = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0 \text{ et } y \ge 0\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 . En effet le vecteur u = (1, 1) appartient à F_3 mais, pour $\lambda = -1$, le vecteur -u = (-1, -1) n'appartient pas à F_3 .

2.2. Un sous-espace vectoriel est un espace vectoriel

La notion de sous-espace vectoriel prend tout son intérêt avec le théorème suivant : un sousespace vectoriel est lui-même un espace vectoriel. C'est ce théorème qui va nous fournir plein d'exemples d'espaces vectoriels.

Théorème 1

Soient E un \mathbb{K} -espace vectoriel et F un sous-espace vectoriel de E. Alors F est lui-même un \mathbb{K} -espace vectoriel pour les lois induites par E.

Méthodologie. Pour répondre à une question du type « L'ensemble F est-il un espace vectoriel ? », une façon efficace de procéder est de trouver un espace vectoriel E qui contient F, puis prouver que F est un sous-espace vectoriel de E. Il y a seulement trois propriétés à vérifier au lieu de huit!

Exemple 8

1. Est-ce que l'ensemble des fonctions paires (puis des fonctions impaires) forme un espace vectoriel (sur \mathbb{R} avec les lois usuelles sur les fonctions)?

Notons $\mathscr P$ l'ensemble des fonctions paires et $\mathscr I$ l'ensemble des fonctions impaires. Ce sont deux sous-ensembles de l'espace vectoriel $\mathscr F(\mathbb R,\mathbb R)$ des fonctions.

$$\mathcal{P} = \left\{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid \forall x \in \mathbb{R}, f(-x) = f(x) \right\}$$
$$\mathcal{I} = \left\{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid \forall x \in \mathbb{R}, f(-x) = -f(x) \right\}$$

 \mathscr{P} et \mathscr{I} sont des sous-espaces vectoriels de $\mathscr{F}(\mathbb{R},\mathbb{R})$. C'est très simple à vérifier, par exemple pour \mathscr{P} :

- (a) la fonction nulle est une fonction paire,
- (b) si $f, g \in \mathcal{P}$ alors $f + g \in \mathcal{P}$,
- (c) si $f \in \mathcal{P}$ et si $\lambda \in \mathbb{R}$ alors $\lambda f \in \mathcal{P}$.

Par le théorème 1, \mathcal{P} est un espace vectoriel (de même pour \mathcal{I}).

Démonstration: Preuve du théorème 1

Soit F un sous-espace vectoriel d'un espace vectoriel $(E,+,\cdot)$. La stabilité de F pour les deux lois permet de munir cet ensemble d'une loi de composition interne et d'une loi de composition externe, en restreignant à F les opérations définies dans E. Les propriétés de commutativité et d'associativité de l'addition, ainsi que les quatre axiomes relatifs à la loi externe sont vérifiés, car ils sont satisfaits dans E donc en particulier dans F, qui est inclus dans E.

L'existence d'un élément neutre découle de la définition de sous-espace vectoriel. Il reste seulement à justifier que si $u \in F$, alors son symétrique -u appartient à F.

Fixons $u \in F$. Comme on a aussi $u \in E$ et que E est un espace vectoriel alors il existe un élément de E, noté -u, tel que $u + (-u) = 0_E$. Comme u est élément de F, alors pour $\lambda = -1$, $(-1)u \in F$. Et ainsi -u appartient à F.

2.3. Combinaisons linéaires

Définition 3

Soit $n \ge 1$ un entier, soient v_1, v_2, \dots, v_n , n vecteurs d'un espace vectoriel E. Tout vecteur de la forme

$$u = \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n$$

(où $\lambda_1, \lambda_2, ..., \lambda_n$ sont des éléments de \mathbb{K}) est appelé **combinaison linéaire** des vecteurs $v_1, v_2, ..., v_n$. Les scalaires $\lambda_1, \lambda_2, ..., \lambda_n$ sont appelés **coefficients** de la combinaison linéaire.

Remarque : Si n = 1, alors $u = \lambda_1 v_1$ et on dit que u est **colinéaire** à v_1 .

Exemple 9

1. Dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 , (3,3,1) est combinaison linéaire des vecteurs (1,1,0) et (1,1,1) car on a l'égalité

$$(3,3,1) = 2(1,1,0) + (1,1,1).$$

- 2. Dans le \mathbb{R} -espace vectoriel \mathbb{R}^2 , le vecteur u=(2,1) n'est pas colinéaire au vecteur $v_1=(1,1)$ car s'il l'était, il existerait un réel λ tel que $u=\lambda v_1$, ce qui équivaudrait à l'égalité $(2,1)=(\lambda,\lambda)$.
- 3. Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions réelles. Soient f_0 , f_1 , f_2 et f_3 les fonctions définies par :

$$\forall x \in \mathbb{R}$$
 $f_0(x) = 1$, $f_1(x) = x$, $f_2(x) = x^2$, $f_3(x) = x^3$.

Alors la fonction f définie par

$$\forall x \in \mathbb{R} \quad f(x) = x^3 - 2x^2 - 7x - 4$$

est combinaison linéaire des fonctions f_0, f_1, f_2, f_3 puisque l'on a l'égalité

$$f = f_3 - 2f_2 - 7f_1 - 4f_0$$
.

Voici deux exemples plus compliqués.

Exemple 10

Soient $u = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ et $v = \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix}$ deux vecteurs de \mathbb{R}^3 . Montrons que $w = \begin{pmatrix} 9 \\ 2 \\ 7 \end{pmatrix}$ est combinaison linéaire de u et v. On cherche donc λ et μ tels que $w = \lambda u + \mu v$:

$$\begin{pmatrix} 9 \\ 2 \\ 7 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} \lambda \\ 2\lambda \\ -\lambda \end{pmatrix} + \begin{pmatrix} 6\mu \\ 4\mu \\ 2\mu \end{pmatrix} = \begin{pmatrix} \lambda + 6\mu \\ 2\lambda + 4\mu \\ -\lambda + 2\mu \end{pmatrix}.$$

On a donc

$$\begin{cases} 9 = \lambda + 6\mu \\ 2 = 2\lambda + 4\mu \\ 7 = -\lambda + 2\mu. \end{cases}$$

Une solution de ce système est $(\lambda = -3, \mu = 2)$, ce qui implique que w est combinaison linéaire de

u et v. On vérifie que l'on a bien

$$\begin{pmatrix} 9 \\ 2 \\ 7 \end{pmatrix} = -3 \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + 2 \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix}.$$

Exemple 11

Soient $u=\begin{pmatrix}1\\2\\-1\end{pmatrix}$ et $v=\begin{pmatrix}6\\4\\2\end{pmatrix}$. Montrons que $w=\begin{pmatrix}4\\-1\\8\end{pmatrix}$ n'est pas une combinaison linéaire de u et v. L'égalité

$$\begin{pmatrix} 4 \\ -1 \\ 8 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix} \quad \text{équivant au système} \quad \begin{cases} 4 = \lambda + 6\mu \\ -1 = 2\lambda + 4\mu \\ 8 = -\lambda + 2\mu. \end{cases}$$

Or ce système n'a aucune solution. Donc il n'existe pas $\lambda, \mu \in \mathbb{R}$ tels que $w = \lambda u + \mu v$.

2.4. Caractérisation d'un sous-espace vectoriel

Théorème 2: Caractérisation d'un sous-espace

Soient E un \mathbb{K} -espace vectoriel et F une partie non vide de E. F est un sous-espace vectoriel de E si et seulement si

$$\lambda u + \mu v \in F$$
 pour tous $u, v \in F$ et tous $\lambda, \mu \in \mathbb{K}$.

Autrement dit si et seulement si toute combinaison linéaire de deux éléments de F appartient à F.

Démonstration

- Supposons que F soit un sous-espace vectoriel. Et soient $u, v \in F$, $\lambda, \mu \in \mathbb{K}$. Alors par la définition de sous-espace vectoriel : $\lambda u \in F$ et $\mu v \in F$ et ainsi $\lambda u + \mu v \in F$.
- Réciproquement, supposons que pour chaque $u, v \in F$, $\lambda, \mu \in \mathbb{K}$ on a $\lambda u + \mu v \in F$.
 - Comme *F* n'est pas vide, soient $u, v \in F$. Posons $\lambda = \mu = 0$. Alors $\lambda u + \mu v = 0_E \in F$.
 - Si $u, v \in F$, alors en posant $\lambda = \mu = 1$ on obtient $u + v \in F$.
 - Si $u \in F$ et $\lambda \in \mathbb{K}$ (et pour n'importe quel v, en posant $\mu = 0$), alors $\lambda u \in F$.

2.5. Intersection de deux sous-espaces vectoriels

Proposition 3: Intersection de deux sous-espaces

Soient F,G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. L'intersection $F \cap G$ est un sous-espace vectoriel de E.

On démontrerait de même que l'intersection $F_1 \cap F_2 \cap F_3 \cap \cdots \cap F_n$ d'une famille quelconque de sous-espaces vectoriels de E est un sous-espace vectoriel de E.

Démonstration

Soient F et G deux sous-espaces vectoriels de E.

- 0_E ∈ F, 0_E ∈ G car F et G sont des sous-espaces vectoriels de E; donc 0_E ∈ F ∩ G.
- Soient u et v deux vecteurs de $F \cap G$. Comme F est un sous-espace vectoriel, alors $u, v \in F$ implique $u + v \in F$. De même $u, v \in G$ implique $u + v \in G$. Donc $u + v \in F \cap G$.
- Soient $u \in F \cap G$ et $\lambda \in \mathbb{K}$. Comme F est un sous-espace vectoriel, alors $u \in F$ implique

 $\lambda u \in F$. De même $u \in G$ implique $\lambda u \in G$. Donc $\lambda u \in F \cap G$.

Conclusion : $F \cap G$ est un sous-espace vectoriel de E.

Exemple 12

Soit \mathcal{D} le sous-ensemble de \mathbb{R}^3 défini par :

$$\mathcal{D} = \{(x, y, z) \in \mathbb{R}^3 \mid x + 3y + z = 0 \text{ et } x - y + 2z = 0\}.$$

Est-ce que \mathscr{D} est sous-espace vectoriel de \mathbb{R}^3 ? L'ensemble \mathscr{D} est l'intersection de F et G, les sous-ensembles de \mathbb{R}^3 définis par :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 3y + z = 0\}$$

$$G = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + 2z = 0\}$$

Ce sont deux plans passant par l'origine, donc des sous-espaces vectoriels de \mathbb{R}^3 . Ainsi $\mathscr{D} = F \cap G$ est un sous-espace vectoriel de \mathbb{R}^3 , c'est une droite vectorielle.

Remarque

La réunion de deux sous-espaces vectoriels de E n'est pas en général un sous-espace vectoriel de E. Prenons par exemple $E = \mathbb{R}^2$. Considérons les sous-espaces vectoriels $F = \{(x,y) \mid x=0\}$ et $G = \{(x,y) \mid y=0\}$. Alors $F \cup G$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 . Par exemple, (0,1)+(1,0)=(1,1) est la somme d'un élément de F et d'un élément de G, mais n'est pas dans $F \cup G$.

2.6. Somme de deux sous-espaces vectoriels

Comme la réunion de deux sous-espaces vectoriels F et G n'est pas en général un sous-espace vectoriel, il est utile de connaître les sous-espaces vectoriels qui contiennent à la fois les deux sous-espaces vectoriels F et G, et en particulier le plus petit d'entre eux (au sens de l'inclusion).

Définition 4: Somme de deux sous-espaces

Soient F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. L'ensemble de tous les éléments u+v, où u est un élément de F et v un élément de G, est appelé **somme** des sous-espaces vectoriels F et G. Cette somme est notée F+G. On a donc

$$F + G = \{u + v \mid u \in F, v \in G\}.$$

Proposition 4

Soient F et G deux sous-espaces vectoriels du \mathbb{K} -espace vectoriel E.

- 1. F + G est un sous-espace vectoriel de E.
- 2. F+G est le plus petit sous-espace vectoriel contenant à la fois F et G.

Démonstration

- 1. Montrons que F + G est un sous-espace vectoriel.
 - 0_E ∈ F, 0_E ∈ G, donc 0_E = 0_E + 0_E ∈ F + G.
 - Soient w et w' des éléments de F+G. Comme w est dans F+G, il existe u dans F et v dans G tels que w=u+v. Comme w' est dans F+G, il existe u' dans F et v' dans G tels

- que w' = u' + v'. Alors $w + w' = (u + v) + (u' + v') = (u + u') + (v + v') \in F + G$, car $u + u' \in F$ et $v + v' \in G$.
- Soit w un élément de F+G et $\lambda \in \mathbb{K}$. Il existe u dans F et v dans G tels que w=u+v. Alors $\lambda w = \lambda(u+v) = (\lambda u) + (\lambda v) \in F+G$, car $\lambda u \in F$ et $\lambda v \in G$.
- 2. L'ensemble F+G contient F et contient G: en effet tout élément u de F s'écrit u=u+0 avec u appartenant à F et 0 appartenant à G (puisque G est un sous-espace vectoriel), donc u appartient à F+G. De même pour un élément de G.
 - Si H est un sous-espace vectoriel contenant F et G, alors montrons que $F+G \subset H$. C'est clair : si $u \in F$ alors en particulier $u \in H$ (car $F \subset H$), de même si $v \in G$ alors $v \in H$. Comme H est un sous-espace vectoriel, alors $u+v \in H$.

Exemple 13

Déterminons F+G dans le cas où F et G sont les sous-espaces vectoriels de \mathbb{R}^3 suivants :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid y = z = 0\}$$
 et $G = \{(x, y, z) \in \mathbb{R}^3 \mid x = z = 0\}.$

Un élément w de F+G s'écrit w=u+v où u est un élément de F et v un élément de G. Comme $u \in F$ alors il existe $x \in \mathbb{R}$ tel que u=(x,0,0), et comme $v \in G$ il existe $y \in \mathbb{R}$ tel que v=(0,y,0). Donc w=(x,y,0). Réciproquement, un tel élément w=(x,y,0) est la somme de (x,0,0) et de (0,y,0). Donc $F+G=\{(x,y,z)\in \mathbb{R}^3 \mid z=0\}$. On voit même que, pour cet exemple, tout élément de F+G s'écrit de façon unique comme la somme d'un élément de F et d'un élément de G.

Exemple 14

Soient F et G les deux sous-espaces vectoriels de \mathbb{R}^3 suivants :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\}$$
 et $G = \{(x, y, z) \in \mathbb{R}^3 \mid y = 0\}.$

Dans cet exemple, montrons que $F+G=\mathbb{R}^3$. Par définition de F+G, tout élément de F+G est dans \mathbb{R}^3 . Mais réciproquement, si w=(x,y,z) est un élément quelconque de $\mathbb{R}^3: w=(x,y,z)=(0,y,z)+(x,0,0)$, avec $(0,y,z)\in F$ et $(x,0,0)\in G$, donc w appartient à F+G.

Remarquons que, dans cet exemple, un élément de \mathbb{R}^3 ne s'écrit pas forcément de façon unique comme la somme d'un élément de F et d'un élément de G. Par exemple (1,2,3)=(0,2,3)+(1,0,0)=(0,2,0)+(1,0,3).

2.7. Sous-espaces vectoriels supplémentaires

Définition 5: Somme directe de deux sous-espaces

Soient F et G deux sous-espaces vectoriels de E. F et G sont en **somme directe** dans E si

- $F \cap G = \{0_E\}$,
- F + G = E.

On note alors $F \oplus G = E$.

Si F et G sont en somme directe, on dit que F et G sont des sous-espaces vectoriels **supplémentaires** dans E.

Proposition 5

F et G sont supplémentaires dans E si et seulement si tout élément de E s'écrit d'une manière

unique comme la somme d'un élément de F et d'un élément de G.

Remarque

- Dire qu'un élément w de E s'écrit d'une manière unique comme la somme d'un élément de F et d'un élément de G signifie que si w = u + v avec $u \in F$, $v \in G$ et w = u' + v' avec $u' \in F$, $v' \in G$ alors u = u' et v = v'.
- On dit aussi que F est un sous-espace supplémentaire de G (ou que G est un sous-espace supplémentaire de F).
- Il n'y a pas unicité du supplémentaire d'un sous-espace vectoriel donné (voir un exemple ci-dessous).
- L'existence d'un supplémentaire d'un sous-espace vectoriel sera prouvée dans le cadre des espaces vectoriels de dimension finie.

Démonstration

- Supposons $E = F \oplus G$ et montrons que tout élément $u \in E$ se décompose de manière unique. Soient donc u = v + w et u = v' + w' avec $v, v' \in F$ et $w, w' \in G$. On a alors v + w = v' + w', donc v v' = w' w. Comme F est un sous-espace vectoriel alors $v v' \in F$, mais d'autre part G est aussi un sous-espace vectoriel donc $w' w \in G$. Conclusion : $v v' = w' w \in F \cap G$. Mais par définition d'espaces supplémentaires $F \cap G = \{0_E\}$, donc $v v' = 0_E$ et aussi $w' w = 0_E$. On en déduit v = v' et w = w', ce qu'il fallait démontrer.
- Supposons que tout $u \in E$ se décompose de manière unique et montrons $E = F \oplus G$.
 - Montrons $F \cap G = \{0_E\}$. Si $u \in F \cap G$, il peut s'écrire des deux manières suivantes comme somme d'un élément de F et d'un élément de G :

$$u = 0_E + u$$
 et $u = u + 0_E$.

Par l'unicité de la décomposition, $u = 0_E$.

- Montrons F+G=E. Il n'y rien à prouver, car par hypothèse tout élément u se décompose en u=v+w, avec $v\in F$ et $w\in G$.

Exemple 15

- 1. Soient $F = \{(x,0) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$ et $G = \{(0,y) \in \mathbb{R}^2 \mid y \in \mathbb{R}\}$. Montrons que $F \oplus G = \mathbb{R}^2$. La première façon de le voir est que l'on a clairement $F \cap G = \{(0,0)\}$ et que, comme (x,y) = (x,0) + (0,y), alors $F + G = \mathbb{R}^2$. Une autre façon de le voir est d'utiliser la proposition 5, car la décomposition (x,y) = (x,0) + (0,y) est unique.
- 2. Gardons F et notons $G' = \{(x, x) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$. Montrons que l'on a aussi $F \oplus G' = \mathbb{R}^2$:
 - (a) Montrons $F \cap G' = \{(0,0)\}$. Si $(x,y) \in F \cap G'$ alors d'une part $(x,y) \in F$ donc y = 0, et aussi $(x,y) \in G'$ donc x = y. Ainsi (x,y) = (0,0).
 - (b) Montrons $F + G' = \mathbb{R}^2$. Soit $u = (x, y) \in \mathbb{R}^2$. Cherchons $v \in F$ et $w \in G'$ tels que u = v + w. Comme $v = (x_1, y_1) \in F$ alors $y_1 = 0$, et comme $w = (x_2, y_2) \in G'$ alors $x_2 = y_2$. Il s'agit donc de trouver x_1 et x_2 tels que

$$(x, y) = (x_1, 0) + (x_2, x_2).$$

Donc $(x, y) = (x_1 + x_2, x_2)$. Ainsi $x = x_1 + x_2$ et $y = x_2$, d'où $x_1 = x - y$ et $x_2 = y$. On trouve bien

$$(x, y) = (x - y, 0) + (y, y),$$

qui prouve que tout élément de \mathbb{R}^2 est somme d'un élément de F et d'un élément de G'.

3. De façon plus générale, deux droites distinctes du plan passant par l'origine forment des sous-espaces supplémentaires.

Exemple 16

Est-ce que les sous-espaces vectoriels F et G de \mathbb{R}^3 définis par

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$$
 et $G = \{(x, y, z) \in \mathbb{R}^3 \mid y = z = 0\}$

sont supplémentaires dans \mathbb{R}^3 ?

- 1. Il est facile de vérifier que $F \cap G = \{0\}$. En effet si l'élément u = (x, y, z) appartient à l'intersection de F et de G, alors les coordonnées de u vérifient : x y z = 0 (car u appartient à F), et y = z = 0 (car u appartient à G), donc u = (0, 0, 0).
- 2. Il reste à démontrer que $F + G = \mathbb{R}^3$.

Soit donc u=(x,y,z) un élément quelconque de \mathbb{R}^3 ; il faut déterminer des éléments v de F et w de G tels que u=v+w. L'élément v doit être de la forme $v=(y_1+z_1,y_1,z_1)$ et l'élément w de la forme $w=(x_2,0,0)$. On a u=v+w si et seulement si $y_1=y, z_1=z, x_2=x-y-z$. On a donc

$$(x, y, z) = (y + z, y, z) + (x - y - z, 0, 0)$$

avec v = (y+z, y, z) dans F et w = (x-y-z, 0, 0) dans G.

Conclusion : $F \oplus G = \mathbb{R}^3$.

Exemple 17

Dans le \mathbb{R} -espace vectoriel $\mathscr{F}(\mathbb{R},\mathbb{R})$ des fonctions de \mathbb{R} dans \mathbb{R} , on considère le sous-espace vectoriel des fonctions paires \mathscr{P} et le sous-espace vectoriel des fonctions impaires \mathscr{I} . Montrons que $\mathscr{P} \oplus \mathscr{I} = \mathscr{F}(\mathbb{R},\mathbb{R})$.

1. Montrons $\mathscr{P} \cap \mathscr{I} = \{0_{\mathscr{F}(\mathbb{R},\mathbb{R})}\}.$

Soit $f \in \mathcal{P} \cap \mathcal{I}$, c'est-à-dire que f est à la fois une fonction paire et impaire. Il s'agit de montrer que f est la fonction identiquement nulle. Soit $x \in \mathbb{R}$. Comme f(-x) = f(x) (car f est paire) et f(-x) = -f(x) (car f est impaire), alors f(x) = -f(x), ce qui implique f(x) = 0. Ceci est vrai quel que soit $x \in \mathbb{R}$; donc f est la fonction nulle. Ainsi $\mathcal{P} \cap \mathcal{I} = \{0_{\mathcal{F}(\mathbb{R},\mathbb{R})}\}$.

2. Montrons $\mathscr{P} + \mathscr{I} = \mathscr{F}(\mathbb{R}, \mathbb{R})$.

Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$. Il s'agit de montrer que f peut s'écrire comme la somme d'une fonction paire et d'une fonction impaire.

Analyse. Si f = g + h, avec $g \in \mathcal{P}$, $h \in \mathcal{I}$, alors pour tout x, d'une part, (a) f(x) = g(x) + h(x), et d'autre part, (b) f(-x) = g(-x) + h(-x) = g(x) - h(x). Par somme et différence de (a) et (b), on tire que

$$g(x) = \frac{f(x) + f(-x)}{2}$$
 et $h(x) = \frac{f(x) - f(-x)}{2}$.

Synthèse. Pour $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, on définit deux fonctions g, h par $g(x) = \frac{f(x) + f(-x)}{2}$ et $h(x) = \frac{f(x) - f(-x)}{2}$. Alors d'une part f(x) = g(x) + h(x) et d'autre part $g \in \mathcal{P}$ (vérifier g(-x) = g(x)) et $h \in \mathcal{I}$ (vérifier h(-x) = -h(x)). Bilan : $\mathcal{P} + \mathcal{I} = \mathcal{F}(\mathbb{R}, \mathbb{R})$.

En conclusion, \mathscr{P} et \mathscr{I} sont en somme directe dans $\mathscr{F}(\mathbb{R},\mathbb{R})$: $\mathscr{P} \oplus \mathscr{I} = \mathscr{F}(\mathbb{R},\mathbb{R})$. Notez que, comme le prouvent nos calculs, les g et h obtenus sont uniques.

Théorème 3: Théorème de structure de l'ensemble des combinaisons linéaires

Soit $\{v_1, \dots, v_n\}$ un ensemble fini de vecteurs d'un \mathbb{K} -espace vectoriel E. Alors :

- L'ensemble des combinaisons linéaires des vecteurs $\{v_1, \dots, v_n\}$ est un sous-espace vectoriel de E.
- C'est le plus petit sous-espace vectoriel de E (au sens de l'inclusion) contenant les vecteurs v_1, \ldots, v_n .

Notation. Ce sous-espace vectoriel est appelé **sous-espace engendré par** $v_1, ..., v_n$ et est noté $\text{Vect}(v_1, ..., v_n)$. On a donc

$$u \in \text{Vect}(v_1, \dots, v_n) \iff \text{il existe } \lambda_1, \dots, \lambda_n \in \mathbb{K} \text{ tels que } u = \lambda_1 v_1 + \dots + \lambda_n v_n$$

Remarque

- Dire que $\text{Vect}(v_1, ..., v_n)$ est le plus petit sous-espace vectoriel de E contenant les vecteurs $v_1, ..., v_n$ signifie que si F est un sous-espace vectoriel de E contenant aussi les vecteurs $v_1, ..., v_n$ alors $\text{Vect}(v_1, ..., v_n) \subset F$.
- Plus généralement, on peut définir le sous-espace vectoriel engendré par une partie $\mathcal V$ quelconque (non nécessairement finie) d'un espace vectoriel : $\mathrm{Vect}\,\mathcal V$ est le plus petit sous-espace vectoriel contenant $\mathcal V$.

Exemple 18

- 1. E étant un \mathbb{K} -espace vectoriel, et u un élément quelconque de E, l'ensemble $\text{Vect}(u) = \{\lambda u \mid \lambda \in \mathbb{K}\}$ est le sous-espace vectoriel de E engendré par u. Il est souvent noté $\mathbb{K}u$. Si u n'est pas le vecteur nul, on parle d'une **droite vectorielle**.
- 2. Si u et v sont deux vecteurs de E, alors $\text{Vect}(u,v) = \{\lambda u + \mu v \mid \lambda, \mu \in \mathbb{K}\}$. Si u et v ne sont pas colinéaires, alors Vect(u,v) est un **plan vectoriel**.
- 3. Soient $u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ deux vecteurs de \mathbb{R}^3 . Déterminons $\mathscr{P} = \operatorname{Vect}(u, v)$.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \text{Vect}(u, v) \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda u + \mu v \text{ pour certains } \lambda, \mu \in \mathbb{R}$$

$$\iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$\iff \begin{cases} x = \lambda + \mu \\ y = \lambda + 2\mu \\ z = \lambda + 3\mu \end{cases}$$

Nous obtenons bien une équation paramétrique du plan \mathcal{P} passant par l'origine et contenant les vecteurs u et v. On sait en trouver une équation cartésienne : (x-2y+z=0).

Exemple 19

Soient E l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} et f_0, f_1, f_2 les applications définies par :

$$\forall x \in \mathbb{R}$$
 $f_0(x) = 1$, $f_1(x) = x$ et $f_2(x) = x^2$.

Le sous-espace vectoriel de E engendré par $\{f_0, f_1, f_2\}$ est l'espace vectoriel des fonctions polynômes f de degré inférieur ou égal à 2, c'est-à-dire de la forme $f(x) = ax^2 + bx + c$.

Méthodologie. On peut démontrer qu'une partie F d'un espace vectoriel E est un sous-espace vectoriel de E en montrant que F est égal à l'ensemble des combinaisons linéaires d'un nombre fini de vecteurs de E.

Exemple 20

Est-ce que $F = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 ?

Un triplet de \mathbb{R}^3 est élément de F si et seulement si x=y+z. Donc u est élément de F si et seulement s'il peut s'écrire u=(y+z,y,z). Or, on a l'égalité

$$(y+z, y, z) = y(1, 1, 0) + z(1, 0, 1).$$

Donc F est l'ensemble des combinaisons linéaires de $\{(1,1,0),(1,0,1)\}$. C'est le sous-espace vectoriel engendré par $\{(1,1,0),(1,0,1)\}$: $F = \text{Vect}\{(1,1,0),(1,0,1)\}$. C'est bien un plan vectoriel (un plan passant par l'origine).

Démonstration: Preuve du théorème 3

- 1. On appelle F l'ensemble des combinaisons linéaires des vecteurs $\{v_1, \dots, v_n\}$.
- (a) $0_E \in F$ car F contient la combinaison linéaire particulière $0v_1 + \cdots + 0v_n$.
- (b) Si $u, v \in F$ alors il existe $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tels que $u = \lambda_1 v_1 + \cdots + \lambda_n v_n$ et $\mu_1, \ldots, \mu_n \in \mathbb{K}$ tels que $v = \mu_1 v_1 + \cdots + \mu_n v_n$. On en déduit que $u + v = (\lambda_1 + \mu_1)v_1 + \cdots + (\lambda_n + \mu_n)v_n$ appartient bien à F.
- (c) De même, $\lambda \cdot u = (\lambda \lambda_1)v_1 + \cdots + (\lambda \lambda_n)v_n \in F$.

Conclusion : F est un sous-espace vectoriel.

2. Si G est un sous-espace vectoriel contenant $\{v_1, \ldots, v_n\}$, alors il est stable par combinaison linéaire; il contient donc toute combinaison linéaire des vecteurs $\{v_1, \ldots, v_n\}$. Par conséquent F est inclus dans G: F est le plus petit sous-espace (au sens de l'inclusion) contenant $\{v_1, \ldots, v_n\}$.

3. Application linéaire

3.1. Définition

Nous avons déjà rencontré la notion d'application linéaire dans le cas $f: \mathbb{R}^p \longrightarrow \mathbb{R}^n$ (voir le chapitre « L'espace vectoriel \mathbb{R}^n »). Cette notion se généralise à des espaces vectoriels quelconques.

Définition 6

Soient E et F deux \mathbb{K} -espaces vectoriels. Une application f de E dans F est une **application linéaire** si elle satisfait aux deux conditions suivantes :

- 1. f(u+v) = f(u) + f(v), pour tous $u, v \in E$;
- 2. $f(\lambda \cdot u) = \lambda \cdot f(u)$, pour tout $u \in E$ et tout $\lambda \in \mathbb{K}$.

Autrement dit : une application est linéaire si elle « respecte » les deux lois d'un espace vectoriel.

Notation. L'ensemble des applications linéaires de E dans F est noté $\mathcal{L}(E,F)$.

3.2. Premiers exemples

L'application f définie par

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

$$(x, y, z) \mapsto (-2x, y + 3z)$$

est une application linéaire. En effet, soient u=(x,y,z) et v=(x',y',z') deux éléments de \mathbb{R}^3 et λ un réel.

$$f(u+v) = f(x+x', y+y', z+z')$$

$$= (-2(x+x'), y+y'+3(z+z'))$$

$$= (-2x, y+3z)+(-2x', y'+3z')$$

$$= f(u)+f(v)$$

et

$$f(\lambda \cdot u) = f(\lambda x, \lambda y, \lambda z)$$

$$= (-2\lambda x, \lambda y + 3\lambda z)$$

$$= \lambda \cdot (-2x, y + 3z)$$

$$= \lambda \cdot f(u)$$

Toutes les applications ne sont pas des applications linéaires!

Exemple 22

Soit $f : \mathbb{R} \to \mathbb{R}$ l'application définie par $f(x) = x^2$. On a f(1) = 1 et f(2) = 4. Donc $f(2) \neq 2 \cdot f(1)$. Ce qui fait que l'on n'a pas l'égalité $f(\lambda x) = \lambda f(x)$ pour un certain choix de λ, x . Donc f n'est pas linéaire. Notez que l'on n'a pas non plus f(x + x') = f(x) + f(x') dès que $xx' \neq 0$.

3.3. Premières propriétés

Proposition 6

Soient E et F deux K-espaces vectoriels. Si f est une application linéaire de E dans F, alors :

- $f(0_E) = 0_F,$
- f(-u) = -f(u), pour tout $u \in E$.

Démonstration

Il suffit d'appliquer la définition de la linéarité avec $\lambda = 0$, puis avec $\lambda = -1$.

Pour démontrer qu'une application est linéaire, on peut aussi utiliser une propriété plus « concentrée », donnée par la caractérisation suivante :

Proposition 7: Caractérisation d'une application linéaire

Soient E et F deux \mathbb{K} -espaces vectoriels et f une application de E dans F. L'application f est linéaire si et seulement si, pour tous vecteurs u et v de E et pour tous scalaires λ et μ de \mathbb{K} ,

$$f(\lambda u + \mu v) = \lambda f(u) + \mu f(v).$$

Plus généralement, une application linéaire f préserve les combinaisons linéaires : pour tous $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ et tous $v_1, \ldots, v_n \in E$, on a

$$f(\lambda_1 v_1 + \dots + \lambda_n v_n) = \lambda_1 f(v_1) + \dots + \lambda_n f(v_n).$$

Démonstration

- Soit f une application linéaire de E dans F. Soient $u, v \in E$, $\lambda, \mu \in \mathbb{K}$. En utilisant les deux axiomes de la définition, on a

$$f(\lambda u + \mu v) = f(\lambda u) + f(\mu v) = \lambda f(u) + \mu f(v).$$

- Montrons la réciproque. Soit $f: E \to F$ une application telle que $f(\lambda u + \mu v) = \lambda f(u) + \mu f(v)$ (pour tous $u, v \in E$, $\lambda, \mu \in \mathbb{K}$). Alors, d'une part f(u+v) = f(u) + f(v) (en considérant le cas particulier où $\lambda = \mu = 1$), et d'autre part $f(\lambda u) = \lambda f(u)$ (cas particulier où $\mu = 0$).

Vocabulaire.

Soient E et F deux \mathbb{K} -espaces vectoriels.

- Une application linéaire de E dans F est aussi appelée **morphisme** ou **homomorphisme** d'espaces vectoriels. L'ensemble des applications linéaires de E dans F est noté $\mathcal{L}(E,F)$.
- Une application linéaire de E dans E est appelée *endomorphisme* de E. L'ensemble des endomorphismes de E est noté $\mathcal{L}(E)$.

3.4. Exemples géométriques

Symétrie centrale.

Soient E un \mathbb{K} -espace vectoriel. On définit l'application f par :

$$f: E \to E$$

$$u \mapsto -u$$

f est linéaire et s'appelle la **symétrie** centrale par rapport à l'origine 0_E .

Homothétie.

Soient *E* un \mathbb{K} -espace vectoriel et $\lambda \in \mathbb{K}$. On définit l'application f_{λ} par :

$$\begin{array}{ccc}
f_{\lambda}: E & \to & E \\
u & \mapsto & \lambda u
\end{array}$$

 f_{λ} est linéaire. f_{λ} est appelée **homothétie** de rapport λ .

Cas particuliers notables :

- $\lambda = 1$, f_{λ} est l'application identité;
- $\lambda = 0$, f_{λ} est l'application nulle;
- − λ = −1, on retrouve la symétrie centrale.

Preuve que f_{λ} est une application linéaire :

$$f_{\lambda}(\alpha u + \beta v) = \lambda(\alpha u + \beta v) = \alpha(\lambda u) + \beta(\lambda v) = \alpha f_{\lambda}(u) + \beta f_{\lambda}(v).$$

Projection.

Soient E un \mathbb{K} -espace vectoriel et F et G deux sous-espaces vectoriels supplémentaires dans E, c'est-à-dire $E = F \oplus G$. Tout vecteur u de E s'écrit de façon unique u = v + w avec $v \in F$ et $w \in G$. La **projection** sur F parallèlement à G est l'application $p: E \to E$ définie par p(u) = v.

- Une projection est une application linéaire.

En effet, soient $u, u' \in E$, $\lambda, \mu \in \mathbb{K}$. On décompose u et u' en utilisant que $E = F \oplus G$: u = v + w, u' = v' + w' avec $v, v' \in F$, $w, w' \in G$. Commençons par écrire

$$\lambda u + \mu u' = \lambda(v + w) + \mu(v' + w') = (\lambda v + \mu v') + (\lambda w + \mu w').$$

Comme F et G sont des un sous-espaces vectoriels de E, alors $\lambda v + \mu v' \in F$ et $\lambda w + \mu w' \in G$. Ainsi:

$$p(\lambda u + \mu u') = \lambda v + \mu v' = \lambda p(u) + \mu p(u').$$

- Une projection p vérifie l'égalité $p^2 = p$. Note : $p^2 = p$ signifie $p \circ p = p$, c'est-à-dire pour tout $u \in E$: p(p(u)) = p(u). Il s'agit juste de remarquer que si $v \in F$ alors p(v) = v (car v = v + 0, avec $v \in F$ et $0 \in G$). Maintenant, pour $u \in E$, on a u = v + w avec $v \in F$ et $w \in G$. Par définition p(u) = v. Mais alors p(p(u)) = p(v) = v. Bilan : $p \circ p(u) = v = p(u)$. Donc $p \circ p = p$.

Exemple 23

Nous avons vu que les sous-espaces vectoriels F et G de \mathbb{R}^3 définis par

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$$
 et $G = \{(x, y, z) \in \mathbb{R}^3 \mid y = z = 0\}$

sont supplémentaires dans $\mathbb{R}^3:\mathbb{R}^3=F\oplus G$ (exemple 16). Nous avions vu que la décomposition s'écrivait :

$$(x, y, z) = (y + z, y, z) + (x - y - z, 0, 0).$$

Si p est la projection sur F parallèlement à G, alors on a p(x, y, z) = (y + z, y, z).

Exemple 24

Nous avons vu dans l'exemple 17 que l'ensemble des fonctions paires $\mathscr P$ et l'ensemble des fonctions impaires $\mathscr I$ sont des sous-espaces vectoriels supplémentaires dans $\mathscr F(\mathbb R,\mathbb R)$. Notons p la projection sur $\mathscr P$ parallèlement à $\mathscr I$. Si f est un élément de $\mathscr F(\mathbb R,\mathbb R)$, on a p(f)=g où

$$g: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \frac{f(x) + f(-x)}{2}.$

3.5. Autres exemples

1. La **dérivation**. Soient $E = \mathscr{C}^1(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions $f : \mathbb{R} \longrightarrow \mathbb{R}$ dérivables avec f' continue et $F = \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions continues. Soit

$$\begin{array}{ccc} d: \mathscr{C}^1(\mathbb{R},\mathbb{R}) & \longrightarrow & \mathscr{C}^0(\mathbb{R},\mathbb{R}) \\ f & \longmapsto & f' \end{array}$$

Alors d est une application linéaire, car $(\lambda f + \mu g)' = \lambda f' + \mu g'$ et donc $d(\lambda f + \mu g) = \lambda d(f) + \mu d(g)$.

2. L'intégration. Soient $E = \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ et $F = \mathcal{C}^1(\mathbb{R}, \mathbb{R})$. Soit

$$\begin{array}{ccc} I: \mathscr{C}^0(\mathbb{R}, \mathbb{R}) & \longrightarrow & \mathscr{C}^1(\mathbb{R}, \mathbb{R}) \\ f(x) & \longmapsto & \int_0^x f(t) \, dt \end{array}$$

L'application I est linéaire car $\int_0^x \left(\lambda f(t) + \mu g(t)\right) dt = \lambda \int_0^x f(t) dt + \mu \int_0^x g(t) dt$ pour toutes fonctions f et g et pour tous $\lambda, \mu \in \mathbb{R}$.

3. Avec les **polynômes**.

Soit $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré $\leq n$. Soit $F = \mathbb{R}_{n+1}[X]$ et soit

$$f: E \longrightarrow F$$

 $P(X) \longmapsto XP(X)$

Autrement dit, si $P(X) = a_n X^n + \dots + a_1 X + a_0$, alors $f(P(X)) = a_n X^{n+1} + \dots + a_1 X^2 + a_0 X$. C'est une application linéaire : $f(\lambda P(X) + \mu Q(X)) = \lambda X P(X) + \mu X Q(X) = \lambda f(P(X)) + \mu f(Q(X))$.

3.6. Image d'une application linéaire

Commençons par des rappels. Soient E et F deux ensembles et f une application de E dans F. Soit A un sous-ensemble de E. L'ensemble des images par f des éléments de A, appelé **image directe** de A par f, est noté f(A). C'est un sous-ensemble de F. On a par définition :

$$f(A) = \{ f(x) \mid x \in A \}.$$

Dans toute la suite, E et F désigneront des \mathbb{K} -espaces vectoriels et $f: E \to F$ sera une application linéaire.

f(E) s'appelle l'**image** de l'application linéaire f et est noté $\operatorname{Im} f$.

Proposition 8: Structure de l'image d'un sous-espace vectoriel

- 1. Si E' est un sous-espace vectoriel de E, alors f(E') est un sous-espace vectoriel de F.
- 2. En particulier, $\operatorname{Im} f$ est un sous-espace vectoriel de F.

Remarque

On a par définition de l'image directe f(E):

f est surjective si et seulement si $\operatorname{Im} f = F$.

Démonstration

Tout d'abord, comme $0_E \in E'$ alors $0_F = f(0_E) \in f(E')$. Ensuite on montre que pour tout couple (y_1, y_2) d'éléments de f(E') et pour tous scalaires λ, μ , l'élément $\lambda y_1 + \mu y_2$ appartient à f(E'). En effet :

$$y_1 \in f(E') \iff \exists x_1 \in E', f(x_1) = y_1$$

 $y_2 \in f(E') \iff \exists x_2 \in E', f(x_2) = y_2.$

Comme *f* est linéaire, on a

$$\lambda y_1 + \mu y_2 = \lambda f(x_1) + \mu f(x_2) = f(\lambda x_1 + \mu x_2).$$

Or $\lambda x_1 + \mu x_2$ est un élément de E', car E' est un sous-espace vectoriel de E, donc $\lambda y_1 + \mu y_2$ est bien un élément de f(E').

3.7. Noyau d'une application linéaire

Définition 7: Définition du noyau

Soient E et F deux \mathbb{K} -espaces vectoriels et f une application linéaire de E dans F. Le **noyau** de f, noté $\operatorname{Ker}(f)$, est l'ensemble des éléments de E dont l'image est 0_F :

$$\operatorname{Ker}(f) = \left\{ x \in E \mid f(x) = 0_F \right\}$$

Autrement dit, le noyau est l'image réciproque du vecteur nul de l'espace d'arrivée : $Ker(f) = f^{-1}\{0_F\}$.

Proposition 9

Soient E et F deux \mathbb{K} -espaces vectoriels et f une application linéaire de E dans F. Le noyau de f est un sous-espace vectoriel de E.

Démonstration

Ker(f) est non vide car $f(0_E) = 0_F$ donc $0_E \in \text{Ker}(f)$. Soient $x_1, x_2 \in \text{Ker}(f)$ et $\lambda, \mu \in \mathbb{K}$. Montrons que $\lambda x_1 + \mu x_2$ est un élément de Ker(f). On a, en utilisant la linéarité de f et le fait que x_1 et x_2 sont des éléments de Ker(f): $f(\lambda x_1 + \mu x_2) = \lambda f(x_1) + \mu f(x_2) = \lambda 0_F + \mu 0_F = 0_F$.

Exemple 25

Reprenons l'exemple de l'application linéaire f définie par

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
$$(x, y, z) \mapsto (-2x, y + 3z)$$

- Calculons le noyau Ker(f).

$$(x,y,z) \in \operatorname{Ker}(f) \iff f(x,y,z) = (0,0)$$

$$\iff (-2x,y+3z) = (0,0)$$

$$\iff \begin{cases} -2x = 0 \\ y+3z = 0 \end{cases}$$

$$\iff (x,y,z) = (0,-3z,z), \quad z \in \mathbb{R}$$

Donc $\operatorname{Ker}(f) = \{(0, -3z, z) \mid z \in \mathbb{R}\}$. Autrement dit, $\operatorname{Ker}(f) = \operatorname{Vect}\{(0, -3, 1)\}$: c'est une droite vectorielle.

- Calculons l'image de f. Fixons $(x', y') \in \mathbb{R}^2$.

$$(x',y') = f(x,y,z) \iff (-2x,y+3z) = (x',y')$$

$$\iff \begin{cases} -2x = x' \\ y+3z = y' \end{cases}$$

On peut prendre par exemple $x = -\frac{x'}{2}$, y' = y, z = 0. Conclusion : pour n'importe quel $(x', y') \in \mathbb{R}^2$, on a $f(-\frac{x'}{2}, y', 0) = (x', y')$. Donc $\text{Im}(f) = \mathbb{R}^2$, et f est surjective.

Exemple 26

Soit $A \in M_{n,p}(\mathbb{R})$. Soit $f : \mathbb{R}^p \longrightarrow \mathbb{R}^n$ l'application linéaire définie par f(X) = AX. Alors $\operatorname{Ker}(f) = \{X \in \mathbb{R}^p \mid AX = 0\}$: c'est donc l'ensemble des $X \in \mathbb{R}^p$ solutions du système linéaire homogène AX = 0. On verra plus tard que $\operatorname{Im}(f)$ est l'espace engendré par les colonnes de la matrice A.

Le noyau fournit une nouvelle façon d'obtenir des sous-espaces vectoriels.

Exemple 27

Un plan \mathscr{P} passant par l'origine, d'équation (ax+by+cz=0), est un sous-espace vectoriel de \mathbb{R}^3 . En effet, soit $f:\mathbb{R}^3\to\mathbb{R}$ l'application définie par f(x,y,z)=ax+by+cz. Il est facile de vérifier que f est linéaire, de sorte que $\operatorname{Ker} f=\{(x,y,z)\in\mathbb{R}^3\mid ax+by+cz=0\}=\mathscr{P}$ est un sous-espace vectoriel.

Exemple 28

Soient E un \mathbb{K} -espace vectoriel, F et G deux sous-espaces vectoriels de E, supplémentaires : $E = F \oplus G$. Soit p la projection sur F parallèlement à G. Déterminons le noyau et l'image de p.

Un vecteur u de E s'écrit d'une manière unique u = v + w avec $v \in F$ et $w \in G$ et par définition p(u) = v.

- Ker(p) = G: le noyau de p est l'ensemble des vecteurs u de E tels que v = 0, c'est donc G.
- Im(p) = F. Il est immédiat que Im(p) ⊂ F. Réciproquement, si $u \in F$ alors p(u) = u, donc $F \subset \text{Im}(p)$.

Conclusion:

$$\operatorname{Ker}(p) = G$$
 et $\operatorname{Im}(p) = F$.

Théorème 4: Caractérisation des applications linéaires injectives

Soient E et F deux K-espaces vectoriels et f une application linéaire de E dans F. Alors :

$$f$$
 injective \iff $\operatorname{Ker}(f) = \{0_E\}$

Autrement dit, f est injective si et seulement si son noyau ne contient que le vecteur nul. En particulier, pour montrer que f est injective, il suffit de vérifier que :

si
$$f(x) = 0_F$$
 alors $x = 0_E$.

Démonstration

- Supposons que f soit injective et montrons que $Ker(f) = \{0_E\}$. Soit x un élément de Ker(f). On a $f(x) = 0_F$. Or, comme f est linéaire, on a aussi $f(0_E) = 0_F$. De l'égalité $f(x) = f(0_E)$, on déduit $x = 0_E$ car f est injective. Donc $Ker(f) = \{0_E\}$.
- Réciproquement, supposons maintenant que $Ker(f) = \{0_E\}$. Soient x et y deux éléments de E tels que f(x) = f(y). On a donc $f(x) f(y) = 0_F$. Comme f est linéaire, on en déduit $f(x-y) = 0_F$, c'est-à-dire x-y est un élément de Ker(f). Donc $x-y=0_E$, soit x=y.

Exemple 29

Considérons, pour $n \ge 1$, l'application linéaire

$$f: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_{n+1}[X]$$

 $P(X) \longmapsto X \cdot P(X).$

Étudions d'abord le noyau de f : soit $P(X) = a_n X^n + \dots + a_1 X + a_0 \in \mathbb{R}_n[X]$ tel que $X \cdot P(X) = 0$. Alors

$$a_n X^{n+1} + \dots + a_1 X^2 + a_0 X = 0.$$

Ainsi, $a_i = 0$ pour tout $i \in \{0, ..., n\}$ et donc P(X) = 0. Le noyau de f est donc nul : $Ker(f) = \{0\}$. L'espace Im(f) est l'ensemble des polynômes de $\mathbb{R}_{n+1}[X]$ sans terme constant : $Im(f) = Vect\{X, X^2, ..., X^n\}$. Conclusion : f est injective, mais n'est pas surjective.

3.8. L'espace vectoriel $\mathcal{L}(E,F)$

Soient E et F deux \mathbb{K} -espaces vectoriels. Remarquons tout d'abord que, similairement à l'exemple 4, l'ensemble des applications de E dans F, noté $\mathscr{F}(E,F)$, peut être muni d'une loi de composition

interne + et d'une loi de composition externe, définies de la façon suivante : f,g étant deux éléments de $\mathcal{F}(E,F)$, et λ étant un élément de \mathbb{K} , pour tout vecteur u de E,

$$(f+g)(u) = f(u) + g(u)$$
 et $(\lambda \cdot f)(u) = \lambda f(u)$.

Proposition 10

L'ensemble des applications linéaires entre deux \mathbb{K} -espaces vectoriels E et F, noté $\mathcal{L}(E,F)$, muni des deux lois définies précédemment, est un \mathbb{K} -espace vectoriel.

Démonstration

L'ensemble $\mathcal{L}(E,F)$ est inclus dans le \mathbb{K} -espace vectoriel $\mathcal{F}(E,F)$. Pour montrer que $\mathcal{L}(E,F)$ est un \mathbb{K} -espace vectoriel, il suffit donc de montrer que $\mathcal{L}(E,F)$ est un sous-espace vectoriel de $\mathcal{F}(E,F)$:

- Tout d'abord, l'application nulle appartient à $\mathcal{L}(E,F)$.
- Soient $f,g \in \mathcal{L}(E,F)$, et montrons que f+g est linéaire. Pour tous vecteurs u et v de E et pour tous scalaires α , β de \mathbb{K} ,

```
(f+g)(\alpha u + \beta v) = f(\alpha u + \beta v) + g(\alpha u + \beta v) (définition de f+g)

= \alpha f(u) + \beta f(v) + \alpha g(u) + \beta g(v) (linéarité de f et de g)

= \alpha (f(u) + g(u)) + \beta (f(v) + g(v)) (propriétés des lois de F)

= \alpha (f+g)(u) + \beta (f+g)(v) (définition de f+g)
```

f + g est donc linéaire et $\mathcal{L}(E, F)$ est stable pour l'addition.

- Soient f ∈ $\mathcal{L}(E,F)$, λ ∈ \mathbb{K} , et montrons que λf est linéaire.

```
(\lambda f)(\alpha u + \beta v) = \lambda f(\alpha u + \beta v)  (définition de \lambda f)

= \lambda (\alpha f(u) + \beta f(v))  (linéarité de f)

= \alpha \lambda f(u) + \beta \lambda f(v)  (propriétés des lois de F)

= \alpha (\lambda f)(u) + \beta (\lambda f)(v)  (définition de \lambda f)
```

 λf est donc linéaire et $\mathcal{L}(E,F)$ est stable pour la loi externe. $\mathcal{L}(E,F)$ est donc un sous-espace vectoriel de $\mathcal{F}(E,F)$.

En particulier, $\mathcal{L}(E)$ est un sous-espace vectoriel de $\mathcal{F}(E,E)$.

3.9. Composition et inverse d'applications linéaires

Proposition 11: Composée de deux applications linéaires

Soient E, F, G trois \mathbb{K} -espaces vectoriels, f une application linéaire de E dans F et g une application linéaire de F dans G. Alors $g \circ f$ est une application linéaire de E dans G.

Remarque

En particulier, le composé de deux endomorphismes de E est un endomorphisme de E. Autrement dit, \circ est une loi de composition interne sur $\mathcal{L}(E)$.

Démonstration

Soient u et v deux vecteurs de E, et α et β deux éléments de \mathbb{K} . Alors :

$$(g \circ f)(\alpha u + \beta v) = g(f(\alpha u + \beta v))$$
 (définition de $g \circ f$)

$$= g(\alpha f(u) + \beta f(v))$$
 (linéarité de f)

$$= \alpha g(f(u)) + \beta g(f(v))$$
 (linéarité de g)

$$= \alpha (g \circ f)(u) + \beta (g \circ f)(v)$$
 (définition de $g \circ f$)

La composition des applications linéaires se comporte bien :

$$g \circ (f_1 + f_2) = g \circ f_1 + g \circ f_2$$
 $(g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f$ $(\lambda g) \circ f = g \circ (\lambda f) = \lambda (g \circ f)$

Vocabulaire.

Soient E et F deux \mathbb{K} -espaces vectoriels.

- Une application linéaire *bijective* de *E* sur *F* est appelée *isomorphisme* d'espaces vectoriels.
 Les deux espaces vectoriels *E* et *F* sont alors dits *isomorphes*.
- Un endomorphisme bijectif de E (c'est-à-dire une application linéaire bijective de E dans E) est appelé *automorphisme* de E. L'ensemble des automorphismes de E est noté GL(E).

Proposition 12: Linéarité de l'application réciproque d'un isomorphisme

Soient E et F deux \mathbb{K} -espaces vectoriels. Si f est un isomorphisme de E sur F, alors f^{-1} est un isomorphisme de F sur E.

Démonstration

Comme f est une application bijective de E sur F, alors f^{-1} est une application bijective de F sur E. Il reste donc à prouver que f^{-1} est bien linéaire. Soient u' et v' deux vecteurs de F et soient α et β deux éléments de \mathbb{K} . On pose $f^{-1}(u') = u$ et $f^{-1}(v') = v$, et on a alors f(u) = u' et f(v) = v'. Comme f est linéaire, on a

$$f^{-1}(\alpha u' + \beta v') = f^{-1}(\alpha f(u) + \beta f(v)) = f^{-1}(f(\alpha u + \beta v)) = \alpha u + \beta v$$

 $\operatorname{car} f^{-1} \circ f = \operatorname{id}_E$ (où id_E désigne l'application identité de E dans E). Ainsi

$$f^{-1}(\alpha u' + \beta v') = \alpha f^{-1}(u') + \beta f^{-1}(v'),$$

et f^{-1} est donc linéaire.

Exemple 30

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x,y) = (2x+3y,x+y). Il est facile de prouver que f est linéaire. Pour prouver que f est bijective, on pourrait calculer son noyau et son image. Mais ici nous allons calculer directement son inverse : on cherche à résoudre f(x,y) = (x',y'). Cela correspond à l'équation (2x+3y,x+y) = (x',y') qui est un système linéaire à deux équations et deux inconnues. On trouve (x,y) = (-x'+3y',x'-2y'). On pose donc $f^{-1}(x',y') = (-x'+3y',x'-2y')$. On vérifie aisément que f^{-1} est l'inverse de f, et on remarque que f^{-1} est une application linéaire.

4. Famille libre

4.1. Combinaison linéaire

Soit E un \mathbb{K} -espace vectoriel.

Définition 8

Soient $v_1, v_2, \dots, v_p, p \ge 1$ vecteurs d'un espace vectoriel E. Tout vecteur de la forme

$$u = \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_p v_p$$

(où $\lambda_1, \lambda_2, ..., \lambda_p$ sont des éléments de \mathbb{K}) est appelé **combinaison linéaire** des vecteurs $v_1, v_2, ..., v_p$. Les scalaires $\lambda_1, \lambda_2, ..., \lambda_p$ sont appelés **coefficients** de la combinaison linéaire.

4.2. Définition

Définition 9

Une famille $\{v_1, v_2, ..., v_p\}$ de E est une **famille libre** ou **linéairement indépendante** si toute combinaison linéaire nulle

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_p v_p = 0$$

est telle que tous ses coefficients sont nuls, c'est-à-dire

$$\lambda_1 = 0$$
, $\lambda_2 = 0$, ... $\lambda_p = 0$.

Dans le cas contraire, c'est-à-dire s'il existe une combinaison linéaire nulle à coefficients non tous nuls, on dit que la famille est *liée* ou *linéairement dépendante*. Une telle combinaison linéaire s'appelle alors une *relation de dépendance linéaire* entre les v_i .

4.3. Premiers exemples

Pour des vecteurs de \mathbb{R}^n , décider si une famille $\{v_1, \dots, v_p\}$ est libre ou liée revient à résoudre un système linéaire.

Exemple 31

Dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 , considérons la famille

$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\5\\6 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right\}.$$

On souhaite déterminer si elle est libre ou liée. On cherche des scalaires $(\lambda_1, \lambda_2, \lambda_3)$ tels que

$$\lambda_1 \begin{pmatrix} 1\\2\\3 \end{pmatrix} + \lambda_2 \begin{pmatrix} 4\\5\\6 \end{pmatrix} + \lambda_3 \begin{pmatrix} 2\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

ce qui équivaut au système :

$$\begin{cases} \lambda_1 & + & 4\lambda_2 & + & 2\lambda_3 & = & 0 \\ 2\lambda_1 & + & 5\lambda_2 & + & \lambda_3 & = & 0 \\ 3\lambda_1 & + & 6\lambda_2 & & = & 0 \end{cases}$$

On calcule (voir un peu plus bas) que ce système est équivalent à :

$$\begin{cases} \lambda_1 & -2\lambda_3 = 0 \\ \lambda_2 + \lambda_3 = 0 \end{cases}$$

Ce système a une infinité de solutions et en prenant par exemple $\lambda_3 = 1$ on obtient $\lambda_1 = 2$ et $\lambda_2 = -1$, ce qui fait que

$$2 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

La famille

$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\5\\6 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right\}$$

est donc une famille liée.

Exemple 32

Soient $v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$. Est-ce que la famille $\{v_1, v_2, v_3\}$ est libre ou liée? Résolvons le système linéaire correspondant à l'équation $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0$:

$$\begin{cases} \lambda_1 & + & 2\lambda_2 & + & 2\lambda_3 & = & 0 \\ \lambda_1 & - & \lambda_2 & + & \lambda_3 & = & 0 \\ \lambda_1 & & + & \lambda_3 & = & 0 \end{cases}$$

On résout ce système et on trouve comme seule solution $\lambda_1=0,\ \lambda_2=0,\ \lambda_3=0.$ La famille $\{v_1,v_2,v_3\}$ est donc une famille libre.

Exemple 33

Soient $v_1 = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 3 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 2 \\ 5 \\ -1 \end{pmatrix}$ et $v_3 = \begin{pmatrix} 7 \\ -1 \\ 5 \\ 8 \end{pmatrix}$. Alors $\{v_1, v_2, v_3\}$ forme une famille liée, car

$$3v_1 + v_2 - v_3 = 0.$$

4.4. Autres exemples

Exemple 34

Les polynômes $P_1(X) = 1 - X$, $P_2(X) = 5 + 3X - 2X^2$ et $P_3(X) = 1 + 3X - X^2$ forment une famille liée dans l'espace vectoriel $\mathbb{R}[X]$, car

$$3P_1(X) - P_2(X) + 2P_3(X) = 0.$$

Exemple 35

Dans le \mathbb{R} -espace vectoriel $\mathscr{F}(\mathbb{R},\mathbb{R})$ des fonctions de \mathbb{R} dans \mathbb{R} , on considère la famille {cos, sin}. Montrons que c'est une famille libre. Supposons que l'on ait $\lambda \cos + \mu \sin = 0$. Cela équivaut à

$$\forall x \in \mathbb{R}$$
 $\lambda \cos(x) + \mu \sin(x) = 0$.

En particulier, pour x=0, cette égalité donne $\lambda=0$. Et pour $x=\frac{\pi}{2}$, elle donne $\mu=0$. Donc la

famille $\{\cos, \sin\}$ est libre. En revanche la famille $\{\cos^2, \sin^2, 1\}$ est liée car on a la relation de dépendance linéaire $\cos^2 + \sin^2 - 1 = 0$. Les coefficients de dépendance linéaire sont $\lambda_1 = 1, \lambda_2 = 1, \lambda_3 = -1$.

4.5. Famille liée

Soit E un \mathbb{K} -espace vectoriel. Si $v \neq 0$, la famille à un seul vecteur $\{v\}$ est libre (et liée si v = 0). Considérons le cas particulier d'une famille de deux vecteurs.

Proposition 13

La famille $\{v_1, v_2\}$ est liée si et seulement si v_1 est un multiple de v_2 ou v_2 est un multiple de v_1 .

Ce qui se reformule ainsi par contraposition : « La famille $\{v_1, v_2\}$ est libre si et seulement si v_1 n'est pas un multiple de v_2 et v_2 n'est pas un multiple de v_1 . »

Démonstration

- Supposons la famille $\{v_1, v_2\}$ liée, alors il existe λ_1, λ_2 non tous les deux nuls tels que $\lambda_1 v_1 + \lambda_2 v_2 = 0$. Si c'est λ_1 qui n'est pas nul, on peut diviser par λ_1 , ce qui donne $v_1 = -\frac{\lambda_2}{\lambda_1} v_2$ et v_1 est un multiple de v_2 . Si c'est λ_2 qui n'est pas nul, alors de même v_2 est un multiple de v_1 .
- Réciproquement, si v_1 est un multiple de v_2 , alors il existe un scalaire μ tel que $v_1 = \mu v_2$, soit $1v_1 + (-\mu)v_2 = 0$, ce qui est une relation de dépendance linéaire entre v_1 et v_2 puisque $1 \neq 0$: la famille $\{v_1, v_2\}$ est alors liée. Même conclusion si c'est v_2 qui est un multiple de v_1 .

Généralisons tout de suite cette proposition à une famille d'un nombre quelconque de vecteurs.

Théorème 5

Soit E un \mathbb{K} -espace vectoriel. Une famille $\mathscr{F}=\{v_1,v_2,\ldots,v_p\}$ de $p\geqslant 2$ vecteurs de E est une famille liée si et seulement si au moins un des vecteurs de \mathscr{F} est combinaison linéaire des autres vecteurs de \mathscr{F} .

Démonstration

C'est essentiellement la même démonstration que ci-dessus.

- Supposons d'abord F liée. Il existe donc une relation de dépendance linéaire

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_p v_p = 0,$$

avec $\lambda_k \neq 0$ pour au moins un indice k. Passons tous les autres termes à droite du signe égal. Il vient

$$\lambda_k v_k = -\lambda_1 v_1 - \lambda_2 v_2 - \dots - \lambda_p v_p,$$

où v_k ne figure pas au second membre. Comme $\lambda_k \neq 0$, on peut diviser cette égalité par λ_k et l'on obtient

$$v_k = -\frac{\lambda_1}{\lambda_k}v_1 - \frac{\lambda_2}{\lambda_k}v_2 - \cdots - \frac{\lambda_p}{\lambda_k}v_p,$$

c'est-à-dire que v_k est combinaison linéaire des autres vecteurs de \mathscr{F} , ce qui peut encore s'écrire $v_k \in \operatorname{Vect}(\mathscr{F} \setminus \{v_k\})$ (avec la notation ensembliste $A \setminus B$ pour l'ensemble des éléments de A qui n'appartiennent pas à B).

– Réciproquement, supposons que pour un certain k, on ait $v_k \in \text{Vect}(\mathscr{F} \setminus \{v_k\})$. Ceci signifie que l'on peut écrire

$$v_k = \mu_1 v_1 + \mu_2 v_2 + \dots + \mu_p v_p$$

où v_k ne figure pas au second membre. Passant v_k au second membre, il vient

$$0 = \mu_1 v_1 + \mu_2 v_2 + \dots - v_k + \dots + \mu_p v_p,$$

ce qui est une relation de dépendance linéaire pour \mathcal{F} (puisque $-1 \neq 0$) et ainsi la famille \mathcal{F} est liée.

4.6. Interprétation géométrique de la dépendance linéaire

- Dans \mathbb{R}^2 ou \mathbb{R}^3 , deux vecteurs sont linéairement dépendants si et seulement s'ils sont colinéaires. Ils sont donc sur une même droite vectorielle.
- Dans \mathbb{R}^3 , trois vecteurs sont linéairement dépendants si et seulement s'ils sont coplanaires. Ils sont donc dans un même plan vectoriel.

Proposition 14

Soit $\mathscr{F} = \{v_1, v_2, \dots, v_p\}$ une famille de vecteurs de \mathbb{R}^n . Si \mathscr{F} contient plus de n éléments (c'est-à-dire p > n), alors \mathscr{F} est une famille liée.

Démonstration

Supposons que

$$v_{1} = \begin{pmatrix} v_{11} \\ v_{21} \\ \vdots \\ v_{n1} \end{pmatrix} \qquad v_{2} = \begin{pmatrix} v_{12} \\ v_{22} \\ \vdots \\ v_{n2} \end{pmatrix} \qquad \dots \qquad v_{p} = \begin{pmatrix} v_{1p} \\ v_{2p} \\ \vdots \\ v_{np} \end{pmatrix}.$$

L'équation

$$x_1v_1 + x_2v_2 + \dots + x_pv_p = 0$$

donne alors le système suivant

$$\begin{cases} v_{11}x_1 + v_{12}x_2 + \dots + v_{1p}x_p &= 0 \\ v_{21}x_1 + v_{22}x_2 + \dots + v_{2p}x_p &= 0 \\ \vdots & & \vdots \\ v_{n1}x_1 + v_{n2}x_2 + \dots + v_{np}x_p &= 0 \end{cases}$$

C'est un système homogène de n équations à p inconnues. Lorsque p > n, ce système a des solutions non triviales (voir le chapitre « Systèmes linéaires », dernier théorème) ce qui montre que la famille \mathscr{F} est une famille liée.

5. Famille génératrice

Soit E un espace vectoriel sur un corps \mathbb{K} .

5.1. Définition

Définition 10

Soient $v_1, ..., v_p$ des vecteurs de E. La famille $\{v_1, ..., v_p\}$ est une **famille génératrice** de l'espace vectoriel E si tout vecteur de E est une combinaison linéaire des vecteurs $v_1, ..., v_p$.

Ce qui peut s'écrire aussi :

$$\forall v \in E$$
 $\exists \lambda_1, \dots, \lambda_p \in \mathbb{K}$ $v = \lambda_1 v_1 + \dots + \lambda_p v_p$

On dit aussi que la famille $\{v_1,\ldots,v_p\}$ engendre l'espace vectoriel E.

Cette notion est bien sûr liée à la notion de sous-espace vectoriel engendré : les vecteurs $\{v_1, \dots, v_p\}$ forment une famille génératrice de E si et seulement si $E = \text{Vect}(v_1, \dots, v_p)$.

5.2. Exemples

Exemple 36

Considérons par exemple les vecteurs $v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et $v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ de $E = \mathbb{R}^3$. La famille $\{v_1, v_2, v_3\}$ est génératrice car tout vecteur $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ de \mathbb{R}^3 peut s'écrire

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Les coefficients sont ici $\lambda_1 = x$, $\lambda_2 = y$, $\lambda_3 = z$.

Exemple 37

Soient maintenant les vecteurs $v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ de $E = \mathbb{R}^3$. Les vecteurs $\{v_1, v_2\}$ ne forment pas une famille génératrice de \mathbb{R}^3 . Par exemple, le vecteur $v = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ n'est pas dans $\mathrm{Vect}(v_1, v_2)$. En effet, si c'était le cas, alors il existerait $\lambda_1, \lambda_2 \in \mathbb{R}$ tels que $v = \lambda_1 v_1 + \lambda_2 v_2$. Ce qui s'écrirait aussi $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}$, d'où le système linéaire :

$$\begin{cases} \lambda_1 + \lambda_2 &= 0\\ \lambda_1 + 2\lambda_2 &= 1\\ \lambda_1 + 3\lambda_2 &= 0 \end{cases}$$

Ce système n'a pas de solution. (La première et la dernière ligne impliquent $\lambda_1 = 0, \lambda_2 = 0$, ce qui est incompatible avec la deuxième.)

Exemple 38

Soit $E = \mathbb{R}^2$.

- Soient $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. La famille $\{v_1, v_2\}$ est génératrice de \mathbb{R}^2 car tout vecteur de \mathbb{R}^2 se décompose comme $\begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- Soient maintenant $v_1' = \binom{2}{1}$ et $v_2' = \binom{1}{1}$. Alors $\{v_1', v_2'\}$ est aussi une famille génératrice. En effet, soit $v = \binom{x}{y}$ un élément quelconque de \mathbb{R}^2 . Montrer que v est combinaison linéaire de v_1' et v_2' revient à démontrer l'existence de deux réels λ et μ tels que $v = \lambda v_1' + \mu v_2'$. Il s'agit donc d'étudier l'existence de solutions au système :

$$\begin{cases} 2\lambda + \mu = x \\ \lambda + \mu = y \end{cases}$$

Il a pour solution $\lambda = x - y$ et $\mu = -x + 2y$, et ceci, quels que soient les réels x et y. Ceci prouve qu'il peut exister plusieurs familles finies différentes, non incluses les unes dans les autres, engendrant le même espace vectoriel.

Exemple 39

Soit $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré $\leq n$. Alors les polynômes $\{1, X, ..., X^n\}$ forment une famille génératrice. Par contre, l'espace vectoriel $\mathbb{R}[X]$ de tous les polynômes ne possède pas de famille finie génératrice.

5.3. Liens entre familles génératrices

La proposition suivante est souvent utile :

Proposition 15

Soit $\mathscr{F} = \{v_1, v_2, \dots, v_p\}$ une famille génératrice de E. Alors $\mathscr{F}' = \{v_1', v_2', \dots, v_q'\}$ est aussi une famille génératrice de E si et seulement si tout vecteur de \mathscr{F} est une combinaison linéaire de vecteurs de \mathscr{F}' .

Démonstration

C'est une conséquence immédiate de la définition de $Vect \mathscr{F}$ et de $Vect \mathscr{F}'$.

Nous chercherons bientôt à avoir un nombre minimal de générateurs. Voici une proposition sur la réduction d'une famille génératrice.

Proposition 16

Si la famille de vecteurs $\{v_1,\ldots,v_p\}$ engendre E et si l'un des vecteurs, par exemple v_p , est combinaison linéaire des autres, alors la famille $\{v_1,\ldots,v_p\}\setminus\{v_p\}=\{v_1,\ldots,v_{p-1}\}$ est encore une famille génératrice de E.

Démonstration

En effet, comme les vecteurs v_1, \dots, v_p engendrent E, alors pour tout élément v de E, il existe des scalaires $\lambda_1, \dots, \lambda_p$ tels que

$$v = \lambda_1 v_1 + \cdots + \lambda_n v_n$$
.

Or l'hypothèse v_p est combinaison linéaire des vecteurs v_1, \dots, v_{p-1} se traduit par l'existence de scalaires $\alpha_1, \dots, \alpha_{p-1}$ tels que

$$v_p = \alpha_1 v_1 + \cdots + \alpha_{p-1} v_{p-1}$$
.

Alors, le vecteur *v* s'écrit :

$$v = \lambda_1 v_1 + \dots + \lambda_{p-1} v_{p-1} + \lambda_p \left(\alpha_1 v_1 + \dots + \alpha_{p-1} v_{p-1} \right).$$

Donc

$$v = (\lambda_1 + \lambda_p \alpha_1) v_1 + \dots + (\lambda_{p-1} + \lambda_p \alpha_{p-1}) v_{p-1},$$

ce qui prouve que v est combinaison linéaire des vecteurs v_1, \ldots, v_{p-1} . Ceci achève la démonstration. Il est clair que si l'on remplace v_p par n'importe lequel des vecteurs v_i , la démonstration est la même.

6. Base

La notion de base généralise la notion de repère. Dans \mathbb{R}^2 , un repère est donné par un couple de vecteurs non colinéaires. Dans \mathbb{R}^3 , un repère est donné par un triplet de vecteurs non coplanaires. Dans un repère, un vecteur se décompose suivant les vecteurs d'une base. Il en sera de même pour une base d'un espace vectoriel.

6.1. Définition

Définition 11: Base d'un espace vectoriel

Soit E un \mathbb{K} -espace vectoriel. Une famille $\mathscr{B} = (v_1, v_2, \dots, v_n)$ de vecteurs de E est une **base** de E si \mathscr{B} est une famille libre **et** génératrice.

Théorème 6

Soit $\mathscr{B} = (v_1, v_2, ..., v_n)$ une base de l'espace vectoriel E. Tout vecteur $v \in E$ s'exprime de façon unique comme combinaison linéaire d'éléments de \mathscr{B} . Autrement dit, il *existe* des scalaires $\lambda_1, ..., \lambda_n \in \mathbb{K}$ *uniques* tels que :

$$v = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n.$$

Remarque

- 1. $(\lambda_1,...,\lambda_n)$ s'appellent les **coordonnées** du vecteur v dans la base \mathscr{B} .
- 2. Il faut observer que pour une base $\mathscr{B} = (v_1, v_2, ..., v_n)$ on introduit un *ordre* sur les vecteurs. Bien sûr, si on permutait les vecteurs on obtiendrait toujours une base, mais il faudrait aussi permuter les coordonnées.
- 3. Notez que l'application

$$\phi : \mathbb{K}^n \to E$$

$$(\lambda_1, \lambda_2, \dots, \lambda_n) \mapsto \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$$

est un isomorphisme de l'espace vectoriel \mathbb{K}^n vers l'espace vectoriel E.

Démonstration: Preuve du théorème 6

- Par définition, \mathscr{B} est une famille génératrice de E, donc pour tout $v \in E$ il existe $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tels que

$$v = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n.$$

Cela prouve la partie existence.

- Il reste à montrer l'unicité des $\lambda_1, \lambda_2, \ldots, \lambda_n$. Soient $\mu_1, \mu_2, \ldots, \mu_n \in \mathbb{K}$ d'autres scalaires tels que $v = \mu_1 v_1 + \mu_2 v_2 + \cdots + \mu_n v_n$. Alors, par différence on a : $(\lambda_1 - \mu_1) v_1 + (\lambda_2 - \mu_2) v_2 + \cdots + (\lambda_n - \mu_n) v_n = 0$. Comme $\mathscr{B} = \{v_1, \ldots, v_n\}$ est une famille libre, ceci implique $\lambda_1 - \mu_1 = 0$, $\lambda_2 - \mu_2 = 0$, ..., $\lambda_n - \mu_n = 0$ et donc $\lambda_1 = \mu_1$, $\lambda_2 = \mu_2$, ..., $\lambda_n = \mu_n$.

6.2. Exemples

Exemple 40

- 1. Soient les vecteurs $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Alors (e_1, e_2) est une base de \mathbb{R}^2 , appelée **base** canonique de \mathbb{R}^2 .
- 2. Soient les vecteurs $v_1 = \binom{3}{1}$ et $v_2 = \binom{1}{2}$. Alors (v_1, v_2) forment aussi une base de \mathbb{R}^2 .
- 3. De même dans \mathbb{R}^3 , si $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, alors (e_1, e_2, e_3) forment la **base canonique** de \mathbb{R}^3 .

Exemple 41

Soient $v_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2 \\ 9 \\ 0 \end{pmatrix}$ et $v_3 = \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix}$. Montrons que la famille $\mathscr{B} = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 . Dans les deux premiers points, nous ramenons le problème à l'étude d'un système linéaire.

1. Montrons d'abord que \mathscr{B} est une famille génératrice de \mathbb{R}^3 . Soit $v = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ un vecteur quelconque de \mathbb{R}^3 . On cherche $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que

$$v = \lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3.$$

Ceci se reformule comme suit:

$$\begin{pmatrix} a_1\\a_2\\a_3 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1\\2\\1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2\\9\\0 \end{pmatrix} + \lambda_3 \begin{pmatrix} 3\\3\\4 \end{pmatrix} = \begin{pmatrix} \lambda_1 + 2\lambda_2 + 3\lambda_3\\2\lambda_1 + 9\lambda_2 + 3\lambda_3\\\lambda_1 + 4\lambda_3 \end{pmatrix}.$$

Ceci conduit au système suivant :

$$\begin{cases} \lambda_1 + 2\lambda_2 + 3\lambda_3 = a_1 \\ 2\lambda_1 + 9\lambda_2 + 3\lambda_3 = a_2 \\ \lambda_1 + 4\lambda_3 = a_3. \end{cases}$$
 (S)

Il nous restera à montrer que ce système a une solution $\lambda_1, \lambda_2, \lambda_3$.

2. Pour montrer que B est une famille libre, il faut montrer que l'unique solution de

$$\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0$$

est

$$\lambda_1 = \lambda_2 = \lambda_3 = 0.$$

Ceci équivaut à montrer que le système

$$\begin{cases} \lambda_1 + 2\lambda_2 + 3\lambda_3 = 0\\ 2\lambda_1 + 9\lambda_2 + 3\lambda_3 = 0\\ \lambda_1 + 4\lambda_3 = 0 \end{cases}$$
 (S')

a une unique solution

$$\lambda_1 = \lambda_2 = \lambda_3 = 0.$$

Les vecteurs de \mathbb{K}^n :

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} \qquad \dots \qquad e_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

forment une base de \mathbb{K}^n , appelée la **base canonique** de \mathbb{K}^n .

Remarque

L'exemple 41 se généralise de la façon suivante. Pour montrer que n vecteurs de \mathbb{R}^n forment une base de \mathbb{R}^n , il suffit de montrer la chose suivante : la matrice A constituée des composantes de ces vecteurs (chaque vecteur formant une colonne de A) est inversible.

Application: montrer que les vecteurs

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \dots \qquad v_n = \begin{pmatrix} 1 \\ 2 \\ 3 \\ \vdots \\ n \end{pmatrix}$$

forment aussi une base de \mathbb{R}^n .

Voici quelques autres exemples:

Exemple 43

- 1. La base canonique de $\mathbb{R}_n[X]$ est $\mathscr{B} = (1, X, X^2, \dots, X^n)$. Attention, il y a n+1 vecteurs!
- 2. Voici une autre base de $\mathbb{R}_n[X]$: $(1,1+X,1+X+X^2,\ldots,1+X+X^2+\cdots+X^n)$.

6.3. Existence d'une base

Voyons maintenant un théorème d'existence d'une base finie. Dans la suite, les espaces vectoriels sont supposés non réduits à {0}.

Théorème 7: Théorème d'existence d'une base

Tout espace vectoriel admettant une famille finie génératrice admet une base.

6.4. Théorème de la base incomplète

Une version importante et plus générale de ce qui précède est le théorème suivant :

Théorème 8: Théorème de la base incomplète

Soit E un \mathbb{K} -espace vectoriel admettant une famille génératrice finie.

- 1. Toute famille libre \mathcal{L} peut être complétée en une base. C'est-à-dire qu'il existe une famille \mathcal{F} telle que $\mathcal{L} \cup \mathcal{F}$ soit une famille libre et génératrice de E.
- 2. De toute famille génératrice \mathcal{G} on peut extraire une base de E. C'est-à-dire qu'il existe une famille $\mathcal{B} \subset \mathcal{G}$ telle que \mathcal{B} soit une famille libre et génératrice de E.

6.5. Preuves

Les deux théorèmes précédents sont la conséquence d'un résultat encore plus général :

Théorème 9

Soit \mathcal{G} une famille génératrice finie de E et \mathcal{L} une famille libre de E. Alors il existe une famille \mathcal{F} de \mathcal{G} telle que $\mathcal{L} \cup \mathcal{F}$ soit une base de E.

Le théorème 8 de la base incomplète se déduit du théorème 9 ainsi :

- 1. On sait qu'il existe une famille génératrice de E : notons-la \mathcal{G} . On applique le théorème 9 avec ce \mathcal{L} et ce \mathcal{G} .
- 2. On applique le théorème 9 avec $\mathcal{L} = \emptyset$ et la famille \mathscr{G} de l'énoncé.

En particulier, le théorème 7 d'existence d'une base se démontre comme le point (2) ci-dessus avec $\mathcal{L} = \emptyset$ et \mathcal{G} une famille génératrice de E.

6.6. Preuves (suite)

Nous avons : Théorème $9 \implies$ Théorème $8 \implies$ Théorème 7.

Il nous reste donc à prouver le théorème 9. La démonstration que nous en donnons est un algorithme.

Démonstration

- Étape 0. Si \mathscr{L} est une famille génératrice de E, on pose $\mathscr{F} = \varnothing$ et c'est fini puisque \mathscr{L} est une famille génératrice et libre, donc une base. Sinon on passe à l'étape suivante.
- Étape 1. Comme \mathscr{L} n'est pas une famille génératrice, alors il existe au moins un élément g_1 de \mathscr{G} qui n'est pas combinaison linéaire des éléments de \mathscr{L} . (En effet, par l'absurde, si tous les éléments de \mathscr{G} sont dans $\operatorname{Vect}\mathscr{L}$, alors \mathscr{L} serait aussi une famille génératrice.) On pose $\mathscr{L}_1 = \mathscr{L} \cup \{g_1\}$. Alors la famille \mathscr{L}_1 vérifie les propriétés suivantes :
 - (i) $\mathcal{L} \subseteq \mathcal{L}_1 \subset E$: la famille \mathcal{L}_1 est strictement plus grande que \mathcal{L} .
 - (ii) \mathcal{L}_1 est une famille libre. (En effet, si \mathcal{L}_1 n'était pas une famille libre, alors une combinaison linéaire nulle impliquerait que $g_1 \in \text{Vect } \mathcal{L}$.)

On recommence le même raisonnement à partir de \mathcal{L}_1 : si \mathcal{L}_1 est une famille génératrice de E, alors on pose $\mathscr{F} = \{g_1\}$ et on s'arrête. Sinon on passe à l'étape suivante.

- Étape 2. Il existe au moins un élément g_2 de \mathscr{G} qui n'est pas combinaison linéaire des éléments de \mathscr{L}_1 . Alors la famille $\mathscr{L}_2 = \mathscr{L}_1 \cup \{g_2\} = \mathscr{L} \cup \{g_1, g_2\}$ est strictement plus grande que \mathscr{L}_1 et est encore une famille libre.
 - Si \mathcal{L}_2 est une famille génératrice, on pose $\mathcal{F} = \{g_1, g_2\}$ et c'est fini. Sinon on passe à l'étape d'après.

– ...

L'algorithme consiste donc à construire une suite, strictement croissante pour l'inclusion, de familles libres, où, si \mathcal{L}_{k-1} n'engendre pas E, alors \mathcal{L}_k est construite partir de \mathcal{L}_{k-1} en lui ajoutant un vecteur g_k de \mathcal{G} , de sorte que $\mathcal{L}_k = \mathcal{L}_{k-1} \cup \{g_k\}$ reste une famille libre.

- L'algorithme se termine. Comme la famille $\mathscr G$ est finie, le processus s'arrête en moins d'étapes qu'il y a d'éléments dans $\mathscr G$. Notez que, comme $\mathscr G$ est une famille génératrice, dans le pire des cas on peut être amené à prendre $\mathscr F=\mathscr G$.
- L'algorithme est correct. Lorsque l'algorithme s'arrête, disons à l'étape s: on a $\mathcal{L}_s = \mathcal{L} \cup \mathcal{F}$ où $\mathcal{F} = \{g_1, \dots, g_s\}$. Par construction, \mathcal{L}_s est une famille finie, libre et aussi génératrice (car c'est la condition d'arrêt). Donc $\mathcal{L} \cup \mathcal{F}$ est une base de E.

Exemple 44

Soit $\mathbb{R}[X]$ le \mathbb{R} -espace vectoriel des polynômes réels et E le sous-espace de $\mathbb{R}[X]$ engendré par la famille $\mathscr{G} = \{P_1, P_2, P_3, P_4, P_5\}$ définie par :

$$P_1(X) = 1$$
 $P_2(X) = X$ $P_3(X) = X + 1$ $P_4(X) = 1 + X^3$ $P_5(X) = X - X^3$

Partons de $\mathcal{L} = \emptyset$ et cherchons $\mathcal{F} \subset \mathcal{G}$ telle que \mathcal{F} soit une base de E.

- Étape 0. Comme \mathcal{L} n'est pas génératrice (vu que $\mathcal{L} = \emptyset$), on passe à l'étape suivante.
- Étape 1. On pose $\mathcal{L}_1 = \mathcal{L} \cup \{P_1\} = \{P_1\}$. Comme P_1 est non nul, \mathcal{L}_1 est une famille libre.
- Étape 2. Considérons P_2 . Comme les éléments P_1 et P_2 sont linéairement indépendants, $\mathcal{L}_2 = \{P_1, P_2\}$ est une famille libre.
- Étape 3. Considérons P_3 : ce vecteur est combinaison linéaire des vecteurs P_1 et P_2 car $P_3(X) = X + 1 = P_1(X) + P_2(X)$ donc $\{P_1, P_2, P_3\}$ est une famille liée. Considérons alors P_4 . Un calcul rapide prouve que les vecteurs P_1 , P_2 et P_4 sont linéairement indépendants. Alors $\mathcal{L}_3 = \{P_1, P_2, P_4\}$ est une famille libre.

Il ne reste que le vecteur P_5 à considérer. Il s'agit, pour pouvoir conclure, d'étudier l'indépendance linéaire des vecteurs P_1, P_2, P_4, P_5 . Or un calcul rapide montre l'égalité

$$P_1 + P_2 - P_4 - P_5 = 0$$
,

ce qui prouve que la famille $\{P_1, P_2, P_4, P_5\}$ est liée. Donc avec les notations de l'algorithme, s = 3 et $\mathcal{L}_3 = \{P_1, P_2, P_4\}$ est une base de E.

7. Dimension d'un espace vectoriel

7.1. Définition

Définition 12

Un \mathbb{K} -espace vectoriel E admettant une base ayant un nombre fini d'éléments est dit de *dimension finie*.

Par le théorème 7 d'existence d'une base, c'est équivalent à l'existence d'une famille finie génératrice. On va pouvoir parler de *la* dimension d'un espace vectoriel grâce au théorème suivant :

Théorème 10: Théorème de la dimension

Toutes les bases d'un espace vectoriel E de dimension finie ont le même nombre d'éléments.

Nous détaillerons la preuve un peu plus loin.

Définition 13

La **dimension** d'un espace vectoriel de dimension finie E, notée dimE, est par définition le nombre d'éléments d'une base de E.

Méthodologie. Pour déterminer la dimension d'un espace vectoriel, il suffit de trouver une base de E (une famille à la fois libre et génératrice) : le cardinal (nombre d'éléments) de cette famille donne la dimension de E. Le théorème 10 de la dimension prouve que même si on choisissait une base différente alors ces deux bases auraient le même nombre d'éléments.

Convention. On convient d'attribuer à l'espace vectoriel {0} la dimension 0.

7.2. Exemples

Exemple 45

- 1. La base canonique de \mathbb{R}^2 est $(\binom{1}{0},\binom{0}{1})$. La dimension de \mathbb{R}^2 est donc 2.
- 2. Les vecteurs $(\binom{2}{1},\binom{1}{1})$ forment aussi une base de \mathbb{R}^2 , et illustrent qu'une autre base contient le même nombre d'éléments.
- 3. Plus généralement, \mathbb{K}^n est de dimension n, car par exemple sa base canonique (e_1, e_2, \dots, e_n) contient n éléments.
- 4. dim $\mathbb{R}_n[X] = n+1$ car une base de $\mathbb{R}_n[X]$ est $(1,X,X^2,\ldots,X^n)$, qui contient n+1 éléments.

Exemple 46

Les espaces vectoriels suivants ne sont pas de dimension finie :

- $\mathbb{R}[X]$: l'espace vectoriel de tous les polynômes,
- $\mathscr{F}(\mathbb{R},\mathbb{R})$: l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} ,
- \mathcal{S} = \mathcal{F} (N,ℝ) : l'espace vectoriel des suites réelles.

Exemple 47

Nous avons vu que l'ensemble des solutions d'un système d'équations linéaires *homogène* est un espace vectoriel. On considère par exemple le système

$$\begin{cases} 2x_1 + 2x_2 - x_3 + x_5 = 0 \\ -x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0 \\ x_1 + x_2 - 2x_3 - x_5 = 0 \\ x_3 + x_4 + x_5 = 0. \end{cases}$$

On vérifie que la solution générale de ce système est

$$x_1 = -s - t$$
 $x_2 = s$ $x_3 = -t$ $x_4 = 0$ $x_5 = t$.

Donc les vecteurs solutions s'écrivent sous la forme

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -s - t \\ s \\ -t \\ 0 \\ t \end{pmatrix} = \begin{pmatrix} -s \\ s \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -t \\ 0 \\ -t \\ 0 \\ t \end{pmatrix} = s \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}.$$

Ceci montre que les vecteurs

$$v_1 = \begin{pmatrix} -1\\1\\0\\0\\0 \end{pmatrix} \quad \text{et} \quad v_2 = \begin{pmatrix} -1\\0\\-1\\0\\1 \end{pmatrix}$$

engendrent l'espace des solutions du système. D'autre part, on vérifie que v_1 et v_2 sont linéairement indépendants. Donc (v_1, v_2) est une base de l'espace des solutions du système. Ceci montre que cet espace vectoriel est de dimension 2.

7.3. Compléments

Lorsqu'un espace vectoriel est de dimension finie, le fait de connaître sa dimension est une information très riche; les propriétés suivantes montrent comment exploiter cette information.

Le schéma de preuve sera : Lemme $1 \implies \text{Proposition } 17 \implies \text{Théorème } 10.$

Lemme 1

Soit E un espace vectoriel. Soit $\mathscr L$ une famille libre et soit $\mathscr G$ une famille génératrice finie de E. Alors $\operatorname{Card} \mathscr L \leq \operatorname{Card} \mathscr G$.

Ce lemme implique le résultat important :

Proposition 17

Soit E un \mathbb{K} -espace vectoriel admettant une base ayant n éléments. Alors :

- 1. Toute famille libre de E a au plus n éléments.
- 2. Toute famille génératrice de E a au moins n éléments.

En effet, soit \mathcal{B} une base de E telle que Card $\mathcal{B} = n$.

- 1. On applique le lemme 1 à la famille \mathscr{B} considérée génératrice; alors une famille libre \mathscr{L} vérifie $\operatorname{Card}\mathscr{L} \leq \operatorname{Card}\mathscr{B} = n$.
- 2. On applique le lemme 1 à la famille \mathscr{B} considérée maintenant comme une famille libre, alors une famille génératrice \mathscr{G} vérifie $n = \operatorname{Card} \mathscr{B} \leq \operatorname{Card} \mathscr{G}$.

Cette proposition impliquera bien le théorème 10 de la dimension :

Corollaire 1

Si E est un espace vectoriel admettant une base ayant n éléments, alors toute base de E possède n éléments.

La preuve du corollaire (et donc du théorème 10 de la dimension) est la suivante : par la proposition 17, si \mathscr{B} est une base quelconque de E, alors \mathscr{B} est à la fois une famille libre et génératrice, donc possède à la fois au plus n éléments et au moins n éléments, donc exactement n éléments.

Il reste à énoncer un résultat important et très utile :

Théorème 11

Soient E un \mathbb{K} -espace vectoriel de dimension n, et $\mathscr{F} = (v_1, \dots, v_n)$ une famille de n vecteurs de E. Il y a équivalence entre :

- (i) \mathcal{F} est une base de E,
- (ii) \mathcal{F} est une famille libre de E,
- (iii) \mathcal{F} est une famille génératrice de E.

La preuve sera une conséquence du théorème 10 de la dimension et du théorème 8 de la base incomplète.

Autrement dit, lorsque le nombre de vecteurs considéré est exactement égal à la dimension de l'espace vectoriel, l'une des deux conditions — être libre ou bien génératrice — suffit pour que ces vecteurs déterminent une base de E.

Démonstration

- Les implications (i) \implies (ii) et (i) \implies (iii) découlent de la définition d'une base.
- Voici la preuve de (ii) ⇒ (i).
 Si F est une famille libre avar
 - Si \mathscr{F} est une famille libre ayant n éléments, alors par le théorème de la base incomplète (théorème 8) il existe une famille \mathscr{F}' telle que $\mathscr{F} \cup \mathscr{F}'$ soit une base de E. D'une part $\mathscr{F} \cup \mathscr{F}'$ est une base de E qui est de dimension n, donc par le théorème 10, $\operatorname{Card}(\mathscr{F} \cup \mathscr{F}') = n$. Mais d'autre part $\operatorname{Card}(\mathscr{F} \cup \mathscr{F}') = \operatorname{Card}\mathscr{F} + \operatorname{Card}\mathscr{F}'$ (par l'algorithme du théorème 8) et par

hypothèse $\operatorname{Card} \mathscr{F} = n$. Donc $\operatorname{Card} \mathscr{F}' = 0$, ce qui implique que $\mathscr{F}' = \varnothing$ et donc que \mathscr{F} est déjà une base de E.

- Voici la preuve de (iii) \Longrightarrow (i). Par hypothèse, \mathscr{F} est cette fois une famille génératrice. Toujours par le théorème 8, on peut extraire de cette famille une base $\mathscr{B} \subset \mathscr{F}$. Puis par le théorème 10, $\operatorname{Card} \mathscr{B} = n$, donc $n = \operatorname{Card} \mathscr{B} \leqslant \operatorname{Card} \mathscr{F} = n$. Donc $\mathscr{B} = \mathscr{F}$ et \mathscr{F} est bien une base.

Exemple 48

Pour quelles valeurs de $t \in \mathbb{R}$ les vecteurs (v_1, v_2, v_3) suivants forment une base de \mathbb{R}^3 ?

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$$
 $v_2 = \begin{pmatrix} 1 \\ 3 \\ t \end{pmatrix}$ $v_3 = \begin{pmatrix} 1 \\ 1 \\ t \end{pmatrix}$

- Nous avons une famille de 3 vecteurs dans l'espace \mathbb{R}^3 de dimension 3. Donc pour montrer que la famille (v_1, v_2, v_3) est une base, par le théorème 11, il suffit de montrer que la famille est libre ou bien de montrer qu'elle est génératrice. Dans la pratique, il est souvent plus facile de vérifier qu'une famille est libre.
- À quelle condition la famille $\{v_1, v_2, v_3\}$ est libre? Soient $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0$. Cela implique le système

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 &= 0 \\ \lambda_1 + 3\lambda_2 + \lambda_3 &= 0 \\ 4\lambda_1 + t\lambda_2 + t\lambda_3 &= 0 \end{cases}.$$

Ce système est équivalent à :

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 &= 0 \\ 2\lambda_2 &= 0 \\ (t-4)\lambda_2 + (t-4)\lambda_3 &= 0 \end{cases} \iff \begin{cases} \lambda_1 + \lambda_3 &= 0 \\ \lambda_2 &= 0 \\ (t-4)\lambda_3 &= 0 \end{cases}$$

- Il est clair que si $t \neq 4$, alors la seule solution est $(\lambda_1, \lambda_2, \lambda_3) = (0,0,0)$ et donc $\{v_1, v_2, v_3\}$ est une famille libre. Si t = 4, alors par exemple $(\lambda_1, \lambda_2, \lambda_3) = (1,0,-1)$ est une solution non nulle, donc la famille n'est pas libre.
- Conclusion : si $t \neq 4$ la famille est libre, donc par le théorème 11 la famille (v_1, v_2, v_3) est en plus génératrice, donc c'est une base de \mathbb{R}^3 . Si t = 4, la famille n'est pas libre et n'est donc pas une base.

7.4. Preuve

Il nous reste la preuve du lemme 1. La démonstration est délicate et hors-programme.

Démonstration

La preuve de ce lemme se fait en raisonnant par récurrence.

On démontre par récurrence que, pour tout $n \ge 1$, la propriété suivante est vraie : « Dans un espace vectoriel engendré par n vecteurs, toute famille ayant n+1 éléments est liée. »

Initialisation. On vérifie que la propriété est vraie pour n=1. Soit E un espace vectoriel engendré par un vecteur noté g_1 , et soit $\{v_1,v_2\}$ une famille de E ayant deux éléments. Les vecteurs v_1 et v_2 peuvent s'écrire comme combinaisons linéaires du vecteur g_1 ; autrement dit, il existe des scalaires α_1 , α_2 tels que $v_1=\alpha_1g_1$ et $v_2=\alpha_2g_1$, ce qui donne la relation : $\alpha_2v_1-\alpha_1v_2=0_E$. En supposant v_2 non nul (sinon il est évident que $\{v_1,v_2\}$ est liée), le scalaire α_2 est donc

non nul. On a trouvé une combinaison linéaire nulle des vecteurs v_1, v_2 , avec des coefficients non tous nuls. Donc la famille $\{v_1, v_2\}$ est liée.

Hérédité. On démontre maintenant que si la propriété est vraie au rang n-1 ($n \ge 2$), alors elle vraie au rang n. Soit E un espace vectoriel engendré par n vecteurs notés g_1, g_2, \ldots, g_n , et soit $\{v_1, v_2, \ldots, v_n, v_{n+1}\}$ une famille de E ayant n+1 éléments. Tout vecteur v_j , pour $j=1,2,\ldots,n+1$, est combinaison linéaire de g_1, g_2, \ldots, g_n , donc il existe des scalaires $\alpha_1^j, \alpha_2^j, \ldots, \alpha_n^j$ tels que :

$$v_j = \alpha_1^j g_1 + \alpha_2^j g_2 + \dots + \alpha_n^j g_n.$$

Remarque. On est contraint d'utiliser ici deux indices i,j pour les scalaires (attention! j n'est pas un exposant) car deux informations sont nécessaires : l'indice j indique qu'il s'agit de la décomposition du vecteur v_j , et i indique à quel vecteur de la famille génératrice est associé ce coefficient.

En particulier, pour j = n + 1, le vecteur v_{n+1} s'écrit :

$$v_{n+1} = \alpha_1^{n+1} g_1 + \alpha_2^{n+1} g_2 + \dots + \alpha_n^{n+1} g_n.$$

Si v_{n+1} est nul, c'est terminé, la famille est liée; sinon, v_{n+1} est non nul, et au moins un des coefficients α_j^{n+1} est non nul. On suppose, pour alléger l'écriture, que α_n^{n+1} est non nul (sinon il suffit de changer l'ordre des vecteurs). On construit une nouvelle famille de n vecteurs de E de telle sorte que ces vecteurs soient combinaisons linéaires de $g_1, g_2, \ldots, g_{n-1}$, c'est-à-dire appartiennent au sous-espace engendré par $\{g_1, g_2, \ldots, g_{n-1}\}$. Pour $j=1,2,\ldots,n$, on définit w_j par :

$$w_j = \alpha_n^{n+1} v_j - \alpha_n^j v_{n+1} = \sum_{k=1}^n (\alpha_n^{n+1} \alpha_k^j - \alpha_n^j \alpha_k^{n+1}) g_k.$$

Le coefficient de g_n est nul. Donc w_j est bien combinaison linéaire de $g_1, g_2, ..., g_{n-1}$. On a n vecteurs qui appartiennent à un espace vectoriel engendré par n-1 vecteurs; on peut appliquer l'hypothèse de récurrence : la famille $\{w_1, w_2, ..., w_n\}$ est liée. Par conséquent, il existe des scalaires non tous nuls $\lambda_1, \lambda_2, ..., \lambda_n$ tels que

$$\lambda_1 w_1 + \lambda_2 w_2 + \dots + \lambda_n w_n = 0.$$

En remplaçant les w_j par leur expression en fonction des vecteurs v_i , on obtient :

$$\alpha_n^{n+1}\lambda_1v_1 + \alpha_n^{n+1}\lambda_2v_2 + \dots + \alpha_n^{n+1}\lambda_nv_n - (\lambda_1\alpha_n^1 + \dots + \lambda_n\alpha_n^n)v_{n+1} = 0_E$$

Le coefficient α_n^{n+1} a été supposé non nul et au moins un des scalaires $\lambda_1,\lambda_2,\ldots,\lambda_n$ est non nul; on a donc une combinaison linéaire nulle des vecteurs $v_1,v_2,\ldots,v_n,v_{n+1}$ avec des coefficients qui ne sont pas tous nuls, ce qui prouve que ces vecteurs forment une famille liée.

Conclusion. La démonstration par récurrence est ainsi achevée.

8. Dimension des sous-espaces vectoriels

Tout sous-espace vectoriel F d'un \mathbb{K} -espace vectoriel E étant lui même un \mathbb{K} -espace vectoriel, la question est de savoir s'il est de dimension finie ou s'il ne l'est pas.

Prenons l'exemple de l'espace vectoriel $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ des fonctions de \mathbb{R} dans \mathbb{R} :

- il contient le sous-espace vectoriel $F_1 = \mathbb{R}_n[X]$ des (fonctions) polynômes de degré $\leq n$, qui est de dimension finie;
- et aussi le sous-espace vectoriel $F_2 = \mathbb{R}[X]$ de l'ensemble des (fonctions) polynômes, qui lui est de dimension infinie.

8.1. Dimension d'un sous-espace vectoriel

Nous allons voir par contre que lorsque E est de dimension finie alors F aussi.

Théorème 12

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

- 1. Alors tout sous-espace vectoriel F de E est de dimension finie;
- 2. $\dim F \leq \dim E$;
- 3. $F = E \iff \dim F = \dim E$.

Démonstration

- Soit E un espace vectoriel de dimension n et soit F un sous-espace vectoriel de E. Si $F = \{0\}$ il n'y a rien à montrer. On suppose donc $F \neq \{0\}$ et soit v un élément non nul de F. La famille $\{v\}$ est une famille libre de F, donc F contient des familles libres. Toute famille libre d'éléments de F étant une famille libre d'éléments de F (voir la définition des familles libres), alors comme F est de dimension F0, toutes les familles libres de F0 ont au plus F1 éléments
- On considère l'ensemble K des entiers k tels qu'il existe une famille libre de F ayant k éléments :

$$K = \left\{k \in \mathbb{N} \mid \exists \{v_1, v_2, \dots, v_k\} \subset F \ \text{ et } \{v_1, v_2, \dots, v_k\} \text{ est une famille libre de } F\right\}$$

Cet ensemble K est non vide (car $1 \in K$); K est un sous-ensemble borné de \mathbb{N} (puisque tout élément de K est compris entre 1 et n) donc K admet un maximum. Notons p ce maximum et soit $\{v_1, v_2, \ldots, v_p\}$ une famille libre de F ayant p éléments.

– Montrons que $\{v_1,v_2,\ldots,v_p\}$ est aussi génératrice de F. Par l'absurde, s'il existe w un élément de F qui n'est pas dans $\mathrm{Vect}(v_1,\ldots,v_p)$, alors la famille $\{v_1,\ldots,v_p,w\}$ ne peut pas être libre (sinon p ne serait pas le maximum de K). La famille $\{v_1,\ldots,v_p,w\}$ est donc liée, mais alors la relation de dépendance linéaire implique que $w\in\mathrm{Vect}(v_1,\ldots,v_p)$, ce qui est une contradiction.

Conclusion : (v_1, \ldots, v_p) est une famille libre et génératrice, donc est une base de F.

- On a ainsi démontré simultanément que :
 - F est de dimension finie (puisque $(v_1, v_2, ..., v_p)$ est une base de F).
 - Ainsi dimF = p, donc dimF ≤ dimE (puisque toute famille libre de F a au plus n éléments).
 - De plus, lorsque p=n, le p-uplet (v_1,v_2,\ldots,v_p) , qui est une base de F, est aussi une base de E (car $\{v_1,v_2,\ldots,v_p\}$ est alors une famille libre de E ayant exactement n éléments, donc est une base de E). Tout élément de E s'écrit comme une combinaison linéaire de v_1,v_2,\ldots,v_p , d'où E=F.

8.2. Exemples

Exemple 49

Si E est un \mathbb{K} -espace vectoriel de dimension 2, les sous-espaces vectoriels de E sont :

- soit de dimension 0 : c'est alors le sous-espace {0};
- soit de dimension 1 : ce sont les droites vectorielles, c'est-à-dire les sous-espaces $\mathbb{K}u =$

 $Vect\{u\}$ engendrés par les vecteurs non nuls u de E;

- soit de dimension 2 : c'est alors l'espace E tout entier.

Vocabulaire. Plus généralement, dans un \mathbb{K} -espace vectoriel E de dimension n ($n \ge 2$), tout sous-espace vectoriel de E de dimension 1 est appelé **droite vectorielle** de E et tout sous-espace vectoriel de E de dimension 2 est appelé **plan vectoriel** de E. Tout sous-espace vectoriel de E de dimension n-1 est appelé **hyperplan** de E. Pour n=3, un hyperplan est un plan vectoriel; pour n=2, un hyperplan est une droite vectorielle.

Le théorème 12 précédent permet de déduire le corollaire suivant :

Corollaire 2

Soit E un \mathbb{K} -espace vectoriel. Soient F et G deux sous-espaces vectoriels de E. On suppose que F est de dimension finie et que $G \subseteq F$. Alors :

$$F = G \iff \dim F = \dim G$$

Autrement dit, sachant qu'un sous-espace est inclus dans un autre, alors pour montrer qu'ils sont égaux il suffit de montrer l'égalité des dimensions.

Exemple 50

Deux droites vectorielles F et G sont soit égales, soit d'intersection réduite au vecteur nul.

Exemple 51

Soient les sous-espaces vectoriels de \mathbb{R}^3 suivants :

$$F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid 2x - 3y + z = 0 \right\} \quad \text{ et } \quad G = \text{Vect}(u, v) \quad \text{ où } u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \text{ et } v = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}.$$

Est-ce que F = G?

- 1. On remarque que les vecteurs u et v ne sont pas colinéaires, donc G est de dimension 2, et de plus ils appartiennent à F, donc G est contenu dans F.
- 2. Pour trouver la dimension de F, on pourrait déterminer une base de F et on montrerait alors que la dimension de F est 2. Mais il est plus judicieux ici de remarquer que F est contenu strictement dans \mathbb{R}^3 (par exemple le vecteur $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ de \mathbb{R}^3 n'est pas dans F), donc $\dim F < \dim \mathbb{R}^3 = 3$; mais puisque F contient G alors $\dim F \ge \dim G = 2$, donc la dimension de F ne peut être que 2.
- 3. On a donc démontré que $G \subset F$ et que dim $G = \dim F$, ce qui entraı̂ne G = F.

8.3. Théorème des quatre dimensions

Théorème 13: Théorème des quatre dimensions

Soient E un espace vectoriel de dimension finie et F,G des sous-espaces vectoriels de E. Alors :

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$$

Corollaire 3

Si $E = F \oplus G$, alors dim $E = \dim F + \dim G$.

Exemple 52

Dans un espace vectoriel E de dimension 6, on considère deux sous-espaces F et G avec dim F=3 et dim G=4. Que peut-on dire de $F\cap G$? de F+G? Peut-on avoir $F\oplus G=E$?

- $F \cap G$ est un sous-espace vectoriel inclus dans F, donc dim($F \cap G$) ≤ dimF = 3. Donc les dimensions possibles pour $F \cap G$ sont pour l'instant 0,1,2,3.
- F + G est un sous-espace vectoriel contenant G et inclus dans E, donc $4 = \dim G \le \dim(F + G) \le \dim E = 6$. Donc les dimensions possibles pour F + G sont 4,5,6.
- Le théorème 13 des quatre dimensions nous donne la relation : $\dim(F \cap G) = \dim F + \dim G \dim(F + G) = 3 + 4 \dim(F + G) = 7 \dim(F + G)$. Comme F + G est de dimension 4, 5 ou 6, alors la dimension de $F \cap G$ est 3, 2 ou 1.
- Conclusion: les dimensions possibles pour F+G sont 4, 5 ou 6; les dimensions correspondantes pour $F\cap G$ sont alors 3, 2 ou 1. Dans tous les cas, $F\cap G\neq \{0\}$ et en particulier F et G ne sont jamais en somme directe dans E.

La méthode de la preuve du théorème 13 des quatre dimensions implique aussi :

Corollaire 4

Tout sous-espace vectoriel F d'un espace vectoriel E de dimension finie admet un supplémentaire.

Démonstration: Preuve du théorème 13

- Notez l'analogie de la formule avec la formule pour les ensembles finis :

$$Card(A \cup B) = CardA + CardB - Card(A \cap B)$$
.

- Nous allons partir d'une base $\mathscr{B}_{F\cap G}=\{u_1,\ldots,u_p\}$ de $F\cap G$. On commence par compléter $\mathscr{B}_{F\cap G}$ en une base $\mathscr{B}_F=\{u_1,\ldots,u_p,v_{p+1},\ldots,v_q\}$ de F. On complète ensuite $\mathscr{B}_{F\cap G}$ en une base $\mathscr{B}_G=\{u_1,\ldots,u_p,w_{p+1},\ldots,w_r\}$ de G.
- Nous allons maintenant montrer que la famille

$$\{u_1, \ldots, u_p, v_{p+1}, \ldots, v_q, w_{p+1}, \ldots, w_r\}$$

est une base de F + G. Il est tout d'abord clair que c'est une famille génératrice de F + G (car \mathcal{B}_F est une famille génératrice de F et F0 est une famille génératrice de F1.

- Montrons que cette famille est libre. Soit une combinaison linéaire nulle :

$$\sum_{i=1}^{p} \alpha_i u_i + \sum_{j=p+1}^{q} \beta_j v_j + \sum_{k=p+1}^{r} \gamma_k w_k = 0$$
 (1.1)

On pose $u=\sum_{i=1}^p\alpha_iu_i, v=\sum_{j=p+1}^q\beta_jv_j, w=\sum_{k=p+1}^r\gamma_kw_k$. Alors d'une part $u+v\in F$ (car \mathscr{B}_F est une base de F) mais comme l'équation (1.1) équivaut à u+v+w=0, alors $u+v=-w\in G$ (car $w\in G$). Maintenant $u+v\in F\cap G$ et aussi bien sûr $u\in F\cap G$, donc $v=\sum_{j=p+1}^q\beta_jv_j\in F\cap G$. Cela implique $\beta_j=0$ pour tout j (car les $\{v_j\}$ complètent la base de $F\cap G$). La combinaison linéaire nulle (1.1) devient $\sum_{i=1}^p\alpha_iu_i+\sum_{k=p+1}^r\gamma_kw_k=0$. Or \mathscr{B}_G est une base de G, donc $\alpha_i=0$ et $\gamma_k=0$ pour tout i,k. Ainsi $\mathscr{B}_{F+G}=\{u_1,\ldots,u_p,v_{p+1},\ldots,v_q,w_{p+1},\ldots,w_r\}$ est une base de F+G.

– Il ne reste plus qu'à compter le nombre de vecteurs de chaque base : $\dim F \cap G = \operatorname{Card} \mathscr{B}_{F \cap G} = p$, $\dim F = \operatorname{Card} \mathscr{B}_F = q$, $\dim G = \operatorname{Card} \mathscr{B}_G = r$, $\dim(F + G) = \operatorname{Card} \mathscr{B}_{F + G} = q + r - p$. Ce qui prouve bien $\dim(F + G) = \dim F + \dim G - \dim(F \cap G)$.

Chapitre 2

MATRICES

Les matrices sont des tableaux de nombres. La résolution d'un certain nombre de problèmes d'algèbre linéaire se ramène à des manipulations sur les matrices. Ceci est vrai en particulier pour la résolution des systèmes linéaires.

1. Définition

1.1. Définition

Définition 14

- Une *matrice* A est un tableau rectangulaire d'éléments de \mathbb{K} .
- Elle est dite de *taille* $n \times p$ si le tableau possède n lignes et p colonnes.
- Les nombres du tableau sont appelés les *coefficients* de A.
- Le coefficient situé à la *i*-ème ligne et à la *j*-ème colonne est noté $a_{i,j}$.

Un tel tableau est représenté de la manière suivante :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,j} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,j} & \dots & a_{2,p} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i,1} & a_{i,2} & \dots & a_{i,j} & \dots & a_{i,p} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n,1} & a_{n,2} & \dots & a_{n,j} & \dots & a_{n,p} \end{pmatrix} \quad \text{ou} \quad A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} \quad \text{ou} \quad (a_{i,j}).$$

Exemple 53

$$A = \left(\begin{array}{ccc} 1 & -2 & 5 \\ 0 & 3 & 7 \end{array}\right)$$

est une matrice 2×3 avec, par exemple, $a_{1,1} = 1$ et $a_{2,3} = 7$.

Encore quelques définitions :

Définition 15

- Deux matrices sont *égales* lorsqu'elles ont la même taille et que les coefficients correspondants sont égaux.
- L'ensemble des matrices à n lignes et p colonnes à coefficients dans \mathbb{K} est noté $M_{n,p}(\mathbb{K})$. Les éléments de $M_{n,p}(\mathbb{R})$ sont appelés *matrices réelles*.

1.2. Matrices particulières

Voici quelques types de matrices intéressantes :

– Si n=p (même nombre de lignes que de colonnes), la matrice est dite *matrice carrée*. On note $M_n(\mathbb{K})$ au lieu de $M_{n,n}(\mathbb{K})$.

$$egin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \ a_{2,1} & a_{2,2} & \dots & a_{2,n} \ dots & dots & \ddots & dots \ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{pmatrix}$$

Les éléments $a_{1,1}, a_{2,2}, \dots, a_{n,n}$ forment la **diagonale principale** de la matrice.

- Une matrice qui n'a qu'une seule ligne (n = 1) est appelée $matrice\ ligne$ ou $vecteur\ ligne$. On la note

$$A = (a_{1,1} \ a_{1,2} \ \dots \ a_{1,p}).$$

- De même, une matrice qui n'a qu'une seule colonne (p = 1) est appelée matrice colonne ou vecteur colonne. On la note

$$A = \begin{pmatrix} a_{1,1} \\ a_{2,1} \\ \vdots \\ a_{n,1} \end{pmatrix}.$$

– La matrice (de taille $n \times p$) dont tous les coefficients sont des zéros est appelée la *matrice nulle* et est notée $0_{n,p}$ ou plus simplement 0. Dans le calcul matriciel, la matrice nulle joue le rôle du nombre 0 pour les réels.

1.3. Addition de matrices

Définition 16: Somme de deux matrices

Soient A et B deux matrices ayant la même taille $n \times p$. Leur **somme** C = A + B est la matrice de taille $n \times p$ définie par

$$c_{ij} = a_{ij} + b_{ij}.$$

En d'autres termes, on somme coefficients par coefficients. Remarque : on note indifféremment a_{ij} où $a_{i,j}$ pour les coefficients de la matrice A.

Exemple 54

Si
$$A = \begin{pmatrix} 3 & -2 \\ 1 & 7 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 5 \\ 2 & -1 \end{pmatrix}$ alors $A + B = \begin{pmatrix} 3 & 3 \\ 3 & 6 \end{pmatrix}$.

Par contre si $B' = \begin{pmatrix} -2 \\ 8 \end{pmatrix}$ alors A + B' n'est pas définie.

Définition 17: Produit d'une matrice par un scalaire

Le produit d'une matrice $A = (a_{ij})$ de $M_{n,p}(\mathbb{K})$ par un scalaire $\alpha \in \mathbb{K}$ est la matrice (αa_{ij}) formée en multipliant chaque coefficient de A par α . Elle est notée $\alpha \cdot A$ (ou simplement αA).

Si
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \end{pmatrix}$$
 et $\alpha = 2$ alors $\alpha A = \begin{pmatrix} 2 & 4 & 6 \\ 0 & 2 & 0 \end{pmatrix}$.

La matrice (-1)A est l'**opposée** de A et est notée -A. La **différence** A-B est définie par A+(-B).

Exemple 56

Si
$$A = \begin{pmatrix} 2 & -1 & 0 \\ 4 & -5 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & 4 & 2 \\ 7 & -5 & 3 \end{pmatrix}$ alors $A - B = \begin{pmatrix} 3 & -5 & -2 \\ -3 & 0 & -1 \end{pmatrix}$.

L'addition et la multiplication par un scalaire se comportent sans surprises :

Proposition 18

Soient A, B et C trois matrices appartenant à $M_{n,p}(\mathbb{K})$. Soient $\alpha \in \mathbb{K}$ et $\beta \in \mathbb{K}$ deux scalaires.

- 1. A + B = B + A: la somme est commutative,
- 2. A + (B + C) = (A + B) + C: la somme est associative,
- 3. A + 0 = A: la matrice nulle est l'élément neutre de l'addition,
- 4. $(\alpha + \beta)A = \alpha A + \beta A$,
- 5. $\alpha(A+B) = \alpha A + \alpha B$.

Démonstration

Prouvons par exemple le quatrième point. Le terme général de $(\alpha + \beta)A$ est égal à $(\alpha + \beta)a_{ij}$. D'après les règles de calcul dans \mathbb{K} , $(\alpha + \beta)a_{ij}$ est égal à $\alpha a_{ij} + \beta a_{ij}$ qui est le terme général de la matrice $\alpha A + \beta A$.

2. Multiplication de matrices

2.1. Définition du produit

Le produit AB de deux matrices A et B est défini si et seulement si le nombre de colonnes de A est égal au nombre de lignes de B.

Définition 18: Produit de deux matrices

Soient $A = (a_{ij})$ une matrice $n \times p$ et $B = (b_{ij})$ une matrice $p \times q$. Alors le produit C = AB est une matrice $n \times q$ dont les coefficients c_{ij} sont définis par :

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

On peut écrire le coefficient de façon plus développée, à savoir :

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ik}b_{kj} + \cdots + a_{ip}b_{pj}$$
.

Il est commode de disposer les calculs de la façon suivante.

Avec cette disposition, on considère d'abord la ligne de la matrice A située à gauche du coefficient que l'on veut calculer (ligne représentée par des \times dans A) et aussi la colonne de la matrice B située au-dessus du coefficient que l'on veut calculer (colonne représentée par des \times dans B). On calcule le produit du premier coefficient de la ligne par le premier coefficient de la colonne ($a_{i1} \times b_{1j}$), que l'on ajoute au produit du deuxième coefficient de la ligne par le deuxième coefficient de la colonne ($a_{i2} \times b_{2j}$), que l'on ajoute au produit du troisième...

2.2. Exemples

Exemple 57

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 1 & 1 \end{pmatrix}$$

On dispose d'abord le produit correctement (à gauche) : la matrice obtenue est de taille 2×2 . Puis on calcule chacun des coefficients, en commençant par le premier coefficient $c_{11} = 1 \times 1 + 2 \times (-1) + 3 \times 1 = 2$ (au milieu), puis les autres (à droite).

$$\begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & c_{12} \\ c_{21} & c_{22} \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & 7 \\ 3 & 11 \end{pmatrix}$$

Un exemple intéressant est le produit d'un vecteur ligne par un vecteur colonne :

$$u = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \quad v = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Alors $u \times v$ est une matrice de taille 1×1 dont l'unique coefficient est $a_1b_1 + a_2b_2 + \cdots + a_nb_n$. Ce nombre s'appelle le **produit scalaire** des vecteurs u et v.

Calculer le coefficient c_{ij} dans le produit $A \times B$ revient donc à calculer le produit scalaire des vecteurs formés par la i-ème ligne de A et la j-ème colonne de B.

2.3. Pièges à éviter

Premier piège. Le produit de matrices n'est pas commutatif en général.

En effet, il se peut que AB soit défini mais pas BA, ou que AB et BA soient tous deux définis mais pas de la même taille. Mais même dans le cas où AB et BA sont définis et de la même taille, on a en général $AB \neq BA$.

Exemple 58

$$\begin{pmatrix} 5 & 1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 14 & 3 \\ -2 & -6 \end{pmatrix} \qquad \text{mais} \qquad \begin{pmatrix} 2 & 0 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 10 & 2 \\ 29 & -2 \end{pmatrix}.$$

Deuxième piège. AB = 0 n'implique pas A = 0 ou B = 0.

Il peut arriver que le produit de deux matrices non nulles soit nul. En d'autres termes, on peut avoir $A \neq 0$ et $B \neq 0$ mais AB = 0.

Exemple 59

$$A = \begin{pmatrix} 0 & -1 \\ 0 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -3 \\ 0 & 0 \end{pmatrix} \qquad \text{et} \qquad AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Troisième piège. AB = AC n'implique pas B = C. On peut avoir AB = AC et $B \neq C$.

Exemple 60

$$A = \begin{pmatrix} 0 & -1 \\ 0 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & -1 \\ 5 & 4 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 5 \\ 5 & 4 \end{pmatrix} \quad \text{et} \quad AB = AC = \begin{pmatrix} -5 & -4 \\ 15 & 12 \end{pmatrix}.$$

2.4. Propriétés du produit de matrices

Malgré les difficultés soulevées au-dessus, le produit vérifie les propriétés suivantes :

Proposition 19

- 1. A(BC) = (AB)C: associativité du produit,
- 2. A(B+C) = AB + AC et (B+C)A = BA + CA: distributivité du produit par rapport à la somme,
- 3. $A \cdot 0 = 0$ et $0 \cdot A = 0$.

Démonstration

Posons $A = (a_{ij}) \in M_{n,p}(\mathbb{K})$, $B = (b_{ij}) \in M_{p,q}(\mathbb{K})$ et $C = (c_{ij}) \in M_{q,r}(\mathbb{K})$. Prouvons que A(BC) = (AB)C en montrant que les matrices A(BC) et (AB)C ont les mêmes coefficients.

Le terme d'indice (i,k) de la matrice AB est $x_{ik} = \sum_{\ell=1}^p a_{i\ell} b_{\ell k}$. Le terme d'indice (i,j) de la matrice (AB)C est donc

$$\sum_{k=1}^{q} x_{ik} c_{kj} = \sum_{k=1}^{q} \left(\sum_{\ell=1}^{p} a_{i\ell} b_{\ell k} \right) c_{kj}.$$

Le terme d'indice (ℓ, j) de la matrice BC est $y_{\ell j} = \sum_{k=1}^q b_{\ell k} c_{kj}$. Le terme d'indice (i, j) de la matrice A(BC) est donc

$$\sum_{\ell=1}^p a_{i\ell} \left(\sum_{k=1}^q b_{\ell k} c_{kj} \right).$$

Comme dans \mathbb{K} la multiplication est distributive et associative, les coefficients de (AB)C et A(BC) coïncident. Les autres démonstrations se font comme celle de l'associativité.

2.5. La matrice identité

La matrice carrée suivante s'appelle la *matrice identité* :

$$I_n = \left(egin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ dots & dots & \ddots & dots \\ 0 & 0 & \dots & 1 \end{array}
ight)$$

Ses éléments diagonaux sont égaux à 1 et tous ses autres éléments sont égaux à 0. Elle se note I_n ou simplement I. Dans le calcul matriciel, la matrice identité joue un rôle analogue à celui du nombre 1 pour les réels. C'est l'élément neutre pour la multiplication. En d'autres termes :

Proposition 20

Si A est une matrice $n \times p$, alors

$$I_n \cdot A = A$$
 et $A \cdot I_p = A$.

Démonstration

Nous allons détailler la preuve. Soit $A \in M_{n,p}(\mathbb{K})$ de terme général a_{ij} . La matrice unité d'ordre p est telle que tous les éléments de la diagonale principale sont égaux à 1, les autres étant tous nuls.

On peut formaliser cela en introduisant le symbole de Kronecker. Si i et j sont deux entiers, on appelle **symbole de Kronecker**, et on note $\delta_{i,j}$, le réel qui vaut 0 si i est différent de j, et 1 si i est égal à j. Donc

$$\delta_{i,j} = \begin{cases} 0 & \text{si } i \neq j \\ 1 & \text{si } i = j. \end{cases}$$

Alors le terme général de la matrice identité I_p est $\delta_{i,j}$ avec i et j entiers, compris entre 1 et p.

La matrice produit AI_p est une matrice appartenant à $M_{n,p}(\mathbb{K})$ dont le terme général c_{ij} est donné par la formule $c_{ij} = \sum_{k=1}^p a_{ik} \delta_{kj}$. Dans cette somme, i et j sont fixés et k prend toutes les valeurs comprises entre 1 et p. Si $k \neq j$ alors $\delta_{kj} = 0$, et si k = j alors $\delta_{kj} = 1$. Donc dans la somme qui définit c_{ij} , tous les termes correspondant à des valeurs de k différentes de j sont nuls et il reste donc $c_{ij} = a_{ij}\delta_{jj} = a_{ij}1 = a_{ij}$. Donc les matrices AI_p et A ont le même terme général et sont donc égales. L'égalité $I_nA = A$ se démontre de la même façon.

2.6. Puissance d'une matrice

Dans l'ensemble $M_n(\mathbb{K})$ des matrices carrées de taille $n \times n$ à coefficients dans \mathbb{K} , la multiplication des matrices est une opération interne : si $A, B \in M_n(\mathbb{K})$ alors $AB \in M_n(\mathbb{K})$.

En particulier, on peut multiplier une matrice carrée par elle-même : on note $A^2 = A \times A$, $A^3 = A \times A \times A$.

On peut ainsi définir les puissances successives d'une matrice :

Définition 19

Pour tout $A \in M_n(\mathbb{K})$, on définit les puissances successives de A par $A^0 = I_n$ et $A^{p+1} = A^p \times A$

pour tout $p \in \mathbb{N}$. Autrement dit, $A^p = \underbrace{A \times A \times \cdots \times A}_{p \text{ facteurs}}$.

Exemple 61

On cherche à calculer A^p avec $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. On calcule A^2 , A^3 et A^4 et on obtient :

$$A^{2} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \qquad A^{3} = A^{2} \times A = \begin{pmatrix} 1 & 0 & 7 \\ 0 & -1 & 0 \\ 0 & 0 & 8 \end{pmatrix} \qquad A^{4} = A^{3} \times A = \begin{pmatrix} 1 & 0 & 15 \\ 0 & 1 & 0 \\ 0 & 0 & 16 \end{pmatrix}.$$

L'observation de ces premières puissances permet de penser que la formule est : $A^p = \begin{pmatrix} 1 & 0 & 2^p - 1 \\ 0 & (-1)^p & 0 \\ 0 & 0 & 2^p \end{pmatrix}$.

Démontrons ce résultat par récurrence.

Il est vrai pour p = 0 (on trouve l'identité). On le suppose vrai pour un entier p et on va le démontrer pour p + 1. On a, d'après la définition,

$$A^{p+1} = A^p \times A = \begin{pmatrix} 1 & 0 & 2^p - 1 \\ 0 & (-1)^p & 0 \\ 0 & 0 & 2^p \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2^{p+1} - 1 \\ 0 & (-1)^{p+1} & 0 \\ 0 & 0 & 2^{p+1} \end{pmatrix}.$$

Donc la propriété est démontrée.

2.7. Formule du binôme

Comme la multiplication n'est pas commutative, les identités binomiales usuelles sont fausses. En particulier, $(A + B)^2$ ne vaut en général pas $A^2 + 2AB + B^2$, mais on sait seulement que

$$(A+B)^2 = A^2 + AB + BA + B^2.$$

Proposition 21: Calcul de $(A + B)^p$ **lorsque** AB = BA

Soient A et B deux éléments de $M_n(\mathbb{K})$ qui **commutent**, c'est-à-dire tels que AB = BA. Alors, pour tout entier $p \ge 0$, on a la formule

$$(A+B)^p = \sum_{k=0}^p \binom{p}{k} A^{p-k} B^k$$

où $\binom{p}{k}$ désigne le coefficient du binôme.

La démonstration est similaire à celle de la formule du binôme pour $(a+b)^p$, avec $a,b \in \mathbb{R}$.

Exemple 62

Soit
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
. On pose $N = A - I = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. La matrice N est nilpotente (c'est-à-

dire il existe $k \in \mathbb{N}$ tel que $N^k = 0$) comme le montrent les calculs suivants :

Comme on a A=I+N et les matrices N et I commutent (la matrice identité commute avec toutes les matrices), on peut appliquer la formule du binôme de Newton. On utilise que $I^k=I$ pour tout k et surtout que $N^k=0$ si $k \ge 4$. On obtient

$$A^{p} = \sum_{k=0}^{p} \binom{p}{k} N^{k} I^{p-k} = \sum_{k=0}^{3} \binom{p}{k} N^{k} = I + pN + \frac{p(p-1)}{2!} N^{2} + \frac{p(p-1)(p-2)}{3!} N^{3}.$$

D'où

$$A^{p} = \begin{pmatrix} 1 & p & p^{2} & p(p^{2} - p + 1) \\ 0 & 1 & 2p & p(3p - 2) \\ 0 & 0 & 1 & 3p \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

3. Inverse d'une matrice : définition

3.1. Définition

Définition 20: Matrice inverse

Soit A une matrice carrée de taille $n \times n$. S'il existe une matrice carrée B de taille $n \times n$ telle que

$$AB = I$$
 et $BA = I$,

on dit que A est *inversible*. On appelle B l'*inverse de* A et on la note A^{-1} .

On verra plus tard qu'il suffit en fait de vérifier une seule des conditions AB = I ou bien BA = I.

- Plus généralement, quand A est inversible, pour tout $p \in \mathbb{N}$, on note :

$$A^{-p} = (A^{-1})^p = \underbrace{A^{-1}A^{-1}\cdots A^{-1}}_{p \text{ facteurs}}.$$

- L'ensemble des matrices inversibles de $M_n(\mathbb{K})$ est noté $GL_n(\mathbb{K})$.

3.2. Exemples

Exemple 63

Soit $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$. Étudier si A est inversible, c'est étudier l'existence d'une matrice $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ à coefficients dans \mathbb{K} , telle que AB = I et BA = I. Or AB = I équivaut à :

$$AB = I \iff \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \iff \begin{pmatrix} a+2c & b+2d \\ 3c & 3d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Cette égalité équivaut au système :

$$\begin{cases} a+2c=1\\ b+2d=0\\ 3c=0\\ 3d=1 \end{cases}$$

Sa résolution est immédiate : $a=1,\ b=-\frac{2}{3},\ c=0,\ d=\frac{1}{3}.$ Il n'y a donc qu'une seule matrice possible, à savoir $B=\begin{pmatrix} 1&-\frac{2}{3}\\0&\frac{1}{3} \end{pmatrix}$. Pour prouver qu'elle convient, il faut aussi montrer l'égalité BA=I, dont la vérification est laissée au lecteur. La matrice A est donc inversible et $A^{-1}=\begin{pmatrix} 1&-\frac{2}{3}\\0&\frac{1}{3} \end{pmatrix}$.

Exemple 64

La matrice $A=\begin{pmatrix}3&0\\5&0\end{pmatrix}$ n'est pas inversible. En effet, soit $B=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ une matrice quelconque. Alors le produit

$$BA = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 5 & 0 \end{pmatrix} = \begin{pmatrix} 3a + 5b & 0 \\ 3c + 5d & 0 \end{pmatrix}$$

ne peut jamais être égal à la matrice identité.

Exemple 65

- Soit I_n la matrice carrée identité de taille $n \times n$. C'est une matrice inversible, et son inverse est elle-même par l'égalité $I_nI_n=I_n$.
- La matrice nulle 0_n de taille $n \times n$ n'est pas inversible. En effet on sait que, pour toute matrice B de $M_n(\mathbb{K})$, on a $B0_n = 0_n$, qui ne peut jamais être la matrice identité.

3.3. Propriétés

Unicité

Proposition 22

Si A est inversible, alors son inverse est unique.

Démonstration

La méthode classique pour mener à bien une telle démonstration est de supposer l'existence de deux matrices B_1 et B_2 satisfaisant aux conditions imposées et de démontrer que $B_1 = B_2$.

Soient donc B_1 telle que $AB_1 = B_1A = I_n$ et B_2 telle que $AB_2 = B_2A = I_n$. Calculons $B_2(AB_1)$. D'une part, comme $AB_1 = I_n$, on a $B_2(AB_1) = B_2$. D'autre part, comme le produit des matrices est associatif, on a $B_2(AB_1) = (B_2A)B_1 = I_nB_1 = B_1$. Donc $B_1 = B_2$.

Inverse de l'inverse

Proposition 23

Soit A une matrice inversible. Alors A^{-1} est aussi inversible et on a :

$$(A^{-1})^{-1} = A$$

Inverse d'un produit

Proposition 24

Soient A et B deux matrices inversibles de même taille. Alors AB est inversible et

$$(AB)^{-1} = B^{-1}A^{-1}$$

Il faut bien faire attention à l'inversion de l'ordre!

Démonstration

Il suffit de montrer $(B^{-1}A^{-1})(AB) = I$ et $(AB)(B^{-1}A^{-1}) = I$. Cela suit de

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I,$$

et
$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I.$$

De façon analogue, on montre que si $A_1, ..., A_m$ sont inversibles, alors

$$(A_1 A_2 \cdots A_m)^{-1} = A_m^{-1} A_{m-1}^{-1} \cdots A_1^{-1}.$$

Simplification par une matrice inversible

Si C est une matrice quelconque de $M_n(\mathbb{K})$, nous avons vu que la relation AC = BC où A et B sont des éléments de $M_n(\mathbb{K})$ n'entraîne pas forcément l'égalité A = B. En revanche, si C est une matrice inversible, on a la proposition suivante :

Proposition 25

Soient A et B deux matrices de $M_n(\mathbb{K})$ et C une matrice inversible de $M_n(\mathbb{K})$. Alors l'égalité AC = BC implique l'égalité A = B.

Démonstration

Ce résultat est immédiat : si on multiplie à droite l'égalité AC = BC par C^{-1} , on obtient l'égalité : $(AC)C^{-1} = (BC)C^{-1}$. En utilisant l'associativité du produit des matrices on a $A(CC^{-1}) = B(CC^{-1})$, ce qui donne d'après la définition de l'inverse AI = BI, d'où A = B.

4. Inverse d'une matrice : calcul

Nous allons voir une méthode pour calculer l'inverse d'une matrice quelconque de manière efficace. Cette méthode est une reformulation de la méthode du pivot de Gauss pour les systèmes linéaires. Auparavant, nous commençons par une formule directe dans le cas simple des matrices 2×2 .

4.1. Matrices 2×2

Considérons la matrice $2 \times 2 : A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Proposition 26

Si $ad - bc \neq 0$, alors A est inversible et

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Démonstration

On vérifie que si $B = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ alors $AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Idem pour BA.

4.2. Méthode de Gauss pour inverser les matrices

La méthode pour inverser une matrice A consiste à faire des opérations élémentaires sur les lignes de la matrice A jusqu'à la transformer en la matrice identité I. On fait simultanément les mêmes opérations élémentaires en partant de la matrice I. On aboutit alors à une matrice qui est A^{-1} . La preuve sera vue dans la section suivante.

En pratique, on fait les deux opérations en même temps en adoptant la disposition suivante : à côté de la matrice A que l'on veut inverser, on rajoute la matrice identité pour former un tableau $(A \mid I)$. Sur les lignes de cette matrice augmentée, on effectue des opérations élémentaires jusqu'à obtenir le tableau $(I \mid B)$. Et alors $B = A^{-1}$.

Ces opérations élémentaires sur les lignes sont :

- 1. $L_i \leftarrow \lambda L_i$ avec $\lambda \neq 0$: on peut multiplier une ligne par un réel non nul (ou un élément de $\mathbb{K} \setminus \{0\}$).
- 2. $L_i \leftarrow L_i + \lambda L_j$ avec $\lambda \in \mathbb{K}$ (et $j \neq i$): on peut ajouter à la ligne L_i un multiple d'une autre ligne L_j .
- 3. $L_i \leftrightarrow L_j$: on peut échanger deux lignes.

N'oubliez pas : tout ce que vous faites sur la partie gauche de la matrice augmentée, vous devez aussi le faire sur la partie droite.

4.3. Un exemple

Calculons l'inverse de $A = \begin{pmatrix} 1 & 2 & 1 \\ 4 & 0 & -1 \\ -1 & 2 & 2 \end{pmatrix}$.

Voici la matrice augmentée, avec les lignes numérotées :

$$(A \mid I) = \left(\begin{array}{ccc|ccc} 1 & 2 & 1 & 1 & 0 & 0 \\ 4 & 0 & -1 & 0 & 1 & 0 \\ -1 & 2 & 2 & 0 & 0 & 1 \end{array}\right) \begin{array}{c} L_1 \\ L_2 \\ L_3 \end{array}$$

On applique la méthode de Gauss pour faire apparaître des 0 sur la première colonne, d'abord sur la deuxième ligne par l'opération élémentaire $L_2 \leftarrow L_2 - 4L_1$ qui conduit à la matrice augmentée :

$$\left(\begin{array}{cc|ccc|c} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & -8 & -5 & -4 & 1 & 0 \\ -1 & 2 & 2 & 0 & 0 & 1 \end{array}\right) L_2 \leftarrow L_2 - 4L_1$$

Puis un 0 sur la première colonne, à la troisième ligne, avec $L_3 \leftarrow L_3 + L_1$:

$$\left(\begin{array}{ccc|ccc|ccc}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & -8 & -5 & -4 & 1 & 0 \\
0 & 4 & 3 & 1 & 0 & 1
\end{array}\right)_{L_3 \leftarrow L_3 + L_1}$$

On multiplie la ligne L_2 afin qu'elle commence par 1:

$$\left(\begin{array}{cc|cccc} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & \frac{5}{8} & \frac{1}{2} & -\frac{1}{8} & 0 \\ 0 & 4 & 3 & 1 & 0 & 1 \end{array}\right) L_2 \leftarrow -\frac{1}{8}L_2$$

On continue afin de faire apparaître des 0 partout sous la diagonale, et on multiplie la ligne L_3 . Ce qui termine la première partie de la méthode de Gauss :

$$\left(\begin{array}{ccc|c}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & \frac{5}{8} & \frac{1}{2} & -\frac{1}{8} & 0 \\
0 & 0 & \frac{1}{2} & -1 & \frac{1}{2} & 1
\end{array}\right) L_3 \leftarrow L_3 - 4L_2$$

puis

$$\left(\begin{array}{cc|cccc} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & \frac{5}{8} & \frac{1}{2} & -\frac{1}{8} & 0 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{array}\right) \begin{array}{c} L_3 - 2L_3 \end{array}$$

Il ne reste plus qu'à « remonter » pour faire apparaître des zéros au-dessus de la diagonale :

$$\left(\begin{array}{ccc|ccc|c} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{7}{4} & -\frac{3}{4} & -\frac{5}{4} \\ 0 & 0 & 1 & -2 & 1 & 2 \end{array}\right) L_2 \leftarrow L_2 - \frac{5}{8}L_3$$

puis

$$\left(\begin{array}{cc|cccc} 1 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & \frac{7}{4} & -\frac{3}{4} & -\frac{5}{4} \\ 0 & 0 & 1 & -2 & 1 & 2 \end{array}\right) L_1 \leftarrow L_1 - 2L_2 - L_3$$

Ainsi l'inverse de A est la matrice obtenue à droite et après avoir factorisé tous les coefficients par $\frac{1}{4}$, on a obtenu :

$$A^{-1} = \frac{1}{4} \begin{pmatrix} -2 & 2 & 2 \\ 7 & -3 & -5 \\ -8 & 4 & 8 \end{pmatrix}$$

Pour se rassurer sur ses calculs, on n'oublie pas de vérifier rapidement que $A \times A^{-1} = I$.

5. Inverse d'une matrice : systèmes linéaires et matrices élémentaires

5.1. Matrices et systèmes linéaires

Le système linéaire

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \cdots + a_{1p} x_p = b_1 \\ a_{21} x_1 + a_{22} x_2 + \cdots + a_{2p} x_p = b_2 \\ & \cdots \\ a_{n1} x_1 + a_{n2} x_2 + \cdots + a_{np} x_p = b_n \end{cases}$$

peut s'écrire sous forme matricielle :

$$\underbrace{\begin{pmatrix} a_{11} & \dots & a_{1p} \\ a_{21} & \dots & a_{2p} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{np} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}}_{X} = \underbrace{\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}}_{B}.$$

On appelle $A \in M_{n,p}(\mathbb{K})$ la matrice des coefficients du système. $B \in M_{n,1}(\mathbb{K})$ est le vecteur du second membre. Le vecteur $X \in M_{p,1}(\mathbb{K})$ est une solution du système si et seulement si

$$AX = B$$
.

Nous savons que:

Théorème 14

Un système d'équations linéaires n'a soit aucune solution, soit une seule solution, soit une infinité de solutions.

5.2. Matrices inversibles et systèmes linéaires

Considérons le cas où le nombre d'équations égale le nombre d'inconnues :

$$\underbrace{\begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}}_{X} = \underbrace{\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}}_{B}.$$

Alors $A \in M_n(\mathbb{K})$ est une matrice carrée et B un vecteur de $M_{n,1}(\mathbb{K})$. Pour tout second membre, nous pouvons utiliser les matrices pour trouver la solution du système linéaire.

Proposition 27

Si la matrice A est inversible, alors la solution du système AX = B est unique et est :

$$X = A^{-1}B.$$

La preuve est juste de vérifier que si $X = A^{-1}B$, alors $AX = A(A^{-1}B) = (AA^{-1})B = I \cdot B = B$. Réciproquement si AX = B, alors nécessairement $X = A^{-1}B$. Nous verrons bientôt que si la matrice n'est pas inversible, alors soit il n'y a pas de solution, soit une infinité.

5.3. Les matrices élémentaires

Pour calculer l'inverse d'une matrice A, et aussi pour résoudre des systèmes linéaires, nous avons utilisé trois opérations élémentaires sur les lignes qui sont :

- 1. $L_i \leftarrow \lambda L_i$ avec $\lambda \neq 0$: on peut multiplier une ligne par un réel non nul (ou un élément de $\mathbb{K} \setminus \{0\}$).
- 2. $L_i \leftarrow L_i + \lambda L_j$ avec $\lambda \in \mathbb{K}$ (et $j \neq i$): on peut ajouter à la ligne L_i un multiple d'une autre ligne L_j .
- 3. $L_i \leftrightarrow L_j$: on peut échanger deux lignes.

Nous allons définir trois matrices élémentaires $E_{L_i \leftarrow \lambda L_i}$, $E_{L_i \leftarrow L_i + \lambda L_j}$, $E_{L_i \leftarrow L_j}$ correspondant à ces opérations. Plus précisément, le produit $E \times A$ correspondra à l'opération élémentaire sur A. Voici les définitions accompagnées d'exemples.

1. La matrice $E_{L_i \leftarrow \lambda L_i}$ est la matrice obtenue en multipliant par λ la i-ème ligne de la matrice identité I_n , où λ est un nombre réel non nul.

$$E_{L_2 \leftarrow 5L_2} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 5 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

2. La matrice $E_{L_i \leftarrow L_i + \lambda L_j}$ est la matrice obtenue en ajoutant λ fois la j-ème ligne de I_n à la i-ème ligne de I_n .

$$E_{L_2 \leftarrow L_2 - 3L_1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3. La matrice $E_{L_i \to L_j}$ est la matrice obtenue en permutant les *i*-ème et *j*-ème lignes de I_n .

$$E_{L_2 \leftrightarrow L_4} = E_{L_4 \leftrightarrow L_2} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \end{pmatrix}$$

Les opérations élémentaires sur les lignes sont réversibles, ce qui entraîne l'inversibilité des matrices élémentaires.

Le résultat de la multiplication d'un matrice élémentaire E par A est la matrice obtenue en effectuant l'opération élémentaire correspondante sur A. Ainsi :

- 1. La matrice $E_{L_i \leftarrow \lambda L_i} \times A$ est la matrice obtenue en multipliant par λ la i-ème ligne de A.
- 2. La matrice $E_{L_i \leftarrow L_i + \lambda L_j} \times A$ est la matrice obtenue en ajoutant λ fois la j-ème ligne de A à la i-ème ligne de A.
- 3. La matrice $E_{L_i \leftrightarrow L_j} \times A$ est la matrice obtenue en permutant les i-ème et j-ème lignes de A.

Exemple 66

1.

$$E_{L_2 \leftarrow \frac{1}{3}L_2} \times A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 \\ \frac{1}{3}y_1 & \frac{1}{3}y_2 & \frac{1}{3}y_3 \\ z_1 & z_2 & z_3 \end{pmatrix}$$

2.

$$E_{L_1 \leftarrow L_1 - 7L_3} \times A = \begin{pmatrix} 1 & 0 & -7 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} = \begin{pmatrix} x_1 - 7z_1 & x_2 - 7z_2 & x_3 - 7z_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix}$$

3.

$$E_{L_2 \to L_3} \times A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 \\ z_1 & z_2 & z_3 \\ y_1 & y_2 & y_3 \end{pmatrix}$$

5.4. Équivalence à une matrice échelonnée

Définition 21

Deux matrices A et B sont dites *équivalentes par lignes* si l'une peut être obtenue à partir de l'autre par une suite d'opérations élémentaires sur les lignes. On note $A \sim B$.

Définition 22

Une matrice est échelonnée si :

 le nombre de zéros commençant une ligne croît strictement ligne par ligne jusqu'à ce qu'il ne reste plus que des zéros.

Elle est échelonnée réduite si en plus :

- le premier coefficient non nul d'une ligne (non nulle) vaut 1;
- et c'est le seul élément non nul de sa colonne.

Exemple d'une matrice échelonnée (à gauche) et échelonnée réduite (à droite); les * désignent des coefficients quelconques, les + des coefficients non nuls :

Théorème 15

Étant donnée une matrice $A \in M_{n,p}(\mathbb{K})$, il existe une unique matrice échelonnée réduite U obtenue à partir de A par des opérations élémentaires sur les lignes.

Ce théorème permet donc de se ramener par des opérations élémentaires à des matrices dont la structure est beaucoup plus simple : les matrices échelonnées réduites.

Démonstration

Nous admettons l'unicité.

L'existence se démontre grâce à l'algorithme de Gauss. L'idée générale consiste à utiliser des substitutions de lignes pour placer des zéros là où il faut de façon à créer d'abord une forme échelonnée, puis une forme échelonnée réduite.

Soit *A* une matrice $n \times p$ quelconque.

Partie A. Passage à une forme échelonnée.

Étape A.1. Choix du pivot.

On commence par inspecter la première colonne. Soit elle ne contient que des zéros, auquel cas on passe directement à l'étape A.3, soit elle contient au moins un terme non nul. On choisit alors un tel terme, que l'on appelle le **pivot**. Si c'est le terme a_{11} , on passe directement à l'étape A.2; si c'est un terme a_{i1} avec $i \neq 1$, on échange les lignes 1 et i ($L_1 \leftrightarrow L_i$) et on passe à l'étape A.2.

Au terme de l'étape A.1, soit la matrice A a sa première colonne nulle (à gauche) ou bien on

obtient une matrice équivalente dont le premier coefficient a'_{11} est non nul (à droite) :

$$\begin{pmatrix} 0 & a_{12} & \cdots & a_{1j} & \cdots & a_{1p} \\ 0 & a_{22} & \cdots & a_{2j} & \cdots & a_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & a_{i2} & \cdots & a_{ij} & \cdots & a_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & a_{n2} & \cdots & a_{nj} & \cdots & a_{np} \end{pmatrix} = A \quad \text{ou} \quad \begin{pmatrix} a'_{11} & a'_{12} & \cdots & a'_{1j} & \cdots & a'_{1p} \\ a'_{21} & a'_{22} & \cdots & a'_{2j} & \cdots & a'_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ a'_{i1} & a'_{i2} & \cdots & a'_{ij} & \cdots & a'_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ a'_{n1} & a'_{n2} & \cdots & a'_{nj} & \cdots & a'_{np} \end{pmatrix} \sim A.$$

Étape A.2. Élimination.

On ne touche plus à la ligne 1, et on se sert du pivot a_{11}^\prime pour éliminer tous les termes a_{i1}^\prime (avec $i \ge 2$) situés sous le pivot. Pour cela, il suffit de remplacer la ligne i par elle-même moins $\frac{a'_{i1}}{a'_{11}}$ × la ligne 1, ceci pour $i=2,\ldots,n:L_2\leftarrow L_2-\frac{a'_{21}}{a'_{11}}L_1,L_3\leftarrow L_3-\frac{a'_{31}}{a'_{11}}L_1,\ldots$ Au terme de l'étape A.2, on a obtenu une matrice de la forme

$$\begin{pmatrix} a'_{11} & a'_{12} & \cdots & a'_{1j} & \cdots & a'_{1p} \\ 0 & a''_{22} & \cdots & a''_{2j} & \cdots & a''_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & a''_{i2} & \cdots & a''_{ij} & \cdots & a''_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & a''_{n2} & \cdots & a''_{nj} & \cdots & a''_{np} \end{pmatrix} \sim A.$$

Étape A.3. Boucle.

Au début de l'étape A.3, on a obtenu dans tous les cas de figure une matrice de la forme

$$\begin{pmatrix} a_{11}^1 & a_{12}^1 & \cdots & a_{1j}^1 & \cdots & a_{1p}^1 \\ 0 & a_{22}^1 & \cdots & a_{2j}^1 & \cdots & a_{2p}^1 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & a_{i2}^1 & \cdots & a_{ij}^1 & \cdots & a_{ip}^1 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & a_{n2}^1 & \cdots & a_{nj}^1 & \cdots & a_{nn}^1 \end{pmatrix} \sim A$$

dont la première colonne est bien celle d'une matrice échelonnée. On va donc conserver cette première colonne. Si $a_{11}^1 \neq 0$, on conserve aussi la première ligne, et l'on repart avec l'étape A.1 en l'appliquant cette fois à la sous-matrice $(n-1) \times (p-1)$ (ci-dessous à gauche : on « oublie » la première ligne et la première colonne de A); si $a_{11}^1 = 0$, on repart avec l'étape A.1 en l'appliquant à la sous-matrice $n \times (p-1)$ (à droite, on « oublie » la première colonne) :

Au terme de cette deuxième itération de la boucle, on aura obtenu une matrice de la forme

$$\begin{pmatrix} a_{11}^1 & a_{12}^1 & \cdots & a_{1j}^1 & \cdots & a_{1p}^1 \\ 0 & a_{22}^2 & \cdots & a_{2j}^2 & \cdots & a_{2p}^2 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{ij}^2 & \cdots & a_{ip}^2 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nj}^2 & \cdots & a_{np}^2 \end{pmatrix} \sim A,$$

et ainsi de suite.

Comme chaque itération de la boucle travaille sur une matrice qui a une colonne de moins que la précédente, alors au bout d'au plus p-1 itérations de la boucle, on aura obtenu une matrice échelonnée.

Partie B. Passage à une forme échelonnée réduite.

Étape B.1. Homothéties.

On repère le premier élément non nul de chaque ligne non nulle, et on multiplie cette ligne par l'inverse de cet élément. Exemple : si le premier élément non nul de la ligne i est $\alpha \neq 0$, alors on effectue $L_i \leftarrow \frac{1}{\alpha}L_i$. Ceci crée une matrice échelonnée avec des 1 en position de pivots.

Étape B.2. Élimination.

On élimine les termes situés au-dessus des positions de pivot comme précédemment, en procédant à partir du bas à droite de la matrice. Ceci ne modifie pas la structure échelonnée de la matrice en raison de la disposition des zéros dont on part.

Exemple 67

Soit

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 6 \\ -1 & 0 & 1 & 0 \end{pmatrix}.$$

A. Passage à une forme échelonnée.

Première itération de la boucle, étape A.1. Le choix du pivot est tout fait, on garde $a_{11}^1 = 1$. Première itération de la boucle, étape A.2. On ne fait rien sur la ligne 2 qui contient déjà un zéro en bonne position et on remplace la ligne 3 par $L_3 \leftarrow L_3 + L_1$. On obtient

$$A \sim \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 6 \\ 0 & 2 & 4 & 4 \end{pmatrix}.$$

Deuxième itération de la boucle, étape A.1. Le choix du pivot est tout fait, on garde $a_{22}^2 = 2$. Deuxième itération de la boucle, étape A.2. On remplace la ligne 3 avec l'opération $L_3 \leftarrow L_3 - L_2$. On obtient

$$A \sim \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 6 \\ 0 & 0 & 0 & -2 \end{pmatrix}.$$

Cette matrice est échelonnée.

B. Passage à une forme échelonnée réduite.

Étape B.1, homothéties. On multiplie la ligne 2 par $\frac{1}{2}$ et la ligne 3 par $-\frac{1}{2}$ et l'on obtient

$$A \sim \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Étape B.2, première itération. On ne touche plus à la ligne 3 et on remplace la ligne 2 par $L_2 \leftarrow L_2 - 3L_3$ et $L_1 \leftarrow L_1 - 4L_3$. On obtient

$$A \sim \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Étape B.2, deuxième itération. On ne touche plus à la ligne 2 et on remplace la ligne 1 par $L_1 \leftarrow L_1 - 2L_2$. On obtient

$$A \sim \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

qui est bien échelonnée et réduite.

5.5. Matrices élémentaires et inverse d'une matrice

Théorème 16

Soit $A \in M_n(\mathbb{K})$. La matrice A est inversible si et seulement si sa forme échelonnée réduite est la matrice identité I_n .

Démonstration

Notons U la forme échelonnée réduite de A. Et notons E le produit de matrices élémentaires tel que EA = U.

- \iff Si $U = I_n$ alors $EA = I_n$. Ainsi par définition, A est inversible et $A^{-1} = E$.
- \implies Nous allons montrer que si $U \neq I_n$, alors A n'est pas inversible.
 - Supposons $U \neq I_n$. Alors la dernière ligne de U est nulle (sinon il y aurait un pivot sur chaque ligne donc ce serait I_n).
 - Cela entraîne que U n'est pas inversible : en effet, pour tout matrice carrée V, la dernière ligne de UV est nulle ; on n'aura donc jamais $UV = I_n$.
 - Alors, A n'est pas inversible non plus : en effet, si A était inversible, on aurait U = EA et U serait inversible comme produit de matrices inversibles (E est inversible car c'est un produit de matrices élémentaires qui sont inversibles).

Remarque

Justifions maintenant notre méthode pour calculer A^{-1} .

Nous partons de (A|I) pour arriver par des opérations élémentaires sur les lignes à (I|B). Montrons que $B=A^{-1}$. Faire une opération élémentaire signifie multiplier à gauche par une des matrices élémentaires. Notons E le produit de ces matrices élémentaires. Dire que l'on arrive à la fin du processus à I signifie EA=I. Donc $A^{-1}=E$. Comme on fait les mêmes opérations sur la partie droite du tableau, alors on obtient EI=B. Donc B=E. Conséquence : $B=A^{-1}$.

Corollaire 5

Les assertions suivantes sont équivalentes :

- (i) La matrice *A* est inversible.
- (ii) Le système linéaire $AX = \begin{pmatrix} 0 \\ \vdots \\ \hat{0} \end{pmatrix}$ a une unique solution $X = \begin{pmatrix} 0 \\ \vdots \\ \hat{0} \end{pmatrix}$.
- (iii) Pour tout second membre B, le système linéaire AX = B a une unique solution X.

Démonstration

Nous avons déjà vu $(i) \Longrightarrow (ii)$ et $(i) \Longrightarrow (iii)$.

Nous allons seulement montrer $(ii) \implies (i)$. Nous raisonnons par contraposée: nous allons montrer la proposition équivalente $non(i) \implies non(ii)$. Si A n'est pas inversible, alors sa forme échelonnée réduite U contient un premier zéro sur sa diagonale, disons à la place ℓ . Alors U à la forme suivante

$$\begin{pmatrix} 1 & 0 & \cdots & c_1 & * & \cdots & * \\ 0 & \ddots & 0 & \vdots & & \cdots & * \\ 0 & 0 & 1 & c_{\ell-1} & & \cdots & * \\ 0 & \cdots & 0 & 0 & * & \cdots & * \\ 0 & \cdots & 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \vdots & \cdots & 0 & \ddots & \vdots \\ 0 & \cdots & & & \cdots & 0 & * \end{pmatrix}. \quad \text{On note} \quad X = \begin{pmatrix} -c_1 \\ \vdots \\ -c_{\ell-1} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Alors X n'est pas le vecteur nul, mais UX est le vecteur nul. Comme $A = E^{-1}U$, alors AXest le vecteur nul. Nous avons donc trouvé un vecteur non nul X tel que AX = 0.

6. Matrices triangulaires, transposition, trace, matrices symétriques

6.1. Matrices triangulaires, matrices diagonales

Soit A une matrice de taille $n \times n$. On dit que A est **triangulaire inférieure** si ses éléments au-dessus de la diagonale sont nuls, autrement dit :

$$i < j \implies a_{ij} = 0.$$

Une matrice triangulaire inférieure a la forme suivante :

$$egin{pmatrix} a_{11} & 0 & \cdots & \cdots & 0 \ a_{21} & a_{22} & \ddots & & dots \ dots & dots & \ddots & \ddots & dots \ dots & dots & \ddots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & \cdots & a_{nn} \end{pmatrix}$$

On dit que A est triangulaire supérieure si ses éléments en-dessous de la diagonale sont nuls, autrement dit:

$$i > j \implies a_{i,i} = 0.$$

Une matrice triangulaire supérieure a la forme suivante :

$$egin{pmatrix} a_{11} & a_{12} & \dots & \dots & a_{1n} \ 0 & a_{22} & \dots & \dots & a_{2n} \ dots & \ddots & \ddots & & dots \ dots & \ddots & \ddots & & dots \ dots & \ddots & \ddots & dots \ dots & \ddots & \ddots & dots \ 0 & \dots & \dots & 0 & a_{nn} \end{pmatrix}$$

Exemple 68

Deux matrices triangulaires inférieures (à gauche), une matrice triangulaire supérieure (à droite) :

$$\begin{pmatrix} 4 & 0 & 0 \\ 0 & -1 & 0 \\ 3 & -2 & 3 \end{pmatrix} \qquad \begin{pmatrix} 5 & 0 \\ 1 & -2 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

Une matrice qui est triangulaire inférieure **et** triangulaire supérieure est dite **diagonale**. Autrement dit : $i \neq j \implies a_{ij} = 0$.

Exemple 69

Exemples de matrices diagonales :

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \text{et} \qquad \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$

Exemple 70: Puissances d'une matrice diagonale

Si D est une matrice diagonale, il est très facile de calculer ses puissances D^p (par récurrence sur p) :

$$D = \begin{pmatrix} \alpha_1 & 0 & \dots & \dots & 0 \\ 0 & \alpha_2 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \alpha_{n-1} & 0 \\ 0 & \dots & \dots & 0 & \alpha_n \end{pmatrix} \implies D^p = \begin{pmatrix} \alpha_1^p & 0 & \dots & \dots & 0 \\ 0 & \alpha_2^p & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \alpha_{n-1}^p & 0 \\ 0 & \dots & \dots & 0 & \alpha_n^p \end{pmatrix}$$

Théorème 17

Une matrice A de taille $n \times n$, triangulaire, est inversible si et seulement si ses éléments diagonaux sont tous non nuls.

Démonstration

Supposons que A soit triangulaire supérieure.

- Si les éléments de la diagonale sont tous non nuls, alors la matrice A est déjà sous la forme échelonnée. En multipliant chaque ligne i par l'inverse de l'élément diagonal a_{ii} , on obtient des 1 sur la diagonale. De ce fait, la forme échelonnée réduite de A sera la matrice identité. Le théorème 16 permet de conclure que A est inversible.
- Inversement, supposons qu'au moins l'un des éléments diagonaux soit nul et notons $a_{\ell\ell}$

le premier élément nul de la diagonale. En multipliant les lignes 1 à $\ell-1$ par l'inverse de leur élément diagonal, on obtient une matrice de la forme

$$\begin{pmatrix} 1 & * & \cdots & & & \cdots & * \\ 0 & \ddots & * & \cdots & & \cdots & * \\ 0 & 0 & 1 & * & & \cdots & * \\ 0 & \cdots & 0 & 0 & * & \cdots & * \\ 0 & \cdots & 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \vdots & \cdots & 0 & \ddots & \vdots \\ 0 & \cdots & & & \cdots & 0 & * \end{pmatrix}.$$

Il est alors clair que la colonne numéro ℓ de la forme échelonnée réduite ne contiendra pas de 1 comme pivot. La forme échelonnée réduite de A ne peut donc pas être I_n et par le théorème 16, A n'est pas inversible.

Dans le cas d'une matrice triangulaire inférieure, on utilise la transposition (qui fait l'objet de la section suivante) et on obtient une matrice triangulaire supérieure. On applique alors la démonstration ci-dessus.

6.2. La transposition

Soit *A* la matrice de taille $n \times p$

$$A = \left(egin{array}{cccc} a_{11} & a_{12} & \dots & a_{1p} \ a_{21} & a_{22} & \dots & a_{2p} \ dots & dots & dots \ a_{n1} & a_{n2} & \dots & a_{np} \end{array}
ight).$$

Définition 23

On appelle $matrice\ transpos\'ee$ de A la matrice A^T de taille $p\times n$ définie par :

$$A^T = \left(egin{array}{cccc} a_{11} & a_{21} & \dots & a_{n1} \ a_{12} & a_{22} & \dots & a_{n2} \ dots & dots & dots \ a_{1p} & a_{2p} & \dots & a_{np} \end{array}
ight).$$

Autrement dit : le coefficient à la place (i,j) de A^T est a_{ji} . Ou encore la i-ème ligne de A devient la i-ème colonne de A^T (et réciproquement la j-ème colonne de A^T est la j-ème ligne de A).

Notation : La transposée de la matrice A se note aussi souvent tA .

Exemple 71

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & -6 \\ -7 & 8 & 9 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 4 & -7 \\ 2 & 5 & 8 \\ 3 & -6 & 9 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 3 \\ 1 & -5 \\ -1 & 2 \end{pmatrix}^{T} = \begin{pmatrix} 0 & 1 & -1 \\ 3 & -5 & 2 \end{pmatrix} \qquad (1 \quad -2 \quad 5)^{T} = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$$

L'opération de transposition obéit aux règles suivantes :

Théorème 18

1.
$$(A+B)^T = A^T + B^T$$

2.
$$(\alpha A)^T = \alpha A^T$$

3.
$$(A^T)^T = A$$

4.
$$(AB)^T = B^T A^T$$

5. Si A est inversible, alors A^T l'est aussi et on a $(A^T)^{-1} = (A^{-1})^T$.

Notez bien l'inversion : $(AB)^T = B^T A^T$, comme pour $(AB)^{-1} = B^{-1} A^{-1}$.

6.3. La trace

Dans le cas d'une matrice carrée de taille $n \times n$, les éléments $a_{11}, a_{22}, \dots, a_{nn}$ sont appelés les éléments diagonaux.

Sa *diagonale principale* est la diagonale $(a_{11}, a_{22}, \dots, a_{nn})$.

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Définition 24

La *trace* de la matrice A est le nombre obtenu en additionnant les éléments diagonaux de A. Autrement dit,

$$\operatorname{tr} A = a_{11} + a_{22} + \dots + a_{nn}.$$

Exemple 72

- Si
$$A = \begin{pmatrix} 2 & 1 \\ 0 & 5 \end{pmatrix}$$
, alors $tr A = 2 + 5 = 7$.

- Si
$$A = \begin{pmatrix} 2 & 1 \\ 0 & 5 \end{pmatrix}$$
, alors $\operatorname{tr} A = 2 + 5 = 7$.
- Pour $B = \begin{pmatrix} 1 & 1 & 2 \\ 5 & 2 & 8 \\ 11 & 0 & -10 \end{pmatrix}$, $\operatorname{tr} B = 1 + 2 - 10 = -7$.

Théorème 19

Soient A et B deux matrices $n \times n$. Alors :

1.
$$tr(A+B) = trA + trB$$
,

2.
$$tr(\alpha A) = \alpha tr A$$
 pour tout $\alpha \in \mathbb{K}$,

3.
$$\operatorname{tr}(A^T) = \operatorname{tr} A$$
,

4.
$$tr(AB) = tr(BA)$$
.

Démonstration

- 1. Pour tout $1 \le i \le n$, le coefficient (i, i) de A + B est $a_{ii} + b_{ii}$. Ainsi, on a bien tr(A + B) = tr(A) $+ \operatorname{tr}(B)$.
- 2. On a $\operatorname{tr}(\alpha A) = \alpha a_{11} + \dots + \alpha a_{nn} = \alpha (a_{11} + \dots + a_{nn}) = \alpha \operatorname{tr} A$.
- 3. Étant donné que la transposition ne change pas les éléments diagonaux, la trace de A est égale à la trace de A^T .

4. Notons c_{ij} les coefficients de AB. Alors par définition

$$c_{ii} = a_{i1}b_{1i} + a_{i2}b_{2i} + \cdots + a_{in}b_{ni}$$
.

Ainsi,

On peut réarranger les termes pour obtenir

$$\operatorname{tr}(AB) = a_{11}b_{11} + a_{21}b_{12} + \cdots + a_{n1}b_{1n} \\ + a_{12}b_{21} + a_{22}b_{22} + \cdots + a_{n2}b_{2n} \\ \vdots \\ + a_{1n}b_{n1} + a_{2n}b_{n2} + \cdots + a_{nn}b_{nn}.$$

En utilisant la commutativité de la multiplication dans K, la première ligne devient

$$b_{11}a_{11} + b_{12}a_{21} + \cdots + b_{1n}a_{n1}$$

qui vaut le coefficient (1,1) de BA. On note d_{ij} les coefficients de BA. En faisant de même avec les autres lignes, on voit finalement que

$$\operatorname{tr}(AB) = d_{11} + \dots + d_{nn} = \operatorname{tr}(BA).$$

6.4. Matrices symétriques

Définition 25

Une matrice A de taille $n \times n$ est **symétrique** si elle est égale à sa transposée, c'est-à-dire si

$$A = A^T$$

ou encore si $a_{ij} = a_{ji}$ pour tout i, j = 1, ..., n. Les coefficients sont donc symétriques par rapport à la diagonale.

Exemple 73

Les matrices suivantes sont symétriques :

$$\begin{pmatrix} 0 & 2 \\ 2 & 4 \end{pmatrix} \qquad \begin{pmatrix} -1 & 0 & 5 \\ 0 & 2 & -1 \\ 5 & -1 & 0 \end{pmatrix}$$

Exemple 74

Pour une matrice B quelconque, les matrices $B \cdot B^T$ et $B^T \cdot B$ sont symétriques. Preuve : $(BB^T)^T = (B^T)^T B^T = BB^T$. Idem pour B^TB .

6.5. Matrices antisymétriques

Définition 26

Une matrice A de taille $n \times n$ est **antisymétrique** si

$$A^T = -A$$
,

c'est-à-dire si $a_{ij} = -a_{ji}$ pour tout i, j = 1, ..., n.

Exemple 75

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 4 & 2 \\ -4 & 0 & -5 \\ -2 & 5 & 0 \end{pmatrix}$$

Remarquons que les éléments diagonaux d'une matrice antisymétrique sont toujours tous nuls.

Exemple 76

Toute matrice est la somme d'une matrice symétrique et d'une matrice antisymétrique.

Preuve : Soit A une matrice. Définissons $B=\frac{1}{2}(A+A^T)$ et $C=\frac{1}{2}(A-A^T)$. Alors d'une part A=B+C ; d'autre part B est symétrique, car $B^T=\frac{1}{2}(A^T+(A^T)^T)=\frac{1}{2}(A^T+A)=B$; et enfin C est antisymétrique, car $C^T=\frac{1}{2}(A^T-(A^T)^T)=-C$.

Exemple:

Pour
$$A = \begin{pmatrix} 2 & 10 \\ 8 & -3 \end{pmatrix}$$
 alors $A = \begin{pmatrix} 2 & 9 \\ 9 & -3 \end{pmatrix}$ + $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ antisymétrique

Chapitre 3

DETERMINANTS ET APPLICATIONS

Le déterminant est un nombre que l'on associe à n vecteurs (v_1, \ldots, v_n) de \mathbb{R}^n . Il correspond au volume du parallélépipède engendré par ces n vecteurs. On peut aussi définir le déterminant d'une matrice A. Le déterminant permet de savoir si une matrice est inversible ou pas, et de façon plus générale, joue un rôle important dans le calcul matriciel et la résolution de systèmes linéaires.

Dans tout ce qui suit, nous considérons des matrices à coefficients dans un corps commutatif \mathbb{K} , les principaux exemples étant $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$. Nous commençons par donner l'expression du déterminant d'une matrice en petites dimensions.

1. Déterminant en dimension 2 et 3

1.1. Matrice 2×2

En dimension 2, le déterminant est très simple à calculer :

$$\det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

C'est donc le produit des éléments sur la diagonale principale moins le produit des éléments sur l'autre diagonale.

1.2. Matrice 3×3

Soit $A \in M_3(\mathbb{K})$ une matrice 3×3 :

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Voici la formule pour le déterminant :

$$\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}.$$

Il existe un moyen facile de retenir cette formule, c'est la **règle de Sarrus** : on recopie les deux premières colonnes à droite de la matrice (colonnes grisées), puis on additionne les produits de trois termes en les regroupant selon la direction de la diagonale descendante (à gauche), et on soustrait ensuite les produits de trois termes regroupés selon la direction de la diagonale montante (à droite).

Exemple 77

Calculons le déterminant de la matrice
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
.

Par la règle de Sarrus :

$$\det A = 2 \times (-1) \times 1 + 1 \times 3 \times 3 + 0 \times 1 \times 2$$
$$-3 \times (-1) \times 0 - 2 \times 3 \times 2 - 1 \times 1 \times 1 = -6.$$

Attention : cette méthode ne s'applique pas pour les matrices de taille supérieure à 3. Nous verrons d'autres méthodes qui s'appliquent aux matrices carrées de toute taille et donc aussi aux matrices 3×3 .

1.3. Interprétation géométrique du déterminant

On va voir qu'en dimension 2, les déterminants correspondent à des aires et en dimension 3 à des volumes.

Donnons nous deux vecteurs $v_1 = \binom{a}{c}$ et $v_2 = \binom{b}{d}$ du plan \mathbb{R}^2 . Ces deux vecteurs v_1, v_2 déterminent un parallélogramme.

Proposition 28

L'aire du parallélogramme est donnée par la valeur absolue du déterminant :

$$\mathscr{A} = \left| \det(v_1, v_2) \right| = \left| \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right|.$$

De manière similaire, trois vecteurs de l'espace \mathbb{R}^3 :

$$v_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}$$
 $v_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix}$ $v_3 = \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}$

définissent un parallélépipède.

À partir de ces trois vecteurs on définit, en juxtaposant les colonnes, une matrice et un déterminant :

$$\det(v_1, v_2, v_3) = \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Proposition 29

Le volume du parallélépipède est donné par la valeur absolue du déterminant :

$$\mathcal{V} = \left| \det(v_1, v_2, v_3) \right|.$$

On prendra comme unité d'aire dans \mathbb{R}^2 l'aire du carré unité dont les côtés sont les vecteurs de la base canonique $(\binom{1}{0},\binom{0}{1})$, et comme unité de volume dans \mathbb{R}^3 , le volume du cube unité.

Démonstration

Traitons le cas de la dimension 2. Le résultat est vrai si $v_1 = \begin{pmatrix} a \\ 0 \end{pmatrix}$ et $v_2 = \begin{pmatrix} 0 \\ d \end{pmatrix}$. En effet, dans ce cas on a affaire à un rectangle de côtés |a| et |d|, donc d'aire |ad|, alors que le déterminant de la matrice $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$ vaut ad.

Si les vecteurs v_1 et v_2 sont colinéaires alors le parallélogramme est aplati, donc d'aire nulle ; on calcule facilement que lorsque deux vecteurs sont colinéaires, leur déterminant est nul.

Dans la suite on suppose que les vecteurs ne sont pas colinéaires. Notons $v_1 = \binom{a}{c}$ et $v_2 = \binom{b}{d}$. Si $a \neq 0$, alors $v_2' = v_2 - \frac{b}{a}v_1$ est un vecteur vertical : $v_2' = \binom{0}{d - \frac{b}{a}c}$.

L'opération de remplacer v_2 par v_2' ne change pas l'aire du parallélogramme (c'est comme si on avait coupé le triangle et on l'avait collé à la place le triangle.

Cette opération ne change pas non plus le déterminant car on a toujours :

$$\det(v_1, v_2') = \det\begin{pmatrix} a & 0 \\ b & d - \frac{b}{a}c \end{pmatrix} = ad - bc = \det(v_1, v_2).$$

On pose alors $v_1' = {a \choose 0}$: c'est un vecteur horizontal. Encore une fois l'opération de remplacer v_1 par v_1' ne change ni l'aire des parallélogrammes ni le déterminant car

$$\det(v_1', v_2') = \det \begin{pmatrix} a & 0 \\ 0 & d - \frac{b}{a}c \end{pmatrix} = ad - bc = \det(v_1, v_2).$$

On s'est donc ramené au premier cas d'un rectangle aux côtés parallèles aux axes, pour lequel le résultat est déjà acquis.

Le cas tridimensionnel se traite de façon analogue.

2. Définition du déterminant

Cette partie est consacrée à la définition du déterminant. La définition du déterminant est assez abstraite et il faudra attendre encore un peu pour pouvoir vraiment calculer des déterminants.

2.1. Définition et premières propriétés

Nous allons caractériser le déterminant comme une application, qui à une matrice carrée associe un scalaire :

$$\det: M_n(\mathbb{K}) \longrightarrow \mathbb{K}$$

Théorème 20: Existence et d'unicité du déterminant

Il existe une unique application de $M_n(\mathbb{K})$ dans \mathbb{K} , appelée **déterminant**, telle que

- (i) le déterminant est linéaire par rapport à chaque vecteur colonne, les autres étant fixés;
- (ii) si une matrice A a deux colonnes identiques, alors son déterminant est nul;
- (iii) le déterminant de la matrice identité I_n vaut 1.

Une preuve de l'existence du déterminant sera donnée plus bas en section 2.4.

On note le déterminant d'une matrice $A = (a_{ij})$ par :

$$\det A \qquad ext{ou} \qquad \left| egin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}
ight|.$$

Si on note C_i la i-ème colonne de A, alors

$$\det A = \begin{vmatrix} C_1 & C_2 & \cdots & C_n \end{vmatrix} = \det(C_1, C_2, \dots, C_n).$$

Avec cette notation, la propriété (i) de linéarité par rapport à la colonne j s'écrit : pour tout $\lambda, \mu \in \mathbb{K}$, $\det(C_1, \dots, \lambda C_j + \mu C'_j, \dots, C_n) = \lambda \det(C_1, \dots, C_j, \dots, C_n) + \mu \det(C_1, \dots, C'_j, \dots, C_n)$, soit

$$\begin{vmatrix} a_{11} & \cdots & \lambda a_{1j} + \mu a'_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & \lambda a_{ij} + \mu a'_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & \lambda a_{nj} + \mu a'_{nj} & \cdots & a_{nn} \end{vmatrix}$$

$$= \lambda \begin{vmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix} + \mu \begin{vmatrix} a_{11} & \cdots & a'_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a'_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a'_{nj} & \cdots & a_{nn} \end{vmatrix}$$

Exemple 78

$$\begin{vmatrix} 6 & 5 & 4 \\ 7 & -10 & -3 \\ 12 & 25 & -1 \end{vmatrix} = 5 \times \begin{vmatrix} 6 & 1 & 4 \\ 7 & -2 & -3 \\ 12 & 5 & -1 \end{vmatrix}$$

Car la seconde colonne est un multiple de 5.

$$\begin{vmatrix} 3 & 2 & 4-3 \\ 7 & -5 & 3-2 \\ 9 & 2 & 10-4 \end{vmatrix} = \begin{vmatrix} 3 & 2 & 4 \\ 7 & -5 & 3 \\ 9 & 2 & 10 \end{vmatrix} - \begin{vmatrix} 3 & 2 & 3 \\ 7 & -5 & 2 \\ 9 & 2 & 4 \end{vmatrix}$$

Par linéarité sur la troisième colonne.

Remarque

- Une application de $M_n(\mathbb{K})$ dans \mathbb{K} qui satisfait la propriété (i) est appelée *forme multilinéaire*.
- Si elle satisfait (ii), on dit qu'elle est *alternée*.

Le déterminant est donc la seule forme multilinéaire alternée qui prend comme valeur 1 sur la matrice I_n . Les autres formes multilinéaires alternées sont les multiples scalaires du déterminant. On verra plus loin comment on peut calculer en pratique les déterminants.

2.2. Premières propriétés

Nous connaissons déjà le déterminant de deux matrices :

- le déterminant de la matrice nulle 0_n vaut 0 (par la propriété (ii)),
- le déterminant de la matrice identité I_n vaut 1 (par la propriété (iii)).

Donnons maintenant quelques propriétés importantes du déterminant : comment se comporte le déterminant face aux opérations élémentaires sur les colonnes?

Proposition 30

Soit $A \in M_n(\mathbb{K})$ une matrice ayant les colonnes C_1, C_2, \dots, C_n . On note A' la matrice obtenue par une des opérations élémentaires sur les colonnes, qui sont :

- 1. $C_i \leftarrow \lambda C_i$ avec $\lambda \neq 0$: A' est obtenue en multipliant une colonne de A par un scalaire non nul. Alors $\det A' = \lambda \det A$.
- 2. $C_i \leftarrow C_i + \lambda C_j$ avec $\lambda \in \mathbb{K}$ (et $j \neq i$): A' est obtenue en ajoutant à une colonne de A un multiple d'une autre colonne de A. Alors $\det A' = \det A$.
- 3. $C_i \leftrightarrow C_i : A'$ est obtenue en échangeant deux colonnes distinctes de A. Alors $\det A' =$ $-\det A$.

Plus généralement pour (2) : l'opération $C_i \leftarrow C_i + \sum_{j=1}^n \lambda_j C_j$ d'ajouter une combinaison linéaire des autres colonnes conserve le déterminant.

Attention! Échanger deux colonnes change le signe du déterminant.

Démonstration

- 1. La première propriété découle de la partie (i) de la définition du déterminant.
- 2. Soit $A = (C_1 \cdots C_i \cdots C_j \cdots C_n)$ une matrice représentée par ses vecteurs colonnes C_k . L'opération $C_i \leftarrow C_i + \lambda C_j$ transforme la matrice A en la matrice $A' = (C_1 \cdots C_i + \lambda C_j \mid \cdots \mid C_i + \lambda C$ Par linéarité par rapport à la colonne i, on sait que

$$\det A' = \det A + \lambda \det \begin{pmatrix} C_1 & \cdots & C_j & \cdots & C_j & \cdots & C_n \end{pmatrix}.$$

Or les colonnes i et j de la matrice $(C_1 \cdots C_j \cdots C_j \cdots C_n)$ sont identiques, donc son déterminant est nul.

3. Si on échange les colonnes i et j de $A=\begin{pmatrix} C_1 & \cdots & C_i & \cdots & C_j & \cdots & C_n \end{pmatrix}$ on obtient la matrice $A' = \begin{pmatrix} C_1 & \cdots & C_i & \cdots & C_j & \cdots & C_n \end{pmatrix}$, où le vecteur C_j se retrouve en colonne i et le vecteur C_i en colonne j. Introduisons alors une troisième matrice $B = (C_1 \cdots C_i + C_j \cdots | C_j + C_i)$ Cette matrice a deux colonnes distinctes égales, donc d'après (ii), $\det B = 0$.

D'un autre côté, nous pouvons développer ce déterminant en utilisant la propriété (i) de multilinéarité, c'est-à-dire linéarité par rapport à chaque colonne. Ceci donne

$$0 = \det B = \det (C_1 \cdots C_i + C_j \cdots C_j + C_i \cdots C_n)$$

$$= \det (C_1 \cdots C_i \cdots C_j + C_i \cdots C_n)$$

$$+ \det (C_1 \cdots C_j \cdots C_j + C_i \cdots C_n)$$

$$= \det (C_1 \cdots C_i \cdots C_j \cdots C_n)$$

$$+ \det (C_1 \cdots C_i \cdots C_i \cdots C_n)$$

$$+ \det (C_1 \cdots C_j \cdots C_j \cdots C_n)$$

$$+ \det (C_1 \cdots C_j \cdots C_j \cdots C_n)$$

$$= \det (C_1 \cdots C_j \cdots C_i \cdots C_n)$$

$$= \det (C_1 \cdots C_j \cdots C_j \cdots C_n)$$

encore grâce à (i) pour les deux déterminants nuls du milieu.

Corollaire 6

Si une colonne C_i de la matrice A est combinaison linéaire des autres colonnes, alors det A=0.

2.3. Déterminants de matrices particulières

Calculer des déterminants n'est pas toujours facile. Cependant il est facile de calculer le déterminant de matrices triangulaires.

Proposition 31

Le déterminant d'une matrice triangulaire supérieure (ou inférieure) est égal au produit des termes diagonaux.

Autrement dit, pour une matrice triangulaire $A = (a_{ij})$ on a

Comme cas particulièrement important on obtient :

Corollaire 7

Le déterminant d'une matrice diagonale est égal au produit des termes diagonaux.

Démonstration

On traite le cas des matrices triangulaires supérieures (le cas des matrices triangulaires inférieures est identique). Soit donc

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix}.$$

La façon de procéder utilise l'algorithme du pivot de Gauss (sur les colonnes, alors qu'il est en général défini sur les lignes). Par linéarité par rapport à la première colonne, on a

$$\det A = a_{11} \begin{vmatrix} 1 & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{vmatrix}.$$

On soustrait maintenant de chaque colonne C_j , pour $j \ge 2$, la colonne C_1 multipliée par $-a_{1j}$. C'est l'opération élémentaire $C_j \leftarrow C_j - a_{1j}C_1$. Ceci ne modifie pas le déterminant d'après la section précédente. Il vient donc

$$\det A = a_{11} \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{vmatrix}.$$

Par linéarité par rapport à la deuxième colonne, on en déduit

$$\det A = a_{11} \cdot a_{22} \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{vmatrix},$$

et l'on continue ainsi jusqu'à avoir parcouru toutes les colonnes de la matrice. Au bout de n étapes, on a obtenu

$$\det A = a_{11} \cdot a_{22} \cdot a_{33} \cdots a_{nn} egin{bmatrix} 1 & 0 & 0 & \cdots & 0 \ 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & \cdots & 0 \ dots & dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} = a_{11} \cdot a_{22} \cdot a_{33} \cdots a_{nn} \cdot \det I_n,$$

d'où le résultat, car $\det I_n = 1$, par (iii).

2.4. Démonstration de l'existence du déterminant

La démonstration du théorème d'existence du déterminant, exposée ci-dessous, est ardue et pourra être gardée pour une seconde lecture. Par ailleurs, l'unicité du déterminant, plus difficile, est admise.

Pour démontrer l'existence d'une application satisfaisant aux conditions (i), (ii), (iii) du théorèmedéfinition 20, on donne une formule qui, de plus, nous offre une autre méthode de calcul pratique du déterminant d'une matrice, et on vérifie que les propriétés caractéristiques des déterminants sont satisfaites. On retrouvera cette formule, dite de développement par rapport à une ligne, en section 4.2.

Notation. Soit $A \in M_n(\mathbb{K})$ une matrice carrée de taille $n \times n$. Il est évident que si l'on supprime une ligne et une colonne dans A, la matrice obtenue a n-1 lignes et n-1 colonnes. On note $A_{i,j}$ ou A_{ij} la matrice obtenue en supprimant la i-ème ligne et la j-ème colonne de A. Le théorème d'existence peut s'énoncer de la façon suivante :

Théorème 21: Existence du déterminant

Les formules suivantes définissent par récurrence, pour $n \ge 1$, une application de $M_n(\mathbb{K})$ dans \mathbb{K} qui satisfait aux propriétés (i), (ii), (iii) caractérisant le déterminant :

- **Déterminant d'une matrice** 1×1 . Si $a \in \mathbb{K}$ et A = (a), det A = a.
- Formule de récurrence. Si $A = (a_{i,j})$ est une matrice carrée de taille $n \times n$, alors pour tout i fixé

$$\det A = (-1)^{i+1} a_{i,1} \det A_{i,1} + (-1)^{i+2} a_{i,2} \det A_{i,2} + \dots + (-1)^{i+n} a_{i,n} \det A_{i,n}.$$

Démonstration

La preuve se fait par récurrence sur l'ordre des matrices.

Initialisation. Dans le cas n = 1, il est évident que toutes les propriétés souhaitées sont satisfaites.

Hérédité. Supposons maintenant que l'application det : $M_{n-1}(\mathbb{K}) \to \mathbb{K}$ soit définie et satisfasse les propriétés (i), (ii) et (iii). Pour faciliter l'exposition, la preuve va être faite pour i = n.

Soit $A = (a_{i,j})$ notée aussi $A = (C_1 \cdots C_n)$ où $C_j = \begin{pmatrix} a_{1,j} \\ \vdots \\ a_{n,j} \end{pmatrix}$ est la j-ème colonne de A. On notera aussi $\bar{C}_j = \begin{pmatrix} a_{1,j} \\ \vdots \\ a_{n,j} \end{pmatrix}$ la colonne à (n-1) éléments, égale à C_j privée de son dernier coefficient.

- Propriété (i).

Il s'agit de vérifier que l'application

$$A \mapsto \det A = (-1)^{n+1} a_{n,1} \det A_{n,1} + (-1)^{n+2} a_{n,2} \det A_{n,2} + \dots + (-1)^{n+n} a_{n,n} \det A_{n,n}$$

est linéaire par rapport à chaque colonne. Nous allons le prouver pour la dernière colonne, c'est-à-dire que :

$$\det(C_1, \dots, C_{n-1}, \lambda C'_n + \mu C''_n) = \lambda \det(C_1, \dots, C_{n-1}, C'_n) + \mu \det(C_1, \dots, C_{n-1}, C''_n).$$

Notons A,A',A'' les matrices $(C_1\cdots C_{n-1}\cdots \lambda C'_n+\mu C''_n), (C_1\cdots C_{n-1}\cdots C'_n)$ et $A_{n,j},A''_{n,j}$, les sous-matrices extraites en enlevant n-ème ligne et la j-ème colonne. En comparant les différentes matrices, on constate que $a'_{n,j}=a''_{n,j}=a_{n,j}$ si j< n tandis que $a_{n,n}=\lambda a'_{n,n}+\mu a''_{n,n}$. Similairement, $A'_{n,n}=A''_{n,n}=A_{n,n}=(\bar{C}_1\cdots \bar{C}_{n-1})$ puisque la n-ème colonne est enlevée. Par contre, pour $j< n, A_{n,j},A'_{n,j},A''_{n,j}$ ont leurs (n-2) premières colonnes identiques, et diffèrent par la dernière. Comme ce sont des déterminants de taille n-1, on peut utiliser l'hypothèse de récurrence :

$$\begin{split} \det &A_{n,j} &= \det(\bar{C}_1, \dots, \bar{C}_{j-1}, \bar{C}_{j+1}, \dots, \bar{C}_{n-1}, \lambda \bar{C}'_n + \mu \bar{C}''_n) \\ &= \lambda \det(\bar{C}_1, \dots, \bar{C}_{j-1}, \bar{C}_{j+1}, \dots, \bar{C}_{n-1}, \bar{C}'_n) \\ &+ \mu \det(\bar{C}_1, \dots, \bar{C}_{j-1}, \bar{C}_{j+1}, \dots, \bar{C}_{n-1}, \bar{C}''_n) \\ &= \lambda \det &A'_{n,j} + \mu \det &A''_{n,j} \end{split}$$

Finalement, en mettant de côté dans la somme le n-ème terme :

$$\begin{split} \det A &= (-1)^{n+1} a_{n,1} \det A_{n,1} + (-1)^{n+2} a_{n,2} \det A_{1,2} + \dots + (-1)^{n+n} a_{n,n} \det A_{n,n} \\ &= \left(\sum_{j=1}^{n-1} (-1)^{n+j} a_{n,j} \det A_{n,j} \right) + (-1)^{2n} a_{n,n} \det A_{n,n} \\ &= \left(\sum_{j=1}^{n-1} (-1)^{n+j} a_{n,j} (\lambda \det A'_{n,j} + \mu \det A''_{n,j}) \right) + (-1)^{2n} (\lambda a'_{n,n} + \mu a''_{n,n}) \det A_{n,n} \\ &= \lambda \sum_{j=1}^{n} (-1)^{n+j} a'_{n,j} \det A'_{n,j} + \mu \sum_{j=1}^{n} (-1)^{n+j} a''_{n,j} \det A''_{n,j} \\ &= \lambda \det A' + \mu \det A'' \end{split}$$

La démonstration est similaire pour les autres colonnes (on peut aussi utiliser la propriété (ii) ci-dessous).

- Propriété (ii).

Supposons que $C_r = C_s$ pour r < s. Si k est différent de r et de s, la matrice $A_{n,k}$ possède encore deux colonnes identiques \bar{C}_r et \bar{C}_s . Par hypothèse de récurrence, $\det A_{n,k} = 0$. Par conséquent,

$$\det A = (-1)^{n+r} \det A_{n,r} + (-1)^{n+s} \det A_{n,s}$$

Or $A_{n,r}$ et $A_{n,s}$ possèdent toutes les deux les mêmes colonnes : $A_{n,r} = (\bar{C}_1 \cdots \bar{C}_{r-1} \bar{C}_{r+1} \cdots \bar{C}_s \cdots \bar{C}_n)$ et $A_{n,s} = (\bar{C}_1 \cdots \bar{C}_r \cdots \bar{C}_{s-1} \bar{C}_{s+1} \cdots \bar{C}_n)$, car $\bar{C}_r = \bar{C}_s$. Pour passer de $A_{n,s}$ à $A_{n,r}$, il faut faire s-1

r-1 échanges de colonnes $\bar{C}_j \leftrightarrow \bar{C}_{j+1}$ successifs, qui par hypothèse de récurrence changent le signe par $(-1)^{s-r-1}$: $\det A_{n,s} = (-1)^{s-r-1} \det A_{n,r}$. On conclut immédiatement que

$$\det A = ((-1)^{n+r} + (-1)^{n+2s-r-1}) \det A_{n,r} = 0.$$

- **Propriété** (iii). Si l'on considère pour A la matrice identité I_n , ses coefficients $a_{i,j}$ sont tels que :

$$i = j \Longrightarrow a_{i,j} = 1$$

 $i \neq j \Longrightarrow a_{i,j} = 0$

Donc $\det I_n = (-1)^{n+n} \det A_{n,n}$. Or, la matrice $A_{n,n}$ obtenue à partir de la matrice identité en supprimant la dernière ligne et la dernière colonne est la matrice identité de taille $(n-1) \times (n-1)$. Par hypothèse de récurrence, on a $\det I_{n-1} = 1$. On en déduit $\det I_n = 1$.

Conclusion. Le principe de récurrence termine la preuve du théorème d'existence du déterminant.

Remarque

La définition donnée ci-dessus suppose le choix d'un indice i de ligne (i = n dans la démonstration) et peut paraître arbitraire. Alors se pose naturellement la question : que se passe-t-il si l'on prend une autre valeur de i? L'unicité du déterminant d'une matrice permet de répondre : quelle que soit la ligne choisie, le résultat est le même.

3. Propriétés du déterminant

Nous allons voir trois propriétés importantes du déterminant : le déterminant d'un produit de matrices, le déterminant de l'inverse d'une matrice, le déterminant de la transposée d'une matrice. Pour prouver ces propriétés, nous aurons besoin des matrices élémentaires.

3.1. Déterminant et matrices élémentaires

Pour chacune des opérations élémentaires sur les colonnes d'une matrice A, on associe une matrice élémentaire E, telle que la matrice obtenue par l'opération élémentaire sur A soit $A' = A \times E$.

- 1. $C_i \leftarrow \lambda C_i$ avec $\lambda \neq 0$: $E_{C_i \leftarrow \lambda C_i} = \text{diag}(1, ..., 1, \lambda, 1, ..., 1)$ est la matrice diagonale ne comportant que des 1, sauf en position (i, i);
- 2. $C_i \leftarrow C_i + \lambda C_j$ avec $\lambda \in \mathbb{K}$ (et $j \neq i$): $E_{C_i \leftarrow C_i + \lambda C_j}$ est comme la matrice identité, sauf en position (j,i) où son coefficient vaut λ ;
- 3. $C_i \leftrightarrow C_j : E_{C_i \leftrightarrow C_j}$ est comme la matrice identité, sauf que ses coefficients (i, i) et (j, j) s'annulent, tandis que les coefficients (i, j) et (j, i) valent 1.

Nous allons détailler le cas de chaque opération et son effet sur le déterminant :

Proposition 32

- 1. $\det E_{C_i \leftarrow \lambda C_i} = \lambda$
- 2. $\det E_{C_i \leftarrow C_i + \lambda C_i} = +1$
- 3. $\det E_{C_i \leftrightarrow C_i} = -1$
- 4. Si E est une des matrices élémentaires ci-dessus, $\det(A \times E) = \det A \times \det E$

Démonstration

Nous utilisons les propositions 30 et 31.

- 1. La matrice $E_{C_i \leftarrow \lambda C_i}$ est une matrice diagonale, tous les éléments diagonaux valent 1, sauf un qui vaut λ . Donc son déterminant vaut λ .
- 2. La matrice $E_{C_i \leftarrow C_i + \lambda C_j}$ est triangulaire inférieure ou supérieure avec des 1 sur la diagonale. Donc son déterminant vaut 1.
- 3. La matrice $E_{C_i \rightarrow C_j}$ est aussi obtenue en échangeant les colonnes i et j de la matrice I_n . Donc son déterminant vaut -1.
- 4. La formule $\det A \times E = \det A \times \det E$ est une conséquence immédiate de la proposition 30.

Cette proposition nous permet de calculer le déterminant d'une matrice A de façon relativement simple, en utilisant l'algorithme de Gauss. En effet, si en multipliant successivement A par des matrices élémentaires E_1, \ldots, E_r on obtient une matrice T échelonnée, donc triangulaire

$$T = A \cdot E_1 \cdots E_r$$

alors, en appliquant *r*-fois la proposition précédente, on obtient :

$$\det T = \det(A \cdot E_1 \cdots E_r)$$

$$= \det(A \cdot E_1 \cdots E_{r-1}) \cdot \det E_r$$

$$= \cdots$$

$$= \det A \cdot \det E_1 \cdot \det E_2 \cdots \det E_r$$

Comme on sait calculer le déterminant de la matrice triangulaire T et les déterminants des matrices élémentaires E_i , on en déduit le déterminant de A.

En pratique cela ce passe comme sur l'exemple suivant.

Exemple 79

Calculer det *A*, où
$$A = \begin{pmatrix} 0 & 3 & 2 \\ 1 & -6 & 6 \\ 5 & 9 & 1 \end{pmatrix}$$

$$\det A = \det \begin{pmatrix} 0 & 3 & 2 \\ 1 & -6 & 6 \\ 5 & 9 & 1 \end{pmatrix}$$

$$(\text{opération } C_1 \leftrightarrow C_2 \text{ pour avoir un pivot en haut à gauche})$$

$$= (-1) \times \det \begin{pmatrix} 3 & 0 & 2 \\ -6 & 1 & 6 \\ 9 & 5 & 1 \end{pmatrix}$$

$$(C_1 \leftarrow \frac{1}{3}C_1, \text{ linéarité par rapport à la première colonne})$$

$$= (-1) \times 3 \times \det \begin{pmatrix} 1 & 0 & 2 \\ -2 & 1 & 6 \\ 3 & 5 & 1 \end{pmatrix}$$

$$= (-1) \times 3 \times \det \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 10 \\ 3 & 5 & -5 \end{pmatrix}$$

$$= (-1) \times 3 \times \det \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 5 & -55 \end{pmatrix}$$

$$= (-1) \times 3 \times \det \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 5 & -55 \end{pmatrix}$$

$$= (-1) \times 3 \times (-55) \quad \text{car la matrice est triangulaire}$$

$$= 165$$

3.2. Déterminant d'un produit

Théorème 22

$$\det(AB) = \det A \cdot \det B$$

Démonstration

La preuve utilise les matrices élémentaires; en effet, par la proposition 32, pour A une matrice quelconque et E une matrice d'une opération élémentaire alors :

$$\det(A \times E) = \det A \times \det E$$
.

Passons maintenant à la démonstration du théorème. On a vu dans le chapitre « Matrices » qu'une matrice B est inversible si et seulement si sa forme échelonnée réduite par le pivot de Gauss est égale à I_n , c'est-à-dire qu'il existe des matrices élémentaires E_i telles que

$$BE_1 \cdots E_r = I_n$$
.

D'après la remarque préliminaire appliquée r fois, on a

$$\det(B \cdot E_1 E_2 \cdots E_r) = \det B \cdot \det E_1 \cdot \det E_2 \cdots \det E_r = \det I_n = 1$$

On en déduit

$$\det B = \frac{1}{\det E_1 \cdots \det E_r}$$

Pour la matrice AB, il vient

$$(AB)\cdot (E_1\cdots E_r)=A\cdot I_n=A$$
.

Ainsi

 $\det(ABE_1\cdots E_r) = \det(AB)\cdot \det E_1\cdots \det E_r = \det A.$

Donc:

$$\det(AB) = \det A \times \frac{1}{\det E_1 \cdots \det E_r} = \det A \times \det B.$$

D'où le résultat dans ce cas.

Si B n'est pas inversible, $\operatorname{rg} B < n$, il existe donc une relation de dépendance linéaire entre les colonnes de B, ce qui revient à dire qu'il existe un vecteur colonne X tel que BX = 0. Donc $\det B = 0$, d'après le corollaire 6. Or BX = 0 implique (AB)X = 0. Ainsi AB n'est pas inversible non plus, d'où $\det(AB) = 0 = \det A \det B$ dans ce cas également.

3.3. Déterminant des matrices inversibles

Comment savoir si une matrice est inversible? Il suffit de calculer son déterminant!

Corollaire 8

Une matrice carrée A est inversible si et seulement si son déterminant est non nul. De plus si A est inversible, alors :

$$\det\left(A^{-1}\right) = \frac{1}{\det A}$$

Démonstration

- Si A est inversible, il existe une matrice A^{-1} telle que $AA^{-1} = I_n$, donc $\det(A)\det(A^{-1}) = \det I_n = 1$. On en déduit que $\det A$ est non nul et $\det(A^{-1}) = \frac{1}{\det A}$.
- Si A n'est pas inversible, alors elle est de rang strictement inférieur à n. Il existe donc une relation de dépendance linéaire entre ses colonnes, c'est-à-dire qu'au moins l'une de ses colonnes est combinaison linéaire des autres. On en déduit det A=0.

Exemple 80

Deux matrices semblables ont même déterminant.

En effet : soit $B = P^{-1}AP$ avec $P \in GL_n(\mathbb{K})$ une matrice inversible. Par multiplicativité du déterminant, on en déduit que :

$$\det B = \det(P^{-1}AP) = \det P^{-1}\det A\det P = \det A,$$

puisque $\det P^{-1} = \frac{1}{\det P}$.

3.4. Déterminant de la transposée

Corollaire 9

$$\det\left(A^{T}\right) = \det A$$

Démonstration

Commençons par remarquer que la matrice E d'une opération élémentaire est soit triangulaire (substitution), soit symétrique c'est-à-dire égale à sa transposée (échange de lignes et homothétie). On vérifie facilement que $\det E^T = \det E$.

Supposons d'abord que A soit inversible. On peut alors l'écrire comme produit de matrices élémentaires, $A = E_1 \cdots E_r$. On a alors

$$A^T = E_r^T \cdots E_1^T$$

et

$$\det(A^T) = \det(E_r^T) \cdots \det(E_1^T) = \det(E_r) \cdots \det(E_1) = \det(A).$$

D'autre part, si A n'est pas inversible, alors A^T n'est pas inversible non plus, et $\det A = 0 = \det A^T$.

Remarque

Une conséquence du dernier résultat, est que par transposition, tout ce que l'on a dit des déterminants à propos des colonnes est vrai pour les lignes. Ainsi, le déterminant est multilinéaire par rapport aux lignes, si une matrice a deux lignes égales, son déterminant est nul, on ne modifie pas un déterminant en ajoutant à une ligne une combinaison linéaire des autres lignes, etc.

Voici le détail pour les opérations élémentaires sur les lignes :

- 1. $L_i \leftarrow \lambda L_i$ avec $\lambda \neq 0$: le déterminant est multiplié par λ .
- 2. $L_i \leftarrow L_i + \lambda L_j$ avec $\lambda \in \mathbb{K}$ (et $j \neq i$): le déterminant ne change pas.
- 3. $L_i \leftrightarrow L_j$: le déterminant change de signe.

4. Calculs de déterminants

Une des techniques les plus utiles pour calculer un déterminant est le « développement par rapport à une ligne (ou une colonne) ».

4.1. Cofacteur

Définition 27

Soit $A = (a_{ij}) \in M_n(\mathbb{K})$ une matrice carrée.

- On note A_{ij} la matrice extraite, obtenue en effaçant la ligne i et la colonne j de A.
- Le nombre $\det A_{ij}$ est un *mineur d'ordre* n-1 de la matrice A.
- Le nombre $C_{ij} = (-1)^{i+j} \det A_{ij}$ est le **cofacteur** de A relatif au coefficient a_{ij} .

$$A_{ij} = \begin{pmatrix} a_{1,1} & \dots & a_{1,j-1} & a_{1,j+1} & \dots & a_{1,n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{i-1,1} & \dots & a_{i-1,j-1} & a_{i-1,j+1} & \dots & a_{i-1,n} \\ a_{i+1,1} & \dots & a_{i+1,j-1} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \vdots & & & \vdots & & & \vdots \\ a_{n,1} & \dots & a_{n,j-1} & a_{n,j+1} & \dots & a_{n,n} \end{pmatrix}$$

Exemple 81

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
. Calculons $A_{11}, C_{11}, A_{32}, C_{32}$.

Pour déterminer si $C_{ij} = + \det A_{ij}$ ou $C_{ij} = - \det A_{ij}$, on peut se souvenir que l'on associe des signes en suivant le schéma d'un échiquier :

$$A = \begin{pmatrix} + & - & + & - & \dots \\ - & + & - & + & \dots \\ + & - & + & - & \dots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Donc $C_{11} = + \det A_{11}$, $C_{12} = - \det A_{12}$, $C_{21} = - \det A_{21}$...

4.2. Développement suivant une ligne ou une colonne

Théorème 23: Développement suivant une ligne ou une colonne

Formule de développement par rapport à la ligne i:

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij} = \sum_{j=1}^{n} a_{ij} C_{ij}$$

Formule de développement par rapport à la colonne j:

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij} = \sum_{i=1}^{n} a_{ij} C_{ij}$$

Démonstration

Nous avons déjà démontré la formule de développement suivant une ligne lors de la démonstration du théorème 20 d'existence et d'unicité du déterminant. Comme $\det A = \det A^T$, on en déduit la formule de développement par rapport à une colonne.

Exemple 82

Retrouvons la formule des déterminants 3×3 , déjà présentée par la règle de Sarrus, en développement par rapport à la première ligne.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{12}(a_{21}a_{33} - a_{31}a_{23})$$

$$+ a_{13}(a_{21}a_{32} - a_{31}a_{22})$$

$$= a_{11}a_{22}a_{33} - a_{11}a_{32}a_{23} + a_{12}a_{31}a_{23} - a_{12}a_{21}a_{33}$$

$$+ a_{13}a_{21}a_{32} - a_{13}a_{31}a_{22}.$$

4.3. Exemple

Exemple 83

$$A = \begin{pmatrix} 4 & 0 & 3 & 1 \\ 4 & 2 & 1 & 0 \\ 0 & 3 & 1 & -1 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

On choisit de développer par rapport à la seconde colonne (car c'est là qu'il y a le plus de zéros) :

$$\det A = 0C_{12} + 2C_{22} + 3C_{32} + 0C_{42}$$

(développement par rapport à la deuxième colonne)

on n'oublie pas les signes des cofacteurs et on recommence

en développant chacun de ces deux déterminants 3 × 3

$$= +2\left(+4\begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} - 0\begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} + 1\begin{vmatrix} 3 & 1 \\ 1 & -1 \end{vmatrix}\right)$$

(par rapport à la première colonne)

$$-3\left(-4\begin{vmatrix}3&1\\2&3\end{vmatrix}+1\begin{vmatrix}4&1\\1&3\end{vmatrix}-0\begin{vmatrix}4&3\\1&2\end{vmatrix}\right)$$

(par rapport à la deuxième ligne)

$$= +2(+4\times 5 - 0 + 1\times (-4)) - 3(-4\times 7 + 1\times 11 - 0)$$

= 83

Remarque

Le développement par rapport à une ligne permet de ramener le calcul d'un déterminant $n \times n$ à celui de n déterminants $(n-1) \times (n-1)$. Par récurrence descendante, on se ramène ainsi au calcul de n! sous-déterminants, ce qui devient vite fastidieux. C'est pourquoi le développement par rapport à une ligne ou une colonne n'est utile pour calculer explicitement un déterminant que si la matrice de départ a beaucoup de zéros. On commence donc souvent par faire apparaître un maximum de zéros par des opérations élémentaires sur les lignes et/ou les colonnes qui ne modifient pas le déterminant, avant de développer le déterminant suivant la ligne ou la colonne qui a le plus de zéros.

4.4. Inverse d'une matrice

Soit $A \in M_n(\mathbb{K})$ une matrice carrée.

Nous lui associons la matrice C des cofacteurs, appelée **comatrice**, et notée Com(A):

$$C = (C_{ij}) = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{pmatrix}$$

Théorème 24

Soient A une matrice inversible, et C sa comatrice. On a alors

$$A^{-1} = \frac{1}{\det A} \, C^T$$

Exemple 84

Soit $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$. Le calcul donne que $\det A = 2$. La comatrice C s'obtient en calculant 9 dé-

terminants 2×2 (sans oublier les signes +/-). On trouve :

$$C = egin{pmatrix} 1 & 1 & -1 \ -1 & 1 & 1 \ 1 & -1 & 1 \end{pmatrix} \quad ext{ et donc } \quad A^{-1} = rac{1}{\det A} \cdot C^T = rac{1}{2} egin{pmatrix} 1 & -1 & 1 \ 1 & 1 & -1 \ -1 & 1 & 1 \end{pmatrix}$$

La démonstration se déduit directement du lemme suivant.

Lemme 2

Soit A une matrice (inversible ou pas) et C sa comatrice. Alors $AC^T = (\det A)I_n$, autrement dit

$$\sum_{k} a_{ik} C_{jk} = \begin{cases} \det A & \text{si } i = j \\ 0 & \text{sinon} \end{cases}$$

Démonstration

Le terme de position (i,j) dans AC^T est $\sum_k a_{ik}C_{jk}$, et donc si i=j, le résultat découle de la formule de développement par rapport à la ligne i.

Pour le cas $i \neq j$, imaginons que l'on remplace A par une matrice $A' = (a'_{ij})$ identique, si ce n'est que la ligne L_j est remplacée par la ligne L_i , autrement dit $a'_{jk} = a_{ik}$ pour tout k. De plus, comme A' possède deux lignes identiques, son déterminant est nul. On appelle C' la comatrice de A', et la formule de développement pour la ligne j de A' donne

$$0 = \det A' = \sum_{k} a'_{jk} C'_{jk} = \sum_{k} a_{ik} C'_{jk}$$

Or, C'_{jk} se calcule à partir de la matrice extraite A'_{jk} , qui ne contient que les éléments de A' sur les lignes différentes de j et colonnes différentes de k. Mais sur les lignes différentes de j, A' est identique à A, donc $C'_{jk} = C_{jk}$. On conclut que $\sum_k a_{ik} C_{jk} = 0$.

Finalement,

$$AC^T = \left(egin{array}{cccc} \det A & 0 & \dots & 0 \\ 0 & \det A & & dots \\ dots & & \ddots & 0 \\ 0 & \dots & 0 & \det A \end{array}
ight) = \det A \cdot I$$

et en particulier, si det $A \neq 0$, c'est-à-dire si A est inversible, alors on a

$$A^{-1} = \frac{1}{\det A}C^T.$$

5. Applications des déterminants

Nous allons voir plusieurs applications des déterminants.

5.1. Méthode de Cramer

Le théorème suivant, appelé *règle de Cramer*, donne une formule explicite pour la solution de certains systèmes d'équations linéaires ayant autant d'équations que d'inconnues. Considérons le système d'équations linéaires à n équations et n inconnues suivant :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= b_n \end{cases}$$

Ce système peut aussi s'écrire sous forme matricielle AX = B où

$$A = \left(egin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}
ight) \in M_n(\mathbb{K}), \qquad X = \left(egin{array}{c} x_1 \ x_2 \ dots \ x_n \end{array}
ight) \quad ext{et} \quad B = \left(egin{array}{c} b_1 \ b_2 \ dots \ b_n \end{array}
ight).$$

Définissons la matrice $A_i \in M_n(\mathbb{K})$ par

Autrement dit, A_j est la matrice obtenue en remplaçant la j-ème colonne de A par le second membre B. La règle de Cramer va nous permettre de calculer la solution du système dans le cas où det $A \neq 0$ en fonction des déterminants des matrices A et A_j .

Théorème 25: Règle de Cramer

Soit

$$AX = B$$

un système de n équations à n inconnues. Supposons que $\det A \neq 0$. Alors l'unique solution $(x_1, x_2, ..., x_n)$ du système est donnée par :

$$x_1 = \frac{\det A_1}{\det A}$$
 $x_2 = \frac{\det A_2}{\det A}$... $x_n = \frac{\det A_n}{\det A}$.

Démonstration

Nous avons supposé que $\det A \neq 0$. Donc A est inversible. Alors $X = A^{-1}B$ est l'unique solution du système. D'autre part, nous avons vu que $A^{-1} = \frac{1}{\det A}C^T$ où C est la comatrice. Donc $X = \frac{1}{\det A}C^T$

 $\frac{1}{\det A}C^TB$. En développant,

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} C_{11} & \dots & C_{n1} \\ \vdots & & \vdots \\ C_{1n} & \dots & C_{nn} \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} C_{11}b_1 + C_{21}b_2 + \dots + C_{n1}b_n \\ \vdots \\ C_{1n}b_1 + C_{2n}b_2 + \dots + C_{nn}b_n \end{pmatrix}$$

C'est-à-dire

$$x_1 = \frac{C_{11}b_1 + \dots + C_{n1}b_n}{\det A}, \ x_i = \frac{C_{1i}b_1 + \dots + C_{ni}b_n}{\det A}, \ x_n = \frac{C_{1n}b_1 + \dots + C_{nn}b_n}{\det A}$$

Mais $b_1C_{1i}+\cdots+b_nC_{ni}$ est le développement en cofacteurs de $\det A_i$ par rapport à sa i-ème colonne. Donc

 $x_i = \frac{\det A_i}{\det A}$.

Exemple 85

Résolvons le système suivant :

$$\begin{cases} x_1 & + 2x_3 = 6 \\ -3x_1 + 4x_2 + 6x_3 = 30 \\ -x_1 - 2x_2 + 3x_3 = 8. \end{cases}$$

On a

$$A = \begin{pmatrix} 1 & 0 & 2 \\ -3 & 4 & 6 \\ -1 & -2 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 6 \\ 30 \\ 8 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} 6 & 0 & 2 \\ 30 & 4 & 6 \\ 9 & 2 & 2 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 1 & 6 & 2 \\ -3 & 30 & 6 \\ 1 & 9 & 2 \end{pmatrix} \qquad A_3 = \begin{pmatrix} 1 & 0 & 6 \\ -3 & 4 & 30 \\ 1 & 2 & 9 \end{pmatrix}$$

 \mathbf{et}

$$\det A = 44$$
 $\det A_1 = -40$ $\det A_2 = 72$ $\det A_3 = 152$.

La solution est alors

$$x_1 = \frac{\det A_1}{\det A} = -\frac{40}{44} = -\frac{10}{11} \quad x_2 = \frac{\det A_2}{\det A} = \frac{72}{44} = \frac{18}{11} \quad x_3 = \frac{\det A_3}{\det A} = \frac{152}{44} = \frac{38}{11}$$

La méthode de Cramer n'est pas la méthode la plus efficace pour résoudre un système, mais est utile si le système contient des paramètres.

5.2. Déterminant et base

Soit E un \mathbb{K} -espace vectoriel de dimension n. Fixons une base \mathscr{B} de E. On veut décider si n vecteurs v_1, v_2, \ldots, v_n forment aussi une base de E. Pour cela, on écrit la matrice $A \in M_n(\mathbb{K})$ dont la j-ème colonne est formée des coordonnées du vecteur v_j par rapport à la base \mathscr{B} (comme pour la matrice de passage). Le calcul de déterminant apporte la réponse à notre problème.

Théorème 26

Soit E un \mathbb{K} espace vectoriel de dimension n, et v_1, v_2, \dots, v_n , n vecteurs de E. Soit A la matrice obtenue en juxtaposant les coordonnées des vecteurs par rapport à une base \mathscr{B} de E. Les

vecteurs (v_1, v_2, \dots, v_n) forment une base de E si et seulement si det $A \neq 0$.

Corollaire 10

Une famille de n vecteurs de \mathbb{R}^n

$$egin{pmatrix} a_{11} \ a_{21} \ dots \ a_{n1} \end{pmatrix} \quad egin{pmatrix} a_{12} \ a_{22} \ dots \ a_{n2} \end{pmatrix} \quad & \cdots \quad egin{pmatrix} a_{1n} \ a_{2n} \ dots \ a_{nn} \end{pmatrix}$$

forme une base si et seulement si det $(a_{ij}) \neq 0$.

Exemple 86

Pour quelles valeurs de $a, b \in \mathbb{R}$ les vecteurs

$$\begin{pmatrix} 0 \\ a \\ b \end{pmatrix} \quad \begin{pmatrix} a \\ b \\ 0 \end{pmatrix} \quad \begin{pmatrix} b \\ 0 \\ a \end{pmatrix}$$

forment une base de \mathbb{R}^3 ? Pour répondre, il suffit de calculer le déterminant

$$\begin{vmatrix} 0 & a & b \\ a & b & 0 \\ b & 0 & a \end{vmatrix} = -a^3 - b^3.$$

Conclusion : si $a^3 \neq -b^3$ alors les trois vecteurs forment une base de \mathbb{R}^3 . Si $a^3 = -b^3$ alors les trois vecteurs sont liés. (Exercice : montrer que $a^3 + b^3 = 0$ si et seulement si a = -b.)

Démonstration

La preuve fait appel à des résultats du chapitre « Matrices et applications linéaires » (section « Rang d'une famille de vecteurs ») :

$$(v_1,v_2,\ldots,v_n)$$
 forment une base \iff $\operatorname{rg}(v_1,v_2,\ldots,v_n)=n$ \iff $\operatorname{rg} A=n$ \iff $A \text{ est inversible}$ \iff $\det A \neq 0$

5.3. Mineurs d'une matrice

Définition 28

Soit $A = (a_{ij}) \in M_{n,p}(\mathbb{K})$ une matrice à n lignes et p colonnes à coefficients dans \mathbb{K} . Soit k un entier inférieur à n et à p. On appelle **mineur d'ordre** k le déterminant d'une matrice carrée de taille k obtenue à partir de A en supprimant n-k lignes et p-k colonnes.

Noter que A n'a pas besoin d'être une matrice carrée.

Exemple 87

Soit la matrice

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 7 \\ 0 & 1 & 6 & 5 \end{pmatrix}$$

- Un mineur d'ordre 1 est simplement un coefficient de la matrice A.
- Un mineur d'ordre 2 est le déterminant d'une matrice 2×2 extraite de A. Par exemple en ne retenant que la ligne 1 et 3 et la colonne 2 et 4, on obtient la matrice extraite $\begin{pmatrix} 2 & 4 \\ 1 & 5 \end{pmatrix}$.

Donc un des mineurs d'ordre 2 de A est $\begin{vmatrix} 2 & 4 \\ 1 & 5 \end{vmatrix} = 6$.

- Un mineur d'ordre 3 est le déterminant d'une matrice 3×3 extraite de A. Par exemple, en ne retenant que les colonnes 1, 3 et 4 on obtient le mineur

$$\begin{vmatrix} 1 & 3 & 4 \\ 1 & 1 & 7 \\ 0 & 6 & 5 \end{vmatrix} = -28$$

- Il n'y a pas de mineur d'ordre 4 (car la matrice n'a que 3 lignes).

5.4. Calcul du rang d'une matrice

Rappelons la définition du rang d'une matrice.

Définition 29

Le *rang* d'une matrice est la dimension de l'espace vectoriel engendré par les vecteurs colonnes. C'est donc le nombre maximum de vecteurs colonnes linéairement indépendants.

Théorème 27

Le rang d'une matrice $A \in M_{n,p}(\mathbb{K})$ est le plus grand entier r tel qu'il existe un mineur d'ordre r extrait de A non nul.

La preuve sera vue en section 5.6.

Exemple 88

Soit α un paramètre réel. Calculons le rang de la matrice $A \in M_{3,4}(\mathbb{R})$:

$$A = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & \alpha & 1 \end{pmatrix}$$

- Clairement, le rang ne peut pas être égal à 4, puisque 4 vecteurs de \mathbb{R}^3 ne sauraient être indépendants.
- On obtient les mineurs d'ordre 3 de A en supprimant une colonne. Calculons le mineur d'ordre 3 obtenu en supprimant la première colonne, en le développant par rapport à sa première colonne :

$$\begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & \alpha & 1 \end{vmatrix} = \begin{vmatrix} 3 & 1 \\ \alpha & 1 \end{vmatrix} - 2 \begin{vmatrix} 2 & 1 \\ \alpha & 1 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} = \alpha - 2.$$

Par conséquent, si $\alpha \neq 2$, le mineur précédent est non nul et le rang de la matrice A est 3.

- Si $\alpha = 2$, on vérifie que les 4 mineurs d'ordre 3 de A sont nuls :

$$\begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{vmatrix} = 0$$

Donc dans ce cas, A est de rang inférieur ou égal à 2. Or $\begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1$ (lignes 1,2, colonnes 1,2 de A) est un mineur d'ordre 2 non nul. Donc si $\alpha = 2$, le rang de A est 2.

5.5. Rang d'une matrice transposée

Proposition 33

Le rang de A est égal au rang de sa transposée A^T .

Démonstration

Les mineurs de A^T sont obtenus à partir des mineurs de A par transposition. Comme les déterminants d'une matrice et de sa transposée sont égaux, la proposition découle de la caractérisation du rang d'une matrice à l'aide des mineurs (théorème 27).

5.6. Indépendance et déterminant

Revenons sur le théorème 27 et sa preuve avec une version améliorée.

Théorème 28: Caractérisation de l'indépendance linéaire de p vecteurs

Soit E un \mathbb{K} -espace vectoriel de dimension n et $\mathscr{B} = (e_1, \ldots, e_n)$ une base de E. Soient v_1, \ldots, v_p des vecteurs de E avec $p \le n$. Posons $v_j = \sum_{i=1}^n a_{i,j} e_i$ pour $1 \le j \le n$. Alors les vecteurs $\{v_1, \ldots, v_p\}$ forment une famille libre si et seulement s'il existe un mineur d'ordre p non nul extrait de la matrice $A = (a_{i,j}) \in M_{n,p}(\mathbb{K})$.

Démonstration

Supposons d'abord que la famille $\mathcal{F} = \{v_1, \dots, v_p\}$ soit libre.

- Si p = n, le résultat est une conséquence du théorème 26.
- Si p < n, on peut appliquer le théorème de la base incomplète à la famille \mathscr{F} et à la base $\mathscr{B} = \{e_1, \ldots, e_n\}$; et quitte à renuméroter les vecteurs de \mathscr{B} , on peut supposer que $\mathscr{B}' = (v_1, \ldots, v_p, e_{p+1}, \ldots, e_n)$ est une base de E. (Note : cette renumérotation change l'ordre de e_i , autrement dit échange les lignes de la matrice A, ce qui n'a pas d'impact sur ses mineurs; on appellera encore \mathscr{B} la base renumérotée.) La matrice P de passage de \mathscr{B} vers \mathscr{B}' contient les composantes des vecteurs $(v_1, \ldots, v_p, e_{p+1}, \ldots, e_n)$ par rapport à la base

(renumérotée) $\mathcal{B} = (e_1, ..., e_n)$ c'est-à-dire

$$P = \begin{pmatrix} a_{1,1} & \dots & a_{1,p} & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{p,1} & \dots & a_{p,p} & 0 & \dots & 0 \\ a_{p+1,1} & \dots & a_{p+1,p} & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,p} & 0 & \dots & 1 \end{pmatrix}$$

Le déterminant $\det P$ est non nul puisque les vecteurs $(v_1,\ldots,v_p,e_{p+1},\ldots,e_n)$ forment une base de E. Or ce déterminant se calcule en développant par rapport aux dernières colonnes autant de fois que nécessaire (soit n-p fois). Et l'on trouve que

$$\det P = \begin{vmatrix} a_{1,1} & \dots & a_{1,p} \\ \vdots & \ddots & \vdots \\ a_{p,1} & \dots & a_{p,p} \end{vmatrix}$$

Le mineur
$$\begin{vmatrix} a_{1,1} & \dots & a_{1,p} \\ \vdots & \ddots & \vdots \\ a_{p,1} & \dots & a_{p,p} \end{vmatrix}$$
 est donc non nul.

Montrons maintenant la réciproque. Supposons que le mineur correspondant aux lignes $i_1, i_2, ..., i_p$ soit non nul. Autrement dit, la matrice

$$B = \begin{pmatrix} a_{i_1,1} & \dots & a_{i_1,p} \\ \vdots & \ddots & \vdots \\ a_{i_p,1} & \dots & a_{i_p,p} \end{pmatrix}$$

satisfait $\det B \neq 0$. Supposons aussi

$$\lambda_1 v_1 + \cdots + \lambda_p v_p = 0$$

En exprimant chaque v_i dans la base $(e_1, ..., e_n)$, on voit aisément que cette relation équivaut au système suivant à n lignes et p inconnues :

$$\begin{cases} a_{1,1}\lambda_1 + \dots + a_{1,p}\lambda_p = 0 \\ a_{2,1}\lambda_1 + \dots + a_{2,p}\lambda_p = 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n,1}\lambda_1 + \dots + a_{n,p}\lambda_p = 0 \end{cases}$$

Ce qui implique, en ne retenant que les lignes i_1, \ldots, i_p :

$$\begin{cases} a_{i_{1},1}\lambda_{1} + \dots + a_{i_{1},p}\lambda_{p} = 0 \\ a_{i_{2},1}\lambda_{1} + \dots + a_{i_{2},p}\lambda_{p} = 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i_{p},1}\lambda_{1} + \dots + a_{i_{p},p}\lambda_{p} = 0 \end{cases}$$

ce qui s'écrit matriciellement

$$B\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_p \end{pmatrix} = 0.$$

Comme B est inversible (car $\det B \neq 0$), cela implique $\lambda_1 = \cdots = \lambda_p = 0$. Ce qui montre l'indépendance des v_i .