Computational Photography

Week 4, Spring 2009

Instructor: Prof. Ko Nishino

Binary Image Processing

Binary Images

- Images with only two values (0 or 1)
- Simple to process and analyze
- Very useful for industrial applications

Binary Images

- Obtained from gray-scale (or color) image g(x, y) by thresholding
- Characteristic Function

$$b(x, y) = 1$$
 if $g(x, y) < T$
0 if $g(x, y) >= T$

- Topics Discussed:
 - Geometric Properties
 - Continuous and Discrete Binary Images
 - Multiple Objects (Connectivity)
 - Sequential (iterative) processing

Selecting a Threshold

Geometric Properties of Binary Images

• Assume:

b(x, y) is continuous only one object

Area: Zeroth Moment

$$A = \int \int b(x,y) dx dy$$

Geometric Properties of Binary Images

• Assume:

b(x, y) is continuous only one object

Position: Center of Mass (First Moment)

$$\bar{x} = \frac{1}{A} \int \int xb(x,y)dxdy$$
$$\bar{y} = \frac{1}{A} \int \int yb(x,y)dxdy$$

Geometric Properties of Binary Images

- Orientation: Difficult to define!
 - Axis of least second moment
 - For mass: Axis of minimum inertia

Minimize:
$$E=\int\int r^2b(x,y)dxdy$$

Which equation of line to use?

We use:

$$x\sin\theta - y\cos\theta +
ho = 0$$
 $_{ heta}$ $_{ heta}$ are finite

Minimizing Second Moment

Find θ and ρ that minimize E for a given b(x,y)

We can show that: $r = x \sin \theta - y \cos \theta + \rho$

So,
$$E = \int \int (x \sin \theta - y \cos \theta + \rho)^2 b(x, y) dx dy$$

Using
$$\frac{dE}{d
ho}=0$$
 we get: $A(ar{x}\sin heta-ar{y}\cos heta+
ho)=0$

Note: Axis passes through the center (\bar{x}, \bar{y})

So, change co-ordinates: $x'=x-ar{x}, y'=y-ar{y}$

Minimizing Second Moment

We get:
$$E = a \sin^2 \theta - b \sin \theta \cos \theta + c \cos^2 \theta$$

where,
$$a = \int \int (x')^2 b(x,y) dx' dy'$$

$$b = 2 \int \int (x',y') b(x,y) dx' dy'$$

$$c = \int \int (y')^2 b(x,y) dx' dy'$$

- second moments w.r.t $(ar{x},ar{y})$

We are not done yet!!

Minimizing Second Moment

$$E = a\sin^2\theta - b\sin\theta\cos\theta + c\cos^2\theta$$

Using
$$\frac{dE}{d\theta}=0$$
 we get: $tan2\theta=\frac{b}{a-c}$ $\sin 2\theta=\pm\frac{b}{\sqrt{b^2+(a-c)^2}}$ $\cos 2\theta=\pm\frac{a-c}{\sqrt{b^2+(a-c)^2}}$

Solutions with +ve sign must be used to minimize E. (-ve signe gives maximum E)

$$egin{array}{c} E_{min} \ E_{max} \end{array} \longrightarrow roundedness$$

Discrete Binary Images

• Assume:

b(x, y) is discrete only one object

• Area: Zeroth Moment

$$A = \sum \sum b_{ij}$$

• Position: Center of Mass (First Moment)

$$\bar{x} = \frac{1}{A} \sum \sum ib_{ij} \quad \bar{y} = \frac{1}{A} \sum \sum jb_{ij}$$

Second Moments:

$$a' = \sum \sum i^2 b_{ij} \ b' = 2 \sum \sum ij b_{ij} \ c' = \sum \sum j^2 b_{ij}$$

Note: a',b',c' are defined w.r.t origin