1. A compound of formula (I)

$$\mathbb{R}^3$$
 \mathbb{R}^4
 \mathbb{N}
 $\mathbb{N$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

A is a monocyclic or bicyclic ring selected from the group consisting of aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocycle;

10

15

20

5

 R^{1} is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkylcarbonylalkyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, arylsulfonylalkyl, arylsulfonylalkyl, arylsulfonylalkyl, carboxyalkyl, cycloalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, R_aR_bN alkyl-, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ Oalkyl-, $R_aR_bNC(O)$ Oalkyl-, $R_aR_bNC(O)$ Oalkyl-, R_aR_b NC(O)NR_calkyl-, R_iR_g C=N- and R_i O-, wherein R^1 is independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)_2R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

25

30

 R^2 and R^3 are independently selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, heteroaryl, heteroarylalkyl, heteroarylcarbonyl, heterocyclecarbonyl, cyano, halo and $R_a R_b NC(O)$ -, wherein R^2 and R^3 are independently substituted with 0, 1 or 2 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_k), -(alkyl)(OR_k), - SR_a , - $SO(R_a$, - $SO(R_a$, - OR_k , - OR_k , - OR_k , - OR_k), - OR_k , - OR_k , - OR_k , - OR_k , - OR_k), - OR_k , - OR_k , - OR_k , - OR_k), - OR_k , - OR_k , - OR_k , - OR_k , - OR_k), - OR_k , - OR_k), - OR_k , - OR_k), - OR_k , - OR_k), - OR_k , - $OR_$

 $-C(O)R_c$, $-C(O)OR_c$ and $-C(O)NR_aR_b$;

alternatively, R^2 and R^3 , together with the carbon atoms to which they are attached form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl and heterocycle, wherein said aryl, cycloalkyl, heteroaryl and heterocycle is optionally substituted with $(R^6)_m$;

R⁴ is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN-, N₃-, R_eS-, wherein R⁴ is independently substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkylcarbonyl, alkylsulfonyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, arylalkoxy, arylsulfonyl, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heteroarylcarbonyl, heterocycle, heterocyclealkyl, heterocyclecarbonyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, R_aR_bN alkyl-, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, and $R_aR_bNSO_2N(R_f)$ -, wherein each R^5 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(R_aR_b -, -SR_c, -S(R_aR_b -, -SR_c, -N(R_aR_b -, -C(R_aR_b -, -C(R_aR_b -), -C(R_aR_b -, -C(R_aR_b -), -C(R_aR_b -, -C(R_aR_b -), -C(R_a

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

30

35

5

10

15

20

25

 R_a and R_b are independently selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_cR_dN -, R_cR_dN -, R_cR_dN -, R_cR_dN -, R_cC -, R

 R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

5

10

15

20

25

30

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are substituted with 0, 1, 2 or 3 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

 R_c and R_d , are independently selected from the group consisting of hydrogen, -NH₂, -N(H)alkyl, -C(O)NR_fR_g, -SO₂NR_fR_g, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_g), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_g), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_g, -NC(O)OR_f, -NSO₂NR_fR_g, -NC(O)NR_fR_g, -alkylNC(O)OR_f, -alkylNSO₂NR_fR_g, and -alkylNC(O)NR_fR_g;

alternatively, R_c and R_d, together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_c), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

R_f and R_g are independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a four- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

R_k is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkyl, alkylsulfanyl, , alkylsulfanylalkyl, alkylsulfonylalkyl, aryl, arylalkyl, arylsulfanyl, arylsulfanyl, arylsulfonylalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heteroarylsulfanyl, heteroarylsulfanylalkyl, heterocyclealkyl, heterocyclesulfanyl, heterocyclesulfanylalkyl, , hydroxyalkyl, nitroalkyl, R_aR_bNalkyl-, R_aR_bNC(O)- and R_aR_bNC(O)alkyl, R_aSO₂-, R_aSO₂alkyl-, R_aOC(O)-, R_aOC(O)alkyl-, R_aC(O)-, R_aC(O)alkyl-, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

m is 0, 1, 2, 3, or 4; and

n is 0, 1, 2, 3, or 4;

20

25

30

35

provided that when R² and R³, together with the carbon atoms to which they are attached, form a phenyl ring, and R¹ is hydrogen, alkyl, alkenyl, alkynyl, alkoxyalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfonylalkyl, cyanoalkyl, haloalkyl, hydroxyalkyl, arylalkenyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, heterocycloalkenyl, heterocycloalkenyl, heteroarylalkyl, heteroarylalkenyl, aryl or heteroaryl, A is other than phenyl.

- 2. The compound of claim 1 wherein A is aryl or heteroaryl.
- 3. The compound of claim 2 wherein

A is aryl; and

R² and R³, together with the carbon atoms to which they are attached form a five- or six-membered ring selected from the group consisting of phenyl, pyridyl, pyrimidinyl, pyridazinyl, thienyl, furanyl, pyrazolyl, oxazolyl, thiazolyl, imidazolyl, isoxazolyl, isothiazolyl, triazolyl, thiadiazolyl, tetrazolyl, cyclopentyl and cyclohexyl.

- 4. The compound of claim 3 wherein A is phenyl.
- 5. The compound of claim 4 wherein R_2 and R_3 together with the carbon atoms to which they are attached form a pyridyl ring.
- 6. The compound of claim 1 of formula (II)

5

15

20

25

30

$$(R^{6})_{\overline{m}} \xrightarrow{N} N H$$

$$(II)$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

 R^{1} is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkylcarbonylalkyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfinylalkyl, alkylsulfinylalkyl, alkylsulfinylalkyl, arylsulfonylalkyl, arylsulfonylalkyl, arylsulfonylalkyl, carboxyalkyl, cycloalkenyl, cycloalkenyl, cycloalkenylalkyl, cycloalkyl)alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN- , $R_aR_bNalkyl-$, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ Oalkyl-, $R_aR_bNC(O)$ Oalkyl-, $R_aR_bNC(O)$ Oalkyl-, $R_aR_bNC(O)$ NRcalkyl-, $R_aR_bC=N-$ and R_kO- , wherein R^1 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(ORc), -(alkyl)(NRcRe), -SRc, -S(O)Rc, -S(O)_2Rc, -ORc, -N(Rc)(Re), -C(O)Rc, -C(O)ORc and -C(O)NRcRe;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN -, N_3 -, R_eS -, wherein R^4 is independently substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and - COOH;

R⁵ is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkylcarbonyl, alkylsulfonyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, arylalkoxy, arylsulfonyl, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl,

heteroarylalkyl, heteroarylcarbonyl, heterocycle, heterocyclealkyl, heterocyclecarbonyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, R_aR_bN alkyl-, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, and $-OR_k$, wherein each R^5 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c), -SR, -S(O)R, -S(O)2R, -OR, -N(R_c)(R_c), -C(O)R, -C(O)OR, and -C(O)NR, R_c ;

10

15

20

25

30

35

5

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

 R_a and R_b are independently selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, haloalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_cR_dN alkyl-, R_cR_dN -, R_cR_dN -, R_cR_dN -, R_cR_dN -, R_cR_dN -, R_cR_dN -, R_c -,

alternatively, R_a and R_b, together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are substituted with 0, 1, 2 or 3 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_c), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

 R_c and R_d , are independently selected from the group consisting of hydrogen, -NH₂,

-N(H)alkyl -C(O)NR_fR_g, -SO₂NR_fR_g, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_g), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_g), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_g, -NC(O)OR_f, -NSO₂NR_fR_g, -NC(O)NR_fR_g, -alkylNSO₂NR_fR_g, and -alkylNC(O)NR_fR_g;

5

10

15

25

30

35

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

Re is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

20 R_f and R_g are independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a four- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkyl, alkylsulfanyl, , alkylsulfanylalkyl, alkylsulfonylalkyl, aryl, arylalkyl, arylsulfanyl, arylsulfanyl, arylsulfonylalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heteroarylsulfanyl, heteroarylsulfanylalkyl, heterocycle, heterocyclealkyl, heterocyclesulfanyl, heterocyclesulfanylalkyl, , hydroxyalkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aR_bNC(O)$ - and $R_aR_bNC(O)$ -alkyl-, R_aSO_2 -, R_aSO_2 alkyl-, $R_aOC(O)$ -, $R_aOC(O)$ -alkyl-, $R_aC(O)$ -, $R_aC(O)$ -alkyl-, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c),

-(alkyl)(NR_cR_c), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_c), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_c;

m is 0, 1, 2, 3, or 4; and

5

20

25

30

n is 0, 1, 2, 3, or 4.

- 7. The compound of claim 6 wherein R^4 is hydroxy.
- 8. The compound of claim 7 wherein R¹ is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, RaRbN-, RaRbNalkyl-, RaRbNC(O)alkyl-, RcRbC=N- and RkO-.
 - 9. The compound of claim 5 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:
 - 1-butyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 1-[(5-chloro-2-thienyl)methyl]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-(2-ethylbutyl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 1-[(5-bromo-2-thienyl)methyl]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(3-methylbenzyl)-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(3-nitrobenzyl)-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(3-thienylmethyl)-1,8-naphthyridin-2(1H)-one;
 - 1-(3-chlorobenzyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 35 1-(3-bromobenzyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 1-[(2-chloro-1,3-thiazol-5-yl)methyl]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-

4-hydroxy-1,8-naphthyridin-2(1H)-one;

5

10

15

20

25

30

- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-(3-fluorobenzyl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
- 1-(cyclobutylmethyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(5-methyl-2-thienyl)methyl]-1,8-naphthyridin-2(1H)-one;
- 1-benzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(5-methyl-3-pyridinyl)methyl]-1,8-naphthyridin-2(1H)-one;
- 1-[(2-chloro-4-pyridinyl)methyl]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 1-[(5-bromo-3-pyridinyl)methyl]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 1-(cyclohexylmethyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(2S)-2-methylbutyl]-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(4-methylbenzyl)-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(5-nitro-2-furyl)methyl]-1,8-naphthyridin-2(1H)-one;
 - 1-(1-benzothien-2-ylmethyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(3-methoxybenzyl)-1,8-naphthyridin-2(1H)-one;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(3-iodobenzyl)-1,8-naphthyridin-2(1H)-one;
- 1-[(3,5-dimethyl-4-isoxazolyl)methyl]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[2-(3-thienyl)ethyl]-1,8-naphthyridin-2(1H)-one;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(4-pyridinylmethyl)-1,8-naphthyridin-2(1H)-one;

- 1-(4-bromobenzyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-neopentyl-1,8-naphthyridin-2(1H)-one;
- 1-{[(1S,2R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-yl]methyl}-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 3-{[3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2-oxo-1,8-naphthyridin-1(2H)-yl]methyl} benzonitrile;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(3-pyridinylmethyl)-1,8-naphthyridin-2(1H)-one;
 - 1-(1-adamantylmethyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[3-(trifluoromethyl)benzyl]-1,8-naphthyridin-2(1H)-one;

5

10

15

20

25

- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(2-methyl-1,3-thiazol-5-yl)methyl]-1,8-naphthyridin-2(1H)-one;
 - 1-(2-cyclohexylethyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(4-methoxybenzyl)-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(2-methylbenzyl)-1,8-naphthyridin-2(1H)-one;
 - 1-(cyclopropylmethyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(1,3-thiazol-4-ylmethyl)-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(5-phenyl-2-thienyl)methyl]-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(4-methyl-3-pentenyl)-1,8-naphthyridin-2(1H)-one;
 - 4-{[3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2-oxo-1,8-naphthyridin-1(2H)-yl]methyl} benzonitrile;
 - 1-[2-(1-cyclohexen-1-yl)ethyl]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 35 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(2-methyl-1,3-thiazol-4-yl)methyl]-1,8-naphthyridin-2(1H)-one;
 - 2-{[3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2-oxo-1,8-

naphthyridin-1(2H)-yl]methyl}benzonitrile;

5

15

25

- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(5-methyl-3-isoxazolyl)methyl]-1,8-naphthyridin-2(1H)-one;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(1-naphthylmethyl)-1,8-naphthyridin-2(1H)-one;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(2-pyridinylmethyl)-1,8-naphthyridin-2(1H)-one;
- 1-(4-tert-butylbenzyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- ethyl [3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2-oxo-1,8-naphthyridin-1(2H)-yl]acetate;
 - [3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2-oxo-1,8-naphthyridin-1(2H)-yl]acetic acid;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(3-phenoxybenzyl)-1,8-naphthyridin-2(1H)-one;
 - 1-allyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(2-naphthylmethyl)-1,8-naphthyridin-2(1H)-one;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(1R)-1-phenylethyl]-1,8-naphthyridin-2(1H)-one;
 - 1-[(5-tert-butyl-2-thienyl)methyl]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 1-(1,1'-biphenyl-4-ylmethyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[2-(1H-indol-3-yl)ethyl]-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-[(6-ethoxy-2-pyridinyl)methyl]-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 1-benzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-7-methyl-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(6-methyl-2-pyridinyl)methyl]-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-(1-ethylpropyl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(1S)-1-phenylethyl]-1,8-naphthyridin-2(1H)-one;

- 2-{2-[3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2-oxo-1,8-naphthyridin-1(2H)-yl]ethyl}-1H-isoindole-1,3(2H)-dione;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(3-hydroxypropyl)-1,8-naphthyridin-2(1H)-one;
- 1-cyclopentyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;

5

20

25

30

- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-[2-(1,3-dioxolan-2-yl)ethyl]-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 1-(2,3-dihydroxypropyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 1-cycloheptyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 1-(3-anilinopropyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 3-[3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2-oxo-1,8-naphthyridin-1(2H)-yl]propanal;
 - methyl 4-{[3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2-oxo-1,8-naphthyridin-1(2H)-yl]methyl}benzoate;
 - ethyl 5-{[3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2-oxo-1,8-naphthyridin-1(2H)-yl]methyl}-2-furoate;
 - 1-[3-(dimethylamino)propyl]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 1-{3-[[2-(dimethylamino)ethyl](methyl)amino]propyl}-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[3-(4-methyl-1-piperazinyl)propyl]-1,8-naphthyridin-2(1H)-one;
 - 1-(2-aminoethyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 1-[3-(diethylamino)propyl]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 1-cyclohexyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
 - 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[3-(4-morpholinyl)propyl]-1,8-naphthyridin-2(1H)-one;
 - 5-{[3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2-oxo-1,8-naphthyridin-1(2H)-yl]methyl}-2-furoic acid;
 - 1-benzyl-3-(7-bromo-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-

naphthyridin-2(1H)-one;

5

10

15

20

25

30

35

1-benzyl-3-(1,1-dioxido-7-phenyl-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;

1-benzyl-3-(7-cyclohexyl-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;

1-benzyl-3-(7-tert-butyl-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;

1-benzyl-4-hydroxy-3-(7-methyl-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one;

1-butyl-3-(6-chloro-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;

1-benzyl-3-(8-bromo-5-methyl-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;

1-benzyl-3-(8-fluoro-5-methyl-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;

1-benzyl-4-hydroxy-3-(5-isopropyl-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one;

1-benzyl-4-hydroxy-3-(5-methyl-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one;

1-benzyl-3-(5-bromo-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;

1-benzyl-3-(1,1-dioxido-5-propyl-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;

1-benzyl-3-(5-ethyl-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;

3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)-4H-1,2,4-benzothiadiazine-5-carbonitrile 1,1-dioxide;

3-(1,1-dioxido-2H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(2-thienylmethyl)-1,8-naphthyridin-2(1H)-one; 1-(benzyloxy)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;

3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(2-phenylpropyl)-1,8-naphthyridin-2(1H)-one;

3-(1,1-dioxido-2H-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridine-2,4-diol;

1-(benzyloxy)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one

3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-isobutoxy-1,8-naphthyridin-2(1H)-one;

1-butyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,5-naphthyridin-2(1H)-one; 1-benzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,5-naphthyridin-2(1H)-one; 1-benzyl-4-chloro-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one; 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(2-phenylethyl)-1,8naphthyridin-2(1H)-one; 1-butyl-4-chloro-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one; 4-amino-1-butyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one; 1-butyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-(methylamino)-1,8naphthyridin-2(1H)-one; 1-butyl-4-(dimethylamino)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1,8naphthyridin-2(1H)-one; 1-butyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydrazino-1,8-naphthyridin-2(1H)-one; 4-azido-1-butyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one; 1-butyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-[(2-hydroxyethyl)amino]-1,8-naphthyridin-2(1H)-one; 3-[5-(aminomethyl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl]-1-benzyl-4-hydroxy-1,8-naphthyridin-2(1H)-one; 4-hydroxy-3-(7-methoxy-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-1-(3methylbutyl)-1,8-naphthyridin-2(1H)-one; 4-hydroxy-3-(7-hydroxy-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-(3methylbutyl)-1,8-naphthyridin-2(1H)-one; ({3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1dioxido-4*H*-1,2,4-benzothiadiaziń-7-yl}oxy)acetonitrile; 3-(1,1-dioxido-7-propoxy-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(3methylbutyl)-1,8-naphthyridin-2(1H)-one; 4-hydroxy-3-[7-(methoxymethoxy)-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl]-1-(3-

5

10

15

20

25

30

35

4-hydroxy-3-[7-(methoxymethoxy)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl]-1-(3-methylbutyl)-1,8-naphthyridin-2(1*H*)-one;

4-Hydroxy-1-(3-methylbutyl)-3-{7-[(2-methylprop-2-enyl)oxy]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl}-1,8-naphthyridin-2(1*H*)-one;

tert-butyl ({3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-

yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}oxy)acetate;

5

10

15

20

25

30

- 2-({3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}oxy)acetamide;
- 3-[7-(benzyloxy)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1*H*)-one;
- 3-[1,1-dioxido-7-(2-pyrrolidin-1-ylethoxy)-4*H*-1,2,4-benzothiadiazin-3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1*H*)-one;
- 3-[1,1-dioxido-7-(2-oxo-2-phenylethoxy)-4*H*-1,2,4-benzothiadiazin-3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1*H*)-one;
- 3-[7-(allyloxy)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1*H*)-one;
 - 4-Hydroxy-3-(7-isobutoxy-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-1-(3-methylbutyl)-1,8-naphthyridin-2(1*H*)-one;
- 4-({3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}oxy)butanenitrile;
- ({3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}oxy)acetic acid;
- 3-[7-(2-aminoethoxy)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1*H*)-one;
- 2-({3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}oxy)-*N*-methylacetamide;
- 3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl acetate;
- 3-[1,1-dioxido-7-(pyridin-2-yloxy)-4*H*-1,2,4-benzothiadiazin-3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1*H*)-one;
- 3-[1,1-dioxido-7-(pyrimidin-2-yloxy)-4*H*-1,2,4-benzothiadiazin-3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1*H*)-one;
- 2-({3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}oxy)-*N*,*N*-dimethylacetamide;
- 4-hydroxy-1-(3-methylbutyl)-3-(7-nitro-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1*H*)-one;
 - 3-(7-amino-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1*H*)-one;
- ({3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}amino)acetonitrile;
 - 1-benzyl-3-(8-methoxy-5-methyl-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;

- 1-benzyl-3-(8-hdroxy-5-methyl-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- {[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)-5-methyl-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-8-yl]oxy} acetonitrile;

5

10

15

20

25

30

- 1-benzyl-4-hydroxy-3-(5-methoxy-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1*H*)-one;
- 1-Benzyl-4-hydroxy-3-(5-hydroxy-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1*H*)-one;
- {[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-5-yl]oxy}acetonitrile;
 - 3-[5-(2-aminoethoxy)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl]-1-benzyl-4-hydroxy-1,8-naphthyridin-2(1*H*)-one;
 - 2-{[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-5-yl]oxy}acetamide;
- 1-benzyl-4-hydroxy-3-{5-[(4-nitrobenzyl)oxy]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl}-1,8-naphthyridin-2(1*H*)-one;
 - 1-benzyl-6-chloro-3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1*H*)-one;
- 1-benzyl-3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-6-phenyl-1,8-naphthyridin-2(1*H*)-one;
- 1-benzyl-4-hydroxy-3-(6-methoxy-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1*H*)-one;
- *N*-[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-6-yl]acetamide;
- 1-benzyl-4-hydroxy-3-(6-hydroxy-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1*H*)-one;
- $1-benzyl-4-hydroxy-3-(8-methyl-1,1-dioxido-4 \emph{H}-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1 \emph{H})-one;$
- 4-hydroxy-3-(5-methoxy-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-1-(3-methylbutyl)-1,8-naphthyridin-2(1*H*)-one;
- N^2 -{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}glycinamide;
- N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl} acetamide;
- 2,2,2-trifluoro-N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}acetamide;
 - 2,2,2-trifluoro-N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-

```
naphthyridin-3-yl]-8-nitro-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}acetamide;
       3-(7-amino-8-nitro-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(3-
methylbutyl)-1,8-naphthyridin-2(1H)-one;
       3-(7,8-diamino-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(3-
methylbutyl)-1,8-naphthyridin-2(1H)-one;
       N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-
dioxido-4H-1,2,4-benzothiadiazin-7-yl}methanesulfonamide;
       N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-
dioxido-4H-1,2,4-benzothiadiazin-7-yl}benzenesulfonamide;
       N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-
dioxido-4H-1,2,4-benzothiadiazin-7-yl}thiophene-2-sulfonamide;
       N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-
dioxido-4H-1,2,4-benzothiadiazin-7-yl}-1-methyl-1H-imidazole-4-sulfonamide;
       4,5-dichloro-N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-
naphthyridin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}thiophene-2-sulfonamide;
       2,2,2-trifluoro-N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-
naphthyridin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}ethanesulfonamide;
       methyl [({3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-
1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}amino)sulfonyllacetate;
       N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-
dioxido-4H-1,2,4-benzothiadiazin-7-yl}ethanesulfonamide;
      N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-
dioxido-4H-1,2,4-benzothiadiazin-7-yl}propane-2-sulfonamide;
       N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-
dioxido-4H-1,2,4-benzothiadiazin-7-yl}-1-phenylmethanesulfonamide;
       2-amino-N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-
yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}benzenesulfonamide;
       N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-
dioxido-4H-1,2,4-benzothiadiazin-7-yl}-4-(methylsulfonyl)benzenesulfonamide;
       methyl 3-[({3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-
yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}amino)sulfonyl]thiophene-2-carboxylate;
       N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-
dioxido-4H-1,2,4-benzothiadiazin-7-yl}propane-1-sulfonamide;
       2-chloro-N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-
```

5

10

15

20

25

30

35

1-chloro-N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-

yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}benzenesulfonamide;

yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}methanesulfonamide;

dioxido-4H-1,2,4-benzothiadiazin-7-yl}butane-1-sulfonamide; 2,6-dichloro-N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8naphthyridin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}benzenesulfonamide; N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)-1,1-dioxido-5 4H-1,2,4-benzothiadiazin-7-yl]-N'-(2-phenylethyl)sulfamide; benzyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1dioxido-4H-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxylate 2,2-dioxide; N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-10 4H-1,2,4-benzothiadiazin-7-yl]sulfamide; benzyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1dioxido-4H-1,2,4-benzothiadiazin-7-yl]-1-propyldiazathiane-1-carboxylate 2,2-dioxide; N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]-N'-propylsulfamide; 15 N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]-3-nitrobenzenesulfonamide; N-[4-({[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1dioxido-4H-1,2,4-benzothiadiazin-7-yl]amino}sulfonyl)phenyl]acetamide; methyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-20 dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxylate 2,2-dioxide; allyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1dioxido-4H-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxylate 2,2-dioxide; 2-propynyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxylate 2,2-dioxide; 2-cyanoethyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-25 1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxylate 2,2-dioxide; 2-(trimethylsilyl)ethyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]diazathiane-1carboxylate 2,2-dioxide; N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-30 4H-1,2,4-benzothiadiazin-7-yl]-2-methoxybenzenesulfonamide; 2-hydroxy-N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]benzenesulfonamide; benzyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1dioxido-4H-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxylate 2,2-dioxide; and 35 N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]-4-vinylbenzenesulfonamide.

N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-

10. The compound of claim 1 wherein R² and R³, together with the carbon atoms to which they are attached form a thienyl ring.

11. The compound of claim 1 of formula (III):

5

10

15

20

25

30

$$(\mathbb{R}^{6})_{m} \stackrel{S}{\underset{\mathbb{R}^{1}}{\bigvee}} (\mathbb{III})$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkylcarbonylalkyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfinylalkyl, alkylsulfinylalkyl, alkylsulfinylalkyl, arylsulfanylalkyl, arylsulfanylalkyl, arylsulfonylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenylalkyl, cycloalkyl)alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN- , $R_aR_bNalkyl-$, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ Oalkyl-, $R_aR_bNC(O)$ Oalkyl-,

R⁴ is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN-, N₃-, R_eS-, wherein R⁴ is substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkylcarbonyl, alkylsulfonyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, arylalkoxy, arylsulfonyl, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heteroarylcarbonyl, heterocycle, heterocyclealkyl, heterocyclecarbonyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, R_aR_bN alkyl-, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -,

 $R_kOC(O)$ alkyl-, $R_aR_bNSO_2$ -, $R_aR_bNSO_2$ alkyl-, and $-OR_k$, wherein each R^5 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

R_a and R_b are independently selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN-, R_cR_dNalkyl-, R_cR_dNC(O)alkyl-, R_cSO₂-, R_cSO₂alkyl-, R_cC(O)-, R_cC(O)alkyl-, R_cOC(O)-, R_cOC(O)alkyl-, R_cR_dNC(O)N(R_e)alkyl-, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

25

30

35

20

5

10

15

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are substituted with 0, 1, 2 or 3 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

 R_c and R_d , are independently selected from the group consisting of hydrogen, -NH₂, -N(H)alkyl, -C(O)NR_fR_g, -SO₂NR_fR_g, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3

substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_g), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_g), -C(O)OR_f, -C(O)OR_f, -C(O)OR_f, -NC(O)OR_f, -NSO₂NR_fR_g, -NC(O)NR_fR_g, -alkylNC(O)OR_f, -alkylNSO₂NR_fR_g, and -alkylNC(O)NR_fR_g;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 R_f and R_g are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl;

20

5

10

15

alternatively, R_f and R_g together with the carbon atom to which they are attached form a four- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

25

30

35

 R_k is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkyl, alkylsulfanyl, , alkylsulfanylalkyl, alkylsulfonylalkyl, aryl, arylalkyl, arylsulfanyl, arylsulfanyl, arylsulfanyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heteroarylsulfanyl, heteroarylsulfanylalkyl, heterocyclealkyl, heterocyclesulfanyl, heterocyclesulfanylalkyl, , hydroxyalkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aR_bNC(O)$ - and $R_aR_bNC(O)$ -alkyl-, R_aSO_2 -, R_aSO_2 alkyl-, $R_aOC(O)$ -, $R_aOC(O)$ alkyl-, $R_aC(O)$ -, $R_aC(O)$ alkyl-, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c , -S(O) OR_c , -S(O) OR_c , -ORC, -N(OR_c), -C(OR_c , -C(OR_c) and -C(OR_c), -SRC, -S(OR_c), -S(OR_c , -ORC, -N(R_c)(OR_c), -C(OR_c , -C(OR_c) and -C(OR_c)

```
m is 0, 1, 2, 3, or 4; and
```

n is 0, 1, 2, 3, or 4.

10

15

20

25

30

- 5 12. The compound of claim 11 wherein R⁴ is hydroxy.
 - 13. The compound of claim 12 wherein R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cycloalkyl, cycloalkenyl, cycloalkyl, cycloalkyl, cycloalkylalkenyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, R_aR_bN -, R_aR_bN alkyl-, R_aR_bN C(O)alkyl-, R_aR_b -C=N- and R_b O-.
 - 14. The compound of claim 10 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:
 - 4-benzyl-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-b]pyridin-5(4H)-one;
 - 4-butyl-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-b]pyridin-5(4H)-one;
 - 6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-(4-pyridinylmethyl)thieno[3,2-b]pyridin-5(4H)-one;
 - 5-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-7-(4-pyridinylmethyl)thieno[2,3-b]pyridin-6(7H)-one;
 - 6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-(3-pyridinylmethyl)thieno[3,2-b]pyridin-5(4H)-one;
 - 7-benzyl-5-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxythieno[2,3-b]pyridin-6(7H)-one;
 - 4-(cyclopropylmethyl)-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-b]pyridin-5(4H)-one;
 - 5-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-7-(3-methylbutyl)thieno[2,3-b]pyridin-6(7H)-one;
 - 4-benzyl-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-2-phenylthieno[3,2-b]pyridin-5(4H)-one;
 - 4-benzyl-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-3-methylthieno[3,2-b]pyridin-5(4H)-one;
 - 7-benzyl-5-(1,1-dioxido-2H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-3-methylthieno[2,3-b]pyridin-6(7H)-one;

6-(1,1-dioxido-2H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-(3methylbutyl)thieno[3,2-b]pyridin-5(4H)-one; 6-(1,1-dioxido-2H-1,2,4-benzothiadiazin-3-yl)-4-(2-ethylbutyl)-7-hydroxythieno[3,2blpyridin-5(4H)-one; 5-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-7-(3-methyl-2butenyl)thieno[2,3-b]pyridin-6(7H)-one; 6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-pentylthieno[3,2b]pyridin-5(4H)-one; 5-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-3-methyl-7-(3methylbutyl)thieno[2,3-b]pyridin-6(7H)-one; 6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-(4methylpentyl)thieno[3,2-b]pyridin-5(4H)-one; 4-(3-butenyl)-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2blpyridin-5(4H)-one; 4-[(2-chloro-1,3-thiazol-5-yl)methyl]-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-b]pyridin-5(4H)-one; 6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(5-methyl-3pyridinyl)methyl]thieno[3,2-b]pyridin-5(4H)-one; 6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(2-methyl-1,3-thiazol-5yl)methyl]thieno[3,2-b]pyridin-5(4H)-one; 4-[(5-chloro-2-thienyl)methyl]-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7hydroxythieno[3,2-b]pyridin-5(4H)-one; 6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(2-methyl-1,3-thiazol-4yl)methyl]thieno[3,2-b]pyridin-5(4H)-one; 1-benzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxythieno[3,4blpyridin-2(1H)-one; 4-[(5-bromo-2-thienyl)methyl]-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7hydroxythieno[3,2-b]pyridin-5(4H)-one; 7-benzyl-5-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-3-(hydroxymethyl)-7,7a-dihydrothieno[2,3-b]pyridin-6(3aH)-one; 7-hydroxy-6-(7-methoxy-1.1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-(3methylbutyl)thieno[3,2-b]pyridin-5(4H)-one; 4-benzyl-7-hydroxy-6-(7-methoxy-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-

5

10

15

20

25

30

35

7-hydroxy-6-(5-methoxy-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-(3-methylbutyl)thieno[3,2-b]pyridin-5(4H)-one;

yl)thieno[3,2-b]pyridin-5(4H)-one;

4-benzyl-7-hydroxy-6-(5-methoxy-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-

```
4-amino-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-
           b]pyridin-5(4H)-one;
                           6-(1,1-Dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-
           (isobutylamino)thieno[3,2-b]pyridin-5(4H)-one;
 5
                           6-(1,1-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(3S)-3-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(3S)-3-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(3S)-3-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(3S)-3-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(3S)-3-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(3S)-3-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(3S)-3-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(3S)-3-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(3S)-3-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(3S)-3-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(3S)-3-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(3S)-3-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(3S)-3-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(3S)-3-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido}-4H-1,2,4-\text{dioxido
           methylcyclopentyl]amino}thieno[3,2-b]pyridin-5(4H)-one;
                           4-{[1-cyclopropylethyl]amino}-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-
           hydroxythieno[3,2-b]pyridin-5(4H)-one;
                           4-(butylamino)-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-
10
           b]pyridin-5(4H)-one;
                           6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-[(2-ethylbutyl)amino]-7-
           hydroxythieno[3,2-b]pyridin-5(4H)-one;
                           6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-(pentylamino)thieno[3,2-
15
           b]pyridin-5(4H)-one;
                           6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(3-
            methylbutyl)amino]thieno[3,2-b]pyridin-5(4H)-one;
                           4-[(3,3-dimethylbutyl)amino]-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-
            hydroxythieno[3,2-b]pyridin-5(4H)-one;
                           6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(3-
20
            methylbenzyl)amino]thieno[3,2-b]pyridin-5(4H)-one;
                            6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(2-
            methylbenzyl)amino]thieno[3,2-b]pyridin-5(4H)-one;
                            6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(4-
            methylbenzyl)aminolthieno[3,2-b]pyridin-5(4H)-one;
25
                            6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(3-methylbut-2-
            enyl)amino]thieno[3,2-b]pyridin-5(4H)-one;
                            6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-(propylamino)thieno[3,2-
            b]pyridin-5(4H)-one;
                            6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(pyridin-4-
30
            ylmethyl)amino]thieno[3,2-b]pyridin-5(4H)-one;
                            6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(pyridin-3-
            ylmethyl)amino thieno [3,2-b] pyridin-5(4H)-one;
                            6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(pyridin-2-
            ylmethyl)amino]thieno[3,2-b]pyridin-5(4H)-one;
35
                            6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(3-
            methoxybenzyl)amino]thieno[3,2-b]pyridin-5(4H)-one;
```

yl)thieno[3,2-b]pyridin-5(4H)-one;

```
hydroxythieno[3,2-b]pyridin-5(4H)-one;
                                        3-({[6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-5-oxothieno[3,2-
                 b|pyridin-4(5H)-yl|amino}methyl)benzonitrile;
                                        6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(thien-3-
  5
                 ylmethyl)amino]thieno[3,2-b]pyridin-5(4H)-one;
                                        4-(cyclobutylamino)-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-
                 hydroxythieno[3,2-b]pyridin-5(4H)-one;
                                        4-(benzylamino)-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-
                 b]pyridin-5(4H)-one;
10
                                        4-[(cyclohexylmethyl)amino]-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-
                 hydroxythieno[3,2-b]pyridin-5(4H)-one;
                                        6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(1,3-thiazol-5-
                 ylmethyl)aminolthieno[3,2-b]pyridin-5(4H)-one;
                                        4-[(3-bromobenzyl)amino]-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-
15
                 hydroxythieno[3,2-b]pyridin-5(4H)-one;
                                        4-(cyclohexylamino)-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-
                 hydroxythieno[3,2-b]pyridin-5(4H)-one;
                                        4-(cyclopentylamino)-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-
                 hydroxythieno[3,2-b]pyridin-5(4H)-one;
20
                                        4-(cycloheptylamino)-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-
                 hydroxythieno[3,2-b]pyridin-5(4H)-one;
                                        6-(1,1-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-yl)-7-\text{hydroxy}-4-\{[(1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-\text{hydroxy}-4-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-yl)-7-((1R,3S)-3-((1R,3S)-3-yl)-7-((1R,3S)-3-((1R,3S)-3-yl)-7-((1R,3S)-3-((1R,3
                 methylcyclohexyllamino}thieno[3,2-b]pyridin-5(4H)-one;
25
                                        6-(1,1-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-\{(1R,3R)-3-\text{yl})-7-\text{hydroxy}-4-(1R,3R)-3-\text{yl}-4-(1R,3R)-3-(1R,3R)-3-(1R,3R)-3-(1R,3R)-3-(1R,3R)-3-(1R,3R)-3-(1R,3R)-3-(1R,3R)-3-(1R,3R)-3-(1R,3R)-3-(1R,3R)-3-(1R,3R)-3-(1R,3R)-3-(1R,3R)-3-(1R,3R)-3-(1R,3R)-3-(1R,3R)-3-(1R
                 methylcyclohexyl]amino}thieno[3,2-b]pyridin-5(4H)-one;
                                        6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-[(1-ethylpropyl)amino]-7-
                 hydroxythieno[3,2-b]pyridin-5(4H)-one;
                                        6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-{[1-
30
                 phenylethyl]amino}thieno[3,2-b]pyridin-5(4H)-one;
                                        6-(1,1-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-yl)-7-\text{hydroxy}-4-\{[(1R)-1-1]-1-1\}
                 methylbutyl]amino}thieno[3,2-b]pyridin-5(4H)-one;
                                        4-(cyclobutylamino)-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-
                 hydroxythieno[3,2-b]pyridin-5(4H)-one;
                                        4-[(cyclopropylmethyl)amino]-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-
35
                 hydroxythieno[3,2-b]pyridin-5(4H)-one;
                                        4-[(2-chloro-1,3-thiazol-5-yl)methyl]-7-hydroxy-6-(7-hydroxy-1,1-dioxido-4H-1,2,4-
```

6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-[(3-furylmethyl)amino]-7-

benzothiadiazin-3-yl)thieno[3,2-b]pyridin-5(4H)-one;

 $2-[(3-\{4-[(2-\text{chloro}-1,3-\text{thiazol}-5-\text{yl})\text{methyl}]-7-\text{hydroxy}-5-\text{oxo}-4,5-\text{dihydrothieno}[3,2-b]$ pyridin-6-yl $\}-1,1-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-7-yl)$ oxy $\}$ acetamide; and

2-({3-[4-(cyclohexylamino)-7-hydroxy-5-oxo-4,5-dihydrothieno[3,2-*b*]pyridin-6-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}oxy)acetamide.

15. The compound of claim 1 of formula (IV)

$$\mathbb{R}^4$$
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^1
 \mathbb{R}^5

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

 R^1 is selected from the group consisting of alkoxycarbonylalkyl, alkylcarbonylalkyl, arylsulfanylalkyl, arylsulfonylalkyl, carboxyalkyl, formylalkyl, heteroarylsulfonylalkyl, nitroalkyl, R_aR_bN- , $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ alkyl-, wherein R^1 is substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c), - SR_c , - $SO(O)R_c$, -SO(

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, $R_aR_bN_{-}$, N_{3} -, R_eS_{-} , wherein R^4 is substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

25

30

5

10

15

20

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkylcarbonyl, alkylsulfonyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, arylalkoxy, arylsulfonyl, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heteroarylcarbonyl, heterocycle, heterocyclealkyl, heterocyclecarbonyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, R_aR_bN alkyl-, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, and $R_aR_bNSO_2N(R_f)$ -, wherein each R^5 is

independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heteroaryle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

5

10

15

20

25

30

35

 R_a and R_b are independently selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_cR_dN alkyl-, R_cR_dN -, R_cR_dN -, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(R_c), -(alkyl)(R_c), - R_c , - R_c , - R_c -, - R_c -,

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are substituted with 0, 1, 2 or 3 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

 R_c and R_d , are independently selected from the group consisting of hydrogen, -NH₂, -N(H)alkyl -C(O)NR_fR_g, -SO₂NR_fR_g, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo,

halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_g), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_g), -C(O)OR_f, -C(O)OR_f, -C(O)NR_fR_g, -NC(O)OR_f, -NSO₂NR_fR_g, -NC(O)NR_fR_g, -alkylNC(O)OR_f, -alkylNSO₂NR_fR_g, and -alkylNC(O)NR_fR_g;

5

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

15

10

R_f and R_g are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl;

20

alternatively, R_f and R_g together with the carbon atom to which they are attached form a four- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

25

 R_k is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkyl, alkylsulfanyl, , alkylsulfanylalkyl, arylsulfanyl, arylsulfanyl, arylsulfanyl, cycloalkenyl, cycloalkenylalkyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heteroarylsulfanyl, heteroarylsulfanylalkyl, heterocyclealkyl, heterocyclesulfanyl, heterocyclesulfanyl, heterocyclesulfanylalkyl, , hydroxyalkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aR_bNC(O)$ - and $R_aR_bNC(O)$ alkyl, R_aSO_2 -, R_aSO_2 alkyl-, $R_aOC(O)$ -, $R_aOC(O)$ alkyl-, $R_aC(O)$ -, $R_aC(O)$ -alkyl-,

30

wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c),

 $-(alkyl)(NR_cR_s)$, $-SR_c$, $-S(O)R_c$, $-S(O)_2R_c$, $-OR_c$, $-N(R_c)(R_s)$, $-C(O)R_c$, $-C(O)OR_c$ and

35 -C(O)NR_cR_c;

m is 0, 1, 2, 3, or 4; and

```
n is 0, 1, 2, 3, or 4.
```

5

10

15

25

- 16. The compound of claim 15 wherein R⁴ is hydroxy.
- 17. The compound of claim 16 wherein R^1 is selected from the group consisting of $R_aR_bN_-$, $R_rR_vC=N_-$ and R_kO_- .
- 18. The compound of claim 15 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(3-hydroxybutyl)-2(1H)-quinolinone;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-{[(1E)-phenylmethylene]amino}-2(1H)-quinolinone;
- 1-amino-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2(1H)-quinolinone;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-propoxyquinolin-2(1*H*)-one;
- 1-(benzylamino)-3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxyquinolin-20 2(1*H*)-one;
 - 1-amino-3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxyquinolin-2(1*H*)-one;
 - 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(1-propylbutyl)amino]quinolin-2(1*H*)-one;
 - 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(isobutylamino)quinolin-2(1*H*)-one;
 - 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-1-[(1-ethylpropyl)amino]-4-hydroxyquinolin-2(1*H*)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(pentylamino)quinolin-30 2(1*H*)-one;
 - 1-(cyclohexylamino)-3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxyquinolin-2(1*H*)-one;
 - 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-{[(2-methyl-1,3-thiazol-4-yl)methyl]amino}quinolin-2(1*H*)-one;
 - 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1- (isopropylamino)quinolin-2(1*H*)-one;
 - 1-(cyclobutylamino)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-

```
hydroxyquinolin-2(1H)-one;
             1-(cyclopentylamino)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-
     hydroxyquinolin-2(1H)-one;
             3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-{[3-
     methylcyclopentyl]amino}quinolin-2(1H)-one;
5
             3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(tetrahydro-2H-pyran-4-
     ylamino)quinolin-2(1H)-one;
             3-(1,1-\operatorname{dioxido}-4H-1,2,4-\operatorname{benzothiadiazin}-3-yl)-1-\{[1-\operatorname{ethylbutyl}]\operatorname{amino}\}-4-
     hydroxyquinolin-2(1H)-one;
10
             3-(1,1-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-yl)-4-\text{hydroxy}-1-\{[(3R)-3-yl)-4-\text{hydroxy}-1-(3R)-3-yl)-4-\text{hydroxy}-1-(3R)-3-yl\}
     methylcyclohexyl]amino}quinolin-2(1H)-one;
            1-(cycloheptylamino)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-
     hydroxyquinolin-2(1H)-one;
             3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-{[3-ethylcyclopentyl]amino}-4-
15
     hydroxyquinolin-2(1H)-one;
             3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-{[1-
     isopropylbutylamino}quinolin-2(1H)-one;
             3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-{[1-
     phenylethyl]amino}quinolin-2(1H)-one;
             3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-{[1-thien-3-
20
     ylethyllamino\quinolin-2(1H)-one;
             1-{[3,5-dimethylcyclohexyl]amino}-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-
     hydroxyquinolin-2(1H)-one;
             3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(4-
     isopropylcyclohexyl)amino]quinolin-2(1H)-one;
25
             3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[1,2,3,4-
     tetrahydronaphthalen-2-ylamino]quinolin-2(1H)-one;
             3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-{[3-
     (trifluoromethyl)cyclohexyllamino)quinolin-2(1H)-one;
             1-(butylamino)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxyquinolin-
30
     2(1H)-one;
             3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(3-
     methylbutyl)amino]quinolin-2(1H)-one;
             3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-[(3-furylmethyl)amino]-4-
35
     hydroxyquinolin-2(1H)-one;
             3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-[(2-furylmethyl)amino]-4-
     hydroxyquinolin-2(1H)-one;
```

3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(thien-2ylmethyl)aminolquinolin-2(1H)-one; 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(1,3-thiazol-2ylmethyl)amino]quinolin-2(1*H*)-one; $3-(1,1-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-yl)-1-\{[(2R)-2-\text{ethyl}-3-yl)-1-(2R)-2-\text{ethyl}-3-yl)-1-\{[(2R)-2-\text{ethyl}-3-yl)-1-yl]-1-\{[(2R)-2-\text{ethyl}-3-yl)-1-yl]-1-\{[(2R)-2-\text{ethyl}-3-yl]-1-yl]-1-\{[(2R)-2-\text{ethyl}-3-yl]-1-yl]-1-\{[(2R)-2-\text{ethyl}-3-yl]-1-yl]-1-\{[(2R)-2-\text{ethyl}-3-yl]-1-yl]-1-\{[(2R)-2-\text{ethyl}-3-yl]-1-yl]-1-\{[(2R)-2-\text{ethyl}-3-yl]-1-yl]-1-\{[(2R)-2-\text{ethyl}-3-yl]-1-yl]-1-\{[(2R)-2-\text{ethyl}-3-yl]-1-yl]-1-\{[(2R)-2-\text{ethyl}-3-yl]-1-yl]-1-yl]-1-\{[(2R)-2-\text{ethyl}-3-yl]-1-yl]-1-yl]-1-\{[(2R)-2-\text{ethyl}-3-yl]-1$ methylbutyl]amino}-4-hydroxyquinolin-2(1H)-one; 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(4-hydroxy-1)-4-hydroxy-1]methylbenzyl)aminolquinolin-2(1H)-one; 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-y1)-4-hydroxy-1-[(3-x)]methylbenzyl)amino]quinolin-2(1H)-one; $3-(1,1-\operatorname{dioxido}-4H-1,2,4-\operatorname{benzothiadiazin}-3-y1)-4-\operatorname{hydroxy}-1-[(2-\operatorname{dioxido}-4H-1,2,4-\operatorname{benzothiadiazin}-3-y1)-4-\operatorname{hydroxy}-1-[(2-\operatorname{dioxido}-4H-1,2,4-\operatorname{benzothiadiazin}-3-y1)-4-\operatorname{hydroxy}-1-[(2-\operatorname{dioxido}-4H-1,2,4-\operatorname{benzothiadiazin}-3-y1)-4-\operatorname{hydroxy}-1-[(2-\operatorname{dioxido}-4H-1,2,4-\operatorname{benzothiadiazin}-3-y1)-4-\operatorname{hydroxy}-1-[(2-\operatorname{dioxido}-4H-1,2,4-\operatorname{benzothiadiazin}-3-y1)-4-\operatorname{hydroxy}-1-[(2-\operatorname{dioxido}-4H-1,2,4-\operatorname{benzothiadiazin}-3-y1)-4-\operatorname{hydroxy}-1-[(2-\operatorname{dioxido}-4H-1,2,4-\operatorname{benzothiadiazin}-3-y1)-4-\operatorname{hydroxy}-1-[(2-\operatorname{dioxido}-4H-1,2,4-\operatorname{benzothiadiazin}-3-y1)-4-\operatorname{hydroxy}-1-[(2-\operatorname{dioxido}-4H-1,2,4-\operatorname$ methylbenzyl)amino]quinolin-2(1H)-one; 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-{[(3-methylthien-2yl)methyl]amino}quinolin-2(1H)-one; 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(4methoxybenzyl)amino]quinolin-2(1H)-one; 1-{[(5-chlorothien-2-yl)methyl]amino}-3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3yl)-4-hydroxyquinolin-2(1H)-one; 1-{[(2-chloro-1,3-thiazol-5-yl)methyl]amino}-3-(1,1-dioxido-4*H*-1,2,4benzothiadiazin-3-yl)-4-hydroxyquinolin-2(1H)-one; 1-[(3-bromobenzyl)amino]-3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4hydroxyquinolin-2(1H)-one; 1-[(4-bromobenzyl)amino]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4hydroxyquinolin-2(1H)-one; 1-[(2-bromobenzyl)amino]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4hydroxyquinolin-2(1*H*)-one; 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(pyridin-3ylmethyl)aminolquinolin-2(1H)-one; $3-(\{[3-(1,1-\operatorname{dioxido}-4H-1,2,4-\operatorname{benzothiadiazin}-3-y])-4-\operatorname{hydroxy}-2-\operatorname{oxoquinolin}-1(2H)$ yl]amino}methyl)benzonitrile; 2-({3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}oxy)acetamide; 2-({3-[1-(cyclopentylamino)-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}oxy)acetamide;

5

10

15

20

25

30

- 2-({3-[1-(cyclohexylamino)-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}oxy)acetamide;
 - 2-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-

1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl)oxy]acetamide;

5

10

15

20

25

- 2-({3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4*H*-1,2-benzothiazin-7-yl}oxy)acetamide;
- 2-({3-[1-(butylamino)-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}oxy)acetamide;
- 2-[(3-{4-hydroxy-1-[(3-methylbutyl)amino]-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl)oxy]acetamide;
- 3-(8-amino-7-hydroxy-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(isobutylamino)quinolin-2(1*H*)-one;
- 2-({8-amino-3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}oxy)acetamide;
 - 2-({3-[4-hydroxy-2-oxo-1-(propylamino)-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}oxy)acetamide;
 - 2-({3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}oxy)propanamide;
 - 2-({3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}oxy)butanamide;
 - 8-amino-3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl methanesulfonate;
- 1-[(cyclopropylmethyl)amino]-4-hydroxy-3-(7-hydroxy-8-nitro-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)quinolin-2(1*H*)-one;
 - 3-(7-{2-[(3S)-3-aminopyrrolidin-1-yl]-2-oxoethoxy}-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-1-[(cyclopropylmethyl)amino]-4-hydroxyquinolin-2(1*H*)-one;
 - 2-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl)oxy]-N-ethylacetamide;
 - [(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl)oxy]acetic acid;
 - 3-{7-[2-(3-aminopyrrolidin-1-yl)-2-oxoethoxy]-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl}-1-[(cyclopropylmethyl)amino]-4-hydroxyquinolin-2(1H)-one;
 - 3-(8-amino-7-hydroxy-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-[(cyclopropylmethyl)amino]-4-hydroxyquinolin-2(1H)-one;
 - 2-[(8-amino-3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl)oxy]acetamide;
- [(8-amino-3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl)oxy]acetonitrile;
 - 1-[(cyclopropylmethyl)amino]-4-hydroxy-3-[7-(2-hydroxyethoxy)-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl]quinolin-2(1H)-one;

```
1-[(cyclopropylmethyl)amino]-4-hydroxy-3-[7-(1H-imidazol-2-ylmethoxy)-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl]quinolin-2(1H)-one;
```

1-[(cyclopropylmethyl)amino]-3-[1,1-dioxido-7-(1,3-thiazol-2-ylmethoxy)-4H-1,2,4-benzothiadiazin-3-yl]-4-hydroxyquinolin-2(1H)-one;

1-[(cyclopropylmethyl)amino]-3-[7-(4,5-dihydro-1H-imidazol-2-ylmethoxy)-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl]-4-hydroxyguinolin-2(1H)-one;

2-{[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl)oxy]methyl}-1,3-thiazole-4-carbonitrile;

3-[7-(2-aminoethoxy)-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl]-1-[(cyclopropylmethyl)amino]-4-hydroxyquinolin-2(1H)-one;

N-{2-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl)oxy]ethyl}methanesulfonamide;

3-{7-[(5-bromopyridin-2-yl)oxy]-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl}-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;

4-hydroxy-1-(isobutylamino)-3-{7-[(3-nitropyridin-2-yl)oxy]-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl}quinolin-2(1H)-one;

tert-butyl 3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-ylcarbamate;

3-(7-amino-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-

[(cyclopropylmethyl)amino]-4-hydroxyquinolin-2(1H)-one;

5

10

15

20

25

30

35

methyl 2-chloro-6-({3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}oxy)isonicotinate;

N-{3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}methanesulfonamide;

N-(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl)methanesulfonamide;

N-(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl)methanesulfonamide;

2-{[3-(1-amino-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]oxy}acetamide;

 $2-\{[3-(4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]oxy\} acetamide; and$

N-({3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl]-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl}methyl)urea.

19. The compound of claim 1 wherein:

A is heteroaryl; and

R² and R³, together with the carbon atoms to which they are attached form a five- or six-membered ring selected from the group consisting of phenyl, pyridyl, pyrimidinyl, pyridazinyl, thienyl, furanyl, pyrrolyl, pyrazolyl, oxazolyl, thiazolyl, isoxazolyl, isoxazolyl, triazolyl, triazolyl, thiadiazolyl, tetrazolyl, cyclopentyl and cyclohexyl.

- 20. The compound of claim 19 wherein A is thienyl.
- 21. The compound of claim 20 wherein R² and R³ together with the carbon atoms to which they are attached form a phenyl ring.
 - 22. The compound of claim 1 of formula (V)

$$\mathbb{R}^{4} \qquad \mathbb{N} \qquad \mathbb{S} \qquad \mathbb{R}^{5})_{r}$$

$$\mathbb{R}^{1} \qquad \mathbb{V}$$

$$\mathbb{N} \qquad \mathbb{N} \qquad \mathbb{N}$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

 R^{1} is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkylcarbonylalkyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, arylsulfonylalkyl, arylsulfonylalkyl, carboxyalkyl, cycloalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, cycloalkyl)alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, R_aR_bN -Rakyl-, R_aR_bN -C(O)alkyl-, R_aR_bN -C(O)alkyl-, R_aR_bN -C(O)NRakyl-, R_aR_b -NC(O)NRakyl-, R_aR_b -NC(O)NRakyl-, R_aR_b -NC(O)NRakyl-, R_aR_b -NC(O)NRakyl-, alkyl-, alkyl-,

30

5

15

20

25

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, $R_aR_bN_-$, N_3 -, R_eS -, wherein R^4 is substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

R⁵ is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkylcarbonyl, alkylsulfonyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, arylalkoxy, arylsulfonyl, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heteroarylcarbonyl, heterocycle, heterocyclealkyl, heterocyclecarbonyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN-, R_aR_bNalkyl-, R_aSO₂N(R_f)-, R_aSO₂N(R_f)-, R_aR_bNSO₂N(R_f)-, R_aR_bNSO₂N(R_f)-, R_aR_bNSO₂N(R_f) alkyl-, R_aR_bNC(O)-, R_kOC(O)alkyl-, R_kOalkyl-, R_aR_bNSO₂-, R_aR_bNSO₂alkyl-, and -OR_k, wherein each R⁵ is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_c), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_c.

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_c), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_c), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_c;

20

25

30

35

5

10

15

 R_a and R_b are independently selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_cR_dN -, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(R_c), -(alkyl)(R_c), -S R_c , -S(R_c), -S R_c , -C(R_c), -

alternatively, R_a and R_b, together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are substituted with 0, 1, 2 or 3 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl,

alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

R_c and R_d, are independently selected from the group consisting of hydrogen, -NH₂,

-N(H)alkyl, -C(O)NR_fR_g, -SO₂NR_fR_g, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl,
cycloalkylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and
heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3
substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo,
halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl,
heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_g), -SR_f, -S(O)R_f, -S(O)₂R_f,
-OR_f, -N(R_f)(R_g), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_g, -NC(O)OR_f, -NSO₂NR_fR_g, -NC(O)NR_fR_g,
-alkylNC(O)OR_f, -alkylNSO₂NR_fR_g, and -alkylNC(O)NR_fR_g;

alternatively, R_c and R_d, together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_c), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

15

20

30

35

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

R_f and R_g are independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkyl, cycloalkylalkyl, cycloalkylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a four- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkyl, alkylsulfanyl, , alkylsulfanylalkyl, alkylsulfonylalkyl, arylalkyl, arylsulfanyl, arylsulfanyl, arylsulfanyl, cycloalkenyl, cycloalkenylalkyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heteroarylsulfanyl, heteroarylsulfanyl, heterocyclesulfanyl, heterocyclesulfanyl, heterocyclesulfanyl, hydroxyalkyl, nitroalkyl, $R_aR_bNC(O)$ - and

 $R_aR_bNC(O)$ alkyl, R_aSO_2 -, R_aSO_2 alkyl-, $R_aOC(O)$ -, $R_aOC(O)$ alkyl-, $R_aC(O)$ -, $R_aC(O)$ alkyl-, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heteroarylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

m is 0, 1, 2, 3, or 4; and

n is 0, 1, 2, 3, or 4.

- 23. The compound of claim 22 wherein R⁴ is hydroxy.
- 24. The compound of claim 23 wherein R¹ is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkenyl, cycloalkylalkenyl, cycloalkylalkenyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, RaRbN-, RaRbNalkyl-, RaRbNC(O)alkyl-, RrRgC=N- and RkO-.

20

25

30

35

- 25. The compound of claim 21 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:
- 1-benzyl-4-hydroxy-3-{7-[(methoxymethoxy)methyl]-1,1-dioxido-4*H*-thieno[2,3-*e*][1,2,4]thiadiazin-3-yl}quinolin-2(1*H*)-one;
- 1-Benzyl-4-hydroxy-3-[7-(hydroxymethyl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl]quinolin-2(1H)-one;
- 1-Benzyl-3-(6-chloro-1,1-dioxido-4*H*-thieno[3,2-*e*][1,2,4]thiadiazin-3-yl)-4-hydroxyquinolin-2(1*H*)-one;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxylic acid 1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-4*H*-thieno[2,3-*e*][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-*N*-(2-hydroxyethyl)-4*H*-thieno[2,3-*e*][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-2-hydroxy-1-(aminocarbonyl)ethyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide; N-(2-amino-2-oxoethyl)-3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-4H-

```
thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
       3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-2-hydroxy-1-
methylethyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
       3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N,N-bis(2-hydroxyethyl)-
4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
       3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[2-hydroxy-1-
(hydroxymethyl)ethyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
       1-benzyl-4-hydroxy-3-(7-{[(3R)-3-hydroxypyrrolidin-1-yl]carbonyl}-1,1-dioxido-4H-
thieno[2,3-e][1,2,4]thiadiazin-3-yl)quinolin-2(1H)-one;
       3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-(3-hydroxypropyl)-4H-
thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
       3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(2S)-2,3-
dihydroxypropyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
       3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-1-
(hydroxymethyl)propyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
       3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-1-(hydroxymethyl)-
2-methylpropyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
       3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[2-hydroxybutyl]-4H-
thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
       3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[2-hydroxy-2-(4-
hydroxyphenyl)ethyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
       1-benzyl-3-[1,1-dioxido-7-(piperazin-1-ylcarbonyl)-4H-thieno[2,3-
el[1,2,4]thiadiazin-3-yl]-4-hydroxyguinolin-2(1H)-one;
       N-[5-(aminocarbonyl)pyridin-2-yl]-3-(1-benzyl-4-hydroxy-2-oxo-1,2-
dihydroquinolin-3-yl)-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
       [3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-
e[[1,2,4]thiadiazin-7-yl]methyl carbamate;
       [3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-
e][1,2,4]thiadiazin-7-yl]methyl aminocarbonylcarbamate;
       3-[7-(azidomethyl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl]-1-benzyl-4-
hydroxyquinolin-2(1H)-one;
```

5

10

15

20

25

30

35

3-[7-(aminomethyl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl]-1-benzyl-4-hydroxyquinolin-2(1H)-one;

 $N-\{[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl]methyl\} methanesulfonamide;$

N-{[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl]methyl}nicotinamide;

N-{[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl]methyl}morpholine-4-carboxamide;

N-{[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl]methyl}-2-hydroxyacetamide;

1-[(cyclopropylmethyl)amino]-4-hydroxy-3-{7-[(methoxymethoxy)methyl]-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl}quinolin-2(1H)-one;

1-[(cyclopropylmethyl)amino]-4-hydroxy-3-[7-(hydroxymethyl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl]quinolin-2(1H)-one;

N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]methanesulfonamide;

 $N-[(3-\{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl\}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]ethanesulfonamide;$

N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]propane-1-sulfonamide;

N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]propane-2-sulfonamide;

N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]benzenesulfonamide; and

 $N-[(3-\{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl\}-1,1-dioxido-4<math>H$ -thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]-1-phenylmethanesulfonamide.

26. The compound of claim 20 wherein R² and R³, together with the carbon atoms to which they are attached form a pyridyl ring.

27. The compound of claim 1 of formula (VI)

5

10

15

20

25

30

$$\mathbb{R}^{4}$$

$$\mathbb{N}$$

$$\mathbb{N$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

R¹ is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkylcarbonylalkyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, arylsulfonylalkyl, arylsulfonylalkyl, arylsulfonylalkyl,

carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN- , $R_aR_bNalkyl-$, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ Oalkyl-, $R_aR_bNC(O)$ NRcalkyl-, $R_fR_gC=N-$ and R_kO- , wherein R^1 is substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), - SR_c , - $S(O)R_c$, - $S(O)_2R_c$, - OR_c , - $N(R_c)(R_e)$, - $C(O)R_c$, - $C(O)OR_c$ and - $C(O)NR_cR_e$;

10

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN -, N_3 -, R_eS -, wherein R^4 is substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

...

20

15

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkylcarbonyl, alkylsulfonyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, arylalkoxy, arylsulfonyl, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heteroarylcarbonyl, heterocycle, heterocyclealkyl, heterocyclecarbonyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, $R_aR_bN-R_aR_bN$ halkyl-, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, and $R_aR_bNC(O)$ -, $R_aC(O)$ -,

25

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

35

30

 R_a and R_b are independently selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenylalkyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl,

heterocyclealkyl, hydroxyalkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_cR_dN alkyl-, $R_cR_dNC(O)$ alkyl-, R_cSO_2 -, R_cSO_2 alkyl-, $R_cC(O)$ -, $R_cC(O)$ alkyl-, $R_cOC(O)$ -, $R_cOC(O)$ -, $R_cOC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c), - SR_c , - SR_c , - SC_c , - SC_c), - SC_c , - SC_c

5

10

15

20

25

30

35

alternatively, R_a and R_b, together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are substituted with 0, 1, 2 or 3 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

 R_c and R_d , are independently selected from the group consisting of hydrogen, -NH₂, -N(H)alkyl, -C(O)NR_fR_g, -SO₂NR_fR_g, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_g), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_g), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_g, -NC(O)OR_f, -NSO₂NR_fR_g, -NC(O)NR_fR_g, -alkylNC(O)OR_f, -alkylNSO₂NR_fR_g, and -alkylNC(O)NR_fR_g;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 R_f and R_g are independently selected from the group consisting of hydrogen, alkyl,

alkenyl, aryl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a four- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

 R_{k} is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkyl, alkylsulfanyl, , alkylsulfanylalkyl, alkylsulfonylalkyl, aryl, arylalkyl, arylsulfanyl, arylsulfanyl, arylsulfanyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heteroarylsulfanyl, heteroarylsulfanylalkyl, heterocyclealkyl, heterocyclesulfanyl, heterocyclesulfanylalkyl, , hydroxyalkyl, nitroalkyl, $R_{a}R_{b}$ Nalkyl-, $R_{a}R_{b}$ NC(O)- and $R_{a}R_{b}$ NC(O)alkyl, $R_{a}SO_{2}$ -, $R_{a}SO_{2}$ alkyl-, R_{a} OC(O)-, R_{a} OC(O)alkyl-, R_{a} C(O)-, R_{a} C(O)-, R_{a} C(O)alkyl-, wherein each R_{k} is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_{c}), -(alkyl)(NR_{c}R_{e}), -SR_{c}, -S(O)R_{c}, -S(O)_{2}R_{c}, -OR_{c}, -N(R_{c})(R_{e}), -C(O)R_{c}, -C(O)OR_{c} and $-C(O)NR_{c}R_{e}$;

m is 0, 1, 2, 3, or 4; and

5

10

15

20

25

30

35

n is 0, 1, 2, 3, or 4.

- 28. The compound of claim 27 wherein R⁴ is hydroxy.
 - 29. The compound of claim 28 wherein R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, R_aR_bN -, R_aR_bN alkyl-, R_aR_bN C(O)alkyl-, R_rR_eC =N- and R_rR_eC =N- and R_rR_eC =N-.
 - 30. The compound of claim 26 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:

1-butyl-4-hydroxy-3-{7-[(methoxymethoxy)methyl]-1,1-dioxido-4*H*-thieno[2,3-*e*][1,2,4]thiadiazin-3-yl}-1,8-naphthyridin-2(1*H*)-one;

1-butyl-4-hydroxy-3-[7-(hydroxymethyl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl]-1,8-naphthyridin-2(1H)-one;

methyl 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)-4*H*-thieno[2,3-*e*][1,2,4]thiadiazine-7-carboxylate 1,1-dioxide;

4-hydroxy-3-{7-[(methoxymethoxy)methyl]-1,1-dioxido-4*H*-thieno[2,3-*e*][1,2,4]thiadiazin-3-yl}-1-(3-methylbutyl)-1,8-naphthyridin-2(1*H*)-one; and

4-hydroxy-3-[7-(hydroxymethyl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl]-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one.

- 31. The compound of claim 19 wherein A is pyridyl.
 - 32. The compound of claim 1 of formula (VII)

5

10

15

20

25

30

$$\mathbb{R}^{4} \qquad \mathbb{N} \qquad \mathbb{R}^{5}$$

$$\mathbb{R}^{1} \qquad (VII)$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkylcarbonylalkyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfinylalkyl, alkylsulfinylalkyl, arylsulfonylalkyl, arylsulfonylalkyl, arylsulfonylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenylalkyl, cycloalkyl)alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, R_aR_bN -, R_aR_bN -C(O)alkyl-, R_aR_bN -C(O)Oalkyl-, R_aR_bN -C(O)NR_calkyl-, R_fR_g -C=N- and R_k -O-, wherein R^1 is substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)_2R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, $R_aR_bN_a$, N_a -, R_aS -, wherein R^4 is substituted with 0, 1 or 2 substituents independently selected

from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkylcarbonyl, alkylsulfonyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, arylalkoxy, arylsulfonyl, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heteroarylcarbonyl, heterocycle, heterocyclealkyl, heterocyclecarbonyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, R_aR_bN alkyl-, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, and $R_bNSO_2N(R_f)$ -, wherein each R^5 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(R_c), - R_c 0, - R_c

15

20

25

30

35

10

5

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

 R_a and R_b are independently selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_cR_dN alkyl-, R_cR_dN C(O)alkyl-, R_cSO_2 -, R_cSO_2 alkyl-, $R_cC(O)$ -, $R_cC(O)$ alkyl-, $R_cOC(O)$ -, $R_cOC(O)$ alkyl-, R_cR_dN C(O)-, R_cR_dN C(O)Oalkyl-, R_cR_dN C(O)N(R_c)alkyl-, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(O R_c), -(alkyl)(N R_cR_c), -S R_c , -S(O) R_c , -S(O) R_c , -O R_c , -O R_c , -N(R_c)(R_c), -C(O)O R_c , and -C(O)N R_c R.

alternatively, R_a and R_b, together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are substituted with 0, 1, 2 or 3 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano,

nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

5

10

15

30

35

 R_c and R_d , are independently selected from the group consisting of hydrogen, -NH₂, -N(H)alkyl, -C(O)NR_fR_g, -SO₂NR_fR_g, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_g), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_g), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_g, -NC(O)OR_f, -NSO₂NR_fR_g, -NC(O)NR_fR_g, -alkylNC(O)OR_f, -alkylNSO₂NR_fR_g, and -alkylNC(O)NR_fR_g;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_c), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_c), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_c;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

25 R_f and R_g are independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a four- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

R_k is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkyl, alkylsulfanyl, , alkylsulfanylalkyl, alkylsulfonylalkyl, aryl, arylalkyl, arylsulfanyl, arylsulfonylalkyl, cycloalkyl, cycloalkenyl, cycloalkenylalkyl, cycloalkylalkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heteroarylsulfanyl, heteroarylsulfanyl, heterocycle, heterocyclealkyl, heterocyclesulfanyl,

heterocyclesulfanylalkyl, , hydroxyalkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aR_bNC(O)$ - and $R_aR_bNC(O)$ alkyl, R_aSO_2 -, R_aSO_2 alkyl-, $R_aOC(O)$ -, $R_aOC(O)$ alkyl-, $R_aC(O)$ -, $R_aC(O)$ alkyl-, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_c), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_c), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_c;

m is 0, 1, 2, 3, or 4; and

10

25

30

35

5

n is 0, 1, 2, 3, or 4.

- 33. The compound of claim 32 wherein R^4 is hydroxy.
- 34. The compound of claim 33 wherein R¹ is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenylalkyl, cycloalkylalkenyl, cycloalkylalkenyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, RaRbN-, RaRbNalkyl-, RaRbNC(O)alkyl-, RfRgC=N- and RkO-.
 - 35. The compound of claim 31 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:

1-butyl-3-(1,1-dioxido-4H-pyrido[3,2-e][1,2,4]thiadiazin-3-yl)-4-hydroxy-2(1H)-quinolinone;

1-benzyl-3-(1,1-dioxido-4H-pyrido[3,2-e][1,2,4]thiadiazin-3-yl)-4-hydroxy-2(1H)-quinolinone;

5-chloro-3-(1,1/-dioxido-4H-pyrido[3,2-e][1,2,4]thiadiazin-3-yl)-4-hydroxy-1-(3-methylbutyl)-2(1H)-quinolinone;

1-benzyl-3-(1,1-dioxido-4H-pyrido[3,2-e][1,2,4]thiadiazin-3-yl)-4-hydroxy-5-methyl-2(1H)-quinolinone;

3-(1,1-dioxido-4H-pyrido[3,2-e][1,2,4]thiadiazin-3-yl)-4-hydroxy-1-[(2-methyl-1,3-thiazol-5-yl)methyl]-2(1H)-quinolinone; and

1-benzyl-4-hydroxy-3-(7-methyl-1,1-dioxido-4H-pyrido[2,3-e][1,2,4]thiadiazin-3-yl)-2(1H)-quinolinone.

36. The compound of claim 31 wherein R² and R³, together with the carbon atoms to which

they are attached, form a pyridyl ring.

15

20

25

30

35

2(1H)-pyridinone;

- 37. The compound of claim 36 wherein R⁴ is hydroxy.
- 5 38. The compound of claim 37 whererin R¹ is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenylalkyl, cycloalkylalkenyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, R_aR_bN-, R_aR_bNalkyl-, R_aR_bNC(O)alkyl-, R_tR_cC=N- and R_kO-.
 - 39. The compound of claim 36 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, selected from the group consisting of:

1-benzyl-3-(1,1-dioxido-4H-pyrido[3,2-e][1,2,4]thiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one; and

1-butyl-4-hydroxy-3-(7-methyl-1,1-dioxido-4H-pyrido[2,3-e][1,2,4]thiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one.

- 40. The compound of claim 1 wherein R^2 and R^3 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl and heteroarylalkyl, wherein R^2 and R^3 are independently substituted with 0, 1 or 2 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_k), -(alkyl)(OR_k), -S R_a , -S(O) R_a , -S(O) R_a , -O R_k , -N(R_a)(R_b), -C(O) R_c , -C(O)O R_c , and -C(O)N R_a R_b .
- 41. The compound of claim 40 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:

1-benzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2(1H)-pyridinone; 1-benzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-5,6-dimethyl-

1-benzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-6-methyl-5-phenyl-2(1H)-pyridinone;

- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-5,6-dimethyl-1-(3-methylbutyl)-2(1H)-pyridinone;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-(2-ethylbutyl)-4-hydroxy-5,6-dimethyl-2(1H)-pyridinone;

- 1-benzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-6-phenyl-2(1H)-pyridinone;
- 1, 5-dibenzyl-3-(1, 1-dioxido-4H-1, 2, 4-benzothiadiazin-3-yl)-4-hydroxy-6-methyl-2(1H)-pyridinone;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-(2-ethylbutyl)-4-hydroxy-6-methyl-5-phenyl-2(1H)-pyridinone;

1-butyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-2(1H)-pyridinone;

- N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydropyridin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}methanesulfonamide;
- N-[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydropyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]methanesulfonamide;
- N-[3-(4-hydroxy-2-oxo-1,2-dihydro-3-pyridinyl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]methanesulfonamide; and
- N-[3-(4-hydroxy-1-isopentyl-5,6-dimethyl-2-oxo-1,2-dihydro-3-pyridinyl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]methanesulfonamide.
- 42. The compound of claim 1 wherein:

5

10

15

20

25

30

35

R² and R³, together with the carbon atoms to which they are attached. form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl, wherein said aryl, cycloalkyl and heteroaryl are optionally substituted with (R⁶)_m; wherein

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e; and m is 0, 1, 2, 3 or 4.

- 43. The compound of claim 42 wherin R² and R³, together with the carbon atoms to which they are attached, form a cycloalkyl ring.
- 44. The compound of claim 43 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, selected from the group consisting of:
- 1-(3-bromobenzyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-5,6,7,8-tetrahydro-2(1H)-quinolinone; and
- 1-benzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-5,6,7,8-tetrahydro-2(1H)-quinolinone.
- 45. The compound of claim 1 wherin R² and R³, together with the carbon atoms to which they are attached, form a five- or six-membered ring selected from the group consisting of thienyl,

furanyl, pyrrolyl, imidazolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, pyrazolyl, oxadiazolyl, triazolyl, thiadiazolyl, tetrazolyl, phenyl, pyridyl, pyridazinyl and pyrimidinyl.

46. The compound of claim 45 wherein R⁴ is hydroxy.

5

10

15

20

25

30

- 47. The compound of claim 46 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:
- 1-Benzyl-3-(7-benzyl-1,1-dioxido-4,7-dihydroimidazo[4,5-*e*][1,2,4]thiadiazin-3-yl)-4-hydroxyquinolin-2(1*H*)-one;

1-Benzyl-3-(1,1-dioxido-4,7-dihydroimidazo[4,5-e][1,2,4]thiadiazin-3-yl)-4-hydroxyquinolin-2(1H)-one;

7-benzyl-5-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-phenyl-1,7-dihydro-6H-pyrazolo[3,4-b]pyridin-6-one;

6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-8-(2-ethylbutyl)-5-hydroxy-2-(methylsulfanyl)pyrido[2,3-d]pyrimidin-7(8H)-one;

6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-8-(2-ethylbutyl)-5-hydroxypyrido[2,3-d]pyrimidin-7(8H)-one;

8-benzyl-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-5-hydroxy-2-(methylsulfanyl)pyrido[2,3-d]pyrimidin-7(8H)-one;

8-benzyl-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-5-hydroxypyrido[2,3-d]pyrimidin-7(8H)-one;

4-benzyl-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-2,7-dihydroxy[1,3]thiazolo[4,5-b]pyridin-5(4H)-one;

4-benzyl-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-2-(methylsulfanyl)[1,3]thiazolo[4,5-b]pyridin-5(4H)-one;

4-benzyl-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-2-(methylsulfonyl)[1,3]thiazolo[4,5-b]pyridin-5(4H)-one;

2-amino-4-benzyl-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy[1,3]thiazolo[4,5-b]pyridin-5(4H)-one; and

4-benzyl-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy[1,3]thiazolo[4,5-b]pyridin-5(4H)-one.

48. The compound of claim 1 wherein R^4 is hydroxy, halo, -NH₂,-NH(alkyl), -N(alkyl)₂, -N(H)NH₂, -N₃, -N(H)(hydroxyalkyl), or R_cS -.

35

49. The compound of claim 1 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of

3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-propoxyquinolin-2(1*H*)-one;

1-benzyl-3-(6-chloro-1,1-dioxido-4*H*-thieno[3,2-*e*][1,2,4]thiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1*H*)-one;

1-benzyl-3-(6-chloro-1,1-dioxido-4H-thieno[3,2-e][1,2,4]thiadiazin-3-yl)-4-hydroxyquinolin-2(1H)-one;

8-benzyl-3-chloro-6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-5-hydroxypyrido[2,3-*c*]pyridazin-7(8*H*)-one;

8-benzyl-6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-5-hydroxy-3-(methylthio)pyrido[2,3-*c*]pyridazin-7(8*H*)-one;

8-benzyl-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-5-hydroxypyrido[2,3-c]pyridazin-7(8H)-one;

1-benzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,6-naphthyridin-2(1H)-one; and

1-benzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,7-naphthyridin-2(1H)-one.

50. The compound of claim 1 wherein A is a bicyclic ring selected from the group consisting of aryl and heteroaryl.

51. The compound of claim 50 wherein A is selected from the group consisting of naphthyl, indolizinyl, indolyl, isoindolyl, benzofuranyl, benzothienyl, indazolyl, benzimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzothiadiazolyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl and naphthyridinyl, cinnolinyl and pteridinyl.

52. The compound of claim 1 of formula (VIII)

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

5

10

15

20

X is NH, N(alkyl), O or S.

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkylcarbonylalkyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfanylalkyl, arylsulfanylalkyl, arylsulfanylalkyl, arylsulfanylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, R_aR_bN alkyl-, R_aR_bN C(O)alkyl-, R_aR_bN C(O)Oalkyl-, R_aR_bN C(O)Oalkyl-, R_aR_bN C(O)NRcalkyl-, R_rR_g C=N- and R_r C-, wherein R^1 is substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(ORc), -(alkyl)(NRcRe), -SRc, -S(O)Rc, -S(O)_2Rc, -ORc, -N(Rc)(Re), -C(O)Rc, -C(O)ORc and -C(O)NRcRe;

 R^2 and R^3 are independently selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, aryl, arylalkyl, arylcarbonyl, heteroaryl, heteroarylalkyl, heteroarylcarbonyl, heterocyclecarbonyl, cyano, halo and $R_aR_bNC(O)$ -, wherein R^2 and R^3 are independently substituted with 0, 1 or 2 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_k), -(alkyl)(OR_k), -SR_a, -S(O)R_a, -S(O)₂R_a, -OR_k, -N(R_a)(R_b), -C(O)R_c, -C(O)OR, and -C(O)NR_aR_b;

25

10

15

20

alternatively, R^2 and R^3 , together with the carbon atoms to which they are attached form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl and heterocycle, wherein said aryl, cycloalkyl, heteroaryl and heterocycle is optionally substituted with $(R^6)_m$;

30

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, $R_aR_bN_-$, N_3 -, R_eS_- , wherein R^4 is substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

35

R⁵ is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkylcarbonyl, alkylsulfonyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, arylalkoxy, arylsulfonyl, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl,

heteroarylalkyl, heteroarylcarbonyl, heterocycle, heterocyclealkyl, heterocyclecarbonyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, R_aR_bN alkyl-, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, and $-OR_k$, wherein each R^5 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c), -SR, -S(O)R, -SR, -C(O)R, -C(O)R, -C(O)R, -C(O)R, and -C(O)NR, R, ;

10

15

20

25

5

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_c;

 R^7 is selected from the group consisting of alkenyl, alkoxy, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylalkyl, arylcarbonyl, aryloxy, arylalkoxy, arylsulfonyl, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heteroarylcarbonyl, heterocycle, heterocyclealkyl, heterocyclecarbonyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, R_aR_bN alkyl-, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -alkyl-, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -alkyl-, $R_aR_bNSO_2N(R_f)$ -, and -OR $_k$, wherein each R^5 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR $_c$), -(alkyl)(NR $_cR_e$), -SR $_c$, -S(O)R $_c$, -S(O)R $_c$, -OR $_c$, -OR $_c$, -N(R $_c$)(R $_c$), -C(O)R $_c$, -C(O)OR $_c$ and -C(O)NR $_c$ R $_c$;

R_a and R_b are independently selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkyl, alkylsulfanylalkyl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN-, R_cR_dNalkyl-, R_cR_dNC(O)alkyl-, R_cSO₂-, R_cSO₂alkyl-, R_cC(O)-, R_cC(O)alkyl-, R_cOC(O)-, R_cOC(O)alkyl-, R_cR_dNC(O)-, R_cR_dNC(O)-, R_cR_dNC(O)Oalkyl-, R_cR_dNC(O)N(R_e)alkyl-, wherein R_a and

 R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle,

arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), - SR_c , - $SO(R_c$, - $SO(R_c$), - SR_c , - $SO(R_c$), -SO

alternatively, R_a and R_b, together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are substituted with 0, 1, 2 or 3 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

5

10

15

20

25

30

35

 R_c and R_d , are independently selected from the group consisting of hydrogen, -NH₂, -N(H)alkyl, -C(O)NR_fR_g, -SO₂NR_fR_g, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_g), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_g), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_g, -NC(O)OR_f, -NSO₂NR_fR_g, -NC(O)NR_fR_g, -alkylNC(O)OR_f, -alkylNSO₂NR_fR_g, and -alkylNC(O)NR_fR_g;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a four- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 R_f and R_g are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a four- to seven-membered ring selected from the group consisting of cycloalkyl,

cycloalkenyl and heterocycle;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkyl, alkylsulfanyl, , alkylsulfanylalkyl, alkylsulfonylalkyl, aryl, arylalkyl, arylsulfanyl, arylsulfanyl, arylsulfonylalkyl, cycloalkyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heteroarylsulfanyl, heteroarylsulfanylalkyl, heterocycle, heterocyclealkyl, heterocyclesulfanyl, heterocyclesulfanylalkyl, , hydroxyalkyl, nitroalkyl, $R_aR_bNalkyl-$, $R_aR_bNC(O)-$ and $R_aR_bNC(O)$ alkyl, R_aSO_2- , R_aSO_2 alkyl-, $R_aOC(O)-$, $R_aOC(O)$ alkyl-, $R_aC(O)-$, $R_aC(O)$ alkyl-, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(O R_c), -(alkyl)(N R_cR_e), -S R_c , -S(O) R_c , -S(O) R_c , -O R_c , -N(R_c)(R_e), -C(O) R_c , -C(O)O R_c and -C(O)N R_cR_e ;

15

10

5

m is 0, 1, 2, 3, or 4; and

n is 0, 1 or 2.

- The compound of claim 52 wherein R² and R³, together with the carbon atoms to which they are attached, form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl and heterocycle, wherein said aryl, cycloalkyl, heteroaryl and heterocycle is optionally substituted with (R⁶)_m.
- 54. The compound of claim 53 wherein R² and R³, together with the carbon atoms to which they are attached, form a five- or six-membered ring selected from the group consisting of phenyl, pyridyl and thienyl.
 - 55. The compound of claim 54 wherein R^4 is hydroxy.

30

- 56. The compound of claim 55 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:
- 3-(1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl)-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 3-[8-(chloromethyl)-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
 - 3-{3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-

```
3-(8-{[(2-aminoethyl)amino]methyl}-1,1-dioxido-4H-[1,3]oxazolo[5,4-
     h][1,2,4]benzothiadiazin-3-yl)-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
            methyl {3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-
     dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-8-yl}acetate;
 5
            4-hydroxy-3-(8-{[(3R)-3-hydroxypyrrolidin-1-yl]methyl}-1,1-dioxido-4H-
     [1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl)-1-(isobutylamino)quinolin-2(1H)-one;
            3-[1,1-dioxido-8-(pyridinium-1-ylmethyl)-4H-[1,3]oxazolo[5,4-
     h][1,2,4]benzothiadiazin-3-yl]-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-4-olate;
            3-[1,1-dioxido-8-(pyrrolidin-1-ylmethyl)-4H-[1,3]oxazolo[5,4-
10
     h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
            3-[8-(3-aminophenyl)-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-
     yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
            3-[8-(aminomethyl)-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-
15
     4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
            4-hydroxy-3-[8-(hydroxymethyl)-1,1-dioxido-4H-[1,3]oxazolo[5,4-
     h][1,2,4]benzothiadiazin-3-yl]-1-(isobutylamino)quinolin-2(1H)-one;
            3-{8-[(butylamino)methyl]-1,1-dioxido-4H-[1,3]oxazolo[5,4-
     h][1,2,4]benzothiadiazin-3-yl}-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
            3-[9-(butylamino)-1,1-dioxido-4H,8H-[1,4]oxazino[2,3-h][1,2,4]benzothiadiazin-3-
20
     yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
            4-hydroxy-1-(3-methylbutyl)-3-(8-methyl-1,1-dioxido-4H-[1,3]oxazolo[5,4-
     h][1,2,4]benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one;
            3-[1,1-dioxido-8-(trifluoromethyl)-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-
     3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
25
            4-hydroxy-3-(8-hydroxy-1,1-dioxido-4,7-dihydroimidazo[4,5-
     h][1,2,4]benzothiadiazin-3-yl)-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
            4-hydroxy-1-(3-methylbutyl)-3-(8-methyl-1,1-dioxido-4,7-dihydroimidazo[4,5-
     h][1,2,4]benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one;
            3-[1,1-dioxido-8-(pentafluoroethyl)-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-
30
     3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
            3-[8-(chloromethyl)-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-
     yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
             {3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-
     dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-8-yl}acetonitrile;
35
            methyl {3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-
     1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-8-yl}acetate;
```

[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-8-yl}propanoic acid;

- 3-(9,9-dioxido-6H-[1,2,5]thiadiazolo[3,4-h][1,2,4]benzothiadiazin-7-yl-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
- 3-(8-amino-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl)-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one; and
- 4-hydroxy-3-[8-(hydroxymethyl)-1,1-dioxido-4,9-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl]-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one.

5

10

- 57. A pharmaceutical composition comprising a compound of claim 1 or a pharmaceutically acceptable salt form thereof, in combination with a pharmaceutically acceptable carrier.
- 58. A method of inhibiting the replication of an RNA-containing virus comprising contacting said virus with a therapeuctially effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.
- 59. A method of treating or preventing infection caused by an RNA-containing virus comprising administering to a patient in need of such treatment a therapeutically effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.
 - 60. The method of claim 59 wherein the RNA-containing virus is hepatitis C virus.
 - 61. The method of claim 60 further comprising the step of co-administering one or more agents selected from the group consisting of a host immune modulator and a second antiviral agent, or a combination thereof.
- 25 62. The method of claim 61 wherein the host immune modulator is selected from the group consisting of interferon-alpha, pegylated-interferon-alpha, interferon-beta, interferon-gamma, a cytokine, a vaccine and a vaccine comprising an antigen and an adjuvant.
- 63. The method of claim 61 wherein the second antiviral agent inhibits replication of HCV by inhibiting host cellular functions associated with viral replication.
 - 64. The method of claim 61 wherein the second antiviral agent inhibits the replication of HCV by targeting proteins of the viral genome.
- 65. The method of claim 61 comprising the step of co-administering an agent or combination of agents that treat or alleviate symptoms of HCV infection including cirrhosis and inflammation of the liver.

- 66. The method of claim 61 further comprising the step of co-administering one or more agents that treat patients for disease caused by hepatitis B (HBV) infection.
- 5 67. The method of claim 61 comprising the step of co-administering one or more agents that treat patients for disease caused by human immunodeficiency virus (HIV) infection.