

INFO 251: Applied Machine Learning

Regularization

Announcements

- Reminder: Next week's classes on Zoom online
- Assignment 3 due next week
- Quiz 1 scheduled for March 1, first ~40 minutes of class
 - 10-15 multiple choice and short-answer questions
 - See piazza for details on quiz timing

Course Outline

- Causal Inference and Research Design
 - Experimental methods
 - Non-experiment methods
- Machine Learning
 - Design of Machine Learning Experiments
 - Linear Models and Gradient Descent
 - Non-linear models
 - Neural models
 - Unsupervised Learning
 - Practicalities, Fairness, Bias
- Special topics

Key Concepts (last lecture)

- Cost Functions
- Gradient Descent
- Local and global minima
- Convex functions
- Incremental vs. Batch GD
- Learning rates
- Feature scaling

Outline

- Overfitting
- Regularization: intution
- Ridge
- Lasso

Overfitting revisited

 Overfitting: If we have too many features, our model may fit the training set very well, but fail to generalize to new examples

Relationship between income and education

$$wages_i = \alpha + \beta_1 *educ_i + ... + \beta_5 *educ_i^5 + error_i$$

Overfitting: Solutions

- Later in the course:
 - Feature selection
 - Model selection
 - Dimensionality reduction
- Now: Regularization
 - For instance, ridge regularization: Keep all the features, but reduce magnitude of specific parameters

Regularization: Intuition

- Occam's Razor
 - A principle of parsimony, economy, or succinctness used in problemsolving. It states that among competing hypotheses, the hypothesis with the fewest assumptions should be selected.

See: Domingos, P. The role of Occam's razor in knowledge discovery. *Data Mining and Knowledge Discovery 3* (1999), 409–425.

Regularization: Intuition

- Idea: Add a cost penalty for additional complexity in the model
- Example: polynomial regression
 - Model: $Y_i = \theta_0 + \theta_1 X_i + ... + \theta_k X_i^k$
 - Parameters: $\theta_0, \dots, \theta_k$
 - Original "Cost": $J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + ... + \theta_k X_i^k Y_i)^2$

$$wages_i = \alpha + \beta * educ_i + error_i$$

$$wages_i = \alpha + \beta_1 *educ_i + ... + \beta_5 *educ_i^5 + error_i$$

Regularization: Intuition

Original Cost

•
$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + ... + \theta_k X_i^k - Y_i)^2$$

Intuitive Goal

•
$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + ... + \theta_k X_i^k - Y_i)^2 + C(\theta_1, ..., \theta_k)$$

Penalized (Regularized) Cost

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2 + \lambda \sum_{j=1}^{k} |\theta_j|^2$$

penalty

Regularization parameter

Regularization and Linear Regression

- Original Gradient Descent
 - Repeat until convergence:

$$\alpha < -\alpha - R \frac{\partial}{\partial \alpha} J(\alpha, \beta)$$

 $\beta < -\beta - R \frac{\partial}{\partial \beta} J(\alpha, \beta)$

• Original derivative of J (in linear regression, $Y_i = \alpha + \beta X_i$)

$$\alpha < -\alpha - R^{\frac{1}{N}} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i)$$

$$\beta < -\beta - R^{\frac{1}{N}} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i) \quad X_i$$

Regularized version has new partial derivatives:

$$\beta < -\beta - R \left[\frac{1}{N} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i) X_i + \frac{\lambda}{N} \beta \right]$$

Rewritten:

$$\beta < \beta \left(1 - R\frac{\lambda}{N}\right) - R\frac{1}{N}\sum_{i=1}^{N} (\alpha + \beta X_i - Y_i) X_i$$

Regularization: Some notes

- How to select λ ?
 - Cross validation!

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2 + \lambda \sum_{j=1}^{k} \theta_j^2$$

- Choose λ that minimizes cross-validated performance (yellow boxes)
 - i.e., repeat dark blue process for a variety of candidate values of λ

Regularization: Some notes

Example

Regularization: Some notes

Polynomial regression example:
$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + ... + \theta_k X_i^k - Y_i)^2 + \lambda \sum_{j=1}^{k} \theta_j^2$$

Wages/education example:
$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\alpha + \beta X_i + \gamma Z_i - Y_i)^2 + \lambda \sum_{j=1}^{k} \beta^2 + \gamma^2$$

- What happens in regularization if features are in different units?
 - Penalty on different scales
 - One solution: Normalize features
- Do we penalize the intercept?
 - Typically, no. The intercept is typically not a sign of overfitting
 - Or: center the data around zero (Y is mean zero), regularize all coefficients

Outline

- Regularization
- Ridge and Lasso
- Logistic regression (inference)
- Logistic regression (prediction and gradient descent)
- Support vector machines
- Kernels

"Ridge"

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2 + \lambda \sum_{j=1}^{k} \theta_j^2$$

- L₂ norm (ridge regression): penalty proportional to θ^2
 - Works best when a subset of the true coefficients are small
 - Will never set coefficients to zero exactly
 - Cannot perform variable selection in the linear model
 - Coefficients harder to interpret

Ridge: Coefficient plot

LASSO

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2 + \lambda \sum_{j=1}^{k} |\theta_j|$$

- L₁ norm (lasso regression): penalty proportional to θ
 - Selects more relevant features and discards the others, vs. Ridge regression which reduces parameters but doesn't drive to zero
 - See ESL pp. 68; Andrew et al (2007). "Scalable training of L₁-regularized log-linear models".
 - Not differentiable
 - Coefficients still difficult to interpret, though "post-lasso" versions can reduce bias (e.g., Belloni & Chernozhukov)

LASSO: Coefficient plot

- Least Absolute Selection and Shrinkage Operator
 - See ESL section 3.4
 - Tibshirani (1996), "Regression Shrinkage and Selection via the Lasso"

Other forms of Regularization

Model \$	Fit measure \$	Entropy measure ^{[4][5]} \$
AIC/BIC	$ Y - X\beta _2$	$ \beta _0$
Ridge regression	$ Y - X\beta _2$	$\ \beta\ _2$
Lasso ^[6]	$ Y - X\beta _2$	$\ \beta\ _1$
Basis pursuit denoising	$ Y - X\beta _2$	$\lambda \ \beta\ _1$
Rudin-Osher-Fatemi model (TV)	$ Y - X\beta _2$	$\lambda \ \nabla \beta\ _1$
Potts model	$ Y - X\beta _2$	$\lambda \ \nabla \beta\ _0$
RLAD ^[7]	$ Y - X\beta _1$	$\ \beta\ _1$
Dantzig Selector ^[8]	$ X^{T}(Y - X\beta) _{\infty}$	$\ \beta\ _1$
SLOPE ^[9]	$ Y - X\beta _2$	$\sum_{i=1}^{p} \lambda_i \beta _{(i)}$

A linear combination of the LASSO and ridge regression methods is elastic net regularization.