Introducción

Contrastar si unos datos provienen de una distribución normal o no es esencial. Y es esencial para poder utilizar unos análisis y estadísticos u otros. Para **contrastar la normalidad**, es necesario aplicar un test estadístico a cada población o muestra por separado. Veamos cuáles son los test más utilizados:

- <u>Test de Shapiro-Wilk</u>. Se aplica principalmente a una población / muestra con un tamaño muestral comprendido entre 3 y 50.
- <u>Test de Kolmogorov-Smirnov</u> (con corrección <u>Lilliefors</u>). Se aplica principalmente a una población / muestra con un tamaño muestral situado por encima de 50.

Ejemplo de medida de bifaces coreanos

Vamos a comenzar este anexo con un ejemplo sobre medidas de bifaces encontrados en tres yacimientos de Corea (Norton et al., 2006). En ese trabajo se presentan las medidas de altura, anchura y grosor de bifaces encontrados en la península de Corea, provenientes de 4 yacimientos. En los ejemplos que realizaremos aquí utilizaremos 3 de ellos: Chongokni, Chuwoli/Kawoli y Kumpari (Figura 1).

Figura 1: Bifaces provenientes de la Península de Corea y de los tres yacimientos que utilizaremos en el presente módulo. Imagen obtenida del artículo (Norton et al., 2006).

Los datos con los que trabajaremos en R Commander los podréis descargar del Campus Virtual, con el nombre de *Norton et al., 2006. Bifaces Korea. Base de datos general.txt*. Aunque he de comunicaros que, dependiendo del test que realicemos y sobre qué elementos sean ejecutados, habrá que reestructurar dicha base de datos para

adaptarla a las necesidades de R Commander. En cualquier caso, os lo comentaremos cuando llegue el momento.

Los datos de ese archivo de texto tienen la siguiente estructura (Figura 2): 4 columnas (con Yacimiento, Altura, Anchura y Grosor de los bifaces, en centímetros), y 57 filas que se corresponden con los 57 bifaces.

Figura 2: Datos generales de las medidas de bifaces coreanos.

Test de Shapiro-Wilk

El **test de Shapiro-Wilk** se usa para contrastar si un conjunto de datos **sigue una distribución normal o no**. Recordad la distribución normal en el Módulo 3. Este hecho es de vital importancia porque otros muchos análisis estadísticos requieren de la normalidad de los datos para poder llevarlos a cabo. Se suele utilizar en muestras cuyo tamaño está

comprendido entre 3 y 50 observaciones. Veamos cuál es el contraste de hipótesis específico del test de Shapiro-Wilk.

Contraste de hipótesis del test de Shapiro-Wilk

- H₀: los datos **provienen** de una distribución normal
- H₁: los datos **no provienen** de una distribución normal

Estructura de los datos en R Commander

Para hacer un test de Shapiro-Wilk es necesario que aparezca en cada columna los datos de la variable que queremos contrastar si se distribuyen siguiendo una normal.

Por ejemplo, en la Figura 2 se podrían contrastar la normalidad de las variables *Length*, *Width* y *Thickness* de todos los yacimientos en conjunto. Sin embargo, si queremos testear la normalidad de la variable *Length* del yacimiento Kumpari, esa estructura no sería viable. Tendríamos que reestructurar los datos para que solo aparecieran en una columna los datos de *Length* de Kumpari. Veámoslo a continuación.

R Commander: test de Shapiro Wilk

Importamos los datos en R Commander (se encuentran en el Campus Virtual, con el nombre *Norton et al., 2006. Bifaces Korea. Base de datos general.txt*). Le damos el nombre de *Korea.* Vamos a realizar primero el test de Shapiro-Wilk sin distinguir entre yacimientos para sus tres variables, y posteriormente teniendo en cuenta los yacimientos.

Pero antes de realizar los análisis, creo que es conveniente realizar histogramas para evaluar *a priori* si nuestras muestras (tanto en conjunto como separadas por yacimiento) se podrían comportar como una normal o no (Figura 3). Revisar el Módulo 2 para realizar histogramas.

Figura 3: Histogramas de frecuencias de las medidas de bifaces coreanos (Length, Thickness y Width), en conjunto (Todos) y separados por yacimiento.

De *visu* podemos observar que prácticamente la totalidad de los histogramas de la Figura 3 podrían asemejarse a una campana, morfología propia de una distribución normal. Sin embargo, los histogramas para *Length* y *Thickness* del yacimiento de Kumpari no parece que se vea claramente esa campana. Comprobemos con los test de normalidad cuáles son los que siguen una distribución normal y cuáles no.

Test con los yacimientos juntos

En este caso trabajamos con los datos tal y como están organizados y estructurados en la Figura 2, en la que los datos de las 3 variables para todos los bifaces están escritos de

forma continua en cada columna. En R Commander se realiza siguiendo la siguiente ruta (Figura 4):

Statistics ▶ Summaries ▶ Shapiro-Wilk test of normality...

Figura 4: Ruta en R Commander para realizar un test de normalidad Shapiro-Wilk. En la ventana que se abre, hay que seleccionar una sola variable.

Los resultados que nos da la ejecución del test de Shapiro-Wilk para las tres variables son los siguientes:

Los resultados indican que **las tres variables** (*Length*, *Thickness* y *Width*) **se comportan siguiendo una distribución normal**, ya que sus p-valores se encuentran situados por encima de 0.05. Esto nos lleva a aceptar sus hipótesis nulas (H_0) indicando que se distribuyen normalmente, tal y como aparece resumido en la Tabla 1.

Variable	p-valor	Conclusión
Length	0.2371	Aceptamos H ₀
Thickness	0.6648	Aceptamos H ₀
Width	0.0576	Aceptamos H ₀

Tabla 1: P-valores de las tres variables del estudio de los bifaces coreanos sin distinción por yacimiento usando el test de Shapiro-Wilk.

Test con los yacimientos separados

Los datos tienen que reestructurarse para poder analizar su normalidad por separado. Os lo podéis descargar del Campus Virtual, presentando el nombre de *Norton et al., 2006. Bifaces Korea. Base de datos general separada por yacimiento.txt*. Es importante destacar que las celdas vacías deben tener el nombre de **NA**. De otro modo, dará un error al importar el conjunto de datos. El conjunto de datos importado en R Commander lo hemos llamado **KoreanSites** (Figura 5).

□ K	(oreanSites								_ = X
	- 10	Width.Chongokni Thicknes	s.Chongokni Length.	Chuwoli.Kawoli Width.Ch	uwoli.Kawoli Thicknes	s.Chuwoli.Kawoli Length	.Kumpari Widt	h.Kumpari Thick	
1	17.30	8.50	6.90	16.7	9.2	5.9	12.3	8.2	4.8
2	17.50	9.60	6.40	17.7	8.9	4.4	14.3	8.8	4.6
3	16.80	8.30	5.90	14.6	8.5	5.1	17.8	10.2	6.4
4	17.60	10.20	7.50	16.8	7.5	6.0	11.3	8.2	5.7
5	18.10	8.70	8.90	17.9	8.4	5.3	21.8	11.4	6.4
6	17.80	10.70	6.40	15.1	8.0	4.2	13.3	9.0	6.2
7	13.45	8.62	5.87	17.1	10.6	6.4	20.7	12.4	5.9
8	10.80	8.00	6.80	19.4	11.5	6.4	15.1	11.7	6.5
9	15.50	8.94	4.87	17.3	10.3	5.0	16.3	9.3	6.0
10	12.70	10.10	4.50	14.7	7.1	6.2	15.9	9.8	7.0
11	13.90	8.50	4.50	13.6	10.1	4.9	13.0	10.4	6.1
12	12.40	10.80	4.30	17.3	9.1	5.9	10.1	5.8	3.1
13	20.00	9.70	3.00	14.7	8.9	5.3	10.6	7.4	4.2
14	17.90	8.50	5.50	18.4	10.3	8.4	NA	NA	NA
15	12.90	8.90	7.70	20.5	12.7	7.6	NA	NA	NA
16	11.70	8.90	7.70	23.9	13.9	7.6	NA	NA	NA
17	13.00	10.10	6.80	17.9	9.4	5.8	NA	NA	NA
18	11.00	8.50	6.00	14.5	10.0	4.8	NA	NA	NA
19	12.20	9.34	5.96	13.9	8.5	5.5	NA	NA	NA
20	13.00	10.00	6.30	NA	NA	NA	NA	NA	NA
21	11.40	8.30	6.50	NA	NA	NA	NA	NA	NA
22	15.50	9.62	6.70	NA	NA	NA	NA	NA	NA
23	16.90	10.30	8.40	NA	NA	NA	NA	NA	NA
24	12.30	9.00	5.40	NA	NA	NA	NA	NA	NA
25	14.40	9.60	7.80	NA	NA	NA	NA	NA	NA
	J								[2

Figura 5: Estructura de los datos para testear la normalidad para cada variable y yacimiento coreano.

La ejecución del test de Shapiro-Wilk es el mismo que el mostrado en la Figura 4 (página 5). Los resultados aparecen a continuación:

Estos resultados son más comprensibles si los agrupamos en la Tabla 2. Como podemos observar, todas las variables separadas por yacimiento siguen una distribución normal, ya que sus p-valores están situados por encima de 0.05.

Variable	Yacimiento	p-valor	Conclusión
Length	Chongokni	0.0617	Aceptamos H ₀
Length	Chuwoli/Kawoli	0.0833	Aceptamos H ₀
Length	Kumpari	0.4936	Aceptamos H ₀
Thickness	Chongokni	0.9360	Aceptamos H ₀
Thickness	Chuwoli/Kawoli	0.2334	Aceptamos H ₀
Thickness	Kumpari	0.1006	Aceptamos H ₀
Width	Chongokni	0.1515	Aceptamos H ₀
Width	Chuwoli/Kawoli	0.2125	Aceptamos H ₀
Width	Kumpari	0.9948	Aceptamos H ₀

Tabla 2: Resultados del test de Shapiro-Wilk para testear la normalidad para las diferentes variables del estudio de bifaces coreanos separados por yacimiento.

Test de Kolmogorov-Smirnov (corrección Lilliefors)

El test de Kolmogorov-Smirnov (con la corrección Lilliefors) se utiliza para contrastar si un conjunto de datos se ajustan o no a una distribución normal. Es similar en este caso al test de Shapiro-Wilk, pero la principal diferencia con éste radica en el tamaño muestral. Mientras que el test de Shapiro-Wilk se puede utilizar con hasta 50 datos, el test de Kolmogorov-Smirnov es recomendable utilizarlo con más de 50 observaciones.

A pesar de que continuamente se alude al test Kolmogorov-Smirnov como un test válido para contrastar la normalidad, en verdad **esto no es del todo cierto**. El test Kolmogorov-Smirnov asume conocida la media y varianza poblacional, lo que, en la mayoría de los casos, es imposible conocer. Esto hace que el test sea **muy conservador y poco potente**. Para solventar este problema, se desarrolló una modificación del Kolmogorov-Smirnov conocida como **test Lilliefors**. **El test Lilliefors asume que la media y la varianza son desconocidas, estando espacialmente desarrollado para testear la normalidad**.

Antes de realizar el test de Kolmogorov-Smirnov (con la corrección Lillefors), es necesario conocer cuál es el contraste de hipótesis que se va a realizar.

Contraste de hipótesis del test de Kolmogorov-Smirnov (Lilliefors)

- H₀: los datos **provienen** de una distribución normal
- H₁: los datos **no provienen** de una distribución normal

R Commander: test de Kolmogorov-Smirnov (Lilliefors)

La estructura de los datos es exactamente la misma que la mostrada en la Figura 2 (página 2) y Figura 5 (página 6), dependiendo de lo que queramos comprobar. De hecho, trabajamos con los mismos datos.

Como este test está especialmente desarrollado para tamaños muestrales superiores a 50, lo ejecutaremos con las variables sin separar por yacimiento, ya que son n=57.

Sin embargo, no existe un modo gráfico de hacerlo en R Commander, por lo que tendremos que recurrir a comandos y códigos.

Instalación y carga del paquete *nortest*

Ahora bien, es muy importante lo siguiente. Hay que instalar un paquete adicional (**nortest**) en vuestro R Commander.

Tenéis que ejecutar el código siguiente:

```
install.packages("nortest")
```

Cargáis el paquete a continuación.

Ejecución del test Lilliefors

La ejecución del test de Kolmogorov-Smirnov con corrección Lilliefors (para abreviarlo test de Lilliefors) se realiza, como se comentó previamente, de un modo manual, con código. En nuestro caso tenemos que tener en cuenta **el nombre que le hemos dado al conjunto de datos** en R Commander (*Korea*) y al **nombre de las variables** (*Length*, *Width*, *Thickness*), ya que en los códigos hay que introducirlos separados por el símbolo de dólar (\$).

Para contrastar el test de Lilliefors para nuestras tres variables, introducimos los siguientes comandos:

```
lillie.test(Korea$Length)
lillie.test(Korea$Width)
lillie.test(Korea$Thickness)
```

Los resultados que obtenemos son los siguientes:

```
> lillie.test(Korea$Length)
        Lilliefors (Kolmogorov-Smirnov) normality test
data:        Korea$Length
D = 0.080975, p-value = 0.4643

> lillie.test(Korea$Width)
        Lilliefors (Kolmogorov-Smirnov) normality test
data:        Korea$Width
D = 0.092678, p-value = 0.2582

> lillie.test(Korea$Thickness)
        Lilliefors (Kolmogorov-Smirnov) normality test
data:        Korea$Thickness
D = 0.088805, p-value = 0.3188
```

Resumiendo los resultados en la Tabla 3, observamos que las tres variables presentan una distribución normal, ya que sus p-valores están situados

Variable	p-valor	Conclusión
Length	0.4643	Aceptamos H ₀
Thickness	0.3188	Aceptamos H ₀
Width	0.2582	Aceptamos H ₀

Tabla 3: P-valores de las tres variables del estudio de los bifaces coreanos sin distinción por yacimiento usando el test de Lilliefors por ser n>50.