HW evaluation for DNN execution

David Levinthal

Microsoft: Azure CSI

All kinds of HW

- CPU, GPU, TPU, FPGA, assorted DNN processor startups
 - Many versions of each
 - AVX512/MKL for Intel CPUs
 - K80s, M4/40, P4/40/100, volta from Nvidia
 - KNL, KML from intel
 - Vega10 from AMD
 - Altera and Xylinx FPGA systems
 - Google TPUv1/v2
 - Groq, Nervana, Graphcore, Wave Computing, Cerebras, Tenstorrent, etc.

DNNs comes in many shapes and sizes

- CNN: Convolutional Neural Networks
 - Image recognition
- RNN: Recursive Neural Networks
 - Text recognition
 - Language translation
 - Voice recognition
- Reinforcement Learning
 - Games
- New ones all the time, very fast moving field

Many Programing Environments

- Dominated by Tensorflow
 - Caffe, cntk, mxnet,torch7, caffe2
 - Python, Lua and assorted framework specific sytaxes
- But all are relevant
- HW must have support for all

ml framework	github stars
tf	64154
cntk	11792
mxnet	10446
caffe	19146
caffe2	5213
torch7	7112
all but TF	53709

Benchmark issues

- Nature of benchmarks depends on the DNN structure
 - Mostly CNNs
 - Can be run with synthetic data making for short running tests
 - https://www.tensorflow.org/performance/benchmarks
 - But RNNs are actually executed at larger scale
 - Search, Edge interactions, Large data investigation
 - Real problems require real data
 - Inference then requires a converged Trained model
 - Does Fairseq change this situation?
- Strong HW specific performance dependence on:
 - Batch size (images per batch, word seq length)
 - Numerical precision (FP32, FP16/fp32 accumulate, int8 for inference)
 - Performance impact of numerical precision can depend on batch size

Dearth of public benchmarks

- Useful components
 - $\bullet \ TF_CNN_Benchmarks: \underline{ https://github.com/tensorflow/benchmarks/tree/master/scripts/tf \ cnn \ benchmarks}$
 - TF Only, Synthetic data, Training and Inference, wide set of models
 - DLBench: HKBU https://github.com/hclhkbu/dlbench most frameworks
 - Real Data, but only training, small problem sizes
 - PTB: https://github.com/tensorflow/models/tree/master/tutorials (only PTB works, TF only)
 - Seq2seq/Translate: https://github.com/google/seq2seq (requires patching, TF only)
 - DeepBench: https://github.com/baidu-research/DeepBench (Bash, C, Cuda)
 - Convnet: https://github.com/soumith/convnet-benchmarks (many frameworks)
 - https://github.com/facebookresearch/fairseq (Torch seq2seq with conv and Istm)

Issues

- Different distributions of a network are not equivalent
 - Alexnet(TF,dlbench) != Alexnet(convnet) != Alexnet(tf_cnn_benchmarks)
- Comparing performance across frameworks is difficult
 - When evaluating HW, frameworks must be evaluated independently
 - For cloud hosting ALL frameworks must work well
- Benchmarking across range of batch sizes and numerical precision
 - Inference has a need for batch size = 1->4
 - Varying numerical precision changes speed AND result accuracy
- TF Performance on RNNs?
 - http://dlbench.comp.hkbu.edu.hk/
- OMP support in frameworks is problematic
 - Required for effective MKL usage
- Lack of common intermediate representation
 - Ex: XLA
 - Raises difficulty on new HW supporting many frameworks
 - Increases difficulty of porting benchmarks
- Who is r2rt aka Spitis? ©

Resources (mostly RNNs, they are more difficult)

- TF tutorials, models and benchmarks (https://www.tensorflow.org)
- CNTK Tutorials/examples https://www.microsoft.com/en-us/cognitive-toolkit/features/model-gallery/?filter=Tutorial
- http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
- http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
- http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI
- http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- http://karpathy.github.io/neuralnets/
- https://github.com/spro/practical-pytorch/blob/master/seq2seq-translation/seq2seq-translation.ipynb
- http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- https://github.com/spitis
- https://r2rt.com/
- Deep Learning by Ian Goodfellow and Yoshua Bengio