Regression Analysis

Analysis of Variance

Nicoleta Serban, Ph.D.

Professor

School of Industrial and Systems Engineering

ANOVA vs Simple Linear Regression

ANOVA & Linear Regression

Simple Linear Regression:

Data: $\{(x_i, y_i), ..., (x_n, y_n)\}$

Model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$; $i = 1, \dots, n$

ANOVA: A linear regression model where the predicting factor is a categorical variable.

ANOVA:

Data: Y_{ij} for $j = 1, \dots, n$; $i = 1, \dots, k$

Model: $Y_{ij} = \mu_i + \varepsilon_{ij} = \mu + \tau_i + \varepsilon_{ij}$ where $\sum_{i=1}^k \tau_i = 0$ and

 $\mu_i = i^{\text{th}}$ group mean decomposed into $\mu_i = \mu + au_i$

ANOVA & Linear Regression (cont'd)

ANOVA:

Data: Y_{ij} for $j = 1, \dots, n$; $i = 1, \dots, k$

Model: $Y_{ij} = \mu_i + \varepsilon_{ij} = \mu + \tau_i + \varepsilon_{ij}$ where $\sum_{i=1}^k \tau_i = 0$ and $\mu_i = i^{\text{th}}$ group mean decomposed into $\mu_i = \mu + \tau_i$

Define Y to be the response variable (as a single column vector):

$$Y = (Y_{11}, \dots, Y_{1n_1}, Y_{21}, \dots, Y_{2n_2}, \dots, Y_{k1}, \dots, Y_{kn_k})$$

Define L to be the label/categorical variable (as a single column vector):

$$L = (L_{11}, \dots, L_{1n_1}, L_{21}, \dots, L_{2n_2}, \dots, L_{k1}, \dots, L_{kn_k})$$

Linear Regression: Y ~ L

ANOVA & Linear Regression (cont'd)

Categorical Variables in Linear Regression:

- Transform categories into column vector dummy variables $X_1 = (1,..,1,0,...,0); X_2 = (0,...,0,1,..,1,0,...,0); ...; X_k = (0,...,0,1,...,1)$ Each X_i has length N where $N = n_1 + n_2 + ... + n_k$. Each 1 indicates a Y value with the corresponding L label.a
- Let r index the rows of the column vectors X_i s and Y. If intercept in model, define k-1 dummy variables because of linear dependence: $(1,...,1) = X_1 + X_2 + ... + X_k$ **Model**: $Y_r = \beta_0 + \beta_1 X_{1r} + \beta_2 X_{2r} + \cdots + \beta_{k-1} X_{k-1r} + \varepsilon_r$; $r = 1, \cdots, N$
- If no intercept in the model, define all k dummy variables **Model**: $Y_r = \beta_1 X_{1r} + \beta_2 X_{2r} + \dots + \beta_k X_{kr} + \varepsilon_r$; $r = 1, \dots, N$

ANOVA: A linear regression model with multiple predictors Multiple Linear Regression

Summary

