Formulas in Applied Linear Optimization in KTH

An iteration in the simplex method

1. Compute simplex multipliers y and reduced costs s from

$$\begin{pmatrix} B^T & 0 \\ N^T & I \end{pmatrix} \begin{pmatrix} y \\ s_N \end{pmatrix} = \begin{pmatrix} c_B \\ c_N \end{pmatrix}.$$
2. If $(s_N)_t < 0$, compute search direction p from

$$\begin{pmatrix} B & N \\ 0 & I \end{pmatrix} \begin{pmatrix} \rho_B \\ \rho_N \end{pmatrix} = \begin{pmatrix} 0 \\ e_t \end{pmatrix}$$
.

3. Compute maximal steplength α_{max} and limiting constraint r

$$\alpha_{\max} = \min_{i:(\rho_B)_i < 0} \frac{(x_B)_i}{-(\rho_B)_i}, \quad r = \operatorname*{argmin}_{i:(\rho_B)_i < 0} \frac{(x_B)_i}{-(\rho_B)_i}.$$

- 4. Let $x = x + \alpha_{max}p$.
- 5. Replace $(x_N)_t = 0$ by $(x_B)_r = 0$ among active constraints.

An iteration in the simplex method, alternatively

1. Compute simplex multipliers y and reduced costs s from

$$B^T y = c_B$$
, $s_N = c_N - N^T y$.

2. If $(s_N)_t < 0$, compute search direction p from

$$p_N = e_t$$
, $Bp_B = -N_t$.

3. Compute maximal steplength α_{max} and limiting constraint r

$$\alpha_{\mathsf{max}} = \min_{i:(\rho_B)_i < 0} \frac{(x_B)_i}{-(\rho_B)_i}, \quad r = \underset{i:(\rho_B)_i < 0}{\mathsf{argmin}} \frac{(x_B)_i}{-(\rho_B)_i}$$

- 4. Let $x = x + \alpha_{max}p$.
- 5. Replace $(x_N)_t = 0$ by $(x_B)_r = 0$ among active constraints.

The simplex method

- · Primal simplex method described here. The basic solution x is feasible to (PLP). The corresponding y and s fulfill $A^{T}y + s = c$ and complementarity slack $x^{T}s = 0$. Optimal when $s \ge 0$.
- · The simplex method needs an initial basic feasible solution. Can be obtained by a Phase I problem.
- The simplex method terminates if $\alpha_{\rm max}>$ 0 in all iterations. The case $\alpha_{max} = 0$ may occur if more than n constraints are active. Referred to as degeneracy. An anticycling strategy is required to guarantee convergence if $\alpha_{max} = 0$.
- · The simplex method takes a polynomial number of iterations "in general".
- · One may construct "evil" (pathological) problems where the simplex method requires an exponential number of iterations or cycles.

An iteration in the simplex method

Compute simplex multipliers y and reduced costs s from

$$B^T y = c_R$$
, $s_N = c_N - N^T y$.

If (s_N)_t < 0, compute search direction p from

$$p_N = e_t$$
, $Bp_B = -N_t$.

Compute maximal steplength α_{max} and limiting constraint r
 from

$$\alpha_{\max} = \min_{i:(\rho_B)_i < 0} \frac{(x_B)_i}{-(\rho_B)_i}, \quad r = \underset{i:(\rho_B)_i < 0}{\operatorname{argmin}} \frac{(x_B)_i}{-(\rho_B)_i}.$$

- Let $x = x + \alpha_{max} p$.
- Replace (x_N)_t = 0 by (x_B)_r = 0 among active constraints.

Linear programming, optimality conditions

LP problems:

Partition A = (B N). Let $x_N = 0$ and $s_B = 0$. The optimality conditions become

$$Bx_B = b,$$

 $B^T y = c_B, \quad N^T y + s_N = c_N,$
 $x_B \ge 0, \quad s_N \ge 0.$

In the simplex method, all conditions except $s_N \ge 0$ are fulfilled throughout.

Sensitivity analysis

What happens if problem data is changed? For example if b and/or c are/is changed to \widetilde{b} and \widetilde{c} respectively.

For a given basis feasible solution the answer can be given "immediately" as long as the basis gives primal and dual feasibility, respectively.

$$\begin{pmatrix} B & N \\ 0 & I \end{pmatrix} \begin{pmatrix} \tilde{x}_B \\ \tilde{x}_N \end{pmatrix} = \begin{pmatrix} \tilde{b} \\ 0 \end{pmatrix}, \quad \tilde{x}_B \ge 0,$$

$$\begin{pmatrix} B^T & 0 \\ N^T & I \end{pmatrix} \begin{pmatrix} \tilde{y} \\ \tilde{s}_N \end{pmatrix} = \begin{pmatrix} \tilde{c}_B \\ \tilde{c}_N \end{pmatrix}, \quad \tilde{s}_N \ge 0.$$

Formulas in Applied Linear Optimization in KTH

Primal simplex method and dual simplex method

Partition A = (B N). Let $x_N = 0$ and $s_B = 0$. The optimality conditions become

$$Bx_B = b$$
,
 $B^T y = c_B$, $N^T y + s_N = c_N$,
 $x_B \ge 0$, $s_N \ge 0$.

Primal simplex method

All conditions except $s_N \ge 0$ are fulfilled throughout.

Dual simplex method

All conditions except $x_B \ge 0$ are fulfilled throughout.

An iteration in the dual simplex method

1. Compute primal basic solution x from

$$\begin{pmatrix} B & N \\ 0 & I \end{pmatrix} \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}.$$

2. If
$$(x_B)_t < 0$$
, compute search direction q , η_N from
$$\begin{pmatrix} B^T & 0 \\ N^T & I \end{pmatrix} \begin{pmatrix} q \\ \eta_N \end{pmatrix} = - \begin{pmatrix} e_t \\ 0 \end{pmatrix}.$$

3. Compute maximal steplength α_{max} and limiting constraint r

$$\alpha_{\max} = \min_{i:(\eta_N)_i < 0} \frac{(s_N)_i}{-(\eta_N)_i}, \quad r = \operatorname*{argmin}_{i:(\eta_N)_i < 0} \frac{(s_N)_i}{-(\eta_N)_i}.$$

- 4. Let $y = y + \alpha_{max}q$, $s_B = s_B + \alpha_{max}e_t$, $s_N = s_N + \alpha_{max}\eta_N$.
- 5. Replace $(s_B)_t = 0$ by $(s_N)_r = 0$ among active constraints.