Introduction to Machine Learning

Maximum Margin Methods

Mingchen Gao

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA mgao8@buffalo.edu Slides adapted from Varun Chandola

Outline

Maximum Margin Classifiers

Linear Classification via Hyperplanes Concept of Margin

Support Vector Machines

SVM Learning Solving SVM Optimization Problem

Constrained Optimization and Lagrange Multipliers

Kahrun-Kuhn-Tucker Conditions Support Vectors Optimization Constraints

Maximum Margin Classifiers

$$y = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$$

- ▶ Remember the Perceptron!
- ▶ If data is linearly separable
 - Perceptron training guarantees learning the decision boundary
- ▶ There can be other boundaries
 - Depends on initial value for w

CSE 4/574

Maximum Margin Classifiers

$$y = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$$

- ▶ Remember the Perceptron!
- ► If data is linearly separable
 - Perceptron training guarantees learning the decision boundary
- ▶ There can be other boundaries
 - Depends on initial value for w
- But what is the best boundary?

Linear Hyperplane

- ► Separates a *D*-dimensional space into two half-spaces
- ▶ Defined by $\mathbf{w} \in \Re^D$
 - Orthogonal to the hyperplane
 - ► This w goes through the origin
 - ► How do you check if a point lies "above" or "below" w?
 - ► What happens for points **on w**?

Make hyperplane not go through origin

- ▶ Add a bias b
 - b > 0 move along **w**
 - b < 0 move opposite to **w**
- ▶ How to check if point lies above or below **w**?
 - If $\mathbf{w}^{\top}\mathbf{x} + b > 0$ then \mathbf{x} is above
 - ► Else, *below*

Line as a Decision Surface

- Decision boundary represented by the hyperplane w
- For binary classification, w points towards the positive class

Decision Rule

$$y = sign(\mathbf{w}^{\top}\mathbf{x} + b)$$

$$\mathbf{v}^{\mathsf{T}}\mathbf{x} + b > 0 \Rightarrow y = +1$$

$$\mathbf{v} \mathbf{v}^{\mathsf{T}} \mathbf{x} + b < 0 \Rightarrow y = -1$$

What is Best Hyperplane Separator

- Perceptron can find a hyperplane that separates the data
 - ... if the data is linearly separable
- ▶ But there can be many choices!
- Find the one with best separability (largest margin)
- Gives better generalization performance
 - 1. Intuitive reason
 - 2. Theoretical foundations

What is a Margin?

- Margin is the distance between an example and the decision line
- ightharpoonup Denoted by γ
- ► For a positive point:

$$\gamma = \frac{\mathbf{w}^{\top} \mathbf{x} + b}{\|\mathbf{w}\|}$$

► For a negative point:

$$\gamma = -\frac{\mathbf{w}^{\top}\mathbf{x} + b}{\|\mathbf{w}\|}$$

Functional Interpretation

 Margin positive if prediction is correct; negative if prediction is incorrect

Maximum Margin Principle

Support Vector Machines

- ▶ A hyperplane based classifier defined by w and b
- ▶ Like perceptron
- Find hyperplane with maximum separation margin on the training data
- Assume that data is linearly separable (will relax this later)
 - Zero training error (loss)

SVM Prediction Rule

$$y = sign(\mathbf{w}^{\top}\mathbf{x} + b)$$

SVM Learning

- ► Input: Training data $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)\}$
- ► **Objective**: Learn **w** and *b* that maximizes the margin

SVM Learning

- SVM learning task as an optimization problem
- Find w and b that gives zero training error
- ▶ Maximizes the margin $\left(=\frac{2}{\|w\|}\right)$
- ► Same as minimizing ||w||

Optimization Formulation

minimize
$$\frac{\|\mathbf{w}\|^2}{2}$$

subject to $y_n(\mathbf{w}^{\top}\mathbf{x}_n + b) \ge 1, \ n = 1, ..., N.$

▶ **Optimization** with *N* linear inequality constraint

▶ What impact does the margin have on w?

- ▶ What impact does the margin have on w?
- ► Large margin \Rightarrow Small $\|\mathbf{w}\|$

- ▶ What impact does the margin have on w?
- ► Large margin ⇒ Small ||w||
- ▶ Small $\|\mathbf{w}\|$ ⇒ regularized/simple solutions

- ▶ What impact does the margin have on w?
- ► Large margin ⇒ Small ||w||
- ▶ Small $\|\mathbf{w}\|$ ⇒ regularized/simple solutions
- ► Simple solutions ⇒ Better generalizability (Occam's Razor)

- ▶ What impact does the margin have on w?
- ► Large margin ⇒ Small ||w||
- ▶ Small $\|\mathbf{w}\|$ ⇒ regularized/simple solutions
- ► Simple solutions ⇒ Better generalizability (Occam's Razor)
- ▶ Computational Learning Theory provides a formal justification [1]

Mingchen Gao

Solving the Optimization Problem

Optimization Formulation

minimize
$$\frac{\|\mathbf{w}\|^2}{2}$$

subject to $y_n(\mathbf{w}^{\top}\mathbf{x}_n + b) \ge 1, \ n = 1, ..., N.$

- ► There is an quadratic objective function to minimize with *N* inequality constraints
- "Off-the-shelf" packages quadprog (MATLAB), CVXOPT
- ▶ Is that the best way?

Basic Optimization

minimize
$$f(x, y) = x^2 + 2y^2 - 2$$

Basic Optimization

minimize
$$f(x, y) = x^2 + 2y^2 - 2$$

minimize
$$f(x,y) = x^2 + 2y^2 - 2$$

subject to $h(x,y) = x + y - 1 = 0$.

Lagrange Multipliers - A Primer

 Tool for solving constrained optimization problems of differentiable functions

minimize
$$f(x,y) = x^2 + 2y^2 - 2$$

subject to $h(x,y)$: $x + y - 1 = 0$.

▶ A Lagrangian multiplier (β) lets you combine the two equations into one

Lagrange Multipliers - A Primer

 Tool for solving constrained optimization problems of differentiable functions

minimize
$$f(x,y) = x^2 + 2y^2 - 2$$

subject to $h(x,y)$: $x + y - 1 = 0$.

A Lagrangian multiplier (β) lets you combine the two equations into one

$$\underset{x,y,\beta}{\text{minimize}} \quad L(x,y,\beta) = f(x,y) + \beta h(x,y)$$

Multiple Constraints

minimize
$$f(x, y, z) = x^2 + 4y^2 + 2z^2 + 6y + z$$

subject to $h_1(x, y, z)$: $x + z^2 - 1 = 0$
 $h_2(x, y, z)$: $x^2 + y^2 - 1 = 0$.

Multiple Constraints

minimize
$$f(x, y, z) = x^2 + 4y^2 + 2z^2 + 6y + z$$

subject to $h_1(x, y, z)$: $x + z^2 - 1 = 0$
 $h_2(x, y, z)$: $x^2 + y^2 - 1 = 0$.

$$L(x, y, z, \beta) = f(x, y, z) + \sum_{i} \beta_{i} h_{i}(x, y, z)$$

Handling Inequality Constraints

minimize
$$f(x,y) = x^3 + y^2$$

subject to $g(x): x^2 - 1 \le 0$.

Handling Inequality Constraints

minimize
$$f(x,y) = x^3 + y^2$$

subject to $g(x): x^2 - 1 \le 0$.

Inequality constraints are **transferred** as constraints on the Lagrangian, α

Handling Both Types of Constraints

minimize
$$f(\mathbf{w})$$
 subject to $g_i(\mathbf{w}) \leq 0$ $i=1,\ldots,k$ and $h_j(\mathbf{w})=0$ $j=1,\ldots,l$.

Generalized Lagrangian

$$L(\mathbf{w}, \alpha, \beta) = f(\mathbf{w}) + \sum_{i=1}^{k} \alpha_i g_i(\mathbf{w}) + \sum_{j=1}^{l} \beta_j h_j(\mathbf{w})$$

subject to, $\alpha_i > 0, \forall i$

Primal and Dual Formulations

Primal Optimization

▶ Let θ_P be defined as:

$$\theta_P(\mathbf{w}) = \max_{\alpha, \beta: \alpha_i \geq 0} L(\mathbf{w}, \alpha, \beta)$$

One can prove that the optimal value for the original constrained problem is same as:

$$p^* = \min_{\mathbf{w}} \theta_P(\mathbf{w}) = \min_{\mathbf{w}} \max_{\alpha, \beta: \alpha_i > 0} L(\mathbf{w}, \alpha, \beta)$$

20 / 39

Mingchen Gao

Primal and Dual Formulations (II)

Dual Optimization

▶ Consider θ_D , defined as:

$$\theta_D(\boldsymbol{lpha}, \boldsymbol{eta}) = \min_{\mathbf{w}} L(\mathbf{w}, \boldsymbol{lpha}, \boldsymbol{eta})$$

▶ The **dual** optimization problem can be posed as:

$$d^* = \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \geq 0} \theta_D(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \geq 0} \min_{\mathbf{w}} \mathsf{L}(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

$d^* == p^*$?

- ▶ Note that $d^* \le p^*$
- "Max min" of a function is always less than or equal to "Min max"
- When will they be equal?
 - $f(\mathbf{w})$ is convex
 - Constraints are affine

Mingchen Gao CSE 4/574 21 / 39

Relation between primal and dual

- ▶ In general $d^* \le p^*$, for SVM optimization the equality holds
- ► Certain conditions should be true
- Known as the Kahrun-Kuhn-Tucker conditions
- For $d^* = p^* = L(\mathbf{w}^*, \alpha^*, \beta^*)$:

$$\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = 0$$

$$\frac{\partial}{\partial \beta_j} L(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = 0, \quad j = 1, \dots, l$$

$$\alpha_i^* g_i(\mathbf{w}^*) = 0, \quad i = 1, \dots, k$$

$$g_i(\mathbf{w}^*) \leq 0, \quad i = 1, \dots, k$$

$$\alpha_i^* \geq 0, \quad i = 1, \dots, k$$

Lagrangian Multipliers for SVM

Optimization Formulation

minimize
$$\frac{\|\mathbf{w}\|^2}{2}$$

subject to $y_n(\mathbf{w}^{\top}\mathbf{x}_n + b) \ge 1, \ n = 1, ..., N.$

Lagrangian Multipliers for SVM

Optimization Formulation

minimize
$$\frac{\|\mathbf{w}\|^2}{2}$$

subject to $y_n(\mathbf{w}^{\top}\mathbf{x}_n + b) \ge 1, \ n = 1, ..., N.$

A Toy Example

- $\mathbf{x} \in \Re^2$
- ► Two training points:

$$\mathbf{x}_1, y_1 = (1, 1), -1$$

$$\mathbf{x}_2, y_2 = (2, 2), +1$$

Find the best hyperplane $\mathbf{w} = (w_1, w_2)$

Optimization problem for the toy example

minimize
$$f(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2$$

subject to $g_1(\mathbf{w},b) = y_1(\mathbf{w}^{\top}\mathbf{x}_1 + b) - 1 \ge 0$
 $g_2(\mathbf{w},b) = y_2(\mathbf{w}^{\top}\mathbf{x}_2 + b) - 1 \ge 0.$

Optimization problem for the toy example

minimize
$$f(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2$$

subject to $g_1(\mathbf{w},b) = y_1(\mathbf{w}^{\top}\mathbf{x}_1 + b) - 1 \ge 0$
 $g_2(\mathbf{w},b) = y_2(\mathbf{w}^{\top}\mathbf{x}_2 + b) - 1 \ge 0.$

▶ Substituting actual values for \mathbf{x}_1, y_1 and \mathbf{x}_2, y_2 .

minimize
$$f(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2$$
 subject to $g_1(\mathbf{w}, b) = -(\mathbf{w}^{\top} \mathbf{x}_1 + b) - 1 \ge 0$ $g_2(\mathbf{w}, b) = (\mathbf{w}^{\top} \mathbf{x}_2 + b) - 1 \ge 0$.

Back to SVM Optimization

Optimization Formulation

minimize
$$\frac{\|\mathbf{w}\|^2}{2}$$
 subject to $y_n(\mathbf{w}^{\top}\mathbf{x}_n + b) \ge 1, \ n = 1, ..., N.$

▶ Introducing Lagrange Multipliers, α_n , n = 1, ..., N

Rewriting as a (primal) Lagrangian

minimize
$$L_P(\mathbf{w}, b, \alpha) = \frac{\|\mathbf{w}\|^2}{2} + \sum_{n=1}^N \alpha_n \{1 - y_n(\mathbf{w}^\top \mathbf{x}_n + b)\}$$

subject to $\alpha_n \ge 0$ $n = 1, ..., N$.

Solving the Lagrangian

Set gradient of L_P to 0

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{n=1}^N \alpha_n y_n \mathbf{x}_n$$

$$\frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^N \alpha_n y_n = 0$$

 \triangleright Substituting in L_P to get the dual L_D

Solving the Lagrangian

► Set gradient of *L_P* to 0

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{n=1}^N \alpha_n y_n \mathbf{x}_n$$

$$\frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^N \alpha_n y_n = 0$$

▶ Substituting in L_P to get the dual L_D

Dual Lagrangian Formulation

$$\begin{aligned} & \underset{\mathbf{w},b,\alpha}{\text{maximize}} & & L_D(\mathbf{w},b,\alpha) = \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{m,n=1}^N \alpha_m \alpha_n y_m y_n (\mathbf{x}_m^\top \mathbf{x}_n) \\ & \text{subject to} & & \sum_{n=1}^N \alpha_n y_n = 0, \alpha_n \geq 0 \ n = 1,\dots,N. \end{aligned}$$

Mingchen Gao CSE 4/574 26 / 39

Solving the Dual

- ▶ Dual Lagrangian is a *quadratic programming problem* in α_n 's
 - Use "off-the-shelf" solvers
- ▶ Having found α_n 's

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$

▶ What will be the bias term *b*?

Investigating Kahrun Kuhn Tucker Conditions

- ▶ For the primal and dual formulations
- We can optimize the dual formulation (as shown earlier)
- Solution should satisfy the Karush-Kuhn-Tucker (KKT) Conditions

Mingchen Gao CSE 4/574 28 / 39

The Kahrun-Kuhn-Tucker Conditions

$$\frac{\partial}{\partial \mathbf{w}} L_P(\mathbf{w}, b, \alpha) = \mathbf{w} - \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n = 0$$
 (1)

$$\frac{\partial}{\partial b} L_P(\mathbf{w}, b, \alpha) = -\sum_{n=1}^{N} \alpha_n y_n = 0$$
 (2)

$$y_n\{\mathbf{w}^{\top}\mathbf{x}_n + b\} - 1 \geq 0 \tag{3}$$

$$\alpha_n \geq 0$$
 (4)

$$\alpha_n(y_n\{\mathbf{w}^{\top}\mathbf{x}_n + b\} - 1) = 0$$
 (5)

Estimating Bias b

- ▶ Use KKT condition #5
- ▶ For $\alpha_n > 0$

$$(y_n\{\mathbf{w}^{\top}\mathbf{x}_n+b\}-1)=0$$

Which means that:

$$b = -\frac{\underset{n:y_n = -1}{max} \mathbf{w}^{\top} \mathbf{x}_n + \underset{n:y_n = 1}{\underset{n:y_n = 1}{min}} \mathbf{w}^{\top} \mathbf{x}_n}{2}$$

Key Observation from Dual Formulation

Most α_n 's are 0

▶ KKT condition #5:

$$\alpha_n(y_n\{\mathbf{w}^{\top}\mathbf{x}_n+b\}-1)=0$$

▶ If \mathbf{x}_n **not** on margin

$$y_n\{\mathbf{w}^{\top}\mathbf{x}_n + b\} > 1$$
$$\alpha_n = 0$$

- $\alpha_n \neq 0$ only for \mathbf{x}_n on margin
- ► These are the **support vectors**
- Only need these for prediction

What have we seen so far?

- ► For linearly separable data, SVM learns a weight vector w
- ► Maximizes the margin
- SVM training is a constrained optimization problem
 - ► Each training example should lie outside the margin
 - N constraints

What if data is not linearly separable?

- ► Cannot go for zero training error
- ▶ Still learn a maximum margin hyperplane

What if data is not linearly separable?

- Cannot go for zero training error
- ▶ Still learn a maximum margin hyperplane
 - 1. Allow some examples to be misclassified
 - 2. Allow some examples to fall inside the margin

Mingchen Gao CSE 4/574 33 / 39

What if data is not linearly separable?

- Cannot go for zero training error
- ▶ Still learn a maximum margin hyperplane
 - 1. Allow some examples to be misclassified
 - 2. Allow some examples to fall inside the margin
- ▶ How do you set up the optimization for SVM training

Mingchen Gao CSE 4/574 33 / 39

Cutting Some Slack

Introducing Slack Variables

▶ **Separable Case**: To ensure zero training loss, constraint was

$$y_n(\mathbf{w}^{\top}\mathbf{x}_n + b) \geq 1 \quad \forall n = 1 \dots N$$

Introducing Slack Variables

▶ Separable Case: To ensure zero training loss, constraint was

$$y_n(\mathbf{w}^{\top}\mathbf{x}_n + b) \geq 1 \quad \forall n = 1 \dots N$$

▶ Non-separable Case: Relax the constraint

$$y_n(\mathbf{w}^{\top}\mathbf{x}_n + b) \ge 1 - \xi_n \quad \forall n = 1 \dots N$$

- ξ_n is called **slack variable** $(\xi_n \ge 0)$
- For misclassification, $\xi_n > 1$

Relaxing the Constraint

- ▶ It is OK to have some misclassified training examples
 - ▶ Some ξ_n 's will be non-zero

Relaxing the Constraint

- ▶ It is OK to have some misclassified training examples
 - ▶ Some ξ_n 's will be non-zero
- Minimize the number of such examples
 - $\qquad \qquad \mathsf{Minimize} \ \sum_{n=1}^{N} \xi_n$
- Optimization Problem for Non-Separable Case

C controls the impact of margin and the margin error.

Estimating Weights

- ▶ What is the role of *C*?
- Similar optimization procedure as for the separable case (QP for the dual)
- ▶ Weights have the same expression

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$

- Support vectors are slightly different
 - 1. Points on the margin $(\xi_n = 0)$
 - 2. Inside the margin but on the correct side $(0 < \xi_n < 1)$
 - 3. On the wrong side of the hyperplane $(\xi_n \ge 1)$

Concluding Remarks on SVM

- ▶ Training time for SVM training is $O(N^3)$
- Many faster but approximate approaches exist
 - Approximate QP solvers
 - Online training
- SVMs can be extended in different ways
 - 1. Non-linear boundaries (kernel trick)
 - 2. Multi-class classification
 - 3. Probabilistic output
 - 4. Regression (Support Vector Regression)

References

▶ Bishop Chapter 17.3

V. Vapnik. Statistical learning theory. Wiley, 1998.