

Commercial Break: Risk Preferences in Time Lotteries

Full paper at: bit.ly/TimeLotteries

Main Result

Literati

Functional Form

Fitting Functions

Estimation

Conclusi

- Known payment amount: Δx
- Two possible payment times earlier t₁ later t₂ (> t₁)
- Probability $0 \le p \le 1$ to receive Δx earlier at t_1 (1-p) later at t_2)
- Every time lottery L defines a unique timed payment L: Δx is received with certainty at the expected payment time $\langle t \rangle = pt_1 + (1-p)t_2$

Growth-optimal preferences vs EDUT preferences

What are we weighting for?

A mechanistic model for probability weighting

Ole Peters Alexander Adamou Yonatan Berman Mark Kirstein

Full paper at bit.ly/lml-pw-r1
Live paper at bit.ly/lml-pw

Erich-Schneider-Seminar Economics Department, CAU Kiel
02 November 2020

Main Resu

Weighting

Literatur

Setup

Functional Forn

Fitting Function

......

Estimatio

Main Result Probability Weighting Literature Setup

Functional Form
Fitting Functions

Question

Estimation

Conclusion

Definition of Probability Weighting (PW)

(Preston and Baratta 1948, p. 188, Fig. 1, relabelled axes)

"The existence [...] a scale of *psychological probability* and its functional relationship to the scale of *mathematical probability*" (p. 186)

- empirical pattern: inverse-S shape
- important component in behavioural economics (Cumulative Prospect Theory)

Classical interpretation of PW:

- maladaptive irrational cognitive bias
- \hookrightarrow How does this pattern emerge?

Main Result Probability Weighting

Setup

Fitting Functions

Ergodicity

Estimati

Related Literature

- no motivation of the functional form of weighting curve other than fit
- origin of PW preferences? no stable mappings (Stewart et al. 2015)
- experimental design is a key confounder → description-experience gap, i.e. less (even under-) overweighting in decisions-from-experience (Hertwig et al. 2004; Hertwig and Erev 2009)
- meta-analyses find all possible weighting curves (Ungemach et al. 2009; Wulff et al. 2018, Tab. 9)

Statistical explanations

- PW due to biased estimation (Fox and Hadar 2006)
- PW is optimal in sequential learning problems (Seo et al. 2019)
- PW heuristic as an approximate Bayesian solution for the inference problem (Martins 2006)

Mark Kirstei

Main Resul

1710111 110001

itoratur

Satur

Functional For

Fitting Function

Ergodicity

Estimatio

Conclusio

Disinterested Observer (DO)

DO assigns PDF p(x) \hookrightarrow CDF $F_p(x)$

$$F_p(x) = \int_{-\infty}^{x} p(s) \, \mathrm{d}s$$

Decision Maker (DM)

Task: model payout, x, of a gamble as a random variable.

DM assigns different PDF w(x) \hookrightarrow CDF $F_w(x)$

$$F_w(x) = \int_{-\infty}^x w(s) \, \mathrm{d}s$$

Mark Kirsteii

Main Res

Probabili

Literature

Setup

Tunctional To

Fitting Function

- ...

Estimatio

Conclusio

Scales, Locations, Shapes

Different Shapes: Gaussian and t-distribution

Mark Kirstein

Main Res

Weightin

Literatur

Setu

unctional Fo

Fitting Function

· itting · unctio

Estimatio

Conclusio

Thought Experiment: DM assumes greater scale

Main Res

Litoratur

C - 4...

Functional Fo

Fitting Functio

r reting r unetio

Question

Estimati

Conclusio

Asymmetric Inverse-S = diff. in uncertainty + diff. in locations

Probabilit

Literatur

Setup

T directional T off

Fitting Function

F

Conclusi

Numerically feasible for arbitrary distributions:

- 1 list values of DO's CDF, $F_p(x)$, at set x_i
- 2 list values of DM's CDF, $F_w(x)$, at same x_i
- 3 plot $F_w(x)$ vs. $F_p(x)$

Probability

Literatui

Setu

Functional Forn

Fitting Function

Question

Estimatio

Conclusi

Functional form of the weighting function

Gaussian case with different scale:

$$w(p) = p^{\frac{1}{\alpha^2}} \underbrace{\frac{\left(2\pi\sigma^2\right)^{\frac{1-\alpha^2}{2\alpha^2}}}{\alpha}}_{\text{pormalisation factor}} , \qquad (1)$$

where

- DO's scale is σ , $X \sim \mathcal{N}(\mu, \sigma^2)$
- DM's scale is $\alpha \sigma$, $X \sim \mathcal{N}(\mu, (\alpha \sigma)^2)$
- DO uses greater uncertainty $\alpha < 1 \rightarrow S$ shape
- DM uses greater uncertainty $\alpha > 1 \rightarrow$ inverse-S shape
- uncertainty measured by the standard deviation

Functional Forms

Tversky and Kahneman (1992, $\gamma = 0.68$)

$$F_{w}^{TK}\left(F_{\rho};\gamma\right) = \left(F_{\rho}\right)^{\gamma} \frac{1}{\left[\left(F_{\rho}\right)^{\gamma} + \left(1 - F_{\rho}\right)^{\gamma}\right]^{1/\gamma}} \tag{2}$$

Lattimore et al. (1992)

$$F_{w}^{L}\left(F_{\rho};\delta,\gamma\right) = \frac{\delta F_{\rho}^{\gamma}}{\delta F_{\rho}^{\gamma} + (1 - F_{\rho})^{\gamma}} \tag{3}$$

Gaussian case with greater DM scale $\alpha\sigma$

$$w(p) = p^{\frac{1}{\alpha^2}} \frac{\left(2\pi\sigma^2\right)^{\frac{1-\alpha^2}{2\alpha^2}}}{\alpha} , \qquad (4)$$

which is a power law in p with a pre-factor to ensure normalisation

Main Resu

Literature

Setup

Functional Forn

Fitting Functions

Estimat

Mark Kirstein

Main Result

Weighting Literature

Setup

Fitting Functions

Estimati

Conclusi

Main Resul

Literatur

Setup

Functional Forn

Fitting Function

Estimatic

Canalusi

Interim conclusion

- DM's greater scale gives inverse-S shape (unimodal distributions)
- difference in locations gives asymmetry
- reproduces observations of probability weighting

Job done. Thank you for your attention ;)

Probabilit

Literatur

Setup

Functional For

Fitting Functio

Question

Estimation

Conclus

The Ergodicity Question

Typical DO concern

What happens on average to the ensemble of subjects?

Typical DM concern

What happens to me on average over time?

Why DM's greater scale?

- DM has no control over experiment
- experiment may be unclear to DM
- DM may not trust DO

Experiencing probabilities

- "probability" is polysemous
- natural frequencies "10 out of 100" vs 10% (Gigerenzer 1991, 2018; Hertwig and Gigerenzer 1999)
- probabilities are not observable
- probabilities encountered as
 - known frequencies in ensemble of experiments (DO)
 - frequencies estimated over time (DM)
- → estimates have uncertainties cautious DM accounts for these

Probabil

Literatur

Setup

Fitting Functions

Fitting Functions

Estimation

Conclusio

Estimating probabilities

Rare Event

- p(x) = 0.001
- T = 100 observations
- ullet \sim 99.5% get 0 or 1 events
- $\hat{p}(x) = 0$ or $\hat{p}(x) = 0.01$
- $\hookrightarrow \hat{p}(x)$ off by 1000%

Common Event

- p(x) = 0.5
- T = 100 observations
- ullet \sim 99.5% get between 35 and 65 events,
- $0.35 < \hat{p}(x) < 0.65$
- $\rightarrow \hat{p}(x)$ off by 30%

 \hookrightarrow small p(x), small count \rightarrow big uncertainty

Literatu

Functional Form

Fitting Function

Estimation

Latimatic

Mark Kirste

Main Resul

Iviaiii Resui

Literatur

Setup

runctional Fori

Fitting Function

Estimation

Conclus

Scaling of uncertainty: small count \rightarrow big uncertainty

1 scaling of counts n(x):

$$n(x) \sim p(x)\delta xT \iff p(x) \sim \frac{n(x)}{T\delta x}$$

- 2 uncertainty in Poisson-distributed counts $\sim \sqrt{n(x)}$
- 3 estimate of the asymptotic probability density

$$p(x) \approx \underbrace{\frac{n(x)}{T\delta x}}_{\text{estimate}} \pm \underbrace{\frac{\sqrt{n(x)}}{T\delta x}}_{\text{relative uncertainty}}$$
 (5)

express the uncertainty in terms of the estimate itself

$$\varepsilon \left[\hat{\rho}(x) \right] \equiv \frac{\sqrt{n(x)}}{T \delta x} = \sqrt{\frac{\hat{\rho}(x)}{T \delta x}} \tag{6}$$

- **6** standard error $\lim_{p(x)\to 0} \sqrt{\hat{p}(x)/T\delta x}$ in \hat{p} shrinks
- **6** relative error in the estimate $\lim_{p(x)\to 0} 1/\sqrt{\hat{p}(x)T\delta x}$ grows,
- $\mathbf{n} \lim_{T \to \infty} \hat{\mathbf{p}} \to \mathbf{p}$

Drobabilit

Literatuu

Setu

Functional Fo

FILLING FUNCTION

Ergodicity

Estimation

Conclusio

Cautionary principle : DMs don't like surprises

To avoid surprises, DMs add estimation uncertainty $\varepsilon\left[\hat{p}(x)\right]$ to every estimated probability, then normalize, s.t.

$$w(x) = \frac{\hat{p}(x) + \varepsilon \left[\hat{p}(x)\right]}{\int \left(\hat{p}(s) + \varepsilon \left[\hat{p}(s)\right]\right) ds}$$
(7)

Cautionary principle : DMs don't like surprises

To avoid surprises, DMs add estimation uncertainty $\varepsilon\left[\hat{p}(x)\right]$ to every estimated probability, then normalize, s.t.

$$w(x) = \frac{\hat{p}(x) + \varepsilon \left[\hat{p}(x)\right]}{\int \left(\hat{p}(s) + \varepsilon \left[\hat{p}(s)\right]\right) ds}$$
(7)

Gaussian PDF and estimated PDF $0.4 - \frac{p(x)}{w(x)}$ 0.3

х

0.1

0.0

Interactive code at https://bit.ly/lml-pw-count-b

ż

Main Result

Probability Weighting

Literature

Setu

i unctional i om

Fitting Function

Ergodicity

Estimatio

Conclusio

Mark Kirstei

Main Res

Litaratur

Setu

unctional Fo

Fitting Functio

. . .

Estimatio

Latimatio

 $T=100, \delta x=0.4$, estimates of $\hat{p}(x)$ in red, estimates with one standard error $\hat{p}(x)+\varepsilon\left[\hat{p}(x)\right]$ in blue.

Main Result

Literatur Setup

Functional For

Fitting Function

Estimatio

Conclusi

Classical interpretation of PW

- overestimation of low probability events
- underestimation of high probability events
- \hookrightarrow maladaptive irrational cognitive bias

Ergodicity Economics and PW

- inverse-S shape: neutral indicator of different models of the world
- reported observations consistent with DM's extra uncertainty
- may arise from DM estimating probabilities over time
- Probability weighting is rational cautious behaviour under uncertainty over time
- $\bullet \ \ \text{testable prediction} \ \to \ \text{Let's run an experiment!}$
- Manuscript at bit.ly/lml-pw-r1
- Interactive code at bit.ly/lml-pw-count-b

Thank you for your attention!

I'm looking forward to the discussion Comments & questions are very welcome, here or to

m.kirstein@lml.org.uk

@nonergodicMark

Ergodicity Economics Online Conference 18-20 Jan 2021

lml.org.uk/ee2021/

Submit an open peer review to this paper on bit.ly/lml-pw-r1

Back Up References

BACK UP

Back Up

Probability Weighting as an Estimation Issue

"It is important to distinguish overweighting, which refers to a property of decision weights, from the overestimation that is commonly found in the assessment of the probability of rare events. [...] In many real-life situations, overestimation and overweighting may both operate to increase the impact of rare events." (Kahneman and Tversky 1979, p. 281)

- - uncertainty estimation and
 - "weighting"

we analyse the former and find very good agreement with the empirical inverse-S pattern

→ How big is the residual "probability weighting" after accounting for uncertainty estimation?

Estimation Error Explains 99% of Probability Weighting

- similar fits of Gaussian & t-distributed model
- → How big is the residual "probability weighting" after accounting for estimation errors?

References

Fox, Craig R. and Liat Hadar (2006). ""Decisions from experience" = sampling error + prospect theory: Reconsidering Hertwig, Barron, Weber & Erev (2004)". Judgement and Decision Making 1 (2). URL: http://journal.sjdm.org/06144/jdm06144.htm (cit. on p. 6).

Gigerenzer, Gerd (1991). "How to Make Cognitive Illusions Disappear: Beyond "Heuristics and Biases"". *European Review of Social Psychology* 2 (1), pp. 83–115. DOI:10.1080/14792779143000033 (cit. on p. 18).

Gigerenzer, Gerd (2018). "The Bias Bias in Behavioral Economics". Review of Behavioral Economics 5 (3-4), pp. 303–336. DOI:10.1561/105.00000092 (cit. on p. 18).

Hertwig, Ralph, Greg Barron, Elke U. Weber, and Ido Erev (2004). "Decisions from Experience and the Effect of Rare Events in Risky Choice". *Psychological Science* 15 (8), pp. 534–539. DOI:10.1111/j.0956-7976.2004.00715.x (cit. on p. 6).

Hertwig, Ralph and Ido Erev (2009). "The description–experience gap in risky choice". *Trends in Cognitive Sciences* 13 (12), pp. 517–523. DOI:10.1016/j.tics.2009.09.004 (cit. on p. 6).

Hertwig, Ralph and Gerd Gigerenzer (1999). "The 'conjunction fallacy' revisited: how intelligent inferences look like reasoning errors". *Journal of Behavioral Decision Making* 12 (4), pp. 275–305. DOI:10.1002/(sici)1099-0771(199912)12:4j275::aid-bdm323¿3.0.co;2-m (cit. on p. 18).

Back Up References

- Kahneman, Daniel and Amos Tversky (1979). "Prospect Theory: An Analysis of Decision under Risk". Econometrica 47 (2), pp. 263–291. DOI:10.2307/1914185 (cit. on p. 27).
- Lattimore, Pamela K., Joanna R. Baker, and A. Dryden Witte (1992). "Influence of Probability on Risky Choice: A Parametric Examination". *Journal of Economic Behavior and Organization* 17 (3), pp. 377–400. DOI:10.1016/S0167-2681(95)90015-2 (cit. on p. 13).
- Martins, André C. R. (2006). "Probability biases as Bayesian inference". *Judgement and Decision Making* 1 (2), pp. 108–117. URL: http://journal.sjdm.org/vol1.2.htm (cit. on p. 6).
- Preston, Malcolm G. and Philip Baratta (1948). "An Experimental Study of the Auction-Value of an Uncertain Outcome". *American Journal of Psychology* 61 (2), p. 183. DOI:10.2307/1416964 (cit. on p. 5).
- Seo, Daewon, Ravi Kiran Raman, Joong Bum Rhim, Vivek K Goyal, and Lav R. Varshney (2019). "Beliefs in Decision-Making Cascades". *IEEE Transactions on Signal Processing* 67 (19), pp. 5103–5117. DOI:10.1109/tsp.2019.2935865 (cit. on p. 6).
- Stewart, Neil, Stian Reimers, and Adam J. L. Harris (2015). "On the Origin of Utility, Weighting, and Discounting Functions: How They Get Their Shapes and How to Change Their Shapes". Management Science 61 (3), pp. 687–705. DOI:10.1287/mnsc.2013.1853 (cit. on p. 6).

References

Ungemach, Christoph, Nick Chater, and Neil Stewart (2009). "Are Probabilities Overweighted or Underweighted When Rare Outcomes Are Experienced (Rarely)?" *Psychological Science* 20 (4), pp. 473–479. DOI:10.1111/j.1467-9280.2009.02319.x (cit. on p. 6).

Wulff, Dirk U., Max Mergenthaler-Canseco, and Ralph Hertwig (2018). "A meta-analytic review of two modes of learning and the description-experience gap.". *Psychological Bulletin* 144 (2), pp. 140–176. DOI:10.1037/bul0000115 (cit. on p. 6).