Remote Control Car with Collision Detection

Dominic Gaines, James Zhan, Joseph Telaak, Evan Trauger

College of Engineering and Computing

Technical Approach to Reach Requirements

- Set up OS on Raspberry Pi and confirm LIDAR is connected and functions as intended
- This portion is written in Python 3 and should:
 - Be connected as long as the LIDAR has the correct IP and Subnet Mask
 - Sense any large objects within the front 270° of the car (135° Left and Right)
 - Poll an arbitrary number of pings from the sensor
 - Have a polar distance attached to each ping in mm (r and Θ)
 - Shut off any power to motors if an obstacle is detected within 6-12 inches (range will be adjusted for any latency issues)

Technical Approach to Reach Requirements

- Set up RC receiver to Arduino Mega via Serial. Arduino is written in C++ and should:
 - Read the radio input from the controller to receiver (at 9600 baud every 100 ms)
 - Run the serial input through an iBUS instance using the IBusBM library (this is the receivers protocol)
 - Split the input into 6 respective channels (we will be using 3 of these)
 - Confirm which Channels by using the remote controls
 - Ch1 will be Left/Right, Ch2 will be Forward/Reverse, Ch6 will be for lights
 - Send the decoded channel values to the Raspberry Pi

Technical Approach to Reach Requirements

- Return to Raspberry Pi; it should now be receiving values from the Arduino
 - Code a proportion to convert Ch1 and Ch2 values from {-100 < x < 100} to {0 < x < 255} (Negatives will denote which pin to output to)
 - Relay Ch1 signal to Power Steering Arduino to turn left or right accordingly
 - Relay Ch2 signal to Motor Controller to go forward or backwards accordingly
 - If Ch6 is 1, relay signal to Power Steering Arduino to turn car lights on
- Once Pi is coded and compiles correctly, make sure everything physically works and is wired correctly!

Measures of Performance

 The speed of the car could have been increased (around 6) mph)

o Had to limit the speed so that the wheels could get traction

Creates more control

 Original objective goal was for it to be moving
 The threshold goal was 6 miles per hour
 Reached max speed but gearbox stripped itself
 Could not reach any acceleration goal due to traction
 Reached our objective goal
 Lidar works; however, we could not get a good measurement of performance

Too many libraries and functions needed to be implemented

Causes pi to be too slow

THANKS! Resources for Reference:

Dominic Gaines
Final Group Project
dcgaines@email.sc.edu
ELCT201-003

