NLP: Parsing

AMIT DHOMNE

$1 \quad \mathbf{Grammar}_{\mathrm{S}}$

- "Consitiuency" parse
- S (sentence), NP (noun phrase), VP (verb phrase) are constituents
- Words combine to make phrases, and phrases combine to make larger phrases and sentences.

2 Context-Free Grammars (CFG)

• Context-free grammars can be specified by a table of "productions"

• Words are called "terminals" and other nodes are "non-terminals"

- Independence assumption: each rule choice is dependent only on the parent node; it is independent of all other rule choices
- Independence assumption leads to many problems. A couple:

- (b) Noun doesn't agree in number with determiner or verb
- We can solve some of these issues by refining our CFG. For example:

$$VP \rightarrow IV$$
 (intransitive verb) $IV \rightarrow \{barks, walks\}$
 $VP \rightarrow TV NP$ (transitive verb) $TV \rightarrow \{chases, walks\}$

(c) Intransitive verbs are disallowed

(d) Transitive verbs are disallowed

3 Syntactic Ambiguity

- For a given CFG, there can be multiple trees that describe the same sentence
- Add the following rules to the above:

```
NP \rightarrow D N PP (prep phrase attach to noun) N \rightarrow \{telescope\}

VP \rightarrow V NP PP (prep phrase attach to verb)

PP \rightarrow P NP ("in the house")
```

• "The man saw a dog with a telescope"

- Ambiguity is explosive
- A sentence ending in n prepositional phrases has over 2^n parses (catalan numbers)
 - "I saw the man with the telescope": 2 parses
 - "I saw the man on the hill with the telescope": 5 parses
 - "I saw the man on the hill in texas with the telescope": 14 parses
 - "I saw the man on the hill in texas with the telescope at noon": 42 parses
 - "I saw the mon on the hill in texas with the telescope at noon on monday": 132 parses

4 Agreement

- In order for a sentence to be grammatical, we must also respect agreement rules
 - number: a dog vs. all dogs
 - person: 1st person (I am), 2nd person (you are), 3rd person (he is)
 - gender: un homme vs. use femme or even she sees herself

- The grammar defined above does not enforce this
 - For an NP, since productions are independent of each other, we could get either dog or dogs no matter whether the D is a or all
- We can incorporate this into our grammar by duplicating our productions to ensure agreement:

- But this quickly explodes the number of rules
- And the explosion is worse with more agreement rules:

$$\begin{array}{cccc} VP_{sg,1st,masc} & \rightarrow & V_{sg,1st,masc} \\ VP_{sg,1st,fem} & \rightarrow & V_{sg,1st,fem} \\ VP_{sg,2nd,masc} & \rightarrow & V_{sg,2nd,masc} \\ VP_{sg,2nd,fem} & \rightarrow & V_{sg,2nd,fem} \\ \dots & & & & \\ VP_{pl,3rd,fem} & \rightarrow & V_{pl,3rd,fem} \end{array}$$

• We can simplify this greatly using feature structures that use variables to ensure agreement

- Feature structures must unify as they are combined
 - For example, all xs and z must resolve to the same value (sg or pl)

- Similar features could be set up for other required agreements
 - PRO[num=sg, per=3rd, gen=masc] $\rightarrow il$

5 Probabilistic Context-Free Grammars (PCFG)

- A CFG is deterministic
 - It can decide whether a sentence is in the language (grammatical), or not
 - It can't judge whether one sentence is more likely than another
 - Problematic since we want to say that every sentence is *possible*, even if it's not likely
- A PCFG is a CFG in which, for every non-terminal, we have a probability distribution over possible productions
- In other words, for each non-terminal A, we have a distribution $p(\beta \mid A)$
 - The probability that, given a parent non-terminal A, we choose the production rule that yields β
 - We can alternatively write this as $p(A \to \beta)$

\mathbf{S}	\rightarrow	NP VP	1.0	D	\rightarrow	the	0.6
				D	\rightarrow	a	0.4
NP	\rightarrow	DN	0.7				
NP	\rightarrow	N	0.2	N	\rightarrow	man	0.5
NP	\rightarrow	D N PP	0.1	N	\rightarrow	dog	0.4
				N	\rightarrow	telescope	0.1
VP	\rightarrow	V NP	0.4				
VP	\rightarrow	V	0.4	V	\rightarrow	barks	0.2
VP	\rightarrow	V NP PP	0.2	V	\rightarrow	walks	0.4
				V	\rightarrow	saw	0.4

Estimating parameters (MLE)

- We can calculate the MLE parameters of a PCFG model by counting productions in a corpus of parse trees
- Assume these three sentences comprise a corpus:

- We estimate by counting up all productions in the corpus and normalizing
 - Since every non-terminal A must produce something, we can simplify slightly

$$p(\beta \mid A) = \frac{C(A \to \beta)}{\sum_{\beta' \in P} C(A \to \beta')} = \frac{C(A \to \beta)}{C(A)}$$

• Estimates from the above corpus of trees yield:

		$C(A \to \beta)$	$p(\beta \mid A)$				$C(A \to \beta)$	$p(\beta \mid A)$
S -	\rightarrow NP	VP 3	1.0	D	\rightarrow	the	3	0.75
				D	\rightarrow	a	1	0.25
NP -	\rightarrow D N	$\sqrt{4}$	1.0					
				N	\rightarrow	dog	2	0.5
VP -	\rightarrow V	2	0.66	N	\rightarrow	man	2	0.5
VP -	\rightarrow V N	NP 1	0.33					
				V	\rightarrow	walked	2	0.66
				V	\rightarrow	ran	1	0.33

Add- λ smoothing

• Same as always (where P is the set of all possible β s produced):

$$p(\beta \mid A) = \frac{C(A \to \beta) + \lambda}{\sum_{\beta' \in P} (C(A \to \beta') + \lambda)} = \frac{C(A \to \beta) + \lambda}{(\sum_{\beta' \in P} C(A \to \beta')) + \lambda |P|} = \frac{C(A \to \beta) + \lambda}{C(A) + \lambda |P|}$$

Likelihood of a (parsed) sentence

- We can use this to calculate the likelihood of seeing a particular parse of a particular sentence
- Multiply the probabilities of all productions found in the tree
- Assume this tree:

• Count up the number of each production in the tree, and get the probability of each production from the above table

			count	prob				count	prob
S -	\rightarrow	NP VP	1	1.0	D	\rightarrow	the	1	0.75
					D	\rightarrow	a	1	0.25
NP -	\rightarrow	DΝ	2	1.0					
					N	\rightarrow	dog	1	0.5
VP -	\rightarrow	V NP	1	0.33	N	\rightarrow	man	1	0.5
					V	\rightarrow	walked	1	0.66

• Find the product:

$$\begin{split} p(\mathbf{S} \to \mathbf{NP} \ \mathbf{VP}) \cdot p(\mathbf{NP} \to \mathbf{D} \ \mathbf{N})^2 \cdot p(\mathbf{VP} \to \mathbf{V} \ \mathbf{NP}) \cdot p(\mathbf{D} \to the) \cdot p(\mathbf{D} \to a) \cdot p(\mathbf{N} \to dog) \\ \cdot p(\mathbf{N} \to man) \cdot p(\mathbf{V} \to walked) \\ = 1.0 \cdot 1.0^2 \cdot 0.33 \cdot 0.75 \cdot 0.25 \cdot 0.5 \cdot 0.66 \end{split}$$

• Note that the $p(NP \to D N)$ term is squared since the production "NP $\to D N$ " appears twice in the tree

6 Lexicalized Grammars

- Problem: trees do not take semantic coherence into account
- Production rules are independent

- These two sentence have exactly the same likelihood
- Since it's a product, we can swap two productions without changing the result

$$p(S \rightarrow NP \ VP) \cdot p(NP \rightarrow D \ N)^{2} \cdot p(VP \rightarrow V \ NP) \cdot p(D \rightarrow the) \cdot p(D \rightarrow a) \cdot \mathbf{p}(\mathbf{N} \rightarrow \boldsymbol{dog}) \cdot \mathbf{p}(\mathbf{N} \rightarrow \boldsymbol{man}) \cdot p(V \rightarrow bit)$$

$$\downarrow \qquad \qquad \downarrow$$

$$p(S \rightarrow NP \ VP) \cdot p(NP \rightarrow D \ N)^{2} \cdot p(VP \rightarrow V \ NP) \cdot p(D \rightarrow the) \cdot p(D \rightarrow a) \cdot \mathbf{p}(\mathbf{N} \rightarrow \boldsymbol{man}) \cdot \mathbf{p}(\mathbf{N} \rightarrow \boldsymbol{dog}) \cdot p(V \rightarrow bit)$$

- Solution: lexicalize the grammar
- Subcategorize rules with their head words:

S	\rightarrow	NP(man) VP(bite)	0.3	D	\rightarrow	the	0.6
S	\rightarrow	NP(dog) VP(bite)	0.7	D	\rightarrow	a	0.4
S^1	\rightarrow	NP(sandwich) VP(bite)	0.0				
$NP(man)^2$	\rightarrow	D N(man)	0.8	$N(man)^2$		man	0.7
$NP(man)^2$	\rightarrow	N(man)	0.2	$N(man)^2$	\rightarrow	men	0.3
$NP(dog)^3$	\rightarrow	D N(dog)	0.4	$N(dog)^3$	\rightarrow	doq	0.2
$NP(dog)^3$		(0)	0.6	$N(dog)^3$		dogs	0.8
(- :) 4				(-)			
${ m VP(bite)^4}$	\rightarrow	V(bite) NP(man)	0.2	V(bite)	\rightarrow	bite	0.3
$VP(bite)^4$	\rightarrow	V(bite) NP(dog)	0.1	V(bite)	\rightarrow	bites	0.2
$VP(bite)^4$	\rightarrow	V(bite) NP(sandwich)	0.7	V(bite)	\rightarrow	biting	0.1
$VP(bite)^5$	\rightarrow	V(bite)	0.0	V(bite)	\rightarrow	bit	0.4

- ¹Sandwiches don't bite
- $-\,$ $^2\mathrm{Men}$ are likely talked about in the singular
- 3 Dogs are likely talked about in the plural
- ⁴Men are bitten infrequently, dogs are bitten less frequently, and sandwiches are bitten often.
- 5 "Biting" can't be intransitive
- Downside: increased sparsity!

7 Generative Model

- Like naïve Bayes models, N-Gram models, and hidden Markov models
- Two probability distribution: $p(\beta \mid \alpha)$, for production rules $\alpha \to \beta$, and $p(\sigma)$, where σ is a possible "start" symbol
- Generative story:
 - 1. Choose a start symbol x from the distribution over start symbols $p(\sigma)$
 - 2. If x is a terminal, STOP
 - 3. Else, choose some β from $p(\beta \mid x)$
 - 4. For each symbol y in β , go to step 2
- For each node with symbol x, we choose a production rule of the form $x \to \beta$ according to their probabilities and then recursively choose rules for every node in β until we reach terminals for all branches.

8 Parsing

Top-Down

- Never try to build tree that doesn't make a sentence.
- Waste time exploring trees that don't end up with the correct words.

Bottom-Up

- Never make a tree that doesn't start with the right words.
- Waste time exploring trees that don't make a sentence.

9 Parsing with P-CKY

Find the mostly likely parse tree t for the sentence $w_0...w_n$

- $\hat{t} = \operatorname{argmax}_{t} p(t \mid w_{0}...w_{n})$
- Since we know how to find the likelihood of a parse (from above), we could enumerate all possible trees, and find the likelihood of each one.
- But the number of possible trees is enormous
- We will use a dynamic programming algorithm to find the best parse tree: P-CKY
- Probabilistic version of the CKY algorithm, which can be used with any CFG
- Analgous to the Viterbi algorithm (both are dynamic programming algorithms)

Chomsky Normal Form (CNF)

- CKY requires that the grammar be in CNF
- All productions must be one of:
 - Non-terminal producing exactly 2 non-terminals: $A \to B$ C Non-terminal producing exactly 1 non-terminal: $A \to B$ Non-terminal producing exactly 1 terminal: $A \to w$
- Any CFG can be convered to CNF
 - Producing more than two nonterminals: "A \rightarrow B ... Y Z" becomes

*
$$A \rightarrow B \dots [Y+Z]$$

 $[Y+Z] \rightarrow Y Z$

* Repeat as necessary until you just have $A \to B X$

* NP
$$\rightarrow$$
 D Adj N becomes NP \rightarrow D [Adj+N] [Adj+N] \rightarrow Adj N

- For our trees we should never have terminals and nonterminals mixed in productions since all terminals a produced by unary rules from POS tags, which never produce anything other than terminals. (But if we needed to we could create dummy nonterminals for those terminals.)

P-CKY Idea

- 1. Make a pass over the whole sentence, trying to find subtrees that explain spans within the sentence
- 2. Dynamic programming: store intermediate results in a chart
- 3. Start with the leftmost word. For each non-terminal (NT), find the most plausible subtree that covers just that word.

4. Move to the next word

- a. Again, for each NT, find the most plausible subtree that covers just that word.
- b. Then, for each NT, find the most plausible subtree that covers both the word and the previous word.
- c. Same for the three-word span of the word and the previous two words.
- d. Continue until you have the entire span from the beginning of the sentence to the word.
- e. Then move to the next word and repeat.
- 5. You are finished when you have, for each NT, the most plausible tree covering the entire span of the sentence.
- 6. Pick the root node that is most plausible considering the *a priori* probability of an NT being the root of a sentence.

P-CKY Algorithm

- NT is the set of all non-terminals (including composites and POS tags)
- $N = \text{length of sentence } w_0...w_{N-1}$
- table[i,j][A] is the best possible score for a subtree spanning words $w_i...w_{j-1}$ with A as its root
- back[i,j][A] = (k,B,C) indicates that the best possible subtree spanning words $w_i...w_{j-1}$ with A as its root is comprised of a left subtree spanning words $w_i...w_{k-1}$ with B as its root and a right subtree spanning words $w_k...w_{j-1}$ with C as its root.

10 P-CKY Example

"the complex houses married students"

NP[the complex houses] VP[V[married] NP[N[students]]] NP[this complex] VP[V[houses] [NP[A[married] [N students]]]

11 N-Best Parses

Useful for providing multiple possiblities to down-stream applications.

Can be fed into a discriminative re-ranker that uses something like MaxEnt with features built from linguistic knowlege to re-score the parses. The discriminative model wouldn't be used for *parsing*, just to calculate the likelihoods of the parses that were found.

12 Other Grammatical Formalisms

12.1 TAG: Tree-Adjoining Grammar

- http://www.seas.upenn.edu/~joshi/joshi-schabes-tag-97.pdf
- Instead of single-layer production rules of a CFG, production rules are tree fragments
- Fragments have "incomplete" nodes that must produce to other tree fragments. (Just like how "incomplete" nodes in a CFG must produce the next rule.)
- Lexicalized: Each fragment centered around a word
- Mildly context-sensitive (as opposed to context-free)

Figure 1: TAG productions

Figure 2: TAG fragment combination giving parse for "Mary loves a woman"

Figure 3: TAG productions for common phrases

12.2 CCG: Combinatory Categorial Grammar

- Instead of atomic POS tags and Non-Terminals, use *categories* that are constructed from other categories:
 - Categories are defined by a (context-free) grammar atomic categories: C \rightarrow { S, NP, N } complex categories: C \rightarrow { C/C, C\C }
 - Slash and backslash operators indicate that the category is a function:
 - * A/B is a category that looks directly to its **right** for something of category B, and combines with it to produce an A
 - * A\B is a category that looks directly to its **left** for something of category B, and combines with it to produce an A
 - * So B is the *input* to the function, and A is the output
- Mildly context-sensitive
- Weakly equivalent to TAG

Words are assigned categories in the *Lexicon*:

Mary: NP

sleeps: S\NP

loves: $(S\NP)/NP$

a: NP/N

woman: N

The parse tree for a sentence, then, is the result of doing the combinations:

12.3 Dependency Parsing

Figure 4: Series of CCG combinations to parse "Mary sleeps"

Figure 5: Series of CCG combinations to parse "a woman sleeps"

Figure 6: CCG parse tree for "Mary loves a woman"

Figure 7: Dependency parse trees

Algorithm 1: P-CKY

```
Initialize table to be an N+1 x N+1 array (for (best-so-far) scores)
Initialize back to be an N+1 x N+1 array (for backpointers)
for j \leftarrow 1 to N do
   // Fill in the bottom of the chart (single-word spans):
   i = j - 1;
   for A \leftarrow NT (or restrict to just POS tags if convenient) do
       // A is a potential POS tag for w_i
       if p(w_i | A) > 0.0 then
           //A \rightarrow w_i is a valid rule
           table[i,j][a] = p(w_i \mid A)
           back[i,j][a] = w_i
   // Fill in the higher levels of the chart (multi-word spans)
   for i \leftarrow j-1 downto \theta do
       // Binary Rules (with k as pivot)
       for k \leftarrow i+1 to j-1 do
           for B \leftarrow table[i,k] and C \leftarrow table[k,j] do
               // B is the root of a sub-tree covering the span w_i...w_{k-1}
               // C is the root of a sub-tree covering the span w_k...w_{j-1}
               for A \leftarrow NT (or restrict to just non-POS tags if convenient) do
                   //A is a potential root for the subtree spanning w_i...w_{i-1}
                   if p(B \ C \mid A) > 0.0 then
                      //A \rightarrow B \ C \ is \ a \ valid \ rule
                      s = p(B \ C \mid A) \cdot \texttt{table[i,k][B]} \cdot \texttt{table[k,j][C]}
                      if table[i, j] doesn't contain A OR table[i, j][A] < s then
                          // Either we haven't seen a valid subtree coverting i to j with root A,
                          // or this new subtree has a higher score
                          table[i,j][A] = s
                          back[i,j][A] = (k, B, C)
       // Unary Rules
       done = false
       while !done do
           done = true
           for B \leftarrow table[i, j] do
               // B is the root of a sub-tree covering the span w_i...w_{i-1}
               for A \leftarrow NT (or restrict to just non-POS, non-compound tags if convenient) do
                   // A is a potential root for the subtree spanning w_i...w_{i-1}
                   if p(B | A) > 0.0 then
                      //A \rightarrow B is a valid rule
                      s = p(B \mid A) \cdot \texttt{table[i,j][B]}
                      if table[i, j] doesn't contain A OR table[i, j][A] < s then
                          // Either we haven't seen a valid subtree coverting i to j with root A,
                          // or this new subtree has a higher score
                          table[i,j][A] = s
                          back[i,j][A] = B
                          done = false // if we added a new NT, then re-check
```

Algorithm 2: Retrieve the best-parse tree from the backpointer table

```
// Select the best root element while considering the prior over all potential root elements
                     table[0,N][S] \cdot p(S)
root =
          argmax
        S \leftarrow \texttt{table[0,N]}
if table[0,N][root] \cdot p(root) = 0.0 then
 // There is no valid parse of the sentence
else
 | FollowBackpointers(root, 0, N)
Function FollowBackpointers(A, i, j): Tree
   back[i,j][A] match
                               // Binary branch
      case (k, B, C) \Rightarrow
          Tree(A, FollowBackpointers(B, i, k), FollowBackpointers(C, k, j))
      \mathbf{case} \; \mathbf{B} \Rightarrow
                      // Unary branch
          Tree(A, FollowBackpointers(B, i, j))
      case w \Rightarrow
                      // Terminal (word)
          Leaf(w)
```