

Группа компаний «Генезис знаний» Комитет по ИИ НОЦ «Инженерия будущего»

На пути к «Эмерджентному интеллекту»: Онтологии и мультиагентные технологии для управления ресурсами

Ян Депжик. «Жизнь»

Д.т.н. Скобелев П.О.

Основатель и Председатель Совета директоров ГК «Генезис знаний», Со-Председатель Комитета по ИИ НОЦ «Инженерия будущего», в.н.с. СФИЦ РАН, зав. каф. СамГТУ

Семинар русского язычного сообщества AGI, 20 января 2021 года

Действовать с опережением для мира будущего!

Индустрия 4.0 - решает задачи автоматизации производств и интеграции АСУ ТП с информационноаналитическими и учетными системами.

Индустрия 5.0 - ориентирована на цифровизацию знаний и создание цифровых эко-систем автономных систем искусственного интеллекта (ИИ) для автоматизации процессов коллективного принятия решений в сетевой экономике реального времени.

Общество 5.0 - переход от иерархий – к сетям, от приказов – к переговорам, ставка на знания, таланты, предпринимательство, юберизация ресурсов, солидарная экономика, переход к оплате по результату, работа не по найму, дивиденды знаний и т.д.

В основе «Общества 5.0» будет «Человек», для раскрытия талантов, использования творческого потенциала, воли, знаний и умений, энергии которого и будут договариваться ИИ в цифровых эко-системах.

Тренд от централизации и иерархий - к самоорганизации

	Объект управления	Область применения	Почему сетевая организация
	Умные изделия	Космос Авиация Двигатели	 Самолет как сеть >100 тыс. связанных агентов «умных частей» Двигатель нового поколения как сеть агентов договаривающихся «умных лопаток» «Чешуйчатое крыло» из агентов «умных чешуек»
	Умные группировки	Д33 Связь Навигация	Рой агентов летательных аппаратов, например, спутников и дронов — высокая гибкость и эффективность, живучесть
	Умная инфра- структура	Транспорт	Взаимодействие агентов автомобилей, дорог и светофоров для безопасности
	Умные организации	Управление проектами	Агенты людей, проектов, задач, РИД и др. – умное, гибкое, эффективное управление
	Биологические объекты (чело- век, растения, др)	Медицина Сельское хозяйство	Сеть агентов органов, биоценоза и др. Управление ростом растений Лечение не органа, а организма!

Как быть эффективным в новой экономике?

Что случается с предприятиями, когда растет сложность, неопределенность и динамика, обусловленная быстрыми и частыми изменениями спроса и предложения

Предприятия 4.0	Предприятия 5.0
Централизованные, высоко иерархические, монолитные, детерминированные медлительные организации, унаследованные с 70-х годов	Открытые, децентрализованные, сетевые, быстрые - полностью в он-лайн, не зарегламентированные организации
Типовая реакция на непредвиденные события: - Увеличить число ресурсов - Рост объемов складов - Задержка в реакции на события	Оперативное, гибкое и точное принятие решений роботами, позволяющее адаптировать планы предприятий «на лету» в 100-1000 раз быстрее людей
Падение эффективности в использовании ресурсов	Предсказание пиков и узких мест для сокращения простоев и дефицита ресурса
Рост цен вследствие неэффективности предприятий переводится на заказчиков	Динамическое образование цен по ситуации (экономика реального времени)
Резкое падение конкурентноспособности предприятий на международном и даже внутреннем рынке	Повышение конкурентности за счет кооперации и специализации, выявление и продажа лишних активов

Эмерджентный интеллект для решения сложных задач

Рой в природе - это сообщество достаточно примитивных организмов (рой пчел, колония муравьев и др.), все действия которых сводятся к элементарным инстинктивным реакциям.

Однако, эти особи вместе, действуя согласованно, образуют сложную самоорганизующуюся систему с природо-подобным «Эмерджентным интеллектом» (ЭИ).

ЭИ многократно умножает индивидуальный интеллект каждой особи и позволяет решать сложные задачи выживания, защиты границ, воспроизводства и пропитания и т.д.

ЭИ на основе мультиагентной технологии и баз знаний

Мультиагентная технология

Программные агенты сети потребностей и возможностей (ПВ-сеть) позволяют строить решение любой сложной задачи планирования ресурсов как динамическую сеть связей, гибко изменяемую в реальном времени

Планирование строится как параллельные асинхронные аукционо-подобные переговоры агентов для решения конфликтов с учетом интересов участников

База знаний

Традиционные формы представления информации: (отчеты, книги, таблицы и т.д.)

Семантические сети онтологии – компьютерные модели знаний предметной области

Примеры экранов конструкторов онтологий

Позволяет настраивать логику работы агентов на специфику работы каждого конкретного предприятия с учетом структуры его изделий, технологий, оборудования и т.д.

Мультиагентный подход для решения сложных задач управления ресурсами в реальном времени

Классические системы

- Иерархии больших программ
- Последовательное выполнение операций
- Инструкции сверху вниз
- Централизованные решения
- Управляются данными
- Предсказуемость
- Стабильность
- Стремление уменьшать сложность
- Тотальный контроль

Мультиагентные системы

- Большие сети малых агентов
- Параллельное выполнение операций
- Переговоры
- Распределённые решения
- Управляются знаниями
- Самоорганизация
- Эволюция
- Стремление наращивать сложность
- Создание условий для развития

Одновременно активные программы (сопрограммы)

В ноябре 2019 года мультиагентные технологии вошли в список наиболее перспективных информационных технологий по версии **Gartner** для создания «автономных вещей»

Агент – ключевой элемент системы

- выработка вариантов действий;
- оценка эффективности своих действий;

агентами для согласования решений;

 возможность обучения из опыта (в будущем). Окружающая среда

Сети потребностей и возможностей (ПВ-сети)

Постоянный поиск соответствий между конкурирующими и кооперирующими агентами потребностей и возможностей на виртуальном рынке системы позволяет строить решение любой сложной задачи как динамическую сеть связей, гибко изменяемую в реальном времени (*).

Примечание: Математическое обоснование эффективности виртуального рынка как альтернативы линейному программированию см. в трудах известных математиков из Кембриджа, вышедших в 2009-2010 гг.:

- 1) Y.Shoham, K.Leyton-Brown. Multi-agent systems: Alghoritmic, Game Theoretic and Logical Foundations. Cambridge University Press, 2009: http://www.masfoundations.org.
- 2) Networks, Crowds, and Markets: Reasoning about a Highly Connected World. By David Easley and Jon Kleinberg. Cambridge University Press, 2010: http://www.cs.cornell.edu/home/kleinber/networks-book/.
- 3) Питерская школа А.Л.Фрадкова и О.Н.Граничина. Решение задач в условиях неопределенности, ошибок и т.д.

Базовые классы агентов ЭИ для решения задач управления ресурсами

Тип	Цели и предпочтения	Ограничения		
Агент заказа	Быть выполненным с минимальной задержкой (с) и стоимостью (р): $Y_i = w_1 \left(1 - \frac{c}{c_{\rm kp}}\right) + w_2 \left(1 - \frac{p}{p_{\rm kp}}\right)$	Сроки, объем, предельная стоимость		
Агент задачи: • групповой • атомарной	Быть выполненным на подходящем ресурсе в указанные сроки за минимальное время $(\tau_i = finish_i - start_i):$ $Y_i = \begin{cases} 1, \tau_i < \tau_{\text{опт}} \\ \frac{\tau_i - \tau_{\text{кр}}}{\tau_{\text{опт}} - \tau_{\text{кр}}} \end{cases}$, иначе	Характеристики требуемых ресурсов и продуктов, сроки начала и окончания, взаимосвязи с другими задачами		
Агент ресурса	Быть максимально загруженным, минимизировать простои и переналадки: $Y_i = \begin{cases} 0, u_i < u_{\mathrm{Kp}} \\ \frac{u_i - u_{\mathrm{Kp}}}{u_{\mathrm{OПT}} - u_{\mathrm{Kp}}} \end{cases}$, иначе , где u_i – утилизация ресурса i	Календарь работы, интервалы недоступности, правила обслуживания и переналадки, производительность		
Агент продукта	Обеспечить свое хранение, минимизировать время между производством и потреблением (e): $Y_i = 1 - \frac{e_i}{e_{\rm kp}}$	Требования по хранению, время поставки или производства, время потребления		
Агент системы (предприятия в целом)	Выявление «узких мест» в расписании, управление активностью агентов системы, взаимодействие с внешними системами	Время, отводимое на планирования, глубина цепочек перестановок в расписании 10		

Функции удовлетворенности и бонусов агентов

Функции удовлетворенности

$$Y_{i} = \sum_{j=1}^{M} w_{ij} y_{ij}, \quad 0 \le w_{ij} \le 1$$
$$\sum_{j=1}^{M} w_{ij} = 1 \ \forall_{i}$$

Функция бонусов и штрафов

Удовлетворенность агента

- ▶ В основе работы системы лежит «виртуальный рынок», на котором агенты заказов могут покупать услуги ресурсов.
- При этом состояние агента характеризуется степенью удовлетворенности (свертка по критериям) и наличием финансовых ресурсов для улучшения удовлетворенности.
- Чем ближе состояние к требуемому идеалу, тем выше показатель удовлетворенности агента и тем больше система премирует агента.
- Виртуальные деньги при этом играют роль «энергии» для установки и перестройки связей.

Бонусы и штрафы агента

- ▶ При входе в систему агент получает сумму по тарифу на счет для приобретения услуг ресурсов.
- Бюджет расходуется агентом на поиск решения и дальнейшую перестройку расписания для улучшения уровня удовлетворенности.

Решение конфликтов

- ▶ В случае конфликта один агент может предложить другому компенсацию за уступку своего места в плане.
- Второй агент уйдет из конфликта и освободит свое место если только сумма ухудшений будет меньше чем сумма улучшений для системы в целом.

Метод принятия решений агентами при разборе конфликтов и поисках консенсуса

- ▶ Цепочка перестановок считается успешной, если агент активного заказа a_k может компенсировать потери всем конфликтующим агентам $\{a_i \mid i \neq k, \ plan'_k \cap plan_i \neq \emptyset\}$ за счет достигаемого прироста ΔB_k
- $\Delta B_k \ge \sum_{i \ne k}^n \Delta B_i$
- Процесс перестройки завершается по условию достижения **«конкурентного равновесия»** (консенсуса):

$$\Delta B_k + \sum_{i \neq k}^n \Delta B_i < 0 \quad \forall_k$$

Типы базовых операций:

размещение задачи на свободном участке:

$$\Delta B_{task} + \Delta B_{resource} > 0$$
;

▶ обмен задачами $task_1 \leftrightarrow task_2$ между ресурсами $resource_1 \leftrightarrow resource_2$:

$$\Delta B_{task_1} + \Delta B_{task_2} + \Delta B_{resource_1} + \Delta B_{resource_2} > 0;$$

вытеснение менее выгодных задач из расписания:

$$\Delta B_{task1} + \Delta B_{task2} + \Delta B_{resource} > 0;$$

перестановка (сдвиг) задач при наличии конфликтов:

$$\sum_{t \in \{tasks\}} \Delta B_t + \sum_{r \in \{resources\}} \Delta B_r > 0.$$

Онтологии для агентов позволяют:

- Сократить перебор вариантов в разборе конфликтов по отношениям ПрО (семантике);
- Автоматически настраивать агентов на онтологическую модель предприятия и сократить сложность и стоимость разработки ЦД.

БАЗА ЗНАНИЙ ПРЕДПРИЯТИЯ НА ОСНОВЕ ОНТОЛОГИИ

Традиционные формы представления информации: (отчеты, книги, таблицы и т.д.)

- Таблицы справочных данных
- Аналитические отчеты
- Условия применения
- Результаты полевых испытаний
- Советы и рекомендации
- Случаи из практики
- Цены на продукцию и услуги

Переход к новым формам представления информации, удобным для обработки на компьютере

Концепция Semantic Web (семантического Интернета) предполагает создание семантической сети классов объектов и отношений для построения модели знаний предметной области

Семантические сети – компьютерные модели знаний предметной области

Примеры экранов конструкторов онтологий

База знаний может содержать сведения об изделиях и техпроцессах, оборудовании и материалах, компетенциях рабочих и других особенностях производства, которых нет в обычных базах данных, документах и других источниках

Базы знаний для поддержки принятия решений

Онтология — это формализованная модель знаний о предметной области, построенная на основе классов понятий и отношений в форме, допускающей компьютерную обработку.

Онтология – это средство для создания баз знаний (толковый словарь) с фактами о людях и вещах (предметах) предметной области, применимой как для людей, так и компьютерных систем

Базы знаний (Б3) могут использоваться для создания онтологических моделей предприятий и проблемных ситуаций (сцен) реального мира.

На основе онтологических моделей предприятий и ситуаций могут работать мультиагентные системы для поддержки принятия решений по управлению ресурсами.

Семантический профиль интересов пользователя

Рекомендации по материалам на основе анализа интересов

Документы

пользователя

Развитие, дополнение и изменение Базы знаний (фактически – обучение системы) должно быть доступно пользователю через простой и интуитивно понятный Вебинтерфейс по типу Википедии

Построение онтологической модели предприятия для управления ресурсами

Постановка задачи

- Провести системный анализ требований, предъявляемых к решению задач управления ресурсам предприятия и выделить базовые понятия и отношения онтологии «Управление ресурсами»
- Разработать подход, позволяющий строить прикладные онтологии для групп однотипных предприятий
- Развить подход до уровня онто-спецификаций каждой задачи для настройки агентов предприятия.
- Модифицировать базовые классы агентов ПВ-сети таким образом, чтобы онтологическая модель могла использоваться для порождения классов и экземпляров агентов под заданное предприятие.

Результаты анализа задач управления ресурсами предприятия

1. Выделены типы понятий и отношений построения ЦД предприятий

Область значений Обл. определения Отношение Заказ Требует создания Производимый продукт Задача Является частью Групповая задача Следует за Задача Ресурс / требование к ресурсу Использует Производимый продукт Производит Потребляет Потребляемый продукт Pecypc Доступен График доступности Обеспечивающий Входит в Группа ресурсов Обеспечивающий ресурс Соединен с pecypc / группа ресурсов Требует обслуживания Правило обслуживания Требует переналадки Правило переналадки

2. Выделены базовые типы задач

	Продолжительность фиксирована					
Атома рная	Продолжительность зависит от состава и характеристик используемых ресурсов и/или объема выпускаемого продукта					
Группо вая	Продолжительность «покрывает» интервалы выполнения дочерних задач (атомарных или групповых)					
Гамак	Выполняется строго между моментами времени окончания задач предшественников и началом задач-последователей					

3. Выявлены базовые типы ресурсов

Преобразуемый	Тратится при выполнении задачи, может быть восполнен согласно графику поставок
Обеспечивающий	Становится доступными для повторного использования в прежнем количестве сразу
	после завершения задач, на которые был выделен

Методика создания онтологической модели предприятия

Для описания объекта управления задается набор онтологий: $O = \langle C, R, \Phi \rangle$, где:

- □ C множество понятий;
- \square R множество атрибутов и отношений (n-местных предикатов);
- \Box Φ множество функций семантической обработки интерпретации, заданных на множестве R.
- 1. Выделяется базовая онтология управления ресурсами O_{plan}

```
C_{plan} = \{Order, Product, Task, Resource\}
R_{plan} = \{create, consume, produce, part of, follow, connected, require, stored, consist of\}
\forall_x \exists_y \left(Order(x) \rightarrow Product(y) \land create(x, y)\right)
\forall_x \exists_y \left(ProducedProduct(x) \rightarrow Product(x) \land Task(y) \land produce(y, x)\right)
\forall_x \exists_y \left(GroupTask(x) \leftrightarrow Task(x) \land Task(y) \land part of(y, x)\right)
\forall_{x,y} \left(require(x, y) \rightarrow Task(x) \land Resource(y)\right)
```

2. Базовая онтология расширяется онтологией предметной области предприятия: $O_{domain}\supseteq O_{plan}$

```
\forall_x (Resource(x) \rightarrow Equipment(x) \lor Tool(x) \lor Employee(x))
```

$$\forall_{x,y} (hasCompetence(x,y) \rightarrow Employee(x) \land Competence(y))$$

3. На основе предметной онтологии строится онтологическая модель ЦД предприятия: $M = \{O_{domain}(O_{plan}), I\}$

$$\begin{array}{ll} p_1 \in Process & part of (o_1, p_1) \\ \{o_1, o_2\} \subset Operation & part of (o_2, p_1) \\ pr_1 \in Profession & follow(o_2, o_1) \end{array}$$

 $require(o_1, x) \rightarrow Employee(x) \land hasProfession(x, pr_1) \land hasCompetence(x, comp_1)$

4. Строится сцена предприятия S, которая содержит значения атрибутов всех экземпляров I для заданного момента времени t: S = M(t)

База знаний для управления ресурсами

Онтологическая модель задачи для агента задачи

Фрагмент базовой онтологии и онтологии машиностроения

Экраны конструктора онтологий и базы знаний для контролируемого наращивания сложности планирования

Онтологии – онто модели предприятий – сцены

Примеры базовой и прикладных онтологий

На основе прикладных онтологий строятся онтологические модели предприятий соответствующих отраслей

Перспективы онтологий для создания баз знаний предприятий

- Цель формализация знаний разных предметных областей на основе принципов Semantic Web для управления ресурсами.
- Объем базы знаний, описывающих жизнь человека [(10)]^9 фактов.
- Стандарты KQML, RDF и OWL, разделяемые онтологии и базы знаний по типу OpenCyc или WikiData, наконец, инструменты типа Protégé.
- Корпоративные применения: Google Knowledge Graph, Microsoft's Satori Knowledge Graph, Amazon's Product Graph, Facebook's Social Graph и IBM Watson's Knowledge Graph.
- Объем базы знаний Google Knowledge Graph place оценивается в 1 миллиард сущностей and 70 миллиардов утверждений (фактов),
- У Microsofta для сравнения 2 миллиарда сущностей и 55 миллиардов утверждений.
- На повестке дня в США создание Open Knowledge Network (OKN), которая должна объединить национальные знаниевые ресурсы.
- А что у нас? Т. Гаврилова, Ю. Загорулько и некоторые другие активисты.
- Создан первый в РФ журнал ВАК по онтологиям в Самаре (2-ой в Европе).

Архитектура комплекса для построения ЭИ систем

Эффект применения комплекса для построения ЭИ

Прикладная задача	Размер базовой онтологии	Размер онтологии ПрО	Размер онтомодели предприятия	Количеств о агентов	Время на доработку ЦД (человек/месяц)	
					Б3	MAC
Сборка самолетов	61	152	925	> 350	3	3.5
Сборка грузовиков		89	382	> 520	1	2
Бурение скважин		85	441	> 5000	2	3
Цифровой двойник растений		42	236	> 100	1	1
Группировка КА Д33		112	304	> 450	1	4

Swarm of Satellites – интеллектуальная система управления «Роем спутников»

Краткая версия: https://www.youtube.com/watch?v=B9ZMthmwsa4 (4.52 мин)

Полная версия: https://youtu.be/vcDdMMJOupk (9.50 мин)

Высокая адаптивность ЭИ для управления ресурсами

Примеры ИСУР продуктов и результаты внедрения

Smart Factory [управление цехами]

- ♦ Заказчики: Тяжмаш, АвиаАгрегат, Кузнецов, Airbus, Иркут
- ◆ Построение производственного расписания на горизонт до 2 лет - за 10 − 15 минут
- ◆ Повышение валового объема продукции цеха на 5 10% при том же составе рабочих и оборудования
- Экономия от внедрения в одном цеху составляет не менее 1163 нормо-часов в месяц, или 7 чел-месяцев в месяц, что соответствует 3 – 8 млн. руб. в год

Smart Services [мобильные бригады]

- **Заказчики:** Средневолжская газовая компания, Водоканал Волгограда и др.
- Сокращение времени реакции на непредвиденные события в 5-10 раз
- Повышена эффективность работы бригад на 40% (12 заказов вместо 7 в день)
- Поддержка гибкого планирования в реальном времени
- ◆ Сокращение ошибок диспетчеров и времени обучения с месяцев – до дней

Smart Projects
[управление проектами]

- ◆ Заказчики: РКК «Энергия» и др.
- ◆ Полная прозрачность расходов при планировании и реализации
- Адаптивное планирование и повышение эффективности использования ресурсов (сокращение простоев и дефицитов)
- ◆ Сокращение времени построения планов в 5-7 раз

Smart Taxi [управление такси]

- Заказчики: Addison Lee и др.
- ◆ Количество обработанных заказов увеличилось на 7% при том же флоте
- ◆ Автоматически стали планироваться 98,5% всех заказов
- ◆ Количество потерь заказов сократилось на 2% до 3,5%
- ♦ Пустой пробег сократился на 22,5%
- Прибыльность возросла на 4,8%, при этом доходы водителей выросли на 9%, а также появилась возможность расширить флот

Smart Supply
[управление поставками]

- ◆ Для LEGO (США, сеть магазинов в Чикаго) по итогам пилотного внедрения – увеличение прибыли на 18 %
- ◆ Для Соса-Cola (Германия) повышение выполняемости заказов на 7 % и экономия на транспортные расходы до 20 %
- ◆ Мировой опыт показывает, что потенциал экономии от сокращения издержек предприятия на логистику поставок может составлять до 25 %

Smart Railways [управление ЖД]

Ожидаемые результаты (в стадии разработки):

- Заказчик: РЖД (а рамках ИСУ ЖТ ВНИИАС)
- Увеличение скорости движения грузовых составов на БАМе на 3-5 %
- Время пересчета графиков движения по событию меньше 30 секунд
- Повышение оперативности работы диспетчерской и нагон графика в 1.5 2 раза
- Снижение зависимости от человеческого фактора

Будущее: Мета-Онтология Аристотеля

- Метаонтология модель встроенных представлений об окружающем мире.
- Первая мета-онтология Аристотеля для конструктора онтологий:
 - Объекты суть свойства.
 - Свойства позволяют объектам вступать в процессы взаимодействия.
 - В ходе взаимодействий строятся отношения.
 - Свойства и отношения стартуют новые процессы.
- Мультиагентная модель первичного мира для конструктора онтологий:
 - Агент мира управляет активностью мира.
 - Агент объектов управляет каждым объектом.
 - Агент процессов управляет каждым процессом мира.
 - Агент свойств управляет свойством объекта.
 - Агент отношений управляет каждым отношением.
- Логика действий участников в системе онтологических исчислений
 - Что можно делать с объектом?
 - Какое действие может привести к требуемому результату?
 - Какие условия надо для этого выполнить?
 - Какой результат ожидается от действия?
- **Мультиагентный подход** к созданию конструктора онтологий, который должен понимать смыслы (нельзя объект путать с процессом и т.д.)

Обоснование выбора технологий создания ЭИ

Классическая оптимизация		· ·	ети / Машинное чение	База знаний и МАС		
Преимущества	Недостатки	Преимущества	Недостатки	Преимущества	Недостатки	
Достижение глобального оптимума по одной целевой функции	Ориентация на интересы центра – не подходит для учета и поиска баланса интересов (консенсуса)	Подходит для решения узких задач распознавания образов	Требует долгого обучения и полной выборки массивов обучающих данных	Решает сложные задачи управления ресурсами путем разбора конфликтов	Высокая сложность и трудоемкость разработки начального решения	
Один хорошо изученный метод (алгоритм) для решения любых задач планирования и оптимизации ресурсов	Высокая вычислительная сложность комбинаторного перебора вариантов	Дает устойчивое решение при наличии ошибок в данных, помех и шумов	При изменении ситуации во внешней среде надо начинать обучение заново, трудно определить наступление этого момента	Возможность развития и учета индивидуальных особенностей заказов и ресурсов	При изменении ситуации во внешнем мире требует коррекции базы знаний и/или изменения состава агентов	
Возможность купить готовый программный продукт на рынке	Невозможность работы по событиям в адаптивном режиме, что требуется для синхронизации реального и цифрового предприятия	Возможность купить готовый программный продукт на рынке	Не работает в адаптивном режиме по событиям	Может работать в адаптивном режиме для быстрого ответа на событие и синхронизации с реальным предприятием	Усложнение диалога с пользователем (проактивность, встречные предложения и т.д.)	
Легко встраиваются в существующие бизнес-процессы	Большая трудность настройки на решение практических задач	Позволяет использовать накопленные исторические данные предприятия	Трудность настройки на решение практических задач	Учет семантики предметной области предприятия в базе знаний	Трудности внедрения за счет смены бизнес-процессов и регламентов	

Результаты внедрений

- 1. Решение сложных проблем управления предприятиями, включая этапы распределения, планирования, оптимизации и контроля ресурсов.
- 2. Повышение качества производства продукции и оказания услуг для конечных пользователей (индивидуальный подход);
- 3. Повышение эффективности за счет перехода к реальному времени и снижению затрат на производства продукции и оказания услуг для пользователей;
- 4. Формализация и интеграция знаний для принятия решений нового ключевого интеллектуального ресурса предприятий в 21 веке;
- 5. Повышение прозрачности, оперативности в реакции на события, гибкости в изменениях планов при управлении ресурсами;
- 6. Снижение трудоемкости управления и уменьшение негативного человеческого фактора при распределении ресурсов.
- 7. Создание собственной масштабируемой программной платформы для разработки и развития ИИ систем управления ресурсами.

Вопросы и ответы

Спасибо за внимание!

Скобелев Петр Олегович, д.т.н.

Основатель / Председатель Совета директоров

Группы компаний «Генезис знаний»

E-mail: skobelev@kg.ru

Моб.: +7 (902) 372-32-00

Подробнее о нашей истории и разработках - в статье Ирика Имамутдинова

«Организация мыслящего роя»

в журнале «Эксперт» (ноябрь 2014):

http://expert.ru/expert/2014/48/organizatsiyamyislyascheqo-roya/

- и в видеосюжете Программы «Технопарк» на канале «Россия 24»:

http://www.youtube.com/watch?v=qhCmbBU3jkU

