Tandon CS Bridge: HW #6

Due on August 18, 2023

 $Ratan\ Dey\ Extended\ 24\text{-}week$

Kunhua Huang

kh4092

Problem 5

Use the definition of θ in order to show the following:

1.
$$5n^3 + 2n^2 + 3n = \theta(n^3)$$

2.
$$\sqrt[2]{7n^2 + 2n - 8} = \theta(n)$$

Solution

1. Proof. For the lower bound, when
$$C_1=4$$
, for $n\geq 0$,
$$5n^3\leq 5n^3+2n^2+3n$$
 For the upper bound,

$$5n^3 + 2n^2 + 3n \le 6n^3$$
, when $C_2 = 6$, for $n \ge 3$.
 $C_1 \cdot g(n) \le 5n^3 + 2n^2 + 3n \le C_2 \cdot g(n)$
 $\leftrightarrow 4n^3 \le 5n^3 + 2n^2 + 3n \le 6n^3$
 $5n^3 + 2n^2 + 3n = \theta(n^3)$

2. Proof. For
$$n \ge 4$$
, $\sqrt[3]{n^2} = \sqrt[3]{7}n \le \sqrt[3]{7n^2 + 2n - 8}$ $C_1 = \sqrt[3]{7}$

For the upper bound, when
$$C_2 = \sqrt[2]{7} + 1$$
, for $n \ge 0$, $\sqrt[2]{7n^2 + 2n - 8} \le (\sqrt[2]{7} + 1)n$
 $C_1 \cdot g(n) \le \sqrt[2]{7n^2 + 2n - 8} \le C_2 \cdot g(n)$
 $\leftrightarrow \sqrt[2]{7n} \le \sqrt[2]{7n^2 + 2n - 8} \le (\sqrt[2]{7} + 1)n$
 $\sqrt[2]{7n^2 + 2n - 8} = \theta(n)$