Annotated slides

CS4423: Networks

Week 9, Part 1: Properties of the ER models

Dr Niall Madden School of Maths, University of Galway

12+13 March 2025)

Homework Assignment 2

Homework Assignment 2 has started

▶ Part 1: A written (i.e., Python-free) assignment. You can find the details at https://www.niallmadden.ie/2425-CS4423/. Specifically, the questions are at https:
//www.niallmadden.ie/2425-CS4423/CS4423-HW2-1.pdf. To help you work on that, I've also prepared a "tutorial sheet" for Questions 5-9, which you can work on in classes this week. See https://www.niallmadden.ie/2425-CS4423/CS4423-HW2-1-tutorial.pdf

- ▶ Part 2: A programming/networkx-based assignment, which will be posted Thursday morning, and which are can work on next week.
- ▶ **Deadline:** 5pm. Friday, 28 March.

Questions?

Outline

This weeks notes are split between PDF slides, and a Jupyter Notebook.

- 1 Recall: the Erdös-Rényi $G_{ER}(n, m)$ model
- 2 Model B: $G_{ER}(n, p)$
- 3 Properties
 - Probability distributions

- 4 Expected size and average degree
 - \blacksquare $G_{ER}(n,p)$
- 5 Degree Distribution
 - Example
 - Poisson distribution

Slides are at:

https://www.niallmadden.ie/2425-CS4423

Last week we met:

ER Model $G_{ER}(n, m)$: Uniform Random Graphs

Let $n \ge 1$, let $N = \binom{n}{2}$ and let $0 \le m \le N$.

The model $G_{ER}(n, m)$ consists of the ensemble of graphs G on the n nodes $X = \{0, 1, \dots, n-1\}$, and m randomly selected edges, chosen uniformly from the $N = \binom{n}{2}$ possible edges.

Equivalently, one can choose uniformly at random one network in the **set** $\mathcal{G}(n, m)$ of all networks on a given set of n nodes with exactly m edges

Example

How many different graphs are there in $G_{ER}(4,3)$?

Example

How many different graphs are there in $G_{ER}(4,3)$?

In general , for
$$G_{ER}(n, m)$$

there are $N=\binom{n}{2}$ edges to choose from and we pick $\binom{\binom{n}{2}}{m}=\binom{N}{m}$.

Recall: the Erdös-Rényi $G_{ER}(n, \widehat{m})$ model

One could think of $G_{ER}(n,m)$ as a probability distribution $P\colon G_{ER}(n,m)\to \mathbb{R}$, that assigns to each network $G\in G_{ER}(n,m)$ the same probability

where
$$N = \binom{n}{2}$$
.

Escape 3

If $G = \binom{N}{m}^{-1}$,

where $N = \binom{n}{2}$.

Escape 3

One in G_{ER} (4,3).

Some networks drawn from $G_{ER}(20, 15)$.

Erdös-Rényi: Randomly selected edges

ER Model $G_{ER}(n,p)$: Random Edges

Let $n \geq 1$, let $N = \binom{n}{2}$ and let $0 \leq p \leq 1$. The model $G_{ER}(n,p)$ consists of the ensemble of graphs G on the n nodes $X = \{0,1,\ldots,n-1\}$, with each of the possible $N = \binom{n}{2}$ edges chosen with probability p.

The probability P(G) of a particular graph G = (X, E) with $X = \{0, 1, \dots, n-1\}$ and m = |E| edges in the $G_{ER}(n, p)$ model is

$$P(G) = p^m (1-p)^{N-m}.$$

Model B: $G_{ER}(n, p)$

Some networks drawn from $G_{ER}(20, 0.05)$.

Model B: $G_{ER}(n, p)$

Of the two models, $G_{ER}(n, p)$ is the more studied. They are many similarities, but they do differ. For example:

- 1. $G_{ER}(n, m)$ will have m edges with probability 1.
- 2. A graph in $G_{ER}(n, p)$ with have m edges with probability $\binom{N}{m} p^m (p-1)^{N-m}$.

Properties

We'd like to investigate (theoretically and computationally) the properties of such graphs. For example

- ► When might it be a tree?
- ▶ Does it contain a tree, or other cycles? If so, how many?
- ▶ When does it contain a small complete graph?
- ► When does it contain a **large component**, larger than all other components?
- When does the network form a single connected component?
- ▶ How do these properties depend on n and m (or p)?

Denote by G_n the set of all graphs on the n nodes $X = \{0, \dots, n-1\}$.

Set $N = \binom{n}{2}$, the maximal number of edges of a graph $G \in \mathcal{G}_n$.

Regard the ER models A and B as probability distributions $P: \mathcal{G}_n \to \mathbb{R}$.

Notation: Denote m(G): the number of edges of a graph G.

As we have seen, the probability of a specific graph G to be sampled from the model $G_{ER}(n, m)$ is:

$$P(G) = \begin{cases} \binom{N}{m}^{-1}, & \text{if } m(G) = m, \\ 0, & \text{else.} \end{cases}$$

And the probability of a specific graph G to be sampled from the model $G_{ER}(n, p)$ is:

$$P(G) = p^m (1-p)^{N-m},$$

where m = m(G).

Expected size and average degree

Let's use the following notation:

- ightharpoonup \bar{a} is the expected value of property a (that is, as the graphs vary across the ensemble produced by the model).
- \triangleright $\langle a \rangle$ is the average of property a over all the nodes of a graph.

In $G_{ER}(n, m)$, the expected **size** is

$$\bar{m}=m,$$

as every graph G in $G_{ER}(n, m)$ has exactly m edges. The expected average degree is

$$\langle k \rangle = \frac{2m}{n},$$

as every graph has average degree 2m/n.

Other properties of $G_{ER}(n, m)$ are less straightforward, and it is easier to work with the $G_{ER}(n, p)$.

In $G_{ER}(n,p)$, with $N=\binom{n}{2}$, is, expected number of

► the **expected size** is

eogic

$$\bar{m} = pN$$

(Also: variance is $\sigma_m^2 = Np(1-p)$).

▶ the expected **average degree** is (we'll see why soon):

$$\langle k \rangle = p(n-1).$$

with standard deviation $\sigma_k = \sqrt{p(1-p)(n-1)}$.

► In particular, the *relative standard deviation* of the size of a random model *B* graph is

$$\begin{cases}
\frac{\overline{\sigma_m}}{\overline{m}} = \sqrt{\frac{1-p}{pN}} = \sqrt{\frac{2(1-p)}{pn(n-1)}} = \sqrt{\frac{2}{n\langle k \rangle} - \frac{2}{n(n-1)}},
\end{cases}$$

a quantity that converges to 0 as $n \to \infty$ if $p(n-1) = \langle k \rangle$, the average node degree, is kept constant.

Degree Distribution

Definition (Degree distribution)

The **degree distribution** $p: \mathbb{N}_0 \to \mathbb{R}$, $k \mapsto p_k$ of a graph G is defined as

$$p_k = \frac{n_k}{n},$$

where, for $k \geq 0$, n_k is the number of nodes of degree k in G.

This definition can be extended to ensembles of graphs with n nodes (like the random graphs $G_{ER}(n,m)$ and $G_{ER}(n,p)$), by setting

 $p_k = \bar{n}_k/n,$

where \bar{n}_k denotes the expected value of the random variable n_k over the ensemble of graphs.

Degree Distribution

The degree distribution in a random graph $G_{ER}(n, p)$ is a **binomial** distribution

$$p_k = \binom{n-1}{k} p^k (1-p)^{n-1-k} = \operatorname{Bin}(n-1, p, k)$$

That is, in the $G_{ER}(n, p)$ model, the probability that a node has degree k is p_k .

Also, the average degree of a randomly chosen node is

$$\langle k \rangle = \sum_{k=0}^{n-1} k p_k = p(n-1)$$
 See calculation from Week 8.

(with standard deviation $\sigma_k = \sqrt{p(1-p)(n-1)}$).

Example (Q3(c) from 2023/24 exam)

Suppose one constructed a graph G on 120 nodes by tossing a (fair, 6-sided) die once for each possible edge, adding the edge only if the die shows 3 or 6. Then pick a node at random in this graph. What is the probability that this node has degree 50? (You do not need to return a numerical value. It is enough to give an explicit formula in terms of the given data.)

The probability of rolling 3 or 6 is
$$p=\frac{1}{3}$$
.
Also have $n=120$, $k=0$
So $P_{k}=\begin{pmatrix} 114\\ 50 \end{pmatrix}\begin{pmatrix} \frac{1}{3} \end{pmatrix}^{50}\begin{pmatrix} \frac{2}{3} \end{pmatrix}^{69}$.

In general, it is not so easy to compute

$$\binom{n-1}{k}p^k(1-p)^{n-1-k}$$

However, in the limit $n \to \infty$, with $\langle k \rangle = p(n-1)$ kept constant, the binomial distribution $\operatorname{Bin}(n-1,p,k)$ is well approximated by the **Poisson distribution**

$$p_k = e^{-\lambda} \frac{\lambda^k}{k!} = \text{Pois}(\lambda, k),$$

where $\lambda = p(n-1)$.