MATH 2135 Linear Algebra

Chapter 2 Finite-Dimensional Vector Spaces

Alyssa Motas

March 8, 2021

Contents

1	2.A	Span a	and Linear Independence	3
	1.1	Linear	Combinations and Span	3
		1.1.1	List of vectors	3
		1.1.2	Linear combination	3
		1.1.3	Span	3
		1.1.4	Span is the smallest containing subspace	4
		1.1.5	Definition of spanning	6
		1.1.6	Definition of finite-dimensional vector space	6
	1.2	Linear	$eq:continuous_continuous$	7
		1.2.1	Definition	7
		1.2.2	Proposition	7
		1.2.3	Coordinates	8
		1.2.4	Linear Dependence Lemma	9
		1.2.5	Replacement lemma	10
		1.2.6	Theorem	11
2	2.B Bases			
	2.1	Bases		13
		2.1.1	Definition	13
		2.1.2	Examples	13
		2.1.3	Criterion for basis	13
	2.2	Coordi	inates	14
		2.2.1	Examples of coordinates	14
	2.3	Theorems about Bases		15
		2.3.1	Spanning list contains a basis	15
		2.3.2	Basis of finite-dimensional vector space	15
		2.3.3	Linearly independent list extends to a basis	15
		2.3.4	Every subspace of V is part of a direct sum equal to V	16
3	2.C Dimension 1			17
	3.1		ength does not depend on basis	17
	3.2	Definition of a dimension		
	3.3	Examples of a dimension		
	3.4	Dimension of a subspace		
	3.5	Linearly independent list of the right length is a basis 1		
	3.6	Examples		
	3.7	Spanning list of the right length is a basis		
	3.8	Dimension of a sum		

1 2.A Span and Linear Independence

1.1 Linear Combinations and Span

1.1.1 List of vectors

A "list" is an ordered finite sequence of things. For example, 1, 2, 5, 2, 3 is a list of numbers, and 1, 2, 2, 5, 3 is a different list. There can be repetitions. We usually write lists without parentheses. With lists, we do not usually specify ahead of time how many entries the list has.

1.1.2 Linear combination

A linear combination of a list v_1, \ldots, v_m of vectors in V is a vector of the form

$$a_1v_1 + \cdots + a_mv_m$$

where $a_1, \ldots, a_m \in \mathbf{F}$.

Examples.

• (17, -4, 2) is a linear combination of (2, 1, -3), (1, -2, 4) because

$$(17, -4, 2) = 6(2, 1, -3) + 5(1, -2, 4).$$

• (17, -4, 5) is not a linear combination of (2, 1, -3), (1, -2, 4) because there do not exist numbers $a_1, a_2 \in \mathbf{F}$ such that

$$(17, -4, 5) = a_1(2, 1, -3) + a_2(1, -2, 4).$$

1.1.3 Span

The set of all linear combinations of a list of vectors v_1, \ldots, v_m in V is called the span of v_1, \ldots, v_m , denoted $span(v_1, \ldots, v_m)$. In other words,

$$span(v_1, ..., v_m) = \{a_1v_1 + \cdots + a_mv_m \mid a_1, ..., a_m \in \mathbf{F}\}.$$

The span of the empty list () is defined to be $\{0\}$.

Examples.

From the previous examples, we have

- $(17, -4, 2) \in span((2, 1, -3), (1, -2, 4));$
- $(17, -4, 5) \notin span((2, 1, -3), (1, -2, 4)).$

1.1.4 Span is the smallest containing subspace

The span of a list of vectors in V is the smallest subspace of V containing all the vectors in the list.

Remark. What this means is the following:

- (1) $span(v_1, \ldots, v_m)$ is a subspace of V containing v_1, \ldots, v_m .
- (2) If W is any subspace of V containing v_1, \ldots, v_m , then $span(v_1, \ldots, v_m) \subseteq W$

Proof. Let us prove the two remarks above.

- (1) To show that $span(v_1, \ldots, v_m)$ is a subspace, we must prove the three subspace properties.
 - (a) $0 = 0v_1 + \cdots + 0v_m$, so we have $0 \in span(v_1, \dots, v_m)$.
 - (b) To show that it is closed under addition, let $v, w \in span(v_1, \ldots, v_m)$ be arbitrary. We must show that $v + w \in span(v_1, \ldots, v_m)$. By assumption,

$$v = a_1v_1 + \cdots + a_mv_m$$

for some a_1, \ldots, a_m , and

$$w = b_1 v_1 + \cdots + b_m v_m$$

for some b_1, \ldots, b_m . Therefore,

$$v + w = (a_1v_1 + \dots + a_mv_m) + (b_1v_1 + \dots b_mv_m)$$

= $(a_1 + b_1)v_1 + \dots + (a_m + b_m)v_m$.

So the span is closed under addition.

(c) To show that it is closed under scalar multiplication, assume $v \in span(v_1, \ldots, v_m)$ and $k \in F$. We need to show that $kv \in span(v_1, \ldots, v_m)$. There exists a_1, \ldots, a_m such that $v = a_1v_1 + \cdots + a_mv_m$. Then

$$kv = k(a_1v_1 + \dots + a_mv_m)$$

= $(ka_1)v_1 + \dots + (ka_m)v_m$.

Therefore, the span is closed under scalar multiplication.

Next, we show that $span(v_1, \ldots, v_m)$ contains v_1, \ldots, v_m . But

$$v_1 = 1v_1 + 0v_2 + \dots + 0v_m$$

 $v_2 = 0v_1 + 1v_2 + \dots + 0v_m$
 \vdots
 $v_m = 0v_1 + 0v_2 + \dots + 1v_m$.

So each of $v_1, \ldots, v_m \in span(v_1, \ldots, v_m)$.

(2) We must show that $span(v_1, \ldots, v_m)$ is the smallest. So let W be any subspace of V containing v_1, \ldots, v_m . We must show $span(v_1, \ldots, v_m) \subseteq W$

Take any arbitrary $v \in span(v_1, \ldots, v_m)$. We must show that $v \in W$. There exists a_1, \ldots, a_m such that

$$v = a_1 v_1 + \dots + a_m v_m.$$

Then, $v_1, \ldots, v_m \in W$. But W is a subspace, so it is closed under scalar multiplication.

$$\Rightarrow a_1v_1, \dots a_mv_m \in W$$
.

Also, W is closed under addition, then

$$a_1v_1 + \dots + a_mv_m \in W$$

$$\Rightarrow v \in W.$$

Because $v \in span(v_1, \ldots, v_m)$ was arbitrary, it follows

$$span(v_1,\ldots,v_m)\subseteq W$$

as had to be shown.

1.1.5 Definition of spanning

If $span(v_1, \ldots, v_m)$ equals V, we say that v_1, \ldots, v_m spans V.

1.1.6 Definition of finite-dimensional vector space

A vector space is called *finite-dimensional* if some list of vectors in it spans the space. In other words, there exist $k \leq 0, v_1, \ldots, v_k$ such that

$$span(v_1,\ldots,v_k)=V.$$

Otherwise, V is called *infinite-dimensional*.

Examples.

• Recall that $P_m(F)$ is the vector space of polynomials (with coefficients in F) of degree at most m.

$$P_m(F) = \{a_0 + a_1 x + \dots + a_m x^m \mid a_0, \dots + a_m \in F\}.$$

Then $P_m(F)$ is finite-dimensional. It is spanned by the following list of m+1 polynomials: $1, x, x^2, \ldots, x^m$.

• Let P(F) be the set of all polynomials with coefficients in F, regardless of degree. Then P(F) is an infinite-dimensional vector space.

Proof. Assume, for the sake of obtaining a contradiction, that P(F) is finite dimensional. Then P(F) is spanned by a finite list of polynomials, say $P_1, \ldots, P_k \in P(F)$. Let m be the largest degree of any of P_1, \ldots, P_k .

Then clearly, any linear combination

$$a_1P_1 + \cdots + a_kP_k$$

also has degree at most m.

So therefore, $x^{m+1} \in P(F)$ is not a linear combination of P_1, \ldots, P_k , contradicting the fact that P_1, \ldots, P_k span P(F).

1.2 Linear Independence

1.2.1 Definition

- A list v_1, \ldots, v_m of vectors in V is called *linearly independent* if the only choice of $a_1, \ldots, a_m \in \mathbf{F}$ that makes $a_1v_1 + \cdots + a_mv_m$ equal 0 is $a_1 = \cdots = a_m = 0$.
- The empty list () is also declared to be linearly independent.
- 1. To prove that some v_1, \ldots, v_m are linearly independent, you have to do the following:
 - Take arbitrary a_1, \ldots, a_m
 - Assume $a_1v_1 + \cdots + a_mv_m = 0$
 - Must show $a_1, \ldots, a_m = 0$
- 2. To prove that some v_1, \ldots, v_m are linearly dependent, you have to do the following:
 - Find specific a_1, \ldots, a_m , not all 0, such that $a_1v_1 + \cdots + a_mv_m = 0$.

1.2.2 Proposition

Suppose v_1, \ldots, v_m are linearly independent, and let $w \in span(v_1, \ldots, v_m)$. Then, there exists a unique list of scalars a_1, \ldots, a_m such that

$$w = a_1 v_1 + \dots + a_m v_m.$$

Proof. Existence. By definition of span, it exists. Uniqueness. Suppose that w in two ways as a linear combination of v_1, \ldots, v_m :

$$w = a_1 v_1 + \dots a_m v_m$$

$$w = b_1 v_1 + \dots + b_m v_m.$$

Then $(w-w)=(a_1v_1+\cdots+a_mv_m)-(b_1v_1+\cdots+b_mv_m)$. By vector space axioms,

$$0 = (a_1 - b_1)v_1 + \dots + (a_m - b_m)v_m.$$

Because v_1, \ldots, v_m are linearly independent, it follows that $a_1 - b_1 = 0, \ldots, a_m - b_m = 0$. Therefore, $a_1 = b_1, \ldots, a_m = b_m$. This proves uniqueness.

1.2.3 Coordinates

If v_1, \ldots, v_m are linearly independent and $w = a_1v_1 + \cdots + a_mv_m$, we call a_1, \ldots, a_m the *coordinates* of w (with respect to the list v_1, \ldots, v_m).

$$w = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = ae_1 + be_2 + ce_3$$

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Examples.

In $P_3(\mathbb{R})$, let $P_1 = x^3 + 1$, $P_2 = x^3 - 2x$, $P_3 = 4x + 2$. Is P_1, P_2, P_3 linearly independent?

To answer the question, we attempt to rpove that they are linearly independent.

Proof. Take arbitrary $a_1, a_2, a_3 \in \mathbb{R}$. Assume $a_1p_1 + a_2p_2 + a_3p_3 = 0$. In other words,

$$a_1(x^3+1) + a_2(x^3-2x) + a_3(4x+2) = 0$$
 (1)

From (1), we can make a system of equations and turn it into a matrix.

$$a_1 + a_2 = 0$$
$$-2a_2 + 4a_3 = 0$$
$$a_1 + 2a_3 = 0$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -2 & 4 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix} \simeq \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 2 & 0 \end{bmatrix} \simeq \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The general solution is $a_3 = t$, $a_2 = 2t$, $a_1 = -2t$. Since we failed to show that $a_1, a_2, a_3 = 0$, then P_1, P_2, P_3 are linearly dependent.

For
$$t = 1$$
, we get $a_1 = -2$, $a_2 = 2$, $a_3 = 1$, and we find that $-2P_1 + 2P_2 + 1P_3 = 0$.

1.2.4 Linear Dependence Lemma

Suppose v_1, \ldots, v_m is a linearly dependent list in V. Then there exists $j \in \{1, 2, \ldots, m\}$ such that the following hold:

- (a) $v_j \in span(v_1, ..., v_{j-1});$
- (b) if the jth term is removed from v_1, \ldots, v_m , the span of the remaining list equals $span(v_1, \ldots, v_m)$.

Proof. By assumption, v_1, \ldots, v_m are linearly dependent. Therefore, there exist scalars $a_1, \ldots, a_m \in F$ such that $a_1v_1 + \cdots + a_mv_m = 0$ but not all of a_1, \ldots, a_m are 0.

Let j be the largest index such that $a_j \neq 0$. Then $a_{j+1}, \ldots, a_m = 0$. From our assumption, we have $a_1v_1 + \cdots + a_jv_j = 0$. We can write

$$a_j v_j = -a_1 v_1 - a_2 v_2 - \dots - a_{j-1} v_{j-1}.$$

But since $a_j \neq 0$, it has a multiplicative inverse.

$$v_j = -\frac{a_1}{a_j}v_1 - \frac{a_2}{a_j}v_2 - \dots - \frac{a_{j-1}}{a_j}v_{j-1}.$$

This proves (a).

For (b), note that

$$span(v_1,\ldots,v_{i-1},v_{i+1},\ldots,v_m)\subseteq span(v_1,\ldots,v_m).$$

To show the opposite inclusion, consider some arbitrary $w \in span(v_1, \ldots, v_m)$. We must show $w \in span(v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_m)$. By assumption, $w = b_1v_1 + \cdots + b_mv_m$ for such scalars b_1, \ldots, b_m . By combining this equation to (a), we get:

$$w = b_1 v_1 + \dots + b_{j-1} v_{j-1} + b_j v_j + b_{j+1} v_{j+1} + \dots + b_m v_m$$

$$= b_1 v_1 + \dots + b_{j-1} v_{j-1} + b_j \left(-\frac{a_1}{a_j} v_1 - \frac{a_2}{v_j} v_2 - \dots - \frac{a_{j-1}}{a_j} v_{j-1} \right)$$

$$+ b_{j+1} v_{j+1} + \dots + b_m v_m.$$

So $w \in span(v_1, \dots, v_{j-1}, v_{j+1}, \dots, v_m)$ as required.

1.2.5 Replacement lemma

Let V be a finite-dimensional vector space. Consider two lists of vectors:

$$u_1, \dots, u_m$$
 linearly independent in V
 w_1, \dots, w_n spans V

Then we have

- (a) $m \leq n$.
- (b) It is possible to extend the list u_1, \ldots, u_m with n-m additional vectors from the list w_1, \ldots, w_n such that the resulting list spans V.

Proof. We shall prove by induction.

(1) If w_1, \ldots, w_n spans V, then u_1, w_1, \ldots, w_n also spans V. Also, u_1, w_1, \ldots, w_n is linearly dependent because $u_1 \in V = span(w_1, \ldots, w_n)$, therefore u_1 is a lienar combination of w_1, \ldots, w_n .

By the linear dependence lemma, one of u_1, w_1, \ldots, w_n can be written as a linear combination of preceding vectors.

This cannot be u_1 (by linear independence), so some w_j can be written as a linear combination of preceding vectors.

By linear dependence lemma part (b),

$$span(u_1, w_1, \dots, w_{i-1}, w_{i+1}, \dots, w_n) = V.$$

(2) The list of n vectors from (1) spans V. Add u_2 to the list:

$$u_1, u_2, w_1, \ldots, w_{j-1}, w_{j+1}, \ldots, w_n.$$

Then this list is linearly dependent. One of the w's is redundant and can be removed, without changing the span.

(3) Add u_3 to the list and it becomes linearly dependent. We remove one of the w's in the list.

:

(m) Add u_m to the list and it becomes linearly dependent. We remove one of the w's. Now we have a spanning list of n vectors of the form

$$u_1, \ldots, u_m,$$

followed by n-m of the original w's.

Then $m \leq n$, because the *n*-vector list starts with u_1, \ldots, u_m . So we have proved (a) and (b).

1.2.6 Theorem

Every subspace of a finite-dimensional vector space is finite-dimensional.

Proof. Let V be finite-dimensional and let W be a subspace of V, we must show that W is finite dimensional.

- (1) If $W = \{0\}$, then W is finite-dimensional and we are done. Otherwise, there exists at least one non-zero vector in W. Let $v_1 \in W$ be such a non-zero vector. Notice that the list of vectors " v_1 " is linearly independent.
- (2) If $W = span(v_1)$, then W is finite-dimensional and we are done. Otherwise, there exists at least one vector $v_2 \in W$ such that $v_2 \notin span(v_1)$. Notice that the list of vectors v_1, v_2 is linearly independent.
- (3) If $W = span(v_1, v_2)$, then W is finite-dimensional and we are done. Otherwise, there exists at least one vector $v_3 \in W$ such that $v_3 \notin span(v_1, v_2)$. Notice that the list of vectors v_1, v_2, v_3 is linearly independent.

And so on.

(k) If $W = span(v_1, \ldots, v_{k-1})$, then W is finite-dimensional and we are done. Otherwise, there exists at least one vector $v_k \in W$ such that $v_k \notin span(v_1, \ldots, v_{k-1})$. Notice that the list of vectors v_1, \ldots, v_k is linearly independent.

If W were infinite-dimensional, we could repeat this step any number of times, because the "If" part would never be done, so in each step, we'd be doing the "otherwise."

This contradicts the assumption that V is finite-dimensional.

Namely, since V is finite-dimensional, $V = span(w_1, ..., w_n)$ is spanned by some finite list of vectors.

If we repeat the above proceduce n+1 times, we get n+1 linearly independent vectors v_1, \ldots, v_{n+1} .

This contradicts the replacement lemma. Therefore, ${\cal W}$ is finite-dimensional.

12

2 2.B Bases

2.1 Bases

2.1.1 Definition

A basis of V is a list of vectors in V that is linearly independent and spans V.

2.1.2 Examples

(a) $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ is a basis of } \mathbb{R}^3.$

(b) $\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix} is a basis of <math>\mathbb{R}^3$

(c) $1, x, x^2, x^3$ is a basis of $\mathcal{P}_3(\mathbf{F})$

2.1.3 Criterion for basis

A list v_1, \ldots, v_n of vectors in V is a basis of V if and only if every $v \in V$ can be written uniquely in the form

$$v = a_1 v_1 + \dots + a_n v_n,$$

where $a_1, \ldots, a_n \in \mathbf{F}$.

Proof. Suppose v_1, \ldots, v_n is a basis of V. Let $v \in V$. Since v_1, \ldots, v_n spans V, there exists $a_1, \ldots, a_n \in \mathbf{F}$ such that

$$v = a_1 v_1 + \dots a_n v_n.$$

To show that it is unique, suppose that c_1, \ldots, c_n are scalars where $v = c_1v_1 + \cdots + c_nv_n$. Subtracting this equation from the previous, we get

$$0 = (a_1 - c_1)v_1 + \dots + (a_n - c_n)v_n.$$

This completes the proof for uniqueness.

In the other direction, suppose every $v \in V$ can be written uniquely in the form

$$v = a_1 v_1 + \dots + a_n v_n.$$

This implies that v_1, \ldots, v_n spans V. To show that v_1, \ldots, v_n are linearly independent, suppose that $a_1, \ldots, a_n \in \mathbf{F}$. Then

$$0 = a_1 v_1 + \dots + a_n v_n.$$

Thus v_1, \ldots, v_n is linearly independent and hence is a basis of V.

2.2 Coordinates

If $B = v_1, \ldots, v_n$ is a basis of V, and $v = a_1v_1 + \cdots + a_nv_n$, then we say a_1, \ldots, a_n are the *coordinates* of v with respect to the basis B.

2.2.1 Examples of coordinates

Suppose that $B = 1, x, x^2, x^3$ is the basis of $\mathcal{P}_3(\mathbb{R})$. Find the coordinates of $p = (1 + 2x)(3x + x^2)$ with respect to the basis B.

Solution:

$$p = (1 + 2x)(3x + x^{2})$$

$$= 3x + x^{2} + 6x^{2} + 2x^{3}$$

$$= 3x + 7x^{2} + 2x^{3}$$

$$= 0 \cdot 1 + 3 \cdot x + 7 \cdot x^{2} + 2 \cdot x^{3}$$

The coordinates are: 0, 3, 7, and 2.

Another basis for $\mathcal{P}_3(\mathbb{R})$ is $B' = 1, (x-1), (x-1)^2, (x-1)^3$. Find the coordinates of $p = 3x + 6x^2 + 2x^3$ in the basis B'.

Solution: Suppose that y = x - 1 and x = y + 1. Then

$$p = 3(y+1) + 7(y+1)^{2} + 2(y+1)^{3}$$

$$= 3y + 3 + 7y^{2} + 14y + 7 + 2y^{3} + 6y^{2} + 6y + 2$$

$$= 12 + 23y + 13y^{2} + 2y^{3}$$

$$= 12 + 23(x-1) + 13(x-1)^{2} + 2(x-1)^{3}$$

The coordinates of p with respect to B' are: 12, 23, 13, and 2.

2.3 Theorems about Bases

2.3.1 Spanning list contains a basis

Every spanning list in a vector space can be reduced to a basis of the vector space (by removing 0 or more vectors from the list).

Proof. Suppose v_1, \ldots, v_n spans V. We want to remove some of the vectors from v_1, \ldots, v_n so that the remaining vectors form a basis of V. We do this through induction.

Start with B equal to the list v_1, \ldots, v_n .

Step 1 If $v_1 = 0$, delete v_1 from B. If $v_1 \neq 0$, leave B unchanged.

Step j If v_j is in $span(v_1, \ldots, v_{j-1})$, delete v_j from B. If v_j is not in $span(v_1, \ldots, v_{j-1})$, leave B unchanged.

Stop the process after step n, getting a list B. This list spans V because our original list spanned V and we have discarded vectors that were already in the span of the previous vectors. This process ensures that no vector in B is in the span of the previous ones. Thus, B is linearly independent, by the Linear Dependence Lemma. Hence B is a basis of V.

2.3.2 Basis of finite-dimensional vector space

Every finite-dimensional vector space has a basis.

Proof. By definition, a finite-dimensional vector space has a spanning list. The previous result tells us that each spanning list can be reduced to a basis. \Box

2.3.3 Linearly independent list extends to a basis

Every linearly independent list of vectors in a finite-dimensional vector space can be extended to a basis of the vector space.

Proof. Suppose u_1, \ldots, u_m is linearly independent in a finite-dimensional vector space V. Let w_1, \ldots, w_n be a basis of V. Thus the list

$$u_1,\ldots,u_m,w_1,\ldots,w_n$$

spans V. Applying the produce of the proof of 3.1 to reduce this list to a basis of V produces a basis consisting of the vectors u_1, \ldots, u_m (none of the u's get deleted because u_1, \ldots, u_m is linearly independent) and some of the w's.

2.3.4 Every subspace of V is part of a direct sum equal to V

Suppose V is finite-dimensional and U is a subspace of V. Then there is a subspace W of V such that $V = U \oplus W$.

Proof. Since V is finite-dimensional, so is U. Thus, there is a basis u_1, \ldots, u_m of U and is linearly independent in V. Hence, this list can be extended to a basis $u_1, \ldots, u_m, w_1, \ldots, w_n$ of V. Let $W = span(w_1, \ldots, w_n)$.

To prove that $V = U \oplus W$, we need to show that

$$V = U + W$$
 and $U \cap W = \{0\}.$

Proving the first equation, suppose $v \in V$ Then, since the list $u_1, \ldots, u_m, w_1, \ldots, w_n$ spans V, there exist $a_1, \ldots, a_m, b_1, \ldots, b_n \in \mathbf{F}$ such that

$$v = \underbrace{a_1u_1 + \dots + a_mu_m}_{u} + \underbrace{b_1w_1 + \dots + b_nw_n}_{w} \Rightarrow v = u + w, u \in U, w \in W.$$

Thus we have $v \in U + W$.

Proving the second equation, suppose $v \in U \cap W$. There exists scalars $a_1, \ldots, a_m, b_1, \ldots, b_n \in \mathbf{F}$ such that

$$v = a_1 u_1 + \dots + a_m u_m = b_1 w_1 + \dots + b_n w_n.$$

Thus

$$a_1u_1 = \cdots + a_mu_m - b_1w_1 - \cdots - b_nw_n = 0.$$

Since $u_1, \ldots, u_m, w_1, \ldots, w_n$ is linearly independent, this implies $a_1 = \cdots = a_m = b_1 = \cdots = b_n = 0$. Thus v = 0 and this completes the proof.

3 2.C Dimension

3.1 Basis length does not depend on basis

Any two bases of a finite-dimensional vector space have the same length.

Proof. Suppose V is finite-dimensional. Let B_1 and B_2 be two bases of V. Then B_1 is linearly independent in V and B_2 spans V, so the length of B_1 is at most length of B_2 . Interchanging the roles, we also see that the length of B_2 is at most the length of B_1 . Thus the length of B_1 equals the length of B_2 , as desired.

3.2 Definition of a dimension

- The *dimension* of a finite-dimensional vector space is the length of any basis of the vector space.
- The dimension of V (if V is finite-dimensional) is denoted by dim V.

3.3 Examples of a dimension

- 1. dim $\mathbf{F}^n = n$ because the standard basis of \mathbf{F}^n has length n.
- 2. dim $\mathcal{P}_m(\mathbf{F}) = m+1$ because the basis $1, z, \dots, z^m$ of $\mathcal{P}_m(\mathbf{F})$ has length m+1.

3.4 Dimension of a subspace

If V is finite-dimensional and U is a subspace of V, then $\dim U \leq \dim V$.

Proof. Suppose V is finite-dimensional and U is a subspace of V. Think of a basis of U as a linearly independent list in V, and think of a basis of V as a spanning list in V. These linearly independent vectors u_1, \ldots, u_m can be extended to a basis of V. That extended basis has at least m vectors, so $\dim V \ge \dim U$.

3.5 Linearly independent list of the right length is a basis

Suppose V is finite-dimensional. Then every linearly independent list of vectors in V with length dim V is a basis of V.

Proof. Suppose dim V = n and v_1, \ldots, v_n is linearly independent in V. The list v_1, \ldots, v_n can be extended to a basis of V. However, every basis of V has length n, so in this case the extension is the trivial one, meaning that no elements are adjoined to v_1, \ldots, v_n . In other words, v_1, \ldots, v_n is a basis of V, as desired.

3.6 Examples

1. Show that the list (5,7), (4,3) is a basis of \mathbf{F}^2 .

Proof. The two vectors are linearly independent (because neither vector is a scalar multiple of the other). Note that \mathbf{F}^2 has dimension 2. Thus, Theorem 1.5 implies that the linearly independent list of length 2 is a basis of \mathbf{F}^2 .

2. Show that $p(x) = x^2 + 1$, $q(x) = x^2 + x$, $r(x) = x^2$ are a basis of $\mathcal{P}_2(\mathbf{F})$

Proof. Assume $a(x^2+1)+b(x^2+x)+c(x^2)=0$, where $a,b,c\in \mathbf{F}$. Then we have $(a+b+c)x^2+bx+a=0\Rightarrow a+b+c=0$. We know that a=b=0 so it follows that c=0. Hence, p,q,r are linearly independent. Since we know that $\dim \mathcal{P}_2(\mathbf{F})=3$ then by Theorem 1.5, p,q,r are bases of $\mathcal{P}_2(\mathbf{F})$.

3.7 Spanning list of the right length is a basis

Suppose V is finite-dimensional. Then every spanning list of vectors in V with length dim V is a basis of V.

Proof. Suppose dim V = n and v_1, \ldots, v_n spans V. The list v_1, \ldots, v_n can be reduced to a basis of V (by removing 0 or more vectors from the list). However, every basis of V has length n, so the reduction is the trivial one, meaning that no elements are deleted from v_1, \ldots, v_n . In other words, v_1, \ldots, v_n is a basis of V, as desired.

3.8 Dimension of a sum

If U_1 and U_2 are subspaces of a finite-dimensional vector space, then

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2).$$

Proof. Let u_1, \ldots, u_m be a basis of $U_1 \cap U_2$; thus $\dim(U_1 \cap U_2) = m$. These basis are linearly independent in U_1 and can be extended to a basis $u_1, \ldots, u_m, v_1, \ldots, v_j$. Thus, $\dim U_1 = m + j$ Also, $u_1, \ldots, u_m, w_1, \ldots, w_k$ of U_2 and so $\dim U_2 = m + k$.

We need to show that $u_1, \ldots, u_m, v_1, \ldots, v_j, w_1, \ldots, w_k$ is a basis of $U_1 + U_2$.

$$\dim(U_1 + U_2) = m + j + k$$

$$= (m + j) + (m + k) - m$$

$$= \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2).$$

Clearly $span(u_1, \ldots, u_m, v_1, \ldots, v_j, w_1, \ldots, w_k)$ contains $U_1 + U_2$ which equals $U_1 + U_2$. To show that this list is a basis of $U_1 + U_2$, we need to show that it is linearly independent. Suppose that

$$a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_iv_i + c_1w_1 + \dots + c_kw_k = 0$$

where $a, b, c \in \mathbf{F}$. Then

$$c_1 w_1 + \dots + c_k w_k = -a_1 u_1 - \dots - a_m u_m - b_1 v_1 - \dots - b_i v_i$$

This implies that $c_1w_1 + \cdots + c_kw_k \in U_1$ and consequently, $c_1w_1 + \cdots + c_kw_k \in U_1 \cap U_2$. Since u_1, \ldots, u_m is a basis of $U_1 \cap U_2$, we can write

$$c_1w_1 + \dots + c_kw_k = d_1u_1 + \dots + d_mu_m$$

for some scalars $d \in \mathbf{F}$. But $u_1, \ldots, u_m, w_1, \ldots, w_k$ are linearly independent, so all c's and d's equal 0. Thus, our original equation becomes

$$a_1u_1 + \cdots + a_mu_m + b_1v_1 + \cdots + b_iv_i = 0.$$

Since $u_1, \ldots, u_m, v_1, \ldots, v_j$ are linearly independent, then all a's and b's equal 0.