Devoir 4 MCMC

Aminata Ndiaye

September 2022

1 Exercice 8.5

Voir fichier R

On cherche à générer des échantillons suivant la loi normale centrée réduite grâce au slice sampler. On a :

$$f(x) \propto \exp(-x^2/2)$$

On procède en 2 étapes :

- 1. On génère $\omega^{(t+1)}|x^{(t)} \sim \mathcal{U}[0, f(x^{(t)})] \sim \mathcal{U}[0, \exp(-x^{(t)^2/2})]$
- 2. $X^{(t+1)}|\omega^{(t)} \sim \mathcal{U}[A^{(t+1)}]$, avec

$$\begin{split} A^{(t+1)} &= \left\{ x : f(x) \geq \omega^{(t+1)} \right\} \\ &= \left\{ x : \exp(-x^2/2) \geq \omega^{(t+1)} \right\} \\ &= \left\{ x : -x^2/2 \geq ln(\omega^{(t+1)}) \right\} \\ &= \left\{ x : x^2 \leq -2ln(\omega^{(t+1)}) \right\} \\ &= \left\{ x : -\sqrt{-2ln(\omega^{(t+1)})} \leq x \leq \sqrt{-2ln(\omega^{(t+1)})} \right\} \end{split}$$

Loi normale centrée réduite générées par slice sampling

Figure 1 -

On peut comparer les quantiles de la densité de la loi normale native de R avec les quantiles de l'échantillon générer par slice sampling grâce à un diagramme quantile quantile.

Diagramme quantile quantile

Quantiles échantillons générés par slice sampler

Figure 2 -

TABLEAU DES QUANTILES

Méthode	0.5	0.75	0.8	0.9	0.95	0.99	0.995	0.999	0.9999
Slice sampling	-0.009	0.661	0.829	1.260	1.590	2.284	2.563	3.041	3.605
Générateur natif R	-0.022	0.656	0.815	1.264	1.630	2.377	2.554	3.025	3.890

2 Exercice 8.6

On procède comme dans l'exercice précedent.

2.1 a) La loi gamma

On cherche à générer des échantillons suivant la loi gamma (p, λ) grâce au slice sampler. On a :

$$f(x) \propto \exp(-\lambda x)x^{p-1}$$

On écrit f(x) comme le produit de f_1 et f_2 .

$$f_1 = \exp(-\lambda x)$$

$$f_2 = x^{p-1}$$

On procède en 2 étapes :

- 1. On génère $\omega_1^{(t+1)}|x^{(t)} \sim \mathcal{U}[0,f_1(x^{(t)})] \sim \mathcal{U}[0,\exp(-x^{(t)\,2}/2)]$
- 2. On génère $\omega_2^{(t+1)}|x^{(t)}\sim\mathcal{U}[0,f_2(x^{(t)})]\sim\mathcal{U}[0,x^{p-1}]$
- 3. $X^{(t+1)}|\omega^{(t)} \sim \mathcal{U}[A^{(t+1)}]$, avec

$$A^{(t+1)} = \left\{ x : f_1(x) \ge \omega_1^{(t+1)} \right\} \cap \left\{ x : f_2(x) \ge \omega_2^{(t+1)} \right\}$$

$$= \left\{ x : \exp(-\lambda x) \ge \omega_1^{(t+1)} \right\} \cap \left\{ x : x^{p-1} \ge \omega_2^{(t+1)} \right\}$$

$$= \left\{ x : x \le -\frac{\ln(\omega_1^{(t+1)})}{\lambda} \right\} \cap \left\{ x : x \ge (\omega_2^{(t+1)})^{\frac{1}{p-1}} \right\}$$

Loi gamma(3,1) générées par slice sampling

Figure 3 -

Diagramme quantile quantile

Figure 4 -

On peut comparer les quantiles de la densité de la loi gamma native de R avec les quantiles de l'échantillon générer par slice sampling grâce à un diagramme quantile quantile.

TABLEAU DES QUANTILES

	Méthode	0.5	0.75	0.8	0.9	0.95	0.99	0.995	0.999	0.9999
ĺ	Slice sampling	2.661	3.832	4.171	5.084	6.040	8.390	9.446	10.967	11.869
ĺ	Générateur natif R	2.687	3.942	4.298	5.295	6.210	8.541	9.345	10.550	12.487

2.2 b) la loi de poisson

Voir fichier R

On cherche à générer des échantillons suivant la loi gamma (p,λ) grâce au slice sampler.

On a :

$$f(k) \propto \frac{\lambda^k}{k!}$$

On écrit f(k) comme le produit de f_1 et f_2 .

$$f_1 = \lambda^k$$
$$f_2 = \frac{1}{k!}$$

On procède en 2 étapes :

1. On génère $\omega_1^{(t+1)}|k^{(t)} \sim \mathcal{U}[0, f_1(k^{(t)})] \sim \mathcal{U}[0, \lambda^k]$

2. On génère $\omega_2^{(t+1)}|k^{(t)}\sim\mathcal{U}[0,f_2(k^{(t)})]\sim\mathcal{U}[0,\frac{1}{k!}]$

3. $K^{(t+1)}|\omega^{(t)} \sim \mathcal{U}[A^{(t+1)}]$, avec, si $\lambda < 1$

$$\begin{split} A^{(t+1)} &= \left\{k: f(k) \geq \omega_1^{(t+1)}\right\} \cap \left\{k: f(k) \geq \omega_1^{(t+1)}\right\} \\ &= \left\{k: \lambda^k \geq \omega_1^{(t+1)}\right\} \cap \left\{k: \frac{1}{k!} \geq \omega_2^{(t+1)}\right\} \\ &= \left\{k: k \leq \frac{\ln(\omega_1^{(t+1)})}{\ln(\lambda)}\right\} \cap \left\{k: k \leq factorial^{-1}(\frac{1}{\omega_2^{(t+1)}})\right\} \end{split}$$

Si $\lambda > 1$

$$\begin{split} A^{(t+1)} &= \left\{ k : f_1(k) \geq \omega_1^{(t+1)} \right\} \cap \left\{ k : f_2(k) \geq \omega_2^{(t+1)} \right\} \\ &= \left\{ k : \lambda^k \geq \omega_1^{(t+1)} \right\} \cap \left\{ k : \frac{1}{k!} \geq \omega_2^{(t+1)} \right\} \\ &= \left\{ k : k \geq \frac{\ln(\omega_1^{(t+1)})}{\ln(\lambda)} \right\} \cap \left\{ k : k \leq factorial^{-1}(\frac{1}{\omega_2^{(t+1)}}) \right\} \end{split}$$

Résulats pour $\lambda < 1$

TABLEAU DES QUANTILES

Méthode	0.5	0.75	0.8	0.9	0.95	0.99	0.995	0.999	0.9999
Slice sampling	0	1	1	1	2	3	3	4	4
Générateur natif R	0	1	1	1	1	2	3	4	4

Diagramme quantile quantile

Quantiles échantillons générés par slice sampler

Figure 5 -

Malheuresement mon algorithme ne fonctionne pas lorsque $\lambda > 1$.

3 Exercice 9.2

Voir fichier R

Nous obtenons l'histogramme suivant pour la densité de $X^2 + Y^2$, avec $\rho = 0.3$: Les échantillons de X et Y générés

histogramme de la variable aléatoire X^2+Y^2

FIGURE $6-n=10^5$ échantillons générés par Gibbs sampler

par l'échantillonneur de Gibbs vérifient empiriquement :

$$\mathbb{E}[X] = -0.002$$

$$\mathbb{E}[Y] = -0.002$$

$$var[X] = 0.92$$

$$var[Y] = 0.91$$

$$Cor[X, Y] = 0.3$$

Ce qui correspond aux paramètres choisis.

Nous avons utiliser un estimateur de Monte Carlo pour estimer $\mathbb{P}[X^2 + Y^2 > 2]$. On trouve une probabilité de 0.32.