Test di Calcolo Numerico

Ingegneria Informatica 24/07/2017

COGNOME		NOME		
MA	ATRICOLA			
Risposte				
1)				
2)				
3)				
4)				
5)				

 $\mathbf{N.B.}$ Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 24/07/2017

1) Si vuole calcolare la funzione

$$f(x,y) = xy$$

in un punto $P_0 \in [2,3] \times [1,2]$.

Si suppone di commettere un errore algoritmico $|\delta_a| \leq \frac{1}{2}10^{-2}$ e di introdurre i valori x e y con errori $|\delta_x| \leq \frac{1}{2}10^{-2}$ e $|\delta_y| \leq \frac{1}{2}10^{-2}$. Quale è il massimo errore assoluto $|\delta_f|$?

2) La matrice

$$H = \left(\begin{array}{cccc} 4 & 1 & 1 & 1 \\ 1 & 4 & 1 & 1 \\ 1 & 1 & 4 & 1 \\ 1 & 1 & 1 & 4 \end{array}\right)$$

è la matrice di iterazione di un metodo iterativo per la approssimazione della soluzione di un sistema lineare.

Tale metodo converge?

3) È dato il sistema lineare sovradeterminato Ax = b con

$$A = \begin{pmatrix} 1 & \alpha \\ 3 & \alpha \\ \alpha & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \alpha \in \mathbb{R}.$$

Indicare i valori reali del parametro α per i quali si ha una unica soluzione del sistema nel senso dei minimi quadrati.

4) È data l'equazione

$$\log(x) - \frac{1}{x} = 0$$

che ha una unica soluzione $\alpha \in [1.5, 2].$ Il metodo iterativo

$$x_{n+1} = e^{1/x_n}, \quad n = 0, 1, 2, \dots$$

è idoneo per approssimare α ?

5) Per approssimare l'integrale $I(f)=\int_0^2 f(x)dx$ si utilizza la formula di quadratura

$$J_3(f) = \frac{1}{4} \left(f(0) + 3f(2/3) + 3f(4/3) + f(2) \right) .$$

Supposto che l'errore commesso sia scrivibile nella forma $E_3(f) = Kf^{(s)}(\theta)$, determinare K e s.

SOLUZIONE

1) Risultando $A_x = 2$ e $A_y = 3$, si ha

$$|\delta_f| \le |\delta_a| + A_x |\delta_x| + A_y |\delta_y| = 3 \times 10^{-2}$$
.

- 2) IL metodo non converge poiché la matrice H ha autovalori di modulo maggiore di 1. Infatti l'insieme degli autovalori è $\{3, 3, 3, 7\}$.
- 3) La matrice del sistema lineare sovradeterminato ha rango uguale a due per ogni $\alpha \in \mathbb{R}$ per cui il sistema ha una unica soluzione nel senso dei minimi quadrati qualunque si il valore reale del parametro α .
- 4) La funzione di iterazione del metodo proposto è $\phi(x)=e^{1/x}$. Si ha $\phi'(x)=-\frac{1}{x^2}e^{1/x}$ che sull'intervallo [1.5, 2] ha modulo minore di $\frac{4e^{2/3}}{9}<1$. Sono quindi verificate le ipotesi del teorema di convergenza locale ed il metodo può risultare convergente se si sceglie un "buon" punto di partenza.
- 5) La formula risulta esatta per $f(x)=1,x,x^2,x^3$ ma non per $f(x)=x^4$ per cui si ha s=4. Sapendo che $E_3(x^4)=-\frac{16}{135}$ si ottiene $K=-\frac{2}{405}$.