Tutorial 4 - Ioannis Manousaridis

In this classes tutorial the F-MNIST dataset was used and only two overlapping classes, the class number 2 which is for pullovers and the class number 3 which is for dresses. The scope of this project was to use different ensemble learning techniques in the previous described dataset.

Bagging		20%	40 %	60 %	80%	mean
	Accuracy	0.970929	0.972429	0.972500	0.971786	0.971911
2 estimators	F1 Score	0.970929	0.972429	0.972500	0.971786	0.971911
3 estimators	Accuracy	0.971429	0.972214	0.972786	0.971857	0.972071
	F1 Score	0.971428	0.972214	0.972786	0.971857	0.972071
4 estimators	Accuracy	0.972857	0.972214	0.972071	0.972214	0.972339
	F1 Score	0.972857	0.972214	0.972071	0.972214	0.972339
5 estimators	Accuracy	0.971357	0.972214	0.972857	0.972071	0.972125
	F1 Score	0.971357	0.972214	0.972857	0.972071	0.972125

Figure 1: F1 and accuracy scores for classic bagging for different numbers of estimators and different percentages of samples.

Random Subspaces		20%	40%	60 %	80%	mean
	Accuracy	0.843929	0.850143	0.568571	0.954571	0.804304
2 estimators	F1 Score	0.843495	0.849683	0.568571	0.954567	0.804079
3 estimators	Accuracy	0.542500	0.537357	0.723643	0.962643	0.691536
	F1 Score	0.542433	0.537264	0.722991	0.962641	0.691332
4 estimators	Accuracy	0.961214	0.747429	0.971571	0.963000	0.910804
	F1 Score	0.961210	0.746997	0.971571	0.962996	0.910694
5 estimators	Accuracy	0.949143	0.836000	0.970143	0.916000	0.917821
	F1 Score	0.949138	0.835720	0.970142	0.915923	0.917731

Figure 2: F1 and accuracy scores for random subspaces technique for different numbers of estimators and different percentages of samples.

Random Patches (Bagging + Random Subspaces)

Samples \ Features		20%	40%	60%	80%	mean
20%	Accuracy	0.966643	0.965429	0.965357	0.967929	0.907875
	F1 Score	0.966640	0.965428	0.965357	0.967928	0.907874
	Accuracy	0.739071	0.936929	0.960214	0.966571	0.885768
40%	F1 Score	0.738573	0.936872	0.960211	0.966569	0.885718
60%	Accuracy	0.854571	0.922714	0.969571	0.853357	0.909161
	F1 Score	0.854142	0.922641	0.969571	0.853169	0.908995
000/	Accuracy	0.961000	0.914000	0.970571	0.938786	0.935196
80%	F1 Score	0.960994	0.913881	0.970571	0.938727	0.935107
100%	Accuracy	0.555429	0.969857	0.870929	0.955071	0.822250
	F1 Score	0.555227	0.969857	0.870613	0.955059	0.822132

Figure 3: F1 and accuracy scores, using random subspaces and classic bagging combined for different numbers of estimators and different percentages of samples.

RandomForest - subsets of samples

Trees	\ Samples	20%	40%	60%	80%	mean
	Accuracy	0.980571	0.989857	0.995143	0.998429	0.991000
20	F1 Score	0.980571	0.989857	0.995143	0.998429	0.991000
	Accuracy	0.982929	0.991071	0.996643	0.999500	0.992536
60	F1 Score	0.982928	0.991071	0.996643	0.999500	0.992536
100	Accuracy	0.982500	0.991214	0.997500	0.999643	0.992714
100	F1 Score	0.982500	0.991214	0.997500	0.999643	0.992714
140	Accuracy	0.982857	0.991214	0.997929	0.999929	0.992982
140	F1 Score	0.982857	0.991214	0.997929	0.999929	0.992982
400	Accuracy	0.982929	0.991357	0.998286	1.000000	0.993143
180	F1 Score	0.982929	0.991357	0.998286	1.000000	0.993143

Figure 4: F1 and accuracy scores for different number of trees and different percentages of samples.

RandomForest - subsets of features

Trees \ Features		20%	40%	60%	80%	mean
20	Accuracy	0.99921	0.99914	0.998714	0.998714	0.998946
	F1 Score	0.99921	0.99914	0.998714	0.998714	0.998946
60	Accuracy	1	1	0.999857	0.999857	0.999929
	F1 Score	1	1	0.999857	0.999857	0.999929
100	Accuracy	1	1	1	1	1
	F1 Score	1	1	1	1	1
140	Accuracy	1	1	1	1	1
	F1 Score	1	1	1	1	1
180	Accuracy	1	1	1	1	1
	F1 Score	1	1	1	1	1

Figure 5: F1 and accuracy scores for different number of trees and different percentages of features.

Adaboost

Trees	20	60	100	140	180	mean
Accuracy	0.96771	0.9725	0.97393	0.97614	0.9775	0.973557
F1 Score	0.96771	0.9725	0.97393	0.97614	0.9775	0.973557

Figure 6: F1 and accuracy scores for different number of trees for the adaboost method.

Conclusions:

- In all the techniques the F1 score and the Accuracy do not differ a lot. This is most probably to the fact that two classes were used used and binary classification was done instead of multilabel classification.
- The classic bagging method provide excellent results around 97%. The changes in the number of estimators and the samples of data did not improve significantly the results. Thus, the best choice is to use the less information and power as possible, 2 estimators and 20% data.
- In the random subspaces small samples of data gave lower results. More stable results were given with 80% of data. The highest results were for 4 estimators with 60% of data.
- By combining the two previous methods the results were very good but still not higher than the classic bagging method.
- From the figure 4, it can be seen that as the number of trees increases, the performance increases too. The improvement though is not that high in order to justify complexity that is being added by the increasing of the number of the trees.
- From figure 5, it can be conclude that by using 100 trees and more, all the results are 100% despite the percentage of features used.
- Finally, regarding the adaboost method, all the results were around 97% and the
 increasement of the number of trees, improved the results, but again not enough in
 order to justify the addition complexity that they add in the program.
- To conclude, the ensemble learning methods provided very good results for the classes 2 and 3 of the FMNIST dataset. It has to be noted though that the different parameters (number of trees, percentage of data samples, percentage of feature) do not require to have very high values. The increment of those parameters make the program more complex without improving the accuracy and the F1-score accordingly.