PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-041025

(43)Date of publication of application: 19.02.1993

(51)Int.CI.

G11B 19/06

G11B 17/24

(21)Application number : 03-198033

(71)Applicant: SONY CORP

(22)Date of filing:

(72)!-------

(72)Inventor: TAMURA HARUYUKI

ARAMAKI JUNICHI

(54) DISK REPRODUCING DEVICE

(57)Abstract:

PURPOSE: To accurately stop a disk tray having a large moment of inertia in a prescribed position by suppressing a rise of cost for a motor.

07.08.1991

CONSTITUTION: A speed detecting circuit 34 for detecting a turning speed of a disk tray based on an output of a photosensor 31 opposite to a slit on a circumferential periphery of the disk tray 10W is provided, and a brake pulse having wide/narrow width according to high/low speed is supplied to the driving motor 15 for the disk tray.

LEGAL STATUS

[Date of request for examination]

14.07.1998

[Date of sending the examiner's decision of rejection]

27.03.2001

[Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-41025

(43)公開日 平成5年(1993)2月19日

(51)Int.Cl.5

識別記号

FΙ

技術表示箇所

G 1 1 B 19/06

B 6255-5D

17/24

7374-5D

庁内整理番号

審査請求 未請求 請求項の数1(全 7 頁)

(21)出願番号

特願平3-198033

(71)出願人 000002185

ソニー株式会社

(22)出願日

平成3年(1991)8月7日

東京都品川区北品川6丁目7番35号

(72)発明者 田村 治之

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(72)発明者 荒牧 純一

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 弁理士 松隈 秀盛

(54) 【発明の名称】 ディスク再生装置

(57)【要約】

【目的】 モータのコスト上昇を抑えながら、慣性モー メントが大きいディスクトレイを所定の位置に正確に停 止させる。

【構成】 ディスクトレイ10 Wの周縁のスリットに対 向するフォトセンサ31の出力に基づいて、ディスクト レイの回動速度を検知する速度検知回路34を設け、速 度の高・低に応じて、幅が広・狭のブレーキパルスをデ ィスクトレイの駆動モータ15に供給する。

【特許請求の範囲】

【請求項1】 単一の光学ピックアップと、複数のディ スク搭載部が中心から等距離に配設された盤状部材と、 この盤状部材を駆動するモータとを備え、上記盤状部材 に搭載された複数のディスクを択一的に再生するための 選択指令に応じて上記盤状部材が回動されると共に、当 該盤状部材の周縁部に上記複数のディスク搭載部に対応 して配設された複数の停止標識の検出信号に基づき上記 盤状部材が制動されて所定の位置に停止し、上記選択指 令に対応するディスクが再生されるようになされたディ スク再生装置において、

上記停止標識の検出信号に基づいて上記盤状部材の回動 速度の高・低を検知する速度検知手段を設けると共に、 この速度検知手段の検知出力に応じて、広・狭のパルス 幅の制動信号を発生する可変制動信号発生手段を設けた ことを特徴とするディスク再生装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、複数のディスクを選 択再生するディスク再生装置に関する。

[0002]

【従来の技術】従来、図4に示すように、回転式のディ スクトレイ10に複数のデジタルオーディオディスクD a~Dnを搭載し、トレイ10を適宜に回動して、搭載 されたディスクDa~Dnのうち、任意の1枚を単一の 光学ピックアップ21と対向させて再生するようにした ディスク再生装置が知られている。

【0003】従来のディスク再生装置においては、例え ば、ABS (アクリロニトリルーブタジエンースチレ ン) 樹脂製のディスクトレイ10 に搭載されたディスク Da~Dnに対応して、ディスクDa~Dnを選択する ための複数のキーKa~Knが用意されると共に、ディ スクトレイ10の周縁部12に、図5に示すような複数 のアドレス標識13(13a~13n)と、複数の停止 標識14(14a~14n)とが所定の角間隔で配設さ れる。各アドレス標識13a~13nは、例えばアドレ スa~nと等しい数の突起が等間隔に配設されて構成さ れ、各停止標識14a~14nは、例えば3個のスリッ ト14sf, 14sc, 14srが等間隔に刻設されて、同一 形状に構成される。このスリット14sf, 14sc, 14 srの幅は、例えば、それぞれ1.5mm程度とされる。 【0004】ディスクトレイ10の周縁部に対向して、 例えばフォトインタラブタ (フォトカブラ) ないしフォ トセンサのような光学的検出素子31が配設され、その 検出信号がシステム制御回路 (マイクロコンピュータ) 30に供給される。システム制御回路30は駆動信号発 生回路32と減速・制動信号発生回路33とを備え、各 信号が増幅器16を介してモータ15に供給される。

【0005】キーKa~Knのうち、例えばキーKaが 操作されると、この操作に応じて、システム制御回路3

0から適宜極性の駆動信号がモータ15に供給され、例 えば時計方向にトレイ10が回動し、ディスクDaに対 応するアドレス標識13aと停止標識14aとがフォト センサ31により検出される。この検出信号に基づい て、図6 Bに示すような所定パターンの減速・制動信号 がシステム制御回路30からモータ15に供給され、デ ィスクDaが光学ピックアップ21と対向する所定の停 止位置にトレイ10が停止して、ディスクDaが再生さ

2

【0006】図6Aに示すような、停止標識14aの先 行スリット14sf及び中央スリット14scの検出信号が フォトセンサ31から得られると、システム制御回路3 0からモータ15に供給される一定レベルの駆動信号 が、図6Bに示すように、先行スリット14sfに対応す る検出パルスの立下り時点 t ffから、例えば、占有率が 50%のパルス列に切り換えられて、トレイ10が減速 される。減速期間は中央スリット14 scに対応する検出 パルスの立上り時点 t crまで続き、この時点 t crにおい て、駆動信号と同レベル逆極性で所定幅の制動パルスが 20 モータ15に供給されて、中央スリット14 scの検出位 置にディスクトレイ10が停止する。

[0007]

れる。

10

【発明が解決しようとする課題】ところで、従来のディ スクトレイは、前述のように、ABSなどの樹脂から形 成され、例えば、30cm強の直径で約200gと軽量 であるため、回動時にモータの振動が伝達されて不要に 振動し、雑音を発生するという問題があった。

【0008】上述のようなディスクトレイの不要振動を 抑制して、再生装置の静粛性を向上させるために、例え 30 ば、アルミニウムダイキャストの使用によるディスクト レイの重量化・高剛性化が考えられる。ところが、ディ スクトレイを重量化した場合には、トレイの慣性モーメ ントが大きくなって、従来と同一定格のモータと、前述 のような単一パターンの減速・制動信号とでは、機械的 負荷のバラツキや温度変化・経年変化に充分に対応する ことができず、トレイが所定の位置に停止することがで きなくなるという問題が生ずる。

【0009】もっとも、ディスクトレイの重量化に応じ て、モータの定格を大きくすれば、従来と同一の減速・ 制動信号によっても、トレイを所定の位置に停止させる ことができる。しかしながら、この場合は、ディスクト レイのコスト上昇に加えて、モータのコストが上昇する という問題が生ずる。

【0010】かかる点に鑑み、この発明の目的は、モー タのコスト上昇を抑えながら、慣性モーメントが大きい ディスクトレイを所定の位置に正確に停止させることが できるディスク再生装置を提供するところにある。

[0011]

【課題を解決するための手段】との発明は、単一の光学 50 ピックアップ21と、複数のディスク搭載部11a~1

1 n が中心から等距離に配設された盤状部材10 Wと、 この盤状部材を駆動するモータ15とを備え、盤状部材 に搭載された複数のディスクDa~Dnを択一的に再生 するための選択指令に応じて盤状部材が回動されると共 に、当該盤状部材の周縁部に複数のディスク搭載部に対 応して配設された複数の停止標識14a~14nの検出 信号に基づき盤状部材が制動されて所定の位置に停止 し、選択指令に対応するディスクが再生されるようにな されたディスク再生装置において、停止標識の検出信号 に基づいて盤状部材の回動速度の高・低を検知する速度 10 れる。 検知手段34を設けると共に、この速度検知手段の検知 出力に応じて、広・狭のパルス幅の制動信号を発生する 可変制動信号発生手段33Vを設けたディスク再生装置 である。

[0012]

【作用】かかる構成によれば、従来と同一定格のモータ によっても、慣性モーメントの大きなディスクトレイが 所定の位置に正確に停止する。

[0013]

によるディスク再生装置の一実施例について説明する。 【0014】この発明の一実施例の構成を図1に示す。 この図1において、前出図4に対応する部分には同一の 符号を付して重複説明を省略する。図1において、10 Wは重量化ディスクトレイであって、例えば、A1-S i-Cu系のアルミニウム合金からダイキャストにより 形成される。このディスクトレイ10 wは、外観・感触 の両面で高級感が得られると共に、例えば30 c m強の 直径で約700gの重量となり、高剛性であるため、前 述のような回動時の不要振動が抑制されて、雑音を発生 することがなく、再生装置の静粛性が向上する。

【0015】30Vはシステム制御回路(マイクロコン ピュータ)であって、駆動信号発生回路31を備えると 共に、後述のような複数パターンの減速・制動信号を発 生する可変減速・制動信号発生回路33Vと、フォトセ ンサ31の検出出力に基づいてディスクトレイ10♥の 回動速度の高低を検知する速度検知回路(計時回路)3 4と、この速度検知回路34の出力と複数パターンの減 速・制動信号を対応させるためのROMテーブル35と を備える。

【0016】この実施例では、ディスクトレイ10♥の 回転周期が、機械的負荷のバラツキや温度変化・経年変 化により、例えば4~8秒の範囲で変動すると想定さ れ、この範囲の回転周期に対して、例えば4段階の制動 パルスのデータと、例えば7段階の減速パルス列のデー タとがROMテーブル35 に格納される。その余の構成 は、モータ15の定格を含めて、前出図4と同様であ

【0017】図2に示すように、ディスクトレイ10♥ の上面には、複数のディスク搭載部11a~11nが中

50

心から等距離に配設されると共に、各ディスク搭載部1 1a~11nに対応して、トレイ10Wの周縁部12 に、複数のアドレス標識13a~13n及び停止標識1 4 a~14 nが配設される。図2から明らかなように、 各停止標識14a~14nは、中央スリット14sc (図 5参照) と各ディスク搭載部11a~11nの中心とが トレイ10 Wの同一半径上に整列するように配設され る。この実施例では、各停止標識14a~14nの3個 のスリットの幅は、例えばそれぞれ1.5mm程度とさ

【0018】次に、図3をも参照しながら、図1の実施 例の動作について説明する。この実施例では、図3B. D. Fに示すように、停止標識14aの先行スリット1 4 sfが検出されると、可変パルス幅の先行制動パルスが 出力され、引き続いて可変占有率の減速パルス列が出力 されて、ディスクトレイ10Wの機械的負荷のバラツキ や温度変化・経年変化に細かく対応することができる。 【0019】前述のように、例えばキーKaが操作され てディスクDaが選択されると、システム制御回路30 【実施例】以下、図1~図3を参照しながら、この発明 20 Vからの駆動信号がモータ15に供給され、ディスクト レイ10 Wが所定の速度で回動する。 ディスクトレイ1 O♥の回動に伴い、選択されたディスクDaに対応する アドレス標識13aがフォトセンサ31により検出さ れ、引き続いて停止標識14aが検出される。

> 【0020】との実施例では、ディスクトレイ10Wの 基準回転周期が例えば5秒となるように、駆動信号のレ ベルが設定される。との基準周期に対応する速度でトレ イ10♥が回動する場合、停止標識14aの先行スリッ ト14sfが検出されると、フォトセンサ31から図3A 30 に示すような幅が TdOの基準検出パルスが得られる。上 述の数値例では、基準検出パルスの幅TdOが、例えば、 7mSとなる。

> 【0021】計時回路34においては、この検出パルス の幅TdOが計測されて、ディスクトレイ10Wの基準回 動速度が検知される。ROMテーブル35により、計時 回路34の基準速度検知出力に対応する、図3Bに示す ような、第2段階の先行制動パルスの幅Tb2と、第3段 階の減速パルス列の幅Tr3とが求められる。なお、この 実施例では、ディスクトレイの回動速度に拘らず、減速 40 期間のゼロレベルの時間幅Tbbが、例えば、4mSで一 定とされる。

【0022】そして、可変減速・制動信号発生回路33 Vからは、図3Bに示すように、例えば、幅Tb2=12 mSの先行制動パルスが出力され、引き続いて、例え ば、幅Tr3=3mSの減速パルス列が出力される。この 数値例では、減速パルス列の占有率が43%弱となる。 これにより、中央スリット14scを検出するまでの期間 に、慣性モーメントの大きいディスクトレイ10♥が充 分に減速されて、中央スリット14scの検出時点で所定 幅の制動パルスがモータ15に供給されると、ディスク

トレイ10 Wは所定の停止位置に確実に停止する。

【0023】機械的負荷のバラッキや温度変化・経年変 化により、前述の設定周期より短い、例えば、4秒の回 転周期に対応する高速でトレイ10Wが回動する場合、 停止標識14aの先行スリット14sfが検出されると、 フォトセンサ31から図3Cに示すような幅がTdhの高 速検出パルスが得られる。

【0024】計時回路34においては、この高速検出バ ルスの幅T dhが計測されて、ディスクトレイ10 Wの回 動速度が検知される。ROMテーブル35により、計時 10 施例では、アルミニウムダイキャストの使用により、デ 回路34の高速検知出力に対応する、図3Dに示すよう な、いずれも第1段階の先行制動パルスの幅Tb1と、減 速パルス列の幅Tr1とが求められる。

【0025】そして、可変減速・制動信号発生回路33 Vからは、図3Dに示すように、例えば、幅Tb1=16 mSの先行制動パルスが出力され、引き続いて、例え ぱ、幅Tr1=1mSの減速パルス列が出力される。との 数値例では、減速パルス列の占有率が20%となる。と れにより、中央スリット14scを検出するまでの期間 分強く減速されて、中央スリット14 scの検出時点で所 定幅の制動パルスがモータ15に供給されると、ディス クトレイ10 Wは所定の停止位置に確実に停止する。

【0026】上述とは逆に、機械的負荷のバラツキや温 度変化・経年変化により、前述の設定周期より長い、例 えば、8秒の回転周期に対応する低速でトレイ10Wが 回動する場合、停止標識14aの先行スリット14sfが 検出されると、フォトセンサ31から図3Cに示すよう な幅がTdIの低速検出パルスが得られる。

【0027】計時回路34においては、この低速検出バ 30 形図 ルスの幅TdIが計測されて、ディスクトレイ10Wの同 動速度が検知される。ROMテーブル35により、計時 回路34の低速検知出力に対応する、図3Fに示すよう な、第4段階の先行制動パルスの幅Tb4と、第7段階の 減速パルス列の幅Tr7とが求められる。

【0028】そして、可変減速・制動信号発生回路33 Vからは、図3Fに示すように、例えば、幅Tb4=4m Sの先行制動パルスが出力され、引き続いて、例えば、 幅Tr7=7mSの減速パルス列が出力される。この数値 例では、減速パルス列の占有率が64%弱となる。これ 40 により、中央スリット14scを検出するまでの期間に、 慣性モーメントの大きいディスクトレイ10Wが比較的 弱く減速されて、中央スリット14scの検出時点で所定 幅の制動パルスがモータ15に供給されると、ディスク トレイ10 Wは所定の停止位置に確実に停止する。

【0029】上述のように、との実施例では、速度検知 回路の出力に応じて、減速・制動信号のバターンを変化 させるようにしたので、従来と同一定格のモータによっ て、重量化ディスクトレイを所定の位置に正確に停止さ せることができて、コストの上昇が抑えられる。

【0030】なお、上述の実施例では、ROMテーブル を用いて、速度検知回路の出力から可変減速・制動信号 のパターンを求めるようにしたが、速度検知回路として カウンタを用いる場合には、可変減速・制動信号のバタ ーン設定用のタイマにカウンタの計数データの上位ビッ トを適宜セットするようにしてもよい。また、上述の実 ィスクトレイの重量化・髙剛性化を達成しているが、例 えば、炭酸カルシウムを特殊樹脂に混合し、ガラス繊維 で強化したような高剛性材料を用いて、ディスクトレイ を形成することもできる。

[0031]

【発明の効果】以上詳述のように、この発明によれば、 ディスクトレイの周縁に設けたスリットに対向するフォ トセンサの出力に基づいて、ディスクトレイの回動速度 を検出し、回動速度の高・低に応じて、幅が広・狭のブ に、慣性モーメントの大きいディスクトレイ10Wが充 20 レーキパルスをディスクトレイの駆動モータに供給する ようにしたので、モータのコスト上昇を抑えながら、慣 性モーメントが大きいディスクトレイを所定の位置に正 確に停止させることができるディスク再生装置が得られ

【図面の簡単な説明】

【図1】との発明によるディスク再生装置の一実施例の 構成を示すブロック図

【図2】との発明の一実施例の要部の構成を示す斜視図 【図3】この発明の一実施例の動作を説明するための波

【図4】従来のディスク再生装置の構成例を示すブロッ

【図5】従来例の要部の構成を示す展開図

【図6】従来例の動作を説明するための波形図 【符号の説明】

10♥ ディスクトレイ

11 ディスク搭載部

13a~13n アドレス標識

14a~14n 停止標識

21 光学ピックアップ

30V システム制御回路(マイクロコンピュータ)

31 フォトセンサ

33V 可変減速·制動信号発生手段

34 速度検知手段

Da~Dn ディスク

Ka~Kn ディスク選択キー

【図1】

.

