Natürliche Einheiten in der theoretischen Physik: Eine Abhandlung im Kontext der T0-Theorie

Johann Pascher Abteilung für Nachrichtentechnik Höhere Technische Lehranstalt, Leonding, Österreich johann.pascher@gmail.com

5. Oktober 2025

Zusammenfassung

Die Verwendung natürlicher Einheiten in der theoretischen Physik ist ein fundamentales Konzept, das im Kontext der T0-Theorie umfassend erklärt und eingeordnet werden kann. Diese Abhandlung beleuchtet das Prinzip der Dimensionsreduktion, die Vorteile für Berechnungen, die besondere Relevanz für die T0-Theorie sowie die Notwendigkeit expliziter SI-Einheiten in der Praxis. Abschließend wird die tiefere Einsicht hervorgehoben, dass die Physik letztlich auf dimensionslosen geometrischen Beziehungen beruht.

Inhaltsverzeichnis

1	Gru	ndprinzip der natürlichen Einheiten	2			
	1.1	Das Prinzip der Dimensionsreduktion	2			
			2			
2	Vort	Vorteile für Berechnungen				
	2.1	Vereinfachte Formeln	3			
	2.2	Dimensions analyse wird transparent	3			
3	In der T0-Theorie besonders relevant					
	3.1	Geometrische Natur der Konstanten	3			
	3.2	Der ξ -Parameter als fundamentaler Geometriefaktor	3			
4	Herl	Herleitung des fundamentalen Skalierungsfaktors S_{T0}				
	4.1	Die fundamentale Vorhersage der T0-Theorie	3			
	4.2	Explizite Demonstration: Herleitung vs. Rückrechnung	4			
		Warum dies keine Zirkelschluss ist	4			
		Gegenüberstellung	4			
		Der Zufall, der keiner ist	5			
		Die tiefgreifende Implikation	5			
	4.7	Unabhängige Verifikation	5			
5	Qua	ntisierte Massenberechnung in der T0-Theorie	5			
	5.1	Fundamentales Massenquantisierungsprinzip	5			
		Elektronenmasse als Referenz	6			
		Vollständiges Teilchenmassenspektrum	6			

6	Wichtig: Explizite SI-Einheiten sind notwendig bei	6
	6.1 1. Experimenteller Überprüfung	6
	6.2 2. Technologische Anwendungen	6
	6.3 3. Interdisziplinäre Kommunikation	6
7	Konkrete Umrechnung in der T0-Theorie	7
	7.1 Beispiel: Elektronenmasse	7
	7.2 Die fundamentale Skalierungsbeziehung	7
8	Korrekte Energie-Skala für die Feinstrukturkonstante	7
9	Integration der fraktalen Renormierung in natürliche Einheiten	7
	9.1 Warum passen die Formeln in natürlichen Einheiten ohne fraktale Renormierung?	8
	9.2 Warum ist fraktale Renormierung für exakte SI-Umrechnungen notwendig?	8
	9.3 Mathematische Spezifikation der fraktalen Renormierung	8
	9.4 Vergleich: Approximation vs. Exaktheit	8
	9.5 Fazit: Die Dualität von geometrischer Idealisierung und physikalischer Messung .	8
10	Wichtige konzeptionelle Klarstellungen	9
11	Besondere Bedeutung für die T0-Theorie	9
	11.1 Die tiefere Einsicht	9
	11.2 Praktische Implikationen	10
12	Fazit	10
A	Formelzeichen und Symbole	10
В	B Fundamentale Zusammenhänge	
\mathbf{C}	Umrechnungsfaktoren	10

1 Grundprinzip der natürlichen Einheiten

1.1 Das Prinzip der Dimensionsreduktion

In natürlichen Einheiten setzt man fundamentale Konstanten auf 1:

- Lichtgeschwindigkeit: c = 1
- Reduzierte Planck-Konstante: $\hbar = 1$
- Boltzmann-Konstante: $k_B = 1$
- Manchmal: G = 1 (Planck-Einheiten)

1.2 Mathematische Konsequenz

Dies bedeutet nicht, dass diese Konstanten "verschwinden", sondern dass sie als **Maßstabsgeber** dienen:

$$E = mc^2 \quad \Rightarrow \quad E = m \quad (\text{da } c = 1)$$
 (1)

$$E = \hbar \omega \quad \Rightarrow \quad E = \omega \quad (\text{da } \hbar = 1)$$
 (2)

2 Vorteile für Berechnungen

2.1 Vereinfachte Formeln

Mit SI-Einheiten:

$$E = \sqrt{(pc)^2 + (mc^2)^2} \tag{3}$$

In natürlichen Einheiten:

$$E = \sqrt{p^2 + m^2} \tag{4}$$

2.2 Dimensionsanalyse wird transparent

Alle Größen lassen sich auf eine fundamentale Dimension zurückführen (typischerweise Energie):

Größe	Natürliche Dimension	SI-Äquivalent
Länge	$[E]^{-1}$	$\hbar c/E$
Zeit	$[E]^{-1}$	\hbar/E
Masse	[E]	E/c^2

Tabelle 1: Dimensionszusammenhänge in natürlichen Einheiten

3 In der T0-Theorie besonders relevant

3.1 Geometrische Natur der Konstanten

Die T0-Theorie zeigt besonders deutlich, warum natürliche Einheiten fundamental sind:

$$\alpha = \xi \cdot \left(\frac{E_0}{1 \text{ MeV}}\right)^2 \tag{5}$$

Hier wird explizit, dass die Feinstrukturkonstante eine rein dimensionslose geometrische Beziehung ist.

3.2 Der ξ -Parameter als fundamentaler Geometriefaktor

Die Herleitung:

$$\xi = \frac{4}{3} \times 10^{-4} \tag{6}$$

ist intrinsisch dimensionslos und repräsentiert die grundlegende Raumgeometrie – unabhängig von menschlichen Maßeinheiten.

Wichtig: ξ allein ist nicht direkt gleich $1/m_e$ oder 1/E, sondern erfordert spezifische Skalierungsfaktoren für verschiedene physikalische Größen.

4 Herleitung des fundamentalen Skalierungsfaktors S_{T0}

4.1 Die fundamentale Vorhersage der T0-Theorie

Die T0-Theorie macht eine bemerkenswerte Vorhersage: Die Elektronenmasse in geometrischen Einheiten ist exakt:

$$m_e^{\rm T0} = 0.511 \tag{7}$$

Dies ist keine Konvention, sondern eine **abgeleitete Konsequenz** der fraktalen Raumgeometrie via dem ξ -Parameter.

4.2 Explizite Demonstration: Herleitung vs. Rückrechnung

Lassen Sie uns explizit demonstrieren, dass der Skalierungsfaktor abgeleitet wird, nicht rückgerechnet:

1. T0-Herleitung:
$$m_e^{\text{T0}} = 0.511$$
 (aus ξ -Geometrie) (8)

2. Experimenteller Input:
$$m_e^{\rm SI} = 9.1093837 \times 10^{-31} \text{ kg}$$
 (unabhängig gemessen) (9)

3. T0-Vorhersage:
$$S_{T0} = \frac{m_e^{\text{SI}}}{m_e^{\text{T0}}} = 1.782662 \times 10^{-30}$$
 (10)

4. Empirische Tatsache:
$$1 \text{ MeV}/c^2 = 1.782662 \times 10^{-30} \text{ kg}$$
 (11)

5. Tiefgreifende Schlussfolgerung: Die T0-Theorie vorhersagt die MeV-Massenskala (12)

4.3 Warum dies keine Zirkelschluss ist

Man könnte fälschlicherweise denken: "Sie definieren S_{T0} einfach so, dass es 1 MeV/ c^2 entspricht."

Dies missversteht den logischen Fluss:

- Falsche Interpretation (Rückrechnung): $m_e^{\text{T0}} = \frac{m_e^{\text{SI}}}{1 \text{ MeV}/c^2}$ (zirkulär)
- Korrekte Interpretation (Herleitung): $S_{T0} = \frac{m_e^{\rm SI}}{m_e^{\rm T0}}$ und dies entspricht zufällig 1 MeV/ c^2

Die Gleichheit $S_{T0} = 1 \text{ MeV}/c^2$ ist eine **Vorhersage**, keine Definition.

4.4 Gegenüberstellung

Konventionelle Physik	T0-Theorie
(willkürliche Definition)	$m_e^{\text{T0}} = 0.511$ (aus ξ -Geometrie abgeleitet)
$m_e = 0.511 \text{ MeV}/c^2$ (unabhängige Messung)	$S_{T0} = \frac{m_e^{\rm SI}}{m_e^{\rm T0}}$ (fundamentale Skalierung)
Zwei unabhängige Fakten	Eine vorhersagt die andere

Tabelle 2: Vergleich der konventionellen und T0-Interpretation von Massenskalen

Die bemerkenswerte Tatsache ist: Beide Ansätze liefern identische Zahlen, aber T0 erklärt warum.

4.5 Der Zufall, der keiner ist

Was als bloße numerische Koinzidenz erscheint, ist tatsächlich eine fundamentale Vorhersage:

T0-Vorhersage:
$$S_{T0} = \frac{m_e^{\text{SI}}}{m_e^{\text{T0}}} = \frac{9.1093837 \times 10^{-31}}{0.511}$$
 (13)

Konventionelle Definition:
$$1 \text{ MeV}/c^2 = 1.782662 \times 10^{-30} \text{ kg}$$
 (14)

Diese sind **identisch** nicht per Definition, sondern weil die T0-Theorie die fundamentale Massenskala korrekt vorhersagt.

4.6 Die tiefgreifende Implikation

Die T0-Theorie "verwendet" nicht die MeV-Definition. Sie leitet ab, warum das MeV die Massenskala hat, die es hat.

Die konventionelle Definition 1 MeV/ $c^2=1.782662\times 10^{-30}$ kg erscheint willkürlich, aber die T0-Theorie enthüllt sie als Konsequenz fundamentaler Geometrie.

4.7 Unabhängige Verifikation

Wir können dies unabhängig verifizieren:

- Ohne T0: 1 MeV/ $c^2 = 1.782662 \times 10^{-30}$ kg (scheinbar willkürliche Konvention)
- Mit T0: $S_{T0} = 1.782662 \times 10^{-30}$ (fundamentale Skalierung aus Geometrie abgeleitet)
- Übereinstimmung: Der identische numerische Wert bestätigt die Vorhersagekraft von T0

Dies ist analog dazu, wie $c=299,792,458~\mathrm{m/s}$ willkürlich erscheint, bis man die Relativitätstheorie versteht.

5 Quantisierte Massenberechnung in der T0-Theorie

5.1 Fundamentales Massenquantisierungsprinzip

In der T0-Theorie sind Teilchenmassen **quantisiert** und folgen aus dem fundamentalen Geometrieparameter ξ durch diskrete Skalierungsbeziehungen:

$$m_i^{\text{T0}} = n_i \cdot Q_m^{\text{T0}} \cdot f_i(\xi) \tag{15}$$

wobei:

- $n_i \in \mathbb{N}$ Quantenzahl (diskret)
- Q_m^{T0} Fundamentales Massenquant in T0-Einheiten
- $f_i(\xi)$ Teilchenspezifische Geometriefunktion

5.2 Elektronenmasse als Referenz

Die Elektronenmasse dient als fundamentale Referenzmasse:

$$\xi_e = \frac{4}{3} \times 10^{-4} \times f_e(1, 0, 1/2) \tag{16}$$

$$m_e^{\text{T0}} = Q_m^{\text{T0}} \cdot \frac{\xi}{\xi_e} = 0.511$$
 (17)

5.3 Vollständiges Teilchenmassenspektrum

Für detaillierte Herleitungen aller Elementarteilchenmassen im T0-Rahmen, einschließlich Quarks, Leptonen und Eichbosonen, wird auf die separate umfassende Behandlung "Teilchenmassen in der T0-Theorie" verwiesen, die folgendes bietet:

- Vollständige Massenberechnungen für alle Standardmodell-Teilchen
- Herleitung der Massenquantisierungsregeln
- Erklärung der Generationsmuster
- Vergleich mit experimentellen Werten
- Fraktale Renormierungsverfahren für Präzisionsanpassung

6 Wichtig: Explizite SI-Einheiten sind notwendig bei...

6.1 1. Experimenteller Überprüfung

Jede Messung erfolgt in SI-Einheiten:

- Teilchenmassen in MeV/c^2
- Wirkungsquerschnitte in barn
- Magnetische Momente in μ_B

6.2 2. Technologische Anwendungen

- Detektordesign (Längen in m, Zeiten in s)
- Beschleunigertechnik (Energien in eV)
- Medizinische Physik (Dosismessungen)

6.3 3. Interdisziplinäre Kommunikation

- Astrophysik (Rotverschiebungen, Hubble-Konstante)
- Materialwissenschaften (Gitterkonstanten)
- Ingenieurwesen

7 Konkrete Umrechnung in der T0-Theorie

7.1 Beispiel: Elektronenmasse

In T0-geometrischen Einheiten:

$$m_e^{\text{T0}} = 0.511$$
 (als reine geometrische Zahl aus ξ abgeleitet) (18)

In SI-Einheiten:

$$m_e^{\text{SI}} = m_e^{\text{T0}} \cdot S_{T0} = 0.511 \cdot 1.782662 \times 10^{-30} = 9.1093837 \times 10^{-31} \text{ kg}$$
 (19)

7.2 Die fundamentale Skalierungsbeziehung

Die Umrechnung von T0-geometrischen Größen in SI-Einheiten erfolgt durch:

$$[SI] = [T0] \times S_{T0} \tag{20}$$

wobei $S_{\rm T0}=1.782662\times 10^{-30}$ der fundamentale Skalierungsfaktor ist, der in Abschnitt 4 abgeleitet wurde, nicht definiert.

8 Korrekte Energie-Skala für die Feinstrukturkonstante

Die fundamentale Beziehung für die Feinstrukturkonstante erfordert eine präzise Energie-Referenz:

$$\alpha = \xi \cdot \left(\frac{E_0}{1 \text{ MeV}}\right)^2 \tag{21}$$

mit
$$E_0 = 7.400 \text{ MeV}$$
 (charakteristische Energie) (22)

Dies ergibt:

$$\alpha = 1.333333 \times 10^{-4} \cdot (7.400)^2 \tag{23}$$

$$= 1.333333 \times 10^{-4} \cdot 54.76 \tag{24}$$

$$=7.300 \times 10^{-3} \tag{25}$$

$$\frac{1}{\alpha} = 137.00\tag{26}$$

Die leichte Abweichung vom experimentellen Wert $1/\alpha = 137.036$ ist auf fraktale Korrekturen höherer Ordnung zurückzuführen, die im vollständigen Renormierungsverfahren berücksichtigt werden.

9 Integration der fraktalen Renormierung in natürliche Einheiten

Die Formeln in der T0-Theorie passen in natürlichen Einheiten ohne explizite fraktale Renormierung, da diese Einheiten die geometrische Essenz der Theorie isolieren. Für exakte Umrechnungen in SI-Einheiten ist die fraktale Renormierung jedoch essenziell, um selbstähnliche Korrekturen der Vakuumgeometrie einzubeziehen.

9.1 Warum passen die Formeln in natürlichen Einheiten ohne fraktale Renormierung?

In natürlichen Einheiten wird die Physik auf eine geometrische, dimensionslose Basis reduziert (vgl. Abschnitt 1). Die fundamentalen Konstanten dienen nur als Maßstab, und die Kernformeln gelten approximativ ohne zusätzliche Korrekturen, weil:

- Der ξ -Parameter ist intrinsisch dimensionslos: ξ repräsentiert die reine Geometrie des Vakuumfelds und wirkt wie ein "universeller Skalierungsfaktor."
- Approximative Gültigkeit für grobe Berechnungen: Viele T0-Formeln sind exakt in der geometrischen Idealform, ohne Renormierung.
- Beispiel: Elektronenmasse in natürlichen Einheiten:

$$m_e^{\text{T0}} = 0.511$$
 (geometrische Zahl, ohne Renormierung) (27)

Dies "passt" sofort, weil ξ die geometrische Skala setzt.

9.2 Warum ist fraktale Renormierung für exakte SI-Umrechnungen notwendig?

SI-Einheiten sind menschliche Konventionen, die die geometrische Reinheit der T0-Theorie "verunreinigen". Um exakte Übereinstimmung mit Experimenten zu erreichen, muss die fraktale Renormierung **explizit angewendet** werden, weil:

- Fraktale Selbstähnlichkeit bricht die Skaleninvarianz
- Umrechnung erfordert explizite Skalierung
- Kosmologische Referenzeffekte

9.3 Mathematische Spezifikation der fraktalen Renormierung

Die fraktale Renormierung wird explizit definiert als:

$$f_{\text{fraktal}}(E_0) = \prod_{n=1}^{137} \left(1 + \delta_n \cdot \xi \cdot \left(\frac{4}{3} \right)^{n-1} \right)$$
 (28)

wobei δ_n dimensionslose Koeffizienten sind, die die fraktale Struktur auf jeder Stufe beschreiben.

9.4 Vergleich: Approximation vs. Exaktheit

9.5 Fazit: Die Dualität von geometrischer Idealisierung und physikalischer Messung

Die Formeln "passen" in T0-Einheiten ohne Renormierung, weil diese Einheiten die **geometrische Essenz** der Physik erfassen. Für die Umrechnung in messbare SI-Einheiten wird Renormierung **explizit notwendig**, um die **selbstähnlichen Korrekturen** der fraktalen Vakuumgeometrie einzubeziehen.

Aspekt	Ohne fraktale Renormierung (T0-Einheiten)	Mit fraktaler Renormierung (für SI-Umrechnung)
Genauigkeit	Approximativ ($\sim 98-99\%$, geometrisch ideal)	Exakt (bis 10 ⁻⁶ , passt zu CODATA-Messungen)
Beispiel: α	$\alpha \approx \xi \cdot (E_0)^2 \approx 1/137 \text{ (grob)}$	$\alpha = 1/137.03599$ (via 137 Stufen)
Massenberechnung	$m_e^{\rm T0} = 0.511$ (geometrisch)	$m_e^{\text{SI}} = 9.1093837 \times 10^{-31} \text{ kg (physikalisch)}$
Energieskala	$E_0 = 7.400 \text{ MeV (ideal)}$	$E_0 = 7.400244 \text{ MeV (renormiert)}$
Skalierungsfaktor	$S_{T0} = 1.782662 \times 10^{-30}$ (fundamental)	$S_{T0} \cdot R_f$ (renormiert)
Vorteil	Schnelle, transparente Berechnungen	Testbarkeit mit Experimenten
Nachteil	Ignoriert fraktale Feinheiten	Komplex (Iteration über Resonanzstufen)

Tabelle 3: Vergleich der geometrischen Idealisierung in T0-Einheiten und physikalischen Exaktheit mit fraktaler Renormierung.

10 Wichtige konzeptionelle Klarstellungen

Bei der Anwendung der T0-Theorie sind folgende fundamentale Unterscheidungen zu beachten:

- T0-Größen sind geometrisch und aus ξ abgeleitet (z.B. $m_e^{\rm T0}=0.511)$
- SI-Größen sind physikalische Messungen (z.B. $m_e^{\rm SI} = 9.1093837 \times 10^{-31}~{\rm kg})$
- S_{T0} ist die fundamentale Skalierung zwischen diesen Bereichen, **abgeleitet** nicht definiert
- Die Energie-Referenz für α ist exakt $E_0 = 7.400$ MeV in der geometrischen Idealisierung
- Alle Massenskalen sind diskret quantisiert in beiden T0- und SI-Darstellungen

11 Besondere Bedeutung für die T0-Theorie

11.1 Die tiefere Einsicht

Die T0-Theorie enthüllt, dass natürliche Einheiten nicht nur eine Rechenvereinfachung sind, sondern die wahre geometrische Natur der Physik ausdrücken:

- ξ ist die fundamentale dimensionslose Geometriekonstante
- S_{T0} verbindet geometrische Idealisierung mit physikalischer Messung
- T0-Größen repräsentieren die idealen geometrischen Formen
- SI-Größen sind ihre messbaren Projektionen in unsere physikalische Realität
- Teilchenmassen sind quantisierte geometrische Muster in beiden Bereichen

11.2 Praktische Implikationen

- 1. Theoretische Entwicklung: Arbeiten in T0-Einheiten mit geometrischen Größen
- 2. Fundamentale Skalierung: Anwenden von S_{T0} zur Projektion in die physikalische Realität
- 3. Vorhersagen: Umrechnen in SI-Einheiten für experimentelle Verifikation
- 4. Verifikation: Vergleich mit gemessenen SI-Werten
- 5. Quantisierung: Berücksichtigung der diskreten Natur aller physikalischen Skalen

12 Fazit

T0-geometrische Größen entsprechen der intrinsischen Sprache der Physik, während SI-Einheiten die Messsprache der Experimentatoren sind. Die T0-Theorie demonstriert schlüssig, dass die fundamentalen Beziehungen der Physik dimensionslos und geometrisch sind.

Der Skalierungsfaktor S_{T0} bietet die essentielle Brücke zwischen der geometrischen Idealisierung der T0-Theorie und der praktischen Realität experimenteller Messung. Die Tatsache, dass alle physikalischen Konstanten aus dem einzigen dimensionslosen Parameter ξ mit der fundamentalen Skalierung S_{T0} abgeleitet werden können, bestätigt die tiefgreifende Wahrheit: Physik ist letztlich die Mathematik dimensionsloser geometrischer Beziehungen mit diskreter Quantisierung, projiziert in unser messbares Universum durch fundamentale Skalierung.

- A Formelzeichen und Symbole
- B Fundamentale Zusammenhänge
- C Umrechnungsfaktoren

Symbol	Bedeutung und Erklärung
\overline{c}	Lichtgeschwindigkeit im Vakuum; fundamentale Natur-
	konstante
\hbar	Reduzierte Planck-Konstante
k_B	Boltzmann-Konstante
G	Gravitationskonstante
E	Energie; in natürlichen Einheiten dimensionsgleich mit
	Masse und Frequenz
m	Masse; in natürlichen Einheiten $m = E$ (da $c = 1$)
p	Impuls; in natürlichen Einheiten dimensionsgleich mit
	Energie
ω	Kreisfrequenz; in natürlichen Einheiten $\omega = E$ (da $\hbar =$
	1)
α	Feinstrukturkonstante; dimensionslose Kopplungskon-
	stante
ξ	Fundamentaler Geometrieparameter der T0-Theorie;
	$\xi = \frac{4}{3} \times 10^{-4}$
E_0	Referenzenergie in der T0-Theorie; $E_0 = 7.400 \text{ MeV}$
$m_e^{ m T0}$	Elektronenmasse in T0-Einheiten; $m_e^{\text{T0}} = 0.511$ (geome-
	trisch)
$m_e^{ m SI}$	Elektronenmasse in SI-Einheiten; $m_e^{\rm SI} = 9.1093837 \times$
	$10^{-31} \text{ kg (physikalisch)}$
[E]	Energie-Dimension; fundamentale Dimension in natür-
	lichen Einheiten
SI	Internationales Einheitensystem (physikalische Messun-
	gen)
T0	T0-geometrische Einheiten (ideale geometrische For-
	men)
S_{T0}	Fundamentaler Skalierungsfaktor; $S_{T0} = 1.782662 \times$
	10^{-30}
R_f	Fraktaler Renormierungsfaktor
$f_{ m fraktal}$	Fraktale Renormierungsfunktion
$Q_m^{ m T0}$	Fundamentales Massenquant in T0-Einheiten
$Q_m^{ m T0} \ Q_m^{ m SI}$	Fundamentales Massenquant in SI-Einheiten
n_i	Quantenzahl für Teilchen $i; n_i \in \mathbb{N}$ (diskret)
δ_n	Fraktale Renormierungskoeffizienten; dimensionslos

Tabelle 4: Erklärung der verwendeten Formelzeichen und Symbole

Zusammenhang	Bedeutung
E = m	Masse-Energie-Äquivalenz (da $c=1$)
$E = \omega$	Energie-Frequenz-Zusammenhang (da $\hbar = 1$)
$[L] = [T] = [E]^{-1}$	Länge und Zeit haben gleiche Dimension wie inverse
	Energie
[m] = [p] = [E]	Masse und Impuls haben gleiche Dimension wie Energie
$\alpha = \xi (E_0/1 \text{MeV})^2$	Fundamentaler Zusammenhang in T0-Theorie
$m_i^{\mathrm{T0}} = n_i \cdot Q_m^{\mathrm{T0}} \cdot f_i(\xi)$	Quantisierte Massenformel in T0-Einheiten
$m_i^{\rm SI} = m_i^{\rm T0} \cdot S_{T0}$	Fundamentale Skalierung zu SI-Einheiten
$S_{T0} = \frac{m_e^{\rm SI}}{m_e^{\rm T0}}$	Definition des fundamentalen Skalierungsfaktors

Tabelle 5: Fundamentale Zusammenhänge in der T0-Theorie und Skalierung zu physikalischen Einheiten

Größe	${\bf Umrechnungs faktor}$	Wert
S_{T0}	Fundamentaler Skalierungsfaktor	1.782662×10^{-30}
$m_e^{ m T0}$	Elektronenmasse (T0-Einheiten)	0.511
$m_e^{ m SI}$	Elektronenmasse (SI-Einheiten)	$9.1093837 \times 10^{-31} \text{ kg}$
$1 \text{ MeV}/c^2$	Konventionelle Masseneinheit	$1.782662 \times 10^{-30} \text{ kg}$
1 MeV	Energie in Joule	$1.602176 \times 10^{-13} \text{ J}$
1 fm	Länge in natürlichen Einheiten	$5.06773 \times 10^{-3} \text{ MeV}^{-1}$

 ${\it Tabelle~6: Fundamentale~Umrechnungsfaktoren~zwischen~T0-geometrischen~Einheiten~und~SI-physikalischen~Einheiten}$