AD6400427

NASA CR-134881 UTRC R75-911992-12

GRAPHITE FIBER REINFORCED THERMOPLASTIC RESINS

by R.C. NOVAK Approved for public releases
Distribution Unitediated

UNITED TECHNOLOGIES RESEARCH CENTER

EAST HARTFORD, CONNECTICUT 06108

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center

Contract NAS3-17833

KENNETH J. BOWLES, Project Manager

19960313 036

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

	Report No. NASA CR-134881	2. Government Acces	sion No.	3.	Recipient's Catalo	g No.
4.	Title and Subtitle	<u> </u>		5.	Report Date	
	CDADUTHE ETDER RETREADORD HUEDWA	ODI AGELG DEGENG	•		July 17, 197	5
	GRAPHITE FIBER REINFORCED THERM			Performing Organ		
7.	Author(s)			8.	Performing Organi	zation Report No.
:	R. C. Novak				R75 - 911992 - 1	2
9.	Performing Organization Name and Address			10. \	Nork Unit No.	
				44		
	United Technologies Research Cer East Hartford, Connecticut 06108				Contract or Grant	: No.
	in the state of th	O	-		NAS3-17833	al Paris I O
12.	Sponsoring Agency Name and Address					nd Period Covered
]	National Aeronautics and Space A	Administration			Contractor Re	
	Washington, DC 20546			14. 3	Sponsoring Agenc	y Code
15. \$	Supplementary Notes					
I (Project Manager, Kenneth Bowles, Center, Cleveland, Ohio 44135	, Materials and S	tructures Division,	NAS	A Lewis Resea	arch
16. /	Abstract					
r	creep and impact strengths were epoxy resin samples. In general resistance equal to or superior Demonstration of the utility and by successfully thermoforming a	t, the thermoplas- to the reference d quality of a gra	cic resins exhibited epoxy resin. aphite/thermoplastic	e res	vironmental d Sin system wa	legradation
			•			
17. K	Key Words (Suggested by Author(s))		18. Distribution Statement			
L	aminating resins		18. Distribution Statement Unclassified - u		ited	
L	aminating resins Thermoplastic resins				ited	
L	aminating resins				ited	
L T	aminating resins Thermoplastic resins	20. Security Classif, (o	Unclassified - w	nlim	ited No. of Pages	22. Price*

^{*} For sale by the National Technical Information Service, Springfield, Virginia 22151

Graphite Fiber Reinforced Thermoplastic Resins

TABLE OF CONTENTS

SUMM	ARY .	
1.0	INTRO	DDUCTION
2.0	TASK	I - RESIN CHARACTERIZATION
	2.1	Experimental Procedure
		2.1.1 Test Plan
		2.1.2 Materials
		2.1.2 Materials 5 2.1.3 Test Techniques 5
	2.2	Results and Discussion
		2.2.1 Tensile and Flexure Tests
		2.2.2 Glass Transition Temperature
		2.2.3 Creep/Stress Rupture
3.0	TASK	II - COMPOSITE CHARACTERIZATION
	3.1	Experimental Procedure
		3.1.1 Test Plan
		3.1.2 Materials
		3.1.3 Test Techniques
	3.2	Results and Discussion
		3.2.1 As-Fabricated Data
		3.2.2 Environmental Effects on Static Properties
		3.2.3 Environmental Effects on Pendulum Impact 21
		3.2.4 Thermal Cycling 21
		3.2.5 Creep/Stress Rupture
4.0	TASK	III - FABRICATION OF DEMONSTRATION COMPONENT
	4.1	Materials
		Materials
	4.3	Vane Fabrication
5.0	CONC	LUSIONS

TABLE OF CONTENTS (Cont'd)

REFERENC	ES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	, •	•	•	•	•	•	•	28
TABLES I	_	XX	ΧIV	I ,	÷	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•,	•	•	•	•	•	•	29
FIGURES	1 -	- 3	2	•	•	•	•	•	•	٠.	•	•	•	•	•	•		ě	•	•	•		•	•	•	•	•	•	•	•	•	63
APPENDIC	ES																															
A.	Re	esi	n I)at	ta	fı	roi	n I	ľes	st	Ma	atı	rix		•		•	• ·		•	•		•	• ,	•.			•	•	•	•	95
В.	Ca	alc	ula	ate	эđ	Re	esi	in	Pı	o	pei	rti	es	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	100
C.	Co	omp	osi	ltε	e I)at	ta	fı	ror	n I	l'es	st	Мε	ıtr	ix	:	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	113
D.	C٤	alc	ula	ate	ed	Co	omp	200	sit	сe	Pı	or	er	ti	.es	;		•	•				•		•		•		•	•		121

LIST OF TABLES

Table No.	<u>Title</u>
I	Task I - Test Matrix for Neat Resins
II	As-Fabricated Neat Resin Data
III	Estimate of Environmental Effects on Resin Flexural Strength
IV	Estimate of Environmental Effects on Resin Flexural Modulus
. V	Estimate of Environmental Effects on Resin Tensile Strength
VI	Estimate of Environmental Effects on Resin Tensile Modulus
VII	Effect of 177°C Exposure on Resin Flexural Strength
VIII	Effect of Ambient Exposure on Resin Flexural Strength
IX	Effect of HA, RH, UV Exposure on Resin Flexural Strength
X	Neat Resin Creep/Stress-Rupture Data - 177°C Test Temperature
XI	Task II - Test Matrix for Unidirectional Fiber Composites
XII	As-Fabricated T-300 Composite Bending Data Unidirectional Reinforcement
XIII	As-Fabricated T-300 Composite Tensile Data Unidirectional Reinforcement
XIV	As-Fabricated Cross-Plied Composite Data Tested at 45°
VX	Creep/Stress-Rupture of As-Fabricated Cross-Plied Composites Tested at 45°
IVX	Estimate of Environmental Effects on Composite Interlaminar Shear Strength
XVII	Estimate of Environmental Effects on Composite Transverse Tensile Strength
XVIII	Estimate of Environmental Effects on Composite Transverse Tensile Modulus
XIX	Estimate of Environmental Effects on Composite Longitudinal Tensile Strength
XX	Estimate of Environmental Effects on Composite Longitudinal Tensile Modulus
XXI	Estimate of Environmental Effects on Composite Flexural Strength
XXII	Estimate of Environmental Effects on Composite Flexural Modulus
XXIII	Effect of 177°C Exposure on Composite Shear Strength
XXIV	Summary of Environmental Effects on Composite Longitudinal Tensile Modulus

LIST OF TABLES (Cont'd)

Table No.	$\underline{\mathtt{Title}}$
XXV	Summary of Environmental Effects on Composite Flex Modulus
IVXX	Summary of Environmental Effects on Composite Shear Strength
XXVII	Summary of Environmental Effects on Composite Transverse Tensile Strength
XXVIII	Summary of Environmental Effects on Composite Longitudinal Tensile Strength
XXIX	Summary of Environmental Effects on Composite Flex Strength
XXX	Summary of Environmental Effects on Composite Transverse Tensile Modulus
XXXI	Effect of 121°C Aging Plus Thermal Cycling ^a on Cross-Plied Composite Tensile Properties Tested at 45°
XXXII	PR-286 Composite Stress-Rupture Results
XXXIII	P-1700 Composite Stress-Rupture Results
VXXXIV	360 Composite Stress-Rupture Results

LIST OF ILLUSTRATIONS

Figure No.	<u>Title</u>
1	Effect of 177°C Exposure on 20°C Resin Flexural Strength
2 ·	Effect of Ambient Exposure on 20°C Resin Flexural Strength
3	Effect of HA, RH, UV Exposure on 20°C Resin Flexural
5	Strength
4	Effect of Environment on Resin Glass Transition Temperature
5	Creep of PR-286 at 177°C, 2.1 MN/m ² (0.3 ksi)
6	Creep of 360 at 177°C, 9 MN/m ² (1.3 ksi)
7	Instrumented Pendulum Impact Load-Time Curves
8	Instrumented Pendulum Impact Load-Time Curves
9	Effect of 177°C Exposure on -55°C Composite Shear Strength
10	Effect of 177°C Exposure on 20°C Composite Shear Strength
11	Effect of 177°C Exposure on 121°C Composite Shear Strength
12	Effect of 177°C Exposure on 177°C Composite Shear Strength
13	Effect of Ambient Exposure on 121°C Composite Shear Strength
14	Effect of R.H. and U.V. and Temperature on 121°C Composite
<u> </u>	Shear Strength
15	Effect of 121°C Exposure on 121°C Composite Shear Strength
16	Effect of 177°C Exposure on 121°C Composite Flexural Strength
17	Effect of 121°C Exposure on 121°C Composite Flexural Strength
18	Effect of Ambient Exposure on 121°C Composite Flexural
20	Strength
19	Effect of R.H. and U.V. and Temp. on 121°C Composite Flexural
	Strength
20	Effect of 177°C Exposure on 121°C Composite Flexural Modulus
21	Effect of 121°C Exposure on 121°C Composite Flexural Modulus
22	Effect of Ambient Exposure on 121°C Composite Flexural Modulus
23	Effect of R.H. and U.V. and Temperature on 121°C Composite
J	Flexural Modulus
24	Effect of Environment on Unnotched Composite Charpy Impact
	Energy
25	Effect of Environment on Unnotched Composite Charpy Impact
	Energy
26	Instrumented Pendulum Impact Load-Time Curves
27	Creep of T300/PR-286 at 121°C, 60 MN/m ² (8.7 ksi) Cross-Plied
•	Tested at 45°
28	Creep of T300/P1700 at 121°C, 58.6 MN/m ² (8.5 ksi) Cross-Plied
	Tested at 45°
29	Creep T300/360 at 121°C, 52.5 MN/m ² (7.6 ksi) Cross-Plied
	Tested at 45°
30	T-300 Graphite/P-1700 Polysulfone Blade After Removal From Mold
31	T-300 Graphite/P-1700 Polysulfone Blade After Machining
32	T-300 Graphite/P-1700 Polysulfone Fan Exit Guide Vane

SUMMARY

This report describes the results of a one year program designed to characterize the mechanical behavior of graphite fiber reinforced and unreinforced thermoplastic resins. Similar studies were simultaneously performed on an epoxy resin in neat form and reinforced with graphite fibers to enable a comparison between the thermoplastics and a state of the art material intended for structural applications. Particular emphasis was placed on determining the effects of various environmental exposures on the properties of the resins and the composites. In order to accomplish this effeciently, statistically designed tests were utilized throughout the study. Environments investigated included ambient aging, thermal aging at two temperatures, and a combined temperature, humidity, ultraviolet aging. Tension, flexural, shear, impact, and creep properties were measured after various exposure times.

In general it was found that the thermoplastics (polysulfone and polyarylsulfone) exhibited environmental resistance as good as that of the epoxy reference material. In several instances the polyarylsulfone matrix composites suffered less degradation than the epoxy matrix materials. The polysulfone composites were degraded by the thermal aging at the higher temperature (177°C) but suffered little effect as a result of the other exposures. Several properties of the epoxy materials were degraded by the ambient, 177°C, and combined exposures.

Upon completion of the environmental effects study, two complicated gas turbine engine structures, a fan blade and a fan exit guide vane were fabricated using the graphite/polysulfone material. Both parts were successfully made.

1.0 INTRODUCTION

Advanced composites utilizing thermosetting resins as the matrix are becoming increasingly accepted as "engineering materials." Advanced military aircraft will most likely have several airframe structural components in which the materials will be utilized. In the field of gas turbine engines, Pratt & Whitney Aircraft Division of United Technologies Corporation now lists carbon-expoxy as the bill of material for the fan exit guide vanes in the JT9D-59 and-70 engines. The other broad category of resins, the thermoplastics, have received relatively little attention as matrices for structural composites, primarily due to poor elevated temperature mechanical properties. However, developments in the technology over the past few years have resulted in new materials with elevated temperature performance which may match or even exceed that of the epoxies used in the aerospace industry. Furthermore it has been shown that significant cost savings can result in using thermosplastic rather than thermoset matrices as a result of faster fabrication lower rejection rate, lower storage costs, etc. (Ref. 1). In addition their use has led to improvements in composite impact resistance (Ref. 2). However these resins are still largely uncharacterized as structural materials both in neat form and when reinforced with high modulus fibers.

Of particular interest is the effect of environmental exposure on the properties of the materials. Recent experiences with epoxy matrix composites have demonstrated that environmental degradation of critical properties can be a serious problem. Thus there is concern over the effect such exposure might have on the new thermoplastic composites.

As a result of the promise exhibited by this new class of materials and the large number of unanswered questions regarding their performance, United Technologies Research Center (UTRC) conducted the subject program under the sponsorship of NASA-Lewis Research Center.

The objectives of this program were to characterize the mechanical behavior of thermoplastic resins in neat and reinforced form, and to compare this behavior with that of an epoxy resin, typical of those being used in graphite fiber reinforced gas turbine engine fan blades. Particular emphasis was placed on determining the effects of various environmental exposures on these properties. Finally, the thermoforming characteristics of thermoplastic composites were demonstrated by fabricating a graphite fiber reinforced fan blade and a fan exit guide vane.

The program is divided into three technical tasks along the lines of the above objectives. During Task I, two thermoplastic resins and one epoxy resin were tested to determine the effect on tensile and flexural behavior of several environmental exposures including temperature, moisture, and ultraviolet. During Task II, all

resins were reinforced with graphite fibers and tested in the same manner as in Task I. Fabrication of a fan blade and a fan exit guide vane from the better thermoplastic matrix material as defined by Task II was carried out in Task III.

The experimental procedures employed during this program and the results derived from it are discussed in the following sections.

2.0 TASK I - RESIN CHARACTERIZATION

The objective of this task was to measure the mechanical behavior of two thermoplastic resin materials and one commonly-used epoxy. The performance of the materials were then to be compared in order to judge the thermoplastics relative to a state-of-the-art resin matrix material.

2.1 Experimental Procedure

2.1.1 Test Plan

The two thermoplastics evaluated under the program were Astrel 360 polyaryl-sulfone and P-1700 polysulfone. The epoxy reference material was PR-286.

The majority of the mechanical tests performed on each of the three resins is given in Table I. As a result of the large number of specimens required to measure each of the properties, a Latin Square design was utilized to conduct the study of all but the as-fabricated resins. For the as-fabricated condition, two tensile and two flexure specimens were tested at each of the three test temperatures.

The Latin Square design for the remaining properties of each resin in Table I is similar to the following example:

Exposure Time

Test R_1 T_2 T_3 T_1 T_2 T_3 T_1 R_2 T_3 T_1 T_2 T_3 T_1 T_2 T_3 T_1 T_2 T_3

The letters $R_{1,2,3}$ correspond to test temperatures of -55°C, 22°C, and 177°C, respectively, while the exposure times are 720, 1440, and 2400 hrs. The letters $T_{1,2,3}$ in the cells of the above matrix correspond to exposure conditions, (HA; ambient; HA, RH, UV), and represent a randomly chosen assignment for the first test (i.e., first row) while the 2nd and 3rd rows are permutations of the first row constrained to the condition of a Latin Square design.

Other properties measured on the neat resins included the glass transition temperature and creep characteristics before and after 1000 hrs of exposure to heated air (177°C), ambient temperature and humidity, and the combined UV/elevated

temperature/humidity environment. The creep tests were to be conducted at 177° C and at a stress equal to 50 percent of the zero time 177° C ultimate strength.

2.1.2 Materials

For the purpose of resin evaluation the P-1700 was procured in sheet form, while the Astrel 360 was obtained as a molding compound and the PR-286 was solution with MEK. Thus, it was necessary to further process the latter two materials into suitable form for testing. The procedures utilized are described below:

Astrel 360

- 1. Heat powder in oven for 2 hrs at 100°C to remove moisture.
- 2. Preheat press to 400°C.
- 3. Place mold in press and monitor temperature with thermocouple. When mold temperature reaches 344° C (~4 min) apply 3.44 MN/m² (500 psi) and hold for 40 sec.
- 4. Cool to 260°C under pressure.
- 5. Remove mold from press, and remove resin molding as soon as possible.

PR-286 (74% solution in MEK)

- 1. Heat at 80° C under 30 in. Hg vacuum for about 30 min until rapid bubbling stops.
- 2. Increase temperature to 115°C and hold for 15 min, then release vacuum.
- 3. Increase temperature to 125°C and hold for 3 hrs.
- 4. Increase temperature to 150°C and hold for 16 hrs.
- 5. Increase temperature to 175°C and hold for 2 hrs.

2.1.3 Test Techniques

Tension specimens were 22.5 cm long x 1.9 cm wide x .25 cm thick (9 in. long x 3/4 in. wide x 1/10 in. thick) with a reduced section 1.25 cm (1/2 in.) wide. Tests were carried out at a crosshead speed of .125 cm/min (0.05 in./min) and strain was measured with strain gages bonded to the front and back of the specimen to average out any bending effects.

Bending tests were conducted using 3-point loading conditions at a span-to-depth ratio of 16:1. Mid-point deflection of the specimen was measured with a deflectometer and the resulting load-deflection curve was used to calculate a bending modulus.

Creep/stress-rupture tests were conducted at 177°C on samples in the as-fabricated condition and on those which have been subjected to environmental exposures for 1000 hrs. Testing was done in constant load machines, the temperature being monitored with chromel-alumel thermocouples positioned adjacent to the specimen. Friction type grips were used with copper doublers to protect the specimen surface. Elongation was continuously recorded during the creep tests by means of an extensometer activated LVDT. The extensometer was attached to the grips holding the specimen. When fracture occurred the machines shut off automatically, and the time to rupture was recorded to the nearest 0.1 hr.

The glass transition temperature (Tg) of the resins was determined through measurement of thermal expansion. The Tg was defined by the intersection of tangents drawn at the point of inflection of the expansion vs temperature. The test specimens were .5 cm \times .6 cm \times 2.54 cm long (.2 in. \times .2 in. \times 1 in.). Heating rate during the tests was approximately 45°C per hour.

The resin materials were exposed to three environmental conditions in the program. Ambient conditions were those which exist in the laboratory at UTRC: 22°C, 50 percent RH. An air circulating oven was used for the heated air exposures. The temperature of 177°C was monitored with a thermometer immediately adjacent to the specimens. The final exposure condition was a combined humidity, temperature, ultraviolet. The selected temperature was 49°C and the relative humidity was 95 percent. Ultraviolet exposure was provided by placing the specimens 61 cm from a UV lamp. Specimens were turned over halfway through their exposure period.

2.2 Results and Discussion

2.2.1 Tensile and Flexure Tests

The results of testing the three resins in the as-fabricated condition are given in Table II. In some instances premature failure occurred in the tensile tests due to defects in the specimens and the data were not reported. In general the results of the duplicate specimens were in good agreement, indicating uniformity of the materials.

Several points are apparent, based on these results. The Astrel 360 demonstrated the best resistance to elevated temperature. At lower temperatures the strengths of all three materials were similar, while the PR-286 exhibited higher moduli. The P-1700 polysulfone was apparently in a rubbery condition at the 177°C test temperature and had essentially zero strength and modulus. The PR-286 epoxy also had low properties at 177°C. It should be pointed out that in order to develop maximum temperature resistance, the resin manufacturer recommends a postcure at 200°C for composites utilizing PR-286 as the matrix. However, it has been UTRC's experience that such a postcure can result in cracks in multidirectional composites due to thermal stresses. Thus, a lower postcure temperature was selected for this program (177°C), with the probable result that the resin properties at 177°C were not the maximum achievable.

The resin data generated under the designed test matrix are given in Appendix A using the Latin Square nomenclature described previously. Utilizing those results the effects of each of the time, test temperature, and exposure conditions was estimated for the four properties measured: flexural strength, flexural modulus, tensile strength, and tensile modulus. These effects are given in Tables III through VI. The model employed in the analysis is:

$$Y_{i,i,k} = \hat{\mu} + R_i + C_j + T_k$$

where

 Y_{ijk} = property of interest as effected by the factors, i, j, and k

 $\hat{\mu}$ = the mean

R. = test temperatures

C = exposure times

 T_{1} = environmental conditions

As an example of how this can be used, Tables VII, VIII and IX list the calculated flexural strengths for the three resins as a function of exposure time and test temperature for each of the three environmental conditions. The data given for zero exposure time are the averages calculated from the as-fabricated results listed in Table II. The effects of the variables on the other resin properties were also calculated and are given in Appendix B along with the flexural strengths for completeness.

The trends in the data are more easily interpreted by plotting the results as a function of exposure time, for example, as in Figs. 1 thru 3 in which the room temperature flexural strengths of the three resins are shown for the three different environmental conditions. From Fig. 1 it can be seen that the flexural strength of the PR-286 epoxy was significantly degraded by the 177°C exposure while the other two resins were essentially unaffected. Figures 2 and 3 indicate that the ambient and the combined HA, RH, UV exposures did not have a serious effect on any of the materials although the PR-286 epoxy and the Astrel 360 polyarylsulfone were slightly degraded by the temperature, humidity, UV conditions.

Similar plots were constructed for each combination of mechanical property, test temperature and environmental exposure using the calculated properties listed in Appendix B. Examination of these plots led to the following conclusions regarding the effects of the exposures on the measured properties:

Ambient Exposure

	Flexural Modulus	Flexural Strength	Tensile Modulus	Tensile Strength
P-1700	No Effect	Slight drop @-55°C	No Effect	Drop @55°C
360	No Effect	Slight drop @-55°C	No Effect	Drop @ R.T., -55°C
PR-286	No Effect	Slight drop @-55°C	No Effect	Drop @ R.T., -55°C

HA, RH, UV Exposure

	Flexural Modulus	Flexural Strength	Tensile Modulus	Tensile Strength
P-1700	No Effect	Slight drop @ R.T.,	No Effect	Drop @-55°C
360	No Effect	Slight drop @ R.T.,	No Effect	Drop @ R.T., -55°C
PR - 286	No Effect	Slight drop @ R.T., -55°C	No Effect	Drop @ R.T., -55°C

177°C Exposure

	Flexural Modulus	Flexural Strength	Tensile Modulus	Tensile Strength
P-1700	No Effect	No serious effect	No Effect	Drop @-55°C
360	No Effect	No serious effect	No Effect	Drop @ R.T.
PR-286	No Effect	Drop @ all temps.	No Effect	Drop @ R.T., -55°C

The flexural strength data shown in Figs. 1, 2, and 3 are reflected in the comments regarding flexural strength for the 177°C exposure in which the PR-286 suffered a drop at all test temperatures including room temperature as shown in Fig.1. On the other hand the P-1700 and 360 showed no major effect as indicated above.

The above summary of the environmental effects clearly leads to the conclusion that the two thermoplastic resins exhibited environmental resistance at least as good as that of the epoxy. None of the materials suffered any loss in modulus due to the exposures. The ambient and HA, RH, UV exposures affected the strength properties of all the resins in about the same manner although the P-1700 tensile strength was unaffected at room temperature while the other two resins showed a decrease. The 177°C exposure had a significant effect on nearly all the epoxy flexural and tensile strength properties, while there was very little effect on the two thermoplastics. This was somewhat surprising since the PR-286 is considered to be capable of performing as a matrix material at 177°C service temperature. Although the cure cycle employed in the study was not optimum for high temperature resistance, as mentioned previously, it would seem that the 177°C exposure would serve as a postcure condition, and that the strength properties might even increase. However the data showed a clear trend in the other direction as evidenced by Fig.1.

2.2.2 Glass Transition Temperature

The results of the glass transition temperature studies are summarized in Fig. 4. All tests were conducted in duplicate and the data in Fig. 4 are the averages of the two measurements. The only environmental condition which had a significant effect on the PR-286 epoxy was the combined temperature, humidity, UV. Based on these results there should have been a large reduction in modulus of the PR-286 when measured at 177°C after the HA, RH, UV exposure. However this was not noted in the previous section. Examination of the tensile and flexural modulus data at 177°C reveals that the results for the resin in the as-fabricated condition were so low as to imply that the test temperature exceeded the $T_{\rm g}$ of the material. Thus the environmental exposure could not be expected to have a degrading effect. The conflict in the data appears to be between the T_{g} and modulus measurements at 177°C for the as-fabricated resin. Based on the $\mathbf{T}_{\mathbf{g}}$ results, the material should have had a reasonably high modulus at 177°C. It should be pointed out that a true glass transition temperature does not exist for the epoxy since it is a cross-linked material. Inflection points in the thermal expansion curves were indicative of a gradual softening rather than a sharp transition. There was, however, a readily detectable inflection point in the curves for the specimens exposed to the HA, RH, UV condition, and the softening temperature was clearly lower than for the resin in the as-fabricated condition.

None of the exposures had an effect on the T_g of P-1700 polysulfone. The 360 polyarylsulfone suffered a slight decrease in T_g after all three exposures, but none were as severe as the change exhibited by the epoxy.

In summary the glass transition measurements showed that the thermoplastics performed the same as the epoxy under the 177°C and ambient conditions, and that they were also relatively unaffected by the HA, RH, UV exposure whereas the epoxy suffered a loss in $T_{\rm g}$ under that condition.

2.2.3 Creep/Stress Rupture

The results of the creep/stress-rupture tests on the neat resin specimens are Some difficulties were encountered in the creep/stress-rupture given in Table X. tests. The P-1700 polysulfone had no resistance to stress at 177°C, which was not surprising in view of the previous finding that the resin had essentially zero tensile strength at that temperature. Two tests were conducted on as-fabricated PR-286 epoxy. In the first case (No. 28) the specimen failed immediately upon the application of 50% of the as-fabricated UTS (4.15 MN/m2), however it appeared that the fracture initiated at a void in the specimen. The second specimen (No. 27) was subjected to the same stress and did not rupture after 621 hrs. The stress level was then increased to 75% of the as-fabricated UTS and failure did not occur after 189 hrs of testing. The stress level was subsequently increased several times before rupture finally occurred at a stress more than three times greater than the static strength of 177°C. Based on these results, it was clear that the stress-rupture behavior of the material was governed by flaws or some other mechanism not necessarily related to the inherent properties of the material. The two specimens exposed to the humidity, temperature, UV condition exhibited a similar scatter in behavior.

The Astrel 360 was somewhat better behaved. All the specimens ruptured under the load which was 50% of the static strength. This stress was significantly higher than that utilized in the PR-286 tests, so a direct comparison of the results is difficult. Examination of the 360 data indicates that none of the exposures had an adverse effect on the stress-rupture behavior of the resin. However there was a large scatter in the results and it would seem that further work should be conducted in this area.

The effect of the 177°C exposure on the creep behavior of the two resins is shown in Figs. 5 and 6. The rapid increase in strain of the PR-286 at 24 hrs (Fig. 5) is believed to be the result of an extensometer malfunction. The steady state creep rate of the cross-linked epoxy was less than that of the thermoplastic polyarylsulfone.

3.0 TASK II - COMPOSITE CHARACTERIZATION

The objective of this test was to evaluate composites having each of the three resins studied during Task I as matrices. The reinforcement for all composites was to be graphite filament. Based on the results of this task and Task I, a single carbon/thermoplastic system was to be selected for the Fabrication Study in Task III.

3.1 Experimental Procedure

3.1.1 Test Plan

Both unidirectional and cross-ply $0^{\circ}/90^{\circ}$ laminates were evaluated. Table XI presents the tests required for the unidirectional composites. As with the neat resins, a statistical approach was followed to produce the desired information while minimizing the number of specimens actually tested. The test matrix for Task II specified four environmental conditions, four test temperatures, but only three exposure times. The balance needed for the Latin Square design was achieved by adding one additional exposure time resulting in a $\frac{1}{4}$ x $\frac{1}{4}$ Latin Square design. The setup was as follows:

Let the environmental conditions be the treatments:

 $T_1 = heated air, 177°C$

T₂ = heated air, 121°C

 $T_3 = \text{ambient temp., } 22^{\circ}\text{C}$

 $T_4 = HA/RH/UV$

Let the exposure times be the columns:

 $C_1 = 720 \text{ hrs}$

C2 = 240 hrs (added to determine short term effects)

 $C_3 = 1440 \text{ hrs}$

 $C_{\rm h} = 2400 \; {\rm hrs}$

Let the test temperatures be the rows:

 $R_1 = -55^{\circ}C$

 $R_2 = 22^{\circ}C$

 $R_3 = 121^{\circ}C$

 $R_{L} = 177^{\circ}C$

The Latin Square for the P-1700 matrix composites was

Exposure Time

e e	м.	c_1	c ₂	c_3	С4
	$R_{ extbf{1}}$	Т3	Т4	Tl	T 2
Test	R2	Т1	Т2	Т4	Т3
Temp.	R ₃	T)4	т ₃	T ₂	T _l
	R ₁₄	T ₂	Tl	^Т 3	Т4

A similar matrix was used for the Latin Square designs of the other two composites, but with different sets of treatment assignments to the cells in the matrix.

In addition to these tests on unidirectional composites, the tensile properties of the 0/90° laminates in the as-fabricated condition were determined at room temperature, 121, and 177°C. The loading direction was in the 45° direction.

The creep/stress rupture properties of the 0/90° laminates were determined at 121 and 177°C for laminates in the as-fabricated condition and for laminates having been exposed for 1000 hrs to heated air (177°C), ambient temperature and humidity and to combined elevated temperature/relative humidity/ultraviolet environment. The load orientation for the creep tests was 45°. The loads for the creep/stress-rupture tests at 121 and 177°C were to be 50 percent of the ultimate loads at the respective temperatures.

The tensile strength in the 45° direction was determined at room temperature and 121°C for 0/90° laminates which had been exposed for 1000 hrs at 121°C in air and subsequently thermally cycled for 1000 cycles between -55 and 177°C.

The Charpy impact strength was determined at room temperature and 121°C for 0/90° laminates in the as-fabricated condition and for laminates which had been exposed for 1000 hrs at 121°C in air, at ambient temperature and relative humidity and at the combined elevated temperature/relative humidity/ultraviolet environment.

3.1.2 Materials

During the second task of the program, the same resins evaluated in Task I were reinforced with T-300graphite and studied in composite form. Commercial prepreg tape was used with the PR-286 epoxy, while prepregs were wet-wound in the laboratory for both the thermoplastics. In both cases a mixture of the resin was

prepared and the T-300 yarn was passed through it and wound on a drum. For the P-1700 50g of resin was dissolved in 400 ml dichloromethane. The solvent for the polyarylsulfone was DMF in a ratio of 200 ml to 20g resin. The resin did not dissolve in the DMF, but formed a fairly stable suspension.

Hot pressing of the P-1700 material was carried out at 270°C under 13.8 MN/m² (2000 psi), while the conditions for the Astrel 360 were 371°C, 6.9 MN/m² (1000 psi) Each material was held under maximum pressure for five minutes then cooled as rapidly as possible (water-cooled platens) under pressure. PR-286 epoxy composites were pressed under 2.07 MN/m² (300 psi) and the cure/postcure temperature cycle was the same as that used for the neat resin.

3.1.3 Test Techniques

The test techniques used for composite evaluation were generally the same as those used for the resin materials in Task I. The tensile test specimen for composites was somewhat different from that used for resins. For unidirectional composites tested in the longitudinal direction, the specimen was straight sided, 15.2 cm long x .64 cm wide x .076 cm thick (6 in. x 1/4 in. x .030 in.). Fiberglass tabs were bonded on both ends for gripping. The transverse tensile specimen was 10.2 cm long x 1.28 cm wide x 0.191 cm thick (4 in. x 1/2 in. x .075 in.). Short beam shear specimens were .64 cm wide x .254 cm thick (1/4 in. x 1 in.) and were tested at a span-to-depth ratio of 1/4:

Tensile specimens for the cross-plied composites were similar to the transverse tensile specimen, but were 15.2 cm long (6 in.). This same specimen was used for creep and thermal cycling tests of cross-plied materials. Thermal cycling test specimens were raised into a furnace then lowered into a cooling zone to produce a thermal cycle over the temperature range of interest. Cyclic rate was about 12 per hour. A total of 1000 cycles was applied to each specimen and damage was measured through visual inspection and a post-test tension test to determine any changes in modulus and strength. Specimen dimensions were those used in the static tensile test.

The impact test was of the pendulum type (instrumented). The instrumented test is far superior to the standard test since it provides much more information regarding material behavior. Specimen dimensions were 5.5 cm long x l cm wide x l cm thick (2.165 in. x .394 in. x .394 in.). All specimens were unnotched.

3.2 Results and Discussion

3.2.1 As-Fabricated Data

The results of the tests on unidirectional composites in the as-fabricated condition are presented in Tables XII and XIII.

The flexural data reveal that the epoxy matrix composite had superior properties at the lower test temperatures. However, at 121°C all three materials had essentially the same strength and modulus, while at 177°C the Astrel 360 composites were the best. The flexural properties of the Astrel 360 appeared to be insensitive to test temperature over the range studied.

Similar results were apparent in the short beam shear tests in which the PR-286 matrix materials exhibited the highest strength at lower temperatures, but the Astrel 360 was the best at 177°C. The transverse tensile strengths at room temperature indicate that the epoxy formed a stronger interfacial bond than either of the thermoplastics. However, the superior high temperature strength retention of the Astrel 360 was demonstrated by the test results at 177°C, where those composites had higher strengths and moduli than the PR-286 matrix materials. The P-1700 matrix composites had zero strength at that temperature. In general, the tensile data followed the trend established by the other testing. In terms of strength retention the 360 matrix materials were the least sensitive to the effects of temperature, while the P-1700 matrix composites were the most sensitive. The best strength properties at lower temperatures were with the epoxy matrix composites, but this may have been due to better fiber properties in the prepreg.

The same general conclusions appear valid regarding the tensile data on cross-plied composites as shown in Table XIV. In this instance the better room temperature strength of the PR-286 composites can be attributed to a better fiber-matrix interfacial bond since the specimens failed along those planes. The elevated temperature properties of the 360 matrix specimens were again the best of all the materials.

The Charpy impact strengths of both thermoplastic composites were insensitive to test temperature up to 121°C. Apparently at that temperature the plasticity of the resin had not increased sufficiently to absorb additional energy. Load-deflection curves obtained for the materials during the impact tests indicated that the behavior of the Astrel 360 composites was essentially linear at both test temperatures while the P-1700 composites exhibited some plasticity. The PR-286 was the poorest material at room temperature but was essentially equivalent to the 360 composites at 121°C. The P-1700 composites had the best impact resistance at both test temperatures. Typical load-time curves from the instrumented tests are presented in Figs. 7 and 8 for room temperature and 121°C test temperatures, respectively. Comparison of the PR-286 composite curves at room temperature and 121°C indicates that failure mode changed from abrupt rapid crack propagation, characterized by a sharp drop in load to a combined delamination/tensile crack propagation characterized by the intermittant drops then relatively constant load carrying ability.

It was found necessary to modify the creep/stress-rupture test plan for crossplied specimens in the as-fabricated condition. Two specimens were to be tested for each condition; one for creep behavior and one for stress-rupture. The original intent was to conduct the tests at a stress level 50% of that measured at the temperature of interest under static conditions. As the data in Table XV. show, almost all the specimens ran for excessive periods of time at that stress. In order to obtain failures in a reasonable time period, the stress level for several specimens was increased as indicated in the table.

3.2.2 Environmental Effects on Static Properties

The composite data obtained under the statistically-designed test program are presented in Appendix C. From this information the effect of each of the exposures on the seven measured composites was estimated and the data are presented in Tables XVI through XXII. As with the resin data, in order to determine the effect of a given combination of test temperature, exposure time and environmental condition, the appropriate factors are added to the mean for the material of interest. As an example, Table XXIII presents the calculated composite shear strengths after the exposure to heated air (177°C). The zero exposure time data are the as-fabricated results. Appendix D is a full listing of all calculated composite properties which were part of the statistically designed test program.

The data in Table XXIII are shown graphically in Figs. 9, 10, 11 and 12 in which the shear strength at each of the four test temperatures is plotted as a function of exposure time at 177°C. Based on the curves the following conclusions were reached:

- 1) The exposure had very little effect on the shear strength of Astrel 360 matrix composites regardless of test temperature and exposure time.
- 2) The elevated temperature shear strength retention of the Astrel 360 matrix composites was the best of the three materials.
- 3) The P-1700 polysulfone and the PR-286 epoxy composites behaved in a similar manner although the absolute values for the epoxy composites were generally better.

Another method of examining the data is to determine the relative effects of the four exposures on a given composite property. Figures 13, 14 and 15 along with Fig. 11 illustrate the effect of the exposures on the composite shear strength as measured at 121°C. All four exposures had the same effect on a qualitative basis in that there was some degradation of the PR-286 epoxy and the P-1700 polysulfone systems, while the Astrel 360 polyarylsulfone matrix composites were unaffected as a function of exposure time. In several instances there was a good deal of scatter in the statistically predicted results, and the curves were drawn to fit the overall trend in the data. This practice was followed in the analysis of all the data, i.e. the overall trend over the 2400 hr exposure was examined. The lack of effect of the various environments on the shear strength of the Astrel 360 matrix composites is very encouraging, however in many instances the absolute strengths were no better than those of the other systems. In order for the Astrel 360 composites to show clear advantage, the relatively low as-fabricated shear strength must be improved.

The effects of the four environments on 121°C composite flexural strength are presented in Figs. 16 through 19. The results shown in Fig. 16 indicate that the flexural strength of the P-1700 composites was very slightly degraded after long exposures at 177°C. The PR-286 and Astrel 360 strengths were somewhat increased by the thermal aging. The 121°C exposure produced a slight increase in the flexural strength of all the materials.

The ambient and RH, UV, temperature conditions had similar effects on the composites as shown in Figs. 18 and 19. The P-1700 composites showed no net change after 2400 hrs while the Astrel 360 polyarylsufone and the PR-286 epoxy flexural strengths increased.

The flexural moduli of the composites responded much the same as the strengths as a result of the two elevated temperature exposures as shown in Figs. 20 and 21. None of the systems was adversely affected by the ambient or humidity exposures given in Figs. 22 and 23.

Plots were constructed to graphically illustrate the effect of each environmental exposure on each of the seven properties measured at each of four test temperatures for the three composite systems. As discussed above several of the curves exhibited scatter in the data as a function of exposure time. It is possible that these were real effects and the properties went through maxima and/or minima at times less than the full exposure of 2400 hours. However such detailed analysis was beyond the scope of this program and the results reported herein are the net effects or trends in the data over the full 2400 hr exposure period.

Summaries of the analysis of the results for each of the properties measured are given in Tables XXIV through XXX. In reviewing these results, it was found convenient to consider groups of properties which would be expected to respond to environment in a similar manner as a result of the properties being controlled by a common factor. Thus longitudinal flexural and tensile modulus were grouped as were transverse tensile strength and short beam shear strength, and longitudinal tensile and flexural strength. The commonality in the final grouping was based on the assumption of a tensile failure mode in the flexural test. The seventh property transverse tensile modulus should be strongly dependent on the behavior of the matrix and the results might be expected to correlate well with the Task I results for resin modulus.

A great deal of similar response to environment was found in the longitudinal modulus properties. These properties which are strongly dominated by the reinforcing filaments would be expected to be rather insensitive to environmental effects. Possible mechanisms for changes would most likely involve changes in the matrix to such a degree that stress transfer capability would be markedly altered. It was found that the ambient and heated air (121°C) exposures had no effect on the composite moduli regardless of test temperature. The heated air (177°C) exposure degraded

the tensile and flexural moduli of the P-1700 matrix composites at all test temperatures. This may have been due to interfacial degradation since Task I studies showed the resin modulus was affected only at -55°C test temperatures. The moduli of the other two composites were unaffected by the 177°C exposures.

The only point of disagreement between the effects of environment on the two moduli was regarding the humidity/temperature/UV condition. There was no effect on the flexural moduli of any of the composites. Tensile moduli of the PR-286 matrix composites were degraded at all test temperatures. However in all cases the calculated values were constant as a function of exposure time for the 240, 720, 1440 and 2400 hr exposures, but lower than the as-fabricated measured value by 25-35%. In view of the flexural modulus results it seems likely that some unaccounted factor affected the predicted results and the observed decreases were not caused by the environmental exposures but by some uncontrolled test variable.

In summary, the longitudinal tensile and flexural moduli were generally not affected by the environmental conditions investigated. The one exception was the P-1700 matrix composites under the 177°C exposure. However this is not a very significant observation since testing of materials in the as-fabricated condition previously indicated that P-1700 matrix composites are not useful for 177°C structural applications.

The composite shear strength and transverse tensile strength also responded in a similar pattern to the environmental exposures. In this instance the performance of the matrix plays an important role in composite behavior since both properties are largely controlled by matrix and/or interface strength characteristics.

The ambient exposure had little effect on the transverse tensile strengths of the composites. The only exception was the PR-286 matrix composite when tested at -55°C which resulted in an indicated loss of 30% of the as-fabricated strength. The effects of the ambient exposure on shear strength were somewhat more severe in that the PR-286 composites were affected at all test temperatures with the largest effect measured at 121°C where 45% of the original strength was lost. At the 20°C test temperature there was a 10% reduction. The data were somewhat confusing at the 177°C test temperature in that the calculated values indicated a clear downward trend in strength as a function of exposure time. However the as-fabricated strengths were approximately the same as the 2400 hr exposure value, so there was only a slight net change in the strength. It is possible that the as-fabricated 177°C shear strengths were in error (they were lower than anticipated) and that the ambient exposure had a degrading effect on the 177°C shear strength of the PR-286 matrix composites.

The only other indication of an effect of ambient exposure on shear strength was with the P-1700 matrix composites. The 121°C shear strength was slightly reduced as a function of exposure time. The 177°C results were somewhat similar to those of the PR-286 composites. The calculated values showed a downward trend

but the value calculated for the 2400 hr exposure was actually somewhat higher than that measured for the composite in the as-fabricated condition. In this case there was no reason to suspect the as-fabricated measurement since poor strength retention of P-1700 at 177°C had been previously demonstrated. Thus it seemed reasonable to conclude that no significant effect resulted from the ambient exposure of the P-1700 composites. The Astrel 360 matrix composites were unaffected at all test temperatures.

The humidity/temperature/UV exposure produced results generally similar to those of the ambient exposure. The transverse tensile strength of the PR-286 composite was reduced at all test temperatures as was the shear strength. Thus the exposure was more severe on the PR-286 composites than the ambient which produced a reduction in the -55°C strength only. The transverse tensile strength of the P-1700 matrix composites was unaffected by the exposure at three lowest test temperatures, while the Astrel 360 composites were slightly degraded at the three highest test temperatures.

The shear strength of the PR-286 and P-1700 composites underwent the same changes as the transverse tensile strength. The Astrel 360 was less affected, showing only a slight loss in 177°C shear strength.

The 177°C exposure resulted in large reductions in both transverse tensile and shear strengths for the P-1700 composites at all test temperatures. The shear strength of the PR-286 composites showed the same losses, but the transverse tensile strength was less affected, although significant losses were calculated for the -55°C and 177°C test temperatures. The Astrel 360 composite was not affected by the exposure with the exception of the 177°C transverse tensile strength which was reduced to zero. This was not too significant since the as-fabricated value was only 6.9 MN/m² (lksi).

The important conclusion which can be drawn from the transverse tensile and shear strength data is that with the exception of the 177°C exposure, both thermoplastic composites performed at least as well as the epoxy matrix composite. The 177°C exposure caused severe degradation of the P-1700 composite properties but this was not suprising. The Astrel 360 matrix composites performed as well or better than the epoxy in all instances, and in general the shear and transverse tensile strengths were not affected by the four exposures investigated. The good performance of the thermoplastics is particularly significant because these two properties are probably more easily affected by matrix behavior than the other properties studied in the program.

The next grouping of properties includes the longitudinal strengths, tensile and flexural, which should be primarily controlled by the reinforcing fiber although interfacial bond strength can certainly play an important part, particularly in flexural strength.

It was found that the two properties did not respond in a similar manner in several instances. The tensile strengths of the composites frequently were degraded while the flexural strengths were not. This was unexpected since the other failure modes possible in flexural loading (shear and compression) seemed much more likely to be initiated if degradation of the matrix occurred. If the tensile strength of the materials was actually reduced by the exposures, then the flexural strength should have shown a similar trend. A possible reason for a tensile degradation not showing up in the flexural test is that the entire volume of material is under maximum stress in the tensile specimen, while only the outer surface under the loading nose is at maximum stress in a three-point flexural test. Thus on a statistical basis a degradation in tensile strength might not be as readily detected in the flex test. However for those exposures where moisture and/or UV would be expected to be responsible for any degradation which occurred, effects should be noticed at the surface of the specimen first, and it could be argued that the flexural test would be more sensitive to such changes than the tensile test. A comparison of the data shows this was not the case. For example, the tensile strength of the Astrel 360 matrix composites underwent a substantial reduction after ambient exposure when tested at 20°C, 121°C, and 177°C. The flexural strengths of the composites were actually increased under most of those conditions.

The most reasonable explanation for the discrepancies between the two tests is that the tensile results were occasionally reduced due to experimental error such as grip failure, improper alignment, etc. In general such problems are much more likely to occur in the tensile test. Proper axial loading of highly anisotropic materials is difficult to accomplish. At elevated test temperatures the testing problems are further complicated by the possibility of failure in the adhesive used to bond the doublers to the gripped portion of the specimens. The data may point to this problem because many of the contradictory results occurred at elevated test temperatures.

Such problems do not occur in the flexural test and therefore it is felt that the flexural data more accurately reflect theeffects of the environmental exposures on fiber-controlled strength properties. That being the case the only material which was significantly degraded by the exposures was the P-1700 composite. The humidity, temperature, UV exposure caused loss in the -55°C and R.T. strengths, as did the 177°C exposure. The fact that the tensile strength of the composite was not changed by those conditions might point to shear or compression failure modes as the weak link which caused the reduction. The P-1700 composite shear strength data, discussed previously, did not show any degradation as a result of the RH, HA, UV exposure, but did indicate substantial reduction at all test temperatures as a result of the 177°C exposure.

The final property to be considered is the composite transverse tensile modulus. This is primarily dependent on the matrix tensile modulus although filament modulus and volume fraction also play a role. Since the latter two factors would not be expected to vary as a result of environmental exposure, the composite transverse tensile modulus should respond much the same as the resins.

For the most part a comparison of resin and composite performance is possible. The resin data were presented in Section II, and the composite data are given in Table XXX. Regarding the composite results it should be pointed out that all the 360 matrix data were heavily influenced by a strong negative effect for 2400 hour exposures (See Table XVIII). In several instances the data showed no effect of exposure times up to 1440 hours, but the large drop at 2400 hours resulted in an overall downward trend. Although there is no reason to suspect the validity of the 2400 hour effect other than its abruptness, the Astrel 360 matrix results would have been much better were it not for that single factor.

Taking the composite results as they stand the Astrel 360 matrix materials were degraded a good deal more than the other composites. Substantial losses in transverse tensile modulus were indicated for every exposure. This is definitely contrary to the neat resin data in which there was no change in tensile modulus for any of the conditions. The other composites more nearly reflected the resin results in that there were no significant effects with the exception of the fact that all the materials showed some loss in modulus at the 121°C test temperature for all the environmental exposures. Since the neat resins were not tested at that temperature, no comparison can be made.

Although changes in transverse tensile modulus are probably of secondary importance in most structural applications (since it is quite low to begin with), perhaps further effort should be devoted to examining its response to environmental effects. It is the only property for which all the materials exhibited an across-the-board degradation of property for all the environmental exposures.

There are several important conclusions which can be drawn from the study of environmental exposure of the composites. The P-1700 composites were generally degraded by the 177°C exposure. This, coupled with their poor retention of properties when tested at 177°C, strongly indicates that the material cannot be used in structural applications in which the service temperature is 177°C for a reasonable period of time. Although it was realized that 177°C was slightly above the Tg of the neat resin, it was felt that the high volume fraction filler provided by the filament might raise the use temperature. This was not found to be the case.

Excluding the 177°C conditions for the P-1700 composites, additional conclusions can be reached. None of the composites suffered degradation of fiber-controlled modulus (longitudinal tension and flex). The resin-controlled modulus, transverse tension, was the only property in which the Astrel 360 matrix composites were apparently degraded more than the others. There was some doubt concerning the data in that particular case, and further investigation may be warranted if a loss of transverse tensile modulus is considered significant. The fiber-controlled strength properties (longitudinal tension and flex) were generally unaffected, although the RH, HA, UV exposure resulted in degradation of the P-1700 matrix composites at the lower test temperatures. In the area of matrix or interface-controlled strength,

the thermoplastic matrix composites performed better than the epoxy material. The 360 matrix materials were particularly good in that neither the transverse tensile strength nor the shear strength was significantly degraded by any of the exposures. Both properties were degraded at most of the test temperatures for the epoxy matrix composites.

3.2.3 Environmental Effects on Pendulum Impact

The results of the pendulum impact testing of cross-plied environmentally-exposed composites are plotted in Fig. 24 and 25 for the room temperature and 121°C tests, respectively. Overall the testing indicated no adverse effects due to the exposures. The P-1700 composites had the highest as-fabricated impact strength at both test temperatures, and that ranking was retained after the exposures with the exception of the 121°C test after 1000 hrs of RH, HA, UV. In that case the PR-286 composite underwent an appreciable increase in impact strength and surpassed the P-1700 composite. The PR-286 composites exhibited an increase in impact strength after the RH, HA, UV exposure when tested at both R. T. and 121°C in comparison with the unexposed results. The load-time curves from the tests of the exposed specimens are presented in Fig. 26 for comparison with the curves for the unexposed specimens in Figs. 7 and 8. When tested at room temperature the exposed specimens underwent delamination as evidenced by the intermittant drops in load. This resulted in higher energy absorption and was probably caused by the slight drop in shear strength due to the exposure. Similarly the 121°C curve exhibited more delamination in the exposed specimen than in the unexposed specimen. In addition the initial loading portion of the curve was more nonlinear after exposure, indicating some plasticization of the resin. Both these factors would increase the impact energy.

3.2.4 Thermal Cycling

The results of the tensile tests on composites which were aged for 1000 hrs at 121°C then cycled 1000 times between -55°C and 177°C are summarized in Table XXXI. The as-fabricated data were previously given in Table XIV.

Some difficulty was encountered in thermal cycling of the P-1700 matrix composites. The desired upper temperature was 177°C which is sufficient to cause the P-1700 to soften considerably. As a result of the thermal gradients in the furnace (~10°C) several of the specimens were distorted since one end was above the softening temperature and the other end was below. This resulted in most of the specimens being unsuitable for testing in tension, although one specimen was tested. The thermal cycling tests on the other materials were conducted satisfactorily.

The PR-286 composites were slightly degraded in strength at the 20°C test temperature, but showed an increase at 121°C. In both cases the effect was not large. There was a good deal of scatter in the modulus measurements, but again there seemed to be no significant changes as a result of the exposures.

Due to the problems discussed above, the one test conducted on the P-1700 matrix composite has very little significance. The measurement did not indicate much effect on strength but the modulus appeared to be degraded.

The 360 matrix composites apparently were reduced in strength, especially at the 121°C test temperature where the strengths after exposure were less than half of those in the as-fabricated condition. Modulus values were reduced in a similar manner.

3.2.5 Creep/Stress Rupture

The results of the stress-rupture testing on 0° - 90° cross-plied composites with the three matrix resins are presented in Tables XXXII, XXXIII, and XXXIV. In every case the loading direction was at 45° to the reinforcement direction. As with the neat resin results, the PR-286 composites exhibited a good deal of scatter. For example, specimens 41 and 42 which were both exposed to 177°C for 1000 hrs responded very differently in the stress-rupture test at 121°C. The 121°C tests did indicate degradation in stress rupture life as a result of the exposure to the RH, HA, UV condition. Both specimens essentially failed during initial loading. The 177°C results for the PR-286 composites were complicated by the fact that the specimens did not rupture under the 50 percent UTS load. Specimen 48 finally failed at a stress over 50 percent higher than the static strength at that temperature. Again, this behavior was similar to that experienced with the PR-286 resin.

The P-1700 composite data, Table XXXIII, were more consistent. At 121°C test temperature the 177°C exposure reduced the rupture life to zero for both specimens. This fits with the other data which indicate that the material loses structural integrity at that temperature. The RH, HA, UV environment appeared to increase the stress-rupture life, possibly due to chemical changes caused by the UV. The ambient exposure had little effect on the material. The stress rupture life at177°C was quite short for all the specimens subjected to environmental exposure, again reflecting the unsuitability of the material for use at that temperature.

The 360 matrix composites showed enough scatter to make interpretation of the results difficult. The results did show that the as-fabricated specimens withstood $52.5~\mathrm{MN/m^2}$ (7.6 ksi) at 121°C for 189 hrs without failure, while the specimens subjected to the RH, HA, UV and ambient environments failed after 62 and 48 hrs, respectively, under the same conditions. The 177°C tests showed much more variation.

Typical creep curves for the 121°C test temperature are presented in Figs. 27, 28, and 29 for the PR-286, P-1700 and 360 matrix materials, respectively. Steady state creep rate for the epoxy composite was much lower than that of either of the thermoplastic composites. This observation is in agreement with similar findings for the neat resins, and leads to the conclusion that creep of thermoplastic matrix composites is an area of concern in stiuations such as those studied under this program, i.e.,

when there are no continuous fibers in the loading direction. It is clear that fibers will always be present in primary load-carrying directions, but secondary stresses could be sufficient to cause the behavior evident in Figs. 28 and 29. This is an area where further work is needed.

4.0 TASK III - FABRICATION OF DEMONSTRATION COMPONENT

The purpose of this task was to study the fabricability of graphite/thermoplastic composites using two gas turbine engine structures as demonstration items. The first was a blade in the configuration of the TF 30 third stage compressor blade. The second was the fan exit guide vane utilized in the JT9D-70 engine. In neither case was there an attempt to actually design a useful structure. Ply configurations were selected based on experience with other composite systems.

4.1 Materials

The prepreg for the fabrication study was prepared by UTRC using the procedures described previously. Material was supplied to Pratt & Whitney Aircraft in the form of prepreg tape, each tape being 152 cm lg. x $11\frac{1}{2}$ cm wide (5 ft. x $4\frac{1}{2}$ in.).

4.2 Blade Fabrication

The steps involved in fabrication of the blade were as follows:

- 1. Preparation of root blocks and wedge
- 2. Ply cutting
- 3. Ply layup
- 4. Die load
- 5. Hot press
- 6. Machining

The root blocks and dovetail wedge were titanium alloy. The wedge was etched with sodium dischromate solution dried, coated with polysulfone solution, then baked for 15 min. at 285°C. Root blocks were solvent rinsed, grit blasted, then coated with polysulfone in a similar manner.

All ply cutting was done in a clean room using cardboard templates and scissors or razor blades for cutting. Ply configuration was of the core-shell type with an outer shell of \pm 45° plies and an inner core of 0° plies. There were a total of 23 plies in the blade, with eight being \pm 45°.

Layup was accomplished by thermoforming each ply with a heat gun to the approximate contour required. Polysulfone solution was used to spot bond the plies together. Clamps were applied for a few minutes as each layer was added in order to allow the solvent (methylene chloride) to evaporate in air and bond the plies.

The layup and root blocks were placed in the die then placed in the hot press. The die contained five thermocouples for monitoring temperature during the hot press cycle. After placing the die in the press, contact pressure was applied during the heating cycle which took approximately 50 minutes. Full pressure of $13.8 \, \text{MN/m}^2$ (2ksi) was then slowly applied and held for five minutes. The part was cooled to 121°C under pressure, then removed from the press. Cooling time in the press was about $3\frac{1}{2}$ hrs. Fig. 30 shows the blade after removal from the mold. A small amount of flash is apparent around the leading and trailing edges and the tip, indicating that the entire surface received pressure during the molding operation.

The machining of the airfoil radii and the root was accomplished without problems, and the finished blade is shown in Fig. 31.

4.3 Vane Fabrication

The steps involved in the fabrication of the fan exit guide vane were essentially the same as those followed for the blade. An aluminum leading edge protection strip was integrally bonded in place during the molding operation. The attachment mechanism for the vane involved polyurethane blocks which were molded in place in a secondary dipping operation after the fabrication of the vane. Figure 32 shows two views of the finished fan exit guide vane.

5.0 CONCLUSIONS

Based on the results of this program, the following conclusions have been reached:

. Resin Behavior

The two thermoplastics exhibited environmental resistance as good as that of the epoxy reference material.

The strength properties of all the resins were somewhat degraded by the ambient and the combined humidity, temperature, ultraviolet exposures.

The 177°C thermal aging degraded the strength properties of the epoxy but had little effect on the thermoplastics.

None of the resins suffered any loss of modulus as a result of the environmental exposures.

The glass transition temperature of the epoxy was reduced after the humidity, temperature, UV exposure, while the thermoplastics showed little effect.

P-1700 polysulfone had no creep resistance at 177°C. Further work should be done on creep/stress-rupture to resolve questions which arose from scatter in the data.

. Composite Behavior

Longitudinal moduli (tensile and flexural) were unaffected by the environmental exposures with the exception of the P-1700 composites which were degraded by 177°C aging.

The Astrel 360 polyarylsulfone suffered very little loss in composite shear or transverse tensile strength properties which are controlled by matrix or interface strength. The P-1700 polysulfone composites were degraded by the 177°C exposure, but showed little effect as a result of the other exposures. The shear and transverse tensile strengths of the PR-286 epoxy composites were degraded by the ambient RH, HA, UV, and 177°C environments.

The longitudinal tensile and flexural strength tests produced inconsistent results in that tensile strength of the composites was degraded in several instances where the flexural strength was not. The most reasonable explanation of this apparent contradiction was that the tensile data were erroneous, and that the flexural results

were more representative of fiber-controlled composite strength. That being the case the P-1700 composite was the only system which suffered loss in strength; that occurring as a result of the 177°C and the RH, HA, UV exposures.

The transverse tensile modulus of the Astrel 360 matrix composites was apparently degraded under all exposure conditions. More testing should be conducted to verify this conclusion.

Pendulum impact behavior of all three composites was essentially unaffected by the exposures.

Thermal cycling between -55°C and 177°C resulted in little effect on the epoxy composites. The P-1700 polysulfone composites were severely distorted after the cycling, while the tensile properties of the Astrel 360 composites were significantly reduced. This is the one area where the thermoplastic composites suffered more damage than the epoxy composite.

Creep rates for the thermoplastic composites were higher than that of the epoxy composite. More testing should be conducted to clarify this behavior since there was a good deal of scatter in the results.

. Fabrication

Two complicated gas turbine engine structures, a fan blade and a fan exit guide vane, were fabricated from graphite fiber reinforced polysulfone without problems.

REFERENCES

- 1. Hoggatt, J. T.: Study of Graphite Fiber Reinforced Thermoplastic Composites, Final Report on Contract NOO019-73-C-0414, Naval Air Systems Command, February 1974.
- 2. Novak, R. C.: Materials Varables Affecting the Impact Resistance of Graphite and Boron Composites, Technical Report AFML-TR-74-196, September 1974.

Table I

Task I - Test Matrix for Neat Resins

	177	×		BCD	EFG	LIH .
Test Temp.	22	×	!	BCD	EFG	HIJ
He	-55	×	! :	BCD	EFG	HIJ
	2400		i	О	IJ	٦
Exposure Time, Hr	1440		i	O	ᅜ	Н
Exp	720		1	ф	曰	Ħ
	0	×				
Exposure Temp. °C	1.77			×		
Expo	22				×	
Exposure Conditions		As-fabricated	:	Heated Air (HA)	Ambienta	(HA/RH/UV ^b
Property			Tensile Strength	and Modulus	Flexural Strength	and Modulus

a22°C, 50% RH

b49°C, 95% RH, 61 cm from UV light

Table II

As-Fabricated Weat Resin Data

			3-Pt. F	Flexure			Tension	ion	
Tes	st Temp.		Q	田		מ		臼	
Resin	ى ى	MN/m^2	(ksi)	GN/m^2	(msi)	MIN/m ²	(ksi)	GN/m ²	(msi)
PR-286	-55	163	23.6	4.13	0.598	61	7.1	6.10	0.885
		211	30.6	4.34	0.629	52	7.6	5.73	0.832
	22	139	20.1	3.04	0,440	i	ı	4.23	0.613
	٠	130	18.9	3.21	0.465	63	9.1	4.14	0.600
•	177	17	2.4	0.29	0.042	\	0.7	0.28	0,040
		19	2.8	0.29	0.042	9	0	0.33	0.048
P-1700	-55	132	19.2	2,33	0.338	· 1	1	3.10	0.450
rolysulione		128	18.5	2.31	0.335	77	11.1	3.36	0,488
	22	118	17.1	2.71	0.393	777	o•9	3.08	944.0
		117	16.9	2.56	0.372	51	ή· Δ	3.04	044.0
	177	0	0	0		10	1.5	ı	ı
		0	0	0	0	0	0	0	0
, ,	1	-1				!	· - 1		(
360	-55	159	23.0	3.58	0.374	53	7 - 7	3.44	0.498
Polyaryl sulfane		163	23.6	2.54	0.368	09	8.7	3.37	0.488
	22	139	20.1	2.65	0.384	57	8.3	2.81	0.407
		145	21.0	2.82	0.408	80	11.6	2.99	0.433
	177	72	10.4	2.48	0.360	17	2.5	2.34	0.339
		95	8,1	2.10	0.304	19	2.7	2.37	0.344

Table III

Estimate of Environmental Effects on Resin Flexural Strength

286	10.77 ksi	6.93 1.89 -8.82	2.06 -1.57 -0.48	-6.37 4.73 1.65
_PR-286 Epoxy	74.26 MN/m ²	47.78 13.03 -60.81	14.20 -10.82 -3.31	-43.92 32.61 11.38
oo sulfone	15.39 ksi	3.11 3.18 -6.29	-1.59 0.34 1.24	2.68 0.18 -2.86
360 Polyarylsulfone	106.11 MN/m ²	21.44 21.93 -43.37	10.96 2.34 8.55	9.58 1.24 -19.7
-1700 ysulfone	10.72 ksi	14.94 5.68 -10.62	0.84 0.94 -1.78	-1.33 1.02 0.37
P-1700 Polysulf	73.91 MW/m ²	34,10 39,76 -73,22	5.79 6.48 -12.27	-9.17 7.03 2.55
	Mean	Rows Test Temps. $\hat{R}_1 (-55^{\circ}C)$ $\hat{R}_2 (20^{\circ}C)$ $\hat{R}_3 (177^{\circ}C)$	Columns Exposure Times Ĉ1 (720 hrs) Ĉ2 (1440 hrs) Ĉ3 (2400 hrs)	Treatments Environmental Conditions \hat{T}_1 (177°C) \hat{T}_2 (ambient) \hat{T}_3 (HA, RH, UV)

Table IV

Estimate of Environmental Effects on Resin Flexural Modulus

.	• . ⊓			
286 xy	O. ht msi	0.31	0.08	0.09
PR-286 Epoxy	3.0 GN/m ²	2.13 0.07 -2.21	0.55 -0.76 0.21	0.62 0.21 -0.83
360 Polyarylsulfone	0.37 msi	0.05 0.02 -0.08	0.01 -0.03 0.01	-0.02 0
30 Polyary	2.6 GN/m ²	0.34 0.14 -0.55	0.07 -0.21 0.07	-0.14 0 0.14
00 1fone	0.26 msi	0.14 0.12 -0.26	-0.03 0.03	0 -0.01 0.01
P-1700 Polysulfone	1.8 GN/m ²	0.97 0.83 -1.79	-0.21 0 0.21	0 -0.07 0.07
	Mean	Rows Test Temps. \hat{\hat{R}}_1 (-55^{\circ}) \hat{\hat{R}}_2 (20^{\circ}) \hat{\hat{R}}_3 (177^{\circ})	Columns Exposure Times \hat{c}_1 (720 hrs) \hat{c}_2 (1440 hrs) \hat{c}_3 (2400 hrs)	Treatments Environmental Conditions \hat{\hat{1}}_1 (177^{\column{0}}) \hat{\hat{\hat{1}}}_2 (ambient) \hat{\hat{\hat{1}}}_3 (HA, RH, UV)

Table V

Estimate of Environmental Effects on Resin Tensile Strength

Table VI

Estimate of Environmental Effects on Resin Tensile Modulus

	P-1700	00	360	0	PR-286	286
	Polysulfone	lfone	Polyarylsulfone	sulfone	Epoxy	sy
Mean	2.21 GN/m ²	0,32 msi	2.90 GN/m ²	0.42 msi	3.38 GN/m ²	0.49 msi
Rows Test Temps. \hat{R}_1 (-55^\c) \hat{R}_2 (20^\c) \hat{R}_3 (177^\c)	1.24 0.97 -2.21	0.18 0.97 -2.21	0.55 0 0.62	0.08	2.21 0.83 -3.03	0.32 0.12 -0.44
Columns Exposure Times $\hat{C}_1 \ (720 \text{ hrs})$ $\hat{C}_2 \ (1440 \text{ hrs})$ $\hat{C}_3 \ (2400 \text{ hrs})$	6.93	0.03	0.21	0.03	-0.14	-0.02
	-0.07	-0.01	0.14	-0.02	0.07	0.01
	0.14	-0.02	0	0	0.07	0.01
Treatments Environmental Conditions $\hat{T}_1 (177^{\circ}C)$ $\hat{T}_2 (ambient)$ $\hat{T}_3 (HA, RH, UV)$	-0.07	-0.01	0.28	0.04	0.07	0.01
	0.14	0.02	-0.14	-0.02	0.07	-0.01
	-0.07	-0.01	-0.14	-0.02	0	0

Table VII

Effect of 177°C Exposure on Resin Flexural Strength

hrs (ksi)		12.55 22.42 10.34		13.29	5.80		-3.015 13.02 -4.91
2400 hrs M/m ² (k		86.53 154.58 71.29		91.63	39.99		-20.75 89.77 -33.85
hrs (ksi)	lre_	15.27 21.52 9.75	စ္ပါ	16.00	14.71	ure	12.12
1440 hrs MV/m ² (k	-55°C Test Temperature	105.29 148.38 67.23	Test Temperature	110.32	32.48	177°C Test Temperature	-2.07 83.57 -41.37
rs (ksi)	re, -55°C	15.18 19.59 13.38	re, 20°C Test	15.91	8.35		-0.39 10.19 -2.36
720 hrs MN/m ² (177°C Exposure,	104.66 135.07 92.26	177°C Exposure,	109.70	57.57	177°C Exposure,	-2.69 70.26 -16.27
(ksi)		18.8 23.3 27.1		17.0	19.5		0 0 0
0 MN/m ²		129.6 160.7 186.9		117.2	134.4		0 63.4 17.9
		P-1700 360 PR-286		P-1700 360	PR-286		P-1700 360 PR-286

Table VIII

Effect of Ambient Exposure on Resin Flexural Strength

hrs (ksi)		14.90 19.92 21.94		15.63 19.99 16.90		-0.67 10.52 6.19
2400 hrs MN/m ² (k		102.74 137.35 151.28		107.77 137.83 116.53		-4.62 72.53 42.68
hrs (ksi)		17.62 19.02 20.85		18.35 19.09 15.81	. 1	2.05 9.62 5.10
1440 hrs MN/m^2 (k	-55°C Test Temperature	121.49 131.14 143.76	Temperature	126.52 131.63 109.01	177°C Test Temperature	14.13 66.33 35.16
ors (ksi)		17.53 17.09 24.48	20°C Test	18.26 17.16 19.45		1.96 7.69 8.74
720 hrs MN/m^2 (AMB Exposure,	120.87 117.84 168.79	AMB Exposure,	125.90 118.32 134.11	AMB Exposure,	13.51 53.02 60.26
(ksi)		18.8 23.3 27.1		17.0 20.5 19.5		0 0 0
$\frac{0}{MN/m^2}$		129.6 160.7 186.9		117.2 141.3 134.4		0 63.14 17.9
		P-1700 360 PR-286		P-1700 360 PR-286		P-1700 360 PR-286

Table IX

Effect of HA, RH, UV Exposure on Resin Flexural Strength

rs (ksi)		14.26 16.89 18.86		14.99	13,83			7.49	7 7 7
2400 hrs MN/m ² (k		98.32 116.46 130.04		103.36	95•36			-9.03 51.64	1/•17
		2 6 2		г 9 ,	- 1			- O O	O
hrs (ksi)	ě۱	16.97 15.99 17.77	φ!	17.71	12.74	re	!	1.41	O V
1440 hrs MN/m ² (k	Temperature	117.01 110.25 122.52	Test Temperature	122,11	87.8	Temperature		9.72	T 4 00
rs (ksi)	55°C Test	16.88 14.06 21.40	20 <mark>°C</mark>	17.61 14.12	16.37	177 ⁰ C Test		1.31	2•00
720 hrs MN/m ² (UV Exposure,	116.39 96.94 147.55	HA, EH, UV Exposure,	121.42	112.87	Donald Typo		9.03	39.02
(ksi)	HA2 EH2	18.8 23.3 27.1	HA, RH,	17.0	19.5	нα		0 0,0	
0 MN/m ²		129.6 160.7 186.9		117.2	134.4			63.4	L(•9
		P-1700 360 PR-286		P-1700 360	PR-286			P-1700 360	PR-286

Table X

Neat Resin Creep/Stress-Rupture Data

177°C Test Temperature

Resin	No.	Stres	ss <u>ksi</u>	Rupture Time hrs	Environmental Exposure
PR-286	27	2.1	.30	>621	As-fabricated
		3.1	•45	>191	
		3.7	•55	>144	
		4.1	.60	> 96	
		5.2	•75	>119	
		6.2	•90	>122	
		6.9	1.0	> 71	
		8.3	1.2	>119	
		10.3	1.5	>143	
		13.8	2.0	177	
	28	2.1	•30	0	As-fabricated
	29	2.1	•30	>114	1000 hrs @ 177 ⁰ C
	30	2.1	.30	>167	n n
		6.9	1.0	> 94	
		13.8	2.0	0	
	31	2.1	•30	>161	1000 hrs @ ambient
	32	2.1	•30	0	
	33	2.1	•30	>161	1000 hrs @ RH, HA, UV
	34	2.1	•30	0	!!
360	27	9	1.3	0.5	As-fabricated
	28	9	1.3	30	n -
	29	9	1.3	65	100 hrs @ 177 ⁰ C
	30	9	1.3	127	11
	31	9	1.3	81	1000 hrs @ ambient
	32	9	1.3	16	TI .
	33	9	1.3	14	1000 hrs @ RH, HA, UV
	34	9	1.3	33	11

Table XI

Task II - Test Matrix for Unidirectional Fiber Composites

			temp.			
	177	×	. цове	$(\mathrm{EFG})_{\mathrm{l}}$ at each temperature	HIJ	
emb.	121	×)2 at	temper	HIJ	
Test Temp.	22	×	a (BCD	each	HIJ	
	-55	×), and), at	HIJ	
			(BCI	(EF(
	2400		DIDS	5	ا ب	
Exposure Time, Hr	720 1440		$^{\mathrm{BB}_{12}}$ $^{\mathrm{C}_{1}\mathrm{C}_{2}}$ $^{\mathrm{D}_{1}\mathrm{D}_{2}}$ (BCD) $^{}_{1}$ and (BCD) $^{}_{2}$ at each temp.	FH FH	Н	
Exp	720		$^{\mathrm{BB}_{\mathrm{12}}}$	E	Ħ	
	0	×				
	177		x Z			
Exposure Temp. °C	121		\mathbf{x}^{T}	.·	•	
E T	22			×		
		eq	(HA)			
ure		ricat	. Air	ಥ +-	$q^{\Lambda\Omega}$	
Exposure Conditions		As Fabricated	Heated Air (HA)	Ambient ^a	HA/RH/UV ^b	
		<u> </u>		L		
rty		treng us	nsile	nar en g th	ength	
Property		Tensile Strength and Modulus	Trans. Tensile Strength	Interlaminar Shear Strength	Flex. Strength and Mod.	
		Tens	Tran Stre	Inte Shea	Flex	

a50% RH

b49°C, 95% RH, 61 cm from UV light

Table XII

As-Fabricated T-300 Composite Bending Data Unidirectional Reinforcement

Short Beam Shear	(ksi)	•				•	•	•	3.7		•	H	9	•	•	•	9.5	3.1		•	5.2	•	•	•	•	•
Short B	MN/m^2	141	151	120	121	81	89	26	25	•	82	80	. 89	65	77	58	22	21	ſ,	7. Z	36	37	38	4.1	017	36
											,															
F	(msi)			•	•	•	16.8	•	•		ň	3	6.	18.8	ī,			1	7.7	, m	11.7	3	•	9	6.	•
3-Pt. Flexure	GN/m^2	119	118	142	139	125	116	17	15		46	95	1115	130	109	110	ı	I	108	76	81	93	66	112	114	111
3-Pt.	(ksi)	284	269	280	252	128	130	53	۴3		172	171	181	175	121	116	17	17	175	901	105	116	127	141	138	128
	GN/m ²	•	•	1.93	•	. 88	06•	.37	• 30		1.19	1.18	1.25	1.21	†8 .	. 80	.10	080	1.21	.73	.72	.80	. 88	.97	.95	88
Teat Temn	D _O	-55		22		121		171		-	-55		22		121		177		-55		22		121	1	177	
																	•									
	Matrix	PR-286								i i	F-1700						. •		360							

Table XIII

As-Fabricated T-300 Composite Tensile Data Unidirectional Reinforcement

	(msi)	20.5		10.0	22.6	20.1	18.8	18.6	19.2	18.7	19.4	20.1	20.8	20.4	20.5	18.8	18.1	21.5	20.9	20.6	20.6	20.4	22.7	ı	21.6
L Tension	GN/m ²	142	135	137	156	139	130	128	131	129	134	139	143	141	142	130	125	148	144	1,42	142	141	157	ı	149
Longitudinal	(ksi)	195	169	151	170	183	165	103	73	149	149	139	130	131	152	70	33	131	111	119	125	140	152	120	131
Loi	GN/m ²	1.34	1.17	1.04	1.17	1.26	1.1^{l_1}	.71	.50	1.03	1.03	96.	.90	.90	1.05	.28	.23	.90	.77	.82	.86	96•	1.05	• 83	06.
	(msi)	1.63	1.57	1.54	1.52	0.87	06.0	0.13	0.14	1.11	1.26	1.19	1.19	1.01	1.05	0	0	1.22	1.15	1.13	ı	0.95	0.99	0.82	61.0
Transverse Tension	GN/m ²	11.2	10.8	10.6	10.5	0.9	6.2	6.0	1.0	7.7	8.7	8.2	8.2	7.0	7.2	0	0 -	8.4	7.9	7.8	ı	9.9	6. 8	5.7	5.5
Transverse	σ (ksi)	7.48	8.53	10.25	6.34	3.46	3,31	1.06	0.97	4.78	2.89	3.94	4.30	2.05	2.31	0	0	3.03	2.78	3.02	2.35	1.74	1.66	1.19	1.16
	MN/m^2	52	59	71	† †	54	23			33	19	28	30	17	16	0	0	21	19	21	16	12	11	ω .	ω
	Test Temp.	-55		22		121		177		-55		25		121		177		-55		22		121		177	
	Matrix	PR-286								P-1700								360							

Table XIV

As-Fabricated Cross-Plied Composite Data Tested at 45°

1 Charpy	fgy (ft-1bs)		18 1/2		15 1/2			28	24	25 1/2	5 _t			1,1	22 1/2	17	22 1/2		
Unnotched Charpy	Energy Joules (1	18 1/2	25	30	に			38	33	34 1/2				83	30 1/2	23	30 1/2		
	(msi)	3,22	•	1.31	1.45	0.23	0.14	2.82	2.63	2.15	2.68	1.35	1.60	2.74	2.70	2.50	2.50	2.50	2.26
	GN/m ²	22.1	19.8	0.6	10.0	1.6	0.9	19.5	18.2	14.8	18.5	9.3	11.1		18.6	17.3	17.3	17.3	15.6
Tension	(ksi)	33.1	41.3	11.8	9.5	7.1	3.1	14.3	16.2	8.5	11.0	4.2	3.9	13.0	13.0	10.1	10.2	0.6	•
	MIV/m ²	228	285	81	99	59	21	66	112	59		29	0†	06	906	69	70	62	19
Test	i cumb.	22		121		177		22		121		177	•	22		121		177	•
	System	T-300/PR-286						T-300/P-1700						T-300/360					

Table XV

Creep/Stress-Rupture of As-Fabricated Cross-Plied Composites
Tested at 45°

		Test Temp.	· ·	Stres	ss	Rupture Time
Material	No.	(°C)	MN/m^2	(ksi)	% of Static	(hrs)
T-300/P-1700	39	121	52 59	7•5 8 5	75 85	>113 16 1/2
	47 48	177 177	21 14	3.0 2.0	75 50	0 . 1 25
T-300/360	39	121	35 52 62	5.1 7.6 9.0	50 75 88	>308 >189 2.3
	47	177	31 46 56	4.5 6.75 8.1	50 75 90	>426 >191 1.4
	48	177	31 46	4.5 6.75	50 75	>240 3.6
T-300/P 286	48	177	19 22 24	2.7 3.2 3.5	75 89 97	>113 >132

Table XVI

Estimate of Environmental Effects on Composite Interlaminar Shear Strength

	P-1700 Polysulfone Matrix	700 ne Matrix	360 Polysulfone Matrix	e Matrix	PR-286 Epoxy Matrix	
Mean	48.33 MN/m ²	7.01 ksi	43.99 MN/m ²	6.38 ksi	76.67 MW/m ² 11.12 ksi	
Rows Test Temps.						
R ₁ (-55°C)	24.75	3.59	5.72	. 83		
\hat{R}_3 (121°C) \hat{R}_4 (177°C)	-11.58 -11.58 -26.89	-1.68 -3.90	-1.17 -7.24	. 39 - 1.7 - 1.05	34.96 5.07 -28.89 -4.19 -51.99 -7.54	
Columns Exposure Times						
Ĉ1 (720 hrs) Ĉ2 (1000 hrs) Ĉ3 (1440 hrs) Ĉ4 (2400 hrs)	1.65 8.69 -5.17 -5.24	.24 1.26 75	1.17 -4.48 3.72 -0.41	.17 .54	8.27 1.20 -0.2804 4.90 .71 -12.89 -1.87	
Treatments Environments						
Ŷ1 (177°C) Ŷ2 (121°C) Ŷ3 (ambient) Ŷ4 (HA,RH,UV)	-11.93 0.76 7.79 3.24	-1.73 .11 1.13	-0.028 2.69 1.48 -4.14	004 .39 .21	-12.89 -1.87 11.51 1.67 5.52 .80 4.1460	

Table XVII

Estimate of Environmental Effects on Composite Transverse Tensile Strength

	P-1700 Polysulfone Matrix	700 1e Matrix	360 Polysulfone Matrix) le Matrix	PR-286 Epoxy Matrix	86 atrix
Mean	13.58 MW/m ²	1.97 ksi	13.86 MN/m ²	2.01 ksi	24.82 MN/m ²	3.60 ksi
Rows Test Temps.						
Ř ₁ (–55°C) Ř ₂ (20°C)	8.00	1.16	8.69	1.26	8.27 17.86	1.20
\hat{R}_3^2 (121°C) \hat{R}_4 (177°C)	-3.93 -12.55	-0.57	-1.86 -6.48	-0.27 -0.94	-5.38 -20.75	-0.78
Columns Exposure Times						
Ĉ ₁ (720 hrs) Ĉ ₂ (1000 hrs) Ĉ ₃ (1440 hrs) Ĉ ₄ (2400 hrs)	-1.38 2.83 -6.92 -7.07	-0.20 0.41 -0.03	-1.86 -2.28 7.58	-0.27 -0.33 1.10 -0.49	-2.41 8.27 -4.55	-0.35 1.20 -0.66
Treatments Environments						
$\hat{\mathbf{T}}_{1}$ (177°C) $\hat{\mathbf{T}}_{2}$ (121°C) $\hat{\mathbf{T}}_{3}$ (ambient) $\hat{\mathbf{T}}_{h}$ (HA,RH,UV)	-6.62 1.52 0.76 4.27	-0.96 0.22 0.11 0.62	-4.27 7.10 -1.10	-0.62 1.03 -0.16	-1.72 1.31 5.72 -5.38	-0.25 0.19 0.83 -0.78

Table XVIII

Estimate of Environmental Effects on Composite Transverse Tensile Wodulus

	P-1700 Polysulfone Matrix	00 e Matrix	36 Polysulfo	360 Polysulfone Matrix	PR-286 Epoxy Matrix	36 atrix
Mean	4.69 GN/m ²	0.68 msi	6.34 GN/m ²	0.92 msi	6.14 GN/m ²	0.89 msi
Rows Test Temps.						
ĥ ₁ (-55°c) ĥ ₂ (20°c)	2.55 2.76	0.37 0.40	1.72	0.25	4.27	0.62
\hat{R}_3 (121°C) \hat{R}_4 (171°C)	-0.90 -1.34	-0.13 -0.63	-2.07 0.83	-0.30 0.12	-1.79 -5.44	-0.26 -0.79
Columns Exposure Times						
(720	0.34	0.05	76.01	-0.14	70.0	0.01
C2 (1000 hrs) C3 (1440 hrs)	1.1.	-0.21	1†*O	90.0	0.41	-0.06
$c_{ m h}$ (2400 hrs)	-0-07	-0.01	-2.55	-0.37	0.07	0.01
Treatments Environments						
ή <u>,</u> (177°C) ή̃2 (121°C)	-1.86 -0.41	-0.27	-2.07 1.38	-0.30 0.20	0.07	0.06
T3 (ambient) $\hat{\mathbb{T}}_{f l_1}$ (HA,RH,UV)	1.10 1.17	0.16 0.17	1.24	0.18	0.21 -0.76	0.03

Table XIX

Estimate of Environmental Effects on Composite Longitudinal Tensile Strength

	នា៎													
PR-286 Epoxy Matrix	n ² 129,22 ksi		28.98	22.78 -6.64	- 45.11			-13.89	21.28 -5.66	-1.71	1	13.93	-23.19	-6.66
Pi Epoxy	890.97 MN/m ²		199.82	157.07 -45.78	311.03		*	-95.77	146.73	-11.79		96.05	159.90	-45.92 -45.92
) ne Matrix	2 126.3 ksi		20.53	-4.13	-12.43			24.43	19.43 -18.58	-25.18		33.21	-20.41	10.13
360 Polysulfone Matrix	870.91 MN/m ²		141.55	-28.50 -27.30	-85.70			168.44	133.97 -128.11	-173.16		228.98	-138.59	69.85
P-1700 Polysulfone Matrix	119.75 ksi		28.75	-5.32 9.55	-32.97			-12.00	21.75 12.10	-21 . 84		2.23	-19.67	2.20
P-1 Polysulfo	825.68 MN/m ²		198.23	-36.68 65.85	-227.33			-82.74	149 . 97 83 . 43	-150.59		15.38	-135.62	15.17
	Mean	Rows Test Temps.	<u>.</u>	R2 (20°C) R3 (121°C)	_	Columns	Exposure Times	(720	C2 (1000 hrs) C3 (1440 hrs)	(5400	Treatments Environments	\sim	\sim	i3 (amotent) Tμ (HA,RH,UV)

Table XX

Estimate of Environmental Effects on Composite Longitudinal Tensile Modulus

286 fatrix	17.36 msi	0.28 0.21 0.93 -1.43	-2.13 0.46 0.46 1.21	2.73 -1.41 0.28 -1.61
PR-286 Epoxy Matrix	$119.70 \mathrm{GN/m^2}$ $17.36 \mathrm{msi}$	1.93 1.45 6.41 -8.96	-14.69 3.17 3.17 8.34	18.82 -9.72 1.93 -11.10
) ne Matrix	² 19.69 msi	-0.79 0.78 0.12 -0.11	0.77 -0.41 0.43 -0.79	0.13 -0.71 -0.18 0.76
360 Polysulfone Matrix	135.76 GW/m ²	-5.45 5.38 0.83 -0.76	5.31 -0.69 2.07 -5.45	0.90 -4.90 -1.24 5.24
P-1700 Ifone Matrix	$/\mathrm{m}^2$ 17.99 msi	-0.46 0.03 1.78 -1.36	-2.21 0.43 3.03 126	-3.66 2.68 1.03 -0.06
Polysul	124.04 GN/	-3.17 0.21 12.27 -9.38	-15.24 2.96 20.89 869	-25.24 18.48 7.10
	Mean	Rows Test Temps. \hat{R}_1 (-55°C) \hat{R}_2 (20°C) \hat{R}_3 (121°C) \hat{R}_3 (177°C)	Columns Exposure Times $\begin{array}{c} \hat{c}_1 & (720 \text{ hrs}) \\ \hat{c}_2 & (1000 \text{ hrs}) \\ \hat{c}_3 & (1440 \text{ hrs}) \\ \hat{c}_4 & (2400 \text{ hrs}) \end{array}$	Treatments Environments \hat{T}_1 (177°C) \hat{T}_2 (121°C) \hat{T}_3 (ambient) \hat{T}_4 (HA,RH,UV)

Table XXI

Estimate of Environmental Effects on Composite Flexural Strength

	Pol	P-1700 Polysulfone Matrix	360 Polysulfone Matrix) ne Matrix	PR- Epoxy	PR-286 Epoxy Matrix
Mean	773.76	773.76 MW/m ² 112.22 ksi	943.58 MN/m ²	136.85 ksi	1200,90 MN/m ² 174.17 ksi	$17^{l_{ exttt{f}}}$.17 ksi
Rows Test Temps.						
٠.	88,12		48.95	7.10	209.95	30.45
$\hat{R}_{3} (121^{\circ}C)$	403.00 194.78	28.25 28.25	80.33	11.65	33.23	41.74 1.82
_	•		20 • 0 TC -	10 10 10	0 + 10	70. 70. 70. 70. 70. 70. 70. 70. 70. 70.
Columns Exposure Times						
$\overline{}$	-145.21		-277.32	-40.22	-242.84	-35.22
C2 (1000 hrs) C3 (1440 hrs)	121.01	17.55	82 . 19 151 . 00	11.92	67.71 53.92	9.82 7.82
(2400	113.01		13	04.9	121.15	17.57
- E						
Treatments						
	-245.46		56.81	8.42	83.08	12.05
12 (121°C) Ta (ambient)	224. (8 55.71	32.60 8.08	-115.84 60.33	-16.84 8.75	-146.17	-21.20 -1.42
$\hat{\mathtt{T}}_{\mu}^{}$ (HA,RH,UV)	-35.92		-2.21	-0.32	72.88	10.57

Table XXII

Estimate of Environmental Effects on Composite Flexural Modulus

	P-1700 Polysulfone	00 e Matrix	360 Polysulfone Matrix	e Matrix	PR-286 Epoxy Matrix	86 atrix
Mean	76.46 GN/m ²	11.09 msi	104.18 GN/m ²	15.11 msi	106.87 GN/m ²	15.50 msi
Rows Test Temps.						
Ř ₁ (–55°C) Ř ₂ (20°C) Ř ₃ (121°C)	97 31.58 106.46	-0.14 4.58 15.44	-6.00 8.20 12.34	-0.87 1.19 1.79	10.68 25.86 22.20	-1.55 3.75 3.22
<u> </u>	15.79	2.29	-17, 48	-2.10	-37.37	-5. 4. 1.
Columns Exposure Times						
Ĉ ₁ (720 hrs) Ĉ ₂ (1000 hrs)	-17.37	-2.52 1.80	-27.51 6.96	-3.99 1.01	-22.40	-3.27 1.72
Ĉ ₃ (1440 hrs) Ĉ ₄ (2400 hrs)	 76 5.72	-0.11 0.83	-1.93 22.48	3.26	-10.83 21.51	-1.57 3.12
Treatments Environments						
$\hat{\mathbf{T}}_{1}$ (177°C) $\hat{\mathbf{T}}_{2}$ (121°C) $\hat{\mathbf{T}}_{3}$ (ambient) $\hat{\mathbf{T}}_{h}$ (HA,RH,UV)	-23.44 16.55 5.03 1.72	-3.40 2.40 0.73 0.25	6.14 -18.49 7.17 5.31	0.89 -2.70 1.04 0.77	17.58 -11.03 -13.38 6.89	2.55 -1.60 -1.94 1.00

Table XXIII

Effect of 177°C Exposure on Composite Shear Strength

hrs (ksi)		8.11 7.15 14.04	٠.		6.51 6.71 12.45		2.84 6.15 3.19			.62	
2400 h		55.92 49.30 96.81			44.89 46.26 85.84		19.58 42.40 21.99			4.27 36.34 7.65	
rs (ksi)		8.12 7.75 16.62	4		6.52 7.31 15.03		2.85 6.75 5.77			.63 5.87 2.42	
1440 hrs $\overline{\text{MN/m}^2}$ (k		55.99 53.44 114.59			44.96 50.40 103.63		19.65 46.54 39.78			4.34 40.47 16.69	
rs (ksi)	Test Temp.	10.13 6.56 15.87		20°C Test Temp.	8.53 6.12 14.28	Test Temp.	4.86 5.56 5.02	·	Test Temp.	2.64 4.68 1.67	
240 hrs MN/m ² (k	<u>-55°C</u>	69.85 45.23 109.42			58.81 42.12 98.46	121°C	33.51 38.34 34.61		177°C	18.20 32.27 11.51	
hrs (ksi)	177°C Exposure.	9.11 7.38 17.11		Exposure,	7.51 6.94 15.52	C Exposure,	3.84 6.38 6.26		C Exposure,	1.62 5.50 2.91	
720 h	1770	62.81 50.88 117.97		177°C	51.78 47.85 107.01	177°C	26.48 43.99 43.16		177°C	11.17 37.92 20.06	
(ksi)		11.8 7.6 21.1			9.6 5.3 17.4		7.2 5.7 10.8			3.8	
0 MN/m ²		81.4 52.4 145.5			66.2 36.5 220.0		49.6 39.3 74.5			22.1 39.3 26.2	
Matrix		P-1700 360 PR-286			P-1700 360 PR-286		P-1700 360 PR-286			P-1700 360 PR-286	

Table XXIV

Summary of Environmental Effects on
Composite Longitudinal Tensile Modulus

Test Temperatures -55⁰C 121°C 177°C 20°C Matrix Exposure N/EN/E Slight drop Slight drop 286 Ambient N/E1700 N/E Slight drop Slight drop Slight drop N/E360 N/E Slight drop Drop to ~70% Slight drop Drop to Drop to 60% RH, HA, UV 286 75% Drop to Slight drop Slight drop 1700 Slight drop 85% N/EN/E N/ESlight drop 360 N/ESlight increase 177°C 286 N/E N/E Drop to 75% Drop to Drop to 65% Drop to 70% 1700 65% N/E N/EN/E360 Slight drop 121°C N/ESlight drop 286 Slight drop Slight drop N/EIncrease N/E 1700 N/E N/E Slight drop Slight drop 360 Slight drop

Table XXV
Summary of Environmental Effects on
Composite Flex Modulus

		<u> </u>	Test Temperatu	res	
Exposure	Matrix	<u>-55[°]C</u>	20°C	<u>121°C</u>	177 ⁰ C
Amb ien t	286	N/E	N/E	Slight increase	Increase
	1700	N/E	N/E	Slight increase	N/E
	360	Slight increase	Increase	Increase	N/E
RH,HA,UV	286	N/E	N/E	Increase	Increase
	1700	Slight drop	N/E	N/E	~O
	360	Slight increase	Increase	Increase	N/E
177 [°] C	286	Slight increase	Slight increase	Increase	Increase
	1700	Drop to 60%	Slight drop	Drop to 60%	~O
	360	Increase	Increase	Increase	N/E
121°C	286	Slight drop	N/E	Slight increase	Increase
	1700	N/E	N/E	Slight increase	Increase
	360	N/E	Slight increase	N/E	Slight drop

Table XXVI
Summary of Environmental Effects on
Composite Shear Strength

Test Temperatures

Exposure	Matrix	<u>-55°C</u>	20°C	<u>121°C</u>	<u>177°</u> C
Ambient	286	Drop to 80%	Slight decrease	Drop to 55%	Slight decrease
	1700	N/E	N/E	Slight decrease	N/E
	360	N/E	Slight increase	N/E	N/E
RH,HA,UV	286	Drop to 75%	Slight drop	Drop to 45%	Drop to 25%
	1700	N/E	N/E	Slight drop	Slight drop
	360	N/E	N/E	N/E	Slight drop
177° C	286 1 7 00 360	Drop to 65% Drop to 65% N/E	Drop to 75% Drop to 70% Slight increase	Drop to 30% Drop to 45% N/E	Drop to 0 Drop to ~ 0 Slight decrease
121°C	286	Slight drop	N/E	Drop to 65%	N/E*
	1700	N/E	N/E	Drop to 65%	N/E
	360	N/E	N/E	Slight increase	N/E

^{*0} exposure value appeared low

Table XXVII

Summary of Environmental Effects on
Composite Transverse Tensile Strength

			Test Tem	peratures	
Exposure	Matrix	<u>-55°C</u>	<u>20°C</u>	<u>121°C</u>	<u>177°C</u>
Ambient	286	Drop to 70%	N/E	n/e	n/e
	1700	N/E	N/E	n/e	o
	360	N/E	N/E	n/e	n/e
RH,HA,UV	286 1700 360	Drop to 50% N/E N/E	Slight Drop N/E Slight Drop	Drop to 65% N/E Slight Drop	Drop to 0 ~0 Slight Drop
177°C	286	Drop to 60%	N/E	Slight Drop	Drop to 0
	1700	Drop to 60%	Drop to 60%	~O	0
	360	Slight Drop	Drop to 60%	Slight Drop	Drop to ~0
121°C	286	Drop to 60%	n/e	N/E	N/E
	1700	Slight Drop	n/e	Slight Drop	O
	360	N/E	n/e	N/E	Increase

Table XXVIII

Summary of Environmental Effects on
Composite Longitudinal Tensile Strength

				Tes	st Temperatures	
Exposure	Matrix	<u>-55°</u> (D	20°C	<u>121°C</u>	<u>177°C</u>
Ambient	286 1700 360	N/E N/E Slight Decre	_	N/E Decrease to 65%	Slight Decrease Slight Decrease Drop to 65%	•
RH,HA,UV	286 1700 360	Slight Decre N/E N/E		N/E Decrease N/E	Drop to 70% Slight Decrease Drop to 75%	N/E Slight Increase Slight Decrease
177°C	286 1700 360	N/E N/E Increase		N/E to 80% N/E	Drop to 80% Drop to 80% Slight Decrease	N/E Increase N/E
121°C	286 1700 360	N/E Drop to 60% Increase		N/E to 60% N/E	Slight Decrease Drop to 65% N/E	N/E N/E (~O) N/E

Table XXIX
Summary of Environmental Effects on
Composite Flex Strength

•		4 martin in the contract of th		Test Temperatures	
Exposure	Matrix	<u>-55°C</u>	<u>20°C</u>	<u>121°C</u>	<u>177°c</u>
Ambient	286 1700 360	Slight Decrease (85 Slight Decrease N/E	%) N/E N/E Increase	Increase Slight Increase Increase	N/E O Strength Slight Decrease
RH,HA,UV	286 1700 360	Slight Decrease Drop to 60% N/E	Slight Incr Drop to 70% Increase		Slight Increase O Strength Slight Decrease
177°C	286 1700 360	Slight Decrease Drop to 45% N/E	Slight Incr Drop to 70% Increase	Slight Decrease	Slight Increase O Strength Slight Decrease
121°C	286 1700 360	Slight Decrease Slight Decrease N/E	N/E N/E Increase	Increase Increase N/E	N/E N/E Slight Decrease

Table XXX
Summary of Environmental Effects on Composite
Composite Transverse Tensile Modulus

	· · · · · · · · · · · · · · · · · · ·	Test Tempera	tures	
Matrix	-55°C	20°C	<u>121°C</u>	<u>177°</u> C
2 86	N/E	N/E	N/E	~0
1700	N/E	${ t N}/{ t E}$	Slight Drop	~0
360	N/E	Drop to 60%	Drop to ~50%	N/E
286	Slight drop	n/e	Drop to 65%	n/E (~0)
	_	•		N/E (~O)
360	Drop to 65%	Drop to 35%	Drop to 20%	Slight drop
286	N/E	N/E	Slight drop	N/E (~0)
1700	Slight drop	Slight drop	Drop to 25%	O mod.
360	Drop to 50%	Drop to 20%	Drop to O	Drop to 50%
2 86	N/E	N/E	Slight drop	~0
	•		Drop to 50%	O mod.
360	n/E	Drop to 60%	Drop to 50%	N/E
	286 1700 360 286 1700 360 286 1700 360	286 N/E 1700 N/E 360 N/E 286 Slight drop 1700 N/E 360 Drop to 65% 286 N/E 1700 Slight drop 360 Drop to 50% 286 N/E 1700 N/E	Matrix -55°C 20°C 286 N/E N/E 1700 N/E N/E 360 N/E Drop to 60% 286 Slight drop N/E 1700 N/E N/E 1700 Slight drop Drop to 35% 286 N/E N/E 1700 Slight drop Slight drop 360 Drop to 50% Drop to 20% 286 N/E N/E 1700 N/E N/E 1700 N/E N/E	286 N/E N/E N/E Slight Drop 360 N/E Drop to 60% Drop to ~50% 286 Slight drop N/E Drop to 65% 1700 N/E N/E Drop to 75% 360 Drop to 65% Drop to 35% Drop to 20% 286 N/E N/E Slight drop 1700 Slight drop Slight drop 1700 Slight drop Slight drop Drop to 25% 360 Drop to 50% Drop to 20% Drop to 0 286 N/E N/E Slight drop 1700 Slight drop Drop to 20% Drop to 0

Data reflect resin modulus results assuming 2400 hr. effect on 360 composites is incorrect.

Table XXXI

Effect of 121°C Aging Plus Thermal Cycling^a on Cross-Plied Composite Tensile Properties Tested at 45°

<u> Iodulus</u>	msi	2.09 3.04	1.60	1.52	2.25	1.41
Tensile Modulus	GN/m^2	14.4 21.0	11.1	10.5	15.5	9.7
rength	ksi	31.8	17.2	12.5	11.1	6.4 7.3
Tensile Strength	MN/m^2	220 188	11.9	98	76	44 50
Test Temp.	5,	20	121	20	20	121
Matrix		PR-286		P-1700	360	

^aSpecimens aged 1000 hrs. @ 121°C then cycled 1000 times between -55°C and 177°C

Table XXXII
PR-286 Composite Stress-Rupture Results

No.	Test Temp.	Stress	Rupture 	Environmental Exposure
	<u>°C</u>	MN/m ² ksi	hrs	
39 40	121	60 8.7 62 9.0 69 10.0	> 89.1 >281 33	As-Fabricated As-Fabricated
41 42 43		62 9.0 62 9.0 60 8.7	0 >208 0.1	1000 hrs @ 177°C 1000 hrs @ 177°C 1000 hrs @ RH,HA,UV
44 45 46		62 9.0 60 8.7 62 9.0	0 >114 >328 >256	1000 hrs @ RH,HA,UV 1000 hrs @ ambient 1000 hrs @ ambient
47 48	177	69 10.0 14 2.0 19 2.7 22 3.2	>137 >115 >143	As-Fabricated As-Fabricated
		24 3.5 26 3.7 28 4.0	> 96 >143 >169	
		30 4.3 31 4.5 35 5.0	>198 >2 7 1 > 65	: - i
li o		38 5.5 41 6.0 45 6.5 14 2.0	> 72 > 96 41 0.3	1000 hrs @ 177°C
49 50 51 5 2		14 2.0 45 6.5 14 2.0 45 6.5	0 >140 0	1000 hrs @ 177°C 1000 hrs @ RH,HA,UV 1000 hrs @ RH,HA,UV
53 54	↓	14 2.0 14 2.0	>162 >208	1000 hrs @ ambient 1000 hrs @ ambient

Table XXXIII
P-1700 Composite Stress-Rupture Results

	Test			Rupture	Environmental
No.	Temp.	Stre	<u>ss</u>	Time	Exposure
•	<u>°C</u>	$\frac{MN/m^2}{m}$	<u>ksi</u>	<u>hrs</u>	
39	121	52	7.5	>1114	As-Fabricated
3)		59	8.5	16	
40		59	8.5	0.2	As-Fabricated
41		59	8.5	0	1000 hrs @ 177°C
42		59	8.5	0	1000 h rs @ 177°C
43		59	8.5	128	1000 hrs @ RH,HA,UV
44		59	8.5	>185	1000 hrs @ RH,HA,UV
45		59	8.5	0.4	1000 hrs @ ambient
46		59	8.5	45	1000 hrs @ ambient
47	177	21	3.0	0.1	As-Fabricated
48	İ	14	2.0	25. 2	As-Fabricated
49		14	2.0	3. 8	1000 hrs @ 177°C
50		14	2.0	0.9	1000 hrs @ 177°C
51		14	2.0	2.7	1000 hrs @ RH,HA,UV
52		14	2.0	5	1000 hrs @ RH,HA,UV
53		14	2.0	4.2	1000 hrs @ ambient
54	*	14	2.0	0.3	1000 hrs @ ambient

Table XXXIV

360 Composite Stress-Rupture Results

		* "			
	Test			Rupture	Environmental
No.	Temp.	Stres	38	Time	Exposure
1,01					· · · · · · · · · · · · · · · · · · ·
	°C	MN/m^2	ksi	hrs	
		•			
39	121	36	5.1	>308	As-Fabricated
3 <i>)</i> ,		52	7.6	>189	
		62	9.0	2	
40		62	9.0	0	As-Fabricated
41		62	9.0	0	1000 hrs @ 177°C
42		62	9.0	0.3	1000 hrs @ 177°C
43	<u>.</u>	52	7.6	6.2	1000 hrs @ RH,HA,UV
44		62	9.0	1.4	1000 hrs @ RH,HA,UV
45		52	7.6	48	1000 hrs @ ambient
46	₩	62	9.0	8.3	1000 hrs @ ambient
47	177	31	4.5	>426	As-Fabricated
•	ĵ.	46	6.7	>191	
		56	8.1	1.4	
48		31	4.5	>240	As-Fabricated
*	·	46	6.7	3.6	
49		46	6.7	> 65	1000 hrs @ 177°C
50		46	6.7	0	1000 hrs @ 177°C
51		46	6.7	1.7	1000 hrs @ RH,HA,UV
52		46	6.7	3. 6	1000 hrs @ RH,HA,UV
53		46	6.7	4.0	1000 hrs @ ambient
54	4	46	6.7	0.7	1000 hrs @ ambient

CREEP OF PR-286 AT 177°C, 2.1 MN/m² (0.3 ksi)

INSTRUMENTED PENDULUM IMPACT LOAD—TIME CURVES T—300 CROSS—PLIED COMPOSITES TESTED AT ± 45° R.T. TESTS

i 500 l

1780

INSTRUMENTED PENDULUM IMPACT LOAD—TIME CURVES T-300 CROSS—PLIED COMPOSITES TESTED AT ± 45°

121°C TESTS

EFFECT OF 177°C EXPOSURE ON -55°C COMPOSITE SHEAR STRENGTH

EFFECT OF 177°C EXPOSURE ON 20°C COMPOSITE SHEAR STRENGTH

EFFECT OF 177°C EXPOSURE ON 121°C COMPOSITE SHEAR STRENGTH

EFFECT OF 177°C EXPOSURE ON 177°C COMPOSITE SHEAR STRENGTH

EFFECT OF ENVIRONMENT ON UNNOTCHED COMPOSITE CHARPY IMPACT ENERGY

86

INSTRUMENTED PENDULUM IMPACT LOAD-TIME CURVES

T-300/PR-286 CROSS-PLIED COMPOSITES TESTED AT ±45° EXPOSED 1000HRS. @R.H., H.A., U.V.

CREEP OF T300/P1700 AT 121°C, 58.6 MN/m 2 (8.5 ksi) CROSS—PLIED TESTED AT 45°

CREEP T300/360 AT 121°C, 52.5 MN/m² (7.6 ksi) CROSS—PLIED TESTED AT 45°

T-300 GRAPHITE /P-1700 POLYSULFONE BLADE AFTER REMOVAL FROM MOLD

T-300 GRAPHITE /P-1700 POLYSULFONE BLADE AFTER MACHINING

T-300 GRAPHITE /P-1700 POLYSULFONE FAN EXIT GUIDE VANE

APPENDIX A

RESIN DATA FROM TEST MATRIX

Table A-1 Resin Flexural Strength Measurements $\begin{array}{c} \text{After Environmental Exposure} \\ \text{(MN/m}^2) \end{array}$

	c_1	c_2	c_3	
R_1	T ₂ 124.1	^T 3 122.0	^T l 77.9	
R ₂	T ₁ 115.1	T ₂ 117.9	^T 3 _{106.2}	P - 1700
R3	Т3 0.0	^T l 1.207	^T 2 .83	
	$\mathbf{c_1}$	c_2	^C 3	
Rı	^T 1 136.5	^T 2 134.5	^T 3 111.7	Astrel 360
R ₂	^T 3 100.7	^T l 144.1	^T 2 139.3	
R ₃	т _{2 48•3}	^T 3 46.9	^T 1 93.1	
	c_1	c ₂	c ₃	
R ₁	^T 3 _{129.6}	^T l 53.1	т _{2 183.} 4	PR-286

^T3 119.9

17.2

 T_2

 T_1

т₃

22.1

7.38

T₂ 119.9

15.9

R₂

R₃

Table A-2

Resin Flexural Modulus Measurements
 After Environmental Exposure
 (GN/m²)

	C ₁	c ₂	c ₃	
Rı	^T 2 2.48	^T 3 2.83	T ₁ 3.17	
R ₂	^T l 2.41	^T 2 2.62	^T 3 2.89	P -1 700
R ₃	^T 3 0.0	Tl o.o	T ₂ .07	
	$^{\mathrm{C}}$	c ₂	c ₃	
R _l	^T l 2.69	^T 2 2.83	^T 3 3.31	
R_2	^T 3 3.03	^T l 2.62	^T 2 2.55	Astrel 360
R ₃	^T 2 2.27	^T 3 1.72	^T l 2.55	
	c _l	$^{\mathrm{C}}_{2}$	^C 3	
Rl	^T 3 5.45	^T l 4.96	T ₂ 5.10	
R ₂	T ₂ 3.86	^T 3 0.97	T _{1 4.48}	pr - 286
R ₃	^T l 1.45	T ₂ 0.69	T _{3 0.21}	

Table A-3 Resin Tensile Strength Measurements After Environmental Exposure (MN/m^2)

	c_1	c_2	c_3	
R ₁	T ₂ 57.9	^Т 3 35•37	^T 1 39•51	
R_2	T ₁ 64.8	^T 2 48.20	^T 3 53.78	P -1 700
R ₃	^T 3 0.0	T ₁ 0.0	T ₂ 0.0	

	c ₁	c ₂	c ₃
R ₁	T ₁ 52.4	T ₂ 52.20	^T 3 55•23
R ₂	^T 3 38.54	^T 1 _{79•29}	^T 2 27.03
^R 3	T ₂ 40.00	^T 3 27.30	^T l 2.06

Astrel 360

	C ₁	c ₂	c ₃
Rl	^T 3 47.85	^T 1 20.20	T ₂ 22.06
R_2	T _{2 33.8}	^T 3 _{23.17}	^T l 13.24
R ₃	^T 1 17.79 *	^T 2 10.27	^T 3 0.69

PR-286

^{*} Estimated

Table A-4 Resin Tensile Modulus Measurements After Environmental Exposure (GN/m^2)

	Cl	c ₂	°3
R	^Т 2 3•99	^T 3 3.31	T ₁ 3.10
\mathbb{R}_2	^T l 3.31	T _{2 3.03}	T _{3 3.10}
^R 3	^Т з о.о	T ₁ 0.0	T ₂ 0.0

P-1700

	c_1	c_2	c ₃
$^{\mathrm{R}}$ 1	^T l 3.99	T ₂ 3.17	^T 3 3.24
R ₂	^T 3 .27	^T 1 2.96	^T 2 2.83
R ₃	T ₂ 2.27	^T 3 2.07	^T 1 2.55 *

Astrel 360

	Cl	c_2	^C 3
R _l	^T 3 5.58	^T l 5 . 38	^T 2 5•52
R_2	^T 2 3.65	^T 3 4.55	^T l 4.55
R ₃	T1 0.41 *	T ₂ 0.62	^T 3 0.0

PR-286

^{*} Estimated

APPENDIX B

CALCULATED RESIN PROPERTIES

Table B-1

Effect of 177°C Exposure on Resin Flexural Strength (MN/m²)

	0	720 hrs.	1440 hrs.	2400 hrs.	
P-1700	129.6	104.67	105.29	86.53	
360	160.6	135.07	148.38	154.58	
PR-286	186.8	92.26	67.23	71.29	
	177°C Expo	sure, 20 ⁰ C Test	Temperature		
P-1700	117.2	109.70	110.32	91.63	
360	141.3	135.56	148.86	155.07	
PR-286	134.4	57.57	32.48	39.99	
177°C Exposure, 177°C Test Temperature					
P-1700	0	-2.69	-2.07	-20.788	
360	63.4	70.26	83.57	89.77	
PR-286	17.9	-16.27	-41.37	-33.85	

Table B-2 Effect of Ambient Exposure on Resin Flexural Strength (MN/m^2)

AMB.	Exposure,	- 55℃	Test	Temperature
------	-----------	--------------	------	-------------

	<u>o</u>	720 hrs.	1440 hrs.	2400 hrs.
P-1700	129.6	120.87	121.49	102.74
360	160.6	117.84	131.14	137.35
PR-286	186.8	168.79	143.76	151.28
	AMB. Expo	osure, 20 ⁰ C Test	Temperature	
P-1700	117.2	125.90	126.52	107.77
360	141.3	118.32	131.62	137.83
PR-286	134.4	134.11	109.01	116.52
	AMB. Expo	osure, 177 ⁰ C Tes	t Temperature	
P-1700	0	13.51	14.13	-4.62
360	63.4	53.02	66.33	72.54
PR-286	17.9	60.26	35.16	42.68

Effect of HA, RH, UV Exposure on Resin Flexural Strength (MN/m²)

Table B-3

HA, RH, UV Exposure, -55° C Test Temperature

	<u>o</u>	720 hrs.	1440 hrs.	2400 hrs.
P-1700	129.6	116.39	117.01	98.32
360	160.6	96.94	110.25	116.46
PR-286	186.8	147.55	122.52	130.04
	HA, RH, UV E	xposure, 20 ⁰ C T	est Temperatu	re
P-1700	117.2	121.42	122.11	103.36
360	141.3	97.35	110.73	116.94
PR-286	134.4	112.87	87.84	95.36
	HA, RH, UV	I Exposure, 177	7 ⁰ C Test Tempe	rature
P-1700	0	9.03	9.72	-9.03
360	63.4	32.13	45.44	51.64
PR-286	17.9	39.02	14.00	21.51

Table B-4

Effect of 177° C Exposure on Resin Flexural Modulus (GN/m²)

		0 72	20 hrs	1440 hrs	2400 hrs
P-1700		2.28	2.62	2.83	3.03
360		2.55	2.90	2.62	2.90
PR-286		4.20	6.34	5.03	6.07
		177°C Expo	osure, 20°C Test	Temperature	
P-1700		2.62	2.41	2.62	2.83
360		2.69	2.69	2.41	2.69
PR-286		3.10	4.27	2.96	4.00
		177 ⁰ C Expos	ure, 177°C Test	Temperature	
P-1700	•	0	-0.14	0	0.21
360		2.28	2.00	1.72	2.00
PR-286		0.28	2.00	0.62	1.65

Effect of Ambient Exposure on Resin Flexural Modulus (GN/m²)

Table B-5

Ambient Exposure, -55°C Test Temperature

		720 hrs	1440 hrs	2400 hrs
P-1700	2.28	2.48	2.69	2.90
360	2.55	2.96	2.69	2.96
PR-286	4.20	5.93	4.62	5.58
	Amb	ient Exposure, 20 ⁰ 0	Test Temperatur	· e
P-1700	2.62	2.28	2.48	2.69
360	2.69	2.83	2.55	2.76
PR-286	3.10	3.86	2.55	3.58
	Amb i	ent Exposure, 177°C	Test Temperatur	e
P-1700	0	-0.28	-0.14	0.07
360	2.28	2.14	1.86	2.14
PR-286	0.28	1.52	0.21	1.24

Table B-6
Effect of HA, RH, UV Exposure on Resin

Flexural Modulus
(GN/m²)

HA, RH, UV Exposure, -55°C Test Temperature

	0	720 hrs	1440 hrs	2400 hrs
P-1700	2.28	2.69	2.83	3.10
360	2.55	3.10	2.83	3.10
PR-286	4.20	4.90	3.58	4.62
	HA, RH, UV	Exposure, 2000 T	est Temperatur	•e
P-1700	2.62	2.48	2.69	2.90
360	2.69	2.90	2.62	2.90
PR-286	3.10	2.90	1.52	2.55
	HA, RH, UV	Exposure, 177°C	Test Temperatu	re
P-1700	0	-0.14	0.07	0.28
360	2.28	2.21	1.93	2.21
PR-286	0.28	0.55	-0.83	-0.28

HA, RH, UV Exposure, -55°C Test Temp

	0	720 hrs	1440 hrs	2400 hrs
P-1700 360	76 . 5 56 . 5	48.33 54.19	35.30 63.43	38 . 54 38 . 61
PR-286	50 . 3	45.09	29.86	23.92
	HA, RH, U	V Exposure, 20°C	Test Temp	
P-1700	46.2	59.64	46.61	49.85
360 PR - 286	68.3 62.7	49.16 38.47	58.47 23.17	33.65 17.31
1 N=200	02.7	. 30 • 41	52.11	∓ (•⊃⊤
	HA, RH, U	V Exposure, 177°C	Test Temp	
P - 1700	5 . 17	4.07	- 8 . 96	-5. 72
360	17.9	23.99	33.30	8.48
PR-286	5.17	24.62	9.38	3.52

Table B-8

Effect of 177°C Exposure on Resin
Tensile Strength
(MN/m²)

177°C Exposure, -55°C Test Temp.

	0_	720 hrs	1440 hrs	2400 hrs
P-1700	76.5	53.37	38.47	43.58
360	56.5	58.40	67.71	42.87
PR-286	50.3	38.27	23.03	17.10
	177°C	Exposure, 20°C T	est Temp.	
P-1700	46.2	64.74	51.64	54.88
360	68.3	53.44	62.68	37.92
PR-286	62.7	31.65	16.34	10.48
	177°C	Exposure, 177°C	Test Temp.	
P-1700	5.17	9.10	-3.93	-0.69
360	17.9	28.27	37.51	12.76
PR-286	5.17	17.79	2.55	-3.31

Table B-9 $\begin{tabular}{ll} Effect of Ambient Exposure on Resin \\ Tensile Strength \\ (MN/m^2) \\ \end{tabular}$

Ambient Exposure, -55°C Test Temp.

	0	720 hrs	1440 hrs	2400 hrs
P-1700	76.5	53•99	40-96	44.20
360	5 6 . 5	53.57	62.81	37.99
PR-286	50.3	43.23	27•99	22.06
	Ambient	Exposure, 20°C Te	est Temp.	
P - 1700	46.2	65•30	52.26	55.50
360	68.3	48.54	57 . 85	33.03
PR-286	62.7	36.61	21,30	15.44
	Ambient	Exposure, 177°C T	lest Temp.	
P-1700	5.17	9.72	15.33	-0.07
360	17.9	23.37	32.68	7.86
PR - 286	5.17	22.75	7•52	1.65

Table B-10 Effect of HA, RH, UV Exposure on Resin Tensile Modulus $({\rm GN/m}^2)$

HA, RH, UV Exposure, -55°C Test Temp.

	0	720 hrs	1440 hrs	2400 hrs
P-1700 360	3.24 3.38	3.65 3.52	3•31 3•17	3.24 3.31
PR - 286	5. 93	5.38	5.65	5.58
	HA, RH, UV	Exposure, 20°C Tes	t Temp.	
P-1700	3.03	3.31	2.96	2.96
360	2.90	2.96	2.62	2.76
PR-286	4.20	4.00	4.27	4.21
	HA, RH, UV	Exposure, 177°C Tes	st Temp.	
P-1700	0	0.14	-0.14	-0.21
360	2.34	.2.34	2.00	2.14
PR - 286	3.03	0.14	0.34	0.34

Table B-11 . Effect of Ambient Exposure on Resin Tensile Modulus (GN/m^2)

Ambient Exposure, -55°C Test Temp.

		720 hrs	1440 hrs	2400 hrs
P-1700	3.24	3.86	3.52	3.45
360	3.38	3.52	3.17	3.31
PR-286	5.93	5.38	5.65	5.58
	Ambient	Exposure, 20°C To	est Temp.	
P-1700	3.03	3.52	3.24	3.17
360	2.90	2.96	2.62	2.76
PR-286	4.21	4.07	4.27	4.27
	Ambient	Exposure, 177°C	Test Temp.	
P-1700	0	0.3 ¹ 4	0.07	0
360	2.3 ¹ 4	2.3 ¹ 4	2.00	2.14
PR-286	0.28	0.1 ¹ 4	0.41	0.34

Table B-12

Effect of 177°C Exposure on Resin
Tensile Modulus
(GN/m²)

177°C Exposure, -55°C Test Temp.

	0	720 hrs	1440 hrs	2400 hrs						
P-1700	3.24	3.59	3.31	3.24						
360	3.38	3.93	3.58	3.72						
PR-286	5.93	5.45	5.72	5.65						
	177°C Exposi	ıre, 20°C Test Ter	mp.							
P-1700	3.03	3.31	2.96	2.90						
360	2.90	3.38	3.03	3.17						
PR-286	4.21	4.14	4.41	4.34						
	177°C Exposure, 177°C Test Temp.									
P-1700	0	0.14	-0.14	-0.21						
360	2.34	2.76	2.41	2.55						
PR-286	0.24	0.21	0.48	0.41						

APPENDIX C

COMPOSITE DATA FROM TEST MATRIX

Table C-1

Composite Tensile Strength Measurements After Environmental Exposure $$({\rm MM/m}^2)$$

			R,	1	H C	Ŋ	絽	n	ď
٠									
	$c_{l_{T}}$	T3	871.5	$^{\mathrm{T}_{1}}$	1107	T,	530.2	\mathbb{T}_2	785.3 279.9
	: :	T2	698	T3	276.5	T_1	1038	$^{\mathrm{T}_{\mathrm{L}}}$	785.3
360 Matrix	ی	ET I	1034	Τ.	1172	H S	958	T3	855
360	ŗ.	$^{\mathrm{T}_{\downarrow}}$	1275	T ₂	814	₽3	848	\mathbf{T}_{1}	1220
			쩐	-1	Ħ,	N	ᄶ	1	Ą
				.				, t was	
	ζ Ţ	T_2	731	T3	777.8	T	771.6	T_{\downarrow}	419.9
×	స్త	${f r}_1$	1048	$\mathrm{T}_{\mathrm{l}_{\mathrm{l}}}$	905.6	$^{\mathrm{T}}_{2}$	905.3	$^{\mathrm{T}_3}$	780.5
) Matrix	C2	$\dagger_{ m T}$		\mathbb{T}_2	745	T3	793 1096	\mathbb{T}_1	814
₹	c_1	\mathbf{T}_3	1069	$\mathbb{T}_{\mathbb{L}}$	731	$_{\mathrm{T}}$	793	$^{\mathrm{T}}_{2}$	379
7-1/00							!		

1128

931

835.291469

Ω₇

 \mathcal{S}

ی

ű

PR-286 Matrix

1145

T2 724

1200

1124

1

T₂

932.9

883

800

 \mathtt{T}_{4}

Ţ

819.8

009

422.0

H

E_S

* Estimated

Table C-2

T3 118.6 127.6 97.2 r L Т2 딤 <u>1</u> 76.5 R2 ᄯ R3 짟 Composite Tensile Modulus Measurements After Environmental Exposure (GN/m^2) 130.72 138.6 145.51143.4 128.9 125.9 146.2 122.7 c_{1}^{\dagger} T_{\downarrow} 360 Matrix 131.7.124.8 128.9140.7 $^{\circ}_{3}$ E Z T3 H H Ę ಬ T2 **T**3 딤 138.11 146.9 145.5 133.8 T3 $C_{\mathbf{I}}$ E1 2 17 ဌ H_H $^{\mathrm{R}_3}$ Ŗ 82 94.5 109.6 123.4 터 $\Gamma_{\downarrow\downarrow}$ Çţ P-1700 Matrix 106.2 129.6 201.3 95.15 142.7 G3 E Z ${\rm T}_{\downarrow}^{\rm T}$ R1111.7 1142.0 R3113.1 136.5 T3 EU H ಬ್ಬ Ė 111.0 IJ R2 99.3 ۲ EU

116.5 139.3

133.4

ζ[†]

Ç

ς N

PR-286 Matrix

끕

138.6 108.9 118.6

T3

 $\mathrm{T}_{\downarrow\downarrow}$

122.7

96.5 148.9 117.2

 ${\rm I}_{\rm J}$

EZ

Table C-3

Composite Transverse Tensile Strength Measurements After Environmental Exposure

 (MN/m^2)

360 Matrix

ς τ

رر ک

ညီ

رح اک

P-1700 Matrix

Matrix	
PR-286	

Ω̈́

 $^{\circ}_{2}$

Sa

 ζ_1

c_{14}	T3	13.51	T ₁ 3.303	T _l ,	T2 13.8
ر ₃	$z_{ m L}$	17.65	T3 19.17	T ₁ * T 15.279	T _t T ₂ 6.212 13.8
c ₂	$\mathbb{T}_{\mathbb{T}}$	15.8	T4 15.86	T2 9•0	T ₃ 5.58
c_1	$\mathrm{T}_{\!$	15.65	T2 16.00	T ₃	27.E
•		$^{\mathrm{R}}_{1}$	R ₂	R3	$R_{J_{4}}$

T3 13.51	T ₁	T ₁
65	3 17	* .0

T₃ T₂ 24.41 21.93

T1 15.31

R3

4.48

. В

Ŧ,

T2 41.4

1,1 49.0

T3 37.99

R2

57.9

31.65

R

ated
Estime
*

10.866

T3

R₃ 13.58

T2 T1

Ry.

R2 10.41 25.86 28.82 22.96

11.93

R₁ 23.3029.0

Τ3

		$\sigma_{t_{1}}$	r -1	10.62	т _ф 9.93	т ₂ 3.59	T ₁ * T ₃ 0.841
	strix	చ్రో	$^{\mathrm{T}}\!$	8.27	T2 9.17	T3 4.62	T1 * 0.634
	PR-286 Matrix	υ _α	\mathbb{T}_3	11.93 8.27	T1 9.38	T ₁ 4	T2 1.062
	囚	$^{\rm C}$	T2	11.10	Т ₃ 8.14	TT 5.79	T, 0.0
				R.	2	R 33	$\rm R_{l_t}$
Composite Transverse Tensile Modulus Measurements After Environmental Exposure $(\mathrm{GN/m}^2)$							
Composite Transverse Tensile Modulus asurements After Environmental Exposity ($\mathrm{GN/m}^2$)		ς [†]	13	7.72	T ₁ 0,0014	Т ₄ 0.827	T _μ * T ₂ * 6.605
sverse Te er Enviro ($ m GN/m^2$)	360 Matrix	³ 3	\mathbb{I}_2	10.34	т ₃ 7.79	T ₁ *	π ₄ *
Transve After (G	360 1	ς ^α	Ţ	6.847	T _h 8.07	T ₂ T ₁ * 6.723 2.586	T ₃ 8.233
posite rements		ರ್	17.	7.65	T ₂	T ₃	T ₁
Comi Measur				ᄯ	RS	H H	R
	۲. ۲	†5	T_2	7.79	T ₃ 9.03	T. 1.72	* 17 0.0
	P-1700 Matrix	Ç	H	4-054	Th 7.72	T2*	T3*
	P-17(Ŝ	T ₂ +	8.76	T2 8.34	T ₄ T ₃ T ₂ * T ₁ 7.03 5.619 0.779 1.72	T ₁ T ₃ *
		ರ್ 	£3	R, 8,41	T.T.	Th 7.03	SH 0.0
				H H	R	Ж	R

* Estimated

Table C-5

Composite Flexural Strength Measurements After Environmental Exposure (MN/m^2)

P-1700 Matrix

360 Matrix

PR-286 Matrix

ပ်	T3	1257.6	$^{ m T}^{ m T}$	1034	$^{ au_{ m T}}$	291.6	$_{ m L}$ 2	31.0
Ç3	T2	1234	$\epsilon_{ m L}$	945	$\tau_{ m L}$	365	$\eta_{ m L}$	807
c ₂	${ m T_1}$	1345	$^{\mathrm{T}_{h}}$	1276	$^{\mathrm{T}}$	1020	$\epsilon_{ m L}$	738
CJ	${\rm T} {\rm t}$	1310	$^{\mathrm{T}}_{2}$	1055	$^{\mathrm{T}_3}$	1076	$\tau_{ m L}$	662.6
		R		R2		R.)	$R_{ar{4}}$

1033.6 T₁

731

1310 T3

1241

д 2

1,⊤

31.0

1124

855

862

R3

E C

17.1

81.4

64.1

120.7

1111

 R_{14}

1449.3

1358

1365

 $^{
m R}_{
m J}$

ΕU

ಭ

 \mathcal{E}^{κ}

1805.8

1931

1834

1848

꿃

Ę

단

ಭ

 $\mathcal{C}_{\mathcal{C}}$

ប

SUET

161.3

1034

1034

1034

32

ဌ

ΕI

Τţ

769

386

 $^{
m R}_{
m 4}$

1834

1827

1800

1896

ξ,

Ţ,

ents	PR-286 Matrix	c_1 c_2 c_3 c_4	\mathbb{T}_2 \mathbb{T}_3 \mathbb{T}_4 \mathbb{T}_1	3 108.2 140.0	<u>-</u>	141.3 110.3 140.0	Z _T	K3 133.6 107.6 124.1 49.0	\mathbb{T}_4 \mathbb{T}_2 \mathbb{T}_1 \mathbb{T}_3	K4 61.4 57.9 109.6 40.34
Composite Flexural Modulus Measurements $ \text{After Environmental Exposure} \\ (\text{GN/m}^2) $	360 Matrix	c_1 c_2 c_3 c_4	T4 T1 T2 T3	R1 126.9106.2141.3 113.8		K2 107.6115.1 113.1 122.0	T3 T2 T1 T4	K3 124.1 93.1 126.9 52.4	$z_{\rm II}$ $z_{\rm II}$ $z_{\rm II}$ $z_{\rm II}$	R4 86.2 94.5 125.5 2.661
	P-1700 Matrix	c_1 c_2 c_3 c_{th}	T ₃ T ₄ T ₁ T ₂	R1 118.6 95.2 88.3 135.1	T1 T2 T4 T3	R2 100.0 98.6 98.6 100.7	T1 T3 T2 T1	R3 119.3 85.5 120.7 0.283	\mathbb{T}_2 \mathbb{T}_1 \mathbb{T}_3 \mathbb{T}_4	R4 17.9 23.4 21.4 18.27

		1								
		τ _ι ς	7.	63.30	$\mathbf{T}_{\mathbf{t}}$	104.1	$^{\mathrm{T}_{2}}$	57.2	13	30.3
	latrix	ς Ω	$T_{l_{\perp}}$	147.6142.0 137.62 63.30	T2	115.1 105.5 121.97 104.1	$\epsilon_{ m L}$	41.4	$\mathbb{T}_{\mathbb{T}}$	25.5
	PR-286 Matrix	C/S	Т3	142.0	Ţ	105.5	†II.	31.7	TS	26.2
	邑	CJ.	TZ		T3		H	60.7	$_{ m T}_{ m t}$	16.5
2 2 2		. "		R_1	ſ	젃		R3	٠	R_{4}
Composite Interlaminar Shear Strength Measurements (MM/m^2)										
nterlaminar Shear Strength M After Environmental Exposure (MN/m^2)	į	$^{c}_{h}$	T3	50.795	T_1	47.6	$\mathbb{T}_{l_{+}}$	40.0	$^{ m T}_{ m 2}$	35.8
nar Shear vironment (MN/m ²)	360 Matrix	Ç	72	42.1 60.0	T3	38.6 51.0	$\tau_{ m L}$	47.4 45.5	$^{\dagger}_{ m T}$	35.8 34.5
aminar Envir (MN	360	S	T ₁		Τ ¹ ,	38.6	T2	4. 1.	T3	35.8
Interl: After		CJ.	Т.	46.2	T2	49.6	T3.	44.1	${ m T_{ m I}}$	40.7
14 4 9				$^{ m R}_{ m J}$		R2		R3		R_{4}
Compos										
				. ณ		68.81		9		
	rix	$c_{l_{4}}$	^T 2	77.2	Η		텀	7	$_{ m T}_{ m T}$	18.6
	P-1700 Matrix	<u>ر</u>	탑	46.9	Ē	65.09	T2	44.61	T3	15.9
	P-17	υ C	17 ₁	90.3 77.9	T	52.4 62.0	T3	44.8 49.6	T	12.4 38.6
		ر ار	Т3	90.3	Ţ		ħΞ	144.8	\mathbb{T}_2	
				R_1		R2		R3		R_{4}

APPENDIX D

CALCULATED COMPOSITE PROPERTIES

Table D-1

Effect of HA, RH, UV Exposure on Composite
Longitudinal Tensile Strength

_				م.اه		
HA,	RН,	U۷	Exposure,	-55°C	Test	Temperature

Matrix	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700 360 PR-286	1027 MN/m 834 1255	² 956.34 1250.75 949.10	1189.04 1216.28 1191.59	1118.92 954.20 1005.84	888.49 908.69 1033.08
	HA, RH, U	V Exposure,	20 ⁰ C Test Tem	perature	
P-1700 360 PR-286	927.4 841 1106.6	721.42 1030.72 906.35	954.13 1046.25 1148.84	887 .5 9 784 . 17 963 . 09	653.58 732.94 990.33
•					
	HA, RH, U	V Exposure, :	121 ⁰ C Test Ter	mperature	
P-1700 360 PR-286	975.6 1007 1200	823.95 1081.89 703.50	1056.66 1047.42 945.99	990.12 785.34 760.24	756.11 739.83 787.48
	HA, RH, U	V Exposure, 1	L77 ⁰ C Test Ten	nperature	
P-1700 360 PR-286	251.7 865.3 607	530.78 1023.49 438.25	763.48 989.02 680.74	696.95 726.94 494.99	462.93 681.43 522.23

Table D-2

Effect of 177°C Exposure on Composite
Longitudinal Tensile Strength

0		0		
177°C	Exposure.	- 55 C	Test.	Temperature
1 L O		<i>)</i>	1000	rompor wowr o

Matrix	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	1027 MN/m ²	956.54	1189.25	1122.71	888.70
360	834	1409.89	1375.41	113.34	1067.83
PR-286	1255	1091.06	1333.56	1147.81	1175.04
	177°0	Exposure, 2	20 ⁰ C T est Tem	perature	
P-1700	927.4	721.63	954.34	887.70	653.78
360	841	1239.86	1205.38	943.30	897.80
PR-286	1106.6	1048.32	1386.86	1105.06	1132.30
	177 ⁰ C	Exposure, 12	21 ⁰ C Test Temp	perature	
P-1700	975.6	824.16	1056.87	990.12	756.31
360	1007	1241.03	1206.56	944.48	898.97
PR-286	1200	845.46	1290.81	1105.06	929.45
	177 ⁰ C	Exposure, 1	77 ⁰ C Test Tem	perature	
P-1700	251.7	530.98	763.69	697 .15	463.14
360	865.3	1182.63	1148.16	886 . 08	840.57
PR-286	607	580.21	822.71	636 . 96	664.20

Table D-3

Effect of 20°C Exposure on Composite
Longitudinal Tensile Strength

Matrix	<u>0</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	1027 MN/m ²	1046.32	1279.02	1212.48	978.47
360	834	1191.25	988.33	726.25	680.74
PR-286	1255	1104.85	1347.35	1161.60	1188.84
	20°C Exp	osure, 20 ⁰ 0	C Test Tempera	ature	
P-1700	927.38	811.40	1044.11	977•57	743.56
360	841	852.77	818.30	556•22	510.71
PR-286	1106.6	1062.11	1304.60	118•85	1146.09
	20°C	Exposure,	121°C Test Te	mperature	
P-1700	975.6	913•93	1146.64	1080.10	846.08
360	1007	853•95	819.47	557.39	511.88
PR-286	1200	859•25	1101.75	916.00	943.24
	20°C Ex	posure, 177	OC Test Tempe	rature	
P-1700	251.7	626.76	853.46	786.93	552.91
360	86 5. 3	79 5.5 5	761.07	499.20	453.48
PR-286	607	594.00	836.50	650.75	677.98

Table D-4

Effect of 121°C Exposure on Composite
Longitudinal Tensile Strength

Matrix	<u>o</u>	720 hrs	240 hrs	1400 hrs	2400 hrs			
P-1700 360 PR-286	1027 MN/m ² 834 1255	805.54 1409.89 1091.06	1038.25 1375.41 1333.56	971.71 113.34 1147.81	737.70 1067.83 1175.04			
	121 ⁰ C Exp	oosure, 20°C	Test Temperat	ure				
P-1700 360 PR-286	927.38 841 1106.6	570.63 1239.86 1048.32	803.34 1205.38 1290.81	736.80 943.30 1105.06	502.78 897.80 1132.30			
	0	0						
	121°C Exp	osure, 121°	C Test Tempera	iture				
P-1700 360 PR-286	975.6 1007 1200	673.16 1241.03 845.46	905.86 1206.56 1087.96	839.33 944.48 902.21	605.31 898.97 929.45			
121°C Exposure, 177°Test Temperature								
P-1700 360 PR-286	251.7 865.3 607	379.98 1182.63 580.21	612.69 1148.16 822.71	546.15 886.08 636.96	312.14 840.57 664.20			

Table D-5

Effect of HA, RH, UV Exposure on Composite
Longitudinal Tensile Modulus

HA, RH, UV Exposure -55°C Test Temperature

Matrix	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	131 GN/m ²	105.22	123.42	141.35	111.77
360	145	140.86	132.73	138.52	130.11
PR-286	138	95.84	101.91	101.91	118.87
	HA, I	RH, UV Exposure,	, R.T. Test Tempe	rature	
P -17 00	138	108.60	126.80	144.73	115.15
360	138	151.69	143.55	149.35	140.93
PR - 286	145	95.36	113.22	113.22	118.39
	HA, I	RH, UV Exposure,	250°F Test Temp	erature	
P-1700	138	120.66	138.86	156.79	127.21
360	145	147.14	139.00	144.80	136.38
PR-286	131	100.32	118.18	118.18	123.35
	HA, F	RH, UV Exposure,	350°F Test Temp	erature	
P-1700	124	99.01	117.21	135.14	105.56
360	145	145.55	137.41	143.21	134.80
PR-286	131	84.05	101.91	101.98	107.08

Table D-6

Effect of 177°C Exposure on Composite
Longitudinal Tensile Modulus

Matrix	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	131 GN/m ²	80.40	98.60	116.52	86.94
360	145	136.52	128.38	134.18	125.76
PR-286	138	125.76	143.62	143.62	148.79
•	177	C Exposure 70°C	C Test Temperatur	' e	
P-1700	138	83.77	101.98	119.90	90.32
360	138	146.93	139.21	145.00	135.59
PR-286	145	125.28	143.14	143.14	148.31
	177°	C Exposure 121°	°C Test Temperatu	re	
P -17 00	138	95.84	114.04	131.97	102.39
360	145	142.80	134.66	140.45	132.25
PR-286	131	130.25	148.10	148.10	153.28
<i>.</i> 	177	°C Exposure 177°	C Test Temperatu	ure	
P-1700	124	74.19	92.39	110.32	80.74
360	145	141.21	133.07	138.86	130.45
PR-286	131	113.97	131.83	131.83	137.00

Table D-7

Effect of 20°C Exposure on Composite
Longitudinal Tensile Modulus

Matrix	<u>o</u>	<u>72</u>	0 hrs	240 hrs	1440 hrs	2400 hrs
P-1700 360 PR-286	131 145 138	, l	13.36 34.38 08.87	131.56 126.25 126.73	149.48 132.04 126.73	119.90 123.63 131.90
		20°C Expo	sure 20°C Test	Temperature		(
P-1700 360 PR-286	138 138 145	1	16.11 45.21 08.39	134.31 137.07 126.25	152.54 142.86 126.25	122.66 • 134.45 131.42
		20°C Expo	sure 121°C Test	t Temperature		
P -17 00 360 PR-286	138 145 131	<u>1</u> 1	41.07 13.35	146.38 132.94 131.21	164.31 138.73 131.21	134.73 130.32 136.38
		20°C Expc	sure 177°C Test	t Temperature		
P-1700 360 PR-286	124 145 131	1:	39.07	124.73 130.94 114.94	142.66 136.73 114.94	113.08 128.32 120.11

Table D-8

Effect of 121°C Exposure on Composite
Longitudinal Tensile Modulus

121°C Exposure -55°C Test Temperature

<u>Matrix</u>	<u>0</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700 /360 PR-286	131 GN/m ² 145 138	124.11 130.73 97.22	142.31 122.59 115.08	160.24 128.38 115.08	130.66 119.97 120.25
		121°C Exposure 20°C	C Test Temperat	ure	*
P-1700 360 PR-286	138 138 145	127.49 141.55 96.74	145.69 133.42 114.59	163.62 139.21 114.59	134.04 130.80 119.77
		121°C Exposure 121°	°C Test Tempera	ture	
P-1700 360 PR-286	138 145 131	139.55 137.42 101.70 121°C Exposure 177	157.76 129.28 119.56 °C Test Tempera	175.68 135.07 119.56 ture	146.10 126.66 124.73
P-1700 360 PR-286	124 145 131	117.90 135.42 85.43	136.11 127.28 103.29	154.03 133.07 103.29	124.45 124.66 108.46

Table D-9

Effect of HA, RH, UV Exposure on Composite
Transverse Tensile Strength

HA, RH, UV Exposure, -55°C Test Temperature

Matrix		720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	26.2 MN/m ²	24.48	28,68	25.62	24.68
360	20.0	19.10	14.96	28.55	17.58
PR - 286	55.2	25.30	35•99	23.17	26.55
	HA, RH	, UV Exposure, 20	°C Test Temperat	ture	
P-1700	28.3	24.89	29.10	26.06	25.10
360	18.6	10.14	9.72	19.58	8.62
PR - 286	43.4	45.58	32.75	32.75	36.13
	HA, RH	, UV Exposure, 12	21°C Test Tempera	ature	
P -1 700	15. 2	12.55	16.75	13.72	12.75
360	11.7	8.55	8.14	18.00	7.03
PR - 286	23.4	11.65	22.13	9.52	12.89
	HA, RH	, UV Exposure, 17	77°C Test Tempera	ature	
P -1 700	0	3.93	8.14	5.10	4.14
360	7.6	3.93	3.52	13.38	2.41
PR-286	7.0	3.72	6.96	5.86	2.48

Table D-10

Effect of 177°C Exposure on Composite
Transverse Tensile Strength

Matrix	0	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	26.2 MN/m ²	13.58	17.79	14.76	13.79
360	20.0	16.41	16.00	25.86	14.89
PR-286	55.2	28.96	39.65	26.82	30.20
	177°C	Exposure, 20°C	Test Temperature	:	
P-1700	28.3	14.00	18.20	15.17	14.20
360	18.6	7.45	17.03	16.80	5.93
PR-286	43.4	38.54	49.23	36.40	39.78
	177°C	Exposure, 121°	C Test Temperatur	•e	
P-1700	15.2	1.65	5.86	2.83	1.86
360	11.7	5.86	5.45	15.31	4.34
PR-286	23.4	15.31	25.99	13.17	16.55
	177°C	Exposure, 177°	C Test Temperatur	•e	
P-1700	0	-6.96	-2.8	-5.79	-6.76
360	7.6	1.24	0.83	10.69	-0.28
PR-286	7.0	0.07	10.62	-2.14	1.17

Table D-11

Effect of 20°C Exposure on Composite
Transverse Tensile Strength

<u>Matrix</u>	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P -1 700	26.2 MN/m ²	20.96	25.17	22.13	21.17
360	20.0	19.58	19.17	29.03	18.06
PR - 286	55. 2	36.40	47.09	34.37	37.65
11. 200					
	A control of the cont				+
	20	OC Exposure, 20°C 1	Test Temperature		
P-1700	28.3	21.37	25.58	22.55	21.58
360	18.6	10.62	10.20	20.06	9.10
PR - 286	43.4	45.99	56.6 8	43.85	47.23
 -					,
	20	OC Exposure, 121°C	Test Temperatu	c e	
P-1700	15. 2	9.03	13.24	10.20	9.24
360	11.7	9.03	10.20	18.48	7 .5 2
PR-286	23.4	22.75	33.44	20.62	23.99
	20	OC Exposure, 177°C	Test Temperatu	re	
	20	, o marbon on o = 11 o			
P-1700	0	0.41	4.62	1.59	0.62
360	7.6	4.41	4.00	13.86	2.90
PR-286	7.0	7.38	18.06	5.24	8.62

Table D-12

Effect of 121°C Exposure on Composite
Transverse Tensile Strength

Matrix	0	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	26.2 MN/m ²	21.72	25.92	22.89	21.93
360	20.0	27.79	27.37	37.23	26.2 7
PR-286	55.2	31.99	42.68	29.86	33.23
	121	L°C Exposure, 20°C	Test Temperatur	<i>c</i> e	
P-1700	28.3	22.13	25.17	23.31	22.34
360	18.6	18.82	18.41	28.27	17.31
PR-286	43.4	41.58	52.26	39.44	42.82
	121	L°C Exposure, 121°C	C Test Temperatu	ıre	
P-1700	15.2	9.79	14.00	10.96	10.00
360	11.7	17.24	16.82	26.68	15.72
PR-286	23.4	18.34	29.03	16.20	19.58
	121	L°C Exposure, 177°C	Test Temperati	ıre	
P-1700	0	1.17	5.38	2.34	1.38
360	7.6	12.62	12.20	22.06	11.10
PR-286	7.0	2.96	13.65	0.83	4.21

Table D-13

Effect of HA, RH, UV Exposure on Composite
Transverse Tensile Modulus

HA, RH, UV Exposure -55°C Test Temperature

<u>Matrix</u>	<u>0</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	8.14 GN/m ²	8.76	9.58	6.96	8.34
360	8.171	8.48	8.62	7.93	4.96
PR-286	11.0	9.72	9.86	9.24	9.72
-	HA,	RH, UV Exposure	20°C Test Tempe:	rature	
P-1700	8.20	8.96	10.00	6.14	8.55
360	7.79	6.27	6.41	5.72	2.76
PR-286	10.55	8.41	8.55	7.93	8.41
	HA,	RH, UV Exposure	121°C Test Temp	erature	
P-1700	7.10	5.31	6.14	3.52	4.90.
360	6.69	4.69	4.83	4.14	1.17
PR-286	6.102	3.65	3.79	3.17	3.65
	на,	RH, UV Exposure	177°C Test Temp	erature	
P-1700	0	1.86	2.69	0.07	1.45
360	5.550	7.31	7.45	6.76	3.79
PR-286	0.931	0	0.14	-0.48	0

Table D-14

Effect of 177°C Exposure on Composite
Transverse Tensile Modulus

Matrix	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	8.14 GN/m ²	5.72	7.17	3.93	5.31
360	8.171	6.96	7.10	6.41	3.45
PR-286	11.0	10.89	11.00	10.41	10.89
	177	°C Exposure 20°	C Test Temperatu	re	
P-1700	8.20	7.17	8.00	5.38	6.76
360	7.79	4.76	4.90	4.21	1.24
PR-286	10.55	9.58	9.72	9.10	9.58
· · · · · · · · · · · · · · · · · · ·	177	°C Exposure 121	L°C Test Temperat	ure	
P-1700	7.10	2.28	3.10	0.48	1.86
360	6.69	3.17	3.31	2.62	-0.34
_{PR} -286	6.102	4.83	4.96	4.34	4.83
	177	°C Exposure 177	7°C Test Temperat	ure	
P -17 00	0	-1.17	-0.3 ¹ 4	-2.96	-1.58
360	5.550	6.07	6.21	5.52	2.55
PR - 286	0.931	1.17	1.31	0.69	1.17

Table D-15

Effect of 20°C Exposure on Composite
Transverse Tensile Modulus

<u>Matrix</u>	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	8.14 GN/m ²	8.69	9.52	6.90	8.27
360	8.171	10.27	10.41	9.72	6.76
PR-286	11.0	10.69	10.82	10.20	10.69
	20°0	Exposure 20°0	C Test Temperature		
P-1700	8.20	8.89	9.72	7.10	8.48
360	7.79	8.07	8.21	7.52	4.55
PR-286	10.55	9.38	9.52	8.89	9.38
	20°0	Exposure 121°	C Test Temperatur	e	
P-1700	7.10	5.24	6.07	3.44	4.83
360	6.69	6.48	6.62	5.93	2.96
PR-286	6.102	4.62	4.76	4.14	4.62
	20°0	Exposure 177°	C Test Temperatur	e	
P-1700	0	1.79	2.62	0	1.38
360	5.550	9.38	9.52	8.83	5.86
PR-286	0.931	0.96	1.10	0.48	0.97

Table D-16

Effect of 121°C Exposure on Composite
Transverse Tensile Modulus

Matrix	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	8.14 GN/m^2	7.17	8.00	5.38	6.76
360	8.171	10.41	10.55	9.86	6.90
PR-286	11.0	10.55	10.69	10.07	10.55
	12	1°C Exposure 20°C	Test Temperatur	: e	
P-1700	8.20	7.38	8.21	5.58	6.96
360	7.79	8.21	8.3 ¹ 4	7.65	4.69
PR-286	10.55	9.24	9.38	8.76	9.24
	12	1°C Exposure 121°	C Test Temperatu	ıre	
P-1700	7.10	3.72	4.55	1.93	3.31
360	6.69	6.62	6.76	6.07	3.10
PR-286	6.102	4.48	4.62	4.00	4.48
	12	1°C Exposure 177°	C Test Temperatu	ıre	
P -17 00	0	0.28	1.10	-1.52	-0.14
360	5.550	9.52	9.65	8.96	6.00
PR-286	0.931	0.76	0.90	0.28	7.58

Table D-17

Effect of HA, RH, UV Exposure on Composite
Flexural Strength

HA, RH, UV Exposure, -55°C Test Temperature

<u>Matrix</u>	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	1186 MN/m ²	680.74	946.96	963.16	712.94
360	965	713.01	1072.52	1141.33	1034.40
PR-286	1910	1240.89	1551.44	1537.65	1604.88
		RH, UV Exposure, 20	OG Hart Hammana	t	
	HA, I	RH, UV Exposure, 20	O C Test Tempera	icure	
P-1700	1227	1001.70	1267.92	1284.12	819.61
360	758	853.67	1213.18	1281.99	1175.11
PR - 286	1834	1662.11	1972.66	1958.87	2026.10
22. 200					
	:		3.00 H H	and the same of	
	на, н	RH, UV Exposure, 12	r C Test Temper	ature	. '
P-1700	814	787.41	1053.62	1072.93	819.61
360	924	744.38	1103.89	1172.70	1065.83
PR - 286	889	1064.17	1374.72	1360-94	1428.16
	TTA . T	RH, UV Exposure, 17	77 ⁰ 0 Test Temper	estura	
	па, г	an, ov exposure, in	(C leso lemper	aume	
P-1700	83	-99. 36	166.86	183.06	-67.16
360	817	345.23	704.74	773.55	666.68
PR - 286	331	156.52	467.07	453.28	520.50
	JJ				

Table D-18

Effect of 177°C Exposure on Composite
Flexural Strength

Matrix	0	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700 360 PR-286	1186 MN/M ² 965 1910	470.91 773.27 1251.10	737.14 1132.78 1561.65	753•35 1201•54 1547•86	503.13 1094.72 1615.08
	ๆ (77 ⁰ C Exposure, 20 ⁰	C Test Temperati	ure	
	т.	11 O HWDODOTC 2 TO	O TODO TOMPOTAGO	40	
P-1700 360 PR-286	1227 758 1834	793.13 913.93 1672.31	1055 1273.09 1982.86	1075.55 1342.25 1969.07	825.33 1235.38 2036.30
	17'	7 ^o C Exposure, 121 ^o	C Test Temperatı	ıre	
P-1700 360 PR-286	814 924 889	578.84 804.65 1074.38	845.05 1164.15 1384.93	861.25 1232.96 1468.77	611.03 1126.04 1438.36
	17	7 ⁰ C Exposure, 177 ⁰	C Test Temperatu	are	
P-1700 360 PR-286	83 817 331	-307.93 405.49 166.72	-41.71 765.00 477.27	-25.51 833.81 463.48	-275.73 726.94 530.71

Table D-19

Effect of 20°C Exposure on Composite
Flexural Strength

Matrix	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	1186 MN/m ²	772.38	1038.59	1054.80	804.58
360	965	775.55	1135.05	1203.87	1096.99
PR-286	1910	1158.22	1468.77	1454.98	1522.21
	20 °C Ex	posure, 20 ⁰ C Te	est Temperature		
P-1700	1227	1093.34	1359.56	1375.76	1125.54
360	758	916.21	1275.71	1344	1237.65
PR-286	1834	1579.44	1889.99	1876.20	1943.42
	20 ^o C Exp	osure, 121 ⁰ C Te	st Temperature		
P-1700	814	879.04	1145.26	1161.46	911.24
360	924	806.92	1166.43	1235.24	1128.37
PR-286	889	981.50	1292.05	1278.26	1345.49
	20 ^o C Ex	posure, 177 ⁰ C T	est Temperature)	
P-1700	83	-7.72	258.49	274.70	24.48
360	817	407.77	767.28	836.09	729.22
PR-286	331	73.84	384.40	370.61	437.83

Table D-20

Effect of 121°C Exposure on Composite
Flexural Strength

Matrix	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	1186 MN/m ²	941.44	1207.65	1223.86	973.64
360	965	599.11	958.61	1027.42	920.55
PR-286	1910	1021.84	1332.39	1318.60	1385.83
	1210	Exposure, 20°C	Test Temperat	ure	
P-1700	1227	1262.40	1528.62	1544.82	1294.61
360	758	739.76	1135.05	1168.08	1061.21
PR-286	1834	1443.05	1753.61	1739.82	1807.04
	121°C	Exposure, 121°C	Test Temperat	ure	
P-1700	814	1048.11	1314.32	1351.21	1080.31
360	924	630.48	989.98	1058.80	951.92
PR-286	889	845.12	1155.67	1141.88	1209.11
	121°C	Exposure, 177°C	Test Temperat	ure	
P-1700	83	161.34	427.56	443.76	193.54
360	817	231.22	590.83	659.64	552.77
PR-286	331	-62.54	248.01	234.22	301.45

Effect of HA, RH, UV Exposure on Composite Flexural Modulus

Table D-21

HA, RH, UV Exposure, -55°C Test Temperature

Matrix	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs			
F-1700	94.5 GN/m ²	59•92	89.64	76.64	82.95			
360	101.4	75•98	110.46	101.56	125.97			
PR-286	118.6	80• 5 3	114.94	92.26	124.59			
	HA, RH, U	V Exposure, 22	C Test Temperatu	re				
P-1700	122.7	92.39	122.18	109.01	115.49			
360	86.9	90.19	124.66	115.77	140.18 °			
PR-286	140.0	117.08	151.48	128.80	161.14			
	HA, RH, U	V Exposure, 12	l ^O C Test Temperat	ure				
P-1700	109.6	90.81	120.59	107.42	113.91			
360	105.5	94.32	128.80	119.90	144.31			
PR-286	120.0	113.42	147.83	125.14	157.48			
HA, RH, UV Exposure, 177°C Test Temperature								
P -1700	-	0.14	29.92	16.75	23.24			
360	112.4	67.50	101.98	93.08	117.49			
PR-286	16.5	53.85	88.26	65.57	97.91			

Table D-22

Effect of 177 C exposure on Composite Flexural Modulus

<u>Matrix</u>	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	94.5	GN/m ² 34.68	64.47	51.30	57•78
360	101.4	76.81	111.28	102.39	126•80
PR-286	118.6	90.88	125.28	102.60	134•94
		177°C Exposure,	20°C Test Tempe	rature	
P-1700	122.7	67.23	97.01	83.84	90.32
360	86.9	91.01	125.49	116.59	141.00
PR-286	140.0	127.76	162.17	139.48	171.82
•		177°C Exposure,	121°C Test Tempe	rature	
P- 1700	109.6	65.64	95.43	82.26	88.74
360	105.5	95.15	129.63	120.73	145.14
PR-286	120.0	124.11	158.52	135.83	168.17
		177°C Exposure,	177°C Test Tempe	rature	
P-1700	-	25.03	4.76	-8.41	-1.93
360	112.4	68.33	102.80	93.91	118.32
PR-286	16.5	64.54	98.94	76.26	108.60

Table D-23

Effect of 20°C Exposure on Composite
Flexural Modulus

<u>Matrix</u>	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
F-1700 360 PR-286	94.5 GN/m ² 101.4 118.6	63.16 77.84 60.26	92.94 112.32 94.67	79.78 103.42 71.98	86.26 127.83 104.32
	20 [°] ¢	Exposure, 22°C	Test Temperature	•	
P-1700 360 PR-286	122.7 86.9 140.0	95.70 92.05 96.81	125.49 126.52 131.21	112.32 117.63 108.53	119.42 142.04 140.86
	20°C	Exposure, 121°	C Test Temperatur	: e	
F-1700 360 PR-286	109.6 105.5 120.0	94.12 96.32 93.15	123.90 130.66 127.56	110.73 121.76 104.87	117.22 146.17 137.21
	20°C	Exposure, 1770	C Test Temperatur	re	
P-1700 360 PR-286	112.4 16.5	3.45 69.36 33.58	33.23 103.84 67.98	20.06 94.94 45.30	26.54 119.35 77.64

Table D-24

Effect of 121°C Exposure on Composite
Flexural Modulus

Matrix	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	94.5 GN/m ²	74.67	104.46	91.29	97.77
360	101.4	52.06	86.53	77.64	102.05
PR-286	118.6	62.61	97.01	74.33	106.66
	121	°C Exposure, 20°	C Test Temperati	ure	
P-1700	122.7	107.22	137.00	123.83	130.32
360	86.9	66.26	100.74	91.84	116.25
PR-286	140.0	99.15	133.56	110.87	143.21
	1210	C Exposure, 121°	C Test Temperat	ure	
P-1700	109.6	105.63	135.42	122.25	128.73
360	105.5	70.40	104.87	95.98	120.39
PR-286	120.0	95.50	129.90	107.22	139.55
	1210	C Exposure, 177°	C Test Temperat	ure	
P -1700	-	14.96	44.75	31.58	38.06
360	112.4	43.58	77.98	69.16	93.56
PR-286	16.5	35.92	67.98	47.64	79.98

Table D-25

Effect of HA, RH, UV Exposure on Composite Shear Strength

HA, RH, UV Exposure, -55°C Test Temperature

Matrix	0	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700 360 PR-286	81.4 MN/m ² 52.5 145.5	77.98 46.75 126.73	85.02 41.09 118.18	71.16 49.30 123.35	71.09 45.16 105.56
	HA, RH	, UV Exposure, 2	20 ^o C Test Tempera	ture	
P-1700 360 PR-286	66.2 36.5 120.0	66.95 43.71 115.77	73.98 38.06 107.22	60.12 46.26 112.39	60.06 42.13 94.60
	HA, RH	, UV Exposure, I	L21 ⁰ C Test Tempera	ature	
	1-2	1.= Z1.	1.0. 60	01: 00	ol mr
P-1700 360 PR-286	49.6 39.3 74.5	41.64 39.85 51.92	48.68 34.20 43.37	34.82 42.40 48.54	34.75 38.27 30.75
	HA, RH,	UV Exposure, 17	77 ⁰ C Test Temperat	ture	
P-1700 360 PR-286	22 .1 39 . 3 26 . 2	26.34 33.78 28.82	33.37 28.13 20.27	19.51 36.34 25.44	19.44 32.20 7.65

Table D-26

Effect of 177°C Exposure on Composite
Shear Strength

177°C Exposure, -55°C Test Temp.

Matrix	<u>o</u>	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	81.4 MN/	/m ² 62.81	69.85	55•99	55.92
360	52.4	50.88	45.23	53•44	49.30
PR-286	145.5	117.97	109.42	114• 5 9	96.81
		177°C Exposu	re, 20°C Test	Temp.	
P-1700	66.2	51.78	58.81	44.96	44.89
360	36.5	47.85	42.20	50.40	46.26
PR- 286	120.0	107.01	98.46	103.63	85.84
\		177°C Exposu	re, 121°C Tes	t Temp.	
P-1700	49.6	26.48	33.51	19.65	19.58
360	39.3	43.99	38.34	46.54	42.40
PR-286	74.5	43.16	34.61	39.78	22.00
		177°C Exposu	re, 177°C Tes	t Temp.	
P-1700	22 .1	11.17	18.20	4.34	4.27
360	39•3	37.92	32.27	40.47	36.34
PR-286	26 . 2	20.06	11.51	16.68	7.65

Table D-27

Effect of 20°C Exposure on Composite Shear Strength

Matrix	0	720 hrs	240 hrs	1440 hrs	2400 hrs
P-1700	81.4 MN/m ²	82.53	89.57	75.71	75.64
360	52.4	52.33	46.68	54.88	50.75
PR-286	145.5	136.38	127.83	133.00	115.22
	20 ⁰ C Ex	mposure, 20 ⁰ C Test	Temperature		
P-1700	66.2	71.50	78.53	64.68	64.61
360	36.5	49.30	43.64	51.85	47.71
PR-286	120.0	125.42	116.87	122.04	104.25
	20°C Ex	mposure, 121°C Tes	t Temperature		
P-1700	49.6	46.20	53.23	39•37	39.30
360	39.3	45.44	39.99	47•99	43.85
PR-286	74.5	61.57	53.02	58•19	40.40
	20°C Ex	posure, 177°C Tes	t Temperature		
P-1700	22.1	30.89	37.92	24.06	23.99
360	39.3	39.37	33.72	41.92	37.78
PR-286	26.2	38.47	29.92	35.10	17.31

Table D-28

Composite Shear Strength

121°C Exposure, -55°C Test Temp.

<u>Matrix</u>	0	720 hrs	240 hrs	<u>1440 hrs</u>	2400 hrs
P-1700	81.4 MN/m ²	75.50	82.53	68.67	68.61
360	52.4	53.57	47.92	56.12	51.99
PR-286	145.5	142.38	133.83	139.00	121.21
	12100	Exposure, 20	OC Test Temperati	ıre	
P-1700	66.2	64.47	71.50	57.64	57.57
360	36.5	50.54	44.89	53.09	48.95
PR-286	120.0	131.42	122.87	128.04	110.25
	121°C F	Exposure, 121 ⁰ 0	C Test Temperatur	· e	
P-1700	49.6	39.16	46.20	32.34	32.27
360	39.3	46.68	41.02	49.23	45.09
PR-286	74.5	67.57	58.74	64.19	46.40
	121 ⁰ C F	Exposure, 177 ⁰ 0	C Test Temperatur	· e	
P-1700	22 . 1	23.86	30.89	17.03	16.96
360	39 . 3	40.61	34.96	43.16	39.03
PR-286	26 . 2	44.47	35.92	41.09	23.31

DISTRIBUTION LIST

		Copies
National Aeronautics and Space Administration Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135		
Attn: Contracting Officer, J. E. Hickey, MS 500-313 Technical Report Control Office, MS 5-5 Technology Utilization Office, MS 3-16 AFSC Liaison Office, MS 4-1 Library, MS 60-3 Office of Reliability & Quality Assurance, MS 9 G. M. Ault R. H. Kemp, MS 49-1 K. J. Bowles, MS 49-1 N. T. Musial, MS 500-113 Helen Dore, MS 49-1	500-111	1 1 1 2 2 2 1 1 1 25 1
National Aeronautics and Space Administration Washington, D.C. 20546		
Attn: G. C. Deutsch/Code RW J. J. Gangler/Code RWM B. G. Achhammer/Code RWM		1 1 1
NASA Scientific and Technical Information Facility Attn: Acquisitions Branch P. O. Box 33 College Park, Maryland 20740		10
National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035		
Attn: Library		1
National Aeronautics and Space Administration Flight Research Center P. O. Box 273 Edwards, California 93523		
Attn: Library		1
National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771		
Attn: Library		1

			Copies
John F. Kennedy S	ics and Space Admin pace Center ter, Florida 32899	istration	
Attn: Library	v.		1
National Aeronaut Langley Research Langley Station Hampton, Virginia		istration	
Attn: V. L. Bell N. Johnsto			1 1
National Aeronaut Manned Spacecraft Houston, Texas 77		istration	
Attn: Library Code EP			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
National Aeronaut George C. Marshal Huntsville, Alaba	ics and Space Admin Il Space Flight Cent ama 35812	istration er	
Attn: J. Curry J. Stuckey			1
Jet Propulsion La 4800 Oak Grove Dr Pasadena, Califor	ive		
Attn: Library			1
Office of the Div Research and Engi Washington, D.C.	neering	· · · · · · · · · · · · · · · · · · ·	
Attn: Dr. H. W. (Chem. Tec	Schulz, Office of A	Assistant Directo	r 1
Defense Documenta Cameron Station Alexandria, Virg			1

		Copies
Research and Technology Division Bolling Air Force Base Washington, D.C. 20332		
Attn: RTNP		
Bureau of Naval Weapons Department of the Navy Washington, D.C. 20360		
Attn: DLI-3		
Director (Code 6180) U. S. Naval Research Laboratory Washington, D.C. 20390		
Attn: H. W. Carhart	to a second seco	· · · · · · · · · · · · · · · · · · ·
Picatinny Arsenal Dover, New Jersey		
Attn: SMUPA-VP3		
Structural Composites Industries, 6344 North Irwindale Avenue Azusa, California 91703	Inc.	
Attn: Ira Petker	. •	1
Aeronautic Division of Philco Corp Ford Road Newport Beach, California 92600	poration	
Attn: Dr. L. H. Linder, Manager Technical Information Depar	tment	1
Aerospace Corporation P. O. Box 95085 Los Angeles, California 90045		
Attn: Library Documents		1 · ·
Aerotherm Corporation 800 Welch Road Palo Alto, California 94304		
Attn: Mr. R. Rindal		1

	Co	pies
Air Force Materials Laboratory Wright-Patterson Air Force Base, Ohio 45 ^L	433	
Attn: AFML/MBC, T. J. Reinhart, Jr. AFML/LNC, D. L. Schmidt		1
Office of Aerospace Research (RROSP) 1400 Wilson Boulevard Arlington, Virginia 22209		
Attn: Major Thomas Tomaskovic		1
Arnold Engineering Development Center Air Force Systems Command Tullahoma, Tennessee 37389		
Attn: AEOIM		1
Air Force Systems Command Andrews Air Force Base Washington, D.C. 20332		
Attn: SCLT/Capt. S. W. Bowen		1
Air Force Rocket Propulsion Laboratory Edwards, California 93523		
Attn: RPM		1
Air Force Flight Test Center Edwards Air Force Base, California 93523		
Attn: FTAT-2		1 .
Air Force Office of Scientific Research Washington, D.C. 20333		
Attn: SREP, Dr. J. F. Masi		1
American Cyanamid Company 1937 West Main Street Stamford, Connecticut 06902		
Attn: Security Officer		1
AVCO Corporation Space Systems Division Lowell Industrial Park Lowell, Massachusetts 01851		
Attn: W. Port		1

				Copies
Battelle Memorial Institu 505 King Avenue Columbus, Ohio 43201	te			
Attn: Report Library, Ro	om 6A			1
Bell Aerosystems, Inc. Box 1 Buffalo, New York 14205				
Attn: T. Reinhardt				1
The Boeing Company Aero Space Division P. O. Box 3999 Seattle, Washington 98124				
Attn: J. T. Hoggatt				1
Celanese Research Company Morris Court Summit, New Jersey	•		•	
Attn: Dr. J. R. Leal			\$	1
University of Denver Denver Research Institute P. O. Box 10127 Denver, Colorado 80210				
Attn: Security Office				1
Dow Chemical Company Security Section Box 31 Midland, Michigan 48641				
Attn: Dr. R. S. Karpiuk,	1710 Buildi	ng		1
E. I. DuPont De Nemours & Fibers Department Experimental Station - Bl Wilmington, Delaware 1989	dg. 262			
Attn: Dr. Carl Zweben				1

	Copies
Ultrasystems, Inc. 2400 Michelson Drive Irvine, California 92664	
Attn: Dr. R. Kratzer	1
General Dynamics/Convair Dept. 643-10 Kerny Mesa Plant San Diego, California 92112	
Attn: J. Hertz	.1
General Electric Company Re-Entry Systems Department P. O. Box 8555 Philadelphia, Pennsylvania 19101	
Attn: Library	1
General Electric Company Technical Information Center N-32, Building 700 Cincinnati, Ohio	
Attn: C. A. Steinhagen C. L. Stotler	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
General Technologies Corporation 708 North West Street Alexandria, Virginia	
Attn: W. M. Powers	1
Grumman Aerospace Corporation Plant 12, Dept. 447 Bethpage, New York	
Attn: N. A. Sullo	1
Hercules Powder Company Allegheny Ballistics Laboratory P. O. Box 210 Cumberland, Maryland 21501	
Assaulibrani	1

en de transferie de la companya de La companya de la co		Copies
Hughes Aircraft Company Culver City, California		
Attn: N. Bilow		1
ITT Research Institute Technology Center Cnicago, Illinois 60616		
Attn: C. K. Hersh, Chemistry Division		1
Lockheed Missiles & Space Company Propulsion Engineering Division (D.55-11) 111 Lockheed Way Sunnyvale, California 94087		1
McDonnell Douglas Aircraft Company Santa Monica Division 3000 Ocean Park Blvd. Santa Monica, California 90406		
Attn: N. Byrd		1
Monsanto Research Corporation Dayton Laboratory Station B, Box 8 Dayton, Ohio 45407		
Attn: Library		1
North American Rockwell Corporation Space & Information Systems Division 12214 Lakewood Blvd. Downey, California 90242		
Attn: Technical Information Center D/096-722 (AJ01)		1
Northrop Corporate Laboratories Hawthorne, California 90250	·.	
Attn: Library		1
Rocketdyne, A Division of North American Rockwell Corporation 6633 Canoga Avenue Canoga Park, California 91304		
Attn: Library, Dept. 596-306		1

					Copies
Union Carbide Corporation 12900 Snow Road Parma, Ohio					
Attn: Library					1
United Aircraft Corporation United Aircraft Research Laboratories East Hartford, Connecticut 06118					
Attn: D. A. Scola					1
United Aircraft Corporation Pratt and Whitney Aircraft East Hartford, Connecticut 06108					
Attn: G. Wood					1
United Aircraft Corporation United Technology Center P. O. Box 358 Sunnyvale, California 94088					
Attn: Library					1
Westinghouse Electric Corporation Westinghouse Research Laboratories Pittsburgh, Pennsylvania			e te		
Attn: Library			**	· , · .	1
Whittaker Corporation Research & Development/San Diego 3540 Aero Court San Diego, California 92123					
Attn: R. Gosnell		% *			1 ,
TRW Systems One Space Park Redondo Beach, California 90278					
Attn: Dr. E. A. Burns, Bldg. 01, Room	2020				3

	Copies
General Dynamics Convair Aerospace Division P.O. Box 748 Fort Worth, Texas 76101	
Attn: Tech. Library, 6212	1
Material Science Corporation 1777 Walton Road Blue Bell, Pennsylvania 19422	
Attn: Ms. N. Sabia	1
Fiber Science Inc. 245 East 157 Street Gardena, California 90248	
Attn: L. J. Ashton	1
U.S. Army Air Mobility R&D Lab Fort Eustis, Virginia 23604	
Attn: Mr. H. L. Morrow, SAVDL-EU-TAP	1
U.S. Army Aviation Systems Command P.O. Box 209, Main Office St. Louis, Missouri 63166	
Attn: Mr. Ronald Evers	1
United States Air Force Aero Propulsion Laboratory Wright-Patterson AFB, Ohio 45433	
Attn: Mr. T. J. Norbut, AFAPL/TBP	1
Air Force Materials Laboratory Wright-Patterson AFB, Ohio 45433	
Attn: Mr. Paul Pirrung, AFML/LTN	1 -
Allison Division of Detroit Diesel Company P.O. Box 894 Department 5827, S42 Indianapolis, Indiana 46206	
Attn: John Spees	1