Analysis and Simulation of Michel Electrons in ProtoDUNE VD

Camilo Cortés Parra

Internship Final Presentation July 13, 2023

Supervisors: Thibaut Houdy Yoann Kermaïdic

Michel Electrons

A. Abed Abud et al. arXiv:2211.01166 (2023)

A. Reynolds. Michel electron reconstruction (2020)

Simulation Workflow

>>> ProtoDUNE Vertical Drift

Event generator

- Single Generator
- Supernova (marley)
- Cosmics
- GENIE (beam, atm...)
- ...

G4

- Larg4Main (handles interface with G4)
- Energy deposition (ion + scint.)
- Drift of electrons

DETSIM

- Signal simulation at the strip level (rawdigits)
- Noise model

RECO

- Coherent Noise Removal
- Signal filtering, deconvolution
- Hit Finder
- High level reco (showers, tracks...)
 event classifier (CVN)

Simulation

- >>> Generated muons/antimuons near to one of ProtoDUNE VD walls
- >>> MIP ~ **2.12 MeV/cm** in LAr

Simulation

>>> Access to particle energy deposition in LAr

Cosmic Muons Information

>>> dQ/dX in order to know the vertex decay (~ reconstruction stage)

Electron Information

>>> e⁻ and e⁺ from **956** muons

>>> e⁻ and e⁺ from **960** antimuons

Energy Distribution for PDGCode = 11, -11

Analysis: track masking

Analysis: track masking

Let's go further!

Analysis: containment sphere

Analysis: MeV Electrons in LArTPC

>>> 1000 generated electrons

Analysis: MeV Electrons

Hit completeness: fraction of electron hits inside the containment sphere over the total electron hits.

>>> This analysis:

R = 25 cm Completeness = 0.8041

>>> DUNE Collaboration:

R = 20 cm Completeness = 0.7819

A. Abed Abud et al. arXiv:2211.01166 (2023)

Analysis: containment sphere

>>> R = 25 cm

Antimuon Track Masking + Containment Sphere

Let's go even further!

Analysis: selection cone

Analysis: selection cone

Analysis: selection cone - from antimuons

Analysis: selection cone

Muon Track Masking + Containment Sphere + Selection Cone

Antimuon Track Masking + Containment Sphere + Selection Cone

Conclusions

- >>> Selection Criteria from G4:
 - Cone ---> height = 25 cm and opening angle = 40°
 - Completeness ~ 74%
 - Decrease of the fiducial cone volume by 10% for same completeness (improvement of the signal/noise ratio)

Future Prospects

- More inspection in muon track masking in order to avoid delta rays selection.
- Include noise simulation to compute purity.
- Test G4 selection criteria with LArSoft reconstruction tools.
- Prepare analysis pipeline for real data.
- Investigation of the CNN Michel electron score for ProtoDUNE VD.

Thank you! camacortespar@unal.edu.co

Extras

On MC positrons decaying from antimuons

Code information

- You can find everything here:
 - /silver/DUNE/andres-cortes
 - https://github.com/camacortespar/MichelElectron_IJCLab.git
- What would you find there?
 - fcl files to do the simulations
 - scripts running the fcl files on bash
 - o macros that I used in the internship:
 - SimMichelAnalysis.C is the main one (muon information + Michel electron analysis)
 - SimElectronAnalysis.C related to how electrons behaves in LArTPC.