22

STAT3032 SURVIVAL MODELS

TUTORIAL WEEK FIVE

Ouestion One

The survival times after a particular operation for a group of human subjects are provided below

Using the notation from lectures, what are N, m and k? Construct a table (similar to the one in lectures) that was used to produce the KM estimator.

Ouestion Two

The results of a study to see whether a particular treatment prolonged survival are provided below. Again, censored observations are denoted with a "*".

Treatment	Control	
23	5	68
47	8	71
69	10	76*
70*	13	105*
71*	18	107*
100*	24	109
101*	26	113
148	26	116*
181	31	118
198*	35	143
208*	40	154*
212*	41	162*
224	48	188*
	50	212*
	59	217*
	61	225*

Use R to calculate the KM estimator both ignoring treatment group (that is, combine both sets of data) and allowing for treatment group. Please provide a 95% confidence intervals for your curve computed ignoring treatment group.

Question Three

- Suppose Y is a random variable with mean 6 and variance 2. Use the δ -method to approximate the mean and variance of $\log (1 + Y^2)$
- **(b)** Consider a time interval A of length 1. Let the number of individuals known to be alive at the start of A be r and the number of deaths in A be d. Then the usual estimate of the hazard for the interval is

3032 TW5 Page 1

$$q = 1 - \exp(-\lambda)$$

Use this relationship to suggest an estimator of λ , $\hat{\lambda}$ say and the δ -method to approximate the mean and variance of $\hat{\lambda}$. Hint: Make λ the subject of the above equation and use the delta method on the resulting formula. You will also need the result for the variance of \hat{q} from lectures.

Question Four

The times until rejection (of the transplanted organ) or censoring are provided below for thirty-six patients who received an organ transplant. The patients in the treatment group received a new drug (thought to prolong survival) and those in the control group received a placebo.

The times (in weeks) until rejection or censoring for each group are shown below.

Treatment Group

Times to rejection: 6,6,7,10,13,16,23

Times to censoring: 6,9,11,12,19,20,25,30,32,32,35

Control Group

Times to rejection: 1,1,2,3,5,5,8,9,9,10,10,11,12,18,25

Times to censoring: 3,4,9

Compute the KM estimate of the distribution function, $\hat{F}(t)$. Also, provide an estimate of the standard error of your KM estimate.

TRTMT

Page 2 3032 TW5