KagNet Knowledge-Aware Graph Networks

BaekTree 자여너학땅

What to come: KagNet

- 1. Contribution: Abstract & Conclusion
- 2. Introduction
 - Problem Statement
 - Knowledge Graph
- 3. Reasoning Flow: 그래서 뭘 어떻게?
- 4. Explainability

1. Contribution: Abtract and Conclusion

- Problem
 - Commonsense Inference
 - Paricularly, Ask question with some answer candidates
 - N 지선다 문제
- 방법
 - utilize external and structured commonsense knowledge graphs
- 성과
 - explainable inference
 - SOTA(A little bit...:/)
 - outperforms BERT and GPT in Commonsence QA
 - BERT랑 GPT는 그냥 데이터만 많이 쑤셔 넣음

2. Introduction: Problem Definition

- Q
 - "Where do adults use glue sticks?"
- A
 - {classroom(X), office (O), desk drawer (X)}
- BERT or GPT?
 - FAR LESS than human performance
 - lacking transparency and interpretability

Model	10(%) of IHtrain		50(%) of IHtrain		100(%) of IHtrain	
	IHdev-Acc.(%)	IHtest-Acc.(%)	IHdev-Acc.(%)	IHtest-Acc.(%)	IHdev-Acc.(%)	IHtest-Acc.(%)
Random guess	20.0	20.0	20.0	20.0	20.0	20.0
GPT-FINETUNING	27.55	26.51	32.46	31.28	47.35	45.58
GPT-KAGNET	28.13	26.98	33.72	32.33	48.95	46.79
BERT-BASE-FINETUNING	30.11	29.78	38.66	36.83	53.48	53.26
BERT-BASE-KAGNET	31.05	30.94	40.32	39.01	55.57	56.19
BERT-LARGE-FINETUNING	35.71	32.88	55.45	49.88	60.61	55.84
BERT-LARGE-KAGNET	36.82	33.91	58.73	51.13	62.35	57.16
Human Performance	-	88.9	-	88.9	-	88.9

Table 1: Comparisons with large pre-trained language model fine-tuning with different amount of training data.

근데 사실 KagNet도 사람에 비해서는 엄청 형편 없음.... Explainable하다는 것에 의의를 둬야...

2. Introduction: Knowledge Graph

- External Knowledge
 - 외부 지식 창고를 사용하자!
 - 미리 만들어둔다!
 - Graph 자료구조 사용
 - Vertices: Concept
 - Edge: Relation
- Q -> Semantic Space -> A
 - 모델이 input을 받아서, Semantically 문제 이해해서 정답을 맞춘다(BERT or GPT).
- Q -> Symbolic Space -> A
 - 그 과정에서 여기에 외부 지식 창고의 논리 관계를 참고해서 정답을 맞춤!
- 문법/문장 구조와 논리 관계를 둘 다 쓴다!

Figure 1: An example of using external commonsense knowledge (symbolic space) for inference in natural language commonsense questions (semantic space).

3. Reasoning Flow: 그래서 뭘 어떻게?

- 1. Input에 해당하는 subgraph 찾기!(Concept Recognition) 1. 그리고 가공하기
- 2. subgraph의 concept과 relation을 분석하기!
 - 1. 논리 관계 파악
 - 2. 문장/문법 구조 파악
- 3. 정답 맞추기!

3.1. Input에 해당하는 subgraph 찾기!

1. input

- Where do adults use glue sticks SEP classroom
- 2. Where do adults use glue sticks **SEP** office
- 3. Where do adults use glue sticks **SEP** desk
- 4. Where do adults use glue sticks **SEP** drawer
- find vertices(concept)
 - 1. n-gram match
- 3. find edges that link vertices
 - 1. select maximum edge length k
- 가공하기(그래프 -> 벡터화)
 - 1. KGE method으로 graph -> vector
 - 2. concept을 연결하는 relation 중 의미 없는 것 쳐냄(pruning) -

3. Reasoning Flow: 이제 분석해보자!

- 1. Input에 해당하는 subgraph 찾기!(Concept Recognition) 1. 그리고 가공하기
- 2. subgraph의 concept과 relation을 분석하기!
 - 1. 논리 관계 파악
 - 2. 문장/문법 구조 파악
 - 3. 필요한 정보에만 집중
- 3. 정답 맞추기!

3.2.1 논리 관계 파악

- 개념간 관계를 강화하자!
 - 주변 개념들에서 공통 feature 파악
 - Graph에서 Convolution Net (GCN)
 - 각 concept 마다 문맥 고려한 새로운 vector으로 바꿈!
 - h(l) -> h(l+1)
 - k번째-인접-concept 고려
- 개념간 연결 관계를 파악하자!
- 문맥 파악 및 필요한 정보에만 집중

$$h_i^{(l+1)} = \sigma(W_{self}^{(l)} h_i^{(l)} + \sum_{j \in N_i} \frac{1}{|N_i|} W^{(l)} h_j^{(l)})$$

https://tkipf.github.io/graph-convolutional-networks/

3.2.1 논리 관계 파악

- 개념간 관계 강화 하자!
 - 주변 개념들에서 공통 feature 파악
 - Graph에서 Convolution Net (GCN)
- 개념간 연결 관계를 파악하자!
 - 논리 관계는 논리의 연결이다.
 - A -> B
 - B -> C
 - 그러면 A -> C
 - 따라서 시계열 데이터와 유사
 - LSTM
 - 연결 거리가 k일 때 관계 파악한 결과 벡터 도출
 - 직관: 개념들의 평균적인 논리 연결 관계에 대한 feature representation
- 문맥 파악 및 필요한 정보에만 집중

3.2. 2&3 문맥 파악 및 필요한 정보에만 집중

- 개념간 관계 강화!
 - 주변 개념들에서 공통 feature 파악
 - Graph에서 Convolution Net (GCN)
- 개념간 연결 관계를 파악하자!
 - 논리 관계는 논리의 연결이다.
 - 시계열 데이터와 유사
 - ISTM
- 쿼리: Q와 A을 연결하는 semantic feature T(2. 문맥파악)
- 필요한 정보에만 집중(3. 집중)
 - attention
 - 어떤 논리 연결에 집중? a
 - 어떤 concept 연결에 집중? b

$$\mathbf{T}_{i,j} = \texttt{MLP}([\mathbf{s}\;;\;\mathbf{c}^{(\mathbf{i})}_{\mathbf{q}}\;;\;\mathbf{c}^{(\mathbf{j})}_{\mathbf{a}}])$$

$$egin{aligned} &lpha_{(i,j,k)} = \mathbf{T}_{i,j} \; \mathbf{W}_1 \; \text{LSTM}(P_{i,j}[k]), \ &\hat{lpha}_{(i,j,\cdot)} = \text{SoftMax}(lpha_{(i,j,\cdot)}), \ &\hat{\mathbf{R}}_{i,j} = \sum_k \hat{lpha}_{(i,j,k)} \cdot \text{LSTM}(P_{i,j}[k]). \end{aligned}$$

$$eta_{(i,j)} = \mathbf{s} \; \mathbf{W}_2 \; \mathbf{T}_{i,j}$$
 $\hat{eta}_{(\cdot,\cdot)} = ext{SoftMax}(eta_{(\cdot,\cdot)})$ $\hat{\mathbf{g}} = \sum_{i,j} \hat{eta}_{(i,j)} [\hat{\mathbf{R}}_{i,j} \; ; \; \mathbf{T}_{i,j}]$

3.2. Revisit: Concept과 Relation을 분석하기!

- 개념과 관계를 추출하자!
 - 주변 concept 파악
 - 연결 관계를 강화
 - GCN
- 개념간 연결 관계를 파악하자!
 - 논리 관계는 논리의 연결이다.
 - A -> B
 - B -> C
 - 그러면 A -> C
 - 따라서 시계열 데이터와 유사
 - LSTM
- 필요한 정보에만 집중
 - Attention on 논리 연결 관계
 - Attention on 문법/문장 구조
- Combine all!
- 최종 output: graph vector, g hat

$$\mathbf{T}_{i,j} = \texttt{MLP}([\mathbf{s}\;;\;\mathbf{c}^{(\mathbf{i})}_{\mathbf{q}}\;;\;\mathbf{c}^{(\mathbf{j})}_{\mathbf{a}}])$$

$$\begin{split} &\alpha_{(i,j,k)} = \mathbf{T}_{i,j} \; \mathbf{W}_1 \; \text{LSTM}(P_{i,j}[k]), \\ &\hat{\alpha}_{(i,j,\cdot)} = \text{SoftMax}(\alpha_{(i,j,\cdot)}), \\ &\hat{\mathbf{R}}_{i,j} = \sum_k \hat{\alpha}_{(i,j,k)} \cdot \text{LSTM}(P_{i,j}[k]). \end{split}$$

$$eta_{(i,j)} = \mathbf{s} \; \mathbf{W}_2 \; \mathbf{T}_{i,j}$$
 $\hat{eta}_{(\cdot,\cdot)} = \mathtt{SoftMax}(eta_{(\cdot,\cdot)})$ $\hat{\mathbf{g}} = \sum_{i,j} \hat{eta}_{(i,j)} [\hat{\mathbf{R}}_{i,j} \; ; \; \mathbf{T}_{i,j}]$

정답 맞추기

- 분석 output: graph vector
- for each input
 - 1. Where do adults use glue sticks **SEP** classroom
 - 2. Where do adults use glue sticks **SEP** office
 - 3. Where do adults use glue sticks **SEP** desk
 - 4. Where do adults use glue sticks **SEP** drawer
- sigmoid for each input -> graph vector
- get the max probability choice

Explainability

- Q
 - What do you fill with ink to write on an A4 paper?
- A
 - foundtain pen
- Attention Matrix
 - Concepts are focusing on fountain_pen
 - Why pick this answer?
 - because they are related!
 - fill <-> ink, paper<-> write, ...
 - ink <-> founten_pen, write <-> foundtain pen, ...

```
What do you fill with ink to write on an A4 paper?
  A: fountain pen ✓ (KagNet); B: printer
  C: squid D: pencil case
                          (GPT); E: newspaper
            Eill ink write Ad page
   fountain
                                     KagNet
        pen
fountain pen
                    1. select concept pairs
                      of high att. scores
ink -PartOf-> fountain pen
ink -RelatedTo-> container <-IsA- fountain pen
fill <-HasSubEvent- ink <-AtLocation- fountain_pen
fill -RelatedTo-> container <-IsA- fountain pen</pre>
write <-UsedFor- pen
write <-UsedFor- pen <-IsA- fountain pen
paper <-RelatedTo- write <-UsedFor- fountain pen
.... 2. Ranking via path-level attn.
```

Revisit: Contribution: Abtract and Conclusion

- Problem
 - Commonsense Inference
 - Paricularly, Question and Answering Task
- 방법
 - utilize external and structured commonsense knowledge graphs
- 성과
 - explainable inference
 - SOTA(A little bit...:/)
 - outperforms BERT and GPT in Commonsence QA
 - BERT랑 GPT는 그냥 데이터만 많이 쑤셔넣음

