Homework 9

1. Let $Z(G) = \{g \in G \mid gx = xg \text{ for all } g \in G\}$, where G is a group. We will show that Z(G) is normal subgroup of G by applying the Normal Subgroup Test,

$$H \trianglelefteq G \iff xHx^{-1} \subseteq H \text{ for all } x \in G.$$

In terms of Z(G), we have

$$Z(G) \leq G \iff xZ(G)x^{-1} \subseteq Z(G) \text{ for all } x \in G.$$

Let $x \in G$ and consider some element $y \in xZ(G)x^{-1}$. Then $y = xzx^{-1}$, for some $z \in Z(G)$. We will show that this element is also in Z(G), i.e. xzx^{-1} commutes with everything else in G. To do so, let's introduce another element $g \in G$ and show that,

$$(xzx^{-1})g = g(xzx^{-1}).$$

 (\Rightarrow)

$$(xzx^{-1})g = (xx^{-1}z)g$$

$$= zg$$

$$= gz$$

$$= g(xx^{-1})z$$

$$= gx(x^{-1}z)$$

$$= gx(zx^{-1})$$

$$= g(xzx^{-1}).$$

Since $xzx^{-1} \in Z(G)$, $xZ(G)x^{-1} \subseteq Z(G)$. Z(G) passes the Normal Subgroup test and is therefore Normal in G.

- 2. Let G be a finite group of prime order. If |G| = 1, then there's only one element in there. e, which generates it. So let's consider the non-trivial case and suppose that $a \in G$ is not the identity element. We know that $\langle a \rangle$ forms a subgroup in G. Lagrange's Theorem says that $|\langle a \rangle|$ divides |G|. But |G| being prime implies that $|\langle a \rangle| = |G|$. It follows that $G = \langle a \rangle$ is cyclic.
- 3. Let G be a finite group of order n.
 - a) Let $a \in G$. We know that $|a| < \infty$. Since < a > is a subgroup in G, it's order, |< a >| divides G by Lagrange's Theorem. But |< a >| = |a|. Therefore, the order of each element divides the order of the group.

b) Let $a \in G$ be an element of order n_a . From part (a), n_a divides n,

$$n = kn_a$$
.

Then

$$a^n = a^{kn_a} = (a^{n_a})^k = e^k = e.$$

4. Let $\phi: G \to H$ be a group homomorphism. We will show by the Normal Subgroup Test that $Ker\phi$ is a normal subgroup. Let $g \in G$ and $h \in Ker\phi$.

$$\phi(ghg^{-1}) = \phi(g)e_H\phi(g^{-1})$$
$$= \phi(g)\phi^{-1}(g)$$
$$= e_H.$$

Thus, $ghg^{-1} \in Ker\phi$. Since g and h are arbitrary, we have that

$$gKer(\phi)g^{-1} \subseteq Ker(\phi).$$

5. Let $H = \{1, 15\}$ and $K = \{1, 9\}$. I believe these two sets are isomorphic. We can define $\phi: H \to G$ by,

$$\phi(1) = 1, \phi(15) = 9.$$

This mapping is bijective and preserves multiplication. The cosets formed by each are,

$$\frac{G}{H} = \{\{1, 15\}, \{3, 13\}, \{5, 11\}, \{7, 9\}\}$$

and

$$\frac{G}{K} = \{\{1,9\},\{3,11\},\{5,13\},\{7,15\}\}.$$

The quotient group $\frac{G}{H}$ is cyclic genterated by $\{3,13\}$ and is the refore cyclic,

$$\{3,13\} \to \{7,9\} \to \{5,11\} \to \{1,15\}.$$

On the other hand, $\frac{G}{K}$ has all elements of order 2 and cannot be cyclic. Thus, $\frac{G}{K}$ not isomorphic to $\frac{G}{H}$.

6. Let $G = Z_4 \times Z_4$, $H = \{(0,0), (2,0), (0,2), (2,2)\}$, and $K = \{(0,0), (1,3), (2,0), (3,2)\}$. The quotient groups are

$$\begin{split} \frac{G}{H} &= \{\{(0,0),(2,0),(0,2),(2,2)\},\\ &\quad \{(0,1),(2,1),(0,3),(2,3)\},\\ &\quad \{(1,1),(3,1),(1,3),(2,3)\},\\ &\quad \{(1,2),(3,2),(1,0),(3,0)\}\} \end{split}$$

and

$$\begin{split} \frac{G}{H} &= \{\{(0,0),(1,3),(2,0),(3,2)\},\\ &\quad \{(0,1),(1,0),(2,1),(3,3)\},\\ &\quad \{(0,2),(1,1),(2,2),(3,0)\},\\ &\quad \{(0,3),(1,2),(2,3),(3,1)\}\}. \end{split}$$

I can't think and give up on the problem right now. I have to return to this one in the future.