Machine Learning in Public Health

Lecture 4: K-Nearest Neighbors Classification and Receiver Operating Characteristics (ROC)

Dr. Yang Feng

Today's agenda

- K-Nearest Neighbors Classification
- Receiver Operating Characteristics (ROC)

Review on K-Nearest Neighbors Regression

- Given the training data $\{(x_i, y_i), i = 1, \dots, n\}$.
- Main Idea of KNN: given a new observation x_0 , find the K nearest observations among $\{x_i, i = 1, \dots, n\}$.
- What is near? Measure by the Euclidean Distance $||x_i x_0||_2^2 = (x_i x_0)^2$.
- Let's call the set N_0 . Then, we have

$$\hat{y}_0 = \frac{1}{K} \sum_{i \in N_0} y_i.$$

K-Nearest Neighbors Classification

- Difference: now, the response is categorical, say $y_i \in \{1, 2, \dots, L\}$.
- lacktriangle Same process for finding the K **nearest** observations.
- Main difference: we can't simply average the y_{i_j} 's at the end. Instead, we estimate the conditional probability for class j as the fraction of points in N_0 whose response values equal j:

$$P(Y = j | X = x_0) = \frac{1}{K} \sum_{i \in N_0} I(y_i = j),$$

where $j = 1, \dots, J$.

Then, we choose class that with the largest probability.

$$\hat{y}_0 = \arg\max_j P(Y = j | X = x_0)$$

Same as Logistic Regression, LDA, and QDA!

Predict default using balance

- Prepare the training and test data
- lacktriangle Run KNN on training data with varying K values

Importance of standardization before applying KNN


```
dat$class <- as.factor(dat$class)
test_dat$class <- as.factor(test_dat$class)
fit <- knn3(class ~ ., data = dat, k = 5)
ypred <- predict(fit, newdata = test_dat, type = "class")
mean(ypred != test_dat$class)</pre>
```

[1] 0.535

After standardization

```
fit_std <- preProcess(dat, method = "scale")
dat_std <- predict(fit_std, newdata = dat)
test_dat_std <- predict(fit_std, newdata = test_dat)
ggplot(dat_std) + geom_point(mapping = aes(x = v1, y = v2, color = class)) + mytheme</pre>
```



```
fit <- knn3(class ~ ., data = dat_std, k = 5)

ypred <- predict(fit, newdata = test_dat_std, type = "class")
mean(ypred != test_dat_std$class)</pre>
```

```
## [1] 0.005
```

Threshold for Binary Classification

- Recall in logistic regression, once we have the estimated probability $P(Y=1|X=x_0)$, we compare it with 0.5. Clearly, we can change the threshold 0.5.
- Fit the logistic regression model on the training data.

```
## predicted
## true No Yes
## No 2888 11
## Yes 65 36
```

Confusion Matrix/Table

		Predicted class		
		- or Null	+ or Non-null	Total
True	– or Null	True Neg. (TN)	False Pos. (FP)	N
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	P
	Total	N*	P*	

Some additional measures

Name	Definition	Synonyms
False Pos. rate	FP/N	Type I error, 1—Specificity
True Pos. rate	TP/P	1—Type II error, power, sensitivity, recall
Pos. Pred. value	TP/P*	Precision, 1—false discovery proportion
Neg. Pred. value	TN/N*	

FPR vs. TPR

Let' compute FPR and TPR

```
FP <- sum(default_tr$default == "No" & pred_train_label == "Yes")
TP <- sum(default_tr$default == "Yes" & pred_train_label == "Yes")
N <- sum(default_tr$default == "No")
P <- sum(default_tr$default == "Yes")
FPR <- FP/N
TPR <- TP/P
FPR</pre>
```

```
## [1] 0.003794412
```

TPR

```
## [1] 0.3564356
```

Adjusting the threshold

Taking another look at the confusion matrix

```
## predicted
## true No Yes
## No 2888 11
## Yes 65 36
```

- We missed too many default cases. Not what the credit card company wants!
- Should we decrease the threshold 0.5, or increase it?

Change the decision threshold

Decrease the threshold

```
pred_train_label_2 <- ifelse(pred_train_prob > 0.3, 'Yes', 'No')
table(true = default_tr$default, predicted = pred_train_label_2)
```

```
## predicted
## true No Yes
## No 2850 49
## Yes 46 55
```

Increase the threshold

```
pred_train_label_2 <- ifelse(pred_train_prob > 0.7, 'Yes', 'No')
table(true = default_tr$default, predicted = pred_train_label_2)
```

```
## predicted
## true No Yes
## No 2896 3
## Yes 80 21
```

Receiver Operating Characteristics (ROC)

- Most common way to visualize the trade-off between True Positive Rate (TPR) and False Positive Rate (FPR) when the threshold changes.
- Using the **pROC** package.

Comparing different methods via ggroc()

Next Class

- Resampling Methods
 - Cross-Validation
 - Bootstrap