2.12

Problem: Let κ and λ be cardinals. Show that $\kappa \in \lambda$ if and only if there exists an injective function from κ to λ and there does not exist a bijective map between κ and λ .

Solution: Let $\kappa \in \lambda$. Then, $\kappa \subset \lambda$ since ordinals are transitive. Then, $\iota : \kappa \hookrightarrow \lambda$, the inclusion map, is injective.

Let $S = \{\alpha \mid \exists g : \alpha \to \kappa\}$ with g bijective, and similarly, let $T = \{\alpha \mid \exists h : \alpha \to \lambda\}$. Since S = T, then κ is the least element of S and λ is the least element of S as both κ and λ are cardinals, meaning $\kappa = \lambda$.

Suppose there exists $f : \kappa \hookrightarrow \lambda$ that is injective, and there does not exist $g : \kappa \to \lambda$ that is bijective.

By trichotomy, either $\kappa = \lambda$, $\kappa \in \lambda$, or $\lambda \in \kappa$. Since $\kappa \neq \lambda$ (as otherwise, id : $\kappa \to \lambda$ would be a bijection). If $\lambda \in \kappa$, then there would exist an injection $h : \lambda \hookrightarrow \kappa$, then there would be a bijection by Cantor–Schröder–Bernstein, which would be a contradiction to the assumption that there does not exist a bijection.

2.13

Problem: Let A be a set. Given a subset B of A, define $f_B: A \to \{0,1\}$ by

$$f_{B}(x) = \begin{cases} 1 & x \in B, \\ 0 & x \notin B \end{cases}.$$

Let C be the set of all functions mapping from A from $\{0,1\}$, and define $\Phi: P(A) \to C$ by $\Phi(B) = f_B$. Show that Φ is bijective.

Solution: Let $\Phi(B) = \Phi(C)$. Then, we have $f_B = f_C$, meaning that $f_B(x) = f_C(x)$ for all $x \in A$. Thus, for $x \in B$, we have $f_B(x) = 1 = f_C(x)$, meaning $x \notin C$. Thus, B = C. This shows injectivity.

To show surjectivity, we let $f \in C$. Then, Graph(f) is some collection of the form (a,0) and (a,1) in $A \times \{0,1\}$. We find $B \subseteq A$ by taking $B = \{a \in A \mid (a,1) \in Graph(f)\}$. Since f is a function, it must be the case that B is well-defined, and $B \subseteq A$. Thus, Φ is surjective.

 $\text{Let } |A| = \kappa. \text{ We can define a bijection } P(A) \text{ to } \{0,1\}^A, \text{ meaning } |P(A)| = \left|\{0,1\}^A\right|, \text{ and } \left|\{0,1\}^A\right| = 2^\kappa, \text{ so } |P(A)| = 2^\kappa.$

Extra Problem 1

Problem: Show that for cardinals A and B, A + B = B + A and AB = BA.

Solution: We have

$$A + B = |A \times \{0\} \cup B \times \{1\}| = |S|$$

 $B + A = |A \times \{1\} \cup B \times \{0\}| = |T|$.

We define a bijection $S \to T$ by $(a, 0) \mapsto (a, 1)$ for $a \in A$ and $(b, 1) \mapsto (b, 0)$ for $b \in B$. Thus, |S| = |T|, so A + B = B + A.

We also have

$$AB = |A \times B| = |P|$$

$$BA = |B \times A| = |O|.$$

We define a bijection $P \to Q$ by $(a, b) \mapsto (b, a)$. Thus, |P| = |Q|, meaning AB = BA.

Extra Problem 2

Problem: Use the "contradiction format" of induction to prove the Pigeonhole Principle.

Solution: Suppose toward contradiction that the Pigeonhole Principle fails. Let $n_0 \in \mathbb{N}$ be the smallest value such that the Pigeonhole principle fails. Then, there exists an injection from $\{0,\ldots,n_0\}\to A$, where $A\subsetneq\{0,\ldots,n_0\}$. In particular, the ordinal corresponding to $|\{0,\ldots,n_0\}|$ is n_0+1 , so $|A|\in n_0+1$. However, since $|A|\in n_0+1$, there is an injection from A to n_0+1 , meaning there is a bijection from n_0+1 . However, this implies that $n_0+1=A\in n_0+1$, or $n_0+1\in n_0+1$, which is a violation of the Axiom of Regularity.

Extra Problem 3

Problem: Prove that if $A \subseteq B$ and |A| = |B|, then A and B are infinite.

Solution: Let $c_A : A \to \lambda$ and $c_B : B \to \lambda$ be bijections, where $\lambda = \min \{ \alpha \mid c_A, c_B \text{ are bijections} \}$.

Since $A \subseteq B$, $\iota : A \to B$ defined by $\iota(x) = x$ is an injection that is not a bijection. Thus, $c_B \circ \iota : A \to \lambda$ is an injection. However, since there does not exist $\kappa \in \lambda$ with $c_B \circ \iota : A \to \kappa$ as a bijection, it must be the case that λ is a limit ordinal (i.e., infinite).

Extra Problem 4

Problem: Prove that if γ is an infinite ordinal, then $\omega \subseteq \gamma$.

Solution: If γ is an infinite ordinal, then $\gamma = \omega$, in which case $\omega \subseteq \omega = \gamma$, $\omega \in \gamma$, in which case $\omega \subseteq \gamma$, or $\gamma \in \omega$, meaning γ is finite (contradicting the assumption that γ is infinite).

Extra Problem 5

Problem: Show that every infinite set contains a denumerable subset.

Solution: Let S be an infinite set, and let α denote the cardinality of S.

There exists some bijection $f: S \to \alpha$. Since S is infinite, α is infinite, since if α were to be finite, then $f^{-1}: \alpha \to S$ would be a bijection with a finite domain, meaning S would be finite.

By the previous problem, $\omega \subseteq \alpha$, meaning we can take $U \subseteq S$ to be $U = f^{-1}(\omega)$, which is a denumerable set as ω is denumerable.

Extra Problem 6

Problem: Show that every infinite subset S has a proper subset with the same cardinality as S.

Solution: I don't know how to do this problem.