

Detailed Course 2.0 on Function of One and Several Variable - IIT JAM, 23

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months
Save 67%

Total ₹ 21,780

You get 6 months extra for free

Offer expires 15 Jun 2022

12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Continuity

Continuous function at a point 'a':

Let $f: A \to R$ be a real valued function. This function is continuous at $x = \alpha \in A$

$$\inf_{x\to\alpha} \lim_{x\to\alpha} f(x) = f(\alpha).$$

Continuity of some important function:

- (1) Polynomial function: Let $f(x) = a_n x^n + ... a_1 x + a_0$ then $\lim_{x \to \alpha} f(x) = f(\alpha) \Rightarrow f(x)$ is continuous at any point.
- (2) Constant function: Let $f(x) = \alpha$.

Here
$$\lim_{x\to a} f(x) = f(\alpha) = \alpha$$
.

Constant function is always continuous at a.

(3) Rational function:

Let p(x) and q(x) are polynomial, then $f(x) = \frac{p(x)}{q(x)}$

is called rational function.

Hence f(x) is continuous at c, if $q(c) \neq 0$

(4) Trigonometry function:

(a)
$$f(x) = \sin x$$

- (5) Exponential function:
- (6) Logarithmic function:

Sequential definition: Let $f: A \to R$ be a function and f is continuous at 'c' iff for every sequence $\langle x_n \rangle$ converging to c, then $\langle f(x_n) \rangle$ converging to f(c).

i.e. if \exists two sequence $\langle x_n \rangle$ and $\langle y_n \rangle$ s.t. $\langle x_n \rangle \to c$ and $\langle y_n \rangle \to c$.

but if $\langle f(x_n) \rangle$ and $\langle f(y_n) \rangle$ converging to distinct limit then f(x) is not continuous at c.

Result:

Let f: R \rightarrow R is a function defined by $f(x) = \begin{cases} g(x), & x \in Q \\ h(x), & x \in Q^C \end{cases}$

Then f(x) is continuous at all zeros of g(x) - h(x) = 0.

Q.1. Let
$$f: R \to R$$
 be defined by $f(x) = \begin{cases} x^6 - 1 & x \in Q \\ 1 - x^6 & x \in Q^C \end{cases}$.

The number of points at which f(x) is continuous is JAM - 2015

- (a) 1 (b) 2
- (c) 3 (d) 4

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Result: Let $f : [0,1] \rightarrow R$ is a function such that

$$f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

Then f(x) is continuous iff $\alpha > 0$

Which of the following values of α , the function Q.2.

$$f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \text{ is continuous} \end{cases}$$

(a) 1/2

- (c) 2
- (b) 1 (d) -1/3

Q.3. Let the function f(x) be defined by $f(x) = \begin{cases} e^x & x \text{ is rational} \\ e^{1-x} & x \text{ is irrational} \end{cases} \text{ for } x \text{ in } (0,1) \text{ then}$

IIT JAM 2013

- (a) f is continuous at every point in (0,1)
- (b) f is discontinuous at every point in (0,1)
- (c) f is discontinuous at only one point in (0,1)
- (d) f is continuous at only one point in (0,1)

DISCONTINUITIES: If a function is not continuous then

it is called discontinuous

Type of Discontinuity:

(i) Removable Discontinuity

A function f(x) is said to have a discontinuity of removable kind at x = a if $\lim_{x \to a} f(x)$ exist but not equal to the value of function at x = a i.e., f(a + 0) = f(a - 0) $\neq f(a)$. Or $\lim_{x \to a} f(x) \neq f(a)$

(ii) Discontinuity of First kind / Jump Discontinuity

A function f(x) is said to have a discontinuity of first kind at x = a if both f(a - 0) and

f(a + 0) exist but are unequal. The point x = a is said the point of discontinuity of first kind

i.e.
$$f(a-0) \neq f(a+0)$$

It is also known as ordinary discontinuity.

(iii) Discontinuity of Second kind

A function f(x) is said to have a discontinuity of second kind at x = a if none of the limitf(a - 0) and f(a + 0) exist at x = a. The point x = a is the point of discontinuity of second kind.

(iv) Mixed Discontinuity

A function f(x) is said to have a discontinuity of mixed kind at x = a if f(x) has a discontinuity of second kind on one side of a and on the other side it has discontinuity of first kind or may be continuous.

(v) Infinite Discontinuity

A function f(x) at x = a is said to have discontinuity of infinite kind if f(a + 0) or f(a - 0) is ∞ or $-\infty$.

Q.4. Let $F: R \to R$ be a monotone function. Then

CSIR NET JUNE 2016

- (a) F has no discontinuities
- (b) F has only finitely many discontinuities
- (c) F can have at most countably many discontinuities
- (d) F can have uncountably many discontinuities.

- Q.5. Let $f: R \to R$ be a strictly increasing continuous function. If $\{a_n\}$ is a sequence in [0, 1] then the sequence $\{f(a_n)\}$ is
 - (a) Increasing

(b) Bounded

- (c) Convergent
- (d) Not necessarily bounded

Consider the function $f: R \rightarrow R$ defined by

$$f(x) = \begin{cases} 2x & \text{if } x \in Q \\ 3 - x & \text{if } x \in Q^C \end{cases}$$
Then f is continuous at

$$(a) x = 1$$

(b)
$$x = 2$$

$$(c) \quad \mathbf{x} = \mathbf{0}$$

not continuous

- Q.8. Let f be a monotone non-decreasing real-valued function on R. Then
 - (a) $\lim_{x \to a} f(x)$ exists at each point a.
 - (b) If a < b, then $\lim_{x \to a^+} f(x) \le \lim_{x \to b^-} f(x)$.
 - (c) f is an unbounded function
 - (d) The function $g(x) = e^{-f(x)}$ is a bounded function.

Q.9. Let p be a real polynomial of the real variable x of the form $p(x) = x^n + a_{n-1}x^{n-1} + + a_1x + 1$. Suppose that p has no roots in the open unit disc and p(-1) = 0. Then

(a)
$$p(1) = 0$$

(b)
$$\lim_{x \to \infty} p(x) = \infty$$

(c)
$$p(2) > 0$$

(d)
$$p(3) = 0$$

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 - 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo	
Save 67%	₹ 21,700 ₹ 19,602	
You get 6 months extra for free	Offer expires 15 Jun 2022	

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹-6,807-₹6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR