Как работать с WHAM

Установка

- WHAM имеет разные реализации, попробуем использовать основную для нас Grossfield Lab WHAM (http://membrane.urmc.rochester.edu/?page_id=126)
- Она сделана под линукс
- План установки
 - Сначала скачиваем архивчик с программой
 - Затем распаковываем его
 - tar zxvf wham-release-2.0.9.tgz
 - Переходим в нужную папку и устанавливаем одномерную версию
 - cd ./wham/wham
 - make clean
 - make
 - После этого в папке wham появится исполняемый файл (без расширения), его и будем в дальнейшем использовать

Запуск WHAM (из мануала программы)

- Команда для запуска выглядит так:
- wham [P|Ppi|Pval] hist_min hist_max num_bins tol temperature numpad metadatafile freefile [num_MC_trials randSeed]
 - Где [P|Ppi|Pval] указывает периодичность координаты реакции, в нашем случае она не имеет периодичности, поэтому этот параметр опускаем
 - hist_min [Å] минимальное значение координаты реакции (точки со значение координаты реакции ниже hist_min не будут рассматриваться)
 - hist_max [Å] максимальное значение координаты реакции (точки со значение координаты реакции выше hist_max не будут рассматриваться)
 - num_bins число столбцов (корзин, бинов) на которые бьется гистограмма (не должно быть слишком большим — малое кол-во точек в каждой корзине (могут оказаться пустыми), или слишком маленьким — неточный профиль)
 - tol [ккал/моль] критерий сходимости по энергии (итерации заканчиваются, если энергия между итерациями изменилась меньше, чем на tol)
 - temperature [K] температура, используемая для моделирования (300 K)

Запуск WHAM (из мануала программы)

- Команда для запуска выглядит так:
- wham [P|Ppi|Pval] hist_min hist_max num_bins tol temperature numpad metadatafile freefile [num_MC_trials randSeed]
 - numpad параметр количества выводимых значений для периодических координат реакции (у нас 0)
 - metadatafile название файла с метаданными (см. след. слайд)
 - freefile название выходного файла
 - [num_MC_trials randSeed] параметры нужные для анализа ошибок

Итого наша команда выглядит примерно так:

wham 1.8 4.8 150 0.01 300 0 meta_Li Li_PMF_bin150.out

Цветами раскрасила для простоты понимания=)

Файл метаданных

- Файл метаданных состоит из N строк, где N количество промоделированных окон.
- Каждая строка имеет вид:
- /path/to/timeseries/file loc_win_min spring [correl time] [temperature]
 - Где /path/to/timeseries/file путь до файлов с данными моделирования
 - loc_win_min [Å] положение минимума приложенного квадратичного потенциала (x_0)
 - spring [ккал/(моль* $Å^2$)] константа жесткости приложенного потенциала (k)
 - [correl time] и [temperature] мы использовать не будем!
- Значения разделяются знаками табуляции, а не пробелами!!!
- Все строки, что начинаются с # считаются комментариями

Напоминаю форму приложенного потенциала:

$$V = \frac{1}{2}k * (x - x_0)^2$$

Файл данных моделирования для WHAM

- Файл данных должен иметь следующую структуру:
- В каждой строке (для каждой конфигурации системы) указываются
 - 1 столбец время (шаг) моделирования. Эта информация фактически не используется.
 - 2 столбец значение координаты реакции на данном шаге [Å]
- Если в файле с метаданными была указана [temperature], то в третьем столбце указывается потенциальная энергия системы в данной конфигурации
- Все числа должны быть в формате с плавающей запятой.
- Строки, начинающиеся с "#", игнорируются как комментарии.
- Дополнительные столбцы данных игнорируются.

Файл данных моделирования из cp2k

- Файл данных имеет следующую структуру:
 - 1 столбец время моделирования в фемтосекундах
 - 2 столбец значение координаты реакции на данном шаге [в борах]
 - 3,4,5,6 столбцы нули
- В качестве координаты реакции выбрано расстояние между металлом и атомом кислорода О27

Что нужно сделать

Для всех металлов (Li, Na, K, Cs, Rb)

- Переформатировать файлы данных, лежащие в папках ./ui/dist (создать новые файлы в отдельных папках)
 - 1 столбец оставить, 2-ой переделать из бор в ангстремы, 3-6 столбцы удалить
 - Для всех файлов в названии указаны равновесное значение координаты реакции loc_win_min в десятых долях ангстрема, и константа жесткости spring в ккал/моль* 2 . Главное помнить, что значение в заглавии файлов указано для потенциала $(x-x_0)^2$
- Создать файлы с метаданными
- Запустить WHAM
- Из выходного файла извлечь профиль (первые два столбца из num_bins строк) и построить график
- Из профилей извлечь точки минимумов (значение координаты реакции энергия)
- Поварьировать значение num_bins и посмотреть как это влияет на профиль

Первое задание можно выполнять как умеете — вручную, написав скрипт или даже просто используя Excel.