Teoría de Números 4

Ejercicios

Problema 1

Sean a, n enteros mayores que 1. Pq si $a^n - 1$ es primo $\implies a = 2$ y n es primo

Solución

Sea la descomposicion $a^n - 1 = (a-1)(a^n - 1 + a^n - 2 + \dots + a + 1)$ por tanto a - 1 es 1 $\implies a = 2$.

Supongamos que n no es primo $\implies n = pq \operatorname{con} p, q > 1$, entonces $a^n - 1 = (a^p - 1)(a^{p(q-1)} + a^{p(q-2)} + ... + a^{p2} + a^p + 1)$, con lo cual $(a^p - 1) = 1 \implies p - 1 = 0 \implies p = 1$.

Análogamente se hace el análisis con q suponiendo que sea compuesto, llegando a la conclusión que es primo, por lo cual n debe ser primo.

Problema 2

Sean a, n enteros mayores que 1. Prueba que si $a^n + 1$ es primo $\implies a$ es par y n es una potencia de 2.

Solución

Que a sea par es *straightforward* (impar + par es impar).

Sea $n=2^pq$ con q impar, entonces $a^n+1=(a^{2^p}+1)(a^{2^p(q-1)}-a^{2^p(q-2)}+...-a^{2^p}+1)$, con lo cual es facil notar que para que a^n+1 sea primo $a^{2^p}+1$ debe ser igual a 1, lo cual es imposible, por tanto q=1.

Problema 3

Pq existe un bloque de 2022 enteros consecutivos donde hay exactamente 15 primos.

Solución

Construyamos el conjunto $A(n)=\{1+n,2+n,...,2022+n\}$ en el cual, para un valor de n tenemos 2022 números consecutivos. Nótese que para A(1) tenemos más de 25 primos en el conjunto.

Probemos que existe un n tal que en el conjunto no hay primos. Sea p un entero, nótese que al sumarle a p! + 1 una cantidad k con 0 < k < p+1 podremos sacar factor común k porque p! contiene como factor todos los números hasta p, entonces habremos encontrado un bloque de p-1 números consecutivos compuestos. Siguiendo esta lógica podemos construir un bloque de 2022 numeros compuestos consecutivos simplemente teniendo como primer número 2023!+1, o sea A(2023!+1)

Véase que cada vez que en A incrementamos n, como lo que estamos haciendo es eliminando el primer elemento y adicionando uno al final (en caso que lo tengamos en orden cresciente) lo que está ocurriendo es que la cantidad de primos en el conjunto se mantiene constante, disminuye en 1 o aumenta en 1.

Demostremos que dado un conjunto de m números $Q = \{q_1, q_2, \dots, q_m\}$, si la diferencia modular entre cada término consecutivo es a lo sumo 1, entonces Q contiene a todos los elementos entre q_1 y q_m . Procedamos por induccion:

- Caso base: para m = 2, m = 3 se cumple
- Hipótesis: Supongamos que para m = k se cumple
- Para m=k+1 ocurre que el conjunto podemos dividirlo en $\{q_1,q_2,\ldots,q_k\}$ y $\{q_{k+1}\}$, en el primer grupo por hipótesis de inducción al conjunto pertenecen todos los números entre q_1 y q_k , y como la diferencia modular entre q_k y q_{k+1} es a lo sumo 1 eso significa que entre q_k y q_{k+1} no existen elementos \Longrightarrow en el conjunto Q estarían todos los elementos entre q_1 y q_{k+1} , por tanto se cumple lo que queríamos demostrar.

Luego, inicialmente tenemos más de 25 primos, en cada incremento la cantidad varía en 1 o no y existe un n para el cual hay cero primos, eso significa que la primalidad para algún valor de n va a tomar el valor 15.

Problema 4

Sean a, n, m enteros positivos y a > 1. Prueba que $mcd(a^n - 1, a^m - 1) = a^{mcd(n,m)} - 1$

Solución (Marlon)

Sea $d = mcd(a^n - 1, a^m - 1)$, entonces $d \div (a^n - 1 - (a^m - 1)) \implies d \div (a^n - a^m)$. Supongamos sin pérdida de generalidad que $n > m, n = mq_1 + r_1$, entonces d $\div a^m(a^{m(q_1-1)+r_1}-1)$, como $d \div a^m - 1$ y $mcd(a^m - 1, a^m) = 1 \implies d \div a^{m(q_1-1)+r_1} - 1$.

Repitiendo este proceso continuando con $a^{m(q_1-1)+r_1}-1$ y a^m-1 resulta que $d \div a^{r_1}-1$, y si lo volvemos a aplicar con a^m-1 y $a^{r_1}-1$ obtendremos un r_2, r_3 y así sucesivamente hasta que por el método de la division de Euclides resulta que $d \div a^{mcd(n,m)}-1$ que es lo que queríamos probar.

Problema 5

Sean n entero mayor que 4. Prueba que $n \div (n-1)! \iff n$ es compuesto.

Solución

La demostracion $n | (n-1)! \implies n$ es compuesto es *straightforward*, ya que si n fuera primo $\implies n$ es coprimo con todo número menor que él, y por tanto no divide a (n-1)!.

Demostremos que si n es compuesto $\implies n \div (n-1)!$. Sea $n=ab \cot a, b>1$ y n>a,b entonces:

- Si $a = b \implies a, b$ pertenecen a $\{2, \dots, n-1\}$ y por tanto $n \div (n-1)!$
- Si a = b entonces probemos que $n = a^2 > 2a$, esto ocurre si a > 2, entonces para todo n > 4 se cumple, que es lo que queríamos probar

Problema 6

Se define la secuencia p_1, p_2, \ldots, p_n para todo n > 1 de la siguiente forma, $p_1 = 2$ y p_n es el mayor primo que divide a $p_1p_2\cdots p_{n-1}+1$. Prueba que 5 no está en la secuencia.

Solución

Sea $S = \{p_1, p_2, \dots, p_n\}$ la secuencia de los p_i que cumplen la condicion y $A(i) = p_1 p_2 \cdots p_i + 1$, entonces:

- A(1) = 2 de donde $p_1 = 2$
- A(2) = 3 de donde $p_2 = 3$
- A(3) = 7 de donde $p_3 = 7$
- ...

Nótese que si existe k tal que 5 cumple la condicion en A(k) entonces A(k) = 5t siendo t un número compuesto por primos menores que 5 (o sea, 2 y 3), pero como $p_1 = 2$ y $p_2 = 3$ entonces A(k) es coprimo con 2 y 3, lo cual indica que t o es una potencia de 5 o es divisible entre un primo mayor que 5, lo cual no puede ser.

Análisis de Abel

Analicemos el caso en que A(k) es una potencia de 5, en ese caso existe q tal que:

$$A(k) = p_1 p_2 \cdots p_k + 1 = 5^q$$

Lo cual es equivalente a:

$$p_1p_2\cdots p_k=5^q-1$$

Descomponiendo el miembro derecho resulta en:

$$p_1 p_2 \cdots p_k = (5-1)(5^{q-1} + 5^{q-2} + \cdots + 5 + 1)$$

Por lo que $p_1p_2\cdots p_k$ sería múltiplo de 4, lo cual genera una contradicción porque solo tiene un factor 2, ya que los resultados de $p_1p_2\cdots p_k+1$ para k>0 son primos relativos con 2, lo que implica que no será divisible por 2.