

CUSTOMER APPROVAL SHEET

Company Name	
MODEL	A035QN02 V4
CUSTOMER	Title :
APPROVED	Name :
APPROVAL FOR SPECIFICA	TIONS ONLY (Spec. Ver) TIONS AND ES SAMPLE (Spec. Ver) TIONS AND CS SAMPLE (Spec. Ver)

AUO PM:

P/N: <u>97.03A11.400</u>

Comment:

Page: 2/35

0.9

Doc. Version	0.9
Total Page	34
Date	2009/06/09

Product Specification3.5" COLOR TFT-LCD MODULE

MODEL NAME: A035QN02 V4

< □ >Preliminary Specification

< > Final Specification

Record of Revision

Version	Revise Date	Page	Content
0.0	2008/01/07		First draft.
0.1	2008/01/24	6	Update drawing
0.1	2000/01/24	27	Update the Electrostatic Discharge test Conditions
0.2	2008/02/01	14	Update SPI Timing Diagram
0.2	2000/02/01	27, 30	Switch the order of "touch panel" and "reliability"
0.3	2008/03/13	6	Update drawing (move the component area)
		15	Update the serial setting map
		17	Delete R02h register setting description
		19	Delete R0Bh register setting description
0.4 2008/3/19		20	Delete R0Fh register setting description
		21	Add R10h register setting description
		23	Delete R2Eh register setting description
		31	Update the recommended register settings
0.5	2008/4/24	10	Update the VCC (Min 2.5V → 2.8V)
		6	Update drawing
		13	Update the ''Unit'' of Reset Pulse Width
0.6	2008/5/12	15	Add R12h serial setting map
		21	Add R12h register setting description
		32	Add R12 recommended register settings
0.7	2008/7/03	5	Modify module dimension (Thickness 4.32mm → 4.07mm)
0.7	2006/1/03	6	Update drawing (module thickness : 4.32mm → 4.07 mm)
0.8	2009/01/05	6	Update drawing
0.9	2009/06/09	6	Update drawing
0.5	2003/00/09	27	Touch Screen Panel Specifications

Page: 3/35

0.9

Contents:

<u>A.</u>	<u>C</u>	General Description		<u> 4</u>
<u>B.</u>	<u>F</u>	eatures		4
<u>C.</u>	F	Physical Specifications		5
<u>D.</u>		Outline Dimension		
<u>E.</u>		Electrical Specifications		
	1.	Pin Assignment		
	2.	3		
	3.			
		a. TFT- LCD Panel (GND=0V)		
		b. Backlight Driving Conditions		
	4.	AC Timing		
		a. Timing Diagram		11
		b. Timing Condition		13
		c. SPI Timing Diagram		14
		d. SPI Timing Specification		14
	5.	Command Register Map		15
		a. Serial Setting Map		15
		b. Description of Serial Control Data		
<u>Op</u>	tic	cal specifications (Note 1, 2)		25
E.]	Touch Screen Panel Specifications	錯誤! 尙	未定義書籤。
	1.	FPC Pin Assignment	錯誤!	尚未定義書籤。
	2.	Electrical Characteristics	錯誤!	尚未定義書籤。
	3.	Mechanical Characteristics	錯誤!	尚未定義書籤。
	4.	Life test Condition	錯誤!	尚未定義書籤。
	5.	Attention	錯誤!	尙未定義書籤。
<u>G.</u>	E	Reliability Test Items		30
Н.	E	Packing Form		31
L		Application Note		
_		Application circuit		
		Recommended Register Settings		
		Power on/off Sequence		
	ა.	rower on/on Sequence		చచ

Page: 4/35

A. General Description

A035QN02 V4 is an amorphous transmissive type Thin Film Transistor Liquid crystal Display (TFT-LCD). This model is composed of a TFT-LCD, a driver, an FPC (flexible printed circuit), a backlight unit and a touch panel.

B. Features

- 3.5-inch display with integrated resistive type touch panel
- QVGA resolution in RGB stripe dot arrangement
- Single power, DC/DC integrated
- High brightness
- 3-wire register setting
- Interfaces: parallel RGB 18-bit
- Wide viewing angle
- 3-in-1 FPC for LCD signals, backlight LED power and touch panel
- Green design

Page: 5/35

C. Physical Specifications

NO.	Item	Unit	Specification	Remark
1	Display Resolution	dot	320 RGB (H)×240(V)	
2	Active Area	mm	70.08(H)×52.56(V)	
3	Screen Size	inch	3.5(Diagonal)	
4	Dot Pitch	mm	0.073(H)×0.219(V)	
5	Color Configuration		R. G. B. Stripe	Note 1
6	Color Depth		262K Colors	
7	Overall Dimension	mm	76.9(H) × 63.9(V) × 4.07(T)	Note 2
8	Weight	g	40	
9	Display Mode		Normally White	
10	Gray Level Inversion Direction		6 O'clock	

Note 1: Below figure shows dot stripe arrangement.

Note 2: Not including FPC. Refer to the drawing next page for further information.

Page: 6/35

D. Outline Dimension

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 7/35

0.9

E. Electrical Specifications

1. Pin Assignment

No.	Pin Name	I/O	Description	Remarks
1	LED_Cathode	I	Backlight LED Cathode	
2	LED_Cathode	I	Backlight LED Cathode	
3	LED_Anode	I	Backlight LED Anode	
4	LED_Anode	I	Backlight LED Anode	
5	GND	I	Ground	
6	RESB	-	Reset	
7	NC	-	Not Connected	
8	Y1	0	Touch Panel Top Electrode	
9	X1	0	Touch Panel Right Electrode	
10	Y2	0	Touch Panel Bottom Electrode	
11	X2	0	Touch Panel Left Electrode	
12	NC	-	Not Connected	
13	NC	-	Not Connected	
14	B0	I	Blue Data Bit 0	
15	B1	I	Blue Data Bit 1	
16	B2	1	Blue Data Bit 2	
17	B3	1	Blue Data Bit 3	
18	B4	I	Blue Data Bit 4	
19	B5	1	Blue Data Bit 5	
20	NC	-	Not Connected	
21	NC	-	Not Connected	
22	G0	I	Green Data Bit 0	
23	G1	1	Green Data Bit 1	
24	G2	1	Green Data Bit 2	
25	G3	I	Green Data Bit 3	
26	G4	I	Green Data Bit 4	
27	G5	I	Green Data Bit 5	
28	NC	-	Not Connected	
29	NC	-	Not Connected	
30	R0	I	Red Data Bit 0	
31	R1	ı	Red Data Bit 1	

Page: 8/35

32	R2	1	Red Data Bit 2	
33	R3	1	Red Data Bit 3	
34	R4	ı	Red Data Bit 4	
35	R5	1	Red Data Bit 5	
36	HSYNC	1	Horizontal Sync Input	
37	VSYNC	ı	Vertical Sync Input	
38	DOTCLK	ı	Dot Data Clock	
39	NC	-	Not Connected	
40	NC	-	Not Connected	
41	VCC	1	Power input	
42	VCC	I	Power input	
43	cs	ı	Chip select pin of serial interface	
44	GND	1	Ground	Vendor ID pin
45	NC	-	Not Connected	
46	GND	1	Ground	
47	NC	-	Not Connected	
48	NC	-	Not Connected	Vendor ID pin
49	SCK	1	Clock input pin in serial mode	
50	SDI	I	Data input pin in serial mode	
51	NC	-	Not Connected	
52	DEN	I	Display enable pin from controller	
53	GND	I	Ground	
54	GND	I	Ground	

I: Digital signal input, O: Digital signal output, G: GND, PI: Power input, C: Capacitor

Page: 9/35

0.9

2. Absolute Maximum Ratings

Items	Symbol	Va	lues	Unit	Condition
items	Syllibol	Min.	Max.	Oilit	Condition
Power Voltage	VCC	-0.3	4	V	
LED Reverse Voltage	Vr		5	V	One LED
LED Forward Current	lf		22	mA	One LED, Note 2

Note 1.If the operating condition exceeds the absolute maximum ratings, the TFT-LCD module may be damaged permanently. Also, if the module operated with the absolute maximum ratings for a long time, its reliability may drop.

Note 2. If LED current exceeds the limit curve, the lifetime will drop dramatically.

Page: 10/35

3. Electrical Characteristics

The following items are measured under stable condition and suggested application circuit.

a. TFT-LCD Panel (GND=0V)

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Power Supply	VCC	2.8	3.2	3.6	V	
Frame Frequency	f _{Frame}		60		Hz	
Dot Data Clock	DCLK		5		MHz	
l	Vi	0		0.2 x VDDIO	V	
Input Signal Voltage	VI	0.8 x VDDIO		VDDIO	V	
VCOM High Voltage	VCOMH	3.3		6	V	
VCOM Low Voltage	VCOML	-2.5			V	
Current Consumption	IVCC		7	10	mA	VCC=3.3V

b. Backlight Driving Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED Supply Current	Ι _L		20		mA	single serial
LED Supply Voltage	V_{L}		19.2		V	single serial
LED Life Time	L	10,000			Hr	Note 2, 3

Note 1: LED backlight is six LEDs serial type.

- Note 2: The "LED Supply Voltage" is defined by the number of LED at Ta=25 $^{\circ}$ C, I_L=20mA. In the case of 6 pcs LED, V_L=3.2*6=19.2V
- Note 3: The "LED life time" is defined as the time for the module brightness to decrease to 50% of the initial value at Ta=25°C, I_L=20mA
- Note 4: The LED lifetime could be decreased if operating I_Lis larger than 25mA

Page: 11/35

0.9

4. AC Timing

a. Timing Diagram

Page: 12/35

NOTE: The falling edge of HSYNC belongs to blanking period is always behind or equal to the one of VSYNC

Page: 13/35

0.9

b. Timing Condition

Characteristics	Symbol	Min	Тур	Max	Unit
DOTCLK Frequency	f _{DOTCLK}		5.0	7.5	MHz
DOTCLK Period	t _{DOTCLK}	133	200		nSec
Vsync Setup Time	t _{vsys}	20			nSec
Vsync Hold Time	t _{vsyh}	20			nSec
Hsync Setup Time	t _{hsys}	20			nSec
Hsync Hold Time	t _{hsyh}	20			nSec
Phase Difference of Sync	+	0		320	4
Signal Falling Edge	t _{hv}	, 0		320	t _{DOTCLK}
DOTCLK Low Period	t _{CKL}	66.5			nSec
DOTCLK High Period	t _{CKH}	66.5			nSec
Data Setup Time	t _{ds}	40			nSec
Data Hold Time	t _{dh}	40			nSec
Reset Pulse Width	t _{RES}	10			uSec
Rise / Fall Time	t _r /t _f	20		100	nSec

0.9 Page: 14/35

c. SPI Timing Diagram

Write Mode RW="0"

First Transmission (Register/DC="0")

Address

Data

d. SPI Timing Specification

Device ID

Device ID

Item	Symbol	Conditions	Min	Typical	Max	Unit
Serial clock frequency	tfclk				15	M Hz
Serial clock cycle time	tclk		66.6			nsec
Clock low width	tsl		33.3			nsec
Clock high width	tsh		33.3			nsec
Chip select set up time	tcss		0			nsec
Chip select hold time	tcsh		10			nsec
Chip select high delay time	tcsd		20			nsec
Data set up time	tds		5			nsec
Data hold time	tdh		10			nsec

Page: 15/35

0.9

5. Command Register Map

a. Serial Setting Map

	_																		
Reg#	Register	R/W	D/C	IB15	IB14	IB13	IB12	IB11	IB10	IB09	IB08	IB07	IB06	IB05	IB04	IB03	IB02	IB01	IB00
R	Index	0	0	*	*	*	*	*	*	*	*	*	ID6	ID5	ID4	ID3	ID2	ID1	ID0
R01h	Driver output control	0	1	0	0	REV	CAD	BGR	SM	TB	RL	1	1	1	0	1	1	1	1
	[00XX][X0XX]EF			0	0	Х	Х	Х	0	Х	Х	1	1	1	0	1	1	1	1
R03h	Power control (1)	0	1	DCT3	DCT2	DCT1	DCT0	BT2	BT1	ВТ0	0	DC3	DC2	DC1	DC0	AP2	AP1	AP0	0
	(7272h)			0	1	1	1	0	0	1	0	0	1	1	1	0	0	1	0
R0Ch	Power control (2)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VRC2	VRC1	VRC0
	(0002h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
R0Dh	Power control (3)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	VRH3	VRH2	VRH1	VRH0
Kobii	(000Ah)			0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
R0Eh	Power control (4)	0	1	0	0	VCOMG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0	0	0
ROLI	(3200h)			0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
R10h	Uniformity	0	1	0	0	0	0	0	0	0	0	ENSVIN	1	0	1	1	1	0	0
KIUII	(005Ch)			0	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0
R12h	Entry Control	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	IFS	0	0
11 1211	(0064h)			0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0
R16h	Horizontal porch	0	1	XLIM8	XLIM7	XLIM6	XLIM5	XLIM4	XLIM3	XLIM2	XLIM1	XLIM0	0	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0
KIOII	(9F86h)			1	0	0	1	1	1	1	1	1	0	0	0	0	1	1	0
R17h	Vertical porch	0	1	0	0	0	0	0	0	0	0	VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0
1(1711	(0002h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
R1Eh	Power control (5)	0	1	0	0	0	0	0	0	0	0	nOTP	0	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0
IVILII	(002Dh)			0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	1
R30h	y control (1)	0	1	0	0	0	0	0	PKP12	PKP11	PKP12	0	0	0	0	0	PKP02	PKP01	PKP00
13011	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R31h	y control (1)	0	1	0	0	0	0	0	PKP32	PKP31	PKP32	0	0	0	0	0	PKP22	PKP21	PKP20
Kom	(0200h)			0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
R32h	y control (1)	0	1	0	0	0	0	0	PKP52	PKP51	PKP52	0	0	0	0	0	PKP42	PKP41	PKP40
KSZII	(0001h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Door	y control (1)	0	1	0	0	0	0	0	PRP12	PRP11	PRP12	0	0	0	0	0	PRP02	PRP01	PRP00
R33h	(0700h)			0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0
R34h	y control (1)	0	1	0	0	0	0	0	PKN12	PKN11	PKN12	0	0	0	0	0	PKN02	PKN01	PKN00
11.0411	(0405h)			0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1
R35h	y control (1)	0	1	0	0	0	0	0	PKN32	PKN31	PKN32	0	0	0	0	0	PKN22	PKN21	PKN20
RJON	(0202h)			0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0

0.9

Page:

16/35

			_																
R36h	γ control (1)	0	1	0	0	0	0	0	PKN52	PKN51	PKN52	0	0	0	0	0	PKN42	PKN41	PKN40
KSOII	(0707h)			0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	1
R37h	y control (1)	0	1	0	0	0	0	0	PRN12	PRN11	PRN12	0	0	0	0	0	PRN02	PRN01	PRN00
110711	(0006h)			0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
R3Ah	y control (2)	0	1	0	0	0	VRP14	VRP13	VRP12	VRP11	VRP10	0	0	0	0	VRP03	VRP02	VRP01	VRP00
KOAII	(0700h)			0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0
R3Bh	y control (2)	0	1	0	0	0	VRN14	VRN13	VRN12	VRN11	VRN10	0	0	0	0	VRN03	VRN02	VRN01	VRN00
Kobii	(0003h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	1

b. Description of Serial Control Data

R01h	Driver output control	0	1	0	0	REV	CAD	BGR	SM	ТВ	RL	1	1	1	0	1	1	1	1
IXO III	[00XX][X0XX]EF			0	0	Х	Х	Х	0	Х	Х	1	1	1	0	1	1	1	1

REV: Displays all character and graphic display sections with reversal when REV = "1".

Since the grayscale level can be reversed, display of the same data is enabled on normally white and normally black panels.

Source output level is indicated below.

REV	RGB data	Source Output	level
REV	RGB data	VCOM = "H"	VCOM = "L"
	000000B	V63	V0
1	:	:	:
	111111B	V0	V63
	000000B	VO	V63
0	:	:	:
	111111B	V63	V0

CAD: Set up based on retention capacitor configuration of the TFT panel.

CAD	Retention capacitor configuration
0	Cs on Common
1	Cs on Gate

BGR: Selects the <R><G> arrangement.

When BGR = "0" <R><G> color is assigned from S0. When BGR = "1" <G><R> color is assigned from S0.

SM: Change the division of gate driver.

When SM = "0", odd/even division (interlace mode) is selected. When SM = "1", upper/lower division is selected.

Select the division mode according to the mounting method.

TB: Selects the output shift direction of the gate driver.

When TB = "1", G0 shifts to G239. When TB = "0", G239 shifts to G0.

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 17/35

RL: Selects the output shift direction of the source driver.

When RL = "1", S0 shifts to S959 and <R><G> color is assigned from S1.

When RL = "0", S959 shifts to S0 and <R><G> color is assigned from S959.

Set RL bit and BGR bit when changing the dot order of R, G and B.

Note: The default setting of register bits REV, CAD, BGR, TB and RL are defined by the logic stage of corresponding hardware pins.

These bits will override the hardware setting once software command was sent to set the bits.

R03h	Power control (1)	0	1	DCT3	DCT2	DCT1	DCT0	BT2	BT1	ВТ0	0	DC3	DC2	DC1	DC0	AP2	AP1	AP0	0
KOSII	(7272h)			0	1	1	1	0	0	1	0	0	1	1	1	0	0	1	0

DCT3-0: Set the step-up cycle of the step-up circuit for 8-color mode (CM = VDDIO).

When the cycle is accelerated, the driving ability of the step-up circuit increases, but its current consumption increases too.

Adjust the cycle taking into account the display quality and power consumption.

DCT3	DCT2	DCT1	DCT0	Step-up cycle
0	0	0	0	Fline x 14
0	0	0	1	Fline x 12
0	0	1	0	Fline × 8
0	0	1	1	Fline × 7
0	1	0	0	Fline × 6
0	1	0	1	Fline × 5
0	1	1	0	Fline × 4
0	1	1	1	Fline × 3
1	0	0	0	Fline × 2
1	0	0	1	Fline × 1
1	0	1	0	fosc / 64
1	0	1	1	fosc / 80
1	1	0	0	fosc / 96
1	1	0	1	fosc / 128
1	1	1	0	fosc / 160
1	1	1	1	fosc / 256

BT2-0: Control the step-up factor of the step-up circuit. Adjust the step-up factor according to the power-supply voltage to be used.

BT2	BT1	вто	V _{GH} output	V _{GL} output	V _{GH} booster ratio	V _{GL} booster ratio
0	0	0	V _{CIX2} x3	-(V _{CIX2} x3)+VCI	6	-5
0	0	1	V _{CIX2} x3	-(V _{CIX2} x2)	6	-4
0	1	0	V _{CIX2} x3	-(V _{CIX2} x3)	6	-6

Page: 18/35

0	1	1	V _{CIX2} x2+VCI	-(V _{CIX2} x3)+VCI	5	-5
1	0	0	V _{CIX2} x2+VCI	-(V _{CIX2} x2)	5	-4
1	0	1	V _{CIX2} x2+VCI	-(V _{CIX2} x2)+VCI	5	-3
1	1	0	V _{CIX2} x2	-(V _{CIX2} x2)	4	-4
1	1	1	VCIX2x2	-(V _{CIX2} x2)+VCI	4	-3

DC3-0: Set the step-up cycle of the step-up circuit for 262k-color mode (CM = VSS).

When the cycle is accelerated, the driving ability of the step-up circuit increases, but its current consumption increases too.

Adjust the cycle taking into account the display quality and power consumption.

DC3	DC2	DC1	DC0	Step-up cycle
0	0	0	0	Fline × 14
0	0	0	1	Fline x 12
0	0	1	0	Fline × 8
0	0	1	1	Fline × 7
0	1	0	0	Fline × 6
0	1	0	1	Fline × 5
0	1	1	0	Fline × 4
0	1	1	1	Fline × 3
1	0	0	0	Fline × 2
1	0	0	1	Fline × 1
1	0	1	0	fosc / 64
1	0	1	1	fosc / 80
1	1	0	0	fosc / 96
1	1	0	1	fosc / 128
1	1	1	0	fosc / 160
1	1	1	1	fosc / 256

AP2-0: Adjust the amount of current from the stable-current source in the internal operational amplifier circuit.

When the amount of current becomes large, the driving ability of the operational-amplifier circuits increase.

Adjust the current taking into account the power consumption.

During times when there is no display, such as when the system is in a sleep mode.

AP2	AP1	AP0	Op-amp power
0	0	0	Least
0	0	1	Small
0	1	0	Small to medium
0	1	1	Medium

Page: 19/35

1	0	0	Medium to large
1	0	1	Large
1	1	0	Large to Maximum
1	1	1	Maximum

R0Ch	Power control (2)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VRC2	VRC1	VRC0
Kocii	(0002h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

VRC[2:0]: Adjust VCIX2 output voltage. The adjusted level is indicated in the chart below VRC2-0 setting.

VRC2	VRC1	VRC0	V _{CIX2} voltage
0	0	0	5.1V
0	0	1	5.3V
0	1	0	5.5V
0	1	1	5.7V
1	0	0	5.9V
1	0	1	6.1V
1	1	0	Reserved
1	1	1	Reserved

R0Dh	Power control (3)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	VRH3	VRH2	VRH1	VRH0
KUDII	(000Ah)			0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1

VRH3-0: Set amplitude magnification of VLCD63. These bits amplify the VLCD63 voltage 1.78 to 3.00 times the Vref voltage set by VRH3-0.

VRH3	VRH2	VRH1	VRH0	V _{LCD63} Voltage
0	0	0	0	Vref x 2.815
0	0	0	1	Vref x 2.905
0	0	1	0	Vref x 3.000
0	0	1	1	Vref x 1.780
0	1	0	0	Vref x 1.850
0	1	0	1	Vref x 1.930
0	1	1	0	Vref x 2.020
0	1	1	1	Vref x 2.090
1	0	0	0	Vref x 2.165
1	0	0	1	Vref x 2.245
1	0	1	0	Vref x 2.335
1	0	1	1	Vref x 2.400
1	1	0	0	Vref x 2.500
1	1	0	1	Vref x 2.570

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 20/35

1	1	1	0	Vref x 2.645
1	1	1	1	Vref x 2.725

R0Eh	Power control (4)	0	1	0	0	VCOMG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0	0	0
KOLII	(3200h)			0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0

VCOMG: When VCOMG = "1", it is possible to set output voltage of VCOML to any level, and the instruction (VDV4-0) becomes available.

When VCOMG = "0", VCOML output is fixed to Hi-z level, VCI2 output for VCOML power supply stops, and the instruction (VDV4-0) becomes unavailable.

Set VCOMG according to the sequence of power supply setting flow as it relates with power supply operating sequence.

VDV4-0: Set the alternating amplitudes of VCOM at the VCOM alternating drive.

These bits amplify VCOM amplitude 0.6 to 1.23 times the VLCD63 voltage.

When VCOMG = "0", the settings become invalid.

VDV4	VDV3	VDV2	VDV1	VDV0	VCOMA
0	0	0	0	0	VLCD63 x 0.60
0	0	0	0	1	VLCD63 x 0.63
		: :			Step = 0.03
0	1	1	0	1	VLCD63 x 0.99
0	1	1	1	0	VLCD63 x 1.02
0	1	1	1	1	Reserved
1	0	0	0	0	VLCD63 x 1.05
1	0	0	0	1	VLCD63 x 1.08
		:			Step = 0.03
1	0	1	0	1	VLCD63 x 1.20
1	0	1	1	0	VLCD63 x 1.23
1	0	1	1	1	Reserved
1	1	*	*	*	Reserved

VCOMAS: Set the equation of VCOML.

VCOML = α x VCOMH - VCOMA

VCOMAS	α
0	0.94
1	0.5

Page: 21/35

R10h	Uniformity	0	1	0	0	0	0	0	0	0	0	ENSVIN	1	0	1	1	1	0	0
KTOIT	(005Ch)			0	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0

ENSVIN:

When ENSVIN = '1', uniformity improvement scheme is enabled.

When ENSVIN = '0', uniformity improvement scheme is disabled.

R12h	Entry Mode	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	IFS	0	0
K I Z II	(0064h)			0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0

IFS: Selection for HV SYNC and DEN modes.

IF	FS	Interface
	0	18-bit digital RGB DEN Mode
	1	18-bit digital RGB HV SYNC Mode

R16h	Horizontal porch	0	1	XL8	XL7	XL6	XL5	XL4	XL3	XL2	XL1	XL0	0	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0
KIOII	(9F86h)			1	0	0	1	1	1	1	1	1	0	0	0	0	1	1	0

XL7-0: Set the number of valid pixel per line.

XL8	XL7	XL6	XL5	XL4	XL3	XL2	XL1	XL0	# of pixels per line
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	0	1	0	3
				:					:
				:					step = 1
				:					<u>:</u>
1	0	0	1	1	1	1	1	0	319
1	0	0	1	1	1	1	1		320
1	0	1	*	*	*	*	*	*	reserved
1	1	*	*	*	*	*	*	*	reserved

HBP5-0: Set the delay period from falling edge of HSYNC signal to first valid data.

The pixel data exceed the range set by XL8-0 and before the first valid data will be treated as dummy data.

HBP5	HBP4	HBP3	HBP2	HBP1	HBP0	# of clock cycle of DOTCLK
0	0	0	0	0	0	2

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 22/35

0	0	0	0	0	1	3
0	0	0	0	1	0	4
			:			:
			:			step = 1
			:			step = 1 :
1	1	1	: : 1	1	0	step = 1 : 64

R17h	Vertical porch	0	1	0	0	0	0	0	0	0	0	VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0
KIIII	(0002h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

VBP7-0: Set the delay period from falling edge of VSYNC to first valid line.

The line data within this delay period will be treated as dummy line.

VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0	VBP7	# of pixels per line
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	0	1	0	3
				:					:
				:					step = 1
				:					:
1	0	0	1	1	1	1	1	0	319
1	0	0	1	1	1	1	1		320
1	0	1	*	*	*	*	*	*	reserved
1	1	*	*	*	*	*	*	*	reserved

0.9

Page: 23/35

nOTP: nOTP equals to "0" after power on reset and VCOMH voltage equals to programmed OTP value.

When nOTP set to "1", setting of VCM5-0 becomes valid and voltage of VCOMH can be adjusted.

VCM5-0: Set the VCOMH voltage if nOTP = "1". These bits amplify the VCOMH voltage 0.36 to 0.99 times the VLCD63 voltage.

R30h	y control (1)	0	1	0	0	0	0	0	PKP12	PKP11	PKP12	0	0	0	0	0	PKP02	PKP01	PKP00
KSOII	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R31h	y control (1)	0	1	0	0	0	0	0	PKP32	PKP31	PKP32	0	0	0	0	0	PKP22	PKP21	PKP20
IX3 III	(0200h)			0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
R32h	y control (1)	0	1	0	0	0	0	0	PKP52	PKP51	PKP52	0	0	0	0	0	PKP42	PKP41	PKP40
110211	(0001h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
R33h	y control (1)	0	1	0	0	0	0	0	PRP12	PRP11	PRP12	0	0	0	0	0	PRP02	PRP01	PRP00
ROOM	(0700h)			0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0
R34h	y control (1)	0	1	0	0	0	0	0	PKN12	PKN11	PKN12	0	0	0	0	0	PKN02	PKN01	PKN00
110411	(0405h)			0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1
R35h	γ control (1)	0	1	0	0	0	0	0	PKN32	PKN31	PKN32	0	0	0	0	0	PKN22	PKN21	PKN20
ROOM	(0202h)			0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
R36h	y control (1)	0	1	0	0	0	0	0	PKN52	PKN51	PKN52	0	0	0	0	0	PKN42	PKN41	PKN40
ROOM	(0707h)			0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	1
R37h	y control (1)	0	1	0	0	0	0	0	PRN12	PRN11	PRN12	0	0	0	0	0	PRN02	PRN01	PRN00
1.0711	(0006h)			0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0

When OLO = "0", R30h-R3Bh are registers to adjust the gamma register values on the output of source S(3n), where n = 0 to 319. S(3n) are the red color source output when BGR = "0".

When OLO = "1", R30h-R3Bh are registers to adjust the gamma register values on the output of all source S0 to S959.

PKP52-00: Gamma micro adjustment register for the positive polarity output.

PRP12-00: Gradient adjustment register for the positive polarity output.

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 24/35

PKN52-00: Gamma micro adjustment register for the negative polarity output.

PRN12-00: Gradient adjustment register for the negative polarity output.

R3Ah	y control (2)	0	1	0	0	0	VRP14	VRP13	VRP12	VRP11	VRP10	0	0	0	0	VRP03	VRP02	VRP01	VRP00
KSAII	(0700h)			0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0
R3Bh	y control (2)	0	1	0	0	0	VRN14	VRN13	VRN12	VRN11	VRN10	0	0	0	0	VRN03	VRN02	VRN01	VRN00
KSBII	(0003h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

VRP14-00: Adjustment register for amplification adjustment of the positive polarity output.

VRN14-00: Adjustment register for the amplification adjustment of the negative polarity output.

Page: 25/35

0.9

Optical specifications (Note 1, 2)

	•	<u> </u>					
ltem	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response Time							
Rise	Tr	<i>θ</i> =0 °	-	10	20	ms	Note 3
Fall	Tf		-	15	25	ms	
Contrast ratio	CR	At optimized viewing angle	150	300	-		Note 5, 6
Viewing Angle							
Тор			35	50	-		
Bottom		CR≧10	40	55	-	deg.	Note 7, 8
Left			45	60	-		
Right			45	60	-		
Brightness	YL	<i>θ</i> =0°	280	350	-	cd/m ²	Note 9
NTSC			50	60		%	
White Chromaticity	Х	<i>θ</i> =0°	0.26	0.31	0.36		
vviille Cilionialicity	у	<i>θ</i> =0°	0.28	0.33	0.38		

Note 1: Measurement should be performed in the dark room, optical ambient temperature =25°C, and backlight current I_L=20 mA

Note 2: To be measured on the center area of panel with a field angle of 1°by Topcon luminance meter BM-7, after 10 minutes operation.

Note 3: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

Note 4. From liquid crystal characteristics, response time will become slower and the color of panel will become darker when ambient temperature is below 25°C.

Note 5. Contrast ratio is calculated with the following formula.

 $Contrastratio = \frac{Photo\ detector\ output\ when\ LCD\ is\ at\ "White"\ state}{Photo\ detector\ output\ when\ LCD\ is\ at\ "Black"\ state}$

Page: 26/35

Note 6. White Vi=Vi50 μ 1.5V

Black Vi=Vi50 ± 2.0V

"±" means that the analog input signal swings in phase with COM signal.

"µ" means that the analog input signal swings out of phase with COM signal.

Vi50 :The analog input voltage when transmission is 50%

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 7. Definition of viewing angle: refer to figure as below.

Note 8. The viewing angles are measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Note 9. Brightness is measured at the center point of the display area.

27/35

F. Touch Screen Panel Specifications

1. Electrical Characteristics

ltem		Min.	Max.	Unit	Remark		
Rate DC Volta	age		7	V			
Resistance	X (Film)	400	1100	Ω	At connector		
Resistance	Y (Glass)	150	900	2.2	At connector		
Linearity			1.5%		Note 1, test by 250 g		
Chattering	Chattering		10	ms	At connector pin		
Insulation Resis	tance	10M		Ω	DC 25V		

Note 1: Measurement condition of Linearity: difference between actual voltage & theoretical voltage is an error at any points. Linearity is the value max. error voltage divided by voltage difference on active area.

2. Mechanical Characteristics

ltem	Min.	Max.	Unit	Remark
Hardness of Surface	3		Н	JIS K-5400
Activation Force (Pen or Finger)	5	80	gf	Note 1

Note 1: Within "guaranteed active area", but not on the edge and dot-spacer.

Note 2: Activation force measurement is under test condition as figure below.

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 28/35

0.9

3. Life test Condition

ltem	Min.	Max.	Unit	Remark
Notes Life	10 ⁵		words	Note 1, 2
Input Life	10 ⁶		times	Note 1, 3

Note 1: Notes Life test condition (by pen): slide on central 2/3 of active area and use R 0.8mm polyacecal pen, input force: 250gf, frequency: 60mm/sec. Sliding from A to B complete 1 time. shown as figure 2.

Note 2: Input Life test condition (by finger): test position on active area center and use R8.0mm silicon rubber (hardness 60°), test force: 250gf, frequency: 2times/sec. shown as figure.

4. Attention

Please pay attention for below matters at mounting design of touch panel of LCD module.

- 1. Do not design enclosure pressing the view area to prevent from miss input.
- 2. Enclosure support must not touch with view area.
- 3. Use elastic or non-conductive material to enclosure touch panel.
- 4. Do not bond film of touch panel with enclosure.
- 5. The touch panel edge is conductive. Do not touch it with any conductive part after mounting.
- 6. If user wants to cleaning touch panel by air gun, pressure 2kg/cm2 below is suggested. Not to blow glass from FPC site to prevent FPC peeled off.
- 7. Do not put a heavy shock or stress on touch panel and film surface. Ex. Don't lift the panel by film face ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 29/35

0.9

with vacuum.

- 8. Do not lift LCD module by FPC.
- 9. Please use dry cloth or soft cloth with neutral detergent (after wring dry) or one with ethanol at cleaning.

 Do not use any organic solvent, acid or alkali liquor.
- 10. Do not pile touch panel. Do not put heavy goods on touch panel.

Recommendation of the cushion area:

Page: 30/35

G. Reliability Test Items

No.	Test items	Conditions		Remark
1	High Temperature Storage	Ta= 85 °C	240Hrs	
2	Low Temperature Storage	Ta= -30°C	240Hrs	
3	High Temperature Operation	Ta= 70°C	240Hrs	
4	Low Temperature Operation	Ta= -20°C	240Hrs	
5	High Temperature & High Humidity	Ta= 60°C. 90% RH	240Hrs	Operation
6	Heat Shock	-25°C~70°C, 50 cycle, 2	Hrs/cycle	Non-operation
		Contact Discharge:± 4 KV		
		150PF (330 Ω) 1 sec.		
7	Electrostatic Discharge	8 point, 25 times / point.		Note 3
′	Electrostatic Disorarge	Air Discharge : ± 8 KV		Note 5
		150Pf (330 Ω) 1 sec.		
		8 point, 25 times / point.		
		Random vibration:		
8	Vibration (With Carton)	0.015G ² /Hz from 5~200Hz		IEC 68-34
		Z		
		Height: 60cm		
9	Drop (With Carton)	1 corner, 3 edges, 6 surfaces		

Note 1: In the standard conditions, there is no display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

Note 2: Ta: Ambient temperature.

Note 3: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost. Self-recoverable. No hardware failures.

Page: 31/35

0.9

H. Packing Form

Page: 32/35

I. Application Note

1. Application circuit

TBD

2. Recommended Register Settings

commended register					
Register	Setting				
R01	"2AEF"h				
R03	"920E"h				
R0C	"0002"h				
R0D	"000C"h				
R0E	"3100"h				
R10	"00DC"h				
R12	"0064"h				
R1E	"00A7"h				
R30	"0304"h				
R31	"0507"h				
R32	"0405"h				
R33	"0007"h				
R34	"0507"h				
R35	"0004"h				
R36	"0605"h				
R37	"0103"h				
R3A	"000F"h				
R3B	"000F"h				

NOTE:

- 1. The different sequence of registers setting would not affect the normal behavior of LCM.
- 2.Please refer to the POWER ON/OFF sequence section for register setting timing as power-on.

Page: 33/35

3. Power on/off Sequence

Power On

Characteristics	Symbol	Min	Тур	Max	Unit
DOTCLK	tclk-shut	1			clk
Rising edge of RESB to display on				10	frame
1 line: 336 clk	tshut-on				
1frame: 244 line	isnut-on		164		0
DOTCLK = 5.0 MHz			164		mSec

Note1: It is necessary to input DOTCLK before the rising edge of RESB.

Note2: Display starts at 10th falling edge of VSYNC after the rising edge of RESB.

Page: 34/35

Power Off

Characteristics	Symbol	Min	Тур	Max	Unit
Falling edge of RESB to display off	tshut-off	2		10	frame
1 line: 336 clk					
1frame: 244 line	tsiiut-oii	22.0	10		0
DOTCLK = 5.0 MHz		32.8	1/1/1		mSec
Input-signal-off to Vcc off	toff-vdd	1	3 *		uSec

Note1: DOTCLK must be maintained at lease 2 frames before the falling edge of RESB.

Note2: If RESB signal is necessary for power down, provide it after the 2-frames-cycle of the power-off period.