

中山大学理工学院 2015 学年 2 学期期末

大学物理 试卷(A)

系、所、中心/专 业: <u>环</u>	2015
----------------------	------

课程: 大学物理	姓 名:	
学号:	成绩评定	
评卷人(签名)	考试时间: 2016年 06 月 24 日	

题次	_	_	=	四	五	六	七	总分
分数	10	30	25	35				100
得分								

- 一. 判断题 (每题 2 分, 共 10 分)
- 1. 有两个力作用在可以绕定轴转动的刚体上,这两个力的合力为零时,它们对轴的合力矩一定是零. (F);
- 2. 一定量的理想气体从体积 V_1 膨胀到 V_2 ,经历的过程分别为等压、等温、和绝热过程,则其中吸热最多的过程是等压过程 (R);
- 3. 气体分子的速率分布函数 f(v), 是系统中速率 v 附近单位速率区间的分子数占总分子数的百分比. (R);
- 4. 质点围绕圆心做匀速圆周运动,加速度为零(F);
- 5.和机械振动一样,弹性介质中传输的机械波能量是守恒的(F);
- 二. 选择题 (每题 2 分, 共 30 分)
- 1. A,B 两木块质量分别为 m_A 和 m_B ,且 $m_B=2m_A$,两者用一轻弹簧连接后静止于 光滑水平桌面上,如右图所示。若用外力将两木块推近使弹簧被压缩,然后将外力 撤去,则此后两木块运动动能之比 E_{kA}/E_{kB} 为(C)
- (A) 1/2

(B) $\sqrt{2}$

(C) 2

(D) $\sqrt{2/2}$

2. 如图,两个质量均为 m、半径均为 R 的匀质圆盘形滑轮的两端用轻绳分别系着质量为 m 和 2m 的小物块。系统从静止释放,则释放后两滑轮之间绳内的张力为

2mg-(*2mb. a=dr j=zmr² Ti ゲーフィーJd:= fmr²==smax: Ti アーフィーJd.

73-mg-ma

(A)

(A) $\frac{11}{9}$ mg

(B) $\frac{3}{2}mg$ (C) $\frac{1}{2}mg$

2mg-mg- 2mat mat somat soma $m_{D} = 4mq$. $a = \frac{3}{4}$ T1= 2ng-2ng = 3ng Tz=T1- 5m a.

3. 在离水面高 h 米的岸上,有人用绳子拉船靠岸,船在离岸 S 处,如上图. 当人以 v_0 $(\mathbf{m} \cdot s^{-1})$ 的速率收绳时,试求船运动的速度和加速度的大小 [C

- (A) $h^2 v_0^2 / 2s^3$; (B) $2h^2 v_0^2 / s^3$; (C) $h^2 v_0^2 / s^3$; (D) $s^3 v_0^2 / h^2$.

4. 设入射波的波动方程为 $y_1 = A\cos 2\pi (\frac{t}{T} + \frac{x}{2})$, 在 x=0 处反射,反射点为一节点,则 Acos(每七一资料】

反射波的波动方程为(B

(A) $y_2 = A\cos[2\pi(\frac{t}{T} - \frac{x}{\lambda}) - 0]$ (B) $y_2 = A\cos[2\pi(\frac{t}{T} - \frac{x}{\lambda}) + \pi]$

(C)
$$y_2 = A\cos[2\pi(\frac{t}{T} + \frac{x}{\lambda}) - 0]$$

- (C) $y_2 = A\cos[2\pi(\frac{t}{T} + \frac{x}{2}) 0]$ (D) $y_2 = A\cos[2\pi(\frac{t}{T} + \frac{x}{2}) \pi]$
- 5. 对一个作简谐运动的物体,下面说法正确是(C
 - (A)物体处在运动正方向的端点时,速度和加速度都达到最大值;
 - (B)物体位于平衡位置且向负方向运动时,速度和加速度都为零;
 - (C)物体位于平衡位置且向正方向运动时,速度最大,加速度为零;
 - (D)物体处在负方向的端点时,速度最大,加速度为零。
- 6. 一固定的超声波波源发出频率为 100kHz 的超声波, 一辆汽车向波源驶来, 在波

(B) 16.2 m/s(C) 8.2 m/s

7. 一定量某理想气体所经历的循环过程是:从初态 (V_0,T_0) 开始,先经绝热膨胀使其体 积增大 1 倍,再经等容升温回复到初态温度 T_0 ,最后经等温过程使其体积回复为 I_0 则气体在此循环过程中(B

- (A) 对外作的净功为正值; (B) 对外作的净功为负值;
- 340+V= 1. [x340-1.1V

- (C) 内能增加了;

(D) 从外界净吸收的热量为正值。 レ V= v-(x340 z34

8. 下图所列各图表示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和 🜏 🎉

9. 1 千克的 20 摄氏度的水, 放在 300 摄氏度的高温炉上加热至 100 摄氏度,则水的 熵变为(水的热容 c=4180J/kg)(C)

(A)505J/K; (A)751J/K; (A)1010J/K; (A)1502J/K;

10. 一定量的理想气体,在容积不变的条件下,当温度升高时,分子的平均碰撞频

率
$$\bar{Z}$$
和平均自由程 $\bar{\lambda}$ 将(A))

(A) \bar{Z} 增大, $\bar{\lambda}$ 不变; $\sqrt{\bar{z}}$ (B) \bar{Z} 不变, $\bar{\lambda}$ 增大; = $\sqrt{\bar{z}}$ $\sqrt{\bar{z}}$

(C) \bar{Z} 和 $\bar{\lambda}$ 都增大;

(D) \bar{Z} 和 $\bar{\lambda}$ 都不变。

11. 如图,用长l的细线系住质量为m的小球。让细线与竖直方向的夹角为 小球在水平面内均匀转动,则小球的转动周期为(C)

(A)
$$\sqrt{\frac{l}{g}}$$
;

(B)
$$\sqrt{\frac{l\cos\theta}{g}}$$
;

(A)
$$\sqrt{\frac{l}{g}}$$
; (B) $\sqrt{\frac{l\cos\theta}{g}}$; (C) $2\pi\sqrt{\frac{l\cos\theta}{g}}$; (D) $2\pi\sqrt{\frac{l}{g}}$.

(D)
$$2\pi\sqrt{\frac{l}{g}}$$

12. 质量为 2m 的小球用细绳系住,以速率v在水平面上做半径为 R的圆周运动, 小球运动半个圆周时,重力冲量的大小为(C)

- (A) 2mv;

- (B) $\frac{\pi mgR}{v}$; (C) $\frac{2\pi mgR}{v}$; (D) $\sqrt{(2mv)^2}$ +

13. 有一横波以波速u沿x轴负方向传播,其在t时刻的波形曲线如图所示,则在该

时刻(C)

(A)A 点的运动速度大于零

(B)B 点静止不动;

(C)C 点向上运动; / (D)D 点的运动速度大于零.

14. 热力学系统从初平衡态 A 经历过程 P 到末平衡态 B. 如果 P 为不可逆过程, 其熵 变为(B)

$$\begin{split} (\mathbf{A})\,S_B - S_A &= \int_A^B \frac{\mathrm{d}Q_{\Pi,\tilde{\mathbf{j}}\underline{\tilde{\mathbf{j}}}}}{T}\,\,;\ \ (\mathbf{B})\,S_B - S_A > \int_A^B \frac{\mathrm{d}Q_{\overline{\Lambda}\Pi,\tilde{\mathbf{j}}\underline{\tilde{\mathbf{j}}}}}{T}\,\,;\ \ (\mathbf{C})\,S_B - S_A > \int_A^B \frac{\mathrm{d}Q_{\overline{\Pi},\tilde{\mathbf{j}}\underline{\tilde{\mathbf{j}}}}}{T}\,\,;\ \ (\mathbf{D})\,S_B - S_A > \int_A^B \frac{\mathrm{d}Q_{\overline{\Lambda}\Pi,\tilde{\mathbf{j}}\underline{\tilde{\mathbf{j}}}}}{T}\,\,;\ \ (\mathbf{D})\,S_B - S_A > \int_A^B \frac{\mathrm{d}Q_{\overline{\Lambda}\Pi,\tilde{\mathbf{j}}}}{T}\,\,;\ \ (\mathbf{D})\,S_B - S_A > \int_A^B \frac{$$

15. 三艘质量均为M的小船以相同的速度v鱼贯而行,如果从中间那艘船上同时以 相对于船的速度u把两个质量均为m的物体分别抛到前后两艘船上,速度u的方向 与速度v在同一直线上,则中间船的速度为[A]

(A)
$$v$$
; (B) $\frac{M-2m}{M}v$; (C) $\frac{M+2m}{M}v$; (D) $\frac{M}{2m}v$.

- 三 填空题(每题5分,共25分)
- 当一列火车以 10m s-1 的速率向东行驶时,若相对于地面竖直下落的雨滴在列 车的窗子上形成的雨迹偏离竖直方向 30°,则雨滴相对于地面的速率是;相 对于列车的速率是____。17.3m • s⁻¹; 20 m • s⁻¹
- 2. 两个质量相同的物体挂在两个不同的弹簧上,弹簧的伸长量分别为 ΔL_1 和 ΔL_2 , 而且 $\Delta L_1 = \Delta 2L_2$,则两弹簧振子的周期之比 $T_1:T_2$ 应为_____。 $\sqrt{2}$
- 3. 一定量刚性双原子分子的理想气体, 当其体积为V、压强为p时, 其内能 E = $_{\circ}$ 5pv/2
- 3. 如图,质量为m、长为l的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴 O在水平面内自由转动(转动惯量 $J=ml^2/12$). 开始时棒静止,现有一子弹,质量是 2m,在水平面内以速度 v_0 垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度 \square = $_{\circ}$ 12 v_0 / (71)

4. 一列机械波沿x轴正向传播,t=0 时的波形如图所示,已知波速为 $10 \text{ m} \cdot \text{s}^{-1}$,波长为 2m,则其波动方程为______。

$$y = 01.\cos[10\pi(t - \frac{x}{10}) + \frac{\pi}{3}]$$
 m

5. 一质量为m的质点以与地的仰角 θ =30°的初速 $\stackrel{1}{v_0}$ 从地面抛出,若忽略空气阻力,

求质点落地时相对抛射时的动量的增量为____。 $|m_{v_0}^{oldsymbol{V}}|$

- 三. 计算题 (1、2、3 题 9 分, 4 题 8 分, 共 35 分)
- 1. 1 mol 双原子分子理想气体作如图的可逆循环过程,其中 1-2 为直线,2-3 为绝 热线,3-1 为等温线.已知 $T_2=2T_1$, $V_3=8V_1$ 试求:
 - (1) 各过程的功,内能增量和传递的热量;(用工和已知常量表示)
 - (2) 此循环的效率 η .

(注:循环效率 $n=W/Q_1$, W 为整个循环过程中气体对外所作净功, Q_1 为循环过程中气体吸收的热量)

解: 1-2 任意过程

$$W_1 = \frac{1}{2}(p_2V_2 - p_1V_1) = \frac{1}{2}RT_2 - \frac{1}{2}RT_1 = \frac{1}{2}RT_1$$

$$Q_1 = \Delta E_1 + W_1 = \frac{5}{2}RT_1 + \frac{1}{2}RT_1 = 3RT_1$$

2-3 绝热膨胀过程

$$\Delta E_2 = C_V (T_3 - T_2) = C_V (T_1 - T_2) = -\frac{5}{2} R T_1$$

$$W_2 = -\Delta E_2 = \frac{5}{2} R T_1$$

$$Q_2 = 0$$

3-1 等温压缩过程

$$\Delta E_3 = 0$$

$$W_3 = -RT_1 \ln(V_3/V_1) = -RT_1 \ln(8V_1/V_1) = -2.08 RT_1$$

$$Q_3 = W_3 = -2.08RT_1$$

$$\eta = 1 - |Q_3|/Q_1 = 1 -2.08RT_1/(3RT_1) = 30.7\%$$
(2)

2. 物体的质量为 m, 放在光滑斜面上,弹簧的倔强系数为 k, 滑轮的转动惯量为 I, 半径为 R. 先把物体托住,使弹簧维持原长,然 后由静止释放,证明物体作简谐振动,并求振动周期.

解:

以重物在斜面上静平衡时位置为坐标原点,沿斜面向下为x轴正向,则当重物偏离原点的坐标为x时,有

$$mg\sin\theta - T_1 = m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} \tag{1}$$

$$T_1 R - T_2 R = I \beta \tag{2}$$

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = R\beta \qquad T_2 = k(x_0 + x) \tag{3}$$

 $x_0 = mg\sin\theta/k$ 为静平衡时弹簧之伸长量,联立以上三式,有

$$(mR + \frac{I}{R})\frac{d^2x}{dt^2} = -kxR$$

$$T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{mR^2 + I}{kR^2}} (= 2\pi\sqrt{\frac{m + I/R^2}{K}})$$

- 3. 有一沿x轴负方向传播的平面简谐波,该波在t=0时刻和t=2时刻的波形图如图所示,且 $2s<\frac{7}{2}$,其余数据如图,试求:
 - (1) 坐标原点处质元的振动方程;
 - (2) 该简谐波的波函数。

 $K = \frac{\sqrt{2}}{\sqrt{100}}$ $K = \frac{\sqrt{2}}{\sqrt{100}}$ $A = \frac{\sqrt{2}}{\sqrt{100}}$

解:由图知,其波长为 $\lambda=160m$,振幅 A=0.1m;两秒的时间,波传播了 20 米,也就是位相改变了 $\frac{20}{160} \times 2\pi = \frac{1}{4}\pi$,即:

$$wt = 2w = \frac{20}{160} \times 2\pi \implies w = \frac{\pi}{8}$$

(1) 采用旋转矢量法

从图可知, t=0时 x=0 点的状态对应于图上的 A 和 B 两点,因为 $2s<\frac{T}{2}$,所以可以 判断初始相位对应于 B 点,故 $\varphi_0=-\frac{\pi}{2}$ 。所以:

$$y_{\text{\tiny \tiny DLL}} = 0.1\cos (\frac{\pi}{8}t - \frac{\pi}{2})$$

(2) 将w, λ 和 φ_0 代入反向传输波的标准方程得:

$$y = A\cos\left[wt + \frac{2\pi}{\lambda}x + \varphi_0\right] \Rightarrow y = 0.1\cos\left(\frac{\pi}{8}t + \frac{2\pi}{160}x + \varphi_0\right),$$

$$\text{PI:} \quad y = 0.1\cos\left(\frac{\pi}{8}t + \frac{\pi}{80}x - \frac{\pi}{2}\right)$$

4. 一质点沿半径为1 m 的圆周运动,运动方程为 θ =2+3t³, θ 式中以弧度计,t以秒计,求: (1) t=2 s 时,质点的切向和法向加速度; (2) 当加速度的方向和半径成45°角时,求其角位移。

解:
$$\omega = \frac{d\theta}{dt} = 9t^2, \beta = \frac{d\omega}{dt} = 18t$$
(1) $t = 2 \text{ s}$ 时,
$$a_{\tau} = R\beta = 1 \times 18 \times 2 = 36 \text{ m} \cdot \text{s}^{-2}$$

$$a_{n} = R\omega^{2} = 1 \times (9 \times 2^{2})^{2} = 1296 \text{ m} \cdot \text{s}^{-2}$$

(2) 当加速度方向与半径成45°角时,有

$$an 45^\circ = rac{a_ au}{a_n} = 1$$
即 $R\omega^2 = R\beta$
亦即 $(9t^2)^2 = 18t$
则解得 $t^3 = rac{2}{9}$

于是角位移为

$$\theta = 2 + 3t^3 = 2 + 3 \times \frac{2}{9} = 2.67$$
 rad