

定义2.1:如果对两个命题公式A和B,若A和B构成的等价式A→B为重言式,则称A与B是等值的,记做A ⇔ B ,也称A逻辑恒等于B。

注意区别: ⇔和↔

证明:

¬¬р⇔р

р	¬р	¬¬р	¬¬p ↔ p
0	1	0	1
1	0	1	1

$$p\rightarrow q\Leftrightarrow \neg p\vee q$$

р	q	¬р	p→q	¬р∨q	p→q ↔ ¬p∨q
0	0	1	1	1	1
0	1	1	1	1	1
1	0	0	0	0	1
1	1	0	1	1	1

- (1)双重否定律 ¬¬P⇔P
- (2)幂等律 P∨P⇔P; PΛP⇔P
- (3)交换律 P ∨ Q ⇔ Q ∨ P;

$$P \wedge Q \Leftrightarrow Q \wedge P$$
; $P \Leftrightarrow Q \Leftrightarrow Q \Leftrightarrow P$

(4)结合律

 $(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R);$

 $(P \Lambda Q) \Lambda R \Leftrightarrow P \Lambda (Q \Lambda R);$

 $(P \leftrightarrow Q) \leftrightarrow R \Leftrightarrow P \leftrightarrow (Q \leftrightarrow R)$

(5)分配律

 $P\Lambda(Q \vee R) \Leftrightarrow (P\Lambda Q) \vee (P\Lambda R);$

 $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$

$$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$$

$$(7)$$
吸收律 $P \lor (P \land Q) \Leftrightarrow P$

$$P\Lambda(P \vee Q) \Leftrightarrow P$$

(8)零 律
$$P \lor T \Leftrightarrow T$$
; $P \land F \Leftrightarrow F$

$$(12)$$
 蕴含等值式 $P \rightarrow Q \Leftrightarrow \neg P \lor Q$

(13)等价等值式
$$P \leftrightarrow Q \leftrightarrow (P \rightarrow Q)\Lambda(Q \rightarrow P)$$

$$(14)$$
假言易位 $P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$

$$(15)$$
等价否定等值式 $P \leftrightarrow Q \Leftrightarrow \neg P \leftrightarrow \neg Q$

(16)归缪律

$$(P \rightarrow Q)\Lambda(P \rightarrow \neg Q) \Leftrightarrow \neg P$$

(17)输出律

$$P \Lambda Q \rightarrow R \Leftrightarrow P \rightarrow (Q \rightarrow R)$$

等值演算

□置换规则:设 $\varphi(A)$ 是含公式A的命题公式, $\varphi(B)$ 是用公式B置换了 $\varphi(A)$ 中所有A后得到的命题公式,若 $A \Leftrightarrow B$,则 $\varphi(A) \Leftrightarrow \varphi(B)$ 。

□一个命题公式A,经多次置换,所得到的新公式与原公式等价。

1. 试证 p→(q→r)⇔ (pΛq)→r 证明:

a.
$$p \rightarrow (q \rightarrow r) \Leftrightarrow p \rightarrow (\neg q \lor r)$$

b.
$$p \rightarrow (\neg q \lor r) \Leftrightarrow \neg p \lor \neg q \lor r$$

c.
$$\neg p \lor \neg q \lor r \Leftrightarrow \neg (p \land q) \lor r$$

d.
$$\neg(p\Lambda q) \lor r \Leftrightarrow (p\Lambda q) \rightarrow r$$

2. 试证

$$\neg(p\Lambda q)\rightarrow(\neg p\lor(\neg p\lor q))\Leftrightarrow(\neg p\lor q)$$

左边

- $\Leftrightarrow \neg\neg(p\Lambda q) \lor (\neg p\lor(\neg p\lor q))$
- \Leftrightarrow (pAq) \vee (¬p \vee (¬p \vee q))
- \Leftrightarrow (p \land q) \lor (\neg p \lor q)
- \Leftrightarrow (p \vee ¬p \vee q) \wedge (q \vee ¬p \vee q)
- \Leftrightarrow ($\neg p \lor q$)

3. 证明

证明:原式

$$\Leftrightarrow ((p \lor q) \land (p \lor (q \land r))) \lor \neg (p \lor q) \lor \neg (p \lor r)$$

$$\Leftrightarrow ((p \lor q) \Lambda(p \lor q) \Lambda(p \lor r)) \lor \neg ((p \lor q) \Lambda(p \lor r))$$

$$\Leftrightarrow ((p \lor q) \land (p \lor r)) \lor \neg ((p \lor q) \land (p \lor r))$$

 \Leftrightarrow T

定义2.2

文字: 命题变元及其否定

简单析取式:由有限文字构成的析取式

简单合取式:由有限文字构成的合取式

例:p、q为命题变元

- ❖p, q, p∨p, q∨q, ¬p∨q, ¬q∨¬p , p∨q, p∨¬q 简单析取式
- **❖**q,p∧p,q∧q, ¬p∧q, ¬q∧¬p,p∧q ,p∧¬q 简单合取式

定义2.3

析取范式:有限个简单合取式构成的析取式

合取范式:有限个简单析取式构成的合取式

例: p/q/r

既是析取范式又是合取范式

定理2.3 范式存在定理

任意命题公式都存在着与之等值的析取范式与合取范式

- □化去"→"、"↔"联结词,把命题公式变为与其等值的用{¬, ∧, ∨}表达的公式
- □将"¬"深入到原子命题变元前,并使变元前最多只有一个"¬"词
- □利用"∧"对"∨"的分配,将公式化成为析取 范式
- □除去永假项得最简析取范式

例: 求 $(p \rightarrow q) \land (p \land q)$ 的析取范式:

解:原式

(1)化去→词

 $\Leftrightarrow (\neg p \lor q) \land (p \land q)$

(2)"\/"对"\/"分配,化为析取范式

 $\Leftrightarrow (\neg p \land p \land q) \lor (q \land p \land q)$

(3)最简析取范式

♦ ⇔ p \ \ q

例: 求 $((p \lor q) \rightarrow r) \rightarrow p$ 的最简合取范式和最简析取范式。

解: 1. 求最简析取范式

$$\Leftrightarrow \neg(\neg(p \lor q) \lor r) \lor p$$

$$\Leftrightarrow (\neg \neg (p \lor q) \land \neg r) \lor p$$

$$\Leftrightarrow (p \lor q) \land \neg r \lor p$$

$$\Leftrightarrow (p \land \neg r) \lor (q \land \neg r) \lor p$$

$$\Leftrightarrow p \lor (p \land \neg r) \lor (q \land \neg r)$$

2. 求最简合取范式

定义2. 4: 在含有n个命题变元的简单合取式(简单析取式)中,若每个命题变元和它的否定式不同时出现,二者之一必出现且仅出现一次,且第i个命题变元或它的否定式出现在从左算起的第i位上(若无角标则按字典顺序排列),称这样简单合取式(简单析取式)为极小项(极大项)。

- □一个命题变元,极小项有2¹=2个p、¬p
- □二个命题变元,极小项有2²=4个 p∧q、¬p∧q、p∧¬q、¬p∧¬q
- □三个命题变元,极小项有2³=8个
 p∧q∧r、p∧q∧¬r、p∧¬q∧r、
 p∧¬q∧¬r、¬p∧q∧r、¬p∧q∧¬r、
 ¬p∧¬q∧r、¬p∧¬q∧¬r

- □推广到一般:若有 n 个命题变元,则有 2^n 个极小项 $(n \in I_+)$ 。
- □如果我们把命题变元看成1,命题变元的否定看成0,那么每一个极小项都对应一个二进制数,因而也对应一个十进制数。

三个变元p、	a,	r可构造8个极小项:
	4 ,	

$\neg p \land \neg q \land \neg r$	000	0	记作
m_0			
$\neg p \land \neg q \land r$	001	1	记作 m ₁
$\neg p \land q \land \neg r$	010	2	记作 m ₂
$\neg p \land q \land r$	0 1 1	3	记作 m ₃
$p \land \neg q \land \neg r$	100	4	记作
m_4			
p∧¬q∧r	101	5	记作 m ₅
p∧q∧¬r	110	6	记作 m 6
p∧q∧r	111	7	记作 m ₇

p	q	r	$\neg p \land \neg q \land \neg r$	¬p∧ ¬q∧r	¬p∧q∧¬r
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	0	0	0

р	q	r	¬p∧q∧r	p∧¬q∧¬r	p∧¬q∧r
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	0	0	0
1	1	1	0	0	0

p	q	r	p∧q∧¬r	p∧q∧r
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	0	1

- □只有当极小项的真值指派和它的编码相同时 ,该极小项的真值才为1。在其他情况下, 该极小项的真值均为0。
- □任意两个不同极小项的合取式永假。
- □全体极小项的析取式为永真。

- □极大项的编码。
- □n个变元,有 2^n 个极大项 $(n \in I_+)$ 。

如三个变元p、q、r, 其记法如下:

¬p∨¬q∨¬r111 7 记作 M₇

定理**2.4** 设 \mathbf{m}_i 和 \mathbf{M}_i 是命题变元 $\mathbf{p_1}$, $\mathbf{p_2}$... $\mathbf{p_n}$ 形成的极小项和极大项,则:

- (1) $m_i \wedge m_j \Leftrightarrow F, (i \neq j)$
- (2) $M_i \vee M_j \Leftrightarrow T, (i \neq j)$
- (3) \vee m_i \Leftrightarrow T,(i=0,1,...,2ⁿ-1)
- $(4) \land M_i \Leftrightarrow F,(i=0,1,...,2^{n-1})$
- (5) $\neg m_i \Leftrightarrow M_i \qquad \neg M_i \Leftrightarrow m_i$

定义2.5:设由n个命题变元构成的析取范式(合取范式)中所有的简单合取式(简单析取式)都是极小项(极大项),则称为 主析取范式(主合取范式)。

定理2.5 任何命题公式都存在着与其等值的主析取范式和主合取范式,并且是唯一的。

□在真值表中,使命题公式的真值为**T**的指派所对应的极小项的析取,即为此公式的主析取范式。

证:给定一个命题公式A,使其为T的真值指派所对应的极小项为 m'_1 , m'_2 ,..., m'_k ,这些极小项的析取记为B,为此要证A \Leftrightarrow B,即要证A与B在相同的指派下具有相同的真值。

- 首先对于使A为T的指派,它对应的极小项为m $'_i$ (1<=i<=k),则因为m $'_i$ 为T,而且B为m $'_1$, m $'_2$,..., m $'_k$ 的析取,因此B为T。
- 对于使A为F的指派,它对应的极小项(设为m'_j)不包含在m'₁, m'₂,..., m'_k 中。此时因为m'_j是为T的,因此m'₁, m'₂,..., m'_k均为F,故B也为F。
- 因此,使A为T的指派同样也使B为T,使A为F的 指派也使B为F。
- 所以A⇔B得证。

- □一个公式的主析取范式即为令此公式的真值 为T的指派所对应的极小项的析取。
- □一个命题公式的真值表是唯一的,因此一个命题公式的主析取范式也是唯一的。

p/q/r的真值表

р	q	r	p∧q∨r
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

 $p \land q \lor r \Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_6 \lor m_7$

р	q	p∨¬q	¬(p∧q)	р∧¬q	p→q
0	0	1	1	0	1
0	1	0	1	0	1
1	0	1	1	1	0
1	1	1	0	0	1

$$\bullet p \vee \neg q \Leftrightarrow (\neg p \wedge \neg q) \vee (p \wedge \neg q) \vee (p \wedge q)$$

•¬(p\q)
$$\Leftrightarrow$$
(¬p\¬q) \vee (¬p\q) \vee (p\¬q)

•p
$$\land$$
¬q \Leftrightarrow (p \land ¬q)

$$\bullet p \rightarrow q \Leftrightarrow (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$

- □ 用等值演算方法求命题公式主析取范式的方法:
- 1. 将命题公式化归为与其等值的析取范式
- 2. 除去永假项,变为最简析取范式
- 3. 利用添变元的方法,将所有简单合取式变为极小项
- 4. 合并相同的极小项

例:求 $(p\land(p\rightarrow q))\lorq$ 的主析取范式

解: 原式

 $\Leftrightarrow (p \land \neg p) \lor (p \land q) \lor q$

***----(1)**化为析取范式

 \Leftrightarrow (p\q)\vq

 $\Leftrightarrow (p \land q) \lor (q \land (p \lor \neg p))$

 $\Leftrightarrow (p \land q) \lor (p \land q) \lor (\neg p \land q)$

***----(3)**添项

 $\Leftrightarrow (p \land q) \lor (\neg p \land q)$

❖----(4)合并相同最小项

- 例:求出p/q/r的主析取范式 p/q/r
- $\Leftrightarrow (p \land q) \land (\neg r \lor r) \lor r \land (\neg p \lor p) \land (\neg q \lor q)$
- $\Leftrightarrow (p \land q \land \neg r) \lor (p \land q \land r) \lor (r \land \neg p \land q) \lor (r \land p \land \neg q) \lor (r \land p \land q) \lor (r \land p \land q) \lor (r \land p \land q)$
- $\Leftrightarrow (p \land q \land \neg r) \lor (p \land q \land r) \lor (\neg p \land q \land r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land r)$
- \Leftrightarrow $m_6 \lor m_7 \lor m_1 \lor m_3 \lor m_5$
- \Leftrightarrow $m_1 \lor m_3 \lor m_5 \lor m_6 \lor m_7$
- $\Leftrightarrow \Sigma(1,3,5,6,7)$

p/q/r的真值表

р	q	r	p∧q∨r
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

 $p \land q \lor r \Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_6 \lor m_7$

主析取范式的用途讨论:

- 1. 求公式的成真与成假赋值。
- 2. 判断公式类型。
- 3. 判断两个命题公式是否等值
- 4. 应用主析取范式分析和解决实际问题。

例:某研究所要从3名科研骨干A,B,C中挑选 1~2名出国进修,由于工作需要,选派时 要满足以下条件:

- 1. 若A去,则C同去。
- 2. 若B去,则C不能去。
- 3. 若C不去,则A或B可以去。

解:设p: 派A去; q: 派B去; r: 派C去。 则(p→r) \((q→¬r)\((¬r→(p\/q)))

经演算可得:

$$(p\rightarrow r) \land (q\rightarrow \neg r) \land (\neg r \rightarrow (p \lor q))$$

 \Leftrightarrow $m_1 \lor m_2 \lor m_5$

可知选派方案有三种:

- **1.** C去,A,B都不去。
- 2. B去,A,C不去。
- **3.** A, C去, B不去。

主合取范式

- □任何一个命题公式都可求得它的主合取范式
- □一个命题公式的主合取范式是唯一的
- □在真值表中,令命题公式的真值为"F"的 指派就对应其主合取范式的一个极大项

例:求p∧(p→q)∨q的主合取范式

原式⇔p∧(¬p∨q)∨q

$$\Leftrightarrow (p \land \neg p) \lor (p \land q) \lor q$$

$$\Leftrightarrow (p \land q) \lor q \Leftrightarrow (p \lor q) \land q$$

$$\Leftrightarrow (p \lor q) \land (q \lor (p \land \neg p))$$

$$\Leftrightarrow$$
 (p \lor q) \land (¬p \lor q)

$$\Leftrightarrow M_0 \wedge M_2$$

$$\Leftrightarrow \Pi(\mathbf{0}, 2)$$

$$\Leftrightarrow$$
 $\mathbf{m_1} \vee \mathbf{m_3}$

$$\Leftrightarrow (\neg p \land q) \lor (p \land q)$$

р	q	上式
0	0	0
0	1	1
1	0	0
1	1	1

- 讨论:具有n个变元的命题公式有多少个不同的主 析取范式?
- □对于含有 n 个变元的命题公式,必定可写出2²ⁿ 个主析取范式(包括F)。
- □同理,含有 n 个变元的命题公式,也可写出2² 个主合取范式(包括T)。

"与非"联结词符号"↑"(p↑q)⇔¬(p∧q)

р	q	p↑q
0	0	1
0	1	1
1	0	1
1	1	0


```
\square(p \uparrow q) \Leftrightarrow (q \uparrow p)
□ (p ↑ p)⇔¬p
\Box (p \( q \) \( (p \) \( q \) \Leftrightarrow p \( \) q
\square (p \ p) \ (q \ q) \ \ \ p
\square p \uparrow (q \uparrow r) \Leftrightarrow \neg p \lor (q \land r)
   (p \uparrow q) \uparrow r \Leftrightarrow (p \land q) \lor \neg r
                                                    不可结合的
□p↑T⇔ ¬p
□p ↑ F⇔T
```


• "或非"联结词

符号: "↓"

 $(p \downarrow q) \Leftrightarrow \neg (p \lor q)$

р	q	p↓q
0	0	1
0	1	0
1	0	0
1	1	0


```
□p \ q⇔q \ p (可交换的)
□p \ p⇔¬p
\square (p \ q) \ (p \ q) \Leftrightarrow p \vee q
\square (p \downarrow p) \downarrow (q \downarrow q) \Leftrightarrow p \land q
\square p \downarrow (q \downarrow r) \Leftrightarrow \neg p \land (q \lor r)
   (p \downarrow q) \downarrow r \Leftrightarrow (p \lor q) \land \neg r
                                                        不可结合的
□p √ F⇔¬p
□p ↓ T⇔F
```


具有二个命题变元命题公式的不同真值表有2²²=2⁴=16种

р	q	F	↓			Λ			↔	\oplus	q	р	1	→	V		T
0	0	0	1	0	0	0	1	1	1	0	0	0	1	1	0	1	1
0	1	0	0	1	0	0	1	0	0	1	1	0	1	1	1	0	1
1	0	0	0	0	1	0	0	1	0	1	0	1	1	0	1	1	1
1	1	0	0	0	0	1	0	0	1	0	1	1	0	1	1	1	1

定义 如果每一个命题公式都等值于一个只 含某些联结词的公式,则这一组联结词称为 联结词完备集。

定理2.6 S={¬, ∨, ∧}是联接词完备集。

可以证明: {¬, ∨}; {¬, ∧}; {¬,→}; {↑}; {↓}均为联结词完备集。


```
(p→q)
 \Leftrightarrow \neg p \lor q
                                                                          \{ \neg, \lor \}
  \Leftrightarrow \neg \neg (\neg p \lor q)
 \Leftrightarrow \neg (p \land \neg q)
                                                                         \{ \neg, \land \}
                                                                          \{ \neg, \rightarrow \}
  ⇔¬¬(p→q)
 \Leftrightarrow \neg \neg (\neg p \lor q)
  \Leftrightarrow ((p \downarrow p) \downarrow q) \downarrow ((p \downarrow p) \downarrow q) \{ \downarrow \}
 \Leftrightarrow \neg \neg (\neg p \lor q) \Leftrightarrow \neg (p \land \neg q)
  \Leftrightarrow p \uparrow (q \uparrow q)
                                                                                        { \ \ }
```