Практический минимум по курсу «Линейная алгебра и Аналитическая геометрия»

1. Даны матрицы $A = \begin{pmatrix} 2 & -5 & -3 \\ 1 & -4 & -8 \end{pmatrix}$, $B = \begin{pmatrix} 4 & -7 & 5 \\ 2 & -3 & 1 \end{pmatrix}$ и $C = \begin{pmatrix} -3 & 3 & -8 \\ -2 & 5 & -6 \end{pmatrix}$. Найти матрицу X, если 2A - X = 4B + 5C.

2. Даны матрицы
$$A = \begin{pmatrix} 3 & 6 \\ 2 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & -1 & -1 & 1 \end{pmatrix}$, $X = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \end{pmatrix}$, $Y = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Найти те из произведений AB, BA, BX, XB, B^TBX , AY, A^TAY , которые существуют.

3. Вычислить определитель:

a)
$$\begin{vmatrix} -3 & 6 & 12 \\ 2 & -4 & -8 \\ 7 & 5 & 9 \end{vmatrix}$$
; 6) $\begin{vmatrix} 3 & 0 & 27 \\ -9 & 3 & 0 \\ 15 & 6 & -3 \end{vmatrix}$; B) $\begin{vmatrix} 15325 & 15323 & 37527 \\ 23735 & 23735 & 17417 \\ 23737 & 23737 & 17418 \end{vmatrix}$;

$$\Gamma) \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}.$$

4. Найти обратную матрицу для матрицы A, если она существует:

a)
$$A = \begin{pmatrix} 2 & 5 \\ 3 & 9 \end{pmatrix}$$
; 6) $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 6 & 9 & 12 \end{pmatrix}$; B) $A = \begin{pmatrix} 1 & 1 & 1 \\ 6 & 5 & 4 \\ 13 & 10 & 8 \end{pmatrix}$

5. Решить систему линейных уравнений: 1) методом Крамера; 2) матричным методом; 3) методом Гаусса:

a)
$$\begin{cases} 2x_1 - x_2 + 2x_3 = 1, \\ 3x_1 + 2x_2 - x_3 = 9, \\ x_1 - 4x_2 + 3x_3 = -5. \end{cases}$$
 6)
$$\begin{cases} 3x_1 + 6x_2 + 2x_3 = 4, \\ 4x_1 - x_2 - 3x_3 = 1, \\ 2x_1 + 4x_2 + x_3 = 4. \end{cases}$$

6. Найти координаты, длину и направляющие косинусы вектора \overline{AB} , если $A(4,-5,2),\ B(2,-3,1).$

- **7.** Найти координаты вектора \bar{a} , если его длина равна 2 и он образует с осями OX, OY и OZ углы 135° , 60° и 60° соответственно.
- **8.** Даны точки A(1,-1,0), B(5,3,-7), C(8,-1,-1), D(1,2,3). Найти:
- а) скалярное произведение $(\overline{AB}, \overline{AC})$; б) косинус угла между векторами \overline{AB} и \overline{AC} ; в) векторное произведение $[\overline{AB}, \overline{AC}]$; г) смешанное произведение $(\overline{AB}, \overline{AC}, \overline{AD}).$
- **9.** Доказать, что точки A(1;2;-1), B(0;1;5), C(-1;2;1) и D(2;1;3) лежат в одной плоскости.
- Даны вершины тетраэдра A(0; 0; 2), B(3; 0; 5), C(1; 1; 0), D(4; 1; 2). Найти его объем и длину высоты, опущенной из вершины D.
- 11. Составить уравнение прямой, проходящей через точку A(-3;4), и перпендикулярной прямой: a) x-2y+5=0; б) $\frac{x-1}{2}=\frac{y+2}{3}$; в) x=2; Γ) v = -1; π) x = 3 + t, y = 4 - 7t.
- Установить взаимное расположение двух данных прямых на плоскости (совпадают, параллельны, пересекаются); в случае пересечения найти общую точку прямых и косинус угла между ними:

a)
$$2x + 3y = 0$$
 и $\begin{cases} x = 3 + t, \\ y = 2 - t; \end{cases}$ 6) $x + 2y = 15$ и $\begin{cases} x = 5 + 4t, \\ y = -2 - 2t; \end{cases}$ B) $3x + 4y - 20 = 0$ и $\begin{cases} x = 4 - 8t, \\ y = 2 + 6t; \end{cases}$ г) $x - 5y + 9 = 0$ и $x + y - 3 = 0$.

в)
$$3x + 4y - 20 = 0$$
 и $\begin{cases} x = 4 - 8t, \\ y = 2 + 6t; \end{cases}$ г) $x - 5y + 9 = 0$ и $x + y - 3 = 0$

- 13. Составить общее уравнение плоскости:
- а) проходящей через точку A(1, -1, 2) перпендикулярно вектору $\bar{n}(2, 3, 1)$;
- б) проходящей через точку $M_0(2;-1;-1)$ параллельно векторам $\bar{a}=(4;2;1)$ и $\overline{b} = (-5; 1; 2);$
- в) проходящей через точки A(1;2;-1), B(0;1;5) и C(-1;2;1).
- 14. Установить взаимное расположение двух данных плоскостей (пересекаются, параллельны, совпадают):

a)
$$x - y + 3z + 1 = 0$$
 u $2x - y + 5z - 2 = 0$;

б)
$$x-2y+z+4=0$$
 и $-2x+4y-2z-8=0$.

- Составить канонические и параметрические уравнения прямой, проходящей через точки $M_1(1; 2; 3)$ и $M_2(2; 4; 7)$.
- 16. Установить взаимное расположение прямых в пространстве:

a)
$$x = -t$$
, $y = -4 - 5t$, $z = 3 + 3t$ и
$$\begin{cases} 4x + y + 3z - 5 = 0, \\ 7x - 2y - z - 5 = 0. \end{cases}$$

б)
$$x = -3t$$
, $y = 2 + 3t$, $z = 1$ и $\frac{x-1}{5} = \frac{y-1}{13} = \frac{z-1}{10}$.

B)
$$\frac{x+2}{3} = \frac{y-1}{-2} = \frac{z}{1}$$
 $u \begin{cases} x+y-z=0, \\ x-y-5z-8=0. \end{cases}$

Определить тип данной кривой на плоскости, сделать схематический чертеж:

6)
$$\frac{1}{4}x^2 - \frac{1}{9}y^2 - x + \frac{2}{3}y - 1 = 0$$
;

B)
$$2x^2 - 4x + 2y - 3 = 0$$
.

18. Найти ранг матрицы:

a)
$$\begin{pmatrix} 2 & -1 & 3 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{pmatrix};$$

$$6) \begin{pmatrix}
5 & -3 & 2 & 3 & 4 \\
3 & -1 & 3 & 2 & 5 \\
7 & -5 & 1 & 4 & 1 \\
1 & -3 & -5 & 0 & 7
\end{pmatrix}.$$

19. Найти общее решение однородной системы линейных уравнений:

a)
$$\begin{cases} 2x_1 + x_2 - x_3 = 0, \\ 9x_1 + 2x_2 - 3x_3 = 0. \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + x_3 + x_4 = 0, \\ 2x_1 + 5x_2 + x_3 + 5x_4 = 0, \\ 3x_1 + 8x_2 + x_3 + 9x_4 = 0. \end{cases}$$

20. Найти общее решение неоднородной системы линейных уравнений, если она совместна:

$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 = 0, \\ x_1 - 2x_2 - 3x_3 - 4x_4 - 5x_5 = 2, \\ 2x_2 + 3x_3 + 4x_4 + 5x_5 = -1. \end{cases}$$