Pesquisa Operacional - Modelagem do Problema da Corrente de Equilíbrio

Eduardo César¹ Manassés Ferreira¹ Marzo Júnior¹ Thiago Linke¹

¹Universidade Federal de Minas Gerais, Brasil

Pesquisa Operacional, 2013

Resumo

- Modelagem
 - O Problema
 - O Modelo
 - Modelo e dados
 - Solução
 - Modelo e dados do Dual
 - Solução Dual
- Análise de Sensibilidade
 - Duas Questões sobre Dualidade
- Conclusões

O Problema

Modelagem da Indústria de Laticínio

O Problema

O Problema Organizando os dados.

	leiteP	queijo	iogurte
demandaMáxima (kL)	50	35	50
produçãoMínima (kL)	50	-	-
insumo: leite (L/unidade)	1	10	2.5
lucroUnitario (\$/unidade)	0.07	1.04	0.2
lucro (\$/kL)	70	104	80
limiteDiário insumo (kL)	100		
implicação	1kg queijo $ ightarrow$ 1L iogurte 4L $ ightarrow$ 1L		

$$\frac{\$}{kL} = lucro = \frac{lucroUnitario}{insumo:leite} = \frac{\$}{unidade} = \frac{unidade}{L} = \frac{1000 L}{kL} * Unidades convertidas para kL de insumo básico: o leite.$$

Definições

Restrições (em kL)

- leiteP + queijo + iogurte ≤ 100
- leiteP \geq 50 \rightarrow -leiteP \leq -50
- leiteP ≤ 50
- queijo ≤ 35
- iogurte ≤ 50
- $4 \times \text{iogurte}$ queijo $\geq 0 \rightarrow \text{queijo}$ $4 \times \text{iogurte} \leq 0$

Forma matricial

cotas

1 1 1

A: 0 1 0 0 0 1 Matriz de coeficientes

máximo

b:

. 100 -50 50 35 50 0

-4

Definições

Conjuntos

electrical-networkss: { leiteP, queijo, iogurte}

Restricoes: {*r*1, *r*2, *r*3, *r*4, *r*5, *r*6}

Variáveis

producao: {electrical - networkss}

Parâmetros

lucro: {70, 104, 80}

cotas: { Restricoes, electrical – networkss}

maximo: { Restricoes }

Definições

Objetivo

Maximizar:

```
\sum_{j \in electrical-networkss} lucro[j] \times producao[j]
```

Restrições

```
Sujeito a:
```

```
cotas[i, j] \times producao[j] \le maximo[i]
\{i \in Restricoes\}, \{j \in electrical - networkss\}
```

Afinal, qual a melhor escolha?

Saberemos agora ...

Modelo e dados

electrical-networks.mod e electrical-networks.data

Solução

electrical-networks.sol

glpsol -model electrical-networks.mod -data electrical-networks.data -output electrical-networks.sol

Modelo Primal

$$ext{Max.} Z = \sum_{j}^{n} c_{j} x_{j}$$
 sujeito a $\sum_{j=0}^{n} a_{ij} x_{j} \leq b_{i}$ $(i=1,2,3...,m)$ $x_{j} \geq 0$ $(j=1,2,3...,n)$

Modelo e dados do Dual

Obtendo o dual

 Função objetivo do primal é maximização, então a do dual é minimização.

- Função objetivo do primal é maximização, então a do dual é minimização.
- Termos constantes das restrições do dual são os coeficientes da função objetiva do primal e vice-versa.

- Função objetivo do primal é maximização, então a do dual é minimização.
- Termos constantes das restrições do dual são os coeficientes da função objetiva do primal e vice-versa.
- O número de incógnitas do dual (m valores de y_i) é igual ao número de restrições do primal.

- Função objetivo do primal é maximização, então a do dual é minimização.
- Termos constantes das restrições do dual são os coeficientes da função objetiva do primal e vice-versa.
- O número de incógnitas do dual (m valores de y_i) é igual ao número de restrições do primal.
- O número de restrições do dual é igual ao número de incógnitas do primal (m valores de x_i).

- Função objetivo do primal é maximização, então a do dual é minimização.
- Termos constantes das restrições do dual são os coeficientes da função objetiva do primal e vice-versa.
- O número de incógnitas do dual (m valores de y_i) é igual ao número de restrições do primal.
- O número de restrições do dual é igual ao número de incógnitas do primal (m valores de x_i).
- A matriz de coeficientes do dual é a transposta da matriz de coeficientes do primal.

Modelo Dual

$$\mathrm{Min.}D = \sum_{i}^{m} b_{i}y_{j}$$
 sujeito a $\sum_{i=0}^{m} a_{ij}y_{i} \geq c_{j}$ $(j=1,2,3...,n)$ $y_{i} \geq 0$ $(i=1,2,3...,m)$

Problema Dual

Função objetivo:

$$Min. D = 100 \times y_1 - 50 \times y_2 + 50 \times y_3 + 35 \times y_4 + 50 \times y_5 + 0 \times y_6$$

Modelo e dados do Dual

electrical-networksDual.mod e electrical-networks.data

Solução Dual

electrical-networksDual.sol

glpsol -model electrical-networksDual.mod -data electrical-networksDual.data -output electrical-networksDual.sol

Variação de f induzida por b

$$\Delta f = y \Delta b$$
 a

Variação de f induzida por b

$$\Delta f = y \Delta b$$
 a b

Acrescentar variáveis

Quarto Produto c

Acrescentar variáveis

Quarto Produto c

Conclusões

• item 1

Conclusões

- item 1
- item 2

Conclusões

- item 1
- item 2
- item 3

Dúvidas

Apresentação produzida usando

disponível em goo.gl/1DtLf