CMPE 220

Class 18 – System Security - Continued

Types of Threats

- Breach of Confidentiality
- Breach of Integrity
- Breach of Availability
- Theft of Service
- Denial of Service
- Ransom!

Types of Attacks

- Virus
- Trojan Horse
- Trap Door / Back Door
- Logic Bomb
- Port Scanning
- Masquerading
- Man-in-the-Middle
- Human Attacks

Mitigating Threats

- Principle of Least Authority (POLA)
 - Permissions policies
- Password Policies
- 2-Factor Authentication
- Active Filtering
 - Firewalls
 - Security Software

Mitigating Threats

- Software Updates
- Encryption
- Physical Security
- Staff Education
- Backups

Threat Detection

- Access Logging
- Look for known virus "signatures"
- Checksums on system files
- Monitor system resource usage (profiling)

The Biggest Risk to Computer Security

- PEOPLE!
 - Nefarious
 - Dumb
- People violate security protocols
 - Especially if protocols are too onerous
- People install back doors
- People use weak passwords

Encryption: One Way Algorithms

- A one-way hash function is a cryptographic algorithm that turns an arbitrary-length input into a fixed-length binary value, and this transformation is one-way, that is, given a hash value it is *statistically infeasible* to re-create a document that would produce this value.
- There are three widely used hash algorithms: MD4, MD5, and SHA. MD4 and MD5 produce 128-bit hashes, and SHA a 160-bit hash.

Encryption: Linux Passwords

- Plaintext password is encrypted and stored
- When user logs in, password is encrypted and compared to the stored password
- The system does not store the plaintext password, so it can't be stolen

Public Key Encryption

 Sending data such as email messages to each other via the Internet ...

- ... is like sending <u>postcards</u> via the U.S. mail system.
- Anyone can read the message along the way!

Security, cont'd

 How can we keep the <u>nefarious Bart</u> from reading confidential messages that Jill and John are sending each other?

The Shared Secret

• Jill needs to send a message containing the confidential data 7 to John.

- John and Jill can agree ahead of time to a <u>shared secret</u> the number
 12.
- Then Jill can <u>encrypt</u> the data by adding 12 to the confidential data 7.
- John decrypts the data by subtracting 12.

The Shared Secret, cont'd

Because Bart doesn't know the shared secret 12,
 he won't be able to decrypt the message and obtain the confidential data
 7.

The Shared Secret, cont'd

- But this shared secret solution has problems.
 - Jill and John must arrange beforehand to share the secret 12.
 - What if Jill doesn't already know John?
 - What if Jill wants to send the confidential data to all her vice presidents at the same time?

How can Jill and her recipients share a secret?

- How can Jill and her recipients share a secret number in order to encrypt the confidential data?
- A security scheme called public key cryptography was invented just for this purpose.
- In this simplified introduction, let's <u>pretend</u> that multiplication is a <u>one-way operation</u>.
 - Once you've multiplied two numbers, say 4x5=20,
 you can't recover the original numbers by dividing.
 - In other words, you can't do 20÷4=5 or 20÷5=4

- Jill chooses a private key.
 - Let's suppose Jill chooses 10.
- Each person to whom Jill wants to send confidential data also chooses a private key.
 - Let's suppose John chooses 8.

- Now Jill <u>announces</u> a <u>public key</u>.
 - Let's suppose the public key is 5.
- Everyone can see the public key.
 - Including the nefarious Bart.

- Now Jill can create her public-private key.
 - She multiplies her private key by the public key: 10x5=50.
- John creates his public-private key.
 - He multiplies his private key by the public key: 8x5=40.

Remember that we're pretending that multiplication is a one-way operation.

- We <u>cannot</u> discover Jill's private key 10 by dividing her public-private key 50 by the public key 5.
- We <u>cannot</u> discover John's private key 8 by dividing his public-private key 40 by the public key 5.

- What is the goal of all this?
 - To create a shared secret between Jill and John.
- Jill multiplies John's public-private key by her private key: 40x10=400
- John multiplies Jill's public-private key by his private key: 50x8=400

- Now Jill and John have a shared secret 400.
- Jill can encrypt the confidential data 7 by <u>adding</u> the shared secret 400.
- John can decrypt the confidential data 7 by subtracting the shared secret 400.

 Bart can't decrypt the 407 because he doesn't know the shared secret 400.

• Public key encryption works with <u>multiple recipients</u>.

• Jill needs to send confidential data to both John and his twin brother Mark.

Each picks a private key.

Mark

Private

key 2

• Jill announces the public key 5, and everyone generates his or her public-private key.

• Jill: 10x5=50

• John: 8x5=40

• Mark: 2x5=10

Private key 8

Private

- Jill will have a shared secret with each recipient.
 - Jill and John will share 400 between them, as before.
 - Jill and Mark will have a different shared secret.
 - Jill: Multiply Mark's public-private key by her private key: 10x10=100.
 - Mark: Multiply Jill's public-private key by his private key: 50x2=100

Mark's public-private key 10

Mark

Private key 2

Public key 5

Jill's public-private key 50

Shared secret with Mark: 100

John's public-private key 40 John

Shared secret with Jill: 400

Private key 8

• Jill sends to each recipient. Shared secret Bart can't decrypt the messages to recover with Jill: 100 the confidential data 7 because he doesn't Mark know the shared secrets. 107 Shared secret Shared secret 407 with Jill: 400 with John: 400 John Jill Shared secret with Mark: 100 Bart

Cryptography in the Real World

- Of course, in the real world, we <u>can't</u> use simple operations like multiplication and addition to generate keys and to encrypt data.
 - Multiplication and addition are <u>not</u> one-way operations.
- Real-world encryption uses very large prime numbers and modulo arithmetic.
 - Not even today's most powerful supercomputer can undo such operations.
 - Worry: Can quantum computers in the future?

When is Cryptography Used?

- Public key cryptography is a key exchange protocol first published by Whitfield Diffie and Martin Hellman in 1976.
 - It was actually invented earlier in 1970 by the British government, but it was classified.
- Whenever you visit a secure website, you are using the Diffie-Hellman protocol or a variant.
 - A secure website has a URL that starts with https: instead of http:

Computer Security as a Career

- Cybersecurity is a <u>hot</u> field.
 - Computers are used everywhere.
 - Big data.
 - Privacy issues.

Protecting Yourself

- How to Safe on the Internet: Tips for Computers,
 Phones, and More
 - https://turbofuture.com/internet/Staying-Safe-on-the-Internet

