Sistemas de Coordenadas e Transformações

Problemas Tipo:

1. Dada a matriz de dimensão 3x3

$$R = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \end{bmatrix}$$

- a. Mostre que R é uma matriz de rotação.
- b. Determine o vector unitário que define o eixo de rotação e o valor do ângulo de rotação.
- c. Quais são os parâmetros de Euler $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ de R?
- 2. O sistema de coordenadas $\{B\}$ está inicialmente coincidente com o sistema de coordenadas $\{A\}$. É efectuada a rotação de $\{B\}$ sobre OY_B de um ângulo igual a ϕ graus seguida de uma outra rotação de $\{B\}$ sobre OX_B de um ângulo igual a θ graus.
 - a. Obtenha a matriz de rotação ${}^{A}_{B}R$, a qual permite alterar a descrição do vector P no sistema referencial $\{B\}$, ${}^{B}P$, para o sistema de coordenadas $\{A\}$, ${}^{A}P$.
 - b. Qual é o resultado se $\theta = 60^{\circ}$ e $\phi = 30^{\circ}$?
 - c. Obtenha ${}^{A}\hat{Z}_{B}$.
- Em geral, a multiplicação de matrizes de transformação homogéneas não é comutativa. Considere o produto matricial que se apresenta

$$H = R_{OX,\alpha} \cdot T_{X,b} \cdot T_{Z,d} \cdot R_{OZ,\theta}$$

- a. Do conjunto de matrizes que se apresentam à direita da equação, diga quais os pares de matrizes que comutam. Explique as razões que suportam a sua escolha.
- b. Apresente todas as permutações destas quatro matrizes que se traduzem na mesma matriz de transformação homogénea, *H*.

- 4. Mostre que $Q_I = (1,0,0,0)$ é o elemento identidade para a multiplicação de quaterniões unitários, i.e., $QQ_I = Q_IQ = Q$ para qualquer quaternião unitário Q.
- 5. O conjugado Q^* de um quaternião Q é definido por $Q^* = (q_0, -q_1, -q_2, -q_3)$. Mostre que Q^* é o quaternião inverso de Q, i.e., mostre que $Q^*Q = QQ^* = (1,0,0,0)$.
- 6. Considere os quaterniões $Q_x = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0, 0\right)$ e $Q_z = \left(\frac{\sqrt{2}}{2}, 0, 0, \frac{\sqrt{2}}{2}\right)$. Mostre que a rotação do vetor x_0 pelo quaternião composto Q_xQ_z resulta no vetor z_0 . Confirme que se obtém o mesmo resultado através de $R_x(\frac{\pi}{2})R_z(\frac{\pi}{2})x_0$
- 7. Dois sistemas de coordenadas A e B estão fixos relativamente a um sistema inercial base e estão relacionados pela matriz de transformação ${}^{A}_{B}T$, a qual traduz a rotação de B sobre o eixo ${}^{A}\vec{r}=\begin{bmatrix} -1 & 1 & 0 \end{bmatrix}^{T}$ de um ângulo $\phi=45^{\circ}$.
 - a. Represente numericamente a matriz de transformação ${}^{A}_{B}T$ e obtenha os ângulos de Roll-Pitch-Yaw equivalentes.
 - b. Qual a nova matriz de transformação que relaciona os sistemas de coordenadas $A \in B$ após se terem realizado os seguintes movimentos:
 - i. Rodar o sistema de coordenadas A de um ângulo igual a $\frac{\pi}{3}$ sobre o eixo de rotação $^{A}\vec{r}$;
 - ii. Deslocar o sistema de coordenadas B em 4 unidades segundo o eixo de rotação ${}^A\vec{r}$;
 - c. Qual o deslocamento a realizar, se na sequência de movimentos da alínea anterior substituir o deslocamento realizado segundo a direção $^A\vec{r}$ por deslocamentos realizados segundo os eixos do sistema referencial A.
 - d. Apresente graficamente as sequências de movimentos propostas nas alíneas b) e c).
 - e. Qual a expressão que representa a localização da origem do referencial B após ter realizado os movimentos propostos em b)? Qual a nova localização?
- 8. Dois sistemas de coordenadas A e B estão fixos relativamente a um sistema inercial base e estão relacionados pela matriz de transformação ${}^{A}_{B}T$. O sistema de coordenadas A encontra-se localizado em $t = \begin{bmatrix} -2 & 3 & -1 \end{bmatrix}^{T}$ relativamente ao sistema de coordenadas B e a matriz de rotação ${}^{A}_{B}R$ é representada pelos parâmetros de Euler que se apresentam

$$\varepsilon_1 = \frac{\sqrt{2}}{4}$$
 $\varepsilon_2 = \frac{2 - \sqrt{2}}{4}$ $\varepsilon_3 = \frac{2 + \sqrt{2}}{4}$ $\varepsilon_4 = \frac{\sqrt{2}}{4}$

- a) Represente numericamente a matriz de transformação ${}^{A}_{B}T$ e obtenha os ângulos de Roll-Pitch-Yaw equivalentes.
- b) Qual a nova matriz de transformação que relaciona os sistemas de coordenadas A e B após se terem realizado os seguintes movimentos:
 - 1. Rodar o sistema de coordenadas B de um ângulo igual a $\frac{\pi}{2}$ sobre o eixo de rotação $\vec{r} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}^T$;
 - 2. Deslocar o sistema de coordenadas A em 4 unidades segundo o eixo de rotação $^{\it B}\vec{r}$;
 - 3. Rodar o atual sistema de coordenadas A de um ângulo igual a $-\frac{\pi}{2}$ sobre o eixo de rotação OY_R .
- c) Apresente graficamente a sequência de movimentos proposta na alínea b).
- d) Apresente uma sequência alternativa de movimentos que se traduza na mesma matriz de transformação.
- 9. Dois sistemas de coordenadas $A \in B$ estão fixos relativamente a um sistema inercial base. Sabendo que $\hat{X}_B = \frac{\sqrt{2}}{2} \hat{X}_A \frac{\sqrt{2}}{2} \hat{Z}_A$, $\hat{Y}_B = \hat{Y}_A$, $\hat{Z}_B = \frac{\sqrt{2}}{2} \hat{X}_A + \frac{\sqrt{2}}{2} \hat{Z}_A$, e que $^A t_{ori_B} = \begin{bmatrix} 5 & -3 & 1 \end{bmatrix}$, obtenha;
 - a) A sequência de movimento a realizar de modo a recolocar o sistema de coordenadas B coincidente com o sistema de coordenadas A, i.e., $_{B}^{A}T=I_{4x4}$.
 - b) Obtenha os valores do quaternião unitário da matriz A_BR ($[e_1,e_2,e_3,e_4]$), e com base nos valores obtidos calcule o eixo de rotação arbitrário ${}^A\vec{r}$ e correspondente ângulo de rotação ϕ .
 - c) Obtenha a transformação $_{B_N}^{\ B}T$ que resulta da rotação do sistema de coordenadas B sobre o eixo $^A\vec{r}$ de um ângulo ϕ igual a $\frac{\pi}{3}$.
- 10. Considere o vector, ${}^{A}V = \begin{bmatrix} -3 & 4 & 1 \end{bmatrix}^{T}$, expresso no sistema de coordenadas A. De que forma o vector se altera se for expresso no referencial B? São ${}^{A}V$ e ${}^{B}V$ o mesmo vector? Comente do ponto de vista das suas magnitudes e direções. Caso sejam diferentes, de que forma se pode transformar o vector ${}^{A}V$ em ${}^{B}V$? Obtenha ${}^{B}V$ partindo do conhecimento de ${}^{A}V$.
- 11. Considere um espaço de trabalho constituído por um manipulador equipado com uma garra, cuja localização da garra é definida na sua base através da transformação ${}_{G}^{0}T = {}_{G}^{0}T{}_{G}^{0}T$. O manipulador está colocado num espaço de trabalho,

sendo a pose do robot nesse espaço definida através de w_0T . O espaço de trabalho é monitorizado por uma câmara definida por w_CT , sendo a pose da peça a manusear obtida no referencial da câmara e definida por c_0T . Obtenha:

- a) A transformação ${}_{6}^{0}T$ que assegura a colocação da garra na posição de agarrar a peça;
- b) A nova transformação $_{o}^{c}T$ após o robot ter movido a peça através de uma rotação θ segundo o seu eixo OZ.

Se após ter movido a peça, rodar a câmara de um ângulo α sobre o eixo $\vec{r} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$, qual a expressão que representa a nova localização da câmara no referencial da garra ($_{C_u}^G T$)?

- 12. Analisando a figura que se apresenta, a qual pretende descrever o universo dos sistemas de coordenadas envolvidos num processo de localização de objectos, identificam-se três sistemas referenciais:
 - O sistema referêncial C, acoplado à camara e com o eixo OZ coincidente com o eixo óptico da câmara;
 - O sistema referencial O, acoplado a uma plataforma que se desloca no espaço de monitorização visual;
 - O sistema referêncial inercial U, solidário ao espaço de monitorização.

Sabendo que

$${}^{U}_{C}T = \begin{bmatrix} 0.6124 & 0.7071 & 0.3536 & -100 \\ 0.6124 & 0.7071 & 0.3536 & 50 \\ -0.5 & 0 & 0.8660 & 75 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

- a. A sequência de movimentos a efectuar em U para colocar C na pose definida por ${}^{U}_{C}T$.
- b. Qual a transformação ${}_{C_N}^CT$ que resulta da rotação de C sobre o eixo ${}^{U}r = \begin{bmatrix} 0.707 & 0.707 & 0 \end{bmatrix}^T$ que passa no ponto ${}^{U}p = \begin{bmatrix} 1.0 & 2.0 & 3.0 \end{bmatrix}^T$? (pergunta de selecção)
- c. Incorporando um manipulador ao ambiente de trabalho, o qual está localizado em $_R^UT$ e com o gripper na pose $_{Actual}^UT$, obtenha a expressão que representa o deslocamento a ser efectuado pelo gripper de modo a se colocar coincidente com a pose do ponto P ($^{Gripper}_{p}T$), conhecendo $^{C}_{O}T$?

- 13. Considere a existência de dois sistemas de coordenadas A e B, inicialmente coincidentes aos quais é aplicada a seguinte sequencia de movimentos:
 - 1. Deslocação do sistema de coordenadas B em 4 unidades segundo o eixo ${}^{A}\overline{r}=\left[\begin{array}{cccc}0&1&0\end{array}\right]^{T}$.
 - 2. Rotação do sistema de coordenadas B de um ângulo igual a $-\pi/2$ segundo o eixo $^{A}\overline{r}$.
 - 3. Rotação do sistema de coordenadas A de um ângulo igual a $-\pi/2$ segundo o eixo $\hat{Z}_{\scriptscriptstyle B}$ do referencial B atual.
 - a) Obtenha a matriz de transformação que mapeia B em A, i.e., ${}_{B}^{A}T$.
 - b) Represente a sequência de movimentos realizada anteriormente através da conjugação de um movimento translacional puro t combinado com uma rotação sobre um eixo arbitrário ${}^{A}\overline{r}$ de um ângulo ϕ . Obtenha os valores para ϕ , t e ${}^{A}\overline{r}$.
- 14. Considere a existência de dois sistemas de coordenadas A e B, inicialmente coincidentes aos quais é aplicada a seguinte sequência de movimentos:
 - 1. Rotação do sistema de coordenadas B de um ângulo igual a $\frac{\pi}{2}$ segundo o eixo $^{B}\overline{r}=\begin{bmatrix}0&1&1\end{bmatrix}^{T}$.
 - 2. Deslocação do sistema de coordenadas B em três unidades ao longo do eixo ${}^B \bar{r}$.
 - 3. Rotação do sistema de coordenadas A de um ângulo igual a $-\pi/4$ segundo o atual eixo $\hat{X}_{\scriptscriptstyle R}$.
 - a) Obtenha a matriz de transformação que mapeia B em A, i.e., ${}^{^{A}}_{^{B}}T$.
 - b) Considere agora a existência de um terceiro referencial C cuja orientação é idêntica à orientação de B e que se encontra localizado em $^Bt_{orig_c} = \begin{bmatrix} -2 & 5 & 3 \end{bmatrix}^T$. Obtenha a expressão que representa a origem do sistema de coordenadas C no sistema de coordenadas A, i.e., $^Ap_{orig_c}$. Obtenha a matriz de transformação A_CT .
 - c) Se aplicar ao sistema de coordenadas C uma rotação igual a $\pi/4$ segundo $^B\bar{r}$ centrado na origem de A, qual a nova transformação A_CT . Considerando que os 3 sistemas de coordenadas {A,B,C}, representam, respectivamente, os sistemas de coordenadas *World*, *Robot* e *Gripper*, obtenha a transformação de movimento a realizar pelo robô para colocar a garra em condição de agarrar uma peça cuja transformação é dada por

- $_{obj}^{Robot}T$. Qual o valor da rotação a realizar pela garra segundo o seu eixo de aproximação $(\hat{Z}_{Gripper})$ se $_{obj}^{Robot}R$ = I_{3x3} ?
- 15. Dois sistemas de coordenadas A e B estão fixos relativamente a um sistema inercial base e estão relacionados pela matriz de transformação

$${}_{B}^{A}T = \left[\begin{array}{cccc} 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

- a. Obtenha uma sequência de movimentos que se traduza na matriz de transformação previamente apresentada.
- b. Obtenha a nova matriz de transformação ${}_{B}^{A}T$, após serem realizados os movimentos complementares apresentados a seguir:
 - i. Rotação do sistema de coordenadas B de um ângulo α segundo o eixo $OY_{A_{cont}}$.
 - ii. Deslocação do sistema de coordenadas A em d unidades segundo o eixo $OZ_{B_{nurred}}$.
 - iii. Rotação do sistema de coordenadas B de um ângulo β segundo o eixo OX_{A----} .
- c. Sabendo que a matriz de transformação que relaciona os dois sistemas de coordenadas, após a sequência de movimentos da alínea a), é representada por

$$\vec{A}T = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \sqrt{2}/2 & -\sqrt{2}/2 & -\sqrt{2} \\
0 & \sqrt{2}/2 & \sqrt{2}/2 & \sqrt{2} \\
0 & 0 & 0 & 1
\end{bmatrix},$$

obtenha os valores de (α, β, d) que conduzem à matriz apresentada. Confirme o resultado graficamente.

- d. Apresente uma sequência alternativa de movimentos, composta apenas por uma rotação e uma translação, que se traduza na mesma matriz de transformação
- 16. Considere o diagrama da figura anexa. Um manipulador é colocado afastado um metro de uma mesa de trabalho com altura de 1m e área igual a $1m^2$. Um sistema de coordenadas o_1, x_1, y_1, z_1 é colocado num dos cantos da superfície da mesa, e um cubo com 20cm de lado é colocado no centro da mesa com o sistema de coordenadas o_2, x_2, y_2, z_2 colocado no centro de massa do cubo. A inspecionar a cena é colocada uma câmara a 2m de distância da mesa e alinhada perpendicularmente à sua superfície, tendo a câmara acoplado o

sistema referencial o_3, x_3, y_3, z_3 onde o eixo $\overrightarrow{o_3 z_3}$ está alinhado com o centro do cubo.

os seus próprios eixos, para a recolocar na localização inicial?

- a. Obtenha as transformações homogéneas que relacionam cada um dos sistemas referenciais ao sistema referencial base o_0, x_0, y_0, z_0 .
- b. Se após a calibração da câmara, rodar a câmara 30° sobre o eixo $\vec{r} = [-1,-1,+1]^{T}$, qual a nova transformação que relaciona a câmara com o referencial base?
- c. Se pretender compensar o deslocamento espacial sofrido pela câmara após a rotação aplicada, quais as deslocações a impor à câmara, sobre

A componente laboratorial desta disciplina é realizada tirando partido da *toolbox ROBOTICS* desenvolvida pelo professor *Peter Corke*. Para tal deverá instalar a *toolbox* na sua plataforma de trabalho, a qual pode ser descarregada no endereço http://www.petercorke.com/Robotics_Toolbox.html.

Siga as instruções descritas na página de acesso para integrar as funções da *toolbox* no seu ambiente de trabalho MATLAB.

1. EXERCÍCIO MATLAB (Aula Laboratorial #1)

Considere a existência de um objecto tridimensional de dimensão (1 x 1 x 1) colocado num espaço de trabalho (World) de dimensão $\begin{bmatrix} -10..10, -10..10, -10..10 \end{bmatrix}$.

O objeto tem um sistema de coordenadas ortonormado acoplado a um dos seus vértices e está localizado no espaço de trabalho na seguinte configuração:

$${}^{World}T_{Object} = \left[\begin{array}{cccc} 0 & -1 & 0 & 5 \\ 0 & 0 & -1 & -2 \\ 1 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{array} \right] .$$

Explorando as potencialidades das funções *trinterp, ctraj* e *mtraj* da toolbox ROBOTICS, ou desenvolvendo funções próprias, desenvolva uma aplicação em matlab que permita visualizar os movimentos do objecto quando lhe é aplicada a seguinte sequência de movimentos:

- 1. Rotação de 30° sobre o eixo OX do sistema de coordenadas World;
- 2. Deslocação de 3 unidades sobre o eixo OZ do atual sistema de coordenadas Object;
- 3. Rotação de -45° sobre o eixo $\begin{bmatrix} 1,-1,1 \end{bmatrix}$ do sistema de coordenadas *Object* inicial;
- 4. Rotação de 90° do sistema de coordenadas World sobre o seu próprio eixo OZ.

2. EXERCÍCIO MATLAB (Aula Laboratorial #2)

Considere o ambiente de trabalho que se apresenta, onde o objectivo é usar a garra de uma manipulador colocada em **M** para executar a seguinte sequência de acções:

- 1. Pegar no objecto A;
- 2. Inseri-lo no objecto **B**;
- 3. Encaixar o conjunto no objecto C;
 - a) A partir da figura, convencionar os referenciais associados a M, A, B e C, representá-los, e indicar quais as transformações geométricas que os representam no referencial R.

b) Indicar uma sequência de transformações geométricas que permita cumprir os objectivos propostos $(M \rightarrow A \rightarrow B \rightarrow C)$ segundo o ponto de vista do manipulador, ou, em alternativa, do ponto de vista do referencial **R**.

Explore as funcionalidades das funções trinterp, ctraj e mtraj da toolbox ROBOTICS na realização do problema.

3. EXERCÍCIO MATLAB (Aula laboratorial #2)

Sabendo que a matriz de transformação que modela um elo (*link*) de um manipulador é representada por

onde $\left[\theta_{i},d_{i},\alpha_{i},a_{i}\right]_{i=1..n}$ representam os 4 parâmetros de Denavith-Hartenberg, elabore um programa em Matlab que desenhe o esquemático de um manipulador na sua configuração "home" e que efetue a animação de movimento do manipulador mediante a interação nas suas variáveis de junta $\left[\theta_{1},\theta_{2},\theta_{3},\theta_{4},\theta_{5}\right]$. Para tal, considere que conhece a tabela de parâmetros D-H dos elos do manipulador. Para efeitos demonstrativos, use como exemplo a tabela de D-H que se apresenta e que corresponde ao manipulador (RRR-RR)

	$\theta_{_{i}}$	$d_{_{i}}$	a_{i}	$\alpha_{_i}$	Offset	R/T	Range	
$^{0}T_{1}(0 \rightarrow 1)$	$\theta_{_{1}}$	0	0	$\frac{\pi}{2}$	0_{rad}	R	$\left[-\frac{\pi}{2}\frac{\pi}{2}\right]$	PITCH ELBOW SHOULDER BASE
$^{1}T_{2}(1 \rightarrow 2)$	$\theta_{\scriptscriptstyle 2}$	0	4	0_{rad}	$\frac{\pi}{2}$	R	$\left[-\frac{\pi}{3}\frac{\pi}{4}\right]$	
$^2T_3(2 \rightarrow 3)$	$\theta_{_{3}}$	0	2	0_{rad}	0_{rad}	R	$\left[-\frac{\pi}{2}\frac{\pi}{2}\right]$	
$^3T_4(3 \rightarrow 4)$	$ heta_{_4}$	0	0	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	R	$\left[-\frac{\pi}{2}\frac{\pi}{2}\right]$	
$^4T_G(4 \rightarrow G)$	$\theta_{\scriptscriptstyle 5}$	1	0	0_{rad}	0_{rad}	R	$\left[-\pi\pi ight]$	