Heaven's Light is Our Guide

RAJSHAHI UNIVERSITY OF ENGINEERING & TECHNOLOGY LAB REPORT

Course No: CSE 3202

Course Name: Sessional Based On CSE 3201

Submitted By:

Tushar Das

Roll: 1803108

Section: B

Dept. of Computer Science & Engineering

Rajshahi University of Engineering & Technology

Lab 3

1. First Come, First Served (FCFS)

FCFS is an operating system scheduling algorithm that automatically executes queued requests and processes by order of their arrival.

It supports non-preemptive and pre-emptive scheduling. So after the process has been allocated to the CPU, it will never release the CPU until it finishes executing.

A real-life example of the FCFS method is buying a movie ticket on the ticket counter.

Algorithm

- Take an array of the processes
- Find the 'gaint chart' from the processes by adding the previous process time one after another
- Finally calculate the waiting time from the 'gaint chart' by adding all the values from the 'gaint chart' array except the last one and divide by the number of processes.

Code

```
#! /bin/bash
                                                        echo "The Gaint Chart is-----"
cpuBt=(24 3 4)
                                                        echo ${gaintc[*]}
echo "The CPU Burst Time is-----"
                                                        #Finding the waiting Time
echo ${cpuBt[*]}
                                                        sum=0
#Finding the gaint chart
                                                        for ((i=0;i<${#gaintc[@]}-1;i++))
temp=0
j=0
                                                        temp=${gaintc[$i]}
for i in ${cpuBt[@]}
                                                        sum=$((sum+temp))
temp=$((temp+i))
                                                        WT=$(bc -l <<< "scale=3;$sum/$j")
gaintc[$j]=$temp
                                                        echo "The Waiting Time is-----"
                                                        echo $WT
j=$((j+1))
done
```

Output

```
ubuntu@DESKTOP-NCPBVNJ:/mnt/e/STUDY/3_2/OS/Labs/3$ ./fcfs.sh
The CPU Burst Time is-----
24 3 4
The Gaint Chart is-----
24 27 31
The Waiting Time is------
17.000
ubuntu@DESKTOP-NCPBVNJ:/mnt/e/STUDY/3_2/OS/Labs/3$
```

2. Shortest Job First (SJF)

Shortest job first is a scheduling algorithm in which the process with the smallest execution time is selected for execution next. Shortest job first can be either preemptive or non-preemptive.

Algorithm

- Take an array of the processes
- Sort the array
- Find the 'gaint chart' from the processes by adding the previous process time one after another.
- Finally calculate the waiting time from the 'gaint chart' by adding all the values from the 'gaint chart' array except the last one and divide by the number of processes.

Code

```
#FOR SJF
                                                       #NOW APPLY SCSF ALGO ON CPUBT2
cpuBt2=(24 3 4)
                                                       #Gaint CHART
echo "Befor Sorting"
                                                       temp=0
                                                       j=0
echo ${cpuBt2[*]}
#Sorting (Bubble)
for ((i=0;i<4;i++))
                                                       for i in ${cpuBt2[@]}
                                                       do
                                                       temp=$((temp+i))
for ((k=0;k<4-i-1;k++))
                                                       gaintc[$j]=$temp
if [ ${cpuBt2[k]} -gt ${cpuBt2[$((k+1))]} ]
                                                       j=$((j+1))
then
                                                       done
                                                       echo "Gaint CHart"
#swap
                                                       echo ${gaintc[@]}
temp=${cpuBt2[k]}
cpuBt2[$k]=${cpuBt2[$((k+1))]}
                                                       #Finding the waiting Time
cpuBt2[$((k+1))]=$temp
                                                       for ((i=0;i<${#gaintc[@]}-1;i++))
fi
                                                       do
done
                                                       temp=${gaintc[$i]}
done
                                                       sum=$((sum+temp))
                                                       done
echo "After Sorting"
echo ${cpuBt2[*]}
                                                       WT=$(bc -l <<< "scale=3;$sum/$j")
                                                       echo "Waiting Time is-----"
                                                       echo $WT
```

Output

Discussions

In this lab, we learned two basic CPU scheduling algorithm. The processes were taken into a static array. But it can be done by taking input from the user easily. For better comfort I had taken it in a static array. By observing the two algorithms, it can be seen that Shortest time first scheduling algorithm is more convenient than the FCFS algorithm.