Abstract Algebra I, Practice exam 1

Instructor: Carl Lian

September 29, 2023

This is longer and a bit more difficult than what the real exam will be like.

- 1. (a) Let G be a group and let $g \in G$ be any element. Let n be a positive integer. Show that $(g^{-1})^n = (g^n)^{-1}$.
 - (b) Let G be a group and let g_1, g_2, g_3, g_4, g_5 be any elements. Show that

$$((g_1 \cdot (g_2 \cdot g_3)) \cdot (g_4 \cdot g_5)) = (g_1 \cdot g_2) \cdot ((g_3 \cdot g_4) \cdot g_5).$$

- 2. Let $\phi: G \to H$ be an isomorphism of groups. Suppose that g_1, g_2, g_3 generate G. Show that $\phi(g_1), \phi(g_2), \phi(g_3)$ generate H.
- 3. Show that the multiplicative group $((\mathbb{Z}/12\mathbb{Z})^{\times}, \times)$ is not cyclic.
- 4. Let S_n be the symmetric group on n letters. Suppose that σ is a 3-cycle and that τ is a 5-cycle. Suppose further that $\sigma\tau$ is an m-cycle, for some integer m.
 - (a) Show that m < 9.
 - (b) Show that $m \neq 1$.
 - (c) Show that m is odd.
 - (d) Give examples of σ , τ for which $\sigma\tau$ is an m-cycle, where m=3,5,7.
- 5. Show that the groups D_{12} and S_4 are not isomorphic.
- 6. There are 16 subgroups of D_6 . Find them all, and prove that there are no others.

This one takes some effort; on a real exam, I probably would not ask you to write down a proof that your list is exhaustive. Nevertheless, it is a good exercise to think through.