Мехмат. Сошников Владимир, группа 410. Численное моделирование нестационарного одномерного течения газа с использованием неявной последовательной разностной схемы А.Г. Соколова (u, ρ) .

1 Постановка задачи

В данной работе будет рассматриваться разностная схема А.Г. Соколова для решения начально - краевых задач для системы уравнений, описывающей нестационарное одномерное движение вязкого баротропного газа:

$$\begin{cases}
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0 \\
\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial x^2} + \rho f \\
p = p(\rho) \\
(\rho, u)|_{t=0} = (\rho_0, u_0), x \in [0, X] \\
u(t, 0) = u(t, X) = 0, t \in [0, T]
\end{cases}$$
(*)

Неизвестные функции: плотность ρ и скорость u являются функциями переменных Эйлера

$$(t, x) \in Q = [0, T] \times [0, X].$$

В уравнения входят еще две неизвестные функции - давлениеp, зависящее от плотности и вектор внешних сил f, являющийся функцией переменных Эйлера. В данной работе рассматривается зависимость $p=\rho^{\gamma}$, где $\gamma=1.4$

2 Описание алгоритма

2.1 Используемые обозначения

Рассмотрим временной интервал [0,T], введем на нем равномерную сетку: $\bar{w}_{\tau} = \{n\tau | n=0,...,N\}$, $N\tau = T$ Рассмотрим пространственную область в виде отрезка $\bar{\Omega} = [0,X]$. Обозначим через $\bar{w}_h = \{mh | m=0,...,M\}$

(где Mh = X), равномерную сетку с шагом h, а через $w_h^{1/2} = \{mh + \frac{h}{2}|m = 1\}$ 0,...,M-1} сдвинутую равномерную сетку с полуцелыми узлами. Введем также обозначения для сеток: $\bar{Q}_{\tau h}:=\bar{\omega}_{\tau}\times\bar{\omega}_{h}$ и $Q_{\tau h}^{1/2}=\bar{\omega}_{\tau}\times\omega_{h}^{1/2}$

Значение функции g в узле (m, n) будем обозначать через g_n^m Для сокращения записей будем также использовать следующие обозначения: $g_m^{n+1} = \hat{g} , g_{m\pm 1}^n = g^{\pm 1}$

Обозначения для среднего значения величин сеточной функции в двух соседних узлах:

$$g_s = \frac{g_{m+1}^n + g_m^n}{2}, \ g_{\bar{s}} = \frac{g_m^n + g_{m-1}^n}{2}$$

 $g_s = \frac{g_{m+1}^n + g_m^n}{2}, \ g_{\bar{s}} = \frac{g_m^n + g_{m-1}^n}{2}$ Для разностных операторов применяются следующие обозначения:

$$g_t = \frac{g_m^{n+1} - g_m^n}{\tau}, \quad g_x = \frac{g_{m+1}^n - g_m^n}{h}, \quad g_{\bar{x}} = \frac{g_m^n - g_{m-1}^n}{h}, \quad g_{x\bar{x}} = \frac{g_{m-1}^n - 2g_m^n + g_{m+1}^n}{h^2}$$

Для приближения конвективных слагаемых в дифференциальных операторах будут использоваться разностные аппроксимации против потока. Для этих выражений введем обозначение:

$$\delta\{W,V\} = rac{V + |V|}{2}W_{\bar{x}} + rac{V - |V|}{2}W_x = \left\{ egin{array}{l} VW_{\bar{x}}, & ext{если} \ V \geq 0 \ VW_x, & ext{если} \ V < 0 \end{array}
ight.$$

В данной схеме в конвективных слагаемых узел шаблона, в котором нужно брать значение сеточной функции F, зависит от знака компоненты вектора скорости V. Для этих выражений используется обозначение:

$$\sigma\{F,V\} = F\frac{|V|-V}{2|V|} + F^{(-1)}\frac{|V|+V}{2|V|} = \left\{ \begin{array}{l} F, \text{ если } V < 0 \\ F^{(-1)}, \text{ если } V \geq 0 \end{array} \right.$$

Схема в веденных обозначениях

$$\begin{cases}
H_{\bar{s}}V_t + H_{\bar{s}}\delta\{\hat{V}, V\} + \frac{\gamma}{\gamma - 1}H_{\bar{s}}\left((H)^{\gamma - 1}\right)_{\bar{x}} = \mu\hat{V}_{x\bar{x}} + H_{\bar{s}}f, & \text{при } H_{\bar{s}} \neq 0 \\
\hat{V} = 0, & \text{при } H_{\bar{s}} = 0 \quad (2) \\
0 < m < M, n \ge 0 \\
\hat{V}_0 = \hat{V}_M = 0, \quad (3) \\
H_t + (\sigma\{\hat{H}, \hat{V}\}\hat{V})_x = 0, \quad 0 \le m < M, n \ge 0 \quad (4)
\end{cases}$$

2.3 Поточечная запись схемы

$$\begin{cases} V_{m-1}^{n+1}(-\frac{\tau}{4h}(V_m^n+|V_m^n|)(H_m^n+H_{m-1}^n)-\frac{\tau\mu}{h^2})+\\ +V_m^{n+1}(\frac{H_m^n+H_{m-1}^n}{2}+\frac{2\tau\mu}{h^2}+\frac{\tau}{2h}|V_m^n|(H_m^n+H_{m-1}^n))+\\ +V_{m+1}^{n+1}(\frac{\tau}{4h}(V_m^n-|V_m^n|)(H_m^n+H_{m-1}^n)-\frac{\tau\mu}{h^2})=\\ =V_m^n\frac{H_m^n+H_{m-1}^n}{2}-\frac{\tau\gamma}{2h(\gamma-1)}(H_m^n+H_{m-1}^n)((H_m^n)^{\gamma-1}-(H_{m-1}^n)^{\gamma-1})+\\ +\tau f_m^n\frac{H_m^n+H_{m-1}^n}{2},\quad \text{при}\,\frac{H_m^n+H_{m-1}^n}{2}\neq 0 \quad (1)\\ 0< m< M, n\geq 0\\ V_m^{n+1}=0,\quad \text{при}\,\frac{H_m^n+H_{m-1}^n}{2}=0 \quad (2)\\ V_0^{n+1}=V_M^{n+1}=0 \quad (3)\\ H_{m-1}^{n+1}(-\frac{\tau}{2h}(V_m^{n+1}+|V_m^{n+1}|))+\\ +H_m^{n+1}(1+\frac{\tau}{2h}(V_{m+1}^{n+1}+|V_{m+1}^{n+1}|-V_m^{n+1}+|V_m^{n+1}|))+\\ +H_{m+1}^{n+1}(\frac{\tau}{2h}(V_{m+1}^{n+1}-|V_{m+1}^{n+1}|))=\\ =\tau(f_0)_m^n+H_m^n,\quad 0\leq m< M, n\geq 0 \quad (4) \end{cases}$$

3 Отладочный тест

3.1 Постановка задачи

Зададим функции

$$\tilde{\rho}(t,x) = e^t(\cos(\frac{\pi x}{10}) + 1.5)$$

$$\tilde{u}(t,x) = \cos(2\pi t)\sin\left(\pi(\frac{x}{10})^2\right)$$

Определим функции f_0 (отличную от нуля правую часть уравнения неразрывности) и f следующим образом:

$$\frac{\partial \tilde{\rho}}{\partial t} + \frac{\partial \tilde{\rho}\tilde{u}}{\partial x} = f_0$$

$$\tilde{\rho}\frac{\partial \tilde{u}}{\partial t} + \tilde{\rho}\tilde{u}\frac{\partial \tilde{u}}{\partial x} + \frac{\partial p}{\partial x} = \mu\frac{\partial^2 \tilde{u}}{\partial x^2} + f$$

$$p = p(\tilde{\rho})$$

Таким образом, дифференциальная задача для системы (*) с начальными и граничными условиями

$$\tilde{\rho}(0,x) = \cos(\pi x/10) + 1.5, x \in [0, 10]$$

$$\bar{u}(0,x) = \sin(\pi (x/10)^2), x \in [0, 10]$$

$$\tilde{u}(t,0) = u(t,10) = 0, t \in [0,1]$$

имеет гладкое точное решение в области $Q = [0,1] \times [0,10],$ задаваемое функциями $\tilde{\rho}$ и $\tilde{u}.$

Учитывая выражение для производной произведения:

$$\frac{\partial \tilde{\rho}\tilde{u}}{\partial x} = \frac{\partial \tilde{\rho}}{\partial x}\tilde{u} + \frac{\partial \tilde{u}}{\partial x}\tilde{\rho}$$

выпишем в явном виде функции, необходимые для подсчета функций f и f_0 :

$$\begin{split} \tilde{\rho}_t &= \tilde{\rho} \\ \tilde{\rho}_x &= -\frac{\pi}{10} e^t \sin(\frac{\pi x}{10}) \\ \tilde{u}_x &= \frac{\pi x}{50} \cos(2\pi t) \cos(\pi (\frac{x}{10})^2) \\ \tilde{u}_t &= -2\pi \sin(2\pi t) \sin(\pi (\frac{x}{10})^2) \\ \frac{\partial p}{\partial x} &= \gamma \tilde{\rho}^{\gamma - 1} \tilde{\rho}_x \\ \frac{\partial^2 \tilde{u}}{\partial x^2} &= -\frac{\pi \cos(2\pi t)(\pi x^2 \sin(\frac{\pi x^2}{100}) - 50 \cos(\frac{\pi x^2}{100}))}{2500} \end{split}$$

3.2 Численные эксперименты

3.2.1 Невязки в норме C^h

τ	0.1	0.01	0.001	0.0001
0.1	8.285230e-02	3.080613e+00	$3.699816\mathrm{e}{+01}$	2.840256e+02
0.01	3.293312e-03	1.714846e-03	1.638271e-03	1.632187e-03
0.001	3.836806e-03	1.939109e-03	1.788066e-03	1.773883e-03
0.0001	3.891207e-03	1.973442e-03	1.817514e-03	1.802784e-03

Таблица: Ошибка решения для V при $\mu = 10^{-1}$

τ	0.1	0.01	0.001	0.0001
0.1	7.815377e-01	$9.646356e{+00}$	2.593327e+02	7.603305e+02
0.01	2.201643e-03	2.038254e+00	2.228518e+01	2.744123e+03
0.001	2.696648e-03	3.896222e-04	2.144925e-04	2.049316e-04
0.0001	2.755748e-03	4.304076e-04	2.256746e-04	2.099311e-04

Таблица: Ошибка решения для V при $\mu=10^{-2}$

τ	0.1	0.01	0.001	0.0001
0.1	6.873624e-01	$8.658355e{+01}$	$9.797400\mathrm{e}{+02}$	8.549658e + 03
0.01	2.098316e-03	5.667679e + 00	7.078428e+01	5.507045e+02
0.001	2.585017e-03	2.366792e-04	$3.859310\mathrm{e}{+00}$	4.209609e+01
0.0001	2.644665e-03	2.811675e-04	3.983411e-05	2.228885e-05

Таблица: Ошибка решения для V при $\mu = 10^{-3}$

τ	0.1	0.01	0.001	0.0001
0.1	8.346097e-01	$1.006808e{+01}$	2.041265e+01	7.610519e+00
0.01	5.311057e-02	4.851442e-02	4.812621e-02	4.808817e-02
0.001	1.204427e-02	5.370461e-03	5.139162e-03	5.124456e-03
0.0001	9.231614e-03	2.239485e-03	2.487148e-03	2.528856e-03

Таблица: Ошибка решения для H при $\mu=10^{-1}$

τ	0.1	0.01	0.001	0.0001
0.1	2.824735e+00	2.344242e+01	1.027078e + 02	4.043054e+02
0.01	5.360122e-02	$2.228508\mathrm{e}{+01}$	6.714340e + 02	7.169226e+02
0.001	1.294647e-02	5.311395e-03	4.840166e-03	4.800066e-03
0.0001	1.024173e-02	1.219743e-03	5.539551e-04	5.297192e-04

Таблица: Ошибка решения для H при $\mu = 10^{-2}$

τ	0.1	0.01	0.001	0.0001
0.1	2.536448e+00	4.668277e + 01	$1.660260\mathrm{e}{+02}$	6.397873e+02
0.01	5.365330e-02	$4.883634e{+01}$	8.905963e+02	2.118093e+03
0.001	1.304692e-02	5.356476e-03	1.461903e+02	7.312164e+02
0.0001	1.035452e-02	1.296004e-03	5.311780e-04	4.839332e-04

 $\frac{053452e-02}{\text{Таблица: Ошибка решения для } H}$ при $\mu=10^{-3}$

${f 3.2.2}$ Невязки в норме L_2^h

τ	0.1	0.01	0.001	0.0001
0.1	1.475580e-01	$1.019468e{+01}$	1.350498e+02	9.316197e+02
0.01	3.028202e-03	1.884408e-03	1.767828e-03	1.756156e-03
0.001	3.210045e-03	2.079068e-03	1.964051e-03	1.952539e-03
0.0001	3.214100e-03	2.083451e-03	1.968507e-03	1.957003e-03

Таблица: Ошибка решения для V при $\mu=10^{-1}$

τ h	0.1	0.01	0.001	0.0001
0.1	1.140342e+00	$2.735513e{+01}$	1.611362e + 03	1.578020e+04
0.01	1.626927e-03	$8.952561e{+00}$	$2.361110e{+01}$	1.844710e + 04
0.001	1.879508e-03	4.303917e-04	2.906447e-04	2.768192e-04
0.0001	1.891652e-03	4.413476e-04	3.015986e-04	2.877784e-04

Таблица: Ошибка решения для V при $\mu=10^{-2}$

τ	0.1	0.01	0.001	0.0001
0.1	1.088811e+00	$1.442646\mathrm{e}{+02}$	$2.863084\mathrm{e}{+03}$	1.477274e + 04
0.01	1.484128e-03	$3.892218\mathrm{e}{+01}$	1.860994e+02	6.915444e + 03
0.001	1.742462e-03	1.867017e-04	8.547429e + 01	1.275444e + 03
0.0001	1.756639e-03	1.989882e-04	4.521465e-05	3.107465e-05

Таблица: Ошибка решения для V при $\mu=10^{-3}$

τ	0.1	0.01	0.001	0.0001
0.1	1.293417e+00	7.833805e+01	5.146109e+02	$1.950443\mathrm{e}{+01}$
0.01	2.518932e-02	2.431426e-02	2.422312e-02	2.421398e-02
0.001	5.275670e-03	4.033627e-03	3.946299e-03	3.937546e-03
0.0001	4.676362e-03	2.016298e-03	2.070623e-03	2.116467e-03

Таблица: Ошибка решения для H при $\mu=10^{-1}$

τ	0.1	0.01	0.001	0.0001
0.1	3.841700e+00	$1.865971\mathrm{e}{+02}$	$3.035746\mathrm{e}{+03}$	3.081776e+04
0.01	2.461036e-02	$1.963539e{+02}$	2.120503e+04	7.001986e+04
0.001	5.661716e-03	2.541027e-03	2.447665e-03	2.438426e-03
0.0001	5.529478e-03	5.292462e-04	4.262702e-04	4.172832e-04

Таблица: Ошибка решения для H при $\mu = 10^{-2}$

τ	0.1	0.01	0.001	0.0001
0.1	3.894058e+00	3.512253e+02	$3.963516e{+03}$	3.977753e+04
0.01	2.462919e-02	$3.835050\mathrm{e}{+02}$	2.815793e+04	2.078885e+05
0.001	5.699719e-03	2.444318e-03	3.156271e+03	7.007184e+04
0.0001	5.588382e-03	5.654515e-04	2.543140e-04	2.449570e-04

Таблица: Ошибка решения для H при $\mu = 10^{-3}$

3.2.3 Невязки в норме $W_2^{1,h}$

τ	0.1	0.01	0.001	0.0001
0.1	4.383271e-01	$6.731418e{+01}$	$2.667770\mathrm{e}{+03}$	1.986627e + 04
0.01	6.838589e-03	5.511401e-03	5.548671e-03	5.556697e-03
0.001	7.290102e-03	5.486723e-03	5.472968e-03	5.474921e-03
0.0001	7.327100e-03	5.496580e-03	5.475200e-03	5.473536e-03

Таблица: Ошибка решения для V при $\mu = 10^{-1}$

*	τ h	0.1	0.01	0.001	0.0001
	0.1	4.310467e+00	5.460371e+02	$5.333656e{+04}$	1.442581e + 06
	0.01	3.951909e-03	$1.353896e{+02}$	8.557853e+02	$6.901876\mathrm{e}{+05}$
	0.001	4.381496e-03	9.930228e-04	8.457272e-04	8.420778e-04
	0.0001	4.432791e-03	1.004503e-03	8.278189e-04	8.209564e-04

Таблица: Ошибка решения для V при $\mu=10^{-2}$

τ	0.1	0.01	0.001	0.0001
0.1	3.848226e+00	$2.541506\mathrm{e}{+03}$	$1.476536\mathrm{e}{+05}$	9.849140e + 06
0.01	3.652670e-03	5.481894e+02	1.185947e + 04	$1.521601\mathrm{e}{+06}$
0.001	4.134590e-03	4.484777e-04	2.939740e + 03	1.571153e + 05
0.0001	4.188599e-03	4.872382e-04	1.074311e-04	9.301182e-05

Таблица: Ошибка решения для V при $\mu = 10^{-3}$

τ h	0.1	0.01	0.001	0.0001
0.1	4.468332e+00	1.210453e+03	1.717035e+04	8.995577e+01
0.01	5.511195e-02	5.003127e-02	4.962588e-02	4.958614e-02
0.001	1.446086e-02	8.989757e-03	8.975376e-03	8.982159e-03
0.0001	1.182303e-02	7.393480e-03	7.657063e-03	7.693473e-03

Таблица: Ошибка решения для H при $\mu=10^{-1}$

τ	0.1	0.01	0.001	0.0001
0.1	1.149008e+01	$3.015928e{+03}$	$1.422972\mathrm{e}{+05}$	6.539492e+06
0.01	5.532614e-02	$2.220540\mathrm{e}{+03}$	$6.131688e{+05}$	7.500146e+06
0.001	1.442992e-02	5.570949e-03	5.049295e-03	5.006587e-03
0.0001	1.178786e-02	1.666307e-03	1.174305e-03	1.167886e-03

Таблица: Ошибка решения для H при $\mu=10^{-2}$

τ	0.1	0.01	0.001	0.0001
0.1	1.228315e+01	$6.253254e{+03}$	$2.325642\mathrm{e}{+05}$	1.299162e+07
0.01	5.537335e-02	4.810062e+03	1.262087e + 06	4.093729e+07
0.001	1.455101e-02	5.525931e-03	7.085203e+04	1.109121e+07
0.0001	1.192958e-02	1.449296e-03	5.591742e-04	5.069650e-04

Таблица: Ошибка решения для H при $\mu=10^{-3}$

3.3 Выводы

В итоге, можно сделать вывод, что система сходится в зависимости от параметра μ , при $\tau < Ch$, причем C уменьшается с уменьшением μ . Сходимость имеет порядок $\tau + h$.

4 Тесты с негладкими начальными данными

4.1 Постановка задачи

Пусть $\Omega_x = [0; 10]$. Для системы (*) зададим две задачи, начальные и граничные условия которых определяются следующим образом:

$$\rho(0,x) = \begin{cases} 2, & \text{если } x \in [4.5;5.5] \\ 1, & \text{иначе}; \end{cases}$$

$$u(0,x) = 0$$

$$u(t,0) = u(t,10) = 0$$

И

$$\rho(0,x) = 1;$$

$$u(0,x) = \begin{cases} 1, & \text{ести } x \in [4.5; 5.5]; \\ 0, & \text{иначе}; \end{cases}$$

$$u(t,0) = u(t,10) = 0$$

Положим также $f\equiv 0$ и $f_0\equiv 0$. Суть эксперимента состоит в решении этих задач, причем вычисления следует проводить до момента времени $T=N_0\tau$, для которого

$$||V^{N_0}|| = \max_{0 \le m \le M} |V_m^{N_0}| \le \varepsilon$$

где величина ε является достаточно малой и определяется опытным путем. Кроме того, для проверки консервативности системы определим массу газа на шаге n

$$m(n) = h \sum_{m=0}^{M} H_m^n$$

и введем функцию

$$\Delta_m(n) = \frac{m(n) - m(0)}{m(0)}$$

4.2 Численные эксперименты для первой задачи

4.2.1 Точность решения

Фиксируем $\varepsilon=10^{-3}$. Далее приведены таблицы значений $\|V^n\|$ для $n=N_0/4,N_0/2,3N_0/4,N_0$

$\tau \times h$	$N_0\tau$	$N_0/4$	$N_0/2$	$3N_0/4$	N_0
0.0002×0.01	201.489	5.869542e-02	1.456946e-02	1.795449e-02	9.995019e-04
0.0002×0.005	201.495	5.888486e-02	1.467960e-02	1.803345e-02	9.993725e-04
0.0001×0.01	201.489	5.869644e-02	1.456269e-02	1.795364e-02	9.996790e-04
0.0001×0.005	201.495	5.888585e-02	1.467270e-02	1.803257e-02	9.995263e-04

Нормы скорости при $\mu=10^{-1}$

$\tau \times h$	$N_0\tau$	$N_0/4$	$N_0/2$	$3N_0/4$	N_0
0.0002×0.01	1153.54	1.642106e-02	6.470636e-03	5.628159e-03	9.996306e-04
0.0002×0.005	1157.27	2.337882e-02	8.317921e-03	3.369622e-03	9.996882e-04
0.0001×0.01	1153.53	1.643073e-02	6.466305e-03	5.629139e-03	9.998170e-04
0.0001×0.005	1157.27	2.338543e-02	8.321749e-03	3.371166e-03	9.999187e-04

Нормы скорости при $\mu = 10^{-2}$

$\tau \times h$	$N_0 \tau$	$N_0/4$	$N_0/2$	$3N_0/4$	N_0
0.0002×0.01	2941.43	9.899381e-03	3.939488e-03	1.976674e-03	9.998926e-04
0.0002×0.005	2967.38	7.186613e-03	3.395565e-03	2.912057e-03	9.998657e-04
0.0001×0.01	2941.42	9.925506e-03	3.949223e-03	1.980073e-03	9.999280e-04
0.0001×0.005	2967.37	7.219114e-03	3.384289e-03	2.916229e-03	9.999620e-04

Нормы скорости при $\mu=10^{-3}$

4.2.2 Консервативность системы

au imes h	$N_0/5$	$2N_0/5$	$3N_0/5$	$4N_0/5$	N_0
0.0002×0.0	01 -9.349247e-16	1.495879e-15	1.682864e-15	1.869849e-16	-4.113668e-15
0.0002×0.0	005 4.487638e-15	1.869849e-15	3.739699e-15	2.056834e-15	1.682864e-15
0.0001×0.0	01 2.804774e-15	6.731457e-15	3.926684e-15	-2.056834e-15	-3.926684e-15
0.0001×0.0	005 5.048593e-15	6.544473e-15	1.009719e-14	6.731457e-15	1.495879e-15

Разность масс при $\mu = 10^{-1}$

$\tau \times h$	$N_0/5$	$2N_0/5$	$3N_0/5$	$4N_0/5$	N_0
0.0002×0.01	-2.243819e-15	4.113668e-15	3.365729e-15	5.422563e-15	7.292412e-15
0.0002×0.005	-3.178744e-15	-5.609548e-15	-7.479397e-15	-6.357488e-15	-6.918442e-15
0.0001×0.01	1.084513e-14	2.729980e-14	4.394146e-14	3.982779e-14	3.683603e-14
0.0001×0.005	9.349247e-16	1.308895e-15	-7.479397e-16	-4.861608e-15	-1.589372e-14

Разность масс при $\mu = 10^{-2}$

4.2.3 Графики

Рис. 1: График при $\mu=10^{-1}$

Рис. 2: График при $\mu=10^{-2}$

Рис. 3: График при $\mu=10^{-3}$

4.3 Численные эксперименты для второй задачи

4.3.1 Точность решения

$\tau \times h$	$N_0\tau$	$N_0/4$	$N_0/2$	$3N_0/4$	N_0
0.0002×0.01	392.392	4.073000e-02	1.942063e-02	1.616920e-02	9.997637e-04
0.0002×0.005	392.383	4.091964e-02	1.941650e-02	1.620574e-02	9.997746e-04
0.0001×0.01	392.391	4.074091e-02	1.941634e-02	1.617060e-02	9.999157e-04
0.0001×0.005	392.382	4.093176e-02	1.941125e-02	1.620723e-02	9.998260e-04

Нормы скорости при $\mu = 10^{-1}$

$\tau \times h$	$N_0\tau$	$N_0/4$	$N_0/2$	$3N_0/4$	N_0
0.0002×0.01	2173.46	9.514794e-03	8.210254e-03	4.411417e-03	9.998720e-04
0.0002×0.005	2207.16	9.840095e-03	8.382343e-03	4.394345e-03	9.999142e-04
0.0001×0.01	2181.89	1.400346e-02	4.034190e-03	5.546189e-03	9.999979e-04
0.0001×0.005	2215.58	1.441699e-02	4.045814e-03	5.577639e-03	9.999281e-04

Hормы скорости при $\mu = 10^{-2}$

$\tau \times h$	$N_0\tau$	$N_0/4$	$N_0/2$	$3N_0/4$	N_0
0.0002×0.01	5933.73	7.925314e-03	2.432744e-03	3.136509e-03	9.999799e-04
0.0002×0.005	6009.62	7.504520e-03	4.790401e-03	2.272567e-03	9.999933e-04
0.0001×0.01	5950.6	4.268523e-03	2.453016e-03	1.495137e-03	9.999809e-04
0.0001×0.005	6018.04	4.993029e-03	2.457929e-03	1.485679e-03	9.999975e-04

 $\frac{6.04}{1000}$ 4.3330236-03 $\frac{2.4373236-03}{10000}$ $\mu=10^{-3}$

4.3.2 Консервативность системы

$\tau \times h$	$N_0/4$	$N_0/2$	$3N_0/4$	N_0
0.0002×0.01	-3.019807e-15	-2.309264e-15	-2.486900e-15	-1.421085e-15
0.0002×0.005	-7.638334e-15	-8.348877e-15	-7.460699e-15	-2.842171e-15
0.0001×0.01	-6.927792e-15	-4.263256e-15	-5.861978e-15	-4.085621e-15
0.0001×0.005	7.105427e-16	1.421085e-15	-8.881784e-16	-1.776357e-15

Разность масс при $\mu = 10^{-1}$

$\tau \times h$	$N_0/4$	$N_0/2$	$3N_0/4$	N_0
0.0002×0.01	-4.440892e-15	7.105427e-16	-1.776357e-15	-3.552714e-16
0.0002×0.005	-4.973799e-15	-7.815970e-15	-3.197442e-15	-4.263256e-15
0.0001×0.01	-3.552714e-14	-2.913225e-14	-2.362555e-14	-1.314504e-14
0.0001×0.005	-2.575717e-14	-2.131628e-14	-2.113865e-14	-1.225686e-14

Разность масс при $\mu = 10^{-2}$

$\tau \times h$	$N_0/4$	$N_0/2$	$3N_0/4$	N_0
0.0002×0.01	-1.456613e-14	-1.723066e-14	-4.973799e-15	-3.375078e-15
0.0002×0.005	4.796163e-15	-6.927792e-15	-8.704149e-15	-8.526513e-15
0.0001×0.01	1.776357e-14	1.207923e-14	6.039613e-15	-4.085621e-15
0.0001×0.005	-9.059420e-15	-1.474376e-14	-7.815970e-15	-1.776357e-15

Нормы скорости при $\mu = 10^{-3}$

4.3.3 Вывод

Системы являются консервативными при любых параметрах

4.3.4 Графики

Рис. 4: График при $\mu=10^{-1}$

Рис. 5: График при $\mu=10^{-2}$

Рис. 6: График при $\mu=10^{-3}$

4.4 Динамика процессов

Рассмотрим $\mu = 0.1, \tau = 0.001, h = 0.05.$

4.4.1 Первая задача

4.4.2 Вторая задача

4.5 Цикличность решения

Рассмотрим $\mu = 0.1, \tau = 0.001, h = 0.05.$

4.5.1 Первая задача

Графики для V:

Графики для Н:

4.5.2 Вторая задача

Графики для V:

Графики для Н:

4.5.3 Вывод

При уменьшении параметра μ рисунок становится более "четким что свидетельствует о большем времени стабилизации. Период колебаний не зависит от параметра.

5 Задача о стабилизации осциллирующей функции

5.1 Постановка задачи 1

Для системы (*) зададим начальные и граничные условия, которые определяются следующим образом:

$$\begin{cases} \rho_0(x) = 2 + \sin K\pi x, & x \in [0, 1] \\ u_0(x) = 0, & x \in [0, 1] \\ u(t, 0) = u(t, 1) = 0, & t \in [0, T] \end{cases}$$

Область $\Omega=[0,T]\times[0,1]$, функции f и f_0 тождественно равны 0, параметр $K\in\mathbb{N}$ и удовлетворяет неравенству $1\leq K\leq \frac{M}{10}$ Вычисления будут проводится до времени $N_0\tau$, при котором решение перестанет зависеть от времени (выйдет на стационар). Критерием выхода на стационар будем считать $\left|V_m^{N_0}\right|<\varepsilon$ $m=0,\ldots,M$

5.2 Постановка задачи 2

Для системы (*) зададим начальные и граничные условия, которые определяются следующим образом:

$$\begin{cases} \rho_0(x) = 1, & x \in [0, 1] \\ u_0(x) = \sin K\pi x, & x \in [0, 1] \\ u(t, 0) = u(t, 1) = 0, & t \in [0, T] \end{cases}$$

Область $\Omega=[0,T]\times[0,1]$, функции f и f_0 тождественно равны 0, параметр $K\in\mathbb{N}$ и удовлетворяет неравентсву $1\leq K\leq \frac{M}{10}$ Вычисления будут проводится до времени $N_0\tau$, при котором репение перестанет зависеть от времени (выйдет на стационар). Критерием выхода на стационар будем считать $\left|V_m^{N_0}\right|<\varepsilon$ $m=0,\ldots,M$

5.3 Численные эксперименты

Зафиксируем $h=0.01, \tau=0.0001$ и $\varepsilon=0.00001$. В таблицах ниже представлены значения $N_0\tau$ для различных параметров системы.

5.3.1 Задача 1

K μ	0.1	0.01	0.001
1	5.9418	57.8069	415.725
2	21.3714	171.44	1242.1
3	5.4567	50.5228	364.269
4	18.4249	158.953	1242.22
5	4.7458	48.2973	353.583
6	16.9518	157.482	1226.79
7	4.0285	45.529	349.287
8	16.2146	156.744	1206.91
9	3.6687	43.4275	346.286
10	14.7411	155.271	1195.86

Время выхода на стационар

5.3.2 Задача 2

K μ	0.1	0.01	0.001
1	11.4168	92.4641	693.503
2	2.7947	24.6897	188.722
3	1.3342	11.3949	189.043
4	0.8235	6.6491	50.2164
5	0.7309	4.3085	32.5727
6	0.6673	3.313	45.9372
7	0.5511	3.3294	108.556
8	0.5589	1.7483	12.8682
9	0.5855	2.0309	72.2112
10	0.5969	1.1484	8.2721

Время выхода на стационар

6 Задача "протекания"

6.1 Постановка задачи

Для системы (*) зададим начальные и граничные условия, которые определяются следующим образом:

$$\begin{cases} \rho_0(x) = 1, & x \in [0, 10] \\ u_0(x) = 0, & x \in [0, 10] \\ u(t, 0) = v & t \in [0, T] \\ \rho(t, 0) = \tilde{\rho} & t \in [0, T] \\ \frac{\partial u}{\partial x}\Big|_{x = X} = 0 & t \in [0, T] \end{cases}$$

Область $\Omega=[0,T]\times[0,10],$ а функции f и f_0 тождественно равны 0. Параметры v(v>0) и $\tilde{\rho}\tilde{\rho}\geq 1$ задают скорость и плотность, "набегающего" потока.

Вычисления будут проводится до времени $N_0 \tau$, при котором решение перестанет зависеть от времени (выйдет на стационар). Критерием выхода на стационар будем считать $\left|V_m^{N_0}-V_m^{N_0-50}\right|<0.000001$ $m=0,\ldots,M$

Численные эксперименты 6.2

$\tilde{\rho}$ v	1	2	3	4
1	145.175	48.8773	14.9237	8.6546
2	139.249	43.764	13.7317	8.2277
3	137.243	42.4554	13.4933	8.1338
4	126.653	43.3988	13.5558	8.1328

Время выхода на стационар при $\mu = 10^{-1}$

$\tilde{\rho}$	1	2	3	4
1	126.685	48.5548	14.8048	8.5819
2	138.541	43.162	13.6477	8.1927
3	136.108	41.7945	13.4121	8.0996
4	123.693	42.8034	13.4841	8.1008

4 | 123.693 | 42.8034 | 13.4841 | 8.1008 | Время выхода на стационар при $\mu=10^{-2}$

$\tilde{\rho}$ v	1	2	3	4	
1	94.4752	47.9779	14.7463	8.529	
2	129.335	40.1225	13.2128	7.9827	
3	124.487	38.479	12.9478	7.8673	
4	89.0162	39.328	13.0656	7.8747	
Время	Время выхода на стационар при $\mu = 10^{-3}$				

6.3 Вывод

Не замечено зависимости времени стабилизации от параметра μ , при фиксированном ρ при увеличении v время стабилизации уменьшается.

6.4 Графики решения при стабилизации

