Partitional and Hierarchical Clustering in Python

Members

- Mehul Agrawal 2017A7PS0054H
- Abhishek Dhanwani 2017A7PS0161H
- Shah Vishakh Rakesh 2017A7PS1445H

Dataset

Amino Acid Sequences (amino.fasta)

Similarity Metric

Used the <u>Global Sequence Alignment</u> metric for similarity.

K-Means

• K=3

```
1 th Cluster
(0, 3, 5, 7, 8, 9, 10, 11, 16, 18, 20, 21, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 38, 44, 45, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 71, 73, 77, 79, 80, 81, 83, 85, 86, 89, 91, 92, 93, 96, 97, 100, 101, 102, 103, 104, 105, 106, 112, 113, 114, 115, 116, 117, 118, 121, 122, 123, 125, 126, 128, 132, 133, 135, 138, 139, 140, 141, 146, 147, 151, 153, 1 54, 157, 158, 162, 163, 164, 167, 170, 173, 176, 177, 179, 180, 182, 183, 185, 186, 190, 192, 194, 195, 196, 198, 199, 200, 20 1, 203, 204, 206, 208, 210, 211, 213, 214, 215, 216, 219, 220, 221, 223, 224, 228, 229, 231, 233, 234, 235,

2 th Cluster
(1, 4, 12, 13, 15, 17, 19, 24, 37, 39, 40, 49, 52, 60, 67, 69, 70, 72, 75, 78, 84, 88, 94, 98, 99, 108, 110, 111, 119, 120, 12 4, 127, 131, 136, 137, 144, 148, 149, 150, 156, 161, 165, 168, 171, 174, 175, 178, 181, 184, 187, 188, 197, 205, 207, 212, 21 7, 218, 222, 225, 227, 232,

3 th Cluster
(2, 6, 14, 22, 23, 33, 41, 42, 43, 46, 47, 48, 74, 76, 82, 87, 90, 95, 107, 109, 129, 130, 134, 142, 143, 145, 152, 155, 159, 1 60, 166, 169, 172, 189, 191, 193, 202, 209, 226, 230,
```

• K=5

```
1 th Cluster
0, 5, 7, 8, 9, 10, 11, 16, 18, 21, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 38, 45, 50, 51, 53, 54, 55, 57, 58, 61, 62, 64, 68, 71, 77, 79, 81, 83, 85, 86, 89, 91, 93, 97, 101, 102, 103, 104, 105, 106, 112, 113, 114, 115, 116, 117, 118, 122, 123, 125, 12 6, 128, 132, 133, 138, 139, 140, 141, 147, 151, 153, 154, 157, 158, 162, 163, 164, 167, 170, 173, 176, 177, 180, 182, 183, 18 5, 186, 190, 192, 194, 195, 196, 198, 199, 200, 201, 203, 204, 206, 208, 210, 211, 213, 214, 215, 216, 219, 220, 221, 223, 22 4, 228, 229, 231, 233, 234, 235,

2 th Cluster
1, 12, 13, 15, 17, 19, 24, 37, 39, 40, 49, 52, 60, 67, 69, 70, 75, 78, 84, 88, 94, 98, 99, 108, 110, 111, 119, 120, 124, 127, 131, 136, 137, 144, 149, 150, 156, 161, 165, 168, 171, 174, 175, 178, 181, 184, 187, 188, 197, 205, 207, 217, 218, 222, 225, 2 7, 3

3 th Cluster
2, 6, 14, 22, 23, 33, 41, 42, 43, 46, 47, 48, 76, 82, 87, 90, 95, 107, 109, 129, 130, 134, 142, 143, 145, 152, 155, 159, 160, 166, 169, 172, 189, 193, 202, 209, 226, 230, 4

4 th Cluster
3, 5 th Cluster
4, 20, 27, 44, 56, 59, 63, 65, 66, 72, 73, 74, 80, 92, 96, 100, 121, 135, 146, 148, 179, 191, 212, 232,
```

Agglomerative Hierarchical Clustering

• Single-Linkage

• Complete-Linkage

Average-Linkage

Divisive Hierarchical Clustering (DIANA)

Comparison of K-Means and Hierarchical Clustering
As we can see, in K-Means each element is exclusive to a single cluster since it is partition-based clustering (unlike both approaches of hierarchical). Also, the number of clusters is user-defined.