

Alexander Neuwirth

Z⁰ Resonanz

Z⁰-Resonanz
Avisander femalete

widesen-leben

- 1. Begrüßung
- 2. Thema

wissen.leben

2018-12

Z⁰ Resonanz —Gliederun -Gliederung

Gliederung

Gliederung

Gliederung

Historischer Überblick

Theorie

Experimentelle Untersuchung

Zusammenfassung

- 1. Historie 2. Theorie
- 3. Messung/Experiment
- 4. Zusammenfasssung

Z⁰ Resonanz Historisch 2018-12

• Zunächst Historie

-Historischer Überblick

Historischer Überblick

Historischer Überblick

Theorie: Elektroschwache Wechselwirkung 1968

1979 Nobelpreis an Steven Weinberg, Sheldon Glashow und Abdus Salam [1]

Alexander Neuwirth

Z⁰ Resonanz Historischer Überblick –Historischer Überblick

- 1. Vereinheitlichung von elektr.magn. + schwache WW. Kräfteaustausch durch Photon, W^{\pm} , Z^{0}
- 2. 1979 Nobelpreis für GWS

1968

1973

Z⁰ Resonanz

Historischer Überblick

Z⁰ Resonanz

Historischer Überblick

Historischer Überblick

1. Gargamelle-Blasenkammer am CERN

Historischer Überblick

1984 Nobelpreis an Carlo Rubbia und Simon van der Meer [2] 18-12-07

Z⁰ Resonanz └─Historischer Überblick

- 1. Am Large Electron Positorn Collider, fokus
- 2. Nobelpreis für Carlo Rubbia and Simon van der Meer für experimentelle Beitrag Proton-Antiproton-Kollisionen
- 3. Mehr später
- 4. Weil führte mit zum Nachweis der Z und W Bosonen

Historischer Überblick

Z^o Resonanz

Historischer Überblick

Historischer Überblick

- 1. Large Electron Positron Ring (CERN) Präzessionsmessungen
- 2. weiter Bestätigung der Theorie/Standardmodell und W-Z-Bosonen
- 3. bis 2000

Historischer Überblick

Z⁰ Resonanz
Historischer Überblick

Historischer Überblick

- 1. Higgs Theorie in 60er-Jahren
- 2. 2013 Francois Englert und Peter Higgs Nobelpreis
- 3. Alle Nachweise am CERN!
- 4. Randnotitz

Alexander Neuwirth

3

Z⁰ Resonanz -Theorie

Theorie

Einordnung im Standardmodell der Elementarteilchen Elektroschwache Vereinheitlichung

Einordnung im Standardmodell der Elementarteilchen

Standardmodell[3]

Z⁰ Resonanz

—Theorie
—Einordnung im Standardmodell der
Elementarteilchen
—Einordnung im Standardmodell der

T1 - --- - -- + - -- + - :1 - |- - --

- 1. Antiteilchen invers
- 2. Masse steigt mit Generation
- 3. Lebensdauer sehr sehr kurz
- 4. Masse (Reichweite)
- 5. ungleaden/neutral
- 6. Boson also Spin 1, außer Higgs
- 7. Schwache Wechselwirkung
- 8. Bestätigung der 3 Neutrinogenerationen

Elektroschwache VereinheitlichungAustauschteilchen

- ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung
- ► W-, Z-Boson → schwache Wechselwirkung
- ► Gluon → starke Wechselwirkung

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

W-, Z-Boson → schwache Wechselwirkung
 Gluon → starke Wechselwirkung

- 1. Warum? Weil Divergenzen in höherer Ordnung/Energien auftreten
- 2. Vereint QED mit schwacher WW.
- 3. Schwache/Fermi WW divergiert bei Energien nicht kleiner als W Boson Masse und ist nicht renormierbar
- 4. Masse der Bosonen, da Reichweite eingeschränkt ist
- 5. Kräfte durch Austauschteilchen
- 6. Photon elektro magn. beispielweise Elektron-Elektron-Streuung, Rutherford Streuung
- 7. W,Z bsplw. Beta-Zerfall, Elektron-Positron-Streuung (Energieabhänig)
- 8. Gluon Kernzusammenhalt, Farbladung, 8 (n-p-Anziehung), Quarkanziehung
- 9. Nur durch Z-Boson lässt sich Neutrino-Neutrino-WW erklären, da sie nicht elektrisch sind.

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	T_3	$z_{ m f}$
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{\rm L}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_{\mathrm{L}}$	1/2	$^{+1/2}_{-1/2}$	0 -1
Le	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	-1
rks	$\begin{pmatrix} u \\ d' \end{pmatrix}_{L}$	$\begin{pmatrix} c \\ s' \end{pmatrix}_{L}$	$\begin{pmatrix} t \\ b' \end{pmatrix}_{L}$	1/2	$^{+1/2}_{-1/2}$	$+2/3 \\ -1/3$
Quarks	u_{R}	c_{R}	$t_{\rm R}$	0	0	+2/3
	d_{R}	\mathbf{s}_{R}	b_{R}	0	0	-1/3

Schwacher Isospin[4]

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- 1. Einführung von schwachem Isospin, analogon zu starkem Isospin
- 2. Chiralität Index R/L formal: Zerlegung von Dirac-Spinoren in orthogonale Zustände die unter Paritätsoperationen ineinander übergehen. Eigenzustände ± 1
- 3. Rechtshändige e, μ, τ Singulett Zustand.
- 4. Chiralität (l/r), Spinor Symmetrie
- 5. Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt
- 6. Der 'bedeuted!= Masseneigenzustände, sondern Quarkmisch-Matrix CKM
- 7. T_3 Werte Bereich analog zu anderen Spins
- 8. z_f beschreibt Ladung 9. invers für Antiteilchen: rechshändige Fermionen (linkshändige Antifermionen) Singulettt ($T = 0 = T_3$)
- 10. Umwandung durch Absorption von W^{\pm} -Boson innerhalb Multiplett (darin Ladungsdifferenz = 1)

Alexander Neuwirth

7

Elektroschwache Vereinheitlichung Schwacher Isospin

 β^- -Zerfall[5]

18-12-07

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$

Elektroschwache Vereinheitlichung Schwacher Isospin

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

1. T₃ Erhaltungsgröße

Elektroschwache Vereinheitlichung

Schwacher Isospin

- 1. T_3 in Graphik
- 2. W⁻ muss -1 sein

Elektroschwache Vereinheitlichung

Schwacher Isospin

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- 1. analog β^+ -Zerfall: $u \rightarrow d + W^+$
- 2. Hier Kaon-Zerfall

Elektroschwache Vereinheitlichung

Schwacher Isospin

Z⁰ Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

- 1. Analog zu 1/2x1/2 Gekoppelten Spins
- 2. Tripplett und Singulett Zustände
- 3. B^0 postuliert
- 4. Mehr zum Beta-Zerfall nächste Woche (+Paritätsverletzung)

Elektroschwache Vereinheitlichung

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

Elektroschwache Vereinheitlichung

Photon und Z^0 als orthogonale Linearkombination von B^0 und W $|Y\rangle = + \cos \theta_W |B^0\rangle + \sin \theta_W |W^0\rangle$ $|Z^0\rangle = -\sin \theta_W |B^0\rangle + \cos \theta_W |W^0\rangle$

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. spontane Symmetriebrechung, diagonaliesierung der Massematrix führt zu diesen.
- 3. orthogonal + linear Kombination

Elektroschwache Vereinheitlichung

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

➤ Weinbergwinkel:

$$\cos \theta_{
m W} = rac{M_{
m W}}{M_{
m Z}} pprox 0.88$$

Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 $|Y\rangle = +\cos\theta_W |B^0\rangle + \sin\theta_W |W^0\rangle$ $|Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$

► Weinherzwinke

 $\cos\theta_{\rm W} = \frac{M_{\rm W}}{M_{\rm Z}} \approx 0.88$

- 1. experimentelle Bestimmung, später mehr
- 2. Einziger Freier Parameter der Theorie.
- 3. Masse für Z⁰ leichter zu Bestimmen, da W-Boson in Neutrino zerfällt.
 - => bestimmung über fehlenden Transversalimpuls

Elektroschwache Vereinheitlichung

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

➤ Weinbergwinkel:

$$\cos heta_{
m W} = rac{M_{
m W}}{M_{
m Z}} pprox 0.88$$

► Gekoppelte Ladungen:

$$e = g \cdot sin\theta_{W}$$

► Gekonnelte Ladungen

- 1. schwache Ladung g (Analogon zu e) aus schwache WW. aus QFT
- 2. beschreibbar durch elektrische und schwache Ladung
- 3. Umformung zu e/g und M/M

Experimentelle Untersuchung

Indirekter Nachweis

Erzeugung des Z^0 -Bosons

Nachweis

Präzisionsmessungen

Eigenschaften

Anzahl Neutrinogenerationen

2018-1

Z⁰ Resonanz Experimen Experimentelle Untersuchung

Indirekter Nachweis Präzisionsmessunge Eigenschaften

Anzahl Neutrinogenerationen

10

Indirekter Nachweis

des Z^0 -Bosons durch neutrale Ströme

- Neutrinostrahl durch $\pi^+ \rightarrow \mu^+ + \overline{\nu}_{\mu}$
- Blasenkammer: $\bar{v}_{\mu} + e^{-} \xrightarrow{Z^{0}} \bar{v}_{\mu} + e^{-}$
- Elektron sendet
 Bremsstrahlung aus
- $ightharpoonup e^-e^+$ -Paarbildung ightharpoonup elektromagnetischer Schauer

[6][7]

Z⁰ Resonanz
Experimentelle Untersuchung
Indirekter Nachweis
Indirekter Nachweis

- 1. Striche und Kreise sind Lamben und Spiegel Reflexionen
- 2. Myonlose Neutrinoreaktion
- 3. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer.
- 4. Neutrionstrahl durch bsplw. $\pi^+ o \mu^+ + \overline{\nu}_\mu$ und Ladungsfilter
- 5. Photon nur bei elektr. Prozessen. (=> neutraler Strom, Z)
- 6. Vorhergesagter Winkel und 1/3 Energie des *e*⁻ impliziert Wechselwirkung durch neutrale Ströme.
- 7. 700000 Bilder überprüft. Spiral/Bremsstrahlung.

Alexander Neuwirth

Z⁰ Resonanz

12

Erzeugung des Z^0 **-Bosons**

Feynmandiagramme zur Elektron-Positron-Annihilation

Z⁰ Resonanz Experimentelle Untersuchung Erzeugung des Z⁰-Bosons -Erzeugung des Z⁰-Bosons

- W/Z-Boson durch Antilepton+Lepton/AntiQuark+Quark Reaktion
- kollidierende Teilchenstrahlen
- feynman diagram
- Zeit nach rechts
- Antiteilchen Zeitlich invers (Aus Dirac-Gleichung (Schrödinger gleichung mit eingesetzter Impuls/Energie Relation wirkt auf vier komponentigen Dirac Spinor) ergeben sich positive und negative Lösungen für die Energie) (bzw. Klein Gordon Gleichung (entkoppelt))
- nach Stückelberg-Feynman-Interpretation, bsplw. E-Feld e^- vs e^+ mit anderer Richtung ist gleich. (Dirac sagte Antiteilchen vorher/definierte, wobei negative Energien besetzt sind und Löcher sich ausbreiten basierend auf Pauli-Ausschlussprinzip, da Bosonen nicht gehorchen => reverse Zeit Interpretation)
- über yoder Z zu Fermion und Antifermion paar.
- bei passender Energie approx M_Z dominiert Z^0 , aus QFT+Feynmanregeln

Erzeugung des Z^0 -Bosons

am Super Proton Synchrotron (SPS/Sp\overline{\pi}S)

- ▶ $u + \overline{u} \rightarrow Z^0$: pp-Kollision benötigt $E_p \gtrsim 600 \ GeV$ ▶ $u + \overline{u} \rightarrow Z^0$: $p\overline{p}$ -Kollision benötigt $E_p \gtrsim 300 \ GeV$

Proton-Proton-Kollision [9]

13 Alexander Neuwirth

Z⁰ Resonanz Experimentelle Untersuchung Erzeugung des Z⁰-Bosons -Erzeugung des Z⁰-Bosons

- 1. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d) => e-e+ Kollision einfacher
- 2. Besser Proton-Antiproton, da weniger Enrgie notwendig.
- 3. in Beschleuniger inverse Rotation
- 4. Veranschaulichung der Seequarks, Pfeile nicht direkt relevant
- 5. Keine Trennung up-down, sondern grün ist Antiquark

Nachweis

Entdeckung des Z⁰ Bosons

"Lego-Diagramm" $q + \overline{q} \rightarrow Z^0 \rightarrow e^+ + e^-$ [4]

- ▶ 1983 UA2 Detektor am SppS
- ➤ Masse des Z⁰-Bosons entspricht der Summe der Energie von e⁻ und e⁺
- Entgegengesetzte Impulse von e^- und e^+

Z⁰ Resonanz

Experimentelle Untersuchung

Nachweis

Nachweis

- nicht L3, aber analog
- Beispiel Event einer der ersten Messung
- Plane unten sind Kaloriemeterzellen
- Energie Summe = Masse Z^0
- Winkel 180° => entgegen gesetzte Richtungen

Präzisionsmessungen

Large Electron Positron Collider (LEP, 1989-2000)

Beschleuniger am CERN 1996 [10]

Alexander Neuwirth 15

Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

- 1. LEP wurde zu LHC
- 2. L3 wurde zu ALICE
- 3. SppS von 1981 bis 1991 anstelle von SPS
- 4. Erzeugung, Lineare Beschleuniger und Vorstufen

Präzisionsmessungen

am Large Electron-Positron Collider (LEP)

- LEP 1 (1989-1996)
 - $ightharpoonup e^- + e^+
 ightharpoonup Z^0$: Schwerpunktsenergie $\sqrt{s} = 2E_e \approx M_Z c^2 \approx 91~GeV$
- LEP 2 (1996-2000)
 - $ightharpoonup e^- + e^+
 ightarrow W^+ + W^-$: benötigt $2E_e \approx 2M_W c^2 \approx 160~GeV$

Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

rge Electron-Positron Collider (LEP)

► $e^- + e^+ \rightarrow Z^2$: Schwerpunktsenergie $\sqrt{s} = 2E_e \approx M_2c^2 \approx 91 \text{ GeV}$ ► LEP 2 (1996-2000) ► $e^- + e^+ \rightarrow W^+ + W^-$: benötigt $2E_e \approx 2M_Bc^2 \approx 160 \text{ GeV}$

- 1. 1989 am Stanford Linear Collider und LEP
- 2. Tritt nicht auf bei Energien $\approx 100 \, GeV$
- 3. 1996 am LEP, $50 \rightarrow 86 \rightarrow 104,6 \, \text{GeV}$

Präzisionsmessungen Energiekalibration

Relative Polarisation[11]

Resonante Spin Depolarisation:

- 1. transversale Polarisation der Strahlen
- 2. Energie *E* ist proportinal zu Spinpräzessionen pro Speicherringdurchlauf *v*
- 3. Radiales oszillierendes Magnetfeld rotiert Spin minimal, falls dessen Frequenz in Phase zur Spinpräzession ist.

Z⁰ Resonanz

Experimentelle Untersuchung

Präzisionsmessungen

Präzisionsmessungen

- 1. relative Polarisation gegen Energie
- 2. v Spinpräzessionen pro Speicherringdurchlauf
- 3. Polarisation durch Solokov-Ternov Mechanismus, relativistische Elektronen/Positronen polarisieren durch spin-flip synchrotron radiation (92.4%)
- 4. Andere Effekte sorgen auch für Spinpräzession
- 5. Misst offensichtlich nur gemittelt über mehere Elektronen
- 6. Leichte Asymmetrie aufgrund von Gezeiten in 12 Minuten!

Präzisionsmessungen

Einfluss auf Beschleuniger durch Gezeiten

LEP Ausdehnung[12]

Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

- 1. weiter relevanter Effekt
- 2. Energie schwankt im Tagesverlauf
- 3. Güne Linie ist grob Erdrotation

Präzisionsmessungen

Einfluss auf Beschleuniger durch Gezeiten

Relative Strahlenergieänderung[13]

Alexander Neuwirth 18

Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

- 1. Resonante depolarisation genaue Enrgiemessung (notwendig)
- 2. Über Verhalten des Spins der beschleunigten Elektronen
- 3. Größe primär relevant für Energie (+Synchrotron strahlung)
- 4. Energiemodell zur Vorhersage der Energie zu jedem Zeitpunkt als Lösung

Präzisionsmessungen L3 Detektoraufbau am LEP

L3 Detektor [13]

Z⁰ Resonanz
—Experimentelle Untersuchung
—Präzisionsmessungen
—Präzisionsmessungen

- 1. Mensch für Größenverhältnis.
- 2. Magnet im ALICE wieder verwendet.

Präzisionsmessungen L3 Detektoraufbau am LEP

L3 Detektor [13]

Von Innen nach Außen:

- 1. Spurdetektor
- 2. Elektromagnetisches Kalorimeter
- 3. Hadronisches Kalorimeter
- 4. Myonenkammer

Alexander Neuwirth 20

Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

- 1. Alles in Magnetfeld
- 2. Spurdetektor: misst elektrische Teilchen
- 3. Krümmung gibt Impuls und Ladung
- 4. EM Kalorimeter: Energie von Elektron und Photon, EM Teilchen wird absorbiert
- 5. Had Kalorimeter: Energie von Hadronen, starke WW Teilchen werden absorbiert
- 6. Myonenkammern: Für Myonen, groß, weil geringe WW
- 7. Vortrag speziell zur Teilchendetektion

Präzisionsmessungen *Z*⁰-Zerfallskanäle

mögliche Zerfälle:

$$Z^0
ightarrow e^- + e^+ \ \mu^- + \mu^+ \ au^- + au^+ \ v_{e,\mu, au} + \overline{v}_{e,\mu, au}$$
 Hadronen

Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

- 1. Messung dieser Zerfallskanäle
- 2. keine top-quarks, weil zu schwer

Präzisionsmessungen

L3 Detektor (1993 am LEP)

- Energiemessung im elm. Kalorimeter
- ► Entgegengesetzte Ausbreitung

$$e^- + e^+ \to Z^0 \to e^- + e^+$$
 [13]

Z⁰ Resonanz Experimentelle Untersuchung -Präzisionsmessungen

- 1. L3 Detektor LEP
- 2. beispielhafte Ereignisse
- 3. entlang der Strahlachse
- 4. analog zu Lego
- 5. herausgezoomt, weil Enrgie weniger verteilt

-Präzisionsmessungen

- 6. Winkel 180° => entgegen gesetzte Richtungen
- 7. Balken sind die Energien die Kaloriemeter messen

Präzisionsmessungen

L3 Detektor (1993 am LEP)

- ➤ Einzelnes Quark führt zu Quark-Antiquark-Paar Erzeugung, um isolierte Farbladung zu verhindern (Confinement)
- Reaktion äußert sich in hadronische lets
- ► Energiemessung im Hadronischen Kalorimeter

 $e^- + e^+ \rightarrow Z^0 \rightarrow \text{hadronische Jets [13]}$

Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

- 1. Hadronische Jets, Farbladung nicht aleine vorkommend, immmer neue Quark-Antiquark-Paare (Confinment)
- 2. Zerfallsquarks kaum unterscheidbar

Präzisionsmessungen

L3 Detektor (1993 am LEP)

- Messung der Spur der Myonen durch mehrere Myonenkammern
- ► I.A. keine Absorption

$$e^- + e^+ o Z^0 o \mu^+ + \mu^-$$
 [13]

Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

1. Muon erst an äußeren Platten detektiert

Präzisionsmessungen

Luminosität

$$\sigma = \frac{N_{\rm sel} - N_{\rm b}}{\varepsilon_{\rm sel} \mathcal{L}}$$

Bhabha Streuung [13]

Alexander Neuwirth 25

Z⁰ Resonanz

Experimentelle Untersuchung

Präzisionsmessungen

Präzisionsmessungen

- 1. Luminosität hängt von Beschleuniger ab
- 2. sigma ist gesucht
- 3. N sind Anzahl Teilchen be Reaktion
- 4. epsilon $N_b g$ können durch simulationen bestimmt werden (in epsilon ist auch Akzeptanzrate)
- 5. Geringer Winkel theta max, da bhabha stark winkel abhängig ist.
- 6. Wirkungsquerschnitt für Bhabha-Streuung ee -> ee reine QED ziemlich genau bekannt (Kamera am detektor?)
- 7. Bestimmen der Bunches die Kollidieren? Über baknnte Luminosität, da bspolw. Winkel abhängigkeit varierene kann.

Präzisionsmessungen

 Z^0 -Resonanz bei \approx 91 GeV

Wirkungsquerschnitte verschiedener Beschleuniger [14]

Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

- 1. Achsen + Farbliche Zuordnung
- 2. Z⁰ Resonanz und weitere Messungen
- 3. Große Breite => geringe Lebensdauer
- 4. Masse top Quark wurde gut durch $2M_W$ vermutet
- 5. Breite immer Γ_Z egal welcher Zerfall, Höhe variiert

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - Ruhemasse $M_7 = 91,188(2) \, GeV/c^2$
 - ightharpoonup Zerfallsbreite $\Gamma_7 = 2,495(2)$ GeV

Z⁰ Resonanz
Experimentelle Untersuchung
Eigenschaften
Eigenschaften

Eigenschaften
Experimentelle Bestimmung

► Messung:

► Rohemasse M₂ = 91,188(2) GeV/c²

► Zerfallsbreite F₂ = 2,495(2) GeV

- 1. Über Wirkungsquerschnitt? src [PD12]
- 2. Breite + Maximalstelle

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - Ruhemasse $M_7 = 91,188(2) \, GeV/c^2$
 - \triangleright Zerfallsbreite $\Gamma_7 = 2,495(2)$ GeV
- > Zerfall:

$$Z^{0} \rightarrow e^{-} + e^{+} \qquad \qquad 3,363(4) \% \\ \mu^{-} + \mu^{+} \qquad \qquad 3,366(7) \% \\ \tau^{-} + \tau^{+} \qquad \qquad 3,370(8) \% \\ v_{e,\mu,\tau} + \overline{v}_{e,\mu,\tau} \qquad \qquad 20,0(6) \% \\ \text{Hadronen} \qquad \qquad 69,91(6) \%$$

Z⁰ Resonanz
Experimentelle Untersuchung
Eigenschaften
Eigenschaften

- 1. Hadronen (idR. Anti+Quark) nicht unterscheidbar
- 2. Anti+Neutrino schwer detektierbar \Rightarrow % über Γ_{tot}

Anzahl Neutrinogenerationen

Wirkungsquerschnitt

$$\sigma_f \propto rac{s \cdot \Gamma_f \Gamma_e}{(s - M_Z^2)^2 + s^2 \Gamma_Z^2 / M_Z^2}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen Wirkungsquerschnitt

 $\sigma_f \propto \frac{\mathbf{s} \cdot \mathbf{\Gamma}_f \mathbb{E}_\theta}{(\mathbf{s} - M_Z^2)^2 + \mathbf{s}^2 \Gamma_Z^2 / M_Z^2}$

- 1. Formel für σ Breit-Wigner
- 2. Einheiten *h* und *c* multiplizieren
- 3. Abhängig von ...
- 4. y unterdrückt

29

Anzahl Neutrinogenerationen

Berechnung der Zerfallsbreite

$$\Gamma_Z = \sum_f \Gamma_{Z o f ar{f}}$$

Z⁰ Resonanz

Experimentelle Untersuchung

Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen Berechnung der Zerfallsbreite $\Gamma_Z = \sum_f \Gamma_{Z \to f \bar{f}}$

1. Breite ergibt sich aus Partial Breiten

Anzahl Neutrinogenerationen

Berechnung der Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e},\mu,\tau} + \Gamma_{\nu_{e},\nu_{\mu},\nu_{\tau}} \end{split}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

1. kein top-Quark, da t-Masse ($\approx 175~GeV$)größer als Z^0 -Masse ist

Anzahl Neutrinogenerationen

Berechnung der Zerfallsbreite

$$\begin{split} \Gamma_Z &= \sum_f \Gamma_{Z \to f\bar{f}} & \Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,\mu,\tau}} + \Gamma_{v_e,v_\mu,v_\tau} \\ &= N_C \cdot 2 \cdot \Gamma_u + N_C \cdot 3 \cdot \Gamma_d + 3 \cdot \Gamma_e + N_V \cdot \Gamma_V \end{split}$$

 N_C : Anzahl der Farbladungen

 N_{v} : Anzahl der Neutrinogenerationen

 $G_F:$ Fermi-Kopplungskonstante

 Q_f : Ladung

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen Berechnung der Zerfallsbreite $\Gamma_z = \sum_f \Gamma_{Z \sim ff}$ $= \prod_{\alpha, c, d, b, b} + \Gamma_{\theta, \mu, r} + \Gamma_{\psi, \nu_{\mu}, \nu_{\tau}}$ $= N_C \cdot 2 \cdot \Gamma_d + N_C \cdot 3 \cdot \Gamma_d + 3 \cdot \Gamma_d + N_v \cdot \Gamma_v$

1.
$$\Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

2. G_F Fermikonstante

3. Q_f Ladung des Fermions

4. Quantenmechanisch Herleitung der Formel nicht notwendig

5. primär von Ladung abhängig

6. Lep: e^{\pm} , μ^{\pm} , τ^{\pm}

7. Had: u,c=2/3; d,s,b=-1/3

8. Neutrinos

9. N_C Anzahl Farbledungsnmöglichkeiten

Anzahl Neutrinogenerationen

Berechnung der Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} & \Gamma_{f} = \frac{G_{F} M_{Z}^{3}}{24 \sqrt{2} \pi} \cdot (1 + (1 - e|Q_{f}|\sin^{2}\theta_{W})^{2}) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,\mu,\tau}} + \Gamma_{\text{v_e,v_{\mu},v_{\tau}}} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + N_{v} \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94,9 \, \textit{MeV} + 3 \cdot 3 \cdot 122,4 \, \textit{MeV} + 3 \cdot 83,3 \, \textit{MeV} + 3 \cdot 165,8 \, \textit{MeV} \\ & N_{C} : \quad \text{Anzahl der Farbladungen} \end{split}$$

 N_{ν} : Anzahl der Neutrinogenerationen

 G_F : Fermi-Kopplungskonstante

 Q_f : Ladung

∠ Z⁰ Resonanz Experimentelle Untersuchung —Anzahl Neutrinogenerationen —Anzahl Neutrinogenerationen

Anzahl Neutrinogeneratione Berechnung der Zerfallsbreite $= N_C \cdot 2 \cdot \Gamma_0 + N_C \cdot 3 \cdot \Gamma_C + 3 \cdot \Gamma_0 + N_V \cdot \Gamma_V$

1. Einsetzen, vgl Maximal für minimale Ladung

29

Anzahl Neutrinogenerationen

Berechnung der Zerfallsbreite

$$\begin{split} \Gamma_Z &= \sum_f \Gamma_{Z \to f\bar{f}} & \Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f| \sin^2\theta_W)^2) \\ &= \Gamma_{\rm u,c,d,s,b} + \Gamma_{\rm e,\mu,\tau} + \Gamma_{\rm v_e,v_\mu,v_\tau} \\ &= N_C \cdot 2 \cdot \Gamma_u + N_C \cdot 3 \cdot \Gamma_d + 3 \cdot \Gamma_e + N_V \cdot \Gamma_V \\ &= 3 \cdot 2 \cdot 94.9 \, \text{MeV} + 3 \cdot 3 \cdot 122.4 \, \text{MeV} + 3 \cdot 83.3 \, \text{MeV} + 3 \cdot 165.8 \, \text{MeV} \\ &= 2.42 \, \text{GeV} & N_C : \quad \text{Anzahl der Farbladungen} \\ & N_V : \quad \text{Anzahl der Neutrinogenerationen} \\ & G_F : \quad \text{Fermi-Kopplungskonstante} \\ & Q_f : \quad \text{Ladung} \end{split}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen Berechnung der Zerfallsbreite $\Gamma_2 = \sum_f \Gamma_{x-ij}$ $= \Gamma_{x,i,d,h,h} + \Gamma_{x,p_x} + \Gamma_{x,p_x,h}$ $= \Gamma_{x,i,d,h,h} + \Gamma_{x,p_x} + \Gamma_{x,p_x,h}$ $= \Gamma_{x,i,d,h} + \Gamma_{x,p_x} + \Gamma_{x,p_x,h}$ $= \Gamma_{x,i,d,h} + \Gamma_{x,p_x} + \Gamma_{x,p_x,h}$ $= \Gamma_{x,i,d,h} + \Gamma_{x,p_x} + \Gamma_{x,p_x,h}$

1. Summe

Anzahl Neutrinogenerationen

Berechnung der Zerfallsbreite

$$\begin{split} \Gamma_Z &= \sum_f \Gamma_{Z \to f\bar{f}} & \Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2) \\ &= \Gamma_{\mathrm{u,c,d,s,b}} + \Gamma_{\mathrm{e,\mu,\tau}} + \Gamma_{v_e,v_\mu,v_\tau} \\ &= N_C \cdot 2 \cdot \Gamma_u + N_C \cdot 3 \cdot \Gamma_d + 3 \cdot \Gamma_e + N_v \cdot \Gamma_v \\ &= 3 \cdot 2 \cdot 94,9 \, \text{MeV} + 3 \cdot 3 \cdot 122,4 \, \text{MeV} + 3 \cdot 83,3 \, \text{MeV} + 3 \cdot 165,8 \, \text{MeV} \\ &= 2,42 \, \text{GeV} & N_C : \quad \text{Anzahl der Farbladungen} \\ &\frac{\text{Strahlungs-}}{\text{korrektur}} \geq 2,497 \, \text{GeV} & N_v : \quad \text{Anzahl der Neutrinogenerationen} \\ &G_F : \quad \text{Fermi-Kopplungskonstante} \\ &Q_f : \quad \text{Ladung} \end{split}$$

Z⁰ Resonanz
—Experimentelle Untersuchung
—Anzahl Neutrinogenerationen
—Anzahl Neutrinogenerationen

Anzahl Meutrinogenerationen Bierechmung der Zerhalbertet $F_{V} = \sum_{I_1,I_2} F_{I_2,I_2}$ $- F_{L_2,I_2} = F_{L_2,I_2} + F_{L_$

- 1. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 2. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 3. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Anzahl Neutrinogenerationen

Vergleich Theorie und Experiment

Z ⁰ Zerfall	theoretisch	experimentell
$e^{-} + e^{+}$	3,34 %	3,363(4) %
$V + \overline{V}$	19,92%	20,0(6) %
Hadronen	66,92 %	69,91(6)%
Γ_Z	2,497 GeV	2,495(2) GeV

Z⁰ Resonanz
LExperimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen Vergleich Theorie und Experiment

Zº Zerfall	theoretisch	experimentell
$e^- + e^+$	3,34 %	3,363(4)%
$V + \overline{V}$	19,92%	20,0(6)%
Hadronen	66,92%	69,91(6)%
T ₂	2,497 GeV	2,495(2) GeV

- 1. e^- exemplarisch für Leptonen
- 2. passt alles gut

Anzahl Neutrinogenerationen

- ► OPAL-Detektor am LEP
- Messung bestätigt vermutete 3 Neutrinogenerationen
- ► Hinweis für 3 Generationen von Leptonen und Quarks

Wirkungsquerschnitt $e^+e^- \rightarrow \text{Hadronen}$ [4]

- 1. Cern Experiment
- 2. Wirkungsquerschnitt gegen Schwerpunktenergie
- 3. Ähnlich der Breit Wigner Funktion aber nicht passend symmetrisch durch Korrekturen höherer Ordnung udn Bremstrahlung durch e
- 4. Verschiedene Anzahl-Neutrinogenerationen-Kurven
- 5. 3 Neutrinogenerationen \rightarrow 3 Leptonen 3 Quarks Generationen

32

 Z^0 Resonanz Zusamme -Zusammenfassung

Zusammenfassung

Zusammenfassung

- Schwache und Elektromagnetische Wechselwirkung lassen sich vereinheitlichen
- \triangleright Weinbergwinkel $\cos \theta_{\rm W} \approx 0.88$
- ightharpoonup Zerfallsbreite $\Gamma_Z \approx 2,50 \, GeV$
- ▶ 3 Neutrinogenerationen

- 1. Weinbergwinkel Massenverhältniss W,Z Boson
- 2. Zerfallsbreite aus QFT großer Erfolg in Übereinstimmung mit Experiment
- 3. Bestätigung, dass es 3 Neutrinogenerationen gibt
- 4. Weiterfüherend Große Vereinheitlichung Analog ab 10¹⁶ GeV ⇒ keine Differenzierung Fermionen, Quarks und Leptonen. (Astrovorträge, Universumentwicklungröhre)
- 5. Noch Weiterfüherend Quantengravitation kombiniert mit GUT

Quellen I

Sheldon Glashow, Abdus Salam and Steven Weinberg. URL: http://thescientificodyssey.libsyn.com/episode-225-puttingthe-puzzle-together (besucht am 12.11.2018).

The Nobel Prize in Physics 1984. URL: https://www.nobelprize.org/prizes/physics/1984/summary/ (besucht am 03. 12. 2018).

Standardmodell. URL: https://de.wikipedia.org/wiki/Standardmodell (besucht am 12.11.2018).

Povh et al. Teilchen und Kerne. Springer Spektrum, 2014. Kap. 12.

Z⁰ Resonanz Zusammenfassung $\dot{\infty}$ -Quellen

Ouellen I

Sheldon Glashow, Abdus Salam and Steven Weinberg, uss.

The Nobel Prize in Physics 1984, upp.

Standardmodell. uss:

Povh et al. Teilchen und Keme. Springer Spektrum, 2014. Kap. 12.

34

Quellen II

Weak neutral current, URL: https://www.symmetrymagazine.org/article/august-2009/weakneutral-current (besucht am 03.12.2018).

Donald H. Perkins. Introduction to High Energy Physics. Cambridge University Press, 2000.

Z⁰ Resonanz Zusammenfassung $\dot{\infty}$ -Quellen

Schwachewechselwirkung. uss.

E.L. Hasert u. a. _Search for elastic muon-neutrino electron scattering*

Weak neutral current, usu:

Donald H. Perkins, Introduction to High Energy Physics, Cambridge

35

Quellen III

International Masterclasses. URL: http://atlas.physicsmasterclasses.org/de/index.htm (besucht am 04.12.2018).

The LEP Accelerator. URL: http://www.hep.ucl.ac.uk/~jpc/all/ulthesis/node15.html (besucht am 03.12.2018).

L. Arnaudon u. a. "Accurate determination of the LEP beam energy by resonant depolarization". In: Zeitschrift fr Physik C Particles and Fields 66.1-2 (März 1995), S. 45–62. DOI: 10.1007/bf01496579. URL: https://doi.org/10.1007/bf01496579.

Z⁰ Resonanz —Zusammenfassung — Uuellen

Quellen III

International Masterclasses. URL: http://atlas.physicsmasterclasses.org/de/index.htm(b) am 0a 12 2018)

The LEP Accelerator, URL: http://www.hep.ucl.ac.uk/-jpc/all/ulthemim/model5.1 (hesurhtam 03:12:2018)

L Amaudon u. a. Accurate determination of the LEP beam energy by resonant depolarization*. In: Zeitschrift in Physik C Particles and Field 66.1-2 (Mair. 1995), 3-45-62. Doi: 10.1007/br01406579. URL https://doi.org/10.1007/br01406579.

Quellen IV

Versuch ZO-Resonanz. URL: https://www.physik.huberlin.de/de/eephys/teaching/lab/z0resonance/index_html (besucht am 25.11.2018).

The ALEPH Collaboration u. a. "Precision Electroweak Measurements on the Z Resonance". In: (2005). DOI: 10.1016/j.physrep.2005.12.006. eprint: arXiv:hep-ex/0509008.

Z⁰ Resonanz Zusammenfassung $\dot{\infty}$ -Quellen

Masterclasses Atlas ist qualitativ gut

How is the beam energy calibrated through the resonant spin depolarization? URL: http://tlep.web.cern.ch/content/how-bes

Versuch 20-Resonanz, URL: https://www.physik.hu-

The ALEPH Collaboration u. a. "Precision Electroweak Measurements on

Alexander Neuwirth

Z⁰ Resonanz — Zusamme

-Zusammenfassung

Vielen Dank für eure Aufmerksamkeit!

Vielen Dank für eure Aufmerksamkeit!

Fragen?

38