

Análisis no estándar

David (

1 111103

Superestructu

Ultrapotenci

Números n estándar

Sucesione

Análisis no estándar

David Gómez

Escuela Colombiana de Ingeniería Matemáticas

18 de Diciembre del 2023

Definición

Análisis no estándar

David (

Filtros

Números n

estandar

Sea $I \neq \emptyset$. Un filtro \mathcal{F} sobre I es un conjunto de subconjuntos de I con las siguientes características:

- **3** $A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$

$$I = \{a, b, c\}$$

 $\mathcal{F} = \{\{a, b\}, \{a, b, c\}$

Definición

Análisis no estándar

David 0

Filtros

...

estándar

Sucesione

Sea $I \neq \emptyset$. Un filtro \mathcal{F} sobre I es un conjunto de subconjuntos de I con las siguientes características:

- $0 \varnothing \notin \mathcal{F}$
- **3** $A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$

$$I = \{a, b, c\}$$

 $\mathcal{F} = \{\{a, b\}, \{a, b, c\}\}$

Relación de orden

Análisis no estándar

David G

Filtros

Superestruc

O iti apottino

estándar

Sucesione

Sea \mathscr{F} el conjunto de filtros sobre I. \mathcal{F}_1 es $\mathit{más fino}$ que \mathcal{F}_2 cuando $\mathcal{F}_2 \subseteq \mathcal{F}_1$. un filtro \mathscr{U} es llamado ultrafiltro si es un elemento maximal.

$$(\forall \mathcal{F} \,|\, \mathcal{F} \in \mathscr{F} - \{\mathscr{U}\} \,:\, \mathscr{U} \not\subset \mathcal{F})$$

$$I = \{a, b, c\}$$

$$\mathcal{F}_1 = \{\{a, b\}, \{a, b, c\}\}$$

$$\mathcal{F}_2 = \{\{b, c\}, \{a, b, c\}\}$$

$$\mathcal{U}_1 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$$

$$\mathcal{U}_2 = \{\{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$$

Relación de orden

Análisis no estándar

David G

Filtros

Superestruc

Offiapotene

estándar

Sucesione

Sea \mathscr{F} el conjunto de filtros sobre I. \mathcal{F}_1 es $\mathit{más}$ fino que \mathcal{F}_2 cuando $\mathcal{F}_2 \subseteq \mathcal{F}_1$. un filtro \mathscr{U} es llamado ultrafiltro si es un elemento maximal.

$$(\forall \mathcal{F} \,|\, \mathcal{F} \in \mathscr{F} - \{\mathscr{U}\} \,:\, \mathscr{U} \not\subset \mathcal{F})$$

$$I = \{a, b, c\}$$

$$\mathcal{F}_1 = \{\{a, b\}, \{a, b, c\}\}$$

$$\mathcal{F}_2 = \{\{b, c\}, \{a, b, c\}\}$$

$$\mathcal{U}_1 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$$

$$\mathcal{U}_2 = \{\{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$$

Caracterizaciones

Análisis no estándar

David (

Filtros

...

estándar

Sucesione

Un filtro \mathcal{U} sobre I es un ultrafiltro si y solo si:

- ② Si una unión finita es elemento de \mathscr{U} , entonces al menos un elemento de la unión es elemento de \mathscr{U} :

$$\bigcup_{k=0} F_n \in \mathscr{U} \Rightarrow F_k \in \mathscr{U} \text{ para algún } k.$$

$$I = \{a, b, c\}$$

$$\mathcal{F} = \{\{a, b\}, \{a, b, c\}\}$$

$$\mathcal{U} = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$$

Caracterizaciones

Análisis no estándar

David 0

Filtros

Números no

estándar

Sucesione

Un filtro \mathcal{U} sobre I es un ultrafiltro si y solo si:

- ② Si una unión finita es elemento de $\mathcal U$, entonces al menos un elemento de la unión es elemento de $\mathcal U$:

$$\bigcup_{k=0} F_n \in \mathscr{U} \Rightarrow F_k \in \mathscr{U} \text{ para algún } k.$$

$$I = \{a, b, c\}$$

$$\mathcal{F} = \{\{a, b\}, \{a, b, c\}\}$$

$$\mathcal{U} = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$$

Ulfrafiltros δ -incompletos

Análisis no estándar

David (

Filtros

. . .

Números n

estándar

Sucesione

Sea I un conjunto infinito. \mathscr{U} es un ultrafiltro δ -incompleto cuando existe $\{I_n\}_{n\in\mathbb{N}}$, una partición contable de I, tal que para todo n, $I_n \notin \mathscr{U}$.

Análisis no estándar

David (

Filtros

Superestructura

Ultrapotenc

Números no

$$(a) = a$$

$$(a, b) = \{\{a\}, \{a, b\}\}$$

$$(a_1, \dots, a_n, a_{n+1}) = ((a_1, \dots, a_n), a_{n+1})$$

$$A \times B \subseteq \mathscr{P} (\mathscr{P} (A \cup B))$$

$$A \times B \times C \subseteq \mathscr{P} (\mathscr{P} ((A \times B) \cup C))$$

$$\subseteq \mathscr{P} (\mathscr{P} (\mathscr{P} (A \cup B)) \cup C))$$

$$\vdots \qquad \vdots$$

Superestructura de ${\mathbb R}$

Análisis no estándar

David (

Filtros

Superestructura

Ultrapotenc

Números no estándar

$$\left\{
\mathbb{R}_{0} = \mathbb{R} \\
\mathbb{R}_{n+1} = \mathscr{P}\left(\bigcup_{k=0}^{n} \mathbb{R}_{k}\right)\right\}$$

$$\widehat{\mathbb{R}} = \bigcup_{n>0} \mathbb{R}_{n}$$

Construcción de la ultrapotencia

Análisis no estándar

David (

Filtros

Superestructi

Ultrapotencia

Números i estándar

Sucesione

Sea I un conjunto infinito, $\mathscr U$ un ultrafiltro sobre I, y $\{I_n\}_{n\in\mathbb N}$ una partición contable de I la cual cumple la definición de δ -incompleto en $\mathscr U$.

$${}^{I}\widehat{\mathbb{R}}=\left\{ f\,\Big|\,\mathsf{dom}\;f=I\wedge\mathsf{ran}\;f\subseteq\widehat{\mathbb{R}}
ight\}$$

Extensión de la igualdad y la pertenencia

Análisis no estándar

David (

Filtros

Ultrapotencia

Números n estándar

Extensión de la igualdad y la pertenencia

Análisis no estándar

David (

Filtro

Ultrapotencia

Números r

Sucesione

Sean
$$a,b\in \widehat{\mathbb{R}}$$

$$\begin{array}{c|cccc}
a =_{\mathscr{U}} b & & & a \in_{\mathscr{U}} b \\
\equiv & & & \equiv \\
\{i \mid a(i) = b(i)\} \in \mathscr{U} & & \{i \mid a(i) \in b(i)\} \in \mathscr{U}
\end{array}$$

Se define, para todo $a \in \widehat{\mathbb{R}}$, la incorporación a $\widehat{\mathbb{R}}$ por la función constante *a(i) = a para todo $i \in I$.

Entidades internas y estándar

Análisis no estándar

David 1

Filtros

Superestructi

Ultrapotencia

Números r estándar

Sucesiones

Sea $a\in {}^l\widehat{\mathbb{R}}$, a es llamada entidad interna cuando existe $n\in\mathbb{N}$ tal que $a\in {}^*\mathbb{R}_n$. a es llamada estándar cuando existe $b\in\widehat{\mathbb{R}}$ tal que, $a={}^*b$. El conjunto $\bigcup_{n\in\mathbb{N}}{}^*\mathbb{R}_n$, es llamado la ultrapotencia de $\widehat{\mathbb{R}}$ con respecto a \mathscr{U} , y se denotará como ${}^*(\widehat{\mathbb{R}})$. Existen entidades internas no-estándar.

Demostración

Análisis no estándar

David (

Filtro

.

Ultrapotencia

Numeros r estándar

Sucesione

Considerando algún \mathbb{R}_n , y una colección $\{a_n\}_{n\in\mathbb{N}}\in\mathbb{R}_n$ tal que, si $m\neq n$ entonces $a_m\neq a_n$. Se define entonces $a\in \widehat{\mathbb{R}}$ por $a(i)=a_n \quad (i\in I_n)$.

$$a \in {}^{*}\mathbb{R}_{n}$$

$$\equiv \begin{cases} i \mid a(i) \in \mathbb{R}_{n} \rbrace \in \mathscr{U} \\ \exists \\ I \in \mathscr{U} \end{cases}$$

$$a = {}^{*}b$$

$$\equiv \begin{cases} i \mid a(i) = b \rbrace \in \mathscr{U} \\ \equiv \\ (\exists n \mid n \in \mathbb{N} : I_{n} \in \mathscr{U}) \end{cases}$$

Extensión de otras relaciones y operaciones

Análisis no estándar

David ¹

Filtros

Superestructi

Jltrapotenc

Números no estándar

Sean
$$a,b,c\in {}^{\prime}\widehat{\mathbb{R}}$$

$$a + b = c \equiv \{i \mid a(i) + b(i) = c(i)\} \in \mathscr{U}$$
$$a \le b \equiv \{i \mid a(i) \le b(i)\} \in \mathscr{U}$$
$$||: {^*R} \to {^*(R^+)}$$

Ejemplo de un número no estádar

Análisis no estándar

David G

Filtro

Superestructu

Oftrapotenci

Números no estándar

Sucesione

Defínase $\omega \in {}^*\mathbb{N}$ por

$$\omega(i) = n \quad (i \in I_n)$$

Sea $k \in \mathbb{N}$

$$\omega \leq k$$

$$\equiv \{i \mid \omega(i) \leq k\} \in \mathscr{U}$$

$$\equiv \bigcup_{i=1}^{k} I_i \in \mathscr{U}$$

Números finitos e infinitesimales

Análisis no estándar

David (

Filtros

Oftrapotenti

Números no estándar

Sucesione

Un número $a \in {}^*\mathbb{R}$ es llamado *finito* cuando existe $r \in \mathbb{R}^+$ tal que |a| < r. un número no finito es llamado *infinito*. Un número $a \in {}^*\mathbb{R}$ es llamado *infinitesimal* cuando, para todo $r \in \mathbb{R}^+$, |a| < r.

$$M_0 = \{ a \in {}^*\mathbb{R} \mid a \text{ es finito} \}$$

 $M_1 = \{ a \in {}^*\mathbb{R} \mid a \text{ es infinitesimal} \}$

Isomorfismo con $\mathbb R$

Análisis no estándar

David (

Filtro

Juperestruct

Ultrapotenci

Números no estándar

- **1** M_0 es un subanillo de \mathbb{R} .
- ② M_1 es un subanillo de M_0 .
- - Con la relación $=_1$ en *R , definida por $a=_1$ $b\equiv a-b\in M_1$, se define el anillo cociente M_0/M_1 .
- M_0/M_1 es isomorfo a \mathbb{R} .
- El homomorfismo de M_0 a \mathbb{R} con kernel M_1 se denotará como $\operatorname{st}()$

Isomorfismo con $\mathbb R$

Análisis no estándar

David ¹

Filtro:

Superestructura

Oftrapotenc

Números no estándar

- **1** M_0 es un subanillo de ${}^*\mathbb{R}$.
- M_1 es un ideal maximal de M_0 .
- El homomorfismo de M_0 a $\mathbb R$ con kernel M_1 se denotará como $\operatorname{st}()$

Sistema numérico no estándar ${}^*\mathbb{C}$

Análisis no estándar

David (

Filtros

Superestructu

Ultrapotenci

Números no estándar

- Superestructura $\widehat{\mathbb{R} \times \mathbb{R}}$.
- $\bullet \ \mathsf{Ultrapotencia}\ ^*\Big(\widehat{\mathbb{R}\times\mathbb{R}}\Big).$
- $\bullet \ ^*\mathbb{C} = {}^*\mathbb{R} \times {}^*\mathbb{R}.$

Sistema numérico no estándar ${}^*\mathbb{C}$

Análisis no estándar

David

Filtros

Superestructu

Oftrapotenc

Números no estándar

Sucesione

Un número $z \in {}^*\mathbb{C}$ es llamado *finito* cuado existe $r \in \mathbb{R}^+$ tal que $\|z\| < r$. Un número no finito es llamado *infinito*.

Un número $z \in {}^*\mathbb{C}$ es llamado *infinitesimal* cuando, para todo

 $r \in \mathbb{R}^+$, ||z|| < r.

z = a + bi es infinitesimal si y solo si a, b son infinitesimales.

Sucesiones Reales

Análisis no estándar

David 1

Filtros

Superestructi

Oftrapotenc

Numeros n estándar

Sucesiones

Al ser funciones de $\mathbb N$ en $\mathbb R$ son subconjuntos de $\mathbb N \times \mathbb R$, por lo que son entidades de $\widehat{\mathbb R}$. La extensión de una sucesión $\{s_n\}$ es $\{{}^*s_n\}$ la cual es una función de ${}^*\mathbb N$ a ${}^*\mathbb R$.

$$*(dom \{s_n\}) = dom *\{s_n\}$$

Convergencia y Sucesiones de Cauchy

Análisis no estándar

David (

Filtros

Superestructi

Ultrapotenci

Numeros n estándar

Sucesiones

$$\{s_n\} \to s$$

- Onvergencia:
 - Dado $\varepsilon > 0$, existe $N \in \mathbb{N}$ tal que:

$$\big(\forall n\,|\,n\in\mathbb{N}\wedge n\geq N\,:\,|s_n-s|<\epsilon\big)$$

• De forma análoga:

$$(\forall n \mid n \in {}^*\mathbb{N} - \mathbb{N} : {}^*s_n =_1 s)$$

Convergencia y Sucesiones de Cauchy

Análisis no estándar

David (

Filtros

Superestructi

Ultrapotenci

Números no estándar

Sucesiones

$$\{s_n\} \rightarrow s$$

- Sucesión de Cauchy
 - Dado $\varepsilon > 0$, existe $N \in \mathbb{N}$ tal que:

$$(\forall n, m \mid n, m \in \mathbb{N} \land n, m \ge N : |s_n - s_m| < \epsilon)$$

• De form análoga:

$$(\forall n, m \mid n, m \in {}^*\mathbb{N} - \mathbb{N} : s_n =_1 s_m)$$

Análisis no estándar

David (

Filtro

Ultrapotencia

Numeros n estándar

Sucesiones

Sea $\{s_n\}$ una sucesión en un espacio métrico X con función distancia d_X . Sea $\varepsilon > 0$, existe $N \in \mathbb{N}$ tal que:

• $\{s_n\} \rightarrow s$:

$$(\forall n \mid n \geq N : d_X(s_n, s) < \varepsilon)$$

$$(\forall n, m \mid n, m \geq N : d_X(s_n, s_m) < \varepsilon)$$

$$q_n = d_X(s_n, s)$$
$$p_{n,m} = d_X(s_n, s_m)$$

Análisis no estándar

David (

Filtro

Ultrapotencia

Números n estándar

Sucesiones

Sea $\{s_n\}$ una sucesión en un espacio métrico X con función distancia d_X . Sea $\varepsilon > 0$, existe $N \in \mathbb{N}$ tal que:

•
$$\{s_n\} \rightarrow s$$
:

$$(\forall n \mid n \geq N : d_X(s_n, s) < \varepsilon)$$

$$(\forall n, m \mid n, m \geq N : d_X(s_n, s_m) < \varepsilon)$$

$$q_n = d_X(s_n, s)$$
$$p_{n,m} = d_X(s_n, s_m)$$

Análisis no estándar

David (

Filtro

Ultrapotencia

Números n estándar

Sucesiones

Sea $\{s_n\}$ una sucesión en un espacio métrico X con función distancia d_X . Sea $\varepsilon > 0$, existe $N \in \mathbb{N}$ tal que:

• $\{s_n\} \rightarrow s$:

$$(\forall n \,|\, n \geq N \,:\, |q_n - 0| < \varepsilon)$$

$$(\forall n, m \mid n, m \geq N : |p_{n,m} - 0| < \varepsilon)$$

$$q_n = d_X(s_n, s)$$
$$p_{n,m} = d_X(s_n, s_m)$$

Análisis no estándar

David (

Filtro

Ultrapotenci

Números n estándar

Sucesiones

Sea $\{s_n\}$ una sucesión en un espacio métrico X con función distancia d_X . Sea $\varepsilon > 0$, existe $N \in \mathbb{N}$ tal que:

• $\{s_n\} \rightarrow s$:

$$(\forall n \mid n \in {}^*\mathbb{N} - \mathbb{N} : d_X(s_n, s) =_1 0)$$

$$(\forall n, m \mid n, m \in {}^*\mathbb{N} - \mathbb{N} : d_X(s_n, s_m) =_1 0)$$

$$q_n = d_X(s_n, s)$$
$$p_{n,m} = d_X(s_n, s_m)$$