```
Input: Target signal f^*, initial MLP f_{\theta^0}, the size of selected
training size k \leq N, small constant \epsilon > 0 and maximal
iteration number T.
```

while $t \leq T$ and $\|[f_{\theta^t}(\boldsymbol{x}_i) - f^*(\boldsymbol{x}_i)]_N\|_2 \geq \epsilon \operatorname{do}$ **The teacher** selects k teaching examples:

Algorithm 1 Implicit Neural Teaching

Set $f_{\theta t} \leftarrow f_{\theta 0}$, t = 0.

Set $t \leftarrow t + 1$.

Provide $\{x_i\}_k^*$ to the MLP learner.

The learner updates f_{θ^t} based on received $\{x_i\}_k^*$:

// Parameter-based gradient descent. $\theta^t \leftarrow \theta^t - \frac{\eta}{k} \sum_{\boldsymbol{x}_i \in \{\boldsymbol{x}_i\}_{k}^*} \nabla_{\theta} \mathcal{L}(f_{\theta^t}(\boldsymbol{x}_i), f^*(\boldsymbol{x}_i)).$

*/