МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 2.1.6

Эффект Джоуля-Томсона

Авторы: Идрисов Сергей Б04-306

Долгопрудный 2024

Введение

Цель работы:

- 1. Определить изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры;
- 2. Вычислить по результатам опытов коэффициенты а и b модели Вандер-Ваальса.

В работе используются:

- 1. Трубка с пористой перегородкой;
- 2. Труба Дьюара;
- 3. Термостат жидкостной;
- 4. Дифференциальная термопара;
- 5. Термопара, подключенная к микровольтметру;
- 6. Вольтметр универсальный (мультиметр);
- 7. Балластный баллон;
- 8. Манометр.

Теоретические сведения

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно просачивающегося из области высокого в область низкого давления в условиях тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному, при таком течении температура газа не меняется. Таким образом, в эффекте Джоуля—Томсона проявляется отличие исследуемого газа от идеального. В данной работе исследуется изменение температуры углекислого газа при его медленном течении по трубке с пористой перегородкой (см. рис. 1). Трубка хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки в область с атмосферным давлением P_2 . Перепад давления из-за большого сопротивления перегородки может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля—Томсона определяется по разности $\Delta P = |P_1 - P_2|$ температур газа до и после перегородки.

Рис 1. Принципиальная схема эффекта Джоуля-Томсона

Эффект Джоуля-Томсона

Получим теоретическое выражения для расчёта величины эффекта Джоуля—Томсона. Рассмотрим стационарный поток газа между сечениями I и II трубки до перегородки и после неё. Пусть через трубку прошёл $\Delta \nu$ = 1 моль газа с молярной массой μ . Пусть V_1 и V_2 — молярные объёмы газа в сечениях I и II, P_1 и P_2 — соответствующие давления, U_1 и U_2 внутренние энергии в расчёте на 1 моль. Для того чтобы ввести в трубку порцию газа объёмом V_1 , над ней нужно совершить внешнюю работу $A_1 = P_1 V_1$. Выходя через сечение II, эта же порция газа сама совершает работу $A_2 = P_2 V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то:

$$A_1 - A_2 = P_1 V_1 - P_2 V_2 = \left(U_2 + \mu \frac{v_2^2}{2}\right) - \left(U_1 + \mu \frac{v_1^2}{2}\right) \tag{1}$$

где кроме изменения внутренней энергии U учтена кинетическая энергия течения $\mu \frac{v_{1,2}^2}{2}$. Определим молярную энтальпию газа как H=U+PV. Тогда уравнение (1) можно переписать как

$$H_1 - H_2 = \frac{\mu}{2} (v_2^2 - v_1^2) \tag{2}$$

Это — не что иное, как уравнение Бернулли для течения газа, учитывающее его сжимаемость и внутреннюю энергию.

Внутри пористой перегородки газ испытывает сильное трение. Это приводит к необратимому переходу почти всей кинетической энергии газа в тепловую. Поскольку оболочка системы является теплоизолирующей, всё выделившееся тепло передаётся газу и уносится с потоком. Тогда закон сохранения энергии (2) остаётся в силе, однако его правая часть (кинетическая энергия) оказывается пренебрежимо малой. Тогда приходим к выводу, что эффект Джоуля–Томсона — это процесс, в котором сохраняется энтальпия:

$$H_1 \approx H_2$$
 (3)

Энтальпия — функция состояния, зависящая, в общем случае, как от температуры T, так и от давления P. Поэтому в результате просачивания газа под действием перепада давления, равного по модулю $|\Delta P| = P_1 - P_2$, возникнет изменение его температуры $\Delta T = T_1 - T_2$. Коэффициентом Джоуля—Томсона называют отношение

$$\mu_{\rm д-r} = \frac{\Delta T}{\Delta P} \tag{4}$$

Отметим, что эффект Джоуля–Томсона относится к необратимым (не квазистатическим!) процессам без внешнего подвода тепла, $\mathbf{Q}=0$, в котором энтропия газа может только возрастать $\Delta S>0$. Фундаментальной причиной необратимости и роста энтропии является внутреннее выделение тепла из-за трения газа о стенки пористой перегородки.

С практической точки зрения важно понимать, что тепловыделение при трении может существенно исказить результаты опыта! Дело в том, что в начале процесса это тепло может пойти не на нагрев самого газа, а на нагрев трубки и других частей установки. Лишь после того как температура трубки установится, и теплообмен между трубкой и газом

прекратится, тогда газ станет уносить с собой всё выделенное им в перегородке тепло, и формула (3) становится применимой.

В реальном газе внутренняя энергия зависит не только от температуры, но и от молярного объёма (или плотности) газа: U(V,T). Поэтому внешняя работа частично идёт также и на изменение внутренней энергии газа ($\Delta U \neq 0$), что сопровождается изменением его температуры ($\Delta T \neq 0$). Рассмотрим простейшую модель реального газа: газ Ван-дер-Ваальса. Термическое и калорическое уравнения состояния для него имеют следующий вид:

$$(P + \frac{a}{V^2})(V - b) = RT \tag{5}$$

$$U = C_V T - \frac{a}{T} \tag{6}$$

теплоёмкость C_V газа для простоты считаем не зависящей от температуры). Напомним, что константа а отвечает за притяжение молекул на дальних расстояниях, а константа b отвечает за их отталкивание при близком контакте и имеет смысл минимально возможного молярного объёма газа. Размерности констант $[a] = \frac{Дж \cdot M^3}{\text{моль}^2}$, $[b] = \frac{M^3}{\text{моль}}$.

Отсюда энтальпия газа Ван-дер-Ваальса:

$$H = U + PV = C_V T + RT \frac{V}{V - b} - \frac{2a}{V}$$

$$\tag{7}$$

Для упрощения можно воспользоваться следующим обстоятельством: газ в опыте является достаточно разреженным (его давление не превышает 5 атм) и довольно близок к идеальному. Поэтому его отличия от идеального следует учитывать только в эффекте Джоуля—Томсона, но не при вычислении объёма V по известным Т и Р. То есть, будем считать справедливой формулу (7), но объём в ней найдём из уравнения Менделеева—Клапейрона $V \approx \frac{RT}{P}$. Кроме того, можно учесть, что для разреженного газа молярный объём V мал по сравнению с минимальным b, и можно положить $\frac{V}{V-b} \approx 1 + \frac{b}{V}$. Наконец, в качестве последнего упрощения примем, что относительное изменение температуры в опыте мало: $\frac{\Delta T}{T}$ « 1. Тогда полагая в этом приближении $\Delta H = 0$ для уравнения (8), получим окончательное выражение для коэффициента Джоуля—Томсона:

$$\mu_{\rm A-T} = -\frac{\Delta T}{|\Delta P|} \approx -\frac{b - \frac{2a}{RT}}{C_P} \tag{8}$$

Температура инверсии

Из формулы (9) видно, что эффект Джоуля–Томсона для не очень плотного газа зависит от соотношения параметров а и b, которые оказыва-

ют противоположное влияние на знак эффекта. Если силы притяжения между молекулами велики, то основную роль играет член, содержащий а, и газ при расширении охлаждается: $\Delta T < 0$. В обратном случае, когда доминирует отталкивание, т. е. слагаемое b, газ нагревается: $\Delta T > 0$. Видно также, что существует температура инверсии эффекта Джоуля–Томсона

 $T_{\text{инв}} = \frac{2a}{Rb} \tag{9}$

при прохождении через которую эффект меняет знак.

Экспериментальная установка

Схема установки для исследования эффекта Джоуля–Томсона в углекислом газе представлена на рис. 2. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ — двуокись углерода CO_2 . Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d=3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинных каналов. Пористость и толщина пробки (l=5 мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений $\Delta P \leq 4$ атм (расход газа составляет $Q \sim 10$ см3/c); при этом в результате эффекта Джоуля—Томсона создаётся достаточная для надёжного измерения разность температур.

Рис 2. Экспериментальная установка

Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется встроенным в термостат термометром. Термостат снабжён автоматическим терморегулятором, поддерживающим постоянной температуру воды в нём с точностью $\pm 0, 1C^{\circ}$. Давление газа в трубке измеряется манометром М и регулируется вентилем В. Манометр М измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Так как углекислый газ после пористой перегородки выходит в область с атмосферным давления на входе и на выходе трубки $|\Delta P| = P_1 - P_2$.

Разность температур газа до и после перегородки измеряется дифференциальной термопарой медь-константан. Константановая проволока диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к универсальному цифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены для уменьшения теплоотдачи излучением. Для уменьшения теплоотдачи за счёт конвекции один конец трубы Дьюара уплотнён кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создаёт перепада давлений между внутренней полостью трубы и атмосферой.

Ход работы

- 1. Перед началом работы убедимся в том, что термостат заполнен водой, а все электрические приборы заземлены. Следует помнить, что при используемых в работе перепадах давления ($\Delta P \leq 4$ атм) величина эффекта не превышает 5 C° (V < 200 мкВ по показаниям вольтметра), так что установка весьма чувствительна к электрическим и тепловым помехам.
 - 2. Включим термостат и вольтметр.
- 3. Знак и величина показаний вольтметра в отсутствие потока газа (вентиль В закрыт, $\Delta P=0$) они равны нулю.
- 4. Изучим шкалу манометра М. Цена его деления 0,1 бар, а предел измерений равен 6 бар.

Измерения

- 5. Откроем регулирующий вентиль B настолько, чтобы избыточное давление составило $\Delta P \approx 4$ атм.
- 6. После открытия вентиля температура (показания вольтметра термопары) сразу начнёт изменяться. Однако для корректного измерения необходимо дождаться завершения переходных процессов. После подачи давления подождём 7–10 минут, и убедившись в том, что показания вольтметра больше не изменяются, запишимих в таблицу 1.
- 7. При помощи вентиля В установим давление на <math>0.2-0.3 атм меньше первоначального. Через $t \approx 5$ минут, когда вновь установятся стационарные давление и разность температур, запишем показания манометра и вольтметра в таблицу 1.
- 8. Первые измерения проведём при температуре 25 C° , вторые при 45 C° .

Температура t_0 , °С	0-10	10-20	20-30	30-40	40–50
Чувствительность $\frac{dV}{dt}$, мкВ/°С	39,1	39,8	40,7	41,5	$42,\!4$
Температура t ₀ , °C	50.60	60. 70	70. 90	80-90	00 100
Temneparypa ι_0 , C	30-00	00-70	10-80	80 - 90	90-100

Рис 3. Чувствительность медно-константановой термопары

$$\sigma_{\text{\tiny M-K_Tepm}} = 0,3 \frac{\text{\tiny MKB}}{C^{\circ}}$$

	T_1, C°	$P_1 \cdot 10^5, \Pi a$	V_1 , мкВ	$\Delta T_1, C^{\circ}$	T_2, C°	$P_2 \cdot 10^5, \Pi a$	V_2 , мкВ	$\Delta T_2, C^{\circ}$
	25,1	4	108	0	45	3,5	84	0
		3,8	103	0,12		3	62	0,51
		3,5	91	0,41		2,8	55	0,68
		3,3	86	0,54		2,6	48	0,84
		3	71	0,90		2,3	40	1,03
		2,8	63	1,10		2,1	34	1,18
		2,4	50	1,42		1,7	22	1,46
		2,2	40	1,67		1,5	16	1,6
		2	34	1,81				
		1,7	27	1,99	·			
σ	0,1	0,1	3	0,05	0,1	0,1	3	0,05

Таблица 1: Результаты эксперимента

$$\sigma_{\Delta T} = \Delta T \sqrt{(\frac{\sigma_V}{V})^2 + (\frac{\sigma_{\rm m-k_repm}}{const})^2} \approx 0,05$$

Обработка результатов

9. Отложив экспериментальные точки на графике $\Delta T(\Delta P)$, по наклону зависимостей определим коэффициенты Джоуля—Томсона $\mu_{\mathtt{д-т}}$ для каждой температуры.

$$f(a,b) = \sum_{i=1}^{n} [T_i - (a+bN_i)]^2.$$

$$b = \frac{\langle \Delta P \Delta T \rangle - \langle \Delta P \rangle \langle \Delta T \rangle}{\langle \Delta P^2 \rangle - \langle \Delta P \rangle^2}.$$

$$\sigma_b \approx \frac{1}{\sqrt{n}} \sqrt{\frac{\langle \Delta T^2 \rangle - \langle \Delta T \rangle^2}{\langle \Delta P^2 \rangle - \langle \Delta P \rangle^2} - b^2}.$$

	$\Delta P \Delta T$	ΔP	ΔP^2	$<\Delta P>^2$	ΔT	ΔT^2	$<\Delta T>^2$
	0,024	0,2	0,04		0,12	0,0144	
	0,205	0,5	0,25		0,41	0,1681	
	0,378	0,7	0,49		0,54	0,2916	
	0,9	1	1		0,9	0,81	
	1,32	1,2	1,44		1,1	1,21	
	2,272	1,6	2,56		1,42	2,0164	
	3,006	1,8	3,24		1,67	2,7889	
	3,62	2	4		1,81	3,2761	
	4,577	2,3	5,29		1,99	3,9601	
<>	1,81	1,25	2,03	1,5625	1,1	1,6144	1,21

Таблица 2: МНК 1

Рис 3. Зависимость $\Delta T_1(\Delta P_1)$

$$\mu_1 = 9,21 \cdot 10^{-6} \tfrac{\text{MKB}}{C^\circ}, \, \sigma_{b_1} = 3,7 \cdot 10^{-6} \tfrac{\text{MKB}}{C^\circ}$$

	$\Delta P \Delta T$	ΔP	ΔP^2	$<\Delta P>^2$	ΔT	ΔT^2	$<\Delta T>^2$
	0,255	0,5	0,25		0,51	0,26	
	0,476	0,7	0,49		0,68	0,4624	
	0,756	0,9	0,81		0,84	0,706	
	1,08	1,2	1,44		0,9	0,81	
	1,652	1,4	1,96		1,18	1,3924	
	2,628	1,8	3,24		1,46	2,132	
	3,2	2	4		1,6	2,56	
<>	10,05	1,0625	1,5237	1,1289	0,9125	1,04	0,8327

Таблица 3: МНК 2

Рис 4. Зависимость $\Delta T_2(\Delta P_2)$

$$\mu_2 = 7,16 \cdot 10^{-6} \frac{\text{MKB}}{C^{\circ}}, \ \sigma_{b_2} = 1,98 \cdot 10^{-6} \frac{\text{MKB}}{C^{\circ}}$$

 $\mu_2=7,16\cdot 10^{-6}\frac{\text{мкB}}{C^\circ},\ \sigma_{b_2}=1,98\cdot 10^{-6}\frac{\text{мкB}}{C^\circ}$ 11. Постром график зависимости коэффициента Джоуля–Томсона $\mu_{\text{д-т}}$ от обратной температуры $\frac{1}{T}$. По коэффициентам наилучшей прямой определиу постоянные а и b для углекислого газа в модели Ван-дер-Ваальса (теплоёмкость C_P для CO_2 равна $32{,}24$ $\frac{Дж}{_{
m моль \cdot K}}$), а также оценим температуру инверсии $T_{\text{инв}}$.

$$K=0,0001163, B=4,574*10^{-6}$$
 $a=\frac{KRC_p}{2}=0,155\frac{\mathrm{HM}^4}{\mathrm{MOJIb}^2}(a_{\mathrm{TA6Л}}=0,36\frac{\mathrm{HM}^4}{\mathrm{MOJIb}^2})$ $\sigma_a=a\sqrt{(\frac{\sigma_T}{T)^2+(\frac{\sigma_H}{\mu})}}=0,016\frac{\mathrm{HM}^4}{\mathrm{MOJIb}^2}$ $b=BC_p=1,5\cdot 10^{-4}\frac{\mathrm{M}^3}{\mathrm{MOJIb}}(b_{\mathrm{TA6Л}}=0,42\cdot 10^{-4}\frac{\mathrm{M}^3}{\mathrm{MOJIb}})$ $\sigma_b=0,1\cdot 10^{-4}\frac{\mathrm{M}^3}{\mathrm{MOJIb}}$

Рис 5. Зависимость $\Delta T_2(\Delta P_2)$

$$T_{ ext{ihb}} = rac{2a}{Rb} = 252, 9 \pm 26K (T_{ ext{Ta6j}} = 2027K)$$
 $\sigma_T = 26K$

Вывод

Полученные экспериментальным путем значения разнятся с табличными потому, что для расчётов была использоава модель газа Ван-дер-Ваальса. Проведя этот эксперимент, мы удостоверились в неприменимости модели Ван-дер-Ваальса в данной лабораторной работе. Полученные зависимости оказались линейны, как и предсказывала теория, но характеризующие коэффициенты этих зависимостей разительно отличаются от теоретических предсказаний.