Problem A. Colored tree

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Consider a rooted tree consisting of N vertices numbered from 1 to N, each vertex has a color that can be either black or white.

We want you to find the number of sequences $[a_1, a_2, ..., a_k]$, $(1 \le k \le N, k)$ is the size of the sequence), where for every $1 \le i \le k-1$ a_i is the parent of a_{i+1} and the color of vertex a_i is different than the color of vertex a_{i+1} .

The root of the tree is ALWAYS 1.

Input

The first line contains one integer N — the number of vertices in the tree $(1 \le N \le 10^5)$. Each of the next n lines contains two integers p_i $(1 \le i \le n)$ — the index of the parent of the i-th vertex (for the root p_i =0), and the color of this vertex (1 means black and 0 means white).

Vertex 1 is always the root of the tree and parent of vertex 1 is always 0.

Output

Output a single integer: the number of such sequences.

Examples

standard input	standard output
3	5
0 1	
1 0	
1 0	
2	3
0 0	
1 1	

Note

In the first sample we have a tree of this form:

The first vertex is black, And the other two are white. We can see that we have 3 valid sequences of length 1 1, 2, 3. And we have 2 valid sequences of length 2: $1 \rightarrow 2$, $1 \rightarrow 3$. So the answer is 3+2=5.