Alexandria University
Faculty of Engineering

Electronics and Communications Engineering Program

2023-2024

Full Custom Design of 4-Bit Ripple Carry Adder

VLSI - EEC 433 Spring 2024

By Student:

AbdulRahman Ahmad Hasan AlSindiony

Electronics and Communications Engineering
Alexandria University

Full Adder Circuit Schematic

1 bit Full Adder symbol and Test bench

Verifying the Functionality of the Full Adder Circuit

Names 🛆	Value
delay(VT("/Co") 0.6 1 "either" V	-8.664E-11

Propagation delay for single 1-bit full adder without load = 86.64 pS

ш		
	Names 🛆	Value
	average(abs(i("/V3/PLUS" ?result	1.552E-5

Power Consumption = 15.5 uW

Test bench schematic for calculating the propagation delay with 1 FA Load

Names 🛆	Value
delay(VT("/Co") 0.6 1 "either" V	-1.392E-10

Propagation delay for one loaded 1-bit FA = 139.2 pS

DC Transfer Characteristics, Changing "Cin" from 0 to 1.2 V linearly and monitoring "Co".

The mid point is 620 mV, we can redesign for closer point to 600 mV.

Circuit Test Bench, with Ideal 4-bit Carry Adder to verify the output of the designed Circuit

Ideal and Practical "Co" signals

Ideal and Practical "S0" signals

Ideal and Practical "S1" signals

Ideal and Practical "S2" signals

Ideal and Practical "S3" signals

Now we have verified the functionality of the 4-bit ripple carry adder designed circuit.

We have set Ci to 500 MHz clock while A = 0101, B = 1010, so as to mirror the input carry to the output carry.

Names 🛆	Value
delay(VT("/Ci") 0.6 1 "either" VT	6.622E-10

Propagation Delay of the 4-bit ripple adder between Ci and Co of the final stage = 662.5 pS

Names 🛆	Value	
frequency(VT("/Co"))	5.0E8	
		500 MHz output Carry

Input/Output Transfer Characteristics for Ci to Co

CONCLUSION

Transistor Sizing for a single bit FA:

- 2 Inverters each one with PMOS (1105n/130n) and NMOS (250n/130n)
- 3 Stacked PMOS transistors with (3*1105n/130n)
- 3 Stacked NMOS transistors with (3*250n/130n)
- 9 transistors for the rest of PUN (Pull Up Network) with (2*1105n/130n)
- 9 transistors for the rest of PDN (Pull Down Network) with (2*250n/130n)

With total number of 28 Transistors for a single cell.

Area Estimation:

PMOS: $(9*2 + 3*3 + 2*1) * 1105n * 130n = 4.1658 \text{ um}^2 \text{ without routing}$

NMOS: $(9*2 + 3*3 + 2*1) * 250n * 130n = 0.9425 \text{ um}^2$ without routing

Approximate area could be = $1.5 * (4.1658 + 0.9425) = 7.6625 \text{ um}^2$ for a single 1 bit FA

Total approximate area = $4 * 7.6625 = 30.65 \text{ um}^2$

Propagation Delay: 662.5 pS

Power Consumption: 373.2 uW

Technology: 130 nm (min Length), 150 nm (min Width)

Following We will exploit the inverting property where "Inverting all the inputs of a full-adder cell also inverts all the outputs". This should exclude the extra inverters we added in the odd cells.

$$\overline{A'.B'+C'_i(A'+B')} o ext{ solves to } o A.B+C_i(A+B)=C_o$$

4-bit ripple carry adder

Wp = 1105n, Wn = 250n

New Schematic for the single FA cell with inverted outputs without extra inverters

The Connections of the inverters, reducing the total inverter count by two and reducing the inverters at the critical path by 4.

The New Design Test Bench

Ideal and Practical "Co" signals

Voltage Transfer Characteristics

Ideal and Practical "S0" signals

Ideal and Practical "S1" signals

Ideal and Practical "S2" signals

Ideal and Practical "S3" signals

Power consumption for the second design = 304.2 uW

difference_Delay 138.3p

The delay Difference between the two designs of 4-bit ripple carry adder = 138.3 pS

The propagation delay of the second design = 526.17 pS

CONCLUSION

Transistor Sizing for a single bit FA:

- 3 Stacked PMOS transistors with (3*1105n/130n)
- 3 Stacked NMOS transistors with (3*250n/130n)
- 9 transistors for the rest of PUN (Pull Up Network) with (2*1105n/130n)
- 9 transistors for the rest of PDN (Pull Down Network) with (2*250n/130n)

With total number of 24 Transistors for a single cell.

In addition to another 6 Inverters for connections each one with PMOS (1105n/130n) and NMOS (250n/130n)

Area Estimation:

PMOS: $(9*2 + 3*3) * 1105n * 130n = 3.87855 \text{ um}^2 \text{ without routing}$

NMOS: $(9*2 + 3*3) * 250n * 130n = 0.8775 \text{ um}^2 \text{ without routing}$

Approximate area could be = $1.5 * (3.87855 + 0.8775) = 7.134 \text{ um}^2$ for a single 1 bit FA

Total approximate area = $4 * 7.134 + 6*(1.105+0.250)*0.130*1.5=30.12 \text{ um}^2$

Propagation Delay: 526.17 pS

Power Consumption: 304.2 uW

Technology: 130 nm (min Length), 150 nm (min Width)