# Deep Reinforcement Learning : Breakout

7/jun/2021

#### Grupo 7

Carolina Marques - PG42818

Constança Elias - PG42820

Maria Barbosa - PG42844

Renata Ribeiro - A86271

**Sistemas Inteligentes** Computação Natural

# Conteúdos

- Breakout Deterministic
- ✓ Algoritmo de DRL
- Otimização do Algoritmo
- **24** Resultados



### Breakout Deterministic



#### Descrição do Ambiente



(210, 160, 3)

#### Ações possíveis:

- **NOOP**: não fazer nada
- FIRE: disparar a bola no início do jogo e de cada vida
- **LEFT**: mover o tijolo para a esquerda
- **RIGHT**: mover o tijolo para a direita



#### 3 passos:

- RGB para escala de cinzentos;
- Redimensionar frame para 84 x 84;
- Cortar frame.



### Algoritmo de DRL



#### Reward and other information





### Algoritmo de DRL



#### Rede Neuronal Convolucional





### Otimização do Algoritmo



### Rede Otimizada #1

- Convolucional com 32 kernels de 8x8 e stride 4x4 com ativação relu, inicialização Variance Scaling (com scale igual a dois);
- Convolucional com 64 kernels de 4x4 e stride 2x2 com ativação relu, inicialização Variance Scaling (com scale igual a dois);
- Convolucional com 64 kernels de 3x3 e stride 1x1 com ativação relu, inicialização Variance Scaling (com scale igual a dois);
- Convolucional com 1024 kernels de 7x7 e stride 1x1 com ativação relu, inicialização Variance Scaling (com scale igual a dois);
- · Flatten;
- Dense com 1 output e inicialização Variance Scaling (com scale igual a dois);
- · Flatten;
- Dense com 3 outputs e inicialização Variance Scaling (com scale igual a dois);
- Optimizador Adam com learning rate igual a 1e-4 e Huber Loss function.



### Otimização do Algoritmo



### Rede Otimizada #1

#### Nesta arquitetura:

- Dois fluxos para estimar o valor de um estado:
  - Estimar o valor de um estado;
  - Estimar a vantagem de realizar uma ação num dado estado;

Permite aprender de forma intuitiva quais os estados mais valiosos sem necessitar de realizar ações nesse estado.

### 🕨 Otimização do Algoritmo 🛛 📲

### Rede Otimizada #2

- Convolucional com 32 kernels de 8x8 e stride 2x2 com ativação elu;
- BatchNormalization
- Convolucional com 64 kernels de 4x4 e stride 2x2 com ativação elu;
- BatchNormalization
- Convolucional com 128 kernels de 4x4 e stride 1x1 com ativação elu;
- BatchNormalization
- Flatten;
- Dense com 3 outputs;
- Optimizador Adam com learning rate igual a 1e-4;

### Hiper-Parâmetros

- Gamma: 0.85;
- · Observation: 200;
- Explore: 30000;
- Final Epsilon: 0.1;
- Initial Epsilon: 1;
- Replay Memory: 50000;
- Batch: 32;
- Frame per Action: 1;
- Learning Rate: 1e-4;
- $\bullet$  Episodes: 10000;



### Resultados



|                       | Rede Inicial | Rede Otimizada #1 | Rede Otimizada #2 |
|-----------------------|--------------|-------------------|-------------------|
| Score (máximo)        | 27           | 64                | 0                 |
| Loss (máximo)         | 0.011        | 2.7 (acumulado)   |                   |
| <b>Q_Max</b> (máximo) | 4            | 7.5 (acumulado)   |                   |







Com otimização









## Sem otimização

Com otimização









### Conclusões



#### Resultados: Não foram os ideais

- Limitação de recursos computacionais, recorreu-se ao Google Colab;
- Benéfico aproveitar melhor as duas semanas seguintes ao lançamento do projeto, uma vez que seria mais tempo útil para treino;
- Breakout Deterministic: frame skip de 4 frames a cada step. Os modelos não observam tudo o que acontece e tendem a aprendem menos. Solução para este problema seria usar NoFrameskip, uma vez que este não avança frames de todo.

#### Trabalho Futuro:

- Maior exploração dos parâmetros a otimizar e uso de outros algoritmos (exemplo Actor Critic);
- Fazer o treino do modelo apenas com 1 vida.



# Questões?

#### Grupo 7

Carolina Marques - PG42818 Constança Elias - PG42820 Maria Barbosa - PG42844 Renata Ribeiro - A86271

**Sistemas Inteligentes** Computação Natural