

Дисциплина «Вычислительная математика»

Наполнение курса

> Объем курса

8 лекционных и 16 практических занятий

- Темы практических занятий
- 1. Элементы теории погрешностей
- 2. Методы приближения и аппроксимация функций
- 3. Численные методы решений трансцендентных и алгебраических уравнений
- 4. Численное интегрирование
- 5. Численные методы линейной алгебры
- 6. Численные методы решения обыкновенных дифференциальных уравнений

- 7. Численное решение начально-краевых задач для дифференциальных уравнений в частных производных
- 8. Быстрое дискретное преобразование Фурье

Практика 2. Интерполирование и экстраполирование функций.

- 1.1. Интерполяция: многочлен Лагранжа.
- 1.2. Интерполяция: формула Ньютона.
- 1.3. Экстраполяция: метод наименьших квадратов.
- 1.4. Решение типового задания.

Часть 1. Интерполяция: многочлен Лагранжа.

Постановка задачи приближения функций

Задача приближения функций возникает при решении многих задач и состоит в представлении некоторых известных или неизвестных функций с помощью других, более простых функций и формулируется в виде:

 \exists конечное число точек x_i , i=0..n евклидова пространства, и определены значения некоторой функции f(x) в этих точках. Требуется построить максимально простую функцию g(x), значения которой совпадают со значениями f(x) в заданных точках.

Поставленная задача может иметь бесконечное множество решений или не иметь решений. Эта задача имеет однозначное решение, если в качестве функции g(x) выбирается многочлен возможно меньшей степени.

Задача приближения функций возникает, например, когда аналитическое выражение функции f(x), известно, но оно громоздко для вычислений, и тогда построение более простой функции g(x) позволяет существенно сократить время вычислений. В этом случае для замены функции выбирается многочлен возможно меньшей степени.

Замена функции f(x) на g(x) – аппроксимация; (ad+proximus лат. – «ближайший»).

Задача приближения функций возникает также при обработке результатов эксперимента. Как правило, такие результаты могут быть представлены в виде следующей таблицы:

Экспериментатор на основе практического опыта предполагает, что полученная таблица представляет некоторый эмпирический закон g(x). В этом случае функцию g(x) также стремятся представить как многочлен возможно меньшей степени.

i	x_i	$f(x_i)$
0	x_0	$f(x_0)$
1	x_1	$f(x_1)$
2	x_2	$f(x_2)$
•••	•••	•••
Π	\mathcal{X}_n	$f(x_n)$

Для задачи нахождения значений функции на отсутствующих аргументах также стремятся найти многочлен n-й степени, значения которого в точках x_i , i=0..n совпадают со значением данной функции f(x).

Если $x \in [x_0, x_n]$, $(x \neq x_i, i=0..n)$: x — точка *интерполяции*. Если $x \notin [x_0, x_n]$: x — точка *экстраполяции*.

! Замечание 1.1. При оценке погрешности результатов учитывают как погрешность интерполяции, так и погрешность вычислений.

6

Интерполяционный многочлен Лагранжа.

Приближение функции y = f(x), заданной таблицей многочленом n-й степени:

$$P_n(x) = \sum_{s=0}^n a_s x^s = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
 (2.1)

Многочлен Лагранжа $L_n(x)$, который определяется только значениями функции $y_i = f(x_i)$ в точках x_i , i = 0...n из условия:

$$L_n(x_i) = y_i, i=0..n.$$
 (2.2)

Условие (2.2) означает, что график многочлена $L_n(x)$ должен проходить через точки (x_i, y_i) координатной плоскости xOy.

$$L_n(x) = \sum_{i=0}^n y_i \frac{(x_i - x_0)(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1})...(x - x_n)}{(x_i - x_0)(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)}$$
(2.3)

Конечные разности.

При постоянном изменении аргумента задача приближения функции y = f(x), заданной таблицей многочленом n-й степени упрощается:

 $y = f(x_i)$ задана в точках $x_i + i \cdot h$; i = 0..n; $h = \Delta x = x_{i+1} - x_i = \text{const.}$

Вычисляется: $t = (x - x_0)/h$; $\Pi_{n+1}(t)$; $(t_i - i), C_i, y_i/((t_i - i)C_i)$.

$$\Pi_{n+1}(t) = t(t-1)...(t-n)$$
(2.4)

$$C_i = (-1)^{n-i} \cdot i! \cdot (n-i)!$$
 (2.5)

Вычисляется $\sum y_i/((t_i-i)C_i)$.

$$y(x) = f(x) \approx \Pi_{n+1}(t) \sum_{i=0}^{n} \frac{y_i}{(t-i)C_i}$$
 (2.6)

Часть 2. Интерполяция: формулы Ньютона.

Интерполяционные формулы Ньютона используются, если заданные точки – узлы интерполяции – расположены на равном расстоянии друг от друга.

Первая интерполяционная формула Ньютона.

Первая интерполяционная формула используется для интерполирования в точках, близких к началу промежутка $[x_0,x_n]$.

$$y = f(x_i)$$
 задана в точках $x_i + i \cdot h$; $i = 0 \cdot n$; $h = \Delta x = x_{i+1} - x_i = \text{const.}$

Вычисляем конечные разности:

$$\Delta^n y_1 = y_{i+1} - C_n^1 y_{i+n-1} + C_n^2 y_{i+n-2} - \dots + (-1)^n y_i \qquad \Delta^2 y = \Delta y_{i+1} - \Delta y_i.$$

$$C_i = \frac{n!}{i! (n-i)!}$$

$$\Delta y = f(x_{i+1}) - f(x_i).$$

$$\Delta^2 y = \Delta y_{i+1} - \Delta y_i.$$

$$\Delta^3 y = \Delta^2 y_{i+1} - \Delta^2 y_i.$$
...
$$\Delta^n y = \Delta^{n-1} y_{i+1} - \Delta^{n-1} y_i.$$

$$N_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_n)$$
(2.7)

Такая форма интерпол. многочлена удобна тем, что каждое слагаемое появляется при увеличении числа заданных точек и повышает степень многочлена на единицу.

Подставляя в (2.7) вместо x значения заданных точек, получим коэфициенты a_i :

$$a_{0} = y_{0} a_{1} = \frac{y_{1} - y_{0}}{h} = \frac{\Delta y_{0}}{h} a_{2} = \frac{y_{2} - 2y_{1} + y_{0}}{2h^{2}} = \frac{\Delta^{2} y_{0}}{2! h^{2}}$$

$$a_{3} = \frac{\Delta^{3} y_{0}}{3! h^{3}} \cdots a_{n} = \frac{\Delta^{n} y_{0}}{n! h^{n}}$$

$$N_{n}(x) = y_{0} + \frac{\Delta y_{0}}{h} (x - x_{0}) + 2! h^{2} (x - x_{0})(x - x_{1}) + \frac{\Delta^{2} y_{0}}{h^{2}}$$

$$(2.8)$$

 $+\frac{\Delta^{3}y_{0}}{3!\,h^{3}}(x-x_{0})(x-x_{1})(x-x_{2})+\cdots+\frac{\Delta^{n}y_{0}}{n!\,h^{n}}(x-x_{0})(x-x_{1})\ldots(x-x_{n})$

$$N2_n(x) = a_0 + a_1(x - x_n) + a_2(x - x_n)(x - x_{n-1}) +$$

$$+ a_3(x - x_n)(x - x_{n-1})(x - x_{n-2}) + \dots + a_n(x - x_n)(x - x_{n-1}) \dots (x - x_0)$$

Подставляя в (2.8) вместо x значения заданных точек, получим коэффициенты a_i :

$$a_0 = y_n$$
 $a_1 = \frac{y_n - y_{n-1}}{h} = \frac{\Delta y_{n-1}}{h}$ $a_2 = \frac{y_n - 2y_{n-1} + y_{n-2}}{2h^2} = \frac{\Delta^2 y_{n-2}}{2! h^2}$

$$a_3 = \frac{\Delta^3 y_{n-3}}{3! h^3} \qquad \cdots \qquad a_n = \frac{\Delta^n y_0}{n! h^n}$$

Вторая интерполяционная формула Ньютона:

$$N2_n(x) = y_n + \frac{\Delta y_{n-1}}{h}(x - x_n) + \frac{\Delta^2 y_{n-2}}{2! h^2}(x - x_n)(x - x_{n-1}) +$$
(2.10)

$$+\frac{\Delta^{3}y_{n-3}}{3!\,h^{3}}(x-x_{n})(x-x_{n-1})(x-x_{n-2})+\dots+\frac{\Delta^{n}y_{0}}{n!\,h^{n}}(x-x_{n})(x-x_{n-1})\dots(x-x_{0})$$

Часть 3. Экстраполяция: метод наименьших квадратов.

Метод наименьших квадратов (МНК) – один из наиболее часто используемых методов при обработке эмпирических данных, построении и анализе физических, биологических, технических, экономических и социальных моделей.

Предложен К. Гауссом (1795) и А. Лежандром (1805). Первоначально МНК использовался для обработки результатов астрономических и геодезических наблюдений. Строгое математическое обоснование и установление границ содержательной применимости МНК даны А. А. Марковым и А. Н. Колмогоровым (начало XX в.).

С помощью МНК решают задачу выбора параметров функции (заранее заданного вида) для приближённого описания зависимости величины *у* от величины *х*.

Базовые Функциональные зависимости

?

Необходимо установить функциональную зависимость между двумя эмпирическими данными x и y, значения которых занесены в таблицу:

$\boldsymbol{\mathcal{X}}$	x_1	x_2	•••	\mathcal{X}_{i}	•••	\mathcal{X}_n
y	y_1	y_2	•••	y_i	•••	y_n

Точки (x_i, y_i) – экспериментальные.

Установим вид функции y = f(x) по характеру расположения на координатной плоскости экспериментальных точек

Гипотеза: между *x* и *y* существует линейная зависимость, выражающаяся формулой:

$$y = k \cdot x + b \tag{2.11}$$

Уравнение (2.11) можно представить в виде

$$y - (k \cdot x + b) = 0$$
 (2.12)

В общем случае точки (x_i, y_i) не лежат на одной прямой \Rightarrow подставляя вместо x и y значения координат этих точек в выражение y = kx + b получаем равенства:

$$y_1 - (\mathbf{k} \cdot x_1 + \mathbf{b}) = \delta_1$$
 $y_2 - (\mathbf{k} \cdot x_2 + \mathbf{b}) = \delta_2$ Здесь $\delta_1, \delta_2, ... \delta_n -$ невязка (или отклонение от аппроксимирующей зависимости)

Как влияет совокупность абсолютных величин δ_1 , δ_2 , ... δ_n на адекватность описания экспериментальных точек аппроксимирующей зависимостью y = kx + b.

Сущность метода наименьших квадратов заключается в подборе коэффициентов *k* и *b* таким образом, чтобы сумма квадратов погрешностей была как можно меньшей:

$$S = \delta_1^2 + \delta_2^2 + \dots + \delta_n^2 = \sum_{i=1}^n \delta_i^2 = \sum_{i=1}^n (y_i - (k \cdot x_i + b))^2 \to min$$
 (2.13)

! Замечание 1.5. В (2.13) находится сумма квадратов погрешностей, так как в случае суммирования самих погрешностей δ₂ сумма будет некорректной из-за разных знаков погрешностей. А если брать сумму модулей, то такое выражение сложнее исследовать.

В (2.13) (x_i, y_i) – заданные числа, а k и b – неизвестные, то сумму S можно рассмотреть как функцию двух переменных k и b: S=S(k,b).

Исследование на экстремум S=S(k,b).

Необходимые условия 3 экстремума функции двух переменных:

Непрерывность, дифференцируемость.

$$\begin{cases} \frac{\partial S}{\partial k} = 0, \\ \frac{\partial S}{\partial b} = 0; \end{cases} \tag{2.14}$$

$$\frac{\partial S}{\partial k} = 2\sum_{i=1}^{n} (y_i - (kx_i + b))(-x_i) = -2\sum_{i=1}^{n} (y_i - (kx_i + b))x_i,$$

$$\frac{\partial S}{\partial b} = 2\sum_{i=1}^{n} (y_i - (kx_i + b))(-1) = -2\sum_{i=1}^{n} (y_i - (kx_i + b)).$$

Приравнивая эти частные производные к нулю, получаем линейную систему двух уравнений с двумя переменными *k* и *b*:

$$\begin{cases} -2\sum_{i=1}^{n} (y_i - (kx_i + b)) x_i = 0, \\ -2\sum_{i=1}^{n} (y_i - (kx_i + b)) = 0. \end{cases}$$
 (2.15)

Преобразуем первое уравнение из (2.15): $-\sum_{i=1}^n y_i x_i + k \sum_{i=1}^n x_i^2 + b \sum_{i=1}^n x_i = 0$

Преобразуем второе уравнение из (2.15):

$$-\sum_{i=1}^{n} y_i + k \sum_{i=1}^{n} x_i + bn = 0$$

Получим систему:

$$\begin{cases} k \sum_{i=1}^{n} x_{i}^{2} + b \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i} x_{i}, \\ k \sum_{i=1}^{n} x_{i} + b n = \sum_{i=1}^{n} y_{i}. \end{cases}$$
(2.16)

Система (2.16) – нормальная система.

Из (2.16) находим k и b, которые затем подставляем в уравнение (2.11) и получаем искомое уравнение прямой.

y = kx + b называется линейной регрессией, а коэффициенты k и b - koэффициентами регрессии (величины <math>y на x)

МНК для зависимости: $y = a_2 x^2 + a_1 x + a_0$

Если зависимость между экспериментально полученными величинами может быть близка к квадратичной, то задача состоит в нахождении коэффициентов a_2 , a_1 , a_0 для составления уравнения вида

$$y = a_2 x^2 + a_1 x + a_0 (2.17)$$

Можно доказать, что для определения коэффициентов a_2 , a_1 , a_0 следует решить систему уравнений:

$$\begin{cases} n a_0 + a_1 \sum_{i=1}^n x_i + a_2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i, \\ a_0 \sum_{i=1}^n x_i + a_1 \sum_{i=1}^n x_i^2 + a_2 \sum_{i=1}^n x_i^3 = \sum_{i=1}^n x_i y_i, \\ a_0 \sum_{i=1}^n x_i^2 + a_1 \sum_{i=1}^n x_i^3 + a_2 \sum_{i=1}^n x_i^4 = \sum_{i=1}^n x_i^2 y_i. \end{cases}$$

$$(2.18)$$

На практике в качестве приближающих функциональных зависимостей в зависимости от характера точечного графика часто используются:

$$y = ax^m$$
 $y = ae^{mx}$ $y = \frac{1}{ax+b}$ $y = \frac{a}{x}+b$ $y = \frac{x}{ax+b}$ $y = a \ln x + b$

Когда вид приближающей функции установлен, задача сводится только к отысканию значений параметров.

Пример 1.1. Аппроксимация опытных данных растворимости натриевой селитры в воде в зависимости от температуры.

Д.И. Менделеев в труде «Основы химии» приводит данные растворимости у натриевой селитры $NaNO_3$ в воде в зависимости от температуры T.

Пример 1.1. (продолжение).

Найдем коэффициенты *k* и *b*:

$$y = k \cdot T + b$$

Составим и решим нормальную систему уравнений (2.16) с числом эмпирических точек, n = 9.

$$\begin{cases} k \sum_{i=1}^{n} T_i^2 + b \sum_{i=1}^{n} T_i = \sum_{i=1}^{n} y_i T_i, \\ k \sum_{i=1}^{n} T_i + bn = \sum_{i=1}^{n} y_i. \end{cases}$$

Nº	T_i	y_i	T_i^2	$T_i y_i$
1	0	66,7	0	0
2	4	71,0	16	284
3	10	76,3	100	763
4	15	80,6	225	1209
5	21	85,7	441	1799,7
6	29	92,9	841	2694,1
7	35	99,4	1225	3479
8	51	113,6	2601	5793,6
9	68	125,1	4624	8506,8

Пример 1.1. (продолжение).

Нормальная система принимает вид

$$\begin{cases} k \cdot 10073 + b \cdot 233 = 24529,2 \\ k \cdot 233 + b \cdot 9 = 811,3. \end{cases}$$

Решая систему, находим: $k \approx 0.87$; $b \approx 67.55$.

$$y = 0.87 \cdot T + 67.55$$

Вычислим теперь для исходных значений T_i расчетные значения \widehat{y}_i , невязки δ_i и δ_i^2 занесем полученные результаты в таблицу.

$$\widehat{y_i} = k \cdot T_i + b$$

Nº	T_i	y_i	T_i^2	$T_i y_i$	$\widehat{\mathcal{Y}}_i$	δ_i	δ_i^2
1	0	66,7	0	0	67,55	-0,85	0,7225
2	4	71,0	16	284	71,03	-0,03	0,0009
3	10	76,3	100	763	76,25	0,05	0,0025
4	15	80,6	225	1209	80,6	0	0
5	21	85,7	441	1799,7	85,82	-0,12	0,0144
6	29	92,9	841	2694,1	92,78	0,12	0,0144
7	35	99,4	1225	3479	98	1,4	1,96
8	51	113,6	2601	5793,6	111,92	1,68	2,8224
9	68	125,1	4624	8506,8	126,71	-1,61	2,5921

Часть 4. Решение типового задания 2.

Задание 2.1 (а).

Найти приближенное значение функции при заданном значении аргумента с помощью интерполяционного многочлена Лагранжа при задании функции с <u>неравными</u> интервалами между аргументами.

Дано:

Найти значение функции f(x) = y(x) при x = 0.263:

Nº	X_i	y_i	x - x_i
0	0,05	0,050042	0,213
1	0,1	0,100335	0,163
2	0,17	0,171657	0,093
3	0,25	0,255342	0,013
4	0,3	0,309336	-0,037
5	0,36	0,376403	-0,097

• •	$(x_i - x_i)$	$(x_{i-1})(x)$	$-x_i)(x_i)$	$x_i - x_{i+1}$)
0,213	-0,050	-0,120	-0,200	-0,250	-0,310
0,050	0,163	-0,070	-0,150	-0,200	-0,260
0,120	0,070	0,093	-0,080	-0,130	-0,190
0,200	0,150	0,080	0,013	-0,050	-0,110
0,250	0,200	0,130	0,050	-0,037	-0,060
0,310	0,260	0,190	0,110	0,060	-0,097

D_i	y_i/D_i
-1,9809·10 ⁻⁵	-2526,225
4,4499-10-6	22547,698
-1,5437·10 ⁻⁶	-111201,935
1,7160·10 ⁻⁷	1488006,993
7,2150-10-7	428740,125
-9,8040 · 10 ⁻⁶	-38392,710

 Π 1,5065·10⁻⁷

1787173.95

Решение:

- 1) Вычисляем $x x_i$: 2) Вычисляем: $\Pi_{n+1} = (x x_0)(x x_1)...(x x_n)$
- 3) Вычисляем: $D_i = (x_i x_0)(x_i x_1)...(x_i x_{i-1})(x x_i)(x_i x_{i+1})...(x_i x_n)$

4) Вычисляем:
$$f(x) \approx \Pi_{5+1}(x) \cdot \sum_{i=0}^{5} (y_i / D_i(x))$$

 Π 1,5065·10⁻⁷

 Σ 1787173,95

$$f(0,263) \approx 1,5065 \cdot 10^{-7} \cdot 1787174$$

Задание 2.1 (б).

Найти приближенное значение функции при заданном значении аргумента с помощью интерполяционного многочлена Лагранжа при задании функции с равными интервалами между аргументами.

Найти значение функции f(0,1157): Дано:

Решение:

- 1) Вычисляем шаг аргумента h: $h = \Delta x = 0,005$.
- 2) Вычисляем t и (t i): $t = (x x_0)/h$.
- 3) Вычисляем:

$$\Pi_{n+1}(t) = t(t-1)...(t-n)$$

Nº	x_i	\mathcal{Y}_{i}	t-i	C_i
0	0,101	1,26183	2,94	-120
1	0,106	1,27644	1,94	24
2	0,111	1,29122	0,94	-12
3	0,116	1,30617	-0,06	12
4	0,121	1,3213	-1,06	-24
5	0,126	1,3366	-2,06	120

$l \cdot l \cdot l$	
-352,80	-0,00358
46,56	0,02741
-11,28	-0,11447
-0,72	-1,81412
25,44	0,05194
-247,20	-0,00541

 $(t_i-i)C_i$ $y_i/((t_i-i)C_i)$

 Π -7,0243·10⁻¹

Σ -1,85823

4) Вычисляем C_i:

5) Вычисляем $(t_i - i)C_i$, $y_i/((t_i - i)C_i)$.

 $C_i = (-1)^{n-i} \cdot i! (n-i)!$

6) Вычисляем $\sum y_i/((t_i-i)C_i)$.

7) Вычисляем:

$$f(x) \approx \Pi_{n+1}(t) \sum_{i=0}^{n} \frac{y_i}{(t-i)C_i}$$

 Π -7,0243·10⁻¹

Σ -1,85823

$$f(0,1157) \approx -7,0243 \cdot 10^{-1} \cdot (-1,85823)$$

Задание 2.2 (а,б).

Найти приближенное значение функции при заданном значении аргумента с помощью формул Ньютона.

Найти значение функции в точках x_1 = 1,21; x_2 = 1,2273; x_3 = 1,253; x_4 = 1,2638.

Решение: (а)

Точки $x_1 = 1,2273$; $x_2 = 1,210$ принадлежат началу интервала \Rightarrow воспользуемся формулой Ньютона для интерполирования вперед:

$$y(x) \approx y_0 + q\Delta y_0 + \frac{q(q-1)}{2!}\Delta^2 y_0 + \frac{q(q-1)(q-2)}{3!}\Delta^3 y_0 + \dots$$

- 1) Вычисляем $q: q = (x x_0)/h$.
- 1.1) q для точки x = 1,210: q = (1,215 1,21)/0,005. q = -1

Дано:

Nº	\mathcal{X}_{i}	y_i
0	1,215	0,106044
1	1,22	0,113276
2	1,225	0,119671
3	1,23	0,125324
4	1,235	0,130328
5	1,24	0,134776
6	1,245	0,138759
7	1,25	0,142367
8	1,255	0,145688
9	1,26	0,148809

1.2) Вычисляем конечные разности:

Nº	x_i	y_i	Δγ	Δ^2 y	Δ^3 y
0	1,215	0,106044	0,007232	-0,000837	9,5E-05
1	1,22	0,113276	0,006395	-0,000742	9,3E-05
2	1,225	0,119671	0,005653	-0,000649	9,3E-05
3	1,23	0,125324	0,005004	-0,000556	9,1E-05
4	1,235	0,130328	0,004448	-0,000465	9E-05
5	1,24	0,134776	0,003983	-0,000375	8,8E-05
6	1,245	0,138759	0,003608	-0,000287	8,7E-05
7	1,25	0,142367	0,003321	-0,0002	-
8	1,255	0,145688	0,003121	-	-
9	1,26	0,148809	-	-	-

$$\Delta y = f(x_{i+1}) - f(x_i).$$

$$\Delta^2 y = \Delta y_{i+1} - \Delta y_i.$$

$$\Delta^3 y = \Delta^2 y_{i+1} - \Delta^2 y_i.$$

1.3) ограничиваемся разностями третьего порядка, так как они практически постоянны:

$$y(x) \approx y_0 + q\Delta y_0 + \frac{q(q-1)}{2!}\Delta^2 y_0 + \frac{q(q-1)(q-2)}{3!}\Delta^3 y_0$$

$$y(1,21) \approx 0,106044 + q0,007232 + \frac{q(q-1)}{2!}(-0,000837) + \frac{q(q-1)(q-2)}{3!}0,000095.$$
 = 0,09788

Nº	x_i	\mathcal{Y}_i
0	1,215	0,106044
1	1,22	0,113276
2	1,225	0,119671
3	1,23	0,125324
4	1,235	0,130328
5	1,24	0,134776
6	1,245	0,138759
7	1,25	0,142367
8	1,255	0,145688
9	1,26	0,148809

Δy	Δ^2 y	Δ^3 y
0,007232	-0,000837	9,5E-05
0,006395	-0,000742	9,3E-05
0,005653	-0,000649	9,3E-05
0,005004	-0,000556	9,1E-05
0,004448	-0,000465	9E-05
0,003983	-0,000375	8,8E-05
0,003608	-0,000287	8,7E-05
0,003321	-0,0002	-
0,003121	-	-
-	-	-

2.1)
$$q$$
 для точки $x = 1,2273$:

$$q = (1,2273 - 1,21)/0,005.$$

 $q = 2,46$

2.2) Вычисляем *y*(*x*):

$$y(x) \approx y_0 + q\Delta y_0 + \frac{q(q-1)}{2!} \Delta^2 y_0 + \frac{q(q-1)(q-2)}{3!} \Delta^3 y_0$$

$$y(1,2273) \approx 0,106044 + q0,119671 + \frac{q(q-1)}{2!}(-0,005653) + \frac{q(q-1)(q-2)}{3!}0,000093. = 0,12236$$

Задание 2.2 (а,б).

Найти приближенное значение функции при заданном значении аргумента с помощью формул Ньютона.

Найти значение функции в точках x_1 = 1,210; x_2 = 1,2273; x_3 = 1,253; x_4 = 1,2638.

Решение: (б)

Точки $x_1 = 1,253$; $x_2 = 1,2273$ принадлежат концу интервала \Rightarrow воспользуемся формулой Ньютона для интерполирования назад:

$$y(x) \approx y_n + q\Delta y_{n-1} + \frac{q(q+1)}{2!}\Delta^2 y_{n-2} + \frac{q(q+1)(q+2)}{3!}\Delta^3 y_{n-3} + \dots$$

1.1)
$$q$$
 для точки $x=1,253$: $q=(1,255-1,253)/0,005$. $q=-0,4$

Дано:

Nº	\mathcal{X}_{i}	y_i
0	1,215	0,106044
1	1,22	0,113276
2	1,225	0,119671
3	1,23	0,125324
4	1,235	0,130328
5	1,24	0,134776
6	1,245	0,138759
7	1,25	0,142367
8	1,255	0,145688
9	1,26	0,148809

Nº	x_i	y_i	Δy	Δ^2 y	Δ^3 y
0	1,215	0,106044	0,007232	-0,000837	9,5E-05
1	1,22	0,113276	0,006395	-0,000742	9,3E-05
2	1,225	0,119671	0,005653	-0,000649	9,3E-05
3	1,23	0,125324	0,005004	-0,000556	9,1E-05
4	1,235	0,130328	0,004448	-0,000465	9E-05
5	1,24	0,134776	0,003983	-0,000375	8,8E-05
6	1,245	0,138759	0,003608	-0,000287	8,7E-05
7	1,25	0,142367	0,003321	-0,0002	-
8	1,255	0,145688	0,003121	-	-
9	1,26	0,148809	_	-	-

1.2) Вычисляем *y*(*x*):

$$y(x) \approx y_n + q\Delta y_{n-1} + \frac{q(q+1)}{2!}\Delta^2 y_{n-2} + \frac{q(q+1)(q+2)}{3!}\Delta^3 y_{n-3}$$
 $y(1,253) = 0,14439$

Nº	x_i	y_i	Δγ	Δ^2 y	Δ^3 y
0	1,215	0,106044	0,007232	-0,000837	9,5E-05
1	1,22	0,113276	0,006395	-0,000742	9,3E-05
2	1,225	0,119671	0,005653	-0,000649	9,3E-05
3	1,23	0,125324	0,005004	-0,000556	9,1E-05
4	1,235	0,130328	0,004448	-0,000465	9E-05
5	1,24	0,134776	0,003983	-0,000375	8,8E-05
6	1,245	0,138759	0,003608	-0,000287	8,7E-05
7	1,25	0,142367	0,003321	-0,0002	-
8	1,255	0,145688	0,003121	-	-
9	1,26	0,148809	-	-	-

2.1) q для точки x = 1,2638:

$$q = (1,26385 - 1,26)/0,005.$$

 $q = 1,76$

1.2) Вычисляем *y*(*x*):

$$y(x) \approx y_n + q\Delta y_{n-1} + \frac{q(q+1)}{2!}\Delta^2 y_{n-2} + \frac{q(q+1)(q+2)}{3!}\Delta^3 y_{n-3}$$
 $y(1,2638) = 0,15101$

Задание 2.3.

Для анализа зависимости объема потребления y (в тыс. руб.) от располагаемого дохода x (в тыс. руб.) в таблице представлена выборка объема n=10 (помесячно с сентября по июнь включительно). Определить МНК параметры линейной регрессии.

Дано:

x_i	21,4	21,8	22,0	22,6	24,0	24,4	24,6	25,6	27,2	28,0
y_i	20,4	21,0	21,6	22,0	23,0	23,4	23,8	25,0	26,4	26,0

Решение: (на примере табличного процессора Excel)

1) Ввести в таблицу согласно варианта эмпирические данные.

Nº	x_i	\mathcal{Y}_i
1	21,4	20,4
2	21,8	21
3	22	21,6
4	22,6	22
5	24	23
6	24,4	23,4
7	24,6	23,8
8	25,6	25
9	27,2	26,4
10	28	26

- 2) Вводим формулы и рассчитываем x_i^2 , $x_i y_i$.
- 3) Вводим формулу суммы и рассчитываем суммы по всем столбцам.

$$\sum_{i=1}^{n} x_{i} \quad \sum_{i=1}^{n} y_{i} \quad \sum_{i=1}^{n} x_{i}^{2} \quad \sum_{i=1}^{n} x_{i} y_{i}$$

Nº	x_i	y_i	x_i^2	$x_i y_i$
1	21,4	20,4	457,96	436,56
2	21,0	21	475,24	457,8
3	22	21,6	484	475,2
4	22,6	22	510,76	497,2
5	24	23	576	552
6	24,4	23,4	595,36	570,96
7	24,6	23,8	605,16	585,48
8	25,6	25	655,36	640
9	27,2	26,4	739,84	718,08
10	28	26	784	728
Σ	241,6	232,6	5883,68	5661,28

4) СЛУ для нахождения коэффициентов k и b

Записываем для рассчитанных значений

$$\begin{cases} k \cdot 5883,7 + b \cdot 241,6 = 5661,3 \\ k \cdot 241,6 + b \cdot 10 = 232,6. \end{cases}$$

$$\begin{cases} k \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i x_i, \\ k \sum_{i=1}^{n} x_i + b n = \sum_{i=1}^{n} y_i. \end{cases}$$

5) Ищем любым известным способом решение СЛУ (например, методом Крамера).

Δ - определитель, составленный из коэффициентов при неизвестных в СЛУ;

 $\Delta_1,\,\Delta_2$ - определители, составленные из определителя Δ заменой 1-го (2-го) столбца на столбец свободных членов;

$$k = \frac{\Delta_1}{\Delta} \qquad b = \frac{\Delta_2}{\Delta}$$

- 6) Записываем уравнение: $y = 0.89 \cdot x + 1.67$
- 7) Вычисляем расчетное y и невязки: $\widehat{y_i}$, δ_i , δ_i^2 . Строим график.

Опытные данные

Nº	x_i	y_i	
1	21,4	20,4	
2	21,8	21	
3	22	21,6	
4	22,6	22	
5	24	23	
6	24,4	23,4	
7	24,6	23,8	
8	25,6	25	
9	27,2	26,4	
10	28	26	

$\widehat{y_i}$	δ_i	δ_i^2
20,8	0,393	0,155
21,2	0,151	0,023
21,3	-0,271	0,073
21,9	-0,134	0,018
23,1	0,117	0,014
23,5	0,074	0,005
23,7	-0,147	0,022
24,5	-0,454	0,206
26,0	-0,424	0,180
26,7	0,691	0,477

7) Прогнозируем потребление при доходе 26 тыс. руб.:

24,8 тыс. руб.

Задание 2.4.

Приведены данные о результатах деятельности некоторой торговой сети: выручке — y, (тыс. руб.) и количестве покупателей — x, (тыс. чел.) за некоторый период. Определить МНК параметры квадратичной регрессии.

Дано:

X	i	4,25	4,3	4,4	4,42	4,45	4,5	4,53	4,55	4,6	4,62
y	i	525	538	555	559	564	567	565	568	571	573

Решение: (на примере табличного процессора Excel)

1) Ввести в таблицу согласно варианта эмпирические данные.

Nº	x_i	y_i
1	4,25	525
2	4,30	538
3	4,40	555
4	4,42	559
5	4,45	564
6	4,50	567
7	4,53	565
8	4,55	568
9	4,60	571
10	4,62	573

2) Вводим формулы и рассчитываем x_i^2 , x_i^3 , x_i^4 , $x_i^2 y_i$, $x_i y_i$.

Nº	x_i	y_i		x_i^2	x_i^3	x_i^4
1	21,4	20,4		18,06	76,77	326,25
2	21,0	21		18,49	79,51	341,88
3	22	21,6		19,36	85,18	374,81
4	22,6	22		19,54	86,35	381,67
5	24	23		19,80	88,12	392,14
6	24,4	23,4		20,25	91,13	410,06
7	24,6	23,8		20,52	92,96	421,11
8	25,6	25		20,70	94,20	428,59
9	27,2	26,4		21,16	97,34	447,75
10	28	26		21,34	98,61	455,58
Σ	44,62	5585	ı	199,2	890,1	3979,8

$x_i^2 y_i$	$x_i y_i$		
2 231,25	9 482,81		
2 313,40	9 947,62		
2 442,00	10 744,80		
2 470,78	10 920,85		
2 509,80	11 168,61		
2 551,50	11 481,75		
2 559,45	11 594,31		
2 584,40	11 759,02		
2 626,60	12 082,36		
2 647,26	12 230,34		
24 936,4	111 412,4		

3) Вводим формулу суммы и рассчитываем суммы по всем столбцам.

- 4) СЛУ для нахождения коэффициентов a_2 , a_1 , a_0
- 2) Записываем для рассчитанных значений

$$\begin{cases} 10 \, a_0 + a_1 \cdot 44,62 + a_2 \cdot 199,2 = 5585 \\ a_0 \cdot 44,62 + a_1 199,2 + a_2 \cdot 890,1 = 24936,5 \\ a_0 \cdot 199,2 + a_1 \cdot 890,1 + a_2 \cdot 3979,9 = 11412,5 \end{cases}$$

$$\begin{cases} n a_0 + a_1 \sum_{i=1}^{n} x_i + a_2 \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i, \\ a_0 \sum_{i=1}^{n} x_i + a_1 \sum_{i=1}^{n} x_i^2 + a_2 \sum_{i=1}^{n} x_i^3 = \sum_{i=1}^{n} x_i y_i, \\ a_0 \sum_{i=1}^{n} x_i^2 + a_1 \sum_{i=1}^{n} x_i^3 + a_2 \sum_{i=1}^{n} x_i^4 = \sum_{i=1}^{n} x_i^2 y_i. \end{cases}$$

- 5) Ищем любым известным способом решение СЛУ. $a_2 = -337,3$; $a_4 = 3114,1$; $a_0 = -6616$.
- 6) Записываем уравнение:

$$y = -337,32x^2 + 3114,1x - 6616$$

7) Вычисляем расчетное y и невязки: $\widehat{y_i}$, δ_i , δ_i^2 . Строим график.

Nº	\mathcal{X}_{i}	y_i		$\widehat{y_i}$	δ_i	δ_i^2
1	4,25	525		531,4	6,438	41,441
2	4,30	538		543,1	5,070	25,705
3	4,40	555		561,3	6,280	39,438
4	4,42	559		564,1	5,113	26,145
5	4,45	564		567,9	3,858	14,880
6	4,50	567		572,8	5,750	33,063
7	4,53	565		574,9	9,877	97,549
8	4,55	568		576,0	7,957	63,322
9	4,60	571		577,5	6,480	41,990
10	4,62	573		577,6	4,617	21,319

7) Прогнозируем выручку при числе покупателей 4,35 тыс. чел.:

553 тыс. руб.