Part A - OPLIMIZETION Definitions The set of Subgradients Of F&V-18 GE Point GEV iss 2F(u)= 3geV/ +ve V8 F(v) ≥ F(4)+9 (v-4)} 1) Ut f(x)= {X' X00 1.1) Yes, F(x) is convex 1.2) a sub derivative function g for f . 2+(x) - 39EV | + VEV8+(v) ≥ +(x) +97(V-x)] g(x)∈2f(x) <>> +v∈V = f(v) ≥ f(x) + g(√(v-x) · For X < 08 g(x) = 2x, f(x) - x' · for Y < 0 8 f(1) = V2 g(x) ∈ ∂F(x) ⇒ +v∈V8 U2 = X2+2×(V-x) => +veV8 V= x = + 2xv-2x2 HYVEV8 NJ-SXN+SXZ 3 O € 4v ∈ V8 (V-X) 2 ≥ O Jans milia · For 1 = 08 F(v) = 2v g(x) ∈ ∂ ∈ (x) < > + ∨ ≥ 0 8 ∂ ∨ ≥ x² + 2x(v-x) → ∀v203 aV2 X²+axv-2x² €> ¥U≥08 X2-2XV+2V≥0 The Truck רויוםי

• For x > 08 g(x) = 2, f(x) = 2x- For V=08 F(V)= 2V 3(x)€3€(x) ←> +v>0 8 2V 2 2x+2(v-x) → Y v 20 8 2 V 2 2 X + 2 U - 2 X €> 4×203 020 mis nutile · For 1403 ((1)= V2 g(x) ∈ ∂ €(x) ←> + v · 0 8 V = 2x + 2(v-x) €> +v<03 V22 2×+2V-2× €> 4V <03 V2 - 2V ≥0 • for X=08 3(0)=0, f(0)=0 for V = 0 & F(V) = 2 V 3(X) € 2 € (X) <> + V ≥ 08 2 Y 2 O+ O(V-X) €> 413082120 / · for V=08 f(V)= V2 g(x)€2F(x) ←> +v c08 V2 20+0(V-x) ₩V 608 V2 20 g(x) = { g \in V | tvev8 f(v) = f(x) + g \(^{1}(v - x) \)? ी<u>ज्यवः</u> देवसा ट

1.3) N = 0.	25 , X.= -1.5 , 4	$(x) = \begin{cases} X^{1} & X < 0, \\ 2X & X < 20 \end{cases}$	g(x)= \ 2x
i X	i f(xi) o	0+(x _E) = 3(x _E) 0×	X:-X:-2-ng(x:-1)
1 -0	. 75 9/16 -	1.5	$X_1 = -1.5 - 0.25 \cdot (-3)$ $X_2 = -0.75 - 0.25(-1.5)$
	, , , ,	0.75	X ₃ = 0.375 - 0.25(-0.75)
Yes, th	e glgorithm will	converse to minimum.	0.5
		10 1-5 (c) o (-(x)).	
1.4) N-1		(x)= {X, X,0, (a)	
i Xa	; f(xi) <u>d</u>		(
2 1.4	5 % -	3	$X_1 = -1.5 - 2.(-3)$ $X_2 = 1.5 - 1(2)$
2 -0.	79		X ₃ = -0.5-2(-2)
3 0.		3	X4 = 0.5-2(2)
No, E	he algorithm	Will not Converge	bo minimum.

Part B- Regression X Y , H = 3 Wo + W. X + Wex 2 + W3 X 3 (Wa, W2, W3) EB 7 7 2.1) $\omega_0 = 0$, $\omega_1 = 2$, $\omega_2 = 0$, $\omega_3 = 1 \Rightarrow h(x) = 2x + x^3$ h(0) = 0+0=0 h(1) = 2+1=3 V h(a)=4+8=12 V 2.2) A simple quadratic Polynomial that Fits the data perfectly8 $h(x) = 3x^2$ h(0)=0 V h(2)=3 V h(2)=12 2.3) MSE8 L(W) = \$ 11 XW-411,2 200,000 CUIRNIA CUIR 3- R= MX 1961 Q= 112- MX 11 Cl 9-0-(w) Yar su moisa. 2.4) casculate L(w) for J=6x-L $W = \begin{pmatrix} -1 \\ 6 \end{pmatrix} \qquad X = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 2 & 2 \end{pmatrix}, \quad \mathcal{Y} = \begin{pmatrix} 0 \\ 3 \\ 12 \end{pmatrix}$ $\frac{L(\omega)}{3} = \frac{1}{3} \left\| \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 6 \end{pmatrix} - \begin{pmatrix} 0 \\ 3 \\ 12 \end{pmatrix} \right\|_{2}^{2} = \frac{1}{3} \left\| \begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix} \right\|_{2}^{2}$ $=\frac{1}{3}\left\|\begin{pmatrix} -2\\ 2\\ -1 \end{pmatrix}\right\|_{2}^{2}=\frac{1}{3}\cdot\left((-2)^{2}+(-2)^{2}+(-1)^{2}\right)=\frac{1}{3}\left(1+4+1\right)=\frac{2}{3}$

Part C - Bosting DILLIBUR IS DOCISION SAMPS DE SHOW DILL DBLE (3 CZZ SUGAS GI OILS C-O BOILS C-O. MACIUA CIBS, VOIL SYNIN 2016 GOBS DEGI, 15573 IN GOODAN DEGI BIDGEGG GOBG. (168 20 25 (12 1690 21 B) BG. KCINN B.

> · 6400130 (1961/10 CV) (c) 375/16/1 (14) (14) בכתו החבריצ 8,180 G117 CD1815 בירון - סיווג כחיובי

> > 42 Les ravil C1 2016 28 0 (1,0)

ink orne do sion

1) 1/1/2 / 1/2 / 1/2 / 1/2.

12 6, 2 July 19 61 P , pyre perio serie

<->1 <->6 prived nations

(a)

Pare 0 - Perceptron 5) If the data is separable, by theorem from class iz will converge. Let there be neth, >0. we'll denote the w' at the t update 958 $\omega_t^2 = \{\omega_{t-1} + \eta_t y_t \times_t \quad t > 0 \}$ $(x,y)_t$ is the undated t sample! $= \sum_{n=1}^{2} W_{\varepsilon}^{2} = \sum_{n=1}^{2} N_{\varepsilon} X_{n} = N_{\varepsilon} \sum_{n=1}^{2} J_{n} X_{n}$ $J_{\varepsilon}^{2} K_{\varepsilon} W_{\varepsilon}^{2} = N_{\varepsilon} \sum_{n=1}^{2} J_{n} X_{n}$ $J_{\varepsilon}^{2} K_{\varepsilon} W_{\varepsilon}^{2} = N_{\varepsilon} \sum_{n=1}^{2} J_{n} X_{n}$ נוכיח באנדוק ציהו בכל נקודה ל, המסוואם העתקבלם מ-שע עצם שם ליתן הכיון וניספעום בה אם כה. COD (1815/568 2016 0=7 MULINA 0= 2M= 2 M 18 d (MOID) העתקפוים עהם עצבים לאחתו הכיוון ומסכטים צה דם בה. UN CAISHEUS CEDS C- 7-7 LINGUS CINUISON 1-10170 MECIDO ליתן רכון וניסכעים בה שם כה. וושת הדב מתקיים W== n= Z Jnxn, W== n= Z Jnxn 85-9 LYSELUS CASCII C-78 DUNAY 190 (MORES A 85 CV (1000M SV, 200 SV, (1005/ 16 MOCK V-5818MMS בררי ני בצבון ועפצע שמור אותר צבוחני (אל יא). $W_t^2 = W_{t-1}^2 + N_{t}X_tY_t = N_{t}Z_{N-1}^{t}Y_nX_n$ 5) Missell Carps, 2 W= = W2 + N2 Xegt = N2 C ynxh $\Rightarrow Sign\left(w_{i}^{T}X_{i}\right) = Sign\left(n_{z} \frac{z}{z} y_{n} X_{n}\right) \times z = Sign\left(\frac{z}{n} y_{n} X_{n}\right) \times z = Sign\left(\frac{z}{n} y_{n} X_{n}\right) \times z$

sign (n2ZgnXn) XE)												
						·)(أداء	lu, 2	d	80W K	אקצר ל	، دد	65) \X
<u>.</u> ින්	20	35	OCIMA	on (ki)	: 1mg	DAPSY	१ ७५॥	011	F-D 3	8320	(cb	שא <─
W37	, N	3-(.r.	NO. (?	<u>ک</u> م,	(, sa	5 pm/sc	א יצ	¥1)C	5756	+	(Sa)	JUFN
										.795	\\ \mathcal{I}_l	שויעכים