Wydział:	Imię i nazwisko: Rafał Grabiański Zbigniew Królikowski		Rok:	Grupa:	Zespół:
WIEiT			II	7	7
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Kriogenika			Nr ćwiczenia: 113	
Data wykonania:	Data oddania:	Zwrot do poprawy:	Data oddania:	Data zaliczenia:	OCENA:
2.12.2014	9.12.2014				OODINI.

1 Cel ćwiczenia

Celem ćwiczenia było wyznaczenie ciepła parowania ciekłego azotu oraz zależności temperatury wrzenia od ciśnienia. Mieliśmy także dokonać obserwacji zestalenia ciekłego azotu przy obniżonym ciśnieniu i ustalić położenie punktu potrójnego.

2 Wyniki pomiarów

p [atm.]	Opór $[\Omega]$	Temperatura T [K]	Opór $[\Omega]$	Temperatura T [K]	Średnia T [K]
1.1	20.8	78.548984064	20.8	78.548984064	78.548984064
1.2	21	79.0259809711	21	79.0259809711	79.0259809711
1.3	21.2	79.5029778782	21.3	79.7414763318	79.622227105
1.4	21.5	80.2184732389	21.6	80.4569716924	80.3377224656
1.5	21.8	80.9339685995	21.9	81.1724670531	81.0532178263
1.6	22.1	81.6494639602	22.1	81.6494639602	81.6494639602
1.7	22.2	81.8879624137	22.3	82.1264608673	82.0072116405
1.8	22.6	82.8419562279	22.7	83.0804546815	82.9612054547
1.9	22.7	83.0804546815	22.9	83.5574515886	83.318953135
2	22.9	83.5574515886	23	83.7959500421	83.6767008153

Tabela 1: Wartości temperatury wrzenia dla ciśnień powyżej ciśnienia atmosferycznego

p [atm.]	Opór $[\Omega]$	Temperatura [K]
0.9	20.1	76.8794948892
0.8	19.6	75.6870026214
0.7	19.2	74.7330088072
0.65	18.9	74.0175134466
0.6	18.7	73.5405165395
0.5	18.2	72.3480242717
0.45	17.9	71.6325289111
0.4	17.6	70.9170335504
0.3	16.9	69.2475443756
0.2	15.8	66.6240613865

Tabela 2: Wartości temperatury wrzenia dla ciśnień poniżej ciśnienia atmosferycznego.

Temperatura zestalania azotu		
Opór [Ω] 14.3		
Temperatura [K] 63.1		

Najniższa uzyskana temperatura		
Opór [Ω] 10.9		
Temperatura [K] 54.9		

Tabela 3: Temperatura zestalenia azotu oraz najniższa uzyskana temperatura

Napięcie zasilacza [V] :	6
Natężenie zasilacza [A]:	0.36

Tabela 4: Parametry prądu dla włączonego zasilacza

Czas opadania poziomu azotu dla wyłączonego zasil	acza [s]:	502
Czas opadania poziomu azotu dla włączonego zasila	acza [s]:	287

Tabela 5: Czasy opadnięcia poziomu azotu

Średnica wewnętrza kriostatu [mm]:	15
Wysokosc slupka: [mm]	70
Objetosc slupka: $[mm^3]$:	49480.0842940392
Masa [g]:	39.9799081096

Tabela 6: Dane dotyczące mierzonego spadku poziomu cieczy w kriostacie

3 Opracowanie wyników

3.1 Wyznaczenie zależności temperatury wrzenia od ciśnienia

Na podstawie wykonanego doświadczenia uzyskaliśmy następujące temperatury:

- Wrzenie pod ciśnieniem atmosferycznym: 77.3 K
- \bullet Temperatura punktu potrójnego $T_p\colon 63.0~\mathrm{K}$
- Temperatura topnienia: 54.9 K

Wykonaliśmy również wykres zależności temperatury od ciśnienia. Dodaliśmy do wykresu regresję logarytmiczną. Niepewność pomiaru ciśnienia wynosiła 0.05 atm.

Rysunek 1: Wykres zależności temperatur wrzenia od ciśnienia

3.2 Obliczenie wartości ciepła parowania pod ciśnieniem atmosferycznym

Równanie Clausiusa-Clapeyrona ma postać:

$$\frac{dT}{dp} = \frac{T(V_2 - V_1)}{Q} \tag{1}$$

gdzie: Q - ciepło przemiany

T - temperatura przejścia

 $\frac{dT}{dp}$ - pochodna zależności temperatury przejścia od ciśnienia V_2-V_1 - różnica objętości faz

Objętość właściwą azotu ciekłego otrzymujemy natychmiast z zależności:

$$V_1 = \frac{m}{\rho} = \frac{1000g}{0.808 \frac{g}{cm^3}} \approx 1238cm^3 \tag{2}$$

Objętość właściwa azotu w stanie gazowym została wyliczona z równania stanu gazu doskonałego przekształconego do postaci:

$$V_2 = \frac{mRT}{Mp} = \frac{1000g \cdot 8.31 \frac{J}{mol \cdot K} \cdot 77.3K}{28 \frac{g}{mol} \cdot 1.02 \cdot 10^5 Pa} \approx 0.225 m^3$$
 (3)

Natomiast wartość pochodnej $\frac{dT}{dp}$ wyznaczymy analitycznie:

Mając do dyspozycji wzór regresji logarytmicznej $f(x) = 7.6079 \ln(x) - 9.793$. Obliczamy pochodną z funkcji: $f'(x) = \frac{7.6079}{x}$, która w punkcie x = 101325 Pa (dla p = 1 atm) wynosi 7.51 · 10⁻⁵ $\frac{K}{Pa}$ Teraz pozostaje rozwiazać równanie (1):

$$Q = T(V_2 - V_1) \cdot \frac{1}{\frac{dT}{dp}} = 77.3K \cdot (0.225m^3 - 0.001238m^3) \cdot \frac{1}{7.51 \cdot 10^{-5} \frac{K}{Pa}} = 2.303 \cdot 10^5 \frac{J}{kg} = 230.3 \frac{J}{g}$$
 (4)

3.3 Pomiar ciepła parowania

Na początku obliczmy masę słupa o wysokości wybranej przez nas: $\Delta h = 70mm$:

$$m = V \cdot \rho = 49.5 cm^3 \cdot 0.000808 \frac{g}{cm^3} \approx 40.0 g$$
 (5)

By obliczyć ciepło parowania należy rozwiązań następujący układ równań:

$$\begin{cases} P_s t_1 = \Delta m_1 Q_p \\ (P_s + P) \cdot t_2 = \Delta m_2 Q_p \end{cases}$$
 (6)

W naszym przypadku Δm_1 oraz Δm_2 to ta sama wartość wyliczona powyżej.

Po przekształceniach i wstawieniu danych uzyskanych w drugiej części eksperymentu otrzymujemy $Q_p = 126 \frac{J}{g}$

\mathbf{W} nioski