Optimisation

Devoir surveillé 9 mars 2018 Durée : 2 heures

Avertissement : Le barème est donné à titre indicatif.

Exercice 1(4 pts) Problème de modélisation :

Dans un bureau de poste à Lille on n'a que des employés à temps plein. Le nombre d'employés requis par jour dépend de la journée (voir le tableau ci-dessous). Il faut que chaque employé travaille cinq jours consécutifs suivi par deux jours de congé. Le directeur du bureau de poste veut déterminer le nombre minimal d'employés à temps plein qu'il doit recruter afin qu'il y ait suffisamment d'employés disponibles tous les jours.

Quel problème d'optimisation doit il résoudre ? Commencer par définir les variables qui interviennent.

	nombre d'employés requis
lundi	17
mardi	13
mercredi	15
jeudi	19
vendredi	14
samedi	16
dimanche	11

Exercice 2(5 pts) Problème d'optimisation sans contraintes : On considère sur \mathbb{R}^2 la fonction

$$f(x) = x_1^4 - 6x_1^2x_2^2 + 4x_2^3$$

- 1. Déterminer les candidats à minimum local.
- 2. Y-a-t-il des minimums locaux ? Justifier votre réponse.
- 3. La fonction a-t-elle un minimum global? Pourquoi?

Exercice 3(11 pts) Problème d'optimisation avec contraintes: On considère le problème (P) $\min_{x \in \mathcal{A}} f(x)$ avec

$$f(x) = \left(\prod_{i=1}^{n} x_i\right)^{-2}$$
 et $\mathcal{A} = B(a, r) \cap \mathcal{H}(a, b)$,

où $n>1,\,a=(1,1,\ldots,1)^T\in\mathbb{R}^n,\,r=1/2,\,B(a,r)=\{x\in\mathbb{R}^n:\|x-a\|\leqslant r\}$ est la boule dans \mathbb{R}^n centrée au point a et de rayon r, b = n + 1/2, et $\mathcal{H}(a,b) = \{x \in \mathbb{R}^n : a^T x \leq b\}$ est le demi-espace dans \mathbb{R}^n .

1. Vérifier que la fonction f est continue sur A. Remarque: f est continue au point $x_* \in A$ $si \lim_{x \to x_*} f(x) = \ell \in \mathbb{R}$ et $\ell = f(x_*)$; il suffira donc de démontrer que pour tout $x \in \mathcal{A}$, $f(x) \neq \infty$.

D'abord on montrera que (P) est un problème d'optimisation strictement convexe :

- 2a. Soient $C_1, C_2 \subset \mathbb{R}^n$ deux ensembles convexes. Montrer que l'intersection $C_1 \cap C_2$ est un convexe. En déduire que A est un convexe. Remarque : On admet sans démonstration que la boule et le demi-espace sont des convexes.
- 2b. Soient

$$y = \left(\frac{2}{x_1}, \dots, \frac{2}{x_n}\right)^T \in \mathbb{R}^n \text{ et } D = \operatorname{diag}\left(\frac{2}{x_1^2}, \dots, \frac{2}{x_n^2}\right) \in \mathcal{S}_n(\mathbb{R}).$$

Montrer que le gradient de f peut s'ecrire sous la forme $\nabla f(x) = -f(x) \times y^T$. Puis montrer que la matrice hessienne peut s'écrire sous la forme $\nabla^2 f(x) = f(x) \times [yy^T + D]$.

- 2c. Montrer que $\nabla^2 f(x)$ est définie positive sur \mathcal{A} et en déduire que f est strictement convexe sur \mathcal{A} .
- 2d. Conclure.

Puis on étudiera l'existence et l'unicité d'une solution optimale :

3. Montrer que (P) possède une et une seule solution optimale.

Finalement on résoudra le problème.

- 4a. Faire une représentation graphique du problème pour le cas particulier où n=2: l'ensemble admissible \mathcal{A} et les courbes de niveaux $C_k := \{x \in \mathbb{R}^2 : f(x) = k\}$ avec $k \in \{1/4, 1, 4\}$.
- 4b. Montrer que les contraintes sont qualifiées en tout point admissible.
- 4c. Ecrire les conditions KKT pour le problème (P).
- 4d. Montrer que $\bar{x} = (\bar{x}_1, \dots, \bar{x}_n)^T$, avec $\bar{x}_i = 1 + \frac{1}{2n}$, $1 \leq i \leq n$, est un point admissible vérifiant les conditions KKT.
- 4e. Conclure.