S 6 PURE MATHEAMTICS MARKING GUIDE EXTERNAL MOCKS

QN	SOLUTION	COMMENT
1.	$2+2\times(1.1)+2\times(1.1)^2+\dots \ a=2,\ d=1.1$	
	$\frac{2(1.1^n - 1)}{1.1 - 1} = 1000, \mathbf{M1} 1.1^n = 51, \mathbf{M1}$	
	$n = \frac{\log 51}{\log 1.1} = 41.25$ $m = 42$	
2.	$3\cos\theta(2\tan\theta - 1) + 2(2\tan\theta - 1) = 0$ M1	
	$(3\cos\theta + 2)(2\tan\theta - 1) = 0$, M1	
	$\cos\theta = -\frac{2}{3}, \theta = \pm 131.81^{\circ}$ A1	
	$\tan \theta = \frac{1}{2}$ A1 $\theta = 26.57^{\circ}, -153.43^{\circ}$ A1	
3.	$2y + 3x = 5 \times 2 4y + 6x = 10$	
J.	The point of intersection: $3y-2x=14 \times 3$, $9y-6x=42$. M1	
	$13y = 52$, $y = 4$ and $x = -1$ so point is $\begin{pmatrix} -1, & 4 \end{pmatrix}$	
	For the line $y=3x-5$, $m=3$ B1so equation is	
	$\frac{y-4}{x1} = 3$, M1 $y-4=3x+3$, $3x-y+7=0$ A1	
	, ,	

4.	$y = (4x+5)^{\frac{1}{2}}, \frac{dy}{dx} = \frac{1}{2}(4x+5)^{-\frac{1}{2}}(4) = \frac{2}{(4x+5)^{\frac{1}{2}}}, M1, A1$
	$\frac{dy}{dx}\Big _{\chi=1} = \frac{2}{3}$ M1 $\frac{y-3}{x-1} = \frac{2}{3}$, M1 $3y = 2x + 7$ A1
5.	$\mathbf{OM} = \frac{\lambda \mathbf{q} + \mu \mathbf{p}}{\mu + \lambda} \text{ for } \mathbf{PM} : \mathbf{MQ} = -1:2 \text{ where } \lambda = -1 \text{ and } \mu = 2$
	$\mathbf{OM} = \frac{-1 \binom{1}{0} + 2 \binom{4}{2}}{-1 + 2} = 7\mathbf{i} + 4\mathbf{j} + 8\mathbf{k}, \mathbf{M1 \ M1 \ M1A1} \text{ thus the}$
	coordinates are $M(7, 4, 8)$ A1
6.	$(2-3x+x^2)(1+2x)^4$
	$(1+2x)^4 = 1+4(2x)+6(2x)^2+$ M1
	$=1+8x+24x^2+$ A1
	$(2-3x+x^2)(1+8x+24x^2)=48x^2-24x^2+x^2$ M1 M1
	$=25x^2$
	So the coefficient of x^2 is 25 .
7.	$y + \partial y = \cos 2(x + \partial x)$
	$\partial y = \cos 2(x + \partial x) - \cos 2x$ M1
	$\frac{\partial y}{\partial x} = \frac{-2\sin 2x \sin \partial x}{\partial x}$
	$\lim_{\partial x \to 0} \sin \partial x \approx \partial x (rads)$ M1
	$= \frac{-2\sin 2x \cdot \partial x}{\partial x} $ M1
	$\therefore \frac{d}{dx}(\cos 2x) = -2\sin 2x$
8.	Let the depth of water be $x cm$ and radius be $r cm$

$$\tan 30^\circ = \frac{r}{x} \Rightarrow r = \frac{x}{\sqrt{3}}$$
. Volume of water in the

cone is
$$V = \frac{1}{3}\pi r^2 x = \frac{1}{9}\pi x^3$$
, thus $\frac{dV}{dx} = \frac{1}{3}\pi x^2$, Multiplication but

$$\frac{dV}{dt} = 5$$
 therefore $5 = \frac{1}{3}\pi x^2 \times \frac{dx}{dt}$, M1

so
$$\frac{dx}{dt} = \frac{15}{\pi x^2}$$
 M1

when
$$x = 10 \text{ cm}$$
, $\frac{dx}{dt} = \frac{15}{\pi (10)^2} = \frac{3}{20\pi} \text{ cm s}^{-1}$

$$\frac{dx}{dt} = 0.0477cm \ s^{-1}$$

9. Midpoint of AB = (4, 2), M1 mid point BC = (8, 4) M1

Gradient of
$$AB = \frac{6 - -2}{7 - 1} = \frac{8}{6} = \frac{4}{3}$$
, **M1**

Gradient of
$$BC = \frac{2-6}{9-7} = \frac{-4}{2} = -2$$
 M1

Gradient of normal to $AB = \frac{-3}{4}$, M1

Grad of normal to $BC = \frac{1}{2}$ M1

Equation of normal through (4, 2) is $\frac{y-2}{x-4} = \frac{-3}{4}$,

$$4y - 8 = -3x + 12$$
 to get $4y + 3x = 20$...(i) **A1**

Equation of normal through (8, 4) is $\frac{y-4}{x-8} = \frac{1}{2}$,

$$2y - 8 = x - 8$$
 to get $x = 2y$...(ii) **A1**

	4y + 6y = 20, so $y = 2$, $x = 4$ $M1$ so the point of intersection $(4, 2)$ $A1$	
	A(1, -2)	
	$r = \sqrt{(4-1)^2 + (2-2)^2} = \sqrt{9+16} = 5$ A1	
	So equation of circle is $(x-4)^2 + (y-2)^2 = 5^2$,	
	$x^2 + y^2 - 8x - 4y - 5 = 0$ A1	
10a)	$\cos t + \cos 2t = 0$, $2\cos^2 t + \cos t - 1 = 0$, M1	
	• • •	
	$2\cos^2 t + 2\cos t - \cos t - 1 = 0$ M1	
	$2\cos t(\cos t + 1) - 1(\cos t + 1) = 0$	
	$(2\cos t - 1)(\cos t + 1) = 0$ (2\cdot \cdot 1)(\cdot \cdot 1) = 0	
	M1	
	$\cos t = \frac{1}{2}, \cos t \neq -1$	
	$t = \frac{\pi}{3} s $ A1	
ii)	$v = \frac{ds}{dt} = -\sin t - 2\sin 2t ,$	
	$v = -\sin\frac{\pi}{3} - 2\sin\frac{2\pi}{3}, = -\frac{\sqrt{3}}{2} - \frac{2\sqrt{3}}{2} = -\frac{3\sqrt{3}}{2} m s^{-1}$ M1 A1	
iii)	$-\sin t - 2\sin 2t = 0, -\sin t - 4\sin t \cos t = 0$	
	$-\sin t (1+4\cos t) = 0$, $\sin t \neq 0$, $\cos t = -\frac{1}{4}$ M1	
	$a = \frac{dv}{dt} = -\cos t - 4\cos 2t , \mathbf{M1}$	
	$a = -\left(-\frac{1}{4}\right) - 4\left(2\left(-\frac{1}{4}\right)^2 - 1\right)$, M1 $a = 3\frac{3}{4} m s^{-2}$ A1	
11a)	$y = 72x + 3x^2 - 2x^3$	*Differentiating
	$\frac{dy}{dx} = 72 + 6x - 6x^2$, M1 for max $\frac{dy}{dx} = 0$	*Solving

	So, $72 + 6x - 6x^2 = 0$, thus $x^2 - x - 12 = 0$	
	$(x-4)(x+3)=0$ M1 so $x=4$, $x \ne -3$ A1 for both	
	$\frac{d^2y}{dx^2} = 6 - 12x$	
	d^2y 42 \ 0 diagond	
	$\left \frac{d^2 y}{dx^2} \right _{x=-3} = 42 > 0 \text{ discard}$	
	$\left \frac{d^2 y}{dx^2} \right _{x=4} = -42 < 0$ so $x = 4$ will give the max. B1	
	13. – 4	
	Thus	
- •	For $x=4$, $y=288+48-128=208$ A1 is the maximum profit	
b)	Intercepts $x = 0$, $y = 0$ so $(0, 0)$	
	Turning points $\frac{dy}{dx} = 2x + 4$, so $x = -2$, $y = -4$ and	
	(-2, -4)min M1 for intercepts and t.p	
	Description of the second of t	
	$= \int_{-2}^{0} x^2 + 4x dx \mathbf{M1} = \left[\frac{x^3}{3} + 2x^2 \right]_{-2}^{0} = \left((0) - \left(-\frac{8}{3} + 8 \right) \right) = -\frac{16}{3} \mathbf{A1}$	
	$= \int_0^2 x^2 + 4x dx \mathbf{M1} = \left[\frac{x^3}{3} + 2x^2 \right]_0^2 = \left(\left(\frac{8}{3} + 8 \right) - (0) \right) = \frac{32}{3} \mathbf{A1}$	
	Total area is $\frac{16}{3} + \frac{32}{3} = 16 sq units \mathbf{A1}$	
12a)	$4\cot^2 2x - 4\cot 2x + 1 = 3(\cot^2 2x + 1) - 6$ M1	

 $\cot^2 2x - 4\cot 2x + 4 = 0$, **M1**

	$(\cot 2x - 2)(\cot 2x - 2) = 0$	
	$\cot 2x = 2$, $\tan 2x = \frac{1}{2}$ A1	
	$2x = 26.6^{\circ}, 206.6^{\circ}, 386.6^{\circ}$ M1 for all the angles	
	$x = 13.3^{\circ}, 103.3^{\circ}, 193.3^{\circ}$ A1 for all the angles	
b)	$10\sin x \cos x + 12\cos 2x = 5\sin 2x + 12\cos 2x$	*identify the double
	Let $5\sin 2x + 12\cos 2x \equiv R\sin 2x\cos \alpha + R\cos 2x\sin \alpha$ B1	angle
	$\Rightarrow 5 = R\cos\alpha$, $12 = R\sin\alpha$, thus $\tan\alpha = \frac{12}{5}$ M1	
	$\therefore \alpha = 67.38^{\circ} \text{ A1}$	
	$R = \sqrt{5^2 + 12^2} = 13$ M1	
	$5\sin 2x + 12\cos 2x = 13\sin(2x + 67.38^{\circ})$ A1	
	$10\sin x \cos x + 12\cos 2x + 7 = 0$, $13\sin(2x + 67.38^{\circ}) = -7$	
	$2x + 67.38^{\circ} = 212.59^{\circ}, 327.41^{\circ}, \mathbf{M1}$	
	$2x = 145.21^{\circ}, 260.03^{\circ}$	
	Thus, $x = 72.61^{\circ}$, 130.02° A1	
13a)	$ \overline{\mathbf{A}\mathbf{B}} = \overline{\mathbf{O}\mathbf{B}} - \overline{\mathbf{O}\mathbf{A}} = \begin{pmatrix} 3 \\ \alpha \\ -3 \end{pmatrix} - \begin{pmatrix} 2 \\ 13 \\ -5 \end{pmatrix} = \begin{pmatrix} 1 \\ \alpha - 13 \\ 2 \end{pmatrix} $	
	$\begin{bmatrix} 1\mathbf{B} & 0\mathbf{B} & 0\mathbf{I} \\ -3 \end{bmatrix} & \begin{bmatrix} 15 \\ -5 \end{bmatrix} & \begin{bmatrix} \mathbf{a} & 15 \\ 2 \end{bmatrix} & \mathbf{M1} \end{bmatrix}$	
	$ \bar{\mathbf{AC}} = \bar{\mathbf{OC}} - \bar{\mathbf{OA}} = \begin{pmatrix} 6 \\ -7 \\ 8 \end{pmatrix} - \begin{pmatrix} 2 \\ 13 \\ 5 \end{pmatrix} = \begin{pmatrix} 4 \\ -20 \\ 8 & 5 \end{pmatrix} $	
	$\begin{pmatrix} p \end{pmatrix} \begin{pmatrix} -3 \end{pmatrix} \begin{pmatrix} p-3 \end{pmatrix}$	
	$ \overline{\mathbf{AB}} = \lambda \overline{\mathbf{AC}}; \begin{pmatrix} 1 \\ \alpha - 13 \\ 2 \end{pmatrix} = \lambda \begin{pmatrix} 4 \\ -20 \\ \beta - 5 \end{pmatrix} $	
	$1 = 4\lambda$, $\lambda = \frac{1}{4}$, M1 $\alpha - 13 = \frac{1}{4}(-20)$, M1 $\alpha = 8$, A1	
	$\frac{1}{4}(\beta - 5) = 2$, $\beta = 13$	
b)		
	OA.OB = $ \mathbf{OA} \mathbf{OB} \cos\theta$, $(4\mathbf{i} + 3\mathbf{j}) \cdot (\mathbf{i} + t\mathbf{j}) = \sqrt{4^2 + 3^2} \sqrt{1 + t^2} \left(\frac{2}{\sqrt{5}}\right)$	
	I.	i .

	$(4+3t)=5(\sqrt{1+t^2})(\frac{2}{\sqrt{5}})$, M1 $(4+3t)^2=25(1+t^2)(\frac{4}{5})$	
	$16 + 24t + 9t^2 = 20 + 20t^2$, $11t^2 - 24t + 4 = 0$,	
	$11t^2 - 22t - 2t + 4 = 0$	
	$11t(t-2)-2(t-2)=0$ $(11t-2)(t-2)=0$, $t=\frac{2}{11}$, $t=2$ A1 A1	
14a)	let $z = 2 - 3i$, $(z - 2)^2 = (-3i)^2$, $z^2 - 4z + 13 = 0$ M1	
	$z^{3} + pz^{2} + qz + 13 \equiv (z^{2} - 4z + 13)(z + A)$	
	$z^{3} + pz^{2} + qz + 13 \equiv z^{3} + (A-4)z^{2} + (13-4A)z + 13A$ M1	
	13A = 13, A = 1	
	p = A - 4 = 1 - 4 = -3 A1	
	q = 13 - 4A = 13 - 4 = 9 A1	
	Hence the other roots are: -1 , $\mathbf{A1}$ $2+3i$ $\mathbf{A1}$	
b)	(x+iy)(x-iy)-2(x+iy)+2(x-iy)=5-4i M1	
	$x^2 + y^2 - 4yi = 5 - 4i$ M1	
	4y = 4, $y = 1$ A1	
	$x^2 + 1 = 5$ $x^2 = 4$ $x = \pm 2$ M1, A1	
	z = 2 + i, $z = -2 + i$ A1	
15a)	$x \log 10 - x \log 5 = \log 6 - \log(1 + 2^{x})$	
	$\log \frac{10^x}{5^x} = \log \frac{6}{1+2^x}$, M1 $2^x = \frac{6}{1+2^x}$ M1	
	$y = 2^x$, $y = \frac{6}{1+y}$, $y^2 + y - 6 = 0$, M1	
	(y+3)(y-2)=0, M1	
	$y = -3$, $y = 2$, $2^{x} = -3$ Discard, B1 $2^{x} = 2$, $x = 1$ A1	
	y c, y = 1 = 2 = 2 = 2 = 2 = 1111	

	P(5) = 125 - 95 - 30 = 0, M1 therefore	
	y = 5 is a root	
	1 0 -19 -30	
	$\frac{0}{1} \frac{5}{5} \frac{25}{6} \frac{30}{0}, (y-5)(y^2+5y+6)=0 \mathbf{M1}$	
	1 5 6 0	
	(y-5)(y+2)(y+3)=0, $y=5$, $y=-2$, $y=-3$ A1, A1	
	$5^{x} = 5, x = 1, A1$ $5^{x} \neq -2, 5^{x} \neq -3 \text{ discard } B1$	
16a)	$\frac{d^2y}{dx^2} = 24x^2 - 2 \qquad \frac{dy}{dx} = \int 24x^2 - 2 dx$	
	$\frac{dy}{dx} = 8x^3 - 2x + c$, M1 $5 = 8 - 2 + c$, $c = -1$	
	$\frac{dy}{dx} = 8x^3 - 2x - 1 \qquad y = 2x^4 - x^2 - x + k$	
	4 = 2 - 1 - 1 + k, $k = 4$	
	$y = 2x^4 - x^2 - x + 4$ A1	
b)	$x\frac{dy}{dx} = 1 - y^2$, by separating the variables, $\int \frac{dy}{1 - y^2} = \int \frac{dx}{x}$	
	Let $\frac{1}{(1+y)(1-y)} = \frac{A}{1+y} + \frac{B}{1-y}$ M1	
	$\Rightarrow 1 \equiv A(1-y) + B(1+y)$	
	Solving, $A = B = \frac{1}{2}$ A1	
	Thus $\frac{1}{2} \int \frac{1}{(1+y)} + \frac{1}{(1-y)} = \int \frac{dx}{x}$	
	$\frac{1}{2}In\left(\frac{1+y}{1-y}\right) = Inx + c$, M1 $x = 2$, $y = 0$, $c = -In2$ A1	
	$In\left(\frac{1+y}{1-y}\right) = In\frac{x^2}{4}, \left(\frac{1+y}{1-y}\right) = \frac{x^2}{4}$	
	$4+4y=x^2-x^2y$, $y=\frac{x^2-4}{x^2+4}$	