

第三章:命题逻辑的推理理论

- □主要内容
- 推理的形式结构
- 自然推理系统P
- □本章与其他各章的联系
- ●本章是第五章的特殊情况和先行准备

第一节: 推理的形式结构

- □ 何为推理?何为证明?
 - 例子:

 - (2) 若今天是星期一,则明天是星期二
 - (3) 若 $A \cup C \subseteq B \cup D$,则 $A \subseteq B \perp C \subseteq D$
- □ 推理(Inference) 从前提出发推出结论的思维过程 上例中, (1), (2)是正确的推理, 而(3)是错误的推理

- □逻辑(语义)蕴涵(<u>Logical Entailment</u>): 给定 **A**1,...,**A**k和**B**
 - ❖对任意赋值V:
 - 如果v(Ai)=T,则v(B)=T
 - 或者存在Aj, 使得v(Aj)=F
 - ❖称由前提A₁,...,Aょ推出结论B的推理是有效的
 - ❖B为有效结论
 - ❖符号: {*A*1,...,Ak} ⊨ B
- □讨论
 - ❖蕴涵跟蕴涵式的关系?
 - ❖注意: 推理正确不能保证结论一定正确

□例子

p	q	$p \land (p \rightarrow q)$	q	$p \land (q \rightarrow p)$	q
F	F	F	F	F	F
F	T	F	T	F	T
T	F	F	F	T	F
T	T	T	T	T	T

□定理: $\{A_1,...,A_k\} \models B$ 当且仅当

 $A_1 \wedge ... \wedge A_k \rightarrow B$ 为重言式

证明 必要性: 任意V, 不会出现A:\...\A.为真且

B为假的情况,所以 $V(A_1 \land ... \land A_k \rightarrow B) = T$

充分性: 任意V, $V(A_1 \land ... \land A_k \rightarrow B) = T$

则或者: AIA...AAI和B同时为T

或者: A1A...Ak为假

所以**{A₁,...,A**ょ**}** ⊨ **B**

- □蕴涵元符号: ⇒
- □A₁∧..., Aょ⇒B 代表 {A₁,...,Aょ} ⊨ B
- □推理的形式结构
 - **❖**前提: **A**₁,...,**A**ょ
 - ❖结论: B
 - ❖推理的形式结构: A₁∧...∧A_k→B

回顾

- □逻辑(语义)蕴涵(<u>Logical Entailment</u>): 给定 **A**1,...,**A**k和**B**
 - ❖对任意赋值V:
 - 如果v(Ai)=T,则v(B)=T
 - 或者存在Aj, 使得V(Aj)=F
 - ❖称由前提A₁,...,Aょ推出结论B的推理是有效的
 - ❖B为有效结论
 - **❖**符号: {*A*1,...,Ak} ⊨ B
- □定理: $\{A_1,...,A_k\} \models B$ 当且仅当 $A_1 \land ... \land A_k \rightarrow B$ 为重言式

回顾

- □推理的形式结构
 - **❖**前提: **A**₁,...,**A**㎏
 - ❖结论: B
 - ❖推理的形式结构: A₁∧...∧A_k→B

- □ 判断推理是否正确方法
 - ① 真值表法
 - ② 等值演算法
 - ③ 主析取范式法

推理实例

例 判断下面推理是否正确

- (1) 若今天是1号,则明天是5号.今天是1号.所以,明天是5号.
- (2) 若今天是1号,则明天是5号.明天是5号.所以,今天是1号.

解 设p: 今天是1号,q: 明天是5号.

(1) 推理的形式结构: $(p \rightarrow q) \land p \rightarrow q$

用等值演算法

$$(p \rightarrow q) \land p \rightarrow q$$

$$\Leftrightarrow \neg((\neg p \lor q) \land p) \lor q$$

$$\Leftrightarrow \neg p \lor \neg q \lor q \Leftrightarrow 1$$

由定理3.1可知推理正确

推理实例

(2) 推理的形式结构: $(p \rightarrow q) \land q \rightarrow p$

用主析取范式法

$$(p \rightarrow q) \land q \rightarrow p$$

$$\Leftrightarrow (\neg p \lor q) \land q \to p$$

$$\Leftrightarrow \neg ((\neg p \lor q) \land q) \lor p$$

$$\Leftrightarrow \neg q \lor p$$

$$\Leftrightarrow (\neg p \land \neg q) \lor (p \land \neg q) \lor (p \land \neg q) \lor (p \land q)$$

$$\Leftrightarrow m_0 \lor m_2 \lor m_3$$

结果不含 m_1 ,故01是成假赋值,所以推理不正确

- □ 推理定律
- 推理定律——重言蕴涵式
- 重要的推理定律:

$$A \Rightarrow (A \lor B)$$
$$(A \land B) \Rightarrow A$$

附加律 化简律

例1:

如果谁骄傲自满,那么他就要落后;小张骄傲自满, 所以,小张必定要落后

$$(A \rightarrow B) \land A \Rightarrow B$$

假言推理

例2:

如果谁得了肺炎,他就一定要发烧;小李没发烧, 所以,小李没患肺炎

$$(A \rightarrow B) \land \neg B \Rightarrow \neg A$$

拒取式

□例3:

如果降落的物体不受外力的影响,那么,它不 会改变降落的方向;这个物体受到了外力的 影响,

所以,它会改变降落的方向

□例4:

如果赵某是走私犯,那么,他应受法律制裁; 经查明,赵某确实受到了法律制裁,

所以,赵某是走私犯

□例5:

我要么选择汤要么选择色拉;我不选择汤。 所以,我选择色拉

$$(A \lor B) \land \neg B \Rightarrow A$$

析取三段论

□例6:

如果我不能起床,则我不能上班。 如果我不能上班,则我不能得到报酬。 所以,如果我不能起床,则我不能得到报酬

$$(A \rightarrow B) \land (B \rightarrow C) \Rightarrow (A \rightarrow C)$$
 假言三段论 $(A \leftrightarrow B) \land (B \leftrightarrow C) \Rightarrow (A \leftrightarrow C)$ 等价三段论

□ 例7:

东方朔偷饮了汉武帝求得的据说饮了能够不死的酒, 汉武帝要杀他,他说:"如果这酒真能使人不死,那么 你就杀不死我;如果这酒不能使人不死(你能杀得死我) ,那么它就没有什么用处(不必杀我);这酒或者能使 人不死,或者不能使人不死;所以你或者杀不死我,或 者不必杀我。"

$$(A \rightarrow B) \land (C \rightarrow D) \land (A \lor C) \Rightarrow (B \lor D)$$
 构造性二难 $(A \rightarrow B) \land (\neg A \rightarrow B) \Rightarrow B$ 构造性二难 (特殊形式)

□例8:

If it rains, we will stay inside.

If it is sunny, we will go for a walk.

Either we will not stay inside, or we will not go for a walk.

Therefore, either it will not rain, or it will not be sunny.

$$(A \rightarrow B) \land (C \rightarrow D) \land (\neg B \lor \neg D) \Rightarrow (\neg A \lor \neg C)$$
 破坏性二难

- 普罗泰戈拉收了一名学生叫欧提勒士。普氏与他签订了这样一份合同:前者向后者传授辩论技巧,教他帮人打官司;后者入学时交一半学费,另一半学费则在他毕业后帮人打官司赢了之后再交。时光荏苒,欧氏从普氏那里毕业了。但他总不帮人打官司,普氏于是就总得不到那另一半学费。
- 普氏为了要那另一半学费,他去与欧氏打官司,并打着这样的如意算盘:

如果欧氏打赢了这场官司,按照合同的规定,他应该给我另一半学费。 如果欧氏打输了这场官司,按照法庭的裁决,他应该给我另一半学费。 欧氏或者打赢这场官司,或者打输这场官司。 总之,他应该付给我另一半学费。

但欧氏却对普氏说:

如果这场官司我打赢了,按照法庭的裁决,我不应该给您另一半学费。 如果这场官司我打输了,按照合同的规定,我不应该给您另一半学费。 我或者打赢这场官司,或者打输这场官司。 总之,我不应该付另一半学费

究竟谁的说法对呢?

□推理定律

证明:
$$(A \rightarrow B) \land (B \rightarrow C) \Rightarrow (A \rightarrow C)$$

 $((A \rightarrow B) \land (B \rightarrow C)) \rightarrow (A \rightarrow C)$
 $\Leftrightarrow ((\neg A \lor B) \land (\neg B \lor C)) \rightarrow (A \rightarrow C)$
 $\Leftrightarrow \neg ((\neg A \lor B) \land (\neg B \lor C)) \lor (A \rightarrow C)$
 $\Leftrightarrow ((A \land \neg B) \lor (B \land \neg C)) \lor (\neg A \lor C)$
 $\Leftrightarrow ((A \land \neg B) \lor (B \land \neg C)) \lor (\neg A \lor C)$
 $\Leftrightarrow ((A \land \neg B) \lor \neg A) \lor ((B \land \neg C) \lor C)$
 $\Leftrightarrow (\neg B \lor \neg A) \lor (B \lor C)$
 $\Leftrightarrow 1$

第二节: 自然推理系统P

- □ *自然演绎推理*:从一组已知为真的事实出发, 直接运用经典逻辑推理规则推出结论的过程
- □为什么要自然演绎(Natural Deduction)? 给出验证 $A_1 \land ... \land A_k \Rightarrow B$ 的推理过程
- □需要引入证明的概念
 - 一个描述推理过程的命题公式序列,其中的每个公 式或者是已知前提,或者是由前面的公式应用到推理 规则得到的结论
- □自然演绎模拟人类的推理

定义3.2 一个形式系统 I (Formal System) 由下面四个部分组成:

- (1) 非空的字母表,记作 A(I).
- (2) A(I) 中符号构造的合式公式集,记作 E(I).
- (3) E(I) 中一些特殊的公式组成的公理集,记作 $A_X(I)$.
- (4) 推理规则集,记作 R(I). 记 $I=<A(I),E(I),A_X(I),R(I)>$, 其中<A(I),E(I)>是 I 的形式语言系统, $<A_X(I),R(I)>$ 是 I 的形式演算系统.

自然推理系统: 无公理, 即 $A_X(I)=\emptyset$ 公理推理系统 推出的结论是系统中的重言式, 称作定理

自然推理系统P

定义3.3 自然推理系统 *P* (Natural Deduction System)定义如下:

- 1. 字母表
 - (1) 命题变项符号: $p, q, r, ..., p_i, q_i, r_i, ...$
 - (2) 联结词符号: ¬, ∧, ∨, →, ↔
 - (3) 括号与逗号: (,),,
- 2. 合式公式 (同定义1.6)
- 3. 推理规则
 - (1) 前提引入规则
 - (2) 结论引入规则
 - (3) 置换规则

□ 假言推理规则

$$(A \rightarrow B) \land A \Rightarrow B$$

$$A \rightarrow B$$

A

结论: B

All men are mortal

Socrates is a man

Therefore Socrates is mortal

□ 附加规则

$$A \Rightarrow (A \lor B)$$

□ 化简规则

$$(A \wedge B) \Rightarrow A$$

$$A \wedge B$$

结论: A

□ 合取引入规则

A

B

结论: A ∧ B

□证明: $p, q, p \land q \rightarrow r \models r$

□ 证明:
$$p, q, p \land q \rightarrow r \models r$$

$$p$$

$$q$$

$$p \land q \rightarrow r$$

$$p \land q \rightarrow r$$

$$r$$

推理过程可以写成证明树

□ 拒取式规则

□ 析取三段式规则

□ 破坏性二难推理规则

$$(A o B) \wedge (C o D) \wedge (\neg B \vee \neg D) \Rightarrow (\neg A \vee \neg C)$$

$$A o B$$

$$C o D$$

$$\neg B \vee \neg D$$
结论: $\neg A \vee \neg C$

- □ 形式推演(语法蕴涵)(Formal Deduction): 给定 $A_1,...,A_k$ 和 B
 - **❖** 符号: {A1,...,Ak} ⊢ B
 - ❖ 存在公式序列C1, C2,...,Cn, 对每个 i(i=1,...,n),
 - Ci是某个Aj或者
 - Ci是由序列中前面的公式应用推理规则得到
 - $C_n = B$
 - **❖** 称*C*1,...,*C*n是由*A*1,...,*A*k推*B*的证明

- □例:考虑下述论证
 - ❖如果这里有球赛,则通行是困难的
 - ❖如果他们按时到达,则通行是不困难的
 - ❖他们按时到达了

问:得到什么结论?

- □ 例: 考虑下述论证
 - ❖ 如果这里有球赛,则通行是困难的
 - ❖ 如果他们按时到达,则通行是不困难的
 - ❖ 他们按时到达了

问:得到什么结论?

设p:这里有球赛q:通行是困难的r:他们按时到达

$$\begin{array}{c}
p \to q \\
r \to \neg q \\
r \\
\vdots \quad \neg p
\end{array}$$

□证明

❖ 前提: $p \rightarrow q$, $r \rightarrow \neg q$, r

❖ 结论: ¬p

解:

1 r

② $r \rightarrow \neg q$

③ ¬**q**

 $\textcircled{4} p \rightarrow q$

⑤ ¬**p**

前提引入

前提引入

假言推理

前提引入

拒取式

□ 证明
$$c \lor d$$
, $c \to r$, $d \to s \vdash r \lor s$

解:

②
$$\neg c \rightarrow d$$

$$3d \rightarrow s$$

$$\bigcirc$$
 $c \rightarrow r$

前提引入

置换规则

前提引入

假言三段论

前提引入

置换规则

假言三段论

置换规则

- □ 构造证明的方法
 - ❖ 附加前提证明法
 - ❖ 归谬法

□ 附加前提证明法

❖ 对形如 $(A_1 \land ... \land A_k)$ → $(A \rightarrow B)$ 的证明 ____

转化为: A₁, ..., A_k, A ⊢ B

□证明
$$((p\rightarrow (q\rightarrow s))\land (\neg r\lor p)\land q)\rightarrow (r\rightarrow s)$$

□ 证明
$$((p \rightarrow (q \rightarrow s)) \land (\neg r \lor p) \land q) \rightarrow (r \rightarrow s)$$

解:

- 1 "
- ② ¬*r*∨*p*
- $3r \rightarrow p$
- **4 p**
- $\bigcirc p \rightarrow (q \rightarrow s)$
- **⑥ q** →**s**
- **7 q**
- 8 5

前提引入

前提引入

置换规则

假言推理

前提引入

假言推理

前提引入

假言推理

- □ 归谬法
 - ❖ 对形如 $(A_1 \land ... \land A_k)$ → B的证明

转化为: A1 / / Ak / B为矛盾式

□证明

$$((r \rightarrow \neg q) \land (r \lor s) \land (s \rightarrow \neg q) \land (p \rightarrow q)) \rightarrow \neg p$$

□ 证明
$$((r \rightarrow \neg q) \land (r \lor s) \land (s \rightarrow \neg q) \land (p \rightarrow q)) \rightarrow \neg p$$

解:

- 1 **p**
- ② $p \rightarrow q$
- ③ **q**
- \bigcirc $q \rightarrow \neg s$
- **⑥** ¬**s**
- $7 r \lor s$
- **8**
- 9 r→¬q
- ① ¬**q**

第三章 习题课

主要内容

- 推理的形式结构
- 判断推理是否正确的方法 真值表法 等值演算法 主析取范式法
- 推理定律
- 自然推理系统P
- 构造推理证明的方法 直接证明法 附加前提证明法 归谬法(反证法)

基本要求

- 理解并记住推理形式结构的两种形式:
 - 1. $(A_1 \land A_2 \land ... \land A_k) \rightarrow B$
 - 前提: A₁, A₂, ..., A_k
 结论: B
- 熟练掌握判断推理是否正确的不同方法(如真值表法、等值演算法、主析取范式法等)
- 牢记 P 系统中各条推理规则
- 熟练掌握构造证明的直接证明法、附加前提证明法和归谬法
- 会解决实际中的简单推理问题

练习1: 判断推理是否正确

1. 判断下面推理是否正确:

(1) 前提: $\neg p \rightarrow q$, $\neg q$

结论: $\neg p$ 解 推理的形式结构: $(\neg p \rightarrow q) \land \neg q \rightarrow \neg p$

方法一: 等值演算法

$$(\neg p \rightarrow q) \land \neg q \rightarrow \neg p$$

$$\Leftrightarrow \neg((p \lor q) \land \neg q) \lor \neg p$$

$$\Leftrightarrow (\neg p \land \neg q) \lor q \lor \neg p$$

$$\Leftrightarrow ((\neg p \lor q) \land (\neg q \lor q)) \lor \neg p$$

$$\Leftrightarrow \neg p \lor q$$

易知10是成假赋值,不是重言式,所以推理不正确.

练习1解答


```
方法二: 主析取范式法, (\neg p \rightarrow q) \land \neg q \rightarrow \neg p \\ \Leftrightarrow \neg ((p \lor q) \land \neg q) \lor \neg p \\ \Leftrightarrow \neg p \lor q \\ \Leftrightarrow M_2 \\ \Leftrightarrow m_0 \lor m_1 \lor m_3 \\ 未含m_2, 不是重言式, 推理不正确.
```


练习1解答

方法三 真值表法

p	\boldsymbol{q}	$\neg p \rightarrow q$	$(\neg p \rightarrow q) \land \neg$	$(\neg p \rightarrow q) \land \neg q \rightarrow \neg p$
0	0	0	q	1
0	1	1	0	1
1	0	1	0	0
1	1	1	1	1
0				

不是重言式,推理不正确

方法四 直接观察出10是成假赋值

练习1: 判断推理是否正确

(2) 前提: $q \rightarrow r$, $p \rightarrow \neg r$

结论: $q \rightarrow \neg p$

练习1解答

(2) 前提:
$$q \rightarrow r$$
, $p \rightarrow \neg r$
结论: $q \rightarrow \neg p$

解 推理的形式结构: $(q \rightarrow r) \land (p \rightarrow \neg r) \rightarrow (q \rightarrow \neg p)$

用等值演算法

$$(q \rightarrow r) \land (p \rightarrow \neg r) \rightarrow (q \rightarrow \neg p)$$

$$\Leftrightarrow ((\neg q \lor r) \land (\neg p \lor \neg r)) \rightarrow (\neg q \lor \neg p)$$

$$\Leftrightarrow \neg((q \land \neg r) \lor (p \land r)) \rightarrow (\neg q \lor \neg p)$$

$$\Leftrightarrow \neg((q \lor p) \land (q \lor r) \land (\neg r \lor p)) \rightarrow (\neg q \lor \neg p)$$

$$\Leftrightarrow ((q \lor p) \land (q \lor r) \land (\neg r \lor p)) \lor (\neg q \lor \neg p)$$

 $\Leftrightarrow 1$

推理正确

练习2: 构造证明

(1) 前提: *p→q*

结论: $p \rightarrow (p \land q)$

(2)前提: $p \rightarrow (q \rightarrow r), s \rightarrow p, q$

结论: $s \rightarrow r$

(3)前提: $p \rightarrow \neg q, \neg r \lor q, r \land \neg s$

结论: ¬p

练习3: 实际问题

3. 在系统*P*中构造下面推理的证明: 如果今天是周六,我们就到颐和园或圆明园玩. 如果颐和园游人太多,就不去颐和园. 今天是周六,并且颐和园游人太多. 所以, 我们去圆明园或动物园玩.

证明:

(1) 设p: 今天是周六,q: 到颐和园玩,

r: 到圆明园玩,s: 颐和园游人太多

t: 到动物园玩

(2) 前提: $p \rightarrow (q \lor r)$, $s \rightarrow \neg q$, p, s

结论: r\t

练习3解答

(3) 证明:

① $p \rightarrow (q \lor r)$ 前提引入

② p 前提引入

③ *q*∨*r* ①②假言推理

④ $s \rightarrow \neg q$ 前提引入

⑤ s 前提引入

⑥ ¬q ④⑤假言推理

⑦ r 3⑥析取三段论

⑧ r∨t
⑦附加

作业

- **□18 (2)**