Three Phase Distribution Network Optimal Power Flow Formulation*

Swastik Sharma, Swathi Battula, Sri Niwas Singh,

Introduction 1

There are very few repositories or open-source programs in Python that can help researchers run OPF on Unbalanced Distribution Networks; this program bridges the gap. It provides a powerful open-source program for that purpose. We use the modelling techniques presented in [1–3] to model the OPF. This document will help you understand the formulation employed in the software, and instructions on how to run the Pyomo-based T-DOPF application and provide an in-depth overview of the repository's organization.

$\mathbf{2}$ Nomenclature

Acronyms and Paramet	ters
(i,j)	Line segment connecting buses i and j ;
0	Head bus of the radial network at which IDSO's substation is located, linking Transmission and Distribution systems;
$ ilde{C}$	Branch-node incidence matrix for a 3-phase radial distribution network;
C	Branch-node incidence matrix excluding the head bus;
$oldsymbol{c}_0$	Branch-node incidence matrix of the head bus;
$\boldsymbol{D_r},\boldsymbol{D_x}$	Diagonal matrices of resistances and reactances (p.u.) of all lines;
$oldsymbol{R}_{(i,j)}, oldsymbol{X}_{(i,j)}$	3-phase resistance and reactance matrix of a line (i, j) in p.u.;
W	Phase coupling matrix;
$\omega = e^{j\frac{2\pi}{3}}$	Phase shift operator;
ϕ	Phase connection of a line, bus or DER;
N	Number of non-head buses in distribution network;
p_i^ϕ, q_i^ϕ	Real and reactive power injection at a bus i and phase ϕ in p.u.;
Sets and Vectors	
Φ	Set of valid phases;
\mathcal{L}	Set containing the N distinct line segments of distribution system;
\mathcal{N}	Set containing all the non-head buses of distribution system;
T7 : 11	

Variables

P,Q3-phase real and reactive power flow (p.u.) column vector across all lines

in the distribution network;

3-phase real and reactive power injections (p.u.) column vector across all p,q

buses in the distribution network;

^{*}Latest Revision: 11th March, 2025

[†]swastiks21@iitk.ac.in, Dept. of Electrical Engineering, Indian Institute of Technology Kanpur 208016

[‡]swathi@iitk.ac.in, Dept. of Electrical Engineering, Indian Institute of Technology Kanpur 208016

[§]snsingh@iitk.ac.in, Dept. of Electrical Engineering, Indian Institute of Technology Kanpur 208016

$oldsymbol{p}_0,oldsymbol{q}_0$	3-phase real and reactive power injection (p.u.) column vector of the head bus;
$oldsymbol{p}_i,oldsymbol{q}_i$	3-phase real and reactive power injection (p.u.) column vector of a bus i ;
$oldsymbol{P}_{(i,j)}, oldsymbol{Q}_{(i,j)}$	3-phase real and reactive power flow (p.u.) column vector of a line (i, j) ;
$oldsymbol{p}_{1:N},oldsymbol{q}_{1:N}$	3-phase real and reactive power injection (p.u.) column vector at all non-head buses;
v	3-phase square voltage magnitudes (p.u.) column vector of all buses in the distribution network;
$oldsymbol{v}_0$	3-phase squared voltage magnitude of head bus in p.u.;
$oldsymbol{v}_i$	3 phase squared voltage column vector for a bus i in p.u.;
$oldsymbol{v}_{1:N}$	3-phase squared voltage magnitude (p.u.) of all non-head buses;

3 Formulation of Three Phase Distribution Optimal Power Flow

This study considers an N+1 bus unbalanced radial distribution network, characterized by a graph $\mathcal{G}(\mathcal{N}\cup\{0\},\mathcal{L})$, with phases $\phi\in\Phi$: $\{a,b,c\}$. The index of the head bus in the feeder where the IDSO's substation is located is denoted by 0, and all other non-head buses are the elements of the set $\mathcal{N}:\{1,2,\cdots,N\}$. The distribution network has N distinct line segments denoted by set $\mathcal{L}\subseteq\{\mathcal{N}\cup\{0\}\}\times\{\mathcal{N}\cup\{0\}\}\}$, with $(i,j)\in\mathcal{L}$ denoting a line segment between buses i and j. For each bus i, its squared voltage magnitude is denoted by v_i and the real and reactive power injection by p_i and q_i , respectively. For a line (i,j), the resistance and reactances are denoted by $R_{(i,j)}$ and $X_{(i,j)}$, respectively, and the real and reactive power flow by $P_{(i,j)}$ and $Q_{(i,j)}$, respectively. The node voltages, injections and line flows can easily be represented as 3×1 column vectors as shown in (1), where all items are in p.u.

$$\mathbf{v}_i = [v_i^{\phi}]_{\phi \in \mathbf{\Phi}}; \quad \mathbf{p}_i = [p_i^{\phi}]_{\phi \in \mathbf{\Phi}}; \quad \mathbf{q}_i = [q_i^{\phi}]_{\phi \in \mathbf{\Phi}};$$
$$\mathbf{P}_{(i,j)} = [P_{(i,j)}^{\phi}]_{\phi \in \mathbf{\Phi}}; \quad \mathbf{Q}_{(i,j)} = [Q_{(i,j)}^{\phi}]_{\phi \in \mathbf{\Phi}}.$$

Also, line resistances and reactances in p.u. for a line (i, j) can be equivalently represented in a 3×3 matrix form as:

$$R_{(i,j)} = [R_{(i,j)}^{\phi\phi}]_{\phi \in \Phi}; \quad X_{(i,j)} = [X_{(i,j)}^{\phi\phi}]_{\phi \in \Phi}.$$

Then the LinDistFlow equation from [4] can be represented as follows, where node k is the parent of node $i, \forall k, i \in \mathcal{N}, \forall (i \to j) \in \mathcal{L}$:

$$\sum_{j:i\to j} P_{(i,j)} = P_{(k,i)} + p_i , \qquad (3a)$$

$$\sum_{j:i\to j} Q_{(i,j)} = Q_{(k,i)} + q_i , \qquad (3b)$$

$$v_i - v_j = 2 \cdot (\bar{R}_{(i,j)} P_{(i,j)} + \bar{X}_{(i,j)} Q_{(i,j)}).$$
 (3c)

Where,

$$\bar{R}_{(i,j)} = \Re(\mathbf{W}) \odot \mathbf{R}_{(i,j)} + \Im(\mathbf{W}) \odot \mathbf{X}_{(i,j)}, \tag{4a}$$

$$\bar{\boldsymbol{X}}_{(i,j)} = \Re(\boldsymbol{W}) \odot \boldsymbol{X}_{(i,j)} - \Im(\boldsymbol{W}) \odot \boldsymbol{R}_{(i,j)}. \tag{4b}$$

Here, W is the phase coupling matrix:

$$m{W} = egin{bmatrix} 1 & \omega & \omega^2 \ \omega^2 & 1 & \omega \ \omega & \omega^2 & 1 \end{bmatrix}; \quad \omega = e^{j\frac{2\pi}{3}},$$

• denotes the Hadamard Product.

Using [1], the above linear power flow equations can be conveniently represented by a graph-based matrix formalism. Let the branch-by-node incidence matrix for \mathcal{G} be denoted by $\tilde{\mathbf{C}} \in \{-\mathbf{I}^3, 0, \mathbf{I}^3\}^{(N) \times (N+1)}$ representing a three-phase connection structure of the lines and buses, the entries can then be expressed as $\forall i \in \{\mathcal{N} \cup \{0\}\}, \forall l \in \mathcal{L}$:

$$\tilde{\boldsymbol{C}}_{il} = \begin{cases}
\boldsymbol{I}^3, & \text{if line } l \text{ originates from node } i, \\
-\boldsymbol{I}^3, & \text{if line } l \text{ feeds node } i, \\
0, & \text{otherwise.}
\end{cases} \tag{5}$$

Where I^3 is an identity matrix of size 3. The LinDistFlow equations in (3) can therefore be represented as:

$$\tilde{\boldsymbol{C}}^T \boldsymbol{P} = \boldsymbol{p}; \quad \tilde{\boldsymbol{C}}^T \boldsymbol{Q} = \boldsymbol{q};$$
 (6a)

$$\tilde{C}v = 2\left[D_rP + D_xQ\right]. \tag{6b}$$

where, $\boldsymbol{v}, \boldsymbol{p}, \boldsymbol{q} \in \mathbb{R}^{3(N+1)\times 1}$, and $\boldsymbol{P}, \boldsymbol{Q} \in \mathbb{R}^{3N\times 1}$ defined as

$$\begin{split} \boldsymbol{v} &= \left[\boldsymbol{v}_i\right]_{i \in \mathcal{N} \cup \{0\}}, \quad \boldsymbol{p} &= \left[\boldsymbol{p}_i\right]_{i \in \mathcal{N} \cup \{0\}}, \quad \boldsymbol{q} &= \left[\boldsymbol{q}_i\right]_{i \in \mathcal{N} \cup \{0\}}, \\ \boldsymbol{P} &= \left[\boldsymbol{P}_{(i,j)}\right]_{(i,j) \in \mathcal{L}}, \quad \boldsymbol{Q} &= \left[\boldsymbol{Q}_{(i,j)}\right]_{(i,j) \in \mathcal{L}}. \end{split}$$

 D_r and $D_x \in \mathbb{R}^{3N \times 3N}$ are diagonal matrices, defined as:

$$D_r = \operatorname{diag}((\bar{R}_{(i,j)})_{(i,j)\in\mathcal{L}}), \tag{7a}$$

$$D_{x} = \operatorname{diag}((\bar{X}_{(i,j)})_{(i,j)\in\mathcal{L}}). \tag{7b}$$

Let the first column of \tilde{C} be denoted by the column vector c_0 that corresponds to the head bus, while the rest of the matrix as C. Therefore, the incidence matrix can be represented more compactly as:

$$\tilde{\boldsymbol{C}} = \begin{bmatrix} \boldsymbol{c}_0 & \boldsymbol{C} . \end{bmatrix} \tag{8}$$

Therefore, the equation (6) can be written as:

$$\boldsymbol{c}_0^T \boldsymbol{P} = \boldsymbol{p}_0; \quad \boldsymbol{c}_0^T \boldsymbol{Q} = \boldsymbol{q}_0;$$
 (9a)

$$\boldsymbol{C}^T \boldsymbol{P} = \boldsymbol{p}_{1:N}; \quad \boldsymbol{C}^T \boldsymbol{Q} = \boldsymbol{q}_{1:N};$$
 (9b)

$$c_0 v_0 + C v_{1:N} = 2 [D_r P + D_x Q].$$
 (9c)

Since, \tilde{C} is invertible [2],(9c) can be written as

$$v_{1:N} = -C^{-1}c_0v_0 + 2C^{-1}[D_rP + D_xQ].$$
 (10)

For a tree topology network, the following holds¹,

$$\tilde{\boldsymbol{C}}\boldsymbol{I}_{N+1}^3 = \boldsymbol{0},\tag{11a}$$

$$\boldsymbol{c}_0 \boldsymbol{I}^3 + \boldsymbol{C} \boldsymbol{I}_N^3 = 0, \tag{11b}$$

$$\boldsymbol{I}_N^3 = -\boldsymbol{C}^{-1}\boldsymbol{c}_0. \tag{11c}$$

Using (9b) and (11c), (10) can be re-written as:

$$v_{1:N} = I_N^3 v_0 + 2C^{-1} [D_r P + D_x Q].$$
 (12)

This concludes the Three Phase LinDistFlow power flow model adopted in this software.

¹Here, I_{N+1}^3 denotes a column vector of size N+1 with individual entries being I^3

References

- [1] S. H. Low, "Lecture Notes for EE/CS/EST 135: Power System Analysis A Mathematical Approach," 2024, accessed: 2024-09-19. [Online]. Available: https://netlab.caltech.edu/assets/pdf/Low-201909-ee135Notes-Ch1toCh17AppNoSol-20240430.pdf
- [2] H. Zhu and H. J. Liu, "Fast Local Voltage Control Under Limited Reactive Power: Optimality and Stability Analysis," *IEEE Transactions on Power Systems*, vol. 31, no. 5, pp. 3794–3803, 2016.
- [3] R. Cheng, L. Tesfatsion, and Z. Wang, "A Consensus-Based Transactive Energy Design for Unbalanced Distribution Networks," *IEEE Transactions on Power Systems*, vol. 38, no. 1, pp. 114–128, 2023.
- [4] M. Baran and F. Wu, "Network reconfiguration in distribution systems for loss reduction and load balancing," *IEEE Transactions on Power Delivery*, vol. 4, no. 2, pp. 1401–1407, 1989.