We Claim:

A compound of formula (I):

$$\mathbb{R}^{1}$$

wherein;

5

10

15

20

30

35

 R^1 is independently selected from the group consisting of (C_1-C_6) alkyl, $-(CR^4R^5)_t(C_3-C_{12}) \\ cycloalkyl, -(CR^4R^5)_t(C_6-C_{12}) \\ aryl, and -(CR^4R^5)_t(4 \text{ to } 10) \\ -membered \text{ heterocyclyl}; \\ -(CR^4R^5)_t(C_3-C_{12}) \\ -(CR^5)_t(C_3-C_{12}) \\ -(CR^5)_t(C_3-C_{12}) \\ -(CR^5)_t(C_3-C_{12}) \\ -$

k is independently selected from 1 or 2;

j is independently selected from the group consisting of 0, 1, and 2;

t, u, p, q and v are each independently selected from the group consisting of 0, 1, 2, 3, 4, and 5;

T is a (4 to 10)-membered heterocyclyl containing at least one nitrogen atom, wherein said nitrogen atom is optionally substituted by at least one R3 group;

R2 is selected from H or (C1-C6)alkyl;

each R3 group is independently selected from the group consisting of -CF3, -CHF2,

-CH₂F, trifluoromethoxy, (C₁-C₆)alkoxy, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, -(C=O)-R⁴, alkenyl, -(C=O)-R⁴, -

 $\hbox{-(C=O)-O-R4, -(CR4R^5$)$_t$(C_6-C_{12})aryl, -(CR4R^5$)$_t$(C_3-C_{12})cycloalkyl,}\\$

 $-(CR^4R^5)_1(4 \text{ to 10})-\text{membered heterocyclyl}, -(CR^4R^5)_1-(C=0)(CR^4R^5)_1(C_6-C_{12})\\ \text{aryl, and } -(CR^4R^5)_1(C_6-C_{12})\\ \text{aryl, aryl, a$

-(CR 4 R 5),-(C=O)(CR 4 R 5),(4 to 10)-membered heterocyclyl;

each R^4 and R^5 group is independently selected from H or (C₁-C₆)alkyl;

any nitrogen atom of any (4 to 10)-membered heterocyclyl of the foregoing R3 group is optionally substituted with a substituent independently selected from the group consisting of

 $(C_1-C_0)alkyl,$ -(SO),-R^4, -(C=O)-O-R^4, and -(C=O)-R^4;

each carbon atom of T, R¹, R² and R³ is optionally substituted by 1 to 4 R⁶ groups;

each R⁶ group is Independently selected from the group consisting of halo, cyano, nitro, $-CF_3, -CH_2F, \text{ trifluoromethoxy, azido, hydroxy, } (C_1-C_6) \text{alkoxy, } (C_1-C_6) \text{alkyl, } (C_2-C_6) \text{alkenyl, } (C_1-C_6) \text{alkenyl, } (C_2-C_6) \text{alkenyl, } (C_1-C_6) \text{alk$ (C_2-C_8) alkynyl, $-(C=O)-R^7$, $-(C=O)-O-R^7$, $-O-R^7$, $-O-(C=O)-R^7$, $-O-(C=O)-NR^7R^8$, $-NR^8-((C=O)-R^9)$, $-(C=O)-R^7$, $-(C=O)-R^$

 $-(C=O)NR^8R^9, \quad -NR^8R^9, \quad -NR^8-(OR^9), \quad -NR^8-((C=O)-O-R^9), \quad -S(O)_k-NR^8R^9, \quad -S(O)_k-R^8, \quad -O-S(O)_k-R^8, \quad -O-S$ $-NR^8-S(O)_k-R^9, \ -(CR^{10}R^{11})_v(C_6-C_{12}) aryl, \ -(CR^{10}R^{11})_v(C_3-C_{12}) cycloalkyl,$

 $-(CR^{10}R^{11})_{q}(C=O)(CR^{10}R^{11})_{v}(C_{\theta}-C_{12})aryl,$ heterocyclyl, 10)-membered -(CR10R11)v(4 $-(CR^{10}R^{11})_q(C=O)(CR^{10}R^{11})_v(4$ 10)-membered to -(CR10R11)a(C=O)(CR10R11)v(C3-C12)cycloalkyl, -(CR¹⁰R¹¹)_vO(CR¹⁰R¹¹)_q(C₃-C₁₀)cycloalkyl, $-(CR^{10}R^{11})_vO(CR^{10}R^{11})_q(C_6-C_{12})$ aryl,

heterocyclyl, $-(CR^{10}R^{11})_{\nu}O(CR^{10}R^{11})_{q}(4 \ to \ 10)-membered \ heterocyclyl, \ -(CR^{10}R^{11})_{q}S(O)_{j}(CR^{10}R^{11})_{\nu}(C_{6}-C_{12})aryl,$

 $-(CR^{10}R^{11})_qS(O)_j(CR^{10}R^{11})_v(C_3-C_{12})cycloalkyl, \quad and \quad -(CR^{10}R^{11})_qS(O)_j \quad (CR^{10}R^{11})_v(4 \quad to \quad 10)-membered$ heterocyclyl;

any 1 or 2 carbon atoms of any (4 to 10)-membered heterocyclyl moiety of the foregoing R⁶ groups are optionally substituted with an oxo group;

15

20

25

30

35

any carbon atom of any (C_1-C_6) alkyl, any (C_6-C_{12}) aryl, any (C_3-C_{10}) cycloalkyl, or any (4 to 10)-membered heterocyclyl of the foregoing R^6 groups are optionally substituted with 1 to 3 substituents independently selected from the group consisting of halo, cyano, nitro, $-CF_3$, $-CFH_2$, $-CF_2H$, trifluoromethoxy, azido, $-O-R^{12}$, $-(C=O)-R^{12}$, $-(C=O)-O-R^{12}$, $-O-(C=O)-R^{13}$, $-NR^{13}-(C=O)R^{14}$,

 $-(C=O)NR^{14}R^{15}$, $-NR^{14}R^{15}$, $-NR^{14}-(OR^{15})$, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl,

 $-(CR^{16}R^{17})_{u}(C_{8}-C_{12})$ aryl, $-(CR^{16}R^{17})_{u}(C_{3}-C_{12})$ cycloalkyl, and $-(CR^{16}R^{17})_{u}(4$ to 10)-membered heterocyclyl;

each R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} and R^{17} group is independently selected from the group consisting of H, (C_1-C_6) alkyl, $-(C=O)NH(R^{18})$, $-(CR^{18}R^{19})_p(C_6-C_{12})$ aryl,

 $-(CR^{18}R^{19})_{p}(C_{3}-C_{12}) cycloalkyl, \ and \ -(CR^{18}R^{19})_{p}(4 \ to \ 10) - membered \ heterocyclyl;$

any 1 or 2 carbon atoms of the (4 to 10)-membered heterocyclyl of said each R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ and R¹⁷group is optionally substituted with an oxo group;

any carbon atoms of any (C_1-C_6) alkyl, any (C_6-C_{12}) aryl, any (C_3-C_{12}) cycloalkyl or any (4 to 10)-membered heterocyclyl of the foregoing R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ and R¹⁷ groups are optionally substituted with 1 to 3 substituents independently selected from the group consisting of halo, cyano, nitro, $-NR^{20}R^{21}$, $-CF_3$, $-CHF_2$, $-CH_2F$, hydroxy, trifluoromethoxy, (C_1-C_6) alkyl, (C_2-C_6) alkynyl, and (C_1-C_6) alkoxy;

each R18, R19, R20, and R21 group is independently selected from H or (C1-C6)alkyl;

and wherein any of the above mentioned substituents comprising a -CH₃ (methyl), -CH₂ (methylene), or -CH (methine) group which is not attached to a halo, -SO or -SO₂ group, or to a N, O or S atom optionally bears on said group a substituent independently selected from hydroxy, halo, -(C₁-C₆)alkyl, -(C₁-C₆)alkoxy, -NH₂, -NH((C₁-C₆)(alkyl)) and -N((C₁-C₆)(alkyl))₂;

or a pharmaceutically acceptable salt or solvate thereof.

- 2. The compound according to claim 1, wherein T is a (5 to 7)-membered heterocyclyl containing at least one nitrogen atom.
 - The compound according to claim 2, wherein R² is H or methyl.
- 4. The compound according to claim 3, wherein R^1 is independently selected from the group consisting of adamantyl, benzyl, cyclohexyl, 2,3-dihydro-1H-inden-2-yl, -CH₂-pyridinyl, naphthalenyl, -CH₂CH₂-morpholinyl, azablcyclo(2.2.1.)heptyl, bicyclo(2.2.1.)heptyl, cycloheptyl,

-CH₂-cyclopentyl, pentacyclo(4.2.0.0^{2,5}.0^{3,8}.0^{4,7})octyl, tetrahydronaphthalenyl, and naphthyridinyl;

wherein each carbon atom is optionally substituted by 1 to 4 R⁶ groups, each R⁶ group is independently selected from the group consisting of halo, cyano, -CF₃, trifluoromethoxy, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkyl, -O-R⁷, -(C=O)-R⁷, -(C=O)-O-R⁷, -O-(C=O)-NR⁷R⁸,-NR⁸R⁹, -NR⁶-((C=O)-R⁹), -NR⁸-((C=O)-O-R⁹), -NR⁸-(S(O)_k-R⁹), and -(C=O)-NR⁸R⁹.

5. The compound according to claim 2, wherein T independently selected from the group consisting of

and
$$N \longrightarrow N$$

wherein said nitrogen atom is optionally substituted by at least one R^3 group, wherein each said R^3 group is independently selected from the group consisting of (C_1-C_6) alkyl, $-(CR^4R^5)_t(C_8-C_{12})$ aryl, $-(CR^4R^5)_t(C_3-C_{12})$ cycloalkyl, $-CF_3$, (C_1-C_6) alkoxy, $-(C=O)-O-R^4$, and $-(CR^4R^5)_t(4$ to 10)-membered heterocyclyl.

6. A compound of formula (II):

wherein;

10

15

20

25

30

 R^1 is independently selected from the group consisting of -(CR^4R^5)_t(C_3 - C_{12})cycloalkyl, -(CR^4R^5)_t(C_6 - C_{12})aryl, and -(CR^4R^5)_t(4 to 10)-membered heterocyclyl;

k is independently selected from 1 or 2;

j is independently selected from the group consisting of 0, 1, and 2;

t, u, p, q and v are each independently selected from the group consisting of 0, 1, 2, 3, 4, and 5;

T is a (5 to 7) -membered heterocyclyl containing at least one nitrogen atom, wherein said nitrogen atom is optionally substituted by at least one R³ group;

R2 is selected from H or methyl;

each R^3 is independently selected from the group consisting of (C_1-C_6) alkyl, $-(CR^4R^5)_t(C_6-C_{12})$ aryl, $-(CR^4R^5)_t(C_3-C_{12})$ cycloalkyl, $-(CR^4R^5)_t(4$ to 10)-membered heterocyclyl,

-CF₃, (C₁-C₆)alkoxy, and -(C=O)-O-R⁴;

each R4 and R5 group is independently selected from H or (C1-C6)alkyl;

any nitrogen atom of any (4 to 10)-membered heterocyclyl of the foregoing R^3 group is optionally substituted with a substituent independently selected from the group consisting of $(C_1 - C_6)$ alkyl, $-(SO)_k$ - R^4 , -(C=O)-O- R^4 , -(C=O)- R^4 ;

each carbon atom of T, R1, R2 and R3 is optionally substituted by 1 to 3 R6 groups;

each R^6 group is independently selected from the group consisting of halo, cyano, $-CF_3$, trifluoromethoxy, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkyl, $-O-R^7$, $-(C=O)-R^7$, $-(C=O)-C-R^7$, $-(C=O)-NR^7R^8$, $-NR^8R^9$, $-NR^8-((C=O)R^9)$, $-NR^8-((C=O)-O-R^9)$, $-NR^8-(S(O)_k-R^9)$, $-(C=O)-NR^8R^9$;

any 1 or 2 carbon atoms of any (4 to 10)-membered heterocyclyl molety of the foregoing R⁶ groups are optionally substituted with an oxo group;

any carbon atom of any (C_1-C_6) alkyl of the foregoing R^6 groups are optionally substituted with 1 to 3 substituents independently selected from the group consisting of halo, cyano, -CF₃,

15

20

25

30

-O-R¹⁰, (C₁-C₆)alkyl, NR¹⁰R¹¹, and -(C=O)-NR¹¹R¹²;

each R7, R8, R8, R10, R11, and R12 group is independently selected from H, -(C1-C6)alkyl;

any carbon atoms of any (C₁-C₆)alkyl of the foregoing R⁷, R⁸, R⁹, R¹⁰, R¹¹, and R¹² groups are optionally substituted with 1 to 3 substituents independently selected from halo, cyano, nitro, -NR¹³R¹⁴,

-CF₃, -CHF₂, -CH₂F, trifluoromethoxy, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, hydroxy, and (C₁-C₆) alkoxy;

each R13 and R14 group is independently selected from H or (C1-C6)alkyl;

and wherein any of the above-mentioned substituents comprising a -CH₃ (methyl), -CH₂ (methylene), or -CH (methine) group which is not attached to a halo, -SO or -SO₂ group or to a N, O or S atom optionally bears on said group a substituent independently selected from hydroxy, halo,

 $-(C_1-C_6)alkyl, -(C_1-C_6)alkoxy, -NH_2, -NH((C_1-C_6)(alkyl))$ and $-N((C_1-C_6)(alkyl))_2;$

or a pharmaceutically acceptable salt or solvate thereof.

7. The compound according to claim 6, wherein T independently selected from the group consisting of

wherein said nitrogen atom is optionally substituted by at least one R^3 group, wherein each said R^3 group is independently selected from the group consisting of (C_1-C_6) alkyl, $-(CR^4R^5)_t(C_6-C_{12})$ aryl, $-CF_3$, (C_1-C_6) alkoxy, $-(C=O)-O-R^4$, $-(CR^4R^5)_t(C_3-C_{12})$ cycloalkyl, and $-(CR^4R^5)_t(4$ to 10)-membered heterocyclyl.

The compound according to claim 6, wherein R² is H or methyl.

9. The compound according to claim 8, wherein R¹ is independently selected from the group consisting of adamantyl, benzyl, cyclohexyl, 2,3-dihydro-1H-inden-2-yl, -CH₂-pyrldinyl, naphthalenyl, -CH₂-CH₂-morpholinyl, azabicyclo(2.2.1.)heptyl, bicyclo(2.2.1.)heptyl, cycloheptyl,

-CH₂-cyclopentyl, pentacyclo(4.2.0.0^{2,5}.0^{3,8}.0^{4,7})octyl, tetrahydronaphthalenyl, and naphthyridinyl;

wherein each carbon atom is optionally substituted by 1 to 4 R⁶ groups, each R⁶ group is independently selected from the group consisting of halo, cyano, -CF₃, trifluoromethoxy, hydroxy, (C₁-C₆)alkoxy, (C₁-C₆)alkyl, -O-R⁷, -(C=O)-R⁷, -(C=O)-O-R⁷, -O-(C=O)-NR⁷R⁸,-NR⁸R⁹, -NR⁸-((C=O)-R⁹), -NR⁸-((C=O)-O-R⁹), -NR⁸-(S(O)_k-R⁹), and -(C=O)-NR⁸R⁹.

10. A compound of formula (III):

wherein;

 R^{1a} is independently selected from the group consisting of adamantyl, bicyclo(2.2.1.)heptyl , and cyclohexyl;

R^{2a} is H;

5

10

15

T^a is a (5 or 6)-membered heterocyclyl containing at least one nitrogen atom, independently selected from the group consisting of pyrrolidinyl, morpholinyl, and piperidinyl;

wherein said nitrogen atom is optionally substituted by at least one R^{3a} group; each R^{3a} is independently selected from the group consisting of methyl, ethyl, propyl, and benzyl; each carbon atom of R^{1a} and R^{3a} is optionally substituted by 1 to 4 R^{6a} groups;

each R^{6a} group is independently selected from the group consisting of $-N(CH_3)(CH_3)$, $-NH_2$, $-N(CH_3)(CH_2C_6H_5)$, $-N(H)(CH_3)$, pyrrolidinyl, -piperidinyl-((C=O)CH₃), -piperidinyl-(CH₃), cyclohexyl, cyclopentyl, -piperidinyl-(SO₂)CH₃, hydroxy, and cyano.

11. A compound selected from the group consisting of:

or a pharmaceutically acceptable salt or solvate thereof.

12. A compound selected from the group consisting of:

or a pharmaceutically acceptable sait or solvate thereof.

13. A pharmaceutical composition comprising an effective amount of a compound according
to claim 1, or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.

WO 2005/108359 PCT/IB2005/001140

- 155 -

- 14. A method of treating a condition that is mediated by the modulation of the $11-\beta-hsd-1$ enzyme, the method comprising administering to a mammal an effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt or solvate thereof.
- 15. A method of treating diabetes, metabolic syndrome, insulin resistance syndrome, obesity, glaucoma, hyperlipidemia, hyperglycemia, hyperinsulinemia, osteoporosis, tuberculosis, atherosclerosis, dementia, depression, viral diseases, ophthalmic disorders, inflammatory disorders, or diseases in which the liver is a target organ, the method comprising administering to a mammal an effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt or solvate thereof.

10

5

15