Mc - Simulationen des Ising - Modells

Quellen:

Thijssen Kap 10

Sander, Kap 4.6, 9.7 Kunzel und Reents, Kap. S.S

Physipalische Fragestellung

Kristallgitter met lokalisierten, ungepaarten Elektronen => lokale Spin S = 2

Bevoragte Kristallrichtung => $S_i^z = \frac{1}{2} S_i$, $S_i = \pm 1$

Hamilton Operation $H = - \Im \Sigma S_{ij}^{z} - \widehat{H} \Sigma S_{i}^{z}$

- · mit ferromagnetischen Auslauschhopplung I > 0 rwischen nachsten Nachbarn
- · Nawserem Magnetfeld H in Richtung ?
- · Summe < i j > úber alle Paare von nachslin Nachbarn. ZB. für een quachatischer Gitter

· = Gitter plate

- = Verbinding rounden marketin Nachbarn

· I.A. mit zerwalischen Randbedengungen

Eugenschaften: 7 = Sp

mit der Energii E(B) = -JS SiBj-HS Bi

E bezeichnet du Summe viver alle Spin-Konfigurationen

$$= \sum_{s_1=\pm 1}^{\infty} \sum_{s_2=\pm 1}^{\infty} \sum_{s_3=\pm 1}^{\infty} \sum_{s_4=\pm 1$$

Magnetisierung $M(T,H) = \langle S^2 \rangle = \frac{1}{2} S_n (S^2 e^{-\beta T})$

$$= \langle \sum_{i} \beta_{i} \rangle = \frac{\sum_{i} \sum_{j} \beta_{i}}{\sum_{j} \beta_{i}} e^{-\beta E(\beta)}$$

$$= \langle \sum_{i} \beta_{i} \rangle = \frac{\sum_{j} \sum_{j} \beta_{i}}{\sum_{j} \beta_{i}} e^{-\beta E(\beta)}$$

$$= \langle \sum_{j} \beta_{i} \rangle = \frac{\sum_{j} \sum_{j} \beta_{i}}{\sum_{j} \beta_{i}} e^{-\beta E(\beta)}$$

Susseptibilität $\chi = \frac{1}{N} \frac{\partial M}{\partial H}_{H\to 0}$

$$=\frac{1}{Nh_{B}T}\left|\left\langle \left(\sum_{i}\beta_{i}\right)^{2}\right\rangle -\left\langle \sum_{i}\beta_{i}\right\rangle ^{2}\right|$$

Sperifische Warme $C = \frac{1}{N} \frac{\partial Q}{\partial T}$ $= \frac{1}{N k_B T^2} \left(\langle E^2 \rangle - \langle E \rangle^2 \right)$

Wir wiren dass das Irung-Modell einen Phasenübergang rwischen einem paramagnetischen Ewstand bei hoher iemperatur und einem ferromagnetischen Eustand bei tiefer temperatur aufweist:

$$T=0$$
 => 2 Grundrustände : $\begin{cases} 5\bar{c} = +1 \\ 5\bar{c} = -1 \end{cases}$ $\forall i$
=> Magnetinerung $M=\pm N$

T -> 00 => Alle Spinrichtungen und gleich wahrscheinlich

$$=>M=0$$

West der Krilischen Temperatur Te Fragen Thermodynamische Eigenschaften in britischen Bereich (dh 1 x Tc) Das Isny - Modell berchreibt kein Material Annerhuny realistisch. Aber es chent als Textproblem and Benchmark for numeriche Methoden und Naherungsverfahren, weil es ein der wengen Modelle mit einem Phasenillergang ist das escalt losbar ist. Escapti Coung für ein quadratischer Gitter 18 Te 2 227 J $(Tc-T)^B$ mut $B=\frac{1}{8}$ fun T < Tc17-12-0 mit 8 = 7 fin T = 10

Monte	Carlo	- Meli	rode												\$
	urnine leini Az										m	nu	n		
M = N =	10	+>	21/20	\hat{\alpha}	10	3									400000000000000000000000000000000000000
M = M = M = M = M = M = M = M = M = M =	30		230	1	10	9					4				
9											1 - 61				
	tungswe net roend	len		D C		M	orue	Car	uo:	-/0	ieun	0011			
< f.	> = {	\$ f(h) h) \$ \$h}		1 1 1 1 1 1 1 1)				Wild Will be the second of the						
	1	\$	1 ()6)												
wolsú	57	h=1 7	() St	i	rt-e	une	M.	arhi	9V	- Ke	elte	10	on		
Dun!	honfigu Walvsch	iratione		st verter		{	5 t			, DA			mu.	7	
	P(A)	= <u>e</u> \(\Sigma\)	e-BE	5(6)											

.....

....

. .

Metropolis - Schritt

56 3 bet

(b)

0. Sei die Konfiguration st = { st, szt, ..., sn}

- 1. Ein Spin 15t word ausgewählt (entweder Zufüllig oder durch einen hystematischen Durchlauf durch das Gitter)
- 2. => Ansati fur eine neue Konfiguration $b = \sum_{i=1}^{k} b_i^k \cdot b_i$
- 2. Das Verhältnis der Wahrscheinlichheit word berechnet $W(5t \rightarrow 5) = \frac{P(5')}{P(5t)} = \frac{1}{2} \left[\frac{E(5') E(5t)}{F(5t)} \right]$
- 3. Eine Zufallsrahl Z E [0,1) Wird erreugt (gleichmássige Verteilung)
- 4. Falls W> 7 vond die neue Konfiguration angenommen: 15t+1=5

Sont wird die Konfiguration verworfen

Ammerhung: W trann nur eine Aleine tahl von verschiedenen Werten annehmen. Diese Werte sollen einsmal berechnet iverden und dann gespeichert werden.

$$W = \exp\left[\frac{1}{1}\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right)\right] + 2H\beta_{j}\right]$$

$$= \left(\frac{1}{1}\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right)\right) + 2H\beta_{j}\right) + 2H\beta_{j}\right)$$

$$= \left(\frac{1}{1}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right) + 2H\beta_{j}\right)$$

$$= \left(\frac{1}{1}\left(\frac{1}{2}\left(\frac{1}{$$