Total No. of Questions: 5] [Total No. of Printed Pages: 3

Roll No.

CS-505(O)

B. E. (Fifth Semester) EXAMINATION, Dec., 2009 (Old Scheme)

(Computer Science & Engg. Branch)

THEORY OF COMPUTATION

[CS - 505(O)]

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt any two questions from each Unit. All parts carry equal marks.

Unit-I

1. (a) Design NFA to recognize the following set of strings: abc, abd and aacd

Assume the alphabet is $\{a, b, c, d\}$.

(b) Consider the following ∈-NFA:

	€	а	. b	С
$\rightarrow p$	ϕ	{ <i>p</i> }	$\{q\}$	{r}
9	{ <i>p</i> }	$\{q\}$	$\{r\}$	ϕ
* /	$\{q\}$	{r}	φ	$\{p\}$

- (i) Compute the ∈-closure of each state.
- (ii) Give all the strings of length three or less accepted by the automation.
- (iii) Convert the automation to a DFA.

(c) Design a Mealy machine, which prints 1's complement of input string over alphabet $\Sigma = \{0, 1\}$.

Unit-II

- 2. (a) Write regular expression for the following language:

 The set of all strings of 0's and 1's such that every pair of adjacent 0's appears before any pair of adjacent 1's.
 - (b) Give English descriptions of the language of the following regular expression:

$$(1+\in)(0\ 0^*\ 1)^*\ 0^*$$

(c) Convert the following regular expression to NFA with \in transition (0 + 1) 0 1.

Unit-III

3. (a) Prove that the following is not regular language:

 $\{0^n/n \text{ is a perfect square}\}$

(b) The following grammar generates the language of regular expression $0^* 1 (0 + 1)^*$:

$$S \rightarrow A \mid B$$

 $A \rightarrow OA \mid \in$
 $B \rightarrow OB \mid 1B \mid \in$

Give leftmost and rightmost derivations of the following string:

00101

(c) Consider the grammar:

$$S \rightarrow aS \mid aSbS \mid \in$$

Prove that the above grammar generates all and only the strings of a's and b's such that every prefix has at least as many a's as b's.

Unit-IV

4. (a) Design a PDA to accept the following language:

$$\{a^i b^j c^k \mid i \neq j \text{ or } j \neq k\}$$

(b) Convert the following grammar to a PDA that accepts the same language by empty stack:

$$S \rightarrow OSI \mid A$$

 $A \rightarrow IAO \mid S \mid \in$

(c) Consider the following grammar:

$$S \rightarrow ASB \mid \in$$
 $A \rightarrow a A S \mid a$
 $B \rightarrow S b S \mid A \mid bb$

- (i) Are there any useless symbols? Eliminate them if so.
- (ii) Eliminate ∈ productions.
- (iii) Eliminate unit productions.
- (iv) Put the grammar into Chomsky normal form.

Unit-V

- 5. (a) Prove that if both a language L and its complement are RE, then L is recursive.
 - (b) Explain the following:
 - (i) Complexity theory
 - (ii) Undecidability
 - (c) Explain with example multitape turing machine.