

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Programa de Pós-graduação em Engenharia Química

FRANK WILIAM ADOLFO BLANCO OJEDA GABRIELA NUNES MARCUS BRUNO FERNANDES SILVA PEDRO AUGUSTO ALMEIDA DE MACEDO

DISSIPAÇÃO TÉRMICA EM ALETAS

UBERLÂNDIA – MG 2019

FRANK WILIAM ADOLFO BLANCO OJEDA GABRIELA NUNES MARCUS BRUNO FERNANDES SILVA PEDRO AUGUSTO ALMEIDA DE MACEDO

DISSIPAÇÃO TÉRMICA EM ALETAS

Relatório referente à Tarefa 2, sobre Transferência de calor, como parte das exigências da disciplina de Fenômenos de Transporte.

Prof. Dr. Luiz Gustavo Martins Vieira

Professor responsável

UBERLÂNDIA – MG 2019

LISTA DE FIGURAS

Figura 1 – Aletas de seção circular crescente (a), uniforme (b) e decrescente (c)	6
Figura 2 – Funções geratrizes.	6
Figura 3 - Malha utilizada para a discretização da equação diferencial ordinária	9
Figura 4 - Ponto genérico no interior da malha.	9
Figura 5 - Distribuição térmica para a tríade A/B/C.	15
Figura 6 - Distribuição térmica para a tríade A/D/E.	15
Figura 7 - Distribuição térmica para a tríade A/F/G	16
Figura 8 - Distribuição térmica para a tríade A/H/I	16
Figura 9 - Distribuição térmica para a tríade A/J/K.	17
Figura 10 - Distribuição térmica para a tríade A/L/M	17
Figura 11 - Taxa de calor dissipada por aleta.	18
Figura 12 - Volume de material utilizado na construção das aletas	19

LISTA DE TABELAS

Tabela 1 – Valores numéricos da taxa de calor dissipada por aleta.	18
Tabela 2 - Volume de material utilizado na construção das aletas	19

SUMÁRIO

1.	PROBLEMA PROPOSTO	6
1.1.	Sistema e informações para os cálculos	6
1.2.	Cálculos requeridos	7
2.	MEMORIAL DE CÁLCULO	8
2.1.	Equação de calor para aletas	8
2.2.	Avaliação numérica da distribuição de temperaturas	8
2.3.	Avaliação numérica da taxa de calor dissipada pelas aletas	13
2.4.	Cálculo do volume da aleta	13
3.	RESULTADOS	15
3.1.	Distribuição de temperaturas nas aletas	15
3.2.	Taxa de calor dissipada pelas aletas	18
3.3.	Volume de material utilizado na construção das aletas	19
REF	ERÊNCIAS	20
ANE	XO A DISTRIBUIÇÃO DE TEMPERATURA NAS ALETAS	21

1. PROBLEMA PROPOSTO

1.1. Sistema e informações para os cálculos

O problema em questão tem como objetivo a avaliação de propriedades relativas a 13 aletas diferentes, sendo elas divididas entre aletas de seção circular crescente, uniforme e decrescente, como mostrado na Figura 1.

L D DD

Figura 1 – Aletas de seção circular crescente (a), uniforme (b) e decrescente (c).

Fonte: roteiro atividade avaliativa II (2019).

A aletas a serem estudadas são geradas por meio da revolução de funções geratrizes F(z) em torno do eixo z. A funções geratrizes são apresentadas na Figura 2 e podem gerar aletas piniformes (A), crescentes (B, D, F, H, J, L) e decrescentes (C, E, G, I, K, M).

Geratriz	
F(z) = D/2	(A)
F(z) = a + b z	(B)
F(z) = a - b z	(C)
$F(z) = a + b z^2$	(D)
$F(z) = a - b z^2$	(E)
$F(z) = a + b z^3$	(F)
$F(z) = a - b z^3$	(G)
$F(z) = a + b \operatorname{sen}(z)$	(H)
$F(z) = a - b \operatorname{sen}(z)$	(I)
$F(z) = a + b \cosh(z)$	(J)
$F(z) = a - b \cosh(z)$	(K)
$F(z) = a + b \exp(z)$	(L)
$F(z) = a - b \exp(z)$	(M)

Figura 2 – Funções geratrizes.

Fonte: roteiro atividade avaliativa II (2019).

Para os cálculos, deve-se admitir:

- Independente do formato, todas as aletas apresentarão entre si o mesmo comprimento (L = 0,100 m), diâmetro da base (D = 0,005 m), condutividade térmica (k = 14 W/mK) e coeficiente convectivo de transferência de calor (h = 5 W/m²K);
- Para as aletas de seção reta crescente, a extremidade terá o dobro do diâmetro da base. Para as aletas de seção decrescente, a extremidade converge para um ponto sobre o eixo z;
- As aletas têm a base submetida à temperatura de 150 °C (T_0) e as superfícies laterais submetidas ao ar à temperatura ambiente (T_∞) de 20 °C;

1.2. Cálculos requeridos

- Avaliar numericamente a distribuição térmica T(z) para cada uma das aletas (A
 a M), adotando nove pontos de solução;
- Plotar a distribuição térmica para as tríades: A/B/C; A/D/E; A/F/G; A/H/I; A/J/K e A/L/M;
- Estimar a taxa de calor dissipada pelas aletas de A a M, graficando-as sob a forma de um diagrama de barras;
- Estimar o volume de material que deve ser usado para a construção das aletas de
 A a M, graficando-os sob a forma de um diagrama de barras;

2. MEMORIAL DE CÁLCULO

2.1. Equação de calor para aletas

Para este estudo foram consideradas as seguintes hipóteses:

- A difusão de calor na direção "z" é muito rápida (material com condutividade térmica razoável). Isso implica que T = T(z);
- O coeficiente de película é constante ao longo de toda a aleta;
- O fenômeno ocorre em estado estacionário;
- A condutividade térmica é constante em toda a extensão da aleta.

A partir de um balanço de energia em um sistema infinitesimal na aleta, considerando as hipóteses citadas, foi obtida a equação do calor para aletas, representada pela Equação (1).

$$\frac{d^2\theta}{dz^2} + \left(\frac{1}{A_c}\frac{dA_c}{dz}\right)\frac{d\theta}{dz} - \left(\frac{1}{A_c}\frac{h}{k}\frac{dA_s}{dz}\right)\theta = 0 \tag{1}$$

onde $\theta = T - T_{\infty}$, $A_c(z)$ é a área onde ocorre a transferência de energia térmica por condução na posição z, $A_s(z)$ é a área superficial onde ocorre a transferência de energia térmica por convecção até a posição z.

2.2. Avaliação numérica da distribuição de temperaturas

A distribuição de temperatura de uma aleta gerada pela revolução de uma função F(z) pode ser obtida por meio da resolução da Equação (1) juntamente com o conhecimento matemático de sólidos de revolução. No caso de funções geratrizes que variam com a posição z, o problema de resolução de equação diferencial ordinária com condições de contorno não pode ser solucionado de modo analítico, sendo necessários métodos numéricos para obtenção de soluções numéricas aproximadas.

Para o exercício proposto, o Método das Diferenças Finitas foi utilizado para a discretização da equação diferencial ordinária. Para a discretização, foi utilizada uma malha com nove pontos uniformemente distribuídos ao longo do eixo principal da aleta, ilustrado pela Figura 3.

Figura 3 - Malha utilizada para a discretização da equação diferencial ordinária.

Os pontos no interior da malha podem ser representados com um subíndice genérico i que varia de 1 a 7 para o caso de uma malha com 9 pontos. O ponto imediatamente à esquerda do ponto i recebe o índice i-1 e o ponto imediatamente à direita do ponto i recebe o índice i+1. A Figura 4 ilustra esses pontos no interior da malha.

Figura 4 - Ponto genérico no interior da malha.

Fonte: do autor (2019).

Pelo Método das Diferenças Finitas, expressões para as derivadas de primeira e segunda ordem aplicadas em um ponto i genérico da malha podem ser aproximadas pelas Equações (2) e (3), respectivamente.

$$\frac{d\theta}{dz} \Big|_{i} \approx \frac{(\theta_{i+1} - \theta_{i-1})}{2\delta} \tag{2}$$

$$\frac{d^2\theta}{dz^2} \Big|_{i} \approx \frac{(\theta_{i+1} - 2\theta_i + \theta_{i-1})}{\delta^2}$$
 (3)

Então, ao aplicar a Equação (1) em um ponto genérico i da malha, discretizando as derivadas pelas expressões das Equações (2) e (3), tem-se a Equação (4).

$$\frac{1}{\delta^{2}}(\theta_{i-1}-2\theta_{i}+\theta_{i+1}) + \left(\frac{1}{A_{c}}\frac{dA_{c}}{d_{z}}\right)|_{i}\frac{(\theta_{i+1}-\theta_{i-1})}{2\delta} - \left(\frac{1}{A_{c}}\frac{h}{k}\frac{dA_{s}}{d_{z}}\right)|_{i}\theta_{i} = 0 \tag{4}$$

O símbolo "() $|_i$ " representa que o termo dentro dos parênteses é calculado na posição i. Como os termos A_c e A_s dependem de z, e consequentemente variam com i, faz-se necessário estabelecer uma relação entre i e z. Percebendo que para i=0 tem-se z=0 e que para i=8 tem-se z=L, a relação entre as duas variáveis para uma malha uniformemente espaçada pode ser facilmente obtida e é dada pela Equação (5).

$$z = i\delta \tag{5}$$

onde δ é definido pela Equação (6)

$$\delta = \frac{L}{8} \tag{6}$$

Colocando em evidência as variáveis desconhecidas da Equação (4), obtém-se a Equação (7).

$$\theta_{i-1} \left[\frac{1}{\delta^2} - \frac{1}{2\delta A_c} \frac{dA_c}{d_z} \right] + \theta_i \left[-\frac{2}{\delta^2} - \frac{h}{A_c k} \frac{dA_s}{d_z} \right] + \theta_{i+1} \left[\frac{1}{\delta^2} + \frac{1}{2\delta A_c} \frac{dA_c}{d_z} \right] = 0 \tag{7}$$

A Equação (7) descreve a relação entre os pontos no interior da malha. Para o fechamento dos graus de liberdade do sistema, é necessário conhecer as condições de contorno e relacioná-las com os pontos i = 0 e i = 8. Essas condições de contorno foram aplicadas para todas as funções geratrizes.

Sabe-se que na base da aleta, tem-se que $T(z=0)=150\,^{\circ}C$. Em termos de θ , esta condição de contorno se torna $\theta(z=0)=150-T_{\infty}=130$. O ponto z=0 equivale ao ponto onde i=0. Por fim, essa condição de contorno na forma discreta é representada pela Equação (8).

$$\theta_0 = 130 \tag{8}$$

Na extremidade livre da aleta, a energia térmica que chega por condução é perdida para o ar por convecção, sendo esta condição de contorno matematicamente representada por

 $-k\frac{dT}{dz}|_{z=L}=h~(T(L)-T_{\infty})$. Para aplicar essa condição pelo Método das Diferenças Finitas, é necessário discretizar a derivada que aparece no primeiro termo. Como não existe ponto à direita em z=L, uma vez que é um ponto de extremidade, a discretização pela Equação (2) não pode ser utilizada. Então, uma discretização com dois pontos adjacentes foi utilizada. Rearranjando a equação e discretizando-a, a condição de contorno em z=L é representada pela Equação (9).

$$k\frac{\theta_8 - \theta_7}{\delta} + h\,\theta_8 = 0\tag{9}$$

Isolando os termos de θ da Equação (9), chega-se a Equação (10).

$$\theta_8 \left(\frac{k}{\delta} + h \right) + \theta_7 \left(-\frac{k}{\delta} \right) = 0 \tag{10}$$

Com as informações apresentadas, o sistema é completamente descrito: a Equação (7) descreve a relação entre os pontos no interior da malha e as Equações (8) e (10) representam as condições de contorno e permitem o cálculo nos pontos das extremidades da malha.

A Equação (7) exige a determinação da área disponível para a transferência de energia térmica por condução na posição z, $A_c(z)$, e da área disponível para a transferência de energia térmica por convecção até a posição z, $A_s(z)$. Como as aletas são geradas a partir de funções unidimensionais, é necessário o conhecimento matemático de sólidos e superfícies de revolução. A partir de uma inspeção, percebeu-se que o valor da função geratriz F(z) é o raio da aleta a cada posição z; juntamente com o conhecimento proveniente do cálculo integral, disponível em Stewart (2002), chegou-se às seguintes equações para os termos $A_c(z)$ e $A_s(z)$, Equações (11) e (12).

$$A_c(z) = \pi F(z)^2 \tag{11}$$

$$A_s(z) = 2\pi \int_0^z F(z) \sqrt{1 + \left(\frac{dF(z)}{dz}\right)^2} dz \tag{12}$$

Para a resolução do problema, as derivadas de $A_c(z)$ e $A_s(z)$ precisaram ser calculadas, de modo que essas derivadas estão apresentadas, respectivamente, nas Equações (13) e (14).

$$\frac{dA_c(z)}{dz} = 2\pi F(z) \frac{dF(z)}{dz}$$
 (13)

$$\frac{dA_s(z)}{dz} = 2\pi F(z) \sqrt{1 + \left(\frac{dF(z)}{dz}\right)^2}$$
 (14)

O uso das Equações (11), (13) e (14) permitiu que a Equação (7) ficasse em função apenas de F(z) e sua derivada dF(z)/dz.

Por fim, para cada uma das geratrizes, foi necessário determinar os parâmetros a e b da função a partir de duas condições impostas no enunciado:

- Todas as aletas possuem diâmetro da base igual a *D* e comprimento fixo *L*;
- Em todas as aletas crescentes a extremidade possui o dobro do diâmetro da base;
- Em todas as aletas decrescentes a extremidade converge para um ponto no eixo
 (D = 0).

Essas informações são representadas matematicamente pelas Equações (15) e (16).

$$F(z=0) = \frac{D}{2} \tag{15}$$

$$F(z = L) = \begin{cases} D, & \text{se a aleta for crescente} \\ 0, & \text{se a aleta for decrescente} \end{cases}$$
 (16)

A partir das equações acima, construiu-se um sistema de equações algébricas contendo nove equações (duas para as condições de contorno, Equações (8) e (10), e sete para os pontos intermediários, Equação (7) com i=1,2,...,6,7) e nove variáveis $(\theta_0,\theta_1,...,\theta_7,\theta_8)$. Resolvendo esse sistema, a distribuição de temperatura pode ser obtida pela (17).

$$T_i = \theta_i + T_{\infty} \tag{17}$$

Com isso, o problema é completamente descrito e a matemática necessária para a resolução está apresentada. Diferentes ferramentas computacionais podem ser utilizadas para a

implementação e resolução do sistema. Escolheu-se a linguagem de programação C++ para implementar a construção do sistema de equações algébricas e sua resolução para todas as funções geratrizes. Utilizou-se a biblioteca de álgebra linear Eigen (eigen.tuxfamily.org) para os cálculos matriciais. As equações e os métodos de discretização implementados em C++ foram estritamente os apresentados nesse trabalho; ou seja, o código é uma transcrição do procedimento de resolução do problema proposto para a linguagem de programação. O código fonte se encontra completamente no repositório virtual disponível em github.com/marcusbfs/AletasFT.

2.3. Avaliação numérica da taxa de calor dissipada pelas aletas

A taxa de calor dissipada pelas aletas foi calculada pela aplicação da Lei de Fourier na base da aleta, Equação (18).

$$\dot{q_a} = -kA_c(z=0)\frac{dT}{dz}|_{z=0} = -kA_c(z=0)\frac{d\theta}{dz}|_{z=0}$$
 (18)

A derivada de θ em z=0 pode ser obtida numericamente a partir dos dados da distribuição de temperatura (Seção 2.2). Também, como todas as aletas possuem base com diâmetro D, tem-se que $A_c(z=0)=\pi D^2/4$. Portanto, calculou-se a taxa de calor dissipada pela aleta com a Equação (19).

$$\dot{q_a} = -k\pi \frac{D^2}{4} \frac{(\theta_1 - \theta_0)}{\delta} \tag{19}$$

A Equação (19) foi aplicada para todas as funções geratrizes.

2.4. Cálculo do volume da aleta

O volume de um sólido de revolução de comprimento L gerado a partir de uma geratriz F(z), segundo Stewart (2002), pode ser determinado por meio da Equação (20).

$$V = \pi \int_0^L F(z)^2 dz \tag{20}$$

A integral da Equação (20) pode ser difícil de calcular analiticamente, dependendo da forma da função F(z); portanto utilizou-se um método de integração numérica. Foi escolhida a regra da quadratura gaussiana de 15 pontos, uma vez que ela fornece soluções exatas para polinômios até ordem 29, sendo uma excelente aproximação para as funções geratrizes apresentadas. A rotina de integração foi implementada em C++ e o código fonte pode ser encontrado no repositório virtual (github.com/marcusbfs/AletasFT/blob/master/Aletas/quad.hpp).

3. RESULTADOS

3.1. Distribuição de temperaturas nas aletas

Os dados numéricos utilizados para a geração dos gráficos encontram-se no ANEXO A.

160 В 140 120 100 80 60 40 20 0.00 0.02 0.04 0.06 0.08 0.10 Posição

Figura 5 - Distribuição térmica para a tríade A/B/C.

Fonte: do autor (2019).

Figura 6 - Distribuição térmica para a tríade A/D/E.

Figura 7 - Distribuição térmica para a tríade A/F/G.

Figura 8 - Distribuição térmica para a tríade A/H/I.

160 140 120 100 100 60 40 20 0.00 0.02 0.04 0.06 0.08 0.10 Posição

Figura 9 - Distribuição térmica para a tríade A/J/K.

Figura 10 - Distribuição térmica para a tríade A/L/M.

3.2. Taxa de calor dissipada pelas aletas

A Tabela 1 apresenta os dados referentes à taxa de calor dissipada pelas aletas de A a M e a representação gráfica destes dados, pode ser observada na Figura 11.

Tabela 1 – Valores numéricos da taxa de calor dissipada por aleta.

Aleta	Taxa de calor dissipada [W]
A	0,49628
В	0,61805
C	0,34861
D	0,58107
E	0,40707
F	0,54819
G	0,44207
Н	0,61815
I	0,34844
J	0,58103
K	0,40711
L	0,61642
M	0,35188

Fonte: do autor (2019).

Figura 11 - Taxa de calor dissipada por aleta.

3.3. Volume de material utilizado na construção das aletas

A Tabela 2 apresenta os dados referentes ao volume de material utilizado na construção das aletas de A a M e a representação gráfica destes dados, pode ser observada na Figura 12.

Tabela 2 - Volume de material utilizado na construção das aletas.

Aleta	Volume de material [cm³]
A	1,9635
В	4,5815
C	0,6545
D	3,6652
E	1,0472
F	3,2257
G	1,2622
Н	4,5840
I	0,6537
J	3,6646
K	1,0474
L	4,5325
M	0,6710

Fonte: do autor (2019).

Figura 12 - Volume de material utilizado na construção das aletas.

REFERÊNCIAS

Stewart, J. Cálculo. Pioneira Thomson Learning, 4 ed., vol. 1. 2002.

ANEXO A DISTRIBUIÇÃO DE TEMPERATURA NAS ALETAS

Tabela A.1 – Distribuição de temperatura na aleta A.

Temperatura [°C] Posição [cm] 0,00 150,000 1,25 127,433 2,50 109,662 3,75 95,893 5,00 85,513 6,25 78,058 7,50 73,194 8,75 70,705 10,00 70,480

Fonte: do autor (2019).

Tabela A.2 – Distribuição de temperatura na aleta B.

Posição [cm]	Temperatura [°C]
0,00	150,000
1,25	121,896
2,50	103,053
3,75	90,333
5,00	81,827
6,25	76,329
7,50	73,053
8,75	71,478
10,00	71,249

Fonte: do autor (2019).

Tabela A.3 – Distribuição de temperatura na aleta C.

Posição [cm]	Temperatura [°C]
0,00	150,000
1,25	134,148
2,50	119,808
3,75	106,864
5,00	95,205
6,25	84,731
7,50	75,344
8,75	66,957
10,00	66,748

Fonte: do autor (2019).

Tabela A.4 – Distribuição de temperatura na aleta D.

Posição [cm]	Temperatura [°C]
0,00	150,000
1,25	123,577
2,50	103,149
3,75	88,290
5,00	78,159
6,25	71,759
7,50	68,146
8,75	66,536
10,00	66,329

Tabela A.5 – Distribuição de temperatura na aleta E.

Posição [cm] Temperatura [°C] 150,000 0,00 1,25 131,489 2,50 116,987 3,75 105,362 5,00 95,868 6,25 87,997 7,50 81,400 8,75 75,881 10,00 75,633

Tabela A.6 – Distribuição de temperatura

na aleta F.

Posição [cm]	Temperatura [°C]
0,00	150,000
1,25	125,072
2,50	105,089
3,75	89,663
5,00	78,522
6,25	71,239
7,50	67,136
8,75	65,383
10,00	65,181

Fonte: do autor (2019).

Tabela A.7 – Distribuição de temperatura na aleta G.

Posição [cm]	Temperatura [°C]
0,00	150,000
1,25	129,898
2,50	114,503
3,75	102,748
5,00	93,737
6,25	86,777
7,50	81,365
8,75	77,203
10,00	76,949

Fonte: do autor (2019).

Tabela A.8 – Distribuição de temperatura na aleta H.

Posição [cm]	Temperatura [°C]
0,00	150,000
1,25	121,891
2,50	103,050
3,75	90,334
5,00	81,831
6,25	76,335
7,50	73,061
8,75	71,486
10,00	71,257

Tabela A.9 – Distribuição de temperatura na aleta I.

Posição [cm] Temperatura [°C] 150,000 0,00 1,25 134,156 2,50 119,819 3,75 106,874 5,00 95,211 6,25 84,728 7,50 75,330 8,75 66,927 10,00 66,719

na aleta K.

Tabela A.11 – Distribuição de temperatura

Posição [cm]	Temperatura [°C]
0,00	150,000
1,25	131,487
2,50	116,984
3,75	105,358
5,00	95,864
6,25	87,994
7,50	81,400
8,75	75,883
10,00	75,635

Fonte: do autor (2019).

Tabela A.10 – Distribuição de temperatura na aleta J.

Posição [cm]	Temperatura [°C]
0,00	150,000
1,25	123,579
2,50	103,152
3,75	88,293
5,00	78,160
6,25	71,759
7,50	68,145
8,75	66,535
10,00	66,329

Fonte: do autor (2019).

Tabela A.12 – Distribuição de temperatura na aleta L.

Posição [cm]	Temperatura [°C]
0,00	150,000
1,25	121,970
2,50	103,053
3,75	90,242
5,00	81,667
6,25	76,129
7,50	72,838
8,75	71,260
10,00	71,032

Tabela A.13 – Distribuição de temperatura na aleta M.

Posição [cm]	Temperatura [°C]
0,00	150,000
1,25	133,999
2,50	119,629
3,75	106,744
5,00	95,210
6,25	84,905
7,50	75,719
8,75	67,558
10,00	67,347
Fanta, da autan (2010)	