

ABES Engineering College, Ghaziabad Department of Applied Sciences & Humanities

Session: 2023-24 Semester: I Section: All

Course Code: BAS-103 Course Name: Engineering Mathematics-I

Assignment 4

Date of Assignment:

Date of submission:

S.No.	KL	СО	PI	Question	Marks
1	K3	CO3	1.2.1, 1.3.1, 2.1.3, 2.4.1, 2.4.2, 5.1.1, 3.3.2	Evaluate $\iint_D x^2 dx dy$, where D be the region in the first quadrant bounded by the curves $xy = 16$, $x = y$, $y = 0$ and $x = 8$.	
2	К3	CO3	1.2.1, 1.3.1, 2.1.3, 2.4.1, 2.4.2	Evaluate $\iint r^3 dr d\theta$ over the area included between the circles $r=2sin\theta$ and $r=4sin\theta$.	5
3	K3	CO3	1.3.1, 2.2.3, 2.4.2	Evaluate the following integral by changing the order of integration: $\int_0^2 \int_{x^2}^{3-x} xy dy dx$	5
4	K3	CO3	2.2.4, 2.2.5, 2.3.2, 2.4.1, 2.4.2, 2.4.3	Evaluate $\iiint_R (x+y+z) dx dy dz$, where R is the region determined by $0 \le x \le 1, 0 \le y \le x^2, 0 \le z \le x+y$.	5
5	К3	CO3	2.2.5, 2.3.2, 2.4.2, 2.4.3, 3.3.2,	Compute $\iiint_V x^2 dx dy dz$ over volume of tetrahedron bounded by $x = 0$, $y = 0$, $z = 0$ and $x/a + y/b + z/c = 1$	5
6.	K3	CO3	5.1.1, 10.1.2,10.3.1	Evaluate the following integral by changing the order of integration: $\int_0^3 \int_0^{6/x} \chi^2 dy dx$.	5
7.	К3	CO3	12.1.1, 12.1.2, 12.2.2	Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dy dx$ by changing to polar coordinates.	5

				, ————————————————————————————————————	
8.	K3	CO3	1.3.1, 2.2.3, 2.4.1	Prove the relation between Beta and gamma function.	5
9.	K3	CO3		Find the volume of solid bounded by the coordinate planes and the surface $\sqrt{\frac{x}{a}} + \sqrt{\frac{y}{b}} + \sqrt{\frac{z}{c}} = 1$	5
10.	К3	CO3	2.4.2	Evaluate by changing the variables $\iint_R (x + y)^2 dxdy$ where Ris the region bounded by the parallelogram $x + y = 0, x + y = 2, 3x - 2y = 0$ and $3x - 2y = 3$	5

Answers:

1. 448 2.
$$\frac{45\pi}{2}$$

5.
$$\frac{a^3bc}{60}$$
6. 27 7. $\pi/4$
9. $\frac{abc}{90}$

$$6.27 \quad 7 \pi/4$$

9.
$$\frac{abc}{90}$$