12. Evolutionary Games

Def. A **selection** is the changing of distribution of types (e.g. phenotype, genotype).

Note We call the equilibrium the Evolutionary Stability Solution (ESS).

Prisoners' Dilemma Style Game

	Defect	Cooperate
Defect	(54, 54)	(72, 47)
Cooperate	(47, 72)	(60, 60)

Let x be the proportion of cooperators in the population.

We consider the fitness levels of each type:

Defector: $Exp(\Pi) = 54(1 - x) + (72)(x) = 18x + 54$

Cooperator: $Exp(\Pi) = 47(1 - x) + (60)(x) = 13x + 47$

It is more fit to be a cooperator if:

$$13x + 47 > 18x + 54 \implies x < \frac{-7}{5}$$
.

Here, in practice, it is never better to be a cooperator.

The ESS is x = 0. So, we end with a **monotone distribution** since only defectors will remain.

At this point, imagine a **mutation** enters the population, a cooperator in this case. The mutation will not survive.

Chicken Style Game

	W	${f M}$
W	(0, 0)	(-1,1)
M	(1, -1)	(-2, -2)

Let x be the proportion of M in the population.

We consider the fitness levels of each type:

W:
$$Exp(\Pi) = (0)(1 - x) + (-1)(x) = -x$$

M:
$$Exp(\Pi) = (1)(1 - x) + (-2)(x) = -3x + 1$$

It is more fit to be M if:

$$-3x + 1 > -x \implies x < \frac{1}{2}$$
.

The ESS is $x = \frac{1}{2}$. So, we do not have a one-type solution.

Here, a mutation is of either type.

Hawk & Dove Game

	H	D
Н	$(rac{V-C}{2},rac{V-C}{2})$	(V,0)
D	(0, V)	$(rac{V}{2},rac{V}{2})$

Let Value be V.

Imagine we have two types come together:

Two Hawks: Equal chance of getting V or enduring injury C

Two Doves: They share V

One of Each: Hawk gets all, Dove gets nothing

Consider V = 10, C = 4 so V > C.

Let x be the proportion of Doves in the population.

Fitness levels:

Hawk: $(\frac{10-4}{2})(1-x) + (10)(x) = 7x + 3$

Dove: $(0)(1 - x) + (\frac{10}{2})(x) = 5x$

It is more fit to be a Dove if:

$$7x + 3 < 5x \implies x < \frac{-3}{2}$$
.

So, ESS is x = 1 and hence it is always better to be a Hawk.

Consider V = 10, C = 12 so V < C.

Let x be the proportion of Doves in the population.

Fitness levels:

Hawk: $(\frac{10-12}{2})(1-x) + (10)(x) = 11x - 1$

Dove: $(0)(1 - x) + (\frac{10}{2})(x) = 5x$

It is more fit to be a Dove if:

 $11x - 1 < 5x \implies x < \frac{1}{6}.$

So, it is better to be a Dove if x < 1/6.

Then, ESS is $x = \frac{1}{6}$.