МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

СЕРГИЕНКО ЛЕВ ЭДУАРДОВИЧ

Отчет по лабораторной работе № 10, вариант 11 ("Компьютерные сети") студента 3-го курса 12-ой группы

Преподаватель Горячкин В.В.

Задание на лабораторную работу №10

1. Вырезать из таблицы и вставить в отчет исходные данные вашего варианта задания.

Перед сохранением файла с отчетом в колонтитуле обновить поле "FileName". То есть должно стоять имя файла вашего отчета.

Убрать имя user-a и вставить свое ФИО.

Не забываем вставить титульный лист

Вариант	Сеть 1 - 4		
11	177.16.0.0/18 177.17.0.0/18 177.18.0.0/18 177.20.0.0/18		

2. Реализуйте схему, которая изображена на рисунке 1. Имена хостов и маршрутизаторов подписать по уже принятым правилам.

Рисунок 1

3. Настройте интерфейсы маршрутизаторов и узлов. Сохраните текущую конфигурацию в качестве начальной в привилегированном режиме

Вставить скриншоты конфигурирования достаточно одного маршрутизатора и хоста на ваш выбор.

Заполните таблицу 1. По аналогии как в лабораторной работе №11.

Привести хотя бы один скриншот получения ID - маршрутизатора

4. Настройте OSPF-процесс вначале на маршрутизаторе с наивысшим ID, чтобы он стал DR-маршрутизатором.

5. Настройте OSPF-процесс на маршрутизаторе со вторым наивысшим ID, чтобы он стал BDR-маршрутизатором.

6. Настройте OSPF-процесс на маршрутизаторе с самым низким ID, чтобы он стал DRother-маршрутизатором.

7. Процесс конфигурирования и результаты тестирования с помощью команды show ip ospf neighbor должны быть представлены в отчете и прокомментированы.

8. Проверить взаимодостижимость всех узлов пользователей. Результат проверки представить в отчете (использовать инструменты пакета). Вставить скриншоты таблиц маршрутизации всех трех маршрутизаторов (использовать инструмент лупа, и все три таблицы маршрутизации желательно поместить на одном рисунке вместе со схемой сети).

											Itali
,	Fire	Last Sta	Sou	Destina	Typ	Col	Time	Perio	Nu	Edi	Delete
		Succe	PC1	PC2	I		0.0	N	0	(e	(delete)
	•	Succe	PC3	PC2	I		0.0	N	1	(e	(delete)

9. Используя рисунок 1, создайте новый рисунок 2, на котором подпишите статус порта каждого маршрутизатора: DR, BDR и Drother и их ID.

10. Заполните таблицу 2 с вашими данными. Первые строки можем перенести из таблицы 1.

Таблица 2

R1	R2	R3
Занести в	Занести в	Занести в
1) 177.16.0.1	1) 177.16.0.2	1)177.16.0.3
2) 177.17.0.1	2) 177.18.0.1	2) 177.20.0.1
ID-177.17.0.1	ID-177.18.0.1	ID-177.20.0.1
Priority=1	Priority=1	Priority=1
Drother	BDR	DR

11. Выдать старые отношения соседства (до изменения приоритета).

- 12. Сохраните модель №1. Далее работаем с моделью №2 (копия модели №1)
- 13. Исследуем, как проходят OSPF-процессы после изменения приоритетов. Используйте команду ір ospf priority interface, чтобы изменить приоритет OSPF маршрутизаторов на следующие значения:

- 14. Закройте и опять активируйте интерфейсы FastEthernet0/0, чтобы запустить OSPF-процессы.
- 15. Используя команды show ip ospf neighbor для проверки отношений соседства, show ip ospf interface, поясните, что получилось в результате изменения приоритета OSPF маршрутизаторов.

Новые:

Старые:

Хотя маршрутизатор R2 обладает более высоким ID, чем у R1, маршрутизатор R2 установился в состояние DRother, поскольку приоритет OSPF был установлен на 0.

16. По аналоги как в пункте 9 создайте рисунок 3. На рисунке 3 подпишите приоритеты и статус. Сравните рисунки 2 и 3 и сделайте вывод.

Изменение приоритетов OSPF существенно влияет на выбор DR и BDR. Установив более высокий приоритет на R1, он стал DR, а R2 — DROther, тк приоритет = 0. После изменения приоритетов на модели №2, уменьшение приоритета R3 до 100 сделало его BDR, а R1 с наименьшим Router ID, но с приоритетом 255, стал DR. Это демонстрирует, что приоритет OSPF имеет первостепенное значение при выборе DR и BDR, а Router ID рассматривается в случае равных приоритетов.

17. Заполнить таблицу 3 (первые строки это копия таблицы 2 пункта 10). Проанализировать содержимое таблицы 3.

Таблица 3

R1	R2	R3						
Занести в	Занести в	Занести в						
1) 177.16.0.1	1) 177.16.0.2	1)177.16.0.3						
2) 177.17.0.1	2) 177.18.0.1	2) 177.20.0.1						
До изменения приоритета								
ID-177.17.0.1	ID-177.18.0.1	ID-177.20.0.1						
Priority=1	Priority=1	Priority=1						
Drother	BDR	DR						
После изменения приоритета								
ID-177.17.0.1	ID-177.18.0.1	ID-177.20.0.1						
Priority=255	Priority=0	Priority=100						
DR	Drother	BDR						

Анализ Таблицы 3

До изменения приоритета:

- **R1** (ID: 177.17.0.1) имел приоритет **1** и статус **Drother**.
- **R2** (ID: 177.18.0.1) имел приоритет **1** и статус **BDR** (Backup Designated Router).
- **R3** (ID: 177.20.0.1) имел приоритет **1** и статус **DR** (Designated Router).

При стандартных настройках OSPF с одинаковыми приоритетами выбор DR и BDR определяется на основе Router ID. В данном случае, R3 с наивысшим Router ID стал DR, а R2 — BDR.

После изменения приоритета:

- **R1** (ID: 177.17.0.1) приоритет увеличен до **255**, что является максимальным значением. Это гарантирует, что R1 станет **DR**.
- **R2** (ID: 177.18.0.1) приоритет установлен на **0**, что исключает его из процесса выбора DR/BDR, и он становится **Drother**.
- **R3** (ID: 177.20.0.1) приоритет увеличен до **100**, что выше, чем у других маршрутизаторов (кроме R1). Таким образом, R3 становится **BDR**.

Вывод:

Изменение приоритетов OSPF позволило точно контролировать выбор ролей DR и BDR в сети:

- R1 стал DR благодаря максимально возможному приоритету.
- R2 исключен из процесса выбора и стал Drother.
- **R3** занял позицию **BDR** благодаря высокому, но не максимальному приоритету.

Это демонстрирует, как настройка приоритетов в OSPF влияет на распределение ролей маршрутизаторов, обеспечивая гибкость и контроль над топологией сети.