

WHAT IS CLAIMED IS:

1. An image display apparatus having a display unit for displaying an image and a drive unit for driving this display unit, the drive unit being connected by a plurality of signal lines, wherein:

said display unit consists of a plurality of display pixels arranged in a matrix form, and

said drive unit has a ladder resistor, impedance converters connected to the ladder resistor, gray level voltage wires constituting output lines from the impedance converters, and a gray level voltage selector connected to the gray level voltage wires.

- 2. The image display apparatus as set forth in claim 1, wherein said gray level voltage selector is connected to said plurality of signal lines.
- 3. The image display apparatus as set forth in claim 1, wherein said display unit, said gray level voltage selector and said gray level voltage wires are arranged over the same substrate.
- 4. The image display apparatus as set forth in claim 1, wherein said impedance converters are configured by drain-grounded field effect transistors.
- 5. The image display apparatus as set forth in claim 1, wherein said impedance converters are configured by differential amplifying circuits using field effect transistors.
- 6. The image display apparatus as set forth in elaim I, wherein said impedance converters have an

offset voltage canceling unit for detecting and eliminating any offset voltage between input and output.

- 7. The image display apparatus as set forth in claim 1, wherein said impedance converters have means for suspending the functioning of the impedance converters and circuits for short-circuiting the input and output terminals of the impedance converters.
- 8. The image display apparatus as set forth in claim 1, wherein said display pixels are liquid crystal display pixels each having a counter electrode and a liquid crystal region between the pixel electrode and the counter electrode.
- 9. The image display apparatus as set forth in claim 1, wherein said gray level voltage selector is configured by an analog switch using a field effect transistor.
- 10. The image display apparatus as set forth in claim 1, wherein said ladder resistor is configured by a polycrystalline \$i film coped with impurities.
- 11. The image display apparatus as set forth in claim 1, wherein said display pixels, said gray level voltage selector and said impedance converters are configured by polycrystalline Si thin film transistors (TFTs).
- 12. The image display apparatus as set forth in claim 1, wherein said display pixels, said gray level voltage selector and said impedance converters are

configured on the same substrate.

- 13. The image display apparatus as set forth in claim 1, wherein said ladder resistor is configured by one resistor.
- 14. The image display apparatus as set forth in claim 1, wherein said ladder resistor is a pair of resistors, one each for positive voltage gray level generation and inverted voltage gray level generation.
- 15. The image display apparatus as set forth in claim 1, wherein said plurality of display pixels are luminescent type display pixels controlled by entered analog image signals and having a light emitting function for displaying an image with luminescence generated by a current flowing between a positive electrode and a negative electrode.
- An image display apparatus driving method for displaying an image by writing analog image signal voltages via signal lines into pixel capacitances of individual pixels in a display unit, wherein the analog image signal voltages are written in three separate phases when the analog image signal voltages are to be written onto the signal lines.
- The image display apparatus driving method as set forth in claim 16, wherein the writing of the analog image signal voltages onto said signal lines in said image display apparatus uses impedance converters having offset canceling means using offset canceling capacitances;

in a first phase, simultaneously with the writing of analog image signal voltages using the impedance converters, any offset voltage arising between the input and output voltages of the impedance converters is written into the offset canceling capacitances;

in a second phase, simultaneously with the writing using the impedance converters, any offset voltage of the impedance converters using the offset canceling means is canceled; and

in a third phase, analog image signal voltages are directly written onto the signal lines without going through the impedance converters.

- 18. The image display apparatus driving method as set forth in claim 16, wherein said signal lines are provided with voltage resetting circuits, and analog image signal voltages are written in three separate phases after the voltages of the signal lines are reset in advance by the resetting circuits.
- apparatus having a plurality of display pixels arranged in a matrix form to display an image, a group of signal lines provided for each column to transmit analog image signals and connected to the display pixels, and a drive circuit for driving the display pixels and the group of signal lines at prescribed timings, and writing the analog image signal voltages into the pixel capacitances of the display pixels to display an image,

wherein:

said drive circuit has a ladder resistor and a plurality of gray level voltage wires connected to the ladder resistor;

said group of signal limes are connected to said gray level voltage wires via a gray level voltage selector;

each gray level voltage wire is connected to the ladder resistor via impedance converters;

at least the display pixels, the group of signal lines, the gray level voltage selector and the gray level voltage wires are provided over the same substrate; and

the analog image signal voltages are written in three separate phases when the analog image signal voltages are to be written onto the signal lines.

20. An image display terminal system, comprising:

a plurality of display pixels arranged in a matrix form to display an image;

a group of signal lines provided for each column to transmit analog image signals and connected to the display pixels;

a drive circuit for driving the display pixels and the group of signal lines at prescribed timings; and

means for causing the display pixels to display an image in a prescribed sequence on the basis of inputted image display data, wherein:

said drive circuit has a ladder resistor and a plurality of gray level voltage wires connected to the ladder resistor;

said group of signal lines are connected to the gray level voltage wires via a gray level voltage selector;

each gray level voltage wire is connected to the ladder resistor via impedance converters; and

at least the display pixels, the group of signal lines, the gray level voltage selector and the gray level voltage wires are provided over a single substrate.