Probability theory and Statistics 2018-09-18 $\,$

Personal Data		Registration Number		
Family Name:				
Given Name:				
Signature:	checked	$\begin{bmatrix} 2 & \square &$		
In this section no changes of must be made! Type Exam I	5			
030 18091800	0001			
please use a blue or black pen. Only clearly marked and positions Answers 1 - 15 a b c d e 1	Answers 16 - 30 a b c d e 16	ot bend or fold. For filling in the document sed!		
8	23			
14	29			

- 1. В коробке 10 купюр тысячные, пятисотенные и сотенные. Случайным образом достаются две купюры. Случайная величина X_1 принимает значение, равное номиналу первой купюры, случайная величина X_2 второй. Величины X_1 и X_2
 - (а) положительно коррелированы и независимы
 - (b) некоррелированы и зависимы
 - (с) некоррелированы и независимы
 - (d) отрицательно коррелированы
 - (е) положительно коррелированы
- 2. Математическое ожидание выборочного среднего, построенного по выборке из равномерного распределения на отрезке [0, 2], равно
 - (a) 0
 - (b) $1/\sqrt{n}$
 - (c) 1
 - (d) 2
 - (e) 1.5
- 3. Величины X_1, \dots, X_n случайная выборка из распределения Бернулли с параметром $p \in (0; 1)$. Информация Фишера о параметре p, заключенная в одном наблюдении, равна
 - (a) $\frac{1}{p(1-p)}$
 - (b) $\frac{1}{p}$
 - (c) 1 p
 - (d) **p**
 - (e) p(1-p)
- 4. Имеется выборка из одного наблюдения X_1 . На основе этой выборки тестируется гипотеза H_0 : $X_1 \sim U[0;2]$ против альтернативной гипотезы $X_1 \sim U[1,3]$. Используется критерий следующего вида: если $X_1 > a$, то H_0 отвергается. Если a = 1.5, то с ростом a = 1.5
 - (а) вероятности ошибок первого и второго рода от а не зависят
 - (b) вероятность ошибки второго рода падает, первого растёт
 - (с) вероятности ошибок первого и второго рода растут
 - (d) вероятности ошибок первого и второго рода падают
 - (е) вероятность ошибки первого рода падает, второго растёт
- 5. Экзамен принимают два преподавателя: Злой и Добрый. Злой поставил оценки 2, 3, 10, 8, 1. А Добрый оценки 6, 4, 7, 9. Значение статистики критерия Вилкоксона о совпадении распределений оценок может быть равно
 - (a) 25
 - (b) 22
 - (c) 23
 - (d) 24
 - (e) 26

- 6. Последовательность оценок \hat{a}_n параметра a является состоятельной, если
 - (a) $\hat{a}_n \stackrel{P}{\rightarrow} a$
 - (b) $\mathbb{E}((\mathbb{E}(\hat{a}_n) a)^2) \stackrel{P}{\rightarrow} \hat{a}_n$
 - (c) $\mathbb{E}((\hat{a}_n a)^2) \stackrel{P}{\rightarrow} 0$
 - (d) $\mathbb{E}((\hat{a}_n a)^2) \stackrel{P}{\rightarrow} \hat{a}_n$
 - (e) $\mathbb{E}((\hat{a}_n a)^2) \stackrel{P}{\rightarrow} a$
- 7. Случайная выборка состоит из одного наблюдения X_1 , которое имеет плотность распределения

$$f(x; \theta) = \begin{cases} \frac{1}{\theta} x^{-1 + \frac{1}{\theta}} & \text{при } x \in (0; 1), \\ 0 & \text{при } x \notin (0; 1). \end{cases}$$

Оценка параметра θ , найденная с помощью метода максимального правдоподобия, равна

- (a) X_1
- (b) $-\ln X_1$
- (c) In X₁
- (d) $-X_1$
- (e) $\frac{1}{\ln X_1}$
- 8. Оценка **â** параметра **a** является несмещённой, если
 - (a) $\mathbb{E}(\hat{a} a) = 0$
 - (b) $\lim \mathbb{E}(\hat{a}) = a$
 - (c) $Var(\hat{a}) = 0$
 - (d) $\mathbb{E}((\hat{a}-a)^2)=0$
 - (e) $Var(\hat{a}) = a$
- 9. Исследовательница Алевтина подбросила кубик 12 раз и 12 раз на нём выпала шестёрка. Алевтина хочет проверить, выпадают ли все грани равновероятно, при помощи критерия χ^2 Пирсона. Значение тестовой статистики будет равно
 - (a) 60
 - (b) 6
 - (c) 50
 - (d) 12
 - (e) 5
- 10. Алгоритм Гиббса порождает
 - (а) Независимую выборку из смеси априорного и апостериорного законов
 - (b) Независимую выборку из априорного закона распределения
 - (с) Независимую выборку из апостериорного закона распределения
 - (d) Зависимую выборку из априорного закона распределения
 - (е) Зависимую выборку из апостериорного закона распределения

- 11. Имеются две случайных выборки X_1, \ldots, X_{31} и Y_1, \ldots, Y_{41} из нормальных распределений. Известно, что $\sum_{i=1}^{31} (X_i \bar{X})^2 = 120$ и $\sum_{i=1}^{41} (Y_i \bar{Y})^2 = 400$. При проверке гипотезы о равенстве дисперсий этих распределений значение тестовой статистики может быть равно
 - (a) 2
 - (b) 0.3
 - (c) 3.33
 - (d) 2.5
 - (e) 2.52
- 12. Дана реализация выборки: 1, 2, 0. Выборочный начальный момент второго порядка равен
 - (a) 1
 - (b) 5/3
 - (c) 2.5
 - (d) 1/3
 - (e) **3**
- 13. Пусть X_1, \ldots, X_n случайная выборка из распределения Пуассона с параметром λ . Известно, что информация Фишера о параметре λ , заключенная в одном наблюдении случайной выборки, равна $1/\lambda$. Чему равна дисперсия эффективной оценки неизвестного параметра λ ?
 - (a) $n\lambda$
 - (b) λ/n
 - (c) λ
 - (d) n/λ
 - (e) 1
- 14. Математическое ожидание выборочной функции распределения в точке = 0.5, построенной по выборке из равномерного распределения на отрезке [0, 1] принимает значение
 - (a) 1
 - (b) 0
 - (c) 0.5
 - (d) 0.2
 - (e) 0.1
- 15. Выборочный начальный момент первого порядка, построенный по выборке объёма n из равномерного распределения на отрезке [0,1], при n стремящимся к бесконечности стремится по вероятности к
 - (a) 1
 - (b) 0.1
 - (c) 0.5
 - (d) 0.2
 - (e) 0

- 16. Величины X_1, X_2, \ldots, X_n имеют нормальное распределение $\mathcal{N}(\theta, 7)$. Оценка $\bar{X} \frac{X_1}{n}$ является
 - (а) экспоненциальной
 - (b) несмещённой
 - (с) эффективной
 - (d) оптимальной
 - (е) состоятельной
- 17. При построения доверительного интервала для разности математических ожиданий в двух нормальных выборках размером m и n в случае равных неизвестных дисперсий используется распределение
 - (a) t_{m+n}
 - (b) $\mathcal{N}(0, m+n-2)$
 - (c) t_{m+n-2}
 - (d) $F_{m,n}$
 - (e) $F_{m-1,n-1}$
- 18. Известно, что параметр a = 10, а информация Фишера о параметре a, заключенная в ста наблюдениях случайной выборки $I_{100}(a) = 400$. Оценка максимального правдоподобия имеет примерно распределение
 - (a) $\mathcal{N}(10; 1/20)$
 - (b) $\mathcal{N}(10; 1/400)$
 - (c) $\mathcal{N}(10; 1/40)$
 - (d) $\mathcal{N}(10;4)$
 - (e) $\mathcal{N}(10; 1/4)$
- 19. Есть выборка X_1, X_2, \ldots, X_5 и выборка Y_1, Y_2, Y_3, Y_4 . Исследовательница Ирина проводит тест суммы рангов Вилкоксона. У выборки X_i сумма рангов равна 7. Сумма рангов для выборки Y_i равна
 - (a) 2
 - (b) 38
 - (c) 1
 - (d) 43
 - (e) 45
- 20. Исследовательница Глафира считает, что любовь к энергетическим напиткам и успешность сдачи экзамена по математической статистике должны быть как-то связаны. Опросив 200 своих однокурсников, она поделила студентов по двум признакам: сдал или не сдал, и как часто пьёт энергетик (не пьёт, пьёт иногда, пьёт постоянно).

Статистика Пирсона для проверки независимости признаков имеет распределение

- (a) t_{198}
- (b) χ_2^2
- (c) $\mathcal{N}(0;1)$
- (d) $F_{2,3}$
- (e) t_{199}

- 21. При построении доверительного интервала для разности долей при больших выборках размеров m и n используется распределение
 - (a) $F_{m-1,n-1}$
 - (b) $F_{n,m}$
 - (c) N(0;1)
 - (d) t_{m+n-2}
 - (e) t_{m+n}
- 22. Дана реализация выборки: 3, 2, 5, 4, 2. Выборочная функция распределения в точке $\mathbf{x} = \mathbf{2.5}$ принимает значение
 - (a) 0.2
 - (b) 0.6
 - (c) 0.5
 - (d) **0.4**
 - (e) 0.25
- 23. Выборочная функция распределения, построенная по выборке объёма n из равномерного распределения на отрезке [0,2], в точке =0.2 при n стремящимся к бесконечности стремится по вероятности к
 - (a) 1
 - (b) **0.5**
 - (c) 0.1
 - (d) 0.2
 - (e) **0**
- 24. Датчик случайных чисел выдал два значения псевдослучайных чисел 0.1 и 0.8. Вычислите значение критерия Колмогорова и проверьте гипотезу о соответствии распределения равномерному на (0, 1). Критическое значение статистики Колмогорова считайте равным 0.776.
 - (a) 0.4, H_0 не отвергается
 - (b) $0.2, H_0$ не отвергается
 - (c) 0.3, H_0 не отвергается
 - (d) $0.8, H_0$ отвергается
 - (e) $0.1, H_0$ отвергается
- 25. При построении 90%-доверительного интервала для дисперсии используется выборка из 26 наблюдений. Несмещенная оценка дисперсии равна 100. Левая граница симметричного по вероятности доверительного интервала равна
 - (a) 8.16
 - (b) 66.4
 - (c) 106.32
 - (d) 43.25
 - (e) 32.8
- 26. При проверке гипотезы о равенстве математических ожиданий оценок по математической статистике в двух группах, было получено Р-значение 0.03. Тогда нулевая гипотеза
 - (а) не отвергается ни на уровне значимости 0.05, ни на уровне значимости 0.01
 - (b) отвергается на уровне значимости 0.05 и не отвергается на уровне значимости 0.01
 - (с) не отвергается на уровне значимости 0.05 и отвергается на уровне значимости 0.01
 - (d) отвергается на уровне значимости 0.05 и на уровне значимости 0.01
 - (е) ответ зависит от альтернативной гипотезы

- 27. В алгоритме Метрополиса-Гастингса был предложен переход из точки $\theta^{(0)} = 5$ в точку $\theta^{(1)}_{prop} = 4$. Априорное распределение θ равномерное. Известны значения функций правдоподобия, $f(data|\theta=4)=0.7$, $f(data|\theta=5)=0.8$. Вероятность одобрения перехода равна
 - (a) 28/40
 - (b) 7/8
 - (c) 4/5
 - (d) 1
 - (e) 0.8/5
- 28. Вероятность того, что в случайной выборке три наблюдения подряд окажутся меньше теоретической медианы
 - (a) 1/4
 - (b) 1/2
 - (c) 1/8
 - (d) 0.01
 - (e) 0.05
- 29. Оценка \hat{a} называется эффективной оценкой параметра a в классе оценок K, если
 - $(a) \ \mathbb{E}((\hat{a}- ilde{a})^2) \leq \mathbb{E}((ilde{a}-a)^2)$ для всех $ilde{a} \in K$
 - (b) $\mathbb{E}(\hat{a}^2) \geq \mathbb{E}(\tilde{a}^2)$ для всех $\tilde{a} \in K$
 - (c) $\mathbb{E}((\hat{a}-a)^2) \leq \mathbb{E}((\tilde{a}-a)^2)$ для всех $\tilde{a} \in K$
 - $(\mathrm{d})\ \mathbb{E}((\hat{a}-a)^2) \geq \mathbb{E}((\tilde{a}-a)^2)$ для всех $\tilde{a} \in \mathcal{K}$
 - (e) $\mathbb{E}((\hat{a}-\tilde{a})^2) > \mathbb{E}((\tilde{a}-a)^2)$ для всех $\tilde{a} \in K$
- 30. При построении доверительного интервала для отношения дисперсий в двух выборках размером в 5 и 3 наблюдений было получено значение тестовой статистики 10. Если оценка дисперсии по одной из выборок равна 8, то другая оценка дисперсии может быть равна
 - (a) 80
 - (b) 1/5
 - (c) 5/4
 - (d) 4/3
 - (e) 4