

数学实验

Experiments in Mathematics

实验4 常微分方程数值解

2000-10-14

为什么要学习微分方程数值解

- 微分方程是研究函数变化规律的重要 工具,有着广泛的应用。
- 多数微分方程没有解析解,数值解法 是求解的重要手段,如

$$\frac{dy}{dx} = y^2 + x$$

 $\dot{x}(t) = -axy$

 $\dot{y}(t) = axy - by$

实验4的主要内容

- 1. 两个最常用的数值解法:
- 欧拉 (Euler) 方法
- · 龙格-库塔 (Runge-Kutta) 方法
- 2. 龙格-库塔方法的MATLAB实现
- 3. 实际问题用微分方程建模, 并求数值解

实例1 单摆运动

 $f = ma \quad \Box \quad ml\ddot{\theta} = -mg\sin\theta$ (1)

 θ_0 , 无初速 \Box $\theta(0) = \theta_0$, $\dot{\theta}(0) = 0$ (2)

在 θ 不大的条件下 $\sin \theta \approx \theta$

$$(1) \Rightarrow \ddot{\theta} + \frac{g}{l}\theta = 0 \quad (3)$$

(3),(2)的解 $\theta(t) = \theta_0 \cos \omega t$, $\omega = \sqrt{g/l}$

 θ_0 较大时 (1),(2)无解析解, 如何求 θ (t)

实例2 食饵-捕食者模型

食饵 (甲) 数量 x(t), 捕食者 (乙) 数量 y(t)

甲独立生存的增长率r

 $\dot{x} = rx$

乙使甲的增长率减小, 减小量与v成正比

 $\dot{x}(t) = (r - ay)x$ (1)

乙独立生存的死亡率d

 $\dot{y} = -dy$

甲使乙的死亡率减小, 减小量与x成正比

 $\dot{y}(t) = -(d-bx)y = (-d+bx)y$ (2)

在初始条件 $x(0) = x'_0, y(0) = y'_0$ 下求解(1),(2)

(1),(2) 无解析解

2000-10-14

"常微分方程初值问题数值解"的提法

设 $y' = f(x, y), y(x_0) = y_0$ 的解y = y(x)存在且唯一

不求解析解 y = y(x), 而在一系列离散点

 $x_0 < x_1 < x_2 < \cdots < x_n < \cdots$

求y(x,)的近似值

记作 y_n ($n = 1, 2, \cdots$)

通常取等步长h $x_n = x_0 + nh$

2000-10-14

欧拉方法

 $y' = f(x, y), y(x_0) = y_0$

基本思路 $y(x_{n+1}) = y(x_n) + hf(x, y(x)), x \in [x_n, x_{n+1}]$

在小区间 $[x_n x_{n+1}]$ 上用差商 $[y(x_{n+1})-y(x_n)]/h$ 代替 左端的导数y',右端f(x,y)的x取[$x_m x_{n+1}$]内某一点的值.

各种欧拉公式 取不同的点

$$y(x_{n+1}) = y(x_n) + hf(x_n, y(x_n))$$
 y₀ P₀ 近似: $y_n \approx y(x_n), y_{n+1} \approx y(x_{n+1})$

$$y_{n+1} = y_n + hf(x_n, y_n), \ n = 0, 1, \dots$$

2000-10-14

假设到第n步公式右端 y_n 没有误差, 即 $y_n = y(x_n)$, 从 x_n 到 x_{n+1} 一步的计算值 y_{n+1} 与精确值 $y(x_{n+1})$ 之差, 称为局部截断误差.

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + O(h^3)$$

$$y_{n+1} = y(x_n) + hf(x_n, y(x_n)) = y(x_n) + hy'(x_n)$$

$$T_{n+1} = y(x_{n+1}) - y_{n+1} = \frac{h^2}{2}y''(x_n) + O(h^3) = O(h^2)$$

若一种算法的局部截断误差为 $O(h^{p+1})$,则称该算法 具有p阶精度 向前欧拉公式具有1阶精度

局部截断误差主项为 $\frac{h^2}{2}y''(x_n)$

欧拉 方法

 $y(x_{n+1}) = y(x_n) + hf(x, y(x)), x \in [x_n, x_{n+1}]$

向后欧拉公式 x取右端点 x_{n+1} , $y_n \approx y(x_n)$, $y_{n+1} \approx y(x_{n+1})$

 $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1}), n = 0, 1, \dots$ 右端 y_{n+1} 未知

隐式公式, 迭代求解

 $y_{n+1}^{(0)} = y_n + hf(x_n, y_n)$

$$y_{n+1}^{(k+1)} = y_n + hf(x_{n+1}, y_{n+1}^{(k)})$$

 $k = 0, 1, 2, \cdots, \quad n = 0, 1, 2, \cdots$

 $\lim y_{n+1}^{(k)} = y_{n+1}$

向后欧拉公式的误差

 $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1}), n = 0, 1, \dots$

 $T_{n+1} = y(x_{n+1}) - y_{n+1} = -\frac{h^2}{2}y''(x_n) + O(h^3)$

向前欧拉公式 $\frac{h^2}{2}y''(x_n)$ ~QA

向后欧拉公式 $-\frac{h^2}{2}y''(x_n)$ ~QB

向前、向后欧拉公式的右端平 均,则两个误差主项刚好抵消

□ 梯形公式

2000-10-14

向后欧拉

公式具有

1阶精度

向前欧拉公式

向后欧拉公式

11

$$y_{n+1} = y_n + hf(x_n, y_n)$$
 $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$

 $y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})], n = 0, 1, \dots$ 梯形 梯形公式具有2阶精度 局部截断 $-\frac{h^3}{12}y^{"'}(x_n)$

隐式公式迭代求解 $y_{n+1}^{(0)} = y_n + hf(x_n, y_n)$

$$\begin{aligned} y_{n+1}^{(k+1)} &= y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(k)})] \\ k &= 0, 1, 2, \cdots, \quad n = 0, 1, 2, \cdots \end{aligned}$$

2000-10-14

改进的欧拉公式 将梯形公式的迭代过程简化为两步

$$\overline{y}_{n+1} = y_n + hf(x_n, y_n)$$

预测

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \overline{y}_{n+1})]$$
 $n = 0.1.2...$

 $k_1 = f(x_n, y_n)$

 $k_{1} = f(x_{1}, y_{1} + hk_{1})$

欧拉公式都可 以推广到解常 微分方程组、

高阶微分方程

2000-10-14

宗为

12

单担	运动的	内数值解	x(t)与近似的	解θ(t)	
初始角100			初始角300		
t	X	θ	t	X	θ
0	0.1745	0.1745	0	0.5236	0.5236
0.1000	0.1742	0.1742	0.1000	0.5226	0.5226
0.2000	0.1731	0.1731	0.2000	0.5197	0.5195
0.3000	0.1714	0.1714	0.3000	0.5148	0.5144
0.4000	0.1691	0.1691	0.4000	0.5080	0.5073
0.5000	0.1661	0.1660	0.5000	0.4993	0.4982
0.6000	0.1624	0.1623	0.6000	0.4887	0.4871
9.8000	0.1718	0.1726	9.8000	0.5057	0.5179
9.9000	0.1731	0.1739	9.9000	0.5127	0.5217
10.0000	0.1738	0.1745	10.0000	0.5177	0.5235
10.1000	0.1739	0.1744	10.1000	0.5208	0.5232
10.2000	0.1732	0.1736	10.2000	0.5219	0.5208
10.3000	0.1719	0.1721	10.3000	0.5211	0.5164

食饵-捕食者模型的进一步研究

相轨线是封闭曲线 📛 x(t),y(t)是周期函数(周期记 T)

求 $\mathbf{x}(t)$, $\mathbf{y}(t)$ 在一周期的平均值 \overline{x} , \overline{y}

$$\dot{y}(t) = (-d + bx)y \quad \Box \quad x(t) = \frac{1}{b}(\frac{\dot{y}}{y} + d)$$

$$\Box \quad \bar{x} = \frac{1}{T} \int_{0}^{T} x(t)dt = \frac{1}{T}(\frac{\ln y(T) - \ln y(0)}{b} + \frac{dT}{b}) \quad \Box \quad \bar{x} = \frac{d}{b}$$

$$\dot{x}(t) = (r - ay)x \quad \Box \quad \cdots \quad \Box \quad \bar{y} = \frac{r}{a}$$

食饵-捕食者模型

$$\dot{x}(t) = (r - ay)x$$
 $\dot{y}(t) = -(d - bx)y$

 $x(0) = x'_0, y(0) = y'_0 \quad P_0(x'_0, y'_0)$

 $T_1: x(t) \uparrow y(t) \uparrow T_2: x(t) \downarrow y(t) \uparrow$

 $T_3: x(t) \downarrow y(t) \downarrow T_4: x(t) \uparrow y(t) \downarrow$

食饵 $\bar{x} = \frac{d}{b} \frac{d \sim 捕食者死亡率}{b \sim 食饵供养捕食者能力$

2000-10-14

布置实验

目的

1. 用MATLAB软件掌握求微分方程数值解 的方法,并对结果作初步分析;

2. 通过实例学习用微分方程模型解决简化 的实际问题。

内容

1. c; 2; 5.

5