Started on	Friday, 21 June 2024, 1:58 AM
State	Finished
Completed on	Friday, 21 June 2024, 1:58 AM
Time taken	9 secs
Marks	0.00/11.00
Grade	0.00 out of 100.00

Question 1

Not answered

Marked out of 1.00

True/False: $\operatorname{Is}2^{(n+1)} = O\left(2^n\right)$?

Select one:

O True

False

The correct answer is 'False'.

Question 2

Not answered

Marked out of 1.00

$$3^{n} + 12$$

Select one:

- \bigcirc a. $\Theta(3^n)$
- \bigcirc b. $\Omega(3^n)$
- o c. $O(2^n)$
- \bigcirc d. O(3 n)

The correct answer is: $\Theta(3^n)$

Question 3

Not answered

Marked out of 1.00

What is the Asymptotic complexity of a binary search given the code below and the following recursion equation:

```
\begin{split} T\left(n\right) &= T\left(\frac{n}{2}\right) + 1 \\ \text{// initially called with low = 0, high = N - 1} \\ \text{BinarySearch_Right(A[0..N-1], value, low, high) {}} \\ \text{// invariants: value >= A[i] for all i < low} \\ \text{value < A[i] for all i > high} \\ \text{if (high < low)} \\ \text{return low} \\ \text{mid = (low + high) / 2} \\ \text{if (A[mid] > value)} \\ \text{return BinarySearch_Right(A, value, low, mid-1)} \\ \text{else} \\ \text{return BinarySearch_Right(A, value, mid+1, high)} \end{split}
```

Select one:

- \odot a. $\Theta(lg \cdot n)$
- \bigcirc b. $O\left(n^2\right)$
- \odot c. $\emptyset(lg \cdot n)$
- \odot d. $\Omega\left(lg\cdot n\right)$

$$\Theta(lg \cdot n)$$

The correct answer is: $\Theta\left(lg\cdot n\right)$

Question 4

Not answered

Marked out of 1.00

Given the following algorithm, what is the number of fundamental instructions that this routine will execute if the value of n is 4?

```
var M = A[ 0 ];
for ( var i = 0; i < n; ++i ) {
   if ( A[ i ] >= M ) {
        M = A[ i ];
   }
}
```

Select one:

- a. 4+2n
- O b. 10
- \odot c. n^2
- od. 2n+2

The correct answer is: 4+2n

Question 5

Not answered

Marked out of 1.00

True/False: A Boolean variable can take on only 1 value.

Select one:

True

False

The correct answer is 'False'.

Question 9 Not answered
Marked out of 1.00
True/False: An algorithm is a well-defined sequence of steps used to solve a well-defined problem in an infinite number of steps.
Select one:
○ True
○ False
The correct answer is 'False'.
Question 10
Not answered
Marked out of 1.00
True/False: The backtracking algorithm treats the solution space as a graph and follows a path to conclusion to find a solution to a problem. The algorithm may 'backtrack' by reversing up to previous branches in a tree and try all branches to find the solution.
Select one:
○ True
○ False
The correct answer is 'True'.
The correct answer is true.
Question 11
Not answered
Marked out of 1.00
The Backtracking algorithm implements the following search?
Select one:
 a. Depth First Search
○ b. Sequential search
c. Breadth First Search
○ d. Binary Search

The correct answer is: Depth First Search