Materials 24 - Implementing the target criterion (TC)

Laura Gáti

April 4, 2020

Overview

1	Description of the three steps	1
2	Choosing exogenous sequences for the observables	4
3	Implementing the RE-discretion target criterion	5
4	Implementing the simple anchoring target criterion	6
A	Model summary	8
В	Target criterion	8
C	A target criterion system for an anchoring function specified for gain changes	9

1 Description of the three steps

Overall goal: find an exogenous sequence $\{i_t\}_{t=1}^T$ that replaces the Taylor rule as a DGP for i and implements the target criterion in the simplified anchoring model, equation (B.1).

I proceed in 3 steps:

- 1) find an exogenous sequence $\{i_t\}_{t=1}^T$ that replaces the Taylor rule as a DGP for i and fulfills the other model equations, w/o a target criterion;
- 2) find an exogenous sequence $\{i_t\}_{t=1}^T$ that replaces the Taylor rule as a DGP for i and fulfills the other model equations including a simple target criterion from the RE model with discretion;
- 3) find an exogenous sequence $\{i_t\}_{t=1}^T$ that replaces the Taylor rule as a DGP for i and fulfills the other model equations, including the anchoring target criterion.

Variable dimensions in this exercise:

- The # of exogenous sequences to feed in and optimize over: $\{i_t\}$, $\{i_t, x_t\}$ or $\{i_t, x_t, \pi_t\}$.
- The # of equations to consider as residual: none, (A.9), (A.9) and (A.10) or (A.9), (A.10) & TC.

- 1. "Choosing exogenous sequences for the observables" the main logic of the exercise
 - The system we are trying to solve can be summarized as:

$$x_t = -\sigma i_t + f^1(\text{expectations}) + f^2(\text{exogenous states})$$
 (A9)

$$\pi_t = -\kappa x_t + f^3(\text{expectations}) + f^4(\text{exogenous states})$$
 (A10)

$$i_t = \mathcal{N}(0, \sigma^2)$$
 (exog. DGP for i)

• I'll mark the given stuff in blue. In all of this exercise I treat the expectations equations as exactly fulfilled, so the above is

$$x_t = -\sigma i_t + f^1(\text{expectations}) + f^2(\text{exogenous states})$$
 (A9)

$$\pi_t = -\kappa x_t + f^3(\text{expectations}) + f^4(\text{exogenous states})$$
 (A10)

$$i_t = \mathcal{N}(0, \sigma_i^2)$$
 (exog. DGP for i)

- What this shows is that if the i-DGP is exact, which it has to be, then A9 pins down x_t , and A10 pins down π_t , uniquely. I cannot treat anything as a residual equation, and since all $\{i_t\}$ fulfill this system, the initial guess is the solution, even if expectations blow up.
- So if I want to add "wiggle-room," and make say A9 residual, I need something else to pin down x_t ; in other words, I need to feed in (and optimize over) an exogenous sequence of x:

$$res_{A9} = -x_t - \sigma i_t + f^1(\text{expectations}) + f^2(\text{exogenous states})$$
 (A9)

$$\pi_t = -\kappa x_t + f^3(\text{expectations}) + f^4(\text{exogenous states})$$
 (A10)

$$i_t = \mathcal{N}(0, \sigma_i^2)$$
 (exog. DGP for i)

$$x_t = \mathcal{N}(0, \sigma_x^2)$$
 (exog. DGP for x)

• Similarly, the maximum I can do here is to feed in and optimize over π as well:

$$res_{A9} = -x_t - \sigma i_t + f^1(\text{expectations}) + f^2(\text{exogenous states})$$
 (A9)

$$res_{A10} = -\pi_t - \kappa x_t + f^3(\text{expectations}) + f^4(\text{exogenous states})$$
 (A10)

$$i_t = \mathcal{N}(0, \sigma_i^2)$$
 (exog. DGP for i)

$$x_t = \mathcal{N}(0, \sigma_x^2)$$
 (exog. DGP for x)

$$pi_t = \mathcal{N}(0, \sigma_\pi^2)$$
 (exog. DGP for π)

- 2. "Implementing the RE-discretion target criterion"
 - The only thing that changes wrt. point 1 is that I add the TC as a model equation, with its own residual term. In terms of the first equation system above:

$$x_t = -\sigma i_t + f^1(\text{expectations}) + f^2(\text{exogenous states})$$
 (A9)

$$\pi_t = -\kappa x_t + f^3(\text{expectations}) + f^4(\text{exogenous states})$$
 (A10)

$$i_t = \mathcal{N}(0, \sigma_i^2)$$
 (exog. DGP for i)

$$\pi_t = -\frac{\lambda_x}{\kappa} x_t \tag{RE-TC}$$

- \rightarrow the TC has to be a residual equation.
- 3. "Implementing the simple anchoring target criterion"
 - The only thing that changes wrt. point 1 is that I add the anchoring TC (eq. B.1) as a model equation, with its own residual term. Since this requires a bunch of expected future terms, I evaluate its residual not at each simulation iteration t, but at the end, T. Also, I only evaluate T H residuals, so I can treat H simulation periods as expectations.

$$x_t = -\sigma i_t + f^1(\text{expectations}) + f^2(\text{exogenous states})$$
 (A9)

$$\pi_t = -\kappa x_t + f^3(\text{expectations}) + f^4(\text{exogenous states})$$
 (A10)

$$i_t = \mathcal{N}(0, \sigma_i^2)$$
 (exog. DGP for i)

$$\pi_t = -\frac{\lambda_x}{\kappa} x_t + \text{stuff} \times \mathbb{E}_t \sum_{h=1}^H f(x_{t+h}, \pi_{t+h}, s_{t+h}, k_{t+h}, \bar{\pi}_{t+h}, \mathbf{g}_{\bar{\pi}}(t+h)) \qquad \text{(anchoring TC)}$$

Questions/notes:

- 1. I choose $\lambda_x = 0.5$ for these figures.
- 2. In order not to assume perfect foresight, I write $\mathbb{E}_t s_{t+h} = h_x^{h-1} s_t$ in the TC.
- 3. Could one optimize t-by-t? Normally, I think yes, with anchoring TC, I think no.
- 4. Solver stops prematurely (loss on order e+03 or e+08)
- 5. "Value function iteration-equivalent" solution method?
- 6. "Spline-equivalent" method of finding the optimal functional form that delivers the optimal sequence $\{i_t\}_{t=1}^T$? \to a numerical approx to the optimal reaction function that replaces the TR.

2 Choosing exogenous sequences for the observables

Figure 1: Simulation using Taylor rule against exogenous sequences that minimize equation residuals

 \rightarrow I can implement the Tayor-rule-outcome without using a Taylor rule. (Conditional on initial sequences being the Taylor-rule-sequences.)

3 Implementing the RE-discretion target criterion

Figure 2: Simulation using Taylor rule against exogenous sequences that minimize equation residuals including RE discretion target criterion

4 Implementing the simple anchoring target criterion

Figure 3: Simulation using Taylor rule against exogenous sequences that minimize equation residuals including the simple anchoring target criterion

Comparison of the three exercises with favorite specification

Figure 4: Optimizing over $\{\pi_t, x_t, i_t\}$, initialized at random sequences

A Model summary

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left((1-\beta) x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n} \right)$$
(A.1)

$$\pi_t = \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} \left(\kappa \alpha \beta x_{T+1} + (1-\alpha) \beta \pi_{T+1} + u_T \right)$$
(A.2)

$$i_t = \psi_\pi \pi_t + \psi_x x_t + \bar{i}_t$$
 (if imposed) (A.3)

PLM:
$$\hat{\mathbb{E}}_t z_{t+h} = a_{t-1} + b h_x^{h-1} s_t \quad \forall h \ge 1 \qquad b = g_x h_x$$
 (A.4)

Updating:
$$a_t = a_{t-1} + k_t^{-1} (z_t - (a_{t-1} + bs_{t-1}))$$
 (A.5)

Anchoring function:
$$k_t = k_{t-1} + \mathbf{g}(fe_{t-1}^2)$$
 (A.6)

Forecast error:
$$fe_{t-1} = z_t - (a_{t-1} + bs_{t-1})$$
 (A.7)

LH expectations:
$$f_a(t) = \frac{1}{1 - \alpha \beta} a_{t-1} + b(\mathbb{I}_{nx} - \alpha \beta h)^{-1} s_t$$
 $f_b(t) = \frac{1}{1 - \beta} a_{t-1} + b(\mathbb{I}_{nx} - \beta h)^{-1} s_t$ (A.8)

This notation captures vector learning (z learned) for intercept only. For scalar learning, $a_t = \begin{pmatrix} \bar{a}_t & 0 & 0 \end{pmatrix}'$ and b_1 designates the first row of b. The observables (π, x) are determined as:

$$x_t = -\sigma i_t + \begin{bmatrix} \sigma & 1 - \beta & -\sigma \beta \end{bmatrix} f_b + \sigma \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (\mathbb{I}_{nx} - \beta h_x)^{-1} s_t$$
 (A.9)

$$\pi_t = \kappa x_t + \begin{bmatrix} (1 - \alpha)\beta & \kappa \alpha \beta & 0 \end{bmatrix} f_a + \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} (\mathbb{I}_{nx} - \alpha \beta h_x)^{-1} s_t$$
 (A.10)

B Target criterion

The target criterion in the simplified model (scalar learning of inflation intercept only, $k_t^{-1} = \mathbf{g}(fe_{t-1})$):

$$\pi_{t} = -\frac{\lambda_{x}}{\kappa} \left\{ x_{t} - \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + ((\pi_{t} - \bar{\pi}_{t-1} - b_{1}s_{t-1})) \mathbf{g}_{\pi}(t) \right) \right\}$$

$$\left(\mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i} \prod_{j=0}^{i-1} (1 - k_{t+1+j}^{-1} - (\pi_{t+1+j} - \bar{\pi}_{t+j} - b_{1}s_{t+j}) \mathbf{g}_{\bar{\pi}}(t+j)) \right)$$
(B.1)

where I'm using the notation that $\prod_{j=0}^{0} \equiv 1$. For interpretation purposes, let me rewrite this as follows:

$$\pi_{t} = -\frac{\lambda_{x}}{\kappa} x_{t} + \frac{\lambda_{x}}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + f e_{t|t-1}^{eve} \mathbf{g}_{\pi}(t) \right) \mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i}$$

$$-\frac{\lambda_{x}}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + f e_{t|t-1}^{eve} \mathbf{g}_{\pi}(t) \right) \left(\mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i} \prod_{i=0}^{i-1} (k_{t+1+j}^{-1} + f e_{t+1+j|t+j}^{eve}) \mathbf{g}_{\pi}(t+j) \right)$$
(B.2)

Interpretation: tradeoffs from discretion in RE + effect of current level and change of the gain on future tradeoffs + effect of future expected levels and changes of the gain on future tradeoffs

C A target criterion system for an anchoring function specified for gain changes

$$k_t = k_{t-1} + \mathbf{g}(fe_{t|t-1})$$
 (C.1)

Turns out the k_{t-1} adds one $\varphi_{6,t+1}$ too many which makes the target criterion unwieldy. The FOCs of the Ramsey problem are

$$2\pi_t + 2\frac{\lambda}{\kappa} x_t - k_t^{-1} \varphi_{5,t} - \mathbf{g}_{\pi}(t) \varphi_{6,t} = 0$$
 (C.2)

$$cx_{t+1} + \varphi_{5,t} - (1 - k_t^{-1})\varphi_{5,t+1} + \mathbf{g}_{\bar{\pi}}(t)\varphi_{6,t+1} = 0$$
(C.3)

$$\varphi_{6,t} + \varphi_{6,t+1} = f e_t \varphi_{5,t} \tag{C.4}$$

where the red multiplier is the new element vis-a-vis the case where the anchoring function is specified in levels $(k_t^{-1} = \mathbf{g}(fe_{t-1}))$, as in App. B), and I'm using the shorthand notation

$$c = -\frac{2(1-\alpha)\beta}{1-\alpha\beta} \frac{\lambda}{\kappa} \tag{C.5}$$

$$fe_t = \pi_t - \bar{\pi}_{t-1} - bs_{t-1} \tag{C.6}$$

(C.2) says that in anchoring, the discretion tradeoff is complemented with tradeoffs coming from learning $(\varphi_{5,t})$, which are more binding when expectations are unanchored $(k_t^{-1} \text{ high})$. Moreover, the change in the anchoring of expectations imposes an additional constraint $(\varphi_{6,t})$, which is more strongly binding if the gain responds strongly to inflation $(\mathbf{g}_{\pi}(t))$. One can simplify this three-equation-system to:

$$\varphi_{6,t} = -cfe_t x_{t+1} + \left(1 + \frac{fe_t}{fe_{t+1}} (1 - k_{t+1}^{-1}) - fe_t \mathbf{g}_{\bar{\pi}}(t)\right) \varphi_{6,t+1} - \frac{fe_t}{fe_{t+1}} (1 - k_{t+1}^{-1}) \varphi_{6,t+2}$$
(C.7)

$$0 = 2\pi_t + 2\frac{\lambda}{\kappa} x_t - \left(\frac{k_t^{-1}}{f e_t} + \mathbf{g}_{\pi}(t)\right) \varphi_{6,t} + \frac{k_t^{-1}}{f e_t} \varphi_{6,t+1}$$
(C.8)

Unfortunately, I haven't been able to solve (C.7) for $\varphi_{6,t}$ and therefore I can't express the target criterion so nicely as before. The only thing I can say is to direct the targeting rule-following central bank to compute $\varphi_{6,t}$ as the solution to (C.8), and then evaluate (C.7) as a target criterion. The solution to (C.8) is given by:

$$\varphi_{6,t} = -2 \,\mathbb{E}_t \sum_{i=0}^{\infty} (\pi_{t+i} + \frac{\lambda_x}{\kappa} x_{t+i}) \prod_{j=0}^{i-1} \frac{\frac{k_{t+j}^{-1}}{f e_{t+j}}}{\frac{k_{t+j}^{-1}}{f e_{t+j}} + \mathbf{g}_{\pi}(t+j)}$$
(C.9)

Interpretation: the anchoring constraint is not binding $(\varphi_{6,t} = 0)$ if the CB always hits the target $(\pi_{t+i} + \frac{\lambda_x}{\kappa} x_{t+i} = 0 \quad \forall i)$; or expectations are always anchored $(k_{t+j}^{-1} = 0 \quad \forall j)$.