In [1]:

```
import numpy as np
import numpy.linalg as LA
import scipy.linalg as la
import matplotlib.pyplot as plt
```

Project 1 SVD

The singular value decomposition (SVD) of an m imes d matrix A is a factorization of the form

$$A = V\Sigma U^T \tag{1}$$

where V is an $m \times m$ orthogonal matrix and U is a $d \times d$ orthogonal matrix. Σ is an $m \times d$ diagonal matrix with nonnegative real numbers σ_i on the diagonal.

Alternatively this expresses A as a sum of rank 1 matrices

$$A = \sum_{i=1}^{r} \sigma_i \mathbf{v}_i \mathbf{u}_i^T \tag{2}$$

where σ_i $i=1,\ldots,r$ are the positive diagonal entries of Σ and \mathbf{v}_i , \mathbf{u}_i are the *i*th column vectors of V and U, respectively.

Problems

Parts (a)-(c) can be handwritten somewhere else and attached as a separate file (or typed in Latex). If you know how to type Latex within a Jupyter notebook, you are welcome to type it here as long as its done in Latex notation.

a) [5pt]

Show that the columns of U form an orthonormal basis in \mathbb{R}^d of eigenvectors of A^TA . Show that the columns of V form an orthonormal basis in \mathbb{R}^m of eigenvectors of AA^T .

b) [5pt]

Use the fact that $U^TA^TAU=\Sigma^T\Sigma$ to show that

$$U_1^T A^T A U_1 = \Sigma_1^2 \tag{3}$$

where $U_1 = [\mathbf{u}_1 \ \mathbf{u}_2 \cdots \mathbf{u}_r]$ and Σ_1 is the $r \times r$ diagonal matrix with all positive σ_i on the diagonal. How does one find the $m \times r$ matrix

$$V_1 = [\mathbf{v}_1 \ \mathbf{v}_2 \cdots \mathbf{v}_r]$$

based on A, U_1 and Σ_1 ?

c) [20pt]

(Two simple examples) With

$$A_1 = \left[egin{matrix} 2 & 1 \ 1 & 2 \end{matrix}
ight]$$

and

$$A_2 = egin{bmatrix} 2 & 1/2 \ 2 & 2 \end{bmatrix}$$

find the eigenvectors and eigenvalues of A_1 and A_2 . Find matrices C_1 and C_2 such that

$$A_i = C_i \Sigma_i C_i^{-1} \quad i = 1, 2. \tag{1}$$

Use this decomposition to write A_1 and A_2 as a sum of rank 1 matrices. Find the SVD of A_1 and A_2 . Can you explain the differences (and similarities) in what you found above?

d) [30 pts]