MEMORY DEVICES

- The output of the combinational circuit depends on input of present time (not on the previous state).
- If memory elements is added with a combinational circuits, it becomes sequential circuits.
- Flip-flop is a memory device which is made of an assembly of logic gates.

MEMORY DEVICES

- Flip-flop is a memory device which is made of an assembly of logic gates.
- It mainly has two outputs:
 - Normal output labelled as Q
 - Inverted output labelled as ar Q

- Basic latch is a feedback connection of two NOR gates or two NAND gates, which can store one bit of information. It can be set to 1 using the S input and reset to 0 using the R input.
- SR Latch with NAND gates:

Set	Reset	Output	
1	1	No change	
0	1	Q = 1	
1 0		Q = 0	
0	0	Invalid *	
*Prod	uces Q	= \overline{Q} = 1.	
		(b)	

• SR Latch with NAND gates:

Set	Reset		Output			
1	1		No change			
0	1		Q = 1			
1	0		Q = 0			
0	0		Invalid *			
*Produces $Q = \overline{Q} = 1$.						
(b)						

• SR Latch with NOR gates:

Set	Reset	Output
0	0	No change
1	0	Q = 1
0	1	Q = 0
1	1	Invalid*

*Produces $Q = \overline{Q} = 0$.
(b)

• SR Latch with NOR gates:

No change Q = 1		
Q = 1		
Q = 0		
Invalid*		

• SR Latch with control input:

Gated latch is a basic latch that includes input gating and a control input signal. The latch retains its existing state when the control input is equal to 0. Its state may be changed when the control signal is equal to 1.

En	S	R	Next state of Q
0	X	X	No change
1	0	0	No change
1	0	1	Q = 0; reset state
1	1	0	Q = 1; set state
1	1	1	Indeterminate

• SR Latch with control input:

Clk	S	R	Q(t+1)
0	X	X	Q(t) (no change)
1	0	0	Q(t) (no change)
1	0	1	0
1	1	0	1
1	1	1	X

• SR Flip-flop:

A flip-flop is a storage element that can have its output state changed only on the edge of the controlling clock signal. If the state changes when the clock signal goes from 0 to 1, then the flip-flop is positive-edge triggered. If the state changes when the clock signal goes from 1 to 0, then the flip-flop is negative-edge triggered.

	Inputs	3	Output	
S	R	CLK	Q	
0	0	1	Q ₀ (no change)	
1	0	1	1	
0	1	1	0	
1	1	1	Ambiguous	

Q₀ is output level prior to ↑ of CLK. ↓ of CLK produces no change in Q.

Inputs			Output
S R CLK		Q	
0 1 0 1	0 0 1 1	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	Q ₀ (no change) 1 0 Ambiguous

FIP-FIOPS Clocked JK Flip-flop:

J	K	CLK	Q
0	0	1	Q ₀ (no change)
1	0	1	1
0	1	↑	0
1	1	1	Q ₀ (toggles)

J	K	CLK	Q
0	0	↓	Q ₀ (no change)
1	0	↓	1
0	1	↓	0
1	1	\downarrow	Q ₀ (toggles)

	Inputs	6	Output	
S	R	CLK	Q	
0	0	1	Q ₀ (no change)	
1	0	↑	1	
0	1	↑	0	
1	1	1	Ambiguous	

Q₀ is output level prior to ↑ of CLK. ↓ of CLK produces no change in Q.

J _n	K _n	Q_{n-1}	$\overline{Q_{n-1}}$	S _n	R_n	Q_n
0	0					
1	0					
0	1					
1	1					

• Clocked JK Flip-flop:

• Clocked JK Flip-flop:

J	K	Clk	PRE	CLR	Q
0	0	+	1	1	Q (no change)
0	1	+	1	1	0 (Synch reset)
1	0	+	1	1	1 (Synch set)
1	1	+	1	1	Q (Synch toggle)
X	X	Х	1	1	Q (no change)
X	Х	Х	1	0	0 (asynch clear)
X	Х	Х	0	1	1 (asynch preset)
X	Х	X	0	0	(Invalid)

• D Latch:

Set	Reset	Output
1	1	No change
0	1	Q = 1
1	0	Q = 0
0	0	Invalid *

*Produces $Q = \overline{Q} = 1$.

Clk
 D

$$Q(t+1)$$

 0
 x
 $Q(t)$

 1
 0
 0

 1
 1
 1

FLIP-FLOPS • Clocked D Flip-flop:

J	K	CLK	Q
0	0	1	Q ₀ (no change)
1	0	1	1
0	1	1	0
1	1	1	Q ₀ (toggles)

FLIP-FLOPS • Clocked D Flip-flop:

FLIP-FLOPS • Clocked D Latch:

Clk	D	Q(t+1)
0	X	Q(t)
1	0	O
1	1	1

FLIP-FLOPS • Clocked D Flip-flop and latch:

FLIP-FLOPS • Clocked T Flip-flop:

<i>JK</i> Flip-Flop				
J	K	Q(t +	1)	
0	0	Q(t)	No change	
0	1	0	Reset	
1	0	1	Set	
1	1	Q'(t)	Complement	

D Flip-Flop			7 Flip-Flop		
D	Q(t + 1)	T	Q(t +	1)
0	0	Reset	0	Q(t)	No change
1	1	Set	1	Q'(t)	Complement

FLIP-FLOPS • Clocked T Flip-flop:

T Flip-Flop

T	Q(t + 1)		
0	Q(t)	No change	
1	Q'(t)	Complement	

FLIP-FLOPS • Parallel data transfer:

FLIP-FLOPS • Serial data transfer (Shift register):

Parallel data in/serial data out Shift register:

FLIP-FLOPS • Serial transfer between registers:

FLIP-FLOPS • Bi-directional shift registers:

Frequency division and counting:

