

Enhancing Glycopeptide Detection, Identification, and Characterization through PGC-Incorporated LC-MS

Pittcon 2021

Graham Delafield University of Wisconsin - Madison

Introduction

Function

Cellular communication and immune response Intrinsic/extrinsic signaling pathways Protein folding and viability

Disease

Target for pathogen invasion

Altered expression during disease propagation

Aberrant profiles across numerous disease

Glycoproteomic Need

Areas of Interest

Alternative Separation

RPLC C18

PGC

Porous Graphitic Carbon (PGC)

- 1. Polar and electrostatic interactions
- Solvent flexibility, compatible with traditional buffer systmes
- Improved glycan retention and separation

PGC Application

PGC Application

1.) N- and O-glycopeptides after Pronase treatment

2.) C18-PGC-LC

3.) QTOF-MS/MS with lower- and enhanced-energy CID

Knowledge Gap

Searching for a compliment to traditional liquid phase separations that provides:

- Access to proteome components traditionally missed in RPLC analyses
- 2. Expanded glycoproteome coverage
- 3. Improved liquid-phase separation of isomeric glycopeptides
- 4. Path toward facile characterization of disease-specific analytes

Methodology

Methodology

Proteome Coverage

Proteome Coverage

Peptide Character

Peptide Character

Glycopeptide Detection

Glycopeptide Detection

Glycopeptide Detection

Peptide-level Differences

Peptide-level Differences

Peptide-level Differences

0.30

0.45

0.15

PGC

0.00

Glycan-level Differences

Glycan-level Differences

Liquid-phase Resolution

QNGTLSK + HexNAc(4)Hex(5)NeuAc(1)

Liquid-phase Resolution

LCPDCPLLAPLNDSR + HexNAc(5)Hex(6)NeuAc(1)

Liquid-phase Resolution

LCPDCPLLAPLNDSR + HexNAc(5)Hex(6)NeuAc(1)

- 1. Common for high mannose and complex glycans with mismatched antennae
- 2. Concentration-dependent

Glycoproteome Profiles

Glycoproteome Profiles

Peak Height

VWNSTFIEDYR + HexNAc(2)Hex(9)

Glycoproteome Profiles

Conclusion

- Tandem RPLC and PGC analysis provide complementary access to the human proteome
- PGC demonstrates distinct peptide- and glycan-level differences in identified glycopeptides
- Incorporation of PGC stationary phase is a facile avenue towards structural elucidation
- 4. PGC separations may provide advantages in investigative, targeted glycoproteomics applications

Acknowledgments

Dr. Lingjun Li
Dr. William Ricke
Hannah Miles
Yuan Liu
Danqing Wang
Chris Sauer
Dylan Tabang

