What you'll learn

Courses in this sequence (Specialization):

- 1. Neural Networks and Deep Learning
- 2. Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
- 3. Structuring your Machine Learning project ton law litest
- 4. Convolutional Neural Networks CNN and-to-end
- 5. Natural Language Processing: Building sequence models

Supervised Learning

Input(x)	Output (y)	Application
Home features	Price	Real Estate 7 Stude
Ad, user info	Click on ad? (0/1)	Online Advertising
Image	Object (1,,1000)	Photo tagging 3 CNN
Audio	Text transcript	Speech recognition \ knn
English	Chinese	Machine translation
Image, Radar info	Position of other cars	Autonomous driving Custon/

Neural Network examples

Supervised Learning

Structured Data

Size	#bedrooms	***	Price (1000\$s)
2104	(3)		400
1600	3		330
2400	3		369
:			1
3000	4		540

V	V	V		
User Age	Ad Id	 Click		
(41)	93242	1		
80	93287	0		
18	87312	1		
:	:	1		
27	71244	1		

Unstructured Data

Audio

Image

Four scores and seven years ago...

Text

Scale drives deep learning progress

Logistic Regression

Given
$$x$$
, want $\hat{y} = P(y=1|x)$
 $x \in \mathbb{R}^{n_x}$ $0 \le \hat{y} \le 1$
Parantes: $\omega \in \mathbb{R}^{n_x}$, $b \in \mathbb{R}$.
Output $\hat{y} = \sigma(\omega^T x + b)$

$$G(t) = \frac{1}{1+e^{-2}}$$
If $z | \text{large } G(t) \approx \frac{1}{1+0} = 1$
If $z | \text{large regards number}$

$$G(t) = \frac{1}{1+e^{-2}} \approx \frac{1}{1+8 \text{ignum}} \approx 0$$
Andrew N

Gradient Descent

Recap:
$$\hat{y} = \sigma(w^T x + b)$$
, $\sigma(z) = \frac{1}{1 + e^{-z}} \leftarrow$

$$\underline{J(w,b)} = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Want to find w, b that minimize J(w, b)

Gradient Descent

$$\omega := \omega - \alpha \left(\frac{\partial J(\omega, b)}{\partial \omega} \right) \frac{\partial J(\omega, b)}{\partial \omega}$$

$$b := b - \alpha \left(\frac{\partial J(\omega, b)}{\partial \omega} \right) \frac{\partial J(\omega, b)}{\partial \omega}$$

Andrew Ng

More derivative examples

$$f(a) = a^2$$

$$f(a) = a^2$$
 $\frac{d}{da} f(a) = \frac{2}{4}$

$$f(\omega) = \alpha^3$$

$$\frac{d}{da}(a) = \frac{3a^2}{3x^2} = 12$$

$$f(a) = \log_e(a)$$
 $\ln(a)$

$$\sigma = 5.001$$
 $t(m) = 8$ $t(m) = 8$

$$\frac{d}{da}f(a) = \frac{1}{a}$$

$$\frac{d}{da}f(a) = \frac{1}$$

Computing derivatives

Computing derivatives

Computing derivatives

Logistic regression derivatives

Logistic regression on m examples

$$J=0$$
; $d\omega_{1}=0$; $d\omega_{2}=0$; $db=0$
 $Z^{(i)}=\omega^{T}\chi^{(i)}+b$
 $a^{(i)}=\delta(z^{(i)})$
 $J+=-[y^{(i)}(\log a^{(i)}+(1-y^{(i)})\log(1-a^{(i)})]$
 $dz^{(i)}=a^{(i)}-y^{(i)}$
 $d\omega_{1}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{2}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{2}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{3}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{1}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{2}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{3}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{1}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{2}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{3}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{1}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{2}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{3}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{1}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{2}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{3}+=\chi^{(i)}dz^{(i)}$
 $d\omega_{3}+=\chi^{(i)}dz^{(i)}$

$$d\omega_1 = \frac{\partial J}{\partial \omega_1}$$
 $\omega_2 := \omega_2 - \alpha \frac{\partial \omega_2}{\partial \omega_2}$
 $b := b - \lambda \frac{\partial \omega_2}{\partial \omega_2}$

Vectorization

Andrew Ng

Implementing Logistic Regression

J = 0,
$$dw_1 = 0$$
, $dw_2 = 0$, $db = 0$

for $i = 1$ to m :

 $z^{(i)} = w^T x^{(i)} + b$
 $a^{(i)} = \sigma(z^{(i)}) \ll$
 $J += -[y^{(i)} \log a^{(i)} + (1-y^{(i)}) \log(1-a^{(i)})]$
 $dz^{(i)} = a^{(i)} - y^{(i)} \ll$

$$dw_1 += x_1^{(i)} dz^{(i)}$$

$$dw_2 += x_2^{(i)} dz^{(i)}$$

$$db += dz^{(i)}$$

J = J/m, $dw_1 = dw_1/m$, $dw_2 = dw_2/m$
 $db = db/m$

ression

iter in range (1000)!
$$\angle$$
 $Z = \omega^T X + b$
 $= n p \cdot dot (\omega \cdot T \cdot X) + b$
 $A = \sigma(Z)$
 $A =$

Python/numpy vectors

a = np.random.randn(5)

a.shape = (5,1)

bon't we

"rank | array"

a = np.random.randn(5,1)
$$\rightarrow$$
 a.shape = (5,1)

a = np.random.randn(1,5) \rightarrow a.shape = (1,5)

vector

Andrew Ng

Logistic regression cost function

If
$$y = 1$$
: $p(y|x) = \hat{y}$
If $y = 0$: $p(y|x) = 1 - \hat{y}$

Logistic regression cost function

If
$$y = 1$$
: $p(y|x) = \hat{y}$

If $y = 0$: $p(y|x) = 1 - \hat{y}$

$$p(y|x) = \hat{y} \quad (1 - \hat{y}) \quad (1$$

Andrew Ng

What is a Neural Network?

Andrew Ng

Neural Network Representation

$$z = w^T x + b$$

$$a = \sigma(z)$$

Andrew Ng

Andrew Ng

Neural Network Representation 31 = 61 × +61

$$z = w^T x + b$$

$$a = \sigma(z)$$

$$z_{1}^{[1]} = \underbrace{w_{1}^{[1]T}}_{1} x + b_{1}^{[1]}, \ a_{1}^{[1]} = \sigma(z_{1}^{[1]})$$

$$z_{2}^{[1]} = w_{2}^{[1]T} x + b_{2}^{[1]}, \ a_{2}^{[1]} = \sigma(z_{2}^{[1]})$$

$$z_{3}^{[1]} = w_{3}^{[1]T} x + b_{3}^{[1]}, \ a_{3}^{[1]} = \sigma(z_{3}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

Andrew Ng

Neural Network Representation

ESCRICATION
$$z_{1}^{[1]} = w_{1}^{[1]T} x + b_{1}^{[1]}, \ a_{1}^{[1]} = \sigma(z_{1}^{[1]}) \\
z_{2}^{[1]} = w_{2}^{[1]T} x + b_{2}^{[1]}, \ a_{2}^{[1]} = \sigma(z_{2}^{[1]}) \\
z_{3}^{[1]} = w_{3}^{[1]T} x + b_{3}^{[1]}, \ a_{3}^{[1]} = \sigma(z_{3}^{[1]}) \\
z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

Andrew Ng

Neural Network Representation learning

Vectorizing across multiple examples

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

Andrew Ng

Vectorizing across multiple examples

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

$$for \quad (= 1 + b + h)$$

$$z^{[3]} = b \times x + b^{[2]}$$

$$z^{[3]} = b \times x + b^{[2]}$$

$$z^{[3]} = b \times x + b^{[1]}$$

$$z^{[3]} = b \times x + b^{[2]}$$

$$z^{[3]} = b \times x + b^{[3]}$$

$$z^{[3]} = b \times x + b \times x + b^{[3]}$$

$$z^{[3]} = b \times x + b \times x + b^{[3]}$$

$$z^{[3]} = b \times x + b \times x + b \times x + b^{[3]}$$

$$z^{[3]} = b \times x + b \times x + b \times x + b^{[3]}$$

$$z^{[3]} = b \times x + b \times x + b \times x + b^{[3]}$$

$$z^{[3]} = b \times x + b$$

Vectorizing across multiple examples

for i = 1 to m:

$$z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

$$X = \begin{bmatrix} x & x & \cdots & x \\ x & x & \cdots & x \end{bmatrix}$$

$$Z^{C1} = \omega^{C1} \times + \delta^{T1}$$
 $A^{C1} = (Z^{C1})$
 $Z^{C2} = \omega^{C2} A^{C1} + \delta^{T2}$
 $A^{C2} = (Z^{C2})$

$$Z^{T(1)} = \begin{bmatrix} Z^{T(1)}(1) & Z^{T(1)}(2) & ... & Z^{T(1)}(m) \end{bmatrix} \\
= \begin{bmatrix} Z^{T(1)}(1) & Z^{T(1)}(1) & ... & Z^{T(1)}(m) \end{bmatrix}$$
Andrew Ng

Vectorizing across multiple examples

Andrew Ng

Andrew Ng

Recap of vectorizing across multiple examples

Activation functions

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$\Rightarrow a^{[1]} = \sigma(z^{[1]}) \cdot g(z^{(1)})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$\Rightarrow a^{[2]} = \sigma(z^{[2]}) \cdot g(z^{(1)})$$

Andrew Ng

Activation functions

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$\Rightarrow a^{[1]} = \sigma(z^{[1]}) \cdot g(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$\Rightarrow a^{[2]} = \sigma(z^{[2]}) \cdot g(z^{[2]})$$

Activation functions

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{6}$$

$$x_{1}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{6}$$

$$x_{1}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{6}$$

$$x_{1}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{1}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{1}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{1}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{5}$$

$$x_{7}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{7}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{7}$$

$$x_{7$$

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$\Rightarrow a^{[1]} = \sigma(z^{[1]}) \quad g^{(1)}(z^{(1)})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$\Rightarrow a^{[2]} = \sigma(z^{[2]}) \quad g^{(1)}(z^{(1)})$$

Andrew Ng

Activation functions

$$\Rightarrow a^{[1]} = \sigma(z^{[1]}) \quad g^{[0]}(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$\Rightarrow a^{[2]} = \sigma(z^{[2]}) \quad g^{[1]}(z^{[1]})$$

Pros and cons of activation functions

Activation function

Given x:

$$\Rightarrow z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$\Rightarrow a^{[2]} = g^{[2]}(z^{[2]}) \ \ z^{c_2}$$

$$\alpha^{(1)} = 2^{(1)} = \omega^{(1)} \times + b^{(1)}$$

$$\alpha^{(2)} = 2^{(2)} = \omega^{(2)} \times + b^{(2)}$$

$$\alpha^{(1)} = \omega^{(1)} \left(\omega^{(1)} \times + b^{(1)} \right) + b^{(2)}$$

$$= \left(\omega^{(2)} \omega^{(1)} \right) \times + \left(\omega^{(2)} b^{(1)} \right) + b^{(2)}$$

$$= \omega^{(1)} \times + b^{(1)}$$

Activation function

Sigmoid activation function

Tanh activation function

Andrew Ng

ReLU and Leaky ReLU

ReLU and Leaky ReLU

ReLU

Leaky ReLU

$$g(z) = Mox(0.01z, z)$$

 $g'(z) = \begin{cases} 0.01 & \text{if } z < 0 \\ 1 & \text{if } .z > 0 \end{cases}$

Andrew Ng

Gradient descent for neural networks

Parameters:
$$(\sqrt{12})$$
 $(\sqrt{12})$ $(\sqrt$

Formulas for computing derivatives

Evenor bobodyin;

$$S_{23} = P_{23}(S_{23}) = e(S_{23})$$

$$S_{23} = P_{23}(S_{23}) = e(S_{23})$$

$$S_{23} = P_{23}(S_{23}) = e(S_{23})$$

Formulas for computing derivatives

Formal popagation:

$$Z^{(1)} = L^{(2)} \times + L^{(1)}$$

$$A^{(1)} = g^{(1)}(Z^{(1)}) \leftarrow$$

$$A^{(1)} = g^{(1)}(Z^{(1)}) \leftarrow$$

$$A^{(1)} = L^{(2)} + L^{(2)}$$

$$A^{(2)} = L^{(2)} + L^{(2)} +$$

What happens if you initialize weights to zero?

Andrew Ng

Random initialization

What is a deep neural network?

logistic regression

1 hidden layer

Andrew Ng

Deep neural network notation

$$n^{(2)} = \# \text{ units in layer l}$$
 $n^{(2)} = \# \text{ units in layer l}$
 $n^{(2)} = 5$, $n^{(2)} = 5$, $n^{(2)} = 6$
 $n^{(2)} = n = 3$
 $n^{(2)} = n = 3$

$$N_{CJ} = V^{\times} = 3$$
 $V_{CJ} = V^{\times} = 3$
 $V_{CJ} = V^{\times} = 3$
 $V_{CJ} = V_{CJ} = 3$
 $V_{CJ} = V_{CJ} = 1$

Forward propagation in a deep network

Andrew Ng

Forward propagation in a deep network

Forward propagation in a deep network

Parameters $W^{[l]}$ and $b^{[l]}$

Vectorized implementation

Andrew Ng

Vectorized implementation

Circuit theory and deep learning

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

Forward and backward functions

Forward and backward functions

What are hyperparameters?

Parameters: $W^{[1]}\,,\,b^{[1]}\,,W^{[2]}\,,b^{[2]}\,,W^{[3]}\,,b^{[3]}\,\dots$

What are hyperparameters?

Parameters: $W^{[1]}\,,\,b^{[1]}\,,W^{[2]}\,,b^{[2]}\,,W^{[3]}\,,b^{[3]}\,\dots$

Andrew Ng

Computing gradients

Logistic regression

Computing gradients

Logistic regression

Computing gradients

Logistic regression

Andrew Ng

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

Vectorized Implementation:

$$z^{CO} = \omega^{CO} \times t b^{CO}$$

$$Z^{CO} = g^{CO}(z^{CO})$$

$$Z^{CO} = \left[z^{CO}(z^{CO}) + z^{CO}(z^{CO})\right]$$

$$Z^{CO} = \omega^{CO} \times t b^{CO}$$

$$Z^{CO} = \omega^{CO} \times t b^{CO}$$

$$Z^{CO} = g^{CO}(z^{CO})$$

Computing gradients

 $x_1 \rightarrow \hat{y} = a$

Logistic regression

