Bilgisayar Programlamaya Giriş

Murat Uğur KİRAZ Online Python Eğitimi

Bilgisayar Nasıl Çalışır?

- Program, bilgisayarı kullanılabilir hale getirir.
- Bilgisayarlar çok karmaşık görevleri yerine getirebilirler.
- Yalnızca son derece basit işlemleri gerçekleştirebilir.
- Çağdaş bilgisayarlar, yalnızca toplama veya bölme gibi çok temel işlemlerin sonuçlarını değerlendirebilir.

Doğal diller ve programlama dilleri

- Bilgisayarların da makine dili adı verilen, oldukça ilkel bir dili vardır.
- Bir bilgisayar, teknik olarak en karmaşık olanı bile, en ufak bir zeka izinden dahi yoksundur.
- Bilinen komutların tam bir kümesine talimat listesi adı verilir (instruction list) ve bazen IL olarak kısaltılır.
- Şu anda hiçbir bilgisayar yeni bir dil oluşturabilecek kapasitede değil.

Bir Dilin «Dil» Olması İçin Ne Gereklidir?

- Her dil aşağıdaki unsurlardan oluşur:
 - Alfabe
 - Sembol
 - Söz dizimi
 - Anlambilim
- IL (Talimat Listesi) aslında bir makine dilinin alfabesidir. Bilgisayarın ana dilidir.
- Temel seviye diller
- Yüksek Seviye diller

Tarihçe

- Mekanik Dönem
- Elektro-Mekanik Dönem
- Elektronik Dönem

- Birinci Nesil Bilgisayarlar (1940 1956)
- İkinci Nesil Bilgisayarlar (1956 1963)
- Üçüncü Nesil Bilgisayarlar (1946 -1971)
- Dördüncü Nesil Bilgisayarlar (1971 Günümüz)
- Beşinci Nesil Bilgisayarlar (Günümüz Yakın Gelecek

İkili Sayı Sistemi

İkili, Sayı Sistemi

- Sayılar,
- Metinler,
- Renkler, Fotograflar, Video
- Ses,

- 8 Bit = 1 byte
- 1000 byte = 1 Kilobyte
- 1000 Kilobyte = 1 Megabyte
- 1000 Megabyte = 1 Gigabyte
- 1000 Gigabyte = 1 Terrabyte

Kesirli Sayılar

```
1x2<sup>3</sup> 1x2<sup>2</sup> 0x2<sup>1</sup> 1x2<sup>0</sup> 1x2<sup>-1</sup> 0x2<sup>-2</sup> 1x2<sup>-3</sup> 1x2<sup>-4</sup>

1 1 0 1 1 0 1 1

8 4 0 1 0.5 0 0.125 0.0625

Binary point

8 + 4 + 0 + 1 + 0.5 + 0 + 0.125 + 0.0625 = 13.6875 (Base 10)
```


- ASCII tablosu
- UTF Kodlama

- RGB Değeri
- Piksel

Analog-Dijital dönüşüm

Bilgisayar Mimarisi

1000 0000	Bir sonraki sırada bir sayı var. AX kayıtçısına yerleştir.	
1001 0000	Bir sonraki sırada bir sayı var. BX kayıtçısına yerleştir.	
1011 0000	AX ve BX i topla, işlemi AX kayıtçısına yaz	
1100 0000	Sonucu harici veri yoluna yaz	
0000 0000	0	
0000 0001	1	
0000 0010	2	
0000 0011	3	

Basit Bir Toplama

- 3+5 = ?
- 3 = 0000 0011
- 5 = 0000 0101
- 8 = 0000 1000

1000 0000	Bir sonraki sırada bir sayı var. AX kayıtçısına yerleştir.	
1001 0000	Bir sonraki sırada bir sayı var. BX kayıtçısına yerleştir.	
1011 0000	AX ve BX i topla, işlemi AX kayıtçısına yaz	
1100 0000	Sonucu harici veri yoluna yaz	
0000 0000	0	
0000 0001	1	
0000 0010	2	
0000 0011	3	

1000 0000	Bir sonraki sırada bir sayı var. AX kayıtçısına yerleştir.	
1001 0000	Bir sonraki sırada bir sayı var. BX kayıtçısına yerleştir.	
1011 0000	AX ve BX i topla, işlemi AX kayıtçısına yaz	
1100 0000	Sonucu harici veri yoluna yaz	
0000 0000	0	
0000 0001	1	
0000 0010	2	
0000 0011	3	

1000 0000	Bir sonraki sırada bir sayı var. AX kayıtçısına yerleştir.	
1001 0000	Bir sonraki sırada bir sayı var. BX kayıtçısına yerleştir.	
1011 0000	AX ve BX i topla, işlemi AX kayıtçısına yaz	
1100 0000	Sonucu harici veri yoluna yaz	
0000 0000	0	
0000 0001	1	
0000 0010	2	
0000 0011	3	

1000 0000	Bir sonraki sırada bir sayı var. AX kayıtçısına yerleştir.	
1001 0000	Bir sonraki sırada bir sayı var. BX kayıtçısına yerleştir.	
1011 0000	AX ve BX i topla, işlemi AX kayıtçısına yaz	
1100 0000	Sonucu harici veri yoluna yaz	
0000 0000	0	
0000 0001	1	
0000 0010	2	
0000 0011	3	

ВХ

DX

Kod Tablosi

 DERLEME - kaynak program, makineyi içeren bir dosya (örneğin, kodun MS Windows altında çalıştırılması amaçlanıyorsa bir .exe dosyası) alınarak bir kez çevrilir (ancak, kaynak kodunu her değiştirdiğinizde bu işlem tekrarlanmalıdır) kod; artık dosyayı dünya çapında dağıtabilirsiniz; bu çeviriyi yapan programa derleyici veya çevirmen denir;

 YORUMLAMA - siz (veya kodun herhangi bir kullanıcısı), her çalıştırılması gerektiğinde kaynak programı çevirebilirsiniz; Bu tür bir dönüşümü gerçekleştiren programa yorumlayıcı denir, çünkü her çalıştırılması amaçlandığında kodu yorumlar; bu aynı zamanda kaynak kodunu olduğu gibi dağıtamayacağınız anlamına da gelir, çünkü son kullanıcının onu yürütmek için yorumlayıcıya da ihtiyacı vardır.

Yorumlayıcı Ne Yapar?

- Bir bilgisayar programı aslında bir metin parçasıdır, dolayısıyla kaynak kodu genellikle metin dosyalarına yerleştirilir.
- Tercüman kaynak kodunu Batı kültüründe yaygın olan bir şekilde okur: yukarıdan aşağıya ve soldan sağa.
- Yorumlayıcı, sonraki tüm satırların doğru olup olmadığını kontrol eder.
- Yorumlayıcı bir hata bulduğunda işini hemen bitirir. Bu durumda tek sonuç bir hata mesajıdır.
- Satır iyi görünüyorsa, yorumlayıcı onu çalıştırmaya çalışır.

Derleyici ve Yorumlayıcı Arasındaki Farklar

	Derleyici	Yorumlayıcı
Avantaj	 çevrilmiş kodun yürütülmesi genellikle daha hızlıdır; yalnızca kullanıcının derleyiciye sahip olması gerekir - son kullanıcı kodu onsuz kullanabilir; çevrilen kod makine dili kullanılarak saklanır; anlaşılması çok zor olduğundan, kendi icatlarınız ve programlama hileleriniz büyük olasılıkla sırrınız olarak kalacaktır. 	 kodu tamamlar tamamlamaz çalıştırabilirsiniz; çevirinin ek aşamaları yoktur; kod, makine dili değil, programlama dili kullanılarak saklanır; bu, kodun farklı makine dilleri kullanan bilgisayarlarda çalıştırılabileceği anlamına gelir; kodunuzu her farklı mimari için ayrı ayrı derlemezsiniz.
Dezavantaj	 derlemenin kendisi çok zaman alıcı bir süreç olabilir; değişiklik yaptıktan hemen sonra kodunuzu çalıştıramayabilirsiniz; kodunuzun çalıştırılmasını istediğiniz donanım platformu sayısı kadar derleyiciye sahip olmanız gerekir. Online Python Eğitimi	 Yorumlamanın kodunuzu yüksek hıza çıkarmasını beklemeyin; kodunuz bilgisayarın gücünü yorumlayıcıyla paylaşacaktır, dolayısıyla gerçekten hızlı olamaz; hem sizin hem de son kullanıcının kodunuzu çalıştıracak tercümana sahip olması gerekir.