Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Pank

Partitioning

Offset

Results

Comment

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis Yuxin W., Peng L., Jason C.

FPGA'14, Feb 26-28, 2014

March 11, 2022

Presented by: Akshay G

About the Authors

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Bank Partitioning

Partitioning

Results

Comments

北京大学高能效计算与应用中心

Center for Energy-efficient Computing and Applications

Joint Research Institute in Science and Engineering by Peking University and UCLA

Outline

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Bank Partitioning

Intra-bank Offset

Results

- Introduction.
- Background.
- Bank Partitioning.
 - Intra-bank Offset.
- Theory !! Yoy (??)

- Results.
- Comments.

Introduction

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Bank Partitioning

Intra-bank

Result

- Memory Partitioning problem.
- Partitioning given multiple memory ports?
- Algorithm parametric to partition scheme?
- Modular to memory ports?

Memory Partitioning

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Rank

Partitioning

Results

Partitioning Schemes

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Pank

raruuonii

Offset

Results

Efficient Mapping

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Fel 26-28, 2014

Introduction

Background

Bank Partitioning

Partitioning

Results

(c) Block-cyclic partitioning

Towards Theory: Symbols!!

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Bank Partitioning

Partitioning

Results

Comments

Table 1: Symbol table

Variables	Meaning	
N	Partition factor, representing the number	
	of logic banks used after memory partition-	
	ing	
B	Partition block size	
P		
l		
d		
m		
_		
\mathcal{D}		
M	-	
i_	Iteration vector	
\vec{x}	Array index vector	
$ec{lpha}$		
q		
i, j, k, t		
\mathbb{Z}		
w_k		

Iteration Vector and Affine Reference

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

Background

Framing the Partitioning Problem

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

${\sf Background}$

Bank

Intra-bank

Results

Comments

Two parts:

- Bank Minimization.
- Storage Minimization.

$$Minimize: N = max_{\leq i < m}\{f(\vec{x}_i)\}$$
 $\exists \vec{i} \in \mathcal{D}, 0 \leq j < k < m, f(\vec{x}_j) \neq f(\vec{x}_k).$

Storage Mop $\sum_{j=0}^{N-1} max_{\leq i < m, f(\vec{x}_i) = j} \! \{ g(\vec{x}_i) \}$

$$\forall \vec{x}_j, \vec{x}_k \in \mathcal{M}, (f(\vec{x_j}), g(\vec{x_j})), \neq (f(\vec{x_k}), g(\vec{x_k})).$$

Bank Mapping

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Bank

Partitioning Intra-bank

Results

Comments

Set
$$\mathcal{P}_{conf}(\vec{x}_0,\vec{x}_1) = \{\vec{i}| \forall \vec{i} \in \mathcal{D}, f(\vec{x}_0) = f(\vec{x}_1)\}.$$

Obviously, if $\forall \vec{i} \in \mathcal{D}$, $f(\vec{x}_0) \neq f(\vec{x}_1)$, $\mathcal{P}_{conf}(\vec{x}_0, \vec{x}_1)$ is empty.

$$\mathcal{P}_{conf}: \left\{ \begin{array}{c} \vec{\alpha} \cdot (A_0 - A_1) \cdot \vec{i} + \vec{\alpha} \cdot (C_0 - C_1) + Nk = 0 \\ \vec{i} \in \mathcal{D} \\ k \in \mathbb{Z} \end{array} \right.$$

Called as Polytope

Bank Mapping: Multi Port

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Bank

Partitioning Intra-bank

Results

$$\begin{aligned} &\mathcal{Z} \text{ Poorts } \wedge &\mathcal{A} \text{ subtruces} \\ &f(\vec{x}_0) = f(\vec{x}_1) \text{ and } f(\vec{x}_1) = f(\vec{x}_2). \end{aligned}$$
 The conflict polytope is constructed as
$$\mathcal{P}_{conf}: \begin{cases} \vec{\alpha} \cdot (A_0 - A_1) \cdot \vec{i} + \vec{\alpha} \cdot (C_0 - C_1) + Nk_0 = 0 \\ \vec{\alpha} \cdot (A_1 - A_2) \cdot \vec{i} + \vec{\alpha} \cdot (C_1 - C_2) + Nk_1 = 0 \\ \vec{i} \in \mathcal{D} \\ k_0, k_1 \in \mathbb{Z} \end{aligned}$$

Intra-bank Offset Mapping

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

Intra-bank

Offset

Definition 7. (Bank Polytope [16]) Given a d-dimensional array reference \vec{x} , $\mathcal{P}_{bank}(\vec{x})$ is a bank polytope of \vec{x} in the data domain M defined as

$$\mathcal{P}_{bank}(\vec{x}) = \{\vec{y} | \forall \vec{y} \in \mathcal{M}, f(\vec{x}) = f(\vec{y})\}.$$
 Set Assigned to Some Bank.

Definition 8. (Lexicographic Order) A lexicographic or $der \prec_{lex} on a d$ -dimensional set M is a relation, where for $\forall \vec{x}, \vec{y} \in \mathcal{M}, \vec{x} = (x_0, x_1, ..., x_{d-1}) \text{ and } \vec{y} = (y_0, y_1, ..., y_{d-1}),$

$$\vec{y} \prec_{lex} \vec{x}$$
 $\Leftrightarrow \exists 1 < t < d, \forall 0 \leq i < t, (x_i = y_i) \land (y_t < x_t).$
 Define ordering within Bonk.

Offset Mapping Intuition

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb

Introduction

Background

Dackground

Partitionin

Intra-bank Offset

Results

Algorithm Flow

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

D. ...l.

Partitionin

Offset

Results

Results (compared to previous work LTB)

Test on Vivado HLS tool

Theory and
Algorithm for
Generalized
Memory
Partitioning in
High-Level
Synthesis

FPGA'14, Fel

Introduction

Background

Bank Partitioning

Results

			Table 5: Exp	erimental	ge arra
Benchmark	Access	7	Method	BRAM	1
	#	,			
		Ī	LTB [21]	5	Ī
DENOISE	4		GMP (P=1), B=2	4	l
		L.	GMP vs LTB	-20.00%	Ŀ
		† ·	LTB [21]	5	†
DECONV	5		GMP (P=1), B=1	5	1
			GMP vs LTB	0.00%	Ī
		Ī Ē	LTB [21]	8	Ť
DENOISE-UR	8		GMP (P=1), B=1	8	1
			GMP vs LTB	0.00%	Ī
		†	LTB [21]	5	4
BICUBIC	4	;	GMP (P=1), B=2	4	1
			GMP vs LTB	-20.00%	Ē.
		_	LTB [21]	9	t
SOBEL	9		GMP (P=1), B=1	9	
			GMP vs LTB	0.00%	Ī
MOTION-LV		-	LTB [21]	6	Ť
	6		GMP (P=2), B=1	4	
			GMP vs LTB	-33.33%	İ
		i '	LTB [21]	6	Ť
MOTION-LH	6		GMP (P=2), B=1	4	
			GMP vs LTB	-33.33%	j
		1	LTB [21]	4	1
MOTION-C	4		GMP (P=2), B=1	2	
			GMP vs LTB	-50.00%	
Average		= =	GMP vs LTB	-19.58%	

		1	
П	CP (ns)	Dynamic	
	` ′	Power(mw)	
-	3.729	26	
	3.395	16	
	-8.96%	-38.46%	
٦	4.538	27	
	4.538	27	
	0.00%	0.00%	
Ī	3.738	31	
	3.738	31	
	0.00%	0.00%	
П	4.364	24	
	3.169	15	
)	-27.38%	-37.50%	
П	4.468	53	
	4.468	53	
	0.00%	0.00%	
1	3.682	25	
	3.169	25	
	-13.93%	0.00%	
٦	3.946	21	
	3.169	23	
	-19.69%	9.52%	
٦	3.405	14	
	3.169	12	
	-6.93%	-14.29%	
	-9.61%	-10.09%	

Limitations?

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

- Experiments on Partitioning algorithm performance.
- Lack of some important mathematical details (some function definitions missing).

Thank you

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb

Introduction

Background

. . .

Partitioning

Offset

Results

Comments

Questions?