Examenul național de bacalaureat 2022 Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 1

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$r = a_3 - a_2 = 6$, unde r este rația progresiei aritmetice	2p
	$a_1 = a_2 - r = 6 - 6 = 0$	3 p
2.	$a-5+2a-5=2 \Leftrightarrow 3a=12$	3p
	a=4	2p
3.	$5^{x-1} = 5^2$, deci $x-1=2$	3 p
	x=3	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 6 numere care sunt multipli de 16, deci	
	sunt 6 cazuri favorabile, de unde obținem $p = \frac{6}{90} = \frac{1}{15}$	3 p
5.	$A\left(\frac{1+x_C}{2}, \frac{4+y_C}{2}\right)$, de unde obținem $x_C = 5$	3p
	$y_C = 0$	2 p
6.	$\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$, $\sin\frac{\pi}{2} = 1$, $\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$	3p
	$E\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} + 1 - \frac{\sqrt{3}}{2} = 1$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} = 1 \cdot 1 - (-1) \cdot (-1) =$	3 p
	=1-1=0	2p
b)	$B(0) = \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix} \Rightarrow B(x) - B(0) = \begin{pmatrix} x & -x \\ -x & x \end{pmatrix} =$	3 p
	$= x \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = xA$, pentru orice număr real x	2p
c)	$C(a) = \begin{pmatrix} a & 3-a \\ 2-a & a \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} a+1 & 2-a \\ 1-a & a+1 \end{pmatrix} = \begin{pmatrix} 2-a & 2a+1 \\ a+1 & 3-2a \end{pmatrix} \Rightarrow \det(C(a)) = -10a+5,$	3 p
	pentru orice număr întreg a	
	$-10a+5=0 \Rightarrow a=\frac{1}{2} \notin \mathbb{Z}$, deci matricea $C(a)$ este inversabilă, pentru orice număr întreg a	2p
2.a)	$1*2 = (2\cdot 1 - 1)(2\cdot 2 - 1) + 1 =$	3 p
	$=1\cdot 3+1=4$	2p

Contrar I aground do I ontro granda in Educação				
b)	$x * x = 4x^2 - 4x + 2$, pentru orice număr real x	2p		
	$4x^2 - 4x + 2 = 2 \Rightarrow 4x^2 - 4x = 0$, de unde obținem $x = 0$ sau $x = 1$	3 p		
c)	$m*\left(1+\frac{1}{m}\right)=\left(2m-1\right)\left(1+\frac{2}{m}\right)+1$, pentru orice număr întreg nenul m	2p		
	$(2m-1)(1+\frac{2}{m})=0$ și, cum m este număr întreg nenul, obținem $m=-2$	3p		

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\int (x) - (2x)^{+1} + (mx) -$	2p
	$=4x + \frac{1}{x} = \frac{4x^2 + 1}{x}, \ x \in (0, +\infty)$	3 p
b)	$\lim_{x \to +\infty} \frac{f(x) - \ln x}{x^2 + x + 4} = \lim_{x \to +\infty} \frac{2x^2 + 1}{x^2 + x + 4} = \lim_{x \to +\infty} \frac{x^2 \left(2 + \frac{1}{x^2}\right)}{x^2 \left(1 + \frac{1}{x} + \frac{4}{x^2}\right)} =$	3 p
	$= \lim_{x \to +\infty} \frac{2 + \frac{1}{x^2}}{1 + \frac{1}{x} + \frac{4}{x^2}} = 2$	2p
c)	$f'(x) > 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este strict crescătoare, deci f este injectivă	2 p
	f este continuă, $\lim_{x\to 0} f(x) = -\infty$ și $\lim_{x\to +\infty} f(x) = +\infty$, deci f este surjectivă, de unde	
	$x \to 0$ $x \to +\infty$ obţinem că f este bijectivă	3p
	obținen că j este orjectivă	
2.a)	$\int_{0}^{4} \frac{f(x)}{e^{x} + 2x^{2}} dx = \int_{0}^{4} x dx = \frac{x^{2}}{2} \Big _{0}^{4} =$	3 p
	$=\frac{16}{2}-0=8$	2p
b)	$\int_{0}^{1} (f(x) - 2x^{3}) dx = \int_{0}^{1} xe^{x} dx = xe^{x} \begin{vmatrix} 1 - \int_{0}^{1} e^{x} dx = e - e^{x} \end{vmatrix}_{0}^{1} =$	3 p
	=e-e+1=1	2p
c)	$\int_{1}^{2} \frac{1}{x} \cdot f(x^{2}) dx = \int_{1}^{2} \frac{1}{x} \cdot x^{2} \left(e^{x^{2}} + 2x^{4}\right) dx = \frac{1}{2} \int_{1}^{2} \left(x^{2}\right)' e^{x^{2}} dx + \int_{1}^{2} 2x^{5} dx = \frac{1}{2} e^{x^{2}} \left \frac{2}{1} + \frac{x^{6}}{3}\right ^{2} = \frac{e^{4} - e}{2} + 21$	3 p
	$\frac{e^4 - e}{2} + 21 = \frac{e^4 - e}{2} + a$, de unde obținem $a = 21$	2p