Manuscript Title

This manuscript (<u>permalink</u>) was automatically generated from <u>Akshay163/gp13 food flow@b5f93e5</u> on December 5, 2020.

Authors

- John Doe

Department of Something, University of Whatever \cdot Funded by Grant XXXXXXXX

- Jane Roe

Department of Something, University of Whatever; Department of Whatever, University of Something

Abstract

hhbvbervberbverbvuyebvebvbuvj brfvbfvbfrvbrfbv rfb rfb gfrb fgb hgfb irfbbfhvfebvdsbnnvksdnvkefnvfbv

Introduction

The article Machine learning in gravity models: An application to agricultural trade written by Munisamy Gopinath et al. employed supervised and unsupervised machine learning (ML) method to decipher patterns of international agricultural trade. Gravity model is one of the most robust empirical models to illustrate the drivers in international trade: bilateral trade between two countries is proportional to size, mostly measured in GDP and inversely proportional to "distance" between them, which commonly fitted through Poisson Pseudo Maximum Likelihood (PPML) method. Munisamy et al. leveraged the decision trees (LightGBM, XGboost), random forests and extra tree regression supervised ML algorithm to predict the bilateral trade. The data used in this project is international bilateral trade information for seven most traded food commodities from 1962 to 2016. The gain and loss was measured by adjusted R-square. The values of maximum depth of the tree, learning rate, number of leaves and feature fraction were tuned to achieve a better prediction. ML methods show more accurate prediction results than gravity model with the adjusted R-square ranged between 45 and 83%. Specifically, LightGBM had the best performance for sugar; Random Forest provided the best fit for corn; and the extra tree regressor yielded highest R-sqaure for beef and milk powder. The size of the two countries has the largest influence to the trade, the distance follows, which is consistent to the gravity model assumptions. Munisamy et al. also employed multilayer perceptron (MLP), one paradigm of unsupervised ML method for the same datasets. The loss was measured by stochastic gradient descent (SGD) method. Unsupervised ML techniques might be a better method for longer-term trade projections than supervised ML.

Munisamy et al. clearly define the quantitative ML algorithm that we can follow to predict the trade and variables we can also consider for national flows. Comparison between the ML algorithm and PPML method shows that ML is a promising method for the topic we interested in. Also, Munisamy's work indicates a potential problem we might encounter: the zero values prevalent in the trade data might impair the ML model and deviate it to a wrong direction. We suppose that using the qualititive ML method like discriminant analysis and K-Nearest Neighbors to predict the existance of trade and build the quanlititive ML model on the highly potential existing link might produce a better prediction. Also, because Munisamy work focus on the international trade and our targeted scope is the US, we need to find the alternative predictors for tariff, same language and participated international trade organizations.

Food flows between counties in the United States: Xiaowen Lin et al. developed a novel methodology to estimate food transfers between counties in the United States. They exploited the Freight Analysis Framework (FAF) dataset in their analysis to downscale the commodity transfers from FAF zones scale to county scale. FAF data categorizes food commodities into SCTG groups with two-digit codes and in this study, they have studied focused on SCTG 01-07, which are related to food commodity. To achieve this, Lin et al developed a "Food Flow Model" which is a computational algorithm that integrates machine learning, linear programming, network constraints, and mass balance. This model incorporates a gamma mixture hurdle model that uses supervised learning to develop a functional form of regression models at the FAF zone scale which is then utilized for calculating potential food transfer between counties. A key assumption made here is that network properties remain consistent across scales (Konar et al). The gamma mixture hurdle model is a two-part model where a) Hurdle model uses logistic regression to predict the presence or absence of a link, and b) Gamma mixture model estimates the mass of the estimated link in the previous part following the assumption that

food flux distributions follow gamma distribution across scales (Konar et al). Finally, they use linear programming to minimize transportation distance of food flows between counties and maintain mass balance at FAF zone level to solve the flow system at the county scale. Lin et al. used Fourier amplitude sensitivity test (FAST) to determine the most influential variables. They found out that counties in California and the Great Lakes region have the highest outflow of commodities. Also, the network density of the county scale (0.016) is much less than the network density of FAF scale (0.675). To validate their results, they compared their results with a study performed by Smith et al. where they modeled county-scale corn flows. They used R2-squared values and simple matching coefficient (SMC) to compare the results. SMC values turned out to be 1 for potential links, addressing identical estimation of presence or absence of county flow links in both models. R2-squared values are highest for outflows with a value of 0.46. Through the global sensitivity and uncertainty analysis (GSUA), where they used FAST method, they found out the distance is the most influential variable. The paper is an extensively rigorous effort to understand the food supply chain dynamics at a much finer resolution. The lack of existing literature at such finer scale, with the only literature at county-scale for corn flows by Smith et al., was another hurdle which they surpassed using a data-driven framework by bringing supervised machine learning, mass balance, and linear programming together to predict food flows for all food commodities. In their article, they addressed the shortcomings of their models, which we will be addressing in our project. Firstly, the model estimate food flows only for 2012, which means that regression models are specific to each time period and cannot be compared across different periods. Second, the model does not capture the non-linearity between environmental variables and food flow that can be captured using deep learning. Also, they used the great-circle distance between counties, which is also used in the gravity model of international trade, which is a simplification of transport pathways. This can also be addressed by using the roadway network for which we have data from FAF. In our project, we will be focusing on these three key shortcomings to further research in this field.

References