UNIVERISTY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING CHE 391s Organic Chemistry and Biochemistry Final Exam - Tuesday April 20th, 1999 EXAMINER: Prof. E.A. Edwards

Answer all questions in the spaces provided. (14 pages; 22 questions)

Student Number:_ Name_

Marks or Minutes

Ouestions:

- 1. Predict the products of the reactions (briefly justify your answer and name reaction type or mechanism):
- 2
- a) CH3CHBr CH2 CH3 base

- 2
- d) CH3CH2OH + CH3CH2COOH -++ 2
- 2

Marks or Minutes

Ouestions:

2

2. CH, BG

2

2

Marks or Minutes

Ouestions:

- 2. Rank the following compounds in order of increasing boiling points 3
 - a) diethylamine b) propanoic acid

 - c) pentane d) 1-butanol
 - e) ethylamine
- 3. Rank the following carbocations in order of decreasing stability 2
 - a) CH, CH,
 - ь) сн, снсн,
 - c) CH,CCH,
 - d) (CH,),C
- 4. Which compound in each of the following pairs would you expect to be 6 more acidic? Explain your answers.

CI, CHCOOH or

CH3 COOH

Marks or Minutes		Questions:
3	5.	Rank the following compounds in order of decreasing solubility in water
		A) CH,CH,CH,OH B) CH,CH,COOH C) CH,CH,CH,CH, D) CH,CH,CH, E) CH,CH,CH, F) CH,CH,OH
•		
6	6.	How is an hemiacetal formed. Show the reaction mechanism, starting from an aldehyde.
		¥
		b) Show the markening by which as hereicentally assured to as
4		b) Show the mechanism by which an hemiacetal is converted to an acetal

b) Why are acetals good protecting groups?

2

Marks or	Questions:
Minutes 2	7. What alkene will give CH ₃ CO(CH ₂) ₄ COOH on cleavage with acidic KMnO ₄ ?
	8. Ascorbic Acid (Vitamin C) does not in fact contain a free carboxylic acid group. It is best described as the internal ester (involving the 4-hydroxy group) of 2,3,4,5,6-pentahydroxy -2-hexenoic acid.
2	a) Draw the structure of 2,3,4,5,6-pentahydroxy-2-hexenoic acid
3	b) Based on the above, next draw the structure of Vitamin C

c) Why do internal esters form more readily than do regular esters?

1

Marks or Minutes 4 **Questions:**

 Write the mechanism for a general S_N2 reaction between a nucleophile (Nu') and an alkyl halide (include transition state(s), stereochemistry, and intermediates):

10. Consider the following compound: (it is an "enone")

- 2 Give the IUPAC name of this compound:
- 2 Why is this compound relatively stable?
- 6 What aldehyde could be used to synthesize this molecule via an aldol condensation reaction? Show mechanism

Marks or Minutes

4

4

Ouestions:

11. What is the relationship between the structures shown below:

- a) conformers
- b) enantiomers
- c) diasteriomers
- d) structural isomers

12. Vinyl acetate undergoes free radical polymerization. Briefly outline a method for the synthesis of polyvinyl alcohol from vinyl acetate:

4 13. Circle the correct product(s) of the reaction below: (note D=deuterium)

$$C = C \begin{pmatrix} CH_3 & H_3C \\ H & C \end{pmatrix} = C \begin{pmatrix} CH_3 & H_3C \\ H & H \end{pmatrix} = C \begin{pmatrix} CH_3 & H_3C \\ CH_3 & H \end{pmatrix} =$$

14. Draw the Fisher projection of any D-aldohexose. Circle the carbon atom that makes this a D-sugar

Marks or Minutes

Questions:

15. The structure of a section of a polymer of glucose is shown below:

- a) Use arrows to point to the glycosidic linkage(s) and anomeric carbon(s) in the structure above. What type of linkages do you find (indicate carbon numbers and stereochemistry of each linkage)
- b) What common polysaccharide(s) could this structure represent? Why?
- 4 16. When crystals of β-D-glucopyranose are dissolved in water, the specific rotation changes over a period of time from +112° to +54°. Explain this phenomenon.

Marks or Minutes 6

Questions:

 Draw the structural formula for the nucleotide cytidine 5'monophosphate. The base component is cytosine (shown below).

- 18. The sense strand of a particular DNA sequence is given below:
 - 5'-GAGATGTTTGAGTAGCACAC-3'
- 2 a) How many total hydrogen bonds would exist between the two complementary strands of this piece of DNA?
- b) What is the sequence of the mRNA transcript?
- 2 c) What is the sequence of the primary protein product?
- 2 d) What would happen if a mutation resulted in the deletion of a nucleotide in the DNA sequence?

Ouestions: Marks or Minutes 10 19. Which of the following statements are true and which are false? Correct false statements. a) Each codon is composed of four bases b) DNA polymerase is involved in transcription c) DNA polymerase catalyzes chain extension in the 5' to 3' direction d) Each living species is thought to have its own unique genetic code e) A B-pleat is an example of a tertiary structure of a protein f) mRNA is a very stable molecule g) The Maxam-Gilbert method of DNA sequencing is used in automated sequencing machines h) Alkaloids are synthetic detergents i) Restriction endonucleases catalyze vaso-constriction i) Phospholipids are like fats except that one ester group is replaced by a phosphotidylamine 20. What is the Polymerase Chain Reaction? What reagents are needed in 7

the reaction mixture? Explain the steps involved in one cycle. What

fold concentration do you obtain?

Marks or Minutes

Ouestions:

21. The following is a plot of reaction rate versus substrate concentration for a reaction catalyzed by the enzyme peptidase:

Reaction velocity (v) mmod/min

- 2 a) Why does the rate of an enzyme-catalyzed reaction plateau at a high substrate concentration?
- b) Estimate K_m and V_{max} for the peptidase enzyme: What property of the enzyme does K_m measure?
- 2 c) If one doubled the peptidase concentration, what would be the effect on the K_m ?
- 2 d) What would be the effect of doubling the peptidase concentration on V_{max}?

Marks or Minutes

Ouestions:

22. Researchers have found that some bacteria communicate with one another by releasing small peptides into their growth medium. Initially, these peptides were isolated using columns. Most columns are composed of beads which bind to molecules of a particular size or charge, separating them from the original mixture placed on the column. The beads used in the column can be either negatively or positively charged.

Consider the sequence of the peptide (Peptide 1) shown below (N=Amino terminus; C=carboxy terminus):

N-Leu-Arg-Glu-Asn-C

a) Draw the structure of Peptide 1 (including the side chains of each amino acid) as it would be found at pH 7.0. Refer to the amino acid structures provided at the end of this exam.

- b) At pH 7.0, would Peptide 1 carry an overall positive charge, a negative charge or be neutral (uncharged)?
- c) If the beads used in the column are positively-charged, then at what pH range (between pH 0 - 14) would the majority (>50%) of Peptide 1 bind to these beads? Briefly explain your reasoning. (HINT: Within what pH range would the peptide have a net negative charge?)

First base	Second		Third bo	ise (3" end)	
(5' end)	base	U	. c	A .	G
U	U	Phe	Phe	Leu	Leu
	C A G	Ser	. Ser	Ser	Ser
200	A	Tyr	Тут	Stop	Stop
	G	Cys	Cys	Stop	Trp
C	U	Leu .	Leu	Leu .	Leu
	C	Pro	Pro	Pro	Pro
	U C A G	His	His	Gin	Gln
	G	Arg	Arg	Arg	Arg
A	U	Пе	Пe	Пе	Met
	U C A G	Thr	Thr	Thr	Thr
	A	Asn	Asn	Lys	Lys
	G	Ser	Ser	Arg	Arg
G	U	Val	Val	Val	Val
	U C A G	Ala	Ala	Ala .	· Ala
	A	Asp	Asp	Glu ··	· · · Glu
1.0	G	Gly	Gly	Gly	Gly

134 15.26 1.00								ĺ	Table 15.1 (continued)	contin	foar						
Transmise addition Transmi	1	Albre		Makyadar	Sirueture	11	7000	T. S.	1	41	i,	Medicinals			100	1	
Control 13 13 13 13 13 13 13 1	Neutral Amba	Ala Ala	3	2	CHIGHCOIL	83	ă	2	Thomas	è	€	£	011 0 1 CH,CHCHCHCH 1 NH,		2.08	1 2	
Con (CO 131 19504 CON (CON (CO	Asperagies		2	5		3	5	3	Trypeophen	Ê	3		CHCHOTO-101	. 3	2.5	Ŗ	
Col. (0) 144 1,00000000000000000000000000000000000	Cyatalas		6	Ē	ISCUÇUICON	5.07	3	10.28					== =/= (}				
Cly (C)	Obstanles		ĝ	1	III MODIFICATION III	5	11	2.2	ļ	ř		E	HO CHIGHTON		2.30	2	
	Gycie		ĝ	p	e = 1100 110	16.5	7	8	Value	ž	3	2	CIIJON NII	3		ā	SIDE CHAI
City 1	in the state of th				CH,	5	2	9	Acidic Amin	- Acids	ē	Ē		. !	!		PKa3:
1 1 1 1 1 1 1 1 1 1	Lendin	3	3			80	ä	3				l :		17	5	!	F. B.
	Merkhaine	¥	2			F.24	ħ	. 9		5	2	Ē		-	3	64	
	Persylatories	.	5	3	CHAPITANIA	**	ä	22	Beste Amina	Acids	8	E	און האסאווכוו,כוו,כוו,כוו,כווי, האסאווכוו,כוו,כוו,כווי,כווי,כווי,כווי,כווי,	10.76	2.2	4	-> Pka3
See CR3 1605 1105111,5115711 1 2.18 Lynine Lyn (R) 146 11,NG14,511,511,511,511,511,511,511,511,511,5	1 .	Ł	£	1			5	9	Histolica	4	E	1	CHICAGONICO N	3	9	2	(1 NH2
	1	ă	8	1	носи сисли Пи,	2.50	122	9.18	,	\$	8		II,NCIL,CII,CII,CII,CIII,		5	3	

THE END! Have a Great Summer! - Page 14