

User Manual Lattice Embedded Vision Development Kit

Standard HD ISP

Reference Design for

Lattice Embedded Vision Development Kit

Description:

Helion Vision's IONOS Standard HD-ISP provides a turn-key solution for Lattice's Embedded Vision Development Kit and is one of five pre-configured plug and play Image Signal Processing Pipelines (ISP). It provides a full functional video preprocessing pipeline for basic video applications.

Function:

The standard HD-ISP image signal processing pipelines utilizing a basic element of library comprising more than 150 individual IP Cores. It provides a template for a fully customizable and configurable video processing projects and is sensor and resolution independent. In this reference design the 2k version is used.

Order Code ISP:

BE10029117(ISP-STHD-12)

Order Code Reference Design:

BE10029632(REF-EMVI-12)

ISP Features

- Full functional universal video pipeline containing:
 - Supports standard video timings like 720p60, 1080p60
 - Setup and input interface
 - Defect Pixel Correction
 - Debayer 5x5 High Quality (CFI)
 - Color Correction Matrix
 - RGB Gain
 - Color Saturation Matrix
 - Gamma Correction
 - Statistic modules
 - Auto Brightness
 - AWB Auto White Balancing
 - Configuration Interface
- 12 Bit per color processing
- Sensor independent
- Reference designs for
 - Lattice Embedded Vision Development Kit
 - Lattice HDR-60 Development Board

Contents

1	Intro	atroduction				
	1.1	Features of the IP used in the Standard HD ISP	2			
2	Fun	ctional Description	5			
	2.1	Block Diagram of the Standard HD ISP	5			
3	Star	ndard HD ISP Implementation and Parameter Description	8			
	3.1	Standard HD-ISP Implementation	8			
	3.2	Modul Header of the Standard HD-ISP	8			
	3.3	External ISP Register Overview	9			
	3.4	Configuration Memory of the Standard HD-ISP	12			
	3.5	Blocked Address	12			
	3.6	ISP Version / Revision	13			
	3.7	Video image related parameters	13			
		3.7.1 width	13			
		3.7.2 height	13			
		3.7.3 hblanks	13			
		3.7.4 vblanks	14			
	3.8	Defetive Pixel Correction and Debayer (CFI)	14			
		3.8.1 bayer_first_phase	14			
		3.8.2 bayer_phase_dpc	14			
	3.9	Color correction matrix Parameter	15			
		3.9.1 ccm_rr_i, , ccm_bb_i	15			
	3.10	Parameter RGB gain	16			
		3.10.1 gain_red	16			
		3.10.2 gain_green	16			
		3.10.3 gain_blue	16			
	3.11	Gamma	17			
	3.12	Saturation	17			
	3.13	Automatic White Balance	17			
		3.13.1 awb_stat_roi_col_start	18			
		3.13.2 awb_stat_roi_col_end	18			

	3.13.3 awb_stat_roi_row_start	18
	3.13.4 awb_stat_roi_row_end	18
	3.13.5 awb_stat_upper_bound_r	18
	3.13.6 awb_stat_upper_bound_g	18
	3.13.7 awb_stat_upper_bound_b	18
	3.13.8 awb_stat_upper_lower_r	18
	3.13.9 awb_stat_upper_lower_g	19
	3.13.10awb_stat_upper_lower_b	19
	3.13.11awb_enable	19
	3.13.12manual_wb_enable	19
	3.13.13awb_speed	19
3.14	Auto Brightness	19
	3.14.1 auto_brightness_enable	20
	3.14.2 auto_brightness_lum_target	
	3.14.3 auto_brightness_max_gain	20
	3.14.4 auto_brightness_stat_roi_col_start	20
	3.14.5 auto_brightness_stat_roi_col_end	
	3.14.6 auto_brightness_stat_roi_row_start	20
	3.14.7 auto_brightness_stat_roi_row_end	20
	3.14.8 auto_brightness_stat_upper_bound_r	20
	3.14.9 auto_brightness_stat_upper_bound_g	20
	3.14.10auto_brightness_stat_upper_bound_b	20
	3.14.11auto_brightness_stat_upper_lower_r	21
	3.14.12auto_brightness_stat_upper_lower_g	21
	3.14.13auto_brightness_stat_upper_lower_b	21
3.15	Test Pattern Generator and RAW Bypass	21
3.16	RGB Offset	21
	3.16.1 rgb_offset_red	22
	3.16.2 rgb_offset_green	22
	3.16.3 rgb_offset_blue	22
	3.16.4 rgb_offset_mode	22
3.17	Video Port Timing Specifications	22
Heli	on Standard HD ISP Usage	23
4.1	IONOS Configuration GUI	
4.2	Direct ISP access via UART	
4.3	Configuration Memory	
4.4	Configuration Memory via ECO Editor	
	4.4.1 Step 2	
	4.4.2 Step 3	
	4.4.3 Step 4	

4

	4.4.5	Step 5	27
5		Utilization and Performance	28
6	Ordering P	Part Number	29
7	Revision H	listorv	30

Introduction

The Standard HD ISP intends to bring the Helion ISP pipeline closer to you. It provides a full functional video preprocessing pipeline for your image sensor.

It is equipped with a universal set of video preprocessing IP blocks to be used as a template for your own projects (i.e. HDR60 or EVDVK) or custom specific video processing pipelines. The Standard HD ISP is sensor and resolution independent.

The Standard HD ISP contains a easy to use and fully functional ISP solution for your designs. The implementation is very easy since you have no overloaded module header. It's resources optimized, while you still have full access to modify the ISP via a configuration interface. The IONOS ISP is sensor and resolution independent since all sensor dependent parts (sensor configuration and auto exposure) swapped out to a separate module. To work with the Standard HD ISP you just need a parallel video timing (e.g. 720p60 or 1080p60) as ISP input.

If you need a sensor port for your design get in touch with Helion and ask for generic sensor port.

1.1 Features of the IP used in the Standard HD ISP

• Defect Pixel Correction: wbs_def_pix_correction_dpc

Defective hot and defective cold pixels are corrected with the defective pixel correction IP module. This IP module corrects the defective pixel with interpolated values based on neighbor pixels of the same color channel.

Typical correction methods include detection of cold or hot pixels using median estimation on immediate pixel neighborhood.

For further information and details see the related datasheet for wbs def pix correction dpc.

Debayer 5x5 High Quality (CFI): wbs_debayer_5x5_cfi_5hq

This IP core generates full RGB output for each image pixel. The output of the **Debayer 5x5 High Quality (CFI)** is represented in a standard bayer format and is interpolated using a 5x5 sliding window to calculate the RGB results. The data stream width of input and output is configurable and also suitable for HDR application.

The incoming image data is provided in raw bayer format. To calculate the missing two color informations all surrounding pixels will be used.

The practical results of this calculation are low-pass filter behavior of the color channels. The results of

the debayer algorithms will be improved by chosing different mathematical strategies or larger windows for averaging.

For further information and details see the related datasheet for wbs_debayer_5x5_cfi_5hq.

· Color Correction Matrix : wbs color correction matrix ccm

In order to provide high quality images, acquisition is most important in respect to all further processing steps. A whole variety of available image sensors possess incorrect color rendition due to crosscolor effects and different spectral characteristics compared to human perception. This effects lead to wrong color images (e.g. green with too much blue).

Color response correction on each RGB channel by a 3x3 correction matrix multiplication.

$$red_{out} = rr * red_{in} - rg * green_{in} - rb * blue_{in}$$

 $green_{out} = -gr * red_{in} + gg * green_{in} - gb * blue_{in}$
 $blue_{out} = -br * red_{in} - bg * green_{in} + bb * blue_{in}$

Important: There are two CCM modules used in Standard HD ISP. One for classic cross color correction and one for color saturation

For further information and details see the related datasheet for wbs color correction matrix ccm.

• RGB Gain : wbs_rgb_gain

Many sensors enable shutter control but only through coarse quantization steps. To achieve a smooth impression with automatic shutter control, a very fine gain adjustment is needed. Especially Auto Exposure(AE) and Auto White Balancing(AWB) functions require different and very fine gain-steps for each color channel. For every color channel a separate gain factor will be applied.

$$red_{out} = gain_{red} * red_{in}$$

 $green_{out} = gain_{green} * green_{in}$
 $blue_{out} = gain_{blue} * blue_{in}$

For further information and details see the related datasheet for wbs_rgb_gain.

Gamma Correction: wbs gamma correction gc

Pixels are illuminated in a linear way. To provide pixel data to common video systems a conversion to a non-linear encoding scheme may be needed.

Gamma Correction provided conversion of a RGB-input signal from linear to non-linear value and vice versa. This function uses arbitrary **Gamma Correction** factors.

For further information and details see the related datasheet for wbs_gamma_correction_gc.

· RGB Statistics : wbs rgb hdr stat

This IP core provides video statistics of the three color channels to be used with the auto-white-balance (AWB) routine. This routine require information like arithmetic mean values of the color channels etc. This IP core delivers the pixel sum and pixel numbers for each color channel within a freely configurable

region of interest (ROI). This allows for closer examination of image areas. Inbounds are used to reject unwanted pixel values.

For further information and details see the related datasheet for wbs_rgb_hdr_stat.

Functional Description

2.1 Block Diagram of the Standard HD ISP

Figure 2.1 illustrates the functional block diagram of the reference design. At the startup the ISP parameters get loaded from the *Default Memory* module. These parameters can be changed during operation by setting *UART* register commands (see chapter 4.2 for details). Also, a graphical user interface (GUI) will help to control the ISP parameters.

Figure 2.2 illustrates the functional block diagram of the video data stream processing. The top stage is the raw data input.

The first step is a defect pixel correction to eliminate hot or cold pixel in the stream. The defect pixel will be corrected with interpolated values of neighbor pixel of the same color channel.

A color filter interpolator (debayer) calculates raw RGB data from the incoming sensor data stream which will be adopted to a "human" color perception scheme by the color correction matrix operation.

To receive a high quality image with a correct color space the color correction matrix adjusts an incorrect color rendition due to cross color effects and different spectral characteristics compared to human perception.

The RGB statistics modul derives statistic data per color channel to perform an auto white balance control operation within a feedback loop.

An additional RGB gain module enables a fine color channel adjustment. The following RGB statistics module delivers the required information for a feed-back controlled operation.

Furthermore, a look up table based on gamma transformation is imposed to adopt the luminance characteristics for a specific target video system.

In this reference design the video output will be realized by a DVI/HDMI compliant interface.

Each ISP can directly be modified by a configuration memory file.

Picture 2.1: Block diagram of the reference design.

Picture 2.2: Block diagram of IONOS Standard HD ISP

Standard HD ISP Implementation and **Parameter Description**

Standard HD-ISP Implementation 3.1

To implement the HD-ISP in the design, it is necessary to connect a few ports like the video data bus to have the full funcionallity of the Helion IONOS ISP. In the following chapter the module header and the configuration file will be explained.

3.2 Modul Header of the Standard HD-ISP

Table 3.1 shows the required ports of the modul header. Helion will update this ISP regulary and add new functionallity. In one extended version I2C Master / Slave-, UART-, SPI-, memory interface and user IOs are planned to be included. Right now they are not connected inside the ISP, therefor connect 0'b0 to the inputs and leave the output unconnected. See Table 3.1 for more details.

Table 3.1: Portlist parameters Description Darameter

Parameter	Range	Description	
main_clock_i		system clock, typical 27MHz or 54MHz	
pixel_clock_i		image sensor clock, typical 74.24MHz or 148.5MHz	
not_async_reset_i		asynchronous system reset, low active (connect to GSR Network)	
raw_video_data_i	[11:0]	image sensor raw data input	
raw_video_line_valid_i		image sensor line valid input	
raw_video_frame_valid_i		image sensor frame valid input	
spi_master_clock_o		internal not connected. Leave unconnected.	
spi_master_not_select_o		internal not connected. Leave unconnected.	
spi_master_mosi_o		internal not connected. Leave unconnected.	
spi_master_miso_i		internal not connected. Connect 0'b0.	
uart_txd_i		internal not connected. Connect 0'b0.	
uart_rxd_o		internal not connected. Leave unconnected.	
i2c_slave_clock_i		internal not connected. Connect 0'b0.	
i2c_slave_not_select_o		internal not connected. Leave unconnected.	
i2c_slave_sda_o		internal not connected. Leave unconnected.	
continued on next page			

		continuation
Parameter	Range	Description
i2c_slave_sda_i		internal not connected. Connect 0'b0.
i2c_slave_scl_i		internal not connected. Connect 0'b0.
user_data_0_i	[31:0]	internal not connected. Connect 0'b0.
user_data_1_i	[31:0]	internal not connected. Connect 0'b0.
user_data_2_i	[31:0]	internal not connected. Connect 0'b0.
user_data_3_i	[31:0]	internal not connected. Connect 0'b0.
user_data_0_o	[31:0]	internal not connected. Leave unconnected.
user_data_1_o	[31:0]	internal not connected. Leave unconnected.
user_data_2_o	[31:0]	internal not connected. Leave unconnected.
user_data_3_o	[31:0]	internal not connected. Leave unconnected.
video_out_red_o	[7:0]	red video data output
video_out_green_o	[7:0]	green video data output
video_out_blue_o	[7:0]	blue video data output
video_out_line_valid_o		video line valid output
video_out_frame_valid_o		video frame valid output
config_memory_clock_i		default memory clock = system clock.
config_memory_address_i	[31:0]	input address for config memory register.
config_memory_we_i		write enable for config memory.
config_memory_data_i	[31:0]	data input for config memory.
config_memory_data_o	[31:0]	data output for config memory.
default_memory_clock_i		default memory clock = system clock.
default_memory_address_d	[31:0]	output address for default memory register.
default_memory_data_o	[31:0]	data output for default memory.

3.3 External ISP Register Overview

Table 3.3 provides an overview of the IONOS ISP register set. A detailed register and parameter description will be given in the following chapters. The register offset address multiplied with 4 is the I2C register address. Each register is 32 bit wide. Ways to access the registers

· Default: memfile

• On the fly: Config Interface, I2C

Register		Default	
Offset	Parameter	Value	Description
Address		[31:0]	
0	blocked reserved address	0x0	blocked reserved address
1	blocked reserved address	0x0	blocked reserved address
2	blocked reserved address	0x0	blocked reserved address
3	blocked reserved address	0x0	blocked reserved address
4	Revision	0x1	read revision: 1
5	width	0x780	image video width for 1080p, for 720p: 0x500
6	height	0x438	image video height for 1080p, for 720p: 0x2D0
7	hblank	0x118	numbers of horizontal blanking cycles for 1080p, for 720p: 0x172
8	vblank	0x2D	numbers of vertical blanking lines for 1080p, for 720p: 0x1E
will be con	tinued	-	

Register	Davamatav	Default	continuation	
Offset Address	Parameter	Value [31:0]	Description	
9	bayer_phase_dpc	0x1	enable: 0x1, disable: 0x0 for defect pixel cor rection	
10	bayer_phase_debayer	0xD	used bayer phase	
11	ccm_rr	0x1000000	ccm ¹ Value red → red	
12	ccm_rg	0x0	ccm Value red \rightarrow green	
13	ccm_rb	0x0	ccm Value red → blue	
14	ccm_gr	0x0	ccm Value green \rightarrow red	
15	ccm_gg	0x1000000	ccm Value green → green	
16	ccm_gb	0x0	ccm Value green → blue	
17	ccm_br	0x0	ccm Value blue → red	
18	ccm_bg	0x0	ccm Value blue \rightarrow green	
19	ccm_bb	0x1000000	ccm Value blue → blue	
20	rgb_gain_pre_ccm_r	0x100	gain for red channel before ccm	
21	rgb_gain_pre_ccm_g	0x100	gain for green channel after before ccm	
22	rgb_gain_pre_ccm_b	0x100	gain for blue channel after before ccm	
23	rgb_gain_pre_ccm_enable	0x1	enable rgb gain after before ccm	
24	rgb_gain_after_ccm_r	0x100	gain for red channel after ccm	
25	rgb_gain_after_ccm_g	0x100	gain for green channel after ccm	
26	rgb_gain_after_ccm_b	0x100	gain for blue channel after ccm	
27	rgb_gain_after_ccm_enable	0x1	enable, disable rgb gain after ccm	
28	gamma	0x64	gamma value, 0x64 (d100) is equal to 1	
29	saturation	0x64	saturation value, 0x64 (d100) is equal to 1	
30	awb_stat_roi_col_start	0xA	ROI for AWB, start column pixel,	
31	awb stat roi col end	0x4F6	ROI for AWB, end column pixel,	
32	awb stat roi row start	0x32	ROI for AWB, start row pixel,	
33	awb_stat_roi_row_end	0x2BC	ROI for AWB, end row pixel,	
34	awb_stat_upper_bound_r	0x2D000	Upper threshold on red channel	
35	awb_stat_upper_bound_g	0x2D000	Upper threshold on green channel	
36	awb_stat_upper_bound_b	0x2D000	Upper threshold on blue channel	
37	awb_stat_upper_lower_r	0x1	Lower threshold on red channel	
38	awb_stat_upper_lower_g	0x1	Lower threshold on green channel	
39	awb_stat_upper_lower_b	0x1	Lower threshold on blue channel	
40	awb_stat_command	0x3F		
41	awb enable	0x1	enable (0x1) the automatic white balance	
42	manual wb enable	0x0	enable the manual white balance with 0x1	
43	awb_speed	0x5A	Sets the speed for automatic white balance	
44	auto_brightness_enable	0x1	enable (0x1), disable (0x0) automatic brighness	
45	auto_brightness_max_gain	0x3F	set max gain for automatic brightness	
46	auto brightness lum target	0x7D0	set the target luminance	
47	video_mode	0x0	switch between image data (0x0), testpatter generator (0x1) and raw bypass (0x2)	
48	auto_brightness_stat_roi_col_start	0xA	ROI for Auto Brightness, start column pixel	
4 9	auto_brightness_stat_roi_col_end	0x4F6	ROI for Auto Brightness, end column pixel	
50	auto_brightness_stat_roi_row_start	0x32	ROI for Auto Brightness, start row pixel	
51	auto_brightness_stat_roi_row_end	0x2BC	ROI for Auto Brightness, end row pixel	
will be con		0,200	TO TO Auto Drightiness, end fow pixel	

¹ccm = color correction matrix

			continuation
Register Offset	Parameter	Default Value	Description
Address		[31:0]	
52	auto_brightness_stat_upper_bound_r	0x2D000	Upper threshold on red channel
53	auto_brightness_stat_upper_bound_g	0x2D000	Upper threshold on green channel
54	auto_brightness_stat_upper_bound_b	0x2D000	Upper threshold on blue channel
55	auto_brightness_stat_upper_lower_r	0x1	Lower threshold on red channel
56	auto_brightness_stat_upper_lower_g	0x1	Lower threshold on green channel
57	auto_brightness_stat_upper_lower_b	0x1	Lower threshold on blue channel
58	auto_brightness_stat_command	0x3F	
59	rgb_offset_red	0x0	value for the red channel offset
60	rgb_offset_green	0x0	value for the green channel offset
61	rgb_offset_blue	0x0	value for the blue channel offset
62	rgb_offset_mode	0x0	enable (0x1), disable (0x0)

3.4 Configuration Memory of the Standard HD-ISP

Picture 3.1: Configuration Memory File

The Standard HD ISP can be configurated by a fixed parameter set \rightarrow *.mem- file.

3.5 Blocked Address

The first 4 addresses are reserved and cannot be used.

Parameter	Address[dec]	Range/Options	Default
blocked reserved adress	00	-	blocked reserved adress, don't use
blocked reserved adress	01	-	blocked reserved adress, don't use
blocked reserved adress	02	-	blocked reserved adress, don't use
blocked reserved adress	03	-	blocked reserved adress, don't use

3.6 ISP Version / Revision

Register address 4 contains the IONOS ISP version / revision.

Table 3.4: ISP revision

Parameter	Address[dec]	Range/Options	Default
Revision	04	2	ISP revision

3.7 Video image related parameters

These registers are to set up the correct timing parameter.

Table 3.6: Video image related configuration and parameters

Parameter	Address[dec]	Range/Options	Default
width	05	10x800	0x500 = 0d1280
height	06	10x800	0x2D0 = 0d720
hblanks	07	10x800	0x172 = 0d370
vblanks	08	10x255	0x2D = 0d45

3.7.1 width

This parameter adjusts the pixel width of the image. It is limited to a max value of 2047. The picture width is needed for internal counter settings and configurations.

3.7.2 height

This parameter adjusts the pixel height of the image. It is limited to a max value of 2047. The picture height is needed for internal counter settings and configurations.

3.7.3 hblanks

Based on the calculation of all pixels, there is the need for a line buffer in the core. The effect of this line buffer is, that the latency of the output is at least one line. Additionally, the last line which is generated by the core, does no longer have picture synchronization input signals. For the last output line, these synchronization signals have to be generated by the core itself. To have influence on the blankings and to adapt those to the horizontal blanking this parameter must be used to set the manual horizontal blanking.

3.7.4 vblanks

The vblanks defines the time between the end of the final line of a frame or field and the beginning of the first line of the next frame.

3.8 Defetive Pixel Correction and Debayer (CFI)

Table 3.8 lists the different input parameters to configure the Debayer Core core. Furthermore the function needs a parameter to adjust the debayer phase.

Table 3.8: Debayer configuration and parameters

Parameter	Address[dec]	Range/Options[dec]	Default
bayer_phase_dpc	09	00x1	0x1
bayer_first_phase	10	00x3	0x1

3.8.1 bayer first phase

This parameter adjusts the incoming bayer sequence. With four different cases, the first pixel of the first image line could be red, blue, green1 or green2. The 2-bit length bayer_first_phase parameter is used to encode the appropriate situation as follows:

3.8.2 bayer_phase_dpc

This parameter enables the defect pixel correction IP.

3.9 Color correction matrix Parameter

Table 3.9 shows the different input parameters of the color correction matrix.

Table 3.10: CCM Configuration Parameters

Parameter	Address[dec]	Range/Options	Default
ccm_rr	11	00xFFFFFFF	0x10000000
ccm_rg	12	00xFFFFFFF	0
ccm_rb	13	00xFFFFFFF	0
ccm_gr	14	00xFFFFFFF	0
ccm_gg	15	00xFFFFFFF	0x10000000
ccm_gb	16	00xFFFFFFF	0
ccm_br	17	00xFFFFFFF	0
ccm_bg	18	00xFFFFFFF	0
ccm_bb	19	00xFFFFFFF	0x10000000

3.9.1 ccm_rr_i, ..., ccm_bb_i

In order to provide high quality images, acquisition is most important in respect to all further processing steps. A whole variety of current image sensors possess incorrect color rendition due to crosscolor effects and different spectral characteristics compared to human perception. This effects leads to wrong color images (e.g. green with too much blue).

Color response correction on each RGB channel by a 3x3 correction matrix multiplication.

$$red_{out} = rr * red_{in} - rg * green_{in} - rb * blue_{in}$$

 $green_{out} = -gr * red_{in} + gg * green_{in} - gb * blue_{in}$
 $blue_{out} = -br * red_{in} - bg * green_{in} + bb * blue_{in}$

The gain factors were measured for this sensor in a foto laboratory, so they are sensor specific and do not need to be changed. If you want to deactivate the color correction matrix you have to set the parameters to the following values.

ccm rr i = 0x10000000

ccm rg i = 0x0

 $ccm_rb_i = 0x0$

 $ccm_gr_i = 0x0$

 $ccm_gg_i = 0x10000000$

 $ccm_gb_i = 0x0$

 $ccm_br_i = 0x0$

 $ccm_bg_i = 0x0$

ccm bb i = 0x10000000

Parameter RGB gain 3.10

In combination with the CCM, these registers are used for the internal Automatic White Balance (AWB) adjustment. The values are used as start values and in case of disabled AWB.

Table 3.12: RGB Gain configuration and parameters

Parameter	Address[dec]	Range/Options	Default
rgb_gain_pre_ccm_r	20	00x400	0x100
rgb_gain_pre_ccm_g	21	00x400	0x100
rgb_gain_pre_ccm_b	22	00x400	0x100
rgb_gain_pre_ccm_enable	23, Bit 0	00x1	0x1
rgb_gain_after_ccm_r	24	00x400	0x100
rgb_gain_after_ccm_g	25	00x400	0x100
rgb_gain_after_ccm_b	26	00x400	0x100
rgb_gain_after_ccm_enable	e 27	00x1	0x1

3.10.1 gain red

The parameter gain_red is gaining the red channel with the gain_red factor:

 $gain_red_factor = \frac{gained_red}{0x100}$

Therefore the mathematical function is applied:

 $data_red_o = gain_red_factor*data_red_i$

3.10.2 gain green

The parameter gain_green is gaining the green channel with the gain_green factor:

 $gain_green_factor = \frac{gained_green}{0x100}$ Therefore the mathematical function is applied:

 $data_green_o = gain_green_factor*data_green_i$

3.10.3 gain_blue

The parameter gain_blue is gaining the blue channel with the gain_blue factor:

 $gain_blue_factor = \frac{\overline{gained_blue}}{0x100}$

Therefore the mathematical function is applied:

 $data_blue_o = gain_blue_factor*data_blue_i$

3.11 Gamma

These registers set the gamma correction. The default value is 0x64 (d100), which sets the gamma curve to 1.00 (linear transmission). Example: To set the curve to 0.45 (normal TV operation), the value should be 0x2D (d45).

Table 3.14: Gamma configuration and parameters

Parameter	Address[dec]	Range/Options	Default
gamma	28	00x400	0x64

3.12 Saturation

This register sets the color intensity. The default value is 0x64 (d100), which sets the saturation to 1.00. For example: To set the saturation to 2.50, the value should be 0xFA (d250).

Table 3.16: Saturation configuration and parameters

Parameter	Address[dec]	Range/Options	Default
saturation	29	00x400	0x64

3.13 Automatic White Balance

These registers adjust the Automatic White Balance function.

Parameter	Address[dec]	Range/Options	Default
awb_stat_roi_col_start	30	00x500*	0xA
awb_stat_roi_col_end	31	00x500*	0x4F6
awb_stat_roi_row_start	32	00x780*	0x32
awb_stat_roi_row_end	33	00x780*	0x2BC
awb_stat_upper_bound_r	34	00xFFFFFF	0x2D000
awb_stat_upper_bound_g	35	00xFFFFFF	0x2D000
awb_stat_upper_bound_b	36	00xFFFFFF	0x2D000
awb_stat_upper_lower_r	37	00xFFFFFF	0xA000
awb_stat_upper_lower_g	38	00xFFFFFF	0xA000
awb_stat_upper_lower_b	39	00xFFFFFF	0xA000
awb_stat_command	40		0x3F
will be continued			

			continuation
Parameter	Address[dec]	Range/Options	Default
awb_enable	41	0x00, 0x01	0x1
manual_wb_enable	42	0x00, 0x01	0x0
awb_speed	43	0x010x64	0x5A

3.13.1 awb stat roi col start

Start column of ROI.

3.13.2 awb stat roi col end

End column of ROI.

3.13.3 awb stat roi row start

Start row of ROI.

3.13.4 awb_stat_roi_row_end

End row of ROI.

3.13.5 awb stat upper bound r

Threshold for red pixel values. All pixels holding a value greater than the threshold are counted as saturated pixels.

3.13.6 awb stat upper bound g

Threshold for green pixel values. All pixels holding a value greater than the threshold are counted as saturated pixels.

3.13.7 awb stat upper bound b

Threshold for blue pixel values. All pixels holding a value greater than the threshold are counted as saturated pixels.

3.13.8 awb_stat_upper_lower_r

Threshold for red pixel values. All pixels holding a value smaller than the threshold are counted as saturated pixels.

^{*}The ROI must fit into the image resolution.

awb stat upper lower g

Threshold forgreen pixel values. All pixels holding a value smaller than the threshold are counted as saturated pixels.

3.13.10 awb stat upper lower b

Threshold for blue pixel values. All pixels holding a value smaller than the threshold are counted as saturated pixels.

3.13.11 awb enable

This parameter enables (0x01) or disables (0x00) the automatic white balance.

3.13.12 manual wb enable

This parameter enables (0x01) or disables (0x00) the manual white balance.

3.13.13 awb_speed

Sets the control rate of the automatic white balance from very fast (0x1) to very slow (0x64).

3.14 **Auto Brightness**

These registers adjust the Auto Brightness. Since this module is sensor independet, it has no access to the exposure time of the image sensor (like the sensor dependent auto exposure). So the Auto Brightness adjust the brightness of the image. For a correct white point amplify the brightness of the incoming data.

Parameter	Address[dec]	Range/Options[dec]	Default
auto_brightness_enable	44	0x00, 0x01	0
auto_brightness_max_gain	45	00xF	0xF
auto_brightness_lum_target	46	00xFFFFF	0x1F400
auto_brightness_stat_roi_col_start	48	00x500*	0xA
auto_brightness_stat_roi_col_end	49	00x500*	0x4F6
auto_brightness_stat_roi_row_start	50	00x780*	0x32
auto_brightness_stat_roi_row_end	51	00x780*	0x2BC
auto_brightness_stat_upper_bound_r	52	00xFFFFF	0x2D000
auto_brightness_stat_upper_bound_g	53	00xFFFFF	0x2D000
auto_brightness_stat_upper_bound_b	54	00xFFFFF	0x2D000
auto_brightness_stat_upper_lower_r	55	00xFFFFF	0x1
auto_brightness_stat_upper_lower_g	56	00xFFFFF	0x1
auto_brightness_stat_upper_lower_b	57	00xFFFFF	0x1
auto_brightness_stat_command	58		0x3F

^{*}The ROI must fit into the image resolution.

3.14.1 auto_brightness_enable

Enables (0x01) and disables (0x00) auto brightness.

3.14.2 auto brightness lum target

Sets the target luminance of the brightness control. The luminance is measured in the Region of Interest (ROI) and compared with the target value.

3.14.3 auto brightness max gain

The maximal applied gain value.

3.14.4 auto_brightness_stat_roi_col_start

Start column of ROI.

3.14.5 auto brightness stat roi col end

End column of ROI.

3.14.6 auto brightness stat roi row start

Start row of ROI.

3.14.7 auto brightness stat roi row end

End row of ROI.

3.14.8 auto brightness stat upper bound r

Threshold for red pixel values. All pixels holding a value greater than the threshold are counted as saturated pixels.

3.14.9 auto_brightness_stat_upper_bound_g

Threshold for green pixel values. All pixels holding a value greater than the threshold are counted as saturated pixels.

3.14.10 auto brightness stat upper bound b

Threshold for blue pixel values. All pixels holding a value greater than the threshold are counted as saturated pixels.

3.14.11 auto_brightness_stat_upper_lower_r

Threshold for red pixel values. All pixels holding a value smaller than the threshold are counted as saturated pixels.

3.14.12 auto_brightness_stat_upper_lower_g

Threshold forgreen pixel values. All pixels holding a value smaller than the threshold are counted as saturated pixels.

3.14.13 auto brightness stat upper lower b

Threshold for blue pixel values. All pixels holding a value smaller than the threshold are counted as saturated pixels.

3.15 Test Pattern Generator and RAW Bypass

Settings for enable / disable the test pattern generator and enable / disable the RAW Bypass. Set 0x0 for video mode, 0x1 for test pattern generator, 0x2 for raw bypass.

Table 3.20: Video mode, TPG and RAW Bypass configuration and parameters

Parameter	Address[dec]	Range/Options	Default
video_mode	47	00x02	0

3.16 RGB Offset

Settings for RGB Offset.

Table 3.22: RGB Offset configuration and parameters

Parameter	Address[dec]	Range/Options[dec]	Default
rgb_offset_red	59	00xFFF	0
rgb_offset_green	60	00xFFF	0
rgb_offset_blue	61	00xFFF	0
rgb_offset_mode	62	00x2	0 (0 = manual, 1 = auto, 2 = disable)

3.16.1 rgb_offset_red

Sets the offset for the red channel.

3.16.2 rgb_offset_green

Sets the offset for the green channel.

3.16.3 rgb offset blue

Sets the offset for the blue channel.

3.16.4 rgb_offset_mode

Switch between manual (0x0) or auto (0x1) mode. 0x2 for disabling this module.

3.17 Video Port Timing Specifications

The video input port and the video output port of the ISP module consists of the video data lines (pixel_data) and three sync signals: frame_valid and line_valid. Additionally, the pixel clock input (pixel_clock) provides the operating clock. Further a global asynchronous reset input is available to define the power-up state and initial configuration.

The signals frame_valid and line_valid are defining the active video frame. frame_valid is high during the whole active video frame, while line_valid is high during an active video line. The first pixel of a video frame is the first valid pixel after a low-high transition of frame_valid and line_valid. The first pixel of a video line is the first valid pixel after a low-high transition of line_valid. frame_valid and line_valid may change at the same time. A high-low transition of line_valid initiates a new line; a high-low transition of frame_valid initiates a new frame.

Please take care at any time to provide the same amount of valid pixels per line and the same count of lines per frame within a continuous video stream, while using non-continuous pixel-valid sequences.

Valid pixels are defined by frame_valid = line_valid = high.

Helion Standard HD ISP Usage

This chapter describes the different methods to set the ISP parameters.

4.1 IONOS Configuration GUI

During operation, the ISP parameter can be changed by the IONOS Configuration GUI. Please see the related manual for more details.

Picture 4.1: IONOS Configuration GUI

The IONOS Configuration GUI will work by default. If not, a small routine is needed:

- 1. At UART address 0xD3 write 0x1 (set_init_mode)
- 2. At UART address 0xD4 write 0x0 (set_write_through)
- 3. At UART address 0xD3 write 0x0

4.2 Direct ISP access via UART

It is possible to read and write the ISP parameters via UART. This works on the fly. To get direct ISP access, a small routine is needed:

- 1. At UART address 0xD3 write 0x1 (set_init_mode)
- 2. At UART address 0xD4 write 0x1 (set_write_through)
- 3. At UART address 0xD3 write 0x0

This enables the write through mode (see Picture 2.1).

4.3 Configuration Memory

The IONOS ISP configuration is a stored in a *.mem file which includes all parameter settings. Usually, this file can be found inside the implementation folder of the project. Change the desired parameters with an editor and run a new synthesize. After programming the new bit file, the changes are visible.

4.4 Configuration Memory via ECO Editor

If the project is synthesized, a complete synthesis is not necessary. The next steps will show how to implement the configuration memory with ECO editor.

Please note: You need a synthesized project during the next steps. Will only work with Standard HD ISPV02 and higher.

Start the ECO Editor.

4.4.1 Step 2

Click and Choose the Memory Initialization in the ECO Editor.

4.4.2 Step 3

For a better view, close all Memory Modules. Click on every icon. Click on ".../i_mico_vip_standard_hd_isp_v02s02/ebr/genblk1.ram".

4.4.3 Step 4

Load the configuration memory file in the momory file directionary by clicking "...".

4.4.4 Step 5

... and choose the configuration memory file ...

4.4.5 Step 6

... and click on ok.

And save the changes.

4.4.6 Step 7

A new bit file can be created through a double click on "Bitstream File".

Resource Utilization and Performance

This chapter gives resource utilization information for Lattice FPGAs using the Standard HD ISP. Table 5.1 lists the parameter settings that were used to derive the performance¹ and utilization data shown in Table 5.2.²

Table 5.1: Resource Utilization

Function	Standard HD ISP				
Supported FPGA Families	Lattice ECP3 / ECP5				
	Data Path Width	12 bit			
Performance	Fmax	150 MHz			
	Target Application	720p60 / 1080p60			
	LUTs	~14000			
Resource	sysMEM EBRs	~67			
Utilization	Registers	~14000			
	Mult-18	~64			
Design Tool	Lattice Implementation	Diamond 3.9.1.119			
Support	Sythesis	Synopsys Synplify Pro for Lattice L-2016.09L-1			
Support	Simulation	TBD			

Table 5.2: Performance

Standard HD ISP						
Version Bit Width Frame Size Frame Rate max. Pixel Rate						
v03	12 bit	720p / 1080p*	60 fps	150 MHz		

^{*}can be switched by changing the related configuration parameter (see chapter 3.8 for more details).

¹Fmax determined with speedgrade 8

²Performance and utilization data are generated to target at a specific FPGA type using Lattice Diamond 3.9 and Synplify Pro H-2016.09L software. Performance may vary when using a different software version or targeting a different device density or speed grade within the Lattice family.

Ordering Part Number

The IP cores can be obtained from Lattice under license for implementation and evaluation (run time limited). For obtaining evaluation and production licenses, please contact your local Lattice Sales Representative.

Table 6.1: ISP Ordering Information

Standard HD ISP					
Version Shortcut Bit Width Target FPGA Ordering Cod					
v03	ISP-STHD-12	12 bit	ECP3 / ECP5 Series	BE10029117	

Table 6.2: Reference Design Ordering Information

Reference Design for Embedded Vision Development Kit					
Version	Shortcut	Bit Width	Target FPGA	Ordering Code	
v03	REF-EMVI-12	12 bit	ECP3 / ECP5	BE10029632	
			Series		

July 27, 2017

Revision History

Table 7.1: Revision History Standard HD ISP (ISP-STHD-12)

Date	Version	Section	Change Summary
2017-05-18	v01s01	-	Initial Release
2017-07-21	v02s01	-	Improvements
2017-07-27	v03s01	-	Improvements

©Helion GmbH. All rights reserved. Helion, Ionos, Vesta and the Helion logo are property of the Helion GmbH. All other trademarks are property of their respective owners.

The products described in this document are subject to constant development and any information given are strictly supplied "as is" with no warranties implied or expressed and Helion GmbH shall not be liable for any loss or damage arising from the use of any information contained in this document.

Its receipt or possession does not convey any right to reproduce, disclose its contents, or to use its contents to manufacture, use, or sell anything that it may describe without the written authorisation of the Helion GmbH.

