2D Articulated Human Pose Estimation Using Explainable Artificial Intelligence

André Oskar Andersen wpr684

Datalogisk Institut, Københavns Universitet

2021

► Articulated Human Pose Estimation

- Articulated Human Pose Estimation
- Anvendelse
 - 1. Motion analysis
 - 2. Augmented reality
 - 3. Virtual reality

- Articulated Human Pose Estimation
- Anvendelse
 - 1. Motion analysis
 - 2. Augmented reality
 - 3. Virtual reality
- Problem definition
 - 1. Implementer Stacked Hourglass af Newell *et al.*
 - Udforsk Stacked Hourglass
 - 3. Modificer Stacked Hourglass vha. viden

Data

Data

- ➤ 2017 Microsoft COCO datasæt
 - 1. Passer til problemet
 - 2. State-of-the-art

Data

- 2017 Microsoft COCO datasæt
 - 1. Passer til problemet
 - 2. State-of-the-art
- Beskrivelse
 - ► Træning + validering: 69.000 billeder
 - ► Flere personer i hvert billede
 - Optil 17 keypoints per person

Preprocessing af data

Preprocessing af data

Billederne

- 1. Centrerer billede omkring hver person
- 2. Resizer til 256×256
- 3. Trække gennemsnitlig rgb fra

Preprocessing af data

Billederne

- 1. Centrerer billede omkring hver person
- 2. Resizer til 256×256
- 3. Trække gennemsnitlig rgb fra
- Keypoints
 - 1. Indsætter 1 i et tomt 64×64 billede
 - 2. Gaussfilter
 - 3. 17 heatmaps

- Stacked hourglass
- Hourglass

- Stacked hourglass
- ► Hourglass
- Residual module

- Stacked hourglass
- ► Hourglass
- ► Residual module
- Activation- og lossfunction

Resultat

Fortolkning af modellen 1

Fortolkning af modellen 2

Fortolkning af modellen 3

Modificering af model

Diskussion

Konklusion

Fejl og rettelser