Final 2 2021:

Problema 1:

Enunciado: Si es posible, encuentre ejemplos de variables X e Y tales que

(a)
$$H(X) = 1$$
 bit, $H(Y) = 1$ bit, $I(X;Y) = 0$.

(b)
$$H(X) = 2$$
 bit, $H(Y) = 1$ bit, $I(X; Y) = 1$ bit.

(c)
$$H(X) = 2$$
 bit, $H(Y) = 2$ bit, $I(X;Y) = 1$ bit.

(d)
$$H(X) = 1$$
 bit, $H(Y) = 2$ bit, $I(X;Y) = 2$ bit.

(e)
$$H(X) = 2$$
 bit, $H(Y) = 3$ bit, $I(X;Y) = 1$ bit.

Encontrar un ejemplo significa dar los conjuntos $\mathcal{A}_{xy}\mathcal{A}_{Y}$ donde X e Y toman valores, y también dar explícitamente las distribuciones de probabilidad p(x), p(y) y $p(x,y), \forall x \in \mathcal{A}_{X} y \forall y \in \mathcal{A}_{Y}$. Si no existe ningún par de variables aleatorias X e Y que cumpla con lo requerido por el enunciado, demuestre tal no existencia.

Resolución:

Preámbulo

Podemos verificar que las probabilidades condicionales están bien definidas usando:

$$\sum_{x} p(x \mid y) = 1$$

Inciso a

Como $I(X;Y) = 0 \Leftrightarrow XeY$ son indep. $\Rightarrow P(x,y) = P(x)P(y)$

Se puede tener H(X) = 1 bit si $p(x) = \frac{1}{2}, \forall x \in A_X$, con $|A_X| = 2$.

Lo mismo es cierto para Y.

Inciso b

Dados:

$$H(X)=2$$
 bit, $H(Y)=1$ bit, $I(X;Y)=1$ bit

Por simplicidad se propone:

$$|A_Y|=2, |A_X|=4$$

$$x=\left\{0,1, \text{con probabilidad }\frac{1}{2}\right.$$

$$y=\left\{0,1,2,3, \text{con probabilidad }\frac{1}{4}\right.$$

Es sabido que:

$$0 \le I(X;Y) \le \min(H(X), H(Y))$$

I es máxima, lo cual sugiere que se ahorra el máximo # de preguntas posible. Esto descarta que ambas variables sean independientes. Si uno propone X e Y relacionados por f:

En forma matricial:

$$\begin{array}{c|cccc} p(x \mid y) & y = 0 & y = 1 \\ \hline x = 0 & 1/2 & 0 \\ x = 1 & 1/2 & 0 \\ x = 2 & 0 & 1/2 \\ x = 3 & 0 & 1/2 \end{array}$$

La conjunta: $p(x,y) = p(x \mid y)p(y)$

$$\begin{array}{c|cccc} p(x,y) & y=0 & y=1 \\ \hline x=0 & 1/8 & 0 \\ x=1 & 1/8 & 0 \\ x=2 & 0 & 1/8 \\ x=3 & 0 & 1/8 \\ \end{array}$$

Calculando $H(X \mid Y)$:

$$\begin{split} H(X\mid Y) &= -\sum_{y} p(y) \sum_{x} p(x\mid y) \log_{2} p(x\mid y) \\ &= -\sum_{y} p(y) \sum_{x} a_{xy} = -\sum_{y} \frac{1}{2} \sum_{x} a_{xy} \\ &= -\frac{1}{2} \sum_{y} \sum_{x} a_{xy} = 1 \text{bit} \end{split}$$

Usando que a_{xy}

$$\begin{array}{c|cccc} a_{xy} & y = 0 & y = 1 \\ \hline x = 0 & -1/2 & 0 \\ x = 1 & -1/2 & 0 \\ x = 2 & 0 & -1/2 \\ x = 3 & 0 & -1/2 \end{array}$$

$$I(X;Y) = H(X) - H(X \mid Y) = 2bit - 1bit = 1bit$$
 Usando que:

Las variables X, Y definidas anteriormente cumplen todas las condiciones que se piden.

Inciso c

Dados:

$$H(X)=2$$
 bit, $H(Y)=2$ bit, $I(X;Y)=1$ bit

Que pueden obtenerse con variables uniformemente distribuidas:

$$|A_Y| = 4, |A_X| = 4$$

Es sabido que:

$$0 \le I(X;Y) \le \min(H(X), H(Y))$$

Lo cual no contradice que I(X;Y)=1 bit.

Se ahorra un número de preguntas. Por lo que las variables no son totalmente independientes, suponiendo una dependencia tipo:

$$y = \begin{cases} 0, 1, 2, 3, \text{con probabilidad } \frac{1}{4} \\ x = \begin{cases} 0, 1, 2, 3, \text{con probabilidad } \frac{1}{4} \\ \underline{p(x \mid y)} \mid y = 0 \quad y = 1 \quad y = 2 \quad y = 3 \\ \hline x = 0 & 1/2 & 1/2 & 0 & 0 \\ x = 1 & 1/2 & 1/2 & 0 & 0 \\ x = 2 & 0 & 0 & 1/2 & 1/2 \\ x = 3 & 0 & 0 & 1/2 & 1/2 \\ \hline \underline{p(x, y)} \mid y = 0 \quad y = 1 \quad y = 2 \quad y = 3 \\ \hline x = 0 & 1/8 & 1/8 & 0 & 0 \\ x = 1 & 1/8 & 1/8 & 0 & 0 \\ x = 1 & 1/8 & 1/8 & 0 & 0 \\ x = 8 & 0 & 0 & 1/8 & 1/8 \\ x = 3 & 0 & 0 & 1/8 & 1/8 \\ \hline H(X \mid Y) = -\sum_{y} p(y) \sum_{x} p(x \mid y) \log_{2} p(x \mid y) \\ = -\sum_{y} p(y) \sum_{x} a_{xy} = -\sum_{y} p(y) \sum_{x} a_{xy} \\ = -\sum_{y} \frac{1}{4} \sum_{x} a_{xy} = -\frac{1}{4} \sum_{y} \sum_{x} a_{xy} \\ = 1 \text{bit} \end{cases}$$

$$I(X;Y) = H(X) - H(X \mid Y) = 2$$
bit $- 1$ bit $= 1$ bit

Inciso d

Dados:

$$H(X)=1$$
 bit, $H(Y)=2$ bit, $I(X;Y)=2$ bit

Que pueden obtenerse con variables uniformemente distribuidas:

$$|A_Y| = 2, |A_X| = 4$$

Es sabido que:

$$0 \le I(X;Y) \le \min(H(X),H(Y))$$

Lo cual contradice que I(X;Y)=2 bit, por lo que no es posible tener variables X, Y que cumplan estos requisitos.

Inciso e

Dados:

$$H(X) = 2$$
 bit, $H(Y) = 3$ bit, $I(X;Y) = 1$ bit

Que pueden obtenerse con variables uniformemente distribuidas:

$$|A_Y| = 2, |A_X| = 8$$

Es sabido que:

$$0 \le I(X;Y) \le \min(H(X), H(Y))$$

Lo cual no contradice que I(X;Y)=1 bit.

$$y = \left\{0, 1, 2, 3, 4, 5, 6, 7, \text{ con probabilidad } \frac{1}{8}\right\}$$

$$x = \left\{0, 1, 2, 3, \text{con probabilidad } \frac{1}{4} \right.$$

$p(x \mid y)$	y = 0	y = 1	y = 2	y = 3
x = 0	1/2	0	0	0
x = 1	1/2	0	0	0
x = 2	0	1/2	0	0
x = 3	0	1/2	0	0
x = 4	0	0	1/2	0
x = 5	0	0	1/2	0
x = 6	0	0	0	1/2
x = 7	0	0	0	1/2

La probabilidad conjunta:

p(x, y)	y = 0	y = 1	y = 2	y = 3
x = 0	1/16	0	0	0
x = 1	1/16	0	0	0
x = 2	0	1/16	0	0
x = 3	0	1/16	0	0
x = 4	0	0	1/16	0
x = 5	0	0	1/16	0
x = 6	0	0	0	1/16
x = 7	0	0	0	1/16

Calculando $H(X \mid Y)$:

$$\begin{split} H(X\mid Y) &= -\sum_y p(y) \sum_x p(x\mid y) \log_2 p(x\mid y) \\ &= -\sum_y p(y) \sum_x a_{xy} = -\sum_y p(y) \sum_x a_{xy} \\ &= -\sum_y \frac{1}{4} \sum_x a_{xy} = -\frac{1}{4} \sum_y \sum_x a_{xy} \\ &= 1 \text{bit} \end{split}$$

usando que:

Por lo que se puede garantizar que:

$$I(X;Y) = H(X) - H(X \mid Y) = 2$$
bit -1 bit $= 1$ bit

Problema 2:

Enunciado: Una fuente genera símbolos $X \in \mathcal{A}_X = \{0,1,2\}$, con probabilidades $p_0 = 1/2, p_1 = 1/4, p_2 = 1/4$, yse los codifica con un código aritmético binario con símbolos $Y \in \mathcal{A}_Y = \{0,1\}$. Decodifique la secuencia que comienza con 110010001110110101111001111001111111... hasta donde le sea posible. Justifique.

Resolucion:

11001000111011010111100101111001111111

Propongo hacer Huffman:

Con esta propuesta:

$$X = 0, C(0) = 0$$

 $X = 1, C(1) = 10$
 $X = 2, C(2) = 11$

Problema 3:

Enunciado: Considere las 10 urnas (a, b, \ldots, j) de la figura. Se elige una urna al azar. La variable X es la

urna elegida. De esa urna, se extra
e una pelota. La variable Y es el color de la pelota extra
ída. Considere el canal $X \to Y$ que mapea la urna elegida con la pelota extra
ída. Calcule la capacidad del canal.

Figure 1: Urnas y pelotas

Resolución:

Propongo:

$$p(x) = \begin{cases} a \text{ prob. } \frac{1}{3} \\ d \text{ prob. } \frac{1}{3} \\ g \text{ prob. } \frac{1}{3} \\ c.o.c \text{ prob. } 0 \end{cases}$$

esto me elimina filas en $P(X \mid Y)$ resultando

$$\begin{array}{c|ccccc} p(x \mid y) & y = r & y = g & y = b \\ \hline x = a & 1 & 0 & 0 \\ x = d & 0 & 1 & 0 \\ x = g & 0 & 0 & 1 \\ \end{array}$$

Uso otra notación para los x e y, que son $A_x = \{x_1, x_2, x_3\}, A_y = \{y_1, y_2, y_3\}$

para que la probabilidad condicional quede:

Calculo I(X;Y):

$$I(X;Y) = \sum_{xy} p(x)p(x \mid y) \log \frac{p(x \mid y)}{\sum_{x'} p(x')p(y \mid x')}$$

es uniforme en el alfabeto reducido A'_x , los otros val-

ores no ocurren

$$\begin{split} I(X;Y) &= \sum_{x,y} \frac{1}{3} \delta_{x,y} \log \delta_{x,y} - \sum_{x,y} \frac{1}{3} \delta_{x,y} \log \frac{1}{3} \delta_{y,y} \\ &= -\sum_{x,y} \frac{1}{3} \delta_{x,y} \log \frac{1}{3} = -\frac{1}{3} \log \frac{1}{3} \sum_{x,y} \delta_{x,y} \\ &= -\log \frac{1}{3} = \log_2 3 \end{split}$$

Esta Información mutua es igual a $log|A_X|$, por esto:

$$C = log_23$$

Problema 4:

Enunciado: En un canal binario simétrico $X \to Y$ con probabilidad de error de bit $p(y=1 \mid x=0) = p(y=0 \mid x=1) = q$ se transmite un código conformado por palabras clave de longitud n. Sea Z una variable aleatoria binaria que representa si la cadena de n dígitos fue transmitida con o sin error. Se define un estimador $\hat{q}(z)$ que suponemos no sesgado, que estima la probabilidad de error de bit q con que opera el canal a partir de una medición de z. Encuentre el mínimo error cuadrático medio que puede tener el estimador $\hat{q}(z)$." Como se modifica la respuesta si consideramos un estimador no sesgado $\hat{q}(z_1,\ldots,z_k)$ que opera sobre k muestras independientes de la variable binaria Z?

Resolución:

EL error cuadrático mínimo (por la cota de Cramér-Rao) es:

$$E^{2}(q) = \frac{1}{J(q)}$$

$$error = \begin{cases} \text{no hay error } , 1 - q \\ \text{hay error } , q \end{cases}$$

Para un código de longitud n la variable Z, con una probabilidad de tener error q, tenemos una distribución binomial:

$$z \in \{1, ..., n\}, P(z \mid q) = \frac{n!}{z!(n-z)!} q^z (1-q)^{n-z}$$

con una información de Fisher:

$$J(q) = \frac{n}{q(1-q)}$$

Con lo que:

$$E_{\min}^2(q) = \frac{q(1-q)}{n}$$

Como la información de Fisher es aditiva y tengo \boldsymbol{k} muestras:

$$J_k(q) = kJ_1(q) = \frac{nk}{q(1-q)}$$

Con lo que:

$$E_{\min}^2(q) = \frac{q(1-q)}{nk}$$

Las propiedades de la información de Fisher me permiten tener una idea de cuál es el error cuadrático medio de un "buen" estimador sin tener que realizar propuestas de estimadores y compararlas.