7-AMALIY ISH

BIR YOʻLAKLI (POLOSALI) VA BALANSLI MODULYATORLARINI TADQIQ ETISH.

Ishdan maqsad: bir va ikki mintaqali signallar asosiy hususiyatlarini o'rganish; bir mintaqali va balansli modulyatorlar ishlash printsipini tajriba yo'li bilan o'rganish; tajriba natijalarini tahlil qilish.

7.1-rasm. Bir mintaqali modulyatorni tadqiq qilish strukturaviy sxemasi.

Balansli modulyatorni tadqiq qilish 7.2. rasmda keltirilgan strukturaviy sxema asosida amalga oshiriladi.

7.2.-rasm Balansli modulyator (BM) ni tadqiq qilish strukturaviy sxemasi.

Amaliy ishini bajarish uchun topshiriq

- 1. Bir mintaqali modulyatorni tadqiq qilish.
- 2. Balansli modulyatorni tadqiq qilish.

Uslubiy ko'rsatmalar

1. Bir mintaqali modulyatorni tadqiq etish. Bir mintaqali modulyatorni tadqiq etish uchun qo'yidagilarni bajarish kerak.

- 1.1. Dasturni kopyuter xotirasiga kiriting. Ostsillograf kuchaytirgichi yordamida signal amplitudasini 1 katak 1V va signalni yoyish masshtabini 1-katak 0,05 ms qilib o'rnating. Ostsillograf 1-kanal kirishini 3-nazorat nuqtasiga ulang.
- 1.2. Amaliy ishi maketining boshqarish blokidagi "Исследование однополосной модуляции "knopkasini bosing.
- 1.3. GVCh (yuqori chastota generatori) chiqishidagi signal amplitudasini U_f =1V va chastotasini f=10 kGts qilib o'rnating. GNCh (past chastota generatori) chiqishidagi signal amplitudasini U_f =1V va chastotasini F=1kGts qilib o'rnating.
- 1.4. Amaliy ish maketi boshqaruv blokidagi faza surgichlar yordamida φ_l = 90° va φ_2 = 90° ni o'rnating. Ostsillograf ekranidagi bir minta?ali modulyatsiyalangan (BPM) signal vaqt diagrammasini kuzating va chizib oling.
- 1.5. Tashuvchi signal amplitudasini 1V ga teng holda saqlab, modulyator chiqishidagi BPM signal amplitudasining modulyatsiyalovchi past chastotali signal amplitudasi U_f ni har 0,2 V qadam bilan 0V dan 1,0 V gacha o'zgartiring va chiqishdagi BPM signal amplitudasi qiymatlarini mos ravishda jadval shaklida yozib boring.

7.1. jadval

U_F , B	0	0,2	0,4	 1
$U_{e \omega x}$, B				

O'lchash natijasida olingan qiymatlar asosida $U_{gbix}=f(U_F)$ grafigini chizing.

1.6. Past chastotali modulyatsiyalovchi signal U_f amplitudasi U_F =const holat uchun BPM chiqishidagi signal amplitudasi U_{qux} ning, modulyator kirishidagi yuqori chastotali tashuvchi signal amplitudasi U_f ga bogʻliqligini tadqiq qilish uchun quyidagilarni bajaring. Oʻrganilayotgan ish maketi "GNCh" chiqishidagi signal amplitudasini 1V va chastotasini F=1kGts qilib oʻrnating. Yuqori chastotali generator (GVCh) chiqishidagi signal chastotasini f=10kGts holda saqlab, uning amplitudasini 0V dan 1,0V gacha, xar 0,2V oraliqda oʻzgartirib boring. Ostsillograf yordamida chiqish signali amplitudasini oʻlchab boring va 10.2.jadvalga kiriting.

7.2. jadval

U_f , B	0	0,2	0,4	 1
U_{our} , B				

O'lchashlar natijasida olingan qiymatlar asosida U_F =1B xolat uchun U_{vuv_f} = $f(U_f)$ grafigini chizing.

1.7. Har ikkala signal U_f va U_F amplitudalarini 1V qilib o'rnating. Faza surgich yordamida:

a)
$$\varphi_1 = 90^\circ$$
; $\varphi_2 = 90^\circ$

b)
$$\varphi_1 = 45^{\circ}$$
, $\varphi_2 = 90^{\circ}$;

v)
$$\varphi_I = 135^0$$
, $\varphi_2 = 90^0$

g)
$$\varphi_1 = 90^{\circ}$$
, $\varphi_2 = 45^{\circ}$;

d)
$$\varphi_1 = 90^0 \ \varphi_2 = 135^0$$

qilib o'rnating. BPM chiqishidagi signallar shaklini kuzating va chizib oling.

1. Balansli modulyatorini tadqiq qilish.

- 2.1. Amaliy ishi boshqarish blokidagi "Исследование балансной модуляции" tugmasini bosing: GVCh (yuqori chastota generatori) chiqishidagi signal chastotasini f=180 kGts va amplitudasini U_f =1V qilib o'rnating.
- 2.2. GNCh (past chastota generatori) chiqishidagi signal amplitudasini U_f =1V va chastotasini F =1kGts qilib o'rnating. Signalni yoyilishi 1 katak 0,3 ms qilib yoying.
- 1.1. Siljish kuchlanishi E_{cm} qiymatini 5V dan 0V gacha, 0,2V qadam bilan o'zgartirib chiqish kuchlanishi shakli o'zgarishini kuzating. Chiqish kuchlanishi ostsillogrammalarini chizib oling va 10.3. jadvalga ostsillograf ekranidagi kataklar orqali ifodalangan chiqish kuchlanishi A_{max} va A_{min} qiymatlarini yozib boring. A_{max} va A_{min} qiymatlarini 7.3. rasmda ko'rsatilgan ko'rinishda aniqlang.

7.3-rasm. Siljish kuchlanishi E_{cm} ning har-hil qiymatilari uchun vaqt diagrammalari.

7.3. jadvaldagi alohida qatorga har bir ostsillogramma uchun quyidagi formula orqali hisoblangan modulyatsiya koeffitsenti M qiymatlarini yozib qo'ying:

$$M = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}} \cdot 100\%$$
 (7.1)

Balansli modulyatsiyalangan signal uchun $A_{\text{min}} \!\! < \!\! 0.$

2.4. Ostsillograf kanal signal kuchaytirish dastagi yordamida yoyish masshtabini 1 katak 0,01ms qilib o'rnating. GNCh chiqish signali amplitudasini U_F =0V va chastotasini F=1kGts qilib, GVCh chiqishidagi signal kuchlanishi amplitudasini U_f =1V va chastotasini f=180 kGts qilib o'rnating. Siljitish kuchlanishi E_{cm} ni 0V dan 5V gacha 0,5V qadam bilan o'zgartirib, chiqish kuchlanishi U_{vux} ni siljitish kuchlanishi E_{cm} ga bog'liqligi U_{vux} = $f(E_{cm})$ ni ostsillograf kataklari orqali aniqlab 7.4. jadvalga kiriting.

7.3. жадвал

Е _{см} , В	5	4,5	 0
A max, B			
A _{max} , B			
M,%			

7.4. jadval

Е _{см} , В	0	0,5	 5
$U_{\scriptscriptstyle BblX}$, B			

To'ldirilgan jadval asosida $U_{uu\kappa} = f(E_{cm})$, va $M = f(E_{cm})$ grafiklarini chizing.

Hisobot tarkibi

- 1. tadqiq qilinayotgan modulyatorning strukturaviy sxemasi.
- 2. Ostsillogrammalar va o'lchashlar natijalari.
- 3. Jadvallar asosida chizilgan grafiklar.
- 4. Olingan ostsillogrammalar va grafiklar asosida qilingan tahlil natijalari.

Nazorat savollari

- 1. Bir mintaqali modulyatsiya (BPM) nima?
- 2. BPM signal vaqt va spektral diagrammalarini bir ton (chastota) bilan modulyatsiyalangan holat (pastki yoki yuqori polosa) uchun chizing.
- 3. Balansli modulyatsiya nima? Balans modulyatorning soddalashtirilgan sxemasini chizing va uning ishlash printsipini tushuntiring?
- 4. Balansli modulyator chiqishidagi signal vaqt va spektral diagrammalarini bir ton (chastota) bilan modulyatsiyalangan holat uchun chizing?
 - 5. BPM signal afzalliklari va kamchiliklarini birma-bir sanab o'ting.

- 6. BM signal afzalliklari va kamchiliklarini birma-bir sanab o'ting.
- 7. Halqasimon modulyator (XM) printsipial sxemasini chizing va ishlash printsipini tushuntiring.
- 8.XM chiqishidagi signal spektrini bir minta?ali modulyatsiyalangan signal uchun chizing.
- 9. HM signallar U₁ va U₂ larni ideal ko'paytirgichi rejimida ishlashi uchun unda foydalanilgan nochiziqli elementlar VAX ishchi qismi nechanchi darajali polinom bilan approksimatsiyalangan bo'lishi kerak?
 - 10. BPM signallarni qaysi uslublar yordamida olish mumkin?
 - 11. BPM signallar olish strukturaviy sxemasini chizing.
- 12. BPM signal amplitudasi past chastotali modulyatsiyalovchi signal amplitudasiga bogʻliqlik grafigini chizing va uni tahlil qiling.
- 13. BPM signal olish uchun eng optimal faza siljishi qiymatini yuqori (past) mintaqa uchun qiymatini yozing va ushbu holatni tahlil qiling.
- 14. BM chiqishidagi signal shakli siljitish kuchlanishi E_{cm} ga qanday bog'liq. Ushbu jarayoni tahlil qiling.