BuK Abgabe 11 | Gruppe 17

 Malte Meng (354529) , Charel Ernster (318949), Sebastian Witt (354738) January 18, 2017

1 Aufgabe 11.1

Zeige dass 3SAT \leq_p NAESAT (Not-All-Equal-SAT):

Reduktionsabbildung:

Sei ϕ eine Formel in 3KNF. h ist die Funktion, die eine Formel in 3KNF, in folgende Form in 4KNF bringt:

Für $k_i = (x_0 \vee x_1 \vee x_2)$ ist Klausel von ϕ .

 $h(\phi) = \{ \forall k_i \in \phi \mid k_i = (x_0 \lor x_1 \lor x_2 \lor \neg x_2') \}.$

g ist die Funktion, die eine Formel in 4KNF $(\beta),$ in folgende Form in 3KNF bringt:

Für $k'_i = (x_0 \lor x_1 \lor x_2 \lor \neg x'_2)$ ist Klausel von β .

 $g(\beta) = \{ \forall k_i \in \beta \mid k_i = (x_0 \vee x_1 \vee x_i') \wedge (\neg x_i' \vee x_2 \vee \neg x_2') \}.$

f sei die hintereinanderausführung von h und g.

 $f = g \circ h$

h ist in linearer Zeit berechenbar (abhängig von der Anzahl von Klauseln).

g ist in linearer Zeit berechenbar (abhängig von der Anzahl von Klauseln).

hlinear berechenbar $\wedge g$ linear berechenbar $\implies g \circ h$ linear berechenbar $\Leftrightarrow f$ ist linear berechenbar.

Korrektheit:

Zu Zeigen:

 $f(\phi) \in \text{NAESAT} \implies \phi \in 3\text{SAT}$

 $f(\phi) \notin \text{NAESAT} \implies \phi \notin 3\text{SAT}$