Tutorial 0: Introduction

Contents

A Preview of Calculus	2
The Area Problem	2
The Tangent Problem	4
Why do we learn calculus as computer scientists?	5
Octave	
Basic commands	7
Plotting	8
A valentine gift	10
Fyercises	

A Preview of Calculus

- CALCULUS IS FUNDAMENTALLY DIFFERENT from the mathematics that you have studied previously:
 - o calculus is less static and more dynamic
 - It is concerned with change and motion
 - o it deals with quantities that approach other quantities
- We would like to be able to analyze quantities or processes that are undergoing continuous change.
- For example, if a stone falls 10 feet each second we could easily tell how fast it is falling at any time, the stone falls faster and faster, its speed changing at each instant.
- In studying calculus, we will learn how to model (or describe) such instantaneously changing processes and how to find the cumulative effect of these changes.
- Calculus revolves around two key problems involving the graphs of functions
 - The area problem
 - The tangent problem
 - o And an unexpected relationship between them.

The Area Problem

• Finding the area of a circle with inscribed regular polygons.

- Let A_n be the area of the inscribed regular polygon of n sides.
- As n increases, A_n gets closer and closer to the area of the circle.
- We say that the area A of the circle is the limit of the areas of the inscribed polygons, and we write

$$A = \lim_{n \to \infty} A_n$$

- Later, by indirect reasoning, it was proofed that the area of the circle: $A = \pi r^2$.
- Finding the area under the curve

o We approximate such an area by areas of rectangles.

- o If we approximate the area A of the region under the graph of f by using n rectangles R_1,R_2,\ldots,R_n , then the approximate area is $A_n=R_1+R_2+\cdots+R_n$
- O Now imagine that we increase the number of rectangles (as the width of each one decreases) and calculate A as the limit of these sums of areas of rectangles: $A = \lim_{n \to \infty} A_n$
- The area problem is the central problem in the branch of calculus called integral calculus.

The Tangent Problem

• How to find an equation of the tangent line L to a curve with equation y = f(x) at a given point P.

- \circ To find the function of the line L, we need its slope m.
- \circ But, to find the slope m, we need two points.
- To get around the problem we need an approximation to m by taking a nearby point Q on the curve and computing the slope m_{PQ} of the secant line PQ.
- As Q approaches P, the secant line PQ rotates and approaches the tangent line L as its limiting position.

- \circ This means that the slope m_{PQ} of the secant line becomes closer and closer to the slope m of the tangent line. We write $m=\lim_{Q\to P}m_{PQ}$
- \circ We say that m is the limit of m_{PQ} as Q approaches P along the curve.

• If P is the point (a, f(a)) and Q is the point (x, f(x)), then

Because x approaches a as b approaches b, an equivalent expression for the slope of the tangent line is

$$\therefore m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

• The tangent problem has given rise to the branch of calculus called differential calculus.

Why do we learn calculus as computer scientists?

- 1. **Scientific computing**: writing software programs and libraries for solving problems/equations involving integrals and differentiations.
 - a. Examples: Matlab, Scipy
- 2. Computer graphics and simulations
- 3. **Optimization**:
 - a. Gradient Descent algorithm
- 4. Automation:

like robotics, automation can require quantifying a lot of human behavior.

Octave

- Octave is a high-level language, primarily intended for numerical computations. It provides a convenient command line interface for solving linear and nonlinear problems numerically.
- To download Octave, go to https://octave.org/download, scroll down and select octave-9.3.0-w64-installer.exe

Microsoft Windows

Note: All installers below bundle several Octave packages so they don't have to be installed separately. After installation type Read more.

• Windows-64 (recommended)
• octave-9.3.0-w64-installer.exe (~ 380 MB) [signature]
• octave-9.3.0-w64.7z (~ 375 MB) [signature]
• octave-9.3.0-w64.zip (~ 660 MB) [signature]

• Windows-64 (64-bit linear algebra for large data)
Unless your computer has more than ~32GB of memory and you need to solve linear algebra problems with arrays containing more than ~2 billion elements, the recommended Windows-64 version above.

• octave-9.3.0-w64-64-installer.exe (~ 380 MB) [signature]

- octave-9.3.0-w64-64.7z (~ 375 MB) [signature]
- octave-9.3.0-w64-64.zip (~ 660 MB) [signature]
- Once you install and run it, you will see a window like this

- 1. Shows the current working directory.
- 2. The file browser displays the directories and files in the current directory.
- 3. The Command Window is the window where Octave commands are executed and the execution results are displayed to the user.
- 4. The Workspace window displays all the variables that are currently being used by the Octave. Details like the variable name, dimension, value, etc are displayed.
- 5. The Command History window displays the previous Octave commands entered in the Command Window.
- 6. The Editor window is where we can enter the code, save script files, execute, debug and run the Octave scripts.
- 7. A window that shows the variables and their values to manipulate them.

Basic commands

• 2+3 >> 2+3 ans = 5

 $\frac{\log_{10} 100}{\log_{10} 10} >> \log 10(100)/\log 10(10)$ ans = 2

• $\left[\frac{1+\tan(1.2)}{1.2}\right]$ >> floor((1+tan(1.2))/1.2) ans = 2

• $\sqrt{3^2 + 4^2}$ >> sqrt(3^2 + 4^2) ans = 5

• $e^{i\pi}$ >> $e^{(i*pi)}$ ans = -1.0000e+00 + 1.2246e-16i

Plotting

• Plot $y = \sin(x)$ vs $x = [0: 2 * \pi]$ with the following commands.

```
>> x = linspace(0, 2*pi, 100);
>> y = sin(x);
>> plot(x,y);
```


- Using ";" after each statement prevents printing the output.
- o We can write the same program but in a script file in the editor.
- Plot the y = [x] for x = [0:15]

```
>> x = linspace(0, 15, 100);
>> y = floor(x);
>> plot(x,y);
```


To plot more than one function in one graph

```
x = linspace(0, 2*pi);
a = sin(4 * x);
b = cos(2 * x);
c = 2 * sin(x);
plot(x, a, x, b, x, c);
```

• We can define arrays in Octave as follows

```
>> arr = [1,2,3,4,5,10];
>> sum(arr)
ans = 25
>> mean(arr)
ans = 4.1667
>> max(arr)
ans = 10
>> min(arr)
ans = 1
```

• Matrix operations

```
>> a = [1, 2; 3, 4];
>> b = [5, 6; 7, 8];
>> a + b

ans =
6  8
10  12
>> a * b

ans =
19  22
43  50
>> a .* b

ans =
5  12
21  32
```

A valentine gift

```
n = 800;
A = 1.995653;
B = 1.27689;
C = 8;
r=linspace(0,1,n);
theta=linspace(-2,20*pi,n);
[R,THETA]=ndgrid(r,theta);
% define the number of petals we want per cycle. Roses have 3 and a bit.
petalNum=3.6;
x = 1 - (1/2)*((5/4)*(1 - mod(petalNum*THETA, 2*pi)/pi).^2 - 1/4).^2;
phi = (pi/2)*exp(-THETA/(C*pi));
y = A*(R.^2).*(B*R - 1).^2.*sin(phi);
R2 = x.*(R.*sin(phi) + y.*cos(phi));
X=R2.*sin(THETA);
Y=R2.*cos(THETA);
Z=x.*(R.*cos(phi)-y.*sin(phi));
% % define a red map for our rose colouring
red map=linspace(1,0.25,10)';
red_map(:,2)=0;
red map(:,3)=0;
clf
surf(X,Y,Z,'LineStyle','none')
view([-40.50 42.00])
colormap(red_map)
```

Exercises

- 1. Install Python3, Octave https://octave.sourceforge.io/symbolic/
- 2. Compute the addition, multiplication, subtraction, and of a=100 and b=50.
- 3. Plot the function $y = x^2$ for x = [-10:10]
- 4. Given a circle with radius 8.42. Compute its area and circumference.
- 5. Practice octave: https://www.youtube.com/playlist?list=PLCq1Hx5o5Rk0UH6Bnxx7OednyhVPOEgyj