1. Ring

Zadanie

Dany jest string s, stanowiący okres nieskończonego periodycznego stringu t. Na przykład jeżeli s= "abc" to t= "abcabcabc...". Niech n będzie długością s. Tworzymy nowy string o długości n w sposób następujący: wybieramy przesunięcie o>=0 i krok p< n, będący liczbą pierwszą. Nowy string składa się z pierwszych n znaków jakie możemy przeczytać ze stringu t zaczynając od indeksu o i następnie przesuwając się o p pozycji w prawo.

Formalnie, nowy string będzie się składał z następujących znaków (w tym porządku): t[o], t[o+p], t[o+2p],..., t[o+(n-1)p]. Znajdź i wypisz na standardowe wyjście najmniejszy leksykograficznie string, jaki można w ten sposób uzyskać.

Dla danych dwóch różnych stringów, mniejszy leksykograficznie jest ten, który zawiera mniejszy znak na pierwszej pozycji, na której stringi się różnią.

Liczba 1 **nie** jest liczbą pierwszą.

Wejście

W pierwszym i jedynym wierszu standardowego wejścia znajduje się string s o długości $3 \le |s| \le 50$ składający się wyłącznie z małych liter alfabetu łacińskiego.

Wyjście

W pierwszym i jedynym wierszu standardowego wyjścia program powinien wypisać najmniejszy leksykograficznie string o długości |s|, który da się otrzymać stosując opisaną wyżej procedurę.

Przykład

Dla danych wejściowych:

cba

poprawną odpowiedzią jest:

abc

Wybieramy przesunięcie o=2 i krok p=2 i uzyskujemy nowy string: t[2]+t[4]+t[6]= 'a'+'b'+'c' = "abc".

2. Semimultiple

Zadanie

Dane są dwie liczby całkowite N i M. Rozważamy nieujemne liczby N bitowe Wiodące zera są dopuszczalne. N bitowa liczba całkowita jest semiwielokrotnością M jeżeli spełnia następujące warunki:

- 1. Nie jest wielokrotnością M,
- 2. Możemy zmienić ją w wielokrotność M przez zmianę dokładnie jednego z jej N bitów.

Znajdź liczbę wszystkich N bitowych liczb całkowitych będących semiwielokrotnościami M.

Wejście

W pierwszym i jedynym wierszu standardowego wejścia znajdują się dwie liczby całkowite $1 \le N \le 31$: liczba bitów poszukiwanej semiwielokrotności i $1 \le M \le 10^9$: liczba, której semiwielokrotności poszukujemy.

Wyjście

W pierwszym i jedynym wierszu program powinien wypisać jedną liczbę całkowitą - liczbę wszystkich N bitowych liczb całkowitych będących semiwielokrotnościami M.

Przykład

Dla danych wejściowych:

3 3

poprawną odpowiedzią jest:

4

Poszukiwanymi trzybitowymi semiwielokrotnościami trójki są liczby 1, 2, 4, 7.

3. The OR Game

Zadanie

Dana jest liczba docelowa G oraz tablica dodatnich, unikalnych liczb
 całkowitych T[N]. Zaczynamy od liczby X=0. Zadaniem gry jest uzyskanie liczby G w jednym lub więcej krokach. W każdym kroku wybieramy dowolną liczbę z tablicy T i zastępujemy X przez alternatywę bitową X i wybranego elementu T.

Napisz program, który wyznaczy i wypisze na standardowe wyjście minimalną liczbę elementów tablicy T, które należy z niej usunąć aby nie dało się uzyskać liczby G.

Jeżeli a i b są pojedynczymi bitami ich alternatywa bitowa $a|b = \max(a, b)$. Alternatywą bitową dwóch liczb całkowitych, A i B, o reprezentacjach bitowych odpowiednio $A = a_n \dots a_1$ i $b_n \dots b_1$ jest liczba $C = A|B = c_n \dots c_1$, gdzie $c_i = a_i|b_i$. Na przykład $10|3 = (1010)_2|(0011)_2 = (1011)_2 = 11$.

Wejście

W pierwszym wierszu standardowego wejścia znajdują się dwie liczby całkowite $1 \le N \le 20$: długość tablicy T i $1 \le G \le 10^9$: liczba docelowa. Kolejny wiersz zawiera dokładnie N liczb z przedziału $[1, 10^9]$: elementy tablicy T. Dla $i \ne j$: $T[i] \ne T[j]$.

Wyjście

W pierwszym i jedynym wierszu standardowego wyjścia program powinien wypisać jedną liczbę całkowitą: liczbę elementów tablicy T, którą należy usunąć by nie dało się uzyskać liczby docelowej G.

Przykład

Dla danych wejściowych:

5 7 1 2 4 7 8

poprawną odpowiedzią jest:

2

 ${\bf W}$ tym przykładzie należy usunąć liczbę 7 i jedną z liczb $1,\,2,\,4.$