Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Primer Semestre 2010

Curso : Probabilidad y Estadística

Sigla : EYP1113

Pauta : I1

Profesores : Ricardo Aravena (Sec 01 y 03) y Ricardo Olea (Sec 02 y 04)

Ayudantes : Tamara Fernández, Claudia Ortega, Constanza Quezada, Ignacia Vicuña.

Problema 1

Sean A y B dos eventos posibles asociados a un mismo fenómeno o experimento aleatorio.

- (a) [1.5 Ptos.] Muestre que si $P(A \mid B) = P(A \mid \overline{B})$, entonces A y B son eventos independientes.
- (b) [1.5 Ptos.] Muestre que $P(A \cap \overline{B}) = P(A \cup B) P(B)$.
- (c) [1.5 Ptos.] Muestre que si A y B son independientes, entonces \overline{A} y \overline{B} también los son.

Sean A_1, A_2, \ldots, A_n eventos asociados a un mismo fenómeno o experimento aleatorio.

(d) [1.5 Ptos.] Muestre que
$$P\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} P(A_i)$$
.

Solución

(a) Tenemos que

$$P(A \mid B) = P(A \mid \overline{B}) \Rightarrow \frac{P(A \cap \overline{B})}{P(\overline{B})} = \frac{P(A \cap B)}{P(B)} \quad \textbf{[0.5 Ptos]}$$

Por ley del complemento

$$\frac{P(A \cap \overline{B})}{1 - P(B)} = \frac{P(A \cap B)}{P(B)} \quad [\textbf{0.2 Ptos}]$$

$$\Rightarrow P(A \cap \overline{B}) P(B) = [1 - P(B)] P(A \cap B) \quad [\textbf{0.2 Ptos}]$$

$$\Rightarrow [P(A \cap \overline{B}) + P(A \cap B)] P(B) = P(A \cap B) \quad [\textbf{0.2 Ptos}]$$

$$\Rightarrow P([A \cap \overline{B}] \cup [A \cap B]) P(B) = P(A \cap B), \quad \text{ya que } [A \cap \overline{B}] \text{ y } [A \cap B] \text{ son eventos disjuntos} \quad [\textbf{0.2 Ptos}]$$

$$\Rightarrow P(A) P(B) = P(A \cap B) \quad [\textbf{0.2 Ptos}]$$

Por lo tanto, A y B son eventos independientes.

(b) Por ley aditiva tenemos que

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \quad [0.3 \text{ Ptos}]$$

$$\tag{1}$$

Por otra parte,

$$\begin{split} P(A) &= P(A \cap [B \cup \overline{B}]) \quad \textbf{[0.2 Ptos]} \\ &= P([A \cap B] \cup [A \cap \overline{B}]) \quad \textbf{[0.2 Ptos]} \\ &= P(A \cap B) + P(A \cap \overline{B}), \quad \text{por ser eventos disjuntos} \quad \textbf{[0.2 Ptos]} \end{split}$$

Reemplazando en (1) se tiene que

$$P(A \cup B) = P(A \cap B) + P(A \cap \overline{B}) + P(B) - P(A \cap B) \quad [\textbf{0.2 Ptos}]$$

$$\Rightarrow P(A \cup B) = P(A \cap \overline{B}) + P(B) \quad [\textbf{0.2 Ptos}]$$

$$\Rightarrow P(A \cup B) - P(B) = P(A \cap \overline{B}) \quad [\textbf{0.2 Ptos}]$$

(c) Alternativa 1: Por demostrar que $P(\overline{A} \mid \overline{B}) = P(\overline{A})$.

$$P(\overline{A} | \overline{B}) = \frac{P(\overline{A} \cap \overline{B})}{P(\overline{B})} \quad [\textbf{0.2 Ptos}]$$

$$= \frac{P(\overline{A} \cup \overline{B})}{P(\overline{B})}, \quad \text{por ley de Morgan} \quad [\textbf{0.2 Ptos}]$$

$$= \frac{1 - P(A \cup B)}{1 - P(B)}, \quad \text{por ley del complemento} \quad [\textbf{0.2 Ptos}]$$

$$= \frac{1 - P(A) - P(B) + P(A \cap B)}{1 - P(B)}, \quad \text{por ley aditiva} \quad [\textbf{0.2 Ptos}]$$

$$= \frac{1 - P(A) - P(B) + P(A) P(B)}{1 - P(B)}, \quad \text{por independencia entre } A \text{ y } B \quad [\textbf{0.2 Ptos}]$$

$$= \frac{[1 - P(B)][1 - P(A)]}{1 - P(B)} \quad [\textbf{0.2 Ptos}]$$

$$= 1 - P(A) \quad [\textbf{0.1 Ptos}]$$

$$= P(\overline{A}) \quad [\textbf{0.2 Ptos}]$$

Alternativa 2: Por demostrar que $P(\overline{B} \mid \overline{A}) = P(\overline{B})$.

$$P(\overline{B} | \overline{A}) = \frac{P(\overline{B} \cap \overline{A})}{P(\overline{A})} \quad [\textbf{0.2 Ptos}]$$

$$= \frac{P(\overline{B} \cup A)}{P(\overline{A})}, \quad \text{por ley de Morgan} \quad [\textbf{0.2 Ptos}]$$

$$= \frac{1 - P(B \cup A)}{1 - P(A)}, \quad \text{por ley del complemento} \quad [\textbf{0.2 Ptos}]$$

$$= \frac{1 - P(B) - P(A) + P(B \cap A)}{1 - P(A)}, \quad \text{por ley aditiva} \quad [\textbf{0.2 Ptos}]$$

$$= \frac{1 - P(B) - P(A) + P(B) P(A)}{1 - P(A)}, \quad \text{por independencia entre } A \text{ y } B \quad [\textbf{0.2 Ptos}]$$

$$= \frac{[1 - P(A)][1 - P(B)]}{1 - P(A)} \quad [\textbf{0.2 Ptos}]$$

$$= 1 - P(B) \quad [\textbf{0.1 Ptos}]$$

$$= P(\overline{B}) \quad [\textbf{0.2 Ptos}]$$

Alternativa 3: Por demostrar que $P(\overline{A} \cap \overline{B}) = P(\overline{A})P(\overline{B})$.

Como A y B son eventos posibles, entonces \overline{A} y \overline{B} . Luego

$$P(\overline{A} \cap \overline{B}) = \begin{cases} P(\overline{A} \mid \overline{B}) P(\overline{B}) \\ P(\overline{B} \mid \overline{A}) P(\overline{A}) \end{cases}$$

Por Alternativa 1 o Alternativa 2 se tiene que

$$P(\overline{A} \cap \overline{B}) = P(\overline{A})P(\overline{B})$$
 [1.5 Ptos]

(d) Demostración por Inducción: Tenemos que

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2) \le P(A_1) + P(A_2)$$
, ya que $P(\cdot) \ge 0$ [0.5 Ptos]

Supongamos que se cumple para A_1, \ldots, A_n

$$P\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} P(A_i)$$
 [0.1 Ptos]

Por demostrar que

$$P\left(\bigcup_{i=1}^{n+1} A_i\right) \le \sum_{i=1}^{n+1} P(A_i) \quad [\mathbf{0.1 Ptos}]$$

Tenemos que

$$P\left(\bigcup_{i=1}^{n+1} A_i\right) = P\left(A_{n+1} \cup \left[\bigcup_{i=1}^{n+1} A_i\right]\right) \quad [\mathbf{0.2 \ Ptos}]$$

$$= P\left(A_{n+1}\right) + P\left(\bigcup_{i=1}^{n+1} A_i\right) - P\left(A_{n+1} \cap \left[\bigcup_{i=1}^{n+1} A_i\right]\right) \quad [\mathbf{0.2 \ Ptos}]$$

$$\leq P\left(A_{n+1}\right) + P\left(\bigcup_{i=1}^{n+1} A_i\right), \quad \text{ya que } P(\cdot) \geq 0 \quad [\mathbf{0.2 \ Ptos}]$$

$$= P(A_{n+1}) + \sum_{i=1}^{n} P(A_i) \quad [\mathbf{0.1 \ Ptos}]$$

$$= \sum_{i=1}^{n+1} P(A_i) \quad [\mathbf{0.1 \ Ptos}]$$

+ 1 Punto Base

Problema 2

En cierta ciudad todas las construcciones, dentro de sus insumos de acero, pueden optar por una de dos alternativas:

- Vigas resistentes: que permiten resistir sismos de más de 8°,
- Vigas débiles: que a lo más resisten sismos de 8°.

El $20\,\%$ de las construcciones que utilizan vigas débiles presentan daño grave después de un terremoto, mientras que el $50\,\%$ de estas construcciones presenta un daño moderado. En el caso de las construcciones que utilizan vigas resistente, las probabilidades de presentar daño grave o moderado se reducen en un $90\,\%$. Frente a una réplica de más de 7° , las construcciones que presentaron un daño moderado incrementan en un $50\,\%$ la probabilidad de quedar con daño grave.

De acuerdo a la información disponible, se sabe que sólo un $30\,\%$ de las construcciones optaron por vigas resistentes.

Ha ocurrido un sismo 8.8°, es decir, un Terremoto

- (a) [1.0 Ptos.] Determine la probabilidad que una construcción presente un daño grave.
- (b) [2.0 Ptos.] Determine la probabilidad que una construcción haya usado vigas resistentes si esta presenta daño moderado.

Acaba de ocurrir una réplica de 7.1°

(c) [3.0 Ptos.] Determine la probabilidad que una construcción presente un daño moderado.

Solución

Definamos los siguientes eventos:

- R: Construcciones con vigas resistentes.
- D: Construcciones con vigas débiles.
- G: Construcción con daño grave después de un terremoto.
- M: Construcción con daño moderado después de un terremoto.
- S: Construcción sin daño después de un terremoto.

Del enunciado se tiene que

$$P(R) = 0.30 \Rightarrow P(D) = 0.70$$

 $P(G \mid D) = 0.20$
 $P(M \mid D) = 0.50 \Rightarrow P(S \mid D) = 0.30$
 $P(G \mid R) = 0.02$
 $P(M \mid R) = 0.05 \Rightarrow P(S \mid R) = 0.93$

(a) La probabilidad que una construcción presente un daño grave la podemos determinar aplicando el Teorema de Probabilidades Totales:

$$P(G) = P(G \mid D) P(D) + P(G \mid R) P(R)$$
 [0.5 Ptos]
= $0.2 \cdot 0.70 + 0.02 \cdot 0.30$ [0.4 Ptos]
= 0.146 [0.1 Ptos]

(b) La probabilidad que una construcción haya usado vigas resistentes si esta presenta daño moderado la podemos determinar aplicando el Teorema de Bayes:

$$\begin{split} P(R \,|\, M) &= \frac{P(M \,|\, R)\, P(R)}{P(M)} \quad \textbf{[0.5 Ptos]} \\ &= \frac{P(M \,|\, R)\, P(R)}{P(M \,|\, D)\, P(D) + P(M \,|\, R)\, P(R)} \quad \textbf{[1.0 Ptos]} \\ &= \frac{0.05 \cdot 0.3}{0.5 \cdot 0.7 + 0.05 \cdot 0.3} \quad \textbf{[0.4 Ptos]} \\ &= 0.041 \quad \textbf{[0.1 Ptos]} \end{split}$$

(c) Definamos los siguientes eventos:

 G_R : Construcción presenta daño grave después de una replica.

 M_R : Construcción presenta daño moderado después de una replica.

 S_R : Construcción no presenta daño después de una replica.

La probabilidad que una construcción presente un daño moderado después de una replica esta dada por:

```
\begin{split} P(M_R) &= P(M_R \cap [R \cap S]) + P(M_R \cap [R \cap M]) + P(M_R \cap [R \cap G]) + \\ &\quad P(M_R \cap [D \cap S]) + P(M_R \cap [D \cap M]) + P(M_R \cap [D \cap G]) \quad \textbf{[0.4 Ptos]} \\ &= P(M_R \mid R \cap S) \cdot P(S \mid R) \cdot P(R) + P(M_R \mid R \cap M) \cdot P(M \mid R) \cdot P(R) + P(M_R \mid R \cap G) \cdot P(G \mid R) \cdot P(R) + \\ &\quad P(M_R \mid D \cap S) \cdot P(S \mid D) \cdot P(D) + P(M_R \mid D \cap M) \cdot P(M \mid D) \cdot P(D) + P(M_R \mid D \cap G) \cdot P(G \mid D) \cdot P(D) \quad \textbf{[0.6 Ptos]} \end{split}
```

donde

$$P(M_R \mid R \cap G) = 0.00$$
 [0.3 Ptos]
 $P(M_R \mid R \cap M) = 0.97$ [0.3 Ptos]
 $P(M_R \mid R \cap S) = 0.05$ [0.3 Ptos]
 $P(M_R \mid D \cap G) = 0.00$ [0.3 Ptos]
 $P(M_R \mid D \cap M) = 0.70$ [0.3 Ptos]
 $P(M_R \mid D \cap S) = 0.50$ [0.3 Ptos]

Reemplazando

$$P(M_R) = 0.05 \cdot 0.93 \cdot 0.30 + 0.97 \cdot 0.05 \cdot 0.30 + 0.00 \cdot 0.02 \cdot 0.30 + 0.50 \cdot 0.30 \cdot 0.70 + 0.70 \cdot 0.50 \cdot 0.70 + 0.00 \cdot 0.20 \cdot 0.70$$
 [0.1 Ptos]

+ 1 Punto Base

Problema 3

Al analizar datos de tiempos de trayectos en el transantiago, presentan una media de 30 minutos y un coeficiente de variación del $40\,\%$.

Asumiendo una Distribución Normal para los tiempos de trayecto, determine:

- (a) [1.0 Ptos.] La proporción de personas cuyos viajes duran más de 40 minutos.
- (b) [1.0 Ptos.] La duración máxima del viaje para el 40 % de los usuarios que menos tiempo viajan.
- (c) [1.0 Ptos.] La proporción de personas cuyos tiempos de viajes se encuentran a no más de 6 minutos del tiempo medio.

Asumiendo una Distribución Log-Normal, determine:

- (d) [1.5 Ptos.] La duración mínima del viaje para el 60% de los usuarios que más tiempo viajan.
- (e) [1.5 Ptos.] Los tiempos mínimo y máximo de viajes para el 30 % de personas cuyos tiempos de viajes se encuentran alrededor de la mediana.

Solución

Sea T la variable aleatoria que denota el tiempo de trayecto en el Transantiago.

Del enunciado se tiene que:

$$\mu_T = 30$$
, $\delta_T = 0.4 \Rightarrow \sigma_T = \delta_T \cdot \mu_T = 12 \,\text{min.}$

(a) Asumiendo Normalidad, tenemos que

$$T \sim \text{Normal}(\mu = 30, \, \sigma = 12)$$
 [0.2 Ptos]

La proporción de personas cuyos viajes duran más de 40 minutos la podemos determinar calculando

$$P(T > 40) = 1 - P(T \le 40)$$
 [0.1 Ptos]
= $1 - \Phi\left(\frac{40 - \mu}{\sigma}\right)$ [0.2 Ptos]
= $1 - \Phi(0.833)$
= $1 - 0.7967$ [0.3 Ptos]
= 0.2033 [0.2 Ptos]

(b) La duración máxima del viaje para el 40% de los usuarios que menos tiempo viajan esta dada por un valor k tal que P(T < k) = 0.4. [0.2 Ptos]

Tenemos que

$$P(T < k) = \Phi\left(\frac{k-\mu}{\sigma}\right) = 0.4$$
 [0.3 Ptos]

Mientras que

$$\Phi^{-1}(0,4) = -\Phi^{-1}(1-0,4) \approx -0.255$$
 [0.3 Ptos]

Luego

$$-0.255 \approx \frac{k-30}{12} \Rightarrow k \approx 26.94 \,\text{min}$$
 [0.2 Ptos]

(c) La proporción de personas cuyos tiempos de viajes se encuentran a no más de 6 minutos del tiempo medio la podemos determinar a partir de

$$\begin{split} P(\mu - 6 \leq T \leq \mu + 6) &= P(T \leq \mu + 6) - P(T \leq \mu - 6) \quad \textbf{[0.2 Ptos]} \\ &= \Phi\left(\frac{\mu + 6 - \mu}{\sigma}\right) - \Phi\left(\frac{\mu - 6 - \mu}{\sigma}\right) \quad \textbf{[0.2 Ptos]} \\ &= \Phi\left(\frac{6}{12}\right) - \Phi\left(\frac{-6}{12}\right) \quad \textbf{[0.1 Ptos]} \\ &= \Phi\left(0, 5\right) - \Phi\left(-0, 5\right) \quad \textbf{[0.1 Ptos]} \\ &= \Phi\left(0, 5\right) - \left[1 - \Phi\left(0, 5\right)\right] \quad \textbf{[0.2 Ptos]} \\ &= 2 \cdot \Phi\left(0, 5\right) - 1 \\ &= 2 \cdot 0,6915 - 1 \quad \textbf{[0.1 Ptos]} \\ &= 0,383 \quad \textbf{[0.1 Ptos]} \end{split}$$

(d) Asumiendo una distribución Log-Normal, tenemos que

$$T \sim \text{Log-Normal}(\lambda, \zeta)$$

donde

$$\zeta = \sqrt{\ln(1 + \delta_X^2)} = 0.385$$
 [0.2 Ptos]
 $\lambda = \ln \mu_X - \frac{1}{2} \zeta^2 = 3.327$ [0.2 Ptos]

La duración mínima del viaje para el 60% de los usuarios que más tiempo viajan esta dada por un valor k tal que P(T > k) = 0.6.

Tenemos que

$$P(T > k) = 1 - \Phi\left(\frac{\ln k - \lambda}{\zeta}\right) = 0.6 \Rightarrow \Phi\left(\frac{\ln k - \lambda}{\zeta}\right) = 0.4$$
 [0.4 Ptos]

Mientras que

$$\Phi^{-1}(0,4) = -\Phi^{-1}(1-0,4) \approx -0.25$$
 [0.4 Ptos]

Luego

$$-0.25 \approx \frac{\ln k - 3.327}{0.385} \Rightarrow k \approx \exp\left[-0.25 \cdot 0.385 + 3.327\right] = 25.299 \,\text{min}$$
 [0.3 Ptos]

(e) Los tiempos mínimo (t_1) y máximo (t_2) de viajes para el 30 % de personas cuyos tiempos de viajes se encuentran alrededor de la mediana los podemos determinar como sigue:

$$P(t_1 \le T \le t_2) = 0.3,$$

donde

$$P(T \le t_2) = 0.65$$
 y $P(T \le t_1) = 0.35$ [0.5 Ptos]

ya que se encuentran entorno a la mediana.

Luego

$$P(T \le t_1) = \Phi\left(\frac{\ln t_1 - \lambda}{\zeta}\right) = 0.35 \Rightarrow \frac{\ln t_1 - \lambda}{\zeta} \approx -0.385, \quad [\textbf{0.3 Ptos}]$$

$$P(T \le t_2) = \Phi\left(\frac{\ln t_2 - \lambda}{\zeta}\right) = 0.65 \Rightarrow \frac{\ln t_2 - \lambda}{\zeta} \approx 0.385, \quad [\textbf{0.3 Ptos}]$$

Despejando tenemos que

$$t_1 \approx \exp\left[-0.385 \cdot 0.385 + 3.327\right] = 24.017 \,\mathrm{min}$$
 [0.2 Ptos] $t_2 \approx \exp\left[0.385 \cdot 0.385 + 3.327\right] = 32.305 \,\mathrm{min}$ [0.2 Ptos]

+ 1 Punto Base

Problema 4

Sea Y una variable aleatoria cuya función de densidad esta dada por:

$$f_Y(y) = \begin{cases} \frac{\lambda^{\nu}}{\Gamma(\nu)} y^{\nu-1} e^{-\lambda y}, & y \ge 0, \ \lambda > 0, \ \nu > 0 \\ 0, & \text{en otro caso} \end{cases}$$

donde
$$\Gamma(\nu) = \int_0^\infty t^{\nu-1} e^{-t} dt$$
.

Algunas propiedades de $\Gamma(\cdot)$ son:

(1)
$$\Gamma(a+1) = a \Gamma(a)$$
; (2) $\Gamma(n+1) = n!$ si $n \in \mathbb{N}$; (3) $\Gamma(1/2) = \sqrt{\pi}$

(a) [1.5 Ptos.] Muestre que $f_Y(y)$ es densidad y que su $\mathbf{E}(Y) = \frac{\nu}{\lambda}$.

Sea X una variable aleatoria cuya función de distribución esta dada por:

$$F_X(x) = 1 - \exp\left[-\left(\frac{x}{\alpha}\right)^{\beta}\right], \quad x \ge 0$$

 $con \alpha, \beta > 0.$

- (b) [1.5 Ptos.] Obtenga la función de densidad de probabilidad de la variable aleatoria X.
- (c) [1.5 Ptos.] De una expresión lo más simplificada posible para el valor de la mediana de la distribución de probabilidad de la variable aleatoria X.

(d) [1.5 Ptos.] Muestre que
$$\mathbf{E}(X) = \frac{\alpha}{\beta} \Gamma\left(\frac{1}{\beta}\right) \mathbf{y} \mathbf{Var}(X) = \frac{\alpha^2}{\beta} \left[2\Gamma\left(\frac{2}{\beta}\right) - \Gamma\left(\frac{1}{\beta} + 1\right) \Gamma\left(\frac{1}{\beta}\right) \right].$$

Solución

- (a) Si $f_Y(y)$ es una función de densidad debe cumplir con lo siguiente:
 - i. $f_Y(y) \ge 0$.

Esto se cumple ya que $y \ge 0, \ \lambda > 0, \ \nu > 0 \ y \ e^{-\lambda y} > 0$. [0.2 Ptos]

ii.
$$\int_{-\infty}^{\infty} f_Y(y) \, dy = 1.$$

Tenemos que

$$\int_{-\infty}^{\infty} f_Y(y) \, dy = \int_0^{\infty} f_Y(y) \, dy \quad [\mathbf{0.1 \ Ptos}]$$

$$= \int_0^{\infty} \frac{\lambda^{\nu}}{\Gamma(\nu)} \, y^{\nu-1} \, e^{-\lambda y} \, dy \quad [\mathbf{0.1 \ Ptos}]$$

$$= \int_0^{\infty} \frac{1}{\Gamma(\nu)} \, t^{\nu-1} \, e^{-t} \, dt, \quad \text{con } t = \lambda y \quad [\mathbf{0.1 \ Ptos}]$$

$$= \frac{1}{\Gamma(\nu)} \int_0^{\infty} t^{\nu-1} \, e^{-t} \, dt \quad [\mathbf{0.1 \ Ptos}]$$

$$= \frac{1}{\Gamma(\nu)} \Gamma(\nu), \quad \text{por defincición de función } \Gamma(\cdot) \quad [\mathbf{0.1 \ Ptos}]$$

$$= 1 \quad [\mathbf{0.1 \ Ptos}]$$

Finalmente se pide mostrar que $\mathbf{E}(Y) = \frac{\nu}{\lambda}$.

$$\mathbf{E}(Y) = \int_{-\infty}^{\infty} y \cdot f_Y(y) \, dy \quad [\mathbf{0.1 \ Ptos}]$$

$$= \int_{0}^{\infty} y \cdot \frac{\lambda^{\nu}}{\Gamma(\nu)} y^{\nu-1} e^{-\lambda y} \, dy \quad [\mathbf{0.1 \ Ptos}]$$

$$= \int_{0}^{\infty} \frac{\lambda^{\nu}}{\Gamma(\nu)} y^{(\nu+1)-1} e^{-\lambda y} \, dy \quad [\mathbf{0.1 \ Ptos}]$$

$$= \frac{\Gamma(\nu+1)}{\Gamma(\nu) \lambda} \int_{0}^{\infty} \frac{\lambda^{(\nu+1)}}{\Gamma(\nu+1)} y^{(\nu+1)-1} e^{-\lambda y} \, dy \quad [\mathbf{0.1 \ Ptos}]$$

$$= \frac{\Gamma(\nu+1)}{\Gamma(\nu) \lambda} \cdot 1, \quad \text{ya que } \nu+1 > 0 \quad [\mathbf{0.1 \ Ptos}]$$

$$= \frac{\nu}{\Gamma(\nu) \lambda}, \quad \text{por propiedad de función } \Gamma(\cdot) \quad [\mathbf{0.1 \ Ptos}]$$

$$= \frac{\nu}{\lambda} \quad [\mathbf{0.1 \ Ptos}]$$

(b) Tenemos que $f_X(x) = \frac{d}{dx} F_X(x)$. Por lo tanto

$$f_X(x) = \begin{cases} \frac{\beta}{\alpha} \left(\frac{x}{\alpha}\right)^{\beta - 1} e^{-\left(\frac{x}{\alpha}\right)^{\beta}}, & [\mathbf{0.8 \ Ptos}] \quad x \ge 0, \, \alpha > 0, \, \beta > 0 \quad [\mathbf{0.4 \ Ptos}] \\ 0, & \text{en otro caso} \quad [\mathbf{0.3 \ Ptos}] \end{cases}$$

(c) Sea x_m el valor de la mediana de la distribución dada por f_X . Por definición se tiene que

$$P(X \le x_m) = F_X(x_m) = 1/2$$
 [0.5 Ptos]

Reemplazando tenemos que

$$1 - \exp\left[-\left(\frac{x_m}{\alpha}\right)^{\beta}\right] = \frac{1}{2}$$

$$\Rightarrow \exp\left[-\left(\frac{x_m}{\alpha}\right)^{\beta}\right] = \frac{1}{2}$$

$$\Rightarrow -\left(\frac{x_m}{\alpha}\right)^{\beta} = -\ln 2$$

$$\Rightarrow x_m = \alpha \left[\ln 2\right]^{1/\beta} \quad [1.0 \text{ Ptos}]$$

(d) Se pide mostrar que

$$\mathbf{E}(X) = \frac{\alpha}{\beta} \, \Gamma\left(\frac{1}{\beta}\right) \quad \text{y} \quad \mathbf{Var}(X) = \frac{\alpha^2}{\beta} \left[2 \, \Gamma\left(\frac{2}{\beta}\right) - \Gamma\left(\frac{1}{\beta} + 1\right) \, \Gamma\left(\frac{1}{\beta}\right) \right]$$

Por definición

$$\begin{split} \mathbf{E}(X) &= \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx \quad \textbf{[0.1 Ptos]} \\ &= \int_{0}^{\infty} x \cdot \frac{\beta}{\alpha} \, \left(\frac{x}{\alpha}\right)^{\beta-1} \, e^{-\left(\frac{x}{\alpha}\right)^{\beta}} \, dx \quad \textbf{[0.1 Ptos]} \\ &= \int_{0}^{\infty} \alpha \, y^{1/\beta} \, e^{-y} \, dy, \quad \text{con } y = \left(\frac{x}{\alpha}\right)^{\beta} \quad \textbf{[0.1 Ptos]} \\ &= \alpha \, \Gamma\left(\frac{1}{\beta} + 1\right) \int_{0}^{\infty} \frac{1}{\Gamma\left(\frac{1}{\beta} + 1\right)} \, y^{(1+1/\beta)-1} \, e^{-y} \, dy \quad \textbf{[0.1 Ptos]} \\ &= \alpha \, \Gamma\left(\frac{1}{\beta} + 1\right) \cdot 1, \quad \text{ya que } 1 + \frac{1}{\beta} > 0 \quad \textbf{[0.1 Ptos]} \\ &= \frac{\alpha}{\beta} \, \Gamma\left(\frac{1}{\beta}\right), \quad \text{por propiedad de función } \Gamma(\cdot) \quad \textbf{[0.1 Ptos]} \end{split}$$

Por otra parte

$$Var(X) = E[(X - \mu_X)^2] = E(X^2) - \mu_X^2,$$
 [0.1 Ptos]

$$\operatorname{con}\,\mu_X = \frac{\alpha}{\beta}\,\Gamma\left(\frac{1}{\beta}\right)\,\mathrm{y}$$

$$\begin{split} \mathbf{E}(X^2) &= \int_{-\infty}^{\infty} x^2 \cdot f_X(x) \, dx \quad \textbf{[0.1 Ptos]} \\ &= \int_{0}^{\infty} x^2 \cdot \frac{\beta}{\alpha} \, \left(\frac{x}{\alpha}\right)^{\beta-1} \, e^{-\left(\frac{x}{\alpha}\right)^{\beta}} \, dx \quad \textbf{[0.1 Ptos]} \\ &= \int_{0}^{\infty} \alpha^2 \, y^{2/\beta} \, e^{-y} \, dy, \quad \text{con } y = \left(\frac{x}{\alpha}\right)^{\beta} \quad \textbf{[0.1 Ptos]} \\ &= \alpha^2 \, \Gamma\left(\frac{2}{\beta} + 1\right) \int_{0}^{\infty} \frac{1}{\Gamma\left(\frac{2}{\beta} + 1\right)} \, y^{(1+2/\beta)-1} \, e^{-y} \, dy \quad \textbf{[0.1 Ptos]} \\ &= \alpha^2 \, \Gamma\left(\frac{2}{\beta} + 1\right) \cdot 1, \quad \text{ya que } 1 + \frac{2}{\beta} > 0 \quad \textbf{[0.1 Ptos]} \\ &= \frac{2 \, \alpha^2}{\beta} \, \Gamma\left(\frac{2}{\beta}\right), \quad \text{por propiedad de función } \Gamma(\cdot) \quad \textbf{[0.1 Ptos]} \end{split}$$

Reemplazando tenemos que

$$\begin{aligned} \mathbf{Var}(X) &= \frac{2\alpha^2}{\beta} \Gamma\left(\frac{2}{\beta}\right) - \left[\frac{\alpha}{\beta} \Gamma\left(\frac{1}{\beta}\right)\right]^2 \\ &= \frac{\alpha^2}{\beta} \left[2\Gamma\left(\frac{2}{\beta}\right) - \frac{1}{\beta} \Gamma\left(\frac{1}{\beta}\right) \Gamma\left(\frac{1}{\beta}\right) \right] \quad \textbf{[0.1 Ptos]} \\ &= \frac{\alpha^2}{\beta} \left[2\Gamma\left(\frac{2}{\beta}\right) - \Gamma\left(\frac{1}{\beta} + 1\right) \Gamma\left(\frac{1}{\beta}\right) \right], \quad \text{por propiedad de función } \Gamma(\cdot) \quad \textbf{[0.1 Ptos]} \end{aligned}$$

+ 1 Punto Base

Formulario

■ Valor Esperado:

Sea X una variable aleatoria discreta y Θ_X el conjunto de todos los valores posible.

$$E[g(X)] = \sum_{x \in \Theta_X} g(x) \cdot P(X = x)$$

Sea X una variable aleatoria continua y Θ_X la unión de todos los intervalos en los \mathbb{R} en que la función de densidad $f_X(x) \neq 0$.

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \, dx = \int_{x \in \Theta_X} g(x) \cdot f_X(x) \, dx$$

 \blacksquare Varianza $(\sigma_X^2),$ Coeficiente de Asimetría (θ_X) y Kurtosis (K_X) :

Sea X una variable aleatoria con valor esperado $\mu_X = E(X)$.

$$\sigma_X^2 = E\left[(X - \mu_X)^2 \right]$$

$$\theta_X = E\left[\left(\frac{X - \mu_X}{\sigma_X} \right)^3 \right]$$

$$K_X = E\left[\left(\frac{X - \mu_X}{\sigma_X} \right)^4 \right]$$

Distribución	Densidad de Probabilidad	Θ_X	Parámetros	Esperanza y Varianza
Normal	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	$-\infty < x < \infty$	μ,σ	$\mu_X = \mu$ $\sigma_X^2 = \sigma^2$
Log-Normal	$\frac{1}{\sqrt{2\pi}(\zeta x)} \exp\left[-\frac{1}{2} \left(\frac{\ln x - \lambda}{\zeta}\right)^2\right]$	$x \ge 0$	λ,ζ	$\mu_X = \exp\left(\lambda + \frac{1}{2}\zeta^2\right)$ $\sigma_X^2 = \mu_X^2 \left(e^{\zeta^2} - 1\right)$

Tabla Normal Estándar

|--|

a	0.00	0.01	0.00	0.00	0.04	0.05	0.00	0.07	0.00	0.00
S_p	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
	•									