1. (20 points) 某公司必须决定是接受还是拒绝一批进口零件(分别将它们记为行为 a_1 及 a_2),零件分三种类型: θ_1 (很好的); θ_2 (可接受的); θ_3 (差的)。做决策所承担的 损失 $L(\theta_i, a_i)$ 由下表给出:

	a_1	a_2
θ_1	0	3
θ_2	1	2
θ_3	3	0

先验信念为 $\pi(\theta_1) = \pi(\theta_2) = \pi(\theta_3) = \frac{1}{3}$

- (a) 什么是贝叶斯行为?
- (b) 什么是极小化极大非随机化行为?

答:

(a) 行为 a 的贝叶斯期望损失为:

$$\rho(\pi, a_1) = \frac{1}{3}*0 + \frac{1}{3}*1 + \frac{1}{3}*3 = \frac{4}{3}$$

$$\rho(\pi, a_2) = \frac{1}{3}*3 + \frac{1}{3}*2 + \frac{1}{3}*0 = \frac{5}{3}$$
故有 $\rho(\pi, a_1) < \rho(\pi, a_2)$,即 a_1 是贝叶斯行为

(b) 对决策有

$$\sup_{\theta} L(\theta, a_1) = \max\{0, 1, 3\} = 3$$

$$\sup_{\theta} L(\theta, a_2) = \max\{3, 2, 0\} = 3$$
 既有
$$\sup_{\theta} L(\theta, a_1) = \sup_{\theta} L(\theta, a_2)$$
 即 a_1 和 a_2 都是极小化极大非随机化行为。

- 2. (30 points) 某职业全球队考虑他们来年的参赛安排,要决定是否进行一场 50 万美元的宣传活动。如果这个队是强队,大约会有 4 百万美元的出场年收入(不管是否进行宣传活动)。令 θ 表示这个队的胜率,若 $\theta \geq 0.6$,这个队将是一个强队;若 $\theta < 0.6$,且不进行宣传活动,他们的年出场收入为 $1+5\theta$ 百万美元,而进行宣传活动的话,年出场收入为 $2+(10/3)\theta$ 百万美元。 θ 为 $\mathcal{W}(0\,1)$ 分布
 - (a) 描述 \mathscr{A} 、 Θ 及 $L(\theta, a)$ 。
 - (b) 什么是贝叶斯行为?

(c) 什么是极小化极大非随机化行为?

答:

(a) 决策空间 $\mathscr{A} = \{a_1, a_2\}$, 其中 a_1 表示进行宣传活动, a_2 表示不进行宣传活动; 参数空间 $\Theta = \{\theta_1, \theta_2\}$, 其中 θ_1 表示 $\theta < 0.6, \theta_2$ 表示 $\theta \ge 0.6$;

对应的损失函数 $L(\theta, a)$ 为:

	a_1	a_2
θ_1	$-(1.5 + \frac{10}{3}\theta)$	$-(1+5\theta)$
θ_2	-3.5	-4

(b) 行为 a 的贝叶斯期望损失为:

$$\rho(\pi, a_1) = \int_0^{0.6} -(1.5 + \frac{10}{3}\theta)d\theta + 0.4 * (-3.5) = -2.9$$

$$\rho(\pi, a_2) = \int_0^{0.6} -(1 + 5\theta)d\theta + 0.4 * (-4) = -3.1$$
故有 $\rho(\pi, a_1) > \rho(\pi, a_2)$,即 a_2 是贝叶斯行为

(c) 对决策有

$$\sup_{\theta} L(\theta, a_1) = \max\{\max_{0 < \theta < 0.6} -(1.5 + \frac{10}{3}\theta), -3.5\} = -1.5$$

$$\sup_{\theta} L(\theta, a_2) = \max\{\max_{0 < \theta < 0.6} -(1 + 5\theta), -4\} = -1$$
既有
$$\sup_{\theta} L(\theta, a_1) < \sup_{\theta} L(\theta, a_2)$$
即 a_1 都是极小化极大非随机化行为。

- 3. (50 points) 滑雪板店的老板必须为下一个滑雪季节订购滑雪板。订单以 25 付为单位。如订购 25 付,每付 50 美元;如订购 50 付,每付 45 美元;如订购 75 付,每付 40 美元。每付滑雪板卖给顾客的零售价为 75 美元,年终之后剩下的每付滑雪板(保证)还能卖 25 美元一付。如果正在滑雪季节。店铺的滑雪板卖光了,老板将承受对来买的顾客的"信誉"损失,他估计,对每一位来购买而没有买到的顾客,信誉损失为 5 美元。为了简化,老板认为对滑雪板需求量为 30,40,50,60 付的概率分别为 0.2,0.4,0.2,0.2。
 - (a) 描述 ⋈、Θ、损失矩阵和先验分布。
 - (b) 哪些行为是容许的?
 - (c) 什么是贝叶斯行为?
 - (d) 什么是极小化极大非随机化行为?

答:

(a) 决策空间 $\mathscr{A} = \{a_1, a_2, a_3\}$, 其中 a_1 表示订购 25 付, a_2 表示订购 50 付, a_3 表示订购 75 付;

参数空间 $Θ={\theta_1,\theta_2,\theta_3,\theta_4}$, 其中 θ_1 表示滑雪板需求量为 $30,\theta_2$ 表示滑雪板需求量为 $40,\theta_3$ 表示滑雪板需求量为 $50,\theta_4$ 表示滑雪板需求量为 60;

对应的损失函数 $L(\theta, a)$ 为:

	a_1	a_2	a_3
θ_1	-600	-500	-375
θ_2	-550	-1000	-875
θ_3	-500	-1500	-1375
θ_4	-450	-1450	-1875

先验分布为 $\pi(\theta_1) = 0.2$, $\pi(\theta_2) = 0.4$, $\pi(\theta_3) = 0.2$, $\pi(\theta_4) = 0.2$

- (b) 未出现所有 θ 取值严格的情况,故三种行为都是容许的
- (c) 行为 a 的贝叶斯期望损失为:

$$\rho(\pi,a_1) = 0.2* - 600 + 0.4* - 550 + 0.2* - 500 + 0.2* - 450 = -530$$

$$\rho(\pi,a_2) = 0.2* - 500 + 0.4* - 1000 + 0.2* - 1500 + 0.2* - 1450 = -1090$$

$$\rho(\pi,a_3) = 0.2* - 375 + 0.4* - 875 + 0.2* - 1375 + 0.2* - 1875 = -1075$$
 故有 $\rho(\pi,a_2) < \rho(\pi,a_3) < \rho(\pi,a_1)$, 即 a_2 是贝叶斯行为

(d) 对决策有

$$\sup_{\theta} L(\theta, a_1) = \max\{-600, -550, -500, -450\} = -450$$

$$\sup_{\theta} L(\theta, a_2) = \max\{-500, -1000, -1500, -1450\} = -500$$

$$\sup_{\theta} L(\theta, a_3) = \max\{-375, -875, -1375, -1875\} = -375$$
既有
$$\sup_{\theta} L(\theta, a_2) < \sup_{\theta} L(\theta, a_1) < \sup_{\theta} L(\theta, a_3)$$
即 a_2 都是极小化极大非随机化行为。