CE388 - FUNDAMENTALS OF STEEL DESIGN

2014-2015 Spring Term

Problem Set 5

1) Determine ϕR_n and $\frac{Rn}{\Omega}$ for the connection shown below based on bolt limit states (Bearing type connection).

Standard holes, S275 Steel ($F_y = 275MPa$, $F_u = 430MPa$).

- a) M20 bolts Grade 8.8 threads excluded from the shear plane
- b) M24 bolts Grade 8.8 threads excluded from the shear plane
- c) M22 bolts Grade 8.8 threads included in the shear plane

2) For the connection shown below determine the number of M24 Grade 8.8 bolts required for a bearing type connection.

P_u = 1300 kN. Use LRFD threads excluded from shear plane.

3) Determine the number of M24 Grade 10.9 bolts required to develop full yielding capacity of the UPN300 members. S275 Steel ($F_y = 275 MPa$, $F_u = 430 MPa$). Use LRFD provisions. Consider threads excluded from shear plane. Consider 2 rows of bolts in the longitudinal direction.

4) Determine the maximum value of P_u permitted (Use LRFD). S275 Steel (F_y = 275MPa, F_u = 430MPa). Standard holes, M20 Bolts Grades 8.8 threads excluded from shear plane.

5) Determine the maximum value of P_u permitted (Use LRFD). S275 Steel (F_y = 275MPa, F_u = 430MPa). Standard holes, M22 Bolts Grades 8.8 threads excluded from shear plane.

6) Determine the number of M20 Grade 8.8 bolts threads excluded from shear plane required in the flange of I shape shown (bearing type connection). Do not consider bearing limit states.

Use LRFD, S355 Steel ($F_y = 355MPa$, $F_u = 510MPa$).

