Homework 1 - Xavier Gitiaux

February 2019

1 Exercise 1

Done!

2 Exercise 2

2.1

Denote $c = c_1c_2c_3c_4$ the cyphertext. The adversary compute $k = a - c_1\%26$. If $c_2 - k = b\%26$, it concludes that the password was "abcd"; otherwise, he concludes that the password was "kdmf".

2.2

Denote $c = c_1c_2c_3c_4$ the cyphertext. The adversary compute $k = a - c_1\%26$. If $c_3 - k = c\%26$, it concludes that the password was "abcd"; otherwise, he concludes that the password was "kdmf".

2.3

Denote $c = c_1c_2c_3c_4$ the cyphertext. The adversary compute $k = a - c_1\%26$. If $c_4 - k = d\%26$, it concludes that the password was "abcd"; otherwise, he concludes that the password was "kdmf".

2.4

If the key length is equal to the message length, perfect security is achieved: an adversary cannot distinguish the two passwords (i.e., cannot do better than flipping a coin to distinguish "abcd" and "kdmf").

3 Exercise 3

3.1

Plaintexts and cyphertexts are of size n bits.

3.2

Given a pair (m, c), the brute force attack consists in searching the $2^l \times 2^l$ key space for the pair of keys (k_1, k_2) such that $Enc_{k_1,k_2}(m) = c$. For each k_1 , the intermediate encrypted value $En_{k_1}(m)$ is stored in the n-bit available memory s, which is then accessed to encrypt with key k_2 . In the worst-case, the total number of loops is 2^{2l} and each loop requires 2 encryptions, so a $O(n2^{2l})$ running time if each of the 2×2^{2l} encryptions takes O(n) time.

Algorithm 1 Exercise 3: Brute-Force Attack - Question 2

```
1: Input: m, n, a n-bit storage s, \{E_k(.)\}_{k \in \{0,1\}^l}, \{D_k(.)\}_{k \in \{0,1\}^l}

2: for i=1..l do

3: for j=1..l do

4: s \leftarrow E_{k[i]}(m)

5: s \leftarrow E_{k[j]}(s)

6: if s == c then

7: return k[i], k[j].
```

3.3

Given a pair (m, c), an attack can use the $n2^l$ memory space in the following way:

- For each key k_1 in the 2^l key space, encrypt the plaintext m and store $Enc_{k_1}(m)$ along with the key k_1 in memory (assuming that storing a key is memory free) for example in a hash table.
- For each key k_2 in the 2^l key space, decrypt the cyphertext c using $Dec_{k_2}(c)$ and look for a match in the memory space.
- If a match is found, return the corresponding k_1 and k_2 .

The first loop takes 2^l encryptions, each at a cost O(n). The second loop takes at most 2^l decryptions, each at a cost O(n). Therefore the total running time is $O(n2^l)$.

Algorithm 2 Exercise 3: Brute-Force Attack - Question 3

```
1: ATTACK2DES(m, c)

2: Input: m, n, a n2^{l} bit storage s, \{E_{k}(.)\}_{k \in \{0,1\}^{l}}, \{D_{k}(.)\}_{k \in \{0,1\}^{l}}

3: storage \leftarrow \{\}

4: for i=1..l do

5: s[E_{k[i]}(m)] = k[i]

6: for j=1..l do

7: c1 \leftarrow D_{k[j]}(c)

8: if storage[c1] then

9: return storage[c1], k[j]
```

3.4

Given a pair (m, c), an attack can use the $n2^l$ memory space in the following way: search through all the keys k_1 and for each k_1 , compute $c_1 = En_{k_1}(m)$ and apply the procedure ATTACK2DES of the previous question to c1 and c. There are at most 2^l for loops and each iteration requires one encryption and one call to ATTACK2DES, so $O(2^l)$ encryptions and $O(2^l)$ decryptions. Therefore the total running time is $O(n2^{2l})$.

Algorithm 3 Exercise 3: Brute-Force Attack - Question 4

```
1: ATTACK3DES(m, c)

2: Input: m, n, a n2^{l} bit storage s, \{E_{k}(.)\}_{k \in \{0,1\}^{l}}, \{D_{k}(.)\}_{k \in \{0,1\}^{l}}

3: for i=1..l do

4: c1 \leftarrow E_{k[i]}(m).

5: k \leftarrow ATTACK2DES(c1, c)

6: if k is not None then

7: return k[i], k[1], k[2]
```

4 Exercise 4

4.1

The adversary first sends a message m with bit 0 only and receives a cyphertext c. Then he sends two messages $m_0 = m$ and $m_1 = 11$. The challenger returns c_b . If $c_b = c$, the adversary returns b = 0; otherwise he returns b = 1. The adversary distinguishes b = 0 from b = 1 with probability 1, since m and m_0 will be encrypted to the same cyphertext $m \oplus F_k(m)$, while m_1 encrypts to $m_1 + F_k(m_1) \neq m \oplus F_k(m)$.

4.2

The adversary first sends one message m with bit zero only. He receives a cyphertext $c = r||(H(r) \oplus m \oplus k)$. He takes the last n bits of c and compute $h = (H(r) \oplus m \oplus k) \oplus m = H(r) \oplus k$ and then, deduce the key k as $k = h \oplus H(r)$. Then, the adversary sends two messages $m_0 \neq m_1$. When receiving $c_b = r'||c_{2b}$, if $c_{2b} \oplus H(r') \oplus k = m_o$, he returns b = 0; otherwise, he returns b = 1. The adversary distinguishes b = 0 from b = 1 with probability 1, since he has obtained the key k in the first phase.

5 Exercise 5

5.1

This is a valid block cypher: for each $k\{0,1\}^2$ (i.e. each row), there is no repeat along the row and there are exactly 2^3 columns, so the row represents a permutation from $\{0,1\}^3$ to $\{0,1\}^3$.

5.2

This is a valid block cypher since for each k the identity function $E_k(x) = x$ is a permutation.

5.3

For each $k \in \{0,1\}^n$, $E_k^{''}$ is a one-to-one function: first, for $x \neq y$, $E_k^{''}(x) = E_k^{''}(y)$ implies that $\overline{x} = \overline{y}$ and thus that x = y. Moreover, for $y \in \{0,1\}$, $y = E_k^{''}(k \oplus \overline{y})$, so $E_k^{''}$ is onto. Therefore, for $k \in \{0,1\}^n$ $E_k^{''}$ is a permutation and $E_k^{''}$ is valid block cypher.

5.4

If a distinguisher queries x_1 and $x_2 \neq x_1$ from an oracle $E_k^{'}$ for some secret key k, he gets x_1 and x_2 respectively which would happen with negligible probability if E_k was randomly drawn from the set of all possible permutations of $\{0,1\}^n$. Therefore, $E_k^{'}$ is not a secure block cypher.

Similarly, by querying x_1 and $x_2 \neq x_1$ from the challenger, , a distinguisher would obtain y_1 and y_2 and compute $y = y_1 \oplus y_2$. If $y = x_1 \oplus x_2$, the distinguisher returns 1 (i.e. the challenger uses E_k'' for some secret key k); otherwise, the distinguisher returns 0 (the challenger uses a permutation randomly drawn from all permutations of $\{0,1\}^n$). Since $y = x_1 \oplus x_2$ happens with negligible probability with a random permutation, the distinguisher will win with non-negligible probability.