本节主题

中断向量表的发展

北京大学。嘉课

计算机组成

制作人:连续旅

实模式下的存储器地址空间

● 地址范围:00000H~FFFFFH,共1M字节

存储器地址	存储器	说明
FFFFFH		专用区(16字节):初始化代码区 CPU复位后从地址FFFF0H取出第 一条指令,通常是一条无条件转移指令,
FFFF0H		转移到系统程序的入口处
FFFEFH		
		通用区 用来存储一般的程序指令和数据
00400H		
003FFH		专用区(1 K字节): 中断向量表区 存放256个中断服务程序的入口地 址(也称中断向量),每个入口地址占4
00000H		个字节单元

8086的中断向量表

中断用途	类型号	说明
/ 	类型255	
供用户定义的中断 (224个)		
(227)	类型32	
/口以2014年12月	类型31	
保留的中断 (27个)		
(21)	类型5	
	类型4	溢出
/ _ 四 6/5 - 十 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	类型3	断点
专用的中断 (5个)	类型2	非屏蔽
	类型1	单步
	类型0	除法错

80386 ~ Core2的中断向量表

中断用途	类型号	说明	类型号	说明	
专用的 中断 (19个)	类型9	协处理器段超限			
	类型8	双中断错	类型18	机器检查**	
	类型7	协处理器不存在	类型17	对齐检查**	
	类型6	未定义的操作码	类型16	协处理器出错*	
	类型5	边界	类型15	未分配	
	类型4	溢出	类型14	页面出错*	
	类型3	断点	类型13	一般性保护	
	类型2	非屏蔽	类型12	堆栈段超限	
	类型1	单步	类型11	段不存在	
	类型0	除法错	类型10	无效任务状态段	

中断用途	类型号		
供用户定义的 中断 (224个)	类型255		
	类型32		
	类型31		
保留的中断 (13个)			
(101)	类型19		

^{*} 自80386起

^{**}自80486起

中断向量表存放的位置

IA-32的存储器寻址

以指令的寻址为例

🥑 实模式 CS:IP

❷ 保护模式 CS:EIP

EIP寄存器的寻址能力: 2³²=4G字节单元

80386起对外有32位地址线 寻址范围:232=4G字节单元

IA-32的存储器寻址

② 保护模式下,段基址不在CS中,而是在内存中

存储器片段

					IJ MAHAT ITA				
高地址									
描述符8191									
描述符8190									
其中一个 描述符→	字节7 基地址	字节6 其它	字节5 权限	字节4	字节3 基地址	字节2	字节1		4
描述符1									أحمر
描述符0									P
低地址									

• GDT:全局描述符表

• GDTR:全局描述符表的地址寄存器

GDT可在系统中的任何存储单元,通过
GDTR定位

保护模式的中断操作

中断向量表位置不同,其它操作与实模式类似存储器片段

中断描述符表(interrupt descriptor table, IDT) 每个中断描述符8个字节,256个中断描述符共2K字节 CPU

IDTR

IDTR:中断描述符表 地址寄存器

IDT可在系统中的任何 存储单元,通过IDTR 定位

本节小结

中断向量表的发展

北京大学。嘉课

计算机组制方

制作人:陈龄就

