Remedial Measures, Brown-Forsythe test,F test

Frank Wood

February 18, 2010

Remedial Measures

- ▶ How do we know that the regression function is a good explainer of the observed data?
 - Plotting
 - Tests
- ▶ What if it is not? What can we do about it?
 - Transformation of variables(next lecture)

Graphical Diagnostics for the Predictor Variable

- Dot Plot
 - Useful for visualizing distribution of inputs
- Sequence Plot
 - Useful for visualizing dependencies between error terms
- ▶ Box Plot Useful for visualizing distribution of inputs

Toluca manufacturing example again: production time vs. lot size

Dot Plot

- How many observations per input value?
- ► Range of inputs?

Sequence Plot

Figure:

▶ If observations are made over time, is there a correlation between input and position in observation sequence?

Box Plot

- Shows
 - Median
 - 1st and 3rd quartiles
 - Maximum and minimum

Residuals

Remember, the definition of residuals:

$$e_i = Y_i - \hat{Y}_i$$

▶ And the difference between that and the unknown true error

$$\epsilon = Y_i - E(Y_i)$$

▶ In a normal regression model the ϵ_i 's are assumed to be iid $N(0, \sigma^2)$ random variables. The observed residuals e_i should reflect these properties.

Remember: residual properties

Mean

$$\bar{e}_i = \frac{\sum e_i}{n} = 0$$

Variance

$$s^2 = \frac{(e_i - \bar{e})^2}{n-2} = \frac{SSE}{n-2} = MSE$$

Nonindependence of Residuals

- ▶ The residuals e_i are not independent random variables The fitted values \hat{Y}_i are based on the same fitted regression line.
 - The residuals are subject to two constraints
 - Sum of the e_i 's equals 0 Sum of the products $X_i e_i$'s equals 0
- ▶ When the sample size is large in comparison to the number of parameters in the regression model, the dependency effect among the residuals e_i can reasonably safely be ignored.

Definition: semistudentized residuals

Like usual, sine the standard deviation of ϵ_i is σ (itself estimated by square root of MSE) a natural form of standardization to consider is

$$e_i^* = \frac{e_i}{\sqrt{MSE}}$$

▶ This is called a semistudentized residual.

Departures from Model...

To be studied by residuals

- Regression function not linear
- Error terms do not have constant variance
- Error terms are not independent
- ▶ Model fits all but one or a few outlier observations
- Error terms are not normally distributed
- One or more predictor variables have been omitted from the model

Diagnostics for Residuals

- ▶ Plot of residuals against predictor variable
- ▶ Plot of absolute or squared residuals against predictor variable
- ▶ Plot of residuals against fitted values
- ▶ Plot of residuals against time or other sequence
- ▶ Plot of residuals against omitted predictor variables
- Box plot of residuals
- Normal probability plot of residuals

Diagnostic Residual Plots

Scatter and Residual Plot

Prototype Residual Plots

Nonconstancy of Error Variance

Presence of Outliers

Outliers can strongly effect the fitted values of the regression line.

Outlier effect on residuals

Nonindependence of Error Terms

Sequential observations

Non-normality of Error Terms

- Distribution plots
- Comparison of Frequencies
- ► Normal probability plot

Normal probability plot

▶ For a $N(0, MSE^{1/2})$ random variable, a good approximation of the expected value of the k-th smallest observation in a random sample of size n is

$$\sqrt{MSE}[z(\frac{k-.375}{n+.25})]$$

► A normal probability plot consists of plotting the expected value of the k-th smallest observation against the observed k-th smallest observation

Omission of Important Predictor Variables

- Example
 - Qualitative variable
 - Type of machine
- Partitioning data can reveal dependence on omitted variable(s)
- Works for quantitative variables as well
- Can suggest that inclusion of other inputs is important

Tests Involving Residuals

- ▶ Tests for randomness
- ► Tests for constancy of variance
- Tests for outliers
- ► Tests for normality

Correction Test for Normality

 Calculated the coefficient of correlation between residuals e_i and their expected values under normality

$$r = \sqrt{(R^2)}$$

 Tables(B.6 in the book) given critical values for the null hypothesis (normally distributed errors) holding.

Tests for Constancy of Error Variance

- ▶ Brown-Forsythe test does not depend normality of error terms.
 - The Brown-Forsythe test is applicable to simple linear regression when
 - The variance of the error terms either increases or decreases with \boldsymbol{X}
 - Sample size is large enough to ignore dependencies between the residuals
- Basically a t-test for testing whether the means of two normally distributed populations are the same

Brown-Forsythe Test

- ▶ Divide X into X_1 (the low values of X) and X_2 (the high values of X)
- ▶ Let e_{i1} be the error terms for X_1 and vice versa
- ▶ let $n = n_1 + n_2$
- ► The Brown-Forsythe test uses the absolute deviations of the residuals around their group median

$$d_{1i}=|e_{1i}-\tilde{e_1}|$$

Brown-Forsythe Test

► The test statistic for comparing the means of the absolute deviations of the residuals around the group medians is

$$t_{BF}^* = rac{ar{d_1} - ar{d_2}}{s\sqrt{rac{1}{n_1} + rac{1}{n_2}}}$$

where

$$s^2 = \frac{\sum (d_{i1} - \bar{d}_1)^2 + \sum (d_{i1} - \bar{d}_1)^2}{n-2}$$

Brown-Forsythe Test

▶ If n_1 and n_2 are not extremely small

$$t_{BF}^* \sim t(n-2)$$

approximately

▶ From this confidence intervals and test can be constructed.

F test for lack of fit

- Formal test for determining whether a specific type of regression function adequately fits the data.
- Assumptions(usual):
 - -Y|X
 - iid normally distributed same variance σ^2
- Requires: repeat observations at one or more X levels(called replicates)

Example

- ▶ 12 similar branches of a bank offered gifts for setting up money market accounts
- Minimum initial deposits were specific to qualify for the gift
- Value of gift was proportional to the specified minimum deposit
- ▶ Interested in: relationship between specified minimum deposit and number of new accounts opened

F Test Example Data and ANOVA Table

		(a) l	Data		
Branch	Size of Minimum Deposit (dollars)	Number of New Accounts Y _I	Branch <i>i</i>	Size of Minimum Deposit (dollars) X _i	Number of New Accounts Y _i
1 2 3 4 5 6	125 100 200 75 150	160 112 124 28 152 156	7 8 9 10 11	75 175 125 200 100	42 124 150 104 136
		(b) ANO	VA Table		
	Source of Variation	SS	df	MS	
	Regression Error	5,141.3 14,741.6	1 9	5,141.3 1,638.0	
	Total	19,882.9	10		

Fit

Data Arranged To Highlight Replicates

	Size of Minimum Deposit (dollars)						
Replicate	$j = 1$ $X_1 = 75$	$j = 2$ $X_2 = 100$	$j=3$ $X_3=125$	$j = 4$ $X_4 = 150$	$j = 5$ $X_5 = 175$	$j=6$ $X_6=200$	
i = 1	28	112	160	152	156	124	
i = 2	42	136	150		124	104	
Mean \bar{Y}_j	35	124	155	152	140	114	

- ► The observed value of the response variable for the i-th replicate for the j-th level of X is Y_{ij}
- ▶ The mean of the Y observations at the level $X = X_j$ is \bar{Y}_j

Full Model vs. Regression Model

The full model is

$$Y_{ij} = \mu_j + \epsilon_{ij}$$
 Full model

where

- μ_j are parameters j=1,...,c
- ϵ_{ij} are iid $N(0, \sigma^2)$
- ▶ Since the error terms have expectation zero

$$E(Y_{ij}) = \mu_{ij}$$

Full Model

- ▶ In the full model there is a different mean(a free parameter) for each X_i
- ► In the regression model the mean responses are constrained to lie on a line

$$E(Y) = \beta_0 + \beta_1 X$$

Fitting the Full Model

▶ The esstimators of μ_j are simply

$$\hat{\mu_j} = \bar{Y}_j$$

▶ The error sum of squares of the full model therefore is

$$SSE(F) = \sum \sum (Y_{ij} - \bar{Y}_j)^2 == SSPE$$

Degrees of Freedom

- ▶ Ordinary total sum of squares had n-1 degrees of freedom.
- ► Each of the j terms is a ordinary total sum of squares
 - Each then has n_j-1 degrees of freedom
- ➤ The number of degrees of freedom of SSPE is the sum of the component degrees of freedom

$$df_F = \sum_j (n_j - 1) = \sum_j n_j - c = n - c$$

General Linear Test

- Remember: the general linear test proposes a reduced model null hypotheses
 - this will be our normal regression model
- ► The full model will be as described (one independent mean for each level of X)

$$H_0: E(Y) = \beta_0 + \beta_1 X$$

 $H_a: E(Y) \neq \beta_0 + \beta_1 X$

SSE For Reduced Model

The SSE for the reduced model is as before

- remember

$$SSE(R) = \sum \sum [Y_{ij} - (b_0 + b_1 X_j)]^2$$
$$= \sum \sum (Y_{ij} - \hat{Y}_{ij})^2$$

- and has n-2 degrees of freedom $df_R = n - 2$

SSE(R)

		(a) I	Data		
Branch i	Size of Minimum Deposit (dollars)	Number of New Accounts Y _I	Branch <i>i</i>	Size of Minimum Deposit (dollars)	Number of New Accounts
1	125	160	7	75	42
2	100	112	8	175	124
3	200	124	9	125	150
4	75	28	10	200	104
5	150	152	11	100	136
6	175	156			
		(b) ANO	VA Table		
	Source of Variation	SS	df	MS	
	Regression	5,141.3	1	5,141.3	
	Error	14,741.6	9	1,638.0	
	Total	19,882.9	10		

F Test Statistic

From the general linear test approach

$$F^* = \frac{SSE(R) - SSE(F)}{df_R - df_F} \div \frac{SSE(F)}{df_F}$$
$$F^* = \frac{SSE - SSPE}{(n-2) - (n-c)} \div \frac{SSPE}{n-c}$$

where a little algebra takes us to the next slide

F Test Rule

▶ From the F test we know that large values of F* lead us to reject the null hypothesis:

If
$$F^* \leq F(1-\alpha; c-2, n-c)$$
, conclude H_0
If $F^* > F(1-\alpha; c-2, n-c)$, conclude H_a

► For this example we have

$$SSPE = 1,148.0 \qquad n-c = 11-6=5$$

$$SSE = 14,741.6$$

$$SSLF = 14,741.6 - 1,148.0 = 13,593.6 \qquad c-2=6-2=4$$

$$F^* = \frac{13,593.6}{4} \div \frac{1,148.0}{5}$$

$$= \frac{3,398.4}{229.6} = 14.80$$

Example Conclusion

- ▶ If we set the significance level to $\alpha = .01$
- ▶ And look up the value of the F inv-cdf F(.99, 4, 5) = 11.4
- ▶ We can conclude that the null hypothesis should be rejected.