7.45.1) If X_n metrizable with d_n , then

$$D(\mathbf{x}, \mathbf{y}) = sup\left\{\frac{\overline{d_i}(x_i, y_i)}{i}\right\}$$

is a metric for $X = \prod X_n$. Show X totally bounded if X_n totally bounded under d_n .

We'll consider $0 < \epsilon < 1$ because $\epsilon \ge 1$ is a trivial. For B(x,1) covers all of X.

Consider $B_D(\mathbf{x}, \epsilon)$ and take N to be s.t. $\frac{1}{N} < \epsilon$. Observe that for all

$$\alpha = \{1, 2, ..., N - 1\},\$$

$$\frac{1}{\alpha} \ge \epsilon$$
.

We have that for all α ,

$$\frac{\overline{d_{\alpha}}(x_{\alpha}, y_{\alpha})}{\alpha} < \epsilon \le \frac{1}{\alpha}.$$

It follows that

$$\overline{d_{\alpha}}(x_{\alpha}, y_{\alpha}) < 1$$

and therefore

$$d_{\alpha}(x_{\alpha},y_{\alpha})<1.$$

Since each X_n is totally bounded, there are finite $B_{d_{\alpha}}(x_{\alpha}, \epsilon)$ covering X_{α} . The remaining X_n , $(n \neq \alpha)$, are covered by one ϵ -ball. Let N_{α} be the number of ϵ -balls covering X_{α} .

We then have that there are a finite maximum of $\prod_{\alpha} N_{\alpha}$ open sets covering X.

7.46.1) Show that the set $B_C(f,\epsilon)$ form a basis for a topology on Y^X .

- (a) We can construct a $B_C(f, \epsilon)$ containing $f \in Y^X$.
- (b) Consider some $h \in B_C(f_1, \epsilon_1) \cap B_C(f_2, \epsilon_2)$.

Observe that \exists some positive

$$\delta_i := \epsilon_i - \sup\{d(h(x), f_i(x)) \mid x \in C\}$$

so that

$$B_C(h, \delta_i) \subset B_C(f_i, \epsilon_i).$$

Letting $\delta = min_i\{d_i\}$, we have that

$$B_C(h, \delta) \subset B_C(f_1, \epsilon_1) \cap B_C(f_2, \epsilon_2).$$

Thus, $B_C(f, \epsilon)$ satisfies being a basis for a topology on Y^X .

7.46.2) X space; (Y, d) metric space. For Y^X ,

 $(uniform) \supset (compact\ convergence) \supset (pointwise\ convergence).$

If X compact, first two coincide. If X discrete, second two coincide. The proof will be in steps.

(a) Compact Convergence \subset Uniform.

Let $B_C(f, \epsilon)$ be a basis element in the Compact Convergence Topology containing $f \in Y^X$.

$$B_C(f, \epsilon) = \sup\{d(f(x), g(x)) \mid x \in C\} < \epsilon.$$

Let $\delta = min\{\epsilon, 1\}$. Then

$$\overline{\rho}(f,g) = \sup\{\overline{d}(f(x),g(x)) \mid x \in C\} < \delta$$

implies

$$\overline{\rho}(f,g) = \sup\{d(f(x),g(x)) \mid x \in C\} < \delta < \epsilon.$$

Thus

$$B_{\overline{\rho}}(f,\delta) \subset B_D(f,\epsilon).$$

(b) Pointwise Convergence \subset Compact Convergence.

Let

$$S = \bigcap_{k=0}^{n} S(x_k, U_k)$$

be a finite intersection of sub-basis elements for $x_k \in C$. S is therefore a basis element of Pointwise Convergence Topology containing f.

$$f \in S$$
.

We have that $f(x_k) \in U_k$. Let δ_k be s.t. $B_C(f, \delta_k) \subset U_k$ and

$$\delta = \min\{d_k\}.$$

Then

$$B_C(f,\delta) \subset S$$
.

(c) X compact \to Compact Convergence \supset Uniform. Let $\delta < \epsilon < 1$ so that $\overline{d} = d$. It follows that on all compact C,

$$B_C(f,\delta) \subset B_\rho(f,\epsilon).$$

- (d) X discrete $\to f \in \{f\} \subset B_C(f, \epsilon)$. So Pointwise Convergence \supset Compact Convergence.
- 7.46.3) Show that the set $\mathcal{B}(\mathbb{R}, \mathbb{R})$ is closed in the uniform topology but not in the topology of compact convergence.
 - (\Rightarrow) Let f be a limit point of $\mathbb{R}^{\mathbb{R}}$ under the uniform topology. Then \exists sequence $(f_n) \to f$, where each f_n is bounded. Choose N s.t.

$$\overline{
ho}(f_N,f)<rac{1}{2}$$

with $diam(f_N) = M$. It follows that

$$d(f_N(x), f(x)) < \frac{1}{2}$$

since $\overline{d} = d$ for $\epsilon < 1$.

$$d(f(x), f(y)) \le d(f(x), f_N(x)) + d(f_N(x), f_N(y)) + d(f_N(y), f(y))$$

$$< \frac{1}{2} + M + \frac{1}{2}$$

$$= M + 1.$$

Thus $f \in \mathcal{B}(\mathbb{R}, \mathbb{R})$ implying $\mathcal{B}(\mathbb{R}, \mathbb{R})$ is closed.

Now consider the function

$$f(x) = \sinh(x)$$
$$= \frac{e^x - e^{-x}}{2}$$

and the family of functions

$$f_n(x) = \frac{e^x - e^{-x}}{e^{\frac{x}{n}} + e^{-\frac{x}{n}}}.$$

The function $f_n(x)$ is a modified version of

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

which is bounded. So that each $f_n(x) \in \mathcal{B}(\mathbb{R}, \mathbb{R})$.

Observe that on any compact interval C,

$$f_n|_C \to f|_C$$

since the denominator of f_n approaches 2.

By Theorem 46.2, $f_n \to f$. But f is not bounded as it behaves like $e^{\pm x}$ as $x \to \infty$ and therefore $\mathcal{B}(\mathbb{R}, \mathbb{R})$ is not closed.

7.46.4) $f_n(x) = \frac{x}{n}$. Which topologies does it converge in?

- (a) Uniform Topology NO $f_n(x)$ is not bounded $\forall n$. So no neighborhood of $\mathbb{R}^{\mathbb{R}}$ contain infinitely many f_n .
- (b) Compact Convergence Topology YES

 Be restricting x-values to compact sets, i.e. closed intervals, the sequence

$$f_n|_C \to 0.$$

By Theorem 46.2, $f_n \to f$.

(c) Pointwise Convergence Topology YES $\forall x \in X, f_n(x) \to 0.$

For which topologies does

$$f_n(x) = \frac{1}{n^3 \left[x - \frac{1}{n} \right]^2 + 1}$$

converge?

- (a) Uniform Topology Maybe
- (b) Compact Convergence Topology Yes. For $x \in [a, b]$,

$$\frac{1}{n^3 \left[x - \frac{1}{n} \right]^2 + 1} \longrightarrow \frac{1}{n^3 \left[x \right]^2 + 1}$$

$$\longrightarrow \frac{1}{\infty}$$

$$\longrightarrow 0.$$

- (c) Pointwise Convergence Topology
 Yes. Becuase Compact Convergence Topology is finer than this one.
- 7.46.5) Consider $f_n:(-1,1)\to\mathbb{R}$, defined by

$$f_n(x) = \sum_{k=1}^n kx^k.$$

- (a) Show (f_n) converges under compact convergence topology.
 - (\Rightarrow) For all $x \in C \subset (-1,1)$,

$$f_n(x) = \sum_{k=1}^n kx^k$$

$$\leq \sum_{k=1}^n nx^k.$$

These are partial sums of the geometric series so we know they converge on out interval. So $f_n \to f$.

- (b) Show (f_n) doesn't converge in the uniform topology. (\Rightarrow) The supremum of x^k is 1. So for all $\epsilon < 1$, we can find an x s.t. $x^k > \epsilon$. Thus, no ϵ ball contains f_n .
- 7.51.1) Show that if $h, h': X \to Y$ are homotopic and $k, k': Y \to Z$ are homotopic, then $k \cdot h$ and $k' \cdot h'$ are homotopic.
 - (\Rightarrow) Let

$$F(x,t) = \begin{cases} F(x,0) = h(x) \\ F(x,1) = h'(x) \end{cases}$$

$$G(x,t) = \begin{cases} G(y,0) = k(y) \\ G(y,1) = k'(y) \end{cases}$$

 $H(x,t) = G(F(x,t),t): X \times I \to Z$ is a homotopy between $k \circ h$. We can see that,

$$H(x,0) = G(F(x,0),0)$$

$$= G(h(x),0)$$

$$= k(h(x))$$

$$= (k \circ h)(x)$$

and

$$H(x,1) = G(F(x,1),1)$$
= $G(h'(x),1)$
= $k'(h'(x))$
= $(k' \circ h')(x)$

- 7.51.2) [X,Y] denote the set of homotopy classes of maps of X into Y.
 - (a) Let I = [0, 1]. Show that $\forall X$, the set [X, I] has a single element.

For any continuous map $f: X \to I$, we can deform it to 0,

$$F(x,t) = tf(x).$$

So that all continuous maps are homotopic to g(x) = 0 and therefore there is only one equivalence class in the set

(b) Show that if Y is path connected, the set [I, Y] has a single element.

Consider any two paths $h, g: I \to Y$. We can deform one to the other with a line straight line Homotopy:

$$H(x,t) = t \cdot h(x) + (1-t)g(x).$$

Therefore there is only one equivalence class.

- 7.51.3) X contractible if $i_X: X \to X$ is nullhomotopic.
 - (a) Show I and \mathbb{R} homotopic. Let

$$F(x,t) = t \cdot i_X(x).$$

(b) Show contractible space is path connected.

For $x, y \in X$, define the homotopy

$$F(x,t) = (1-t) \cdot i_X(x) + t \cdot 0$$

$$G(y,t) = t \cdot i_X(y) + (1-t) \cdot 0$$

Then the composition is a path from x to y going through 0.

- (c) -
- (d) -