Exercise A

2021315385 이건 / Gun Daniel Lee

Problem explanation

• Finding a single value *k* efficiently in a sorted N*N matrix (ascending order)

 Considering a search method that has the least elements accessed as its worst case

- "Ladder" method
 - Idea based on the additional material given during the first week
- Step-by-Step process
 - Comparison of the needed value and elements, starting with the bottom-left element of the matrix
 - Take one step up if the needed value is less than the current element
 - Take one step to the right if the needed value is greater than the current element

- Example:
 - Find k = 10

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

- Example:
 - Find k = 10
 - k < 13
 - Move one step up

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

- Example:
 - Find k = 10
 - k > 9
 - Move one step to the right

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

- Example:
 - Find k = 10
 - k == 10
 - k found in matrix

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Solution analysis

- Pros:
 - A flexible step-by-step comparison method
 - Consistent efficiency
 - Similar number of elements accessed for every case
- Cons
 - Possible inefficiency as the number of elements increase

Solution analysis

- Favorable inputs:
 - The inputted value *k* is located at the bottom-left quadrant of the matrix

Thank you!