Lab04-Church's Thesis

CS363-Computability Theory, Xiaofeng Gao, Spring 2015

* Please upload	l your assignment	to FTP or submit a	paper version on	the next class.
	* Name:	StudentId:	Email:	

- 1. Suggest the natural definition of computability on domain \mathbb{Q} (rational numbers).
- 2. Prove that the following functions are URM-computable by Church's Thesis.
 - (a) Ackermann function $\psi(x,y)$.
 - (b) $q(n) = n^{th}$ digit in the decimal expansion of e (e is the basis for natural logarithms).
- 3. A and \mathbb{B} are two domains other than \mathbb{N} . Assume there exist intuitively computable functions $\alpha : \mathbb{A} \to \mathbb{N}$ and $\alpha^{-1} : \mathbb{N} \to \mathbb{A}$ as encoding and decoding functions from \mathbb{A} to \mathbb{N} respectively (we have $\beta : \mathbb{B} \to \mathbb{N}$ and $\beta^{-1} : \mathbb{N} \to \mathbb{B}$ similarly). Then answer the following questions.
 - (a) To prove that $f : \mathbb{A} \to \mathbb{B}$ is computable, we need to construct an $f^* : \mathbb{N} \to \mathbb{N}$ and analyze its computability. How to calculate f^* ?
 - (b) Reversely, for a computable function $g : \mathbb{N} \to \mathbb{N}$, we can obtain an intuitively computable function $g' : \mathbb{A} \to \mathbb{B}$ from g. What is g' in notation of g, α and β ?
 - (c) Find a new coding function γ (with the help of α and β) to deal with computability on domain $\mathbb{A} \times \mathbb{B}$. (Hint: Consider π function given by $\pi(x,y) = 2^x(2y+1) 1$.)
- 4. Design a three-tape TM M that computes the function $f(m,n) = m \times n$, where both m and n belong to the natural number set \mathbb{N} . The alphabet is $\{1, \square, \triangleright, \triangleleft\}$, where the input on the first tape is m+1 "1"'s and n+1 "1"'s with a " \square " as the separation. Below is the initial configurations for input (m,n). The result is the number of "1"'s on the output tape with the pattern of $\triangleright 111 \cdots 111 \triangleleft$. First describe your design and then write the specifications of M in the form like $\langle q_S, \triangleright, \triangleright, \triangleright \rangle \to \langle q_1, \triangleright, \triangleright, R, R, R \rangle$ and explain the transition functions in detail (especially the meaning of each state).

Initial Configurations

Tape 1:	\triangleright	1	1	• • •	1	1	1	1	• • •	1	1	◁	
	\uparrow	\leftarrow	m +	· 1 squ	ıare	$s \rightarrow$	\leftarrow	n -	$\vdash 1 \text{ sq}$	uare	$s \rightarrow$		
Tape 2:	\triangleright					•	 	•					
	\uparrow												
Tape 3:	\Box					•	 	•					
	\uparrow												