

Model Development Phase Template

Date	15 March 2024	
Team ID	LTVIP2024TMID24955	
Project Title	SMS Spam Detection - AIML	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Paste the screenshot of the model training code

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
Multinomial Naive Bayes	Screenshot of the classification report	0.9681	Screenshot of the confusion matrix
SVC(sigmoid)	Screenshot of the classification report	0.9652	Screenshot of the confusion matrix
SVC(rbf)		0.9623	
Decision Tree Classifier		0.9497	

MODEL -- SVC(rbf) ** ACCURACY -- [0.9623]

```
y pred6=dt.predict(X test)
    from sklearn.metrics import accuracy score
     dec tree=accuracy_score(y_test,y_pred6)
    dec_tree
→ 0.9497584541062802
[ ] models = pd.DataFrame({
         'Model': ['MultinomialNB', 'SVC(rbf)', 'SVC(sigmoid)', 'DecisionTreeClassifier'],
         'Test Score': [score, svm_rbf, svm_sig, dec_tree]})
    models.sort_values(by='Test Score', ascending=False)
₹
                     Model Test Score
     0
               MultinomialNB
                               0.968116
     2
               SVC(sigmoid)
                               0.965217
                    SVC(rbf)
                               0.962319
```

MODEL – Decision tree classifier ** ACCURACY – [0.9497]

0.949758

Model Evaluation

3 DecisionTreeClassifier

```
[ ] from sklearn.metrics import confusion_matrix,accuracy_score
     cm = confusion_matrix(y_test, y_pred)
     score = accuracy_score(y_test,y_pred)
     print(cm)
     print('Accuracy Score Is:- ', score*100)
→ [[716 16]
      [ 17 286]]
    Accuracy Score Is:- 96.81159420289856
[ ] from sklearn.svm import SVC
     svm1=SVC(kernel='rbf')
     svm1.fit(X_train,y_train)
\rightarrow \overline{\phantom{a}}
     ▼ SVC ®
     SVC()
[ ] y_pred4=svm1.predict(X_test)
     from sklearn.metrics import accuracy_score
     svm_rbf=accuracy_score(y_test,y_pred4)
     svm_rbf
→ 0.9623188405797102
```