THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Tutorial Week 6

MATH1905: Statistics (Advanced) Semester 2, 2017

Web Page: http://sydney.edu.au/science/maths/MATH1905

Lecturer: Michael Stewart

Recall that if X and Y are independent random variables, then for all functions $g(\cdot)$ and $h(\cdot)$,

$$E[g(X)h(Y)] = E[g(X)] E[h(Y)].$$

- 1. (Multiple Choice) Suppose that $X_i \sim B(50, 0.02)$. The distribution of sample mean \bar{X} based on a random sample of size n = 100 is approximately:
 - (a) N(50, 0.02)
- (c) N(1, 0.98)
- (e) N(0.01, 0.098)

- (b) N(50, 1)
- (d) N(1, 0.0098)
- 2. (Multiple Choice) Suppose that X_1, X_2, \dots, X_{16} is a random sample of size 16 from the distribution N(100, 25). The distribution of \bar{X} (the sample mean) is:
 - (a) N(100, 25)
- (c) N(0, 25)

- (b) $N\left(100, \frac{5}{4}\right)$ (d) $N\left(100, \frac{25}{16}\right)$
- 3. Suppose that random variables X_1 and X_2 have joint probability distribution $P(X_1 = x_1, X_2 = x_2)$ given by

			x_1	
		-1	0	+1
	-1	1/16	3/16	1/16
x_2	0	$\frac{1/16}{3/16}$	0	3/16
	+1	1/16	3/16	1/16

- (a) Find the marginal distributions of X_1 and X_2 .
- (b) Show that X_1 and X_2 are **not** independent.
- (c) Evaluate $E(X_1)$, $E(X_2)$ and $E(X_1X_2)$.
- (d) Determine whether the variables are uncorrelated. That is, check whether $Cov(X_1, X_2) = 0$. Comment on this result comparing with part (b).
- 4. How many possible different words can be made by rearranging the letters of the word STATIS-TICS?
- 5. Suppose that an office receives telephone calls as a Poisson distribution with mean $\lambda = 0.5$ per min. What is the probability of receiving exactly 1 call during a 1 minute interval? What is the probability of receiving no call during a 1 minute interval? The number of calls in a 5 minute interval (also) follows a Poisson distribution with $\lambda = 5 \times 0.5$. What is the probability of receiving no call during a 5 minute interval?
- **6.** Let $Z \sim N(0,1)$. Consider the following R commands and output:

z=c(0.3,0.5,0.72,0.75,1,1.4,1.96)Phi.z=pnorm(z) cbind(z,Phi.z)

```
z Phi.z
[1,] 0.30 0.6179114
[2,] 0.50 0.6914625
```

[3,] 0.72 0.7642375

[4,] 0.75 0.7733726

[5,] 1.00 0.8413447

[6,] 1.40 0.9192433

[7,] 1.96 0.9750021

```
p=c(0.9,0.95)
Phi.inv.p=qnorm(p)
cbind(p,Phi.inv.p)
```

p Phi.inv.p

[1,] 0.90 1.281552

[2,] 0.95 1.644854

- (a) Use the information above to find (to 4 decimal places)
 - (i) P(Z < 1.4)
- (b) Use the information above to find (to 3 decimal places) z such that
 - (i) $P(Z \le z) = 0.90$
- (c) If $X \sim N(10, 16)$, use the information above to find
 - (i) P(X > 12)
- 7. Glaucoma is a disease of the eye that is manifested by high intraocular pressure. The distribution of intraocular pressure in unaffected adults is approximately normal with mean 16 mm Hg and standard deviation 4 mm Hg.
 - (a) If the normal range for intraocular pressure (in mm Hg) is considered to be 12 20, what percentage of unaffected adults would fall within this range?
 - (b) An adult is considered to have abnormally high intraocular pressure if the pressure reading is in the top percentile (1 percent) for unaffected adults. Determine pressures considered to be abnormally high.
- 8. Suppose the random variable X has probability distribution given by

$$P(X = x) = p(1 - p)^x$$
, for $x = 0, 1, 2, ...$

for some 0 . Then X has a geometric distribution, but this is the version describing the number of failures before the first success in a sequence of independent success/failure trials, where the success probability at each trial is <math>p.

Show that the probability generating function $\pi_X(s) = E\left(s^X\right)$ is given by

$$\pi_X(s) = \frac{p}{1 - s(1 - p)}$$

so long as |s| < 1/(1-p).

9. Suppose that X_1 , X_2 and X_3 are independent random variables all of which have the same distribution as X in the previous question, i.e for i = 1, 2, 3 and each x = 0, 1, 2, ...,

$$P(X_i = x) = p(1 - p)^x.$$

Define the sum $Y = X_1 + X_2 + X_3$. We are going to derive P(Y = 3) in two ways:

- directly;
- using probability generating functions.
- (a) Enumerate all possible triples (x_1, x_2, x_3) where
 - each x_i is a non-negative integer;
 - $x_1 + x_2 + x_3 = 3$.

Hence compute P(Y=3).

(b) Writing $\pi_X(s)$ for the probability generating function of X in question 8 above, the probability generating function of $Y = X_1 + X_2 + X_3$ is given by

$$\pi_Y(s) = E\left(s^Y\right) = E\left(s^{X_1 + X_2 + X_3}\right) = E\left(s^{X_1}\right)E\left(s^{X_2}\right)E\left(s^{X_3}\right) = \left[\pi_X(s)\right]^3 = \left[\frac{p}{1 - s(1 - p)}\right]^3.$$

Differentiate this three times and hence determine P(Y=3).

10. Using R, find the exact probability $P(X \le 10)$ for $X \sim B(20, 0.6)$. Find the corresponding normal approximation with continuity correction (**hint**: if you are unsure whether to "add $\frac{1}{2}$ " or "subtract $\frac{1}{2}$ ", note that since X is integer-valued, $P(X \le 10) = P(X < 11)$).