Bayesian networks

CS4881 Artificial Intelligence Jay Urbain, PhD

Credits:

Judea Pearl, "Causality: Models, Reasoning, and Inference" Russell and Norvig, AIMA

Outline

- Introduction to Bayesian Networks
- Syntax
- Semantics

Bayesian networks

- Graphical notation for conditional independence assertions of full joint distributions.
- Syntax:
 - a set of nodes, one per random variable
 - a directed, acyclic graph (Semantics: link ≈ "directly influences" or "causes")
 - a conditional distribution for each node given its parents:

 $P(X_i | Parents(X_i))$

 In the simplest case, conditional distributions are represented as a conditional probability table (CPT) giving the distribution over each random variable X_i for each combination of parent values.

Topology of network encodes conditional independence

assertions:

- Weather is independent of the other variables.
- Toothache and Catch are conditionally independent given Cavity.

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example cont'd.

Compactness

- A CPT for Boolean random variable X_i with k Boolean parents has 2^k rows for the combinations of parent values, i.e., 2 parents => 4 rows
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1-p)

- I.e., the network grows linearly in n, vs. $O(2^n)$ for the full joint distribution
- For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^{5}-1 = 31$)
- Note: Show factorization!

Semantics

The full joint distribution is defined as the product of the local conditional distributions:

$$P(X_1, ..., X_n) = \pi_{i=1}^n P(X_i | Parents(X_i))$$

e.g.,
$$P(j \land m \land a \land \neg b \land \neg e)$$

= $P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$
= $0.90 * 0.70 * 0.001 * 0.999 * 0.998$

Constructing Bayesian networks

- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i = 1 to n
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1}

$$P(X_i | Parents(X_i)) = P(X_i | X_1, ... X_{i-1})$$

This choice of parents guarantees (conditional indepedance):

$$P(X_1, ..., X_n) = \pi_{i=1}^n P(X_i | X_1, ..., X_{i-1}) \text{ (chain rule)}$$
$$= \pi_{i=1} P(X_i | ^n Parents(X_i)) \text{ (by construction)}$$

• Suppose we choose the ordering M, J, A, B, E

$$P(J \mid M) = P(J)$$
?

• Suppose we choose the ordering M, J, A, B, E

$$P(J \mid M) = P(J)$$
? No $P(A \mid J, M) = P(A \mid J)$?, $P(A \mid J, M) = P(A)$?

Suppose we choose the ordering M, J, A, B, E

$$P(J \mid M) = P(J)$$
? No
 $P(A \mid J, M) = P(A \mid J)$? $P(A \mid J, M) = P(A)$? No
 $P(B \mid A, J, M) = P(B \mid A)$?
 $P(B \mid A, J, M) = P(B)$?

Suppose we choose the ordering M, J, A, B, E

$$P(J | M) = P(J)$$
? No
 $P(A | J, M) = P(A | J)$? $P(A | J, M) = P(A)$? No
 $P(B | A, J, M) = P(B | A)$? Yes
 $P(B | A, J, M) = P(B)$? No
 $P(E | B, A, J, M) = P(E | A)$?
 $P(E | B, A, J, M) = P(E | A, B)$?

Suppose we choose the ordering M, J, A, B, E

$$P(J \mid M) = P(J)$$
? No
 $P(A \mid J, M) = P(A \mid J)$? $P(A \mid J, M) = P(A)$? No
 $P(B \mid A, J, M) = P(B \mid A)$? Yes
 $P(B \mid A, J, M) = P(B)$? No
 $P(E \mid B, A, J, M) = P(E \mid A)$? No/Yes?
 $P(E \mid B, A, J, M) = P(E \mid A, B)$? Yes

Example contd.

- Deciding conditional independence is hard in non-causal directions
- Causal models and conditional independence seem hardwired for humans!
- Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution
- Generally easy for domain experts to construct
- Very powerful real world systems
- Note: Example...