Nama: Jovita Amanda

NIM: 064002200033

Hari/Tanggal: Rabu, 16 Agustus 2023

Praktikum Statistika

MODUL 12

Nama Dosen: **Dedy Sugiarto**

Nama Asisten Labratorium 1. Elen Fadilla Estri 064002000008 2. Rukhy Zaifa Aduhalim 064002000041

Regresi Linear Sederhana dan Berganda

1. Teori Singkat

Pada regresi linier akan dibicarakan masalah pendugaan atau peramalan sebuah variabel dependen Y dengan sebuah variabel independen X yang telah diketahui nilainya. Model persamaan linier yang digunakan di sini adalah:

$$\hat{v} = a + bx$$

Regresi linier berganda Jika variabel dependen-nya dihubungkan dengan lebih dari satu variabel independen, maka persamaan yang dihasilkan adalah persamaanregresi linier berganda (multiple linier regression). Dalam hal ini kita membatasi pada kasus dua peubah bebas X1 dan X2 saja. Dengan hanya dua peubah bebas, persamaan regresi contohnya menjadi:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2$$

Salah satu ukuran kebaikan model adalah dengan melihat koefisien determinasi R2 yang menyatakan proporsi keragaman variabel Y yang dapat dijelaskan oleh variabel X. Namun penggunaan yang lebih baik adalah dengan menggunakan nilai R-Sq(adj), yang merupakan nilai estimasi yang tidak bias (unbiased estimate) dari populasi.

2. Alat dan Bahan

Hardware: Laptop/PC Software : R Studio

3. Elemen Kompetensi

a. Latihan pertama – Regresi

Misalkan ingin dilakukan pendugaan terhadap nilai penjualan dalam USD (variabel Y) berdasarkan nilai biaya iklan yang dikeluarkan dalam USD (variabel X) di suatu perusahaan. Data sampel dalam 12 bulan terakhir adalah sebagai berikut:

X	40	20	25	20	30	50	40	20	50	40	25	50
Y	385	400	395	365	475	440	490	420	560	525	480	510

1. buatlah persamaan regresi untuk menduga penjualan mingguan (Y) berdasarkan pengeluaran iklan (X).

```
df_nama=read.delim("clipboard")
head(df_nama)
model_reg=lm(df_nama$Y~df_nama$X)
summary(model_reg)
```

Output:

```
> df_jovita=read.delim("clipboard")
> head(df_jovita)
  X
1 40 385
2 20 400
3 25 395
4 20 365
5 30 475
6 50 440
> model_reg=lm(df_jovita$Y~df_jovita$X)
> summary(model_reg)
Call:
lm(formula = df_jovita$Y ~ df_jovita$X)
Residuals:
    Min
             10 Median
                             3Q
                                    Max
-87.538 -32.700 8.566 39.118 55.774
Coefficients:
           Estimate Std. Error t value
(Intercept) 343.706 44.766
                                  7.678
df_jovita$X
               3.221
                          1.240
                                  2.598
```

Penjelasan: Perintah dengan sesuai dari output akan mengeluarkan data seperti penjualan mingguannya berdasarkan pengeluaran iklan

2. Hitunglah R-square (Koefisien determinasi)

```
Nilai R Squarenya adalah 0.403
```

Output:

```
Residual standard error: 50.23 o
Multiple R-squared: 0.403,
F-statistic: 6.751 on 1 and 10 D
```

b. Latihan Kedua – Tugas

Lakukan analisis regresi untuk memprediksi variabel Price (harga rumah) berdasarkan variabel SqFt (luas tanah), bedrooms dan bathrooms. . Lakukan evaluasi terhadap model regresi yang digunakan.

		Bedroom					
Price	SqFt	s	Bathrooms	Offers	Brick	Neighborhood	

114300	1790	2	2	2	No	East
114200	2030	4	2	3	No	East
114800	1740	3	2	1	No	East
94700	1980	3	2	3	No	East
119800	2130	3	3	3	No	East
114600	1780	3	2	2	No	North
151600	1830	3	3	3	Yes	West
150700	2160	4	2	2	No	West
119200	2110	4	2	3	No	East
104000	1730	3	3	3	No	East
132500	2030	3	2	3	Yes	East
123000	1870	2	2	2	Yes	East
102600	1910	3	2	4	No	North
126300	2150	3	3	5	Yes	North
176800	2590	4	3	4	No	West
145800	1780	4	2	1	No	West
147100	2190	3	3	4	Yes	East
83600	1990	3	3	4	No	North
111400	1700	2	2	1	Yes	East
167200	1920	3	3	2	Yes	West
116200	1790	3	2	3	No	East
113800	2000	3	2	4	No	North
91700	1690	3	2	3	No	North
106100	1820	3	2	3	Yes	North
156400	2210	4	3	2	Yes	East
149300	2290	4	3	3	No	North
137000	2000	4	2	3	No	West
99300	1700	3	2	2	No	East
69100	1600	2	2	3	No	North
188000	2040	4	3	1	Yes	West
182000	2250	4	3	3	Yes	West
112300	1930	2	2	2	Yes	North
135000	2250	3	3	3	Yes	East
139600	2280	5	3	4	Yes	East
117800	2000	2	2	3	No	North
117100	2080	3	3	3	No	North
117500	1880	2	2	2	No	North
147000	2420	4	3	4	No	West

131300	1720	3	2	1	No	West
108200	1740	3	2	2	No	North
106600	1560	2	2	1	No	East
133600	1840	4	3	2	No	West
105600	1990	2	2	3	No	East
154000	1920	3	2	1	Yes	East
166500	1940	3	3	2	Yes	West
103200	1810	3	2	3	No	East
129800	1990	2	3	2	No	North
90300	2050	3	2	6	No	North
115900	1980	2	2	2	No	East
107500	1700	3	2	3	Yes	North
151100	2100	3	2	3	Yes	East
91100	1860	2	2	3	No	North
117400	2150	2	3	4	No	North
130800	2100	3	2	3	No	North
81300	1650	3	2	3	No	North
125700	1720	2	2	2	Yes	East
140900	2190	3	2	3	Yes	East
152300	2240	4	3	3	No	West
138100	1840	3	3	1	No	West
155400	2090	4	2	1	No	West
180900	2200	3	3	1	No	West
100900	1610	2	2	2	No	North
161300	2220	4	3	2	No	West
120500	1910	2	3	2	No	East
130300	1860	3	2	2	No	West
111100	1450	2	2	1	Yes	North
126200	2210	3	3	4	No	North
151900	2040	4	3	3	No	East
93600	2140	3	2	4	No	North
165600	2080	4	3	3	No	West
166700	1950	3	3	3	Yes	West
157600	2160	4	2	1	No	West
107300	1650	3	2	3	No	North
125700	2040	3	3	2	No	East
144200	2140	3	3	3	No	West
106900	1900	2	2	2	No	North

ı	i	i	Ī	Ī	i	1
129800	1930	3	2	2	No	West
176500	2280	4	3	3	Yes	West
121300	2130	3	2	3	No	North
143600	1780	4	2	1	No	West
143400	2190	3	3	4	Yes	East
184300	2140	4	3	2	Yes	West
164800	2050	2	2	1	Yes	West
147700	2410	3	3	2	No	East
90500	1520	2	2	3	No	North
188300	2250	4	3	2	Yes	West
102700	1900	4	2	4	No	North
172500	1880	3	3	1	Yes	West
127700	1930	3	3	2	No	North
97800	2010	2	2	4	No	North
143100	1920	4	2	2	No	West
116500	2150	3	2	2	No	East
142600	2110	3	2	2	No	West
157100	2080	3	3	2	No	East
160600	2150	4	3	3	Yes	West
152500	1970	2	2	1	Yes	West
133300	2440	3	3	3	No	East
126800	2000	2	2	1	Yes	East
145500	2060	3	2	1	No	West
171000	2080	3	3	2	Yes	West
103200	2010	3	2	5	No	North
123100	2260	3	3	5	No	East
136800	2410	3	3	4	No	East
211200	2440	4	3	3	Yes	West
82300	1910	3	2	4	No	East
146900	2530	4	3	4	No	West
108500	2130	3	2	4	No	North
134000	1890	3	2	1	Yes	East
117000	1990	3	3	3	Yes	East
108700	2110	3	2	3	No	East
		•		•	•	

1. Regresi Berganda Script

```
> df_jovita=read.delim("clipboard")
> df_jovita$brick_dummy <- ifelse(df_jovita$Brick =="Yes", 1,0)
> df_jovita$N_dummy1 <- ifelse(df_jovita$Neighborhood =="West", 1,0)
> df_jovita$N_dummy2 <- ifelse(df_jovita$Neighborhood =="North", 1,0)</pre>
> model=lm(df_jovita$Price~df_jovita$SqFt+df_jovita$Bedrooms+df_jovita$Bathrooms+df_jovita$brick_dummy+df
_jovita$N_dummy1+df_jovita$N_dummy2)
> summary(model)
```

Output:

```
caii:
lm(formula = df_jovita$Price ~ df_jovita$SqFt + df_jovita$Bedrooms +
   df_jovita$Bathrooms + df_jovita$brick_dummy + df_jovita$N_dummy1 +
   df_jovita$N_dummy2)
Residuals:
         1Q Median
  Min
                     3Q
                           Max
-32008 -7323 -119
                    7819 33392
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                   22785.141 11037.189 2.064 0.04112 *
(Intercept)
                                6.404 5.610 1.30e-07 ***
df_jovita$SqFt
                      35.930
df_jovita$Bedrooms
                   1902.169
                             1902.270 1.000 0.31933
df_jovita$Bathrooms 6826.925
                                       2.664 0.00878 **
                              2562.812
df_jovita$brick_dummy 18507.779 2396.302 7.723 3.65e-12 ***
df_jovita$N_dummy2 -4865.694 2721.805 -1.788 0.07633 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 12150 on 121 degrees of freedom
Multiple R-squared: 0.805, Adjusted R-squared: 0.7954
F-statistic: 83.27 on 6 and 121 DF,
                                p-value: < 2.2e-16
```

R Square

```
Adjusted R-squared: 0.7954
DF, p-value: < 2.2e-16
```

Penjelasan:

Jika mencari regresi berganda dengan menggunakan file houseprice akan mengeluarkan hasil R square: 0.7954

2. Menampilkan rata rata harga perbagian

Jurusan Teknik Informatika & Sistem Informasi

Script:

```
>by(df_jovita$Price, df_jovita$Neighborhood, mean)
>by(df_jovita$Price, df_jovita$Brick, mean)
```

Output:

```
> by(df_jovita$Price, df_jovita$Neighborhood, mean)
df_jovita$Neighborhood: East
[1] 125231.1
df_jovita$Neighborhood: North
[1] 110154.5
df_jovita$Neighborhood: West
[1] 159294.9
> by(df_jovita$Price, df_jovita$Brick, mean)
df_jovita$Brick: No
[1] 121958.1
df_jovita$Brick: Yes
[1] 147769
```

Penjelasan:

Berikut rata rata harga pembagian dari file houseprice

4. File Praktikum

Github Repository:

```
https://github.com/jovitaamnda/prak12.statis.git
```

5. Soal Latihan

Soal:

- 1. Apa itu Regresi Linear Sederhana dan Regresi Linear Berganda?
- 2. Sebutkan perbedaan mendasar dari Regresi Linear Sederhana dan Regresi Linear Berganda?

Jawaban:

1. - Regresi Linear Sederhana adalah metode statistik yang digunakan untuk memahami hubungan antara variabel independen (input) dengan variabel dependen (output)

menggunakan garis lurus. Ini cocok untuk kasus di mana hanya satu variabel independen yang mempengaruhi variabel dependen.

- Regresi Linear Berganda adalah metode statistik yang serupa dengan regresi linear sederhana, tetapi memungkinkan untuk memodelkan hubungan antara variabel dependen dan dua atau lebih variabel independen secara simultan.
- 2. Regresi Linear Sederhana melibatkan satu variabel independen dan menggambarkan hubungan dengan garis lurus tunggal, sementara Regresi Linear Berganda melibatkan dua atau lebih variabel independen dan menggambarkan hubungan dengan garis lurus dengan beberapa koefisien.

6. Kesimpulan

- a. Dalam pengerjaan praktikum Statistika, mengenai Regresi Linear Sederhana dan Berganda, peserta akan mempelajari konsep analisis regresi untuk memahami hubungan antara dua atau lebih variabel. Dalam latihan pertama, peserta akan melakukan regresi linear sederhana untuk memprediksi nilai penjualan mingguan (Y) berdasarkan pengeluaran iklan (X). Langkah-langkahnya melibatkan pembuatan persamaan regresi, penghitungan koefisien determinasi (R-square), dan evaluasi model regresi.
- b. Kita juga dapat mengetahui, bahwa praktikum ini bertujuan untuk memberikan pemahaman tentang cara melakukan analisis regresi linear berganda untuk memprediksi variabel respon berdasarkan beberapa variabel prediktor. Melalui praktikum ini, peserta akan memahami bagaimana menggunakan metode regresi berganda, menghitung Rsquare untuk mengukur seberapa baik model memfitting data, dan juga melakukan analisis statistik untuk mengevaluasi model regresi yang digunakan. Hasil dari praktikum ini akan membantu peserta memahami bagaimana mengaplikasikan konsep regresi dalam analisis data dan menginterpretasi hasil yang diperoleh.

7. Cek List (**√**)

No	Elemen Kompetensi	Penyelesaian		
110	Elemen Rompeters	Selesai	Tidak Selesai	
1.	Latihan Pertama	✓		
2.	Latihan Kedua	✓		

8. Formulir Umpan Balik

No	Elemen Kompetensi	Waktu Pengerjaan	Kriteria
1.	Latihan Pertama	15 Menit	1.Menarik
2.	Latihan Kedua	15 Menit	1.Menarik

Keterangan:

- 1. Menarik
- 2. Baik
- 3. Cukup
- 4. Kurang