

Algorithmique numérique - ANUM

Academic year 2022-23

Additional Notes

 $Instructor: Prof. \ Stef \ Graillat$

written by Hayato Ishida *This note only contains additional information to lecture slides. This note may be useful only if use with lecture slides.

Contents

I. Possibly useful study materials	3
II. Lecture 1: Introduction to MATLAB and to floating-po	int arithmetic 3
III. Lecture 2: Matrix computation	4

I. Possibly useful study materials

- Scientific Computing, An Introductory Survey, Michael T. Heath, McGraw-Hill, 2002
 Available online (I also have an pdf copy)
- 2. A First Course in Numerical Methods, Uri M. Ascher, Chen Greif, SIAM, 2011: should be available at the library on campus
- 3. Introduction to Scientific Computing and Data Analysis, Mark H. Holmes, Springer, 2016: should be available at the library on campus

II. Lecture 1: Introduction to MATLAB and to floating-point arithmetic

Rounding

- *Machine numbers*: Real numbers that are exactly representable in a given floating-number system.
- In other cases, it is approximated by a "nearby" floating-point number. This approximation is called *rounding* and the error caused by this approximation is called *rounding error*.
- The most accurate rounding method is *rounding to nearest* but it is more expensive to implement. It is also a default set by IEEE.

Cancellation*

- An source of rounding error that occurs with subtraction.
- It occurs when subtracting two nearby numbers. the most significant digits in operand matches and cancel each other
- Suppose a and b already contain some rounding error, perform subtraction on these number leads to large error. Example: consider three floating-number a = 1.22, b = 3.34, c = 2.27 and perform $b^2 4ac$. The exact result of this is 0.0292, however, with rounding: $b^2 = 11.1556$ round to 11.2 and 4ac = 11.0776 round to 11.1, then result of subtraction is 0.1. *note that this is just a example and result might differ in different settings.

Absorption

- with floating-point we lose some algebratic property of real number. For instance, we might face the situation where:

$$(a+b) + c \neq a + (b+c)$$

III. Lecture 2: Matrix computation

- Transpose: $a_{ij} \rightarrow a_{ji}^T$
- SVD can solve most of problems but it is quite expensive. It referred as Swiss knife
- Between dense and sparse, there is no specified boundry.

Algebraic properties of SVD:

- SVD can be rewritten as follow by writing $V = [v_1, v_2, ..., v_n]^T$, and: $U = [u_1, u_2, ..., u_n]^T$:

$$A = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$

Perron-Frobenius theorem:

- (1) If $A \in \mathbb{R}^{n \times n}$ is nonnegative then
- $\rho(A)$ is an eigenvalue of A.
- there is a nonnegative eigenvector x such that $Ax = \rho(A)x$.
 - (2) If $A \in \mathbb{R}^{n \times n}$ is nonnegative and irreducible then
- $\rho(A)$ is an eigenvalue of A.
- $\rho(A) > 0$
- there is a nonnegative eigenvector x such that $Ax = \rho(A)x$.
- $\rho(A)$ is a simple eigenvalue.
- (3) If $A \in \mathbb{R}^{n \times n}$ is positive then (2) holds and, in addition, $|\lambda| < \rho(A)$ for any eigenvalue λ with $\lambda \neq \rho(A)$.

Stochastic matrix:

A matrix $P \in \mathbb{R}^{n \times m}$ said to be stochastic if:

 $P \ge 0$ and,

$$\sum_{j=1}^{n} P_{ij} = 1 \quad \text{all} \quad i = 1, 2, ..., n$$