Topology Groove - pt.1

Riccardo Pedrotti 10 aprile 2014

1 Base di una Topologia

Definizione 1 (Sistema Fondamentale di Intorni). Sia X uno spazio topologico, un sistema fondamentale di intorni di un punto x (risp. di un sottoinsieme A di X) è una collezione \mathcal{C} di intorni di x (rispettivamente di A) tale per cui per ogni intorno V di x (risp. A) esiste un intorno $W \in \mathcal{C}$ tale che $W \subset V$.

Definizione 2 (Base per una Topologia). Sia X un insieme. Una base per una topologia su X è una collezione \mathcal{B} di sottoinsiemi di X, chiamati elementi della base, tale che

- 1. Per ogni $x \in X$, esiste almeno un elemento di \mathcal{B} che contiene x
- 2. Se x appartiame a due elementi della base B_1 , B_2 , allora esiste un elemento della base B_3 che contiene x tale che $B_3 \subset B_1 \cap B_2$

Se \mathcal{B} soddisfa queste due condizioni, allora possiamo definire una topologia τ generata da \mathcal{B} in questo modo: un sottoinsieme U di X è aperto in X (cioè è un elemento di τ) se per ogni $x \in U$, esiste un elemento B della base \mathcal{B} tale che $x \in B$ e $B \subset U$. Notiamo che ogni elemento della base è automaticamente aperto.

Ma è una topologia quella che abbiamo appena costruito?

- 1. $\emptyset \in \tau$. Infatti l'insieme vuoto verifica banalmente le richieste. (Per chi non fosse convinto, riuscite a trovare un elemento in \emptyset che non sia contenuto in un elemento della base?)
- 2. $X \in \tau$ anche questo è banale, in quanto la base \mathcal{B} ricopre X
- 3. Consideriamo l'unione arbitraria di elementi di τ $U = \bigcup_{\alpha} U_{\alpha}$. Mostriamo che siamo ancora in τ . Sia $x \in U$, quindi esiste un indice α tale che $x \in U_{\alpha}$. Poiché $U_{\alpha} \in \tau$, cioè è aperto, esiste $B \in \mathcal{B}$ tale che $x \in B \subset U_{\alpha} \subset U$. Quindi U è aperto per definizione.
- 4. Prendiamo ora due aperti U_1 , U_2 e mostriamo che la loro intersezione è ancora aperta. Sia $x \in U_1 \cap U_2$. Per ipotesi esistono due elementi della base che contengono il punto x, e più precisamente $B_1 \subset U_1$, $B_2 \subset U_2$. La seconda proprietà di una base per una topologia ci permette di scegliere un elemento della base B_3 che contiene x e tale che $B_3 \subset B_1 \cap B_2$. B_3 è l'intorno di x cercato che rende $U_1 \cap U_2$ un aperto. Per induzione si verifica per ogni intersezione finita.

Un altro modo per descrivere la topologia generata da una base $\mathcal B$ ci è data dal prossimo lemma

Lemma 1. Sia X un insieme, sia \mathcal{B} una base per una topologia τ su X. Allora τ è uguale alla collezione delle unioni arbitrarie di elementi di \mathcal{B} .

Dimostrazione. Data una collezione di elementi di \mathcal{B} , loro sono ovviamente elementi di τ . Poichè τ è una topologia, la loro unione è ancora in τ . Al contrario, dato $U \in \tau$, scegliamo per ogni $x \in U$ un elemento $B_x \in \mathcal{B}$ tale che $x \in B_x \subset U$. Allora $U = \bigcup_{x \in U} B_x$, quindi U è uguale ad un'unione di elementi di \mathcal{B} .

Lemma 2. Sia X uno spazio topologico. Supponiamo che \mathcal{C} sia una collezione di aperti di X tali che per ogni aperto U di X e per ogni x in U, c'e un elemento C di \mathcal{C} tale che $x \in C \subset U$. Allora \mathcal{C} è una base per la topologia di X.

Dimostrazione. Dobbiamo mostrare che \mathcal{C} è una base. La prima condizione è facile: X è aperto, e quindi per ogni suo $x \in X$ esiste un elemento C di \mathcal{C} che tale che $x \in C \subset X$. La seconda proprietà è facilmente verificata. $C_1 \cap C_2$ è ancora aperto e quindi per ipotesi esiste un elemento $C_3 \subset C_1 \cap C_2$

Sia ora τ la collezione degli aperti di X; vogliamo mostrare che la topologia τ' generata da \mathcal{C} è uguale alla topologia τ . Prima di tutto notiamo che se U appartiene a τ e se $x \in U$, allora per ipotesi esiste $C \in \mathcal{C}$ tale che $x \in C \subset U$. Segue che U appartiene a τ' , per definizione. D'altro canto, se W appartiene a τ' è unione di elementi della base che sono aperti in τ , e quindi è aperto in τ .

Definizione 3 (Prebase). Una prebase \mathcal{D} per una topologia su X è una collezione di sottoinsiemi di X la cui unione copre tutto X. La topologia generata dalla prebase \mathcal{D} è definita come la collezione di tutte le unioni delle intersezioni di elementi di \mathcal{D} .

Dobbiamo ovviamente controllare che tale topologia generata (che chiameremo τ) sia effettivamente una topologia. A tal riguardo ci basta controllare che la collezione $\mathcal B$ di tutte le intersezioni finite di elementi di $\mathcal D$ sia una base, dato che in quel caso abbiamo già verificato che genera una topologia. Dato $x \in X$, esso appartiene ad un elemento di $\mathcal D$ e quindi ad un elemento di $\mathcal B$; questo è la prima condizione per una base. Per controllare anche la seconda definizione, sia

$$B_1 = S_1 \cap \cdots \cap S_m$$
 e $B_2 = S'_1 \cap \cdots \cap S'_n$

due elementi di \mathcal{B} . La loro intersezione

$$B_1 \cap B_2 = (S_1 \cap \cdots \cap S_m) \cap (S_1' \cap \cdots \cap S_n')$$

è ancora un intersezione finita di elementi di \mathcal{D} , e quindi appartiene a \mathcal{B} .

Definiamo brevemente, non nella massima generalità, la topologia prodotto con cui viene equipaggiato solitamente il prodotto cartesiano di due spazi topologici:

Definizione 4 (Topologia Prodotto). Siano X e Y spazi topologia. La topologia prodotto su $X \times Y$ è la topologia avente come base la collezione \mathcal{B} di tutti gli insiemi della forma $U \times V$, dove U è un aperto in X e V è un aperto in Y.

I controlli che siano una base per la topologia sono abbastanza ovvi e non li riportiamo.

Teorema 1. Se \mathcal{B} è una base per la topologia di X e C è una base per la topologia di Y, allora la collezione

$$\mathcal{D} = \{ B \times C \mid B \in \mathcal{B} \ e \ C \in \mathcal{C} \}$$

è una base per la topologia di $X \times Y$.

Dimostrazione. Vogliamo applicare il lemma 2. Sia W aperto di $X \times Y$ e sia $(x,y) \in W$, per definizione della topologia prodotto, esiste un aperto della forma $U \times V$, con U,V aperti nelle rispettive topologie, tale che $(x,y) \in U \times V \subset W$. Poiché \mathcal{B} e \mathcal{C} sono basi per X e Y rispettivamente, possiamo scegliere un elemento $B \in \mathcal{B}$ tale che $x \in B \subset U$, e un elemento $C \in \mathcal{C}$ tale che $y \in C \subset V$. Ma allora $(x,y) \in B \times C \subset W$. Quindi per il lemma 2 la collezione \mathcal{D} è una base.

Cerchiamo una prebase di questo spazio:

Siano $\pi_1: X \times Y \to X$ e $\pi_2 X \times Y \to Y$ le due mappe proiezione al primo e secondo fattore rispettivamente. Senza introdurre per ora il concetto di continuità notiamo che la controimmagine di un aperto via le due proiezioni è un aperto nella topologia prodotto $X \times Y$. Abbiamo quindi il seguente

Teorema 2. La collezione

$$S = \{\pi_1^{-1}(U) \mid U \text{ aperto in } X\} \cup \{\pi_2^{-1}(V) \mid V \text{ aperto in } Y\}$$

è una prebase per la topologia prodotto $X \times Y$.

Dimostrazione. Sia τ la topologia su $X \times Y$ e sia τ' la topologia generata da §. Poichè ogni elemento di \mathcal{S} appartiene alla topologia τ , così anche le unioni arbitrarie delle loro intersezioni ci appartengono, e quindi $\tau' \subset \tau$. D'altra parte, ogni elemento della base $U \times V$ per la topologia τ è una intersezione finita di elementi di \mathcal{S} , in quanto

$$U \times V = \pi_1^{-1}(U) \cap \pi_2^{-1}(V)$$

e quindi, $U \times V$ appartiene a τ' , e quindi $\tau \subset \tau'$ che conclude la dimostrazione.

Definizione 5 (Chiusura). la chiusura di A, denotata con clA o \overline{A} è l'intersezione di tutti i chiusi che contengono A.

Definizione 6 (Parte Interna). la parte interna di A, denotata con intA è l'unione di tutti gli aperti contenuti in A.

Teorema 3. Sia A un sottoinsieme dello spazio topologico X.

- 1. $x \in \overline{A}$ se e solo se ogni aperto U che contiene x interseca A.
- 2. Possiamo restringere la condizione nel punto (1) solo agli elementi di una base $\mathcal B$ di X

Dimostrazione. 1. Dimostriamo l'equivalenza delle negazioni. Se x non sta nella chiusura di A, allora l'insieme $U=\overline{A}^c$ è un aperto che contiene x e che non interseca A, come desiderato. Al contrario, se esiste un aperto U che contiene x e che non interseca A, allora U^c è chiuso e contiene A. Per definizione di chiusura di A, l'insieme U^c deve contenere \overline{A} e quindi x non può stare in \overline{A}

2. Segue facilmente da quanto già provato. Se ogni aperto che contiene x interseca A, allora anche ogni elemento della base, in quanto aperto. Al contrario, Se ogni elemento della base contenente x interseca A, allora lo fa anche ogni aperto che contiene x, in quanto U contiene un elemento della base che contiene x.

Definizione 7 (Base per Insiemi Chiusi). Dato uno spazio topologico X, una base per gli insiemi chiusi di X è una famiglia di insiemi chiusi \mathcal{F} tale che ogni insieme chiuso A di X è esprimibile come intersezione arbitraria di elementi di \mathcal{F} .

Remark 1. la definizione di base per chiusi implica che X ci deve appartenere. Quindi sarebbe superfluo richiedere che gli elementi di tale base ricoprano tutto X.

Proposizione 1. \mathcal{F} è una base per i chiusi in X se e solo se la famiglia dei complementi è una base (nel senso standard) per X.

Dimostrazione. immediata applicazione delle leggi di De Morgan. $((A \cap B)^c = A^c \cup B^c) = A^c \cap B^c$

Analogamente abbiamo un'altra caratterizzazione per le basi dei chiusi

Proposizione 2. Sia \mathcal{F} una base per gli insiemi chiusi di X. Allora,

- 1. $\bigcap F = \emptyset$
- 2. per ogni F_1 e F_2 in \mathcal{F} , l'unione $F_1 \cup F_2$ è l'intersezione di qualche sottofamiglia di \mathcal{F}

Inoltre ogni collezione di insiemi x che soddisfa queste proprietà forma una base per i chiusi di una topologia di X. Gli insiemi chiusi in questa topologia saranno precisamente le intersezioni di sottofamiglie di \mathcal{F} .

Dimostrazione. Se \mathcal{F} è una base, allora la condizione (1) è vera: è chiuso e quindi deve esistere una sottofamiglia disgiunta di elementi di questa base. Il punto (2) è un'ovvia rilettura duale della proprietà di base topologica. Al contrario, se \mathcal{F} soddisfa (1) e (2), possiamo costruire una topologia su X i cui chiusi siano le intersezioni arbitrarie di tali elementi. Essa per (1) e (2) verificherà gli assiomi di topologia data in termini di chiusi.

2 Continuità di una funzione

Definizione 8 (funzione continua). Siano X e Y spazi topologici. Una funzione $f: X \to Y$ è detta continua se per ogni aperto V di Y, l'insieme $f^{-1}(V)$ è aperto in X.

Remark 2. Vogliamo enfatizzare il fatto che la nozione di continuità è strettamente relativa alle topologie con cui sono equipaggiati gli spazi in esame.

Remark 3. Notiamo che se¹ la topologia nello spazio di arrivo possiede una base \mathcal{B} , allora per provare la continuità di f ci basta mostrare che la preimmagine di ogni elemento della base è un aperto. infatti un aperto $V \subset Y$ arbitrario lo possiamo scrivere come

$$V = \bigcup_{\alpha \in J} B_{\alpha}$$

e quindi

$$f^{-1}(V) = \bigcup_{\alpha \in J} f^{-1}(B_{\alpha})$$

e quindi $f^{-1}(V)$ è aperto se lo sono ogni $f^{-1}(B_{\alpha})$. Se la topologia su Y ci è data come generata da una prebase S, per provare la continuità di f sarà sufficiente mostrare che le preimmagini di ogni elemento della prebase siano aperte. Infatti un arbitrario elemento della base B generata da S può essere scritto come intersezione finita $S_1 \cap S_2 \cap \ldots S_n$ di elementi della prebase, e l'asserto segue dal fatto che

$$f^{-1}(B) = f^{-1}(S_1) \cap \cdots \cap f^{-1}(S_n)$$

Il risultato principale che vogliamo ricordare in questa sezione è il seguente:

Teorema 4. Siano X e Y spazi topologici; sia f $X \to Y$ una funzione. Allora sono equivalenti:

- 1. f è continua
- 2. per ogni $A \subset X$, si ha $f(\overline{A}) \subset \overline{f(A)}$
- 3. per ogni $B \subset Y$ chiuso, si ha che $f^{-1}(B)$ è chiuso in X.
- 4. per ogni $x \in X$ e ogni intorno V di f(x), esiste un intorno U di x tale che $f(U) \subset f(V)$.

Remark 4. Se la condizione al punto (4) vale per il punto $x \in X$, diremo che f è continua nel punto x. Inoltre notiamo l'analogia della definizione sempre al punto (4) con quella conosciuta a tutti sugli spazi metrici.

Dimostrazione. Mostriamo che $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$ e che $(1) \Leftrightarrow (4)$.

- $(1) \Rightarrow (2)$ Assumiamo f continua. Sia A un sottoinsieme di X. Mostriamo che se $x \in \overline{A}$ allora $f(x) \in \overline{f(A)}$. SIa V un intorno aperto di f(x). Allora $f^{-1}(V)$ è un intorno aperto di x, quindi deve intersecare A in qualche punto y. Allora V interseca f(A) nel punto f(y), quindi $f(x) \in \overline{f(A)}$ come desiderato.
- $(2)\Rightarrow (3)$ Sia B chiuso in Y e sia $A=f^{-1}(B)$. Vogliamo provare che A è chiuso, equivalentemente che $A=\overline{A}$. Infatti abbiamo che $f(A)=f\left(f^{-1}(B)\right)\subset B$. Quindi se $x\in\overline{A}$

$$f(x) \in f(\overline{A}) \subset \overline{f(A)} \subset \overline{B} = B$$

e quindi $x \in f^{-1}(B) = A$. Perciò $\overline{A} \subset A$ concludendo la dimostrazione

 $(3) \Rightarrow (1)$ Sia V un aperto di Y. Sia $B = V^c$. Allora

$$f^{-1}(B) = f^{-1}(Y) \setminus f^{-1}(V) = X \setminus f^{-1}(V)$$

Ora B è chiuso in Y. Quindi $f^{-1}(B)$ è chiuso in X per ipotesi, e quindi $f^{-1}(V)$ è aperto in X, come desiderato.

- $(1) \Rightarrow (4)$ Sia $x \in X$ e sia V un intorno aperto di f(x). Allora l'insieme $U = f^{-1}(V)$ è un intorno di x tale che $f(U) \subset V$.
- $(4) \Rightarrow (1)$ Sia V un aperto di Y. Sia x un punto di $f^{-1}(V)$. Allora $f(x) \in V$, e per ipotesi esiste un intorno U_x di x tale che $f(U_x) \subset V$. Allora $U_x \subset f^{-1}(V)$, e segue che $f^{-1}(V)$ può essere scritto come unione di aperti U_x , e quindi è aperto.

 $^{^{1}}$ alla luce dell'osservazione che ogni spazio topologico ha una base, il se è un po' vacuo e va inteso nel senso di base non banale appunto

Definizione 9 (omeomorfismo, def. 1). Siano X, Y spazi topologici e $f: X \to Y$ biettiva. Se f e f^{-1} sono continue, allora f si dice essere un omeomorfismo fra spazi topologici.

Definizione 10 (omeomorfismo, def. 2). Un omeomorfismo fra gli spazi topologici X e Y è un isomorfismo della struttura topologica di X in quella di Y, oppure detto in altri termini, è una biezione di X in Y che trasforma l'insieme degli aperti di X nell'insieme degli aperti di Y.

Diamo il seguente teorema di cui dimostreremo solo il punto più interessante

Teorema 5. Siano $X, Y \in Z$ spazi topologici.

- (a) (funzioni costanti) Se $f: X \to Y$ è una funzione costante, allora è continua per ogni topologia di X e Y.
- (b) (inclusione) Se $A \subset X$, allora la funzione di inclusione $i : A \to X$ è continua.
- (c) (composizione) Se $f: X \to Y$ e $g: Y \to Z$ sono continue, allora la mappa $g \circ f: X \to Z$ è continua.
- (d) (restrizione del dominio) Se $f: X \to Y$ è continua, e se A è un sottospazio di X, allora la funzione $f_{|A}: A \to Y$ è continua.
- (e) (restrizione o espansione del range) Sia $f: X \to Y$ continua. Se z è un sottospazio di Y che contiene f(X), allora la funzione $g: X \to Z$ ottenuta per restrizione del range di f è continua. Se Z è uno spazio che ha Y come sottospazio, allora la funzione $h: X \to Z$ ottenuta espandendo il range di f è continua.
- (f) (formulazione locale della continuità) La mappa $f: X \to Y$ è continua se X può essere scritto come unione di aperti U_{α} tali che $f_{|U_{\alpha}}$ è continua per ogni α .

Dimostrazione. (f) Per ipotesi, possiamo scrivere X come unione di aperti U_{α} , tali che $f_{|U_{\alpha}}$ è continua per ogni α . Sia V un aperto di Y. Allora

$$f^{-1}(V) \cap U_{\alpha} = (f_{|U_{\alpha}})^{-1}(V)$$

Poichè $f_{|U_{\alpha}}$ è continua, abbiamo che $(f_{|U_{\alpha}})^{-1}(V)$ è aperto in U_{α} , il quale essendo aperto mi fa concludere che $(f_{|U_{\alpha}})^{-1}(V)$ è aperto in X. Poiché $f^{-1}(V)$ è unione di questi aperti al variare di α concludiamo.

Teorema 6 (Pasting Lemma). Sia $X = A \cup B$, dove A e B sono chiusi in X. Siano $f: A \to Y$ e $g: B \to Y$ funzioni continue. Se f(x) = g(x) per ogni $x \in A \cap B$, allora f e g si combinano per dare luogo ad una nuova funzione continua $h: X \to Y$, definita ponendo

$$h(x) = \begin{cases} f(x) \text{ se } x \in A \\ g(x) \text{ se } x \in B \end{cases}$$

Remark 5. Il teorema è vero anche se al posto di due chiusi consideriamo due aperti, ma in questo caso stiamo vedendo un caso speciale del punto (f) dimostrato prima.

Dimostrazione. Sia ${\cal C}$ un chiuso di ${\cal Y}.$ Abbiamo che

$$h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C)$$

(verificatelo). Poichè f è continua, $f^{-1}(C)$ è chiuso in A e, quindi, chiuso in X. Analogamente per $g^{-1}(C)$. La loro unione (finita!) $h^{-1}(C)$ è quindi chiusa in X.

3 Mappe Aperte e Chiuse

Studiamo altre due proprietà di funzioni fra spazi topologici che molte volte vengono richiamate

Definizione 11. Sia $f: X \to Y$ funzione fra spazi topologici, allora si dice che f è aperta (risp. chiusa) se per ogni $V \subset X$ aperto (risp. chiuso), $f(V) \subset Y$ è aperto (risp. chiuso)

Alcune proprietà utili da ricordare riguardanti le funzioni aperte

Proposizione 3. Siano X, Y due spazi topologici, $f: X \to Y$, \mathcal{B} una base per la topologia di X. Allora le seguenti asserzioni sono equivalenti:

1. f è una mappa aperta.

- 2. Per ogni $U \in \mathcal{B}$, f(U) è aperto in Y.
- 3. Per ogni $x \in X$ ed ogni intorno V di x in X, f(V) è un intorno di f(x) in Y.

Dimostrazione. che (1) e (2) siano equivalenti è immediato. Un po' più fine è dimostrare l'equivalenza di (1) e (3). Notiamo che, se A è aperto, allora A è un intorno di ogni suo punto, e quindi per (3) f(A) è un intorno di ogni suo punto (che è della forma f(y) con $y \in A$). Al contrario, se f è aperta, l'implicazione è ovvia.

Proposizione 4. Siano X, Y spazi topologici. Una condizione necessaria e sufficiente affinché una mappa $f: X \to Y$ sia continua e chiusa è che $f(\overline{A}) = \overline{f(A)}$.

Dimostrazione. Sicuramente se la condizione vale la mappa è sia continua che chiusa. Al contrario, se è continua e chiusa, abbiamo dalla continuità che $f(\overline{A}) \subset \overline{f(A)}$ e dalla chiusura che $f(\overline{A})$ è chiuso. Ma per definizione di chiusura, allora $\overline{f(A)} \subset f(\overline{A})$ e quindi $f(\overline{A}) = \overline{f(A)}$.