DATA SCIENCE SYD DAT 6

Week 5 - Decision Trees Monday 7th November

- 1. What are decision trees?
- 2. What are decision trees useful for?
- 3. How decision trees work
- 4. Visual example on Titanic dataset
- 5. Lab
- 6. Talks
- 7. Discussion

DECISION TREES

• A supervised learning technique that can be used for classification or regression.

- A supervised learning technique that can be used for classification or regression.
- Visually engaging and easy to interpret.

- A supervised learning technique that can be used for classification or regression.
- Visually engaging and easy to interpret.
- Foundation for getting into very powerful techniques.

WHAT ARE DECISION TREES?

- A supervised learning technique that can be used for classification or regression.
- Visually engaging and easy to interpret.
- Foundation for getting into very powerful techniques.
- Great for explaining to people!

• Prone to overfitting.

- Prone to overfitting.
- Predictive power is lower in comparison to many other modern techniques.

• Scans for a feature to split on that results in the greatest separation between classes in the resulting nodes.

Target Class ATarget Class B

range of feature 1

The Gini Index

- Scans for a feature to split on that results in the greatest separation between classes in the resulting nodes.
- Non-linear.

- Scans for a feature to split on that results in the greatest separation between classes in the resulting nodes.
- Non-linear
- Greedy process
- Splits within splits

- Scans for a feature to split on that results in the greatest separation between classes in the resulting nodes.
- Non-linear
- Greedy process
- Splits within splits
- For a classification tree, we predict that each observation belongs to the most commonly occurring class of training observations in the region to which it belongs.

- Scans for a feature to split on that results in the greatest separation between classes in the resulting nodes.
- Non-linear
- Greedy process
- Splits within splits
- For a classification tree, we predict that each observation belongs to the most commonly occurring class of training observations in the region to which it belongs.
- We naturally get combinations of features used for our prediction.

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

TITANIC DATA 20

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7
2	1	1	Cumings, Mrs. John Bradley (Florence Bri	female	38	1	0	PC 17599	71
3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	8
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Pe	female	35	1	0	113803	53
5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8
6	0	3	Moran, Mr. James	male		0	0	330877	8
7	0	1	McCarthy, Mr. Timothy J	male	54	0	0	17463	52
8	0	3	Palsson, Master. Gosta Leonard	male	2	3	1	349909	21
9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelm	female	27	0	2	347742	11
10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14	1	0	237736	30

In pairs, pick the two features from the titanic dataset that you believe will be the most predictive of survival.

Variable	Description
survival	Survival (0 = No; 1 = Yes)
pclass	Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)
name	Name
sex	Sex
age	Age
sibsp	Number of Siblings/Spouses Aboard
parch	Number of Parents/Children Aboard
ticket	Ticket Number
fare	Passenger Fare
cabin	Cabin

SPLITTING - USING GINI INDEX - Calculate Starting GINI

Before Split	All	
Survived	10	
Died	15	

$$1 - \sum \left(\frac{class_i}{total}\right)^2$$

Before Split	All
Survived	10
Died	15

$$1 - \sum \left(\frac{class_i}{total}\right)^2$$

$$1 - \left(\frac{survived}{total}\right)^2 - \left(\frac{died}{total}\right)^2$$

Before Split	All
Survived	10
Died	15

$$1 - \left(\frac{survived}{total}\right)^2 - \left(\frac{died}{total}\right)^2$$
$$1 - \left(\frac{10}{25}\right)^2 - \left(\frac{15}{25}\right)^2 = 0.48$$

SPLITTING - USING GINI INDEX - How a first split GINI is calculated

SPLITTING - USING GINI INDEX - How a first split GINI is calculated

SPLITTING - USING GINI INDEX - How a first split GINI is calculated

Gender	M	F	
Survived	2	8	
Died	13	2	
Gini _c	0.27		

Siblings	0	≥1	
Survived	5	5	
Died	7	8	
Gini _C	0.48		

Class	1,2	3	
Survived	7	3	
Died	5	10	
Gini _c	0.42		

DATA SCIENCE PART TIME COURSE

USES

DESCRIPTIVE ANALYSIS OR PREDICTION

ADVANTAGES AND DISADVANTAGES OF TREES

ADVANTAGES

- Trees are easy to explain to people.
- Trees can be displayed graphically, and are easily interpreted even by a non-expert (especially if they are small).
- Trees can easily handle qualitative predictors without the need to create dummy variables.

DISADVANTAGES

• Trees on their own generally do not have high predictive accuracy.

Using BigML to demonstrate a decision tree model on the Titanic dataset.

https://bigml.com/dashboard/datasets

BigML is a cloud based machine learning tool, designed to make machine learning more approachable.

DATA SCIENCE PART TIME COURSE

LAB

SYNCHING YOUR FORK WITH THE COURSE REPO

- 1. re-name your labs with lab_name.<yourname>.ipynb (to prevent a conflict)
- 2. cd <path to the root of your SYD_DAT_6 local repo>
- 3. commit your changes ahead of sync
 - git status
 - git add.
 - git commit -m "descriptive label for the commit"
 - git status
- 4. download new material from official course repo (upstream) and merge it
 - git checkout master (ensures you are in the master branch)
 - git fetch upstream
 - git merge upstream/master

DATA SCIENCE

HOMEWORK

Homework

→ Homework 2 – Due Monday 14th of November

Read the following

- ▶ Chapter 8.1 of Introduction to Statistical Learning The Basics of Decision Trees
- → Chapter 8.2 of Introduction to Statistical Learning Bagging, Random Forests, Boosting