AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application. Please amend Claims 1-2, 4-12 14, 16-20, 22, 24-32, 34-36, 38, and 40, and add Claims 45-61 as follows:

- 1. (Currently Amended) An article, comprising:
- a substrate;
- a permanent adhesive; and
- a plurality of flock fibers adhered by the permanent adhesive to the substrate, wherein the flock fibers comprise poly(cyclohexylene-dimethylene terephthalate), wherein the flock fibers are oriented transversely to the adjacent surface of the substrate, and wherein the flock fibers are at least about 20% crystallized.
 - 2. (Currently Amended) The article of Claim 1, wherein the fibers are heat set, extruded, and/or drawn at a temperature of at least about 180°C and wherein the fibers are flock.
 - 3. (Original) The article of Claim 1, wherein the substrate is a thermoplastic backing film.
 - 4. (Currently Amended) A method for forming an article, comprising:

 providing a flocked fiber-containing surface, wherein the flock comprises fibers of the fiber-containing surface comprise at least about 25 wt.% of a terephthalate polymer or copolymer having a repeating unit having the formula:

15

where "R" represents hydrogen or independently a substituted or unsubstituted alkyl or aryl group and "S" is an aromatic or nonaromatic cyclic residue which can include one or more heteroatoms; and

20

sublimation printing the flocked fiber-containing surface to form a printed article, wherein the flock is fibers are at least one of extruded, drawn, and heat set at a temperature at or above the maximum flock temperature during sublimation printing.

- 5. (Currently Amended) The method of Claim 4, wherein the polymer has a glass transition temperature of at least about 75 degrees Celsius.
- 6. (Currently Amended) The method of Claim 4, wherein the flock has fibers have a percent elongation of at least about 25%, a compression recovery (from 34.5 mPa) of at least about 30%, and a deflection temperature at 18.8 kg/square cm of at least about 215 degrees Celsius.
- 7. (Currently Amended) The method of Claim 4, wherein the polymer is poly(cyclohexylene-dimethylene terephthalate) and is at least about 20% crystallized.
- 8. (Currently Amended) The method of Claim 4, wherein the flocked fiber-containing surface comprises a release sheet, [[a]] the plurality of flock fibers, and a release adhesive between the flock fibers and the release sheet.

- 9. (Currently Amended) The method of Claim 4, wherein the flocked fiber-containing surface comprises [[a]] the plurality of flock fibers adhered to a hot melt adhesive.
- 10. (Currently Amended) The method of Claim 4, wherein the flocked fiber-containing surface comprises a plurality of flock fibers adhered to a thermoplastic backing film.
- 11. (Currently Amended) A method for providing a molded article comprising: providing a flocked fiber-containing surface, the flocked fiber-containing surface comprising a polymer that is at least one of a terephthalate polymer, poly(phenylere phenylene sulfide), liquid crystal polymer, and polyamide, and nylon;

sublimation printing the flocked fiber-containing surface to form a printed article; forming the printed article into a three dimensional shape; positioning the formed printed article in a mold; and introducing a resin into the mold to form a molded article.

12. (Currently Amended) The method of Claim 11, wherein the flock comprises fibers comprise at least about 25 wt.% of a terephthalate polymer or copolymer having a repeating unit of the formula:[[,]]

$$\begin{array}{c|c}
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & &$$

- where "R" represents <u>hydrogen or</u> independently a substituted or unsubstituted alkyl or aryl group and "S" is an aromatic or nonaromatic cyclic residue which can include one or more <u>heroatoms heteroatoms</u> and wherein the flock has a melting point of at least about 200 degrees Celsius.
 - 13. (Original) The method of Claim 12, wherein the polymer has a glass transition temperature of at least about 75 degrees Celsius.
 - 14. (Currently Amended) The method of Claim 11, wherein the flock has fibers have a percent elongation of at least about 25%, a compression recovery (from 34.5 mPa) of at least about 30%, and a deflection temperature at 18.8 kg/square cm of at least about 215 degrees Celsius.
 - 15. (Previously Presented) The method of Claim 12, wherein the polymer is poly(cyclohexylene-dimethylene terephthalate).
 - 16. (Currently Amended) The method of Claim 11, wherein the flocked fiber-containing surface comprises a release sheet, a plurality of flock fibers, and a release adhesive between the flock fibers and the release sheet.
 - 17. (Currently Amended) The method of Claim 11, wherein the flocked fiber-containing surface comprises a plurality of flock fibers adhered to a hot melt adhesive.
 - 18. (Currently Amended) The method of Claim 11, wherein the flocked fiber-containing surface comprises a plurality of flock fibers adhered to a thermoplastic backing film.
 - 19. (Currently Amended) A method for forming a molded article, comprising:

20

providing a flocked fiber-containing surface, the flock fiber-containing surface comprising a terephthalate polymer having a repeating unit of the formula:

where "R" represents <u>hydrogen or independently</u> a substituted or unsubstituted alkyl or aryl group and "S" is an aromatic or nonaromatic cyclic residue which can include one or more <u>hereoatoms</u>;

forming the <u>flocked fiber-containing</u> surface into a three dimensional shape; positioning the formed <u>flocked fiber-containing</u> surface in a mold; and introducing a resin into the mold to form a molded article.

- 20. (Currently Amended) The method of Claim 1911, wherein the flock has fibers have a melting point of at least about 200 degrees Celsius.
- 21. (Original) The method of Claim 19, wherein the polymer has a glass transition temperature of at least about 75 degrees Celsius.
- 22. (Currently Amended) The method of Claim 19, wherein the flock has fibers have a percent elongation of at least about 25%, a compression recovery (from 34.5 mPa) of at least about 30%, and a deflection temperature at 18.8 kg/square cm of at least about 215 degrees Celsius.

- 23. (Previously Presented) The method of Claim 19, wherein the polymer is poly(cyclohexylene-dimethylene terephthalate).
- 24. (Currently Amended) The method of Claim 19, wherein the flocked-fiber-containing surface comprises a release sheet, a plurality of flock-fibers, and a release adhesive between the flock fibers and the release sheet.
- 25. (Currently Amended) The method of Claim 19, wherein the flocked fiber-containing surface comprises a plurality of flock fibers adhered to a hot melt adhesive.
- 26. (Currently Amended) The method of Claim 19, wherein the flocked fiber-containing surface comprises a plurality of flock fibers adhered to a thermoplastic backing film.
- 27. (Currently Amended) The method of Claim 4, wherein the flock is fibers are heat set at a temperature at or above the maximum flock temperature during sublimation printing.
- 28. (Currently Amended) The method of Claim 4, wherein the flock has fibers have a softening point at least about 5% greater than a maximum temperature of the flock during the sublimation printing step and wherein the maximum temperature is at least about 340°F.
- 29. (Currently Amended) The method of Claim 4, wherein the flock has fibers have a melting point at least about 5% greater than a maximum temperature of the flock during the sublimation printing step and wherein the maximum temperature is at least about 340°F.

- 30. (Currently Amended) The method of Claim 4, wherein the flock has fibers have a melting point of at least about 265°C.
- 31. (Currently Amended) The method of Claim 4, wherein the flock has fibers have a shrinkage of less than about 1% in air at 190°C.
- 32. (Currently Amended) The method of Claim 4, wherein the flock is fibers are at least about 30% crystallized.
- 33. (Previously Presented) The method of Claim 4, wherein at least one of an extrusion temperature, drawing temperature, and heat set temperature of the flock is at least about 180°C.
- 34. (Currently Amended) The method of Claim 4, wherein the flocked fiber-containing surface comprises a thermosetting adhesive, wherein, before the sublimation printing step, the thermosetting adhesive is not thermoset, and wherein the thermosetting adhesive is thermoset during the sublimation printing step.
- 35. (Currently Amended) The method of Claim 4, wherein the flocked fiber-containing surface comprises a carrier sheet, a release adhesive engaging the carrier sheet and first ends of a plurality of flock fibers, and wherein second ends of the plurality of flock fibers are sublimation printed and further comprising:

thereafter applying a first permanent adhesive layer to the second ends of the plurality of flock fibers, the first ends being opposed to the second ends.

36. (Currently Amended) The method of Claim 35, further comprising:

applying a barrier film to a second surface of the first permanent adhesive layer, wherein a first surface of the permanent adhesive layer contacts the flock fibers and wherein the first and second adhesive layer surfaces are in an opposed relationship.

5

37. (Previously Presented) The method of Claim 36, further comprising:

applying a second permanent adhesive layer to a second surface of the barrier film, wherein a second surface of the barrier film contacts the first permanent adhesive layer and wherein the first and second barrier film surfaces are in an opposed relationship.

- 38. (Currently Amended) The method of Claim 4, wherein the flocked fiber-containing surface comprises a carrier sheet, a sublimation dye on a first surface of the carrier sheet, a plurality of flock fibers, a release adhesive engaging the sublimation dye on the carrier sheet and first ends of the plurality of flock fibers, and a permanent adhesive engaging seconds ends of the flock fibers, wherein the first and second ends are in an opposing relationship.
- 39. (Previously Presented) The method of Claim 38, wherein the release adhesive vaporizes during the sublimation printing step.
- 40. (Currently Amended) The method of Claim 4, wherein the flocked fiber-containing surface comprises a carrier sheet, a plurality of flock fibers, and a release adhesive engaging the carrier sheet and flock fibers and further comprising:

contacting a permanent adhesive film with second ends of the flock fibers, first ends of the flock fibers engaging the release adhesive and the first and second ends being in an opposing relationship; and

laminating together the adhesive film and flocked fiber-containing surface, wherein the contacting step is after the sublimation printing step.

41. (Previously Presented) The method of Claim 40, wherein the permanent adhesive film is at least one of a calendered, extruded, and co-extruded film, wherein the permanent adhesive film is a thermosetting adhesive, and wherein the permanent adhesive film is thermoset in the laminating step.

- 42. (Previously Presented) An article produced by the method of Claim 4.
- 43. (Previously Presented) A molded article produced by the method of Claim 11.
- 44. (Previously Presented) A molded article produced by the method of Claim 19.
 - 45. (New) A method for providing a printed article comprising:

providing a fiber-containing surface having a plurality of fibers, the fibers comprising a polymer that is at least one of a polyester, a poly(phenylene sulfide), a liquid crystal polymer, and a polyamide; and

5

sublimation printing the fiber-containing surface to form a printed article, wherein during sublimation printing the fiber-containing surface is heated to a sublimation printing temperature and wherein the polymer has a melting point greater than the maximum sublimation printing temperature, wherein the polymer has a glass transition temperature of at least about 75°C, and wherein at least one of the extrusion temperature, the drawing temperature, and the heat set temperature of the polymer is at or above the maximum sublimation printing temperature.

10

- 46. (New) The method of Claim 45, wherein the polymer is a polyester and is at least about 20% crystallized.
- 47. (New) The method of Claim 45, wherein the fibers have a softening point at least about 5% greater than a maximum sublimation printing temperature and wherein the maximum sublimation printing temperature is at least about 340°F.

- 48. (New) The method of Claim 45, wherein the fibers have a melting point at least about 5% greater than a maximum sublimation printing temperature and wherein the maximum temperature is at least about 340°F.
- 49. (New) The method of Claim 48, wherein the fibers have a melting point of at least about 200°C.
- 50. (New) The method of Claim 45, wherein the fibers have a shrinkage of less than about 1% in air at 190°C.
- 51. (New) The method of Claim 45, wherein the fibers are at least about 30% crystallized.
- 52. (New) The method of Claim 45, wherein at least one of an extrusion temperature, drawing temperature, and heat set temperature of the fibers is at least about 180°C.
- 53. (New) The method of Claim 45, wherein the fiber-containing surface comprises a thermosetting adhesive, wherein, before the sublimation printing step, the thermosetting adhesive is not thermoset, and wherein the thermosetting adhesive is thermoset during the sublimation printing step.
- 54. (New) The method of Claim 45, wherein the fiber-containing surface comprises a carrier sheet, a release adhesive engaging the carrier sheet and first ends of a plurality of fibers, and wherein second ends of the plurality of fibers are sublimation printed and further comprising:
- thereafter applying a first permanent adhesive layer to the second ends of the plurality of fibers, the first ends being opposed to the second ends.

5

55. (New) The method of Claim 54, further comprising:

applying a barrier film to a second surface of the first permanent adhesive layer, wherein a first surface of the permanent adhesive layer contacts the fibers and wherein the first and second adhesive layer surfaces are in an opposed relationship.

56. (New) The method of Claim 55, further comprising:

applying a second permanent adhesive layer to a second surface of the barrier film, wherein a second surface of the barrier film contacts the first permanent adhesive layer and wherein the first and second barrier film surfaces are in an opposed relationship.

- 57. (New) The method of Claim 45, wherein the fiber-containing surface comprises a carrier sheet, a sublimation dye on a first surface of the carrier sheet, a plurality of fibers, a release adhesive engaging the sublimation dye on the carrier sheet and first ends of the plurality of fibers, and a permanent adhesive engaging seconds ends of the fibers, wherein the first and second ends are in an opposing relationship.
- 58. (New) The method of Claim 45, wherein the fiber-containing surface comprises a carrier sheet, a plurality of fibers, and a release adhesive engaging the carrier sheet and fibers and further comprising:

contacting a permanent adhesive film with second ends of the fibers, first ends of the fibers engaging the release adhesive and the first and second ends being in an opposing relationship; and

laminating together the adhesive film and fiber-containing surface, wherein the contacting step is after the sublimation printing step.

59. (New) The method of Claim 58, wherein the permanent adhesive film is at least one of a calendered, extruded, and co-extruded film, wherein the permanent adhesive film is a thermosetting adhesive, and wherein the permanent adhesive film is thermoset in the laminating step.

Application No. 10/614,340 Amendment Dated April 22, 2004

- 60. (New) The method of Claim 45, wherein the sublimation printing temperature is at least about 340°F.
 - 61. (New) The method of Claim 4, wherein the fibers are flock.

AMENDMENTS TO THE DRAWINGS

Figure 15 has been amended as shown in the attached marked draft of Figure 15 to correct certain obvious errors.

Attachment: Annotated Sheet Showing Changes