PH 534: Quantum Information and Computing Tutorial

Midha

PH 534: Quantum Information and Computing Tutorial

Siddhant Midha https://siddhant-midha.github.io/

January 26, 2023

- States: $|\psi\rangle$
- $|\psi^{\pm}\rangle = \frac{1}{\sqrt{2}}(|01\rangle \pm |10\rangle), |\phi^{\pm}\rangle = \frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle),$ $|\pm\rangle = \frac{1}{\sqrt{2}}(|0\rangle \pm |1\rangle)$
- Density operators: $\rho, \sigma...$
- ullet Hilbert Space: ${\cal H}$
- Set of linear operators from \mathcal{H}_1 to \mathcal{H}_2 : $L(\mathcal{H}_1, \mathcal{H}_2)$
- Set of density matrices on \mathcal{H} : $D(\mathcal{H}) \subset L(\mathcal{H})$
- Set of linear operators from $L(\mathcal{H}_1)$ to $L(\mathcal{H}_2)$: $T(\mathcal{H}_1,\mathcal{H}_2)$
- Set of quantum channels from $L(\mathcal{H}_1)$ to $L(\mathcal{H}_2)$: $C(\mathcal{H}_1, \mathcal{H}_2) \subset T(\mathcal{H}_1, \mathcal{H}_2)$

PH 534: Quantum Information

Density Operators

Information and Computing Tutorial

> Siddhan Midha

• If a system exists in the states $|\psi_i\rangle$ with probabilities p_i ,

PH 534: Quantum Information

Density Operators

and Computing Tutorial

• If a system exists in the states $|\psi_i\rangle$ with probabilities p_i , then its density operator ρ is defined as

Siddhant

• If a system exists in the states $|\psi_i\rangle$ with probabilities p_i , then its density operator ρ is defined as

$$\rho = \sum_{i} p_{i} \left| \psi_{i} \right\rangle \left\langle \psi_{i} \right|$$

$$\rho = \sum_{i} p_{i} \ket{\psi_{i}} \bra{\psi_{i}}$$

• The density operator is positive and has unit trace.

$$\rho = \sum_{i} p_{i} \ket{\psi_{i}} \bra{\psi_{i}}$$

- The density operator is positive and has unit trace. The converse holds.
- Unitary evolution

$$\rho = \sum_{i} p_{i} \left| \psi_{i} \right\rangle \left\langle \psi_{i} \right|$$

- The density operator is positive and has unit trace. The converse holds.
- Unitary evolution

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i}| \rightarrow \sum_{i} p_{i} U |\psi_{i}\rangle \langle \psi_{i}| U^{*} = U \rho U^{*}$$

PH 534: Quantum Information and Computing Tutorial

> Siddhant Midha

• If a system exists in the states $|\psi_i\rangle$ with probabilities p_i , then its density operator ρ is defined as

$$\rho = \sum_{i} p_{i} \left| \psi_{i} \right\rangle \left\langle \psi_{i} \right|$$

- The density operator is positive and has unit trace. The converse holds.
- Unitary evolution

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i}| \rightarrow \sum_{i} p_{i} U |\psi_{i}\rangle \langle \psi_{i}| U^{*} = U \rho U^{*}$$

$$\rho = \sum_{i} p_{i} \ket{\psi_{i}} \bra{\psi_{i}}$$

- The density operator is positive and has unit trace. The converse holds.
- Unitary evolution

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i}| \rightarrow \sum_{i} p_{i} U |\psi_{i}\rangle \langle \psi_{i}| U^{*} = U \rho U^{*}$$

$$p(m) = Tr(M_m^* M_m \rho)$$

$$\rho = \sum_{i} p_{i} \left| \psi_{i} \right\rangle \left\langle \psi_{i} \right|$$

- The density operator is positive and has unit trace. The converse holds.
- Unitary evolution

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i}| \rightarrow \sum_{i} p_{i} U |\psi_{i}\rangle \langle \psi_{i}| U^{*} = U \rho U^{*}$$

$$p(m) = Tr(M_m^* M_m \rho)$$

$$\rho_m = \frac{M_m \rho M_m^*}{Tr(M_m^* M_m \rho)}$$

$$\rho = \sum_{i} p_{i} \left| \psi_{i} \right\rangle \left\langle \psi_{i} \right|$$

- The density operator is positive and has unit trace. The converse holds.
- Unitary evolution

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i}| \rightarrow \sum_{i} p_{i} U |\psi_{i}\rangle \langle \psi_{i}| U^{*} = U \rho U^{*}$$

$$p(m) = Tr(M_m^* M_m \rho)$$

$$\rho_m = \frac{M_m \rho M_m^*}{Tr(M_m^* M_m \rho)}$$

PH 534: Quantum Information and Computing

Analyzing subsystems

Tutorial
Siddhant

If we have systems A and B, described by the density operator $\rho_{AB} \in D(\mathcal{H}_A \otimes \mathcal{H}_B)$, we define the density operator for the subsystem A as

Analyzing subsystems

Tutorial Siddhant

If we have systems A and B, described by the density operator $\rho_{AB} \in D(\mathcal{H}_A \otimes \mathcal{H}_B)$, we define the density operator for the subsystem A as

$$\rho_{A} \equiv Tr_{B}(\rho_{AB}) \in D(\mathcal{H}_{A})$$

Analyzing subsystems

Tutorial Siddhant Midha

If we have systems A and B, described by the density operator $\rho_{AB} \in D(\mathcal{H}_A \otimes \mathcal{H}_B)$, we define the density operator for the subsystem A as

$$\rho_{\mathsf{A}} \equiv \mathsf{Tr}_{\mathsf{B}}(\rho_{\mathsf{A}\mathsf{B}}) \in D(\mathcal{H}_{\mathsf{A}})$$

with the partial trace operation Tr_B being defined as

If we have systems A and B, described by the density operator $\rho_{AB} \in D(\mathcal{H}_A \otimes \mathcal{H}_B)$, we define the density operator for the subsystem A as

$$\rho_A \equiv Tr_B(\rho_{AB}) \in D(\mathcal{H}_A)$$

with the partial trace operation Tr_B being defined as

$$Tr_B(\ket{a_1}\bra{a_2}\otimes\ket{b_1}\bra{b_2})\equiv\ket{a_1}\bra{a_2}tr(\ket{b_1}\bra{b_2})$$

If we have systems A and B, described by the density operator $\rho_{AB} \in D(\mathcal{H}_A \otimes \mathcal{H}_B)$, we define the density operator for the subsystem A as

$$\rho_{A} \equiv Tr_{B}(\rho_{AB}) \in D(\mathcal{H}_{A})$$

with the partial trace operation Tr_B being defined as

$$Tr_B(\ket{a_1}\bra{a_2}\otimes\ket{b_1}\bra{b_2})\equiv\ket{a_1}\bra{a_2}tr(\ket{b_1}\bra{b_2})$$

and for general states ρ_{AB} the definition extends by superposition.

If we have systems A and B, described by the density operator $\rho_{AB} \in D(\mathcal{H}_A \otimes \mathcal{H}_B)$, we define the density operator for the subsystem A as

$$\rho_A \equiv Tr_B(\rho_{AB}) \in D(\mathcal{H}_A)$$

with the partial trace operation Tr_B being defined as

$$Tr_B(\ket{a_1}\bra{a_2}\otimes\ket{b_1}\bra{b_2})\equiv\ket{a_1}\bra{a_2}tr(\ket{b_1}\bra{b_2})$$

and for general states ρ_{AB} the definition extends by superposition. Or,

$$\mathit{Tr}_{B}(
ho_{AB}) := \sum_{i} (I_{A} \otimes \langle j|_{B})
ho_{AB} (I_{A} \otimes |j\rangle_{B})$$

Write the matrix representation, and calculate the reduced single-qubit density matrices ρ_A and ρ_B .

- 2 $\rho_{AB} = (1-p)\mathbb{I}/4 + p|\psi^-\rangle\langle\psi^-|$, where \mathbb{I} is the 4 × 4 identity matrix.

Information and Computing Tutorial

Theorem 2.7 of QCQI

Let $|\psi\rangle \in \mathcal{H}_{AB}$.

Quantum Information and Computing Tutorial

Theorem 2.7 of QCQI

Let $|\psi\rangle \in \mathcal{H}_{AB}$. Then there exist orthonormal states $|i_A\rangle \in \mathcal{H}_A$ and orthonormal states $|i_B\rangle\in\mathcal{H}_B$ such that

Schmidt Decomposition

and Computing Tutorial

Theorem 2.7 of QCQI

Let $|\psi\rangle \in \mathcal{H}_{AB}$. Then there exist orthonormal states $|i_A\rangle \in \mathcal{H}_A$ and orthonormal states $|i_B\rangle \in \mathcal{H}_B$ such that

$$|\psi\rangle = \sum_{i} \lambda_{i} |i_{A}\rangle \otimes |i_{B}\rangle$$

Theorem 2.7 of QCQI

Let $|\psi\rangle \in \mathcal{H}_{AB}$. Then there exist orthonormal states $|i_A\rangle \in \mathcal{H}_A$ and orthonormal states $|i_B\rangle \in \mathcal{H}_B$ such that

$$|\psi\rangle = \sum_{i} \lambda_{i} |i_{A}\rangle \otimes |i_{B}\rangle$$

where $\lambda_i \geq 0$ and $\sum_i \lambda_i^2 = 1$.

Question Consider the state, $|\psi\rangle = \frac{1}{\sqrt{3}}(|00\rangle + |01\rangle + |10\rangle)$. Find its Schmidt Decomposition.

Suppose

$$\rho_{A} = \sum_{i} p_{i} |i_{A}\rangle \langle i_{A}|$$

• Introduce R with $\mathcal{H}_R = \mathcal{H}_A$ (can we do better?) and a orthonormal basis $|i_R\rangle$.

Suppose

$$\rho_{A} = \sum_{i} p_{i} |i_{A}\rangle \langle i_{A}|$$

- Introduce R with $\mathcal{H}_R = \mathcal{H}_A$ (can we do better?) and a orthonormal basis $|i_R\rangle$.
- Define

$$|\psi_{AR}\rangle \equiv \sum_{i} \sqrt{p_i} |i_A\rangle |i_R\rangle$$

Suppose

$$\rho_{A} = \sum_{i} p_{i} |i_{A}\rangle \langle i_{A}|$$

- Introduce R with $\mathcal{H}_R = \mathcal{H}_A$ (can we do better?) and a orthonormal basis $|i_R\rangle$.
- Define

$$|\psi_{AR}\rangle \equiv \sum_{i} \sqrt{p_i} |i_A\rangle |i_R\rangle$$

See that

$$\rho_{A} = Tr_{R}(|\psi_{AR}\rangle \langle \psi_{AR}|)$$

Suppose

$$\rho_A = \sum_i p_i \ket{i_A} \bra{i_A}$$

- Introduce R with $\mathcal{H}_R = \mathcal{H}_A$ (can we do better?) and a orthonormal basis $|i_R\rangle$.
- Define

$$|\psi_{AR}\rangle \equiv \sum_{i} \sqrt{p_i} |i_A\rangle |i_R\rangle$$

See that

$$\rho_{A} = Tr_{R}(|\psi_{AR}\rangle \langle \psi_{AR}|)$$

Question Compute the purification for the state

$$\rho = \frac{1}{2}(\ket{0}\bra{0} + \ket{+}\bra{+})$$

Further, apply the unitary $U := 1 \otimes \sigma_y$ to the purified state, and calculate the reduced state to show whether or not such unitaries create equivalent purifications.

• Natural Extension of unitary operations:

$$\mathcal{E}(
ho) = \mathit{Tr}_{\mathsf{env}}(\mathit{U}(
ho \otimes
ho_{\mathsf{env}})\mathit{U}^*)$$

Discard the environment: need some axioms.

• Natural Extension of unitary operations:

$$\mathcal{E}(
ho) = \mathit{Tr}_{\mathsf{env}}(\mathit{U}(
ho \otimes
ho_{\mathsf{env}})\mathit{U}^*)$$

- Discard the environment: need some axioms.
 - **1** $Tr[\mathcal{E}(\rho)] \in [0,1] \forall \rho \ (Tr[\mathcal{E}(\rho)] \text{ is the probability that } \rho \text{ undergoes the transformation } \mathcal{E}).$

• Natural Extension of unitary operations:

$$\mathcal{E}(
ho) = \mathit{Tr}_{\mathsf{env}}(\mathit{U}(
ho \otimes
ho_{\mathsf{env}})\mathit{U}^*)$$

- Discard the environment: need some axioms.
 - **1** $Tr[\mathcal{E}(\rho)] \in [0,1] \forall \rho \ (Tr[\mathcal{E}(\rho)] \text{ is the probability that } \rho \text{ undergoes the transformation } \mathcal{E}).$
 - 2 Convex linearity

$$\mathcal{E}(\sum_{i} p_{i} \rho_{i}) = \sum_{i} p_{i} \mathcal{E}(\rho_{i})$$

for all density matrices ho_i and probabilities ho_i s.t. $\sum_i
ho_i = 1$

§ \mathcal{E} is completely positive. Not only does \mathcal{E} preserve positivity, $(I \otimes \mathcal{E})$ also preserves positivity for I being the identity on an aribtrarily dimensional system's hilbert space.

• Natural Extension of unitary operations:

$$\mathcal{E}(\rho) = \mathit{Tr}_{\mathsf{env}}(\mathit{U}(\rho \otimes \rho_{\mathsf{env}})\mathit{U}^*)$$

- Discard the environment: need some axioms.
 - **1** $Tr[\mathcal{E}(\rho)] \in [0,1] \forall \rho \ (Tr[\mathcal{E}(\rho)] \text{ is the probability that } \rho \text{ undergoes the transformation } \mathcal{E}).$
 - 2 Convex linearity

$$\mathcal{E}(\sum_{i} p_{i} \rho_{i}) = \sum_{i} p_{i} \mathcal{E}(\rho_{i})$$

for all density matrices ρ_i and probabilities p_i s.t. $\sum_i p_i = 1$

3 \mathcal{E} is completely positive. Not only does \mathcal{E} preserve positivity, $(I \otimes \mathcal{E})$ also preserves positivity for I being the identity on an aribtrarily dimensional system's hilbert space.

Formally,

$$\mathcal{E}: L(\mathcal{H}_1) \to L(\mathcal{H}_2) \in C(\mathcal{H}_1, \mathcal{H}_2)$$

For a single qubit state ρ , a measurement in the computational basis can be described by the operations

$$\mathcal{E}_0(\rho) \equiv |0\rangle\langle 0|\rho|0\rangle\langle 0|$$
 and $\mathcal{E}_1(\rho) \equiv |1\rangle\langle 1|\rho|1\rangle\langle 1|$

For a single qubit state ρ , a measurement in the computational basis can be described by the operations

 $\mathcal{E}_0(\rho) \equiv |0\rangle\langle 0|\rho|0\rangle\langle 0|$ and $\mathcal{E}_1(\rho) \equiv |1\rangle\langle 1|\rho|1\rangle\langle 1|$ with probabilities given as $tr[\mathcal{E}_0(\rho)]$ and $tr[\mathcal{E}_1(\rho)]$.

For a single qubit state ρ , a measurement in the computational basis can be described by the operations

 $\mathcal{E}_0(\rho) \equiv |0\rangle\langle 0|\rho|0\rangle\langle 0|$ and $\mathcal{E}_1(\rho) \equiv |1\rangle\langle 1|\rho|1\rangle\langle 1|$ with probabilities given as $tr[\mathcal{E}_0(\rho)]$ and $tr[\mathcal{E}_1(\rho)]$. The final state is

$$\frac{\mathcal{E}_i(\rho)}{\mathcal{T}r([\mathcal{E}_i(\rho)])}$$
 for some $i \in \{0,1\}$

For a single qubit state ρ , a measurement in the computational basis can be described by the operations

 $\mathcal{E}_0(\rho) \equiv |0\rangle\langle 0|\rho|0\rangle\langle 0|$ and $\mathcal{E}_1(\rho) \equiv |1\rangle\langle 1|\rho|1\rangle\langle 1|$ with probabilities given as $tr[\mathcal{E}_0(\rho)]$ and $tr[\mathcal{E}_1(\rho)]$. The final state is

$$\frac{\mathcal{E}_i(\rho)}{Tr([\mathcal{E}_i(\rho)])}$$
 for some $i \in \{0,1\}$

That is, if no measurement is happening, the map \mathcal{E} would be a completely positive trace preserving (CPTP) map.

The operator sum representation

Siddhant Midha

Theorem 8.1 of QCQI

The map \mathcal{E} satisfies the axioms for a valid quantum operation iff there exists a set of operators $\{E_i\}$ such that

$$\mathcal{E}(\rho) = \sum_{i} E_{i} \rho E_{i}^{*}$$

for all valid density matrices ρ and $0 \leq \sum_i E_i^* E_i \leq I$

Note: $A \leq B$ if B - A is PSD.

The operator sum representation

Siddhant Midha

Theorem 8.1 of QCQI

The map \mathcal{E} satisfies the axioms for a valid quantum operation iff there exists a set of operators $\{E_i\}$ such that

$$\mathcal{E}(\rho) = \sum_{i} E_{i} \rho E_{i}^{*}$$

for all valid density matrices ρ and $0 \leq \sum_i E_i^* E_i \leq I$

Note: $A \leq B$ if B - A is PSD. So if we are just dealing with CPTP maps, then these E_i satisfy $\sum_i E_i^* E_i = I$, and are called the *kraus operators*.

Tutorial Siddhant Midha **1** The Vectorization Map: vec : $L(\mathcal{H}_2, \mathcal{H}_1) \to \mathcal{H}_1 \otimes \mathcal{H}_2$, defined as

$$|\operatorname{\textit{vec}}(|a_1\rangle\,\langle b_2|)\rangle := |a_1\rangle\otimes|b_2\rangle$$

1 The Vectorization Map: vec : $L(\mathcal{H}_2, \mathcal{H}_1) \to \mathcal{H}_1 \otimes \mathcal{H}_2$, defined as

$$|\operatorname{\textit{vec}}(|a_1\rangle \langle b_2|)\rangle := |a_1\rangle \otimes |b_2\rangle$$

Thus, the vec map takes operators in $L(\mathcal{H})$ to vectors in $\mathcal{H} \otimes \mathcal{H}$.

1 The Vectorization Map: vec : $L(\mathcal{H}_2, \mathcal{H}_1) \to \mathcal{H}_1 \otimes \mathcal{H}_2$, defined as

$$\ket{\mathit{vec}(\ket{\mathsf{a}_1}ra{\mathsf{b}_2})}:=\ket{\mathsf{a}_1}\otimes\ket{\mathsf{b}_2}$$

Thus, the vec map takes operators in $L(\mathcal{H})$ to vectors in $\mathcal{H} \otimes \mathcal{H}$.

② The Choi Representation $\mathcal{J}: T(\mathcal{H}_1, \mathcal{H}_2) \to L(\mathcal{H}_2 \otimes \mathcal{H}_1)$

$$J(\mathcal{E}) := (\mathcal{E} \otimes \mathbb{1}_{L(\mathcal{H}_1)})(|\mathsf{vec}(\mathbb{1}_{\mathcal{H}_1})\rangle \, \langle \mathsf{vec}(\mathbb{1}_{\mathcal{H}_1})|)$$

1 The Vectorization Map: vec : $L(\mathcal{H}_2, \mathcal{H}_1) \to \mathcal{H}_1 \otimes \mathcal{H}_2$, defined as

$$\ket{\mathit{vec}(\ket{\mathsf{a}_1}ra{\mathsf{b}_2})} := \ket{\mathsf{a}_1} \otimes \ket{\mathsf{b}_2}$$

Thus, the vec map takes operators in $L(\mathcal{H})$ to vectors in $\mathcal{H} \otimes \mathcal{H}$.

② The Choi Representation $\mathcal{J}: \mathcal{T}(\mathcal{H}_1, \mathcal{H}_2) \to \mathcal{L}(\mathcal{H}_2 \otimes \mathcal{H}_1)$

$$J(\mathcal{E}) := (\mathcal{E} \otimes \mathbb{1}_{L(\mathcal{H}_1)})(|\mathsf{vec}(\mathbb{1}_{\mathcal{H}_1})\rangle \, \langle \mathsf{vec}(\mathbb{1}_{\mathcal{H}_1})|)$$

Note that $|\text{vec}(\mathbb{1}_{\mathcal{H}_1})\rangle$ is a vector in $\mathcal{H}_1\otimes\mathcal{H}_1$, and thus $(|\text{vec}(\mathbb{1}_{\mathcal{H}_1})\rangle\langle\text{vec}(\mathbb{1}_{\mathcal{H}_1})|)$ is a operator on $\mathcal{H}_1\otimes\mathcal{H}_1$. Now, we know that \mathcal{E} takes operators from $L(\mathcal{H}_1)$ to $L(\mathcal{H}_2)$, and $\mathbb{1}_{L(\mathcal{H}_1)}$ takes operators from $L(\mathcal{H}_1)$ to $L(\mathcal{H}_1)$. Thus, $J(\mathcal{E})$ lies in $L(\mathcal{H}_2\otimes\mathcal{H}_1)$.

1 The Vectorization Map: vec : $L(\mathcal{H}_2, \mathcal{H}_1) \to \mathcal{H}_1 \otimes \mathcal{H}_2$, defined as

$$\ket{\mathit{vec}(\ket{\mathsf{a}_1}ra{\mathsf{b}_2})} := \ket{\mathsf{a}_1} \otimes \ket{\mathsf{b}_2}$$

Thus, the vec map takes operators in $L(\mathcal{H})$ to vectors in $\mathcal{H} \otimes \mathcal{H}$.

② The Choi Representation $\mathcal{J}: T(\mathcal{H}_1, \mathcal{H}_2) \to L(\mathcal{H}_2 \otimes \mathcal{H}_1)$

$$J(\mathcal{E}) := (\mathcal{E} \otimes \mathbb{1}_{L(\mathcal{H}_1)})(|\mathsf{vec}(\mathbb{1}_{\mathcal{H}_1})\rangle \, \langle \mathsf{vec}(\mathbb{1}_{\mathcal{H}_1})|)$$

Note that $|\text{vec}(\mathbb{1}_{\mathcal{H}_1})\rangle$ is a vector in $\mathcal{H}_1\otimes\mathcal{H}_1$, and thus $(|\text{vec}(\mathbb{1}_{\mathcal{H}_1})\rangle\,\langle\text{vec}(\mathbb{1}_{\mathcal{H}_1})|)$ is a operator on $\mathcal{H}_1\otimes\mathcal{H}_1$. Now, we know that \mathcal{E} takes operators from $L(\mathcal{H}_1)$ to $L(\mathcal{H}_2)$, and $\mathbb{1}_{L(\mathcal{H}_1)}$ takes operators from $L(\mathcal{H}_1)$ to $L(\mathcal{H}_1)$. Thus, $J(\mathcal{E})$ lies in $L(\mathcal{H}_2\otimes\mathcal{H}_1)$.

If
$$\mathcal{H}_1 = \mathcal{H}_2$$
,

$$J(\mathcal{E}) = \sum_{i,j} \mathcal{E}(\ket{i}\bra{j}) \otimes \ket{i}\bra{j}$$

Tutorial Siddhant Midha

The Choi Theorem

If $\mathcal{E}:\mathcal{H}\to\mathcal{H}$ is a quantum channel with kraus operators $\{A_i\}$, then,

$$\mathcal{J}(\mathcal{E}) = \sum_{i} \ket{\mathsf{vec}(A_i)} \bra{\mathsf{vec}(A_i)}$$

The Choi Theorem

If $\mathcal{E}: \mathcal{H} \to \mathcal{H}$ is a quantum channel with kraus operators $\{A_i\}$, then,

$$\mathcal{J}(\mathcal{E}) = \sum_{i} \ket{\mathsf{vec}(A_i)} \bra{\mathsf{vec}(A_i)}$$

Questions

The Choi Theorem

If $\mathcal{E}: \mathcal{H} \to \mathcal{H}$ is a quantum channel with kraus operators $\{A_i\}$, then,

$$\mathcal{J}(\mathcal{E}) = \sum_{i} \ket{\mathsf{vec}(A_i)} \bra{\mathsf{vec}(A_i)}$$

Questions

① Compute the Choi operator, $\mathcal{J}(\mathcal{E})$ for the completely depolarizing channel on a qubit,

$$\mathcal{E}_{\sigma}(\rho) := \sigma \ \forall \rho \in D(\mathcal{H})$$

The Choi Theorem

If $\mathcal{E}: \mathcal{H} \to \mathcal{H}$ is a quantum channel with kraus operators $\{A_i\}$, then,

$$\mathcal{J}(\mathcal{E}) = \sum_{i} \ket{\mathsf{vec}(A_i)} \bra{\mathsf{vec}(A_i)}$$

Questions

① Compute the Choi operator, $\mathcal{J}(\mathcal{E})$ for the completely depolarizing channel on a qubit,

$$\mathcal{E}_{\sigma}(\rho) := \sigma \ \forall \rho \in \mathcal{D}(\mathcal{H})$$

Suppose,

$$\mathcal{J}(\mathcal{E}) = \frac{2}{3} \left| \phi^{-} \right\rangle \left\langle \phi^{-} \right| + \frac{4}{3} \left| \psi^{+} \right\rangle \left\langle \psi^{+} \right|$$

Calculate the Kraus operators for \mathcal{E}_{\cdot}

An isometry maps a quantum system from a smaller to a larger Hilbert space. For instance, the isometry on a single qubit,

$$U|0\rangle = rac{1}{\sqrt{2}}(|0\rangle + |3\rangle)$$
 $U|1\rangle = rac{1}{\sqrt{2}}(|1\rangle + |2\rangle),$

maps the qubit from the Hilbert space basis $\{|0\rangle, |1\rangle\}$ to the four-dimensional basis $\{|0\rangle, |1\rangle, |2\rangle, |3\rangle\}$

- 1) Write the isometry U as a 4 \times 2 matrix, and show that it $U^{\dagger}U=\mathbb{I}$, but $UU^{\dagger}\neq\mathbb{I}$.
- 2) Find a 4 \times 4 unitary matrix, \tilde{U} , such that it gives U, when the last 2 columns are removed. (Hint: You have to show $\tilde{U}^{\dagger}\tilde{U}=\tilde{U}\tilde{U}^{\dagger}=\mathbb{T}$.
- 3) Alternatively, show that there exists a 4 \times 2 matrix V, such that $U = \tilde{U} \cdot V$. Interpret, the role of V.

Appendix: Interpretations of the OpSum Representation

Siddhant Midha

$S+E \rightarrow Kraus$

 We have, the system coupled to an environment under unitary evolution as

$$U(
ho\otimes\ket{e_0}ra{e_0})U^*$$

• Trace out the environment,

$$\sum_{k} (\mathbb{1} \otimes \langle e_{k}|) U(\rho \otimes |e_{0}\rangle \langle e_{0}|) U^{*}(\mathbb{1} \otimes |e_{k}\rangle)$$

See that

$$(
ho\otimes|e_0\rangle\langle e_0|)=(\mathbb{1}\otimes|e_0\rangle)
ho(\mathbb{1}\otimes\langle e_0|)$$

Define

$$E_k \equiv (\mathbb{1} \otimes \langle e_k |) U(\mathbb{1} \otimes |e_0 \rangle)$$

and see the equivalence.

With the notation in the previous slide, define

$$\rho_k \equiv \frac{E_k \rho E_k^*}{tr(E_k \rho E_k^*)}$$

Thus, we can consider the act of applying \mathcal{E} as applying U to $\rho \otimes |e_0\rangle \langle e_0|$ and then measuring the environment in the $|e_k\rangle$ basis.

That is equivalent to replacing ρ randomly by ρ_k with the probability $p(k) = tr(E_k \rho E_k^*)$, thus resulting in

$$\mathcal{E}(\rho) = \sum_{k} p(k)\rho_{k} = \sum_{k} E_{k}\rho E_{k}^{*}$$

as expected.

PH 534: Quantum Information and Computing Tutorial

> Siddhan Midha

Let P_m be a projective measurement on the S+E. Define

$$\mathcal{E}_m(\rho) = tr_E(P_m U(\rho \otimes \sigma) U^* P_m)$$

where $\sigma = \sum_{i} q_{i} |j\rangle \langle j|$. And let $|e_{k}\rangle$ be a basis for \mathcal{H}^{E} . Thus,

$$\mathcal{E}_{m}(\rho) = \sum_{jk} q_{j}(\mathbb{1} \otimes \langle e_{k}|) P_{m} U(\rho \otimes |j\rangle \langle j|) U^{*} P_{m}(\mathbb{1} \otimes |e_{k}\rangle)$$

Define

$$E_{jk}^m = \sqrt{q_j}(\mathbb{1} \otimes \langle e_k|) P_m U(\mathbb{1} \otimes |j\rangle)$$

and we get

$$\mathcal{E}_{m}(\rho) = \sum_{jk} E_{jk}^{m} \rho E_{jk}^{m*}$$

It is easy to see that $\sum_{jk} E_{jk}^{m*} E_{jk}^{m} \leq \mathbb{1}$, not $= \mathbb{1}$. The state evolves to $\mathcal{E}_m(\rho)$ with probability $tr(\mathcal{E}_m(\rho))$.

- We are given the set $\{\mathcal{E}_m\}$. We shall construct a S+E (+measurement) model.
- Let E_k^m be the kraus rep. for the operation \mathcal{E}_m .
- Introduce env E with an orthonormal basis $|m, k\rangle$ with indices in 1-1 correspondence.
- Let $|e_k\rangle$ be a basis for \mathcal{H}^E and define

$$U |\psi\rangle \otimes |e_0\rangle \equiv \sum_{mk} E_{mk} |\psi\rangle |m,k\rangle$$

As done earlier, we know this can be extended to a unitary on the composite system.

Define

$$P_{m} \equiv \sum_{m} |m, k\rangle \langle m, k|$$

Let $\rho = \sum p_i |i\rangle \langle i|$ be a state of our system.

Consider

$$\begin{split} U(\rho \otimes |e_{0}\rangle \langle e_{0}|)U^{*} &= \sum_{j} p_{j}U(|j\rangle \langle j| \otimes |e_{0}\rangle \langle e_{0}|)U^{*} \\ &= \sum_{mjk} p_{j}(E_{mk} |j\rangle \langle j| E_{mk}^{*} \otimes |m,k\rangle \langle m,k|) \end{split}$$

Now it is easy (and a bit annoying to write) to see that measuring P_m will result in $\mathcal{E}_m(\rho)$ with probability $tr(\mathcal{E}_m(\rho))$.

Let $\rho = \sum p_i |i\rangle \langle i|$ be a state of our system.

Consider

$$\begin{split} U(\rho \otimes |e_{0}\rangle \langle e_{0}|)U^{*} &= \sum_{j} p_{j}U(|j\rangle \langle j| \otimes |e_{0}\rangle \langle e_{0}|)U^{*} \\ &= \sum_{mjk} p_{j}(E_{mk} |j\rangle \langle j| E_{mk}^{*} \otimes |m,k\rangle \langle m,k|) \end{split}$$

Now it is easy (and a bit annoying to write) to see that measuring P_m will result in $\mathcal{E}_m(\rho)$ with probability $tr(\mathcal{E}_m(\rho))$.