Tutorial 3

TA: Mengyun Liu, Hongtu Xu

Assignment 2 is released

- [must] You are required to implement the basic iterative de Casteljau Bézier vertex evaluation algorithm. [30%]
- [must] You are required to construct Bézier surfaces with the normal evaluation at each mesh vertex. [40%]
- [must] You are required to render the Bézier surfaces based on the vertex array. [10%]
- [must] You are required to create more complex meshes by stitching multiple Bézier surface patches together. [20%]
- [optional] You may construct the B-Spline/NURBS surfaces. [15%]
- [optional] You may support the interactive editing (by selection) of control points. [10%]
- **[optional]** You may implement the adaptive mesh construction based on the curvature estimation. [15%]

Agenda

- Bézier iterative algorithm
- Bézier surface construction algorithm
- Stitching multiple Bézier surfaces
- Skeleton code
- Demo
- Report

Bézier iterative algorithm

Bézier curve

Explicit definition

$$\mathbf{B}(t) = \sum_{i=0}^n inom{n}{i} (1-t)^{n-i} t^i \mathbf{P}_i$$

Recursive definition

$$\mathbf{B}_{\mathbf{P}_0}(t) = \mathbf{P}_0$$
, and $\mathbf{B}(t) = \mathbf{B}_{\mathbf{P}_0\mathbf{P}_1\dots\mathbf{P}_n}(t) = (1-t)\mathbf{B}_{\mathbf{P}_0\mathbf{P}_1\dots\mathbf{P}_{n-1}}(t) + t\mathbf{B}_{\mathbf{P}_1\mathbf{P}_2\dots\mathbf{P}_n}(t)$

Evaluation of Bézier curve

- A simple way: Compute each term in the explicit defition
 - Not numerically stable
 - It could introduce numerical errors while evaluating the Bernstein polynomials
- De Casteljau's Algorithm

Bézier surface construction algorithm

Bézier surface

A tenso rproduct of 1D Bézier curve

$$\mathbf{p}(u,v) = \sum_{i=0}^n \sum_{j=0}^m B_i^n(u) \; B_j^m(v) \; \mathbf{k}_{i,j}$$

Evaluation

Meshing in parameter space

- Meshing in parameter space
 - gridding in u,v parameter space

Meshing in parameter space

- Meshing in parameter space
 - triangulation in u,v parameter space

Stitching multiple Bézier surfaces

Continuity

- 0-th order(L0)
 - The curves/surfaces are connected only
- 1-st order(L1)
 - First derivatives are continous at the joint

Bézier Curves with L1 Continuity

- The tangents are continous at the joint
 - ⇒ Red P3P4 and yellow P1P2 are colinear
- Why?
 - Tangent of the red P4 is P4-P3
 - Tangent of the yellow P1 is P2-P1

Bézier Surfaces with L1 Continuity

- The normals are continous at the joint
 - Tangents along u are continous
 - Tangents along v are continous
- Control points should be colinear with the points on both sides.
- Why?

Skeleton Code

Files

- bezier.h
 - Evaluation of bezier curves and bezier surfaces
 - Generating objects to render
- object.h
 - Functions to render objects

Demo

Report

Pay attention to the format!

- Do NOT use Chinese.
- Do NOT handwrite.

Good Luck!