Writing Assignment 1

Baran Sevim

1 Groups

1.1 Basics

1.1.1 Definition

Definition 1. A group is a non-empty set G together with a rule that assigns to each pair g,h of elements of G an element $g \times h$ such that

- $g \times h \in G$. We say that G is closed under *.
- g * (h * k) = (g * h) * k for all $g, h, k \in G$. We say that * is associative.
- There exists an identity element $e \in G$ such e * g = g * e = g for all $g \in G$.
- Every element $g \in G$ has an inverse g^{-1} such that $g * g^{-1} = g^{-1} * g = e$.

context here on the usage of groups. An example of a group, an element, it's inverse, and the identity element would help.

Add some

1.2 Symmetries of Graphs

1.2.1 Definition: Graph

Definition 2. A graph is a finite set of vertices joined by edges. We will assume that there is at most one edge joining two given vertices and no edge joins a vertex to itself. The valency of a vertex is the number of edges emerging from it.

1.2.2 Definition: Symmetry

Definition 3. A symmetry of a graph is a permutation of the vertices that preserves the edges. More precisely, let V denote the set of vertices of a graph. Then asymmetry is a bijection $f: V \mapsto V$ such that $f(v_1)$ and $f(v_2)$ are joined by an edge if and only if v_1 and v_2 are joined by an edge.

Theorem 1. The symmetries of a graph form a group.

Proof. If $f: V \mapsto V$ and $g: V \mapsto V$ we define the group operation f*g to be their composition (as maps), so $f*g = f \circ g$, i.e do g first, then f. The composition of symmetries is clearly a symmetry, so the operation is closed. Since the composition of maps is associative

$$(f*g)*h:=(f\circ g)\circ h=f\circ (g\circ h):=f*(g*h)$$

for all symmetries f, g, h. The identity map e which sends every vertex to itself is a symmetry, and obviously $e \circ f = f \circ e = f$ for all symmetries f. Lastly, if $f: V \mapsto V$ is a symmetry then it is bijective, so its inverse f^{-1} exists and is also a symmetry. It is characterized by $f \circ f^{-1} = f^{-1} \circ f = e$.

This is great as a definition, but how does it relate to the definition of groups above?

You use f
* g but say
it is their
composition
which is $f \circ g$. I might
be wrong
here though.

Theorem 2. In a finite group, every element his finite order.

Proof. Let $g \in G$. Consider the infinite sequence g, g^2, g^3, \ldots If G is finite, then there must be repetitions in finite sequence. Hence there exists $m, n \in \mathbb{N}$ with m > n such that $g^m = g^n$. By cancellation, $g^{m-n} = e$.

1.3 Products

Definition 4. The easiest way of making a new group from given ones.

```
Theorem 3. Let G, H be groups. The product G \times H = \{(g,h) \mid g \in G, h \in H\}
  • The group operation is (g,h)*(g',h') := (g*g'_G)
Proof.
                                                                                    Source: Wemyss, Michael (2011). Introduction to Group Theory, University of Glasgow
  Latex code is below
\documentclass{article}
\usepackage{amsmath, amsfonts, amssymb, amsthm}
\usepackage{fullpage}
\title{Writing Assignment 1}
\author{Baran Sevim}
\date{ }
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}
\newtheorem{definition}{Definition}
\mbox{\newcommand}(R){\mathbb{R}}
\begin{document}
\maketitle
\section{Groups}
\subsection{Basics}
\subsubsection{Definition}
\begin{definition}
   A \textit{group} is a non-empty set (G) together with a rule that assigns to each pair (g, h) o
   \begin{itemize}
       \item \(g \times h \in G\). We say that \(G\) is \textit{closed} under \(*\).
   \end{itemize}
   \begin{itemize}
```

```
\end{itemize}
    \begin{itemize}
        \item There exists an \textit{identity element} \(e \in G\) such \(e * g = g * e = g\) for all
    \end{itemize}
    \begin{itemize}
       \item Every element \(g \in G\) has an inverse \((g^{-1}\) such that \(g * g^{-1} = g^{-1} * g = 1)
    \end{itemize}
\
\end{definition}
\subsection{Symmetries of Graphs}
\subsubsection{Definition: Graph}
\begin{definition}
    A \textit{graph} is a finite set of vertices joined by edges. We will assume that there is at most
\end{definition}
\subsubsection{Definition: Symmetry}
\begin{definition}
   A \textit{symmetry} of a graph is a permutation of the vertices that preserves the edges. More prec
\end{definition}
\begin{theorem}
    The symmetries of a graph form a group.
\end{theorem}
\begin{proof}
If \(f: V \in V) and \(g: V \in V) we define the group operation \(f * g) to be their composed.
\begin{align*}
    (f * g) * h := (f \land g) \land f = f \land (g \land h) := f * (g * h)
\end{align*}
for all symmetries \(f, g, h\). The identity map \(e\) which sends every vertex to itself is a symmetry
\end{proof}
\begin{theorem}
    In a finite group, every element his finite order.
\end{theorem}
\begin{proof}
   Let (g \in G). Consider the infinite sequence (g, g^2, g^3, \dots) If (G) is finite, then the
\end{proof}
\subsection{Products}
\begin{definition}
   The easiest way of making a new group from given ones.
```

```
\end{definition}
\begin{theorem}
  Let \(G, H\\) be groups. The product \(G \times H = \{(g, h) \mid g \in G, h \in H \}\\)
  \begin{itemize}
    \item The group operation is \((g, h) * (g', h') := (g * g'_G\\)
  \end{itemize}
\end{theorem}
\begin{proof}
\end{proof}
```