Sección 7.4 Transformadas de Derivadas, Integrales y Funciones Periódicas 351

entonces f(t) = g(t) en el intervalo [0, T], donde T = 2. Pero g se puede expresar en términos de funciones escalón unitario como

$$g(t) = t - t\mathcal{U}(t-1) = t - (t-1)\mathcal{U}(t-1) - \mathcal{U}(t-1).$$

Así que (10) puede escribirse como

$$\mathcal{L}{f(t)} = \frac{1}{1 - e^{-2s}} \mathcal{L}{g(t)}$$

$$= \frac{1}{1 - e^{-2s}} \mathcal{L}{t - (t - 1)\mathcal{U}(t - 1) - \mathcal{U}(t - 1)}$$

$$= \frac{1}{1 - e^{-2s}} \left[\frac{1}{s^2} - \frac{1}{s^2} e^{-s} - \frac{1}{s} e^{-s} \right].$$

Al inspeccionar la ecuación entre corchetes se observa que es idéntica a (11).

Las respuestas a los problemas de número impar comienzan en la página 597

- 1. Use el resultado $(d/dt)e^t = e^t y$ (1) de esta sección para evaluar $\mathcal{Q}\{e^t\}$.
- 2. Utilice el resultado $(d/dt) \cos^2 t = -\sin 2t$ y (1) de esta sección para evaluar $\mathcal{L}\{\cos^2 t\}$.

En los Problemas 3 y 4 supóngase que la función y(t) tiene las propiedades de que y(0) = 1 y y'(0) = -1. Encuentre la transformada de Laplace de la expresión dada.

3.
$$y'' + 3y'$$

En los Problemas 5 y 6 supóngase que la función y(t) tiene las propiedades de que y(0) = 2 y y'(0) = 3. Halle la transformada de Laplace $\mathcal{L}\{y(t)\} = Y(s)$.

5.
$$y'' - 2y' + y = 0$$
 6. $y'' + y = 1$

En los Problemas 7-20 obtenga la transformada de Laplace dada sin evaluar la integral.

7.
$$\mathscr{L}\left\{\int_0^t e^{\tau} d\tau\right\}$$

9.
$$\mathscr{L}\left\{\int_0^t e^{-\tau}\cos\tau\ d\tau\right\}$$

11.
$$\mathscr{L}\left\{\int_0^t \tau e^{t-\tau} d\tau\right\}$$

13.
$$\mathscr{L}\left\{t\int_0^t \sin\tau\ d\tau\right\}$$

15.
$$\mathcal{L}\{1 * t^3\}$$

17.
$$\mathcal{L}\{t^2 * t^4\}$$

19.
$$\mathcal{L}\lbrace e^{-t} * e^t \cos t \rbrace$$

8.
$$\mathscr{L}\left\{\int_0^t \cos\tau \,\mathrm{d}\tau\right\}$$

10.
$$\mathscr{L}\left\{\int_0^t \tau \sin \tau \, d\tau\right\}$$

12.
$$\mathscr{L}\left\{\int_0^t \sin\tau\cos(t-\tau)\,d\tau\right\}$$

14.
$$\mathscr{L}\left\{t\int_0^t \tau e^{-\tau}d\tau\right\}$$

16.
$$\mathcal{L}\{1 * e^{-2t}\}$$

18.
$$\mathcal{L}\{t^2 * te^t\}$$

$$20. \ \mathcal{L}\{e^{2t} * \operatorname{sen} t\}$$

En los Problemas 21 y 22 supóngase que $\mathcal{L}^{-1}{F(s)} = f(t)$. Encuentre la trans formada inversa de Laplace para la función dada.

$$21. \ \frac{1}{s+5} F(s)$$

22.
$$\frac{s}{s^2+4} F(s)$$

En los Problemas 23-28 utilice (6) para evaluar f(t).

$$\mathbf{23.} \ \mathscr{L}^{-1}\left\{\frac{1}{s(s+1)}\right\}$$

24.
$$\mathscr{L}^{-1}\left\{\frac{1}{s(s^2+1)}\right\}$$

25.
$$\mathscr{L}^{-1}\left\{\frac{1}{(s+1)(s-2)}\right\}$$

26.
$$\mathscr{L}^{-1}\left\{\frac{1}{(s+1)^2}\right\}$$

27.
$$\mathcal{L}^{-1}\left\{\frac{s}{(s^2+4)^2}\right\}$$

28.
$$\mathscr{L}^{-1}\left\{\frac{1}{(s^2+4s+5)^2}\right\}$$

- 29. Demuestre la propiedad conmutativa de la integral de convolución f * g = g * f.
- 30. Demuestre la propiedad distributiva de la integral de convolución f*(g+h) = f*g+f*h.

En los Problemas 31-38 aplique el Teorema 7.10 para hallar la transformada de Laplace de la función periódica dada.

Figura 7.29

Figura 7.30

Figura 7.31

Figura 7.32

Figura 7.33

Figura 7.34

37.
$$f(t) = \operatorname{sen} t$$
$$f(t + 2\pi) = f(t)$$

38.
$$f(t) = \cos t$$

 $f(t + 2\pi) = f(t)$