



# SISTEMAS OPERACIONAIS AULA 9 - GERÊNCIA DE MEMÓRIA

PROFESSORA SILVANA DAL-BÓ

PROF. LUCIANO SAVIO

luciano.savio@animaeducacao.com.br

1

### AGENDA

- Alocação contígua simples
- Alocação Particionada
  - Alocação Particionada Estática
  - Alocação Particionada Dinâmica
  - Estratégias de Alocação de Partição

### FUNÇÃO

- Manter o maior número de processos na memória
- Maximizar o compartilhamento da UCP e demais recursos
- Swapping
- Execução de programas maiores que memória disponível
- Proteção

3

### ALOCAÇÃO CONTÍGUA SIMPLES

- Utilizada nos primeiros sistemas operacionais (monoprogramáveis);
- O usuário tem controle sobre toda a memória principal;
- A proteção do SO é através de um registrador que delimita a área do Sistema Operacional e do usuário;

Memória Principal

Sistema
O peracional

Área para
programa

### ALOCAÇÃO CONTÍGUA SIMPLES - PROTEÇÃO

- Sempre que um programa faz referência a um endereço na memória, o sistema verifica se o endereço está dentro dos limites permitidos.
- Caso não esteja o programa é cancelado e uma mensagem de erro é gerada, indicando violação no acesso à MP.



5

# ALOCAÇÃO CONTÍGUA SIMPLES

- Subutilização da memória!
- O que acontece quando um programa necessita de mais memória que o disponível??



### TÉCNICA DE OVERLAY (SOBREPOSIÇÃO)

- Divide o programa em módulos independentes que utilizarão a mesma área de memória para serem executados.
- O tamanho da área de Overlay é do tamanho do maior módulo do programa.



Fonte: Machado e Maia (2013, p. 149).

7

## ALOCAÇÃO PARTICIONADA



- Evolução dos S.O. para ambientes multiprogramáveis
  - Permite a execução de vários programas simultaneamente.

### ALOCAÇÃO PARTICIONADA ESTÁTICA

- Memória dividida em partições de tamanho fixo definidos na fase de inicialização do sistema em função do tamanho dos Programas.
- Para modificar o tamanho das partições, o S.O. deve ser reinicializado com as novas configurações.

Tabela de partições Partição Tamanho 2 Kb 1 2 5 Kb 8 Kb Programas a serem executados: D C 3 Kb 1 Kb 4 Kb 2 Kb 6 Kb

Sistema Operacional
Partição 1 2 Kb
Partição 2 5 Kb
Partição 3 8 Kb

Memória Principal

Fonte: Machado e Maia (2013, p. 149).

9

### CÓDIGO ABSOLUTO X CÓDIGO RELOCÁVEL

**ABSOLUTO** 

Programa Vendas

RELOCÁVEL

Programa Vendas
-----Módulo cadastro\_venda
----Módulo cadastro\_itens
----Módulo atualiza\_estoque

### ALOCAÇÃO PARTICIONADA ESTÁTICA ABSOLUTA

- Os programas só podiam ser executados em uma partição específica.
- Limitação advinda na forma como os compiladores / montadores geravam o código (código absoluto)



Fonte: Machado e Maia (2013, p. 150).

11

### ALOCAÇÃO PARTICIONADA ESTÁTICA RELOCÁVEL

- Com a evolução dos compiladores e loaders (montadores), o código gerado deixou de ser absoluto e passou a ser relocável.
- Quando o programa é carregado, o loader calcula todos os endereços a partir da posição inicial onde o programa foi alocado.
- Caso o programa A e B terminassem, o programa E poderia ser executado em qualquer outra partição.



Fonte: Machado e Maia (2013, p. 150).

### Tabela de Alocação de Partições

| Partição | Tamanho | Livre |
|----------|---------|-------|
| 1        | 2 Kb    | Não   |
| 2        | 5 Kb    | Sim   |
| 3        | 8 Kb    | Não   |

Memória Principal



Para controle sobre quais partições estão alocadas, a Gerência de Memória mantêm uma tabela com endereço inicial da Partição, seu tamanho e uso.

13

 Proteção — baseia-se em 2 registradores, indicando os limites da partição onde o programa está sendo executado.

#### Memória Principal



# ALOCAÇÃO PARTICIONADA – FRAGMENTAÇÃO INTERNA

# Sistema Operacional Programa C 1 Kb Programa A 3 Kb Programa E 5 Kb

- Principal desvantagem
  - Fragmentação: Áreas livres de memória muito pequenas

Fonte: Machado e Maia (2013, p. 152).

15

### ALOCAÇÃO PARTICIONADA DINÂMICA

- Eliminado o conceito de partição de tamanho fixo!
- Elimina o problema de fragmentação interna.



Fonte: Machado e Maia (2013, p. 152).

# ALOCAÇÃO PARTICIONADA DINÂMICA FRAGMENTAÇÃO EXTERNA

 Gera problemas de fragmentação à medida em que os programas vão terminando sua execução



17

 Solução I - conforme os programas terminam os espaços adjacentes são reunidos.



--

 Solução 2 – realocação de todas as partições ocupadas, sendo necessário mover os programas – relocação dinâmica. (Alocação Particionada Dinâmica com Relocação)



19

### Estratégias de Alocação

Lista de Áreas Livres

| Áreas livres | Tamanho |  |
|--------------|---------|--|
| 1            | 4 Kb    |  |
| 2            | 5 Kb    |  |
| 3            | 3 Kb    |  |



Sistema Operacional

### Estratégias de Alocação

- Best-fit
  - Escolhe a partição em que o programa deixa o menor espaço.
  - Aumenta a fragmentação.



21

### Estratégias de Alocação

- Worst-fit
  - Escolhe a partição em que deixa o maior espaço livre.

Diminui o problema da fragmentação.



### Estratégias de Alocação

- First-fit
  - Primeira partição livre de tamanho suficiente.
  - A lista está ordenada por endereços crescentemente.



Sistema Operacional



É a estratégia mais rápida.

23



Memória Principal

Programa C

Programa A



### **SWAPPING**

O algoritmo de escolha do processo a ser retirado da MP deve priorizar aquele com menores chances de ser escalonado para evitar os swapping desnecessário de um processo que será executado em seguida

25



### **INTERVALO**

### **EXERCÍCIOS!!!**



27

### Problema I:

- Suponha um sistema computacional com 128Kb de MP e que utilize um SO de 64Kb que implementa alocação particionada estática relocável. Considere que o sistema foi inicializado com 3 partições: P1(8Kb), P2 (24Kb) e P3(32Kb). Calcule a fragmentação interna da MP após a carga de 3 programas:PA, PB e PC.
- A) PI<- PA(6kB); P2<- PB(20Kb); P3<- PC (28Kb)</li>
- B) PI <- PA(4kB); P2 <- PB(16Kb); P3 <- PC (26Kb)
- C) PI<- PA(8kB); P2<- PB(24Kb); P3<- PC (32Kb)</li>

### Problema 2:

- Considere um sistema que possua as seguintes área livres na memória principal, ordenadas crescentemente: 10kb, 4Kb, 20Kb, 18Kb, 7Kb, 9Kb, 12Kb e 15Kb. Para cada programa a seguir, qual seria a partição alocada utilizando-se as estratégias best-fit e worst-fit:
- A) 12Kb
- B) 10Kb
- C) 9kB

- I. Qual a diferença entre fragmentação interna e fragmentação externa? Como resolver este problema?
- Qual a diferença entre a alocação particionada estática absoluta e estática relocável? Quais as complicações e vantagens de cada uma delas?
- 3. Qual a melhor estratégia de alocação das partições e porquê?

# LEITURA

### Leitura do Capítulo 3 Seção 3 do livro

- Giraldi, Márcia Cargnin Martins. Introdução ao ambiente operacional.
  - Palhoça: UnisulVirtual, 2015

31

