### Online Appendix for "An Investment-and-Marriage Model with Differential Fecundity"

Last Updated: August 22, 2020

# Appendix A. Omitted Proofs

## **A.1** Determination of Stable Marriage Payoff Differences

Figure A1 illustrates the two cases of the determination of stable marriage payoff difference between any two adjacently ranked types. In case (a), type- $\tau^*$  women marry both high-income men and low-income men with positive probabilities, so  $v_{mH} + v_{w\tau^*} = s_{H\tau^*}$  and  $v_{mL} + v_{w\tau^*} = s_{L\tau^*}$ , which together imply  $\pi_m = v_{mH} - v_{mL} = \delta_{\tau^*}$ ; the marriage payoff difference between any two adjacently ranked female types can be determined similarly, with the dashed arrows denoting the line of reasoning. In case (b), type  $\tau \succeq \tau^*$  women almost surely marry high-income men, and type  $\tau \prec \tau^*$  women almost surely marry low-income men. Since there is no type of women that marries both types of men with positive probabilities,  $\pi_m$  is indeterminate, and it can take any value between  $\delta_{\tau}$  and  $\delta_{\tau^*}$ , where  $\tau$  is the female type ranked just below  $\tau^*$ . This indeterminacy in  $\pi_m$  will dissipate in equilibrium, however, when marriage payoffs and investments are jointly determined. For women, almost all  $\tau' \succeq \tau^*$  women marry high-income men and almost all  $\tau \prec \tau^*$  women marry low-income men, so  $v_{w\tau'} - v_{w\tau} = s_{H\tau'} - s_{L\tau} - \pi_m$ .

Figure A1: Determination of Stable Marriage Payoff Difference

(a) The mass of high-income men is strictly between the mass of women strictly higher ranked than  $\tau^*$  and the mass of women weakly higher ranked than type  $\tau^*$  for some  $\tau^* \in T$ .



(b) The mass of high-income men equals the mass of women weakly higher ranked than  $\tau^*$  for some type  $\tau^* \in T$ .

$$mH$$

$$\tau^* \qquad v_{mL} + v_{w\tau^*} \ge s_{L\tau^*}$$

$$v_{mH} + v_{w\tau^*} = s_{H\tau^*}$$

$$v_{mH} - v_{mL} \le s_{H\tau^*} - s_{L\tau^*} \equiv \delta_{\tau^*}$$

$$v_{w\tau^*} - v_{w\tau} = s_{H\tau^*} - s_{H\tau} - \pi_m$$

$$v_{mL} + v_{w\tau} = s_{L\tau}$$

$$v_{mH} + v_{w\tau} \ge s_{H\tau}$$

$$v_{mH} - v_{mL} \ge s_{H\tau} - s_{L\tau} \equiv \delta_{\tau}$$

#### A.2 Proof of Theorem 1

Let  $\theta_m(\pi_m)$ ,  $\theta_{w1}(\pi_m)$ , and  $\theta_{w2}(\pi_m)$  denote the ability cutoffs characterizing optimal human capital investments when men's stable marriage premium is  $\pi_m$  (and women's stable marriage-payoff differences are pinned down by  $\pi_m$ ). Let  $G_m(\pi_m)$  and  $G_w(\pi_m)$  denote the induced distributions of men's and women's marriage characteristics, respectively, when the investment strategies are the ones characterized by the ability

cutoffs  $\theta_m(\pi_m)$ ,  $\theta_{w1}(\pi_m)$ , and  $\theta_{w2}(\pi_m)$ . Let  $\Pi_m(G_m,G_w)$  denote the set of men's stable marriage premiums (and associated stable marriage payoffs of women) in the marriage market  $(G_m,G_w)$ . Construct the correspondence

$$D_{mH}(\pi_m) := \{G_{mH} \in [0,1] : \pi_m \in \Pi_m((G_{mH}, 1 - G_{mH}), G_w(\pi_m))\}.$$

For any  $\pi_m \in [\delta_l, \delta_H]$ , each element in the set  $D_{mH}(\pi_m)$  is a mass  $G_{mH}$  of high-income men such that  $\pi_m$  is men's stable marriage premium in the marriage market  $((G_{mH}, 1 - G_{mH}), G_w(\pi_m))$ . Explicitly, (i)  $D_{mH}(\pi_m) = [G_{w, \succ \tau_w^*}(\pi_m), G_{w, \succeq \tau_w^*}(\pi_m)]$  if  $\pi_m = \delta_{\tau_w^*}$  for a certain type  $\tau_w^* \in T_w$ ; and (ii)  $D_{mH}(\pi_m) = G_{w,\succeq \tau_w^*}(\pi_m)$  if  $\pi_m \in (\delta_{\tau_w'}, \delta_{\tau_w'})$  for a pair of adjacently ranked types  $\tau_w^*$  and  $\tau_w' \prec \tau_w^*$ .

I prove the claim that there exists an equilibrium in which men's stable marriage premium is  $\pi_m^*$  if and only if  $G_{mH}(\pi_m^*) \in D_{mH}(\pi_m^*)$ . First, the only if part. Suppose men's equilibrium marriage premium is  $\pi_m^*$ . The induced mass of high-income men is  $G_{mH}(\pi_m^*)$ , and the induced distribution of women's marriage characteristics is  $G_w(\pi_m^*)$ . Since  $\pi_m^* \in \Pi_m((G_{mH}(\pi_m^*), 1 - G_{mH}(\pi_m^*)), G_w(\pi_m^*))$ , by definition of  $D_{mH}(\pi_m^*)$ , we have  $G_{mH}(\pi_m^*) \in D_{mH}(\pi_m^*)$ . Reversely, the if only part. If  $G_{mH}(\pi_m^*) \in D_{mH}(\pi_m^*)$ , then by definition of  $D_{mH}(\pi_m^*)$ ,  $\pi_m^* \in \Pi_m((G_{mH}(\pi_m^*), 1 - G_{mH}(\pi_m^*)), G_w(\pi_m^*))$ , so  $\pi_m^*$  is men's equilibrium marriage premium.

It follows from the claim above that an equilibrium exists if and only if the graph of function  $G_{mH}(\cdot)$  and the graph of correspondence  $D_{mH}(\cdot)$  intersect at least once. Equilibrium marriage-payoff differences and equilibrium investments are uniquely determined if and only if the graph of function  $G_{mH}(\cdot)$  and the graph of correspondence  $D_{mH}(\cdot)$  intersect once and only once. The existence of an equilibrium is guaranteed because  $G_{mH}(\cdot)$  has a range [0,1] and is continuous, and  $D_{mH}(\cdot)$  has a range [0,1] and is upperhemicontinuous.

It remains to prove equilibrium uniqueness.  $G_{mH}(\pi_m) = \int_{\theta_m(\pi_m)}^1 \theta(2-\theta) dF_m(\theta)$  is strictly increasing in  $\pi_m$  because  $\theta_m(\pi_m) = c_m/(z_{mH} - z_{mL} + \pi_m)$  is strictly decreasing in  $\pi_m$ . It suffices to show  $D_{mH}(\pi_m)$  is weakly decreasing in the following sense: for any  $\pi_m$  and  $\pi'_m > \pi_m$ ,  $\max D_{mH}(\pi'_m) \le \min D_{mH}(\pi_m)$ . For the remainder of the proof, we mechanically show that  $D_{mH}(\pi_m)$  is decreasing. Depending on  $\delta_h > \delta_L$ ,  $\delta_h < \delta_L$ , or  $\delta_h = \delta_L$ ,  $D_{mH}(\pi_m)$  is characterized differently. I discuss the three cases separately.

Case 1. Suppose  $\delta_L > \delta_h$ . Explicitly,

$$D_{mH}(\pi_m) = egin{cases} [G_{w,\succeq h}(\pi_m),1] & ext{if } \pi_m = \delta_l \ G_{w,\succeq h}(\pi_m) & ext{if } \pi_m \in (\delta_l,\delta_h) \ [G_{w,\succeq L}(\pi_m),G_{w,\succeq h}(\pi_m)] & ext{if } \pi_m = \delta_h \ G_{w,\succeq L}(\pi_m) & ext{if } \pi_m \in (\delta_h,\delta_L) \ [G_{wH}(\pi_m),G_{w,\succeq L}(\pi_m)] & ext{if } \pi_m = \delta_L \ G_{wH}(\pi_m) & ext{if } \pi_m \in (\delta_L,\delta_H) \ [0,G_{wH}(\pi_m)] & ext{if } \pi_m = \delta_H \end{cases}$$

It remains to show that (i)  $G_{w,\succeq h}(\pi_m)$  is strictly decreasing when  $\pi_m \in (\delta_l, \delta_h)$ , (ii)  $G_{w,\succeq L}(\pi_m)$  is strictly decreasing when  $\pi_m \in (\delta_h, \delta_L)$ , and (iii)  $G_{wH}(\pi_m)$  is strictly decreasing when  $\pi_m \in (\delta_L, \delta_H)$ .

(i) To show  $G_{w,\succeq h}(\pi_m) = 1 - \int_{\theta_{w2}(\pi_m)}^1 (1-\theta)^2 dF_w(\theta)$  is strictly decreasing when  $\pi_m \in (\delta_l, \delta_h)$ , it suffices to show  $\theta_{w2}(\pi_m)$  is strictly decreasing when  $\pi_m \in (\delta_l, \delta_h)$ . Men's stable marriage premium can be  $\pi_m \in (\delta_l, \delta_h)$  only when  $G_{mH} = G_{w,\succeq h}$ . When  $G_{mH} = G_{w,\succeq h}$ , given men's stable marriage premium  $\pi_m$ , women's stable marriage-payoff differences are  $v_{wL} - v_{wl} = s_{HL} - s_{Ll} - \pi_m$ ,  $v_{wH} - v_{wL} = s_{HH} - s_{HL}$ , and  $v_{wh} - v_{wl} = s_{Hh} - s_{Ll} - \pi_m$ , so

$$\theta_{w2}(\pi_m) = \frac{c_w + (v_{wL} - v_{wl})}{z_{wH} - z_{wL} + (v_{wh} - v_{wl})} = \frac{c_w + (s_{HL} - s_{Ll} - \pi_m)}{z_{wH} - z_{wL} + (s_{Hh} - s_{Ll} - \pi_m)}$$

$$= \frac{c_w + (s_{HL} - s_{Ll}) - \pi_m}{z_{wH} - z_{wL} + (s_{Hh} + s_{Ll}) - \pi_m}.$$

Since  $\theta_{w2}(\pi_m) < 1$ ,  $\theta'_{w2}(\pi_m) < 0$  when  $\pi_m \in (\delta_l, \delta_h)$ .

(ii) To show  $G_{w,\succeq L}(\pi_m) = 1 - \int_{\theta_{w,2}(\pi_m)}^1 (1-\theta) dF_w(\theta)$  is strictly decreasing when  $\pi_m \in (\delta_h, \delta_L)$ , it suffices to show  $\theta_{w2}(\pi_m)$  is strictly decreasing when  $\pi_m \in (\delta_h, \delta_L)$ . Men's stable marriage premium can be  $\pi_m \in (\delta_h, \delta_L)$  only when  $G_{mH} = G_{w, \succ L}$ . When  $G_{mH} = G_{w, \succ L}$ , given men's stable marriage premium  $\pi_m$ , women's stable marriage-payoff differences are  $v_{wL} - v_{wl} = s_{HL} - s_{Ll} - \pi_m$ ,  $v_{wH} - v_{wL} = s_{HH} - s_{HL}$ , and  $v_{wh} - v_{wl} = s_{Lh} - s_{Ll}$ , so

$$\theta_{w2}(\pi_m) = \frac{c_w + (s_{HL} - s_{Ll} - \pi_m)}{z_{wH} - z_{wL} + (s_{Lh} - s_{Ll})}.$$

Therefore,  $\theta_{w2}(\pi_m)$  is strictly decreasing when  $\pi_m \in (\delta_h, \delta_L)$ 

(iii) To show  $G_{wH}(\pi_m) = \int_{\theta_{w1}(\pi_m)}^1 \theta dF_w(\theta) + \int_{\theta_{w2}(\pi_m)}^1 (1-\theta)\theta dF_w(\theta)$  is strictly decreasing when  $\pi_m \in (\delta_L, \delta_H)$ , it suffices to show  $\theta_{w1}(\pi_m)$  and  $\theta_{w2}(\pi_m)$  are strictly increasing when  $\pi_m \in (\delta_L, \delta_H)$ . Men's stable marriage premium is  $\pi_m \in (\delta_L, \delta_H)$  only when  $G_{mH} = G_{wH}(\pi_m)$ . When  $G_{mH} = G_{wH}$ , given men's stable marriage premium  $\pi_m$ , women's stable marriage-payoff differences are  $v_{wL} - v_{wl} = s_{LL} - s_{LL}$  $s_{Ll}$ ,  $v_{wH} - v_{wL} = s_{HL} - s_{Ll} - \pi_m$ , and  $v_{wh} - v_{wl} = s_{Lh} - s_{Ll}$ , so

$$\theta_{w1}(\pi_m) = \frac{c_w}{z_{wH} - z_{wL} + s_{HH} - s_{LL} - \pi_m},$$

and

$$\theta_{w2}(\pi_m) = \frac{c_w + (s_{LL} - s_{Ll})}{z_{wH} - z_{wL} + (s_{Lh} - s_{Ll})}.$$

Therefore, both  $\theta_{w1}(\pi_m)$  and  $\theta_{w2}(\pi_m)$  are increasing when  $\pi_m \in (\delta_L, \delta_H)$ .

Case 2. Suppose  $\delta_h \geq \delta_L$ . Explicitly,

$$D_{mH}(\pi_m) = egin{cases} [G_{w,\succeq L}(\pi_m),1] & ext{if } \pi_m = \delta_l \ G_{w,\succeq L}(\pi_m) & ext{if } \pi_m \in (\delta_l,\delta_L) \ [G_{w,\succeq h}(\pi_m),G_{w,\succeq L}(\pi_m)] & ext{if } \pi_m = \delta_L \ G_{w,\succeq h}(\pi_m) & ext{if } \pi_m \in (\delta_L,\delta_h) \ [G_{wH}(\pi_m),G_{w,\succeq h}(\pi_m)] & ext{if } \pi_m = \delta_h \ G_{wH}(\pi_m) & ext{if } \pi_m \in (\delta_h,\delta_H) \ [0,G_{wH}(\pi_m)] & ext{if } \pi_m = \delta_H \end{cases}$$

It suffices to show that (i)  $G_{w,\succeq L}(\pi_m)$  is strictly decreasing when  $\pi_m \in (\delta_l, \delta_L)$ , (ii)  $G_{w,\succeq h}(\pi_m)$  is strictly decreasing when  $\pi_m \in (\delta_L, \delta_h)$ , and (iii)  $G_{wH}(\pi_m)$  is strictly decreasing when  $\pi_m \in (\delta_h, \delta_H)$ .

(i) To show  $G_{w,\succeq L}(\pi_m) = 1 - \int_{\theta_{w,2}(\pi_m)}^1 (1-\theta)^2 dF_w(\theta)$  is strictly decreasing when  $\pi_m \in (\delta_l, \delta_L)$ , it suffices to show  $\theta_{w2}(\pi_m)$  is strictly decreasing when  $\pi_m \in (\delta_l, \delta_L)$ . Men's stable marriage premium can be  $\pi_m \in (\delta_l, \delta_L)$  only when  $G_{mH} = G_{w,\succeq L}$ . When  $G_{mH} = G_{w,\succeq L}$ , given men's stable marriage premium  $\pi_m$ , women's stable marriage-payoff differences are  $v_{wL} - v_{wl} = s_{HL} - s_{Ll} - \pi_m$ ,  $v_{wH} - v_{wL} = s_{HH} - s_{HL}$ , and  $v_{wh} - v_{wl} = s_{Hh} - s_{Hl} - \pi_m$ , so

$$\theta_{w2}(\pi_m) = \frac{c_w + (s_{HL} - s_{Ll} - \pi_m)}{z_{wH} - z_{wL} + (s_{Hh} - s_{Hl} - \pi_m)}.$$

Since  $\theta_{w2}(\pi_m) < 1$ ,  $\theta'_{w2}(\pi_m) < 0$  when  $\pi_m \in (\delta_l, \delta_L)$ 

(ii) To show  $G_{w, \succeq h}(\pi_m)$ , it suffices to show both  $\theta_{w1}(\pi_m)$  and  $\theta_{w2}(\pi_m)$  are strictly increasing when  $\pi_m \in$  $(\delta_h, \delta_L)$ . Men's stable marriage payoff can be  $\pi_m \in (\delta_h, \delta_L)$  only when  $G_{mH} = G_{w, \succeq_h}$ . When  $G_{mH} = G_{mH}$  $G_{w, \succ h}$ , given men's stable marriage premium  $\pi_m$ , women's stable marriage-payoff differences are  $v_{wH} - v_{wL} = s_{HH} - s_{LL} - \pi_m, v_{wL} - v_{wl} = s_{LL} - s_{Ll}, \text{ and } v_{wh} - v_{wl} = s_{Hh} - s_{Ll} - \pi_m, \text{ so}$   $\theta_{w1}(\pi_m) = \frac{c_w}{z_{wH} - z_{wL} + (s_{HH} - s_{LL} - \pi_m)}$ 

$$\theta_{w1}(\pi_m) = \frac{c_w}{z_{wH} - z_{wL} + (s_{HH} - s_{LL} - \pi_m)}$$

and

$$\theta_{w2}(\pi_m) = \frac{c_w + (s_{LL} - s_{Ll})}{z_{wH} - z_{wL} + (s_{Hh} - s_{Ll} - \pi_m)}.$$

Therefore, both  $\theta_{w1}(\pi_m)$  and  $\theta_{w2}(\pi_m)$  are strictly increasin

(iii) To show  $G_{wH}(\pi_m) = \int_{\theta_{wl}(\pi_m)}^1 \theta dF_w(\theta)$  is strictly decreasing when  $\pi_m \in (\delta_h, \delta_H)$ , it suffices to show  $\theta_{w1}(\pi_m)$  is strictly increasing when  $\pi_m \in (\delta_h, \delta_L)$ . Men's stable marriage premium can be  $\pi_m \in (\delta_h, \delta_L)$ only when  $G_{mH} = G_{wH}$ . When  $G_{mH} = G_{wH}$ , given men's stable marriage premium  $\pi_m$ , women's stable only when  $G_{mH} = G_{wH}$ . When  $G_{mH}$  marriage-payoff difference  $v_{wH} - v_{wL} = s_{HH} - s_{LL} - \pi_m$ , so  $\theta_{w1}(\pi_m) = \frac{c_w}{z_{wH} - z_{wL} + s_{HH} - s_{LL} - \pi_m}.$ 

$$\theta_{w1}(\pi_m) = \frac{c_w}{z_{wH} - z_{wL} + s_{HH} - s_{LL} - \pi_m}.$$

Therefore,  $\theta_{w1}(\pi_m)$  is strictly decreasing when  $\pi_m \in (\delta_k)$ 

Case 3. Suppose  $\delta_h = \delta_L$ . Types are ranked as  $H \succ L \sim h \succ l$ . Let  $\tau_2 := L \sim h$ . Explicitly,

$$D_{mH}(\pi_m) = egin{cases} [G_{w,\succeq au_2}(\pi_m),1] & ext{if } \pi_m = \delta_l \ G_{w,\succeq au_2}(\pi_m) & ext{if } \pi_m \in (\delta_l,\delta_{ au_2}) \ [G_{wH}(\pi_m),G_{w,\succeq au_2}(\pi_m)] & ext{if } \pi_m = \delta_{ au_2} \ G_{wH}(\pi_m) & ext{if } \pi_m \in (\delta_{ au_2},\delta_H) \ [0,G_{wH}(\pi_m)] & ext{if } \pi_m = \delta_H \end{cases}.$$

It remains to show that (i)  $G_{w,\succeq \tau_2}(\pi_m)$  is strictly decreasing when  $\pi_m \in (\delta_l, \delta_{\tau_2})$ , and (ii)  $G_{wH}(\pi_m)$  is strictly decreasing when  $\pi_m \in (\delta_{\tau}, \delta_H)$ .

(i) To show  $G_{w,\succeq\tau_2}(\pi_m) = 1 - \int_{\theta_{w2}(\pi_m)}^1 (1-\theta)^2 dF_w(\theta)$  is strictly decreasing when  $\pi_m \in (\delta_l, \delta_{\tau_2})$ , it suffices to show  $\theta_{w2}(\pi_m)$  is strictly decreasing when  $\pi_m \in (\delta_l, \delta_{\tau_2})$ . Men's stable marriage premium can be  $\pi_m \in (\delta_l, \delta_L)$  only when  $G_{mH} = G_{w,\succeq \tau_2}$ . When  $G_{mH} = G_{w,\succeq \tau_2}$ , given men's stable marriage premium  $\pi_m$ , women's stable marriage-payoff differences are  $v_{wL} - v_{wl} = s_{HL} - s_{Ll} - \pi_m$ ,  $v_{wH} - v_{wL} = s_{HH} - s_{HL}$ ,

and 
$$v_{wh} - v_{wl} = s_{Hh} - s_{Hl} - \pi_m$$
, so 
$$\theta_{w2}(\pi_m) = \frac{c_w + s_{HL} - s_{Ll} - \pi_m}{z_{wH} - z_{wL} + s_{Hh} - s_{Hl} - \pi_m}.$$

Since  $\theta_{w2}(\pi_m) < 1$ ,  $\theta_{w2}(\pi_m)$  is strictly decreasing when  $\pi_m \in (\delta_l, \delta_{\tau_2})$ 

(ii) To show  $G_{wH}(\pi_m) = \int_{\theta_{w1}(\pi_m)}^1 \theta dF_w(\theta)$  is strictly decreasing when  $\pi_m \in (\delta_{\tau_2}, \delta_H)$ , it suffices to show  $\theta_{w1}(\pi_m)$  is strictly increasing when  $\pi_m \in (\delta_{\tau_2}, \delta_H)$ . Men's stable marriage premium can be  $\pi_m$  only when  $G_{mH} = G_{wH}$ . When  $G_{mH} = G_{wH}$ , given men's stable marriage premium  $\pi_m$ , women's stable

marriage-payoff difference 
$$v_{wH}-v_{wL}=s_{HH}-s_{LL}-\pi_m$$
, so 
$$\theta_{w1}(\pi_m)=\frac{c_w}{z_{wH}-z_{wL}+s_{HH}-s_{LL}-\pi_m}.$$

QED

Therefore,  $heta_{w1}(\pi_m)$  is strictly increasing when  $\pi_m \in (\delta_{ au_m})$ 

#### **A.3 Proof of Proposition 1**

I first prove the college gender gap. Suppose by way of contradiction that weakly fewer women than men go to college in equilibrium:  $1 - F_w(\theta_{w1}^*) \le 1 - F_m(\theta_m^*)$ . First, since  $F_m = F_w$  by assumption,  $F_w(\theta_{w1}^*) \ge 1 - F_w(\theta_w^*)$  $F_m(\theta_m^*)$  implies  $\theta_{w1}^* = c_w/(z_{wH} - z_{wL} + v_{wH}^* - v_{wL}^*) \ge \theta_m^* = c_m/(z_{mH} - z_{mL} + v_{mH}^* - v_{mL}^*)$ . Since  $z_{wH} - z_{wL} = c_w/(z_{mH} - z_{mL} + v_{mH}^* - v_{mL}^*)$ .  $z_{mH} - z_{mL}$  by assumption,  $v_{wH}^* - v_{wL}^* \le v_{mH}^* - v_{mL}^*$ .

Second,  $\theta_{w2}^* > \theta_{w1}^*$ , so strictly fewer women than men make a career investment in equilibrium. Since weakly fewer women go to college by our premise and strictly fewer women make a career investment, strictly fewer women than men earn a high income, i.e.,  $G_{wH}^* + G_{wh}^* < G_{mH}^*$ . As a result, there is a positive mass of type-L women marrying high-income men. By pairwise efficiency,  $v_{wL}^* = s_{HL} - v_{mH}^*$ . Since there is always a positive mass of (H,H) couples, by pairwise efficiency,  $v_{wH}^* = s_{HH} - v_{mH}^*$ . The two pairwise efficiency conditions together imply  $v_{wH}^* - v_{wL}^* = s_{HH} - s_{HL}$ . By  $s_{HL} = s_{LH}$ ,  $v_{wH}^* - v_{wL}^* = s_{HH} - s_{HL} = s_{HL} - s_{HL}$ . Furthermore, by Pareto efficiency,  $v_{mL}^* \ge s_{LL} - v_{wL}^*$ . The two conditions together imply  $v_{mH}^* - v_{mL}^* \le s_{HL} - s_{LL}$ . Since the surplus is strictly super-modular in incomes,  $v_{wH}^* - v_{wL}^* = \delta_H > \delta_L = v_{mH}^* - v_{mL}$ . The two conclusions,  $v_{wH}^* - v_{wL}^* \le v_{mH}^* - v_{mL}^*$  and  $v_{wH}^* - v_{wL}^* > v_{mH}^* - v_{mL}^*$ , contradict each other. Therefore, there must be strictly more women than men going to college.

I now prove the earnings gender gap. Consider the assumption  $G_{mH}(\delta_l) > G_{wH}(\delta_l) + G_{wh}(\delta_l)$ . It states that when men's stable marriage premium  $\pi_m$  is  $\delta_l$  the lowest value possible, mass  $G_{mH}(\delta_l)$  of high-income men is strictly greater than the mass  $G_{wH}(\delta_l) + G_{wh}(\delta_l)$  of high-income women. That is, even when men have the smallest possible marriage premium  $\pi_m = \delta_l = s_{Hl} - s_{Hl}$  and women have the largest possible marriage premium  $\pi_w = s_{HH} - s_{HL}$ , fewer women will end up with a high income than men. Therefore, the earnings gender gap always holds.