20.

Define
$$f_k(x) = \frac{x^2 - 3}{\sqrt{1 + k^3 x^2}}$$

a.

Prove that $\{f_n\}_{n=1}^{\infty}$ converges uniformly on [1, 3].

Proof. Consider the sequence $\{f_n(x)\}_{n=1}^{\infty}$ for any $k \in \mathbb{N}$, $f_k(x) = \frac{x^2-3}{\sqrt{1+k^3x^2}}$.

Then to show that $\{f_n(x)\}_{n=1}^{\infty}$ converges on the interval $x \in [1,3]$, we will use the definition of uniform convergence.

Let $\epsilon > 0$ be given and $x \in [1,3]$. Then choose and n_0 such that $\epsilon > \frac{6}{n_0^{3/2}}$. We may do this via the Archimedean Principle. And consider all $n \ge n_0$. Then we want to show that $|f_n(x) - 0| < \epsilon$.

So consider:

$$\left|\frac{x^2-3}{\sqrt{1+k^3x^2}}\right| \leq \left|\frac{3^2-3}{\sqrt{1+k^3(1)^2}}\right| \leq \frac{6}{\sqrt{1+k^3}} \leq \frac{6}{\sqrt{k^3}} \leq \frac{6}{k^{3/2}} \leq \frac{6}{n_0^{3/2}} < \epsilon$$

Thus we have that, by the definition of uniform convergence:

$$\lim_{n \to \infty} f_n(x) = 0$$

On the interval [1,3]. Is thus uniformly convergent on this same interval.

b.

Prove that $\sum_{k=1}^{\infty} f_k$ converges uniformly on [1, 3].

Proof. Consider the series $\sum_{n=1}^{\infty} \{f_n(x)\}_{n=1}^{\infty}$ such that for any $n \in \mathbb{N}$, $f_n(x) = \frac{x^2 - 3}{\sqrt{1 + n^3 n^2}}$.

To show that this is a convergent series, we start from our in the middle of our inequality in part(a):

$$\left|\frac{x^2-3}{\sqrt{1+k^3x^2}}\right| \leq \left|\frac{x^2}{\sqrt{1+k^3x^2}}\right| \leq \frac{3^2}{\sqrt{1+k^3x^2}} \leq \frac{1}{\sqrt{1+k^3x^2}} \leq \frac{1}{\sqrt{1+k^3(1)^2}} \leq \frac{1}{\sqrt{k^3}} = \frac{1}{k^{3/2}}$$

Since $\sum \frac{1}{k^{3/2}}$ is a convergent p-series, we have that the series $\sum_{k=1}^{\infty} \left| \frac{x^2 - 3}{\sqrt{1 + k^3 x^2}} \right|$ is convergent by the Weierstrass M-Test.

21.

a.

Find the Taylor series for $\sin x$ centered at c = 0, and prove that $\sin x$ is equal to this series for all $x \in \mathbb{R}$. Solution:

First we should derive the Taylor series for this computationally, note that if $f(x) = \sin x$, $f'(x) = \cos x$, $f''(x) = -\sin x$, and $f'''(x) = -\cos x$. Evaluating this at x = 0: f(0) = 0, f'(0) = 1, f''(0) = 0, and f'''(0) = -1. So we get the following general formula:

$$\sum_{k=0}^{\infty} \frac{(-1)^k (x)^{2k+1}}{(2k+1)!}$$

Proof. To show that this series representation is equal to sin(x) we need to show that by Theorem 8.7.16 we have that there exists a $\xi \in (x,c)$ such that $R_n(x) = R_n(f,c)(x) = \frac{f^{(n+1)}(\xi)(x-c)^{n+1}}{(n+1)!}$, where c is the center of convergence.

Note that $f^{(n)}(x) = \pm \sin x$ or $\pm \cos x$, hence $|f^n(x)| \le 1$, for all $n \in \mathbb{N}$.

So note that we have $0 \le \left| \frac{f^{(n+1)}(\xi)(x-c)^{n+1}}{(n+1)!} \right| = \left| \frac{(x)^{n+1}}{(n+1)!} \right| \le \frac{|x^{n+1}|}{(n+1)!}$.

Note that by Theorem 2.2.6(f) we have $\lim_{n\to\infty} \frac{|x^{n+1}|}{(n+1)!} = 0$ and $\lim_{n\to\infty} 0 = 0$.

Hence, by the Theorem 4.1.9 (Squeeze Theorem) we have that $\lim_{n\to\infty} R_n(x) = R_n(f,c)(x) = \frac{f^{(n+1)}(\xi)(x-c)^{n+1}}{(n+1)!} = 0$

So, by definition, we have the Taylor series converges to the function $\sin x$.

b.

Evaluate $\int_0^1 \sin x^2 dx$ as a power series, and fully justify your answer.

Proof. First, note that by part(a), we have $\sin x^2 = \sum_{k=0}^{\infty} \frac{(-1)^k (x^2)^{2k+1}}{(2k+1)!}$. To integrate this power series, we need to show that we have uniform convergence on [0, 1].

To do this we will show that the radius of convergence $R = \infty$. So to show this we will show that $\lim_{k\to\infty} \left|\frac{\frac{1}{(2k+3)!}}{\frac{1}{(2k+1)!}}\right| = \lim_{k\to\infty} \frac{1}{(2k+2)(2k+3)} = \lim_{k\to\infty} \frac{1}{2k+2} \lim_{k\to\infty} \frac{1}{2k+3} = 0 \cdot 0 = 0$, by Theorem 2.2.6(a).

So we have that $R = \infty$. So by Theorem 8.7.3 we have the series converges uniformly for all x such that $|x| \le 1$. Hence converges uniformly on the interval [0,1].

So know we may take the integral by Corollary 8.4.2 as follows:

$$\int_{0}^{1} \sum_{k=0}^{\infty} \frac{(-1)^{k} (x^{2})^{2k+1}}{(2k+1)!} dx = \sum_{k=0}^{\infty} \int_{0}^{1} \frac{(-1)^{k} (x^{2})^{2k+1}}{(2k+1)!} dx = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k+1)!} \int_{0}^{1} (x^{2})^{2k+1} dx$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k+1)!} \int_{0}^{1} x^{4k+2} dx = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k+1)!} \frac{1}{4k+3}$$

Joseph C. McGuire Dr. J. Morris

Homework #4

 $\begin{array}{c} \text{MATH } 440 \\ \text{October } 19,\,2024 \end{array}$

Thus we have

$$\int_0^1 \sin x^2 \ dx = \sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)!} \frac{1}{4k+3}$$