Worksheet 14 - model simulation

Monday, March 24, 2025

DS 002R - Jo Hardin

Name:
Names of people you worked with:
Thinking about this week's quiz what is the hardest part of functions and map()?
Task: Here are some standard random normal values. You will need to choose 5 of them. Start somewhere and go in any direction (forward, backward, up, down, diagonal, etc.).
<pre>rnorm(30, mean = 0, sd = 1)</pre>
[1] 1.99469634 0.71114251 0.18540528 -0.28176501 0.10877555 -1.08573747 [7] -0.98548216 0.01513086 -0.25204590 -1.46575030 -0.92245624 0.03960243 [13] 0.49382018 -1.82822917 0.09147291 0.67077922 -0.08107805 1.26424109 [19] -0.70338819 -0.04057817 -1.56616208 0.24914817 -0.34041599 0.41719084 [25] -0.32646679 -0.89029402 -1.60815993 -2.32237229 -1.96721918 0.02752681 Consider the following function which generates a random investment value for each step. Assume alpha $=0.5$.
<pre>calculate_return <- function(step, alpha) { risk_free_rate <- 1.03 risky_rate <- rnorm(1, mean = 0, sd = 1) * 0.05 + 1 return(data.frame(step = step,</pre>
}

- 1. Provide the investment return rate independently for 5 time steps (e.g., 5 years). You should have 5 return rates (return for year 1, return for year 2, return for year 3, etc.).
- 2. Using the same random normal deviates as in #1, provide the investment return rate cumulatively for 5 time steps (e.g., 5 years). You should have 5 return rates (return for year 1, return for year 1 + 2, return for years 1 + 2 + 3, etc.).

Solution:

```
set.seed(74)
map(1:5, calculate_return, alpha = 0.5) |>
   list_rbind() |>
   mutate(cum_return = cumprod(return))
```

```
      step
      return
      cum_return

      1
      1
      1.0284431
      1.028443

      2
      2
      0.9936017
      1.021863

      3
      3
      1.0431397
      1.065946

      4
      4
      0.9656035
      1.029281

      5
      5
      1.0283057
      1.058415
```