Machines thermiques ouvertes

$$\Delta H + \Delta E_{c \text{ (macro)}} + \Delta E_{p \text{ (macro)}} = W_{\text{utile}} + Q$$

En thermodynamique on est toujours en convention récepteur : W_{utile} et Q sont algébriquement reçus par le système (le fluide). Sauf indication contraire $\Delta E_{c \text{ (macro)}} = 0$ et $\Delta E_{p \text{ (macro)}} = 0$.

A. Compresseurs

 $\underline{W_{\rm utile}>0}$ car le fluide est comprimé. $\underline{Q=0}.$

 ${\bf Compresseur\ centrifuge}$

B. Turbines

À l'inverse du compresseur c'est le fluide qui fournit du travail utile à l'extérieur $W_{\text{utile}} < 0$. Q = 0.

Turbine à gaz

Hydroelectric Dam Diagram

Principe d'un barrage hydroélectrique

Turbine hydraulique du barrage des 3 gorges (Chine)

C. Tuyères

Les tuyères sont utilisées pour transformer du gaz chaud $(U\uparrow)$ mais lent $(E_{c \text{ (macro)}}\downarrow)$ en gaz plus froid $(U\downarrow)$ mais rapide $(E_{c \text{ (macro)}}\uparrow)$.

Tuyères modernes

Tuyère de fusée Diamant (1er lanceur de satellites français)

 $\underline{W_{\text{utile}} = 0}$ car pas de parties mobiles (tuyauterie). $\underline{Q = 0}$. Mais $\underline{\Delta E_{c \text{ (macro)}} > 0}$.

D. Détendeurs

Les détendeurs diminuent la pression des gaz.

Détendeur de gaz butane

Détendeur de plongée

 $\underline{W_{\mathrm{utile}}=0}$ car pas de parties mobiles (tuyauterie). $\underline{Q=0}$.

E. Chambre de combustion

Une chambre de combustion est une enceinte dans laquelle entrent en combustion des substances chimiques déterminées.

Chambre de combustion de chauffe-eau à gaz

 $\underline{W_{\mathrm{utile}}=0}$ car pas de parties mobiles (tuyauterie). $\underline{Q>0}$ (apporté au fluide par la combustion des réactifs).

F. Échangeurs

 $\underline{W_{\text{utile}} = 0}$ car pas de parties mobiles (tuyauterie). $\underline{Q \neq 0}$ car les échangeurs sont conçus pour échanger de la chaleur (flux thermique).

I. Échangeurs sans changements d'état

Échangeurs classiques

 $\underline{W_{\text{utile}} = 0}$ car pas de parties mobiles (tuyauterie). $\underline{Q \neq 0}$.

II. Échangeurs avec changements d'état

1) Condenseurs

On devrait les appeler « liquéfacteurs » car la transformation est une liquéfaction (ou condensation liquide) : (V)

Condenseur de frigo

Condenseur de clim

 $\underline{W_{\text{utile}} = 0}$ car pas de parties mobiles (tuyauterie). Q < 0.

2) Évaporateurs

C'est l'inverse des condenseurs : la transformation est une vaporisation $\stackrel{}{\bigsqcup} \rightarrow \stackrel{}{\bigvee}$

Évaporateur de freezer de frigo

 $\underline{W_{\mathrm{utile}} = 0}$ car pas de parties mobiles (tuyauterie). $\underline{Q > 0}$.