- 1. Elaborar um programa que lê um conjunto de 30 valores e os coloca em 2 vetores conforme estes valores forem pares ou ímpares. O tamanho do vetor é de 5 posições. Se algum vetor estiver cheio, escrevê-lo. Terminada a leitura escrever o conteúdo dos dois vetores. Cada vetor pode ser preenchido tantas vezes quantas for necessário.
- 2. Faça um programa que leia um vetor N[20]. A seguir, encontre o menor elemento do vetor N e a sua posição dentro do vetor, mostrando: "O menor elemento de N é", M, "e sua posição dentro do vetor é:",P.
- 3. Escreva um programa que leia dois vetores de 10 posições e faça a multiplicação dos elementos de mesmo índice, colocando o resultado em um terceiro vetor. Mostre o vetor resultante.
- 4. Faça um programa que leia um vetor K[30]. Troque a seguir, todos os elementos de ordem ímpar do vetor com os elementos de ordem par imediatamente posteriores.
- 5. Faça um programa que leia um vetor S[20] e uma variável A. A seguir, mostre o produto da variável A pelo vetor.
- 6. Faça um programa que leia dois vetores: F[20] e G[20]. Calcule e mostre, a seguir, o produto dos valores de F por G.
- 7. Escreva um programa que leia dois vetores de 10 posições e faça a multiplicação dos elementos de mesmo índice, colocando o resultado em um terceiro vetor. Mostre o vetor resultante.
- 8. Escreva um programa que leia e mostre um vetor de 20 números. A seguir, conte quantos valores pares existem no vetor.
- 9. Escreva um programa que leia um vetor de 100 posições e mostre-o ordenado em ordem crescente.
- 10. Escreva um programa que leia um vetor de 20 posições e mostre- o. Em seguida, troque o primeiro elemento com o último, o segundo com o penúltimo, o terceiro com o antepenúltimo, e assim sucessivamente. Mostre o novo vetor depois da troca.
- 11. Escreva um programa que leia 50 valores para um vetor de 50 posições. Mostre depois somente os positivos.
- 12. Escreva um programa que leia um vetor inteiro de 30 posições e crie um segundo vetor, substituindo os valores nulos por 1. Mostre os 2 vetores.
- 13. Escreva um programa que leia um vetor G de 20 elementos do tipo caracter que representa o gabarito de uma prova. A seguir, para cada um dos 50 alunos da turma, leia o vetor de respostas (R) do aluno e conte o número de acertos. Mostre o nº de acertos do aluno e uma mensagem APROVADO, se a nota for maior ou igual a 6; e mostre uma mensagem de REPROVADO, caso contrário.
- 14. Escreva um programa que leia um vetor de 13 elementos, que é o Gabarito de um teste da loteria esportiva, contendo os valores 1(coluna 1), 2 (coluna 2) e 3 (coluna do meio). Leia, a seguir, para cada apostador, o número do seu cartão e um vetor de Respostas de 13 posições. Verifique para cada apostador o número de acertos, comparando o vetor de Gabarito com o vetor de Respostas. Escreva o número do apostador e o número de acertos. Se o apostador tiver 13 acertos, mostrar a mensagem "Ganhador".
- 15. Escrever um programa que gera os 30 primeiros números primos a partir de 100 e os armazena em um vetor de X [100] escrevendo, no final, o vetor X.
- 16. Escrever um programa que lê 2 vetores de tamanho 10. Crie, a seguir, um vetor S de 20 posições que contenha os elementos dos outros 2 vetores em ordem crescente. Obs.: copie primeiro os valores para o vetor S para depois ordená-los
- 17. Escrever um programa que lê 2 vetores X(10) e Y(10). Crie, a seguir, um vetor Z que seja a) a diferença entre X e Y; b) a soma entre X e Y; c) o produto entre X e Y; escreva o vetor Z a cada cálculo.

- 18. Escrever um programa que lê um vetor K(15). Crie, a seguir, um vetor P, que contenha todos os números primos de K. Escreva o vetor P.
- 19. Escrever um programa que lê um vetor X(20). Escreva, a seguir, cada um dos valores distintos que aparecem em X dizendo quantas vezes cada valor aparece em X.
- 20. Faça um programa que leia dois vetores de 200 posições de caracteres. A seguir, troque o 1º elemento de A com o 200º de B, o 2º de A com o 199º de B, assim por diante, até trocar o 200º de A com o 1º de B. Mostre os vetores antes e depois da troca.
- 21. Faça um programa que leia um código numérico inteiro e um vetor de 50 posições de números. Se o código for zero, termine o programa. Se o código for 1, mostre o vetor na ordem como ele foi lido. Se o código for 2, mostre o vetor na ordem inversa, do último até o primeiro.
- 22. Faça um programa que leia um vetor (A) de 100 posições. Em seguida, compacte o vetor, retirando os valores nulos e negativos, colocando o resultado em um vetor B de 100 posições (deixe em branco as posições não utilizadas).
- 23. Faça um programa que leia um vetor (A) de 100 posições. Em seguida, compacte o vetor, retirando os valores nulos e negativos, colocando o resultado em um vetor B de 100 posições (Defina o vetor B com o número exato de posições para que seja suficientemente grande para conter o vetor A sem os valores nulos).
- 24. Faça um programa que leia um vetor de 500 posições de números e divida todos os seus elementos pelo maior valor do vetor. Mostre o vetor após os cálculos.
- 25. Faça um programa que leia um vetor de 10 posições. Mostre então os 3 menores valores do vetor.
- 26. Faça um programa que leia dois vetores (A e B) de 50 posições de números. O programa deve, então, subtrair o primeiro elemento de A do último de B, acumulando o valor, subtrair o segundo elemento de A do penúltimo de B, acumulando o valor, e assim por diante. Mostre o resultado da soma final.
- 27. Uma locadora de vídeos tem guardada, em um vetor de 500 posições, a quantidade de filmes retirados por seus clientes durante o ano de 1993. Agora, esta locadora está fazendo uma promoção e, para cada 10 filmes retirados, o cliente tem direito a uma locação grátis. Faça um programa que crie um outro vetor contendo a quantidade de locações gratuitas a que cada cliente tem direito.
- 28. Faça um programa que leia um vetor A[10]. Preencha então um vetor B[10] com o fatorial de cada valor de A respeitando as posições, caso o referido valor for positivo ou nulo. Deixe os valores negativos intactos. Mostre o vetor B.
- 29. Faça um programa que leia um vetor A[10]. Preencha então um vetor B[10] com o fatorial de cada valor de A respeitando as posições, caso o referido valor for positivo ou nulo. Substitua no final os valores negativos por 0 (zero). Mostre o vetor B.
- 30. Faça um programa que leia um vetor A[10]. Inverta então os valores de A. troque o primeiro pelo último, segundo pelo penúltimo e assim por diante. Mostre o vetor A após as alterações.
- 31. Elaborar um programa que lê duas matrizes M(4,6) e N(4,6) e cria uma matriz que seja: a) o produto de M por N; b) a soma de M com N; c) a diferença de M com N; Escrever as matrizes calculadas.
- 32. Elaborar um programa que lê uma matriz M(6,6) e um valor A e multiplica a matriz M pelo valor A e coloca os valores da matriz multiplicados por A em um vetor de V(36) e escreve no final o vetor V.
- 32. Escreva um programa que leia um número inteiro A e uma matriz V 30x30 de números. Conte quantos valores iguais a A estão na matriz. Crie, a seguir, uma matriz X contendo todos os elementos de V diferentes de A. Mostre os resultados.
- 34. Escreva um programa que lê uma matriz M(5,5) e calcula as somas: a) da linha 4 de M b) da coluna 2 de M c) da diagonal principal d) da diagonal secundária e) de todos os elementos da matriz M Escrever essas somas e a matriz.

- 35. Escrever um programa que lê uma matriz A(15,5) e a escreva. Verifique, a seguir, quais os elementos de A que estão repetidos e quantas vezes cada um está repetido. Escrever cada elemento repetido com uma mensagem dizendo que o elemento aparece X vezes em A.
- 36. Escrever um programa que lê uma matriz M(12,13) e divida todos os 13 elementos de cada uma das 12 linhas de M pelo maior elemento em módulo daquela linha. Escrever a matriz lida e a modificada.
- 37. Escrever um programa que lê uma matriz M(10,10) e a escreve. Troque, a seguir: a) a linha 2 com a linha 8 b) a coluna 4 com a coluna 10 Escreva a matriz assim modificada.
- 38. Escrever um programa que lê uma matriz M(10,10) e a escreve. Troque, a seguir: a) a diagonal principal com a diagonal secundária b) a linha 5 com a coluna 10. Escreva a matriz assim modificada.
- 39. Escrever um programa que lê uma matriz M(12,13) e divida todos os 13 elementos de cada uma das 12 linhas de M pelo maior elemento em módulo daquela linha. Escrever a matriz lida e a modificada.
- 40. Escrever um programa que lê uma matriz M(5,5) e cria 2 vetores SL(5) e SC(5) que contenham, respectivamente, as somas das linhas e das colunas de M. Escrever a matriz e os vetores criados.
- 41. Escreva um programa que lê uma matriz M[5,5]. Substitua, a seguir, todos os valores negativos da matriz pelo seu módulo. Exemplo: substitua -2 por 2, -16 por 16, assim por diante.
- 42. Escreva um programa que lê uma matriz M[6,6]. A seguir, troque os elementos da primeira coluna com os elementos da segunda coluna, os da terceira coluna com a quarta coluna e os elementos da quinta coluna com os elementos da sexta coluna.
- 43. Repita o exercício anterior, trocando os elementos das linhas, ao invés das colunas.
- 44. Leia uma matriz M[5,5]. A seguir, ordene os elementos da matriz M e mostre como ficou a Matriz ordenada, linha por linha.
- 45. Faça um programa que calcule a média dos elementos da diagonal principal de uma matriz 10 X 10 de números.
- 46. Faça um programa que calcule a média dos elementos da diagonal secundária de uma matriz 10 X 10 de números.
- 47. Faça um programa que leia uma matriz numérica 15 X 15 e calcule a soma dos elementos da diagonal secundária. 50. Faça um programa que leia uma matriz 20x15 de números. Calcule e mostre a soma das linhas pares da matriz.
- 48. Faça um programa que leia uma matriz 20x20 de números e some cada uma das linhas, armazenando o resultado da soma em um vetor. A seguir, multiplique cada elemento pela soma da sua linha. Mostre a matriz resultante.
- 49. Faça um programa que leia uma matriz 50x50 de números e encontre o maior valor da matriz. A seguir, multiplique cada elemento da diagonal principal pelo maior valor. Mostre a matriz após as multiplicações.
- 50. Faça um programa que leia uma matriz 50x50 de números. A seguir, multiplique cada linha pelo elemento da diagonal principal daquela linha. Mostre a matriz após as multiplicações.
- 51. Faça um programa que leia uma matriz de 60 linhas e 10 colunas. Depois de lê-la, some as colunas individualmente e acumule a soma na 61ª linha da matriz. Mostre o resultado de cada coluna no vídeo. (Lembrete: para guardar o resultado é necessário declarar uma matriz de 61 x 10.)
- 52. Na teoria dos sistemas, define-se como elemento *minimax* de uma matriz o menor elemento da linha onde se encontra o maior elemento da matriz. Escreva um programa que leia uma matriz 10 X 10 de números e encontre seu elemento *minimax*, mostrando também sua posição.
- 53. Escrever um programa que lê uma matriz 17x17 e:
 - 1 Calcula a média aritmética dos elementos hachurados na letra a;

2 - O maior elemento da linha onde se encontra o menor elemento da área hachurada na letra b;

Escreva os valores calculados nos itens 1 e 2 e a matriz.

- 55. Faça um programa que leia uma matriz 12x12 e calcule e escreva:
 - 1 A soma da área hachurada na letra a
 - 2 O major elemento da área hachurada na letra b abaixo:

- 55. Faça um programa que leia uma matriz 12 x 12 e calcule e escreva:
 - 1 O menor elemento e a sua posição (índices) da área hachurada;
 - 2 A média dos elementos da área hachurada.

- 56. Faça um programa lê uma matriz A 7 x 7 de números e cria 2 vetores ML(7) e MC(7), que contenham, respectivamente, o maior elemento de cada uma das linhas e o menor elemento de cada uma das colunas. Escrever a matriz A e os vetores ML e MC.
- 57. Leia um vetor de 12 posições e em seguida ler também dois valores X e Y quaisquer correspondentes a duas posições no vetor. Ao final seu programa deverá escrever a soma dos valores encontrados nas respectivas posições X e Y.
- 58. Declare um vetor de 10 posições e o preencha com os 10 primeiros números impares e o escreva.
- 59. Leia um vetor de 16 posições e troque os 8 primeiros valores pelos 8 últimos e vice-e-versa. Escreva ao final o vetor obtido.
- 60. Leia um vetor de 20 posições e em seguida um valor X qualquer. Seu programa deverá fazer uma busca do valor de X no vetor lido e informar a posição em que foi encontrado ou se não foi encontrado.
- 61. Leia um vetor de 40 posições. Contar e escrever quantos valores pares ele possui.
- 62. Leia um vetor de 40 posições e atribua valor 0 para todos os elementos que possuírem valores negativos.
- 63. Leia dos vetores de 20 posições e calcule um outro vetor contendo, nas posições pares os valores do primeiro e nas posições impares os valores do segundo.
- 64. Leia um vetor de 40 posições e acumule os valores do primeiro elemento no segundo, deste no terceiro e assim por diante. Ao final, escreva o vetor obtido.

- 65. Leia um vetor contendo letras de uma frase inclusive os espaços em branco. Retirar os espaços em branco do vetor e depois escreve-los.
- 66. Leia um vetor de 5 posições contendo os caracteres de um número. Em seguida escreva esse número por extenso.
- 67. Leia dois vetores de 4 posições. Verifique e escreva se um é anagrama de outro.

Ex: ARARA ARARA - são anagramas

- 68. Leia 3 vetores de 9 posições e crie outro com o 1º terço do primeiro, o segundo 3º. do segundo e o ultimo terço do 3º. Escrever o vetor resultante ao final.
- 69. Leia um vetor de 10 posições e verifique se existem valores iguais e os escreva.
- 70. Leia um vetor de 50 posições e o compacte, ou seja, elimine as posições com valor zero avançando uma posição, com os com os valores subsequentes do vetor. Dessa forma todos "zeros" devem ficar para as posições finais do vetor.
- 71. Considere um vetor de trajetórias de 9 elementos, onde cada elemento possui o valor do próximo elemento do vetor a ser lido.

Índice 1 2 3 4 5 6 7 8 9
Valor 5 7 6 9 2 8 4 0 3

Assim, a sequência da leitura seria 1, 5, 2, 7, 4, 9, 3, 6, 8, 0

Faça um programa que seja capaz de ler esse vetor e seguir a trajetória.

- 72. Leia uma matriz 10 x 10 e escreva a localização (linha e a coluna) do maior valor.
- 73. Declare uma matriz 5 x 5. Preencha com 1 a diagonal principal e com 0 os demais elementos. Escreva ao final a matriz obtida.
- 74. Leia duas matrizes 4 x 4 e escreva uma terceira com os maiores elementos entre as primeiras
- 75. Leia uma matriz 6 x 6, conte e escreva quantos valores maiores que 10 ela possui.
- 76. Leia uma matriz 20 x 20. Leia também um valor X. O programa deverá fazer uma busca desse valor na matriz e, ao final escrever a localização (linha e coluna) ou uma mensagem de "não encontrado".
- 77. Leia uma matriz 4 x 4 e troque os valores da 1º linha pelos da 4º coluna, vice-e-versa. Escrever ao final a matriz obtida
- 78. Leia uma matriz 8 x 8 e a transforme numa matriz triangular inferior, atribuindo zero a todos os elementos acima da diagonal principal, escrevendo-a ao final.
- 79. Leia uma matriz 5 x 5 e faça uma troca entre as diagonais superior e inferior. Escreva-a ao final.
- 80. Leia duas matrizes 10 x 10 e faça uma substituição entre a diagonal inferior da primeira com a diagonal superior da segunda.
- 81. Leia uma matriz 8x 8 e escreva o maior elemento da diagonal principal e a soma dos elementos da diagonal secundaria.
- 82. Leia uma matriz 6 x 6 e atribuir o valor 0 para os valores negativos encontrados fora das diagonais principal e secundaria.
- 83. Leia uma matriz 50 x 2, onde cada coluna corresponde a um lado de um triangulo retângulo. Declare um vetor que contenha a área dos respectivos triângulos e o escreva.
- 84. Leia duas matrizes 20 x 20 e escreva os valores da primeira que ocorrem em qualquer posição da segunda.
- 85. Considere uma matriz de distância entre cidades 6 x 6:

	1.(Cáceres)	2.(BBugres)	3.(Cuiabá)	4.(VGrande)	5.(Tangará)	6.(PLacerda)
1.(Cáceres)		63	210	190		190
2.(BBugres)	63		160	150	95	
3.(Cuiabá)	210	160		10		
4.(VGrande)	190	150	10			
5.(Tangará)		95				80
6.(PLacerda)	190				80	

Considere também um vetor de viagem indo de Cuiabá até Cáceres pela seguinte rota:

Índice	1	2	3	4	5	6
Cidade	3	4	2	5	6	1

Faça um programa que leia a matriz e o vetor e calcule a distância percorrida durante a viagem.

- 86. Leia uma matriz 100 a 10 que se refere respostas de 10 questões de múltipla escolha, referentes a 100 alunos. Leia também um vetor de 10 posições contendo o gabarito d e respostas que podem ser a, b, c ou d. Seu programa deverá comparar as respostas de cada candidato com o gabarito e emitir um vetor Resultado, contendo a pontuação correspondente.
- 87. Leia duas matrizes 4 x 4 e verifique se uma é palíndromo, isto é, sua leitura a partir de qualquer direção sempre apresentara a mesma sequência.

EX. SATOR

AREPO

TENET

OPERA

ROTAS