Socio-Informatics 348 Data Visualisation with the Tidyverse Part 2

Dr Lisa Martin

Department of Information Science Stellenbosch University

Today's Reading

R for Data Science, Wholegame, Visualisation

Side Notes

- Dark Mode: Tools ▷ Global Options ▷ Appearance ▷ Editor theme
- **Shortcuts:** Tools ▷ Keyboard Shortcuts Help (Alt+Shift+K)

Where we left off...

- Scatterplot with palmerpenguins dataset
- ggplot layers
- Data, Aesthetics (aes) and Geometry (geom)

- Understanding the distribution of a variable is important
- Helps to identify patterns, outliers, and the overall shape of the data
- Geom used depends on the type of variable
- Continuous variables: geom_histogram(), geom_density()
- Categorical variables: geom_bar()

glimpse()

view()

Categorical Variables: geom_bar()

- Can only take one of a small set of values.
- The height of the bars displays how many observations occurred with each x value.
- geom_bar() uses the count of observations by default

Categorical Variables: geom_bar()

Categorical Variables: geom_bar() - ordered

Numerical Variables: geom_histogram()

Note: Warning about NAs

Numerical Variables: geom_histogram() - bin size

Numerical Variables: geom_density()

- Smoothed version of a histogram
- Good for continuous data

Numerical and Categorical: geom_boxplot()

- Visualise the distribution of a continuous variable across categories
- Displays the median, quartiles, and potential outliers
- Spread of the distribution symmetric or skewed to one side

R4DS, Figure 1.1

Numerical and Categorical: geom_boxplot()

Numerical and Categorical: geom_density()

Note: linewidth to set the thickness of the line

Numerical and Categorical: geom_density()

Note: linewidth and fill to set the thickness and colour of the area under the curve alpha to set the transparency of the fill

Two Categorical: geom_bar()

Two Categorical: geom_bar()

Note: Use of position = "fill" to show proportions instead of counts

Two Numerical: geom_point()

Two or more variables: Additional aesthetics RStudio File Edit Code View Plots Session Build Debug Profile Tools Help O v 🖎 🚰 v 🕞 🚰 👛 🧀 Go to file/function 🔡 v Addins v © 103-02-vig.R* × □ penguins > Environment History Connections Tutorial ii List - | @ -⇒Run 🍽 🖯 💍 🗎 Source • 🖹 @ ☐ Import Dataset • 331 MiB • € R . Global Environment . geom boxplot() 33 34 # numerical variable - density 35 ggplot(penguins, aes(x = body_mass_g, color = species)) + Environment is empty geon_density(linewidth = 0.75) 38 # numerical variable - density - use linewidth and fill applot(penguins, aes(x = body mass g, color = species, fill = species)) + qeon_density(alpha = 0.5) 42 # 2 categorical variables goplot(penguins, aes(x = island, fill = species)) + geon_bar() 46 # 2 categorical variables - percentages ggplot(penguins, aes(x = island, fill = species)) + geom_bar(position = "fill") Plots Packages Help Viewer Presentation 50 # 2 numerical variables Zoom - Faxort • Q Se Publish + (6) 51 gaplot(penguins, aes(x = flipper_length_mm, v = body_mass_g)) + 54 # 3 or more variables gaplot(penguins, aes(x = flipper_length_mm, v = body_mass_g)) + qeom_point(aes(color = species, shape = island)) species Adelie Chinstrap Terminal × Background Jobs Genton @ + 8451 . -/ © geom point() island Removed 2 rows containing missing values or values outside the scale range ('geom.point()'). 4000 • Biscop ▲ Dream > # 3 or more variables Torgersen > opplot(penguins, aes(x = flipper length mm, v = body mass q)) + + geom_point(aes(color = species, shape = island)) Removed 2 rows containing missing values or values outside the scale range ('geom point()').

170

220

flipper length mm

Save your plots

ggsave()

```
ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +
    geom_point()
ggsave(filename = "penguin-plot.png")
```