How to better leverage pre-trained speech models: prompt & adapter

Kai-Wei Chang¹, Allen Fu¹, Zih-Ching Chen¹, Chih-Ying Liu¹, Hua Shen², Shang-Wen Li³, Hung-yi Lee¹

¹National Taiwan University

²Penn State University

³Meta Al

Outline

- Recap: Motivations, prompt and adapter background
- Prompting on GSLM (Kai-Wei Chang, Hua Shen)
- Adapter for SSL speech models (Allen Fu, Zih-Ching Chen)

Outline

- Recap: Motivations, prompt and adapter background
- Prompting on GSLM (Kai-Wei Chang, Hua Shen)
- Adapter for SSL speech models (Allen Fu, Zih-Ching Chen)

Recap - Typical way

We have to store a ginantic pretrained models for each task.

Recap - Prompting

Recap - Adapter

only have to store adapters for each task

Recap - Research questions

- Does adapter/prompting yield reasonable performance?
- What tasks adapter/prompting improves/doesn't improve
- What scenarios adapter/prompting improves
 - Parameter efficiency
 - Robustness
 - Few-shot adaptation
 - Other directions in SSL team
 - 0 ..

Outline

- Recap: Motivations, prompt and adapter background
- Prompting on GSLM (Kai-Wei Chang, Hua Shen)
- Adapter for SSL speech models (Allen Fu, Zih-Ching Chen)

Recap - GSLM

- 1. Speech to Unit (S2u)
- 2. unit Language Model (uLM)
- 3. unit to Speech (u2S)
- Prompting on the uLM of GSLM
- Take advantage of the uLM pre-trained on a large corpus

[GSLM] Lakhotia et.al., Generative Spoken Language Modeling from Raw Audio

Recap: **Prompting** on Unit LM (uLM)

Speech Recognition (ASR)

Unit ID	Character
1	"m"
2	"c"
3	"a"
4	"g"

label mapping (Verbalizer)

"c" "a" "t"

Prompting on uLM: analysis

- Performance is improved on speech classification tasks
 - e.g. Keyword Spotting, Intent Classification
- Performance is **not improved** on sequence decoding tasks
 - o e.g. ASR, Slot Filling
 - The performance is limited by the architecture of the pre-trained model itself
 - The framework suffers from long input sequence

Prompting on pGSLM

- To better leveage the LM's knowledge on "prosody"
- Perform on prosody related tasks e.g. emotion recognition

u: discrete unit

d: duration

If: log f0

Deep prompt tuning

Input Prompt Tuning

add trainable prompts
 on the input embeddings

Deep Prompt Tuning

 add trainable prompts on the input embedding and input of each transformer layer

Experiments - IC

Speech Classification Task

Method	ACC	# Params
SUPERB Fine Tuning	98.34	0.2 M
GSLM Deep Prompt Tuning	98.40	0.15 M
pGSLM Input Prompt Tuning	98.25	0.1 M
pGSLM Deep Prompt Tuning	98.15	0.1 M

Experiments - ER

Speech Classification Task

Method	ACC	# Params
SUPERB Fine Tuning	65.92	0.2 M
GSLM Deep Prompt Tuning	< 50 %	0.3 M
pGSLM Finetuning	49.88	151 M
pGSLM Input Prompt Tuning	56.11	0.3 M
pGSLM Deep Prompt Tuning	54.50	0.3 M

Experiments - ASR

Sequence Decoding Task

Method	WER	# Params
SUPERB Dowstream	6.42	43 M
GSLM Deep Prompt Tuning	34.17	4.5 M
pGSLM Input Prompt Tuning	76.72	4.5 M
pGSLM Deep Prompt Tuning	73.93	4.5 M
GSLM Finetuning	26.19	151 M
pGSLM Finetuning	13.20	151 M

Prompt Initialization

Initialize the prompts' weights with the embedding of the first batch of data

Experiments - ASR

Method	Init	WER	# Params
Input Prompt Tuning	False	76.72	0.45M
Input Prompt Tuning	True	72.65(\ <mark>4.07</mark>)	0.45M
Deep Prompt Tuning	False	73.93	4.5M
Deep Prompt Tuning	True	73.90(\(\psi\)0.03)	4.5M

Prompt init. help the performance to some extent

Observations

- 1. For prosody related task: pGSLM > GSLM
- 2. For sequence decoding tasks: GSLM > pGSLM with the same number of trainable parameters.
- 3. Prompt initialization can help the performance
- 4. Currently, sequence decoding tasks are still very challenging for prompting

Future work 1: Prompting on Different Architecutres

- uLM is a "decoder-only" language model
 - o performs poor on sequence decoding tasks
- Unit mBART is an "encoder-decoder" language model
- Light weight adapter: trainable cross attention

Unit mBART

Discrete Unit Target

Future work 2: Length Adapter

- The current framework suffers from long sequence
- Combine the research from the compression team

pGSLM

Future work 3: Linear Verbalizer

How to better define the mapping between the model's output and task labels?

Current Approach: frequency-based algorithm (Simply counting the frequency of the units and the tasks labels)

Frequency-Mapping Verbalizer

Future work 3: Linear Verbalizer

Linear Verbalizer

Adding linear fully connected layers to make fully source-target label mapping without information loss.

Yang et.al., Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Outline

- Recap: Motivations, prompt and adapter background
- Prompting on GSLM (Kai-Wei Chang, Hua Shen)
- Adapter for SSL speech models (Allen Fu, Zih-Ching Chen)

Adapters for SSL models

- How adapters work on different self-supervised speech models
- Add adapters to upstream models

[Unified Adapter] Towards a Unified View of Parameter-Efficient Transfer Learning

Fine-tuning SSL models in speech

#training parameters of speech tasks

Goal: Explore different adapter methods compared with FT

Adapters w/ limited labels for downstream tasks

Experiment settings

- Measuring performance on SUPERB tasks (ASR, PR)
- Varying in the size of training data (1hr, 10hr, 100hr)
- Trying different upstream models (hubert, decoar2)
- Examining different adapter methods

Ablation study

Does different adapter architectures perform differently on different tasks?

Adapters w/ limited downstream data (ASR)

downstream model : 2 layers of LSTM (43M)

	#Params	AS	R (WER	(↓)
hubert	of Adp (M)	1hr	10hr	100hr
FT	94.7	42.25	24.77	-
baseline	0	48.08	28.86	7.09
Houlsby	0.6	30.96	16.14	5.88
AdapterBias	0.02	37.05	18.75	5.54
BitFit	0.1	34.43	18.1	9.34
LoRA	0.29	49.59	29.27	6.94
Weighted-sum	just 12	43.31	23.21	6.42

	ASR (WER ↓)			
decoar2	1hr	10hr	100hr	
FT	53.26	33.62	25.46	
baseline	65.79	45.16	39.06	
Houlsby	46.71	31.64	28.63	
AdapterBias	49.89	33.01	29.89	
BitFit	49.06	32.65	29.4	
LoRA	63.25	42.79	39.52	
Weighted-sum	61.32	41.73	36.26	

Adapters w/ limited downstream data (PR)

downstream model : Linear layer (80k)

#Params		Р	R (PER)
hubert	Adp (M)	1hr	10hr	100hr
FT	94.7	-	-	2.68
baseline	0	16.21	13.7	7.74
Houlsby	0.6	10.64	6.44	2.997
AdapterBias	0.02	8.64	7.41	4.19
BitFit	0.1	9.07	6.97	4.23
LoRA	0.29	15.6	14.39	8.74
Weighted-sum	just 12	-	-	5.41

	PR (PER ↓)		
decoar2	1hr	10hr	100hr
FT	-	-	_
baseline	26.85	22.86	_
Houlsby	14.12	11.1	_
AdapterBias	15.45	13.72	-
BitFit	15.64	14.41	-
LoRA	27.74	26.97	-
Weighted-sum	-	-	14.93

Analysis - training w/ limited downstream labels

- ASR
 - Houlsby performs best
 - Adapter method improves better on small data and hubert
- PR
 - Houlsby performs best
 - Adapter method improves better on small data and decoar2
 - FT is hard to tune
- Performance ranking: Houlsby, AdapterBias&BitFit, Weight-sum, Lora

The difference in the weight of a fine-tuned model: **PR**

The difference in the weight of a fine-tuned model: **SF**

Analysis - Parameters changed after finetuning

For PR

- Mostly focus on FC2 of the 7th-11th transformer layers.
- The CNN extractor is not tuned as much

For SF

- Mostly focus on FC2 of the 10th transformer layer.
- The parameters of CNN extractor is changed compared with PR

We could analyze the performance of different adapter methods based on these findings.

Adapters - next steps

- Expand experiment settings
 - performance on SUPERB task (ASR, PR, SF, IC, SV)
 - training data size (1hr, 10hr, 100hr)
 - different model (hubert, decoar2, wav2vec)
 - different efficient method (adapter, prompt, weighted sum)
- Explore stability of methods
 - learning rate
 - random seed

Adapters - next steps (cont'd)

- Result interpretation, ablation study
 - O Why did adapters work?
 - Does different adapter architectures performs differently on different tasks?
- SLT submissions

Summary

- Various ways to improve prompting performance
 - Prompting on pGSLM
 - Deep prompt tuning
 - Prompt Initialization
- Will explore more ideas for performance
 - Prompting on unit BART or other architecures
 - Prompting w/ adaptor
 - Prompting w/ Verbalizer

Summary (cont'd)

- Investigate various aspects of adapters
 - Performance gain over various up-/down-stream models (w/ limited training data)
 - Will expand exp settings and explore stabilities
 - Will do SLT submissions
- Explore compound topics with other workstreams
 - Robustness of adapters
 - Adapting compressed/multimodal pre-trained networks for better performance
 - 0 ...

Timeline

- ~6/18 release of prompting for GSLM and detailed usage (https://github.com/ga642381/SpeechPrompt)
- Workshop begins: release of s3prompt / s3adapter including detailed usage of adding prompt and adapter modules.