1 Field Extensions I

Definition 1 (Integral domain). Let R be a commutative ring. Then R is <u>an integral domain</u> if ab = 0 implies that a = 0 or b = 0 for all $a, b \in R$.

Definition 2 (Euclidean domain). Let R be an integral domain. Then R is a <u>Euclidean domain</u> if there exists some function $f: R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ such that for all $a, b_{\not\equiv 0} \in R$, there exist elements $q, r \in R$ such that a = qb + r where r = 0 or f(r) < f(b).

Theorem 1.1 (Bézout's Identity). Let R be a Euclidean domain. For $a, b \in R$, there exists $\alpha, \beta \in R$ such that $gcd(a, b) = \alpha a + \beta b$

Definition 3 (Irreducible). Let F be a field, and $f \in F[t] \setminus F$. Then f is <u>irreducible</u> if $\not\supseteq g, h \in F[t] \setminus F$ of strictly smaller degree such that f = gh.

Definition 4 (Unique factorization domain). Let R be an integral domain. Then R is a unique factorization domain (UFD) if for irreducible $p_i \in R$, any nonzero $x \in R$ can be written uniquely (up to ordering) as $x = p_1 p_2 \cdots p_k$, $k \ge 1$.

Fact: If R is an Euclidean domain, then R is a UFD (and PID)

Corollary 1.2. Let $f \in \mathbb{F}[t]$ be a monic polynomial with deg $f \geq 1$. Then we can write $f = f_1 f_2 \cdots f_k$ uniquely (up to ordering) for irreducible monic polynomials f_j .

Definition 5. Let R be a UFD. When $a_0, \ldots, a_n \in R$ are not all 0, we can generalize the <u>greatest</u> common divisor of a_0, \ldots, a_n (written $gcd(a_0, \ldots, a_n)$) any element $c \in R$ satisfying

- (i) $c \mid a_i \ (0 \le i \le n)$, and
- (ii) if $d \mid a_i \ (0 \le i \le n)$, then $d \mid c$.

When $f = a_0 + a_1 X + \ldots + a_n X^n$ is a non-zero polynomial in R[X], we define a <u>content</u> of f to be any $gcd(a_0, \ldots, a_n)$. We say that $f \in R[X]$ is <u>primitive</u> if $f \neq 0$ and the content of f is <u>divisible</u> only by units of R.

Lemma 1.3 (Gauss). Suppose that R is a UFD with field of fractions Q. Suppose that f is a primitive element of R[X] with deg f > 0. Then f is irreducible in R[X] if and only if f is irreducible in Q.

Theorem 1.4 (Eisenstein's Criterion). Suppose that R is a UFD, and that $f = a_0 + a_1X + \ldots + a_nX^n \in R[X]$ is primitive. Then provided that there is an irreducible element p of R having the property that

- (i) $p \mid a_i \text{ for } 0 \le i < n$,
- (ii) $p^2 \nmid a_0$, and
- (iii) $p \nmid a_n$,

then f is irreducible in R[X], and hence also in Q[X], where Q is the field of fractions of R.

Definition 6 (Field extension). When K and L are fields, we say that L is an <u>extension</u> of K if there is a homomorphism $\varphi: K \to L$. Then $\varphi(K) \cong K$ and we write L: K or L/K.

Fact: Suppose that L is a field extension of K with associated embedding $\varphi: K \to L$. Then L forms a vector space over K, under the operations

(vector addition)
$$\psi: L \times L \to L$$
 given by $(v_1, v_2) \mapsto v_1 + v_2$ (scalar multiplication) $\tau: K \times L \to L$ given by $(k, v) \mapsto \varphi(k)v$.

Definition 7 (Degree, finite extension). Suppose that L:K is a field extension. We define the <u>degree</u> of L:K to be the dimension of L as a vector space over K. We use the notation [L:K] to denote the degree of L:K. Further, we say that L:K is a finite extension if $[L:K] < \infty$.

Definition 8 (Tower, intermediate field). We say that M:L:K is a <u>tower</u> of field extensions if M:L and L:K are field extensions, and in this case we say that L is an <u>intermediate field</u> (relative to the extension M:K)

Theorem 1.5 (The Tower Law). Suppose that M:L:K is a tower of field extensions. Then M:K is a field extension, and [M:K] = [M:L][L:K].

Corollary 1.6. Suppose that L:K is a field extension for which [L:K] is a prime number. Then whenever L:M:K is a tower of field extensions with $K\subseteq M\subseteq L$, one has either M=L or M=K.