Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №2 по дисциплине «Вычислительная математика» Численные методы решения нелинейных уравнений и систем.

Вариант: 4

Преподаватель: Машина Екатерина Алексеевна

Выполнил: Есоян Владимир Саркисович Группа: P3208

Цель работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

Порядок выполнения

1 часть. Решение нелинейного уравнения

- 1. Отделить корни заданного нелинейного уравнения графически (вид уравнения представлен в табл. 6)
- 2. Определить интервалы изоляции корней.
- 3. Уточнить корни нелинейного уравнения (см. табл. 6) с точностью ε =10-2.
- 4. Используемые методы для уточнения каждого из 3-х корней многочлена представлены в таблице 7.
- 5. Вычисления оформить в виде таблиц (1-5), в зависимости от заданного метода. Для всех значений в таблице удержать 3 знака после запятой.
- 5.1 Для метода половинного деления заполнить таблицу 1.
- 5.2 Для метода хорд заполнить таблицу 2.
- 5.3 Для метода Ньютона заполнить таблицу 3.
- 5.4 Для метода секущих заполнить таблицу 4.
- 5.5 Для метода простой итерации заполнить таблицу 5. Проверить условие сходимости метода на выбранном интервале.
- 6. Заполненные таблицы отобразить в отчете.

2 часть. Решение системы нелинейных уравнений

- 1. Отделить корни заданной системы нелинейных уравнений графически (вид системы представлен в табл. 8).
- 2. Используя указанный метод, решить систему нелинейных уравнений с точностью до 0,01.
- 3. Для метода простой итерации проверить условие сходимости метода.
- 4. Подробные вычисления привести в отчете.

Рабочие формулы

Метод половинного деления

$$x_i = \frac{a_i + b_i}{2}$$

Метод секущих

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$

Метод простой итерации

$$x_{i+1} = \varphi(x_i)$$

1. Вычислительная реализация задачи

1. Решение нелинейного уравнения

$$x^3 - 1,89x^2 - 2x + 1,76$$

Для определения интервалов изоляции корней данного уравнения, можно воспользоваться методом интервалов знакопеременности. Для этого нужно найти значения функции на различных интервалах и определить знак функции на каждом из них.

Получим приближенные значения корней:

$$x \approx -1.2$$
, $x \approx 0.6$, $x \approx 2.4$

Теперь нужно разбить ось х на 4 интервала: $(-\infty, -1.2)$, (-1.2, 0.6), (0.6, 2.4) и $(2.4, +\infty)$. На каждом из этих интервалов нужно определить знак функции.

Для этого можем вычислить значения функции в произвольной точке каждого интервала. Например, для интервала ($-\infty$, -1.2) можно выбрать x = -2, для интервала (-1.2, 0.6) x = -1, для интервала (0.6, 0.6) 0.6, 0

Таким образом, знаки функции на каждом интервале будут соответственно:

(-∞, -1.2)	(-1.2, 0.6)	(0.6, 2.4)	$(2.4, +\infty)$
-	+	-	+

И следовательно, мы получаем три интервала изоляции корней уравнения:

$$(-1.5, -1), (0, 1)$$
 и $(2, 2.5)$.

Уточнение корней с точностью $\varepsilon = 10^{-2}$:

Крайний правый: метод простой итерации

Проверка условия сходимости метода на выбранном интервале:

$$f(x) = x^3 - 1,89x^2 - 2x + 1,76 = 0$$

$$f'(x) = 3x^2 - 3.78x - 2$$

 $f'(a) = 2.44 > 0, f'(b) = 7.3 > 0$

$$\max(|f'(a)|, |f'(b)|) = 7,3 \to \lambda = -\frac{1}{\max(|f'(x)|)} = -\frac{1}{7,3}$$

$$\varphi(x) = x + \lambda f(x) = x - \frac{x^3 - 1,89x^2 - 2x + 1,76}{7,3}$$

$$\varphi'^{(x)} = 1 + \lambda f'^{(x)} = 1 - \frac{3x^2 - 3,78x - 2}{7,3}$$

На отрезке начального приближения [2, 2.5] функция $\varphi(x)$ определена, непрерывна и дифференцируема.

$$|\varphi'(a)| = 0,666$$

 $|\varphi'(b)| = 0$
 $|\varphi'(x)| \le q$, где $q = 0,666$

 $0 \le q < 1 \to$ итерационная последовательность сходится, 0,5 $< q < 1 \to$ критерий окончания итерационного процесса $|x_{k+1} - x_k| < \frac{1-q}{q} \varepsilon = 0.005$, $x_0 = 2.5$

№	Xk	x_{k+1}	$f(x_{k+1})$	X _{k+1} - X _k
1	2.500	2.422	0.573	0.078
2	2.422	2.417	0.037	0.005
3	2.417	2.416	0.005	0.001

Крайний левый: метод половинного деления

No	a	ь	X	f(a)	f(b)	f(x)	a-b
1	-1.5	-1	-1.25	-2.867	0.87	-0.646	0.5
2	-1.25	-1	-1.125	-0.646	0.87	0.194	0.25
3	-1.25	-1.125	-1.188	-0.646	0.194	-0.208	0.125
4	-1.188	-1.125	-1.156	-0.208	0.194	0.002	0.063
5	-1.188	-1.156	-1.172	-0.208	0.002	-0.102	0.032
6	-1.172	-1.156	-1.164	-0.102	0.002	-0.05	0.016
7	-1.164	-1.156	-1.16	-0.05	0.002	-0.024	0.008
8	-1.16	-1.156	-1.158	-0.024	0.002	-0.011	0.004
9	-1.158	-1.156	-1.157	-0.011	0.002	-0.005	0.002

Центральный: метод секущих

No	X _{k-1}	Xk	x_{k+1}	$f(x_{k+1})$	X _{k+1} - X _k
1	0	0.5	0.653	-0.073	0.153
2	0.5	0.653	0.63	0	0.023
3	0.653	0.63	0.63	0	0

2. Решение системы нелинейных уравнений

$$\begin{cases} sin(x+y) - 1,2x = 0,2 \\ x^2 + 2y^2 = 1 \end{cases}$$
, Метод Ньютона

$$\begin{cases} sin(x+y) - 1, 2x = 0, 2 \\ x^2 + 2y^2 = 1 \end{cases} \rightarrow \begin{cases} f(x,y) = 0 \\ g(x,y) = 0 \end{cases} \rightarrow \begin{cases} sin(x+y) - 1, 2x - 0, 2 = 0 \\ x^2 + 2y^2 - 1 = 0 \end{cases}$$

Отметим, что решение системы уравнений являются точки пересечения эллипса и sin(x+y)-1,2x-0,2=0, следовательно, система имеет не более двух различных решений. Построим матрицу Якоби:

$$\frac{\partial f}{\partial x} = \cos(x+y) - 1.2, \frac{\partial f}{\partial y} = \cos(x+y), \frac{\partial g}{\partial x} = 2x, \frac{\partial g}{\partial y} = 4y$$

$$\begin{vmatrix} \frac{\partial f(x,y)}{\partial x} & \frac{\partial f(x,y)}{\partial y} \\ \frac{\partial g(x,y)}{\partial x} & \frac{\partial g(x,y)}{\partial y} \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = -\begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$

$$\begin{vmatrix} \cos(x+y) - 1.2 & \cos(x+y) \\ 2x & 4y \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} 1,2x+0,2-\sin(x+y) \\ 1-x^2-2y^2 \end{pmatrix}$$

$$\begin{cases} \cos(x+y)\Delta x - 1.2\Delta x + \cos(x+y)\Delta y = 1, 2x + 0, 2 - \sin(x+y) \\ 2x\Delta x + 4y\Delta y = 1 - x^2 - 2y^2 \end{cases}$$

Выбираем $x_0 = 0.6$; $y_0 = 0.56$ и решаем полученную систему:

$$\Delta x = -0.001$$

$$\Delta y = 0.006$$

Вычисляем очередные приближения:

$$x_1 = x_0 + \Delta x = 0.6 - 0.001 = 0.599$$

$$y_1 = y_0 + \Delta y = 0.56 + 0.006 = 0.566$$

$$|x_1 - x_0| \le \varepsilon$$
, $|y_1 - y_0| \le \varepsilon$
 $|0.001| \le \varepsilon$, $|0.006| \le \varepsilon \to \text{ответ найден, корень 1: (0.599, 0.566)}$

Аналогично находим **другой корень**: (-0.938, -0.245)

2. Программная реализация задачи

Листинг программы

https://github.com/x-oc/nonlinear-equations

Результаты работы программы

Выберите тип программы:

1: Нелинейное уравнение

2: Система нелинейных уравнений

Введите номер типа: 1 Выберите уравнение:

1: $-1.38*x^3 - 5.42*x^2 + 2.57*x + 10.95$

 $2: x^3 - 1.89*x^2 - 2*x + 1.76$

 $3: -x/2 + e^x + 5*\sin(x)$

Введите номер уравнения: 1

Выберите метод:

1: Метод хорд

2: Метод простой итерации

3: Метод Ньютона

Введите номер метода: 1

Введите имя файла для загрузки исходных данных и интервала или пустую строку, чтобы ввести вручную:

Введите левую границу интервала: -4

Введите правую границу интервала: -3

Введите погрешность вычисления: 0.0001

Введите имя файла для вывода результата или пустую строку, чтобы вывести в консоль:

Процесс решения:

1: a = -4.000, b = -3.785, x = -3.874, f(a) = 2.270, f(b) = -1.598, f(x) = -0.11975504232917622, |x + 1 - x + k| = 0.08889300381592546

2: a = -4.000, b = -3.874, x = -3.880, f(a) = 2.270, f(b) = -0.120, f(x) = -0.008197201018855793,

 $|\mathbf{x} \ \mathbf{k}+1 - \mathbf{x} \ \mathbf{k}| = 0.006327767063427636$

3: a = -4.000, b = -3.880, x = -3.880, f(a) = 2.270, f(b) = -0.008, f(x) = -0.0005575468628844504,

|x + 1 - x| = 0.00043157552113282094

4: a = -4.000, b = -3.880, x = -3.881, f(a) = 2.270, f(b) = -0.001, f(x) = -3.790612670506732e-05,

|x k+1 - x k| = 2.9347150450220738e-05

Результат:

Найденный корень уравнения: -3.8805

Значение функции в корне: -3.790612670506732e-05

Число итераций: 4

Программа завершена успешно

Вывод

В ходе выполнения лабораторной работы были изучены численные методы решения нелинейных уравнений и систем нелинейных уравнений с использованием Руthon. В результате работы были найдены корни заданных уравнений и систем с использованием различных численных методов, а также были построены графики функций для полного представления исследуемых интервалов. Все рассмотренные методы демонстрируют различные характеристики: метод половинного деления гарантирует сходимость, но является самым медленным; метод Ньютона обладает высокой скоростью сходимости, но требует вычисления производной и чувствителен к начальному приближению; метод секущих представляет собой компромисс, не требуя производной, но уступая в скорости методу Ньютона; метод хорд быстрее метода половинного деления, но требует непрерывности; метод простой итерации наиболее требователен к подготовке уравнения и обеспечению сходимости; выбор оптимального метода зависит от конкретной задачи, свойств функции и требуемой точности, а на практике часто используются комбинации методов для повышения эффективности решения.