Detailed description of the cortical microcircuit model (Potjans et al., 2014)

last update: September 2, 2025

Contents

1	Model description	2
2	Model parameters	7
A	Single-neuron dynamics in normal form (subthreshold)	9
В	Exact integration of single-neuron dynamics (subthreshold)	10
C	Remarks	11

1 Model description

	Summary					
Populations 8 cortical populations in 4 layers (L2/3, L4, L5, L6), driven by a thalamic population and cortico-cortical inputs (\mathcal{C})						
Connectivity	random, independent, population specific					
Neuron model	cortex: leaky integrate-and-fire (LIF); thalamus, cortico-cortical inputs: Poisson point process					
Synapse model	exponential postsynaptic currents with static, normally distributed weights and delays					
Predictions	population specific spiking activity					

Populations									
Name	Elements	Size							
$x \in \{\mathcal{E}_{23}, \mathcal{E}_4, \mathcal{E}_5, \mathcal{E}_6, \mathcal{I}_{23}, \mathcal{I}_4, \mathcal{I}_5, \mathcal{I}_6\}$	LIF	N_x							
$\mathcal{P} = \bigcup_{x} x$	LIF	$N = \sum_x N_x$ (see re-							
		$\max \frac{1}{1}$							
\mathcal{T}	realizations of Poisson point process	$N_{\mathcal{T}}$							
$C = \bigcup_x C_x$	population specific currents	$N = \sum_{x} N_x$							

Table 1: Description of the network model (continued on next page).

Connectivity							
Source	Target	Pattern					
$x \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}$	$y \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}$						
		$ullet$ random, fixed total number K_{yx} of connections $ullet$ (see remark 1)					
		$ullet$ synaptic weights J_{ij} ($orall i\in y, j\in x$)					
		$ullet$ spike-transmission delays d_{ij} $(orall i\in y, j\in x)$					
\mathcal{T}	$y \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}$						
		$ullet$ random, fixed total number $K_{y\mathcal{T}}$ of connections 1					
		$ullet$ synaptic weights J_{ij} ($orall i\in y, j\in \mathcal{T}$)					
		$ullet$ spike-transmission delays d_{ij} $(orall i \in y, j \in \mathcal{T})$					
C_y	$y \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}$						
		• one-to-one ²					

Connectivity patterns:

$$K_{yx} = \frac{\ln\left(1 - C_{yx}\right)}{\ln\left(1 - \left(N_x N_y\right)^{-1}\right)},$$

connections between a source population x of size N_x and a target population y of size N_y . C_{yx} denotes the connection probability. Sources and targets are randomly and independently drawn from x and y with replacement. Multiple connections between two neurons and self-connections are permitted (\mathbb{M}, \mathbb{A}) .

² one-to-one (δ) : Each neuron in the source population is connected to one corresponding neuron in the target population (bijection).

(see "Network sketch" above and Senk et al., 2022)

Table 1: Description of the network model (continued).

 $^{^{\}rm 1}$ random, fixed total number ($N_{\rm Syn})\!\!:$ This rule establishes a total number of

Neurons									
Cortical neurons									
Туре	leaky integrate-and-fire (LIF)								
Description	dynamics of membrane potential $V_i(t)$ and spiking activity $s_i(t)$ of neuron $i \in x$ for $x \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}$:								
	$ullet$ emission of k th $(k=1,2,\ldots)$ spike of neuron i at time t_i^k if								
	$V_i\left(t_i^k ight) \geq heta$								
	with spike threshold $ heta$								
	reset and refractoriness:								
	$orall k, \; orall t \in \left[t_k^i, t_k^i + au_{ref} ight]: V_i(t) = V_{reset}$								
	with refractory period $ au_{ref}$ and reset potential V_{reset}								
	$ullet$ spike train $s_i(t) = \sum_k \delta(t-t_i^k)$								
	$ullet$ subthreshold dynamics of membrane potential $V_i(t)$:								
	$\forall k, \ \forall t \notin \left[t_i^k, t_i^k + \tau_{ref}\right):$								
	$\tau_{\rm m} \frac{\mathrm{d}V_i(t)}{\mathrm{d}t} = \left[E_{\rm L} - V_i(t) \right] + R_{\rm m} I_i(t) \tag{1}$								
	with membrane time constant $ au_{\rm m}$, membrane resistance $R_{\rm m}$, resting potential $E_{\rm L}$, and total synaptic input current $I_i(t)$								
	Thalamic neurons								
Туре	Poisson point process								
Description	spike trains $s_i(t)$ ($i \in \mathcal{T}$) modeled as independent realizations of Poisson point process with piece-wise constant rate								
	$\nu_{\mathcal{T}}(t) = \nu_{\mathcal{T}} \cdot (\Theta(t - t_{start}) - \Theta(t - t_{stop}))$								
	Cortico-cortical inputs								
Туре	constant (direct) currents (DC)								
Description	population specific constant input current of magnitude								
	$I_{\mathcal{C}_x} = K_{\mathcal{C}_x} \cdot I_{\mathcal{C}} (\forall x \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}),$								
	with cortico-cortical in-degree $K_{\mathcal{C}_x}$, and mean current								
	$I_{\mathcal{C}} = \nu_{\mathcal{C}} \cdot \bar{I}_{y,\mathcal{C}} \cdot \tau_{s} (\forall y \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_{6}\})$								
	generated by a Poissonian spike train with rate $\nu_{\mathcal{C}}$, convolved with an exponential kernel with amplitude $\bar{I}_{y,\mathcal{C}}$ and time constant τ_{s} (see remark 2)								

Table 2: Description of the network model (continued).

	Synapses							
Туре	exponential postsynaptic currents with static weights and delays							
Description	$ullet$ total synaptic input current $I_i(t)$ to neuron i $ig(orall i\in y\in\{\mathcal{E}_{23},\dots,\mathcal{I}_6\}ig)$ is governed							
	by:							
	$\left(\frac{d}{dt} + \frac{1}{\tau_{s}}\right) I_i(t) = f_i(t) \tag{2}$							
	with superposition from all neurons $j \in x, \ \forall x \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6, \mathcal{T}, \mathcal{C}\}$							
	$f_i(t) = \sum_{x} \sum_{j} f_{ij}(t) = \sum_{x} \sum_{j} \hat{I}_{ij} s_j(t - d_{ij})$							
	of weighted spike trains with static synaptic weigths \hat{I}_{ij} , synaptic time constant $ au_{\rm s}$, and spike transmission delays d_{ij}							
	• solution of (2) for $f_{ij}(t) = \hat{I}_{ij}s_j(t)$ and $I_{ij}(t=0) = 0$:							
	$PSC_{ij}(t) = \hat{I}_{ij} \exp(-t/ au_{s})\Theta(t)$							
	with Heaviside function $\Theta(\cdot)$							
	(exponential decaying) posynaptic current triggered by a single presynaptic spike							
	• solution of (1) for $I_i(t) = PSC_{ij}(t)$, $V_i(t=0) = 0$, and $E_L = 0$:							
	$PSP_{ij}(t) = \hat{I}_{ij} R_m \frac{\tau_s}{\tau_s - \tau_m} \left(e^{-t/\tau_s} - e^{-t/\tau_m} \right) \Theta(t)$							
	PSC amplitude (synaptic weight):							
	$\hat{I}_{ij} = rac{J_{ij}}{J_{unit}(au_{m}, au_{s}, R_{m})}$							
	parameterized by PSP amplitude $J_{ij} = max_t ig(PSP_{ij}(t)ig)$							
	with unit PSP amplitude (PSP amplitude for $\hat{I}_{ij}=1$):							
	$J_{\rm unit}(\tau_{\rm m},\tau_{\rm s},R_{\rm m}) = R_{\rm m} \frac{\tau_{\rm s}}{\tau_{\rm s}-\tau_{\rm m}} \left(\left[\frac{\tau_{\rm m}}{\tau_{\rm s}} \right]^{-\tau_{\rm m}/(\tau_{\rm m}-\tau_{\rm s})} - \left[\frac{\tau_{\rm m}}{\tau_{\rm s}} \right]^{-\tau_{\rm s}/(\tau_{\rm m}-\tau_{\rm s})} \right)$							
	and time to PSP maximum:							
	$t_{max} = \frac{\tau_{s} \tau_{m}}{\tau_{m} - \tau_{s}} \ln \left(\frac{\tau_{m}}{\tau_{s}} \right)$							

Table 3: Description of the network model (continued).

	Synapses (continued)
Description	
	synaptic weights
	$\hat{I}_{ij} = \begin{cases} \max(0, z_{yx}), & j \in x \in \{\mathcal{E}_{23}, \mathcal{E}_4, \mathcal{E}_5, \mathcal{E}_6, \mathcal{T}\} \\ \min(0, z_{yx}), & j \in x \in \{\mathcal{I}_{23}, \mathcal{I}_4, \mathcal{I}_5, \mathcal{I}_6\} \\ \bar{I}_{yx}, & j \in x = \mathcal{C} \end{cases}$
	with $z_{yx} \sim \mathcal{N}\left\{ar{I}_{yx},\ \sigma_{s,yx}^2 ight\}$
	drawn from a normal distribution with mean $ar{I}_{yx}$, variance $\sigma^2_{s,yx}$
	note: clipping of synaptic weights leads to a deviation of the total number of synapses with non-zero weights from K_{yx} (see "Connectivity")
	distributed synaptic delays
	$d_{ij} = egin{cases} max(d_{min}, z_x), & j \in x \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6, \mathcal{T}\} \ ar{d}_x, & j \in x = \mathcal{C} \end{cases}$
	with $z_x \sim \mathcal{N}\left\{ar{d}_x,\sigma_{d,x}^2 ight\}$
	drawn from a normal distribution with mean \bar{d}_x , variance $\sigma_{{\bf d},x}^2$, and minimal delay $d_{\rm min}>0$
	Initial conditions
Туре	random initial membrane potentials and homogeneous initial synaptic currents
Description	
	$ullet$ membrane potentials $V_i(t=0) \sim \mathcal{N}(ar{V}_{0,x},\sigma^2_{ extsf{v},x})$
	randomly and independently drawn from a normal distribution with mean $\bar{V}_{0,x}$ and variance $\sigma^2_{\mathbf{v},x}$ ($\forall i \in x \in \{\mathcal{E}_{23},\dots,\mathcal{I}_6\}$; see remark 4)

Table 4: Description of the network model (continued).

ullet synaptic currents: $I_i(t=0)=0\,\mathrm{pA}$ $(\forall i\in y\in\{\mathcal{E}_{23},\ldots,\mathcal{I}_6\})$

2 Model parameters

				Net	work and	connect	ivity			
					Populat	ion sizes				
	x	\mathcal{E}_{23}	\mathcal{I}_{23}	\mathcal{E}_4	\mathcal{I}_4	\mathcal{E}_5	\mathcal{I}_5	\mathcal{E}_6	\mathcal{I}_6	\mathcal{T}
	N_x	20,683	5,834	21,915	5,479	4,850	1,065	14,395	2,948	902
				Conn	ection pr	obabilitie	es C_{yx}			
		ı								1
	x	\mathcal{E}_{23}	\mathcal{I}_{23}	\mathcal{E}_4	\mathcal{I}_4	\mathcal{E}_5	\mathcal{I}_5	\mathcal{E}_6	\mathcal{I}_6	$\mid \mathcal{T} \mid$
	y	0.1000	0.1600	0.0497	0.0010	0.0000	0.0	0.0076	0.0	0.0
	\mathcal{E}_{23}	0.1009	0.1689	0.0437	0.0818	0.0323	0.0	0.0076	0.0	0.0
	\mathcal{I}_{23}	0.1346	0.1371	0.0316	0.0515	0.0755	0.0	0.0042	0.0	0.0
	\mathcal{E}_4	0.0077	0.0059	0.0497	0.1350	0.0067	0.0003	0.0453	0.0	0.0983
	\mathcal{I}_4 \mathcal{E}_5	0.0691	0.0029	0.0794	0.1597	0.0033	0.0	0.1057 0.0204	0.0	0.0619
	\mathcal{I}_5	0.1004	0.0622	0.0505	0.0057	0.0831	0.3720	0.0204	0.0	0.0
	\mathcal{E}_6	0.0348	0.0269	0.0257	0.0022	0.0600	0.3158	0.0086	0.0	0.0
	\mathcal{I}_6	0.01364	0.0000	0.0211	0.0100	0.0372	0.0197	0.0590	0.2232	0.0312
	26	0.0504	0.0010	0.0034	0.0003	0.0211	0.0080	0.0056	0.1440	0.0190
					No	ıron				
Name	Value		De	scription		11011				
)	_50 m√	/		ke thresho						
 ∑L	_65 m√			resting potential membrane time constant membrane capacitance						
m	10 ms	<u> </u>								
\mathcal{I}_{m}	250 pF									
R_{m}	· ·	$=40\mathrm{M}\Omega$		membrane resistance						
reset	_65 m√		res	et potenti	al					
T _{ref}	2 ms		abs	absolute refractory period						
T_{S}	0.5 ms		pos	postsynaptic current time constant rate of thalamic neurons						
ľΤ	$120{\rm s}^{-1}$		rat							
start	700 ms		sta	rt time of	thalamic	input				
$\Delta t_{\mathcal{T}}$	10 ms		dui	ration of t	halamic i	nput				
stop		$\Delta t_{\mathcal{T}} = 710$	ms sto	p time of	thalamic	input				
'C	$8{\rm s}^{-1}$		rat	e of cortic	co-cortica	linputs				
$I_{\mathcal{C}}$	$\nu_{\mathcal{C}} \overline{I}_{y,\mathcal{C}} \tau_{s}$	$_{\rm s} = 0.3 {\rm pA}$		an amplit)	
			Popula	tion spec	ific corti	co-cortic	al in-deg	ree $K_{\mathcal{C}_x}$		
			1			I				
\mathcal{C}_x	$\mathcal{C}_{\mathcal{E}_{i}}$			$\mathcal{C}_{\mathcal{E}_4}$	$\mathcal{C}_{\mathcal{I}_4}$	$\mathcal{C}_{\mathcal{E}_5}$	$\mathcal{C}_{\mathcal{I}_5}$	$\mathcal{C}_{\mathcal{E}_6}$	$\mathcal{C}_{\mathcal{I}_6}$	$\mathcal{C}_{\mathcal{I}}$
$K_{\mathcal{C}}$	$\frac{1}{2}$	$00 \qquad \boxed{1}$	500	2100	1900	2000	1900	2900	2100) –

Table 5: Model parameters (continued on next page).

Synapse										
Name	Value		Description							
J	0.15 mV	5 mV (mean) weight (PSP amplitude) of excitatory synapses								
\bar{I}_{yx}			synaptic weights:							
	$J/J_{\rm unit} \approx 87$	7.81 pA	$x \in \{\mathcal{E}_{23}, a\}$	$\mathcal{E}_4, \mathcal{E}_5, \mathcal{E}_6, \mathcal{E}_6$	$\mathcal{T},\mathcal{C}\}$					
	$-4J/J_{unit}$		$x \in \{\mathcal{I}_{23}, \mathcal{I}_{23}, \mathcal{I}$	$\mathcal{I}_4, \mathcal{I}_5, \mathcal{I}_6$, except fo	r:				
	$2J/J_{unit}$		$(x,y) = (\delta$	$\mathcal{E}_{23},\mathcal{E}_4)$						
$\sigma_{s,yx}$	$0.1 \cdot \bar{I}_{yx}$		standard c	leviation o	f weight di	stribution				
\bar{d}_x			mean spike transmission delays:							
	$1.5\mathrm{ms}$		$x \in \{\mathcal{E}_{23}, \mathcal{E}_4, \mathcal{E}_5, \mathcal{E}_6, \mathcal{T}, \mathcal{C}\}$							
	$0.75\mathrm{ms}$	$x \in \{\mathcal{I}_{23}, \mathcal{I}_4, \mathcal{I}_5, \mathcal{I}_6\}$								
$\sigma_{d,x}$	$0.5 \cdot \bar{d}_x$		standard deviation of spike transmission delays							
d_{min}	0.1 ms		minimal spike transmission delay							
				Initial o	conditions	1				
Po	opulation spec	ific mean	and stand	dard devia	ition of in	itial mem	brane-pot	ential dist	tributions	
р	population x \mathcal{E}_{23}		\mathcal{I}_{23}	\mathcal{E}_4	\mathcal{I}_4	\mathcal{E}_5	\mathcal{I}_5	\mathcal{E}_6	\mathcal{I}_6	
\bar{V}	$ar{V}_{0,x}$ (mV) -68.28		-63.16	-63.33	-63.45	-63.11	-61.66	-66.72	-61.45	
σ	$r_{v,x} \; (mV)$	5.36	4.57	4.74	4.94	4.94	4.55	5.46	4.48	

Table 6: Model parameters (continued).

A Single-neuron dynamics in normal form (subthreshold)

• linear, inhomogeneous dynamics of synaptic input currents and (subthreshold) membrane potential for neuron $i \in y \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}$ (cf. eqs. (1) and (2)):

$$\dot{I}_i + \frac{1}{\tau_s} I_i = f_i(t)$$

$$\dot{V}_i + \frac{1}{\tau_m} \left[V_i - E_L \right] - \frac{R_m}{\tau_m} I_i = 0$$
(3)

with

$$f_i(t) = \sum_{x} \sum_{j \in x} \hat{I}_{ij} s_j(t - d_{ij}) \qquad (x \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6, \mathcal{T}, \mathcal{C}\})$$

$$\tag{4}$$

ullet rescale membrane potential $v_i(t)=V_i(t)-E_{
m L}$ and total current $x_i(t)=rac{R_{
m m}}{ au_{
m m}}I_i(t)$:

$$\dot{x}_i + \frac{1}{\tau_s} x_i = \frac{R_m}{\tau_m} f_i(t)$$

$$\dot{v}_i + \frac{1}{\tau_m} v_i - x_i = 0$$
(5)

• normal form of neuron-i dynamics (5):

$$\frac{\mathsf{d}}{\mathsf{d}t}\boldsymbol{y}_i = \boldsymbol{A}\boldsymbol{y}_i + \boldsymbol{f}_i(t) \tag{6}$$

with D=2 dimensional state vector

$$\mathbf{y}_i(t) = \left(x_i(t), v_i(t)\right)^\mathsf{T},\tag{7}$$

with constant $(D\times D)$ matrix

$$\mathbf{A} = \begin{bmatrix} -1/\tau_{\mathsf{s}} & 0\\ 1 & -1/\tau_{\mathsf{m}} \end{bmatrix},\tag{8}$$

and inhomogeneity vector

$$\mathbf{f}_{i}(t) = \left(\frac{R_{\mathsf{m}}}{\tau_{\mathsf{m}}} f_{i}(t), 0\right)^{\mathsf{T}} \tag{9}$$

(see Sec. 3.2.2 in Rotter & Diesmann, 1999)

- see App. B for an efficient, exact integration scheme of (6)
- back-transform to physical quantities:

$$\begin{split} V_i(t) &= v_i(t) + E_{\mathsf{L}} \\ I_i(t) &= \frac{\tau_{\mathsf{m}}}{R_{\mathsf{m}}} x_i(t) \end{split} \tag{10}$$

B Exact integration of single-neuron dynamics (subthreshold)

• exact integration of (6) for spikes arriving at the target neuron i on a time grid $\mathcal{T}_{\Delta}=\{t_k=k\Delta|k\in\mathbb{N},\Delta\in\mathbb{R}^+\}$, i.e., for spike trains $s_j(t)=\sum_l \delta(t-t_j^l)$ with $t_j^l\in\mathcal{T}_{\Delta}$ (Rotter & Diesmann, 1999):

$$y_i(t_{k+1}) = Py_i(t_k) + f_i(t_{k+1})$$
 (11)

with $(D \times D)$ propagator matrix (matrix exponential)

$$P = e^{A\Delta} \tag{12}$$

with components

$$\mathbf{P} = \begin{bmatrix} e^{-\Delta/\tau_{s}} & 0\\ \frac{e^{-\Delta/\tau_{m}} - e^{-\Delta/\tau_{s}}}{1/\tau_{s} - 1/\tau_{m}} & e^{-\Delta/\tau_{m}} \end{bmatrix}$$
(13)

(see Sec. 3.2.2 in Rotter & Diesmann, 1999)

C Remarks

1. In the PyNEST implementation, the model size can be configured by the parameters N_scaling and K_scaling, which scale the number of neurons in the network and the number of synapses per neuron (in-degree), respectively. The original full-scale model corresponds to N_scaling=1 and K_scaling=1 (default). Downscaling the model enables running the model on a desktop computer. The scaling of the synapse number affects both connections within the local network and external (cortico-cortical) inputs.

Without any compensation, downscaling the in-degree would change the mean and the variance of the synaptic input currents. In order to avoid this, one can choose the new synaptic weights $\bar{I}_{i,x}^*$ ($\forall i \in y \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}, x \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6, \mathcal{C}_y\}$) in such a way that together with a compensation current these effects are compensated. For the full-scale model we have

$$\begin{split} \mu_i &= I_{\mathsf{rec},i} + I_{\mathsf{ext},i} = \tau_{\mathsf{s}} \sum_x K_{i,x} \bar{I}_{i,x} \nu_x \,, \\ \sigma_i^2 &= \sigma_{\mathsf{rec},i}^2 + \sigma_{\mathsf{ext},i}^2 = \tau_{\mathsf{s}} \sum K_{i,x} \bar{I}_{i,x}^2 \nu_x \,, \end{split}$$

where $K_{i,x}$ is the in-degree, $\bar{I}_{i,x}$ the synaptic weight and ν_x the mean firing rate. For the downscaled model we have

$$\mu_i^* = \tau_{\rm s} \sum_x K_{i,x}^* \bar{I}_{i,x}^* \nu_x + \mu_{i,0} ,$$

$$(\sigma^*)^2 = \tau_{\rm s} \sum_x K_{i,x}^* (\bar{I}_{i,x}^*)^2 \nu_x .$$

Here, $K_{i,x}^* = fK_{i,x}$ with some factor 0 < f < 1. Comparing the equations of the variance we find $\bar{I}_{i,x}^* = \bar{I}_{i,x}/\sqrt{f}$, if we want to leave fluctuations invariant. We have also a constant compensation current $\mu_{i,0}$ to leave also the mean input current invariant. Inserting this in the equation of the mean and solving for the compensation current $\mu_{i,0}$ we find

$$\mu_{i,0} = \tau_{\rm s} \left(1 - \sqrt{f} \right) \sum_{\boldsymbol{x}} K_{i,\boldsymbol{x}} \bar{I}_{i,\boldsymbol{x}} \nu_{\boldsymbol{x}} \,. \label{eq:mu_i0}$$

There are other ways to downscale the model, for more details see (van Albada et al., 2015). Note that this derivation assumes that all spike-trains are stationary Poissonian inputs (for downscaling with DC inputs see remark 3).

The scaling and compensation current are implemented in the PyNEST implementation provided here.

2. In the original model of Potjans et al. (2014), the cortico-cortical inputs are modeled as independent realizations $s_i(t)$ ($i \in \mathcal{C}_x$ for $x \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}$) of a Poisson point process with constant rate $\nu_{\mathcal{C}_x} = K_{\mathcal{C}_x}\nu_{\mathcal{C}}$, filtered by an exponential kernel PSC(t) with time constant τ_s and amplitude $\bar{I}_{y,\mathcal{C}}$ ($\forall y \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}$). Here, $K_{\mathcal{C}_x}$ denotes the cortico-cortical in-degree and $\nu_{\mathcal{C}}$ a constant rate. In the implementation provided here, these Poissonian inputs are replaced by constant external currents (DC). DC inputs are computationally less expensive, exactly reproducible, and lead to similar network activity statistics. When replacing cortico-cortical input spikes s(t) by DC inputs, the current implementation preserves the mean input current

$$I_{\mathcal{C}} = (\langle s \rangle * \mathsf{PSC})(t) = \bar{I}_{y,\mathcal{C}} \nu_{\mathcal{C}} \tau_{\mathsf{s}} \,.$$

3. With cortico-cortical inputs modeled as DC currents, the DC amplitude of the downscaled model is given by

$$I_{\mathsf{DC},i}^* = I_{\mathsf{DC},i} + (1 - \sqrt{f})I_{\mathsf{rec},i}\,,$$

(see remark 1). To ensure the downscaled network is activated by the cortico-cortical input, the DC amplitude $I_{DC,i}^*$ of the downscaled model needs to exceed the rheobase current, i.e.

$$I_{\mathsf{rh},i} = \frac{\Theta - E_{\mathsf{L}}}{R_{\mathsf{m}}} \le I_{\mathsf{DC},i}^* \,.$$

All populations i with

$$f < f_{\mathrm{min},i} = \left(1 - \frac{I_{\mathrm{rh},i} - I_{\mathrm{ext},i}}{-|I_{\mathrm{rec},i}|}\right)^2,$$

are not activated by the cortico-cortical inputs (neurons in these populations may still fire due to local inputs from other populations of the microcircuit).

4. The original model of Potjans et al. (2014) uses population *unspecific* normal distributions of initial membrane potentials. By default, the current implementation uses population *specific* initial membrane potential distributions instead to speed up convergence to the stationary state. In the reference implementation, the type of initial conditions can be set by the parameter VO_type ("optimized" [default] or "original"). In (Senk et al., 2025), the population specific initial conditions are referred to as *amended* initial conditions.

References

- Potjans, T. C., Diesmann, M. (2014). The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cerebral cortex (New York, N.Y.: 1991), 24(3), 785–806. https://doi.org/10.1093/cercor/bhs358
- Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant linear systems with applications to neural modeling. *Biological Cybernetics*, 81:381–402.
- Senk, J., Kriener, B., Djurfeldt, M., Voges, N., Jiang, H.-J., Schüttler, L., Gramelsberger, G., Diesmann, M., Plesser, H.E., van Albada, S.J. (2022). Connectivity concepts in neuronal network modeling. *PLoS Computational Biology*, 18(9):e1010086.
- Senk, J., Kurth, A., Furber, S., Gemmeke, T., Golosio, B., Heittmann, A., Knight, J. C., Müller, E., Noll, T., Nowotny, T., Peraza Coppola, G., Peres, L., Rhodes, O., Rowley, A., Schemmel, J., Stadtmann, T., Tetzlaff, T., Tiddia, G., van Albada, S. J., Villamar, J., & Diesmann, M. (2025). Constructive community race: full-density spiking neural network model drives neuromorphic computing. arXiv:2505.21185.
- van Albada, S. J., Helias, M., Diesmann, M. (2015). Scalability of Asynchronous Networks Is Limited by One-To-One Mapping between Effective Connectivity and Correlations. *PLoS Computational Biology*, 11(9):e1004490. https://doi.org/10.1371/journal.pcbi.1004490