## The Charge-State and Structural Stability of Peptides **Conferred by Microsolvating Environments in DMS/FAIMS**







### **Christian Ieritano**

Hopkins Group

ISIMS 2021 Virtual Conference









## Back in my undergraduate days as a radiochemist...

Theranostic Agents (Therapeutic + Diagnostic)

Binds to biological target

Click' handles

Attacks invasive tissue
Radiometal / biotoxin

DMS-MS experiments gave some strange results



Wasp-venom peptide (MP1) selectively targets cancer cells



https://phys.org/news/2015-09-brazilian-wasp-venom-cancer-cells.html



Solvent vapour alters the charge state distribution of MP1

Shift from +3 to +2 is mediated by microsolvation



## The DMS is a dynamic microsolvation environment



Doping the carrier gas with solvent vapour (e.g., water) induces dynamic solvation/desolvation cycles



The magnitude and the sign of the **compensation voltage** (CV) is indicative of the strength of **ion-solvent interactions.** 



## The DMS is a dynamic microsolvation environment

For a specific SV:

$$CV \propto \alpha(E)$$
  $\alpha(E) = \frac{K(E)}{K(0)} - 1$ 

DMS behaviour is a measure of the degree of microsolvation



Microsolvation occurs at charge sites. For MP1, these are the **3 Lys residues** and the **N-terminus** We approximate these interactions as occurring on isolated Lys side chains [PrNH<sub>3</sub>]<sup>+</sup>



## **Modelling ion-solvent interactions within the DMS**

Systematic Sampling of Cluster Surfaces (SSCS)



SSCS efficiently generates candidate geometries of microsolvated clusters

[PrNH<sub>3</sub>···n(MeOH)]+ clusters
Protic modifier model

$$n = 3$$
 $n = 5$ 

$$n = 7$$
 $n = 8$ 

[PrNH<sub>3</sub>···n(MeCN)]<sup>+</sup> clusters Aprotic modifier model n = 2 n = 3



Refinement by DFT [ $\omega$ B97X-D3/6-311++G(d,p)] allows calculation of cluster thermochemistry ( $\Delta$ G)



## **Modelling ion-solvent interactions within the DMS**

Multiple configurations for each cluster means that each geometry must be accounted for

For a specific cluster of size *n* at temperature T, the total Gibbs energy is given by each isomer *k* 

$$G_n(T) = \sum_{k} \rho_n^{(k)}(T) \cdot G_n^{(k)}(T) \qquad G = H - TS$$

$$\rho_n^{(k)}(T) = \frac{\exp(-G_n^{(k)}(T) \cdot (k_b \cdot T)^{-1})}{\sum_k \exp(-G_n^{(k)}(T) \cdot (k_b \cdot T)^{-1})}$$

$$\sum_{k} \rho_n^{(k)}(T) = 1$$

$$\Delta G_{ass} = G_{[PrNH_3 \cdots nSolv]^+} - \left(G_{[PrNH_3]^+} + nG_{solv}\right)$$



Protic vs. aprotic microsolvation occurs with different binding affinity



## **Modelling ion-solvent interactions within the DMS**

Gibbs energies allow us to model the size of ion-solvent clusters as a function of the ion's temperature

$$N_i = N \cdot e^{-\Delta G_{ass_i}(T)/k_B T}$$
  $N = \frac{1}{\sum_i N_i}$ 



Microsolvation provides MP1 with a solvent 'air bag,' sheltering it from fragmentation

Cooling effect is two-fold:

Reduced mobility of ion-solvent cluster

Field-heating results in evaporation of solvent instead of fragmentation

Can use ion-solvent cluster populations to calculate reduction in ion effective temperature ( $T_{eff}$ )

$$T_{eff} = T_{bath} + T_{field} \approx T_{bath} + \frac{M}{3k_b} (KE)^2$$





### Microsolvation affords charge state and parent ion stabilization







Decay of +3 state as DP increases

No fragmentation with aprotic modifier

Also detection of +4 state (not shown)

No detection of +3 state with MeOH?

Also absent in any protic modifier

# Where does the +3 state go in MeOH?

$$B + H^+ \rightarrow BH^+ \qquad \Delta G = GPB$$

$$GPB_{eff}(T) = \sum_{i} N_{i}(T) \cdot GPB_{i}(T)$$





### Microsolvation affords charge state and parent ion stabilization









Additional cooling by charge reduction at low SV

The +3 ion re-emerges at high bath gas temperatures and high SV fields









No charge transfer with aprotic modifiers. Why?

See Haack et al. JASMS, 2020, 31, 785-795.

Gas-phase basicity ordering: **ACE** > IPA > **MeCN** > EtOH > MeOH > H<sub>2</sub>O



## Peptide microsolvation has significant implications for DMS

Reduction in number of spectra required for DMS-based bottom-up proteomics



Preservation of native-like structures of biological ions in DMS can be mediated by microsolvation



## **Acknowledgements**

#### **PhD Committee**



Prof. W. Scott Hopkins



Prof. Terry B. McMahon



Adj. Prof. J. Larry Campbell

### **Hopkins Lab**

Dan Rickert Dr. Joshua Featherstone

Dr. Alexander Haack
Dr. Neville Coughlan
Dr. Jeff Crouse
Dr. Ce Zhou
Dr. Weiqiang Fu
Nour Mashmoushi
Arthur Lee
Justine Bissonnette
Courtney Kates

#### **SCIEX Gurus**

Dr. J. C. Yves Le Blanc Dr. Brad Schneider Dr. Mircea Guna

For more details, see our publication:

JASMS, 2021, 32, 956-968















compute \* calcul













