class 13: RNA-Seq analysis mini-project

Section 1. Differential Expression Analysis

We need to load our data - metadata and countdata

```
library(DESeq2)
```

Loading required package: S4Vectors

Loading required package: stats4

 ${\tt Loading\ required\ package:\ BiocGenerics}$

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeighted

Loading required package: Biobase

```
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
  metaFile <- "https://bioboot.github.io/bimm143_W18/class-material/GSE37704_metadata.csv"</pre>
  countFile <- "https://bioboot.github.io/bimm143_W18/class-material/GSE37704_featurecounts.</pre>
  # Import metadata and take a peak
  colData = read.csv(metaFile, row.names=1)
  head(colData)
              condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369
             hoxa1_kd
SRR493370
               hoxa1_kd
SRR493371
               hoxa1_kd
  # Import countdata
  countData = read.csv(countFile, row.names=1)
  head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0

ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR493371					
ENSG00000186092	0					
ENSG00000279928	0					
ENSG00000279457	46					
ENSG00000278566	0					
ENSG00000273547	0					
ENSG00000187634	258					

We need the countData and colData files to match up so we will need to remove that odd first column in countData namely contData\$length.

Q. Complete the code below to remove the troublesome first column from count-Data.

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

There are too many zeros so we should remove them.

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
# Filter count data where you have 0 read count across all samples.
countData = countData[rowSums(countData)>1, ]
head(countData)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46

ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Now lets setup the DESeqDataSet object required for the DESeq() function and then run the DESeq pipeline.

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

dds

class: DESeqDataSet

dim: 15280 6

metadata(1): version

assays(4): counts mu H cooks

rownames(15280): ENSG00000279457 ENSG00000187634 ... ENSG00000276345

```
ENSG00000271254
```

```
rowData names(22): baseMean baseVar ... deviance maxCooks colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371 colData names(2): condition sizeFactor
```

Now let's get the results for the HoxA1 knockdown versus control siRNA.

```
res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
```

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

```
summary(res)
```

```
out of 15280 with nonzero total read count
adjusted p-value < 0.1

LFC > 0 (up) : 4351, 28%

LFC < 0 (down) : 4399, 29%
outliers [1] : 0, 0%

low counts [2] : 590, 3.9%

(mean count < 1)

[1] see 'cooksCutoff' argument of ?results

[2] see 'independentFiltering' argument of ?results

Let's make a volcano plot!
```

plot(res\$log2FoldChange, -log(res\$padj))

Q. Improve this plot by completing the below code, which adds color and axis labels

Make a color vector for all genes

```
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01

# and absolute fold change more than 2
inds <- (res$padj<0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(</pre>
```


Let's add gene annotation.

Q.Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

columns(org.Hs.eg.db)

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	"UNIPROT"				

```
res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="SYMBOL",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="ENTREZID",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
               mapIds(org.Hs.eg.db,
  res$name =
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="GENENAME",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res, 10)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
```

log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215598	1.040744	2.97994e-01

```
ENSG00000188290 108.9221
                               2.0570638 0.1969053 10.446970 1.51282e-25
ENSG00000187608 350.7169
                               0.2573837 0.1027266 2.505522 1.22271e-02
ENSG00000188157 9128.4394
                               0.3899088 0.0467163 8.346304 7.04321e-17
ENSG00000131591 156.4791
                               0.1965923 0.1456109 1.350121 1.76977e-01
                                 symbol
                                             entrez
                                                                       name
                       padj
                  <numeric> <character> <character>
                                                                <character>
ENSG00000279457 6.85033e-01
ENSG00000187634 5.14039e-03
                                 SAMD11
                                             148398 sterile alpha motif ...
ENSG00000188976 1.75974e-35
                                  NOC2L
                                              26155 NOC2 like nucleolar ...
ENSG00000187961 1.13044e-07
                                 KLHL17
                                             339451 kelch like family me..
ENSG00000187583 9.19159e-01
                                PLEKHN1
                                              84069 pleckstrin homology ...
ENSG00000187642 4.02066e-01
                                              84808 PPARGC1 and ESRR ind..
                                  PERM1
ENSG00000188290 1.30113e-24
                                   HES4
                                              57801 hes family bHLH tran..
ENSG00000187608 2.36679e-02
                                  ISG15
                                               9636 ISG15 ubiquitin like...
ENSG00000188157 4.20589e-16
                                   AGRN
                                             375790
                                                                      agrin
ENSG00000131591 2.60893e-01
                                              54991 chromosome 1 open re..
                               C1orf159
```

Q.Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

Section 2. Pathway Analysis

First we need to install these required bioconductor packages.

Now we can load the packages and setup the KEGG data-sets we need.

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

library(gage)

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                        "10720"
                                           "151531" "1548"
                                                              "1549"
                                                                       "1551"
                                 "10941"
 [9] "1553"
              "1576"
                        "1577"
                                 "1806"
                                           "1807"
                                                    "1890"
                                                              "221223" "2990"
[17] "3251"
              "3614"
                        "3615"
                                 "3704"
                                           "51733"
                                                    "54490"
                                                              "54575"
                                                                       "54576"
[25] "54577"
              "54578"
                        "54579"
                                 "54600"
                                           "54657"
                                                    "54658"
                                                              "54659"
                                                                       "54963"
[33] "574537" "64816"
                        "7083"
                                 "7084"
                                           "7172"
                                                    "7363"
                                                              "7364"
                                                                       "7365"
[41] "7366"
              "7367"
                        "7371"
                                 "7372"
                                           "7378"
                                                    "7498"
                                                              "79799"
                                                                       "83549"
[49] "8824"
                        "9"
                                 "978"
              "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
               "10201"
                         "10606"
                                  "10621"
                                            "10622"
                                                     "10623"
                                                               "107"
                                                                        "10714"
  [9] "108"
               "10846"
                         "109"
                                  "111"
                                            "11128"
                                                     "11164"
                                                               "112"
                                                                        "113"
 [17] "114"
               "115"
                         "122481" "122622" "124583" "132"
                                                               "158"
                                                                        "159"
 [25] "1633"
               "171568" "1716"
                                  "196883" "203"
                                                     "204"
                                                               "205"
                                                                        "221823"
               "22978"
                         "23649"
                                  "246721" "25885"
                                                               "26289"
                                                                        "270"
 [33] "2272"
                                                     "2618"
 [41] "271"
               "27115"
                         "272"
                                  "2766"
                                            "2977"
                                                     "2982"
                                                               "2983"
                                                                        "2984"
 [49] "2986"
               "2987"
                                                               "318"
                                                                        "3251"
                         "29922"
                                  "3000"
                                            "30833"
                                                     "30834"
 [57] "353"
                                            "377841" "471"
                                                               "4830"
               "3614"
                         "3615"
                                  "3704"
                                                                        "4831"
 [65] "4832"
                         "4860"
                                            "4882"
                                                     "4907"
                                                               "50484"
                                                                        "50940"
               "4833"
                                  "4881"
 [73] "51082"
               "51251"
                         "51292"
                                  "5136"
                                            "5137"
                                                     "5138"
                                                               "5139"
                                                                        "5140"
 [81] "5141"
               "5142"
                         "5143"
                                  "5144"
                                            "5145"
                                                     "5146"
                                                               "5147"
                                                                        "5148"
 [89] "5149"
               "5150"
                         "5151"
                                  "5152"
                                            "5153"
                                                     "5158"
                                                               "5167"
                                                                        "5169"
```

```
[97] "51728"
               "5198"
                         "5236"
                                   "5313"
                                            "5315"
                                                      "53343"
                                                                "54107"
                                                                         "5422"
[105] "5424"
               "5425"
                                   "5427"
                                            "5430"
                                                      "5431"
                                                                "5432"
                                                                         "5433"
                         "5426"
[113] "5434"
               "5435"
                         "5436"
                                   "5437"
                                            "5438"
                                                      "5439"
                                                                "5440"
                                                                         "5441"
[121] "5471"
               "548644" "55276"
                                   "5557"
                                            "5558"
                                                      "55703"
                                                                "55811"
                                                                         "55821"
[129] "5631"
               "5634"
                                            "56985"
                                                      "57804"
                                                                "58497"
                                                                         "6240"
                         "56655"
                                   "56953"
[137] "6241"
               "64425"
                         "646625" "654364"
                                            "661"
                                                      "7498"
                                                                "8382"
                                                                         "84172"
[145] "84265"
               "84284"
                         "84618"
                                   "8622"
                                            "8654"
                                                      "87178"
                                                                "8833"
                                                                         "9060"
                                                      "955"
                                                                "956"
                                                                         "957"
[153] "9061"
               "93034"
                         "953"
                                   "9533"
                                            "954"
[161] "9583"
               "9615"
```

The main gage() function requires a named vector of fold changes, where the names of the values are the Entrez gene IDs.

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)

1266    54855    1465    51232    2034    2317
-2.422719    3.201955 -2.313738 -2.059631 -1.888019 -1.649792
```

Now, let's run the gage pathway analysis.

```
# Get the results
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

Now lets look at the object returned from gage().

```
attributes(keggres)
```

\$names

```
[1] "greater" "less" "stats"
```

```
# Look at the first few down (less) pathways
head(keggres$less)
```

```
p.geomean stat.mean p.val
hsa04110 Cell cycle 1.003993e-05 -4.353454 1.003993e-05
hsa03030 DNA replication 8.909558e-05 -3.968611 8.909558e-05
hsa03013 RNA transport 1.470985e-03 -3.007794 1.470985e-03
```

```
hsa04114 Oocyte meiosis
                                     1.946905e-03 -2.921710 1.946905e-03
hsa03440 Homologous recombination
                                     2.941989e-03 -2.868141 2.941989e-03
hsa00010 Glycolysis / Gluconeogenesis 6.059196e-03 -2.558327 6.059196e-03
                                           q.val set.size
hsa04110 Cell cycle
                                     0.001606390
                                                   120 1.003993e-05
hsa03030 DNA replication
                                     0.007127646
                                                     36 8.909558e-05
hsa03013 RNA transport
                                     0.077876201
                                                    143 1.470985e-03
                                                    99 1.946905e-03
hsa04114 Oocyte meiosis
                                     0.077876201
hsa03440 Homologous recombination
                                     0.094143663
                                                     28 2.941989e-03
hsa00010 Glycolysis / Gluconeogenesis 0.161578551
                                                      48 6.059196e-03
```

Now, let's try out the pathview() function from the pathview package to make a pathway plot with our RNA-Seq expression results shown in color.

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/jenniferquach/Desktop/Bimm 143/class 13

Info: Writing image file hsa04110.pathview.png

Now, let's process our results a bit more to automagicaly pull out the top 5 upregulated pathways.

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04640" "hsa04630" "hsa04142" "hsa00140" "hsa04740"

Finally, lets pass these IDs in keggresids to the pathview() function to draw plots for all the top 5 pathways.

```
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
```

```
'select()' returned 1:1 mapping between keys and columns
```

Info: Working in directory /Users/jenniferquach/Desktop/Bimm 143/class 13

Info: Writing image file hsa04640.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/jenniferquach/Desktop/Bimm 143/class 13

Info: Writing image file hsa04630.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/jenniferquach/Desktop/Bimm 143/class 13

Info: Writing image file hsa04142.pathview.png

Info: some node width is different from others, and hence adjusted!

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/jenniferquach/Desktop/Bimm 143/class 13

Info: Writing image file hsa00140.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/jenniferquach/Desktop/Bimm 143/class 13

Info: Writing image file hsa04740.pathview.png

Info: some node width is different from others, and hence adjusted!

>Q. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

Yes, wee would use the following code and then plot the results:

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$less)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04110" "hsa03030" "hsa03013" "hsa04114" "hsa03440"

```
## Section 3. Gene Ontology (GO)
  data(go.sets.hs)
  data(go.subs.hs)
  # Focus on Biological Process subset of GO
  gobpsets = go.sets.hs[go.subs.hs$BP]
  gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
  lapply(gobpres, head)
$greater
                                             p.geomean stat.mean
                                                                        p.val
GO:0007156 homophilic cell adhesion
                                          4.892477e-05 3.971899 4.892477e-05
                                          6.727546e-05 3.834595 6.727546e-05
GO:0060429 epithelium development
GO:0007610 behavior
                                          1.988039e-04 3.557821 1.988039e-04
GO:0048729 tissue morphogenesis
                                          2.470962e-04 3.498983 2.470962e-04
G0:0002009 morphogenesis of an epithelium 3.227439e-04 3.429317 3.227439e-04
GO:0016337 cell-cell adhesion
                                          8.195506e-04 3.163057 8.195506e-04
                                              q.val set.size
                                                                     exp1
GO:0007156 homophilic cell adhesion
                                          0.1337436
                                                         107 4.892477e-05
GO:0060429 epithelium development
                                          0.1337436
                                                         478 6.727546e-05
GD:0007610 behavior
                                          0.2456136
                                                         403 1.988039e-04
GO:0048729 tissue morphogenesis
                                          0.2456136
                                                         403 2.470962e-04
GO:0002009 morphogenesis of an epithelium 0.2566460
                                                         326 3.227439e-04
GO:0016337 cell-cell adhesion
                                          0.3782658
                                                         318 8.195506e-04
$less
                                            p.geomean stat.mean
                                                                       p.val
GO:0000279 M phase
                                         1.475361e-16 -8.323749 1.475361e-16
GO:0048285 organelle fission
                                         7.498413e-16 -8.160305 7.498413e-16
GO:0000280 nuclear division
                                         2.135098e-15 -8.034814 2.135098e-15
GO:0007067 mitosis
                                         2.135098e-15 -8.034814 2.135098e-15
GO:0000087 M phase of mitotic cell cycle 5.927567e-15 -7.891758 5.927567e-15
GO:0007059 chromosome segregation
                                         1.055918e-11 -6.988373 1.055918e-11
                                                q.val set.size
                                                                       exp1
GO:0000279 M phase
                                         5.866036e-13
                                                           492 1.475361e-16
GO:0048285 organelle fission
                                         1.490684e-12
                                                           373 7.498413e-16
GO:0000280 nuclear division
                                         2.122288e-12
                                                           349 2.135098e-15
GO:0007067 mitosis
                                         2.122288e-12
                                                           349 2.135098e-15
```

359 5.927567e-15

GO:0000087 M phase of mitotic cell cycle 4.713601e-12

GO:0007059 chromosome segregation 6.997217e-09 141 1.055918e-11

\$stats

```
G0:0007156 homophilic cell adhesion 3.971899 3.971899 G0:0060429 epithelium development 3.834595 3.834595 G0:0007610 behavior 3.557821 3.557821 G0:0048729 tissue morphogenesis 3.498983 3.498983 G0:0002009 morphogenesis of an epithelium 3.429317 3.429317 G0:0016337 cell-cell adhesion 3.163057 3.163057
```

Section 4. Reactome Analysis

Let's now conduct over-representation enrichment analysis and pathway-topology analysis with Reactome using the previous list of significant genes generated from our differential expression results above.

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8149"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

Q. What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

The endosomal/vacuolar pathway has the most significant "Entities p-value". The most significant pathways listed do not completely match the previous KEGG reuslts. There may be differences between the two methods because KEGG may put genes under a single pathway while reactome may split them up.