Mreže

Kralj Samo, Koprivec Filip

FMF

21. april 2016

- Osnovne definicije
 - Urejenost
 - Supremum in infimum
 - Supremum in infimum
 - Definicija mreže
 - Definicija mreže
 - Osnovni primeri mrež
- 2 Modulske mreže

Urejenost

Definicija

Naj bo \mathcal{L} množica, relacija \leq je (šibka) delna urejenost, če je

- refleksivna ($a \le a$)
- antisimetrična $(a \le b \land b \le a \implies a = b)$
- tranzitivna $(a \le b \land b \le c \implies a \le c)$

Opomba: Občasno smo nekoliko "šlampasti"in za lažjo predstavljivost uporabimo tudi relacijo \geq , ki jo definiramo kot $a \geq b \iff b \leq a$

Dogovor

Naj bo $\mathcal L$ množica urejena z relacijo delne urejenosti \leq in $x,y\in\mathcal L$

Supremum in infimum

Definicija

S je **supremum** x in y, če velja:

- $S \ge x \land S \ge y$ (Zgornja meja)
- $\forall S' \in \mathcal{L} \implies (S' \geq x \land S' \geq y \implies S \leq S')$ (Je najmanjša zgornja meja)

označimo: $S = x \lor y$

Supremum in infimum

Definicija

S je **supremum** x in y, če velja:

- $S \ge x \land S \ge y$ (Zgornja meja)
- $\forall S' \in \mathcal{L} \implies (S' \ge x \land S' \ge y \implies S \le S')$ (Je najmanjša zgornja meja)

označimo: $S = x \lor y$

Definicija

s je **infimum** x in y, če velja:

- $s \le x \land s \le y$ (Spodnja meja)
- $\forall s' \in \mathcal{L} \implies (s' \leq x \land s' \leq y \implies s' \leq s)$ (Je največja spodnja meja)

označimo: $s = x \wedge y$

Definicija

Množica $\mathcal L$ je **linearno urejena**, če za poljubna x,y velja $x\leq y$ ali $y\leq x$

Definicija

Množica $\mathcal L$ je **linearno urejena**, če za poljubna x,y velja $x\leq y$ ali $y\leq x$

Definicija

Množica \mathcal{L} je **mreža**, če ima poljuben par x,y infimum in supremum.

Osnovni primeri mrež

 \mathbb{N}, \leq

Potenčna množica naravnih števil za inkluzijo

Naravna števila za deljivost

Polne mreže

Definicija

Mreža $\mathcal L$ je polna, če za poljubno $\mathcal A\subseteq\mathcal L$ obstajata infimum in supremum za $\mathcal A.$

Primer

Poljubna linearna omejena mreža je polna, na nasproten način pa dobimo mreže, ki niso polne: \mathbb{R}, \leq .

Zakoni v mrežah

Zakoni v mrežah

- $x \lor x = x$, $x \land x = x$ (Idempotentnost)
- $x \lor y = y \lor x$, $x \land y = y \land x$ (Komutativnost)
- $(x \lor y) \lor z = x \lor (y \lor z)$ $(x \land y) \land z = x \land (y \land z) \text{ (Asociativnost)}$
- $x \lor (x \land y) = x$ $x \land (x \lor y) = x$ (Absorbcija)

Asociativnost

Dokaz.

$$a = (x \lor y) \lor z, \quad b = x \lor (y \lor z)$$

 $a \ge z, a \ge (x \lor y) \implies a \ge x, a \ge y$

Asociativnost

Dokaz.

$$a = (x \lor y) \lor z, \quad b = x \lor (y \lor z)$$

 $a \ge z, a \ge (x \lor y) \implies a \ge x, a \ge y$

$$a \ge (y \lor z), a \ge x \lor (y \lor z) \implies a \ge b$$

Podobno v drugo smer, zaradi antisimetričnosti

$$a = b$$

Absorbcija

Dokaz.

$$x \le (x \lor y), \ x \le x \implies x \le x \land (x \lor y)$$
$$x \ge x \land (x \lor y)$$
$$x \le x \land (x \lor y), x \ge x \land (x \lor y)$$

Absorbcija

Dokaz.

$$x \le (x \lor y), \ x \le x \implies x \le x \land (x \lor y)$$
$$x \ge x \land (x \lor y)$$
$$x \le x \land (x \lor y), x \ge x \land (x \lor y)$$
$$x = x \land (x \lor y)$$

Če imamo množico \mathcal{L} , za katero sta definirani operaciji \vee, \wedge in če za te dve operacji veljajo zgornji zakoni, potem je ta množica mreža.

Definiramo: $x \le y \iff x \land y = x$ Preverimo, da je to delna urejenost

Definiramo: $x \le y \iff x \land y = x$ Preverimo, da je to delna urejenost Refleksivnost: $x \land x = x \implies x \le x$

Definiramo: $x \le y \iff x \land y = x$ Preverimo, da je to delna urejenost Refleksivnost: $x \land x = x \implies x \le x$ Antisimetričnost: $x \le y, \ y \le x \implies x \land y = x, y \land x = y,$ uporabimo komutativnost in dobimo x = y

Definiramo: $x \le y \iff x \land y = x$ Preverimo, da je to delna urejenost Refleksivnost: $x \land x = x \implies x \le x$ Antisimetričnost: $x \le y, \ y \le x \implies x \land y = x, y \land x = y,$ uporabimo komutativnost in dobimo x = yTranzitivnost: $x \le y, y \le z \implies x = x \land y, y = y \land z$ $x = x \land (y \land z) = (x \land y) \land z = x \land z \implies x \le z$

Definiramo: $x \leq y \iff x \land y = x$ Preverimo, da je to delna urejenost Refleksivnost: $x \land x = x \implies x \leq x$ Antisimetričnost: $x \leq y, \ y \leq x \implies x \land y = x, y \land x = y,$ uporabimo komutativnost in dobimo x = yTranzitivnost: $x \leq y, y \leq z \implies x = x \land y, y = y \land z$ $x = x \land (y \land z) = (x \land y) \land z = x \land z \implies x \leq z$ Preverimo še, da velja $x \land y = x \iff x \lor y = y$

Definiramo: $x \leq y \iff x \wedge y = x$ Preverimo, da je to delna urejenost Refleksivnost: $x \wedge x = x \implies x \leq x$ Antisimetričnost: $x \leq y, \ y \leq x \implies x \wedge y = x, y \wedge x = y,$ uporabimo komutativnost in dobimo x = yTranzitivnost: $x \leq y, y \leq z \implies x = x \wedge y, y = y \wedge z$ $x = x \wedge (y \wedge z) = (x \wedge y) \wedge z = x \wedge z \implies x \leq z$ Preverimo še, da velja $x \wedge y = x \iff x \vee y = y$ Uporabimo zadnji zakon in $x \vee y = (x \vee y) \wedge y = b$ in identično v drugo smer.

Poglejmo si zgolj supremum

Poglejmo si zgolj supremum Ponuja se $x \lor y$, ki je očitno zgornja meja

$$z \ge x, z \ge y \implies x \lor z = y \lor z = z$$

Poglejmo si zgolj supremum Ponuja se $x \lor y$, ki je očitno zgornja meja

$$z \ge x, z \ge y \implies x \lor z = y \lor z = z$$

 $(x \lor y) \lor z = x \lor (y \lor z) = x \lor z = z \implies x \lor y \le z$

Naravno se pojavi vprašanje, ali za operaciji v mrežah obstaja kakšne vrste enota ali celo inverz.

Definicija

Če v mreži obstaja največji element, potem ta element označimo z 1 ($\forall x \in \mathcal{L}.\ x \leq 1$)

Definicija

Če v mreži obstaja najmanjši element, potem ta element označimo z 0 ($\forall x \in \mathcal{L}. \ x \geq 0$)

Če v mreži obstajata 0 in 1 potem velja:

- $x \lor 1 = 1$
- $x \lor 0 = x$
- $x \land 0 = 0$
- $x \wedge 1 = x$

Če v mreži obstajata 0 in 1 potem velja:

- $x \lor 1 = 1$
- $x \lor 0 = x$
- $x \land 0 = 0$
- $x \wedge 1 = x$

Primer

 $0 \ za \ \mathbb{N}, |$

 $\{\}, \mathbb{N} \text{ za } \mathcal{P}(\mathbb{N})$

Definicija

V mreži z elementoma 0 in 1 elementa x in x' imenujemo komplementarna, če velja:

- $x \lor x' = 1$
- $x \wedge x' = 0$

Definicija

Mrežo, v katri poljubnemu x pripada vsaj en komplement imenujemo komplementarna mreža.

Primer

Tipičen primer so vektorski podprostori nekega prostora \mathcal{V} , 1 je celoten podprostor, 0 je ničelni podprostor, komplementi poasmeznih elementov pa so kar ortogonalni komplementi.

Primer

Ravnina, premice na njej in točke Komplementi premic so točke ki na njej ne ležijo, komplementi točk pa premice, ki ne vsebujejo teh točk. Imamo lahko več komplementov.

Definicija

Neprazna množica $\mathcal{M}\subseteq\mathcal{L}$ je **podmreža**, če je tudi sama mreža za isti operaciji in se na njih ujema. Povedano drugače $x\vee y\in\mathcal{M}$ in $x\wedge y\in\mathcal{M}$

Če v mreži \mathcal{L} vzamemo poljubna $x \leq y$, potem je množica $\mathcal{L}(x,y) := \{z \in \mathcal{L} | x \leq z \leq y\}$ podmreža mreže \mathcal{L} .

Dokaz.

Preprosto preverimo obstoj imfimuma in supremuma

Če v mreži \mathcal{L} vzamemo poljubna $x \leq y$, potem je množica $\mathcal{L}(x,y) := \{z \in \mathcal{L} | x \leq z \leq y\}$ podmreža mreže \mathcal{L} .

Dokaz.

Preprosto preverimo obstoj imfimuma in supremuma Vzemimo poljubna $x',y'\in\mathcal{L}(x,y)$ in preverimo zaprtost

Če v mreži \mathcal{L} vzamemo poljubna $x \leq y$, potem je množica $\mathcal{L}(x,y) := \{z \in \mathcal{L} | x \leq z \leq y\}$ podmreža mreže \mathcal{L} .

Dokaz.

Preprosto preverimo obstoj imfimuma in supremuma Vzemimo poljubna $x', y' \in \mathcal{L}(x, y)$ in preverimo zaprtost $x \geq x' \vee y' \geq x' \wedge y' \geq y$

$\mathcal{P}(\{1,2,3,4\}),\subseteq$

$$\{0,1\},\subseteq$$
 $\{1,2,3,6\},|$ $\{0,1\}$ $\{0\}$ $\{1\}$ $\{1\}$ $\{1\}$

Mreži se zdita sumljivo podobni, ali lahko to kako posplošimo?

Definicija

Preslikava $f: \mathcal{L} \to \mathcal{L}'$ je **homomorfizem**, če za poljubna $x,y \in \mathcal{L}$ velja:

- $f(x \vee y) = f(x) \vee f(y)$
- $f(x \wedge y) = f(x) \wedge f(y)$

Funkcija za prej

X	f(x)
{}	1
{0}	2
{1}	3
$\{1, 2\}$	6

Za nek homomorfizem f velja $f(\mathcal{L})$ je podmreža \mathcal{L} .

Opomba: Homomorfizem ohranja urejenost

Bijektivna preslikava f , f : $\mathcal{L} \to \mathcal{L}'$ je izomorfizem, če ohranja red v obeh smereh

Red se mora ohranjati v obeh smereh

Identiteta : $(\mathbb{N}, |) \rightarrow (\mathbb{N}, \leq)$

Definicija

Mreža je distributivna, če za \vee in \wedge veljata zakona:

- $(x \vee y) \wedge z = (x \wedge z) \vee (y \wedge z)$
- $(x \wedge y) \vee z = (x \vee z) \wedge (y \vee z)$

Primer

Linearno urejena množica je distributivna. Potenčna množica glede na inkluzijo je prav tako distributivna.

Če ima distributivna mreža $\mathcal L$ elementa 0,1, potem ima vsak elementa največ en komplment (ni pa še zagotovljen obstoj komplementa)

Dokaz.

Naj bo a poljuben element mreže. Naj bosta a' in a'' dva njegova komplementa.

$$a'' = 1 \wedge a'' = (a \vee a') \wedge a'' = (a \wedge a'') \vee (a' \wedge a'') = a' \wedge a''.$$

Torej sledi $a'' \le a'$. Analogno pokažemo $a' \le a''$ in sledi a' = a''.

Definicija

Distributivno mrežo v kateri ima vsak element komplement imenujemo Boolova algebra.

Primer

$$\mathcal{P}(\mathbb{N}),\subseteq$$
, $\mathcal{A}'=\mathcal{A}^c$

V Boolovi algebri veljata pravili:

- $(x \vee y)' = x' \wedge y'$
- $(x \wedge y)' = y' \vee x'$

$$(x \wedge y) \vee (x' \vee y')$$
$$(x \vee x' \vee y') \wedge (y \vee x' \vee y')$$
$$(1 \vee y') \wedge (1 \vee x') = 1 \vee 1 = 1$$
$$(x \wedge y) \wedge (x' \vee y')$$
$$(x \wedge x' \wedge y') \vee (y \wedge x' \wedge y')$$
$$(0 \wedge y') \vee (0 \wedge x') = 0 \vee 0 = 0$$

Definicija

Kolobar, v katerem je vsak element idempotenten imenujemo Boolov kolobar.

Primer

 $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2$

Boolov kolobar ima karakteristiko 2

Boolov kolobar ima karakteristiko 2

Dokaz.

$$(x + x) = (x + x)^2 = x^2 + x^2 + x^2 + x^2 = x + x = 2x$$

 $2x = 0 \implies x = -x$

Boolov kolobar je komutativen

Boolov kolobar je komutativen

Dokaz.

$$(x+y) = (x+y)^2 = x^2 + xy + yx + y^2 = x + xy + yx + y$$
$$xy + yx = 0 \implies xy = -ba \implies xy = yx$$

Boolov kolobar je mreža za operaciji $x \lor y := x + y + xy$ in $x \land y := xy$

- $x \lor x = x + x + x^2 = 0 + x = x, x \land x = x^2 = x$
- $x \lor y = x + y + xy = y + x + yx = y \lor x,$ $x \land y = xy = yx = y \land y$

- $x \lor x = x + x + x^2 = 0 + x = x, x \land x = x^2 = x$
- $x \lor y = x + y + xy = y + x + yx = y \lor x,$ $x \land y = xy = yx = y \land y$
- $(x \lor y) \lor z = x + y + z + xz + yz + xyz = x \lor (y \lor z)$

- $x \lor x = x + x + x^2 = 0 + x = x, x \land x = x^2 = x$
- $x \lor y = x + y + xy = y + x + yx = y \lor x,$ $x \land y = xy = yx = y \land y$
- $(x \lor y) \lor z = x + y + z + xz + yz + xyz = x \lor (y \lor z)(x \land y) \land z = xyz = x \land (y \land z)$
- $x \wedge (x \vee y) = x + xy + xy = x$

- $x \lor x = x + x + x^2 = 0 + x = x, x \land x = x^2 = x$
- $x \lor y = x + y + xy = y + x + yx = y \lor x,$ $x \land y = xy = yx = y \land y$
- $(x \lor y) \lor z = x + y + z + xz + yz + xyz = x \lor (y \lor z)(x \land y) \land z = xyz = x \land (y \land z)$
- $x \wedge (x \vee y) = x + xy + xy = x$ $x \vee (x \wedge y) = x + xy + xy = x$

Boolov kolobar je distributivna mreža

Dokaz.

$$(x \vee y) \wedge z = xz + yz + xyz = (x \wedge z) \vee (y \wedge z)$$

$$(x \wedge y) \vee z = xy + z + xyz = (x \vee z) \wedge (y \vee z)$$

0 je tudi 0 za mrežo, 1 prav tako(če obstaja)

$$x' = 1 - x$$

0 je tudi 0 za mrežo, 1 prav tako(če obstaja)

$$x' = 1 - x$$

 $x \wedge (1 - x) = x(1 - x) = x - x = 0$
 $x \vee x' = x + (1 - x) + x(1 - x) = 1$

٧

kolikor ima boolov kolobar enoto, potem je booova algebra (komplementarna distributivna mreža) Velja pa tudi obratno, v komplementarni distributivni mreži lahko definiramo z ∨, ∧ definiramo seštevanje in množenje kot notranji operaciji.

Boolov kolobar

Lastnosti boolovih kolobarjev

- Boolove mreže imajo 2^n elementov za nek $n \in \mathbb{N}$
- Za poljubno naravno število n je mreža vseh deljiteljev tega števila boolova mreža natanko tedaj, ko n ni deljiv s kvadratom kakega naravnega števila
- Mreža n kopij \mathbb{Z}_2 je graf n-kocke
- Elementi v boolovi mreži so direktno povezani z elementi, ki so od njih oddaljeni za največ 1
- Boolovi mreži sta si izomorfni, če imata enako število elementov
- Deljitelji 30 urejeni po deljivosti so boolova mreža, ki je izomorfna Z₂ ⊕ Z₂ ⊕ Z₂

Boolove mreže

Definicija

Mreža \mathcal{L} je **modulska** mreža, če za $a \leq c$ velja:

$$(a \lor b) \land c = a \lor (b \land c)$$

Primer: $\mathcal G$ grupa in označimo z $\mathcal L$ množico vseh njenih podgrup edink. Množico $\mathcal L$ uredimo glede na inkluzijo. Naj bosta $\mathcal H$ in $\mathcal K$ dve podgrupi edinki $\mathcal G$. Za infinum dveh podrup vzamemo presek, za supremum pa izberemo produkt $\mathcal H\mathcal K$.

Mreža podgrup edink je modulska.

Dokaz:

Naj bo $\mathcal G$ grupa in $\mathcal H$, $\mathcal K$ in $\mathcal L$ njene podgrupe edinke in naj velja $\mathcal H \leq \mathcal L$. Vemo, da $\mathcal H \vee \mathcal K = \mathcal H \mathcal K$.

Poglejmo si $(\mathcal{H} \vee \mathcal{K}) \wedge \mathcal{L}$.

Definicija

Elementa a, b sta soseda, če velja: $a \le b$ in če iz $a \le c$ in $c \le b$ sledi c = a ali c = b. Zaporedje elementov a, b, c, ..., x bomo imenovali **veriga**, če sta vsaka dva zaporedna elementa soseda in velja $a \le b$, $b \le c$, Ta veriga veže elementa ainx.

Dva elementa mreže je možno povezati z več različnimi verigami.

Brez dokaza navedimo naslednji izrek:

Izrek

Vse verige, ki v modulski mreži vežejo isti par elementov, so enako dolge.

Ideja o definiranju dimenzije mreže.