On the Novel Use of the Welch-Young Inverse Bio-elasticity Coefficient when Building Binary Classification Trees

Stephen Welch¹, Alison Young^{1,2}, Gregory McScienceface³

¹stephen@superfancyuniversity.edu, ²ayoung@someinstututeyouveneverheardof.gov, ³mcscienceface@anevenfancieruniversitythatyoucouldnevergetinto.edu

Abstract

The use of information gain and gini impurity as split criteria when growing decision trees is shown to be critically-hyper-sub-optimal by extension of the Welch-Takai sampling theorem. A novel split criteria, the Welch-Young Inverse Bioelasticity Coefficient is introduced and shown to be hyper-optimal by reverse inverse L-norm sampling. Decision tree performance using our novel split criteria is evaluated on a wide range of datasets, showing that we are the fucking shit, and everyone else's shit is bullshit.

1. Introduction

As everyone knows, because it's obvious as shit, misclassification error rate, gini impurity, and information gain are non-optimal criteria for growing decision trees.

(1)
$$I(p) = min(p, 1-p)$$

$$(2) Gini(p) = p(1-p)$$

(3)
$$Entropy(p) = p \cdot log\left(\frac{1}{p}\right) + (1-p) \cdot log\left(\frac{1}{1-p}\right)$$

Figure 1. The Young-Welch Inverse Bio-elascticity Coefficient. Our decision tree is class two hyper-optimal, and guarantees performance above the theoretical Welch-Waka-Flocka upper bound.

Below, drawing from information theory, rare bird mating patterns, and quantum sub-particle modeling, we derive the Welch-Young Inverse Bio-eleasticity coefficient, a vastly superior split criteria for growing decision trees. Rather than risk insulting the reader by explaining what th fuck is actually going on, we've chosen to just write down a bunch of convoluted equations.

$$\begin{split} \frac{D}{Dt} \, \overline{w'^i w'^j} + \overline{w'^i w'^z} \nabla_x \, \bar{u}^j + \overline{w'^j w'^z} \nabla_z \, \bar{u}^i - \alpha \bigg(g^{lz} \overline{w'^j} \, \overline{T}' + g^{lz} \overline{w'^i} \, \overline{T}' \bigg) \bigg(\nabla_x \, \bar{\Phi} + \frac{D \bar{u}_x}{Dt} \bigg) \\ &+ \frac{1}{\bar{\rho}} \, \nabla_x \big[\bar{\rho} \overline{u'^z w'^i w'^j} + \overline{(g^{lz} w'^j + g^{lz} w'^i) P'} - \overline{w'^i \sigma^{lz} (u')} - \overline{w'^j \sigma^{lz} (u')} \big] \\ &+ \frac{1}{\bar{\rho}} \, \overline{w'^i w'^j \nabla_x (\bar{\rho} u'^z)} - P'(g^{lz} \nabla_x w'^j + g^{lz} \nabla_x w'^i) = -\frac{1}{\bar{\rho}} \, \left[\overline{\sigma^{lz} (u') \nabla_x w'^j} + \overline{\sigma^{lz} (u') \nabla_x w'^i} \right] = -\epsilon^{lj}_2 \, , \\ (1 + e_4) \, \frac{D}{Dt} \, \overline{\left(\overline{T}' \right)^2} - 2 f(t) \bigg(\overline{T}' \right)^2 - 2 \overline{w'^z} \, \overline{T}' \, D_x + \frac{1}{(1 + e_4) \bar{\rho} C_p^2} \, \nabla_x \bigg[(1 + e_4)^2 C_p^2 \, \bar{\rho} w'^z \bigg(\overline{T}' \bigg)^2 \bigg] + \frac{1 + e_4}{\bar{\rho}} \, \overline{\left(\overline{T}' \right)^2} \nabla_x (\rho u'^z) \\ &+ \frac{2}{\bar{\rho}} \, \overline{T}' \, \left[P' \nabla_x w'^z - \nabla_x (P'_g w'^z) - \frac{DP'_g}{Dt} \right] = \frac{2}{\bar{\rho}} \, \overline{T}C_p \, \overline{T}' \, \left[\sigma^{2\beta}(u') \nabla_x u'_\beta - \nabla_x F'^z \right] = -\epsilon_2 \, , \\ (1 + e_4) \bigg[\frac{D}{Dt} \bigg(\overline{w'^i} \, \overline{T}' \bigg) + \overline{w'^z} \, \overline{T}' \, \nabla_x \bar{u}^l - \alpha \bigg(\overline{T}' \bigg)^2 g^{lz} \bigg(\nabla_x \bar{\Phi} + \frac{D \bar{u}_z}{Dt} \bigg) \bigg] - f(t) \overline{w'^i} \, \overline{T}' - \overline{w'^i w'^z} D_x \\ &+ \frac{1}{\bar{\rho} C_p} \, \nabla_x \bigg[(1 + e_4) C_p \, \bar{\rho} \, \overline{w'^i w'^z} \, \overline{T}' \bigg] + \frac{1 + e_4}{\bar{\rho}} \, \overline{w'^i} \, \overline{T}' \, \nabla_x (\rho u'^z) + \frac{1}{\bar{\rho}} \overline{T}C_p \, \overline{w'^i} \bigg[P' \nabla_x w'^z - \nabla_x (P'_g w'^z) - \frac{DP'_g}{Dt} \bigg] \\ &= \frac{1 + e_4}{\bar{\rho}} \, \overline{T}' \, \nabla_x \sigma^{lz}(u') + \frac{1}{\bar{\rho}} \overline{T}C_p \, \overline{w'^i} \bigg[\sigma^{2\beta}(u') \nabla_x u'_\beta - \nabla_x F_r^z \bigg] = -\epsilon_2^i \, , \\ 1 = 1 \\ I_{WYIBEC} = 4 \bigg(p \cdot log \bigg(\frac{1}{p} \bigg) + (1 - p) \cdot log \bigg(\frac{1}{1 - p} \bigg) \bigg) p(1 - p) \end{split}$$