LINEÁRNE ROVNICE S ABSOLÚTNOU HODNOTOU

Lineárnou rovnicou s absolútnou hodnotou nazývame každú rovnicu (s neznámou $x \in R$) tvaru $|a_1x + b_1| + |a_2x + b_2| + ... + |a_nx + b_n| = |a_0x + b_0|,$

kde a_i,b_i (i = 0,1,2,...,n) sú dané reálne čísla .

Metóda nulových bodov:

Rovnica sa rieši úpravou na lineárne rovnice bez absolútnej hodnoty v intervaloch, na ktoré je rozdelená množina R nulovými bodmi. Nulové body sú čísla, pre ktoré sa $a_ix + b_i = 0$, teda sú to čísla $-b_i/a_i$, pre i = 1,2,...,n. V týchto bodoch sa mení znamienko výrazu v absolútnej hodnote, preto aj úprava absolútnej hodnoty.

Príklad 1: Riešte v R rovnicu : |x + 2| + |x - 2| = 8.

Riešenie:

Určíme nulové body výrazov (x+2) a (x-2). Teda zistíme, pre ktoré hodnoty premennej x sa rovnajú nule: x+2=0 a x-2=0. Označíme $x_1=-2$, $x_2=2$ $(x_1< x_2)$. Množina R je nimi rozdelená na intervaly : $I_1=(-\infty,-2)$, $I_2=<-2,2$), $I_3=<2,+\infty$), na ktorých je možné danú rovnicu s absolútnymi hodnotami upraviť na rovnice bez absolútnych hodnôt. Stačí určiť znamienka ľubovoľných hodnôt dvojčlenov x+2, x-2 vo vnútri intervalov I_1,I_2,I_3 :

X	$\mathbf{I}_1 = (-\infty, -2)$	$I_2 = \langle -2, 2 \rangle$	$I_3 = \langle 2, +\infty \rangle$
x + 2	-x-2	x+2	x+2
x - 2	-x+2	-x+2	x-2

Výsledok: $K = K_1 \cup K_2 \cup K_3 = \{4, -4\}$

Príklad 2. Riešte v R rovnicu: |2x+1| - |3x+2| - x = 0.

Nulové body: -1/2; -2/3

	1 1		
	$I_1 = (-\infty; -2/3)$	$I_2 = \langle -2/3; -1/2 \rangle$	$I_3 = <-1/2; \infty)$
2x+1	-2x-1	-2x-1	2x+1
- 3x+2	3x+2	-3x-2	-3x-2
-x	-x	-x	-x
	1≠0	-6x - 3 = 0 $x = -1/2$	-2x-1=0 $x=-1/2$
	$K_1 = \Phi$	$K_2 = \{ \}$	$K_3 = \{-1/2\}$
$K = K_1 \cup K_2 \cup K_3 = \{-1/2\}$			

Riešte v R rovnicu: |5-x| = |x-3| + 2|x+1|. Príklad 3.

Rovnicu upravíme na tvar: |5-x|-|x-3|-2|x+1|=0

Nulové body: 5, 3, -1

	$(-\infty;-1)$	<-1;3)	< 3; 5)	< 5; ∞)
5-x	5-x	5-x	5-x	x-5
- x-3	x-3	x-3	-3+x	-3+x
-2 x+1	2x+2	-2x-2	-2x-2	-2x-2

$$2x + 4 = 0$$

$$2x = -4$$

$$x = -2$$

$$K_1 = \{-2\}$$

$$-2x + 0 = 0$$

$$x = 0$$

$$x = 0$$

$$K_2 = \{0\}$$

$$K_3 = \emptyset$$

$$K_4 = \emptyset$$

$K = K_1 \cup K_2 \cup K_3 \cup K_4 = \{-2, 0\}$

Úlohy:

1) V nasledovných úlohách riešte rovnice v R:

a)
$$|x-5| = 2$$

NB:
$$x-5 = 0 \implies x=5$$

	$\mathbf{I}_1 = (-\infty; 5)$	$\mathbf{I}_{2}=<5;\infty)$
x-5	-x+5	x-5
	-x+5 = 2 -x = -3 $x = 3 \in I_1$	$x-5=2$ $x=7 \in I_2$

$$K_1 = \{3\} \qquad K_2 = \{\ 7\}$$

$$\underline{K} = \underline{K_1} \ \underline{U} \ \underline{K_2} = \{3,7\}$$

b)
$$|x-1| = 7$$
 (D. ú.)

c)
$$|x+3| = 6$$

$$|x+5| = 2$$

d) |x+5|=2
 2) V nasledovných úlohách riešte rovnice v R:

a)
$$|x+3| = 2x+3$$

NB: $x+3 = 0 \implies x=-3$

$$-x-3 = 2x+3$$
 /-2x/+3 $x+3=2x+3$ /-2x /-3
 $-3x = 6$ /:(-3) $-x=6$ /:(-1)
 $x = -2 \notin I_1$ $x = -6 \notin I_2$

$$K_1 = \{ \ \} \\ K_2 = \{ \ \} \\ K = K_1 \ U \ K_2 = \{ \ \}$$

b)
$$|2x+3| = 4-x$$
 (D. ú.)
c) $|x-3| = 1-x$
d) $|x+3| = 2x-7$

$$|x-3| = 1-x$$

$$|x+3| = 2x-7$$

3) V nasledovných úlohách riešte rovnice v R:

a)
$$|x-2| + |x+2| = 2x + 2$$

NB1: x = +2 NB2: x = -2

	$I_1 = (-\infty; -2)$	$I_2 = < -2; 2$	I ₃ = < 2; ∞)
x-2	-x+2	-x+2	x-2
x+2	-x-2	x+2	x+2
	-x+2-x-2 = 2x+2	-x+2+x+2 = 2x+2	x-2+x+2 = 2x+2
	-2x = 2x+2 /-2x	4 = 2x+2 /-2	2x = 2x+2 /-2x
	-4x=2	2=2x	0x=2
	$x=-1/2 \notin \mathbf{I_1}$	$x=1 \in \mathbf{I}_2$	Nemá riešenie
	$K_1 = \{ \}$	$K_2 = \{1\}$	$K_3 = \{ \}$

$$K = K_1 U K_2 U K_3 = \{1\}$$

b)
$$|x+2|-2|1-x|+6=0$$
 (D. ú.)

c)
$$|2x+1|+|2x-1|-3=0$$

4) V nasledovných úlohách riešte rovnice v R:

a)
$$|x+1|+3|x-1|=2|x|+x$$

b)
$$3|x-1|-2|x|+|x+1|+x-3=0$$