LABORATOR #12

EX#1 Fie seturile de date ataşate

(i) sample_NegativBinom.npy;(ii) sample_Gamma.npy;

Creați un fișier în Python[®] prin care, pentru fiecare set de date $(x_1, x_2, ..., x_n)$ de la (i)-(ii):

- (a) să se afișeze într-o figură histograma datelor;
- (b) să se determine o aproximare numerică pentru estimarea $\hat{\theta} = (\hat{\theta}_1, \hat{\theta}_2)$ a parametrilor distribuției maximizând funcția de log-verosimilate $\log L(x_1, x_2, \dots x_n, \theta)$ corespunzătoare setului de date (x_1, x_2, \dots, x_n) ;
- (c) să se afișeze într-o figură graficul funcției log-verosimilitate $\log L(x_1, x_2, \dots x_n, \theta)$ corespunzătoare setului de date (x_1, x_2, \dots, x_n) , pentru $\theta = (\theta_1, \theta_2)$ cu
 - (i) $\theta_1 \in (0, 10)$ și $\theta_2 \in (0, 1)$ pentru (i);
 - (ii) $\theta_1 \in (0, 10)$ și $\theta_2 \in (0, 5)$ pentru (ii);
- (d) să se afișeze în figura de la (c) graficul punctului $(\hat{\theta_1}, \hat{\theta_2}, \log L(x_1, x_2, \dots x_n, \hat{\theta}))$.

Indicaţii Python®: numpy, scipy.optimize.minimize, scipy.optimize.fsolve, scipy.special.gamma, scipy.special.digamma, matplotlib.pyplot, 3D plotting