1

Assignment 4

CIS 621: Algorithms and Complexity

Problem 1 (10 points) For the graph $G = (\mathcal{U}, \mathcal{E})$, where \mathcal{U} is the set of vertices and \mathcal{E} is the set of edges, we define the following nonlinear integer program, where $w_{i,j} \geq 0$, $\forall (i,j) \in \mathcal{E}$ and k is a nonnegative integer:

$$\max \sum_{(i,j)\in\mathcal{E}} w_{i,j}(x_i + x_j - 2x_i x_j)$$

$$s.t. \sum_{i\in\mathcal{U}} x_i = k,$$

$$x_i \in \{0,1\}, \ \forall i \in \mathcal{U}.$$

• Show that the following linear program is a relaxation of the above problem:

$$\max \sum_{(i,j)\in\mathcal{E}} w_{i,j} z_{i,j}$$

$$s.t. \quad z_{i,j} \leq x_i + x_j, \ \forall (i,j) \in \mathcal{E},$$

$$z_{i,j} \leq 2 - x_i - x_j, \ \forall (i,j) \in \mathcal{E},$$

$$\sum_{i\in\mathcal{U}} x_i = k,$$

$$0 \leq x_i \leq 1, \ \forall i \in \mathcal{U},$$

$$0 \leq z_{i,j} \leq 1, \ \forall (i,j) \in \mathcal{E}.$$

• Let $F(x) = \sum_{(i,j) \in \mathcal{E}} w_{i,j} (x_i + x_j - 2x_i x_j)$ be the objective function of the nonlinear integer program. Show that for any (x,z) that is feasible to the linear program, $F(x) \ge \frac{1}{2} \sum_{(i,j) \in \mathcal{E}} w_{i,j} z_{i,j}$.

Solution (1) First, any x_i , x_j that are feasible for the integer program are also feasible for the linear program. Second, in the linear program, denoting z^* , x^* as the optimal solution, we have $z_{i,j}^* = \min\{x_i^* + x_j^*, 2 - x_i^* - x_j^*\}$, $\forall i,j$. Let's consider all possible x_i^* , x_j^* in the four cases of (i) $x_i^* = 0$, $x_j^* = 0$, (ii) $x_i^* = 0$, $x_j^* = 1$, (iii) $x_i^* = 1$, $x_j^* = 0$, and (iv) $x_i^* = 1$, $x_j^* = 1$. No matter in which case, the objective function value of the linear program equals that of the integer program. Consequently, the linear program is a relaxation to the integer program.

(2) If $x_i + x_j \le 2 - x_i - x_j$, i.e., $x_i + x_j \le 1$, then $\frac{1}{2} \sum_{(i,j) \in \mathcal{E}} w_{i,j} z_{i,j} \le \frac{1}{2} \sum_{(i,j) \in \mathcal{E}} w_{i,j} (x_i + x_j)$. So, we need to show $x_i + x_j \le 2(x_i + x_j - 2x_i x_j)$. It actually already holds, because $x_i + x_j = 2(x_i + x_j) - (x_i + x_j) \le 2(x_i + x_j) - (x_i + x_j)^2 \le 2(x_i + x_j) - 4x_i x_j$.

If $x_i + x_j \ge 2 - x_i - x_j$, i.e., $x_i + x_j \ge 1$, then $\frac{1}{2} \sum_{(i,j) \in \mathcal{E}} w_{i,j} z_{i,j} \le \frac{1}{2} \sum_{(i,j) \in \mathcal{E}} w_{i,j} (2 - x_i - x_j)$. So, we need to show $2 - x_i - x_j \le 2(x_i + x_j - 2x_i x_j)$. It actually already holds, because $2 - x_i - x_j \le (x_i + x_j)(2 - (x_i + x_j)) = 2(x_i + x_j) - (x_i + x_j)^2 \le 2(x_i + x_j) - 4x_i x_j$.

Problem 2 (10 points) For the directed graph $G = (\mathcal{U}, \mathcal{E})$, where \mathcal{U} is the set of vertices and \mathcal{E} is the set of directed edges, we want to partition \mathcal{U} into two sets \mathcal{V} and $\mathcal{W} = \mathcal{U} \setminus \mathcal{V}$ in order to maximize the total weight of the edges going from \mathcal{V} to \mathcal{W} (i.e., the edges (i, j) with $i \in \mathcal{V}$ and $j \in \mathcal{W}$).

- Give a randomized $\frac{1}{4}$ -approximation algorithm for this problem.
- Show that the following linear program is a relaxation of this problem:

$$\max \sum_{(i,j)\in\mathcal{E}} w_{i,j} z_{i,j}$$

$$s.t. \quad z_{i,j} \le x_i, \ \forall (i,j) \in \mathcal{E},$$

$$z_{i,j} \le 1 - x_j, \ \forall (i,j) \in \mathcal{E},$$

$$0 \le x_i \le 1, \ \forall i \in \mathcal{U},$$

$$0 \le z_{i,j} \le 1, \ \forall (i,j) \in \mathcal{E}.$$

- For the above linear program, give a randomized $\frac{1}{2}$ -approximation algorithm based on rounding x_i , $\forall i \in \mathcal{U}$ to 1 with the probability of $\frac{1}{2}x_i + \frac{1}{4}$.
- **Solution** (1) Consider an algorithm that places i in $\mathcal V$ with the probability p and in $\mathcal W$ with the probability 1-p. For any edge (i,j), let's use $x_{i,j}$ to denote counting in its edge weight if $x_{i,j}=1$ and excluding its edge weight if $x_{i,j}=0$. Thus, for this algorithm, we have $E(\sum_{(i,j)\in\mathcal E} w_{i,j}x_{i,j})=\sum_{(i,j)\in\mathcal E} w_{i,j}E(x_{i,j})=p(1-p)\sum_{(i,j)\in\mathcal E} w_{i,j}\geq p(1-p)OPT$, where OPT is the optimal sum of the weights of the edges going from $\mathcal V$ to $\mathcal W$. That is, we have a p(1-p)-approximation algorithm. Let $p(1-p)=\frac{1}{4}$, and we get $p=\frac{1}{2}$.
 - (2) Omitted; similar to "(1)" of the previous problem in this assignment.
- (3) Denoting x_i , $\forall i$ and $z_{i,j}$, $\forall i,j$ as the optimal fractional solution, and \bar{x}_i , $\forall i$ and $\bar{z}_{i,j}$, $\forall i,j$ as the optimal integer solution by rounding x_i and $z_{i,j}$, respectively. We have $E(\sum_{(i,j)\in\mathcal{E}}w_{i,j}\bar{z}_{i,j})=\sum_{(i,j)\in\mathcal{E}}w_{i,j}E(\bar{z}_{i,j})$. If $\bar{x}_i\leq 1-\bar{x}_j$, then $E(\bar{z}_{i,j})=E(\bar{x}_i)=\frac{1}{2}x_i+\frac{1}{4}\geq \frac{1}{2}x_i=\frac{1}{2}z_{i,j}$; if $\bar{x}_i>1-\bar{x}_j$, then $E(\bar{z}_{i,j})=E(1-\bar{x}_j)=1-(\frac{1}{2}x_j+\frac{1}{4})\geq \frac{1}{2}(1-x_j)=\frac{1}{2}z_{i,j}$. Therefore, it is a $\frac{1}{2}$ -approximation algorithm.