Projet 6

Classifiez automatiquement des biens de consommation

Camille BRODIN

Problématique / Données / Modélisations / Conclusions

Problématique

Missions confiées par Place de marché

Base de données :

- Données sur 1050 produits avec photos associées.
- Table au format .csv et images au format .jpg.

Trois missions:

- Etude de faisabilité d'un moteur de classification d'articles.
- Réaliser une classification supervisée.
- Tester une API pour élargir la gamme de produits.

Données: Nettoyage

Etapes	Méthodes	Justifications
1. Suppression des champs inutiles	data.drop(columns=["x"])	'crawl_timestamp', 'product_url', 'pid', 'retail_price', 'discounted_price', 'is_FK_Advantage_product', 'product_rating' 'overall_rating', 'product_specifications'
2. Vérifications doublons et NaN	data['brand'].fillna(" ")	Pas de « doublons », imputation NaN brand avec « »
3. Traitement des catégories - Séparation de l'arborescence - Fusion des descriptions	'["Watches >> Wrist Watches >> Maserati Time Wrist Watches"]': def get_categories_from_cell avec cell.strip('[]"') et split(" >> ") corpus = data['descriptions'] =	Intérêt de travailler avec 1ere catégorie à 7 modalités Intérêt d'avoir un corpus riche (description générale mais précise des produits)
	<pre>data['product_name'] + ' ' + data['description'] + ' ' + data['brand']</pre>	

unique_id	image	categorie1	descriptions	brand	product_name
identifiant	nom du fichier	categorie generale	descriptif	marque	nom du produit
object	object	object	object	object	object

> 1050 lignes et 15 variables ->1050 et 3 sur le jeu de données nettoyé (+ 1 variable ID)

Données: Présentation et exploration

Distribution des catégories dans le dataset

- 1. Home Furnishing
- 2. Baby Care
- 3. Watches
- 4. Home Decor & Festive Needs
- 5. Kitchen & Dining
- 6. Beauty and Personal Care
- 7. Computers

> 150 produits dans chacune des 7 catégories principales -> labels à prédire

Données : Etapes réalisées pour l'étude de faisabilité

Données textes :

Métriques adaptées à la problématique métier =

L'ARI, indice proportionnel au nombre de paires d'échantillons dont les étiquettes sont les mêmes + temps d'ajustement.

5

Données textes: Prétraitements communs

• 0. Prétraitement des données textuelles :

Exemple d'une phrase traitée : 'camerii wm64 elegance analog watch for men boys'

Données textes: Extraction de features « bag of words » -> count et Tf-idf

- **❖** 1. Extraction de features « bag of words » -> count et Tf-idf
- -> Générer des features (matrice creuse) à partir de mots

CountVectorizer()

(1050, 5324)

ARI: 0.4683

time: 11.0

- Taille du vocabulaire : 5 324 mots (+ 4 269 stop-words)
- > Encodage par vecteurs creux de 5 324 dimensions

TfidfVectorizer()

(1050, 5324)

ARI: 0.5494

time: 9.0

7

Données textes: Extraction de features « bag of words » -> Tf-idf

❖ 1. Extraction de features « bag of words » -> <u>TF-IDF:</u>

TF-IDF (Term Frequency-Inverse Document Frequency) calcule la pertinence d'un mot dans une série ou un corpus par rapport à un texte. (1050, 5324)

ARI: 0.5494

time: 9.0

A gauche la représentation 2D par TSNE -> quelques incohérences entre description-produits et catégories réelles. A droite la classification obtenue par kmeans est assez fidèle aux catégories réelles à gauche.

Données textes: Extraction de features word embedding -> Word2Vec

❖ 2. Extraction de features « Word Embeddings » classique : Word2Vec

Word2Vec = réseau neuronal pour prédire les mots cibles dans les phrases et prend le coefficient de la dernière couche du réseau neuronal comme éléments du vecteur de mots. Embedding matrix: (4713, 100)

ARI: 0.3722 time: 9.0

➤ A gauche la représentation 2D par TSNE -> incohérences plus fortes entre description-produits et catégories réelles. A droite, la classification obtenue par kmeans est assez peu fidèle aux catégories réelles

Données textes: Extraction de features word embedding -> BERT

❖ 2. Extraction de features « Word Embeddings » : BERT

BERT : Bidirectional Encoder Representations from Transformers. Modèle procède de façon bi-directionnel, ce qui lui permet d'avoir une bien meilleure compréhension du texte.

ARI: 0.428

time: 9.0

- > A gauche la représentation 2D par TSNE -> quelques incohérences entre description-produits et catégories réelles.
- > A droite la classification obtenue par kmeans est assez peu fidèle aux catégories réelles à gauche.

Données textes: Extraction de features sentence embedding -> USE

❖ 2. Extraction de features « Sentence Embeddings » : USE

USE : Encodage du texte par réseau neuronal (transfer learning) Universal-sentence-encoder

ARI: 0.4136

time: 21.0

- A gauche la représentation 2D par TSNE -> quelques incohérences entre description-produits et catégories réelles.
- > A droite la classification obtenue par kmeans est assez peu fidèle aux catégories réelles à gauche.

Données : Etapes réalisées pour l'étude de faisabilité

- ✓ Données textes
- Données images :

Données images : Prétraitements OpenCV

❖ 0. Prétraitement des données images et extraction de features « Bag of images » : <u>SIFT</u>

Redimensionnement 224x224(x3)

Optimisation de luminosité et contraste

Passage en niveau de gris et égalisateur d'histogramme

- Descripteur = vecteur qui décrit le voisinage de la feature à laquelle il est associé. Il est utilisé pour repérer les paires de features qui se ressemblent le plus dans deux images.
- > Dimension des descripteurs : (237954, 128), Nombre de clusters : squrt(237954) = 488

Données images: Extraction de features par algorithme de type SIFT

TSNE selon les vraies classes

❖ 1. Suite extraction de features « Bag of images » : <u>SIFT</u>

ARI: 0.0326

time : 6.0

Faisabilité: Extraction de features par algorithme CNN

TSNE selon les vraies classes

TSNE selon les clusters

❖ 2. Extraction des caractéristiques par Algorithme de Transfer Learning basé sur des réseaux de neurones

Dimension des features = (735, 4096), après PCA (735, 581), TSNE (735,2)

Faisabilité: Extraction de features par algorithme CNN

2. Extraction des caractéristiques par Algorithme de Transfer Learning basé sur des réseaux de neurones

Home Furnishing -	74	3	0	10	13	3	0	
Baby Care -	1	74	6	13	8	2	1	- 80
Watches -	0	1	73	25	4	8	0	- 60
Home Decor & Festive Needs -	4	1	10	54	12	14	5	
Kitchen & Dining -	27	0	0	4	81	0	0	- 40
Beauty and Personal Care -	0	5	8	11	1	79	0	- 20
Computers -	0	2	1	1	0	0	96	
	4	6	3	i	2	Ó	5	- 0

Classification supervisée images avec data augmentation

Classification supervisée avec data augmentation : VGG16 avec Imagenet

- Réseau VGG-16 pré-entraîné sur ImageNet (paramètre weights=« imagenet »).
- On retire la dernière couche fullyconnected (include_top = False)
- Ce réseau tronqué calcule la représentation de chaque image en entrée à partir des features déjà apprises lors du préentraînement.
- On entraîne alors un classifieur, initialisé aléatoirement, sur ces représentations pour résoudre le nouveau problème.

Classification supervisée images avec data augmentation

Classification supervisée avec data augmentation :

Optimisation d'un hyperparamètre du modèle (le nombre d'Epochs)

Score du dernier epoch:

19/19 - loss: 0.2434 - accuracy: 0.9388

Training Accuracy: 0.9388

5/5 - loss: 0.6369 - accuracy: 0.8095

Validation Accuracy: 0.8095

Score de l'epoch optimal:

Validation Accuracy: 0.8163

Test Accuracy: 0.7975

- Précision satisfaisante du modèle de classification supervisée images avec Epochs = 30
- La data augmentation est une vraie plus-value dans notre contexte.

Test avec API: Elargissement gamme de produits, épicerie fine

Edamam Food and Grocery Database

By Edamam | Updated a month ago | Food

❖ Intérêt de l'utilisation d'une API :

10 produits à base de "champagne" via l'API Edamam dans un fichier ".csv", foodId, label, category, foodContentsLabel, image.

* Requête Python:

```
import requests
url = "https://edamam-food-and-grocery-database.p.rapidapi.com/ap
i/food-database/v2/parser"
querystring = {"ingr":"champagne"}
headers = {
    "X-RapidAPI-Key":
    "X-RapidAPI-Host": "edamam-food-and-grocery-database.p.rapida
pi.com"
response = requests.get(url, headers=headers, params=querystring)
print(response.json())
```

Test avec API: Elargissement gamme de produits, épicerie fine

❖ Requête Python : # foodId, label, category, foodContentsLabel, image

df.head(10)


```
20 items dont "food" qui est compose des features suivantes :
```

```
{'foodId': 'food_b753ithamdb8psbt0w2k9aquo06c',
'label': 'Champagne Vinaigrette, Champagne',
'category': 'Packaged foods',
'foodContentsLabel': 'OLIVE OIL; BALSAMIC VINEGAR; CHAMPAGNE VINEGAR; GARLIC;
DIJON MUSTARD; SEA SALT.'}
```

<u> </u>	✓ 1.1s							
	foodld	label	category	image	foodContentsLabe			
0	food_a656mk2a5dmqb2adiamu6beihduu	Champagne	Generic foods	https://www.edamam.com/food- img/a71/a718cf3c52	NaN			
1	food_b753ithamdb8psbt0w2k9aquo06c	Champagne Vinaigrette, Champagne	Packaged foods	NaN	OLIVE OIL; BALSAMIC VINEGAR; CHAMPAGNE VINEGAR			
2	food_b3dyababjo54xobm6r8jzbghjgqe	Champagne Vinaigrette, Champagne	Packaged foods	https://www.edamam.com/food- img/d88/d88b64d973	Ingredients: Water Canola OIL; Champagne Vine			

Conclusion faisabilité et recommandations

Caractéristique	TF-IDF	CountVect	Word2Vec	BERT	USE	SIFT	VGG16
ARI	0.5494	0.4683	0.3722	0.428	0.4136	0.0326	0.4887
Temps de calcul	9.0 sec	11.0 sec	9.0 sec	9.0 sec	21.0 sec	6.0 sec	109.0 sec

Missions remplies:

✓ Nous avons démontré la faisabilité de regrouper automatiquement des produits de même catégorie avec les données txt et images. **Réseau neuronal avec apprentissage conjoint sur texte et images.**

Conclusion faisabilité et recommandations

Missions remplies:

- ✓ Nous avons réalisé une classification supervisée avec data augmentation afin d'optimiser le modèle.
- ✓ Nous avons testé une API pour élargir la gamme de produits à l'épicerie fine.

Merci pour votre attention

Model	Advantages	Limitation		
Weighted Words	* Easy to compute * Easy to compute the similarity between 2 documents using it * Basic metric to extract the most descriptive terms in a document * Works with an unknown word (e.g., New words in languages)	* It does not capture the position in the text (syntactic) * It does not capture meaning in the text (semantics) * Common words effect on the results (e.g., "am", "is", etc.)		
TF-IDF	* Easy to compute * Easy to compute the similarity between 2 documents using it * Basic metric to extract the most descriptive terms in a document * Common words do not affect the results due to IDF (e.g., "am", "is", etc.)	* It does not capture the position in the text (syntactic) * It does not capture meaning in the text (semantics)		
Word2Vec	* It captures the position of the words in the text (syntactic) * It captures meaning in the words (semantics)	* It cannot capture the meaning of the word from the text (fails to capture polysemy) * It cannot capture out-of- vocabulary words from corpus		

```
def transform bow fct(desc text):
    word_tokens = tokenizer_fct(desc_text)
    sw = stop_word_filter_fct(word_tokens)
   lw = lower start fct(sw)
   # lem w = lemma fct(lw)
   transf_desc_text = ' '.join(lw)
    return transf desc text
# Fonction de préparation du texte pour le bag of words avec lemmatization
def transform bow lem fct(desc text):
    word tokens = tokenizer fct(desc text)
    sw = stop word filter fct(word tokens)
   lw = lower start fct(sw)
   lem w = lemma fct(lw)
   transf desc_text = ' '.join(lem_w)
    return transf desc text
# Fonction de préparation du texte pour le Deep learning (USE et BERT)
def transform dl fct(desc text):
    word tokens = tokenizer fct(desc text)
   # sw = stop_word_filter_fct(word_tokens)
    lw = lower start fct(word tokens)
    \# lem w = lemma_fct(lw)
   transf desc text = ' '.join(lw)
    return transf_desc_text
```