Constraining Statistical Isotropy with LSST Supernovae

Cosmology

Accelerated Expansion of the Universe: How did we learn this?

Using Type Ia Supernovae which are Standardizable Candles

Using good light curves, we can estimate intrinsic brightness

Accelerated Expansion of the Universe: How did we learn this?

Use Observed Dimness to estimate Expansion History

Using good light curves, we can estimate intrinsic brightness

Axioms of Underlying Symmetry

Single Distance Scale at each time ie. Single Density Parameter in time

Axioms of Underlying Symmetry

Axioms of Underlying Symmetry

 Assumption of underlying Statistical Isotropy (Things look the same in every direction) and Homogeneity (Things look the same after you translate your position)

Is there data?

- CMB shows that isotropy of space is a very good assumption at early times
- Would be interesting to be able to confirm this at late times (during accelerating phase) and at large scales.

LSST

Large Synoptic Sky Survey: Will survey about 18000 square degrees (most of the Southern Sky)

Expansion History as a function of direction

LSST @ UW astro

- <u>LSST@UW.ASTRO</u>: One of the largest LSST groups (faculty, research scientists, postdocs, graduate students)
- Have simulations of LSST SN observations based on baseline observing strategies
- Analysis method machinery for supernova cosmology
- Observing Strategy White Paper: Understanding the scientific impact, and requirements on the observing strategy is a big, current unanswered question that needs to be answered NOW.
 - https://github.com/rbiswas4/Isotropy