Sinais e Sistemas - Trabalho 3 - Avaliação 5

Grupo 2

Leonardo Soares da Costa Tanaka Matheus Henrique Sant Anna Cardoso Theo Rudra Macedo e Silva 1.) Um SLIT é modelado por $\tau \dot{y}(t) + y(t) = u(t)$ com $y(0^-) = \alpha$. G2: $\tau = 3, \alpha = -2$

(a) Calcular a resposta ao degrau unitário e esboçar o seu gráfico;

Para calcular a resposta, trataremos já com os dados, sendo a EDO:

$$3\dot{y}(t) + y(t) = 1(t)$$
 , $y(0^{-}) = -2$

Pela propriedade da derivação, sabemos que

$$\dot{y}(t) = sY(s) - y(0^-)$$

Então

$$\mathcal{L}\{3\dot{y}(t) + y(t)\} = \mathcal{L}\{u(t)\}$$
$$3(sY(s) - y(0^{-})) + Y(s) = U(s)$$
$$Y(s)(3s+1) + 6 = U(s)$$

Como u(t) = 1(t), sabemos que $U(s) = \frac{1}{s}$, assim

$$Y(s)(3s+1) + 6 = \frac{1}{s}$$
$$Y(s) = \frac{1}{3s+1} \cdot \frac{1}{s} - \frac{6}{3s+1}$$

Separando em frações parciais, temos:

$$Y(s) = \frac{1}{s} - \frac{3}{3s+1} - \frac{6}{3s+1}$$
$$Y(s) = \frac{1}{s} - \frac{9}{3s+1}$$
$$Y(s) = \frac{1}{s} - \frac{3}{s+1/3}$$

Agora, podemos descobrir y(t).

$$\mathcal{L}^{-1}\left\{\frac{1}{s}\right\} = 1(t)$$

$$\mathcal{L}^{-1}\left\{\frac{3}{s+1/3}\right\} = 3e^{-\frac{1}{3}t}1(t)$$

$$\mathcal{L}^{-1}\left\{Y(s)\right\} = 1(t) - 3e^{-\frac{1}{3}t}1(t)$$

Finalmente

$$y(t) = 1(t) - 3e^{-\frac{t}{3}}1(t)$$

(b) calcular a resposta à rampa unitária e esboçar o seu gráfico; Para calcular a resposta à rampa, tomemos a seguinte EDO:

$$3\dot{y}(t) + y(t) = t1(t)$$
 , $y(0^{-}) = -2$

Da mesma forma como no item (a), podemos utilizar a propriedade da derivação e fazer em ambos os lados, a transformada de Laplace.

$$\mathcal{L}\left\{\dot{y}(t)\right\} = \left(sY(s) - y(0^{-})\right) \qquad \qquad \mathcal{L}\left\{t1(t)\right\} = U(s) = \frac{1}{s^{2}}$$

$$3(Y(s) - y(0^{-})) + Y(s) = U(s)$$
$$Y(s)(3s+1) + 6 = \frac{1}{s^{2}}$$
$$Y(s) = \frac{1}{3s+1} \cdot \frac{1}{s^{2}} - \frac{6}{3s+1}$$

Separando em frações parciais, teremos

$$Y(s) = \frac{9}{3s+1} - \frac{3s-1}{s^2} - \frac{6}{3s+1}$$

$$Y(s) = \frac{3}{3s+1} - \frac{3s-1}{s^2}$$

$$Y(s) = \frac{1}{s+1/3} - \frac{3}{s} + \frac{1}{s^2}$$

Agora, podemos calcular a inversa da transformada de Laplace.

$$\mathcal{L}^{-1}\left\{\frac{1}{s+1/3}\right\} = e^{-\frac{t}{3}}1(t) \qquad \qquad \mathcal{L}^{-1}\left\{\frac{3}{s}\right\} = 3 \cdot 1(t) \qquad \qquad \mathcal{L}^{-1}\left\{\frac{1}{s^2}\right\} = t1(t)$$

$$\mathcal{L}^{-1}\left\{Y(s)\right\} = e^{-\frac{t}{3}}1(t) - 3 \cdot 1(t) + t1(t)$$

Finalmente

$$y(t) = e^{-\frac{t}{3}}1(t) - 3 \cdot 1(t) + t1(t)$$

(c) calcular a resposta ao seno $u(t) = \text{sen}(\omega t)$ para $\alpha = 0$, $\omega = 1/(4\tau)$ e esboçar o seu gráfico; Agora, temos para resolver a seguinte EDO:

$$3\dot{y}(t) + y(t) = \operatorname{sen}\left(\frac{t}{12}\right)1(t)$$
 , $y(0^{-}) = 0$

Utilizaremos Laplace, para resolver, a saber

$$\mathcal{L}\left\{ \sin\left(\frac{t}{12}1(t)\right) \right\} = \frac{1/12}{s^2 + 1/144} = \frac{12}{144s^2 + 1}$$

Utilizando, novamente, as técnicas empregadas nos itens anteriores, teremos

$$3(sY(s)) + Y(s) = \frac{12}{144s^2 + 1}$$
$$Y(s)(3s+1) = \frac{12}{144s^2 + 1}$$
$$Y(s) = \frac{1}{3s+1} \cdot \frac{12}{144s^2 + 1}$$
$$Y(s) = \frac{r_1}{3s+1} + \frac{r_2}{144s^2 + 1}$$

Vamos, por tentativa e erro, calcular as constantes r_1 e r_2 .

Perceba que, fazendo $r_1 \cdot (144s^2 + 1)$ teremos um termo com s^2 mais uma constante. O mesmo deve ser para $r_2 \cdot (3s+1)$. Para isso, podemos fazer com que o segundo seja o produto da soma pela diferença, obtendo um termo ao quadrado e uma constante.

Fazemos, então $r_2 = (3s - 1)$, obtendo, naquele segundo produto, o seguinte: $r_2 \cdot (3s + 1) = (3s - 1)(3s + 1) = 9s^2 - 1$. No primeiro produto $(r_1 \cdot (144s^2 + 1))$, já temos um fator grande suficiente para o termo quadrático, podemos corrigir com o segundo produto, multiplicando por 16.

No final, ficamos com a expressão

$$\frac{1}{3s+1} - \frac{16(3s-1)}{144s^2+1}$$

Ficamos, porém, com uma constante no numerador igual a $(144s^2 + 1 - 16(9s^2 - 1) = 1 + 16 = 17)$ diferente da expressão original (12). Sendo assim, podemos multiplicar a expressão toda por $\frac{12}{17}$ para termos a expressão inicial na forma de somas parciais.

Então

$$Y(s) = \left(\frac{1}{3s+1} - \frac{16(3s-1)}{144s^2+1}\right) \cdot \frac{12}{17}$$

Assim

$$Y(s) \cdot \frac{17}{12} = \frac{1}{3s+1} - \frac{48s-16}{144s^2+1}$$

Fazendo mais alterações, teremos

$$Y(s) \cdot \frac{17}{12} = \frac{1}{3s+1} - \frac{48s}{144s^2+1} + \frac{16}{144s^2+1}$$
$$Y(s) \cdot \frac{17}{12} = \frac{1/3}{s+1/3} - \frac{1}{3} \cdot \frac{s}{s^2+1/144} + \frac{4}{3} \cdot \frac{1/12}{s^2+1/144}$$

$$\mathcal{L}^{-1}\left\{\frac{1}{s+1/3}\right\} = e^{-\frac{t}{3}}1(t) \qquad \mathcal{L}^{-1}\left\{\frac{s}{s^2+1/144}\right\} = \cos\left(\frac{t}{12}\right)1(t) \qquad \mathcal{L}^{-1}\left\{\frac{1/12}{s^2+1/144}\right\} = \sin\left(\frac{t}{12}\right)1(t)$$

$$\mathcal{L}^{-1}\left\{Y(s) \cdot \frac{17}{12}\right\} = \frac{e^{-\frac{t}{3}}1(t)}{3} - \frac{\cos\left(\frac{t}{12}\right)1(t)}{3} + \frac{4}{3} \cdot sen\left(\frac{t}{12}\right)1(t)$$
$$y(t) \cdot \frac{17}{4} = e^{-\frac{t}{3}}1(t) - \cos\left(\frac{t}{12}\right)1(t) + 4sen\left(\frac{t}{12}\right)1(t)$$

Finalmente

$$y(t) = 1(t) \cdot \frac{4e^{-\frac{t}{3}} - 4\cos\left(\frac{t}{12}\right) + 16sen\left(\frac{t}{12}\right)}{17}$$

(d) calcular a resposta ao seno $u(t) = \text{sen}(\omega t)$ para $\alpha = 0$, $\omega = 4/\tau$ e esboçar o seu gráfico; Agora, temos para resolver a seguinte EDO:

$$3\dot{y}(t) + y(t) = \operatorname{sen}\left(\frac{4t}{3}\right)1(t)$$
 , $y(0^{-}) = 0$

Utilizaremos Laplace, para resolver, a saber

$$\mathcal{L}\left\{\sin\left(\frac{4t}{3}1(t)\right)\right\} = \frac{4/3}{s^2 + 16/9} = \frac{12}{9s^2 + 16}$$

Utilizando, novamente, as técnicas empregadas nos itens anteriores, teremos

$$3(sY(s)) + Y(s) = \frac{12}{9s^2 + 16}$$
$$Y(s)(3s+1) = \frac{12}{9s^2 + 16}$$
$$Y(s) = \frac{1}{3s+1} \cdot \frac{12}{9s^2 + 16}$$
$$Y(s) = \frac{r_1}{3s+1} + \frac{r_2}{9s^2 + 16}$$

Vamos, por tentativa e erro, calcular as constantes r_1 e r_2 .

Perceba que, fazendo $r_1 \cdot (9s^2 + 16)$ teremos um termo com s^2 mais uma constante. O mesmo deve ser para $r_2 \cdot (3s + 1)$. Para isso, podemos fazer com que o segundo seja o produto da soma pela diferença, obtendo um termo ao quadrado e uma constante.

Fazemos, então $r_2 = (3s - 1)$, obtendo, naquele segundo produto, o seguinte: $r_2 \cdot (3s + 1) = (3s - 1)(3s + 1) = 9s^2 - 1$. No primeiro produto $(r_1 \cdot (9s^2 + 16))$, já temos um fator multiplicado pelo termo quadrático, igual ao outro. Não tendo a necessidade de multiplicarmos por nada. Assim, ficamos com $r_1 = 1$.

No final, ficamos com a expressão

$$\frac{1}{3s+1} - \frac{(3s-1)}{9s^2+16}$$

Ficamos, porém, com uma constante no numerador igual a $(9s^2 + 16 - (9s^2 - 1) = 16 + 1 = 17)$ diferente da expressão original (12). Sendo assim, podemos multiplicar a expressão toda por $\frac{12}{17}$ para termos a expressão inicial na forma de somas parciais.

Então

$$Y(s) = \left(\frac{1}{3s+1} - \frac{3s-1}{9s^2+16}\right) \cdot \frac{12}{17}$$

Assim

$$Y(s) \cdot \frac{17}{12} = \frac{1}{3s+1} - \frac{3s-1}{9s^2+16}$$

Fazendo mais alterações, teremos

$$Y(s) \cdot \frac{17}{12} = \frac{1}{3s+1} - \frac{3s}{9s^2 + 16} + \frac{1}{9s^2 + 16}$$

$$Y(s) \cdot \frac{17}{12} = \frac{1/3}{s+1/3} - \frac{1}{3} \cdot \frac{s}{s^2 + 16/9} + \frac{1}{12} \cdot \frac{4/3}{s^2 + 16/9}$$

$$\mathcal{L}^{-1} \left\{ \frac{1}{s+1/3} \right\} = e^{-\frac{t}{3}} 1(t) \qquad \mathcal{L}^{-1} \left\{ \frac{s}{s^2 + 1/144} \right\} = \cos\left(\frac{t}{12}\right) 1(t) \qquad \mathcal{L}^{-1} \left\{ \frac{1/12}{s^2 + 1/144} \right\} = \sin\left(\frac{t}{12}\right) 1(t)$$

$$\mathcal{L}^{-1} \left\{ Y(s) \cdot \frac{17}{12} \right\} = \frac{e^{-\frac{t}{3}} 1(t)}{3} - \frac{\cos\left(\frac{4t}{3}\right) 1(t)}{3} + \frac{1}{12} \cdot \sin\left(\frac{4t}{3}\right) 1(t)$$

$$y(t) \cdot 17 = 4e^{-\frac{t}{3}} 1(t) - 4\cos\left(\frac{4t}{3}\right) 1(t) + \sin\left(\frac{t}{12}\right) 1(t)$$

Finalmente

$$y(t) = 1(t) \cdot \frac{4e^{-\frac{t}{3}} - 4\cos\left(\frac{4t}{3}\right) + sen\left(\frac{4t}{3}\right)}{17}$$

(e) encontrar a entrada u(t) para que $y(t) = \alpha \,\forall t \geq 0$; Trabalhando com a seguinte EDO, teremos:

$$3\dot{y}(t) + y(t) = u(t)$$
 , $y(0^{-}) = -2$

Porém, temos que $y(t) = -2 \forall t \geq 0$. Assim, podemos definir a função y(t) = -2, pois respeitará o fato de $y(0^-) = -2$. Dessa forma, $\dot{y}(t) = 0$. Na equação, teremos:

$$3 \cdot 0 + (-2) = u(t)$$

Finalmente

$$u(t) = -2$$

(f) encontrar a entrada u(t) para que $y(t) = 0 \,\forall t > 0$.

Aqui, devemos tomar o cuidado para manter a condição de que $y(0^-) = -2$. Para isso, podemos definir que

$$y(t) = -2 \cdot 1(-t)$$

Tendo, por consequência que

$$\dot{y}(t) = -2\delta(-t) = -2\delta(t)$$

Acima, utilizamos a inversão na escala de tempo para chegar que $\dot{y}(t) = -2\delta(t)$. Agora, podemos resolver a equação, que é dada por

$$3\dot{y}(t) + y(t) = u(t)$$
 , $y(0^{-}) = -2$
 $3(-2\delta(t)) + (-2 \cdot 1(t)) = u(t)$

Finalmente

$$u(t) = -6\delta(t) - 2 \cdot 1(t)$$

- **2.)** Um SLIT relaxado é descrito por $\ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = b_1 \dot{u}(t) + u(t)$. **G2:** $a_1 = 30, a_0 = 3$
- (a) Para $b_1 = 0$ calcular a resposta ao degrau unitário e esboçar o seu gráfico;

$$\ddot{y}(t) + 30\dot{y}(t) + 3y(t) = u(t) , \quad y(0^{-}) = 0$$

$$\mathcal{L}\left\{\ddot{y}(t) + 30\dot{y}(t) + 3y(t)\right\} = \mathcal{L}\left\{1(t)\right\}$$

$$s^{2}Y(s) + 30sY(s) + 3Y(s) = \frac{1}{s}$$

$$Y(s) = \frac{1}{s \cdot (s^{2} + 30s + 3)} = \frac{1}{s} \cdot \frac{1}{(s + 15 - \sqrt{222}) \cdot (s + 15 + \sqrt{222})} =$$

$$= \frac{1}{s} \cdot \left(\frac{\frac{\sqrt{222}}{444}}{s + 15 - \sqrt{222}} - \frac{\frac{\sqrt{222}}{444}}{s + 15 + \sqrt{222}}\right)$$

$$y(t) = \int \mathcal{L}^{-1}\left\{\frac{\sqrt{222}}{444} \cdot \left[\frac{1}{s + 15 - \sqrt{222}} - \frac{1}{s + 15 + \sqrt{222}}\right]\right\} =$$

$$= \frac{\sqrt{222}}{444} \cdot \int (e^{(-15 + \sqrt{222})t} - e^{(-15 - \sqrt{222})t})dt = \frac{\sqrt{222}}{444} \cdot \left\{\frac{e^{(-15 + \sqrt{222})t}}{-15 + \sqrt{222}} + \frac{e^{(-15 + \sqrt{222})t}}{15 + \sqrt{222}}\right\}$$

(b) para $b_1 = 0$ calcular a resposta à rampa unitária e esboçar o seu gráfico;

$$\ddot{y}(t) + 30\dot{y}(t) + 3y(t) = u(t) \quad , \quad y(0^{-}) = 0$$

$$\mathcal{L}\left\{\ddot{y}(t) + 30\dot{y}(t) + 3y(t)\right\} = \mathcal{L}\left\{t1(t)\right\}$$

$$s^{2}Y(s) + 30sY(s) + 3Y(s) = \frac{1}{s^{2}}$$

$$Y(s) = \frac{1}{s^{2} \cdot (s^{2} + 30s + 3)} = \frac{1}{s^{2}} \cdot \frac{1}{(s + 15 - \sqrt{222}) \cdot (s + 15 + \sqrt{222})} =$$

$$= \frac{1}{s^{2}} \cdot \left(\frac{\frac{\sqrt{222}}{444}}{s + 15 - \sqrt{222}} - \frac{\frac{\sqrt{222}}{444}}{s + 15 + \sqrt{222}}\right)$$

$$y(t) = \int \int \mathcal{L}^{-1} \left\{\frac{\sqrt{222}}{444} \cdot \left[\frac{1}{s + 15 - \sqrt{222}} - \frac{1}{s + 15 + \sqrt{222}}\right]\right\} =$$

$$= \frac{\sqrt{222}}{444} \cdot \int \left\{\frac{e^{(-15 + \sqrt{222})t}}{-15 + \sqrt{222}} + \frac{e^{(-15 + \sqrt{222})t}}{15 + \sqrt{222}}\right\} dt = \frac{\sqrt{222}}{444} \cdot \left\{\frac{e^{(-15 + \sqrt{222})t}}{(-15 + \sqrt{222})^{2}} + \frac{e^{(-15 + \sqrt{222})t}}{(15 + \sqrt{222})^{2}}\right\}$$

(c) para $b_1 = 1$ calcular a resposta ao degrau unitário e esboçar o seu gráfico;

$$\ddot{y}(t) + 30\dot{y}(t) + 3y(t) = \dot{u}(t) + u(t) \quad , \quad y(0^{-}) = 0$$

$$\mathcal{L}\left\{\ddot{y}(t) + 30\dot{y}(t) + 3y(t)\right\} = \mathcal{L}\left\{1(t) + t1(t)\right\}$$

$$s^{2}Y(s) + 30sY(s) + 3Y(s) = 1 + \frac{1}{s}$$

$$Y(s) = \frac{1}{s^{2} + 30s + 3} + \frac{1}{s \cdot (s^{2} + 30s + 3)}$$

$$Y(s) = \frac{1}{(s + 15 - \sqrt{222}) \cdot (s + 15 + \sqrt{222})} + \frac{1}{s} \cdot \frac{1}{(s + 15 - \sqrt{222}) \cdot (s + 15 + \sqrt{222})}$$

$$= \frac{\frac{\sqrt{222}}{444}}{s + 15 - \sqrt{222}} - \frac{\frac{\sqrt{222}}{444}}{s + 15 + \sqrt{222}} + \frac{1}{s} \cdot \left(\frac{\frac{\sqrt{222}}{444}}{s + 15 - \sqrt{222}} - \frac{\frac{\sqrt{222}}{444}}{s + 15 + \sqrt{222}}\right)$$

$$= \frac{\sqrt{222}}{444} \cdot \left\{e^{(-15 + \sqrt{222})t} - e^{(-15 + \sqrt{222})t} + \frac{e^{(-15 + \sqrt{222})t}}{-15 + \sqrt{222}} + \frac{e^{(-15 + \sqrt{222})t}}{15 + \sqrt{222}}\right\}$$

(d) para $b_1 = -1$ calcular a resposta ao degrau unitário e esboçar o seu gráfico;

$$\ddot{y}(t) + 30\dot{y}(t) + 3y(t) = -\dot{u}(t) + u(t) , \quad y(0^{-}) = 0$$

$$\mathcal{L}\left\{\ddot{y}(t) + 30\dot{y}(t) + 3y(t)\right\} = \mathcal{L}\left\{-1(t) + t1(t)\right\}$$

$$s^{2}Y(s) + 30sY(s) + 3Y(s) = -1 + \frac{1}{s}$$

$$Y(s) = -\frac{1}{s^{2} + 30s + 3} + \frac{1}{s \cdot (s^{2} + 30s + 3)}$$

$$Y(s) = \frac{1}{(s+15-\sqrt{222})\cdot(s+15+\sqrt{222})} + \frac{1}{s} \cdot \frac{1}{(s+15-\sqrt{222})\cdot(s+15+\sqrt{222})}$$

$$= -\frac{\frac{\sqrt{222}}{444}}{s+15-\sqrt{222}} + \frac{\frac{\sqrt{222}}{444}}{s+15+\sqrt{222}} + \frac{1}{s} \cdot \left(\frac{\frac{\sqrt{222}}{444}}{s+15-\sqrt{222}} - \frac{\frac{\sqrt{222}}{444}}{s+15+\sqrt{222}}\right)$$

$$= \frac{\sqrt{222}}{444} \cdot \left\{ -e^{(-15+\sqrt{222})t} + e^{(-15+\sqrt{222})t} + \frac{e^{(-15+\sqrt{222})t}}{-15+\sqrt{222}} + \frac{e^{(-15+\sqrt{222})t}}{15+\sqrt{222}} \right\}$$

- (e) traçar com precisão um único gráfico com as 3 respostas ao degrau;
- (f) calcular a resposta a seno $u(t) = \text{sen}(\omega t)$ para $b_1 = 0, \omega = 4a_0$ e esboçar o seu gráfico.
- **3.)** Um SLIT relaxado é descrito por uma função de transferência com numerador e denominador dados por n(s) = K e $d(s) = (s + p_1)(s + p_2)(s + p_3)$. **G2:** $p_1 = 1, p_2 = 3, p_3 = 4$
- (a) Esboçar a resposta ao degrau unitário (escolha o valor de K);
- (b) esboçar a resposta ao degrau unitário quando os p_i são divididos por 5;
- (c) esboçar a resposta ao degrau unitário quando os p_i são multiplicados por 5;
- (d) comentar os resultados acima;
- (e) esboçar a resposta ao degrau unitário quando dois p_i são multiplicados por 5 e o outro é dividido por 5;
- (f) comentar os resultados acima.