CSCC37 A1

Leo (Si) Wang

Oct 17, 2022

Question 1

Case 1: * + * doesn't have carry over

Meaning * + * does not have more than 1 digit in it's representation in base b.

Given $*+* \neq *$, we can say $* \neq 0$, and also that # is even.

If there is no carry over, we know $\# + \# = \# \diamondsuit$

For any digit d_0 we know in any base b, $d_0 + d_0 \le (1(b-2))_b$ for any base b > 1 The only way for $\# + \# = \# \diamondsuit$ to work is if # = 1 and b = 2.

is not even, plus the given the number of symbols, the base must be at least 3.

 \therefore we go to case 2:

Case 2: * + * does have carry over

As stated in case 1, the number of the digit in carry over when adding 2 single digits is always at most 1 in any base (if you count 0 as a carry over anyways). Thus we have:

$$\begin{array}{l} *+* = (1\#)_b \\ \Rightarrow \# + \# + 1 = \# \diamondsuit \\ \text{If we know } d_0 + d_0 \leq (1(b-2))_b \,, \\ \text{Then we know } d_0 + d_0 + 1 \leq (1(b-1))_b \\ \Rightarrow \# = 1 \\ \Rightarrow 1+1+1 = (1\diamondsuit)_b \\ \Rightarrow \diamondsuit = 0, \text{ and } b = 3 \text{ (Since there are 3 symbols, } b = 2 \text{ is impossible)} \\ \text{For the sake of completion here is the solution to } * \\ *+* = (11)_3 \\ \Rightarrow * = 2 \end{array}$$

 \therefore the base of the system is 3

Question 2

Try to store $(0.1)_{10}$ in b = 3 to 9:

$$b=3$$

Multiplier	Decimal	Integer
3	0.1	0
3	0.3	0
3	0.9	2
3	0.7	2
3	0.1	0

 $\therefore (0.1)_3 = 0.\overline{0022}$ and cannot be exactly stored in a base 3 machine.

b=4

Multiplier	Decimal	Integer
4	0.1	0
4	0.4	1
4	0.6	2
4	0.4	1

 $\therefore (0.1)_4 = 0.0\overline{12}$ and cannot be exactly stored in a base 4 machine.

b = 5

Multiplier	Decimal	Integer
5	0.1	0
5	0.5	2
5	0.5	2

 $\therefore (0.1)_5 = 0.0\overline{2}$ and cannot be exactly stored in a base 5 machine.

b = 6

Multiplier	Decimal	Integer
6	0.1	0
6	0.6	3
6	0.6	3

 $\therefore (0.1)_6 = 0.0\overline{3}$ and cannot be exactly stored in a base 6 machine.

b = 7

Multiplier	Decimal	Integer
7	0.1	0
7	0.7	4
7	0.9	6
7	0.3	2
7	0.1	0

 $(0.1)_7 = 0.\overline{0462}$ and cannot be exactly stored in a base 7 machine.

b = 8

Multiplier	Decimal	Integer
8	0.1	0
8	0.8	6
8	0.4	3
8	0.2	1
8	0.6	4
8	0.8	6

 \therefore (0.1)₈ = 0.0 $\overline{6314}$ and cannot be exactly stored in a base 8 machine.

b = 9

Multiplier	Decimal	Integer
9	0.1	0
9	0.9	8
9	0.1	0
9	0.9	8

 $\therefore (0.1)_9 = 0.\overline{08}$ and cannot be exactly stored in a base 9 machine.

In general, for $3 \leq b < 10$ there is no $n \in \mathbb{N}$ st b^n is divisible by 10.

 \therefore (0.1) cannot be represented exactly on a machine of any base 2-9

Question 3

Definition of ϵ : The smallest non-normalized floating point number s.t. $1 + \epsilon > 1$ Remember that 1 in any base b, 1 can be represented as $(1)_b = (.1)_b \times b^{(1)_b}$

Case 1: The FP system chops digits

Given the representation of 1, it's easy to see that the smallest number that can be added which the definition of ϵ still holds is

$$(\underbrace{00\cdots01}_{t})_{b} \times b^{(1)_{b}}$$

$$= (\underbrace{10\cdots00}_{t})_{b} \times b^{(1-(t-1))_{b}}$$

$$= b^{(1-t)_{b}}$$

 $\therefore \epsilon = b^{(1-t)_b}$, for chopping FP systems

Case 2: The FP system rounds digits

The FP system will round if $d_{t+1} \geq \frac{1}{2}b$

Given the representation of 1, we need to make it such that the digit $d_{t+1} = \frac{1}{2}$.

Take the previous answer for chopping systems and half the amount the required amount:

$$\frac{1}{2}(\underbrace{00\cdots01}_{t})_{b} \times b^{(1)_{b}}$$

$$= \frac{1}{2}(\underbrace{10\cdots00}_{t})_{b} \times b^{(1-(t-1))_{b}}$$

$$= \frac{1}{2}b^{(1-t)_{b}}$$

 $\therefore \epsilon = \frac{1}{2}b^{(1-t)_b}$, for rounding FP systems

 $\therefore \epsilon$ is a bound for relative round off error δ

Question 4

We know that $||\overrightarrow{x}||_{\infty} = max(|x_1|, \dots, |x_n|)$ for vector $\overrightarrow{x} = (x_1, \dots, x_n)$ Suppose for the sake of the proof that $x_n \neq 0$ is the largest absolute element in \overrightarrow{x} , meaning $|x_n| = max(|x_1|, \dots, |x_n|)$

$$||\overrightarrow{x}||_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}$$

$$= \left(\sum_{i=1}^{n} \left|\frac{x_{n}x_{i}}{x_{n}}\right|^{p}\right)^{\frac{1}{p}}$$

$$= \left(|x_{n}|^{p}\sum_{i=1}^{n} \left|\frac{x_{i}}{x_{n}}\right|^{p}\right)^{\frac{1}{p}}$$

$$= |x_{n}| \left(\sum_{i=1}^{n} \left|\frac{x_{i}}{x_{n}}\right|^{p}\right)^{\frac{1}{p}}$$

$$= |x_{n}| \left(1 + \sum_{i=1}^{n-1} \left|\frac{x_{i}}{x_{n}}\right|^{p}\right)^{\frac{1}{p}}$$

Because x_n is the largest element, we know $0 \le \left| \frac{x_i}{x_n} \right| \le 1$ for $1 \le i \le n-1$ We can use squeeze theorem to get the result:

$$||\overrightarrow{x}||_{p} \ge |x_{n}|(1)^{\frac{1}{p}}$$

$$||\overrightarrow{x}||_{p} \le |x_{n}|(n)^{\frac{1}{p}}$$

$$\lim_{p \to \infty} |x_{n}|(1)^{\frac{1}{p}} \le \lim_{p \to \infty} ||\overrightarrow{x}||_{p} \le \lim_{p \to \infty} |x_{n}|(n)^{\frac{1}{p}}$$

$$|x_{n}| \le \lim_{p \to \infty} ||\overrightarrow{x}||_{p} \le |x_{n}|$$

$$\therefore \text{ By squeeze theorem } \lim_{p \to \infty} ||\overrightarrow{x}||_{p} = |x_{n}|$$

Thus
$$||\overrightarrow{x}||_{\infty} = \lim_{p \to \infty} ||\overrightarrow{x}||_p$$

Question 5

For n = 2 we have: $AB = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} + a_{12}b_{22} \\ 0 & a_{22}b_{22} \end{bmatrix}$

Thus we can calculate:

$$fl(AB) = fl(A) \times fl(B)$$

$$= \begin{bmatrix} fl(a_{11}) & fl(a_{12}) \\ 0 & fl(a_{22}) \end{bmatrix} \times \begin{bmatrix} fl(b_{11}) & fl(b_{12}) \\ 0 & fl(b_{22}) \end{bmatrix}$$

$$= \begin{bmatrix} fl(a_{11})fl(b_{11}) & fl(a_{11})fl(b_{12}) + fl(a_{12})fl(b_{22}) \\ 0 & fl(a_{22})fl(b_{22}) \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}b_{11} (1 - \delta_3) & ((a_{11}b_{12})(1 - \delta_1) + (a_{12}b_{22})(1 - \delta_2)) & (1 - \delta_4) \\ 0 & (a_{22}b_{22}) & (1 - \delta_5) \end{bmatrix} \text{ (Given by the derivations done in lecture)}$$

$$= \underbrace{\begin{bmatrix} a_{11} & a_{12}(1 - \delta_2)(1 - \delta_4) \\ 0 & a_{22}(1 - \delta_5) \end{bmatrix}}_{\hat{A}} \times \underbrace{\begin{bmatrix} b_{11}(1 - \delta_3) & b_{12}(1 - \delta_1)(1 - \delta_4) \\ 0 & b_{22} \end{bmatrix}}_{\hat{B}}$$

We can see \hat{A} and \hat{B} resemble A and B closely, but with slight offsets in some components. Let $\hat{A}=A+E_A$ and $\hat{B}=B+E_B$

Define
$$E_A = \begin{bmatrix} 0 & a_{12}(-\delta_2 - \delta_4 + \delta_2 \delta_4) \\ 0 & a_{22}(-\delta_5) \end{bmatrix}$$
, $E_B = \begin{bmatrix} b_{11}(-\delta_3) & b_{12}(-\delta_1 - \delta_4 + \delta_1 \delta_4) \\ 0 & 0 \end{bmatrix}$

Let δ_A be the bound on the offset for A such that $|\delta_A| = \max(|-\delta_2 - \delta_4 + \delta_2 \delta_4|, |\delta_5|)$ Let δ_B be the bound on the offset for B such that $|\delta_B| = \max(|-\delta_1 - \delta_4 + \delta_1 \delta_4|, |\delta_3|)$

Then we know:

$$||E_A|| \le ||\delta_A A|| = |\delta_A| ||A||$$

 $||E_B|| \le ||\delta_B B|| = |\delta_B| ||B||$

Thus $||E_A||$ and $||E_B||$ are bounded by a small multiple of A and B respectively and $fl(AB) = \hat{A}\hat{B}$