

NTE74HC125 & NTE74HC126 Integrated Circuit TTL - High Speed CMOS, Quad Bus Buffer with 3-State Outputs

Description:

The NTE74HC125 and NTE74HC126 are high speed CMOS quad bus buffers in a 14–Lead plastic DIP type package fabricated in silicon gate C²MOS technology. The have the same high speed performance of LS–TTL combined with true CMOS low power consumption.

These devices require the same 3–State control input G to be taken high to make the output go into the high impedance state.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

Features:

- High Speed: t_{PD} = 8ns (typ) at V_{CC} = 5V
- Low Power Dissipation: I_{CC} = 4μA (max) at +25°C
- Output Drive Capability: 15 LS-TTL Loads
- Balanced Propagation Delays: t_{Pl H} = t_{PHI}
- Symmetrical Output Impedance: I_{OL} = |I_{OH}| = 6mA (min)
- High Noise Immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Wide Operating Voltage range: V_{CC}(opr) = 2V to 6V

Absolute Maximum Ratings: (Note 1)

Supply Voltage, V _{CC}	0.5 to +7.0V
DC Voltage, V _I , V _O	. -0.5 to V_{CC} +0.5
DC Diode Current, I _{IK} , I _{OK}	±20mA
DC Output Source Sink Current (Per Pin), I _O	±35mA
DC V _{CC} or GND Current, I _{CC} or I _{GND}	±70mA
Power Dissipation (Note 2), P _D	500mW
Storage Temperature Range, T _{stq}	-65°C to +150°C
Lead Temperature (During Soldering, 10sec), T _L	

- Note 1. Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
- Note 2. 500mW: $\approx +65^{\circ}\text{C}$ derate to 300mW by 10mW/°C: $+65^{\circ}$ to $+85^{\circ}\text{C}$.

Recommended Operating Conditions:

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{CC}	2.0	_	6.0	V
DC Input or Output Voltage	V _{IN} , V _{OUT}	0	_	V_{CC}	V
Operating Temperature Range	T _A	-40	_	+85	°C
Input Rise or Fall Times V _{CC} = 2.0V	t _r , t _f	_	_	1000	ns
$V_{CC} = 4.5V$		_	_	500	ns
$V_{CC} = 6.0V$		_	_	400	ns

DC Electrical Characteristics:

		1		\ \ \		+25°C		-40° to	+85°C	-55° to	+125°C	
Parameter	Symbol	Test C	onditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Min	Max	Unit
High Level Input Voltage	V_{IH}			2.0	1.5	-	_	1.5	-	1.5	-	V
				4.5	3.15	-	-	3.15	_	3.15	-	V
				6.0	4.2	-	-	4.2	_	4.2	-	V
Low Level Input Voltage	V_{IH}			2.0	_	-	0.5	-	0.5	-	0.5	V
				4.5	-	-	1.35	-	1.35	-	1.35	V
				6.0	-	-	1.8	-	1.8	-	1.8	V
High Level Output Voltage	V _{OH}	$V_{IN} = V_{IH} c$		2.0	1.9	2.0	-	1.9	-	1.9	-	V
CMOS Loads		I _O = -20μΑ	1	4.5	4.4	4.5	-	4.4	_	4.4	-	V
				6.0	5.9	6.0	-	5.9	-	5.9	_	V
TTL Loads		$V_I = V_{IH}$	I _O = -6mA	4.5	4.18	4.31	-	4.13	-	4.10	-	V
		or V _{IL}	$I_{O} = -7.8 \text{mA}$	6.0	5.68	5.80	-	5.63	_	5.60	-	V
Low Level Output Voltage	V _{OL}	$V_{IN} = V_{IH} c$	$V_{IN} = V_{IH}$ or V_{IL} ,		-	0.0	0.1	-	0.1	-	0.1	V
CMOS Loads		I _O = 20μA		4.5	-	0.0	0.1	-	0.1	-	0.1	V
				6.0	_	0.0	0.1	_	0.1	-	0.1	V
TTL Loads		$V_{IN} = V_{IH}$	I _O = 6mA	4.5	-	0.17	0.26	-	0.33	-	0.4	V
		or V _{IL}	$I_0 = -7.8 \text{mA}$	6.0	_	0.18	0.26	_	0.33	-	0.4	V
Input Leakage Current	I _{IN}	$V_{IN} = V_{CC}$	or GND	6.0	-	_	±0.1	-	±1.0	-	±1.0	μΑ
3-State Output Off-State Current	l _{OZ}	$V_{IN} = V_{IH} C$ $V_{O} = V_{CC} C$	or V _{IL} , or GND	6.0	-	_	±0.5	-	±5.0	-	±10	μΑ
Quiescent Device Current	I _{CC}	$V_{IN} = V_{CC}$ $I_O = 0mA$	or GND,	6.0	_	_	4.0	-	40	_	80	μΑ

		Test	Vac		+25°C		-40° to	+85°C	-55° to	+125°C	
Parameter	Symbol	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Min	Max	Unit
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2.0	-	20	60	-	75	-	90	ns
			4.5	-	6	12	-	15	-	18	ns
			6.0	-	5	10	-	13	-	15	ns

AC Electrical Characteristics (Cont'd): $(t_r = t_f = 6ns)$

		Test	V _{CC}		+25°C		-40° to	+85°C	-55° to	+125°C	
Parameter	Symbol	Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
Propagation Delay Time	t _{PLH} , t _{PHL}	C _L = 50pF	2.0	-	36	75	-	95	-	110	ns
			4.5	-	9	15	-	19	-	22	ns
			6.0	-	8	13	-	16	-	19	ns
		C _L = 150pF	2.0	-	52	105	-	130	-	160	ns
			4.5	-	13	21	-	26	-	32	ns
			6.0	-	11	18	-	22	-	27	ns
3-State Output Enable Time	t_{PZL}, t_{PZH}	C _L = 50pF,	2.0	-	36	75	-	95	-	110	ns
		$R_L = 1K\Omega$	4.5	-	9	15	-	19	-	22	ns
		C _L = 150pF,	6.0	-	8	13	-	16	-	19	ns
			2.0	-	52	105	-	130	-	160	ns
		$R_L = 1K\Omega$	4.5	-	13	21	-	26	-	32	ns
			6.0	-	11	18	-	22	-	27	ns
3-State Output Disable Time	t_{PLZ} , t_{PHZ}	C _L = 50pF,	2.0	-	48	80	-	100	-	120	ns
		$R_L = 1K\Omega$	4.5	-	12	16	-	20	-	24	ns
			6.0	_	10	14	-	17	-	20	ns
Input Capacitance	C _{IN}		-	-	5	10	-	10	-	10	pF
Power Dissipation Capacitance	C _{PD}	Note 3	-	_	35	-	-	_	-	_	pF

Note 3. C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the following equation: $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}$.

Truth Tables:

Α	G	Υ
Χ	Н	Z

Η

Н

NTE74HC125

Α	G	Υ
X	L	Z
L	Η	L
Н	Н	Н

NTE74HC126

Pin Connection Diagram							
NTE74HC125	NTE74HC126						
1 G 1 1 A 2 13 4 G	1 G 1 14 V _{CC} 13 4 G						
1 Y 3 12 4 A 2 G 4	1 Y 3 12 4 A 2 G 4 11 4 Y						
2 A 5 10 3 G	2 A 5 10 3 G						
2 Y 6 9 3 A GND 7 8 3 Y	2 Y 6 9 3 A GND 7 8 3 Y						

.100 (2.45)

.600 (15.24)

.099 (2.5) Min