(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 26 May 2005 (26.05.2005)

PCT

(10) International Publication Number WO 2005/047519 A2

(51) International Patent Classification4:

C12Q

(21) International Application Number:

PCT/US2004/036555

(22) International Filing Date:

4 November 2004 (04.11.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

A

60/516,730

4 November 2003 (04.11.2003) US

- (71) Applicant (for all designated States except US): VAN AN-DEL RESEARCH INSTITUTE [US/US]; 333 Bostwick, N.E., Grand Rapids, MI 49503 (US).
- (72) Inventors (for US only): TEH, Bin, Team; c/o Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503 (US). CHEN, Jin, Dong (US).

- (74) Agent: SHMUEL, Livnat; McKenna Long & Aldridge LLP, 1900 K Street, N.W., Washington, DC 20006 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE,

[Continued on next page]

(54) Title: LSAMP AND NORE 1 DOWN-REGULATION IN CLEAR CELL RENAL CELL CARCINOMAS

(57) Abstract: Two genes, LSAMP and NORE1 are under expressed or downregulated in one type of kidney cancer, clear cell renal cell carcinoma (CC-RCC). Methods and kits for detecting cells with this property as tumor cells or as precancerous susceptible cells are disclosed.. Also disclosed are methods for inhibiting cancer-associated properties of such cells and for treating subjects in whom such cells are present.

WO 2005/047519 A2

SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 without international search report and to be republished upon receipt of that report

LSAMP AND NORE! DOWN-REGULATION IN CLEAR CELL RENAL CELL CARCINOMAS

BACKGROUND OF THE INVENTION

Field of the Invention

5

10

15

20

25

30

The present invention in the field of genetics and medicine relates to the underexpression of two genes, *LSAMP* and *NORE1* in clear cell renal cell carcinoma (CC-RCC) tissue and exploitation of this property in methods for detecting or treating this type of cancer.

Description of the Background Art

Renal carcinoma is known to have different histological types, with distinct genetic profiles (Storkel et al., 1997). Worldwide, approximately 150,000 people are diagnosed with renal carcinoma, resulting in 78,000 deaths annually (Zbar et al., 2002). The most common type is clear cell renal cell carcinoma (CC-RCC). Studies of familial CC-RCC have led to the identification of important tumor suppressor genes such as VHL (Latif et al., 1993), Recently. position cloning also resulted in the discovery of other kidney cancer-related genes BHD, FH, and HRPT2 (Nickerson et al., 2002; Tomlinson et al., 2002; Carpten et al., 2002). While hereditary CC-RCCs are mainly attributed to VHL mutations, there are known CC-RCC families and a significant proportion of sporadic CC-RCCs that are not associated with the VHL (Teh et al., 1997; Woodward et al., 2000), thus pointing to the existence of other CC-RCC-related genes. Since some CC-RCC families are associated with balanced chromosomal translocations, the translocation breakpoint-spanning genes are likely CC-RCC-related candidate genes. The first CC-RCC family with a balanced chromosomal translocation t(3;8)(p14;q24) was described by Cohen et al. (1979). To date, at least eight such hereditary CC-RCC-related chromosomal translocation families have been reported (Cohen et al., 1979; Kovacs et al., 1988; Kovacs et al., 1989; Koolen et al., 1998; van Kessel et al., 2001; Podolski et al., 2001; Kanayama et al., 2001). Interestingly, translocation in all these CC-RCC families is linked to chromosome 3, making constitutional chromosome 3 translocation a predisposing factor (vas Kessel et al., 1999; Bodmer et al., 1998; Bodmer et al., 2002c). The subsequent observation of the loss of translocation derivative chromosome 3 (der(3) chromosome) and somatic VHL mutations in a proportion of familial tumors led to the proposal of a three-step model of CC-RCC tumorigenesis (Schmidt et al., 1995; Bodmer et al., 1998; Bodmer et al., 2002c): initial constitutional chromosome 3 translocation, subsequent somatic loss of the der(3) chromosome

1

leading to the loss of a copy of VHL, and a third hit in the form of random somatic mutation in the second VHL allele. However, loss of the der(3) chromosome was observed only in a subset of the examined samples. Most of the analyzed familial tumors with loss of the der(3) did not carry VHL mutations. Furthermore, neither der(3) loss nor VHL mutations were observed in several tumor biopsies in the affected families (Eleveld et al., 2001; Bodmer et al., 2002b). These observations suggest that the breakpoint-spanning genes in the familial RCC-associated chromosome 3 translocations are also likely implicated in RCC tumorigenesis or act synergistically in the above model in the form of genetic and/or epigenetic alternations.

Analysis of the constitutional t(3;8)(p14;q24) translocation associated with familial CC-RCC led to the identification and extensive investigation of the breakpoint-spanning gene *FHIT* (fragile histidine triad) on 3p14 (Ohta *et al.*, 1996). *FHIT* is thought to be a putative tumor suppressor gene, and aberrant *FHIT* transcripts and *FHIT* genomic lesions were observed in a variety of primary tumors and tumor-derived cell lines (Ohta *et al.*, 1996; Siprashvili *et al.*, 1997; Druck *et al.*, 1997). The partner breakpoint-spanning gene *TRC8* on the chromosome 8 shows high homology to the *Drosophila* patched (*PTCH*) gene and probably also functions as a tumor suppressor (Gemmill *et al.*, 2002). Also, another two breakpoint-spanning genes, *DIRC1* on chromosome 2q33 and *DIRC2* on 3q21, disrupted respectively in t(2;3)(q33;q21) and t(2;3)(q35;q21) breakpoints, have been identified (Druck *et al.*, 2001; Bodmer *et al.*, 2002a). The role of these genes in CC-RCC tumorigenesis remains to be determined.

The present inventors describe here the positional cloning of the t(1;3)(q32.1;q13.3) chromosomal breakpoints and the identification of two breakpoint-spanning genes, *LSAMP* on 3q13.3 and *NORE1* on 1q32.1, in a previously reported Japanese hereditary CC-RCC family (Kanayama *et al.*, 2001). *LSAMP* (limbic-system-associated membrane protein gene) encodes a neuronal surface glycoprotein that belongs to the IgLONs (immunoglobulin LSAMP, OPCML/OBCAM, and neurotrimin) family and is distributed in cortical and subcortical regions of the limbic system (Pimenta *et al.*, 1996). To date, very little is known about *LSAMP* and its biological role remains unclear. However, its family partner gene *OPCML/OBCAM* on 11q25 was recently found to be epigenetically inactivated and was regarded as a candidate TSG in epithelial ovarian cancer (Sellar *et al.*, 2003). *NORE1* was recently identified as a homolog of the tumor suppressor gene *RASSF1* at 3p21.3, which is frequently inactivated via promoter hypermethylation in a variety of human tumors (Dammann *et al.*, 2000; Tommasi *et al.*, 2002). The mouse counterpart Norel is a Ras effector (Vavvas *et al.*, 1998).

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 and its subparts show mapping of the of the t(1;3) breakpoints on chromosomes 1q32.1 and 3q13.3 by FISH.

5

10

15

20

25

30

- Fig. 1A-1 shows the construction of a contig of nine BAC clones in a 3.6-cM region of 1q32.1 (left panel, labeled "1q"). The RP11-54L22 was first found to span the breakpoint by FISH split assay. Overlapped BAC clones (CTD-2245C1, -2321B11, and -2278G17) also showed split signals and confine the der(1) breakpoint region to about 30 kb (dotted box).
- Fig. 1A-2 shows the similar establishment of a contig of ten BAC clones within a 5-cM region of 3q13.3 (right panel, labeled "3q"). The breakpoint was found within RP11-281N16 and was further mapped to a about 30-kb region (dotted box) using overlapping clones (RP11-149B11, CTD-2246M24, and -2514L8).
- Fig. 1B shows fine mapping of the 1q32.1 and 3q13.3 breakpoints by Southern blot analysis and restriction mapping. Nine specific DNA probes (4-10 kb) flanking the 1q breakpoint were synthesized by long-range PCR with specific primers from known-sequence RP11-54L22 and -281N16. Southern blot analyses showed that a 5.6-kb 1q-p4 probe (Fig. 1B-1 left panel, labeled RP11-54L22 clone") and a 6.2-kb 3q-p2 probe (Fig. 1B-2 right panel, labeled "RP11-281N16 clone") span the respective 1q32.1 and 3q13.31 breakpoints, which narrowed both breakpoint regions to approximately 6 kb. Restriction mapping refined the 1q and the 3q breakpoints to about 1.5-kb (Fig. 1B-1, left panel) and 2-kb regions, respectively (Fig. 1B-2, right panel).
- Fig. 1C shows representative Southern-blot analyses from both chromosomes showing distinct aberrant bands (indicated by arrowheads) after restriction digestion. DNA from two normal controls (N1, N2) and two patients (FRCC3 and FRCC5) were completely digested and subjected to DNA hybridization analysis. Fig. 1C-1 shows the Southern blot from chromosome 1q32.1; Fig. 1C-2 shows the Southern blot from chromosome 3q13.3.
- Figure 2 shows the cloning of both der(1) (1q32.1) and der(3) (3q13.31) breakpoints through long-range PCR and DNA sequencing.
- Fig. 2A shows amplification of der(1) and der(3) breakpoints via long-range PCR. A 2.15-kb der(1) breakpoint fragment (der(1)-BP) and a 3.25-kb der(3) breakpoint fragment (der(3)-BP) were amplified. The breakpoint fragments were sequenced and are shown in the lowest boxes. The normal sequences around the breakpoints on 1q32.1 and 3q13.31 are also

shown for comparison. The uppercase sequences are from 1q32.1 and the lowercase sequences are from 3q13.31. The sequences in red on 3q13.31 are deleted from the breakpoints.

Fig. 2B is a schematic illustration of the identification of breakpoint-spanning genes. The translocation breakpoints occur within intron 2 of both breakpoint-spanning genes *LSAMP* at 1q32.1 and *NORE1* at 3q13.31, which is accompanied by loss of 52 or 54 bp (red sequences in panel A) from *LSAMP* and of 2 or 0 bp from *NORE1*. An insertion of nucleotide G (ins G) in the breakpoint junction and a loss of 2 bp (delTG) in *LSAMP* in the distal part of breakpoint were also observed. *NORE1* has two isoforms, *NORE1A* and *NORE1B*. *LSAMP* contains seven exons and sits in the reverse strand of chromosome 3.

5

10

15

20

25

30

Figure 3 shows lower expression and promoter methylation of *LSAMP* and *NORE1A* in RCC cell lines and sporadic RCC tumors.

Fig. 3A shows that the expression of LSAMP (Fig. 3A-1) and NORE1A (Fig. 3A-3) in nine RCC cell lines and sporadic tumors (LSAMP; 0.06 ± 0.06 for cell lines and 0.05 ± 0.07 for tumors; NORE1A: 0.19 ± 0.10 for cell lines and 0.27 ± 0.12 for tumors) is significantly lower than that in nine normal kidney tissues (LSAMP; 0.77 ± 0.28 ; NORE1A; 1.03 ± 0.53) using real-time PCR assay (t-test of SSPS, p < 0.001). Fig. 3A-2 and Fig. 3A-4 (Right panels) show eight RCC cell lines which were demethylated using 5-aza-CdR; the expression of both LSAMP (Fig. 3A-2) and NORE1A (Fig. 3A-4) was significantly increased in each line (LSAMP; untreated, 0.35 ± 0.23 ; 5-aza-CdR, 1.02 ± 0.33 ; NORE1; untreated, 0.03 ± 0.02 ; 5-aza-CdR, 0.24 ± 0.10) (t-test of SSPS, p < 0.001).

Fig. 3B shows methylation analysis of the *LSAMP* promoter. Bisulfite-treated DNA from 53 matched pairs of human CC-RCC tumors and normal DNA samples, 9 RCC cell lines, 2 t(1;3)-positive lymphoblastoid cell lines, and 2 control lymphoblastoid cell lines (NC1 and NC2) were amplified and digested with *HhaI*. The *LSAMP* promoter (540 bp) contains 28 CpG islands. The analysed 231-bp fragment of the *LSAMP* promoter contains one *HhaI* site and digestion leads to fragments of 162 bp and 69 bp. Representative aberrant methylation of the *LSAMP* promoter in sporadic and familial CC-RCC samples and in RCC cell lines are shown.

Fig. 3C shows methylation analysis of the NORE1A promoter by restriction digestion with TaqI in the same cohort of samples. The examined 335 bp of the promoter contains 35 CpG sequences. The methylated fragment contains two TaqI sites and digestion results in bands of 202, 123, and 10 bp. The sizes of molecular weight markers (M) are shown on the left. N, normal kidney sample; T, RCC.

Figure 4 shows suppression of LSAMP, NORE1A, and Nore1 re-expression on cell proliferation characteristics.

Fig. 4A shows re-expression and localization of EGFP-LSAMP, -NORE1A, and -Nore1 fusion protein 2 h after microinjection or 24 h after lipid-mediated transfection of *pEGFP-LSAMP*, -NORE1A, and -Nore1 plasmids.

5

10

15

20

25

30

Fig. 42B shows a growth inhibition assay. A-498/Caki-1 cells were microinjected with pEGFP-LSAMP, -NORE1A, -Nore1, or pEGFP-C1/-N1 vector (negative control). Cell proliferation analysis was performed 2 h after microinjection. Cells were counted at the indicated times. The "proliferation index" on the y-axis represents the number of cells counted at those times divided by the number of cells counted 2 h after injection.

Figure 5 and its subparts show cytogenetic analysis of the t(1q32.1;3q13.3). Fig. 5A shows G-banding and spectral karyotyping analysis. The breakpoints were marked with arrows.

Fig. 5B shows representative results of FISH with the BAC clone probes on t(1;3) breakpoint region. Fig. 5B-1 (Left panel) shows FISH with BAC probe CTD-2321B11 (red signal): a split signal was observed in der(3). Fig. 5B-2 (Right panel) shows FISH with probe RP11-281N16: split signals (red) equally appeared on both der(1) and der(3). A 1q subtelomeric PAC probe 160H23 (green signal) was used as a control in all the FISH experiments.

Figure 6 and its subparts show two *NORE1* alterations identified in sporadic tumors T31 and T24. Fig. 6A shows that the codon 189 GTG(Val) was replaced by ATG(Met) in T31. It was also found in 5% of the control chromosomes tested. Fig. 6B shows that the codon 248 CGG(Arg) was replaced by CAG(Gln) in T24, which has not been detected in control samples. In *NORE1B*, the affected codon number is 95.

Figure 7 shows nuclear localization and growth suppression analysis of Nore1. Fig. 7A demonstrates that EGFP-Nore1 is predominantly nuclear in Caki-1 cells (RCC cell line), by lipid-mediated transfection using a *pEGFP-Nore1* plasmid and LIPOFECTAMINE 2000 reagent (Invitrogen). EGFP expressed from the empty vector *pEGFP-C1* was both nuclear and cytoplasmic. Fig. 7B shows that subcellular fractionation and subsequent Western analysis further indicated that the majority of Nore1 is localized to the nucleus, while a lesser amount appears at the plasma membrane. Fig. 7C shows that induction of Nore1 inhibits the growth of 293-T cells. The 293-T cells were transfected with *pIND(SP1)-Nore1* or an empty vector and selected in hygromycin for three weeks. Each point on the growth curve represents the mean of

three individual cell count determinations. Fig. 7D shows western analysis of Nore1 expression; V, vector-transfected cells; M, Nore1/MaxP1-transfected cells.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The inventors demonstrate here that the limbic-system-associated membrane protein (LSAMP) gene and the NORE1 gene are the breakpoint-spanning genes in a familial clear cell renal cell carcinoma (CC-RCC), and that the expression of these genes is down-regulated in RCC cell lines and sporadic CC-RCCs. Furthermore, expression of LSAMP and NORE1A proteins in CC-RCC cell lines is shown to inhibit cell proliferation. Diagnostic and treatment methods based on the above observations are described below.

10

5

This invention includes a method for detecting the presence of, or a predisposition (susceptibility) to, a cancer (e.g., CC-RCC) in a subject, comprising detecting, measuring the amount of, or quantitating LSAMP and/or NORE1 gene expression in a sample from the subject, compared to a baseline level of expression, wherein a reduction in the expression of one or both of the genes compared to the baseline level indicates that the subject suffers from, or has a predisposition to, the cancer.

15

As used herein, a "baseline value" or "baseline amount" includes the amount of expression of an LSAMP or a NORE1 gene in normal tissue, such as from a "pool" of normal subjects who do not suffer from, or who do not exhibit a predisposition to, the cancer. This value can be determined at the same time as the level in a sample from the subject being studied, or it can be available in a reference database such as a reference standard or a generic database.

20

The expression may be at the level of RNA transcription which can be detected by various means including quantitative hybridization to a suitable probe, or at the level of protein translation, for example by determining the activity of, or the presence of, the protein, using conventional procedures including an immunoassay. Methods for detecting, measuring or quantitating either the RNA or the protein gene product are conventional and routine.

25

In the following description, reference will be made to various methodologies known to those of skill in the art of immunology, cell biology, and molecular biology. Publications and other materials setting forth such known methodologies to which reference is made are incorporated herein by reference in their entireties as though set forth in full. Standard reference works setting forth the general principles of immunology include A.K. Abbas *et al.*, *Cellular and Molecular Immunology* (Fourth Ed.), W.B. Saunders Co., Philadelphia, 2000; C.A. Janeway

30

et al., Immunobiology. The Immune System in Health and Disease, Fourth ed., Garland Publishing Co., New York, 1999; Roitt, L et al., Immunology, (current ed.) C.V. Mosby Co., St. Louis, MO (1999); Klein, J., Immunology, Blackwell Scientific Publications, Inc., Cambridge, MA, (1990).

5

10

15

20

25

30

Monoclonal antibodies (mAbs) and methods for their production and use are described in Kohler and Milstein, Nature 256:495-497 (1975); U.S. Patent No. 4,376,110; Harlow, E. et al., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1988); Monoclonal Antibodies and Hybridomas: A New Dimension in Biological Analyses, Plenum Press, New York, NY (1980); H. Zola et al., in Monoclonal Hybridoma Antibodies: Techniques and Applications, CRC Press, 1982)); (Kozbor et al., 1983, Immunol. Today 4:72 (the human B-cell hybridoma technique), and Cole, et al., 1985, In: Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96 (the EBV-hybridoma technique to produce human mAbs).

Interspecies chimeric antibodies are described, for example, in Cabilly et al., U.S. Patents 4,816,567 (3/28/89) and 6,331,415 (12/18/01);; Morrison et al., US Patent 5,807,715 (9/15/98) and Eur. Patent Pub. EP173494 (3/5/86); Taniguchi et al., Eur. Patent Pub. EP171496 (2/19/86); Neuberger et al., PCT Pub. WO86/01533 (3/13/86); Robinson et al., PCT Pub. WO 8702671 (5/7/87); Cabilly et al., Proc. Natl. Acad. Sci. USA 81:3273-3277 (1984); Morrison et al., Proc. Natl. Acad. Sci. USA 81:6851-6855 (1984); Boulianne et al., Nature 312:643-646 (1984); Morrison, Science, 229:1202-1207 (1985); Neuberger et al., Nature 314:268-270 (1985); Takeda et al., Nature 314:452-454 (1985); Oi et al., BioTechniques 4:214 (1986); Sun et al., Proc. Natl. Acad. Sci. USA 84:214-218 (1987); Liu et al., J. Immunol. 139:3521-3526 (1987); Better, M., et al., Science 240:1041-1043 (May 20, 1988); and Horwitz, A. H., et al., Proc. Natl. Acad. Sci. USA 85:8676-8682 (1988)).

Single chain antibodies (scFv) are described, for example, in Skerra, A. et al. (1988) Science, 240: 1038-1041; Pluckthun, A. et al. (1989) Methods Enzymol. 178: 497-515; Winter, G. et al. (1991) Nature, 349: 293-299); Bird et al., (1988) Science 242:423; Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879; Jost CR et al., J Biol Chem. 1994 269:26267-26273.U.S. Patents No. 4,704,692, 4,853,871, 4,946,778, 5,260,203, 5,455,030; and Jost CR et al. J Biol Chem. 1994 269:26267-26273.

Immunoassay methods are also described in Coligan, J.E. et al., eds., Current Protocols in Immunology, Sec. 2.4.1, Wiley-Interscience, New York, 1992 or current edition); Butt, W.R. (ed.) Practical Immunoassay: The State of the Art, Dekker, New York, 1984; Bizollon, Ch. A.,

ed., Monoclonal Antibodies and New Trends in Immunoassays, Elsevier, New York, 1984; Butler, J.E., ELISA (Chapter 29), In: van Oss, C.J. et al., (eds), IMMUNOCHEMISTRY, Marcel Dekker, Inc., New York, 1994, pp. 759-803; Butler, J.E. (ed.), Immunochemistry of Solid-Phase Immunoassay, CRC Press, Boca Raton, 1991; Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986; Work, T.S. et al., Laboratory Techniques and Biochemistry in Molecular Biology, North Holland Publishing Company, NY, (1978) (Chapter by Chard, T., "An Introduction to Radioimmune Assay and Related Techniques").

5

10

15

20

25

30

In a preferred embodiment, the presence or amount of LSAMP and/or NORE1 protein in a cell is detected by binding proteins in the sample to a detectably labeled antibody that is specific for an LSAMP or a NORE1 protein. An antibody "specific" for a polypeptide means that the antibody recognizes a defined sequence of amino acids, or epitope, either present in the full length polypeptide, or in a peptide fragment thereof.

Any of a variety of antibodies can be used in such methods. Such antibodies include, polyclonal, monoclonal (mAbs), recombinant, humanized or partially humanized, single chain (scFv), Fab, and fragments thereof. The antibodies can be of any isotype, such as IgM, various IgG isotypes such as IgG_1 ' IgG_{2a} , etc., and they can be from any animal species that produces antibodies, including goat, rabbit, mouse, chicken or the like.

Antibodies are prepared according to conventional methods, which are well known. See, references cited above. Methods of preparing humanized or partially humanized antibodies, and antibody fragments, and methods of purifying antibodies, are conventional (*supra*).

For preparation of mAbs, any technique that provides mAbs produced by cell lines in continuous culture can be used (*supra*). Techniques described for the production of single chain antibodies (*supra*) can be adapted to produce scFv antibodies to polypeptide products of this invention.

Transgenic animals may be used to express partially or fully humanized antibodies to immunogenic polypeptide products of this invention.

Other specific binding partners, such as, e.g., aptamers and peptide nucleic aces (PNA), may be used in place of antibodies.

The sample to be assayed in a method of the invention may be any suitable cell or tissue, or extract thereof. A sample of a body fluid such as plasma, serum, urine, saliva, cerebrospinal fluid, etc., may be obtained from the subject being screened. Alternatively, cells expressing the

protein on their surface, e.g., suitable neuronal cells for the detection of LSAMP protein, may be obtained by simple, conventional means. If the protein is a receptor or other cell surface structure, it can be detected and quantified by well-known methods such as flow cytometry, immunofluorescence, immunocytochemistry or immunohistochemistry, or the like (see supra).

In a preferred embodiment, the detection or diagnosis is performed on a sample from a kidney tumor, e.g., a tissue biopsy, a fresh-frozen sample, or a paraffin-embedded tissue section. Methods of preparing all of these sample types are conventional and well known in the art. Biopsy material and fresh-frozen samples can be extracted by conventional procedures to obtain proteins or polypeptides. In one embodiment, paraffin-embedded blocks are sectioned and analyzed directly without such extraction.

5

10

15

20

25

30

Another embodiment of the invention is a method for inhibiting the growth, transformation or other cancer-associated property of a tumor cell, preferably a CC-RCC cell, which is characterized by reduced expression of the *LSAMP* and/or *NORE1* genes compared to a normal kidney cell or a baseline value. The method comprises contacting the cell with an effective amount of an agent which stimulates the expression of the LSAMP and/or NORE1 polypeptide. By an "effective amount" is meant an amount that leads to a measurable reduction of such expression measured at the RNA or protein level.. Methods of contacting a cell are conventional and include injection or other forms of administration and my be done using liposomes, electroporation, microinjection or the like. The cell may be contacted *in vitro* or *in vivo*.

Another embodiment is a method for treating a subject suffering from cancer or a tumor, such as CC-RCC, in which at least some of the cells of the subject under-express the *LSAMP* and/or the *NORE1* gene compared to a baseline value. The method comprises

- (1) administering to the subject an effective amount of LSAMP and/or NORE1 polypeptide or active fragment or variant thereof, or a nucleic acid encoding the polypeptide or active fragment or variant thereof which fragment or variant have the desired biological level of the LSAMP or NORE1 polypeptide; or
- (2) administering an agent which stimulates, promotes or otherwise results in increased expression LSAMP or NORE1 polypeptide.
- Methods of administering the polypeptide are conventional and include, e.g., systemic administration or, preferentially, direct intratumoral administration. The subject may be any suitable animal, preferably a mammal, more preferably a human.

In the above nucleic acid embodiments, the polynucleotide being administered comprises sequences which encode the polypeptide (or variant or fragment), and which are operably linked to an expression control sequence such as a promoter. This polynucleotide may be cloned in a suitable vector, many examples of which are well known to those of skill in the art.

As used herein, the term "expression control sequence" means a polynucleotide sequence that regulates expression of a polypeptide encoded by a polynucleotide to which the control sequence is functionally ("operably") linked. Expression can be regulated at the level of the mRNA or polypeptide synthesis or stability. Thus, the "term expression control sequence" includes mRNA-related elements and protein-related elements, which include promoters, domains within promoters, upstream elements, enhancers, elements that confer tissue or cell specificity, response elements, ribosome binding sequences, transcriptional terminators, *etc.* An expression control sequence is operably linked to a nucleotide sequence (*e.g.*, a coding sequence) when the expression control sequence is positioned in such a manner to effect or achieve expression of the coding sequence. For example, when a promoter is operably linked 5' to a coding sequence, expression of the coding sequence is driven by the promoter. Suitable expression control sequences will be evident to the skilled worker.

Methods for generating polynucleotides and polypeptides for use in the methods, compositions and kits of the invention, are conventional. For example, polynucleotides can be isolated, e.g., using sequence probes corresponding to the sequences indicated in the GenBank accession numbers provided elsewhere herein. The polynucleotides can be cloned into suitable vectors, and introduced into and replicated and/or expressed in suitable host cells. Procedures for carrying out these steps are conventional. Nucleic acids that have replicated in the cells, and polypeptides expressed in the cells, can be harvested and, if desired, purified, using conventional procedures. Some suitable molecular biology methods, for use in these and other aspects of the invention, are provided e.g., in Sambrook, et al. (1989), Molecular Cloning, a Laboratory Manual, Cold Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Ausubel et al. (1995). Current Protocols in Molecular Biology, N.Y., John Wiley & Sons; Davis et al. (1986), Basic Methods in Molecular Biology, Elsevier Sciences Publishing,, Inc., New York; Hames et al. (1985), Nucleic Acid Hybridization, IL Press; Dracopoli et al. Current Protocols in Human Genetics, John Wiley & Sons, Inc.; and Coligan et al. Current Protocols in Protein Science, John Wiley & Sons, Inc.

Methods for providing a polynucleotide to a cell *in vitro*, *i.e.*, contacting the cell, are conventional and include, transfection, a gene gun, microinjection, electroporation, introduction by liposomes or with viral or non-viral vectors, *etc*.

For gene gun-mediated DNA injection, DNA-coated gold particles (e.g., about 1 µg DNA/bullet) are delivered using a helium-driven gene gun (BioRad, Hercules, CA) with a discharge pressure of, for example, about 400 p.s.i. The Biojector 2000 (Bioject Inc., Portland, OR) is a needle-free jet injection device consisting of an injector and a disposable syringe. The orifice size controls the depth of penetration. For example, DNA (at between about 1 and 100 µg) may be delivered using the Biojector with a syringe nozzle. This may be done intradermally, intramuscularly or intratumorally. Follow-up injections using both methods can be repeated as needed, e.g., at weekly intervals.

5

10

15

20

25

30

Methods of gene therapy or nucleic acid therapy, in which a polynucleotide of the invention is provided in a delivery vehicle, are well-known. The gene vehicle may be of viral or non-viral origin (see generally, Jolly, Cancer Gene Therapy 1:51-64 (1994) Kimura, Human Gene Therapy 5:845-852 (1994); Connelly, Human Gene Therapy 1:185-193 (1995); and Kaplitt, Nature Genetics 6:148-153 (1994). Vehicles for delivery of nucleic acid constructs including a coding sequence of a therapeutic embodiment of the invention can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches. Expression of the coding sequences can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence can be either constitutive or regulated.

Recombinant retroviruses constructed to carry or express a selected nucleic acid molecule of interest may be used. See, for example, EP 0415731; WO 90/07936; WO 94/03622; WO 93/25698; WO 93/25234; U.S. Patent No. 5,219,740; WO 93/11230; WO 93/10218; Vile et al., Canc. Res. 53:3860-3864 (1993); Vile et al., Canc. Res. 53:962-967 (1993); Ram et al., Canc. Res. 53:83-88 (1993); Takamiya et al., J. Neurosci. Res. 33:493-503 (1992); Baba et al., J. Neurosurg. 79:729-735 (1993); U.S. Patent No. 4,777,127; GB Patent No. 2,200,651; and EP 0345242. Preferred recombinant retroviruses include those described in WO 91/02805.

Packaging cell lines suitable for use with the above-described retroviral vector constructs may be readily prepared (WO 95/30763 and WO 92/05266), and used to create producer cell lines (also termed vector cell lines) for the production of recombinant vector particles. Preferred

embodiments of the invention utilize packaging cell lines made from human (such as HT1080 cells) or from mink parent cell lines, that result in production of recombinant retroviruses that survive inactivation in human serum.

5

10

15

20 、

25

30

Alphavirus-based vectors can function as gene delivery vehicles and be constructed from a wide variety of alphaviruses, including, for example, Sindbis virus vectors, Semliki forest virus (ATCC VR-67; ATCC VR-1247), Ross River virus (ATCC VR-373; ATCC VR-1246) and Venezuelan equine encephalitis virus (ATCC VR-923; ATCC VR-1250 ATCC VR-1249; ATCC VR-532). Representative examples of such vector systems are described in U.S. Patents No. 5,091,309; 5,217,879; and 5,185,440; and PCT Publications WO 92/10578; WO 94/21792; WO 95/27069; WO 95/27044; and WO 95/07994.

Delivery vehicles of the present invention can also employ parvovirus such as adeno-associated virus (AAV) vectors. See, for example, Srivastava, WO 93/09239, Samulski *et al.*, *J. Vir.* 63:3822-3828 (1989); Mendelson *et al.*, *Virol.* 166:154-165 (1988); and Flotte *et al.*, *P.N.A.S.* 90:10613-10617 (1993).

Representative examples of adenoviral vectors are described by Berkner, Biotechniques 6:616-627; Rosenfeld et al., Science 252:431-434 (1991); WO 93/19191; Kolls et al., Proc. Natl. Acad Sci. USA 91:215-219 (1994); Kass-Eisler et al., Proc. Natl. Acad Sci. USA 90:11498-11502 (1993); Guzman et al., Circulation 88:2838-2848 (1993); Guzman et al., Cir. Res. 73:1202-1207 (1993); Zabner et al., Cell 75:207-216 (1993); Li et al., Hum. Gene Ther. 4:403-409 (1993); Cailaud et al., Eur. J. Neurosci. 5: 1287-1291 (1993); Vincent et al., Nat. Genet. 5:130-134 (1993); Jaffe et al., Nat. Genet. 1:372-378 (1992); and Levrero et al., Gene 101:195-202 (1992). Exemplary adenoviral nucleic acid therapy vectors useful herein are described in WO 94/12649, WO 93/03769; WO 93/19191; WO 94/28938; WO 95/11984 and WO 95/00655. Administration of DNA linked to killed adenovirus is described in Curiel, Hum. Gene Ther. 3:147-154 (1992).

Other delivery vehicles and methods may be employed, including polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example, Curiel (*supra*); ligand-linked DNA, for example, see Wu, *J. Biol. Chem.* 264:16985-16987 (1989); eukaryotic cell delivery vehicles (U.S.S.N. 08/240,030, filed May 9, 1994, and 08/404,796); deposition of photopolymerized hydrogel materials; hand-held gene transfer particle gun (U.S. Patent 5,149,655); ionizing radiation (U.S. Patent No. 5,206,152 and WO 92/11033; nucleic acid charge neutralization or fusion with cell membranes. Additional approaches are described in

Philip, Mol. Cell Biol. 14:2411-2418 (1994) and Woffendin, Proc. Natl. Acad. Sci. USA 91:1581-1585 (1994) (a mechanical delivery system).

Naked DNA may also be employed. See, for example, WO 90/11092 and U.S. Patent 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into thr cytoplasm.

Use of liposomes as DNA delivery vehicles are described in U.S. Patent 5,422,120, PCT Patent Pub. WO 95/13796, WO 94/23697 and WO 91/14445, and EP 0 524 968.

10

15

20

5

Effective dosages and routes of administration of polypeptides or polynucleotides of the invention are conventional. The exact amount (effective dose) of the agent will vary from subject to subject, depending on the species, age, weight and general or clinical condition of the subject, the severity or mechanism of any disorder being treated, the particular agent or vehicle used, the method and scheduling of administration, and the like. A therapeutically effective dose can be determined empirically, by conventional procedures known to those of skill in the art. See, e.g., The Pharmacological Basis of Therapeutics, Goodman and Gilman, eds., Macmillan Publishing Co., New York. For example, an effective dose can be estimated initially either in cell culture assays or in suitable animal models. The animal model may also be used to determine the appropriate concentration ranges and routes of administration. Such information can then be used to determine useful doses and routes for administration in humans. A therapeutic dose can also be selected by analogy to dosages for comparable therapeutic agents. In general, effective doses include between about 10 ng to about 100 mg up to a total dose of about 5g, depending on the route of administration, number of repeat administrations and other factors as noted above.

25

A variety of routes of administration may be used, including oral, respiratory, intranasal, intravectal, intravaginal, sublingual, transdermal, extracorporeal, topical, intravenous, subcutaneous, intramuscular, intramedullary, or intraperitoneal injection, other parenteral routes, or the like. One of skill in the art will recognize particular cells, tissues or organs into which therapeutic agents of the invention can be administered, as appropriate for particular indications.

30

Another embodiment of the invention is a pharmaceutical composition comprising (a) an LSAMP and/or NORE1 polypeptide, or an active fragment or variant thereof, or (b) a

polynucleotide encoding an LSAMP and/or NORE1 polypeptide, or encoding an active fragment or variant of the polypeptide, wherein the polynucleotide is operably linked to an expression control sequence; and a pharmaceutically acceptable carrier.

ì

5

10

15

20

25

30

Another embodiment of the invention is a kit, suitable for carrying out any method of the invention. For example, the invention includes a kit for detecting the presence and/or amount of an LSAMP and/or a NORE1 polypeptide in a tumor or pre-cancerous sample, such as CC-RCC or normal kidney cells susceptible of transformation to become CC-RCC, wherein the cells are characterized by a reduced amount compared to a baseline value of one or both of these polypeptides. The kit comprises one or more reagents for detecting the polypeptide, preferably an antibody specific for the polypeptide, which is preferably detectably labeled, and, optionally, one or more reagents for testing the binding of the antibody to a sample polypeptide and/or that one that facilitates detection of antibody binding.

Another embodiment is a kit for detecting the presence and/or amount of a polynucleotide encoding LSAMP and/or NORE1 polypeptide in a tumor or pre-cancerous sample, such as a CC-RCC tumor cells or normal kidney cells susceptible of transformation to become CC-RCC. Such cells are characterized by under-expression of LSAMP and/or NORE1 compared to a baseline value which is indicative that the cells are susceptible of development into cancer cells, primarily CC-RCC cells. The kit comprises a nucleic acid probe specific for a LSAMP- or NORE1-encoding polynucleotide, and, optionally, one or more reagents that facilitate hybridization of the probe to the sample polynucleotide, and/or that facilitate detection of the hybridized polynucleotide.

Another embodiment is a kit useful for inhibiting or reducing a cancer-associated property of a cell, comprising an LSAMP and/or NORE1 polypeptide, or an active fragment or variant thereof, and, optionally, means for introducing the polypeptide into the cell and/or for measuring the cancer-associated property.

In another embodiment, the kit is suitable for treating a subject suffering from a cancer such as CC-RCC, the kit comprising an LSAMP and/or NORE1 polypeptide, or an active fragment or variant thereof, and, optionally, means for administering the polypeptide to the subject.

In other embodiments, the kit comprises, instead of the polypeptides, a nucleic acid encoding LSAMP and/or NORE1, or encoding active fragments or variants of the polypeptides, wherein the polynucleotides are operably linked to expression control sequences.

Optionally, kits of the invention comprise instructions for performing the method for which the kit is intended and/or for analyzing and/or evaluating the assay results as generated by the method. A kit may further comprise a support on which a cell can be propagated (e.g., a tissue culture vessel) or a support to which a reagent used in the method is immobilized. Other optional elements of the present kit include suitable buffers, media components, or the like; reagents for performing suitable controls; a computer or computer-readable medium for storing and/or evaluating the assay results; containers; or packaging materials. The reagents of the kit may be in containers in which the reagents are stable, e.g., in lyophilized form or stabilized liquids. The reagents may also be in single use form, e.g., in single dosage form for use as therapeutics, or in single reaction form for diagnostic use.

5

10

15

20

25

30

Another embodiment of the invention is an antibody specific for an epitope of the LSAMP or he NORE1 polypeptide. Such antibodies are useful, not only for diagnostic procedures, as discussed above, but also for experimental purposes, e.g., for elucidating the mechanisms of CC-RCC carcinogenesis. Some of the types of suitable antibodies, and methods for using them, were discussed above.

EXAMPLES

EXAMPLE I

Mapping of Breakpoints

The inventors have previously mapped the constitutional t(1;3)-associated breakpoints to bands 1q32.1 and 3q13.3 in a family with four cases of CC-RCC (Kanayama *et al.*, 2001). In this study, the inventors cloned the breakpoints of t(1;3)(q32.1;q13.3) by using a strategy that combined FISH, Southern blot, long-range PCR, and DNA sequencing. FISH experiments allowed narrowing of the breakpoint regions to a 20- to 30-kb range on both affected chromosomes (Figure 1A). These were further refined via Southern blot analyses and restriction mapping to approximately 2 kb (Figure 1B and 1C). Assisted by information from human genome sequence databases and BAC clone databases, several sets of specific primers were designed around the breakpoints and long-range PCR was performed to amplify the breakpoint fragments (Figure 2A). A 2.15 kb der(1)-breakpoint and a 3.25 kb der(3)-breakpoint were amplified and subcloned into TA-cloning vector (Invitrogen, USA) (Figure 2A). Subsequent DNA sequencing of the breakpoint fragments resulted in the identification of both breakpoints (Figure 2; also see Table 1).

Table 1. Sequences and positions of the synthetic oligonucleotides used in the study.

Target	Direc	tion	Sed	quence (5'-3')	SEQ ID NO:		
For genomic PCR of the fusion genes							
NORE1-LSAMP	Forward	GGAGAAA	GAGAGACCAGGA	CAAA (<i>NOREI</i>)	1		
NORE1-LSAMP	Reverse	GCTTCCC	AGGTTCAAGTGA	TTC (<i>LSAMP</i>)	2		
NORE1-LSAMP	Sequencing Forward	AGCGATCA	ATCCTGCCTTG	(NOREI)	3		
NORE1-LSAMP	Sequencing Forward		GCCCATAAATA		. 4		
	Sequencing				5		
NORE1-LSAMP	Forward	GTGGCCTGCAAAACCTAAC (NORE1) AATCCAGGTCTCTCTGCTCCAA (LSAMP)			6		
LSAMP-NORE1A	Forward –				7		
LSAMP-NORE1A	Reverse		rgagtcacgtgg		8		
LSAMP-NORE1A	Forward		FTTCTCCATAGC	•	9		
LSAMP-NORE1A	Forward		AAAATGGAGCTT	, -			
			n transcript anal	-	10		
NORE1A-LSAMP	Forward	AGTCAGC	AGGAGGGTTTAT	CC (NORE1A)	11		
NORE1A-LSAMP	Reverse	CCCTTCC	AGTTGGTGTAAG	GT. (<i>LSAMP</i>)	12		
LSAMP-NORE1A	Forward		GAATACAGCCTC GTAGCTGTCGAT		13		
LSAMP-NORE1A	Reverse	dedistr	o (Adera red) (1	c (nones, o	14		
NORE1B-LSAMP	Forward		GAGCAGTGGGTA		15		
NORE1B-LSAMP	Reverse	HIGCCIN	SACIGCICCCIG	LSAMP	13		
	For mutation analyses						
NORE1gene					16		
NORE1A Exon 1	Forward	TCCTTCC	TGCCACTCCGAC	TC	17		
NORE1A Exon 1	Reverse	TCCCAAG	AACTCACAACAA	AACC	18		
NORE1A Exon 1	Sequencing Forward		TGCCACTCCGAC	т	19		
NORE1A Exon 1	Sequencing Reverse		GCCTCTGTGTCC	r	20		
*			TATTTCTCTGG		. 21		
NORE1A Exon 2	Forward .				22		
NORE1A Exon 2	Reverse	•	CTGTGTCACTTC		23		
NORE1A Exon 3	Forward		CTCACTTCTTGG		24		
NORE1A Exon 3	Reverse		CAGAGTGAGGGC		25		
. NORE1A Exon 4	Forward	AGAACTC	AAGGAGACAGGT	GGG			

		,		SEQ ID
Target	Dire	ection	Sequence (5'-3')	NO:
NORE1A Exon 4	Reverse	AGATCTGA	ACACCACATGGGC	26
NORE1A Exon 5	Forward	CACCTCTG	CATTTCCAATCCTT	27
NORE1A Exon 5	Reverse	GTGGCTCC	CACCTATGTGAG	28
NORE1A Exon 6	Forward	CAGGGTCT	CTCAGGTCGTCA	29
NORE1A Exon 6	Reverse	CCCCCATG	CAAACACTTGTC	30
NORE1B Exon1	Forward	CCCGCTGA	AAGAAACGCAGG	31
NORE1B Exon1	Reverse	ATGCTCAG	CCCTCAGGGCAA	32
<i>LSAMP</i> gene				
LSAMP Exon1	Forward	AGTGGAAA	GGACCATAAACTGGC	33
LSAMP Exon1	Reverse	TGGAGTTC	AAGGAGATCAGACAC	34
LSAMP Exon2	Forward		CATCCACTGGATG	35
LSAMP Exon2	Reverse	TGCAACTC	CCACCTCTTCTTA	36
LSAMP Exon3	Forward	AGATGGCA	AGCATGGGTCTTA .	37 .
LSAMP Exon3	Reverse	TCAGCAGA	ATTCCAGGAGCA	38
LSAMP Exon4	Forward	CTGCTTCT	GTGGAATCTGATGTC	39
LSAMP Exon4	Reverse	CAAAGACC	AAGTCCTGCCCTT	40
LSAMP Exon5	Forward	стсссттс	CTGCCTCTCTAA	41
LSAMP Exon5	Reverse	GCTTAAGA	GCTACAGGCCCC	42
LSAMP Exon6	Forward		CTCCAGTGTCAGG	43
LSAMP Exon6	Reverse	IGCIAIGC,	ACAGGAGTTGAGAA	44
LSAMP Exon7	Forward	CTTCTTGG	GCTGCACATAAGTG	45
LSAMP Exon7	Reverse	ACGGTCTC	CCCCATCTCT	46
VHL gene			1	
VHL Exon1	Forward	AGAC	GACGGCCAGTCGAAGAGTACGGCCCTGAAGA	47
VHL Exon1	Reverse	CCTC	AGCTATGACCCAGTACCCTGGATGTGTCCTG	48
VHL Exon2	Forward	TGTAAAAC GC	GACGGCCAGTAGACGAGGTTTCACCACGTTA	49
VHL Exon2	Reverse	CAGGAAAC/ AC	AGCTATGACCGTCCTCTATCCTGTACTTACC	50
VHL Exon3	Forward		GACGGCCAGTCTGAGACCCTAGTCTGCCACT	51
VHL Exon3	Reverse	·	AGCTATGACCCAAAAGCTGAGATGAAACAGT	52

Target	Direc	tion	Sequence (5		Q ID 10:
	For ge	enomic PCR of	the fusion genes		
NORE1-LSAMP	Forward	GGAGAAAGAG	GAGACCAGGACAAA (<i>NOI</i>	<i>RE1</i>)	53
NORE1-LSAMP	Reverse		STTCAAGTGATTC (<i>LSA</i> /		54
NORE1-LSAMP	Sequencing Forward		CCTGCCTTG (NORE1)		55
	Sequencing		,		56
NORE1-LSAMP	Forward Sequencing	CATGCCAGG	CCCATAAATAG (<i>NORE1</i>)		57
NORE1-LSAMP	Forward	GTGGCCTGC	AAAACCTAAC (<i>NORE1</i>)		58
LSAMP-NORE1A	Forward	AATCCAGGT	TCTCTGCTCCAA (LSA/	MP)	
LSAMP-NORE1A	Reverse	CTCTGAGTG	AGTCACGTGGCTT (<i>NORL</i>	51)	59
LSAMP-NORE1A	Forward	ссттссттт	CTCCATAGCACT (LSAM	MP)	60 54
LSAMP-NORE1A	Forward	ATTGTGGAA	AATGGAGCTTC (<i>LSAMP</i>)	, '	51
	Fo	r fusion transe	cript analyses	_	
NORE1A-LSAMP	Forward	AGTCAGCAGG	GAGGGTTTATCC (NORE	(A)	52
NORE1A-LSAMP	Reverse	CCCTTCCAGT	TTGGTGTAAGGT (LSAM	ア)	53
LSAMP-NORE1A	Forward	TTCTCTGGAA	ATACAGCCTCCG (LSAMI	?) •	54
LSAMP-NORE1A	Reverse	GCGTGTTGTAGCTGTCGATC (NORE1A)		i) 6	55
NORE1B-LSAMP	Forward	GCAGCATGAG	CAGTGGGTAC (NORE1E	3) (56
NORE1B-LSAMP	Reverse		CTGCTCCCTG (LSAMP)		57
		For mut	ation analyses		
NORE1gene			-		
NORE1A Exon 1	Forward	тссттсство	CACTCCGACTC	6	59
NORE1A Exon 1	Reverse		TCACAACAAAACC	, 7	71
	Sequencing		, -	7	72
NORE1A Exon 1	Forward Sequencing	TCCTTCCTGC	CCACTCCGACT	7	73
NORE1A Exon 1	Reverse	TCCTCGCGCC	тствтвтссс	7	74
NORE1A Exon 2	Forward	TCCAAGGTTA	TTTCTCTGGGTG	_	7 75
NORE1A Exon 2	Reverse	GAGTTCTCTC	TGTCACTTCCCC		'5 '6
NORE1A Exon 3	Forward	CTGGATGCTC	ACTTCTTGGTTAG	_	_
NORE1A Exon 3	Reverse	CAGAATTCAG	AGTGAGGGCAG		77
NORE1A Exon 4	Forward	AGAACTCAAG	GAGACAGGTGGG	·	'8
NORE1A Exon 4	Reverse	AGATCTGAAC	ACCACATGGGC	7	' 9

_				SEQ ID
Target	Dire	ection	Sequence (5'-3')	NO:
NORE1A Exon 5	Forward	CACCTCTG	CATTTCCAATCCTT	80
NORE1A Exon 5	Reverse	GTGGCTCC	CACCTATGTGAG	81
NORE1A Exon 6	Forward	CAGGGTCT	CTCAGGTCGTGTCA	82
NORE1A Exon 6	Reverse	CCCCCATG	CAAACACTTGTC	83
NORE1B Exon1	Forward	CCCGCTGA	AAGAAACGCAGG	84
NORE1B Exon1	Reverse	ATGCTCAG	CCCTCAGGGCAA	85
<i>LSAMP</i> gene				
LSAMP Exon1	Forward	AGTGGAAA	GGACCATAAACTGGC	86
LSAMP Exon1	Reverse	TGGAGTTC	AAGGAGATCAGACAC	87
LSAMP Exon2	Forward		CATCCACTGGATG	88
LSAMP Exon2	Reverse	TGCAACTC	TGCAACTCCCACCTCTTTCTTA	
LSAMP Exon3	Forward	AGATGGCA	AGCATGGGTCTTA	90
LSAMP Exon3	Reverse	TCAGCAGA	ATTCCAGGAGCA	91
LSAMP Exon4	Forward	ствсттсто	GTGGAATCTGATGTC	92
LSAMP Exon4	Reverse	CAAAGACCA	AAGTCCTGCCCTT	93
LSAMP Exon5	Forward	стсссттс	CTGCCTCTCTAA	94
LSAMP Exon5	Reverse	GCTTAAGAG	GCTACAGGCCCC	. 95
LSAMP Exon6	Forward	тссттттс	CTCCAGTGTCAGG	96
LSAMP Exon6	Reverse	TGCTATGC	ACAGGAGTTGAGAA	97
LSAMP Exon7	Forward	CTTCTTGGC	GCTGCACATAAGTG	98
LSAMP Exon7	Reverse	ACGGTCTC	CCCCATCTCT	99
VHL gene				
VHL Exon1	Forward	TGTAAAAC0 AGAC	GACGGCCAGTCGAAGAGTACGGCCCTGAAGA	100
VHL Exon1	Reverse	CAGGAAACA CCTC	AGCTATGACCCAGTACCCTGGATGTGTCCTC	3 . 101
VHL Exon2	Forward		GACGGCCAGTAGACGAGGTTTCACCACGTTA	102
	_	CAGGAAACA	AGCTATGACCGTCCTCTATCCTGTACTTACC	103
VHL Exon2	Reverse		GACGGCCAGTCTGAGACCCTAGTCTGCCACT	r 104
VHL Exon3	Forward	GAGGAT CAGGAAACA	AGCTATGACCCAAAAGCTGAGATGAAACAGT	r 1 05
VHL Exon3	Reverse	GTAAGT	7.4.12	

The cloning of the breakpoints led to the identification of two breakpoint-spanning genes, *NORE1* on 1q32.1 and *LSAMP* on 3q13.3 (Figure 2B). To investigate whether fusion proteins resulting from the chromosome translocation are involved in tumorigenesis of CC-RCC, Northern blot analysis and RT-PCR were carried out to detect any fusion transcript of *NORE1* and *LSAMP* (see Table A in supplemental data). No detectable fusion transcripts were found in the FRCC3 and FRCC5 cell lines from two patients in the t(1;3) family. The possible sequence combination from *NORE1* and *LSAMP* were also tested. Since *NORE1* lies in the positive DNA strand and *LSAMP* in the reverse strand, there is little likelihood for them to form any *NORE1-LSAMP* or *LSAMP-NORE1* fusion proteins.

10

15

20

5

Given the association between chromosome 3 translocations and CC-RCC susceptibility (van Kessel et al., 1999; Bodmer et al., 2002c), the gene LSAMP was investigated. LSAMP is composed of seven exons and is disrupted in intron 2/by the breakpoint (Figure 2B). To elucidate whether genetic changes in LSAMP play a role in CC-RCC, LSAMP mutation analysis was performed in 9 CC-RCC cell lines and in 53 sporadic and 4 familial tumors. No LSAMP mutation was detected. However, epigenetic silencing in association with hypermethylation, the most common form of inactivation for many tumor suppressor genes (Jones et al., 2002), could still occur. First, RT-PCR analysis showed that LSAMP was down-regulated in all nine RCC cell lines (Figure 3A). Furthermore, the LSAMP promoter was methylated in 7/9 CC-RCC cell lines (78%), 14/53 sporadic CC-RCCs (26%), and all 4 familial CC-RCCs tumors from the t(1:3) family (Figure 3B). In association with the promoter-methylation status, LSAMP expression in ten examined tumors with LSAMP-promoter methylation was also down-regulated (Figure 3A). Of the LSAMP-promoter-methylated cell lines and tumors, all presented complete methylation except two cell lines and one sporadic tumor. Furthermore, in the four familial tumors (FT1 to FT4), one LSAMP allele was breakpoint-disrupted followed by the loss of the der(3) chromosome shown in our previous study (Kanayama et al., 2001), and the other copy was hypermethylated (Figure 3B), implying LSAMP may undergo bi-allelic inactivation. These observations suggest that LSAMP is involved in CC-RCC, though further functional studies are needed to elucidate its mechanism.

30

25

The 1q32.1 breakpoint-disrupted gene, NORE1, also appeared to be an excellent candidate CC-RCC suppressor gene. NORE1 undergoes alternative splicing, resulting in two isoforms, NORE1A and NORE1B. The breakpoint disrupted both NORE1A and NORE1B (Figure 2B). NORE1 is homologous to a family of RAS binding proteins, including RASSF1,

rat Maxp1, and murine Norel (Vavvas et al., 1998; Dammann et al., 2000; Vos et al., 2000; Ortiz-Vega et al., 2002; Tommasi et al., 2002) that have been proposed to be effectors for the small GTPase. Maxp1, Norel and RASSF1 have been shown to induce apoptosis (Vos et al., 2000; Khokhlatchev et al., 2002). Other studies, however, have shown that Norel family members are cytostatic and modulate cyclinD1 levels, thereby influencing the activity of cell cycle-dependent kinases (Khokhlatchev et al., 2002). RASSF1 maps to 3p21, a region of frequent LOH in CC-RCC (van den Berg et al., 1997; Dammann et al., 2000), and this gene has recently been shown to be epigenetically inactivated in kidney cancer (Dreijerink et al., 2001; Morrissey et al., 2001; Yoon et al., 2001). Thus, the inventors proceeded to investigate NORE1 as a candidate RCC suppressor.

5

10

15

41

20

25

30

Mutation screening and methylation analysis were performed on NORE1 in all the RCC cell lines and tumors. Two alterations, GTG(Val189)>ATG(Met189) and CGG(Arg248)>CAG(Gln248), were identified (see Figure 6). The former was present in 5% of the 100 tested normal subjects, whereas the latter was not found in any of them. As both were also present in the matched normal kidney tissues, it is likely that they represent polymorphisms. The inventors then perceived that NORE1A expression was also down-regulated in the 9 RCC cell lines, and the NORE1A promoter was methylated in 6/9 RCC cell lines and 17/53 (32%) sporadic RCC tumors (Figure 3A and 3C), whereas methylation in the NORE1B promoter was detected only in RCC cell lines A-498 and A-704. NORE1A expression in examined 10 of the 17 affected tumors was also down-regulated (Figure 3A). Two normal kidney control samples (N3 and N44) also showed NORE1A promoter methylation at lower extents compared with their matched tumors (3T and 44T), probably due to contamination from the tumor tissues. Interestingly, NORE1A-promoter methylation does not overlap with LSAMP-promoter methylation except in four tumors. These results suggest that NOREIA is also associated with sporadic CC-RCC. Yet, unlike the methylation situation in LSAMP, only 1/4 hereditary tumors showed even slight NORE1A promoter methylation, indicating one wild-type allele of NORE1A still exists in these hereditary tumors. Whether NORE1A undergoes haploinsufficiency in tumorigenesis remains undetermined.

In addition, 7/14 tumors (50%) with *LSAMP*-promoter methylation showed loss of heterozygosity (LOH) of the *LSAMP* locus. However, LOH was also observed in 17/39 tumors (44%) without *LSAMP*-promoter methylation. Similar LOH results were obtained on *NORE1A*

(methylated, 5/17 [29%]; unmethylated, 8/36, [22%]), indicating that the LOH may be correlated with CC-RCC tumorigenesis, but is not methylation-dependent.

5

10

15

20

25

30

Promoter methylation in both LSAMP and NORE1A may also be linked to other types of cancers. *NORE1A*-promoter methylation has recently been detected in cancer cell lines and in 24% NSCLC (Hesson *et al.*, 2003). Here the inventors found that the *LSAMP* promoter was methylated in 5/19 (26%) colorectal cancers.

The exact role of these genes in tumorigenesis is unclear. Without wishing to be bound to any particular mechanism, potential roles for these genes are discussed below. In the familial cases, the underlying mechanism appears to be the three-step model of chromosome 3 translocation-related hereditary CC-RCC tumorigenesis (Bodmer et al., 1998; Kanayama et al., 2001; Bodmer et al., 2002c). Considering the complexity of the multistep process in tumorigenesis, the possibility exists that the breakpoint-disrupted genes, especially LSAMP, may contribute to the occurrence of familial tumors by acting as components in the three-step model of tumorigenesis of hereditary CC-RCC. The inventors have previously demonstrated that four examined familial CC-RCC tumors lost the der(3) chromosome and two of them carry VHL mutations, supporting the three-step model of tumorigenesis (Kanayama et al., 2001). Here, the inventors supplement this model with our LSAMP and NORE1A data. The constitutional translocation t(1q;3q) and disruption of a copy each of LSAMP and NORE1, as the first set of steps of tumorigenesis, act as the predisposing factors in development of CC-RCC. The translocation also results in the increased susceptibility to somatic loss of the chromosome der(3). The following non-disjunctional loss of der(3) deletes a copy each of the RCC-related genes in chromosome 3 (e.g., VHL, RASSFIA), which further increases the predisposition to CC-RCC. This second set of steps will accelerate the transformation process and cellular growth, leading to the third set of steps involving either the inactivation of the other VHL allele (e.g. somatic mutation) or the genetic/epigenetic alternations in other CC-RCC-related genes including LSAMP in the remaining copy of chromosome 3. These factors may act synergistically and finally lead to the occurrence of CC-RCC.

Epigenetic inactivation of these genes can be reversed by demethylation treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR). The demethylation treatment resulted in significantly increased expression of LSAMP and NORE1 in eight cell lines (Figure 3A), indicating that repression is at least in part mediated by methylation.

Finally, to further evaluate the role of *LSAMP* and *NORE1* as tumor suppressor candidates in cancer, enhanced green fluorescent protein *EGFP-LSAMP*, -*NORE1A*, and -*Nore1* expression plasmids were microinjected or transfected into two RCC cell lines, A-498 and/or Caki-1, in which the *LSAMP* and *NORE1A* promoters were methylated, cells were then counted at indicated times, and were monitored for cell number and/or proliferation. Alternatively, cells were monitored by epi-fluorescence/phase-contrast microscopy to evaluate proliferation, fluorescent protein expression, or apoptosis. While cells expressing EGFP continued to proliferate at rates similar to those of uninjected neighbors, cells expressing EGFP-LSAMP, - NORE1A and -Nore1 failed to divide (Figure 4B). There was no evidence of apoptosis in any of the experiments. This growth inhibition role was also demonstrated in 293-T cells stably transformed with an inducible *Nore1* gene by lipid-mediated transfection (see Figure 7C).

5

10

15

20

25

30

The inventors also observed that EGFP-LSAMP seemed to be cytoplasmic, and EGFP-NORE1A appeared in both cytosol and nucleus. EGFP-Nore1 was predominantly nuclear and tended to occupy discrete puncta within the nucleus (Figure 4A). This was observed in both formaldehyde-fixed and living cells; thus, the localization was unlikely to be due to a fixation artifact. Furthermore, the nuclear localization of EGFP-Nore1 was also confirmed in the transfected Caki-1 RCC cell line and in the 293-T cells by nuclear fractionation (see Figures 7Aa and 7B).

These observations are consistent with a growth suppression role for LSAMP, NORE1A, and NORE1. Also, despite the presence of a putative Ras-association region, the results suggest that this nuclear Nore1 protein may not be a *bona fide* Ras effector, whose family members tend to be lipid-modified, membrane-bound, positive regulators of cell proliferation. Further investigation into its role in growth regulation (potentially through the regulation of cyclin D1 and G1/S progression) and its role in the nucleus are desirable.

Based on these data, LSAMP, and NORE1A (a homolog of 3p21-tumor suppressor RASSF1A), represent new tumor suppressor candidates, and presumably act as components in the multistep process of CC-RCC tumorigenesis. Inactivation or reduced expression of both LSAMP and NORE1A also appears to be involved in the occurrence of other types of tumors. Further studies of these genes may lead to the elucidation of novel mechanisms of tumorigenesis.

GenBank accession numbers and Sequences of NORE1A, LSAMP, etc.

NORE1A: GenBank Accession No. NM 031437

Nucleic Acid: SEQ ID NO: 120 (coding: 64-1236); Amino acid: SEQ ID NO:121,

```
1 cqqqaqtaqc qcaqtcqcca aaqccqccqc tqccaaaqct qccqccacta qccqqcatq
 5
        61 gecatggcgt ccccggccat cgggcagcgc ccqtacccgc tactcttgga ccccqaqccq
      121 degegetate tadagageet gagegeece gagetacege egeegeece egaceggtee
      181 tegegeetet gtgteeegge geeectetee actgegeeeg gggegegega ggggegeage
      241 gcccggaggg ctgcccgggg gaacctggag cccccgcccc gggcctcccg acccqctcqc
      301 ccgctccggc ctggtctgca gcagagactg cggcggcggc ctggagcgcc ccgaccccgc
10
      421 gggcactgct tegeogagtt ggtgctgccg ggcggcccg gctggtgtga cctgtgcgga
      481 cgagaggtgc tgcggcaggc gctgcgctgc actaactgta aattcacctg tcacccagaa
      541 tgccgcagcc tgatccagtt ggactgcagt cagcaggagg gtttatcccg ggacagaccc
      601 totocagaaa gcaccotcac cgtgaccttc agccagaatg totgtaaacc tgtggaggag
15
      661 acacagegee egeceacaet geaggagate aageagaaga tegacageta caacaegega
      721 gagaagaact gcctgggcat gaaactgagt gaagacggca cctacacggg tttcatcaaa
      781 gtgcatctga aacteeggeg geetgtgaeg gtgcetgetg ggatceggee ceagteeate
      841 tatgatgcca tcaaggaggt gaacctggcg gctaccacgg acaagcggac atcettctac
      901 etgecectag atgecateaa geagetgeac ateageagea ceaceacegt cagtgaggte
20
      961 atccaggggc tgctcaagaa gttcatggtt gtggacaatc cccagaagtt tgcacttttt
      1021 aageggatae acaaggaegg acaagtgete ttecagaaae tetecattge tgaeegeeee
     1081 ctctacctgc gcctgcttgc tgggcctgac acggaggtcc tcagctttgt gctaaaggag
     1141 aatgaaactg gagaggtaga gtgggatgcc ttctccatcc ctgaacttca gaacttcctc
     1201 tcctcctggt gcattcagat ttatttgtat tattaattat tattttgcaa cagacacttt
25
     1261 ttctcaggac atctctggca ggtgcatttg tgcctgccca gcagttccag ctgtggcaaa
     1321 agtotottoc atggacaagt gtttgcacga gggttcagct gtgcccgccc ccaggctgtg
     1381 ccccaccaca gattctgcca aggatcagaa ctcatgtgaa acaaacagct gacgtcctct
     1441 ctegatetge aagcetttea ccaaccaaat agttgeetet etegteacca aactggaacc
     1501 tcacaccage eggeaaagga aggaagaaag gttttagage tgtgtgttet ttetetggea
30
     1561 ttgattcctc tttgagttct cttacttgcc acgtacagga ccattattta tgagtgaaaa
     1621 gttgtagcac attccttttg caggtctgag ctaagcccct gaaagcaggg taatgctcat
     1681 aaaaggactg ttcccgcggc cccaaggtgc ctgttgttca cacttaaggg aagtttataa
     1741 agctactggc cccagatgct cagggtaagg agcaccaaag ctgaggctgg ctcagagatc
     1801 tecagagaag etgeageetg ceetggeeet ggetetggee etggeeeaea ttgeacatgg
35
     1861 aaacccaaag gcatatatct gcgtatgtgt ggtacttagt cacatctttg tcaacaaact
     1921 gttcgttttt aagttacaaa tttgaattta atgttgtcat catcgtcatg tgtttcccca
     1981 aagggaagcc agtcattgac catttaaaaa gtctcctgct aagtatggaa atcaqacaqt
     2041 aagagaaagc caaaaagcaa tgcagagaaa ggtgtccaag ctgtcttcag ccttccccag
     2101 ctaaagagca gaggagggcc tgggctactt gggttcccca tcggcctcca qcactqcctc
40
     2161 cctcctccca ctgcgactct gggatctcca ggtgctgccc aaggagttgc cttgattaca
     2221 gagaggggag cctccaattc ggccaacttg gagtcctttc tgttttgaag catgggccag
     2281 accoggoact gcgctcggag agccggtggg cctggcctcc ccgtcgacct cagtgccttt
     2341 ttgttttcag agagaaatag gagtagggcg agtttgcctg aagctctgct gctggcttct
     2401 cctgccagga agtgaacaat ggcggcggtg tgggagacaa ggccaggaga gcccgcgttc
45
     2461 agtatgggtt gagggtcaca gacctccctc ccatctgggt gcctgagttt tgactccaat
     2521 cagtgatacc agaccacatt gacagggagg atcaaattcc tgacttacat ttgcactggc
     2581 ttcttgttta ggctgaatcc taaaataaat tagtcaaaaa attccaacaa qtaqccaqqa
     2641 ctgcagagac actccagtgc agagggagaa ggacttgtaa ttttcaaagc agggctggtt
     2701 ttccaaccca gcctctgaga aaccatttct ttgctatcct ctgccttccc aagtccctct
50
     2761 tgggtcggtt caageccaag cttgttcgtg tagettcaga agttccctet ctgacccagg
     2821 ctgagtccat actgcccctg atcccagaag gaatgctgac ccctcgtcgt atgaactgtg
     2881 catagtotec agagetteaa aggeaacaca agetegeaac tetaagattt ttttaaacca
     2941 caaaaaccct ggttagccat ctcatgctca gccttatcac ttccctccct ttagaaactc
     3001 totocotgot gtatattaaa gggagcaggt ggagagtcat tttocttogt cotgoatgto
55
     3061 tctaacatta atagaaggca tggctcctgc tgcaaccgct gtgaatgctg ctgagaacct
     3121 ccctctatgg ggatggctat tttatttttg agaaggaaaa aaaaagtcat gtatatatac
```

```
3181 acataaaggc atatagctat atataaagag ataagggtgt ttatgaaatg agaaaattat
3241 tggacaattc agactttact aaagcacagt tagacccaag gcctatgctg aggtctaaac
3301 ctctgaaaaa agtatagtat cgagtacccg ttccctccca gaggtgggag taactgctgg
3361 tagtgccttc tttggttgtg ttgctcagtg tgtaagtgtt tgtttccagg atattttctt
3421 tttaaatgtc tttcttatat gggttttaaa aaaaagtaat aaaagcctgt tgcaaaaatg
3481 aaaaaaaaaa aaaaaaaa\

MASPAIGQRP YPLLLDPEPP RYLQSLSGPE LPPPPDRSS RLCVPAPLST APGAREGRSA
RRAARGNLEP PPRASRPARP LRPGLQQRLR RRPGAPRPRD VRSIFEQPQD PRVPAERGEG
HCFAELVLPG GPGWCDLCGR EVLRQALRCT NCKFTCHPEC RSLIQLDCSQ QEGLSRDRPS
PESTLTVTFS QNVCKPVEET QRPPTLQEIK QKIDSYNTRE KNCLGMKLSE DGTYTGFIKV
HLKLRRPVTV PAGIRPQSIY DAIKEVNLAA TTDKRTSFYL PLDAIKQLHI SSTTTVSEVI
QGLLKKFMVV DNPQKFALFK RIHKDGQVLF QKLSIADRPL YLRLLAGPDT EVLSFVLKEN
ETGEVEWDAF SIPELQNFLS SWCIQIYLYY
```

NORE1B: GenBank Accession No. AF445801

15

Nucleic acid - SEQ ID NO: 122 (coding: 411-1208); Amino acid: SEQ ID NO:123

```
1 gaactgettt aegegagggg caaggaaagg egegggagge gggggaggtg eggagatgge
        61 gctctgcacg gcggcggagg gagggcgctg gcgccgggga cacgaaaccg cagagcccgg
20
       121 acgagtcagg gagtgaggeg cgagccgggc geccggggct etgcaggcgc aggeggegeg
       181 gggacaggag caggttaccg ggccgcccga gcgctcgcac cccgctgaaa aaaacgcagg
       241 eggecegeeg getttgeetg gteegatace egaceagete eeggeteggg geteagaget
       301 aggggettae gecaagegga geceggggag gggtgeecae eteceteege egcateecaa
       361 geceggeece ettgatgege tggeggeete ggeegggaae teeggggtag atgaeegtgg
25
       421 acagcagcat gagcagtggg tactgcagcc tggacgagga actggaagac tgcttcttca
       481 ctgctaagac tacctttttc agaaatgcgc agagcaaaca tctttcaaag aatgtctgta
       541 aacctgtgga ggagacacag cgcccgccca cactgcagga gatcaagcag aagatcgaca
       601 getacaacae gegagagaag aactgeetgg geatgaaact gagtgaagae ggeacetaca
       661 egggttteat caaagtgeat etgaaactee ggeggeetgt gaeggtgeet getgggatee
30
       721 ggccccagtc catctatgat gccatcaagg aggtgaacct ggcggctacc acggacaagc
       781 ggacatectt etacetgeee etagatgeea teaageaget geacateage ageaceacea
       841 ccgtcagtga ggtcatccag gggctgctca agaagttcat ggttgtggac aatccccaga
       901 agtttgcact ttttaagcgg atacacaagg acggacaagt gctcttccag aaactctcca
       961 ttgctgaccg ccccctctac ctgcgcctgc ttgctgggcc tgacacggag gtcctcagct
35
      1021 ttgtgctaaa ggagaatgaa actggagagg tagagtggga tgccttctcc atccctgaac
      1081 ttcagaactt cctaacaatc ctggaaaaag aggagcagga caaaatccaa caagtgcaaa
      1141 agaagtatga caagtttagg cagaaactgg aggaggcctt aagagaatcc cagggcaaac
      1201 ctgggtaacc agtcctgctt cctctcctcc tggtgcattc agatttattt gtattattaa
      1261 ttattatttt gcaacagaca ctttttctca ggacatctct ggcaggtgca tttgtgcctg
40
      1321 cccagcagtt ccagctgtgg caaaagtctc ttccatggac aagtgtttgc acgggggttc
      1381 agetgtgeee geeceeagge tgtgeeceae cacagattet gecaaggate agaacteatg
      1441 tgaaacaaac agctgacgte ctctctcgat ctgcaagcct ttcaccaacc aaatagttgc
      1501 ctctctcgtc accaaactgg aacctcacac cagccggcaa aggaaggaag aaaqqtttta
      1561 gagetgtgtg ttetttetet ggetttgatt ettetttgag ttetettaet tgecaegtae
45
      1621 aggaccatta tttatgagtg aaaagttgta gcacattcct tttgcaggtc tgagctaaac
      1681 ccctgaaagc agggtaatgc tcataaaagg actgttcccg cggccccaag gtgcctgttg
      1741 ttcacactta agggaagttt ataaagctac tggccccaga tgctcagggt aaggagcacc
      1801 aaagctgagg ctggctcaga gatctccaga gaagctgcag cctgccctgg ccctggctct
      1861 ggccctggcc cacattgcac atggaaaccc aaaggcatat atctgcgtat gtgtggtact
50
      1921 tagtcacatc tttgtcaaca aactgttcgt ttttaagtta caaatttgaa tttaatgttg
      1981 tcatcatcgt catgtgtttc cccaaaggga agccagtcat tgaccattta aaaagtctcc
      2041 tgctaagtat ggaaatcaga cagtaagaga aagccaaaaa gcaatgcaga qaaaqqtqtc
      2101 caagetgtet teageettee eeagetaaag ageagaggag ggeetggget acttgggtte
      2161 cccatcggcc tecagcactg cctcctcct cccactgcga ctctgggatc tccaggtgct
55
      2221 gcccaaggag ttgccttgat tacagagagg ggagcctcca attcggccaa cttgqagtcc
      2281 tttctgtttt gaagcatggg ccagaccegg cactgcgctc ggagagcegg tgggcctggc
```

```
2341 ctccccgtcg acctcagtgc ctttttgttt tcagagagaa ataggagtag ggcgagtttg
     2401 cctqaagctc tgctgctqgc ttctcctgcc aggaagtgaa caatggcggc ggtgtgggag
     2461 acaaggccag gagagcccgc gttcagtatg ggttgagggt cacagacctc cctcccatct
     2521 gggtgcctga gttttgactc caatcagtga taccagacca cattgacagg gaggatcaaa
     2581 ttcctgactt acatttgcac tggcttcttg tttaggctga atcctaaaat aaattagtca
5
     2641 aaaaattcca acaaqtaqcc aggactgcag agacactcca gtgcagaggg agaaggactt
     2701 qtaattttca aaqcaqqqct qqttttccaa cccaqcctct gagaaaccat ttctttqcta
     2761 tectetgeet teccaagtee etettgggte ggtteaagee caagettgtt egtgtagett
     2821 caqaaqttcc ctctccqacc caggctgagt ccatactgcc cctgatccca gaaggaatgc
10
     2881 tgacccctcg tcgtatgaac tgtgcatagt ctccagagct tcaaaggcaa cacaagctcg
     2941 caactctaag atttttttaa accacaaaaa ccctggttag ccatctcatg ctcagcctta
     3001 tcacttccct cccttttaga aaactctctc cctgctgtat attaaaggga gcaggtggag
     3061 agtcattttc cttcgtcctg catgtctcta acattaatag aaggcatggc tcctgctgca
     3121 accgctgtga atgctgctga gaacctccct ctatggggat ggctatttta tttttgagaa
15
     3181 ggaaaaaaa agtcatgtat atatacacat aaaggcatat agctatatat aaagagataa
     3241 gggtgtttat gaaatgagaa aattattgga caattcagac tttactaaag cacagttaga
     3301 cccaaggcct atgctgaggt ctaaacctct gaaaaaagta tagtatcgag tacccgttcc
     3361 ctcccagagg tgggagtaac tgctggtagt gccttctttg gttgtgttgc tcagtgtgta
     3421 agtgtttgtt tccaggatat tttcttttta aatgtctttc ttatatgggt tttaaaaaaaa
20
     3481 aqtaataaaa qcctqttqc
     MTVDSSMSSG YCSLDEELED CFFTAKTTFF RNAQSKHLSK NVCKPVEETQ RPPTLQEIKQ
```

KIDSYNTREK NCLGMKLSED GTYTGFIKVH LKLRRPVTVP AGIRPOSIYD AIKEVNLAAT TDKRTSFYLP LDAIKQLHIS STTTVSEVIQ GLLKKFMVVD NPQKFALFKR IHKDGQVLFQ KLSIADRPLY LRLLAGPDTE VLSFVLKENE TGEVEWDAFS IPELQNFLTI ŁEKEEQDKIQ QVQKKYDKFR QKLEEALRES QGKPG

LSAMP NM 002338 cDNA

25

Nucleic acid: SEQ ID NO: 124 (coding: 501-1517); Amino acid SEQ ID NO:125

```
1 ggggagagag gctctgggtt gctgctgctt ctgctgctgc tgctgctgtg tggctgtttc
30
       61 tgtacactca ctggcagget tggtgeegge teectegeee geeegeeege cageetggga
      121 aagtgggtta cagagcgaag gageteaget cagacactgg cagaggagca tecagteaca
      181 gagagaccaa acaagaaccc tttcctttgg cttcctcttc agctcttcca gagggcttgc
      241 tatttqcact ctctcttttq aaattqtgtt gcttttactt ttcacccttc tgcttgggtt
35
      301 ttatqaqqqc tttqttaaqt cttagaqqqa aaaqaqactq aqcqaqqqaa aqaqaqaqqc
      361 aaaqtqqaaa qqaccataaa ctqqcaaaqc ccqctctqcq ctcqctqtqq atqaaaqccc
      421 cgtgttggtg aageetetee tegegageag egegeaeeee teeagageae ceegeggaee
      481 cqcacctcqq cqtqqccacc atqqtcagga gagttcagcc ggatcggaaa cagttgccac
      541 tggtcctact gagattgctc tgccttcttc ccacaggact gcctgttcgc agcgtggatt
      601 ttaaccgagg cacggacaac atcaccgtga ggcaggggga cacagccatc ctcaggtgcg
40
      661 ttgtagaaga caagaactca aaggtggcct ggttgaaccg ttctggcatc atttttgctg
      721 gacatgacaa gtggtctctg gacccacggg ttgagctgga gaaacgccat tctctggaat
      781 acagcctccg aatccagaag gtggatgtct atgatgaggg ttcctacact tgctcagttc
      841 agacacagca tgagcccaag acctcccaag tttacttgat cgtacaagtc ccaccaaaga
45
      901 totocaatat otoctoggat gtoactgtga atgagggcag caacgtgact otggtotgca
      961 tggccaatgg ccgtcctgaa cctgttatca cctggagaca ccttacacca actggaaggg
     1021 aatttgaagg agaagaagaa tatctggaga teettggeat caccagggag cagtcaggea
     1081 aatatgagtg caaagetgee aacgaggtet ceteggegga tgtcaaacaa gtcaaggtea
     1141 ctgtgaacta tcctcccact atcacagaat ccaagagcaa tgaagccacc acaggacgac
50
     1201 aagetteact caaatgtgag geeteggeag tgeetgeace tgaetttgag tggtaceggg
     1261 atqacactaq qataaataqt qccaatgqcc ttgagattaa gagcacggag ggccagtctt
     1321 ccctqacqqt qaccaacqtc actqaqqaqc actacqqcaa ctacacctqt qtqqctqcca
     1381 acaagetggg ggtcaccaat gccagcctag teettttcag acetgggtcg gtgagaggaa
     1441 taaatqqatc catcaqtctq gccgtaccac tqtggctgct ggcagcatct ctgctctgcc
55
```

1621 aaaaaaaaaa aaaaaaaaaa

MVRRVQPDRK QLPLVLLRLL CLLPTGLPVR SVDFNRGTDN ITVRQGDTAI LRCVVEDKNS KVAWLNRSGI IFAGHDKWSL DPRVELEKRH SLEYSLRIQK VDVYDEGSYT CSVQTQHEPK TSQVYLIVQV PPKISNISSD VTVNEGSNVT LVCMANGRPE PVITWRHLTP TGREFEGEEE YLEILGITRE QSGKYECKAA NEVSSADVKQ VKVTVNYPPT ITESKSNEAT TGRQASLKCE ASAVPAPDFE WYRDDTRINS ANGLEIKSTE GQSSLTVTNV TEEHYGNYTC VAANKLGVTN ASLVLFRPGS VRGINGSISL AVPLWLLAAS LLCL

10 ASSF1A, GenBank Accession No. AF132675;

Nucleic acid: SEQ ID NO: 126 (coding: 39-1061); Amino acid SEQ ID NO:127

```
1 agegeceaaa gecagegaag caegggeeea aeegggeeat gtegggggag cetgagetea
       61 ttgagctgcg ggagctggca cccgctgggc gcgctgggaa gggccgcacc cggctggagc
      121 gtgccaacgc gctgcgcatc gcgcggggca ccgcgtgcaa ccccacacgg cagctggtcc
15
      181 etggeegtgg ceacegette cageegggg ggeeggeac geacacgtgg tgcgacetet
      241 gtggcgactt catctggggc gtcgtgcgca aaggcctgca gtgcgcgcat tgcaagttca
      301 cetgecacta cegetgeege gegetegtet geetggactg ttgegggeee egggacetgg
      361 gctgggaacc cgcggtggag cgggacacga acgtggacga gcctgtggag tgggagacac
      421 ctgacctttc tcaagctgag attgagcaga agatcaagga gtacaatgcc cagatcaaca
20
      481 gcaacctctt catgagettg aacaaggacg gttettacac aggetteate aaggtteage
      541 tgaagetggt gegeeetgte tetgtgeeet ceageaagaa gecaeectee ttgeaggatg
      601 cccggcggg cccaggacgg ggcacaagtg tcaggcgccg cacttccttt tacctgccca
      661 aggatgctgt caagcaccta catgtgctgt cacgcacaag ggcacgtgaa gtcattgagg
      721 ccctgctgcg aaagttcttg gtggtagatg acccccgcaa gtttgcactc tttgagcgcg
25
      781 etgagegtea eggeeaagtg tacttgegga agetgttgga tgatgageag eecetgegge
      841 tgcggetect ggcagggeec agtgacaagg ceetgagett tgteetgaag gaaaatgaet
      901 ctggggaggt gaactgggac gccttcagca tgcctgaact acataacttc ctacqtatcc
      961 tgcagcggga ggaggaggag cacctccgcc agatcctgca gaagtactcc tattqccqcc
     1021 agaagateca agaggeeetg cacqcetgee ceettgggtg acctettgta ecceeaggtg
30
     1081 gaaggcagac agcaggcagc gccaagtgcg tgccgtgtga gtgtgacagg gccagtgggg
     1141 cctgtggaat gagtgtgcat ggaggccctc ctgtgctggg ggaatgagcc cagagaacag
     1201 cgaagtaget tgeteectgt gteeacetgt gggtgtagee aggtatgget etgeaceet
     1261 etgecetcat tactgggeet tagtgggeea gggetgeeet gagaagetge tecaggeetg
     1321 cagcaggagt ggtgcagaca gaagtctcct caatttttgt ctcagaagtg aaaatcttqq
35
     1381 agaccetgea aacagaacag ggtcatgttt gcaggggtga cggccctcat ctatgaggaa
     1441 aggttttgga tottgaatgt ggtotcagga tatcottatc agagctaagg gtgggtgctc
     1501 agaataaggc aggcattgag gaagagtett ggtttetete tacagtgeca actectcaca
     1561 caccetgagg teagggagtg etggeteaca gtacageatg tgcettaatg etteatatga
     1621 ggaggatgtc cctgggccag ggtctgtgtg aatgtgggca ctggcccagg ttcatacctt
40
     1681 atttgetaat caaagecagg gteteteect caggtgtttt ttatgaagtg cgtgaatgta
     1741 tgtaatgtgt ggtggcctca gctgaatgcc tcctgtgggg aaaggggttg gggtgacagt
     1801 catcatcagg gcctggggcc tgagagaatt ggctcaataa agatttcaag atccaaaaaa
     1861 aaaaaaaaaa aaa
45
     MSGEPELIEL RELAPAGRAG KGRTRLERAN ALRIARGTAC NPTRQLVPGR GHRFQPAGPA
     THTWCDLCGD FIWGVVRKGL QCAHCKFTCH YRCRALVCLD CCGPRDLGWE PAVERDTNVD
     EPVEWETPDL SQAEIEQKIK EYNAQINSNL FMSLNKDGSY TGFIKVOLKL VRPVSVPSSK
     KPPSLQDARR GPGRGTSVRR RTSFYLPKDA VKHLHVLSRT RAREVIEALL RKFLVVDDPR
     KFALFERAER HGQVYLRKLL DDEQPLRLRL LAGPSDKALS FVLKENDSGE VNWDAFSMPE
50
     LHNFLRILQR EEEEHLRQIL QKYSYCRQKI QEALHACPLG
```

Nore1, AF053959;

Nucleic acid: SEQ ID NO: 128 (coding: 31-1272); Amin0 Acid: SEQ ID NO: 129

```
1 gtagetgege egetgaetga ggeettggee atggetteee eggeeategg geaacgteee
       61 taccogotgo toctagatoo ogagoogoog oggtatotgo agagtotgog togoacogag
5
      121 cogcacctc cogcoogcc gogcogctgc atcoccacgg coctgatocc cgcggcoggg
      181 gcgtcagagg atcgcggtgg caggaggagt ggccggaggg accccgaacc cacgccccga
      241 gactgeegae aegetegeee tgteeggeee ggtetgeage egagaetgeg getgegaeet
      301 gggtcacacc gaccccgcga cgtgaggagc atcttcgagc agccgcagga tccccgcgtc
      361 ttggccgaga gaggcgaggg gcaccgtttc gtggaactgg cgctgcgggg cggtccgggc
10
      481 ttcacctgcc actcggagtg ccgcagcctg atccagttgg actgcagaca gaagggggc
      541 cctgccctgg atagacgctc tccaggaagc accctcaccc caaccttgaa ccagaatgtc
      601 tgtaaggcag tggaggagac acagcacccg cccacgatac aggagatcaa gcagaagatt
      661 gacagetata acageaggga gaageactge etgggeatga agetgagtga agatggeace
15
      721 tacacaggtt tcatcaaagt gcatttgaag ctccgacggc cagtgacggt gcccgctgga
      781 teeggeeeca gteeatetat ggatgeeatt aaggaagtga accetgeage caccacagae
      841 aagoggactt ccttctacct gccactcgat gccatcaagc agctacatat cagcagcacc
      901 accaeggtta gtgaggteat ceaggggetg etcaagaagt teatggttgt ggacaaceca
      961 cagaagtttg cactttttaa geggatacac aaagatggac aagtgetett eeagaaacte
20
     1021 tocattgctg actatectet etacettegt etgetegetg ggeetgaeae egatgttete
     1081 agetttgtge taaaggagaa tgaaactgga gaggtggagt gggatgeett tteeatteet
     1141 gaactccaga actttttaac tatcctggaa aaagaggagc aggacaagat ccatcaactg
     1201 caaaagaagt acaacaaatt ccgtcagaaa ctggaagagg cattacgaga gtcccaaggg
     1261 aageeggggt aaceageega etteetgtee teteagtgee etceaattta tittattgtt
25
     1321 aattattttg caacaaagag ttactgttaa gacacctctg gtggttccac cagtcgcctg
     1381 cccagcagtt aacagatgtg gcacaaagtc tcttccacgc agtgtctatg cagggttccg
     1441 attectgeta acceacaca ceatggetet ggagagette cegeetggga teagaactee
     1501 tgtggaatga ccagtgtttc cctgctcagt ctgctggcct ctcagaaacc aaatagttgc
     1561 ctctctggtc accaaactcc aatcaatcac cagccggcaa aaggaaagaa aggtttcaga
30
     1621 gcctgtgtgt tetttetetg gatttactet teagtteete tittggtttg titggttggt
     1681 tttttttggc cacgtatagt atatttaagg atcaaatgtg gcatattcat tctagctaag
     1741 toottgaaag caggaaaatg ctcatgaaag gactgtcctt gccccaaggt gcctcttctt
     1801 ctctagtact agacactcag ggtcagcctg agatttcaag aggctacagc ctgaccaggc
     1861 egtettetta ttacccagca ggetgtgtgc atgcaaaccc aaagacatat atgcacatet
35
     1921 gtgtggtatt tcagcatgtc tctgtccaat gtttgatatg ttaacatttg aatttaatgc
     1981 tgtcctcctt atgggtttct accaaagaga aaccagccac ttatcaattt tagtttcttg
     2041 etgagetgee agaaagtatt acagagaage acatecaage tgtetgtgge ctaegeetge
     2101 agggggtggg gggcctgaat ctccttggcc ttcagttcca cctccacctc tggctttagg
     2161 gtctccagct gttgcctgag tagtagcttt gattacagcg gtaaagtcct ccaacttgga
40
     2221 qtcctttctg gtgggaagca tggtctgctc gcagcacagc actgagcaga cccqtqqqcc
     2281 tgacttccct ggtgacttca gtgccttttt gtttgcagag aaaagagtgg ggcactttgc
     2341 ttgaagetet etgetggett geeeetggea ggaagtggae aatggtgeta tagageeaag
     2401 gacacagcct cagagcacag ggtgattgat gatcagcctc tttcccatca agcttcccgg
     2461 traggetttg actttgaaga tgcgaggtta ctagactgca ttgacagcat cagattatga
45
     2521 ctccaactct tgagtagttc agacttaaaa ccaatcagcc agagtagcca ggactgcaaa
     2581 gacactcaat acagatggag aaaaacttgt ccctttaaaa gagggccagt gtttcaattg
     2641 agectecaga ggagaccact tteatgttgt gettgeettt ecataccett teetegggtt
     2701 gttttaagcc caagcttctc cgtgtagcct aaaaagttcc ctaccagccc agctgaagcc
     2761 acactgctcc cgtcccagaa gaacgccaaa tccttgtcat tcaaactgtg catcgtttgc
50
     2821 agagetgeaa aaageaacat gagetagega etetgaggtt gtgeacgeea teageceett
     2881 ggctgcctga ggtctcatgc ccagccttac acctctctcc cttaagaagc ccccgtcctg
     2941 ctgtgtacta caggggcacg tggaatcatt cccttcatcc tgcatgtctg tagcgttagg
     3001 agaaggcatg gctcctgc
```

MASPAIGORP YPLLLDPEPP RYLQSLGGTE PPPPARPRC IPTALIPAAG ASEDRGGRRS GRRDPEPTPR DCRHARPVRP GLQPRLRLRP GSHRPRDVRS IFEQPQDPRV LAERGEGHRF VELALRGGPG WCDLCGREVL RQALRCANCK FTCHSECRSL IQLDCRQKGG PALDRRSPGS TLTPTLNQNV CKAVEETQHP PTIQEIKQKI DSYNSREKHC LGMKLSEDGT YTGFIKVHLK LRRPVTVPAG SGPSPSMDAI KEVNPAATTD KRTSFYLPLD AIKQLHISST TTVSEVIQGL LKKFMVVDNP QKFALFKRIH KDGQVLFQKL SIADYPLYLR LLAGPDTDVL SFVLKENETG EVEWDAFSIP ELQNFLTILE KEEQDKIHQL QKKYNKFRQK LEEALRESQG KPG

VHL GenBank Accession No. NM 000551

5

10 Nucleic acids: SEO ID NO: 129 (coding 2145-855); Amino acids

```
1 cetegeetee gttacaacqq cetacqqtqc tqqaqqatee ttetqcqcac gegcacaqce
        61 teeggeegge tattteegeg agegegttee atectetace gagegegege gaagactacg
       121 gaggtegaet egggagegeg eaegeagete egeeeegegt eegaeeegeg gateeegegg
       181 cgtccggccc gggtggtctg gatcgcggag ggaatgcccc ggagggcgga gaactgggac
15
       241 gaggccgagg taggcggga ggaggcaggc gtcgaagagt acggccctga agaagacggc
       301 ggggaggagt cgggcgccga ggagtccggc ccggaagagt ccggcccgga ggaactgggc
       361 gccgaggagg agatggaggc cgggcggccg cggcccgtgc tgcgctcggt gaactcgcgc
       421 gagccctccc aggtcatctt ctgcaatcgc agtccgcgcg tcgtgctgcc cgtatggctc
       481 aacttegaeg gegageegea geeetaeeea aegetgeege etggeaeggg eegeegeate
20
       541 cacagetace gaggtcacet ttggctette agagatgcag ggacacaega tgggettetg
       601 gttaaccaaa ctgaattatt tgtgccatct ctcaatgttg acggacagcc tatttttgcc
       661 aatateacae tgecagtgta taetetgaaa gagegatgee tecaggttgt ceggageeta
       721 gtcaagcctg agaattacag gagactggac atcgtcaggt cgctctacga agatctggaa
       781 gaccacccaa atgtgcagaa agacctggag cggctgacac aggagcgcat tgcacatcaa
25
       841 eggatgggag attgaagatt tetgitgaaa ettacactgt ticateteag ettitgatgg
       901 tactqatqaq tottqatota qatacaqqac tqqttccttc ottaqtttca aaqtqtctca
       961 ttctcaqaqt aaaataqqca ccattqctta aaaqaaaqtt aactqacttc actaqqcatt
      1021 qtqatqttta ggggcaaaca tcacaaaatg taatttaatg cctgcccatt agagaagtat
      1081 ttatcaggag aaggtggtgg catttttgct tcctagtaag tcaggacagc ttgtatgtaa
30
      1141 ggaggtitgt ataagtaatt cagtgggaat tgcagcatat cgtttaattt taagaaggca
      1201 ttggcatctg cttttaatgg atgtataata catccattct acatccgtag eggttggtga
      1261 ettgtetgee teetgetttg ggaagaetga ggeateegtg aggeagggae aagtetttet
      1321 cctctttgag accccagtgc ctgcacatca tgagccttca gtcagggttt gtcagaggaa
      1381 caaaccaggg gacactttgt tagaaagtgc ttagaggttc tgcctctatt tttgttgggg
35
     1441 ggtgggagag gggaccttaa aatgtgtaca gtgaacaaat gtcttaaagg gaatcatttt
      1501 tgtaggaagc attitittata attitictaag tegtgeactt teteggteea etettgttga
      1561 agtgctgttt tattactgtt tctaaactag gattgacatt ctacagttgt gataatagca
      1621 tttttgtaac ttgccatccg cacagaaaat acgagaaaat ctgcatgttt gattatagta
      1681 ttaatggaca aalaagtttt tgctaaatgt gagtatttct gttccttttt gtaaatatgt
40
      1801 gagatggagt ctcactcttg tcacccaggc tggagtgcag tggcgccatc tcggctcact
      1861 gcaacetetg cetectgggt teaegtaate etcetgagta getgggatta eaggegeetg
      1921 ccaccacget ggccaatttt tgtactttta gtagagacag tgtttcgcca tgttggccag
      1981 gctggtttca aactcctgac ctcaggtgat ccgcccacct cagcctccca aaatggtggg
45
      2041 attacaggtg tgtgggccac cgtgcctggc tgattcagca ttttttatca ggcaggacca
      2101 ggtggcactt ccacctccag cctctggtcc taccaatgga ttcatggagt agcctggact
      2161 gtttcatagt tttctaaatg tacaaattct tataggctag acttagattc attaactcaa
      2221 attcaatgct tctatcagac tcagtttttt gtaactaata gatttttttt tccacttttg
     2281 ttctactcct tccctaatag ctttttaaaa aaatctcccc agtagagaaa catttggaaa
50
     2341 agacagaaaa ctaaaaagga agaaaaaaga tccctattag atacacttct taaatacaat
     2401 cacattaaca ttttgagcta tttccttcca gcctttttag ggcagatttt ggttggtttt
     2461 tacatagttg agattgtact gttcatacag ttttataccc tttttcattt aactttataa
     2521 cttaaatatt gctctatgtt agtataagct tttcacaaac attagtatag tctccctttt
     2581 ataattaatg tttgtgggta tttcttggca tgcatcttta attccttatc ctagcctttg
55
     2641 ggcacaattc ctgtgctcaa aaatgagagt gacggctggc atggtggctc ccgcctgtaa
     2701 toccagtact ttgggaagcc aaggtaagag gattgcttga gcccagaact tcaagatgag
```

2761 cctgggctca tagtgagaac ccatctatac aaaaaatttt taaaaattag catggcggca 2821 cacatctgta atcctagcta cttggcaggc tgaggtgaga agatcattgg agtttaggaa 2881 ttggaggctg cagtgagcca tgagtatgcc actgcactcc agcctggggg acagagcaag 2941 accctgcctc aaaaaaaaaa aaaaaaaa

5

MPRRAENWDE AEVGAEEAGV EEYGPEEDGG EESGAEESGP EESGPEELGA EEEMEAGRPR PVLRSVNSRE PSQVIFCNRS PRVVLPVWLN FDGEPQPYPT LPPGTGRRIH SYRGHLWLFR DAGTHDGLLV NQTELFVPSL NVDGQPIFAN ITLPVYTLKE RCLQVVRSLV KPENYRRLDI VRSLYEDLED HPNVQKDLER LTQERIAHQR MGD

10

15

20

25

30

35

Experimental procedures

Family with CC-RCC and t(1;3)(q32.1;q13.3), paired CC-RCC tumors/normal kidney tissues, and cell lines

The clinical and genetic details of the Japanese kindred with familial CC-RCC have been previously published (Kanayama *et al.*, 2001). The EBV-transformed lymphoblastoid cell lines FRCC3 and FRCC5 used in this study were established from two affected translocation carriers.

Four tumors were from three members of the t(1;3) family, and 53 matched pairs of CC-RCC were collected from the University of Tokushima in Japan.

Nine established RCC cell lines were purchased from ATCC: A-498, A-704, Caki-1, Caki-2, SW-839, ACHN, 786-O, 769-P, and SW-156.

Construction of BAC contigs and FISH analyses

Forty-four 1q32.1 and 3q13.3 BAC clones were obtained from the BACPAC Resource Center (Children's Hospital, Oakland Research Institute) or ResGen Invitrogen Corporation.

The clones were selected based on information in the BAC clone mapping databases and Human Genome Sequence Draft database. The details of the BACs are listed in the Supplemental Experimental Procedures.

Standard dual-color FISH was performed by hybridizing each of the 44 BAC clones to metaphase slides prepared from FRCC3 or FRCC5. In all hybridizations, the PAC clone 160H23 from the 1q subtelomere (Cytocell Ltd, UK) was included as a marker of the normal chromosome 1 and the der(3) chromosome.

Long-range PCR, Southern blot analysis, and Northern blot analysis

Long-range PCR was used for the amplification of the breakpoints and the generation of DNA probes for Southern blot analysis with an Advantage Genomic PCR kit (Clontech, USA). PCR was carried out following the manufacturer's user manual. Southern blot and Northern blot analyses were performed following the standard protocol. Human multiple tissue Northern blots

were purchased from Clontech (Cat. #7780-1). Details of these analyses can be found in the Supplemental Experimental Procedures.

Mutation analysis

5

10

15

20

25

30

Mutation analysis of *LSAMP*, *NORE1A*, and *NORE1B* was performed in the 53 sporadic CC-RCCs and 9 RCC cell lines. Each exon of *LSAMP*, *NORE1A*, and *NORE1B* was amplified by PCR using primers derived from the flanking intronic or UTR sequences (see Table A in the Supplemental Data). The PCR products were then purified and subjected to direct DNA sequencing using PE Applied Biosystems.

Real-time quantitative RT-PCR

Total RNA from normal kidney tissues, RCC cell lines, and sporadic tumors was subjected to real-time quantitative PCR using an ABI PRISM 7700 Sequence Detection System. Specific primer and probe were designed for *LSAMP* and *NORE1A* using Primer Express v1.5a (Applied Biosystems). The primer sequences and the details of the real-time RT-PCR analysis are described in the Supplemental Experimental Procedures.

<u>DNA methylation analysis and demethylation treatment by 5-aza-2'-deoxycytidine (5-aza-CdR)</u>

Methylation analysis was performed for the promoter CpG islands of *LSAMP* and *NORE1A*. Bisulfite-PCR followed by restriction enzyme digestion analysis was used. Eight RCC cell lines were demethylated by 5-aza-CdR (Sigma, USA) treatment. The primers and the details of the analyses are given in the Supplemental Experimental Procedures.

LOH analysis

LOH detection for LSAMP and NORE1 was performed by genotyping the 53 paired normal/tumor DNA samples. The microsatellite markers flanking the LSAMP locus are D3S3681, D3S1271, D3S1267, and D3S1292. NORE1 locus markers include D1S413 and D1S249. All the markers were obtained from ABI Prism Linkage Mapping Set version 2, panel 1 and 2 (Applied Biosystems). The details of LOH analysis are described in the supplemental experimental procedures.

Cell growth assay

Expression plasmids *pEGFP-LSAMP*, *-NORE1A*, and *-Nore1* were generated by ligating cDNAs of *LSAMP*, *NORE1A*, and murine *Nore1* to N- or C-terminal enhanced green fluorescent protein vectors (*pEGFP-N1/-C1*) (Clontech, USA). Expression plasmids were microinjected and transfected into two RCC cell lines, A-498 and/or Caki-1, for cell growth-suppression assay.

Inducible experiments and nuclear fractionation assays were also performed for the nuclear location of Norel. Detailed methods are provided in the Supplemental Data.

URLs. University of California, Santa Cruz (UCSC) Human Genome Browser at the web site: www.genome.ucsc.edu; Discovery System Human Genome Browser: at the web site: www.cds.celera.com; Human Genome Browser NCBI: at the web site ncbi.nlm.nih.gov.

Supplemental Experimental Procedures

5

10

15

20

25

30

BAC clones used for construction of BAC contigs and FISH analyses

The 20 BAC clones from 1q32.1 are RP11-196B7, RP11-70G20, RP11-219P13, RP11-45F21, RP11-104A2, RP11-124A11, RP11-149C8, RP11-237N7, RP11-142B3, RP11-421E17, RP11-54L22, RP11-262N9, RP11-237C22, RP11-145I13, RP11-57I17, RP11-534L20, CTD-2245C1, CTD-2321B11, CTD-2278G17, and RP11-343H5.

The 24 BAC clones from 3q13.3 are RP11-138N21, RP11-58D2, RP11-324H4, RP11-165B13, RP4-635B5, RP11-484M3, RP11-829I14, RP11-641I23, RP11-643A3, RP11-891J4, RP11-281N16, RP11-50N14, RP11-728O20, RP11-899P8, RP11-716E6, RP11-1115L2, RP11-60P15, RP11-47C16, CTD-2246M24, RP11-149B11, CTD-2514L8, CTD-2016D14, CTC-804P8, and CTC-2006J5.

Long-range PCR, Southern blot analysis, and Northern blot analysis

Long-range PCR was used for the amplification of the breakpoints and the generation of DNA probes for Southern blot analysis with an Advantage Genomic PCR kit (K1906-Y, CLONTECH Laboratories, Inc., USA). PCR was carried out following the manufacturer's user manual. BAC clones spanning the 1q32.1 (RP11-54L22) and 3q13.3 (RP11-281N16) breakpoints were used as PCR templates. Four approximately 10-kb and five 4- to 6-kb DNA probes were synthesized for 1q breakpoint mapping and six 5- to7- kb DNA probes were generated for Southern blot analysis in 3q breakpoint mapping. Two EBV-transformed lymphoblastoid cell lines of two patients from the t(1q;3q) family and two normal EBV-transformed lymphoblastoid cell lines were used for Southern blot analysis. Fifteen microgram aliquots of genomic DNA were digested using BamHI, EcoRI, HindIII, StuI, EcoRV, XbaI, BglI, and BglII. Completely digested DNA samples were separated by size on a 0.8% agarose in 1 × TBE buffer. Southern blot to nylon membrane and subsequent hybridization were performed following the standard protocol.

For Northern blot analysis, human multiple tissue Northern blots were purchased from Clontech (USA, Cat. #7780-1). Northern blots were also prepared with RNA from normal

kidney (Clontech) and with RNA extracted from the nine RCC cell lines, the EBV lines FRCC3 and FRCC5, two EBV lines from normal individuals, and normal kidney tissues from two patients with sporadic CC-RCC. Total RNA was extracted using the Trizol Reagent kit (Invitrogen), and 15 μ g of total RNA of each sample was for the Northern blots. Probes specific for *NORE1A* (exon 1 α), *NORE1B* (exon 2 β), *LSAMP* (exon 1), and β -actin were synthesized by PCR labeled with α -³²P and hybridized to the Northern filters under stringent conditions.

RT-PCR

5

10

15

20

25

30

RT-PCR was performed using 5 µg of total RNA isolated from the nine RCC cell lines and nine normal kidney tissues, Superscript-II RT (Invitrogen), random hexamer primers, and specific primer pairs. Specific primers from *LSAMP* and *NORE1A* were used for fusion transcripts analysis. The primer sequences are given in Table A of supplemental data online. PCR was carried out at 95°C for 5 min, followed by 95°C for 30 s, 58°C for 30 s and 72°C for 45 s, for 35 cycles.

LOH analysis

PCR was performed according to the manufacturer's protocol. For each individual, 1 μ l of PCR product from each marker was then pooled. One microliter of this mixture was added to 10 μ L of Hi-Di formamide and 0.1 μ l of ROX 400HD size standard and denatured at 95 °C for 5 min before loading the samples into an ABI Prism 3700 DNA Analyzer (Applied Biosystems). Analysis of raw data and assessment of LOH were performed with Genescan v. 3.7 and Genotyper v. 3.7 software, respectively (Applied Biosystems). LOH was defined according to the following formula: LOH index = (T2/T1)/(N2/N1), where T was the tumour sample, N was the matched normal sample, and 1 and 2 were the intensities of smaller and larger alleles, respectively. If the ratio was less than 0.67 or more than 1.3, the result was determined to be LOH.

Real-time quantitative RT-PCR

Two micrograms of total RNA from 9 normal kidney tissues, the 9 RCC cell lines, and 16 sporadic tumors with *LSAMP* and/or *NORE1A* promoter methylation (RNA from other tumors was not available for analysis) were reverse-transcribed in a 100 µl reaction mixture using MultiScribe Reverse Transcriptase following the manufacturer's instruction (Applied Biosystems). Real-time quantitative PCR was performed using an ABI PRISM 7700 Sequence Detection System. Specific primer and probe sequences were designed for *LSAMP* and *NORE1A* using Primer Express v1.5a (Applied Biosystems).

LSAMP forward primer: 5'-CAATGGCCGTCCTGAACCT-3' (SEQ ID NO:106);

LSAMP reverse primer: 5'-CAAATTCCCTTCCAGTTGGTGTA-3' (SEQ ID NO:107);

LSAMP Taqman probe: 5'-6FAM-TTATCACCTGGAGACACC-MGBNFQ (SEQ ID NO:108);

NORE1A forward primer: 5'-GCGCTGCACTAACTGTAAATTCA-3' (SEQ ID NO:109);

NORE1A reverse primer: 5'-GGGATAAACCCTCCTGCTGACT-3' (SEQ ID NO:110);

NORE1A taqman probe: 5'-6FAM-TCACCCAGAATGCCGCA-MGBNFQ-3' (SEQ ID NO:111).

Of each sample, 100 ng was amplified using the following PCR conditions: 50°C for 2 min, 95°C for 10 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. A series of five 1:2 dilutions of pooled normal sample served as a standard curve for relative quantification. Each tumor sample was normalized to an endogenous control, β-actin, and then normalized to the standard curve. Reported are values of fold change from pooled normal.

DNA methylation analysis

5

10

Two ug of genomic DNA from each cell line, tumor and normal kidney tissue was denatured in 0.3 M NaOH for 15 min at 37°C. Cytosines were sulfonated in 5 mM hydroquinone (Sigma) and 3.12 M sodium bisulfite (Sigma) for 16 h at 50°C. The DNA samples were desalted 15 through columns, desulfonated in 0.3 M NaOH and precipitated with ethanol. DNA sequences were amplified by nested PCR. Approximately 50 ng of bisulfite-treated DNA was firstly amplified in a reaction volume of 30 µl with respective outer primer pairs: LSAMP-BISF-OF (5'-TGGTAGAGGAGTATTTAGTTATAGAGAGA-3') (SEQ ID NO:112), LSAMP-BISF-OR1 (5'-TCTCAATAAAACCAATAACAACTATTTC-3') (SEQ ID NO:113), 20 NORE1A-BISF-OF2 (5'-AAGAGGTAGGGTTGAAGGTTTAGGGTTT-3') (SEQ ID NO:114), and NORE1A-BISF-OR2 (5'-CTCRAAACCRCTCAAACTCTATAAATAAC-3') (SEQ ID NO:115). PCR was carried out at 95°C for 8 min, followed by 95°C for 30 s, 58°C for 30 s and 72°C for 1 min, for 30 cycles. A nested PCR was performed using 1 µl of the initially amplified products 25 and the respective internal primer pairs: LSAMP-BISF-IF (5'-TGTTTGGGTTTTATGAGGGTTTTGT-3') (SEQ ID NO:116) and LSAMP-BISF-IR (5'-CRACTAAACTCTCCTAACCATAATAACCAC-3') (SEQ ID NO:117), NORE1A-BISF-IF2 (5'-GAATTTTGTAGTTGTTTTAGGTGAAGA-3') (SEQ ID NO:118), and NORE1A-IR2 (5'-CRACRACTCRAAATCCAATAATAA-3') (SEQ ID NO:119) with similar conditions as described for the preceding PCR amplification. The PCR products 30 were purified using Microcon YM-100 (Millipore Corporation, USA). For isoform NORE1B, methylation analysis was performed as described in Tommasi et al. 2002. For restriction enzyme

analysis of PCR products from bisulfite-treated DNA, 30 ng of the PCR products was digested with 10 units of *Taq*I (Invitrogen, USA) and separated by size on a 2.0% TAE gel.

Demethylation of LSAMP and NORE1A by 5-aza-2'-deoxycytidine (5-aza-CdR) treatment

Eight RCC cell lines (except the slow-growing A-704 cell line) were subjected to 5-aza-CdR (Sigma Chemical Co., St. Louis, MO) treatment. Approximately 5×10^5 cells for each line were seeded on a 100-mm plate and incubated for 24 h. The cells were cultured up to 14 d in complete media which contained 2.5 μ M of 5-aza-CdR, and media was changed at 2-d intervals. Isolated total cellular RNAs from RCC cell lines treated and untreated with 5-aza-CdR were analyzed with real-time quantitative RT-PCR.

Cell growth assay

5

10

15

20

25

30

RCC cell lines A-498 and/or Caki-1, growing logarithmically on glass coverslips and maintained in 10% fetal calf serum, were microinjected or lipid-mediated transfection with pEGFP-LSAMP, pEGFP-NORE1A, pEGFP-Nore1 or the vector control pEGFP-C1/pEGFP-N1 (50 ng/ml). Two hours after injection or 24 h after lipid-mediated transfection (Lipofectamine2000 reagents, Invitrogen), EGFP/EGFP-Nore1-expressing cells were fixed and stained with Texas Red-labeled phalloidin to reveal F-actin architecture and Hoechst 33342 (blue) to visualize DNA (nuclei). To monitor proliferation in cells expressing EGFP-LSAMP, EGFP-NORE1A, and Nore1 fusion proteins or EGFP, 40-60 cells were microinjected with expression plasmids for the indicated protein, and returned to the incubator for 2 h. The number of successfully injected/expressing cells were then counted on an inverted epifluorescence microscope and thereafter at the selected times.

Supplemental inducible experiments and nuclear fractionation assay for nuclear location of Nore1

To confirm the nuclear location of Norel, me performed experiments by cloning Norel into the pIND(SP1)-Hygro vector (Invitrogen, Carlsbad, CA) and transfecting the plasmid into 293-T cells using Lipofectamine2000 reagents (Invitrogen). After selection in hygromycin, cell populations were pooled at an early passage and assayed for the effects of Norel induction on cell proliferation by growth curve analysis. Selected cells were plated at a cell density of 2.5 x 10^5 cells/well in triplicate and induced with Ponasterone A 24 h later. Cells were counted using a Coulter counter every 24 h. Western analysis was performed on lysates at each time point.

For nuclear fractionation assay, 293-T cells were transfected with 1 µg of pcDNAFlag-Nore1 using CaPO4 (Invitrogen, Carlsbad CA). Forty-eight hours later cells were harvested and

processed for subcellular fractionation. Protein determinations were made for each fraction and equivalent amounts were loaded on to gel. The cytoplasmic, membrane and nuclear fractions were then subjected to Western analysis using an anti-FLAG antibody (Sigma, St. Louis. MO).

References for Examples

- Bodmer, D et al., (2002a). Disruption of a novel MFS transporter gene, DIRC2, by a familial renal cell carcinoma-associated t(2;3)(q35;q21). Hum. Mol. Genet. 11, 641-649.
 - Bodmer, D. et al., (2002b). Cytogenetic and molecular analysis of early stage renal cell carcinomas in a family with a translocation (2;3)(q35;q21). Cancer Genet. Cytogenet. 134, 6-12.
- Bodmer, D. *et al.*, (1998). An alternative route for multistep tumorigenesis in a novel case of hereditary renal cell cancer and a t(2;3)(q35;q21) chromosome translocation. Am. J. Hum. Genet. *62*, 1475-1483.
 - Bodmer, D., et al. (2002c). Understanding familial and non-familial renal cell cancer. Hum. Mol Genet. 11, 2489-2498.
 - Carpten, J. D. et al., Nat. Genet. 32, 676-680.

15

- Cohen, A.J. *et al.* (1979). Hereditary renal-cell carcinoma associated with a chromosomal translocation. N. Engl. J. Med. 301, 592-595.
 - Dammann, R. et al. (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumor suppressor locus 3p21.3. Nat. Genet. 25, 315-319.
 - Dreijerink, K et al. (2001). The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis. Proc. Natl. Acad. Sci. USA 98, 7504-7509.
- Druck, T. *et al.* (1997). Structure and expression of the human FHIT gene in normal and tumor cells. Cancer Res 57, 504-512.
 - Druck, T. et al. (2001). The DIRC1 gene at chromosome 2q33 spans a familial RCC-associated t(2;3)(q33;q21) chromosome translocation. J. Hum. Genet. 46, 583-589.
- Eleveld, M.J. *et al.* (2001). Molecular analysis of a familial case of renal cell cancer and a t(3;6)(q12;q15). Genes Chromosomes Cancer 31, 23-32.
 - Gemmill, R.M. et al., (2002). The TRC8 hereditary kidney cancer gene suppresses growth and functions with VHL in a common pathway. Oncogene 21, 3507-3516.
 - Hesson, L. et al. (2003). NORE1A, a homologue of RASSF1A tumor suppressor gene is inactivated in human cancers. Oncogene 22, 947-954.
- Jones, P.A. et al. (2002). The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415-428.
 - Kanayama, H. et al. (2001). Association of a novel constitutional translocation t(1q;3q) with familial renal cell carcinoma, J. Med. Genet. 38, 165-170.
 - Khokhlatchev, A. et al. Curr. Biol. 12, 253-265.
- Koolen, M.I. *et al.* (1998). A familial case of renal cell carcinoma and a t(2;3) chromosome translocation. Kidney Int. 53, 273-275.
 - Kovacs, G. et al.. (1989). Tissue-specific expression of a constitutional 3;6 translocation: development of multiple bilateral renal-cell carcinomas. Int. J. Cancer 43, 422-427.
- Kovacs, G. et al. (1988). Loss of der(3) in renal carcinoma cells of a patient with constitutional t(3;12). Hum Genet 78, 148-150.

Latif, F. et al.. (1993). Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317-1320.

- Morrissey, C et al.. (2001). Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma. Cancer Res. 61, 7277-7281.
- Nickerson, M.L. et al. (2002). Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2, 157-164.
 - Ohta, M. et al. (1996). The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 84, 587-597.
 - Ortiz-Vega, S. *et al.* (2002). The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1. Oncogene *21*, 1381-1390.

10

- Pimenta, A.F. et al.. (1996). cDNA cloning and structural analysis of the human limbic-system-associated membrane protein (LAMP). Gene 170, 189-195.
- Podolski, J. et al. (2001). Characterization of a familial RCC-associated t(2;3)(q33;q21) chromosome translocation. J. Hum. Genet. 46, 685-693.
- Schmidt, L. et al. (1995). Mechanism of tumorigenesis of renal carcinomas associated with the constitutional chromosome 3;8 translocation. Cancer J. Sci. Am. 1, 191.
 - Sellar, G. C. et al. (2003). OPCML at 11q25 is epigenetically inactivated and has tumor-suppressor function in epithelial ovarian cancer. Nat. Genet. 34, 337-343.
- Siprashvili, Z. et al. (1997). Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci U S A 94, 13771-13776.
 - Storkel, S et al. (1997). Classification of renal cell carcinoma: Workgroup No. 1. Union Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). Cancer 80, 987-989.
 - Teh, B.T. et al. (1997). Familial non-VHL non-papillary clear-cell renal cancer. Lancet 349, 848-849.
- Tomlinson, I.P. *et al.* (2002). Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. *30*, 406-410.
 - Tommasi, S. et al. (2002). RASSF3 and NORE1: identification and cloning of two human homologues of the putative tumor suppressor gene RASSF1. Oncogene 21, 2713-2720.
 - van den Berg, A. et al. (1997). Involvement of multiple loci on chromosome 3 in renal cell cancer development. Genes Chromosomes Cancer 19, 59-76.
- 30 van Kessel, A.G. *et al.* (1999). Renal cell cancer: chromosome 3 translocations as risk factors. J. Natl. Cancer Inst. *91*, 1159-1160.
 - Vavvas, D. et al. (1998). Identification of Norel as a potential Ras effector. J. Biol. Chem. 273, 5439-5442.
- Vos, M.D. *et al.* (2000). Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J. Biol. Chem. *275*, 35669-35672.
 - Woodward, E.R et al. (2000). Familial clear cell renal cell carcinoma (FCRC): clinical features and mutation analysis of the VHL, MET, and CUL2 candidate genes. J. Med. Genet. 37, 348-353.
 - Yoon, J.H. et al.. (2001). Hypermethylation of the CpG island of the RASSF1A gene in ovarian and renal cell carcinomas. Int. J. Cancer 94, 212-217.
- Zbar, B. et al. (2003). Studying cancer families to identify kidney cancer genes. Annu. Rev. Med. 54, 217-233.

From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make changes and modifications of the invention to adapt it to various usage and conditions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The preceding preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

5

The entire disclosure of all applications, patents and publications, cited above and in the figures are hereby incorporated in their entirety by reference.

WHAT IS CLAIMED IS:

5

10

20

1. A method for detecting the presence of clear cell renal cell carcinoma (CC-RCC) in a subject, or the susceptibility of the subject for developing CC-RCC comprising detecting or measuring LSAMP and/or NORE1 gene expression in a sample from the subject, and comparing the expression with a baseline level of expression, wherein a reduction in the expression of one or both of said genes compared to the baseline level indicates that the subject suffers from, or is susceptible to CC-RCC.

- 2. The method of claim 1 wherein the expression is detected or measured as transcription of mRNA encoded by the LSAMP and/or NORE1 gene, by detecting or measuring the presence or amount of said mRNA in said sample.
- 3. The method of claim 1 wherein the expression is detected or measured as a polypeptide product encoded by the LSAMP or NORE1 gene, by detecting of measuring the presence or amount of LSAMP or NORE1 polypeptide in said sample.
- 4. The method of claim 3 wherein said detecting or measuring is performed with a binding partner for said LSAMP1 or NORE1 polypeptide.
 - 5. The method of claim 4 wherein said binding partner is an antibody specific for an epitope of said LSAMP1 or NORE1 polypeptide and said detecting or measuring is by an immunoassay.
 - 6. The method of any of claims 1-5 wherein said sample is a cell, tissue or tissue extract.
 - 7. The method of any of claims 1-5 wherein said sample is a body fluid selected from the group consisting of blood, plasma, serum, urine, saliva or cerebrospinal fluid.
 - 8. The method of claim 7 wherein said sample is a kidney tumor.
- 9. The method of claim 8 wherein said sample is section of a paraffin embedded tissue section of said kidney tumor.

10. A method for inhibiting a cancer-associated property of a cell in which the expression of the LSAMP and/or NORE1 genes is reduced compared to a baseline value, comprising providing to the cell an effective amount of LSAMP and/or NORE1 polypeptide or active fragment or variant thereof, wherein said polypeptide fragment or variant augments the level of LSAMP and/or NORE1 gene products in the cell, thereby inhibiting said cancer-associated property.

- 11. The method of claim 10 wherein the providing is by microinjection, liposomemediated introduction, or electroporation.
- 12. A method for inhibiting a cancer-associated property of a cell in which the expression of the *LSAMP* and/or *NORE1* genes is reduced compared to a baseline value, comprising providing to the cell an effective amount of

5

10

15

20

25

30

- (a) an LSAMP and/or NORE1 polypeptide or active fragment or active variant thereof;
- (b) an expressible polynucleotide encoding said LSAMP and/or NORE1 polypeptide, fragment or variant; or
- (c) an agent that induces or increases expression of the LSAMP and/or NORE1 genes;

wherein said polypeptide, fragment or variant, said polynucleotide or said agent results in an increased level of *LSAMP* and/or *NORE1* gene products in the cell, thereby inhibiting said, cancer-associated property.

- 13. The method of claim 12 wherein said property is tumor growth.
- 14. The method of claim 12 wherein the providing is by microinjection, liposome-mediated transfer, electroporation or microinjection.
- 15. A method for treating a subject with CC-RCC in whom CC-RCC cells underexpress the *LSAMP* and/or the *NORE1* gene compared to a baseline value, which method comprises administering to the subject an effective amount of
 - (a) an LSAMP and/or NORE1 polypeptide or active fragment or active variant thereof;
 - (b) an expressible polynucleotide encoding said LSAMP and/or NORE1 polypeptide, fragment or variant; or

(c) an agent that induces or increases expression of the LSAMP and/or NORE1 genes;

wherein said polypeptide, fragment or variant, said polynucleotide or said agent results in an increased level of *LSAMP* and/or *NORE1* gene product in the under-expressing CC-RCC cells, thereby treating said subject.

- 16. The method of claim 15, wherein the polypeptide, active fragment, active variant, or agent is administered systemically or intratumorally.
- 17. The method of claim 15 wherein the polynucleotide being administered comprises a sequence encode the polypeptide, fragment or variant operably linked to an expression control sequence which promotes or induces expression of the polypeptide in said subject.
- 18. The method of claim 15 or 17 wherein the polynucleotide is administered by injection, by gene gun administration, or by needle-free jet injection.
- 19. The method of claim 18 wherein the polynucleotide is administered intramuscularly or intratumorally.
 - 20. A pharmaceutical composition comprising

5

10

15

20

25

- (a) as an active moiety, an LSAMP and/or NORE1 polypeptide, or an active fragment or variant thereof, or a polynucleotide encoding an LSAMP and/or NORE1 polypeptide, or encoding an active fragment or variant of the polypeptide, wherein the polynucleotide is operably linked to an expression control sequence; and
- (b) a pharmaceutically acceptable carrier.
- 21. The pharmaceutical composition of claim 20 wherein the active moiety is said polynucleotide.
- 22. A kit, suitable for a method of detecting the presence and/or measuring amount of an LSAMP and/or a NORE1 polypeptide in a sample, comprising one or more reagents for detecting the polypeptide, and optionally
 - 23. The kit of claim 22 wherein said detecting reagent is an antibody specific for an epitope of the LSAMP or NORE1 polypeptide.

24. The kit of claim 23 further comprising one or more reagents for testing the binding of the antibody to a sample polypeptide and/or for facilitating detection of antibody binding.

25. A kit useful in a method detecting the presence and/or amount of a polynucleotide encoding LSAMP and/or NORE1 polypeptide in a sample, comprising a nucleic acid probe specific for a LSAMP- or NORE1-encoding DNA or RNA, and, optionally, one or more reagents that facilitate hybridization of the probe to the sample DNA or RNA, and/or that facilitate detection of the hybridized probe.

5

10

15

20

- 26. A kit useful in a method for treating a subject with CC-RCC, comprising
- (a) an LSAMP and/or NORE1 polypeptide or active fragment or active variant thereof;
- (b) an expressible polynucleotide encoding said LSAMP and/or NORE1
 polypeptide, fragment or variant; or
- (c) an agent that induces or increases expression of the LSAMP and/or NORE1 genes;

and optionally, (i) a means for administering the polypeptide to the subject and (ii) instructions for using the kit.

- 27, The kit of any of claims 21-26 comprising any one or more of: instructions for performing the method for which the kit is intended and/or for analyzing and/or evaluating the results of the method, a support on which a cell can be propagated, a support to which a reagent used in the method is immobilized, suitable buffers, media components, or other reagents for performing suitable controls, a computer, a computer-readable medium for storing and/or evaluating the assay results, containers or packaging materials.
- 28. An antibody specific for an epitope of the LSAMP or a NORE1 polypeptide which is useful in a the method of claim 5.

Figure 2

Figure 3

Figure 4

FIGURE 5

FIG. 5B-1

6/7

WHEN I

ACCETE MECNIC ACCIT

VISUM (STODATE)

FIG. 6A

ANACTCEGGENGCETGTG AC

FIG. 6B

FIGURE 6

FIGURE 7

