Eléments de logique pour l'informatique

Uli Fahrenberg

uli@lmf.cnrs.fr

d'après Christine Paulin

Département Informatique, Faculté des Sciences d'Orsay, Université Paris-Saclay

Licence Informatique - LDD Informatique, Mathématiques

2025-26

Introduction au cours de logique

- Motivations
- Organisation du cours
- Exemples d'usage de la logique

La logique, chemin vers la vérité

- Logique vient du grec logos (raison, langage, raisonnement).
- La logique manipule des énoncés (phrases dont le sens est vrai ou faux).
 - "Tous les moutons ont 5 pattes"
 - "Aucun étudiant ne joue sur son téléphone pendant le cours de logique"
 - "Les trains ne passent pas à un passage à niveau ouvert"
- "La couleur du cheval blanc d'Henri IV" n'est pas un énoncé
- Importance du langage pour préciser de quoi on parle (souvent implicite)
- Un énoncé peut être vrai ou faux suivant la manière dont on interprète les mots
- La logique est une manière scientifique d'étudier la notion de vérité

Combinaison d'énoncés

- L'arithmétique étudie les propriétés des nombres : 0, 1, 2, 3, ...
- La logique (classique) s'intéresse à un espace beaucoup plus simple : vrai/faux
- Les connecteurs logiques sont des opérations qui permettent de former de nouveaux énoncés
 - la négation d'un énoncé E : la négation d'un énoncé E est vraie si et seulement si l'énoncé E est faux
 - la conjonction : l'énoncé E₁ et E₂ est vrai si et seulement si les énoncés E₁ et E₂ sont simultanément vrais
 - la disjonction: l'énoncé E₁ ou E₂ est vrai si et seulement si l'un des deux énoncés E₁ et E₂ est vrai (ou les deux)
 - ..

Enoncé paramétré et quantification

- Un énoncé logique paramétré représente une propriété (vraie ou fausse) d'un "objet" quelconque
- exemple : propriété pour un étudiant de valider le cours de logique
- "valider le cours de logique" sera vrai ou faux pour chaque étudiant considéré
 - Toto valide le cours de logique
- on peut former de nouveaux énoncés comme :
 - tous les objets vérifient la propriété,
 - il existe (au moins) un objet qui vérifie la propriété,
 - il existe précisemment 42 objets qui vérifient la propriété.

La logique, chemin vers la vérité

- Le raisonnement est un cheminement (une déduction, une preuve) qui permet de relier entre eux des énoncés : on distingue des hypothèses, et une conclusion.
- On veut s'assurer que dans toute situation où les hypothèses sont vraies, il en est de même de la conclusion.
- Un raisonnement suit des règles logiques précises.
- Le raisonnement est un procédé suffisament élémentaire pour convaincre
 - modus ponens, preuve par l'absurde, preuve par récurrence . . .
- Montrer qu'un énoncé est vrai est, en général, indécidable (il n'y a pas de programme qui répond à cette question).
- Vérifier qu'un raisonnement suit bien les règles du jeu peut, le plus souvent, s'effectuer mécaniquement.
- Certains raisonnements sont adaptés à l'humain, d'autres aux machines.

Exemples de raisonnement

Tous les hommes sont mortels or Socrate est un homme donc Socrate est mortel.

Tous les hommes sont mortels or l'âne Francis n'est pas un homme donc l'âne Francis est immortel.

Chaos de la logique

Dialogue entre le Logicien et le Vieux Monsieur, extrait de Rhinoceros (Ionesco)

- Je vais vous expliquer le syllogisme.
- Ah! oui, le syllogisme!
- Le syllogisme comprend la proposition principale, la secondaire et la conclusion.
- Quelle conclusion?
- Voici donc un syllogisme exemplaire. Le chat a quatre pattes. Isidore et Fricot ont chacun quatre pattes. Donc Isidore et Fricot sont chats.
- Mon chien aussi a quatre pattes.
- Alors, c'est un chat.
- Donc, logiquement, mon chien serait un chat.
- Logiquement, oui. Mais le contraire est aussi vrai.
- C'est très beau, la logique.
- A condition de ne pas en abuser...

Démonstration

- Démontrer c'est apporter une évidence du fait que quelque chose est vrai
- Plusieurs sortes de preuve

(http://www.pion.ch/Logic/preuves.html)

- par l'exemple : On démontre le cas n = 2 qui contient la plupart des idées de la preuve générale.
- par généralisation : Ça marche pour 17, donc ça marche pour tout nombre réel
- par fin de cours : Vue l'heure, je laisserai la preuve de ce théorème en exercice.
- par probabilité : Une recherche longue et minutieuse n'a mis à jour aucun contre-exemple.
- par tautologie : Le théorème est vrai car le théorème est vrai.
- Dans ce cours

- des méthodes rigoureuses
- transposables sur ordinateur

Principes

- La logique formalise un langage, en définit le sens et propose des règles du jeu qui permettent de se convaincre de la vérité d'une argumentation ou au contraire de la réfuter.
- Questions logiques :
 - avec quels *objets* joue-t-on? que représentent-ils? quelles règles?
 - les règles du jeu sont-elles trop laxistes (on déduit des choses fausses, on dit que le système est incohérent)
 - les règles du jeu sont-elles trop strictes (on n'arrive pas à prouver quelque chose qui est pourtant correct, on dit que le système est incomplet)
 - peut-on changer les règles du jeu? changer de style?
- Questions informatiques :
 - un ordinateur peut-il raisonner?
 - est-ce qu'il existe un algorithme pour dire qu'une formule est vraie, est fausse?
 - étant données des hypothèses et une conclusion, peut-on reconstruire une déduction?

Fondement des mathématiques

- Le questionnement sur les fondements des mathématiques date du début du 20ème siècle avec la théorie des ensembles
- Quelques logiciens importants: Tarski, Russell, Hilbert, Gödel ...
- Des surprises :
 - le raisonnement ne peut pas se ramener au calcul
 - impact du langage sur la cohérence : paradoxe de Russell
 - tout est ensemble, $x \in X$, compréhension $\{x | P(x)\}$
 - $X = \{x | x \notin x\}, X \in X \text{ si et seulement si } X \notin X$
 - il n'y a pas d'ensemble de tous les ensembles/il faut structurer les ensembles avec des types
 - théorème d'incomplétude de Gödel :
 - soit un système de déduction dans lequel on peut raisonner sur les entiers
 - ullet il existe une formule C telle que on ne peut démontrer ni C, ni la négation de C
 - aucun système de démonstration "puissant" (ex. arithmétique, théorie des ensembles) ne capture toute la vérité...

Meta-mathématique

- Logique mathématique: les énoncés mathématiques, le raisonnement sont l'objet de l'étude comme les nombres en algèbre, les fonctions en analyse, les espaces vectoriels...
- On raisonne sur ces objets, on établit des théorèmes :
 - deux niveaux différents qu'il ne faut pas confondre.
- Analogie informatique : programmes qui manipulent d'autres programmes (les compilateurs)

Logique et informatique

- Lien entre calcul booléen (vrai/faux) et circuits logiques (0/1)
- Une démarche analogue : machine universelle reposant sur un nombre limité d'opérations ; liens entre syntaxe et sémantique.
- Intelligence artificielle: munir un ordinateur qui sait calculer de capacité de raisonnement nécessite de transformer le raisonnement en calcul (méthodes symboliques liées à la logique, enjeu de l'explication des méthodes statistiques).
- Outil de modélisation : contraintes dans les bases de données, développement de programmes, web sémantique, apprentissage symbolique, . . . (logique au service de l'informatique)
- Structures informatiques pour représenter des propriétés logiques, outils pour les manipuler (informatique au service de la logique).

Introduction au cours de logique

- Motivations
- Organisation du cours
- Exemples d'usage de la logique

Compétences logiques attendues

- Prérequis
 - les bases du calcul booléen
 - compréhension des formules et preuves mathématiques élémentaires
- Connaître et savoir manipuler le langage de la logique du premier ordre
 - savoir traduire des formules logiques en langue naturelle
 - savoir modéliser un problème en termes logiques
 - reconnaître certaines catégories de formules
 - savoir donner un sens aux formules de la logique
- Savoir mettre en œuvre plusieurs notions de démonstration
- Connaître les principales limites des méthodes d'un point de vue calcul
- LDD Connaître et comprendre quelques résultats clés de la logique : complétude, compacité, démonstrations. . .

Compétences générales attendues

- Savoir présenter un raisonnement scientifiquement correct
- Apprendre un nouveau langage formel
- Distinguer syntaxe et sémantique
- Savoir manipuler des algorithmes sur des objets symboliques
- Méthodologie : mise en pratique d'objets mathématiques utiles en informatique

Plan du cours

- Maîtriser le langage logique
- Donner du sens aux formules
- Manipuler les formules de la logique
- Automatiser les démonstrations

Bibliographie

Serenella Cerrito.

Logique pour l'Informatique : une introduction à la déduction automatique. Vuibert Publisher Co. 2008.

Stéphane Devismes, Pascal Lafourcade, and Michel Lévy.

Informatique théorique : Logique et démonstration automatique, Introduction à la logique propositionnelle et à la logique du premier ordre.

Robert Cori and Daniel Lascar.

Logique Mathématique.

Axiomes, Masson, 1993.

René David, Karim Nour, and Christophe Raffalli.

Introduction à la Logique, Théorie de la démonstration.

Dunod, 2001.

Gilles Dowek.

La logique.

Le Pommier, 2015.

Gilles Dowek

Les démonstrations et les algorithmes.

Les éditions de l'Ecole Polytechnique, 2010.

Pierre Le Barbenchon, Sophie Pinchinat, and François Schwarzentruber.

Logique: fondements et applications. Dunod, 2022.

Informations sur le cours

- Espace ecampus des formations
 - emplois du temps, groupes, examens...
- Espace ecampus du cours Eléments de logique pour l'informatique
 - Espace partagé entre les parcours licence et LDD, classique et apprentissage
 - Notes de cours disponibles (distribuées)
 - Exercices pour le contrôle continu (à venir)
 - Annales des partiels-examens des années précédentes (beaucoup de corrigés)

Déroulé du cours

- Feuille de présence cours-TD
- Deux cours cette semaine
- Démarrage des TD la semaine prochaine
- LDD IM+magistère : complément de cours + exercices
- Evaluation
 - Partiel (40%) + Examen final (50%)
 - un exercice sous forme *QCM* (contrôle notions élémentaires)
 - CC (10%) exercices en ligne, devoir
- Des tests à compléter sur ecampus (respecter les dates)
 - Enquête rentrée sur la page d'accueil
 - Tests (calcul propositionnel) dans la section Maîtriser le langage logique

L'équipe

- Uli Fahrenberg
 - responsable cours, chargé TD groupe 6
 - nouveau prof. à l'Université Paris-Saclay, anciennement à l'EPITA
 - aussi responsable L3 MAG
 - uli@lmf.cnrs.fr
- Christine Paulin
 - chargée TD groupe 5, ancienne responsable cours
- Aquilina Al Khoury
 - chargée TD groupe 4
- Jérémy Marrez
 - chargé TD groupe 3
- Adrien Durier
 - chargé TD groupe 2
- Gérald Forhan
 - chargé TD groupe 1

Introduction au cours de logique

- Motivations
- Organisation du cours
- Exemples d'usage de la logique
 - Résoudre des problèmes
 - Modéliser, prouver

Uli Fahrenberg Logique

Jeu du Sudoku

Règles du jeu :

• les chiffres de 1 à 9 apparaissent une et une seule fois sur chaque ligne, chaque colonne et dans chaque cadran 3×3

23

Jeu du Sudoku

Règles du jeu :

• les chiffres de 1 à 9 apparaissent une et une seule fois sur chaque ligne, chaque colonne et dans chaque cadran 3×3

Solution:

Modélisation propositionnelle

- variables à valeur vrai/faux
- position p = (i, j) sur la ligne i et la colonne j
- variable propositionnelle x_p^k : vraie si le chiffre k est à la position p
- au total $9 \times 9 \times 9 = 729$ variables, soit $2^{729} \simeq 10^{219}$ possibilités
- exemples de règles du jeu
 - à généraliser pour chacune des 81 positions

$$x_{1,1}^1 \vee x_{1,1}^2 \vee x_{1,1}^3 \vee x_{1,1}^4 \vee x_{1,1}^5 \vee x_{1,1}^6 \vee x_{1,1}^7 \vee x_{1,1}^8 \vee x_{1,1}^9$$

 à généraliser pour chacune des 81 positions et chacune des 9 valeurs possibles

$$x_{1,1}^1 \! \Rightarrow \! \big(\neg x_{1,2}^1 \wedge \neg x_{1,3}^1 \wedge \neg x_{1,4}^1 \wedge \neg x_{1,5}^1 \wedge \neg x_{1,6}^1 \wedge \neg x_{1,7}^1 \wedge \neg x_{1,8}^1 \wedge \neg x_{1,9}^1 \big)$$

- ...
- grille initiale : force certaines variables à vrai

$$X_{1,1}^8 \quad X_{1,3}^4 \quad X_{1,7}^2 \dots$$

Exemple, complèt (?)

8		4				2		9
		9				1		
1			3		2			7
	5		1		4		8	
				3				
	1		7		9		2	
5			4		3			8
		3				4		
4		6				3		1

$$(x_{1,1}^8 \wedge x_{1,3}^4 \wedge \ldots \wedge x_{2,3}^9 \wedge \ldots \wedge x_{9,9}^1) \wedge$$

$$(x_{1,1}^{1} \Rightarrow (\neg x_{1,2}^{1} \land \neg x_{1,3}^{1} \land \neg x_{1,4}^{1} \land \neg x_{1,5}^{1} \land \neg x_{1,6}^{1} \land \neg x_{1,7}^{1} \land \neg x_{1,8}^{1} \land \neg x_{1,9}^{1})) \land$$

$$(x_{1,1}^{2} \Rightarrow (\neg x_{1,2}^{2} \land \neg x_{1,3}^{2} \land \neg x_{1,4}^{2} \land \neg x_{1,5}^{2} \land \neg x_{1,6}^{2} \land \neg x_{1,7}^{2} \land \neg x_{1,8}^{2} \land \neg x_{1,9}^{2})) \land \dots$$

$$(x_{9,9}^{9} \Rightarrow (\neg x_{9,1}^{9} \land \neg x_{9,2}^{9} \land \neg x_{9,3}^{9} \land \neg x_{9,4}^{9} \land \neg x_{9,5}^{9} \land \neg x_{9,6}^{9} \land \neg x_{9,7}^{9} \land \neg x_{9,8}^{9})) \land$$

$$(x_{1,1}^{1} \Rightarrow (\neg x_{1,1}^{1} \land \neg x_{3,1}^{1} \land \neg x_{4,1}^{1} \land \neg x_{5,1}^{1} \land \neg x_{6,1}^{1} \land \neg x_{7,1}^{1} \land \neg x_{8,1}^{1} \land \neg x_{9,1}^{1})) \land \dots$$

$$(x_{1,1}^{1} \Rightarrow (\neg x_{1,2}^{1} \land \neg x_{1,3}^{1} \land \neg x_{2,1}^{1} \land \neg x_{2,2}^{1} \land \neg x_{2,3}^{1} \land \neg x_{3,1}^{1} \land \neg x_{3,2}^{1} \land \neg x_{3,3}^{1})) \land \dots$$

$$(x_{1,1}^{1} \lor x_{1,1}^{2} \lor x_{1,1}^{3} \lor x_{1,1}^{4} \lor x_{1,1}^{5} \lor x_{1,1}^{6} \lor x_{1,1}^{7} \lor x_{1,1}^{8} \lor x_{1,1}^{9}) \land \dots$$

$$(x_{1,1}^{1} \lor x_{2,2}^{2} \lor x_{3,9}^{2} \lor x_{3,9}^{4} \lor x_{3,9}^{4} \lor x_{3,9}^{5} \lor x_{3,9}^{6} \lor x_{3,9}^{7} \lor x_{3,9}^{8} \lor x_{3,9}^{9})$$

26

Trouver une solution propositionnelle

- les formules peuvent être "simplifiées"
 - Ensemble de clauses (disjonctions)

$$\neg x_{1,1}^1 \lor \neg x_{1,2}^1, \neg x_{1,1}^1 \lor \neg x_{1,3}^1, \neg x_{1,1}^1 \lor \neg x_{1,4}^1, \dots$$

- au total: 10287 clauses
- propager les variables résolues pour simplifier les clauses et résoudre plus de variables
- si $x_{1,1}^8$ est vraie, alors
 - $\neg x_{1,1}^8 \lor \neg x_{1,2}^8$ devient $\neg x_{1,2}^8$ qui sera propagé
 - $x_{1,2}^1 \lor x_{1,2}^2 \lor x_{1,2}^3 \lor x_{1,2}^4 \lor x_{1,2}^5 \lor x_{1,2}^6 \lor x_{1,2}^7 \lor x_{1,2}^8 \lor x_{1,2}^9 \lor x_{1,2}^9$ devient $x_{1,2}^1 \lor x_{1,2}^2 \lor x_{1,2}^3 \lor x_{1,2}^4 \lor x_{1,2}^5 \lor x_{1,2}^6 \lor x_{1,2}^7 \lor x_{1,2}^9$
 - $\neg x_{1,2}^8 \lor \neg x_{1,3}^8$ disparait car toujours vrai
- Si toutes les clauses restantes ont au moins 2 variables alors on explore les deux possibilités pour une variable : vraie ou fausse
- Si on tombe sur une contradiction (clause fausse = règle du jeu non respectée), alors on revient en arrière pour explorer une autre branche.

Uli Fahrenberg Logique

Mise en œuvre

- Modélisation : programme qui engendre les clauses du Sudoku
- Recherche de solution : procédure DPLL¹ qui cherche des valeurs de variables qui rendent vraies un ensemble de clauses (SAT : satisfiabilité)
- Mise en oeuvre en Ocaml :
 - 170 lignes pour les clauses et la procédure SAT (une solution ou toutes les solutions, sans optimisation)
 - 150 lignes pour la modélisation du Sudoku générique en la dimension

^{1.} Davis-Putnam-Logemann-Loveland

Introduction au cours de logique

- Motivations
- Organisation du cours
- Exemples d'usage de la logique
 - Résoudre des problèmes
 - Modéliser, prouver

Modéliser, prouver

- une modélisation propositionnelle se résout par calcul mais est peu naturelle et ne couvre que des propriétés finies
- la logique des prédicats permet de raisonner sur des ensembles potentiellement infinis d'objets, de manière plus concise

Preuve de programmes : Algorithme de vote majoritaire de Boyer-Moore pour chercher une valeur m ayant possiblement la majorité absolue dans un tableau t avec un seul compteur c

```
let majority t =
let rec fmaj i c m =
    if i = Array.length t then m
    else let x = t.(i) in
        if c = 0 || m = x then fmaj (i+1) (c+1) x
        else fmaj (i+1) (c-1) m
in fmaj 0 0 t.(0)
```

Principe de l'algorithme

- examen séquentiel des valeurs (i de 0 à length t-1)
- *m* est le candidat majoritaire potentiel (aucun autre n'a la majorité)
- deux valeurs différentes $m \neq x$ s'annulent mutuellement
- il y a c occurrences de m qui n'ont pas été annulées

Modélisation logique

- Propriété attendue :
 - aucune autre valeur que le résultat a la majorité absolue dans t
 - $x \neq m$ apparait au plus (length t)/2 fois dans t
- Invariant à l'étape i, c, m :
 - $x \neq m$ apparait au plus (i c)/2 fois parmi les i premiers éléments de t
 - m apparait au plus $\frac{i-c}{2} + c$ fois parmi les i premiers éléments de t
- Terminaison: (length t) i décroit strictement en restant positif
- Théorie utilisée :
 - arithmétique (linéaire)
 - tableau (en lecture)
 - spécifique : nombre d'apparitions d'une valeur dans un segment de tableau

```
use int. Int use array. Array
(* nombre d'occurrences de x dans les i premiers éléments de t *)
function nbc (x:int) (t:array int) (i : int) : int
axiom nbc0: forall x t. nbc x t 0 = 0
axiom nbceq : forall x t i.
      0 \le i \le length t -> t[i] = x -> nbc x t (i+1) = 1 + nbc x t i
axiom nbcneq: forall x:int. forall t i.
      0 \le i \le length t \rightarrow t[i] \le x \rightarrow nbc x t (i+1) = nbc x t i
function nb (x:int) (t:array int) : int = nbc x t (length t)
(* majorité absolue *)
predicate maj (m :int) (t:array int) = length t < 2 * nb m t
(* invariant de l'algorithme *)
predicate inv (t : array int) (i : int) (c : int) (m : int)
    = 0 <= c / 0 <= i <= length t
    /\ 2 * nbc m t i <= i+c /\ forall x. x<>m -> 2 * nbc x t i <=
```

Preuve de programme en Why3 : programme annoté

Logique de Hoare (voir cours de GLA)

```
let majority (t : array int) : int
requires {length t <> 0}
ensures {forall x. x <> result -> not (maj x t)}
=
let rec fmaj (i : int) (c : int) (m :int) : int
  requires {inv t i c m}
  ensures {forall x. x <> result -> not (maj x t)}
  variant {length t - i}
  if i = length t then m
  else let x = t[i] in
       if c = 0 \mid | m = x then fmaj (i+1) (c+1) x
       else fmaj (i+1) (c-1) m
in fmai 0 0 t[0]
```

Preuve automatique en utilisant alt-ergo (SMT-solver)

Uli Fahrenberg Logique 34

1-Maitriser le langage logique

- Définition du langage
- Structure des formules
- Formules vraies
- Théorie et modélisation
- Définition récursive sur les formules

36

1-Maitriser le langage logique

- Définition du langage
 - Objets
 - Formules
 - Traduire des énoncés
- Structure des formules
- Formules vraies
- Théorie et modélisation
- Définition récursive sur les formules

Langage formel

- On utilise un langage formel pour écrire les énoncés logiques
- Éviter les ambiguïtés du langage naturel et les notations imprécises.
 - Je peux t'offrir de l'eau *ou* du vin/Je peux t'offrir de l'eau *et* du vin
 - Le menu propose fromage *ou* dessert/Le menu propose fromage *et* dessert
 - S'il ne pleut pas, je sors jouer/S'il pleut, je ne sors pas jouer
- Moins de redondance que le langage naturel : plus simple à étudier, plus simple à implémenter
- Un énoncé écrit dans le langage de la logique sera appelé formule

Introduction au cours de logique

- Définition du langage
 - Objets
 - Formules
 - Traduire des énoncés
- Structure des formules
- Formules vraies
- Théorie et modélisation
- Définition récursive sur les formules

Termes

- Les énoncés parlent d'objets
 - entiers, individus, livres, ensembles, fonctions . . .
- Dans le langage de la logique, un objet est représenté par un terme
- Un terme peut être une constante 0, 1, Martin, ∅, № . . . ,
- Un terme peut être construit à partir d'opérations +, ×, ∪,...
 3+5, N×N, le père de Martin,...
 Une opération est un symbole associé à une arité, entier naturel qui représente le nombre d'arguments attendus.
- Dans une formule, on utilise des variables : symboles qui représentent des objets indéterminés

```
x+1, un étudiant de licence,...
```

Signature, termes

Definition (Signature, arité)

Une signature est un ensemble de symboles \mathcal{F} chacun associé à un entier naturel appelé arité.

Un symbole d'arité 0 est appelé constante, un symbole d'arité 1 est dit unaire, un symbole d'arité 2 est dit binaire.

Definition (Terme)

Etant donné une signature \mathcal{F} et un ensemble \mathcal{X} de variables, un terme t est soit une variable, soit formé d'un symbole f d'arité n et d'une suite ordonnée de n termes t_1, \ldots, t_n .

- f est le symbole de tête, t_1, \ldots, t_n sont les sous-termes directs du terme t.
- $\mathcal{T}(\mathcal{F},\mathcal{X})$ est l'ensemble des termes sur la signature \mathcal{F} et l'ensemble des variables \mathcal{X} .
- $\mathcal{T}(\mathcal{F})$ est l'ensemble des termes qui ne contiennent pas de variable, appelés aussi termes clos.

Exemples de signature

Entiers naturels :

- constantes 0 et 1
- opérations binaires : addition + et la multiplication ×
- notation infixe : (t + u), $(t \times u)$
- termes : x + 1, (0 + 1), $(1 + 1) \times (1 + 1 + 1)$,...

Mots binaires de longueur arbitraire

- constante ϵ pour représenter le mot vide
- deux fonctions unaires c₀ et c₁ pour représenter l'ajout d'un 0 ou d'un 1 en tête du mot
- le mot 1011 est représenté par le terme $c_1(c_0(c_1(c_1(\epsilon))))$.
- autres opérations possibles : concaténation de deux mots, décalage vers la gauche ou la droite

Introduction au cours de logique

- Définition du langage
 - Objets
 - Formules
 - Traduire des énoncés
- Structure des formules
- Formules vraies
- Théorie et modélisation
- Définition récursive sur les formules

Formules atomiques

Les formules atomiques ne se décomposent pas en formules plus simples.

- \bullet \top (top) : la propriété toujours vraie, tautologie (0 = 0)
- ullet (bottom) : la propriété toujours fausse, l'absurde (0 = 1)
- symbole de prédicat associé à un ou plusieurs termes (suivant l'arité) propriétés de base des objets : ce qui ne s'explique pas en terme logique mais qui s'observe
 - Exemples de symboles
 - arité 0 (variable propositionnelle): "signal-passage-à-niveau-ouvert",
 - arité 1 (symbole unaire, ensemble): "yeux-bleus", "pair"
 - ullet arité 2 (symbole binaire) : l'égalité =, la comparaison \leq , l'appartenance \in ,
 - arité quelconque : table d'une base de données
 - Exemples de formules atomiques
 - 0 = 1, 2 + 2 = 4, x = x,
 - $x + 1 \le x$
 - Martin a les yeux bleus: yeux-bleus(Martin)
 - Etudiant(Durand, Bob, 347890, 01/01/1990)

Exemples de signature : systèmes d'information

- modélisation logique des entités/ensembles et des tables/relations par des symboles de prédicat.
- Trajets de bus :
 - identifiants de ligne (numéro) des arrêts et des horaires : trois prédicats unaires ligne, arret et horaire pour séparer les objets de la logique suivant leur catégorie.

```
ligne(91-06), arret(Massy), arret(Saclay), horaire(06h00)...
```

 table qui tient à jour les rotations de bus avec le numéro de ligne, l'arret de départ, celui d'arrivée ainsi que l'horaire de départ : predicat trajet d'arité 4.

```
trajet(91-06, Massy, Saclay, 06h00)
```

Choix des symboles de prédicat

- Le choix des symboles de prédicat dépend de la modélisation
 - primitive de base versus notions dérivées via une formule
 - analogie avec les variables d'un problème mathématique ou physique
 - chaque symbole peut s'interpréter librement
 - on peut aussi parfois choisir des symboles de fonction au lieu de symboles de prédicat (notions différentes en logique).

Exemples

- tables primitives dans une base de données, versus résultat d'une requête
- interface d'une bibliothèque dont on ne connait pas l'implémentation
- axiomatisation d'une théorie
 - entiers : $x \le y$ versus $\exists n, y = x + n$
 - ordres : x = y versus $(x \le y \land y \le x)$
 - hommes et femmes, versus $H(x) \stackrel{\text{def}}{=} \neg F(x)$
 - est-mere(x, y) versus x=mere(y)

Syntaxe et sémantique

- Un symbole est juste un nom (syntaxe),
- la sémantique lui attribue un sens en lui associant une relation mathématique entre les objets modélisés
- il y a parfois un sens usuel implicite (ex : ordre sur les entiers) mais d'un point de vue logique, *toutes les interprétations sont possibles*.
- les sens possibles des symboles seront restreints par l'introduction de théories

Formules complexes

Les *formules complexes* (celles qui ne sont pas atomiques) se construisent à l'aide de connecteurs et de quantificateurs logiques.

Partie propositionnelle (connecteurs):

- $\neg P$ la négation d'une formule, prononcée "non P"
- P ∧ Q la conjonction de deux formules, prononcée "P et Q"
- P ∨ Q la disjonction de deux formules, prononcée "P ou Q"
- $P \Rightarrow Q$ l'implication de deux formules, prononcée "P implique Q" ou bien "si P alors Q"

Et les quantificateurs du premier ordre :

- $\forall x, P$ la quantification universelle, prononcée "pour tout x, P"
- $\exists x, P$ la quantification existentielle, prononcée "il existe x tel que P"

Une formule sans quantificateur \forall et \exists est dite formule propositionnelle

Sens intuitif des connecteurs et quantificateurs

- $\bullet \neg P$: P est faux
- $P \wedge Q$: P et Q sont tous les deux vrais
- P ∨ Q : soit P soit Q est vrai (ou les deux)
- P⇒ Q: si P est vrai alors Q est vrai et si P est faux alors Q peut être vrai ou faux (P est faux ou bien Q est vrai)
- ∀x, P: P est vrai pour toutes les valeurs possibles de x
- $\exists x, P$: il existe au moins une *valeur* de x pour laquelle P est vrai

Logique et formules booléennes en programmation

- expressions pour représenter des conditions booléennes
- opérations pour la négation, la conjonction, la disjonction
- pas d'implication : on trouve à la place une conditionnelle

si
$$a$$
 alors b sinon c

- b et c peuvent être des booléens ou représenter d'autres types d'objet
- les quantificateurs ne correspondent pas à des constructions de programme car en général (cas infini) ils ne sont pas calculables.

Exercice

On suppose que *a*, *b* et *c* sont des formules logiques.

Représenter la phrase $si\ a$ alors $b\ sinon\ c$ comme une formule logique n'utilisant que les connecteurs logiques

- faire la table de vérité
- donner une première représentation sans utiliser d'implication
- donner une seconde représentation qui contienne la formule a⇒ b

Exemples de formules complexes

- tiers exclu : A ∨ ¬A
- modus-ponens : $((A \Rightarrow B) \land A) \Rightarrow B$
- loi de Peirce : $((A \Rightarrow B) \Rightarrow A) \Rightarrow A, ((\neg A) \Rightarrow A) \Rightarrow A$
- $\forall x$, yeux-bleus(x)
- $\exists x$, yeux-bleus(x)
- $\exists x, (\text{yeux-bleus}(x) \Rightarrow \forall y, \text{yeux-bleus}(y))$
- formule *paramétrée*: l'entier x est impair: $\exists y, x = 2 \times y + 1$

Différentes catégories syntaxiques : termes

- variables (objets) : X
- symboles de fonctions
 - constantes d'arité 0 : C
 - fonctions d'arité au moins 1 : F
- termes (ou objets)

```
\texttt{term} \coloneqq \mathcal{X} \mid \mathcal{C} \mid \mathcal{F}(\texttt{list-terms}) \texttt{list-terms} \coloneqq \texttt{term} \mid \texttt{list-terms}, \texttt{term}
```

Différentes catégories syntaxiques : formules

- symboles de prédicats
 - d'arité 0 : ν
 - d'arité au moins 1 : P
- formules logiques :

```
\begin{array}{l} \text{form} \coloneqq \top \mid \bot \mid \mathcal{V} \mid \mathcal{P}(\text{list-terms}) \\ \mid \neg \text{form} \mid (\text{form} \land \text{form}) \mid (\text{form} \lor \text{form}) \mid (\text{form} \Rightarrow \text{form}) \\ \mid (\forall \mathcal{X}, \text{form}) \mid (\exists \mathcal{X}, \text{form}) \end{array}
```

Notations infixes

- Notation standard :
 - Fonctions/Prédicats : Symbole (t_1, \ldots, t_n)
- Quelques notations usuelles infixes pour des symboles binaires f(t, u)
 - t∘u
 - exemples : t + u, $t \times u$, t = u, $t \leq u$...
- Extension de la grammaire

term
$$\coloneqq$$
 (term \mathcal{F}_I term) form \coloneqq (term \mathcal{P}_I term)

les parenthèses évitent les ambiguités

Notations, règles de parenthésage

- $A \Leftrightarrow B$ est la même chose que $(A \Rightarrow B) \land (B \Rightarrow A)$
- plusieurs variables dans un quantificateur, par exemple : $\forall x \ y, P$ représente la formule $\forall x, \forall y, P$
- attention $\forall x \in A, P$ ne fait pas partie du langage ni $\exists ! x, P$
- l'usage de notations infixes rend nécessaire l'ajout de parenthèses dans la syntaxe des formules
 - comment interpréter P ∧ Q ∨ R?

56

Calcul des prédicats et calcul propositionnel

- On appelle logique du premier ordre (ou calcul des prédicats) le langage logique défini par une signature (symboles de fonctions et de prédicats) et qui n'utilise que les connecteurs logiques et les quantificateurs sur les variables de termes tels que définis précédemment.
- Le calcul propositionnel (aussi appelé logique propositionnelle) est un cas particulier dans lequel la signature est réduite à des symboles de prédicats d'arité 0 (appelées variables propositionnelles) et dans lequel on n'utilise pas de quantificateurs.
- Il existe d'autres logiques (logique d'ordre supérieur, logiques temporelles, logiques modales...)

Introduction au cours de logique

- Définition du langage
 - Objets
 - Formules
 - Traduire des énoncés
- Structure des formules
- Formules vraies
- 4 Théorie et modélisation
- Définition récursive sur les formules

Exercice de traduction

Langage

- ami(x, y) : x est l'ami de y
- joue(x, y) : x joue avec y
- constante self qui représente l'individu qui s'exprime.

Que signifient les formules suivantes en langage courant?

- \bigcirc $\forall X, (ami(self, X) \Rightarrow \neg joue(self, X))$
- $\forall x, \exists y, \text{joue}(x, y)$
- \emptyset $\forall y, \exists x, joue(y, x)$
- $\exists y, \forall x, joue(x, y)$

Exemple de traduction

- le langage comporte un symbole de fonction + binaire noté de manière infixe qui représente l'opération de sommation
- pair(x) représente la propriété "x est un entier pair"
- Exprimer par une formule les propriétés :
 - "la somme de deux entiers pairs est un entier pair"
 - "la somme de deux entiers impairs est un entier pair"

A savoir faire

- Connaître les notions de signature et arité.
- Distinguer les termes et les formules, et parmi les formules celles qui sont atomiques.
- Reconnaître les termes et les formules syntaxiquement bien formés.
- Comprendre le sens intuitif des connecteurs propositionnels et quantificateurs logiques.
- Lire une formule logique et traduire une propriété exprimée en langue naturelle en utilisant le langage de la logique.

Definition (Signature, arité)

Une signature est un ensemble de symboles \mathcal{F} chacun associé à un entier naturel appelé arité.

Un symbole d'arité 0 est appelé constante, un symbole d'arité 1 est dit unaire, un symbole d'arité 2 est dit binaire.

Definition (Terme)

Etant donné une signature \mathcal{F} et un ensemble \mathcal{X} de variables, un terme t est soit une variable, soit formé d'un symbole f d'arité n et d'une suite ordonnée de n termes t_1, \ldots, t_n .

- f est le symbole de tête, t_1, \ldots, t_n sont les sous-termes directs du terme t.
- $\mathcal{T}(\mathcal{F},\mathcal{X})$ est l'ensemble des termes sur la signature \mathcal{F} et l'ensemble des variables \mathcal{X} .
- $\mathcal{T}(\mathcal{F})$ est l'ensemble des termes qui ne contiennent pas de variable, appelés aussi termes clos.

Les formules atomiques ne se décomposent pas en formules plus simples.

- \bullet \top (top) : la propriété toujours vraie, tautologie (0 = 0)
- \perp (bottom) : la propriété toujours fausse, l'absurde (0 = 1)
- symbole de prédicat associé à un ou plusieurs termes (suivant l'arité) propriétés de base des objets : ce qui ne s'explique pas en terme logique mais qui s'observe
 - Exemples de symboles
 - arité 0 (variable propositionnelle): "signal-passage-à-niveau-ouvert",
 - arité 1 (symbole unaire, ensemble): "yeux-bleus", "pair"
 - ullet arité 2 (symbole binaire) : l'égalité =, la comparaison \leq , l'appartenance \in ,
 - arité quelconque : table d'une base de données
 - Exemples de formules atomiques
 - 0 = 1, 2 + 2 = 4, x = x,
 - $x + 1 \le x$
 - Martin a les yeux bleus: yeux-bleus(Martin)
 - Etudiant(Durand, Bob, 347890, 01/01/1990)

Les *formules complexes* (celles qui ne sont pas atomiques) se construisent à l'aide de connecteurs et de quantificateurs logiques.

Partie propositionnelle (connecteurs):

- ¬P la négation d'une formule, prononcée "non P"
- P ∧ Q la conjonction de deux formules, prononcée "P et Q"
- P ∨ Q la disjonction de deux formules, prononcée "P ou Q"
- $P \Rightarrow Q$ l'implication de deux formules, prononcée "P implique Q" ou bien "si P alors Q"

Et les quantificateurs du premier ordre :

- $\forall x, P$ la quantification universelle, prononcée "pour tout x, P"
- $\exists x, P$ la quantification existentielle, prononcée "il existe x tel que P"

Une formule sans quantificateur \forall et \exists est dite formule propositionnelle

- On appelle logique du premier ordre (ou calcul des prédicats) le langage logique défini par une signature (symboles de fonctions et de prédicats) et qui n'utilise que les connecteurs logiques et les quantificateurs sur les variables de termes tels que définis précédemment.
- Le calcul propositionnel (aussi appelé logique propositionnelle) est un cas particulier dans lequel la signature est réduite à des symboles de prédicats d'arité 0 (appelées variables propositionnelles) et dans lequel on n'utilise pas de quantificateurs.
- Il existe d'autres logiques (logique d'ordre supérieur, logiques temporelles, logiques modales...)

1-Maitriser le langage logique

- Définition du langage
- Structure des formules
 - Représentation par des arbres
 - Règles de parenthésage
 - Variables libres et liées
- Formules vraies
- Théorie et modélisation
- Définition récursive sur les formules

67

Structure des formules

- Une formule se représente comme un arbre
 - les nœuds internes sont les connecteurs et les quantificateurs $\forall x$, et $\exists x$
 - les feuilles sont les formules atomiques

$$\bullet (P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land \neg (Q \Rightarrow R))$$

• $\forall x, \exists y, (\text{joue}(x, y) \lor \text{ami}(x, y))$

Exercice

représenter sous forme d'arbre les formules

$$\bullet (P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)$$

•
$$\forall x, ((\forall y, \neg ami(x, y)) \Rightarrow joue(x, x))$$

69

Règles de précédence

- comment interpréter $P \land Q \lor R$? $\forall x, P(x) \Rightarrow Q(x)$
- règles de précédence :
 - La précédence de ¬ est la plus forte, vient ensuite la conjonction ∧ puis la disjonction ∨ et finalement l'implication ⇒.
 - Les connecteurs ∧, ∨ et ⇒ associent à droite

$$A \Rightarrow B \Rightarrow C$$
 se parenthèse $A \Rightarrow (B \Rightarrow C)$

 Les quantificateurs ∀ et ∃ ont une précédence plus faible que les autres connecteurs.

 $\forall x, P \Rightarrow Q$ se parenthèse $\forall x, (P \Rightarrow Q)$

70

Exercice : Règles de précédence

- $(P \Rightarrow Q \Rightarrow \forall x, R) \Rightarrow P \land \exists x, Q \Rightarrow R$

Grammaire avec ambiguité

```
\texttt{term} \coloneqq \ \mathcal{X} \mid \mathcal{C} \mid \mathcal{F}(\texttt{list-terms}) \mid \texttt{term} \, \mathcal{F}_I \, \texttt{term} \mid (\texttt{term}) \texttt{list-terms} \coloneqq \ \texttt{term} \mid \texttt{list-terms}, \texttt{term} \texttt{form} \coloneqq \ \top \mid \bot \mid \mathcal{V} \mid \mathcal{P}(\texttt{list-terms}) \mid \texttt{term} \, \mathcal{P}_I \, \texttt{term} \mid (\texttt{form}) \mid \neg \texttt{form} \mid \texttt{form} \wedge \texttt{form} \mid \texttt{form} \vee \texttt{form} \mid \texttt{form} \Rightarrow \texttt{form} \mid \forall \mathcal{X}, \texttt{form} \mid \exists \mathcal{X}, \texttt{form}
```

- Les règles de précédence permettent de lever les ambiguïtés
- Les parenthèses peuvent être ajoutées librement pour faciliter la compréhension.

Variables liées

- les quantificateurs sont associés à une variable $\forall x, P$ et $\exists x, P$, on dit que la variables est liée.
- une variable liée est dite muette : son nom peut être changé, sans changer le sens de la formule

$$\forall x, \exists y, x < y \qquad \forall t, \exists u, t < u$$

attention au problème de *capture* : $\forall y, \exists y, y < y$

- en langage courant, souvent on ne mentionne pas le nom
 - tous les chats sont gris : $\forall x$, chat $(x) \Rightarrow gris(x)$
 - il existe des chats qui ne sont pas gris : $\exists x$, $chat(x) \land \neg gris(x)$

Variables libres

- une occurrence x est libre ssi pas sous un quantificateur $\forall x$, ou $\exists x$,
- les variables libres sont les paramètres de la formule :
 - exemple : "x est pair" : $\exists y, x = 2 \times y$
 - la formule est vraie ou fausse en fonction de la valeur de la variable
 - analogie avec une procédure, méthode en programmation (donner des valeurs aux paramètres pour exécuter)
- une variable libre peut être remplacée par un terme plus complexe : substitution
 - "4 est pair" : $\exists y, 4 = 2 \times y$
 - "2 × z + 4 est pair" : $\exists y, 2 \times z + 4 = 2 \times y$
 - attention à la capture lorsqu'on substitue une variable par un terme : "3 \times y est pair" :
 - $\exists y, 3 \times y = 2 \times y$ (substitution incorrecte)
 - $\exists y', 3 \times y = 2 \times y'$ (substitution correcte après renommage)

74

Variables libres

• une même variable peut apparaître libre et liée dans une formule :

$$0 < x \times y \lor (\exists y, x < y) \land (\exists y, y + y < x)$$

- un terme qui ne contient pas de variables est appelé terme clos
- une formule qui ne contient pas de variable libre est appelée formule close
- Exercice :
 - donner les variables libres et liées de la formule

$$\forall b, b > 0 \Rightarrow \exists q, \exists r, a = b \times q + r \wedge r < b$$

cette formule est-elle close?

Variables libres

une même variable peut apparaître libre et liée dans une formule :

$$0 < x \times y \vee (\exists y_1, x < y_1) \wedge (\exists y_2, y_2 + y_2 < x)$$

- un terme qui ne contient pas de variables est appelé terme clos
- une formule qui ne contient pas de variable libre est appelée formule close
- Exercice :
 - donner les variables libres et liées de la formule

$$\forall b, b > 0 \Rightarrow \exists q, \exists r, a = b \times q + r \wedge r < b$$

cette formule est-elle close?

Formules syntaxiquement égales

- Deux formules P et Q sont syntaxiquement égales si elles ont la même représentation sous forme d'arbre modulo le renommage des variables liées. On écrit alors P = Q.
- seul le lien entre l'utilisation de la variable et le quantificateur qui l'a introduit est important
- Il est relativement "facile" d'écrire un programme qui vérifie que deux formules sont égales
- Les variables liées compliquent la vérification et font que deux formules égales peuvent avoir des représentations différentes en machine

Exercice : Formules syntaxiquement égales

Dire quelles formules sont égales ou différentes

- \bigcirc $\forall x, \forall y, P(x, y)$
- $\forall y, \forall x, P(x,y)$

- \bigcirc $\forall x, P(x) \Rightarrow Q(x) \Rightarrow \bot$

- $(\forall x, (P(x) \Rightarrow Q(x))) \Rightarrow \bot$

Comparer les représentations sous forme d'arbre!

78

A savoir faire

- Connaître les règles de précédences sur les connecteurs et les quantificateurs de la logique.
- Représenter une formule sous forme d'arbre.
- Reconnaître les variables libres et les variables liées d'une formule logique.
- Connaître la définition de terme clos et formule close.

1-Maitriser le langage logique

- Définition du langage
- Structure des formules
- Formules vraies
 - Cas propositionnel
 - Modéliser un problème à l'aide de la logique
 - Formules avec quantificateurs
- Théorie et modélisation
- 5 Définition récursive sur les formules

Valeurs de vérité

- valeur de vérité, ensemble des booléens $\mathbb{B} = \{V, F\}$ (parfois notées $\{1, 0\}$)
- on cherche les conditions dans lesquelles une formule est vraie ou fausse
- on parle de sémantique (sens de la formule) par opposition à la syntaxe (forme)
- plusieurs formules syntaxiquement différentes peuvent avoir le même sens
- la même formule peut avoir différents sens suivant l'interprétation des symboles de la signature
 - Je n'ai pas d'ami
 - 1+1=0

Formules (closes) vraies

- Les formules contiennent des symboles de fonctions et de prédicats qui correspondent à des *primitives*, de sens indéterminé
- On ne connaît la vérité d'une formule qu'après avoir défini l'interprétation des symboles
 - Si un programme utilise une bibliothèque :
 - il se compile en utilisant l'interface de la bibliothèque
 - il ne s'exécute qu'en présence du code d'implémentation de cette bibliothèque.
 - Une base de données
 - les requêtes se définissent en fonction de la structure (tables)
 - chaque "état" de la base de données correspond à une interprétation.

82

Formules (closes) valides

- La valeur de vérité d'une formule (vrai ou faux) est définie par rapport à une interprétation des symboles qu'elle contient
- On ne peut pas dire a priori si une formule est vraie ou fausse
 - Par abus de langage, on dit parfois qu'une formule est vraie (resp. fausse) si elle est tout le temps vraie (resp. fausse)
- Une formule (indépendament d'une interprétation) peut être
 - valide (tautologie) : vraie pour toutes les interprétations
 - insatisfiable : fausse pour toutes les interprétations
 - satisfiable : vraie pour au moins une interprétation
- analogie avec les équations

$$(x+1)^2 = x^2 + 2x + 1$$
 $x^2 = -1$ $x^2 = 4$

Lien entre validité et satisfiabilité

- une formule valide est a fortiori satisfiable (perte d'information)
- un algorithme qui résoud l'une des trois questions résoud les autres.

Proposition

Les trois propriétés suivantes sont équivalentes

- P est valide
- ¬P est insatisfiable
- ¬P n'est pas satisfiable

Preuve:

- P est valide ssi P est vrai pour toute interprétation (définition valide) ssi ¬P est faux pour toute interprétation (table de vérité de ¬) ssi ¬P est insatisfiable (définition insatisfiable)
- Q est insatisfiable ssi Q est faux pour toute interprétation (définition insatisfiable)
 ssi il n'y a pas d'interprétation qui rend Q vrai (reformulation)
 ssi Q n'est pas satisfiable (définition de satisfiable)

Modèle et valeur de vérité

- pour dire si une formule est vraie, il faut expliciter dans quelle interprétation on se place (on utilise parfois le terme modèle): que représentent les symboles?
- \bullet $2 \leq 4, 0 = 1, \text{Martin a les yeux bleus,}$ Bob X. est inscrit en L3 Info. à l'U. Paris-Saclay
- si on connait les formules atomiques vraies alors la logique nous dit si une formule propositionnelle est vraie ou fausse
- table de vérité :

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
F	F					
F	V					
V	F					
V	V					

Exercice

Les formules suivantes sont-elles satisfiables? valides?

86

Modélisation propositionnelle de problèmes

- pour modéliser certains problèmes, on introduit des variables propositionnelles correspondant à des situations dont on cherche à déterminer si elles sont vraies ou fausses
- des formules logiques représentent les contraintes associées au problème
- on cherche à déterminer si le problème a une solution (satisfiabilité), le nombre de solutions ...
- les outils informatiques qui réalisent ces tâches s'appellent des SAT-solver
- de nombreuses applications industrielles
 - vérification de hardware
 - résolution de contraintes, planification...

87

Exercice: Enigme

Arthur, Bob et Casimir sont soupçonnés d'avoir peint en bleu le chat de la voisine. Ils font les déclarations suivantes :

- Arthur : Bob est coupable et Casimir est innocent.
- Bob : Si Arthur est coupable, Casimir aussi.
- Casimir: Je suis innocent mais au moins l'un des deux autres est coupable.
- On pose : a = "Arthur est coupable", b = "Bob est coupable" et c = "Casimir est coupable". Avec ces notations transcrire les trois déclarations ci-dessus dans le langage de la logique propositionnelle (notées F_A, F_B et F_C).
- Onstruire la table de vérité des formules F_A , F_B et F_C .
- En utilisant la question précédente, répondez aux questions suivantes :
 - Montrer que si Casimir a menti alors Arthur aussi.
 - Si Casimir a menti que peut-on dire de la déclaration de Bob?
 - 3 En supposant que tous ont dit la vérité, qui est coupable qui est innocent?
 - In supposant que tous sont coupables, qui a dit vrai? qui a menti?
 - Est-il possible que tous les innocents aient menti et que tous les coupables aient dit la vérité?

1-Maitriser le langage logique

- Définition du langage
- Structure des formules
- Formules vraies
 - Cas propositionnel
 - Modéliser un problème à l'aide de la logique
 - Formules avec quantificateurs
- Théorie et modélisation
- 5 Définition récursive sur les formules

Formules avec quantificateurs

 les variables d'objets représentent des inconnues dans un univers a priori indéterminé

```
\exists x, yeux-bleus(x) \quad \forall x y, x < y \Rightarrow (x+1) \leq y
```

- une interprétation (modèle) va expliciter le domaine d'interprétation des objets (noté D) non vide
 - Ex. : entiers signés ou non, sur 32 ou 64 bits, population dans une BD.
- on interprète les symboles de constante et les opérateurs dans ce domaine (ex. maxint, la division...)
- un terme t sans variable représente une valeur t_D (le résultat du calcul) dans le domaine t_D ∈ D (ex. 2 + 3)
- un terme avec variable x + 3 s'interprète comme une valeur $t_D \in D$ en se donnant en plus un environnement qui définit les valeurs des variables
 - analogie avec la mémoire d'un ordinateur

Interprétation des formules avec quantificateurs

- - relation unaire (yeux-bleus) : ensemble d'objets
 - relation binaire (≤) : graphe orienté
 - relations d'arité supérieure : tables
- analogie avec les langages de programmation
 - la syntaxe : les règles pour écrire un programme syntaxiquement correct
 - la sémantique : les règles qui expliquent quel sera le résultat de l'exécution d'un programme (dans un certain contexte)
 - plusieurs sens possibles pour le même programme
 - plusieurs compilateurs peuvent donner des résultats différents

Vérité d'une formule quantifiée

- A quelle condition $\forall x, P(x)$ est-il vrai?
- on ne peut parler de la valeur de vérité d'une formule que dans une interprétation qui définit le domaine (D) des objets, et l'interprétation des symboles (constantes, fonctions, prédicats) ainsi que la valeur des variables libres de la formule (l'environnement)
- ∀x, P est vraie si pour tout objet d ∈ D, la formule P est vraie dans l'environnement dans lequel x a la valeur d.
- $\exists x, P$ est vraie s'il existe un objet $d \in D$ tel que la formule P est vraie dans l'environnement dans lequel x à la valeur d.

Interprétation des symboles

- Domaine D des objets : ensemble non vide
- A chaque constante on associe un élément du domaine
- A chaque symbole de fonction on associe une fonction sur le domaine
- Une formule atomique P(t₁,...,t_n) représente une vérité qui dépend de la valeur des arguments t₁,...,t_n.
 On interpréte P par une relation n-aire sur l'ensemble D (à quelle condition sur les entrées la formule est vraie).
- Exemples: yeux-bleus, ami,...

Validité, satisfiabilité

- Validité: vrai pour tout domaine, toute interprétation des symboles, toutes valeurs des variables libres
- Satisfiabilité : vrai pour au moins un domaine, une interprétation des symboles, une valeur des variables libres
- Insatisfiabilité : faux pour tout domaine, toute interprétation des symboles, toutes valeurs des variables libres

Formules valides

 Les formules suivantes sont-elles valides (vraies pour tout domaine et interprétation du prédicat P)? Sont-elles satisfiables?

- \bigcirc $(\forall x, P(x)) \Rightarrow (\exists x, P(x))$
- $(\forall x, P(x)) \wedge (\exists x, \neg P(x))$
- $(\exists x, P(x)) \Rightarrow \forall x, P(x)$

Remarque

 Quand il y a une infinité d'objets, on ne peut plus faire des tables de vérité!

95

Modélisation en logique du premier ordre I

Trouver l'erreur

- Tout ce qui est rare est cher.
- Un cheval bon marché est rare,
- donc un cheval bon marché est cher
- introduire des prédicats pour modéliser la situation
- exprimer les propriétés précédentes comme des formules logiques

A savoir faire

- Tables de vérité des formules propositionnelles
- Définir une interprétation simple
- Evaluer la vérité d'une formule dans une interprétation
- Liens entre validité et satisfiabilité

Ces notions seront approfondies dans le chapitre 2

1-Maitriser le langage logique

- Définition du langage
- Structure des formules
- Formules vraies
- Théorie et modélisation
 - Exemple de modélisation propositionnelle avancée
- 5 Définition récursive sur les formules

Pourquoi des théories?

- un symbole peut être interprété de plusieurs manières différentes
 - ami, joue
 - pair
- Formule valide : vraie dans toutes les interprétations possibles
 - des vérités "absolues"
 - rien n'empêche une interprétation dans laquelle ami(t, u) est vrai mais ami(u, t) est faux ou bien pair(1) est vrai.
- Pour limiter les interprétations, on ajoute des axiomes (formule sans variables libres)

$$0 \neq 1$$
 $\forall x y, ami(x, y) \Rightarrow ami(y, x)$

- Les axiomes sont des vérités qui n'ont pas besoin d'être démontrées.
 - on se limite aux interprétations qui rendent vrais les axiomes.
 - dans les démonstrations, les axiomes sont traités comme des hypothèses supplémentaires

Definition (Théorie)

Une théorie est définie par un ensemble de symboles de fonctions et de prédicats (la signature de la théorie) et un ensemble de formules closes (sans variables libres) construites sur ce langage, appelés les axiomes de la théorie.

- Une théorie peut être définie par un ensemble fini ou infini d'axiomes.
- Un modèle d'une théorie est donné par une interprétation de la signature dans laquelle tous les axiomes ont pour valeur vraie.
- Une formule est valide dans une théorie si elle vraie dans tous les modèles de la théorie, on dit aussi que c'est une conséquence logique des axiomes de la théorie.
- axiomatiser une théorie (géométrie,...)
 - Partir d'un ensemble restreint d'objets de base et de leurs propriétés
 - Construire logiquement les concepts avancés et les théorèmes

Axiomes pour les groupes I

Exemple type : les *entiers relatifs* (\mathbb{Z})

- symboles de fonctions :
 - constante 0.
 - opération binaire +,
 - opération unaire (le t-u binaire n'est pas primitif : t+(-u))
- symbole de prédicat binaire : égalité.
- 3 axiomes (+ ceux de l'égalité)
 - associativité : $\forall x \ y \ z, (x + y) + z = x + (y + z)$
 - élement neutre : $\forall x, x + 0 = x \land 0 + x = x$
 - inverse : $\forall x, x + (-x) = 0 \land (-x) + x = 0$
- Modèle : entiers relatifs, groupe des permutations...
- Conséquence : $\forall x, -(-x) = x$

$$--x = --x + 0 = --x + (-x + x) = (--x + -x) + x = 0 + x = x$$

(utilise les propriétes de symétrie, transitivité et congruence de l'égalité)

Axiomes pour la géométrie

- Euclide: points, segment, droite, demi-droite et cercle
- Hilbert : points, droites, incidence (un point est sur une droite), un point est entre deux autres (segment), congruence de segments, angles, triangles
 - par deux points, il passe une et une seule droite
 - sur une droite, il y a au moins 2 points distincts et un point qui n'est pas sur la droite
 - parallèle : soit une droite d et un point x qui n'est pas sur la droite, il existe une unique droite qui passe par x et qu n'a pas de point commun avec d
- Modélisation logique :
 - prédicats unaires P et D (points et droites)
 - prédicats binaires : $x \in d$ et p = q...

$$\forall p \, q, P(p) \land P(q) \land \neg (p = q) \Rightarrow \\ \exists d, D(d) \land p \in d \land q \in d \land (\forall d', D(d') \land p \in d' \land q \in d' \Rightarrow d = d')$$

Logique

la géométrie (espaces euclidiens) est un modèle de la théorie de Hilbert

Théorie de l'égalité

Un symbole binaire quelconque, noté = de manière infixe.

- réflexivité : $\forall x, x = x$
- symétrie : $\forall x \ y, x = y \Rightarrow y = x$
- transitivité : $\forall x \ y \ z, (x = y \land y = z) \Rightarrow x = z$
- ullet congruence/symboles de fonction f (arité n):

$$\forall x_1 \ldots x_n y_1 \ldots y_n, (x_1 = y_1 \wedge \ldots \wedge x_n = y_n) \Rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$$

congruence/symboles de prédicat P (arité n) :

$$\forall x_1 \ldots x_n y_1 \ldots y_n, (x_1 = y_1 \wedge \ldots \wedge x_n = y_n) \Rightarrow P(x_1, \ldots, x_n) \Rightarrow P(y_1, \ldots, y_n)$$

Exemples

$$\forall x_1 \ x_2 \ y_1 \ y_2, (x_1 = y_1) \land (x_2 = y_2) \Rightarrow (x_1 + x_2) = (y_1 + y_2)$$

$$\forall x_1 \ y_1, (x_1 = y_1) \Rightarrow (-x_1) = (-y_1)$$

$$\forall x_1 \ y_1, (x_1 = y_1) \Rightarrow D(x_1) \Rightarrow D(y_1)$$

L'égalité préserve le prédicat d'égalité trivialement (symétrie et transitivité)

$$\forall x_1 \ x_2 \ y_1 \ y_2, (x_1 = y_1) \land (x_2 = y_2) \Rightarrow (x_1 = x_2) \Rightarrow (y_1 = y_2)$$

Egalité

- on pourra écrire $t \neq u$ pour la formule $\neg(t = u)$
- pour n'importe quelle formule Φ avec une variable libre x :

$$\forall x y, (x = y) \Rightarrow (\Phi \Rightarrow \Phi[x \leftarrow y])$$

Preuve par récurrence sur la structure de la formule (voir suite)

- le symbole d'égalité sera utilisé avec les axiomes précédents implicites
- l'interprétation de l'égalité est une relation d'equivalence quelconque (pas forcément l'égalité du domaine)
- les interprétations des symboles de fonction et de prédicat doivent respecter la congruence
 - exemple des rationnels, des ensembles finis...

Théorie arithmétique (Peano)

- Constante : 0
- Opération unaire *successeur* (+1) : $S(_)$,
- Opérations binaires addition et multiplication : _ + _ et _ * _
- Symbole de prédicat binaire d'égalité (=)
- Axiomes de l'égalité
- Axiomes arithmétique
 - $\forall x, S(x) \neq O$
 - $\forall x, x = O \lor \exists y, x = S(y)$ (inutile en présence de récurrence)
 - $\forall x y, S(x) = S(y) \Rightarrow x = y$
 - $\forall x, x + O = x$
 - $\forall x y, x + S(y) = S(x + y)$
 - $\forall x, x \times O = O$
 - $\bullet \ \forall x \, y, x \times S(y) = (x \times y) + x$
- Récurrence (nombre dénombrable d'axiomes, un pour chaque formule Φ)

$$\forall x_1 \dots x_n, \Phi[x \leftarrow O] \Rightarrow (\forall x, \Phi \Rightarrow \Phi[x \leftarrow S(x)]) \Rightarrow \forall x, \Phi$$

Illustration

- A chaque entier naturel $n \in \mathbb{N}$ on fait correspondre un terme noté \tilde{n} correspondant à $S^n(O)$.
- A partir des symboles de la théorie, on peut définir de nouvelles notions

•
$$t < u \stackrel{\text{def}}{=} \exists d, t + d = u$$

- A partir des axiomes de la théorie, on peut déduire de nouvelles propriétés
 - $\forall x, 0 \leq x$
 - $\bullet \ \forall x \ y, x \leq y \Leftrightarrow S(x) \leq S(y)$
 - transitivité : $\forall x \ y \ z, x \leq y \Rightarrow y \leq z \Rightarrow x \leq z$

Application de la théorie de l'arithmétique

• La théorie arithmétique est suffisante pour *représenter* les fonctions et prédicats calculables sur les entiers. à une fonction $f \in \mathbb{N} \to \mathbb{N}$ correspond une formule F[x, y]

f(n) = m ssi $F[\tilde{n}, \tilde{m}]$ est vrai dans l'arithmétique de Peano

- Exemples
 - soustraction (x y): $F[x, y, z] \stackrel{\text{def}}{=} y + z = x \lor x < y \land z = 0$
 - minimisation (+ petit n tel que G(x, n)):

$$\mu G[x,y] \stackrel{\text{def}}{=} G(x,y) \land \forall z, z < y \Rightarrow \neg G(x,z)$$

 Fonctions complexes via un codage des couples et des suites pour simuler les calculs récursifs

La dernière fois : théories

Definition (Théorie)

Une théorie est définie par

- un ensemble de symboles de fonctions et de prédicats (la signature) et
- un ensemble de formules closes (sans variables libres) construites sur ce langage (les axiomes).
- syntaxe et sémantique
- Une théorie peut être définie par un ensemble fini ou infini d'axiomes.
- Un modèle d'une théorie est donné par une interprétation de la signature dans laquelle tous les axiomes ont pour valeur vraie.
- Une formule est valide dans une théorie si elle vraie dans tous les modèles de la théorie, on dit aussi que c'est une conséquence logique des axiomes de la théorie.
- axiomatiser une théorie :
 - Partir d'un ensemble restreint d'objets de base et de leurs propriétés
 - Construire logiquement les concepts avancés et les théorèmes

109

La dernière fois : la théorie de l'égalité

Un symbole binaire quelconque, noté = de manière infixe.

- réflexivité : $\forall x, x = x$
- symétrie : $\forall x \ y, x = y \Rightarrow y = x$
- transitivité : $\forall x \ y \ z, (x = y \land y = z) \Rightarrow x = z$
- congruence/symboles de fonction f (arité n): $\forall x_1 \dots x_n y_1 \dots y_n, (x_1 = y_1 \wedge \dots \wedge x_n = y_n) \Rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$
- congruence/symboles de prédicat P (arité n): $\forall x_1 \dots x_n y_1 \dots y_n, (x_1 = y_1 \wedge \dots \wedge x_n = y_n) \Rightarrow P(x_1, \dots, x_n) \Rightarrow P(y_1, \dots, y_n)$

Propriétés des théories

Soit une théorie A

- \mathcal{A} est récursive s'il existe un algorithme qui étant donné une formule P permet de calculer si $P \in \mathcal{A}$
- A est cohérente si elle possède au moins un modèle, en particulier elle ne permet pas de déduire \(\perc \) (n'importe quoi)
- A est décidable s'il existe un algorithme qui étant donné une formule P permet de savoir si P est valide dans la théorie ou pas
- A est complète si pour toute formule P, soit P est valide dans la théorie, soit ¬P est valide dans la théorie.

Quelques résultats

- exemples de théories décidables : calcul propositionnel, arithmétique linéaire (Presburger), ordres discrets, théorie des réels...
- une théorie récursive et complète est décidable
- théorème d'incomplétude de Gödel : toute théorie cohérente qui contient l'arithmétique est incomplète

Modélisation propositionnelle avancée : Sudoku

8		4				2		9
		9				1		
1			3		2			7
	5		1		4		8	
				3				
	1		7		9		2	
5			4		3			8
		3				4		
4		6				3		1

- position p = (i, j) sur la ligne i et la colonne j
- variable propositionnelle x_p^k : le chiffre k est à la position p
- donner des ensembles de formules pour les propriétés suivantes :
 - A(p): au moins un chiffre à la position p
 - B(p): pas deux chiffres différents à la position p
 - $C(p_1, p_2, \dots, p_9)$ tout chiffre $k = 1, \dots, 9$ se trouve au moins à l'une des positions p_1, p_2, \dots, p_9
 - D(p₁, p₂,..., p₉) pas deux fois le même chiffre à des positions différentes en utilisant D'(p, q) pour cette propriété concernant deux cases.
- relier la résolution du Sudoku et l'existence de modèles d'un ensemble de formules.

Modélisation au premier ordre : Sudoku

- La modélisation propositionnelle introduit de nombreuses variables et axiomes.
- On peut considérer les positions et chiffres comme des objets de la logique
- Un symbole de prédicat à trois arguments pos(i, j, k) vrai lorsque le chiffre k est à la position (i, j) et l'égalité
- Au plus un seul chiffre k par case (i, j):

$$\forall ij k_1 k_2, pos(i,j,k_1) \land pos(i,j,k_2) \Rightarrow k_1 \neq k_2$$

- Exprimer logiquement que les objets peuvent prendre exactement 9 valeurs différentes sans utiliser l'arithmétique.
- Comment représenter simplement que deux positions sont dans le même cadran?

Savoir faire

- Connaître la définition d'une théorie.
- Connaître la théorie de l'égalité.
- Distinguer modélisation en calcul propositionnel et modélisation en logique du premier ordre.

1-Maitriser le langage logique

- Définition du langage
- Structure des formules
- Formules vraies
- 4 Théorie et modélisation
- Définition récursive sur les formules
 - Définir un fonction sur les formules
 - Raisonner sur les formules
 - Définition récursive sur les termes

115

Définition récursive sur les formules

- définir des opérations mathématiques sur les formules (taille, substitution, valeur de vérité, transformations ...)
- les implémenter sur machine
- équations récursives :
 - une équation (et une seule) pour chaque construction possible de formule :
 - formules atomiques : ⊤, ⊥, prédicat
 - connecteurs propositionnels $\neg A$, $A \lor B$, $A \land B$, $A \Rightarrow B$.
 - formules quantifiées $\forall x, A, \exists x, A$
 - le membre droit de l'équation peut contenir des appels récursifs à la fonction sur les sous-formules A, B
 - o correspond à un calcul par parcours de l'arbre
 - $\widehat{\Sigma}$ A et B sont des (meta)-variables mathématiques qui représentent des formules quelconques.
- facilite le raisonnement (cf TD)

compter le nombre de connecteurs propositionnels dans une formule :

```
\begin{array}{lll} \operatorname{nbsymbp}(p) & = & \operatorname{si} p \operatorname{atomique} \\ \operatorname{nbsymbp}(\neg A) & = & 1 + \operatorname{nbsymb}(A) \\ \operatorname{nbsymbp}(A \land B) & = \\ \operatorname{nbsymbp}(A \lor B) & = \\ \operatorname{nbsymbp}(A \Rightarrow B) & = \\ \operatorname{nbsymbp}(\forall x, A) & = \\ \operatorname{nbsymbp}(\exists x, A) & = \\ \end{array}
```

- fonction contient-neg qui teste si une formule comporte au moins une négation
- fonction nbatom qui calcule le nombre de formules atomiques dans une formule

compter le nombre de connecteurs propositionnels dans une formule :

```
\begin{array}{lll} \operatorname{nbsymbp}(p) & = 0 \text{ si } p \text{ atomique} \\ \operatorname{nbsymbp}(\neg A) & = 1 + \operatorname{nbsymb}(A) \\ \operatorname{nbsymbp}(A \land B) & = \\ \operatorname{nbsymbp}(A \lor B) & = \\ \operatorname{nbsymbp}(A \Rightarrow B) & = \\ \operatorname{nbsymbp}(\forall x, A) & = \\ \operatorname{nbsymbp}(\exists x, A) & = \\ \end{array}
```

- fonction contient-neg qui teste si une formule comporte au moins une négation
- fonction nbatom qui calcule le nombre de formules atomiques dans une formule

compter le nombre de connecteurs propositionnels dans une formule :

```
\begin{array}{lll} \operatorname{nbsymbp}(p) & = 0 & \text{si } p & \operatorname{atomique} \\ \operatorname{nbsymbp}(\neg A) & = 1 + \operatorname{nbsymb}(A) \\ \operatorname{nbsymbp}(A \land B) & = \operatorname{nbsymb}(A) + 1 + \operatorname{nbsymb}(B) \\ \operatorname{nbsymbp}(A \lor B) & = \operatorname{nbsymb}(A) + 1 + \operatorname{nbsymb}(B) \\ \operatorname{nbsymbp}(A \Rightarrow B) & = \operatorname{nbsymb}(A) + 1 + \operatorname{nbsymb}(B) \\ \operatorname{nbsymbp}(\forall x, A) & = \operatorname{nbsymb}(A) \\ \operatorname{nbsymbp}(\exists x, A) & = \operatorname{nbsymb}(A) \end{array}
```

- fonction contient-neg qui teste si une formule comporte au moins une négation
- fonction nbatom qui calcule le nombre de formules atomiques dans une formule

Restriction au calcul propositionnel

- seulement des variables propositionnelles (symboles de prédicat sans argument)
- pas de quantificateur
- Définir récursivement Vars(P) ensemble des variables propositionnelles qui apparaissent dans P

```
\begin{array}{lll} \operatorname{Vars}(X) & = & X \in \mathcal{V}_p \\ \operatorname{Vars}(\bot) & = & \\ \operatorname{Vars}(\top) & = & \\ \operatorname{Vars}(\neg P) & = & \\ \operatorname{Vars}(P_1 \circ P_2) & = & \circ \in \{\land, \lor, \Rightarrow\} \end{array}
```

Restriction au calcul propositionnel

- seulement des variables propositionnelles (symboles de prédicat sans argument)
- pas de quantificateur
- Définir récursivement Vars(P) ensemble des variables propositionnelles qui apparaissent dans P

```
\begin{array}{lll} \operatorname{Vars}(X) & = \{X\} & X \in \mathcal{V}_p \\ \operatorname{Vars}(\bot) & = \emptyset \\ \operatorname{Vars}(\top) & = \emptyset \\ \operatorname{Vars}(\neg P) & = \operatorname{Vars}(P) \\ \operatorname{Vars}(P_1 \circ P_2) & = \operatorname{Vars}(P_1) \cup \operatorname{Vars}(P_2) & \circ \in \{\land, \lor, \Rightarrow\} \end{array}
```

Substitution

Remplacer une variable propositionnelle X par une formule Q dans une formule propositionnelle P:

$$X[X \leftarrow Q] = P[X \leftarrow Q] = (\neg A)[X \leftarrow Q] = (A \circ B)[X \leftarrow Q] = ($$

$$X \in \mathcal{V}_p$$

 P est atomique $P \neq X$

$$\circ \in \{\land, \lor, \Rightarrow\}$$

Exemple

Calculer :
$$((\neg x \land y) \lor \neg y \Rightarrow x)[x \leftarrow (p \Rightarrow p)]$$

Substitution

Remplacer une variable propositionnelle X par une formule Q dans une formule propositionnelle P:

$$\begin{array}{lll} X[X \leftarrow Q] & = Q & X \in \mathcal{V}_p \\ P[X \leftarrow Q] & = P & P \text{ est atomique } P \neq X \\ (\neg A)[X \leftarrow Q] & = \neg (A[X \leftarrow Q]) \\ (A \circ B)[X \leftarrow Q] & = (A[X \leftarrow Q] \circ B[X \leftarrow Q]) & \circ \in \{\land, \lor, \Rightarrow\} \end{array}$$

Exemple

Calculer :
$$((\neg x \land y) \lor \neg y \Rightarrow x)[x \leftarrow (p \Rightarrow p)]$$

 $((\neg (p \Rightarrow p) \land y) \lor \neg y \Rightarrow (p \Rightarrow p))$

Représentation des formules propositionnelles

```
type connecteur = Impl | Et | Ou
type form = Var of int | Bot | Top
           | Neg of form
           | Bin of form * connecteur * form
let rec vars = function
    Var n \rightarrow [n]
    Bot | Top -> []
    Neg f -> vars f
    Bin(f, g) \rightarrow vars f @ vars g
let rec subst x q = function
    Var n \rightarrow if n = x then q else Var n
    Bot -> Bot | Top -> Top
    Neg f \rightarrow Neg (subst x g f)
    Bin(f,o,g) \rightarrow Bin(subst x q f,o,subst x q g)
```

Valeur de vérité (formule propositionnelle)

On se donne une interprétation $I \in \mathcal{V}_p \to \mathbb{B}$, et on définit $val(I, P) \in \mathbb{B}$

```
\begin{array}{lll} \operatorname{val}(I,\bot) &= F \\ \operatorname{val}(I,\top) &= V \\ \operatorname{val}(I,x) &= I(x) \\ \operatorname{val}(I,AA) &= \operatorname{si}\operatorname{val}(I,A) = V \operatorname{alors} F \operatorname{sinon} V \\ \operatorname{val}(I,A \wedge B) &= \operatorname{si}\operatorname{val}(I,A) = V \operatorname{alors}\operatorname{val}(I,B) \operatorname{sinon} F \\ \operatorname{val}(I,A \vee B) &= \operatorname{si}\operatorname{val}(I,A) = V \operatorname{alors} V \operatorname{sinon}\operatorname{val}(I,B) \\ \operatorname{val}(I,A \Rightarrow B) &= \operatorname{si}\operatorname{val}(I,A) = V \operatorname{alors}\operatorname{val}(I,B) \operatorname{sinon} V \end{array}
```

Exemple

•
$$P \stackrel{\text{def}}{=} ((x \Rightarrow y) \Rightarrow y) \Rightarrow x, I \stackrel{\text{def}}{=} \{x \mapsto F, y \mapsto V\}$$
, calculer $val(I, P)$

Propriété

 La valeur d'une formule ne dépend que de la valeur de l'interprétation pour les variables qui apparaissent dans la formule.

$$\operatorname{val}(I_1,P)=\operatorname{val}(I_2,P)$$
 si pour tout $x\in\operatorname{Vars}(P),I_1(x)=I_2(x)$

Schéma de récurrence pour les formules

Soit une propriété mathématique $\phi(P)$ qui dépend d'une formule P.

- Si on peut montrer que :
 - $\phi(p)$ est vérifiée lorsque p est une formule atomique (en particulier $\phi(\top)$ et $\phi(\bot)$ sont vérifiés)
 - opour une formule A quelconque, en supposant que $\phi(A)$ est vérifié, on peut montrer $\phi(\neg A)$
 - opour des formules A et B quelconques, en supposant que $\phi(A)$ et $\phi(B)$ sont vérifiées, on peut montrer $\phi(A \wedge B)$ ainsi que $\phi(A \vee B)$ et $\phi(A \Rightarrow B)$
 - **1** pour une formule A quelconque, et une variable x, en supposant que $\phi(A)$ est vérifié, on peut montrer $\phi(\forall x, A)$ et $\phi(\exists x, A)$
- Alors on peut en déduire que pour toute formule logique P, $\phi(P)$ est vérifié.

Schéma utile pour montrer des propriétés de fonctions sur les formules définies récursivement.

nbatom(p): nombre d'occurrences de sous-formules atomiques

```
\begin{array}{ll} \operatorname{nbatom}(p) &= 1 & \text{si } p \text{ atomique} \\ \operatorname{nbatom}(\neg A) &= \operatorname{nbatom}(A) \\ \operatorname{nbatom}(\forall x, A) &= \operatorname{nbatom}(A) \\ \operatorname{nbatom}(\exists x, A) &= \operatorname{nbatom}(A) \\ \operatorname{nbatom}(A \land B) &= \operatorname{nbatom}(A) + \operatorname{nbatom}(B) \\ \operatorname{nbatom}(A \lor B) &= \operatorname{nbatom}(A) + \operatorname{nbatom}(B) \\ \operatorname{nbatom}(A \Rightarrow B) &= \operatorname{nbatom}(A) + \operatorname{nbatom}(B) \end{array}
```

Lemme : Pour toute formule P, on a $nbatom(P) \le 1 + nbsymbp(P)$.

Preuve par récurrence

- propriété $\phi(P)$ à montrer par récurrence structurelle sur P: nbatom $(P) \le 1 + \text{nbsymbp}(P)$.
- Examen de chacun des cas possibles pour la formule P
 - **1** P formule atomique p. Par définition, nbatom(p) = 1 et nbsymbp(p) = 0 et $donc \, nbatom(p) \le 1 + nbsymbp(p), \, \phi(p)$ est vérifié.
 - P est une négation $\neg A$,
 - A quelconque vérifie l'hypothèse de récurrence $\phi(A)$ (nbatom(A) ≤ 1 + nbsymbp(A)).
 - montrons $\phi(\neg A)$
 - par définition, $nbatom(\neg A) = nbatom(A)$ et $nbsymbp(\neg A) = 1 + nbsymbp(A)$.
 - En utilisant l'hypothèse de récurrence on a donc

$$\begin{aligned} \text{nbatom}(\neg A) &= \text{nbatom}(A) &\leq 1 + \text{nbsymbp}(A) \\ &= \text{nbsymbp}(\neg A) \leq 1 + \text{nbsymbp}(\neg A) \end{aligned}$$

- donc $\phi(\neg A)$ est vérifiée.
- pour les autres cas, voir les notes de cours

On a bien examiné tous les cas possibles, on en conclut que pour toute formule logique P, on a $nbatom(P) \le 1 + nbsymbp(P)$.

Schéma utile pour montrer des propriétés de fonctions sur les formules définies récursivement.

- Soit une formule propositionnelle Q et une variable propositionnelle X.
- On souhaite montrer que pour toute formule propositionnelle P telle que $X \notin Vars(P)$, on a $P[X \leftarrow Q] = P$
- La propriété φ(P) à montrer par récurrence structurelle sur P : si X ∉ Vars(P) alors P[X←Q] = P
- Examen de chacun des cas possibles pour la formule P

Preuve détaillée

- *P* formule atomique : Comme $X \notin Vars(P)$, on a que $P \neq X$ et donc $P[X \leftarrow Q] = P$ par définition de la substitution
- ② P de la forme $\neg A$:
 - L'hypothèse de récurrence sur A nous assure que si $X \not\in \text{Vars}(A)$ alors $A[X \leftarrow Q] = A$
 - Comme $X \notin Vars(P)$ et $Vars(\neg A) = Vars(A)$, on a que $X \notin Vars(A)$.
 - L'hypothèse de récurrence nous permet de déduire A[X ←Q] = A
 - Par définition de la substitution $(\neg A)[X \leftarrow Q] = \neg (A[X \leftarrow Q])$
 - On en déduit le résultat attendu : $(\neg A)[X \leftarrow Q] = \neg A$
- **1** P de la forme $A \circ B$ (les trois connecteurs \lor , \land , \Rightarrow se comportent pareil) :
 - L'hypothèse de récurrence sur A nous assure que si $X \notin Vars(A)$ alors $A[X \leftarrow Q] = A$ et de même pour B, si $X \notin Vars(B)$ alors $B[X \leftarrow Q] = B$
 - Comme $X \notin \text{Vars}(P)$ et $\text{Vars}(A \circ B) = \text{Vars}(A) \cup \text{Vars}(B)$, on a que $X \notin \text{Vars}(A)$ et $X \notin \text{Vars}(B)$.
 - Par hypothèses de récurrence, on déduit $A[X \leftarrow Q] = A$ et $B[X \leftarrow Q] = B$
 - Par définition de la substitution $(A \circ B)[X \leftarrow Q] = (A[X \leftarrow Q]) \circ (B[X \leftarrow Q])$
 - On a donc le résultat attendu : $(A \circ B)[X \leftarrow Q] = A \circ B$

On a examiné tous les cas possibles, on en conclut que pour toute formule propositionnelle P, on a bien que si $X \notin Vars(P)$ alors $P[X \leftarrow Q] = P$

La dernière fois

- Construire des fonctions sur les termes et les formules en utilisant un système d'équations récursives
- Faire des raisonnements simples par récurrence sur la structure des termes ou des formules

La dernière fois : définition récursive sur les formules

- définir des opérations mathématiques sur les formules (taille, substitution, valeur de vérité, transformations ...)
- les implémenter sur machine
- équations récursives :
 - une équation (et une seule) pour chaque construction possible de formule :
 - formules atomiques : ⊤, ⊥, prédicat
 - connecteurs propositionnels $\neg A$, $A \lor B$, $A \land B$, $A \Rightarrow B$.
 - formules quantifiées $\forall x, A, \exists x, A$
 - le membre droit de l'équation peut contenir des appels récursifs à la fonction sur les sous-formules A, B
 - o correspond à un calcul par parcours de l'arbre

 $\stackrel{\textstyle \checkmark}{\sum}$ A et B sont des (meta)-variables mathématiques qui représentent des formules quelconques.

La dernière fois : exemple

compter le nombre de connecteurs propositionnels dans une formule :

```
\begin{array}{lll} \operatorname{nbsymbp}(p) & = 0 \text{ si } p \text{ atomique} \\ \operatorname{nbsymbp}(\neg A) & = 1 + \operatorname{nbsymb}(A) \\ \operatorname{nbsymbp}(A \land B) & = \operatorname{nbsymb}(A) + 1 + \operatorname{nbsymb}(B) \\ \operatorname{nbsymbp}(A \lor B) & = \operatorname{nbsymb}(A) + 1 + \operatorname{nbsymb}(B) \\ \operatorname{nbsymbp}(A \Rightarrow B) & = \operatorname{nbsymb}(A) + 1 + \operatorname{nbsymb}(B) \\ \operatorname{nbsymbp}(\forall x, A) & = \operatorname{nbsymb}(A) \\ \operatorname{nbsymbp}(\exists x, A) & = \operatorname{nbsymb}(A) \end{array}
```

La dernière fois : schéma de récurrence pour les formules

Soit une propriété mathématique $\phi(P)$ qui dépend d'une formule P.

- Si on peut montrer que :
 - \bullet $\phi(p)$ est vérifiée lorsque p est une formule atomique
 - ② pour une formule A quelconque, en supposant que $\phi(A)$ est vérifié, on peut montrer $\phi(\neg A)$
 - operation pour des formules A et B quelconques, en supposant que $\phi(A)$ et $\phi(B)$ sont vérifiées, on peut montrer $\phi(A \wedge B)$ ainsi que $\phi(A \vee B)$ et $\phi(A \Rightarrow B)$
 - **1** pour une formule A quelconque, et une variable x, en supposant que $\phi(A)$ est vérifié, on peut montrer $\phi(\forall x, A)$ et $\phi(\exists x, A)$
- Alors on peut en déduire que pour toute formule logique P, $\phi(P)$ est vérifié.

La dernière fois : exemple

nbatom(p): nombre d'occurrences de sous-formules atomiques

```
\begin{array}{ll} \operatorname{nbatom}(p) &= 1 & \text{si } p \text{ atomique} \\ \operatorname{nbatom}(\neg A) &= \operatorname{nbatom}(A) \\ \operatorname{nbatom}(\forall x, A) &= \operatorname{nbatom}(A) \\ \operatorname{nbatom}(\exists x, A) &= \operatorname{nbatom}(A) \\ \operatorname{nbatom}(A \land B) &= \operatorname{nbatom}(A) + \operatorname{nbatom}(B) \\ \operatorname{nbatom}(A \lor B) &= \operatorname{nbatom}(A) + \operatorname{nbatom}(B) \\ \operatorname{nbatom}(A \Rightarrow B) &= \operatorname{nbatom}(A) + \operatorname{nbatom}(B) \end{array}
```

Lemme: Pour toute formule P, on a $nbatom(P) \le 1 + nbsymbp(P)$.

La dernière fois : preuve par récurrence

- propriété $\phi(P)$ à montrer par récurrence structurelle sur P: nbatom $(P) \le 1 + \text{nbsymbp}(P)$.
- Examen de chacun des cas possibles pour la formule P
 - P formule atomique p. Par définition, nbatom(p) = 1 et nbsymbp(p) = 0 et donc $nbatom(p) \le 1 + nbsymbp(p)$, $\phi(p)$ est vérifié.
 - P est une négation $\neg A$,
 - A quelconque vérifie l'hypothèse de récurrence φ(A) (nbatom(A) ≤ 1 + nbsymbp(A)).
 - montrons $\phi(\neg A)$
 - par définition, $nbatom(\neg A) = nbatom(A)$ et $nbsymbp(\neg A) = 1 + nbsymbp(A)$.
 - En utilisant l'hypothèse de récurrence on a donc

$$\begin{aligned} \text{nbatom}(\neg A) &= \text{nbatom}(A) &\leq 1 + \text{nbsymbp}(A) \\ &= \text{nbsymbp}(\neg A) \leq 1 + \text{nbsymbp}(\neg A) \end{aligned}$$

- donc $\phi(\neg A)$ est vérifiée.
- o pour les autres cas, voir les notes de cours

On a bien examiné tous les cas possibles, on en conclut que pour toute formule logique P, on a $nbatom(P) \le 1 + nbsymbp(P)$.

Exercice TD: Sous-formules

On se restreint aux formules du calcul propositionnel.

On dit qu'une formule Q est une sous-formule de P si Q = P ou bien si la formule Q apparait sous un connecteur de P.

C'est-à-dire $P = \neg P'$ et Q est une sous-formule de P' ou bien $P = P_1 \circ P_2$ et Q est une sous-formule de P_1 ou bien une sous-formule de P_2 avec \circ un des connecteurs binaires : $\{\lor, \land, \Rightarrow\}$.

- **①** Donner toutes les sous-formules de la formule $\neg(p \lor (q \land r)) \Rightarrow (p \land q)$
- ② Donner les équations qui définissent la fonction sf qui à une formule propositionnelle P associe l'ensemble de ses sous-formules.
- Trouver un majorant du nombre de sous-formules d'une formule P qui utilise n connecteurs logiques. Donner un exemple où ce majorant est atteint. Prouver ce résultat par récurrence structurelle sur la formule.
- (optionnel) Même question pour un minorant du nombre de sous-formules.

Définition récursive sur les termes

- Pour traiter le cas des formules atomiques en logique du premier ordre, il faut souvent prendre en compte les termes arguments des prédicats.
- Les termes sont définis à partir de la signature et contiennent possiblement des variables
- Les termes se représentent par des arbres donc chaque nœud est étiqueté par un symbole de fonction, le nombre de sous-arbres est donné par l'arité du symbole et les feuilles sont les constantes et les variables.

- Le même principe de définition récursive de fonctions (mathématiques) s'applique sur les termes.
- Une équation pour les variables et une pour chaque symbole de la signature avec de possibles appels récursifs sur les sous-termes.

$$G(x) = \dots$$
 x variable $G(f(t_1, \dots, t_n)) = \dots G(t_1) \dots G(t_n) \dots$

- Signature : constante c, fonction unaire f, fonction binaire g.
- On définit une fonction clos qui étant donné un terme t teste s'il est clos (pas de variables)

```
clos(x) = faux si x est une variable clos(c) = vrai clos(f(t)) = clos(t) et clos(u)
```

Définition récursive sur les termes

Definition

 \mathcal{F} signature, \mathcal{X} ensemble de variables et \mathcal{D} un ensemble quelconque. Pour définir une application $G \in \mathcal{T}(\mathcal{F}, \mathcal{X}) \to \mathcal{D}$, on se donne :

- **①** Une application V dans $\mathcal{X} \to \mathcal{D}$;
- ② Pour chaque constante $c \in \mathcal{F}_0$, un élément $g_c \in \mathcal{D}$
- **③** Pour chaque symbole de fonction $f \in \mathcal{F}_n$, une application G_f dans

$$\underbrace{\mathcal{T}(\mathcal{F},\mathcal{X})\times\ldots\times\mathcal{T}(\mathcal{F},\mathcal{X})}_{\textit{n fois}}\times\underbrace{\mathcal{D}\times\ldots\times\mathcal{D}}_{\textit{n fois}}\to\mathcal{D}$$

Il existe une unique application G dans $\mathcal{T}(\mathcal{F},\mathcal{X}) \to \mathcal{D}$ qui vérifie :

$$G(x) = V(x) \qquad (x \in \mathcal{X}) \ G(c) = g_c \qquad (c \in \mathcal{F}_0) \ G(f(t_1, \dots, t_n)) = G_f(t_1, \dots, t_n, G(t_1), \dots, G(t_n)) \quad (f \in \mathcal{F}_n)$$

Fonctions génériques utiles

Exemple (Taille d'un terme)

size compte le nombre de symboles dans un terme.

- $si x \in \mathcal{X}$ alors size(x) = 0
- $sic \in \mathcal{F}_0$ alors size(c) = 1
- $sif \in \mathcal{F}_n$ alors $size(f(t_1,\ldots,t_n)) = 1 + size(t_1) + \cdots + size(t_n)$

 $t \stackrel{\text{def}}{=} plus(0, S(0))$ vérifie size(t) = 4.

Exemple (Hauteur d'un terme)

ht: compte le nombre maximal de symboles imbriqués dans un terme.

- $si x \in \mathcal{X} alors ht(x) = 0$
- $si c \in \mathcal{F}_0$ alors ht(c) = 1
- $sif \in \mathcal{F}_n$ alors $ht(f(t_1,\ldots,t_n)) = 1 + max(ht(t_1),\ldots,ht(t_n))$

$$ht(t) = 3.$$

↓□▶ ↓□▶ ↓ □▶ ↓ □▶ ↓ □ ♥ ♀ ○

Exercice: variables d'un terme

Exercice

Ecrire une fonction vars qui prend en argument un terme et renvoie l'ensemble des variables qui apparaissent dans ce terme.

Exercice: variables d'un terme

Exercice

Ecrire une fonction vars qui prend en argument un terme et renvoie l'ensemble des variables qui apparaissent dans ce terme.

Solution

- si $x \in \mathcal{X}$ alors $vars(x) = \{x\}$
- si $c \in \mathcal{F}_0$ alors $vars(c) = \emptyset$
- si $f \in \mathcal{F}_n$ alors $vars(f(t_1, \ldots, t_n)) = vars(t_1) \cup \ldots \cup vars(t_n)$

Substitution sur les termes

- remplacement simultanée de plusieurs variables par des termes.
- application $\sigma \in \mathcal{X} \to \mathcal{T}(\mathcal{F}, \mathcal{X})$, appelée substitution qui associe un terme à chaque variable.
- On note $\{x_1 \leftarrow u_1; \dots; x_n \leftarrow u_n\}$ la substitution σ telle que $\sigma(x) = u_i$ si $x = x_i$ et $\sigma(x) = x$ sinon.
- On définit pour chaque terme t, le résultat de la substitution dans t de toute variable x par σ(x) que l'on note t[σ].
- Si σ est de la forme $\{x_1 \leftarrow u_1; \ldots; x_n \leftarrow u_n\}$, alors le terme $t[\sigma]$ sera noté $t[x_1 \leftarrow u_1; \ldots; x_n \leftarrow u_n]$.

Définition et exemple

La définition de $t[\sigma]$ se fait de manière récursive sur t:

- si $x \in \mathcal{X}$ alors $x[\sigma] = \sigma(x)$
- si $c \in \mathcal{F}_0$ alors $c[\sigma] = c$
- si $f \in \mathcal{F}_n$ alors $f(t_1, \ldots, t_n)[\sigma] = f(t_1[\sigma], \ldots, t_n[\sigma])$

Exemple

```
t = plus(mult(x, y), S(x)) et \sigma = \{x \leftarrow mult(y, 0); y \leftarrow 0\}.
On a t[\sigma] = plus(mult(mult(y, 0), 0), S(mult(y, 0)))
```

Propriétés de la substitution

- le résultat de $t[\sigma]$ ne dépend que de la valeur de la substitution σ sur les variables de t.
- soit deux substitutions σ_1 et σ_2 et un terme t, si pour toute variable $x \in vars(t)$ on a $\sigma_1(x) = \sigma_2(x)$ alors $t[\sigma_1] = t[\sigma_2]$.
- La preuve se fait aisément par récurrence structurelle sur le terme t suivant le schéma ci-dessous.

Récurrence sur les termes

On peut utiliser un schéma de preuve par récurrence sur les termes de $\mathcal{T}(\mathcal{F},\mathcal{X})$

Soit $\phi(t)$ une propriété mathématique qui dépend d'un terme $t \in \mathcal{T}(\mathcal{F},\mathcal{X})$. Si :

- pour toute variable $x \in \mathcal{X} : \phi(x)$;
- ② pour chaque constante $c \in \mathcal{F}_0$: $\phi(c)$;
- **3** pour chaque symbole $f \in \mathcal{F}_n$: pour tous termes $t_1 \dots t_n \in \mathcal{T}(\mathcal{F}, \mathcal{X})$ si les propriétés $\phi(t_1) \cdots \phi(t_n)$ sont vérifiées (hypothèses de récurrence), alors il en est de même de $\phi(f(t_1, \dots, t_n))$;

alors pour tout terme $t \in \mathcal{T}(\mathcal{F}, \mathcal{X})$ la propriété $\phi(t)$ est vérifiée.

Exemple

```
On montre pour tout terme t \in \mathcal{T}(\mathcal{F}, \mathcal{X}) que ht(t) \leq size(t)
La preuve se fait par récurrence sur la structure du terme t.
La propriété à montrer est \phi(t) \stackrel{\text{def}}{=} \text{ht}(t) < \text{size}(t)
      variable soit x \in \mathcal{X}, ht(x) \leq size(x) vrai car ht(x) = 0 et size(x) = 0
   constante ht(c) \le size(c) vrai car ht(c) = 1 = size(c).
     symbole si f \in \mathcal{F}_n et t_1, \ldots, t_n \in \mathcal{T}(\mathcal{F}, \mathcal{X}) sont des termes quelconques
                 qui vérifient l'hypothèse de récurrence ht(t_i) \leq size(t_i). On
                 doit montrer ht(f(t_1, \ldots, t_n)) \leq size(f(t_1, \ldots, t_n)).
   ht(f(t_1,\ldots,t_n)) = 1 + \max(ht(t_1),\ldots,ht(t_n))  (déf de ht)
                         < 1 + ht(t_1) + \cdots + ht(t_n) (car ht(t_i) \ge 0)
                         < 1 + size(t_1) + \cdots + size(t_n) (hyp. de récurrence)
                         = size(f(t_1, \ldots, t_n))
                                                                    (déf de size)
```

On en déduit que $ht(t) \le size(t)$ est vérifié pour tout les termes du langage.

Substitution sur les formules

- substitution $P[x \leftarrow t]$ d'une variable x par un terme t dans une formule P
- éviter la capture d'une variable du terme t par un des quantificateurs interne de P.
- définition récursive de P[x ←t]
 - Formules atomiques :
 - $\bullet \ \bot[x \leftarrow t] = \bot$

 - $\bullet \ R(t_1,\ldots,t_n)[x\leftarrow t] = R(t_1[x\leftarrow t],\ldots,t_n[x\leftarrow t])$
 - $(\neg A)[x \leftarrow t] = \neg (A[x \leftarrow t])$
 - $\bullet \circ \in \{\land, \lor, \Rightarrow\} : (A \circ B)[x \leftarrow t] = (A[x \leftarrow t]) \circ (B[x \leftarrow t])$
 - $(\forall y, Q)[x \leftarrow t]$:
 - si y = x alors $(\forall y, Q) = \forall x, Q$ et comme x n'est pas libre dans $\forall x, Q$ on a $(\forall y, Q)[x \leftarrow t] = (\forall x, Q)[x \leftarrow t] = \forall x, Q$
 - si y ≠ x et y ∉ vars(t) alors (∀y, Q)[x ←t] = ∀y, (Q[x ←t])
 pas de risque de capture puisque la variable liée y n'apparaît pas dans t
 définition partielle
 - $(\exists y, Q)[x \leftarrow t]$: traitement analogue à $(\forall y, Q)[x \leftarrow t]$

Exemples

- $(\forall y, R(x,y))[x \leftarrow f(y)]$

Remarques

- La définition est partielle, elle n'est pas définie dans le cas des formules avec quantificateurs si une variable liée dans la formule apparaît aussi dans le terme que l'on veut substituer.
- En procédant à un renommage des variables liées dans les quantificateurs, on se ramène à une situation dans laquelle la substitution sera possible.

Savoir faire

- Savoir construire des fonctions sur les termes et les formules en utilisant un système d'équations récursives.
- Faire des raisonnements simples par récurrence sur la structure des termes ou des formules.
- Savoir calculer la substitution d'une variable (libre) par un terme dans une formule en évitant les problèmes de capture.

153

2-Donner du sens aux formules

- Interprétations et vérité
- Validité et satisfiabilité
- 3 Conséquence logique, équivalence

Introduction

- Chapitre 1 : Les bases de la logique du premier ordre :
 - structure des termes et des formules
 - comment utiliser ce langage pour modéliser des situations ou problèmes
 - la vérité d'une formule logique dépend du monde dans lequel on interprète les symboles de la signature
- Chapitre 2 :
 - retour sur la notion d'interprétation de manière plus détaillée
 - définition de la notion de conséquence logique et d'équivalence.
 - étude de quelques modèles particuliers.

Interprétations et vérité

signature $(\mathcal{F}, \mathcal{R})$

- ullet l'ensemble des symboles de fonctions (termes)
- \mathcal{R} l'ensemble des symboles de prédicat (formules atomiques).

Definition (Interprétation)

Une interprétation I de la signature $(\mathcal{F}, \mathcal{R})$ est donnée par

- un ensemble \mathcal{D} *non vide* appelé domaine de l'interprétation;
- pour chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n, une fonction f_l n-aire sur \mathcal{D} (c'est à dire $f_l : \mathcal{D}^n \to \mathcal{D}$: pour chaque $v_1, \ldots, v_n \in \mathcal{D}$, on a $f_l(v_1, \ldots, v_n) \in \mathcal{D}$);
- pour chaque symbole de prédicat $R \in \mathcal{R}_n$ d'arité n, une relation n-aire R_l sur \mathcal{D} ($R_l \subseteq \mathcal{D}^n$).
 - R_i ensemble de n-uplets (v_1, \ldots, v_n) avec $v_i \in \mathcal{D}$ qui correspondent au cas où, *dans cette interprétation*, la relation R est vraie.

On utilise également la terminologie de modèle ou de structure pour parler de l'interprétation d'une signature.

Exemple: interprétation

Signature : prédicat binaire *P*.

Domaine $D \stackrel{\text{def}}{=} \{1, 2, 3, 4\}.$

L'interprétation de P donnée par un tableau 4×4 .

La formule atomique P(t, u) est vraie si t vaut i et u vaut j et que la case sur la ligne i et la colonne j est grisée.

Soient les formules :

- \bigcirc $\exists x, \neg P(x, x)$
- $\exists x, \forall y, P(x,y)$

Donner la valeur des formules pour chaque interprétation de *P* :

Interprétation et implémentation

Exemple des rationnels

- signature pour manipuler des rationnels
 - constantes 0, 1 et −1,
 - une opération binaire de construction frac,
 - des opérations binaires + et *
 - un symbole de prédicat binaire pour l'égalité.
- interprétation de cette signature : représentation d'un rationnel
 - un couple $(p,q) \in \mathbb{Z} \times \mathbb{N} \setminus \{0\}$ formé d'un entier relatif en numérateur et d'un entier naturel non nul en dénominateur.
 - Le domaine de l'interprétation est donc $\mathcal{D} \stackrel{\text{def}}{=} \mathbb{Z} \times \mathbb{N} \setminus \{0\}$.
- Autres domaines possibles
 - imposer que la fraction soit réduite (pas de diviseur commun du dénominateur et du numérateur),
 - autoriser un entier relatif en dénominateur

Interprétation de chaque symbole

Exemple base de données

- Aux tables primitives de la BD correspondent des symboles de prédicat (l'arité est le nombre de colonnes)
- Chaque état de la base de données correspond à une interprétation particulière des symboles.

Cas propositionnel

- Dans le cas propositionnel (sans quantificateur), il n'y a pas de symboles de fonctions et tous les symboles de prédicats sont d'arité 0, donc des variables propositionnelles.
- Une interprétation revient donc à fixer une valeur booléenne pour chacune de ces variables.
- S'il y a n variables propositionnelles alors il y a 2ⁿ interprétations possibles.
- On peut les énumérer toutes et calculer la valeur de vérité de la formule propositionnelle pour chacune de ces interprétations, on retrouve ainsi les tables de vérité.

Interprétation des symboles de prédicats

- Symbole de prédicat d'arité 0 : vrai, ou faux (barrière_ouverte)
- Symbole de prédicat d'arité 1 : sous-ensemble de $\mathcal D$ (les objets qui vérifient le prédicat).
- Symbole R de prédicat d'arité 2 : relation binaire sur D.
 Représentation par un graphe (fini ou infini) : sommets éléments de D, arête entre deux sommets a et b ssi R_I(a, b) est vraie.
 Représentation par une matrice carrée sur les sommets à valeur dans {0,1}.
- Prédicat R d'arité plus grande, par exemple 4 alors l'interprétation est un ensemble de quadruplets (a, b, c, d).
 Si l'ensemble est fini, on peut utiliser une table avec 4 colonnes.
 Les lignes de la table contiennent les quadruplets (a, b, c, d) pour lesquels l'interprétation R_I(a, b, c, d) est vraie.

Environnement

La vérité d'une formule qui contient des variables libres dépend de la *valeur* des variables

Exemple Dans le modèle usuel des entiers : $\exists n, pair(3 \times n + 1)$ est vrai, $\forall n, pair(3 \times n + 1)$ est faux mais la valeur de vérité de $pair(3 \times n + 1)$ dépend de la valeur de n.

Definition (Environnement)

Soit $\mathcal X$ l'ensemble des variables d'objets. Soit l une interprétation de la signature $(\mathcal F,\mathcal R)$ dont le domaine est $\mathcal D$, un environnement est une application ρ qui associe une valeur du domaine $\mathcal D$ à chaque variable de $\mathcal X$ (c'est à dire $\rho:\mathcal X\to\mathcal D$).

Soit ρ un environnement, si $x \in \mathcal{X}$ et $d \in \mathcal{D}$, on note $\rho + \{x \mapsto d\}$ l'environnement qui vaut d pour la variable x et $\rho(y)$ pour toutes les variables $y \neq x$.

Valeur d'un terme dans une interprétation

- une signature $(\mathcal{F}, \mathcal{R})$, un ensemble de variables \mathcal{X}
- une interprétation $I \stackrel{\text{def}}{=} (\mathcal{D}, (f_I)_{f \in \mathcal{F}}, (R_I)_{R \in \mathcal{R}})$

Definition (Valeur d'un terme)

Soit ρ un environnement, $\rho \in \mathcal{X} \to \mathcal{D}$.

On définit la valeur $val_I(\rho,t)$ d'un terme $t \in \mathcal{T}(\mathcal{F},\mathcal{X})$ dans l'interprétation I et l'environnement ρ , c'est un élément du domaine \mathcal{D} :

$$\operatorname{val}_I(\rho, x) = \rho(x) \qquad \operatorname{val}_I(\rho, f(t_1, \dots, t_n)) = f_I(\operatorname{val}_I(\rho, t_1), \dots, \operatorname{val}_I(\rho, t_n))$$

Valeur d'une formule dans une interprétation

Definition (Valeur d'une formule)

Soit ρ un environnement, $\rho: \mathcal{X} \to \mathcal{D}$.

On définit la valeur $val_I(\rho, P)$ d'une formule P dans l'interprétation I et l'environnement ρ , c'est une valeur de vérité dans $\{V, F\}$:

```
= F
val_I(\rho, \perp)
                           = V
val_I(\rho, \top)
val_I(\rho, R(t_1, \dots, t_n)) = si R_I(val_I(\rho, t_1), \dots, val_I(\rho, t_n)) alors V sinon F
val_I(\rho, \neg A)
                              = si val_I(\rho, A) = V alors F sinon V
val_I(\rho, A \wedge B)
                              = si val_I(\rho, A) = V alors val_I(\rho, B) sinon F
val_I(\rho, A \vee B)
                              = si val_I(\rho, A) = V alors V sinon val_I(\rho, B)
val_I(\rho, A \Rightarrow B)
                              = si val_I(\rho, A) = V alors val_I(\rho, B) sinon V
                              = si pour tout d \in \mathcal{D}, val_I(\rho + \{x \mapsto d\}, A) = V
val_I(\rho, \forall x, A)
                                  alors V sinon F
val_I(\rho, \exists x, A)
                              = si il existe d \in \mathcal{D} tel que val_I(\rho + \{x \mapsto d\}, A) = V
                                  alors V sinon F
```


La dernière fois : Interprétations

signature $(\mathcal{F}, \mathcal{R})$

- ullet l'ensemble des symboles de fonctions (termes)
- \mathcal{R} l'ensemble des symboles de prédicat (formules atomiques).

Definition (Interprétation)

Une interprétation I de la signature $(\mathcal{F}, \mathcal{R})$ est donnée par

- un ensemble \mathcal{D} *non vide* appelé domaine de l'interprétation;
- pour chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n, une fonction f_l n-aire sur \mathcal{D} (c'est à dire $f_l : \mathcal{D}^n \to \mathcal{D}$: pour chaque $v_1, \ldots, v_n \in \mathcal{D}$, on a $f_l(v_1, \ldots, v_n) \in \mathcal{D}$);
- pour chaque symbole de prédicat $R \in \mathcal{R}_n$ d'arité n, une relation n-aire R_l sur \mathcal{D} ($R_l \subseteq \mathcal{D}^n$).
 - R_l ensemble de n-uplets (v_1, \ldots, v_n) avec $v_i \in \mathcal{D}$ qui correspondent au cas où, *dans cette interprétation*, la relation R est vraie.

On utilise également la terminologie de modèle ou de structure pour parler de l'interprétation d'une signature.

La dernière fois : Exemple des rationnels

- signature pour manipuler des rationnels
 - constantes 0, 1 et −1.
 - une opération binaire de construction frac,
 - des opérations binaires + et *
 - un symbole de prédicat binaire pour l'égalité.
- interprétation de cette signature : représentation d'un rationnel
 - un couple $(p,q) \in \mathbb{Z} \times \mathbb{N} \setminus \{0\}$ formé d'un entier relatif en numérateur et d'un entier naturel non nul en dénominateur.
 - Le domaine de l'interprétation est donc $\mathcal{D} \stackrel{\text{def}}{=} \mathbb{Z} \times \mathbb{N} \setminus \{0\}$.
- Autres domaines possibles
 - imposer que la fraction soit réduite (pas de diviseur commun du dénominateur et du numérateur),
 - autoriser un entier relatif en dénominateur

La dernière fois : Interprétation de chaque symbole

La dernière fois : Environnement et évaluations

Definition (Environnement)

Soit $\mathcal X$ l'ensemble des variables d'objets. Soit I une interprétation de la signature $(\mathcal F,\mathcal R)$ dont le domaine est $\mathcal D$, un environnement est une application ρ qui associe une valeur du domaine $\mathcal D$ à chaque variable de $\mathcal X$ (c'est à dire $\rho:\mathcal X\to\mathcal D$).

Soit ρ un environnement, si $x \in \mathcal{X}$ et $d \in \mathcal{D}$, on note $\rho + \{x \mapsto d\}$ l'environnement qui vaut d pour la variable x et $\rho(y)$ pour toutes les variables $y \neq x$.

Definition (Valeur d'un terme)

Soit ρ un environnement, $\rho \in \mathcal{X} \to \mathcal{D}$.

On définit la valeur $val_I(\rho,t)$ d'un terme $t\in \mathcal{T}(\mathcal{F},\mathcal{X})$ dans l'interprétation I et l'environnement ρ , c'est un élément du domaine \mathcal{D} :

$$\operatorname{val}_{l}(\rho, x) = \rho(x)$$
 $\operatorname{val}_{l}(\rho, f(t_1, \dots, t_n)) = f_{l}(\operatorname{val}_{l}(\rho, t_1), \dots, \operatorname{val}_{l}(\rho, t_n))$

La dernière fois : Environnement et évaluations, bis

Definition (Valeur d'une formule)

Soit ρ un environnement, $\rho: \mathcal{X} \to \mathcal{D}$.

On définit la valeur $val_I(\rho, P)$ d'une formule P dans l'interprétation I et l'environnement ρ , c'est une valeur de vérité dans $\{V, F\}$:

```
= F
val_I(\rho, \perp)
                              = V
val_I(\rho, \top)
val_I(\rho, R(t_1, \dots, t_n)) = si R_I(val_I(\rho, t_1), \dots, val_I(\rho, t_n)) alors V sinon F
val_I(\rho, \neg A)
                              = si val_I(\rho, A) = V alors F sinon V
val_I(\rho, A \wedge B)
                              = si val_I(\rho, A) = V alors val_I(\rho, B) sinon F
val_I(\rho, A \vee B)
                              = si val_I(\rho, A) = V alors V sinon val_I(\rho, B)
val_I(\rho, A \Rightarrow B)
                              = si val_I(\rho, A) = V alors val_I(\rho, B) sinon V
                              = si pour tout d \in \mathcal{D}, val_I(\rho + \{x \mapsto d\}, A) = V
val_I(\rho, \forall x, A)
                                  alors V sinon F
val_I(\rho, \exists x, A)
                              = si il existe d \in \mathcal{D} tel que val_I(\rho + \{x \mapsto d\}, A) = V
                                  alors V sinon F
```

Notation $I, \rho \models A$

Une notation plus intuitive:

• On note $I, \rho \models A$ lorsque la formule A est vraie dans l'interprétation I et l'environnement ρ , c'est-à-dire lorsque $val_I(\rho, A) = V$.

Répétons :
$$I, \rho \models A \stackrel{\mathsf{def}}{=} \operatorname{val}_I(\rho, A) = V$$

- On note $I, \rho \not\models A$ dans le cas contraire lorsque la formule A est fausse dans l'interprétation I et l'environnement ρ , c'est-à-dire lorsque $val_I(\rho,A) = F$.
- Si la formule A est close, alors sa valeur dans une interprétation ne dépend pas de l'environnement et on écrira simplement / |= A pour indiquer que A est vraie dans l'interprétation / (et n'importe quel environnement).

Propriétés de $I, \rho \models A$

Proposition

Soit I une interprétation I et ρ un environnement.

- \bullet 1, $\rho \not\models \bot$
- $I, \rho \models \top$
- $I, \rho \models R(t_1, \ldots, t_n)$ si et seulement si $(val_I(\rho, t_1), \ldots, val_I(\rho, t_n))$ appartient à l'interprétation de R
- $I, \rho \models \neg A$ si et seulement si $I, \rho \not\models A$
- $I, \rho \models A \land B$ si et seulement si $I, \rho \models A$ et $I, \rho \models B$
- $I, \rho \models A \lor B$ si et seulement si $I, \rho \models A$ ou $I, \rho \models B$
- $I, \rho \models A \Rightarrow B$ si et seulement si $I, \rho \not\models A$ ou $I, \rho \models B$
- $I, \rho \models \forall x, A \text{ si et seulement si pour tout } d \in \mathcal{D}, \text{ on a } I, \rho + \{x \mapsto d\} \models A$
- $I, \rho \models \exists x, A \text{ si et seulement s'il existe } d \in \mathcal{D} \text{ tel que } I, \rho + \{x \mapsto d\} \models A$

Preuve: Reformulation de la définition de la valeur d'une formule et du fait que $I, \rho \models A$ est défini comme $val_I(\rho, A) = V$

Exercice

Soient les formules suivantes sans variable libre. Sont-elles vraies si on les interprète dans \mathbb{N} , \mathbb{Z} , \mathbb{Q} avec les conventions usuelles pour l'interprétation des opérations et des relations?

- $\forall x \ y \ z, x \leq y \Rightarrow x \times z \leq y \times z$
 - des propriétés vraies ou fausses dans une interprétation ne le sont pas forcément dans une autre, même si les interprétations se correspondent sur les formules atomiques.
 - les quantifications ne font pas référence aux mêmes ensembles sous-jacents.
 - En mathématiques "usuelles" (implicitement la théorie des ensembles) on distingue les formules en *relativisant* les quantificateurs. Par exemple $\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, y < x$ (qui est faux) versus $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, y < x$ qui est vrai.

4 D > 4 A > 4 B > 4 B > B > 9 Q (?)

Propriétés de la valeur d'une formule

- La définition de la valeur de vérité d'une formule ne dépend pas de l'opération de renommage des variables liées dans les formules :
 Si y ∉ vl(P) et P[x ←y] est bien définie alors val_I(ρ, (∀x, P)) = val_I(ρ, (∀y, P[x ←y])) et val_I(ρ, (∃x, P)) = val_I(ρ, (∃y, P[x ←y]))
- La valeur d'un terme ne dépend que de la valeur de l'environnement sur les variables de ce terme et de l'interprétation des symboles de fonction et des constantes qui apparaissent dans ce terme.
- La valeur de vérité d'une formule ne dépend que de la valeur de l'environnement sur les variables libres de cette formule et de l'interprétation des symboles de fonction, constantes et relations qui apparaissent dans la formule.
 - **Preuve:** La preuve se fait sans difficulté par récurrence sur la structure du terme puis de la formule.
- Pour un terme clos ou une formule close, la valeur est indépendante de l'environnement :
 - on écrira $val_I(P)$ au lieu de $val_I(\rho, P)$ et $I \models P$ au lieu de $I, \rho \models P$.

2-Donner du sens aux formules

- Interprétations et vérité
 - Lien entre substitution et valeur de vérité
- Validité et satisfiabilité
- 3 Conséquence logique, équivalence

176

Substitution versus environnement

Il ne faut pas confondre une substitution qui associe un terme *syntaxique* à une variable avec un environnement qui associe à une variable une valeur *sémantique* du domaine d'interprétation.

- la substitution est analogue à une opération de remplacement que l'on peut faire dans un éditeur,
- l'environnement correspond à l'état de la mémoire pour chaque variable du programme au moment de son exécution

Lien entre substitution et valeur de vérité

- formule *P* qui contient une variable libre *x* et un terme *t*.
 - remplacer x par t dans P puis calculer la valeur de $P[x \leftarrow t]$
 - évaluer le terme t en une valeur v puis calculer la valeur de P (qui contient la variable x) dans un environnement où x a la valeur v.

Proposition (Vérité et substitution)

Soit une formule P qui contient une variable libre x et soit t un terme. On suppose que la formule substituée $P[x \leftarrow t]$ est définie (pas de capture). Pour tout environnement ρ :

$$val_I(\rho, P[x \leftarrow t]) = val_I(\rho + \{x \mapsto val_I(\rho, t)\}, P)$$

 $I, \rho \models P[x \leftarrow t]$ ssi $I, (\rho + \{x \mapsto val_I(\rho, t)\}) \models P$

Analogie avec les liaisons locales : let $x = t \ln A$

On montre un résultat analogue pour les termes. Soit u un terme, on a :

$$\operatorname{val}_{I}(\rho, u[x \leftarrow t]) = \operatorname{val}_{I}(\rho + \{x \mapsto \operatorname{val}_{I}(\rho, t)\}, u)$$

(propriété $\phi(u)$ montrée par récurrence sur la structure du terme u)

- variable x: alors $x[x \leftarrow t] = t$ $val_l(\rho, t) = (\rho + \{x \mapsto val_l(\rho, t)\})(x) = val_l(\rho + \{x \mapsto val_l(\rho, t)\}, x)$
- variable $y \neq x$: $y[x \leftarrow t] = y$ $val_l(\rho, y) = \rho(y) = val_l(\rho + \{x \mapsto val_l(\rho, t)\}, y)$
- constante c : alors $c[x \leftarrow t] = c$ $val_I(\rho, c) = c = val_I(\rho + \{x \mapsto val_I(\rho, t)\}, c)$
- $f(u_1, \ldots, u_n)$: alors $f(u_1, \ldots, u_n)[x \leftarrow t] = f(u_1[x \leftarrow t], \ldots, u_n[x \leftarrow t])$ $val_I(\rho, f(u_1[x \leftarrow t], \ldots, u_n[x \leftarrow t]))$ $= f_I(val_I(\rho, u_1[x \leftarrow t]), \ldots, val_I(\rho, u_n[x \leftarrow t]))$ (val_I) $= f_I(val_I(\rho + \{x \mapsto val_I(\rho, t)\}, u_1), \ldots, val_I(\rho + \{x \mapsto val_I(\rho, t)\}, u_n))$ (HR) $= val_I(\rho + \{x \mapsto val_I(\rho, t)\}, f(u_1, \ldots, u_n))$ (val_I)

Preuve II

Preuve par récurrence sur la structure de la formule P de l'énoncé $(\phi(P))$: pour tout environnement ρ , $val_I(\rho, P[x \leftarrow t]) = val_I(\rho + \{x \mapsto val_I(\rho, t)\}, P)$

• formules atomiques $R(u_1, \ldots, u_n)$:

```
\begin{array}{l} \operatorname{val}_{l}(\rho,R(u_{1},\ldots,u_{n})[x\leftarrow t]) \\ = \operatorname{val}_{l}(\rho,R(u_{1}[x\leftarrow t],\ldots,u_{n}[x\leftarrow t])) \\ = R_{l}(\operatorname{val}_{l}(\rho,u_{1}[x\leftarrow t]),\ldots,\operatorname{val}_{l}(\rho,u_{n}[x\leftarrow t])) \\ = R_{l}(\operatorname{val}_{l}(\rho+\{x\mapsto\operatorname{val}_{l}(\rho,t)\},u_{1}),\ldots,\operatorname{val}_{l}(\rho+\{x\mapsto\operatorname{val}_{l}(\rho,t)\},u_{n})) \\ = \operatorname{val}_{l}(\rho+\{x\mapsto\operatorname{val}_{l}(\rho,t)\},R(u_{1},\ldots,u_{n})) \end{array} \tag{$\operatorname{val}_{l}(\rho,t)$}
```

• formule $\forall z, A$: avec $z \neq x$ et $z \notin \text{vars}(t)$: $(\forall z, A)[x \leftarrow t] = \forall z, (A[x \leftarrow t])$. soit $d \in \mathcal{D}$.

$$\begin{array}{ll} \operatorname{val}_{l}(\rho + \{z \mapsto d\}, A[x \leftarrow t]) \\ = \operatorname{val}_{l}((\rho + \{z \mapsto d\}) + \{x \mapsto \operatorname{val}_{l}(\rho + \{z \mapsto d\}, t)\}, A) & (\mathsf{HR}) \\ = \operatorname{val}_{l}((\rho + \{x \mapsto \operatorname{val}_{l}(\rho, t)\}) + \{z \mapsto d\}, A) & (x \neq z, z \notin \operatorname{vars}(t)) \\ \operatorname{val}_{l}(\rho + \{z \mapsto d\}, A[x \leftarrow t]) = V \operatorname{ssi} \\ \operatorname{val}_{l}((\rho + \{x \mapsto \operatorname{val}_{l}(\rho, t)\}) + \{z \mapsto d\}, A) = V \\ \operatorname{donc} \operatorname{val}_{l}(\rho, (\forall z, (A[x \leftarrow t]))) = V \operatorname{ssi} \\ \operatorname{val}_{l}(\rho + \{x \mapsto \operatorname{val}_{l}(\rho, t)\}, (\forall z, A)) = V, \operatorname{qui} \operatorname{est} \operatorname{le} \operatorname{résultat} \operatorname{souhait\acute{e}}. \end{array}$$

l'HR est appliquée à $\rho + \{z \mapsto d\}$ (et pas ρ). La propriété à montrer par récurrence sur P doit permettre de faire varier l'environnement.

2-Donner du sens aux formules

- Interprétations et vérité
- Validité et satisfiabilité
 - Définitions
 - Substitution et validité
- 3 Conséquence logique, équivalence

Validité et satisfiabilité

- La vérité d'une formule se définit par rapport à une interprétation qui fixe le sens des symboles de fonction et de prédicats et un environnnement qui détermine la valeur des variables libres.
- Lorsqu'on a juste une formule, elle peut être :
 - vraie dans toutes les interprétations et tous les environnements possibles,
 - vraie dans aucune interprétation et aucun environnement (toujours fausse)
 - ou bien être vraie dans certaines interprétations et certains environnements et fausse dans d'autres.
- Si la formule est close, sa vérité est la même quelque soit l'environnement et ne dépend que de l'interprétation des symboles.

Définitions

Definition (Validité, satisfiabilité, modèle)

Soit *A*, une formule du calcul des prédicats sur une signature $(\mathcal{F}, \mathcal{R})$.

- La formule est dite valide (on dit aussi que c'est une tautologie) si sa valeur de vérité est vraie pour toute interprétation de la signature et tout environnement.
 - On note $\models P$ pour représenter le fait que P est une tautologie, c'est-à-dire que pour toute interprétation I et environnement ρ , on a I, $\rho \models P$
- La formule est dite satisfiable si sa valeur de vérité est vraie pour au moins une interprétation de la signature et un environnement.
 Une interprétation et un environnement qui rendent vraie la formule forment un modèle de la formule.
- La formule est dite insatisfiable (on dit aussi contradictoire) si sa valeur de vérité est fausse pour toute interprétation de la signature et tout environnement.

Définitions pour un ensemble de formules

On étend ces notions à un ensemble \mathcal{E} fini ou infini de formules :

Definition (Validité, satisfiabilité, modèle)

- L'ensemble $\mathcal E$ est valide si pour toute interprétation I, tout environnement ρ et toute formule $P \in \mathcal E$ on a $I, \rho \models P$ (toutes les formules sont vraies dans toutes les interprétations). On notera $\models \mathcal E$ cette propriété.
- L'ensemble $\mathcal E$ est satisfiable s'il existe une interprétation I et un environnement ρ tels que pour toute formule $P \in \mathcal E$ on a $I, \rho \models P$ (il existe une interprétation qui rend vraies toutes les formules de $\mathcal E$, appelée modèle de $\mathcal E$).
- L'ensemble $\mathcal E$ est insatisfiable si pour toute interprétation I et tout environnement ρ , il existe une formule $P \in \mathcal E$ telle que $I, \rho \not\models P$ (il n'existe pas d'interprétation qui rend vraies toutes les formules ou de manière équivalente, toute interprétation rend fausse au moins une formule de $\mathcal E$).

Exercice

Dire si les ensembles de formules suivants sont valides, satisfiables, insatisfiables :

Validité et variables libres

Proposition

- Une formule A avec une variable libre x est valide si et seulement si la formule $\forall x$, A est valide.
- Une formule A avec une variable libre x est satisfiable si et seulement si la formule $\exists x, A$ est satisfiable.
- Une formule A avec une variable libre x est insatisfiable si et seulement si la formule $\exists x$, A est insatisfiable.

Preuve: Cela découle directement des définitions de validité, satisfiabilité et de la valeur des formules quantifiées.

Propriétés

- La validité, satisfiabilité d'une formule P est celle de {P}
- La validité, satisfiabilité d'un ensemble fini de formules $\{P_1, \dots, P_n\}$ est celle de $P_1 \wedge \dots \wedge P_n$
- Liens entre propriétés de P, Q et {P, Q}

Р	Q	{ <i>P</i> , <i>Q</i> }
valides		
		valide
satisfiables		
		satisfiable
insatisfiables		
		insatisfiable

2-Donner du sens aux formules

- 1 Interprétations et vérité
- Validité et satisfiabilité
 - Définitions
 - Substitution et validité
- 3 Conséquence logique, équivalence

188

Substitution et validité

La validité et l'insatisfiabilité qui sont des propriétés de toutes les interprétations ne changent pas lorsque l'on effectue une substitution dans une formule ou un ensemble de formules.

Proposition

Soit P une formule, x une variable et t un terme

- Si une formule P est valide (resp. insatisfiable) alors P[x ←t] est valide (resp. insatisfiable).
- Si un ensemble de formules \mathcal{E} est valide (resp. insatisfiable) alors $\mathcal{E}[x \leftarrow t] \stackrel{\text{def}}{=} \{P[x \leftarrow t] | P \in \mathcal{E}\}$ est valide (resp. insatisfiable).

Preuve: Ce résultat est une conséquence du fait que $I, \rho \models P[x \leftarrow t]$ ssi $I, (\rho + \{x \mapsto val_I(\rho, t)\}) \models P$

Remplacer une variable par un terme

Les réciproques sont fausses. Soit un prédicat unaire Q et une constante c.

- La formule $Q(x) \Rightarrow Q(c)$ n'est pas valide.
 - interprétation dont le domaine contient deux éléments {0, 1}, on interprète la constante c par la valeur 0. On choisit d'avoir Q_I(1) vrai et Q_I(0) faux.
 - environnement dans lequel x a la valeur 1
 - La formule est fausse dans cette interprétation et cet environnement, donc elle est non valide
- La formule $Q(x) \Rightarrow Q(c)[x \leftarrow c]$ qui est égale à $Q(c) \Rightarrow Q(c)$ est valide.
- La formule Q(x) ∧ ¬Q(c) est satisfiable (prendre la même interprétation que précédemment)
- La formule Q(x) ∧ ¬Q(c)[x ←c] qui est égale à Q(c) ∧ ¬Q(c) est insatisfiable.
- La satisfiabilité simple n'est pas préservée, au contraire si P[x ←t] est satisfiable alors P est satisfiable mais le contraire est faux (voir exemple précédent).

Remplacer un prédicat par une formule

Deux manières différentes de lire la formule $A \vee \neg A$

- le symbole *A* peut correspondre à une variable mathématique qui représente n'importe quelle formule de la logique,
- le symbole A peut être une variable propositionnelle (symbole de prédicat d'arité 0), auquel cas on a exactement une formule syntaxique qui est différente d'autres formules de même format comme ⊥ ∨ ¬⊥.

dans le cas de formules valides, les deux points de vue coïncident

Remplacer une variable propositionnelle par une formule

On définit le remplacement d'une variable propositionnelle X par une formule Q par des équations récursives sur la structure de la formule.

Definition $(P[X \leftarrow Q])$

Soit P et Q des formules et X une variable propositionnelle, le remplacement de X par Q dans P est une formule notée $P[X \leftarrow Q]$ définie récursivement sur la structure de P.

- Si P est une formule atomique : si P est la variable propositionnelle X alors P[X ←Q] = Q sinon P[X ←Q] = P
- Si P est de la forme $\neg A$ alors $P[X \leftarrow Q] = \neg (A[X \leftarrow Q])$
- Si P est de la forme $A \circ B$ avec \circ l'une des connecteurs propositionnels alors $P[X \leftarrow Q] = (A[X \leftarrow Q]) \circ (B[X \leftarrow Q])$
- Si P est de la forme $\forall x$, A (resp. $\exists x$, A) avec la variable x non libre dans la formule Q, alors $P[X \leftarrow Q] = \forall x$, $(A[X \leftarrow Q])$ (resp. $P[X \leftarrow Q] = \exists x$, $(A[X \leftarrow Q])$)

Cas des variables propositionnelles

On montre que si on remplace la variable *X* par n'importe quelle formule *Q* dans une formule valide, alors la formule obtenue reste valide.

Proposition

Soit P et Q des formules et X une variable propositionnelle, si P est une formule valide (resp. insatisfiable) alors il en est de même de la formule $P[X \leftarrow Q]$ obtenue en remplaçant X par Q dans P.

Preuve: (cas de la validité) Le résultat découle du fait que dans une interprétation I et un environnement ρ quelconques, la valeur de $P[X \leftarrow Q]$ est égale à la valeur de P dans un environnement dans lequel la variable X a pour interprétation la valeur de Q. Ce résultat s'obtient facilement par récurrence sur la structure de P.

Maintenant si une formule est valide, elle est vraie tout le temps donc en particulier si on fixe une valeur pour une de ses variables (ici X).

Remplacer un prédicat par une formule paramétrée

- On généralise au replacement d'un symbole de prédicat par une formule.
- Le symbole de prédicat est utilisé associé à des termes, il va être remplacé par une formule paramétrée par des variables qui seront substituées par les arguments du symbole de prédicat.
- Soit une formule P construite sur une signature qui comporte un symbole de prédicat n-aire R.
- Soit une formule Q et n variables x_1, \ldots, x_n . On remplace dans la formule P toutes les sous-formules atomiques de la forme $R(t_1, \ldots, t_n)$ par la formule $Q[x_1 \leftarrow t_1, \dots, x_n \leftarrow t_n]$.
- On note le résultat de cette opération $P[R(x_1, ..., x_n) \leftarrow Q]$.

Exemple

Signature : constante c, symbole de prédicat unaire Q et égalité binaire.

- Soit $A \stackrel{\text{def}}{=} P(c) \Rightarrow \exists x, P(x)$
- $A[P(z) \leftarrow z = z]$ est défini comme la formule : $(c = c) \Rightarrow \exists x, x = x$

Logique

Remplacer un symbole de prédicat par une formule

Definition $(P[R(x_1, \ldots, x_n) \leftarrow Q])$

Soient P, Q des formules, R un symbole de prédicat d'arité n et x_1, \ldots, x_n , n variables d'objet.

Le remplacement de R par Q paramétré par x_1, \ldots, x_n dans P, est une formule $P[R(x_1, \ldots, x_n) \leftarrow Q]$ définie récursivement sur la structure de P.

- Si P est atomique alors si P est de la forme $R(t_1, \ldots, t_n)$ on a $P[R(x_1, \ldots, x_n) \leftarrow Q] = Q[x_1 \leftarrow t_1, \ldots, x_n \leftarrow t_n]$ sinon $P[R(x_1, \ldots, x_n) \leftarrow Q] = P$
- Si P est $\neg A$ alors $P[R(x_1, \ldots, x_n) \leftarrow Q] = \neg (A[R(x_1, \ldots, x_n) \leftarrow Q])$
- Si P est $A \circ B$ avec \circ l'un des connecteurs propositionnels alors $P[R(x_1, \dots, x_n) \leftarrow Q] = (A[R(x_1, \dots, x_n) \leftarrow Q]) \circ (B[R(x_1, \dots, x_n) \leftarrow Q])$
- Si P est $\forall x$, A (resp. $\exists x$, A) et x n'est pas libre dans Q, alors $P[R(x_1, \ldots, x_n) \leftarrow Q] = \forall x, (A[R(x_1, \ldots, x_n) \leftarrow Q])$ (resp. $\exists x, (A[R(x_1, \ldots, x_n) \leftarrow Q])$)

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かくぐ

Préservation de la validité par remplacement

Proposition

Soit une formule P et un symbole de prédicat n-aire R. Soit une formule Q et n variables x_1, \ldots, x_n .

Si P est valide (resp. insatisfiable) alors il en est de même de la formule $P[R(x_1, ..., x_n) \leftarrow Q]$.

Preuve: (validité) I interprétation des symboles de $P[R(x_1,\ldots,x_n)\leftarrow Q]$ et ρ un environnement. On veut montrer que $I, \rho \models P[R(x_1,\ldots,x_n)\leftarrow Q]$ Tous les symboles et les variables qui apparaissent dans P apparaissent aussi dans $P[R(x_1,\ldots,x_n)\leftarrow Q]$ à l'exception peut-être de R. On construit une interprétation I' qui est définie comme I sauf pour R:

on pose $R_{l'}(d_1,\ldots,d_n)$ est vrai ssi $I,(\rho+\{x_1\mapsto d_1,\ldots,x_n\mapsto d_n\})\models Q.$ On a $l',\rho\models P$ ssi $I,\rho\models P[R(x_1,\ldots,x_n)\leftarrow Q]$ (preuve par récurrence sur la structure de P).

Si P est valide, on a $I', \rho \models P$. On en déduit que $I, \rho \models P[R(x_1, ..., x_n) \leftarrow Q]$ et comme cela vaut pour tout I, ρ , on en déduit $\models P[R(x_1, ..., x_n) \leftarrow Q]$.

A savoir

- Notation $I, \rho \models P$
- Définitions de la validité et satisfiabilité pour un ensemble de formules
- Modèle d'un ensemble de formules
- Stabilité de la validité par substitution
- Stabilité de la validité par remplacement d'un symbole de prédicat par une formule paramétrée

2-Donner du sens aux formules

- 1 Interprétations et vérité
- Validité et satisfiabilité
- Conséquence logique, équivalence
 - Propriétés de la conséquence logique
 - Equivalences remarquables

La dernière fois

- Notation $I, \rho \models P$
- Définitions de la validité et satisfiabilité pour un ensemble de formules
- Modèle d'un ensemble de formules
- Stabilité de la validité par substitution
- Stabilité de la validité par remplacement d'un symbole de prédicat par une formule paramétrée

La dernière fois : Notation $I, \rho \models A$

Une notation plus intuitive:

• On note $I, \rho \models A$ lorsque la formule A est vraie dans l'interprétation I et l'environnement ρ , c'est-à-dire lorsque $val_I(\rho, A) = V$.

Répétons :
$$I, \rho \models A \stackrel{\text{def}}{=} \text{val}_I(\rho, A) = V$$

- On note $I, \rho \not\models A$ dans le cas contraire lorsque la formule A est fausse dans l'interprétation I et l'environnement ρ , c'est-à-dire lorsque $val_I(\rho,A) = F$.
- Si la formule A est close, alors sa valeur dans une interprétation ne dépend pas de l'environnement et on écrira simplement I

 A pour indiquer que A est vraie dans l'interprétation I (et n'importe quel environnement).

La dernière fois : Définitions pour un ensemble de formules

On étend ces notions à un ensemble $\mathcal E$ fini ou infini de formules :

Definition (Validité, satisfiabilité, modèle)

- L'ensemble \mathcal{E} est valide si pour toute interprétation I, tout environnement ρ et toute formule $P \in \mathcal{E}$ on a $I, \rho \models P$ (toutes les formules sont vraies dans toutes les interprétations). On notera $\models \mathcal{E}$ cette propriété.
- L'ensemble $\mathcal E$ est satisfiable s'il existe une interprétation I et un environnement ρ tels que pour toute formule $P \in \mathcal E$ on a $I, \rho \models P$ (il existe une interprétation qui rend vraies toutes les formules de $\mathcal E$, appelée modèle de $\mathcal E$).
- L'ensemble $\mathcal E$ est insatisfiable si pour toute interprétation I et tout environnement ρ , il existe une formule $P \in \mathcal E$ telle que $I, \rho \not\models P$ (il n'existe pas d'interprétation qui rend vraies toutes les formules ou de manière équivalente, toute interprétation rend fausse au moins une formule de $\mathcal E$).

La dernière fois : Stabilité de la validité

Proposition

Soit P une formule, x une variable et t un terme. Si P est valide (resp. insatisfiable) alors $P[x \leftarrow t]$ est valide (resp. insatisfiable).

Proposition

Soit P et Q des formules et X une variable propositionnelle. Si P est valide (resp. insatisfiable) alors il en est de même de $P[X \leftarrow Q]$.

Proposition

Soit une formule P et un symbole de prédicat n-aire R. Soit une formule Q et n variables x_1, \ldots, x_n . Si P est valide (resp. insatisfiable) alors il en est de même de $P[R(x_1, \ldots, x_n) \leftarrow Q]$.

- Les réciproques sont fausses.
- Mêmes propriétés pour ensembles de formules.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

2-Donner du sens aux formules

- Interprétations et vérité
- Validité et satisfiabilité
- 3 Conséquence logique, équivalence
 - Propriétés de la conséquence logique
 - Equivalences remarquables

Conséquence logique, équivalence

Definition $(I, \rho \models \mathcal{E})$

Soient $\mathcal E$ un ensemble de formules, I une interprétation et ρ un environnement, on note $I, \rho \models \mathcal E$ le fait que $I, \rho \models P$, pour toute formule $P \in \mathcal E$.

Definition (Conséquence logique $\mathcal{E} \models A$, équivalence $A \equiv B$)

Si $\mathcal E$ est un ensemble de formules et A une formule, on dit que A est conséquence logique de $\mathcal E$ et on note $\mathcal E \models A$ si pour toute interprétation I et environnement ρ on a : si $I, \rho \models \mathcal E$ alors $I, \rho \models A$

On dit que A et B sont des formules équivalentes et on écrit $A \equiv B$ si $A \models B$ et $B \models A$.

C'est-à-dire que pour toute interprétation I et environnement ρ , on a $I, \rho \models A$ si et seulement si $I, \rho \models B$.

Propriétés

Proposition

Pour toutes formules A_1, \ldots, A_n, P et ensemble de formules \mathcal{E} :

- \bullet $A_1, \ldots, A_n \models P$ ssi $A_1 \land \ldots \land A_n \Rightarrow P$ est valide
- ② si \mathcal{E} est insatisfiable alors pour toute formule P, $\mathcal{E} \models P$
- **1** \mathcal{E} est insatisfiable ssi $\mathcal{E} \models \bot$
- $\mathcal{E} \models P \ ssi \ \mathcal{E} \cup \{\neg P\} \ est \ insatisfiable.$

Vérité et substitution

La relation de conséquence logique est stable par substitution et remplacement. On étend les notations $P[x \leftarrow t]$ et $P[R(x_1, \dots, x_n) \leftarrow Q]$ a un ensemble de formules \mathcal{E} en appliquant la transformation à chacune des formules de l'ensemble.

Proposition

Soit P une formule, \mathcal{E} un ensemble de formules tel que $\mathcal{E} \models P$.

- si x est une variable d'objet et t un terme alors $\mathcal{E}[x \leftarrow t] \models P[x \leftarrow t]$
- si R est un symbole de prédicat n-aire, x_1, \ldots, x_n n variables et Q une formule alors $\mathcal{E}[R(x_1, \ldots, x_n) \leftarrow Q] \models P[R(x_1, \ldots, x_n) \leftarrow Q]$

On en déduit les mêmes propriétés pour l'équivalence : Soit P_1, P_2 deux formules telles que $P_1 \equiv P_2$. On a $P_1[x \leftarrow t] \equiv P_2[x \leftarrow t]$ et $P_1[R(x_1, \ldots, x_n) \leftarrow Q] \equiv P_2[R(x_1, \ldots, x_n) \leftarrow Q]$.

Conséquence logique et remplacement

Р	$P[x \leftarrow Q]$
valide	
	valide
satisfiable	
	satisfiable
insatisfiable	
	insatisfiable
$A_1,\ldots,A_n\models P$	$A_1[x\leftarrow Q],\ldots,A_n[x\leftarrow Q]\models P[x\leftarrow Q]$
vrai	
	vrai

Conséquence et opérateurs logiques

La propriété de conséquence logique se combine avec les connecteurs et les quantificateurs.

Proposition

Soit \mathcal{E} un ensemble de formules, A_1, A_2, B_1 et B_2 des formules. On suppose que $\mathcal{E}, A_1 \models B_1$ et $\mathcal{E}, A_2 \models B_2$, on a alors

- \bullet $\mathcal{E}, \neg B_1 \models \neg A_1$
- \mathcal{E} , $A_1 \wedge A_2 \models B_1 \wedge B_2$
- \mathcal{E} , $A_1 \vee A_2 \models B_1 \vee B_2$
- $\bullet \ \mathcal{E}, B_1 \Rightarrow A_2 \models A_1 \Rightarrow B_2$
- si de plus la variable x n'apparait pas libre dans \mathcal{E} , alors \mathcal{E} , $(\forall x, A_1) \models \forall x, B_1$ et \mathcal{E} , $(\exists x, A_1) \models \exists x, B_1$

2-Donner du sens aux formules

- 1 Interprétations et vérité
- Validité et satisfiabilité
- 3 Conséquence logique, équivalence
 - Propriétés de la conséquence logique
 - Equivalences remarquables

Rappel Équivalence

Definition (equivalence)

P et Q sont équivalentes (noté $P \equiv Q$) ssi $P \models Q$ et $Q \models P$

- deux formules équivalentes sont vraies en même temps (pour les mêmes interprétations)
- c'est une relation d'équivalence : chaque formule appartient à exactement une classe d'équivalence
- les formules n'ont pas la même syntaxe mais représentent la même vérité
 Les équivalences de la suite de ce chapitre sont des propriétés de base de la

Les équivalences de la suite de ce chapitre sont des propriétés de base de la logique qui pourront être utilisées sans justification.

Lois algébriques

L'ensemble des booléens avec les opérations de conjonction et de disjonction forme ce que l'on appelle une Algèbre de Boole.

la conjonction et la disjonction sont associatifs et commutatifs :

$$P \wedge Q \equiv Q \wedge P$$
 $P \vee Q \equiv Q \vee P$ $(P \wedge Q) \wedge R \equiv P \wedge (Q \wedge R)$ $(P \vee Q) \vee R \equiv P \vee (Q \vee R)$

distributivité entre conjonction et disjonction

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$
 $P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$

ullet \top et \bot sont des éléments neutres ou absorbants :

$$P \wedge \top \equiv P$$
 $P \vee \top \equiv \top$ $P \vee \bot \equiv P$ $P \wedge \bot \equiv \bot$

Certains connecteurs peuvent se définir en fonction d'autres :

$$\neg P \equiv P \Rightarrow \bot \qquad P \Rightarrow Q \equiv \neg P \lor Q
P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P) \equiv (P \land Q) \lor (\neg P \land \neg Q)$$

Exercice

Donner des formules équivalentes pour $\bot \Rightarrow P, \top \Rightarrow P, P \Rightarrow \top$

Exercice

Donner des formules équivalentes pour $\bot \Rightarrow P, \top \Rightarrow P, P \Rightarrow \top$

- $P \Rightarrow P \equiv P$
- $P \Rightarrow T \equiv T$

214

Lois de de Morgan

Les lois de de Morgan établissent le comportement de la négation par rapport aux autres connecteurs :

$$\begin{array}{ccc}
\neg\bot & \equiv \top & \neg(P \land Q) & \equiv \neg P \lor \neg Q \\
\neg\top & \equiv \bot & \neg(P \lor Q) & \equiv \neg P \land \neg Q \\
\neg\neg P & \equiv P
\end{array}$$

$$\begin{array}{ccc}
\neg(P\Rightarrow Q) & \equiv P \land \neg Q \\
\neg\exists x, P(x) & \equiv \forall x, \neg P(x) \\
\neg\forall x, P(x) & \equiv \exists x, \neg P(x)
\end{array}$$

Forme normale de négation

En utilisant les lois de de Morgan et les formules équivalentes pour l'implication, on peut associer à toute formule, une formule équivalente qui ne contient pas le symbole \Rightarrow et dont les négations ne portent que sur les formules atomiques $R(t_1, \ldots, t_n)$.

Definition (Forme normale de négation)

Une formule est dite en forme normale de négation si elle ne contient que les connecteurs logiques \land, \lor , les quantificateurs \forall, \exists et que le symbole de négation n'apparait que devant une formule atomique $R(t_1, \ldots, t_n)$.

Voir TD exo 5.2!

Equivalence et quantificateurs

Symboles de prédicat : H et G unaires et R binaires.

Les équivalences suivantes sont vérifiées :

permuter deux mêmes quantificateurs :

$$\forall x, \forall y, R(x, y) \equiv \forall y, \forall x, R(x, y) \quad \exists x, \exists y, R(x, y) \equiv \exists y, \exists x, R(x, y)$$

 réarranger quantification universelle et conjonction , quantification existentielle et disjonction :

$$\forall x, (G(x) \land H(x)) \equiv (\forall x, G(x)) \land (\forall x, H(x))$$

$$\exists x, (G(x) \lor H(x)) \equiv (\exists x, G(x)) \lor (\exists x, H(x))$$

éliminer un quantificateur sur une variable non utilisée :

Si $x \notin vl(A)$ alors $\forall x, A \equiv \exists x, A \equiv A$.

"sortir" d'un quantificateur une sous-formule qui n'utilise pas la variable.
 Si x ∉ vl(A) alors :

$$\forall x, (A \land G(x)) \equiv A \land \forall x, G(x) \quad \forall x, (A \lor G(x)) \equiv A \lor \forall x, G(x)$$

$$\exists x, (A \land G(x)) \equiv A \land \exists x, G(x) \quad \exists x, (A \lor G(x)) \equiv A \lor \exists x, G(x)$$

Exercice : forme prénexe

En utilisant les équivalences précédentes, montrer les équivalences suivantes :

- si $x \notin vl(A)$ alors $\forall x, (A \Rightarrow H(x)) \equiv A \Rightarrow \forall x, H(x) \quad \exists x, (A \Rightarrow H(x)) \equiv A \Rightarrow \exists x, H(x)$
- si $x \notin vl(A)$ alors $\forall x, (G(x) \Rightarrow A) \equiv (\exists x, G(x)) \Rightarrow A \quad \exists x, (G(x) \Rightarrow A) \equiv (\forall x, G(x)) \Rightarrow A$

Une application de la dernière équivalence est le principe du "buveur" : dans un bar quelconque, il existe une personne telle que si cette personne boit alors tout le monde boit.

Il suffit de prendre pour G(x) la formule x boit et pour A la formule $\forall x, x$ boit

Exercice: contre-exemples

Trouver des interprétations qui justifient les résultats suivants :

- $\bullet \ \forall x, \exists y, R(x,y) \not\equiv \exists y, \forall x, R(x,y)$
- $\bullet \ \forall x, (G(x) \lor H(x)) \not\equiv (\forall x, G(x)) \lor (\forall x, H(x))$
- $\exists x, (G(x) \land H(x)) \not\equiv (\exists x, G(x)) \land (\exists x, H(x))$

A savoir

- La définition de la relation de conséquence logique et ses propriétés de stabilité par substitution, remplacement et connecteurs
- Les équivalences remarquables en particulier les lois de de Morgan pour les quantificateurs et l'implication

