In this tests we consider:

- $\psi(x) = \sin(6\pi x) \exp(x)$
- $\psi_l = 0$
- $\psi_{\mathrm{ll}} = 6\pi$
- $\psi_{\rm r} = 0$
- $\psi_{\rm rr} = 6 \mathrm{e} \pi$
- $g(x) = \exp(x) \left(24\pi (36\pi^2 1)\cos(6\pi x) (1296\pi^4 216\pi^2 + 1)\sin(6\pi x) \right)$
- the different PRO schemes are:
 - PRO1 weak $(R = A^{\dagger}B)$ and degree d
 - PRO2 strong (constrained least squares) and degree d
 - PRO3 weak $(R = A^{\dagger}B)$ and degree d+1
 - PRO4 strong (constrained least squares) and degree d+1
 - PRO5 weak $(R = A^{\dagger}B)$ and degree d+2
 - PRO6 strong (constrained least squares) and degree d+2

Table 1: Numerical results of PRO1 scheme.

		$\omega = 1 1$., 1	$\omega = 1 3$	3, 1	$\omega = 1 3$	3, 3	$\omega = 1 3,$	10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$
	20	1.91E+01	_	1.64E+01	_	1.64E+01	_	1.64E+01	_
	40	1.98E+00	3.27	1.57E + 00	3.38	1.57E + 00	3.38	1.57E + 00	3.38
	80	1.30E - 01	3.92	9.14E - 02	4.11	9.14E - 02	4.11	9.14E - 02	4.11
$\mathbb{P}_3(4)$	160	2.95E - 02	2.14	3.33E - 02	1.46	3.33E-02	1.46	3.33E-02	1.46
13(4)	320	1.04E-02	1.51	1.08E - 02	1.63	1.08E - 02	1.63	1.08E - 02	1.63
	640	2.89E - 03	1.85	2.93E - 03	1.88	2.93E - 03	1.88	2.93E - 03	1.88
	1280	7.54E - 04	1.94	7.59E - 04	1.95	7.59E - 04	1.95	7.59E - 04	1.95
	2560	1.92E - 04	1.97	1.92E - 04	1.98	1.93E - 04	1.98	1.93E - 04	1.98
	20	1.82E+00	_	1.24E+00	_	1.24E+00		1.24E+00	_
	40	2.02E - 01	3.18	1.99E - 01	2.64	1.99E - 01	2.64	1.99E - 01	2.64
	80	8.66E - 03	4.54	7.57E - 03	4.71	7.57E - 03	4.71	7.57E - 03	4.71
$\mathbb{P}_5(6)$	160	3.28E - 04	4.72	3.05E - 04	4.63	3.05E - 04	4.63	3.05E - 04	4.63
F5(0)	320	1.49E - 05	4.46	1.52E - 05	4.32	1.52E - 05	4.32	1.52E - 05	4.32
	640	9.65E - 07	3.95	8.75E - 07	4.12	8.73E - 07	4.13	8.78E - 07	4.12
	1280	3.40E - 08	4.83	1.06E - 07	3.04	6.29E - 08	3.79	6.02E - 08	3.87
	2560	2.49E-07	↑	1.20E-06	↑	6.22E - 07	↑	1.02E-06	

Table 2: Numerical results of PRO2 scheme.

		$\omega = 1 1$	1, 1	$\omega = 1 3$	3, 1	$\omega = 1 3$	$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	1.91E+01		1.64E+01	_	1.64E+01		1.64E+01	_
	40	1.98E+00	3.27	1.57E + 00	3.38	1.57E + 00	3.38	1.57E + 00	3.38
	80	1.30E - 01	3.92	9.14E - 02	4.11	9.14E - 02	4.11	9.14E - 02	4.11
$\mathbb{D}_{a}(A)$	160	2.95E - 02	2.14	3.33E - 02	1.46	3.33E - 02	1.46	3.33E - 02	1.46
$\mathbb{P}_3(4)$	320	1.04E-02	1.51	1.08E - 02	1.63	1.08E - 02	1.63	1.08E - 02	1.63
	640	2.89E - 03	1.85	2.93E - 03	1.88	2.93E - 03	1.88	2.93E - 03	1.88
	1280	7.54E - 04	1.94	7.59E - 04	1.95	7.59E - 04	1.95	7.59E - 04	1.95
	2560	1.92E - 04	1.97	1.92E - 04	1.98	1.92E - 04	1.98	1.92E - 04	1.98
	20	1.01E+01	_	8.51E+00		8.51E+00		8.51E+00	_
	40	1.27E + 00	2.99	1.11E+00	2.94	1.11E+00	2.94	1.11E+00	2.94
	80	2.96E - 01	2.10	2.59E - 01	2.10	2.59E - 01	2.10	2.59E - 01	2.10
ID.(6)	160	6.44E - 02	2.20	5.54E - 02	2.23	5.54E - 02	2.23	5.54E - 02	2.23
$\mathbb{P}_4(6)$	320	1.53E-02	2.08	1.30E - 02	2.09	1.30E - 02	2.09	1.30E - 02	2.09
	640	3.77E - 03	2.02	3.21E - 03	2.02	3.21E - 03	2.02	3.21E - 03	2.02
	1280	9.39E - 04	2.01	7.98E - 04	2.01	7.98E - 04	2.01	7.98E - 04	2.01
	2560	2.35E-04	2.00	2.00E-04	2.00	2.00E-04	2.00	2.00E-04	2.00
	20	1.82E+00		1.24E+00	_	1.24E+00		1.24E+00	_
	40	2.02E - 01	3.18	1.99E - 01	2.64	1.99E - 01	2.64	1.99E - 01	2.64
	80	8.66E - 03	4.54	7.57E - 03	4.71	7.57E - 03	4.71	7.57E - 03	4.71
$\mathbb{D}_{-}(6)$	160	3.28E - 04	4.72	3.05E - 04	4.63	3.05E - 04	4.63	3.05E - 04	4.63
$\mathbb{P}_5(6)$	320	1.49E - 05	4.46	1.52E - 05	4.32	1.52E - 05	4.32	1.52E - 05	4.32
	640	9.63E - 07	3.95	8.68E - 07	4.13	8.68E - 07	4.13	8.68E - 07	4.13
	1280	5.70E - 07	0.76	4.96E - 07	0.81	4.80E - 07	0.86	5.28E - 07	0.72
	2560	4.49E - 07	0.34	8.62E - 07	\uparrow	8.62E - 07	\uparrow	2.05E-06	\uparrow

Table 3: Numerical results of PRO3 scheme.

		$\omega = 1 1$		$\omega = 1 3$			$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	4.23E+00	_	1.93E+00	_	1.93E+00	_	1.93E+00	_
	40	3.90E - 01	3.44	6.95E - 01	1.48	6.95E - 01	1.48	6.95E - 01	1.48
	80	1.60E - 01	1.29	1.86E - 01	1.91	1.86E - 01	1.91	1.86E - 01	1.91
$\mathbb{P}_3(4)$	160	4.59E - 02	1.80	4.80E - 02	1.95	4.80E - 02	1.95	4.80E - 02	1.95
13(4)	320	1.20E-02	1.93	1.22E - 02	1.97	1.22E - 02	1.97	1.22E - 02	1.97
	640	3.07E - 03	1.97	3.09E - 03	1.98	3.09E - 03	1.98	3.09E - 03	1.98
	1280	7.75E - 04	1.99	7.77E - 04	1.99	7.77E - 04	1.99	7.77E - 04	1.99
	2560	1.94E - 04	1.99	1.95E - 04	2.00	1.95E - 04	2.00	1.95E - 04	2.00
	20	6.37E+00		1.33E+00		1.33E+00		1.33E+00	
	40	1.24E+00	2.36	1.05E+00	0.34	1.05E+00	0.34	1.05E+00	0.34
	80	2.87E - 01	2.11	2.30E - 01	2.19	2.30E - 01	2.19	2.30E - 01	2.19
ID (6)	160	6.26E - 02	2.20	5.29E - 02	2.12	5.29E - 02	2.12	5.29E - 02	2.12
$\mathbb{P}_4(6)$	320	1.51E-02	2.05	1.29E - 02	2.04	1.29E - 02	2.04	1.29E-02	2.04
	640	3.76E - 03	2.00	3.20E - 03	2.01	3.20E - 03	2.01	3.20E - 03	2.01
	1280	9.38E - 04	2.00	7.97E - 04	2.00	7.97E - 04	2.00	7.98E - 04	2.00
	2560	2.35E-04	2.00	2.00E - 04	1.99	2.00E-04	2.00	2.00E-04	1.99
	20	1.39E+00	_	1.27E + 00	_	1.27E+00	_	1.27E+00	_
	40	1.48E - 01	3.24	1.47E - 01	3.11	1.47E - 01	3.11	1.47E - 01	3.11
	80	6.20E - 03	4.57	6.03E - 03	4.60	6.03E - 03	4.60	6.03E - 03	4.60
$\mathbb{D}_{-}(6)$	160	2.79E - 04	4.48	2.69E - 04	4.49	2.69E - 04	4.49	2.69E - 04	4.49
$\mathbb{P}_5(6)$	320	1.58E - 05	4.14	1.44E - 05	4.23	1.44E - 05	4.23	1.44E - 05	4.23
	640	9.64E - 07	4.04	8.68E - 07	4.05	8.61E - 07	4.06	8.68E - 07	4.05
	1280	1.21E - 07	2.99	8.40E - 08	3.37	7.47E - 08	3.53	1.98E - 08	5.45
	2560	2.24E-06	\uparrow	8.94E - 07	\uparrow	6.56E - 07	\uparrow	5.27E - 07	↑

Table 4: Numerical results of PRO4 scheme.

		$\omega = 1 1$		$\omega = 1 3$		$\omega = 1 3$	$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	4.23E+00		1.93E+00	_	1.93E+00	_	1.93E+00	
	40	3.90E - 01	3.44	6.95E - 01	1.48	6.95E - 01	1.48	6.95E - 01	1.48
	80	1.60E - 01	1.29	1.86E - 01	1.91	1.86E - 01	1.91	1.86E - 01	1.91
D. (1)	160	4.59E - 02	1.80	4.80E - 02	1.95	4.80E - 02	1.95	4.80E - 02	1.95
$\mathbb{P}_3(4)$	320	1.20E-02	1.93	1.22E - 02	1.97	1.22E - 02	1.97	1.22E - 02	1.97
	640	3.07E - 03	1.97	3.09E - 03	1.98	3.09E - 03	1.98	3.09E - 03	1.98
	1280	7.75E - 04	1.99	7.77E - 04	1.99	7.77E - 04	1.99	7.77E - 04	1.99
	2560	1.95E - 04	1.99	1.95E - 04	2.00	1.95E - 04	2.00	1.95E - 04	2.00
	20	6.37E+00	_	1.33E+00	_	1.33E+00	_	1.33E+00	
	40	1.24E+00	2.36	1.05E+00	0.34	1.05E+00	0.34	1.05E+00	0.34
	80	2.87E - 01	2.11	2.30E - 01	2.19	2.30E - 01	2.19	2.30E - 01	2.19
ID (C)	160	6.26E - 02	2.20	5.29E - 02	2.12	5.29E - 02	2.12	5.29E - 02	2.12
$\mathbb{P}_4(6)$	320	1.51E - 02	2.05	1.29E - 02	2.04	1.29E - 02	2.04	1.29E - 02	2.04
	640	3.76E - 03	2.00	3.20E - 03	2.01	3.20E - 03	2.01	3.20E - 03	2.01
	1280	9.39E - 04	2.00	7.98E - 04	2.00	7.98E - 04	2.00	7.98E - 04	2.00
	2560	2.35E - 04	2.00	2.00E-04	2.00	2.00E-04	2.00	2.00E-04	2.00
	20	1.39E+00	_	1.27E+00	_	1.27E+00	_	1.27E+00	
	40	1.48E - 01	3.24	1.47E - 01	3.11	1.47E - 01	3.11	1.47E - 01	3.11
	80	6.20E - 03	4.57	6.03E - 03	4.60	6.03E - 03	4.60	6.03E - 03	4.60
D. (6)	160	2.79E - 04	4.48	2.69E - 04	4.49	2.69E - 04	4.49	2.69E - 04	4.49
$\mathbb{P}_5(6)$	320	1.49E - 05	4.22	1.57E - 04	0.77	1.57E - 04	0.77	1.57E - 04	0.77
	640	8.61E - 06	0.79	9.26E - 06	4.09	9.26E - 06	4.09	9.26E - 06	4.09
	1280	5.52E - 07	3.96	4.81E - 07	4.27	5.11E - 07	4.18	4.76E - 07	4.28
	2560	1.11E-06	\uparrow	5.97E - 07	\uparrow	5.97E - 07	\uparrow	5.53E - 07	\uparrow

Table 5: Numerical results of PRO5 scheme.

		$\omega = 1 1$		$\omega = 1 3$	$\omega = 1 3,1$		$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	1.28E+01	_	3.77E + 00	_	3.77E + 00	_	3.77E + 00	_
	40	1.60E+00	2.99	3.39E - 01	3.47	3.39E - 01	3.47	3.39E - 01	3.47
	80	1.05E - 01	3.93	1.35E - 01	1.33	1.35E - 01	1.33	1.35E - 01	1.33
$\mathbb{P}_3(4)$	160	3.11E-02	1.76	4.35E - 02	1.63	4.35E - 02	1.63	4.35E - 02	1.63
п 3(4)	320	1.06E-02	1.56	1.18E - 02	1.88	1.18E - 02	1.88	1.18E - 02	1.88
	640	2.91E - 03	1.86	3.05E - 03	1.95	3.05E - 03	1.95	3.05E - 03	1.95
	1280	7.57E - 04	1.95	7.72E - 04	1.98	7.77E - 04	1.97	7.77E - 04	1.97
	2560	1.94E - 04	1.96	1.95E - 04	1.99	1.95E - 04	2.00	1.95E - 04	2.00
	20	6.51E+00	_	1.86E+00		1.86E+00		1.86E+00	
	40	1.15E+00	2.50	9.97E - 01	0.90	9.97E - 01	0.90	9.97E - 01	0.90
	80	2.64E - 01	2.12	2.30E - 01	2.12	2.30E - 01	2.12	2.30E - 01	2.12
ID (6)	160	6.24E - 02	2.08	5.31E - 02	2.12	5.31E - 02	2.12	5.31E - 02	2.12
$\mathbb{P}_4(6)$	320	1.52E - 02	2.04	1.29E - 02	2.04	1.29E-02	2.04	1.29E-02	2.04
	640	3.76E - 03	2.01	3.20E - 03	2.01	3.20E - 03	2.01	3.20E - 03	2.01
	1280	9.38E - 04	2.00	7.97E - 04	2.00	7.97E - 04	2.00	7.97E - 04	2.00
	2560	2.35E-04	2.00	2.00E - 04	1.99	2.00E-04	1.99	2.00E-04	1.99
	20	1.83E+00	_	1.55E+00	_	1.55E+00		1.55E+00	_
	40	1.08E - 01	4.08	1.79E - 01	3.12	1.79E - 01	3.12	1.79E - 01	3.12
	80	6.78E - 03	4.00	6.79E - 03	4.72	6.79E - 03	4.72	6.79E - 03	4.72
$\mathbb{D}_{-}(6)$	160	1.46E - 04	5.54	2.87E - 04	4.56	2.87E - 04	4.56	2.87E - 04	4.56
$\mathbb{P}_5(6)$	320	1.59E - 05	3.20	1.44E - 05	4.32	1.44E - 05	4.32	1.44E - 05	4.32
	640	9.59E - 07	4.05	8.68E - 07	4.05	8.65E - 07	4.05	8.69E - 07	4.05
	1280	1.32E - 07	2.86	1.61E - 07	2.43	8.08E - 08	3.42	2.58E - 08	5.07
	2560	2.45E - 06	\uparrow	6.20E - 07	\uparrow	1.20E-06	\uparrow	1.35E-06	↑

Table 6: Numerical results of PRO6 scheme.

		$\omega = 1 1$		$\omega = 1 3$		$\omega = 1$	$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	1.28E+01	_	3.77E+00	_	3.77E+00	_	3.77E+00	
	40	1.60E+00	2.99	3.39E - 01	3.47	3.39E - 01	3.47	3.39E - 01	3.47
	80	1.05E - 01	3.93	1.35E - 01	1.33	1.35E - 01	1.33	1.35E - 01	1.33
$\mathbb{P}_3(4)$	160	3.11E-02	1.76	4.35E - 02	1.63	4.35E - 02	1.63	4.35E - 02	1.63
13(4)	320	1.06E-02	1.56	1.18E - 02	1.88	1.18E - 02	1.88	1.18E - 02	1.88
	640	3.07E - 03	1.78	3.09E - 03	1.93	3.09E - 03	1.93	3.09E - 03	1.93
	1280	7.75E - 04	1.99	7.77E - 04	1.99	7.77E - 04	1.99	7.77E - 04	1.99
	2560	1.95E - 04	1.99	1.95E - 04	2.00	1.95E - 04	2.00	1.95E - 04	2.00
	20	6.51E+00	_	1.86E+00	_	1.86E+00		1.86E+00	
	40	1.15E+00	2.50	9.97E - 01	0.90	9.97E - 01	0.90	9.97E - 01	0.90
	80	2.64E - 01	2.12	2.30E - 01	2.12	2.30E - 01	2.12	2.30E - 01	2.12
D (6)	160	6.24E - 02	2.08	5.31E - 02	2.12	5.31E - 02	2.12	5.31E - 02	2.12
$\mathbb{P}_4(6)$	320	1.51E - 02	2.05	1.31E - 02	2.02	1.31E - 02	2.02	1.31E - 02	2.02
	640	3.77E - 03	2.00	3.21E - 03	2.03	3.21E - 03	2.03	3.21E - 03	2.03
	1280	9.39E - 04	2.01	7.98E - 04	2.01	7.98E - 04	2.01	7.98E - 04	2.01
	2560	2.35E-04	2.00	2.00E - 04	2.00	2.00E-04	2.00	1.99E - 04	2.00
	20	1.83E+00	_	1.55E+00	_	1.55E+00	_	1.55E+00	_
	40	1.08E - 01	4.08	1.79E - 01	3.12	1.79E - 01	3.12	1.79E - 01	3.12
	80	6.78E - 03	4.00	6.79E - 03	4.72	6.79E - 03	4.72	6.79E - 03	4.72
$\mathbb{D}_{-}(6)$	160	3.29E - 04	4.37	3.05E - 04	4.47	3.05E - 04	4.47	3.05E - 04	4.47
$\mathbb{P}_5(6)$	320	1.49E - 05	4.46	1.57E - 04	0.96	1.57E - 04	0.96	1.57E - 04	0.96
	640	8.61E - 06	0.79	9.26E - 06	4.09	9.26E - 06	4.09	9.26E - 06	4.09
	1280	5.71E - 07	3.91	4.22E - 07	4.46	5.38E - 07	4.11	5.15E - 07	4.17
	2560	4.29E - 07	0.41	5.08E - 07	\uparrow	5.08E - 07	0.08	8.81E - 07	\uparrow