Derivalas

Derivalas keplete

$$f(x) = \lim_{t \to \infty} \frac{f(x) - f(x_0)}{x - x_0}$$

Derivalasi szabalyok

$$\begin{aligned}
(f + g | x_0 = f'(x_0) + g(x_0) \\
D \cdot f(x_0) &= f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g(x_0) + f(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g(x_0) + f(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g(x_0) + f(x_0) \cdot g'(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g(x_0) + f(x_0) \cdot g'(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g(x_0) + f(x_0) \cdot g'(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g(x_0) + f(x_0) \cdot g'(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g(x_0) + f(x_0) \cdot g'(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g(x_0) + f(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g(x_0) + f(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g(x_0) + f(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g(x_0) + f(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g(x_0) + f(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g(x_0) + f(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g'(x_0) + f'(x_0) \cdot g'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g'(x_0) + f'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g'(x_0) + f'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g'(x_0) + f'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g'(x_0) + f'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + g'(x_0) + f'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + f'(x_0) + f'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + f'(x_0) + f'(x_0) + f'(x_0) \cdot g'(x_0) \\
(f + g | x_0 = f'(x_0) + f'(x_0)$$

Erinto egyenletek

$$e: \gamma - f(x_0) = f'(x_0) \cdot (x - x_0)$$

[Legyenesek meroleggesseg parhuzzamossag]]

Szogpontok

Visszateropont

$$f_b(x_0) = -\infty$$
 (so) $f_c(x_0) = +\infty$ (fordition)

 $f_c(x_0) = -\infty$ ($f_c(x_0) = +\infty$)

 $f_c(x_0) = -\infty$ ($f_c(x_0) = +\infty$)

Osszetett fugvenyek derivalasa

$$(f \circ \ell)'(x_0) = \int'(u_0) \cdot \int'(v_0)$$

$$\left[\frac{1}{g(x)}\right] = -\frac{g'(x)}{g(x)^2}$$

3234 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8610	^{1yek} deriváltjai
A függvény	A derivált	A függvény deriválhatósági
f(x) = c (állandó)	f'(x) = 0	tartománya
$f(x) = x^n, n \in \mathbb{N}$	$f'(x) = nx^{n-1}$	IR
$f(x) = \sqrt{x}, a > 0, a \neq 1$		R
	$f'(x) = \frac{1}{2\sqrt{x}}$	$(0, +\infty)$
$f(x) = \ln x$	$f'(x) = \frac{1}{x}$	$(0, +\infty)$
2 \ 1 - 2	X	$(0, +\infty)$
$f(x) = \log_a x$	$f'(x) = \frac{1}{x \ln a}$ $f'(x) = e^x$	$(0, +\infty)$
$f(x) = e^x$	$x \ln a$	72
$f(x) = a^x, a > 0, a \neq 1$		R
$f(x) = \sin x$	$f'(x) = a^x \ln a$	R
$f(x) = \cos x$	$f'(x) = \cos x$	R
$f(x) = \operatorname{tg} x$	$f'(x) = -\sin x$	R
Oscilla 16	$f'(x) = \frac{1}{\cos^2 x}$	$\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\right\}$
$f(x) = \operatorname{ctg} x$	$f'(x) = -\frac{1}{\sin^2 x}$	$\mathbb{R}\setminus\{k\pi,k\in\mathbb{Z}\}$
$f(x) = \arcsin x$	$f'(x) = \frac{1}{\sqrt{1 - x^2}}$	(-1, 1)
$f(x) = \arccos x$	$f'(x) = -\frac{1}{\sqrt{1 - x^2}}$	(-1, 1)
$f(x) = \operatorname{arctg} x$	$f'(x) = \frac{1}{1+x^2}$	R
$f(x) = \operatorname{arcctg} x$	$f'(x) = -\frac{1}{1+x^2}$	R
Összetett en		

+ kepletek

