Esercizi dell'11 aprile

Dehn twist

Per fissare la notazione, ricordiamo come si definiscono i Dehn twist. Siano S una superficie chiusa orientabile, $\alpha\colon S^1\to S$ una curva semplice chiusa non banale. Sia $A=S^1\times [-1,1]$ con l'orientazione indotta da quelle standard di S^1 e [-1,1]. Fissiamo un intorno regolare di α , ossia un embedding $\psi\colon A\to S$ tale che $\psi(x,0)=\alpha(x)$ per ogni $x\in S^1$; scegliamolo in modo che ψ preservi l'orientazione. Fissiamo infine una funzione $f\colon [-1,1]\to [0,2\pi]$ tale che f(t)=0 per $t\le -\frac12$ e $f(t)=2\pi$ per $t\ge \frac12$, e definiamo

$$\begin{split} \theta: & A \longrightarrow A \\ & (e^{ix}, t) \longmapsto (e^{i(x+f(t))}, t). \end{split}$$

Possiamo ora definire il Dehn twist intorno a α come il diffeomorfismo $T_{\alpha} \colon S \to S$ tale che

$$T_{\alpha}(p) = \begin{cases} p & p \notin \psi(A) \\ (\psi \circ \theta \circ \psi^{-1})(p) & p \in \psi(A). \end{cases}$$

Come visto a lezione, la classe di isotopia di T_{α} non dipende dalla scelta dell'intorno regolare ψ né della funzione f. Mostreremo inoltre nell'Esercizio 3.2 che la classe di isotopia di T_{α} non cambia invertendo l'orientazione di α o sostituendo α con una curva a lei isotopa: è dunque ben definito l'elemento $T_a \in \text{MCG}(S)$ per $a \in \mathcal{S}$.

Esercizio 3.1

Lemma 1. Siano a, b classi di isotopia di curve, con b non banale. Allora

$$i(a, T_b(a)) = i(a, b)^2$$
.

Dimostrazione. Siano α , β rappresentati di a, b in posizione minimale. Se α e β non si intersecano la tesi è ovvia, dunque supponiamo che si intersechino almeno in un punto. Scegliamo un intorno regolare U di β abbastanza stretto da intersecare α in i(a,b) archi disgiunti, ciascuno dei quali interseca β esattamente una volta. Definiamo un rappresentante γ della classe $T_b(a)$ come segue: consideriamo una curva α' parallela a α , ottenuta traslando α lungo un suo intorno regolare, e poniamo $\gamma = T_{\beta}(\alpha')$. Possiamo orientare α e γ in modo che siano coorientate e che entrando in U si allontanino.

È immediato verificare che α e γ si intersecano esattamente in $i(a,b)^2$ punti. Mostriamo dunque che α e γ sono in posizione minimale, ossia che non formano bigoni. Se i(a,b)=1 non c'è nulla da dimostrare (α e γ si intersecano solo in un punto, dunque hanno intersezione algebrica dispari), quindi supponiamo $i(a,b) \geq 2$. Supponiamo per assurdo che esista un bigono D, e siano $\hat{\alpha}$, $\hat{\gamma}$ i lati di D che giacciono rispettivamente su α e γ . Distinguiamo alcuni casi.

■ Se $\hat{\gamma}$ è tutto contenuto in U, allora α e β formano un bigono, ma ciò è impossibile, dato che sono in posizione minimale.

■ Se $\hat{\alpha}$ è tutto contenuto in U, allora di nuovo α e β formano un bigono (ricordiamo che α e γ sono parallele fuori da U).

■ Dunque $\hat{\alpha}$ esce da U per poi rientrarvi. Analizziamo cosa succede vicino vicino al punto in cui $\hat{\alpha}$ esce da U.

Osserviamo che la regione in rosa non può essere un bigono, in quanto il suo lato giacente su γ è tutto contenuto in U, e abbiamo già escluso questa possibilità. Dunque il bigono è necessariamente la regione arancione, e $\hat{\gamma}$ è parallelo a $\hat{\alpha}$ fuori da U. Analizziamo ora cosa succede vicino al punto in cui $\hat{\alpha}$ e $\hat{\gamma}$ rientrano in U.

Esercizio 3.2

Lemma 2. Siano $a, b \in \mathcal{S}$ due classi di isotopia distinte. Allora esiste una classe $c \in \mathcal{S}$ tale che $i(a, c) \neq i(b, c)$.

(1) • Cominciamo a mostrare che la classe di isotopia di T_{α} non dipende dall'orientazione di α . Sia dunque $\alpha \colon S^1 \to S$ una curva semplice chiusa, e sia $\overline{\alpha} \colon S^1 \to S$ la curva inversa, ossia quella definita da $\overline{\alpha}(e^{ix}) = \alpha(e^{-ix})$. Se $\psi \colon A \to S$ è un intorno regolare orientato di α , allora

$$\overline{\psi}: A \longrightarrow S$$
$$(e^{ix}, t) \longmapsto \psi(e^{-ix}, -t)$$

è un intorno regolare orientato di $\overline{\alpha}$. Poiché la classe di isotopia dei Dehn twist non dipende dalla scelta di f, non è restrittivo supporre che $f(-t) = 2\pi - f(t)$. Mostriamo allora che $T_{\alpha}(p) = T_{\overline{\alpha}}(p)$ per ogni $p \in S$ (dunque in particolare sono isotopi). La tesi è ovvia per $p \notin \psi(A)$, dunque supponiamo $p \in \psi(A)$; è sufficiente far vedere che $\psi \circ \theta \circ \psi^{-1} \circ \overline{\psi} = \overline{\psi} \circ \theta$. Effettivamente:

$$(\psi \circ \theta \circ \psi^{-1} \circ \overline{\psi})(e^{ix}, t) = \psi(\theta(e^{-ix}, -t)) = \psi(e^{i(-x+f(-t))}, -t) = \psi(e^{-i(x+f(t))}, -t);$$
$$(\overline{\psi} \circ \theta)(e^{ix}, t) = \overline{\psi}(e^{i(x+f(t))}, t) = \psi(e^{-i(x+f(t))}, -t).$$

- Supponiamo che le curve semplici chiuse non banali $\alpha, \beta \colon S^1 \to S$ siano due rappresentanti della stessa classe di isotopia, ossia che esista un'isotopia (ambiente) $F \colon S \times [0,1] \to S$ tale che $F_0 = \mathrm{id}_S$ e $F_1 \circ \alpha = \beta$. Osserviamo che, per quanto abbiamo dimostrato, possiamo orientare α e β in modo che una tale isotopia esista. Sia $\psi \colon A \to S$ un intorno regolare orientato di α ; notiamo che $F_1 \circ \psi$ è un intorno regolare orientato di β . È allora evidente che un Dehn twist intorno a β è dato da $T_\beta = F_1 \circ T_\alpha \circ F_1^{-1}$, che è ovviamente isotopo a T_α . Questo mostra che $T_\beta = T_\alpha$ in $\mathrm{MCG}(S)$.
- Siano ora $\alpha, \beta \colon S^1 \to S$ due curve semplici chiuse non banali e non isotope, e siano $a, b \in \mathcal{S}$ le corrispondenti classi di isotopia. Per il Lemma 2, esiste una classe $c \in \mathcal{S}$ tale che $i(a, c) \neq i(b, c)$. Dal Lemma 1 otteniamo

$$i(c, T_a(c)) = i(c, a)^2 \neq i(c, b)^2 = i(c, T_b(c)),$$

da cui $T_a \neq T_b$ come elementi di MCG(S).

(2) Per non creare conflitti di notazione, siano $h \in MCG(S)$, $a \in \mathcal{S}$. Sia $\alpha \colon S^1 \to S$ un rappresentante di a, e con lieve abuso di notazione trattiamo h come un diffeomorfismo di S. Sia $\psi \colon A \to S$ un intorno regolare di α : notiamo che $h \circ \psi$ è un intorno regolare di $h \circ \alpha$. Ma allora è evidente che $h \circ T_{\alpha} \circ h^{-1}$ è un Dehn twist intorno a $h \circ \alpha$, da cui la tesi.

Esercizio 3.5

Consideriamo la superficie chiusa ottenuta incollando lati opposti di un 4g-gono regolare con orientazioni parallele. Più precisamente, detti x_1, \ldots, x_{4g} i vertici del poligono regolare, incolliamo il segmento $x_i x_{i+1}$ con il segmento $x_{2g+i+1} x_{2g+i}$. La superficie Σ così ottenuta ha una struttura di CW-complesso con una 0-cella, 2g 1-celle e una 2-cella.

- lacktriangle Σ è orientabile. Questo si vede immediatamente triangolando il poligono regolare e osservando che le identificazioni fra lati invertono l'orientazione.
- Una base per $H_1(\Sigma, \mathbb{Z})$ è data dai segmenti $x_i x_{i+1}$ per $1 \leq i < 2g$. Questo si vede facilmente calcolando l'omologia cellulare: infatti i segmenti $x_i x_{i+1}$ sono esattamente le 1-celle, e hanno tutte bordo nullo. Al contempo, anche l'unica 2-cella ha bordo nullo, dunque $H_1(\Sigma, \mathbb{Z}) \simeq \mathbb{Z}^{2g}$ con base data dalle 1-celle.

In particolare, Σ è una superficie chiusa orientabile di genere g.

Per ogni $1 \leq i < 2g$, sia $\alpha_i \in H_1(\Sigma, \mathbb{Z})$ la classe rappresentata in omologia dal segmento $x_i x_{i+1}$. Consideriamo l'automorfismo $f \colon \Sigma \to \Sigma$ indotto dalla rotazione di angolo π intorno al centro del poligono regolare. Osserviamo che il segmento $x_i x_{i+1}$ viene mandato da f nel segmento $x_{2g+i} x_{2g+i+1}$, dunque $f_*(\alpha_i) = -\alpha_i$. Poiché gli α_i formano una base di $H_1(\Sigma, \mathbb{Z})$, abbiamo che $f_* = -\operatorname{id}_{H_1(\Sigma, \mathbb{Z})}$. Ovviamente f ha ordine f e preserva l'orientazione, dunque f l'involuzione iperellittica cercata.

Esercizio 3.6

Siano $[f] \in MCG(S_g)$, $[m] \in Teich(S_g)$ tali che $[f_*m] = [m]$. Ciò significa che esiste un diffeomorfismo h di S_g isotopo all'identità e tale che $f_*m = h_*m$. Ma allora $(h^{-1} \circ f)_*m = m$; poiché $h^{-1} \circ f$ e f sono isotopi, essi rappresentano la stessa classe in $MCG(S_g)$, dunque possiamo supporre (a meno di cambiare rappresentante) che $f_*m = m$. Ciò significa precisamente che f è un'isometria per la superficie S_g con la metrica m.

I punti singolari dello spazio dei moduli sono precisamente le (classi di) metriche che sono fissate da elementi non banali di $\mathrm{MCG}(S_g)$. Come abbiamo visto, se elemento $\varphi \in \mathrm{MCG}(S_g)$ fissa una classe $[m] \in \mathrm{Teich}(S_g)$, allora esiste un rappresentante f di φ (che non sarà isotopo all'identità se φ è non banale) che è un'isometria per S_g munita della metrica m.