# BIOS 755: Covariance Pattern Analysis and the General Linear Model

Alexander McLain

## The Big Picture

The general steps of a linear longitudinal analysis

- 1. Know your question/hypothesis.
- 2. Exploratory data analysis
  - ► Get the biggest and smallest models
- 3. How am I going to handle missing data?
- 4. What type of method should I use?
  - 4.1 covariance pattern analysis
    - 4.2 linear mixed model
- 5. Model fit
  - 5.1 for the mean,
    - 5.2 for the covariance,
  - 5.3 rinse/repeat as necessary.
- 6. Model Diagnostics
- 7. Interpretations

-

## Treatment of Lead-Exposed Chidren (TLC) Trial

- ► The methods we'll discuss today will add a covariance matrix to standard linear regression.
- ► For a covariance matrix to be meaningful it is easiest if the data have well-defined time-points.
- As a result, we'll reflect on the well worn TLC example.
- Part of the reason we'll do this is because the methods we will discuss are most useful for data that are (at least) planned to have **balanced** data.
- ▶ Randomized trial, 100 children randomized to placebo or Succimer, measures of blood lead level at baseline, 1, 4 and 6 weeks

 $\triangleright$  For each observation,  $Y_{ij}$ , assume we have an associated set of covariates

$$\boldsymbol{X}_{ij} = \{1, X_{ij1}, X_{ij2}, \dots, X_{ijp}\}$$

- Information about the time of the observations, treatment group, age, biomarkers, and other predictor variables can be expressed through a vector of covariates.
- The one represents the intercept.
- How we structure X will be discussed in later lectures.

► The general linear model can be written as

$$Y_{i1} = \beta_0 + \beta_1 X_{i11} + \beta_2 X_{i12} + \dots + \beta_p X_{i1p} + e_{i1}$$

$$Y_{i2} = \beta_0 + \beta_1 X_{i21} + \beta_2 X_{i22} + \dots + \beta_p X_{i2p} + e_{i2}$$

$$\vdots = \vdots$$

$$Y_{in} = \beta_0 + \beta_1 X_{in_i1} + \beta_2 X_{in_i2} + \dots + \beta_p X_{in_ip} + e_{in}$$

We can summarize this to

$$Y_{ij} = \beta_0 + \sum_{k=1}^{p} X_{ijk} \beta_k + e_{ij}$$
 for  $j = 1, 2, ..., n$ 

10.7

 $\triangleright$  When we remove the error term  $e_{ii}$  we get the predicted values

$$E(Y_{ij}) = \hat{Y}_{ij} = \mu_{ij} = \beta_0 + \sum_{j=1}^{p} X_{ij}\beta_j$$

▶ The difference between the predicted and observed values are the residuals or error

$$Y_{ij} - \hat{Y}_{ij} = e_{ij}$$

- With longitudinal data, we expect the error terms,  $e_{ij}$ , to be correlated within individuals.
- ► For example, if an individual has a large positive error term in the first observation, i.e.,

$$Y_{i1} - \hat{Y}_{ij} = e_{i1} > 0$$
 is large

then what would you expect the error term of the second observation to be?

So in longitudinal data we want to allow for

$$corr(e_{ij},e_{ik}) \neq 0$$

for all j and k.

## Covariance Matix

► This leads to a covariance matrix for e<sub>i</sub>

$$Cov(oldsymbol{e}_i) = \left(egin{array}{cccc} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1n} \ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2n} \ dots & dots & \ddots & dots \ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_n^2 \end{array}
ight) = oldsymbol{\Sigma}$$

where  $cov(e_{ij}, e_{ik}) = E(Y_j - \mu_j)(Y_k - \mu_k) = \sigma_{jk}$  with  $\sigma_{jj} = \sigma_j^2$ .

▶ Yet another to write the general linear model is

$$\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{e}_i$$

where 
$$\boldsymbol{X}_i = \{\boldsymbol{X}_{i1}, \dots, \boldsymbol{X}_{in_i}\}$$
 and  $\boldsymbol{e}_i \sim MVN(\boldsymbol{0}, \Sigma)$ .

ightharpoonup Recall that  $\Sigma$  is a covariance matrix of the residual error terms.

## Multivariate Normal Distribution



#### Covariance Structure

When choosing a covariance structure the important aspects to consider are:

- Balanced or unbalanced time points.
  - For unbalanced time points our options are limited.
- ► Homogeneity or heterogeneity (i.e., is the residual variance equal or not equal over time)?

Are there simple forms we can use to represent the correlation?

#### Covariance Structure

► The most flexible is the unrestricted or unstructured covariance matrix (heterogenous and no assumptions on correlation):

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ \sigma_{21} & \sigma_2^2 & \sigma_{23} & \sigma_{24} \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 & \sigma_{34} \\ \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_4^2 \end{pmatrix} \quad \Gamma = \begin{pmatrix} 1 & \rho_{12} & \rho_{13} & \rho_{14} \\ \rho_{21} & 1 & \rho_{23} & \rho_{24} \\ \rho_{31} & \rho_{32} & 1 & \rho_{34} \\ \rho_{41} & \rho_{42} & \rho_{43} & 1 \end{pmatrix}$$

► The most restrictive covariance matrix is the Independence matrix (homogeneous and no correlation allowed):

$$\Sigma = \left( egin{array}{cccc} \sigma^2 & 0 & 0 & 0 \ 0 & \sigma^2 & 0 & 0 \ 0 & 0 & \sigma^2 & 0 \ 0 & 0 & 0 & \sigma^2 \end{array} 
ight) \quad \Gamma = \left( egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array} 
ight)$$

## Compound Symmetry, Exchangeable

- ► Two popular covariance models with this correlation matrix are the:
  - compound symmetric, and
  - heterogeneous compound symmetric structure
- ► The difference in these structures is whether or not we assume the variance is homogeneous or heterogeneous across time points.

## (Homogeneous) Compound Symmetric

▶ The compound symmetric structure:

$$\Sigma = \begin{pmatrix} \sigma^2 & \rho \sigma^2 & \dots & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 & \dots & \rho \sigma^2 \\ \vdots & \vdots & \ddots & \vdots \\ \rho \sigma^2 & \rho \sigma^2 & \dots & \sigma^2 \end{pmatrix} \qquad \Gamma = \begin{pmatrix} 1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1 \end{pmatrix}$$

also called an exchangeable structure.

## Heterogeneous Compound Symmetric

▶ The heterogeneous compound symmetric structure:

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 & \dots & \rho \sigma_1 \sigma_k \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 & \dots & \rho \sigma_2 \sigma_k \\ \vdots & \vdots & \ddots & \vdots \\ \rho \sigma_1 \sigma_k & \rho \sigma_2 \sigma_k & \dots & \sigma_k^2 \end{pmatrix} \quad \Gamma = \begin{pmatrix} 1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1 \end{pmatrix}$$

What is error? Would it change?

# Autoregressive Structure of Order 1 (AR(1))

Autoregressive correlation matrix:

$$\Gamma = \begin{pmatrix} 1 & \rho & \rho^2 & \rho^3 & \rho^4 \\ \rho & 1 & \rho & \rho^2 & \rho^3 \\ \rho^2 & \rho & 1 & \rho & \rho^2 \\ \rho^3 & \rho^2 & \rho & 1 & \rho \\ \rho^4 & \rho^3 & \rho^2 & \rho & 1 \end{pmatrix}$$

- Since  $\rho$  is less than one, as we take higher powers of it the results gets closer and closer to zero.
- As observations get further away (in terms of number of observations) there correlation gets smaller.

## Visualize the Correlation Structures



## **Exponential Structure**

- ▶ The Exponential Structure is one that uses the time between points in calculating the correlation.
- ▶ The correlation between two points  $Y_{ij}$  and  $Y_{ik}$  is equal to

$$ho_{jk} = \exp\left\{-rac{|t_{ij} - t_{ik}|}{ heta}
ight\}$$

recall that  $t_{ij}$  is the time of observation  $Y_{ij}$ , similarly for  $t_{ik}$ .

ightharpoonup The parameter  $\theta$  is estimated, the larger the value of  $\theta$  the smaller the correlation.

## Fitting in SAS

- ▶ SAS can be used to fit many, many covariance structures.
- ► Click here for a full list of covariance matrices.

#### Covariance Structure

- ▶ How important is it to take account of the correlation among repeated measures?
- We can address that question by analyzing the TLC data under the assumption of independence and comparing the results to those analyzed with an unstructured covariance matrix.

GO TO EXAMPLE

## Balanced or Unbalanced time points

- One big factor in choosing a covariance matrix is if the time points are balanced or not.
- ▶ In the unstructured correlation matrix  $\rho_{jk} = Corr(Y_{ij}, Y_{ik})$  for all i.
- ▶ Does this make sense if  $t_{ij}$  and  $t_{ik}$  are different for all i?

# Air pollution example



#### Unbalanced covariance structures

▶ Of the covariance matrices we've discussed, only the homogeneous compound symmetric and homogeneous exponential make sense for time points that are unbalenced accross subjects.

#### Unbalanced covariance structures

- ▶ Of the covariance matrices we've discussed, only the homogeneous compound symmetric and homogeneous exponential make sense for time points that are unbalenced accross subjects.
- ► The exponential can also be used to model the covariate over space.
- For example, say  $d_{1k}$  and  $d_{2k}$  are the latitude and longitude of the kth measurement.
- ▶ The correlation between two points  $Y_i$  and  $Y_k$  is equal to

$$ho_{jk} = \exp \left\{ -rac{\sqrt{(d_{1j}-d_{1k})^2+(d_{2j}-d_{2k})^2}}{ heta} 
ight\}$$

which is a spatial covariance matrix.