Algebra I: Quotient Groups and Homomorphisms

Arjun Vardhan

†

Created: 25th February 2022 Last updated: 25th February 2022

1 Definitions

- Let $f: G \to H$ be a homomorphism. Then, $\operatorname{Im}(f)$ is a subgroup of H. Proof: Since $e_H \in \operatorname{Im}(f)$, it is nonempty. Suppose $x,y \in \operatorname{Im}(f)$. Then there exist $a,b \in G$ such that f(a) = x and f(b) = y. So $f(ab^{-1}) = f(a)f(b)^{-1} = xy^{-1} \in \operatorname{Im}(f)$. Therefore $\operatorname{Im}(f) \leq H$.
- 2 Cosets and Lagrange's Theorem
- 3 Isomorphism Theorems
- 4 Composition Series and the Holder Program
- 5 Transpositions and the Alternating Group