Array

Arnaud Malapert, Gilles Menez, Marie Pelleau

Master Informatique, Université Côte d'Azur

Array

- A collection of items stored at contiguous memory locations
- Data structure to store multiple items of the same type

In Python

$$arr = [1, 2, 3]$$

In C

int[] arr =
$$\{1, 2, 3\}$$
;

In R

$$arr < -c(1, 2, 3)$$

In Java

int[] arr =
$$\{1, 2, 3\}$$
;

Array

2/12

Statement

Given two numbers A and B, count the number of occurrences of each digit in the range between A and B included

Statement

Given two numbers A and B, count the number of occurrences of each digit in the range between A and B included

Representation

(0	1	2	3	4	5	6	7	8	9

Statement

Given two numbers A and B, count the number of occurrences of each digit in the range between A and B included

Representation

Example

Input:

10 15

Output:

Case 1: 0:1 1:7 2:1 3:1 4:1 5:1 6:0 7:0 8:0 9:0

Statement

Given two numbers A and B, count the number of occurrences of each digit in the range between A and B included

What problems can arise?

• What do we know of A and B?

Statement

Given two numbers A and B, count the number of occurrences of each digit in the range between A and B included

What problems can arise?

- What do we know of A and B?
- Can A > B?

Statement

Given two numbers A and B, count the number of occurrences of each digit in the range between A and B included

What problems can arise?

- What do we know of A and B?
- Can A > B?
- Can A = B?

Statement

Given two numbers A and B, count the number of occurrences of each digit in the range between A and B included

What problems can arise?

- What do we know of A and B?
- Can A > B?
- Can A = B?
- How great can A and B be?

Statement

Given two numbers A and B, count the number of occurrences of each digit in the range between A and B included

What problems can arise?

- What do we know of A and B?
- Can A > B?
- Can A = B?
- How great can A and B be?
- How great can the number of occurrences be?

Statement

Given two numbers A and B, count the number of occurrences of each digit in the range between A and B included

What problems can arise?

- What do we know of A and B?
- Can A > B?
- Can A = B?
- How great can A and B be?
- How great can the number of occurrences be?
 - ⇒ Are integers big enough for the solution?

Statement

Given two numbers A and B, count the number of occurrences of each digit in the range between A and B included

What problems can arise?

- What do we know of A and B?
- Can A > B?
- Can A = B?
- How great can A and B be?
- How great can the number of occurrences be?
 - ⇒ Are integers big enough for the solution?
 - ⇒ What type of array for the solution?

- ◆ロト ◆御ト ◆巻ト ◆巻ト - 巻 - 夕久()

```
Solution 1: Brute force

read A and B on the standard input

if A > B then
    exchange their value

initialize the solution array with 0

foreach page between A and B
    foreach digit in page
    increment the corresponding cell

print the result
```

Solution 2: Arithmetic

```
read A and B on the standard input
if A > B then exchange their value
diff \leftarrow B - A + 1
initialize the solution array with |diff/10|
if diff mod 10 \neq 0 then
     deal with the units
A \leftarrow |A/10|
B \leftarrow |B/10|
deal with the tens
print the result
```

More test cases

Input:

10 15

15 104

220 202

912 912

900 999

0

Output:

Case 1: 0:1 1:7 2:1 3:1 4:1 5:1 6:0 7:0 8:0 9:0

Case 2: 0:14 1:19 2:19 3:19 4:19 5:19 6:19 7:19 8:19 9:19

Case 3: 0:10 1:11 2:22 3:2 4:2 5:2 6:2 7:2 8:2 9:2

Case 4: 0:0 1:1 2:1 3:0 4:0 5:0 6:0 7:0 8:0 9:1

Case 5: 0:20 1:20 2:20 3:20 4:20 5:20 6:20 7:20 8:20 9:120

Statement

Given an array of integers, for each number sum the previous strictly smaller numbers

Statement

Given an array of integers, for each number sum the previous strictly smaller numbers

Representation

Statement

Given an array of integers, for each number sum the previous strictly smaller numbers

Representation

1 5		3	6	4	

Statement

Given an array of integers, for each number sum the previous strictly smaller numbers

Representation

1 5		3	6	4	

Statement

Given an array of integers, for each number sum the previous strictly smaller numbers

Representation

Statement

Given an array of integers, for each number sum the previous strictly smaller numbers

Representation

1	5	3	6	4
0				

Statement

Given an array of integers, for each number sum the previous strictly smaller numbers

Representation

1	5	3	6	4
0	1			

Statement

Given an array of integers, for each number sum the previous strictly smaller numbers

Representation

Statement

Given an array of integers, for each number sum the previous strictly smaller numbers

Representation

Statement

Given an array of integers, for each number sum the previous strictly smaller numbers

Representation

1	5	3	6	4

Statement

Given an array of integers, for each number sum the previous strictly smaller numbers

Representation

$$\sum \boxed{0 \ | \ 1 \ | \ 1 \ | \ 9 \ | \ 4} = 15$$

Statement

Given an array of integers, for each number sum the previous strictly smaller numbers

Representation

Example

Input: Output:

1 15

5 1 E 2

15364

Statement

Given an array of integers, for each number sum the previous strictly smaller numbers

What problems can arise?

• What do we know of the data?

Statement

Given an array of integers, for each number sum the previous strictly smaller numbers

What problems can arise?

- What do we know of the data?
 - ⇒ Are integers big enough for the solution?

Statement

Given an array of integers, for each number sum the previous strictly smaller numbers

What problems can arise?

- What do we know of the data?
 - → Are integers big enough for the solution?
 - ⇒ What type for the solution?

```
Solution: Brute force read the array tab on standard input result \leftarrow 0 foreach value in tab result \leftarrow result + sum of previous values strictly smaller than value print result
```

```
More test cases
Input:
5
15364
1352674
Output:
15
40
```

Statement

Given a binary sequence and a number k > 0 find how long is the longest connected subsequence which contains at most k ones

Statement

Given a binary sequence and a number k > 0 find how long is the longest connected subsequence which contains at most k ones

Representation

_ ()		2		•			7	8	9
()	1	0	1	0	0	0	0	0	1

Statement

Given a binary sequence and a number k > 0 find how long is the longest connected subsequence which contains at most k ones

Representation

10 / 12

Array 2021 - 2022

Statement

Given a binary sequence and a number k > 0 find how long is the longest connected subsequence which contains at most k ones

Representation

Statement

Given a binary sequence and a number k > 0 find how long is the longest connected subsequence which contains at most k ones

Representation

Statement

Given a binary sequence and a number k > 0 find how long is the longest connected subsequence which contains at most k ones

Representation

Statement

Given a binary sequence and a number k > 0 find how long is the longest connected subsequence which contains at most k ones

Representation

Example

Input:

10 1

0101000001

Output:

7

Statement

Given a binary sequence and a number k > 0 find how long is the longest connected subsequence which contains at most k ones

What problems can arise?

• What do we know of *k*?

Statement

Given a binary sequence and a number k > 0 find how long is the longest connected subsequence which contains at most k ones

What problems can arise?

- What do we know of k?
- How great can k be?

Statement

Given a binary sequence and a number k > 0 find how long is the longest connected subsequence which contains at most k ones

What problems can arise?

- What do we know of k?
- How great can k be?
- How long can the sequence be?

Statement

Given a binary sequence and a number k > 0 find how long is the longest connected subsequence which contains at most k ones

What problems can arise?

- What do we know of k?
- How great can k be?
- How long can the sequence be?
 - → Are integers big enough for the solution?

Statement

Given a binary sequence and a number k > 0 find how long is the longest connected subsequence which contains at most k ones

What problems can arise?

- What do we know of k?
- How great can k be?
- How long can the sequence be?
 - → Are integers big enough for the solution?
 - ⇒ What type of array for the solution?

Solution

```
read T on the standard input

foreach test case
    read n and k on the standard input
    read the sequence on the standard input
    create a sparse array that represents the sequence
    max ← 0
    for i from 0 to n − offset
        if max < array[i + offset] − array[i]
            max ← array[i + offset] − array[i]
```

More test cases

Input:

3

3 1

000

4 2

1111

TITI

5 3 01110

Output:

3

2

5