Title of the these

Aghiles DJOUDI

PhD student LIGM/ESIEE Paris & ECE Research Lab Paris

February 8, 2020

- 1. Introduction
- Academic Survey
- 3. Industrial Surve
- 4. Fuzzy C-Means Clustering
- Testbed
- Conclusion

- 1. IoT Devices
- 2. IoT Applications
- 3. IoT Wireless Communications

1. Introduction 0/50

- 1. Introduction
- 2. Academic Survey
- Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- Conclusion

- 1. IoT Devices
- 2. IoT Applications
- 3. IoT Wireless Communications

Massive IoT devices

IoT devices are useless without a good communication capability

Figure 1. IoT devices [perera mosden 2013].

1. Introduction | 1. IoT Devices 1/50

- 1. Introduction
- 2. Academic Survey
- Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- Conclusion

- 1. IoT Devices
- 2. IoT Applications
- IoT Wireless Communications

Applications diversification

Each application has its own communication requirements

Challenges/Applications	Grids	EHealth	Transport	Cities	Building
Resources constraints	X	/	X	-	X
Mobility	X	-	/	/	X
Heterogeneity	-	-	-	/	X
Scalability	√	-	/	/	-
QoS constraints	-	-	/	/	/
Data management	-	X	/	✓	-
Lack of Standardization	-	-	-	-	/
Amount of attacks	X	X	/	✓	/
Safety	-	/	✓	-	✓

Table 1. Main IoT challenges [kouicem_internet_2018] [1]

Figure 2. IoT Applications.

IoT platforms

IoT platforms is a chain of communication process

Figure 3. IoT platform.

Figure 4. IoT challenges.

Applications diversification

Requirements

Use Case	Packet rate [pkt/day]	Min success rate [Ps,min]	Payload Size [Byte]
Wearables	10	90	
Smoke Detectors	2	90	
Smart Grid	10	90	10-20
White Goods	3	90	
Waste Management	24	90	
VIP/Pet Tracking	48	90	
Smart Bicycle	192	90	
Animal Tracking	100	90	
Environmental Monitoring	5	90	
Asset Tracking	100	90	50
Smart Parking	60	90	
Alarms/Actuators	5	90	
Home Automation	5	90	
Machinery Control	100	90	
Water/Gas Metering	8	90	
Environmental Data Collection	24	90	
Medical Assisted Living	8	90	
Micro-generation	2	90	
Safety Monitoring	2	90	100-200
Propane Tank Monitoring	2	90	
Stationary Monitoring	4	90	
Urban Lighting	5	90	
Vending Machines Payment	100	90	
Vending Machines General	1	90	1K

Table 2. Application requirements for the use cases of interest [2] [1] [3]

4/50

- 1. Introduction
- 2. Academic Survey
- Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- 6. Conclusion

- 1 InT Devices
- 2. IoT Application
- 3. IoT Wireless Communications

1. LoRa

IoT wireless communication

Wireless communication performance need to be evaluated to match applications requirements

Figure 5. Short range, Cellular and Long range networks.

- 1. Introduction
- 2. Academic Survey
- Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- 6. Conclusion

- 1 InT Devices
- 2. IoT Application
- 3. IoT Wireless Communications

1. LoRa

Wireless communication

Exp: LPWAN in a new technology that satisfy IoT applications requirements

Figure 6. LoRa and LoRaWan stack.

LoRa parameters selection

How to select the optimal configuration

- Parameters
 - → Bandwidth (BW)
 - → Spreading Factor (SF)
 - → Coding Rate (CR)
 - → Transmission Power (Ptx)
 - → Payload size (PS)
 - → Signal Noise Rate (SNR) [-7.5,-20dBm]

- Metrics
 - → Data Rate (DR)
 - → Air Time (AT)
 - → PS_{max}
 - → Received Signal Strength Indication (*RSSI*) [-30,-120dBm]

Setting	Values	Rewards	Costs
BW	7.8 ⇒ 500 <i>kHz</i>	DR	RSSI, Range
SF	2 ⁶ → 2 ¹²	RSSI, Range	DR, SNR, PS _{max} , P ^{tx}
CR	4/5 ➡ 4/8	SNR	PS _{max} , P ^{tx} , AT
P ^{tx}	-4 ⇒ 20 <i>dBm</i>	SNR	P ^{tx}
PS	59 ⇒ 230 <i>B</i>	PS	P^{tx} , AT

Table 3. LoRa parameters selection [4]

Multi criteria decision making

Layer	Maximize (Reward)	Minimize (Cost)
Application	Sec security	Service Cost (SC)
Network	Range	Jitter (<i>Jit</i>)
	Packet delivery ratio (PDR)	Traffic congestion (TC)
	<i>PS</i>	Round-Trip Delay (RTD)
	DR	Packet Error Rate (PER)
		Time Complexity (Otime)
		Space Complexity (O _{space})
Radio	Mobility (<i>Mob</i>)	Bit Error Rate (BER)
	Symbol Rate (SR)	P ^{tx}
	Bit Rate (BR)	Co-channel Interference (CCI)
	Signal-to-Interference Ratio (SIR)	Duty cycle (DC)
	RSSI	Time on Air (ToA)
	Signal-to-interference & noise ratio (SINR) SNR	Path loss (PL)

Table 4. Network selection inputs and classification of parameters [bendaoud_network_2019] [chowdhury_survey_2018]

Multi criteria decision making

$$ToA_{LoRa} = \frac{2^{SF}}{BW} \left((NP + 4.25) + \left(SW + \max \left(\left\lceil \frac{8PS - 4SF + 28 + 16CRC - 20IH}{4(SF - 2DE)} \right\rceil (CR + 4), 0 \right) \right) \right)$$

$$ToA_{GFSK} = \frac{8}{DR}(NP + SW + PL + 2CRC)$$

(1)

$$Sen_{[dBm]} = -174 + 10 \log_{10} BW + NF + SNR$$
 (2)

$$PL_{[B]} = |RSSI| + SNR + P_{TX} + G_{RX}$$
 (3)

$$SNR_{[dB]} = 20.log(\frac{S}{N})$$
 (4)

$$RSSI_{[dBm]} = Tx_{power}. \frac{Rayleigh_{power}}{RI}$$
 (5)

$$SINR_{[dBm]} =$$
 (6)

$$BR_{[bps]} = SF * \frac{\frac{4}{4 + CR}}{\frac{2SF}{2SF}} \tag{7}$$

$$BER_{[\mathbf{bps}]} = \frac{8}{15} \cdot \frac{1}{16} \cdot \sum_{k=1}^{\infty} k = 216 - 1^{k} \left(\frac{16}{k}\right) e^{20.SINR(\frac{1}{k} - 1)}$$
(8)

$$PER_{[pps]} = 1 - (1 - BER)^{n_{bits}}$$
 (9) (10)

Where:

- NP = 8, if LoRa . 5, if GFSK
- ⇒ SW = 8. if LoRa . 3. if GFSK
- CRC = 0 if downlink packet. 1 if uplink packet
- → IH = 0 if header. 1 if no header present
- → DE = 1 if data rate optimization. 0 if not
 - → PS = PHY Payload bytes
 - \implies SF = 7, 8, 9, 10, 11, 12
 - → BW = bandwidth
 - CR = Indicates the Coding Rate

LoRa Frame

Prear	mble	Sync msg	PHY Header	PHDR-CRC							
Modulation	length	Sync msg	PHY Header	PHDR-CRC		MAC Header					
Modulation	length	Sync msg	PHY Header	PHDR-CRC	МТуре	RFU	Major				
Modulation	length	Sync msg	PHY Header	PHDR-CRC	МТуре	RFU	Major	Dev Address			
Modulation	length	Sync msg	PHY Header	PHDR-CRC	МТуре	RFU	Major	NwkID	NwkAddr	ADR	
0	1	2	3	4	5	6	7	8	9	10	
PHY Payload									CF	RC	
MAC Payload								MIC	CRC Type	Polynomial	
Frame Header						FPort	Frame Payload	MIC	CRC Type	Polynomial	
FCtrl FCnt FOpts					FOpts	FPort	Frame Payload	MIC	CRC Type	Polynomial	
ADRACKReq	ACK	FPending /RFU	FOptsLen	FCnt	FOpts	FPort	Frame Payload	MIC	CRC Type	Polynomial	
11	12	13	14	15	16	17	18	19	20	21	

LoRa Frame

- → Modulation:
 - → Lora: 8 Symbols, 0x34 (Sync Word)
 - → FSK: 5 Bytes, 0xC194C1 (Sync Word)
- Length:
- Sync msg :
- PHY Header : It contains:
 - The Payload length (Bytes)
 - → The Code rate
 - → Optional 16bit CRC for payload
- → Phy Header : CRC It contains CRC of Physical Layer Header
- MTvpe: is the message type (uplink or a downlink)
 - → whether or not it is a confirmed message (regst ack)
 - → 000 Join Request
 - → 001 Join Accept
 - → 010 Unconfirmed Data Up.
 - → 011 Unconfirmed Data Down
 - → 100 Confirmed Data Up
 - → 101 Confirmed Data Down
 - → 110 RFU
 - → 111 Proprietary
- → III Proprietary
- RFU: Reserved for Future Use
- Major: is the LoRaWAN version; currently, only a value of zero is valid
 - → 00 LoRaWAN R1
 - → 01-11 RFU
- NwkID: the short address of the device (Network ID): 31th to 25th
 NwkAddr: the short address of the device (Network Address): 24th to
- 0th

 ADR: Network server will change the data rate through appropriate
 - MAC commands
 - → 1 To change the data rate
 - → 0 No change

- ADRACKReq: (Adaptive Data Rate ACK Request): if network doesn't respont in 'ADR-ACK-DELAY' time, end-device switch to next lower data rate.
 - → 1 if (ADR-ACK-CNT) >= (ADR-ACK-Limit)
 - → 0 otherwise
- ACK: (Message Acknowledgement): If end-device is the sender then gateway will send the ACK in next receive window else if gateway is the sender then end-device will send the ACK in next transmission.
 - 1 if confirmed data message
 - → 0 otherwise
 - FPending! /RFU 1: (Only in downlink), if gateway has more data pending to be send then it asks end-device to open another receive window ASAP
 - → 1 to ask for more receive windows
 - → 0 otherwise
 - ▼ FOptsLen: is the length of the FOpts field in bytes ă 0000 to 1111
 - → FCnt : 2 type of frame counters
 - FCntUp: counter for uplink data frame, MAX-FCNT-GAP
 FCntDown: counter for downlink data frame, MAX-FCNY-GAP
 - FOnts: is used to piggyback MAC commands on a data message
 - FPort: a multiplexing port field
 - → 0 the payload contains only MAC commands
 - → 1 to 223 Application Specific
 - → 224 & 225 RFU
 - FRMPayload: (Frame Payload) Encrypted (AES, 128 key length) Data
 - → MIC: is a cryptographic message integrity code
 - computed over the fields MHDR, FHDR, FPort and the encrypted FRMPayload.
 - CRC: (only in uplink),
 - \rightarrow CCITT $x^{16} + x^{12} + x^5 + 1$
 - \rightarrow IBM $x^{16} + x^{15} + x^5 + 1$

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- Fuzzy C-Means Clustering
- Testbed
- 6. Conclusion

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- Fuzzy C-Means Clustering
- Testbed
- Conclusion

- Introduction
- 2. Academic Survey
- Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- 6. Conclusion

- 1. Adaptive dynamic slicing
- 2. Problem statement
- 3. Background
- 4. Selection framework
- 5. Experimentation
- 6. Results
- 7. Discussion

- Introduction
- 2. Academic Survey
- Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- Conclusion

- 1. Adaptive dynamic slicing
- Problem statement
- 3. Background
- 4. Selection framework
- 5. Experimentation
- Results
- 7. Discussion

Notations

Related work

Set of devices, slices, gateways and flows

G set of LoRa Gateways

S set of Slices

D_s cluster of devices associated to slice s

Parameters

 F_c packets with SF = c

 $B_{\underline{w}s,g}$ bandwidth assigned for slice s over GW g

 P_g^{Tx} transmission power of GW g

Constants

 $i_{d,s}$ association index of device d to slice s $i_{d,a}$ association index of device d to GW g

 w_d urgency factor for device d

 w_s priority of slice s w_r weight of reliability w_{ld} weight of load

Metrics

 $U_{d.s.a}$

 $DR_{d,s,g}$ data rate achieved by a device d

 $SINR_{i,i}$ SINR with SF=i and SF=j

 $G_{d,g}^{tx}$ power gain between a GW g and a device d

 $S_{d,s,q}^{rx}$ Receiver sensitivity

RTD_d instant packet delay for device d

PLR_d packet loss rate of device d

utility for device d in slice s on GW g

Figure 7. Slicing.

Notations

Related work

```
G = {1, ..., G}: Set of gateways
S = {1, ..., S}: Set of slices
→ D = {1, ..., D}: Set of devices
\mathbf{D_S} = \{1, ..., \mathbf{D_S}\} \in \mathbf{D}: Cluster of devices in slice s
\mathbf{F}_{d,s,a} = \{1,...,\mathbf{F}_{d,s,a}\}: Virtual flow for device d in slice s through GW g
\mathbf{i_{d.s}} \in \{0,1\} Association index of device d to slice s
\mathbf{i_{d,q}} \in \{0,1\} Association index of device d to GW g
\mathbf{w_d} \in [0,1] Urgency factor for device d
\mathbf{w}_{s} \in [0,1] Priority of slice s
wr ∈ [0,1] Weight of the impact of reliability (SINR)
wld \in [0,1] Weight of the impact of load (congestion)
DR<sub>d,s,q</sub> data rate achieved by a device d
G<sup>tx</sup> power gain between a GW g and a device d
➡ S<sup>rx</sup><sub>d.s.a</sub> Receiver sensitivity
RTD<sub>d</sub> instant packet delay for device d
PLR<sub>d</sub> packet loss rate of device d
U<sub>d.s.a</sub> utility for device d in slice s on GW g
```

Constraints/Hypothesis

Related work

$$\max \sum_{d \in D} \sum_{s \in S} i_{d,s} \cdot U_{d,g,s} , g \in G$$

$$C1 : \sum_{s \in S} i_{d,s} = 1, \forall d \in D$$

$$C2 : \sum_{d \in D} i_{d,g} \cdot P_{d,s,g}^{tx} \leq P_g^{tx \max}, \forall g \in G, \forall s \in S$$

$$C3 : \sum_{d=1}^{N} i_{d,s} \cdot i_{d,g} \cdot DR_{d,s,g} \cdot \leq BW_{s,g}, \forall s \in S, \forall g \in G$$

$$(11)$$

Figure 8. Slicing.

3 applications -> 3 slices -> 3 utility functions

$$\sigma_r = SINR_{d,s,g}/SINR_{max} \qquad , \in [0,1]$$

$$U_{HCC} = \delta_r (\sigma_r w_r + \sigma_{ld} w_{ld}) \quad with \quad \delta_r \in \{0,1\}$$

$$U_{MCC} = \sigma_r w_r + \sigma_{ld} w_{ld}$$

$$U_{LCC} = \sigma_{ld} w_{ld}$$

$$U_{d,s,g} = U'_{d,s,g} + U''_{d,s,g}$$

$$E_{d,s,g} = \frac{\rho_l^{tx} + \rho_l^{tx}}{l^{tx} + \theta \rho a} \cdot d_{tx/rx}$$

Figure 9. Slicing.

¹Samir Dawaliby, Abbas Bradai, and Yannis Pousset. Adaptive Dynamic Network Slicing in LoRa Networks. In: Future Generation Computer Systems 98 (Sept. 2019). 00004, pp. 697–707.

3 slice orchestration algorithms

Which slice for which application flow?

- ADS-load
- DS-load
- FS-load

Utility Function

Related work

$$DR_{d,s,g} = SF \cdot \frac{bw_{s,g}}{2SF} \quad \text{bits/}s$$

$$RX_{d,s,g} = \frac{Tx_{d,s,g} u_{d,s,g}^{rx} u_{d,s,g}^{tx}}{PL} \epsilon, \quad \text{with } \epsilon \sim N(0, \sigma 2)$$

$$PL = L_0 + 10.n \cdot \log_{10} \left(\frac{d}{d_0}\right)$$

$$SINR_{i,j} = \frac{Rx_i}{\sigma^2 + \sum_{n \in Pk_{i,j}} Rx_n}$$

$$\sigma_r = \frac{SINR_{k,l,m}}{SINR_{nore}}$$
(14)

1 Clustering algorithm: BIRCH

Which slice for which device ?

T: max number of device per cluster,

B: max number of childes per cluster.

 t_0 : number of clusters = number of devices;

t_i: get D2 the set of closest devices to cluster D1

- → if D1+D2 < T -> merge
 - ⇒ eif D2< B -> create sub-cluster D2 of D1

$$CF: (D_s, LS, SS) = \left(D_s, \sum_{d=1}^{D_s} w_d, \sum_{d=1}^{D_s} w_d^2\right)$$
 (15)

- Introduction
- 2. Academic Survey
- Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- 6. Conclusion

- 1. Adaptive dynamic slicing
- 2. Problem statement
- 3. Background
- 4. Selection framework
- 5. Experimentation
- 6. Results
- 7. Discussion

A Relay and Mobility Scheme for QoS Improvement in IoT

- Only application requirements.
 - → Environment conditions, operator rules, User preferences.
- Only one (simple) normalization function for all parameters.
 - Use Fuzzy logic with different rules for normalization.
- Only one objective function to fits all requirements.
 - → Use Genetic algorithms with 3 objective functions.
- Only one application.
 - Use 3 applications with different requirements

- 4. Fuzzy C-Means Clustering

- 3. Background

- 1. Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5. Marcov Chain
- 6. Best Response Dynamics
- 7. Fictitious Paly
- 8. Reinforcement Learning
- 9. Joint Utility Strategy
- 10.Trial and Error Learning
- 11 Regret Matching Learning
- 12 Imitation Learning

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5 Toethod
- 6 Conclusion

- Adaptive dynamic slicing
- 2. Problem statemer
- 3. Background
- 1 Selection framework
- 5 Experimentation
- 6. Results
- 7 Discussion

- 1. Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5 Marcov Chain
- 6 Best Response Dynamics
- 7. Fic
- 8. Reinforcement Learnin
- 9. Joint Utility Strategy
- 10.Trial and Error Learn
- 1 Regret Matching Learning
- 12.Imitation Learning

Fuzzy C-Means Clustering

- 1) **Input:** $X = [x_{11}, ..., x_{np}]$, with $x_{ik} \in \mathbb{R}$, $1 \le k \le p$, $1 \le i \le n$
 - **X:** Set of received packets with their performance metrics.
 - n: received packets, p: performance metrics, c: applications.

2) Method:

Objective function:

$$\min_{(\mathbf{U},\mathbf{V})} \left\{ M_m(\mathbf{U},\mathbf{V}) = \sum_{j=1}^c \sum_{i=1}^n \mathbf{u}_{ij}^m d(\mathbf{x}_i, \mathbf{v}_j)^2 \right\}$$
* Constraint:
$$\sum_{j=1}^c \mathbf{u}_{ij} = 1, \forall i$$
* Distance:
$$d(\mathbf{x}_i, \mathbf{v}_i) = \|\mathbf{x}_i - \mathbf{v}_i\|$$

- * Degree of fuzzification:
- Fuzzy membership matrix: U

$$\mathbf{u}_{ij} = \left[\sum_{j'=1}^{c} \left(\frac{d(\mathbf{x}_{i}, \mathbf{v}_{j})}{d(\mathbf{x}_{i}, \mathbf{v}_{j'})}\right)^{\frac{2}{m-1}}\right]^{-1}, \forall j, i \sim \mathbf{U}_{t} = F_{\partial}\left(\mathbf{V}_{t-1}\right)$$

- Clusterheads matrix: V
- $\rightarrow \mathbf{v}_{j} = \left(\sum_{i=1}^{n} \mathbf{u}_{ij}^{m} \mathbf{x}_{i} / \sum_{i=1}^{n} \mathbf{u}_{ij}^{m}\right), \forall j \sim \mathbf{V}_{t} = G_{\partial}\left(\mathbf{U}_{t-1}\right)$
- 3) **Output:** $\mathbf{U} = [u_{11}, ..., u_{nc}], \ \mathbf{V} = [v_{11}, ..., v_{cp}], \ \text{with } u_{ij}, v_{jk} \in [0, 1], \ 1 \le j \le c, \ 1 \le i \le n, \ 1 \le k \le p$
 - V: Clusterheads matrix.
 - U: Fuzzy membership matrix.
- 4) Validation: (Performance Index)
 - $\implies \min_{(c)} \left\{ P(c) = \sum_{j=1}^{c} \sum_{i=1}^{n} \mathbf{u}_{ij}^{m} \left(d(\mathbf{x}_{i}, \mathbf{v}_{j})^{2} \|\mathbf{v}_{j} \overline{\mathbf{x}}\|^{2} \right) \right\}, \ \overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$

Fuzzy C-Means Clustering

Input:

$$\mathbf{X} = \begin{array}{c} metric_1 & \dots & metric_p \\ conf_1 & x_{11} & \dots & x_{1p} \\ \vdots & \ddots & \vdots \\ conf_n & x_{n1} & \dots & x_{np} \end{array}$$

Output:

$$\mathbf{U} = \begin{array}{ccccc} & app_1 & \dots & app_c \\ conf_1 & u_{11} & \dots & u_{1c} \\ \vdots & \ddots & \vdots \\ conf_n & u_{n1} & \dots & u_{nc} \\ \\ & & metric_1 & \dots & metric_p \\ app_1 & v_{11} & \dots & v_{1p} \\ \vdots & \ddots & \vdots \\ app_c & v_{c1} & \dots & v_{cp} \\ \end{array}$$

Input:

$$\mathbf{G} = \begin{array}{c} & app_1 & \dots & app_c \\ conf_1 & u_{11} & \dots & u_{1c} \\ \vdots & \ddots & \vdots \\ conf_n & u_{n1} & \dots & u_{nc} \end{array}$$

Output:

$$\mathbf{G} = \begin{array}{cccc} & app_1 & \dots & app_c \\ conf_1 & g_{11} & \dots & g_{1p} \\ \vdots & \ddots & \vdots \\ conf_n & g_{n1} & \dots & g_{np} \end{array}$$

Fuzzy C-Means Clustering

Initialization:

- Fuzzy C-Means Clustering
 - c: number of applications
 - → m: weighting exponent (Fuzziness degree)
- Iteration
 - → T: maximum number of iterations (Typ.: 100)
 - → e: termination threshold (Typ. 0.01)

Algorithm 1: FCM

```
Input: V_0 = [v_{11},...,v_{CP}]
Output: (\mathbf{U},\mathbf{V})
t = 0
while \|\mathbf{v}_j - \overline{\mathbf{x}}\| \ge e or t \le T do
\begin{bmatrix} t = t + 1 \\ \mathbf{U}_t = F_{\partial}(\mathbf{V}_{t-1}) \\ \mathbf{V}_t = G_{\partial}(\mathbf{U}_{t-1}) \end{bmatrix}
(\mathbf{U},\mathbf{V}) = (\mathbf{U}_t,\mathbf{V}_t)
```

Genetic algorithm

- $G = [g_{11}, ..., g_{nc}], \quad g_{ij} \in [0, 1], \ 1 \le i \le n, \ 1 \le j \le c.$
 - → n: received packets, c: applications.
- ⇒ $G_0 = [g_{11}, ..., g_{nc}], g_{ij} = q_{ij} / \sum_{l=1}^{c} q_{il}, \forall i,j.$ ⇒ $q_{ij} = random(\mathbb{R}), \forall i,j.$
- $G_t = [g_1, ..., g_n]$
 - → Selection (roulette wheel):
 - 1) $f(r_i) = \beta(1-\beta)^{r_i-1}$
 - * $\beta \in [0,1]$ biggest section probability allowed.
 - * $r_i \in [1, n]$ rank of q_i
 - 2) $\overline{g_x} = \{g_{x^1}, ..., g_{x^2}\}, F(r_{i-1}) \le h_{x^e} \le F(r_i), 1 \le e \le z \le n, \forall i$
 - * $h_{x^e} \in [0,1], h \sim Uniform$
 - * z: number of selected packets.
 - → Fitness/Crossover/Clustering:
 - $* \overline{g_x} = FCM(\mathbf{X})$
 - → Mutation: v ~P
 - * b is the mutation threshold (0.001).

$$\overline{g_x} = \begin{cases} \overline{g_x} & v \ge b \\ \overline{q_{xj}} / \sum_{l=1}^{c} \overline{q_{xl}}, \text{ with } \overline{q_{xj}} = random(\mathbb{R}), \forall j. & otherwise \end{cases}$$

- 1) The Fuzzy C-Means Clustering algorithm takes in parameter a matrix of n packets received by the gateway by each end-devices with their p metrics (RSSI, ToA, BER, ...). 2) The algorithm builds two other matrices, U which contains the membership degree of each packet to the
- c applications, and V, which contains the optimal p metrics that best fit the c applications. 3) The genetic algorithm starts by randomly generating a matrix with the same dimensions as matrix U.
- 4) The algorithm selects z packets and applies the Fuzzy C-Means Clustering algorithm on these z packets.
- 5) β is a parameter that represents the biggest probability that a packet could have to be selected.
- 6) r is a parameter that defines its rank, a packet of rank 1 has the probability β to be selected, a packet of rank r has a probability f(r) to be selected.
- 7) F(r) is the cumulative function of f(r),
- 8) To select a set of packets to be sent to th FCM, a random variable between 0 and 1 is generated for each packet received. The probability to select packets decrease progressively until achieving all the packets.
- 9) Once the selected packets are chosen, we apply the FCM algorithm on the selected packets.

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5 Testhed
- 6 Conclusion

- 1. Adaptive dynamic slicino
- Problem statemer
- 3. Background
- 4 Selection framework
- 5 Experimentation
- 6. Results
- 7 Discussion

- . Fuzzv C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learnin
- 5 Marcov Chain
- 6. Best Response Dynamics
- 7. Fig
- 8. Reinforcement Learning
- 9. Joint Utility Strategy
- 10.Trial and Error Learn
- 11Regret Matching Learning
- 12.Imitation Learning

Game theory

- $P = \{p_1, ..., p_n\}, p_i \in \mathbb{N}, 1 \le i \le n.$
- n: number of players.
- $S = \{s_1, ..., s_n\}, 1 \le i \le n$
 - \Rightarrow s_i is the strategy set of the i^{th} player.
- $r_i(s_i, s_{-i}) = u_k : S \longrightarrow R_+$
 - \Rightarrow $s_{-i} = (s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_n) \in S_1 \times \dots \times S_{i-1} \times S_{i+1} \times \dots \times S_n$

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5 Testhed
- 6 Conclusion

- 1. Adaptive dynamic slicino
- Problem statemer
- 3. Background
- 1 Selection framework
- 5 Experimentation
- 6. Results
- 7 Discussion

- . Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learnin
- 5 Marcov Chair
- 6 Rest Response Dynamics
- 7 Fig
 - 8. Reinforcement Learnin
 - 9. Joint Utility Strategy
 - 10.Trial and Error Learn
 - 1.Regret Matching Learning
 - 12.Imitation Learning

Multi-Armed-Bandit Algorithm

```
For each step t = 1, ..., T
```

- → Arms: K = 1, ... , K
- Reward: X_t^k with $\mu_t^k = E[X_t^k]$
 - \rightarrow Bernoulli rewards: $x_{k_t} \sim B(\mu_{k_t,t})$
 - → Best reward: X_t^* with $\mu_t^* = \max \mu_t^k$, $k \in K$ → The reward k_t is revealed $x_{k_t} \in [0,1]$
- Minimize the pseudo regret:
 - $\rightarrow R(T) = \sum_{t=1}^{T} \mu_t^{\star} \mathbb{E}\left[\sum_{t=1}^{T} x_{k_t}\right]$
 - → where
 - $* \mu_t^* = \max_k \mu_{k,t}$

Bandit Algorithm

Growing number of Thompson Sampling f i.t:

i denotes the starting time

t the current time.

Let P(f i,t) be the probability at time t of the Thompson sampling starting at time i.

- Initialization: $\mathbb{P}(f_{1,1}) = 1, t = 1, 2$ $\rightarrow \forall k \in K\alpha_{k,f_1}, \leftarrow \alpha_0, \beta_{k,f_1}, \leftarrow \beta_0$
- Decision process: at each time t: $\rightarrow \forall i < t, \forall k : \theta_{k,f_{i,t}} \sim \text{Beta}\left(\alpha_{k,f_{i,t}}, \beta_{k,f_{i,t}}\right)$
 - → Plav (Bavesian Aggregation):
 - * $k_t = \arg\max_k \sum_{i < t} \mathbb{P}(f_{i,t}) \theta_{k,f_{i,t}}$
- Instantaneous gain update:

$$\forall i < t \mathbb{P}\left(X_{t} | f_{i,t}\right) = \begin{cases} \frac{-\kappa_{i,l_{t}}}{\beta_{k,l_{t}} + \alpha_{k,l_{t}}} & \text{if } x_{k_{t}} = 1\\ \frac{\beta_{k,l_{t}} + \alpha_{k,l_{t}}}{\beta_{k,l_{t}} + \alpha_{k,l_{t}}} & \text{if } x_{k_{t}} = 0 \end{cases}$$

Arm hyper parameters update:

$$\forall i < t \begin{cases} \alpha_{k, f_{i,t}} = \alpha_{k, f_{i,t}} + 1 & \text{if } x_{k_t} = 1\\ \beta_{k, f_{i,t}} = \beta_{k, f_{i,t}} + 1 & \text{if } x_{k_t} = 0 \end{cases}$$

Distribution of experts update:

$$\rightarrow \forall i < t, \mathbb{P}(f_{i,t}) \propto (1-\rho) \cdot \mathbb{P}(x_t | f_{i,t-1}) \cdot \mathbb{P}(f_{i,t-1})
\rightarrow f_{t,t} : \mathbb{P}(f_{t,t}) \propto \rho \sum_{i=1}^{t-1} \mathbb{P}(x_t | f_{i,t-1}) \cdot \mathbb{P}(f_{i,t-1})
\rightarrow \alpha_{k,t_{t,t}} = \alpha_0, \beta_{k,t_{t,t}} = \beta_0$$

(16)

(17)

Bandit Algorithm

➡ THOMPSON SAMPLING (TS)

- ⇒ success counter: $\alpha_k = \#(x_{k_t} = 1) + \alpha_0$ ⇒ failure counter: $\beta_k = \#(x_{k_t} = 0) + \beta_0$
- → At each t ·
 - $* \theta_k \sim \text{Beta}(\alpha_k, \beta_k)$
 - $* k_t = \arg\max_k \theta_k$
 - $\begin{array}{ll}
 * \begin{cases}
 \alpha_k = \alpha_k + 1 & \text{if } x_{k_l} = 1 \\
 \beta_k = \beta_k + 1 & \text{if } x_{k_l} = 0
 \end{array}$

■ SWITCHING ENVIRONMENT

$$\mu_{k,t} = \left\{ \begin{array}{ll} \mu_{k,t-1} & \text{probability } 1-\rho \\ \mu_{new} \sim U(0,1) & \text{probability } \rho \end{array} \right. \tag{18}$$

4. Fuzzy C-Means Clustering | 3. Background | 3. Multi-Arm Bandits

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5 Testhed
- 6 Conclusion

- 1. Adaptive dynamic slicino
- Problem stateme
- 3. Background
- 4. Selection framework
- 5 Experimentation
- 6. Results
- 7 Discussion

- . Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5. Marcov Chain
- 6. Best Response Dynamics
- 7. Fictitious
- 8. Reinforcement Learnin
- 9. Joint Utility Strategy
- 10.Iriai and Error Learning 11.Regret Matching Learning
- 12Jmitation Learning

Q Learning

$$Q(s_{t+1}, a_t) = Q(s_t, a_t) + \gamma (R(s_t, a_t) - Q(s_t, a_t))$$

- $Q(s_{t+1}, a_t) = \text{new Q-Value}$
- $Q(s_t, a_t) = \text{old Q-Value}$
- γ = learning constant
- \Rightarrow $R(s_t, a_t)$ = immediate reward received after executing action a in state s at time t

4. Fuzzy C-Means Clustering | 3. Background | 4. Q-Learning

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5 Testhed
- 6 Conclusion

- 1. Adaptive dynamic slicino
- 2. Problem statemen
- 3. Background
- 4. Selection framework
- 5 Experimentation
- 6. Results
- 7 Discussion

- . Fuzzv C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5. Marcov Chain
- 6. Best Response Dynamics
- 7 Fictitious Palv
- 8. Reinforcement Learn
- 9. Joint Utility Strategy
- 9. Joint Utility Strategy 10.Trial and Error Learn
- 1 Regret Matching Learning
- 12Jmitation Learning

Marcov chain

$$V(s,\pi) = \mathbb{E}_{s}^{\pi} \left(\sum_{k=0}^{\inf} \gamma^{k} \cdot r(s_{k}, a_{k}) \right), s \in \mathbb{S}$$

$$(19)$$

$$r(s_k, a_k) = G_k \cdot PRR(a_k) \tag{20}$$

$$\pi^* = \arg\max_{\pi} V(s, \pi) \tag{21}$$

Marcov chain

Learning iterative steps:

- **Choose** action $a_k(t) \sim \pi_k(t)$
- Observe game outcome
 - $\rightarrow a_{\underline{k}}(t)$ $\rightarrow u_{\underline{k}}(a_{\underline{k}}(t), a_{\underline{k}}(t))$
- Improve $\pi_k(t+1)$

Thus, we can expect that $\forall k \in K$

$$\pi_{k(t)} \xrightarrow{t \to \infty} \pi_k^* \tag{22}$$

$$U_{k}(\pi_{k}(t), \pi_{\underline{k}}(t)) \xrightarrow{t \longrightarrow \infty} U_{k}(\pi_{k}^{*}, \pi_{\underline{k}}^{*})$$
 (23)

Where:

 $\pi^* = (\pi_1^*, ..., \pi_k^*)$ is the NE strategy profile

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5 Testhed
- 6 Conclusion

- 1. Adaptive dynamic slicino
- 2. Problem statemen
- 3. Background
- 1 Selection framework
- 5 Experimentation
- 6. Results
- 7 Discussion

- . Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5. Marcov Chair
- 6. Best Response Dynamics
- 7. Fictitious Palv
- 8. Reinforcement Learning
- 9. Joint Utility Strategy
- 11 Regret Matching Learning
- 12Jmitation Learning

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5 Testhed
- 6 Conclusion

- 1. Adaptive dynamic slicino
- Problem statemer
- 3. Background
- 1 Selection framework
- 5 Experimentation
- 6. Results
- 7 Discussion

- . Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 4. Q-Leanin
- 6. Best Response Dynamics
- 7. Fictitious Paly
- 8. Reinforcement Learning
- 9. Joint Utility Strategy
- 10.Trial and Error Learn
- 1 Regret Matching Learning
 2 Imitation Learning
- 12Jmitation Learning

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5 Toethod
- 6 Conclusion

- 1. Adaptive dynamic slicino
- 2. Problem statemer
- 3. Background
- 4. Selection framework
- 5 Experimentation
- 6. Results
- 7 Discussion

- . Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- Marcov Chain
- Best Response Dynamics
- 7. Fictitious
- 8. Reinforcement Learning
- 9. Joint Utility Strategy
- 10.Irial and Error Learning 11 Regret Matching Learnin
- 12Jmitation Learning

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5 Testhed
- 6 Conclusion

- 1. Adaptive dynamic slicino
- Problem stateme
- 3. Background
- 4. Selection framework
- 5 Experimentation
- 6. Results
- 7 Discussion

- . Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5 Marcov Chair
- 6 Rest Response Dynamics
- 7. Fictitio
- 8. Reinforcement Learning
- 9. Joint Utility Strategy
- Joint Utility Strategy
 Trial and Error Learni
- 1 Regret Matching Learning
- 12Jmitation Learning

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5 Testhed
- 6 Conclusion

- 1. Adaptive dynamic slicino
- Problem statemer
- 3. Background
- 1 Selection framework
- 5 Experimentation
- 6. Results
- 7 Discussion

- . Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5 Marcov Chain
- 6 Rest Response Dynamics
- 7. Ficti
- 8. Reinforcement Learnin
- 9. Joint Utility Strategy
- 10.Trial and Error Learning
 11.Regret Matching Learnin
- l 1 Regret Matching Learning I 2 Imitation Learning

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5 Testhed
- 6 Conclusion

- 1. Adaptive dynamic slicino
- Problem stateme
- 3. Background
- 4. Selection framework
- 5 Experimentation
- 6. Results
- 7 Discussion

- . Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5 Marcov Chain
- 6 Best Response Dynamics
- 7 Fig
- 8. Reinforcement Learnin
 - 9. Joint Utility Strategy
- 11 Regret Matching Learning
- I1Regret Matching Learnino
 I2Imitation Learning

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5 Testhed
- 6 Conclusion

- 1. Adaptive dynamic slicino
- Problem statemer
- 3. Background
- 1 Selection framework
- 5 Experimentation
- 6. Results
- 7 Discussion

- . Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5 Marcov Chain
- 6 Best Response Dynamics
- 7. Fig
- 8. Reinforcement Learnin
 - 9. Joint Utility Strategy
 - 0.Trial and Error Learnin
 - 1 Regret Matching Learning
- 12 Imitation Learning

- Introduction
- 2. Academic Survey
- Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- 6. Conclusion

- 1. Adaptive dynamic slicing
- Problem statement
- 3. Background
- 4. Selection framework
- 5. Experimentation
- Results
- 7. Discussion

Selection framework

Methods

Figure 10. The proposed scheme for LoRa transmission parameters selection based on GA, FL and MCDM..

... (step 2)
Methods

33 / 50

... (step 3)

Methods

... (step 4)
Methods

Results

Comparison

Table 5

- Introduction
- 2. Academic Survey
- Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- 6. Conclusion

- 1. Adaptive dynamic slicing
- 2. Problem statement
- 3. Background
- 4. Selection framework
- 5. Experimentation
- 6. Results
- 7. Discussion

Experimentation

Experimentation

..... k

Figure 11. .

Experimentation

Experimentation

Inputs:

- → Data structure
 - * Voice, Images and Text transmission.
- → Environment conditions
 - * Rural/Urban
 - * Static/Mobile
 - * Temperature
 - * Interference/Noise
- → QoS metrics:
 - * User layer: Cost
 - * Network metrics: DR, Payload length.
 - * Radio metrics: Receiver sensitivity, SNR, DR, Air time,
- → MAC configuration (SF, CR, BW, Tx)
- Outputs:
 - \rightarrow (SF_i, CR_j, BW_k, Tx_l) optimal

4. Fuzzy C-Means Clustering | 5. Experimentation 38 / 50

- Introduction
- 2. Academic Survey
- Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- 6. Conclusion

- 1. Adaptive dynamic slicing
- 2. Problem statement
- 3. Background
- 4. Selection framework
- 5. Experimentation
- 6. Results
- Discussion

Results

Comparison

Figure 12. Impact of SF on ToA.

Figure 13. Impact of BW on ToA.

Figure 14. Impact of CR on ToA.

Figure 15. ToA distribution.

- Introduction
- 2. Academic Survey
- Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- 6. Conclusion

- 1. Adaptive dynamic slicing
- 2. Problem statement
- 3. Background
- 4. Selection framework
- 5. Experimentation
- Results
- 7. Discussion

Discussion

Figure 16. .

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- 6 Conclusion

- 1. Problem statement
- 2. Contagion process
- 3. Experimentation
- 4. Results exploitation
- 5. Discussion

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- 6. Conclusion

- 1. Problem statement
- 2. Contagion process
- 3. Experimentation
- 4. Results exploitation
- Discussion

Problem statement

Introduction

Figure 17. .

- 1. Introduction
- Academic Survey
- Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- 6. Conclusion

- 1. Problem statement
- 2. Contagion process
- 3. Experimentation
- 4. Results exploitation
- Discussion

... (step 1)
Methods

... (step 2)

Methods

5. Testbed | 2. Contagion process

... (step 3)
Methods

5. Testbed | 2. Contagion process

... (step 4)
Methods

⇒ E

11111

Results

Comparison

Table 6

- 5. Testbed

- 3. Experimentation

Experimentation

Experimentation

Figure 18. .

- Introduction
- 2. Academic Survey
- Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- 6. Conclusion

- 1. Problem statement
- Contagion process
- 3. Experimentation
- 4. Results exploitation
- Discussion

Results

Comparison

⊪ b

Figure 19. .

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Fuzzy C-Means Clustering
- 5. Testbed
- 6 Conclusion

- 1. Problem statement
- Contagion process
- 3. Experimentation
- Results exploitation
- 5. Discussion

Discussion

Figure 20. .

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- Fuzzy C-Means Clustering
- Testbed
- 6. Conclusion

Conclusion

Contributions	Memory	Computation	Dynamic	Optimality	Costs
Contribution 1	1	X	X	X	√
Contribution 1	Х	X	X	✓	X
Contribution 1	1	X	✓	X	X
Contribution 1	1		X	X	X
Contribution 1	✓	✓	✓	✓	√

Table 7

7. Appendix

References

[1]

- V. Prasanna Venkatesan, C. Punitha Devi, and M. Sivaranjani. Design of a Smart Gateway Solution Based on the Exploration of Specific Challenges in IoT. In: 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SIMAC). 2017 International Conference on I-SIMAC (IoT i
- [2] Luca Feltrin et al. LoRaWAN: Evaluation of Link- and System-Level Performance. In: IEEE Internet of Things Journal 5.3 (June 2018), pp. 2249–2258.
- [3] Mattia Rizzi et al. Evaluation of the IoT LoRaWAN Solution for Distributed Measurement Applications. In: IEEE Transactions on Instrumentation and Measurement 66.12 (Dec. 2017), pp. 3340–3349.
- [4] Marco Cattani, Carlo Boano, and Kay Rômer. An Experimental Evaluation of the Reliability of LoRa Long-Range Low-Power Wireless Communication. In: Journal of Sensor and Actuator Networks 6.2 (June 15, 2017), D. 7.
- [5] Samir Dawalibu, Abbas Bradai, and Yannis Pousset. Adaptive Dynamic Network Slicing in LoRa Networks. In: Future Generation Computer Systems 98 (Sept. 2019), pp. 697–707.