MA320 抽象代数 作业四

刘逸灏 515370910207

2018年4月4日

Ex. 2.4/1

没有,根据拉格朗日定理,子群的阶数必定为群阶数的因子,而这里 6 不是 20 的因子。

Ex. 2.4/2

充分性: 当等价关系 $\stackrel{H}{\sim}$ 和 $(\stackrel{H}{\sim})'$ 相等时,对于 $a \in G$,可找出所有由这两个相等等价关系的元素 X 组成的集合,且 $x \in aH, x \in Ha$,可推出左陪集 aH 和右陪集 Ha 也相等,故满足 H 是 G 的正规子群。

必要性: 当 H 是 G 的正规子群时,对于 $a \in G$,可知 aH = Ha,现取 $x \in aH$,则 x 为与 a 有等价关系 $\stackrel{H}{\sim}$ 的元。取 $x \in Ha$,则 x 为与 a 有等价关系 $(\stackrel{H}{\sim})'$,故这连个等价关系相等。

Ex. 2.4/3

 $\forall h \in H, \exists ab, ahb \in aH \cdot bH, (ahb)H = (ab)H, 即 (ab)^{-1}(ahb) = b^{-1}hb \in H$ 。由于 b 和 h 的任意性可知 bH = Hb,即 H 为 G 的正规子群。

Ex. 2.4/5

$$S_3 = \{(1), (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$$

$$K_4 = \{(1), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$$

$$(1)K_4 = \{(1), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$$

$$(1\ 2)K_4 = \{(1\ 2), (3\ 4), (1\ 3\ 2\ 4), (1\ 4\ 2\ 3)\}$$

$$(1\ 3)K_4 = \{(1\ 3), (1\ 2\ 3\ 4), (2\ 4), (1\ 4\ 3\ 2)\}$$

$$(2\ 3)K_4 = \{(2\ 3), (1\ 3\ 4\ 2), (1\ 2\ 4\ 3), (1\ 4)\}$$

$$(1\ 2\ 3)K_4 = \{(1\ 2\ 3), (1\ 3\ 4), (2\ 4\ 3), (1\ 4\ 2)\}$$

$$(1\ 3\ 2)K_4 = \{(1\ 3\ 2), (2\ 3\ 4), (1\ 2\ 4), (1\ 4\ 3)\}$$

$$K_4(1) = \{(1), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$$

$$K_4(1\ 2) = \{(1\ 2), (3\ 4), (1\ 4\ 2\ 3), (1\ 3\ 2\ 4)\}$$

$$K_4(1\ 3) = \{(1\ 3), (1\ 4\ 3\ 2), (2\ 4), (1\ 2\ 3\ 4)\}$$

$$K_4(2\ 3) = \{(2\ 3), (1\ 2\ 4\ 3), (1\ 3\ 4\ 2), (1\ 4\ 4)\}$$

$$K_4(1\ 3\ 2) = \{(1\ 3\ 2), (1\ 4\ 3), (2\ 3\ 4), (1\ 2\ 4)\}$$

由以上计算可得 K_4 是 S_4 的正规子群,且 S_3 为一个左陪集。

Ex. 2.4/6

由 $H\cdot K$ 的定义知 $H\cdot \cdot \cdot K$ 是所有形如 hK 的左陪集的并,因不同的左陪集的交为空集,故其等于群 H 的子群 $H\cap K$ 在 H 中的左陪集个数。 $\forall t\in H\cap K$, $hk=(ht)(t^{-1}k)$, $ht\in H,t^{-1}k\in H\cap K$,故群 H 的子群 $H\cap K$ 在 H 中的左陪集个数和形如 hK 的左陪集个数相等,为 $|H||K|/|H\cap K|$ 。