EM425 Assignment #7

Problem Statements

1. (Based on 8.17) Write a MATLAB user-defined function that determines the first derivative of a function that is given by a set of discrete points with equal spacing. For the function name use yd = FirstDeriv(x,y). The input arguments x and y are vectors with the coordinates of the points, and the output argument yd is a vector with the values of the derivative at each point. At the first and last points, the function should calculate the derivative with three-point forward and backward difference formulas, respectively. At all other points FirstDeriv should use the two-point central difference formula. Use FirstDeriv to calculate the derivative of the function given in the following tabulated data:

х	1.1	1.2	1.3	1.4	1.5
f(x)	0.6133	0.7822	0.9716	1.1814	1.4117

Output the value of $\frac{df}{dx}$ at x = 1.3

2. (Based on 8.18) Write a MATLAB user-defined function that calculates the second derivative of a function that is given by a set of discrete data points with equal spacing. For the function name and arguments use ydd = SecDeriv(x,y), where the input arguments x and y are vectors with the coordinates of the points, and ydd is a vector with the values of the second derivative at each point. For calculating the second derivative, the function SecDeriv should use the finite difference formulas that have a truncation error of $\mathcal{O}(h^2)$. Use SecDeriv for calculating the second derivative of the function that is given by the tabulated data below:

X	-1	-0.5	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5
f(x)	-3.632	-0.3935	1	0.6487	-1.282	-4.518	-8.611	-12.82	-15.91	-15.88	-9.402	9.017

Output the value of $\frac{d^2 f}{dx^2}$ at x = 2.5.

3. (Based on 8.37) A radar station is tracking the motion of an aircraft. The recorded distance to the aircraft, r, and the angle θ during a period of 60s is given in the table below. The magnitude of the instantaneous velocity and acceleration of the aircraft can be calculated by:

$$v = \sqrt{\left(\frac{dr}{dt}\right)^2 + \left(r\frac{d\theta}{dt}\right)^2}, \quad a = \sqrt{\left[\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2\right]^2 + \left[r\frac{d^2\theta}{dt^2} + 2\frac{dr}{dt}\frac{d\theta}{dt}\right]^2}$$

Determine the magnitudes of the velocity and acceleration at the times given in the table. Plot the velocity and acceleration versus time on the same plot with two different y-axes using the built-in MATLAB tool yyaxis. Calculate the derivatives using the FirstDeriv and SecDeriv functions you developed for the previous two problems.

<i>t</i> (s)	0	4	8	12	16	20	24	28
r (km)	18.803	18.861	18.946	19.042	19.148	19.260	19.376	19.495
θ(rad)	0.7854	0.7792	0.7701	0.7594	0.7477	0.7350	0.7215	0.7073
<i>t</i> (s)	32	36	40	44	48	52	56	60
r (km)	19.617	19.741	19.865	19.990	20.115	20.239	20.362	20.484
θ(rad)	0.6925	0.6771	0.6612	0.6448	0.6280	0.6107	0.5931	0.5750

4. (Based on 9.19) Write a user-defined MATLAB function for integration with the trapezoidal method of a function f(x) that is given in a set of n discrete points. The points do not have to be spaced equally. For the function name and arguments use l=IntPointsTrap(x,y), where the input arguments x and y are vectors with the values of x and the corresponding values of f(x), respectively. The output argument x is the value of the integral.

Use the function to estimate the surface area and volume of a wine barrel. The diameter of the barrel is measured at the points provided in the table below. The surface area, S, and volume, V, can be determined by:

$$S = 2\pi \int_0^L r \, dz$$
 and $V = \pi \int_0^L r^2 \, dz$

z (in.)							
d (in.)	28	30.2	31.5	32	31.5	30.2	28

Output the surface area and volume of the barrel.

5. (Based on 9.20) Write a user-defined MATLAB function for integration with Simpson's Rule of a function f(x) that is given in a set of n discrete points that are spaced equally. For the function name and arguments use l=SimpsonPoints(x,y), where the input arguments x and y are vectors with the values of x and the corresponding values of f(x), respectively. The output argument x is the value of the integral. Use the function to compute $\int_0^{1.8} f(x) \, dx$ with tabulated data below:

x	0	0.3	0.6	0.9	1.2	1.5	1.8
f(x)	0.5	0.6	0.8	1.3	2	3.2	4.8

Output the value of the integral in MATLAB.

6. (Based on 9.25) Write a user-defined MATLAB function for integration of a function f(x) in the domain [a,b] with five-point Gauss quadrature. For function name and arguments use I=GaussQuad5ab(Fun,a,b) where Fun is a name for the function that is being integrated, a and b are the lower and upper bounds of the integral and I is the value of the integral. Use the function to calculate the value of the following integral:

$$\int_0^3 e^{-x^2} dx$$

Output the value of the integral in MATLAB.

Solutions:

Problem #1

The first derivative at x = 1.3 is 1.996

Problem #2

The second derivative at x = 2.5 is 4.476

Problem #3

Problem #4

Surface Area: 3457.01 in^2

Volume: 26467.5 in^3

Problem #5

The integral is: 3.13

Problem #6

The integral is: 0.886529