SQL-4 Exercises

1. Using Subqueries

The **orion.Order_Fact** table contains information about orders that were placed by Orion Star Sales staff. Create a report that lists the Sales staff whose average quantity of items sold exceeds the company average quantity of items sold.

- **a.** Write a query that displays the average **Quantity** for all rows in the table.
 - Use **AVG (Quantity)** to calculate the average.
 - Use the orion.Order_Fact table.

PROC SQL Output

- **b.** Write a query that displays **Employee_ID** and **AVG (Quantity)** for those employees whose average exceeds the company average. The query should do the following:
 - Display the values for **Employee_ID** and **AVG (Quantity)**. Name the second column **MeanQuantity**.
 - Use the orion.Order_Fact table.
 - Group the data by **Employee_ID**.
 - Include only groups where the employee's average quantity of items sold exceeds the company average. Use the query from step **1.a.** as a subquery in the HAVING clause.
 - Add a title to the report as shown.

Partial PROC SQL Output

Employees whose Average Exceeds the Company's	•
Employee_ID Me	eanQuantity
120127	2.20
120128	2.00
120134	1.83

2. Using a Noncorrelated Subquery

Each month a memo is posted that lists the employees who have employment anniversaries for that month. Create the report for February and list **Employee_ID** and the first and last names for all employees hired during the month of February of any year.

You can find Employee_Name in the orion. Employee_Addresses table and Employee_Hire_Date in the orion. Employee_Payroll table. Both tables contain the column Employee ID. Order the report by an employee's last name.

a. Create a query that returns a list of employee IDs for employees with a February anniversary. The query should do the following:

- Display **Employee_ID** numbers.
- Use the orion. Employee_Payroll table.
- Return only employees whose **Employee_Hire_Date** isin February.
- Add a title to the report as shown.

Employee IDs for February Anniversaries	
Employee_ID	
120107	
120116	
120136	
120162	
120164	
120167	
120177	
120194	
120267	
120658	
120667	
120671	
120677	
120715	
120719	
120750	
120778	
120806	
121005	
121007	
121022	
121030	
121053	
121070	
121090	
121106	
121130	

- **b.** Using the query in step **2.a.** as a noncorrelated subquery, write a query that displays the employee IDs and names of employees who have February anniversaries. The final query should do the following:
 - Display Employee_ID and split Employee_Name into two new columns: FirstName and LastName. Both new columns should have a length of \$15 and appropriate labels. (See the report below.) The original Employee_Name is stored as Lastname, Firstname.
 - Use the orion. Employee_Addresses table.
 - Select only employee IDs for employees who had February anniversary months.
 - Order the final results by **LastName**.
 - Create an appropriate title.

Employees w	Employees with February Anniversaries		
Employee_ID	First Name	Last Name	
121030	Jeryl	Areu	
121007	John	Banaszak	
120667	Edwin	Droste	
120778	Angela	Gardner	
120194	Reece	Harwood	
121130	Gary	Herndon	
121106	James	Hilburger	
121070	Agnieszka	Holthouse	
120658	Kenneth	Kennedy	
120177	Franca	Kierce	
121090	Betty	Klibbe	
120671	William	Latty	
120136	Atul	Leyden	
121053	Tywanna	Mcdade	
121005	Yuh-Lang	Mclamb	
120715	Angelia	Neal	
120806	Lorna	Ousley	
120116	Austen	Ralston	
120719	Roya	Ridley	
120267	Belanda	Rink	
120162	Randal	Scordia	
120107	Sherie	Sheedy	
120677	Suad	Sochacki	
120164	Ranj	Stamalis	
121022	Robert	Stevens	
120167	Kimiko	Tilley	
120750	Connie	Woods	

3. Creating Subqueries Using the ALL Keyword

In most companies, you can assume that the higher-level job titles have employees that are older than employees with a lower-level job title. Using the orion. Staff table, determine whether there are any lower-level purchasing agents (Purchasing Agent I and Purchasing Agent II) that are older than all the higher-level purchasing agents (Purchasing Agent III). The final report should display Employee_ID, Job_Title, Birth_Date, and a calculated Age column for the employee as of 24Nov2007.

Hint: Use the SAS date constant ('24Nov2007'd) in the calculation for **Age**. If you use the TODAY function to calculate the age, the values might differ from the results below:

	evel I or II Purchasin older than ALL Purchas	• •		
Employee ID	Employee Job Title	Employee Birth Date	Age	
120742	Purchasing Agent I	04FEB1948	59	

4. Using Nested Subqueries

Orion Star Sales managers are interested in rewarding the top sales person at the company. The orion.Order_Fact table contains information about all sales, including the employee ID of the staff member responsible for making the sale. The orion.Employee_Addresses table contains the ID and name of every employee in the company.

Generate a report that shows **Employee_ID** and the respective staff member's calculated total sales figures from the **orion.Order_Fact** table. Calculate the total sales figures by summing the product of **Total_retail_price*Quantity**. The **Employee_ID** number 999999999 is a generic employee ID number that indicates an Internet sale for which no staff member can take credit. Exclude the **Employee_ID** number 999999999 when you determine the employee with the highest total sales.

a. Generate a report that shows Employee_ID and calculated Total_Sales from the orion.Order Fact table.

```
Employee with the Highest Total Sales

Employee_ID Total_Sales

121045 $8,446.70
```

b. Generate another report that displays **Employee_ID** and **Employee_Name** of the employee with the highest sales. The **orion.Employee_Addresses** table contains the employee names.

```
Name of the Employee with the Highest Total Sales

Employee_ID Employee_Name

121045 Hampton, Cascile
```

c. Write a query that combines the two queries above in order to generate a report that adds the Total_Sales column with Employee_ID and Employee_Name and the calculated Total Sales column.

Hint: To solve this problem, you can use an in-line view.

	Employee with the Highest Sales	
Employee Identification Number	Employee Name	Total Sales
121045	Hampton, Cascile	\$8,446.70

5. Creating a Simple Correlated Subquery

Create a report showing **Employee_ID** and the birth month (calculated as **month** (**Birth_date**)) for all Australian employees, using a correlated subquery.

The table orion. Employee_Payroll contains Employee_ID and Birth_Date.

In the subquery, select only **Country** from **orion.Employee_Addresses**. Use a WHERE clause to return only rows where the **EmployeeID** in **orion.Employee_Addresses** matches the **EmployeeID** in **orion.Employee_Payroll**.

Order the report by birth month.

Partial PROC SQL Output

Australian Employees	Birth Mon
	Birth
Employee_ID	Month
120145	1
120198	1
120147	1
120127	1
120191	1

6. Using a Correlated Subquery

Generate a report that displays <code>Employee_ID</code>, <code>Employee_Gender</code>, and <code>Marital_Status</code> for all employees who donate more than 0.02 of their salary. The table <code>orion.Employee_donations</code> contains <code>Employee_ID</code>, quarterly donations (<code>Qtr1-Qtr4</code>), and charities (<code>Recipients</code>). The <code>orion.Employee_Payroll</code> table contains <code>Employee_ID</code> and <code>Salary</code> information.

Partial PROC SQL Output

Employees With Dor	nations > 0.02	2 Of Their Salary
Employee_ID	Employee_ Gender	Marital_ Status
120267	F	M
120680	F	S
120686	F	M
120689	F	S
120753	М	S