Reverse phase HPLC of class I HLA eluted peptide ligands

Fraction number

Ion maps of peptides eluted from various B15 class I sHLA molecules. Mapping was accomplished with a nano-spray reedle and an ESI mass spectrometer. The figure shows that the same ion peak is present in 3 of 4 B15 class I.

FIG.

14*1501 fraction 8 - 517.2 (24 scars) 8*1503 Fraction 8 - 517.2 (42 scaus) S The state of the s 00 2 09 Ô 90 20 0 ş Viscosità # MS/MS fragmentation-sequencing of ion 517.2 rurs. There is also sufficient peptide present to MS/MS sequenced. There is sufficient peptide from the various B15 class I sHLA molecules. second nanospray of the peptides in fraction 8 from the HPLC. This demonstrates how ions This data was accomplished by completing a present to do multiple MS/MS fragmentation separation in the event that two peptides had facilitate a submotif on fraction 8 or further can be MS ion mapped and subsequently mapped at 517.2 in the ion map.

FIG. 3

infected and uninfected cells were compared. Ion 484.72 was unique to the HIV infected cells. Ion 484.72 was subjected to MS/MS fragmentation-sequencing. We called GPRTAALGLL as the sequence of the ligand. We synthesized this peptide and found that it sHLA B*0702 was secreted from HIV infected and uninfected cells. The ion maps of the peptides eluted from sHLA B*0702 in generated the same MS/MS fragmentation pattern as the ligand from HIV infected cells. This MS/MS data on a synthetic ligand matches our experimental data and validates the accuracy of our sequence.

Seis.
[m]
10.00
10
epit.
*
To A
*
TL)
777
The state of
there will
there will
there will
The state of
there will

Western Stern fleten gesten flest freien.
œ
5 0 8
B*1

B*1510

	1		
56789	H 	E I K	
1234	1 H 4 H R 20 H 1		N B SVSXPHAP APFTGGNGX EHVASSPAL HHAPCGVSX NHAIVSTSV GHZNNUDPAX XHSZPAGPAX XHSZPAGPAX CHGANNDPAX XHSZPAGPAX XHSZPAGPAX XHSZPAGPAX SHAGAGVX SHAGAGVX SHAGAGVX SHAGAGVX THDXVX MAGAWCRX EH-XXX EH-XXX EH-XXX CHGGDHVX XHYDRNXX MAGAWCRX THDXVX MAGAWCRX THDXVX MAGAWCRX THDXVX MAGAWCRX THDXVX THCGCHVX THACCOMPX THACOMPX THA
	dominant	strong	
9	, ≽₁ !	Çize I	YMVT F APAVVGYTGF PVPNVRNYRDXY SLXF ALGSZAXMPF VGYVDDTQF DVEGWMSZY AQHPSAXEFZAY GLGZTSAEF NAXGRESSF TARVXSVEY AAFCGXV XLHET ILGPPGSVY XLGDVNMY VMGXTNANF ANVTXZSDF ANTDFSGVSY YNTDPSGVSY
234567	Of FIN R H	мррс гног v A G	FLZAMGSTY GQYVVZPTY PMFDPPZTF XAVGHSGGTYPSY EPAMVXZCF XAHTECPRGY VQGPVGVZY VQGPVGVZY TGAPVSEEGY VQXYYGSVV GQPGAPXGGZY GPPHNGXRAY AAHWHVEAY TPPTRRESY FPTDRRSZF YTGVSYXHF AQASAPDAY GQRKGAGSVE VQYYXPF ATGTAZNXNZY VVACVY PLAZXEY VVACVY PLAZXEY VQGPVGTDF FQARXTEY XQGTVGTDF FQARXTEY XQGTVGTDF FQARXTEY XQGTVGTDF FQARXTEY XQCZX TPAZAF XQGTX TPAZAF
1	dominant -	strong	WDRHTXFWDRHTXF ALGARGY XSVEY AQFASGAGZ -GCDYZARGY ALNGRVTMY DPHAPPZY XAZVATSY RQZHGSAEY FGXACXATSY APMARGZY TGAY GQZZAVDF TPXGEPYZSY GQHASVXSY TPXGEPYZSY GQHASVXSY TVSNHAY NPPAZZPN -O-DPPPDMZY XQAGGSZY SQFGGGSQY SQFGGGSQY SQFGGSQY SQFGGCSQY SQFGGCSY CPLSCFT FLZAMZSTY TVXDSZTHY AQMASEY CPLSCFT FLZAMZSTY TVXDSZTHY AQMAEY TVXDSZTHY AQMAFGHY ALWPZF VYBANAY ALWPZF
7 8 9	X :	Έι Ι Ι	ILGPPGSVY XLGDVNMY APXVSY YMSGXYGTFAVVAZSY MPAGYNNVY XPVVPAAZTY YMIDPSGVSY
123456	1 4 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ዘ ሀ ወ ል መ	AQYAAGESFY TPHTZHDEY YMFWY WVGXXPAT DPEYVSGF ZF VVACVY PLA-N-HTY VVAPITTGY XAXYRRWY PXAMYGVAY -TZSNAY MAAMYGVAY LPP-MPGXAY -TZSNAY MAAMYGVAY LPP-MPGXPY TYV-VR-V FVTXNXEEY GPZVWZHEY FVX-VR-V FVX-VR-V FVXVPY XPEMGZESY YVVTY XPEMGZESY YV
	dominant	strong	WDRHTXFYT XAZYEHTY NGXAMHWTY VPCGZZSY TAZXHRGY NQZHGSAEY TGACHCAYAYAYAYAYAY SQFGGSQY SQFGGSQY SQFGGSQY SQFGGSQY TPXGEPYZSY TVXDSTTY VDXPGFYPGFYPGFY TVXDSZTHY DPSGTZSGFPGFYFGFYFGFYFGFYFGFYFGFYFGFYFGFYFGFYFGFYFGFYFGFYFGFYFGFYFGFYFGFYFGFY

Pooled Peptide Motif

P1 P2 P3 P4 P5 P6 P7 P8 P9
T R P
S E
Q
M
Y
K
K
H

FIG.

Narrowing search parameters using fraction motifs:

Ovarian Carcinoma Immunoreactive Antigen

		SG QSSFVTSPAA		1	
ERRYFAEC	LACMGYFA	KSKYDSSVSG	SAPTGITDH	SVRPMHER	
IGPDYI PTEE	PKY68 PKLI	RSSPP6HYY 2	PIPFSSSMNE	EVSLTQKTDP	
NAEVPRPIPH	LISKGILSSH	GEALRSGGAR	ONEMLPHYE	ELRNKINKESY	
MNGRADFREP	AATSMLITQG	KF KKLENSPL	QSSFVTSPAA	SPKRKNITYE	DTWDE

Scanning with whole-pooled motif revealed 4 putative epitopes.

Ovarian Carcinorna Immunoreactive Antigen

MINGRADFREP	NA EVPRPIPH	IGPDYIPTEE	ERRYFAECND	ESFWFRSYPL
A.A.TSMLITQG	LISKGILSSH	PKY68IPKU	LACMGYFAG	KLSYVKTCQE
KFKKLENSPL	GEALRSGQAR	RSSPPGHYYQ	KSKYDSSVSG	QSSFVTSPAA
GSSFVTSPAA	ONIEMLPHYE	PIPFSSSMINE	SAPTGITDHI	YQGPDPNLEE
SPKRKNITYE	ELRYKNRESY	EVSLTQKTDP	SVRPMHERVP	KKEVKVNKYG
DTWDE				

Scanning with fraction 48 peptide motif revealed 1 putative epitope.

FIG. 8

Motif Data (Edman sequencing)

		- 1										-	5										
	1 % [feld:	2	%	fold	9 e	%	fold	4	%	fold	2	%	fold 6	%	fold	2 - p	- 9%	fold	8	%	fold	6	%
Dominant	II I				ц	076	14318																
3.5 fold				L		097									L								
increase or					Ż																		
more civer				L	W	4.9	5, 10.42												S. Andrews				
prior round																							
														_	_				200			*	
				Ц															Aug-ON				
Strong	K 3.50	Œ	53.80	2.57	2	8.20	3.10	۵	8.30	2.97	100											1	11
2.5-3.5 fold	R 1450 6			_	¥	Ob:9:	2.67												and the				
increase over	1 S 4 H HO 1			_		1.671	3.47																
prior ro and		SUPER CONTRACT		_															2000				
				Ц		100																	
Weak			L	L	¥	5.80	1 2 08				W	4.90	.2.28			i i	7,70	2.12					
2.0-2.5 fold				_															-		E.		
increase over														L	-				2500				
prior round				L											_							2	
				Ц											_				mile:				
Trace		õ	3.60	1.79		P 220	1,194	×	11.00	1.63		9:20	4.99	_	L				o	11.40	1.93		
1.50-2.0 fold								တ	6.00	1.68	14	4.20	1.83	_	L				z	5.70	1.55		
increase over								>	5.30	1.99	I	1.80	191	_	_								
prior round																			stoli				
															L				Assess				
																Name of the last							

FIG. 11

DESIGN OF HLA LIGAND/MOTIF DATABASE

FIG. 12

FIG. 13

Entity-Relationship (ER) Diagram for HLA Ligand/Motif Database

FIG. 14

UML Diagram for HLA Ligand/Motif Database

