Binary Fundamentals

Powers of Two

Power	Decimal	Hexadecimal
21	2	0x00000002
2^2	4	0x00000004
2 ³	8	0x00000008
24	16	0x00000010
2 ⁵	32	0x00000020
2^6	64	0x00000040
27	128	0x00000080
28	256	0x00000100
29	512	0x00000200
2 ¹⁰	1024	0x00000400
211	2048	0x00000800
212	4096	0x00001000

Power	Decimal	Hexadecimal
2^{13}	8192	0x00002000
214	16,384	0x00004000
2 ¹⁵	32,768	0x00008000
216	65,536	0x00010000
2 ¹⁷	131,072	0x00020000
2 ¹⁸	262,144	0x00040000
219	524,288	0x00080000
2^{20}	1,048,576	0x00100000
2^{21}	2,097,152	0x00200000
2^{22}	4,194,304	0x00400000
2^{23}	8,388,608	0x00800000
2^{24}	16,777,216	0x01000000

Logical Complement

NOT ~X 1 Bitwise NOT 1 0 ~X

Logical Identities

Unary	Binary
~x = -x - 1	\sim (x & y) = \sim x \sim y
-x = ~x + 1	~(x y) = ~x & ~y
-~x = x + 1	$\sim (x \land y) = \begin{cases} \sim x \land y \end{cases}$
~-x = x - 1	$\sim (x \wedge y) = \begin{cases} x \wedge \sim y \end{cases}$

Binary Logical Ope	rations			
AND Bitwise AND x & y	x y 0 0 0 1 1 0 1	x & y 0 0 0 1	OR Bitwise OR x y	x y x y 0 0 0 0 1 1 1 0 1 1 1 1
Not AND ~(x & y)	X Y 0 0 0 1 1 0 1 1 1	1 1 1 0	Not OR ~(x y)	x y ~(x y) 0 0 1 0 1 0 1 0 0 1 1 0
AND with complement x & ~y	x y 0 0 0 1 1 0 1 1	x & ~y 0 0 1	OR with complement x ~y	x y x ~y 0 0 1 0 1 0 1 0 1 1 1 1
XOR Exclusive OR	X	x ^ y 0 1 1 1	XNOR Exclusive NOR	x y ~(x ^ y) 0 0 1 0 1 0 1 0 0

0

1

1

~(x ^ y)

1

Bit Manipulation

x ^ y

Formula	Operation / Effect	Illustration
x & (x - 1)	Clear lowest 1 bit. If result is zero, then x is zero or 2^k . 000000 is unchanged.	1 0 1 1 0 0 0 0
x (x + 1)	Set lowest 0 bit. 111…111 is unchanged.	0 1 1 0 0 1 1 1 1 0 0 1 1 1 1
x (x - 1)	Set all bits to right of lowest 1 bit. 000000 becomes 111111.	1 0 1 1 1 0 0 0
x & (x + 1)	Clear all bits to right of lowest 0 bit. If result is zero, then x is zero or $2^k - 1$. 111111 becomes 000000 .	0 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0
x & -x	Extract lowest 1 bit. 000000 is unchanged.	1 0 1 1 1 0 0 0
~x & (x + 1)	Extract lowest 0 bit (as a 1 bit). 111111 becomes 000000.	0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Two's Complement

Special Floating-Point Value	Half	Float	Double
+0.0	0x0000	0×00000000	0x00000000_00000000
+1.0	0x3C00	0x3F800000	0x3FF00000_00000000
Positive infinity	0x7C00	0x7F800000	0x7FF00000_00000000
Smallest positive normalized value	0x0400	0×00800000	0x00100000_00000000
Upper limit of non-integer values	0x6400	0x4B000000	0x43300000_00000000
Largest representable positive value	0x7BFF	0x7F7FFFF	0x7FEFFFFF_FFFFFFF

Mask Creation

Formula	Operation / Effect	Illustration
Formula	Operation / Effect	HUSTLATION
	Create mask for all bits other than lowest 1 bit.	1 0 1 1 1 0 0 0
~x (x - 1)	000···000 becomes 111···111.	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
	Create mask for all bits other than lowest 0 bit.	0 1 1 0 0 1 1 1
x ~(x + 1)	111…111 is unchanged.	1 1 1 1 0 1 1 1
x -x	Create mask for bits left of lowest 1 bit, inclusive.	1 0 1 1 1 0 0 0
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	000⋯000 is unchanged.	1 1 1 1 1 0 0 0
	Create mask for bits left of lowest 1 bit, exclusive.	1 0 1 1 1 0 0 0
x ^ -x	000⋯000 is unchanged.	1 1 1 1 0 0 0 0
~x (x + 1)	Create mask for bits left of lowest 0 bit, inclusive.	
~	111···111 becomes 000···000.	1 1 1 1 1 0 0 0
	Create mask for bits left of lowest 0 bit, exclusive.	0 1 1 0 0 1 1 1
~x ^ (x + 1)	111···111 becomes 000···000.	1 1 1 1 0 0 0 0
	Create mask for bits right of lowest 1 bit, inclusive.	1 0 1 1 1 0 0 0
x ^ (x - 1)	000000 becomes 111111.	0 0 0 0 1 1 1 1
~x & (x - 1)	Create mask for bits right of lowest 1 bit, exclusive.	1 0 1 1 1 0 0 0
~ X & (X - 1)	000···000 becomes 111···111.	0 0 0 0 0 1 1 1
	Create mask for bits right of lowest 0 bit, inclusive.	0 1 1 0 0 1 1 1
x ^ (x + 1)	111···111 is unchanged.	0 0 0 0 1 1 1 1
	Create mask for bits right of lowest 0 bit, exclusive.	0 1 1 0 0 1 1 1
x & (~x - 1)	111111 is unchanged.	