

AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH (AIUB)

Faculty of Engineering Department of EEE and CoE Undergraduate Program

COURSE PLAN

FALL 2021-2022 SEMESTER

I. Course Core and Title

EEE 3101: Digital Logic and Circuits

II. Credit

3 credit hours (3 hours of theory per week)

III. Nature

Core Course for EEE

IV. Prerequisite

EEE 2103: Electronic Devices

V. Mission of Faculty of Engineering: To develop engineers with highest level of commitment toward the betterment of the society by applying science and technology To nurture young leaders with perspectives and ethics To create and disseminate state of the art knowledge and technical skills with problem solving attitude for a sustainable society

VI. Vision of Faculty of Engineering: The Faculty of Engineering will endeavor to nurture young engineers for innovation and creativity dedicated to problem solving and lifelong learning for research, entrepreneurship, and professionalism with respective communities.

VII - Course Description:

This is core course of Electrical and Electronic Engineering & Computer Engineering program that presents basic tools for the design of digital circuits. It serves as a building block in many disciplines that utilize data of digital nature like digital control, data communication, digital computers etc.

This course is designed to:

Manipulate Boolean algebraic structures, Implement the Boolean Functions using NAND and NOR gates, Simplify the Boolean expressions using Karnaugh Map, Analyze and design various combinational logic circuits, Study of Storage Elements: Introduction to the behavior and structure of latches, flip-flops, and registers, Understand the importance of state diagram representation of sequential circuits, Study Sequential Circuits: Analyze and design clocked sequential circuits, Perform Timing Analysis: Introduction to timing analysis of combinational and sequential circuits. Special characteristics of Digital logic families and their comparative discussion. Definition and Problem solving on Fan out, Noise Margin, Propagation Delay, Power Dissipation, Duty Cycle and Speed Power Product. Diode Logic Gates. Basic Diode Transistor Logic Gates: RTL, DTL, Modified DTL and HTL with operational detail.

MOS and CMOS Logic with operational detail. Basic memory units and operations. Memory system: RAM Family. Memory System: ROM Family. Memory System: Flash Memory, Magnetic storage, USB Flash Drive, SSD hard drive. DSP basics: Sample and Hold circuits. Digital to Analog Conversion with application. Analog to Digital Conversion with application. Operation and Mathematical operation of 555 integrated timer circuit: Monostable, Astable multi-vibrator. Introduction to Programmable Logic Devices (PLDs): Advantages & disadvantages over discrete logic gates, Implementation of digital circuits using PLDs (using PAL and PLA).

VIII - Course Outcomes (CO) Matrix:

By the end of this course, students should be able to –

			evel					Delivery	Assessed	
COs	Details		oma		K	P	A		Program	Assessment
		С	P	A				and activities	Outcomes (PO) [#]	
CO1	Remember characteristics of							wettytties	(10)	
	various logic gates,									
	techniques of simplification									
	of expressions using Boolean									
	algebra/k-map, techniques of								27/4	
	drawing logic gate circuits	1							N/A	
	(both gate and transistor									
	level), and special	- 1	0	M	Δ.	TI	\cap	A		
	characteristics of logic	5	n	14			V,	VA.		
	families.		_	_				777		
CO2	Understand the applications	~	a	At	:5	ID	177	10	7.	
	of Boolean algebra	Y	10		Α		_	W/	\sim	
	simplification and apply							`		
	appropriate techniques to								151	
	design digital logic circuits	_							14.	\
	(Combinational Logic						3	10	100	\
	Circuits like, adder, 2's	7	Y	7			,	(= 1	/ረበ	10+10
	complement, magnitude	2		_ \	\		9.	2.5 /	N/A	P 1
	comparator, encoder/		~		4.7		1	. /	-	Quiz 3, Q4
	decoder, multiplexer/						-	- /		
	demultiplexer) at gate level							/		-
	and transistor level (using					7		/		
	RTL, DTL, TTL, CMOS),		Г	1		П		/	2/	/
	negative temperature co-		Į	JL		Ш		/	7/	/
	efficient for MOSFET	1	Ľ	15	7	4		/ .	>/	/
CO3	Formulate solutions of a			1	10.55	388	2 /	6.	7///	
	complex engineering problem	r		12				CIA	/ /	
	with conflicting requirements				_	P1		2./		
	by applying information,	3		1	3	P2	,		P.a.3.C3	In Class
	concepts and procedures in		_	. "	9	P6		511		Assignment
	engineering fundamentals of		Az			A 1º	E	STI		
	digital logic and circuits at		W	G	L	AL) [-		
CO4	gate and transistor level.			-1						
CO4	Remember Logic Gate Diagrams, Truth-Table &									
	Diagrams, Truth-Table & Timing Diagrams for Latches									
	& Flip-Flops, techniques of									
	drawing timing diagrams of	1							N/A	10
	sequential logic circuits,	1							1 1/ 11	Final Q2
	concept of memory and									
	memory devices, sampling,									
	filtering and quantization.									
CO5	Understand applications of									
	Flip-flops, methods of								N/A	
	conversion of digital signals	~							,,==	

to analog signals and vice-					
versa and timer operation.					

Level of Domain (C: Cognitive; P: Psychomotor; A: Affective)

IX – Topics to be Covered*:

Time Frame	СО	Topics	Teaching Activities	Assessment	Evidence
Week 1	CO1	Mission & Vision of AIUB, Dept. of EEE, Digital Logic Design meaning and objectives of this course *Introduction to Integrated Circuit (IC). *Special Characteristics of digital logic families *Binary Logic, Logic gates and their truth table *Diode Logic gates Basics of semiconductor memory * Logic Gates: using RTL, Solutions of RTL Logic family mathematical problems	Lecture Tutorial	TL ()	Quiz
Week 2	CO1, CO2	*Logic Gates: using DTL and Modified DTL. *Problem solving on Fan of DTL gate. and Modified DTL gate *Logic Gates: using HTL *MOS and CMOS logic with operation detail. *Negative temperature coefficient *Design CMOS logic circuits from equation	Lecture Tutorial	*Calculation- based question: test/project/ mid-term exam *Theoretical- based question: test/project/ mid-term	UNUERSIT
Week 3	CO1	Boolean algebra, Simplification of logic function using Boolean Algebra, Implementing circuit from Boolean expressions De-Morgan's law Universal gates and Implementation of Basic Combinational Logic Circuits using Universal Gates only	Lecture Tutorial	exam	Quiz
Week 4	CO2	Simplifying Boolean Expression using algebraic manipulation Boolean expression in Sum of Product (SOP) and Product of Sum (POS) form, Canonical forms	Lecture Tuto ri al	94 ADESH	

K: Knowledge Profile; P: Range of Complex Engineering Problem Solving; A: Range of Complex Engineering Activities

^{*} Culminating CO for PO attainment

[#] For details please check the appendix A

		Standardization of SOP/POS			
		expressions and conversions			
		between them			
		Simplifying Boolean Expressions			
		using K – map			
		*Adder: Half adder, Full adder,			
		2's complement			
Week 5	CO1	*Magnitude Comparators	Lecture		
WCCK 3	COI	*Decoders, Encoders, Priority	Tutorial		
		Encoders, Cascading of			Quiz/
		Decoders, Encoders			Assignment/Term
		*Multiplexers, De-Multiplexer			Exam
		Boolean Function	Lecture		
Week 6	CO2	implementation using	Tutorial		
		Multiplexers, Cascading of	TION		
		Multiplexers, De-Multiplexers	110/	4	
Week 7		MID-TE	RM EXAM W	VEEK	
		*Compatial I sais Cir-it	BINITA	\\(\alpha_{\alpha_{\alpha}}\)	
Week 8	CO4	*Sequential Logic Circuit,	Lecture	\1/_	
week o	CO4	*Different types of Flip – flop (S-R, J-K, D and T), Timing Diagram	Tutorial	\'_	. \
	-/	*Counters: Asynchronous		1/2	$\alpha \setminus$
	/	(Cascading and Modulus Counter)		/ \!	d \
	//	and Synchronous (Cascading)	577	. / \	10
	/:	State Diagram, Table, Equation	= 0	- /	07
Week 9	/=	[oute Biagram, Table, Equation]	Lecture		
WCCK	CO4	*Designing Irregular Counters	Tutorial	/	
		using State Diagram and State		/	-<
		Equation		/	
	\	13 \	nh.	1 01	
	1	Binary Up-Down counter [State	111 /	*Calculation-	/
	\	Diagram, Table, Equation]	3 /	based	/
Week	\	*Shift registers: Basic Shift	Lecture	question:	/
10	CO5	Register Functions, Different	Tutorial	test/project/	
10		types of Shift Registers	Tutonai	final exam	
		*Shift register Counters: Johnson	0.4	*Theoretical-	
		counter, Ring counter	94	based	Quiz
		*Memory Systems: read, write		question:	
		operations	VDF2	test/project/	
W7 1		*RAM family, ROM family	70	final exam	
Week 11	CO4	Flash memory programming, read	Lecture		
11		& erase operation. Magnetic Storage: Hard Disk Drive (HDD),	Tutorial		
		SSD R-L transient: Storage cycle;			
		Related Problems.			
		*Operation of 555 integrated			
		timer circuit: Monostable,			
		Astablemultivibrator			
Week	CO4,	*Introduction to Programmable	Lecture		In Class
12	CO5	Logic Devices (PLDs):	Tutorial		Assignment
		Advantages and disadvantages of			
		PLDs over discreet logic gates.			
		*Classification of PLDs			
		I .	1	1	1

Week 13	CO3, CO4, CO5	Converter with application	Lecture Tutorial		
Week 14	FINAL-TERM EXAM WEEK				

^{*} The faculty reserves the right to change, amend, add or delete any of the contents.

X – Course Requirement:

At least 80% class attendance is necessary to sit for the exam. If there is any assignment given to the students, they have to submit it before the deadline decided by the course teacher.

XI - Evaluation Grading System:

The evaluation system will be strictly followed as par the AIUB grading policy. The following grading system will be strictly followed in this class.

Marking system For Theory (Classes
(Midterm)	
Attendance	10%
Midterm: Assignment (Not OBE)	10%
Quiz (10 mcq) (best 2 out of 3)	40%
Midterm: MCQ 20%+ Written20%	40%
Total	100%

Marking system For Theory Classes (Final				
term)				
Attendance	10%			
Final term: OBE assessed assignment	30%			
Quiz (10 mcq) (best 1out of 2)	10%			
Final Term: MCQ 15%+ Written15%	30%			
Project presentation + Viva (max. 4	20%			
members)	2070			
Total	100%			
Final Grade/ Grand Total				
Midterm:	40%			
Final Term:	60%			

Letter	Grade Point	Numerical %
A+	4.00	90-100
A	3.75	85-<90
B+	3.50	80-<85
В	3.25	75-<80
C+	3.00	70-<75
C	2.75	65-<70
D+	2.50	60-<65
D	2.25	50-<60
F	0.00	<50(Failed)

XII - COs and POs Assessment

COs Assessment Tools for Mid-Term

Assessment Too	ols	CO1 Marks	CO2 Marks	Marks for Grading
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Not counted	Not counted	4.0
Attendance and Performance		for	for	10
		Assessment	Assessment	
Assignment	15	15	30	
Quiz 1 [10 marks]	Count Best	10	10	20
Quiz 2 [10 marks]	2 out of 3			
Mid-Term Assessment MCQ + Written	ERNATIO	Not Assessed	Not Assessed	40
Total	PAESIDI	25	25	100

COs Assessment System for Final-Term

Assessment Tools	CO3 Marks	CO4 Marks	CO5 Marks	Marks for Grading
Attendance and Performance	Not counted for Assessment	Not counted for Assessment	Not counted for Assessment	10
Special In-Class Activity for assessing P.a.3.C3 in any week of final term.	30	Not counted for Assessment	Not counted for Assessment	30
Quiz 1 [10 marks] Count Best	Not counted for Assessment	Not counted for Assessment	Not counted for Assessment	20
Quiz 2 [10 marks]	Not counted for Assessment	Not counted for Assessment	Not counted for Assessment	20
Final Term Assessment Presentation + VIVA	Not counted for Assessment	20	20	40
Total	30	20	20	100

Mid-Term:

CO1 Marks: 25 CO2 Marks: 25

Final Term:

CO3 Marks: 30 CO4 Marks: 20 CO5 Marks: 20

Total P.a.3.C3 Marks from midterm and final term: 30

XIII - Teaching Method

Formal lectures will provide the theoretical base for the subject as well as covering its practical application. A set of lecture notes, tutorial examples, with subsequent discussion and explanation, together with suggested reading will support and direct the students in their own personal study.

Maximum topics will be covered from the textbook. For the rest of the topics, reference books will be followed. Some Class notes will be uploaded on the web. White board will be used for most of the time.

For some cases, multimedia projector will be used for the convenience of the students.

Students must study up to the last lecture before coming to the class and it is suggested that they should go through the relevant chapter before coming to the class. Just being present in the class is not enough-students must participate in classroom discussions.

Few assignments will be given to the students based on that class to test their class performance.

XIV - Textbook/ References

Textbooks:

- [1] Thomas L. Floyd, "Digital Fundamentals" 9th edition, Prentice Hall.
- [2] M. Morris Mano, "Digital Logic & Computer Design" Prentice Hall.

References:

- [1] Ronald J. Tocci & Neal S. Widmer, "Digital Systems" 7th edition, Prentice Hall.
- [2] Digital design Karim and Johnson
- [3] Brian Holdsworth and Clive Woods, "Digital Logic Design"-Fourth Edition.
- [4] Stephen Brown and Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design with CD-ROM"
- [5] William J. Dally and R. Curtis Harting, "Digital Design: A Systems Approach"
- [6] Victor P. Nelson, H. Troy Nagle, Bill D. Carroll and David Irwin, "Digital Logic Circuit Analysis and Design"
- [7] John P. Hayes, "Introduction to Digital Logic Design"
- [8] Norman Balabanian and Bradley Carlson, "Digital Logic Design Principles"
- [9] Enoch O. Hwang, "Digital Logic and Microprocessor Design with VHDL"
- [10] Joseph Cavanagh, "Digital Computer Arithmetic: Design and Implementation (Computer Science)"

XV - List of Faculties Conducting Theory

- 1. Mr. Dr. Md. Abdur Rahman
- 2. Mr. Nafiz Ahmed Chisty
- 3. Mr. Asif Mahfuz
- 4. Mr. Kawshik Shikder
- 5. Mr. Sujan Howlader
- 6. Ms. Tahseen Asma Meem
- 7. Mr. Abir Ahmed
- 8. Mr. Md. Shahariar Parvez

4 JESH

XVI – Verification:

Prepared by:	Checked and certified by:	Approved by:
Md. Shahariar Parvez	Nafiz Ahmed Chisty	Prof. Dr. A B M Siddique
Lecturer	Head In-Charge, Dept. of EEE,	Hossain
Course Coordinator	Faculty of Engineering	Dean, Faculty of Engineering
Date:	Date:	Date:
	Moderated by:	Moderated by:
(N)	Date:	Date:

Appendix A

Table 1: Knowledge Profile (according to BAETE Manual 2nd Edition)

Attribute	
K 1	A systematic, theory-based understanding of the natural sciences applicable to the
	discipline
K2	Conceptually based mathematics, numerical analysis, statistics and the formal aspects
	of computer and information science to support analysis and modeling applicable to
	the discipline
K3	A systematic, theory-based formulation of engineering fundamentals required in the
	engineering discipline
K4	Engineering specialist knowledge that provides theoretical frameworks and bodies of
	knowledge for the accepted practice areas in the engineering discipline; much is at the
	forefront of the discipline
K5	Knowledge that supports engineering design in a practice area
K6	Knowledge of engineering practice (technology) in the practice areas in the
	engineering discipline
K7	Comprehension of the role of engineering in society and identified issues in
	engineering practice in the discipline: ethics and the engineer's professional
	responsibility to public safety; the impacts of engineering activity; economic, social,
	cultural, environmental and sustainability
K8	Engagement with selected knowledge in the research literature of the discipline

Table 2: Range of Complex Engineering Problem Solving (according to BAETE Manual 2nd Edition)

Attribute	Complex Engineering Problems have characteristic P1 and some or all of P2 to P7:
Depth of knowledge required	P1: Cannot be resolved without in-depth engineering knowledge at the level of one or more of K3, K4, K5, K6 or K8

	which allows a fundamentals-based, first principles analytical approach		
Range of conflicting	P2: Involve wide-ranging or conflicting technical, engineering and other issues		
requirements	and other issues		
Depth of analysis required P3: Have no obvious solution and require abstract thinkin originality in analysis to formulate suitable models P4: Levelve information and require abstract thinking originality in analysis to formulate suitable models			
Familiarity of issues	P4: Involve infrequently encountered issues		
Extent of applicable codes	P5: Are outside problems encompassed by standards and codes of practice for professional engineering		
Extent of stakeholder	P6: Involve diverse groups of stakeholders with widely varying		
involvement and conflicting	needs		
requirements			
Interdependence	P7: Are high level problems including many component parts or sub-problems		

Table 3: Range of Complex Engineering Activities (according to BAETE Manual 2nd Edition)

Attribute	Complex activities means (engineering) activities or projects that have some or all of the following characteristics:		
Range of resources	A1: Involve the use of diverse resources (and for this purpose		
	resources include people, money, equipment, materials,		
	information and technologies)		
Level of interaction	A2: Require resolution of significant problems arising from		
	interactions between wide-ranging or conflicting technical,		
	engineering or other issues		
Innovation	A3: Involve creative use of engineering principles and researchbased		
/	knowledge in novel ways		
Consequences for society	A4: Have significant consequences in a range of contexts,		
and the environment	characterized by difficulty of prediction and mitigation		
Familiarity	A5: Can extend beyond previous experiences by applying		
/ 0~	principles-based approaches		

Program Outcomes (according to BAETE Manual 2nd Edition)

PO (a): Engineering Knowledge

Apply knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization as specified in KP1 to KP4 respectively to the solution of complex engineering problems

Indicators ID	Indicators Definition	Domain	KP	СР	CA
P.a.1.C3	Apply information and concepts in <u>natural science</u> with the familiarity of issues.	Cognitive Level 3 (Applying)	K1		
<u>P.a.2.C3</u>	Apply information and concepts of <u>mathematics</u> to solve complex engineering problems with a range of conflicting requirements.	Cognitive Level 3 (Applying)	К2	CP1, CP2	
<u>P.a.3.C3</u>	Apply information and concepts in engineering fundamentals with the familiarity of issues.	Cognitive Level 3 (Applying)	К3		

<u>P.a.4.C3</u>	Apply information and concepts in specialized engineering sciences with	Cognitive Level 3	K4	CP1, CP3	
	the in-depth of analysis of a complex engineering problem.	(Applying)			

PO (b): Problem Analysis

Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences. (K1 to K4).

Indicators ID	Indicators Definition	Domain	KP	СР	CA
P.b.1.C4	Identify and relate first principles	Cognitive Level	K1,	CP1,	
	of mathematics, natural sciences	4	K2,	CP6	1
	and engineering sciences to solve	(Analyzing)	К3		1
	complex engineering problems.				1
P.b.2.C4	Formulate solutions, procedures,	Cognitive Level		CP1,	
	and methods to solve complex	4 (Analyzing))		CP4	1
	engineering problems	VA			
P.b.3.C4	Analyze and solves complex	Cognitive Level	K4	CP1,	1
	engineering problems reaching	4 (Analyzing)		CP2	1
/ %	substantiated conclusion		1		1
P.b.4.C5	Research literature and Critically	Cognitive Level	K4	/	
/ - X	evaluates the validity and	5 (Evaluating)			Ì
/ (0)	accuracy of existing solution		1-	1	Ì
	methods using specialized		18	20 /	1
10~1	engineering knowledge.		- 1	1	

PO (c): Design/ development of solutions

Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations. (K5).

Indicators ID	Indicators Definition	Domain	КР	СР	CA
P.c.1.C2	Identify the different components or processes of	Cognitive Level 2 (Understanding)	:/	CP1, CP7	/
	complex engineering problems.	/ 47			
P.c.2.C3	Develop solution for different	Cognitive Level 3		CP1,	
	components of complex	(Applying)		CP7	
	engineering problem.	~ /			
P.c.3.C4	Develop probable solutions that	Cognitive Level 4	K5		
	meet specified needs with	(Analyzing)			
	appropriate consideration for	-cM/			
	public health and safety, culture,	F31/			
	societal and environmental				
	considerations.				

PO (d): Investigation

Conduct investigations of complex problems using research-based knowledge (K8) and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.

Indicators ID	Indicators Definition	Domain	KP	СР	CA
P.d.1.P3	Design Experiment to test complex engineering problem for certain constrains through appropriate research.	Psychomotor Level 3 (Precision)	K8	CP1, CP2	

P.d.2.C4	Analysis and Interpretation of collected data to provide valid conclusion acknowledging the limitations.	Cognitive Level 4 (Analyzing)		
P.d.3.C6	Develop and Synthesis of complex engineering problems using substantial engineering knowledge	Cognitive Level 6 (Creating)	CP1, CP4	

PO (e): Modern Tool Usage

Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations. (K6).

Indicators ID	Indicators Definition	Domain	KP	СР	CA
P.e.1.C3	Select and Apply appropriate techniques to solve complex engineering problems using modern engineering tools considering the limitations.	Cognitive Level 3 (Applying)		CP1, CP2	
P.e.2.P4	Use engineering tools for prediction and modeling of complex engineering problems considering the practice in electrical and electronic engineering discipline.	Psychomotor Level 4 (Articulation)		CP1, CP5	
<u>P.e.3.P5</u>	Create relevant resources for complex engineering problems using modern engineering tools.	Psychomotor Level 5 (Naturalization)	K6	CP1, CP7	

PO (f): The Engineer and Society

Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems. (K7)

					- 1
Indicators ID	Indicators Definition	Domain	KP	СР	CA
P.f.1.A3	Accepts and Recognize the role of engineering in society, health, safety, legal and culture.	Affective Level 3 (Valuing)			
P.f.2.C5	Design solution for complex engineering problem in accordance with professional practices	Cognitive Level 5 (Evaluating)	K7	CP1, CP3	

PO (g): Environment and Sustainability

Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts. (K7)

Indicators ID	Indicators Definition	Domain	KP	СР	CA
P.g.1.C5	Evaluate sustainability of complex engineering problems considering society and environment.	Cognitive Level 5 (Evaluating)	K7	CP1, CP2	

P.g.2.C5	Identify impact on society	Cognitive Level	K7	
	and environment for	5 (Evaluating)		
	professional engineering			
	solutions.			

PO (h): Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. (K7)

Indicators ID	Indicators Definition	Domain	KP	СР	CA
P.h.1.A5	Demonstrates knowledge of ethical standards (i.e. Code of Ethics)	Affective Level 5 (Characterization)			
P.h.2.A4	Demonstrates individual responsibilities based on norms of engineering practice.	Affective Level 4 (Organization)	K7		

PO (i): Individual and Team work

Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.

Indicators ID	Indicators Definition	Domain	КР	СР	CA
P.i.1.A2	Function as effective team leader/member in multidisciplinary problems.	Affective Level 2 (Responding)		115	
P.i.2.A2	Displays good interpersonal skills as a member/leader.	Affective Level 2 (Responding)	3/	A	
P.i.3.A5	Demonstrate individual skills in solving multi-disciplinary problems.	Affective Level 5 (Characterization)			

PO (j): Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

Indicators ID	Indicators Definition	Domain	KP	СР	CA
<u>P.i.1.A2</u>	Demonstrates an ability to effectively give and respond to clear instructions.	Affective Level 2 (Responding)			CA1, CA3
P.j.2.P3	Produces written engineering reports by applying principle based approaches and design documentation on complex engineering activities for different stake holders.	Psychomotor Level 3 (Precision)			CA1, CA5
<u>P.i.3.A2</u>	Perform effective oral presentation on complex engineering activities.	Affective Level 2 (Responding)			CA2, CA4

PO (k): Project Management and Finance

Demonstrate knowledge and understanding of engineering management principles and economic decision making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

Indicators ID	Indicators Definition	Domain	KP	СР	CA
<u>P.k.1.P4</u>	Apply engineering management principles and economic decision making to solve engineering projects as a team.	Psychomotor Level 4 (Articulation)			
<u>P.k.2.P4</u>	Manage multi-disciplinary projects as a member/leader.	Psychomotor Level 4 (Articulation)			
P.k.3.A5	Demonstrate competency in completing individual engineering project based on relevant management principles and economic models.	Affective Level 5 (Characterization)			

PO (I): Lifelong learning

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Indicators ID	Indicators Definition	Domain	KP	СР	CA
P.I.1.A1	Investigate and gather information on a given engineering issue.	Affective Level 1 (Receiving)	/,	/	
P.I.2.A4	Seek and use resources in solving engineering problems.	Affective Level 4 (Organization)	$X^2/$		
P.I.3.A5	Recognizing the need for continuing education and participation in professional societies and meetings.	Affective Level 5 (Characterization)	/	1	

