Problemi con Corpi Rigidi (4)

1. Una puleggia, assimilabile ad un disco rigido di massa $m_1=0.5\,\mathrm{kg}$, è fissata per il suo perno

ad un piano inclinato tramite un file inestensibile e di massa trascurabile di lunghezza pari al doppio del raggio del disco stesso. Una massa $m_2=0.5$ kg è collegata ad un filo avvolto attorno alla puleggia, allineato parallelamente al piano, e può scivolare con attrito trascurabile suo piano stesso che è inclinato di un angolo $\theta=60^\circ$ rispetto all'orizzontale. La puleggia, strisciando sul piano, risente di una forza di attrito dinamico di modulo $f_{ad}=2$ N, mentre il perno attorno al quale ruota è liscio. Calcolare, nel suo moto causato dalla forza peso:

- a) il modulo a_2 dell'accelerazione di m_2 e la tensione T_2 del filo al quale essa è collegata;
- b) la tensione T_1 del filo collegato al perno del disco
- c) il coefficiente di attrito dinamico μ_d .

2. Una sfera rigida omogenea di raggio $R=0.15~{\rm m}$ e massa $m_1=24~{\rm kg}$ è appoggiata su un piano orizzontale; tra i due corpi c'è attrito e il coefficiente di attrito statico è $\mu_s=0.2$. Nella sfera è praticata una piccola scanalatura, di raggio $r=0.06~{\rm m}$, trascurabile a tutti gli effetti. Nella scanalatura è avvolto un filo teso inestensibile che sostiene un corpo di massa m_2 , come mostrato in figura. Tramite la forza orizzontale F applicata nella scanalatura, è possibile mantenere il sistema in equilibrio statico. Determinare:

a) il massimo valore $m_{2,max}$ di m_2 che consente l'equilibrio del sistema e il corrispondente valore di F.

Poi si recide il legame con m_2 e la sfera avanza verso destra sotto l'azione della forza F. Determinare:

b) se il moto è o no di puro rotolamento.