

NT7703

160 Output LCD Segment/Common Driver

Features

(Segment mode)

- Shift Clock frequency: 14 MHz (Max.) (VDD = 5V ± 10%) 8 MHz (Max.) (VDD = 2.5V - 4.5V)
- Adopts a data bus system
- 4-bit / 8-bit parallel input modes are selectable with a mode (MD) pin
- Automatic transfer function with an enable signal
- Automatic counting function when in "chip select" mode, which causes the internal clock to be stopped by automatically counting 160 bits of input data

(Common mode)

- Shift clock frequency: 4.0MHz (Max.)
- Built-in 160-bits bidirectional shift register (divisible into 80-bits x 2)

General Description

The NT7703 is a 160-bit output segment/common driver LSI suitable for driving the large scale dot matrix LCD panels used by PDA's, personal computers and work stations for example. Through the use of COG technology, it is ideal for substantially decreasing the size of the frame section of the LCD module. The NT7703 is good as both a segment driver and a common driver, and a low power consuming, high-

 Available in a single mode (160-bits shift register) or in a dual mode (80-bits shift register x 2)

1. $Y1 \rightarrow Y160$ Single mode 2. $Y160 \rightarrow Y1$ Single mode 3. $Y1 \rightarrow Y80$, $Y81 \rightarrow Y160$ Dual mode 4. $Y160 \rightarrow Y81$, $Y80 \rightarrow Y1$ Dual mode The above 4 shift directions are pin-selectable

(Both segment mode and common mode)

- Supply voltage for LCD drive: 15.0 to 30.0V
- Number of LCD driver outputs: 160
- Low output impedance
- Low power consumption
- Supply voltage for the logic system: +2.5 to +5.5V
- COMS process
- Package: Gold bump die / 186 Pin TCP (Tape Carrier Package)
- Not designed or rated as radiation hardened

precision LCD panel display can be assembled using the NT7703. In the segment mode, the data input is selected as 4bit parallel input mode or as 8bit parallel input mode by a mode (MD) pin. In common mode, the data input/output pins are bi-directional and the four data shift directions are pin-selectable.

Pin Configuration

V1.0

1

Pad Configuration

Block Diagram

Pad Description

Pad No.	Designation	I/O	Description
1 - 7	Vol	Р	Power supply for LCD driver
8 - 12	V12L	Р	Power supply for LCD driver
13 - 17	V43L	Р	Power supply for LCD driver
18 - 22	V5L	Р	Power supply for LCD driver
23 - 39	Vss	Р	Ground (0V), these two pads must be connected to each other
40 - 41	L/R	I	Display data shift direction selection
42 - 57	VDD	Р	Power supply for the logic system (+2.5 to + 5.5V)
58 - 59	S/C	I	Segment mode / common mode selection
60 - 61	EIO2	I/O	Input / output for chip select or data of shift register
62, 63 - 74, 75	D0 - D6	I	Display data input for segment mode
76 - 77	D7	I	Display data input for Segment mode / Dual mode data input
78 - 79	XCK	I	Display data shift clock input for segment mode
80 - 81	DISPOFF	I	Control input for deselect output level
82 - 83	LP	I	Latch pulse input / shift clock input for the shift register
84 - 85	EIO1	I/O	Input / output for chip select or data of the shift register
86 - 87	FR	I	AC-converting signal input for LCD driver waveform
88 - 89	MD	I	Mode selection input
90 - 106	Vss	Р	Ground (0V), these two pads must be connected to each other
107 - 111	V5R	Р	Power supply for LCD driver
112 - 116	V43R	Р	Power supply for LCD driver
117 - 121	V12R	Р	Power supply for LCD driver
122 - 128	Vor	Р	Power supply for LCD driver
129 - 288	Y1 - Y160	0	LCD driver output

Input / Output Circuits

Input Circuit (1)

Input Circuit (2)

Input / Output Circuit

LCD Driver Output circuit

Pad Description

Segment mode

Symbol	Function
VDD	Logic system power supply pin connects from +2.5 to +5.5V
Vss	Ground pin connects to 0V
Vor, Vol V12R, V12L V43R, V43L V5R, V5L	Power supply pin for LCD driver voltage bias ■ Normally, the bias voltage used is set by a resistor divider ■ Ensure that the voltages are set such that Vss ≤ V5 < V43 < V12 < V0 ■ To further reduce the differences between the output waveforms of the LCD driver output pins Y1 and Y160, externally connect Vir and Vil (I = 0, 12, 43)
D ₀ - D ₇	Input pin for display data ● In 4-bit parallel input mode, input data into the 4 pins Do - D3. Connect D4 - D7 to Vss or VDD ● In 8-bit parallel input mode, input data into the 8 pins Do - D7
XCK	Clock input pin for taking display data • Data is read on the falling edge of the clock pulse
LP	Latch pulse input pin for display data ■ Data is latched on the falling edge of the clock pulse
L/R	Direction selection pin for reading display data ■ When set to Vss level "L", data is read sequentially from Y160 to Y1 ■ When set to Vpp level "H", data is read sequentially from Y1 to Y160
DISPOFF	 Control input pin for output deselect level The input signal is level-shifted from the logic voltage level to the LCD driver voltage level, and controls the LCD driver circuit When set to Vss level "L", the LCD driver output pins (Y1 - Yl60) are set to level V5 When DISPOFF is set to "L", the contents of the line latch are reset, but the display data in the data latch are read regardless of the condition of DISPOFF. When the DISPOFF function is canceled, the driver outputs the deselect level (V12 or V43), then outputs the contents of the date latch onto the next falling edge of the LP At that time, if the DISPOFF removal time can not keep in regulation with what is shown on the AC characteristics, then it can not output the reading data correctly
FR	AC signal input for LCD driving waveform ■ The input signal is level-shifted from the logic voltage level to the driver voltage level, and controls LCD driver circuit ■ It normally inputs a frame inversion signal The LCD driver output pin's output voltage level can be set to the line latch output signal and the FR signal
MD	Mode selection pin ■ When set to Vss level "L", 4-bit parallel input mode is set ■ When set to Vpp level "H", 8-bit parallel input mode is set

Segment mode continued

Symbol	Function
S/C	Segment mode/common mode selection pin When set to VDD level "H", segment mode is set When set to Vss level "L", common mode is set
EIO1, EIO2	Input/output pin for chip selection • When L/R input is at Vss level "L", EIO1 is set for output, and EIO2 is set for input • When L/R input is at Vpb level "H", EIO1 is set for input, and EIO2 is set for output • During output, it is set to "H" when LP* XCK is "H" and then after 160-bits of data have been read, it is set to "L" for one cycle (from falling edge to falling edge of XCK), after which it returns to "H" • During input, after the LP signal is input, the chip is selected while EI is set to "L". After 160-bits of data have been read, the chip is deselected
Y1 - Y160	LCD driver output pins These correspond directly to each bit of the data latch, one level (Vo, V12, V43, or V5) is selected and output

Common mode

Symbol	Function
VDD	Logic system power supply pin connects from +2.5 to +5.5V
Vss	Ground pin connects to 0V
V0R, V0L V12R, V12L V43R, V43L V5R, V5L	Power supply pin for LCD driver voltage bias. ■ Normally, the bias voltage used is set by a resistor divider ■ Ensure that the voltages are set such that Vss ≤ V5 < V43 < V12 < V0 ■ To further reduce the differences between the output waveforms of the LCD driver output pins Y1 and Y160, externally connect Vir and ViL (I = 0, 12, 43)
EIO1	Bi-directional shift register shift data input/output pin Is an Output pin when L/R is at Vss level "L" and is an input pin when L/R is at Vpp level "H" When EIO1 is used as an input pin, it will be pulled-down When EIO1 is used as an output pin, it won't be pulled-down
EIO2	Bi-directional shift register shift data input/output pin Is an Input pin when L/R is at Vss level "L" and is an output pin when L/R is at Vpp level "H" When EIO2 is used as an input pin, it will be pulled-down When EIO2 is used as an output pin, it won't be pulled-down
LP	Bi-directional shift register shift clock pulse input pin Data is shifted on the falling edge of the clock pulse
L/R	Bi-directional shift register shift direction selection pin ■ Data is shifted from Y160 to Y1 when it is set to Vss level "L", and data is shifted from Y1 to Y160 when set it is to Vpp level "H"

Common mode continued

Symbol	Function
DISPOFF	 Control input pin for output deselect level The input signal is level-shifted from the logic voltage level to the LCD driver voltage level and it controls the LCD driver circuit When set to Vss level "L", the LCD driver output pins (Y1 - Y160) are set to level V5 While set to "L", the contents of the shift resister are reset and are not reading data. When the DISPOFF function is canceled, the driver outputs deselect level (V12 or V34), and the shift data is read on the falling edge of the LP. At that time, if the DISPOFF removal time can not keep regulation with what is shown on the AC characteristics, then the shift data is not read correctly
FR	AC signal input for LCD driving waveform The input signal is level-shifted from the logic voltage level to the LCD driver voltage level, and controls the LCD driver circuit Normally, it inputs a frame inversion signal The LCD driver output pin's output voltage level can be set using the shift register output signal and the FR signal
MD	Mode selection pin ● When set to Vss level "L", Single Mode operation is selected. When set to Vpd level "H", Dual Mode operation is selected
D7	Dual Mode data input pin ■ According to the data shift direction of the data shift register, data can be input starting from the 81st bit When the chip is used in Dual Mode, D7 will be pulled-down When the chip is used in Single Mode, D7 won't be pulled-down
S/C	Segment mode/common mode selection pin ■ When set to Vss level "L", common mode is set
Do - D6	Not used ● Connect Do-D6 to Vss or VDD. Avoid floating
XCK	Not used ■ XCK is pulled-down in common mode, so connect to Vss or leave open
Y1 - Y160	LCD driver output pins ● These correspond directly to each bit of the shift register, one level (Vo, V12, V43, or V5) is selected and output

Functional Description

1. Block description

1.1. Active Control

In segment mode, it controls the selection or deselection of the chip. Following a LP signal input and after the select signal is input, a select signal is generated internally until 160 bits of data have been read in. Once data input has been completed, a select signal for the cascade connection is output, and the ship is deselected.

In common mode, it controls the input/output data of the bidirectional pins.

1.2. SP Conversion & Data Control

In segment mode, it keeps input data, which are 2 clocks of XCK at 4-bit parallel mode in the latch circuit, or keeps input data which are 1 clock of XCK at 8-bit parallel mode in the latch circuit, after which they are put on the internal data bus 8 bits at a time.

1.3. Data Latch Control

In segment mode, it selects the state of the data latch, which reads in the data bus signals. The shift direction is controlled by the control logic and for every 16 bits of data read in, the selection signal shifts one bit, based on the state of the control circuit.

1.4. Data Latch

In segment mode, it latches the data onto the data bus. The latched state of each LCD driver output pin is controlled by the control logic and the data latch control. 160 bits of data are read in 20 sets of 8 bits.

1.5. Line Latch / Shift Register

In segment mode, it ensures that all 160 bits which have been read into the data latch are simultaneously latched on to the falling edge of the LP signal, and output to the level shift block.

In common mode, shifts data from the data input pin on to the falling edge of the LP signal.

1.6. Level Shifter

It ensures the logic voltage signal is level-shifted to the LCD driver voltage level, and output to the driver block.

1.7. 4-Level Driver

It drives the LCD driver output pins from the line latch/shift register data, selecting one of 4 levels (Vo, V12, V43, V5) based on the S/C, FR and DISPOFF signals.

1.8. Control Logic

It controls the operation of each block. In segment mode, when an LP signal has been input, all blocks are reset and the control logic waits for the selection signal output from the active control block. Once the selection signal has been output, operation of the data latch and data transmission are controlled, 160 bits of data are read in, and the chip is deselected.

In common mode, it controls the direction of the data shift.

2. LCD Driver Output Voltage Level

The relationship between the data bus signal, AC converted signal FR and LCD driver output voltage is as shown in the table below:

2.1. Segment Mode

FR	Latch Data	DISPOFF	Driver Output Voltage Level (Y1 - Y160)
L	L	Н	V43
L	Н	Н	V5
Н	L	Н	V12
Н	Н	Н	Vo
X	X	L	V5

Here, $Vss \le V5 < V43 < V12 < V0$, H: VDD (+2.5 to +5.5V), L: Vss (0V), X: Don't care

2.2. Common Mode

FR	Latch Data	DISPOFF	Driver Output Voltage Level (Y1 - Y160)
L	L	Н	V43
L	Н	Н	Vo
Н	L	Н	V ₁₂
Н	Н	Н	V5
Х	X	L	V5

Here, $Vss \le V5 < V43 < V12 < V0$, H: Vdd (+2.5 to +5.5V), L: Vss (0V), X: Don't care

Note: There are two kinds of power supply (logic level voltage, LCD driver voltage) for the LCD driver. Please supply regular voltage, which is assigned by specification for each power pin.

That time "Don't care" should be fixed to "H" or "L", avoiding floating.

3. Relationship between the Display Data and Driver Output Pins

3.1. Segment Mode:

(a) 4-bit Parallel Mode

MD	MD L/R EIO1		EIO ₂	Data			Nu	mber of Clo	ck						
טואו	L/K	EIO1	EIO2	Input	40clock	39clock	38clcok	~	3clock	2clock	1clock				
				D ₀	Y1	Y5	Y9	~	Y149	Y153	Y157				
١.		Output	Innut	D1	Y2	Y6	Y10	~	Y150	Y154	Y158				
-	. L Output	Output	t Input	D2	Y3	Y7	Y11	~	Y151	Y155	Y159				
							Dз	Y4	Y8	Y12	~	Y152	Y156	Y160	
		Input						D ₀	Y160	Y156	Y152	~	Y12	Y8	Y4
١.	L H Input		Output	D1	Y159	Y155	Y151	~	Y11	Y7	Y3				
-			put Output	D2	Y158	Y154	Y150	~	Y10	Y6	Y2				
				Dз	Y157	Y153	Y149	~	Y9	Y5	Y1				

(b) 8-bit Parallel Mode

MD	MD L/R EIO1		FIOs	Data			Nu	mber of Clo	ock		
IVID		EIO	EIO ₂	Input	20clock	19clock	18clcok	~	3clock	2clock	1clock
				D ₀	Y1	Y9	Y17	~	Y137	Y145	Y153
				D1	Y2	Y10	Y18	~	Y138	Y146	Y154
				D2	Y3	Y11	Y19	~	Y139	Y147	Y155
Н		Output	Innut	Dз	Y4	Y12	Y20	~	Y140	Y148	Y156
П	L	Output	Input	D4	Y5	Y13	Y21	~	Y141	Y149	Y157
				D5	Y6	Y14	Y22	~	Y142	Y150	Y158
				D6	Y7	Y15	Y23	~	Y143	Y151	Y159
				D7	Y8	Y16	Y24	~	Y144	Y152	Y160
				D ₀	Y160	Y152	Y144	~	Y24	Y16	Y8
					D1	Y159	Y151	Y143	~	Y23	Y15
		lament O		D2	Y158	Y150	Y142	~	Y22	Y14	Y6
Н	н		out Output	Dз	Y157	Y149	Y141	~	Y21	Y13	Y5
П	П	Input		D4	Y156	Y148	Y140	~	Y20	Y12	Y4
				D5	Y155	Y147	Y139	~	Y19	Y11	Y3
				D6	Y154	Y146	Y138	~	Y18	Y10	Y2
				D ₇	Y153	Y145	Y137	?	Y17	Y9	Y1

3.2. Common Mode

MD	L/R	Data Transfer Direction	EIO1	EIO2	D7
L	L (shift to left)	Y160 to Y1	Output	Input	Х
(Single)	H (shift to right)	Y1 to Y160	Input	Output	Х
	L (abift to laft)	Y160 to Y81	Outrout	Input	lanut
Н	L (shift to left)	Y80 to Y1	Output		Input
(Dual)	LI (abift to right)	Y1 to Y80	lanut	Output	lanut
	H (shift to right)	Y81 to Y160		Output	Input

Here, L: Vss (0V), H: VDD (+2.5V to +5.5V), X: Don't care

Note: "Don't care" should be fixed to "H" or "L", avoiding floating.

4. Connection Examples of Segment Drivers

4.1. Case of L/R = "L"

4.2 Case of L/R = "H"

5. Timing Waveform of 4-Device Cascade Connection of Segment Drivers.

6. Connection Examples for Common Drivers

Single Mode (Shifting towards the left)

Dual mode (Shifting towards the left)

Dual mode (Shifting towards the right)

7. Precaution

Be careful when connecting or disconnecting the power

This LSI has a high-voltage LCD driver, so it may be permanently damaged by a high current, which may occur if voltage is supplied to the LCD driver power supply while the logic system power supply is floating.

The details are as follows:

- When connecting the power supply, connect the LCD driver power after connecting the logic system power. Furthermore, when disconnecting the power, disconnect the logic system power after disconnecting the LCD driver power.
- We recommend that you connect a serial resistor (50-100Ω) or fuse to the LCD driver power Vo of the system as a current limiting device. Also, set a suitable value for the resistor in consideration of the LCD display grade.

In addition, when connecting the logic power supply, the logic condition of the LSI inside is insecure. Therefore connect the LCD driver power supply only after resetting the logic condition of this LSI inside to the DISPOFF function. After that, the DISPOFF will cancel the function after the LCD driver power supply has become stable. Furthermore, when disconnecting the power, set the LCD driver output pins to level Vss on the DISPOFF function. After that, disconnect the logic system power after disconnecting the LCD driver power.

When connecting the power supply, follow the recommended sequence shown.

Absolute Maximum Rating*

DC Supply Voltage VDD -0.3V to +7.0V DC Supply Voltage VO -0.3V to +30V Input Voltage -0.3V to VDD +0.3V Operating Ambient Temperature -30°C to +85°C Storage Temperature -45°C to +125°C

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device under these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

DC Characteristics

Segment Mode ($Vss = V_5 = 0V$, VDD = 2.5 - 5.5V, Vol = 15 to 30 V, and Ta = -30 to +85°C, unless otherwise noted)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Cor	ndition
Operating Voltage	VDD	2.5	-	5.5	V		
Operating Voltage	Vo	15	-	30	V		
Input high voltage	ViH	0.8 VDD	-	-	V	D0 - 7, XCK, LP, L/R	, FR, MD, S/C, EIO1,
Input low voltage	VIL	-	-	0.2 V D D	V	EIO2 and DISPOFF	pins
Output high voltage	Voн	VDD - 0.4	-	-	V	EIO ₁ , EIO ₂ pins, IoH	= -0.4mA
Output low voltage	Vol	-	-	+0.4	V	EIO ₁ , EIO ₂ pins, IoL	= +0.4mA
Input leakage current 1	Іін	-	-	+1.0	μΑ	D0 - 7, XCK, LP, L/R, FR, MD, S/C, EIO ₁ , EIO ₂ and DISPOFF pins, V _I = V _{DD}	
Input leakage current 2	lıL	-	-	-1.0	μА	D0 - 7, XCK, LP, L/R, FR, MD, S/C, EIO ₁ , EIO ₂ and DISPOFF pins, V _I = Vss	
Output registence	Day	-	1.0	1.5	ŀO	Vo = +30.0V	Y1 - Y160 pins,
Output resistance	Ron	-	1.5	2.0	kΩ	Vo = +20.0V	$ \Delta V \circ N = 0.5V$
Stand-by current	ISB	-	-	5.0	μΑ	Vss pin, Note 1	
Consumed current (1) (Deselection)	IDD1	-	-	2.0	mA	Vסס pin, Note 2	
Consumed current (2) (Selection)	l _{DD2}	-	-	8.0	mA	Vסס pin, Note 3	
Consumed current	lo	-	-	1.0	mA	Vo pin, Note 4	

- 1. VDD = +5.0V, Vo = +30V, Vi = Vss
- 2. VDD = +5.0V, V0 = +30V, fxck = 14MHz, No-load, EI = VDD
 The input data is turned over by the data taking clock (4-bit parallel input mode)
- 3. VDD = +5.0V, Vo = +30V, fxck = 14MHz, No-load. EI = Vss
 The input data is turned over by the data taking clock (4-bit parallel input mode)
- 4. VDD = +5.0V, Vol = +30V, fxck = 14MHz, flp = 41.6kHz. frr = 80 Hz, No-load The input data is turned over by the data taking clock (4-bit parallel-input mode)

Common Mode (Vss = V5 = 0V, VDD = 2.5 - 5.5V, V0 = 15 to 30V, and TA = -30 to +85°C, unless otherwise noted)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
Operating Voltage	VDD	2.5	-	5.5	V		
Operating Voltage	Vo	15	-	30	V		
Input high voltage	Vih	0.8 VDD	-	-	V	D0 - 7, XCK, LP, L/R, FR, MD, S/C, EIO1,	
Input low voltage	VIL	-	-	0.2 VDD	V	EIO2 and DISPOFF pins	
Output high voltage	Voн	VDD - 0.4	-	-	V	EIO ₁ , EIO ₂ pins, IoH = -0.4mA	
Output low voltage	Vol	-	-	+0.4	V	EIO1, EIO2 pins, IoL = +0.4mA	
Input leakage current 1	Іін	-	-	+1.0	μΑ	D0 - 6, LP, L/R, FR, MD, S/C and DISPOFF pins, V _I = V _{DD}	
Input leakage current 2	lıL	-	-	-1.0	μΑ	D0 - 7, XCK, LP, L/R, FR, MD, S/C, EIO1, EIO2 and DISPOFF pins, VI = Vss	
Output vasiatavas	Davi	-	1.0	1.5	l-O	Vo = +30.0V Y1 - Y160 pins,	
Output resistance	Ron	-	1.5	2.0	kΩ	$ \Delta V \circ N = 0.5V$	
Stand-by current	IsB	-	-	5	μΑ	Vss pin, Note 1	
Consumed current (1)	lpp	-	-	80	μΑ	V _{DD} pin, Note 2	
Consumed current (2)	lo	-	-	160	μΑ	Vo pin, Note 2	

- 1. VDD = +5.0V, Vo = +30V, Vi = Vss
- 2. VDD = +5.0V, Vol = +30V, flp = 41.6KHz, fpq = 80Hz, case of 1/480 duty operation, No-load

AC Characteristics

Segment Mode 1 ($Vss = V_5 = 0V$, $V_{DD} = 4.5 - 5.5V$, $V_0 = 15$ to 30, and $T_A = -30$ to $+85^{\circ}C$, unless otherwise noted)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Shift clock period	twcĸ	71	-		ns	$tr, tf \leq 10ns, Note 1$
Shift clock "H" pulse width	twckh	23	-		ns	
Shift clock "L" pulse width	twckl	23	-		ns	
Data setup time	tDS	10	-		ns	
Data hole time	tрн	20	-		ns	
Latch pulse "H" pulse width	tWLPH	23	-		ns	
Shift clock rise to Latch pulse rise time	tLD	0	-		ns	
Shift clock fall to Latch pulse fall time	tsL	25	-		ns	
Latch pulse rise to Shift clock rise time	tLS	25	-		ns	
Latch pulse fall to Shift clock rise time	tLH	25	-		ns	
Input signal rise time	tr		-	50	ns	Note 2
Input signal fall time	tf		-	50	ns	Note 2
Enable setup time	ts	21	-		ns	
DISPOFF Removal time	tsD	100	-		ns	
DISPOFF enable pulse width	twDL	1.2	-		μS	
Output delay time (1)	tD		-	40	ns	CL = 15pF
Output delay time (2)	tpd1, tpd2		-	1.2	μs	CL = 15pF
Output delay time (3)	tpd3		-	1.2	μs	CL = 15pF

- 1. Take the cascade connection into consideration.
- 2. $(T_{\text{Ck}} t_{\text{WCKII}} t_{\text{wckI}})/2$ is the maximum in the case of high speed operation.

Segment Mode 2 (Vss = V5 = 0V, VDD = 2.5 - 4.5V, Vol = 15 to 30, and TA = -30 to $+85^{\circ}C$, unless otherwise noted)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Shift clock period	twcĸ	125	-		ns	$tr, tf \leq 11ns, Note 1$
Shift clock "H" pulse width	twckh	51	-		ns	
Shift clock "L" pulse width	twckl	51	-		ns	
Data setup time	tos	30	-		ns	
Data hole time	tDH	40	-		ns	
Latch pulse "H" pulse width	twlph	51	-		ns	
Shift clock rise to Latch pulse rise time	tLD	0	-		ns	
Shift clock fall to Latch pulse fall time	tsL	51	-		ns	
Latch pulse rise to Shift clock rise time	tLS	51	-		ns	
Latch pulse fall to Shift clock fall time	tlh	51	-		ns	
Input signal rise time	tr		-	50	ns	Note 2
Input signal fall time	tf		-	50	ns	Note 2
Enable setup time	ts	36	-		ns	
DISPOFF Removal time	tsp	100	-		ns	
DISPOFF enable pulse width	twdL	1.2	-		μs	
Output delay time (1)	tD		-	78	ns	CL = 15pF
Output delay time (2)	tpd1, tpd2		-	1.2	μs	CL = 15pF
Output delay time (3)	tpd3		-	1.2	μs	CL = 15pF

- 1. Take the cascade connection into consideration.
- 2. (tck twckii twckl)/2 is the maximum in the case of high speed operation.

Timing waveform of the Segment Mode

Common Mode (Vss = V5 = 0V, VDD = 2.5 - 5.5V, V0 = 15 to 30V and TA = -30 to +85°C, unless otherwise noted)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Shift clock period	twLP	250	-	-	ns	$\text{tr, tf} \leq 20 \text{ns}$
Shift clock "H" pulso width	tWLPH	15	-	-	ns	$V_{DD} = +5.0V \pm 10\%$
Shift clock "H" pulse width	IWLPH	30	-	-	ns	$V_{DD} = +2.5 - +4.5V$
Data setup time	tsu	30	-	-	ns	
Data hole time	tн	50	-	-	ns	
Input signal rise time	tr		-	50	ns	
Input signal fall time	tf		-	50	ns	
DISPOFF Removal time	tsp	100	-	-	ns	
DISPOFF enable pulse width	twdL	1.2	-	-	μs	
Output delay time (1)	tDL	-	-	200	ns	CL = 15pF
Output delay time (2)	tpd1, tpd2	-	-	1.2	μs	C _L = 15pF
Output delay time (3)	tpd3		-	1.2	μs	C _L = 15pF

Timing Characteristics of Common Mode

L/R = "L"

Application Circuit (for reference only)

Bonding Diagram

Pad Location

Pad No.	Designation	Х	Υ	Pad No.	Designation	Х	Υ
1	VoL	-3820	-521	31	Vss	-2010	-521
2	VoL	-3750	-521	32	Vss	-1950	-521
3	VoL	-3690	-521	33	Vss	-1890	-521
4	VoL	-3630	-521	34	Vss	-1830	-521
5	VoL	-3570	-521	35	Vss	-1770	-521
6	VoL	-3510	-521	36	Vss	-1710	-521
7	VoL	-3450	-521	37	Vss	-1650	-521
8	V12L	-3390	-521	38	Vss	-1590	-521
9	V12L	-3330	-521	39	Vss	-1530	-521
10	V12L	-3270	-521	40	L/R	-1470	-521
11	V12L	-3210	-521	41	L/R	-1410	-521
12	V12L	-3150	-521	42	VDD	-1350	-521
13	V43L	-3090	-521	43	VDD	-1290	-521
14	V43L	-3030	-521	44	VDD	-1230	-521
15	V43L	-2970	-521	45	VDD	-1170	-521
16	V43L	-2910	-521	46	VDD	-1110	-521
17	V43L	-2850	-521	47	VDD	-1050	-521
18	V5L	-2790	-521	48	VDD	-990	-521
19	V5L	-2730	-521	49	VDD	-930	-521
20	V5L	-2670	-521	50	VDD	-870	-521
21	V5L	-2610	-521	51	VDD	-810	-521
22	V5L	-2550	-521	52	VDD	-750	-521
23	Vss	-2490	-521	53	VDD	-690	-521
24	Vss	-2430	-521	54	VDD	-630	-521
25	Vss	-2370	-521	55	VDD	-570	-521
26	Vss	-2310	-521	56	VDD	-510	-521
27	Vss	-2250	-521	57	VDD	-450	-521
28	Vss	-2190	-521	58	S/C	-390	-521
29	Vss	-2130	-521	59	S/C	-330	-521
30	Vss	-2070	-521	60	EIO2	-270	-521

Pad Location (continued)

Pad No.	Designation	Х	Υ	Pad No.	Designation	Х	Υ
61	EIO2	-210	-521	101	Vss	2190	-521
62	D0	-150	-521	102	Vss	2250	-521
63	D0	-90	-521	103	Vss	2310	-521
64	D1	-30	-521	104	Vss	2370	-521
65	D1	30	-521	105	Vss	2430	-521
66	D2	90	-521	106	Vss	2490	-521
67	D2	150	-521	107	V5R	2550	-521
68	D3	210	-521	108	V5R	2610	-521
69	D3	270	-521	109	V5R	2670	-521
70	D4	330	-521	110	V ₅ R	2730	-521
71	D4	390	-521	111	V5R	2790	-521
72	D5	450	-521	112	V43R	2850	-521
73	D5	510	-521	113	V43R	2910	-521
74	D6	570	-521	114	V43R	2970	-521
75	D6	630	-521	115	V43R	3030	-521
76	D7	690	-521	116	V43R	3090	-521
77	D7	750	-521	117	V12R	3150	-521
78	XCK	810	-521	118	V12R	3210	-521
79	XCK	870	-521	119	V12R	3270	-521
80	DISPOFF	930	-521	120	V12R	3330	-521
81	DISPOFF	990	-521	121	V12R	3390	-521
82	LP	1050	-521	122	Vor	3450	-521
83	LP	1110	-521	123	Vor	3510	-521
84	EIO1	1170	-521	124	Vor	3570	-521
85	EIO1	1230	-521	125	Vor	3630	-521
86	FR	1290	-521	126	Vor	3690	-521
87	FR	1350	-521	127	Vor	3750	-521
88	MD	1410	-521	128	Vor	3820	-521
89	MD	1470	-521	129	Y1	4030	-450
90	Vss	1530	-521	130	Y2	4030	-390
91	Vss	1590	-521	131	Y3	4030	-330
92	Vss	1650	-521	132	Y4	4030	-270
93	Vss	1710	-521	133	Y5	4030	-210
94	Vss	1770	-521	134	Y6	4030	-150
95	Vss	1830	-521	135	Y7	4030	-90
96	Vss	1890	-521	136	Y8	4030	-30
97	Vss	1950	-521	137	Y9	4030	30
98	Vss	2010	-521	139	Y10	4030	90
99	Vss	2070	-521	139	Y11	4030	150
100	Vss	2130	-521	140	Y12	4030	210

Pad Location (continued)

Pad No.	Designation	Х	Υ	Pad No.	Designation	Х	Υ
141	Y13	4030	270	181	Y53	1650	529
142	Y14	4030	330	182	Y54	1590	529
143	Y15	4030	390	183	Y55	1530	529
144	Y16	4030	450	184	Y56	1470	529
145	Y17	3810	529	185	Y57	1410	529
146	Y18	3750	529	186	Y58	1350	529
147	Y19	3690	529	187	Y59	1290	529
148	Y20	3630	529	188	Y60	1230	529
149	Y21	3570	529	189	Y61	1170	529
150	Y22	3510	529	190	Y62	1110	529
151	Y23	3450	529	191	Y63	1050	529
152	Y24	3390	529	192	Y64	990	529
153	Y25	3330	529	193	Y65	930	529
154	Y26	3270	529	194	Y66	870	529
155	Y27	3210	529	195	Y67	810	529
156	Y28	3150	529	196	Y68	750	529
157	Y29	3090	529	197	Y69	690	529
158	Y30	3030	529	198	Y70	630	529
159	Y31	2970	529	199	Y71	570	529
160	Y32	2910	529	200	Y72	510	529
161	Y33	2850	529	201	Y73	450	529
162	Y34	2790	529	202	Y74	390	529
163	Y35	2730	529	203	Y75	330	529
164	Y36	2670	529	204	Y76	270	529
165	Y37	2610	529	205	Y77	210	529
166	Y38	2550	529	206	Y78	150	529
167	Y39	2490	529	207	Y79	90	529
168	Y40	2430	529	208	Y80	30	529
169	Y41	2370	529	209	Y81	-30	529
170	Y42	2310	529	210	Y82	-90	529
171	Y43	2250	529	211	Y83	-150	529
172	Y44	2190	529	212	Y84	-210	529
173	Y45	2130	529	213	Y85	-270	529
174	Y46	2070	529	214	Y86	-330	529
175	Y47	2010	529	215	Y87	-390	529
176	Y48	1950	529	216	Y88	-450	529
177	Y49	1890	529	217	Y89	-510	529
178	Y50	1830	529	218	Y90	-570	529
179	Y51	1770	529	219	Y91	-630	529
180	Y52	1710	529	220	Y92	-690	529

Pad Location (continued)

Pad No.	Designation	Х	Υ	Pad No.	Designation	Х	Υ
221	Y93	-750	529	256	Y128	-2850	529
222	Y94	-810	529	257	Y129	-2910	529
223	Y95	-870	529	258	Y130	-2970	529
224	Y96	-930	529	259	Y131	-3030	529
225	Y97	-990	529	260	Y132	-3090	529
226	Y98	-1050	529	261	Y133	-3150	529
227	Y99	-1110	529	262	Y134	-3210	529
228	Y100	-1170	529	263	Y135	-3270	529
229	Y101	-1230	529	264	Y136	-3330	529
230	Y102	-1290	529	265	Y137	-3390	529
231	Y103	-1350	529	266	Y138	-3450	529
232	Y104	-1410	529	267	Y139	-3510	529
233	Y105	-1470	529	268	Y140	-3570	529
234	Y106	-1530	529	269	Y141	-3630	529
235	Y107	-1590	529	270	Y142	-3690	529
236	Y108	-1650	529	271	Y143	-3750	529
237	Y109	-1710	529	272	Y144	-3810	529
238	Y110	-1770	529	273	Y145	-4030	450
239	Y111	-1830	529	274	Y146	-4030	390
240	Y112	-1890	529	275	Y147	-4030	330
241	Y113	-1950	529	276	Y148	-4030	270
242	Y114	-2010	529	277	Y149	-4030	210
243	Y115	-2070	529	278	Y150	-4030	150
244	Y116	-2130	529	279	Y151	-4030	90
245	Y117	-2190	529	280	Y152	-4030	30
246	Y118	-2250	529	281	Y153	-4030	-30
247	Y119	-2310	529	282	Y154	-4030	-90
248	Y120	-2370	529	283	Y155	-4030	-150
249	Y121	-2430	529	284	Y156	-4030	-210
250	Y122	-2490	529	285	Y157	-4030	-270
251	Y123	-2550	529	286	Y158	-4030	-330
252	Y124	-2610	529	287	Y159	-4030	-390
253	Y125	-2670	529	288	Y160	-4030	-450
254	Y126	-2730	529		ALK_L	-3921	-534
255	Y127	-2790	529		ALK_R	3921	-534

Dummy Pad Location (Total: 6 pin)

NO.	Х	Υ	NO.	Х	Υ
1	4030	-520	4	-3880	529
2	4030	520	5	-4030	520
3	3880	529	6	-4030	-520

Package Information

Chip Outline Dimensions

unit: um

Symbol	Dimensions in um	Symbol	Dimensions in um
A1	204	Н	50
A2	54	J	163
В	264	m1	39
C1	64	m2	55
C2	55	m3	38
C3	63	n1	72
D1	70	n2	90
D2	60	r	35

TCP Pin Layout

External View of TCP Pins

Specification

- 1 .GENERAL TOLERANCE ±0.050mm
- 2 .ALL CHAMFER IS R±0,200mm
- 3 .MATERIAL

Polyimide UPILEX-S: 75±6um
Adhesive TORAY #7100 12±3um
Copper FQ-VLP 25±5um
Plating Sn: 0.20±0.05um
Solder Resist AE-70-M11 26±14um
OTHER TOLERANCE:±0.200mm

Flex Coating FS-100L MIN10 Space Tape Material Polyester (PET) Leader Tape Material Polyester (PET) PKG Reel Size 405 mm

4 .5 SPROCKET HOLES (23.75MM) FOR 1 TAPES

Cautions concerning storage:

- 1. When storing the product, it is recommended that it be left in its shipping package.

 After the seal of the packing bag has been broke, store the products in a nitrogen atmosphere.
- 2. Storage conditions:

Storage state	Storage conditions
unopened (less than 90 days)	Temperature: 5 to 30℃; humidity: 80%RH or less
After seal of broken (less than 30 days)	Room temperature, dry nitrogen atmosphere

- 3. Don't store in a location exposed to corrosive gas or excessive dust.
- 4. Don't store in a location exposed to direct sunlight of subject to sharp changes in temperature.
- 5. Don't store the product such that it is subjected to an excessive load weight, such as by stacking.
- 6. Deterioration of the plating may occur after long-term storage, so special care is required. It is recommended that the products be inspected before use.

Tray Information

Tray Outline Dimensions

SECTION X-X

unit: mm

Symbol	Dimensions in mm	Symbol	Dimensions in mm
а	1.50	g	0.64
b	2.67	h	4.20
С	8.50	W1	76.0
d	10.90	W2	68.0
е	1.60	T1	71.0
f	1.40	T2	68.3

Ordering Information

Part No.	Package
NT7703H-BDT	Au bump on chip tray
NT7703H-TAB18	TCP Form

Product Spec. Change Notice

NT7703 Specification Revision History		
Version	Content	Date
1.0	TCP and tray information addition (Page 33 - 36)	Dec. 2001
0.2	Gold Bump Size revision (Page 31) m1: $45 \rightarrow 39$, m2: $58 \rightarrow 55$	Sep. 2001
0.1	Pad Location Addition	Nov. 2000
0.0	Original	Nov. 2000