

Presented by: Al Shafayet, Syam Badri

We will be covering

01

Ethereum Smart Contracts 02

Honeypots: Attackers View 03

Honeypot detection System

Ethereum

Decentralized platform that allows developers to build applications using blockchain

Self-executing Stored in blockchain Immutable, guaranteed execution Highlevel language, eg: Solidity Identified as 160 bit address Can be transferred or destroyed

Ethereum Virtual Machine(EVM)

- ☐ Transaction based state machine
- ☐ Decentralized and isolated
- ☐Stack-based, register-less
- ☐Runs low-level bytecode
- ☐ Uses "ether" as gas

Attacks on smart contract

"In 2016 DAO attack drained over 50 million worth ether."

- Exploits vulnerability
- Reentracy Attack: contract repeatedly calls itself
- Integer Overflow: variable overflows

To prevent contract vulnerability:

Verification, Audits, Bug bounty Programs, Code Standards

Honeypots

Smart Contracts **pretending** to be vulnerable to attract users, but actually exploits the user. Why should I spend time looking for victims, if I can let the victims come to me!!

```
function Command (address adr, bytes, data)
Contract multiplicatorX3{
                                                  payable
       address public Owner=msg.sender;
                                                  public
       function() public payable{}
       function withdraw()
                                                          require(msg.sender==0wner);
       payable
                                                          adr.call.value(msg.value)(data);}
        public
                                                  function multiplicate (address adr)
                require(msg.sender==0wner);
                                                  public
                Owner.transfer(this.balance);}
                                                  payable
                                                          if(msg.value>=this.balance){
                             Trap
                                                          adr.transfer(this.balance+msg.value); } } }
```


Level **Technique Ethereum Virtual Machine** I. Balance Disorder Inheritance Disorder **Solidity Compiler** II. Skip empty string literal III. Type deduction overflow IV. Uninitialized struct Hidden State Update II. Hidden transfer Etherscan Blockchain Explorer III. Straw man contract

Honeypots Detection System

Takes bytecodes and returns detailed report of detected honeypots.

Symbolic Analysis:

- Based on Luu et al's Oyente
- Collects meta information=>Storage write S, Execution Path P, Arithmetic Operation A etc.
- Creates mathematical model

Cash Flow Analysis:

- Discards contracts that does not consist of receive or transfer funds
- Traces movement of funds

Honeypot analysis:

- Detects honeypot techniques
- Can be extended on newly-found honeypots

Get the codes @github.com/christoftorres/HoneyBadger

To implement "Honeybadger" on your system:

- □ Download docker image-→ docker pull christoftorres/honeybadger
- \square Run the honeybadger docker container \rightarrow docker run -i -t christoftorres/honeybadger

To evaluate honeypot simply run:

python honeybadger/honeybadger.py -s honeypots/MultiplicatorX3.sol

You can also get updated on Ethereum contracts that are malicious **@honeybadger.uni.lu**

Enhancement: Ponzi Scheme

- Smart contracts are based on **Investment** strategy
- Ponzi scheme is based on real life pyramid scam
- They attract investors through "high-yield" investment schemes


```
addresslastDepositor;
uint public currentAmount;

function Ponzi(uint_startingAmount) public {
    currentAmount = _startingAmount;
    }

function pay() public payable {
    require(msg.value == currentAmount);
    }

function nextAmount(uint amount) private pure returns (uint) {
    return amount * 2;
```

<u>lastDepositor</u>: Keeps track of last depositor in the chain

<u>currentAmount</u>: Amount of ether that needs to be deposited to get into the "Investment"

Users can deposit ETH and get interest; however, interest is only paid on deposits made by new users. The program will fail as soon as the number of new customers starts to diminish.

Symbolic Solution

Simplistic symbolic function:

- Follows address of receiver and transferrer
- Checks of potential interest fraud
- Looks at a simple pattern to detect ponzi schemes

https://raw.githubusercontent.com/silbunsa/crispy-octo-sniffle/main/multi.sol?token=GHSATOAAAAAB7E7PI4TERY33WOW2AVIZB4OKEA

Thank you ACS 545

Feel free to ask us anything!!