MINISTERUL EDUCAȚIEI ȘI CERCETĂRII AL REPUBLICII MOLDOVA

AGENŢIA NAŢIONALĂ PENTRU CURRICULUM ŞI EVALUARE

Raionul	
Localitatea	_
Instituția de învățămâr	nt
Numele, prenumele ele	vului
Numele, prenumele ele	vului

FIZICA

PRETESTARE CICLUL LICEAL

Profil real 05 aprilie 2023 Timp alocat: 180 de minute

Rechizite și materiale permise: pix cu cerneală albastră.

Instrucțiuni pentru candidat:

- Citește cu atenție fiecare item și efectuează operațiile solicitate.
- Lucrează independent.

Îţi dorim mult succes!

Punctaj acumulat

Nr.		Pun				
I ÎN ITEMII 1-3 RĂSPUNDEȚI SCURT LA ÎNTREBĂRI CONFORM CERINȚELOR						
	ÎNAINTATE:					
1	Completați următoarele propoziții astfel, ca ele să fie adevărate:	L	L			
	a) Accelerația centripetă arată rapiditatea cu care vectorul vitezei își schimbă	0	0			
	h) În transformação izatama s variatio arrandici interna a cazalai esta	2	2			
	b) In transformarea izotermă variația energiei interne a gazului este	4	4			
	c) În două medii cu permitivitate electrică diferită, forța de interacțiune dintre două	-	_			
	sarcini identice plasate la aceeași distanță, va fi mai mare în mediul cu	6	6			
	permitivitatea mai	8	8			
	d) Cu cât rezistența unei porțiuni de circuit este mai mică, cu atât mai va fi puterea consumată de la una și aceeași sursă de tensiune cu rezistenta internă neglijabilă.	10	10			
	e) Dintre electronul și protonul ce se mișcă cu aceeași viteză, lungime de undă de					
	Broglie mai mare va avea					
2	Stabiliți (prin săgeți) corespondența dintre următoarele mărimi fizice și unitățile	L	L			
	ce le exprimă:	0	0			
	Viteză medie Ω·m	2	2			
	Accelerație centripetă m/s Cantitate de substanță m/s ²					
	Rezistivitate electrică kg	4	4			
	Lungime de undă de Broglie mol	6	6			
	nm	8	8			
		10	10			
3	Determinați valoarea de adevăr a următoarelor afirmații, marcând A, dacă	L	L			
	afirmația este adevărată și F dacă afirmația este falsă:	0	0			
	a) Un corp cu viteza inițială nenulă capătă accelerație dacă asupra acestuia nu	2	2			
	acționează nicio forță A F	4	4			
	b) Dacă lipsește forța de rezistență din partea aerului, atunci accelerația unui corp lăsat	6	6			
	liber va fi egală cu accelerația gravitațională. A F c) La comprimarea izotermă a unei cantități de gaz ideal, gazul cedează căldură.	8	8			
	A F	10	10			
	d) Pierderile de energie pe linia de transport electric nu depind de puterea activă a					
	consumatorului conectat la aceasta. A F					
	e) La absorbția unui foton de către un atom, energia atomului nu se modifică.					
A F						
4	II. ÎN ITEMII 4 – 9 RĂSPUNDEȚI LA ÎNTREBĂRI SAU REZOLVAȚI, SCRIIN ARGUMENTĂRILE ÎN SPAȚIILE REZERVATE:	ı				
4	Un corp punctiform se mișcă în câmp gravitațional fără viteză inițială pe	L	L			
	suprafața internă a unei sfere netede	0	0			
	din punctul A. Reprezentați la prima	1	1			
	trecere a corpului prin poziția B (cea	2	2			
	mai de jos) forțele ce acționează asupra	3	3			
	acestuia, forța rezultantă și vectorul $A \setminus \mathcal{A}$	1	4			
	vitezei corpului. Forța de rezistență din	4	4			
	partea aerului este neglijabilă.					
	D					

5	Determinați energia nivelului energetic pe care va trece electronul la absorbția unui foton cu lungimea de undă 663 nm, dacă inițial acesta se afla pe nivelul cu energia		
	-3,0 eV într-un atom. REZOLVARE:	L	L
	REZOLVARE.	0	0
		1	1
		2	2
		3	3
		4	4
6	Doux condensatore plane ou cor ou criile plăcilor ocale cunt concetate în paralel	5	5
0	Două condensatoare plane cu aer, cu ariile plăcilor egale, sunt conectate în paralel. Distanța dintre plăcile celui de al doilea condensator este de 3 ori mai mică decât distanța dintre plăcile primului. Determinați sarcina pe al doilea condensator dacă	L	L
	primul are sarcina 500 nC. REZOLVARE:		
	NEZOZ (MIC.	0	0
		1	1
		2	2
		3	3
		4	4
		5	5
		6	6
7	Un corp cu masa 0,2 kg ce se mişcă pe o suprafață orizontală netedă, cu viteza egală cu 3,0 m/s, asigură o comprimare maximă de 2,0 cm a unui resort imponderabil, fixat la un capăt, inițial nedeformat. Determinați constanta de elasticitate a resortului. Forța de rezistență din partea aerului este neglijabilă.		
	REZOLVARE:	L	L
		0	0
		1	1
		2	2
		3	3
		4	4
		5	5
		6	6

III. ÎN ITEMII 10-12 SCRIEȚI REZOLVAREA COMPLETĂ A SITUAȚIILOR DE PROBLEMĂ PROPUSE :

- Un corp este lansat de la baza unui plan înclinat cu viteza de 10 m/s. Coeficientul de frecare dintre corp și plan este egal cu $1/\sqrt{3}$ iar planul formează un unghi de 30° cu orizontala.
 - a) Reprezentați forțele ce acționează asupra corpului în timpul mișcării de-a lungul planului în sus.
 - b) Determinați înălțimea la care va ajunge peste 1,0 secunde de la lansare față de poziția inițială.

Accelerația căderii libere $g=10 \text{ m/s}^2$, $\sin 30^\circ = 0.5$, $\cos 30^\circ = \sqrt{3}/2$.

REZOLVARE:

a) a)
L L
0 0
1 1
2 2

3

3

8

9

8

- Un inel metalic cu rezistența electrică egală cu 0,5 Ω și aria egală cu 300 cm² se află în câmp magnetic omogen cu inducția egală cu 0,2 T cu liniile de câmp perpendiculare la planul inelului la momentul inițial.
 - a) Ce sarcină electrică va trece prin secțiunea transversală a inelului dacă inelul se va roti cu un unghi de $\pi/2$ față de axa de rotație ce conține diametrul inelului.
 - b) Indicati pe desen sensul curentului indus în inel în această rotatie.

	REZOLVARE:		
		a)	a)
		L	L
		0	$\begin{bmatrix} \mathbf{D} \\ 0 \end{bmatrix}$
		1	1
		2	2
		3	3
		4	4
		5	5
		6	6
		7	7
		8	8
	_(b)	b)
		L	L
		0	0
	$ec{B}$	2	2
12	Aveți la dispoziție o bobină din sârmă cu rezistivitatea electrică cunoscută, sursă de		
12	curent continuu, un ampermetru și voltmetru ideale, șubler (aparat pentru măsurarea		
	dimensiunilor, diametrelor mici), fire de conexiune. Trebuie să determinați lungimea	-)	-)
	firului bobinei, dacă capetele acesteia pot fi conectate la un circuit. a) Descrieți cum veți proceda, prezentați schema circuitului.	a) L	a) L
	b) Deduceți formula de calcul pentru lungimea firului.	$\begin{bmatrix} \mathbf{L} \\ 0 \end{bmatrix}$	$\begin{bmatrix} L \\ 0 \end{bmatrix}$
	REZOLVARE:	1	1
		2	2
		3	3
		4	4
		5	5
		6	6
		b)	b)
		L	L
		0	0
		1	1
		2	2
		3	3
		4	4

ANEXE

Constante fizice

Sarcina elementară $e = 1,60 \cdot 10^{-19}$ C

Masa de repaus a electronului $m_e = 9,11 \cdot 10^{-31} \text{ kg}$

Viteza luminii în vid $c = 3,00 \cdot 10^8 \text{ m/s}$

Constanta gravitațională $K = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

Constanta electrică $\varepsilon_0 = 8.85 \cdot 10^{-12} \text{ F/m}$

Constanta lui Avogadro $N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$

Constanta lui Boltzmann $k = 1,38 \cdot 10^{-23} \text{ J/K}$

Constanta universală a gazelor $R = 8.31 \text{ J/(mol \cdot K)}$

Constanta lui Planck $h = 6,63 \cdot 10^{-34} \text{ J} \cdot \text{s}$

Constanta electrostatică $k_e = 9,00 \cdot 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

MECANICĂ

$$x = x_0 + v_{0x}t \; ; \; x = x_0 + v_{0x}t + \frac{a_xt^2}{2} \; ; \; v_x = v_{0x} + a_xt \; ; \; v_x^2 - v_{0x}^2 = 2a_xs_x \; ; \; v = \frac{1}{T} \; ; \; \omega = \frac{2\pi}{T} \; ; \; v = \omega r \; ; \; \omega = 2\pi v \; ; \; a_c = \frac{v^2}{r} \; .$$

$$\vec{F} = m\vec{a} \; ; \; \vec{F}_{12} = -\vec{F}_{21} \; ; \; F = K \frac{m_1m_2}{r^2} \; ; \; \vec{F}_e = -k\Delta \vec{l} \; ; \; F_f = \mu N \; ; \; F_A = \rho_0 Vg \; ; \; p = \frac{F}{S} \; ; \; p = \rho gh \; ; \; M = Fd \; .$$

$$\vec{p} = m\vec{v} \; ; \; \Delta \vec{p} = \vec{F}\Delta t \; ; \; L_{mec.} = Fs\cos\alpha \; ; \; P = \frac{L}{t} \; ; \; E_c = \frac{mv^2}{2} \; ; \; L_{12} = E_{c2} - E_{c1} \; ; \; E_p = mgh \; ; \; E_p = \frac{kx^2}{2} \; ; \; L_{12} = -\left(E_{p2} - E_{p1}\right);$$

$$x = A\sin\left(\omega t + \varphi_0\right) \; ; \; T = 2\pi\sqrt{\frac{I}{q}} \; ; \; T = 2\pi\sqrt{\frac{m}{k}} \; ; \; \lambda = vT \; ;$$

FIZICĂ MOLECULARĂ ȘI TERMODINAMICĂ

$$p = \frac{1}{3}m_{0}n\overline{v^{2}} = \frac{2}{3}n\overline{\varepsilon}_{tr.}; \overline{\varepsilon}_{tr.} = \frac{3}{2}kT; p = nkT; v_{T} = \sqrt{\frac{3RT}{M}}; pV = vRT; v = \frac{m}{M} = \frac{N}{N_{A}}; R = kN_{A}; M = m_{0}N_{A};$$

$$pV = const., T = const.; \frac{p}{T} = const., V = const.; \frac{V}{T} = const., p = const.; \frac{pV}{T} = const., m = const.$$

$$U = \frac{3}{2}\frac{m}{M}RT; L = p\Delta V; Q = cm\Delta T; Q = C_{M}v\Delta T; c_{p} - c_{V} = \frac{R}{M}; Q_{V} = \lambda_{V}m; Q = qm; Q = \Delta U + L; \eta = \frac{Q_{1} - |Q_{2}|}{Q_{1}};$$

$$\eta_{\max.} = \frac{T_{1} - T_{2}}{T_{1}}; \varphi = \frac{\rho_{a}}{\rho_{s}} = \frac{p_{a}}{\rho_{s}}; \sigma = \frac{F_{s}}{l}; h = \frac{4\sigma}{\rho gd}; \frac{F}{S} = E\frac{\Delta l}{l}; l = l_{0}(1 + \alpha t);$$

ELECTRODINAMICĂ

$$F = \frac{k_e}{\varepsilon_r} \frac{\left| q_1 \, q_2 \right|}{r^2} \, ; E = \frac{k_e}{\varepsilon_r} \frac{\left| q \right|}{r^2} \, ; \ k_e = \frac{1}{4\pi\varepsilon_0} \, ; \ \vec{E} = \frac{\vec{F}}{q_0} \, ; \ E = \frac{U}{d} \, ; \ \varphi = \frac{W}{q_0} \, ; \ \varphi = \frac{kq}{r} \, ; \ U = \frac{L}{q_0} \, ;$$

$$C = \frac{q}{U} \, ; \ C = \frac{\varepsilon_0 \varepsilon_r S}{d} \, ; \ C_p = \sum_{i=1}^n C_i \, ; \ \frac{1}{C_S} = \sum_{i=1}^n \frac{1}{C_i} \, ; \ W_e = \frac{CU^2}{2}$$

$$I = \frac{\Delta q}{\Delta t} \, ; \ I = \frac{\varepsilon}{R+r} \, ; \ I_{s.c.} = \frac{\varepsilon}{r} \, ; \ R = \rho \frac{l}{S} \, ; \ R_s = \sum_{i=1}^n R_i \, ; \ \frac{1}{R_p} = \sum_{i=1}^n \frac{1}{R_i} \, ; \ L = IUt \, ; \ Q = I^2 Rt \, ; \ P = IU \, ; \ \eta = \frac{L_u}{L_t} \, ;$$

$$F_m = IBl \sin \alpha \, ; \ F_L = qvB \sin \alpha \, ;$$

$$F_m = IBl \sin \alpha \, ; \ F_L = qvB \sin \alpha \, ;$$

$$\Phi = BS \cos \alpha \, ; \ \varepsilon_i = -\frac{\Delta \Phi}{\Delta t} \, ; \ \Phi = Li \, ; \ \varepsilon_{ai} = -L\frac{\Delta i}{\Delta t} \, ; \ W_m = \frac{LI^2}{2} \, ; \ q = q_m \cos \left(\omega t + \varphi_0\right) \, ; I = \frac{I_m}{\sqrt{2}} \, ; \ U = \frac{U_m}{\sqrt{2}} \, ;$$

$$\frac{I_2}{I_1} \approx K = \frac{N_1}{N_2} = \frac{U_1}{U_2} \, ; \ X_C = \frac{1}{\omega C} \, ; \ X_L = \omega L \, ; \ T = 2\pi \sqrt{LC} \, ;$$

$$\Delta_{\max} = \pm 2m \cdot \frac{\lambda}{2} \, ; \ \Delta_{\min} = \pm \left(2m+1\right) \cdot \frac{\lambda}{2} \, ; \ d \sin \varphi = \pm m\lambda \, ; \ d = \frac{l}{N} = \frac{1}{n}$$

FIZICA MODERNA

$$\begin{split} \tau &= \frac{\tau_0}{\sqrt{1 - v^2/c^2}}; \; l = l_0 \sqrt{1 - v^2/c^2}; \; \; m = \frac{m_0}{\sqrt{1 - v^2/c^2}}; \; \; \vec{p} = \frac{m_0 \vec{v}}{\sqrt{1 - v^2/c^2}} = \frac{E}{c^2} \vec{v}; \; \; E = mc^2; \; E_c = (m - m_0)c^2; \\ \varepsilon_f &= \frac{hc}{\lambda} \; ; \; \; p_f = \frac{h}{\lambda} \; ; \; \; hv = L_e + \frac{mv_{\text{max}}^2}{2} \; ; \; \; v = \frac{c}{\lambda} \; ; \; \; hv = E_n - E_m \; ; \\ N &= N_0 e^{-\lambda t} \; ; \; \; \lambda = \frac{\ln 2}{T_{1/2}} \; ; \; \; N = N_0 2^{-\frac{t}{T_{1/2}}} \\ \frac{A}{Z} X &\to \frac{A-4}{Z-2} Y + \frac{4}{2} He \; ; \; \frac{A}{Z} X \to \frac{A}{Z+1} Y + \frac{0}{1} e \; ; \; 1 \; \text{eV} = 1,60 \cdot 10^{-19} \; \text{J} \; ; \; 1 \; \text{u} = 1,66 \cdot 10^{-27} \; \text{kg} \; . \end{split}$$