

Diplomski studij

Informacijska i komunikacijska tehnologija:

Obradba informacija Telekomunikacije i informatika

Višemedijske komunikacije

5. Informacijska svojstva i kodiranje nepomične slike

Informacijska svojstva i kodiranje nepomične slike

- Izvori digitalne slike
- Ljudski vid i percepcija slike
- Računalni prikaz slike
- Principi kodiranja slike
- Kodiranje bez gubitaka
- Kodiranje sa gubicima
 - Diferencijalno kodiranje
 - Transformacijsko kodiranje: JPEG
 - Kodiranje valićima: JPEG 2000
 - Fraktalno kodiranje

Digitalna (nepomična, 2D) slika

- Slika iz stvarnog svijeta (u digitalnom obliku):
 - slika snimljena digitalnom kamerom
 - slika prenesena na računalo preko optičkog čitača (scanner)
 - ...
- Slika stvorena pomoću računala:
 - crtež (vektorska grafika)
 - slika (obrađena digitalna slika, bitmap, računalna grafika)
 - fraktalna slika
 - graf
 - vizualizacija
 - **—** ...
- Slika kao jedinica unutar animiranog filma ili videa

Percepcija slike

- Vidljiva svjetlost = elektromagnetski val
 - $\lambda = 330 770$ nm, c $\approx 3x10^8$ m/s (ovisno o gustoći medija)

- tri svojstva boje koje ljudsko oko raspoznaje su obojenost (<u>hue</u>), zasićenost (<u>saturation</u>), i svjetlina (<u>brightness</u>)
 - to je osnova za HSB model boja u računalnoj grafici

Ljudski vid

receptori u ljudskom oku:

- štapićaste stanice (osjetljive na svjetlost)
- čunjaste stanice (osjetljive na boju)
 - crveno ρ
 - plavo β
 - zeleno γ

Računalni prikaz slike

- slika se promatra kao matrica obojanih točaka, odn. pixela
- pixel = picture element
 - razlikujemo pixel slike od "pixela uređaja" (device pixel, dot)!! Npr:
 - printer 600 dpi: kvadrat sa stranicom 1/600"
 - video monitor 72 dpi: kvadrat sa stranicom 1/72"
- rezolucija slike = dimenzije matrice pixela N₁xN₂
- dubina slike = broj bita (d) za opis pixela (odn. boju)

- modeli boje za video: YUV, YIQ, ...
 - VMK Informacijska svojstva i kodiranje slike

Modeli boje za sliku

RGB:

- Red Green Blue
- (Crvena Zelena Plava)
- svjetlo, zbrojive boje
- TV ekran, monitor u boji

CMY:

- Cyan, Magenta, Yellow
- (Cijan Ljubičasta Žuta)
- pigment, oduzimljive boje
- pisač

Norme za kodiranje nepomične slike

- Brojne vlasničke i otvorene norme, npr:
 - BMP (Bitmap)
 - XBM (X11 Bitmap)
 - GIF (Graphics Interchange Format)
 - PNG (Portable Network Graphics)
 - TIFF (Tagged Image File Format)
 - JPEG (Joint Photographic Expert Group)
 - JPEG 2000

Kodiranje slike zasniva se na:

- Statističkim karakteristikama slike: kodiranje bez gubitaka
- Karakteristikama ljudskog sustava vida: kodiranje s neprimjetnim gubicima
- Sažimanju manje važnih elemenata slike prema nekom kriteriju: kodiranje s vidljivim gubicima
- Obično se radi o kombinaciji ovih ideja

Kodiranje bez gubitaka

- Koriste se metode entropijskog kodiranja (vidi prethodna predavanja)
- Slijedno kodiranje
 - Telefax (starija verzija)
- Huffman kodiranje
 - Telefax
- LZW metoda (metode rječnika)
 - GIF (Graphics Interchange Format) bez gubitaka ako se koristi do 256 boja; pogodan za računalnu grafiku

Kodiranje sa gubicima

- Diferencijalno (prediktivno) kodiranje
- Transformacijsko kodiranje
 - JPEG
- Kodiranje valićima (wavelets)
 - JPEG 2000
- Fraktalno kodiranje
- Osnovna ideja:

Diferencijalno (prediktivno) kodiranje

 Princip: vrijednost slijedećeg signala (pixela) predviđa se iz dosadašnjih vrijednosti, te se kodira razlika stvarnog i predviđenog

 Raspon amplituda diferencijalnog signala je povoljniji za kodiranje od originalne slike

Primjer: slika i njen histogram

256*256*8 bita

Direktnim entropijskim kodiranjem može se postići 7 bit/pixel

Signal razlike

 Prikazan je signal razlike za sliku iz primjera uz jedan stupanj predviđanja – svodi se na razliku susjednih pixela

- Signal se ujednačuje, povoljnije za entropijsko kodiranje
- Entropijskim kodiranjem dobiva se 2.6 bit/pixel!

Svojstva diferencijalnog kodiranja

- + Jednostavna implementacija
- + Može biti bez gubitaka (ovisno o tome da li se upotrebljava kvantizacija)
 - Postiže se relativno slaba kompresija

Transformacijsko kodiranje

- Signal se transformira u prostorno frekvencijske komponente, te se one kodiraju
- Neke frekvencijske komponente slike pojavljuju se puno više od ostalih, što rezultira dobrim kodiranjem
- Metoda razvijena 70-tih godina
- Široka primjena kroz normu JPEG
- JPEG = Joint Photographic Experts Group

Primjer: Fourierova transformacija

VMK • Informacijska svojstva i kodiranje slike

Transformacijsko kodiranje u praksi: JPEG

- 1. Slika se dijeli na blokove veličine 8 x 8 točaka
- 2. Svaki blok se aproksimira sumom osnovnih DCT blokova, svaki sa svojim koeficijentom doprinosa
- 3. Koeficijenti doprinosa svakog osnovnog bloka se kodiraju.

Za potpunu rekonstrukciju potrebno je onoliko osnovnih blokova koliko ima točaka u bloku: $8 \times 8 = 64$

Jednodimenzionalna DCT

- DCT diskretna kosinusna transformacija
- Promatramo jednodimenzionalnu sliku kao vektor dimenzije N pixela
- Za pixel na mjestu x, 0 ≤ x < N, p(x) označava razinu sivog kodiranu s 8 bita (0 – bijelo, 255 – crno)

$$p = [p(0) p(1) p(2) ... p(x) ... p(N-1)]$$

 Promatranu sliku možemo prikazati kao zbroj DCT funkcija s određenim težinama

$$p(x) = \sum_{f=0}^{N-1} S(f) \cdot DCT_f(x)$$
 [1]

Osnovne DCT funkcije

U jednoj dimenziji:

$$DCT_0(x) = \sqrt{\frac{1}{N}}$$

- Primjer: N=16
- Uvrštavanjem u [1]:

$$p(x) = S(0)\sqrt{\frac{1}{N}} + \sum_{f=1}^{N-1} S(f) \cdot \sqrt{\frac{2}{N}} \cos\left[\frac{(2x+1) \cdot \pi \cdot f}{2N}\right]$$
 [2]

Svojstva osnovnih kosinusnih funkcija

Cjelovitost

 Težinski se zbroj ovih funkcija može naći za bilo koju kombinaciju od N piksela.

Minimalnost

 Niti jedna funkcija se ne može predstaviti zbrojem ostalih, tj. svih N je potrebno za cjelovitost.

Jedinstvenost

 Niti jedan drugi skup kosinus funkcija osim onih koje su u razmjeru s korištenim se ne može koristiti za opis bilo koje kombinacije od N pixela.

Računanje koeficijenata

- Da bismo sliku prikazali DCT funkcijama, moramo izračunati koeficijente S(f) za 0 ≤ f ≤ N-1
- Prvi član u zbroju niza je srednja vrijednost, iz čega slijedi izraz za član S(0): $\frac{S(0)}{\sqrt{N}} = \frac{1}{N} \sum_{r=0}^{N-1} p(x) \Rightarrow S(0) = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} p(x)$

 Kada to uvrstimo u prethodni izraz, dobivamo za koeficijente S(f):

$$S(f) = \sqrt{\frac{2}{N}} \cdot C(f) \cdot \sum_{x=0}^{N-1} p(x) \cdot \cos \left[\frac{(2x+1)\pi f}{2N} \right] \quad C(f) = \begin{cases} 1/\sqrt{2}; & f = 0 \\ 1; & f > 0 \end{cases}$$
 [3]

 Matrica DCT koeficijenata S(f) opisuje sliku u frekvencijskoj domeni.

Primjer (1/3)

Promatramo konkretan primjer slike od N=8 pixela

Prije primjene DCT radi se posmak razina (*level shift*), tj.
 od svih vrijednosti u vektoru razina sivog oduzimamo 128
 kako bi vrijednosti bile simetrične u odnosu na 0 (interval
 od -128 do 127) i tako dobivamo vektor p´

$$p'(x) = [112 82 52 22 -8 -38 -68 -98]$$

 Za N=8, koeficijente S(f) računamo prema izrazu [3] i dobivamo:

 $S(f) = [19.89 \ 193.27 \ 0 \ 20.20 \ 0 \ 6.03 \ 0 \ 1.52]$

Primjer (2/3)

S(f) zaokružujemo na cijele brojeve i dobivamo **S'(f)**:

$$S'(f) = [20 193 0 20 0 6 0 2]$$

Za provjeru, izračunajmo sada p'(x) prema izrazu [2]:

$$p(x) = S(0)\sqrt{\frac{1}{N}} + \sum_{f=1}^{N-1} S(f) \cdot \sqrt{\frac{2}{N}} \cos\left[\frac{(2x+1) \cdot \pi \cdot f}{2N}\right]$$

$$p'(x) = [111.89 81.86 52.29 21.86 -7.71 -38.15 -67.72 -97.75]$$

Nakon zaokruživanja i posmaka razina dobivamo originalnu funkciju p(x). p'(x) = [112 82 52]

$$p'(x) = [112 82 52 22 -8 -38 -68 -98]$$

$$p(x) = [240 210 180 150 120 90 60 30]$$

Ovisno o efektima zaokruživanja, DCT je samo približno reverzibilna!

Primjer (3/3)

Utjecaj nižih frekvencijskih komponenata:

A S'(f) = [20 193 0 20 0 6 0 2]

$$p(x) = [240 210 180 150 120 90 60 30]$$

B S'(f) = [20 193 0 20 0 0 0 0]

$$p(x) = [238 213 179 148 122 91 57 32]$$

Vizualno:

Svojstva slike u frekvencijskoj domeni

- Zavod za telekomunikacije
- Frekvencijske komponente na nižim frekvencijama su izraženije od onih na višim frekvencijama
 - Prva četiri koeficijenta u primjeru opisuju gotovo cijelu sliku
- Visoke frekvencije izražavaju zaista sitne detalje u slici
- Doprinos članova na višim frekvencijama je mali kada su razlike susjednih pixela relativno male, dakle kada slika ne sadrži puno detalja
- Za većinu slika, ovo je zaista slučaj, te se na tom svojstvu zasniva JPEG kompresija (i druge metode transformacijskog kodiranja)
- Premda smo ovo pokazali na primjeru 1D, ovo jednako važi za dvodimenzionalnu sliku

Blok shema JPEG kodera

VMK • Informacijska svojstva i kodiranje slike

DCT transformacija slike (1/2)

- DCT funkcije u 2D dobivaju se množenjem 1D funkcija
- Osnovni blokovi DCT transformacije:

DCT transformacija slike (2/2)

- DCT transformacija vrši preslikavanje niza vrijednosti piksela u niz koeficijenata težine osnovnih blokova
- DCT koeficijenti za svaki blok 8x8 pixela se računaju prema formuli:

$$S(u,v) = \frac{C(u) \cdot C(v)}{4} \cdot \sum_{x=0}^{7} \sum_{y=0}^{7} p(x,y) \cdot \cos \left[\frac{(2x+1)\pi \cdot u}{16} \right] \cdot \cos \left[\frac{(2y+1)\pi \cdot v}{16} \right] \quad C(f) = \begin{cases} 1/\sqrt{2}; & f = 0 \\ 1; & f > 0 \end{cases}$$

primjer:

x/y	0	1	2	3	4	5	6	7		
0	79	75	79	82	82	86	94	94		
1	76	78	76	82	83	86	85	94		
2	72		Clišna vrijadnastil							
3	74		Slične vrijednosti!							
4	73	70	75	67	78	78	79	85		
5	69	63	68	69	75	78	82	80		
6	76	76	71	71	67	79	80	83		
7	72	77	78	69	75	75	78	78		

Izvorišna matrica p(x, y)

Najviša vrijednost S(0, 0) Niske vrijednosti

		_						
u/v	c	_1	2	3	4	5	6	7
0	619	-29	8	2	1	-3	0	1
1	22	6	-4	0	7	0	-2	-3
2	11	0	5	-4	-3	4	0	-3
3	2	-10	5	0	0	7	3	2
4	6	2	-1	-1	-3	0	0	8
5	1	2	1	2	0	2	-2	-2
6	-8	-2	-4	1	2	1	-1	1
7	-3	1	5	-2	1	-1	1	-3

DCT matrica S(u, v)

3: kvantizacija

 DCT koeficijenti se kvantiziraju zaokruživanjem na cjelobrojnu vrijednost omjera matrice koeficijenata S i kvantizacijske matrice Q; nastaje kvantizirana DCT matrica K:

$$K(u,v) = round\left(\frac{S(u,v)}{Q(u,v)}\right) = \left[\frac{S(u,v)}{Q(u,v)} + 0.5\right]$$

- Q mora biti tako izabrana da kvantizacija rezultira visokom kompresijom, ali bez primjetnog gubitka kvalitete
 - norme ne određuju, ali se preporučuje skup kvantizacijskih matrica Q

u/v	0	1	2	3	4	5	6	7
0	16	11	10	16	24	40	51	61
1	12	12	14	19	26	58	60	55
2	14	13	16	24	40	57	69	56
3	14	17	22	29	51	87	80	62
4	18	22	37	56	68	109	103	77
5	24	35	55	64	81	104	113	92
6	49	64	78	87	103	121	120	101
7	72	92	95	98	112	100	103	99

Kvantizacijaska matrica Q(u, v)

u/v	0	1	2	3	4	5	6	7
0	39	ဂု	1	0	0	0	0	0
1	2	1	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0
3	0	-1	0	0	0	0	0	0
4	0	0	0	0	0			4
5	0	0	0	0	0	Vrijednost 0		
6	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0

Kvantizirana DCT matrica K(u, v)

4: kompresija bez gubitaka

- Koeficijent K(0,0) (DC komponenta) redovito sadrži najveći dio ukupne vrijednosti bloka, tj. nosi najviše informacije o bloku kojeg predstavlja
- Korelacija između vrijednosti koeficijenata K(0, 0) susjednih blokova u slici → koristi se diferencijalno kodiranje

4: kompresija bez gubitaka

- Koeficijenti redom: 39 -3 2 1 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 00,
 što se kraće zapisuje kao:
 39 -3 2 1 1 0 0 0 0 0 -1 EOB (End of Block)
- Nakon takvog zapisa svih blokova u slici slijeva nadesno i odozgo prema dolje, slijedi entropijsko kodiranje
 - može se upotrijebiti Huffmanovo ili aritmetičko kodiranje

Primjer: JPEG

- Slika 516 x 516 točaka
- Kompresija 1:16

256 KB = 8 bit/pixel

16 KB = 0.5 bit/pixel

Svojstva transformacijskog kodiranja

- + Visoka kompresija (odlična kvaliteta slike do 0.25 bit/pixel)
- + Kvaliteta se može regulirati
- Pri većim kompresijama postaju vidljive granice blokova

Kodiranje valićima (wavelet coding)

- Modernija metoda
- Slika se iterativno dijeli u prostorno-frekvencijske pojaseve u horizontalnom i vertikalnom smjeru
- Podjela se obavlja zbirkama filtara

VMK

 Prilikom kodiranja, manje bitova za komponente s manje energije

Kodiranje valićima: svojstva

- Visoka kompresija
- "Prirodna" distorzija (zamućenost)
- Prednosti u odnosu na transformacijsko kodiranje:
 - Manja složenost
 - Nema blok efekta
 - Mogućnost progresivnog primanja i stvaranja slike
- Osnova nove norme JPEG 2000

JPEG 2000 vs JPEG (1/2)

- Veći dinamički raspon (16-32 bit/pixel)
- Bolja kompresija (25-30% manje podataka)
- Progresivno slanje podataka
- Kodiranje bez gubitaka prema područjima interesa (Region-of-interest, ROI)
- Međunarodna norma 2001

JPEG 2000 vs JPEG (2/2)

Usporedba rezultata uz jednaku kompresiju – 1:64

JPEG

JPEG2000

Fraktalno kodiranje

- Princip analize i sinteze
 - Umjesto kodiranja samih podataka, kodiraju se parametri neke funkcije koja će generirati te podatke
 - Isti princip kao kod kodera govora zasnovanih na modelu
 - Nažalost, za općenitu sliku je teško pronaći model, odnosno funkciju koja je opisuje
- Ideja: samo-sličnost
 - Dijelovi slike međusobno slični, uz transformaciju
 - Pretpostavka je da se ovo svojstvo može iskoristiti za prikaz slike pomoću fraktala, koji pokazuju slična svojstva

Fraktali

- Benoit Mandelbrot, 1975
- Fragmentirani, nepravilni geometrijski objekti koji pokazuju svojstvo samo-sličnosti
- Obično stvoreni rekurzivnim ponavljanjem određene funkcije
- U svakoj iteraciji objekt je transformirana verzija

objekta iz prošle iteracije

Proizvoljan nivo detalja

Funkcija s fiksnom točkom

- f(x) = x; za točno jednu vrijednost x=x₀ (vrijednost funkcije će biti ista kao onu koju uvrštavamo)
- Npr. F(x) = ax + b; $za a = 0.5 i b = 1 => x_0 = 2$, F(2) = 2
- Počevši od bilo koje početne vrijednosti, iteracijom ćemo uvijek stići do x₀ = 2
- Vrijednost x₀ možemo prikazati parom parametara a, b ako smo prethodno fiksirali oblik funkcije F = ax + b
- Za sliku (skup točaka) I, F(I) = I
 - Ako se parametri funkcije F mogu prikazati manjim brojem bita nego sama slika, postiže se kompresija

Fraktalno kodiranje u praksi

- Arnaud Jacquin (1989)
- Podjela slike
 - R -blokovi uniformno pokrivaju čitavu sliku $\bigcup_{k} R_{k} = I$
 - D blokovi su veći, mogu biti bilo gdje unutar slike i ne pokrivaju je
- Za svaki R blok, nalazi se jedąn
 D blok i funkcija fk, f_k(D_k) = R_k
- Skup svih funkcija f_k definira čitavu sliku

$$\bigcup_{k} f_{k} = F \rightarrow F(\hat{I}) = \hat{I}$$

Fraktalno kodiranje: svojstva

- Komplicirano
- Neujednačen stupanj kompresije
 - 4:1 do 100:1, jako ovisno o slici
- U početku se od fraktala puno očekivalo, no druge metode (najviše valići!) su uspješnije
- Princip je privlačan, moguće je da dođe do daljnjih napredaka i da metoda ipak zaživi u praksi