number of pendant vertices in a binary dec. (2)[CO1,4]

(5)[CO2]

tree with n vertices has (n-1) edges.

wing statement true or false? If all edges in a flow network have les, then there is a unique path for the possible maximum flow.

The statement true or false? If all edges in a flow network have less than the possible maximum flow.

The statement true or false? If all edges in a flow network have less than the possible maximum flow.

The statement true or false? If all edges in a flow network have less than the possible maximum flow.

The statement true or false? If all edges in a flow network have less than the possible maximum flow.

The statement true or false? If all edges in a flow network have less than the possible maximum flow.

The statement true or false? If all edges in a flow network have less than the possible maximum flow.

The statement true or false? If all edges in a flow network have less than the possible maximum flow.

The statement true or false? If all edges in a flow network have less than the possible maximum flow.

The statement is a unique path for the possible maximum flow.

The statement is a unique path for the possible maximum flow.

The statement is a unique path for the possible maximum flow.

The statement is a unique path for the possible maximum flow.

The statement is a unique path for the possible maximum flow.

The statement is a unique path for the possible maximum flow.

The statement is a unique path for the possible maximum flow.

The statement is a unique path for the possible maximum flow.

The statement is a unique path for the possible maximum flow.

The statement is a unique path for the possible maximum flow.

The statement is a unique path for the possible maximum flow.

The statement is a unique path for the possible maximum flow.

The statement is a unique path for the possible maximum flow.

The statement is a unique path flow.

The st

- (b) Solve the SDE dX(t) = X(t) dW(t) with X(0) = 1 and prove that its solution is $X(t) = \exp(W(t) \frac{t}{2})$.
- 3. (a) Evaluate $\int_0^T W^3(t)dW(t)$ using Ito Doeblin formula of version two.
 - (b) A stochastic process $\{S(t), t \ge 0\}$ is governed by dS(t) = aS(t)dt + bS(t)dW(t), CO4 where a & b are constants. Find the SDE of $\sqrt{S(t)}$.
- 4. (a) Consider a portfolio of two assets $a_1 \& a_2$ with the following 5 statistical parameters $\mu_1 = 10\%$, $\mu_2 = 20\%$, $\sigma_1 = 12\%$, CO5 $\sigma_2 = 25\%$, $\rho_{12} = -0.6$. Obtain the equation of Markovitz curve, and using that find value of minimum risk, the expected return.
 - (b) Prove that if short sales are not allowed then the risk of the 5 portfolio can not exceed the greater of the risks of the individual CO5 components of the portfolio.
- 5. (a) A portfolio with three securities a_1 , a_2 , a_3 with expected returns, 5 $\mu_1 = 20\%$, $\mu_2 = 13\%$, $\mu_3 = 4\%$, standard deviations of CO5 returns, $\sigma_1 = 25\%$, $\sigma_2 = 28\%$, $\sigma_3 = 20\%$, and the correlation between returns, $\rho_{12} = 0.3$, ρ_{13} , = 0.15 and $\rho_{23} = 0.4$. Compute the weights of individual assets in this portfolio for minimum variance.
 - 5 (b) Using the following data: CO5 Return K2 Scenario Probability Return K1 30% ω (recession) 0.2 -10% ω2 (stagnation) -10% 0.5 24% 10% @3 (boom) 20%

Find the weights in a portfolio with expected return $\mu_P = 25\%$ and compute the risk of this portfolio

[a] Is the following statement true or false? If all edges in a flow network have distinct capacities, then there is a unique path for the possible maximum flow. Justify your answer with a (short) proof or give a counter example.

Total no. of pages :2 6th SEMESTER

Roll No.__ B. Tech (MC- Engg.)

END SEMESTER EXAMINATION

MAY 2023

MC - 306 Financial Engineering

Max. Marks: 50

Time: 3 hrs

Note: Q.No.1 is compulsory, answer any other three questions.

Statistical table is allowed. Assume missing data, if any.

Y. (a) Let A(0)=100, A(1)=110, A(2)=121, and stock price can follow four 5 CO3

Scenario,	S(0)	S(1)	S(2)
W1	50	60	72
W2	50	60	58
W3	50	45	55
W4	50	45	40

is stock price at ith time interval. Compute Risk S(i), i = 0,1,2Neutral Probability (RNP).

- (b) Consider a portfolio of two assets al & a2 with no short sell, with the following statistical parameters CO5 $\mu_1 = 7.5\%, \mu_2 = 15\%$, $\sigma_1 = 12\%$, $\sigma_2 = 35\%$, $\rho_{12} = -0.22$. Find the value of minimum risk, the expected return and weight of the assets.
- (g) The stock price is Rs.100. The continuously compounded risk free interest rate is 8% and the annual volatility is 20%. CO3 European Call options are written with a strike price of Rs.90 and time to expiration of 3 months. The stock will pay a dividend continuously at the rate of 2%. Use the Black -Scholes formula to find the price of one such call option.
- (d) $\{N(t), t \ge 0\}$ be a Poisson process with parameter λ . Prove that CO4 $\{N(t) - \lambda t, t \ge 0\}$ is a martingale.
- 2. (a) A slock price following SDE $dS(t) = \mu S(t)dt + \sigma S(t)dW(t)$ has an expected return of 16% and a volatility of 30%. The CO4 current price is Rs.38. What is the probability that a European call option on the stock with an exercise price of Rs.40 and a maturity date in 3 months will be exercised?

- (b) Solve the SDE dX(t) = 2X(t) dW(t) with X(0) = 2.
 3. (a) Evaluate ∫₀^T Sin(2W(t))dW(t) using Ito Doeblin formula of version two.
 (b) A stochastic process {S(t), t ≥ 0} is governed by dS(t) = aS(t)dt + bS(t)dW(t),
- 4. (a) Consider a portfolio of two assets $a_1 \& a_2$ with the following statistical parameters $\mu_1 = 5\%$, $\mu_2 = 15\%$, $\sigma_1 = 15\%$, $\sigma_2 = 30\%$, $\rho_{12} = 0.5$. Obtain the equation of Markovitz curve, and using that find value of minimum risk, the expected return.

where a & b are constants. Find the SDE of $\sqrt{S(t)}$.

- (b) Prove that if short sales are not allowed then the risk of the 5 portfolio can not exceed the greater of the risks of the individual CO5 components of the portfolio.
- 5. (a) A portfolio with three securities a_1 , a_2 , a_3 with expected returns, 5 $\mu_1 = 20\%$, $\mu_2 = 13\%$, $\mu_3 = 4\%$, standard deviations of COS returns, $\sigma_1 = 25\%$, $\sigma_2 = 28\%$, $\sigma_3 = 20\%$, and the correlation between returns, $\rho_{12} = 0.3$, ρ_{13} , = 0.15 and $\rho_{23} = 0.4$. If risk free interest rate is 10% then compute the weight vector for market portfolio.
 - (b) Derive the expression of the line which converts into Capital Market line.

CO5

Total no. of pages :2
6th SEMESTER
END SEMESTER EXAMINATION

B.Tech (MC- Engg.)
MAY 2024

MC - 306 Financial Engineering

Time: 3 hrs Max. Marks: 50

Note: Q.No.1 is compulsory, answer any other three questions. Statistical table is allowed. Assume missing data, if any.

- 1. (a) The current stock price is Rs. 250. A six month call option on 5 this stock with strike price Rs. 255 is priced in two steps. It is CO3 given that continuously compounded risk free rate is 4%, stock pays no dividend and the volatility of the stock is 20%. Determine the price of call options.
 - Consider a portfolio of two assets al & a2 with no short sell, 5 with the following statistical parameters $\mu_1 = 10\%, \mu_2 = 15\%$, $\sigma_1 = 18\%, \sigma_2 = 36\%, \rho_{12} = 0.2$. Find the value of minimum risk, the expected return and weight of the assets.
 - (c) The stock price is Rs.85. The continuously compounded risk free interest rate is 6% and the annual volatility is 20%. CO3 European Call options are written with a strike price of Rs.85 and time to expiration of 3 months. The stock will pay a dividend continuously at the rate of 1%. Use the Black Scholes formula to find the price of one such call option.
 - Let $X(t) = \mu t + \sigma W(t)$, $-\infty < \mu < \infty$, $0 < \sigma < \infty$ and W(t) is a standard B.M. be a stochastic process. Find the condition such that $\{X(t), t \ge 0\}$ is a martingale.
 - 2. (a) A stock price following SDE $dS(t) = \mu S(t)dt + \sigma S(t)dW(t)$ 5 has an expected return of 15% and a volatility of 40%. Find the CO4 distribution of the stock price in 2 year. Find the expected price after 2 year if the current price is Rs.50.