### **Space X Falcon 9 First Stage Landing Prediction**

Nick Belgau

### **Objective**

Perform exploratory Data Analysis and determine training Labels

- · create a column for the class
- · Standardize the data
- · Split into training data and test data

Find best Hyperparameter for SVM, Classification Trees and Logistic Regression

Find the method performs best using test data

### **Import Libraries and Define Auxiliary Functions**

```
In [2]: import pandas as pd #data manipulation & analysis
   import numpy as np #matrix operations and high level mathematical functions
   import matplotlib.pyplot as plt #plotting framework
   import seaborn as sns #data visualization based on matplotlib

from sklearn import preprocessing #stadnardize the data
   from sklearn.model_selection import train_test_split #split the data
   from sklearn.model_selection import GridSearchCV #find optimized test paramete
   rs

from sklearn.linear_model import LogisticRegression
   from sklearn.svm import SVC
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.neighbors import KNeighborsClassifier
```

This function is to plot the confusion matrix.

```
In [3]: def plot_confusion_matrix(y,y_predict):
    "this function plots the confusion matrix"
    from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y, y_predict)
    ax= plt.subplot()
    sns.heatmap(cm, annot=True, ax = ax); #annot=True to annotate cells
    ax.set_xlabel('Predicted labels')
    ax.set_ylabel('True labels')
    ax.set_title('Confusion Matrix');
    ax.xaxis.set_ticklabels(['did not land', 'land']); ax.yaxis.set_ticklabels
(['did not land', 'landed'])
```

#### Load the dataframe

```
In [41]: data = pd.read_csv("https://cf-courses-data.s3.us.cloud-object-storage.appdoma
in.cloud/IBM-DS0321EN-SkillsNetwork/datasets/dataset_part_2.csv")
data.head()
```

#### Out[41]:

|   | FlightNumber | Date           | BoosterVersion | PayloadMass | Orbit | LaunchSite      | Outcome        | Flights | Gric |
|---|--------------|----------------|----------------|-------------|-------|-----------------|----------------|---------|------|
| 0 | 1            | 2010-<br>06-04 | Falcon 9       | 6104.959412 | LEO   | CCAFS<br>SLC 40 | None<br>None   | 1       |      |
| 1 | 2            | 2012-<br>05-22 | Falcon 9       | 525.000000  | LEO   | CCAFS<br>SLC 40 | None<br>None   | 1       |      |
| 2 | 3            | 2013-<br>03-01 | Falcon 9       | 677.000000  | ISS   | CCAFS<br>SLC 40 | None<br>None   | 1       |      |
| 3 | 4            | 2013-<br>09-29 | Falcon 9       | 500.000000  | РО    | VAFB SLC<br>4E  | False<br>Ocean | 1       |      |
| 4 | 5            | 2013-<br>12-03 | Falcon 9       | 3170.000000 | GTO   | CCAFS<br>SLC 40 | None<br>None   | 1       |      |
| 4 |              |                |                |             |       |                 |                |         | •    |

Out[42]:

|                     | FlightNumber | PayloadMass | Flights | Block | ReusedCount | Orbit_ES-<br>L1 | Orbit_GEO | Orbit_GTO |  |
|---------------------|--------------|-------------|---------|-------|-------------|-----------------|-----------|-----------|--|
| 0                   | 1.0          | 6104.959412 | 1.0     | 1.0   | 0.0         | 0.0             | 0.0       | 0.0       |  |
| 1                   | 2.0          | 525.000000  | 1.0     | 1.0   | 0.0         | 0.0             | 0.0       | 0.0       |  |
| 2                   | 3.0          | 677.000000  | 1.0     | 1.0   | 0.0         | 0.0             | 0.0       | 0.0       |  |
| 3                   | 4.0          | 500.000000  | 1.0     | 1.0   | 0.0         | 0.0             | 0.0       | 0.0       |  |
| 4                   | 5.0          | 3170.000000 | 1.0     | 1.0   | 0.0         | 0.0             | 0.0       | 1.0       |  |
| 5 rows × 83 columns |              |             |         |       |             |                 |           |           |  |

Create a NumPy array from the column Class in data, by applying the method to\_numpy() then assign it to the variable Y, make sure the output is a Pandas series (only one bracket df['name of column']).

```
In [6]: y = data['Class'].to_numpy()
```

Standardize the data in X then reassign it to the variable X.

```
In [7]: transform = preprocessing.StandardScaler()
X = transform.fit_transform(X)
```

We split the data into training and testing data using the function train\_test\_split.

The training data is divided into validation data, a second set used for training data; then the models are trained and hyperparameters are selected using the function <code>GridSearchCV</code>.

### Split data into train and test data

```
X_train, X_test, Y_train, Y_test
```

```
In [8]: X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.2, rando
m_state=2)
```

we can see we only have 18 test samples.

```
In [9]: Y_test.shape
Out[9]: (18,)
```

# Creating a logistic regression object using then create a GridSearchCV object logreg\_cv with cv = 10.

Fit the object to find the best parameters from the dictionary parameters

We output the <code>GridSearchCV</code> object for logistic regression. We display the best parameters using the data attribute <code>best\_params\\_</code> and the accuracy on the validation data using the data attribute <code>best\_score\\_</code> .

```
In [43]: print("tuned hyperparameters :(best parameters) ",logreg_cv.best_params_)
    print("accuracy :",logreg_cv.best_score_)

    tuned hyperparameters :(best parameters) {'C': 0.01, 'penalty': '12', 'solve
    r': 'lbfgs'}
    accuracy : 0.8464285714285713
```

Calculating the accuracy on the test data using the method score:

```
In [44]: yhat=logreg_cv.predict(X_test)
    plot_confusion_matrix(Y_test,yhat)
```



Examining the confusion matrix, we see that logistic regression can distinguish between the different classes. We see that the major problem is false positives.

### Creating SVM object then creating a GridSearchCV object svm\_cv with cv - 10.

Fit the object to find the best parameters from the dictionary parameters .

Calculate the accuracy on the test data using the method score:

We can plot the confusion matrix

```
In [24]: yhat=svm_cv.predict(X_test)
   plot_confusion_matrix(Y_test,yhat)
```



# Creating a decision tree classifier object then creating a GridSearchCV object tree\_cv with cv = 10.

Fit the object to find the best parameters from the dictionary parameters .

```
In [25]:
         parameters = {'criterion': ['gini', 'entropy'],
               'splitter': ['best', 'random'],
               'max depth': [2*n for n in range(1,10)],
               'max_features': ['auto', 'sqrt'],
               'min_samples_leaf': [1, 2, 4],
               'min_samples_split': [2, 5, 10]}
         tree = DecisionTreeClassifier()
         gscv = GridSearchCV(tree,parameters,scoring='accuracy',cv=10)
In [26]:
         tree_cv = gscv.fit(X_train,Y_train)
         print("tuned hyperparameters :(best parameters) ",tree cv.best params )
In [46]:
         print("accuracy :",tree_cv.best_score_)
         tuned hyperparameters :(best parameters) {'criterion': 'gini', 'max_depth':
         10, 'max features': 'auto', 'min samples leaf': 2, 'min samples split': 2, 's
         plitter': 'best'}
         accuracy: 0.8892857142857142
```

Calculating the accuracy of tree\_cv on the test data using the method score:

```
In [28]: print("accuracy: ", tree_cv.score(X_test,Y_test))
         accuracy: 0.7777777777778
```

We can plot the confusion matrix

```
In [29]: | yhat = svm cv.predict(X test)
          plot confusion matrix(Y test,yhat)
                          Confusion Matrix
```



### Creating a KNN object then creating a GridSearchCV object knn cv with cv = 10.

Fit the object to find the best parameters from the dictionary parameters.

```
In [30]:
         parameters = {'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
                        'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'],
                        'p': [1,2]}
         KNN = KNeighborsClassifier()
         gscv = GridSearchCV(KNN,parameters,scoring='accuracy',cv=10)
In [31]:
         knn_cv = gscv.fit(X_train,Y_train)
         print("tuned hpyerparameters :(best parameters) ",knn_cv.best_params_)
In [ ]:
         print("accuracy :",knn_cv.best_score_)
```

Calculating the accuracy of tree cv on the test data using the method score:

```
print("accuracy: ",knn_cv.score(X_test,Y_test))
```

We can plot the confusion matrix

```
In [ ]: yhat = knn_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
```

### Finding the method performs best:

print('Best Parameters:',logreg\_cv.best\_params\_)

```
Best Parameters: {'criterion': 'gini', 'max_depth': 10, 'max_features': 'aut
o', 'min samples leaf': 2, 'min samples split': 2, 'splitter': 'best'}
```