Proposition 5.10. For $x \neq 1$ and $n \in \mathbb{N} \cup \{0\}$, $\sum_{j=0}^{n} x^{j} = \frac{1-x^{n+1}}{1-x}$.

Proof. For a fixed x, we will prove that $(1-x)\sum_{j=0}^n x^j = 1-x^{n+1}$ by induction on $n \ge 0$. The base case n=0 says that $(1-x)\sum_{j=0}^0 x^j = 1-x$, which is true since $\sum_{j=0}^0 x^j = x^0 = 1$. For the induction step, assume that $(1-x)\sum_{j=0}^n x^j = 1-x^{n+1}$. Then

$$(1-x)\sum_{j=0}^{n+1} x^j = (1-x)\left(\sum_{j=0}^n x^j + x^{n+1}\right) = (1-x)\sum_{j=0}^n x^j + (1-x)x^{n+1}$$
$$= 1 - x^{n+1} + x^{n+1} - x^{n+2} = 1 - x^{n+2}.$$

In the penultimate step we used the induction hypothesis.