3.11.
$$f(x) = \begin{cases} \sin x, & x < 0, \\ x, & 0 \le x \le 2, \\ 0, & x > 2. \end{cases}$$

3.12.
$$f(x) = \begin{cases} \cos x, & x \leq \pi/2, \\ 0, & \pi/2 < x < \pi, \\ 2, & x \geq \pi. \end{cases}$$

3.13.
$$f(x) = \begin{cases} x - 1, & x \leq 0, \\ x^2, & 0 < x < 2, \\ 2x, & x \geq 2. \end{cases}$$

3.14.
$$f(x) = \begin{cases} x+1, & x < 0, \\ x^2 - 1, & 0 \le x < 1, \\ -x, & x \ge 1. \end{cases}$$

3.15.
$$f(x) = \begin{cases} -x, & x < 0, \\ x^2 + 1, & 0 \le x < 2, \\ x + 1, & x \ge 2. \end{cases}$$

3.16.
$$f(x) = \begin{cases} x+3, & x \leq 0, \\ 1, & 0 < x \leq 2, \\ x^2-2, & x > 2. \end{cases}$$

3.17.
$$f(x) = \begin{cases} x - 1, & x < 0, \\ \sin x, & 0 \le x < \pi, \\ 3, & x \ge \pi. \end{cases}$$

3.18.
$$f(x) = \begin{cases} \frac{-x+1}{x^2+1}, & x < -1, \\ x^2+1, & -1 \le x \le 2, \\ 2x, & x > 2. \end{cases}$$

3.19.
$$f(x) = \begin{cases} 1, & x \leq 0, \\ 2^x, & 0 \leq x \leq 2, \\ x+3, & x > 2. \end{cases}$$

3.20.
$$f(x) = \begin{cases} -x + 2, & x \leq -2, \\ x^3, & -2 < x \leq 1, \\ 2, & x > 1. \end{cases}$$

3.21.
$$f(x) = \begin{cases} 3x + 4, & x \le -1, \\ x^2 - 2, & -1 < x < 2, \\ x, & x \ge 2. \end{cases}$$

3.22.
$$f(x) = \begin{cases} x, & x \leq 1, \\ (x-2)^2, & 1 < x < 3, \\ -x+6, & x \geq 3. \end{cases}$$

3.23.
$$f(x) = \begin{cases} x - 1, & x < 1, \\ x^2 + 2, & 1 \le x \le 2, \\ -2x, & x > 2. \end{cases}$$

3.24.
$$f(x) = \begin{cases} x^3, & x < -1, \\ x - 1, & -1 \le x \le 3, \\ -x + 5, & x > 3. \end{cases}$$

3.25.
$$f(x) = \begin{cases} x, & x < -2, \\ -2, & x < 1, \\ x^2 - 1, & x > 1. \end{cases}$$

3.26.
$$f(x) = \begin{cases} x+3, & x \leq 0, \\ -x^2+4, & 0 < x < 2, \\ x-2, & x \geq 2. \end{cases}$$

3.27.
$$f(x) = \begin{cases} 0, & x \leq -1, \\ x^2 - 1, & -1 < x \leq 2, \\ 2x, & x > 2. \end{cases}$$

3.28.
$$f(x) = \begin{cases} -1, & x < 0, \\ \cos x, & 0 \le x \le \pi, \\ 1 - x, & x > \pi. \end{cases}$$

3.29.
$$f(x) = \begin{cases} 2, & x < -1, \\ 1 - x, & -1 \le x \le 1, \\ \ln x, & x > 1. \end{cases}$$

3.30.
$$f(x) = \begin{cases} -x, & x \leq 0, \\ x^3, & 0 < x \leq 2, \\ x+4, & x > 2. \end{cases}$$

4. Исследовать данные функции на непрерывность в указанных точках.

4.1.
$$f(x) = 2^{1/(x-3)} + 1$$
; $x_1 = 3$, $x_2 = 4$.
4.2. $f(x) = 5^{1/(x-3)} - 1$; $x_1 = 3$, $x_2 = 4$.

4.2.
$$f(x) = 5^{1/(x-3)} - 1$$
; $x_1 = 3$, $x_2 = 4$.

4.3.
$$f(x) = (x+7)/(x-2)$$
; $x_1 = 2$, $x_2 = 3$.

4.4.
$$f(x) = (x-5)/(x+3)$$
; $x_1 = -2$, $x_2 = -3$.

4.5.
$$f(x) = 4^{1/(3-x)} + 2$$
; $x_1 = 2$, $x_2 = 3$.

4.6.
$$f(x) = 9^{1/(2-x)}$$
; $x_1 = 0$, $x_2 = 2$.

4.7.
$$f(x) = 2^{1/(x-5)} + 1$$
; $x_1 = 4$, $x_2 = 5$

4.6.
$$f(x) = 9^{1/(2-x)}$$
; $x_1 = 0$, $x_2 = 0$.
4.7. $f(x) = 2^{1/(x-5)} + 1$; $x_1 = 4$, $x_2 = 5$.
4.8. $f(x) = 5^{1/(x-4)} - 2$; $x_1 = 3$, $x_2 = 4$.

4.9.
$$f(x) = 6^{1/(x-3)} + 3$$
; $x_1 = 3$, $x_2 = 4$.

4.10.
$$f(x) = 7^{1/(5-x)} + 1$$
; $x_1 = 4$, $x_2 = 5$.

4.11.
$$f(x) = (x-3)(x+4)$$
; $x_1 = -5$, $x_2 = -4$.

4.12.
$$f(x) = (x+5)/(x-2)$$
; $x_1 = 3$, $x_2 = 2$.
4.13. $f(x) = 5^{2/(x-3)}$; $x_1 = 3$, $x_2 = 4$.
4.14. $f(x) = 4^{2/(x-1)} - 3$; $x_1 = 1$, $x_2 = 2$.

4.13.
$$f(x) = 5^{2/(x-3)}$$
; $x_1 = 3$, $x_2 = 4$

4.14.
$$f(x) = 4^{2/(x-1)} - 3$$
; $x_1 = 1$, $x_2 = 2$

4.15.
$$f(x) = 2^{5/(1-x)} - 1$$
; $x_1 = 0$, $x_2 = 1$.
4.16. $f(x) = 8^{4/(x-2)} - 1$; $x_1 = 2$, $x_2 = 3$.

4.16.
$$f(x) = 8^{4/(x-2)} - 1$$
; $x_1 = 2$, $x_2 = 3$.

4.17.
$$f(x) = 5^{4/(3-x)} + 1$$
; $x_1 = 2$, $x_2 = 3$.

4.18.
$$f(x) = 3x/(x-4)$$
; $x_1 = 4$, $x_2 = 5$.