Project Design Phase Solution Architecture

Date	27 June 2025
Team ID	LTVIP2025TMID39904
Project Name	Pattern Sense: Classifying Fabric Patterns using Deep Learning
Maximum Marks	4 Marks

Solution Architecture for Pattern Sense

Overview:

The solution architecture for *Pattern Sense* bridges the manual challenges of fabric pattern classification with a robust, Al-powered automation system. It outlines the structure and flow of the deep learning model, data handling, user interaction, and system deployment.

Key Goals of This Architecture:

1. Find the Best Technology to Solve the Problem

- Utilize Convolutional Neural Networks (CNNs) to classify fabric images into pattern types (e.g., floral, stripes, checks).
- Choose lightweight, fast, and scalable frameworks like TensorFlow or PyTorch for model development.

2. Describe the System to Stakeholders

- Present an end-to-end solution that includes:
 - Image acquisition via cameras or uploads
 - Preprocessing pipeline
 - Trained CNN model for classification
 - Web interface for user input/output display
 - Integration capability with existing factory systems

3. Define Features, Phases, and Requirements

 Features: Upload/scan fabric, auto-classify pattern, display result with confidence level

O Phases:

- Data collection & labeling
- Model training & evaluation

- Frontend/backend development
- Deployment & testing

• Requirements:

- High-quality labeled dataset
- GPU support for training
- Real-time inference engine
- Simple web dashboard for usability

4. Provide Development Specifications

- Model Input: RGB image (128x128)
- Model Output: Pattern class label + confidence score
- Backend: Python Flask/Django
- Frontend: HTML/CSS with minimal JavaScript
- Deployment: Local server or cloud (AWS/GCP) with GPU support
- o **Performance Target:** ≥ 90% accuracy, < 100 ms inference time

Reference: https://aws.amazon.com/blogs/industries/voice-applications-in-clinical-research-powered-by-ai-on-aws-part-1-architecture-and-design-considerations/