

PyTorch Tutorial

07. Multiple Dimension Input

x (hours)	y (points)
1	2
2	4
3	6
4	?

DIP	YELR
-----	------

x (hours)	y (pass/fail)
1	0 (fail)
2	0 (fail)
3	1 (pass)
4	?

Diabetes Dataset

		Υ	X8	Х7	Х6	X5	X4	X3	X2	X1
		0	-0.03	-0.53	0.00	0.00	-0.29	0.18	0.49	-0.29
-7	Sample	1	-0.67	-0.77	-0.21	0.00	-0.41	0.08	-0.15	-0.88
-4		0	-0.63	-0.49	-0.31	0.00	0.00	0.05	0.84	-0.06
	_	1	0.00	-0.92	-0.16	-0.78	-0.54	0.08	-0.11	-0.88
: V (数据作	0	-0.60	0.89	0.28	-0.60	-0.29	-0.34	0.38	0.00
	-	1	-0.70	-0.89	-0.24	0.00	0.00	0.21	0.17	-0.41
		0	-0.83	-0.85	-0.08	-0.79	-0.35	-0.18	-0.22	-0.65
		1	-0.73	-0.95	0.05	0.00	0.00	0.00	0.16	0.18
		0	0.07	-0.93	-0.09	0.28	-0.09	0.15	0.98	-0.76
		0	0.10	-0.87	0.00	0.00	0.00	0.57	0.26	-0.06

Lecturer : Hongpu Liu

Lecture 7-3

Diabetes Dataset

X1	X2	X3	Х4	X5	Х6	X7	X8	Υ
-0.29	0.49	0.18	-0.29	0.00	0.00	-0.53	-0.03	0
-0.88	-0.15	0.08	-0.41	0.00	-0.21	-0.77	-0.67	1
-0.06	0.84	0.05	0.00	0.00	-0.31	-0.49	-0.63	0
-0.88	-0.11	0.08	-0.54	-0.78	-0.16	-0.92	0.00	1
0.00	0.38	-0.34	-0.29	-0.60	0.28	0.89	-0.60	0
-0.41	0.17	0.21	0.00	0.00	-0.24	-0.89	-0.70	1
-0.65	-0.22	-0.18	-0.35	-0.79	-0.08	-0.85	-0.83	0
0.18	0.16	0.00	0.00	0.00	0.05	-0.95	-0.73	1
-0.76	0.98	0.15	-0.09	0.28	-0.09	-0.93	0.07	0
-0.06	0.26	0.57	0.00	0.00	0.00	-0.87	0.10	0

Feature 特征一数据集厚险

Lecturer : Hongpu Liu

Lecture 7-4

PyTorch Tutorial @ SLAM Research Group

(X, 134) diabetes data. csv.gz

exal Wito tablished

22 \$ \$ Wito 18 17 PP

Multiple Dimension Logistic Regression Model

Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(x^{(i)} * \omega + b)$$

Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(\sum_{n=1}^{8} x_n^{(i)} \cdot \omega_n + b)$$

$$[N_1 ... W_8]$$
 $[X_8]$ $[X_8]$

Lecturer : Hongpu Liu

Lecture 7-5

Multiple Dimension Logistic Regression Model

Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(x^{(i)} * \omega + b)$$

Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(\sum_{n=1}^{8} x_n^{(i)} \cdot \omega_n + b)$$

Multiple Dimension Logistic Regression Model

Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(x^{(i)} * \omega + b)$$

$$\sum_{n=1}^{8} x_n^{(i)} \cdot \omega_n = \begin{bmatrix} x_1^{(i)} & \cdots & x_N^{(i)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix}$$

Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(\sum_{n=1}^{8} x_n^{(i)} \cdot \omega_n + b)$$

Logistic Regression Model
$$\hat{y}^{(i)} = \sigma(\sum_{n=1}^{8} x_n^{(i)} \cdot \omega_n + b)$$

$$\hat{y}^{(i)} = \sigma([x_1^{(i)} \dots x_8^{(i)}] \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b)$$

$$= \sigma(z_1^{(i)})$$

Lecturer: Hongpu Liu Lecture 7-7

$$\begin{bmatrix} \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(N)} \end{bmatrix} = \begin{bmatrix} \sigma(z^{(1)}) \\ \vdots \\ \sigma(z^{(N)}) \end{bmatrix} = \sigma(\begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix})$$

$$\text{tord. exp} (\begin{bmatrix} \chi_{i} \\ \chi_{i} \\ \chi_{s} \end{bmatrix}) = \begin{bmatrix} e^{\chi_{i}} \\ e^{\chi_{i}} \end{bmatrix}$$

Sigmoid function is in an element-wise fashion.

的对处数是极强强的形式

$$\begin{bmatrix} \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(N)} \end{bmatrix} = \begin{bmatrix} \sigma(z^{(1)}) \\ \vdots \\ \sigma(z^{(N)}) \end{bmatrix} = \sigma(\begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix})$$

Sigmoid function is in an element-wise fashion.

$$\begin{bmatrix} z^{(1)} \\ z^{(1)} \end{bmatrix} = \begin{bmatrix} x_1^{(1)} & \cdots & x_8^{(1)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\vdots \\ z^{(N)} \end{bmatrix} = \begin{bmatrix} x_1^{(N)} & \cdots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

Lecturer : Hongpu Liu

Lecture 7-9

$$\begin{bmatrix} \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(N)} \end{bmatrix} = \begin{bmatrix} \sigma(z^{(1)}) \\ \vdots \\ \sigma(z^{(N)}) \end{bmatrix} = \sigma(\begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix})$$

Sigmoid function is in an element-wise fashion.

$$z^{(1)} = \begin{bmatrix} x_1^{(1)} & \cdots & x_8^{(1)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\vdots$$

$$z^{(N)} = \begin{bmatrix} x_1^{(N)} & \cdots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$N \times 1$$

$$N \times 8$$

$$0$$

$$N \times 1$$

$$N \times 8$$

$$0$$

$$N \times 1$$

Lecturer : Hongpu Liu

Lecture 7-10

$$\begin{bmatrix} \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(N)} \end{bmatrix} = \begin{bmatrix} \sigma(z^{(1)}) \\ \vdots \\ \sigma(z^{(N)}) \end{bmatrix} = \sigma(\begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix})$$

$$z^{(1)} = \begin{bmatrix} x_1^{(1)} & \cdots & x_8^{(1)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\vdots$$

$$z^{(N)} = \begin{bmatrix} x_1^{(N)} & \cdots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\vdots$$

$$z^{(N)} = \begin{bmatrix} x_1^{(N)} & \cdots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\vdots$$

$$z^{(N)} = \begin{bmatrix} x_1^{(N)} & \cdots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\vdots$$

$$w \times 1$$

Lecturer : Hongpu Liu

Lecture 7-11

Linear Layer

Lecturer : Hongpu Liu

Lecture 7-12

Linear Layer

Lecturer : Hongpu Liu

Lecture 7-13

self.linear = torch.nn.Linear(8, 6)

Lecturer : Hongpu Liu

Lecture 7-14

Lecturer : Hongpu Liu

Lecture 7-15

Example: Artificial Neural Network

Lecturer : Hongpu Liu

Lecture 7-16

Example: Diabetes Prediction

X1	X2	X3	X4	X5	Х6	X7	X8	Υ
-0.29	0.49	0.18	-0.29	0.00	0.00	-0.53	-0.03	0
-0.88	-0.15	0.08	-0.41	0.00	-0.21	-0.77	-0.67	1
-0.06	0.84	0.05	0.00	0.00	-0.31	-0.49	-0.63	0
-0.88	-0.11	0.08	-0.54	-0.78	-0.16	-0.92	0.00	1
0.00	0.38	-0.34	-0.29	-0.60	0.28	0.89	-0.60	0
-0.41	0.17	0.21	0.00	0.00	-0.24	-0.89	-0.70	1
-0.65	-0.22	-0.18	-0.35	-0.79	-0.08	-0.85	-0.83	0
0.18	0.16	0.00	0.00	0.00	0.05	-0.95	-0.73	1
-0.76	0.98	0.15	-0.09	0.28	-0.09	-0.93	0.07	0
-0.06	0.26	0.57	0.00	0.00	0.00	-0.87	0.10	0

Example: Diabetes Prediction

Prepare dataset
we shall talk about this later

Design model using Class inherit from nn.Module

Construct loss and optimizer using PyTorch API

Training cycle forward, backward, update

Example: 1. Prepare Dataset

```
import numpy as np
xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32)
x_data = torch. from_numpy (xy[:,:-1]) (事的分化形态数, 能上午及時分化的
y_data = torch. from_numpy(xy[:, [-1]])
          LAtorch to numpy of the Fat Tensor
     diabetes.csv
     -0.294118,0.487437,0.180328,-0.292929,0,0.00149028,-0.53117,-0.0333333,0
    -0.882353,-0.145729,0.0819672,-0.414141,0,-0.207153,-0.766866,-0.666667,1
    -0.0588235,0.839196,0.0491803,0,0,-0.305514,-0.492741,-0.633333,0
    -0.882353,-0.105528,0.0819672,-0.535354,-0.777778,-0.162444,-0.923997,0,1
  5 0,0.376884,-0.344262,-0.292929,-0.602837,0.28465,0.887276,-0.6,0
  6 -0.411765,0.165829,0.213115,0,0,-0.23696,-0.894962,-0.7,1
    -0.647059,-0.21608,-0.180328,-0.353535,-0.791962,-0.0760059,-0.854825,-0.833333,0
  8 0.176471,0.155779,0,0,0,0.052161,-0.952178,-0.733333,1
  9 -0.764706,0.979899,0.147541,-0.0909091,0.283688,-0.0909091,-0.931682,0.0666667,0
 10 -0.0588235,0.256281,0.57377,0,0,0,-0.868488,0.1,0
 11 -0.529412,0.105528,0.508197,0,0,0.120715,-0.903501,-0.7,1
 12 0.176471,0.688442,0.213115,0,0,0.132638,-0.608027,-0.566667,0
 13 0.176471,0.396985,0.311475,0,0,-0.19225,0.163962,0.2,1
 14 -0.882353,0.899497,-0.0163934,-0.535354,1,-0.102832,-0.726729,0.266667,0
```

Lecturer : Hongpu Liu

Lecture 7-19

PyTorch Tutorial @ SLAM Research Group

x_data = torch.from_numpy(xy[:,:-1]) 取前八列

第一个: 是指读取所有行

第二个: 是指从第一列开始, 最后一列不要

y_data = torch.from_numpy(xy[:, [-1]]

取最后一列

[-1] 最后得到的是个矩阵

如果没有中括号,拿出来的是向量

https://blog.csdn.net/shenggedeqiang/article/details/84856051

Example: 2. Define Model

Lecturer : Hongpu Liu

Lecture 7-20

Example: 3. Construct Loss and Optimizer

Mini-Batch Loss Function for Binary Classification

$$loss = -\frac{1}{N} \sum_{n=1}^{N} y_n \log \hat{y}_n + (1 - y_n) \log(1 - \hat{y}_n)$$

$$\omega = \omega - \alpha \frac{\partial cost}{\partial \omega}$$

Update

$$\omega = \omega - \alpha \frac{\partial cost}{\partial \omega}$$

```
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), 1r=0.1)
```

Example: 4. Training Cycle

```
for epoch in range (100):
    # Forward
    y_pred = model(x_data) <--</pre>
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())
    # Backward
    optimizer.zero_grad()
    loss. backward()
    # Update
    optimizer. step()
```

NOTICE:

This program has not use **Mini-Batch** for training.

We shall talk about **DataLoader** later.

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	,
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	,
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0, z)$	Multi-layer Neural Networks	
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	

http://rasht.github.jo/mlxtend/user.guide/general.concepts/activation-functions/#activation-functions-for-artificial-neural-networks

Lecturer : Hongpu Liu

Lecture 7-23

 $\underline{https://dashee87.github.io/data\%20science/deep\%20learning/visualising-activation-functions-in-neural-networks/}$

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Lecturer: Hongpu Liu

Lecture 7-26

