Programming Language Concepts, CS2104 (17th Sep 2007)

Tutorial 4 Lambda Calculus.

Exercise 1. (Free/Bound) Indicate which occurrences of variables are bound and which ones are free in the following expressions.

- 1. $(\lambda x \cdot z (x (\lambda x \cdot y(z)))) x$
- 2. (λ a b . c d a b) a b (λ c d . d c) (λ e f . f) e
- 3. $((\lambda u v . \lambda w. w (\lambda x. x(u)) (v)) (v)) (\lambda z. \lambda y. z(y))$

Exercise 2. (Substitutions) Perform the following substitutions:

- 1 $[x \rightarrow \lambda z.w](\lambda y.x)$
- 2 [$x \rightarrow \lambda z . w$] ($\lambda y . x x$)
- 3 $[x \rightarrow \lambda z.w](\lambda y.x((\lambda x.x))$
- 4 $[x \rightarrow \lambda z.w](\lambda x.y)$
- 5 $[x \rightarrow \lambda z.w](\lambda w.x)$
- 6 $[x \rightarrow \lambda z.w](\lambda z.x)$
- 7 $[x \rightarrow \lambda z.w](\lambda z.zx)$
- 8 $[x \rightarrow \lambda x.w](\lambda z.zw)$

Exercise 3. (**Reduction**) Reduce the following lambda expressions to their normal form whenever possible.

- 1 $P \equiv (\lambda x \cdot x (x y)) I$ where $I \equiv \lambda u \cdot u$
- 2 $Y \equiv \lambda f. Q Q$ where $Q \equiv (\lambda x . f(x x))$
- 3 $L \equiv (\lambda x. x x y) (\lambda x. x x y)$
- 4 $(\lambda x. x L) M$ where $M \equiv (\lambda x. y)$

Exercise 4. (Equivalence) Consider the lambda expressions in Q 3. Determine whether the following pairs of expressions are equivalent or not.

- 1 L and I
- 2 P and $(\lambda x . x L) M$
- $3 \lambda a.y$ and M
- 4 $\lambda a.y$ and $\lambda a.z$

Exercise 5. (Church boolean) Implement the following two boolean operators in pure lambda calculus.

- not to negate a boolean value
- or find the disjunction of two Boolean values