Показать, что любая последовательность $(u_n)_{n\in\mathbb{N}}\subset\mathcal{M}\left(\mathcal{A}\right)$, такая что $\lim_{n\to\infty}u_n=u$ и $|u_n|\leq g$, удоветворяет равенству $\lim_{n\to\infty}\int |u_n-u|^p\,d\mu=0$. Предполагая, что $g\geq 0$ и $g^p\in\mathcal{L}^1\left(\mu\right)$, где $p<\infty$

Доказательство:

- 1. Пусть (X, \mathcal{A}, μ) пространство с мерой μ и $(u_n)_{n \in \mathbb{N}} \subset \mathcal{L}^1(\mu)$ последовательность функций такая, что:
 - (a) $|u_n\left(x\right)| \leq g\left(x\right)$ для всех $n \in \mathbb{N}$, для каждой точки $x \in X$ и некоторой функции $g^p \in \mathcal{L}^1\left(\mu\right)$, где $0 \leq p < \infty$
 - (b) Для каждой точки $x \in X$ предел существует и поточечно сходится на \mathbb{R} : $\lim_{n \to \infty} u_n\left(x\right) = u\left(x\right)$
- 2. Воспользуемся следующим фактом: $\forall n \in \mathbb{N}$ и $0 \le p < \infty$ выполнено равенство $0 \le 2^p g^p |u_n u|^p$
- 3. Поскольку выполнено (2), то $\limsup_{n\to\infty}\int\left|u_n-u\right|^pd\mu\leq 0$
 - (a) $0 \le \int \liminf_{n \to \infty} (2^p g^p |u_n u|^p) d\mu$. Мы здесь воспользовались неравенством в (2) и взяли интеграл от нижнего предела.
 - (b) $0 \le \int 2^p g^p d\mu + \int \liminf_{n \to \infty} \left(-\left|u_n u\right|^p \right) d\mu$ из аддитивности интеграла
 - (c) $\int 2^p g^p d\mu + \int \liminf_{n \to \infty} \left(-\left| u_n u \right|^p \right) d\mu \le \int 2^p g^p d\mu + \liminf_{n \to \infty} \int \left(-\left| u_n u \right|^p \right) d\mu$ из леммы Фату
 - (d) $\int 2^p g^p d\mu + \int \liminf_{\substack{n \to \infty \\ n \to \infty}} \left(-|u_n u|^p \right) d\mu \le \int 2^p g^p d\mu \limsup_{\substack{n \to \infty \\ n \to \infty}} \int |u_n u|^p d\mu$ поскольку верно равенство $\liminf_{\substack{n \to \infty \\ n \to \infty}} \left(-a \right) = -\limsup_{\substack{n \to \infty \\ n \to \infty}} \left(a \right)$
 - (e) $\int 2^p g^p d\mu \leq \int 2^p g^p d\mu \limsup_{n \to \infty} \int |u_n u|^p d\mu$, поскольку $\int \liminf_{n \to \infty} \left(-\left| u_n u \right|^p \right) d\mu = 0$
 - і. Так как $\lim_{n\to\infty}u_n=u$, то $\lim_{n\to\infty}u_n-u=0\implies \lim_{n\to\infty}|u_n-u|=0$
 - іі. Из мультипликативности предела $\left(\lim_{n\to\infty}|u_n-u|\right)^p=\lim_{n\to\infty}|u_n-u|^p=0\implies\lim_{n\to\infty}\left(-|u_n-u|^p\right)=0$
 - ііі. Если предел последовательности существует, то он совпадает с его нижним и верхним пределом, поэтому $\lim_{n\to\infty}\left(-\left|u_n-u\right|^p\right)=\liminf_{n\to\infty}\left(-\left|u_n-u\right|^p\right)=0$
 - iv. Взяв 3.е.iii под знак интеграла получим, что $\int \liminf_{n \to \infty} \left(-\left| u_n u \right|^p \right) d\mu = 0$
 - (f) Сокращая и умножая на -1, получим, что $\limsup_{n\to\infty}\int \left|u_n-u\right|^pd\mu\leq 0$
- 4. $0 \le \liminf_{n \to \infty} \int |u_n u|^p d\mu$ достигается такими же шагами как и в (3) взяв верхний предел и использовав теорему Фату для верхнего предела последовательности
- 5. Поскольку $0 \leq \liminf_{n \to \infty} \int |u_n u|^p d\mu \leq \limsup_{n \to \infty} \int |u_n u|^p d\mu \leq 0$ то по теореме о двух милиционерах: $\lim_{n \to \infty} \int |u_n u|^p d\mu = 0$
- 6. Ч.Т.Д.

Задача № 2

Пусть дано пространство с мерой (X, \mathcal{A}, μ) . Положим, что дана некоторая последовательность интегрируемых функций. $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^1(\mu)$. Для такой последовательности существует функция $w\in\mathcal{L}^1(\mu)$, такая, что мажорирует абсолютную функцию: $\forall n\in\mathbb{N}, x\in X|u_n(x)|\leq w(x)$. Такая последовательность также имеет предел на расширенной прямой $\overline{\mathbb{R}}$: $\forall x\in X$ $\lim_{n\to\infty}u_n(x)=u(x)$. Используя обобщенную лемму Фату доказать,

$$\lim_{n\to\infty}\int u_n d\mu = \int \lim_{n\to\infty} u_n d\mu = \int u d\mu.$$

Доказательство:

- 1. Пусть (X, \mathcal{A}, μ) пространство с мерой.
- 2. Пусть дана последовательность интегрируемых функций $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^1\left(\mu\right)$
- 3. Для последовательности в (2) существует некоторая функция $w(x) \in \mathcal{L}^1(\mu)$ такая что $|u_n(x)| \leq w(x)$ для любого $n \in \mathbb{N}$ в каждой точке $x \in X$
- 4. Положим, что такая последовательность поточечно сходится. То есть: $\lim_{n\to\infty}u_n\left(x\right)=u\left(x\right)$ в каждой точке $x\in X$
- 5. Мы воспользуемся следующим неравенством: $|u_n u| \le 2w$. Откуда следует, что $|u_n u| \in \mathcal{L}^1(\mu)$, поскольку $2w \in \mathcal{L}^1(\mu)$.
- 6. Поскольку для $u_n u$ существует мажоранта и миноранта, а сама последовательность стремится к нулю, то из обобщенной леммы Фату:
 - (a) $\limsup_{n\to\infty} \int (u_n-u) \, d\mu \leq \int \limsup_{n\to\infty} (u_n-u) \, d\mu = 0$, поскольку верхний предел последовательности совпадает с самим пределом последовательности,
 - (b) $0 = \int \liminf_{n \to \infty} (u_n u) d\mu \le \liminf_{n \to \infty} \int (u_n u) d\mu$, поскольку нижний предел последовательности совпадает с самим пределом последовательности
- 7. $0 \leq \liminf_{\substack{n \to \infty \\ n \to \infty}} \int (u_n u) \, d\mu \leq \limsup_{\substack{n \to \infty \\ n \to \infty}} \int (u_n u) \, d\mu \leq 0$ получается комбинируя подпункты в (6) и свойство $\forall a \ \liminf_{\substack{n \to \infty \\ n \to \infty}} (a) \leq \limsup_{\substack{n \to \infty \\ n \to \infty}} (a).$
- 8. $\lim_{n\to\infty}\int \left(u_n-u\right)d\mu=0$ из пункта (7) по теореме о двух милиционерах
- 9. $\lim_{n \to \infty} \int u_n d\mu = \int u d\mu = \int \lim_{n \to \infty} u_n d\mu$
- 10. Ч.Т.Д.

Задача № 3

Лемма Пратта. Пусть (X, \mathcal{A}, μ) - пространство с мерой. Пусть $(f_k)_{k \in \mathbb{N}}$, $(g_k)_{k \in \mathbb{N}}$, $(G_k)_{k \in \mathbb{N}}$ - последовательности интегрируемых функций. Если

- $f_k(x) \to f(x), g_k(x) \to g(x), G_k(x) \to G(x) \ \forall x \in X$
- $g_k(x) \le f_k(x) \le G_k(x) \ \forall k \in \mathbb{N}, x \in X$

• $\int g_k d\mu \to \int g d\mu \int G_k d\mu \to \int G d\mu$ такие, что $\int g d\mu$, $\int G d\mu$ - финитны. Тогда $\lim_{k\to\infty} \int f_k d\mu = \int f d\mu$ и $\int f d\mu$ - финитна

Доказательство:

- 1. Пусть (X, \mathcal{A}, μ) пространство с мерой
- 2. Пусть $(f_k)_{k\in\mathbb{N}}$, $(g_k)_{k\in\mathbb{N}}$, $(G_k)_{k\in\mathbb{N}}$ последовательности интегрируемых функций
- 3. Пусть $\forall x \in X \lim_{k \to \infty} f_k(x) = f(x), \lim_{k \to \infty} g_k(x) = g(x), \lim_{k \to \infty} G_k(x) = G(x)$
- 4. Пусть $\forall k \in \mathbb{N}, \forall x \in X \ g_k(x) \leq f_k(x) \leq G_k(x)$
- 5. Пусть $\int g d\mu$, $\int G d\mu$ финитны и $\int g_k d\mu \to \int g d\mu \int G_k d\mu \to \int G d\mu$
- 6. Поскольку $\forall x \in X$ $\lim_{k \to \infty} f_k\left(x\right) = f\left(x\right)$, то $\forall x \in X \int \lim_{k \to \infty} f_k\left(x\right) d\mu = \int f\left(x\right) d\mu$. Тогда по теореме Лебега о мажорируемой сходимости $\int \lim_{k \to \infty} f_k\left(x\right) d\mu = \lim_{k \to \infty} \int f_k\left(x\right) d\mu = \int f\left(x\right) d\mu$
- 7. Из (4) следует, что $\forall x \in X \ g(x) \leq f(x) \leq G(x)$, из монотонности интеграла следует, что $\int g d\mu \leq \int f d\mu \leq \int G d\mu$.
- 8. Поскольку $\int Gd\mu \in (-\infty,\infty)$ и $\int gd\mu \in (-\infty,\infty)$, то и $\int fd\mu \in (-\infty,\infty)$, то есть финитна
- 9. Ч.Т.Д.

Задача № 4

Пусть $(u_n)_{n\in\mathbb{N}}$ последовательность интегрируемых функций на пространстве с мерой (X,\mathcal{A},μ) . Показать, что если $\sum_{n=1}^{\infty} \int |u_n| \, d\mu < \infty$, то ряд $\sum_{n=1}^{\infty} u_n$ сходится почти всюду к действительнозначной функции u(x) и в таком случае также верно следующее:

$$\int \sum_{n=1}^{\infty} u_n d\mu = \sum_{n=1}^{\infty} \int u_n d\mu$$

Доказательство:

- 1. Пусть (X, \mathcal{A}, μ) пространство с мерой
- 2. Пусть $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^1(\mu)$
- 3. Пусть $\sum_{n=1}^{\infty} \int |u_n| d\mu < \infty$
- 4. Поскольку $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^1(\mu)$, то из определения $10.1\ (u_n)_{n\in\mathbb{N}}\subset\mathcal{M}(\mathcal{A})$. Тогда из теоремы $10.3\ (|u_n|)_{n\in\mathbb{N}}\subset\mathcal{L}^1(\mu)$. Заметим, также, что $(|u_n|)_{n\in\mathbb{N}}\subset\mathcal{M}^+(\mathcal{A})$
- 5. Из (3), (4) и, как необходимые условия для следствия 9.9, выполнено равенство и его левая и правая части финитны: $\sum_{n=1}^{\infty} \int |u_n| \, d\mu = \int \sum_{n=1}^{\infty} |u_n| \, d\mu < \infty$. Более того, из абсолютной сходимости следует, что $\lim_{n\to\infty} \sum_{n=1}^{\infty} u_n = u$.
- 6. Пусть $\sum_{n=1}^{M}u_{n}=s_{M}$. Тогда $\int\lim_{M\to\infty}\sum_{n=1}^{M}u_{n}d\mu=\int\lim_{M\to\infty}s_{M}d\mu$. Из теоремы Лебега о мажорирумой сходимости и аддитивности интеграла: $\int\lim_{M\to\infty}\sum_{n=1}^{M}u_{n}d\mu=\lim_{M\to\infty}\int\sum_{n=1}^{M}u_{n}d\mu=\lim_{M\to\infty}\sum_{n=1}^{M}\int u_{n}d\mu$.

- 7. Таким образом $\int \sum_{n=1}^{\infty} u_n d\mu = \sum_{n=1}^{\infty} \int u_n d\mu$
- 8. Ч.Т.Д.

Пусть $(u_n)_{n\in\mathbb{N}}$ - последовательность положительных интегрируемых функций на пространстве с мерой (X,\mathcal{A},μ) . Пусть такая последовательность не возрастает и сходится к 0: $u_1\geq u_2\geq$ и $u_n\downarrow 0$. Показать, что $\sum_{n=1}^{\infty} \left(-1\right)^n u_n$ сходится и интегрируема. Показать также, что выполнено следующее:

$$\int \sum_{n=1}^{\infty} (-1)^n u_n d\mu = \sum_{n=1}^{\infty} (-1)^n \int u_n d\mu$$

- 1. Пусть (X, \mathcal{A}, μ) пространство с мерой
- 2. Пусть $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^1\left(\mu\right): \forall n\in\mathbb{N}\ (u_n\geq 0)$. Положим, что $u_n\downarrow 0$ и $u_1\geq u_2\geq \dots$
- 3. Рассмотрим $\sum_{n=1}^{\infty} (-1)^n u_n$. Для начала покажем, что подпоследовательности с четным числом членов: $s_{2m+1} = -\sum_{n=1}^{2m+1} (-1)^{n-1} u_n$ и нечетным числом членов $s_{2m} = -\sum_{n=1}^{2m} (-1)^{n-1} u_n$ сходятся к одному некоторому фиксированному числу L.
- 4. Заметим, что подпоследовательность с нечетным числом членов монотонно не убывает: $s_{2(m+1)+1} = s_{2m+3} = s_{2m+1} + u_{2m+2} u_{2m+3} \ge s_{2m+1}$
- 5. Подпоследовательность с четным числом членов не возрастает: $s_{2m+2} = s_{2m} u_{2m+1} + u_{2m+2} \le s_{2m}$
- 6. Заметим, что $s_{2m+1} s_{2m} = -u_{2m+1} \le 0 \implies s_{2m+1} \le s_{2m}$
- 7. Мы можем собрать факты из (4), (5) и (6) так, что $-u_1+u_2=s_2\geq s_{2m}\geq s_{2m+1}\geq s_1=-u_1 \ \forall m\in\mathbb{N}$
- 8. Поскольку последовательность s_{2m} не возрастает и ограничена снизу величиной $-u_1+u_2$, то по теореме о монотонной сходимости она имеет предел. Поскольку последовательность s_{2m+1} монотонно не убывает и ограничена сверху величиной $-u_1$ то, аналогично, по теореме о монотонной сходимости, она имеет предел. Более того, четная и нечетная подпоследовательности сходятся к одному и тому же числу, поскольку $\lim_{n\to\infty} (s_{2m+1}-s_{2m}) = -\lim_{n\to\infty} (u_{2m+1}) = 0$. Таким образом $\sum_{n=1}^{\infty} (-1)^n u_n$ сходится.
- 9. Из (7) последовательность $\sum_{n=1}^{\infty} (-1)^n u_n$ ограничена сверху интегрируемой $-u_1 + u_2$. Тогда из теоремы 10.3 (iv) эквивалентной 10.3 (i) такая последовательность интегрируема: $\sum_{n=1}^{\infty} (-1)^n u_n \in \mathcal{L}^1(\mu)$
- 10. Следовательно, из задачи №4 $\int \sum_{n=1}^{\infty} (-1)^n u_n d\mu = \sum_{n=1}^{\infty} (-1)^n \int u_n d\mu$
- 11. Ч.Т.Д.

Задача № 7

Пусть μ финитная мера на измеримом пространстве $([0,\infty),\mathbb{B}[0,\infty))$. Найти следующий предел

$$\lim_{r \to \infty} \int_{[0,\infty)} e^{-rx} \mu(dx)$$

Решение:

- 1. Пусть μ финитная мера на измеримом пространстве ($[0,\infty)$, $\mathbb{B}[0,\infty)$)
- 2. Можно показать, что $\forall r \in \mathbb{N} \ e^{-rx} : \mathbb{R} \to \mathbb{R}$ непрерывна. Поскольку любое непрерывное отображение измеримо, то $(1 e^{-rx})_{r \in \mathbb{N}} \subset \mathcal{M}^+ (\mathbb{B} [0, \infty))$
- 3. Используя тот факт, что последовательность в (2) положительна, измерима и не убывает, по теореме Леви о монотонной сходимости $\lim_{r\to\infty}\int_{[0,\infty)}\left(1-e^{-rx}\right)\mu\left(dx\right)=\int_{[0,\infty)}\lim_{r\to\infty}\left(1-e^{-rx}\right)\mu\left(dx\right)$
- 4. Воспользовавшись аддитивностью интеграла и рассматривая его только второе слагаемое слева и справа, мы приходим к тому что предел и интеграл для заданной в условии функции можно поменять местами: $\lim_{r\to\infty} \int_{[0,\infty)} e^{-rx} \mu\left(dx\right) = \int_{[0,\infty)} \lim_{r\to\infty} e^{-rx} \mu\left(dx\right)$
- 5. Поскольку мера финитна по условию, то $\int_{[0,\infty)} \lim_{x\to\infty} e^{-rx} \mu\left(dx\right) = 0$
- 6. Ч.Т.Д.

Пусть λ - мера Лебега на \mathbb{R}^n .

- Пусть $u\in\mathcal{L}^{1}\left(\lambda\right)$ и обозначим компакт как $K\subset\mathbb{R}^{n}$. Показать, что $\lim_{|x|\to\infty}\int_{K+x}|u|\,d\lambda=0$
- Пусть u равномерно непрерывная функция и $\left|u\right|^p\in\mathcal{L}^1\left(\lambda\right)\,p>0$. Показать, что $\lim_{\left|x\right|\to\infty}u\left(x\right)=0$

Доказательство #1:

- 1. Пусть дана λ мера Лебега на \mathbb{R}^n и некоторая функция $u \in \mathcal{L}^1(\lambda)$
- 2. Положим $\forall a, b \in \mathbb{R}^n, a > b$ $K = [a, b] \subset \mathbb{R}^n$.
- 3. Рассмотрим последовательность функций $\left(|u|\,\mathbbm{1}_{B_R(0)^C}\right)_{R\in\mathbb{N}}$, где $B_R\left(0\right)^C:=\{x\in\mathbb{R}^n:|x|\geq R\}$ дополнение к открытому шару $B_R\left(0\right)$ в точке x=0 с радиусом R.
 - (a) Поскольку $u \in \mathcal{L}^1(\lambda)$, то $|u| \in \mathcal{L}^1(\lambda)$ из теоремы 10.3. Поскольку $|u| \, \mathbb{1}_{B_R(0)^C} \leq |u| \in \mathcal{L}^1(\lambda)$, то $|u| \, \mathbb{1}_{B_R(0)^C} \in \mathcal{L}^1(\lambda) \, \forall R \in \mathbb{N}$ также из теоремы 10.3.
 - (b) При $R \to \infty$ $B_R(0)^C \to \varnothing$ из определения дополнения к открытому шару в (3). Тогда $\lim_{R \to \infty} |u| \, \mathbbm{1}_{B_R(0)^C} = 0$
- 4. Объединяя факты 3.а и 3.6 по теореме Лебега о мажорируемой сходимости $\lim_{R\to\infty}\int |u|\,\mathbbm{1}_{B_R(0)^C}d\lambda=\int\lim_{R\to\infty}|u|\,\mathbbm{1}_{B_R(0)^C}d\lambda=0$
- 5. Рассмотрим компакт из определения (2). $\forall x \in \mathbb{R}^n$ мы всегда можем подобрать такое R, что $x+K \subset B_R(0)^C$.
 - (a) Известно, что $A\subset B\implies A\cap B=A$. Тогда $x+K\cap B_{R}\left(0\right)^{C}=\left[a+x,b+x\right]\cap\left(\left(-\infty,R\right]\cup\left[R,\infty\right)\right)$
 - (b) Из дистрибутивности $x+K\cap B_R\left(0\right)^C=\left([a+x,b+x]\cap(-\infty,R]\right)\cup\left([a+x,b+x]\cap[R,\infty)\right)$
 - (c) В таком случае, $[a+x,b+x]\cap (-\infty,R]=[a+x,b+x]\iff b+x\leq R.$
 - (d) Или $[a+x,b+x] \cap [R,\infty) = [a+x,b+x] \iff a+x \ge R$.

- 6. Используя (5) и монотонность интеграла, $\int_{K+x} |u| \, d\lambda \le \int_{B_R(0)^C} |u| \, d\lambda \, \, \forall x \in X$
- 7. При $|x| o \infty$ $R o \infty$ и из 3.6 $\lim_{|x| o \infty} \int_{K+x} |u| \, d\lambda = 0$
- 8. Ч.Т.Д.

Доказательство #2:

- 1. Пусть |u| равномерно непрерывна.
- 2. Пусть $|u|^p \in \mathcal{L}^1(\lambda)$ и p > 0
- 3. Функция $u: \mathbb{R}^n \to \mathbb{R}^m$ равномерно непрерывна. Это значит $\forall \epsilon > 0 \ \exists \delta > 0$ такая что $\forall y \, |x-y| < \delta \implies |u(x) u(y)| < \epsilon$
- 4. Следующее равенство верно. $\{y \in \mathbb{R}^n : |x-y| \le \delta\} = \overline{B_\delta(x)} = x+K$, где надчеркивание обозначает замыкание.
- 5. Заметим, что

$$\left|u\left(x\right)\right|^{p} = \frac{1}{\lambda\left(x+K\right)} \int_{K+x} \left|u\left(x\right)\right|^{p} d\lambda\left(y\right) \leq \frac{1}{\lambda\left(K\right)} \int_{K+x} \left(\left|u\left(y\right)-u\left(x\right)\right| + \left|u\left(y\right)\right|\right)^{p} d\lambda\left(y\right)$$

- (a) $|u(x)|^p \le (|u(y) u(x)| + |u(y)|)^p$
- (b) $\lambda(x+K) = \lambda(K)$, т.к. мера Лебега инварианта к смещению (Теорема 5.8)
- 6. Далее при $C = 2^p$

$$\left|u\left(x\right)\right|^{p} \leq \frac{C}{\lambda\left(K\right)} \int_{K+x} \left(\epsilon^{p} + \left|u\left(y\right)\right|^{p}\right) d\lambda\left(y\right) = \frac{C}{\lambda\left(K\right)} \left(\int_{K+x} \epsilon^{p} d\lambda\left(y\right) + \int_{K+x} \left|u\left(y\right)\right|^{p} d\lambda\left(y\right)\right)$$

- (a) Мы воспользовались неравенством $(a+b)^p \le 2^p (a^p + b^p)$, где $a = \epsilon$ и b = |u(y)|
- 7. Далее $\frac{C}{\lambda(K)}\left(\int_{K+x}\epsilon^{p}d\lambda\left(y\right)+\int_{K+x}\left|u\left(y\right)\right|^{p}d\lambda\left(y\right)\right)=\frac{C\lambda(K+x)\epsilon^{p}}{\lambda(K)}+C\int_{K+x}\left|u\left(y\right)\right|^{p}d\lambda\left(y\right)$
- 8. Из предыдущего доказательства следует, что $\limsup_{|x|\to\infty}|u\left(x\right)|^p\leq \limsup_{|x|\to\infty}\left(\frac{C\lambda(K+x)\epsilon^p}{\lambda(K)}+C\int_{K+x}|u\left(y\right)|^pd\lambda\left(y\right)\right)=C\epsilon^p$. Поскольку ϵ произвольно и неотрицательно, то $|u\left(x\right)|^p=0 \implies \lim_{|x|\to\infty}u\left(x\right)=0$, а мера Лебега финитна
- 9. Ч.Т.Д.

Задача № 9

Пусть λ - мера Лебега на \mathbb{R}^n и $u \in \mathcal{L}^1(\lambda)$

- Показать, что $\forall \epsilon > 0 \ \exists B \in \mathbb{B} \left(\mathbb{R}^n \right)$ такое что, $\lambda \left(B \right) > 0, \ sup_B \left| u \right| < \infty \ \text{и} \int_{B^C} \left| u \right| d\lambda < \epsilon$
- Используя предыдущее доказательство, показать, что $\lim_{\lambda(B) \to 0} \int_B |u| \, d\lambda = 0$

Доказательство #1:

- 1. Пусть λ мера Лебега на \mathbb{R}^n и $u \in \mathcal{L}^1(\lambda)$
- 2. Рассмотрим Борелевское множество $B := \{x \in X : |u(x)| \le R\}$
- 3. Известно, что $u \in \mathcal{L}^1(\lambda) \iff |u| \in \mathcal{L}^1(\lambda)$. И из монотонности интеграла $\int |u(x)| \, \mathbb{1}_{|u| \leq R}(x) \, d\lambda \leq \int |u(x)| \, d\lambda \, \forall R \in \mathbb{N}$
- 4. Последовательность $\left(\left|u\left(x\right)\right|\mathbb{1}_{\left|u\right|>R}\left(x\right)\right)_{R\in\mathbb{N}}$ поточечно сходится: $\lim_{R\to\infty}\left|u\left(x\right)\right|\mathbb{1}_{\left|u\right|>R}\left(x\right)=0\in\mathcal{L}^{1}\left(\lambda\right)$.
- 5. По теореме Лебега о мажорируемой сходимости $\lim_{R\to\infty}\int\left|u\left(x\right)\right|\mathbb{1}_{\left|u\right|>R}\left(x\right)d\lambda=\int\lim_{R\to\infty}\left|u\left(x\right)\right|\mathbb{1}_{\left|u\right|>R}\left(x\right)d\lambda=0$
- 6. По определению предела мы можем зафиксировать некоторый $R \in \mathbb{N}$ так, что $\int |u\left(x\right)| \mathbb{1}_{|u|>R}\left(x\right) d\lambda \leq \epsilon$
- 7. Ч.Т.Д.

Доказательство #2:

- 1. Пусть λ мера Лебега на \mathbb{R}^n и $u \in \mathcal{L}^1(\lambda)$
- 2. Рассмотрим Борелевское множество $B := \{x \in X : |u(x)| \le R\}$
- 3. Поскольку $A=A\cap X=A\cap \left(B\cup B^C\right)=\left(A\cap B\right)\sqcup \left(A\cap B^C\right)$. Тогда $\int_A|u|\,d\lambda=\int_{A\cap B}|u|\,d\lambda+\int_{A\cap B^C}|u|\,d\lambda$
- 4. Зафиксируем некоторую константную по области $A \cap B$ функцию $\sup |u| \, \mathbbm{1}_{A \cap B}$. Эта функция превращается в индикаторную. Тогда $\int_{A \cap B} \sup |u| \, \mathbbm{1}_B d\lambda = \sup_B |u| \, \lambda \, (A \cap B)$ по определению интеграла простой функции.
- 5. Воспользуемся свойством монотонности интеграла: $\int_{A\cap B}|u|\,d\lambda \leq \sup_{B}|u|\,\lambda\,(A\cap B)$. Тогда $\int_{A}|u|\,d\lambda = \int_{A\cap B}|u|\,d\lambda + \int_{A\cap B^C}|u|\,d\lambda \leq \sup_{B}|u|\,\lambda\,(A\cap B) + \int_{A\cap B^C}|u|\,d\lambda$.
- 6. Положим $\lambda\left(A\right) \leq \epsilon$ и из доказательства #1 $\int_{B^C} |u|\,d\lambda < \epsilon$. Тогда $\sup_B |u|\,\epsilon + \epsilon \to 0$ при $\epsilon \to 0$ поскольку $\sup_B |u| < \infty$
- 7. Ч.Т.Д.

Задача № 11

Пусть $u \in \mathcal{L}^1\left(0,1\right)$ - положительна и монотонна. Найти предел $\lim_{n \to \infty} \int_0^1 u\left(t^n\right) dt$ Решение

- гешение
- 1. Пусть $u \in \mathcal{L}^1(0,1)$ положительна и монотонна.
- 2. Рассмотрим последовательность функций вида $(u(t^n))_{n\in\mathbb{N}}$. Заметим, что, $\forall t\in(0,1)$ такая последовательность не возрастает и интегрируема.
- 3. Тогла по теореме о монотонной сходимости: $\lim_{n\to\infty}\int_0^1u\left(t^n\right)dt=\int_0^1\lim_{n\to\infty}u\left(t^n\right)dt=u\left(0+\right)\left[1-0\right]=u\left(0+\right)$

Задача № 12

Пусть $u \in \mathcal{L}^1(0,1)$. Найти предел $\lim_{n \to \infty} \int_0^1 t^n u(t) dt$

Решение

- 1. Пусть $u \in \mathcal{L}^1(0,1)$.
- 2. Поскольку $\forall k < n \ t^k > t^n$ при $t \in (0,1)$. Отсюда следует, что $t^n u \left(t \right)$ монотонно убывает.
- 3. Кроме того $\forall n \in \mathbb{N} \ t^n u(t) \leq u \in \mathcal{L}^1(0,1)$.
- 4. Из (2) и (3) по теореме о монотонной сходимости $\lim_{n\to\infty}\int_0^1t^nu\left(t\right)dt=\int_0^1\lim_{n\to\infty}t^nu\left(t\right)dt=\int_0^10dt=0$

Показать, что $\int_0^\infty \frac{sin(t)}{e^t-1} dt = \sum_{k=1}^\infty \frac{1}{k^2+1}$

Решение:

- 1. Рассмотрим $\frac{1}{1-e^{-t}}$
 - (a) Воспользуемся геометрической прогрессией: $\frac{1}{1-e^{-t}} = \frac{e^t}{e^t-1} = \sum_{k=0}^{\infty} e^{-tk} \implies \frac{1}{e^t-1} = \sum_{k=0}^{\infty} e^{-t(k+1)} = \sum_{k=0}^{\infty} e^{-tk}$.
 - (b) Таким образом $\int_0^\infty \frac{\sin(t)}{e^t-1} dt = \int_0^\infty \sum_{k=1}^\infty e^{-tk} \sin(t) dt$
- 2. Через компплексное пространство: $sint = Im\left\{e^{jt}\right\} \implies \int_0^\infty \sum_{k=1}^\infty e^{-tk} Im\left\{e^{jt}\right\} dt = Im\left\{\int_0^\infty \sum_{k=1}^\infty e^{-t(k-j)} dt\right\}$
- 3. $e^{-t(k-j)} = e^{-tk+tj} = e^{-tk}e^{tj} \le |e^{-tk}| |e^{tj}| = |e^{-tk}|.$
- 4. $\int_0^\infty \left| e^{-tk} \right| dt = \frac{1}{k} \in \mathcal{L}^1(\mu) \ \forall k \in \mathbb{N}, t > 0$
- 5. $\sum_{k=1}^{\infty} (-1)^k \frac{1}{k} = -log(2) < \infty$ финитна.
- 6. То есть $\sum_{k=1}^{\infty} \int_{0}^{\infty} \left| e^{-tk} \right| dt < \infty$. Тогда из задачи (12.4) $\int_{0}^{\infty} \sum_{k=1}^{\infty} e^{-tk} sint dt = \sum_{k=1}^{\infty} \int_{0}^{\infty} e^{-tk} sint dt = Im \left\{ \sum_{k=1}^{\infty} \int_{0}^{\infty} e^{-t(k-j)} dt \right\}$.
- 7. Решим интеграл

$$\begin{split} \int_0^\infty e^{-t(k-j)} dt &= -\frac{1}{k-j} \lim_{R \to \infty} \int_{1/R}^R e^{-t(k-j)} d \left[-t \left(k - j \right) \right] \\ \int_0^\infty e^{-t(k-j)} dt &= -\frac{1}{k-j} \left[\lim_{R \to \infty} e^{-R(k-j)} - e^{-\frac{1}{R}(k-j)} \right] \\ \int_0^\infty e^{-t(k-j)} dt &= -\frac{1}{k-j} \left[\lim_{R \to \infty} e^{-R(k-j)} - 1 \right] \\ \int_0^\infty e^{-t(k-j)} dt &= -\frac{1}{k-j} \left[\lim_{R \to \infty} e^{-Rk} e^{Rj} - 1 \right] \\ \int_0^\infty e^{-t(k-j)} dt &= -\frac{1}{k-j} \left[\lim_{R \to \infty} e^{-Rk} \left(\cos \left(R \right) - j \sin \left(R \right) \right) - 1 \right] \\ \int_0^\infty e^{-t(k-j)} dt &= \frac{1}{k-j} = \frac{(k+j)}{(k-j)(k+j)} = \frac{k+j}{k^2+1} \end{split}$$

- 8. $Im\left\{\sum_{k=1}^{\infty} \int_{0}^{\infty} e^{-t(k-j)} dt\right\} = Im\left\{\sum_{k=1}^{\infty} \frac{k+j}{k^2+1}\right\} = \sum_{k=1}^{\infty} \frac{1}{k^2+1}$
- 9. Ч.Т.Д.

Задача № 14

Пусть $u: \mathbb{R} \to \mathbb{R}$ измерима по Борелю. Положим, что $x \mapsto e^{\lambda x} u(x) \in \mathcal{L}^1 \ \forall \lambda \in \mathbb{R}$. Показать, что $\forall z \in \mathbb{C}$ выполнено равенство:

$$\int_{\mathbb{R}} e^{zx} u(x) dx = \sum_{n=0}^{\infty} \frac{z^n}{n!} \int_{\mathbb{R}} x^n u(x) dx$$

- 1. Пусть $u: \mathbb{R} \to \mathbb{R}$ измерима по Борелю и предположим, что $x \mapsto e^{\lambda x} u(x) \in \mathcal{L}^1 \ \forall \lambda \in \mathbb{R}$
- 2. Воспользуемся рядом Маклорена $e^{zx}=\sum_{n=0}^{\infty}\frac{z^nx^n}{n!}$. Мы можем представить этот ряд как $s_k=\sum_{n=0}^k\frac{z^nx^n}{n!}$. Такой ряд сходится равномерно и следовательно поточечно, и мажорируется сверху, например функцией $w\left(x\right)=|e^{zx}u\left(x\right)|$. Тогда по теореме Лебега о монотонной сходимости: $\int_{\mathbb{R}}e^{zx}u\left(x\right)dx=\int_{\mathbb{R}}\sum_{n=0}^{\infty}\frac{z^nx^n}{n!}u\left(x\right)dx=\int_{\mathbb{R}}\lim_{k\to\infty}s_ku\left(x\right)dx=\lim_{k\to\infty}\int_{\mathbb{R}}s_ku\left(x\right)dx=\sum_{n=0}^{\infty}\frac{z^n}{n!}\int_{\mathbb{R}}x^nu\left(x\right)dx$
- 3. Ч.Т.Д.

Пусть λ - одномерная мера Лебега. Показать, что для любой интегрируемой функции u и $\forall x>0$ следующая функция непрерывна:

$$x \mapsto \int_{(0,x)} u(t) \lambda(dt)$$

Доказательство:

- 1. Пусть λ одномерная мера Лебега. Пусть u интегрируема
- 2. По определению функция $f: \mathbb{R}^n \to \mathbb{R}^m$ непрерывна в точке x, если $\forall \epsilon > 0 \ \exists \delta = \delta \, (\delta, x) > 0$ такая, что $\forall y \ |x-y| < \delta \implies |f(x)-f(y)| < \epsilon$
- 3. В таком случае рассмотрим $\left| \int_{(0,x)} u(t) \lambda(dt) \int_{(0,y)} u(t) \lambda(dt) \right|$ и выполним ряд преобразований.

$$\begin{split} \left| \int_{(0,x)} u\left(t\right) \lambda\left(dt\right) - \int_{(0,y)} u\left(t\right) \lambda\left(dt\right) \right| &= \left| \int u\left(t\right) \mathbbm{1}_{(0,x)} \left(t\right) \lambda\left(dt\right) - \int u\left(t\right) \mathbbm{1}_{(0,y)} \left(t\right) \lambda\left(dt\right) \right| \\ &+ \left| \int_{(0,x)} u\left(t\right) \lambda\left(dt\right) - \int_{(0,y)} u\left(t\right) \lambda\left(dt\right) \right| &= \left| \int u\left(t\right) \left(\mathbbm{1}_{(0,x)} \left(t\right) - \mathbbm{1}_{(0,y)} \left(t\right) \right) \lambda\left(dt\right) \right| \\ &+ \left| \int_{(0,x)} u\left(t\right) \lambda\left(dt\right) - \int_{(0,y)} u\left(t\right) \lambda\left(dt\right) \right| &\leq \int \left| u\left(t\right) \right| \left| \mathbbm{1}_{(0,x)} \left(t\right) - \mathbbm{1}_{(0,y)} \left(t\right) \right| \lambda\left(dt\right) \\ &+ \left| \int_{(0,x)} u\left(t\right) \lambda\left(dt\right) - \int_{(0,y)} u\left(t\right) \lambda\left(dt\right) \right| &\leq \sup_{t} \left(\left| u\left(t\right) \right| \right) \int \left| \mathbbm{1}_{(0,x)} \left(t\right) - \mathbbm{1}_{(0,y)} \left(t\right) \right| \lambda\left(dt\right) \\ &+ \left| \int_{(0,x)} u\left(t\right) \lambda\left(dt\right) - \int_{(0,y)} u\left(t\right) \lambda\left(dt\right) \right| &\leq \sup_{t} \left(\left| u\left(t\right) \right| \right) \int \mathbbm{1}_{[y,x)} \left(t\right) \lambda\left(dt\right) \\ &+ \left| \int_{(0,x)} u\left(t\right) \lambda\left(dt\right) - \int_{(0,y)} u\left(t\right) \lambda\left(dt\right) \right| &\leq \sup_{t} \left(\left| u\left(t\right) \right| \right) \int \mathbbm{1}_{[y,x)} \left(t\right) \lambda\left(dt\right) \\ &+ \left| \int_{(0,x)} u\left(t\right) \lambda\left(dt\right) - \int_{(0,y)} u\left(t\right) \lambda\left(dt\right) \right| &\leq \sup_{t} \left(\left| u\left(t\right) \right| \right) \left| x-y \right| &= \sup_{t} \left(\left| u\left(t\right) \right| \right) \left| y-x \right| \end{split}$$

- 4. Возможны два случая: Первый: $(0,y) \subset (0,x)$ и второй: $(0,x) \subset (0,y)$
- 5. При $(0,y)\subset (0,x)$ выполнено следующее: $\mathbb{1}_{(0,x)}\left(t\right)-\mathbb{1}_{(0,y)}\left(t\right)=\mathbb{1}_{(0,x)}\left(t\right)-\mathbb{1}_{(0,x)\cap(0,y)}\left(t\right)=\mathbb{1}_{(0,x)/(0,y)}\left(t\right)=\mathbb{1}_{(0,x)/(0,y)}\left(t\right)=\mathbb{1}_{(0,x)}\left(t\right)$
 - (а) Значит верны следующие преобразования

$$\left| \int_{(0,x)} u\left(t\right) \lambda\left(dt\right) - \int_{(0,y)} u\left(t\right) \lambda\left(dt\right) \right| \leq \sup_{t} \left(\left|u\left(t\right)\right| \right) \int \mathbb{1}_{\left[y,x\right)} \left(t\right) \lambda\left(dt\right) = \sup_{t} \left(\left|u\left(t\right)\right| \right) \lambda\left[y,x\right) \\ \left| \int_{(0,x)} u\left(t\right) \lambda\left(dt\right) - \int_{(0,y)} u\left(t\right) \lambda\left(dt\right) \right| \leq \sup_{t} \left(\left|u\left(t\right)\right| \right) \left|x-y\right| = \sup_{t} \left(\left|u\left(t\right)\right| \right) \left|y-x\right|$$

(b) В таком случае, полагая, что $\sup_{t}\left(\left|u\left(t\right)\right|\right)\left|y-x\right|<\epsilon \implies \left|y-x\right|<\delta = \frac{\epsilon}{\sup_{t}\left(\left|u\left(t\right)\right|\right)}$

- 6. Поскольку $\left| \int_{(0,x)} u\left(t\right)\lambda\left(dt\right) \int_{(0,y)} u\left(t\right)\lambda\left(dt\right) \right| = \left| \int_{(0,y)} u\left(t\right)\lambda\left(dt\right) \int_{(0,x)} u\left(t\right)\lambda\left(dt\right) \right|$ то при $(0,x)\subset(0,y)$ доказательство аналогично
- 7. Ч.Т.Д.

Проверить на интегрируемость по Лебегу функций

- 1. $u(x) = \frac{1}{x} x \in [1, \infty)$ и $\left[\frac{1}{2}, 2\right]$
- 2. $v(x) = \frac{1}{x^2} x \in [1, \infty)$ и $\left[\frac{1}{2}, 2\right]$
- 3. $w(x) = \frac{1}{\sqrt{x}} x \in (0,1]$ и $\left[\frac{1}{2},2\right]$
- 4. $y(x) = \frac{1}{x} x \in (0,1]$ и $\left[\frac{1}{2},2\right]$

Решение:

- 1. Рассмотрим функцию u(x). Она измерима. Такая функция равномерно непрерывна на компакте вида [1,b] $b<\infty$ поскольку $\left|\frac{1}{x}-\frac{1}{y}\right|=\left|\frac{x-y}{xy}\right|<\epsilon\implies|x-y|<\epsilon xy=\delta>0$. Любая непрерывная функция интегрируема по Риману. В таком случае $\int_{1}^{\infty}\left|\frac{1}{x}\right|dx=\int_{1}^{\infty}\frac{1}{x}dx=\lim_{N\to\infty}\int_{1}^{N}\frac{1}{x}dx=\lim_{N\to\infty}\ln|x||_{1}^{N}=\infty$ не финитна, и, следовательно, не интегрируема по Лебегу (Следствие 12.11). На интервале $\left[\frac{1}{2},2\right]$ поскольку это интервал (Теорема 12.8)
- 2. Рассмотрим функцию v(x). Такая функция равномерно непрерывная на компакте вида [1,b]. $1 < b < \infty$. Поскольку $\left|\frac{1}{x^2} \frac{1}{y^2}\right| = \left|\frac{x^2 y^2}{x^2 y^2}\right| = \frac{|x+y|}{x^2 y^2} \, |x-y| < \epsilon \implies |x-y| < \frac{x^2 y^2 \epsilon}{|x+y|} \, \forall x,y \in [1,b]$. Любая непрерывная функция интегрируема по Риману. В таком случае $\int_1^\infty \left|\frac{1}{x^2}\right| dx = \lim_{N \to \infty} \int_1^N \frac{1}{x^2} dx = -\frac{1}{x} \Big|_1^N = 1 < \infty$. Тогда из следствия 12.11 она интегрируема по Лебегу на интервале $[1,\infty)$, и $\left[\frac{1}{2},2\right]$ поскольку второй это интервал (Теорема 12.8)
- 3. Рассмотрим функцию w(x). Она измерима.
 - (a) Покажем, что такая функция непрерывна $\left|\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}\right|=\left|\frac{\sqrt{y}-\sqrt{x}}{\sqrt{yx}}\right|=\left|\frac{y-x}{\left(\sqrt{y}+\sqrt{x}\right)\sqrt{yx}}\right|<\epsilon\implies |y-x|<\epsilon\left(\sqrt{y}+\sqrt{x}\right)\sqrt{yx}$ всюду при $x,y\in(0,1]$. Отсюда следует, что она интегрируема по Риману.
 - (b) Из (a) по теореме 12.8 следует, что $\forall k \in \mathbb{N} \ w_k = w \mathbb{1}_{\left[\frac{1}{t},1\right]} \in \mathcal{L}^1\left(\lambda\right)$
 - (c) Такая монотонно возрастает и имеет предел равный w. Тогда по теореме о монотонной сходимости $\lim_{k\to\infty}\int_{\frac{1}{k}}^1 w\left(x\right)dx = \sup_k \int_{\frac{1}{k}}^1 w\left(x\right)dx = \sup_k \int_{\left[\frac{1}{k},1\right]}^1 wd\lambda < \infty \ w \ \text{интегрируема по Лебегу.}$
 - (d) На интервале $\left[\frac{1}{2},2\right]$ Интеграл Римана и Лебега совпадают
- 4. Рассмотрим y(x)
 - (a) Мы уже показали в (2) что она интегрируема по Риману на компакте [1,b]. Вообще говоря это верно для любого компакта [a,b] a,b>0, a< b
 - (b) Остальные шаги в точности совпадают с (3.b), (3.c) и (3.d)

5. Ч.Т.Д.

Задача № 19

Показать, что $\forall \alpha>0$ $\left(\frac{sinx}{x}\right)^3e^{-\alpha x}$ интегрируема на интервале $(0,\infty)$

- 1. Пусть $\forall \alpha>0$. Рассмотрим $x\mapsto \left(\frac{sinx}{x}\right)^3e^{-\alpha x}$
- 2. На интервале $(0,\pi]$ функция в (1) мажорируется функцией $x\mapsto\cos\frac{x}{2}$ а на интервале (π,∞) мажорируется $x\mapsto\frac{1}{x^2}$
- 3. Таким образом, чтобы показать, что функция в (1) интегрируема, необходимо показать, что $\int \left(\cos \frac{x}{2} \mathbb{1}_{(0,\pi]}(x) + \frac{1}{x^2} \mathbb{1}_{(\pi,\pi)} \right) dx$
- На интервалах (0, π] (π, ∞) мы рассмотрим интегралы Римана и покажем, что интеграл определенный в (3) конечен используя следствие 12.11.
- 5. Рассмотрим первый интервал: $\lim_{N\to\infty}\int_{1/N}^{\pi}\left|\cos\frac{x}{2}\right|dx=\lim_{N\to\infty}2\int_{1/N}^{\pi}\cos\frac{x}{2}d\frac{x}{2}=2\lim_{N\to\infty}\left[\sin\left(\frac{\pi}{2}\right)-\sin\left(\frac{1}{2N}\right)\right]=2<\infty$
- 6. Второй интеграл интегрируем по Лебегу на интервале $[1,\infty)$ и, следовательно, интегрируем по Лебегу на интервале (π,∞) поскольку $(\pi,\infty) \subset [1,\infty)$
- 7. Таким образом комбинируя (5) и (6) и теорему 10.4 интеграл определенный в (3) интегрируем по Лебегу.
- 8. Ч.Т.Д.

Задача № 12.20

Показать, что функция $G: \mathbb{R} \to \mathbb{R}, \ G(x):=\int_{\mathbb{R}/\{0\}} \frac{\sin(tx)}{t(1+t^2)} dt$ дифференцируема и найти G(0), G'(0). Использовать предельный аргумент, интегрирование по частям для $\int_{(-n,n)} ...dt$ и формулу, что $t \frac{\partial}{\partial t} \sin(tx) = x \frac{\partial}{\partial x} \sin(tx)$, чтобы показать, что

$$xG'(x) = \int_{\mathbb{R}} \frac{2tsin(tx)}{(1+t^2)^2} dt$$

Доказательство и решение:

- 1. Пусть $G: \mathbb{R} \to \mathbb{R}.$ $G(x) := \int_{\mathbb{R}/\{0\}} \frac{\sin(tx)}{t(1+t^2)} dt$
- 2. Мы воспользуемся теоремой 12.5 и для удобства сформулируем ее здесь: Пусть $\emptyset \neq (a,b) \subset \mathbb{R}$. Положим $u:(a,b) \times X \to \mathbb{R}$ функция удовлетворяющая следующим свойствам:
 - (a) $x \mapsto u(t,x)$ интегрируема $\forall t \in (a,b)$
 - (b) $t \mapsto u(t,x)$ дифференцируема $\forall x \in X$
 - (c) $|\partial_t u(t,x)| \le w(x) \ \forall (t,x) \in (a,b) \times X, \ w(x) \in \mathcal{L}^1(\mu)$
 - (d) В этом случае $U\left(t\right):=\int u\left(t,x\right)\mu\left(dx\right)$ дифференцируема и ее производная дана как $\frac{dU(t)}{dt}=\frac{d}{dt}\int u\left(t,x\right)\mu\left(dx\right)=\int \frac{\partial}{\partial t}u\left(t,x\right)\mu\left(dx\right)$

- 3. Сначала мы докажем, свойство (a) показав, что подинтегральное выражение в (1) $g:t\mapsto \frac{\sin(tx)}{t(1+t^2)}$ интегрируемо для любого зафиксированного $x\in(a,b)$
 - (а) Рассмотрим функцию вида $t\mapsto \frac{1}{t^2}$ на интервале $(\infty,1]\cup[1,\infty)$. Такая функция непрерывна всюду на этом интервале, и, следовательно, интегрируема по Риману. Интеграл Римана конечен и из следствия 12.11 g интегрируема по Лебегу
 - (b) Рассмотрим компакт [-1,1]. В таком случае, функция стремится к $x \lim_{t\to 0} \frac{\sin(tx)}{t(1+t^2)} = \left[\frac{\infty}{\infty}\right] = \lim_{t\to 0} \frac{x\cos(tx)}{1+2t} = x$. Следовательно, функция, указанная в (3) ограничена на заданном компакте, конечной констаной $x \in (a,b)$. Следовательно, $\int_{[-1,1]} \left|\frac{\sin(tx)}{t(1+t^2)}\right| \lambda\left(dt\right) \leq \int \left|x\mathbb{1}_{[-1,1]}(t)\right| \lambda\left(dt\right) < \infty$. Поскольку модуль интегрируем, то и функция интегрируема на заданном компакте по теореме 10.3.
 - (c) Собирая пункты (a) и (b) вместе мы видим, что функци интегрируема на интервале $(\infty, 1] \cup [1, \infty) \cup [-1, 1] = \mathbb{R}$ функцией $x\mathbb{1}_{[-1, 1]}(t) + \frac{1}{t^2}\mathbb{1}_{(\infty, 1] \cup [1, \infty)}(t)$. Таким образом выполнено 2.а $\mathbb{R}/\{0\}$
- 4. Очевидно, функция $x \mapsto u(t, x)$ дифференцируема $\forall x \in X$. Следовательно, выполнено 2.6
- 5. Рассмотрим $|\partial_x g(t,x)| = \left|\frac{\cos(tx)}{(1+t^2)}\right| \le \frac{1}{(1+t^2)} = w(x)$ Очевидно, что при любом $\forall (x,t) \in (a,b) \times X$ мажоранта интегрируема. Следовательно, выполнено 2.c
- 6. Таким образом, комбинируя (2), (3) и (4) по теореме $12.5~G:\mathbb{R}\to\mathbb{R}$ Дифференцируема.
- 7. Далее, рассчитаем G(0) и G'(0)
 - (a) $G(0) := \int_{\mathbb{R}/\{0\}} \frac{\sin(t0)}{t(1+t^2)} dt = 0$
 - (b) $G'(0) = \int_{\mathbb{R}/\{0\}} \frac{\cos(xt)}{(1+t^2)} dt \Big|_{x=0} = \lim_{n \to \infty} \int_{-n}^{-1/n} \frac{1}{(1+t^2)} dt + \lim_{n \to \infty} \int_{1/n}^{n} \frac{1}{(1+t^2)} dt = \lim_{n \to \infty} \left[\operatorname{arctg}\left(-\frac{1}{n}\right) \operatorname{arctg}\left(-n\right) + \operatorname{arctg}\left(n\right) \operatorname{arctg}\left(\frac{1}{n}\right) \right] = \pi$ і. Далее $G'(0) = 2\lim_{n \to \infty} \left[\operatorname{arctg}\left(n\right) \operatorname{arctg}\left(\frac{1}{n}\right) \right] = \pi$
- 8. Далее, покажем, что $xG'\left(x\right)=\int_{\mathbb{R}}\frac{2tsin(tx)}{\left(1+t^{2}\right)^{2}}dt$

$$xG'(x) = \lim_{n \to \infty} \int_{-n}^{n} \frac{\partial}{\partial x} \frac{x \sin(tx)}{t(1+t^2)} dt$$
$$xG'(x) = \lim_{n \to \infty} \int_{-n}^{n} \frac{\partial}{\partial t} \sin(tx) \frac{1}{(1+t^2)} dt$$

- (a) Интегрирование по частям соответствует формуле: $\int u dv = uv \int v du$
- (b) Положим что $v=sin\left(tx\right) \implies dv = \frac{\partial}{\partial t}sin\left(tx\right) \ u = \frac{1}{(1+t^2)} \implies du = \frac{\partial}{\partial t}\frac{1}{(1+t^2)}.$
- (c) Тогда, комбинируя 8 и 8.6 $\lim_{n\to\infty}\int_{-n}^{n}\frac{\partial}{\partial t}sin\left(tx\right)\frac{1}{(1+t^2)}dt=\lim_{n\to\infty}\left.\frac{sin(tx)}{(1+t^2)}\right|_{-n}^{n}-\lim_{n\to\infty}\int_{-n}^{n}sin\left(tx\right)\frac{\partial}{\partial t}\frac{1}{(1+t^2)}dt=0$ $0-\lim_{n\to\infty}\int_{-n}^{n}\frac{2tsin(tx)}{(1+t^2)^2}dt=\int_{\mathbb{R}}\frac{2tsin(tx)}{(1+t^2)^2}dt$
- 9. Ч.Т.Д.

Пусть λ - одномерная мера Лебега. Доказать равенства:

1.
$$\int_{(1,\infty)} e^{-x} \ln(x) \lambda(dx) = \lim_{k \to \infty} \int_{(1,k)} \left(1 - \frac{x}{k}\right)^k \ln(x) \lambda(dx)$$

2.
$$\int_{(0,1)} e^{-x} ln(x) \lambda(dx) = \lim_{k \to \infty} \int_{(0,1)} \left(1 - \frac{x}{k}\right)^k ln(x) \lambda(dx)$$

Доказательство:

- 1. Рассмотрим предел: $\lim_{k \to \infty} \left(1 \frac{x}{k}\right)^{-k}$. Положим $-\frac{x}{k} = \frac{1}{u} \implies k = -ux$. В таком случае $\lim_{k \to \infty} \left(1 \frac{x}{k}\right)^k = \lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{-ux} = \lim_{u \to \infty} \left(\left(1 + \frac{1}{u}\right)^u\right)^{-x} = e^{-x}$.
- 2. Далее воспользуемся теоремой Лебега о мажорируемой сходимости и воспользуемся ей, чтобы поменять предел и интеграл в левой части.
 - (a) По условию $\forall k \in \mathbb{N} \left(1 \frac{x}{k}\right)^{-k} \ln(x) \in \mathcal{L}^1(\lambda)$. При интегрировании на интервале $(1, k) \left(1 \frac{x}{k}\right)^{-k} \ln(x) = \left|\left(1 \frac{x}{k}\right)^{-k} \ln(x)\right| \in \mathcal{L}^1(\lambda)$
 - (b) В пункте (1) мы показали, что $\lim_{k\to\infty}\left(1-\frac{x}{k}\right)^{-k}=e^{-x}$. Отсюда следует, что $\lim_{k\to\infty}\left(1-\frac{x}{k}\right)^{-k}\ln\left(x\right)=e^{-x}\ln\left(x\right)$
- 3. Используя 2.а и 2.6 по теореме Лебега о мажорируемой сходимости $\int_{(1,\infty)}e^{-x}ln\left(x\right)\lambda\left(dx\right)=\int_{(1,\infty)}\lim_{k\to\infty}\left(1-\frac{x}{k}\right)^{-k}ln\left(x\right)$ $\lim_{k\to\infty}\int_{(1,k)}\left(1-\frac{x}{k}\right)^{-k}ln\left(x\right)\lambda\left(dx\right)$
- 4. Аналогично доказывается второе равенство
- 5. Ч.Т.Д.

Задача № 12.22

Пусть λ - одномерная мера Лебега на $\mathbb R$ и пусть $F(t)=\int_{(0,\infty)}e^{-x}\frac{t}{t^2+x^2}\lambda\left(dx\right)$. Показать, что $F(0+)=\lim_{t\downarrow 0}F\left(t\right)=\frac{\pi}{2}$ t>0

- 1. Пусть λ одномерная мера Лебега
- 2. Рассмотрим $F\left(t\right)=\int_{\left(0,\infty\right)}e^{-x}\frac{t}{t^{2}+x^{2}}\lambda\left(dx\right)$
- 3. Заметим, что $F\left(t\right)=\int_{(0,\infty)}e^{-x}\frac{t}{t^{2}+x^{2}}\lambda\left(dx\right)=\lim_{n\to\infty}\int_{\frac{1}{n}}^{n}e^{-x}\frac{t}{t^{2}+x^{2}}dx$ интегрируема по Риману
- 4. Положим x=ty. Тогда $F\left(t\right)=\int_{\left(0,\infty\right)}e^{-ty}\frac{t^{2}}{t^{2}+ty^{2}}dy=\int_{\left(0,\infty\right)}e^{-ty}\frac{1}{1+y^{2}}dy$
- 5. Заметим, что $\lim_{n\to\infty} e^{-\frac{1}{n}y} \frac{1}{1+y^2} = e^{-ty} \frac{1}{1+y^2}$ поточечно сходится и $\left|e^{-ty} \frac{1}{1+y^2}\right| \leq \left|\frac{1}{1+y^2}\right| \in \mathcal{L}^1(\lambda)$ Тогда по теореме Лебега о мажорируемой сходимости мы можем поменять интеграл и предел местами:
- 6. $F\left(0+\right) = \lim_{n \to \infty} \int_{(0,\infty)} e^{-\frac{1}{n}y} \frac{1}{1+y^2} dy = \int_{(0,\infty)} \lim_{n \to \infty} e^{-\frac{1}{n}y} \frac{1}{1+y^2} dy = \int_{(0,\infty)} \frac{1}{1+y^2} dy = \arctan\left(y\right)|_0^\infty = \frac{\pi}{2}$
- 7. Ч.Т.Д.

Задача № 12.24

Пусть $\phi\left(x\right)\in\mathcal{L}^{1}\left(\left[0,1\right],dx\right)$. Определим $f\left(t\right):=\int_{\left[0,1\right]}\left|\phi\left(x\right)-t\right|dx$. Показать, что

- 1. f(t) непрерывна
- 2. f(t) дифференцирума в точке $t \in \mathbb{R}$ тогда и только тогда, когда $\lambda \{\phi = t\} = 0$

Доказательство:

- 1. Пусть $\phi\left(x\right)\in\mathcal{L}^{1}\left(\left[0,1\right],dx\right)$ и $f\left(t\right):=\int_{\left[0,1\right]}\left|\phi\left(x\right)-t\right|dx$
- 2. Докажем утверждение (1) Чтобы показать, что функция непрерывна в точке $t \in \mathbb{R}$, необходимо показать, что $\forall \epsilon, \exists \delta \ (\epsilon, t)$ такое что $\forall s \ |t s| < \delta \implies |f(t) f(s)| < \epsilon$
 - (a) Рассмотрим $|f\left(t\right)-f\left(s\right)|=\left|\int_{\left[0,1\right]}\left|\phi\left(x\right)-t\right|dx-\int_{\left[0,1\right]}\left|\phi\left(x\right)-s\right|dx\right|=\left|\int_{\left[0,1\right]}\left|\phi\left(x\right)-t\right|dx-\left|\phi\left(x\right)-s\right|dx$
 - (b) Из неравенства треугольника для интеграла $\left| \int_{[0,1]} \left| \phi\left(x
 ight) t \right| dx \left| \phi\left(x
 ight) s \right| dx \right| \leq \int_{[0,1]} \left| \left| \phi\left(x
 ight) t \right| dx \left| \phi\left(x
 ight) s \right| dx \right| dx$
 - (c) Известно, что $\forall a,b \in \mathbb{R} \mid \mid a \mid -\mid b \mid \mid \leq \mid a-b \mid$. Тогда $\int_{[0,1]} \mid \mid \phi\left(x\right) t \mid dx \mid \phi\left(x\right) s \mid \mid dx \leq \int_{[0,1]} \mid s-t \mid dx = \mid s-t \mid < \epsilon$
 - (d) Таким образом $|f(t) f(s)| = C|s t| \ 0 < C < \infty$. То есть f(t) непрерывна по Липшицу и следовательно равномерно нерперывна
- 3. Докажем утверждение (2). С одной стороны:
 - (а) Пусто

Задача № 12.25

Пусть
$$f(t) = \int_0^\infty x^{-2} sin^2 x e^{-tx} dx \ t \ge 0$$

- 1. Показать, что f непрерывна на $[0,\infty)$ и дважды дифференцируема на $(0,\infty)$
- 2. Найти f'' и посчитать пределы $\lim_{t\to\infty}f\left(t\right)$ и $\lim_{t\to\infty}f'\left(t\right)$
- 3. Использовать (1) и (2) чтобы показать, чтобы выразить простым образом f(t)

Доказательство #1:

- 1. Пусть $f(t) = \int_0^\infty x^{-2} \sin^2 x e^{-tx} dx \ t \ge 0$
- 2. Покажем, что f(t) непрерывна.
 - (a) Рассмотрим $|f(t)-f(s)|=\left|\int_0^\infty \frac{\sin^2 x}{x^2}e^{-tx}dx-\int_0^\infty \frac{\sin^2 x}{x^2}e^{-sx}dx\right|$
 - (b) Заметим, что $\left| \int_0^\infty \frac{\sin^2 x}{x^2} e^{-tx} dx \int_0^\infty \frac{\sin^2 x}{x^2} e^{-sx} dx \right| \le \left| \int_0^\infty e^{-tx} dx \int_0^\infty e^{-sx} dx \right| = \left| \frac{1}{t} \frac{1}{s} \right| = \frac{|s-t|}{ts} \implies |s-t| < \epsilon t s$
 - (c) Таким образом $|s-t|<\delta=\epsilon ts \implies |f\left(t\right)-f\left(s\right)|\leq \epsilon. \ \forall t,s\geq 0$
- 3. Покажем, что f(t) дифференцируема
 - (a) Отображение $x \mapsto x^{-2} sin^2 x e^{-tx}$ интегрируемо по Лебегу $\forall t > 0$. (Доказательство #2 1.a)
 - (b) Отображение $t\mapsto x^{-2}sin^2xe^{-tx}$ дифференцируемо на $(0,\infty)$:

ii.
$$x^{-2}sin^{2}xe^{-tx}\lim_{\Delta t \to 0}\frac{e^{-\Delta tx}-1}{\Delta t} = x^{-2}sin^{2}xe^{-tx}\lim_{\Delta t \to 0}\frac{1+\sum_{n=1}^{\infty}(-\Delta tx)^{n}-1}{\Delta t} = x^{-2}sin^{2}xe^{-tx}\lim_{\Delta t \to 0}\frac{\Delta t\sum_{n=1}^{\infty}\Delta t^{n-1}(-x)^{n}}{\Delta t} = x^{-2}sin^{2}xe^{-tx}\lim_{\Delta t \to 0}\frac{\Delta t\sum_{n=1}^{\infty}\Delta t^{n}}{\Delta t} = x^{-2}sin^{2}xe^{-tx}\lim_{\Delta t \to 0}\frac{\Delta t}{\Delta t} = x^{-2}sin^{2}xe^{-tx}\lim_{\Delta t \to 0}\frac{\Delta t$$

- (c) $\left| \frac{\partial}{\partial t} x^{-2} \sin^2 x e^{-tx} \right| = \left| -\frac{\sin^2 x}{x} e^{-tx} \right| \le e^{-tx} \in \mathcal{L}^1(\lambda) \ \forall t > 0$
- (d) Тогда из (3), (4) и (5) по теореме 12.5 f(t) дифференцируема по и $f'(t) = \int_0^\infty -\frac{\sin^2 x}{x} e^{-tx} dx$ при $t \in (0, \infty)$
- 4. Покажем, что f'(t) дифференцируема
 - (a) $x \mapsto -x^{-1}sin^2xe^{-tx} \in \mathcal{L}^1(\lambda)$ поскольку $-x^{-1}sin^2xe^{-tx} \ge -e^{-tx} \in \mathcal{L}^1(\lambda), t \in (0,\infty)$
 - (b) $t \mapsto -x^{-1} sin^2 x e^{-tx}$ дифференцируема. Доказательство аналогично 3.b
 - $(c) \ \left|-\frac{\partial}{\partial t}x^{-1}sin^2xe^{-tx}\right| = \left|sin^2xe^{-tx}\right|. \ \Pi$ ри $t>0 \ \left|sin^2xe^{-tx}\right| \leq e^{-tx} \in \mathcal{L}^1\left(\lambda\right). \ \Pi$ ри $t\in(0,\infty)$
 - (d) Тогда из (3), (4) и (5) по теореме 12.5 $f\left(t\right)$ дифференцируема при $t\in\left(0,\infty\right)$ и $f''\left(t\right)=\int_{0}^{\infty}sin^{2}xe^{-tx}dx$
- 5. Ч.Т.Д.

Доказательство #2:

- 1. Для того, чтобы найти $\lim_{t\to\infty} f(t)$ мы воспользуемся теоремой Лебега о мажорируемой сходимости, чтобы поменять интеграл и предел местами
 - (a) По условию $\lim_{t\to\infty} f(t) = \lim_{t\to\infty} \int_0^\infty x^{-2} sin^2 x e^{-tx} dx$. Такой несобственный интеграл Римана интегрируем по Лебегу из следствия 12.11, поскольку $\forall n \in \mathbb{N} \ \forall t \geq 0 \int_0^n \left| x^{-2} sin^2 x e^{-tx} \right| dx \leq \int_0^1 dx + \int_1^\infty \frac{1}{x^2} dx = 2$.
 - (b) Более того, $\lim_{n\to\infty}x^{-2}sin^2xe^{-nx}=0\in\mathcal{L}^1\left(\lambda\right)$
 - (c) Тогда из (1.a) и (1.b), по теореме Лебега о мажорируемой сходимости следует, что $\lim_{t\to\infty} f(t) = \lim_{t\to\infty} \int_0^\infty x^{-2} sin^2 x e^{-tx} dx = \int_0^\infty \lim_{t\to\infty} x^{-2} sin^2 x e^{-tx} dx = 0$
- 2. Для того, чтобы найти $\lim_{t\to\infty}f'(t)$ мы воспользуемся теоремой Лебега о мажорируемой сходимости, чтобы поменять интеграл и предел местами
 - (a) По условию $\lim_{t\to\infty} f'(t) = \int_0^\infty -\frac{\sin^2 x}{x} e^{-tx} dx$ Такой несобственный интеграл Римана интегрируем по Лебегу из следствия 12.11, поскольку $\forall n\in\mathbb{N}\ \forall t\geq 0$ $\int_0^n \left|-\frac{\sin^2 x}{x} e^{-tx}\right| dx \leq \int_0^n e^{-tx} dx = \frac{1-e^{nt}}{t} < \infty$.
 - (b) Более того, $\lim_{n\to\infty} -\frac{\sin^2 x}{x}e^{-nx} = 0 \in \mathcal{L}^1(\lambda)$
 - (c) Тогда из (2.a) и (2.b), по теореме Лебега о мажорируемой сходимости следует, что $\lim_{t\to\infty} f'(t) = \lim_{t\to\infty} \int_0^\infty -\frac{\sin^2 x}{x} e^{-tx} dx = -\int_0^\infty \lim_{t\to\infty} \frac{\sin^2 x}{x} e^{-tx} dx = 0$
- 3. Мы уже находили f'' в доказательстве #1 к этой задаче.

Задача № 12.26

Показать, что $\int_0^\infty x^n e^{-x} dx = n! \ \forall n \in \mathbb{N}$

- 1. Следующее равенство выполнено: $\int_0^\infty e^{-xt} dx = \frac{1}{t}$
 - (a) $\int_0^\infty x e^{-xt} dx = 1! \frac{1}{t^2}$ производная 1 порядка
 - (b) $\int_0^\infty x^2 e^{-xt} dx = 2! \frac{1}{t^3}$ производная 2 порядка
 - (c) $\int_0^\infty x^3 e^{-xt} dx = 3! \frac{1}{t^4}$ производная 3 порядка

- (d) По индукции можно показать, что $\forall n \in \mathbb{N} \, \int_0^\infty x^n e^{-xt} dx = n! \frac{1}{t^{n+1}}$
- 2. При t=0 $\int_0^\infty x^n e^{-xt} dx = n! \frac{1}{t^{n+1}} \implies \int_0^\infty x^n e^{-x} dx = n!$
- 3. Ч.Т.Д.

Показать, что функция:

$$\Gamma(t) = \int_{(0,\infty)} e^{-x} x^{t-1} dx \quad \forall t > 0$$

Обладает следующими свойствами:

- 1. Она m раз дифференцируема: $\Gamma^{(m)}(t) = \int_{(0,\infty)} e^{-x} x^{t-1} (\log x)^m dx$
- 2. $\Gamma(t+1) = t\Gamma(t)$
- 3. Она логарифмически выпукла

Доказательство #1:

- 1. Предположим $\Gamma^{(m-1)}(t) = \int_{(0,\infty)} e^{-x} x^{t-1} \left(log x \right)^{m-1} dx$ дифференцируема. Мы воспользуемся индукцией и теоремой 12.5, чтобы показать, что Гамма-функция дифференцируема конечное число раз.
 - (а) Рассмотрим $x\mapsto e^{-x}x^{t-1}\left(\log x\right)^{m-1}$. Такая функция положительна при $x\in(0,\infty)$ и мажорируется интегрируемой по Лебегу $\mathbbm{1}_{(0,1)}M'x^{\delta-1}+\mathbbm{1}_{[1,\infty)}Mx^{-2}$ $\delta>0$ $\forall m\in\mathbb{N}$ из подсказки к задаче.
 - (b) $t \mapsto e^{-x}x^{t-1} \left(logx \right)^{m-1}$ дифференцируема. Ее производная $e^{-x} \left(logx \right)^{m-1} \left(x^{t-1} \right)_t^{'} = e^{-x}x^{t-1} \left(logx \right)^{m}$
 - (c) Мы уже показали, в (a), что подынтегральное выражение интегрируемо $\forall m \in \mathbb{N}$. Следовательно производная, указанная в 2.b тоже мажорируема интегрируемой функцией.
- 2. Тогда из теоремы 12.5 Гамма функция дифференцируема $m \in \mathbb{N}$ раз.
- 3. Ч.Т.Д

Доказательство #2:

- $1. \int_{(0,\infty)} e^{-x} x^t dx = \lim_{n \to \infty} \int_{\frac{1}{n}}^n e^{-x} x^t dx = \lim_{n \to \infty} e^{-x} t x^{t-1} \Big|_{\frac{1}{n}}^n + \int_{(0,\infty)} e^{-x} x^{t-1} dx = \lim_{n \to \infty} e^{-n} t n^{t-1} e^{-\frac{1}{n}} t \frac{1}{n}^{t-1} = \int_{(0,\infty)} e^{-x} x^{t-1} dx$
- 2. $\lim_{n \to \infty} e^{-n} t n^{t-1} = \lim_{n \to \infty} \frac{t n^{t-1}}{e^n} = \lim_{n \to \infty} \frac{t n^{t-1}}{\sum_{k=0}^{\infty} \frac{n^k}{k!}} = 0$
- 3. $\lim_{n \to \infty} e^{-\frac{1}{n}} t_n^{\frac{1}{n}t-1} = \lim_{n \to \infty} \frac{t_n^{\frac{1}{n}t-t}}{e_n^{\frac{1}{n}}} = 0$
- 4. Ч.Т.Д.

Доказательство #3:

1. Пусто

Пусть λ - одномерная мера Лебега.

- 1. Показать, что $\forall k \in \mathbb{N}_0$ выполнено равенство: $\int_{(0,1)} (x lnx)^k \lambda(dx) = (-1)^k \left(\frac{1}{k+1}\right)^{k+1} \Gamma(k+1)$
- 2. Использовать предыдущее доказательство, чтобы $\int_{(0,1)} x^{-x} \lambda (dx) = \sum_{k=1}^{\infty} k^{-k}$

Доказательство #1:

- 1. Рассмотрим интеграл: $\int_{(0,1)} \left(x lnx\right)^k \lambda\left(dx\right) = -\int_0^1 x^{k+1} \left(lnx\right)^k \left(-\frac{1}{x}\right) dx = \int_{(0,1)} \frac{x^{k+1}}{x} \left(lnx\right)^k \lambda\left(dx\right)$
- 2. Выполним замену $x = e^{-y}$. В таком случае покажем и выполним замены:
 - (a) y = -ln(x)
 - (b) $x^{k+1} = e^{-y(k+1)}$
 - (c) $(lnx)^k = (-1)^k y^k$
 - (d) $\frac{dy}{dx} = -\frac{1}{x} \implies dy = -\frac{1}{x}dx$
 - (e) $-ln(0) = \infty$ и -ln(1) = 0
 - (f) Подставляя в интеграл получим, что $-\int_0^1 x^{k+1} \left(lnx \right)^k \left(-\frac{1}{x} \right) dx = (-1)^k \int_0^\infty e^{-y(k+1)} y^k dy$
- 3. Положим x = y(k+1). В таком случае:
 - (a) $y = \frac{x}{k+1}$
 - (b) $\frac{dy}{dx} = \frac{1}{k+1} \implies dy = \frac{dx}{k+1}$
 - (c) $y^k = x^k \left(\frac{1}{k+1}\right)^k$
 - (d) Пределы интегрирования не изменяются
 - (e) Подставляя в интеграл получим, что $(-1)^k \int_0^\infty e^{-y(k+1)} y^k dy = (-1)^k \left(\frac{1}{k+1}\right)^{k+1} \int_0^\infty e^{-x} x^k dx = (-1)^k \left(\frac{1}{k+1}\right)^{k+1} \Gamma\left(k^2 + \frac{1}{k+1}\right)^{k+1} \Gamma\left(k^$
- 4. Таким образом $\int_{(0,1)} \left(x lnx\right)^k \lambda\left(dx\right) = \left(-1\right)^k \left(\frac{1}{k+1}\right)^{k+1} \Gamma\left(k+1\right)$
- 5. Ч.Т.Д

Доказательство #2:

- 1. Рассмотрим интеграл: $\int_{(0,1)} x^{-x} \lambda\left(dx\right) = \int_{(0,1)} x^{-x} \lambda\left(dx\right) = \int_{(0,1)} e^{-xlnx} \lambda\left(dx\right) = \int_{(0,1)} \sum_{k=0}^{\infty} \frac{\left(-xlnx\right)^k}{k!} \lambda\left(dx\right) = \int_{(0,1)} \left(-xlnx\right)^k \lambda\left(dx\right$
- 2. Из теоремы Тунелли-Фубини: $\int_{0}^{1} \sum_{k=0}^{\infty} \frac{(-x lnx)^{k}}{k!} \lambda\left(dx\right) = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \int_{0}^{1} \left(x lnx\right)^{k} \lambda\left(dx\right)$
- 3. Из доказательства #1: $\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \int_0^1 \left(x l n x\right)^k \lambda\left(d x\right) = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{1}{k+1}\right)^{k+1} \Gamma\left(k+1\right)$
- 4. Мы уже показывали, что $\int_{(0,\infty)} x^k e^{-x} dx = k!$ Тогда $\frac{\Gamma(k+1)}{k!} = \int_{(0,\infty)} e^{-x} x^k dx = 1$, что имплицирует $\sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{1}{k+1}\right)^{k+1} \Gamma\left(k+1\right) = \sum_{k=0}^{\infty} \left(\frac{1}{k+1}\right)^{k+1} = \sum_{k=1}^{\infty} \left(\frac{1}{k}\right)^k = \sum_{k=1}^{\infty} k^{-k}$
- 5. Ч.Т.Д.

Показать, что отображение $x\mapsto x^nf\left(u,x\right)$ интегрируемо, где $f\left(u,x\right)=\frac{e^{ux}}{e^x+1}$ и 0< u<1 на $\mathbb R$ и $g\left(u\right):=\int x^nf\left(u,x\right)dx$ и 0< u<1 дифференцируема произвольное число раз.

1. Пусто

Задача № 12.30

Рассчитать следующий интегрируемый по Риману предел:

$$\lim_{n \to \infty} \int_0^1 \frac{1 + nx^2}{(1 + x^2)^n} dx$$

Решение

- 1. Рассмотрим $\lim_{n\to\infty} \int_0^1 \frac{1+nx^2}{(1+x^2)^n} dx$
- 2. Заметим, что $\forall n \in \mathbb{N} \, \left| \frac{1 + nx^2}{(1 + x^2)^n} \mathbb{1}_{[0,1]} \right| \leq \mathbb{1}_{[0,1]} \in \mathcal{L}^1 \left([0,1] \right)$
- 3. Более того, $\lim_{n\to\infty}\frac{1+nx^2}{(1+x^2)^n}=0\in\mathcal{L}^1\left(0,1\right)$
- 4. Тогда по теореме Лебега о мажорируемой сходимости мы можем поменять предел и интеграл местами: $\lim_{n\to\infty}\int_{[0,1]}\frac{1+nx^2}{(1+x^2)^n}dx=\int_{[0,1]}\lim_{n\to\infty}\frac{1+nx^2}{(1+x^2)^n}dx=0$

Задача № 12.31

Пусть
$$f(t) = \int_0^\infty \arctan\left(\frac{t}{\sinh(x)}\right) dx \ t > 0$$

- 1. Показать, что f дифференцируемо на $(0,\infty)$, но f'(0+) не существует
- 2. Найти решения в замкнутой форме для $f'\left(t\right),f\left(0\right),\lim_{t\to\infty}f\left(t\right)$

Доказательство #1

1. Пусто

Задача № 12.32

Пусть X - положительная случайная величина на вероятностном пространстве $(\Omega, \mathcal{A}, \mathbb{P})$. Функция $\phi(t) := \int e^{-tX} d\mathbb{P}$ называется функцией моментов. Показать, что $\phi(t)$ m раз дифференцируема в точке t=0+, если абсолютный момент порядка m $\int |X|^m d\mathbb{P}$ существует. В этом случае выполнена следующие равенства:

1.
$$M_k = \int X^k d\mathbb{P} = (-1)^k \left. \frac{d^k}{dt^k} \phi_X \left(t \right) \right|_{t=0+}$$
 для всех $0 \leq k \leq m$

2.
$$\phi_{X}\left(t\right)=\sum_{k=0}^{m}\frac{M_{k}}{k!}\left(-1\right)^{k}t^{k}+o\left(t^{m}\right)\,f\left(t\right)=o\left(t^{m}\right)$$
 - обозначает $\lim_{t\to0}\frac{f(t)}{t^{m}}=0$

3.
$$\left| \phi_X(t) - \sum_{k=0}^{m-1} (-1)^k t^k \right| \le \frac{|t|^m}{m!} \int |X|^m d\mathbb{P}$$

4. Если $\int \left|X\right|^m d\mathbb{P} < \infty \ \forall k \in \mathbb{N},$ тогда $\phi_X\left(t\right) = \sum_{k=0}^m \frac{M_k}{k!} \left(-1\right)^k t^k$ для всех t внутри радиуса сходимости

18

Доказательство:

- 1. Пусть X положительная случайная величина на вероятностном пространстве $(\Omega, \mathcal{A}, \mathbb{P})$
- 2. Рассмотрим функцию моментов $\phi\left(t\right):=\int e^{-tX}d\mathbb{P}$
- 3. Положим, что $\forall m \in \mathbb{N} \ \int |X|^m d\mathbb{P} < \infty$ существует.
- 4. Мы воспользуемся методом индукции. В ходе шага индукции мы воспользуемся теоремой 12.5, чтобы показать, что $\phi(t)$ дифференцируема m раз. Затем воспользуемся теоремой Лебега о мажорируемой сходимости, чтобы поменять предел при $t \to 0+$ и интеграл местами.
- 5. Воспользуемся теоремой 12.5. Предположим, что $\phi(t)$ дифференцируема k раз, а производная $\frac{d^{k-1}}{dt^{k-1}}\phi(t) = \int (-X)^k e^{-\frac{1}{n}X}d\mathbb{P}$
 - (a) $x \mapsto (-X)^k e^{-tX} \in \mathcal{L}^1(\mathbb{P})$ поскольку $\left| (-X)^k e^{-tX} \right| \leq |X^m| \in \mathcal{L}^1(\mathbb{P}) \implies \left| (-X)^k e^{-tX} \right| \in \mathcal{L}^1(\mathbb{P})$ из (3). Тогда по теореме $10.3 \ (-X)^k e^{-tX} \in \mathcal{L}^1(\mathbb{P}) \ \forall t > 0$
 - (b) $t \mapsto (-X)^k e^{-tX}$ дифференцируема, поскольку выполнено следующее: $\lim_{\Delta t \to 0} \frac{(-X)^k e^{-(t+\Delta t)X} (-X)^k e^{-tX}}{\Delta t} = (-X)^k e^{-tX} \lim_{\Delta t \to 0} \frac{e^{-\Delta tX} 1}{\Delta t} = (-X)^k e^{-tX} \lim_{\Delta t \to 0} \frac{\sum_{n=1}^{\infty} \frac{(-\Delta tX)^n}{n!}}{\Delta t} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}^{\text{Лопиталь}} 0$
 - $(c) \ \left| \frac{\partial}{\partial t} \left(-X \right)^k e^{-tX} \right| = \left| X^{k+1} e^{-tX} \right| \leq \left| X^{k+1} \right| \in \mathcal{L}^1 \left(\mathbb{P} \right) \ k+1 = m, \ \text{тогда} \ \left| \frac{\partial}{\partial t} \left(-X \right)^k e^{-tX} \right| \in \mathcal{L}^1 \left(\mathbb{P} \right)$
 - (d) Комбинируя подпункты в 5 по теореме 12.5 $\lim_{n\to\infty}\int \left(-X\right)^k e^{-\frac{1}{n}X}d\mathbb{P}$ дифференцируема m раз. По индукции, мы показали, что функция дифференцируема конечное число раз, если выполнено (3) $\forall t>0$
- 6. Воспользуемся теоремой Лебега о мажорируемой сходимости
 - (а) Заметим, что $\forall n \in \mathbb{N} \left| (-X)^m e^{-\frac{1}{n}X} \right| \leq |X^m| \in \mathcal{L}^1(\mathbb{P}) \implies \left| (-X)^m e^{-\frac{1}{n}X} \right| \in \mathcal{L}^1(\mathbb{P})$ из (3). Тогда по теореме 10.3 $(-X)^m e^{-\frac{1}{n}X} \in \mathcal{L}^1(\mathbb{P})$
 - (b) $\lim_{t\to 0+} (-X)^m e^{-\frac{1}{n}X} = (-X)^m$ сходится поточечно.
 - (c) Тогда по теореме Лебега о мажорируемой сходимости $\lim_{t\to 0+} \frac{d^m}{dt^m} \phi(t) = \lim_{n\to\infty} \int (-X)^m \, e^{-\frac{1}{n}X} d\mathbb{P} = \int \lim_{n\to\infty} (-X)^m \, e^{-\frac{1}{n}X} d\mathbb{P} = \int (-X)^m \, d\mathbb{P}$
- 7. Базой же индукции является дифференцируемость 0 порядка. Теперь докажем остальные равенства:
- 8. $M_k = \int X^k d\mathbb{P} = (-1)^k \frac{d^k}{dt^k} \phi_X(t) \Big|_{t=0+}$ поскольку $\lim_{t\to 0+} \frac{d^k}{dt^k} \phi(t) = \int (-X)^k d\mathbb{P} = (-1)^k \int X^k d\mathbb{P} \implies \int X^k d\mathbb{P} = \lim_{t\to 0+} (-1)^k \frac{d^k}{dt^k} \phi(t) = (-1)^k \frac{d^k}{dt^k} \phi_X(t) \Big|_{t=0+}$
- 9. Разложим функцию в ряд Тейлора в точке t=0+. По условию, функция $\phi_X(t)$ дифференцируема m раз. $\phi_X(t) = \sum_{n=0}^m \lim_{t\to 0+} \frac{d^n\phi_X(t)}{dt^2} \frac{t^n}{n!} + o(t^n) = \sum_{n=0}^m (-1)^n M_k \frac{t^n}{n!} + o(t^n)$ из (8)
- 10. Докажем неравенство (ііі)
 - (a) Используя (9) $\phi_X(t) = \sum_{n=0}^m (-1)^n M_k \frac{t^n}{n!} + o(t^n) \implies \phi_X(t) \ge \sum_{n=0}^m (-1)^n M_k \frac{t^n}{n!} \implies \phi_X(t) \sum_{n=0}^{m-1} (-1)^n M_k \frac{t^n}{n!} \ge (-1)^m M_k \frac{t^m}{m!}$

- (b) Если m четна, то $\phi_X(t) \sum_{n=0}^{m-1} (-1)^n M_k \frac{t^n}{n!} \ge M_k \frac{t^m}{m!}$
- (c) Если m нечетна, то $-\left(\phi_X\left(t\right) \sum_{n=0}^{m-1} \left(-1\right)^n M_k \frac{t^n}{n!}\right) \leq M_k \frac{t^m}{m!}$
- (d) Комбинируя 10.а.і и 10.а.іі по определению модуля функции, получаем, что $\left|\phi_{X}\left(t\right)-\sum_{n=0}^{m-1}\left(-1\right)^{n}M_{k}\frac{t^{n}}{n!}\right|\leq M_{k}\frac{t^{m}}{m!}=\frac{t^{m}}{m!}\int\left|X\right|^{m}d\mathbb{P}\ \forall t>0$
- 11. Если t находится в радиусе сходимости, то $\lim_{m \to \infty} \frac{t^m}{m!} \int |X|^m d\mathbb{P} = 0$. Отсюда следует, что $\lim_{m \to \infty} \left| \phi_X \left(t \right) \sum_{n=0}^{m-1} \left(-1 \right)^n M_k \lim_{m \to \infty} \frac{t^m}{m!} \int |X|^m d\mathbb{P} \implies \lim_{m \to \infty} \left| \phi_X \left(t \right) \sum_{n=0}^{m-1} \left(-1 \right)^n M_k \frac{t^n}{n!} \right| \le 0$. Таким образом: $\phi_X \left(t \right) = \lim_{m \to \infty} \sum_{n=0}^{m-1} \left(-1 \right)^n M_k \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(-1 \right)^n M_k \frac{t^n}{n!}$
- 12. Ч.Т.Д.

Рассмотреть следующие функции: $u(x) = \mathbb{1}_{\mathbb{Q} \cap [0,1]}(x)$ и $v(x) = \mathbb{1}_{\{n^{-1}:n \in \mathbb{N}\}}(x)$. Доказать или опровергнуть следующие утверждения:

- 1. Функция u(x) непрерывна всюду за исключением $\mathbb{Q} \cap [0,1]$. Поскольку это нуль множество, следовательно, u(x) интегрируема по Риману по теореме 12.9
- 2. Функция v(x) равна нулю всюду за исключением $\{n^{-1}:n\in\mathbb{N}\}$ счетного множества. Следовательно v(x) интегрируема по Риману по теореме 12.9
- 3. Функции $u, v \in \mathcal{L}^1(\mu)$ и $\int u d\mu = \int v d\mu = 0$
- 4. Функция u(x) не интегрируема по Риману.

Доказательство #1

- 1. Пусть $u(x) = \mathbb{1}_{\mathbb{Q} \cap [0,1]}(x)$
- 2. Рассмотрим некоторую индикаторную функцию $f(x) = \mathbb{1}_{\{0\}}(x)$. Исследуем ее на непрерывность в точке 0. По определению, функция непрерывна в некоторой $x \in X$, если $\forall \epsilon > 0 \exists \delta > 0 : B_{\delta}(f(x)) \subset f(B_{\epsilon}(x))$. Пусть $\epsilon = 0.1$. Тогда $f(B_{\epsilon}(x)) = f(B_{0.1}(0)) = \{0,1\}$ из определения f(x). Но, какое бы $\delta > 0$ мы не взяли $B_{\delta}(f(0)) = B_{\delta}(1)$ открытый шар такой что $B_{\delta}(1) \nsubseteq \{0,1\}$. Таким образом мы нашли контрпример, и следовательно $\mathbb{1}_{\{0\}}(x)$ не является непрерывной в точке 0.
- 3. Известен тот факт, что $\mathbb{Q} \cap [0,1]$ плотно на [0,1]. Это означает, что $\forall x \in [0,1] \ \forall \delta > 0 : \exists q \in \mathbb{Q} : q \in B_{\delta}(x)$. Таким образом, какой бы радиус открытого шара δ мы бы не взяли, всегда существует некоторый $q \in \mathbb{Q}$, который является элементом этого шара.
- 4. Мы уже показали на примере в (2), что во всех рациональных точках $\mathbb{1}_{\mathbb{Q}\cap[0,1]}(x)$ не является непрерывной.
- 5. Рассмотрим $\mathbb{I} \cap [0,1]$, где \mathbb{I} иррациональны. Рассмотрим произвольную $x \in \mathbb{I} \cap [0,1]$. Поскольку \mathbb{Q} плотно на \mathbb{R} , какое бы епсилон мы не взяли, всегда получится, что $f(B_{\epsilon}(x)) = f(B_{0.1}(0)) = \{0,1\}$. Аналогично аргументу в (2), какое бы дельта мы не взяли $B_{\delta}(f(x))$ открытый шар такой что $B_{\delta}(1) \nsubseteq \{0,1\}$.

- 6. Комбинируя аргументы в (4) и (5) u(x) является всюду разрывной функцией и следовательно утверждение, указанное в (1) ложное и функция не является непрерывной по Риману.
- 7. Ч.Т.Д.

Доказательство #2

1. Рассмотрим $v(x) = \mathbb{1}_{\{n^{-1}:n\in\mathbb{N}\}}(x)$. Такая функция является всюду не плотной на интервале (0,1]. Поскольку это счетное множество, то его мера Лебега равна 0. Следовательно по теореме 12.9 такая функция интегрируема по Риману

Доказательство #3

- 1. Рассмотрим $u(x) = \mathbb{1}_{\mathbb{Q} \cap [0,1]}(x)$ и $v(x) = \mathbb{1}_{\{n^{-1}: n \in \mathbb{N}\}}(x)$
- 2. $\int \mathbb{1}_{\mathbb{Q}\cap[0,1]}d\mu = \int_{\mathbb{Q}\cap[0,1]}d\mu = \mu\left(\mathbb{Q}\cap[0,1]\right) = \sum_{i=0}^{\infty}\mu\left(q_i\cap[0,1]\right) = 0, \ \mathrm{где} \ \forall i\in\mathbb{N} q_i\in\mathbb{Q}$
- 3. $\int \mathbb{1}_{\{n^{-1}:n\in\mathbb{N}\}} d\mu = \int_{\{n^{-1}:n\in\mathbb{N}\}} d\mu = \mu\left(\left\{n^{-1}:n\in\mathbb{N}\right\}\right) = \sum_{i=0}^{\infty} \mu\left(\frac{1}{n}\right) = 0$
- 4. Следовательно $\int u d\mu = \int v d\mu = 0$
- 5. Ч.Т.Д.

Доказательство #4

- 1. Поскольку ф-я u всюду разрывна. Следовательно, она не интегрируема по Риману (Доказательство #1 задача 12.33)
- 2. Ч.Т.Д.

Задача № 12.34

Сконструировать последовательность функций, которые интегрируемы по Риману, но в пределе сходятся к функции, которая по Риману не интегрируема:

Решение:

- 1. Рассмотрим последовательность функций $(u_n)_{n\in\mathbb{N}}$ $u_n=\mathbb{1}_{\left\{ igcup_{i=1}^n q_i \right\}}$, где $\forall i\in\mathbb{N} q_i\in\mathbb{Q}$. $\forall n\in\mathbb{N}$ множество точек в которых функция u_n разрывна конечно, следовательно, по теореме 12.9 такая функция интегрируема по Риману. Однако $u_\infty=\mathbb{1}_{\left\{ igcup_{i=1}^\infty q_i \right\}}=\mathbb{1}_\mathbb{Q}$ разрывна всюду и, следовательно, по теореме 12.9 такая функция не интегрируема по Риману.
- 2. Ч.Т.Д.

Задача № 12.37

Пусть $f:(0,\infty)\to\mathbb{R}$ - непрерывна. Так, что $\lim_{x\to\infty}f(x)=m$ и $\lim_{x\to0}f(x)=M$. Показать, что двухсторонний несобственный интеграл Римана:

$$\lim_{r \to \infty; s \to 0} \int_{r}^{s} \frac{f(bx) - f(ax)}{x} dx = (M - m) \ln\left(\frac{b}{a}\right)$$

Доказательство:

- 1. Пусть $f:(0,\infty) \to \mathbb{R}$ непрерывна
- 2. Положим $\lim_{x\to\infty} f(x) = m$ и $\lim_{x\to0} f(x) = M$
- 3. Рассмотрим интеграл: $\lim_{r \to \infty; s \to 0} \int_r^s \frac{f(bx) f(ax)}{x} dx$ Для простоты будем рассматривать интеграл держа в уме пределы
- 4. $\int_r^s \frac{f(bx)-f(ax)}{x} dx = \int_r^s \frac{f(bx)}{x} dx \int_r^s \frac{f(ax)}{x} dx$ из аддитивности интеграла
- 5. Рассмотрим $\int_{r}^{s} \frac{f(bx)}{x} dx$ и выполним замены при y = bx
 - (a) $\frac{dy}{dx} = b \implies \frac{dy}{b} = dx$
 - (b) $\frac{1}{x} = \frac{b}{y}$
 - (c) f(ax) = f(y)
 - (d) $y_u = bs \ y_l = br$
 - (e) Тогда $\int_r^s \frac{f(bx)}{x} dx = \int_{br}^{bs} \frac{b}{y} f(y) \frac{dy}{b} = \int_{br}^{bs} \frac{f(y)}{y} dy$. Аналогично выполняются замены и для $\int_r^s \frac{f(ax)}{x} dx = \int_{ar}^{as} \frac{f(y)}{y} dy$
- 6. Из (4) и (5) следует, что $\int_r^s \frac{f(bx)}{x} dx \int_r^s \frac{f(ax)}{x} dx = \int_{br}^{bs} \frac{f(y)}{y} dy \int_{ar}^{as} \frac{f(y)}{y} dy$
- 7. Без потери общности предположим, что $r < s \ a \le b$ тогда $\int_{br}^{bs} \frac{f(y)}{y} dy \int_{ar}^{as} \frac{f(y)}{y} dy = \int_{as}^{bs} \frac{f(y)}{y} dy \int_{ar}^{br} \frac{f(y)}{y} dy$ при замене пределов интегрирования
- 8. Тогда из теоремы о среднем значении для интеграла Римана для (7) верно: $\int_{as}^{bs} \frac{f(y)}{y} dy \int_{ar}^{br} \frac{f(y)}{y} dy = f\left(\xi_1\right) \int_{as}^{bs} \frac{1}{y} dy f\left(\xi_2\right) \int_{ar}^{br} \frac{1}{y} dy = \left[f\left(\xi_1\right) f\left(\xi_2\right)\right] \ln\left(\frac{b}{a}\right)$
- 9. Поскольку $\xi_1 \in (as,bs)$, то при $\xi_1 \to 0$ при $s \to 0$. Поскольку $\xi_2 \in (ar,br)$, то при $\xi_1 \to \infty$ при $r \to \infty$. Тогда выражение в (9) представимо как $(M-m)\ln\left(\frac{b}{a}\right)$ используя условие в (2)
- 10. Таким образом $\lim_{r\to\infty} \int_r^s \frac{f(bx)-f(ax)}{x} dx = (M-m)\ln\left(\frac{b}{a}\right)$
- 11. Ч.Т.Д.