

El Diccionario de Sullivan

Introducción

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

El Diccionario

#### El Diccionario de Sullivan

Un Puente entre la Dinámica Holomorfa y los Grupos Kleinianos

#### Mauricio Toledo-Acosta

Departamento de Matemáticas Universidad de Sonora



#### Table of Contents

El Diccionario de Sullivan

#### Introducción

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

- Introducción
- 2 Dinámica de Grupos Kleinianos
- 3 Dinámica Holomorfa
- 4 El Diccionario de Sullivan



## Dinámica de Grupos Kleinianos

de Sullivan

Introducción

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

El Diccionario de Sullivan Consideremos trasnformaciones de Möbius  $\gamma:\hat{\mathbb{C}}\to\hat{\mathbb{C}}$  dadas por

$$\gamma(z) = \frac{az+b}{cz+d}$$
,  $ad-bc \neq 0$ 

y consideremos grupos formados por transformaciones de Möbius,

$$G = \langle z \mapsto z + 1, z \mapsto -\frac{1}{z} \rangle$$

¿dónde se acumulan las órbitas?





### Dínamica Holomorfa

Consideremos la función holomorfa  $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$  dada por

$$f(z)=z^2+c,$$

para algún  $c \in \mathbb{C}$ . Queremos estudiar la dinámica de las iteraciones

$$f^{(1)} = f, f^{(2)} = f \circ f, f^{(3)} = f \circ f \circ f, ...$$

Por ejemplo: c = 0, c = -2. Estudiemos las órbitas de 0.

- Iteración
- Conjunto de Julia, Conjunto de Mandelbrot, Primer Mandelbrot

¿Cómo es la dinámica?



## ¿Qué Tienen en Común?

El Diccionario de Sullivan

#### Introducción

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

El Diccionario de Sullivan



Dinámica de Grupos Kleinianos



Dinámica Holomorfa

El diccionario de Sullivan nos da la respuesta.



#### Table of Contents

El Diccionario de Sullivan

Introducción

Grupos Kleinianos

Dinámica Holomorfa

- Introducción
- ② Dinámica de Grupos Kleinianos
  - 3 Dinámica Holomorfa
  - 4 El Diccionario de Sullivan



## Dinámica de Grupos Kleinianos

El Diccionario de Sullivan

Introducció

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

El Diccionario

#### Objetivo Principal

Estudiar la acción de **grupos de transformaciones de Möbius** en la esfera de Riemann  $\hat{\mathbb{C}}$ ,

$$\gamma(z) = \frac{az+b}{cz+d}, \quad ad-bc \neq 0$$

- ¿Cómo se comportan las órbitas a largo plazo?
- ¿Cómo se relacionan los grupos Kleinianos con las superficies de Riemann y las 3-variedades hiperbólicas?

#### **Aplicaciones**

- Teoría de superficies de Riemann y geometría hiperbólica.
- Estudio de 3-variedades hiperbólicas.



# Transformaciones de Möbius Möb $(\mathbb{C})$

El Diccionario de Sullivan

Introducción

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

El Diccionario

#### Definición

Una **transformación de Möbius** es una función  $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ ,

$$f(z)=\frac{az+b}{cz+d},$$

donde  $a, b, c, d \in \mathbb{C}$  y ad - bc = 1.

#### Propiedades:

- Transforman circunferencias generalizadas en circunferencias generalizadas.
- Preservan ángulos (son conformes).
- Son biholomorfismos de  $\hat{\mathbb{C}}$ .

# **Ejemplo**

El Diccionario de Sullivan

Introducción

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

$$z\mapsto \frac{z+\left(-1+i\right)}{iz-3i}$$





# **Ejemplo**

El Diccionario de Sullivan

Introducció

Dinámica de Grupos

Dinámica Holomorfa

El Diccionario de Sullivan





#### Geogebra



# Clasificación de elementos de $M\ddot{o}b(\mathbb{C})$

El Diccionario de Sullivan

Dinámica de

Dinámica Holomorfa

El Diccionario de Sullivan Para una transformación de Möbius  $f(z) = \frac{az+b}{cz+d}$ ,

$$\operatorname{tr}^2(f) = (a+d)^2.$$

está bien definida

- La traza al cuadrado es invariante bajo conjugación.
- Clasifica los elementos de  $\mathsf{Mob}(\mathbb{C})$  en tres tipos.
- **Elíptica**:  $tr^2(f) \in [0,4)$ .

Tiene dos puntos fijos y es conjugada a una rotación.

• Parabólica:  $tr^2(f) = 4$ .

Tiene un único punto fijo y es conjugada a una traslación.

• Loxodrómica:  $tr^2(f) \in \mathbb{C} \setminus [0, 4]$ .

Tiene dos puntos fijos y es conjugada a una homotecia con rotación.



## Grupos Kleinianos: Definición y Ejemplos

El Diccionario de Sullivan

Dinámica d

Grupos Kleinianos

Dinámica Holomorfa

El Diccionario de Sullivan Un subgrupo  $\Gamma \subset \mathsf{M\"ob}(\mathbb{C})$  se dice **grupo Kleiniano** si:

- Es **discreto** en la topología usual de  $SL(2, \mathbb{C})$ , es decir, no tiene puntos de acumulación.
- Actúa en un subconjunto no vacío  $X\subset \hat{\mathbb{C}}=\mathbb{C}\cup \{\infty\}$  de forma propia y discontinuamente.

#### **Ejemplos**

- El grupo cíclico  $G = \langle z \mapsto 2z \rangle$
- El grupo finitamente generado  $G = \langle z \mapsto z+1, z \mapsto z+i \rangle$ .



## Región de Discontinuidad

El Diccionario de Sullivan

Introducciór

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

El Diccionario de Sullivan Sea G un grupo de transformaciones de Möbius que actúa en  $\hat{\mathbb{C}}$ .

#### Región de Discontinuidad $\Omega(G)$

La **región de discontinuidad** de G es el conjunto de puntos donde la acción de G es **discontinua**:

$$\Omega(G) = \left\{ z \in \hat{\mathbb{C}} \,\middle|\, egin{array}{l} \exists \ \mathsf{abierto} \ \mathit{U} \ \mathsf{de} \ \mathit{z} \ \mathsf{tal} \ \mathsf{que} \ & \ \mathit{g}(\mathit{U}) \cap \mathit{U} = \emptyset \ \mathsf{para} \ \mathsf{casi} \ \mathsf{todo} \ \mathit{g} \in \mathit{G} \end{array} 
ight\}.$$

- En  $\Omega(G)$ , las transformaciones de G no acumulan puntos.
- Es un conjunto abierto donde G actúa de manera ordenada.



# Conjunto Límite

l Diccionari de Sullivan

Introducciór

Grupos Kleinianos

Dinámica Holomorfa

El Diccionario de Sullivan

#### Conjunto Límite

El **conjunto límite** de un grupo Kleiniano G es el complemento de la región de discontinuidad:

$$\Lambda(G) = \hat{\mathbb{C}} \setminus \Omega(G).$$

- En  $\Lambda(G)$ , las transformaciones de G acumulan puntos.
- Es un conjunto cerrado donde la acción es caótica.

De manera equivalente,  $\Lambda(G)$  es:

- La cerradura de puntos de acumulación de órbitas Gz, para cualquier  $z \in \hat{\mathbb{C}}$ .
- La cerradura de puntos fijos repulsores de elementos loxodrómicos de G



### Invarianza

El Diccionario de Sullivan

Introducció

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

- $\Omega(G)$  y  $\Lambda(G)$  son  $\Gamma$ -invariantes.
- $\Omega(G)$  es abierto y  $\Lambda(G)$  es cerrado.
- $\Lambda(G)$  tiene 0,1,2 o una infinidad de puntos.
- $\Omega(G)/G$  es Hausforff.



## Ejemplo: Grupos Elementales

El Diccionario de Sullivan

Introducción

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

El Diccionario de Sullivan



Grupo cíclico generado por un parabólico.



Grupo cíclico generado por un loxodrómico.



# Ejemplo: Grupos Kissing Schotty

El Diccionario de Sullivan

Introducción

Dinámica de Grupos

Dinámica Holomorfa





## Grupo de Schottky

El Diccionario de Sullivan

Introducciór

Dinámica de Grupos Kleinianos

Dinámica Holomorfa





# Ahlfors finiteness theorem (1964)

El Diccionario de Sullivan

Introducció

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

El Diccionario de Sullivan Sea  $\Gamma$  un grupo Kleiniano finitamente generado con región de discontinuidad  $\Omega$ . Entonces:

- $\Omega/\Gamma$  tiene un número finito de componentes.
- Cada componente es una superficie de Riemann compacta con un número finito de puntos removidos.



### Ejemplo: Superficie de Riemann de Genero 2



BEGIN WITH A PLANE MINUS FOUR DIEKS, WITH CIRCLE & TO BE GLUED TO A AND IS TO B.



CLOSED SURFACE.



STRETCH SURFACE TO MAKE CORRESPONDING CIRCLES SIDE-BY-SIDE.



PULL OUT REGIONS SURROUNDING THE CIRCLES TO BRING THEM TOGETHER ..





#### Table of Contents

El Diccionario de Sullivan

Introducció

Dinámica d Grupos Kleinianos

Dinámica Holomorfa

- Introducción
- 2 Dinámica de Grupos Kleinianos
- 3 Dinámica Holomorfa
- 4 El Diccionario de Sullivan



#### Dinámica Holomorfa

l Diccionario de Sullivan

Introducción Dinámica de Grupos

Dinámica Holomorfa

El Diccionario

#### Objetivo Principal

Estudiar el comportamiento de las **funciones holomorfas** bajo iteración, es decir, analizar las órbitas:

$$z, f(z), f^{2}(z), f^{3}(z), \ldots$$

donde  $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$  es una función holomorfa.

- ¿Cómo se comportan las órbitas a largo plazo?
- ¿Qué estructuras geométricas y dinámicas emergen bajo iteración?

#### **Aplicaciones**

- Teoría de sistemas dinámicos complejos.
- Geometría fractal y teoría del caos.



## Puntos Periódicos y su Clasificación

El Diccionar de Sullivan

Introducción

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

El Diccionario de Sullivan Sea  $f:\mathbb{C}\to\mathbb{C}$  una función holomorfa. Un punto  $z_0\in\mathbb{C}$  se llama **punto periódico** de período n si:

$$f^n(z_0)=z_0,$$

- El menor n que cumple esta condición se llama período de z<sub>0</sub>.
- Si n = 1,  $z_0$  es un **punto fijo**.

Dado un punto periódico  $z_0$  de período n, el **multiplicador**  $\lambda$  es

$$\lambda = (f^n)'(z_0).$$

El multiplicador determina el comportamiento de f cerca de  $z_0$ .



### Clasificación de Puntos Periódicos

El Diccionario de Sullivan

Dinámica de

Dinámica Holomorfa

El Diccionario de Sullivan Dependiendo del valor de  $\lambda$ , un punto periódico se clasifica en:

- Atractor:  $|\lambda| < 1$ .
  - Las órbitas cercanas convergen a  $z_0$ .
  - Ejemplo:  $f(z) = z^2$  tiene un punto fijo atractor en  $z_0 = 0$ .
- Superatractor:  $\lambda = 0$ .
  - Las órbitas convergen a  $z_0$  más rápidamente.
  - Ejemplo:  $f(z) = z^2$  tiene un punto fijo superatractor en  $z_0 = 0$ .
- **Neutro**:  $|\lambda| = 1$ .
  - Las órbitas cercanas no convergen ni divergen.
  - Ejemplo:  $f(z) = e^{i\theta}z$  tiene un punto fijo neutro en  $z_0 = 0$ .
- Repelente:  $|\lambda| > 1$ .
  - Las órbitas cercanas se alejan de  $z_0$ .
  - Ejemplo:  $f(z) = z^2$  tiene un punto fijo repelente en  $z_0 = 1$ .



## Conjuntos de Julia y Fatou

El Diccionario de Sullivan

Introducción

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

El Diccionario de Sullivan

#### **Definiciones**

Sea  $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$  una función holomorfa. Definimos:

- Conjunto de Fatou  $\mathcal{F}(f)$ :
  - Es el conjunto de puntos  $z \in \mathbb{C}$  donde la familia de iteradas  $\{f^n\}_{n \in \mathbb{N}}$  es normal.
  - Es el conjunto abierto donde el comportamiento de *f* es *ordenado* y *predecible*.
- Conjunto de Julia  $\mathcal{J}(f)$ :
  - Es el complemento del conjunto de Fatou:

$$J(f) = \mathbb{C} \setminus \mathcal{F}(f)$$
.

• Es el conjunto cerrado donde el comportamiento de *f* es *caótico* y *sensible a condiciones iniciales*.



#### Familia Normal de Funciones

El Diccionari de Sullivan

ntroducciór Dinámica de Grupos

Dinámica Holomorfa

El Diccionario de Sullivan

Una colección  $\mathscr{F}$  de funciones continuas se dice **familia normal** si toda sucesión de funciones en  $\mathscr{F}$  contiene una subsucesión que converge uniformemente en subconjuntos compactos de X a una función continua de X en Y. Es decir, para toda sucesión de funciones en  $\mathscr{F}$ , existe una subsucesión  $\{f_n(x)\}$  y una función continua  $f:X\to Y$  tal que,  $\forall K\subset X$  compacto:

$$\lim_{n\to\infty}\sup_{x\in K}d_Y(f_n(x),f(x))=0,$$

- Una familia normal es *compacta* en el sentido de que toda sucesión tiene una subsucesión convergente.
- La convergencia es uniforme en subconjuntos compactos, lo que garantiza un comportamiento controlado de las funciones.



## Propiedades de los Conjuntos de Julia y Fatou

El Diccionario de Sullivan

Introducción

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

El Diccionario de Sullivan

- $\mathcal{F}(f)$  es abierto, mientras que  $\mathcal{J}(f)$  es cerrado.
- $\mathcal{J}(f) \neq \emptyset$ , a menos que f sea lineal.
- $\mathcal{F}(f)$  y  $\mathcal{J}(f)$  son totalmente invariantes:

$$f^{-1}(\mathcal{F}(f)) = \mathcal{F}(f), f(\mathcal{F}(f)) = \mathcal{F}(f)$$

$$f^{-1}(\mathcal{J}(f)) = \mathcal{J}(f), f(\mathcal{J}(f)) = \mathcal{J}(f)$$



## Example of Julia Set

El Diccionario de Sullivan

Introducción

Grupos Kleinianos

Dinámica Holomorfa

El Diccionario de Sullivan

El conjunto de Julia J(f) para

$$f(z)=z^2+c,$$

$$c = -1.12 + 0.21 i$$

Más ejemplos



# No Wandering Domain Theorem (1985, Sullivan)

ntroducción

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

El Diccionario de Sullivan Sea  $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$  una función racional de grado  $d \geq 2$ . Entonces, toda componente conexa U del conjunto de Fatou  $\mathcal{F}(f)$  es **eventualmente periódica**, es decir, existen enteros  $n > m \geq 0$  tales que:

$$f^{\circ n}(U)=f^{\circ m}(U),$$

- Todas las componentes de Fatou eventualmente caen en un ciclo periódico bajo iteración.
- Si f es entera y no racional, no se cumple, por ejemplo,  $f(z) = z + 2\pi \sin(z)$ .

Para la función  $f(z)=z^2$ ,  $\mathcal{F}(f)$  consiste en dos componentes: el disco unitario  $\mathbb{D}$  y su exterior  $\hat{\mathbb{C}}\setminus\overline{\mathbb{D}}$ , ambas componentes son invariantes bajo f.



## Ejemplo: El conejo de Douady

El Diccionario de Sullivan

Introducción

Dinámica de Grupos

#### Dinámica Holomorfa





# Ejemplo: El Método de Newton para $g(z) = z^3 - 1$

El Diccionario de Sullivan

Introducción

Dinámica de Grupos

#### Dinámica Holomorfa

El Diccionario de Sullivan





# Ejemplo: Dominio Errante

El Diccionario de Sullivan

Introducción

Dinámica de Grupos Kleinianos

#### Dinámica Holomorfa





### Table of Contents

El Diccionario de Sullivan

Introducción

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

- Introducción
- 2 Dinámica de Grupos Kleinianos
  - 3 Dinámica Holomorfa
- 4 El Diccionario de Sullivan



#### Primera versión del diccionario

El Diccionario de Sullivan

Introducció

Grupos Kleinianos

Dinámica Holomorfa

El Diccionario

Annals of Mathematics, 122 (1985), 401-418

# Quasiconformal homeomorphisms and dynamics

I. Solution of the Fatou-Julia problem on wandering domains

By Dennis Sullivan



#### Primera versión del diccionario

El Diccionario de Sullivan

Introducción

Dinamica de Grupos Kleinianos

Dinámica Holomorfa

El Diccionario

We close with a sample of the dictionary between analytic iteration and discrete subgroups of PSL(2, C) which lies behind this series of papers.

| Complex analytic iteration         | Discrete subgroups<br>of PSL(2, C)                                      |
|------------------------------------|-------------------------------------------------------------------------|
| entire mapping                     | arbitrary Kleinian group                                                |
| Blaschke product                   | arbitrary Fuchsian group                                                |
| rational mapping, R                | finitely generated Kleinian group, Γ                                    |
| degree of mapping, d               | number of generators, n                                                 |
| (2d - 2) analytic parameters       | (3n - 3) analytic parameters                                            |
| (2d-2) critical points             | (?) ends of hyperbolic 3 manifolds                                      |
| Fatou-Julia limit set ([8], [11])  | Poincaré limit set (1880)                                               |
| stable regions                     | domain of discontinuity                                                 |
| periodic points of R               | fixed points of elements of $\Gamma$                                    |
| dense in limit set                 | dense in limit set                                                      |
| Riemann surface of R               | Riemann surface of $\Gamma$                                             |
| eventual periodicity               | Ahlfors finiteness theorem, $n < \infty$                                |
| theorem, $d < \infty$              |                                                                         |
| attracting region                  | cocompact stabilizer of a discontinuous<br>component                    |
| parabolic region                   | cofinite area stabilizer with cusp                                      |
| Siegel disk                        | (?) limit group by qc deformation in<br>arithmetically good "direction" |
| non-linearizable indifferent       | (?) limit group by qc deformation in a                                  |
| periodic point                     | "Liouville" direction                                                   |
| Hermann ring                       | (?) similar to Siegel disk analogy                                      |
| super attracting region            | ?                                                                       |
| invariant line fields on limit set | no invariant line fields on limit set                                   |
| (restricted examples known)        | $(n < \infty)$ [18]                                                     |



# Conjunto Límite y Conjunto de Julia

El Diccionario de Sullivan

Introducción

Dinámica de Grupos Kleinianos

Dinámica Holomorfa

El Diccionario de Sullivan



Conjuntos límite



Conjuntos de Julia



## Diccionario de Sullivan

Il Diccionario de Sullivan

Introducción

Dinámica de Grupos

Dinámica Holomorfa

| Grupos Kleinianos                              | Dinámica Holomorfa                                      |
|------------------------------------------------|---------------------------------------------------------|
| Conjunto límite (cerrado)                      | Conjunto de Julia (cer-<br>rado)                        |
| Región de discontinuidad                       | Conjunto de Fatou                                       |
| (abierto)                                      | (abierto)                                               |
| $\Lambda(G) \cup \Omega(G) = \hat{\mathbb{C}}$ | $\mathcal{J}(f) \cup \mathcal{F}(f) = \hat{\mathbb{C}}$ |
| $\Lambda(G) \neq \emptyset$ sin interior       | $\mathcal{J}(f)  eq \emptyset$ sin interior             |
| $\Lambda(G)$ tiene 0, 1, 2 puntos              | $\Omega(G)$ tiene 0, 1, 2 compo-                        |
| o una infinidad                                | nentes conexas o una in-                                |
|                                                | finidad                                                 |
| Ahlfors Finiteness Theo-                       | ?                                                       |
| rem (1965)                                     |                                                         |



## Diccionario de Sullivan

I Diccionario de Sullivan

Introducción

Dinámica de Grupos

Dinámica Holomorfa

| Grupos Kleinianos                              | Dinámica Holomorfa                                      |
|------------------------------------------------|---------------------------------------------------------|
| Conjunto límite (cerrado)                      | Conjunto de Julia (cer-<br>rado)                        |
| Región de discontinuidad                       | Conjunto de Fatou                                       |
| (abierto)                                      | (abierto)                                               |
| $\Lambda(G) \cup \Omega(G) = \hat{\mathbb{C}}$ | $\mathcal{J}(f) \cup \mathcal{F}(f) = \hat{\mathbb{C}}$ |
| $\Lambda(G) \neq \emptyset$ sin interior       | $\mathcal{J}(f)  eq \emptyset$ sin interior             |
| $\Lambda(G)$ tiene 0, 1, 2 puntos              | $\Omega(G)$ tiene 0, 1, 2 compo-                        |
| o una infinidad                                | nentes conexas o una in-                                |
|                                                | finidad                                                 |
| Ahlfors Finiteness Theorem (1965)              | No Wandering Domain<br>Theorem (1985)                   |