Linger Olmayan Penklem Sistemlerinin Çözüm Yöntemleri

Ders İçeriği

- Taylor Serisi
- Newton Raphson Yöntemi
- Örnekler

7. Hafta

Taylor Serisi

Matematikte, her mertebeden türevli bir f(x) fonksiyonunun (a – r,a + r) aralığındaki Taylor serisi aşağıdaki şekilde tanımlanmıştır:

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \dots$$

Genel ifadesi;

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

a = 0 için Taylor formülü basit bir şekil alır, bu özel seriye MacLaurin serisi denir.

e −1/x²¹ nin grafiği

Eğer seri belirtilen aralıktaki her x noktasında f(x)'e yakınsıyorsa f(x) analitik bir fonksiyon olarak adlandırılır.

Her sonsuz türevlenebilir fonksiyon analitik değildir.

7. Hafta

f(x) fonksiyonunun x_0 yaklaşık bir kökü h ise yaklaşımdan dolayı ortaya çıkan hatayı göstersin. Dolayısıyla kökün düzeltilmiş değerini ;

$$x_1 = x_0 + h$$

şeklinde ifade etmekte mahsur yoktur.

 x_1 düzeltilmiş değerinin f(x) fonksiyonunun kökü olduğu kabul edilirse ;

$$f(x_1) = 0$$
 veya $f(x_0 + h) = 0$ olmalıdır.

Bu kök değerini taylor serisine açarsak

$$f(x_0+h) = \ f(x_0) + \frac{h}{1!}f'(x_0) + \frac{h^2}{2!}f''(x_0) + \frac{h^3}{3!}f'''(x_0) + \frac{h^4}{4!}f''''(x_0) + \cdots$$

Genellikle 0 ile 1 arasında olan h değeri yeteri kadar küçük ise taylor seri açılımında ilk terimleri alıp diğer terimleri terk etmekle fazla bir hata yapılmış olmaz.

İfadeyi taylor serisi ile düzenlersek;

$$f(x_1) = f(x_0 + h) = f(x_0) + hf'(x_0)$$

 x_0 ' ın f(x)' in bir kökü olduğundan ifadeyi $f(x_0) + hf'(x_0)$ =0 yazabiliriz.

$$\mathbf{h} = \mathbf{x_1} - \mathbf{x_0} \cong \frac{\mathbf{f}(\mathbf{x_0})}{\mathbf{f}'(\mathbf{x_0})}$$
 buradan düzenleme ile yeni kök değeri ;

$$x_1 = x_0 + h = x_0 - \frac{f(x_0)}{f'(x_0)}$$
 olur.

Hesaplanan her \mathbf{h} hatasının mutlak değeri verilen bir $\mathbf{\epsilon}$ değerinden küçük değilse hesapladığımız yeni kök değeri $\mathbf{x_1}$ yaklaşık kök olarak kabul edilip, işlemler tekrarlanarak $\mathbf{x_2}$ gibi yeni bir kök hesaplanır.

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

•••

$$\mathbf{x_{n+1}} = \mathbf{x_n} - \frac{\mathbf{f(x_n)}}{\mathbf{f'(x_n)}}$$
 şeklinde işlemler tekrarlanır, her tekrarlanan işlemden sonra kabul edilebilir hata kontrolü yapılır.

$$|\mathbf{x}_{n+1} - \mathbf{x}_n| \leq \epsilon$$
 Eğer koşul sağlanıyorsa işlem sonlandırılır.

Newton Raphson Yöntemi

Bir başlangıç kök için f(x)' in bu noktadaki x_1 değeri alınarak ortaya çıkan h hata oranı bulunur.

 $|\mathbf{h}| > \varepsilon$ ise yeni teğetler alınarak köke yaklaşılır.

$$h = \frac{f(x_0)}{tg \; \theta} = -\frac{f(x_0)}{f'(x_0)}$$

Olduğu bilindiğinden gerçek köke yaklaşıldıkça hata oranı |h| küçülmektedir.

Bu durum iterasyon işlemi yakınsak ise gerçekleşir.

Hata oranı |h| giderek büyüyorsa iterasyon ıraksaktır denir.

İterasyon yakınsak olması için iterasyon yapılan bölgede aşağıdaki koşulun sağlanması gerekir.

$$\left|\frac{f(x).f''(x)}{[f'(x)]^2}\right| < 1$$

7. Hafta

Newton Raphson Yöntemi

Örnek:

 $f(x) = x^3 - 5$ fonksiyonunun bir kökünü $x_0 = 1$ civarında $\varepsilon = 10^{-5}$ hata oranı ile bulunuz.

Aksi belirtilmediği sürece $|\mathbf{x_{k+1}} - \mathbf{x_k}| \leq \epsilon$ kullanılacaktır.

$$f'(x) = 3x^2$$

$$x_k = x_{k-1} - \frac{(x_{k-1})^3 - 5}{3(x_{k-1})^2}$$

k=1 için iterasyon uygulanırsa
$$x_1=1-\frac{1^3-5}{3\cdot 1^2}=2,33333$$

iterasyon işlemine devam edilirse;
$$x_2 = 2,33333 - \frac{(2,33333)^3 - 5}{3,(2,33333)^2} = 1,861678$$

$$x_3 = 1,861678 - \frac{(1,861678)^3 - 5}{3(1.861678)^2} = 1,7220019$$

$$x_4 = 1,7100597 \quad \text{,} \quad x_5 = 1,709976 \quad \text{,} \quad x_6 = 1,709976$$

$$|\mathbf{x}_6 - \mathbf{x}_5| \leq \mathbf{10^{-5}}$$
 olduğundan iterasyon işlemi sonlandırılır.

$$x_5$$
 değerinin $\epsilon = 10^{-5}$ hata ile kökü olduğu kabul edilir.

 x_5 değerinin $\epsilon = 10^{-5}$ hata ile kökü olduğu kabul edilir.

Hafta

7.

Newton Raphson Yöntemi

Problemin matlab çözümü

7. Hafta

```
%newton raphson1 (özel Çözüm)
clear all;
%f(x)=k1*x^3+k2
k1=1;k2=-5;
x(1)=1;
                         % x'in baslangic
degeri
f_x=k1*x(1)^3+k2;
                         % fonksiyon
derivate_fx=3*x(1)^2; % türevi
epsilon=0.00005;
k=1;
   while abs(f_x) > = epsilon
      x(k+1)=x(k)-f_x/derivate_fx;
      k=k+1;
      f_x=k1*x(k)^3+k2;
      derivate_fx=3*x(k)^2;
   end
k=k-1;
disp(['iterasyon sayisi :' int2str(k)]);
disp(['Yaklasık kök degeri :' num2str(x(k))]);
```

Örnek: Bir A sayının istenilen duyarlılıkta karekökünün bulunması için Newton Raphson yöntemini kullanarak bir algoritma geliştiriniz.Buna göre 10' un karakökünü x_0 =1 başlangıç değeri , ε =0,005 mutlak hatasıyla bulunuz.

Newton Raphson Yöntemi

Örnek: Bir A sayının istenilen duyarlılıkta karekökünün bulunması için Newton Raphson yöntemini kullanarak bir algoritma geliştiriniz.Buna göre 10' un karakökünü x_0 =1 başlangıç değeri , ε =0,005 mutlak hatasıyla bulunuz.

A pibi bir sayının karetökünü bulma x=x pibi bir denklemin x pibi bir tökünü bulmaya eşdeper bir pioblemdir.

O halde f(x) = x²-x olup buradan
f(x) = 2x
yönteme pöre yaklaşık kök xo ise düzeltilmiş tök

 $x_1 = x_0 = \frac{1}{4(x_0)}$

A(x) ve f'(x) in itadeleri gerlerine konularak

$$X_1 = X_0 - \frac{X_0^2 - A}{2X_0} = \frac{1}{2} \left(X_0 + \frac{A}{X_0} \right)$$
 elde edilir.

iterasyon kin genelleme xn bilinen kök ise hesaplanan kök

$$X_{n+1} = \frac{1}{2} \left(x_n + \frac{A}{x_n} \right)$$
 olorak elde edilire

Her hesaplanan yeni kök eskisiyle karşılaştırılarak mutlak hatası E ile tarşılaştırılır. Bu hata E dan küçük olunca işlem durdurulur. Bunoi pöre 10 un karekökü

Bilinen	Hesaplanan $ x_{n+1} = \frac{1}{2} \left(x_n + \frac{10}{x_n} \right) $	Hota h=Xn+1-Xn	
1	5.5	4.5	48
5.5	3.66	-1.84	
3.66	3.181	-0.479	
3.181	3.1623	-0.0187	
3.1623	3.1622	-0.0001	

Boylece 10 un 0,005 mutlak hataile karekákú 3.1622 dir.

7. Hafta

dup almadipini arastiriniz. Varsa Newton-Raphson ile kåke yaklasınız.

$$f(-1) = -1+2+(-6)+3 = -2 < 0$$
 $f(0) = 3 > 0$ tök vor.

Xo=O alalim.

$$X_1 = X_0 - \frac{f(x_0)}{f'(x_0)} = 0 - \frac{f(0)}{f'(0)} = \frac{-3}{6} = -0.5$$

$$x_2 = -0.5 - \frac{f(-0.5)}{f'(-0.5)} = -0.578$$

$$x_3 = -0.578 - \frac{160.578}{1(-0.578)} = -0.578 - \frac{0.007}{4.69} = -0.5794$$

Orneks ex-3x = 0 dentlemine [0,1] aralipinda kölcű vaimi varsa Newton-Raphson kordini uypulayiniz.

$$A(0) = e^{0} - 0 = 1 - 0 = 1$$
 $A'(x) = e^{x} - 3$
 $A(1) = e^{-3} < 0$ $A''(x) = e^{x}$

$$X_0 = 0$$
 almarak $\rightarrow f''(0) = e^0 = 1 > 0$ $f''(1) = e > 0$
 $f(0) = 1 > 0$ $f(1) < 0$
The specific is a small of the state of the st

$$X_1 = X_0 - \frac{1}{1'(x_0)} = 0 - \frac{1}{2} = 0.5$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.5 - \frac{f(0.5)}{f'(0.5)} = 0.5 + \frac{0.1487}{1.3513} = 0.61 \text{ W}$$

Newton Raphson Yöntemi

Örnek:

 $X^3+6x^2+13x-20$ bir kökünü $x_0=2$ alarak N-R ile araştırınız (iter.say=3)

7. Hafta

Sayisal Analiz

7.

Hafta

Raphson ile diastinniz.

$$f(x) = x^3 + 6x^2 + 13x - 20$$

$$f(2) = 8 + 24 + 26 - 20 = 38 > 0$$
Heir $f'(x) = 3x^2 + 12x + 13 \Rightarrow f'(2) = 3.4 + 24 + 13 = 49$

$$f''(x) = 6x + 12 \Rightarrow f''(2) = 12 + 12 = 24 > 0$$

$$f''(x) = 6x + 12 \implies f''(2) = 12 + 12 = 24$$

 $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2 - \frac{38}{49} = 1,224$

$$X_2 = X_1 = \frac{f(X_1)}{f'(X_1)} = 1,224 - \frac{f(1,224)}{f'(1,224)} = 1,224 - \frac{6,734}{32,182} = 1,014$$

$$f(1,224) = (1,224)^3 + 6(1.224)^2 + 13(1,224) - 20 = 6,734^2$$

$$f'(1,224) = 3(1,224)^2 + 12(1,224) + 13 = 32,182$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.04 - \frac{f(1.04)}{f'(4.04)} = 1.04 - \frac{1.134}{28.72} = 1.0005 \approx 1$$

15. Sayfa
$$f(1.04) = (1.04)^{3} + 6(1.04)^{2} + 1$$
$$f'(1.04) = 3(1.04) + 12(1.04)$$

$$f(1,04) = (1,04)^{3} + 6(1,04)^{2} + 13(1,04) - 20 = 1,134$$

$$f'(1,04) = 3(1,04) + 12(1,04) + 13 = 28,72$$

Galisma Sorulari

- 1) x3-2x-5=0 denkleminin X=2 avarındaki kökünü N-R yöntemi ile bulunuz.
- 2) f(x)= x3-0,6 x2-13,2 x-20.8 fonks. bir kókünü N-R eðre 0,01 den tüçük hata ile bulunuz.
- 3) x3-3x-4=0 denkleminin [2,1, 2,2] aralipindaki bir kökünü N-R yöntemi lle bulunuz. (iten sayısı=2)
- 4) $f(x) = x^6 + 6x^4 9x + 1$ fork. E0,1] aralifinda bir extramuma somip olduğu biliniyor. Bunoktanın koordinatlarını E = 0,01 veya daha az hata ile bulunuz.
- 5) x3-5x2-17x +20=0 dentlemini N-R. yöntemi'ile kökünü bul. (iter. sayısı=3)

Haftalik Ödev

Newton Raphson Yöntemi Akış Diyagramı

7. Hafta

Çözüm:

Newton Raphson Yöntemi

Örnek : $f(x) = x^2 - 7x + 10$ fonksiyonunun bir kökünü $x_0 = 4$ civarında $\epsilon = 0,03$ hata oranı ile bulan programı matlab ortamında kodlayınız.

```
clear all;
f(x)=k1*x^2+k2*x+k3
k1=1;k2=-7;k3=10;
% x'in başlangıç değeri değeri
x(1)=4;
f_x=k1*x(1)^2+k2*x(1)+k3; % fonksiyon
derivate_fx=2*k1*x(1)+k2; % türevi
                                                 >> newtonraphson
epsilon=0.03;
                                                x(k) değeri:5
k=1;
                                                 >>
while abs(f_x)>=epsilon
  x(k+1)=x(k)-f_x/derivate_fx;
  k=k+1;
  f_x=k1*x(k)^2+k2*x(k)+k3;
  derivate_fx=2*k1*x(k)+k2;
end
k=k-1;
disp(['x(k) değeri:' int2str(x(k))]);
```

7. Hafta

Kaynaklar

Sayısal Analiz S.Akpınar

f(X1) f(X2) f(x)

Sonraki Hafta:

Eğri uydurma, aradeğer ve dış değer bulma yöntemleri...