Quantum CS with Graph Rewriting and CAS

Aleks Kissinger

Oxford University Computing Laboratory alexander.kissinger@comlab.ox.ac.uk

July 6, 2009

▶ The standard opening line: "Quantum mechanics is hard."

- ▶ The standard opening line: "Quantum mechanics is hard."
- ▶ But...graphs make it easier

- ▶ The standard opening line: "Quantum mechanics is hard."
- ▶ But...graphs make it easier
- Graphical representation for quantum systems, and a graph rewrite system that gives a rich description of their theory

- ▶ The standard opening line: "Quantum mechanics is hard."
- But...graphs make it easier
- ► Graphical representation for quantum systems, and a graph rewrite system that gives a rich description of their theory
- Expanding that theory usually takes lots of hard matrix work. Ideally we hand most of that off to a CAS

- The standard opening line: "Quantum mechanics is hard."
- ▶ But...graphs make it easier
- Graphical representation for quantum systems, and a graph rewrite system that gives a rich description of their theory
- Expanding that theory usually takes lots of hard matrix work. Ideally we hand most of that off to a CAS
- Quantomatic bridges the gap between graph rewrite theories and CAS work

▶ Pure state quantum mechanics has:

- Pure state quantum mechanics has:
 - ▶ **States**: Elements of a Hilbert space, $v \in \mathcal{H}$
 - In finite dimensions, just think of these as plain old vector spaces with a dot product.

- Pure state quantum mechanics has:
 - ▶ **States**: Elements of a Hilbert space, $v \in \mathcal{H}$
 - In finite dimensions, just think of these as plain old vector spaces with a dot product.
 - ▶ **State evolutions**: Unitary maps $(U^{\dagger}U = UU^{\dagger} = 1)$

- Pure state quantum mechanics has:
 - ▶ **States**: Elements of a Hilbert space, $v \in \mathcal{H}$
 - In finite dimensions, just think of these as plain old vector spaces with a dot product.
 - ▶ **State evolutions**: Unitary maps $(U^{\dagger}U = UU^{\dagger} = 1)$
 - ▶ **Observables**: Self-adjoint $(O = O^{\dagger})$ linear maps

- Pure state quantum mechanics has:
 - ▶ **States**: Elements of a Hilbert space, $v \in \mathcal{H}$
 - In finite dimensions, just think of these as plain old vector spaces with a dot product.
 - ▶ **State evolutions**: Unitary maps $(U^{\dagger}U = UU^{\dagger} = 1)$
 - ▶ **Observables**: Self-adjoint $(O = O^{\dagger})$ linear maps
 - Measurement: Sets of projections, summing to the identity

- Pure state quantum mechanics has:
 - ▶ **States**: Elements of a Hilbert space, $v \in \mathcal{H}$
 - In finite dimensions, just think of these as plain old vector spaces with a dot product.
 - ▶ **State evolutions**: Unitary maps $(U^{\dagger}U = UU^{\dagger} = 1)$
 - ▶ **Observables**: Self-adjoint $(O = O^{\dagger})$ linear maps
 - Measurement: Sets of projections, summing to the identity
 - ▶ **Composite states**: tensor product $v_1 \otimes v_2$

- Pure state quantum mechanics has:
 - ▶ **States**: Elements of a Hilbert space, $v \in \mathcal{H}$
 - In finite dimensions, just think of these as plain old vector spaces with a dot product.
 - ▶ **State evolutions**: Unitary maps $(U^{\dagger}U = UU^{\dagger} = 1)$
 - ▶ **Observables**: Self-adjoint $(O = O^{\dagger})$ linear maps
 - Measurement: Sets of projections, summing to the identity
 - ▶ Composite states: tensor product $v_1 \otimes v_2$
- Mixed state quantum mechanics has generalisations of the above. We won't talk about that.

▶ For our purposes, take ⊗ to be the Kronecker product:

$$\left(\begin{array}{c} a \\ b \end{array}\right) \otimes \left(\begin{array}{c} c \\ d \end{array}\right) = \left(\begin{array}{c} ac \\ ad \\ bc \\ bd \end{array}\right)$$

▶ For our purposes, take ⊗ to be the Kronecker product:

$$\left(\begin{array}{c} a \\ b \end{array}\right) \otimes \left(\begin{array}{c} c \\ d \end{array}\right) = \left(\begin{array}{c} ac \\ ad \\ bc \\ bd \end{array}\right)$$

- ▶ For Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 , we can construct $\mathcal{H}_1 \otimes \mathcal{H}_2 = \operatorname{span} \{v \otimes u : v \in \mathcal{H}_1, u \in \mathcal{H}_2\}.$
 - $\qquad \mathsf{dim}\,(\mathcal{H}_1\otimes\mathcal{H}_2) = \mathsf{dim}\,\mathcal{H}_1\cdot\mathsf{dim}\,\mathcal{H}_2$

▶ Some states $w \in \mathcal{H}_1 \otimes \mathcal{H}_2$ can be written as $v \otimes u$ for $v \in \mathcal{H}_1, u \in \mathcal{H}_2$. These states are called *separable*.

- ▶ Some states $w \in \mathcal{H}_1 \otimes \mathcal{H}_2$ can be written as $v \otimes u$ for $v \in \mathcal{H}_1, u \in \mathcal{H}_2$. These states are called *separable*.
- ▶ ...but most can't. These are called *entangled*. They can be expressed as some sum $\sum v_i \otimes u_i$ and are very important for doing lots of "quantum-like" stuff like teleportation.

- Some states $w \in \mathcal{H}_1 \otimes \mathcal{H}_2$ can be written as $v \otimes u$ for $v \in \mathcal{H}_1, u \in \mathcal{H}_2$. These states are called *separable*.
- ▶ ...but most can't. These are called *entangled*. They can be expressed as some sum $\sum v_i \otimes u_i$ and are very important for doing lots of "quantum-like" stuff like teleportation.
- ▶ The Hilbert space $Q := \mathbb{C}^2$ is called the space of *qubits*.

- Some states $w \in \mathcal{H}_1 \otimes \mathcal{H}_2$ can be written as $v \otimes u$ for $v \in \mathcal{H}_1, u \in \mathcal{H}_2$. These states are called *separable*.
- ▶ ...but most can't. These are called *entangled*. They can be expressed as some sum $\sum v_i \otimes u_i$ and are very important for doing lots of "quantum-like" stuff like teleportation.
- ▶ The Hilbert space $Q := \mathbb{C}^2$ is called the space of *qubits*.
- ▶ We write the standard basis of $\mathcal Q$ in "ket" notation, as $|0\rangle, |1\rangle$. Also, $|ij\rangle$ is shorthand for $|i\rangle \otimes |j\rangle$.

► We can think of unitary maps as the quantum analogy to reversible logic gates.

- ▶ We can think of unitary maps as the quantum analogy to reversible logic gates.
- As such, we can dig right in into making some circuits.

- We can think of unitary maps as the quantum analogy to reversible logic gates.
- As such, we can dig right in into making some circuits.
- ► First, some gates that are pretty "classical"

- We can think of unitary maps as the quantum analogy to reversible logic gates.
- As such, we can dig right in into making some circuits.
- ► First, some gates that are pretty "classical"
 - ▶ NOT gates, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

- ▶ We can think of unitary maps as the quantum analogy to reversible logic gates.
- As such, we can dig right in into making some circuits.
- First, some gates that are pretty "classical"

NOT gates,
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

▶ NOT gates,
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

▶ Controlled-NOT gates, $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

- ▶ We can think of unitary maps as the quantum analogy to reversible logic gates.
- As such, we can dig right in into making some circuits.
- First, some gates that are pretty "classical"

NOT gates,
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

▶ NOT gates,
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

▶ Controlled-NOT gates, $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

► And also some gates that are pretty "quantum"

- We can think of unitary maps as the quantum analogy to reversible logic gates.
- As such, we can dig right in into making some circuits.
- First, some gates that are pretty "classical"

▶ NOT gates,
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Controlled-NOT gates,
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

- And also some gates that are pretty "quantum"
 - ► Hadmard gates, $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

- We can think of unitary maps as the quantum analogy to reversible logic gates.
- As such, we can dig right in into making some circuits.
- First, some gates that are pretty "classical"
 - ▶ NOT gates, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
 - $\qquad \qquad \blacktriangleright \ \, \mathsf{Controlled}\text{-NOT gates,} \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right)$
- And also some gates that are pretty "quantum"
 - ► Hadmard gates, $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
 - ▶ Phase gates, $Z_{\alpha} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$

► Tensor product is represented by putting components side-by-side. Matrix multiplication is graph composition. Using these, we can build...

- ► Tensor product is represented by putting components side-by-side. Matrix multiplication is graph composition. Using these, we can build...
 - ► A qubit swap (CNOT ∘ CNOT' ∘ CNOT):

- ► Tensor product is represented by putting components side-by-side. Matrix multiplication is graph composition. Using these, we can build...
 - ► A qubit swap (*CNOT* ∘ *CNOT* ′ ∘ *CNOT*):
 - An entangled state preparer ($CNOT \circ (H \otimes 1)$):

- ► Tensor product is represented by putting components side-by-side. Matrix multiplication is graph composition. Using these, we can build...
 - ► A qubit swap (CNOT ∘ CNOT' ∘ CNOT):
 - An entangled state preparer ($CNOT \circ (H \otimes 1)$):
 - ► A NOT gate $(H \circ Z_{\pi} \circ H)$:

- ► Tensor product is represented by putting components side-by-side. Matrix multiplication is graph composition. Using these, we can build...
 - ► A qubit swap (CNOT ∘ CNOT' ∘ CNOT):
 - An entangled state preparer $(CNOT \circ (H \otimes 1))$:
 - ► A NOT gate $(H \circ Z_{\pi} \circ H)$: π
 - ...and lots of other stuff

More Primitive

► So, what's a CNOT, really?

More Primitive

► So, what's a CNOT, really?

More Primitive

► So, what's a CNOT, really?

More Primitive

► So, what's a CNOT, really?

▶ A chosen basis is like some classical data embedded in the system.

- ➤ A chosen basis is like some classical data embedded in the system.
- ▶ What can we do with classical data?
 - ► Copy and delete!

$$\delta_{Z}:\mathcal{Q}\rightarrow\mathcal{Q}\otimes\mathcal{Q}::|i\rangle\mapsto|ii\rangle \qquad \epsilon_{Z}:\mathcal{Q}\rightarrow\mathbb{C}::|i\rangle\mapsto1$$

- A chosen basis is like some classical data embedded in the system.
- What can we do with classical data?
 - Copy and delete!

$$\delta_{Z}: \mathcal{Q} \to \mathcal{Q} \otimes \mathcal{Q} :: |i\rangle \mapsto |ii\rangle \qquad \epsilon_{Z}: \mathcal{Q} \to \mathbb{C} :: |i\rangle \mapsto 1$$

► Graphically:

$$\delta_Z :=$$
 $\epsilon_Z :=$

▶ δ_Z has a (co)unit, ϵ_Z :

▶ δ_Z has a (co)unit, ϵ_Z :

 $(-)^{\dagger}$ flips everything upside-down:

$$\delta_Z^\dagger := egin{pmatrix} \epsilon_Z^\dagger := oldsymbol{ar{Q}} \end{array}$$

$$\epsilon_Z^{\dagger} := \mathbf{Q}$$

 \triangleright δ_Z has a (co)unit, ϵ_Z :

 $(-)^{\dagger}$ flips everything upside-down:

$$\delta_{Z}^{\dagger} := igcap \epsilon_{Z}^{\dagger} := igcap$$

$$\epsilon_Z^{\dagger} := \mathbf{Q}$$

 \triangleright Phase gate Z_{α} commutes with everything

Spiders

▶ Graphs of a single colour are extremely well behaved (associative, commutative, co-commutative, frobenius, etc...)

Spiders

- Graphs of a single colour are extremely well behaved (associative, commutative, co-commutative, frobenius, etc...)
- ▶ In fact, they are uniquely determined by the number of inputs and outputs. As a result, we write connected graphs thus:

Another colour

▶ We can do the same thing for another basis:

$$|+
angle := rac{1}{\sqrt{2}} \left(|0
angle + |1
angle
ight) \qquad \qquad |-
angle := rac{1}{\sqrt{2}} \left(|0
angle - |1
angle
ight)$$

Another colour

We can do the same thing for another basis:

$$|+\rangle := \tfrac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \qquad \quad |-\rangle := \tfrac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right)$$

▶ But, actually, there's a shortcut. Realising the *H* just interchanges the two bases:

▶ We recover the bases, up to a scalar.

▶ We recover the bases, up to a scalar.

► These get copied and deleted, *classical points*.

▶ We recover the bases, up to a scalar.

- ▶ These get copied and deleted, *classical points*.
- Green δ 's copy red classical points and vice-versa.

▶ We recover the bases, up to a scalar.

$$\bigcirc 0 = |0\rangle + e^{0}|1\rangle \approx |+\rangle \bigcirc \pi = |0\rangle + e^{i\pi}|1\rangle \approx |-\rangle$$

$$\bigcirc 0 \approx |0\rangle \bigcirc \pi \approx |1\rangle$$

- ▶ These get copied and deleted, *classical points*.
- Green δ 's copy red classical points and vice-versa.
- ▶ Red (δ_X, ϵ_X) and green (δ_Z, ϵ_Z) are complementary classical structures.

Rewrite Theory

Rewrite Theory

Rewrite Theory

Doin' the Swap

▶ Rewrite theory is by design a course-graining

- Rewrite theory is by design a course-graining
- $\blacktriangleright \ \, \mathsf{Hybrid} \,\, \mathsf{approach}, \,\, \mathsf{graphical} \, \leftrightarrow \, \mathsf{concrete}$

- ▶ Rewrite theory is by design a course-graining
- ► Hybrid approach, graphical ↔ concrete
- ▶ For this, Quantomatic interfaces with Mathematica

- Rewrite theory is by design a course-graining
- ► Hybrid approach, graphical ↔ concrete
- For this, Quantomatic interfaces with Mathematica
- Child process, utilises "everything is a term" design principle of Mathematica

<< Quanto`

QuantoInit[

"/Users/aleks/svn/isaplanner/quantomatic/gui/dist/ QuantoGui.jar"]

Quanto comes up as child process. I then use the GUI to load a graph that gets named "Gb".

In[17]:= GetGraph["Gb"]

 $\label{eq:output} \textsc{Out}[20]= \textsc{SparseArray}[<4>, \{2, 2\}]$

In[21]:= % // MatrixForm

Out[21]//MatrixForm=

$$\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$

Out[14]= { }

 $\text{Out[8]= } \{\, \{\, \text{Quanto`Private`}\, k \rightarrow 2\, \}\, \}$

Rewriting \leftrightarrow CAS

Normalising graphs first to make computations faster (or possible!)

Rewriting ↔ CAS

- Normalising graphs first to make computations faster (or possible!)
- ▶ Interplay of rewrite rules and semantics with CheckRule[], etc.

Rewriting ↔ CAS

- Normalising graphs first to make computations faster (or possible!)
- ▶ Interplay of rewrite rules and semantics with CheckRule[], etc.
- Numerics like entanglement measures, plots across free parameters

Entanglement Measures

Out[24]= 0

Future Work

- Expand features, including a rule editor
- Rule feed-back from CAS into Quantomatic
- ► Support other CAS'es, ideally use open-source alternatives
- Proper pattern graph matching, rather than "hacked" pattern graph matching
- Expand theory and solution techniques

Thanks!

- ► This is joint work with
 - ► Bob Coecke http://www.comlab.ox.ac.uk/people/bob.coecke/
 - ► Ross Duncan
 http://www.comlab.ox.ac.uk/people/ross.duncan/
 - ► Lucas Dixon
 http://homepages.inf.ed.ac.uk/ldixon/
- Check it out at
 - ▶ http://dream.inf.ed.ac.uk/projects/quantomatic/