Dokumentácia funkcií

identify_variables()

Popis:

Funkcia **identifikuje typ premenných** v dátovom rámci ako *diskrétne* alebo *spojité*, na základe ich dátového typu a počtu unikátnych hodnôt.

Vstupné parametre Názov Typ Popis data data.frame Vstupný dátový rámec, ktorý obsahuje premenné na klasifikáciu

Logika klasifikácie

Premenná je klasifikovaná ako:

- **Diskrétna** (označená "Diskretna"), ak:
 - o je typu factor, character, alebo
 - o je číselná (numeric) a má < 10 unikátnych hodnôt
- Spojitá (označená "Spojita"), ak:
 - o je číselná (numeric) a má ≥ 10 unikátnych hodnôt

Výstup

Funkcia vracia list s dvoma komponentmi:

Komponent	Тур	Popis
Diskretne	character[]	Mená premenných identifikovaných ako diskrétne premenné
Spojite	character[]	Mená premenných identifikovaných ako spojité premenné

model_mixture_density()

Popis:

Táto funkcia modeluje združenú hustotu pravdepodobnosti pre dvojicu diskrétnej a spojitej náhodnej premennej. Výsledná hustota sa konštruuje ako vážený súčet podmienených hustôt spojitej premennej v jednotlivých kategóriách diskrétnej premennej.

Vstupné argumenty:

Argument	Тур	Popis
data	data.frame	Tabuľka s dátami
discrete_vars	character	Názov stĺpca s diskrétnou premennou
continuous_vars	character	Názov stĺpca so spojitou premennou
model_type	character	Typ modelu hustoty: "kernel" (jadrové vyhladzovanie), "normal" (normálne rozdelenie), alebo "t"(t-rozdelenie)
bw	numeric alebo NULL	Rozsah vyhladzovania pre KDE (ak je N⊔LL, použije sa bw.nrd0)

Použité modely:

Kernel Density Estimation (KDE):

Jadrovo vyhladený odhad hustoty pre každú kategóriu, vážený podľa početnosti kategórie.

Normálne rozdelenie:

Odhad hustoty pomocou normálnej distribúcie s empirickým priemerom a štandardnou odchýlkou.

t-rozdelenie:

Robustnejší odhad hustoty v prípade malého počtu pozorovaní.

Výstup:

Funkcia vracia list s nasledujúcimi položkami:

- density_data: data.frame s odhadnutou združenou hustotou (stĺpce: Continuous_Var, Density, Discrete_Var)
- category_probs: pravdepodobnosti kategórií diskrétnej premennej
- summary_info: zoznam s metainformáciami o modelovaní (typ modelu, bandwidth, integrál hustoty, kategórie)
- discrete_var, continuous_var: názvy použitých premenných
- category colors: farebné priradenia kategóriám pre vizualizáciu
- data: prefiltrovaná dátová tabuľka
- vector_type: "mix" označuje zmiešaný typ rozdelenia

Poznámky:

- Funkcia automaticky ignoruje záznamy s NA.
- Kategórie s príliš málo dátami (< 2 pozorovania alebo nulová smerodajná odchýlka) sú ošetrené zvlášť nulovou hustotou.
- Pri type "kernel" sú použité rôzne rozsahy vyhladzovania pre jednotlivé kategórie (ak nie je bw zadané užívateľom).
- Vizualizácia prebieha v renderovacej funkcii render_mixture_density(), ktorá zobrazuje aj 2D aj 3D vizualizáciu podľa voľby užívateľa

model continuous density()

Popis:

Funkcia odhaduje združenú hustotu pravdepodobnosti pre dve spojité náhodné premenné pomocou neparametrického alebo parametrického modelu.

Vstupné argumenty:

Argument	Тур	Popis
data	data.frame	Dátová tabuľka obsahujúca aspoň dve spojité premenné
continuous_vars	character[2]	Mená dvoch spojitých premenných
model_type	character	Typ hustotného modelu: "kerne1" (neparametrický), "norma1", alebo "t"

Použité modely:

Kernel Density Estimation (KDE)

Používa funkciu MASS::kde2d() na neparametrický odhad hustoty v dvojrozmernom priestore.

Normálne rozdelenie

Hustota odhadnutá pomocou bivariantného normálneho rozdelenia založeného na priemeroch, smerodajných odchýlkach a Pearsonovej korelácii medzi premennými.

t-rozdelenie

Robustný odhad hustoty s využitím bivariantného t-rozdelenia s počtom stupňov voľnosti df = n - 1.

Výstup:

Funkcia vracia 1ist s nasledovnými položkami:

- x_vals, y_vals: Vektory hodnôt (rozsahy osi X a Y)
- z_matrix: Matica hodnôt združenej hustoty (rozmer 100×100)
- model_type: Použitý typ modelu ("kernel", "normal" alebo "t")
- continuous_vars: Mená použitých spojitých premenných
- params: Parametre modelu (napr. stredné hodnoty, smerodajné odchýlky, korelácia, df)
- summary_info: Tibble s prehľadom základných štatistík
- vector_type: "continuous" označuje, že ide o model dvoch spojitých premenných

Poznámky:

- Pri KDE sa používa 100×100 bodov na mriežke.
- Ak sa použije "norma1" alebo "t", predpokladá sa, že premenné sú numerické a neobsahujú len konštanty.
- t-rozdelenie je vhodnejšie pri malom počte pozorovaní alebo pri prítomnosti odľahlých hodnôt.
- Vizualizácia prebieha v renderovacej funkcii render_continuous_density(), ktorá zobrazuje aj 2D aj 3D vizualizáciu podľa voľby užívateľa

model_continuous_density_copula()

Popis:

Funkcia modeluje združenú hustotu pravdepodobnosti pre dvojicu spojitých premenných pomocou **rozkladu na marginálne hustoty a kopulovú funkciu**. Podporuje neparametrické, parametrické a hybridné prístupy pre marginálne rozdelenia a rôzne typy kopúl.

Vstupné argumenty:

Argument	Тур	Popis
data	data.frame	Dátová tabuľka so spojitými premennými
continuous_vars	character[2]	Mená dvoch spojitých premenných
model_type	character	Typ modelu: "nonparametric", "parametric" alebo "hybrid"
copula_type	character	<pre>Typ kopuly: "empirical (beta)", "Clayton", "Gumbel", "Frank", "Joe", "t"</pre>
marginal_densities	character[2]	Typy marginálnych rozdelení: "normal", "t", "log_normal", "KDE" (povinné pri "parametric" alebo "hybrid" modeloch)

Modelovacie režimy:

- nonparametric
 - o Marginálne hustoty aj CDF sa odhadujú pomocou KDE.
 - Používa sa empirická beta kopula (empCopula).
 - o Hustota sa počíta ako:

$$f_{X,Y}(x,y) = c(u_1, u_2) \cdot f_X(x) \cdot f_Y(y)$$

kde
$$u_i = F_i(x_i)$$
 a $c(u_1, u_2)$ je hustota kopuly.

- parametric
 - o Marginálne rozdelenia sú zadané (napr. normálne, t, log-normálne).
 - Kopula sa odhaduje pomocou maximum likelihood (fitCopula()).
- hybrid
 - o Marginálne rozdelenia môžu byť rôzne pre každú premennú (napr. normal + KDE).
 - o Kopula môže byť empirická alebo parametrická.

Výstup:

Funkcia vracia 1ist obsahujúci:

- x_vals, y_vals: Vektory hodnôt (sieť pre os X a Y)
- z matrix: Matica hodnôt združenej hustoty (100×100)
- copula_type: Použitá kopula
- model_type: Použitý režim modelovania
- marginal_densities: Použité marginálne modely
- copula_model_fitted: Fitted kopula objekt (copula)
- rho_copula, df_copula: Odhadnuté parametre kopuly (ak sú dostupné)
- bw_x, bw_y: Použité šírky pásma pre KDE (ak sa použili)
- continuous_vars: Mená modelovaných premenných
- vector_type: "continuous_copula"

Poznámky:

- Funkcia počíta hustotu ako súčin kopuly a marginálnych hustôt.
- Empirická kopula "empirical (beta)" vyžaduje neparametrické alebo hybridné modely.
- Ak sa používa "parametric" alebo "hybrid" režim, je povinné špecifikovať marginal_densities.
- Funkcia využíva balíky ako copula, stats, tibble a MASS.
- Vizualizácia prebieha v renderovacej funkcii render_continuous_density_copula(), ktorá zobrazuje aj 2D aj 3D vizualizáciu podľa voľby užívateľa

model_joint_pmf()

Popis:

Funkcia modeluje **pravdepodobnostnú funkciu (PMF)** pre dvojicu diskrétnych premenných. Výstupom je tabuľka všetkých kombinácií hodnôt s ich pravdepodobnosťami, spolu s prehľadnou sumarizačnou tabuľkou v gt formáte.

Vstupné argumenty:

Argument	Тур	Popis
data	data.frame	Dátová tabuľka s diskrétnymi premennými
discrete_vars	character[2]	Mená dvoch diskrétnych premenných

Výstup:

Funkcia vracia 1ist obsahujúci:

- tab: Tabuľka obsahujúca všetky kombinácie hodnôt x x Y, ich absolútny výskyt a vypočítanú pravdepodobnosť Probability
- x_labels, y_labels: Názvy (úrovne) premennej x a y
- discrete vars: Názvy zadaných diskrétnych premenných
- summary: Prehľadná gt sumarizačná tabuľka obsahujúca:
 - Typ modelu (discrete)
 - o Názvy premenných x, y
 - o Počet úrovní každej premennej
 - Počet stavov v kombinácii x x y
 - Zoznam pravdepodobností v markdown bloku
 - Celkový súčet pravdepodobností (mal by byť ~1)
- vector_type: "discrete"

Poznámky:

- Funkcia očakáva, že obe premenné sú diskrétne (faktory alebo znaky).
- Pravdepodobnosti sú vypočítané ako pomer frekvencie danej kombinácie ku všetkým záznamom.
- Premenné sú automaticky skonvertované na faktory, aby sa zabezpečilo správne zoradenie a výpis.
- Vizualizácia prebieha v renderovacej funkcii render_joint_pmf(), ktorá zobrazuje aj 2D aj 3D vizualizáciu podľa voľby užívateľa

model_conditional_mean()

Popis:

Funkcia modeluje **podmienenú strednú hodnotu E[Y|X]** pre spojitú odozvu v vzhľadom na prediktor x pomocou zvolenej regresnej metódy. Používa sa na analýzu vzťahu medzi dvoma spojitými premennými.

Parametre:

Názov	Тур	Popis
data	data.frame	Vstupný dataset obsahujúci odozvu a prediktor
selected_variables	character[2]	Mená stĺpcov – prvý je odozva (Y), druhý prediktor (X)
mean_method	character	Metóda modelovania: "linear", "poly", "loess", "gam",

Názov	Тур	Popis
		"spline", "exp"
poly_mean_degree	integer (voliteľné)	Stupeň polynómu, ak je metóda "poly"
specific_x	numeric (voliteľné)	Hodnota X pre výpočet špecifickej E[Y

Podporované metódy (mean_method):

- "linear" Lineárna regresia
- "poly" Polynomiálna regresia (vyžaduje poly_mean_degree)
- "exp" Exponenciálna funkcia pomocou n1s()
- "spline" B-spline bázy s df = 5
- "loess" Lokálne vyhladzovanie (LOESS)
- "gam" Generalized Additive Model (spline smoothing)

Výstup:

Funkcia vracia 1ist s týmito prvkami:

Názov	Popis	
conditional_mean	Dátový rámec s predikciami E[Y	
specific_x	Konkrétna hodnota X, pre ktorú sa počítala E[Y	
specific_mean	Hodnota podmienenej strednej hodnoty pre specific_x	
r_squared	Koeficient determinácie R²	
summary	gt tabuľka sumarizujúca metódu, bázu, hyperparametre a koeficienty	

Poznámky:

- Parametre modelu (napr. β koeficienty) sú súčasťou výstupnej tabuľky pre metódy "linear", "poly", "spline" a "exp".
- specific_x je voliteľný, predvolene sa nastaví na medián prediktora.
- Funkcia nezahŕňa vizualizáciu výstupné objekty sú vizualizované v renderovacej funkcii combine_conditional_models().

model conditional quantiles()

Popis:

Funkcia modeluje **podmienené kvantilové funkcie** $\varrho_{\tau}(Y|X)$ pre spojitú odozvu y vzhľadom na prediktor x. Používa kvantilovú regresiu (quantreg::rq) pre zvolené metódy a kvantily.

Parametre:

Názov	Тур	Popis
data	data.frame	Vstupný dataset obsahujúci premenné y a x
selected_variables	character[2]	Mená stĺpcov – prvý je odozva (Y), druhý prediktor (X)
quantile_method	character	Metóda regresie: "linear", "poly", "spline"
poly_quant_degree	integer (voliteľné)	Stupeň polynómu pre "poly" metódu
quantiles	numeric vector	Kvantily (napr. c(0.25, 0.5, 0.75))
specific_x	numeric (voliteľné)	Hodnota X pre výpočet konkrétneho kvantilu (τ)

Podporované metódy (quantile_method):

- "1inear" Lineárna kvantilová regresia
- "poly" Polynomiálna kvantilová regresia (vyžaduje poly_quant_degree)
- "spline" Kvantilová regresia s B-spline bázou (s df = 4)

Výstup:

Funkcia vracia list s týmito prvkami:

Názov	Popis	
conditional_quantiles Dátový rámec s predikovanými kvantilmi pre každý t na mriežke X		
specific_x	Hodnota X, pre ktorú sa vypočítali hodnoty kvantilov	
specific_quantiles	Mapa kvantilov $\tau \to \text{hodnota}$ kvantilu $Q_{\underline{}}\tau(Y)$	
summaries	Zoznam gt tabuliek s parametrami a metrikami pre každý τ	

Zahrnuté výstupné metriky pre každý kvantilový model:

- Kvantil τ (napr. 0.5)
- Použitá metóda a báza (lineárna, spline, poly)
- Parametre regresie β (odhad ± chyba, ak dostupná)
- Hodnoty: Null deviance, Residual deviance, AIC

Poznámky:

- Ak nie je zadaný specific_x, hodnoty kvantilov sa vypočítajú pre medián prediktora.
- Funkcia nezahŕňa vizualizáciu výstupné objekty sú vizualizované v renderovacej funkcii combine_conditional_models().

model_discrete_predictor()

Popis:

Funkcia modeluje **podmienenú strednú hodnotu** E[Y|X=x), kde prediktor X je **diskrétny** (kategorický). Na základe typu modelu odhadne priemerné hodnoty odozvy pre jednotlivé kategórie.

Názov	Тур	Popis
data	data.frame	Dataset obsahujúci premenné y (response) a x (predictor)
selected_variables	character[2]	Vektor mien stĺpcov: prvý pre odozvu (Y), druhý pre prediktor (X)
discrete_model_type	character	Typ modelu: "1m" (lineárny) alebo "g1m_1og" (GLM s log-linkom)

Podporované modely (discrete_model_type):

- "1m" klasická lineárna regresia (identity link)
- "glm_log" GLM s logaritmickou väzbou (log link)

Výstup:

Funkcia vracia list s týmito komponentmi:

Názov	Popis
model	Fittovaný model (1m alebo g1m)
r_squared	R-squared alebo pseudo R² pre log-link
plot	ggplot boxplot s priemermi a chybnými úsekmi pre každú kategóriu
summary	gt tabuľka s typom modelu, väzbovou funkciou a metrikami

Vizualizácia:

- Boxplot hodnoty y pre každú kategóriu x
- Modré body: odhady priemerov pre každú kategóriu
- Vertikálne úsečky: smerodajné odchýlky
- Popis grafu zodpovedá typu použitého modelu

Poznámky:

- Ak x nie je faktor, funkcia ho automaticky konvertuje.
- Hodnota R-squared pre "glm_log" je vypočítaná ako $1-deviance/null\ deviance$.
- Výstupná summary tabuľka obsahuje aj odhady parametrov eta so štandardnými chybami, ak sú dostupné.

classification model()

Popis:

Funkcia slúži na **modelovanie klasifikačných metód** s diskrétnou odozvou (response_name) a jedným alebo dvoma prediktormi (predictor_names). Podporuje rôzne metódy vrátane logistickej regresie, LDA, QDA a KNN.

Parametre:

Názov	Тур	Popis
data	data.frame	Vstupné dáta
response_name	character	Názov stĺpca s diskrétnou odozvou
predictor_names	character	Meno jedného alebo dvoch prediktorov
method	character	Metóda klasifikácie: "logistic", "lda", "qda", "knn"
k	integer alebo NULL	Počet susedov pre KNN (ak NULL, optimalizuje sa automaticky)

Podporované metódy (method):

- "logistic" binárna alebo multinomická logistická regresia
- "1da" lineárna diskriminačná analýza
- "qda" kvadratická diskriminačná analýza
- "knn" klasifikácia metódou k najbližších susedov (KNN)

Výstup:

Funkcia vracia list s nasledovnými komponentmi:

Komponent	Popis	
model	Trénovaný klasifikačný model	

Komponent	Popis
predictions	Vektor predikovaných tried
accuracy	Celková presnosť klasifikácie
confusion_matrix	Tabuľka zámien (confusion matrix)
summary_gt	gt tabuľka s modelovými parametrami a metrikami
decision_plot	Vizualizácia rozhodovacích hraníc (ak počet prediktorov ≤ 2)

Validácie a predspracovanie:

- Odozva response musí byť diskrétna (faktor alebo celočíselná s <10 unikátnymi hodnotami).
- Prediktory sú automaticky konvertované na faktory, ak obsahujú ≤10 unikátnych hodnôt.
- Pre qda sa triedy s menej než 4 pozorovaniami odstránia (s upozornením).

Vizualizácia:

- Ak je 1 prediktor: volá sa funkcia plot_classification_1D_combined() -> 1D graf s rozhodovacími prahmi a podmienenými pravdepodobnosťami.
- Ak sú 2 prediktory: volá sa funkcia plot_decision_boundary() -> 2D rozhodovacie hranice na mriežke prediktorového priestoru.

Sumarizačná tabuľka (summary_gt) obsahuje:

- Typ použitého modelu
- Presnosť klasifikácie
- Prípadne odhady parametrov β s ich štandardnými chybami
- Pri QDA/LDA: priemery a smerodajné odchýlky na triedu a prediktor

Poznámky:

- Pre binárnu odozvu v "logistic" modeli sa ako prah používa 0.5.
- Pre "knn" sa automaticky optimalizuje parameter k od 1 do 20, ak nie je zadaný.
- Multinomická logistická regresia využíva nnet::multinom().

model_conditional_continuous_densities()

Popis

Funkcia modeluje podmienené hustoty pravdepodobnosti spojitej odozvy vzhľadom na daný prediktor. Podporuje ako diskrétne, tak aj spojité prediktory.

Vstupné parametre:

Názov	Тур	Popis
df	data.frame	Vstupný dátový rámec s atribútmi "response_var" a "predictor_var"
n_breaks	integer	Počet sekcií (rezov) prediktora pre podmienené hustoty
density_scaling	numeric	Škálovací koeficient hustôt pre lepšiu vizualizáciu
mean_curve	logical	Či sa má pridať podmienená stredná hodnota
quantiles	numeric vector	Zoznam požadovaných kvantilov (napr. c(0.25, 0.5, 0.75))

Názov	Тур	Popis
mean_poly_degree	integer	Stupeň polynómu pre strednú hodnotu
quantile_poly_degree	integer	Stupeň polynómu pre kvantilové funkcie
normal_density	logical	Či zahrnúť normálnu hustotu do vizualizácie
kernel_density	logical	Či zahrnúť KDE (jadrový odhad hustoty) do vizualizácie
bw_scale	numeric alebo NULL	Miera škálovania rozsahu vyhladzovania pre KDE

Spracovanie:

- Funkcia najprv zistí, či je prediktor diskrétny alebo spojitý (pomocou identify_variables(), čo je funkcia na identifikáciu premenných).
- Pri diskrétnych prediktoroch:
 - o Hustoty sa modelujú osobitne pre každú kategóriu.
 - Hustoty (KDE a/alebo normálne) sú škálované podľa ich výšky a počtu pozorovaní.
- Pri spojitých prediktoroch:
 - Modeluje sa buď pomocou neparametrického kde2d alebo parametrického viacrozmerného normálneho rozdelenia
 - V každom n_breaks bode sa počíta podmienená hustota odozvy Y | X = x.

Výstup:

Funkcia vracia list s nasledujúcimi komponentmi:

Komponent	Popis	
df	Upravený dátový rámec s číselným prediktorom	
density_data	Zoznam dátových rámcov pre každú hustotu (x, y, section, type)	
breaks	Hodnoty prediktora, v ktorých sa počítali podmienené hustoty	
x_seq	Sekvencia hodnôt prediktora pre vizualizáciu	
mean_curve_data	Dátový rámec pre podmienenú strednú hodnotu (ak mean_curve = TRUE)	
quantile_data	Zoznam dátových rámcov pre každú kvantilovú krivku	
summary_table	Tabuľka sumarizujúca počet, priemer, SD, min a max odozvy v okolí každého delenia	
meta	Metadáta: mená premenných, typ prediktora, štatistiky (mu, sd, korelácia, epsilon, h_scaled`)	

Podporované hustoty:

- KDE (jadrový odhad) pomocou density() a approx()
- Normálna hustota pomocou dnorm() alebo viacrozmerného dmvnorm()

Poznámky:

- Hustoty sú škálované pomocou fade_factor (dočasná hustota slúžiaca na tlmenie) pre hladšie zobrazenie.
- n_breaks pre diskrétne premenné sa automaticky skracuje, ak je menej kategórií.
- Funkcia zahŕňa rozsiahle kontroly validnosti hustôt, y_seq a vyhladzovania.
- Výpočty hustôt sú doplnené aj o možnosť modelovať **podmienenú strednú hodnotu** a **kvantilové funkcie**.

Vizualizácia:

• Výstup tejto funkcie sa renderuje samostatne vo funkcii render_conditional_continuous_densities().

Každá hustota má svoj typ ("KDE" alebo "normal"), čo umožňuje farebne alebo štýlovo ich odlíšiť.

model conditional continuous densities()

Popis: Funkcia modeluje podmienené hustoty pravdepodobnosti spojitej odozvy vzhľadom na diskrétny alebo spojitý prediktor. Využíva výstupy z viacerých modelov združeného rozdelenia (napr. KDE, normálne, t-rozdelenie, kopulové modely, ako aj modely zmiešaných typov) a na ich základe vypočíta podmienené hustoty f(Y|X).

Vstupné parametre:

Názov	Тур	Popis
df	data.frame	Vstupný dátový rámec s atribútmi response_var a predictor_var
n_breaks	integer	Počet sekcií (rezov) prediktora pre výpočet podmienených hustôt (pre spojitý prediktor)
density_scaling	numeric	Škálovanie hustôt pre vizualizáciu (pre spojitý prediktor)
mean_curve	logical	Či sa má modelovať aj podmienená stredná hodnota (pre spojitý prediktor)
quantiles	numeric vector	Zoznam kvantilov na modelovanie (napr. c(0.25, 0.5, 0.75)) (pre spojitý prediktor)
mean_poly_degree	integer	Stupeň polynómu pre strednú hodnotu (pre spojitý prediktor)
quantile_poly_degree	integer	Stupeň polynómu pre kvantilové funkcie (pre spojitý preddiktor)
mixture_model_outputs	list	Výstupy funkcie model_mixture_density() pre diskrétny prediktor
model_output_kernel	list	Výstup z model_continuous_density()(KDE)
model_output_normal	list	Výstup z model_continuous_density() (normal)
model_output_t	list	Výstup z model_continuous_density() (t-rozdelenie)
model_output_copula	list	Výstup z model_continuous_density_copula()

Spracovanie:

- Funkcia určí typ prediktora (diskrétny/spojitý) pomocou identify_variables().
- Pre diskrétny prediktor:
 - o Použije výstupy z model_mixture_density() a pre každú kategóriu vytvorí podmienenú hustotu odozvy.
 - o Používa fade_factor pre tlmenie vizualizovanej hustoty.
- Pre spojitý prediktor:
 - V každom bode z n_breaks vypočíta podmienenú hustotu f(Y|X=xi) delením združenej hustoty f(X,Y) a marginálnej f(X).
 - o Výpočet sa opiera o výstupy z modelov KDE, normálneho, t-rozdelenia a kopulových modelov.
 - o Dopľňa možnosť modelovať podmienené stredné hodnoty a kvantilové funkcie pomocou polynómov.

Výstup:

Funkcia vracia list s nasledovnými komponentmi:

Komponent	Popis
df	Upravený dátový rámec s číselným prediktorom
density_data	lnfo k hustotám: x, y, width, type, section pre každý model
breaks	Hodnoty prediktora, v ktorých sa vypočítavali hustoty
x_seq	Sekvencia hodnôt prediktora
mean_curve_data	Podmienená stredná hodnota (ak mean_curve = TRUE)
quantile_data	Zoznam kriviek kvantilov (ak quantiles nie je NULL)

Komponent	Popis
summary_table	Tabuľka so štatistikami (počet, priemer, SD, min, max) pre každú sekciu
meta	Metadáta: mená premenných, typ prediktora, korelácia, stredné hodnoty a škálovanie

Modely podmienených hustôt:

- **KDE** (jadrový odhad) model_continuous_density(..., model_type = "kernel")
- Normálny model model_continuous_density(..., model_type = "normal")
- t-rozdelenie model_continuous_density(..., model_type = "t")
- Kopulový model model_continuous_density_copula()
- Zmiešaný typ (diskrétny x spojitý) model_mixture_density()

Poznámky:

- Funkcia je robustná voči chybným vstupom (safe_approx()) a upozorňuje na nevalidné vstupy.
- Výsledné hustoty sú škálované (pokiaľ je prediktor spojitý) podľa užívateľovho výberu.
- Výstup je určený na vizualizáciu funkciou render_conditional_continuous_densities().