

YWEAG

Bayesian data analysis with TensorFlow Probability

www.tweag.io

Your hosts

Simeon will give the presentation

- background in computational biology
- Data Scientist at Tweag since 2019

Dorran will happily answer questions

- previous positions in geophysics
- Data Scientist at Tweag since 2019

Tweag I/O

TODO

Tweag I/O is a software innovation lab and consultancy based in Paris with employees all around the world.

We specialize in

- software engineering, with a focus on functional programming
- DevOps, with a focus on reproducible software systems and builds
- data science

What you're in for

This tutorial consists of alternating blocks of

- theory / example slides
- ▶ practical examples on either external websites or Google Colab notebooks. Links are provided at https://github.com/tweag/tutorial-dsc-2020/

Requirements:

- a Google account (for the practical exercises)
- elementary knowledge in probability theory and statistics

Reminder: Probabilities

Probability distributions can be...

discrete: Ber(k; b) =
$$b^{k}(1 - b)^{1-k}$$

continuous:
$$\mathcal{N}(\mathbf{x};\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2}(\mathbf{x}-\mu)^2)$$

Important concepts:

Conditional probability

p(A|B): probability that A is true, given B is true

Joint probability

p(A, B): probability that both A and B are true

Conditional joint probability

p(A, B|C): probability that both A and B are true, given C is true

Bayesian vs frequentist probabilities

Example: fair coin flip with $p(head) = p(tail) = \frac{1}{2}$

Frequentist probability

```
p(\text{"flip results in head"}|b=\tfrac{1}{2})=\tfrac{1}{2}\text{:}\\ \tfrac{\text{\# of heads}}{\text{\# total flips}} \text{ for } \infty \text{ many fair coin flips}
```

Bayesian probability

$$p("flip results in head"|b = \frac{1}{2}) = \frac{1}{2}$$
:

measure of *belief* in the statement "flip results in head" given single fair coin flip

TODO: this slide looks complicated and is aesthetically offputting

Prior beliefs

Assume: unknown bias b

Prior probability

Encodes prior belief in b before flipping the coin

What is known about b?

- ▶ *b* is a probability: $0 \le b \le 1$
- most coins are fair
- ightarrow choose prior distribution defined between 0 and 1, with maximum at and symmetric around $b=rac{1}{2}$

Example:

$$b \sim \text{Beta}(\alpha = 2, \beta = 2)$$

with

Beta(
$$\mathbf{x}; \alpha, \beta$$
) $\propto \mathbf{x}^{\alpha-1}(1-\mathbf{x})^{\beta-1}$

Posterior belief

Now: flip coin one time, result: head

Posterior belief

p(b|head): updated prior belief after obtaining new data

Update rule

Bayes' theorem

$$p(A|B) = \frac{p(B|A) \times p(A)}{p(B)}$$

(easily derived from rules for conditional probabilities)

In data analysis:

$$\underbrace{p(x|D,I)}_{\text{posterior}} = \underbrace{p(D|x,I)}_{\text{likelihood}} \times \underbrace{p(x|I)}_{\text{prior}} / \underbrace{p(D|I)}_{\text{evidence}}$$

x: model parameter

D: data

1: prior information (often not made explicit)

Likelihood

p(D|x): probability of the data given fixed model parameters \rightarrow models data-generating process

In our case:

$$p(k|b) = b^k (1-b)^{k-1} = \mathsf{Ber}(k;b)$$

with

$$k = \begin{cases} 0: & \mathsf{tail} \\ 1: & \mathsf{head} \end{cases}$$

Evidence

$$p(D) = \int dx \, p(D|x)p(x)$$
:
normalization constant (long story...)

In our case:

$$\begin{split} p(\textit{k} = 1) &= \int_0^1 \mathrm{d}b \; L(\textit{k} = 1|\textit{b}) p(\textit{b}) \\ &= \int_0^1 \mathrm{d}b \; \; \mathrm{Ber}(\textit{k}; \textit{b}) \times \mathrm{Beta}(\textit{k}; \alpha = 2, \beta = 2)|_{\textit{k} = 1} \\ &= \int_0^1 \mathrm{d}b \; \; \textit{b}^{\textit{k}} (1 - \textit{b})^{\textit{k} - 1} \textit{b} (1 - \textit{b}) \Big|_{\textit{k} = 1} \\ &\vdots \\ &= \frac{1}{12} \end{split}$$

Evidence

$$p(D) = \int dx \, p(D|x)p(x)$$
:
normalization constant (long story...)

In our case:

$$\begin{split} p(k=1) &= \int_0^1 \mathrm{d}b \; L(k=1|b) p(b) \\ &= \int_0^1 \mathrm{d}b \; \left. \mathrm{Ber}(k;b) \right| \cdot \left. \mathrm{Peta}(\kappa;\alpha=2,\beta=2) \right|_{k=1} \\ &= \int_0^1 \mathrm{d}b \; \left. b^{(k)} (1-k) \right|_{k=1} \\ &\vdots \\ &= \frac{1}{12} \end{split}$$

Update rule

In our coin flip example:

prior:
$$\begin{aligned} \textit{p}(\textit{b}) &= \mathsf{Beta}(\textit{b}; \alpha = 2, \beta = 2) \\ &\propto \textit{b}(1-\textit{b}) \end{aligned}$$

likelihood:
$$p(D|b) = Ber(k = 1; b)$$

= b

posterior:
$$p(b|D) \propto p(D|b) \times p(b)/p(D)$$

= Beta $(b; \alpha=3, \beta=2)$
 $\propto b^2(1-b)$

no slides for interactive stuff –

Real-world Bayesian data analysis

In the real world, probability distributions often

- are multidimensional
- are known only up to a normalization constant (intractability)
- have highly correlated random variables

Consequences:

- analytical evaluation of expectation values is impossible
- naïve sampling approaches are inefficient (curse of dimensionality)

Approximation workhorse: Metropolis-Hastings

Markov chain

Random process with

$$p(x_{i+1}|x_i,x_{i-1},\ldots,x_1)=p(x_{i+1}|x_i)$$

ightarrow a Markov chain has no "memory"

In some conditions: converges to a unique invariant distribution $\pi(x)$

Metropolis-Hastings algorithm

Construct Markov chain with invariant distribution $\pi(x) = p(x)$:

- 1. starting at state, x_i , propose a new state x_i^* from $q(x_i^*|x_i)$
- 2. calculate acceptance probability p_{acc}
- 3. draw $u \sim \mathcal{U}(0,1)$
- 4. if $u < p_{acc}$: $x_{i+1} = x_i^*$, else $x_{i+1} = x_i$

Initialize with any state x_0

Sequence of states: (x_0)

Initial state: x_0

1. calculate a proposal state x_0^* by randomly perturbing x_0

Initial state: x_0

- 1. calculate a proposal state x_0^* by randomly perturbing x_0
- 2. calculate acceptance probability

$$p_{\mathsf{acc}} = \mathsf{min}\left(1, \frac{p(x_0^*)}{p(x_0)}\right)$$

Initial state: x_0

- 1. calculate a proposal state x_0^* by randomly perturbing x_0
- 2. calculate acceptance probability

$$p_{\mathsf{acc}} = \mathsf{min}\left(1, \frac{p(\mathsf{x}_0^*)}{p(\mathsf{x}_0)}\right)$$

3. with probability p_{acc} , accept proposal state x_0^* as the next state x_1 , else copy x_0

Sequence of states:

$$(x_0, x_1)$$

Current state: x₁

1. calculate a proposal state x_1^* by randomly perturbing x_1

Current state: x₁

- 1. calculate a proposal state x_1^* by randomly perturbing x_1
- 2. calculate acceptance probability

$$p_{\mathsf{acc}} = \mathsf{min}\left(1, \frac{p(\mathsf{x}_1^*)}{p(\mathsf{x}_1)}\right)$$

Current state: x₁

- 1. calculate a proposal state x_1^* by randomly perturbing x_1
- 2. calculate acceptance probability

$$p_{\mathsf{acc}} = \min\left(1, \frac{p(x_1^*)}{p(x_1)}\right)$$

3. with probability p_{acc} , accept proposal state x_1^* as the next state x_2 , else copy x_1

Sequence of states:

$$(x_0, x_1, x_2)$$

Current state: x₁

- 1. calculate a proposal state x_1^* by randomly perturbing x_1
- 2. calculate acceptance probability

$$p_{\mathsf{acc}} = \mathsf{min}\left(1, \frac{p(\mathsf{x}_1^*)}{p(\mathsf{x}_1)}\right)$$

3. with probability p_{acc} , accept proposal state x_1^* as the next state x_2 , else copy x_1

Sequence of states:

$$(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$$

Realistic application

Often: measured data = idealized data + noise

Guess:

idealized data: $\hat{f}(x; a, b, c, d) = a + bx + cx^2 + dx^3$

noise: normally distributed

$$p(y_i|a,b,c,d,\sigma) = \mathcal{N}(\hat{f}(x_i;a,b,c,d),\sigma)$$
 (single data point)

$$p(D|a,b,c,d,\sigma) = \prod_{i=1}^{N} p(y_i|a,b,c,d,\sigma)$$
 (all data points)

Prior:
$$p(a) = p(b) = p(c) = p(d) = \mathcal{N}(0, 5)$$
$$p(\sigma) = \text{Lognormal}(2, 0.5) \text{ (has positive support)}$$