Feuille 1 - Matrices

Rappels sur les matrices :

- Le produit de deux matrices est possible ssi le nombre de <u>colonnes</u> de la première matrice est le même que le nombre de lignes de la deuxième.

Moyen mnémotechnique :

$$M_{n,p} \times M_{p,q} \checkmark \qquad M_{p,q} \times M_{n,p}$$

- Une matrice A est inversible ssi il existe une matrice B telle que $\begin{cases} AB = I_n \\ BA = I_n \end{cases}$
- En général, $AB \neq BA$, donc par exemple, $(A + B)^2 \neq A^2 + 2AB + B^2$
- Une matrice ne peut pas être inversible si :
 - Une de ses lignes ou colonnes vaut 0
 - Une de ses lignes ou colonnes est combinaison linéaire des autres
 - L'équation AX = 0 admet $X = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ comme unique solution

Exercice 1 : Soit n un entier supérieur ou égal à 2 (pour éviter les cas triviaux)

Soit
$$A=\left(a_{ij}\right)_{1\leq i,j\leq n}\in M_n(\mathbb{R})$$
 la matrice définie par $a_{i,j}=\begin{cases} 1 \text{ si } i\neq j \\ 0 \text{ si } i=j \end{cases}$

Calculer A^2 , puis déduire que A est inversible en précisant son inverse.

Exercice 2 : Soit $n \in \mathbb{N}^*$, on introduit $J = (a_{ij}) \in M_n(\mathbb{R})$ telle que $\forall i, j \in [1, n], a_{ij} = 1$.

Calculer J^m pour tout $m \in \mathbb{N}$.

Exercice 3 : Soit $n \in \mathbb{N}^*$. Soit $B \in M_n(\mathbb{R})$ tel que $B^2 + B = 0$. B est-elle inversible?

Exercice 4:

Notons (u_n) et (v_n) les suites définies par $u_0 = 2$ et $v_0 = 1$ et pour tout $n \ge 1$,

$$\begin{cases} u_{n+1} = u_n + 8v_n \\ v_{n+1} = 2u_n + v_n \end{cases}$$

On pose également pour $n \geq 0$, $X_n = \left(egin{array}{c} u_n \\ v_n \end{array} \right)$

- 1) Soit $A=\begin{pmatrix} 1 & 8 \\ 2 & 1 \end{pmatrix}$, montrer que pour tout $n\geq 0$, $X_{n+1}=AX_n$. En déduire, pour tout $n\in\mathbb{N}$, une expression de X_n en fonction de A et X_0 .
- 2) En posant $P = \begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix}$
 - a. Calculer P^{-1} à l'aide de la méthode de votre choix, puis calculer $P^{-1}AP$. Que remarque-t-on ?
 - b. Calculer A^n pour tout $n \in \mathbb{N}$, à partir de P, P^{-1} , et d'une dernière matrice justement choisie.
 - c. Calculer explicitement A^n , et enfin X^n . En déduire les expressions de u_n et v_n pour tout $n \in \mathbb{N}$.

Exercice 5:

Soit $A \in M_n(\mathbb{R})$. Montrer que $Tr(A^t A) = 0 \Longrightarrow A = 0_{M_n(\mathbb{R})}$.