Gate MA-2019

AI24BTECH11032 Shreyansh Sonkar

40) Consider the ordered square I_0^2 , the set $[0,1] \times [0,1]$ with the dictionary order topology. Let the general element of I_0^2 , be denoted by $x \times y$, where $x,y \in [0,1]$. Then the closure of the subset

$$S = \left\{ x \times \frac{3}{4} : 0 < a < x < b < 1 \right\} \text{ in } I_0^2$$

- a) $S \bigcup ((a,b] \times \{0\}) \bigcup ([a,b) \times \{1\})$
- c) $S \cup ((a,b) \times \{0\}) \cup ((a,b) \times \{1\})$

1

- b) $S \cup ([a,b) \times \{0\}) \cup ((a,b] \times \{1\})$
- d) $S \cup ((a,b] \times \{0\})$
- 41) Let P_2 be the vector space of all polynomials of degree at most 2 over \mathbf{R} (the set of real numbers). Let a linear transformation $T: P_2 \to P_2$ be defined by

$$T(a+bx+cx^2) = (a+b) + (b-c)x + (a+c)x^2$$

consider the following statements:

- I. The null space of T is $\{a(-1 + x + x^2) : a \in \mathbb{R}\}$.
- II. The range space of T is spanned by the set $\{1 + x^2, 1 + x\}$.
- III. $T(T(1+x)) = 1 + x^2$.
- IV. If M is the matrix representation of T with respect to the standard basis $\{1, x, x^2\}$ of P_2 , then the trace of the matrix M is 3.

Which of the above statement are TRUE?

a) I and II only

c) I, II and IV only

b) I,III and IV only

- d) II and IV only
- 42) Let T_1 and T_2 be two topologies defined on \mathbb{N} (the set of all natural number), where T_1 is the topology generated by $B = \{\{2n-1, 2n\} : n \in \mathbb{N}\}$ and T_2 is the discrete topology on \mathbb{N} . Consider the following statements:
 - I. IN (\mathbb{N}, T_1) , every infinite subset has a limit point.
 - II. The function $f:(\mathbb{N}, T_1) \in (\mathbb{N}, T_2)$ is defined by

$$f(n) = \begin{cases} \frac{n}{2}, & \text{if n is even} \\ \frac{n+1}{2}, & \text{if n is odd} \end{cases}$$

is a continuous function which of the above statement is/are TRUE?

- a) both I and II
- b) I only

- c) II only
- d) Neither I or II
- 43) Let $1 \le p < q < \infty$ Consider the following statements:

I
$$\ell^p \subset \ell^q$$

II
$$L^p[0,1] \subset L^q[0,1]$$
,

where
$$\ell^p = \{(x_1, x_2, \dots) : x_i \in \mathbb{R}, \sum_{i=1}^{\infty} |x_i|^p < \infty \}$$
 and

where
$$\ell^p = \{(x_1, x_2, \dots) : x_i \in \mathbb{R}, \sum_{i=1}^{\infty} |x_i|^p < \infty \}$$
 and $L^p = \{f : [0, 1] \to \mathbb{R} : f \text{ is } \mu - \text{measurable}, \int_{[0, 1]} |f|^p d\mu < \infty, \text{ where } \mu \text{ is the Lebesgue measure } \}$

 $(\mathbb{R} \text{ is the set of all real number })$

Which of the above statements is/are TRUE?

a) both I and II

c) II only

b) I only

- d) Neither I or II
- 44) Consider the differential equation

$$t\frac{d^{2}y}{dt^{2}} + 2\frac{dy}{dt} + ty = 0, t > 0, y(0+) = 1, \left(\frac{dy}{dt}\right)_{t=0+} = 0.$$

If Y(s) is the Laplace transform of Y(t), then the value of Y(1) is (round off to 2 places of decimal).

(Here, the inverse trigonometric functions assume principal values only)

45) Let R be the in region in the xy-plane bounded by the curve $y = x^2$, $y = 4x^2$, $xy = 4x^2$ 1 and xy = 5.

Then the value of the integral $\int \int_{R} \frac{y^{2}}{x} dy dx$ is equal to ______.

46) Let V be the vector space of all 3×3 matrices with complex entries over the real field.If

$$W_1 = \{ A \in V : A = A^T \}$$
 and $W_2 = \{ A \in V : \text{ trace of } A = 0 \}$,

of $W_1 + W_2$ is equal to . the dimension $(A)^T$ denote the conjugate transpose of A

- 47) The number of elements of order 15 in the additive group $Z_{10} \times Z_{10}$ is ______. (Z_{10} denotes the group of integers modulo n, under the operation of addition modulo n, for any positive integer n).
- 48) Consider the following cost matrix of assigning four jobs to four persons:

Jobs						
J ₁ J ₂ J ₃ J ₄						
P ₁ 5 8 6 10						
P ₂ 2 5 4 8						
P ₃ 6 7 6 9						
P ₄ 6 9 8 10						

Then the minimum cost of the assignment problem subject to the constraint that job J_4 is assigned to person P_2 is

49) Let $y: [-1,1] \to \mathbb{R}$ with y(1) = 1 satisfy the Legendre differential equation

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 6y = 0$$
 for $|x| < 1$.

Then the value of $\int_{-1}^{1} y(x) (x + x^2) dx$ is equal to _____ (round off to 2 places of decimal).

- 50) Let \mathbb{Z}_{125} be the ring of integer modulo 125 under the operations of addition modulo 125 and multiplication modulo 125. if m is the number if maximal ideals of \mathbb{Z}_{125} and n is the number of non-units of \mathbb{Z}_{125} , then m + n is equal to ______.
- 51) The maximum value of the error term of the composite Trapezoidal rule when it is used to evaluate the definite integral

$$\int_{0.2}^{1.4} (\sin x - \log_e x) \, dx$$

with 12 sub-intervals of equal length, is equal to _____. (round off to 3 places of decimal)

52) By the Simplex method, the optimal table of the linear programming problem:

Maximize
$$Z = \alpha x_1 + 3x_2$$

subject to $\beta x_1 + x_2 + x_3 = 8$,
 $2x_1 + x_2 + x_4 = \gamma, x_1, x_2, x_3, x_4 \ge 0$,

where α, β, γ are real constant is

$c_j \rightarrow$	α	3	0	0	
Basic variable	x ₁	x ₂	X3	X4	Solution
x ₂	1	0	2	-1	6
x ₁	0	1	-1	1	2
$z_j - c_j$	0	0	2	1	-

Then the value of $\alpha + \beta + \gamma$ is _____