

ALGEBRA Chapter 14

MOTIVATING STRATEGY

¿Puedes ordenar de menor a mayor las siguientes expresiones? $\sqrt{5}$; $\sqrt[3]{3}$; $\sqrt[6]{2}$

 $\sqrt{2} : \sqrt[6]{9} : \sqrt[6]{125}$

RADICACIÓN

Es la **operación** matemática en la cual, dada una variable real "x" y un número natural "n", existe un tercer número "r" llamado raíz, siempre que:

$$\sqrt[n]{x} = r \iff r^n = x$$

n: indice

 $(n \in \mathbb{N} : n \geq 2)$

PROPIEDADES

1)
$$\sqrt[n]{a.b} = \sqrt[n]{a}.\sqrt[n]{b}$$

$$2) \quad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$3) \sqrt[m]{\sqrt[n]{a}} = \sqrt[m.n]{a}$$

Extraer un factor de un radical

* *Ejemplo:*
$$\sqrt{180} = \sqrt{36.5}$$
 $\implies \sqrt{180} = \sqrt{36}.\sqrt{5}$

$$\sqrt{180} = 6\sqrt{5}$$

**Ejemplo:*
$$\sqrt[5]{a^{10}b^{15}c^2} = \sqrt[5]{a^{10}} \cdot \sqrt[5]{b^{15}} \sqrt[5]{c^2}$$

$$\sqrt[5]{a^{10}b^{15}c^2} = a^2 \sqrt[5]{c^2}$$

CLASIFICACIÓN DE LOS RADICALES

> Radicales Heterogéneos:

Ejm.:
$$\sqrt[3]{2}$$
 ; $\sqrt[5]{7}$; $\sqrt{5}$

Radicales Homogéneos:

Ejm.:
$$\sqrt[5]{9}$$
 ; $\sqrt[5]{8}$; $\sqrt[5]{7}$

> Radicales Semejantes:

Ejm.:
$$5\sqrt[3]{2}$$
 ; $6\sqrt[3]{2}$; $2\sqrt[3]{2}$

HOMOGENIZACIÓN DE RADICALES

$$\sqrt[4]{2}$$
 ; $\sqrt{5}$; $\sqrt[6]{3}$

$$mcm(4; 2; 6) = 12$$

$$^{4.3}\sqrt{2^{1.3}}$$
; $^{2.6}\sqrt{5^{1.6}}$; $^{6.2}\sqrt{3^{1.2}}$

$$\sqrt[12]{8}$$
; $\sqrt[12]{15625}$; $\sqrt[12]{9}$

TRANSFORMACIÓN DE RADICALES DOBLES A RADICALES SIMPLES

$$\sqrt{A \pm \sqrt{B}} = \sqrt{\frac{A+C}{2}} \pm \sqrt{\frac{A-C}{2}}$$

$$C = \sqrt{A^2 - B}$$

Ejemplo.: Transforme a radicales simples $\sqrt{3 + \sqrt{5}}$

$$C = \sqrt{3^2 - 5}$$

$$\sqrt{4} = 2$$

$$\sqrt{3+\sqrt{5}} = \sqrt{\frac{3+2}{2}} + \sqrt{\frac{3-2}{2}} = \sqrt{\frac{5}{2}} + \sqrt{\frac{1}{2}}$$

Método práctico

$$\sqrt{A \pm \sqrt{B}} = \sqrt{(x+y) \pm 2\sqrt{x} \cdot y} = \sqrt{x} \pm \sqrt{y} \qquad (x > y)$$

Ejemplo.: Transforme a radicales simples $\sqrt{5 + \sqrt{24}}$

Resolución:
$$\sqrt{5 + \sqrt{24}} = \sqrt{5 + \sqrt{4.6}} = \sqrt{5 + 2\sqrt{6}}$$

 $\sqrt{5 + \sqrt{24}} = \sqrt{3} + \sqrt{2}$

RACIONALIZACIÓN

$$\frac{N}{\sqrt[n]{a^m}}$$

$$\frac{N}{\sqrt[n]{a^m}} = \frac{N}{\sqrt[n]{a^m}} \times \frac{\sqrt[n]{a^{n-m}}}{\sqrt[n]{a^{n-m}}}$$

$$\frac{N}{\sqrt[n]{a^m}} = \frac{\sqrt[n]{a^{n-m}}}{a}$$

Ejemplo.:

Racionalizar $\frac{12}{\sqrt{3}}$

$$\frac{12}{\sqrt[3]{2}} = \frac{12}{\sqrt[3]{2}} \times \sqrt[3]{\frac{2^2}{\sqrt{2^2}}} = \frac{12 \cdot \sqrt[3]{4}}{2}$$

$$\frac{12}{\sqrt[3]{2}} = 6\sqrt[3]{4}$$

$$\frac{N}{\sqrt{a} \pm \sqrt{b}}$$

$$\frac{N}{\sqrt{a} \pm \sqrt{b}} = \frac{N}{\sqrt{a} \pm \sqrt{b}} \cdot \frac{\sqrt{a} \mp \sqrt{b}}{\sqrt{a} \mp \sqrt{b}}$$

$$\frac{N}{\sqrt{a} + \sqrt{b}} = \frac{N(\sqrt{a} \mp \sqrt{b})}{a - b}$$

Ejemplo.:

Racionalizar
$$\frac{7}{\sqrt{5}+\sqrt{2}}$$

$$\frac{7}{\sqrt{5} + \sqrt{2}} = \frac{7}{\sqrt{5} + \sqrt{2}} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}}$$
$$= \frac{7(\sqrt{5} - \sqrt{2})}{\sqrt{5} - \sqrt{2}}$$

$$\frac{7}{\sqrt{5}+\sqrt{2}}=\frac{7(\sqrt{5}-\sqrt{2})}{3}$$

HELICO PRACTICE

HELICO | PRACTICE

1. Halle el valor de:

$$K = \frac{\sqrt{8} + \sqrt{32} - \sqrt{128}}{\sqrt{50} - \sqrt{18}}$$

RESOLUCIÓN

$$K = \frac{\sqrt{8} + \sqrt{32} - \sqrt{128}}{\sqrt{50} - \sqrt{18}}$$

$$K = \frac{\sqrt{4.2 + \sqrt{16.2} - \sqrt{64.2}}}{\sqrt{25.2} - \sqrt{9.2}}$$

Aplicamos el teorema

$$\sqrt[n]{A.B} = \sqrt[n]{A}.\sqrt[n]{B}$$

$$K = \frac{\sqrt{4} \cdot \sqrt{2} + \sqrt{16} \cdot \sqrt{2} - \sqrt{64}\sqrt{2}}{\sqrt{25} \cdot \sqrt{2} - \sqrt{9}\sqrt{2}}$$

$$K = \frac{2\sqrt{2} + 4\sqrt{2} - 8\sqrt{2}}{5\sqrt{2} - 3\sqrt{2}}$$

luego

$$K = \frac{-2\sqrt{2}}{2\sqrt{Z}}$$

$$K = -1$$

Calcule:

Problema 2

$$M = \frac{5\sqrt{32} - \sqrt{50} + \sqrt{2}}{4\sqrt{8} - \sqrt{2}}$$

$$M = \frac{5\sqrt{32} - \sqrt{50} + \sqrt{2}}{4\sqrt{8} - \sqrt{2}}$$

$$M = \frac{5\sqrt{16}\sqrt{2} - \sqrt{25}\sqrt{2} + \sqrt{2}}{4\sqrt{4}\sqrt{2} - \sqrt{2}}$$

$$M = \frac{5.4\sqrt{2} - 5\sqrt{2} + \sqrt{2}}{4.2\sqrt{2} - \sqrt{2}}$$

$$M = \frac{20\sqrt{2} - 5\sqrt{2} + \sqrt{2}}{8\sqrt{2} - \sqrt{2}}$$

$$M = \frac{16\sqrt{2}}{7\sqrt{2}}$$

$$\therefore M = \frac{16}{7}$$

Reduzca

Problema 3

$$P = \sqrt{5 + 2\sqrt{6}} - \sqrt{7 + 2\sqrt{10}} + \sqrt{8 - 2\sqrt{15}}$$

$$P = \sqrt{5 + 2\sqrt{6}} - \sqrt{7 + 2\sqrt{10}} + \sqrt{8 - 2\sqrt{15}}$$

$$3+2 \quad 3\times 2 \quad 5+2 \quad 5\times 2 \quad 5+3 \quad 5\times 3$$

$$P = \sqrt{3} + \sqrt{2} - (\sqrt{5} + \sqrt{2}) + \sqrt{5} - \sqrt{3}$$

$$P = \sqrt{3} + \sqrt{2} - \sqrt{5} - \sqrt{2} + \sqrt{5} - \sqrt{3}$$

$$P = 0$$

Calcule el valor de E en:

Problema 4

$$E = \left(\sqrt{9 - 2\sqrt{20}} + \sqrt{7 - 2\sqrt{12}} + \sqrt{3}\right).\sqrt{5}$$

$$E = \left(\sqrt{\frac{9 - 2\sqrt{20} + \sqrt{7 - 2\sqrt{12} + \sqrt{3}}}{5+4}}, \sqrt{\frac{5}{5}} \right).\sqrt{5}$$

$$E = (\sqrt{5} - \sqrt{4} + \sqrt{4} - \sqrt{3} + \sqrt{3}).\sqrt{5}$$

$$E = (\sqrt{5}).\sqrt{5}$$

$$E = 5$$

HELICO | PRACTICE

5. Efectúe:

$$E = \frac{5}{\sqrt[7]{125}}$$

RESOLUCIÓN

$$E = \frac{5}{\sqrt[7]{125}} = \frac{5}{\sqrt[7]{125}} + \frac{\sqrt[7]{125}}{\sqrt[7]{125}} + \frac{1}{\sqrt[7]{125}}$$

$$\frac{A}{\sqrt[n]{B^m}} = \frac{A \cdot \sqrt[n]{B^{n-m}}}{B}$$

$$E = \frac{5\sqrt[7]{125^{7-1}}}{\sqrt[7]{125} \cdot \sqrt[7]{125}^6}$$

$$E = \frac{\sqrt[7]{125^6}}{25}$$

Problema 6

Marcelo le pregunta a su profesor de geografía cuantos países no tiene la forma rectangular en su bandera nacional a lo cual su profesor le responde al obtener el denominador después de racionalizar y reducir la expresión

 $F = \frac{5}{\sqrt{7} + \sqrt{2}} + \frac{4}{\sqrt{6} - \sqrt{2}} - \frac{7}{\sqrt{7}}$

se obtiene la cantidad de países con dichas características, ¿Cuántos países no tienen la forma tradicional (rectangular) en su bandera nacional?

Resolución:

$$\mathbf{F} = \frac{5}{\sqrt{7} + \sqrt{2}} + \frac{4}{\sqrt{7} - \sqrt{2}} - \frac{7}{\sqrt{7}}$$

$$\frac{N}{\sqrt{A} + \sqrt{B}} = \frac{N(\sqrt{A} \mp \sqrt{B})}{A - B}$$

$$\mathbf{F} = \frac{5(\sqrt{7} - \sqrt{2})}{7 - 2} + \frac{4(\sqrt{6} + \sqrt{2})}{6 - 2} - \frac{7\sqrt{7}}{7}$$

$$M = \frac{5(\sqrt{7} - \sqrt{2})}{5} + \frac{4(\sqrt{6} + \sqrt{2})}{4} - \frac{7\sqrt{7}}{7}$$

$$\Rightarrow$$
 M= $(\sqrt{7} - \sqrt{2}) + (\sqrt{6} + \sqrt{2}) - \sqrt{7}$

$$M=\sqrt{6}$$

∴ El denominador es 1

01

Problema 7

Carlos le pregunta a su madre cuantos feriados va a tener el 2022 en el primer semestre, a lo cual su madre le responde que para saber ello tienes que calcular el resultado de Q^2-1 , además se sabe que $Q=\frac{4}{\sqrt{7}-\sqrt{3}}+\frac{2}{3+\sqrt{7}}-\sqrt{3}$, ¿Cuántos días feriados habrá en el primer semestre del 2022?

Resolución:

$$Q = \frac{4}{\sqrt{7} - \sqrt{3}} + \frac{2}{3 + \sqrt{7}} - \sqrt{3}$$

$$Q = \frac{4}{(\sqrt{7} - \sqrt{3})} \times \frac{(\sqrt{7} + \sqrt{3})}{(\sqrt{7} + \sqrt{3})} + \frac{2}{(3 + \sqrt{7})} \times \frac{(3 - \sqrt{7})}{(3 - \sqrt{7})} - \sqrt{3}$$

$$Q = \frac{4(\sqrt{7} + \sqrt{3})}{7 - 3} + \frac{2(3 - \sqrt{7})}{9 - 7} - \sqrt{3}$$

$$Q = \frac{\cancel{4}(\sqrt{7} + \sqrt{3})}{\cancel{4}} + \frac{\cancel{2}(3 - \sqrt{7})}{\cancel{2}} - \sqrt{3}$$

Del dato
$$Q^2 - 1$$
:
 $3^2 - 1 = 9 - 1 = 8$

Rpta: 8 días feriados