Linguagens Formais e Autômatos

Aula 23 - Máquinas de Turing restritas

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John E.
 Hopcroft, Rajeev Motwani, Jeffrey D. Ullman ; tradução da 2.ed. original de Vandenberg D. de Souza. Rio de Janeiro : Elsevier, 2002 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 8 Seção 8.5

MT com fita semi-infinita

- Ou seja, a fita tem um início
 - A cabeça não pode se mover além desse ponto
- Veremos que a capacidade de processamento de linguagens é a mesma que as MTs com fita duplamente infinita

MT com fita semi-infinita

MT com fita semi-infinita

Sempre que o início da fita é alcançado, inverte-se a ordem de movimento, e troca-se de trilha

- Um PDA com uma única pilha aceita as linguagens livres de contexto (Tipo-2)
- Mas acrescentando uma segunda pilha, é possível simular completamente uma Máquina de Turing!
 - Passando a aceitar as linguagens recursivamente enumeráveis (Tipo-0)
- Veremos essa construção a seguir

Como simular o movimento da cabeça na fita?

À medida que a cabeça se move para a esquerda, deslocamos os símbolos da pilha da esquerda para a pilha da direita

À medida que a cabeça se move para direita, deslocamos os símbolos da pilha da direita para a pilha da esquerda

O fundo das pilhas representa a posição em que os infinitos brancos começam

Máquinas de Turing e computadores reais

Máquinas de Turing e computadores reais

- Agora iremos comparar a máquina de Turing e computadores reais, que usamos no dia-a-dia
 - Iremos mostrar que reconhecem as mesmas linguagens: as linguagens recursivamente enumeráveis
- Ou seja:
 - Um computador pode simular uma máquina de Turing
 - Uma máquina de Turing pode simular um computador
 - E mais: pode fazê-lo em um tempo polinomial em relação ao tempo de execução do computador
 - * Lembrando que a noção de tempo = movimentos

Simulação de uma MT por um computador

- Deve ser bastante óbvio que é relativamente fácil implementar uma MT usando uma linguagem de programação:
 - Uma variável armazena estados
 - Tabela de transições para os movimentos
 - A fita pode ser armazenada em um array
 - Um ponteiro aponta o local da cabeça de leitura
 - Existem, de fato, muitos simuladores de MT disponíveis, o que demonstra essa possibilidade

Simulação de uma MT por um computador

- Mas existe um aspecto no qual a MT "ganha"
 - Sua fita é infinita!
 - A memória do computador (memória principal, disco rígido, pen drive, etc) é finita!!
- Alguém pode argumentar que é sempre possível implementar um sistema de troca de discos em tempo de execução
 - Sempre que for necessário um novo pedaço de fita, troque o disco mais distante da cabeça por um disco novo
 - Ou seja, assumimos que conseguimos fabricar quantos discos o computador necessita
 - Mas aí estamos assumindo que a quantidade de matéria no Universo é infinita
 - E isso é outra discussão...
- Na prática, podemos confiar que a quantidade de memória não é infinita, mas é suficientemente grande para armazenar dados sobre todos os possíveis problemas que iremos encontrar

Simulação de um computador por uma MT

- A demonstração anterior não é tão surpreendente
- Mais interessante é o fato de que uma MT consegue fazer tudo que um computador faz (mais lentamente, claro)
- Iremos demonstrar como é possível simular a execução de um programa de computador em uma MT
- Para isso, vamos primeiro definir um modelo realista de um computador típico

Modelo de um computador

- Memória
 - Sequência indefinidamente longa de palavras
 - Cada uma com um endereço
- Programa
 - Está armazenado em algumas das palavras
 - Cada palavra representa uma instrução simples
 - Como linguagem de máquina, por exemplo
 - Movimentam uma palavra para outra
 - Adicionam uma palavra a outra
 - Endereçamento indireto (ponteiros)
 - Cada instrução envolve um número limitado (finito) de palavras
 - Cada instrução altera o valor de no máximo uma palavra

MT que simula um computador

Memória

Contador de instruções

Endereço de memória Arquivo de entrada

Rascunho

MT que simula um computador

- A cada instrução:
 - A MT procura na fita 1 o local apontado pelo conteúdo da fita 2
 - A MT interpreta o conteúdo da instrução
 - Se a instrução exigir o valor de um endereço (ponteiro), a MT o copia para a fita 3. Em seguida, ela busca na fita 1 o endereço apontado pela fita 3, e copia seu conteúdo na fita 3
 - A MT então executa a instrução: cópia, soma, "salto", etc, usando o rascunho opcionalmente como auxílio
 - A MT então incrementa o conteúdo da fita 2 e recomeça o ciclo

Tempo de simulação

- Estamos em busca de um modelo matemático para analisar a capacidade de um computador em resolver problemas
 - Encontramos um: a MT, que tem a mesma capacidade de reconhecimento que um computador comum
 - Mas ainda falta analisar se ela é eficiente
 - Ou seja, ela executa em tempo "similar"?
 - Ou seja (2), se eu estudar o comportamento e eficiência das MTs para um determinado problema, os estudos serão também válidos para os computadores reais?
- A linha divisória é polinomial X não-polinomial!
 - Polinomial = tratável
 - Não-polinomial (exponencial, por exemplo) = intratável

Tempo de simulação

- Primeiro. A MT que simula um computador tem várias fitas, ou seja, iremos no mínimo "gastar" um tempo quadrático para converter para uma fita
 - Conforme vimos anteriormente
 - Quadrático = polinômio, então até agora, OK!
- Uma instrução do computador leva no máximo O(n²) movimentos da MT
 - Incluindo a busca de endereços, execução de instruções, etc
- Portanto: n instruções do computador leva no máximo O(n³) movimentos da
 MT
- Combinado à conversão para uma única fita, uma MT de uma fita pode simular n etapas de um computador em no máximo O(n⁶) movimentos

Máquinas de Turing com Fita Limitada

Máquinas de Turing com Fita Limitada

Máquinas de Turing com Fita Limitada

- Funcionamento é igual à MT com fita infinita
- Porém existem dois delimitadores, um à esquerda e um à direita
 - Imediatamente ao redor da entrada
- Ou seja, se a entrada tem n símbolos
 - A fita terá n+2 posições
- A MT pode ler/escrever na fita
 - Mas não pode se mover além dos delimitadores

A linguagem de uma MT com fita limitada

- O conjunto de linguagens aceitas pelas máquinas de Turing com fita limitada é chamado de
 - Linguagens sensíveis ao contexto
- Na hierarquia de Chomsky

Hierarquia	Gramáticas	Linguagens	Autômato mínimo
Tipo-0	Recursivamente Enumeráveis	Recursivamente Enumeráveis	Máquinas de Turing
Tipo-1	Sensíveis ao contexto	Sensíveis ao contexto	MT com fita limitada
Tipo-2	Livres de contexto	Livres de contexto	Autômatos de pilha
Tipo-3	Regulares (Expressões regulares)	Regulares	Autômatos finitos

Linguagens sensíveis ao contexto

 Lembre-se da restrição das gramáticas livres de contexto (lema do bombeamento):

- Em algumas LP, variáveis precisam ser declaradas antes de serem utilizadas
 - É o mesmo caso da linguagem {ww | w em um alfabeto com mais de um símbolo}
- Essas linguagens não são livres do contexto

- Considere a gramática (livre de contexto) abaixo:
 - \circ $E \rightarrow E + E$
 - \circ E \rightarrow E * E
 - \circ $E \rightarrow E E$
 - \circ E \rightarrow E / E
 - \circ E \rightarrow (E)
 - \circ E \rightarrow a
 - \circ E \rightarrow b
- Considere o próximo passo de derivação para a seguinte cadeia:
 - \circ E + E * (E E)
- Iremos substituir o E mais à esquerda

- E + E * (E E)
- A princípio, é possível usar qualquer regra que comece com E → ...
 - Claro, depende da cadeia de terminais sendo reconhecida
- Mas o importante aqui é: as regras não impõem restrição à substituição!
 - Todas as regras podem ser usadas em qualquer ocorrência de E!
 - Não importa se o E aparece no começo da cadeia, após os parêntesis, depois do +, etc
 - Ou seja, não importa o CONTEXTO, qualquer regra pode ser usada

- Suponha agora que queiramos fazer uma restrição adicional:
 - Sempre que aparecer logo após a abertura de parêntesis, uma expressão deve ser uma soma ou uma subtração, ou seja:
 - a + b * (a b * c) faz parte da linguagem
 - a + b * (a / b + c) não faz parte da linguagem
 - a + b * (a * c) não faz parte da linguagem
- Poderíamos modificar a gramática para acrescentar essa restrição
 - \circ E \rightarrow E + E
 - \circ E \rightarrow E * E
 - \circ $E \rightarrow E E$
 - \circ E \rightarrow E / E
 - \circ E \rightarrow a
 - $\circ \quad E \to b$
 - $\circ \quad \mathsf{E} \to (\;\mathsf{E'}\;)$
 - \circ E' \rightarrow E + E | E E

Exemplo de dependência do contexto. Quando abre parêntesis, E "muda" um pouquniho

- Suponha agora que queiramos fazer outras restrições:
 - Sempre que aparecer logo após o sinal de +, uma expressão não pode ser soma
 - Sempre que aparecer antes de fechar o parêntesis, uma expressão deve ser uma divisão
 - o Etc...
- Poderíamos modificar a gramática para acrescentar essas restrições
 - Iríamos criar regras adicionais, replicando símbolos para cobrir todos os casos
- Mas existem casos onde não é possível adicionar essa restrição em uma CFG
 - Justamente aqueles cobertos pelo lema do bombeamento para linguagens livres de contexto

Linguagens livres de contexto

- Ex: $\{a^nb^nc^n \mid n \ge 1\}$
- Nesses casos, é necessário adicionar sensibilidade ao contexto à gramática de forma explícita
- Uma gramática sensível ao contexto é similar a uma gramática livre de contexto, porém as regras obedecem ao formato α → β, onde:
 - α pode ter qualquer quantidade de símbolos terminais e/ou não-terminais
 - Mas pelo menos um não-terminal
 - β é composto de terminais e/ou não-terminais (assim como nas CFGs)
 - |β| ≥ |α| ou seja, o lado direito possui uma quantidade de símbolos não-inferior à do lado esquerdo da mesma regra

• Ex:

- \circ E \rightarrow E + E
- \circ E \rightarrow E * E
- \circ $E \rightarrow E E$
- \circ E \rightarrow E / E
- \circ E \rightarrow (E)
- \circ E \rightarrow a
- \circ E \rightarrow b
- \circ (E \rightarrow E + E
- \circ (E \rightarrow E E

- Outro exemplo:
 - \circ S \rightarrow aSBC
 - \circ S \rightarrow aBC
 - \circ CB \rightarrow BC
 - \circ aB \rightarrow ab
 - \circ bB \rightarrow bb
 - \circ bC \rightarrow bc
 - \circ cC \rightarrow cc
- Faça algumas derivações e veja o resultado:
 - \circ {aⁿbⁿcⁿ | n \geq 1}

- Outro exemplo:
 - \circ S \rightarrow aSBC
 - \circ S \rightarrow aBC
 - \circ CB \rightarrow BC
 - \circ aB \rightarrow ab
 - \circ bB \rightarrow bb
 - \circ bC \rightarrow bc
 - \circ cC \rightarrow cc

Recursão simples, do centro para fora. Produz formas sentenciais onde para cada "a" existe um "BC": aaBCBC, aaaaBCBCBCBC

"Inverte" os BCs, colocando-os em ordem, mas sem alterar sua quantidade: aaaBCBCBC ⇒ aaaBBCCBC ⇒ aaaBBCCCC

Adiciona os terminais, mas somente se estiverem na ordem correta!

- São ditas monotônicas
 - O comprimento das formas sentenciais durante o processo de derivação nunca diminui
 - Devido à restrição |β| ≥ |α|
 - Consequência imediata:
 - não existe regra do tipo $S \rightarrow \epsilon$
 - Ou seja, estritamente falando, a cadeia vazia não faz parte de nenhuma linguagem sensível ao contexto
 - Mas essa restrição normalmente é desconsiderada na prática
- Algumas gramáticas sensíveis ao contexto podem ser convertidas em gramáticas livres de contexto
 - Aquelas que não podem são gramáticas estritamente sensíveis ao contexto
 - Exemplo anterior

Resumindo

- São gramáticas mais genéricas do que as livres de contexto
- Denotam as linguagens livres de contexto
- São reconhecidas por Máquinas de Turing com fita limitada
- Toda gramática livre de contexto é sensível ao contexto
 - Desconsiderando o caso da cadeia vazia, obviamente

Finalizando

- E se "relaxarmos" as restrições das gramáticas sensíveis de contexto?
- Ou seja, as regras obedecem ao formato α → β, onde:
 - α pode ter qualquer quantidade de símbolos terminais e/ou não-terminais
 - β pode ter qualquer quantidade de símbolos terminais e/ou não-terminais
- Essas gramáticas são chamadas de gramáticas irrestritas
 - Ou gramáticas recursivamente enumeráveis
 - Que são as gramáticas Tipo-0

Finalizando

• Exemplo:

- \circ S \rightarrow aAbcC
- \circ bc \rightarrow B
- \circ ABC \rightarrow b

Lado esquerdo não possui não-terminal

Lado direito tem comprimento menor que o esquerdo (gramática não-monotônica)

Finalizando

Hierarquia de Chomsky completa

Hierarquia	Gramáticas	Linguagens	Autômato mínimo
Tipo-0	Recursivamente Enumeráveis ou irrestritas	Recursivamente Enumeráveis	Máquinas de Turing
Tipo-1	Sensíveis ao contexto	Sensíveis ao contexto	MT com fita limitada
Tipo-2	Livres de contexto	Livres de contexto	Autômatos de pilha
Tipo-3	Regulares (Expressões regulares)	Regulares	Autômatos finitos

Fim

Aula 23 - Máquinas de Turing restritas