Algorithmic Game Theory, 2023 Spring Homework 2

Zhengyang Liu

Instructions:

- 1. Feel free to discuss with fellow students, but write your own answers. If you do discuss a problem with someone then write their names at the starting of the answer for that problem.
- 2. Please type your solutions if possible in LATEX or Word whatever is suitable.
- 3. Even if you are not able to solve a problem completely, do submit whatever you have. Partial proofs, high-level ideas, examples, and so on.

Problem 1. (2pt) Pick your favourite result in our class and state your reason.

Problem 2. (4pt per question) Given a set function $v: 2^M \to \mathbb{R}_{\geq 0}$, and for any subsets $S, T \subseteq M$ we have that

$$v(S) + v(T) \ge v(S \cap T) + v(S \cup T).$$

For simplicity, we abuse notations $S \cup \{j\}$ as S + j and $S \setminus \{j\}$ as S - j, for any $j \in M$.

1. Prove that for any $S \subseteq T \subseteq M$ and $j \in M$, we have

$$\frac{v(T+j)}{v(T)} \le \frac{v(S+j)}{v(S)}.$$

2. Prove that for any $T \subseteq M$ we have

$$v(T) \ge \sum_{k \in T} \left[v(T) - v(T - k) \right].$$

Problem 3.

- 1. (3pt) Show that EFX always exists for identical valuations.
- 2. (2pt) Show that EFX always exists when n=2. (Hint: you can use the first result.)

Problem 4. (5pt) Given a valuation function $v: 2^{[m]} \to \mathbb{R}$ which is normalized (i.e., $v(\emptyset) = 0$) and monotone (i.e., $v(S) \le v(T)$ once $S \subseteq T \subseteq [m]$). v is additive iff $v(S) = \sum_{i \in S} v(i)$. v is submodular iff $v(S \cup T) + v(S \cap T) \le v(S) + v(T)$ for any $S, T \subseteq [m]$. And v is XOS iff there exist t additive valuations $\{a_1, \ldots, a_t\}$ such that $v(S) = \max_{r \in [t]} a_r(S)$ for every $S \subseteq [m]$.

Prove that any monotone and normalized submodular function can be written as an XOS function.