Mathematical Logic

homework 6

Problem 1 Let $\Phi \subseteq L^S$ be finite, and let $\in L^S$ with $\Phi \vdash \varphi$. Note that a proof might use formulas built on any symbol in S.

Define $S_0 \in S$ to be the set of symbols that occur in Φ and φ . Then there is a proof for $\Phi \vdash \varphi$ such that every formula occurs in the proof is an S_0 -formula.

Solution: By theorem 1.2, we have a S-interpretation \mathfrak{I}^{Φ} .

$$\mathfrak{I}^{\Phi} \models \varphi \Longleftrightarrow \Phi \vdash \varphi$$

same as S_0 -interpretation \mathfrak{I}_0^{Φ} , let \mathfrak{I}_0^{Φ} has same interpretation on function and relation with \mathfrak{I}^{Φ} . By Coincidenc lemma

$$\mathfrak{I}^{\Phi} \models \varphi \Longrightarrow \mathfrak{I}_{0}^{\Phi} \models \varphi \Longrightarrow \Phi \vdash \varphi$$

Problem 2 Assume that for every set A there is a well order $\leq \subseteq A \times A$. Prove Zorn's Lemma.

Solution: First we proof in any partially ordered set (S, \leq) there is a maximal chain (a chain C for which no $C \cup \{s\}$ is a chain for any s in S/C:

For one chain C_0 , if for any s in S/C_0 that $C_0 \cup \{s\}$ is not a chain, then C_0 is maximal chain. Otherwise, let $C_1 = C_0 \cup \{s\}$, $C_0 \cup \{s\}$ is a chain. Similarly we can define C_2, C_3, \dots, C_n . and define $M = \{C_0, C_1, C_2, \dots, C_n\}$, Because $C_0 \subseteq C_1 \subseteq C_2 \dots \subseteq C_n$, so M is well-ordering. and M is transfinite induction object by transfinite induction.

Author(s): 于峥

So C_n is the upper bound of M and the maximal chain of S, and C_n is also well-ordering. Let a is the upper bound of C_n , if $\exists b, a \leq b$, then $C_n \cup \{b\} \subseteq$ C_n . hence a = b. So a is the maximal element of S.