Основы научных исследований

Академик Зельдович был атеистом стал верующим. печалька

- 1. как строить доклад
- 2. как писать курсовую
- 3. как общаться с руководителем
- 4. как планировать эксперимент
- 5. как проверять результаты эксперимента

Орг.вопросы: Будут Π/P в 10-15 и в 12-00 в понедельник. 8 штук. Будет экзамен. gradov@bmstu.ru +Kурсовая работа. Часть HИPа оформить как курсовую работу по тематике HИP.(идёт в формирование магистерской диссертации) эпохабельный результат

Лекция№1. Вводный замечания. Основные понятия. Зачем вообще наука существует. Какова ситуация в мире и в России. Перспективы научной деятельности. Курс, его цели и задачи.Некоторые моменты научной деятельности. Терминология.

Функция отклика (по результатам эксперимента). Наукоёмкость всех областей научной деятельности сильно повышается. А в России(?) в(и до) 90-х годах наука успешно развивалась, но внедрение всегда являлось проблемой. Политика всегда управляла наукой. Материальное обустройство научных исследований разворовывалось. до 89 года 2000000 прикладных и фундаментальных учёных. В 99 году 800000 осталось, 50000 учёных уехали заграницу. У каждого учёного есть "международный рейтинг". Ведётся работа в академии наук (от они не нужны, до того, что это единственное, что есть). Люди с особым складом ума.

Почему студентам полезно заниматься научными исследованиями? Получение теоретических знаний.

Аналитические записки, отчёты, презентации.

Цель:

- 1. Формирование у студентов представлений о современных методологий и методах научных исследований,
- 2. способах их исследований,
- 3. организаций и планировании,
- 4. системе научных учреждений и подготовке кадров в стране
- 5. информационном обеспечении исследований
- 6. грамотном оформлении результатов исследований

Задачи дисциплины

1. рассмотрение вопросов об организаци науки и научных исследований

2. заканчивая написанием квалификационных работ, статей и диссертаций

Философские проблемы познания. Задача науки систематизация знаний для формирования представления об окружающем мире. Наука - способ познание мира. Наука и искусство - творчество, но разница есть.

Знание. Его источник: воспоминание души или свежепойманные факты?

Все науки делятся на:

- 1. естесственные
- 2. технические
- 3. гумманитарные
- 4. общественные (укладываются в гумманитарные)

в рамках этих наук существует 15000 дисциплин.

Определение науки

таких определений >150

Наука - форма духовной деятельности людей, направленное на производство знаний о природе, обществе, и самом познании, имеющее непосредственной целью постижение истины и открытие объективных законов на основе обобщения реальных фактов их взаимосвязей.

Наука - это и творческая деятельность по получению нового знания, и результат такой деятельности(т.е. знания приведённые в целостную систему на основе определённых принципах), и процесс их производства.

Наука - это деятельность человека по выработке, систематизации и проверке знаний. Научным является не всякое знание, а лишь хорошо проверенное и обоснованное. (обыденное знание(?))

Наука - сфера человеческой деятельности, вид деятельности, отрасли знаний, социальный институт.

Метод - способ получения научных фактов.

Методика - совокупность **конкретных** приёмов, правил и способов осуществления какого-либо действия.(исследование проблемы, задачи), ближе к алгоритму,

Методология - совокупность принципов, форм и способов определённого вида деятельности.

12.09.2013 Что есть научное исследование?

Научное исследование - целенаправленное действие, которое должно привести к получению новых знаний. (а не своими словами) целостная система теоретических и эмпирических процедур, способствующих получению нового знания об исследуемом объекте для решения конкретных теоретических и практических проблем.

Парадигма - способ организации научного знания, задающий образцы и модели постановки и решения задач, господствующий в данной отрасли знаний.

Научное исследование, его сущность и особенности. научное исследование - целеноправленный процесс получения занания, результатом этого процесса является система понятий, законов и теорий.

Отличительный признаки научного иссоледования:

- 1. обязательно целенаправленный процесс "на берегу" формулируются задачи и цели.
- 2. процесс, направленный на поиск нового
- 3. систематичность
- 4. плановость
- 5. доказательность

Изучать какой-либо объект (процесс, явление) в научном смысле означает:

- 1. вести поисковые исследования
- 2. быть научно объективным Нельзя отбрасывать факты, которые не укладываются в концепцию(гипотезу) исследователя.
- 3. публикация результатов

Методы исследования.

Общие замечания. Метод - путь к результату. Основная функция метода - внутренняя орагнизация регулирования процесса познания.

Метод обеспечивает правильную ориентацию в решении задачи. Ложным методом нельзя получить истину. Метод дисциплинирует поиск истины. Позволяет экономить силы, средства, время и двигаться к цели кратчайшим путём.

Метод - фонарь (разные методы - разноцыветные фонари?)

Скажи "НЕТ" крайностям: Методологический негативизм, методологическая эйфория.

требуется от исследователя:

- 1. фантазия
- 2. интуиция
- 3. смелость
- 4. аналитичность мышления

Какие бывают методы? Классификация:

- 1. дузовные
- 2. практические

В зависимости от роли и места в процессе научного знания, могут быть

- 1. формальные / содержательные
- 2. эмпирические / теоретические
- 3. фунедаментальные / прикладные
- 4. и т.д.

Методы могут быть разделены:

- 1. естесственных наук
 - (а) для неживой материи
 - (b) для живой материи
- 2. социально-гумманитарных наук

Выделяют также

- 1. качественные и количественные
- 2. детерминированные и вероятностные

И, наконец, существуют оригинальные методы и производные от них и т.д.

классфиикация методов по степени общности и широте приминения.

- 1. философские методы метафизический (от Аристотеля), диалектический (Гегель), материалоизм (Маркс, Энгельс) аналитические методы молекулярная динамика, гносеология
- 2. общенаучные методы Понятия методов: информация, модель, структура, функция, система, синергетика, синергетика направление, занимающаяся хаосом. Хаос, порядок, беспорядок, бифуркация

- (а) эмпирический
- (b) теоретический
- (с) общелогический
- 3. частнонаучные методы это методы механики, физики, химии, биологии, социальногумманитарных наук.
- 4. дисциплинарные методы почти перечень того, что надо делать
- 5. междисциплинарные методы методы, которые применимы на стыке наук.

Лекция №19.09.2013

Общенаучные методы -> Методы эмпирического исследования -> наблюдение - целенаправленное изучение предметов, процессов, явлений, основанное на данных органов чувств (ощущения, первичная реакция организма; Восприятие; представление).

Наблюдение может быть непосредственным и опосредованным (приборами и тех.устройствами).

требования к научным наблюдениям

- 1. подготовленная методика (набор методов, принципов)
- 2. объективность получаемых результатов
- 3. расшифровка показаний приборов. познавательный итог наблюдения описание средствами естественного и каких-то искусственных языков, полученных сведений.

измерить какую-то величину - сравнить с эталоном.

Империческое исследование Эксперимент - активное и целенаправленное вмешательство в протекание изучаемого процесса, соответствующее изменение объекта(процесса) или его воспроизведение в

специально созданных и контролируемых условиях.

Когда процессс воспроизводится искусственно или ставится в определённым образом созданные условия.

Основные особенности эксперимента:

- 1. более активное отношение к процессу(объекту), вплоть до его изменения и преобразования
- 2. многократная воспроизводимость изучаемого процесса (объекта)
- 3. возможность рассмотрения процессов в чистом виде
- 4. возможность контроля за поведением объекта
- 5. вмешательство в ход процесса

Основные стадии эксперимента:

- 1. планирование эксперимента (устанавливается тип, средства, методы)
- 2. проведение
- 3. интерпретация результатов
- 1. проверка существующих теорий и гипотез
- 2. формирование новых научных концепций

эксперименты бывают:

- 1. физические
- 2. практические
- 3. химические
- 4. социальные

- 5. поисковые
- 6. биологические

Мысленный эксперимент - теоретическая модель реальных экспериментальных ситуаций, в этих исследований оперируют не реальным предметами, а их мысленными образами. Теоретические методы:

- 1. формализация представление содержательного знания в знаково символьной форме Естественный язык характеризуется многозначностью, многогранностью, гибкостью, неточностью, образностью; представляет из себя систему, наполненную новыми смыслами. Обеспечивается более строгое выражение знания, более пригодное для дальнейшего анализа языками математики, логики, химии, алгоритмическими языками.
- 2. аксиомизация аксиоматический метод способ дедуктивного построения теорий.
 - (а) формулирование системы понятий
 - (b) ограниченное количество аксиом
 - (с) строится система правил вывода
- 3. метод гипотез. гипотеза положение, выдвигаемое в качестве предварительного условного объяснения какого-то процесса/объекта/явлени Истинность этого положения неопределённа и проблематична.

Общая схема метода гипотез.

- 1. Попытка теоретического объяснения
- 2. FAIL
- 3. выдвижение предположения (догадки) о причине и закономерности явления

- 4. FAIL
- 5. Проверка Выведение из гипотезы следствий, экспериментальная проверка этих следствий.
- 6. FAIL
- 7. FAIL
- 8. ????
- 9. PROFIT

Общелогические методы Моделирование - метод исследования, при котором процесс/объект/явление/события заменяется своей моделью и все исследования проводятся с этой моделью, а потом результаты, полученные при работе с моделью, распространяются на тот объект, который моделью замещали.

Модель - представление объекта в виде, отличном от формы его реального существования.

Модель: Материальная, идеальные (абстрактные), модели суждения.

1. маретиальные

- (а) физические
- (b) геометрические
- (с) аналоговые

2. идеальные

- (а) текстовые
- (b) графические
- (с) математические
- (d) интуитивные

3. модели суждения

Анализ - расчленение целого на составные части и их самостоятельное изучение по частям

Синтез - объединение(реальное или мысленное) в единое целое Абстрагирование -

Идеализация - сам принцип построения, освоения действительности Индукция - метод исследования, когда идём от частного к общему Дедукция - от общего к частному

Грубые вероятностных статистических методов Математическая статистика Статистическая физика Квантовая механика

31.10.2013

Этапы исследовательского процесса:

- 1. общий анализ проблемы исследования **Поставить проблему** это значит:
 - (а) Отделить известное от неизвестного;
 - (b) Определить факты уже объяснённые от тех фактов, которые надо объяснить;
 - (с) Определить факты, которые соответствуют имеющимся теориям и факты им противоречащие;
 - (d) Сформулировать вопрос, составляющий суть проблемы, обосновать его правильностьдл янауки и общества;
 - (е) Наметить общую структуру задач, подлежащих решению;
 - (f) Методы решения;

Уровень разработанности проблемы и наличие потребности общества в её разработке или в получении новых знаний по этой проблеме.

- 2. Формулирование цели исследования. Должна формулироваться конкретно. Могут формулироваться промежуточные. В цели надо сформулировать проектируемый результат работы. И тот уровень знания, который должен быть достигнут.
- 3. Разработка гипотезы исследования
- 4. *Постановка задач исследования* На этом этапе гипотетически сформированные, на этом этапе гипотетические внутренние механизмы соотносятся с целью исследования.
- 5. Разработка программы и методики эксперимента и техники регистрации его результатов Репрезентативность Валидность соответствие методов и задач Необзодимая разрешающая способность -

6. Эмпирический этап На этом этапе происходит получение и первичная обработка материала Действительные факты Научные - отражённые сознанием (зафиксировано на опред. длине волны)

Критическую проверку каждого факта очищая его от случайного и несущественного. Строгое описание в терминах своего научного направления. Отбор из типовых факторов, выражающих некоторые тенденции. Классификация факторов. Выявление основных зависимостей факторов.

7. Обобщение и синтез данных. Обощение экспериментальных данных. Теоретический этап.

На данном этапе начинается воссоздание целостного представления об объекте. формулируется в виде качественной (колличественной теории). ретроспективная ревизия, выдвинутая гипотезе. И переод её в ранг той теории, которая оказалась состоятельной. Формулирование общих и частных следствий, создаваемые теорией., которые допускают проверку в другом месте, другими исследователями в другое время при строгом соблюдении условий. Методологическая оценка ваших исследований, с целью выявления тех методик, которые были использованы для включения в общую методологическую базу науки.

- 8. Выделение той части, разработанной теории, которая имеет прикладной характер. И внедрение её в практику.
- 9. Оформление результатов работы

Работа с источниками информации

понятие документов, виды документов.

Документы служат для фиксации социального опыта.

Цель - сохранение информации, разной формы и назначения, с тем, чтобы иметь возможность её использовать по мере необходимости doceo- извещать, учить

Важная деловая бумага, диплом, свидетельство В более поздних словарях - юр.источник, имеющий юр.силу Функции документа:

- 1. общие
 - (а) социальная
 - (b) информационная
 - (с) Коммуникативная
 - (d) культурная
- 2. специальные
 - (а) правовая
 - (b) познавательная
 - (с) мемориальная

Документ может способствовать планированию, организации, коллективной деятельности. издания

- 1. книжное
- 2. журнальное
- 3. газетное
- 4. буклет
- 5. карточное

6. плакат

7. комплектное

Связанность или несвязанность с другими изданиями Временные особенности выпуска

Неопубликованные документы - документы, хранящиеся в фондах научно-технических библиотек и органах научно-технической информации, в них содержатся материалы, собранные из работ... НИР и ОКР, работах научных экспедиций. Работе научно-технических советов, разного рода командировок. Диссертации и авторефераты книг.. описание алгоритмов и программ. ПРоекты и исследования, депонированные акт гос. испытаний видео-фотодокументы 21.11.2013 Документы -

1. Научные

(а) неопубликованные

- i. диссертации законченное научное исследование научная новизна, практическая значимость (шик, если внедрено, созданно изделие, установка, если метод где-то применён, или то направление, в котором может быть применено), аппробация работы (как, кто и когда проверял и отслеживал: симпозиумы, где выступал)
- іі. авторефераты книг
- ііі. депонированные статьи через 4 месяца излагается краткое содержание
- iv. Препринты (20-40 страниц) решена какая-то задача, и в целях скорострельности публикации "столбят авторство"
- v. Переводы научно-технической литературы

(b) опубликованные

і. конференции, симпозиумы...

- іі. тематические сборники
- ііі. журнальная статья (журнал ИТЭФ)
- iv. монография
- v. избранные произведения(выдающихся людей)
- vi. Полные собрания сочинений классиков

2. Научно-популярные

3. Учебные

- (а) учебники
- (b) учебные пособия
- (с) сборники задач и упражнений
- (d) хрестоматии
- (е) практикумы
- (f) Практические руководства
- (g) Учебно-методическая литература препод

4. Справочные

- (а) энциклопедии (общие, отраслевые)
- (b) Производственно-технические справочники
- (с) толковые словари (этимологические)
- (d) терминологические словари
- (е) многоязычные словари
- (f) статистические справочники
- (g) биографические справочники
- (h) нормативные

5. Производственные

6. Официальные

- (а) законы РФ
- (b) подзаконные акты
- (с) указы
- (d) приказы
- (е) инструкции, инструктивные письма
- (f) распоряжения
- 7. Литературно-художественные
- 8. Патентная литература
 - (а) патенты на полезную модель
 - (b) на товарный знак
 - (с) и т.д.

Описание статьи

Какие виды статей бывают:

- 1. оригинальные (где есть ваши новые идеи)
- 2. обзорные работы когда её заказывают (от 8 до 15-16)

Когда пишется статья?

- 1. "застолбить" результат, своё приоритет
- 2. чтобы получить известность и авторитет в научных кругах
- 3. развитие науки

25.11.2013

1) Не является ли то, что вы хотите представить общественности изобретением?

если изобретение, то "заявка на изобретение а тогда не стоит статью

публиковать (после заявки на изобретение можно публиковать статью).

2) Разглашение секретности

Нужен ли план статьи или можно писать без плана? Можно чётко написать план, разбить статью на главы и т.д. Т.о. структурируем план Делать статью "пока из неё ничего нельзя больше выкинуть без потери смысла"

структура статей

1. Название статьи

Должно отражать тему работы, чтобы можно было понять о чём это

2. Аннотация

размер не более 120-150 слов

Надо отобразить вкратце, что сделали, и значение того, что сделали

Сопровождается ключевыми словами

3. Вводная часть

На чём базируемся: диссертации, статьи, и т.д. Зачем была сделана статья? (чего не хватает в статьях предшественников) Актуальность, направление исследования, новизну методов и т.д.

4. основная часть

Приводим результаты исследований, те материалы ссылки: должны быть методы, которые примеряете, результаты, которые получены, интерпретация результатов, указание точности результата

воспроизводимость результата указывать на отрицательные результаты

Кому адресована работа?

Стройности изложения

материал должен быть "сбитый связь с началом нельзя терять Материал полезно разбивать на рубрики

Терминология

5. Выводы

Что именно получено? "Я утверждаю, что ..." (например, "..получено.. "..") Выводов не может быть много

6. список литературных источников достоверный(!!)

Язык изложения Материал не должен быть скучен "В целях -= "Для" слово не должно повторяться на странице максимум 1 раз

Нет возвратным глаголам "Некоторые модификации метода"неопределённость (плохо)

05.12.2013

Обзорная статья

Отражает состояние и уровень развития какой-либо отрасли науки или практики. (о состоянии науки, области техники, производственной деятельности, функаментальных и прикладных данных)

Когда пишется обзорная статья?

Когда в описываемой области накопились какие-то новые результаты, но они разрозненны по разным изданиям и требует осветить их с единой позицией.

Требуется отобразить отрасль науки, краткое введение в проблему, что было сделано(структуризация)

Критический анализ методов, производств и пр., чтобы читатель "сразу вышел на уровень"

26.09.2013 Лабораторный практикум

$$\lambda \frac{\delta^{2}u}{\delta x_{1}^{2}} + \lambda \frac{\delta^{2}u}{\delta x_{2}^{2}} = f(x_{1}, x_{2})$$

$$u(x_{1}, x_{2})$$

$$x_{1} = 0, u(0, x_{2}) = m_{1}(x_{2})$$

$$x_{1} = a, u(a, x_{2}) = m_{2}(x_{2})$$

$$x_{2} = 0, u(x_{1}, 0) = m_{3}(x_{2})$$

$$x_{2} = b, u(x_{1}, b) = m_{4}(x_{2})$$

$$\frac{\delta u}{\delta x_{1}} = \frac{F}{\lambda}$$

$$-\lambda \frac{\delta^{2}u}{\delta x_{1}^{2}} = \alpha(i - u_{0})$$

$$\Lambda_{1}u = \lambda \frac{u_{n-1,m} - 2u_{n,m} + u_{n+1,m}}{h_{1}^{2}}$$

$$\Lambda_{2}u = \lambda \frac{u_{n,m-1} - 2u_{n,m} + u_{n,m+1}}{h_{1}^{2}}$$

где $u_{n,m} = u(x_{1n}, x_{2m})$

Обозначаем
$$y_{n,m}$$

$$\Lambda_1 y + \Lambda_2 y = f(x_{1\,n}, x_{2\,m})$$

$$\frac{\lambda}{h_1^2}(y_{n-1,m}-2y_{n,m}+y_{n+1,m})+\frac{\lambda}{h_2^2}(y_{n,m-1}-2y_{n,m}+y_{n,m+1})=f(x_{1,n},x_{2,m})$$
 где $1<=n<=N-1,1<=m<=M-1$

$$|u(x_{1,n}, x_{2,m}) - y_{n,m}| \to 0$$

Для решения системы нужнор сформировать матрицу, полученную от СЛАУ и решать её определённым методом:

- 1. Метод Зейделя
- 2. Faycca
- 3. Зейделя верхней
- 4. Установления

В методе установления в левую часть добавляются $\frac{\delta u}{\delta t}$

$$\frac{\delta u}{\delta t} = \lambda \frac{\delta^2 u}{\delta x_1^2} + \lambda \frac{\delta^2 u}{\delta x_2^2} - f(x_1, x_2)$$

Выберем метод установления.

Для решения параболического типа:

- 1. метод продольно-поперечной прогонки годится для 2мерного варианта
- 2. локально-одномерный метод обощается на произвольное количество измерений

Для 1-го метода разностная схема выглядит следующим образом: Вводится промежуточный слой

$$ec{t} = t_m + rac{ au}{2}$$

$$rac{y_{n,m}^{ec{}} - y_{n,m}}{0.5 au} = \Lambda_1 y_{n,m}^{ec{}} + \Lambda_2 y_{n,m} - f_{nm}, (1), t + rac{ au}{2}$$

$$rac{y_{n,m}^{ ext{C}} - y_{n,m}^{ec{}}}{0.5 au} = \Lambda_1 y_{n,m}^{ec{}} + \Lambda_2 y_{n,m}^{ ext{C}} + \sigma$$
 Крышкой $-f_{nm}, (2), t + au$

Как решать заданный уравнения? первое уравнение содерит неизвестную $y_{n,m}$, на эту неизвестную действует оператор Λ_1 , т.е. должна решаться система из 3-хдиагональной матрицы. второе уравнение содержит $y_{n,m}^{\mathbf{c}}$, на эту неизвестную действует оператор Λ_2 , получается система алгебраических уравнений с трёхдиагональной матрицей, при этом 1 <= n <= N-1

$$-\frac{y_{n,m} - y_{n,m}}{0.5\tau} + \lambda \frac{y_{n-1,m} - 2y_{n,m} + y_{n+1,m}}{h_1^2} = -(\lambda \frac{y_{n,m-1} - 2y_{n,m} + y_{n,m+1}}{h_2^2} - f_{n,m})$$

$$A_n y_{n-1,m} - B_N y_{n,m} + C_n y_{n+1,m} = -F_n$$

$$A_n = \frac{\lambda}{h_1^2}$$

$$C_n = \frac{\lambda}{h_1^2}$$

$$B_n = \frac{2\lambda}{h_1^2} + \frac{1}{0.5\tau} = A_n + C_n + \frac{1}{0.5\tau}$$

$$F_n = (\frac{\lambda}{h_1^2} y_{n,m-1} - 2y_{n,m} + y_{n,m+1} - f_{n,m})$$

аналогично

Суть метода прогонки:

$$A_{n}y_{n-1} - B_{n}y_{n} + C_{n}y_{n+1} = -F_{n}$$

$$y_{n} = \psi_{n+1}y_{n+1} + \eta_{n+1}; (*)$$

$$y_{n-1} = \psi_{n}y_{n} + \eta_{n}$$

$$A_{n}(\psi_{n}y_{n} + \eta_{n}) - B_{n}y_{n} + C_{n}y_{n+1} = -F_{n}$$

$$y_{n} = \frac{-C_{n}y_{n+1} - F_{n} - A_{n}\psi_{n}}{A_{n}\psi_{n} - B_{n}} = \frac{C_{n}}{B_{n} - A_{n}\psi_{n}}y_{n+1} + \frac{F_{n} + A_{n}\eta_{n}}{B_{n} - A_{n}\psi_{n}}$$

$$\psi_{n+1} = \frac{C_{n}}{B_{n} - A_{n}\psi_{n}}$$

$$\eta_{n+1} = \frac{F_{n} + A_{n}\eta_{n}}{B_{n} - A_{n}\psi_{n}}$$

Замечание:

В граничной точке имеем:

$$y_0 = \psi_1 y_1 + \eta_1$$

$$24$$

$$y_0 = mu_1(0, m)$$
$$\psi_1 = 0$$
$$\eta_1 = mu(0, m)$$

Для обратного хода $y_N = mu_2(N, M)$

Другой метод: данную детерминированную задачу можно решить статистическим методом

03.10.2013

$$\lambda \frac{\delta^2 u}{\delta x_1^2} + \lambda \frac{\delta^2 u}{\delta x_2^2} = f(x_1, x_2)$$
$$u(x_1, x_2) = T(x_1, x_2)$$

Заданы дополнительные условия:

$$x_1 = 0$$

$$x_1 = a$$

$$x_2 = 0$$

$$x_2 = b$$

Граничные условия І-го рода

$$x_1 = 0; u(0, x_2) = mu_1(x_2)$$

Граничные условия II-го рода

$$x_1 = 0; -\lambda_1 \frac{\delta u}{\delta x_1} = F_1(x_2)$$

Граничные условия III-го рода

$$x_1 = 0; -\lambda_1 \frac{\delta u_1}{\delta x_1} = \alpha_1 (u - u_0)$$

Если граничные условия 1-го рода, то см.предыдущую лекцию Рассмотрим граничные условия 2-го рода. В одной точке

$$-\lambda_{1}\frac{y_{1m}-y_{0m}}{h_{1}}=F_{1}(x_{m2})$$

$$y_{0m}=y_{1m}+F_{1}\frac{h_{1}}{\lambda_{1}}$$

$$y_{0m}=\psi_{1}y_{1m}+\eta_{1}$$

$$\psi_{1}=1$$

$$\eta_{1}=F_{1}\cdot\frac{h_{1}}{\lambda_{1}}$$
 Если $x_{1}=a, -\lambda_{1}\frac{\delta y}{\delta x_{2}}=F_{2}$
$$-\frac{\lambda_{1}}{h_{1}}(y_{Nm}-y_{N-1,m})=F_{2}$$

$$y_{N-1,m}=y_{Nm}+\frac{h_{1}}{\lambda_{1}}F_{2}$$

$$y_{N-1,m}=\psi_{N}y_{Nm}+\eta_{N}$$

$$y_{Nm}+\frac{h_{1}}{\lambda_{1}}F_{2}=\psi_{N}y_{Nm}+\eta_{N}$$

$$y_{Nm}=\frac{\eta_{N}-\frac{h_{1}}{\lambda_{1}}F_{2}}{1-\psi_{N}}$$

$$y_{nm}=\psi_{n+1}y_{n+1,m}+\eta_{n+1}$$

10.10.2013

Фосфатное стекло - коэфффициент тепло

$$f = f_0 e^{a_1 x_1^2 + a_2 x_2^2}$$
$$f = f_0 \cos x_1 \sin x_2$$

Краевые условия (на выбор пользователя) 1, 2, 3

$$x_2=0$$
 $u(x_1,0)=mu_1(x)$ 1-го рода $-\lambda rac{\delta u}{\delta x_2}=F(x_1)$ $u(x_1,0)=mu_1(x)$ 1-го рода

Сравнение 2-х методов

ищутся прогоночные коэффициенты по ф-лам при найденных коэффициентах

серия картиночек, об образовании "вести детей через тьму со светильником"Lol использовать студентов для всяких ересей