Συστήματα Ελέγχου Προεργασία 1^{ης} εργαστηριακής άσκησης

Ομάδα εργαστηρίου	25	
Σιώτος Μόδεστος	2016030030	
Μελάκης Αντώνης	2019030016	
Σαΐνη Γεωργία	Δεν εργάστηκε	

Μέθοδος ΖΝ

Βηματική απόκριση ανοικτού συστήματος χωρίς ανάδραση

Κλειστό σύστημα, με ανάδραση

• Kp = 1.0

• Kp = 1.5

• Kp = 2.0

• Kp = 2.5

• Kp = 3.0

• Kp = 3.5

• Kp = 4.0

• Kp = 4.5

• Kp = 5.0

• Kp = 5.5

• Kp = 6.0

• Kp = 6.5

• Kp = 7.0

• Kp = 7.5

• Kp = 8.0

• Kp = 8.5

• Kp = 9.0

Μόνιμες ταλαντώσεις του ελεγχόμενου συστήματος παρατηρούμε για $\mathbf{K}_{p, crit} = \mathbf{8.0}$ Το \mathbf{T}_{crit} το υπολογίσαμε $\mathbf{T}_{crit} = \mathbf{7.3}$ για $\mathbf{K}_{p, crit} = \mathbf{8.0}$ (Ζουμάροντας στο διάγραμμα και επιλέγοντας 2 διαδοχικές κορυφές).

Έτσι οι ρυθμίσεις για P , PI , PID ελεγκτή θα γίνουν:

Ελεγκτής	K	T_{i}	\mathbf{T}_{d}
P	4		
PI	3.6	6.2	
PID	4.8	3.65	0.87

• Βηματική απόκριση με Ρ ελεγκτή

• Βηματική απόκριση με ΡΙ ελεγκτή

• Βηματική απόκριση με PID ελεγκτή

Μέθοδος CHR

Βηματική απόκριση ανοικτού συστήματος χωρίς ανάδραση

Για $\textbf{T}_u = \text{1.7}$ sec και $\textbf{T}_g = \text{6.7}$ sec υπολογίζουμε

Overshoot	0%		20%			
Ελεγκτής	к	Ti	T _d	к	Ti	T _d
P	1.18			2.75		
PI	1.38	8.04		2.36	6.70	
PID	2.36	6.70	0.85	3.74	9.38	0.80

Βηματική απόκριση κλειστού συστήματος με 0 % υπερύψωση P ελεγκτή.

Βηματική απόκριση κλειστού συστήματος με 0 % υπερύψωση PI ελεγκτή.

Βηματική απόκριση κλειστού συστήματος με 0 % υπερύψωση PID ελεγκτή.

Βηματική απόκριση κλειστού συστήματος με 20 % υπερύψωση P ελεγκτή.

Βηματική απόκριση κλειστού συστήματος με 20 % υπερύψωση PI ελεγκτή.

Βηματική απόκριση κλειστού συστήματος με 20 % υπερύψωση PID ελεγκτή.

Τέλος, μας ζητείται η καταγραφή των συναρτήσεων μεταφοράς ελεγκτή και του συστήματος υπό έλεγχο, καθώς και της συνολικής συνάρτησης μεταφοράς για 20% υπερύψωση.

Η συνολική συνάρτηση μεταφοράς του συστήματος θα είναι κοινή:

G(s) =
$$\frac{1}{8s^3 + 12s^2 + 6s + 1}$$

Οι συναρτήσεις μεταφοράς των ελεγκτών θα είναι: Για τον P : Gp = 2.75

Για τον PI : Gpi = Kp *
$$(1 + \frac{1}{Ti} * \frac{1}{s})$$
, όπου Kp = 2.36, $T_i = 6.70$

Για τον PID : Gpid = Kp *
$$(1 + \frac{1}{Ti} * \frac{1}{s} + T_d * s)$$
 όπου Kp = 3.74, T_i = 9.38 , T_d = 0.80

Οι συναρτήσεις μεταφοράς ολόκληρων των συστημάτων είναι:

Για τον P : Sp =
$$\frac{2.75}{8s^3 + 12s^2 + 6s + 3.75}$$

Για τον PI : Spi =
$$\frac{2.36s + 0.3522}{8s^4 + 12s^3 + 6s^2 + 3.36s + 0.3522}$$

Για τον PID : Spid =
$$\frac{2.99s^2 + 3.74s + 0.3987}{8s^4 + 12s^3 + 8.99s^2 + 4.74s + 0.3987}$$