Intel FPGA System Solutions Engineering, project proposal

Advanced power converter

Ben Jeppesen, Manager, Embedded Control and Functional Safety

Advanced power converter

- Attention is switching to the efficiency and cost of power converters.
- FPGAs enable digital control at high frequencies:
 - Reducing the size and cost of passive components required to stabilize voltage
 - Enabling alternatives to PWM switching waveforms to reduce switching losses.
- Aim: create a high performance power converter design example
 - Intel has practical designs to start from, so work can focus on optimization

- Ben Jeppesen
 - leads the Embedded Control and Functional Safety team in Intel FPGA
 - supports customers and strategic marketing of FPGAs in control applications

Existing work on bi-directional DC-DC

- Public paper: wp-01210-electric-vehicles.pdf
 - IGBT, 250 V ↔ 500 V, 50kW
- Simulation at 20 MHz in MATLAB/SimPower
 - Circuit
 - Energy losses in IGBT and diode models
 - Two versions from L, C sizes for PWM:
 - "10kHz", "50kHz"
 - Control
 - Sensing delays simulated
 - Voltage PI control demands L current
 - L current control is PI+PWM or Hysteresis
- PCIM conference paper by Intel

Develop algorithm in MATLAB/Simulink

✓ Fixed step 2e-8s to simulate 50MHz FPGA clock

Electronic simulation

✓ Voltage controller

Replace PI+PWM controller with alternatives, e.g.:

- Hysteresis controller
- Model predictive control
- Neural Net

Performance metrics

- Example results from conference paper:
 - Worst voltage error
 - Voltage deviation from command with changing voltage command and changing load current
 - Converter energy losses (%)
 - Over the duration of a simulation with changing load current
- Optimization on FPGA
 - Minimize resource usage on FPGA
 - logic elements, DSP blocks, memory blocks
 - Maximize clock frequency on FPGA
 - Better control of transistor pair in half-bridge and faster reaction to disturbances
- Can we do better with a new controller?

Aim to test on FPGA and publish...

- Research control algorithms
- Control development
 - MATLAB Simulink, Simscape
- Code development
 - HDL Coder, DSP Builder, hand coding
- HDL verification by simulation
 - ModelSim, VCS
- HDL verification on FPGA
 - Quartus, SignalTap, SystemConsole
- Validation on FPGA with real power electronics
 - Quartus, Terasic Tandem Motion-Power 48 V kit
- Publish as conf paper or new Design Example

Support from Intel

- An Intel engineer will be available for weekly meetings
 - Give technical guidance
 - Use a tool like Trello for project management
 - Advise on team roles
- Intel DSP Builder licenses for FPGA code generation in MATLAB/Simulink
- FPGA development kits when required

##