Group Theory

Paolo Bettelini

Contents

1	Groups			
	1.1	Cayley tables		
	1.2	Definition		
	1.3	Proof of uniqueness of the identity element		
		Proof of uniqueness of the inverse element		
	1.5	Cancellation laws		
	1.6	Inverse of Product		
2	Subgroups			
	2.1	Definition		
	2.2	One-Step Subgroup Test		
		The centralizer subgroup		
		The conjugate subgroup		

1 Groups

1.1 Cayley tables

A binary operation \circ on a finite set G can be visualized using a Cayley table.

Example: $G = \{0, 1\}$ and $\circ \equiv$ multiplication.

0	0	1
0	0	0
1	0	1

1.2 Definition

A group (G, \circ) is a tuple containing a set G and a binary operation \circ on $G \times G$. The operation \circ between a and b may be written as $a \circ b$ or just ab.

The relation must satisfy the following properties

1. Associativity: $\forall a, b, c \in G, a \circ (b \circ c) = (a \circ b) \circ c$

2. Identity: $\exists e \mid \forall a \in G, ea = ae = a$

3. **Inverse**: $\forall a \in G, \exists a^{-1} \in G \mid a^{-1}a = aa^{-1} = e$

4. Closure: $\forall a, b \in G, a \circ b \in G$

The element e is unique whereas a^{-1} depends on a. Every element has a unique inverse.

1.3 Proof of uniqueness of the identity element

Suppose there is more than one identity element, e_1 and e_2 .

$$e_1 = e_1 \circ e_2$$
 since e_2 is an identity
= e_2 since e_1 is an identity

Thus, e_1 and e_2 must be the same. This reasoning can be extended to when we may suppose to have n identity elements.

1.4 Proof of uniqueness of the inverse element

Suppose we have $a \in G$ with inverses b and c.

$$b = b \circ e = b \circ (a \circ c)$$
$$(b \circ a)c = e \circ c$$
$$= c$$

Thus, b and c must be the same. This reasoning can be extended to when we may suppose to have n inverses of a.

1.5 Cancellation laws

Rigth cancellation law

$$ba = ca \implies b = c$$

Left cancellation law

$$ab = ac \implies b = c$$

2

1.6 Inverse of Product

This theorem says that $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$.

We start by noticing that by associativity we have

$$(a \circ b) \circ (b^{-1} \circ a^{-1}) = a \circ (b \circ b^{-1}) \circ a^{-1}$$
$$= a \circ e \circ a^{-1}$$
$$= a \circ a^{-1}$$
$$= e$$

This implies that $(a \circ b)$ is the inverse of $(b^{-1} \circ a^{-1})$. Since $(a \circ b) \circ (a \circ b)^{-1} = e$ we have

$$(a \circ b) \circ (b^{-1} \circ a^{-1}) = e = (a \circ b) \circ (a \circ b)^{-1}$$

We can clearly see that $(b^{-1} \circ a^{-1}) = (a \circ b)^{-1}$.

In general, we have

$$(a_1 \circ a_2 \circ \dots a_n)^{-1} = a_n^{-1} \circ \dots \circ a_2^{-1} \circ a_1^{-1}$$

2 Subgroups

2.1 Definition

Given an algebraic structure $g = (G, \circ)$ and a group $h = (H, \circ)$, h is a subgroup of g $(g \le h)$ if $H \subseteq G$.

2.2 One-Step Subgroup Test

Theorem. Let (G, \circ) be a group and let $H \subseteq G$ where $\emptyset \neq H$. Then (H, \circ) is a subgroup of $(G, \circ) \iff \forall a, b \in H, a \circ b^{-1} \in H$.

Proof. (\Longrightarrow): Assume $(H, \circ) \leq (G, \circ)$. The properties of a group directly infer $\forall a, b \in H, a \circ b^{-1} \in H$ (\Longleftrightarrow): Assume $\forall a, b \in H, a \circ b^{-1} \in H$

- Identity: let a = b, then $a \circ a^{-1}H \implies e \in H$.
- Inverse: Let $k \in H$, a = e and b = k. $a \circ b^{-1} = e \circ k^{-1} \implies k^{-1} \in H$.
- Closure: Let $m, n \in H \implies n^{-1} \in H$ and let a = m and $b = n^{-1}$. $a \circ b^{-1} = a \circ (b^{-1})^{-1} = a \circ b$. This implies $a, b \in H$.

2.3 The centralizer subgroup

Let $H \leq G$ be groups and define

$$C_G(H) = \{ g \in G \mid \forall h \in H, gh = hg \}$$

as the centralizer of H. This is the set of all elements of G such that they commute with every element of H.

Theorem. Let $H \leq G$, then $C_G(H) \leq G$.

Proof. Suppose $a, b \in C_G(H)$. We want to show $ab^{-1} \in C_G(H)$.

Note that the condition $gh = hg \iff hg^{-1} = g^{-1}h$.

Consider the expression $(ab^{-1})h = a(b^{-1}h) = ahb^{-1} = h(ab^{-1})$. This means that $ab^{-1} \in C_G(H)$ and thus in H.

2.4 The conjugate subgroup

Let $H \leq G$ be groups and define

$$g^{-1}Hg = \{g^{-1}hg \mid h \in H\}$$

as the conjugate subgroup.

Theorem. Let $H \leq G$, then $g^{-1}Hg \leq G$.

Proof. Suppose $a,b \in g^{-1}Hg$. We want to show $ab^{-1} \in g^{-1}Hg$. Note that $a=g^{-1}h_1g$ and $b=g^{-1}h_2g$ for some $h_1,h_2 \in H$. This means that $ab^{-1}=a(g^{-1}h_2g)^{-1}=a(g^{-1}h_2^{-1}g)=g^{-1}h_1gg^{-1}h_2^{-1}g=g^{-1}(h_1h_2)g \in g^{-1}Hg$.