Digital design

Ch 4. Combinational logic

4-1 Combinational circuits

- Outputs are determined from the present inputs
- Consist of input/output variables and logic gates

Fig. 4-1 Block Diagram of Combinational Circuit

4-2 Analysis procedure

- To determine the function of circuit
- Analysis procedure
 - Make sure the circuit is combinational or sequential
 - Obtain the output Boolean functions or the truth table

Obtain procedure

- Boolean function
 - Label all gate outputs
 - Make output functions at each level
 - Substitute final outputs to input variables
- Truth table
 - Put the input variables to binary numbers
 - Determine the output value at each gate
 - Obtain truth table

Obtain procedure

Table 4-1
Truth Table for the Logic Diagram of Fig. 4-2

Α	В	C	F ₂	F_2	<i>T</i> ₁	T ₂	T ₃	F ₁
0	0	0	0	13	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

Fig. 4-2 Logic Diagram for Analysis Example

4-3 Design procedure

- 1. Determine the required number of input and output from specification
- 2. Assign a letter symbol to each input/output
- 3. Derive the truth table
- 4. Obtain the simplified Boolean functions
- 5. Draw the logic diagram and verify design correctness

Code conversion example

- BCD to excess-3 code converter
 - Excess-3 code : decimal digit+3

Code conversion example

Table 1-5
Four Different Binary Codes for the Decimal Digits

Decimal digit	BCD 8421	2421	Excess-3	8 4-2-1
0	0000	0000	0011	0 0 0 0
1	0001	0001	0100	0.1.1
2	0010	0010	0101	0 1 1 (
3	0011	0011	0110	0 1 0
4	0100	0100	0111	0 1 0 0
5	0101	1011	1000	1 0 1
6	0110	1100	1001	1010
7	0111	1101	1010	1 0 0
8	1000	1110	1011	1000
9	1001	1111	1100	111
	1010	0101	0000	0 0 0
Unused	1011	0110	0001	0.01
bit	1100	0111	0010	0.01
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1 1 0
	1111	1010	1111	111(

Code conversion example

- BCD to excess-3 code converter
 - Excess-3 code : decimal digit+3
- Design procedure
 - 1)Determine inputs/outputs

Inputs: A,B,C,D (0000~1001)

Outputs: W,X,Y,Z (0011~1100)

Code converter example

2)Derive truth table

Table 4-2 *Truth Table for Code-Conversion Example*

Input BCD				Out	cess-3 (Code	
Α	В	С	D	w	x	y	z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

Code converter example

3)Obtain simplified Boolean functions

Fig. 4-3 Maps for BCD to Excess-3 Code Converter

Code converter example

4) Draw the logic diagram

$$z = D'$$

 $y = CD + C'D' = CD + (C + D)'$
 $x = B'C + B'D + BC'D' = B'(C + D) + BC'D'$
 $= B'(C + D) + B(C + D)'$
 $w = A + BC + BD = A + B(C + D)$

Fig. 4-4 Logic Diagram for BCD to Excess-3 Code Converter

4-4 Binary adder-subtractor

- Binary adder
 - Half adder: performs the addition of 2-bits(x+y)
 - Full adder: performs the addition of 3-bits(x+y+z)
 - Two half adder can be employed to a full adder
- Realization of Binary adder-subtractor
 - Half adder
 - Full adder
 - Cascade of n-full adder
 - Providing a complementing circuit

Half Adder

- Sum of 2 binary inputs
- Input: X(augend), Y(addend)

Output: S(sum), C(carry)

Table 4-1
Truth Table for the Logic Diagram of Fig. 4-2

A	В	С	F ₂	F_2	<i>T</i> ₁	T ₂	T3	F
0	0	0	0	10	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

$$S=xy'+x'y$$

Half adder

(a)
$$S = xy' + x'y$$

 $C = xy$

(b)
$$S = x \oplus y$$

 $C = xy$

Fig. 4-5 Implementation of Half-Adder

Full adder

- Sum of 3 binary inputs
- Input: X,Y(2 significant bits),Z(1 carry bit)
- Output : S(sum),C(carry)

Table 4-4 Full Adder

x	y	z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = x'y'z + x'yz' + xy'z' + xyz$$

Fig. 4-6 Maps for Full Adder

Full adder

Fig. 4-7 Implementation of Full Adder in Sum of Products

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

지연시간:

x => s: 2ns

x => c: 5ns

y => s: 2ns

y => c: 4ns

z => s: 1ns

z => c: 4ns

Binary adder

Sum of two n-bit binary numbers

Fig. 4-9 4-Bit Adder

Carry propagation

- Rising of delay time(carry delay)
- One solution is carry lookahead
- All carry is a function of P_i,G_i and C₀

Fig. 4-10 Full Adder with P and G Shown

Carry propagation

Carry lookahead generator

$$C_0$$
 = input carry
 $C_1 = G_0 + P_0C_0$
 $C_2 = G_1 + P_1C_1 = G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$
 $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$

Fig. 4-11 Logic Diagram of Carry Lookahead Generator

Carry propagation

4-bit adder with carry lookahead

Fig. 4-12 4-Bit Adder with Carry Lookahead

Binary subtractor

- A-B = A+(2's complement of B)
- When M=0(act as adder) M=1(subtractor)

Fig. 4-13 4-Bit Adder Subtractor

Binary subtractor

- A-B = A+(2's complement of B)
- When M=0(act as adder) M=1(subtractor)

Fig. 4-13 4-Bit Adder Subtractor

 $x\oplus 0=x, x\oplus 1=x'$

Overflow

- Sum of n digit number occupies n+1digit
- Occurs when two numbers are same sign (examples of overflow)

24

4-5 Decimal adder

- Calculate binary and represent decimal in binary coded form
- Decimal adder for the BCD code

BCD Adder

- BCD digit output of 2-BCD digit sum
- Carry arise if output
 1010~1111
- C=K+Z₈Z₄+Z₈Z₂
 1100 \ 1010
 1101 \ 1011
 1110
 1111

4-6 Binary multiplier

2bit x 2bit = 4bit(max)

Fig. 4-15 2-Bit by 2-Bit Binary Multiplier

Binary multiplier

- (K-bit) x (J-bit)
 - (K x J) AND gates,(J-1) K-bit adder needed

B₃ B₂ B₁ B₀ X A₂ A₁ A₀

 $A_0B_3 A_0B_2 A_0B_1 A_0B_0$

A₁B₃ A₁B₂ A₁B₁ A₁B₀

 $A_2B_3 A_2B_2 A_2B_1 A_2B_0$

Fig. 4-16 4-Bit by 3-Bit Binary Multiplier

4-7 Magnitude comparator

- X_i=1only if the pair of bits in i are equal
- $(A=B)=x_3x_2x_1x_0$
- (A>B)=A₃B₃'+x₃A₂B₂'
 +x₃x₂A₁B₁'+x₃x₂x₁A₀B₀'
- $(A < B) = A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1 + x_3x_2x_1A_0'B_0$
- $x_i = A_i'B_i + A_iB_i'$

Fig. 4-17 4-Bit Magnitude Comparator

4-8 Decoders

- Generate the 2ⁿ(or less) minterms of n input variables
 - Eg)3 to 8 line decoder

Table 4-6 Truth Table of a 3-to-8-Line Decoder

Inputs						Out	puts			
x	y	z	D ₀	D_1	D_2	D_3	D_4	D_{5}	D_6	D,
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Decoders

- 2 to 4 line decoder with Enable input
 - Control circuit operation by E

(a) Logic diagram

(b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input

Decoders

Decoders with enable inputs can be a larger decoder circuit

Eg) 4x16 decoder by two 3x8 decoders

Fig. 4-20 4×16 Decoder Constructed with Two 3×8 Decoders

Decoders

- Combinational logic implementation
 - Any combinational circuit can be implemented with line decoder and OR gates
 - · Eg)full adder

Fig. 4-21 Implementation of a Full Adder with a Decoder

4-9 Encoders

- Inverse operation of a decoder
- Generate n outputs of 2ⁿ input values
 - Eg) octal to binary encoder

Table 4-7 *Truth Table of Octal-to-Binary Encoder*

Inputs							Out	puts		
D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	x	y	z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Priority encoder

- Problem happens two or more inputs equal to 1 at the same time
- Give a priority function to circuit

Table 4-8
Truth Table of a Priority Encoder

	Inp	uts	(Outputs		
D ₀	D ₁	D ₂	D ₃	x	у	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

(x100 means 0100, 1100)

Fig. 4-22 Maps for a Priority Encoder

4-10 Multiplexers

- Select a binary information from many input lines
- Selection is controlled by a set of selection lines
- 2ⁿ input lines have n selection lines

• 4 to 1 line multiplexer

s_1	s_0	Y
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3
1	1	13

(b) Function table

Quadruple 2 to 1
 line multiplexer

Fig. 4-26 Quadruple 2-to-1-Line Multiplexer

- Boolean function implementation
 - Minterms of function are generated in a MUX
 - n input variables, n-1 selection input

F=xy+yz'+x'y'z

- Three-state gates
 - Logic 1, 0 and high-impedance
 - High-impedance behaves like an open circuit

Fig. 4-29 Graphic Symbol for a Three-State Buffer

Multiplexers with three-state gates

Fig. 4-30 Multiplexers with Three-State Gates

- HDL: 하드웨어의 설계에 사용되는 언어
- Verilog HDL은 하드웨어를 모듈 단위로 설계하며, 다양한 방법으로 하드웨어를 기술
- 현재 대부분의 디지털 하드웨어는 HDL을 사용하여 설계됨

- VHDL, Verilog HDL
- Module Representation

Gate Delays - `timescale 1ns/100ps

```
//Description of circuit with delay
module circuit_with_delay (A,B,C,x,y);
input A,B,C;
output x,y;
wire e;
and #(30) g1(e,A,B);
or #(20) g3(x,e,y);
not #(10) g2(y,C);
endmodule
```

```
//Stimulus for simple circuit
module stimcrct;
reg A,B,C;
wire x,y;
circuit_with_delay cwd(A,B,C,x,y);
initial
  begin
    A = 1'b0; B = 1'b0; C = 1'b0;
   #100
    A = 1'b1; B = 1'b1; C = 1'b1;
   #100 $finish;
 end
endmodule
```

Boolean Expressions

```
- AND, OR, NOT는 &, |, ~로 표시
assign x = (A & B) | ~C); // (A and B) or (not C)
```

```
//Circuit specified with Boolean equations
module circuit_bln (x,y,A,B,C,D);
input A,B,C,D;
output x,y;
assign x = A | (B & C) | (~B & C);
assign y = (~B & C) | (B & ~C & ~D);
endmodule
```

Instantiation

```
module fulladder (S,C,x,y,z);
module balfadder (S,C,x,y);
   input x, y;
                                       input x,y,z;
   output S,C;
                                       output S,C;
//Instantiate primitive gates
                                       wire S1, D1, D2;
   xor (S, x, y);
                                    //Instantiate the halfadder
   and (C, x, y);
                                       halfadder HA1 (S1,D1,x,y),
endmodule
                                                   HA2 (S,D2,S1,z);
                                        or g1(C,D2,D1);
                                    endmodule
```

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

Instantiation in 4-bit adder

```
module _4bit_adder (S,C4,A,B,C0);
   input [3:0] A,B;
   input CO;
   output [3:0] S;
   output C4;
   wire C1, C2, C3; //Intermediate carries
//Instantiate the fulladder
   fulladder FA0 (S[0],C1,A[0],B[0],C0),
               FA1 (S[1], C2, A[1], B[1], C1),
               FA2 (S[2], C3, A[2], B[2], C2),
               FA3 (S[3],C4,A[3],B[3],C3);
endmodule
              B_2 = A_2
          C_3
                FA
                            FA
                                       FA
    FA
```

Fig. 4-9 4-Bit Adder

4-11 HDL for combinational circuit

- Modeling techniques:
- Gate level modeling
 - Instantiation of gates and user defined modules
- Dataflow modeling
 - Using continuous assignment statements-assign
- Behavioral modeling
 - Using procedural assignment statements-always

Gate-level modeling

Circuit is specified by its gates and their interconnection(연결)

HDL Example 4-1

```
Anot B

Bnot B

Enot
```

```
//Gate-level description of a 2-to-4-line decoder
//Figure 4-19
module decoder_gl (A,B,E,D);
   input A, B, E;
   output [0:3]D;
   wire Anot, Bnot, Enot;
   not
      n1 (Anot, A),
      n2 (Bnot, B),
      n3 (Enot.E);
   nand
      n4 (D[0], Anot, Bnot, Enot),
      n5 (D[1], Anot, B, Enot),
      n6 (D[2], A, Bnot, Enot),
      n7 (D[3], A, B, Enot);
endmodule
```

Dataflow modeling

Assign a value to a net by using operands and operators

eg)J=01,K=10 can be {J,K}=0110

out=x? A: B means out=A, if x is true =B, if x is false

Table 4-10 *Verilog HDL Operators*

Symbol	Operation
+	binary addition
	binary subtraction
&	bit-wise AND
	bit-wise OR
^	bit-wise XOR
~	bit-wise NOT
==	equality
>	greater than
<	less than
{ }	concatenation
?:	conditional

Assignment

2-to-4 line decoder

HDL Example 4-3

```
//Dataflow description of a 2-to-4-line decoder
//See Fig. 4-19
module decoder_df (A,B,E,D);
input A,B,E;
output [0:3] D;
assign D[0] = ~(~A & ~B & ~E),
    D[1] = ~(~A & B & ~E),
    D[2] = ~(A & B & ~E);
endmodule
```

4-bit adder

Fig. 4-9 4-Bit Adder

HDL Example 4-4

```
//Dataflow description of 4-bit adder
module bipary adder (A,B,Cin,SUM,Cout);
  input [3:0] A,B;
  input Cin;
  output [3:0] SUM;
  output Cout;
  assign {Cout,SUM} = A + B + Cin;
endmodule
```

Behavioral modeling

Use procedural assignment statement, always

 Target output must be the reg data type

Eg) 4 to 1 line mux

Writing a simple test bench

- Test bench : Applying stimulus to test HDL and observe its response
- reg inputs , wire outputs

System tasks

- System tasks: keywords that can display various outputs (begin with \$)
- \$display , \$write , \$monitor , \$time , \$finish
- Format of system tasks
 - Task name(format specification, argument list);
 - Eg) \$monitor(%d %b %b, C,A,B);

Example of testbench


```
//Stimulus for mux2x1 df.
module testmux;
 reg TA, TB, TS; //inputs for mux
 wire Y; //output from mux
 mux2x1_df mx (TA,TB,TS,Y); // instantiate mux
    initial
       begin
            TS = 1; TA = 0; TB = 1;
         #10 TA = 1; TB = 0;
         #10 TS = 0:
         #10 TA = 0; TB = 1;
       end
    initial
     $monitor("select = %b A = %b B = %b OUT = %b time = %0d",
             TS, TA, TB, Y, $time);
endmodule
//Dataflow description of 2-to-1-line multiplexer
//from Example 4-6
module mux2x1_df (A,B,select,OUT);
   input A, B, select;
   output OUT;
   assign OUT = select ? A : B;
endmodule
```

57