Eigenfunction Construction for Stationary Gaussian Processes

BY STEPHEN CROWLEY
January 13, 2025

1 Preliminaries

Definition 1

The Fourier transform \mathcal{F} and its inverse \mathcal{F}^{-1} are defined as:

$$\mathcal{F}[f](\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$$
 (1)

$$\mathcal{F}^{-1}[g](x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(\omega) e^{i\omega x} d\omega$$
 (2)

Definition 2

Let K(x-y) be a stationary positive-definite kernel. By Bochner's theorem:

$$K(x-y) = \mathcal{F}^{-1}[S](x-y)$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega(x-y)} S(\omega) d\omega$$
(3)

where

$$S(\omega) = \mathcal{F}[K](\omega)$$

$$= \int_{-\infty}^{\infty} K(x) e^{-i\omega x} dx$$
(4)

is the corresponding spectral density.

Definition 3

|Spectral Polynomials| Let

$$P_n(\omega) = \omega^n - \sum_{j=0}^{n-1} \frac{\int_{-\infty}^{\infty} P_j(\omega) \omega^j S(\omega) d\omega}{\langle P_j^2 \rangle}$$
 (5)

be polynomials orthogonal with respect to the spectral density $S(\omega)$ and normalized so that $P_0(\omega) = 1$:

$$\int_{-\infty}^{\infty} P_m(\omega) P_n(\omega) S(\omega) d\omega = \delta_{mn}$$
 (6)

Theorem 4

[Null Space Theorem] The inverse Fourier transforms of the polynomials $P_n(\omega)$ orthogonal with respect to the spectral density $S(\omega)$

$$f_n(x) = \mathcal{F}^{-1}[P_n(\omega)](x) \tag{7}$$

constitute the null-space of the kernel inner-product $\langle K, \cdot \rangle = \int_0^\infty K(x) f(x) dx$ which is evinced by an application of Parseval's theorem

$$\langle K, \mathcal{F}^{-1}[P_n] \rangle = \langle K, f_n \rangle$$

$$= \int_0^\infty K(x) f_n(x) dx$$

$$= \langle \mathcal{F}^{-1}[S], \mathcal{F}^{-1}[P_n] \rangle \quad \forall n \geqslant 1$$

$$= \langle S, P_n \rangle$$

$$= 0$$
(8)

Remark 5. The null-space of an operator is also called a kernel, but to avoid confusion with the kernel referring to the autocovariance kernel function of the Gaussian process integral covariance operator, the null-space terminology is preferred

Theorem 6

Let

$$f_k^{\perp}(x) = f_k(x) - \sum_{j=1}^{k-1} \frac{\langle f_k, f_j^{\perp} \rangle}{\|f_j^{\perp}\|^2} f_j^{\perp}(x)$$
 (9)

be the orthogonal complement of the sequence of null space functions defined in Equation (7) then

$$K(x-y) = \sum_{n=0}^{\infty} \langle K, f_n^{\perp} \rangle f_n^{\perp}(x-y)$$
 (10)

converges uniformly $\forall x - y \in \mathbb{R}$

Proof. Let

$$K_N(x-y) = \sum_{n=0}^{N} \langle K, f_n^{\perp} \rangle f_n^{\perp}(x-y)$$
 (11)

then define the error

$$E_N(x) = K(x) - K_N(x)$$

whose L^2 norm has the upper bound

$$||E_N|| \leqslant \langle K, f_N^{\perp} \rangle \tag{12}$$

since

$$||f_k^{\perp}|| \leqslant 1 \tag{13}$$

by orthornormality.

Remark 7. This is not a Mercer expansion. Notice that it is a sum over $\psi_n(x-y)$ not the product $\psi_n(x)\psi(y)$ which is the form it would have to have to be a Mercer expansion.

2 Uniform Basis of the Spectral Factor

Let $\{Q_n(\omega)\}_{n=0}^{\infty}$ be orthogonal polynomials with respect to $\sqrt{S(\omega)}$:

$$\langle Q_m, Q_n \rangle_{\sqrt{S}} = \int_{-\infty}^{\infty} Q_m(\omega) Q_n(\omega) \sqrt{S(\omega)} d\omega = \delta_{mn}$$
 (14)

Define:

$$\xi_n(x) = \mathcal{F}^{-1}[Q_n(\omega)](x) \tag{15}$$

Apply Gram-Schmidt to $\{\xi_n\}$ to obtain orthonormal sequence $\{\phi_n\}$ via:

$$\phi_k(x) = \xi_k(x) - \sum_{j=1}^{k-1} \frac{\langle \xi_k, \phi_j \rangle}{\|\phi_j\|^2} \phi_j(x)$$
 (16)

Then:

$$g(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega x} \sqrt{S(\omega)} d\omega$$

$$= \sum_{n=0}^{\infty} \langle g, \phi_n \rangle \phi_n(x)$$
(17)

where g is the spectral factor with $\mathcal{F}[g] = \sqrt{S}$ satisfying

$$g(x) * g(y) = K(x - y)$$

$$= \int_{-\infty}^{\infty} g(x + z) \overline{g(y - z)} dz$$
(18)

3 Eigenfunction Construction

By Fubini's theorem and uniform convergence:

$$K(x-y) = (g*g)(x-y)$$

$$= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \langle g, \phi_m \rangle \langle g, \phi_n \rangle (\phi_m * \phi_n) (x-y)$$
(19)

The eigenfunctions $\{f_n\}$ can be expressed in the uniform basis $\{\psi_n\}$ with finitely many terms:

$$f_n(x) = \sum_{k=0}^{n} c_{nk} \psi_k(x)$$
 (20)

where

$$c_{nk} = \langle f_n, \psi_k \rangle \tag{21}$$

Substituting into Mercer expansion form:

$$K(x-y) = \sum_{\substack{n=0 \\ \infty}}^{\infty} \lambda_n f_n(x) f_n(y)$$

$$= \sum_{n=0}^{\infty} \lambda_n \sum_{k=0}^{n} \sum_{j=0}^{n} c_{nk} c_{nj} \psi_k(x) \psi_j(y)$$
(22)

This double sum structure with coefficients is the spectral version of spatiotemporal inner product representation guaranteed by Moore-Aronszajn's theorem for reproducing kernel Hilbert spaces.

Theorem 8

(Triangularity of Eigenfunction Coefficients) The coefficients $c_{n,k}$ in the eigenfunction expansion

$$f_n(x) = \sum_{k=0}^{\infty} c_{n,k} \psi_k(x)$$
(23)

form a triangular matrix with $c_{n,k} = 0$ for k > n.

Proof. The spectral polynomials $P_n(\omega)$ are constructed recursively:

$$P_n(\omega) = \omega^n - \sum_{k=0}^{n-1} \alpha_{n,k} P_k(\omega)$$
 (24)

where $\alpha_{n,k}$ are determined by orthogonality with respect to $S(\omega)$.

Taking the inverse Fourier transform:

$$\psi_n(x) = \mathcal{F}^{-1}[P_n(\omega)](x) = \mathcal{F}^{-1}[\omega^n](x) - \sum_{k=0}^{n-1} \alpha_{n,k} \, \psi_k(x)$$
 (25)

The basis functions $\{\psi_n(x)\}$ thus satisfy:

$$\psi_n(x) = \phi_n(x) - \sum_{k=0}^{n-1} \alpha_{n,k} \psi_k(x)$$
 (26)

where $\phi_n(x) = \mathcal{F}^{-1}[\omega^n](x)$. By construction, each $\psi_n(x)$ is expressed only in terms of $\{\psi_k(x)\}_{k=0}^{n-1}$. Therefore, when expressing eigenfunctions in this basis:

$$f_n(x) = \sum_{k=0}^{\infty} c_{n,k} \psi_k(x)$$
(27)

the coefficients $c_{n,k}$ must be zero for k > n, as these basis functions cannot appear in the expansion of ψ_n .