Data Structures

SY BTech(CSE)

Unit - 1

Introduction

PPT-7

Prof. Ms. Manisha A. Bhusa Dept. Of CSE COE Ambajogai

Objective:

Study of asymptotic notations.

Asymptotic Notations:

- 1. Big Oh (O)
- 2. Omega (Ω)
- **3. Theta (Θ)**
- 1. Big Oh (O): Gives Upper Bound

The function

$$f(n) = O(g(n))$$

iff there exists positive constants c and no such

that
$$f(n) \ll c$$
. $g(n)$ for all n , $n > = n0$

Example of growth function

Ex:
$$f(n) = 3n + 2$$

 $c = 4$ $g(n) = n$
 $f(n) \leftarrow c \cdot g(n)$
 $3n+2 < 4n$

Ex:
$$f(n) = 10n^2 + 4n + 2$$

 $c = 11$ $f(n) <= c.g(n)$
 $g(n) = n^2$ $10n^2 + 4n + 2 < 11n^2$
no $f(n)$ $c.g(n)$ Status
1 16 > 11 False
2 50 > 44 False
3 104 > 99 False
4 178 > 176 False
5 272 < 275 True
6 386 < 396 True

Complexity: $O(n^2)$ for $n \ge 6$ c= 11

Big Oh.xlsx

Ex: $f(n) = 1000n^2 + 100n - 6$ Complexity: $O(n^2)$ for n = 100 & c = 1001

SYBTech(CSE) DS Unit-I PPT 7

Ex:
$$f(n) = 6.2^n + n^2$$

no

$$2^n$$
 n^2

 1
 2
 >
 1

 2
 4
 =
 4

 3
 8

 9

 4
 16
 =
 16

 5
 32
 >
 25

 6
 64
 >
 36

Here,
$$2^n > n^2$$
 for $n>4$

Therefore,
$$c = 7$$

 $c \cdot g(n) = 7 \cdot 2^n$

Complexity:
$$O(2^n)$$
 for $c = 7$ and $n>=4$

2. Omega (Ω)

The function

$$f(n) = \Omega(g(n))$$

iff there exists positive constants c and no
such that $f(n) >= c. g(n)$ for all n, n>=n0

Omega gives lower bound.

Example of growth function

Omega.xlsx

Complexity: $\Omega(n)$ for c=11 and n<=6 $\Omega(n)$ for c=10 and n>=1

Ex:
$$f(n) = 10n^2 + 4n + 2$$

$$\Omega(n^2)$$
 for c = 10 and n>=1

Ex:
$$f(n) = 6.2^n + n^2$$

$$\Omega(2^n)$$
 for c = 6 and n>=1

3. Theta (0): Gives both upper and lower bound

The function

$$f(n) = \Theta(g(n))$$

iff there exists positive constants c1, c2 and no such that

c1.g(n) <= c2.g(n) for all n, n>=n0

Example of growth function

Chart: Theta.xlsx

12

4

Complexity: $\Theta(n)$ for c1 = 3, c2 = 4 and n>=2

14

<

16 True

Ex:
$$f(n) = 10n^2 + 4n + 2$$

$$c1.g(n) = 10n^2$$

$$c2.g(n) = 11n^2$$

Complexity: $\Theta(n^2)$ for

$$c1 = 10$$
 and $c2 = 11$ and $n>=4$

Complexity: $\Theta(mn)$ for c1=2, c2=3, m>=1 & n>=3