Finlatics Data Science Capsule 3

Suryanshu

March 14, 2024

Contents

1	3x3	Numpy Array, Add and Square	2	
	1.1	PYTHON CODE:	2	
	1.2	Code	2	
	1.3		3	
2	3x3	Numpy Array, Extract Sub-Arrays	4	
	2.1	PYTHON CODE:	4	
	2.2	Code	4	
	2.3	Output	5	
3	DataFrame, Name and Marks			
	3.1	PYTHON CODE:	6	
	3.2	Code	6	
	3.3	Output	7	
4	Dat	aFrame, Name and Income	8	
	4.1	PYTHON CODE:	8	
	4.2	Code	8	
	4.3			
5	Bar	Plot	10	
	5.1	PYTHON CODE:	10	
	5.2		10	
	5.3		11	

3x3 Numpy Array, Add and Square

1.1 PYTHON CODE:

```
import numpy as np
arr1 = np.array([[1,2,3], [4,5,6], [7,8,9]])
print(arr1)
add_res = arr1 + 5
print(add_res)
sq_res = arr1 * arr1
print(sq_res)
```

```
cap3q1.py cap3q2.py cap3q3.py cap3q4.py cap3q5.py
1 import numpy as np
1 arr1 = np.array([[1,2,3], [4,5,6], [7,8,9]])
2 print(arr1)
3 add_res = arr1 + 5
4 print(add_res)
5 sq_res = arr1 * arr1
6 print(sq_res)
```

Figure 1.1: Code

```
>>> DataScience dit:(main) × python cap3q1.py
[[1 2 3]
  [4 5 6]
  [7 8 9]]
[[ 6 7 8]
  [ 9 10 11]
  [12 13 14]]
[[ 1 4 9]
  [16 25 36]
  [49 64 81]]
```

Figure 1.2: Output

3x3 Numpy Array, Extract Sub-Arrays

2.1 PYTHON CODE:

```
import numpy as np
arr1 = np.array([[1,2,3], [4,5,6], [7,8,9]])

print(arr1[0, :])
print(arr1[:, 2])
print(arr1[:2, :2])
```

```
cap3q1.py cap3q2.py cap3q3.py cap3q4.py cap3q
1 import numpy as np
1 arr1 = np.array([[1,2,3], [4,5,6], [7,8,9]])
2
3 print(arr1[0, :])
4 print(arr1[:, 2])
5 print(arr1[:2, :2])
```

Figure 2.1: Code

```
>>> ■ DataScience  git:(main) × python cap3q2.py
[1 2 3]
[3 6 9]
[[1 2]
[4 5]]
```

Figure 2.2: Output

DataFrame, Name and Marks

3.1 PYTHON CODE:

```
import pandas as pd
input_data = {
    'Name':['Ram', 'Kaif', 'Aryan', 'Rohit', 'Shikha', 'Shyam', 'Sundar', 'Kareem', 'Noah', 'John'],
    'Marks':[85, 65, 78, 87, 54, 67, 74, 87, 90, 79]
}
df = pd.DataFrame(input_data)
print(df)
```

```
cap3q1.py cap3q2.py cap3q3.py cap3q4.py cap3q5.py X
1 import pandas as pd
1 input_data = {
2 | 'Name':['Ram', 'Kaif', 'Aryan', 'Rohit', 'Shikha', 'Shyam', 'Sundar', 'Kareem', 'Noah', 'John'],
3 | 'Marks':[85, 65, 78, 87, 54, 67, 74, 87, 90, 79]
4 | }
5 df = pd.DataFrame(input_data)
6 print(df)
```

Figure 3.1: Code

```
>>> DataScience jt:(main) × python cap3q3.py
    Name
          Marks
     Ram
             85
             65
   Aryan
             78
   Rohit
             87
  Shikha
             54
   Shyam
  Sundar
  Kareem
             90
    Noah
             79
```

Figure 3.2: Output

DataFrame, Name and Income

4.1 PYTHON CODE:

```
import pandas as pd
input_data = {
    'Employee_Name':['Ram', 'Kaif', 'Aryan', 'Rohit', 'Shikha'],
    'Income':[85000, 65000, 78000, 87000, 54000]
} df = pd.DataFrame(input_data, index=['a', 'b', 'c', 'd', 'e'])
print(df)
```

Figure 4.1: Code

```
>>> DataScience dit:(main) × python cap3q4.py
Name Income
a Ram 85000
b Kaif 65000
c Aryan 78000
d Rohit 87000
e Shikha 54000
```

Figure 4.2: Output

Bar Plot

5.1 PYTHON CODE:

```
import matplotlib.pyplot as plt
z x = ['A', 'B', 'C', 'D', 'E']
y = [10, 20, 15, 25, 30]
plt.bar(x, y, color='red')
plt.xlabel("Categories")
plt.ylabel("Frequency")
plt.title('Bar Plot')
plt.show()
```

Figure 5.1: Code

Figure 5.2: Output