INTRO TO DATA SCIENCE REVIEW

supervised unsupervised

making predictions discovering patterns

supervised unsupervised

labeled examples no labeled examples

	continuous	categorical
supervised unsupervised	regression dimension reduction	classification clustering

HOW DO YOU REPRESENT

YOUR
DATA?

TYPES OF DATA

categorical continuous qualitative quantitative

TYPES OF DATA

	continuous	categorical
color	RGB-values	{red, blue}
ratings	1 — 10 rating	Good / Bad

HOW DO YOU MEASURE

OF QUALITY?

supervised unsupervised

test out your predictions

--

supervised unsupervised

Accuracy, MSE, MAE, AUC

--

III. SUPERVISED LEARNING

SUPERVISED LEARNING PROBLEMS

Q: What steps does a classification problem require?

1) split dataset

- 1) split dataset
- 2) train model

- 1) split dataset
- 2) train model
- 3) test model

SUPERVISED LEARNING PROBLEMS

- 1) split dataset
- 2) train model
- 3) test model
- 4) make predictions

III. LINEAR REGRESSION

supervised
unsupervisedregression
dimension reductionclassification
clustering

- Q: What is a regression model?
- A: A functional relationship between input & response variables

The simple linear regression model captures a linear relationship between a single input variable \times and a response variable γ :

$$y = \alpha + \beta x + \epsilon$$

Q: What do the terms in this model mean?

$$y = \alpha + \beta x + \epsilon$$

A: y = response variable (the one we want to predict)

x =input variable (the one we use to train the model)

 α = intercept (where the line crosses the y-axis)

 β = regression coefficient (the model "parameter")

 ε = residual (the prediction error)

```
OLS: \min(\|y - x\beta\|^2) L1 regularization: \min(\|y - x\beta\|^2 + \lambda \|\beta\|) L2 regularization: \min(\|y - x\beta\|^2 + \lambda \|\beta\|^2)
```

IV. LOGISTIC REGRESSION

THE LOGISTIC FUNCTION

$$E(y|x) = \pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

$$E(y|x) = \pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

We've already seen what this looks like:

The **logit function** is an important transformation of the logistic function. Notice that it returns the linear model!

$$g(x) = \ln(\frac{\pi(x)}{1 - \pi(x)}) = \alpha + \beta x$$

The **logit function** is an important transformation of the logistic function. Notice that it returns the linear model!

$$g(x) = ln(\frac{\pi(x)}{1-\pi(x)}) = \alpha + \beta x$$

The logit function is also called the log-odds function.

V. KNN CLASSIFICATION

Suppose we want to predict the color of the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.

Suppose we want to predict the color of the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

VI. NAÏVE BAYES

Suppose we have a dataset with features $x_1, ..., x_n$ and a class label c. What can we say about classification using Bayes' theorem?

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

Bayes' theorem can help us to determine the probability of a record belonging to a class, given the data we observe. This term is the likelihood function. It represents the joint probability of observing features $\{x_i\}$ given that that record belongs to class \subset .

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the prior probability of \subset . It represents the probability of a record belonging to class \subset before the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the **normalization constant**. It doesn't depend on \subset , and is generally ignored until the end of the computation.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the posterior probability of \subset . It represents the probability of a record belonging to class \subset after the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the posterior probability of \subset . It represents the probability of a record belonging to class \subset after the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

The goal of any Bayesian computation is to find ("learn") the posterior distribution of a particular variable.

The idea of Bayesian inference, then, is to **update** our beliefs about the distribution of *⊂* using the data ("evidence") at our disposal.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

Then we can use the posterior for prediction.

supervised
unsupervisedregression
dimension reductionclassification
clustering

INTRO TO DATA SCIENCE

V. COMPARISON

KNN

linear N

	<u> </u>		
linear	N		
scalability	+/-		

	_I KNN		
linear	N		
scalability	+/-		
interpretation	_		

	KNN		
linear	N		
scalability	+/-		
interpretation	_		
configuration	+		

	KNN
linear	N
scalability	+/-
interpretation	_
configuration	+
specification	_

KNN

linear scalability interpretation

configuration feature-select overfitting

	KNN	Logistic	
linear	N	Y	
scalability	+/-	+	
interpretation	-	+	
configuration	+	+	
feature-select	-	+	
overfittina	< K	L1/L2	

scalability

interpretation

configuration

feature-select

overfitting

linear

CLASSIFICATION

KNN

Logistic

NB

RF

scalability

interpretation

configuration

feature-select

overfitting

linear

CLASSIFICATION

KNN N

< K

Prior

NB

CLASSIFICATION				50	
	KNN	Logistic	NB	ı RF	SVM
linear	N	Y	Y	N	Y/N
scalability	+/-	+	+	_	_
interpretation	_	+	+	_	_
configuration	+	+	+	+	_
feature-select	_	+	+	+	_
overfitting	< K	L1/L2	Prior	n tree	C-cost