Project - 3

In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 %matplotlib inline

Project Task: Week 1

Data Cleaning:

- 1. Perform a preliminary data inspection and data cleaning.
 - a. Check for missing data and formulate an apt strategy to treat them.
 - b. Remove duplicate data records.
 - c. Perform descriptive analytics on the given data.

Data Transformation:

- 2. Perform cohort analysis (a cohort is a group of subjects that share a defining characteristic). Observe ho w a cohort behaves across time and compare it to other cohorts.
 - a. Create month cohorts and analyze active customers for each cohort.
 - b. Analyze the retention rate of customers.

```
In [2]: df = pd.read_excel("Online Retail.xlsx")
df.head()
```

Out[2]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom

In [3]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
```

Data columns (total 8 columns):

```
Non-Null Count
    Column
                                 Dtype
                 541909 non-null object
    InvoiceNo
    StockCode
                 541909 non-null object
    Description 540455 non-null object
    Quantity
                 541909 non-null int64
    InvoiceDate 541909 non-null datetime64[ns]
    UnitPrice
                 541909 non-null float64
    CustomerID 406829 non-null float64
    Country
                 541909 non-null object
dtypes: datetime64[ns](1), float64(2), int64(1), object(4)
memory usage: 33.1+ MB
```

```
In [4]: df.shape
```

Out[4]: (541909, 8)

```
In [5]: df.isnull().sum()
Out[5]: InvoiceNo
                             0
        StockCode
                             0
        Description
                         1454
        Quantity
                             0
        InvoiceDate
                             0
        UnitPrice
        CustomerID
                       135080
        Country
                             0
        dtype: int64
In [6]: df = df.drop('Description', axis=1)
        df = df.dropna()
        df.shape
Out[6]: (406829, 7)
In [7]: df = df.drop_duplicates()
        df.shape
Out[7]: (401602, 7)
In [8]: df['CustomerID'] = df['CustomerID'].astype(str)
```

```
In [9]: df.describe()
```

Out[9]:

	Quantity	UnitPrice
count	401602.000000	401602.000000
mean	12.182579	3.474064
std	250.283248	69.764209
min	-80995.000000	0.000000
25%	2.000000	1.250000
50%	5.000000	1.950000
75%	12.000000	3.750000
max	80995.000000	38970.000000

```
In [10]: df['month_year'] = df['InvoiceDate'].dt.to_period('M')
df['month_year'].nunique()
```

Out[10]: 13

```
In [11]: month_cohort = df.groupby('month_year')['CustomerID'].nunique()
         month_cohort
Out[11]: month_year
         2010-12
                     948
         2011-01
                     783
         2011-02
                     798
         2011-03
                    1020
         2011-04
                     899
         2011-05
                    1079
         2011-06
                    1051
         2011-07
                     993
         2011-08
                     980
         2011-09
                    1302
         2011-10
                    1425
         2011-11
                    1711
         2011-12
                     686
         Freq: M, Name: CustomerID, dtype: int64
```

```
In [12]: plt.figure(figsize=(10,5))
    sns.barplot(y = month_cohort.index, x = month_cohort.values);
    plt.xlabel("Count of customers")
    plt.title("No. of active customers in each month")
```

Out[12]: Text(0.5, 1.0, 'No. of active customers in each month')


```
In [13]: month cohort - month cohort.shift(1)
Out[13]: month_year
         2010-12
                       NaN
         2011-01
                    -165.0
         2011-02
                      15.0
         2011-03
                     222.0
         2011-04
                    -121.0
         2011-05
                     180.0
         2011-06
                     -28.0
         2011-07
                     -58.0
         2011-08
                     -13.0
                     322.0
         2011-09
         2011-10
                     123.0
         2011-11
                     286.0
         2011-12
                   -1025.0
         Freq: M, Name: CustomerID, dtype: float64
In [14]: retention rate = round(month cohort.pct change(periods=1)*100,2)
         retention rate
Out[14]: month_year
         2010-12
                      NaN
         2011-01
                   -17.41
         2011-02
                     1.92
         2011-03
                    27.82
         2011-04
                   -11.86
         2011-05
                    20.02
         2011-06
                    -2.59
                    -5.52
         2011-07
         2011-08
                    -1.31
         2011-09
                    32.86
         2011-10
                     9.45
         2011-11
                    20.07
         2011-12
                   -59.91
         Freq: M, Name: CustomerID, dtype: float64
```

```
In [15]: plt.figure(figsize=(10,5))
    sns.barplot(y = retention_rate.index, x = retention_rate.values);
    plt.xlabel("Retention (in %)")
    plt.title("Month-wise customer retention rate");
```


Retention (in %)

Project Task: Week 2

Data Modeling:

- 1. Build a RFM (Recency Frequency Monetary) model. Recency means the number of days since a customer made the last purchase. Frequency is the number of purchase in a given period. It could be 3 months, 6 months or 1 year. Monetary is the total amount of money a customer spent in that given period. Therefore, big spenders will be differentiated among other customers such as MVP (Minimum Viable Product) or VIP.
- 2. Calculate RFM metrics.
- 3. Build RFM Segments. Give recency, frequency, and monetary scores individually by dividing them into quarti les.
 - b1. Combine three ratings to get a RFM segment (as strings).
 - b2. Get the RFM score by adding up the three ratings.
 - b3. Analyze the RFM segments by summarizing them and comment on the findings.

Note: Rate "recency" for customer who has been active more recently higher than the less recent customer, because each company wants its customers to be recent.

Note: Rate "frequency" and "monetary" higher, because the company wants the customer to visit more often

Out[16]:

	InvoiceNo	StockCode	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	month_year	Sales
0	536365	85123A	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom	2010-12	15.30
1	536365	71053	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom	2010-12	20.34
2	536365	84406B	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom	2010-12	22.00
3	536365	84029G	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom	2010-12	20.34
4	536365	84029E	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom	2010-12	20.34

Out[17]:

	CustomerID	Sales
0	12346.0	0.00
1	12347.0	4310.00
2	12348.0	1797.24
3	12349.0	1757.55
4	12350.0	334.40
4367	18280.0	180.60
4368	18281.0	80.82
4369	18282.0	176.60
4370	18283.0	2045.53
4371	18287.0	1837.28

4372 rows × 2 columns

Out[18]:

CustomerID	InvoiceNo
12346.0	2
12347.0	7
12348.0	4
12349.0	1
12350.0	1
18280.0	1
18281.0	1
18282.0	3
18283.0	16
18287.0	3
	12346.0 12347.0 12348.0 12349.0 12350.0 18280.0 18281.0 18282.0 18283.0

4372 rows × 2 columns

In [19]: from datetime import timedelta

```
In [20]: ref_day = max(df['InvoiceDate']) + timedelta(days=1)
    df['days_to_last_order'] = (ref_day - df['InvoiceDate']).dt.days
    df.head()
```

Out[20]:

	InvoiceNo	StockCode	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	month_year	Sales	days_to_last_order
0	536365	85123A	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom	2010-12	15.30	374
1	536365	71053	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom	2010-12	20.34	374
2	536365	84406B	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom	2010-12	22.00	374
3	536365	84029G	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom	2010-12	20.34	374
4	536365	84029E	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom	2010-12	20.34	374

Out[21]:

	CustomerID	days_to_last_order
0	12346.0	326
1	12347.0	2
2	12348.0	75
3	12349.0	19
4	12350.0	310
4367	18280.0	278
4368	18281.0	181
4369	18282.0	8
4370	18283.0	4
4371	18287.0	43

4372 rows × 2 columns

```
In [22]: df_rf = pd.merge(df_recency, df_frequency, on='CustomerID', how='inner')
    df_rfm = pd.merge(df_rf, df_monetary, on='CustomerID', how='inner')
    df_rfm.columns = ['CustomerID', 'Recency', 'Frequency', 'Monetary']
    df_rfm
```

Out[22]:

	CustomerID	Recency	Frequency	Monetary
0	12346.0	326	2	0.00
1	12347.0	2	7	4310.00
2	12348.0	75	4	1797.24
3	12349.0	19	1	1757.55
4	12350.0	310	1	334.40
4367	18280.0	278	1	180.60
4368	18281.0	181	1	80.82
4369	18282.0	8	3	176.60
4370	18283.0	4	16	2045.53
4371	18287.0	43	3	1837.28

4372 rows × 4 columns

Out[23]: newest 2734 newer 588 medium 416 older 353 oldest 281

Name: recency_labels, dtype: int64


```
In [24]: df_rfm['frequency_labels'] = pd.cut(df_rfm['Frequency'], bins=5, labels=['lowest', 'lower', 'medium', 'higher', 'highe'
df_rfm['frequency_labels'].value_counts().plot(kind='barh');
df_rfm['frequency_labels'].value_counts()
```

Out[24]: lowest 4348 lower 18 medium 3 highest 2 higher 1

Name: frequency_labels, dtype: int64

Name: monetary_labels, dtype: int64


```
In [26]: df_rfm['rfm_segment'] = df_rfm[['recency_labels','frequency_labels','monetary_labels']].agg('-'.join, axis=1)
df_rfm.head()
```

Out[26]:

	CustomerID	Recency	Frequency	Monetary	recency_labels	frequency_labels	monetary_labels	rfm_segment
0	12346.0	326	2	0.00	oldest	lowest	smallest	oldest-lowest-smallest
1	12347.0	2	7	4310.00	newest	lowest	smallest	newest-lowest-smallest
2	12348.0	75	4	1797.24	newest	lowest	smallest	newest-lowest-smallest
3	12349.0	19	1	1757.55	newest	lowest	smallest	newest-lowest-smallest
4	12350.0	310	1	334.40	oldest	lowest	smallest	oldest-lowest-smallest

```
In [27]: recency_dict = {'newest': 5, 'newer': 4, 'medium': 3, 'older': 2, 'oldest': 1}
    frequency_dict = {'lowest': 1, 'lower': 2, 'medium': 3, 'higher': 4, 'highest': 5}
    monetary_dict = {'smallest': 1, 'smaller': 2, 'medium': 3, 'larger': 4, 'largest': 5}

df_rfm['rfm_score'] = df_rfm['recency_labels'].map(recency_dict).astype(int) + df_rfm['frequency_labels'].map(frequency_df_rfm.head(5))
```

Out[27]:

	CustomerID	Recency	Frequency	Monetary	recency_labels	frequency_labels	monetary_labels	rfm_segment	rfm_score
0	12346.0	326	2	0.00	oldest	lowest	smallest	oldest-lowest-smallest	3
1	12347.0	2	7	4310.00	newest	lowest	smallest	newest-lowest-smallest	7
2	12348.0	75	4	1797.24	newest	lowest	smallest	newest-lowest-smallest	7
3	12349.0	19	1	1757.55	newest	lowest	smallest	newest-lowest-smallest	7
4	12350.0	310	1	334.40	oldest	lowest	smallest	oldest-lowest-smallest	3

In [28]: df_rfm['rfm_segment'].value_counts().plot(kind='barh', figsize=(10, 5));

In [29]: df_rfm['rfm_score'].value_counts().plot(kind='barh', figsize=(10, 5));

Project Task: Week 3

Data Modeling:

- 1. Create clusters using k-means clustering algorithm.
 - a Prenare the data for the algorithm. If the data is asymmetrically distributed, manage the skewness wit
- In [30]: print(df_rfm.shape)
 df_rfm.head()

(4372, 9)

Out[30]:

	CustomerID	Recency	Frequency	Monetary	recency_labels	frequency_labels	monetary_labels	rfm_segment	rfm_score
0	12346.0	326	2	0.00	oldest	lowest	smallest	oldest-lowest-smallest	3
1	12347.0	2	7	4310.00	newest	lowest	smallest	newest-lowest-smallest	7
2	12348.0	75	4	1797.24	newest	lowest	smallest	newest-lowest-smallest	7
3	12349.0	19	1	1757.55	newest	lowest	smallest	newest-lowest-smallest	7
4	12350.0	310	1	334.40	oldest	lowest	smallest	oldest-lowest-smallest	3

```
In [31]: plt.figure(figsize=(12,6))
          for i, feature in enumerate(['Recency', 'Frequency', 'Monetary']):
              plt.subplot(2,3,i+1)
              df_rfm[feature].plot(kind='box')
              plt.subplot(2,3,i+1+3)
              df rfm[feature].plot(kind='hist')
                                                       250
                                                                            0
                                                                                                                    0
                                                                                                                    0
                                                                                            250000
              300
                                                       200
                                                                                            200000
                                                                            0
                                                                                                                    0
                                                       150
                                                                                            150000
               200
                                                       100
                                                                                            100000
               100
                                                        50
                                                                                             50000
                                Recency
                                                                        Frequency
                                                                                                                 Monetary
             2000
                                                      4000
                                                                                              4000
             1500
                                                      3000
                                                                                              3000
           Frequency
             1000
                                                      2000
                                                                                              2000
              500
                                                      1000
                                                                                              1000
                 0
                           100
                                   200
                                            300
                                                                  50
                                                                        100
                                                                              150
                                                                                    200
                                                                                          250
                                                                                                             100000
                                                                                                                        200000
                    0
                                                            0
                                                                                                      0
In [32]: | df_rfm = df_rfm[(df_rfm['Frequency']<60) & (df_rfm['Monetary']<40000)]</pre>
         df_rfm.shape
Out[32]: (4346, 9)
```



```
In [34]: | df_rfm_log_trans = pd.DataFrame()
         df_rfm_log_trans['Recency'] = np.log(df_rfm['Recency'])
         df_rfm_log_trans['Frequency'] = np.log(df_rfm['Frequency'])
         df rfm log trans['Monetary'] = np.log(df rfm['Monetary']-df rfm['Monetary'].min()+1)
In [35]: from sklearn.preprocessing import StandardScaler
In [36]: scaler = StandardScaler()
         df rfm scaled = scaler.fit transform(df rfm log trans[['Recency', 'Frequency', 'Monetary']])
         df rfm scaled
         df rfm scaled = pd.DataFrame(df rfm scaled)
         df rfm scaled.columns = ['Recency', 'Frequency', 'Monetary']
         df rfm scaled.head()
Out[36]:
             Recency Frequency Monetary
             1.402988
                      -0.388507 -0.770922
            -2.100874
                       0.967301 1.485132
            0.392218
                       0.361655 0.364190
            -0.552268
                      -1.138669 0.342970
             1.368370
                      -1.138669 -0.527416
In [37]: from sklearn.cluster import KMeans
```

```
In [38]: css = []
    range_n_clusters = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
    for num_clusters in range_n_clusters:
        kmeans = KMeans(n_clusters=num_clusters, max_iter=100)
        kmeans.fit(df_rfm_scaled)
        css.append(kmeans.inertia_)
    plt.plot(range_n_clusters,css);
```


From Elbow Method, we can take the number of clusters : 3 i.e., K=3

```
In [39]: kmeans = KMeans(n_clusters=3, max_iter=50)
kmeans.fit(df_rfm_scaled)

Out[39]: KMeans(max_iter=50, n_clusters=3)

In [40]: kmeans.labels_

Out[40]: array([1, 0, 2, ..., 2, 0, 2])

In [41]: df_inertia = pd.DataFrame(list(zip(range_n_clusters, css)), columns=['clusters', 'intertia'])

Out[41]: df_inertia
```

Out[41]:

	clusters	intertia
0	1	13038.000000
1	2	7113.097396
2	3	5343.136928
3	4	4481.004515
4	5	3730.922591
5	6	3044.898802
6	7	2598.303803
7	8	2299.162353
8	9	2044.740060
9	10	1852.943294
10	11	1700.386975
11	12	1576.815706

```
In [42]: df_rfm['Cluster_Id'] = kmeans.labels_
df_rfm.head()
```

C:\Users\Vinosh\AppData\Local\Temp\ipykernel_11852\497853074.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df_rfm['Cluster_Id'] = kmeans.labels_

Out[42]:

	CustomerID	Recency	Frequency	Monetary	recency_labels	frequency_labels	monetary_labels	rfm_segment	rfm_score	Cluster_ld
0	12346.0	326	2	0.00	oldest	lowest	smallest	oldest-lowest-smallest	3	1
1	12347.0	2	7	4310.00	newest	lowest	smallest	newest-lowest-smallest	7	0
2	12348.0	75	4	1797.24	newest	lowest	smallest	newest-lowest-smallest	7	2
3	12349.0	19	1	1757.55	newest	lowest	smallest	newest-lowest-smallest	7	1
4	12350.0	310	1	334.40	oldest	lowest	smallest	oldest-lowest-smallest	3	1


```
In [44]: sns.boxplot(x='Cluster_Id', y='Frequency', data=df_rfm)
    plt.show()
```



```
In [45]: sns.boxplot(x='Cluster_Id', y='Recency', data=df_rfm)
    plt.show()
```


Refrence from the Plots

- 1. Customers with Cluster Id 0 are less frequent buyers with low monetary expenditure and also they have not purchased anything in recent time and hence least important for business.
- 2. Customers with Cluster Id 1 are the customers having Recency, Frequency and Monetary score in the medium range.
- 3. Customers with Cluster Id 2 are the most frequent buyers, spending high amount and recently placing orders so they are the most important customers from business point of view.

Project Task: Week 4

Data Reporting:

- 1. Create a dashboard in tableau by choosing appropriate chart types and metrics useful for the business. The dashboard must entail the following:
 - a. Country-wise analysis to demonstrate average spend. Use a bar chart to show the monthly figures
 - b. Bar graph of top 15 products which are mostly ordered by the users to show the number of products sold
 - c. Bar graph to show the count of orders vs. hours throughout the day
 - d. Plot the distribution of RFM values using histogram and frequency charts
 - e. Plot error (cost) vs. number of clusters selected
 - f. Visualize to compare the RFM values of the clusters using heatmap

```
In [46]: df.to_excel('master_data.xlsx', index=False)
In [47]: df_rfm.to_excel('rfm_data.xlsx', index=False)
In [48]: df_inertia.to_excel('inertia.xlsx', index=False)
In [49]: product_desc = pd.read_excel("Online Retail.xlsx") product_desc = product_desc[['StockCode', 'Description']] product_desc = product_desc.drop_duplicates() product_desc.to_csv('product_desc.csv', index=False)
```

Check the tableau link for the Dashboard

In []: