Mathematical Induction
Theorem (Strong Induction)
Consider the proposition P(n).
If P(1) is true and P(1), P(2),, P(n) => P(n+1)
is true for any positive integer n, then
$P(n)$ is true for all $n \in \mathbb{Z}^+$.
Proof: Can be proved using the well-ordering principle.
Ex: Prove that $n! \leq n^n$ for all $n \in \mathbb{Z}^t$. Let $P(n)$ be the proposition $n! \leq n^n$.
P(1) is true (-: 1!\(\si\) Suppose P(1), P(2),, P(n) and true.
We'll show P(n+1) is true. (n+1) = (n+1) n!
(n+1)! = (n+1) n! $\leq (n+1) n^n (-: P(n)) = (n+1)$ $\leq (n+1) (n+1)^n (-: n < n+1)$
$= (n+i)^{n+1}$ $P(n+i) is true.$

* In	weak indi	uction	the d	itterence	is that
we	weak indi	P(n)	$\Rightarrow PC$	(n+i).	