Problem 1

Let X be a metric space. Show that X is second countable if and only if X is separable. Conclude that if X is a separable metric space, then every open set is the union of countably many open balls.

Proof

(⇒): Let X be second countable. Then, X contains base $U_1, U_2, \dots \in \mathcal{B}$ such that each U_i is nonempty. Let $x_1 \in U_1, x_2 \in U_2, \dots$

The set $\{x_i\}_{i\geq 1}$ is countable, as each $x_i\in U_i$. For any $U\in \tau_X$ where $U\neq\emptyset$, $U=\bigcup_{i\in I}U_i$, meaning that $U\cap\{x_i\}_{i\geq 1}\neq\emptyset$. Thus, $\{x_i\}_{i\geq 1}$ is dense in X, meaning X is separable.

(\Leftarrow): Let X be separable, with countable dense subset $\{x_i\}_{i>1}$. Let

$$\mathcal{B} = \{ U(x_i, 1/n) \mid x_i \in \{x_i\}_{i \ge 1}, n \in \mathbb{N} \}.$$

Then, for every $U \in \tau_X$, since $U \cap \{x_i\}_{i \geq 1} \neq \emptyset$, and $\exists n$ such that $U(x_k, 1/n) \subseteq U$, it must be the case that \mathcal{B} is a base for τ_X . Thus, X is second countable.

If X is a separable metric space, then it admits a countable base, and any element of τ_X is a union of the elements of the base, implying that any element of τ_X is a union of countably many open balls.

Problem 2

Let (X, d) be a metric space, $(x_n)_n$ a sequence in X, and $X \in X$. The following are equivalent:

- (i) $(x_n)_n \to x$ in X;
- (ii) $(d(x_n, x))_n \to 0$ in \mathbb{R} ;
- (iii) For every neighborhood $V \in \mathcal{N}_{\times}$, there is an $N \in \mathbb{N}$ with $n \geq N \Rightarrow x_n \in V$.

Proof: Let $(x_n)_n \to x$ in X. Then, for any $\varepsilon > 0$, $\exists N$ large such that $n \ge N \Rightarrow d(x_n, x) < \varepsilon$. However, this is precisely the same as $|d(x_n, x) - 0| < \varepsilon$, which is true if and only if $(d(x_n, x)) \to 0$.

Problem 3

Let X be a metric space. Show that a sequence $(x_n)_n$ converges in X if and only if every subsequence $(x_{n_k})_k$ admits a convergent subsequence $(x_{n_{k_j}})_i$.

Proof: I don't know how to do this.

Problem 4

Let $\{(X_k, d_k)\}$ be a family of metric spaces. Assume that for every $k \ge 1$, we have $d_k(x, y) \le 1$ for all $x, y \in X_k$. Let

$$X := \prod_{k \ge 1} X_k$$

denote the product with metric

$$d(f,g) := \sum_{k=1}^{\infty} 2^{-k} d_k(f(k), g(k)).$$

Show that a sequence $(f_n)_n$ converges to f in X if and only if $(f_n(k))_n \to f(k)$ for every $k \ge 1$.

Proof: Let $(f_n)_n \to f$. Then, $(d(f_n, f))_n \to 0$. Therefore, for $\varepsilon > 0$, there exists an N large such that

$$\sum_{k=1}^{\infty} 2^{-k} d_k(f_n(k), f(k)) < \varepsilon$$

for n > N.

Problem 5

Let V be a normed space. Show that the operations

$$a: V \times V \rightarrow V;$$

 $a(v, w) = v + w$

and

$$\mu : \mathbb{F} \times V \to V;$$

 $\mu(\alpha, v) = \alpha v$

are continuous.

Proof:

• $a: V \times V \rightarrow V$, a(v, w) = v + w:

$$||a(v, w) - a(v', w')|| = ||v + w - (v' + w')||$$

$$= ||v - v' + w - w'||$$

$$\leq ||v - v'|| + ||w - w'||$$

$$= d(v, v') + d(w, w')$$

$$= d_1((v, w), (v', w')),$$

meaning a is Lipschitz.

• $\mu : \mathbb{F} \times V \to V$, $\mu(\alpha, v) = \alpha v$;

$$||\mu(\alpha, v) - \mu(\beta, w)|| = ||\alpha v - \beta w||$$

$$= ||\alpha v - \alpha w + \alpha w - \beta w||$$

$$\leq |\alpha| ||v - w|| + |\alpha - \beta| ||w||$$

If $(\alpha_n)_n \to \beta$ and $(v_n)_n \to w$, then

$$\|\alpha_n v_n - \beta w\| \le |\alpha_n| \|v_n - w\| + |\alpha_n - \beta| \|w\|$$

 $\to 0.$

Problem 6

Let (X,d) be a metric space, $f,g:X\to\mathbb{F}$ continuous maps, and $\alpha\in\mathbb{F}$. Show that f+g, fg, and αf are continuous.

Proof: Let $(x_n)_n \to x \in X$. Then, we know that $|f(x_n) - f(x)| \to 0$ and $|g(x_n) - g(x)| \to 0$ (where $|\cdot|$ denotes absolute value in \mathbb{F}). Let $\varepsilon > 0$. Therefore, for N large, we know that

$$|f(x_n) + g(x_n) - (f(x) + g(x))| \le |f(x_n) - f(x)| + |g(x_n) - g(x)|$$

$$< \varepsilon/2 + \varepsilon/2$$

$$= \varepsilon$$

meaning $|f(x_n) + g(x_n) - (f(x) + g(x))| \to 0$, so $(f(x_n) + g(x_n))_n \to f(x) + g(x)$. Thus, f + g is continuous.

Similarly,

$$\begin{split} |f(x_n)g(x_n) - f(x)g(x)| &= |f(x_n)g(x_n) - f(x_n)g(x) + f(x_n)g(x) - f(x)g(x)| \\ &= |f(x_n)(g(x_n) - g(x)) + g(x)(f(x_n) - f(x))| \\ &\leq |f(x_n)||g(x_n) - g(x)| + |g(x)||f(x_n) - f(x)| \\ &\leq c|g(x_n) - g(x)| + g(x)|f(x_n) - f(x)| \quad \text{convergent sequences are bounded} \\ &< \varepsilon \end{split}$$

so $(f(x_n)g(x_n))_n \to f(x)g(x)$.

Problem 8

Let $h: X \to Y$ be a homeomorphism of metric spaces. Show that the map

$$T_h: (C(X), \|\cdot\|_u) \to (C(Y), \|\cdot\|_u)$$
$$T_h(f) = f \circ h$$

is an isometric isomorphism of normed spaces.

Proof:

Problem 9

Suppose $T:V\to W$ is a bijective linear map between normed spaces with $\|T\|_{\text{op}}\leq 1$ and $\|T^{-1}\|_{\text{op}}\leq 1$. Show that T is an isometry.

Proof: Since the operator norm for T is less than or equal to 1, we know that for $v, w \in V$,

$$||T(v) - T(w)||_W \le ||v - w||_V$$

and

$$||T^{-1}(T(v)) - T^{-1}(T(w))||_{V} \le ||T(v) - T(w)||_{W}$$

so, since T is bijective,

$$||v - w||_V \le ||T(v) - T(w)||_W$$

meaning

$$||T(v) - T(w)||_W = ||v - w||_V$$

so T is an isometry.