IN VIVO MRS: A GALLERY OF ARTIFACTS REVISITED

Erin MacMillan

UBC MRI Research, Dept. Of Radiology, The University Of British Columbia, Vancouver, BC, Canada

SFU ImageTech Lab, Simon Fraser University, Surrey, BC, Canada

Declaration of Financial Interests or Relationships

Speaker Name: Erin MacMillan

I have the following financial interest or relationship to disclose with regard to the subject matter of this presentation:

Company Name: Philips Canada

Type of Relationship: Salary Support

WHAT IS A GALLERY OF ARTIFACTS?

NMR IN BIOMEDICINE NMR Biomed. 2004;**17**:361–381 Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/nbm.891

Review Article Issues of spectral quality in clinical ¹H-magnetic resonance spectroscopy and a gallery of artifacts

Roland Kreis*

Department of Clinical Research, Unit for MR Spectroscopy and Methodology, University Berne, Switzerland

WHAT IS A GALLERY OF ARTIFACTS?

INPUT CHANGES

WHAT IS A GALLERY OF ARTIFACTS?

MRS ACQUISITION TOOLKIT

MRS ACQUISITION TOOLKIT

Slice Selection

MRS ACQUISITION TOOLKIT – UNINTENDED CONSEQUENCES

Slice Selection

GALLERY OF ARTIFACTS

Chemical Shift Displacement Artifact

Outer Volume Signal Bleed

Outer Volume Spurious Echoes (Ghosts)

Poor Shimming

Motion Artifacts

Challenging Locations – All of the above!

CHEMICAL SHIFT DISPLACEMENT ARTIFACTS: **PROBLEMS**

6.75e+00 mL. TE/TR/NS=35/2000/128

CHEMICAL SHIFT DISPLACEMENT ARTIFACTS: PROBLEMS

Chemical shift directions kept the same for L and R voxels

CHEMICAL SHIFT DISPLACEMENT ARTIFACTS: SOLUTIONS

Optimize chemical shift directions for voxel location

CHEMICAL SHIFT DISPLACEMENT ARTIFACTS: SOLUTIONS

Semi-LASER for reduced CSDA

OUTER VOLUME SIGNAL BLEED: PROBLEMS

OUTER VOLUME SIGNAL BLEED: SOLUTIONS

- Chemical Shift Direction: lipids away from the skull
- REST / SAT bands to saturate skull lipids (blue hatched areas)
- Saline bags beside the head to improve shim optimization

SPURIOUS ECHOES: PROBLEMS

SPURIOUS ECHOES: SOLUTIONS

- Avoid exciting/refocusing ventricles!
 - Reduce voxel size
 - Shift away from ventricles

SPURIOUS ECHOES: SOLUTIONS

- Improved outer voxel water suppression:
 - Shim box over regions excited from NAA to H2O

POOR SHIMMING: PROBLEMS

POOR SHIMMING: SOLUTIONS

- Prescribe shim box separately
 - Try to avoid tissue boundaries
- Saline bags outside the head for DLPFC
- Check first few shots before acquiring all the data

MOTION ARTIFACTS: PROBLEMS

MOTION ARTIFACTS: SOLUTIONS

- Participant comfort
 - Lots of padding
- Export individual shots for frequency alignment
- Prospective frequency correction with metabolite cycling

CHALLENGING LOCATIONS: ALL OF THE PROBLEMS

- CSDA difficult to avoid tissue boundaries
- Outer Volume challenging to avoi exciting water
- Poor Shim small volume, tissue boundaries
- Motion physiologic, small volume

CHALLENGING LOCATIONS: SOME PARTIAL SOLUTIONS

- Semi-LASER to reduce CSDA
- Small voxels to avoid ventricles
- Metabolite cycling:
 - Prospectively update centre frequency
 - Post-acquisition correction for frequency changes due to motion

INSPECT ALL FREQUENCY ALIGNMENT

Unaligned

ransients after alignment.

Aligned

INSPECT ALL FREQUENCY ALIGNMENT

INSPECT ALL FREQUENCY ALIGNMENT

BRINGING IT ALL TOGETHER

STANDARDIZED QUALITY ASSESSMENT

MRS QC Report UBC MRI Research Centre Version: 1.1.3

Last Edited: 2021-03-18

WHICH METABOLITES ARE DETECTABLE?

- 1. Analyze all spectra from the study
- Calculate the CRLB in absolute mM values
- 3. Find a threshold (e.g. 30%) of the median metabolite concentration across all spectra
- Accept metabolites where the absolute error (CRLB) is less than this threshold in the majority of scans

MINI-REVIEW

Magnetic Resonance in Medicine 00:00-00 (2015)

The Trouble With Quality Filtering Based on Relative Cramér-Rao Lower Bounds

Roland Kreis*

WHICH METABOLITES ARE DETECTABLE?

- 1. Analyze all spectra from the study
- 2. Calculate the CRLB in absolute mM values
- 3. Find a threshold (e.g. 30%) of the median metabolite concentration across all spectra
- Accept metabolites where the absolute error (CRLB) is less than this threshold in the majority of scans

High detection confidence: tNAA

Detection unlikely: lactate

CONCLUSIONS

- Garbage in = garbage out!
- Ask questions!
- Mrshub.org Forum

ACKNOWLEDGEMENTS

- Dept of Radiology, University of British Columbia
- UBC MRI Research MRI Technologists

