לקראת המבחן

:הגדרות:

אותיות אייב
$$\sum_{i}^{n} \sum_{j}^{n} \sum_{i}^{n} \sum_{j}^{n} \sum_{j}^{n} \sum_{i}^{n} \sum_{j}^{n} \sum_{j}^{n} \sum_{i}^{n} \sum_{j}^{n} \sum_{i}^{n} \sum_{j}^{n} \sum_{i}^{n} \sum_{j}^{n} \sum_{j}^{n} \sum_{i}^{n} \sum_{j}^{n} \sum$$

$$\sum$$
 מילה = סדרה סופית מעל א"ב •

$$L$$
 ב קבוצה של מילים, מעל א"ב \sum , נסמן פ

אותיות =
$$\varepsilon$$
 מילה ללא אותיות •

$$L=\emptyset
eq \{arepsilon\}$$
 שפה ריקה , $L=\emptyset$: שפה ריקה •

$$w$$
 ב מס' האותיות ב $|w|$, w במילה \bullet

,
$$\sum$$
 אוסף כל המילים מעל א"ב \sum^* •

$$\varepsilon \in \sum^*$$
 -

$$L\subseteq \sum^*$$
 מקיימת \sum מעל -

(לא ריקה). קב' סימנים סופית מעל סדרות סופיות מעל סדרות אל $\left|\sum^*\right|=\aleph_0$

פעולות על מילים

- w_1 אחרי אותיות מכתיבת המתקבלת המילה המילה $w_1 \cdot w_2$ המילה המילה $w_1, w_2 \in L$ אחרי שרשור של מילים שרשור של המילה שרשות המילה שריים המילה שריים שרשור של המילה שריים שרשור של המילה שריים שריים
 - $w_1 \cdot w_2
 eq w_2 \cdot w_1$ שרשור מילים אינו פעולה חילופית, כלומר -

$$(w_1 \cdot w_2) \cdot w_3 = w_1 \cdot (w_2 \cdot w_3)$$
: שרשור היא פעולה קיבוצית, כלומר –

- $w_1 \cdot w_2 \notin L$ שרשור של מילים לא בהכרח משמר סגירות שמר שרשור של מילים א שרשור
 - חזקה של מילים:

$$w^i = w \cdot w \cdot w \cdot w ... : w^i$$
 , $i \in \mathbb{N}$: הגדרה פשוטה

$$w^0 = \varepsilon$$

$$w^1=w$$
 בהדרה רקורסיבית:

$$w^i = w \cdot w^{i-1}$$

$$w^R:(reverse)$$
 היפוך

$$w=a_1,a_1,...,a_n$$
 :- הגדרה פשוטה $w^R=a_n,a_{n-1},...a_1$

$$w^R=w$$
 אז א $w=arepsilon$ במקרה ו $w=\dfrac{1}{a_1,a_2,\dots}a_n$ - $w^R=a_nt^R$

פעולות על שפות

: אז \sum איב מעל א"ב L_1,L_2 אז תהיינה

$$L_1 \cup L_2 = \{w|w \in L_1 \lor w \in L_2\}$$
־ איחוד $ullet$

$$L_1 \cap L_2 = \{w | w \in L_1 \land w \in L_2\}^{-}$$
 חיתוך

- $L_1ackslash L_2=\{w|w\in L_1\wedge w\notin L_2\}$ וכן $L_1=ar{\sum}^*ackslash L_1$ משלים
 - $L_1 \cdot L_2 = \{w | \exists u \in L_1, \exists v \in L_2, w = u \cdot v\}$ שרשור שפות
 - $L^* = igcup_{i \in \mathbb{N}} L^i = L^0 \cup L^1 \cup ...: rac{1}{2}$ איטרציה
 - . $L^R = \left\{ w | \, w^R \in L
 ight\}$ היפוך: L^R

אוטומט סופי דטרמינסטי

- . במצב w במצב שהאוטומט מקבל קלט w אם הוא מסיים את קריאת
 - אחרת נאמר שהוא דוחה את w.
- כאשר , $A=(\sum_A,Q_A,q_{0A},F,\delta_A)$ כאשר גתון על ידי גערמינסטי הטרמינסטי \bullet
- א"ב כל אותיות הקלט האפשריות עבור האוטומט. מספר האותיות בא"ב זה חייב להיות סופי וגדול מ־0.
 - \sum_A נסמן ב *
 - מצבים כל המצבים שבהם יכול האוטומט להימצא. מספר המצבים חייב להיות סופי וגדול מ־0.
 - נסמן ב Q_A קבוצה סופית לא יקה של *
- **–** <u>מצב התחלתי</u> המצב שממנו מתחיל האוטומט את מסלול החישוב על כל מילת קלט . קבוצת מצבים מקבלים קבוצה מתוך קבוצת המצבים, המכילה 0 מצבים או יותר .
 - $q_{0A} \in Q_A$ מצב התחלתי $q_{0A} *$
 - $F_A \subseteq Q_A$ קבוצת מצבים מקבלים $F_A *$
- **–** <u>פונקציית מעברים</u> לכל זוג של מצב ואות, פונקציה זו מתאימה מצב (אחד ויחיד) שאליו עובר האוטומט כאשר במצב זה נקראת אות זו.
 - $F_A \subseteq Q_A$ קבוצת מצבים מקבלים $F_A *$
 - פונקציית המעבר:
 - $\delta(a,\varepsilon)=a$ בסיס -
 - . אות. א היא מחרוזת וa היא מחרוזת כאשר $\delta\left(q,wa\right)=\delta\left(\delta(q,w),a\right)$ בעד
 - . $\delta\left(q,a
 ight)=\emptyset$ מתקיים $a\in\sum$ אם לכל בור אם מצב אויד נאמר ש הוא מצב א"ד ממר ש q

שפה של אוטומט דטרמינסטי:

ע כך ש אוסף כל המחרוזות אוטומט אי L(A) היא השפה שמקבל האוטומט. אוסף כל המחרוזות החרוזות אוסף אוסף כל המחרוזות $L(A)=\left\{w\in\sum^*|\left(\delta_0,w\right)\in F\right\}$. כלומר: $\delta\left(q_0,w\right)$

כלומר אוסף כל המחרוזות שמקבל האוטומט - אוסף כל המחרוזות המהוות מסלול ממצב ההתחלה למצב מקבל.

- $L_A(q)=\left\{w\in\sum^*|\delta\left(q_0=w
 ight)
 ight\}$ לכל שפת המצב באה: $L_A(q)=igcup_{q\in F}L_A(q)$ שפת מתקיים מתקיים
 - . היא רגולרית אם היא מתקבלת ע"י אוטומטט סופי דטרמיניסטי. הגדרה: שפה ביא רגולרית אם היא היא רגולרית אם היא היא רגולרית אם היא מתקבלת ע"י אוטומטט סופי דטרמיניסטי.

אוטומט סופי לא דטרמינסטי

:כאשר
$$A=(Q,\sum,q_0,\delta,F)$$

- $F\subseteq Q$ מצב התחלתי, קבוצת מצבים מקבלים מעברים א"ב נתון, פונקציית מעברים $q_0\in Q$, δ פונקציית מעברים א"ב ע"ב \sum
 - פונקציית המעברים $\delta\left(q,a\right):\delta$ היא קבוצת מצבים הרחבה למחרוזת:

$$\delta\left(q,arepsilon
ight)=\{q\}$$
בסיס: -

$$\delta\left(m{P},w
ight)=igcup_{q\inm{P}}\delta\left(q,w
ight)$$
 : צעד: להרחבה לקבוצת סימון ה להרחבה לקבוצת אימון ה להרחבה לקבוצת היא א ל $\left(q,wa\right)=igcup_{p\in\delta\left(q,w
ight)}\delta\left(p,a
ight)$

• השפה של האוטומט היא קבוצת המחרוזות שהוא מקבל:

$$L(A) = \left\{ w \in \sum^* | \delta\left(q_0, w\right) \cap F
eq \emptyset
ight\}$$
 כלומר

arepsilonאסל"ד עם מסעי

- arepsilon אסל"ד עם מסעי מסעי מאפשרים מאפשרים מסעי מסעי מסעי מסעי אסל"ד עם מסעי
 - $\delta: Q \times \sum \cup \{\varepsilon\} \to P(Q)$ -
 - סגור של קבוצת מצבים:
- CL(q) במסעי בלבד נסמן ע"י שימוש במסעי בלבד נסמן המצבים שניתן להגיע אליהם מq שימוש במסעי קבוצת המצבים שניתן ב
 - P שייך שייך כאשר ע כאשר פייד כל הסגורים CL(q) איחוד כל איחוד פייד פייד שייך ל

$$\delta'\left(q,arepsilon
ight)=CL(q):$$
בסיס *

$$\delta'\left(q,xa\right) = \bigcup_{p \in \delta'\left(q,\varepsilon\right)} CL(\delta\left(p,\varepsilon\right) : \underline{\mathsf{צעד:}} *$$

הרחבת מילים של פונקציות מעברים:

• באינדוקציה:

$$\delta' = (q, \varepsilon) = CL(q)$$
 בסיס: -

$$\delta'\left(q,xa
ight) = igcup_{p\in\left(q,x
ight)} CL\left(\delta\left(p,a
ight)
ight)$$
 - צעד

בכל שלב. arepsilon היא קבוצת אפשרי במסעי ע"י קריאת ע"י קריאת שליהם מחליהם שליהם שליהם $\delta'\left(q,w\right)$ הרעיון:

אחת (המילה הריקה בחוץ) המילות לפחות לפחות אחת המכילות בשפה בשפה בשפה כל בשפה המכילות אחת (המילה מצב מקבל. שפה של אוטומט לא דטרמיסנטי עם מסעי σ היא קבוצת שוא שפה של אוטומט לא דטרמיסנטי עם מסעי פון היא קבוצת ש

ביטויים רגולרים

: באופן הביטויים הרגולרים מעל א"ב בחמסומן ב R_{\sum} המסומן מעל א"ב באופן הרגולרים הרגולרים מעל הביטויים הרגולרים מעל א

:אטומים

$$\phi, \varepsilon \in R$$
 -

$$\forall \sigma \in \Sigma, \sigma \in R$$
 -

<u>פעולות יצירה:</u>

$$(r_1 \cdot r_2) \in R$$
 , $(r_1 + r_2) \in R$ אם $r_1, r_2 \in R$ אם $m{-}$

 $(r^*) \in R$ אז $r \in R$ אם -

 $:2^{\sum^*}$ ל R מ בירת שפה: נגדיר את הפונקציה ל

- :r השפה שמציין הביטוי תהי L[r]
 - $L\left[\phi\right] = \phi$ -
 - $L\left[arepsilon
 ight] =\left\{ arepsilon
 ight\}$ -
- $L\left[\sigma
 ight]=\left\{\sigma
 ight\}$ מתקיים $\sigma\in\sum$ לכל
 - $r_1,r_2\in R$ אם ullet
- $L[(r_1+r_2)] = L[r_1] + L[r_2]$ -
 - $L[(r_1 \cdot r_2)] = L[r_1] \cdot L[r_2]$ -
 - $L\left[\left(r^{st}
 ight)
 ight]=\left(L\left[r
 ight]
 ight)^{st}$ אם $r\in R$ אם ullet
- $r\cdot(r^*)$ את הביטוי רגולרי נסמן ב אם רגולרי נסמן הביטוי רגולרי פ
 - סדר קדימויות בהשמטת סוגריים:
 - * -
 - · -
 - + -
 - (לרוב נשמיט את אופרטור השרשור) –

משפטים

- $L_1 \cdot L_2
 eq L_2 \cdot L_1$ יתכן יתכן פעולת שרשור על שפות אינה חלופית, יתכן
- $(L_1L_2)\,L_3 = L_1\,(L_2L_3)$ פעולת שרשור על שפות היא כן קיבוצית ullet
- . טענה: $(L^*)^* = L^*$ מסקנה מידית אין טעם לבצע איטרציה יותר מפעם אחת.
 - $\delta\left(q,w_{1}\cdot w_{2}
 ight)=\delta\left(\delta\left(q,w_{1}
 ight),w_{2}
 ight)$ טענה: מתקיים •
- (מסקנה מיידית: רוב השפות אינן רגולריות) אינן $2^{leph_0}=\left|P\left(\sum^*
 ight)
 ight|=\left|\lambda,\sum\right|$ אינן אינן אינן אינן $2^{leph_0}=\left|P\left(\sum^*\right)
 ight|$
 - אינה שפה רגולרית $L=\{0^n1^n|\geq 1\}$
 - אס"ד שקול לאסל"ד.
 - .~arepsilon אסלד עם מסעי $\iff arepsilon$ אסל"ד ללא מסעי •
 - סגירות השפות הרגולריות תחת פעולות בוליאניות
 - $L_1\subseteq L_2$:שפות כך ש L_1,L_2 יהיו הכלה -
- $L_1=\{a^nb^n|n>0\}$ $L_2=\{\sum^* ext{where } \sum=\{a,b\}$ $\}$ ד"נ: L_1 אם L_2 אינה בהכרח רגולרית בהכרח רגולרית בהכרח רגורלית בהכרח רגורלית בהכרח רגורלית $L_1=\{01\}$ $L_2=\{a^nb^n|n>0\}$ ד"נ: $L_2=\{a^nb^n|n>0\}$
 - . רוגולרית אז $ar{L}$ רוגולרית אז L רוגולרית –
 - רגולרית אז $L_1\cap L_2$ רגולרית רגולרית L_1,L_2 אם L_1,L_2

- רגולרית אז $L_1 \cup L_2$ רגולרית רגולרית אם L_1, L_2 רגולרית -
- . רגולרית אז $L_1 \cdot L_2$ אם רגולרית אז L_1, L_2 אם -
 - . רגולרית אז L_1^* אם רגולרית אז L_1 רגולרית -
 - L_1^R אם L_1 רגולרית אז –

• למת הניפוח לשפות רגולריות

. כאשר: כאשר בZ=uvw מהצורה פירוק פירוק איים לפחות שאורכה מילה בL שלכל מילה בN כך שלכל מילה בL כאשר:

- $|uv| \leq n$ -
- $1 \le |v|$ -
- $0 \leq i$ לכל $uv^i w \in L$ -

• שלילת למת הניפוח

נניח בשלילה ש $|z| \geq n$ המקיימת מס' המובטח מלמת הניפות. נראה ש**קיימת** מילה בשלילה שלבו מס' מס' המובטח מלמת הניפוח: z = uvw

- $(uv > n)|uv| \le n$.1
- $(1 > |v|) \ 1 \le |v|$.2
- $0 \leq i$ קיים $uv^iw \notin L$.3

• שפות לא רגולריות ־ דוגמאות:

- אינה רגולרית , $L=\{0^n1^n|n\in\mathbb{N}\}$ –
- "כמות ה") אינה רגולרית. (# $L=\left\{x\in\left\{a,b\right\}^*|\#_a(x)=\#_b(x)
 ight\}$ -
 - . אינה רולגרית $L = \left\{ xx | x \in \left\{a,b\right\}^*
 ight\}$
 - . אינה רגולרית $L=\left\{a^{k^2}|k\in\mathbb{N}
 ight\}$ –
 - - $L\left[r\right]=L$ ע כך רגולרי ביטוי קיים $L\subseteq\sum^*$ רגולרית לכל לכל שפה אולרית לכל
- משפט קליני משפחת השפות הרגולריות היא הקבוצה הקטנה ביותר המכילה את כל השפות הסופיות והסגורה תחת הפעולות הרגולריות