SOL NE SCHEDAN. 2.

ANALISI 2 - Ing GESTIONALE

0) TRIGONOMETRIA:

Dopo aver disegnato l'angolo corrispondente sul cerchio trigonometrico, calcolate

$$\operatorname{sen}\left(\frac{5}{2}\pi\right) = A.$$

$$\cos\left(\frac{5}{4}\pi\right) = \frac{\sqrt{2}}{2} \quad \sin\left(\frac{5}{2}\pi\right) = \frac{1}{2} \quad \cos\left(-\frac{4}{3}\pi\right) = \frac{1}{2} \quad \sin\left(-\frac{1}{6}\pi\right) = \frac{1}{2}$$

$$\operatorname{sen}\left(-\frac{1}{6}\pi\right) = \dots \frac{4}{2}$$

$$\cos\left(-3\,\pi\right) = 1.2$$

$$\cos(-3\pi) = \frac{\sqrt{3}}{2} \qquad \cos(-\frac{11}{4}\pi) = \frac{\sqrt{2}}{2} \qquad \sin(\frac{2}{3}\pi) = \frac{\sqrt{3}}{2} \qquad \sin(\frac{5}{6}\pi) = \frac{1}{2}$$

3/4 di giro da Pin=(3/2,3) a Pgin=(0,-2)

$$\operatorname{sen}\left(\frac{2}{3}\pi\right) =$$

$$\operatorname{sen}\left(\frac{5}{6}\pi\right) = \frac{\cancel{5}}{\cancel{5}}$$

|--|

1) 81: curva avente persostepno l'ellisse di $C(\frac{3}{2}, -2)$ e semiassi $a = \frac{3}{2}, b = 5$ percorsa in verso antiorario per 3 di giro da Pin=(0,-2)a Pgin=(3,3) 72: curva avente per sostegno l'ellisse di $C(\frac{3}{2},-2)$ e Semiassi $a=\frac{3}{2}$, b=5 percorsa in Jerso orario per

Le due curve hanno LO STESSO SOSTEGNO perché percomono esattamente gli stessi 3 di ellisse, anche se in verso opposto e in intervalli di tempo differenti (le due cure 11etz

diverse, ma hamo lo stesso sostepro).

Σ2 per [π, 5π] percore

3/4 di giro in verso orano da Pin=(0,-2) a Prin=(3,-7)

Inquesto caso le due

CURUE NON HANNO LO STESSO SOSTEGNO in quanto 81 percorre, rispetto a 82, in più il quanto di giro da (0,-2) e $(\frac{3}{2},-7)$ e in meno il quanto di giro da (0,-2)a $(\frac{3}{2},3)$ - In particolare messuno dei due sostepni è contenuto nell'altro

3) Piu=(2,-8) Pfiu=(-6,0) parabola di equazione ANZGest-3-

Sol "SCHEDA 2

 $y = -\frac{1}{2}x^2 - 3x$ di $V(-3, \frac{9}{2})$, rivolta Verso il bano (pana per (-6, 0) e (9, 0)) percorsa nel verso delle x decrescenti

 $P_0 \rightarrow t_0 = 0 \quad \text{Y'(t)} = \left(-2, -\frac{2}{2}(2t+4) \cdot 2\right) = \left(-2, -4t-2\right)$ Il vettore tangente o vettore velocità in $P_0 = (-4, 4)$ è: $\vec{U}_{P_0} = \vec{U}(0) = -2\vec{L} - 2\vec{J}$

La velocità scalare in P_0 è: $\|\vec{\mathbf{U}}_{P_0}\| = \sqrt{8} = 2\sqrt{2}$

Il versore tangente in P_0 è: $\overrightarrow{T}_{P_0} = -\frac{1}{\sqrt{2}}\vec{\lambda} - \frac{1}{\sqrt{2}}\vec{J} = -\frac{\sqrt{2}}{2}\vec{\lambda} - \frac{\sqrt{2}}{2}\vec{J}$

Disegnate sul foglio a quadretti il punto P_0 , il vettore e il versore tangente.

L'equazione cartesiana della retta tangente in P_0 è: $\mathcal{M}_{\text{tan}}=4$

Le equazioni parametriche della retta tangente nel punto P_0 sono:

L'equazione cartesiana della retta normale in P_0 è: $m_{\text{Norm}} = -1$ $y = -\times$ $P_1 = (1, -\frac{7}{2}) \quad \vec{U}_{P_1} = -2\vec{\lambda} + 8\vec{J}$ I due vettori normali alla curva nel punto P_1 corrispondente a $t_1 = -\frac{5}{2}$ sono: $\vec{N}_{\text{ont}} = -8\vec{\lambda} - 2\vec{J}$ Disegnate sul foglio a quadretti il punto P_1 ed entrambi i vettori normali in P_1 .

	a quadress ii punto 11 (ed entrampl 1 vettor	n normali in P_1 .	
4) $R_{u} = (3, \frac{5}{2})$		$(3, -2 + \frac{9}{2}\sqrt{2})$		· , , ,
$P_{gh} = (\frac{15}{2}, -2)$	y ↑	Pin= (3/5/2)	Ψ _p	Jor
$\Delta t = \frac{7}{2}\pi$	5/2		节	
circonferenta di C(3,-2) eR= 5		3/4	P.	
percovsa in		No.	h h	×
verso Antiorario per 1 givo e 4	$(-\frac{3}{2}, -2)$. من بند بند بند بند <u>بند بند بند بند بند بند بند بند بند بند </u>	$\int_{0}^{1} \left(\frac{45}{2}, -2\right)$
eque:			A	//
$(x-3)^2+(y+2)^2=\frac{81}{4}$			A A	
⊏	ę,	$(3,-\frac{13}{2})$	7	
Po $\int cost = \frac{\sqrt{2}}{2}$ $\int cost = \frac{\sqrt{2}}{2}$	$\Rightarrow t_0 = \frac{9}{4}\pi \gamma'(t) = (-\frac{9}{4}\pi)^{-1}$	$-\frac{9}{2}$ sent, $\frac{9}{2}$ cost)	$\vec{J}_{P_c} = -\frac{9}{4}\sqrt{2}$	2+9 127
te[芝,fm]				
$\ \vec{\mathcal{G}}_{P_0}\ = \sqrt{\left(-\frac{9}{4}\right)}$	$(-\sqrt{2})^2 + (\frac{9}{4}\sqrt{2})^2 = \sqrt{\frac{81}{26_8}}.2 +$	$\frac{81}{46} \cdot 2 = \sqrt{\frac{81}{4}} = \frac{9}{2}$	<u> </u>	
$\overrightarrow{T}_{P_0} = -\frac{\sqrt{2}}{2}\overrightarrow{L} + \frac{1}{2}$	$\frac{\sqrt{2}}{2}$,	x-3+9/2	$-\frac{9}{2}\sqrt{2}$
m tan = -1	$y = -x + 1 + \frac{9}{2}\sqrt{2}$	eq. param.	$ \begin{array}{c} \times = 3 + \frac{9}{4} \sqrt{2} \\ y = -2 + \frac{9}{4} \sqrt{2} + 9$	4 tell tell
mnorm=1)= X-5		~ 4	4

SLIME SCHEDA 2 Aul Gest - 5-

$$\vec{N}_{or} = \frac{9}{4} \sqrt{2} \vec{z} + \frac{9}{4} \sqrt{2} \vec{j}$$
 $\vec{N}_{aut} = -\frac{9}{4} \sqrt{2} \vec{z} - \frac{9}{4} \sqrt{2} \vec{j}$

VERS
$$\vec{N}_{or} = \frac{\sqrt{2}}{2}\vec{x} + \frac{\sqrt{2}}{2}\vec{j}$$
 $\vec{N}_{out} = -\frac{\sqrt{2}}{2}\vec{x} - \frac{\sqrt{2}}{2}\vec{j}$

$$\cos = -\frac{1}{2}$$

$$\sec = -\frac{1}{2}$$

$$\begin{array}{cccc}
\cos & = -\frac{1}{2} \\
\sec & = -\frac{\sqrt{3}}{2}
\end{array}
\qquad
\begin{array}{c}
P_1 & = \left(-\frac{3}{4}, -2 - \frac{9}{4}\sqrt{3}\right) \\
\approx & = 5.9 & N_{\text{out}}
\end{array}$$

5)
$$Piu = (0, -4)$$
 $Pfiu = (5,6)$ eque $t = \frac{y}{4} \rightarrow nella 1^n \times = \frac{1}{4}y^2 - 4$

la cura percone la parabola di

eq. x= 14-4 (anex, V(-4,0),

name y y=±4) nel verso delle

y crescenti

$$\vec{N}_{or} = 4\vec{\iota} - 8\vec{j} \quad \vec{N}_{out} = -4\vec{\iota} + 8\vec{j} \quad \text{VERS } \vec{N}_{op} = \frac{1}{\sqrt{5}}\vec{\iota} - \frac{2}{\sqrt{5}}\vec{j} \quad \text{VERS } \vec{N}_{out} = -\frac{1}{2}\vec{j} \quad \text{VERS$$

(0,-4)=Pin

$$m_{tau} = \frac{1}{2} \quad y = \frac{1}{2} \times +4$$

$$m_{morm} = -2$$
 $y = -2x + 4$

moru = 0 =0 -> la retta normale e ovissontale e ha equify=0]

Ser LANZGERT - 6-17 X(t) =-4t+2 6) 1º tratto Pin=(18,4) Pfin=(2,0) eque y= VX-2 la cuma per corre il grafico della vadice sportato a destra di 2 mel verso delle × decrescenti. Altri PUNTI: (3,1), (6,2), (11,3) 2º tratto Piu= (2,0) Br (20, 36) eq. $y = \frac{2}{17} \left(x - \frac{21}{2} \right)^2 - \frac{17}{2}$ oppure $y = \frac{2}{17} x^2 - \frac{42}{17} x + \frac{76}{17}$ La auna percone la para bola di equazione mel verso delle x crescenti $0 = 0 : (2,0) (19,0) V(\frac{21}{2}, -\frac{17}{2})$ $P_2 = (6,2) \in 1^{\circ} \text{ tratto}: \begin{cases} 6 = -4t + 2 \Rightarrow 4t = -4 \Rightarrow t = -1 \\ 2 = \sqrt{-4t} \in \text{con } t = -1 \\ 2 = \sqrt{4} \text{ or } \end{cases}$ $\gamma'(t) = (-4, \frac{1}{2\sqrt{-1+1}}, (-4)) = (-4, -\frac{2}{\sqrt{-1+1}}) \vec{v}_{P2} = \vec{v}(-4) = -4\vec{\lambda} - \vec{J} \quad (*)$ Il punto più a destra in cui la curva interseca l'arre x è (19,0) che E al 2º tratto e corrisponde a t = 17 -> 3t=17_t=45 19=2+3t $0 = \frac{2}{44} \left(3t - \frac{47}{2}\right)^2 - \frac{47}{2} \qquad 0 = \frac{2}{44} \left(47 - \frac{47}{2}\right)^2 - \frac{47}{2} = \frac{47}{2} - \frac{47}{2} = 0 \text{ ok}$ $\gamma'(t) = (3, \frac{2}{14}, 2(3t - \frac{14}{2}).3) = (3, \frac{36}{14}t - 6)$ $\vec{U}_{(49,0)} = 3\vec{L} + 6\vec{J}$ $||\vec{U}_{(49,0)}|| = \sqrt{9 + 36} = \sqrt{45} = 3.\sqrt{5} \approx 6.7$

(*) $\|\vec{J}_{P_2}\| = \sqrt{14} \quad \hat{T}_{P_2} = -\frac{4}{\sqrt{n_1}}\vec{\lambda} - \frac{1}{\sqrt{n_2}}\vec{J}$ $\vec{N}_{or} = -\vec{\lambda} + 4\vec{J}$ $\vec{N}_{out} = \vec{\lambda} - 4\vec{J}$

mnoru = - 4 teta horu y= -4x+26