Technische Hochschule Ostwestfalen-Lippe University of Applied Sciences and Arts

Wintersemester 2022/2023

Vergleich verschiedener Reinforcement Learning Algorithmen

Modularbeit

Vorgelegt im Kontext des Moduls "Anwendung des maschinellen Lernens"

am Fachbereich Technische Informatik und Elektrotechnik im Studiengang Data Science

Veranstalter: Prof. Dr. Philipp Bruland

Vorgelegt von: Bjarne Seen

Liebigstraße 130 32657 Lemgo

bjarne.seen@stud.th-owl.de

Matr. Nr.: 15467085 Vorgelegt von: Joshua Henjes

 $\begin{array}{c} {\rm Hanseweg} \ 11 \\ {\rm 32657} \ {\rm Lemgo} \end{array}$

joshua.henjes@stud.th-owl.de

Matr. Nr.: 15467024 Abgabetermin: 02.03.2023

Inhaltsverzeichnis

A۱	bkürzungen	I
1	Einleitung	1
2	Grundlagen 2.1 Definitionen	2 3 3 3
3	Implementierung 3.1 Probleme 3.2 Vergleichen von Algorithmen und Paramtern	3 3
4	Ergebnisse 4.1 Taxi 4.2 Cliff 4.3 Frozen Lake	3 3 3
5	Auswertung und Diskussion 5.1 Taxi 5.2 Cliff 5.3 Frozen Lake	3 3 3
6	Zusammenfassung und Ausblick	3

Abkürzungen

API

Application Programming Interface

1 Einleitung

Reinforcement Learning ist neben Supervised und Unsupervised Learning eins der elementaren Felder des maschinellen Lernens. Im Gegensatz zu den anderen Feldern benötigt Reinforcement Learning keine Trainingsdaten, denn der Algorithmus lernt durch wiederholtes Interagieren mit einer dynamischen Umgebung eine Strategie, um eine Belohnungsmetrik zu maximieren. Es wird daher auch als bestärktes lernen oder verstärktes lernen bezeichnet.

Bekannt wurde das Reinforcement Learning vor allem durch das Meistern von bekannten Brett- und Computerspielen, so ist Googles "AlphaGo" in der Lage, die besten Go Spieler der Welt zu schlagen. Trotz dieser beeindruckenden Erfolge findet RL in der Industrie bisher nur geringe Anwendung.

Immer kürzer werdende Produktzyklen und steigende Produktvielfalt stellen für die heutigen Produktionsprozesse eine große Herausforderung dar. Zukünftige Produktionen müssen immer anpassungsfähiger werden. Zeitgleich soll der Personalaufwand aufgrund des anhaltenden Fachkräftemangels möglichst gering ausfallen. Maschinelles Lernen, insbesondere das Reinforcement Learning, kann bei der Bewältigung dieser Herausforderungen eine relevante Rolle übernehmen.

Auch bei der Bekämpfung des Klimawandels kann Reinforcement Learning unterstützen. Um unsere Klimaziele zu erreichen, ohne unseren Lebensstandard signifikant zu senken, ist eine Optimierung des Ressourcenbedarfs nötig. Mit ausreichender Trainingszeit sind RL-Algorithmen sehr gut in der Optimierung von Prozessen und somit auch in dessen Ressourcenverbrauches. Google, als einer der Vorreiter im Gebiet des maschinellen Lerners, konnte durch ML-Algorithmen den Energieverbrauch der Kühlung ihrer Rechenzentren um bis zu 40 Prozent reduzieren.

Mittlerweile existiert eine Vielzahl an unterschiedlichen Reinforcement Learning Algorithmen. Während die mathematischen und strukturellen Unterschiede meist gut dokumentiert und einsehbar sind, ist ein direkter Vergleich der Leistungsfähigkeit der Algorithmen in verschiedenen Umgebungen nur schwer zu finden. Aus diesem Grund beschäftigt sich diese Ausarbeitung mit dem Vergleich von beliebten RL-Algorithmen anhand von Umgebungen mit geringer Komplexität.

Während die Zeit, welche ein RL-Algorithmus zum Lernen benötigt, bei der Anwendung auf Brettund Computerspielen eher eine untergeordnete Rolle spielt, ist sie in der Anwendung in industriellen
Umgebungen deutlich relevanter. Zum einen verlangsamen hohe Trainingszeiten den Entwicklungsprozess deutlich, was wiederum zu höheren Lohn- und Entwicklungskosten führt. Zum anderen ist es in
vielen Anwendungsfällen nötigt, dass die Umgebung während des Trainingsprozesses dem Algorithmus
zur Verfügung steht. Im Fall von Produktionsanlagen ist Trainingszeit somit sehr kostspielig. Aus
diesem Grund wird neben der Leistungsfähigkeit auch die Lerngeschwindigkeit der Algorithmen im
Folgenden untersucht.

2 Grundlagen

2.1 Definitionen

Um Reinforcement Learning im Folgenden besser beschreiben zu können, ist zunächst die Klärung einiger Grundbegriffe nötig. Diese sind aus der englischen Sprache entstanden, auf eine Übersetzung dieser Begriffe in das Deutsche wurde verzichtet, um eine Vergleichbarkeit zu anderen Werken in diesem Themenbereich zu gewährleisten.

1. Agent

Der Agent ist die Instanz, welche Aktionen in einem Szenario/Umfeld ausführt und dafür eine Belohnung bekommt. Environment

2. Environment

Das Environment ist, wie die deutsche Übersetzung schon vermutet lässt, die Umgebung in dem sich der Agent befindet. Das Environment legt dabei die grundlegenden Regeln fest und definiert, welche Aktionen möglich sind. Das Environment trägt somit ausschlaggebend zur Komplexität der zu lösenden Aufgabe bei. In vielen Fällen, so auch in den in dieser Ausarbeitung folgenden Versuchen, ist das Environment eine Simulation. Dies ermöglicht einen deutlich schnelleren Lernprozess, da jegliche Interaktion ohne nennenswerte Verzögerung ausgeführt werden kann. Bei komplexen Aufgabestellungen ist es so zudem möglich, mehrere Agenten parallel zu trainieren.

3. Action

Als Action wird eine Interaktion des Agent mit dem Environment beschrieben. Die Lösung eines Problems kann somit als Abfolge bestimmter Actions angesehen werden. Welche Actions der Agent ausführen kann, hängt dabei von den Grundregeln des Environments ab.

4. State

Der State ist der eindeutige und vollständige Beschreibung des Zustands, in welchem sich das Environment befindet. Aus technische Sicht ist der State meist ein Vektor, eine Matrix und ein Tensor, welcher alle relevanten Information des aktuellen Zustands enthält.

5. Reward

Der Reward ist die unmittelbare Belohnung, welche der Agent als Feedback zu einer Action erhält. In der Praxis ist dies ein numerischer Wert, welche entweder erhöht oder reduziert werden kann. Der Agent kann so für eine Action belohnt oder bestraft werden, dabei versucht er sein Handeln so auszurichten, dass er die größte mögliche Belohnung erreicht. Die Art und Weise, wie der Reward vergeben wird, bestimmt somit das Verhalten des Agent.

- 6. Bellmann Equation?
- 7. Markov Decision Process
- 8. Exploration vs Exploitation
- 9. Temporal difference vs Monte Carlo
- 10. Source

- 2.2 Algorithmen
- 2.2.1 Q-Learning
- 2.2.2 **SARSA**
- 3 Implementierung
- 3.1 Probleme
 - 1. Taxi
 - 2. Cliff
 - 3. Frozen Lake
- 3.2 Vergleichen von Algorithmen und Paramtern
- 4 Ergebnisse
- 4.1 Taxi
- **4.2** Cliff
- 4.3 Frozen Lake
- 5 Auswertung und Diskussion
- 5.1 Taxi
- 5.2 Cliff
- 5.3 Frozen Lake
- 6 Zusammenfassung und Ausblick