Université Paris 1 Magistère d'Economie - 1ère année

COURS DE STATISTIQUE

DEFINITIONS ET PROPRIETES DES PRINCIPALES LOIS UNIDIMENSIONNELLES

Convention : Si la variable aléatoire (v.a.) X suit la loi \mathcal{L} , on notera $X \sim \mathcal{L}$.

Lois discrètes

1. Loi UNIFORME : \mathcal{U}

Elle est définie sur des entiers $\{1,...,n\}$ ou des valeurs $\{a_1,...,a_n\}$ avec la même probabilité pour toutes les valeurs

$$\mathbb{P}(X=i) = \frac{1}{n}, i = 1, ..., n$$

ou

$$\mathbb{P}(X = a_i) = \frac{1}{n}, i = 1, ..., n.$$

Espérance et variance :

$$\overline{\mathrm{Si}\ X(\Omega) = \{1, ..., n\},}$$

$$\mathbb{E}(X) = \frac{n+1}{2} , \ \mathbb{V}(X) = \frac{n^2 - 1}{12}$$

Si
$$X(\Omega) = \{a_1, ..., a_n\},\$$

$$\mathbb{E}(X) = \frac{1}{n} \sum_{i=1}^{n} a_{i}, \ \mathbb{V}(X) = \frac{1}{n} \sum_{i=1}^{n} a_{i}^{2} - \mathbb{E}(X)^{2}$$

2. Loi de BERNOULLI : $\mathcal{B}(1, p)$

On utilise cette loi lorsque les résultats possibles d'une épreuve aléatoire sont réduits à deux :

Oui-Non; Vrai-Faux; Succès-Echec

On parle dans ce cas d'expérience de Bernoulli. Une v.a. X suit une loi $\mathcal{B}(1,p)$ si elle prend deux valeurs 0 et 1 avec les probabilités suivantes :

$$\mathbb{P}(X=1) = p$$
, $\mathbb{P}(X=0) = 1 - p = q$

La loi de Bernoulli peut aussi s'écrire sous la forme suivante :

$$\mathbb{P}(X=k) = p^k (1-p)^{1-k} , k \in \{0,1\}$$

Espérance et variance :

$$\mathbb{E}(X) = p , \ \mathbb{V}(X) = p(1-p)$$

Fonction génératrice :

$$G(s) = \mathbb{E}\left(s^X\right) = q + ps$$

3. Loi BINOMIALE : $\mathcal{B}(n, p)$

Une v.a. suivant cette loi peut se définir comme le nombre de "succès" à l'issue de n expériences de Bernoulli indépendantes et de même loi. Le support d'une telle variable est $X(\Omega) = \{0, 1, ..., n\}$ avec la loi de probabilité :

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}, k \in \{0, 1, ..., n\}$$

Construction

Si n v.a. indépendantes $X_1, X_2, ..., X_n$ suivent la même loi $\mathcal{B}(1, p)$, alors la variable $X = \sum_{i=1}^n X_i$ suit une loi Binomiale $\mathcal{B}(n, p)$.

Espérance et variance :

$$\mathbb{E}(X) = np , \ \mathbb{V}(X) = np(1-p)$$

Fonction génératrice :

$$G(s) = \mathbb{E}(s^X) = (q + ps)^n$$

Addition

Si deux v.a. indépendantes X_1 et X_2 suivent respectivement les lois $\mathcal{B}(n_1, p)$ et $\mathcal{B}(n_2, p)$, alors la variable aléatoire $X = X_1 + X_2$ suit une loi $\mathcal{B}(n_1 + n_2, p)$.

Approximation (Convergence en loi)

Lorsque n est grand :

- (a) Si n > 30, si np et np(1-p) sont voisins et si $np \le 15$, on peut alors approximer la loi $\mathcal{B}(n,p)$ par une loi de Poisson $\mathcal{P}(\lambda)$, où $\lambda = np$.
- (b) Si np > 15 et n(1-p) > 15 (ou si np(1-p) > 5), on peut alors approximer la loi $\mathcal{B}(n,p)$ par une loi normale $\mathcal{N}(m,\sigma^2)$, où m=np et $\sigma^2=np(1-p)$.

4. Loi GEOMETRIQUE : $\mathcal{G}(p)$

Une v.a. suivant cette loi peut se définir comme le nombre d'essais jusqu'au premier succès pour des épreuves de Bernoulli indépendantes de paramètre p. Le support d'une telle variable est $X(\Omega) = \mathbb{N}^*$ avec la loi de probabilité :

$$P(X = k) = p(1 - p)^{k-1}, k \in \mathbb{N}^*$$

Espérance et variance :

$$\mathbb{E}(X) = \frac{1}{p} , \ \mathbb{V}(X) = \frac{1-p}{p^2}$$

Fonction génératrice :

$$G(s) = \mathbb{E}\left(s^X\right) = \frac{sp}{1 - qs}, \ q = 1 - p$$

 $\underline{\text{NB}}$: On définit parfois la loi Géométrique comme le nombre d'échecs avant le premier succès. Dans ce cas, elle prend ses valeurs dans \mathbb{N} ,

 $P(X=k)=p(1-p)^k$, $k\in\mathbb{N}$, $\mathbb{E}(X)=\frac{1}{p}-1$ et $\mathbb{V}(X)=\frac{1-p}{p^2}$. Quand on ne précise rien, on considère la 1ère définition.

5. Loi de POISSON : $\mathcal{P}(\lambda)$

Une v.a. X suit une loi de Poisson si elle prend ses valeurs dans \mathbb{N} avec les probabilités :

$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{x!} \ , \ k \in \mathbb{N}$$

Le paramètre λ est toujours considéré positif, $\lambda > 0$.

Espérance et variance :

$$\mathbb{E}(X) = \mathbb{V}(X) = \lambda$$

Fonction génératrice :

$$G(s) = \mathbb{E}(s^X) = e^{\lambda(s-1)}$$

Addition

Si deux v.a. indépendantes X_1 et X_2 suivent respectivement les lois $\mathcal{P}(\lambda_1)$ et $\mathcal{P}(\lambda_2)$, alors la variable aléatoire $X = X_1 + X_2$ suit une loi $\mathcal{P}(\lambda_1 + \lambda_2)$.

Lois continues

6. Loi UNIFORME: $\mathcal{U}(a,b)$

Une v.a. X suit une loi uniforme sur l'intervalle [a,b] si X est une v.a. continue de densité f constante :

$$f(x) = \begin{cases} \frac{1}{b-a} &, x \in [a,b] \\ 0 &, x \notin [a,b] \end{cases}$$

Espérance et variance :

$$\mathbb{E}(X) = \frac{a+b}{2} \ , \ \mathbb{V}(X) = \frac{(b-a)^2}{12}$$

7. Loi EXPONENTIELLE : $\mathcal{E}(\lambda)$

Une v.a. X suit une loi exponentielle $\mathcal{E}(\lambda)$ si elle est continue et de densité :

$$f(x) = \begin{cases} \lambda e^{-\lambda x} &, & x > 0 \\ 0 &, & x \le 0 \end{cases}$$

Espérance et variance :

$$\mathbb{E}(X) = \frac{1}{\lambda} \ , \ \mathbb{V}(X) = \frac{1}{\lambda^2}$$

8. Loi de LAPLACE-GAUSS ou loi NORMALE: $\mathcal{N}(m, \sigma^2)$

Une v.a. X suit une loi exponentielle $\mathcal{N}\left(m,\sigma^{2}\right)$ si elle est continue et de densité :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2}$$
, $x \in \mathbb{R}$

Espérance et variance :

$$\mathbb{E}(X) = m \ , \ \mathbb{V}(X) = \sigma^2$$

Lecture de table :

Une v.a. X de loi $\mathcal{N}(m, \sigma^2)$ peut se mettre sous la forme suivante :

$$X \sim \mathcal{N}\left(m, \sigma^2\right) \iff U = \frac{X - m}{\sigma} \sim \mathcal{N}(0, 1) ,$$

loi centrée réduite (ou standard) qui est tabulée; on a donc

$$\mathbb{P}(X \le x) = \mathbb{P}\left(U \le \frac{X - m}{\sigma}\right)$$

Addition:

Si deux v.a. **indépendantes** X_1 et X_2 suivent respectivement des lois normales $\mathcal{N}(m_1, \sigma_1^2)$ et $\mathcal{N}(m_2, \sigma_2^2)$, alors la v.a. $X_1 + X_2$ suit une loi normale $\mathcal{N}(m_1 + m_2, \sigma_1^2 + \sigma_2^2)$.

Combinaison linéaire:

On démontre que si $X_1, X_2, ..., X_n$ suivent des lois normales **indépendantes** d'espérances $m_1, m_2, ..., m_n$ et de variances $\sigma_1^2, \sigma_2^2, ..., \sigma_n^2$, alors pour tous $\lambda_i \in \mathbb{R}$, la v.a. $\sum_{i=1}^n \lambda_i X_i$ suit une loi normale d'espérance $\sum_{i=1}^n \lambda_i m_i$ et de variance $\sum_{i=1}^n \lambda_i^2 \sigma_i^2$.

Lois de v.a. liées à la loi Normale

Certaines lois peuvent être construites à partir de la loi Normale. Il n'est pas utile de donner ici une définition complète de ces lois par leur densité.

9. <u>Loi du CHI-DEUX</u> : χ_n^2 (Chi-deux à n degrés de liberté) Soit $U_1, U_2, ..., U_n$ n v.a. indépendantes et de même loi $\mathcal{N}(0, 1)$. Alors,

$$Z = \sum_{i=1}^{n} U_i^2 \sim \chi_n^2$$

Espérance et variance :

$$\mathbb{E}(\chi_n^2) = n \ , \ \mathbb{V}(\chi_n^2) = 2n$$

Addition:

Si deux v.a. **indépendantes** Y_1 et Y_2 suivent respectivement des lois $\chi^2_{n_1}$ et $\chi^2_{n_2}$, alors la v.a. $Y_1 + Y_2$ suit une loi $\chi^2_{n_1+n_2}$.

Approximation:

Lorsque n est grand (n > 30), la loi de la v.a. $\sqrt{2\chi_n^2} - \sqrt{2n-1}$ peut être approximée par une loi Normale centrée et réduite $\mathcal{N}(0,1)$.

10. Loi de STUDENT : \mathcal{T}_n (Student à n degrés de liberté)

Soit X et Y deux v.a. **indépendantes** telles que X suit une loi $\mathcal{N}(0,1)$ et Y suit une loi χ_n^2 . Alors,

$$Z = \frac{X}{\sqrt{\frac{Y}{n}}} \sim \mathcal{T}_n$$

avec $\mathbb{E}(Z) = 0$.

Approximation:

Lorsque n est grand (n > 60), la loi \mathcal{T}_n peut être approximée par une loi Normale centrée et réduite $\mathcal{N}(0,1)$.

11. <u>Loi de FISHER-SNEDECOR</u> : $\mathcal{F}(n_1, n_2)$ à n_1 et n_2 degrés de liberté. Soit X_1 et X_2 deux v.a. **indépendantes** de lois respectives $\chi^2_{n_1}$ et $\chi^2_{n_2}$. Alors, la v.a.

4

$$Z = \frac{X_1/n_1}{X_2/n_2}$$

suit une loi $\mathcal{F}(n_1, n_2)$ à n_1 et n_2 degrés de liberté.

Lois de v.a. liées à la loi Exponentielle

12. Loi GAMMA : $\gamma(\alpha, \lambda)$

Une v.a. X suit une loi Gamma de paramètres α et λ , pour $\alpha > 0$ et $\lambda > 0$, si X est une v.a. continue de densité f:

$$f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} &, x > 0\\ 0 &, x \le 0 \end{cases},$$

où $\Gamma(\alpha)$ est une constante de normalisation, définie par :

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx .$$

(Cette intégrale est convergente pour $\alpha > 0$ et si $\alpha \in \mathbb{N}^*$, alors $\Gamma(\alpha) = (\alpha - 1)!$).

Espérance et variance :

$$\mathbb{E}(X) = \frac{\alpha}{\lambda} , \ \mathbb{V}(X) = \frac{\alpha}{\lambda^2}$$

Addition:

Si deux v.a. **indépendantes** X_1 et X_2 suivent respectivement des lois $\gamma(\alpha_1, \lambda)$ et $\gamma(\alpha_2, \lambda)$, alors la v.a. $X_1 + X_2$ suit une loi $\gamma(\alpha_1 + \alpha_2, \lambda)$.

Relations entre les différentes lois :

La loi $\mathcal{E}(\lambda)$ n'est autre que la loi $\gamma(1,\lambda)$.

La somme de n v.a. Exponentielles **indépendantes** de paramètre λ suit une loi γ (n, λ) . De même, la loi $\chi^2(1)$ n'est autre que la loi $\gamma\left(\frac{1}{2},\frac{1}{2}\right)$ et, par conséquent, la loi $\chi^2(n)$ se confond avec la loi $\gamma\left(\frac{n}{2},\frac{1}{2}\right)$.

Propriétés de multiplication par une constante :

Si une v.a. X suit une loi $\gamma(\alpha, \lambda)$ et si μ est un scalaire positif, alors la v.a. μX suit une loi $\gamma(\alpha, \frac{\lambda}{\mu})$.

Conséquence:

Si une v.a. X suit une loi $\gamma(n, \lambda)$, alors la v.a. $2\lambda X$ suit une loi $\gamma(n, \frac{1}{2})$, c'est-à-dire une loi $\chi^2(2n)$. On peut donc se servir des tables de la loi du χ^2 pour les sommes de v.a. exponentielles **indépendantes**.

PROPRIETES DES N-ECHANTILLONS

Définition d'un n-échantillon :

 $(X_1, X_2, ..., X_n)$ forment un n-échantillon de X si les v.a. $X_1, X_2, ..., X_n$ sont indépendantes et suivent toutes la loi de X.

Définition d'une statistique :

Une statistique est une fonction "mesurable" des v.a. de l'échantillon; c'est une variable aléatoire.

Une fonction mesurable est telle que $f^{-1}(I) \in \mathcal{A}$, pour tout intervalle I, c'est-à-dire telle qu'on sache calculer $\mathbb{P}(f^{-1}(I))$ pour tout intervalle I.

Cas gaussien

Un échantillon

Soit $(X_1, X_2, ..., X_n)$ un *n*-échantillon de X, où la v.a. $X \sim \mathcal{N}(m, \sigma^2)$. Alors, on a les résultats suivants :

1.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}\left(m, \frac{\sigma^2}{n}\right)$$

2.

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - m)^2 \sim \chi_n^2$$

3.

$$\frac{1}{\sigma^2} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2 \sim \chi_{n-1}^2$$

4.

$$\frac{\overline{X} - m}{\frac{S'}{\sqrt{n}}} \sim \mathcal{T}_n ,$$

où
$$S'^2 = \frac{1}{n} \sum_{i=1}^n (X_i - m)^2$$
.

5.

$$\frac{\overline{X} - m}{\frac{S}{\sqrt{n}}} \sim \mathcal{T}_{n-1} ,$$

où
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
.

6. \overline{X} et S^2 sont des v.a. indépendantes.

Deux échantillons

Soit $(X_1, X_2, ..., X_{n_1})$ et $(Y_1, Y_2, ..., Y_{n_2})$ deux échantillons indépendants de lois respectives $\mathcal{N}(m_1, \sigma_1^2)$ et $\mathcal{N}(m_2, \sigma_2^2)$. Alors, on a les résultats suivants :

$$\frac{\frac{\sum_{i=1}^{n_1} (X_i - m_1)^2}{n_1 \sigma_1^2}}{\frac{\sum_{j=1}^{n_2} (Y_j - m_2)^2}{n_2 \sigma_2^2}} \sim \mathcal{F}(n_1, n_2)$$

8.

$$\frac{\frac{\sum_{i=1}^{n_1} (X_i - \overline{X})^2}{(n_1 - 1)\sigma_1^2}}{\frac{\sum_{j=1}^{n_2} (Y_j - \overline{Y})^2}{(n_2 - 1)\sigma_2^2}} \sim \mathcal{F}(n_1 - 1, n_2 - 1)$$

9.

$$\frac{\left(\overline{X} - \overline{Y}\right) - \left(m_1 - m_2\right)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim \mathcal{N}\left(0, 1\right)$$

10. Si $\sigma_1 = \sigma_2$, alors

$$\frac{(\overline{X} - \overline{Y}) - (m_1 - m_2)}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \frac{\sum_{i=1}^{n_1} (X_i - \overline{X})^2 + \sum_{j=1}^{n_2} (Y_j - \overline{Y})^2}}}{n_1 + n_2 - 2} \sim \mathcal{T}_{n_1 + n_2 - 2}$$