4. domácí úlohy

Na tomto úkolu jsem pracoval spolu s Janem Plecháčkem.

1a)

Zadání

Buď G=(V,E) graf snvrcholy a spektrem $\lambda_1\geq \lambda_2\geq \cdots \geq \lambda_n.$ Dokažte, že

$$\sum_{i \in [n]} \lambda_i^2 = 2|E|$$

Řešení

Využijeme dvě věty z lineární algebry.

Lemma. Nechť má matice $\mathbb A$ vlastní číslo $\lambda,$ poté má matice $\mathbb A^2$ vlastní číslo λ^2

 $D\mathring{u}kaz$. Víme, že platí $Ax = \lambda x$. Pak jednoduše máme

$$\mathbb{A}^2 x = \mathbb{A}(\mathbb{A}x) = \mathbb{A}(\lambda x) = \lambda \mathbb{A}x = \lambda^2 x$$

Lemma. Stopa matice \mathbb{A} je rovna součtu vlastních čísel matice (včetně násobnosti). Bez důkazu.

Graf má matici sousednosti A_G , její prvky značme a_{ii} . Pak za pomoci předchozích dvou vět platí

$$\sum_{i \in [n]} \lambda_i^2 = tr(A_G^2)$$

Označme prvky matice A_G^2 jako b_{ii} . Nyní stačí explicitně spočítat stopu. Máme

$$\sum_{i \in [n]} \lambda_i^2 = tr(A_G^2) = \sum_{i=1}^n b_{ii} = \sum_{i=1}^n \sum_{k=1}^n a_{ik} a_{ki} = \sum_{i=1}^n \sum_{k=1}^n a_{ik}$$

V posledním kroku jsme využili vlastnosti, že matice A_G je symetrická a navíc toho, že její hodnoty jsou buď 1 nebo 0. Poslední člen je navíc zřejmě roven 2|E|, protože počítáme počet jedniček v matici sousednosti, a každá hrana spojuje právě dva vrcholy.

Celkem tedy dostáváme hledané

$$\sum_{i \in [n]} \lambda_i^2 = 2|E|$$

1b)

Zadání

Buď G souvislý graf s maximálním stupněm D, a nechť spektrum G má největší vlastní číslo λ_1 . Dokažte, že $D = \lambda_1$ právě když G je D-regulární.

Řešení

Dokažme \iff :

Plyne z tvrzení z přednášky $D=\delta \leq \lambda_1 \leq \Delta=D$. Z toho zřejmě $D=\lambda_1$. Dokažme \Longrightarrow :

Platí $D=\lambda_1$, vezměme libovolný vlastní vektor (označme x) tohoto vlastního čísla. Označme x_k v absolutní hodnotě jeho největší prvek. Vezměme vektor $y=\frac{1}{x_k}x$ (vlastní vektor D) a jeho největší hodnota je 1.

 $\tilde{\operatorname{Vezměme}}$ k-tý řádek matice A_G a označme ho jako a_k

Platí, že $A_G y = D y$ a také platí $a_K^T y = D y$. Z tohoto dostáváme následující sadu nerovností.

$$D = D \cdot y_k = a_k^T y = \sum_{i=1}^n a_{k,i} y_i \le \sum_{i=1}^n a_{k,i} y_k = \sum_{i=1}^n a_{k,i} = \deg(k) \le D$$

Proto u nerovnosti $\sum_{i=1}^n a_{k,i}y_i \leq \sum_{i=1}^n a_{k,i}y_k$ vždy nastává rovnost. Protože $y_j \leq 1, \forall j \in [n]$ dostáváme $y_k = y_j = 1.$

Pokud v nerovnosti použijeme místo k řádek j (kde j je soused k v grafu) dostaneme deg(j) = D. Opakováním procesu dospějeme k tomu, že $y_j = 1$ a deg(j) = D protože graf je souvislý.

2)

Zadání

Buď G=(V,E) graf s n vrcholy a spektrem $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Dokažte, že graf je bipartitní právě tehdy když $\lambda_i = -\lambda_{n-i+1}$ pro každé $i \in [n]$

Řešení

Dokažme = :

Nechť $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ a platí $\lambda_i = -\lambda_{n-i+1}$. Ze symetrie A_G víme, že je diagonalizovatelná, a pro k-tou mocninu pak platí, $A_G^k = XD^kX^{-1}$. Vlastní čísla matice A_G^k jsou tedy λ_i^k .

Z přednášky víme, že $(A_G^k)_{ij}$ je počet sledů délky k z vrcholu i do j. Chci ukázat, že graf nemá cyklus liché délky, tedy chci ukázat, že $(A_G^k)_{ii}=0$ pro každé liché k_3 .

Protože máme $\lambda_i = -\lambda_{n-i+1}$, tak také platí $\lambda_i^k = (-\lambda_{n-i+1})^k$ a proto tedy $Tr(A_G^K) = \sum_{i=1}^n \lambda_i^k = 0$ pro každé liché k.

Protože, ale jsou všechny prvky matice nezáporné, tak platí, že $(A_G^k)_{ii} \geq 0$, protože je ale stopa matice rovna nule, tak musí platit $(A_G^k)_{ii} = 0$.

Graf tedy neobsahuje cyklus liché délky a proto je bipartitní. Dokažme \implies :

Nechť $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ a G bipartitní. Označme vrcholy v množině L čísly od 1 do i, v R od i+1 do n. Matice sousednosti pak vypadá následovně.

$$A_G = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix}$$

To plyne z toho, že vrcholy z L a R nejsou spojeny.

Nechť \vec{x} je libovolný vlastní vektor A_G k nějakému vlastnímu číslu λ , označme prvních i prvků jako \vec{y} a zbylé prvky jako \vec{z} .Pak máme

$$A_G \vec{x} = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} \vec{y} \\ \vec{z} \end{pmatrix} = \lambda \begin{pmatrix} \vec{y} \\ \vec{z} \end{pmatrix} = \lambda \vec{x}$$

Z prostřední rovnosti víme, že $B^T\vec{y}=\lambda\vec{z}$ a $B\vec{z}=\lambda\vec{y}$. Pak je ale i vektor $\vec{w}=\begin{pmatrix}\vec{y}\\-\vec{z}\end{pmatrix}$ vlastním vektorem, protože

$$A_G \vec{w} = \vec{x} = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} \vec{y} \\ -\vec{z} \end{pmatrix} = \begin{pmatrix} -B\vec{z} \\ B^T \vec{y} \end{pmatrix} = \begin{pmatrix} -\lambda \vec{y} \\ \lambda \vec{z} \end{pmatrix} = -\lambda \begin{pmatrix} \vec{y} \\ -\vec{z} \end{pmatrix} = -\lambda \vec{w}$$

Z toho dostáváme, že pokud je λ vlastní číslo, tak pak je i $-\lambda$ vlastní číslo.

Protože A_G je symetrická tak víme, že je diagonalizovatelná. To znamená, že pro všechny vlastní čísla se rovná geometrická a algebraická násobnost. Z tohoto a předchozího pozorování pak plyne, že má-li vlastní číslo λ_k algebraickou násobnost i, tak i vlastní číslo $-\lambda_k$ bude mít násobnost i. To plyne z toho, že λ_k má i nezávislých vlastních vektorů, a ty můžeme podle předchozího upravit na i vlastních vektorů $-\lambda_k$.

Když seřadíme vlastní velikosti, tak již dostaneme námi hledané tvrzení, tj. $\lambda_i=-\lambda_{n-i+1}$ pro každé $i\in[n]$