1. Preverite, ali so naslednje matrike aditivne, z uporabo pogoja štirih točk. V primeru, ko je matrika aditivna konstruirajte drevo z uporabo algoritma ADITIVNA FILOGENIJA.

		A	В	C	D
	A	0	10	5	10
(a)	В	10	0	9	5
	C	5	9	0	8
	D	10	5	8	0

		A	В		שן	Ľ
	A	0	2	7	7	12
(b)	В	2	0	7	7	12
(D)	$\overline{\mathbf{C}}$	7	7	0	4	11
	D	7	7	4	0	11
	\mathbf{E}	12	12	11	11	0

Ali je matrika aditivna, lahko še bolj učinkovito preverimo s t.i. pogojem štirih točk:

pogoj štirih točk:

Izmed treh vsot $D_{ij} + D_{k\ell}, D_{ik} + D_{j\ell}, D_{i\ell} + D_{jk}$ sta dve enaki, tretja pa je manjša (ali enaka) od njiju.

Izrek

 $n \times n$ matrika D je aditivna natanko tedaj, ko je pogoj štirih točk izpolnjen za vse štiri različne elemente $1 \le i, j, k, \ell \le n$.

Zgled: Naj bo D spet naslednja matrika:

٠,	A	В	C	D
A	`0.	2	4	4
В	2	`0,	, 4·	4
C	4	4	.0′	2
D	4	4	2	.0

Pogoj je potrebno preveriti za eno samo četverico, $(i, j, k, \ell) = (A, B, C, D)$.

"Izmed treh vsot $D_{AB}+D_{CD},D_{AC}+D_{BD},D_{AD}+D_{BC}$ sta dve enaki, tretja pa je manjša (ali enaka) od njiju.

$$D_{AB} + D_{CD} = 2 + 2 = 4$$

$$D_{AC} + D_{BD} = 4 + 4 = 8,$$

$$D_{AD} + D_{BC} = 4 + 4 = 8.$$

Pogoj je izpolnjen. Matrika je torej aditivna.

Zgled: Naj bo sedaj *D* naslednja matrika:

٠.,	A	В	C	D
A	°O.	2	2	. 2
В	2	`0,	.3	2
С	2	, 3	, oʻ	2
D	.2	2	2	.0
				•

Spet preverimo pogoj le za $(i, j, k, \ell) = (A, B, C, D)$.

"Izmed treh vsot $D_{AB}+D_{CD},D_{AC}+D_{BD},D_{AD}+D_{BC}$ sta dve enaki, tretja pa je manjša (ali enaka) od njiju."

$$D_{AB} + D_{CD} = 2 + 2 = 4$$

$$D_{\rm AC} + D_{\rm BD} = 2 + 2 = 4$$
,

$$D_{AD} + D_{BC} = 2 + 3 = 5.$$

Pogoj ni izpolnjen. Matrika torej ni aditivna.

	•-	A	В	\mathbf{C}	D
	A	0.	10	5	10
(a)	В	10	0.	.9	5
	C	5	9	0.	8
	D	10	5	8	0

Gledamo 3 pare razdalj: ABCD
$$^{\circ}$$
 fredp.: $^{\circ}$ ni aditivna. $^{\circ}$ DAB + DCD = 10 + 8 = 18 DAC + DBD $^{\circ}$ = 5 + 5 = 10 DAD + DBC = 10 + 9 = 19

· Izmed treh vsot dve nista enaki, kljub temu da je tretja manjša/enaka od obeb.

	``	A	В	\mathbf{C}	D	E	· Predp.: ni aditivna
	A	0.	2	7	7	.12	1
(b)	В	2	0.	7	7	12	
(D)	C	7	7	. 0.	4	11	Sistem dingonal ne
	D	7	. 7	4	0.	11	a deluje! Krneki!
	Е	12	12	11	11	0	5
	D E	7 7 12	7 · 7 12	4 11	11	11 11 ••0	Sistem diagonal ne a deluje! Krneki!

gledamo ABCD, ABCE, ACDE, ABDE, BCDE (VSak se mora 4x $D_{AB} + D_{CD} = 2 + 4 = 6$ DAC + DBD = 7+7=14 DAC + DDE = 7+ 11 = 18 DAD + DCE = 7 + 11 = 18 DAD + DBC = 7+7=14

$$D_{AB} + D_{CE} = 2 + 11 = 13$$

 $D_{AC} + D_{BE} = 7 + 12 = 19$

$$D_{AC} + D_{BC} = 7 + 12 = 19$$

 $D_{AE} + D_{BC} = 12 + 7 = 19$

$$D_{BC} + D_{DE} = f + 1/1 = 18$$

 $D_{BD} + D_{CE} = 7 + 11 = 18$
 $D_{CD} + D_{BE} = 4 + 12 = 16$

$$D_{AE} + D_{DC} = 12 + 4 = 16$$
 $D_{AB} + D_{DE} = 18$
 $D_{AD} + D_{BE} = 7 + 12 = 19$

⇒ Je aditivna!

- 1. Izberemo trojico z najkrojso razdaljo 2. Doložimo J=1/2 + razdaja iz 1.
- 3. Od stojemo 23 vsem razdaljam v matniki, razen diagonalnim + rnebimo se ene instance (orke)

1.

sredina = Enajkraj ŝi due - tretja

min = 2 in se pojavi 3x --- naključno izberemo ero trojico, npr. ABC.

J = 1/2 - 2 = 1

Vsem od stejemo 25 (razen ding.):

			•				
3-		Æ	B	С	D	E	
·	A	0	0	5	5	10	
	В	0	0	5	B	10	
	C	M	55	0	2	9	
	D	5	5	2	0	9	
	Ε	10	10	9	9	0	

blotime en instanco glede na trojico ABC (prevenimo ce dri):

$$\begin{array}{c} D_{ik} = D_{ij} + D_{jk} \\ \downarrow \\ D_{AC} \leq D_{AB} + D_{BC} \\ 5 \leq O + 5 \end{array}$$

odstravimo vmesnega; zavmesne-ga vzami tistega, ki je v △ med većjima vrednostima,

	A	С	D	E
A	0	5	5	10
C	55	0	2	9
D	5	2	0	9
E	10	9	9	0

1

odstravino B

Parovino Karake...

3.

min = 2, spet naključno izberemo ACD.

J = 1/2 - 2 = 1

_		Æ	С	D	E
	A	0	3	જ	8
	C	3	0	O	Ŧ
	D	3	0	0	4
	E	8	7	¥	0

$$D_{AD} = D_{AC} + D_{CD}$$

3 + 0 > odstravimo C:

	Æ	D	€
A	0 _	3	8
D	3	0	4
Ε	8	ቶ	0

2.	J	= 1/2 · 2	= 2

3.

	A	D	€
A	0 _	1	6
D	1	0	2
E	6	5	0

DAE = DAD + DDE

odstranimo D.

	A	E
A	0	6
ε	6	0

Nimamo vec trojic. Zacnemo graditi drevo:

tachemo z zadnjim parom:

Dodamo D; upostevamo razdalje DAD=1 in DoE=5:

Dodamo J vsaki povezavi: J=1

Vrnemo C; upostevamo DAC = 3, DCD = 0

Vmeno se B; upostevamo razdaje: $D_{AB}=0$, $D_{CB}=5$, $D_{BD}=5$, $D_{BE}=10$

Dodano d=1 **₹**8 Kontro drevo (brez Korera):

2. Zgradite POPOLNO FILOGENIJO za naslednjo matriko:

	1	2	3	4	5	6	7	8
A	0	0	1	1	1	0	1	0
В	0	1	1	1	0	0	0	0
$\overline{\mathbf{C}}$	1	0	0	0	0	1	0	1
D	0	0	1	1	0	0	1	0
$\overline{\mathbf{E}}$	1	0	0	0	0	0	0	0

Imamo 2 natira, da preverimo ali splotimamo popolro filogenijo:

I) Primerjamo pare stolpcev, in sicer, an vsak par mora veljati eden izmed pogojev:

a) enice v enem mornjo biti podum. enic v drugom (mjr. 58 = St ali pa S==Sx)

b) erice med dvema stolpcema norajo biti na popolnoma različnih mestih (npr. 51 17 52 = Ø)

Ta metoda je O(nm²), obstaja se metoda kazalcev, ki je O(nm):

II) 1. Stolpce razvrstimo nepadajote glede na stevilo enic (to je O(nm))

Drdamo stolpec So s samini enicami (na začetek)

ta vsako enico v matniki nanišemo kazako na prejsnjo enico v isti vrstici

2- Izgradimo filogenetsko drevo, ce je lastnost disjunkrostin/ vsebovanosti izpolnjena

3- Izboljšamo, oznatimo drevo

Kako to izgleda za naso matriko:

1.		1	2	3	4	5	6	7	8
	A	0	0	1	1	1	0	1	0
	В	0	1	1	1	0	0	0	0
	C	1	0	0	0	0	1	0	1
	D	0	0	1	1	0	0	1	0
	E	1	0	0	0	0	0	0	0
	Σ	2	1	3	3	1	1	2	1

		So	S3	Sy	51	S7	S ₂	Ss	Se	Sø
	Α	1	- 1 ←	-1 ←	0	-1 ←	0	- 1	0	0
\rightarrow	В	<	~	- 1 ←	0	0	_ 1	0	0	0
	С	√	0	0	↓ -	0	0	0	<u> </u>	- 1
	D	1	-1 ←	<u> </u>	0	-1	0	0	0	0
	E	1	0	0	<u> </u>	0	0	a	0	0

Vse enice enega stolpca morajo kazati na enice v ISTI drug stolpe \mathbf{e} (npr. v Sz obe kazeta na Sy).

Pogoj je izpolnjen. Zatnemo z drevesom.

2. Zacnemo z najbolj oddaljenim stolpcem. Kazalci nakaznjejo na povezano med stolpci:

3. Vstavljano znake v drevo, tako da premaknemo imena stolpcev na povezave:

enica v Sz kate na B posredno preko Sy in Sz

Dobili smo popolno filogenijo, kjer so poverane označene z "znaki", listi pa s predmeti (avto, bicikelj...) (motor, st. Keles)

3. Rešite mali problem varčnosti za naslednje podatke:

filogenetsko drevo v tej metodi temelji na poravnani zaporedij. Iščemo drevo z najmanjso stopnjo evolucije Cnajmanje evolucijskih dogodkov). Vsak dogodek ima neko cero. Istemo evolucijski scenarij z najmarijso skupno cero ≥ najbolj vartno drevo.

Veliki protlem varérosti: iscemo drevo in zaporedja za notranje trčke drevesa (NP!).

Mali problem varánosti: drevo je znaro, iscemo le raporedja ra notranje točke.

ı)	Cene	e mu	пасц	J:	
	δ	A	\mathbf{C}	\mathbf{G}	\mathbf{T}
	A	0	3	4	9
	\mathbf{C}	3	0	2	4
	\mathbf{G}	4	2	0	4
	о А С G Т	9	4	4	0

Vsakemu listu delozimo tabelo:

:	Α	С	9	τ	4 ;	
•	00	0	ø	ø		

G ;	Α	С	9	T	T:	Α	С	9	T
	Ø	Ø	0	00		00	Ø	00	0

O ce je erak znak, oo sicer.

ža vsako notranjo tožko tudi doložimo tabelo:

$$0 + 2 = 2$$

$$2 + 0 = 2$$

Vcamemo vistico iz matrike in prestejeno razlike (pristejemo eno drugi? Vzermeno due rajmavy si vredrosti. Ĉe je vec erakih, ido eremo naključno.

i;	A	С	9	T
	7	2	2	8

j:	A	С	9	T
	12	4	6	4

k;	A	С	9	T
	13	6	ч	J 0

Za k vzeumemo Zdaj tabeli za i in j ...

$$9 + 3 = 12$$

$$4 + 0 = 4$$

Τ;	Ø	<i>o</i> 0	00	0	Ci	00	0	00	00
T;	9	4	4	0	T;	9	¥	Ч	0
	00	00	∞	0		<i>o</i> 0	4	00	Ø

$$0 + 4 = 4$$

$$5+7=13$$

i; 7 2 2 8 i; 12 4 6 4
C: 3 0 2 4 C: 3 0 2 4
$$10$$
 2 4 12 15 4 8 8

$$2 + 4 = 6$$

$$2 + 6 = 8$$

$$6 + 4 = 10$$

Vsaki totki moramo dolotiti en unak: Vzamemo tistega, ki ima najmanjšo vrednost v tabeli

K: vaitro dolozimo C.

- i izberemo C, saj je staré točke tudi C (izbirali smo med C in G).
- i : spet izberemo C.

y teun primeru ne moreuno imet dua znaka v listih, zato naredimo vec dreves:

Eday spet za vsako drevo delotimo znake za vozlista:

9;	Α	C	9	T
	Ø	Ø	0	00

T;	Α	С	G	T
	00	Ø	00	0

A :	Α	С	G	۲
	0	Ø	00	ø

<i>;</i> :	Α	С	G	۲
	3	Ч	3	4

j ;	Α	С	9	T
	4	3	3	4

dvakrat. Če se odlotimo za T, pogledamo nazoj v tabelo 2a K2: min se pojavi za par T-9 ali T-T, zato invamo 3 izbire - za tocke.