Índice general

5.	Función Polinómica						
	5.1. ¿Cómo gráficar una función polinómica?	3					
	5.1.1. Reducir la amplitud de la función	4					
	5.2. ¿Cómo modelar una función polinómica?	6					

Clase Función Polinómica

La función polinómica tiene la forma

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 x^0$$

5.1 ¿Cómo gráficar una función polinómica?

Para graficar una función polinómica pueden seguir dos métodos muy similares a los de la función cuadrática. Aunque por su gran extensión de términos y la forma gráfica que toma, la tabulación no es le mejor forma de graficar una función polinómica.

División Sintética

La división sintética es la forma que se usa para conocer los puntos de corte de una función polinómica, y a través de un análisis de la función se puede determinar como es su comportamiento. Los puntos mínimos, máximos y de inflexión, así como la concavidad se estudiaran cuando se introdusca la derivada.

Ejemplo: Gráficar la función polinómica

$$f(x) = f(x) = x^4 - 26x^3 + 61x^2 + 2124x - 11340$$

Solución: Para encontrar los puntos de corte se usa la división sintética, así:

O Los divisores de 11340 son:

x^4	x^3	x^2	x^1	x^0	
1	-26	61	2124	-11340	x = 7
	7	-133	-504	11340	
1	-19	-72	1620	0	x = -9
	- 9	252	-1620		
1	-28	180	0		x = 18
	18	-180			
1	-10	0			x = 10
	10				
1	0				

Aplicación para calcular los divisores: Descargar en http://jprincon.com/programas/calculo-diferencial/Divisores.html

5.1.1 Reducir la amplitud de la función

Hay

funciones polinómicas que tienen valores muy grandes y respectivamente los máximos y mínimos serán muy grandes.

En el ejemplo que tenemos se observa que los puntos de corte son x = -9, x = 7, x = 10 y x = 18 de donde se puede decir que

$$-11340 = -9 \times 7 \times 10 \times 18$$

de tal forma que si dividimos el número -11340 entre $-9 \times 10 \times 18 = 1620$ se reduce el valor de punto de corte a 7. Así la función se transforma en

$$f(x) = \frac{1}{1620}x^4 - \frac{13}{810}x^3 + \frac{61}{1620}x^2 + \frac{59}{45}x - 7$$

Nota: Los puntos de corte siguen siendo los mismos, pero se han reducido los mínimos y máximos en una escala mas pequeña.

La gráfica de la función se realiza de la siguiente forma:

O Se deben tomar las raices y analizar que pasa antes y después de cada una de ellas.

Figura 5.1: Gráfica de la Función

La gráfica hecha a través de un programa

Figura 5.2: Gráfica de la función hecha por computador

5.2 ¿Cómo modelar una función polinómica?

Ya vimos que las funciones polinómicas tienen varios puntos de corte y esos puntos de corte tiene la forma $x=x_n$ entonces la forma de modelar una función polinómica dados los cortes es haciendo el proceso contrario a la división sintética y son los productos notables.

Ejemplo: Modelar una función polinómica que corta al eje x en x=-8, x=-6, x=-4, x=3, x=5 y x=7.

Solución: Usando productos notables se tiene

$$f(x) = (x = -8) (x = -6) (x = -4) (x = 3) (x = 5) (x = 7)$$

$$= (x + 8) (x + 6) (x + 4) (x - 3) (x - 5) (x - 7)$$

$$= x^{2} + 8x + 6x + 48$$

$$= (x^{2} + 14x + 48) (x + 4)$$

$$= x^{3} + 4x^{2} + 14x^{2} + 56x + 48x + 192$$

$$= (x^{3} + 18x^{2} + 104x + 192) (x - 3)$$

$$= x^{4} - 3x^{3} + 18x^{3} - 54x^{2} + 104x^{2} - 312x + 192x - 576$$

$$= (x^{4} + 15x^{3} + 50x^{2} - 120x - 576) (x - 5)$$

$$= x^{5} - 5x^{4} + 15x^{4} - 75x^{3} + 50x^{3} - 250x^{2} - 120x^{2} + 600x - 576x + 2880$$

$$= (x^{5} + 10x^{4} - 25x^{3} - 370x^{2} + 24x + 2880) (x - 7)$$

$$= x^{6} - 7x^{5} + 10x^{5} - 70x^{4} - 25x^{4} + 175x^{3} - 370x^{3} + 2590x^{2} + 24x^{2} - 168x + 2880x - 20160$$

$$= x^{6} + 3x^{5} - 95x^{4} - 195x^{3} + 2614x^{2} + 2712x - 20160$$

mediante éste método se obtiene la función polinómica

$$f(x) = x^6 + 3x^5 - 95x^4 - 195x^3 + 2614x^2 + 2712x - 20160$$

La otra forma es usar el proceso contrario a la división sintética

1							8
	8						
1	8						6
	6	48					
1	14	48					4
	4	56	192				
1	18	104	192				-3
	-3	-54	-312	-576			
1	15	50	-120	-576			-5
	-5	-75	-250	600	2880		
1	10	-25	-370	24	2880		-7
	-7	-70	175	2590	-168	-20160	
1	3	-95	-195	2614	2712	-20160	

Este método nos libra de las variables y nos deja el trabajo solo numérico. El resultado nos indica

$$f(x) = x^6 + 3x^5 - 95x^4 - 195x^3 + 2614x^2 + 2712x - 20160$$

Ejercicios

Resolver los siguientes ejercicios.

1. Graficar la función polinómica

$$f(x) = x^6 - 3x^5 - 41x^4 + 87x^3 + 400x^2 - 444x - 720$$

- 2. Modelar una función polinómica que tiene cortes en
 - a) x = +18, x = +10, x = -4, x = -6, x = +12, x = -13,

Respuesta: $f(x) = x^6 - 17x^5 - 250x^4 + 3860x^3 + 17304x^2 - 171648x - 673920$

b) x = -16, x = +15, x = +19, x = +19, x = +10, x = -8,

Respuesta: $f(x) = x^6 - 39x^5 + 77x^4 + 12275x^3 - 112242x^2 - 585200x + 6931200$

c) x = -16, x = -7, x = -19, x = +16, x = -1, x = -18,

Respuesta: $f(x) = x^6 + 45x^5 + 389x^4 - 8525x^3 - 162726x^2 - 766720x - 612864$

d) x = +9, x = -9, x = +9, x = +9,

Respuesta: $f(x) = x^4 - 18x^3 + 1458x - 6561$

e) x = -3, x = -3, x = +14, x = -1, x = -12, x = +8,

Respuesta: $f(x) = x^6 - 3x^5 - 207x^4 + 139x^3 + 7038x^2 + 18792x + 12096$

f) x = -12, x = +6, x = -18, x = -2, x = +10.

Respuesta: $f(x) = x^5 + 16x^4 - 176x^3 - 2064x^2 + 9648x + 25920$

g) x = +6, x = -18, x = -18, x = +16, x = -6, x = +9, x = +20,

Respuesta: $f(x) = x^7 - 9x^6 - 688x^5 + 6048x^4 + 128448x^3 - 1139184x^2 - 3779136x + 33592320$