## **Amendments to the Claims:**

This listing of claims will replace all prior versions, and listings, of claims in the application:

## **Listing of Claims:**

1. (Currently Amended) A method of reducing jitter in a shared-media packet-switched access network offering integrated Internet Protocol voice and data services comprising the steps of:

transmitting packets in an upstream channel in a frame, said frame comprising one or more voice regions;

and

voice regions for carrying voice packets, said at least two jitter windows collectively covering the entire one or more voice regions; and

wherein said jitter windows are established such that packet delay variation of calls being transmitted within each of said jitter windows is maintained within an acceptable tolerance.

- 2. (Cancelled)
- 3. (Currently Amended) The method of claim 21 wherein said step of establishing at least two non-overlapping jitter windows in said one or more voice regions further includes:

establishing two jitter windows,

where n is the number of time slots in said one or more voice regions, defining the length of each of said two non-overlapping jitter windows as n/2 for an even number of time slots in the voice region, or

for an odd number of time slots in said one or more voice regions, defining the length of one non-overlapping jitter window as (n-1)/2, and the length of the other jitter window as (n+1)/2.

- 4. (Original) The method of claim 1 wherein said shared-media packet-switched access network is connected to a distribution plant comprising one of hybrid fiber-coaxial, coaxial, or fiber-to-the-curb.
- 5. (Currently Amended) The method of claim 21 wherein said jitter windows are established in one voice region.
- 6. (Currently Amended) The method of claim 21 wherein said jitter windows are established in two voice regions separated by a data-only region.
- 7. (Original) The method of claim 1 wherein said step of establishing at least two nonoverlapping jitter windows further includes:

establishing more than two non-overlapping jitter windows.

- 8. (Original) The method of claim 7 wherein the lengths of each of said more than two non-overlapping jitter windows are approximately equal.
- 9. (Currently Amended) A method of allocating a new upstream channel bandwidth to accommodate at least one new voice connection in a shared-media packet-switched access network offering integrated Internet Protocol voice and data services, wherein a current upstream channel is carrying one or more existing voice connections, each of said existing voice connections being assigned to one or more jitter windows, said method comprising the steps of:

selecting ana new upstream channel with at least one idle time slot to accommodate a-said at least one new voice connection and said one or more existing voice connections,

assigning time slots in said <u>new</u> upstream channel to carry voice packets generated from said new and existing voice connections, <u>such that</u> voice packets generated from said one or more existing voice connections, <u>and previously assigned</u> to <u>one jitter window</u>, <u>being maintainedin the same maintain jitter window assignments</u> in the <u>selected new upstream channel corresponding to the jitter window assignments in the current upstream channel.</u>

10. (Currently Amended) The method of claim 9 wherein said step of selecting an upstream channel further includes selecting an new upstream channel is selected such that, and

- (2) at least one of the jitter windows in said selected new upstream channel accommodating voice packets from said new and existing voice connections.
- 11. (Currently Amended) The method of claim 9 wherein said step of selecting an a new upstream channel further includes selecting one of a packed with first fit, minimally packed or maximally spread upstream channel.
- 12. (Original) The method of claim 9 wherein said step of assigning time slots further includes assigning an idle time slot for said new voice connection by selecting one of a lowest idle time slot, a highest idle time slot or randomly selecting an idle time slot.
- 13. (Original) The method of claim 9 wherein said voice connections are constant-bitrate voice connections.
- 14. (Cancelled).
- 15. (Cancelled).
- 16. (Cancelled).

## 17. (Cancelled)

18. (Currently Amended) A shared-media packet-switched access network offering integrated Internet Protocol voice and data services comprising:

a cable modem located at a customer-end of an access network;

a cable modern termination system located at a head-end of an access network;

at least one upstream channel for transmitting voice and data packets from said cable modem to said cable modem termination system; wherein

said packets are transmitted in a frame comprising at least one voice region, wherein said frame at least one voice region comprises at least two non-overlapping jitter windows for carrying said voice packets, said at least two jitter windows collectively covering the entire voice region; and

wherein said jitter windows are configured such that packet delay variation of calls being transmitted within each of said jitter windows is maintained within an acceptable tolerance.

- 19. (Cancelled).
- 20. (Original) The network of claim 18, wherein said frame comprises two non-overlapping jitter windows in two voice regions, n being the number of time slots in the voice region, defining the length of each of said two non-overlapping jitter windows as n/2 for an even number of time slots in the voice region, or

for an odd number of time slots in the voice region, defining the length of one non-overlapping jitter window as (n-1)/2, and the length of the other jitter window as (n+1)/2.

- 21. (Currently Amended) The network of claim 18, wherein said cable modem termination system assigns said at least one upstream channel to said cable modem by selecting one of one of a packed with first fit, minimally packed or maximally spread upstream channel.
- 22. (Original) The network of claim 18, wherein said cable modem termination system selects one of a lowest idle time slot, a highest idle time slot or randomly selecting an idle time slot to carry said voice packets.
- 23. (Original) The network of claim 18, wherein said cable modem termination system assigns a new upstream channel, with at least one idle time slot, to said cable modem when said at least one upstream channel cannot accommodate a new voice connection from said cable modem.

- (1) the number of idle time slots in each jitter window in said new upstream channel being no less than the number of idle time slots allocated to a corresponding jitter window in a current channel accommodating existing voice connections, and
- (2) at least one of the jitter windows in said new upstream channel can accommodate voice packets from said new and existing voice connections.
- 25. (Original) The network of claim 18, wherein said access network includes one of hybrid fiber coaxial, coaxial or fiber-to-the-curb.
- 26. (Original) The network of claim 19, wherein said at least two non-overlapping jitter windows includes more than two non-overlapping jitter windows.
- 27. (Original) The network of claim 26, wherein the lengths of each of said more than two non-overlapping jitter windows are approximately equal.
- 28. (Currently Amended) A shared-media packet-switched access network offering integrated Internet Protocol voice and data services comprising:

at least one upstream channel for transmitting voice and data packets to said cable modem termination system; wherein

Appl. No. 09/477,365

said packets are transmitted in frames comprising at least one voice region, wherein said at least one voice region and each of said frames comprises two non-overlapping jitter windows collectively covering said voice region for carrying voice packets; and

wherein said jitter windows are configured such that packet delay variation of calls being transmitted within each of said jitter windows is maintained within an acceptable tolerance.

29 - 35 (Cancelled).