

PCB LAYOUT GUIDE

JMS580 USB 3.1 Gen 2 to SATA 6Gb/s Bridge Controller

Document No.: LOG-16007 / Revision: 1.3 / Date: 9/19/2017

JMicron Technology Corporation

1F, No. 13, Innovation Road 1, Science-Based Industrial Park,

Hsinchu, Taiwan 300, R.O.C.

Tel: 886-3-5797389

Fax: 886-3-5799566

Website: http://www.jmicron.com

Certificate No.: TW16/00614

Copyright © 2017, JMicron Technology Corp. All Rights Reserved.

Printed in Taiwan 2017

JMicron and the JMicron Logo are trademarks of JMicron Technology Corporation in Taiwan and/or other countries.

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use implantation or other life supports application where malfunction may result in injury or death to persons. The information contained in this document does not affect or change JMicron's product specification or warranties. Nothing in this document shall operate as an express or implied license or environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will JMicron be liable for damages arising directly or indirectly from any use of the information contained in this document.

For more information on JMicron products, please visit the JMicron web site at http://www.JMicron.com or send e-mail to sales@jmicron.com. For product application support, please send e-mail to sales@jmicron.com.

JMicron Technology Corporation

1F, No.13, Innovation Road 1, Science-Based Industrial Park, Hsinchu, Taiwan 300, R.O.C.

Tel: 886-3-5797389 Fax: 886-3-5799566

Revision History

Revision	Effective	Description of revision		Author	
number	date	Reference	Description of change	Author	
1.0	11/15/2016		Initial release.	Mika	
1.1	05/22/2017		Delete CB17, Add C20 (7.1 Figure)	Mika	
1.2	08/04/2017		Add rule for remove area under capacitors	Jason	
1.3	09/19/2017		Add trace length limit for SATA3.0	Jason	

Table of Contents

Re	Revision Historyi			
Та	ble of	Contents	. ii	
1	Ove	rview	1	
	1.1	Description	1	
	1.2	PCB Stack up	1	
2	USE	3.1 Layout Guide	2	
	2.1	Relative Net Name & Pairs	2	
	2.2	Net Spacing & Trace Length Rule	2	
3	SAT	A3.0 Layout Guide	3	
	3.1	Relative Net Name & Pairs	3	
	3.2	Net Spacing & Trace Length Rule	3	
4	USE	2.0 Layout Guide	4	
	4.1	Relative Net Name & Pairs	4	
	4.2	Net Spacing & Trace Length Rule	4	
5	Crys	stal Layout Guide	5	
	5.1	Relative Net Name & Pairs	5	
	5.2	Layout Rule	5	
6	Pow	er Layout Guide	6	
	6.1	Related Net Name	6	
	6.2	Layout Rule	6	
7	Swit	ching Regulator LC Layout Guide	7	
	7.1 I	Related Component Location	7	
	721	C Layout Pula	7	

1 Overview

1.1 Description

This layout guide includes USB3.1, SATA3.0, USB2.0, Power plane, Crystal and Switching Regulator.

1.2 PCB stack up

2 USB3.1 layout guide

2.1 Relative net name & pairs

USB3.1 have 2 differential signal pair, detailed information is as follows:

Net name	Routing layer	Reference layer
SSTXP, SSTXN, SSRXN, SSRXP	1st layer	2nd layer (GND)

2.2 Net spacing & trace length rule

USB Trace : Trace width / trace separation / pair separation = 6 / 6 / 18.0 mil

Target differential impedance: 89 Ω

Other Signal SSTXN SSTXP SSRXN SSRXP Signal W W W

Unit: mil

- USB3.1 trace length mismatch < 5mil.
- Away from the Oscillator, Switching Regulator LC, Power components and Power trace.
- Route all SuperSpeed USB signal traces over continuous planes (VCC or GND), with no interruptions. Avoid
 crossing over anti-etch, commonly found with plane splits.
- Do not route SuperSpeed USB traces under or near crystals, oscillators, clock signal generators, switching regulators, mounting holes, magnetic devices or IC's that use or duplicate clock signals.

Revision 1.3 2 Document No.: LOG-16007

3 SATA3.0 layout guide

3.1 Related net name & pairs

SATA3.0 have 2 differential signal pair , detailed information is as follows:

Net name	Routing layer	Reference layer
TXP, TXN, RXN, RXP	1st layer	2nd layer (GND)

3.2 Net spacing & trace length rule

• SATA Trace : Trace Width / Trace Separation / Pair Separation = 5/7/15 mil] Target differential impedance: 98 Ω

Unit : mil

- SATA3.0 trace length should be between 700mil and 1800mil, and trace mismatch < 5mil.
- Away from the Oscillator, Switching Regulator LC, Power components and Power trace.
- Route all SATA signal traces over continuous planes (VCC or GND), with no interruptions. Avoid crossing over anti-etch, commonly found with plane splits.
- Do not route SATA traces under or near crystals, oscillators, clock signal generators, switching regulators, mounting holes, magnetic devices or IC's that use or duplicate clock signals.

Revision 1.3 Document No.: LOG-16007

4 USB2.0 layout guide

4.1 Related net name & pairs

USB2.0 have a differential signal pair $^{\ \prime}$ detailed information is as follows:

Net name	Routing layer	Reference layer
DP_USB, DM_USB	1st layer	2nd layer (GND)

4.2 Net spacing & trace length rule

USB Trace: Trace width / trace separation / pair separation = 6 / 6 / 18 mil

Target differential impedance: 89 Ω

- USB2.0 trace length mismatch < 5mil.
- Away from the Oscillator, Switching Regulator LC, Power components and Power trace.
- Route all high-speed USB signal traces over continuous planes (VCC or GND), with no interruptions. Avoid crossing over anti-etch, commonly found with plane splits.
- Do not route high-speed USB traces under or near crystals, oscillators, clock signal generators, switching regulators, mounting holes, magnetic devices or IC's that use or duplicate clock signals.

Revision 1.3 4 Document No.: LOG-16007

5 Crystal layout guide

5.1 Related net name & pairs

The Oscillator/Crystal detailed information is as follows:

Net name	Routing layer	Reference layer
XIN, XOUT	1st layer	2nd layer (GND)

5.2 Layout rule

- The crystal unit should then be placed as close as possible to the XIN and XOUT pins to minimize etch lengths.
- Ensure that the ground plane under the IC and its components are of good quality.
- Avoid placing a separate ground under the oscillator and connecting it to the general ground through a single point.
- Avoid long connections to the crystal and to the load capacitor that create a large loop on the PCB.
- Use a short connection between the two crystal load capacitors and route the common connection to the IC ground reference.

Revision 1.3 5 Document No.: LOG-16007

6 Power layout guide

6.1 Related net name

Power detailed information is as follows:

6.2 Layout rule

- The width of 5V \geq 60 mil (suggest 80mil)
- The width of AV33O , VCCO ≥ 15 mil (suggest 30 mil)
- The width of VREG_IN , LXO , VCCK , AVDDL ≥ 30 mil (suggest 40 mil)

7 Switching regulator LC layout guide

7.1 Related component location

7.2 LC layout rule

- Place the Cin(C2) as close as possible to Pin1 and Pin47.
- C16,C20,L3 Away from the JMS580
- C2, CB3, C16, C20, L3 Away from USB signal and SATA signal.

Layout example for Cin:

Note: 1. Cin- as close as possible to Pin47

2. Cin+ as close as possible to Pin1

Layout example for USB connector:

Note: Remove area under capacitors

Layout example for SATA connector:

Note: Remove area under capacitors and SATA signals pins

