Definiciones

Valor absoluto

 $\sqrt{x^2} = |x|$

Ejemplo

 $x^2 = 20$

 $\sqrt{x^2} = \sqrt{20}$

 $|x| = \sqrt{20}$

 $x = \pm \sqrt{20}$

Conjunto de valores admisibles (C.V.A)

 $\frac{1}{f(x)}; f(x) \neq 0$

 $\sqrt{f(x)}; f(x) \ge 0$

 $ln \ f(x); f(x) > 0$

 $a^x; a>0, a\neq 1, x\in \mathbb{R}$

Inecuaciones

Valor absoluto

b > 0

b < 0

 $\frac{|a| < b \quad \text{ no hay solución}}{|a| > b \quad \mathbb{R}}$

Propiedades logaritmicas

$$x = log_a(n) \Leftrightarrow a^x = n$$

$$log_a n^k = k log_a n$$

$$\log xy = \log x + \log y$$

$$\log\left(\frac{x}{y}\right) = \log x - \log y$$

$$log_b n = \frac{log_a n}{log_a b}$$

$$log_a a^x = x$$

$$a^{log_ax}=x$$

$$log_a a = 1$$

$$log_a 1 = 0$$

$$log_a 0 = indefinido$$

Trigonometría

Medidas de ángulos en grados y radianes

30° (θ)	Radianes	Radianes (simplificado)	45° (θ)	Radianes	Radianes (simplificado)
30°	$\frac{1\pi}{\epsilon}$	$\frac{\pi}{\epsilon}$	45°	$\frac{1\pi}{4}$	$\frac{\pi}{4}$
60°	$\frac{2\pi}{6}$	$\frac{\sigma}{\pi}$	90°	$\frac{2\pi}{4}$	$\frac{\frac{4}{\pi}}{2}$
n°	$\frac{k\pi}{6}$	Ç	n°	$\frac{k\pi}{4}$	-

$$k = \frac{n^{\circ}}{\theta}$$

Tabla trigonométrica

θ	$0_{\bar{o}}$	30º	45º	60º	90⁰
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin heta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
an heta	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞

Recomendado: Funk da trigonometria

Visualización

Periodicidad

$$\sin\left(2\pi + \theta\right) = \sin\theta$$

$$\cos\left(2\pi+\theta\right)=\cos\theta$$

$$\tan(\pi + \theta) = \tan\theta$$

Identidades trigonometricas

Identidades pitagóricas

$$\sin^2\theta + \cos^2\theta = 1$$

$$\sec^2\theta - \tan^2\theta = 1$$

$$\csc^2 - \cot^2 = 1$$

Identidades ángulo doble

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$$

Funciones

Cuadrática

Discriminante

Indica el número de soluciones

$$\Delta = b^2 - 4ac$$

$$\frac{\Delta > 0 \quad x = \frac{-b \pm \sqrt{\Delta}}{2a}}{\Delta = 0 \quad x = \frac{-b}{2a}}$$

\Delta < 0 \quad \text{no hay solución}

Combinación

$$(f+g)x = f(x) + g(x)$$

$$(f - g)x = f(x) - g(x)$$

$$(fg)x = f(x)g(x)$$

$$\left(\frac{f}{g}\right)x = \frac{f(x)}{g(x)}$$

$$(f \circ g) = f(g(x))$$

Límites

Límites notables

$$\lim_{n\to\pm\infty}\frac{1}{n}=0$$

$$\lim_{n\to\pm\infty}(\pm)n=(\pm)\pm\infty$$

Si un límite es igual a infinito, no existe pero se denota que tiende a infinito.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0; \lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

$$\lim_{x \to 0} \frac{\sin(ax)}{bx} = \frac{a}{b}$$

$$\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}; \lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Casos en los que no existe

El límite izquierdo no es igual al derecho

$$\lim_{x \to c^+} \neq \lim_{x \to c^-}$$

Función que oscila alrededor de c

Ejemplo

$$c = 0$$

$$\lim_{x \to c} = \frac{1}{\sin(x)}$$

Función que oscila hacia el infinito

Ejemplo

$$\lim_{x\to\infty}=\sin(x)$$

Continuidad

$$f(a) = n \Leftrightarrow \exists \lim_{x \to a} f(x) = n$$

Función es continua != Función es continua en un punto. Para saber si f es continua se debe evaluar el dominio.

Cálculo de asíntotas

Asíntota horizontal

$$\lim_{x \to -\infty} f(x); \lim_{x \to +\infty} f(x)$$

Asíntota vertical

es asíntota horizontal
$$\Leftrightarrow \lim_{x \to c} f(x) = \infty$$

Teorema del sandwich

$$f(x) \le h(x) \le g(x)$$

$$\lim_{x \to c} f(x) = \alpha \wedge \lim_{x \to c} g(x) = \alpha \iff \lim_{x \to c} h(x) = \alpha$$

Derivadas

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) + f(x)}{h}$$

Casos en los que no se puede derivar (punto)

- 1. Recta tangente es vertical
- 2. f es discontinua
- 3. "Giro" brusco

Derivadas notables

Función	Derivada		
f(x) = ax	f(x) = a(x)'		
$f(x) = x^n$	$f'(x) = nx^{n-1}$		
$f(x) = a^x$	$f'(x) = a^x \ln a$		
$f(x) = e^x$	$f'(x) = e^x$		
$f(x) = \sin x$	$f'(x) = \cos x$		
$f(x) = \cos x$	$f'(x) = -\sin x$		
$f(x) = \ln x$	$f'(x) = \frac{1}{x}$		
$f(x) = \log_a x$	$f'(x) = \frac{x}{\ln a} \frac{1}{x}$		

n-ésima derivada

Función	Derivada		
$f(x) = xe^x$	$f^{(n)}(x) = ne^x + xe^x$		

Recta tangente, normal

La pendiente de la recta tangente es igual a la derivada evaluada en una constante.

$$m_{L_T}=f^{\prime}(a)$$

La recta normal es perpendicular a la tangente, por tanto:

$$m_{L_N} = -\frac{1}{m_{L_T}}$$

Para obtener la ecuación de la recta tangente o la recta normal se usa:

$$y - f(a) = m(x - a)$$

Reglas

Regla del producto

$$(fg)' = fg' + f'g$$

Regla del cociente

$$\left(\frac{N}{D}\right)' = \frac{DN' - D'N}{D^2}$$

Regla de la cadena

$$\frac{d}{dx}\left[(f(x))^n\right] = nf(x)^{n-1}f(x)'$$

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$$

Derivadas implícitas