Comments for Lecture 1 1.25.2010

LINEAR COMBINATION. Look at **Definition 1** carefully and notice that the following is a linear combination of x_1 , $(x_2)^3$ and $\sqrt{x_3}$:

$$x_1 - 2(x_2)^3 + 5\sqrt{x_3}$$

but is **NOT** a linear combination of x_1 , x_2 and x_3 . An example of a linear combination of x_1 , x_2 and x_3 would be the following:

$$\frac{1}{2}x_1 - 2x_2 + 9x_3$$

Please read pages 1 and 2 for more examples.

LINEAR EQUATION. Look at Definition 2 and 3 carefully:

The equation $c_1x_1 + c_2x_2 = k$ is the general linear equation in two variables and $c_1x_1 + c_2x_2 + c_3x_3 = k$ is the general linear equation in three variables. The general linear equation in n variables has the form

$$c_1x_1 + c_2x_2 + \ldots + c_nx_n = k$$
.

Finitely many of such equations form a system of linear equations.

NOTE: $x_1 - 2(x_2)^3 + 5\sqrt{x_3} = 0$ is **NOT** a linear equation.