CS 83: Computer Vision

Winter '23 2024

Prof. Pediredla Student: Amittai Siavava

Problem 1.

The continuous convolution of two functions f(x) and g(x) is given as

$$(f * g)(x) = \int_{-\infty}^{+\infty} f(y) g(x - y) dy.$$

(i) Prove that the convolution of two functions is commutative, i.e., changing the order of operands produces the same result.

$$(f * g) = (g * f)$$

Hint: Perform integration by substitution.

By definition,

$$(f * g)(x) = \int_{-\infty}^{+\infty} f(y) g(x - y) dy$$

(ii) Prove that the convolution operand is also associative, i.e., rearranging the parentheses on two or more occurrences of the convolution operator produces the same result:

$$(f * g) * h = f * (g * h)$$

Hint: Be careful with variables. Understand which variable should be integrated, and why.

Amittai, S CS 83: COMPUTER VISION

Problem 2.

In class, we talked about finite-difference approximation to the derivative of the univariate function f(x). Using Taylor polynomial approximations of f(x + h) and f(x - h), we can easily show that

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h2),$$

so that the derivative can be approximated by convolving a discrete version of f(x) — a vector of values $(..., f(x_o - \Delta), f(x_o), f(x_o + \Delta), ...)$ with kernel (1/2, 0, -1/2). This is termed a central difference because its interval is symmetric about a sample point.

(i) Derive a higher order central-difference approximation to f'(x) such that the truncation error tends to zero as h^4 instead of h^2 . Hint: consider Taylor polynomial approximations of $f(x \pm 2h)$ in addition to $f(x \pm h)$. (7 points)

Let c_i denote the coefficient for each term containing h^i in the full Taylor polynomial expansion, then we may write the current estimation of f'(x) as

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \left[c_2h^2 + c_4h^4 + c_6h^6 + \dots\right].$$
 (2.1)

Our goal is to eliminate the h^2 term. Consider the approximations using $f(x \pm 2h)$ by plugging 2h into the formula:

$$f'(x) = \frac{f(x+2h) - f(x-2h)}{4h} - \left[4c_2h^2 + 16c_4h^4 + 64c_6h^6 + \dots\right]$$
 (2.2)

We notice that the h^2 term in 2.2 is 4 times larger than the h^2 term in 2.1. We can eliminate the h^2 term in f'(x) by subtracting 2.2 from 4 times 2.1:

$$3f'(x) = 4\frac{f(x+h) - f(x-h)}{2h} - \frac{f(x+2h) - f(x-2h)}{4h} - \left[0h^2 + O(h^4)\right]$$

$$3f'(x) = \frac{8(f(x+h) - f(x-h)) - (f(x+2h) - f(x-2h))}{4h} + O(h^4)$$

$$3f'(x) = \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{4h} + O(h^4)$$

$$f'(x) = \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h} + O(h^4)$$
(2.3)

We get equation 2.3 as a Taylor approximation of f'(x) with a truncation error of $\mathcal{O}(h^4)$.

(ii) What is the corresponding convolution (not correlation!) kernel? (3 points)

The approximation has a correlation kernel of

$$\left(-\frac{1}{12}, \frac{8}{12}, -\frac{8}{12}, \frac{1}{12}\right).$$

The convolution kernel is the same as the correlation kernel, but flipped.

$$\left(\frac{1}{12}, -\frac{8}{12}, \frac{8}{12}, -\frac{1}{12}\right).$$