PAUTA CERTAMEN ALGEBRA Nº 2

I.- Dada la recta
$$L_1$$
:
$$\begin{cases} x = 2 \\ y = t \\ z = -3 + 4t \end{cases}$$
 y el plano : π_1 : $2x - 3y + z + 1 = 0$ determine

- a).- $\{Q_0\} = L_1 \cap \pi_1$
- b).- La ecuación del plano π_2 que contiene a $P_0(2,1,1)$ y es paralelo al plano π_1
- c).- Justificando su respuesta, calcule la distancia de Q_0 a π_2
- d).- Justificando su respuesta, calcule la distancia de π_1 a π_2

a)
$$2(2) - 3t + (-3 + 4t) + 1 = 0 \implies 4 - 3t - 3 + 4t + 1 = 0 \implies t = -2$$

luego:
$$x = 2$$
; $y = -2$; $z = -11 \rightarrow (x,y,z) = Q_0 = (2,-2,-11)$ 5 puntos

b).-
$$\pi_1 // \pi_2 \Rightarrow n_1 = n_2 = (2, -3, 1)$$
; $(P_0 - \vec{X}) = (2 - x, 1 - y, 1 - z) \in \pi_2$

luego:
$$2(x-2)-3(y-1)+(z-1)=0 \longrightarrow 2x-3y+z-2=0$$
 5 puntos

c).-
$$L_2 \perp \pi_1$$
 y $Q_0 \in L_2$ permiten $L_2 : \begin{cases} x = 2 + 2t \\ y = -2 - 3t \\ z = -11 + t \end{cases}$

$$R_0 = L_2 \cap \pi_2 \longrightarrow 2(2+2t) - 3(-2-3t) + (-11+t) - 2 = 0 \rightarrow t = \frac{3}{14}$$

$$\begin{cases} x = 2 + \frac{6}{14} & \text{otherwise} \\ x = 2 + \frac{6}{14} & \text{otherwise} \\ x = \frac{6}{14$$

$$R_0 = L_2 \cap \pi_2$$
 \longrightarrow $2(2+2t) - 3(-2-3t) + (-11+t) - 2 = 0 $\rightarrow t = \frac{3}{14}$$

$$R_0 = \begin{cases} x = 2 + \frac{6}{14} \\ y = -2 - \frac{9}{14} \\ z = -11 + \frac{3}{14} \end{cases} \qquad d_{Q_0 R_0} = \sqrt{(2 + \frac{6}{14} - 2)^2 + (-2 - \frac{9}{14} + 2)^2 + (-11 + \frac{3}{14} + 11)^2} = \frac{\sqrt{126}}{14}$$

5 puntos

d).-
$$\pi_1 \perp \overline{Q_0 R_0} \perp \pi_2$$
 \Rightarrow $d_{\pi_1 \pi_2} = \frac{\sqrt{126}}{14}$ 5 puntos

- II.- Dados los puntos A (2,-1,4); B (1,2,3); C (-2,-2,1); D (3,1,2)
 - a).- Encuentre la ecuación del plano π que contiene a los puntos A, B y C
 - b).- Verifique que D $\notin \pi$
 - c).- Calcule el área del triángulo generado por AB y AC
 - c).- Calcule el volumen del tetraedro generado por \overrightarrow{AB} , \overrightarrow{AC} y \overrightarrow{AD}

a).-
$$\begin{pmatrix} 2 & -1 & 4 \\ 1 & 2 & 3 \\ -2 & -2 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ -2 & -2 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ 0 & 2 & 7 \end{pmatrix} \approx \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 11 \end{pmatrix} \Rightarrow \vec{a}, \vec{b}, \vec{c} \text{ son vectores L.I.}$$

$$\overrightarrow{AB} = (-1,3,-1)$$
 $\overrightarrow{AC} = (-4,-1,-3)$ $\overrightarrow{n} = (-10,1,13)$ $\overrightarrow{AX} = (x-2,y+1,z-4)$

luego
$$\pi$$
: $-10(x-2)+(y+1)+13(z-4)=0 \rightarrow -10x+y+13z-31=0$ 5 puntos

b).- D=
$$(3,1,2)$$
; D $\in \pi \Rightarrow -10*3+1+13*2=31 \rightarrow -3=31 \rightarrow D \notin \pi$ 5 puntos

c).- área
$$\triangle ABC = \frac{1}{2} \|\overrightarrow{AB} \times \overrightarrow{AC}\| = \frac{1}{2} \sqrt{270} = \frac{3}{2} \sqrt{30}$$
 5 puntos

d).- vol. tetraedro =
$$\frac{1}{6} |\overrightarrow{AD} * (\overrightarrow{AB} \times \overrightarrow{AC})| = \frac{1}{6} |(1, 2, -2) * (-10, 1, 13)| = \frac{34}{6} = \frac{17}{6}$$
 5 puntos

III.- Dados
$$S = \{(x,y,z) / 2x - y + z = 0\}$$
 y el sub-espacio $T = \{(2,-1,0),(1,0,1)\} > 0$

- a).- Pruebe que S es un sub-espacio
- b).- Caracterice el sub-espacio T
- c). Encuentre una base para S + T
- d).- λ es S + T? una suma directa fundamente su respuesta

a).-
$$x = y = z = 0 \rightarrow (0,0,0) \in S \Rightarrow S \neq \emptyset$$
 $\vec{a}y\lambda\vec{b} \in S \rightarrow \begin{pmatrix} 2a_1 - a_2 + a_3 = 0 \\ 2\lambda b_1 - \lambda b_2 + \lambda b_3 = 0 \end{pmatrix}$ luego
$$(2(a_1 + \lambda b_1) - (a_2 + \lambda b_2) + (a_3 + \lambda b_3)) = 0 \Rightarrow \vec{a} + \lambda \vec{b} \in S$$
5 puntos

b).-
$$(x, y, z) \in T \Rightarrow (x, y, z) = \alpha(2, -1, 0) + \beta(1, 0, 1)$$
 por lo tanto se tiene:

$$\begin{pmatrix} 2 & 1 & | & x \\ -1 & 0 & | & y \\ 0 & 1 & | & z \end{pmatrix} \approx \begin{pmatrix} 2 & 1 & | & x \\ 0 & 1 & | & 2y + x \\ 0 & 0 & | & z - 2y - x \end{pmatrix}$$
hay solución si : $z - 2y - x = 0 \rightarrow T = \{(x, y, z) / (z - 2y - x) = 0\}$

5 puntos

c).-
$${S+T} = {(2,-1,0),(1,0,1),(1,2,0),(0,1,1)}$$

$$\begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 2 \\ 0 & 5 & 0 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & -10 \\ 0 & 0 & -1 \end{pmatrix} \approx \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & -10 \\ 0 & 0 & 0 \end{pmatrix}$$
permite deducir que:

$${S+T} = <\{(2,-1,0),(1,0,1),(1,2,0)\}>$$
 es una base de ${S+T}$ 5 puntos

d).- Dim
$$\{ S + T \} = 3$$
; Dim $S + Dim T = 2 + 2 = 4$

$$Dim \{ S + T \} \neq Dim S + Dim T$$
 la suma no es directa

5 puntos