Probabilistic Lexicalized CFGs

Natalie Parde UIC CS 421

Parsing Methods

Lexicalized Parsers

- Allow lexicalized rules
 - Non-terminals specify lexical heads and associated POS tags
 - NP(facemasks, NNS) → AdjP(purple, JJ) NNS(facemasks, NNS)

Lexicalized Grammars

- Intuitively, much like having many copies of the same production rule
 - NP(facemasks, NNS) → AdjP(purple, JJ) NNS(facemasks, NNS)
 - NP(facemasks, NNS) → AdjP(green, JJ) NNS(facemasks, NNS)
 - NP(sanitizers, NNS) → AdjP(purple, JJ) NNS(sanitizers, NNS)
- Two types of rules:
 - Lexical Rules: Generate a terminal word
 - Internal Rules: Generate a non-terminal constituent

Lexical vs. Internal Rules

Lexical vs. Internal Rules

Lexical Rules

- Deterministic
 - JJ(purple, JJ) → purple

Internal Rules

- Require estimated probabilities
 - Normal maximum likelihood estimation won't work well because the counts will be too sparse
 - Instead, estimate the probability of an internal rule based on the product of the smaller, more reliable probability estimates comprising it

• Consider the following generic production rule:

Consider the following generic production rule:

- Goal: Use P_H , P_L , and P_R to estimate the overall probability for the production rule
- Method:
 - Surround the righthand side of the rule with STOP non-terminals
 - NP(facemasks, NNS) → STOP AdjP(purple, JJ) NNS(facemasks, NNS) PP(under, IN) STOP
 - Compute the individual P_H , P_L , and P_R values for the head and the non-terminals to its left and right (including STOP non-terminals)
 - Multiply these together

Grab the purple facemasks under the disinfectant.

Consider the following generic production rule:

Grab the purple facemasks under the disinfectant.

NP(facemasks, NNS) → STOP AdjP(purple, JJ) NNS(facemasks, NNS) PP(under, IN) STOP

Consider the following generic production rule:

P_H(H|LHS) = P(NNS(facemasks, NNS) | NP(facemasks, NNS))

Grab the purple facemasks under the disinfectant.

NP(facemasks, NNS) → STOP AdjP(purple, JJ) NNS(facemasks, NNS) PP(under, IN) STOP

Consider the following generic production rule:

Grab the purple facemasks under the disinfectant.

NP(facemasks, NNS) → STOP AdjP(purple, JJ) NNS(facemasks, NNS) PP(under, IN) STOP

P_H(H|LHS) = P(NNS(facemasks, NNS) | NP(facemasks, NNS))

P_L(STOP|LHS H) = P(STOP | NP(facemasks, NNS) NNS(facemasks, NNS))

 $P_L(L_1|LHS\ H) = P(AdjP(purple, JJ) | NP(facemasks, NNS) NNS(facemasks, NNS))$

Consider the following generic production rule:

Grab the purple facemasks under the disinfectant.

NP(facemasks, NNS) → STOP AdjP(purple, JJ) NNS(facemasks, NNS) PP(under, IN) STOP

P_H(H|LHS) = P(NNS(facemasks, NNS) | NP(facemasks, NNS))

P_L(STOP|LHS H) = P(STOP | NP(facemasks, NNS) NNS(facemasks, NNS))

 $P_L(L_1|LHS H) = P(AdjP(purple, JJ) | NP(facemasks, NNS) NNS(facemasks, NNS))$

P_R(R₁|LHS H) = P(PP(under, IN) | NP(facemasks, NNS) NNS(facemasks, NNS))

P_R(STOP|LHS H) = P(STOP | NP(facemasks, NNS) NNS(facemasks, NNS))

Consider the following generic production rule:

Grab the purple facemasks under the disinfectant.

NP(facemasks, NNS) → STOP AdjP(purple, JJ) NNS(facemasks, NNS) **PP(under, IN) STOP**

= $P_H(H|LHS) * P_L(STOP|LHS H) * P_L(L_1|LHS H) * P_R(R_1|LHS H) * P_R(STOP|LHS H)$

P_H(H|LHS) = P(NNS(facemasks, NNS) | NP(facemasks, NNS))

P_L(STOP|LHS H) = P(STOP | NP(facemasks, NNS) NNS(facemasks, NNS))

 $P_L(L_1|LHS\ H) = P(AdjP(purple, JJ) | NP(facemasks, NNS) NNS(facemasks, NNS))$

 $P_R(R_1|LHS H) = P(PP(under, IN) | NP(facemasks, NNS) NNS(facemasks, NNS))$

P_R(STOP|LHS H) = P(STOP | NP(facemasks, NNS) NNS(facemasks, NNS))

Then, it's relatively easy to estimate the individual probabilities.

- Maximum likelihood estimate
- Much less subject to sparsity problems!

 $P_R(R_1|LHS\ H) = P(PP(under, IN) | NP(facemasks, NNS) NNS(facemasks, NNS))$

Count(NP(facemasks, NNS) with PP(under, IN) as a child to the right)
Count(NP(facemasks, NNS))