WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)								
(51) International Patent Classification 6:		(11) International Publication Number:	WO 98/25896					
C07D 207/333, A61K 31/40, C07D 401/04, 207/33, 207/337, 207/36, 207/34	A1	(43) International Publication Date:	18 June 1998 (18.06.98)					
(21) International Application Number: PCT/US97	7/224	88 (81) Designated States: AL, AM, AT, A BY, CA, CH, CN, CU, CZ, DE,						
(22) International Filing Date: 9 December 1997 (09								

US

(71) Applicant (for all designated States except US): G.D. SEARLE & CO. [US/US]; Corporate Patent Dept., P.O. Box 5110, Chicago, IL 60680-5110 (US).

10 December 1996 (10.12.96)

(72) Inventors; and

(30) Priority Data: 60/032,688

- (75) Inventors/Applicants (for US only): KHANNA, Ish, K. [IN/US]; 149 Brandywine Court, Vernon Hills, IL 60061 (US). WEIER, Richard, M. [US/US]; 240 Hickory Court, Lake Bluff, IL 60044 (US). YU, Yi [CN/US]; 9065 Gross Point Road, Skokie, IL 60077 (US).
- (74) Agents: BULOCK, Joseph, W. et al.; G.D. Searle & Co., Corporate Patent Dept., P.O. Box 5110, Chicago, IL 60680-5110 (US).

UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: SUBSTITUTED PYRROLYL COMPOUNDS FOR THE TREATMENT OF INFLAMMATION

(57) Abstract

A class of pyrrolyl derivatives is described for use in treating inflammation and inflammation-related disorders. Compounds of particular interest are defined by formula (I), wherein at least one of \mathbb{R}^1 and \mathbb{R}^2 is phenyl substituted with methylsulfonyl or aminosulfonyl.

$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{1}} \mathbb{R}^{3} \qquad (1)$$

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
ΑŲ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine	
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
CM	Cameroon		Republic of Korea	PL	Poland			
CN	China	KR	Republic of Korea	PT	Portugal		•	
CU	Cuba	KZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			
								·

1

SUBSTITUTED PYRROLYL COMPOUNDS FOR THE TREATMENT OF INFLAMMATION

FIELD OF THE INVENTION

5

10

35

This invention is in the field of antiinflammatory pharmaceutical agents and specifically relates to compounds, compositions and methods for treating cyclooxygenase-2 mediated disorders, such as inflammation and arthritis.

BACKGROUND OF THE INVENTION

Prostaglandins play a major role in the inflammation process and the inhibition of 15 prostaglandin production, especially production of PGG2, PGH2 and PGE2, has been a common target of antiinflammatory drug discovery. However, common non-steroidal antiinflammatory drugs (NSAIDs) that are active in reducing the prostaglandin-induced 20 pain and swelling associated with the inflammation process are also active in affecting other prostaglandin-regulated processes not associated with the inflammation process. Thus, use of high 25 doses of most common NSAIDs can produce severe side effects, including life threatening ulcers, that limit their therapeutic potential. An alternative to NSAIDs is the use of corticosteroids, which have even more drastic side effects, especially when long 30 term therapy is involved.

Previous NSAIDs have been found to prevent the production of prostaglandins by inhibiting enzymes in the human arachidonic acid/prostaglandin pathway, including the enzyme cyclooxygenase (COX). The recent discovery of an inducible enzyme associated with inflammation (named "cyclooxygenase-2 (COX-2)" or "prostaglandin G/H synthase II") provides a viable target of

PCT/US97/22488 WO 98/25896

2

inhibition which more effectively reduces inflammation and produces fewer and less drastic side effects.

The references below that disclose antiinflammatory activity, show continuing efforts to 5 find a safe and effective antiinflammatory agent. The novel pyrroles disclosed herein are such safe and also effective antiinflammatory agents furthering such efforts. The substituted pyrrolyl compounds disclosed herein preferably selectively inhibit 10 cyclooxygenase-2 over cyclooxygenase-1.

Pyrroles have been described for various uses, including the treatment of inflammation.

US Patent No. 5,219,856, to R. Olson, generically describes pyrrole-containing 15 angiotensin-II inhibitors. US Patent No. 5,236,943, to Heitsch et al., generically describes pyrrole containing angiotensin-II inhibitors.

US Patent No. 5,128,485, to V. Kameswaran, describes a process for preparing 2-phenyl-5-20 trifluoromethylpyrroles. EP 492093, published July 1, 1992, describes a similar process.

U.S. Patent No. 5,032,590, to Hubsch et al., describes 1,2-diphenyl-3-(4-fluorophenyl)-5isopropylpyrrole as an intermediate in the preparation of a hydroxylamine substituted pyrrole.

25

H. Stetter and M. Schreckenberg (Chem. Ber., 107, 2453 (1974)] describe the synthetic preparation of 1,2-diaryl pyrroles, and specifically, 2-(4chlorophenyl)-5-methyl-1-phenylpyrrole. F. Cerreto, 30 et al. [Eur. J. Med. Chem, 27, 701 (1992)] describe the 1,5-diaryl-2-methylpyrroles as having anti-Candida activity. M. Scalzo et al. [Il Farmaco Ed. Sc., 43, 665 (1988)] describe 1,5-substituted pyrroles as having antibacterial activity. M. 35 Scalzo et al. [Il Farmaco Ed. Sc., 43, 677 (1988)] describe other 1,5-substituted pyrroles as having

antibacterial activity. M. Scalzo et al. [Eur. J.

3

Med. Chem, 23, 587 (1988)] describe 2-methyl-5-(4-nitrophenyl)-1-phenylpyrroles as having antibacterial activity.

- C. Gillet, et al [Eur. J. Med. Chem, 11, 173 (1976)] describe the 1,5-diaryl-3-pyrrole acetic acids as having antiinflammatory activity. German Patent DE 2,261,965 describes 2-methyl-1-phenylpyrroles as having antiinflammatory activity. Belgian Patent 633,582 describes 1-aryl-5-(4-alkoymberyl)-2-pyrrole propagoic acids as
- alkoxyphenyl)-2-pyrrole propanoic acids as anticholesterolaemic agents. G. Thiault et al. [Il Farmaco Ed. Sc., 39, 524 (1984)] describe 1,5-substituted pyrroles as having analgesic and antiinflammatory activity. G. Thiault et al. [Il
- 15 Farmaco Ed. Sc., 39, 765 (1984)] describe other 1,5-substituted pyrroles as having analgesic and antiinflammatory activity. U.S. Patent No. 4,694,018, issued to L. Chin, describes 1-(halophenyl)-5-phenyl-2-pyrrole propanoic acid
- 20 derivatives as 5-lipoxygenase inhibitors. U.S. Patent No. 5,096,919, issued to Wasley et al., describes 1-pyrrole phenyl hydroxamic acid derivatives as 5-lipoxygenase inhibitors.
 - U.S. Patent No. 4,267,184, issued to S.
- 25 Cherkofsky, describes 4,5-aryl-2-thiopyrroles as antiinflammatory agents. U.S. Patent No. 4,267,190, issued to S. Cherkofsky, describes 4,5-aryl-2-methanethiolpyrroles as antiinflammatory agents. U.S. Patent No. 4,335,136, issued to S. Cherkofsky,
- describes 4,5-aryl-2-methanaminepyrroles as antiinflammatory agents. U.S. Patent No. 4,267,184, issued to S. Cherkofsky, describes 4,5-aryl-2-halopyrroles as antiinflammatory agents. U.S. Patent No. 3,531,497, issued to G. Youngdale,
- describes 2,4,5-triphenylpyrroles as antiinflammatory agents. U.S. Patent No. 4,267,184, issued to S. Cherkofsky, describes 4,5-phenylpyrroles as antiinflammatory agents. U.S.

10

15

25

Patent No. 5,474,995, issued to Ducharme et al., describes 4,5-phenylpyrroles as cyclooxygenase-2 inhibitors. W. Wilkerson et al. [Med. Chem. Res,. 5, 399 (1995)] describe 4,5-diarylpyrroles as COX-2 inhibitors. W. Wilkerson et al. [J. Med. Chem., 38, 3895 (1995)] describe 4,5-diarylpyrroles as COX-2 inhibitors. PCT patent document WO94/15932, published July 21, 1994, describes 3,4-diphenylpyrroles as inhibiting cyclooxygenase-2.

US Patent No. 5,187,185, to Outcalt, et al., describes substituted 1-arylpyrroles as pesticides. European patent document EP 372,982, published June 13, 1990, describes similar compounds.

US Patent No. 3,427,305, to L. Chinn, describes 1-[4-(aminosulfonyl)phenyl]pyrrole propanoic acids as being antiinflammatory. Specifically, 1-(4-(aminosulfonyl)phenyl]-5-(4-fluorophenyl)-2-pyrrole propanoic acid is described.

British patent GB 1,263,940 describes 120 phenylpyrroles as having antiinflammatory activity.
Specifically, 4-[2-methyl-5-phenylpyrrol-1yllbenzenesulfonamide is described.

The invention's pyrrolyl compounds are found to show usefulness as antiinflammatory agents with minimal side effects.

DESCRIPTION OF THE INVENTION

A class of substituted pyrrolyl compounds

30 useful in treating inflammation-related disorders is
defined by Formula I:

$$\mathbb{R}^{2} \xrightarrow{\mathbb{N}^{2}} \mathbb{R}^{3}$$

35

5

wherein R^1 and R^2 are independently selected from aryl, cycloalkyl, cycloalkenyl and heterocyclyl, wherein R1 and R2 are optionally substituted at a substitutable position with one or more radicals independently selected from alkylsulfonyl, aminosulfonyl, haloalkylsulfonyl, halo, alkylthio, alkylsulfinyl, alkyl, cyano, carboxyl, alkoxycarbonyl, haloalkyl, hydroxyl, alkoxy, hydroxyalkyl, alkoxyalkyl, alkylcarbonyl, haloalkoxy, amino,

alkylamino, arylamino and nitro; 10

> wherein R³ is a radical selected from hydrido, halo, methyl and alkoxycarbonylalkyl; and

> wherein R4 is a radical selected from hydrido, halo, alkyl, haloalkyl, cyano, alkoxycarbonyl,

- carboxyl, formyl, aryl, heteroaryl, aralkyl, 15 heteroarylalkyl, alkylsulfonyl, haloalkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, hydroxyalkyl, mercaptoalkyl, alkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, aralkyloxyalkyl,
- heteroarylalkyloxyalkyl, alkylthioalkyl, 20 arylthioalkyl, heteroarylthioalkyl, aralkylthioalkyl, heteroarylalkylthioalkyl, haloalkylcarbonyl, haloalkyl(hydroxy)alkyl, alkylcarbonyl, arylcarbonyl, aralkylcarbonyl, heteroarylcarbonyl,
- heteroarylalkylcarbonyl, carboxyalkyl, 25 alkoxycarbonylalkyl, alkylcarbonyloxyalkyl, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, aralkylaminoalkyl, heteroarylaminoalkyl, heteroarylalkylaminoalkyl, alkoxy, and aryloxy;

provided at least one of R¹ and R² is phenyl 30 substituted with methylsulfonyl or aminosulfonyl; and further provided R³ is hydrido when R¹ is phenyl substituted with aminosulfonyl or methylsulfonyl;

or a pharmaceutically-acceptable salt thereof.

Compounds of Formula I would be useful for, but not limited to, the treatment of inflammation in a subject, and for treatment of other cyclooxygenase-2 mediated disorders, such as, as an analgesic in the

WO 98/25896 PCT/US97/22488 6 treatment of pain and headaches, or as an antipyretic for the treatment of fever. For example, compounds of the invention would be useful to treat arthritis, including but not limited to rheumatoid arthritis, spondyloarthropathies, gouty arthritis, osteoarthritis, systemic lupus erythematosus and juvenile arthritis. Such compounds of the invention would be useful in the treatment of asthma, bronchitis, menstrual cramps, premature labor, tendinitis, bursitis, skin-related conditions such as psoriasis, eczema, burns and dermatitis, and from post-operative inflammation including from ophthalmic surgery such as cataract surgery and refractive surgery. Compounds of the invention also would be useful to treat gastrointestinal conditions such as inflammatory bowel disease, Crohn's disease, gastritis, irritable bowel syndrome and ulcerative colitis. Compounds of the invention would be useful for the prevention or treatment of cancer, such as colorectal cancer, and cancer of the breast, lung, prostate, bladder, cervix and skin. Compounds of the invention would be useful in treating inflammation in

10

15

30

20 such diseases as vascular diseases, migraine headaches, periarteritis nodosa, thyroiditis, 25 aplastic anemia, Hodgkin's disease, sclerodoma,

rheumatic fever, type I diabetes, neuromuscular junction disease including myasthenia gravis, white matter disease including multiple sclerosis, sarcoidosis, nephrotic syndrome, Behcet's syndrome, polymyositis, gingivitis, nephritis,

hypersensitivity, swelling occurring after injury, myocardial ischemia, and the like. The compounds would also be useful in the treatment of ophthalmic diseases, such as retinitis, retinopathies, uveitis,

ocular photophobia, and of acute injury to the eye 35 tissue. The compounds would also be useful in the treatment of pulmonary inflammation, such as that associated with viral infections and cystic fibrosis.

PCT/US97/22488

20

25

30

35

The compounds would also be useful for the treatment of certain central nervous system disorders, such as cortical dementias including Alzheimer's disease, and central nervous system damage resulting from stroke, ischemia and trauma. The compounds of the invention are useful as anti-inflammatory agents, such as for the treatment of arthritis, with the additional benefit of having significantly less harmful side effects. These compounds would also be useful in the treatment of allergic rhinitis, respiratory distress 10 syndrome, endotoxin shock syndrome, and atherosclerosis. The compounds would also be useful in the treatment of pain, but not limited to postoperative pain, dental pain, muscular pain, and pain resulting from cancer. 15

Besides being useful for human treatment, these compounds are also useful for veterinary treatment of companion animals, exotic animals and farm animals, including mammals, rodents, and the like. More preferred animals include horses, dogs, and cats.

The present compounds may also be used in cotherapies, partially or completely, in place of other conventional antiinflammatories, such as together with steroids, NSAIDs, 5-lipoxygenase inhibitors, LTB4 receptor antagonists and LTA4 hydrolase inhibitors.

Suitable LTA₄ hydrolase inhibitors include RP-64966, (S,S)-3-amino-4-(4-benzyloxyphenyl) -2-hydroxybutyric acid benzyl ester (Scripps Res. Inst.), N-(2(R)-(cyclohexylmethyl)-3-(hydroxycarbamoyl)propionyl)-L-alanine (Searle), 7-(4-(4-ureidobenzyl)phenyl)heptanoic acid (Rhone-Poulenc Rorer), and 3-(3-(1E,3E-

tetradecadienyl)-2-oxiranyl)benzoic acid lithium salt (Searle).

Suitable LTB4 receptor antagonists include, among others, ebselen, linazolast, ontazolast, Bayer Bay-x-1005, Ciba Geigy compound CGS-25019C,

30

35

Leo Denmark compound ETH-615, Merck compound MAFP, Terumo compound TMK-688, Tanabe compound T-0757, Lilly compounds LY-213024, LY-210073, LY223982, LY233469, and LY255283, LY-293111, 264086 and 292728, ONO compounds ONO-LB457, ONO-4057, and ONO-LB-448, Shionogi compound S-2474, calcitrol, Lilly compounds Searle compounds SC-53228, SC-41930, SC-50605 and SC-51146, Warner Lambert compound BPC 15, SmithKline Beecham compound SB-209247 and SK&F compound SKF-104493. Preferably, 10 the LTB4 receptor antagonists are selected from calcitrol, ebselen, Bayer Bay-x-1005, Ciba Geigy compound CGS-25019C, Leo Denmark compound ETH-615, Lilly compound LY-293111, Ono compound ONO-4057, and Terumo compound TMK-688. 15

Suitable 5-LO inhibitors include, among others, Abbott compounds A-76745, 78773 and ABT761, Bayer Bay-x-1005, Cytomed CMI-392, Eisai E-3040, Scotia Pharmaceutica EF-40, Fujirebio F-1322, Merckle ML-3000, Purdue Frederick PF-5901, 3M Pharmaceuticals R-840, rilopirox, flobufen, linasolast, lonapolene, masoprocol, ontasolast, tenidap, zileuton, pranlukast, tepoxalin, rilopirox, flezelastine hydrochloride, enazadrem phosphate, and bunaprolast.

The present compounds may also be used in combination therapies with opioids and other analgesics, including narcotic analgesics, Mu receptor antagonists, Kappa receptor antagonists, non-narcotic (i.e. non-addictive) analgesics, monoamine uptake inhibitors, adenosine regulating agents, cannabinoid derivatives, Substance P antagonists, neurokinin-1 receptor antagonists and sodium channel blockers, among others. More preferred would be combinations with compounds selected from morphine, meperidine, codeine, pentazocine, buprenorphine, butorphanol, dezocine, meptazinol, hydrocodone, oxycodone, methadone,

9

Tramadol [(+) enantiomer], DuP 747, Dynorphine A, Enadoline, RP-60180, HN-11608, E-2078, ICI-204448, acetominophen (paracetamol), propoxyphene, nalbuphine, E-4018, filenadol, mirfentanil, amitriptyline, DuP631, Tramadol [(-) enantiomer], GP-531, acadesine, AKI-1, AKI-2, GP-1683, GP-3269, 4030W92, tramadol racemate, Dynorphine A, E-2078, AXC3742, SNX-111, ADL2-1294, ICI-204448, CT-3, CP-99,994, and CP-99,994.

10

15

20

The present invention preferably includes compounds which selectively inhibit cyclooxygenase-2 over cyclooxygenase-1. Preferably, the compounds have a cyclooxygenase-2 IC₅₀ equal to or less than about 0.2 µM, and also have a selectivity ratio of cyclooxygenase-2 inhibition over cyclooxygenase-1 inhibition of at least 50, and more preferably of at least 100. Even more preferably, the compounds have a cyclooxygenase-1 IC₅₀ of greater than about 1.0 µM, and more preferably of greater than 10 µM. Such preferred selectivity may indicate an ability to reduce the incidence of common NSAID-induced side effects.

A preferred class of compounds consists of those compounds of Formula I wherein \mathbb{R}^1 and \mathbb{R}^2 are independently selected from phenyl, lower 25 cycloalkyl, lower cycloalkenyl and 5- or 6-membered heteroaryl, wherein R¹ and R² are optionally substituted at a substitutable position with one or more radicals independently selected from lower alkylsulfonyl, aminosulfonyl, lower 30 haloalkylsulfonyl, halo, lower alkylthio, lower alkyl, cyano, carboxyl, lower alkoxycarbonyl, lower alkylcarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower alkoxyalkyl, lower haloalkoxy, amino, lower alkylamino, arylamino and 35 nitro; wherein R3 is a radical selected from hydrido, halo, methyl and lower alkoxycarbonylalkyl; and wherein R4 is a radical selected from hydrido,

halo, lower alkyl, lower haloalkyl, cyano, lower alkoxycarbonyl, carboxyl, formyl, phenyl, 5- or 6-membered heteroaryl, lower aralkyl, lower heteroarylalkyl, lower alkylsulfonyl, lower haloalkylsulfonyl, phenylsulfonyl, 5- or 6-membered

- haloalkylsulfonyl, phenylsulfonyl, 5- or 6-membered heteroarylsulfonyl, lower hydroxyalkyl, lower mercaptoalkyl, lower alkoxyalkyl, lower phenyloxyalkyl, lower heteroaryloxyalkyl, lower aralkyloxyalkyl, lower heteroarylalkyloxyalkyl,
- 10 lower alkylthioalkyl, lower phenylthioalkyl, lower heteroarylthioalkyl, lower aralkylthioalkyl, lower heteroarylalkylthioalkyl, lower haloalkylcarbonyl, lower haloalkyl(hydroxy)alkyl, lower alkylcarbonyl, phenylcarbonyl, lower aralkylcarbonyl, 5- or 6-
- 15 membered heteroarylcarbonyl, 5- or 6-membered heteroarylalkylcarbonyl, lower carboxyalkyl, lower alkoxycarbonylalkyl, lower alkylcarbonyloxyalkyl, lower aminoalkyl, lower alkylaminoalkyl, lower phenylaminoalkyl, lower aralkylaminoalkyl, lower
- 20 heteroarylaminoalkyl, lower
 heteroarylalkylaminoalkyl, lower alkoxy, and
 phenyloxy; or a pharmaceutically-acceptable salt
 thereof.

A class of compounds of particular interest consists of those compounds of Formula I wherein R¹ and R² are independently selected from phenyl, cyclohexyl, cyclohexenyl, benzofuryl, benzodioxolyl, furyl, imidazolyl, thienyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, triazolyl, pyrimidinyl,

- isoquinolyl, quinolinyl, benzimidazolyl, indolyl, pyrazolyl and pyridyl, wherein R¹ and R² are optionally substituted at a substitutable position with one or more radicals independently selected from methylsulfonyl, aminosulfonyl,
- fluoromethylsulfonyl, difluoromethylsulfonyl, fluoro, chloro, bromo, methylthio, methyl, ethyl, isopropyl, tert-butyl, isobutyl, pentyl, hexyl, cyano, carboxyl, methoxycarbonyl, ethoxycarbonyl,

11

isopropoxycarbonyl, tert-butoxycarbonyl,
propoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl,
pentoxycarbonyl, methylcarbonyl, fluoromethyl,
difluoromethyl, trifluoromethyl, chloromethyl,

- dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, hydroxyl, methoxy, methylenedioxy, ethoxy, propoxy, n-butoxy,
- hydroxymethyl, hydroxyethyl, methoxymethyl, ethoxymethyl, trifluoromethoxy, amino, methylamino, N,N-dimethylamino, phenylamino and nitro; wherein R³ is a radical selected from hydrido, fluoro, chloro, bromo, methyl, ethoxycarbonylethyl, and
- 15 methoxycarbonylmethyl; and wherein R⁴ is a radical
 selected from hydrido, fluoro, chloro, bromo,
 methyl, ethyl, fluoromethyl, difluoromethyl,
 trifluoromethyl, cyano, methoxycarbonyl,
 ethoxycarbonyl, tert-butoxycarbonyl, carboxyl,
- formyl, phenyl, benzyl, phenylethyl, phenylpropyl,
 methylsulfonyl, phenylsulfonyl,
 trifluoromethylsulfonyl, hydroxymethyl,
 hydroxyethyl, methoxymethyl, ethoxymethyl,
 methylcarbonyl, ethylcarbonyl,
- 25 trifluoromethylcarbonyl, trifluoro(hydroxy)ethyl,
 phenylcarbonyl, benzylcarbonyl,
 methoxycarbonylmethyl, ethoxycarbonylethyl,
 carboxymethyl, carboxypropyl,
 methylcarbonyloxymethyl, phenyloxy, phenyloxymethyl,
- thienyl, furyl, and pyridyl, wherein the thienyl, furyl, pyridyl and phenyl radicals are optionally substituted at a substitutable position with one or more radicals selected from fluoro, chloro, bromo, methylthio, methylsulfinyl, methyl, ethyl,
- isopropyl, tert-butyl, isobutyl, pentyl, hexyl,
 cyano, fluoromethyl, difluoromethyl,
 trifluoromethyl, chloromethyl, dichloromethyl,
 trichloromethyl, pentafluoroethyl,

12

heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, hydroxyl, methoxy, methylenedioxy, ethoxy, propoxy, n-butoxy,

5 hydroxymethyl, hydroxyethyl and trifluoromethoxy; or a pharmaceutically-acceptable salt thereof.

Within Formula I there is a subclass of compounds of high interest represented by Formula II:

10

15

20

25

30

$$\mathbb{I}$$

wherein R³ is a radical selected from hydrido, methyl and lower alkoxycarbonylalkyl; wherein R⁴ is a radical selected from hydrido, halo, cyano, formyl, lower haloalkylsulfonyl, lower haloalkyl, lower hydroxyalkyl, lower alkylcarbonyl, lower aryloxyalkyl, lower haloalkylcarbonyl, phenylcarbonyl, lower alkylcarbonyloxyalkyl and lower haloalkylhydroxyalkyl; wherein R⁵ is methylsulfonyl or aminosulfonyl; and wherein R⁶ is one or more radicals independently selected from hydrido, halo, lower alkyl, lower alkylcarbonyl, and lower haloalkyl; or a pharmaceutically-acceptable salt thereof.

A class of compounds of particular interest consists of those compounds of Formula II wherein R³ is a radical selected from hydrido, methyl and ethoxycarbonylethyl; wherein R⁴ is a radical selected from hydrido, trifluoroethyl, chloro, bromo, formyl, cyano, trifluoromethylsulfonyl, hydroxymethyl, methylcarbonyl, phenylcarbonyl, phenyloxymethyl, trifluoromethylcarbonyl,

13

trifluoro(hydroxy)ethyl and methylcarbonyloxymethyl; wherein R⁵ is methylsulfonyl or aminosulfonyl; and wherein R⁶ is one or more radicals independently selected from hydrido, fluoro, chloro, methyl, ethyl, trifluoromethyl and methylcarbonyl; or a pharmaceutically-acceptable salt thereof.

Within Formula I there is a second subclass of compounds of high interest represented by Formula III:

10

25

30

$$\mathbb{I}$$

wherein R³ is hydrido; wherein R⁴ is a radical selected from hydrido, halo, cyano, formyl, lower haloalkylsulfonyl, lower haloalkyl, lower hydroxyalkyl, lower alkylcarbonyl, lower haloalkylcarbonyl, phenylcarbonyl, lower aryloxyalkyl, lower alkylcarbonyloxyalkyl and lower haloalkylhydroxyalkyl; wherein R⁷ is one or more radicals independently selected from hydrido, halo, lower alkyl, lower alkylcarbonyl, and lower haloalkyl; and wherein R⁸ is methylsulfonyl or aminosulfonyl; or a pharmaceutically-acceptable salt thereof.

A class of compounds of particular interest consists of those compounds of Formula III wherein R³ is hydrido; wherein R⁴ is a radical selected from hydrido, trifluoroethyl, chloro, bromo, formyl, cyano, trifluoromethylsulfonyl, hydroxymethyl, methylcarbonyl, phenylcarbonyl, phenyloxymethyl, trifluoromethylcarbonyl, trifluoro(hydroxy)ethyl and methylcarbonyloxymethyl; wherein R⁷ is one or more radicals independently selected from hydrido,

fluoro, chloro, methyl, ethyl, trifluoromethyl and methylcarbonyl; and wherein R⁸ is methylsulfonyl or aminosulfonyl; or a pharmaceutically-acceptable salt thereof.

- A family of specific compounds of particular interest within Formula I consists of compounds and pharmaceutically-acceptable salts thereof as follows:
- - 2-methyl-5-[4-(methylsulfonyl)phenyl]-1-phenyl-1H-pyrrole;
 - 1-(3,4-difluorophenyl)-2-methyl-5-[4-
- 15 (methylsulfonyl)phenyl]-1H-pyrrole;
 - 2-methyl-5-[4-(methylsulfonyl)phenyl]-1-[4(trifluoromethyl)phenyl]-1H-pyrrole;
 - 2-methyl-1-(4-methylphenyl)-5-[4-(methylsulfonyl)phenyll-1H-pyrrol
 - (methylsulfonyl)phenyl]-1H-pyrrole;
- 20 1-[4-[2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrol-1-yl]phenyl]ethanone;
 - 1-cyclohexyl-2-methyl-5-[4-(methylsulfonyl)phenyl]-1Hpyrrole;
 - 2-(4-fluorophenyl)-1-[4-(methylsulfonyl)phenyl]-1H-
- 25 pyrrole;
 - 4-[2-(4-fluorophenyl)-1H-pyrrol-1
 - yl]benzenesulfonamide;
 - 1-(4-fluorophenyl)-2-[4-(methylsulfonyl)phenyl]-1H-pyrrole;
- 30 4-[1-(4-fluorophenyl)-5-methyl-1H-pyrrol-2-yl]benzenesulfonamide;
 - ethyl 1-(4-fluorophenyl)-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole-2-propanoate;
 - 2,2,2-trifluoro-1-[1-(4-fluorophenyl)-2-methyl-5-[4-
- 35 (methylsulfonyl)phenyl]-1H-pyrrol-3-yl]ethanone;
 - 1-[1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrol-3-yl]ethanone;

```
1-(4-fluorophenyl)-2-methyl-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrol-3-yl]-
     phenylmethanone;
    1-(4-fluorophenyl)-2-methyl-5-[4-
      (methylsulfonyl)phenyl]-3-
      [(trifluoromethyl)sulfonyl]-1H-pyrrole;
    1-(4-fluorophenyl)-2-methyl-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole-3-carbonitrile;
    1-(4-fluorophenyl)-2-methyl-5-[4-
10
      (methylsulfonyl)phenyl]-1H-pyrrole-3-carboxaldehyde;
    3-bromo-1-(4-fluorophenyl)-2-methyl-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    3-chloro-1-(4-fluorophenyl)-2-methyl-5-[-4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
15
    1-(4-fluorophenyl)-2-methyl-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole-3-methanol;
     [1-(4-fluorophenyl)-2-methyl-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrol-3-yl]methyl
      acetate;
20
    1-(4-fluorophenyl)-2-methyl-5-[4-
      (methylsulfonyl)phenyl] -\alpha,\alpha,\alpha-(trifluoromethyl)-1H-
     pyrrole-3-methanol;
    1-(4-fluorophenyl)-2-methyl-5-[4-
      (methylsulfonyl)phenyl]-3-(2,2,2-trifluoroethyl)-1H-
25
     pyrrole;
    3-[(3-chlorophenoxy)methyl]-1-(4-fluorophenyl)-2-
     methyl-5-[4-methylsulfonyl)phenyl]-1H-pyrrole;
    3-[(4-chlorophenoxy)methyl]-1-(4-fluorophenyl)-2-
     methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole;
30
    3-fluoro-1-(4-fluorophenyl)-2-methyl-5-[-4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(4-pyridyl)-1H-
     pyrrole;
35
    2-\text{methyl}-5-[4-(\text{methylsulfonyl})\text{phenyl}]-1-(3-\text{pyridyl})-1H-
     pyrrole;
    2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(2-pyridyl)-1H-
     pyrrole;
```

16

```
2-\text{methyl}-5-[4-(\text{methylsulfonyl}) \text{phenyl}]-1-(4-\text{methyl}-2-
     pyridyl)-1H-pyrrole;
    2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(4-methyl-3-
     pyridyl)-1H-pyrrole;
    2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(5-methyl-2-
     pyridyl) -1H-pyrrole;
    2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(5-methyl-3-
     pyridyl) -1H-pyrrole;
    2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(3-methyl-2-
10
     pyridyl) -1H-pyrrole;
    2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(2-methyl-3-
     pyridyl) -1H-pyrrole;
    1-(4-\text{chlorophenyl})-2-\text{methyl}-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
15
    2-methyl-1-(4-methylthiophenyl)-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    2-methyl-1-(4-methylsulfinylphenyl)-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    1-(4-methoxypheny1)-2-methy1-5-[4-
20
      (methylsulfonyl)phenyl]-1H-pyrrole;
    1-(3-fluoro-4-methoxyphenyl)-2-methyl-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    1-(3-chloro-4-methoxyphenyl)-2-methyl-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
25
    1-(3,5-dichloro-4-methoxyphenyl)-2-methyl-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    1-(3,5-difluoro-4-methoxyphenyl)-2-methyl-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    1-(3-chloro-4-fluorophenyl)-2-methyl-5-[4-
30
      (methylsulfonyl)phenyl]-1H-pyrrole;
    1-(4-hydroxyphenyl)-2-methyl-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    1-(4-hydroxymethylphenyl)-2-methyl-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
35
    1-[4-[2-methy]-5-[4-(aminosulfony])phenyl]-1H-pyrrol-1-
     yl]phenyl]ethanone;
```

17

```
4-[1-(cyclohexyl)-2-methyl-1H-pyrrol-5-
     yl]benzenesulfonamide;
    4-[1-phenyl-2-methyl-1H-pyrrol-5-yl]benzenesulfonamide;
    4-[1-(3,4-difluorophenyl)-2-methyl-1H-pyrrol-5-
    yl]benzenesulfonamide;
    4-[1-(4-trifluoromethylphenyl)-2-methyl-1H-pyrrol-5-
     vllbenzenesulfonamide;
    4-[1-(4-methylphenyl)-2-methyl-1H-pyrrol-5-
     yl]benzenesulfonamide;
    4-[2-methyl-1-(4-pyridyl)-1H-pyrrol-5-
10
     yl]benzenesulfonamide;
    4-[1-(4-chlorophenyl)-2-methyl-1H-pyrrol-5-
     yl}benzenesulfonamide;
    4-[2-methyl-1-(4-methylthiophenyl)-1H-pyrrol-5-
     yl]benzenesulfonamide;
15
    4-[2-methyl-1-(4-methylsulfinylphenyl)-1H-pyrrol-5-
     yl]benzenesulfonamide;
    4-[1-(4-methoxyphenyl)-2-methyl-1H-pyrrol-5-
     yl]benzenesulfonamide;
    4-[1-(3-fluoro-4-methoxyphenyl)-2-methyl-1H-pyrrol-5-
20
     yl]benzenesulfonamide;
    4-[1-(3-chloro-4-methoxyphenyl)-2-methyl-1H-pyrrol-5-
     yl]benzenesulfonamide;
    4-[1-(3,5-dichloro-4-methoxyphenyl)-2-methyl-1H-pyrrol-
     5-yl]benzenesulfonamide;
25
    4-[1-(3,5-difluoro-4-methoxyphenyl)-2-methyl-1H-pyrrol-
     5-yl]benzenesulfonamide;
    4-[1-(3-chloro-4-fluorophenyl)-2-methyl-1H-pyrrol-5-
     yl]benzenesulfonamide;
30
    4-[1-(4-hydroxyphenyl)-2-methyl-1H-pyrrol-5-
     yl]benzenesulfonamide;
    4-[1-(4-hydroxymethylphenyl)-2-methyl-1H-pyrrol-5-
     yl]benzenesulfonamide;
    5-[4-(methylsulfonyl)phenyl]-1-(4-pyridyl)-1H-pyrrole;
    5-[4-(methylsulfonyl)phenyl]-1-(3-pyridyl)-1H-pyrrole;
    5-[4-(methylsulfonyl)phenyl]-1-(2-pyridyl)-1H-pyrrole;
```

WO 98/25896

18

PCT/US97/22488

```
5-[4-(methylsulfonyl)phenyl]-1-(4-methyl-2-pyridyl)-1H-
     pyrrole;
    5-[4-(methylsulfonyl)phenyl]-1-(4-methyl-3-pyridyl)-1H-
     pyrrole;
    5-[4-(methylsulfonyl)phenyl]-1-(5-methyl-2-pyridyl)-1H-
5
     pyrrole;
    5-[4-(methylsulfonyl)phenyl]-1-(5-methyl-3-pyridyl)-1H-
     pyrrole;
    5-[4-(methylsulfonyl)phenyl]-1-(3-methyl-2-pyridyl)-1H-
10
     pyrrole;
    5-[4-(methylsulfonyl)phenyl]-1-(2-methyl-3-pyridyl)-1H-
     pyrrole;
    1-(4-chlorophenyl)-5-[4-(methylsulfonyl)phenyl]-1H-
     pyrrole;
15
    1-(4-methylthiophenyl)-5-[4-(methylsulfonyl)phenyl]-1H-
     pyrrole;
    1-(4-methylsulfinylphenyl)-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    1-(4-methoxyphenyl)-5-[4-(methylsulfonyl)phenyl]-1H-
20
     pyrrole;
    1-(3-fluoro-4-methoxyphenyl)-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    1-(3-chloro-4-methoxyphenyl)-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
25
    1-(3,5-dichloro-4-methoxyphenyl)-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    1-(3,5-difluoro-4-methoxyphenyl)-5-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    1-(3-chloro-4-fluorophenyl)-5-[4-
30
      (methylsulfonyl)phenyl]-1H-pyrrole;
    1-(4-hydroxyphenyl)-5-[4-(methylsulfonyl)phenyl]-1H-
     pyrrole;
    1-(4-hydroxymethylphenyl)-5-[4-(methylsulfonyl)phenyl]-
     1H-pyrrole;
35
    1-[4-[5-[4-(aminosulfonyl)phenyl]-1H-pyrrol-1-
     yl]phenyl]ethanone;
```

PCT/US97/22488

```
4-[1-(4-fluorophenyl)-2-methyl-3-
     [(trifluoromethyl)sulfonyl]-1H-pyrrol-5-
     yl]benzenesulfonamide;
    4-[3-bromo-1-(4-fluorophenyl)-2-methyl-1H-pyrrol-5-
     yl]benzenesulfonamide;
5
    4-[3-chloro-1-(4-fluorophenyl)-2-methyl-1H-pyrrol-5-
     yl]benzenesulfonamide;
    4-[1-(4-fluorophenyl)-2-methyl-3-trifluormethyl-1H-
     pyrrol-5-yl]benzenesulfonamide;
    4-[1-(4-fluorophenyl)-2-methyl-3-difluoromethyl-1H-
10
     pyrrol-5-yl]benzenesulfonamide;
    2,2,2-trifluoro-1-[1-(4-fluorophenyl)-2-methyl-5-[4-
      (aminosulfonyl)phenyl]-1H-pyrrol-3-yl]ethanone;
    4-[1-(cyclohexyl)-1H-pyrrol-5-yl]benzenesulfonamide;
    4-[1-phenyl-1H-pyrrol-5-yl]benzenesulfonamide;
15
    4-[1-(3,4-difluorophenyl)-1H-pyrrol-5-
     vl]benzenesulfonamide;
    4-[1-(4-trifluoromethylphenyl)-1H-pyrrol-5-
     yl]benzenesulfonamide;
    4-[1-(4-methylphenyl)-1H-pyrrol-5-
20
     vl]benzenesulfonamide;
    4-[1-(4-pyridyl)-1H-pyrrol-5-yl]benzenesulfonamide;
    4-[1-(4-chlorophenyl)-1H-pyrrol-5-
     yl]benzenesulfonamide;
25
    4-[1-(4-methylthiophenyl)-1H-pyrrol-5-
     yl]benzenesulfonamide;
    4-[1-(4-methylsulfinylphenyl)-1H-pyrrol-5-
     yl]benzenesulfonamide;
    4-[1-(4-methoxyphenyl)-1H-pyrrol-5-
30
     yl]benzenesulfonamide;
    4-[1-(3-fluoro-4-methoxyphenyl)-1H-pyrrol-5-
     yl]benzenesulfonamide;
    4-[1-(3-chloro-4-methoxyphenyl)-1H-pyrrol-5-
     yl]benzenesulfonamide;
    4-[1-(3,5-dichloro-4-methoxyphenyl)-1H-pyrrol-5-
     yl]benzenesulfonamide;
    4-[1-(3,5-difluoro-4-methoxyphenyl)-1H-pyrrol-5-
     yl]benzenesulfonamide;
```

```
4-[1-(3-chloro-4-fluorophenyl)-1H-pyrrol-5-
     yl]benzenesulfonamide;
    4-[1-(4-hydroxyphenyl)-1H-pyrrol-5-
     yl]benzenesulfonamide;
 5
    4-[1-(4-hydroxymethylphenyl)-1H-pyrrol-5-
     vl]benzenesulfonamide;
    1-[4-(methylsulfonyl)phenyl]-5-(4-pyridyl)-1H-pyrrole;
    1-[4-(methylsulfonyl)phenyl]-5-(3-pyridyl)-1H-pyrrole;
10
    1-[4-(methylsulfonyl)phenyl]-5-(2-pyridyl)-1H-pyrrole;
    1-[4-(methylsulfonyl)phenyl]-5-(4-methyl-2-pyridyl)-1H-
     pyrrole;
    1-[4-(methylsulfonyl)phenyl]-5-(4-methyl-3-pyridyl)-1H-
     pyrrole;
15
    1-[4-(methylsulfonyl)phenyl]-5-(5-methyl-2-pyridyl)-1H-
     pyrrole;
    1-[4-(methylsulfonyl)phenyl]-5-(5-methyl-3-pyridyl)-1H-
     pyrrole;
    1-[4-(methylsulfonyl)phenyl]-5-(3-methyl-2-pyridyl)-1H-
20
     pyrrole;
    1-[4-(methylsulfonyl)phenyl]-5-(2-methyl-3-pyridyl)-1H-
     pyrrole;
    5-(4-chlorophenyl)-1-[4-(methylsulfonyl)phenyl]-1H-
     pvrrole;
25
    5-(4-methylthiophenyl)-1-[4-(methylsulfonyl)phenyl]-1H-
     pyrrole;
    5-(4-methylsulfinylphenyl)-1-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    5-(4-methoxyphenyl)-1-[4-(methylsulfonyl)phenyl]-1H-
30
     pyrrole;
    5-(3-fluoro-4-methoxyphenyl)-1-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    5-(3-chloro-4-methoxyphenyl)-1-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    5-(3,5-dichloro-4-methoxyphenyl)-1-[4-
35
      (methylsulfonyl)phenyl]-1H-pyrrole;
    5-(3,5-difluoro-4-methoxyphenyl)-1-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
```

21

```
5-(3-chloro-4-fluorophenyl)-1-[4-
      (methylsulfonyl)phenyl]-1H-pyrrole;
    5-(4-hydroxyphenyl)-1-[4-(methylsulfonyl)phenyl]-1H-
     pyrrole;
 5
    5-(4-hydroxymethylphenyl)-1-[4-(methylsulfonyl)phenyl]-
     1H-pyrrole;
    5-[4-[1-[4-(aminosulfonyl)phenyl]-1H-pyrrol-1-
     yl]phenyl]ethanone;
    4-[5-(cyclohexyl)-1H-pyrrol-1-yl]benzenesulfonamide;
10
    4-[5-phenyl-1H-pyrrol-1-yl]benzenesulfonamide;
    4-[5-(3,4-difluorophenyl)-1H-pyrrol-1-
     yl]benzenesulfonamide;
    4-[5-(4-trifluoromethylphenyl)-1H-pyrrol-1-
15
     yl]benzenesulfonamide;
    4-[5-(4-methylphenyl)-1H-pyrrol-1-
     yl]benzenesulfonamide;
    4-[5-(4-pyridyl)-1H-pyrrol-1-yl]benzenesulfonamide;
   4-[5-(3-pyridyl)-1H-pyrrol-1-yl]benzenesulfonamide;
20
    4-[5-(2-pyridyl)-1H-pyrrol-1-yl]benzenesulfonamide;
    4-[5-(4-methyl-3-pyridyl)-1H-pyrrol-1-
     yl]benzenesulfonamide;
    4-[5-(4-methyl-2-pyridyl)-1H-pyrrol-1-
25
     yl]benzenesulfonamide;
    4-[5-(5-methyl-3-pyridyl)-1H-pyrrol-1-
     yl]benzenesulfonamide;
    4-[5-(5-methyl-2-pyridyl)-1H-pyrrol-1-
     yl]benzenesulfonamide;
30
    4-[5-(2-methyl-3-pyridyl)-1H-pyrrol-1-
     yl]benzenesulfonamide;
    4-[5-(3-methyl-2-pyridyl)-1H-pyrrol-1-
     vl]benzenesulfonamide;
    4-[1-(4-fluorophenyl)-3-[(trifluoromethyl)sulfonyl]-1H-
35
     pyrrol-5-yl]benzenesulfonamide;
    4-[3-bromo-1-(4-fluorophenyl)-1H-pyrrol-5-
     yl]benzenesulfonamide;
```

PCT/US97/22488 WO 98/25896

22

```
4-[3-chloro-1-(4-fluorophenyl)-1H-pyrrol-5-
```

- yl]benzenesulfonamide;
- 4-[1-(4-fluorophenyl)-3-trifluormethyl-1H-pyrrol-5yl]benzenesulfonamide;
- 4-[1-(4-fluorophenyl)-3-difluoromethyl-1H-pyrrol-5yl]benzenesulfonamide;
 - 2,2,2-trifluoro-1-[1-(4-fluorophenyl)-5-[4-(aminosulfonyl)phenyl]-1H-pyrrol-3-yl]ethanone;
 - 4-[5-(4-chlorophenyl)-1H-pyrrol-1-
- yl]benzenesulfonamide; 10
 - 4-[5-(4-methylthiophenyl)-1H-pyrrol-1
 - yl]benzenesulfonamide;
 - 4-[5-(4-methylsulfinylphenyl)-1H-pyrrol-1yl]benzenesulfonamide;
- 4-[5-(4-methoxyphenyl)-1H-pyrrol-1-15 vl]benzenesulfonamide;
 - 4-[5-(3-fluoro-4-methoxyphenyl)-1H-pyrrol-1yl]benzenesulfonamide;
 - 4-[5-(3-chloro-4-methoxyphenyl)-1H-pyrrol-1-
- v1]benzenesulfonamide; 20
 - 4-[5-(3,5-dichloro-4-methoxyphenyl)-1H-pyrrol-1yl]benzenesulfonamide;
 - 4-[5-(3-chloro-4-fluorophenyl)-1H-pyrrol-1yl]benzenesulfonamide;
- 25 4-[5-(4-hydroxyphenyl)-1H-pyrrol-1yl]benzenesulfonamide; and
 - 4-[5-(4-hydroxymethylphenyl)-1H-pyrrol-1yl]benzenesulfonamide.
- 30 The term "hydrido" denotes a single hydrogen atom (H). This hydrido radical may be attached, for example, to an oxygen atom to form a hydroxyl radical or two hydrido radicals may be attached to a carbon atom to form a methylene (-CH2-) radical.
- Where used, either alone or within other terms such as "haloalkyl", "alkylsulfonyl", "alkoxyalkyl" and "hydroxyalkyl", the term "alkyl" embraces linear or branched radicals having one to about twenty carbon

atoms or, preferably, one to about twelve carbon atoms. More preferred alkyl radicals are "lower alkyl" radicals having one to about ten carbon atoms. Most preferred are lower alkyl radicals

- having one to about six carbon atoms. Examples of such radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl and the like. The term "halo" means halogens such as fluorine, chlorine,
- 10 bromine or iodine. The term "haloalkyl" embraces radicals wherein any one or more of the alkyl carbon atoms is substituted with halo as defined above.

 Specifically embraced are monohaloalkyl, dihaloalkyl and polyhaloalkyl radicals. A monohaloalkyl radical,
- for one example, may have either an iodo, bromo, chloro or fluoro atom within the radical. Dihalo and polyhaloalkyl radicals may have two or more of the same halo atoms or a combination of different halo radicals. "Lower haloalkyl" embraces radicals
- having 1-6 carbon atoms. Examples of haloalkyl radicals include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropyl, difluorochloromethyl,
- dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl and dichloropropyl. The term "hydroxyalkyl" embraces linear or branched alkyl radicals having one to about ten carbon atoms any one of which may be substituted with one or more
- hydroxyl radicals. More preferred hydroxyalkyl radicals are "lower hydroxyalkyl" radicals having one to six carbon atoms and one or more hydroxyl radicals. Examples of such radicals include hydroxymethyl, hydroxyethyl, hydroxypropyl,
- 35 hydroxybutyl and hydroxyhexyl. The terms "alkoxy" and "alkoxyalkyl" embrace linear or branched oxycontaining radicals each having alkyl portions of one to about ten carbon atoms. More preferred alkoxy

radicals are "lower alkoxy" radicals having one to six carbon atoms. Examples of such radicals include methoxy, ethoxy, propoxy, butoxy and tert-butoxy. The term "alkoxyalkyl" also embraces alkyl radicals having two or more alkoxy radicals attached to the alkyl radical, that is, to form monoalkoxyalkyl and dialkoxyalkyl radicals. More preferred alkoxyalkyl radicals are "lower alkoxyalkyl" radicals having one to six carbon atoms and one or two alkoxy radicals.

10 Examples of such radicals include methoxymethyl, methoxyethyl, ethoxyethyl, methoxybutyl and methoxypropyl. The "alkoxy" or "alkoxyalkyl" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to

15 provide "haloalkoxy" or haloalkoxyalkyl radicals.

More preferred haloalkoxy radicals are "lower
haloalkoxy" radicals having one to six carbon atoms
and one or more halo radicals. Examples of such
radicals include fluoromethoxy, chloromethoxy,

trifluoromethoxy, trifluoroethoxy, fluoroethoxy and fluoropropoxy. The term "cycloalkyl" embraces saturated carbocyclic radicals having three to twelve carbon atoms. More preferred cycloalkyl radicals are "lower cycloalkyl" radicals having

three to about eight carbon atoms. Examples of such radicals include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "cycloalkenyl" embraces partially saturated carbocyclic radicals having three to twelve carbon atoms. More preferred cycloalkenyl radicals are "lower cycloalkenyl"

radicals having three to about eight carbon atoms. Examples of such radicals include cyclobutenyl, cyclopentenyl and cyclohexenyl. The term "aryl", alone or in combination, means a carbocyclic

aromatic system containing one, two or three rings wherein such rings may be attached together in a pendent manner or may be fused. The term "aryl" embraces aromatic radicals such as phenyl, naphthyl,

PCT/US97/22488 WO 98/25896

25

tetrahydronaphthyl, indane and biphenyl. Said "aryl" group may have 1 to 3 substituents such as halo, lower alkyl, hydroxy, lower alkoxy, lower alkylcarbonyl and lower haloalkyl. The term "heterocyclyl" embraces saturated, partially 5 saturated and unsaturated heteroatom-containing ring-shaped radicals, where the heteroatoms may be selected from nitrogen, sulfur and oxygen. Examples of saturated heterocyclic radicals include saturated 3 to 6-membered heteromonocylic group containing 1 10 to 4 nitrogen atoms[e.g. pyrrolidinyl, imidazolidinyl, piperidino, piperazinyl, etc.]; saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. morpholinyl, etc.]; saturated 3 to 6-15 membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., thiazolidinyl, etc.]. Examples of partially saturated heterocyclic radicals include dihydrothiophene, dihydropyran, dihydrofuran and 20 dihydrothiazole. The term "heteroaryl" embraces unsaturated heterocyclic radicals. Examples of "heteroaryl" radicals include unsaturated 3 to 6 membered heteromonocyclic group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, 25 imidazolyl, pyrazolyl, 2-pyridyl, 3-pyridyl, 4pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl [e.g., 4H-1,2,4-triazolyl, 1H-1,2,3triazolyl, 2H-1,2,3-triazolyl, etc.] tetrazolyl [e.g. 1H-tetrazolyl, 2H-tetrazolyl, etc.], etc.; 3.0 unsaturated condensed heterocyclic group containing 1 to 5 nitrogen atoms, for example, indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl [e.g., tetrazolo[1,5-35 b]pyridazinyl, etc.], etc.; unsaturated 3 to 6membered heteromonocyclic group containing an oxygen

atom, for example, pyranyl, 2-furyl, 3-furyl, etc.;

PCT/US97/22488

unsaturated 3 to 6-membered heteromonocyclic group containing a sulfur atom, for example, 2-thienyl, 3thienyl, etc.; unsaturated 3- to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example, oxazolyl, isoxazolyl, oxadiazolyl [e.g., 1,2,4oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, etc.] etc.; unsaturated condensed heterocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. benzoxazolyl, benzoxadiazolyl, etc.]; 10 unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl [e.g., 1,2,4- thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5thiadiazolyl, etc.] etc.; unsaturated condensed 15 heterocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., benzothiazolyl, benzothiadiazolyl, etc.] and the like. The term also embraces radicals where heterocyclic radicals are fused with aryl radicals. Examples of such fused 20 bicyclic radicals include benzofuran, benzothiophene, and the like. Said "heterocyclyl" group may have 1 to 3 substituents such as halo, lower alkyl, hydroxy, oxo, amino and lower alkylamino. More preferred heteroaryl radicals 25 include five to six membered heteroaryl radicals. The term "heteroarylalkyl" embraces heteroarylsubstituted alkyl radicals. More preferred heteroarylalkyl radicals are "lower heteroarylalkyl" radicals having one to six carbon atoms and a 30 heteroaryl radical. Examples include such heteroarylalkyl radicals such as pyridylmethyl and thienylmethyl. The term "alkylthio" embraces radicals containing a linear or branched alkyl radical, of one to about ten carbon atoms attached 35 to a divalent sulfur atom. More preferred alkylthio radicals are "lower alkylthio" radicals having alkyl

radicals of one to six carbon atoms. Examples of

such lower alkylthio radicals are methylthio, ethylthio, propylthio, butylthio and hexylthio. term "alkylthioalkyl" embraces alkylthio radicals attached to an alkyl radical. More preferred alkylthioalkyl radicals are "lower alkylthioalkyl" radicals having alkyl radicals of one to six carbon atoms and an alkylthio radical as described above. Examples of such radicals include methylthiomethyl. The term "arylthio" embraces radicals containing an aryl radical, attached to a divalent sulfur atom, 10 such as a phenylthio radical. The term "arylthioalkyl" embraces arylthio radicals attached to an alkyl radical. More preferred arylthioalkyl radicals are "lower arylthioalkyl" radicals having alkyl radicals of one to six carbon atoms and an 15 arylthio radical as described above. Examples of such radicals include phenylthiomethyl. The term "alkylsulfinyl" embraces radicals containing a linear or branched alkyl radical, of one to ten carbon atoms, attached to a divalent -S(=0)-20 radical. More preferred alkylsulfinyl radicals are "lower alkylsulfinyl" radicals having one to six carbon atoms. Examples of such lower alkylsulfinyl radicals include methylsulfinyl, ethylsulfinyl, butylsulfinyl and hexylsulfinyl. The term 25 "sulfonyl", whether used alone or linked to other terms such as alkylsulfonyl, denotes respectively divalent radicals -SO₂-. "Alkylsulfonyl" embraces alkyl radicals attached to a sulfonyl radical, where alkyl is defined as above. More preferred 30 alkylsulfonyl radicals are "lower alkylsulfonyl" radicals having one to six carbon atoms. Examples of such lower alkylsulfonyl radicals include methylsulfonyl, ethylsulfonyl and propylsulfonyl. The "alkylsulfonyl" radicals may be further 35 substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide "haloalkylsulfonyl" radicals. More preferred

haloalkylsulfonyl radicals are "lower haloalkylsulfonyl" radicals having one or more halo atoms attached to lower alkylsulfonyl radicals as described above. Examples of such lower haloalkylsulfonyl radicals include fluoromethylsulfonyl, trifluoromethylsulfonyl and chloromethylsulfonyl. The term "arylsulfonyl" embraces aryl radicals as defined above, attached to a sulfonyl radical. Examples of such radicals 10 include phenylsulfonyl. The terms "sulfamyl", "aminosulfonyl" and "sulfonamidyl" denotes NH2O2S-. The term "acyl" denotes a radical provided by the residue after removal of hydroxyl from an organic acid. Examples of such acyl radicals include formyl, alkanoyl and aroyl radicals. The terms "carboxy" or 15 "carboxyl", whether used alone or with other terms, such as "carboxyalkyl", denotes -CO2H. The term "carbonyl", whether used alone or with other terms, such as "alkoxycarbonyl", denotes -(C=O)-. The term 20 "alkoxycarbonyl" means a radical containing an alkoxy radical, as defined above, attached via an oxygen atom to a carbonyl radical. Preferably, "lower alkoxycarbonyl" embraces alkoxy radicals having one to six carbon atoms. Examples of such 25 "lower alkoxycarbonyl" ester radicals include substituted or unsubstituted methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl and hexyloxycarbonyl. The term "aralkyl" embraces arylsubstituted alkyl radicals. Preferable aralkyl radicals are "lower aralkyl" radicals having aryl 30 radicals attached to alkyl radicals having one to six carbon atoms. Examples of such radicals include benzyl, diphenylmethyl, triphenylmethyl, phenylethyl and diphenylethyl. The aryl in said aralkyl may be 35 additionally substituted with halo, alkyl, alkoxy, halkoalkyl and haloalkoxy. The terms benzyl and phenylmethyl are interchangeable. The terms

"alkylcarbonyl", "arylcarbonyl" and

PCT/US97/22488

"aralkylcarbonyl" include radicals having alkyl, aryl and aralkyl radicals, respectively, as defined above, attached via an oxygen atom to a carbonyl radical. More preferred alkylcarbonyl radicals are "lower alkylcarbonyl" radicals having one to six carbon atoms. Examples of such radicals include methylcarbonyl and ethylcarbonyl. More preferred aralkylcarbonyl radicals are "lower aralkylcarbonyl" radicals having aryl radicals attached to alkyl radicals having one to six carbon atoms. 10 of such aralkylcarbonyl radicals include benzylcarbonyl. An example of an arylcarbonyl radical is phenylcarbonyl. The term "alkoxycarbonylalkyl" embraces radicals having 15 "alkoxycarbonyl", as defined above substituted to an alkyl radical. More preferred alkoxycarbonylalkyl radicals are "lower alkoxycarbonylalkyl" having lower alkoxycarbonyl radicals as defined above attached to one to six carbon atoms. Examples of 20 such lower alkoxycarbonylalkyl radicals include methoxycarbonylmethyl. The term "haloalkylcarbonyl" embraces radicals having a haloalkyl radical as described above attached to a carbonyl radical. More preferred radicals are "lower 25 haloalkylcarbonyl" radicals where lower haloalkyl radicals, as described above are attached to a carbonyl radical. The term "carboxyalkyl" embraces radicals having a carboxy radical as defined above, attached to an alkyl radical. More preferred are 30 "lower carboxyalkyl" which embrace lower alkyl radicals as defined above. Examples of such lower carboxyalkyl radicals include carboxymethyl, carboxyethyl, carboxypropyl and carboxybutyl. term "heteroaralkyl" embraces heteroaryl-substituted 35 alkyl radicals. More preferred heteroaralkyl radicals are "lower heteroaralkyl" radicals having five to six membered heteroaryl radicals attached to one to six carbon atoms. Examples of such radicals

WO 98/25896

30

PCT/US97/22488

include pyridylmethyl, quinolylmethyl, thienylmethyl, furylethyl and quinolylethyl. heteroaryl in said heteroaralkyl may be additionally substituted with halo, alkyl, alkoxy, halkoalkyl and haloalkoxy. The term "aryloxy" embraces aryl radicals, as defined above, attached to an oxygen atom. Examples of such radicals include phenoxy. Said "aryloxy" group may be optionally substituted with 1 to 3 substituents, such as halo, lower alkyl, hydroxy, lower alkoxy, lower alkylcarbonyl and lower 10 haloalkyl. The term "heteroaryloxy" embraces heteroaryl radicals as defined above attached to an oxygen radical. More preferred heteroaryloxy radicals are "lower heteroaryloxy" radicals having five to six membered heteroaryl radicals. 15 "aralkoxy" embraces oxy-containing aralkyl radicals attached through an oxygen atom to other radicals. The term "aralkoxyalkyl" embraces alkyl radicals having one or more aralkoxy radicals attached to the alkyl radical, that is, to form monoaralkyloxyalkyl 20 and diaralkyloxyalkyl radicals. The "aralkoxy" or "aralkoxyalkyl" radicals may be further substituted on the aryl ring portion of the radical. More preferred aralkoxyalkyl radicals are "lower aralkoxyalkyl" having an alkoxy attached to one to 25 six carbon atoms. Examples of lower aralkoxyalkyl radicals include benzyloxymethyl. The term "heteroarylthio" embraces radicals having heteroaryl radicals attached to a sulfur radical. More preferred heteroarylthio radicals are "lower 30 heteroarylthio" radicals having five to six membered heteroaryl radicals. Examples of such radicals include 2-furylthio, 2-thienylthio, 3-thienylthio, 4-pyridylthio and 3-pyridylthio. The term "heteroarylalkylthio" denotes radicals having an 35 heteroaryl radical attached to an alkylthio radical. More preferred heteroarylalkylthio radicals are

"lower heteroarylalkylthio" radicals having

31

heteroaryl radicals attached to lower alkylthio radicals as described above. Examples of such radicals include furylmethylthiomethyl and quinolylmethylthioethyl. The term

- 5 "heteroarylalkylthioalkyl" denotes radicals having an heteroaryl radical attached to an alkylthio radical further attached through the sulfur atom to an alkyl radical. More preferred heteroarylalkylthioalkyl are "lower
- heteroarylalkylthioalkyl" radicals having lower heteroarylalkyl radicals as described above. Examples of such radicals include furylmethylthiomethyl and quinolylmethylthioethyl. The term "heteroarylthioalkyl" denotes radicals
- having an heteroaryl radical attached to a sulfur atom further attached through the sulfur atom to an alkyl radical. More preferred heteroarylthicalkyl radicals are "lower heteroarylthicalkyl" having lower heteroarylthic radicals as described above.
- 20 Examples of such radicals include thienylthiomethyl and pyridylthiohexyl. The term "aralkylthio" embraces radicals having aralkyl radicals attached to a bridging sulfur atom. More preferred aralkylthio radicals are "lower aralkylthio"
- radicals having the aryl radicals attached to one to six carbon atoms. Examples of such radicals include benzylthio and phenylethylthio. The term "aralkylthioalkyl" embraces radicals having aralkyl radicals attached to alkyl radicals through a
- 30 bridging sulfur atom. More preferred aralkylthioalkyl radicals are "lower aralkylthioalkyl" radicals having the aralkylthio radicals attached to one to six carbon atoms.

 Examples of such radicals include benzylthiomethyl
- and phenylethylthiomethyl. The term

 "heteroaryloxyalkyl" denotes radicals having an
 heteroaryl radical attached to an oxygen atom
 further attached through the oxygen atom to an alkyl

32

radical. More preferred heteroaryloxyalkyl radicals are "lower heteroaryloxyalkyl" radicals having five to six membered heteroaryl radicals. Examples of such radicals include furyloxyethyl,

- pyridyloxymethyl and thienyloxyhexyl. The term "aminoalkyl" embraces alkyl radicals substituted with amino radicals. More preferred aminoalkyl radicals are "lower aminoalkyl" having one to six carbon atoms. Examples include aminomethyl,
- aminoethyl and aminobutyl. The term
 "alkylaminoalkyl" embraces aminoalkyl radicals
 having the nitrogen atom substituted with at least
 one alkyl radical. More preferred alkylaminoalkyl
 radicals are "lower alkylaminoalkyl" having one to
- six carbon atoms attached to a lower aminoalkyl radical as described above. More preferred alkylamino radicals are "lower alkylamino" radicals having one or two alkyl radicals of one to six carbon atoms, attached to a nitrogen atom. The term
- "alkylamino" denotes amino groups which have been substituted with one or two alkyl radicals. Suitable "alkylamino" may be mono or dialkylamino such as N-methylamino, N-ethylamino, N,N-dimethylamino, N,N-diethylamino or the like. The term
- "alkylaminocarbonyl" embraces alkylamino radicals,
 as described above, to a carbonyl radical. More
 preferred alkylaminocarbonyl radicals are "lower
 alkylaminocarbonyl" having lower alkylamino
 radicals, as described above, attached to a carbonyl
- radical. Examples of such radicals include Nmethylaminocarbonyl and N,N-dimethylcarbonyl. The
 term "arylamino" denotes amino groups which have
 been substituted with one or two aryl radicals, such
 as N-phenylamino. The "arylamino" radicals may be
- further substituted on the aryl ring portion of the radical. The terms "N-arylaminoalkyl" and "N-aryl-N-alkylaminoalkyl" denote amino groups which have been substituted with one aryl radical or one aryl and

one alkyl radical, respectively, and having the amino group attached to an alkyl radical. More preferred arylaminoalkyl radicals are "lower arylaminoalkyl" having the arylamino radical

- attached to one to six carbon atoms. Examples of such radicals include N-phenylaminomethyl and Nphenyl-N-methylaminomethyl. The term "aminocarbonyl" denotes an amide group of the formula -C(=0)NH2. The term "alkylaminocarbonylalkyl" denotes an
- 10 alkylaminocarbonyl group which is attached to an alkyl radical. More preferred are "lower alkylaminocarbonylalkyl" having lower alkylaminocarbonyl radicals as described above attached to one to six carbon atoms. The term
- "aryloxyalkyl" embraces alkyl radicals having one or 15 more aryloxy radicals, aryl radicals attached to a divalent oxygen atom, attached to the alkyl radical, that is, to form monoaryloxyalkyl and diaryloxyalkyl radicals. The more preferred aryloxyalkyl radicals
- 20 are "lower aryloxyalkyl" radicals having aryloxy radicals attached to one to six carbon atoms. Examples include phenoxymethyl where the phenyl ring is optionally substituted with . The term "heteroarylalkoxy" embraces radicals having one or
- 25 more heterocyclic radicals attached to an alkoxy radical. More preferred heteroarylalkoxy radicals are "lower heteroarylalkoxy" radicals having five to six membered heteroaryl radicals. Examples of such radicals include 2-, 3-thienylmethoxy, 2-, 3-
- 30 furylmethoxy and 2-, 3-, 4-pyridylmethoxy. The term "heteroarylalkoxyalkyl" embraces alkyl radicals having one or more heterocyclic radicals attached to an alkoxy radical, further attached to the alkyl radical. More preferred heteroarylalkoxyalkyl
- 35 radicals are "lower heteroarylalkoxyalkyl radicals having five to six membered heteroaryl radicals. Examples of such radicals include 2thienylmethoxymethyl.

34

The present invention comprises a pharmaceutical composition comprising a therapeutically-effective amount of a compound of Formula I in association with at least one pharmaceutically-acceptable carrier, adjuvant or diluent.

The present invention also comprises a method of treating cyclooxygenase-2 mediated disorders, such as inflammation, in a subject, the method comprising treating the subject having such disorder with a therapeutically-effective amount of a compound of Formula I.

10

15

20

25

Also included in the family of compounds of Formula I are the pharmaceutically-acceptable salts thereof. The term "pharmaceutically-acceptable salts" embraces salts commonly used to form alkali metal salts and to form addition salts of free acids or free bases. The nature of the salt is not critical, provided that it is pharmaceutically-acceptable. Suitable pharmaceutically-acceptable acid addition salts of compounds of Formulas I-III may be prepared from an inorganic acid or from an organic acid. Examples of such inorganic acids are hydrochloric, hydrobromic, hydroiodic, nitric, carbonic, sulfuric and phosphoric acid. Appropriate organic acids may be selected from aliphatic, cycloaliphatic, aromatic,

araliphatic, heterocyclic, carboxylic and sulfonic

35

classes of organic acids, example of which are formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, salicylic, p-hydroxybenzoic, phenylacetic, mandelic, embonic, methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, stearic, toluenesulfonic, 2-

cyclohexylaminosulfonic, algenic, β-hydroxybutyric, galactaric and galacturonic acid. Suitable pharmaceutically-acceptable base addition salts of compounds of Formulas I-III include metallic salts made from aluminum, calcium, lithium, magnesium,

hydroxyethanesulfonic, sulfanilic,

potassium, sodium and zinc or organic salts made from N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. All of these salts may be prepared by conventional means from the

corresponding compound of Formula I by reacting, for example, the appropriate acid or base with the compound of Formula I.

GENERAL SYNTHETIC PROCEDURES

The compounds of the invention can be synthesized according to the following procedures of Schemes I-VII, wherein the R¹-R⁸ substituents are as defined for Formulas I-III, above, except where further noted.

36

Scheme I

Base, R3

$$R_2$$
 R_3
 R_3
 R_4
 R_4

5 Scheme I shows the two-step general procedure for the synthesis of substituted pyrroles 4 of the invention. In step 1, aldehyde 1 is reacted with α,β -unsaturated ketones 2 in the presence of a base (such as triethylamine, diisopropylethylamine, pyridine and the 10 like) to give the 1,4-diketone derivative 3. Suitable catalysts for this reaction are thiazolium salts or cyanides (e.g., NaCN, KCN). A variety of catalysts and conditions suitable for this reaction are discussed in Angewandte Chemie (Eng)., 15, 639 (1976) and the 15 references cited therein. In step 2, the 1,4-diketone intermediate 3 is reacted with amines in the presence of acid catalysts such as p-toluenesulfonic acid to give the targeted pyrroles 4. Suitable solvents for this reaction are e. g., toluene, xylene and benzene, with or without 20 the presence of molecular sieves.

37

Scheme II

Scheme II shows the general procedure for the synthesis of 1,2-diphenylpyrroles 7 of the invention. In step 1, the substituted benzaldehyde 5 is reacted with α,β-unsaturated ketones 2 in the presence of a base to give the 1,4-diketone derivative 6. Suitable catalysts for this reaction are thiazolium salts or cyanides (e. g., NaCN, KCN). In step 2, the 1,4-diketone intermediate 6 is reacted with substituted anilines in the presence of acid catalysts such as p-toluenesulfonic acid to give the targeted 1,2-diphenylpyrroles 7.

38

Scheme III

5 Scheme III shows synthesis of substituted pyrroles 11 containing a methylsulfonyl group. The synthesis of key intermediate 10 can be accomplished by direct displacement of a fluorine atom, such as with methanesulfinic acid sodium salt. Suitable solvents for 10 this reaction are, e.g., dimethylformamide, dimethyl acetamide, dimethyl sulfoxide or 2-pyrrolidinone at temperature of about 100-140 °C for several hours to days. Alternately, the intermediate 10 can be synthesized by oxidation of the corresponding methylthio derivative 15 9. This oxidation may be carried with oxidizing agents such as OXONE® or hydrogen peroxide. The conversion of 10 to desired substituted pyrroles can be achieved by condensing with substituted amines 11 as discussed in step 2, Scheme I.

39

Scheme IV

15

Scheme IV shows an alternative synthesis of 1,2-diphenylpyrroles 15 wherein R3 is hydrido. In step 1, the substituted acetophenones 12 are reacted with 2-bromomethyl-1,3-dioxolane 13 to form the protected ketone 14 using a base such as NaH, KH, or potassium t-butoxide.

Suitable solvents for this alkylation reaction include dimethylformamide, dimethylacetamide and dimethylsulfoxide. The reaction may be carried out at about -20 °C to about 50 °C. In step 2, the desired 1,2-diphenylpyrroles 15 can be synthesized by condensing the protected ketone 14 with an aniline. The conditions used are similar to those discussed in step 2, Scheme I.

40

Scheme V

Scheme V shows an alternate method of synthesizing the intermediate 14 of Scheme IV. In step 1, the substituted benzaldehyde 5 is reacted with Grignard reagent from 3-bromoethyl-1,3-dioxolane 16 and magnesium to form the alcohol 17. This reaction is preferentially carried out in ethereal solvents such as tetrahydrofuran, diethyl ether, dioxane, dimethoxyethane at temperature of about -100-0 °C. In step 2, the oxidation of the alcohol 17 to the desired ketone intermediate 14 can be carried out using a variety of conditions familiar to those skilled in the art.

41

(T = OR, Halogen, SR, NR₂)

Scheme VI shows a general synthesis of 5 diarylpyrroles additionally substituted at position 2 of the pyrroles. In step 1, 2-furaldehyde 18 is condensed with substituted acetophenone 12 in the presence of a base to give the unsaturated intermediate 19. Suitable bases for this reaction are, e.g., sodium methoxide, sodium (or potassium) t-butoxide, triethylamine, 10 diisopropylethylamine and the like. In step 2, the furan ring is opened under hydrolytic conditions to give the intermediate 20. This reaction is preferably carried out in alcoholic solvents using aqueous mineral acids. In step 3, the intermediate 20 is reacted with substituted anilines to give the targeted pyrroles 21. This reaction can be carried out using the conditions suggested in step 2, Scheme 1. In step 4, the carboxylic group is reduced to the alcohol (22, T = OH) and the alcohol is converted to ether (22, T = OR) or other derivatives (22, T = OR). These synthetic transformations can be achieved using the conditions familiar to those skilled in the art.

Scheme VII

Scheme VII shows a general method for the synthesis 10 of tetrasubstituted pyrroles 23 from trisubstituted pyrroles 7. A number of substituents such as $(R^4 =$ halogen, -CHO, -CN, -COR, -SO₂R, -CO₂R, alkyl, aralkyl, etc.) can be synthesized by direct electrophilic substitutions. For example, N-bromosuccinimide, Nchlorosuccinimide, iodine can be used for introduction of 15 halogen substituted pyrroles. Dimethylformamide can be used for the synthesis of formyl (R^4 = CHO) derivatives. The synthesis of acetyl (COR) or alkylsulfonyl (SO₂R) derivatives can be accomplished by using Friedel-Crafts reaction. The synthesis of compounds with variety of 20 groups (R4 = halogen, alkyl, aminoalkyl, alkoxyalkyl, aryl, acyl and the like) can be accomplished by following the literature procedures (see, e.g., J. Org. Chem., 55, 6317 (1990); Eur. J. Med. Chem., 27, 701 (1992); J. Org. Chem., 57, 1653 (1992); J. Med. Chem., 35, 4813 (1992); 25 and the references cited therein). Some of the targeted compounds (e.g., R^4 = alkoxyalkyl, aminoalkyl, mercaptoalkyl, haloalkyl and the like) can also be synthesized by the functional group transformation of groups such as Br, CHO, CO₂R using the conditions familiar 30 to those skilled in the art.

The following examples contain detailed descriptions of the methods of preparation of

compounds of Formula I-III. These detailed descriptions fall within the scope, and serve to exemplify, the above described General Synthetic Procedures which form part of the invention. These detailed descriptions are presented for illustrative purposes only and are not intended as a restriction on the scope of the invention. All parts are by weight and temperatures are in Degrees centigrade unless otherwise indicated. All compounds showed NMR spectra consistent with their assigned structures. In some cases, the assigned structures were confirmed by nuclear Overhauser effect (NOE) experiments.

The following abbreviations are used:

15 HCl - hydrochloric acid

HBr - hydrobromic acid

DMSO - dimethylsulfoxide

MgSO₄ - magnesium sulfate

Na₂SO₄ - sodium sulfate

20 H₂SO₄ - sulfuric acid

AcOH - acetic acid

DMF - dimethylformamide

THF - tetrahydrofuran

NaOH - sodium hydroxide

25 Pt/C - platinum on carbon

Pd/C - palladium on carbon

EtOH - ethanol

NaH - sodium hydride

KH - potassium hydride

30 NaCN - sodium cyanide

KCN - potassium cyanide

KBr - potassium bromide

min - minutes

h - hours

35 OXONE® - potassium peroxymonosulfate

44

Example 1

1-(4-Fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole

Step 1: Preparation of 1-[4(methylthio)phenyl]pentane-1,4-dione.

5

30

10 To a solution of 4-(methylthio)benzaldehyde (12 mL, 0.09 mol) in ethanol (30 mL), triethylamine (19.5 mL, 0.14 mol), methyl vinyl ketone (5.8 mL, 0.07 mol) and 3-ethyl-5-(2-hydroxyethyl)-4 methylthiazolium bromide (3.53 g, 0.014 mol) were added. The mixture was heated at 75-80 °C for 20 hours and cooled. The 15 solvent was removed under reduced pressure and the residue was treated with 2N HCl (300 mL). After extraction with methylene chloride, the organic layer was washed with aqueous sodium bicarbonate and water. 20 The organic fractions were dried over MgSO4, filtered and concentrated to give a crude orange liquid (16.2 g). After chromatography on silica gel (hexane/ethyl acetate, 7/3), the desired compound was isolated as a pale yellow solid (12.3 g, 71%): mp (DSC) 75 °C; IR 25 (KBr) 3410, 3030, 1711, 1680, 1591, 1556, 1491, 1427; MS (EI) 222 (M⁺). Anal. Calc'd for $C_{12}H_{14}SO_2$: C, 64.84; H, 6.35. Found: C, 64.65; H, 6.33.

Step 2: Preparation of 1-(4-methylsulfonylphenyl)-1,4-pentanedione

To a solution of 1-(4-methylthiophenyl)-1,4-pentanedione (7.8 g, 35 mmol) in methanol (150 mL),

45

Oxone® (37.7 g, 61.4 mmol) was dissolved in water (150 mL) and added over 5 minutes. After stirring at 25 °C for 2 hours, the reaction mixture was diluted with water (400 mL) and extracted with methylene chloride

5 (3 x 400 mL). The organic layer was washed with brine (200 mL), water (200 mL) and dried (MgSO4). After filtration and concentration, the crude material was purified by chromatography (silica gel, hexane/ethyl acetate, 3/1) to give 1-(4-methylsulfonylphenyl)-1,4
10 pentanedione (8.0 g, 91%) as a white crystalline compound: mp (DSC) 138 °C; IR (KBr) 3435, 3098, 3003, 1944, 1713, 1686, 1593, 1572, 1406; MS (DCI, NH3-PCI) 255 (MH+). Anal Calc'd. for C12H14SO4: C, 56.68; H, 5.55. Found: C, 56.60; H, 5.78.

15

Step 3: Preparation of 1-(4-fluorophenyl)-2-methyl-5[4-(methylsulfonyl)phenyl]-1H-pyrrole

A mixture of 1-(4-methylsulfonylphenyl)-1,4pentanedione (580 mg, 2.28 mmol) of Step 2, 4fluoroaniline (0.24 ml, 2.5 mmol) and p-20 toluenesulfonic acid (30 mg) in toluene (50 ml) was heated to reflux for 20 hours. The reaction mixture was cooled, filtered and concentrated. The crude mixture (820 mg) was purified by chromatography (silica gel, hexane/ethyl acetate, 7/3) to give 1-(4-25 fluorophenyl) -2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole (595 mg, 79%) as a white solid: mp (DSC) 157 °C. Anal Calc'd. for $C_{18}H_{16}NSO_2F$: C, 65.64; H, 4.90; N, 4.25; S, 9.73. Found: C, 65.44; H, 5.05; N, 4.16; S, 9.90. 30

46

Example 2

5 2-Methyl-5-[4-(methylsulfonyl)phenyl]-1-phenyl-1H-pyrrole

A mixture of 1-(4-methylsulfonylphenyl)-1,4pentanedione (Example 1, step 2) (300 mg, 1.18 mmol),

aniline (0.12 ml, 1.3 mmol) and p-toluenesulfonic acid
(25 mg) in toluene (50 ml) was heated to reflux for 20
hours. The reaction mixture was cooled, filtered and
concentrated. The crude brownish solid (420 mg) was
purified by chromatography (silica gel, hexane/ethyl

acetate, 7/3) to give 2-methyl-5-[4(methylsulfonyl)phenyl]-1-phenyl-1H-pyrrole (305 mg,
83%) as a white solid: mp (DSC) 148 °C. Anal Calc'd.
for C18H17NSO2: C, 69.43; H, 5.50; N, 4.50; S, 10.30.
Found: C, 69.18; H, 5.42; N, 4.42; S, 10.06.

20

Example 3

25 1-(3,4-Difluorophenyl)-2-methyl-5-[4-(methylsulfonyl)ph nyl]-1H-pyrrole

47

A mixture of 1-(4-methylsulfonylphenyl)-1,4pentanedione (Example 1, Step 2) (300 mg, 1.18 mmol),
3,4-difluoroaniline (0.13 ml, 1.3 mmol) and ptoluenesulfonic acid (25 mg) in toluene (80 ml) was
heated to reflux for 24 hours. The reaction mixture
was cooled, filtered and concentrated. The crude dark
orange solid (700 mg) was purified by chromatography
(silica gel, hexane/ethyl acetate, 7/3) to give 1(3,4-difluorophenyl)-2-methyl-5-[4(methylsulfonyl)phenyl]-1H-pyrrole (370 mg, 90%) as a

10 (methylsulfonyl)phenyl]-1H-pyrrole (370 mg, 90%) as a
white solid: mp (DSC) 151 °C. Anal Calc'd. for
C₁₈H₁₅NSO₂F₂: C, 62.24; H, 4.35; N, 4.03. Found: C,
62.08; H, 4.52; N, 4.05.

15

20

25

30

Example 4

2-Methyl-5-[4-(methylsulfonyl)phenyl]-1-[4-(trifluoromethyl)phenyl]-1H-pyrrole

A mixture of 1-(4-methylsulfonylphenyl)-1,4pentanedione (Example 1, Step 2) (300 mg, 1.18 mmol),
4-(trifluoromethyl)aniline hydrochloride (257 mg, 1.3
mmol) and p-toluenesulfonic acid (30 mg) in toluene
(80 ml) was heated to reflux for 20 hours. The
reaction mixture was cooled, filtered and
concentrated. The crude solid (560 mg) was purified by
chromatography (silica gel, hexane/ethyl acetate, 7/3)
to give 2-methyl-5-[4-(methylsulfonyl)phenyl]-1-[4(trifluoromethyl)phenyl]-1H-pyrrole (351 mg, 78%) as a
white solid: mp (DSC) 130 °C. Anal Calc'd. for

48

 $C_{19}H_{16}NSO_2F_3$: C, 60.15; H, 4.25; N, 3.69. Found: C, 60.38; H, 4.44; N, 3.67.

Example 5

5

2-Methyl-1-(4-methylphenyl)-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole

10

15

20

A mixture of 1-(4-methylsulfonylphenyl)-1,4pentanedione (Example 1, Step 2) (335 mg, 1.32 mmol),
p-toluidine (156 mg, 1.45 mmol) and p-toluenesulfonic
acid (25 mg) in toluene (100 ml) was heated to reflux
for 20 hours. The reaction mixture was cooled,
filtered and concentrated. The crude solid (560 mg)
was purified by chromatography (silica gel,
hexane/ethyl acetate, 7/3) to give 2-methyl-1-(4methylphenyl)-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole
(390 mg, 91%) as a white solid: mp (DSC) 144 °C. Anal
Calc'd. for C₁₉H₁₉NSO₂: C, 70.13; H, 5.88; N, 4.30; S,
9.85. Found: C, 69.99; H, 6.23; N, 4.18; S, 9.74.

Example 6

25

1-[4-[2-Methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrol-1-yl]phenyl]ethanone

A mixture of 1-(4-methylsulfonylphenyl)-1,4pentanedione (Example 1, Step 2) (400 mg, 1.57 mmol), 5 p-amino-acetophenone (234 mg, 1.73 mmol) and ptoluenesulfonic acid (30 mg) in toluene (40 ml) was heated to reflux for 5 hours. The reaction mixture was cooled, filtered and concentrated. The crude reddish solid (1.2 g) was purified by chromatography (silica 10 gel, hexane/ethyl acetate, 6/4) to give 1-[4-[2methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrol-1yl]phenyl]ethanone (336 mg, 61%) as a white solid: mp 179-80 °C. Anal Calc'd. for $C_{20}H_{19}NSO_3 \cdot 0.1 H_2O$: C, 64.67; H, 5.70; N, 3.77; S, 8.63. Found: C, 64.68; H, 15 5.52; N, 3.82; S, 8.08.

Example 7

20

1-Cyclohexyl-2-methyl-5-[4-(methylsulfonyl) phenyl]-1H-pyrrole

25 A mixture of 1-(4-methylsulfonylphenyl)-1,4pentanedione (Example 1, Step 2) (820 mg, 3.23 mmol),
cyclohexylamine (410 µl, 3.55 mmol) and ptoluenesulfonic acid (50 mg) in toluene (75 ml) was
heated to reflux for 24 hours. The reaction mixture
30 was cooled, filtered and concentrated. The crude solid
(1.14 g) was purified by chromatography (silica gel,
hexane/ethyl acetate, 1/1) to give 1-cyclohexyl-2-

50

methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole (350 mg, 36%) as a white solid: mp (DSC) 141 °C. Anal Calc'd. for $C_{18}H_{23}NSO_2$: C, 68.10; H, 7.30; N, 4.41; S, 10.10. Found: C, 68.22; H, 7.25; N, 4.30; S, 10.16.

5

15

20

25

30

Example 8

2-(4-Fluorophenyl)-1-[4-(methylsulfonyl)phenyl]-1Hpyrrole

Step 1: Preparation of α -(4-fluorophenyl)-1,3-dioxolane-2-propan-3-ol

A solution of 2-(2-bromoethyl)-1,3-dioxolane (1.76 ml, 15 mmol) in THF (10 ml) was added over 10 minutes to a suspension of magnesium turnings (410 mg, 16.5 mmol) in THF (10 ml). After stirring for 20 minutes, the reaction mixture was cooled to -70 °C and a solution of 4-fluorobenzaldehyde (1.07 ml, 10 mmol) in THF (10 ml) was added over 10 minutes. The reaction mixture was stirred at -70 °C for 2 hours and quenched with aqueous ammonium chloride. The reaction solution was warmed to room temperature and extracted with ethyl acetate. The organic layer was washed with brine, dried (MgSO4), filtered and concentrated. The crude was obtained as a white liquid (2.54 g) and purified by chromatography (silica gel, hexane/ethyl acetate, 7/3) to give α -(4-fluorophenyl)-1,3dioxolane-2-propan-3-ol as a white oil (1.88 g, 83%):

51

Anal Calc'd. for $C_{12}H_{15}FO_3 \cdot 0.2 H_2O$: C, 62.71; H, 6.75. Found: C, 62.73; H, 6.64.

Step 2: Preparation of 3-(1,3-dioxolan-2-yl)-1-(4-fluorophenyl)propan-1-one

5

To a solution of α-(4-fluorophenyl)-1,3-dioxolane-2-propan-3-ol (Step 1) (1.75 g, 7.74 mmol) in methylene chloride (100 ml), pyridinium chlorochromate (2.5 g, 11.6 mmol) was added. After stirring at room temperature for 3 hours, the mixture was diluted with ether and filtered through a short silica gel column. The column was eluted with ether and the fractions were combined and concentrated to give the ketone as a white solid (1.69 g, 96%): mp (DSC) 143 °C. Anal Calc'd. for C₁₂H₁₃FO₃: C, 64.28; H, 5.84. Found: C, 64.85; H, 6.05.

Step 3: Preparation of 2-(4-fluorophenyl)-1-[4(methylsulfonyl)phenyl]-1H-pyrrole

A mixture of the ketone (Step 2) (448 mg, 2 mmol), 4-(methylsulfonyl)aniline (380 mg, 2.2 mmol) and p-toluenesulfonic acid (30 mg) in toluene (40 ml) was heated to reflux for 18 hours. The reaction was cooled, filtered and concentrated. The crude solid (750 mg) was purified by chromatography (silica gel, hexane/ethyl acetate, 1/1) to give 2-(4-fluorophenyl)-1-[4-(methylsulfonyl)phenyl]-1H-pyrrole (310 mg, 55%) as a white solid: mp (DSC) 201 °C. Anal Calc'd. for C17H14NSFO2·0.2 H2O: C, 64.01; H, 4.55; N, 4.39; S, 30 10.05. Found: C, 64.18; H, 4.33; N, 4.32; S, 10.36.

52

Example 9

4-[2-(4-Fluorophenyl)-1H-pyrrol-1-yl]benzenesulfonamide

5

A mixture of 3-(1,3-dioxolan-2-yl)-1-(4-dioxolan-2)fluorophenyl)propan-1-one (Example 8, Step 2) (1.6 g, 7.14 mmol), sulfanilamide (1.35 g, 7.86 mmol), p-10 toluenesulfonic acid (120 mg) and molecular sieves (4Å, 3 g) in toluene (250 ml) was heated to reflux for 98 hours. The reaction was cooled, filtered and concentrated. The crude brownish solid (3.2 g) was purified by chromatography (silica gel, hexane/ethyl 15 acetate, 6/4) to give 4-[2-(4-fluorophenyl)-1H-pyrrol-1-yl]benzenesulfonamide (920 mg, 40%) as a white solid: mp (DSC) 206 °C. Anal Calc'd. for $C_{16}H_{13}N_2SFO_2 \cdot 0.2 H_2O$: C, 60.06; H, 4.22; N, 8.76; S, 10.02. Found: C, 60.13; H, 4.21; N, 8.61; S, 10.15. 20

53

Example 10

5 1-(4-Fluorophenyl)-2-[4-(methylsulfonyl)phenyl]-1Hpyrrole

Step 1: Preparation of 5,5-dimethyl-1,3-dioxane-2propan-3-ol

5,5-Dimethyl-1,3-dioxane-2-propan-3-ol was synthesized by following the literature procedure [*J. Org. Chem.*, **57**, 2195 (1992)].

Step 2: Preparation of 5,5-dimethyl-1,3-dioxane-2-propanal

15

To a cold solution of oxalyl chloride (5.5 ml, 63.2 mmol) in methylene chloride (25 ml) at -78 °C, DMSO (10.2 ml, 0.14 mol) was injected in over 5 minutes. After stirring for 15 minutes, a solution of 20 5,5-dimethyl-1,3-dioxane-2-propan-3-ol (Step 1) (10 g, 57.5 mmol) in methylene chloride (100 ml) was added. The reaction solution was stirred for 1 hour and triethylamine (40 ml, 0.2 mol) was added. After stirring at -70 °C for 1 hour, the reaction mixture 25 was warmed to room temperature and stirred for 2 hours. The reaction was quenched with water and extracted with methylene chloride. The organic fractions were washed with aqueous sodium bicarbonate and brine. After drying (Na2SO4), filtration and 30 concentration, the crude was purified by

chromatography (silica gel, hexane/ethyl acetate, 7/3)

54

to give 5,5-dimethyl-1,3-dioxane-2-propanal (6.1 g, 61%) as a colorless liquid: Anal Calc'd. for $C_9H_{16}O_3\cdot 0.2$ H_2O : C, 61.48; H, 9.40. Found: C, 61.46; H, 9.24.

5

25

30

35

Step 3: Preparation of 3-(5,5-dimethyl-1,3-dioxan-2-yl)-1-(4-fluorophenyl)propan-1-ol

To a cold solution of 5,5-dimethyl-1,3-dioxane-2propanal (2 g, 11.62 mmol) (Step 2) at -70 °C in THF (50 ml), 4-fluorophenyl magnesium bromide (8.7 ml, 2M 10 solution in ether, 17.44 mmol) was added. After stirring at -70 °C for 2 hours, the mixture was warmed to room temperature and stirred overnight. The reaction was quenched with water and extracted with 15 ethyl acetate. The organic fractions were combined and washed successively with water and brine. After drying (MgSO₄), filtration and concentration, the crude compound (3.5 g) was purified by chromatography to give 3-(5,5-dimethyl-1,3-dioxan-2-yl)-1-(4-20 fluorophenyl)propan-1-ol (2.73 g) as a white solid: mp (DSC) 84 °C. Anal Calc'd. for C₁₅H₂₁FO₃: C, 67.14; H, 7.89. Found: C, 67.18; H, 7.98.

Step 4: Preparation of 3-(5,5-dimethyl-1,3-dioxan-2-yl)-1-(4-fluorophenyl)propan-1-one

To a solution of 3-(5,5-dimethyl-1,3-dioxan-2-yl)-1-(4-fluorophenyl)propan-1-ol (Step 3) (2.6 g, 10.7 mmol) in methylene chloride (100 ml), pyridinium chlorochromate (3.5 g, 16.05 mmol) was added. After stirring at room temperature for 3 hours, the reaction mixture was diluted with ether and filtered through a short silica gel column. The column was eluted with ether and the fractions containing the ketone were combined and concentrated (2.2 g, 85%): mp (DSC) 65 °C. Anal Calc'd. for C15H19FO3: C, 67.65; H, 7.19. Found: C, 67.21; H, 7.43.

Step 5: Preparation of 3-(5,5-dimethyl-1,3-dioxan-2-yl)-1-[4-(methylsulfonyl)phenyl]propan-1-one

To a solution of 3-(5,5-dimethyl-1,3-dioxan-2yl)-1-(4-fluorophenyl)propan-1-one (Step 4) (1.68 g, 6.3 mmol) in dimethylformamide (75 ml), methanesulfinic acid sodium salt (2.9 g, 28.4 mmol) was added. The reaction mixture was heated at 120-30 °C for 72 hours. After cooling, the solvent was removed under reduced pressure and the reaction 10 mixture was diluted with water. The material was extracted with methylene chloride and washed with brine. After drying (MgSO₄), filtration and concentration, the crude solid (2.78 g) was purified by chromatography (silica gel, hexane/ethyl acetate, 6/4) to give the sulfone (1.62 g, 79%) as a white 15 solid: mp (DSC) 104 °C. Anal Calc'd. for C16H22SO5: C, 58.88; H, 6.79; S, 9.82. Found: C, 58.76; H, 7.01; S, 10.21.

20 Step 6: Preparation of 1-(4-fluorophenyl)-2-[4-(methylsulfonyl)phenyl)-1H-pyrrole

A mixture of 3-(5,5-dimethyl-1,3-dioxan-2-yl)-1[4-(methylsulfonyl)phenyl]propan-1-one (Step 5), (1.6 g, 4.9 mmol), 4-fluoroaniline (510 µl, 5.4 mmol) and p-toluenesulfonic acid (120 mg) in toluene (200 ml) was heated to reflux for 72 hours. The reaction mixture was cooled, filtered and concentrated. The crude solid (2.48 g) was purified by chromatography (silica gel, hexane/ethyl acetate, 6/4) to give 1-[4-30 fluorophenyl)-2-[4-(methylsulfonyl)phenyl]-1H-pyrrole (695 mg, 45%) as a white solid: mp (DSC) 163 °C. Anal Calc'd. for C₁₇H₁₄NSFO₂: C, 64.75; H, 4.47; N, 4.44. Found: C, 64.71; H, 4.53; N, 4.43.

56

Example 11

4-[1-(4-Fluorophenyl)-5-methyl-1H-pyrrol-2yl]benzenesulfonamide

Step 1: Preparation of 4-(aminosulfonyl)benzoic acid To a solution of 4-(chlorosulfonyl)benzoic acid (25 g, 0.11 mol) in ether (1.2 L), ammonium hydroxide 10 (36 ml) was added. After stirring at room temperature for 5 hours, the solvent was removed and the residue was stirred with 3N HCl (1 L) for 80 minutes and filtered. The solid obtained was washed with water (2 x 20 ml) and with ether (3 x 20 ml), and dried under 15 reduced pressure at 80 °C. After concentration, the white solid obtained (22 g, 97%) was used in the next step without further purification: mp 279-81 °C. Anal Calc'd. for C7H7NSO4: C, 41.79; H, 3.51; N, 6.46; S, 15.99. Found: C, 41.90; H, 3.45; N, 6.98; S, 15.75. 20

Step 2: Preparation of methyl [4-(aminosulfonyl)]benzoate

5

30

To a solution of 4-(aminosulfonyl)benzoic acid

(16 g, 79.6 mmol) (Step 1) in methanol (600 ml), conc.

H2SO4 (1.2 ml) was added and the mixture was heated at reflux for 4 days. The solvent was removed and washed with ether. The white solid (16.5 g, 96%) was used in the next reaction without further purification.

57

Step 3: Preparation of 4-

(hydroxymethyl) benzenesulfonamide

To a solution of methyl [4 (aminosulfonyl)]benzoate (5.8 g, 27 mmol) (Step 2) in

5 THF (400 ml), methanol (1.6 ml, 40 mmol) and lithium borohydride (20 ml, 2M solution in THF, 42 mmol) were added over 10 minutes. After heating at reflux for 3.5 hours, the reaction mixture was cooled and poured over ice containing 1N HCl (80 ml). The reaction mixture was extracted with ethyl acetate, dried (Na2SO4), filtered and concentrated. The crude mixture was purified by chromatography (silica gel, hexane/ethyl acetate, 1/1) to give 4 (hydroxymethyl)benzenesulfonamide (3.8 g, 75%) as a

15 white solid.

Step 4: Preparation of 4-(formyl)benzenesulfonamide To a solution of 4-

(hydroxymethyl)benzenesulfonamide (Step 3) (3.75 g, 20 mmol) in a mixture of acetone (250 ml) and methylene chloride (250 ml), pyridinium chlorochromate (6.47 g, 30 mmol) was added. After stirring at room temperature for 5 hours, the reaction mixture was diluted with ether and filtered through a short silica gel column.

The column was eluted with hexane/ethyl acetate, (1/1). The fractions containing the desired material were combined and concentrated to give a white solid (2.0 g, 53%): mp 104-106 °C. Anal Calc'd. for C7H7NSO3: C, 45.40; H, 3.81; N, 7.56; S, 17.31. Found: C, 45.61;

Step 5: Preparation of 4-(1,3dioxopentyl)benzenesulfonamide

H, 3.59; N, 7.18; S, 16.27.

30

To a solution of 4-(formyl)benzenesulfonamide

(Step 4) (900 mg, 4.8 mol) in DMF (10 ml), sodium

cyanide (23.5 mg, 0.48 mmol) in DMF (20 ml) was added.

After stirring for 5 minutes, a solution of methyl

58

vinyl ketone (0.4 ml, 4.8 mmol) in DMF (15 ml) was added. After stirring at room temperature for 20 hours, the reaction mixture was diluted with water and extracted with methylene chloride. The organic

fractions were combined, washed with brine, dried (Na₂SO₄), filtered and concentrated. The crude was purified by chromatography on silica gel (hexane/ethyl acetate, 3/1) to give the desired compound as a white solid (180 mg, 15%).

10

Step 6: Preparation of 4-[1-[4-fluorophenyl]-5-methyl-1H-pyrrol-2-yl]benzenesulfonamide

A mixture of 4-(1,3-dioxopentyl)benzenesulfonamide (160 mg, 0.63 mmol) of (Step 5), 4-fluoroaniline (65 μ l, 0.69 mmol) and p-toluenesulfonic acid (6.7 mg) in toluene (25 ml) was heated at reflux for 20 hours. The reaction mixture was cooled, filtered and concentrated. The crude mixture (820 mg) was purified by chromatography

Example 12

30

Ethyl 1-(4-fluorophenyl)-5-[4-(methylsulfonyl)phenyl]1H-pyrrol -2-propanoate

Step 1: Preparation of 1-(4-fluorophenyl)-3-(2furanyl)propan-1-one

To a solution of 2-furaldehyde (4.15 ml, 50 mmol)

and 4-fluoroacetophenone (6.16 ml, 50 mmol) in
methanol (200 ml), sodium methoxide (2.85 g, 50 mmol)
was added. After stirring at room temperature for 18
hours, the reaction mixture was concentrated,
resuspended in ethyl acetate (600 ml) and diluted with
water. The organic layer was separated, washed with
brine, dried (MgSO4), filtered and concentrated. The
crude solid (10.27 g) was purified by chromatography
(silica gel, hexane/ethyl acetate, 7/3) to give 1-(4fluorophenyl)-3-(2-furanyl)propan-1-one (8.9 g, 95%)
as a white solid: mp (DSC) 72 °C. Anal Calc'd. for
C13H10FO: C, 72.22; H, 4.20. Found: C, 72.18; H, 4.38.

Step 2: Preparation of ethyl 4-fluoro-χζ-dioxobenzeneheptanoate

A solution of ethyl 1-(4-fluorophenyl)-3-(2-furanyl)propan-1-one (Step 1) (7.2 g, 33.3 mmol) in ethanol (200 ml) and conc. HCl (40 ml) was heated at 80-85 °C for 72 hours. The solvent was removed under reduced pressure and redissolved in methylene chloride. The organic layer was separated and concentrated to give a black solid (16.8 g). Chromatography (silica gel, hex/ethyl acetate, 1/1) gave ethyl 4-fluoro-γ,ζ-dioxobenzeneheptanoate (3.9 g, 41%) as a white solid: mp (DSC) 73 °C. Anal Calc'd. for C₁₅H₁₇FO₄: C, 64.28; H, 6.11. Found: C, 64.50; H, 5.89.

Step 3: Preparation of ethyl 4-(methylsulfonyl)-γζ-dioxobenzeneheptanoate

To a solution of ethyl 4-fluoro- γ , ζ -dioxobenzeneheptanoate (Step 2) (870 mg, 3.1 mmol) in DMF (25 ml), methanesulfinic acid sodium (1.27 g, 12.4

mmol) was added. The reaction mixture was heated at 130-35 °C for 30 hours. After cooling, the solvent was removed under reduced pressure and the reaction mixture was diluted with water. The material was extracted with ethyl acetate and washed with brine. After drying (MgSO4), filtration and concentration, the crude dark brown solid (840 mg) was purified by chromatography (silica gel, hexane/ethyl acetate, 1/1) to give the sulfone (270 mg, 26%) as a white solid: mp (DSC) 97 °C. Anal Calc'd. for C16H20SO6: C, 56.46; H, 5.92; S, 9.42. Found: C, 56.56; H, 6.10; S, 9.62.

Step 4: Preparation of ethyl 1-(4-fluorophenyl)-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole-2-propanoate

15 A mixture of ethyl 4-(methylsulfonyl)-γ,ζdioxobenzeneheptanoate (Step 3), (270 mg, 0.79 mmol), 4-fluoroaniline (83 μ l, 0.87 mmol) and ptoluenesulfonic acid (25 mg) in toluene (40 ml) was heated at reflux for 24 hours. The reaction mixture was cooled, filtered and concentrated. The crude solid 20 (360 mg) was purified by chromatography (silica gel, hexane/ethyl acetate, 1/1) to give ethyl 1-(4fluorophenyl)-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole-2-propanoate (246 mg, 75%) as a white solid: mp (DSC) 134 °C. Anal Calc'd. for C₂₂H₂₂NSFO₄: C, 63.60; H, 25 5.34; N, 3.37; S, 7.72. Found: C, 63.29; H, 5.51; N, 3.38; S, 8.05.

WO 98/25896

25

61

Example 13

5 2,2,2-Trifluoro-1-[1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrol-3-yl]ethanone

To a solution of 1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole (Example 1) (800 10 mg, 2.43 mmol) in trifluoroacetic acid (7 ml), trifluoroacetic anhydride (0.7 ml, 4.86 mmol) was added and the mixture was heated at 50 °C for 3 hours. The reaction mixture was poured over ice and neutralized with dilute ammonium hydroxide to pH ~9. 15 After extraction with ethyl acetate, the organic layer was washed successively with water and brine. The organic fractions were dried (MgSO4), filtered and concentrated. The pale yellow crude solid (1.02 g) was purified by chromatography (silica gel, hexane/ethyl 20 acetate, 7/3) to give 2,2,2-trifluoro-1-[1-(4fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrol-3-yl]ethanone (800 mg, 77%) as a white solid: mp (DSC) 196 °C. Anal Calc'd. for $C_{20}H_{15}NSF_{4}O_{3} \cdot 0.5 H_{2}O$: C, 55.30; H, 3.71; N, 3.22.

Found: C, 55.55, H, 3.79; N, 3.20.

62

Example 14

5 1-[1-(4-Fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrol-3-yl]ethanone

Acetyl chloride (120 µl, 1.67 mmol) was slowly added to a stirred slurry of aluminum chloride (223 10 mg, 1.67 mmol) in methylene chloride (15 ml) at -5 °C. After 30 minutes, a solution 1-(4-fluorophenyl)-2methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole (Example 1) (500 mg, 1.52 mmol) in methylene chloride (20 ml) was added. The reaction mixture was warmed to 15 room temperature and stirred for 18 hours. The reaction mixture was poured over ice-water and extracted with methylene chloride. The organic fraction was washed with brine, dried (MgSO4), filtered and concentrated. The crude yellowish solid 20 (570 mg) was purified by chromatography (silica gel, hexane/ethyl acetate, 6/4) to give 1-[1-(4fluorophenyl) -2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrol-3-yl]ethanone (170 mg, 30%) as a white solid: mp (DSC) 211 °C. Anal Calc'd. for 25 $C_{20}H_{18}NSFO_3 \cdot 0.25 H_2O$: C, 63.90; H, 4.96; N, 3.75. Found: C, 63.96; H, 5.04; N, 3.65.

63

Example 15

[1-(4-Fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrol-3-yl]-phenylmethanone

. 5

Benzoyl chloride (180 µl, 1.52 mmol) was slowly 10 added to a stirred slurry of aluminum chloride (223 mg, 1.67 mmol) in methylene chloride (15 ml) at -10°C. After 30 minutes, a solution of 1-(4fluorophenyl) -2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole (Example 1) (500 mg, 1.52 mmol) in methylene chloride (10 ml) was added. The reaction 15 mixture was warmed to room temperature and stirred for 20 hours. The reaction mixture was poured over icewater and extracted with methylene chloride. The organic fraction was washed with brine, dried (MgSO4), 20 filtered and concentrated. The crude yellowish solid (570 mg) was purified by chromatography (silica gel, hexane/ethyl acetate, 6/4) to give [1-(4fluorophenyl) -2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrol-3-yl]-phenylmethanone (54 mg, 8%) as a white solid: Anal Calc'd. for $C_{25}H_{20}NSFO_3 \cdot 0.5 H_2O$: C, 67.86; 25 H, 4.78; N, 3.17. Found: C, 67.59; H, 4.70; N, 3.07.

64

Example 16

5

1-(4-Fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-3-[(trifluoromethyl)sulfonyl]-1H-pyrrole

10 To a solution of 1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole (Example 1) (2.5 g, 7.6 mmol) in methylene chloride (100 ml) at 0 °C, aluminum chloride (1.15 g, 8.36 mmol) and trifluoromethanesulfonic anhydride (2 ml, 11.8 mmol) 15 were added. After 30 minutes, the reaction mixture was warmed to room temperature and heated at reflux for 48 hours. The reddish orange reaction mixture was cooled, poured over ice-water and extracted with methylene chloride. The organic fractions were washed with 20 brine, dried (MgSO4), filtered and concentrated. The crude orange solid (3.2 g) was purified by chromatography (silica gel, hexane/ethyl acetate, 7/3) to give 1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-3-[(trifluoromethyl)sulfonyl]-25 1H-pyrrole (248 mg, 7%) as a white solid: mp 162-64 °C. Anal Calc'd. for C₁₉H₁₅NS₂F₄O₄: C, 49.45; H, 3.28; N, 3.04. Found: C, 49.46; H, 3.34; N, 2.95.

65

Example 17

1-(4-Fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole-3-carbonitrile

5

To a cold solution of 1-(4-fluorophenyl)-2methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole (Example 1) (750 mg, 2.28 mmol) in DMF (8 ml) and 10 acetonitrile (8 ml) at -78 °C, chlorosulfonyl isocyanate (200 μ l, 2.28 mmol) was added. The reaction mixture was warmed to 20 °C over 4 hours, guenched by adding excess of water, and extracted with ethyl acetate. The organic fractions were washed with brine, 15 dried (MgSO4), filtered and concentrated. The crude colorless liquid (0.77 g) was purified by chromatography (silica gel, hexane/ethyl acetate, 6/4) to give 1-(4-fluorophenyl)-2-methyl-5-[4-20 (methylsulfonyl)phenyl]-1H-pyrrole-3-carbonitrile (620 mg, 77%) as a white solid: mp (DSC) 205 °C. Anal Calc'd. for $C_{19}H_{15}N_2SFO_2$: C, 64.39; H, 4.27; N, 7.90. Found: C, 64.11; H, 4.45; N, 7.60.

66

Example 18

1-(4-Fluorophenyl)-2-methyl-5-[4(methylsulfonyl)phenyl]-1H-pyrrole-3-carboxaldehyde

5

To a solution of 1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole (Example 1) 10 (1.55 g, 4.71 mmol) in dimethylformamide (3.65 ml, 47 mmol) and toluene (20 ml), phosphorous oxychloride (3.5 ml, 37.7 mmol) was added. After stirring for 20 minutes, the reaction mixture was heated at 70 °C for 5 hours. The reaction mixture was cooled, poured into 15 aqueous sodium acetate solution and extracted with ethyl acetate. The organic fractions were washed with 10% aqueous potassium carbonate and water. After drying (Na₂SO₄), filtration and concentration, the crude yellowish liquid (2.06 g) was purified by 20 chromatography (silica gel, hexane/ethyl acetate, 6/4) to give 1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole-3-carboxaldehyde (1.2 g, 71%): mp (DSC) 155 °C. Anal Calc'd. for C₁₉H₁₆NSFO₃: C, 63.85; H, 4.51; N, 3.92. Found: C, 63.50; H, 4.66; N, 3.85. 25

67

Example 19

3-Bromo-1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole

5

To a solution of 1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole (Example 1) (3.3 10 g, 10 mmol) in THF (80 ml) at -70 °C, Nbromosuccinimide (1.78 g, 10 mmol) was added over 10 minutes. The reaction was warmed to 20 °C over 3 hours and stirred for 18 hours. After dilution with aqueous sodium bicarbonate, the mixture was extracted with 15 ethyl acetate. The organic fractions were washed with water, dried (MgSO₄), filtered and concentrated. The crude yellowish liquid (4.52 g) was purified by chromatography (silica gel, hexane/ethyl acetate, 7/3) to give 3-bromo-1-(4-fluorophenyl)-2-methyl-5-[4-20 (methylsulfonyl)phenyl]-1H-pyrrole (3.6 g, 88%): mp (DSC) 153 °C. Anal Calc'd. for $C_{18}H_{15}NSBrFO_2$: C, 52.95; H, 3.70; N, 3.43; S, 19.53. Found: C, 53.01; H, 3.93; N, 3.39; S, 19.06.

68

Example 20

5 3-Chloro-1-(4-fluorophenyl)-2-methyl-5-[-4-(methylsulfonyl)phenyl]-1H-pyrrole

To a solution of 1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole (Example 1) (1 g, 3.03 mmol) in THF (100 ml) at -70 °C, N-10 chlorosuccinimide (488 mg, 3.65 mmol) was added over 10 minutes. The reaction mixture was warmed to 20 °C over 3 hours and stirred for 18 hours. More Nchlorosuccinimide (450 mg, 3.37 mmol) was added and the mixture was stirred for 6 hours. After dilution 15 with aqueous potassium carbonate, the reaction mixture was extracted with ethyl acetate. The organic fractions were washed with water, dried (MgSO4), filtered and concentrated. The crude dark orange solid (1.3 g) was purified by chromatography (silica gel, 20 hexane/ethyl acetate, 1/1) to give 3-chloro-1-(4fluorophenyl) -2-methyl-5-[-4-(methylsulfonyl)phenyl]-1H-pyrrole (107 mg, 10%): mp (DSC) 172 °C. Anal Calc'd. for $C_{18}H_{15}NSClFO_2$: C, 59.42; H, 4.16; N, 3.85. Found: C, 59.21; H, 4.10; N, 3.56. 25

69

Example 21

1-(4-Fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole-3-methanol

5

25

To a solution of 1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole-3-carboxaldehyde (Example 18) (1.4 g, 3.9 mmol) in EtOH (30 ml), sodium 10 borohydride (297 mg, 7.84 mmol) was added. After heating at reflux for 3 hours, the reaction mixture was cooled to room temperature and guenched with acetic acid. The solvent was removed under reduced pressure and the residue was redissolved in methylene 15 chloride. After washing with 1N HCl and brine, the organic fractions were filtered, concentrated and purified by chromatography (silica gel, hexane/ethyl acetate, 1/1) to give 1-(4-fluorophenyl)-2-methyl-5-20 [4-(methylsulfonyl)phenyl]-1H-pyrrole-3-methanol (1.4 g, 100%) as a white solid: mp (DSC) 148 °C. Anal Calc'd. for $C_{19}H_{18}NSFO_3 \cdot 0.4 H_2O$: C, 62.25; H, 5.17; N, 3.82; S, 8.75. Found: C, 62.29; H, 4.87; N, 3.86; S, 8.86.

70

Example 22

[1-(4-Fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrol-3-yl]methyl acetate

5

To a solution of 1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole (Example 1) (500 mg, 2.87 mmol) in AcOH (5 ml), formaldehyde (0.22 ml, 10 40% solution in water, 2.87 mmol) was added. After heating at 50-55 °C for 90 minutes, the reaction mixture was cooled and poured over ice. The solution was made alkaline with 2N NaOH and extracted with methylene chloride. The organic fractions were washed 15 with water and with brine, dried (MgSO4), filtered and concentrated to give the crude product (780 mg) as a yellowish liquid. Chromatography (silica gel, hexane/ethyl acetate, 6/4) gave [1-(4-fluorophenyl)-2methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrol-3-20 yl]methyl acetate (250 mg, 22%) as a white solid: mp (DSC) 151 °C. Anal Calc'd. for C₂₁H₂₀NSFO₄: C, 62.83; H, 5.02; N, 3.49. Found: C, 62.48; H, 5.16; N, 3.37.

71

Example 23

 $1-(4-Fluorophenyl)-2-methyl-5-[4-\\ (methylsulfonyl)phenyl]-\alpha,\alpha,\alpha-(trifluoromethyl)-1H-\\ pyrrole-3-methanol$

5

25

To a solution of 2,2,2-trifluoro-1-[1-(4-10 fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrol-3-yl]ethanone (Example 13) (310 mg, 0.73 mmol) in ethanol (10 ml) and acetic acid (10 ml), 4% Pd/C (51 mg) was added. The system was sealed, purged with nitrogen (5 times), with hydrogen (5 times) and 15 then pressurized to 5 psi hydrogen. After for 24 hours, the system was vented, purged with nitrogen and filtered. The filtrate was concentrated and the crude (325 mg) was purified by chromatography (silica gel, hexane/ethyl acetate, 6/4) to give 1-(4-fluorophenyl)-20 2-methyl-5-[4-(methylsulfonyl)phenyl]- α,α,α -(trifluoromethyl)-1H-pyrrole-3-methanol (270 mg, 87%): mp (DSC) 213 °C. Anal Calc'd. for $C_{20}H_{17}NSF_4O_3$: C, 56.20; H, 4.01; N, 3.28. Found: C, 56.07; H, 4.08; N, 3.19.

72

Example 24

$$H_3C$$

5 1-(4-Fluorophenyl)-2-methyl-5-[4(methylsulfonyl)phenyl]-3-(2,2,2-trifluoroethyl)-1Hpyrrole

To a solution of 1-(4-fluorophenyl)-2-methyl-5-10 [4-(methylsulfonyl)phenyl]- α,α,α -(trifluoromethyl)-1Hpyrrole-3-methanol (Example 23) (325 mg, 0.76 mmol) in trifluoroacetic acid (5 ml) and acetic acid (10 ml), 5% Pt/C (325 mg) was added. The system was sealed, purged with nitrogen (5 times), with hydrogen (5 times) and then pressurized to 60 psi hydrogen. After 15 48 hours, the system was vented, purged with nitrogen and filtered. The filtrate was concentrated, the residue was redissolved in methylene chloride and washed with aqueous potassium carbonate and brine. 20 After drying (MgSO₄), filtration and concentration, the crude (320 mg) was purified by chromatography (silica gel, hexane/ethyl acetate, 7/3) to give 1-(4fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-3-(2,2,2-trifluoroethyl)-1H-pyrrole (135 mg, 43%): mp 25 (DSC) 151 °C. Anal Calc'd. for $C_{20}H_{17}NSF_4O_2 \cdot 0.25 H_2O$: C, 57.76; H, 4.24; N, 3.37. Found: C, 57.73; H, 4.34; N, 3.30.

73

Example 25

5 3-[(3-Chlorophenoxy)methyl]-1-(4-fluorophenyl)-2methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole

To a solution of 1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole-3-methanol 10 (Example 21) (300 mg, 0.83 mmol), 3-chlorophenol (88 μ l, 0.83 mmol), and triphenylphosphine (219 mg, 0.83 mmol) in THF (20 ml), diethyl azodicarboxylate (132 μ l, 0.83 mmol) was added. The mixture was stirred at room temperature for 48 hours. The solvent was removed 15 under reduced pressure and the crude liquid (820 mg) was purified by chromatography (silica gel, hexane/ethyl acetate, 7/3) to give 3-[(3chlorophenoxy)methyl]-1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole (75 mg, 19%): mp 20 (DSC) 139 °C. Anal Calc'd. for $C_{25}H_{21}NSC1FO_3$: C, 63.89; H, 4.50; N, 2.98. Found: C, 63.85; H, 4.98; N, 2.76.

74

Example 26

5 3-[(4-Chlorophenoxy)methyl]-1-(4-fluorophenyl)-2methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole

To a solution of 1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole-3-methanol 10 (Example 21) (300 mg, 0.83 mmol), 4-chlorophenol (107 mg, 0.83 mmol), and triphenylphosphine (219 mg, 0.83 mmol) in THF (20 ml), diethyl azodicarboxylate (132 μl , 0.83 mmol) was added. The mixture was stirred at room temperature for 48 hours. The solvent was removed 15 under reduced pressure and the crude (830 mg) was purified by chromatography (silica gel, hexane/ethyl acetate, 1/1) to give 3-[(4-chlorophenoxy)methyl]-1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole (29 mg, 7%): mp 20 (DSC) 145 °C. Anal Calc'd. for $C_{25}H_{21}NSClFO_3 \cdot 0.25 H_2O$: C, 63.29; H, 4.57; N, 2.95. Found: C, 63.46; H, 4.57; N, 2.81.

BIOLOGICAL EVALUATION

25 Rat Carrageenan Foot Pad Edema Test

The carrageenan foot edema test was performed with materials, reagents and procedures essentially as described by Winter, et al., (*Proc. Soc. Exp. Biol. Med.*, **111**, 544 (1962)). Male Sprague-Dawley rats were

75

selected in each group so that the average body weight was as close as possible. Rats were fasted with free access to water for over sixteen hours prior to the The rats were dosed orally (1 mL) with compounds suspended in vehicle containing 0.5% methylcellulose and 0.025% surfactant, or with vehicle alone. One hour later a subplantar injection of 0.1 mL of 1% solution of carrageenan/sterile 0.9% saline was administered and the volume of the injected foot 10 was measured with a displacement plethysmometer connected to a pressure transducer with a digital indicator. Three hours after the injection of the carrageenan, the volume of the foot was again measured. The average foot swelling in a group of 15 drug-treated animals was compared with that of a group of placebo-treated animals and the percentage inhibition of edema was determined (Otterness and Bliven, Laboratory Models for Testing NSAIDs, in Nonsteroidal Anti-Inflammatory Drugs, (J. Lombardino, ed. 20 1985)). The % inhibition shows the % decrease from control paw volume determined in this procedure and the data for selected compounds in this invention are summarized in Table I.

25

TABLE I.

RAT PAW EDEMA ANALGESIA
% Inhibition % Inhibition

Example @ 30mg/kg body weight @ 30mg/kg body weight

8 56 47

30

35

Evaluation of COX-1 and COX-2 activity in vitro

The compounds of this invention exhibited
inhibition in vitro of COX-2. The COX-2 inhibition
activity of the compounds of this invention
illustrated in the Examples was determined by the
following methods.

a. Preparation of recombinant COX baculoviruses Recombinant COX-1 and COX-2 were prepared as described by Gierse et al, [J. Biochem., 305, 479-84 (1995)]. A 2.0 kb fragment containing the coding 5 region of either human or murine COX-1 or human or murine COX-2 was cloned into a BamH1 site of the baculovirus transfer vector pVL1393 (Invitrogen) to generate the baculovirus transfer vectors for COX-1 and COX-2 in a manner similar to the method of D.R. 10 O'Reilly et al (Baculovirus Expression Vectors: A Laboratory Manual (1992)). Recombinant baculoviruses were isolated by transfecting 4 µg of baculovirus transfer vector DNA into SF9 insect cells (2x108) along with 200 ng of linearized baculovirus plasmid 15 DNA by the calcium phosphate method. See M.D. Summers and G.E. Smith, A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, Texas Agric. Exp. Station Bull. 1555 (1987). Recombinant viruses were purified by three rounds of plaque 20 purification and high titer (10⁷-10⁸ pfu/mL) stocks of virus were prepared. For large scale production, SF9 insect cells were infected in 10 liter fermentors (0.5 \times 10⁶/mL) with the recombinant baculovirus stock such that the multiplicity of infection was 0.1. After 72 25 hours the cells were centrifuged and the cell pellet homogenized in Tris/Sucrose (50 mM: 25%, pH 8.0) containing 1% 3-[(3-cholamidopropy1)dimethylammonio]-1-propanesulfonate (CHAPS). The homogenate was centrifuged at 10,000xG for 30 minutes, and the 30 resultant supernatant was stored at -80°C before being assayed for COX activity.

b. Assay for COX-1 and COX-2 activity
 35 COX activity was assayed as PGE₂ formed/μg protein/time using an ELISA to detect the prostaglandin released. CHAPS-solubilized insect cell

77

membranes containing the appropriate COX enzyme were incubated in a potassium phosphate buffer (50 mM, pH 8.0) containing epinephrine, phenol, and heme with the addition of arachidonic acid (10 μ M). Compounds were pre-incubated with the enzyme for 10--20 minutes prior to the addition of arachidonic acid. Any reaction between the arachidonic acid and the enzyme was stopped after ten minutes at 37 °C/room temperature by transferring $40~\mu l$ of reaction mix into $160~\mu l$ ELISA buffer and $25~\mu M$ indomethacin. The PGE2 formed was measured by standard ELISA technology (Cayman Chemical). Results are shown in Table II.

TABLE II.

Ez	kample	COX-2	COX-1
_		IC50 µM	IC50 μM
	1	<0.1	>100
	2	0.2	>100
	3	0.3	>100
	4	<0.1	>100
	5	<0.1	>100
	6	2.9	>100
	7	0.5	62.4
	8	0.5	>100
	9	0.3	10.4
	10	10.2	>100
	11	<0.1	3.8
	13	0.1	>10
	14	1.6	>100
	15	1.0	>30
	16	<0.1	>100
	17	0.8	>100
	18	3.2	>100
	19	<0.1	0.8
	20	<0.1	4.5
	21	3.9	>100
	22	0.5	>100

10

1

78

TABLE II.

E	xample	COX-2	COX-1
_		IC50 μM	<u>IC50</u> μM
5	23	1.4	>100
	24	0.1	>100
	25	<0.1	>100
	26	<0.1	>100

10 Also embraced within this invention is a class of pharmaceutical compositions comprising the active compounds of Formula I in association with one or more non-toxic, pharmaceutically-acceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as "carrier" materials) and, if desired, other 15 active ingredients. The active compounds of the present invention may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and in a dose 20 effective for the treatment intended. The active compounds and composition may, for example, be administered orally, intravascularly, intraperitoneally, subcutaneously, intramuscularly or topically.

25

The phrase "co-therapy" (or "combinationtherapy"), in defining use of a cyclooxygenase-2 inhibitor agent and another pharmaceutical agent, is intended to embrace administration of each agent in a sequential manner in a regimen that will provide beneficial effects of the drug combination, and is intended as well to embrace co-administration of these agents in a substantially simultaneous manner, such as in a single capsule having a fixed ratio of these active agents or in multiple, separate capsules for 35 each agent.

The phrase "therapeutically-effective" is intended to qualify the amount of each agent which

severity and the frequency of incidence over treatment of each agent by itself, while avoiding adverse side effects typically associated with alternative therapies.

5

10

35

For oral administration, the pharmaceutical composition may be in the form of, for example, a tablet, capsule, suspension or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient. Examples of such dosage units are tablets or capsules. The active ingredient may also be administered by injection as a composition wherein, for example, saline, dextrose or water may be used as a suitable carrier.

15 The amount of therapeutically active compounds which are administered and the dosage regimen for treating a disease condition with the compounds and/or compositions of this invention depends on a variety of factors, including the age, weight, sex and medical 20 condition of the subject, the severity of the disease, the route and frequency of administration, and the particular compound employed, and thus may vary widely. The pharmaceutical compositions may contain active ingredients in the range of about 0.1 to 2000 25 mg, preferably in the range of about 0.5 to 500 mg and most preferably between about 1 and 100 mg. A daily dose of about 0.01 to 100 mg/kg body weight, preferably between about 0.5 and about 20 mg/kg body weight and most preferably between about 0.1 to 10 30 mg/kg body weight, may be appropriate. The daily dose can be administered in one to four doses per day.

In the case of psoriasis and other skin conditions, it may be preferable to apply a topical preparation of compounds of this invention to the affected area two to four times a day.

For inflammations of the eye or other external tissues, e.g., mouth and skin, the formulations are

80

preferably applied as a topical ointment or cream, or as a suppository, containing the active ingredients in a total amount of, for example, 0.075 to 30% w/w, preferably 0.2 to 20% w/w and most preferably 0.4 to 15% w/w. When formulated in an ointment, the active ingredients may be employed with either paraffinic or a water-miscible ointment base. Alternatively, the active ingredients may be formulated in a cream with an oil-in-water cream base. If desired, the aqueous phase of the cream base may include, for example at 10 least 30% w/w of a polyhydric alcohol such as propylene glycol, butane-1,3-diol, mannitol, sorbitol, glycerol, polyethylene glycol and mixtures thereof. The topical formulation may desirably include a compound which enhances absorption or penetration of 15 the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethylsulfoxide and related analogs. The compounds of this invention can also be 20 administered by a transdermal device. Preferably topical administration will be accomplished using a patch either of the reservoir and porous membrane type or of a solid matrix variety. In either case, the active agent is delivered continuously from the 25 reservoir or microcapsules through a membrane into the active agent permeable adhesive, which is in contact with the skin or mucosa of the recipient. If the active agent is absorbed through the skin, a controlled and predetermined flow of the active agent 30 is administered to the recipient. In the case of microcapsules, the encapsulating agent may also function as the membrane.

The oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner. While the phase may comprise merely an emulsifier, it may comprise a mixture of at least one emulsifier with a fat or an oil or with both a fat and

35

81

an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make-up the so-called emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations. Emulsifiers and emulsion stabilizers suitable for use in the formulation of the present invention include Tween 60, Span 80, cetostearyl alcohol, myristyl alcohol, glyceryl monostearate, and sodium lauryl sulfate, among others.

10

35

The choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic 15 properties, since the solubility of the active compound in most oils likely to be used in pharmaceutical emulsion formulations is very low. Thus, the cream should preferably be a non-greasy, 20 non-staining and washable product with suitable consistency to avoid leakage from tubes or other containers. Straight or branched chain, mono- or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl 25 palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters may be used. These may be used alone or in combination depending on the properties required. Alternatively, high melting 30 point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils can be used.

Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredients are dissolved or suspended in suitable carrier, especially an aqueous solvent for the active ingredients. The antiinflammatory active ingredients are preferably present in such formulations in a

82

concentration of 0.5 to 20%, advantageously 0.5 to 10% and particularly about 1.5% w/w.

For therapeutic purposes, the active compounds of this combination invention are ordinarily combined with one or more adjuvants appropriate to the indicated route of administration. If administered per os, the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, 10 magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient 15 administration. Such capsules or tablets may contain a controlled-release formulation as may be provided in a dispersion of active compound in hydroxypropylmethyl cellulose. Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic 20 sterile injection solutions or suspensions. solutions and suspensions may be prepared from sterile powders or granules having one or more of the carriers or diluents mentioned for use in the formulations for oral administration. The compounds may be dissolved 25 in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art.

30 All mentioned references are incorporated by reference as if here written.

Although this invention has been described with respect to specific embodiments, the details of these embodiments are not to be construed as limitations.

PCT/US97/22488

WO 98/25896

CLAIMS:

30

1. A compound of Formula I

$$\mathbb{R}^{2} \xrightarrow{\mathbb{N}} \mathbb{R}^{3}$$

83

5 wherein R^1 and R^2 are independently selected from aryl, cycloalkyl, cycloalkenyl and heterocyclyl, wherein R^1 and R^2 are optionally substituted at a substitutable position with one or more radicals independently selected from alkylsulfonyl,

aminosulfonyl, haloalkylsulfonyl, halo, alkylthio, 10 alkylsulfinyl, alkyl, cyano, carboxyl, alkoxycarbonyl, haloalkyl, hydroxyl, alkoxy, hydroxyalkyl, alkoxyalkyl, alkylcarbonyl, haloalkoxy, amino, alkylamino, arylamino and nitro;

wherein R³ is a radical selected from hydrido, 15 halo, methyl and alkoxycarbonylalkyl; and

wherein R4 is a radical selected from hydrido, halo, alkyl, haloalkyl, cyano, alkoxycarbonyl, carboxyl, formyl, aryl, heteroaryl, alkylsulfonyl,

haloalkylsulfonyl, hydroxyalkyl, alkoxyalkyl, 20 alkylcarbonyl, carboxyalkyl, alkoxycarbonylalkyl, alkylcarbonyloxyalkyl, mercaptoalkyl, alkylthioalkyl, haloalkylcarbonyl, haloalkyl(hydroxy)alkyl, aminoalkyl, alkylaminoalkyl and alkoxy;

provided one of R¹ and R² is phenyl substituted 25 with methylsulfonyl or aminosulfonyl and the other is selected from optionally substituted cycloalkyl, optionally substituted cycloalkenyl and optionally substituted heterocyclyl; and further provided R³ is hydrido when R¹ is phenyl substituted with

aminosulfonyl or methylsulfonyl;

or a pharmaceutically-acceptable salt thereof.

- 2. Compound of Claim 1 wherein R^1 and R^2 are independently selected from phenyl, lower cycloalkyl,
- 35 lower cycloalkenyl and 5- or 6-membered heteroaryl,

WO 98/25896

84

wherein R^1 and R^2 are optionally substituted at a substitutable position with one or more radicals independently selected from lower alkylsulfonyl, aminosulfonyl, lower haloalkylsulfonyl, halo, lower alkylthio, lower alkyl, cyano, carboxyl, lower alkoxycarbonyl, lower alkylcarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower alkoxyalkyl, lower haloalkoxy, amino, lower alkylamino, arylamino and nitro; wherein R3 is a radical selected from hydrido, halo, methyl and lower 10 alkoxycarbonylalkyl; and wherein R⁴ is a radical selected from hydrido, halo, lower alkyl, lower haloalkyl, cyano, lower alkoxycarbonyl, carboxyl, formyl, phenyl, 5- or 6-membered heteroaryl, lower alkylsulfonyl, lower haloalkylsulfonyl, lower 15 hydroxyalkyl, lower alkoxyalkyl, lower alkylcarbonyl, lower carboxyalkyl, lower alkoxycarbonylalkyl, lower alkylcarbonyloxyalkyl, lower mercaptoalkyl, lower alkylthioalkyl, lower haloalkylcarbonyl, lower 20 haloalkyl(hydroxy)alkyl, lower aminoalkyl, lower alkylaminoalkyl and lower alkoxy; or a

pharmaceutically-acceptable salt thereof. 3. Compound of Claim 2 wherein R^1 and R^2 are independently selected from phenyl, cyclohexyl, 25 cyclohexenyl, benzofuryl, benzodioxolyl, furyl, imidazolyl, thienyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, triazolyl, pyrimidinyl, isoquinolyl, quinolinyl, benzimidazolyl, indolyl, pyrazolyl and pyridyl, wherein R¹ and R² are optionally substituted 30 at a substitutable position with one or more radicals independently selected from methylsulfonyl, aminosulfonyl, fluoromethylsulfonyl, difluoromethylsulfonyl, fluoro, chloro, bromo, methylthio, methyl, ethyl, isopropyl, tert-butyl, 35 isobutyl, pentyl, hexyl, cyano, carboxyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl,

tert-butoxycarbonyl, propoxycarbonyl, butoxycarbonyl,

isobutoxycarbonyl, pentoxycarbonyl, methylcarbonyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl,

- difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, hydroxyl, methoxy, methylenedioxy, ethoxy, propoxy, n-butoxy, hydroxymethyl, hydroxyethyl, methoxymethyl, ethoxymethyl,
- trifluoromethoxy, amino, methylamino, N,Ndimethylamino, phenylamino and nitro; wherein R³ is a radical selected from hydrido, fluoro, chloro, bromo, methyl, ethoxycarbonylethyl, and methoxycarbonylmethyl; and wherein R⁴ is a radical
- selected from hydrido, fluoro, chloro, bromo, methyl, ethyl, fluoromethyl, difluoromethyl, trifluoromethyl, cyano, methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl, carboxyl, formyl, phenyl, methylsulfonyl, trifluoromethylsulfonyl,
- hydroxymethyl, hydroxyethyl, methoxymethyl, ethoxymethyl, methylcarbonyl, ethylcarbonyl, trifluoromethylcarbonyl, trifluoro(hydroxy)ethyl, methoxycarbonylmethyl, ethoxycarbonylethyl, carboxymethyl, carboxymethyl,
- 25 methylcarbonyloxymethyl, thienyl, furyl, and pyridyl, wherein the thienyl, furyl, pyridyl and phenyl radicals are optionally substituted at a substitutable position with one or more radicals selected from fluoro, chloro, bromo, methylthio,
- methylsulfinyl, methyl, ethyl, isopropyl, tert-butyl, isobutyl, pentyl, hexyl, cyano, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropyl, difluorochloromethyl,
- dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, hydroxyl, methoxy, methylenedioxy, ethoxy, propoxy, n-butoxy,

pyrrole;

hydroxymethyl, hydroxyethyl and trifluoromethoxy; or a pharmaceutically-acceptable salt thereof.

4. Compound of Claim 1 selected from compounds, 5 and their pharmaceutically acceptable salts, of the group consisting of 1-cyclohexyl-2-methyl-5-[4-(methylsulfonyl)phenyl]-1Hpyrrole; 2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(4-pyridyl)-1H-10 pyrrole; 2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(3-pyridyl)-1Hpyrrole; 2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(2-pyridyl)-1Hpyrrole; 15 2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(4-methyl-2pyridyl)-1H-pyrrole; 2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(4-methyl-3pyridyl) -1H-pyrrole; 2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(5-methyl-2-20 pyridyl)-1H-pyrrole; 2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(5-methyl-3pyridyl)-1H-pyrrole; 2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(3-methyl-2pyridyl)-1H-pyrrole; 25 2-methyl-5-[4-(methylsulfonyl)phenyl]-1-(2-methyl-3pyridyl)-1H-pyrrole; 4-[1-(cyclohexyl)-2-methyl-1H-pyrrol-5yl]benzenesulfonamide; 4-[2-methyl-1-(4-pyridyl)-1H-pyrrol-5-30 yl]benzenesulfonamide; 5-[4-(methylsulfonyl)phenyl]-1-(4-pyridyl)-1H-pyrrole; 5-[4-(methylsulfonyl)phenyl]-1-(3-pyridyl)-1H-pyrrole; 5-[4-(methylsulfonyl)phenyl]-1-(2-pyridyl)-1H-pyrrole; 5-[4-(methylsulfonyl)phenyl]-1-(4-methyl-2-pyridyl)-1H-35 pyrrole;

5-[4-(methylsulfonyl)phenyl]-1-(4-methyl-3-pyridyl)-1H-

```
5-[4-(methylsulfonyl)phenyl]-1-(5-methyl-2-pyridyl)-1H-
     pyrrole;
    5-[4-(methylsulfonyl)phenyl]-1-(5-methyl-3-pyridyl)-1H-
     pyrrole;
 5
    5-[4-(methylsulfonyl)phenyl]-1-(3-methyl-2-pyridyl)-1H-
     pyrrole;
    5-[4-(methylsulfonyl)phenyl]-1-(2-methyl-3-pyridyl)-1H-
     pyrrole;
    4-[1-(cyclohexyl)-1H-pyrrol-5-yl]benzenesulfonamide;
    4-[1-(4-pyridyl)-1H-pyrrol-5-yl]benzenesulfonamide;
10
    1-[4-(methylsulfonyl)phenyl]-5-(4-pyridyl)-1H-pyrrole;
    1-[4-(methylsulfonyl)phenyl]-5-(3-pyridyl)-1H-pyrrole;
    1-[4-(methylsulfonyl)phenyl]-5-(2-pyridyl)-1H-pyrrole;
    1-[4-(methylsulfonyl)phenyl]-5-(4-methyl-2-pyridyl)-1H-
15
     pyrrole;
    1-[4-(methylsulfonyl)phenyl]-5-(4-methyl-3-pyridyl)-1H-
     pyrrole;
    1-[4-(methylsulfonyl)phenyl]-5-(5-methyl-2-pyridyl)-1H-
     pyrrole;
20
    1-[4-(methylsulfonyl)phenyl]-5-(5-methyl-3-pyridyl)-1H-
     pyrrole;
    1-[4-(methylsulfonyl)]-5-(3-methyl-2-pyridyl)-1H-
     pyrrole;
    1-[4-(methylsulfonyl)phenyl]-5-(2-methyl-3-pyridyl)-1H-
25
     pyrrole;
    4-[5-(cyclohexyl)-1H-pyrrol-1-yl]benzenesulfonamide;
    4-[5-(4-pyridyl)-1H-pyrrol-1-yl]benzenesulfonamide;
    4-[5-(3-pyridyl)-1H-pyrrol-1-yl]benzenesulfonamide;
    4-[5-(2-pyridyl)-1H-pyrrol-1-yl]benzenesulfonamide;
30
    4-[5-(4-methyl-3-pyridyl)-1H-pyrrol-1-
     yl]benzenesulfonamide;
    4-[5-(4-methyl-2-pyridyl)-1H-pyrrol-1-
     yl]benzenesulfonamide;
    4-[5-(5-methyl-3-pyridyl)-1H-pyrrol-1-
35
     yl]benzenesulfonamide;
    4-[5-(5-methyl-2-pyridyl)-1H-pyrrol-1-
     yl]benzenesulfonamide;
```

88

4-[5-(2-methyl-3-pyridyl)-1H-pyrrol-1yl]benzenesulfonamide; and 4-[5-(3-methyl-2-pyridyl)-1H-pyrrol-1yl]benzenesulfonamide.

5

30

5. A compound of Formula I

wherein R^1 and R^2 are independently selected from 10 aryl optionally substituted at a substitutable position with one or more radicals independently selected from alkylsulfonyl, aminosulfonyl, haloalkylsulfonyl, halo, alkylthio, alkylsulfinyl, alkyl, cyano, carboxyl, alkoxycarbonyl, haloalkyl, 15 hydroxyl, alkoxy, hydroxyalkyl, alkoxyalkyl, alkylcarbonyl, haloalkoxy, amino, alkylamino, arylamino and nitro;

wherein R^3 is a radical selected from hydrido, 20 halo, methyl and alkoxycarbonylalkyl; and wherein R4 is a radical selected from halo, cyano, alkoxycarbonyl, carboxyl, formyl, aryl, heteroaryl, alkylsulfonyl, haloalkylsulfonyl, alkylcarbonyl, carboxyalkyl, alkoxycarbonylalkyl, 25 alkylcarbonyloxyalkyl, haloalkylcarbonyl, aminoalkyl, alkylaminoalkyl and alkoxy;

provided at least one of R1 and R2 is phenyl substituted with methylsulfonyl or aminosulfonyl; or a pharmaceutically-acceptable salt thereof.

6. Compound of Claim 5 wherein R^1 and R^2 are phenyl, optionally substituted at a substitutable position with one or more radicals independently selected from lower alkylsulfonyl, aminosulfonyl, lower haloalkylsulfonyl, halo, lower alkylthio, lower 35 alkyl, cyano, carboxyl, lower alkoxycarbonyl, lower

alkylcarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower alkoxyalkyl, lower haloalkoxy, amino, lower alkylamino, arylamino and nitro; wherein R³ is a radical selected from hydrido,

89

- halo, methyl and lower alkoxycarbonylalkyl; and wherein R⁴ is a radical selected from halo, cyano, lower alkoxycarbonyl, carboxyl, formyl, phenyl, 5- or 6-membered heteroaryl, lower alkylsulfonyl, lower haloalkylsulfonyl, lower alkylcarbonyl, lower
- 10 carboxyalkyl, lower alkoxycarbonylalkyl, lower alkylcarbonyloxyalkyl, lower haloalkylcarbonyl, lower aminoalkyl, lower alkylaminoalkyl and lower alkoxy; or a pharmaceutically-acceptable salt thereof.
- 7. Compound of Claim 6 wherein R¹ and R² are independently selected from phenyl optionally substituted at a substitutable position with one or more radicals independently selected from methylsulfonyl, aminosulfonyl, fluoromethylsulfonyl, difluoromethylsulfonyl, fluoro, chloro, bromo,
- 20 methylthio, methyl, ethyl, isopropyl, tert-butyl,
 isobutyl, pentyl, hexyl, cyano, carboxyl,
 methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl,
 tert-butoxycarbonyl, propoxycarbonyl, butoxycarbonyl,
 isobutoxycarbonyl, pentoxycarbonyl, methylcarbonyl,
- fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, dichloroethyl,
- dichloropropyl, hydroxyl, methoxy, methylenedioxy,
 ethoxy, propoxy, n-butoxy, hydroxymethyl,
 hydroxyethyl, methoxymethyl, ethoxymethyl,
 trifluoromethoxy, amino, methylamino, N,Ndimethylamino, phenylamino and nitro; wherein R³ is a
- radical selected from hydrido, fluoro, chloro, bromo, methyl, ethoxycarbonylethyl, and methoxycarbonylmethyl; and wherein R⁴ is a radical

90

selected from fluoro, chloro, bromo, cyano, methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl, carboxyl, formyl, phenyl, methylsulfonyl, trifluoromethylsulfonyl, methylcarbonyl,

- 5 ethylcarbonyl, trifluoromethylcarbonyl,
 methoxycarbonylmethyl, ethoxycarbonylethyl,
 carboxymethyl, carboxypropyl,
 methylcarbonyloxymethyl, thienyl, furyl, and pyridyl,
 wherein the thienyl, furyl, pyridyl and phenyl
- radicals are optionally substituted at a substitutable position with one or more radicals selected from fluoro, chloro, bromo, methylthio, methylsulfinyl, methyl, ethyl, isopropyl, tert-butyl, isobutyl, pentyl, hexyl, cyano, fluoromethyl,
- difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, hydroxyl, methoxy,
- 20 methylenedioxy, ethoxy, propoxy, n-butoxy, hydroxymethyl, hydroxyethyl and trifluoromethoxy; or a pharmaceutically-acceptable salt thereof.
- 8. Compound of Claim 5 selected from compounds, and their pharmaceutically acceptable salts, of the group consisting of ethyl 1-(4-fluorophenyl)-5-[4-(methylsulfonyl)phenyl]-1H-pyrrole-2-propanoate;
 - 2,2,2-trifluoro-1-[1-(4-fluorophenyl)-2-methyl-5-[4-(methylsulfonyl)phenyl]-1H-pyrrol-3-yl]ethanone;
- - 1-(4-fluorophenyl)-2-methyl-5-[4 (methylsulfonyl)phenyl]-3 [(trifluoromethyl)sulfonyl]-1H-pyrrole;

91

1-(4-fluorophenyl)-2-methyl-5-[4
(methylsulfonyl)phenyl]-1H-pyrrole-3-carboxaldehyde;
3-bromo-1-(4-fluorophenyl)-2-methyl-5-[4
(methylsulfonyl)phenyl]-1H-pyrrole;
3-chloro-1-(4-fluorophenyl)-2-methyl-5-[-4
(methylsulfonyl)phenyl]-1H-pyrrole; and

(methylsdfonyl)phenyl]-In-pyllole, and
[1-(4-fluorophenyl)-2-methyl-5-[4 (methylsulfonyl)phenyl]-1H-pyrrol-3-yl]methyl
 acetate.

9. A compound of Formula II

5

$$\mathbb{I}$$

$$\mathbb{R}^{4}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{6}$$

wherein R³ is a radical selected from hydrido, methyl and lower alkoxycarbonylalkyl; wherein R4 is a 15 radical selected from hydrido, halo, cyano, formyl, lower haloalkylsulfonyl, lower haloalkyl, lower hydroxyalkyl, lower alkylcarbonyl, lower haloalkylcarbonyl, lower alkylcarbonyloxyalkyl and 20 lower haloalkylhydroxyalkyl; wherein R⁵ is methylsulfonyl or aminosulfonyl; and wherein R⁶ is one or more radicals independently selected from hydrido, halo, lower alkyl, lower alkylcarbonyl, and lower haloalkyl; provided R6 is not fluoro mono-substitution at phenyl position 4 when R3 is methyl, and when R4 is 25 hydrido, trifluoromethyl, difluoromethyl or hydroxymethyl; or a pharmaceutically-acceptable salt thereof.

10. A pharmaceutical composition comprising a
30 therapeutically-effective amount of a compound, said
compound selected from a family of compounds of Claim
1; or a pharmaceutically-acceptable salt thereof.

11. A pharmaceutical composition comprising a therapeutically-effective amount of a compound, said compound selected from a family of compounds of Claim 2; or a pharmaceutically-acceptable salt thereof.

- 12. A pharmaceutical composition comprising a therapeutically-effective amount of a compound, said compound selected from a family of compounds of Claim 3; or a pharmaceutically-acceptable salt thereof.
- 13. A pharmaceutical composition comprising a therapeutically-effective amount of a compound, said compound selected from a family of compounds of Claim 4; or a pharmaceutically-acceptable salt thereof.
- 14. A pharmaceutical composition comprising a

 15 therapeutically-effective amount of a compound, said
 compound selected from a family of compounds of Claim
 5; or a pharmaceutically-acceptable salt thereof.
 - 15. A pharmaceutical composition comprising a therapeutically-effective amount of a compound, said compound selected from a family of compounds of Claim 6; or a pharmaceutically-acceptable salt thereof.

20

25

- 16. A pharmaceutical composition comprising a therapeutically-effective amount of a compound, said compound selected from a family of compounds of Claim 7; or a pharmaceutically-acceptable salt thereof.
- 17. A pharmaceutical composition comprising a therapeutically-effective amount of a compound, said compound selected from a family of compounds of Claim 8; or a pharmaceutically-acceptable salt thereof.
- 18. A pharmaceutical composition comprising a therapeutically-effective amount of a compound, said compound selected from a family of compounds of Claim 9; or a pharmaceutically-acceptable salt thereof.
- 19. A method of treating a cyclooxygenase-2
 35 mediated disorder in a subject, said method
 comprising treating the subject having or susceptible
 to said disorder with a therapeutically-effective

25

amount of a compound of Claim 1; or a pharmaceutically-acceptable salt thereof.

- 20. A method of treating a cyclooxygenase-2 mediated disorder in a subject, said method
 5 comprising treating the subject having or susceptible to said disorder with a therapeutically-effective amount of a compound of Claim 2; or a pharmaceutically-acceptable salt thereof.
- 10 21. A method of treating a cyclooxygenase-2 mediated disorder in a subject, said method comprising treating the subject having or susceptible to said disorder with a therapeutically-effective amount of a compound of Claim 3; or a pharmaceutically-acceptable salt thereof.
- 22. A method of treating a cyclooxygenase-2 mediated disorder in a subject, said method comprising treating the subject having or susceptible to said disorder with a therapeutically-effective 20 amount of a compound of Claim 4; or a pharmaceutically-acceptable salt thereof.
 - 23. A method of treating a cyclooxygenase-2 mediated disorder in a subject, said method comprising treating the subject having or susceptible to said disorder with a therapeutically-effective amount of a compound of Claim 5; or a pharmaceutically-acceptable salt thereof.
- 24. A method of treating a cyclooxygenase-2 mediated disorder in a subject, said method comprising treating the subject having or susceptible to said disorder with a therapeutically-effective amount of a compound of Claim 6; or a pharmaceutically-acceptable salt thereof.
- 25. A method of treating a cyclooxygenase-2
 35 mediated disorder in a subject, said method
 comprising treating the subject having or susceptible
 to said disorder with a therapeutically-effective

94

amount of a compound of Claim 7; or a pharmaceutically-acceptable salt thereof.

- 26. A method of treating a cyclooxygenase-2 mediated disorder in a subject, said method comprising treating the subject having or susceptible to said disorder with a therapeutically-effective amount of a compound of Claim 8; or a pharmaceutically-acceptable salt thereof.
- 27. A method of treating a cyclooxygenase-2

 10 mediated disorder in a subject, said method
 comprising treating the subject having or susceptible
 to said disorder with a therapeutically-effective
 amount of a compound of Claim 9; or a
 pharmaceutically-acceptable salt thereof.
- 15 28. The method of Claim 19 wherein the cyclooxygenase-2 mediated disorder is inflammation.
 - 29. The method of Claim 19 wherein the cyclooxygenase-2 mediated disorder is arthritis.
- 20 cyclooxygenase-2 mediated disorder is pain.
 31. The method of Claim 19 wherein the cyclooxygenase-2 mediated disorder is fever.

INTERNATIONAL SEARCH REPORT

Interna al Application No

PCT/US 97/22488 A. CLASSIFICATION OF SUBJECT MATTER
1PC 6 C07D207/333 A61K31/40 C07D401/04 C07D207/33 C07D207/337 C07D207/36 C07D207/34 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07D A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category ° P.X EP 0 799 823 A (SANKYO COMPANY LIMITED) 8 5-18 October 1997 see the whole document KHANNA ET AL.: "1,2-Diarylpyrroles as P,X 5-18 potent and selective inhibitors of cyclooxygenase-2" JOURNAL OF MEDICINAL CHEMISTRY, vol. 40, no. 11, 1997, pages 1619-33, XP002059990 see the whole document Y DE 19 38 904 A (INNOTHERA) 5 February 1970 1-18 see page 45-49; claim 1; examples 65,66 X Patent family members are listed in annex. χl Further documents are listed in the continuation of box C. Special categories of cited documents : *T* later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 03.04.98 24 March 1998

1

Fax: (+31-70) 340-3016

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Authorized officer

Lauro, P

INTERNATIONAL SEARCH REPORT

Intern_..onal Application No
PCT/US 97/22488

(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		PCT/US 97/22488	
tegory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
	WILKERSON W W ET AL: "ANTIINFLAMMATORY 4,5-DIARYLPYRROLES. 2. ACTIVITY AS A FUNCTION OF CYCLOOXYGENASE-2 INHIBITION" JOURNAL OF MEDICINAL CHEMISTRY, vol. 38, no. 20, 29 September 1995, pages 3895-3901, XP002030129 cited in the application see the whole document	1-18	
Y	US 3 427 305 A (CHINN ET AL.) 11 February 1969 cited in the application see the whole document	1-18	
A	THIAULT ET AL.: "N-Arylpyrrole derivatives with analgesic and antiinflammatory activities. Part I. 4,5-Disubstituted 1-arylpyrroles" FARMACO, ED. SCI., vol. 39, no. 6, 1984, pages 524-37, XP002059991 cited in the application see the whole document	1-18	

1

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No PCT/US 97/22488

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 799823 A	08-10-97	AU 1665397 A CA 2201812 A CZ 9701035 A JP 9323971 A NO 971564 A	09-10-97 05-10-97 15-10-97 16-12-97 06-10-97
DE 1938904 A	05-02-70	FR 2054474 A FR 7649 M GB 1263940 A	23-04-71 02-02-70 16-02-72
US 3427305 A	11-02-69	NONE	