足構造変更問題点·対策検討

足構造の方向性

	案の内容	工数	信頼度
案①	20角上げ	2か月	4,5年持つ。 恒久策。
案②	コの字だけ再制作	1か月	4大会は持つ。 来年度は再製作した方がよい。
案③	スペーサ追加	0.5か月	1大会は持つ。 来年度は再製作必須。

→制御、ソフトの工数が取れなくなってしまうため、案③とする。

足構造の問題点

現状の構造の問題点は下記5点。

- 1. 図の方向にコの字板金に力をかける際、20角とは モータ用のネジ2か所しか止まっていないため、歪んでしまう
- 2. ダンパーが4節リンクと一緒に動いて角度が変わり、 ダンパーの力をうまくとれない 設計では中立位置が20角フレーム上面基準で85mm だったが実際は60.23mmだった。
- 3. 床面とコの字が近く、坂や段差で衝突しそう。
- 4. t5の板にφ3の穴をあけているため、 残り肉が少なく穴がガバガバになる可能性有
- 5. 今のダンパーだとバネが短いものしか入らず、最大たわみを 考慮するとバネ定数を上げる方向でしか調整できない。

問題点① コの字がゆがむ

	P447 (2.256N/mm)	AP190-060-2.0 (3.04N/mm)	←に5mm ワッシャー追加	AP190-060-2.3 +5mmワッシャー (5.608N/mm)
車重のみ (9.35kg)	79.14mm	78.16mm	81.50mm	
+10.65kg (合計20kg)	69.54mm	67.91mm	73.31mm	
+15.65kg (合計25kg)	66.89mm	64.01mm	69.12mm	
+15.65kg (合計30kg)	60.23mm	59.93mm	65.32mm	68.64mm

問題点② バネの力がうまくとれない

問題点③ 段差と衝突しそう

案① 20角上げ案

地面との追従性はあまりない

門構造にしたい

来年度、ダンパーごと変えられるように

フレームを立てること!!

案① 20角上げ案

問題点は下記2点。

- 1. アームとぶつかる
 - ・干渉回避のため30mmアームを上げると射出機構を下げる方向に調整ができなくなる。 ディスクがホイップするは見られたため、威力を下げる方向で調整するリスク有。
 - 20mm上げだとコの字のベアリング化ができない。
 - <u>* 10×20角材にするとねじれ剛性不足?幅20あれば20角と大差ない気がする。</u>
- 2. 加工量が一番多いアイディア

案(1)

20角上げ案

伊藤追記

- アームを30mm上げる
- →ロボマスモータと中間フレームASSYの干渉
- →干渉しないよう中間フレームを上げると給弾アーム 板と面一
- ・射高を下げる方向の調整ができなくなる.

中間フレームASSYの構造変更 コの字形状で20角の上に載っているのを20角の横にする

- ロボマスモータに干渉しない
- ・MG荷重はボルト締結力による摩擦で受けることになる
- →(感覚的に)締結面が滑ってねじのせん断で受ける状況は無いと判断する.

案② コの字だけ再制作

案①のコの字化だけ実施して、20角を上げたり、門構造はやらない案。 中立位置は65mmのままにする。 底がつきそうなのでスキー板かキャスターをつける。

問題点は下記2点。

- 1. 段差が厳しい
 - 中立位置が65mmだと地面との距離が14.5mm (65mm-42.5mm-増肉分8mm) 12mmの段差は侵入不可。
 - バネを最大たわみ無視していれて車高調整すればいける?
- 2. 1や②、⑤の問題を解決するなら来年度の改修が必須になる。

案③ コの字はそのままでスペーサ追加。

現行のコの字構造はそのままでコの字の板金にスペーサを追加して20角から剛性をもらう。 問題点は下記3点。

- 1. 段差が厳しい
 - 中立位置が65mmだと地面との距離が22.5mm (65mm-42.5mm)
- 12mmの段差への侵入はこわい。バネを最大たわみ無視して車高調整すればいける???
- 2. Φ3平行ピンを通している穴がそのうちガバガバになる。
- 3. 1や②、④、⑤の問題を解決するなら来年度の改修が必須になる。

バネが効かない原因

下図の通り、バネによるモーメントの腕の長さはZの部分。オムニと比べ腕が短く、モーメントが 出ない

