| 小小米小 | □. |
|------|----|
| 试卷编  | 写: |

考核对象: 10级信计、材化、食质、生技

| ナドナ <i>し</i> カ | M. 🗆 | Lil. 😝 |
|----------------|------|--------|
| 班级             | 子亏   | 姓名     |

注意: 1. 重修必须注明(重修)

2. 试卷背面为草算区

大连工业大学 2010~2011 学年 第 2 学期

《 大学物理 》试卷(A) 共 3 页 第 1 页

| 汉 月 |       |   |          |    |         |        |    |   |    |    |
|-----|-------|---|----------|----|---------|--------|----|---|----|----|
| 题号  | <br>1 | = | 四        | エ  | <u></u> | L<br>L | 1/ | + | 阅卷 | 复核 |
| 越与  | 1     |   | <u> </u> | Д. |         |        |    |   | 总分 | 总分 |
| 得分  |       |   |          |    |         |        |    |   |    |    |

说明:"阅卷总分"由阅卷人填写;"复核总分"由复核人填写,复核总分不得有改动。

得

物理常数: 真空介电常数  $\varepsilon_0 = 8.85 \times 10^{-12} \, F \cdot m^{-1}$ ; 真空磁导率  $4\pi \times 10^{-7} \, T \cdot m \cdot A^{-1}$ ; 真空光速  $3 \times 10^8 \, m \cdot s^{-1}$ ; 电子电量  $e = 1.6 \times 10^{-19} \, C$ 一、选择题(每小题3分,共18分)

分

1. 下列说法正确的是( )

- (A) 电场强度为零的点, 电势也一定为零
- (B) 电场强度不为零的点, 电势也一定不为零
- (C) 电势为零的点, 电场强度也一定为零 (D) 电势在某一区域内为常量, 则电场强度在该区域内必定为零



- 2. 如图所示,共面放置一根无限长的载流导线和一矩形线圈,在磁场力的作用下,线圈将在该平面内如何运动? ( )
  - (A) 向上
- (B) 向下
- (C) 向左 (D) 向右
- 3. 在圆柱形空间内有一磁感强度为 $\vec{B}$ 的均匀磁场,如图所示.  $\vec{B}$ 的大小以dB/dt均匀变化. 在磁场中有A、B两点,其间可放直导线AB和弯曲的导线AB,

#### 则 ( )

- (A) 电动势只在直线型AB导线中产生
- (C) 直线型AB导线中的电动势小于弧线型AB导线中的电动势



- (B) 电动势只在弧线型*AB*导线中产生
- (D) 电动势在直线型AB和弧线型AB中都产生,且两者大小相等
- 4. 一质点沿 $m{x}$  轴作简谐振动,振幅为 $m{12cm}$ ,周期为 $m{2s}$ 。当 $m{t}=m{0}$ 时,位移为 $m{6cm}$ ,且向 $m{x}$  轴正方向运动。则振动表达式为(
  - (A)  $x = 0.12\cos(2\pi t + \frac{\pi}{3})$  (B)  $x = 0.12\cos(\pi t + \frac{\pi}{3})$  (C)  $x = 0.12\cos(2\pi t \frac{\pi}{3})$  (D)  $x = 0.12\cos(\pi t \frac{\pi}{3})$
- 5. 一平面简谐波在 t=0 时刻的波形图如图所示,波速为 u=200 m/s ,则图中 O 点的振动加速度的表达式为(
  - (A)  $a=0.4\pi^2\cos(\pi t \pi/2)$ (SI)
- (C)  $a=-1.6\pi^2\cos(2\pi t + \pi/2)$  (SI)
- (B)  $a=0.4\pi^2\cos(\pi t 3\pi/2)$  (SI)
- (D)  $a = -0.4\pi^2 \cos(2\pi t \pi)$  (SI)
- 6. 用单色光垂直照射在观察牛顿环的装置上, 当平凸透镜垂直向上缓慢平移而远离平面玻璃时, 可以观察到这些环状干涉条纹(

  - (A) 向上平移
- (B) 向中心收缩 (C) 向外扩张
- (D) 静止不动
- (E) 向左平移



# 得

- 二、简答题(每小题3分,共6分)
- 1. 有人认为:如果某一闭合曲面S上电场强度E处处为零,则该面内必无电荷. 你认为这种说法是否正确?为什么?
- 2. 无限长直电流磁场的磁感应强度公式是  $B = \frac{\mu_0 I}{2}$  当场点无限接近导线, 即 $a \to 0$ 时,  $B \to \infty$ , 应当如何理解?

| 试卷编号:                                                                            | 班级                                               | 学号                                           |                                                      |
|----------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|------------------------------------------------------|
| 考核对象: 10 级信计、材化、食质、生技                                                            | 注意: 1. 重修业<br>2. 试卷                              | 5须注明(重修)<br>背面为草算区                           |                                                      |
|                                                                                  | · 装 订 线                                          |                                              | 1 1 1 1                                              |
| 大连工业大学 2010 ~2011 学年 第2学期                                                        |                                                  |                                              |                                                      |
| 《 大学物理 》试卷(A) 共3页第2页                                                             |                                                  |                                              |                                                      |
| 得<br>分 三、填空题(每小题 3 分, 共 24 分)                                                    |                                                  |                                              | +q +q -q                                             |
| 1. 在边长为 a 的正六角形的六个顶点都放有电荷,如图所示。若以则中心 O 点处的电势为                                    |                                                  |                                              | -q · O                                               |
| 2. 一点电荷 q 位于一边长为 a 的立方体内的中心,通过立方体各表面 3. 如图所示,在无限长载流直导线附近作一球形闭合曲面 <i>S</i> ,当曲面 将 | 面的电通量各为<br>面 <i>S</i> 向长直导线靠近时,穿<br>(填"增大"、"减小"或 | 过曲面 <i>S</i> 的磁通量 <b>Φ</b><br><b>c</b> "不变") | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| 秒时,线圈中的感应电动势为。<br>5. 两个同方向的简谐振动曲线(如图所示) 则合振动的振动方程为                               |                                                  | •                                            | $A_2$ $X_2(t)$                                       |
| 6. 一平面简谐波的波动方程为y=0.05cos(10πt-4πx),式中x,y以为波长λ=。                                  | 米计,t以秒计。则该波的                                     | 周期T=;                                        |                                                      |
| 7. 在单缝夫琅和费衍射实验中波长为 $\lambda$ 的单色光垂直入射在宽度为                                        | $a=3\lambda$ 的单缝上,对应                             | 于衍射角为30°方向,乌                                 |                                                      |
| 缝处的波面可分成的半波带数目为个. 8. 在真空中波长为 $\lambda$ 的单色光,在折射率为 $n$ 的透明介质中从 $A$ 沿              | 某路径传到 B,若 A、B 两,                                 | 点相位差为 $3\pi$ ,则此                             | 格径 AB 的光程差为。                                         |
| 得 四、简算题(每小题 6 分, 共 12 分)<br>分                                                    |                                                  |                                              | i                                                    |
| 1. 如图所示,两种载流导线在平面内分布,电流均为I,它们在点 <i>O</i> I                                       | 的磁感强度各为多少?                                       |                                              |                                                      |

2. 若简谐运动方程为 $x = 0.10\cos(20\pi t + 0.25\pi)$ (m), 求: t = 2s时的位移、速度和加速度.

得 分

五、计算题(10 分)

有一外半径为 $R_1$ ,内半径 $R_2$ 的金属球壳,在壳内有一半径为 $R_3$ 的金属球,球壳和内球均带电量q.(1)写出电场强度的分布;(2)求球心的电势.



| 1-1 | 44.76 |    |
|-----|-------|----|
| 瓜   | 卷编    | 写: |

考核对象: 10级信计、材化、食质、生技

| 班级 | 学号 |  |
|----|----|--|
|    |    |  |

注意: 1. 重修必须注明(重修)

2. 试卷背面为草算区

大连工业大学 2010~2011 学年 第 2 学期

《 大学物理 》试卷 (A) 共 3 页第3 页

得 分 六、计算题(10分)

如图所示,长直导线中通有电流 I=5.0A,在与其相距  $d=0.5\mathrm{cm}$  处放有一矩形线圈,共 1000 匝,设线圈长  $l=4.0\mathrm{cm}$ ,宽  $a=2.0\mathrm{cm}$  。 不计线圈自感,若线圈以速度  $v=3.0\mathrm{cm/s}$  沿垂直于长导线的方向向右运动,线圈中的感生电动势多大?



得 分 七、计算题(10分)

一平面简谐波,沿X轴负方 向传播,t=1s时的波形图如图所示,波速 $\mu=2$  m/s , 求: (1) 该波的波函数。(2) 画出t=2s时刻的波形曲线。



得 分

八、计算题(10分)

波长  $\lambda = 600$ nm 的单色光垂直入射一平面光栅,测得第二级主极大的衍射角  $\theta = 30^{\circ}$ ,且第三级缺级。(1)求光栅常数 d=? (2)求透光缝的最小宽度 a=?(3)在第件(1)(2)下,求屏幕上可能呈现的全部主极大的级次.

试卷编号:

大连工业大学 2010 ~2011 学年 第2学期《大学物理》试卷(A)标准答案共1 页第1页 考核对象: 10 级信计、材化、食质、生技 命题教师: 卷面满分: 100 教研室主任审核:

#### 一、选择题(每题3分,共18分)

- **1.** D **2.** C **3.**C **4.** D **5.** C **6.**B
- 二、简答题(每小题3分,共6分)
- 1、**答:**这种说法不一定正确,因为在场空间中某一闭合曲面S上E处处为零,只能说明S内正、负电荷代数和为零,而不能说明闭合面内不存在电荷.
- 2、答:长直电流线也是一个理想模型,当a与载流导线的直径相比拟时,此载流导线就不能再看成线电流了,上述公式也就不适用了.
- 三、填空题(每题3分,共24分)

1.0, 
$$\frac{q}{2\pi\varepsilon_0 a^2}$$
 2.  $\frac{q}{6\varepsilon_0}$  3.  $\Phi$ 不变, $B$ 增大 4.8  $\pi$  R<sup>2</sup>B 5.  $\mathbf{x} = (\mathbf{A}_2 - \mathbf{A}_1)\cos(\frac{2\pi}{\mathbf{T}}\mathbf{t} - \frac{\pi}{2})$  6.0.2s, 0.5m 7. 3 8. 1.5 $\lambda$ 

#### 四、简算题(每小题6分,共12分)

- 1、解: (a) 长直电流对点O而言,有 $Idl \times r = 0$ ,因此它在点O产生的磁场为零,则点O处总的磁感强度为1/4圆弧电流所激发,故有  $B_0 = \frac{\mu_0 I}{8 R}$  ---- (2分),  $B_0$ 的方向垂直纸面向外. ---- (1分)
  - (b) 将载流导线看作圆电流和长直电流,由叠加原理可得:  $B_0 = \frac{\mu_0 I}{2R} \frac{\mu_0 I}{2\pi R}$  ---- (2分), $B_0$ 的方向垂直纸面向里. ---- (1分)
- 2、t=2s时的位移、速度、加速度分别为

$$x = 0.10\cos(40\pi t + 0.25\pi) = 7.07 \times 10^{-2} \,\mathrm{m} - - - (2 \,\%)$$

$$v = dx/dt = -2\pi\sin(40\pi + 0.25\pi) = -4.44 \,\mathrm{m} \cdot \mathrm{s}^{-1} - - - (2 \,\%)$$

$$a = d^2x/d^2t = -40\pi^2\cos(40\pi + 0.25\pi) = -2.79 \times 10^2 \,\mathrm{m} \cdot \mathrm{s}^{-2} - - - (2 \,\%)$$

## 五、计算题(10分)

解: (1) 根据高斯定理 
$$\oint \mathbf{E} \cdot \mathbf{dS} = \frac{\sum q}{\varepsilon_0}$$

解: (1) 根据高斯定理 
$$\oint \mathbf{E} \cdot \mathbf{dS} = \frac{\sum q}{\varepsilon_0}$$
 
$$E_1 = 0 \qquad r \langle R_3 \qquad \dots 1 \%$$
 
$$E_2 = \frac{q}{4\pi\varepsilon_0 r^2} \qquad R_3 \langle r \langle R_2 \qquad \dots 2 \%$$
 
$$E_3 = 0 \qquad R_2 \langle r \langle R_1 \qquad \dots 1 \%$$
 
$$E_4 = \frac{2q}{4\pi\varepsilon_0 r^2} \qquad r \rangle R_1 \qquad \dots 2 \%$$

## 六、计算题(10分)

解:长直电流的磁场 
$$B = \frac{\mu_0 I_1}{2\pi x}$$
 ..... (2分)

曲
$$\varepsilon = \int (\vec{v} \times \vec{B}) \cdot d\vec{l}$$
 ......(2分)

得 
$$\varepsilon_{ab} = NB_2 lv$$
  $\varepsilon_{dc} = NB_1 lv$  ..... (2分)

$$\varepsilon = \varepsilon_{dc} - \varepsilon_{ab} = NB_1 lv - NB_2 lv = \frac{\mu_0 IN}{2\pi} \left( \frac{1}{d} - \frac{1}{d+a} \right) lv = \frac{\mu_0 IalvN}{2\pi d(d+a)} = 6.85 \times 10^{-4} V \qquad (4\%)$$

### 七、计算题(10分)

解: (1) 振幅 A=4m.....(1分), 波长  $\lambda = 4m$ , 周期  $T = \frac{\lambda}{u} = 2s$ .....(2分),

初相位 
$$\varphi = \frac{\pi}{2}$$
.....(2分)

波动方程为: 
$$y = 4\cos\left[2\pi(\frac{t}{2} + \frac{x}{4}) + \frac{\pi}{2}\right]$$
 (SI) ....(2分)

(2) 如图所示 .....(3分)



#### 八、计算题(10分)

解: (1)  $d \sin \varphi = k\lambda$ 

$$d = \frac{2\lambda}{\sin 30^{\circ}} = 4\lambda = 2400nm \qquad \dots (3\%)$$

(2) 据已知条件,
$$d = 3a$$
 ,  $a = \frac{d}{3} = 800nm$  .....(2分)

$$(3)$$
  $k_m < \frac{d}{\lambda} = \frac{2400}{600} = 4$   $\therefore k_m = 3$  .....(2\(\frac{1}{2}\))

因为第三级缺级, 所以在屏幕能看到  $k = 0,\pm 1,\pm 2$  级, 共5条谱线. ....(3分)