On the Subject of Simon's Statement

Simon is growing up and learned about logic.

A display with two colors and a logical expression will be displayed, as well as a Simon Says element with four buttons.

○ ↔ ○

Step 1: Determine Stage Number

- Start with 0.
- For every serial number character present in a lit indicater, add 2.
- For every duplicate port type, subtract 4.
- Add the number of batteries, multiplied by the number of ports.
- Multiply by the stage number.
- Keep adding or subtracting 25 until in range 0-49.

(If the number is less than 10 prepend a 0. Example: 1 -> 01)

Step 2: Determine Color

- The Simon Says element will flash two colors per stage. If a color flashes, treat it as true. If it doesn't, it equates to false.
 - If the statement on the display is true, use Table A.
 - o Otherwise, if the statement is false, use Table B.
- Press the colors from all previous stages as well as the new color from the table.

(Example: For True 32 you would press Red.)

Table A

	-0	-1	-2	-3	-4	-5	-6	-7_	-8	-9
0-										
1-										
2-										
3-										
4-										

Table B

-	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9
0-										
1-										
2-										
3-										
4-										

Table Ops: Operator explanations

Logical Connective	Symbol		Meaning				
Conjunction	٨	AND	Returns true if all inputs are true. Else returns false.				
Disjunction	V	OR	Returns true if any input is true. Else returns false.				
Exclusive V		XOR	Returns true if exactly one input is true. Else returns false.				
Alternative Denial	1	NAND	Returns false if all inputs are true. Else returns true.				
Joint Denial	↓	NOR	Returns false if any input is true. Else returns true.				
Biconditional	\leftrightarrow	XNOR	Returns false if exactly one input is true. Else returns true.				
Implication (Left)	→	IMP/IMPLY	Returns false when left input is true and right input is false. Else returns true.				
Implication (Right)	←	IMPBY/IMPLYBY	Returns false when left input is false and right input is true. Else returns true.				