Rendering algorithms

Raghavendra G S

Rasterization vs Ray tracing

For each primitive

Find the pixel which it maps to

For each pixel

Find all the primitive which contributes to that pixel

If objects are opaque, find the closest primitive

Rasterization vs Ray tracing

Secondary rays handle

- 1. Shadows
- 2. Reflection
- 3. Refraction
- 4. Realistic illumination
- 5. ...

Rasterization vs Ray tracing

For each primitive

Find the pixel which it maps to

Fast

Linear memory access

Linear complexity

For each pixel

Find all the primitive which contributes to that pixel

If objects are opaque, find the closest primitive

Slow

Random memory access

Logarithmic complexity

Rasterization vs Ray tracing

Combining the two

Rasterization

Visibility (Primary function of a rendering algorithm)

Ray tracing

Secondary functions like

Shadows etc

Software

On CPU

On GPU

On hardware

On GPU

On special hardware

$$\mathbf{x} = \mathbf{p} + t \, \mathbf{d}$$

Implicit Surface:

$$f(\mathbf{x}) = 0$$

$$\mathbf{x} = \mathbf{p} + t \, \mathbf{d}$$

Implicit Surface:

$$f(\mathbf{p} + t\mathbf{d}) = 0$$

Implicit Surface:

$$f(\mathbf{p} + t \mathbf{d}) = 0$$

$$\exists t \implies \text{Hit!}$$

$$f(\mathbf{p} + t \mathbf{d}) \neq 0$$

$$\forall t \implies \text{No Hit!}$$

$$f(\mathbf{x}) = 0$$

$$f(\mathbf{x}) = x^2 + y^2 + z^2 - r^2 = 0$$

$$f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{x} - r^2 = 0$$

$$f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{x} - r^2 = 0$$

$$f(\mathbf{x}) = (\mathbf{x} - \mathbf{c}) \cdot (\mathbf{x} - \mathbf{c}) - r^2 = 0$$

$$f(\mathbf{x}) = (\mathbf{x} - \mathbf{c}) \cdot (\mathbf{x} - \mathbf{c}) - r^2 = 0$$

$$f(\mathbf{x}) = (\mathbf{x} - \mathbf{c}) \cdot (\mathbf{x} - \mathbf{c}) - r^2 = 0$$

$$f(\mathbf{x}) = (\mathbf{x} - \mathbf{c}) \cdot (\mathbf{x} - \mathbf{c}) - r^2 = 0$$

$$f(\mathbf{x}) = (\mathbf{x} - \mathbf{c}) \cdot (\mathbf{x} - \mathbf{c}) - r^2 = 0$$

$$(\mathbf{p} + t \mathbf{d} - \mathbf{c}) \cdot (\mathbf{p} + t \mathbf{d} - \mathbf{c}) - r^2 = 0$$

$$(\mathbf{p} - \mathbf{c} + t \mathbf{d}) \cdot (\mathbf{p} - \mathbf{c} + t \mathbf{d}) - r^2 = 0$$

$$(\mathbf{d} \cdot \mathbf{d})t^2 + 2\mathbf{d} \cdot (\mathbf{p} - \mathbf{c})t + (\mathbf{p} - \mathbf{c}) \cdot (\mathbf{p} - \mathbf{c}) - r^2 = 0$$

$$\underbrace{(\mathbf{d} \cdot \mathbf{d})}_{a} t^{2} + 2 \mathbf{d} \cdot (\mathbf{p} - \mathbf{c}) t + \underbrace{(\mathbf{p} - \mathbf{c}) \cdot (\mathbf{p} - \mathbf{c}) - r^{2}}_{c} = 0$$

$$at^2 + bt + c = 0$$

$$t_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$\Delta = b^2 - 4ac$$

$$(\mathbf{d} \cdot \mathbf{d})t^{2} + 2\mathbf{d} \cdot (\mathbf{p} - \mathbf{c})t + (\mathbf{p} - \mathbf{c}) \cdot (\mathbf{p} - \mathbf{c}) - r^{2} = 0$$

$$at^{2} + bt + c = 0$$

$$t_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$\Delta = b^{2} - 4ac$$

$$\Delta \ge 0 \implies \text{No Hit!}$$

$$\Delta \ge 0 \implies \text{Hit!}$$

$$(\mathbf{d} \cdot \mathbf{d})t^2 + 2\mathbf{d} \cdot (\mathbf{p} - \mathbf{c})t + (\mathbf{p} - \mathbf{c}) \cdot (\mathbf{p} - \mathbf{c}) - r^2 = 0$$

for each ray find the *closest* primitive

for each ray for each primitive if ray intersects primitive if *closest* hit

Axis-Aligned Bounding Box

Axis-Aligned Bounding Box

