Analysis II

Janis Hutz https://janishutz.com

October 9, 2025

TITLE PAGE COMING SOON

"Some funny quote from the lecture still needed"
- Özlem Imamoglu, 2025

HS2025, ETHZ
Cheat-Sheet based on Lecture notes and Script
https://metaphor.ethz.ch/x/2025/hs/401-0213-16L/sc/script-analysis-II.pdf

Contents

1	Introduction	3
2	Differential Equations	4
	2.1 Introduction	4
	2.2 Linear Differential Equations	4
	2.3 Linear differential equations of first order	4
	2.4 Linear differential equations with constant coefficients	4

1 Introduction

This Cheat-Sheet does not serve as a replacement for solving exercises and getting familiar with the content. There is no guarantee that the content is 100% accurate, so use at your own risk. If you discover any errors, please open an issue or fix the issue yourself and then open a Pull Request here:

https://github.com/janishutz/eth-summaries

This Cheat-Sheet was designed with the HS2025 page limit of 10 A4 pages in mind. Thus, the whole Cheat-Sheet can be printed full-sized, if you exclude the title page, contents and this page. You could also print it as two A5 pages per A4 page and also print the Analysis I summary in the same manner, allowing you to bring both to the exam

2 Differential Equations

2.1 Introduction

Ex 2.1.1: f'(x) = f(x) has only solution $f(x) = ae^x$ for any $a \in \mathbb{R}$; f' - a = 0 has only solution $f(x) = \int_{x_0}^x a(t) dt$

T 2.1.6: Let $F: \mathbb{R}^2 \to \mathbb{R}$ be a differential function of two variables. Let $x_0 \in \mathbb{R}$ and $y_0 \in \mathbb{R}^2$. The Ordinary Differential Equation (ODE) y' = F(x, y) has a unique solution f defined on a "largest" interval I that contains x_0 such that $y_0 = f(x_0)$

2.2 Linear Differential Equations

An ODE is considered linear if and only if the ys are only scaled and not part of powers.

D 2.2.1: (Linear differential equation of order k) (order = highest derivative) $y^{(k)} + a_{k-1}y^{(k-1)} + \ldots + a_1y' + a_0y = b$, with a_i and b functions in x. If $b(x) = 0 \ \forall x$, homogeneous, else inhomogeneous

T 2.2.2: For open $I \subseteq \mathbb{R}$ and $k \ge 1$, for lin. ODE over I with continuous a_i we have:

- 1. Set S of $k \times$ diff. sol. $f: I \to \mathbb{C}(\mathbb{R})$ of the eq. is a complex (real) subspace of complex (real)-valued func. over I
- 2. $\dim(\mathcal{S}) = k \ \forall x_0 \in I \text{ and any } (y_0, \dots, y_{k-1}) \in \mathbb{C}^k$, exists unique $f \in \mathcal{S}$ s.t. $f(x_0) = y_0, f'(x_0) = y_1, \dots, f^{(k-1)}(x_0) = y_{k-1}$. If a_i real-valued, same applies, but \mathbb{C} replaced by \mathbb{R} .
- 3. Let b continuous on I. Exists solution f_0 to inhom. lin. ODE and S_b is set of funct. $f + f_0$ where $f \in S$

The solution space S is spanned by k functions, which thus form a basis of S. If inhomogeneous, S not vector space.

Finding solutions (in general)

- (1) Find basis $\{f_1,\ldots,f_k\}$ for \mathcal{S}_0 for homogeneous equation (set b(x)=0) (i.e. find homogeneous part, solve it)
- (2) If inhomogeneous, find f_p that solves the equation. The set of solutions is then $S_b = \{f_h + f_p \mid f_h \in S_0\}$.
- (3) If there are initial conditions, find equations $\in S_b$ which fulfill conditions using SLE (as always)

2.3 Linear differential equations of first order

P 2.3.1: Solution of y' + ay = 0 is of form $f(x) = ze^{-A(x)}$ with A anti-derivative of a

Imhomogeneous equation

- 1. Plug all values into $y_p = \int b(x)e^{A(x)}$ (A(x) in the exponent instead of -A(x) as in the homogeneous solution)
- 2. Solve and the final $y(x) = y_h + y_p$. For initial value problem, determine coefficient z

2.4 Linear differential equations with constant coefficients

The coefficients a_i are constant functions of form $a_i(x) = k$ with k constant, where b(x) can be any function.

Homogeneous Equation

- 1. Find characteristic polynomial (of form $\lambda^k + a_{k-1}\lambda^{k-1} + \ldots + a_1\lambda + a_0$ for order k lin. ODE with coefficients $a_i \in \mathbb{R}$).
- 2. Find the roots of polynomial. The solution space is given by $\{z_j \cdot x^{v_j-1}e^{\gamma_i x} \mid v_j \in \mathbb{N}, \gamma_i \in \mathbb{R}\}$ where v_j is the multiplicity of the root γ_i . For $\gamma_i = \alpha + \beta i \in \mathbb{C}$, we have $z_1 \cdot e^{\alpha x} \cos(\beta x)$, $z_2 \cdot e^{\alpha x} \sin(\beta x)$, representing the two complex conjugated solutions.

Inhomogeneous Equation

- 1. (Case 1) $b(x) = cx^d e^{\alpha x}$, with special cases x^d and $e^{\alpha x}$: $f_p = Q(x)e^{\alpha x}$ with Q a polynomial with $\deg(Q) \leq j + d$, where j is multiplicity of root α (if $P(\alpha) \neq 0$, then j = 0) of characteristic polynomial
- 2. (Case 2) $b(x) = cx^d \cos(\alpha x)$, or $b(x) = cx^d \sin(\alpha x)$: $f_p = Q_1(x) \cdot \cos(\alpha x) + Q_2(x9 \cdot \sin(\alpha x))$, where $Q_i(x)$ a polynomial with $\deg(Q_i) \leq d+j$, where j is the multiplicity of root αi (if $P(\alpha i) \neq 0$, then j=0) of characteristic polynomial

Other methods

- Change of variable Apply substitution method here, substituting for example for y' = f(ax + by + c) u = ax + by to make the integral simpler. Mostly intuition-based (as is the case with integration by substitution)
- Separation of variables For equations of form $y' = a(y) \cdot b(x)$ (NOTE: Not linear), we transform into $\frac{y'}{a(y)} = b(x)$ and then integrate by substituting y'(x)dx = dy, changing the variable of integration. Solution: A(y) = B(x) + c, with $A = \int \frac{1}{a}$ and $B(x) = \int b(x)$. To get final solution, solve for the above equation for y.