

WM-811K WaferMap

Model evaluation for semiconductor wafermap detection and recognition using CNNs

Data Analysis The problem

Classification task:

- Semiconductor wafermap.
- 9 different anomalous classes: none, loc, edge-loc, center, donut, edge-ring, near-full, random, scratch.
- o CNNs.

• WM-811K dataset:

- 811457 images (172950 labelled).
- Very unbalanced.
- 3 kinds of pixel: 0 for background, 1 for regular chips, 2 for anomalies.

Data Analysis Preprocessing

Fig.1: Image distribution over classes

- We only consider **labelled** images.
- Extreme **imbalance** towards none class (no anomalies) and towards singular anomalous classes.
- 346 different images **shapes**.
- Median shape: **(53, 52)**.
- None class associated also to defective images.

Data Analysis Resize and cleaning images

- **Resize** images to the **median** shape: (53, 52).
- **Remove** images with a strongly **rectangular** shape.
- Remove defective images.
- Split **train-test** (80%-20%).
- **Rebalance** with **data augmentation** (only on training-set).

Fig.2: Defective images

Fig.3: Rectangular shapes

Data Augmentation Craft-handed

- Before rebalancing the "none" class, we need to rebalance the anomalous classes themselves.
- Idea: Take an image with no defective chips as **template** and change the pixels depending on the anomaly class to be increased.
- At least 3000 images for each class: augment donut, near-full, random, scratch and loc anomalies.

Fig.4: Unbalance anomalies

Template Near-full Random Donut Scratch Loc

Craft-handed images (accuracy 84.13%)

Real images (accuracy 88%)

Data Augmentation Flipping + rotation

- For each anomalous image:
 - Horizontal and vertical flipping.
 - Rotation (90° and 270°).

Fig.5: Rebalancing classes

Fig.6: Rebalancing anomalies vs none

• 136196 ---- 266947 training images.

Model selection Base model

- 3 convolutional layers:
 - 32, 64 and 128 filters.
 - ∘ receptive field = 3.
 - padding = same.
 - activation = ReLU.
- 3 pooling layers:
 - pooling window 3x3.
 - o padding = same.
- 1 fully-connected layer:
 - units = 9.
 - activation = Softmax.

• Compile:

- loss = categorical_crossentropy.
- optimizer = Adam (learning rate = 0.001).
- metrics = accuracy.
- Fitting for **20 epochs separately** on training data "vanilla" and training data augmented.
- Various models tested. Here we show the **4 main** ones and the final model.
- Comparisons based on the previous best model.

"Vanilla" data - Model 0

Fig.7: Base model - training "vanilla"

 Best val_loss:
 0.1155
 Precision:
 95.51%

 Best val_accuracy:
 96.75%
 Recall:
 88.13%

 F1-measure:
 91.67%

	Model 0	
Center	88.61%	
Donut	79.78%	
Edge-Loc	66.46%	
Edge-Ring	97.93%	
Loc	66.61%	
Near-full	79.17%	
Random	84.78%	
Scratch	29.03%	
None	99.33%	
Mean	76.86%	

Augmented data - Model 01

Fig.8: Base model - training augmented

Best val_loss: 0.1095 Precision: 87.77%

(-0.0060) **Recall**: 92.86%

Best val_accuracy: 96.88% F1-measure: 90.25%

(+0.13%)

(-1.42%)

	Model 0	Model 01
Center	88.61%	91.09%
Donut	79.78%	76.40%
Edge-Loc	66.46%	79.70%
Edge-Ring	97.93%	98.19%
Loc	66.61%	74.96%
Near-full	79.17%	100%
Random	84.78%	82.61%
Scratch	29.03%	39.25%
None	99.33%	97.91%
Mean	76.86%	82.34%

BatchNormalization - Model 3

- EarlyStopping (epochs = 100, patience = 10)
- He-initialization
- Learning rate = 0.0001
- BatchNormalization layer

Fig.9: BatchNormalization

Best val_loss: 0.0808 Precision: 91.51%

(-0.0287) **Recall**: 93.97%

Best val_accuracy: 97.38% F1-measure: 92.72%

(+0.5%) (+2.47%)

	Model 0	Model 01	Model 3	
Center	88.61%	91.09%	88.19%	
Donut	79.78%	76.40%	91.01%	
Edge-Loc	66.46%	79.70% 84.16		
Edge-Ring	97.93%	98.19%	97.48%	
Loc	66.61%	74.96%	78.72%	
Near-full	79.17%	100%	95.83%	
Random	84.78%	82.61%	81.88%	
Scratch	29.03%	39.25%	55.14%	
None	99.33%	97.91%	98.58%	
Mean	76.86%	82.34%	85.67%	

Decreasing complexity - Model 6

- EarlyStopping (epochs = 100, patience = 10)
- He-initialization
- Learning rate = 0.0001
- BatchNormalization layer
- Conv layer with **16, 32 and 64 filters** + pooling window **2x2**

Fig.10: Decreasing complexity

Best val_loss: 0.0819 Precision: 92.69%

(+ 0.011) **Recall**: 94.28%

Best val_accuracy: 97.25% F1-measure: 93.48%

(-0.13%)

(+0.76%)

	Model 01	Model 3	Model 6	
Center	91.09%	88.19%	89.65%	
Donut	76.40%	91.01%	86.52%	
Edge-Loc	79.70%	84.16%	87.00%	
Edge-Ring	98.19% 97.48%		96.64%	
Loc	74.96%	78.72%	64.72%	
Near-full	100%	95.83%	91.67%	
Random	82.61%	81.88%	90.58%	
Scratch	39.25%	55.14%	67.57%	
None	97.91%	98.58%	98.8%	
Mean	82.34%	85.67%	85.9%	

Model selection Parameters tuning

- Starting point : Model 6 (decreasing complexity).
- Searching the best combination of **learning rate** and **L2 regularization**.
- KerasTuner:
 - Objective: val_loss.
 - Learning rate = [0.0001, 0.001].
 - L2 regularization = [0.0, 1e-7, 1e-6, 1e-5].
 - Training each model for 10 epochs.
- Results: **learning rate = 0.0001** and **L2 = 0.0**, i.e. **Model 6**.

Performance evaluation Model6

	Loss	Top1 Accuracy	Top3 Accuracy	Top5 Accuracy	Precision	Recall	F1- measure	Mean over single classes
Test	0.0884	97.07%	99.83%	99.99%	92.25%	93.58%	92.91%	85.67%
Validation	0.0882	97.10%	99.82%	99.99%	92.69%	94.28%	93.48%	85.90%

Training 0.0608 97.88%	
-------------------------------	--

Gravina Greta (ID 881470) Puccinelli Niccolò (ID 881395) Scatassi Marco (ID 883823)

Thanks for your attention

g.gravina8@campus.unimib.it n.puccinelli@campus.unimib.it m.scatassi@campus.unimib.it