

20° Congresso Latino-americano de Software Livre e Tecnologias Abertas

18 a 20 de outubro de 2023

Foz do Iguaçu | Paraná | Brasil

Applying FOSS Support
Vector Machine and
Rough Sets on COVID-19
Cases Triage

Autores:

Vinícius Hansen, Kalyl Henings & Gilmário Barbosa dos Santos

Introdução

- A incerteza no diagnóstico médico ganhou destaque durante a pandemia de COVID-19.
- No processo de análise de casos há sempre incerteza diagnóstica e dificuldade de triagem.
- A ideia central é treinar um modelo de machine learning (ML) que incorpore o conceito de incerteza diagnóstica.
- No presente trabalho, fez-se a prova empírica dessa técnica, realizando experimentos com support vector machine (SVM) e mineração de dados incertos com rough sets (RS).

Visão Geral

Figura 1: Visão geral conceitual

Levantamento de bases de dados

 Foi conduzida uma pesquisa com o objetivo de explorar bases públicas, gratuitas e bem documentadas.

Casos	Covid Radiography	BIMCV COVID+
COVID-19	3,616	34,829
Saudáveis	10,200	0

Tabela 1: Bases de dados originais

Escolha dos casos

 Foram selecionados os casos BIMCV mais parecidos com a base CRD para completar 10,200 casos de COVID-19, a Figura 2 ilustra esse processo.

Figura 2: Algoritmo de escolha de casos

Pipeline dos dados

- Os dados foram processados utilizando LBP (raio 5) seguido do método Decision Table (Tabela 2).
- A base foi analisada pela biblioteca de Rough Sets e foi encontrado um Boundary Region.
- Os casos excedentes foram cortados e obtivemos a Base Composta (Tabela 3).

Figura 3: Pipeline geral dos dados

Método Decision Table

Novo Valor
$f(\delta) = 0$
$f(\delta) = 1$
$f(\delta) = 2$
$f(\delta) = 16$
$f(\delta) = 17$
$f(\delta) = 18$

Tabela 2: Descrição do método Decision Table

Base de dados composta

Casos	Base composta
Saudáveis	5301
Incertos	5301
COVID-19	5301

Tabela 3: Base de dados composta

Treinamento e *fine tuning* do modelo

- Foi utilizada a biblioteca de ML open source scikit-learn.
- Inicialmente, o modelo SVM foi treinado com os parâmetros padrão.
- Posteriormente, foi feita uma otimização desses hiperparâmetros utilizando o GridSearchCV

Parâmetro	Valor
Kernel	RBF
С	100
Gamma	1

Tabela 3: Hiperparâmetros usados no modelo

Matriz de Confusão

Figura 4: Matriz de confusão

Métricas

Métrica	Valor
Accuracy	91.82%
Precision	91.81%
Recall	91.90%
F1 Score	91.80%
Recall	91.90%

Tabela 4: Métrica do modelo

Considerações finais

- O escopo do trabalho aqui apresentado refere-se a casos de COVID-19 em uma base montada para finalidade experimental (prova de conceito).
- Os resultados demonstram que a abordagem proposta para a modelagem de incerteza é computacionalmente viável.
- Sistemas de apoio à triagem de casos podem ser derivados de trabalhos futuros na linha da proposta apresentada.
- O artigo com sua bibliografia completa e link para nossa implementação no github estão disponíveis nos anais do evento

Dúvidas?

Contato:

linkedin.com/in/viniciushansen/, vinicius.carlo.hansen@gmail.com

linkedin.com/in/kalyl-henings/, kalyl.henings@edu.udesc.br

