Last Name = _____, First Name = ____

ONID login = = _____@oregonstate.edu

- 1. (1.5 pts) Yes or No. Justify your answer (correct yes/no without correct justification gets 0 pts).
 - (a) technically, each DFA is also an ϵ -free NFA. | (b) The δ in an NFA is of type $Q \times \Sigma \mapsto Q$.
- 2. (0.5 pts) When does an NFA accept the empty string? Use mathematical notations.
- $3.~(0.5~\mathrm{pts})$ When is the language of an NFA non-empty? Use mathematical notations.
- 4. (1 pt) Construct an NFA for bitstrings $\{01,001\}^*$ and then convert it to DFA.
 - (a) NFA in exactly 4 states and no ϵ arrows. | (b) converted DFA in a 3-states (no trap state)

5. (0.5 pts) Given the following NFA with $\Sigma = \{a\}$, compute ϵ -closure for every state.

6. (0.5 pts) Convert the above NFA to DFA. You must result in a 2-state DFA (no trap state).

7. (0.5 pts) Is this above DFA is equivalent to a smaller DFA? If so, draw it, otherwise explain.