IRIS FLOWER DATASET

An overview

August | 2024

Sam Taylor

TABLE OF CONTENTS

Project overview	• • • • • • • • • • • • • • • • • • • •	03
Dataset overview		
Analysis	•••••	12
Data cleaning		
Descriptive analysis	15	
Statistical analysis	21	
Machine learning	. 24	
Summary	• • • • • • • • • • • • • • • • • • • •	26
References		

PROJECT OVERVIEW

Project	overview	•••••	03
Dataset	overview		08
Analysi	s	• • • • • • • • • • • • • • • • • • • •	12
Data	a cleaning	12	
Des	criptive analysis	15	
Stat	istical analysis	21	
Mac	hine learning	24	
Summa	ry	• • • • • • • • • • • • • • • • • • • •	26
Referen	ces		32

PROJECT AIMS

The aim of this project is to use the Iris
Flower Dataset to showcase an example
data analysis project for beginner analysts.

To be used in the blog series:

[Data Analysis Project] Iris Flower Dataset
(9 steps)

- To find and import a dataset from Kaggle.
- To clean the data by checking for: duplicates, nulls and outliers.
- To visualise the data to aid in data analysis & data exploration.
- To statistically analyse the data to see if our findings are statistically significant.
- To use machine learning to predict the species of flower given unseen input data.

PROJECT **PROCESS**

Here is a visual representation of the project in 5 steps

kaggle

Import

Count duplicate values df.duplicated().sum()

Clean

Visualise

(p-value: 0.0022585277836218586)

Statistically analyse

05.

▼ RandomForestClassifier RandomForestClassifier()

Machine learning

PROJECT QUESTIONS

To help structure the analysis, here are 9 questions we will investigate.

- What is the distribution of each feature in the dataset?
- What are the characteristics of each iris species?
- How are the features correlated with each other?
- Are there any outliers?
- Are there any missing values?

PROJECT QUESTIONS

To help structure the analysis, here are 9 questions we will investigate.

- Are the features on the same scale?
- Which classification algorithm is most suitable for this task?
- How will we assess the accuracy of our model?
- How accurate is our model?

DATASET OVERVIEW

Pro	ject overview	• • • • • • • • • • • • • • • • • • • •	03
Dat	aset overview	•••••	08
Ana	alysis	•••••	12
	Data cleaning	12	
	Descriptive analysis	15	
	Statistical analysis		
	Machine learning	24	
Sun	nmary	• • • • • • • • • • • • • • • • • • • •	26
	erences		

DATASET OVERVIEW

The Iris dataset is a well-known dataset in the field of machine learning and consists of measurements of four features of three species of iris flowers:

- Setosa
- Versicolor
- Virginica

IRIS_FLOWER_DATAFRAME

sepal_length	FLOAT
sepal_width	FLOAT
petal_length	FLOAT
petal_width	FLOAT
species	STRING

DATASET FEATURES

The dataset includes four features, which represent various dimensions of the iris flowers:

- Sepal Length (in centimeters)
- Sepal Width (in centimeters)
- Petal Length (in centimeters)
- Petal Width (in centimeters)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
                  Non-Null Count Dtype
    Column
    sepal_length 150 non-null
                                  float64
                                  float64
    sepal_width 150 non-null
    petal_length 150 non-null
                                  float64
    petal_width 150 non-null
                                  float64
     species
                                  object
                  150 non-null
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
```

DATASET OBSERVATIONS

There are a total of 150 observations, with 50 samples from each species. There is no missing data.

Each observation includes the measurements of the four features and is labeled with the corresponding species.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
                  Non-Null Count Dtype
    Column
    sepal_length 150 non-null
                                  float64
    sepal_width 150 non-null
                                  float64
                                  float64
    petal_length 150 non-null
     petal_width 150 non-null
                                  float64
     species
                                  object
                  150 non-null
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
```

ANALYSIS

Proje	ct overview	••••••	03
Datas	set overview	• • • • • • • • • • • • • • • • • • • •	08
Analy	sis		12
	ata cleaning		
	escriptive analysis	15	
S	tatistical analysis	21	
	lachine learning	24	
Sumr	nary	• • • • • • • • • • • • • • • • • • • •	26
	ences		

Data cleaning

There are 5 columns of data:

- 4 numeric
- 1 categorical

There are 150 rows of data, with no null values in any of the columns

The min, max and standard deviation tell us that there are not likely to be many, if any, outliers.

• As the {min + standard deviation} & {max - standard deviation} values are close to the mean value

SUMMARY STATISTICS

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Data cleaning

1. Handling missing values

• There are no missing values in the dataset

2. Handling duplicates

- There are 3 duplicate rows
- The decision was taken not to remove them as (i) there aren't many of them and (ii) it's feasible for flowers to have the same characteristics akin to multiple people having the same height and weight.

3. Converting data types

• The data types are already correct: **float** for the numeric values & **string** for the species column

4.Handling outliers

• There are no outliers in the dataset (Z-score +/- 3)

01.

```
sepal_length 0
sepal_width 0
petal_length 0
petal_width 0
species 0
dtype: int64
```

Missing values

03.

```
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

# Column Non-Null Count

0 sepal_length 150 non-null float64
1 sepal_width 150 non-null float64
2 petal_length 150 non-null float64
3 petal_width 150 non-null float64
4 species 150 non-null object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
```

<class 'pandas.core.frame.DataFrame'>

Convert data types

02.

Duplicates

Outliers

ANALYSIS

Project overview	03
Dataset overview	08
Analysis	12
Data cleaning 12	
Descriptive analysis 15	
Statistical analysis21	
Machine learning 24	
Summary	26
References	32

SEPAL LENGTH vs. SEPAL WIDTH

Analysis: histogram

Histograms are useful for understanding the distribution of a variable. They display the frequency or density of data points within specified bins or intervals.

- Immediately, we can see that there is likely to be distinct categories or groupings to the data (i.e. different species in our case), as there are multiple peaks in the data (multi-modal distribution), particularly for the sepal length.
- **Sepal length** is almost always greater than **sepal** width.
- Sepal length has a larger range than sepal width.

Analysis: bar chart

Bar charts are effective for comparing the **means** or **counts** of a numerical variable across different categories.

- **Setosa** has the lowest average petal length than the other species (~1.5cm).
- **Versicolor** has a lower average petal length than Virginica but a higher petal length mean than Virginica (~4.2cm).
- **Virginica** has the highest average petal length than the other species (~5.3cm).

AVERAGE PETAL LENGTH vs. SPECIES

PETAL LENGTH vs. SPECIES

Analysis: box plot

Box plots are ideal for visualizing the distribution of a numerical variable across different categories or groups. They display the **median**, **quartiles**, and **potential outliers**.

- There seems to be **very few outliers** for each species, with Setosa having the most.
- **Setosa** has the **smallest petal length** and a very small range.
- **Versicolor** and **Virginica's** petal length overlaps more.
 - However, Virginica is on average larger than Versicolor.

Analysis: scatter plot

Scatter plots are excellent for visualizing the relationship between two continuous variables. They help you identify patterns, clusters, outliers, and correlations in your data.

- **Setosa** has the shortest sepal length and widest sepal width. The two variables have a strong positive correlation.
 - That is, an increase in sepal length results in an increase in sepal width.
- Versicolor & Virginica have a weaker positive correlation between sepal width and sepal length.
- Versicolor & Virginica's sepal length and width overlap with each other.
 - However, Versicolor's sepal tends to be slightly shorter on average in comparison to Virginica's.

SEPAL LENGTH vs. SEPAL WIDTH by SPECIES

CORRELATION ANALYSIS

Analysis: heatmap

Correlation matrices (heatmaps) are used to understand the strength and direction of relationships between multiple variables. They are crucial for identifying which variables are positively or negatively correlated.

- We can see that {sepal length and petal length} &
 {petal width and petal length} are very strongly correlated
 - That is, when sepal length increases, so does petal length.
 - That is, when petal width increases, so does petal length.
- We can also see a negative correlation between {petal length and sepal width}
 - That is, when petal length increases, sepal width decreases.

ANALYSIS

Project overview	03
Dataset overview	
Analysis	
Data cleaning 12	
Descriptive analysis15	
Statistical analysis21	
Machine learning 24	
Summary	26
References	32

Analysis: statistical

The aim of this statistical analysis is to test whether there is a **significant difference in sepal length between the Iris species**.

<u>Hypothesis:</u>

- [H0] Null hypothesis: There's no difference in sepal length between Iris species.
- [H1] Alternative hypothesis: Sepal length differs between Iris species.

Result:

We can see here that our p-value is below 0.05, so we can reject our null hypothesis and accept our alternative hypothesis:

∘ ✓ There is a difference in the sepal length between Iris species.

ONE-WAY ANOVA

```
import pingouin as pg

# Welch's ANOVA test
result = pg.welch_anova(data=df, dv='sepal_length', between='species')

# Access the p-value from the result
p_value = result['p-unc'].values[0]

# Format the p-value to display with all decimals
formatted_p_value = "{:.35f}".format(p_value)

# Return a message depending on the result of the p-value
if p_value < 0.05:
    print(f"The sepal length differs significantly between Iris species. \np-value: {formatted_p_value}")
else:
    print(f"There's no significant difference in sepal length between Iris species. \np-value: {formatted_p_value}")</pre>
```

The results of our one-way ANOVA test

TUKEY'S HSD POST-HOC TEST

Tukey's HSD Post-Hoc Test:

Multiple Comparison of Means - Tukey HSD, FWER=0.05

group1	group2	meandiff	p-adj	lower	upper	reject
	Iris-versicolor Iris-virginica			0.6862 1.3382		True True
	Iris-virginica			0.4082		True

Tukey's HSD Post-Hoc Test performed on the Iris dataset

Analysis: statistical

The ANOVA test reveals significant differences in sepal length among Iris species, but it doesn't specify exactly which species differ significantly.

For that we need to use **Tukey's post-hoc test.**

Result:

Iris-setosa vs. Iris-versicolor: Mean difference = ~0.93 & p-value < 0.001 (very significant).

• **V** There is a significant difference

Iris-setosa vs. Iris-virginica: Mean difference = ~1.582, & p-value < 0.001 (very significant).

• **V** There is a significant difference

Iris-versicolor vs. Iris-virginica: Mean difference = ~0.652 & p-value < 0.001 (very significant).

• There is a significant difference

ANALYSIS

Project overview	03
Dataset overview	08
Analysis	12
Data cleaning 12	
Descriptive analysis15	
Statistical analysis21	
Machine learning 24	
Summary	26
References	32

Machine learning

Taking our analysis one step further, we can use the data that we have to try and **predict the category of an iris flower**, using its **petal & sepal values**.

As we have the {species} column, our data is **labelled**, allowing us to use a **supervised learning model:** the random forest algorithm to make the predictions.

Results:

- 🎉 100% of our test data was correctly identified by our model's predictions
 - 10 of our predictions correctly guessed Iris-setosa,
 where it should have guessed Iris-setosa.
 - 9 of our predictions correctly guessed Irisversicolor, where it should have guessed Irisversicolor.
 - Il of our predictions correctly guessed Iris-virginica,
 where it should have guessed Iris-verginica.

RANDOM FOREST: EVALUATION METRICS

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	10
Iris-versicolor	1.00	1.00	1.00	9
Iris-virginica	1.00	1.00	1.00	11
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30

A classification report of our Random Forest model on our Iris dataset

Project overvie	ew	03
Dataset overvi	ew	08
Analysis		12
Data cleaning		
Descriptive a	nalysis15	
Statistical an	alysis21	
Machine lear	ning 24	
Summary	•••••••	26
References		32

1. Iris Setosa:

- Sepal Characteristics: Iris setosa has the shortest sepal length and widest sepal width among the three species.
- Petal Characteristics: It has the shortest petal length and petal width.
- **Distinct Features:** Iris setosa is the most distinguishable species, with significantly different sepal and petal dimensions compared to the other two species.

2. Iris Versicolor:

- **Sepal Characteristics:** Iris versicolor has intermediate values for sepal length and sepal width.
- Petal Characteristics: It has moderate petal length and petal width, falling between setosa and virginica.
- Overlap with Other Species: Versicolor's characteristics overlap with both setosa and virginica, making it less distinct.

3. <u>Iris Virginica:</u>

- Sepal Characteristics: Iris virginica typically has the longest sepal length among the three species.
- **Petal Characteristics:** Iris virginica has the longest petal length and wider petal width.
- Overlap with Versicolor: While virginica has some overlap with versicolor, it generally has larger petal dimensions, making it distinguishable.

4. Statistical analysis:

- Iris-setosa vs. Iris-versicolor: The mean difference is approximately 0.93, and the padj value is less than 0.001 (very significant).
 - Therefore, there is a significant difference in sepal length between Iris-setosa and Iris-versicolor.
- Iris-setosa vs. Iris-virginica: The mean difference is approximately 1.582, and the padj value is less than 0.001 (very significant).
 - This indicates a significant difference in sepal length between Iris-setosa and Iris-virginica.

4. Statistical analysis:

- Iris-versicolor vs. Iris-virginica: The mean difference is approximately 0.652, and the p-adj value is less than 0.001 (very significant).
 - This shows a significant difference in sepal length between Iris-versicolor and Iris-virginica.

Project overview			03
	aset overview		
Ana	alysis		12
	Data cleaning		
	Descriptive analysis	15	
	Statistical analysis	21	
	Machine learning	24	
Sun	nmary	• • • • • • • • • • • • • • • • • • • •	26
References			32

- **Q Géron, A. (2023).** 'Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems'. O'Reilly Media.
- Q Glen, S. (2023). 'Z-Score: Definition, Formula and Calculation.' StatisticsHowTo.com: Elementary Statistics for the rest of us! https://www.statisticshowto.com/probability-and-statistics/z-score/. Last accessed: 02 August 2024.
- **Ektamaini. (2020)**. 'Z score for Outlier Detection Python'. GeeksforGeeks. https://www.geeksforgeeks.org/z-score-for-outlier-detection-python/. Last accessed: 02 August 2024.

- **Stephanie, G (n.d.).** 'Welch's ANOVA: Definition, Assumptions' StatisticsHowTo.com: Elementary Statistics for the rest of us! https://www.statisticshowto.com/what-is-statistical-significance/. Accessed: October 25, 2023.
- **Ott, R. L., & Longnecker, M. (2015).** 'An Introduction to Statistical Methods and Data Analysis (7th ed.)'. Cengage Learning.
- Stephanie, G (n.d.). 'Statistical Significance: Definition, Examples' StatisticsHowTo.com: Elementary Statistics for the rest of us! https://www.statisticshowto.com/what-is-statistical-significance/. Accessed: October 25, 2023.

- Q Lund Research Ltd. (2018). 'One-way ANOVA in SPSS Statistics'. Lund Research Ltd. https://statistics.laerd.com/spss-tutorials/one-way-anova-using-spss-statistics.php#:~:text=Typically%2C%20a%20one%2Dway%20ANOVA,commonly%20used%20for%20two%20groups). Accessed: October 25, 2023.
- Stangor, C. (2011). 'Research methods for the behavioral sciences (4th ed.)'. Mountain View, CA: Cengage.
- Q Surbhi, S. (2017). 'Difference Between Null and Alternative Hypothesis.' Key Differences. https://keydifferences.com/difference-between-null-and-alternative-hypothesis.html. Accessed: October 25, 2023.

- Walters, S. (2020). 'Psychology 1st Canadian Edition'. Thompson Rivers University. <a href="https://psychology.pressbooks.tru.ca/chapter/3-2-psychologists-use-descriptive-correlational-and-experimental-research-designs-to-understand-behaviour/#:~:text=Descriptive%20research%20is%20designed%20to,to%20assess%20cause%20and%20effect. Accessed: October 25, 2023.
- **Q Powers, D. M. (2011)**. 'Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation'. Journal of Machine Learning Technologies, 2(1), 37–63.