

多變量分析

Chapter 2

資料處理的幾何觀念

Applied Multivariate Techniques

2.1 直角座標系

• p 維空間用 p 個通過原點且互相垂直的直角座標軸描述。 p 維上的點 A 記作(a_1 , a_2 , ..., a_p),其中 a_p 為A點在第 p 軸的座標。

圖 2.1 相對於某一參考點的點座標

歐氏距離

• p維空間上兩點的歐氏距離為:

$$D_{AB} = \sqrt{\sum_{j=1}^{p} (a_j - b_j)^2}$$
 (2.1)

其中 $a_i \cdot a_j$ 為A與B 兩點在第j軸上的座標。

圖 2.3 兩點間的歐氏距離

2.2 向量

• 空間上的**向量(vector)**常用有向線段或射線描述。

圖 2.4

向量

圖 2.5 向量平移

向量算術運算的幾何意義

- 向量乘一實數
 - 向量 \mathbf{a} 乘一實數 k 得一新向量 \mathbf{b} ,其長度 \mathbf{a} 為長度的 k 倍,實數k常稱為**純量**(scalar)。
 - |k| > 1 則伸長(stretch)向量,|k| < 1 則縮短 (compress)向量。
 - 若k為正數則向量方向不變,若為負數則向量反向,稱為向量的**鏡射**或**反射**(reflection)。

圖 2.6 向量乘以純量

向量算術運算的幾何意義(續)

- 向量的加減
 - 向量的加法
 - a + b 恰為以 a , b 為邊的平行四邊形的對角線
 - 向量的減法
 - 因此可得 $\mathbf{c} = \mathbf{a} \mathbf{b}$ 一向量,其起點為 \mathbf{b} 向量的終點,其終點為 \mathbf{a} 向量的終點。

圖 2.7 向量相加

圖 2.8 向量相減

向量算術運算的幾何意義(續)

- 兩向量相乘
 - 兩向量相乘若得一純量,則稱為**純量積** (scalar product)或**內積**(inner product)或點 積(dot product)。細節見2.4.4節。

圖 2.9 向量的投影

2.3 直角座標系上的向量

• p 維上的 A 點 ,可用 p - 維向量 $\mathbf{a} = (a_1, a_2, a_3)$ $a_2, ..., a_p$)表示。而其原點即為零向量 0=(0,0,...,0) °

圖 2.10 直角座標系上的向量

長度與方向餘弦

• a 表示向量 a 的長。一般而言,p 維向量的長為:

$$\|\mathbf{a}\| = \sqrt{\sum_{j=1}^{p} a_j^2}$$
 (2.3)

其中 a_j 為第j個分量。

• 向量與兩軸的夾角的餘弦,稱為**方向餘 弦(direction cosines)**。

圖 2.11 三角函數

圖 2.12 長與方向餘弦

$$\cos \alpha = \frac{a_1}{\|\mathbf{a}\|} = \frac{a_1}{\sqrt{a_1^2 + a_2^2}}$$

$$\cos \beta = \frac{a_2}{\|\mathbf{a}\|} = \frac{a_2}{\sqrt{a_1^2 + a_2^2}}.$$

標準基向量

• 向量 $\mathbf{e} = (1,0)$ 及 $\mathbf{e}_2 = (0,1)$,稱為標準基 向量(standard basis vectors)。

圖 2.13

標準基向量

2.4 向量運算的代數公式

- 算術運算
- 考慮 $\mathbf{a} = (a_1, a_2, ..., a_p)$ 及 $\mathbf{b} = (b_1, b_2, ..., b_p)$ 兩向 量,則:
 - 向量乘以純量

$$k\mathbf{a} = (ka_1, ka_2, \dots, ka_p)$$
 (2.6)

- 向量的加減

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, ..., a_p + b_p)$$
 (2.7)

$$\mathbf{a} - \mathbf{b} = (a_1 - b_1, a_2 - b_2, ..., a_p - b_p)$$
 (2.8)

- 兩向量的純量積

$$\mathbf{ab} = a_1 b_1 + a_2 b_2 + \dots + a_p b_p \tag{2.9}$$

線性組合

- 空間上每一點都可寫成基底向量的線性組合。
- 即 $\mathbf{a} = (a_1, a_2, ..., a_p)$ 可寫成:

$$\mathbf{a} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + \dots + a_p \mathbf{e}_p \tag{2.10}$$

圖 2.14

線性組合

兩向量的距離與夾角

• 向量a、b的距離,即為

$$\|\mathbf{c}\| = \sqrt{\|\mathbf{a}\|^2 + \|\mathbf{b}\|^2 - 2\|\mathbf{a}\| \cdot \|\mathbf{b}\| \cos\alpha}$$
 (2.12)

其中 $\cos \alpha$ 為**a**、**b**兩向量的夾角。

圖 2.15 兩向量的距離與夾角

純量積及向量投影

• 兩向量的純量積定義為

$$\mathbf{a}\mathbf{b} = \|\mathbf{a}\| \cdot \|\mathbf{b}\| \cdot \cos\alpha$$
 (2.13)
其中 $\mathbf{a}\mathbf{b}$ 為 \mathbf{a} 及 \mathbf{b} 的純重槓, α 為 $\mathbf{a} \cdot \mathbf{b}$ 兩 向量的夾角。

- **a** 在 **b** 的投影向量為 **a**_n, **b**_n的向量長為: $\|\mathbf{a}_p\| = \|\mathbf{a}\| \cos \alpha$ (2.14)
- 投影向量可寫成

$$\mathbf{a}_p = \frac{\parallel \mathbf{a}_p \parallel \cdot \mathbf{b}}{\parallel \mathbf{b} \parallel} \tag{2.17}$$

圖 2.16 純量積及向量投影

Ch1-23

圖 2.17 向量在子空間的投影

2.5 向量獨立與維度

- p 個向量 $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_p$ 為線性獨立,若且 唯若沒有向量是其餘向量的線性組合。
- 能衍生出給定空間的線性獨立向量的個數決定該空間的維度(dimensionality)。

2.6 變換基底

• 同一點 A 對某一基底的描述變換成對另一基底的描述過程稱為**變換基底**(change in basis)

Figure 2.20 Representing points with respect to new axes.

純量積及向量投影

• Projection of e_1 on e_1^* is $||e_1|| \cos(\theta) = \cos(\theta)$

- Projection of e_1 on e_2^* is $\|e_1\| \cos(90+\theta) = -\sin(\theta)$ $\cos(90+\theta) = \cos(90)\cos(\theta) - \sin(90)\sin(\theta) = 0\cos(\theta) - 1x\sin(\theta)$
- Projection of e_2 on e_1^* is $||e_2|| \cos(90-\theta) = \sin(\theta)$
- $\cos(90-\theta) = \cos(90)\cos(\theta) + \sin(90)\sin\theta = 0\cos(\theta) + 1\sin(\theta)$
- Projection of e_2 on e_2^* is $\|e_2\| \cos(\theta) = \cos(\theta)$

The projection of e_1 on e_1^* is $\cos(\theta)$ and the projection of e_1 on e_2^* is $\cos(90 + \theta) = -\sin\theta$.

The projection of e_2 on e_1^* is $\cos(\theta - 90) = \sin \theta$ and the projection of e_2 on e_2^* is $\cos \theta$.

$$\mathbf{e}_1 = \cos \theta \times \mathbf{e}_1^* - \sin \theta \times \mathbf{e}_2^*$$
.

$$e_2 = \sin \theta \times e_1^* + \cos \theta \times e_2^*$$

$$\mathbf{a} = a_1(\cos\theta \times \mathbf{e}_1^* - \sin\theta \times \mathbf{e}_2^*) + a_2(\sin\theta \times \mathbf{e}_1^* + \cos\theta \times \mathbf{e}_2^*)$$
$$= (\cos\theta \times a_1 + \sin\theta \times a_2)\mathbf{e}_1^* + (-\sin\theta \times a_1 + \cos\theta \times a_2)\mathbf{e}_2^*.$$

$$a_1^* = \cos \theta \times a_1 + \sin \theta \times a_2$$

 $a_2^* = -\sin \theta \times a_1 + \cos \theta \times a_2$

Home Work

• **#2.6**

 e_1 and e_2 are the basis vectors representing the orthogonal axes E_1 and E_2 , and f_1 and f_2 are oblique vectors representing the oblique axes F_1 and F_2 . Vectors **a** and **b** are given as follows:

$$a = 0.500e_1 + 0.866e_2$$

$$\mathbf{b} = 0.700\mathbf{f}_1 + 0.500\mathbf{f}_2.$$

If the relationship between the orthogonal and oblique axes is given by

$$f_1 = 0.800e_1 + 0.600e_2$$

$$\mathbf{f}_2 = 0.707\mathbf{e}_1 + 0.707\mathbf{e}_2$$

represent a with respect to f_1 and f_2 and b with respect to e_1 and e_2 . What is the angle between a and b?