Demystifying Deep Learning in Networking

Ying Zheng, Ziyu Liu, Xinyu You, Yuedong Xu

Junchen Jiang

Why Deep Neural Nets in Networking?

Application	Example gains	
Cloud job scheduling	32.4% less job slowdown	
Adaptive-bitrate streaming	12-25 % better QoE	
Routing	23-50% less congestion	
Cellular traffic scheduling	14.7% higher utilization	

Many more papers are coming!

Great promises of DNNs: Two-digit improvements in multiple applications

So what's wrong with DNNs in networking?

DNN is a "black box"

Problems

- Hard to confer causality
- Hard to trust
- Agnostic to domain knowledge

Black-Box Problem #1: Hard to confer causality

So probably DNN is looking for shortest job

But ... 20, 11, 13, 14
$$\longrightarrow$$
 DNN \longrightarrow (not 11!)

Correlation ≠ Causality

Problem #2: Hard to trust

System engineers may favor certainty over performance

Problem #3: Agnostic to domain-specific knowledge

Empirical requirement:

Resource utilization should be below 80%

Hard to imbue a domain-specific rule in a black box.

Roadmap to white-box DNNs

- How is a decision made?
- When will it fail?
- Can domain-specific knowledge be integrated?

Outline

- Why try to interpret deep learning in networking
- An attempt to explain DNN in networking: A case study
- Examples of worst-case performance of DNN
- Improving performance by domain-specific knowledge

First attempt: use saliency map to understand DNNs

Calculate gradient vector

$$w_i = \frac{\partial y_i}{\partial x}$$

- x: input vector
- y: output vector

the j^{th} element of w_i shows how much a small change on the j^{th} feature of x will change how likely i^{th} action is picked.

DeepRM Input/Output: A Case Study

Deep Neural Network(DNN)

- Input: Remaining resource, Resource requirements
- Output: Act probability over possible actions

What features make DeepRM a decision?

Saliency map

- CPU/RAM occupancy has small impact on the output
- Request time of jobs(outstanding district)

Relationship between intermediate output and decision

 High-level feathers have connections to intermediate layer and affect final output

Outline

- Why try to interpret deep learning in networking
- Reverse-engineer DNN in networking: A case study
- Examples of worst-case performance of DNN
- Improving performance by domain-specific knowledge

When DNN fails in a different workload than what it's trained on

Comparison objective	Testing distribution	DNN	Rule-based algorithm
	Training	3.73	4.51
	distribution	3.25	4.87
Average job slowdown		3.93	5.37
		3.03	4.71
Siowdowii	Other	10.57	9.69
	distribution	11.44	10.23
		12.02	10.75
		11.48	10.22

When DNN fails *even* in the same workload to what it's trained on

Comparison objective	Test data	DeepRM	Rule-based algorithm
Average job slowdown	Normal sequence	1.84	2.01
	Adversarial sequence	1.80	1.46

Outline

- Why try to interpret deep learning in networking
- Reverse-engineer DNN in networking: A case study
- Examples of worst-case performance of DNN
- Improving performance by domain-specific knowledge

Domain-specific knowledge might provide a cure

- Better transferability
- Better robustness
- Better training efficiency

A standard way to incorporate domain knowledge

Some takeaways, a lot more need to be done

- DNNs in networking achieve superior performance
- DNNs' limitations compel us to try to at least understand it.
- Our preliminary findings:
- a) One can explain to some extent how networking DNNs work
- b) DNNs may fail: fits only distribution, vulnerable to noises

Thanks for your listening!