Assignment 1

Gunnam Sri Satya Koushik CS22BTECH11026

12.13.1.12 Question: Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that

(i) the youngest is a girl (ii) at least one is a girl?

Answer : $(i)\frac{1}{2} (ii)\frac{1}{3}$

Solution : Lets us random variables X_i where $i \in \{1, 2\}$ as follows

	ith born child is a boy	
$X_i = 0$	ith born child is a girl	$Pr(X_i = 0) = 0.50$

Part (i): The required probability is the conditional probability that both the children are girls given that the youngest is a girl i.e,

$$Pr ((X_1 = 0, X_2 = 0) | X_2 = 0)$$

$$= \frac{Pr (X_1 = 0, X_2 = 0)}{Pr (X_2 = 0)}$$

$$= \frac{Pr (X_1 = 0) \cdot Pr (X_2 = 0)}{Pr (X_2 = 0)}$$

$$= Pr (X_1 = 0)$$

$$= \frac{1}{2}$$

Part (ii): The required probability is the conditional probability that both the children are girls given that at least one a girl i.e,

$$\Pr(X_{1} = 0, X_{2} = 0 | (X_{1} + X_{2}) < 2)$$

$$= \frac{\Pr(X_{1} = 0, X_{2} = 0)}{1 - \Pr((X_{1} + X_{2}) = 2)}$$

$$= \frac{\Pr(X_{1} = 0, X_{2} = 0)}{1 - \Pr(X_{1} = 1, X_{2} = 1)}$$

$$= \frac{\Pr(X_{1} = 0) \cdot \Pr(X_{2} = 0)}{1 - \Pr(X_{1} = 1) \cdot \Pr(X_{2} = 1)}$$

$$= \frac{\frac{\frac{1}{2} \cdot \frac{1}{2}}{1 - \frac{1}{2} \cdot \frac{1}{2}}}{1 - \frac{1}{2} \cdot \frac{1}{2}}$$

$$= \frac{1}{3}$$