Reinforcement Learning

Michèle Sebag ; TP : Diviyan Kalainathan, Laurent Cétinsoy TAO, CNRS - INRIA - Université Paris-Sud

Jan. 24th, 2018

Where we are

MDP Main Building block

General settings

	Model-based	Model-free
Finite	Dynamic Programming	Discrete RL
Infinite	(optimal control)	Continuous RL

Last course: Function approximation

This course: Direct policy search; Evolutionary robotics

Position of the problem

Notations

- ightharpoonup State space $\mathcal S$
- ightharpoonup Action space \mathcal{A}
- ▶ Transition model $p(s, a, s') \mapsto [0, 1]$
- ► Reward *r*(*s*)

bounded

Mainstream RL: based on values

$$V^*: \mathcal{S} \mapsto \mathbb{R}$$
 $\pi^*(s) = \underset{a \in \mathcal{A}}{arg \ opt} \left(\sum_{s'} p(s, a, s') V^*(s') \right)$ $Q^*: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$ $\pi^*(s) = \underset{a \in \mathcal{A}}{arg \ opt} (Q^*(s, a))$

What we want

$$\pi: \mathcal{S} \mapsto \mathcal{A}$$

Aren't we learning something more complex than needed ?... ⇒ Let us consider Direct policy search

From RL to Direct Policy Search

Direct policy search: define

- ► Search space (representation of solutions)
- ▶ Optimization criterion
- ▶ Optimization algorithm

Examples

×

Kohl and Stone, 2004

Ng et al, 2004

Tedrake et al, 2005

Kober and Peters, 2009

Mnih et al, 2015

(A3C)

Iteration 0

Schulman et al, 2016 (TRPO + GAE)

Levine*, Finn*, et al, 2016 (GPS)

Silver*, Huang*, et al, 2016 (AlphaGo**)

Representation

1.Explicit representation ≡ Policy space

 π is represented as a function from ${\mathcal S}$ onto ${\mathcal A}$

- ▶ Non-parametric representation, e.g. decision tree or random forest
- Parametric representation. Given a function space, π is defined by a vector of parameters θ .

$$\pi_{\theta} = \left\{ egin{array}{l} {\sf Linear function on } \mathcal{S} \\ {\sf Radius-based function on } \mathcal{S} \\ {\sf (deep) Neural net} \end{array}
ight.$$

E.g. in the linear function case, given $s \in \mathcal{S} = \mathbb{R}^d$ and θ in \mathbb{R}^d ,

$$\pi_{\theta}(s) = \langle s, \theta \rangle$$

Representation

2. Implicit representation: for example Trajectory generators

 $\pi(s)$ is obtained by solving an auxiliary problem. For instance,

Define desired trajectories

Dynamic movement primitives

- ▶ Trajectory $\tau = f(\theta)$
- ightharpoonup Action = getting back to the trajectory given the current state s

Direct policy search in RL

Two approaches

- ► Model-free approaches
- ► Model-based approaches

History

- Model-free approaches were the first ones; they work well but i) require many examples; ii) these examples must be used in a smart way.
- Model-based approaches are more recent. They proceed by i) modelling the MDP from examples (this learning step has to be smart); ii) using the model as if it were a simulator.
 - Important points: the model must give a prediction **and** a confidence interval (will be very important for the exploration).

DPS: The model-free approach

DPS: The model-based approach Gaussian processes

Evolutionary robotics
Reminder
Evolution of morphology

Other

The model-free approach

Algorithm

- 1. Explore: Generate trajectories $\tau_i = (s_{i,t}, a_{i,t})_{t=1}^T$ after π_{θ_k}
- 2. Evaluate:
 - Compute quality of trajectories
 - Compute quality of (state-action) pairs
- 3. Update: compute θ_{k+1}

Two modes

- Episode-based
 - ▶ learn a distribution \mathcal{D}_k over Θ
 - draw θ after \mathcal{D}_k , generate trajectory, measure its quality
 - \triangleright bias \mathcal{D}_k toward the high quality regions in Θ space
- Step-based
 - draw a_t from $\pi(s_t, \theta_k)$
 - measure $q_{\theta}(s, a)$ from the cumulative reward gathered after having visited (s, a)

Episode-based

Step-based

Model-free Episode-based DPS. PROS

Getting rid of Markovian assumption

Model-free Episode-based DPS. PROS

Getting rid of Markovian assumption

▶ Rover on Mars: take a picture of region 1, region 2, ...

PROS, 2

Hopes of scalability

- With respect to continuous state space
- ▶ No divergence even under function approximation

Tackling more ambitious goals

also see Evolutionary RL

- Partial observability does not hurt convergence (though increases computational cost)
- Optimize controller (software) and also morphology of the robot (hardware);
- Possibly consider co-operation of several robots...

Model-free Episode-based DPS. CONS

Lost the global optimum properties

- Not a well-posed optimization problem in general
- ▶ Lost the Bellman equation ⇒ larger variance of solutions

A noisy optimization problem

- ▶ Policy $\pi \rightarrow$ a distribution over the trajectories (depending on starting point, on noise in the environment, sensors, actuators...)
- $ightharpoonup V(heta) =_{def} \mathbb{E}\left[\sum_t \gamma^t r_{t+1} | heta\right]$ or

$$V(\theta) =_{def} \mathbb{E}_{\theta} \left[J(\text{ trajectory }) \right]$$

▶ In practice

$$V(\theta) \approx \frac{1}{K} \sum_{i=1}^{K} J(\text{trajectory }_i)$$

How many trajectories are needed ?

Requires tons of examples

CONS, 2

The in-situ vs in-silico dilemma

- ▶ In-situ: launch the robot in the real-life and observe what happens
- ▶ In-silico: use a simulator
 - ▶ But is the simulator realistic ???

The exploration vs exploitation dilemma

- ▶ For generating the new trajectories
- ▶ For updating the current solution θ

$$\theta_{t+1} = \theta_t - \alpha_t \nabla V(\theta)$$

Very sensitive to the learning rate α_t .

The model-free approach, how

An optimization objective

An optimization mechanism

- ▶ Gradient-based optimization
- ▶ Define basis functions ϕ_i , learn α_i
- ▶ Use black-box optimization

Cumulative value, gradient

The cumulative discounted value

$$V(s_0) = r(s) + \sum_{t=1}^{\infty} \gamma^t r(s_t)$$

with s_{t+1} next state after s_t for policy π_{θ}

The gradient

$$\frac{\partial \textit{V}(\textit{s}_{0},\theta)}{\partial \theta} \approx \frac{\textit{V}(\textit{s}_{0},\theta+\epsilon) - \textit{V}(\textit{s}_{0},\theta-\epsilon)}{2\epsilon}$$

- ▶ Model $p(s_{t+1}|s_t, a_t, \theta)$ not required but useful
- ► Laarge variance! many samples needed.

A trick

- Using a simulator: Fix the random seed and reset
- ▶ No variance of $V(s_0, \theta)$, much smaller variance of its gradient

Average value, gradient

No discount: long term average reward

$$V(s) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_t r(s_t) | s_0 = s \right]$$

Assumption: ergodic Markov chain

(After a while, the initial state does not matter).

- ▶ *V*(*s*) does not depend on *s*
- ▶ One can estimate the percentage of time spent in state s

$$q(\theta, s) = Pr_{\theta}(S = s)$$

Yields another value to optimize

$$V(\theta) = \mathbb{E}_{\theta}[r(S)] = \sum_{s} r(s)q(\theta, s)$$

Model-free Direct Policy Search

Algorithm

- 1. $V(\theta) = \mathbb{E}_{\theta}[r(S)] = \sum_{s} r(s)q(\theta, s)$
- 2. Compute or estimate the gradient $\nabla V(\theta)$
- 3. $\theta_{t+1} = \theta_t + \alpha_t \nabla V(\theta)$

Computing the derivative

$$\nabla V = \nabla \left(\sum_{s} r(s) q(\theta, s) \right) = \sum_{s} r(s) \nabla q(\theta, s)$$
$$= \mathbb{E}_{S, \theta} \left[r(S) \frac{\nabla q(\theta, S)}{q(\theta, S)} \right]$$
$$= \mathbb{E}_{S, \theta} \left[r(S) \nabla \log q(\theta, S) \right]$$

Unbiased estimate of the gradient (integral = empirical sum)

$$\hat{\nabla}V = \frac{1}{N}\sum_{i} r(s_i) \frac{\nabla q(\theta, s_i)}{q(\theta, s_i)}$$

The Success Matching Principle

$$\pi_{new}(a|s) \propto \text{ Success } (s, a, \theta).\pi_{old}(a|s)$$

Different computations of "Success"

- $\theta \sim \mathcal{D}_k$ generates trajectory, evaluation $V(\theta)$
- ▶ Transform evaluation into (non-negative) probability w_k
- Find mixture policy π_{k+1}

$$p(a|s) \propto \sum w_k p(a|s,\theta_k)$$

- ▶ Find θ_{k+1} accounting for π_{k+1}
- ▶ Update \mathcal{D}_k , iterate

Computing the weights

$$w_k = exp(\beta(V(\theta) - minV(\theta)))$$

 β : temperature of optimization

simulated annealing

Example

$$= \exp\left(10\frac{V(\theta) - \mathit{minV}(\theta)}{\mathit{maxV}(\theta) - \mathit{minV}(\theta)}\right)$$

Model-free Direct Policy Search, summary

Algorithm

- Define the criterion to be optimized (cumulative value, average value)
- ▶ Define the search space (Θ : parametric representation of π)
- ▶ Optimize it: $\theta_k \rightarrow \theta_k + 1$
 - Using gradient approaches
 - ▶ Updating a distribution \mathcal{D}_k on Θ
 - ▶ In the step-based mode or success matching case: find next best $q_{k+1}^*(s,a)$; find θ_{k+1} such that $Q^{\pi} = q_{k+1}^*$

Pros

It works

Cons

- Requires tons of examples
- Optimization process difficult to tune:
 - Learning rate difficult to adjust
 - Regularization (e.g. using KL divergence) badly needed and difficult to adjust

DPS: The model-free approach

DPS: The model-based approach Gaussian processes

Evolutionary robotics
Reminder
Evolution of morphology

Other

Direct Policy Search. The model-based approach

Algorithm

- 1. Use data $\tau_i = (s_{i,t}, a_{i,t})_{t=1}^T$ to learn a forward model $\hat{p}(s'|s, a)$
- Use the model as a simulator (you need the estimation, and the confidence of the estimation, for exploration)
- 3. Optimize policy
- 4. (Use policy on robot and improve the model)

DPS: The model-free approach

DPS: The model-based approach Gaussian processes

Evolutionary robotics

Reminder Evolution of morphology

Others

Learning the model

Modeling

Learning the model

Modeling and predicting

Learning the model

Modeling

When optimizing a model: very useful to have a measure of uncertainty on the prediction

Prior belief about the function

Posterior belief about the function

Posterior belief about the function

Posterior belief about the function

Posterior belief about the function

Posterior belief about the function

Posterior belief about the function

Posterior belief about the function

Gaussian Processes

http://www.gaussianprocess.org/

Posterior belief about the function

Gaussian Processes

http://www.gaussianprocess.org/

Posterior belief about the function

Computing the gradient

Given

► Forward model

$$s_{t+1} = f(s_t, a_t)$$

Differentiable policy

$$a = \pi(s_t, \theta)$$

It comes

$$V(\theta) = \sum_t \gamma^t r_{t+1}$$

Exact gradient computation

$$\begin{split} \frac{\partial V(\theta)}{\partial \theta} &= \sum_{t} \gamma^{t} \frac{\partial r_{t+1}}{\partial \theta} \\ &= \sum_{t} \gamma^{t} \frac{\partial r_{t+1}}{\partial s_{t+1}} \cdot \frac{\partial s_{t+1}}{\partial \theta} \\ &= \sum_{t} \gamma^{t} \frac{\partial r_{t+1}}{\partial s_{t+1}} \left(\frac{\partial s_{t+1}}{\partial s_{t}} \cdot \frac{\partial s_{t}}{\partial \theta} + \frac{\partial s_{t+1}}{\partial a_{t}} \cdot \frac{\partial a_{t}}{\partial \theta} \right) \end{split}$$

Model-based Direct Policy Search, summary

Algorithm

- Learn a model (prediction and confidence interval)
- Derive the gradient of the policy return
- ▶ Optimize it standard gradient optimization, e.g. BFGS

Pros

- Sample efficient (= does not require tons of examples)
- Fast (standard gradient-based optimization)
- Best ever results on some applications (pendulum on a car, picking up objects, controlling throttle valves)

Cons

- ▶ Gaussian processes (modelling also the confidence interval) hardly scale up: in $O(n^3)$, with n the number of examples
- ▶ Require specific parametrizations of the policy and the reward function
- ▶ Only works if the model is good (otherwise, disaster)

DPS: The model-free approach

DPS: The model-based approach Gaussian processes

Evolutionary robotics
Reminder
Evolution of morphology

Other

Evolutionary Robotics

- 1. Select the search space Θ
- 2. Define the objective function $\mathcal{F}(\theta)$ in simulation or in-situ Sky is the limit: controller; morphology of the robot; co-operation of several robots...
- 3. Optimize: Evolutionary Computation (EC) and variants
- 4. Test the found solution reality gap

Covariance-Matrix-Adaptation-ES

Hansen-Ostermeier, 2001; Auger-Hansen, 2010-2017

$$\theta \sim \mathcal{D}_k = \mathcal{N}(\mu_k, \Sigma_k)$$

- ightharpoonup easy to adapt μ_k
- ightharpoonup Computationally heavy to adapt Σ_k
- ▶ does not scale up to high dimensions

(>200)

$$\mathbf{y}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C}), \ \mathbf{C} = \mathbf{I}$$

 $\mathbf{x}_i = \mathbf{m} + \sigma \ \mathbf{y}_i, \ \sigma = 1$

$$egin{aligned} \mathbf{C}_{\mu} &= rac{1}{\mu} \sum oldsymbol{y}_{i:\lambda} oldsymbol{y}_{i:\lambda}^{\mathrm{T}} \ \mathbf{C} \leftarrow (1-1) imes \mathbf{C} + 1 imes \mathbf{C}_{\mu} \end{aligned}$$

 $m{m}_{\mathsf{new}} \leftarrow m{m} + rac{1}{\mu} \sum m{y}_{i:\lambda}$

- ▶ Invariances under monotonous transform of optimization criterion and affine transf. of Θ .
- ▶ A particular case of Information Geometry Optimization

Effects of step size

Search Space, 1

Neural Nets

- Universal approximators; continuity; generalization hoped for.
- ► Fast computation
- Can include priors in the structure
- ► Feedforward architecture: reactive policy
- Recurrent architecture: internal state

encoding memory (fast vanishing)

Critical issues

Non-parametric optimization much more difficult

Other options

- Finite state automaton (find states; write rules; optimize thresholds...)
 The Braitenberg controller.
- Genetic programming (optimization of programs)

Example: Swarm robots moving in column formation

Robot

Robotic swarm, 2

	Constants		
		l1	blind zone
		12	sensor range
Representation		ϕ	Vision angular range
	Variables(t)		
		r(t), s(t)	positions
		$\theta(t)$	angular direction

Example of a (almost manual) controller

CONTROLLER OF A ROBOT

Info. from the image sensors	Info. from the IR sensors			
into, from the image sensors	$0 \le x_{IR} < \beta_0$	$\beta_0 \leq x_{\rm IR} < \beta$	$\beta \leq x_{\text{IR}}$	
$0 \le x_{\text{image}} \le \alpha$	move backward or turn right	turn left		
$\alpha < x_{\rm image} < (19 - \alpha)$	move backward or turn right	stop	move forward	
$\alpha \leq x_{\text{image}} \leq 19$	move backward or turn right	turn right		
preceding robot NOT FOUND	move backward or turn right	move forward		

Toward defining \mathcal{F}

- The i-th robot follows the k-th robot at time t iff the center of gravity of k belongs to the perception range of i (s_k(t) ∈ A_i(t)).
- The i-th robot is a leader if i) it does not follow any other robot; ii) there exists at least one robot following it.
- A column is a subset {i₁,...i_K} such that robot i_{k+1} follows robot i_k and robot i₁ is a leader.
- A deadlock is a subset {i₁,...i_K} such that robot i_{k+1} follows robot i_k and robot i₁ follows robot i_K.

Optimization criterion

Brooks 89-01

The promise: no need to decompose the goal

Behavioral robotics hand crafted decomposition Manipulations Construction d'une carte Moteurs Capteurs Exploration Evitement d'obstacles Deplacement emergence of a structure Evolutionary robotics Moteurs Capteurs ? 9 ?

In practice: fitness shaping

- ▶ All initial (random) individuals are just incompetent
- ► Fitness landscape: Needle in the Haystack ? (doesn't work)
- ▶ Start with something simple
- ▶ Switch to more complex *during evolution*
- ► Example: visual recognition

Optimization criterion, 2

▶ Fonctional vs behavioral

state of controller vs distance walked

Implicit vs explicit

Survival vs Distance to socket

▶ Internal vs external information

Sensors, ground truth

► Co-evolution: e.g. predator/prey

performance depends on the other robots

State of art

- Standard: function, explicit, external variables
- In-situ: behavioral, implicit, internal variables
- Interactive: behavioral, explicit, external variables

Optimization criterion, 3

Fitness shaping

- ▶ Obstacle avoidance
- ▶ Obstacle avoidance, and move !
- ▶ Obstacle avoidance, and (non circular) move !!

Finally

Floreano Nolfi 2000

$$\mathcal{F}(heta) = \int_{T_{ ext{exp.}}} A(1 - \sqrt{\Delta B})(1 - i)$$

▶ A sum of wheel speed $r_i \in [-0.5, 0.5]$

 \rightarrow move

 \rightarrow ahead

▶ i maximum (normalised) of sensor values

 \rightarrow obstacle avoidance

Behavioral, internal variables, explicit

Result analysis

- ▶ First generations
 - Most rotate
 - ▶ Best ones slowly go forward
 - ► No obstacle avoidance
 - ▶ Perf. depends on starting point
- ▶ After \approx 20 gen.
 - Obstacle avoidance
 - No rotation
- ► Thereafter, gradually speed up

Result analysis, 2

► Max. speed 48mm/s (true max = 80)

Inertia, bad sensors

Never stuck in a corner

contrary to Braitenberg

Going further

- Changing environment
- Changing robotic platform

Limitations

From simulation to real-world

Reality gap!

- ▶ Opportunism of evolution
- ▶ Roboticists not impressed...

Carl Sims

Goal

- ► Evolve both morphology and controller
- using a grammar (oriented graph)
- ► Heavy computational cost simulation, several days on Connection Machine – 65000 proc.
- ► Evolving locomotion (walk, swim, jump)
- ▶ and competitive co-evolution (catch an object)

The creatures

Video: https://www.youtube.com/watch?v=JBgG_VSP7f8

Reset-Free Trial and Error

Jean-Baptiste Mouret, 17

 $https://www.youtube.com/watch?v{=}IqtyHFrb3BU\\$

Intrinsic rewards, swarm robotics

Internal rewards

Delarboulas et al., PPSN 2010

Requirements

- 2. On-board training
 - Frugal (computation, memory)
 - ▶ No ground truth
- 3. Providing "interesting results"

"Human - robot communication"

Goal: self-driven Robots: Defining instincts

Starting from (almost) nothing

Robot ≡ a data stream

$$t \rightarrow x[t] = (sensor[t], motor[t])$$

Trajectory =
$$\{x[t], t = 1 \dots T\}$$

Robot trajectory

Starting from (almost) nothing

Robot ≡ a data stream

$$t \rightarrow x[t] = (sensor[t], motor[t])$$

Trajectory =
$$\{x[t], t = 1 \dots T\}$$

Robot trajectory

Computing the quantity of information of the stream

Given $x_1, \ldots x_n$, visited with frequency $p_1 \ldots p_n$,

$$Entropy(trajectory) = -\sum_{i=1}^{n} p_i \log p_i$$

Conjecture

Controller quality \(\preceq \text{Quantity of information of the stream} \)

Building sensori-motor states

Avoiding trivial solutions...

If sensors and motors are continuous / high dimensional

- then all vectors x[t] are different
- ▶ then $\forall i, p_i = 1/T$; Entropy = log T

... requires generalization

From the sensori-motor stream to clusters

Clusters in sensori-motor space (\mathbb{R}^2)

sequence of points in \mathbb{R}^d sensori-motor states

Trajectory \rightarrow $x_1x_2x_3x_1...$

Clustering

k-Means

- 1. Draw k points $x[t_i]$
- 2. Define a partition C in k subsets C_i

Voronoï cells

$$C_i = \{x/d(x,x[t_i]) < d(x,x[t_j]), j \neq i\}$$

ϵ -Means

- 1. Init : $C = \{\}$
- 2. For t = 1 to T

▶ If $d(x[t], C) > \epsilon$, $C \leftarrow C \cup \{x[t]\}$

Initial site list

loop on trajectory

Curiosity Instinct

Search space

▶ Neural Net, 1 hidden layer.

Definition

- ▶ Controller F + environment \rightarrow Trajectory
- Apply Clustering on Trajectory
- ▶ For each C_i , compute its frequency p_i

$$\mathcal{F}(F) = -\sum_{i=1}^n p_i * \log(p_i)$$

Curiosity instinct: Maximizing Controller IQ

Properties

- ▶ Penalizes inaction: a single state \rightarrow entropy = 0
- ▶ Robust w.r.t. sensor noise (outliers count for very little)
- ▶ Computable online, on-board (use ϵ -clustering)
- Evolvable onboard

Limitations: does not work if

Environment too poor

(in desert, a single state \rightarrow entropy = 0)

▶ Environment too rich

(if all states are distinct, Fitness(controller) = log T)

both under and over-stimulation are counter-effective.

From curiosity to discovery

Intuition

- ▶ An individual learns sensori-motor states $(x[t_i]$ center of $C_i)$
- ▶ The SMSs can be transmitted to offspring
- giving the offspring an access to "history"
- ▶ The offspring can try to "make something different"

```
fitness(offspring) = Entropy(Trajectory(ancestors \cup offspring))
```

NB: does not require to keep the trajectory of all ancestors. One only needs to store $\{C_i, n_i\}$

From curiosity to discovery

Cultural evolution

transmits genome + "culture"

- 1. parent = (controller genome, $(C_1, n_1), \ldots (C_K, n_K)$)
- 2. Perturb parent controller \rightarrow offspring controller
- 3. Run the offspring controller and record $x[1], \dots x[T]$
- 4. Run ϵ -clustering variant.

$$Fitness(offspring) = -\sum_{i=1}^{\ell} p_i \log p_i$$

ϵ -clustering variant

Algorithm

- 1. Init : $C = \{(C_1, n_1), \dots (C_K, n_K)\}$
- 3. Define $p_i = n_i / \sum_i n_j$

$$Fitness(offspring) = -\sum_{i=1}^{\ell} p_i \log p_i$$

Initial site list loop on trajectory

Limitation

In stochastic environments

▶ High entropy in highly stochastic regions

Intrinsic motivations, neuro-curiosity

Oudeyer et al. 2005-2017

- lacktriangle More exploration ightarrow more data
- Are these data useful?
- Yes if Reduction of error of learned forward model.

https://www.youtube.com/watch?v=bkv83GKYpkI

Validation

Experimental setting

Robot = Cortex M3, 8 infra-red sensors, 2 motors. Controller space = ML Perceptron, 10 hidden neurons.

Medium and Hard Arenas

Validation, 2

Plot points in hard arena visited 10 times or more by the 100 best individuals.

PPSN 2010

Partial conclusions

Entropy-minimization

- computable on-board;
- ▶ yields "interesting" behavior
- needs stimulating environment

no need of prior knowledge/ground truth

DPS: The model-free approach

DPS: The model-based approach Gaussian processes

Evolutionary robotics
Reminder
Evolution of morphology

Others

Not covered

- Inverse Reinforcement Learning https://www.youtube.com/watch?v=VCdxqn0fcnE
- Programming by Feedback
- ▶ Deep Reinforcement Learning