1 Lecture Review

1.1 Cofactors and Cramer's Rule

Let A be a square $n \times n$ matrix.

1. The cofactor C_{ij} is defined by

$$C_{ij} = (-1)^{i+j} \det M_{ij}$$

where M_{ij} is the $(n-1) \times (n-1)$ matrix obtained by removing the *i*th row and *j*th column from A.

2. (Compute Determinant by Cofactors) For any $1 \le i \le n$,

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}.$$

3. If A is invertible, then

$$A^{-1} = \frac{1}{\det A} C^T.$$

In terms of entries, $(A^{-1})ij = C_{ji}/\det A$.

4. (Cramer's Rule) If A is invertible and Ax = b, then

 $x_j = \det(A \text{ with column } j \text{ changed to } b)/\det A.$

2 Problems

- 1. Let A be $n \times n$. Explain using the full form SVD why det $A \neq 0$ if and only if the rank of A is n.
- 2. If I is the $n \times n$ identity and a is a scalar, what is $\det(aI)$?

3.

4. Compute the determinant

$$\begin{vmatrix} 1 & 1 & & & \\ -1 & 1 & 1 & & & \\ & -1 & 1 & \cdot & & \\ & & \cdot & \cdot & 1 \\ & & & -1 & 1 \end{vmatrix}$$

of the $n \times n$ matrix by cofactor expansion.

- 5. If A is $n \times n$ and invertible and C is its cofactor matrix, show that
 - (a) $AC^T = \det(A)I$,
 - (b) $\det C = (\det A)^{n-1}$.
- 6. Let Q be a (square) orthogonal matrix. Find the cofactor matrix of Q up to sign. Explain how the sign is affected by the sign of $\det Q$.
- 7. Suppose A is an invertible $n \times n$ square matrix and B is a known $n \times m$ matrix.
 - (a) If you want to solve

$$AX = B$$

where X is an $n \times m$ unknown matrix using Cramer's rule, in general how many determinants do you need to compute?

- (b) How many determinants do you need to compute A^{-1} by cofactors?
- (c) Compare (7a) and (7b). In particular, how is (7b) a special case of (7a)?
- 8. Let A be an $n \times n$ matrix with row vectors $\boldsymbol{a}_1^T, \dots, \boldsymbol{a}_n^T$. The determinant of a matrix is a linear transformation of each row (and column). Consider the function $f(\boldsymbol{x})$ which replaces the first row \boldsymbol{a}_1^T of A with \boldsymbol{x}^T , that is

$$f(oldsymbol{x}) = \left| egin{array}{ccc} - & oldsymbol{x}^T & - \ - & oldsymbol{a}_2^T & - \ dots & dots \ - & oldsymbol{a}_n^T & - \end{array}
ight|.$$

Since f is a linear transformation from $\mathbb{R}^n \to \mathbb{R}$, we may write

$$f(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x}$$

for some $\boldsymbol{w} \in \mathbb{R}^n$. Find \boldsymbol{w} in terms of cofactors of A.