1 Proteins with kunitz domain, PDB (resolution lower than 3.5 length 40-80 pfam pf00014)

1 Proteins	with Kull	nz uomam,	PDB (resolu	tion lower t	nan 3.3 lengi	ın 40-ov pia	iii piuuu14)
protein	chain	leng hth	resolution	protein	chain	lenghth	resolution
3BTM	I	58	1.8	4TPI	I	58	2.2
3BTQ	I	58	1.9	4U30	Z	59	2.5
3BTT	I	58	1.9	4U32	X	55	1.65
3BTW	I	58	2.05	4WWY	I	58	1.7
3BYB	C	59	1.63	4WXV	I	55	2.1
3D65	I	57	1.64	4Y0Y	I	58	1.25
3FP6	I	58	1.49	4Y0Z	I	58	1.37
3FP7	J	43	1.46	4Y10	I	58	1.37
3FP8	I	58	1.46	4Y11	I	58	1.3
3GYM	J	58	2.8	5JB4	С	58	1.99
3L33	Н	52	2.48	5JB5	С	58	1.6
3LDI	Е	58	2.2	5JB6	С	58	1.9
3LDJ	С	58	1.7	5JB7	С	58	1.9
3LDM	Е	58	2.6	5M4V	A	57	1.06
3M7Q	В	61	1.7	5NX1	D	56	1.853
30FW	A	60	2.5	5NX3	D	56	2.296
3OTJ	I	58	2.15, 1.6	5PTI	A	58	1
3P92	Е	58	1.5992	5XX2	В	58	1.12
3P95	Е	58	1.2991	5XX3	В	58	1.12
3T62	F	54	2	5XX4	В	58	1.67
3TGI	I	65	1.8	5XX5	В	58	1.38
3TGJ	I	65	2.2	5XX6	В	58	1.31
3TGK	I	65	1.7	5XX7	D	58	1.38
3TPI	I	58	1.9	5XX8	В	58	1.3
3U1J	Е	51	1.8	5YV7	A	60	2.395
3U1J	Е	58	1.8	5YVU	I	55	2.491
3UIR	D	59	2.777	5YVU	I	55	2.491
3UOU	В	55	2	5YW1	I	54	2.6
3WNY	I	63	1.3	5YW1	I	55	2.6
4BQD	В	79	2.48	5ZJ3	С	59	1.88
4DG4	Н	58	1.4	6BX8	Н	80	1.98
4DTG	K	66	1.8	6F1F	E	58	1.716
4ISL	В	60	2.29	6HAR	E	80	1.497
4ISN	В	62	2.45	6KZF	A	60	2.52
4ISO	В	60	2.01	6KZF	A	60	2.52
4NTW	В	60	2.07	6PTI	A	58	1.7
4NTX	В	60	2.27	6Q61	A	61	1.3
4NTY	В	60	2.65	6Q6C	В	61	1.3
4PTI	A	58	1.5	6YHY	В	59	1.55
9PTI	A	58	1.22	7PTI	A	58	1.6
8PTI	A	58	1.8				

2 Clustering list (Common list between PDB and PDBeFOLD)

	2 Clusteriii	ig nsi (list between	rud a	ina PDber	OLD)	
cluster	_		cluster	_		cluster	_	
NO.	eir.	н.	NO.	ei:	Ŀ	NO.	ei:	.ш
&represe	protein	chain	&repres	protein	chain	&represe	protein	chain
	pr	၁		pr	၁		pr	၁
ntative	1 4 4 7		entative	OTTES.	C	ntative	43373737	-
	1AAL	A	_	2HEX	C	_	4WXV	I
	1AAL	В		2HEX	D		4Y0Y	I
	1B0C	A		2HEX	Е		4Y0Z	I
	1B0C	В		2IJO	I		4Y10	I
		C						I
	1B0C			2KAI	I		4Y11	
	1B0C	D		2PTC	I	\mathbb{R}	5PTI	Α
	1B0C	E		2R9P	E	F5.	5YVU	I
	1BHC	Α		2R9P	F	8	6F1F	A
	1BHC	В		2R9P	G	clsuter0 & F5RJ	6F1F	В
	1BHC	C		2R9P	I	ute	6F1F	C
						rs!:		
	1BHC	D		2RA3	C		6F1F	D
	1BHC	E		2RA3	I		6F1F	Е
	1BHC	F		2TGP	I		6PTI	A
	1BHC	G		2TPI	I		7PTI	A
	1BHC	Н		3BTK	I		8PTI	A
	1BHC	I		3FP6	I		9PTI	A
						ľ		
	1BHC	J		3FP7	J		1EJM	В
	1BPI	A		3FP8	I		1EJM	D
	1BPT	Α		3GYM	I		1EJM	F
	1BTH	P		3GYM	J		1P2I	I
	1BTH	Q		3LDI	A		1P2J	I
	1BTI	À		3LDI	В		1P2K	I
	1BZ5	A	_	3LDI	C		1P2M	В
[<u>X</u>			[]					
五	1BZ5	В	F.	3LDI	D		1P2M	D
clsuter0 & F5RI	1BZ5	C	clsuter0 & F5RI	3LDI	E		1P2N	В
er()	1BZ5	D	er0	3LDJ	A		1P2N	D
sut	1BZ5	E	sut	3LDJ	В		1P2O	В
cls	1BZX	I	cls	3LDJ	C		1P2O	D
	1CBW	D		3LDM	A		1P2Q	В
	1CBW	I		3LDM	В		1P2Q	D
						T8LB		
	1D0D	A		3LDM	С	l ≅	1T7C	В
	1D0D	В		3LDM	D		1T7C	D
	1EAW	В		3LDM	E	1 8	1T8L	В
	1EAW	D		3OTJ	I	cluster 1 & 1	1T8L	D
	1F5R	I		3P92	Е	nst	1T8M	В
	1F7Z	Ī		3P95	E	다	1T8M	D
	1FAN			3TGI	I		1T8N	В
		A						
	1FY8	I		3TGJ	I		1T8N	D
	1MTN	D		3TGK	I		1T8O	В
	1MTN	Н		3TPI	I		1T8O	D
	1NAG	Α		3U1J	Е		3BTD	I
	1TPA	I		4DG4	C		3BTE	I
	1YKT	В		4DG4	E		3BTF	I
	2FI3	I		4DG4	F		3BTG	I
	2FI4	I		4DG4	Н		3BTH	I
	2FI5	I		4PTI	A		3BTM	I
	2FTL	I		4TPI	I		3BTQ	I
	2FTM	В		4WWY	C		3BTT	I
	2HEX	A		4WWY	I		3BTW	I
							3D1W	1
	2HEX	В		4WXV	С			

Table S: Common identifiers and clusterizaiton

Continued Clustering list (Common list between PDB and PDBeFOLD)

201	tillucu (JIUSU	ering list (Collin	on not b	ctite	ch i bb and i bi	oci OLI	'
cluster NO. &representative	protein	chain	cluster NO. &representative	protein	chain	cluster NO. &representative	protein	chain
	2ZJX 2ZJX 2ZVX	A B A	34A	5JB4 5JB4 5JB4	A B C	cluster 17 &	5JB7 5JB7 5JB7	A B C
	2ZVX 5XX2	B A	cluster 6 & 5JB4A	5JB5 5JB5	A B	cluster 18 &	1ZR0 1ZR0	B D
X X	5XX2 5XX3	B A	cluster	5JB5 5JB6	C A	cluster 19 &	1D0D 1D0D	A B
8 2ZJ	5XX3 5XX4	B A		5JB6 5JB6	B C	clsuter 20 &	6YHY 6YHY	A B B
cluster 2 & 2ZJXA	5XX4 5XX5 5XX5	B A B	NYA	3WNY 3WNY 3WNY	A B C	cluster 21 &	1YLC 1YLD 5NX1	B C
	5XX6 5XX6	A B	cluster 7 & 3WNYA	3WNY 3WNY	E F	clsuter 22 &	5NX1 5NX3	D C
	5XX7 5XX7	A D	cluster	3WNY 3WNY	G H	clsuter 23 & cluster 24	5NX3 2KAI	D I
	5XX8 5XX8	A B	B	3WNY 3M7Q	I B	cluster 25 cluster 26	6HAR 4BQD	E B
	1AAP 1AAP	A B	cluster 8 & 3M7QB	30FW 3T62	A D	cluster 27 cluster 28	1BUN 1DTX	B A
APA	1BRC 1CA0	I D	uster 8 &	3T62 3T62	E F	cluster 29 cluster 30	1BRB 2IJO	I
& 1A	1CA0 1TAW	I B		3UOU 6BX8	B B	cluster 31 cluster 32	5M4V 1FAK	A I
cluster 3 & 1AAPA	1ZJD 3L33	B E	cluster 9 &	6BX8 6BX8	D F	cluster 33 cluster 34	4U32 5YVU	X I
ਂ ਹ	3L33 3L33	F G		6BX8 1YC0	H I	cluster 35 cluster 36	5YW1 5YW1	I I
	3L33	Н	er 10	4ISL	В	clsuter 37	3U1J	E
<	1Y62 1Y62	A B	clust	4ISN 4ISO	B B			
6061.	1Y62 1Y62	C D	cluster 11 & cluster 10 &	4U30 4U30	W X			
cluster 4 & 6Q61A	1Y62 1Y62	E F	cluster	4U30 4U30	Y Z			
clust	6Q61 6Q6C	A A	cluster 12 &	1TFX 1TFX	C D			
	6Q6C	В	clus	4DTG	K			

Table S: Common identifiers and clusterization

3- multiple alignment by mtm-align website

```
>1AALA.pdb
------RP-DF-C-LEPPY----T-----GPCKARIIRYFYNAKAGLVQTFVYGG--CR-A--KRNNFKSAEDAMRTCGG---A-
>1AAPA.pdb
------VR-EV-C-SEQAE----T------GPCRAMISRWYFDVTEGKCAPFFYGG--CG-G--NRNNFDTEEYCMAVCG-----
>1BRBI.pdb
-----A-GEPPY----T-----GPCKARIIRYFYNAKAGLCQTFVYGG--CR-A--KRNNFKSAEDCMRTA------
>1BUNB.pdb
R-----KRH-PD-C-DKPPD----T------KICQTVVRAFYYKPSAKRCVQFRYGG---C-N-GNGNHFKSDHLCRCECLE---YR
>1D0DA.pdb
-----YN-RLC--I-KPRDWI-DECDSNE----GGERAYFRNG-KGGCDSFWICPEDHTGAD----YYSSYRDCFNACI-----
>1DTXA.pdb
-----PRR-KL-C-ILHRN----P-----GRCYDKIPAFYYNOKKKOCERFDWSG--CG-G--NSNRFKTIEECRRTCIG----
>1EJMB.pdb
 ------RP-DF-C-LEPPY----T-----GPCRLRIIRYFYNAKAGLCQTFVYGG--CR-A--KRNNFKSAEDCLRTCGG---A-
>1FAKI.pdb
------AP-DF-C-LEPPY----D------GPCRALHLRYFYNAKAGLCQTFYYGG--CL-A--KRNNFESAEDCMRTC-----
>1G6XA.pdb
 ------RP-DF-C-LEPPY----GACRARIIRYFYNAKAGLCQTFVYGG--CR-A--KRNNFKSAEDCLRTCGG---A-
>1KNTA.pdb
-----T-DI-C-KLPKD----E-----GTCRDFILKWYYDPNTKSCARFWYGG--CG-G--NENKFGSQKECEKVCA-----
>1TFXC.pdb
------KP-DF-C-FLEED----P-----GICRGYITRYFYNNQTKQCERFKYGG--CL-G--NMNNFETLEECKNICEDG----
>1Y62A.pdb
------RP-SL-C-DLPAD----S-----GSGTKAEKRIYYNSARKQCLRFDYTG--QG-G--NENNFRRTYDCQRTCL-----
>1YLCB.pdb
------RP-DF---LEPPY----T------GPCKARIIRYFYNAKAGL-QTFVYGG--CR-A--KRNNFKSAED-MRT-G-----
>1ZR0B.pdb
--PTGN--NA-EI-C-LLPLD----Y------GPCRALLLRYYYDRYTQSCRQFLYGG--CE-G--NANNFYTWEACDDACWR---IE
>2IJOI.pdb
------RP-DF-C-LEPPY----T------GPCKARIIRYFYNAKAGLCQTFVYGG--CR-A--KRNNFKSAEDCMRTCG-----
>2KAII.pdb
------P-DF-C-LEPPY----T-----GPCKARIIRYFYNAKAGLCQTFVYGG--CR-A--KRNNFKSAEDCMRTCGG-----
>2ZJXA.pdb
------RP-DF-C-LEPPY----T------GPGKARIIRYFYNAKAGLAQTFVYGG--AR-A--KRNNFKSAEDALRTCGG-A---
>3BYBA.pdb
  ---KDRP-DF-C-ELPAD----T-----GPCRVRFPSFYYNPDEKKCLEFIYGG--CE-G--NANNFITKEECESTCA-----
>3U1JE.pdb
   ----RP-DF-C-LEPPY----T-----GPCKARIIRYFYNAKAGLCQTFVYGG--CR-A--KRNNFKSAEDCMRTCG-----
>4NTWB.pdb
-----IRP-AF-C-YEDPP----FF-----QKCGAFVDSYYFNRSRITCVHFFYGQ---C-D-VNQNHFTTMSECNRVCHG----
>4U30W.pdb
------A----CANLPIV----R-----GPCRAFIQLWAFDAVKGKCVLFPYGG--CQ-G--NGNKFYSEKECREYCG-----
>4U32X.pdb
 ------HDFC-LVSKV----V-----GRCRASMPRWWYNVTDGSCQLFVYGG--CD-G--NSNNYLTKEECLKKC------
>5JB4A.pdb
------RP-AF-C-LEPPY----A-----GPGAAAIIRYFYNAAAGAAQAFVYGG--VR-A--KRNNFASAADALAACAA--A--
>5M4VA.pdb
------RP-SF-C-NLPVK----P------GPCKAFFSAFYYSQKTNKCHSFTYGG--CK-G--NANRFSTLEKCRRTCVG----
>5NX1C.pdb
-----EV-C-SEQAE----T-----GPCRAMISRWYFDVTEGKCAPFFYGG--CG-G--NRNNFDTEEYCMAVCG-----
>5NX3C.pdb
------EV-C-SEQAE----T------GPCRALFFRWYFDVTEGKCAPFVYGG--CG-G--NRNNFDTEEYCMAVC-----
>5YV7A.pdb
-W----QPP-WY-C-KEPVR----GSCKKQFSSFYFKWTAKKCLPFLFSG--CG-G--NANRFQTIGECRKKCLGK----
>5YVUI.pdb
 ------RP-DF-C-LEPPY----T-----GPCKARIIRYFYNAKAGLCQTFVYGG--CR-A--KRNNFKSAEDCMRTC------
>5YW1I.pdb
------RP-DF-C-LEPPY----T------GPCKARMIRYFYNAKAGLCQPFVYGG--CR-A--KRNNFKSSEDCMRTC------
```

4- Domain and sequence E-value of all positive ids

	E-value	E-value	tee E value of all	E-value	E-value
Protein	sequence	domain	protein	sequence	domain
A0A6P8HC43	2.70E-78	2.80E-24	B2KTG2	2.90E-22	3.60E-22
Q02445	3.70E-59	3.50E-24	P26228	3.00E-22	3.70E-22
O54819	4.20E-57	5.10E-24	B2G331	4.20E-22	6.10E-22
P83606	1.20E-56	9.80E-23	P0DMX0	4.20E-22	5.50E-22
P10646	1.50E-56	9.90E-23	F6ULY1	4.30E-22	4.30E-22
P19761	1.80E-55	1.70E-22	P0DMJ3	5.00E-22	5.70E-22
P84875	4.70E-55	1.50E-21	A0A3G2FQK2	5.40E-22	5.40E-22
Q03610	7.80E-54	1.70E-17	Q8R0S6	5.90E-22	1.10E-19
Q7YRQ8	5.50E-47	1.20E-23	P10832	6.40E-22	8.30E-22
Q9WU03	3.00E-42	1.70E-24	F8J2F4	6.70E-22	8.10E-22
P86733	1.10E-41	6.60E-23	G9I929	8.40E-22	1.10E-21
P04365	4.90E-40	5.60E-22	P0DJ46	8.70E-22	8.70E-22
W4VSH9	1.50E-38	4.60E-23	P10831	9.10E-22	1.20E-21
Q6T269	3.10E-38	2.80E-21	A6MFL2	1.20E-21	1.50E-21
P62756	3.30E-38	2.70E-21	P16044	1.30E-21	1.50E-21
P62757	3.30E-38	2.70E-21	A5X2X1	1.40E-21	1.40E-21
Q60559	1.20E-36	1.90E-20	P00990	1.70E-21	1.90E-21
Q62577	4.10E-36	5.90E-20	D2Y491	2.10E-21	2.60E-21
Q64240	5.30E-35	1.60E-19	B5KL32	2.20E-21	2.70E-21
Q08E66	7.60E-34	9.60E-24	F8J2F6	2.40E-21	2.90E-21
P83609	9.90E-34	3.00E-20	P0DJ45	2.60E-21	2.60E-21
Q9R097	6.20E-33	1.10E-19	Q28201	2.60E-21	4.80E-21
Q8TEU8	9.10E-31	3.20E-22	A8Y7P3	2.70E-21	3.30E-21
P00974	9.20E-30	1.40E-29	P0DJ48	2.70E-21	3.90E-21
H2A0P0	3.10E-27	1.80E-17	A8Y7N4	2.70E-21	3.40E-21
P29216	3.20E-27	3.90E-27	A8Y7N6	3.00E-21	3.80E-21
P0DMJ6	2.40E-26	2.80E-26	B5KL34	3.10E-21	3.80E-21
Q7LZS8	2.40E-26	2.80E-26	A8Y7N7	3.60E-21	4.60E-21
P10280	3.80E-26	4.80E-26	A7X3V4	4.40E-21	5.50E-21
Q6NUX0	4.30E-26	2.60E-18	A8Y7P0	5.50E-21	6.70E-21
P0DN09	5.90E-26	7.90E-26	Q2ES50	5.50E-21	6.70E-21
Q7LZE3	7.60E-26	8.90E-26	Q6ITB2	6.20E-21	7.50E-21
P0DN08	8.00E-26	1.10E-25	Q9BDL1	6.50E-21	6.50E-21
P0DMW6	8.90E-26	1.10E-25	A8Y7P1	7.10E-21	9.00E-21
P79307	1.10E-25	2.20E-25	P15989	8.80E-21	2.30E-20
Q95241	1.10E-25	2.10E-25	D2Y488	9.00E-21	1.20E-20
P08592	1.20E-25	2.20E-25	I2G9B4	1.50E-20	1.90E-20
Q96NZ8	1.50E-25	3.00E-20	H2A0M2	1.60E-20	3.10E-20
P0DN11	1.50E-25	2.00E-25	Q2ES48	2.90E-20	3.70E-20
C1IC50	1.70E-25	2.10E-25	Q90W96	5.60E-20	6.80E-20
P0DN10	2.70E-25	3.60E-25	P0DN16	6.70E-20	9.00E-20
Q9TWG0	4.30E-25	5.30E-25	B2KTG3	7.10E-20	9.00E-20
Q90WA0	4.60E-25	5.50E-25	P19859	7.20E-20	8.40E-20
B5KL33	2.90E-22	3.50E-22	Q11101	3.70E-10	1.30E-09
D3GGZ8	4.00E-07	4.00E-07	O62247	4.90E-08	1.30E-07

4 Domain and sequence E-value of all positive ids

	E-value	E-value	c 12-value of a	E-value	E-value
Protein	sequence	domain	protein	sequence	domain
Q6ITB5	5.90E-25	7.00E-25	B5KL29	7.60E-20	9.20E-20
Q6ITB4	5.90E-25	7.00E-25	P0DQR0	9.70E-20	1.10E-19
P36992	5.90E-25 5.90E-25	2.80E-18	B5L5R6	9.70E-20 9.70E-20	1.10E-19 1.20E-19
Q6ITB9	6.40E-25	7.70E-25	P07481	2.60E-19	3.20E-19
P00980	1.00E-24	1.20E-24	H2A0N9	3.30E-19	3.20E-19 3.30E-19
P0DN06	1.00E-24 1.10E-24	1.50E-24	P0DJ77	3.50E-19	4.50E-19
P0DN17	1.10E-24 1.30E-24	1.70E-24	P68425	3.50E-19 3.50E-19	4.50E-19 4.50E-19
Q9TWF8	1.70E-24	2.10E-24	P0DJ66	3.50E-19	4.50E-19 3.50E-19
P81547	1.70E-24 1.90E-24	2.10E-24 2.50E-24	P0DJ47	5.20E-19	6.40E-19
B6RLX2	2.20E-24	2.70E-24	G3LH89	5.60E-19	7.10E-19
Q06481	2.70E-24	2.70E-24 2.70E-24	B5KL28	6.90E-19	8.40E-19
C0HLB2	3.70E-24	4.60E-24	P0DJ76	8.00E-19	1.00E-18
P0DMJ4	7.20E-24	8.20E-24	Q9EPX2	8.10E-19	8.10E-19
P24541	7.40E-24	8.70E-24	Q90W97	9.00E-19	1.10E-18
P00994	8.00E-24	9.30E-24	Q9DA01	1.30E-18	1.30E-18
C1IC51	8.00E-24	9.90E-24	Q589G4	1.90E-18	2.30E-18
P00979	1.20E-23	1.50E-23	P81906	3.20E-18	3.80E-18
P00993	1.30E-23	1.30E-23	D2Y2Q7	3.30E-18	4.40E-18
B5KF96	1.30E-23	1.60E-23	D2Y2Q2	3.80E-18	5.00E-18
B4ESA3	1.40E-23	1.70E-23	P26227	4.00E-18	4.50E-18
C0HK74	1.40E-23	1.60E-23	Q9D263	4.40E-18	6.20E-18
P25660	1.50E-23	1.80E-23	P0DJ84	5.70E-18	7.50E-18
A0A1Z0YU59	1.50E-23	1.80E-23	D2Y2Q8	6.70E-18	8.80E-18
Q2ES47	1.60E-23	2.00E-23	POCY85	1.60E-17	2.10E-17
Q6ITB1	2.00E-23	2.40E-23	D2Y2Q5	1.70E-17	2.30E-17
Q2ES46	2.00E-23	2.50E-23	P0DJ82	2.80E-17	3.70E-17
P0DN19	2.70E-23	3.50E-23	Q1RPS8	2.90E-17	3.70E-17
P0DMJ5	3.00E-23	4.40E-23	Q1RPS9	2.90E-17	3.70E-17
P00976	3.80E-23	4.60E-23	P0DMJ1	5.20E-17	6.80E-17
P0DL86	4.10E-23	4.90E-23	Q6UDR6	1.00E-16	1.60E-16
C0HJF4	4.30E-23	4.90E-23	Q75S49	1.50E-16	2.20E-16
P0DN07	4.80E-23	6.40E-23	Q02388	4.40E-16	6.60E-16
B5L5R7	5.40E-23	6.60E-23	P0DJ69	5.40E-16	6.80E-16
A6MGX9	6.50E-23	7.80E-23	P0DJ79	6.30E-16	8.30E-16
A6MFL1	8.70E-23	1.10E-22	B2ZBB9	9.10E-16	1.20E-15
E7FL11	1.10E-22	1.40E-22	D2Y2F9	9.20E-16	1.20E-15
P00992	1.50E-22	1.90E-22	B2ZBB8	9.20E-16	1.20E-15
A6MGY1	1.50E-22	1.80E-22	P0DJ78	9.20E-16	1.20E-15
P81162	1.60E-22	2.30E-22	D2Y2F6	1.20E-15	1.60E-15
P31713	1.70E-22	1.90E-22	D2Y2F8	1.20E-15	1.60E-15
B5L5R4	1.70E-22	2.10E-22	Q63870	1.50E-15	2.30E-15
A0A6B7FA07	1.80E-22	1.80E-22	P0DJ73	1.50E-15	2.10E-15
C1IC53	1.90E-22	2.40E-22	D2Y2F3	7.90E-15	1.00E-14
P20229	2.10E-22	2.50E-22	Q2ES49	8.50E-14	1.20E-13
A8Y7N5	2.30E-22	2.80E-22	D2Y2G0	1.40E-13	2.00E-13
Q29428	2.40E-22	3.80E-22	D2Y2G2	1.90E-13	2.60E-13

protein	E-value	E-value domain	protein	E-value	E-value domain
Q868Z9	sequence 7.40E-147	1.30E-18	F8J2F5	sequence 4.90E-24	5.90E-24
O76840	1.30E-143	3.30E-19	Q9TWF9	5.00E-24	6.10E-24
Q28864	4.20E-57	1.00E-22	F8J2F3	5.50E-24	6.60E-24
P48307	2.00E-44	1.60E-23	Q90W98	5.90E-24	7.20E-24
Q8WPI2	1.00E-42	7.00E-24	Q6ITB7	6.80E-24	8.20E-24
Q8WPI3	2.00E-42	5.20E-24	O93279	7.70E-24	1.40E-23
O43291	7.80E-41	2.50E-24	Q90W99	1.10E-23	1.40E-23 1.30E-23
O35536	1.20E-38	1.20E-21	C0HJU6	1.30E-23	1.50E-23
P02760	6.90E-38	1.20E-21	Q29100	1.30E-23	2.20E-23
P00978	3.70E-37	6.30E-21	B5KL39	1.80E-23	2.20E-23 2.20E-23
Q07456	3.30E-36	3.50E-20	Q6ITB0	2.00E-23	2.40E-23
P04366	4.40E-36	6.00E-21	P0DN13	2.10E-23	2.80E-23
B2BS84	1.60E-34	1.30E-20	B5L5R0	2.70E-23	3.20E-23
O43278	1.70E-34	4.70E-20	B5G6G6	2.70E-23 2.70E-23	3.20E-23
Q7TQN3	9.70E-32	5.00E-23	B5L5M7	2.90E-23	3.50E-23
P00975	7.50E-28	8.90E-28	P86862	3.00E-23	3.60E-23
P86964	1.10E-26	7.00E-16	P0DN20	3.20E-23	4.30E-23
H2A0N5	1.30E-26	2.90E-16	B5KF95	3.40E-23	4.10E-23
P04815	1.60E-26	2.30E-26	B5KL36	3.40E-23	4.10E-23
P00982	1.60E-26	2.00E-26	P00991	3.70E-23	4.70E-23
P12023	5.60E-26	1.00E-25	B5KF94	4.50E-23	5.40E-23
P00984	7.60E-26	8.90E-26	P0DQQ9	5.20E-23	6.00E-23
P00981	9.60E-26	1.30E-25	P0DN18	5.80E-23	7.80E-23
P53601	1.20E-25	2.20E-25	P0DJ50	6.30E-23	8.10E-23
P05067	1.20E-25	2.20E-25 2.20E-25	B5KL40	6.30E-23	7.70E-23
Q5IS80	1.20E-25 1.20E-25	2.20E-25 2.20E-25	C0HJF3	7.10E-23	8.20E-23
P0DN11	1.50E-25	2.20E-25 2.00E-25	Q8AY41	7.10E-23 7.90E-23	9.60E-23
P0DMW7	1.90E-25	2.30E-25	P81129	8.10E-23	9.30E-23
Q90WA1	2.20E-25	2.60E-25	B1B5I8	8.40E-23	1.10E-22
Q60495	4.30E-25	8.90E-25	P0DQR1	8.70E-23	1.00E-22
Q6ITB6	5.90E-25	7.00E-25	A8Y7N9	1.10E-22	1.40E-22
C0HJU7	8.60E-25	1.00E-24	P0DKL8	1.50E-22	1.80E-22
C0HK72	8.60E-25	1.00E-24 1.00E-24	A6MFL3	1.50E-22 1.50E-22	1.80E-22
P0DN14	1.00E-24	1.40E-24	B5KL35	1.90E-22	2.30E-22
H2A0N1	1.20E-24	2.20E-14	Q6ITB8	1.90E-22	2.30E-22
Q6T6T5	1.70E-24	2.20E-24	Q6ITC1	1.90E-22	2.30E-22
P81902	1.80E-24	2.10E-24	P12111	2.00E-22	4.30E-22
P00986	1.80E-24	2.10E-24	B5KL37	2.20E-22	2.60E-22
P15943	2.70E-24	2.70E-24	Q75S50	2.20E-22	2.80E-22
P0DMJ2	3.10E-24	3.70E-24	Q8AY44	2.20E-22	2.80E-22
P0DN12	3.10E-24 3.10E-24	4.20E-24	H6VC06	2.30E-22	2.80E-22
C0HK73	3.10E-24	3.60E-24	B2KTG1	2.60E-22	3.20E-22
•					
			•		
Q8T3S7 B7S4N9 P00985 C1IC52	3.20E-24 3.70E-24 4.00E-24 4.90E-24	4.10E-24 4.50E-24 4.50E-24 6.10E-24	Q6T6S5 B5L5Q8 E7FL12 Q1RPT0	2.60E-22 2.60E-22 2.80E-22 2.80E-22 2.90E-22	3.40E-22 3.40E-22 3.40E-22 3.70E-22

protein	E-value sequence	E-value domain	protein	E-value sequence	E-value domain
P00989	2.90E-22	3.70E-22	D8KY58	1.30E-19	1.70E-19
Q6ITB3	2.90E-22	3.50E-22	B5L5Q1	2.10E-19	2.60E-19
B2KTG2	2.90E-22	3.60E-22	P82966	2.40E-19	2.80E-19
P82968	2.90E-22	2.90E-22	Q0PL65	2.60E-19	3.20E-19
Q8AY45	2.90E-22	3.70E-22	B2ZBB6	3.90E-19	5.10E-19
A6MFL4	3.20E-22	3.90E-22	B5L5Q6	1.10E-18	1.30E-18
A0A6B7FBD3	3.30E-22	3.30E-22	095428	1.40E-18	1.40E-18
B5KL31	3.40E-22	4.10E-22	P0DJ49	2.20E-18	3.00E-18
P00983	5.80E-22	6.70E-22	Q8T0W4	2.40E-18	3.60E-18
Q6ITC0	5.90E-22	7.20E-22	D2Y2Q9	5.50E-18	7.50E-18
P81658	5.90E-22	7.70E-22	D2Y2G1	5.70E-18	7.50E-18
B5KL38	6.90E-22	8.30E-22	Q2UY11	8.10E-18	1.50E-17
A8Y7P4	8.40E-22	1.00E-21	B4ESA2	2.30E-17	2.90E-17
B5L5R1	1.10E-21	1.30E-21	P16344	3.20E-17	4.20E-17
Q7T2Q6	1.10E-21	1.40E-21	O73683	3.50E-17	7.00E-17
P0C5J5	1.20E-21	2.90E-19	D2Y2Q1	4.10E-17	5.40E-17
B5KL30	1.30E-21	1.60E-21	Q2UY09	5.80E-17	1.10E-16
E5AJX3	1.40E-21	1.80E-21	Q8AY46	1.60E-16	2.30E-16
E7FL13	1.70E-21	2.00E-21	Q9W728	2.20E-16	3.20E-16
B5KL41	1.80E-21	2.20E-21	B5L5Q3	2.50E-16	3.00E-16
D2Y489	1.90E-21	2.30E-21	Q7Z1K3	4.40E-16	1.00E-15
Q5ZPJ7	2.50E-21	3.10E-21	P00987	5.10E-16	7.50E-16
H6VC05	2.70E-21	3.40E-21	P0DJ74	5.40E-16	6.80E-16
A8Y7N8	2.80E-21	3.40E-21	D2Y2Q6	5.50E-16	7.30E-16
P11424	4.20E-21	5.20E-21	P0DJ85	5.80E-16	7.40E-16
A7X3V7	4.50E-21	6.10E-21	P0DJ65	9.20E-16	1.20E-15
Q8AY43	5.20E-21	6.50E-21	D2Y2C2	9.20E-16	1.20E-15
A8Y7P6	5.40E-21	6.70E-21	P0DJ70	9.20E-16	1.20E-15
P86959	5.90E-21	1.20E-20	P0DJ80	9.20E-16	1.20E-15
P0C1X2	6.00E-21	7.50E-21	P0DJ75	9.20E-16	1.20E-15
P81548	6.90E-21	7.90E-21	B2ZBC0	9.20E-16	1.20E-15
D2Y490	7.50E-21	9.30E-21	D2Y2F4	1.10E-15	1.40E-15
P0DN15	7.80E-21	1.00E-20	P0DJ67	1.10E-15	1.40E-15
A8Y7P5	8.40E-21	1.10E-20	P0DJ72	1.20E-15	1.60E-15
Q4KUS1	9.00E-21	9.00E-21	D2Y2F7	1.50E-15	2.10E-15
B4ESA4	9.80E-21	1.20E-20	D2Y2F5	2.20E-15	2.80E-15
Q3UW55	1.50E-20	1.50E-20	P0DJ71	2.20E-15	2.80E-15
D4A2Z2	1.50E-20	1.50E-20	P0DJ81	3.90E-15	5.30E-15
A8Y7P2	1.50E-20	1.90E-20	P0DJ64	7.90E-15	1.00E-14
O95925	1.90E-20	1.90E-20	P0DJ68	1.90E-13	2.60E-13
P0C8W3	2.10E-20	2.90E-20	C0LNR2	6.20E-13	8.80E-13
O62845	2.50E-20	2.50E-20	Q9BQY6	6.20E-13	6.20E-13
P49223	2.50E-20	3.20E-20	Q8IUA0	2.10E-12	2.10E-12
Q8AY42	2.70E-20	3.40E-20	P86963	6.50E-11	6.50E-11
Q29143	5.30E-20	7.60E-20	P26226	8.00E-11	1.30E-10
B5KL27	5.50E-20	6.70E-20			

Calculating the performance of the model

Performance of set_all.res								
Threshold	ACC	MCC	СМ	FPR	TPR			
1.00E-06	0.999989241	0.991875446	[[557281,0],[6,365]]	0.016172507	0.983827493			
1.00E-05	0.999985654	0.989210914	[[557279,0],[8,365]]	0.021447721	0.978552279			
1.00E-08	0.999985654	0.989108347	[[557281,2],[6,363]]	0.016260163	0.983739837			
1.00E-07	0.999985654	0.989108347	[[557281,2],[6,363]]	0.016260163	0.983739837			
1.00E-09	0.999985654	0.989067557	[[557282,3],[5,362]]	0.013623978	0.986376022			
1.00E-10	0.999985654	0.989033918	[[557283,4],[4,361]]	0.010958904	0.989041096			
1.00E-11	0.999983861	0.987647177	[[557283,5],[4,360]]	0.010989011	0.989010989			
1.00E-12	0.999982068	0.986258491	[[557283,6],[4,359]]	0.011019284	0.988980716			
0.0001	0.999976688	0.982642326	[[557274,0],[13,365]]	0.034391534	0.965608466			
1.00E-13	0.999971308	0.977885091	[[557283,12],[4,353]]	0.011204482	0.988795518			
1.00E-14	0.999969515	0.976482564	[[557283,13],[4,352]]	0.011235955	0.988764045			
1.00E-15	0.999928271	0.943651039	[[557283,36],[4,329]]	0.012012012	0.987987988			
1.00E-16	0.999899579	0.920123106	[[557283,52],[4,313]]	0.012618297	0.987381703			
1.00E-17	0.999876267	0.900555475	[[557283,65],[4,300]]	0.013157895	0.986842105			
1.00E-18	0.999842195	0.871168651	[[557283,84],[4,281]]	0.014035088	0.985964912			
1.00E-19	0.999802744	0.83585573	[[557283,106],[4,259]]	0.015209125	0.984790875			
0.001	0.999670045	0.815245767	[[557103,0],[184,365]]	0.335154827	0.664845173			
0.01	0.996135583	0.379843621	[[555132,0],[2155,365]]	0.85515873	0.14484127			
0.1	0.958520726	0.122023665	[[534156,0],[23131,365]]	0.984465441	0.015534559			
1	0.528471161	0.027057843	[[294338,0],[262949,365]]	0.998613822	0.001386178			

Table S5: calculating the performance of the built HMM model on set_all.res according to ACC, MCC, CM, FPR, TPR in different thresholds and finding the optimal one(the optimal Threshold is bold)

Calculating the performance of the model

Performance of set_all1.res									
Threshold	ACC	MCC	MCC	FPR	TPR				
1.00E-06	0.999989241	0.991853413	[[278640,0],[3,182]]	0.016216216	0.983783784				
1.00E-05	0.999985654	0.989181772	[[278639,0],[4,182]]	0.021505376	0.978494624				
0.0001	0.999982068	0.986531585	[[278638,0],[5,182]]	0.026737968	0.973262032				
1.00E-08	0.999982068	0.986296104	[[278640,2],[3,180]]	0.016393443	0.983606557				
1.00E-07	0.999982068	0.986296104	[[278640,2],[3,180]]	0.016393443	0.983606557				
1.00E-12	0.999982068	0.98622067	[[278641,3],[2,179]]	0.011049724	0.988950276				
1.00E-11	0.999982068	0.98622067	[[278641,3],[2,179]]	0.011049724	0.988950276				
1.00E-10	0.999982068	0.98622067	[[278641,3],[2,179]]	0.011049724	0.988950276				
1.00E-09	0.999978481	0.983505717	[[278640,3],[3,179]]	0.016483516	0.983516484				
1.00E-14	0.999971308	0.977823864	[[278641,6],[2,176]]	0.011235955	0.988764045				
1.00E-13	0.999971308	0.977823864	[[278641,6],[2,176]]	0.011235955	0.988764045				
1.00E-15	0.99993903	0.952190616	[[278641,15],[2,167]]	0.01183432	0.98816568				
1.00E-16	0.999921097	0.937648077	[[278641,20],[2,162]]	0.012195122	0.987804878				
1.00E-17	0.999892406	0.913900222	[[278641,28],[2,154]]	0.012820513	0.987179487				
1.00E-18	0.999849368	0.877077152	[[278641,40],[2,142]]	0.013888889	0.986111111				
1.00E-19	0.999795571	0.828757374	[[278641,55],[2,127]]	0.015503876	0.984496124				
0.001	0.999670044	0.814870705	[[278551,0],[92,182]]	0.335766423	0.664233577				
0.01	0.996151708	0.380080882	[[277570,0],[1073,182]]	0.85498008	0.14501992				
0.1	0.958522371	0.121861691	[[267078,0],[11565,182]]	0.984506683	0.015493317				
1	0.528263248	0.027009605	[[147111,0],[131532,182]]	0.998618218	0.001381782				

Table S6: calculating the performance of the built HMM model on set_all1.res according to ACC, MCC, CM, FPR, TPR in different thresholds and finding the optimal one(the optimal Threshold is bold)

Calculating the performance of the model

Performance of set_all2.res								
Threshold	ACC	MCC	CM	FPR	TPR			
1.00E-09	0.999992827	0.994576337	[[278642,0],[2,183]]	0.010810811	0.989189189			
1.00E-08	0.999989241	0.991897361	[[278641,0],[3,183]]	0.016129032	0.983870968			
1.00E-07	0.999989241	0.991897361	[[278641,0],[3,183]]	0.016129032	0.983870968			
1.00E-06	0.999989241	0.991897361	[[278641,0],[3,183]]	0.016129032	0.983870968			
1.00E-10	0.999989241	0.991823917	[[278642,1],[2,182]]	0.010869565	0.989130435			
1.00E-05	0.999985654	0.989239899	[[278640,0],[4,183]]	0.021390374	0.978609626			
1.00E-11	0.999985654	0.989063861	[[278642,2],[2,181]]	0.010928962	0.989071038			
1.00E-12	0.999982068	0.986296104	[[278642,3],[2,180]]	0.010989011	0.989010989			
1.00E-04	0.999971308	0.978819532	[[278636,0],[8,183]]	0.041884817	0.958115183			
1.00E-13	0.999971308	0.97794598	[[278642,6],[2,177]]	0.011173184	0.988826816			
1.00E-14	0.999967722	0.975146765	[[278642,7],[2,176]]	0.011235955	0.988764045			
1.00E-15	0.999917512	0.935080969	[[278642,21],[2,162]]	0.012195122	0.987804878			
1.00E-16	0.999878061	0.90235729	[[278642,32],[2,151]]	0.013071895	0.986928105			
1.00E-17	0.999860128	0.887085075	[[278642,37],[2,146]]	0.013513514	0.986486486			
1.00E-18	0.999835023	0.865252508	[[278642,44],[2,139]]	0.014184397	0.985815603			
1.00E-19	0.999809918	0.842856195	[[278642,51],[2,132]]	0.014925373	0.985074627			
0.001	0.999670046	0.815619294	[[278552,0],[92,183]]	0.334545455	0.665454545			
0.01	0.996119458	0.379608072	[[277562,0],[1082,183]]	0.855335968	0.144664032			
0.1	0.958519082	0.122185397	[[267078,0],[11566,183]]	0.984424206	0.015575794			
1	0.528679073	0.027106066	[[147227,0],[131417,183]]	0.998609422	0.001390578			

Table S7: calculating the performance of the built HMM model on set_all2.res according to ACC, MCC, CM, FPR, TPR in different thresholds and finding the optimal one(the optimal Threshold is bold)

2 Useful Linux Commands

2.1 Common identifiers (150 common proteins between two lists)

python compare.py clean pdb.seq list2 |awk '{print ">"\$1;print \$2}' >comm seq.fasta

2.2 Getting the clusterized list

awk '{if (substr(\$0,1,1)==">") {print ""} else {printf "%s ",substr(\$3,2,5)}}' cd-hit.cluster |tail -n +2 >cdhit-seq.list

2.3 Extract the pdf file of all of these representative form pdb website

for i in 'cat list_pdb.txt'

do

wget -q https://files.rcsb.org/view/\$i.pdb done

2.4 Getting the list of representative chains

awk '{print substr(\$1,1,4),substr(\$1,5,1)}' ../cdhit-seq.list |sort -u > list chain.txt

2.5 Extract the information of representative chains about their ATOM and TER part

vi selch.sh

#!/bin/bash

pdbfile=\$1

chain=\$2

awk -v c=\$chain '{if ((substr(\$0,1,4)=="ATOM" || (substr(\$0,1,3)=="TER")) && substr(\$0,22,1)==c) print \$0}' \$pdbfile

awk '{print "./selch.sh",\$1".pdb",\$2" >chains/"\$1\$2".pdb"}' list_chain.txt >run.sh /bin/bash run.sh

2.6 Extract the fasta file of multipe structure alignment based on representative identifiers chains

wget https://yanglab.nankai.edu.cn/mTM-align/output/mTM018114/seq.fasta -o tm-ali.fasta

2.7 Remove the inital and final gaps in N terminal and C terminal of alignment

awk '{if (substr(\$0,1,1)==">") {printf "\n%s ",\$0} else {printf "%s",\$0} ' tm-ali.fasta |awk '{print substr(\$1,1,6);print substr(\$2,27,77)}' |tail -n +3 >bpti-kunitz.ali

2.8 Generate a Hidden Markov Model

hmmbuild bpti-kunitz.hmm bpti-kunitz.ali

2.9 Creating two groups of negatives and positives based on the reviewed proteins in uniprot and get just its IDs and save as positive.ids and negative ids

positive.fasta file

https://www.uniprot.org/ pfam: pf00014 reviewed leneth of 40 to *

negative.fasta file

https://www.uniprot.org/pfam: not pf00014 reviewed

leneth of 40 to *

cat positives.fasta | awk '{if (substr(\$0,1,1)==">") {split(\$0,a,"|");print a[2]} }' > positives.ids cat negatives.fasta | awk '{if (substr(\$0,1,1)==">") {split(\$0,a,"|");print a[2]} }' > negatives.ids

2.10 Sorting randomly the two groups of positives and negatives identifiers

sort -R positives.ids >positives.rids sort -R negatives.ids >negatives.rids

2.11 Cut the positives and negatives groups to halve

```
head -n 182 positives.rids >pos1.ids tail -n +181 positives.rids >pos2.ids
```

```
head -n 278643 negatives.rids >neg1.ids tail -n +278644 negatives.rids >neg2.ids
```

2.12 Run the hmmsearch we need a fasta file of list of identifiers

python3 select-seqs.py set_pos1.ids positives.fasta >set_pos1.fasta python3 select-seqs.py pos2.ids positives.fasta >set_pos2.fasta python3 select-seqs.py neg1.ids negatives.fasta >set_neg1.fasta python3 select-seqs.py neg2.ids negatives.fasta >set_neg2.fasta

2.13 Running the hidden markov model on the fasta file of identifiers

```
hmmsearch -Z 1 --noali --max --tblout set_pos1.out bpti-kunitz.hmm set_pos1.fasta hmmsearch -Z 1 --noali --max --tblout set_pos2.out bpti-kunitz.hmm set_pos2.fasta hmmsearch -Z 1 --noali --max --tblout set_neg1.out bpti-kunitz.hmm set_neg1.fasta hmmsearch -Z 1 --noali --max --tblout set_neg2.out bpti-kunitz.hmm set_neg2.fasta
```

```
grep -v "^#" set_pos1.out |awk '{print $1,$8,1}'>set_pos1.res
grep -v "^#" set_pos2.out |awk '{print $1,$8,1}'>set_pos2.res
grep -v "^#" set_neg1.out |awk '{print $1,$8,1}'>set_neg1.res
grep -v "^#" set_neg2.out |awk '{print $1,$8,1}'>set_neg2.res
```

2.14 Add info about the e value

```
comm -23 <(sort neg1.ids) <(awk '{print $1}' set_neg1.res |sort ) |awk '{print $1,10.0,0}' > set_neg1.add comm -23 <(sort neg2.ids) <(awk '{print $1}' set_neg2.res |sort ) |awk '{print $1,10.0,0}' > set_neg2.add comm -23 <(sort pos1.ids) <(awk '{print $1}' set_pos1.res |sort ) |awk '{print $1,10.0,0}' > set_pos1.add comm -23 <(sort pos2.ids) <(awk '{print $1}' set_pos2.res |sort ) |awk '{print $1,10.0,0}' > set_pos2.add
```

2.15 Categorize the groups and applying performance on them

```
cat set_neg1.res set_neg1.add set_pos1.res >set_all1.res cat set_neg2.res set_neg2.add set_pos2.res >set_all2.res
```

2.16 Calculating the performance of set all1.res

python3 performance.py set_all1.res |sort -nrk 6 >set_all1.out

2.19 Calculating the performance of set all2.res

python3 performance.py set_all2.res |sort -nrk 6>set_all2.out

2.20 Cross-validation (apply optiaml threshold on set_all1.res)

python3 performance.py set_all1.res 1e-09 awk 'p=0; if (\$2<1e-9) p=1; print \$1,p, \$3}' set_all1.res

python3 performance.py set_all2.res 1e-06 awk 'p=0; if (\$2<1e-6) p=1; print \$1,p, \$3}' set all2.res

2.21 finding Wrong prediction of set1 & set2

• awk '{if ($$2 \le 1e-9 \&\& $3==0 \parallel ($2 \ge 1e-9 \&\& $3==1)$)print \$0}' set all1.res

P0DV04 9.6e-23 0 P0DV06 2.8e-22 0 P17726 2.2e-10 0 Q11101 1.3e-09 1 O62247 1.3e-07 1 D3GGZ8 4e-07 1

• awk '{if ($$2 \le 1e-6 \&\& $3==0 \parallel ($2 \ge 1e-6 \&\& $3==1)$)print \$0}' set all2.res

P0DV05 6.7e-25 0 P0DV03 2.6e-23 0 P36235 8.3e-09 0

Overall Wrong predictions

awk '{p=0;if (\$2<1e-6) {p=1};print \$1,p, \$3}' set_all2.res |> set_all22.res awk '{p=0;if (\$2<1e-9) {p=1};print \$1,p, \$3}' set_all1.res > set_all11.res cat set_all11.res set_all22.res > set_all.res awk '{if (\$2!=\$3) print \$0}' set_all.res > wrong pred.res

Calculating the overall performance:

cat set_all1.res set_all2.res >set_overall.res
python3 performance.py set_overall.res |sort-nrk 6 >overall_performance.res

```
Select-seqs.py
#!usr/bin/env python3
import sys
def get_ids(fileids):
   listid=open(fileids).read().rstrip().split('\n')
   d=dict([(i,True) \text{ for } i \text{ in } listid])
   return d
def get_sequences(fileseq,listid):
   for line in f:
      if line.find('>')==0:
         pid=line.split('|')[1]
         if pid in listid:
             print(">"+pid)
             continue
         else:
      if c=1: print (line.rstrip())
   return
if \underline{\hspace{0.5cm}} name \underline{\hspace{0.5cm}} = '\underline{\hspace{0.5cm}} main \underline{\hspace{0.5cm}} ' :
   fileids=sys.argv[1]
   fileseq=sys.argv[2]
```

Compare .py

```
#!usr/bin/env python3
import sys

def get_dic(filename):
    d={}
    f=open(filename)
    for line in f:
        v=line.rstrip().split()
        d[v[0]]=d.get(v[0],[])
        d[v[0]].append(line)
    return d

def get_common(d1,d2):
    s1=set(list(d1.keys()))
    s2=set(list(d2.keys()))
    c=list(s1.intersection(s2))
    for i in c:
        print(d1[i][0].rstrip())

#print(len(list(c))

if __name__ == "__main__":
    file1=sys.argv[1]
    file2=sys.argv[2]
    d1=get_dic(file1)
    d2=get_dic(file2)
    get_common(d1,d2)
```

```
from multiprocessing.context import ForkProcess
import sys
import numpy as np
def confusion(m):
   for k in range(0,len(m)):
def get preds(filename, sp=-2, rc=-1):
  for line in f:
     pred list.append([v[0], float(v[sp]), int(v[rc])])
  return pred_list
def get cm(data, th=0.1):
  for i in data:
     #if (i[-2] \le th):
     if (i[-2] \le th): #when evaluating all the sets
     else:
     #confusion(cm)
   return cm
def calculate_performance(cm):
  n = float(cm[0][0] + cm[1][1] + cm[0][1] + cm[1][0])
  \mathbf{d} = \mathbf{np}.\mathsf{sqrt}((\mathsf{cm}[0][0] + \mathsf{cm}[0][1]) * (\mathsf{cm}[0][0] + \mathsf{cm}[1][0]) * (\mathsf{cm}[1][1] + \mathsf{cm}[1][0]) * (\mathsf{cm}[1][1] + \mathsf{cm}[0][1]))
  acc = (cm[0][0] + cm[1][1]) / n
  return acc, mcc,fpr, tpr
def opt_th(pred_list):
  for i in range(20):
     acc, mcc,fpr,tpr = calculate performance(cm)
     print('TH:', 10 ** -i, 'ACC:', acc, 'MCC:', mcc, 'CM', cm, 'FPR', fpr, 'TPR', tpr)
if name == " main ":
  predfile = sys.argv[1]
```

```
pred_list = get_preds(predfile)
if len(sys.argv) > 2:
    th = float(sys.argv[2])
    cm = get_cm(pred_list, th)
    acc, mcc,fpr,tpr = calculate_performance(cm)
    print('TH:', th, 'ACC:', acc, 'MCC:', mcc,'CM:',cm, 'FPR:',fpr,'TPR:',tpr)
else:
    opt_th(pred_list)
```