#### **Basic Word Representations**

Natalie Parde UIC CS 421

# How, then, should we represent the meaning of a word?

- Two classic strategies:
  - Bag of words representations: A word is a string of letters, or an index in a vocabulary list
  - Logical representation: A word defines its own meaning ("dog" = DOG)

# How, then, should we represent the meaning of a word?

- Two classic strategies:
  - Bag of words representations: A word is a string of letters, or an index in a vocabulary list
  - Logical representation: A word defines is ewn meaning ('dog" = DOG)

## Back to our discussion of vector semantics!

- Under the distributional hypothesis, we define a word by its environment or its distribution in language use
- This corresponds to the set of contexts in which the word occurs
  - Context: Neighboring words or grammatical environments
- Two words with very similar sets of contexts (i.e., similar distributions) are assumed to have very similar meanings



#### We do this to infer meaning in the real world all the time.

- Pretend you don't know what the word ongchoi means
- However, you read the following sentences:
  - Ongchoi is delicious sautéed with garlic.
  - · Ongchoi is superb over rice.
  - ...ongchoi leaves with salty sauces...
- You've seen many of the other context words in these sentences previously:
  - ...spinach sautéed with garlic over rice...
  - ...chard stems and leaves are delicious...
  - ...collard greens and other salty leafy greens...
- Your (correct!) conclusion?
  - Ongchoi is probably a leafy green similar to spinach, chard, or collard greens

### Our goal in NLP is to do the same thing computationally.

- How would we do this in the sample case from the previous slide?
  - Count the words in the context of ongchoi
  - See what other words occur in those same contexts

## We can represent a word's context using vectors.

- Define a word as a single vector point in an *n*-dimensional space
  - For bag of words representations,
    n = vocabulary size
- Represent the presence or absence of words in its surrounding context using numeric values
  - For bag of words representations, the value stored in a dimension n corresponds to the presence of a context word c in close proximity to the target word w

The goal is for the values in these vector representations to correspond with dimensions of meaning.

- Assuming this is the case, we should be able to:
  - Cluster vectors into semantic groups
  - Perform operations that are semantically intuitive





The goal is for the values in these vector representations to correspond with dimensions of meaning.

- Assuming this is the case, we should be able to:
  - Cluster vectors into semantis groups
  - Perform operations that are semantically intuitive



+



=

critique