# Lesson 3 of 5 Modeling and Analysis

Intro to R workshop, LU Skills School
Instructor:

Christopher Swader LU Sociology (Assoc. Prof) and LMU (Munich, Researcher)

Teaching Assistant: Maximilian Hornung (MS programme in Social Scientific Data Analysis, LU)

Slides adapted from and inspired by: Irina Vartanova, Institute for Future Studies, Stockholm

## Today's agenda

- Aggregating Data
- •Grouping Cases
- Descriptives
- \*Bivariate Analyses
- Multivariate Analyses
- Interaction Terms

- Use the link to download the files we will be using today:
  - https://github.com/ChristopherSwader/R\_introduction
- Download the Day3 folder.

# Aggregate

- Clear your environment
- Set your working directory to Day 3.
- Load the moral\_issues data from day 2!
  - -Either navigate through Rstudio's import menu and paste the code
  - -Or if you know the code but just need the path, you can get it through the files pane → settings

### summarise()

#### Alternative for one summary stat:

aggregate(moral\_issues\$n,
by=list(issue=moral\_issues\$issue), sum)

#### Compute table of summaries!

```
moral_issues %>%
  group_by(issue) %>%
  summarise(total = sum(n), max = max(n))
```

#### moral issues

| issue    | year | n    | prop      |
|----------|------|------|-----------|
| fehome   | 1990 | 890  | 0.8213483 |
| libath   | 1990 | 881  | 0.6912599 |
| marblk   | 1990 | 940  | 0.1670213 |
| polescap | 1990 | 854  | 0.2236534 |
| spkrac   | 1990 | 892  | 0.6423767 |
| fehire   | 1996 | 1236 | 0.6480583 |



#### Your Turn

Alter the last code to extract the rows where issue == "abany". Then use summarise() and mean(), min(), and max() to find:

- 1. The average public opinion for the issue over all time points it was measured.
  - 2. The first and the last years the issue appeared in the survey.

```
moral issues %>%
  filter(issue == "abany") %>%
  summarise(mean prop = mean(prop),
             first = min(year),
             last = max(year))
# A tibble: 1 × 3
 mean prop first last
     <dbl> <dbl> <dbl> <
   0.414 1977 2018
```

## n()

#### The number of rows in a dataset/group

```
moral_issues %>% summarise(n = n())
```

#### moral\_issues

| issue    | year | n    | prop      |
|----------|------|------|-----------|
| fehome   | 1990 | 890  | 0.8213483 |
| libath   | 1990 | 881  | 0.6912599 |
| marblk   | 1990 | 940  | 0.1670213 |
| polescap | 1990 | 854  | 0.2236534 |
| spkrac   | 1990 | 892  | 0.6423767 |
| fehire   | 1996 | 1236 | 0.6480583 |



A more simple alternative:

nrow(moral\_issues)

## n\_distinct()

#### The number of distinct values in a variable

#### moral issues

| issue    | year | n    | prop      |
|----------|------|------|-----------|
| fehome   | 1990 | 890  | 0.8213483 |
| libath   | 1990 | 881  | 0.6912599 |
| marblk   | 1990 | 940  | 0.1670213 |
| polescap | 1990 | 854  | 0.2236534 |
| spkrac   | 1990 | 892  | 0.6423767 |
| fehire   | 1996 | 1236 | 0.6480583 |



| n    | n_issue |
|------|---------|
| 1651 | 81      |

#### A base r alternative:

length(unique(moral\_issues\$issue))

# More on grouping

#### Here: grouping by just one variable (city)



group\_by() + summarise()

## group\_by()

Groups cases by common values of one or more columns.

```
pollution %>%
  group_by(city)
```

```
# A tibble: 6 x 3
# Groups: city [3]
city size amount
<chr> <chr> <chr> <chr> 1 New York large 23
2 New York small 14
3 London large 22
```

They are grouped, but no operations are yet performed on the cases as groups.

# group\_by() with multiple grouping variables

| city     | particle<br>size | amount (µg/m³) |
|----------|------------------|----------------|
| New York | large            | 23             |
| New York | small            | 14             |
| London   | large            | 22             |
| London   | small            | 16             |
| Beijing  | large            | 121            |
| Beijing  | small            | 56             |

| city     | particle<br>size | amount<br>(µg/m³) |
|----------|------------------|-------------------|
| New York | large            | 23                |
| New York | small            | 14                |
| London   | large            | 22                |
| London   | small            | 16                |
| Beijing  | large            | 121               |
| Beijing  | small            | 56                |

| city     | particle<br>size | mean | sum | n |
|----------|------------------|------|-----|---|
| New York | large            | 23   | 23  | 1 |
| New York | small            | 14   | 14  | 1 |
| London   | large            | 22   | 22  | 1 |
| London   | small            | 16   | 16  | 1 |
| Beijing  | large            | 121  | 121 | 1 |
| Beijing  | small            | 56   | 56  | 1 |

```
pollution %>%
  group_by(city, size) %>%
  summarise(mean = mean(amount), sum = sum(amount), n = n())
```

#### Your Turn

Use group\_by() and summarize to get the mean() the sum() and the n() of each city in the toy pollution dataset.

## group\_by()

| city     | particle<br>size | amount<br>(µg/m³) |
|----------|------------------|-------------------|
| New York | large            | 23                |
| New York | small            | 14                |
| London   | large            | 22                |
| London   | small            | 16                |
| Beijing  | large            | 121               |
| Beijing  | small            | 56                |

| article<br>size | amount<br>(µg/m³) |
|-----------------|-------------------|
| large           | 23                |
| small           | 14                |
|                 | large             |

| London | large | 22 |
|--------|-------|----|
| London | small | 16 |

| Beijing | large | 121 |
|---------|-------|-----|
| Beijing | small | 56  |

| city     | mean | sum | n |
|----------|------|-----|---|
| New York | 18,5 | 37  | 2 |
| London   | 19,0 | 38  | 2 |
| Beijing  | 88,5 | 177 | 2 |

```
pollution %>%
  group_by(city) %>%
  summarise(mean = mean(amount), sum = sum(amount), n = n())
```

## ungroup()

#### Removes grouping criteria from a data frame.

```
pollution %>%
  group_by(city) %>%
  ungroup() %>%
  summarise(sum = sum(amount))
```

```
pollution %>%
  group_by(city) %>%
  summarise(sum = sum(amount))
```



| city     | sum |
|----------|-----|
| New York | 37  |
| London   | 38  |
| Beijing  | 177 |

#### Your Turn

With moral\_issues, use group\_by(), summarise(), and arrange() to display the issues with the highest average public opinion.

```
moral issues %>%
  group by (issue) %>%
  summarise (mean prop = mean (prop)) %>%
  arrange (desc (mean prop))
  issue mean prop
# 1 hitmarch 0.967
# 2 racfew 0.952
# 3 marwht 0.943
# 4 hitdrunk 0.915
# 5 polmurdr 0.901
# 6 abhlth 0.896
# 7 polabuse 0.886
# ... with 71 more rows
```

# Descriptives

# Descriptives of one (numerical) variable

```
summary(moral_issues$prop)
mean(moral_issues$prop)
min(moral_issues$prop)
max(moral_issues$prop)
sd(moral_issues$prop)
hist(moral_issues$prop, breaks=20)
```

This histogram version is the basic one. GGplot2 can produce much more fancy versions. Day 4

#### Histogram of moral\_issues\$prop



# Descriptives of one (categorical) variable

```
count(moral_issues, issue) #tidyverse way
table(moral_issues$issue) #base R way
```

## Descriptives of all variables: Can i just get a quick snapshot?

#### Your Turn

Install the package "skimr". Load it. Then run the function skim() on moral\_issues.

#### skim() output: Look at whole dataset in a glance

```
> skim(moral_issues)
— Data Summary —
                             Values
                             moral_issues
Name
Number of rows
                             1651
Number of columns
Column type frequency:
  character
  numeric
Group variables
                             None
— Variable type: character
  skim_variable n_missing complete_rate min max empty n_unique whitespace
1 issue
— Variable type: numeric -
                                                                                                             p100 hist
  skim_variable n_missing complete_rate
                                                mean
                                            <u>1</u>994.
                                                       12.9 <u>1</u>972
                                                                           <u>1</u>985
                                                                                    <u>1</u>993
                                                                                               <u>2</u>006
                                                                                                         <u>2</u>018
1 year
2 n
                                           <u>1</u>348.
                                                      386.
                                                                395
                                                                            986
                                                                                    <u>1</u>418
                                                                                              <u>1</u>653
                                                                                                        <u>2</u>815
                                                                 0.015<u>0</u>
                                                                                                           0.978
                                               0.544
                                                      0.256
                                                                              0.338
                                                                                        0.595
                                                                                                 0.748
3 prop
                         54
                                               0.627
                                                       0.255
                                                                              0.450
                                                                                                           0.984
                                     0.967
                                                                  0.009<u>90</u>
                                                                                        0.705
                                                                                                  0.828
4 prop_lib
                                     0.967
                                               0.491
                                                        0.262
                                                                              0.258
                                                                                        0.539
                                                                                                            0.989
                         54
                                                                  0.017<u>3</u>
                                                                                                  0.692
5 prop_cons
```

# Bivariate relationships

## Correlation Tables

```
cor(na.omit(moral_issues)[,-1]) #
```

Can you explain my code?

You can specify method="spearm an" for ordinal data

# Correlation Tables with signif levels

```
install.packages("corrtable")
library(corrtable)
correlation_matrix(moral_issues, digits = 2 , use = "lower",
replace_diagonal = T)
```

```
        year
        n
        prop
        prop_lib
        prop_cons

        year
        ""
        ""
        ""
        ""
        ""

        n
        " 0.02
        " ""
        ""
        ""
        ""
        ""

        prop
        " 0.05*
        " "0.05*
        " ""
        ""
        ""
        ""

        prop_lib
        " 0.10***"
        "-0.05*
        " "0.98***"
        ""
        ""
        ""

        prop_cons
        "-0.01
        " "-0.03
        " "0.98***"
        " 0.93***"
        ""
```

# Correlation Heatmaps in R

```
library(reshape2)
upper tri <-my corr matrix*upper.tri(my corr matrix, diag = T)
my corr matrix <- cor(na.omit(moral issues)[,-1])</pre>
melted matrix <- melt(upper tri)</pre>
library(ggplot2)
ggplot(data = melted matrix, aes(x=Var1, y=Var2, fill=value)) +
  geom tile()
ggplot(data = melted matrix, aes(Var2, Var1, fill = value))+
  geom tile(color = "white") +
  scale fill gradient2(low = "blue", high = "red", mid = "white",
                        midpoint = 0, limit = c(-1,1), space = "Lab",
                        name="Pearson\nCorrelation") +
  theme minimal()+
  theme(axis.text.x = element text(angle = 45, vjust = 1,
                                    size = 12, hjust = 1)) +
  coord fixed()
```

# Try https://r-graph-gallery.com/ for a huge range of R resources





# Multivariate Modeling

# Some traditional modelling functions in R

|            | function | package | fits                        |  |
|------------|----------|---------|-----------------------------|--|
| lm() stats |          | stats   | linear models               |  |
|            | glm()    | stats   | generalized linear models   |  |
|            | gam()    | mgcv    | generalized additive models |  |
|            | rlm()    | MASS    | robust linear models        |  |
|            | lmer()   | lme4    | linear mixed-effects models |  |

Also consider machine learning methods, all fully accessible via R: random forest, artificial neural nets, topic modeling, etc.

#### (Popular) modelling functions in R

| function | package                         | fits                        |  |
|----------|---------------------------------|-----------------------------|--|
| lm()     | stats                           | linear models               |  |
| glm()    | stats generalized linear models |                             |  |
| gam()    | mgcv                            | generalized additive models |  |
| rlm()    | MASS                            | robust linear models        |  |
| lmer()   | lme4                            | linear mixed-effects models |  |

#### flfp #female labor force participation

|                      |                         |                         |                          | <i>□</i>               |
|----------------------|-------------------------|-------------------------|--------------------------|------------------------|
| cntry<br><chr></chr> | region<br><fctr></fctr> | wvs_flfp<br><dbl></dbl> | patr_mean<br><dbl></dbl> | log_gdp<br><dbl></dbl> |
| Algeria              | mena                    | 40.848806               | 1.31699822               | 9.528154               |
| Armenia              | centr asia              | 54.267245               | 0.55224440               | 8.825190               |
| Australia            | west                    | 86.936284               | -1.13341284              | 10.531036              |
| Azerbaijan           | centr asia              | 61.691654               | 1.33496402               | 9.664859               |
| Belarus              | s/est europe            | 86.852032               | 0.09008820               | 9.717362               |
| Brazil               | latin                   | 67.250674               | -0.79309932              | 9.513073               |
| Bulgaria             | s/est europe            | 90.073361               | -0.43430856              | 9.222664               |
| Burkina Faso         | ss africa               | 41.798942               | 0.72058177               | 7.111390               |
| Canada               | west                    | 86.366181               | -1.25149570              | 10.540653              |
| Chile                | latin                   | 54.261364               | -0.37280241              | 9.787202               |
| 1-10 of 75 rows      |                         | Previous 1              | 2 3 4 5 6                | 5 8 Next               |

## skim()

#### Display summary statistics

```
library(skimr)
skim(flfp)
```

The data set

```
library(skimr)
skim(flfp)
```

— Data Summary

```
Values
                                                                                  A bit wierd that year is stored
Name
Number of rows
                   44670
                                                                                  as a character variable?
Number of columns
                    15
Column type frequency:
character
factor
                                                                                  Convert it to numeric or
numeric
                                                                                  integer!
Group variables
                  None
— Variable type: character
skim_variable n_missing complete_rate min max empty n_unique whitespace
                     1 4 4 0
1 year
— Variable type: factor
skim_variable n_missing complete_rate ordered n_unique top_counts
                                78 Sou: 1483, Ind: 1312, Ira: 1174, Jap: 1052
1 cntry
                  1 FALSE
                      0.968 FALSE
                                     4 Chr: 18632, Mus: 12567, Non: 7131, Oth: 4929
2 denom
             125
                  0.997 FALSE
                                     6 26-: 11959, 36-: 10847, 46-: 8435, 18-: 7086
3 age_gr
                    0.984 FALSE
                                   3 Mid: 21769, Low: 14547, Hig: 7649
4 edu
            705
                   0.998 FALSE
                                   3 Mar: 30668, Sin: 8257, Div: 5651
5 marit
6 children
                     0.986 FALSE
                                    4 2-3: 18755, No: 9784, 1 c: 8253, 4 a: 7270
                                 7 Cen: 7123, Eas: 6981, Sou: 6754, MEN: 6428
                   1 FALSE
7 region
— Variable type: numeric -
skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
                  1 0.981 0.380 0.0574 0.877 1 1 5
1 wgt
            0 1 0.657 0.475 0 0 1 1 1
                       0.937 -0.0171 0.984 -3.20 -0.796 -0.0752 0.648 5.56
3 patr_values
              2836
4 religious
                   1.00 0.431 0.495 0 0 0 1 1
                      0.986 0.112 0.984 -2.08 -0.793 0.120 0.879 1.86
5 patr mean
               621
                     0.978 9.41 1.03 6.70 8.72 9.51 10.3 11.7
6 log_gdp
              998
                                                1 1 ____
7 muslim cntry
                      1 0.303 0.460 0
                                         0 0
```

Notice type\_convert will give different results from type.convert

```
flfp <- type_convert(flfp)
#or

flfp$year <- as.integer(flfp$year)</pre>
```

# 

```
ggplot(flfp, aes(x = log_gdp, y = patr_mean)) +
  geom_point()+
  geom smooth(method = "lm")
```



#### formulas

Formula only needs to include the response/dependent variable and predictors/(independent variables & controls)

$$y = \alpha + \beta x + \epsilon$$



## lm()

#### Fit a linear model to data

```
my_model <- lm(patr_mean ~ log_gdp, data = flfp)</pre>
```

A formula that describes the model The data set equation

#### Your Turn

Fit the model below and then examine the output. What does it look like?

```
my_model <- lm(patr_mean ~ log_gdp, data = flfp_agg)</pre>
```

```
my model
Call:
lm(formula = patr mean ~ log gdp, data =
flfp agg)
Coefficients:
                  log gdp
(Intercept)
     3.4488
                  -0.3621
```

## Summary!

```
summary(my_model)
```

```
Call:
Im(formula = patr_mean \sim log_gdp, data = flfp_agg)
Residuals:
        1Q Median 3Q Max
  Min
-2.4011 -0.7323 -0.1004 0.6470 2.1837
Coefficients:
       Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.4488 0.9818 3.513 0.000765 ***
log gdp -0.3621 0.1034 -3.504 0.000788 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9492 on 73 degrees of freedom
Multiple R-squared: 0.144, Adjusted R-squared: 0.1322
F-statistic: 12.28 on 1 and 73 DF, p-value: 0.0007875
```

# Model diagnostics

plot(my\_model, which = 1)



# Model diagnostics

plot(my\_model, which = 2)



ggplot versions of these plots can be found in my supplied R scripts

#### broom



#### Turns model output into data frames

```
# install.packages("tidyverse")
library(broom)
```

#### broom

Broom includes three functions which work for most types of models (and can be extended to more):

- 1. tidy() returns model coefficients, stats
- 2. glance() returns model diagnostics
- 3. augment() returns predictions, residuals, and other raw values

### tidy()

Returns useful **model output** as a data frame (can be handy for prepping for publication)

```
tidy(my_model)
```

```
# A tibble: 2 × 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl> <dbl> 1 (Intercept) 3.45 0.982 3.51 0.000765

2 log_gdp -0.362 0.103 -3.50 0.000788
```

### glance()

Returns common model diagnostics as a data frame

```
glance(my_model)
```

### augment()

# Returns data frame of model output related to original data points

```
augment (my model)
                      predictions
# A tibble: 75 \times 8
                                           .hat .sigma .cooksd .std.resid
   patr_mean log_gdp<del>l .fitted .resi</del>d
        \langle db 1 \rangle
                                                                         \langle db 1 \rangle
      1.32 9.53 -0.001_{\underline{52}} 1.32 0.013\underline{4} 0.943 0.013\underline{3}
                                                                         1.40
             8.83 0.253 0.299 0.017<u>8</u> 0.955 0.000<u>917</u>
     0.552
                                                                         0.318
     -1.13
               10.5 -0.365 -0.769 0.027<u>4</u> 0.951 0.009<u>51</u>
                                                                        -0.821
               9.66 -0.051<u>0</u> 1.39 0.013<u>9</u> 0.942 0.015<u>3</u>
    1.33
                                                                         1.47
     0.090\underline{1} 9.72 - 0.070\underline{0} 0.160 0.014\underline{2} 0.956 0.000\underline{209}
                                                                         0.170
               9.51 0.003<u>94</u> -0.797 0.013<u>4</u> 0.951 0.004<u>85</u>
     -0.793
                                                                        -0.845
                 9.22 0.109 -0.543 0.0139 0.954 0.00234
                                                                        -0.576
     -0.434
      0.721
             7.11 \quad 0.874 \quad -0.153 \quad 0.0776 \quad 0.956 \quad 0.00119
                                                                        -0.168
     -1.25
                10.5 -0.368 -0.883 0.027<u>7</u> 0.950 0.012<u>7</u>
                                                                        -0.944
     -0.373
               9.79 - 0.0953 - 0.277 0.0148 0.955 0.000650
                                                                        -0.294
# i 65 more rows
# i Use `print(n = ...) ` to see more rows
```

#### Your turn

- Using moral\_issues, predict prop\_lib (as Y) with prop\_cons (X)
  across all issues and years. Use lm() to model this. Then use tidy,
  glance, and plot functions to:
  - 1. Extract the estimated regression coefficients.
  - 2. Look at the estimates of model fit.
  - 3. Make diagnostics plots.
- Extra: Use select to extract only adj.r.squared and BIC from the model fit data frame.

```
issue pairing <- lm(prop lib ~ prop cons,
data=moral issues )
tidy (issue pairing)
A tibble: 2 \times 5
term estimate std.error statistic p.value
 <chr> <db1> <db1> <db1> <db1> <db1> <db1> <
 (Intercept) 0.183 0.005<u>05</u> 36.3 5.02e-211
                     0.009<u>07</u> 99.5 0
prop_cons 0.903
glance (mod gdp)
# A tibble: 1 \times 12
  r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance
     <db1> <
     0.861 0.861 0.095<u>1 9</u>904. 0 1 <u>1</u>493. -<u>2</u>980. -<u>2</u>964.
# i 2 more variables: df.residual <int>, nobs <int>
```



plot(issue\_pairing
, which = 1)

```
glance(issue_pairing) %>%
    select(adj.r.squared, BIC)
```



plot(issue\_pairing,
which = 2)

# Multivariate regression

To fit multiple predictors, Simply add multiple variables to the formula with a + sign entered in the Im() function:

```
wvs_flfp ~ patr_mean + log_gdp
```

#### Your turn

- Predict wvs\_flfp using both patr\_mean and log\_gdp.
- Call up the coefficients for the model using tidy() and the adjusted R squared and BIC using glance()

```
mod_agg <- lm(wvs_flfp ~ patr_mean + log_gdp, data =
flfp_agg)
tidy(mod_agg)</pre>
```

| term<br><chr></chr> | estimate<br><dbl></dbl> | std.error<br><dbl></dbl> | statistic<br><dbl></dbl> | p.value<br><dbl></dbl> |
|---------------------|-------------------------|--------------------------|--------------------------|------------------------|
| (Intercept)         | 56.305623               | 19.789883                | 2.8451720                | 5.776306e-03           |
| patr_mean           | -13.732938              | 2.181985                 | -6.2937819               | 2.152952e-08           |
| log_gdp             | 1.198427                | 2.082481                 | 0.5754802                | 5.667608e-01           |

3 rows

glance(mod\_agg) %>%
 select(adj.r.squared, BIC)

| adj.r.squared<br><dbl></dbl> | BIC<br><dbl></dbl> |  |
|------------------------------|--------------------|--|
| 0.3927989                    | 658.0563           |  |

1 row

# Quadratic terms

# Quadratic regression

```
mod_agg_quadratic <- lm(wvs_flfp ~ patr_mean + log_gdp +
I(log_gdp^2), data = flfp_agg)
tidy(mod_agg_quadratic)</pre>
Keep both!
```

| term<br><chr></chr> | estimate<br><dbl></dbl> | std.error<br><dbl></dbl> | statistic<br><dbl></dbl> | p.value<br><dbl></dbl> |
|---------------------|-------------------------|--------------------------|--------------------------|------------------------|
| (Intercept)         | 177.574920              | 122.626019               | 1.4481015                | 1.519904e-01           |
| patr_mean           | -13.364826              | 2.212630                 | -6.0402443               | 6.388181e-08           |
| log_gdp             | -25.659897              | 26.883594                | -0.9544816               | 3.430784e-01           |
| I(log_gdp^2)        | 1.465696                | 1.462667                 | 1.0020708                | 3.197124e-01           |

4 rows

glance(mod\_agg) %>%
 select(adj.r.squared, BIC)

glance(mod\_agg\_quadratic) %>%
 select(adj.r.squared, BIC)

| ad | j.r.squared<br><dbl></dbl> | BIC<br><dbl></dbl> |
|----|----------------------------|--------------------|
|    | 0.3928338                  | 661.3205           |

1 row

| adj.r.sc | adj.r.squared<br><dbl></dbl> |          | BIC<br><dbl></dbl> |  |
|----------|------------------------------|----------|--------------------|--|
| 0.39     | 27989                        | 658.0563 |                    |  |

1 row

#### Your turn

 Model wvs\_flfp against patr\_mean using a quadratic term in the regression. Keep log\_gdp as a control variable with a linear effect. Does the quadratic term of patriarchal values improve the model fit? 

| term<br><chr></chr> | estimate<br><dbl></dbl> | std.error<br><dbl></dbl> | statistic<br><dbl></dbl> | p.value<br><dbl></dbl> |
|---------------------|-------------------------|--------------------------|--------------------------|------------------------|
| (Intercept)         | 51.136783               | 18.838272                | 2.714516                 | 8.325934e-03           |
| patr_mean           | -12.907403              | 2.086458                 | -6.186276                | 3.508017e-08           |
| I(patr_mean^2)      | -6.101634               | 2.020532                 | -3.019815                | 3.513014e-03           |
| log_gdp             | 2.406118                | 2.014244                 | 1.194551                 | 2.362378e-01           |

4 rows

glance(mod\_agg\_patr2) %>%
 select(adj.r.squared, BIC)

glance(mod\_agg\_quadratic) %>
%
select(adj.r.squared, BIC)

| adj.r.squared | BIC         |
|---------------|-------------|
| <dbl></dbl>   | <dbl></dbl> |
| 0.4543326     | 653.3111    |

1 row

| adj.r.squared<br><dbl></dbl> | BIC<br><dbl></dbl> |
|------------------------------|--------------------|
| 0.3927989                    | 658.0563           |

1 row

# Categorical predictors

# Regional differences in FLFP

```
mod_reg <- lm(wvs_flfp ~ region, data = flfp)
tidy(mod_reg)</pre>
```

| term<br><chr></chr> | estimate<br><dbl></dbl> | std.error<br><dbl></dbl> | statistic<br><dbl></dbl> | p.value<br><dbl></dbl> |
|---------------------|-------------------------|--------------------------|--------------------------|------------------------|
| (Intercept)         | 86.79406                | 4.785285                 | 18.137699                | 9.352547e-28           |
| regions/est europe  | -4.38315                | 6.521244                 | -0.672134                | 5.037758e-01           |
| regionlatin         | -25.74192               | 7.566200                 | -3.402225                | 1.123613e-03           |
| regioneast asia     | -15.52003               | 7.097725                 | -2.186620                | 3.221460e-02           |
| regionss africa     | -14.10942               | 7.309644                 | -1.930248                | 5.774795e-02           |
| regioncentr asia    | -40.46311               | 7.097725                 | -5.700857                | 2.810411e-07           |
| regionmena          | -42.94064               | 6.767415                 | -6.345205                | 2.099530e-08           |

# Regional differences in FLFP

```
mod_reg <- lm(wvs_flfp ~ region, data = flfp)
tidy(mod reg)</pre>
```

Where is the West?

| term<br><chr></chr> | estimate<br><dbl></dbl> | std.error<br><dbl></dbl> | statistic<br><dbl></dbl> | p.value<br><dbl></dbl> |
|---------------------|-------------------------|--------------------------|--------------------------|------------------------|
| (Intercept)         | 86.79406                | 4.785285                 | 18.137699                | 9.352547e-28           |
| regions/est europe  | -4.38315                | 6.521244                 | -0.672134                | 5.037758e-01           |
| regionlatin         | -25.74192               | 7.566200                 | -3.402225                | 1.123613e-03           |
| regioneast asia     | -15.52003               | 7.097725                 | -2.186620                | 3.221460e-02           |
| regionss africa     | -14.10942               | 7.309644                 | -1.930248                | 5.774795e-02           |
| regioncentr asia    | -40.46311               | 7.097725                 | -5.700857                | 2.810411e-07           |
| regionmena          | -42.94064               | 6.767415                 | -6.345205                | 2.099530e-08           |

# Interaction terms

#### Interaction model

```
mod int <- lm(wvs flfp ~ patr mean + muslim + patr mean:muslim,
data = flfp agg)
tidy (mod int)
             estimate std.error statistic p.value
 term
               <dbl> <dbl> <dbl> <dbl>
 <chr>
           73.6 2.65 27.7 8.47e-40
1 (Intercept)
2 patr mean -6.14 2.96 -2.07 4.18e- 2
3 muslimTRUE 6.72 10.1 0.665 5.09e- 1
4 patr mean:muslimTRUE -23.2 8.43 -2.75 7.61e- 3
```

# 

# Binary outcome



| <b>cntry</b><br><fctr></fctr> | <b>lfp</b><br><dbl></dbl> | patr_values<br><dbl></dbl> | patr_mean<br><dbl></dbl> | denom<br><fctr></fctr> | age_gr<br><fctr></fctr> | religious <dbl>&lt;</dbl> |
|-------------------------------|---------------------------|----------------------------|--------------------------|------------------------|-------------------------|---------------------------|
| Andorra                       | 1                         | -0.42782837                | -1.5438549               | Christ                 | 36-45                   | 0                         |
| Andorra                       | 1                         | 0.33482220                 | -1.5438549               | Christ                 | 18-25                   | 0                         |
| Andorra                       | 1                         | 0.33482220                 | -1.5438549               | Christ                 | 26-35                   | 0                         |
| Andorra                       | 1                         | 0.33482220                 | -1.5438549               | None                   | 18-25                   | 0                         |
| Andorra                       | 1                         | 1.86012335                 | -1.5438549               | Christ                 | 36-45                   | 0                         |
| Andorra                       | 1                         | -0.42782837                | -1.5438549               | Christ                 | 56-65                   | 0                         |
| Andorra                       | 1                         | -0.42782837                | -1.5438549               | None                   | 26-35                   | 0                         |
| Andorra                       | 1                         | 4.14807507                 | -1.5438549               | None                   | >66                     | 0                         |
| Andorra                       | 1                         | -1.19047894                | -1.5438549               | None                   | 56-65                   | 0                         |
| Andorra                       | 1                         | -1.19047894                | -1.5438549               | None                   | 26-35                   | 0                         |
| 1-10 of 44,                   | 670 rows                  |                            | Previo                   | us 1 2                 | 3 4 5                   | 6 100 Next                |

Skim summary statistics

n obs: 44670 n variables: 15

| — Variabl | le type:1 | factor   |       |          |                                              |        |
|-----------|-----------|----------|-------|----------|----------------------------------------------|--------|
| variable  | missing   | complete | n     | n_unique | top_counts o                                 | rdered |
| age_gr    | 125       | 44545    | 44670 | 6        | 26-: 11959, 36-: 10847, 46-: 8435, 18-: 7086 | FALSE  |
| children  | 608       | 44062    | 44670 | 4        | 2-3: 18755, No : 9784, 1 c: 8253, 4 a: 7270  | FALSE  |
| cntry     | 0         | 44670    | 44670 | 78       | Sou: 1483, Ind: 1312, Ira: 1174, Jap: 1052   | FALSE  |
| denom     | 1411      | 43259    | 44670 | 4        | Chr: 18632, Mus: 12567, Non: 7131, Oth: 4929 | FALSE  |
| edu       | 705       | 43965    | 44670 | 3        | Mid: 21769, Low: 14547, Hig: 7649, NA: 705   | FALSE  |
| marit     | 94        | 44576    | 44670 | 3        | Mar: 30668, Sin: 8257, Div: 5651, NA: 94     | FALSE  |
| region    | 0         | 44670    | 44670 | 7        | Cen: 7123, Eas: 6981, Sou: 6754, MEN: 6428   | FALSE  |

| — Variable ty | ype:nume | ¹1C      |       |        |      |       |       |        |       |       |      |            |
|---------------|----------|----------|-------|--------|------|-------|-------|--------|-------|-------|------|------------|
| variable      | missing  | complete | n     | mean   | sd   | р0    | p25   | p50    | p75   | p100  | hist |            |
| lfp           | 0        | 44670    | 44670 | 0.66   | 0.47 | 0     | 0     | 1      | 1     | 1     |      |            |
| log_gdp       | 998      | 43672    | 44670 | 9.41   | 1.03 | 6.7   | 8.72  | 9.51   | 10.25 | 11.74 |      | <b>_</b> _ |
| muslim_cntry  | 0        | 44670    | 44670 | 0.3    | 0.46 | 0     | 0     | 0      | 1     | 1     |      |            |
| patr_mean     | 621      | 44049    | 44670 | 0.11   | 0.98 | -2.08 | -0.79 | 0.12   | 0.88  | 1.86  |      |            |
| patr_values   | 2836     | 41834    | 44670 | -0.017 | 0.98 | -3.2  | -0.8  | -0.075 | 0.65  | 5.56  |      |            |
| religious     | 7        | 44663    | 44670 | 0.43   | 0.5  | 0     | 0     | 0      | 1     | 1     |      |            |
| wgt           | 0        | 44670    | 44670 | 0.98   | 0.38 | 0.057 | 0.88  | 1      | 1     | 5     |      |            |

# glm()

#### Fits a generalised linear model to data

Modelled distribution

Link function

### Coefficients

```
glm(lfp ~ patr values + cntry,
   family = binomial(link = "logit"),
   data = flfp ind)
tidy(mod val) %>% filter(!str detect(term, "cntry"))
## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr>
                ## 1 (Intercept) -0.333 0.110 -3.02 2.57e- 3
## 2 patr values -0.289 0.0119 -24.2 1.13e-129
               Avg.
               Change in log odds.
```

# Odds ratios

```
tidy (mod val, exponentiate = TRUE) %>%
 filter(!str detect(term, "cntry"))
## # A tibble: 2 x 5
##
  term estimate std.error statistic p.value
## <chr>
                ## 1 (Intercept) 0.717 0.110 -3.02 2.57e- 3
## 2 patr values 0.749 0.0119 -24.2 1.13e-129
             Odds ratio
             compared to
             referens
             category.
```

### Your turn

- Read the individual level data.
- Add the variable patr\_mean to the model we looked at the slides.
- Examine the results. How do they differ from the previous model? Which values have stronger effect: the individual or the country mean?

```
mod val cntr <- glm(lfp ~ patr values + patr mean + cntry,
                family = binomial(link = "logit"),
                data = flfp)
tidy (mod val cntr, exponentiate = TRUE) %>%
 filter(!str detect(term, "cntry"))
## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr>
                ## 1 (Intercept) 3.23 0.0849 13.8 2.83e- 43
## 2 patr values 0.748 0.0120 -24.1 9.32e-129
                0.319 0.101 -11.3 1.91e- 29
## 3 patr mean
```

# Categorical variables

```
mod val edu <- glm(lfp ~ patr values + edu + cntry,
              family = binomial(link = "logit"),
              data = flfp
tidy (mod val edu, exponentiate = TRUE) %>%
 filter(!str detect(term, "cntry"))
## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.452 0.116 -6.84 7.80e- 12
## 2 patr values 0.827 0.0125 -15.2 5.78e- 52
## 3 eduMiddle 2.49 0.0300 30.4 6.54e-203
                         0.0458
                                   44.2 0.
## 4 eduHigh
                 7.58
```

# Your turn

• Estimate Ifp against country region (s) on the individual level. Add edu, age\_gr, marit, children, religious, and denom as control variables, but do not include cntry. Compare the odds of a female from a MENA country to be employed to those of a female from the West?

|                                |                         |                          | <i>□</i>                 |
|--------------------------------|-------------------------|--------------------------|--------------------------|
| term<br><chr></chr>            | estimate<br><dbl></dbl> | std.error<br><dbl></dbl> | statistic<br><dbl></dbl> |
| (Intercept)                    | 4.9322259               | 0.08839417               | 18.053118                |
| regionSouth/Eastern Europe     | 0.8798559               | 0.05377818               | -2.380095                |
| regionLatin America            | 0.3681781               | 0.05297530               | -18.861403               |
| regionEastern Asia             | 0.6798980               | 0.05277278               | -7.310824                |
| regionSub-Saharan Africa       | 1.1745315               | 0.05661489               | 2.841467                 |
| regionCentr/South/Western Asia | 0.2485516               | 0.05441782               | -25.581778               |
| regionMENA                     | 0.3651798               | 0.06225509               | -16.181253               |
| eduMiddle                      | 1.9280904               | 0.02774645               | 23.661772                |
| eduHigh                        | 6.0040955               | 0.04436911               | 40.398417                |
| age_gr18-25                    | 2.1752846               | 0.07509413               | 10.349137                |

1–10 of 23 rows | 1–4 of 5 columns

Previous 1 2 3 Next

# Your turn

 Add patr\_values and patr\_mean to the model we just fit. How does the regional differences change?

|                                |                         |                          | <i>□</i>   |
|--------------------------------|-------------------------|--------------------------|------------|
| term<br><chr></chr>            | estimate<br><dbl></dbl> | std.error<br><dbl></dbl> | statistic  |
| (Intercept)                    | 3.2440468               | 0.10573128               | 11.130306  |
| regionSouth/Eastern Europe     | 1.1982986               | 0.06231925               | 2.902839   |
| regionLatin America            | 0.4407688               | 0.05870425               | -13.955291 |
| regionEastern Asia             | 1.2392828               | 0.07599073               | 2.823145   |
| regionSub-Saharan Africa       | 2.1419561               | 0.07917011               | 9.621301   |
| regionCentr/South/Western Asia | 0.5084256               | 0.08494248               | -7.963464  |
| regionMENA                     | 0.7235934               | 0.09291332               | -3.482016  |
| patr_values                    | 0.8836590               | 0.01288577               | -9.598496  |
| patr_mean                      | 0.6964265               | 0.03230143               | -11.200529 |
| eduMiddle                      | 1.9417538               | 0.02945170               | 22.531519  |

1–10 of 25 rows | 1–4 of 5 columns

Previous 1 2 3 Next

# Generalised linear models

 Use different link functions to connect variety of outcomes to the linear predictor.

```
glm(y \sim x, family = poisson(link = "log"))
```

Check the full list with ?family.