4. 收敛

4.1. 可测函数的收敛. (E, \mathcal{F}, μ) a measure space, $f_n \in \mathcal{F}, i = 1, 2, ..., f \in \mathcal{F}$

Def 16. Almost everywhere convergence, $f_n \xrightarrow{a.e.} f$:

$$\mu\Big(\lim_n f_n \neq f\Big) = 0.$$

Def 17. Convergence in measure, $f_n \stackrel{\mu}{\longrightarrow} f: \forall \varepsilon > 0$,

$$\lim_{n} \mu(|f_n - f| > \varepsilon) = 0.$$

Evidently

$$f_n \xrightarrow{a.e.} f \iff \forall \varepsilon > 0, \mu \left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} \{ |f_m - f| > \varepsilon \} \right) = 0$$
$$\iff \forall \varepsilon > 0, \mu(\{ |f_n - f| > \varepsilon \} \text{ i.o.}) = 0.$$

Recall

$$x \in \limsup A_n \iff x \in A_n \text{ i.o.}$$

Thm 15. If μ is finite, then

$$f_n \xrightarrow{a.e.} f \implies f_n \xrightarrow{\mu} f.$$

PROOF. Indeed,

$$\mu(|f_n - f| > \varepsilon) \le \mu\left(\bigcup_{m=n}^{\infty} \{|f_m - f| > \varepsilon\}\right), \ \forall n.$$

Let $n \to \infty$ and use continuity from above (requires finiteness of μ)

$$\limsup_{n} \mu(|f_{n} - f| > \varepsilon) \leqslant \lim_{n} \mu\left(\bigcup_{m=n}^{\infty} \{|f_{m} - f| > \varepsilon\}\right)$$
$$= \mu\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} \{|f_{m} - f| > \varepsilon\}\right) = 0.$$

L

Def 18. Almost uniform convergence, $f_n \xrightarrow{a.u.} f: \forall \varepsilon > 0$, there is $A_{\varepsilon} \in \mathscr{F}$ so that $\mu(A_{\varepsilon}) < \varepsilon$,

$$\lim_{n} \sup_{x \notin A_{\varepsilon}} |f_n - f| = 0.$$

Compare with Egoroff's Theorem on finite measure!

Thm 16. $f_n \stackrel{a.u.}{\longrightarrow} f$ if and only if $\forall \varepsilon > 0$,

$$\lim_{n} \mu \left(\bigcup_{m=n}^{\infty} \{ |f_m - f| > \varepsilon \} \right) = 0.$$

PROOF. 1. " \Longrightarrow ". $\forall \varepsilon > 0$, there is A_{ε} so that $\mu(A_{\varepsilon}) < \varepsilon$ and

$$\lim_{m} \sup_{x \notin A_{\varepsilon}} |f_m - f| = 0.$$

So, $\forall \varepsilon' > 0$, there is $n_0 \in \mathbb{N}$ such that

$$\sup_{x \notin A_{\varepsilon}} |f_m - f| \leqslant \varepsilon', \ \forall m \geqslant n_0.$$

This translates to

$$\bigcup_{m=n_0}^{\infty} \{ |f_m - f| > \varepsilon' \} \subset A_{\varepsilon}.$$

Therefore

$$\mu\left(\bigcup_{m=n_0}^{\infty} \{|f_m - f| > \varepsilon'\}\right) \leqslant \mu(A_{\varepsilon}) < \varepsilon.$$

2. " $\Leftarrow=$ ". $\forall \varepsilon > 0$ and $k \in \mathbb{N}$, there is $n_{\varepsilon,k} \in \mathbb{N}$ such that

$$\mu\left(\bigcup_{m=n_{\varepsilon,k}}^{\infty} \left\{ |f_m - f| > \frac{1}{k} \right\} \right) < \frac{\varepsilon}{2^k}, \ \forall m \geqslant n_{\varepsilon,k}.$$

Denote (the set of all possible divergence points! measurable!)

$$A_{\varepsilon} = \bigcup_{k=1}^{\infty} \bigcup_{m=0}^{\infty} \left\{ |f_m - f| > \frac{1}{k} \right\}.$$

Then

$$\mu(A_{\varepsilon}) \leqslant \sum_{k=1}^{\infty} \mu\left(\bigcup_{m=n_{\varepsilon,k}}^{\infty} \left\{ |f_m - f| > \frac{1}{k} \right\} \right) < \varepsilon.$$

Moreover

$$x \notin A_{\varepsilon} \iff \forall k, \ \exists \ n_k \geqslant n_{\varepsilon,k} \colon |f_m(x) - f(x)| \leqslant \frac{1}{k}, \ \forall m > n_k.$$

That is $\forall k, \exists n_k$,

$$\sup_{r \neq A} |f_m - f| \leqslant \frac{1}{k}, \ \forall m > n_k.$$

We have proved:

Thm 17. (1)

$$f_n \xrightarrow{a.u.} f \implies f_n \xrightarrow{a.e.} f \text{ and } f_n \xrightarrow{\mu} f$$

(2) If μ is finite, then

$$f_n \xrightarrow{a.u.} f \iff f_n \xrightarrow{a.e.} f \implies f_n \xrightarrow{\mu} f$$

E.g. 3.

$$f_n(x) = \begin{cases} 1, & x \in (0, 1/n), \\ 0, & x \in [1/n, 1]. \end{cases}$$

E.g. 4.

$$f_n(x) = x^n, x \in [0, 1]$$

 \triangleright 4. Let f = 0 and $f_n = 1_{A_n}$. Then $f_n \xrightarrow{\mu} f$ is equivalent to $\mu(A_n) \to 0$ and $\left(\lim_n f_n \neq f\right) = (A_n \ i.o.)$.

Any sequence $\{A_n\}$ so that $\mu(A_n) \to 0$ but $\mu(A_n \text{ i.o.}) > 0$ gives an exmple that $f_n \xrightarrow{\mu} f \not \Rightarrow f_n \xrightarrow{a.e.} f$. It is enough to have $\mu(A_n) \to 0$ and

$$\sum_{n=0}^{\infty} 1_{A_n}(x) = \infty, \ \sum_{n=0}^{\infty} 1_{A_n^c}(x) = \infty.$$

E.g. 5. For each n = 1, 2, ... there is a unique decomposition n = k(k-1)/2 + i with k = 1, 2, ..., i = 1, 2, ..., k.

$$f_n(x) = \begin{cases} 1, & x \in (((i-1)/k, i/k]), \\ 0, & otherwise. \end{cases}$$

E.g. 6. Consider

$$A_k^i = \left| \frac{i-1}{k}, \frac{i}{k} \right|, \ h_k^i(x) = 1_{A_k^i}(x), \ i = 1, ..., k.$$

Let f_n be the sequence

$$\left\{h_1^1;h_2^1,h_2^2;h_3^1,h_3^2;h_3^3;\ldots\right\}$$

4.2. 随机变量的分布函数.

Def 19. (Ω, \mathscr{F}, P) is a probability space if P is a nonnegative measure on the σ -field \mathscr{F} with $P(\Omega) = 1$.

Def 20. A random variable (r.v.) X on (Ω, \mathcal{F}, P) is a real-valued mapping, $X : \omega \in \Omega \mapsto X(\omega) \in \mathbb{R}$.

Def 21. The distribution function of a r.v. X is

$$F(x) = P(X \leqslant x).$$

Denoted by $X \sim F$.

Thm 18. Any distribution function F has the following properties.

- (1) non-decreasing, $F(-\infty) = 0$ and $F(\infty) = 1$
- (2) right continuity: $\lim_{y \downarrow x} F(y) = F(x)$.
- (3) left limit exists: $F(x-) = \lim_{y \to x} F(y) = P(X < x)$.
- (4) P(X = x) = F(x) F(x-).

The inverse of the distribution function F is defined as below. $\forall z \in (0,1)$,

(4.1)
$$F^{-1}(z) = \inf\{x \in \mathbb{R} : F(x) \geqslant z\}.$$

 \triangleright 5. Also equivalently defined as,

(4.2)
$$F^{-1}(z) = \sup\{x \in \mathbb{R} : F(x) < z\}.$$

LEMMA 19. F^{-1} has the properties,

- (1) F^{-1} is real-valued, left-continuous and has right limit.
- (2) $F^{-1}(F(x)) \leq x$, $F(F^{-1}(z)) \geqslant z$.
- (3) $F^{-1}(z) \leqslant x \text{ iff } F(x) \geqslant z.$

Proof. Exercise.

Thm 20. If F satisfies (1)(2)(3) of Theorem 18, there is a r.v. X with distribution F.

PROOF. Let $\Omega=(0,1),\,\mathscr{F}=\mathscr{B}_{(0,1)},\,P=$ Lebesgue measure. Define

$$X(\omega) = F^{-1}(\omega).$$

Then

$$P(\omega : X(\omega) \leq x) = P(\omega : F(x) \geq \omega)$$

= Lebesgue measure of $(0, F(x)) = F(x)$.

So X is a r.v. with distribution function F.

ightharpoonup 6. Another construction of a r.v. X with distribution F is to take $\Omega=(\mathbb{R},\mathcal{B}), P=$ the Lebesgue measure induced by F and consider the coordinate map $X(\omega)=\omega$.

4.3. 随机变量的收敛. Probability space (Ω, \mathscr{F}, P) , r.v. X_n, X , $X_n \xrightarrow{a.s.} X \iff P(X_n = X) = 1.$ $X_n \xrightarrow{P} X \iff \forall \varepsilon > 0, \lim_n P(|X_n - X| > \varepsilon) = 0.$

Def 22. $X_n \sim F_n$, $X \sim F$. Convergence in distribution (weak convergence): $F_n(x) \to F(x)$ for all x where F is continuous, written $X_n \stackrel{d}{\longrightarrow} X$.

Thm 21. $X_n \sim F_n$, $X \sim F$.

$$X_n \xrightarrow{a.s.} X \implies X_n \xrightarrow{P} X \implies X_n \xrightarrow{d} X.$$

PROOF. 1. The first implication is a special case of Theorem 15.

2. Check the second implication.