# CS100 超声波测距芯片手册 V1.0

#### 1. 概述

CS100 是苏州顺憬志联新材料科技有限公司(www.100sensor.com)推出的一款工业级超声波测距芯片,CS100 内部集成超声波发射电路,超声波接收电路,数字处理电路等,单芯片即可完成超声波测距,测距结果通过脉宽的方式进行输出,通信接口兼容现有超声波模块。

CS100 配合使用 40KHZ 的开放式超声波探头,只需要一个 22MR 的下拉电阻和 8M 的晶振,即可实现高性能测距功能。

更少的器件使用,可以大幅减少电路板面积,提高可靠性;同时,较少的外围器件使得布线更为简单,在成本敏感的引用场景下,使用单面 PCB 即可实现超声波测距功能,大幅降低成本。

采用本芯片制作的超声波测距模块如图 1 和图 2 所示 (原理图参考图 4):



图 1: 采用 CS100 制作的超声波测距模块(双面 PCB,参考 US-025)



图 2: 采用 CS100 制作的超声波测距模块(单面 PCB,参考 US-026)

由图可见:整个电路只需极少的外围器件,同时采用单面 PCB,在保证较高性能的基础上,可大幅度降低成本。

## 2. 管脚定义

CS100 采用 SOP16 封装, 封装图如图 3 所示:





图 3: CS100 封装图

管脚定义如表1所示:

| 引脚 | 引脚名    | Ю | 功能描述                          |  |  |  |  |
|----|--------|---|-------------------------------|--|--|--|--|
| 编号 | 称      |   |                               |  |  |  |  |
| 1  | RN     | 1 | 接收探头反相输入端                     |  |  |  |  |
| 2  | RP     | 1 | 接收探头同相输入端                     |  |  |  |  |
| 3  | AVSS   | - | 模拟地                           |  |  |  |  |
| 4  | AVDD   | - | 模拟电源,3V-5.5V                  |  |  |  |  |
| 5  | TEST1  | 0 | 放大器输出测试点;不用时,悬空即可。            |  |  |  |  |
| 6  | COMP0  | 0 | 比较器输出测试点; 不用时, 悬空即可。          |  |  |  |  |
| 7  | ECHO   | 0 | 测距脉宽输出,ECHO 高电平的宽度为超声波往返时间。   |  |  |  |  |
| 8  | TRIG   | 1 | 触发测距,输入一个大于 10uS 的高电平脉冲,开始测距。 |  |  |  |  |
| 9  | DVDD   | - | 数字电源,3V-5.5V                  |  |  |  |  |
| 10 | TP     | 0 | 超声波同相发射端                      |  |  |  |  |
| 11 | TN     | 0 | 超声波反相发射端                      |  |  |  |  |
| 12 | DVSS   | - | 数字地                           |  |  |  |  |
| 13 | XI     | - | 接 8MHZ 晶振                     |  |  |  |  |
| 14 | XO     | - | 接 8MHZ 晶振,或外接 8MHZ 的时钟信号。     |  |  |  |  |
| 15 | BLIND2 | 1 | 未用,悬空即可。                      |  |  |  |  |
| 16 | PD     | 1 | 接高电平可实现 power down;不用时,悬空即可。  |  |  |  |  |

表 1: CS100 管脚定义

### 3. 参考原理图

参考原理图如图 4 所示:



图 4: 参考原理图

其中 R1, C1 组成电源滤波电路。Y1 为 8MHZ 的晶体振荡器。RT21 为 40KHZ 的发射探头,RT11 为 40KHZ 的接收探头。

R2 为 22 兆欧的下拉电阻,可以调节测距灵敏度。增大这个电阻,可以得到更远的测量距离,但也会对周围小物体的回波信号更加敏感。一般建议选用 22MR。

#### 4. 工作原理

在 TRIG 管脚输入一个 10US 以上的高电平, 芯片(TP, TN 管脚)便可发出 8 个 40KHZ 的超声波脉冲, 然后(RP, RN)检测回波信号。当检测到回波信号后, 通过 ECHO 管脚输出, 如图 5 所示。



图 5: 测距时序图

根据 ECHO 管脚输出高电平的持续时间可以计算距离值。即距离值为: (高电平时间 苏州顺憬志联新材料科技有限公司 www.100sensor.com

#### \*340m/s)/2。

当测量距离超过测量范围时,CS100 仍会通过 ECHO 管脚输出高电平的信号,高电平的宽度约为 66ms。如图 6 所示:



图 6: 超出测量范围时序图

测量周期:当芯片通过 ECHO 管脚输出的高电平脉冲后,便可进行下一次测量,所以测量周期取决于测量距离,当测距很近时,ECHO 返回的脉冲宽度较窄,测量周期就很短;当测距较远时,ECHO 返回的脉冲宽度较宽,测量周期也就相应的变长。

最坏情况下,被测物体超出测量范围,此时返回的脉冲宽度最长,约为 66ms,所以最坏情况下的测量周期稍大于 66ms 即可(取 70ms 足够)。

#### 5. 性能指标

性能指标如表 2 所示:

| 电源电压(AVDD,DVDD)  | 3V-5.5V  |
|------------------|----------|
| 工作温度             | -40℃-85℃ |
| 工作电流             | 5.3mA    |
| 休眠电流(power down) | 0.3mA    |
| 测距范围             | 8 米      |
| 超声波发射频率          | 40KHZ    |
| 探测精度             | 0.1cm+1% |
| 测量盲区             | 小于 2cm   |

表 2: CS100 性能指标

### 6. 封装尺寸

CS100 为 SOP16 封装,尺寸图如下所示:







| DESCRIPTION     | CVADO  | INCH     |     |      | MILLIMETER |     |             |
|-----------------|--------|----------|-----|------|------------|-----|-------------|
| DESCRIPTION     | SYMBOL | MIN      | NOM | MAX  | MIN        | NOM | MAX         |
| TOTAL THICKNESS | А      | .053     |     | .069 | 1.35       |     | 1.75        |
| STAND OFF       | A1     | .004     |     | .010 | 0.10       |     | 0.25        |
| MOLD THICKNESS  | A2     | .049     |     |      | 1.25       |     |             |
| LEAD WIDTH      | ь      | .014     |     | .019 | 0.35       |     | 0.49        |
| L/F THICKNESS   | С      | .007     |     | .010 | 0.19       |     | 0.25        |
| DODY CIZE       | D      | .386     |     | .394 | 9.80       |     | 10.00       |
| BODY SIZE       | E1     | .150     |     | .157 | 3.80       |     | 4.00        |
|                 | E      | .228     |     | .244 | 5.80       |     | 6.20        |
| LEAD PITCH      | е      | .050 BSC |     |      | 1.27 BSC   |     |             |
|                 | L      | .016     |     | .049 | 0.40       |     | 1.25        |
|                 | h      | .010     |     | .020 | 0.25       |     | 0.50        |
|                 | θ      | 0.       |     | 7.   | 0.         |     | 7*          |
|                 | θ1     | 5 *      |     | 15*  | 5 *        |     | 15 <b>°</b> |
|                 |        |          |     |      |            |     |             |
|                 |        |          |     |      |            |     |             |
|                 |        |          |     |      |            |     |             |
|                 |        |          |     |      |            |     |             |
|                 |        |          |     |      |            |     |             |

#### NOTES

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DIMENSION D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 (.006) PER SIDE.
- 5. DIMENSION b DOES NOT INCLUDE DAM BAR PROTRUSION. ALLOWABLE DAM BAR PROTRUSION SHALL BE 0.127 (.005) TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.