ESALQ

USP ESALQ - Assessoria de Comunicação

Veículo: Mundo do Leite

Data: 01/03/2014 Caderno: Nutrição / 26

Assunto: Manejo de pasto e suplemento energético

Flávio Augusto Portela Santos Professor titular do Departamento de Zootecnia, Esalq/USP *Colaboraram Jonas de Souza e Fernanda Batistel, ambos zootecnistas e mestrandos em Ciência Animal e Pastagens pela Esalq/USP.

Manejo de pasto e suplemento energético

A intensificação dos sistemas de produção de leite em pastagens visa ao aproveitamento máximo de áreas produtivas e ao aumento da rentabilidade dos sistemas de produção. A adubação nitrogenada, manejo do pastejo e a suplementação são algumas das práticas de manejo que compõem a estrutura de um sistema intensificado, e, mesmo conhecendo o potencial de cada uma delas, é extremamente importante conhecer as interações entre elas e as respostas em desempenho animal e produção por área, para que o uso dessas ferramentas seja realizado de maneira adequada.

A adubação nitrogenada das pastagens promove aumentos expressivos em produção de forragem e consequente aumento no número de animais por hectare. Além disso, ela também permite a colheita de forragem de melhor qualidade, com teores mais elevados de proteína bruta e menores teores de fibra. Na Tabela 1 são apresentados dados de composição nutricional de amostras (estrato pastejável) de capim marandu (*Brachiaria brizantha* cv Marandu) em áreas adubadas com nitrogênio entre 180 e 250 kg/ha.

Em sistemas de recria de novilhas leiteiras em pastagens, deve-se ter como

meta a obtenção de ganhos de peso adequados para que as fêmeas venham a dar a primeira cria aos 24 meses, fazendo o máximo uso de forragens e mínimo de alimentos concentrados. Para novilhas de raças grandes (Holandesa, Pardo-Suíço) com peso corporal ao primeiro parto de 500 kg (feto + placenta inclusos), o ganho diário após a desmama aos 60 dias (60 a 70

Tabela 1. Composição química de capim Marandu.					
Forragem	PB1 (%)	FDN ² (%)	Referência		
Braquiária brizanta cv Marandu	12,6	57,4	Correia (2006)		
Braquiária brizanta cv Marandu	13,6	56,2	Correia (2006)		
Braquiária brizanta cv Marandu	15,3	65,0	Costa (2007)		
Braquiária brizanta cv Marandu	15,4	63,9	Pacheco, Jr. (2009)		
Braquiária brizanta cv Marandu	11,9	66,3	Agostinho Neto (2010)		
Braquiária brizanta cv Marandu	13,1	62,6	Dórea (2010)		

Mundo do Leite Fev-Mar/2014

kg PC) teria que ser ao redor de 0,65 kg/dia.

Na Tabela 2 são apresentados os valores de consumo de matéria seca (MS) de forragem e os respectivos ganhos de peso possíveis com base na energia e na proteína consumidas por novilha de 300 kg, em pastagem com 13,1% de PB, 62,6% de FDN e 60% de NDT (nutrientes digestíveis totais), de acordo com o NRC (2001).

Com base nos dados da Tabela 2 pode se observar a importância do consumo de forragem no desempenho do animal. O aumento de 6 para 7,8 kg de MS de consumo de forragem de mesmo valor nutricional é necessário para

aumentar o GPDE de 0,27 para 0,65 kg/cab de acordo com o NRC (2001). Também é possível observar que, em pastagens adubadas e bem manejadas, o fator que limita o desempenho animal é o consumo de energia e não o de proteína. Caso a novilha consiga ingerir apenas 6 kg/cab/dia de MS de forragem, será necessário suplementá-la diariamente com pelo menos 1,25 kg de milho para atingir o ganho diário de 0,65 kg.

O consumo de MS de forragem é determinado por vários fatores. É indiscutível a importância do valor nutricional da forragem, principalmente quanto ao teor e à qualidade de fibra e a fragilidade das partículas, que podem limitar o consumo de forragem em virtude do efeito de enchimento ruminal. Entretanto, diversos trabalhos de pesquisa com plantas de clima temperado e mais recentemente com plantas de clima tropical têm mostrado a importância da estrutura do pasto na capaci-

Tabela 2. Consumo de forragem e desempenho de novilhas de 300 kg de PC¹ em pastagens

Consumo (kg MS ²)	Consumo (% PC)	GPDE ³ (kg/cab.)	GPDP ³ (kg/cab.)
6,0	2,0	0,27	0,69
6,5	2,2	0,38	0,78
7,0	2,3	0,49	0,88
7,5	2,5	0,60	0,97
- 7,8	2,6	0,65	1,02

(1) Peso corporal; (2) Matéria seca; (3) Ganho de peso possível com base na energia consumida; (4) Ganho de peso possível com base na proteína consumida.

Tabela 3. Composição morfológica da forragem.

	Pré-pastej	0	
kg de MS1/ha	Altura de entrada		EPM ²
	25	35	
Massa, kg MS/ha	8036.09	8899.75	530.36
Folha, kg MS/ha	3407.41	3306.59	194.67
Colmo, kg MS/ha	1414.33	1609.00	114.48
MM ³ , kg MS/ha	2771.22	3984.16	457.21
PB ⁴ , %	13,87	11,02	
FDN ⁵ , %	58,93	62,97	

(1) Matéria seca; (2) Erro padrão da média - quanto menor, melhor; (3) Material morto; (4) Proteína bruta; (5) Fibra insolúvel em detergente neutro.

dade de colheita de forragem por parte do animal, processo este que antecede os processos de digestão no rúmen.

O manejo do pastejo com base na interceptação de luz de 95% como critério para a entrada do animal no pasto resulta em alterações positivas tanto na qualidade da forragem quanto na estrutura do pasto, em virtude do aumento na proporção de folhas e redução na proporção de colmos e matéria morta. Alterações positivas na estrutura do pasto têm impacto expressivo na eficiência de colheita de forragem pelo animal, permitindo maior consumo diário de forragem e redução nas horas gastas com atividade de pastejo, ou seja, maior consumo de energia com menor gasto de energia.

Em trabalho conduzido no Departamento de Zootecnia da Esalq/USP foram comparadas duas alturas de entrada (25 cm vs 35 cm) em pastagens de braquiária brizantha cv. Marandu, associadas a dois níveis de suplementação, 0 e 0,6%

do PV de milho moído. Em ambos os pastos a meta de saída foi de 15 cm de altura. A altura de 25 cm corresponde ao ponto de 95% de interceptação luminosa no capim braquiarão e resultou em melhor estrutura do pasto (Tabela 3) e maior consumo de forragem de melhor nutritivo, o que permitiu maior consumo de energia pelo animal em menor tempo de pastejo.

O manejo do pastejo com base em 95% de IL foi mais efetivo em aumentar a ingestão de matéria seca digestível pelo animal (0,99 vs 1,42% PC) que o fornecimento de concentrado (1,05 x 1,36% PC). O ajuste no manejo do pastejo aumentou em 43% o

consumo de matéria seca digestível ante 29,5% com o fornecimento de concentrado. Tanto o ajuste do manejo do pastejo (390 x 434 min/d) quanto o fornecimento de concentrado (376 x 447 min/d) reduziram o tempo de pastejo dos animais, o que resultou em menor gasto de energia com essa atividade.

Como conclusão, tem-se que o manejo do pastejo e a suplementação com concentrado são ferramentas eficazes para aumentar o consumo de energia e ao mesmo tempo reduzir o gasto de energia do animal com a atividade de pastejo, sendo a primeira prática mais efetiva que a segunda e de menor custo.

Nos próximos três artigos discutiremos as interações entre manejo do pastejo e doses de concentrado, assim como as interações entre altura de entrada, altura de saída e doses de concentrado e também fontes de concentrado para bovinos em crescimento