UEPB/CCT/DC

Disciplina: Matemática Discreta I

Prof. Antonio Carlos

Período: 2021.1

Data: / /2021

2ª. Avaliação

ATENÇÃO!

- 1. As questões desta avaliação dependem de dados (A1, A2, etc.) da tabela a seguir que, por sua vez, dependem do algarismo final da matrícula de cada aluno. POR FAVOR não peguem os dados de outra matrícula e CUIDADO para não pegar o valor de cima nem o de baixo; pegue o valor da linha correta!
- 2. Resolva suas questões em papel ofício de maneira organizada, com letra legível e escura, fotografe (ou escaneie), salve essas fotos (ou escaneamentos) porque no final você vai gerar um arquivo tipo .doc ou .pdf para me enviar para que eu corrija e dê a nota. O nome do arquivo vai ser no formato: 1avNo.de matrícula do aluno.doc ou .pdf (Ex.:1av211080322.doc).
- 3. No cabeçalho do arquivo de respostas, antes da foto das questões resolvidas, escreva nome completo seguido do número de matrícula. Basta isso.
- 4. A resposta de todos os quesitos é um número inteiro. Se a resposta que o aluno obteve é um número com casas decimais, então a resposta está incorreta. Refaça a questão.
- 5. Cuidado ao copiar a questão para o borrão na hora de resolver; verifique se copiou a questão de modo correto sem esquecer nenhum valor ou sinal.

Matrículas terminadas em	0	8	1	6	3	4	5	2	7	9
A 1	3	3	2	2	2	5	3	4	2	3
A2	9	2	4	3	5	3	4	9	6	2
A3	2	8	5	3	2	5	3	3	4	9
A4	6	5	9	3	3	2	2	5	8	3
A5	8	10	12	14	16	18	20	22	24	26
A6	3	4	5	6	7	8	9	10	11	12
A7	3	5	7	-1	1	-1	1	-2	2	2
A8	1	-7	-2	3	3	2	2	2	1	1
A9	40	2	-10	-6	-16	-5	-18	0	-24	-27
A10	1	-3	1	2	2	3	-3	1	2	3
A11	2	4	5	1	1	-2	4	2	-2	-1
A12	30	-1	-12	-9	-12	-5	-6	-21	0	-18
A13	1	-1	2	2	3	3	4	-2	2	2
A14	2	-2	-2	-1	2	2	2	2	-3	-2
A15	3	-3	3	1	-1	1	3	-3	-2	3
A16	10	1	-4	-6	-12	-15	-24	14	-16	-18
A17	20	2	4	3	-8	-10	-12	-14	24	18
A18	30	3	-6	-3	4	-5	-18	21	16	-27
A19	-10	1	2	3	4	5	6	7	8	9
A20	20	-2	-4	-6	-8	-10	-12	-14	-16	-18
A21	-20	2	4	6	8	10	12	14	16	18
A22	1	2	3	4	5	5	4	3	2	1
A23	2	1	2	1	2	1	2	1	2	1
A24	-1	-3	5	-3	-3	0	1	-1	-1	-4
A25	-3	-12	-1	-14	-7	0	-1	0	-1	-11
A26	19	3	3	5	3	9	5	13	3	7
A27	3	1	3	3	7	3	5	3	15	5
A28	5	1	2	1	-2	1	3	2	-2	3
A29	-2	1	-1	3	2	5	-2	3,5	4	3
A30	2	1	6	7	-2	7	4	3	6	3
A31	4	-1	-2	-5	3	-6	1	-5	1	-6

QUESITOS

Q1: Dada a matriz a seguir, calcule seu determinante:

$$A = \begin{bmatrix} A1 & A2 \\ A3 & A4 \end{bmatrix}$$

Q2: Dada a matriz a seguir, calcule seu determinante pela Regra de Sarrus:

$$A = \begin{bmatrix} A5 & 1 & A6 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

Q3 : Calcule o determinante da matriz da questão 2 usando cofatores (Teorema de Laplace).

Q4: Resolva o sistema a seguir pela Regra de Cramer:

$$\begin{cases} A7x_1 + A8x_2 = A9\\ A10x_1 + A11x_2 = A12 \end{cases}$$

Q5: Qual a propriedade de determinantes que justifica o resultado obtido para a matriz a seguir?.

$$A = \begin{bmatrix} A13 & A14 & A15 \\ -2 & -4 & 2 \\ A16 & A17 & A18 \end{bmatrix}$$
 Resposta:

Q6: Dada a matriz **A** a seguir, calcule o determinante da matriz **B** sem refazer os cálculos. Justifique a razão desse procedimento..

$$A = \begin{bmatrix} 1 & -2 & 1 \\ -1 & 2 & -2 \\ 1 & -1 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -2 & 1 \\ A19 & A20 & A21 \\ 1 & -1 & 1 \end{bmatrix}$$
 Resposta: $\frac{1}{1}$

Resposta:

Q7: Dadas as matrizes **A** e **B** a seguir, justifique a razão para os determinantes encontrados.

$$A = \begin{bmatrix} A22 & -2 & 3 \\ 2 & 1 & -4 \\ -3 & 2 & A23 \end{bmatrix} B = \begin{bmatrix} A22 & 2 & -3 \\ -2 & 1 & 2 \\ 3 & -4 & A23 \end{bmatrix}$$
 Resposta:

Resposta:

 ${\bf Q8}$: Dadas as matrizes ${\bf \textit{A}}$ e ${\bf \textit{B}}$ a seguir, justifique a razão para os determinantes encontrados.

$$A = \begin{bmatrix} A24 & -2 & 1 \\ 1 & 1 & -2 \\ -2 & 1 & A25 \end{bmatrix} B = \begin{bmatrix} -2 & A24 & 1 \\ 1 & 1 & -2 \\ 1 & -2 & A25 \end{bmatrix}$$
 Resposta:

Resposta:

 $\underline{\mathbf{Q9}}$: Sabe-se que $\det A = 1/2$. Dada a matriz B a seguir, calcule $\det(AxB)$. Justifique.

$$B = \begin{bmatrix} A26 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & A27 & 1 \end{bmatrix}$$
 Resposta:

Q10 : Dada a matriz A a seguir,	calcule seu determinante	sem usar Sarrus nem L	aplace.
Justifique.			

$$A = \begin{bmatrix} A28 & 1 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & A29 \end{bmatrix}$$
 Resposta:

Q11. Dada a matriz A a seguir, determine sua inversa A-1.

$$A = \begin{bmatrix} 2 & 2 \\ -2 & 1 \end{bmatrix}$$

Propriedades dos Determinantes:

- P1 Quando todos os elementos de uma linha ou coluna são iguais a zero, o determinante da matriz é nulo.
- P2 Se duas linhas ou duas colunas de uma matriz forem iguais, seu determinante será nulo.
- P3 Se duas linhas ou duas colunas de uma matriz forem proporcionais, então seu determinante será nulo.
- P4 Se todos os elementos de uma linha ou de uma coluna da matriz forem multiplicados por um número real p qualquer, então seu determinante também será multiplicado por p.
- P5 Se uma matriz A, quadrada de ordem m, for multiplicada por um número real p qualquer, então seu determinante será multiplicado por p^m . Ou seja,

$$det pA_{mxm} = p^m det A_{mxm}$$

P6 - O determinante de uma matriz é igual ao determinante de sua transposta. Ou seja,

$$det A = det A^t$$

- P7 Se permutarmos a posição duas linhas ou duas colunas de uma matriz, seu determinante será o oposto da matriz anterior.
- P8 Se os elementos acima ou abaixo da diagonal principal forem iguais a zero, então o determinante da matriz será o produto dos elementos da diagonal principal.
- P9 O determinante do produto de duas matrizes é igual ao produto dos determinantes de cada uma delas. Ou seja,

$$det(AxB) = det A x det B$$

P10 - O determinante de uma matriz não se altera quando somamos aos elementos de uma fila uma combinação linear dos elementos correspondentes de filas paralelas.

Regra de Cramer:

Um sistema de equações pode ser escrito em forma matricial da seguinte maneira:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 &= b_1 \\ a_{21}x_1 + a_{22}x_2 &= b_2 \end{cases} \equiv \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} * \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$A \qquad x \qquad b$$

A regra de Cramer estabelece que se $det A \neq 0$, então cada x_i é dado por $x_i = \frac{\det A_i}{\det A}$, onde a matriz A_i é a

matriz A da qual se retira a coluna i e em seu lugar se coloca a matriz b, isto é, b_1 no lugar de a_{i1} e b_2 no lugar de a_{i2} . Para o sistema dado a seguir

$$\begin{cases} x_1 + 2x_2 &= 3 \\ 2x_1 + 3x_2 &= 5 \end{cases} \qquad A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \qquad b = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \qquad A_1 = \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix} \qquad A_2 = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$$

Resolvendo, temos $x_1 = 1$ e $x_2 = 1$.