SMART TROLLEY FOR SUPERMARKET SYSTEM

Using Machine Learning and image Processing

2020-78

IT17095136 | P.Satheesan

IT17037648 | S.Nilaxshan

IT17386296 | R.Thisanthan

IT17033374 | R.Priyanka

Introduction

- Electronic commerce has developed to such an extent to provide convenience, comfort, and efficiency in day-to-day life.
- Supermarket is a place where individuals get their everyday necessities[1].
- Lots of people spending too much of time in the supermarket to purchase their goods.
- The study aimed to provide a smart trolley for a supermarket which helps the customers to get benefit through the system.
- Techniques such as recommendations, voice assistant, Loyalty customer Program, image processing are used in order to enhance the performance of a smart trolley.

Research Questions

- How to achieve faster billing system?
- How to know about present day offers?
- How to recommend products to the customers?
- How to allow access to trolley?

Objectives

Main Objective

Developing a smart trolley for the enhancement of supermarket for the benefit of the customers.

Specific Objectives

- > Achieving faster billing system
- > Helps customer to know the bill details in advance.
- > Providing details about present day offers
- > Recommending personalized items to customers.
- ➤ Allow access to trolley using loyalty card.

Main Components

Loyalty Customer Program & Checkout Alert

Image Recognition & Weight Sensor

Product Recommendation

Voice Assistant

Compare Existing Systems

	Online Payment	Loyalty Customer Program	Weight sensor	Detect Product Image	Recommendation	Voice Assistant	Location
Smart Cart with Automatic Billing, Product Information, Product Recommendatio n Using RFID & Zigbee with Anti-Theft[1]			*				*
Modelling of Future Automatic Trolley System based on Sensors and Image Processing Guidance for Supermarket[2]			*				*

Compare Existing Systems

	Online Payment	Loyalty Customer Program	Weight sensor	Detect Product Image	Recommendation	Voice Assistant	Location
RFID Based Smart Trolley for Supermarket Automation [3]	•	*	*	•	*	*	*
Automated Smart Trolley for Supermarkets [4]	✓	*	×	✓	*		*
Smart Trolley using Smart Phone and Arduino[5]	✓	✓	*	✓	*	*	*
The research	•	✓	✓	✓			

Product Recommendation

IT17095136 | P.Satheesan

B.Sc. Special (Hons) in Information Technology

Two levels of Recommendation

- Before choosing product
- After choosing product

Recommendation for New Customers

- This recommendation is for the new customers of the supermarket.
- New customers have no previous purchase history
- Therefore, the system recommends the most popular products to them.
- Most popular products are identified by the ratings given by the existing customers of the supermarket.

Recommended list for new customers

Recommendation using Product Description

- This product recommendation is applicable when new supermarket or new customer which means it has no purchase history and product
- The product recommendation based on textual clustering analysis given in product description.

- K-means clustering used in-order to find top words in each cluster based on product description
- In case a word appears in multiple clusters, the algorithm chooses the cluster with the highest frequency of occurrence of the word.
- The recommendation system display items from the corresponding product clusters based on the product descriptions.

• In case if a customer searches "blue bowl" it first selects the best cluster and then recommend products from the corresponding cluster.

```
show_recommendations("blue bowl")

Cluster 0:
    Elephant house icecream strawberry
    Highland processed cheese
    Snack cracker
    body spray
    Promate Exercise Book single rule
```


Recommendation using collaborative filtering

 Recommend products to customers based on purchase history and similarity of ratings provided by other users who bought items to that of a particular customer.

Cosine Similarity

• Cosine similarity is a metric used to measure how similar the two items or two users are.

User-Item Matrix

• For both User-based filtering and Item-based filtering User-Item matrix is built first.

Product_ID	10002	10080	10120	10125	10133	٠
Customer_ID						
1069	0	0	0	0	0	
1113	0	0	0	0	0	
1823	0	0	0	0	0	
2189	0	0	0	0	0	
3667	0	0	0	0	0	

User-Based Product Recommendation

- Calculation of similarities between two users using cosine similarity
- User-to-User similarity matrix is built by iterating through all user pairs and computing similarity metric for each pair.

1069	1113	1823	2189	3667
1.0	0.0	0.0	0.0	0.0
0.0	1.0	0.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0
0.0	0.0	0.0	0.0	1.0
	1.0 0.0 0.0 0.0	1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0	1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0	0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0

 Provide recommendation to User B depending on User A buying pattern.

 Items recommend to B= Items bought by A- Items bought by B

Recommended Product List

User A- CustomerlD:1113

```
items_bought_by_A = set(customer_product_matrix.loc[1113].iloc[customer_product_matrix.loc[1113].nonzero()].index)
items_bought_by_A
{18007, 21088}
```

User B- CustomerID:1823

```
items_bought_by_B = set(customer_product_matrix.loc[1823].iloc[customer_product_matrix.loc[1823].nonzero()].index)
```

```
items_bought_by_B
```

{20724, 21055, 21210, 21801}

• Items recommend to B

```
items_to_recommend_User_B
{18007, 21088}
```

Product_Name

Coffee crisp

NSP Exercise Book square rule 240 pages

Item-Based Product Recommendation

- Calculation of similarities between two items using cosine similarity
- Item-to-Item similarity matrix is built by iterating through all item pairs and computing similarity metric for each pair.

10002	10080	10120	10125	10133	
1.00000	0.0	0.000000	0.000000	0.008360	
0.00000	1.0	0.000000	0.000000	0.000000	
0.00000	0.0	1.000000	0.018831	0.013041	
0.00000	0.0	0.018831	1.000000	0.014735	
0.00836	0.0	0.013041	0.014735	1.000000	
	1.00000 0.00000 0.00000 0.00000	1.00000 0.0 0.00000 1.0 0.00000 0.0 0.00000 0.0	1.00000 0.0 0.000000 0.00000 1.0 0.000000 0.00000 0.0 1.000000 0.00000 0.0 0.018831	1.00000 0.0 0.000000 0.000000 0.00000 1.0 0.000000 0.000000 0.00000 0.0 1.000000 0.018831 0.00000 0.0 0.018831 1.000000	

Recommended Product List

Top 10 similar items for the product id:21873

```
top_10_similar_items = list(
   item_item_similarity_matrix\
        .loc[21873]\
        .sort_values(ascending=False)\
        .iloc[:10]\
        .index
)
```

```
Almonds
whole wheat rice
Signal
Blueberry jelly
captain fish
closis sensitive flouride
gillette vector
Listerine Essential care
Milk Shorties
Elephant house icecream berry 450ml
```


Percentage of progress

What is to be done Next...

Market Basket Analysis

> Recommending products to customers by determining the products which are bought together.

Loyalty Customer & Check-out Alert

IT17037648 | S.Nilaxshan

B.Sc. Special (Hons) in Information Technology

Loyalty Customer Program & Checkout

Methodology

MyStore

Product Name

Quantity

Price

Reset

Add

Admin Login

Product entering

Product List

User List

New customer creation

Product entering on bill

Final Bill

UpdateProduct × Search: Product Name Qty Price biscuit 40 30 Product Name Price Quantity Update

Total sales Report

Products update & report

Pending Objective

- View the product location
 - Connect the RFID with user profile application
 - Access the trolley using RFID card
 - Add a loyalty points in customer profile

Image Processing And Weigh Load

IT17386296 | R.Thisanthan

B.Sc. Special (Hons) in Information Technology

Main Components

Product Detection

Calculate Weight

List the Products

Image Recognition & Weight Sensor

Research Objective

Reduce and eliminate time taken in billing counter in supermarkets

Designing an Intelligent Shopping Basket which uses Image scanners to allow users to self-checkout and increase productivity time

Methodology

High-Level Diagram

Problem

Can't get hardware at this current situation.

Solutions

Using web cam for Raspberry pi camera

What's Next

I need to calculate the weight and connect with the database.

Research Expenditure

Rasberry pi 4

Rasberry camera

Weight load

Technologies

References

- https://glenallsopxeidosnapoli.com/supermarketbilling-system-project-documentation.html
- https://ieeexplore.ieee.org/document/7229748/references#references
- Abdel-Hakim, Alaa E., and Aly A. Farag. "CSIFT: A SIFT descriptor with color invariant characteristics." in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1978-1983, 2006.

10/29/2020 45

Voice Assistant

IT17033374 | R.Priyanka

B.Sc. Special (Hons) in Information Technology

Background/Research Gap

- Implement the speech to text
- Implementing questions and answers
- Updating promotions and discounts

Algorithm Used –Random forest

- It is a better option for accurate predictions for multiple applications.
- Capacity to handle multiple input features.
- Effective on large datasets.

Tools & Technology

- > Python
- **≻**Pycharm
- > Jupiter notebook
- **>** spacy

To - Do - Next

- Creating a question and answer data bank through crowd sourcing
- Embed the questions using infersent, an word embedding tool by face book
- Create different classifier models and empirically identify the best models.

REFERENCES

- [1] F. I. R. S. A. A. B. Ankush Yewatkara, "Smart Cart with Automatic Billing, Product Information, Product Recommendation Using RFID & Zigbee with AntiTheft," 7th International Conference on Communication, Computing and Virtualization 2016, pp. 793-800, 2016.
- [2] A. S. A. K. R. Divya T M, "Modelling of Future Automatic Trolley System based on Sensors and Image Processing Guidance for Supermarket," 3Department of Electrical and Electronics Engineering, 2019.
- [3] "New World Encyclopedia," [Online]. Available: https://www.newworldencyclopedia.org/entry/Supermarket. [Accessed 25 February 2020].
- [4] A. P. A. G. A. K. M. M. J. ANJALI PERADATH, "RFID Based Smart Trolley for Supermarket Automation," International Research Journal of Engineering and Technology (IRJET), vol. 4, no. 7, 2017.
- [5] H. K. Sivaraman, "Automated Smart Trolley for Supermarkets," International Journal of Engineering Research & Technology (IJERT), vol. 6, no. 13, 2018.

REFERENCES

- [6] H. Y. Duc-TrongLe, "Basket-SensitivePersonalizedItemRecommendation," Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence(IJCAI-17), pp. 2060-2066, 2017.
- [7] R. D. A. K. R. D. Debajyoti Mukhopadhyay, "A Product Recommendation System using Vector Space Model and Association Rule," *International Conference on Information Technology*, pp. 279-282, 2008.
- [8] K. C. A. S. A. Panayiotis Christodoulou, "A Real-Time Targeted Recommender System for Supermarkets," *19th International Conference on Enterprise Information Systems*, vol. 2, pp. 703-712, 2017.
- [9] B.-J. Y. J. S. S. M. K. Yong Soo Kim, "Development of a recommender system based on navigational and behavioral patterns of customers in e-commerce sites," *Korea Advanced Institute of S cience and Technology*, pp. 381-393, 2005.
- [10] A. Demiriz, "Enhancing Product Recommender Systems on Sparse Binary Data," *Data Mining and Knowledge Discovery*, vol. 9, 2002.

REFERENCES

[11] D. M. A. Yahya Dorostkar Navaei, "Dihedral Product Recommendation System for E-commerce Using Data Mining Applications," *International Journal of Computer & Information Technologies(IJOCIT)*, vol. 3, pp. 610-631, 2015.

[12] S. A. I. S. S. V. T. Andreas Kanavos, "Large Scale Product Recommendation of Supermarket Ware Based on Customer Behaviour Analysis," *Big Data and Cognitive Computing*, vol. 2, 2018.

[13] A. K. D. Loraine Charlet Annie M.C, "Market Basket Analysis for a Supermarket based on Frequent Itemset Mining," *International Journal of Computer Science Issues*, vol. 9, 2012.

[14] M. S. M. P. O. K. M. B. S. Ruihai Dong, "Opinionated Product Recommendation," in *ResearchGate*, 2014.

