

Discrete Mathematics MH1812

Topic 3 - Predicate Logic Summary

SINGAPORE

Quantification: Order of Nesting Matters

Is $\forall x \in D$, $\exists y \in D$, $P(x,y) \equiv \exists y \in D$, $\forall x \in D$, P(x,y) in general?

LHS

 $\forall x \in D, \exists y \in D, P(x,y)$

y can vary with x

LIIO

RHS

 $\exists y \in D, \forall x \in D, P(x,y)$

y is fixed, but x varies

Let P(x,y) ="x admires y"

"Every person admires someone"

"Some people are admired by everyone"

Example

Consider the domains $X = \{2,3\}$ and $Y = \{2,4,6\}$, and the predicate P(x,y) = "x divides y".

What are the truth values of

- **1.** $\forall y \in Y, \exists x \in X, P(x,y).$
- **2.** $\exists x \in X, \forall y \in Y, P(x,y).$

Example

Consider the domains $X = \{2,3\}$ and $Y = \{2,6,9\}$, and the predicate P(x,y) = "x divides y".

What are the truth values of

- **1.** $\forall y \in Y, \exists x \in X, P(x,y).$
- **2.** $\exists x \in X, \forall y \in Y, P(x,y).$

Quantification: Order of Nesting Matters

Consider (arbitrary) domains X and Y with m and n members respectively.

Then
$$\exists x \in X, \exists y \in Y, P(x,y) \equiv \exists y \in Y, \exists x \in X, P(x,y)$$

and $\forall x \in X, \forall y \in Y, P(x,y) \equiv \forall y \in Y, \forall x \in X, P(x,y)$

$$\exists x \in X, \exists y \in Y, P(x,y) \equiv [\exists y \in Y, P(x_1,y)] \lor \dots \lor [\exists y \in Y, P(x_m,y)]$$

$$\equiv [P(x_1, y_1) \lor \dots \lor P(x_1, y_n)] \lor \dots \lor [P(x_m, y_1) \lor \dots \lor P(x_m, y_n)]$$

$$\equiv [P(x_1, y_1) \lor \dots \lor P(x_m, y_1)] \lor \dots \lor [P(x_1, y_n) \lor \dots \lor P(x_m, y_n)]$$

$$\equiv [\exists x \in X, P(x, y_1)] \lor \dots \lor [\exists x \in X, P(x, y_n)]$$

$$\equiv \exists y \in Y, \exists x \in X, P(x,y)$$

MH1812: Discrete Mathematics

Determining Truth Values: Method of Case

Positive Example to Prove Existential Quantification

Let \mathbb{Z} denote all integers.

Is $\exists x \in \mathbb{Z}$, $x^2 = x$ true or false?

Take x = 0 or 1 and we have it.

Positive Example

It is not a proof of universal quantification.

Counterexample to Disprove Universal Quantification

Let \mathbb{R} denote all reals.

Is $\forall x \in \mathbb{R}$, $x^2 > x$ true or false?

Take x = 0.3 as a counterexample.

Negative Example

It is **not** disproof of existential quantification.

Conditional Quantification: Definitions

Given a conditional quantification such as...

$$\forall x \in A \ (P(x) \to Q(x))$$

Then, we define...

Contrapositive	$\forall x \in A, \neg Q(x) \rightarrow \neg P(x)$
Converse	$\forall x \in A, Q(x) \rightarrow P(x)$
Inverse	$\forall x \in A, \neg P(x) \rightarrow \neg Q(x)$

Note: a conditional proposition is logically equivalent to its contrapositive.

Conditional Quantification: Negation

What is
$$\neg (\forall x \in X, P(x) \rightarrow Q(x))$$
?

$$\neg (\forall x \in X, P(x) \rightarrow Q(x))$$

$$\equiv \exists x \in X, \neg (P(x) \rightarrow Q(x))$$

$$\equiv \exists x \in X, \neg (\neg P(x) \lor Q(x))$$

$$\equiv \exists x \in X, P(x) \land \neg Q(x)$$

Negation of Quantified Statements

Conversion of Conditionals

De Morgan

Example

Consider the domains $X = \{2,3\}$ and $Y = \{2,4,6\}$, and the predicate P(x,y) = "x divides y".

What are the truth values of

1. $\neg (\exists x \in X, \exists y \in Y P(x,y))$.

2. $\neg (\forall y \in Y, \exists x \in X, P(x,y)).$

Basic Inference Rules:

P(c) for any arbitrary c from the domain D.

 $\therefore \forall x \in D, P(x)$

P(c)

 $\therefore \exists x \in D, P(x)$

for c some specific element of the domain D.

 $\forall x \in D, P(x)$

 $\therefore P(c)$

where c is any element of the domain D.

 $\exists x \in D, P(x)$

 \therefore P(c) for some c in the domain D.

Logic

proposition

∧: conjunction (and)

V: disjunction (or)

¬: negation (not, alternatively ~)

 $p \rightarrow q$: conditional (if then)

 $p \leftrightarrow q$: biconditional (if and only if)

equivalence laws (e.g. De Morgan, Conversion Theorem, Distributivity) valid argument (premises and conclusion) inference rules, e.g. Modus ponens/tollens

predicate

Quantification:

- Universal ∀
- Existential ∃
- Nested
- Negation
- Conditional
- Negation of conditional

Inference rules:

- Universal generalization/instantiation
- Existential generalization/instantiation