Session 19: Set Identities

- Set Identities
- Proving set identities

Set Identities

Set Identities can be understood as analogues of logical equivalences in propositional logic

Set Identities

Set Identities can be understood as analogues of logical equivalences in propositional logic

Example: First De Morgan Law for Sets: $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Set Identities

Set Identities can be understood as analogues of logical equivalences in propositional logic

Example: First De Morgan Law for Sets: $\overline{A \cap B} = \overline{A} \cup \overline{B}$

This corresponds to $\neg(p \land q) \equiv \neg p \lor \neg q$

Proving Set Identities

Different approaches to prove set identities

- Use set builder notation and propositional logic.
- 2. Prove that each set (side of the identity) is a subset of the other.
- 3. Membership Tables: Verify that elements in the same combination of sets always either belong or do not belong to the same side of the identity (analogue of truth tables).

Set-Builder Notation: First De Morgan Law

Alternative Proof

$$\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$$

$$\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$$

$x \in \overline{A \cap B}$
$x \not\in A \cap B$
$\neg((x \in A) \land (x \in B))$
$\neg(x \in A) \lor \neg(x \in B$
$x \not\in A \lor x \not\in B$
$x \in \overline{A} \lor x \in \overline{B}$
$x \in \overline{A} \cup \overline{B}$

by assumption
defn. of complement
defn. of intersection
1st De Morgan Law for Prop Logic
defn. of negation
defn. of complement
defn. of union

$$x \in \overline{A} \cup \overline{B}$$

$$(x \in \overline{A}) \lor (x \in \overline{B})$$

$$(x \notin A) \lor (x \notin B)$$

$$\neg (x \in A) \lor \neg (x \in B)$$

$$\neg ((x \in A) \land (x \in B))$$

$$\neg (x \in A \cap B)$$

$$x \in \overline{A \cap B}$$

by assumption
defn. of union
defn. of complement
defn. of negation
by 1st De Morgan Law for Prop Logic
defn. of intersection
defn. of complement

Proof by Membership table

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

A	В	Ā	\overline{B}	$\overline{A} \cup \overline{B}$	$A \cap B$	$\overline{A \cap B}$
1	1	0	0	0	1	0
1	0	0	1	1	0	1
0	1	1	0	1	0	1
0	0	1	1	1	0	1

Note: you can read the column name A as the predicate $x \in A$

List of Set Identities

$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws

$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{\overline{A \cap B}} = \overline{\overline{A}} \cup \overline{\overline{B}}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Note: they have all correspondents in propositional logic, and carry the same name

Generalized Unions and Intersections

Since union and intersection are associative, we can introduce the following notations

• Let $A_1, A_2, ..., A_n$ be an indexed collection of sets.

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \ldots \cup A_n$$

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \ldots \cup A_n$$

Example

For $i = 1, 2, ..., let A_i = \{i, i + 1, i + 2,\}$. Then,

$$\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \{i, i+1, i+2, \dots\} = \{1, 2, 3, \dots\}$$

$$\bigcap_{i=1}^{n} A_i = \bigcap_{i=1}^{n} \{i, i+1, i+2, ...\} = \{n, n+1, n+2,\} = A_n$$

Summary

- Set identities as analogous to propositional logical equivalences
- Proof by
 - Set builder notation
 - Subset relationship
 - Membership table
- Generalised union and intersection