graph theory notes*

Stiebitz's proof of Gallai's conjecture on the number of components in the high and low vertex subgraphs of critical graphs

Tibor Gallai conjectured the following in 1963 [1, 2] and Michael Stiebitz proved it in 1982 [3]. For a graph G, let $\mathcal{L}(G)$ be the subgraph of G induced on the vertices of degree $\delta(G)$ and let $\mathcal{H}(G)$ be the subgraph of G induced on the vertices of degree larger than $\delta(G)$.

Theorem (Stiebitz). If G is a color-critical graph with $\delta(G) = \chi(G) - 1$, then $\mathcal{H}(G)$ has at most as many components as $\mathcal{L}(G)$.

In fact, Stiebitz proved a stronger statement. Theorem follows immediately from Lemma using $X = V(\mathcal{L}(G))$.

Lemma. Let G be a connected graph and $\emptyset \neq X \subseteq V(G)$ such that

- $d_G(x) \leq k-1$ for all $x \in X$; and
- for each component C of G-X, we have $\chi(G-V(C)) \leq k-1$; and
- G[X] has ℓ components and G-X has at least $\ell+1$ components.

If G-X is the disjoint union of (possibly not connected) graphs $M_1, \ldots, M_{\ell+1}$ and f_i is a (k-1)-coloring of M_i for each $i \in [\ell+1]$, then there are permutations $\pi_1, \ldots, \pi_{\ell+1}$ of [k-1] such that the (k-1)-coloring of G-X given by $(\pi_1 \circ f_1) \cup \cdots \cup (\pi_{\ell+1} \circ f_{\ell+1})$ extends to a (k-1)-coloring of G.

Proof. Suppose the lemma is false and choose a counterexample G and nonempty $X \subseteq V(G)$ so that |X| is as small as possible. So, G - X is the disjoint union of graphs $M_1, \ldots, M_{\ell+1}$ and we have (k-1)-colorings f_i of M_i for each $i \in [\ell+1]$ so that no permutations allow us to extend to a (k-1)-coloring of G.

Claim 1. Each component of G[X] has edges to at least two of the M_i . Suppose to the contrary that we have a component C of G[X] that has edges to at most one of the M_i . Then, since G is connected, we must have $\ell \geq 2$. But now the hypotheses of the lemma are satisfied with $X' = X \setminus V(C)$ in place of X, so by minimality of |X| we get permutations that allow us to extend to a (k-1)-coloring of G, a contradiction.

^{*}clarifications, errors, simplifications ⇒ landon.rabern@gmail.com

Claim 2. Each non-separating vertex in G[X] has neighbors in at least two of the M_i . Suppose to the contrary that we have a component C of G[X] and $x \in V(C)$ a non-separating vertex that has neighbors in at most one of the M_i . Then, by Claim 1, we must have $|C| \geq 2$. But then x has at most k-2 neighbors in G-X, so we can greedily complete any (k-1)-coloring of G-X to G-X' where $X'=X\setminus\{x\}$. So, the hypotheses of the lemma are satisfied with X' in place of X. Again, by minimality of |X|, we get permutations that allow us to extend to a (k-1)-coloring of G, a contradiction.

Claim 3. If G[X] has at least two components, then G - V(C) is connected for every component C of G - X. Suppose G[X] has at least two components and let C be a component of G - X. If G - V(C) is disconnected, then with X' = V(C) in place of X, the hypotheses of the lemma are satisfied. By minimality of |X|, we get permutations that allow us to extend to a (k-1)-coloring of G, a contradiction.

Claim 4. The lemma is true. Pick a component C in G[X] and a non-separating vertex $x \in V(C)$. By Claim 2 and symmetry, we may assume that x has neighbors y_1, y_2 in M_1, M_2 respectively. Let G' = G - V(C) and $X' = X \setminus V(C)$. Then G' is the disjoint union of the ℓ graphs $M_1 \cup M_2, M_3, \ldots, M_{\ell+1}$. Let τ be a permutation of [k-1] such that $(\tau \circ f_2)(y_2) = f_1(y_1)$ and let $f_* = f_1 \cup (\tau \circ f_2)$.

Suppose G' is connected. By minimality of |X|, we can apply the lemma to G' with $M_1 \cup M_2, M_3, \ldots, M_{\ell+1}$ and colorings $f_*, f_3, \ldots, f_{\ell+1}$ to get permutations $\pi_*, \pi_3, \ldots, \pi_{\ell+1}$ such that the (k-1)-coloring of G' - X' given by $(\pi_* \circ f_*) \cup (\pi_3 \circ f_3) \cup \cdots \cup (\pi_{\ell+1} \circ f_{\ell+1})$ extends to a (k-1)-coloring of G'. But this is the same as the (k-1)-coloring $(\pi_* \circ f_1) \cup (\pi_* \circ \tau \circ f_2) \cup (\pi_3 \circ f_3) \cup \cdots \cup (\pi_{\ell+1} \circ f_{\ell+1})$, so using the permutations $\pi_*, \pi_* \circ \tau, \pi_3, \ldots, \pi_{\ell+1}$ we get a coloring of G - X that extends to G - V(C).

If G' is not connected, then X = V(C) by Claim 3. So, $\ell = 1$ and f_* is a (k-1)-coloring of G - V(C).

In these colorings, y_1 and y_2 receive the same color. This means that x has $k-1-(d_G(x)-d_C(x))+1 \ge d_C(x)+1$ colors available and each other vertex v in C has $k-1-(d_G(v)-d_C(v))+1 \ge d_C(v) \ge d_C(v)$ colors available. So, coloring C greedily in order of decreasing distance from x gives an extension to a (k-1)-coloring of G, a contradiction. \Box

References

- [1] T. Gallai, Kritische graphen I., Math. Inst. Hungar. Acad. Sci 8 (1963), 165–192 (in German).
- [2] _____, Kritische graphen II., Math. Inst. Hungar. Acad. Sci 8 (1963), 373–395 (in German).
- [3] M. Stiebitz, Proof of a conjecture of T. Gallai concerning connectivity properties of colour-critical graphs, Combinatorica 2 (1982), no. 3, 315–323.