Universität Bielefeld

CITEC / Faculty of Technology

Ambient Intelligence Group

Dr. Thomas Hermann

Sekretariat: S. Strunk

Office: CITEC-3.311

106-6891

Exercises of the lecture "Introduction to Data Mining"

WS 2018/2019 Excercise sheet 3

- Dependency analysis -

▼ Problem 3.1, Linear correlation as optimization task

The linear correlation coefficient

$$r = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i} (y_{i} - \bar{y})^{2}}}$$

is connected to the optimal estimator \boldsymbol{a} and \boldsymbol{b} regarding the cost function

$$E(a,b) := \sum_{i=1}^{N} (y_i - ax_i - b)^2$$

by

$$E_{\min} = (1 - r^2) \sum_{i=1}^{N} (y_i - \bar{y})^2$$

a) Calculate the optimal solution (Extremum of E(a,b)) by setting the gradient $\frac{\partial E}{\partial a}$, or $\frac{\partial E}{\partial b}$ to zero. What is the equation for minimal error that you get?

In []:

- **b)** Now examine the data set {(1,2), (2.5, 7), (3, 9), (2.8, 7), (1.4, 4), (3.5, 7.5), (4, 9), (3.2, 6.8)}.
 - How big is r?
 - Which are the optimal parameters *a* and *b*?
 - How big is the error?
 - Does the connection that we formulated in (a) hold?
 - How does a measuring error "(4,.9) instead of (4,9)" influence r?

Plot the data set and compare the regression line.

In []:

- c) Analyze the data set in a similar manner using the non-parametric correlation.
 - How big is r_{sp} ? Can we reject the null hypothesis of uncorrelatedness?
 - What's the meaning of the parameters a and b in the case of rank correlation?
 - How does a transmission error "(4,-9) instead of (4,9)" influence the results now?

In []:				
	d) Additional Task (optional, but a good exercise): Prove the above mentioned relation between r and E_{min} . (Hint: You can assume $\bar{x}=0$ without loss of generality and work with the vectors \vec{m}_x and \vec{m}_y , that we discussed during the geometric interpretation of r during the lecture.)			
In []:				
	Thomas Hermann (thermann@techfak)	Lecture Wed 12-14, CITEC lecture hall	office building	public transportation
	Ferdinand Schlatt:	Tutorial Tue 12:15-13:45, UHG H11	Universität Bielefeld	light rail 4
			Universitätsstraße 25	from Bahnhof and Jahnplatz
			33615 Bielefeld	
In []:				

2 of 2