Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística

Matemática Discreta 2 Curso 2021

PRÁCTICO 8: TEORÍA DE GRUPOS - TEOREMA DE LAGRANGE, ÓRDENES, HOMOMORFISMOS.

Recordamos el siguiente Teorema, central en la teoría, y útil en varios ejercicios de este Práctico.

Teorema de Lagrange: Si G es un grupo finito y H un subgrupo de G entonces |H| divide a |G|.

Ejercicio 1. Dados dos grupos (G, \times, e_G) y $(K, *, e_K)$ se define la siguiente operación en el *producto* cartesiano $G \times K$: $(g, k)(g', k') = (g \times g', k * k')$ para todo $g, g' \in G$ y para todo $k, k' \in K$ (operaciones coordenada). Probar que $G \times K$ con esta operación es un grupo.

Ejercicio 2.

- **a**. Sean $G = GL(2, \mathbb{R})$ el grupo multiplicativo de las matrices invertibles 2×2 con coeficientes en \mathbb{R} , $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$. Probar que o(A) = 4, B orden o(B) = 3 y que AB tiene orden infinito.
- **b**. Hallar elementos $a, b \in \mathbb{Z}_2 \times \mathbb{Z}$ de orden infinito tales que a + b tiene orden finito (suma coordenada a coordenada).

Ejercicio 3. Escriba la tabla de multiplicación de U(18). Hallar los órdenes de los elementos de U(18). ¿Es U(18) cíclico?

Ejercicio 4.

- **a.** Sea G un grupo. Probar que si $a^n = e_G \Rightarrow o(a)|n$.
- **b.** Sea G un grupo. Probar que si $a^n \neq e_G \Rightarrow o(a) \nmid n$
- **c**. Sea G un grupo. Probar que $o(xy) = o(yx), \forall x, y \in G$.
- **d.** Probar que si $a \in U(n) \Rightarrow o(a)|\varphi(n)$.
- **e**. i) Hallar el resto de dividir 2^{20} entre 253.
 - ii) Sabiendo además que $2^{55} \equiv -45 \mod (253)$, hallar el orden de 2 en U(253).

Ejercicio 5. Considere un grupo cíclico finito G de orden n, con generador $g \in G$.

- **a**. Probar que $g^k=g^m$ si y solo si $k\equiv m\pmod n$
- **b.** Probar que si mcd(m,n) = d y n = dn', entonces el orden de q^m es n'.
- **c**. Probar que g^k es también un generador de G si y solo si mcd(k, n) = 1.
- **d**. Usar la parte anterior para probar que G tiene $\varphi(n)$ generadores, donde φ es la función indicatriz de Euler.

Ejercicio 6. Sean H y K subgrupos de un grupo G y e la unidad de G.

a. Probar que si |H| y |K| son coprimos entonces $H \cap K = \{e\}$.

b. Hallar los posibles valores de |H| si $K \subsetneq H \subsetneq G$, |G| = 660 y |K| = 66.

Ejercicio 7. Sea $f: \{1, 2, \dots, n\} \to \{1, 2, \dots, n\}$ una función biyectiva. Probar que el inverso de f es:

$$f^{-1} = \underbrace{f \circ f \circ \dots \circ f}_{n!-1 \text{ veces}}.$$

Ejercicio 8. Sea G un grupo. Probar las siguientes afirmaciones.

- a. Si G es cíclico todo subgrupo de G también es cíclico.
- **b**. Si G no tiene subgrupos no triviales entonces G es cíclico, finito y |G| es primo.

Ejercicio 9. Verificar si las siguientes funciones son o no morfismos de grupo.

- **a.** La función traza $tr: (M_{n\times n}(\mathbb{R}), +) \to (\mathbb{R}, +)$
- **b**. La función $f:(M_{n\times n}(\mathbb{R}),+)\to (\mathbb{R},+)$ dada por $f(A)=tr(A^2)$.
- **c**. La función determinante $det: (\mathsf{GL}_n(\mathbb{R}), \cdot) \to (\mathbb{R}^*, \cdot)$ (recordar que $\mathsf{GL}_n(\mathbb{R})$ es el conjunto de matrices invertibles $n \times n$ con coeficientes en \mathbb{R}).
- **d**. La función $f:(\mathsf{GL}_n(\mathbb{R}),\cdot)\to(\mathbb{R}^*,\cdot)$ dada por $f(A)=det(A^2)$.
- e. La función $f:(\mathbb{R}^*,\cdot)\to (\operatorname{GL}_n(\mathbb{R}),\cdot)$ dada por $f(\lambda)=\lambda A$ donde $A\in\operatorname{GL}_n(\mathbb{R})$ es una matriz dada (en caso de no serlo siempre, hallar condiciones sobre A para que f sea morfismo).
- **f**. La función trasponer $T:(M_{n\times n}(\mathbb{R}),+)\to (M_{n\times n}(\mathbb{R}),+)$ dada por $T(A)=A^t$.
- **g.** La función trasponer $T: (\mathsf{GL}_n(\mathbb{R}), \cdot) \to (\mathsf{GL}_n(\mathbb{R}), \cdot)$ dada por $T(A) = A^t$.
- **h**. La función $f:(\mathbb{R}^3,+)\to(\mathbb{R}^*,\cdot)$ dada por $f(x,y,z)=e^{x-2y+z}$ (sug. pensarlo como composición de dos morfismos).

Ejercicio 10. Sea $\varphi:G_1\to G_2$ un morfismo de grupos finitos.

- **a**. Sea $g \in G_1$, probar que $o(\varphi(g))$ divide a $mcd(|G_1|, |Im(\varphi)|)$.
- **b**. Probar que si $|G_1|$ y $|G_2|$ son coprimos, entonces φ es trivial.
- **c**. Si φ es un isomorfismo de grupos y $g \in G_1$. Probar que el orden de g en G_1 es igual al orden de $\varphi(g)$ en G_2 .
- **d**. Probar que \mathbb{Z}_4 y $\mathbb{Z}_2 \times \mathbb{Z}_2$ no son isomorfos.

Ejercicio 11. En cada caso verificar si los siguientes grupos son isomorfos o no; en caso que lo sean, encontrar un isomorfismo entre ellos.

- **a**. Los grupos $(\mathbb{Z}_4,+)$ y (U_{10},\cdot) .
- **b**. Los grupos D_3 y S_3 (ambos con la composición).

Ejercicio 12. Sea G un grupo con 4 elementos.

a. Probar que G es abeliano.

b. Probar que o bien $G \simeq \mathbb{Z}_4$ o bien $G \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$.

Ejercicio 13. (Examen Julio 2012)

- **a**. Probar que si $\phi: G_1 \to G_2$ es un homomorfismo de grupos finitos y $g \in G_1$, entonces $o(\phi(g)) \mid mcd(|G_1|, |G_2|)$.
- **b**. Hallar todos los homomorfismos $\phi: \mathbb{Z}_2 \to U(8)$.
- **c**. Hallar p sabiendo que p es primo, y existe un homomorfismo no trivial $\phi: \mathbb{Z}_{51} \to \mathbb{Z}_p$ tal que $\phi(\overline{17}) = \overline{0}$.

Ejercicio 14. En cada parte, ver si existe un morfismo no trivial (es decir, que no mande todos los elementos al neutro) entre los siguientes pares de grupos $G \to K$. En caso de que existan construir dicho morfismo, y si no existe explicar por qué.

- **a**. $G=\mathbb{Z}_7$ con la suma y $K=S_6$ con la composición.
- **b**. $G = \mathbb{Z}_8$, K = U(24). Sugerencia: construir la tabla de Cayley de K y hallar el orden de todos sus elementos.
- **c**. G = U(9), $K = \mathbb{Z}_{12}$. Sugerencia: G es cíclico.
- **d**. G = U(15), $K = \mathbb{Z}_6$. Sugerencia: construir la tabla de Cayley de G y hallar el orden de todos sus elementos.