Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления»

Кафедра «Автоматизированные системы обработки информации и управления»

«Методы машинного обучения»

Отчет по Лабораторной работе №3

Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных

Выполнила:

студентка группы ИУ5-22М Петрова Ирина Проверил: доцент, к.т.н. Гапанюк Ю. Е.

Лабораторная работа №3. Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных.

Цель лабораторной работы: изучение способов предварительной обработки данных для дальнейшего формирования моделей.

Требования к отчету: отчет по лабораторной работе должен содержать:

- титульный лист; описание задания; текст программы;
- экранные формы с примерами выполнения
- программы.

•

Задание:

- 1. Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)
- 2. Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи:
 - обработку пропусков в данных (не менее 3 признаков);
 - кодирование категориальных признаков (не менее 3 признаков);
 - масштабирование данных (не менее 3 признаков).

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

In [53]:

```
# Будем использовать только обучающую выборку data = pd.read_csv('D:/Загрузки/train.csv', sep=",") data.head()
```

Out[53]:

Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour

()	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl
1	I	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl
2	2	3	60	RL	68.0	11250	Pave	NaN	IR1	LvI
3	3	4	70	RL	60.0	9550	Pave	NaN	IR1	LvI
4	1	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl

5 rows × 81 columns

```
In [54]:
```

```
total_count = data.shape[0]
print('Всего строк: {}'.format(total_count))
```

Всего строк: 1460

1. Обработка пропусков в данных

1.1. Простые стратегии - удаление или заполнение нулями

```
In [55]:
# Удаление колонок, содержащих пустые значения
data_new_1 = data.dropna(axis=1, how='any')
(data.shape, data_new_1.shape)
Out[55]: ((1460, 81),
(1460, 62)) In [56]:
# Удаление строк, содержащих пустые значения
data_new_2 = data.dropna(axis=0, how='any')
(data.shape, data_new_2.shape)
Out[56]:
((1460, 81), (0, 81))
In [57]:
# Заполнение всех пропущенных значений нулями
# В данном случае это некорректно, так как нулями заполняются в том числе категориальны
е колонки
data_new_3 = data.fillna(0)
data_new_3.head()
Out[57]:
```

Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour

```
1 60
              RL
                             8450
                     65.0
                                    Pave
                                            0
                                                   Reg
                                                           Lvl
   2 20
              RL
                     0.08
                             9600
                                    Pave
                                                   Reg
                                                           Lvl
2
  3 60
              RL
                     68.0
                             11250
                                    Pave
                                            0
                                                   IR1
                                                           LvI
   4 70
              RL
                     60.0
                             9550
                                            0
                                                   IR1
                                                           Lvl
                                    Pave
   5 60
              RL
                     84.0
                             14260 Pave
                                                   IR1
                                                           LvI
```

5 rows × 81 columns

4

1.2. "Внедрение значений" - импьютация (imputation)

1.2.1. Обработка пропусков в числовых данных

In [58]:

```
# Выберем числовые колонки с пропущенными значениями
# Цикл по колонкам датасета
num_cols = [] for col in
data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
 dt = str(data[col].dtype)
                              if temp null count>0 and
 (dt=='float64' or dt=='int64'):
        num cols.append(col)
        temp perc = round((temp null count / total count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(c
ol, dt, temp_null_count, temp_perc))
Колонка LotFrontage. Тип данных float64. Количество пустых значений 259, 1
7.74%.
Колонка MasVnrArea. Тип данных float64. Количество пустых значений 8, 0.5
Колонка GarageYrBlt. Тип данных float64. Количество пустых значений 81, 5.
55%.
In [59]:
# Фильтр по колонкам с пропущенными значениями
data_num = data[num_cols]
data num
```

Out[59]:

0	65.0	196.0	2003.0
1	80.0	0.0	1976.0
2	68.0	162.0	2001.0
3	60.0	0.0	1998.0
4	84.0	350.0	2000.0
1455	62.0	0.0	1999.0
1456	85.0	119.0	1978.0

0.0

0.0

0.0

1941.0

1950.0

1965.0

LotFrontage MasVnrArea GarageYrBlt

1460 rows × 3 columns

66.0

68.0

1457

1458

```
# Фильтр по пустым значениям поля pain data[data['MasVnrArea'].isnull()]
```

Out[61]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandCon
234	235	60	RL	NaN	7851	Pave	NaN	Reg	
529	530	20	RL	NaN	32668	Pave	NaN	IR1	
650	651	60	FV	65.0	8125	Pave	NaN	Reg	
936	937	20	RL	67.0	10083	Pave	NaN	Reg	
973	974 20	FV 95.0 11639 F	Pave NaN Re	g 977 978 120 i	FV 35.0 427	74 Pave I	Pave IR	1	
1243	1244	20	RL	107.0	13891	Pave	NaN	Reg	
1278	1279	60	RL	75.0	9473	Pave	NaN	Reg	
8 rows	s × 81 (columns							
↓	2.1								•
n [6	2]:								
flt_i		ем индексы = data[data				dex			
Out[6	2]: I	nt64Index([234, 529,	650, 936,	973, 977	' , 1 243	, 127	8],	
dtype	='int	64') In [63]:						
		м что вывод index.isin(

Out[63]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandCon
234	235	60	RL	NaN	7851	Pave	NaN	Reg	
529	530	20	RL	NaN	32668	Pave	NaN	IR1	
650	651	60	FV	65.0	8125	Pave	NaN	Reg	
936	937	20	RL	67.0	10083	Pave	NaN	Reg	
973	974 20	FV 95.0 11639 F	Pave NaN Reç	g 977 978 120 F	FV 35.0 427	74 Pave I	Pave IR	1	
1243	1244	20	RL	107.0	13891	Pave	NaN	Reg	
1278	1279	60	RL	75.0	9473	Pave	NaN	Reg	
8 rows	s × 81	columns							
4									•

In [64]:

```
# фильтр по колонке
data_num[data_num.index.isin(flt_index)]['MasVnrArea']
Out[64]:
234
       NaN
529
       NaN
650
       NaN
936
       NaN
973
       NaN
977
       NaN
1243
       NaN
1278
       NaN
Name: MasVnrArea, dtype: float64
In [66]:
data_num_MasVnrArea = data_num[['MasVnrArea']]
data_num_MasVnrArea.head()
Out[66]:
   MasVnrArea
 0
           196.0
 1
          0.0
 2
          162.0
          0.0
          350.0
In [67]:
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
In [68]:
# Фильтр для проверки заполнения пустых значений
indicator = MissingIndicator()
mask_missing_values_only = indicator.fit_transform(data_num_MasVnrArea)
mask_missing_values_only Out[68]:
array([[False],
[False],
       [False],
. . . ,
```

```
strategies=['mean', 'median', 'most_frequent']
```

[False], [False],

[False]]) In [69]:

```
def test_num_impute(strategy_param):
    imp_num = SimpleImputer(strategy=strategy_param)
 data num imp = imp num.fit transform(data num MasVnrArea)
 return data_num_imp[mask_missing_values_only]
In [70]:
strategies[0], test_num_impute(strategies[0])
Out[70]:
('mean',
 array([103.68526171, 103.68526171, 103.68526171, 103.68526171,
        103.68526171, 103.68526171, 103.68526171, 103.68526171]))
In [71]:
strategies[1], test_num_impute(strategies[1])
Out[71]: ('median', array([0., 0., 0., 0., 0., 0.,
0., 0.])) In [72]:
strategies[2], test_num_impute(strategies[2])
Out[72]: ('most_frequent', array([0., 0., 0., 0., 0., 0.,
0., 0.]))
In [73]:
# Более сложная функция, которая позволяет задавать колонку и вид импьютации
def test num impute col(dataset, column, strategy param):    temp data =
dataset[[column]]
    indicator = MissingIndicator()
    mask_missing_values_only = indicator.fit_transform(temp_data)
    imp num = SimpleImputer(strategy=strategy_param)
 data_num_imp = imp_num.fit_transform(temp_data)
    filled_data = data_num_imp[mask_missing_values_only]
    return column, strategy_param, filled_data.size, filled_data[0], filled_data[filled
data.size-1
In [75]:
data[['GarageYrBlt']].describe()
Out[75]:
       GarageYrBlt
```

In [42]:

count 1379.000000 **mean** 1978.506164

```
std
         24.689725
  min 1900.000000
  25% 1961.000000
  50% 1980.000000
  75% 2002.000000
  max 2010.000000
In [76]:
test_num_impute_col(data, 'GarageYrBlt', strategies[0])
Out[76]: ('GarageYrBlt', 'mean', 81, 1978.5061638868744,
1978.5061638868744) In [77]:
test_num_impute_col(data, 'GarageYrBlt', strategies[1])
Out[77]: ('GarageYrBlt', 'median', 81,
1980.0, 1980.0) In [79]:
test_num_impute_col(data, 'GarageYrBlt', strategies[2])
Out[79]:
('GarageYrBlt', 'most_frequent', 81, 2005.0, 2005.0)
```

1.2.1. Обработка пропусков в категориальных данных

```
In [80]:
# Выберем категориальные колонки с пропущенными значениями
# Цикл по колонкам датасета
cat_cols = [] for col in
data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
 dt = str(data[col].dtype)
                            if temp null count>0 and
 (dt=='object'):
        cat_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(c
ol, dt, temp_null_count, temp_perc))
Колонка Alley. Тип данных object. Количество пустых значений 1369, 93.77%.
Колонка MasVnrType. Тип данных object. Количество пустых значений 8, 0.5
5%.
Колонка BsmtQual. Тип данных object. Количество пустых значений 37, 2.53%.
Колонка BsmtCond. Тип данных object. Количество пустых значений 37, 2.53%.
Колонка BsmtExposure. Тип данных object. Количество пустых значений 38, 2.
Колонка BsmtFinType1. Тип данных object. Количество пустых значений 37, 2.
53%.
Колонка BsmtFinType2. Тип данных object. Количество пустых значений 38, 2.
6%.
```

```
Колонка Electrical. Тип данных object. Количество пустых значений 1, 0.0
7%.
Колонка FireplaceQu. Тип данных object. Количество пустых значений 690, 4
7.26%.
Колонка GarageType. Тип данных object. Количество пустых значений 81, 5.5
Колонка GarageFinish. Тип данных object. Количество пустых значений 81, 5.
55%.
Колонка GarageQual. Тип данных object. Количество пустых значений 81, 5.5
Колонка GarageCond. Тип данных object. Количество пустых значений 81, 5.5
Колонка PoolQC. Тип данных object. Количество пустых значений 1453, 99.5
2%.
Колонка Fence. Тип данных object. Количество пустых значений 1179, 80.75%.
Колонка MiscFeature. Тип данных object. Количество пустых значений 1406, 9
6.3%.
In [81]:
cat_temp_data = data[['MasVnrType']]
cat temp data.head()
Out[81]:
   MasVnrType
         BrkFace
0
 1
         None
 2
         BrkFace
 3
         None
         BrkFace
In [82]:
cat temp data['MasVnrType'].unique()
Out[82]:
array(['BrkFace', 'None', 'Stone', 'BrkCmn', nan], dtype=object)
In [83]:
cat_temp_data[cat_temp_data['MasVnrType'].isnull()].shape
Out[83]:
(8, 1)
In [84]:
# Импьютация наиболее частыми значениями
imp2 = SimpleImputer(missing values=np.nan, strategy='most frequent')
data_imp2 = imp2.fit_transform(cat_temp_data) data_imp2 Out[84]:
array([['BrkFace'],
['None'],
```

```
['BrkFace'],
       ['None'],
       ['None'],
       ['None']], dtype=object)
In [85]:
# Пустые значения отсутствуют
np.unique(data imp2)
Out[85]:
array(['BrkCmn', 'BrkFace', 'None', 'Stone'], dtype=object)
In [86]:
# Импьютация константой
imp3 = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value='!!!')
data_imp3 = imp3.fit_transform(cat_temp_data) data_imp3 Out[86]:
array([['BrkFace'],
['None'],
       ['BrkFace'],
       . . . ,
       ['None'],
       ['None'],
       ['None']], dtype=object)
In [87]:
np.unique(data_imp3)
Out[87]:
array(['!!!', 'BrkCmn', 'BrkFace', 'None', 'Stone'], dtype=object)
In [88]:
data_imp3[data_imp3=='!!!'].size
Out[88]:
8
```

2. Преобразование категориальных признаков вчисловые

```
In [89]:
cat_enc = pd.DataFrame({'c1':data_imp2.T[0]})
cat_enc
Out[89]:
```

```
0
        BrkFace
   1
        None
   2
        BrkFace
   3
        None
        BrkFace
1455
        None
1456
        Stone
1457
        None
1458
        None
1459
        None
        rows × 1 columns
1460
```

2.1. Кодирование категорий целочисленными значениями - labelencoding

```
In [90]:
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
In [91]:
le = LabelEncoder()
cat_enc_le = le.fit_transform(cat_enc['c1'])
In [92]:
cat_enc['c1'].unique()
Out[92]:
array(['BrkFace', 'None', 'Stone', 'BrkCmn'], dtype=object)
In [93]:
np.unique(cat_enc_le)
Out[93]:
array([0, 1, 2, 3])
In [94]:
le.inverse_transform([0, 1, 2, 3])
Out[94]:
array(['BrkCmn', 'BrkFace', 'None', 'Stone'], dtype=object)
```

2.2. Кодирование категорий наборами бинарных значений - one-hotencoding

```
In [95]:
ohe = OneHotEncoder()
cat_enc_ohe = ohe.fit_transform(cat_enc[['c1']])
In [96]:
cat_enc.shape
Out[96]:
(1460, 1)
In [97]:
cat_enc_ohe.shape
Out[97]:
(1460, 4) In
[98]:
cat_enc_ohe
Out[98]:
<1460x4 sparse matrix of type '<class 'numpy.float64'>'
                                                                with
1460 stored elements in Compressed Sparse Row format> In [99]:
cat_enc_ohe.todense()[0:10]
Out[99]:
matrix([[0., 1., 0., 0.],
[0., 0., 1., 0.],
        [0., 1., 0., 0.],
        [0., 0., 1., 0.],
        [0., 1., 0., 0.],
        [0., 0., 1., 0.],
        [0., 0., 0., 1.],
        [0., 0., 0., 1.],
        [0., 0., 1., 0.],
[0., 0., 1., 0.]]) In [100]:
cat_enc.head(10)
Out[100]:
       с1
0
     BrkFace
     None
 1
```

- 2 BrkFace
- 3 None
- 4 BrkFace
- 5 None
- 6 Stone
- **7** Stone
- 8 None
- 9 None

2.3. Pandas get_dummies - быстрый вариант one-hot кодирования

In [101]:

```
pd.get_dummies(cat_enc).head()
```

Out[101]:

c1_BrkCmn c1_BrkFace	c1_None	c1_Stone
----------------------	---------	----------

0	0 1	0	0	
1	0 0	1	0	
2	0 1	0	0	
3	0 0	1	0	
4	0 1	0	0	

In [102]:

```
pd.get_dummies(cat_temp_data, dummy_na=True).head()
```

Out[102]:

MasV	nrType_BrkCmn	MasVnrType_BrkFace	MasVnrType_None	MasVnrType_Stone	MasVnr
------	---------------	--------------------	-----------------	------------------	--------

0	0	1	0	0			
1	0	0	1	0			
2	0	1	0	0			
3	0	0	1	0			
4	0	1	0	0			
4							•

3. Масштабирование данных

In [103]:

from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer

3.1. МіпМах масштабирование

```
In [104]:
```

```
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['SalePrice']])
```

In [105]:

```
plt.hist(data['SalePrice'], 50)
plt.show()
```


In [106]:

```
plt.hist(sc1_data, 50)
plt.show()
```


3.2. Масштабирование данных на основе Z-оценки - StandardScaler

```
In [107]:
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(data[['SalePrice']])
In [108]:
plt.hist(sc2_data, 50)
plt.show()
```


3.3. Нормализация данных

```
In [109]:
```

```
sc3 = Normalizer()
sc3_data = sc3.fit_transform(data[['SalePrice']])
```

In [110]:

```
plt.hist(sc3_data, 50)
plt.show()
```

