	Project No Book No	4
Ost = $\int_{1}^{2} \frac{ds}{\sqrt{z_{j}y}}$ where	$ds = \left(c/x^2 + c/y^2\right)^{1/2}$ in ferms of dy: $ds = 0$	$dy\left(\left(\frac{dx}{dy}\right)^2+1\right)^4$
In this case y 75 the the dependent vor; changes the Euler-C	- independent unialle	and x is
S= f(x(y), x'(y), y) Hationary point of 2+ 2x		3
$\int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty} \left(\frac{12}{x^2} \right)^{1/2} dx = \int_{-\infty}^{\infty} \left(\frac{12}{x^2} \right)^{1/2} dx$	- d)f = 0. dy fx' \[\frac{1}{x^2 + 1}, \frac{1}{y^2} \) (Constant of the constant of
$f = (x^{2} + 1)^{1/2}$ If = 0 since f 15 10 f	a Another of x	

To Page No._

sed & Understood by me,

Date

Invented by

Date

$$f = \frac{\left(x^{\prime 1} + 1\right)^{\prime \prime 2}}{y^{\prime \prime 2}}$$

$$\frac{\chi}{(/+\chi^{2})} = c \sim 5/4,$$

$$2a x'^2 = y(1+x'^2)$$

To Page No._

Date

Invented by

Date

Book No

$$X = \int dx = \int \frac{1}{(2a-y)^{1/2}} dy$$

$$X = \int dx = \int \frac{1}{(2a-y)^{1/2}} dy$$

$$X = \begin{cases} y = y \\ y = 0 \end{cases} \begin{cases} y = y \\ z = y \end{cases} dy$$

Substitle
$$y = a(1-\cos\theta)$$

 $dy = a \sin\theta d\theta$

$$X = \int \left(\frac{a(1-\cos\theta)}{2a-a+a\cos\theta}\right)^{1/2} a \sin\theta d\theta$$

$$X = \alpha(\theta - \sin\theta) + C^{-10} + \kappa^{-10} + \kappa^{-10}$$

$$\Rightarrow \alpha(1 - \cos\theta)$$

 $= \frac{(1-\cos\theta)^2}{(1-\cos\theta)^2}$

(1-000 (1-000) = (1-000) = (1-000)

a cycloid

To Page No

ssed & Understood by me,