PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 99/50963				
H04B	A2	(4	(3) International Publication Date:	7 October 1999 (07.10.99)		
(21) International Application Number: PCT/KR9 (22) International Filing Date: 31 March 1999 (3)			(81) Designated States: AU, BR, CA, G (AT, BE, CH, CY, DE, DK, E LU, MC, NL, PT, SE).			
(30) Priority Data: 1998/11380 31 March 1998 (31.03.98)	K	IR.	Published Without international search re upon receipt of that report.	eport and to be republished		
(71) Applicant: SAMSUNG ELECTRONICS CO., LTD. [3, 416, Maetan-dong, Paldal-gu, Suwon-shi, Kyu 442-370 (KR).		,,				
(72) Inventors: PARK, Chang, Soo; 72-2, Munjor Songpa-gu, Seoul 138-200 (KR). JEONG, Joc 63-34, Chamwon-dong, Socho-gu, Seoul 137-03 LEE, Hyeon, Woo; Byeoksan Apt., #806-901, son-dong, Kwonson-gu, Suwon-shi, Kyonggi-do (KR).	ong, H 30 (KR , Kwo	o; t). n-				
(74) Agent: LEE, Keon, Joo; Mihwa Building, 110-2, gryun-dong, 4-Ga, Chongro-gu, Seoul 110-524 (k		n-				

(54) Title: TURBO ENCODING/DECODING DEVICE AND METHOD FOR PROCESSING FRAME DATA ACCORDING TO QoS

(57) Abstract

A turbo channel encoding/decoding device for a CDMA communication system. The device segments an input frame into multiple sub frames of an appropriate length when the input data frame is very long, and then encodes and decodes the sub frames. Otherwise, when the input data frames are very short, the device combines input frames into one super frame of an appropriate length and then encodes and decodes the super frame. After frame encoding/decoding, the frames are recombined into the original input frames.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/50963

- 1 -

PCT/KR99/00154

TURBO ENCODING/DECODING DEVICE AND METHOD FOR PROCESSING FRAME DATA ACCORDING TO QOS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to a device and method for encoding/decoding a channel data in a mobile communication system, and in particular, to a device and method for encoding/decoding a channel data using a turbo code.

10 <u>2. Description of the Related Art</u>

An encoder using a turbo code (hereinafter, referred to as a turbo encoder) encodes an N-bit input frame into parity symbols using two simple parallel concatenated codes, wherein an RSC (Recursive Systematic Convolutional) code is generally used as a component code.

FIGs. 1 and 2 illustrate structures of a conventional parallel turbo encoder and decoder, which are disclosed in U.S. Patent No. 5,446,747 by Berrou incorporated herein by reference.

- 2 -

- FIG. 1 is a block diagram showing a configuration of a conventional turbo encoder. The turbo encoder of FIG. 1 includes a first constituent encoder 12, a second constituent encoder 14 and an interleaver 16
- 5 interconnected therebetween. For the first and second constituent encoders 12 and 14, an RSC encoder can be used, which is well known in the art. The interleaver 16 has the same size as a frame length of the input data (i.e., N bits), and decreases the correlation of the input
- data bitstream d_k provided to the second constituent encoder 14. Therefore, the parallel concatenated codes for the input data bitstream, d_k , become \mathbf{x}_k (i.e., d_k without modification), and y_{1k} , and y_{2k} the outputs of the first 12 and second 14 constituent encoders.
- FIG. 2 is a block diagram showing a configuration of a conventional burbo decoder. The turbo decoder includes an adder 18, subtracters 20 and 22, a soft decision circuit 24, delays 26, 28 and 30, and MAP (Maximum A Posterior Probability) decoders 32 and 34. The turbo
- 20 decoder further includes an interleaver 36 which is identical to the interleaver 16 of FIG. 1, and deinterleavers 38 and 40. The turbo decoder repeatedly decodes data received by the frame unit using a MAP decoding algorithm, thereby increasing a bit error rate
- 25 (BER). For implementation of turbo decoder SOVA (Soft output viterbi algorithm) could be used instead of said

- 3 -

MAP decoding algorithm.

The utilization of interleaver 16 of the turbo encoder of FIG. 1 implies that encoding and decoding should be performed as a frame unit. Accordingly, it can be appreciated that—the required memory and calculations required for the MAP decoders 32 and 34, shown in FIG. 2 are proportional to a value obtained by multiplying the frame size by a number of states of the first and second constituent encoders 12 and 14 of FIG. 1.

In a mobile communication system, voice and data are transmitted at a data rate of several Kbps to several Mbps, and a frame length of data input to a channel encoder may vary from several ms (milliseconds) to several hundred ms. For example, in the case where the data is transmitted at a data rate of over 32Kbps. The number of data input to the turbo encoder is larger due to high data rate, the turbo decoder requires more memory and calculations to decode the received data. The turbo encoder shows a property that an error correction performance is enhanced as the frame length of the input data becomes longer, however increasing the memory and calculations required in a decoder.

In addition, if the length of the input frame is too short e.q., less than 8kbps/10 ms, the interleaver 16 in

- 4 -

the turbo encoder cannot sufficiently increase the correlation among the input data, thereby deteriorating the error correction performance. That is, when the frame length of the input data is longer (or input data rate is high), the turbo encoder structured as shown in FIG. 1 and the turbo decoder structured as shown in FIG. 2 require a lot of calculations and memory to perform encoding and decoding. Otherwise, when the frame length of the input data is shorter or the data rate of input data is lower, the turbo encoder may exhibit lower performance results, as compared with a convolutional encoder or a concatenated encoder (convolutional encoder + RS encoder), thereby increasing the BER.

Accordingly, it is possible to decrease the required calculations and memory capacity required for decoding by appropriately varying the processing size of the data input to the turbo encoder, independent of the data rate for the corresponding service, while fully securing the low BER required in the communication system.

20

According to the present invention, as embodied and broadly described herein, a channel encoding/decoding apparatus is provided including a first constituent encoder for encoding data bits of a super frame or plurality of sub frames, an interleaver for interleaving the data bits of the super frame or sub frames, and a

- 5 -

second constituent encoder for encoding the interleaved data bits of the super frame or sub frames. The second constituent encoder is coupled to the output of the interleaver.

The channel encoding/decoding apparatus can be used as part of a base station or mobile station. The novel turbo encoder would be included as part of a channel transmitter in accordance with an exemplary embodiment. The turbo encoer makes a determination as to whether to segment one input frame into several sub frames or assemble several input frames into one super frame.

SUMMARY OF THE INVENTION

It is, therefore, an object of the present invention to provide a channel encoding device and method for

15 variably encoding input data frames to sub or super frames of appropriate length according to QoS(quality of service) of data to transmit.

It is another object of the present invention to provide a channel decoding device and method for decoding encoded frame data whose frame length is appropriately varied according to the QoS (quality of service) of data to transmit.

- 6 -

It is still another object of the present invention to provide a turbo channel encoding/decoding device and method for segmenting a long input frame or high data rate into multiple sub frames—to be encode—d, and for separately decoding the divided encoded sub frames and then recombining the decoded sub frames into the original frame length.

It is further still another object of the present invention to provide a turbo channel encoding/decoding

10 device and method for combining short input frames or low data rate into a super frame having an appropriate length to encode the assembled super frame, decoding the assembled encoded super frame and then recombining the decoded super frame into the original frames.

- It is further still another object of the present invention to provide a turbo channel encoding/decoding device and method for determining an optimal length of the sub/super frames by analyzing a quality of service (QoS) such as frame length, time delay tolerance, error
- 20 tolerance, receiver complexity (especially receiver memory), a data rate correspondence to a service type of input frame data to be transmitted, and segmenting or combining an input data frame into sub or super frames according to the determination.

WO 99/50963

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description when taken in

- 5 conjunction with the accompanying drawings in which like reference numerals indicate like parts. In the drawings:
 - FIG. 1 is a diagram illustrating a block diagram of a conventional turbo encoder;
- FIG. 2 is a diagram illustrating a **block diagram of 10 a conventional turbo decoder;
 - FIG. 3 is a diagram illustrating a block diagram of a channel transmitter including a turbo encoder according to an embodiment of the present invention;
- FIG. 4 is a diagram illustrating a method for

 15 combining turbo and encodiong input frames according to an
 embodiment of the present invention;
 - FIG. 5 is a diagram illustrating a method for segmenting an input frame and turbo encoding the segmented frames according to an embodiment of the present
- 20 invention; and
 - FIG. 6 is a diagram illustrating a block diagram of a channel receiver including a turbo decoder according to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

- 8 -

A preferred embodiment of the present invention will be described hereinbelow with reference to the accompanying drawings. In the following description, well known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail.

Communication systems of the future will have capabilities for providing a plurality of services with varying QoS (Quality of Service) characteristics, and QoS parameters including a time delay, BER, and frame error rate (FER)—Services may be generally divided into high error rate services and low error rate services. Those services which can be provided with a high error rate include: voice service which requires a relatively short time delay, and a short message service (SMS) which permits a long time delay. On the other hand, services requiring—a low error rate include: a video conference service requiring a short time delay, and a still image or Internet file transfer service allowing a relatively longer time delay. Further, the same service may have different time delays and data rates.

For example, in the image service for transmitting and receiving moving picture information, a data rate is 32-2048Kbps and a permissible time delay is in the range of 10-400ms: the data rate and the permissible time delay

- 9 -

can be, however, varied according to a number of criteria including: a class of the user or terminal using the service, a class of the base station providing the service or a channel condition during the corresponding service. —

5 In a CDMA mobile communication system in particular, since the output power of a base station or a mobile station is limited, it is inadequate to increase a transmission power of only a certain user for a high quality service. This is because when the transmission power of the specific user

10 is increased, interference to other users will increase in proportion to the increased transmission power. Therefore, there is a demand for a method capable of providing various multimedia services with reduced interference to the other users; by minimizing an increase in the

15 transmission power.

In another example, a short frame packet data transmission service requires a low data rate and a very low error rate. However, if the time delay is out of the question, it is reasonable to decrease the error rate even though the time delay is somewhat increased. Therefore in this invention provide super frame concept.

In the meantime, the turbo encoder, for forward error correction, shows a property that the bit error rate (BER) or the frame error rate (FER) are varied according to the data size of frame (the number of data bits to be

processed in a time) determined by length of the input data frame and data rate. The turbo encoder consists of constituent encoders having a short constraint length, however, the error correction capability is improved as the correlation between the data input to the respective constituent encoders is decreased, due to the existence of the interleaver in the turbo encoder. The correlation between the data input to the respective constituent encoders becomes lower, as the data size of frame input to the turbo encoder becomes much more. Therefore, an increase in the frame length of the input data improves the error correction capability. However, an increase in length of the input frame causes an increase in the time delay at the encoder and the decoder.

15 FIG. 3 illustrates a configuration of a channel transmitter including a turbo encoder according to an embodiment of the present invention. The turbo encoder shown in FIG. 3 segments one input frame into several sub frames or assembles several input frames into one super 20 frame by counting bits of the input user data in accordance with provided message information, and thereafter encodes the segmented or assembled frames with a turbo code to transmit the encoded frames via a transmission channel. The term "message information" as 25 used herein refers to information about the QoS, i.e., service type, rate of data such as voice, character, image

- 11 -

and moving picture data, size of the input data frame, permissible delay, and permissible error. The message information is exchanged between a base station and a mobile station during a call setup and the exchange of the 5 message information is continued till termination of the corresponding service. Further, -predetermined information between the base station and the mobile station predetermined during the call setup can malso be varied during the corresponding service by data exchanging. That 10 is, the message information including information representing the size of the frame to be processed in the turbo encoder can be reset according to a rate of the data to be serviced. For example, when 10ms frame data is serviced at a data rate of 2048Kbps, one data frame 15 consists of 20480 bits. In this case, the turbo encoder according to the present invention segments (or divides) the 10ms frame into 10/4ms subframes and then, turbo encodes four 5120-bit subframe and then recombining four encoded sub frame into 10 ms frame for channel 20 interleaving.. The turbo decoder then decodes the four encoded subframes and recombines them into one 20480-bit 10 ms frame.

FIG. 3 is a block diagram of a channel transmitter including a turbo encoder according to an exemplary 25 embodiment of the present invention.

- 12 -

As shown in FIG. 3, user data (UD) is received by a source data encoder 42. The user data UD has a data rate of over several tens of Kbps, such as character, image and moving picture data, as distinguished from voice data 5 having a much lower data rate on the order of several Kbps. The source data encoder 42 encodes the received user data UD by the fixed length frame whose length is determined in accordance with the service type and then provides the encoded fixed length frame data to an input 10 of a bit counter 50. For example, the source data encoder 42 typically encodes voice data with a 10ms frame format, character data with a 20ms frame format, image data with an 80ms frame format, and moving picture data with a 40ms frame format, and provides the respective encoded data 15 into the bit counter 50. The processing size can be different with respect to data rate or frame length. The frame length unit can be fixed 10 ms or fixed 20 ms. A central processing unit (CPU) 46 transfers information about the QoS, i.e., service type of the user data to be 20 transmitted (e.g., voice, character, image or moving picture) and the data rate to a message information receiver 108 of FIG. 6 via a message information transmitter 44. The channel transmission device of FIG. 3 can be equally applied to both the base station and the 25 mobile station.

Although the present invention is described with

- 13 -

reference to an embodiment which transmits the message information to the decoder using a separate transmitter, it is also possible to transmit the data size information by loading it in a head area of a transmission frame 5 during data.

Referring to FIG. 3, the CPU 46 reads, from a frame segment/assemble information storage unit 48, QoS information including information about service type of data to be transmitted, corresponding data rate, 10 permissible delay, permissible error rate (BER or FER) and frame length, and information about service class of the base station or the mobile station. Next, the CPU 46 makes a determination to segment the received frame and therefore must also determine the size and number of the 15 segmented frames, using the read information. Alternatively, when constructing a super frame, the CPU 46 may determine to assemble the required frames and therefore must also determine the number of frames to be assembled, using the read information. Based on the 20 determination, the CPU 46 provides a frame segment/assemble control signal and an interleaving mode signal to the bit counter 50 and a programmable interleaver 52, respectively, to perform turbo encoding. That is, according to the QoS of the data to transmit, the 25 CPU 46 determines how many consecutive input frames should

be assembled to generate a super frame, or alternatively

- 14 -

determines the number of sub frames which will be generated by segmenting one input frame. The turbo encoder then turbo encodes data bits of the super frame or data bits of the respective sub frames. As previously stated, the QoS may include input frame length, user data rate, permissible delay, permissible error rate, etc. The size of the input frame can be determined based on input frame length and user data rate.

In determining whether to segment or assemble the 10 frames by the CPU 46, the following criteria are considered.

In general, for transmitting packet data, the mobile communication system uses a low data rate of below several tens of Kbps, with a transmission delay from several tens to several hundeds ms (milliseconds) and requires a BER on the order of— 10⁻²-10⁻⁴. For example, if the output frame of the source data encoder 42 is 10ms long and a permissible delay time permitted in the turbo encoder is 40ms, it is possible to assemble four 10ms frames output from the source data encoder 42 into one super frame, which will be input to the turbo encoder. Therefore, the error rate of assembled packet data can be decreased.

For transmitting character, image and moving picture data, the mobile communication system has a permissible

WO 99/50963

- 15 -

PCT/KR99/00154

hundreds ms and requires a BER of 10⁻⁶-10⁻⁷. The performance of the turbo encoder is increased as the frame length of the input data is enhanced. However, additional calculations and memory is required in the turbo decoder. There is a trade off between performance and decoder complexity. In case of the packet data service, for example, it is possible to satisfy both the required BER and moderate decoder complexity by enabling the CPU 46 to generate a sub/super frame control signal for segmenting/combining the output data from the source data encoder 42, of M-bit length, into sub/super frames of N-bit length.

That is, the frame segment/assemble information

15 storage unit 48 stores frame segment/assemble information
for increasing the length N of the sub/super frame for a
service requiring the low BER and for decreasing the
length N of the sub/super frame for a service requiring a
short time delay and a high BER. The CPU 46 reads the

20 frame segment/assemble information from the frame
segment/assemble information storage 48 according to the
service type and the frame length of the input data.

Segmenting/combining the frames input to the turbo encoder can be more readily appreciated from the following example. Assume a frame size of the data input to the

- 16 -

turbo encoder is 20480 bits/10ms, for a low BER service having a data rate 2048 Kbps. In the mobile station—providing the above service, the turbo decoder requires a memory capacity which is proportional to 20480 bits

multiplied by number of soft decision bits. An increase in the memory capacity of the mobile station causes an increase in complexity and cost of the mobile station.

However, in the service having a data rate of 2048Kbps/10ms, if the channel encoder divides (i.e., segments) a frame input to the turbo encoder into four sub frames (i.e., 10ms/4) and encodes the sub frames, and a turbo decoder in the channel decoder then decodes the sub frames and recombines the decoded sub frames into the original frame, the turbo decoder requires a memory capacity which is proportional to 5120 bits by the number of soft decision bits, thereby causing a reduction in the required memory capacity.

Furthermore, for a low BER (e.q. 10⁻⁶ - 10⁻⁷) service having a low data rate of 32Kbps/10ms, each data frame

20 input to the turbo encoder will consist of 320 bits. If encoding is performed at a data rate of 32Kbps/80ms (i.e., each frame consists of 2560 bits), the time delay is somewhat increased, as compared with the case where turbo encoding is performed at the data rate of 32Kbps/10ms

25 (i.e., each frame consists of 320 bits). However, it is

- 17 -

possible to decrease the BER for the same signal-to-noise ratio (Eb/No) or decrease the Eb/No value for the same BER, thereby increasing the overall system capacity.

In the mobile communication system, not all the users 5 or mobile stations are provided with the same degree of services. Instead, the available data rate is limited according to the user class, the mobile station or the base station. In addition, the available data rate may be limited due to the memory capacity determined according to 10 the class of the respective mobile stations. Accordingly, when the data rate is variable from 32Kbps to 2048Kbps according to the service type (or service option) and the permissible time delay also varies from 10ms to 400ms, the device according to the present invention can vary the 15 length of the frames input to the turbo encoder according to the class of the user or mobile station, the class of the base station, service type or the channel condition while satisfying the required error rate of the corresponding service. For example, when the channel 20 conditions is bad, the device according to the present invention can satisfy the error rate required by a corresponding service by increasing the length of the frames input to the turbo encoder and thereby permitting an increase in the time delay rather than increasing the 25 transmission power.

- 18 -

The frame segment/assemble information which is the message information being exchanged between the base station and the mobile station, has information about the size of the frames to be encoded/decoded, wherein the frame size may be determined according to the user data rate, input frame length, permissible delay permissible error rate and the channel condition, etc.

The bit counter 50 counts N bits of the input data according to an N-bit frame segment/assemble control

10 signal output from the CPU 46, and provides the counted N bits to the programmable interleaver 52 and first and second input buffers 54 and 56. The bit counter 50 also generates a bit count termination signal to the CPU 46 whenever it counts N bits of the input data. Therefore, it

15 can be appreciated that the bit counter 50 segments or assembles the input frames into sub or super frames having a specific length, under the control of the CPU 46 which uses the QoS information, such as the service type and the data rate of the input data, stored in the frame

20 segment/assemble information storage 48, and provides the sub or super frames to the programmable interleaver 52 and the first and second input buffers 54 and 56.

An interleaving processor 72, a component of the programmable interleaver 52, reads interleaving parameters from an interleaving parameter storage 70 according to an

WO 99/50963

interleaving mode control signal output from the CPU 46 to process the read interleaving parameters, and provides the processing result to an interleaving address mapper 74.

Here, the CPU 46 provides the interleaving processor 72

with the following interleaving information.

- 19 -

PCT/KR99/00154

First, in the case where a turbo interleaver having a single interleaving method is used as the interleaver 52, optimal parameter values are provided as the interleaving information. The optimal parameter values are determined to have the highest performance according to the length of the data information bits sequence to be interleaved. The parameter values can be determined by experimentally obtained value.

Second, in the case where a turbo interleaver having

one or more interleaving methods is used as the
interleaver 52, optimal parameter values are provided as
the interleaving information and are determined to have
the highest performance through experiments according to
the length of the information bits for interleaving and

the variable length of the interleaver in the
corresponding interleaving mode. For example, in the case
where the required transmission delay time is short and
the input data frame of the turbo encoder (i.e., the
output data frame of the source data encoder 42) is small

in size (or length), a uniform interleaver such as a block

- 20 -

interleaver or a cyclic shift interleaver is used for the interleaver 52. Otherwise, in the case where the required transmission delay time is relatively long and the input data frame is large in size, a non-uniform interleaver such as a random interleaver is used for the interleaver 52. From the foregoing description, it could be appreciated that various interleavers can be used according to the size of the data to be interleaved.

The interleaving address mapper 74 receives either

10 sub or sup0er frames of N-bit length segmented or
assembled by the bit counter 50 the interleaving address
mapper 74 maps the input bits to the interleaved input
data buffer address corresponding to the interleaving
.
processing result so as to perform interleaving, and

15 provides the first interleaved sub or super frame data to
an interleaved input data buffer (ILIB) 78 in the first
buffer 54 alternately provide the second interleaved sub
or super frame data to an ILIB 90 in the second buffer 56.

The first and second input buffers 54 and 56 each

20 include two input switches, two output switches, an input
data save buffer (IDSB) with input and output ports
connected to ones of the input and output switches, and
the ILIB with input and output ports connected to the
other ones of the input and output switches. In the

25 drawing, reference numerals 76 and 88 denote IDSBs,

WO 99/50963

- 21 -

PCT/KR99/00154

reference numerals 78 and 90 denote ILIBs, reference numerals 80, 84, 92 and 96 denote input switches, and reference numerals 82, 86, 94 and 98 denote output switches. All the switches are controlled by the CPU 46.

5 The switches 80, 82, 84 and 86 in the first input buffer 54 operate as a mirror image in alternation with the switches 92, 94, 96 and 98 in the second input buffer 56. That is, input switches 80 and 84 in the first input buffer 54 are in the ON state and the output switches 82 and 86 are in the OFF state, while the input switches 92 and 96 in the second input buffer 56 are in the OFF state and the output switches 94 and 98 are in the ON state.

Accordingly, when the bit counter 50 counts N bits of the input data under the control of the CPU 46, the data

15 output from the bit counter is first stored in the IDSB 76 in the first buffer 54 through the input switch 80 which is initially in the ON state. At this moment, the counted data bits output from the bit counter 50 are interleaved by the programmable interleaver 52 and then stored in the

20 ILIB 78 in the first input buffer 54 through the switch 84. If the bit counter 50 generates a bit count termination signal for the sub/super frame of N-bit length, the CPU 46 then repeats the above procedure after switching the first input buffer 54 to an output state and

25 the second input buffer 56 to an input state. As a result, the next N bits counted from the bit counter 50 and the

- 22 -

interleaved data from the programmable interleaver 52 are stored in the IDSB 88 and the ILIB 90 in the second input buffer 56, respectively.

During this operation, a first RSC (RSC1) 58 and a

5 second RSC (RSC2) 60 receive the N-bit sub/super frame
data and the corresponding interleaved data output from
the IDSB 76 and ILIB 78 in the first input buffer through
the output switches 82 and 86, respectively, and then
performs turbo encoding by the N-bit frame unit in the

10 same manner as the turbo encoder of FIG. 1.

Next, when the N-bit frame data is completely stored in the second input buffer 56, the first input buffer 54 is again switched to the input state and the second input buffer 56 to the output state. Therefore, the RSC1 58 and 15 the RSC2 60 turbo encode the data which are alternately output by the N-bit frame unit from the first and second input buffers 54 and 56.

The turbo encoded bits from the RSC1 58 and the RSC2 60 are multiplexed by a multiplexer 62 and then
20 interleaved by a channel interleaver 64. In the case where the several input frames are assembled into one super frame and the data is turbo encoded by the super frame unit, the channel interleaver 64 performs channel interleaving by the super frame unit as shown in FIG. 4.

WO 99/50963

- 23 -

PCT/KR99/00154

On the other hand, when one input frame is segmented into several sub frames and the data is turbo encoded by the sub frame unit, the channel interleaving is performed by the input frame unit as shown in FIG. 5. That is, the channel interleaver 64 performs channel interleaving by combining the output symbols of the turbo encoder, encoded by the super frame or sub frame unit, as large in size as the input frame. The interleaved data is modulated by a modulator 66 and then transmitted through a transmission channel 68.

Thus, the novel channel transmission device shown in FIG. 3 assembles the input data frames into super frames to increase the bit number N when a low BER is required from an analysis of the QoS information such as the user's service type (e.g., voice, character, image and moving picture). Otherwise, when a low decoder complexity is required, the novel channel transmission device segments the input data frame into subframes to decrease the bit number N per frame. In this manner, the channel transmission device can maximize the efficiency of the turbo encoder/decoder.

FIG. 4 is a diagram for explaining the operation of the invention, wherein the frames are assembled at a low or medium data rate and then turbo encoded. For example, a parameter J can be varied from 1 to 8 according to the

- 24 -

number of the frames to be assembled. In the turbo encoder, the bit number of an input data frame, which is determined by— multiplying the bit number of original frame by the frame number, J, may be limited depend on user data rate and decoder complexity.

FIG. 5 is a diagram for explaining operation of the invention, wherein a frame data provided at a high data rate is segmented and then turbo encoded. A parameter I can be varied from 1 to 4 according to the number of the segmented sub frames. Likewise, in the turbo encoder, the bit number of an input data frame, which is determined by a value obtained by dividing the bit number of original frame by the number, I, of the segmented sub frames, may be limited depend on user data rate and permissible error rate.

The data on the transmission channel transmitted by the turbo channel encoder of FIG. 3 is decoded into the original data by the turbo channel decoder of FIG. 6, which is more fully described from the following 20 description.

FIG. 6 illustrates the turbo channel decoder configuration according to an embodiment of the present invention. The turbo channel decoder of FIG. 6 counts bits of the user data input by the N-bit sub frame unit

according to message information to decode the input user data and thereafter, assembles the decoded data into frames having the original length, thereby recombining the user data.

When the user data consists of b N-bit super frame, the turbo decoder decodes the input user data and thereafter segments the decoded data into frames having the original length, thereby segmenting the user data.

Referring to FIG. 6, upon receiving a frame of N-bit

length through the transmission channel 68, a demodulator

100 demodulates the received frame data and provides the

demodulated data to a channel deinterleaver 102. The

channel deinterleaver 102 descrambles the demodulated data

frame and applies it to a demultiplexer 104, which

demultiplexes the multiplexed data symbols and parity

symbols and provides the demultiplexed symbols to a bit

counter 106. Here, a message information receiver 108

receives message information regarding the service type of

the user and the data rate that the message information

transmitter 44 of FIG. 3 has transmitted, and provides the

received message information to a CPU 112.

The CPU 112 analyzes the message information provided from the message information receiver 108 and reads frame segment/assemble information from a frame segment/assemble information storage 110 according to the analysis. Also,

- 26 -

the CPU 112 analyzes the interleaving information included in the message information and provides an interleaving mode signal and a parameter value to an interleaver and a deinterleaver in a turbo decoder 116 according to the 5 analysis, thereby performing turbo interleaving. In addition, when the receiving data is sub frame (actually the received data is a original frame size but the frame is encoded by sub frame unit), the CPU 112 outputs an N-bit frame segment control signal before turbo decoding and 10 a frame recombine control signal after turbo decoding according to the read message information. Here, the information stored in the frame segment/assemble information storage 110 is similar to that stored in the frame segment/assemble information storage 48 of FIG. 3.

When the receiving data is super frame, the CPU 112 controls turbo decoder to decode the received frame as it is and then a frame segmenting control signal after turbo decoding according to the read message information.

The bit counter 106 consecutively provides the data

20 output from the demultiplexer 104 to a frame buffer 114 by
the N-bit sub frame unit according to the N-bit frame
segment control signal. Switches 126 and 132 in the frame
buffer 114 are initially in the ON state and the other
switches 128 and 130 are initially in the OFF state.

- 27 -

Therefore, the counted data bits output from the bit counter 106 are initially stored in a first N-frame buffer (N-FB1) 122. Upon completion of storing the N-bit data output from the bit counter 106 in the N-FB1 122, the bit counter 106 generates an N-bit count termination signal. Upon detecting the N-bit count termination signal, the CPU 112 turns off switches 126 and 132 in the frame buffer 114 and turns on the other switches 130 and 128. Then, the N-bit data output from the bit counter 106 is stored in a second N-frame buffer (N-FB2) 124. At this moment, the received data stored in the N-FB1 122 is decoded by a turbo decoder 116 having the same structure as that of FIG. 2.

Accordingly, under the control of the CPU 112, the N15 FB1 122 and the N-FB2 124 in the frame buffer 114
alternately receive and store the data output by the N-bit
unit from the bit counter 106, and the stored data is
decoded by the turbo decoder 116. When user data decoded
by sub frame unit, the decoded data output from the turbo
20 decoder 116 is recombined into the frames of the original
length by a frame recombiner 118 which is controlled by
the CPU 112, and then output as the user data through a
source data decoder 120.

In summary, the turbo decoder 116, broadly described, 25 receives a super frame consisting of multiple frames or

WO 99/50963

multiple sub frames segmented from a frame, and turbo decodes the received frames. The frame recombiner 118, under the control of the CPU 112, recombines, when user data decoded by sub frame unit the output of the turbo decoder 116 into the original frames in response to information about the frame size and number of the frames constituting the sub frames or information about the number of the sub frames segmented from the input frame and the size of the sub frames.

- 28 -

PCT/KR99/00154

- The frame recombiner 118, under control of the CPU

 112 segments when user data decoded by super frame unit,
 the output of the turbo decoder 116 into the original
 frames in response to information about the frame size and
 number of the frames constituting super frame.
- Another aspect of this invention, the turbo encoder of the present invention also includes a method in which any one of the bit counter 50 and the buffers 54 and 56 for interleaving, shown in FIG. 3, is not required. In the frame combining operation, the data bits are
- sequentially stored in the memory (i.e, buffer 54 or 56) for interleaving the number of the frames to be assembled. Data bits are sequentially output to the RSC1 in the turbo encoder in quantities equivalent to the number of non-interleaved assembled frames size. Data
- 25 bits are output to the RSC2 in quantities equivalent to

- 29 -

the number of assembled frame size which are interleaved according to the addresses of the interleaving address mapper generated by the interleaving processor.

In another exemplary method, in the frame segmenting operation, the input data bits are sequentially stored in the memory for interleaving. Data bits are sequentially output to the RSC1 in the turbo decoder in quantities equivalent to the size of the segmented frame size. Data bits are interleaved to the RSC2 and output in quantities equivalent to the size of the assembled frame size.

Accordingly, the turbo channel encoder of FIG. 3 and the turbo channel decoder of FIG. 6 assemble input data frames into a super frame to encode and decode the input frames by the super frame unit when the input data frames are too short, and segment an input frame into multiple sub frames to encode and decode the input frame by the sub frame unit when the input frame is too long, to increase transmission efficiency.

As described above, the embodiment of the present
invention segments/assembles input frames into sub/super
frames of an appropriate length when the input data frame
is very long or short, and then encodes and decodes the
sub/super frames. In this manner, it is possible to reduce
the number of required calculations and memory capacity

- 30 -

required in the decoder, while fully securing the performance of the turbo code encoder.

While the invention has been shown and described with reference to a certain preferred embodiment thereof, it

will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

PCT/KR99/00154

- 31 -

WHAT IS CLAIMED IS:

WO 99/50963

- 1. A mobile communication system comprising:
- a central processing unit (CPU) for determining a number of consecutive input frames required to combine a super 5 frame, according to QoS parameter; and
 - a turbo encoder for turbo encoding the determined number of consecutive input frames.
 - 2. The mobile communication system as claimed in claim 1, wherein the turbo encoder comprises:
- a first constituent encoder for encoding data size of the super frame;
 - an interleaver for interleaving the data size of the super frame; and
- a second constituent encoder, operably connected to

 15 said interleaver, for encoding the interleaved data size of
 the super frame.
 - 3. The mobile communication system as claimed in claim 2, said interleaver includes interleaving address mapper for interleaving said super frame size unit.
- 20 4. The mobile communication system as claimed in claim 2, further comprising:
 - a multiplexer for multiplexing respective outputs of the first and second constituent encoders; and
 - a channel interleaver for interleaving an output of

the multiplexer.

WO 99/50963

5. The mobile communication system as claimed in claim 4, said multiplexer puncturing a number of bit of said encoded symbols for rate matching.

- 32 -

- 5 6. The mobile communication system as claimed in claim 1, wherein the QoS parameters at least includes an information that can define data size of a frame.
- 7. The mobile communication system as claimed in claim 6, wherein the QoS parameter at least includes data rate, and 10 the number of the input frames to be assembled into the super frame is determined by said input frame data rate and input frame length.
 - 8. The mobile communication system as claimed in claim 7, wherein the input frame data size is less than 320 bits.
- 9. The mobile communication system as claimed in claim 1, wherein the QoS parameter at least includes a permissible delay, and the number of the input frames to be assembled in the super frame is determined by the permissible delay.
- \$10.\$ The mobile communication system as claimed in claim $$20\ 7,$$ wherein the QoS parameter at least includes a permissible

- 33 -

error rate, and the number of the input frames to be assembled into the super frame is determined based on the permissible error rate.

- The mobile communication system as claimed in claim

 7, wherein said QoS parameter at least includes a
 receiver memory size, and the number of the input
 frames to be assembled into the super frame is
 determined based on the reciver memory size.
- 10 12. The mobile communication system as claimed in claim 1, wherein the system is installed in a base station.
 - 13. The mobile communication system as claimed in claim 1, wherein the system is installed in a mobile station.
- 14. A channel encoding method for a mobile communication 15 system, comprising the steps of:

determining the number of consecutive input frames required to assemble a super frame, according to a QoS parameter; and

turbo encoding the data size of super frame unit
20 determined by combined input frame number of consecutive input
frames.

15. The channel encoding method as claimed in claim 14, further comprising the step of performing channel interleaving

- 34 -

in accordance with the size of the turbo encoded symbols of the super frame.

- 16. The channel encoding method as claimed in claim 14, wherein the QoS parameter at least includes data rate, and the number of input frames to be assembled into the super frame is determined according to the input frame data rate and input frame length.
 - 17. The channel encoding method as claimed in claim 16, wherein the input frame data size is less than 320 bits.
- 18. The channel encoding method as claimed in claim 16, wherein the QoS parameter at least includes a permissible delay, and the number of the input frames to be assembled into the super frame is determined by the permissible delay.
- 19. The channel encoding method as claimed in claim 16,
 15 wherein the QoS parameter at least includes a permissible
 error rate, and the number of the input frames to be assembled
 into the super frame is determined by the permissible error
 rate.
 - 20. A mobile communication system comprising:
- a CPU for determining the number and size of sub frames which can be generated from segmenting one input frame, according to a QoS parameter; and

- 35 -

WO 99/50963

a turbo encoder for turbo encoding the input frame in accordance with said determined size of the subframes.

PCT/KR99/00154

- 21. The mobile communication system as claimed in claim 20, wherein the turbo encoder comprises:
- a first constituent encoder for encoding data size of the sub frames;

an interleaver for interleaving the data size of the sub frames; and

a second constituent encoder, operably connected to 10 said interleaver, for encoding the interleaved data size of the sub frames.

- 22. The mobile communication system as claimed in claim 21, further comprising a channel interleaver for interleaving said encoded sub frames at a time.
- 15 23. The mobile communication system as claimed in claim 20, wherein the QoS parameter at least includes delay, data rate and error rate.
- 24. The mobile communication system as claimed in claim 23, wherein the number of segmented sub frames is determined 20 according to the data rate and frame length.
 - 25. The mobile communication system as claimed in claim 24, wherein the size of the input frame data at least includes

20480 bits.

- 26. The mobile communication system as claimed in claim 24, wherein the QoS parameter includes a permissible delay, and the number of segmented sub frames is determined by the 5 permissible delay.
 - 27. The mobile communication system as claimed in claim 24, wherein the QoS parameter at least includes a permissible error rate, and the number of the segmented sub frames is determined by the permissible error rate.
- 10 28. The mobile communication system as claimed in claim 20, wherein the system is installed in a base station.
 - 29. The mobile communication system as claimed in claim 20, wherein the system is installed in a mobile station.
- 30. A channel encoding method for a mobile communication 15 system, comprising the steps of:

determining the number of sub frames which can be generated from one segmented input frame, according to a QoS parameter; and

segmenting the input frame into the determined number of 20 sub frames and encoding the respective sub frames to encode the input frame by a sub frame unit, and encoding the sub frame data size unit.

- 37 -

- 31. The channel encoding method as claimed in claim 30, further comprising the step of combining symbols encoded by the sub frame unit and channel interleaving the combined symbols.
- The mobile communication system as claimed in claim 20, wherein the QoS parameter at least include permissible delay, data rate and error rate.
- 33. The channel encoding method as claimed in claim 32, wherein the number of segmented sub frames is determined

 10 according to the size of the input frame data defined by said data rate and a frame length
 - 34. The channel encoding method as claimed in claim 33, wherein the size of the input frame data at least includes 20480 bits.
- 35. The channel encoding method as claimed in claim 33, wherein the number of segmented sub frames is determined by the permissible delay.
- 36. The channel encoding method as claimed in claim 33, wherein the number of the segmented sub frames is determined 20 by the error rate.
 - 37. A mobile communication system comprising:

- 38 -

a decoder for turbo decoding data being received as a super frame, wherein said super frame is combined as a plurality of consecutive original data frames; and

- a frame recombiner for recombining an output of the 5 decoder into the plurality of data frames in accordance with message information about the number of original frames constituting said super frame.
- 38. The mobile communication system as claimed in claim
 37, said message information being received during a
 call setup.
- 39. The mobile communication system as claimed in claim 37, further comprising a CPU for determining the number of original frames constituting said super frame based upon 15 received message information about the number of the original frames combined into the super frame and the size of the respective frames, and providing the determined number and size information to the frame recombiner.
- 40. The mobile communication system as claimed in claim 20 37, wherein the system is installed in a base sation.
 - 41. The mobile communication system as claimed in claim 37, wherein the system is installed in a mobile sation.
 - 42. A channel decoding method for a mobile communication

- 39 -

PCT/KR99/00154

system, comprising the steps of:

WO 99/50963

turbo decoding data being received by a super frame, wherein said super frame is combined as a plurality of consecutive original data frames; and

- recombining the turbo decoded data into the plurality of consecutive original input data frames in accordance with message information about the number of the frames constituting said super frame.
 - 43. A mobile communication system comprising:
- a decoder for segmenting a received data frame which includes multiple sub frame unit into multiple sub frame, turbo decoding said segmented sub frasme unit; and
- a frame recombiner for recombining an output of the decoder into the original frame in accordance with message

 15 information about the number of the sub frames.
- 44. The mobile communication system as claimed in claim
 43, further comprising a CPU for determining the number of the
 sub frames and the size of the respective sub frames upon
 receiving the message information about the number of the sub
 20 frames and the size of the respective sub frames, and
 providing the determined number and size information to the
 frame recombiner.
 - 45. The mobile communication system as claimed in claim 43, wherein the system is installed in a base sation.

- 40 -

- 46. The mobile communication system as claimed in claim 43, wherein the system is installed in a mobile sation.
- 47. A channel decoding method for a mobile communication system, comprising the steps of:
- segmenting received data into multiple sub frames according to received message information.

turbo decoding said sub frame unit; and recombining the turbo decoded data frame into the received frame in response to said message information about 10 the number of the sub frames.