CS2109S: Introduction to AI and Machine Learning

Lecture 4: Intro to Machine Learning & Decision Trees

8 September 2023

Overview

You are here "Classical" AI Machine Learning **Search Algorithms ML Models & Techniques** Miscellaneous **Unsupervised Learning** Uninformed search: BFS, DFS, UCS, IDS Decision Trees AI & Ethics Informed search: Greedy best-first, A* Linear/Logistic Regression **Support Vector Machines** Local Search: hill-climbing, SA, Beam, GA • Adversarial search: Minimax, Alpha-beta Neural Networks

Applied CS2040S, CS1231
Python

Applied Linear Algebra, Calculus, Statistics & Probabilities
Numpy, Scikit-learn, PyTorch

Outline

- Machine Learning
 - What is ML?
 - Types of Feedback
 - Supervised Learning
- Performance Measure
 - Regression: mean squared error, mean absolute error
 - Classification: correctness, accuracy, confusion matrix, precision, recall, F1
- Decision Trees
 - Decision Tree Learning (DTL)
 - Entropy and Information Gain
 - Different types of attributes
 - Pruning
 - Ensemble Methods

Outline

Machine Learning

- What is ML?
- Types of Feedback
- Supervised Learning

Performance Measure

- Regression: mean squared error, mean absolute error
- Classification: correctness, accuracy, confusion matrix, precision, recall, F1

Decision Trees

- Decision Tree Learning (DTL)
- Entropy and Information Gain
- Different types of attributes
- Pruning
- Ensemble Methods

What is Machine Learning? Applications?

Credit: Skyfish

Credit: Google

Credit: VentureBeat

Credit: Futuremind

What is Machine Learning?

"The field of study that gives computers the ability to learn without being explicitly programmed"

- Arthur Samuel (1959)

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its **performance** at tasks in T, as measured by P, **improves with experience** E."

- Tom Mitchell

Why Machine Learning?

How do we write this Function?

Types of Feedback

Reinforcement

"Trial and error"

Supervised Learning

Learns from being given the right answers: $X \rightarrow Y$

Input (X)	Output (Y)	Application
Email	Spam?	Spam filtering
Audio	Text transcripts	Speech recognition
English	Chinese	Machine translation
Image	Position of cars	Self-driving car

Types:

- **Regression**: predict <u>continuous</u> output (e.g., temperature: 0.567)
- Classification: predict discrete output (e.g., animal: cat vs dog)

Supervised Learning: Regression

Housing price prediction

Supervised Learning: Classification

• Cancer prediction: benign (0), malignant (1)

Formalism

- In supervised learning, we assume that y is generated by a **true** mapping function $f: x \to y$.
- We want to find a **hypothesis** $h: x \to \hat{y}$ (from a **hypothesis class** H) s.t. $h \approx f$ given a **training set** $\{(x_1, f(x_1)), ..., (x_N, f(x_N))\}$.
 - We use a learning algorithm to find this hypothesis

Formalism (Illustrated)

Outline

- Machine Learning
 - What is ML?
 - Types of Feedback
 - Supervised Learning

Performance Measure

- Regression: mean squared error, mean absolute error
- Classification: correctness, accuracy, confusion matrix, precision, recall, F1

Decision Trees

- Decision Tree Learning (DTL)
- Entropy and Information Gain
- Different types of attributes
- Pruning
- Ensemble Methods

Performance Measure

How do we know that our hypothesis is good? i.e., $h \approx f$

- 1. Use **theorems** from statistical learning theory
- 2. Try the hypothesis on a new set of examples (test set)

Regression: Error

If the output of the hypothesis is a **continuous** value, then we can measure its **error**. For an input x with a true output y, we can compute:

Absolute
$$Error = |\hat{y} - y|$$

Squared Error =
$$(\hat{y} - y)^2$$

Where $\hat{y} = h(x)$.

Regression: Mean Squared Error

For a set of N examples $\{(x_1, y_1), ..., (x_N, y_N)\}$ we can compute the average (mean) squared error as follows.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

Where $\hat{y}_i = h(x_i)$ and $y_i = f(x_i)$.

Regression: Mean Absolute Error

For a set of N examples $\{(x_1, y_1), ..., (x_N, y_N)\}$ we can compute the average (mean) absolute error as follows.

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |\hat{y}_i - y_i|$$

Where $\hat{y}_i = h(x_i)$ and $y_i = f(x_i)$.

Classification: Correctness & Accuracy

Classification is correct when the prediction $\hat{y} = y$ (true label).

For a set of N examples $\{(x_1, y_1), ..., (x_N, y_N)\}$ we can compute the average **correctness** (accuracy) as follows.

$$Accuracy = \frac{1}{N} \sum_{i=1}^{N} [\hat{y}_i - y_i]$$

Where $\hat{y}_i = h(x_i)$ and $y_i = f(x_i)$.

Classification: Confusion Matrix

Inst.	Actual y	Predicted \hat{y}	
1	Cancer	Cancer	TD
2	Cancer	Cancer	TP
3	Cancer	Benign	
4	Cancer	Benign	FN
5	Cancer	Benign	
6	Benign	Benign	
7	Benign	Benign	TN
8	Benign	Benign	TIN
9	Benign	Benign	
10	Benign	Cancer	FP

FP: Type I error

FN: Type II error

Can we combine the best of both metrics?

F1 Score
$$F1 = \frac{2}{\frac{1}{P} + \frac{1}{R}}$$

Precision
$$P = TP / (TP+FP)$$

How many **selected** items are **relevant**? How **precise** were the positive predicted instances?

Maximize this if <u>false positive (FP)</u> is very costly. E.g., <u>email spam</u>, <u>satellite launch date</u> prediction

Recall
$$R = TP / (TP+FN)$$

How many **relevant** items are **selected**?
How many positive instances can be **recalled** (predicted)?

Maximize this if <u>false negative (FN)</u> is very dangerous. E.g., <u>cancer prediction</u> but not music recommendation

Outline

- Machine Learning
 - What is ML?
 - Types of Feedback
 - Supervised Learning
- Performance Measure
 - Regression: mean squared error, mean absolute error
 - Classification: correctness, accuracy, confusion matrix, precision, recall, F1

Decision Trees

- Decision Tree Learning (DTL)
- Entropy and Information Gain
- Different types of attributes
- Pruning
- Ensemble Methods

Life's Difficult Decision: What to Eat?

Decide whether to wait for a table at a restaurant based on the following input attributes:

- 1. Alternate: is there an alternative restaurant nearby?
- 2. Bar: is there a comfortable bar area to wait in?
- 3. Fri/Sat: is today Friday or Saturday?
- 4. Hungry: are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- 6. Price: price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- 8. Reservation: have we made a reservation?
- 9. Type: kind of restaurant (French, Italian, Thai, Burger)
- 10. WaitEstimate: estimated waiting time in minutes (0-10, 10-30, 30-60, >60)

Life's Difficult Decision: What to Eat?

Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

You are hungry, it's Friday, raining, ...; Should you wait?

Decision Trees

One possible representation for hypotheses

Expressiveness

- Decision trees can express any function of the input attributes.
- Example: Boolean functions, each row → path from root to leaf

A	В	A xor B
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

• Trivially, there is a consistent decision tree for <u>any</u> training set, but probably **won't generalize to new examples**.

The Size of the Hypothesis Class

How many distinct decision trees with n Boolean attributes?

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows

With **6 Boolean attributes**, there are 18,446,744,073,709,551,616 trees

Greedy, top-down, recursive algorithm.

```
def DTL(examples, attributes, default):
  if examples is empty: return default
  if examples have the same classification:
    return classification
                                                              Need to define this!
  if attributes is empty:
    return mode(examples)
  best = choose_attribute(attributes, examples)
  tree = a new decision tree with root best
  for each value v_i of best:
    examples_i = \{\text{rows in examples with best} = v_i\}
    subtree = DTL(examples<sub>i</sub>, attributes - best, mode(examples))
    add a branch to tree with label v_i and subtree subtree
```

Choosing an Attribute

How do we choose an attribute?

Ideally: we want to select an attribute that split the examples into "all positive" or "all negative"

Entropy

• Entropy is a measure of randomness:

•
$$I(P(v_1), ..., P(v_n)) = -\sum_{i=1}^{n} P(v_i) \log_2 P(v_i)$$

• For a data set containing p positive and n negative examples:

•
$$I\left(\frac{p}{p+n}, \frac{n}{p+n}\right) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

Information Gain

• A chosen attribute A divides the training set E into subsets E_1 , ..., E_v according to their values for A, where A has v distinct values.

remainder(A) =
$$\sum_{i=1}^{v} \frac{p_i + n_i}{p + n} I(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

Information Gain (IG) or reduction in entropy


```
def DTL(examples, attributes, default):
  if examples is empty: return default
  if examples have the same classification:
    return classification
  if attributes is empty:
    return mode(examples)
  best = choose_attribute(attributes, examples)
  tree = a new decision tree with root best
  for each value v_i of best:
    examples_i = \{\text{rows in examples with best} = v_i\}
    subtree = DTL(examples<sub>i</sub>, attributes - best, mode(examples))
    add a branch to tree with label v_i and subtree subtree
```

Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Τ	Full	\$	F	F	Burger	30–60	Т

$$(2,4,6)$$
 $(2,2,4,4)$

Type: (2,2,4,4)

T+F

T+F

2T, 2F

2T, 2F

$$G(Type) = 1 - \left[\frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4})\right] = 0 \text{ bits}$$

```
def DTL(examples, attributes, default):
 if examples is empty: return default
  if examples have the same classification:
    return classification
  if attributes is empty:
    return mode(examples)
  best = choose_attribute(attributes, examples)
  tree = a new decision tree with root best
  for each value v_i of best:
    examples_i = \{\text{rows in examples with best} = v_i\}
    subtree = DTL(examples_i, attributes - best, mode(examples))
    add a branch to tree with label v_i and subtree subtree
```

Example					At	tributes	3				Target
T	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т


```
def DTL(examples, attributes, default):
  if examples is empty: return default
  if examples have the same classification:
    return classification
  if attributes is empty:
    return mode(examples)
  best = choose_attribute(attributes, examples)
  tree = a new decision tree with root best
  for each value v_i of best:
    examples_i = \{\text{rows in examples with best} = v_i\}
    subtree = DTL(examples<sub>i</sub>, attributes - best, mode(examples))
    add a branch to tree with label v_i and subtree subtree
```

Example		Attributes										
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait	
X_1												
X_2	Т	F	F	Т		\$	F	F	Thai	30–60	F	
X_3												
X_4	Т	F	Т	Т		\$	F	F	Thai	10-30	Т	
X_5	Т	F	Τ	F		\$\$\$	F	Т	French	>60	F	
X_6												
X_7												
X_8												
X_9	F	Т	Τ	F		\$	T	F	Burger	>60	F	
X_{10}	Т	Т	Т	Т		\$\$\$	F	Т	Italian	10-30	F	
X_{11}												
X_{12}	Т	Т	Т	Т		\$	F	F	Burger	30–60	Т	


```
def DTL(examples, attributes, default):
  if examples is empty: return default
  if examples have the same classification:
    return classification
  if attributes is empty:
    return mode(examples)
  best = choose_attribute(attributes, examples)
  tree = a new decision tree with root best
  for each value v_i of best:
    examples_i = \{\text{rows in examples with best} = v_i\}
    subtree = DTL(examples<sub>i</sub>, attributes - best, mode(examples))
    add a branch to tree with label v_i and subtree subtree
```

Example		Attributes									
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1											
X_2											
X_3											
X_4											
X_5											
X_6											
X_7											
X_8											
X_9											
X_{10}											
X_{11}											
X_{12}											

Dealing with Attributes with Many Values

Information gain will select attribute with many values (e.g., dates, phone numbers) because it splits the data "well". In the **extreme case**, **each branch** will have a **single example**, so "all positive" or "all negative".

Balance the information gain with the **number of branches**.

$$GainRatio(A) = \frac{IG(A)}{SplitInformation(A)}$$

$$E_1 \quad E_2$$
SplitInformation = 1

$$SplitInformation(A) = -\sum_{i=1}^{d} \frac{|E_i|}{|E|} \log_2 \frac{|E_i|}{|E|}$$

$$\sum_{E_1 = E_2 = E_3}^{E_1 = E_2 = E_3}$$
SplitInformation = 1.6

Examples

Dealing with Attributes with Differing Costs

Certain attributes may have costs (e.g., in medical diagnosis). They may vary significantly in their costs, both in terms of monetary cost or patient comfort. Example: biopsy, blood test, etc.

Make decision trees to use low-cost attributes where possible using Cost-Normalized-Gain:

$$\frac{IG^2(A)}{Cost(A)}$$

$$\frac{2^{IG(A)} - 1}{(Cost(A) + 1)^w}, w \in [0,1]$$

Dealing with Continues-valued Attributes

Define a discrete-valued input attribute to partition the values into a discrete set of intervals.

Examples:

- Estimated waiting time (minutes): 0-10, 10-30, 30-60, >60
- Age (year): 0-12, 12-25, 25-40, 40-60, 60-80, >80
- ...

Dealing with Missing Values

What if some values are missing?

- Assign the most common value of the attribute
- Assign the most common value of the attribute with the same output
- Assign probability to each possible value and sample
- Drop the attribute
- Drop the rows

• ...

Overfitting

- Decision Trees performance is <u>perfect on training data</u>, but worse on test data
 - DT captures the data perfectly, including the noise
- Occam's Razor
 - Prefer short/simple hypotheses
 - In favor:
 - Short/simple hypothesis that fits the data is unlikely to be coincidence
 - Long/complex hypothesis that fits the data may be coincidence
 - Against:
 - Many ways to define small sets of hypotheses (e.g., trees with prime number of nodes that uses attribute beginning with "Z")
 - Different hypotheses representations may be used instead

Done!But can be simplified...

Prevent nodes from being split even when if fails to cleanly separate examples.

The sample that is likely a **noise** (1T) is ignored!

Results in a smaller tree which may have higher accuracy

Ensemble Methods

- Bootstrap Aggregation (Bagging)
 - Random Forests
- Boosting
 - Adaboost, XGBoost

Summary

Machine Learning

- What is ML? machine that learns through data
- Types of Feedback: supervised, unsupervised, semi-supervised, reinforcement
- Supervised Learning:

Performance Measure

- Regression: mean squared error, mean absolute error
- Classification: correctness, accuracy, confusion matrix, precision, recall, F1

Decision Trees

- Decision Tree Learning (DTL): greedy, top-down, recursive algorithm
- Entropy and Information Gain
- Different types of attributes: many values, differing costs, missing values
- Pruning: min-sample, max-depth
- Ensemble Methods: bagging, boosting

Coming Up Next Week

- Linear Regression
 - Multiple Features
 - Polynomial Regression
- Optimization Algorithms
 - Gradient Descent
 - Variants of Gradient Descent
 - Normal Equation

To Do

- Lecture Training 4
 - +100 Free EXP
 - +50 Early bird bonus
- Problem Set 2
 - Due Tuesday, 12th September (Extended!)
- Problem Set 3
 - Out today!
 - Contest +500 EXP