МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: «Оценка параметров надежности программ по временным моделям обнаружения ошибок»

Студент гр. 7304	Моторин Е.В.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2021

Задание

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
- А) равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}} = 10$, СКО $s_{\text{равн}} = 20/(2*\text{sqrt}(3)) = 5.8$.
- Б) экспоненциальным законом распределения

$$W(y) = b*exp(-b*y),$$
 y>=0, с параметром b=0.1 и соответственно $m_{9KC\Pi} = s_{9KC\Pi} = 1/b = 10$.

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t) / b$

В) релеевским законом распределения

$$W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$$
 параметром c=8.0 и соответственно $m_{pen} = c*sqrt(\square/2), s_{pen} = c*sqrt(2-\square/2).$

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30,24 и 18 элементов).

Примечание: для каждого значения n следует генерировать и сортировать новые массивы.

- 4. Если В>n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения k<= 5 следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.

Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы

1) Равномерный закон а.

100% (n = 30)

i	X	i	X	i	X
1	0.086	11	4.811	21	13.680
2	0.144	12	5.499	22	13.830
3	0.622	13	5.845	23	14.558
4	1.603	14	7.351	24	15.517

5	1.645	15	8.710	25	16.221
6	1.709	16	10.603	26	17.101
7	2.856	17	11.533	27	18.045
8	3.436	18	11.711	28	18.054
9	4.378	19	12.031	29	18.958
10	4.447	20	12.890	30	19.635

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 21.37$$

Найдём *m*≥*n*+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \ g_n(m, A) = \frac{n}{m-A}$$

m	31	32	33	34	35	36
f	3.995	3.027	2.558	2.255	2.035	1.863
g	3.115	2.822	2.580	2.375	2.201	2.051
f-g	0.88	0.205	0.021	0.120	0.166	0.187

$$m = 33 \implies B = m - 1 = 32$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}$$

$$K = 0.009$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}.$$

i	31	32
Xi	53.789	107.578

Время до полного завершения тестирования 161.368

Полное время: 438.872

b. 80% (n = 24)

i	X	i	X	i	X
1	0.076	9	3.953	17	12.086
2	0.772	10	4.213	18	12.887
3	1.406	11	5.106	19	12.911
4	2.281	12	6.223	20	15.905
5	3.016	13	7.005	21	17.707
6	3.070	14	11.391	22	18.183
7	3.786	15	11.571	23	18.426
8	3.913	16	11.815	24	18.860

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 17.317$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \ g_n(m, A) = \frac{n}{m-A}$$

m	25	26	27	28	29	30
f	3.776	2.816	2.354	2.058	1.844	1.678
g	3.124	2.764	2.479	2.247	2.054	1.892
f-g	0.652	0.052	0.124	0.189	0.211	0.214

m = 26 => B = m - 1 = 25

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$
K = 0.013

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	25
Xi	74.728

Время до полного завершения тестирования 74.728

Полное время: 281.289

c. 60% (n = 18)

i	X	i	X	i	X
1	0.993	7	7.871	13	14.569
2	3.707	8	7.931	14	14.788
3	5.204	9	8.826	15	14.907
4	7.071	10	11.489	16	17.906
5	7.762	11	11.844	17	18.077
6	7.834	12	12.547	18	18.989

Проверка существования максимума B^{*}:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 11.894$$

11.894 > 9.5

Найдём *m*≥*n*+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \ g_n(m, A) = \frac{n}{m-A}$$

m	19	20	21	22	23	24
f	3.495	2.548	2.098	1.812	1.607	1.451
g	2.533	2.221	1.977	1.781	1.621	1.487
f-g	0.962	0.327	0.121	0.031	0.013	0.036

$$m = 23 \Rightarrow B = m - 1 = 22$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}$$

K = 0.008

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	19	20	21	22
Xi	29.664	39.551	59.327	118.654

Время до полного завершения тестирования 247.197

Полное время: 439.513

2) Экспоненциальный закон а.

100% (n = 30)

i	X	i	X	i	X
1	1.712	11	7.243	21	16.086
2	3.176	12	7.678	22	17.746
3	3.217	13	8.213	23	19.471
4	3.653	14	9.136	24	22.127
5	3.745	15	9.886	25	23.196
6	3.850	16	10.001	26	25.312
7	3.858	17	11.693	27	26.903
8	4.233	18	11.801	28	29.961
9	4.234	19	15.489	29	30.027
10	5.010	20	15.942	30	35.823

Проверка существования максимума B^{*}:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 21.562$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \ g_n(m, A) = \frac{n}{m-A}$$

m	31	32	33	34	35	36
f	3.995	3.027	2.558	2.255	2.035	1.863
g	3.179	2.874	2.623	2.412	2.232	2.078

f-g 0.816 0.153 0.064 0.156 0.198	0.214
--	-------

$$m = 33 \Rightarrow B = m - 1 = 32$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}$$

K = 0.007

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	31	32
Xi	71.428	148.856

Время до полного завершения тестирования 223.284

Полное время: 613.706

b. 80% (n = 24)

i	X	i	X	i	X
1	1.121	9	3.208	17	9.115
2	1.331	10	3.964	18	9.386
3	1.394	11	4.727	19	10.724
4	1.467	12	4.917	20	11.828
5	1.532	13	5.192	21	29.284
6	2.317	14	5.266	22	34.721
7	2.483	15	5.635	23	36.223
8	2.601	16	6.244	24	45.823

Проверка существования максимума B^{$\hat{}$}:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 19.354$$

19.354 > 12.5

Найдём *m*≥*n*+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \ g_n(m, A) = \frac{n}{m-A}$$

m	25	26	27	28	29	30
f	3.776	2.816	2.354	2.058	1.844	1.678
g	4.251	3.611	3.139	2.776	2.488	2.254
f-g	0.475	0.795	0.784	0.718	0.644	0.576

$$m = 25 \Rightarrow B = m - 1 = 24$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}$$

K = 0.018

Время до полного завершения тестирования 0

Полное время: 240.522

c. 60% (n = 18)

i	X	i	X	i	X
1	0.005	7	3.370	13	12.910
2	1.563	8	4.344	14	13.836
3	1.639	9	4.641	15	16.226

4	1.756	10	4.830	16	16.509
5	2.264	11	7.487	17	17.479
6	2.381	12	11.793	18	25.071

Проверка существования максимума В:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 13.706$$

Найдём *m*≥*n*+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \ g_n(m, A) = \frac{n}{m-A}$$

m	19	20	21	22	23	24
f	3.495	2.548	2.098	1.812	1.607	1.451
g	3.340	2.860	2.468	2.170	1.937	1.749
f-g	0.095	0.312	0.370	0.358	0.329	0.298

$$m = 19 \Longrightarrow B = m - 1 = 18$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1)X_i} = \frac{n}{(\hat{B} + 1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

K = 0.023

Время до полного завершения тестирования 0

Полное время: 148.151

3) Релеевский закон

a. 100% (n = 30)

i	X	i	X	i	X
1	1.940	11	7.493	21	13.664
2	3.423	12	7.507	22	13.682
3	4.189	13	8.941	23	15.533
4	4.322	14	10.249	24	17.528
5	4.337	15	10.427	25	17.563
6	4.905	16	10.616	26	17.661
7	5.733	17	11.626	27	19.329
8	6.629	18	11.529	28	21.985
9	6.767	19	12.535	29	24.481
10	7.326	20	13.131	30	30.022

Проверка существования максимума B^{*}:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 20.271$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \ g_n(m, A) = \frac{n}{m-A}$$

m	31	32	33	34	35	36
f	3.995	3.027	2.558	2.255	2.035	1.863
g	2.796	2.558	2.357	2.185	2.037	1.907
f-g	1.199	0.470	0.202	0.070	0.002	0.044

$$m = 35 \Rightarrow B = m - 1 = 34$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}$$

K = 0.006

Среднее время \hat{X}_{n+1}

	V	_ 1	1	
	Λ_n -	$_{+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{F}}$	$\widehat{X}(\widehat{B}-n)$	
i	31	32	33	34
Xi	42.311	56.414	84.621	169.243

Время до полного завершения тестирования 352.589

Полное время: 697.3

b. 80% (n = 24)

i	X	i	X	i	X
1	1.417	9	7.806	17	12.402
2	3.390	10	7.981	18	13.465
3	5.705	11	8.520	19	15.472
4	6.599	12	8.742	20	15.559
5	6.917	13	8.771	21	15.909
6	6.974	14	9.922	22	19.638
7	7.372	15	10.369	23	21.993
8	7.457	16	11.710	24	22.586

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 15.804$$

15.804 > 12.5

Найдём *m*≥*n*+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \ g_n(m, A) = \frac{n}{m-A}$$

m	25	26	27	28	29	30	31
f	3.776	2.816	2.354	2.058	1.844	1.678	1.545
g	2.610	2.354	2.144	1.968	1.819	1.691	1.579
f-g	1.166	0.462	0.211	0.090	0.025	0.012	0.034

$$m = 30 \Rightarrow B = m - 1 = 29$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}$$

K = 0.007

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	25	26	27	28	29
Xi	30.37	37.962	50.616	75.924	151.848

Время до полного завершения тестирования 346.719

Полное время: 603.440

c. 60% (n = 18)

i	X	i	X	i	X
1	0.716	7	7.541	13	9.344
2	1.195	8	7.697	14	9.519
3	2.805	9	7.755	15	10.114
4	5.363	10	7.778	16	10.162
5	6.340	11	8.201	17	13.283
6	7.162	12	8.663	18	13.389

Проверка существования максимума В^:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iXi}{\sum_{i=1}^{n} Xi} = 11.674$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \ g_n(m, A) = \frac{n}{m-A}$$

m	19	20	21	22	23	24	25
f	3.495	2.548	2.098	1.812	1.607	1.451	1.326
g	2.457	2.162	1.930	1.743	1.589	1.460	1.351
f-g	1.038	0.386	0.168	0.069	0.018	0.009	0.025

$$m = 24 \Longrightarrow B = m - 1 = 23$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}$$

$$K = 0.005143$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	19	20	21	22	23
Xi	18.767	23.459	31.279	46.918	93.837

Время до полного завершения тестирования 214.260

Полное время: 351.288

4) Итоговые таблицы

а. Оценки первоначального числа ошибок

Закон	n = 30	n = 24	n = 18
распределения			
Равномерный	32	25	22
Экспоненциальный	32	24	18
Релеевский	34	29	23

b. Оценки полных времен проведения тестирования

Закон	n = 30	n = 24	n = 18
распределения			
Равномерный	438.872	281.289	439.513
Экспоненциальный	613.706	240.522	148.151
Релеевский	697.300	603.440	351.288

с. Анализ

Релеевский закон показал худшие результаты работы по обеим показателям, лучшие результаты показал экспоненциальный закон. Это должно согласоваться с предположением об экспоненциальном характере распределения времени до следующего отказа работы программы.

Тем не менее, из-за небольшого объема выборки результаты нестабильные и сильно изменяются при пересчёте файла, что не позволяет сделать однозначный вывод из вышеописанного эксперимента.

Выводы

В результате выполнения данной лабораторной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.