

Ratna Wardani

Materi

- ❖Logika Predikatif
- ❖Fungsi proposisi
- Kuantor: Universal dan Eksistensial
- ❖Kuantor bersusun

Logika Predikat

- Logika Predikat adalah perluasan dari logika proposisi dimana objek yang dibicarakan dapat berupa anggota kelompok.
- logika proposisi (ingat kembali) menganggap proposisi sederhana (kalimat) sebagai entitas tunggal
- Sebaliknya, logika predikat membedakan subjek dan predikat dalam sebuah kalimat.
 - Ingat tentang subjek dan predikat dalam kalimat?

Penerapan Logika Predikat

Merupakan notasi formal untuk menuliskan secara sempurna definisi, aksioma, teorema matematika dengan jelas, tepat dan tidak ambigu pada semua cabang matematika.

Logika predikat dengan simbol-simbol fungsi, operator "=", dan beberapa aturan pembuktian **cukup** untuk mendefinisikan sistem matematika apapun, dan juga cukup untuk membuktikan apapun yang dapat dibuktikan pada sistem tersebut.

Penerapan Praktis

- Merupakan basis untuk mengekspresikan spesifikasi formal untuk sistem kompleks apapun dengan jelas
- Merupakan basis untuk automatic theorem provers dan sistem cerdas lainnya
- Didukung oleh beberapa database query engines canggih dan container class libraries

Subjek dan Predikat

- Pada kalimat "Kucing itu sedang tidur":
 - Ofrase "kucing itu" merupakan subjek kalimat
 - Ofrase "sedang tidur" merupakan predikat kalimat- suatu properti yang bernilai TRUE untuk si subjek (objek pelaku)
 - Odalam logika predikat, predikat dimodelkan sebagai sebuah fungsi P(⋅) dari objek ke proposisi.
 - $\bigcirc P(x) =$ "x sedang tidur" (x adalah sembarang objek).

Predikat

- Konvensi: varibel huruf kecil x, y, z...
 Menyatakan objek/entitas; variabel huruf besar P, Q, R... menyatakan fungsi proposisi (predikat).
- Perhatikan bahwa hasil dari menerapkan sebuah predikat P kepada objek x adalah sebuah proposisi P(x). Tapi predikat P sendiri (e.g. P="sedang tidur") bukan sebuah proposisi
 - Ocontoh: jika P(x) = "x adalah bilangan prima", P(3) adalah proposisi "3 adalah bilangan prima."

Fungsi Proposisi

- Logika predikat dapat digeneralisir untuk menyatakan fungsi proposisi dengan banyak argumen.
 - Contoh: Misalkan P(x,y,z) = "x memberikan pada y nilai z", maka jika x="Mike", y="Mary", z="A", maka P(x,y,z) = "Mike memberi Mary nilai A."

Proposisi dan Fungsi

- Fungsi proposisi (kalimat terbuka):
 Pernyataan yang mengandung satu buah variabel atau lebih.
- Contoh : x 3 > 5.

Misalkan kita sebut fungsi proposisi ini sebagai P(x), dimana P adalah predikat dan x adalah variabel.

Apakah nilai kebenaran dari P(2)? Salah

Apakah nilai kebenaran dari P(8)? Salah

Apakah nilai kebenaran dari P(9)? Benar

Fungsi Proposisi

- Tinjau fungsi proposisi Q(x, y, z) yg didefinisikan:
- x + y = z.
- Disini, Q adalah predikat dan x, y, and z adalah variabel.

Apakah nilai kebenaran dari Q(2, 3, 5)? Benar

Apakah nilai kebenaran dari Q(0, 1, 2)? Salah

Apakah nilai kebenaran dari Q(9, -9, 0)? Benar

Semesta Pembicaraan

- Salah satu kelebihan predikat adalah bahwa predikat memungkinkan kita untuk menyatakan sesuatu tentang banyak objek pada satu kalimat saja.
- Contoh, misalkan P(x)="x+1>x". Kita dapat menyatakan bahwa "Untuk sembarang angka x, P(x) bernilai TRUE" hanya dengan satu kalimat daripada harus menyatakan satu-persatu: (0+1>0) ∧ (1+1>1) ∧ (2+1>2) ∧ ...
- Kumpulan nilai yang bisa dimiliki variabel x disebut semesta pembicaraan untuk x (x's universe of discourse)

Ekspresi Quantifier

- Quantifiers merupakan notasi yang memungkinkan kita untuk mengkuantifikasi (menghitung) seberapa banyak objek di semesta pembicaraan yang memenuhi suatu predikat.
- "∀" berarti FOR∀LL (semua) atau universal quantifier.
 ∀x P(x) berarti untuk semua x di semesta pembicaraan,
 P berlaku.
- " \exists " berarti \exists XISTS (terdapat) atau *existential* quantifier. $\exists x P(x)$ berarti terdapat x di semesta pembicaraan. (bisa 1 atau lebih) dimana P(x) berlaku.

Predikat & Kuantifier

Pernyataan "x > 3" punya 2 bagian, yakni "x" sebagai subjek dan " adalah lebih besar 3" sebagai predikat P.

Kita dpt simbolkan pernyataan "x > 3" dengan P(x). Sehingga kita dapat mengevaluasi nilai kebenaran dari P(4) dan P(1).

Subyek dari suatu pernyataan dapat berjumlah lebih dari satu.

Misalkan Q(x,y): x - 2y > x + y

- Mis. P(x) suatu fungsi proposisi.
- Kalimat yg dikuantifikasi secara universal :
- Untuk semua x dalam semesta pembicaraan, P(x) adalah benar.
- ■Dengan kuantifier universal ∀:
- ∀x P(x) "untuk semua x P(x)" atau
- "untuk setiap x P(x)"
- •(Catatan: ∀x P(x) bisa benar atau salah, jadi merupakan sebuah proposisi, bukan fungsi proposisi.)

- Contoh:
- S(x): x adalah seorang mahasiswa IT.
- G(x): x adalah seorang yang pandai.
- Apakah arti dari $\forall x (S(x) \rightarrow G(x))$?
- "Jika x adalah mahasiswa IT, maka x adalah seorang yang pandai"
- atau
- "Semua mahasiswa IT pandai."

Contoh:

Misalkan semesta pembicaraan x adalah <u>tempat parkir di FT UNY</u>. Misalkan P(x) adalah predikat "x sudah ditempati."

Maka universal quantification untuk P(x), $\forall x P(x)$, adalah proposisi:

- "Semua tempat parkir di FT UNY sudah ditempati"
- atau, "Setiap tempat parkir di FT UNY sudah ditempati"

"P(x) benar untuk semua nilai x dalam domain pembicaraan"

$$\forall x P(x).$$

Soal 2. Tentukan nilai kebenaran $\forall x (x^2 \ge x)$ jika:

- x bilangan real
- x bilangan bulat

Untuk menunjukkan ∀x P(x) salah, cukup dengan mencari satu nilai x dalam domain shg P(x) salah.

Nilai x tersebut dikatakan contoh penyangkal (counter example) dari pernyataan ∀x P(x).

- Kalimat yang di-kuantifikasi secara eksistensial:
- Ada x di dalam semesta pembicaraan dimana P(x) benar.
- Dengan peng-kuantifikasi eksistensial ∃:
- ■∃x P(x) "Ada sebuah x sedemikian hingga P(x)."
- "Ada sedikitnya sebuah x sedemikian
- hingga P(x)."
- Catatan: ∃x P(x) bisa benar atau salah, jadi merupakan sebuah proposisi, tapi bukan fungsi proposisi.)

- Contoh:
- P(x): x adalah seorang dosen IT.
- G(x): x adalah seorang yang pandai.
- Apakah arti ∃x (P(x) ∧ G(x)) ?
- "Ada x sedemikian hingga x adalah seorang dosen IT dan x adalah seorang yang pandai."
- atau
- "Sedikitnya satu orang dosen IT adalah seorang yang pandai."

- Contoh lain :
- Misalkan semesta pembicaraan adalah bilangan riil.
- Apakah arti dari $\forall x \exists y (x + y = 320)$?
- "Untuk setiap x ada y sehingga x + y = 320."

Apakah pernyataan ini benar?

Ya

Apakah ini benar untuk bilangan cacah? Tidak

Contoh:

Misalkan semesta pembicaraan x adalah <u>tempat parkir</u> <u>di FT UNY</u>.

Misalkan P(x) adalah predikat "x sudah ditempati."

Maka existential quantification untuk P(x),

 $\exists x P(x)$, adalah *proposisi*:

- "Beberapa tempat parkir di FT UNY sudah ditempati"
- "Ada tempat parkir di FT UNY yang sudah ditempati"
- "Setidaknya satu tempat parkir di FT UNY sudah ditempati"

"Ada nilai x dalam domain pembicaraan sehingga P(x) bernilai benar"

 $\exists x P(x).$

Soal 3. Tentukan nilai kebenaran dari $\exists x P(x)$ bila P(x) menyatakan " $x^2 > 12$ " dan domain pembicaraan meliputi semua bilangan bulat positif tidak lebih dari 4.

Disproof dengan counterexample

- Counterexample dari ∀x P(x) adalah sebuah objek c sehingga P(c) salah.
- Pernyataan seperti $\forall x (P(x) \rightarrow Q(x))$ dapat di-*disproof* secara sederhana dengan memberikan *counterexample*nya.

Pernyataan: "Semua burung bisa terbang." Disproved dengan counterexample: Penguin.

Variabel bebas dan variabel terikat

- Sebuah ekspresi seperti P(x) dikatakan memiliki variabel bebas x (berarti, x tidak ditentukan).
- Sebuah quantifier (∀ atau ∃) berlaku pada sebuah ekspresi yang memiliki satu atau lebih variabel bebas, dan mengikat satu atau lebih variabel tersebut, untuk membentuk ekspresi yang memiliki satu atau lebih variabel terikat.

Contoh Pengikatan

- P(x,y) memiliki 2 variabel bebas, x dan y.
- ∀x P(x,y) memilki 1 variabel bebas, dan 1 variabel terikat. [yang mana?]
- "P(x), dimana x=3" adalah cara lain mengikat x.
- Ekspresi dengan <u>nol</u> variabel bebas adalah sebuah proposisi bonafit (nyata)
- Ekspresi dengan <u>satu atau lebih</u> variabel bebas adalah sebuah predikat: ∀x P(x,y)

Negasi

Hubungan antara kuantor universal dengan kuantor eksistensial

E1:
$$\neg(\forall x) p(x) \equiv (\exists x) \neg p(x)$$

E2:
$$\neg(\exists x) p(x) \equiv (\forall x) \neg p(x)$$

E3:
$$\neg(\forall x)p(x)\rightarrow q(x) \equiv (\exists x) p(x) \land \neg q(x)$$

E4:
$$\neg(\exists x)p(x) \land q(x) \equiv (\forall x) p(x) \rightarrow \neg q(x)$$

Negasi

"Setiap mhs dalam kelas ini telah mengambil Kalkulus I" [∀x P(x)]

Apakah negasi dari pernyataan ini....?

"Ada seorang mhs dalam kelas ini yang belum mengambil Kalkulus I" $[\exists x \neg P(x)]$

Jadi,
$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
.

Negasi (2)

Soal 4. Carilah negasi dari pernyataan berikut:

"Ada politikus yang jujur"

"Semua orang Indonesia makan pecel lele"

Soal 5. Tentukan negasi dari:

$$\forall x(x^2 > x)$$

$$\exists x (x^2 = 2)$$

Kuantifier Bersusun (Nested Quantifier)

$$\forall x \ \forall y \ (x+y=y+x)$$

berarti x+y = y+x berlaku untuk semua bilangan real x dan y.

$$\forall x \exists y (x+y=0)$$

berarti untuk setiap x ada nilai y sehingga x+y=0.

$$\forall x \ \forall y \ \forall z \ (x+(y+z)=(x+y)+z)$$

berarti untuk setiap x, y dan z berlaku hukum asosiatif x+(y+z) = (x+y)+z.

Kuantifier Bersusun (Nested Quantifier)

Rumusan penting

- $\bigcirc (\forall x) (\forall y) p(x,y) \leftrightarrow (\forall y) (\forall x) p(x,y)$
- $(\forall x) (\forall y) p(x,y) \rightarrow (\exists y) (\forall x) p(x,y)$
- $(\exists y) (\forall x) p(x,y) \rightarrow (\forall x) (\exists y) p(x,y)$
- \bigcirc $(\forall x) (\exists y) p(x,y) \rightarrow (\exists y) (\exists x) p(x,y)$
- $\bigcirc (\exists x) (\exists y) p(x,y) \leftrightarrow (\exists y) (\exists x) p(x,y)$

Soal-soal

Soal 6. Artikan kalimat ini dalam bhs Indonesia:

$$\forall x (C(x) \vee \exists y (C(y) \wedge F(x,y))),$$

bila C(x): "x mempunyai komputer",

F(x,y): "x dan y berteman",

dan domainnya adalah semua mhs di kampus.

Soal 7. Bagaimana dengan berikut ini:

$$\exists x \ \forall y \ \forall z ((F(x,y) \land F(x,z) \land (y \neq z) \rightarrow \neg F(y,z))$$

Soal 8. Nyatakan negasi dari pernyataan

$$\forall x \exists y (xy=1).$$

Latihan

- Jika R(x,y)="x percaya pada y," maka ekspresi dibawah ini herarti:
- Semua orang memiliki orang yang $\forall x(\exists y \ R(x,y))$ Ada seseorang yang dipercayai oleh semua orang (termasuk dirinya sendiri)
- $\exists x(\forall y \ R(x,y))$ Ada seseorang yang mempercayai semua orang). $\forall y(\exists x \ R(x,y))$ Semua orang memiliki seseorang yang $\forall x(\forall y \ R(x,y))$ Semua orang mempercayai semua
- orang, termasuk dirinya sendiri

Konvensi

- Terkadang semesta pembicaraan dibatasi dalam quantification, contoh,
 - $\forall x>0$ P(x) adalah kependekan dari "untuk semua x lebih besar dari nol, P(x) berlaku."

$$= \forall x (x>0 \rightarrow P(x))$$

■ $\exists x>0$ P(x) adalah kependekan dari "ada x lebih besar dari nol yang membuat P(x)"

$$= \exists x (x>0 \land P(x))$$

Aturan Ekivalensi Quantifier

Definisi quantifiers:

semesta pemb. =a,b,c,...

$$\forall x P(x) \Leftrightarrow P(a) \land P(b) \land P(c) \land ...$$

 $\exists x P(x) \Leftrightarrow P(a) \lor P(b) \lor P(c) \lor ...$

Kemudian kita bisa membuktikan aturan:

$$\forall x P(x) \Leftrightarrow \neg \exists x \neg P(x) \exists x P(x) \Leftrightarrow \neg \forall x \neg P(x)$$

Aturan ekivalensi proposisi mana yang digunakan untuk membuktikannya?

Aturan Ekivalensi Quantifier

- $\exists x \exists y P(x,y) \Leftrightarrow \forall y \forall x P(x,y)$ $\exists x \exists y P(x,y) \Leftrightarrow \exists y \exists x P(x,y)$
- $\forall x (P(x) \land Q(x)) \Leftrightarrow (\forall x P(x)) \land (\forall x Q(x))$ $\exists x (P(x) \lor Q(x)) \Leftrightarrow (\exists x P(x)) \lor (\exists x Q(x))$
- Latihan:

Bisakah Anda membuktikan sendiri?

Ekivalensi proposisi apa yang Anda gunakan?

Membuat Quantifier Baru

Sesuai namanya, quantifier dapat digunakan untuk menyatakan bahwa sebuah predikat berlaku untuk sembarang kuantitas (jumlah) objek.

Definisikan $\exists !x P(x)$ sebagai "P(x) berlaku untuk tepat satu x di semesta pembicaraan."

 $\exists ! x P(x) \Leftrightarrow \exists x (P(x) \land \neg \exists y (P(y) \land y \neq x))$ "Ada satu x dimana P(x) berlaku, dan tidak ada y dimana P(y) berlaku dan y berbeda dengan x."

Perhatikan

- Semesta pemb. = bilangan cacah 0, 1, 2, ...
- "Sebuah bilangan x dikatakan genap, G(x), iff x sama nilainya dengan bilangan lain dikalikan 2." $\forall x (G(x) \leftrightarrow (\exists y \ x=2y))$
- "Sebuah bilangan x dikatakan prima, P(x), iff x lebih besar dari 1 dan x bukan merupakan hasil perkalian dari dua bilangan bukan-satu."

$$\forall x (P(x) \leftrightarrow (x>1 \land \neg \exists yz \ x=yz \land y\neq 1 \land z\neq 1))$$