<u>דף עבודה במטריצות</u>

<u>תרגיל 1</u>

. פעולות החיבור והכפל הן פעולות הרגילות של מטריצות. $F = \left\langle \left(egin{array}{cc} a & b \\ -b & a \end{array} \right) \middle| a,b \in R \right\rangle$ יהא:

- א. מצאו את האדיש הכפלי של קבוצה זו.
- ב. הוכיחו שלכל איבר ב F, פרט למטריצת האפס, יש הופכי כפלי.
 - ג. הראו ש- $\,F\,$ הינו שדה.

כמו איזה שדה מוכר הוא מתנהג?

<u>תרגיל 2</u>

הוכיחו או הפריכו ע"י דוגמא את הטענות הבאות:

:F מעל שדה מסדר $n \times n$ ו- B ו- A

- AB^2 אז A מתחלפת בכפל עם AB = BA
 - AB = BA ב) אם AB היא אנטי סימטרית אז
 - AB = BA אז $A^tB^t = (AB)^t$ אם (λ
- $A = I_n$ אז AB = B -ד) אם A ו- B שונות מ- 0 כך ש-

<u>תרגיל 3</u>

 $AB = egin{pmatrix} 2 & 4 \ 0 & 2 \end{pmatrix}$ מעל Z_5 כך שיתקיים השוויון $A = egin{pmatrix} 1 & 2 \ 0 & 3 \end{pmatrix}$ מעל מטריצה $A = egin{pmatrix} 1 & 2 \ 0 & 3 \end{pmatrix}$

<u>תרגיל 4</u>

 $A,B \in F^{nxn}$ כאשר trace(AB) = trace(BA) א. הוכיחו ש- trace(BA) = trace(BA) - סכום איברי האלכסון של

 $AB-BA=\stackrel{\cdot}{I}$ המקיימות: A , B ב. הוכיחו: לא קיימות מטריצות ממשיות:

CD-DC=I המקיימות: $C,D\in (Z_2)^{2x2}$ המליימות: ג. תנו דוגמא למטריצות:

<u>תרגיל 5</u>

l ועמודה k ועמודה הם אפס פרט לאיבר בשורה ה- m imes n ועמודה $\left(E_{\scriptscriptstyle m imes n}
ight)^{k,l}$ נגדיר מטריצה $\left(E_{\scriptscriptstyle m imes n}
ight)^{k,l}$

השווה ל- 1.

$$A\cdot \left(E_{\scriptscriptstyle{m imes n}}
ight)^{\!k,l}$$
 א) תהי $A\in F^{q imes m}$ חשבו את (א

$$.\left(E_{\scriptscriptstyle{m imes n}}
ight)^{k,l}\cdot B$$
 חשבו את $B\in F^{n imes p}$ עהרי

$$.\left(E_{\scriptscriptstyle{m imes n}}
ight)^{\!\!k,l}\cdot\left(E_{\scriptscriptstyle{n imes m}}
ight)^{\!\!l,k}$$
 אם המכפלה מכפלה ושבו את המכפלה

^{*} בשאלה זו אפשר להסתפק בשרטוט המטריצה המתקבלת בכל סעיף עם הביטוי הנכון בכל מקום שיש בו איבר שונה מאפס. (ז"א: אין חובה להשתמש בסיגמאות, עדיף "לראות" את המטריצה המתקבלת)

תרגיל 6

היא C היא מטריצה ריבועית מסדר n imes n ומתחלפת בכפל עם כל מטריצה ריבועית מאותו הסדר אז C היא מטריצה C באשר C כאשר C כאשר C כאשר C כאשר C כאשר C בעם כל מטריצה סקלרית (כלומר C באשר C כאשר C באשר C באשר C באשר C כאשר C באשר C בא באשר C בא באשר C בא באשר C בא

($(E_{nxn})^{k,l}$ מתחלפת בפרט עם אז היא מיחלפת אז היא מחלפת בפרט עם כל מטריצה ריבועית אז היא מתחלפת בפרט עם (

תרגיל 7

 $a_1,a_2,...,a_n$: יקרא צירוף לינארי של $X_1,X_2,...,X_n$ אם קיימים סקאלרים Y : הגדרה Y = $a_1x_1+a_2x_2+\cdots+a_nx_n$ כך ש

- אז b הוא צירוף לינארי של F) $b \in F^{m imes 1}$, $x \in F^{n imes 1}$, $A \in F^{m imes n}$ כאשר Ax = b כאשר Ax = b שמודות A (כלומר A הוא צירוף ליניארי של עמודות A).
- ב) אז b הוא צירוף לינארי של F) $b \in F^{1 imes n}$, $x \in F^{1 imes m}$, $A \in F^{m imes n}$ כאשר xA = b ב) הראו שאם xA = b הוא צירוף ליניארי של שורות a (כלומר a הוא צירוף ליניארי של שורות a).
- - גם בשאלה זו אפשר פשוט לכתוב את הצרופים ללא שימוש בנוסחאות מסובכות, למשל: (first line of) = 5*(first line of)+7*(second line of)+...