

Vyšší odborná škola a Střední průmyslová škola elektrotechnická Plzeň, Koterovská 85

ROČNÍKOVÁ PRÁCE

Téma:

Model průmyslového šestiosého robota

Autor práce: Daniel Hornek

Třída: 3.L

Vedoucí práce: Jíří Švihla Dne: 30.5.2025

Hodnocení:

ZDE VLOŽIT LIST ZADÁNÍ

Z důvodu správného číslování stránek

Anotace a poděkování

Model šestiosého kolaborativního půrmyslového robota, který reaguje na prostředí. Zabýval jsem se modelováním a sestavením šestiosého robota. Cílem byl funkční šestiosé robotické rameno. Na práci jsem pracoval společně s spolužákem Tomášem Kubínem, který vytvářel software a rozvaděč a s spolužákem Matějem Svobodou, který pracoval na pendandu (uživatelské rozhraní).

Chtěl bych poděkovat vedoucímu práce Jiřímu Švihlovy za podporu při zpracování a za poskytnutí krokových motorů. Dále bych chtěl poděkovat svému spolužákovy Vítu Moulisovi, který mi zpřístupněl jeho 3D tiskárnu.

Prohlašuji, že jsem tuto práci vypracoval samostatně a použil literárních pramenů a informací, které cituji a uvádím v seznamu použité literatury a zdrojů informací.

Prohlašuji, že jsem nástroje UI využil v souladu s principy akademické integrity a že na využití těchto nástrojů v práci vhodným způsobem odkazuji.

Souhlasím s využitím mé práce učiteli VOŠ a SPŠE Plzeň k výuce.

V Plzni dne 30.5.2025 Podpis:

Obsah

Ú	vod		6
1	Cíl		7
	1.1	Design	7
	1.2	Model	7
2	Sou	částky	8
	2.1	Motory	8
		2.1.1 LDO-42STH47-1684a	8
		2.1.2 SX17-1005LQCEFds	8
		2.1.3 SX17-1003LQCEF	9
	2.2	OMRON Koncový spínač pákový 5A 125VAC	9
	2.3	Pružná spojka hliníková svírací 5x8mm	9
3	Soft	warové aplikace	11
	3.1	Autodesk Fusion 360	11
	3.2	Autodesk Inventor 2026	11
4	Mo	dely	14

4.1	Struktura pro Motor 1	14
4.2	Struktura pro Motor 2	14
4.3	Struktura pro Motor 3 (Ramena)	14
4.4	Struktura pro Motor 4	19
4.5	Struktura pro Motor 5	21
4.6	Struktura pro Motor 6	21
Závěr		24
Přílohy	Ţ	Ι

Úvod

V součastnosti se stávají roboti nedílnou součástí života. V průmyslu se začínají kolaborativní roboti využívat čím dál tím častěji. A tak mě zajímalo jak těžké je takového robota postavit. A tak jsem se dal do modelování robota.

1 Cíl

Můj cíl byl nadesignovat, vymodelovat a postavit robota. Věnoval jsem výhradně hardwaru robota.

1.1 Design

Jedním z cílu bylo vytvořit robota tak, aby se na něj dalo koukat jako na něco úžasného. Chtěl jsem taky aby robot byl co nejmenší.

1.2 Model

Hlavní cíl byla ale funkčnost robota. Bylo za potřebý vymyslet části tak, aby do sebe nejen seděli, ale aby taky plnili to co mají.

2 Součástky

2.1 Motory

Pro pohyb robota jsem využil tři typy motorů NEMA 17.

2.1.1 LDO-42STH47-1684a

Krokový motor LDO-42STH47-1684A je hybridní motor velikosti NEMA-17. Má vysoký točivý momenta a přesnost. Má krokový úhel 1,8°. Krokový úhel 1,8° znamená, že se o tento úhel otočí při každém kroku. Motor pracuje na jmenovitém napětí 2,8 V a jmenovitém proudu 1,68 A (LDO MOTORS CO. 2012).

Tento motor je dvoufázový a má indukčnost 2,8 mH na fázi. Jeho hmotnost je 0,35 kg. Je nejvhodnější na přesné polohování, nejčastěji se užívá u 3D tiskáren.

Tento typ motor je použit 3x v práci a to u prvních třech os. Je to kvůli tomu, že jsou nejtěžší a že udrží tu největší váhu.

2.1.2 SX17-1005LQCEFds

Krokový motor SX17-1005LQCEFds je hybridní dvoufázový motor s přírubou NEMA 17. Má stejný otáčivý moment jako LDO-42STH47-1684a s tolerancí 0,1°. Maximální proud motoru je 1A a má jmenovité napětí 5,9 V. Jeho přídržný moment je 0,5 Nm (UMAX 2025).

Tento motor se díky své vysoké přesnosti a kompaktonsti využívá u 3D tiskáren.

Tento motor jsem v robotovy využil 1x a to u 4. osy, protože se na to hodil rozměrově.

2.1.3 SX17-1003LQCEF

Krokový motor SX17-1003LQCEF je hybridní dvoufázový motor s přírubou NEMA 17. S motorem SX17-1005LQCEFds je jiný pouze ve velikosti a v jeho přídržným momentu, oproti SX17-1005LQCEFds jeho přídržný moment je 0,3 nM (Conquest entertainment 2025).

Tento motor jsem v práci využil 2x a to u 5. a 6. osy, jelikož jsou nejlehčí z uvedených motorů.

2.2 OMRON Koncový spínač pákový 5A 125VAC

OMRON Koncový spínač pákový 5A 125VAC je mikrospínač s konfigurací kontaktů SPDT(Single Pole Double Throw), což znamená, že může přepínat mezi dvěma obvody. Jeho zatížitelnost kontaktů je 5A při 125 V AC, a to ho činí vyhodným pro průmyslové aplikace, např. v 3D tiskárnách nebo CNC strojích.

Spínač má jednu stabilní polohu a způsob přepínaní ON-(ON). Jeho mechanická životnost dosahuje až 30 miliónů cyklů. Elektrická životnost je 200 000 cyklů. Má kompaktní rozměry (19,8 x 6,4 x 10,2 mm), takže je vhodný pro vnitřní použití (OMORON 2025).

Tento spínač využívám jako koncový spínač na určení počáteční polohy. V práci je použit 5x, u každé osy jednou kromě 6. osy.

2.3 Pružná spojka hliníková svírací 5x8mm

Je mechanická součástka, která se používá k propojení dvou hřídelí, např. mezi krokovým motorem a závitovou tyčí 3D tiskárny (Botland 2025).

Já tuto spoj
ku využil na spojení hřídele motoru s další částí robota. Celkově je v práci využit
a $2\mathbf{x}.$

3 Softwarové aplikace

Na vymodelování robota jsem využil aplikaci Autodesk Fusion 360. K vytvoření výkresů k modelům jsem využil aplikaci Autodesk Inventro 2026.

3.1 Autodesk Fusion 360

Autodesk Fusion 360 je moderní cloudově založený nástroj, který integruje CAD, CAM i CAE do jednoho komplexního prostředí. Umožňuje vytváření parametrických i volně tvarovaných 3D modelů, přičemž výkonné nástroje pro simulace a analýzu ověřují návrhy dříve, než se dostanou k výrobě. Díky intuitivnímu rozhraní a flexibilitě se snadno osvojuje jak u profesionálů, tak i u nadšenců.

Další významnou výhodou Fusion 360 je jeho cloudová technologie, která výrazně usnadňuje spolupráci v týmu. Sdílení projektů v reálném čase, přístup odkudkoliv a pravidelné aktualizace umožňují držet krok s aktuálními trendy v designu i výrobních postupech.

Celkově jde o komplexní řešení pro návrh, simulaci a přípravu výroby, které značně zjednodušuje celý vývojový proces a otevírá dveře k rychlé a efektivní realizaci náročných projektů (Autodesk 2025a).

Fusion 360 jsem si vybral protože jsem v něm jestě nikdy před tím nepracoval, takže jsem to byla výzva pro mě, a protože se v něm dělají jednoduše soustavy viz. 3.1. Také mi ho učitelé doporučili.

3.2 Autodesk Inventor 2026

Autodesk Inventor je robustní profesionální nástroj pro 3D mechanické projektování, který slouží k tvorbě, simulaci i dokumentaci produktů. Nabízí pokročilé možnosti pa-

Obrázek 3.1: Úvodní menu Autodesk Fusion 360 s otevřeným projektem, v tomto případě je to model šestiosého kolaborativního robota

rametrického modelování a přímého modelování, což umožňuje detailní návrh složitých dílů a sestav v průmyslových i strojírenských aplikacích. Díky integrovaným nástrojům pro simulaci dynamiky, statiky a tepelných procesů mohou inženýři ověřit design ještě před samotnou výrobou.

Software se vyznačuje intuitivním rozhraním a širokou škálou funkcí, včetně tvorby podrobných výkresových dokumentací a optimalizace výrobních procesů. Integrované nástroje pro správu dat a verzí napomáhají plynulé spolupráci v týmech a zajišťují konzistenci designu napříč celým průmyslovým projektem.

Celkově Inventor představuje komplexní řešení pro inženýry a návrháře, které podporuje inovativní myšlení a umožňuje efektivní přechod od konceptu k finálnímu produktu. Tento software je oblíbenou volbou v prostředí, kde se vyžaduje vysoká přesnost, efektivita a spolehlivost při tvorbě mechanických zařízení (Autodesk 2025b).

Inventor jsem si vybral protože jsem potřeboval program, ve kterém jdou jednoduše vytvářet výkresy, a jelikož jsem výkresy již v Inventoru vytvářel, nebyla to pro mě potíž

Obrázek 3.2: Úvodní menu Autodesk Inventro když je odevřený výkres, v tomto případě je otevřený výkres součásti šestiosého kolaborativního robota

viz. 3.2 obrázek . A díky snadnému exportování dokumentů z Autodesk Fusion 360 do souborů kompatibilní s Inventorem to byla jasná volba.

4 Modely

V této kapitole vám popíšu každou část modelu robota.

4.1 Struktura pro Motor 1

Na obrazku 4.1 mužete vidět strukturu, která slouží jako základna celého robota. V střední části je místo které slouží na umístění motoru LDO-42STH47-1684a a vedle i na umístění tlačítka OMORON. Na boku můžeme vidět díru, která slouží jako vývod kabelů.

Pro to aby motor džel na místě slouží ložisko M1 viz. 4.2.

4.2 Struktura pro Motor 2

Na obrázku 4.3 mužeme vidět model struktury pro motor 2. Z jedné strany je výseč pro umístění tlačítka OMORON. Z druhé strany je výstup na kterém bude držet jedno z ramen viz. 4.4

4.3 Struktura pro Motor 3 (Ramena)

Ramena jsou mezi sebou spojeny strukturou na obrázku 4.9. Na ramenu které je na obrázku 4.5 je v spodní části umístěn úchyt na motor 2 spolu s výstupkem který bude stlačovat tlačítko pro motor 2. V horní části je struktura na úchyt motoru 3, kdy z jedné strany bude, na obrázku pro nás nahoře, bude umístěn úchyt na motor s výstupem hřídele viz. 4.7 a z druhé strany uýhyt 4.8. Na horní část se zasune chlazení které funguje i jako vývod kabelů viz. 4.6.

Obrázek 4.1: Podlozka M1 - Výkres Příloha XI

Obrázek 4.2: Lozisko M1 - Výkres Příloha I

Obrázek 4.3: Podlozka M
2 s místem pro motor 2 - Výkres Příloha XII

Obrázek 4.4: Rameno s úchytem na tlacitko - Výkres Příloha XV

Obrázek 4.5: Rameno s úchytem na motor 3 - Výkres Příloha XIII

Obrázek 4.6: Chlazení pro motor 3 - Výkres Příloha IV

Obrázek 4.7: Přední část uchycení motoru3 - Výkres Příloha III

Obrázek 4.8: Zadní část úchytu pro motor 3 - Výkres Příloha II

Obrázek 4.9: Model na způsob jakým budou spojeny ramena - Výkres Příloha XVI

Obrázek 4.10: Podložka/rameno pro motor 4 - Výkres Příloha XIV

4.4 Struktura pro Motor 4

V této části robota kterou můžete vidět na obrázcích 4.10 a 4.11. Na obrázku 4.10 můžeme na zadní části vidět vysuntí, které slouží na stlačení tlačítka OMORON pro motoru 3 . Přední část robota slouží k uchycení robota, společně se na ní přiloží struktura na obrázku 4.11 a na ní se příloží 4.12 .

Na struktuře kterou vidíme na obrázku 4.12, můžeme vidět část, která bude stlačovat tlačítko pro motor 4.

Obrázek 4.11: Horní část motoru 4 s výstupem pro kabely - Výkres Příloha VI

Obrázek 4.12: Strkutura která slouží na stlačení tlačítka OMORON pro motor 4 - Výkres Příloha V

Obrázek 4.13: Struktura pro motor 5 - Výkres Příloha m5 VIII

4.5 Struktura pro Motor 5

V této části robota můžeme vidět strukturu na držení motoru 5 viz. 4.13. Na tuto část přijde na upevnění motoru v místě část kterou můžeme vidět na obrazku 4.14. Tlacitko OMORON bude připojene z venku na straně a stlačovat ho bude struktura pro motor 6.

4.6 Struktura pro Motor 6

V této části můžeme vidět finálni osu. Motor je upevněn v struktuře viz. 4.15 a ze zhora strukturou 4.16. Tato osa tlačítko nemá, ortože je to výstupní osa na kterou si uživatel bude moci upevnit cokoliv dle zájmu.

Obrázek 4.14: Struktura pro udržení motoru 5 - Výkres Příloha VII

Obrázek 4.15: Strktura pro motor 6 - Výkres Příloha IX

Obrázek 4.16: Struktura pro udržení motoru 6 - Výkres Příloha X

Závěr

Cílem mé práce bylo vymodelovat a sestavit šestiosého kolaborativní průmyslového robota.

Práce mi přinesla mnoho užitečných zkušeností a praxe. Naučil jsem se jak pracovat s Autodesk Fusion 360 a zlepšit se v Autodesk Inventor.

Samozřejmě jsem se taky naučil jaké chyby už nedělat. V modelování jsem měl hodně problémy s tolerancema a třením. S komponenty jsem spokojený a práce s nima byla jednoduchá, jediný problém u komponent jsem měl s šroubama, protože některé díry jsem namodeloval moc úzké. Každou z částí robota jsem modeloval minimálně dvakrá, protože jsem vždy našel nějaký způsob jak to vylepšit nebo jsem si našel chybu a potřeboval jsem ji vylepšit.

Při pracovaní na této práci jsem si velice rozvinul kretivní myšlení a přemýšlení nad řešením různých problémů. Nejsložitější bylo vymýšlení umístění tlačítek. Výsledný design můžete vidět na 4.17.

Obrázek 4.17: Celý robot - Jarvis

Seznam obrázků

3.1	Úvodní menu Autodesk Fusion 360 s otevřeným projektem, v tomto případě je to model šestiosého kolaborativního robota	12
3.2	Úvodní menu Autodesk Inventro když je odevřený výkres, v tomto případě je otevřený výkres součásti šestiosého kolaborativního robota	13
4.1	Podlozka M1 - Výkres Příloha XI	15
4.2	Lozisko M1 - Výkres Příloha I	15
4.3	Podlozka M2 s místem pro motor 2 - Výkres Příloha XII	16
4.4	Rameno s úchytem na tlacitko - Výkres Příloha XV	16
4.5	Rameno s úchytem na motor 3 - Výkres Příloha XIII	17
4.6	Chlazení pro motor 3 - Výkres Příloha IV	17
4.7	Přední část uchycení motoru 3 - Výkres Příloha III	18
4.8	Zadní část úchytu pro motor 3 - Výkres Příloha II	18
4.9	Model na způsob jakým budou spojeny ramena - Výkres Příloha XVI $\ . \ . \ .$	19
4.10	Podložka/rameno pro motor 4 - Výkres Příloha XIV	19
4.11	Horní část motoru 4 s výstupem pro kabely - Výkres Příloha VI $ \ldots \ldots $	20
4.12	Strkutura která slouží na stlačení tlačítka OMORON pro motor 4 - Výkres Příloha V	20
4.13	Struktura pro motor 5 - Výkres Příloha m5 VIII	21

4	4.14 Struktura pro udržení motoru 5 - Výkres Příloha VII	22
4	4.15 Strktura pro motor 6 - Výkres Příloha IX	22
4	4.16 Struktura pro udržení motoru 6 - Výkres Příloha X	23
4	4.17 Celý robot - Jarvis	25
Zdr	oj: Vlastní	

Bibliografie

- Autodesk (2025a). Autodesk Fusion. URL: https://www.autodesk.com/cz/products/fusion-360/overview?term=1-YEAR&tab=subscription (cit. 28.04.2025).
- (2025b). Autodesk Inventor. URL: https://www.autodesk.com/products/inventor/overview (cit. 28.04.2025).
- Botland (2025). Pružná hliníková spojka 5x8mm. URL: https://botland.cz/prvky-pro-stavbu-3d-tiskaren/18932-pruzna-hlinikova-spojka-5x8mm-5904422355005. html (cit. 28.04.2025).
- Conquest entertainment (2025). Krokový motor NEMA SX17-1003LQCEF, 0,3Nm. URL: https://com.cqe.cz/krokovy-motor-nema-sx17-1003-0-3nm/ (cit. 28.04.2025).
- LDO MOTORS CO. (2012). Hybrid Stepper Motor LDO-42STH47-1684A(AGF). URL: https://www.solarbotics.com/wp-content/uploads/ldo-42sth47-1684a.pdf (cit. 06.12.2012).
- OMORON (2025). Subminiature Basic Switch. URL: https://www.laskakit.cz/user/related_files/omron_en-ss.pdf (cit. 28.04.2025).
- UMAX (2025). Krokový motor NEMA SX17-1005LQCEF, 0,5Nm. URL: https://www.umax.cz/krokovy-motor-nema-sx17-1005lqcef-0-5nm/ (cit. 28.04.2025).

Přílohy

Příloha I - DeskaM2

Příloha II - M3 zad

Příloha III - m3 top

Příloha IV - CHLAZENIM3

Příloha V - M4 tlac

Příloha VI - M4 top

Příloha VII - M5

Příloha VIII - m5 base

Příloha IX - M6 top

Příloha X - M6

Příloha XI - MotorPod

Příloha XII - PodlozkaM2

Příloha XIII - Ramenom3

Příloha XIV - ramenom4

Příloha XV - Rameno T

Příloha XVI - SpojR