

Physik realer Systeme

Von Differenzialgleichungen zum Experiment

C. Lehrenfeld, C. Nowak

Physik für reale Systeme?

Physik funktioniert für idealisierte Systeme

reale Systeme zeigen deutliche Abweichungen

Hintergrund

Einfache quantitative (mathematische) Beschreibung physikalischer System möglich sofern

- hohe Symmetrie
- keine Kopplung
- wenige Wechselwirkungen

$$\frac{d^2u}{dt^2}(t) = -\frac{g}{l}\sin(u(t))$$

→ Wenig symmetrische und gekoppelte System mit vielen Wechselwirkungen nicht leicht zugänglich

Differentialgleichungen

- Eine **Differentialgleichung (DGL)** ist ein mathematischer Zusammenhang zwischen einer gesuchten Funktion u und Ihren Ableitungen
- Viele Naturgesetze können in Form von DGLen dargestellt werden. Ursprung ist (fast) immer ein Erhaltungssatz.
- Beispiele:
 - Bewegungsgleichungen = Energieerhaltung
 - Wärmetransport = Energieerhaltung
 - Diffusion = Massenerhaltung
 - Elektrische Ströme = Ladungserhaltung

Gewöhnliche Differentialgleichungen

Beispiele:

• Newtonsche Mechanik:
$$F(t) = m a(t) = m \frac{d^2x}{dt^2}(t)$$

• Radioaktiver Zerfall:
$$\frac{dN}{dt}(t) = -\lambda N(t)$$

• usw.

Numerische Lösungsverfahren werden benötigt, da DGLen i.d.R. nicht analytisch gelöst werden können:

- Euler-Verfahren
- Finite-Elemente-Methode
- usw.

Motivation zur Simulation

Theorie

The first of the state of the s

Simulation

reales System

- mathematische Modelle
- gewöhnliche und/oder partielle Differentialgleichungen
- virtuelle Experimente
- neue Designideen
- Parameterstudien
- Optimierung

- teuer & zeitaufwändig
- nur wenige werden tatsächlich realisiert

Abb. © COMSOL AB

Simulation

Finite Elemente Methode

- etabliertes mathematisches Verfahren
- ermöglicht
 - beliebige Geometrien
 - komplexe physikalische Gesetze
 - vielfältige Wechselwirkungen

– "Was wäre wenn?" Experimente

Ablauf einer Simulation

- 1. Wahl der Raumdimension
- 2. Erstellung der Geometrie
- Zuweisung physikalischer Eigenschaften
 - Differenzialgleichungen
 - Randbedingungen
- 4. Zuweisung der Materialparameter
- 5. Vernetzung / Approximation der Lösung
- Numerische Lösung
- 7. Auswertung der Ergebnisse

Temperaturverlauf Tasse

Ablauf

Montag	Dienstag	Mittwoch	Donnerstag	Freitag
	Finite-Elemente- Methode	Eindimensionale Schwingungen	Mehrdimensionale Analysis	Experiment und Simulation Mikrowellen
Individuelle Anreise		Euler-Verfahren	Wellengleichung für elektromagnetische Wellen	
	Mittagessen			
Einführung (13:00) Differenzial-	Experiment und Simulation Wärmeleitung	Experiment und Simulation Pendel	Experiment elektromagnetische Wellen	Individuelle Vertiefung
gleichungen in der Physik		Studieninformation	Kurzvortrag "Simulationen in der Forschung"	Abschluss
Abendessen (19:00)	Abendessen (19:00)	Abendessen (18:00) Astro-Abend (19:30)	Abendessen (18:00)	Individuelle Abreise (ab 16:00)

Notebooknutzung

Logindaten

- User: kurs3/xlab222
- Passwort: startstart

Speicherort für zentrale Kursmaterialien (schreibgeschützt)

 Netzlaufwerk: xlabxxx\Physik\Simulationscamp2023

Speicherort für eigene Kursmaterialien

• C:\Users\Public\Documents\Name