Assessing Capability with Non-Normal Data - Lognormal Transformation

Data Science for Quality Management: Process Capability

with Wendy Martin

Learning objective:

Assess capability / performance from a non normal distribution with lognormal transformed data

Step 6 — Assess Process Control

 We will use the Food Distributor Delivery Problem to demonstrate calculating process capability using the lognormal transformation.

Assess Process Control for Non-Normal Data

 Regardless of the type of chart used, process capability must consider the shape of the underlying distribution.

Step 6 — Assess Process Control

Process Capability

Lognormal Transformation

The Food Distributor Delivery Problem:

 Currently, for the food category in question, the temperature of the refrigeration unit upon delivery is supposed to be between 37 and 49 degrees, and ideally (Nominal) at 43 degrees.

Process Capability

Lognormal Transformation

 Each time a truck arrives with a temperature outside of these limits, the truck is rejected; the food is declared to be "spoilage", and a claim filed against the Distributor.

Transforming Non-Normal Distributions


```
nqtr(summary.continuous(Delivery$Temp)
, 5)
n 60
mean 43.36667
var 7.08362
g3.skewness 0.63363
g3test.p 0.04312
g4.kurtosis 0.31915
g4test.p 0.47427
```

Transforming Non-Normal Distributions


```
nqtr(summary.continuous(Delivery$Intemp),5)
n 60
mean 3.76788
var 0.00366
g3.skewness 0.46738
g3test.p 0.12596
g4.kurtosis 0.11273
g4test.p 0.68757
```

NOTE: Specifications were transformed!

> Delivery\$Intemp<log(Delivery\$Temp)</pre>

Send data to an object named "data"
data<-Delivery\$Temp</pre>

```
# Get natural tolerance for Lognormal
Distribution for the individual values
f<-function(p,lower.tail)</pre>
  qlnorm(p = p, meanlog = mean(log(data)),
sdlog = sd(log(data)), lower.tail =
lower.tail)
```

```
# Define inputs
LSL <- 37
Target <- 43
USL <- 49
```

```
# Define inputs - proportion out of spec
1.out \leftarrow plnorm(q = LSL,
meanlog = mean(log(data)),
sdlog = sd(log(data)), lower.tail = T)
u.out <-plnorm(q = USL,
meanlog = mean(log(data)),
sdlog = sd(log(data)),lower.tail = F)
total.out <- l.out + u.out
```

```
# Define inputs - center, variability, NT'
median <- median(data)
mean <- mean(data)
nt_est <-
natural.tolerance(f)$natural.tolerance
s <- sd(data)</pre>
```

```
# Define inputs - Actual out of spec
obs.above.spec <- sum(data > USL)
obs.below.spec <- sum(data < LSL)
totaln <- length(data)</pre>
```

```
spc.capability.summary.ungrouped.nonnormal.si
mple.R()
```

Sources

The material used in the PowerPoint presentations associated with this course was drawn from a number of sources. Specifically, much of the content included was adopted or adapted from the following previously-published material:

- Luftig, J. An Introduction to Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1982
- Luftig, J. Advanced Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1984.
- Luftig, J. A Quality Improvement Strategy for Critical Product and Process Characteristics. Luftig & Associates, Inc. Farmington Hills, MI, 1991
- Luftig, J. Guidelines for Reporting the Capability of Critical Product Characteristics. Anheuser-Busch Companies, St. Louis, MO. 1994
- Spooner-Jordan, V. Understanding Variation. Luftig & Warren International, Southfield, MI 1996
- Luftig, J. and Petrovich, M. Quality with Confidence in Manufacturing. SPSS, Inc. Chicago, IL 1997
- Littlejohn, R., Ouellette, S., & Petrovich, M. Black Belt Business Improvement Specialist Training, Luftig & Warren International, 2000
- Ouellette, S. Six Sigma Champion Training, ROI Alliance, LLC & Luftig & Warren, International, Southfield, MI 2005