Cálculo Companheiro - Companheiro para seu curso de Cálculo

Gustavo Garone

2024-08-31

Índice

Pr	refácio	3
TODO		4
1	Sumário	5
2	Introdução	6
3	TODO	7
4	Matrizes	8
	4.1 Matriz Identidade	8
Re	eferências	14

Prefácio

TODO

Aqui adicionaremos uma breve introdução técnica e conceitual do livro, para que ele foi feito e como usá-lo. um "meta" capítulo focando em tecnicalidades e não em matemática.

1 Sumário

Resumo dos conteudos do livro, ou seja, um sumário.

2 Introdução

3 TODO

texto bonitinho sobre matematica e como estudar e tals etc etc

4 Matrizes

Uma matriz $m \times n$ tem m linhas e n colunas. Também é comum usarmos $i \times j$, e você pode encontrar essa notação. Chamamos isso de **Ordem** da matriz.

Chamamos uma matriz de quadrada se ela possuí número igual de linhas e colunas, isto é, se m=n

$$M_{m\times n} = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m_n} \end{bmatrix}$$

4.1 Matriz Identidade

Uma matriz identidade é uma matriz quadrada com 1s em sua diagonal e 0 como outros elementos. É comum chamarmos a matriz identidade de ordem n de I_n :

$$I_1 = [1]$$

$$I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1_{(a_{n-n})} \end{bmatrix}$$

Esse nome, "identidade", fará mais sentido quando discutirmos multiplicação de matrizes.

4.2 Soma e Subtração de Matrizes

Para somar matrizes, primeiro temos que garantir que elas possuem mesma ordem. Caso, por exmeplo possuam números de linhas e colunas diferentes entre si, não será possível somá-las.

Dessa forma, matrizes com mesma ordem, ou seja, mesmo número de linhas e colunas, podem ser somadas ou subtraídas:

$$\begin{split} M_{i\times j} + N_{i\times j} &= \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,j} \\ a_{2,1} & a_{2,2} & \dots & a_{2,j} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i,1} & a_{i,2} & \dots & a_{i,j} \end{bmatrix} + \begin{bmatrix} b_{1,1} & b_{1,2} & \dots & b_{1,j} \\ b_{2,1} & b_{2,2} & \dots & b_{2,j} \\ \vdots & \vdots & \ddots & \vdots \\ b_{mi1} & b_{i,2} & \dots & b_{i,j} \end{bmatrix} \\ &= \begin{bmatrix} a_{1,1} + b_{1,1} & a_{1,2} + b_{1,2} & \dots & a_{1,j} + b_{1,j} \\ a_{2,1} + b_{2,1} & a_{2,2} + b_{2,2} & \dots & a_{2,j} + b_{2,j} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i,1} + b_{i,1} & a_{i,2} + b_{i,2} & \dots & a_{i,i} + b_{i,j} \end{bmatrix} \end{split}$$

4.3 Multiplicação de matrizes por escalar

Chamamos de escalar um número (normalmente, real ou complexo, aqui chamado de λ) que multiplica um vetor ou matriz. Para multiplicar uma matriz por um escalar, multiplicamos todos seus elementos por ele, idependente de sua ordem:

$$\lambda \ M_{m \times n} = \lambda \ \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix} = \begin{bmatrix} \lambda a_{1,1} & \lambda a_{1,2} & \dots & \lambda a_{1,n} \\ \lambda a_{2,1} & \lambda a_{2,2} & \dots & \lambda a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m,1} & \lambda a_{m,2} & \dots & \lambda a_{m,n} \end{bmatrix}$$

4.4 Multiplicação de Matrizes

Para multiplicarmos duas matrizes, é necessário que o número de colunas da primeira matriz seja igual ao número de linhas da segunda matriz. Por esse e outros motivos, dizemos que a multiplicação de matrizes $n\~ao$ é comutativa, ou seja, multiplicar uma matriz M por uma matriz N pode nos dar uma matriz resultante diferente do que se multiplicarmos N por M, caso essa multiplicação seja se quer possível!

$$\begin{split} &M_{i\times j}\times N_{j\times k}, j=j\Rightarrow\checkmark\\ &M_{i\times j}\times B_{k\times j}, j\neq k\Rightarrow\swarrow\\ &N_{j\times k}\times M_{i\times j}. k\neq i\Rightarrow\swarrow \end{split}$$

Vamos analisar como a operação é feita, e então nos ficará claro o porquê dessa regra existir. sadasdsad asdsa

Considere as seguintes matrizes:

$$A_{2,3} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \ B_{3,1} = \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$$

Sabemos que podemos multiplicá-las com A como primeira matriz $A_{2,3} \times B_{3,1}, 3=3 \Rightarrow \checkmark$, mas não como segunda matriz: $B_{3,1} \times A_{2,3}, 1 \neq 2 \Rightarrow \not X$. Iremos então realizar a primeira operação descrita da seguinte maneira:

Definição. Para multiplicar matrizes, somaremos cada linha da primeira multiplicada por um elemento equivalente de cada coluna:

$$A \times B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \cdot 7 + 2 \cdot 8 + 3 \cdot 9 \\ 4 \cdot 7 + 5 \cdot 8 + 6 \cdot 9 \end{bmatrix}$$
$$= \begin{bmatrix} 50 \\ 122 \end{bmatrix}$$

É importante que você se familiarize com o "pareamento" feito entre as linhas da primeira matriz com as linhas da segunda. Você pode agora estar se perguntando o que aconteceria caso houvesse mais de uma coluna na segunda matriz. A resposta pode ser bastante intuitiva para você: a matriz resultante terá mais uma coluna.

$$C \times D = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \times \begin{bmatrix} g & h \\ i & j \\ k & l \end{bmatrix}$$
$$= \begin{bmatrix} a \cdot g + b \cdot i + c \cdot k & a \cdot h + b \cdot j + c \cdot k \\ d \cdot g + e \cdot i + f \cdot k & d \cdot h + e \cdot j + f \cdot k \end{bmatrix}$$

Note que o número de linhas da matriz resultate da multiplicação entre matrizes é sempre igual ao número de linhas da primeira matriz e o de colunas igual ao da segunda.

E onde a matriz identidade entra no jogo?

Para qualquer matriz $M_{i,i}$,

$$I_i \times M_{i,j} = M_{i,j} = M_{i,j} \times I_j$$

Prove!

A multiplicação de matrizes, por mais que simples, é extremamente poderosa e é a base por trás de importantes conceitos matemáticos. Um deles é a inversão de matriz, que você verá adiante.

4.5 Determinantes

Deteminantes são computações especiais realizadas em matrizes quadradas. Possuem significado importante para conceitos de álgebra linear, mas, por hora, apenas aprenderemos como calculá-los para matrizes de até ordem 3.

O determinante de uma matriz de ordem 1 é, simplesmente, o valor nela contido:

$$\det A_{1\times 1} = \left|3\right| = 3$$

onde || representa o determinante, e não o módulo, da matriz com único elemento 3.

E para matrizes de maior ordem?

Seja

$$M_{2\times 2} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Podemos calcular o determinante de M, det M, det M, det M, multiplicando a diagonal principal e subtraindo do produto da outra diagonal:

$$\det\left(M\right) = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - (2 \cdot 3) = -2$$

E quais seriam as diagonais de uma matriz de ordem 3?

Seja

$$N_{3\times3} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Podemos calcular seu determinante com algumas técnicas. A mais comum forma de lembramos desse método é a chamada Fórmula de Leibniz para Determinantes. Assim como nas matrizes de ordem 2, iremos somar os produtos das diagonais "principais" (esquerda para direita) e subtrair os produtos das outras diagonais (direita para esquerda). Para visualizarmos tais diagonais "escondidas" na matriz, usaremos a Regra de Sarrus: copiar as primeiras duas colunas no final:

$$\begin{split} |N_{3\times3}| &= \left| \begin{array}{ccc|c} 1 & 2 & 3 & 1 & 2 \\ 4 & 5 & 6 & 4 & 5 \\ 7 & 8 & 9 & 7 & 8 \end{array} \right| \\ &= (1 \cdot 5 \cdot 9 + 2 \cdot 6 \cdot 7 + 3 \cdot 4 \cdot 8) \\ &- (2 \cdot 4 \cdot 9 + 1 \cdot 6 \cdot 8 + 3 \cdot 5 \cdot 7) \\ &= 225 - 225 = 0 \end{split}$$

Existem outras formas de calcular determinantes. Para os leitores interesados, recomendamos que busquem a resolução de determinantes pelo *Teorema de Laplace*, também conhecido como expansão de cofatores. Esse é um poderoso teorema nos permite calcular determinantes de matrizes de ordem maior do que 3, além de também poder aplicado na matriz 3x3 para (algumas vezes) cálculos mais simples.

4.6 Inversão de matrizes

Dizemos que uma matriz quadrada $M_{n\times n}$ é inversível se existe uma outra matriz, N, tal que:

$$M \times N = N \times M = I_n$$

4.6.1 Escalonamento

Uma das formas de chegamos na matriz inversa é considerarmos os seguinte: N pode ser escrita como o produto de outras matrizes.

$$\begin{cases} M\times N = N\times M = I_n \\ N = A\times B \end{cases} \Rightarrow M\times (A\times B) = (A\times B)\times M = I_n$$

Note que os parênteses aqui são desnecessários: por mais que a multiplicação de matrizes não seja comutativa, ela é associativa! (Recomendamos que prove essa propriedade).

Sabemos também que, pela propriedade da matriz identidade,

$$A \times B = A \times B \times I_n = I_n \times A \times B$$

Com esse recurso, podemos chegar na matriz inversa através de operações mais simples partindo de uma matriz como a identidade!

Antes de prosseguirmos, note uma interessante propriedade: *Uma matriz é inversível se, e somente se, seu determinante for diferente de 0. A razão disso não ficará clara agora, mas

leitores interessados podem se referir ao OPÇÃO 1 DE REFERENCIA Material Adicional. OPÇÃO 2 DE REFERENCIA Seção 4.7

a opção 1 é o ideal para APENAS site, enquanto a segunda é o ideal para site+impresso mais texto inutil b

4.7 Material adicional

Para os curiosos, este vídeos sobre Multiplicação de Matrizes, este sobre Determinantes e este sobre Matrizes Inversas e a Identidade do canal no YouTube 3blue1brown (em inglês, com legendas em português) te darão uma intuição sobre o que estamos fazendo de fato quando multiplicamos matrizes

texto atoa pra ficar maior aaaaaaa

```
a a a
a a a a a
a a a a a
a a a a a
a a a a a
a a a a a a
a a a a a a a a
a a a a a a
a a a a a
a a a a a
GUIDORIZZI ([s.d.])
```

Referências

GUIDORIZZI, H. Um curso de cálculo. 5. ed. [s.l: s.n.]. v. $1\,$