Introduction to Statistical Machine Learning

Christfried Webers

Statistical Machine Learning Group NICTA and College of Engineering and Computer Science The Australian National University

> Canberra February – June 2013

(Many figures from C. M. Bishop, "Pattern Recognition and Machine Learning")

Introduction to Statistical Machine Learning

Christfried Webers NICTA

The Australian National University

Overview Introduction Linear Algebra Probability

Linear Regression 1

Linear Regression 2 Linear Classification 1

Linear Classification 2

Neural Networks 1 Neural Networks 2 Kernel Methods

Sparse Kernel Methods

Graphical Models 1

Graphical Models 2

Graphical Models 3 Mixture Models and FM 1

Mixture Models and EM 2 Approximate Inference

Sampling

Principal Component Analysis

Sequential Data 1 Sequential Data 2

Combining Models

Selected Topics

Discussion and Summary

Part XV

Probabilistic Graphical Models 3

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA

The Australian National University

Factor Graphs

The Sum-Product Algorithm

imilar Algorithms

Learning the Graph

Introduction to Statistical Machine Learning

© 2013
Christfried Webers
NICTA
The Australian National

The Sum-Product

imilar Algorithms

Learning the Graph Structure

• Write $p(\mathbf{x})$ in the form of a product of factors

$$p(\mathbf{x}) = \prod_{s} f_{s}(\mathbf{x}_{s})$$

where \mathbf{x}_s denotes a subset of variables.

Example

$$p(\mathbf{x}) = f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3).$$

$$x_1 \qquad x_2 \qquad x_3$$

$$f_a \qquad f_b \qquad f_c \qquad f_d$$

• More information than in MRF, because there $f_a(x_1, x_2) f_b(x_1, x_2)$ would be in one potential function.

ISML 2013

Factor Graphs

lgorithm

Similar Algorithms

Learning the Graph Structure

Example of factor graphs representing the same distribution

Undirected graph single clique potential $\psi(x_1, x_2, x_3)$

Factor graph $f(x_1, x_2, x_3)$ = $\psi(x_1, x_2, x_3)$

Factor graph factors satisfy $f_a(x_1, x_2, x_3) f_b(x_2, x_3)$ = $\psi(x_1, x_2, x_3)$

ISML 2013

The Sum-Product Algorithm

Similar Algorithms

Learning the Graph
Structure

Example of factor graphs representing the same distribution

Directed graph $p(x_1) p(x_2) p(x_3 | x_1, x_2)$

Factor graph $f(x_1, x_2, x_3) = p(x_1) p(x_2) p(x_3 | x_1, x_2)$

Factor graph factors satisfy $f_a(x_1) = p(x_1)$ $f_b(x_2) = p(x_2)$ $f_c(x_1, x_2, x_3) =$ $p(x_3 | x_1, x_2)$

Introduction to Statistical Machine Learning

© 2013
Christfried Webers
NICTA
The Australian National

Factor Graphs

The Sum-Product Algorithm

imilar Algorithms

Learning the Graph Structure

• Factor Graphs are bipartite graphs.

Definition (Bipartite Graph)

A bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V.

Markov Random Field → *Factor Graph*

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National University

- Oreate variable nodes for each node in the original graph.
- Create factor nodes corresponding to the maximal cliques x_s.
- **Set** the factors $f_s(\mathbf{x}_s)$ to the clique potentials.

Note: There may be several different factor graphs corresponding to the same undirected graph.

Factor Graphs

he Sum-Product

Similar Algorithms

Learning the Graph

Bayesian Network → Factor Graph

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National University

- Oreate variable nodes for each node in the original graph.
- Create factor nodes corresponding to the conditional distributions.
- Add appropriate links.

Note: There may be several different factor graphs corresponding to the same directed graph.

Factor Graphs

The Sum-Product

Similar Algorithms

The Australian National

The Sum-Product Algorithm - Overview

- Assume a tree-structured factor graph.
- Try to find the marginal p(x) for a particular node x. (Assume here that all nodes are hidden.)

$$p(x) = \sum_{\mathbf{x} \setminus x} p(\mathbf{x})$$

- Key idea: Substitute for $p(\mathbf{x})$ using the factor graph and then interchange summations and products in order to obtain an efficient algorithm.
- Partition the factors in the joint distribution into groups, with one group associated with each factor of the nodes that is a neighbour of the variable node x.

$$p(\mathbf{x}) = \prod_{s \in \text{ne}(x)} F_s(x, X_s)$$

where ne(x) denotes the set of factor nodes which are neighbours of x, and X_s denotes the set of all variables in the subtree connected to the variable node x via the factor node f_s , and $F_s(x, X_s)$ represents the product of all the factors in the group associated with factor f_s .

The Sum-Product

Algorithm

Factor Graphs

The Sum-Product Algorithm

Similar Algorithm

Learning the Graph
Structure

• Try to find the marginal p(x) for a particular node x.

$$p(x) = \sum_{\mathbf{x} \setminus x} p(\mathbf{x})$$

• Note, that x is an element of the set of variables $\mathbf{x}, x \in \mathbf{x}$.

The Sum-Product

Algorithm

Similar Algorithms

Learning the Graph Structure

 \bullet The joint distribution $p(\mathbf{x})$ can be written as a product

$$p(\mathbf{x}) = \prod_{s \in \text{ne}(x)} F_s(x, X_s)$$

- ne(x) denotes the set of factor nodes that are neighbours of x.
- X_s denotes the set of all variables in the subtree connected to the variable node x via the factor node.

• Goal: Marginal distribution p(x)

$$p(x) = \sum_{\mathbf{x} \setminus x} p(\mathbf{x})$$

via joint distribution

$$p(\mathbf{x}) = \prod_{s \in \text{ne}(x)} F_s(x, X_s)$$

· resulting in

$$p(x) = \sum_{\mathbf{x} \setminus \mathbf{x}} \prod_{s \in \text{ne}(x)} F_s(x, X_s) = \prod_{s \in \text{ne}(x)} \sum_{\mathbf{X}_s} F_s(x, X_s)$$

Introduction to Statistical Machine Learning

© 2013
Christfried Webers
NICTA
The Australian National

actor Graphs

The Sum-Product Algorithm

imilar Algorithms

The Australian National

The Sum-Product Algorithm

• Goal: Marginal distribution p(x)

$$p(x) = \sum_{\mathbf{x} \setminus x} p(\mathbf{x})$$

$$p(x_2) = \sum_{\mathbf{x} \setminus x_2} p(\mathbf{x})$$

via joint distribution

$$p(\mathbf{x}) = \prod_{s \in \text{ne}(x)} F_s(x, X_s)$$

$$p(x_1, x_2, x_3, x_4) = \prod_{s \in ne(x_2)} F_s(x_2, X_s) = f_a(x_1, x_2) f_b(x_2, x_3) f_c(x_2, x_4)$$

• Goal: Marginal distribution p(x)(Note: Without normalisation $Z = \sum_{x_1} p(x_2)$)

$$p(x) = \sum_{\mathbf{x} \setminus x} \prod_{s \in \text{ne}(x)} F_s(x, X_s) = \prod_{s \in \text{ne}(x)} \sum_{X_s} F_s(x, X_s)$$

$$p(x_2) = \sum_{x_1, x_3, x_4} f_a(x_1, x_2) f_b(x_2, x_3) f_c(x_2, x_4)$$

$$= \left(\sum_{x_1} f_a(x_1, x_2)\right) \left(\sum_{x_3} f_b(x_2, x_3)\right) \left(\sum_{x_4} f_c(x_2, x_4)\right)$$

Introduction to Statistical Machine Learning

> ©2013 Christfried Webers NICTA

The Australian National University

Factor Graphs

The Sum-Product Algorithm

Similar Algorithms

• Goal: Marginal distribution p(x)

$$p(x) = \sum_{\mathbf{x} \setminus x} \prod_{s \in \text{ne}(x)} F_s(x, X_s) = \prod_{s \in \text{ne}(x)} \sum_{X_s} F_s(x, X_s)$$
$$= \prod_{s \in \text{ne}(x)} \mu_{f_s \to x}(x)$$

with a set of functions which can be view as messages

$$\mu_{f_s \to x}(x) = \sum_{X_s} F_s(x, X_s).$$

Introduction to Statistical Machine Learning

> © 2013 Christfried Webers NICTA

The Australian National University

The Sum-Product

Algorithm

imilar Algorithms

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Factor Graphs

The Sum-Product Algorithm

Similar Algorithm

Learning the Graph Structure

• Each factor $F_s(x, X_s)$ consists of a subgraph and can therefore be written as

$$F_s(x, X_s) = f_s(x, x_1, \dots, x_M) G_1(x_1, X_{s1}) \dots G_M(x_M, X_{sM})$$

where $\mathbf{x}_s = \{x, x_1, \dots, x_M\}$ is the set of variables on which the factor f_s depends.

Introduction to Statistical Machine Learning

> © 2013 Christfried Webers NICTA

The Australian National University

Factor Graphs

The Sum-Product Algorithm

Similar Algorithms

Learning the Graph Structure

• Using the factorisation of
$$F_s(x,X_s)$$
, the message $\mu_{f_s\to x}(x)$ can be written as

$$\mu_{f_s \to x}(x) = \sum_{X_s} F_s(x, X_s)$$

$$= \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in ne(f_s) \setminus x} \left[\sum_{X_{sm}} G_m(x_m, X_{sm}) \right]$$

$$= \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in ne(f_s) \setminus x} \mu_{x_m \to f_s}(x_m).$$

 $m \in ne(f_s) \setminus x$

Machine Learning

Messages from factor nodes to variable nodes

$$\mu_{f_s \to x}(x) = \sum_{X_s} F_s(x, X_s)$$

Messages from variable nodes to factor nodes

$$\mu_{X_m \to f_s}(x_m) = \sum_{X_{sm}} G_m(x_m, X_{sm})$$

Introduction to Statistical

Christfried Webers NICTA The Australian National

The Sum-Product Algorithm

 We already have a formula to calculate messages from factor nodes to variable nodes

$$\mu_{f_s \to x}(x) = \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in ne(f_s) \setminus x} \mu_{x_m \to f_s}(x_m)$$

 Take the product of all incoming messages, multiply with the factor associated with the node and marginalise over all variables associated with the incoming messages.

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

actor Graphs

The Sum-Product Algorithm

Similar Algorithms

Calculating messages variable \rightarrow factor nodes

• $G_m(x_m, X_{sm})$ is a product of terms $F_l(x_m, X_{ml})$

$$G_m(x_m, X_{sm}) = \prod_{l \in ne(x_m) \setminus f_s} F_l(x_m, X_{ml})$$

where the product is taken over all neighbours of node x_m except for node f_s .

Introduction to Statistical Machine Learning

© 2013
Christfried Webers
NICTA
The Australian National

Factor Graphs

The Sum-Product Algorithm

imilar Algorithms

Calculating messages variable \rightarrow factor nodes

Therefore

$$\mu_{x_m \to f_s}(x_m) = \prod_{l \in \text{ne}(x_m) \setminus f_s} \left[\sum_{X_{ml}} F_l(x_m, X_{ml}) \right]$$
$$= \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \to x_m}(x_m).$$

 Evaluate the message sent by a variable node to an adjacent factor node by taking the product of all incoming messages.

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Factor Graphs

The Sum-Product Algorithm

Similar Algorithms

The Sum-Product Algorithm

Similar Algorithm:

Learning the Graph Structure

- Consider node x as the root node of the factor graph.
- Start at the leaf nodes.
 - If the leaf node is a variable node then

 If the leaf node is a factor node then

• Normalisation : Calculate p(x) by message passing. Then

$$Z = \sum_{x} p(x)$$

Marginals for ALL variable nodes in the graph

- Introduction to Statistical
 Machine Learning
 © 2013
 Christfried Webers
- NICTA
 The Australian National
 University

The Sum-Product

Algorithm

Similar Algorithm:

- Brute force : Run the algorithm again for each node.
- More efficient
 - Arbitrarily choose one root in the graph.
 - Propagate all messages from leafs to root.
 - Now, root got all messages from its neighbours. Calculate marginal for root.
 - Root can now send messages to its neighbours.
 - Calculate their marginals and continue sending messages to the neighbours closer to the leafs.
- More efficient methods needs only twice as many computation to calculate marginals for all nodes than calculating marginal for one node.

Factor Graphs

he Sum-Produc lgorithm

Similar Algorithms

- Max-Sum algorithm: Find the values for the variables for which the probability has a maximum.
- Junction Tree Algorithm: Exact inference in general graphs. Computational cost is determined by the number of variables in the largest clique of the graph. Grows exponentially with this number for discrete variables.
- Loopy Belief Propagation: Try Max-Sum algorithm on graphs which are NOT tree-structered. Graph has cycles and therefore information flows several times through the graph. Initialise by assuming a unit message has been sent over each link in each direction. Convergence is NOT longer guaranteed.

lgorithm

milar Algorithms

Learning the Graph Structure

- Define a space of possible graph structures.
- Define a measure to score each of the graph structures.
- Bayesian viewpoint: Compute the posterior distribution over graph structures.
- If we have a prior p(m) over graphs indexed by m, the posterior is given via Bayes' theorem as

$$p(m \mid \mathcal{D}) \propto p(m) p(\mathcal{D} \mid m)$$

where \mathcal{D} is the observed data set, and the model evidence $p(\mathcal{D} \,|\, m)$ provides the score for each model.

- Challenge 1: Evaluation of the model evidence involves marginalisation over the latent variables and is computationally very demanding.
- Challenge 2: The umber of different graph structures grows exponentially with the number of nodes. Need to resort to heuristics to find good candidates.