

Algorithms and Data Structures (CSci 115)

California State University Fresno
College of Science and Mathematics
Department of Computer Science
H. Cecotti

Learning outcomes

- Divide and conquer principles
- Master theorem
 - ➤ Definition + application
 - ➤ See section 1.3.4 in the pdf on Canvas

Rationale

- Many algorithms: recursive in structure
 - ➤ to solve a given problem, they call themselves recursively 1 or more times to deal with closely related sub-problems
 - ➤ They typically have a *divide-and-conquer* approach:
 - 1. You break the main problem into several sub-problems
 - **similar** to the original problem but smaller in size
 - 2. You solve the sub-problems recursively
 - 3. You combine these solutions to create a solution to the original problem

Divide and conquer

- 1. Divide the problem into a number of sub-problems that are smaller instances of the same problem.
- 2. Conquer the sub-problems by solving them recursively.
 - >If the sub-problems are large enough to solve recursively
 - o the *recursive case*.
 - ➤ If the sub-problem sizes are small enough
 - o the base case
 - \circ \rightarrow solve the sub-problems in a straightforward manner.
- **3. Combine** the solutions to the sub-problems into the solution for the original problem.

Loop invariant

What to show:

- >Initialization:
 - It is true prior to the first iteration of the loop.
- **≻** Maintenance:
 - o If it is true before an iteration of the loop, it remains true before the next iteration.
- > Termination:
 - When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

Loop invariant

- Condition that is true **before** the loop, **and after each iteration**
 - o Example: Array is sorted between n and m before, Array is still sorted after each iteration ©
- Goal
 - ➤ To show that an algorithm is correct

Recurrences

Recurrence

- ➤ An equation or inequality describing a function in terms of its value on smaller inputs
- ➤ A natural way to characterize the running times of divide-and-conquer algorithms

Remark

- **≻**Sub-problems
 - Unequal sizes
 - a 3/4-to-1/4 split
 - o not necessarily constrained to being a constant fraction of the original problem size.

Methods for solving recurrences

- Goal: to obtain the asymptotic Θ or O bound on the solution
 - >Substitution method
 - Guess a bound and then use math **induction** to prove that the hypothesis is correct
 - > Recursion-tree method
 - Conversion of the recurrence into a tree
 - Nodes: costs incurred at the levels of the recursion/tree
 - ➤ Master method
 - \circ T(n)=aT(n/b)+f(n)
 - Divide and conquer algorithm
 - n: size of an input problem
 - Creation of *a* sub-problems
 - Each sub-problem is 1/b the size of the original main problem
 - Divide + Combine operations = f(n)
 - With $a \ge 1$, b > 1, f(n) a given function
 - \circ T(n)= $\Theta(1)$ when n > k (some bound) > 0
 - Smallest input size leading to a recursive call

Master theorem

3 cases

- \triangleright Recursion tree is **leaf heavy** (aT(n/b) > f(n))
- \triangleright Split/recombine, same as sub-problems (aT(n/b) = f(n))
- \triangleright Recursion tree is **root heavy** (aT(n/b) < f(n))
- C_{crit}=log_ba

=log(#subproblems)/log(relative subproblem size)

crit = critical exponent

Master theorem: Case 1

Description

- ➤ Work to split/recombine a problem is dwarfed by sub-problems
 - the recursion tree is leaf-heavy
- Condition on f(n) based on log_ba
 - \rightarrow if f(n)=O(n^c) where c<c_{crit}
 - ightharpoonupThen T(n)= Θ (n^{ccrit})
 - Recursive tree structure dominates

Example

- ightharpoonup If b=a² and f(n)=O(n^{1/2- ϵ}) \rightarrow c_{crit}=1/2
 - \circ The ε makes f(n) less "complex" than the left side of T(n)
 - \circ b=a² \rightarrow Examples: 2T(n/4), 4T(n/16)
- Then $T(n) = \Theta(n^{1/2}) = \Theta(sqrt(n))$

Master theorem: Case 2

Description

➤ Work to split/recombine a problem is "comparable" to sub-problems

Condition on f(n) based on log_ba

```
ightharpoonup If f(n) = \Theta(n^{ccrit} \log^k n) \forall k \ge 0
```

- ightharpoonupThen T(n)= $\Theta(n^{ccrit} \log^{k+1} n)$
 - Log augmented by a power 1

Example 1

- \triangleright If b=a² and f(n)= $\Theta(n^{1/2})$
- ightharpoonup Then T(n)= $\Theta(n^{1/2}\log n)$

Example 2

- \triangleright If b=a² and f(n)= $\Theta(n^{1/2} \log n)$
 - \circ b=a² \rightarrow 2T(b/4), 4T(b/16)
- Then $T(n) = \Theta(n^{1/2} \log^2 n)$

CSci 115

// check for what small k it is true

Master theorem: Case 3

Description

- ➤ To split/recombine a problem dominates sub-problems
- Condition on f(n) based on log_ba
 - \triangleright When f(n)= Ω (n°) where c>c_{crit}
 - > a.f(n/b)≤k.f(n) for a constant k<1 and n large enough
 - Warning: it is a.f(n/b) \leq k.f(n) not a.T(n/b) \leq k.f(n)
 - $\circ \rightarrow$ You substitute f(n) to the left side
 - ➤ Then it is dominated by the splitting term f(n)
 - $\rightarrow T(n)=\Theta(f(n))$

Example

- \triangleright If b=a² and f(n)= $\Omega(n^{1/2+\epsilon})$
- ightharpoonup Then T(n)= $\Theta(f(n))$

Examples:

To do for practice:

- $T(n)=8T(n/2)+1000n^2$
 - \circ Case 1: a=8, b=2, c_{crit} =3, $f(n)=O(n^2) \rightarrow c=2$, $c < c_{crit}$
- T(n)=2T(n/2)+10n
 - \circ Case 2: a=2, b=2, $c_{crit}=1$, $f(n)=\Theta(n) \rightarrow c=1$
- $T(n)=2T(n/2)+n^2$
 - \circ Case 3: a=2, b=2, $c_{crit}=1$, $f(n)=\Omega(n^2) \rightarrow c=2$, $c>c_{crit}$
 - $a.f(n/b) \le k.f(n) \rightarrow 2(f(n)/4) \le 1/2f(n)$ (works with k=1/2)
 - $2f(n/2) \le k.f(n) = 2n^2/4 = n^2/2 \le 1/2 * n^2$

Steps to follow:

- 1. Does it satisfy the rules (positive terms)?
- 2. What rule you have to apply?
- 3. Apply the rule

Master theorem (in 1 slide)

- T(n) = aT(n/b) + f(n)
 - > where
 - \circ a \geq 1 and b > 1 are constants
 - o f(n) is an asymptotically positive function

3 cases

- 1. If $f(n) = O(n^{\log b \ a-\epsilon})$ for some constant $\epsilon > 0$
 - then T (n) = $\Theta(n^{logb a}) = \Theta(n^{ccrit})$
- 2. If $f(n) = \Theta(n^{\log b a} \log^k n)$ with $k \ge 0$
 - then T (n) = $\Theta(n^{\log b a} \log^{k+1} n)$
- 3. If $f(n) = \Omega(n^{\log a + \epsilon})$ with $\epsilon > 0$, and f(n) satisfies the regularity condition,
 - \circ then T (n) = $\Theta(f(n))$.
 - Regularity condition: $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n.

Conclusion

- What you need to know!
 - > Definitions:
 - Divide and Conquer (and Combine)
 - Master Theorem
 - > Targets: Translate an algorithm into the Master theorem equations
 - You must be able to apply the Master theorem
 (it will happen in the midterm and final exam)
- More examples during the lab.

Questions?

Reading

- ➤ CSci115 book: section 1.3.4
- ➤ Chapter **4**, "Introduction to Algorithms", 3rd Edition

