# Geometric Operations and Image Registration

CMPUT 206: Introduction to Digital Image Processing

Nilanjan Ray

Source: <a href="http://www.imagingbook.com/">http://www.imagingbook.com/</a>

### **Geometric Operations**

- Let's start with some examples
  - Image rotations, translations, scaling are some of the geometric operations

#### Geometric Operations: Some Examples



- (a) Original image, (b) translation, (c) scaling, (d) rotation,
- (e) projective transformation, (f) nonlinear distortion

## Geometric Operations...

 Can you guess from these examples, in what ways geometric operations are fundamentally different from filtering and point operations?

## **GO: Formal Descriptions**

• A geometric operation (GO) transforms a given image I to a new image I', i.e., the intensity value at (x, y) moves to (x', y') in the new image:

$$I(x,y) \to I'(x',y')$$

• To model this process, we need a mapping function T that specifies for each original 2D coordinate point  $\mathbf{x} = (x, y)$ , the corresponding target point  $\mathbf{x}' = (x', y')$ :

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$x' = T(x)$$

## **2D Mapping Functions**

- Simple mappings, such as translation, rotation, ...
- Homogeneous coordinates
- Affine mapping
- Projective mapping
- Bilinear mapping
- Nonlinear mapping

## Simple Mappings

• Translation (shift) by a vector  $(d_x, d_y)$ :

$$T_x : x' = x + d_x$$
 or  $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} d_x \\ d_y \end{pmatrix}$ 

• Scaling along the x or y axis by the factor  $s_x$  or  $s_y$ , respectively:

$$T_x : x' = s_x \cdot x$$
  
 $T_y : y' = s_y \cdot y$  or  $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$ 

• Shearing along the x and y axis by the factor  $b_x$  and  $b_y$ , respectively:

$$T_x: x' = x + b_x \cdot y$$
  
 $T_y: y' = y + b_y \cdot x$  or  $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & b_x \\ b_y & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$ 

• Rotation by an angle  $\alpha$  (coordinate origin is the center of rotation):

$$T_x : x' = x \cdot \cos \alpha - y \cdot \sin \alpha T_y : y' = x \cdot \sin \alpha + y \cdot \cos \alpha$$
 
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha - \sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

# Affine Mapping

Preserves parallel lines.



## Projective Mapping

No longer preserves parallel lines



#### Various GOs



(a) Original image (b) Affine Transform (c) Projective transform (d) Bilinear transform

#### Nonlinear GOs



(a), (d) Twirl; (b), (e) Ripple; (c), (f) Sphere transformations

## **Local Image Transformations**

These mappings are "local GOs"



Examples: Mesh partitioning

## Image Enlargement



- (a) Original image (b) 8x magnification by nearest neighbor method
- (c) bilinear interpolation

## **Image Registration**

 Loosely speaking image registration brings two images acquired from the same/similar scene to the same coordinate frame.

Image registration is based on geometric transform.

Interactive image registration demo.

## Register Two Images by Affine Transform

- Step 1: Collect corresponding point pairs from two images.
- Step 2: Solve for six affine parameters from linear equations involving corresponding points.
- Step 3: Warp one image onto another using six affine transformation parameters.

## **Corresponding Points**





You need at least three corresponding point pairs for affine image registration. Why?

## Solving for Affine Transform

- Let  $\{(x_i, y_i)\}_{i=1}^N$  and  $\{(x_i, y_i)\}_{i=1}^N$  be corresponding point pairs that came from the second and the first images, respectively.
- We can write following 2N linear equations:

$$\dot{x}_i = ax_i + by_i + c$$

$$\dot{y}_i = dx_i + ey_i + f, \qquad i = 1, ..., N$$

• Solve for six unknown a, b, c, d, e and f. These are six affine parameters.

## Warping

- Transform coordinates of pixel locations of the second image applying affine transform.
- Interpolate pixel values of the second image in the new coordinate system.
- Overlay two images.



## Bilinear Interpolation



Image intensity values at 4 corners of a rectangle are given.

You need to estimate intensity value anywhere within the rectangle