Recent Trend of Metal Oxide Surge Arrester Technology

I. Hioki
Toshiba Transmission & Distribution Systems (India) Pvt. Ltd

H. Suzuki, Y. Kasuga, T. Anjiki, Y. Aka, M. Mizutani, Y. Ishizaki, T. Fukano, H. Andoh Toshiba corporation

29 April, 2016

TOSHIBA

Contents

- 1. High gradient technology of metal-oxide blocks 1000V/mm class metal-oxide blocks
- 2. Application of External Gapped Line Arresters
 Consideration of cost-effective installation
- 3. D.C. use of Metal-oxide blocks
 Surge arresters for rolling stock

History of High Gradient Technology

High gradient MO elements have been applied in GIS surge arresters

1000V/mm

600V/mm Ultra-high

400V/mm High gradient

200V/mm

1980 1990 2000 2010 2020

1975 world's first gapless MO surge arresters

How to increase Gradient Voltage

Origin of Non-linearity is at grain boundaries.

Increase in the number of grain boundaries can increase the gradient voltage.

your link to electricity

Improvement of Characteristics

Model of micro-structure of MO blocks

Less-homogeneous

Homogeneous

Improvement of

- 1. Non-linearity
- 2. Energy absorption capability
- 3. Thermal stability

Current-Voltage characteristics

Energy absorption capability

Thermal stability

Down-sizing of GIS Surge Arrester

High gradient 100 %

Ultra-high gradient Hyper gradient 40% 16%

External Gapped Line Arresters (EGLA)

Purpose of EGLA application

EGLA can prevent Power service interruption.

Effectiveness of EGLA (Fault rate Comparison)

T.Kawamura et al. CIGRE 33-301 (1998)

Comparison between Gapless and Gapped type

Item	Gapless type	Externally Gapped type		
Schematic Size	Large and heavy	Compact and light		
Size		Compact and light		
Operating duty	Lightning overvoltage Switching overvoltage Power freq. Overvoltage	Lightning overvoltage		
Deterioration	Must be considered	Maintenance free (Not energized)		
In case of failure	Disconnecting device necessary	Successfully re-closing		
Standard	IEC 60099-4 (for substation)	IEC 60099-8 (for EGLA)		

2. External Gapped Line Arresters **Example of installation**

After investigation of lightning fault, EGLAs were installed to Towers from No. 5 to No.21. One circuit of double circuit line, three phases.

2. External Gapped Line Arresters **Example of installation**

EGLA installed tower frequently receives Lightning stroke.

Lightning faults have not occurred in the EGLA installed section.

3. D.C. Surge Arresters

D.C. Surge Arresters for Rolling Stock

MO block; 200V/mm class

Ratings	Specification			
Applied standard	EN 50526-1:2012			
Nominal system voltage, Us	750V	1500V	3000V	3000V
Continuous operating voltage, Uc	1000V	2000V	4000V	4000V
Nominal discharge current, In	10kA			20kA
Arrester class	DC-B			DC-C
Charge transfer capacity 2.5As (=1250A, 2ms)			2ms)	7.5As
Residual voltage at In	3.0kV	6.0kV	12.0kV	11.0kV

3. D.C. Surge Arresters

D.C. Accelerated Ageing Test

Test condition 1

Applied voltage; 90 % Reference voltage

Ageing term; 1000 hours

Temperature; 115±4° C

Standard; EN 50526-1

Test condition 2

Applied voltage; 90 % Reference voltage

Polarity reversal

Ageing term; 1000 hours

Temperature; $115\pm4^{\circ}$ C

Standard; IEC 60099-9

MO blocks have good D.C. ageing characteristics. Verification tests of D.C. ageing test are necessary for D.C. use.

3. D.C. Surge Arresters

D.C. Short Circuit Test

No significant difference in sample appearance between D.C. and A.C. short-circuit test was shown after application of short-circuit current.

Summary

1. High gradient technology of metal-oxide blocks

- The hyper gradient metal oxide elements with the gradient voltage of 1000V/mm have been developed.

2. Application of External Gapped Line Arresters

- EGLA can improve against lightning protection of transmission and distribution lines.
- Cost-effective installation may be possible.

3. D.C. use of Metal-oxide blocks

- D.C. surge arrester shows good D.C. ageing & D.C. short circuit performance.
- No significant difference in samples between D.C. and A.C. short-circuit test was shown in the appearance of the test sample after application of short-circuit current.

Thank you for your kind attention.

TOSHIBA

