Lec 3 向量,平面,直线习题课

3.1 距离与投影

例 3.1 证明: 点 $M_0(x_0, y_0, z_0)$ 到平面 $\pi: Ax + By + Cz + D = 0$ 的距离为

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

证明 在 π 中任取点 Q(a,b,c), 则

$$d = \left| |\overrightarrow{QM_0}| \cos \alpha \right|$$

$$= \left| |\overrightarrow{QM_0}||\mathbf{n}| \cos \alpha \right|$$

$$= \frac{|\overrightarrow{QM_0} \cdot \mathbf{n}|}{|\mathbf{n}|}$$

$$= \frac{|(x_0 - a, y_0 - b, z_0 - c) \cdot (A, B, C)|}{\sqrt{A^2 + B^2 + C^2}}$$

$$= \frac{|Ax_0 + By_0 + Cz_0 - (aA + bB + cC)|}{\sqrt{A^2 + B^2 + C^2}}$$

由 $Q(a,b,c) \in \pi$, $aA + bB + cC + D = 0 \Rightarrow -(aA + bB + cC) = D$,代入上式得证. 例 3.2 证明: 点 $M_0(x_0,y_0,z_0)$ 到直线 $l: \frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ 的距离为

$$d = \frac{|l(x_0 - x_1) + m(y_0 - y_1) + n(z_0 - z_1)|}{\sqrt{l^2 + m^2 + n^2}} = \frac{|\overrightarrow{M_0 M_1} \times \mathbf{v}|}{|\mathbf{v}|}$$

其中 $M_1(x_1, y_1, z_1)$, $\boldsymbol{\tau} = (l, m, n)$ 证明 $d = |\overrightarrow{M_1 M_0}| \sin \alpha = \frac{|\overrightarrow{M_1 M_0}||\boldsymbol{\tau}| \sin \alpha}{|\boldsymbol{\tau}|} = \frac{|\overrightarrow{M_1 M_0} \times \boldsymbol{\tau}|}{|\boldsymbol{\tau}|}$.

例 3.3 求直线 $L: \frac{x-1}{1} = \frac{y+1}{1} = \frac{z-2}{2}$ 在平面 $\pi: x-2y+3z+1=0$ 中的投影直线 L_1 的方 程.

解

过 L 上已知点 $M_1(1,-1,2)$ 作 π 的垂面 π_1 , 则 π_1 的法向量 $\mathbf{n}_1 = \mathbf{n} \times \boldsymbol{\tau}$, 其中 $\mathbf{n} =$ $(1,-2,3), \tau = (1,1,2), \text{ 所以}$

$$n_1 = \begin{vmatrix} i & j & k \\ 1 & -2 & 3 \\ 1 & 1 & 2 \end{vmatrix} = -7i + 1j + 3k = (-7, 1, 3)$$

由平面的点法式方程知, π_1 的方程为 $\pi_1: -7(x-1)+1(y+1)+3(z-2)=0 \Rightarrow 7x-y-1$

3z+2=0. 而所求的投影直线 L_1 正是平面 π 与垂面 π_1 的交线, 所以 L_1 的方程为

$$L_1: \begin{cases} x - 2y + 3z + 1 = 0\\ 7x - y - 3z + 2 = 0 \end{cases}$$

3.2 异面直线

例 3.4 证明:
$$L_1:$$

$$\begin{cases} x+y-z-1=0\\ 2x+y-z-2=0 \end{cases}$$
 与 $L_2:$
$$\begin{cases} x+2y-z-2=0\\ x+2y+2z+2=0 \end{cases}$$
 为异面直线

例 3.4 证明:
$$L_1:$$
 $\begin{cases} x+y-z-1=0 \\ 2x+y-z-2=0 \end{cases}$ 与 $L_2:$ $\begin{cases} x+2y-z-2=0 \\ x+2y+2z+2=0 \end{cases}$ 为异面直线. 证明 设 L_1 与 L_2 的方向向量分别为 $\boldsymbol{\delta}_1, \boldsymbol{\delta}_2$,则 $\boldsymbol{\delta}_1=\begin{pmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ 1 & 1 & -1 \\ 2 & 1 & -1 \end{pmatrix}=(0,-1,-1), \boldsymbol{\delta}_2=\begin{pmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ 1 & 2 & -1 \\ 1 & 2 & 2 \end{pmatrix}=$

(6, -3, 0).
$$\mathbb{R}$$
 $\delta_1 = (0, 1, 1), \delta_2 = (2, -1, 0), \text{ & } L_1 \neq \emptyset \text{ } z = 0, \text{ } \mathbb{A}$
$$\begin{cases} x + y = 1 \\ 2x + y = 2 \end{cases} \Rightarrow x = 1, y = 1$$

0, z = 0, 即 L_1 的方向向量为 $\delta_1 = (0, 1, 1)$, 且 $M_1(1, 0, 0) \in L_1$.

在
$$L_2$$
 中令 $y = 0$, 从
$$\begin{cases} x - z = 2 \\ x + 2z = -2 \end{cases} \Rightarrow x = \frac{2}{3}, y = 0, z = -\frac{4}{3},$$
 即从 $M_2(\frac{2}{3}, 0, -\frac{4}{3}) \in L_2$.

由
$$\overrightarrow{M_1M_2} = (\frac{2}{3}, 0, -\frac{4}{3}) - (1, 0, 0) = (-\frac{1}{3}, 0, -\frac{4}{3}),$$
 所以 $\boldsymbol{\delta}_1 \times \boldsymbol{\delta}_2 \cdot \overrightarrow{M_1M_2} = \begin{vmatrix} 0 & 1 & 1 \\ 2 & -1 & 0 \\ -\frac{1}{3} & 0 & -\frac{4}{3} \end{vmatrix} =$

 $\frac{7}{3} \neq 0$, 所以 $L_1 与 L_2$ 异面.

例 3.5 设
$$L_1: \frac{x-1}{2} = \frac{y}{-1} = \frac{z-3}{0}; L_2: \frac{x+1}{1} = \frac{y-2}{0} = \frac{z-1}{1}.$$

- 2. 求 L_1 与 L_2 的公垂线段之长 d;
- 3. 求公垂线段 L 的方程;
- 4. 求一个平面使得 $L_1//\pi$, $L_2//\pi$, 且 π 与 L_1 , L_2 等距.

证明

解

1. 设两直线的方向向量分别为 $\mathbf{s}_1 = (2,-1,0), \mathbf{s}_2 = (1,0,1), M_1(1,0,3), M_2(-1,2,1) \Rightarrow$ $\overrightarrow{M_2M_1} = (2, -2, 2) \Rightarrow$

$$(\mathbf{s}_1 \times \mathbf{s}_2) \cdot \overrightarrow{M_2 M_1} = \begin{vmatrix} 2 & -1 & 0 \\ 1 & 0 & 1 \\ 2 & -2 & 2 \end{vmatrix} = 0 - 2 + 0 - 0 + 4 + 2 = 4 \neq 0$$

所以 L_1 与 L_2 异面.

2. 设公垂线为 L, 则 $L \perp L_1, L \perp L_2$, 设 L 的方向向量为 s, 则 $s \perp s_1, s \perp s_2 \Rightarrow s =$

$$egin{align*} m{s}_1 imes m{s}_2 = egin{array}{c|cccc} m{i} & m{j} & m{k} \\ 2 & -1 & 0 \\ 1 & 0 & 1 \end{array} = (-1, -2, 1).$$
 设公垂线段为 CD, 则 C,D 是两个垂足, 向量 $\overline{M_2M_1}$

在公垂线方向向量s上的投影: $\overline{M_2M_1}\cos(\overline{M_2M_1},s)$, 再取绝对值即为公垂线段的长. 即

$$d = \left| \overrightarrow{M_2 M_1} \cos(\overrightarrow{M_2 M_1}, \boldsymbol{s}) \right| = \left| |\overrightarrow{M_2 M_1} \cdot \frac{\overrightarrow{M_2 M_1} \cdot \boldsymbol{s}}{|\overrightarrow{M_2 M_1}| |\boldsymbol{s}|}| \right| = \frac{|\overrightarrow{M_2 M_1} \cdot \boldsymbol{s}|}{|\boldsymbol{s}|} = \frac{4}{\sqrt{6}}$$

注 两异面直线的距离在两直线上各取一点 M_1, M_2 , 设两直线的方向向量分别为 v_1, v_2 ,则距离为

$$\dfrac{|\overrightarrow{M_1M_2}\cdot oldsymbol{v}_1 imesoldsymbol{v}_2}{|oldsymbol{v}_1 imesoldsymbol{v}_2|}$$

3. 已知公垂线 L 的方向向量为 $\mathbf{s} = (-1, -2, 1), L_1$ 的方向向量为 $\mathbf{s}_1 = (2, -1, 0),$ 设 L_1 与 L 所在的平面为 π_2 , 则 π_2 的法向量 $\mathbf{n}_2 = \mathbf{s}_1 \times \mathbf{s} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 0 \\ -1 & -2 & 1 \end{vmatrix} = (-1, -2, -5),$ 且 L_1 上的点 $M_1(1,0,3) \in \pi_2$. 依点法式 π_2 方程为:

$$\pi_2: -1(x-1) - 2(y-0) - 5(z-3) = 0 \Leftrightarrow x + 2y + 5z - 16 = 0$$

同理, 设 L_2 与 L 所在的平面为 π_3 , 则 π_3 的法向量 $oldsymbol{n}_3 = oldsymbol{s}_2 imes oldsymbol{s} = egin{bmatrix} oldsymbol{i} & oldsymbol{j} & oldsymbol{k} \\ 1 & 0 & 1 \\ -1 & -2 & 1 \end{bmatrix} =$

(2,-2,-2), 且 L_2 上的点 $M_2(-1,2,1) \in \pi_3$. 依点法式 π_3 方程为:

$$\pi_3: 2(x+1) - 2(y-2) - 2(z-1) = 0 \Leftrightarrow x - y - z + 4 = 0.$$

显然平面 π_2,π_3 的交线是公垂线 L, 所以 L 的方程为

$$L: \begin{cases} x + 2y + 5z - 16 = 0 \\ x - y - z + 4 = 0 \end{cases}$$

4. 因 $\pi//L_1, \pi L_2$, 所以 π 的法向量 $\mathbf{n} = \mathbf{s}_1 \times \mathbf{s}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = (-1, -2, 1), 又 \pi 与 L_1, L_2$ 等距, 故 M_2, M_1 的中点 O(0, 1, 2) 必在 π 上, 即 $O(0, 1, 2) \in \pi$, 依点法式, 得 π 的方程为

$$\pi: -1(x-0) - 2(y-1) + 1(z-2) = 0 \Leftrightarrow x + 2y - z = 0$$

为π的方程.

3.3 二重外积公式与 Lagrange 恒等式

命题 3.1

- 1. $|a \times b| = \sqrt{|a|^2|b|^2 (a \cdot b)^2};$
- 2. $(\boldsymbol{a} \times \boldsymbol{b}) \times + (\boldsymbol{b} \times \boldsymbol{c}) \times \boldsymbol{a} + (\boldsymbol{c} \times \boldsymbol{a}) \times \boldsymbol{b} = 0$;

证明

- 1. $|\boldsymbol{a} \times \boldsymbol{b}|^2 = (|\boldsymbol{a}||\boldsymbol{b}|\sin\theta)^2 = |\boldsymbol{a}|^2|\boldsymbol{b}|^2(1-\cos^2\theta) = |\boldsymbol{a}|^2|\boldsymbol{b}|^2 (\boldsymbol{a} \cdot \boldsymbol{b})^2$;
- 2. 我们称这条命题为 Lagrange 恒等式, 称 $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ 为二重向量积, 且有 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$, 我们先来证明这个引理.

引理 3.1 (二重外积公式)

$$a \times (b \times c) = (a \cdot c)b - (a \cdot b)c.$$

证明 设 $\mathbf{a} = a_1 \mathbf{e_1} + a_2 \mathbf{e_2} + a_3 \mathbf{e_3}, \mathbf{b} = b_1 \mathbf{e_1} + b_2 \mathbf{e_2} + b_3 \mathbf{e_3}, \mathbf{c} = c_1 \mathbf{e_1} + c_2 \mathbf{e_2} + c_3 \mathbf{e_3}$ 。我们已知 $\mathbf{b} \times \mathbf{c} = (b_2 c_3 - b_3 c_2) \mathbf{e_1} + (b_3 c_1 - b_1 c_3) \mathbf{e_2} + (b_1 c_2 - b_2 c_1) \mathbf{e_3}.$

设 $\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c}) = d_1 \boldsymbol{e_1} + d_2 \boldsymbol{e_2} + d_3 \boldsymbol{e_3}$, 则

$$d_1 = a_2(b_1c_2 - b_2c_1) - a_3(b_3c_1 - b_1c_3)$$

$$= b_1(\boldsymbol{a} \cdot \boldsymbol{c} - a_1c_1) - c_1(\boldsymbol{a} \cdot \boldsymbol{b} - a_1b_1)$$

$$= (\boldsymbol{a} \cdot \boldsymbol{c})b_1 - (\boldsymbol{a} \cdot \boldsymbol{b})c_1.$$

同理

$$d_2 = (\boldsymbol{a} \cdot \boldsymbol{c})b_2, \quad d_3 = (\boldsymbol{a} \cdot \boldsymbol{c})b_3 - (\boldsymbol{a} \cdot \boldsymbol{b})c_3.$$

因此

$$a \times (b \times c) = (a \cdot c) \cdot b - (a \cdot b).$$

命题 3.2

证明 Jacobi 等式:

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = 0.$$

证明 利用二重外积公式, 我们有

$$egin{aligned} oldsymbol{a} imes (oldsymbol{b} imes oldsymbol{c}) &= (oldsymbol{a} \cdot oldsymbol{c}) oldsymbol{b} - (oldsymbol{a} \cdot oldsymbol{b}) oldsymbol{c}, \ oldsymbol{b} imes (oldsymbol{c} imes oldsymbol{a}) &= (oldsymbol{b} \cdot oldsymbol{a}) oldsymbol{c} - (oldsymbol{b} \cdot oldsymbol{c}) oldsymbol{a}, \ oldsymbol{c} imes (oldsymbol{a} imes oldsymbol{b}) &= (oldsymbol{c} \cdot oldsymbol{b}) oldsymbol{a} - (oldsymbol{c} \cdot oldsymbol{a}) oldsymbol{b}, \end{aligned}$$

将上述三等式相加即得 Jacobi 等式.

3.4 习题

例 3.6

- 1. 求数 λ , 使得直线 $L_1: \frac{x-1}{\lambda} = \frac{y+4}{5} = \frac{z-3}{-3}$ 与直线 $L_2: \frac{x+3}{3} = \frac{y-9}{-4} = \frac{z+4}{7}$ 相交.
- 2. 求 L_1 与 L_2 的交点.
- 3. 求 L_1 与 L_2 确定的平面方程.

解

1. 设 L_1 与 L_2 的方向向量分别为 $\boldsymbol{s}_1=(\lambda,5,-3), \boldsymbol{s}_2=(3,-4,7), M_1(1,-4,3), M_2(-3,9,-4),$ 则 $\overrightarrow{M_1M_2}=(-4,13,-7).$

当 $s_1, s_2, \overrightarrow{M_1M_2}$ 共面时, 两直线可能相交, 即

$$(\boldsymbol{s}_1 \times \boldsymbol{s}_2) \cdot \overrightarrow{M_1 M_2} = \begin{vmatrix} \lambda & 5 & -3 \\ 3 & -4 & 7 \\ -4 & 13 & -7 \end{vmatrix} = 0$$

解得 $\lambda = 2$, 此时 $\begin{cases} s_1 = (2, 5, -3) \\ s_2 = (3, -4, 7) \end{cases} \Rightarrow s_1 \nmid s_2$, 所以两直线相交.

2. 由 $L_1: \frac{x-1}{2} = \frac{y+4}{5} = \frac{z-3}{-3}$, 得 L_1 的参数方程为

$$\begin{cases} x = 1 + 2t \\ y = -4 + 5t \\ z = 3 - 3t \end{cases}, t \in \mathbb{R}$$

从 $L_2: \frac{x+3}{3} = \frac{y-9}{-4} = \frac{z+4}{7}$, 得 L_2 的参数方程为

$$\begin{cases} x = -3 + 3s \\ y = 9 - 4s \\ z = -4 + 7s \end{cases}, s \in \mathbb{R}$$

设 $M_0(x_0, y_0, z_0)$ 为 L_1 与 L_2 的交点,则

$$\begin{cases} x_0 = 1 + 2t = -3 + 3s \\ y_0 = -4 + 5t = 9 - 4s \\ z_0 = 3 - 3t = -4 + 7s \end{cases} \Rightarrow \begin{cases} t = 1, s = -1 \\ x_0 = -1, y_0 = 1, z_0 = 0 \end{cases}$$

所以 L_1 与 L_2 的交点为 $M_0(-1,1,0)$.

3. 设 L_1 与 L_2 确定的平面为 π , 则 π 的法向量 $m{n} = m{s}_1 imes m{s}_2 = egin{bmatrix} m{i} & m{j} & m{k} \\ 2 & 5 & -3 \\ 3 & -4 & 7 \end{bmatrix} = (23, -23, -23),$

取
$$n = (1, -1, -1)$$
, 且交点 $M_0(3, 1, 0) \in \pi$, 所以 π 的方程为

$$\pi: 1 \cdot (x-3) - 1 \cdot (y-1) - 1 \cdot z = 0 \Leftrightarrow x - y - z - 2 = 0$$

例 3.7 求直线
$$L:$$
 $\begin{cases} x+y-z-1=0 \\ x-y+z+1=0 \end{cases}$ 在平面 $\pi: x+y+z=0$ 上的投影直线方程 $L_1.$

例 3.7 求直线
$$L:$$
 $\begin{cases} x+y-z-1=0 \\ x-y+z+1=0 \end{cases}$ 在平面 $\pi: x+y+z=0$ 上的投影直线方程 $L_1.$ 解 L 的方向向量 $s=n_1\times n_2=\begin{vmatrix} \pmb{i} & \pmb{j} & \pmb{k} \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{vmatrix}=(0,-2,-2), \ \diamondsuit z=0, \ \emptyset$ 得到 L 上点 $M_0(0,1,0).$

设过
$$L$$
 且垂直于平面 π 的平面为 π_1 ,则 π_1 的法向量 $m{n}_0 = m{s} imes m{n} = egin{bmatrix} m{i} & m{j} & m{k} \\ 0 & -2 & -2 \\ 1 & 1 & 1 \end{bmatrix}$

(0,-2,2), 且 $M_0(0,1,0) \in \pi_1$, 所以 π_1 的方程为

$$\pi_1: 0 \cdot (x-0) - 2 \cdot (y-1) + 2 \cdot (z-0) = 0 \Leftrightarrow -y+z+1 = 0$$

此时投影直线 L_1 的方程为

$$L_1: \begin{cases} x+y-z-1=0\\ -y+z+1=0 \end{cases}.$$

作业 ex8.2:18(1),19(1),20(2),21(1),22(1),23(1),29,30.