Zadanie 1. Likwidacja szkody zaistniałej w miesiącu t następuje w tym samym miesiącu z prawdopodobieństwem $\frac{2}{22}$, a w miesiącu t+k z prawdopodobieństwem $\frac{5}{22} \cdot \left(\frac{3}{4}\right)^{k-1}$. Wartość każdej szkody wynosi 1. W miesiącach t, t+1 i t+2 zaistniały odpowiednio 88, 110 i 132 szkody. Wyznacz stan rezerwy szkodowej na koniec

- (A) 315
- (B) 363
- (C) 375
- (D) 399
- (E) brakuje danych o strukturze rezerwy na początku t-tego miesiąca

miesiąca t+2, jeśli na początku miesiąca t stan tej rezerwy wynosił 320.

Zadanie 2. Rozkład ilości szkód dla jednorodnej grupy ryzyk jest rozkładem Poissona, a wartość szkody ma rozkład wykładniczy o wartości oczekiwanej β^{-1} . Niech λ_F oznacza najmniejszą oczekiwaną ilość szkód (zaokrągloną do liczby całkowitej) taką, przy której danym statystycznym o grupie ryzyk przypisujemy pełną wiarygodność (*full credibility*), tzn. dla której $\Pr(0.9 \cdot c < C < 1.1 \cdot c) \ge 0.95$, gdzie c jest całkowitą składką netto, a C jej oszacowaniem (łączną wartością szkód zarejestrowanych w naszym zbiorze danych). Przyjmując aproksymację rozkładem normalnym rozkładu zmiennej C i wiedząc, iż standaryzowana zmienna normalna przyjmuje wartość większą co do modułu od 1.96 z prawdopodobieństwem 0.05 otrzymujemy iż λ_F wynosi:

- (A) 768
- (B) 543
- (C) 384
- (D) do udzielenia odpowiedzi brakuje informacji o wartości $oldsymbol{eta}$
- (E) do udzielenia odpowiedzi brakuje informacji o ilości jednostek ryzyka w grupie

Zadanie 3. Dla pewnego ryzyka wartość pojedynczej szkody ma rozkład określony na zbiorze liczb naturalnych (bez zera), a łączna wartość szkód X ma złożony rozkład Poissona. Składka netto za nadwyżkę łącznej szkody X ponad k dla wybranych wartości k wynosi:

k	3	4	6	7
$\mathrm{E}\big[\big(X-k\big)_{_{+}}\big]$	0.366	0.199	0.057	0.029

Prawdopodobieństwo, iż łączna wartość szkód X wyniesie 4, 5 lub 6 wynosi:

- (A) 0.337
- (B) 0.309
- (C) 0.170
- (D) 0.139
- (E) brakuje danych do udzielenia jednoznacznej odpowiedzi

Zadanie 4. O rozkładzie wartości szkody Y wiemy, iż jest to rozkład ciągły z dystrybuantą ściśle rosnącą na przedziale (0, M), oraz iż $\Pr(Y \in (0, M)) = 1$.

Ponadto wiemy, iż składka netto za nadwyżkę szkody ponad d jest dla $d \in (4, 7)$ dana wzorem:

$$E[(Y-d)_{+}] = \frac{(10-d)^{3}}{300}$$
.

Niech Z_E oznacza zbiór możliwych wartości E(Y), zaś Z_M zbiór możliwych wartości M. Zbiory te mają postać:

(A)
$$Z_E = (2.16, 4.72), Z_M = (7.09, \infty)$$

(B)
$$Z_E = (2.16, 4.72), Z_M = (8.00, \infty)$$

(C)
$$Z_E = (1.56, 4.72), Z_M = (7\frac{3}{7}, \infty)$$

(D)
$$Z_E = (1.56, 3\frac{1}{3}), Z_M = (7\frac{3}{7}, 10)$$

(E)
$$Z_E = (2.16, 3\frac{1}{3}), Z_M = (8, 10)$$

Zadanie 5. Dla pewnego ryzyka ilość szkód ma rozkład Poissona z wartością oczekiwaną λ , a całkowita wartość szkody X (jeśli do szkody dojdzie) składa się z dwóch części: wartości szkody materialnej Y oraz wartości szkody na życiu lub zdrowiu Z. O szkodzie mówimy wtedy, gdy jej wartość jest dodatnia, tzn. zakładamy iż:

$$Pr(X > 0) = 1$$
.

Jednak tylko pierwsza część jest zawsze dodatnia: Pr(Y > 0) = 1, natomiast szkoda na

życiu lub zdrowiu jest dodatnia raz na sześć szkód: $Pr(Z > 0) = \frac{1}{6}$.

Szkody materialne, gdy nie ma szkód na życiu lub zdrowiu mają momenty:

$$E(Y/Z=0)=1$$
, $Var(Y/Z=0)=2$,

natomiast kiedy wystąpią szkody na życiu lub zdrowiu, wtedy:

$$E(Y/Z > 0) = 2$$
, $Var(Y/Z > 0) = 3$

$$E(Z/Z > 0) = 4$$
, $Var(Z/Z > 0) = 12$

Wiemy ponadto, iż COV(Y, Z/Z > 0) jest dodatnia, aczkolwiek związek tych zmiennych przy Z > 0 nie jest funkcyjny. Zbiór możliwych wartości wariancji łącznej wartości szkód z tego ryzyka mieści się w przedziale:

- (A) $(9 \cdot \lambda, 13 \cdot \lambda)$
- (B) $(12 \cdot \lambda, 15 \cdot \lambda)$
- (C) $(12 \cdot \lambda, 14 \cdot \lambda)$
- (D) $(11 \cdot \lambda, 13 \cdot \lambda)$
- (E) $(10 \cdot \lambda, 13 \cdot \lambda)$

Zadanie 6. Liczba szkód dla jednego ryzyka ma rozkład dany wzorem:

$$\Pr(N = k / \Lambda = \lambda) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}$$
,

z tą samą wartością λ dla danego ryzyka w kolejnych latach. W populacji (o nieskończonej liczebności) ryzyk rozkład parametru Λ jest rozkładem Gamma (α, β) . W roku 0 mieliśmy w portfelu n ryzyk przypadkowo wylosowanych z tej populacji, i wygenerowały one N_0 szkód. W roku 1 nasz portfel liczy także n ryzyk, przy czym pewna ich część to losowo wybrana podgrupa (licząca od zera do n ryzyk) z portfela z roku 0, a pozostałość to ryzyka dolosowane z populacji. Niech N_1 oznacza ilość szkód w roku 1. Niech m oznacza najmniejszą, a M największą możliwą wartość

$$E[(N_1 - N_0)^2].$$

$$\{m \quad M\} \text{ równa s}$$

 $\{m, M\}$ równa się:

(A)
$$\left\{ n \cdot \frac{\alpha}{\beta}, \quad 2n \cdot \frac{\alpha}{\beta} \right\}$$

(B)
$$\left\{2n\cdot\frac{\alpha}{\beta}, \quad 2n\cdot\frac{\alpha}{\beta}+n\cdot\frac{\alpha}{\beta^2}\right\}$$

(C)
$$\left\{ n \cdot \left(\frac{\alpha}{\beta} + \frac{\alpha^2}{\beta^2} \right) \quad 2n \cdot \left(\frac{\alpha}{\beta} + \frac{\alpha^2}{\beta^2} \right) \right\}$$

(D)
$$\left\{2n\cdot\frac{\alpha}{\beta}, \quad 2n\cdot\left(\frac{\alpha}{\beta}+\frac{\alpha^2}{\beta^2}\right)\right\}$$

(E)
$$\left\{2n\cdot\frac{\alpha}{\beta}, \quad 2n\cdot\left(\frac{\alpha}{\beta}+\frac{\alpha}{\beta^2}\right)\right\}$$

Zadanie 7. Klasyczny proces nadwyżki ubezpieczyciela charakteryzują parametry:

 λ - częstotliwość (roczna) Poissonowskiego procesu pojawiania się szkód,

- u nadwyżka początkowa
- rozkład zmiennej Y wartości pojedynczej szkody
- θ stosunkowy narzut na składkę netto.

Załóżmy, iż $\Pr(Y = M) = 1$, gdzie M jest dodatnie. Załóżmy także, iż $u = 10 \cdot M$. Przyjmijmy wreszcie, iż nasz cel to skalkulowanie składki tak, aby zachodził warunek bezpieczeństwa: $e^{-Ru} = 0.10$, gdzie R to tzw. adjustment coefficient. Wtedy wartość θ :

- (A) jest różna dla różnych M
- (B) jest różna dla różnych λ

(C) wynosi
$$10 \cdot (10^{0.1} - 1) - \ln 10$$

(D) wynosi
$$10 \cdot (e^{0.1} - 1) - 1$$

(E) wynosi
$$\frac{10 \cdot (10^{0.1} - 1)}{\ln 10} - 1$$

Zadanie 8. W klasycznym modelu nadwyżki ubezpieczyciela rozkład wartości szkody Y jest taki, że dodatni współczynnik R istnieje. Niekiedy (zależy to od własności rozkładu zmiennej Y) można łatwo wskazać taką liczbę g > 1, że dla każdego dodatniego u prawdopodobieństwo ruiny $\Psi(u) \le \frac{e^{-Ru}}{g}$. Wybierz tę z odpowiedzi

(A)
$$g = \inf_{d>0} \left\{ E\left(e^{R(Y-d)} / Y > d\right) \right\}$$

(B)
$$g = \inf_{d>0} \left\{ E\left(e^{R(Y-d)} / Y > d\right) \cdot \Pr(Y > d) \right\}$$

prawidłowych, dla której g jest liczbą możliwie największą:

(C)
$$g = \inf_{d>0} \left\{ e^{R \cdot E(Y - d/Y > d)} \right\}$$

(D)
$$g = \inf_{d>0} \left\{ e^{R \cdot E[(Y-d)_+]} \right\}$$

(E)
$$g = E(e^{R(Y-EY)})$$

Zadanie 9. Wartość szkody Y ma rozkład wykładniczy o wartości oczekiwanej β^{-1} . Ubezpieczyciel pokrywa jedynie $W = \min\{Y, M\}$, gdzie M jest limitem odpowiedzialności. Wartość funkcji generującej momenty zmiennej W w punkcie t ma postać:

(A)
$$\frac{\beta}{\beta - t} e^{-(\beta - t)M} - \frac{t}{\beta - t}$$

(B)
$$\frac{\beta}{\beta - t} - \frac{t}{\beta - t} e^{-(\beta - t)M}$$

(C)
$$\frac{\beta}{\beta - t} \cdot e^{t \cdot M} \cdot \left(1 - e^{-\beta \cdot M}\right)$$

(D)
$$\frac{\beta}{\beta - t} \cdot e^{-\beta \cdot M} \cdot \left(1 - e^{t \cdot M}\right)$$

(E)
$$\frac{\beta}{\beta - t} \cdot e^{-(\beta - t)M}$$

Zadanie 10. Decydent kieruje się maksymalizacją wartości oczekiwanej funkcji użyteczności postaci: $u(x) = \sqrt{x}$,

posiada majątek wart 400

i narażony jest na stratę X o rozkładzie trzypunktowym:

$$Pr(X = 0) = Pr(X = 50) = Pr(X = 100) = \frac{1}{3}.$$

Gotów jest on zapłacić nie więcej niż 30 za pokrycie ryzyka X (lub jego części). Ubezpieczyciele oferują wszystkie dopuszczalne kontrakty po cenie równej składce netto. W tych warunkach maksimum oczekiwanej użyteczności decydenta wynosi:

- (A) 18.4
- (B) 18.7
- (C) 19.0
- (D) 19.3
- (E) 19.6

Egzamin dla Aktuariuszy z 7 grudnia 1996 r.

Matematyka ubezpieczeń majątkowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI
Pesel	

Zadanie nr	Odpowiedź	Punktacja*
1	С	
2	С	
3	D	
4	В	
5	D	
6	Е	
7	Е	
8	A	
9	В	
10	В	
_		

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.