

Processing Solar Images to Forecast Coronal Mass Ejections using Artificial Intelligence

Savvas Raptis
KU Leuven, Centre for Mathematical Plasma
Astrophysics

Supervisors:

Giovanni Lapenta, Jorge Amaya

Preventing a disaster

Operational Satellites by Function

If Satellites Stop:

- No Telecommunications
- No Military surveillance
- No Weather forecast
- No GPS

∠ DEPARTURES						
TIME	DESTINATION	FLIGHT	GATE	REMARKS		
12:39	LONDON	BA 903	31	CANCELLED		
12:57	SYDNEY	QF5723	27	CANCELLED		
13:08	TORONTO	AC5984	22	CANCELLED		
13:21	T0KY0	JL 608	41	DELAYED		
13:37	HONG KONG	CX5471	29	CANCELLED		
13:48	MADRID	IB3941	30	DELAYED		
14:19	BERLIN	LH5021	28	CANCELLED		
14:35	NEW YORK	AA 997	11	CANCELLED		
14:54	PARIS	AF5870	23	DELAYED		
15:10	ROME	AZ5324	43	CANCELLED		
				A SHOULD BE		

.3 ₆	156		84.54 98	54.64 156.10 95.48 151.82 96.54 36.52
32	361.82	65.33	5104	15.00 54.6
.65	97.54 54.63	98 65		
.64 .48	51.85 V		65.3 84.	54 54.63
.54	785.32 54.36	05.54	54	54 54.63 65 51.85 .64 51.85 5.48 785.3 6.54 54.3
.84 .15	65.32 84.54			6.54 54.3 55.32 65.3
.54	98.65	151	do	84.54 84. 98.65 98
.21	54.64 95.48		54	54.64
.51	96.54	54	.63 85	95.48 96.54

Communications

Earth Observation

^{*}Figure Courtesy: SIA (Satelite Industry Association)

What can cause this disaster?

Coronal Mass Ejections (CMEs)

*Figure Courtesy: NASA/ESA, SDO and SOHO satellites

Theory

*Figure Courtesy: https://planetpailly.com/

Coronal Mass Ejections – CMEs

CMEs

Energetic events from the Sun

 \iint

Particles in space

+

Disturbances to Earth's magnetic field

Problems in Satellites/Communications/Grids/infrastructures etc.

*Figure Courtesy: NASA/ESA, SOHO satellite

Halo CMEs

Halo CMEs
Earth-directed CMEs. Can be seen from coronagraph.

Why important?
Going to Earth

IJ.

More effects on mankind

*Figure Courtesy: NASA/ESA, SOHO satellite

Processing Solar Images to Forecast Coronal Mass Ejections using A.I.

What is machine learning & A.I?

Making the computer "learn" from data without being explicitly programmed

Neural Networks & Backpropagation

Visualization of Neural Network

*Video Courtesy: **3Blue1Brown** (Check him on YouTube!)

Convolution Neural Network (CNN) Layers

Convolution Extract features & Keep spatial relationship

Image

Convolved Feature

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Pooling/Subsampling
Reduce dimensionality & retain information

^{*}Figure Courtesy: Erik Reppel

^{*}Figure Courtesy: Cambridge Spark Ltd

Example of CNN

^{*}Figure Courtesy: Suhyun Kim iSystems Design Labs

Analysis

Main Goal

Forecast the emerged CMEs using solar images taken from SDO and CNN

Output LASCO/CACTUS Catalogs

<u>Date</u>	<u>C</u>			<u>haracteristics</u>		
2014/01/02 13:48:06 2014/01/03 00:24:05 2014/01/03 02:24:06 2014/01/03 03:47:08 2014/01/03 07:36:05 2014/01/03 10:36:05 2014/01/03 12:36:05 2014/01/03 18:00:06 2014/01/03 18:48:05 2014/01/03 19:36:05	184 264 51 61 62 65 265 154 90 222	57 18 24 44 17 21 25 60 31 112	894 225 657 1132 250 316 277 208 89 286	959 272 637 1303 193 273 287 114 179 331	825 169 674 961 306 358 267 295 0	71: 72: 96: 61: 62' 3: 43:
2014/01/03 19:36:05	222	112	286	331	237	

Machine Learning Project

1st Part Data Enhancement

2nd Part CNN implementation

Improving Input Project

3rd Part Pre-processing Tool & History Maps

1st Part Data Enhancement

2nd Part CNN implementation

3rd Part Pre-processing Tool & History Maps

The Data Enhancement Project

Date	CME [0/1]	Halo CME [0/1]
2014/01/01 00:12:05	1	0
2014/01/04 23:12:05	1	1
2014/05/03 20:42:00	0	0

0007,1997/09/13 06:25,01,258,014,0349,0771,0237,1922, X

1st Part Data Enhancement

2nd Part CNN implementation

3rd Part Pre-processing Tool & History Maps

The Machine Learning Project

Input = 13 SDO images, 2 [h] history before the event.

Output = 1/0

Final CNN architecture

Layer	Details & Operations	Output shape
Input	-	$[512,\!512,\!13]$
Convolution	Convolution [14] & 3x3 Kernel	[510,510,14]
Convolution	Convolution [16] & 3x3 Kernel	[508,508,16]
Convolution	Convolution [18] & 3x3 Kernel	[506,506,18]
Max Pooling	Max Pooling with 2x2 Kernel	[253,253,18]
Dropout	20 % Dropout	[253,253,18]
Convolution	Convolution [20] & 3x3 Kernel	[251,251,20]
Convolution	Convolution [28] & 3x3 Kernel	[249,249,28]
Convolution	Convolution [36] & 3x3 Kernel	[247,247,36]
Max Pooling	Max Pooling with 2x2 Kernel	[247,247,36]
Dropout	20 % Dropout	[123,123,36]
Convolution	Convolution [40] & 3x3 Kernel	[121,121,40]
Convolution	Convolution [56] & 3x3 Kernel	[119,119,56]
Convolution	Convolution [72] & 3x3 Kernel	[117,117,72]
Max Pooling	Max Pooling with 2x2 Kernel	[58,58,72]
Dropout	40 % Dropout	[253,253,18]
Convolution	Convolution [80] & 3x3 Kernel	[56,56,80]
Convolution	Convolution [112] & 3x3 Kernel	[54,54,112]
Convolution	Convolution [144] & 3x3 Kernel	[52,52,144]
Max Pooling	Max Pooling with 2x2 Kernel	[26,26,144]
Flatten	Flattening of the input	97344
Fully Connected	400 Neuron - Dense layer	400
Fully Connected	200 Neuron - Dense layer	200
Fully Connected	2 Neuron - Dense layer	2
Output	Classifier, 0.5 Threshold Sigmoid	2

Result of CNN

1st Part Data Enhancement

2nd Part CNN implementation

3rd Part Pre-processing Tool & History Maps

Pre-processing Tool – Motivation

Previous input

- (+) Promising results.
- (-) Expensive computationally and memory wise.

Using the pre-processing tool

- (+) **New input** → less computational time & memory consumption.
- (?) Better results.

History Map (HM) – Single Line Example

Pre-processing Tool – Procedure & Output

Procedure

- Download data
- Track Sun's differential rotation for every longitude line
- Go to next date on Catalog
- Repeat

<u>Output</u>

- 1) Database file (.sql)
- 2) Scientific images (.FITS)
- 3) History maps (.png)
- 4) NN input (.npy)
- 5) Animation (.gif)

Pre-processing Tool – Sunspot

History Map – Multi Line Example

Why History Maps?

• Substantial decrease of data and computational time (order of magnitude). E.g. Originally: [512,512,13], now [x,y,13]. In practice, $y \approx 10 \ll 512$

- Structures are shown in a frame that is co-moving → time evolution is shown.
- Possibly useful for forecasting other phenomena such as Solar flares or Sunspots.

Conclusion

KU Leuven, Centre for mathematical Plasma-Astrophysics

Summary

- 1. Enhanced, clean and processed SDO data and CACTUS/LASCO catalogs
- 2. Created multiple CNN models, with the best obtaining 76.6% prediction on CMEs and 83.5% classification between CME and halo-CME.

3. Created a pre-processing tool that derives "History Maps" (HM). Possibly useful in future Machine learning research and Solar data analysis.

Future Proposal

Extras

Differential Rotation Models

Pre-processing Tool – Design

<u>Input</u>

- 1) Date Date of event
- 2) x Points on line
- 3) y Longitude lines
- 4) dt Time-step
- 5) T Total time
- 6) λ Wavelength
- 7) C Catalog

Procedure

- Download data for T [h] before event
- Track Sun's differential rotation for every line (y) using dt step
- Go to next date on Catalog (c)
- Repeat

<u>Output</u>

- Database file (.sql)
- 2) Scientific images (.FITS)
- 3) History maps (.png)
- 4) NN input (.npy)
- 5) Animation (.gif)

