Bilans thermiques: flux conductifs, convectifs et radiatifs

Niveau: CPGE/L2

Prérequis:

- 1er et 2nd principes, flux thermique
- Corps noir et notion de rayonnement thermique
- Mécanique des fluides : couche limite, convection naturelle
- Loi d'Ohm en électrocinétique

La consommation d'énergie dans les résidences principales

Source CEREN 2012, Les chiffres clés du bâtiment, édition 2013, ADEME

Notion d'équilibre thermodynamique local

$$E(t), P(t), T(t), N(t) \dots$$

- Temps caractéristique de variation des variables thermodynamiques:
- Temps caractéristiques de retour à l'équilibre : τ_{ec}

Si $\frac{\tau_{eq} \ll \tau_{ev}}{\tau_{ev}}$, alors les variables thermodynamiques sont définies à tout instant.

Conservation de l'énergie thermique : cas 3D

$$\rho c_{v} \frac{\partial T(M, t)}{\partial t} + \overrightarrow{\nabla} \cdot \overrightarrow{j_{q}}(M, t) = 0$$

Matériau	Conductivité thermique en W/(m.K)	Diffusivité thermique en m²/s
Bois	~ 0.2	~ 1.5e-7
Verre à vitre	0.9	4.5e-7
Béton	1.5	5.4e-7
Cuivre	380	1.2e-4

Analogie loi d'Ohm / conduction thermique

Loi d'Ohm (en convention récepteur)

$$V_1 - V_2 = RI$$

Conduction thermique stationnaire

$$T_1 - T_2 = R_{th}\Phi$$

Analogie loi d'Ohm / conduction thermique

$$R_{tot} = R_{th,1} + R_{th,2}$$

$$\frac{1}{R_{tot}} = \frac{1}{R_{th,1}} + \frac{1}{R_{th,2}}$$

Loi de Planck : profil de la densité volumique spectrale d'énergie du rayonnement d'un corps noir

Rayonnement du corps noir : applications à la thermographie et analyse des isolations

Bibliographie

- B. Diu, *Thermodynamique*, chapitre 9
- H prépa MP/PC/PT/PSI, *Thermodynamique*, chapitres 2/3/(6)
- C. Garing, Ondes mécaniques et diffusion, chapitre 5