Advanced Digital Signal Processing (ADSP)

徐林

ADSP

Convergence LMS

Acquisition and tracking:

ADSP

Convergence LMS

Consequence of not using $E\{\cdot\}$?

Example: LMS, $N = 1, w[0] = 0 w_o = a$

Questions about convergence:

$$\lim_{k\to\infty} E\{w[k]\} = w_o = a \text{ and } \lim_{k\to\infty} E\{w^2[k]\} < \infty?$$

ADSP

Convergence LMS

First compare difference with (optimal) Wiener weights:

$$\underline{\mathbf{d}}[k] = \underline{\mathbf{w}}[k] - \underline{\mathbf{w}}_o$$
 with $\underline{\mathbf{w}}_o = \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{ex}$

$$\underbrace{ \mathbf{w}[k+1] = \mathbf{w}[k] + 2\alpha \left(\mathbf{x}[k]e[k] - \mathbf{x}[k]\mathbf{x}^t[k]\mathbf{w}[k] \right) }_{\mathbf{w}[k+1] - \mathbf{w}_o = \left(\mathbf{I} - 2\alpha\mathbf{x}[k]\mathbf{x}^t[k] \right) \mathbf{w}[k] - \mathbf{w}_o + 2\alpha\mathbf{x}[k]e[k] }$$

$$\underbrace{ \mathbf{d}[k+1] = \left(\mathbf{I} - 2\alpha\mathbf{x}[k]\mathbf{x}^t[k] \right) \mathbf{d}[k] + 2\alpha\mathbf{x}[k]r_{min}[k] }_{\mathbf{w}[k]}$$

$$\mathbf{w}[k+1] = \left(\mathbf{I} - 2\alpha\mathbf{x}[k]\mathbf{x}^t[k] \right) \mathbf{d}[k] + 2\alpha\mathbf{x}[k]r_{min}[k]$$

$$\mathbf{w}[k+1] = \mathbf{u}[k] + 2\alpha\mathbf{x}[k]\mathbf{w}_o$$

ADSP

Convergence LMS

Convergence in the mean:

$$E\{\underline{\mathbf{d}}[k+1]\} = E\{(\mathbf{I} - 2\alpha \underline{\mathbf{x}}[k]\underline{\mathbf{x}}^t[k])\underline{\mathbf{d}}[k]\} + 2\alpha \underline{\mathbf{x}}(E\{\underline{\mathbf{x}}[k]e[k]\} - E\{\underline{\mathbf{x}}[k]\underline{\mathbf{x}}^t[k]\}\underline{\mathbf{w}}_{\alpha})$$

With independence assumption:

$$E\{\underline{\mathbf{x}}[k]\underline{\mathbf{x}}^t[k]\underline{\mathbf{d}}[k]\} \approx E\{\underline{\mathbf{x}}[k]\underline{\mathbf{x}}^t[k]\} \cdot E\{\underline{\mathbf{d}}[k]\}$$

$$\Rightarrow E\{\underline{\mathbf{d}}[k+1]\} = (\mathbf{I} - 2\alpha \mathbf{R}_x) E\{\underline{\mathbf{d}}[k]\}$$

Average convergence behaviour LMS same as SGD

$$0 < \alpha < 1/\lambda_{max}$$
: $\lim_{k \to \infty} E\{\underline{\mathbf{w}}[k]\} = \underline{\mathbf{w}}_o$; $\tau_{av,i} \approx 1/2\alpha\lambda_i$

 \Rightarrow Depends on coloration input process!

ADSP

Convergence LMS

Mean-square convergence:

$$J_{LMS} = E\{r^2\} = E\{(e - \underline{\mathbf{w}}^t\underline{\mathbf{x}})(e - \underline{\mathbf{x}}^t\underline{\mathbf{w}})\}$$

With
$$\underline{\mathbf{d}} = \underline{\mathbf{w}} - \underline{\mathbf{w}}_o$$
 or $\underline{\mathbf{w}} = w_o + \underline{\mathbf{d}} \Rightarrow$

$$J_{LMS} = E\{\left(\left(e - \underline{\mathbf{w}}_{o}^{t}\underline{\mathbf{x}}\right) - \underline{\mathbf{d}}^{t}\underline{\mathbf{x}}\right)\left(\left(e - \underline{\mathbf{x}}^{t}\underline{\mathbf{w}}_{o}\right) - \underline{\mathbf{x}}^{t}\underline{\mathbf{d}}\right)\}$$

$$J_{LMS} = E\{(e - \underline{\mathbf{w}}_o^t \underline{\mathbf{x}})(e - \underline{\mathbf{x}}^t \underline{\mathbf{w}}_o)\} + E\{\underline{\mathbf{d}}^t \underline{\mathbf{x}} \underline{\mathbf{x}}^t \underline{\mathbf{d}}\}$$

$$-E\{\underline{\mathbf{d}}^t\underline{\mathbf{x}}(e-\underline{\mathbf{x}}^t\underline{\mathbf{w}}_o)\} - E\{(e-\underline{\mathbf{w}}_o^t\underline{\mathbf{x}})\underline{\mathbf{x}}^t\underline{\mathbf{d}}\}$$

Independence assumption \Rightarrow

$$E\{\underline{\mathbf{d}}^t\underline{\mathbf{x}}(e-\underline{\mathbf{x}}^t\underline{\mathbf{w}}_o)\} \approx E\{\underline{\mathbf{d}}^t\}\cdot (E\{\underline{\mathbf{x}}e\}-E\{\underline{\mathbf{x}}\underline{\mathbf{x}}^t\}\underline{\mathbf{w}}_o)$$

$$= E\{\underline{\mathbf{d}}^t\} \cdot (\underline{\mathbf{r}}_{ex} - \mathbf{R}_x \underline{\mathbf{w}}_o) = 0$$

Similar $E\{(e-\underline{\mathbf{w}}_o^t\underline{\mathbf{x}})\underline{\mathbf{x}}^t\underline{\mathbf{d}}\}\to 0$

ADSP

Convergence LMS

Compare with MMSE expression

$$\Rightarrow J_{LMS} \approx E\{(e - \underline{\mathbf{w}}_o^t \underline{\mathbf{x}})(e - \underline{\mathbf{x}}^t \underline{\mathbf{w}}_o)\} + E\{\underline{\mathbf{d}}^t \underline{\mathbf{x}} \underline{\mathbf{x}}^t \underline{\mathbf{d}}\}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
Fixed Adaptive

Wiener error: $J_{min} = E\{(e - \underline{\mathbf{w}}_o^t \underline{\mathbf{x}})(e - \underline{\mathbf{x}}^t \underline{\mathbf{w}}_o)\} = E\{r_{min}^2\}$

Excess error: $J_{ex} = E\{\underline{\mathbf{d}}^t \underline{\mathbf{x}} \underline{\mathbf{x}}^t \underline{\mathbf{d}}\} \approx E\{\underline{\mathbf{d}}^t E\{\underline{\mathbf{x}} \underline{\mathbf{x}}^t\} \underline{\mathbf{d}}\}$ $= E\{\underline{\mathbf{d}}^t \mathbf{R}_x \underline{\mathbf{d}}\}$

Dynamic behaviour adaptive filter: $\tilde{J}[k] = \frac{J_{ex}[k]}{J_{min}[k]}$

Depends on coloration input process!

ADSP

Convergence LMS

Conclusion convergence LMS:

Convergence gradient based algorithms, like SGD heavily relates on corolation input process and initiation of adaptive weights!

This also follows from rewriting gradient as:

$$\underline{\nabla} = -2\mathbf{R}_x \left(\mathbf{R}_x^{-1} \underline{\mathbf{r}}_{ex} - \underline{\mathbf{w}}[k] \right)$$

⇒ Gradient (=update) depends on coloration input

Solution:

Alternative that decorrelates input → Newton

Focus on single channel adaptive algorithms using FIR structure

- Applications Adaptive Algorithms
- Minimum Mean Square Error (MMSE)
- Constrained MMSE
- Least Square (LS)
- Steepest Gradient Descent (SGD)
- Three LMS variants: NLMS, Complex LMS, Constrained LMS
- Newton
- Recursive Least Squares (RLS)
- Frequency Domain Adaptive Filter (FDAF)
- Summary

ADSP

Newton

Principle: Undo coloration effect SGD

SGD:

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] - \alpha \underline{\nabla} \text{ with } \underline{\nabla} = -2 \left(\underline{\mathbf{r}}_{ex} - \mathbf{R}_x \underline{\mathbf{w}}[k]\right)$$

Newton:

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] - \alpha \mathbf{R}_x^{-1} \underline{\nabla} \Rightarrow$$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_x^{-1} \cdot (\underline{\mathbf{r}}_{ex} - \mathbf{R}_x \underline{\mathbf{w}}[k])$$

Note: General update rule $\underline{\mathbf{w}} = \underline{\mathbf{w}} - \alpha \underline{\mathbf{U}}$

 $\underline{\mathbf{U}}$ must be such that each iteration J decreases

ADSP

Newton

Convergence Newton algorithm:

$$\underline{\mathbf{d}}[k+1] = (\mathbf{I} - 2\alpha \mathbf{R}_x^{-1} \mathbf{R}_x) \underline{\mathbf{d}}[k] = (1-2\alpha)\underline{\mathbf{d}}[k]$$

Conclusion:

For
$$|1 - 2\alpha| < 1 \Leftrightarrow 0 < \alpha < 1$$

$$\lim_{k \to \infty} E\{\underline{\mathbf{d}}[k]\} = \underline{\mathbf{0}} \iff \lim_{k \to \infty} E\{\underline{\mathbf{w}}[k]\} = \underline{\mathbf{w}}_o = \mathbf{R}_x^{-1} \underline{\mathbf{r}}_{ex}$$

 \mathbf{R}_x^{-1} causes whitening of input x:

- WAND.
- All weights have same convergence!
- Equivalent to SGD with white noise input!

ADSP

Newton

Learning curves Newton vs. SGD in contour plot Coloured input process with $\Gamma_x = \lambda_{max}/\lambda_{min} = 3$

Note: SGD-curve each iteration orthogonal to contourplot JNewton-curve point each iteration towards J_{min}

ADSP

Newton

Another view:

By replacing
$$\underline{\nabla} \to \hat{\underline{\nabla}}_{LMS} = \underline{\mathbf{x}}[k]r[k]$$

$$\Rightarrow$$
 "LMS/Newton": $\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_x^{-1} \underline{\mathbf{x}}[k]r[k]$

 \mathbf{R}_x^{-1} causes whitening of input x

ADSP

Newton

- Practical problems Newton: 7 WM 12.43339 Autocorrelation matrix R_x :
 - Not known in general
 - May change in time (non-stationary process)
 - Inversion is very expensive (many MIPS)

Complexity Newton: Huge

- \Rightarrow Need for efficient solution with estimate of \mathbf{R}_x
- \Rightarrow RLS; FDAF; etc.

Focus on single channel adaptive algorithms using FIR structure

- Applications Adaptive Algorithms
- Minimum Mean Square Error (MMSE)
- Constrained MMSE
- Least Square (LS)
- Steepest Gradient Descent (SGD)
- Three LMS variants: NLMS, Complex LMS, Constrained LMS
- Newton
- Recursive Least Squares (RLS)
- Frequency Domain Adaptive Filter (FDAF)
- Summary

ADSP

RLS

Recursive Least Squares

For L fixed, least squares problem becomes:

$$\min_{\mathbf{w}} |\underline{\mathbf{e}} - \mathbf{X} \cdot \underline{\mathbf{w}}|^2 \Rightarrow \underline{\mathbf{w}}_{LS} = (\mathbf{X}^t \mathbf{X})^{-1} \cdot (\mathbf{X}^t \underline{\mathbf{e}})$$

RLS concept for $k \to k+1$:

Find recursive (=adaptive) solution for LS problem

ADSP

RLS

Current solution (time k):

Based on L data vectors, each of length N

$$\underline{\mathbf{w}}_{LS}^{L}[k] = (\overline{\mathbf{R}}_{x}^{L}[k])^{-1} \cdot \underline{\mathbf{r}}_{ex}^{L}[k]$$
$$= ((\mathbf{X}^{L}[k])^{t} \mathbf{X}^{L}[k])^{-1} \cdot (\mathbf{X}^{L}[k])^{t} \underline{\mathbf{e}}^{L}[k]$$

$$\mathbf{X}^{L}[k] = \begin{pmatrix} \mathbf{\underline{x}}^{t}[k] \\ \mathbf{\underline{x}}^{t}[k-1] \\ \vdots \\ \mathbf{\underline{x}}^{t}[k-L+1] \end{pmatrix} \ \underline{\mathbf{e}}^{L}[k] = \begin{pmatrix} e[k] \\ e[k-1] \\ \vdots \\ e[k-L+1] \end{pmatrix}$$

Similar result for L+1

ADSP

RLS

Compute solution at time k+1:

$$\underline{\mathbf{w}}_{LS}^{L+1}[k+1] = (\overline{\mathbf{R}}_{x}^{L+1}[k+1])^{-1} \cdot \underline{\mathbf{r}}_{ex}^{L+1}[k+1]
= ((\mathbf{X}^{L+1}[k+1])^{t} \mathbf{X}^{L+1}[k+1])^{-1} \cdot (\mathbf{X}^{L+1}[k+1])^{t} \underline{\mathbf{e}}^{L+1}[k+1]$$

With
$$\mathbf{X}^{L+1}[k+1] = \begin{pmatrix} \mathbf{\underline{x}}^t[k+1] \\ \mathbf{\underline{x}}^t[k] \\ \vdots \\ \mathbf{\underline{x}}^t[k-L+1] \end{pmatrix}$$

$$\underline{\mathbf{e}}^{L+1}[k+1] = (e[k+1]) e[k], \cdots, e[k-L+1])^t$$

ADSP

RLS

Observe:

$$\overline{\mathbf{R}}_{x}^{L+1}[k+1] = \sum_{i=0}^{L} \underline{\mathbf{x}}[k+1-i]\underline{\mathbf{x}}^{t}[k+1-i]$$

$$= \overline{\mathbf{R}}_{x}^{L}[k] + \underline{\mathbf{x}}[k+1] \cdot \underline{\mathbf{x}}^{t}[k+1]$$

$$\underline{\overline{\mathbf{r}}}_{ex}^{L+1}[k+1] = \sum_{i=0}^{L} \underline{\mathbf{x}}[k+1-i]e[k+1-i]$$

$$= \overline{\underline{\mathbf{r}}}_{ex}^{L}[k] + \underline{\mathbf{x}}[k+1]e[k+1]$$

From matrix inversion lemma (see Appendix): \Rightarrow

$$\overline{\mathbf{R}}_x^{-1}[k+1] = \overline{\mathbf{R}}_x^{-1}[k] - \frac{\overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1]\underline{\mathbf{x}}^t[k+1]\overline{\mathbf{R}}_x^{-1}[k]}{1 + \underline{\mathbf{x}}^t[k+1]\overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1]}$$

Finally:
$$\underline{\mathbf{w}}[k+1] = \overline{\mathbf{R}}_x^{-1}[k+1] \cdot \underline{\overline{\mathbf{r}}}_{ex}[k+1]$$

ADSP

RLS

For adaptivity → more effective data window

Sliding window: Keep window length L constant

Note: Now we can write for autocorrelation

$$\overline{\mathbf{R}}_x[k+1] = \overline{\mathbf{R}}_x[k] - \underline{\mathbf{x}}[k-L+1] \cdot \underline{\mathbf{x}}^t[k-L+1] + \underline{\mathbf{x}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1]$$

 \Rightarrow Still very complex

ADSP

RLS

Exponential window: Scale down data by factor λ

$$0<\lambda<1$$
 : forget factor

$$\frac{1}{k + 1}$$
 $\frac{1}{1 - \lambda}$: 'memory' of algorithm

$$\mathbf{X}[k] = \begin{pmatrix} \lambda^0 \underline{\mathbf{x}}^t[k] \\ \lambda^1 \underline{\mathbf{x}}^t[k-1] \\ \vdots \\ \lambda^k \underline{\mathbf{x}}^t[0] \end{pmatrix} \underline{\mathbf{e}}[k] = \begin{pmatrix} \lambda^0 e[k] \\ \lambda^1 e[k-1] \\ \vdots \\ \lambda^k e[0] \end{pmatrix}$$

$$J[k] = \sum_{i=0}^{k} \lambda^{i} r^{2} [k-i] = \left(\underline{\mathbf{e}}^{t}[k] - \underline{\mathbf{w}}^{t}[k] \mathbf{X}^{t}[k]\right) \left(\underline{\mathbf{e}}[k] - \mathbf{X}[k] \underline{\mathbf{w}}[k]\right)$$

ADSP

RLS

Observe:

$$\overline{\mathbf{R}}_x[k+1] = \lambda^2 \overline{\mathbf{R}}_x[k] + \underline{\mathbf{x}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1]$$

$$\underline{\overline{\mathbf{r}}}_{ex}[k+1] = \lambda^2 \underline{\overline{\mathbf{r}}}_{ex}[k] + \underline{\mathbf{x}}^t[k+1]e[k+1]$$

From matrix inversion theorem (see Appendix):

$$\overline{\mathbf{R}}^{-1}[k+1] = \lambda^{-2} \left(\overline{\mathbf{R}}^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1] \overline{\mathbf{R}}^{-1}[k] \right)$$

with gain vector:
$$\underline{\mathbf{g}}[k+1] = \frac{\overline{\mathbf{R}}^{-1}[k]\underline{\mathbf{x}}[k+1]}{\lambda^2 + \underline{\mathbf{x}}^t[k+1]\overline{\mathbf{R}}^{-1}[k]\underline{\mathbf{x}}[k+1]}$$

New weight vector:

$$\underline{\mathbf{w}}[k+1] = \overline{\mathbf{R}}_x^{-1}[k+1] \cdot \underline{\overline{\mathbf{r}}}_{ex}[k+1]$$

ADSP

RLS

RLS algorithm

Initialization:

$$\overline{\mathbf{r}}_{ex}[0] = \underline{\mathbf{0}}$$
 ; $\overline{\mathbf{R}}_x^{-1}[0] = \delta^{-1}\mathbf{I}$ with δ small

For $k \geq 0$:

$$\underline{\mathbf{g}}[k+1] = \frac{\overline{\mathbf{R}}^{-1}[k]\underline{\mathbf{x}}[k+1]}{\lambda^2 + \underline{\mathbf{x}}^t[k+1]\overline{\mathbf{R}}^{-1}[k]\underline{\mathbf{x}}[k+1]}$$

$$\overline{\mathbf{R}}^{-1}[k+1] = \lambda^{-2} \left(\overline{\mathbf{R}}^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1]\overline{\mathbf{R}}^{-1}[k]\right)$$

$$\underline{\overline{\mathbf{r}}}[k+1] = \lambda^2 \underline{\overline{\mathbf{r}}}[k] + \underline{\mathbf{x}}[k+1]e[k+1]$$

$$\underline{\mathbf{w}}[k+1] = \overline{\mathbf{R}}_x^{-1}[k+1] \cdot \underline{\overline{\mathbf{r}}}[k+1]$$

ADSP

RLS

Compare RLS with "LMS/Newton"

"LMS/Newton":
$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_x^{-1} \underline{\mathbf{x}}[k]r[k]$$

Update RLS can be rewritten as (see Appendix):

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + \underline{\mathbf{g}}[k+1] \left(e[k+1] - \underline{\mathbf{x}}^t[k+1]\underline{\mathbf{w}}[k] \right)$$
$$= \underline{\mathbf{w}}[k] + \underline{\mathbf{g}}[k+1]r[k+1]$$

with gain vector:

$$\underline{\mathbf{g}}[k+1] = \frac{\overline{\mathbf{R}}^{-1}[k]\underline{\mathbf{x}}[k+1]}{\lambda^2 + \underline{\mathbf{x}}^t[k+1]\overline{\mathbf{R}}^{-1}[k]\underline{\mathbf{x}}[k+1]}$$

ADSP

RLS

Notes on RLS:

$$\underline{\mathbf{w}}[\infty] = \underline{\mathbf{w}}_o$$

Complexity: $O(N^2)$ per time update

Window length increases when time increases!

Exhibits unstable roundoff error accumulation in the state of the stat

Decorrelation takes place in algorithm

Focus on single channel adaptive algorithms using FIR structure

- Applications Adaptive Algorithms
- Minimum Mean Square Error (MMSE)
- Constrained MMSE
- Least Square (LS)
- Steepest Gradient Descent (SGD)
- Three LMS variants: NLMS, Complex LMS, Constrained LMS
- Newton
- Recursive Least Squares (RLS)
- Frequency Domain Adaptive Filter (FDAF)
- Summary

拉伯地

ADSP

FDAF

Frequency Domain Adaptive Filter

Alternative for LMS/Newton and RLS

ADSP

FDAF

Frequency Domain Adaptive Filter

First translate LMS to frequency domain:

LMS weight update:

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \underline{\mathbf{x}}[k]r[k]$$

Filter output:

$$\hat{e}[k] = \underline{\mathbf{x}}^t[k] \cdot \underline{\mathbf{w}}[k]$$

ADSP merch 有名言令 文户 FDAF

Apply filter operation in frequency domain:

$$\mathbf{F} \cdot \mathbf{x}[k] = \mathbf{X}[k] = \left(X_0[k], X_1[k], \cdots, X_{N-1}[k]\right)^t$$

$$\mathbf{F}^{-1} \cdot \mathbf{w}[k] = \mathbf{W}[k] = \left(W_0[k], W_1[k], \cdots, W_{N-1}[k]\right)^t$$

$$Note: \mathbf{F}^{-1} = \frac{1}{N} \mathbf{F}^*$$

Filter output:

$$\widehat{e}[k] = \sum_{i=0}^{N-1} x[k-i]w_i[k] = \underline{\mathbf{x}}^t[k] \cdot \underline{\mathbf{w}}[k]$$

$$= \underline{\mathbf{x}}^t[k]\mathbf{F} \cdot \mathbf{F}^{-1}\underline{\mathbf{w}}[k] = (\mathbf{F}\underline{\mathbf{x}}[k])^t \cdot (\mathbf{F}^{-1}\underline{\mathbf{w}}[k])$$

$$= \underline{\mathbf{X}}^t[k] \cdot \underline{\mathbf{W}}[k] = \sum_{l=0}^{N-1} X_l[k]W_l[k]$$

ADSP

FDAF

Notes:

- Weights perfom inverse transform
- Use DFT symmetry to reduce complexity
- Separate frequency bins 'uncorrelated' (large N)

ADSP

FDAF

Apply LMS update in frequency domain:

Multiply both sides by $F^{-1} \Rightarrow$

$$\mathbf{F}^{-1}\underline{\mathbf{w}}[k+1] = \mathbf{F}^{-1}\underline{\mathbf{w}}[k] + 2\alpha \mathbf{F}^{-1}\underline{\mathbf{x}}[k]r[k] \Rightarrow$$

$$\underline{\mathbf{W}}[k+1] = \underline{\mathbf{W}}[k] + \frac{2\alpha}{N}\underline{\mathbf{X}}^*[k]r[k]$$

ADSP

FDAF

Improve convergence properties easily by

Decorrelation by power normalization:

FDAF algorithm:

$$\underline{\mathbf{W}}[k+1] = \underline{\mathbf{W}}[k] + \frac{2\alpha}{N} \mathbf{P}^{-1} \underline{\mathbf{X}}^*[k]r[k]$$

$$\mathbf{P} = diag\{\underline{\mathbf{P}}\}$$
 with $P_l = \frac{1}{N}E\{|X_l[k]|^2\}$

In practice (e.g.):

$$\hat{P}_{l}[k+1] = \beta \hat{P}_{l}[k] + (1-\beta) \frac{|X_{l}[k]|^{2}}{N} \, \forall l$$

ADSP

FDAF

Simplified realization scheme:

ADSP

FDAF

<u>Average behaviour FDAF:</u>

With
$$\underline{\mathbf{D}} = \mathbf{F}^{-1}\underline{\mathbf{d}} = \mathbf{F}^{-1}(\underline{\mathbf{w}} - \underline{\mathbf{w}}_o) = \underline{\mathbf{W}} - \underline{\mathbf{W}}_o$$

FDAF can be rewritten as:

$$\underline{\mathbf{D}}[k+1] = \left(\mathbf{I} - \frac{2\alpha}{N} \mathbf{P}^{-1} \underline{\mathbf{X}}^*[k] \underline{\mathbf{X}}^t[k]\right) \underline{\mathbf{D}}[k] + \frac{2\alpha}{N} \mathbf{P}^{-1} \underline{\mathbf{X}}^*[k] r_{min}[k]$$

Different bins uncorrelated: $\Rightarrow \frac{E\{\underline{\mathbf{X}}^*[k]\underline{\mathbf{X}}^t[k]\}}{N} \approx \mathbf{P}$

Thus
$$E\{\underline{\mathbf{D}}[k+1]\} \approx (1-2\alpha) E\{\underline{\mathbf{D}}[k]\}$$

ADSP

FDAF

Notes FDAF:

- Both update algorithm and filter are transformed
- FFT (or DFT) is fixed transform --> easy but not exact

Conclusions FDAF:

$$\lim_{k\to\infty} E\{\underline{\mathbf{D}}[k]\} = \underline{\mathbf{0}} \; \Leftrightarrow \; \lim_{k\to\infty} E\{\underline{\mathbf{W}}[k]\} = \underline{\mathbf{W}}_o = \underline{\mathbf{F}}^{-1}\underline{\mathbf{w}}_o$$

$$\mathbf{P}_x^{-1} \text{: update of each bin is power normalized}$$

All weights have (in average) similar convergence!

Equivalent to NLMS with white noise input!

Focus on single channel adaptive algorithms using FIR structure

- Applications Adaptive Algorithms
- Minimum Mean Square Error (MMSE)
- Constrained MMSE
- Least Square (LS)
- Steepest Gradient Descent (SGD)
- Three LMS variants: NLMS, Complex LMS, Constrained LMS
- Newton
- Recursive Least Squares (RLS)
- Frequency Domain Adaptive Filter (FDAF)
- Summary

ADSP

Summary

	MMSE	LS
Auto correlation	$\mathbf{R}_x = E\{\underline{\mathbf{x}}[k] \cdot \underline{\mathbf{x}}^t[k]\}$	$\overline{\mathbf{R}}_x = \mathbf{X}^t \cdot \mathbf{X}$
Cross correlation	$\underline{\mathbf{r}}_{ex} = E\{e[k] \cdot \underline{\mathbf{x}}[k]\}$	$\overline{\underline{\mathbf{r}}}_{ex} = \mathbf{X}^t \cdot \underline{\mathbf{e}}$
Error J	$E\{r^2[k]\}$	$\sum_{i=0}^{L-1} r^2 [k-i]$
Criterion	$\min_{\underline{\mathbf{w}}} \{ E\{r^2[k]\} \}$	$\min_{\underline{\mathbf{w}}} \underline{\mathbf{e}} - \mathbf{X} \cdot \underline{\mathbf{w}} ^2$
Opt. solution $\underline{\mathbf{w}}_o$	$\mathbf{R}_{x}^{-1}\cdot \mathbf{\underline{r}}_{ex}$	$\overline{\mathbf{R}}_{x}^{-1}\cdot \underline{\overline{\mathbf{r}}}_{ex}$
Min. error J_{min}	$E\{e^2\} - \underline{\mathbf{r}}_{ex}^t \mathbf{R}_x^{-1} \underline{\mathbf{r}}_{ex}$	$\underline{\mathbf{e}}^t\underline{\mathbf{e}} - \underline{\overline{\mathbf{r}}}_{ex}^t\overline{\mathbf{R}}_x^{-1}\underline{\overline{\mathbf{r}}}_{ex}$

ADSP

Summary

Set of constraints: $\mathbf{C}^t \cdot \mathbf{w} = \mathbf{f}$

Solution for
$$N \ge M$$
: $\underline{\mathbf{w}}^c = \mathbf{C} \left(\mathbf{C}^t \mathbf{C} \right)^{-1} \underline{\mathbf{f}}$

Solution for N > M with MMSE:

$$\underline{\mathbf{w}}_{o}^{c} = \underline{\mathbf{w}}_{o} + \mathbf{R}_{x}^{-1} \mathbf{C} \left(\mathbf{C}^{t} \mathbf{R}_{x}^{-1} \mathbf{C} \right)^{-1} \left(\underline{\mathbf{f}} - \mathbf{C}^{t} \underline{\mathbf{w}}_{o} \right)$$

Equivalently:
$$\underline{\mathbf{w}}_{o}^{c} = \mathbf{R}_{x}^{-1}\mathbf{C}\left(\mathbf{C}^{t}\mathbf{R}_{x}^{-1}\mathbf{C}\right)^{-1}\underline{\mathbf{f}}$$

ADSP

Summary

Simple adaptive algorithms (no decorrelation):

SGD :
$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \left(\underline{\mathbf{r}}_{ex} - \mathbf{R}_x\underline{\mathbf{w}}[k]\right)$$
 (Complex)(N)LMS : $\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + \frac{2\alpha}{\widehat{\sigma}_x^2}\underline{\mathbf{x}}[k]r^*[k]$

Constrained LMS:
$$\mathbf{C}^t \cdot \mathbf{w} = \mathbf{f}$$

$$\underline{\mathbf{w}}[k+1] = \tilde{\mathbf{P}} \cdot (\underline{\mathbf{w}}[k] + 2\alpha \underline{\mathbf{x}}[k]r[k]) + \underline{\mathbf{w}}[0]$$

$$\tilde{\mathbf{P}} = \mathbf{I} - \mathbf{C} \left(\mathbf{C}^t \mathbf{C}\right)^{-1} \mathbf{C}^t \text{ and } \underline{\mathbf{w}}[0] = \mathbf{C} \left(\mathbf{C}^t \mathbf{C}\right)^{-1} \underline{\mathbf{f}}$$

ADSP

Summary

Algorithms with improved convergence:

$$\text{"LMS/Newton"} : \underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_x^{-1} \cdot \underline{\mathbf{x}}[k]r[k]$$
 Newton :
$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_x^{-1} \cdot (\underline{\mathbf{r}}_{ex} - \mathbf{R}_x\underline{\mathbf{w}}[k])$$
 RLS :
$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + \underline{\mathbf{g}}[k+1]r[k+1]$$
 with
$$\underline{\mathbf{g}}[k+1] = \frac{\overline{\mathbf{R}}^{-1}[k]\underline{\mathbf{x}}[k+1]}{\lambda^2 + \underline{\mathbf{x}}^t[k+1]\overline{\overline{\mathbf{R}}^{-1}}[k]\underline{\mathbf{x}}[k+1]}$$
 FDAF :
$$\underline{\mathbf{W}}[k+1] = \underline{\mathbf{W}}[k] + \frac{2\alpha}{N}\mathbf{P}^{-1}\underline{\mathbf{X}}^*[k]r[k]$$
 etc.

ADSP

Summary

Learning curves Newton vs. SGD in contour plot Coloured input process with $\Gamma_x = \lambda_{max}/\lambda_{min} = 3$

Note: SGD-curve each iteration orthogonal to contourplot JNewton-curve point each iteration towards J_{min}