Quantum Machine Learning - doing ML using QC

Machine Learning

 \mathcal{M} : model;

 \mathcal{O} : optimizer;

 \mathcal{J} : loss function.

(x, y): data

Quantum Computation

 \mathcal{Q} : qubits;

 $\mathcal{S} \colon \mathsf{superposition};$

 \mathcal{E} : entanglement.

Quantum Machine Learning - operating on qubits

Machine Learning

 \mathcal{M} : model;

O: optimizer;

 \mathcal{J} : loss function.

(x, y): data

Quantum Computation

Q: qubits;

 \mathcal{S} : superposition;

 \mathcal{E} : entanglement.

VQC execution $\mathcal{M},~\mathcal{S},~\mathcal{E}$ $\mathcal{U}(\theta)\ket{q_i}
ightarrow\ket{q_f}$

Quantum Machine Learning - natural randomness

Machine Learning

 \mathcal{M} : model;

O: optimizer;

 \mathcal{J} : loss function.

(x, y): data

Expected values

$$y_{est} \equiv \langle q_f | B | q_f \rangle$$

Quantum Computation

Q: qubits;

S: superposition;

 \mathcal{E} : entanglement.

VQC execution $\mathcal{M},~\mathcal{S},~\mathcal{E}$ $\mathcal{U}(heta)\ket{q_i}
ightarrow \ket{q_f}$

Quantum Machine Learning - encoding the problem

4

Quantum Machine Learning!

5

Determining Probability Density Functions (PDF) by fitting the corresponding Cumulative Density Function (CDF) using an adiabatic QML ansatz.

Algorithm's summary:

1. we optimize the parameters θ of the following adiabatic evolution:

$$H_{\rm ad}(\tau;\theta) = [1 - s(\tau;\theta)]\hat{X} + s(\tau;\theta)\hat{Z}$$
 (1)

in order to approximate some target CDF values with $\hat{F}(x_k \equiv \tau) = \langle \psi(\tau) | \hat{Z} | \psi(\tau) \rangle$;

- 2. we derivate from $H_{\rm ad}$ a circuit $C(\tau; \theta)$ whose action on the GS of \hat{X} returns $|\psi(\tau)\rangle$;
- 3. the circuit at step 2. can be used to calculate the CDF;
- 4. we compute the PDF by derivating ${\cal C}$ with respect to au using the Parameter Shift Rule.

• Use Variational Quantum Circuits to calculate multi-dimensional integrals of the form:

$$I(\alpha) = \int_{x_a}^{x_b} g(\alpha; \mathbf{x}) d^n \mathbf{x}.$$
 (2)

4 Algorithm's summary:

- inspired by arXiv:2211.02834, we train the derivative of a VQC with respect to the integral variables x to approximate the integrand g(x);
- 2. the derivatives are computed using the Parameter Shift Rule and this allows the same circuit \mathcal{C} to be used for approximating any integrand marginalisation and the primitive!
- 3. thanks to 2., it's much more convenient to compute Eq. (2) when varying α .

• Cleaning up the parameters space with a real time error mitigation strategy in order to overcome Noise-Induced Barren Plateaus (NIBP) when training a QML model.

Algorithm's summary:

1. we mitigate all the expected values E through Clifford Data Regression (CDR):

$$E_{\text{mit}} = \alpha_{\text{cdr}} E_{\text{noisy}} + \beta_{\text{cdr}};$$
 (3)

- 2. reduced CDR computational cost by updating $(\alpha, \beta)_{cdr}$ periodically during the training;
- 3. the mitigation removes the bounds and accelerate the training process.

