(extended) Generalized linear model

Jinxiao Zhang

Reference: Statistical Rethinking by Richard McElreath

http://xcelab.net/rm/statistical-rethinking/

$$\ln(\frac{\mathsf{p(survived)}_i}{1 - \mathsf{p(survived)}_i}) = b_0 + b_1 \cdot \mathsf{fare}_i + e_i$$

GLM in R

```
glm(formula, family = gaussian, data, weights, subset,
    na.action, start = NULL, etastart, mustart, offset,
    control = list(...), model = TRUE, method = "glm.fit",
    x = FALSE, y = TRUE, singular.ok = TRUE, contrasts = NULL, ...)
           Usage
           family(object, ...)
           binomial(link = "logit")
           gaussian(link = "identity")
           Gamma(link = "inverse")
           inverse.gaussian(link = "1/mu^2")
           poisson(link = "log")
           quasi(link = "identity", variance = "constant")
           quasibinomial(link = "logit")
           quasipoisson(link = "log")
```


Linear regression

When n = 1: Bernoulli

↓

Logistic regression

Exponential family

$$p(y; \eta) = b(y) \exp(\eta^T T(y) - a(\eta))$$

Linear regression

Y	X
y_1	\mathbf{x}_1
y_2	\mathbf{x}_2
y_3	\mathbf{x}_3
y_4	X_4
•••	•••
y ₉₉₉	X ₉₉₉
y ₁₀₀₀	x ₁₀₀₀

IID: independent and identically distributed

Logistic regression

$$y_i \sim Binomial(1, p_i)$$
 -- yes or no?
? $p_i = \beta_0 + \beta_1 x_i$ -- probability [0,1]

$$f(p_i) = \beta_0 + \beta_1 x_i$$

$$\log \frac{p_i}{1 - p_i} = \beta_0 + \beta_1 x_i$$

Y	X	
0	\mathbf{x}_1	
1	\mathbf{x}_2	
0	\mathbf{x}_3	
0	X_4	
•••	•••	
1	X ₉₉₉	
1	x ₁₀₀₀	

Poisson GLM

Y	X
3	\mathbf{x}_1
5	\mathbf{x}_2
4	x ₃
5	X_4
•••	•••
2	X ₉₉₉
6	x ₁₀₀₀

$$y \sim \text{Poisson}(\lambda), \lambda > 0$$

- Counts without upper limit, constant expected value
- Example: DNA mutations, soldiers killed by horses

$$y_i \sim Poisson(\lambda_i)$$

? $\lambda_i = \beta_0 + \beta_1 x_i$

$$\log(\lambda_i) = \beta_0 + \beta_1 x_i$$

GLM for fMRI data

BOLD signal inte

0 15 20 25 30 35 Time (s)

hemodynamic response functions (HRF)

5 10 15 20 25 30 35 Time (s)

BOLD signal intensity

t	event	signal
1	1	\mathbf{y}_1
2	0	y_2
3	0	y_3
4	0	y_4
•••	•••	
11	1	y_{11}
12	0	y ₁₂
•••	•••	•••

$$signal = \beta_0 + \beta_1 \cdot HRF(event) + \epsilon_i$$

Brain map of eta_1

Thank you!

Supplementary slides

Brain response is (approximately) a linear system

