Introduction Artificial Intelligence

Mining Frequent Patterns without Candidate Generation (FP Tree)

Dr. Muhammad Shuaib Qureshi

Frequent Pattern Mining: An Example

Given a transaction database DB and a minimum support threshold ξ , find all frequent patterns (item sets) with support no less than ξ .

Input:	DB:	<i>TID</i> 100	<u>Items bought</u> {f, a, c, d, g, i, m, p}
		200	$\{a, b, c, f, l, m, o\}$
		300	$\{b, f, h, j, o\}$
		400	$\{b, c, k, s, p\}$
		500	$\{a, f, c, e, l, p, m, n\}$

Minimum support: $\xi = 3$

Output: all frequent patterns, i.e., f, a, ..., fa, fac, fam, fm, am...

Problem Statement: How to efficiently find all frequent patterns?

Apriori

Main Steps of Apriori Algorithm:

Use frequent (k-1)-itemsets (L_{k-1}) to generate candidates of frequent k-itemsets C_k

Scan database and count each pattern in C_k , get frequent k-itemsets (L_k).

E.g.,

<u>TID</u>	Items bought	<u>Apriori</u>	iteration
100	$\{f, a, c, d, g, i, m, p\}$	C1	f,a,c,d,g,i,m,p,l,o,h,j,k,s,b,e,n
200	$\{a, b, c, f, l, m, o\}$	L1	f, a, c, m, b, p
300	$\{b, f, h, j, o\}$	C2	fa, fc, fm, fp, ac, am,bp
400	$\{b, c, k, s, p\}$	L2	fa, fc, fm, \dots
500	$\{a, f, c, e, l, p, m, n\}$	•••	3

Performance Bottlenecks of Apriori

Disadvantages of Apriori-like Approach

Bottlenecks of Apriori: candidate generation

Generate huge candidate sets:

 10^4 frequent 1-itemset will generate 10^7 candidate 2-itemsets To discover a frequent pattern of size 100, e.g., $\{a_1, a_2, ..., a_{100}\}$, one needs to generate $2^{100} \approx 10^{30}$ candidates.

Candidate Test incur multiple scans of database: each candidate

Question

What are the main drawbacks of Apriori –like approaches and explain why? A:

The main disadvantages of Apriori-like approaches are:

- 1. It is costly to generate the candidate sets;
- 2. It incurs multiple scan of the database.

The reason is that: Apriori is based on the following heuristic/down-closure property: if any length k patterns is not frequent in the database, any length (k+1) superpattern can never be frequent.

The two steps in Apriori are candidate generation and test. If the 1-itemsets is huge in the database, then the generation for successive item-sets would be quite costly and thus the test.

Overview of FP-Growth: Ideas

Compress a large database into a compact, Frequent-Pattern tree (FP-tree) structure

highly compacted, but complete for frequent pattern mining avoid costly repeated database scans

Develop an efficient, FP-tree-based frequent pattern mining method (FP-growth)

A divide-and-conquer methodology: decompose mining tasks into smaller ones

Avoid candidate generation: sub-database test only.

FP-tree:

Construction and Design

Construct FP-tree

Two Steps:

 Scan the transaction DB for the first time, find frequent items (single item patterns) and order them into a list L in frequency descending order.

```
e.g., L={f:4, c:4, a:3, b:3, m:3, p:3}
In the format of (item-name, support)
```

2. For each transaction, order its frequent items according to the order in L; Scan DB the second time, construct FP-tree by putting each frequency ordered transaction onto it.

8

Minimum support: $\xi = 3$

Step 1: Scan DB for the first time to generate L

L

<u>TID</u>	Items bought
100	$\{f, a, c, d, g, i, m, p\}$
200	$\{a, b, c, f, l, m, o\}$
300	$\{b, f, h, j, o\}$
400	$\{b, c, k, s, p\}$
500	$\{a, f, c, e, l, p, m, n\}$

<u>Item</u>	<u>frequency</u>	
f	4	
$\boldsymbol{\mathcal{C}}$	4	
a	3	
b	3	
m	3	
p	3	

By-Product of First Scan of Database

Step 2: scan the DB for the second time, order frequent items in each transaction.

<u>TID</u>	Items bought	(ordered) frequent items
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	$\{b, f, h, j, o\}$	$\{f, b\}$
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$

Items bought

{f, a, c, d, g, i, m, p} {a, b, c, f, l, m, o} {b, f, h, j, o} {b, c, k, s, p} {a, f, c, e, l, p, m, n}

Construction Example

Final FP-tree

FP-Tree Definition

FP-tree is a frequent pattern tree. Formally, FP-tree is a tree structure defined below:

- 1. One root labeled as "null", a set of item prefix sub-trees as the children of the root, and a frequent-item header table.
- 2. Each node in the item prefix sub-trees has three fields:

item-name: register which item this node represents, count, the number of transactions represented by the portion of the path reaching this node,

node-link that links to the next node in the FP-tree carrying the same itemname, or null if there is none.

3. Each entry in the frequent-item header table has two fields,

item-name, and

head of node-link that points to the first node in the FP-tree carrying the itemname.

Advantages of the FP-tree Structure

The most significant advantage of the FP-tree

Scan the DB only twice and twice only.

Completeness:

the FP-tree contains all the information related to mining frequent patterns (given the min-support threshold).

Compactness:

The size of the tree is bounded by the occurrences of frequent items

The height of the tree is bounded by the maximum number of items in a transaction

19

Questions?

Why descending order?

Example 1:

TID (unordered) frequent items
100 {f, a, c, m, p}
500 {a, f, c, p, m}

Questions?

Example 2:

<u>TID</u>	(ascended) frequent items	
100	$\{p, m, a, c, \bar{f}\}$	
200	$\{m, b, a, c, f\}$	
300	$\{b,f\}$	
400	$\{p, b, c\}$	
500	$\{p, m, a, c, f\}$	

This tree is larger than FP-tree, because in FP-tree, more frequent items have a higher position, which makes branches less

Activity:

Use FP Tree algorithm to construct FP Tree. Minimum Support = 2

TID	ITEMS
1	A B C D
2	BCE
3	ABCE
4	BEF
5	ABFD
6	BCDEF