TABLE 4.2 The Laplace Transform Properties

Operation	x(t)	X(s)
Addition	$x_1(t) + x_2(t)$	$X_1(s) + X_2(s)$
Scalar multiplication	kx(t)	kX(s)
Time differentiation	$\frac{dx}{dt}$	$sX(s)-x(0^-)$
	$\frac{d^2x}{dt^2}$	$s^2X(s) - sx(0^-) - \dot{x}(0^-)$
	$\frac{d^3x}{dt^3}$	$s^3X(s) - s^2x(0^-) - s\dot{x}(0^-) - \ddot{x}(0^-)$
•	$\frac{d^nx}{dt^n}$	$s^{n}X(s) - \sum_{k=1}^{n} s^{n-k}x^{(k-1)}(0^{-})$
Time integration	$\int_{0^{-}}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$
	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s) + \frac{1}{s}\int_{-\infty}^{0^-} x(t) dt$
Time shifting	$x(t-t_0)u(t-t_0)$	$X(s)e^{-st_0} t_0 \geq 0$
Frequency shifting	$x(t)e^{s_0t}$	$X(s-s_0)$
Frequency differentiation	-tx(t)	$\frac{dX(s)}{ds}$
Frequency integration	$\frac{x(t)}{t}$	$\int_{z}^{\infty} X(z) dz$
caling	$x(at), a \geq 0$	$\frac{1}{a}X\left(\frac{s}{a}\right)$
ime convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$
requency convolution	$x_1(t)x_2(t)$	$\frac{1}{2\pi j}X_1(s)*X_2(s)$
itial value	$x^{(0+)}$	$\lim_{s\to\infty} sX(s) \qquad (n>m)$
nal value	$x(\infty)$	$\lim_{s\to 0} sX(s) \qquad [poles of sX(s) in LHP]$