Tarea 3: Criptografía y seguridad- 2020-2, Curvas Elípticas.

- 1. Sea $E: y^2 + 20x = x^3 + 21 \pmod{35}$ y sea $Q = (15, -4) \in E$.
 - i) Factoriza 35 tratando de calcular 3Q.
 - ii) Factoriza 35 tratando de calcular 4Q duplicándolo.
 - iii) Calcula 3Q y 4Q sobre $E \pmod{5}$ y sobre $E \pmod{7}$ explica por que el factor 5 se obtiene calculando 3Q y por que el factor 7 se obtiene calculando 4Q.
- 2. Sea E la curva elíptica $y^2 = x^3 + x + 28$ definida sobre \mathbb{Z}_{71} .
 - i) Calcula y muestra el número de puntos de E
 - ii) Muestra que E no es un grupo cíclico.
 - iii) ¿Cuál es el máximo orden de un elemento en E?, encuentra un elemento que tenga este orden.
- 3. Sea $\mathbb{E}: y^2 2 = x^3 + 333x$ sobre \mathbb{F}_{347} y sea P = (110, 136)
 - (a) Es Q=(81,-176) un punto de E?
 - ii) Si sabemos que $|\mathbb{E}| = 358$. ¿podemos decir que \mathbb{E} es criptográficamente útil?, ¿Cuál es el orden de P? ¿Entre que valores se puede escoger la clave privada?
 - iii) Si tu clave privada es k = 101 y algún conocido te ha enviado el mensaje cifrado $(M_1 = (232, 278), M_2 = (135, 214))$ ¿Cuál era el mensaje original?
- 4. Sea \mathbb{E} : $F(x,y) = y^2 x^3 2x 7$ sobre \mathbb{Z}_{31} con $\#\mathbb{E} = 39$ y P = (2,9) es un punto de orden 39 sobre \mathbb{E} , el ECIES simplicado definido sobre \mathbb{E} tiene \mathbb{Z}_{31}^* como espacio de texto plano, supongamos que la clave privada es m = 8
 - i) Calcula Q = mP
 - ii) Descifra la siguiente cadena de texto cifrado ((18, 1), 21), ((3, 1), 18)), ((17, 0), 19), ((28, 0), 8)
 - iii) Supongamos que cada texto plano representa un caracter alfabético, convierte el texto plano en una palabra en ingles. usa la asociación $(A \longrightarrow 1, \dots, Z \longrightarrow 26)$ en este caso 0 no es considerado como un texto plano o un par ordenado.