Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Even) Examination May-2019

EN3BS05 Engineering Physics

Branch/Specialisation: All Programme: B.Tech.

Duration: 3 Hrs. Maximum Marks: 60

		estions are compulsory. International should be written in full instead	d choices, if any, are indicated. Answer d of only a, b, c or d.	s o			
Q.1	i.	Which of the following atomi	c states has longest life time?	1			
		(a) Excited state	(b) Metastable state				
		(c) Intermediate state	(c) Ground state				
	ii.	Light is guided within the core of a step index fiber by					
		(a) Refraction at the core-air interface					
		(b) Total internal reflection at the core-cladding interface					
		(c) Total internal reflection at	the outer surface of the cladding				
		(d) Change in the speed of lig	ht within the core				
	iii.	Newton's ring experiment is based on interference due to					
		(a) Division of amplitude	(b) Division of wavefront				
		(c) None of these	(d) Combination of (a) and (b)				
	iv.	A grating which would be	e more suitable for constructing a	1			
		spectrometer for the visible and ultraviolet regions, should have					
		_	(b) 1000 lines/cm				
		(c) 10000 lines/cm	(d) 10 ⁶ lines/cm				
	v.	De-Broglie wavelength of an	electron which has been accelerated	1			
		from rest through a potential difference of 100V is					
		(a) 12.27 A^0 (b) 1.227 A^0	(c) $15 A^0$ (d) $1.5 A^0$				
	vi.	The rest mass of a photon is		1			
		_	(c) Negligible (d) None of these				
	vii.	Inelastic collision is collision		1			
			(b) Not conserved				
		(c) Increases	(d) Decreases				
				_			

P.T.O.

1

1

2

5

[3]

Q.4	1.	Give any two limitations of classical mechanics.	2		
	ii.	State Heisenberg's Uncertainty principle. Find the De-Broglie	3		
		wavelength of a 1.0 mg grain of dirt blown by a wind of speed			
		20m/s.			
	iii.	Write short notes on:	5		
		(a) Miller indices			
		(b) Statement and conclusions of Compton's effect			
OR	iv.	Establish the one-dimensional Schrodinger wave equation for a			
		infinite square well potential, and hence give the discrete energy			
		levels that are available to the particle.			
Q.5	i.	What are pseudo forces? Explain.	4		
	ii.	Explain Coriolis force. Give any two applications.	6		
OR	iii.	Write short notes on:	6		
		(a) Concept of reduced mass			
		(b) Conservation of linear and angular momentum.			
Q.6	i.	Draw a plot showing the variation of electrical resistivity with	2		
		temperature for			
		(a) Normal conductor (b) Super conductor			
	ii.	(a) Distinguish between Type-1 and Type-2 super conductors.	8		
		(b) What is Reverberation time? Explain Sabine's formula.			
OR	iii.	(a) What is the Meissner effect? How does it occur?	8		
		(b) Write any four factors which should be kept in mind while designing a hall for a good accoustic.			
		designing a nan for a good accousite.			

Marking Scheme EN3BS05 Engineering Physics

Q.1	i.	Which of the following atomic states has longest life time? (c) Ground state	1	
	ii.	Light is guided within the core of a step index fiber by (b) Total internal reflection at the core-cladding interface	1	
	iii.	Newton's ring experiment is based on interference due to (a) Division of amplitude	1	
iv.		A grating which would be more suitable for constructing a spectrometer for the visible and ultraviolet regions, should have (c) 10000 lines/cm	1	
	V.	De-Broglie wavelength of an electron which has been accelerated from rest through a potential difference of 100V is (b)1.227 A ⁰	1	
	vi.	The rest mass of a photon is (a) 0		
	vii.	Inelastic collision is collision in which kinetic energy is (b) Not conserved		
	viii.	Two perfectly elastic particles A and B of equal masses travelling along the line joining them with velocity 15 ms ⁻¹ and 10 ms ⁻¹ respectively collide. Their velocities after the elastic collision will be (in ms ⁻¹) respectively (b) 10 and 15		
	ix.	Superconductivity was first discovered in (a) Mercury	1	
	х.	The walls of the auditorium built for music concerns should (d) Absorb sound	1	
Q.2	i.	Any four merits of optical fiber communication system over conventional communication system	2	
		0.5 mark for each merit (0.5 mark * 4)	_	
	ii.	Find the intensity of focussed beam and write its unit. I=P/A Correct formula: 1 mark = 2 x 10 ⁹ W/m ² Correct answer: 2 marks	3	
	iii.	Acceptance angle for an optical fibre Definition of acceptance angle: Diagram: Derivation for relation: 2 marks 1 mark 2 marks	5	

OR	iv.	Essential requirements to produce a laser: He-Ne Laser Diagram: Energy level diagram: Explanation:	1 mark 1 mark 1 mark 2 marks	5	
Q.3	i.	Any two differences between ordinary ray and extra ordinary ray			
		1 mark for each difference	(1 mark * 2)	3	
	ii.	Prove that the radius of the n th dark ring of λ_1 is $ \sqrt[]{\frac{\lambda_1\lambda_2R}{\lambda_1-\lambda_2}} $ We know that the radius of nth dark due to λ_1 $ = \sqrt{n} \lambda_1 R \qquad (1) $ The radius of (n+1)th dark ring due to λ_2 $ = \sqrt{(n+1)} \lambda_2 R \qquad (2) $ According to the problem, both are equal, hence $ r = \sqrt{n} \lambda_1 R = \sqrt{(n+1)} \lambda_2 R $ $ n \lambda_1 R = (n+1) \lambda_2 R $ $ n = \frac{\lambda_2}{\lambda_1 - \lambda_2} \qquad (3) $ from equation (3), substituting the value of n in eq.(1), We have			
		$r = \sqrt{n \lambda_{1 R}}$ $= \sqrt{\frac{\lambda_{1} \lambda_{2} R}{\lambda_{1} - \lambda_{2}}}$,,		
	iii.	Write a short note on: (a) Fresnel's biprism	2.5 marks	5	
		(b) Nicol Prism	2.5 marks		
OR	iv.	Condition for principal maxima. Diagram: Condition for principle maxima:	1 mark 4 marks	5	
Q.4	i.	Any two limitations of classical mechanics.		2	
		1 mark for each limitation	(1 mark * 2)		
	ii.	Heisenberg's Uncertainty principle. 1 mark Find the De-Broglie wavelength of a 1.0 mg grain of dirt blown by wind of speed 20m/s. $\lambda = h/mv$ 6.63 x 10 ⁻³⁴ J-s/((1.0 x 10 ⁻⁶) (20 m/s))			
		$= 3.315 \times 10^{-29} \mathrm{m}$	2 marks		

	iii.	Write short notes on:		5
		(a) Miller indices	2.5 marks	
		(b) Statement of Compton's effect	1 mark	
		Conclusions of Compton's effect	1.5 marks	
OR	iv.	Establish the one-dimensional Schrodinger wave eq	uation for a infinite	5
		square well potential, and hence give the discrete er	nergy levels that are	
		available to the particle.		
		Diagram	1 mark	
		Derivation of wavelength	2 marks	
		Energy level	2 marks	
Q.5	i.	Pseudo forces		4
		Definition	1 mark	
		Explanation	3 marks	
	ii.	Coriolis force	2 marks	6
		Any two applications.2 marks for each (2 mark * 2) 4 marks	
OR	iii.	Write short notes on:		6
		(a) Concept of reduced mass	3 marks	
		(b) Conservation of linear	1.5 marks	
		Angular momentum.	1.5 marks	
Q.6	i.	Draw a plot showing the variation of electric temperature for	al resistivity with	2
		(a) Normal conductor	1 mark	
		(b) Super conductor	1 mark	
	ii.	(a) Distinguish between Type-1 and Type-2 super of	conductors.	8
			4 marks	
		(b) Reverberation time	2 marks	
		Sabine's formula.	2 marks	
OR	iii.	(a) Meissner effect	1 mark	8
		Diagram	1 mark	
		Its occurrence	2 marks	
		(b) Any four factors which should be kept in mind	l while designing a	
		hall for a good accoustic.		
		1 mark for each (1 mark * 4)	4 marks	

5			
5			
4			
1			
5			
5			
2			
-			
3			
3			