§ 4 Konstruktion des Lebesgueintegrals

In diesem Paragraphen sei $\emptyset \neq X \in \mathfrak{B}_d$. Wir schreiben außerdem λ statt λ_d .

Definition

Sei $f: X \to [0, \infty)$ eine einfache Funktion mit der Normalform $f = \sum_{j=1}^m y_j \mathbb{1}_{A_j}$. Das **Lebesgueintegral** von f ist definiert durch:

$$\int_X f(x) \, \mathrm{d}x := \sum_{j=1}^m y_j \lambda(A_j)$$

Satz 4.1

Sei $f: X \to [0, \infty)$ einfach, $z_1, \ldots, z_k \in [0, \infty)$ und $B_1, \ldots, B_k \in \mathfrak{B}(X)$ mit $\bigcup B_j = X$ und $f = \sum_{j=1}^k z_j \mathbb{1}_{B_j}$. Dann gilt:

$$\int_X f(x) \, \mathrm{d}x = \sum_{j=1}^k z_j \lambda(B_j)$$

Beweis

In der großen Übung.

Satz 4.2

Seien $f, g: X \to [0, \infty)$ einfach, $\alpha, \beta \in [0, \infty)$ und $A \in \mathfrak{B}(X)$.

- $(1) \int_X \mathbb{1}_A(x) \, \mathrm{d}x = \lambda(A)$
- (2) $\int_X (\alpha f + \beta g)(x) dx = \alpha \int_X f(x) dx + \beta \int_X g(x) dx$
- (3) Ist $f \leq g$ auf X, so ist $\int_X f(x) dx \leq \int_X g(x) dx$.

Beweis

- (1) Folgt aus der Definition und 4.1.
- (2) Es seien $f = \sum_{j=1}^m y_j \mathbb{1}_{A_j}$ und $g = \sum_{j=1}^k z_j \mathbb{1}_{B_j}$ die Normalformen von f und g. Dann gilt:

$$\alpha f + \beta g = \sum_{j=1}^{m} \alpha y_j \mathbb{1}_{A_j} + \sum_{j=1}^{k} \beta z_j \mathbb{1}_{B_j}$$

4. Konstruktion des Lebesgueintegrals

Dann gilt:

$$\int_{X} (\alpha f + \beta g) \stackrel{\text{4.1}}{=} \sum_{j=1}^{m} \alpha y_{j} \lambda(A_{j}) + \sum_{j=1}^{k} \beta z_{j} \lambda(B_{j})$$

$$= \alpha \sum_{j=1}^{m} y_{j} \lambda(A_{j}) + \beta \sum_{j=1}^{k} z_{j} \lambda(B_{j})$$

$$= \alpha \int_{X} f(x) \, dx + \beta \int_{X} g(x) \, dx$$

(3) Definiere h:=g-f. Dann ist $h\geq 0$ und einfach. Sei $h=\sum_{j=1}^m x_j\mathbb{1}_{C_j}$ die Normalform von h, d.h. $x_1,\ldots,x_m\geq 0$. Dann gilt:

$$\int_X h(x) \, \mathrm{d}x = \sum_{j=1}^m x_j \lambda(C_j) \ge 0$$

Also folgt aus g = f + h und (2):

$$\int_X g(x) \, \mathrm{d}x = \int_X f(x) \, \mathrm{d}x + \int_X h(x) \, \mathrm{d}x \ge \int_X f(x) \, \mathrm{d}x$$

Definition

Sei $f: X \to [0, \infty]$ messbar. (f_n) sei eine für f zulässige Folge. Das **Lebesgueintegral** von f ist definiert als:

$$\int_{X} f(x) \, \mathrm{d}x := \lim_{n \to \infty} \int_{X} f_n(x) \, \mathrm{d}x \tag{*}$$

Bemerkung:

- (1) In 4.3 werden wir sehen, dass (*) unabhängig ist von der Wahl der für f zulässigen Folge (f_n) .
- (2) $(f_n(x))$ ist wachsend für alle $x \in X$, d.h.:

$$f(x) = \lim_{n \to \infty} f_n(x) = (\sup_{n \in \mathbb{N}} f_n)(x)$$

(3) Aus 4.2(3) folgt dass $(\int_X f_n(x) dx)$ wachsend ist, d.h.:

$$\lim_{n\to\infty} \int_X f_n(x) \, \mathrm{d}x = \sup\{ \int_X f_n(x) \, \mathrm{d}x \mid n\in\mathbb{N} \} = \int_X f_(x) \, \mathrm{d}x$$

Bezeichnung:

Für messbare Funktionen $f: X \to [0, \infty]$ definiere

$$M(f) := \{ \int_X g \, \, \mathrm{d}x \mid g : X \to [0, \infty) \text{ einfach und } g \le f \text{ auf } X \}$$

Satz 4.3

Ist $f: X \to [0, \infty]$ messbar und (f_n) zulässig für f, so gilt:

$$L := \lim_{n \to \infty} \int_X f_n \, dx = \sup M(f)$$

Insbesondere ist $\int_X f(x) dx$ wohldefiniert.

Folgerungen 4.4

Ist $f: X \to [0, \infty]$ messbar, so ist $\int_X f(x) dx = \sup M(f)$.

Beweis

Sei $\int_X f_n dx \in M(f) \, \forall n \in \mathbb{N}$. Dann ist

$$L = \sup \left\{ \int_X f_n \, dx \mid n \in \mathbb{N} \right\} \le \sup M(f)$$

Sei nun g einfach und $0 \le g \le f$. Sei weiter

$$g = \sum_{j=1}^{m} y_j \mathbb{1}_{A_j}$$

die Normalform von g.

Sei $\alpha > 1$ und $B_n := \{\alpha f_n \ge g\}$. Dann ist

$$B_n \in \mathfrak{B}(X)$$
 und $(B_n \subseteq B_{n+1}, \text{ sowie } \mathbb{1}_{B_n} g \le \alpha f_n.$

Sei $x \in X$.

Fall 1: Ist f(x) = 0, so ist wegen $0 \le g \le f$ auch g(x) = 0. Somit ist $x \in B_n$ für jedes $n \in \mathbb{N}$.

Fall 2: Ist f(x) > 0, so ist

$$\frac{1}{\alpha}g(x) < f(x)$$

(Dies ist klar für g(x) = 0 und falls gilt: g(x) > 0, so ist $\frac{1}{\alpha}g(x) < g(x) \le f(x)$)

Da f_n zulässig für f ist, gilt: $f_n(x) \to f(x)$ $(n \to \infty)$, weshalb ein $n(x) \in \mathbb{N}$ existiert mit:

$$\frac{1}{\alpha}g(x) < f(x)$$
 für jedes $n \ge n(x)$

Es folgt $x \in B_n$ für jedes $n \ge n(x)$.

Fazit: $X = \bigcup B_n$.

$$A_j = A_j \cap X = A_j \cap \left(\bigcup B_n\right) = \bigcup (A_j \cap B_n) \text{ und } A_j \cap B_n \subseteq A_j \cap B_{n+1}$$

Aus 1.7 folgt $\lambda(A_j) = \lim_{n \to \infty} \lambda(A_j \cap B_n)$. Das liefert:

$$\int_{X} g \, dx = \sum_{j=1}^{m} y_{j} \lambda(A_{j}) = \sum_{j=1}^{m} y_{j} \lim_{n \to \infty} \lambda(A_{j} \cap B_{n})$$

$$= \lim_{n \to \infty} \sum_{j=1}^{m} y_{j} \lambda(A_{j} \cap B_{n}) \stackrel{\text{4.1}}{=} \lim_{n \to \infty} \int_{X} \mathbb{1}_{B_{n}} g \, dx$$

$$\leq \lim_{n \to \infty} \int_{X} \alpha f_{n} \, dx = \alpha L$$

g war einfach und $0 \le g \le f$ beliebig, sodass

$$\sup M(f) \le \alpha L \stackrel{\alpha \to 1}{\Longrightarrow} \sup M(f) \le L$$

Satz 4.5

Seien $f, g: X \to [0, \infty]$ messbar und $\alpha, \beta \ge 0$.

- (1) $\int_X (\alpha f + \beta g)(x) dx = \alpha \int_X f(x) dx + \beta \int_X g(x) dx$
- (2) Ist $f \leq g$ auf X, so gilt $\int_X f(x) dx \leq \int_X g(x) dx$
- (3) $\int_X f(x) dx = 0 \iff \lambda(\{f > 0\}) = 0$

Beweis

(1) (f_n) und (g_n) seien zulässig für f bzw. g. Weiter sei $(h_n) := \alpha(f_n) + \beta(g_n)$. Dann ist wegen 3.7 und $\alpha, \beta \geq 0$, dass (h_n) zulässig für $\alpha f + \beta g$ ist. Dann:

$$\int_{X} (\alpha f + \beta g) dx = \lim_{n \to \infty} \int_{X} (\alpha (f_n) + \beta (g_n)) dx$$

$$\stackrel{\text{4.2}}{=} \alpha \lim_{n \to \infty} \int_{X} (f_n) dx + \beta \lim_{n \to \infty} \int_{X} (g_n) dx$$

$$= \alpha \int_{X} f dx + \beta \int_{X} g dx$$

- (2) Wegen $f \leq g$ auf X ist $M(f) \subseteq M(g)$ und somit auch $\sup M(f) \leq \sup M(g)$. Aus 4.4 folgt nun die Behauptung.
- (3) Setze $A := \{f > 0\} = \{x \in X : f(x) > 0\}.$

" \Longrightarrow " Sei $\int_X f dx = 0$ und $A_n := \{f > \frac{1}{n}\}$. Dann ist $A = \bigcup A_n$ und $f \ge \frac{1}{n} \mathbb{1}_{A_n}$. Damit folgt:

$$0 = \int_{X} f \, dx \stackrel{(2)}{\ge} \int_{X} \frac{1}{n} \mathbb{1}_{A_n} \, dx = \frac{1}{n} \lambda(A_n)$$

Es ist also $\lambda(A_n) = 0$ und damit gilt weiter

$$\lambda(A) = \lambda(\bigcup A_n) \stackrel{1.7}{\leq} \sum \lambda(A_n) = 0$$

Also ist auch $\lambda(A) = 0$.

" $\Leftarrow=$ " Sei $\lambda(A)=0$, (f_n) zulässig für f und $c_n:=\max\{f_n(x):x\in X\}$. Dann ist $f_n\leq c_n\mathbb{1}_A$ und es gilt:

$$0 \le \int_X f_n \, dx \stackrel{(2)}{\le} \int_X c_n \mathbb{1}_A \, dx = c_n \lambda(A) \stackrel{\text{Vor.}}{=} 0$$

Es ist also $\int_X f_n dx = 0$ für jedes $n \in \mathbb{N}$ und somit auch $\int_X f dx = 0$

Satz 4.6 (Satz von Beppo Levi (Version I))

Sei (f_n) eine Folge messbarer Funktionen $f_n: X \to [0, \infty]$ und es gelte $f_n \leq f_{n+1}$ auf X für jedes $n \in \mathbb{N}$.

- (1) Für alle $x \in X$ existiert $\lim_{n \to \infty} f_n(x)$.
- (2) Die Funktion $f: X \to [0, \infty]$ definiert durch:

$$f(x) := \lim_{n \to \infty} f_n(x)$$

ist messbar.

(3)
$$\int_X \lim_{n \to \infty} f_n(x) \, dx = \int_X f(x) \, dx = \lim_{n \to \infty} \int_X f_n(x) \, dx$$

Beweis

- (1) Für alle $x \in X$ ist $(f_n(x))$ wachsend, also konvergent in $[0, +\infty]$.
- (2) folgt aus 3.5.
- (3) Sei $\left(u_j^{(n)}\right)_{j\in\mathbb{N}}$ zulässig für f_n und $v_j := \max\left\{u_j^{(1)}, u_j^{(2)}, \dots, u_j^{(j)}\right\}$. Aus 3.7 folgt, dass v_j einfach ist und aus der Konstruktion lässt sich nachrechnen, dass gilt:

$$0 \le v_j \le v_{j+1}$$
 und $v_j \le f_n \le f$ und $f_n = \sup_{j \in \mathbb{N}} u_j^{(n)} \le \sup_{j \in \mathbb{N}} v_j$ (auf X)

Damit ist (v_i) zulässig für f und es gilt:

$$\int_X f \, dx = \lim_{j \to \infty} \int_X v_j \, dx \le \lim_{j \to \infty} \int_X f_j \, dx \le \int_X f \, dx$$

Satz 4.7 (Satz von Beppo Levi (Version II))

Sei (f_n) eine Folge messbarer Funktionen $f_n: X \to [0, \infty]$.

- (1) Für alle $x \in X$ existiert $s(x) := \sum_{j=1}^{\infty} f_j(x)$.
- (2) $s: X \to [0, \infty]$ ist messbar.
- (3) $\int_X \sum_{j=1}^{\infty} f_j(x) dx = \sum_{j=1}^{\infty} \int_X f_j(x) dx$

Beweis

Setze

$$s_n := \sum_{j=1}^n f_j$$

Dann erfüllt (s_n) die Voraussetzungen von 4.6. Aus 4.6 und 4.5(1) folgt die Behauptung.

Satz 4.8

Sei $f: X \to [0, \infty]$ messbar und es sei $\emptyset \neq Y \in \mathfrak{B}(X)$ (also $Y \subseteq X$ und $Y \in \mathfrak{B}_d$). Dann sind die Funktionen $f_{|Y}: Y \to [0, \infty]$ und $\mathbb{1}_Y \cdot f: X \to [0, \infty]$ messbar und es gilt:

$$\int_Y f(x) \, \mathrm{d}x := \int_Y f_{|Y}(x) \, \mathrm{d}x = \int_X (\mathbb{1}_Y \cdot f)(x) \, \mathrm{d}x$$

Beweis

Fall 1: Die Behauptung ist klar, falls f einfach ist. (Übung!)

Fall 2: Sei (f_n) zulässig für f und $g_n := f_{n|Y}, h_n := \mathbb{1}_Y f_n$ Dann ist (g_n) zulässig für $f_{|Y|}$ und (h_n) ist zulässig für $\mathbb{1}_Y f_n$. Insbesondere sind $f_{n|Y}$ und $\mathbb{1}_Y f_n$ nach 3.5 messbar. Weiter gilt:

$$\int_{Y} f_{|Y} dx \stackrel{n \to \infty}{\longleftarrow} \int_{Y} g_n dx \stackrel{Fall1}{=} \int_{X} h_n dx \stackrel{n \to \infty}{\longrightarrow} \int_{X} \mathbb{1}_{Y} f dx$$

Sei $f: X \to \mathbb{R}$ messbar. f heißt (Lebesgue-)integrierbar (über X), genau dann wenn $\int_X f_+(x) dx < \infty$ ∞ und $\int_X f_-(x) dx < \infty$.

In diesem Fall heißt:

$$\int_X f(x) \, \mathrm{d}x := \int_X f_+(x) \, \mathrm{d}x - \int_X f_-(x) \, \mathrm{d}x$$

das (Lebesgue-)**Integral** von f (über X).

Beachte:

Ist $f: X \to [0, \infty]$ messbar, so ist f genau dann integrierbar, wenn gilt:

$$\int_X f(x) \, \mathrm{d}x < \infty$$

$$\begin{array}{l} \mathbf{Beispiel} \\ \mathrm{Sei} \ X \in \mathfrak{B}_1, \ f(x) := \begin{cases} 1 & , x \in X \cap \mathbb{Q} \\ 0 & , x \in X \setminus \mathbb{Q} \end{cases} = \mathbb{1}_{X \cap \mathbb{Q}}. \ X, \mathbb{Q} \in \mathfrak{B}_1 \implies X \cap \mathbb{Q} \in \mathfrak{B}_1 \implies f \ \mathrm{ist}$$

messbar.

$$0 \le \int_X f(x) \, dx = \int_X \mathbb{1}_{X \cap \mathbb{Q}} \, dx = \lambda(X \cap \mathbb{Q}) \le \lambda(\mathbb{Q}) = 0$$

Das heißt: $f \in \mathfrak{L}^1(X)$, $\int_X f \, dx = 0$. Ist speziell $X = [a, b] \quad (a < b)$, so gilt: $f \in \mathfrak{L}^1([a, b])$, aber $f \notin R([a,b])$.

Satz 4.9 (Charakterisierung der Integrierbarkeit)

Sei $f: X \to \mathbb{R}$ messbar. Die folgenden Aussagen sind äquivalent:

- (1) f ist integrierbar.
- (2) Es existieren integrierbare Funktionen $u, v: X \to [0, +\infty]$ mit $u(x) = v(x) = \infty$ für **kein** $x \in X$ und f = u - v auf X.
- (3) Es existiert eine integrierbare Funktion $g: X \to [0, +\infty]$ mit $|f| \leq g$ auf X.
- (4) |f| ist integrierbar.

Zusatz:

- (1) $\mathfrak{L}^1(X) = \{ f : X \to \mathbb{R} \mid f \text{ ist messbar und } \int_X |f| \, \mathrm{d}x < \infty \}$ (folgt aus (1)-(4)).
- (2) Sind u, v wie in (2), so gilt: $\int_X f \, dx = \int_X u \, dx \int_X v \, dx$.

Beweis (des Satzes)

- $(1) \Rightarrow (2) \ u := f_+, \ v := f_-.$
- $(2) \Rightarrow (3) \ g := u + v, \ \text{dann ist} \ u, v \geq 0, \ g \geq 0, \ \int_X g \ \mathrm{d}x \stackrel{4.5}{=} \int_X u \ \mathrm{d}x + \int_X v \ \mathrm{d}x < \infty. \implies g \ \text{ist} \\ \text{integrierbar und:} \ |f| = |u v| \leq |u| + |v| = u + v = g \ \text{auf} \ X.$
- (3) \Rightarrow (4) 4.5 $\Longrightarrow \int_X |f| \, \mathrm{d}x \le \int_X g \, \mathrm{d}x < \infty \implies f$ ist integrierbar.
- $(4) \Rightarrow (1)$ $f_+, f_- \leq |f|$ auf X. $\Longrightarrow 0 \leq \int_X f_{\pm} dx \leq \int_X |f| dx < \infty \stackrel{Def.}{\Longrightarrow} f$ ist integrierbar.

Beweis (des Zusatzes)

- (1) ✓
- (2) Es ist $f = u v = f_+ f_- \implies u + f_- = f_+ + v$.

$$\implies \int_X u \, dx + \int_X f_- \, dx \stackrel{4.5}{=} \int_X (u + f_-) \, dx = \int_X (f_+ + v) \, dx \stackrel{4.5}{=} \int_X f_+ \, dx + \int_X v \, dx$$

$$\implies \int_X u \, dx - \int_X v \, dx = \int_X f_+ \, dx - \int_X f_- \, dx \stackrel{Def.}{=} \int_X f \, dx.$$

Folgerungen 4.10

Sei $f: X \to \overline{\mathbb{R}}$ integrierbar und $N:=\{|f|=+\infty\}=\{x\in X: |f(x)|=+\infty\}$. Dann ist $N\in\mathfrak{B}(X)$ und $\lambda(N)=0$.

Beweis

 $3.4 \implies N \in \mathfrak{B}(X)$. $n\mathbb{1}_N \leq |f|$ für alle $n \in \mathbb{N}$. Dann:

$$n \cdot \lambda(N) = \int_X n \mathbb{1}_N \, dx \stackrel{4.5}{\leq} \int_X |f| \, dx \stackrel{4.9}{<} \infty \text{ für alle } n \in \mathbb{N}$$

Also: $0 \le n\lambda(N) \le \int_X |f| \, dx \quad \forall n \in \mathbb{N} \implies \lambda(N) = 0$

Satz 4.11

 $f, g: X \to \overline{\mathbb{R}}$ seien integrierbar und es sei $\alpha \in \mathbb{R}$.

- (1) αf ist integrierbar und $\int_X (\alpha f) dx = \alpha \int_X f dx$.
- (2) Ist $f + g : X \to \overline{\mathbb{R}}$ auf X definiert, so ist f + g integrierbar und es gilt:

$$\int_X (f+g) \, \mathrm{d}x = \int_X f \, \mathrm{d}x + \int_X g \, \mathrm{d}x$$

(Für $f = +\infty$ und $g = -\infty$ ist f + g beispielsweise nicht definiert.)

(3) $\mathfrak{L}^1(X)$ ist ein reeller Vektorraum und die Abbildung $f \mapsto \int_X f \, dx$ ist linear auf $\mathfrak{L}^1(X)$.

- (4) $\max\{f,g\}$ und $\min\{f,g\}$ sind integrierbar.
- (5) Ist $f \leq g$ auf X, so ist $\int_X f \, dx \leq \int_X g \, dx$.
- (6) $|\int_X f \, dx| \le \int_X |f| \, dx$. (Dreiecksungleichung für Integrale)
- (7) Sei $\emptyset \neq Y \in \mathfrak{B}(X)$. Dann sind die Funktionen $f_{|Y}: Y \to \overline{\mathbb{R}}$ und $\mathbb{1}_Y \cdot f: X \to \overline{\mathbb{R}}$ integrierbar und

$$\int_Y f(x) \, \mathrm{d}x := \int_Y f_{|Y}(x) \, \mathrm{d}x = \int_X (\mathbb{1}_Y \cdot f)(x) \, \mathrm{d}x$$

(8) Sei $\lambda(X) < \infty$ und $h: X \to \mathbb{R}$ sei messbar und beschränkt. Dann: $h \in \mathfrak{L}^1(X)$ und $|\int_X h \, \mathrm{d}x| \le \|h\|_{\infty} \lambda(X)$ (mit $\|h\|_{\infty} := \sup\{|h(x)| : x \in X\}$)

Beweis

- (1) folgt aus αf) $_{\pm} = \alpha f_{\pm}$, falls $\alpha \geq 0$ und αf) $_{\pm} = -\alpha f_{\mp}$, falls $\alpha < 0$.
- (2) Es gilt $f + g = \underbrace{f_{+} + g_{+}}_{=:u} \underbrace{(f_{-} + g_{-})}_{=:v} = u v$. Dann:

$$\int_X u \mathrm{d}x = \int_X f_+ + g_+ \mathrm{d}x \stackrel{4.5}{=} \int_X f_+ \mathrm{d}x + \int_X g_+ \mathrm{d}x < \infty$$

Genauso: $\int_X v dx < \infty$

Mit Satz 4.9 folgt: f + g ist integrierbar. Weiter:

$$\int_{X} (f+g) dx \stackrel{4.9}{=} \int_{X} u dx - \int_{X} v dx$$

$$= \int_{X} f_{+} dx + \int_{X} g_{+} dx - \left(\int_{X} f_{-} dx + \int_{X} g_{-} dx \right)$$

$$= \int_{X} f dx + \int_{X} g dx$$

- (3) folgt aus (1) und (2).
- (4) Mit Satz 3.5 folgt: $\max\{f, g\}$ ist messbar. Es gilt:

$$0 \le |\max\{f, g\}| \le |f| + |g|$$

Mit 4.9 und Aussage (2) folgt |f| + |g| ist integrierbar. Dann folgt mit Satz 4.9: $\max\{f, g\}$ ist integrierbar.

Analog zeigt man: $\min\{f,g\}$ ist integrierbar.

(5) Nach Voraussetzung ist $f \leq g$ auf X. Dann gilt: $f_+ \leq g_+$ auf X und $f_- \geq g_-$ auf X. Es folgt:

$$\int_{X} f dx = \int_{X} f_{+} dx - \int_{X} f_{-} dx \stackrel{4.5}{\leq} \int_{X} g_{+} dx - \int_{X} g_{-} dx = \int_{X} g dx$$

(6) Es ist $\pm f \le |f|$. Mit Aussage (1) und (5) folgt: $\pm \int_X f dx = \int_X (\pm f) dx \le \int_X |f| dx$. Es ist $\int_X f dx = |\int_X f dx|$ oder $-\int_X f dx = |\int_X f dx|$

(7) Mit Bemerkung (2) vor 3.1 und Satz 3.6.(2) folgt: $f_{|Y}$ und $\mathbb{1}_Y \cdot f$ sind messbar. Es gilt: $(f_{|Y})_{\pm} = (f_{\pm})_{|Y}$ und $(\mathbb{1}_Y \cdot f)_{\pm} = \mathbb{1} \cdot f_{\pm}$. Weiterhin gilt $0 \leq \mathbb{1}_Y f_{\pm} \leq f_{\pm}$. Mit 4.9 folgt dann, daß $\mathbb{1}_Y f_{\pm}$ integrierbar ist. Dann:

$$\int_{X} (\mathbb{1}_{Y} f) dx = \int_{X} \mathbb{1} f_{+} dx - \int_{X} \mathbb{1}_{Y} f dx$$

$$= \underbrace{\int_{Y} (f_{+})_{|Y} dx}_{<\infty} - \underbrace{\int_{Y} (f_{-})_{|Y} dx}_{<\infty}$$

Es folgt: $f_{|Y}$ ist integrierbar und $\int_{Y} f_{|Y} dx = \int_{Y} (f_{+})_{|Y} dx - \int_{Y} (f_{-})_{|Y} dx = \int_{X} (\mathbb{1}_{Y} f) dx$.

(8) Es ist $|h| \leq ||h||_{\infty} \cdot \mathbb{1}_X$. Dann folgt:

$$\int_X |h| \mathrm{d}x \le \int_X ||h||_{\infty} \mathbb{1}_X \mathrm{d}x = ||h||_{\infty} \lambda(X) < \infty$$

Damit: |h| ist integrierbar und mit 4.9 auch h. Da h beschränkt ist, folgt: $h \in \mathfrak{L}^1(X)$. Schließlich:

$$\left| \int_X h \mathrm{d}x \right| \le \int_X |h| \mathrm{d}x \le ||h||_{\infty} \lambda(X)$$

Satz 4.12

(1) Sind $\emptyset \neq A, B \in \mathfrak{B}(X)$ disjunkt, $X = A \cup B$ und ist $f: X \to \overline{\mathbb{R}}$ integrierbar (über X), so ist f integrierbar über A und integrierbar über B und es gilt:

$$\int_X f \, \mathrm{d}x = \int_A f \, \mathrm{d}x + \int_B f \, \mathrm{d}x$$

(2) Ist $\emptyset \neq K \subseteq \mathbb{R}^d$ kompakt und $f: K \to \mathbb{R}$ stetig, so ist $f \in \mathfrak{L}^1(K)$.

Beweis

(1) Aus 4.11(7) folgt: f ist integrierbar über A und integrierbar über B. Es ist

$$\int_{X} f(x) \, dx = \int_{X} (\mathbb{1}_{A \cup B} \cdot f)(x) \, dx = \int_{X} ((\mathbb{1}_{A} + \mathbb{1}_{B}) f)(x) \, dx$$

$$= \int_{X} (\mathbb{1}_{A} f + \mathbb{1}_{B} f)(x) \, dx \stackrel{4.11(2)}{=} \int_{X} \mathbb{1}_{A} f \, dx + \int_{X} \mathbb{1}_{B} f \, dx \stackrel{4.11(7)}{=} \int_{A} f \, dx + \int_{B} f \, dx.$$

(2) K ist kompakt, also gilt: $\lambda(K) < \infty$. Aus 3.2(1) folgt, dass f messbar ist. Analysis II ("stetige Funktionen auf kompakten Mengen nehmen Minimum und Maximum an") liefert: f ist beschränkt. Insgesamt folgt mit 4.11(8) schließlich: $f \in \mathfrak{L}^1(K)$.

Satz 4.13

Seien $a, b \in \mathbb{R}$, a < b, X := [a, b] und $f \in C(X)$. Dann ist $f \in \mathfrak{L}^1(X)$ und es gilt:

$$L - \int_X f(x) \, \mathrm{d}x = R - \int_a^b f(x) \, \mathrm{d}x$$

Beweis

Sei
$$n \in \mathbb{N}$$
, $t_j^{(n)} := a + j \frac{b-a}{n}$ $(j = 0, \dots, n)$ und $I_j^{(n)} := \left[t_{j-1}^{(n)}, t_j^{(n)} \right]$ $(j = 1, \dots, n)$.

$$S_n := \sum_{j=1}^n f\left(t_j^{(n)}\right) \underbrace{\frac{b-a}{n}}_{=\lambda_1\left(I_j^{(n)}\right)} \text{ ist Riemannsche Zwischensumme für R-} \int_a^b f(x)\,dx.$$

Aus Analysis I folgt $S_n \to \mathbb{R}$ - $\int_a^b f(x) dx \ (n \to \infty)$. Definiere $f_n := \sum_{j=1}^n f\left(t_j^{(n)}\right) \mathbbm{1}_{I_j^{(n)}}$. Dann ist f_n einfach und

$$\int_{X} f_n(x) dx = \sum_{j=1}^{n} f\left(t_j^{(n)}\right) \lambda_1\left(I_j^{(n)}\right) = S_n$$

f ist auf X gleichmäßig stetig also konvergiert f_n auf X gleichmäßig gegen f (Übung!), also gilt:

$$||f_n - f||_{\infty} = \sup\{|f_n(x) - f(x)| : x \in X\} \to 0 \ (n \to \infty)$$

Aus 4.12(2) folgt $f \in \mathfrak{L}^1(X)$

$$\left| \text{L-} \int_{X} f(x) \, dx - S_n \right| = \left| \text{L-} \int_{X} (f - f_n) \, dx \right|^{4.11} \leq \int_{X} (f - f_n) \, dx \stackrel{4.11}{\leq} \|f - f_n\|_{\infty} \underbrace{\lambda(X)}_{=b-a} \to 0$$

Daraus folgt $S_n \to L$ - $\int_X f \, dx$

Satz 4.14

Sei $a \in \mathbb{R}, X := [a, \infty)$ und $f \in C(X)$. Dann gilt:

- (1) f ist messbar.
- (2) $f \in \mathfrak{L}^1(X)$ genau dann wenn das uneigentliche Riemann-Integral $\int_a^{\infty} f(x) dx$ absolut konvergent ist. In diesem Fall gilt:

$$L - \int_X f(x) \, dx = R - \int_a^\infty f(x) \, dx$$

Entsprechendes gilt für die anderen Typen uneigentlicher Riemann-Integrale.

Beweis

Eine Hälfte des Beweises folgt in Kapitel 6.

Beispiel

(1) Sei X = (0,1], $f(x) = \frac{1}{\sqrt{x}}$. Aus Analysis I wissen wir, dass $R - \int_0^1 \frac{1}{\sqrt{x}} dx$ (absolut) konvergent ist. Also ist $f \in \mathfrak{L}^1(X)$.

Außerdem wissen wir aus Analysis I, dass R- $\int_0^1 \frac{1}{x}$ divergent ist. Also ist $f^2 \notin \mathfrak{L}^1(X)$.

(2) Sei $X = [0, \infty)$, $f(x) = \frac{\sin(x)}{x}$. Aus Analysis I wissen wir, dass $\text{R-}\int_1^\infty f(x) \, dx$ konvergent, aber nicht absolut konvergent ist. Also ist $f \notin \mathfrak{L}^1(X)$.