Instalações elétricas de baixa tensão Dimensionamento de condutores

Depto. de Engenharia de Energia e Automação Elétricas Escola Politécnica da USP

17 de junho de 2015

- Etapas anteriores do projeto de instalação elétrica em baixa tensão:
 - unifilar dos circuitos parciais
 - tabelas de cargas por circuito
- Referências:
 - Instalações elétricas industriais, 8a. ed., João Mamede Filho
 - Manual de instalações elétricas, Julio Niskier

- Critérios para determinação da seção mínima de condutores em uma instalação elétrica
 - capacidade de condução de corrente(ampacidade)
 - limite de queda de tensão
 - capacidade de condução de corrente de curto-circuito por tempo limitado
- Com base na potência e fator de potência das cargas previstas, é possível satisfazer os dois primeiros critérios

Principais dados de projeto para determinação da capacidade de corrente

- tipo de isolamento do condutor
- forma de instalação dos cabos
- número de condutores carregados
- temperatura ambiente ou do solo
- agrupamento dos circuitos

Capacidade de condução de corrente (ampacidade)

 corrente máxima de forma que as temperaturas dos condutores+isolamento não ultrapassem os valores estabelecidos de acordo com o material

	Temperatura de operação em regime contínuo (°C)	sobrecarga	Temperatura de curto-circuito (°C)
PVC (cloreto de polivinila)	70	100	160
PET (polietileno)	70	90	150
XLPE (polietileno reticulado)	90	130	250
EPR (borracha etileno proprileno)	90	130	250

Capacidade de condução de corrente (A) de condutores com isolamento em PVC, em função da forma de instalação e do número de condutores carregados

Seções		Métodos de referência								
nominais	Α	.1	Α	2	В	1		D		
(mm²)	2 cond	3 cond	2 cond	3 cond	2 cond	3 cond		2 cond	3 cond	
0,5	7	7	7	7	9	8		12	10	
0,75	9	9	9	9	11	10		15	12	
1	11	10	11	10	14	12		18	15	
1,5	14,5	13,5	14	13	17,5	15,5		22	18	
2,5	19,5	18	18,5	17,5	24	21		29	24	
4	26	24	25	23	32	28		38	31	
6	34	31	32	29	41	36		47	39	
10	46	42	43	39	57	50		63	52	
16	61	56	57	52	76	68		81	67	
25	80	73	75	68	101	89		104	86	
35	99	89	92	83	125	110		125	103	
50	119	108	110	99	151	134		148	122	

6

Condutores isolados, cabos unipolares e multipolares, isolação PVC

Temperatura no condutor = 70° C Temperatura ambiente = 30° C

Forma de instalação:

Métodos de referência, NBR 5410

Referência	Descrição
A1	Condutores isolados em eletroduto de seção circular embutido em parede termicamente isolante
A2	Cabo multipolar em eletroduto de seção circular embutido em parede termicamente isolante
B1	Condutores isolados em eletroduto de seção circular sobre parede de madeira
B2	Cabo multipolar em eletroduto de seção circular sobre parede de madeira
D	Cabo multipolar em eletroduto enterrado no solo

Número de condutores carregados

- 2 condutores: circuitos fase-neutro, fase-neutro-terra ou fase-fase
- 3 condutores: circuitos fase-fase-neutro, trifásico a 3 fios ou 4 fios equilibrado

Correção da capacidade de corrente em função da temperatura

linhas não subterrâneas

Temperatura	Isol	ação
ambiente (°C)	PVC	EPR ou XLPE
10	1,22	1,15
15	1,17	1,12
20	1,12	1,08
25	1,06	1,04
30	1,00	1,00
35	0,94	0,96
40	0,87	0,91

linhae cuhterrânea

linnas subterraneas						
Temperatura	Isolação					
do solo (°C)		EPR				
	PVC	ou				
		XLPE				
10	1,10	1,07				
15	1,05	1,04				
20	1,00	1,00				
25	0,95	0,96				
30	0,89	0,93				
35	0,84	0,89				

Fatores de agrupamento

Item	Forma de agrupamento	Número de circuitos ou de cabos multipolares				Métodos de			
110111	dos condutores	1	2	3	4	5	6		referência
1	Em feixe ao ar livre ou sobre superfície; embutidos em condutos fechados	1,00	0,80	0,70	0,65	0,60	0,57		AaF
2	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira	1,00	0,85	0,79	0,75	0,73	0,72		С

Cálculo da corrente a ser considerada para encontrar ampacidade

$$I = rac{\sqrt{P_{total}^2 + Q_{total}^2}}{V} = rac{S}{V} ext{ (circuitos fase-neutro ou fase-fase)}$$
 $I = rac{\sqrt{P_{total}^2 + Q_{total}^2}}{\sqrt{3}V} = rac{S_{3f}}{\sqrt{3}V} ext{ (circuitos trifásicos)}$
 $I' = rac{I}{f_t \cdot f_{agr}} \cdot f_{cres}$

- f_t : fator de correção devido à temperatura ambiente;
- f_{agr}: fator de agrupamento, devido à passagem de mais de um circuito no eletroduto:
- f_{cres}: fator que indica a possibilidade de crescimento futuro da carga.

- Resistência e reatância são proporcionais ao comprimento do condutor

$$\frac{\left|\dot{V}_{F}\right|-\left|\dot{V}_{carga}\right|}{\left|\dot{V}_{F}\right|} \leq \Delta V_{max} \text{ (ex: 2\%,4\%)}$$

$$\dot{V}_{carga} = \dot{V}_{F} - (R + jX)(I \angle - \phi) = V_{F} - (Rlcos\phi + Xlsen\phi) + j(Xlcos\phi - Rlsen\phi)$$

$$\left|\dot{V}_{carga}
ight|pprox extit{Re}\{\dot{V}_{carga}\} = V_{F} - (extit{Rlcos}\phi + extit{Xlsen}\phi)$$

Valores médios de resistência e reatância de condutores de cobre

Seção	Resistência	Reatância
(mm ²)	$(m\Omega/m)=(\Omega/km)$	$(m\Omega/m)=(\Omega/km)$
1,5	14,1837	0,1378
2,5	8,8882	0,1345
4	5,5518	0,1279
6	3,7035	0,1225
10	2,2221	0,1207
16	1,3899	0,1173
25	0,8891	0,1164

Seção de condutores (mm²) pelo critério da queda de tensão - 127 V

Corrente(A)	(Comprim	ento do c	ircuito (er	n metros))
Oonente(A)	15	30	45	60	80	100
8,7	2,5	4	6	10	10	16
13,1	2,5	6	10	16	16	25
17,5	4	10	10	16	25	25
21,8	6	10	16	25	25	35
26,2	6	10	16	25	35	50
30,6	6	16	25	35	35	50
34,9	10	16	25	35	50	50
39,3	10	16	25	35	50	70
43,7	10	25	25	50	50	70
52,5	10	25	50	50	70	95
61,2	16	25	35	70	70	95
69,9	25	35	50	70	95	120

Fator de potência da carga 0,90; queda de tensão máxima admissível de 2%; condutor de cobre embutido em eletroduto de PVC

Seção de condutores (mm²) pelo critério da queda de tensão - 220 V

Corrente(A)	Comprimento do circuito (em metros)					
Oonente(A)	15	30	45	60	80	100
5,0	1,5	1,5	2,5	2,5	4	4
7,5	1,5	2,5	4	4	6	6
10,1	1,5	2,5	4	6	10	10
12,6	1,5	4	6	6	10	10
15,1	1,5	4	6	10	10	16
17,6	2,5	4	10	10	16	16
20,2	2,5	6	10	10	16	16
22,7	4	6	10	16	16	25
25,2	4	6	10	16	16	25
30,3	6	10	16	16	25	25
35,3	6	10	16	25	25	35
40,4	10	10	16	25	35	35

Fator de potência da carga 0,90; queda de tensão máxima admissível de 2%; condutor de cobre embutido em eletroduto de PVC

Seção mínima dos condutores

Tipo de cabos	Utilização do circuito	Seção mínima do condutor	
	Iluminação	1,5 <i>mm</i> ² (cobre)	
	namnagao	16 mm² (alumínio)	
Isolados	Força	2,5 <i>mm</i> ² (cobre)	
13014403	(alta potência,	16 mm ² (alumínio)	
	tomadas e motores)	(aidinino)	
	Sinalização e comando	0,5 <i>mm</i> ² (cobre)	
	Força	10 mm ² (cobre)	
Nus	Força	16 mm² (alumínio)	
INUS	Sinalização e comando	4 mm ² (cobre)	

Exemplo de cálculo

- condutor em isolamento de PVC, eletroduto de seção circular embutido em parede de alvenaria (A1)
- circuito de iluminação 127 V (fase-neutro), 3000 W, fp=0,90 ind
- temp. ambiente = 25 °C
- eletroduto compartilhado com mais 3 circuitos
- fator de crescimento = 1,00
- comprimento total do circuito = 40 m

Resolução:

- $I = \frac{3000/0.9}{127} = 26.2 A$
- $t = 25^{\circ}\text{C}, f_t = 1,06$
- 4 circuitos por eletroduto, $f_{agr} = 0,65$
- Circuito fase-neutro, 2 condutores carregados
- $I' = \frac{26.2}{1.06.0.65} \cdot 1, 0 = 38, 0 A$
- Pela tabela de ampacidade, a seção escolhida é de 10 mm².
- Pelo critério da queda de tensão, considerando 26,2 A por 40 m, a seção escolhida é 16 mm².