Patch Locale of a Spectral Locale in Univalent Type Theory

Ayberk Tosun (j.w.w. Martín Escardó)

11 July 2022 MFPS Local Meeting at IRIF, Paris

Goal

Implement the patch locale in univalent type theory predicatively i.e. without using resizing axioms.

What is a locale?

Notion of space characterised solely by its frame of opens.

What is a spectral locale?

A locale in which the compact opens form a basis closed under finite meets.

What is a Stone locale?

A compact locale in which the clopens form a basis.

What is a spectral locale?

A locale in which the compact opens form a basis closed under finite meets.

What is a Stone locale?

A compact locale in which the clopens form a basis.

Stone \Rightarrow Spectral

Every Stone locale is spectral as the clopens coincide with the compact opens in Stone locales.

What is a spectral locale?

A locale in which the compact opens form a basis closed under finite meets.

What is a Stone locale?

A compact locale in which the clopens form a basis.

Stone \Rightarrow Spectral

Every Stone locale is spectral as the clopens coincide with the compact opens in Stone locales.

Patch transforms spectral locales into Stone ones.

What is a spectral locale?

A locale in which the compact opens form a basis closed under finite meets.

What is a Stone locale?

A compact locale in which the clopens form a basis.

Stone \Rightarrow Spectral

Every Stone locale is spectral as the clopens coincide with the compact opens in Stone locales.

Patch transforms spectral locales into Stone ones. It is the universal such transformation.

A spectral map is a map of locales reflecting compact opens.

Spec is the category of spectral locales together with spectral maps.

A spectral map is a map of locales reflecting compact opens.

Spec is the category of spectral locales together with spectral maps.

The category of Stone locales forms a full subcategory of **Spec** that is denoted **Stone**.

Stone Spec

A spectral map is a map of locales reflecting compact opens.

Spec is the category of spectral locales together with spectral maps.

A spectral map is a map of locales reflecting compact opens.

Spec is the category of spectral locales together with spectral maps.

A spectral map is a map of locales reflecting compact opens.

Spec is the category of spectral locales together with spectral maps.

Some examples of patch

Spectral locale in consideration

Sierpiński space (Ω)

Scott topology of a (Scott) domain

 $\mathcal{P}(\mathbb{N}) \simeq \Omega^{\mathbb{N}}$

Scott topology of domain \mathbb{N}_{\perp}

Its patch

Booleans (2)

Lawson topology

Cantor space $(2^{\mathbb{N}})$

 \mathbb{N}_{∞}

Frames in type theory

Write $\operatorname{\mathsf{Fam}}_{\mathcal{W}}(A) :\equiv \Sigma_{I:\mathcal{W}}I \to A$.

Definition (Frame)

A $(\mathcal{U}, \mathcal{V}, \mathcal{W})$ -frame consists of

- a type *A* : *U*,
- a partial order $\le : A \to A \to \mathsf{hProp}_{\mathcal{V}}$,
- a top element \top : A,
- a binary meet operation $\land : A \rightarrow A \rightarrow A$,
- a join operation \bigvee _ : Fam $_{\mathcal{W}}(A) \rightarrow A$,
- satisfying distributivity i.e. $x \wedge \bigvee_{i:I} y_i = \bigvee_{i:I} x \wedge y_i$ for every x: A and family $\{y_i\}_{i:I}$ in A.

The carrier type does not have to be explicitly required to be a set since this follows from the existence of a partial order on it.

Some notation

A frame homomorphism is a function preserving finite meets and arbitrary joins.

The category of frames and their homomorphisms is denoted **Frm**; its opposite is denoted **Loc**.

Morphisms of Loc are called continuous maps.

The frame corresponding to a locale X is denoted $\mathcal{O}(X)$.

We pretend as though locales were spaces and use the letters

- *X*, *Y*, *Z*, . . . for them;
- $f,g:X\to Y$ for their continuous maps; and
- $U, V : \mathcal{O}(X)$ for their opens.

 $f^*: \mathcal{O}(Y) \to \mathcal{O}(X)$ denotes the frame homomorphism corresponding to a continuous map $f: X \to Y$ of locales.

A nucleus on frame L is an endofunction $j: |L| \rightarrow |L|$ that is inflationary, idempotent, and preserves binary meets.

A nucleus is called **Scott-continuous** if it preserves joins of directed families.

Patch of L is the frame of Scott-continuous nuclei on L.

A nucleus on frame L is an endofunction $j: |L| \rightarrow |L|$ that is inflationary, idempotent, and preserves binary meets.

A nucleus is called **Scott-continuous** if it preserves joins of directed families.

Patch of *L* is the frame of Scott-continuous nuclei on *L*.

naturally defined as a subframe of the frame of all nuclei

A nucleus on frame L is an endofunction $j: |L| \rightarrow |L|$ that is inflationary, idempotent, and preserves binary meets.

A nucleus is called **Scott-continuous** if it preserves joins of directed families.

Patch of *L* is the frame of Scott-continuous nuclei on *L*.

naturally defined as a subframe of the frame of all nuclei

Nuclei are ordered pointwise in this frame.

A nucleus on frame L is an endofunction $j: |L| \rightarrow |L|$ that is inflationary, idempotent, and preserves binary meets.

A nucleus is called **Scott-continuous** if it preserves joins of directed families.

Patch of L is the frame of Scott-continuous nuclei on L.

naturally defined as a subframe of the frame of all nuclei

Nuclei are ordered pointwise in this frame.

This description of Patch was used by Escardó [1] to give a constructive, yet *impredicative*, treatment of the patch frame.

Problem: The frame of all nuclei doesn't seem to be possible to construct in the predicative setting of type theory.

Problem: The frame of all nuclei doesn't seem to be possible to construct in the predicative setting of type theory.

Solution: When one restricts attention to Scott-continuous nuclei though, this construction *does* seem to be predicatively possible for large and locally small frames with small bases.

Problem: The frame of all nuclei doesn't seem to be possible to construct in the predicative setting of type theory.

Solution: When one restricts attention to Scott-continuous nuclei though, this construction *does* seem to be predicatively possible for large and locally small frames with small bases.

 The question of whether the frame of Scott-continuous nuclei is possible to define in a predicative setting was posed by Thierry Coquand (personal communication).

Problem: The frame of all nuclei doesn't seem to be possible to construct in the predicative setting of type theory.

Solution: When one restricts attention to Scott-continuous nuclei though, this construction *does* seem to be predicatively possible for large and locally small frames with small bases.

- The question of whether the frame of Scott-continuous nuclei is possible to define in a predicative setting was posed by Thierry Coquand (personal communication).
- **Our contribution**: we answer this question in the positive by constructing the frame of Scott-continuous nuclei in type theory without using any resizing axioms.

Problem: The frame of all nuclei doesn't seem to be possible to construct in the predicative setting of type theory.

Solution: When one restricts attention to Scott-continuous nuclei though, this construction *does* seem to be predicatively possible for large and locally small frames with small bases.

- The question of whether the frame of Scott-continuous nuclei is possible to define in a predicative setting was posed by Thierry Coquand (personal communication).
- **Our contribution**: we answer this question in the positive by constructing the frame of Scott-continuous nuclei in type theory without using any resizing axioms.
- This question turns out to be nontrivial.

Bases for frames

Consider a $(\mathcal{U}, \mathcal{V}, \mathcal{W})$ -locale X.

Defn. (Basis)

A W-family $\{B_i\}_{i:I}$ over a $(\mathcal{U}, \mathcal{V}, \mathcal{W})$ -locale X is said to form a basis for X if

for any $U: \mathcal{O}(X)$, there is a $subfamily\ \{B_l\}_{l\in L}$ of $\{B_i\}_{i:I}$ such that $U=\bigvee_{l\in L}B_l$.

Bases for frames

Consider a $(\mathcal{U}, \mathcal{V}, \mathcal{W})$ -locale X.

Defn. (Basis)

A W-family $\{B_i\}_{i:I}$ over a $(\mathcal{U}, \mathcal{V}, \mathcal{W})$ -locale X is said to form a basis for X if

for any $U: \mathcal{O}(X)$, there is a subfamily $\{B_l\}_{l\in L}$ of $\{B_i\}_{i:I}$ such that $U=\bigvee_{l\in L}B_l$.

In our work, we are primarily interested in frames with bases of the form $(\mathcal{U}^+, \mathcal{U}, \mathcal{U})$ i.e.

large and locally small frames with small bases.

Recall the impredicative definition of a spectral locale as: one in which the compact opens form a basis closed under finite meets.

Question: How do we know that joins of covering families exist?

Recall the impredicative definition of a spectral locale as: one in which the compact opens form a basis closed under finite meets.

Question: How do we know that joins of covering families exist?

• Answer: In general, we don't, as they might be too big.

Recall the impredicative definition of a spectral locale as: one in which the compact opens form a basis closed under finite meets.

Question: How do we know that joins of covering families exist?

- Answer: In general, we don't, as they might be too big.
- **Solution**: We need to ensure the smallness of these joins.

Recall the impredicative definition of a spectral locale as: one in which the compact opens form a basis closed under finite meets.

Question: How do we know that joins of covering families exist?

- **Answer**: In general, we don't, as they might be too big.
- **Solution**: We need to ensure the smallness of these joins.

Defn. of spectral locale

We say that locale X, with basis $\{B_i\}_{i:I}$, is spectral if

- B_i is compact for each i : I, and
- $\{B_i\}_{i:I}$ is closed under finite meets i.e. there exists some t:I such that $\top=B_t$ and for any two j,k:I, there exists some l:I such that $B_l=B_j\wedge B_k$.

Recall the impredicative definition of a spectral locale as: one in which the compact opens form a basis closed under finite meets.

Question: How do we know that joins of covering families exist?

- Answer: In general, we don't, as they might be too big.
- **Solution**: We need to ensure the smallness of these joins.

Defn. of spectral locale

We say that locale X, with basis $\{B_i\}_{i:I}$, is spectral if

- B_i is compact for each i : I, and
- $\{B_i\}_{i:I}$ is closed under finite meets i.e. there exists some t:I such that $\top=B_t$ and for any two j,k:I, there exists some l:I such that $B_l=B_j\wedge B_k$.

We use the same idea for Stone-ness.

Question: Can there be compact opens that do not fall in the basis?

Question: Can there be compact opens that do not fall in the basis?

Proposition

Let X be a spectral locale with basis $\{B_i\}_{i:I}$. Given any compact $K: \mathcal{O}(X)$, there is some k:I such that $K=B_k$.

Ordering on nuclei – size matters (1)

Let

- X be a large and locally small spectral locale with basis $\{B_i\}_{i:I}$, and
- *j* and *k* be two Scott-continuous nuclei on *X*.

Define $j \leq k :\equiv \prod_{U:\mathcal{O}(X)} j(U) \leq k(U)$.

Problem: $j \leq k$ lives in universe \mathcal{U}^+ .

This means Patch(X) is a ($\mathcal{U}^+, \mathcal{U}^+, \mathcal{U}$)-locale i.e. it is *not* locally small.

Solution: define a small version of the ordering.

Ordering on nuclei – size matters (1)

Let

- X be a large and locally small spectral locale with basis $\{B_i\}_{i:I}$, and
- *j* and *k* be two Scott-continuous nuclei on *X*.

Define
$$j \leq k :\equiv \prod_{U:\mathcal{O}(X)} j(U) \leq k(U)$$
.

Problem: $j \leq k$ lives in universe \mathcal{U}^+ .

This means Patch(X) is a ($\mathcal{U}^+, \mathcal{U}^+, \mathcal{U}$)-locale i.e. it is *not* locally small.

Solution: define a small version of the ordering.

Definition

$$j \leq_{S} k :\equiv \prod_{i:I} j(B_i) \leq k(B_i).$$

Ordering on nuclei – size matters (1)

Let

- X be a large and locally small spectral locale with basis $\{B_i\}_{i:I}$, and
- *j* and *k* be two Scott-continuous nuclei on *X*.

Define $j \leq k := \prod_{U:\mathcal{O}(X)} j(U) \leq k(U)$.

Problem: $j \leq k$ lives in universe \mathcal{U}^+ .

This means Patch(X) is a ($\mathcal{U}^+, \mathcal{U}^+, \mathcal{U}$)-locale i.e. it is *not* locally small.

Solution: define a small version of the ordering.

Definition

$$j \leq_{\mathbb{S}} k :\equiv \prod_{i:I} j(B_i) \leq k(B_i).$$

 $j \leq_S k$ lives in universe \mathcal{U} .

Ordering on nuclei – size matters (2)

Proposition

 $j \leq k$ iff $j \leq_S k$.

Proof

- The nontrivial direction is $j \leq_S k \rightarrow j \leq k$.
- Let $U = \bigvee_{l \in I} B_l$ be an open of locale X.
- $j\left(\bigvee_{l\in L}B_l\right)=\bigvee_{l\in L}j(B_l)\leq\bigvee_{l\in L}k(B_l)=k\left(\bigvee_{l\in L}B_l\right).$

Ordering on nuclei – size matters (2)

Proposition

 $j \leq k$ iff $j \leq_S k$.

Proof

- The nontrivial direction is $j \leq_S k \rightarrow j \leq k$.
- Let $U = \bigvee_{l \in I} B_l$ be an open of locale X.
- $j\left(\bigvee_{l\in L}B_l\right)=\bigvee_{l\in L}j(B_l)\leq\bigvee_{l\in L}k(B_l)=k\left(\bigvee_{l\in L}B_l\right).$

Notice the use of Scott-continuity!
It is crucial to the local smallness of Patch.

Let *X* be a spectral locale and $U : \mathcal{O}(X)$ an open.

We embed the opens of X into Patch(X) using the closed and open nuclei.

```
Closed nucleus of U: `U' :\equiv V \mapsto U \lor V. Open nucleus of U: \neg `U' :\equiv V \mapsto U \Rightarrow V.
```

Let X be a spectral locale and $U : \mathcal{O}(X)$ an open.

We embed the opens of X into Patch(X) using the closed and open nuclei.

```
Closed nucleus of U: `U' :\equiv V \mapsto U \lor V. Open nucleus of U: \neg `U' :\equiv V \mapsto U \Rightarrow V. Heyting implication
```

Let X be a spectral locale and $U : \mathcal{O}(X)$ an open.

We embed the opens of X into Patch(X) using the closed and open nuclei.

```
Closed nucleus of U: `U' :\equiv V \mapsto U \lor V. Open nucleus of U: \neg `U' :\equiv V \mapsto U \Rightarrow V. Heyting implication
```

Problem: it's not so easy to write down the Heyting implication in the predicative context of type theory.

- The usual definition of Heyting implication (e.g. via the Adjoint Functor Theorem) is impredicative.
- We use (a version of the) Adjoint Functor Theorem for locally small frames with small bases.

Let X be a spectral locale and $U : \mathcal{O}(X)$ an open.

We embed the opens of X into Patch(X) using the closed and open nuclei.

```
Closed nucleus of U: `U' :\equiv V \mapsto U \lor V. Open nucleus of U: \neg `U' :\equiv V \mapsto U \Rightarrow V. Heyting implication
```

Problem: it's not so easy to write down the Heyting implication in the predicative context of type theory.

- The usual definition of Heyting implication (e.g. via the Adjoint Functor Theorem) is impredicative.
- We use (a version of the) Adjoint Functor Theorem for locally small frames with small bases.

Formalised in modules AdjointFunctorTheoremForFrames, GaloisConnection, HeytingImplication of Escardó's TypeTopology [2] Agda development.

Patch is Stone

Theorem

Given a spectral $(\mathcal{U}^+, \mathcal{U}, \mathcal{U})$ -locale X with small basis $\{B_i\}_{i:I}$, Patch(X) is a Stone locale.

Proof idea

The family

$$\{ B_k' \wedge \neg B_l' \mid k, l : I \}$$

forms a basis for Patch(X) and the covering subfamily for a given Scott-continuous nucleus $j: \mathcal{O}(X) \to \mathcal{O}(X)$ is

$$\{ B_k' \wedge \neg B_l' \mid B_k \leq j(B_l), k, l : I \}$$

Summary

We set out to implement a rather important construction of pointfree topology in univalent type theory, without using resizing.

Doing this predicatively turned out to involve surprising challenges.

We had to reformulate quite a few things in the theory itself to obtain a **type-theoretic understanding** of the construction in consideration.

Our work has been almost completely formalised in the Agda proof assistant, as part of Escardó's TypeTopology [2] library.

References I

- [1] Escardó, Martín H. "On the Compact-regular Coreflection of a Stably Compact Locale". In: Electronic Notes in Theoretical Computer Science 20 (1999), pp. 213–228. ISSN: 15710661. DOI: 10.1016/S1571-0661(04)80076-8.
- [2] Escardó, Martín H. and contributors. TypeTopology. Agda development. URL: https://github.com/martinescardo/TypeTopology.