Computer Storage and Arithmetic

1

Computer Storage

 A computer can be logically considered to be a large collection of switches – much like a light switch

Computer Storage

- How many signals can we send with a light switch?
 - Two it's ON or OFF
- We're going to consider that if the switch is ON, it's a 1
- If it's OFF, it's a 0

3

- So everything that the CPU sees comes as a stream of switch outputs that are either ON or OFF (that we are going to consider to be 1s or 0s)
- So everything stored on a computer can also be considered to be a stream of 1s and 0s
 - Data, programs, are all stored as a sequence of 1s and 0s
 - Each 1 or 0 is called a bit (8 bits in a byte)

Digital Data Representation

- Bit: The smallest unit of data that a binary computer can recognize (a single 1 or 0)
- Byte = 8 bits
- Byte terminology used to express the size of documents and other files, programs, etc.
- Prefixes are often used to express larger quantities of bytes: kilobyte (KB), megabyte (MB), gigabyte (GB), etc.

The Binary Numbering System

- We normally use the *decimal* numbering system, which uses 10 symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9).
- Computers use the binary numbering system, which represents all numbers using just two symbols (0 and 1).

.

Understanding Decimal Numbers

- Decimal numbers are made of 10 decimal numerals: (0,1,2,3,4,5,6,7,8,9)
- But how many items does a decimal number represent?
 - $8653 = 8x10^3 + 6x10^2 + 5x10^1 + 3x10^0$
- What about fractions?
 - $97654.35 = 9x10^4 + 7x10^3 + 6x10^2 + 5x10^1 + 4x10^0 + 3x10^{-1} + 5x10^{-2}$
 - In formal notation -> (97654.35)₁₀

Understanding Binary Numbers

- Binary numbers are made of binary digits (bits):
 - 0 and 1
- How many items does an binary number represent?
 - $(1011)_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = (11)_{10}$
- What about fractions?
 - $(110.01)_2 = 1x2^2 + 1x2^1 + 0x2^0 + 0x2^{-1} + 1x2^{-2}$
- Groups of eight bits are called a byte
 - (11001001)₂
- Groups of four bits are called a nibble.
 - (1101)₂

The Growth of Binary Numbers

n	2 ⁿ
0	20=1
1	21=2
2	22=4
3	23=8
4	24=16
5	25=32
6	2 ⁶ =64
7	2 ⁷ =128

	2 ⁿ	n
	28=256	8
	2 ⁹ =512	9
Kilo	210=1024	10
	211=2048	11
	2 ¹² =4096	12
Meg	2 ²⁰ =1M	20
Giga	2 ³⁰ =1G	30
Tera	2 ⁴⁰ =1T	40
Peta	2 ⁵⁰ =1P	50
-	_	·

Conversion Between Number Bases

Convert an Integer from Decimal to Another Base

For each digit position:

- 1. Divide decimal number by the base (e.g. 2)
- 2. The remainder is the lowest-order digit
- 3. Repeat first two steps until no divisor remains.

Example for $(13)_{10}$:

		Integer Quotient		Remainder	Coefficient
1	13/2 =	6	+	1/2	$a_0 = 1$
	6/2 =	3	+	0	$a_1 = 0$
	3/2 =	1	+	1/2	a ₂ = 1
	1/2 =	0	+	1/2	a ₃ = 1

Answer $(13)_{10}$ = $(a_3 a_2 a_1 a_0)_2$ = $(1101)_2$

Convert an Fraction from Decimal to Another Base

For each digit position:

- 1. Multiply decimal number by the base (e.g. 2)
- 2. The integer is the highest-order digit
- 3. Repeat first two steps until fraction becomes zero.

Example for $(0.625)_{10}$.

	Integer		Fraction		Coefficient
0.625 x 0.250 x 0.500 x	2 =	1 0 1	+++++	0.25 0.50 0	9-1

Answer $(0.625)_{10} = (0.a_{-1}a_{-2}a_{-3})_2 = (0.101)_2$

Understanding Octal Numbers

- Octal numbers are made of 8 digits:
 - (0,1,2,3,4,5,6,7)
- How many items does an octal number represent?
 - $(3456)_8 = 3x8^3 + 4x8^2 + 5x8^1 + 6x8^0 = (1838)_{10}$
- What about fractions?
 - $(213.5)_8 = 2x8^2 + 1x8^1 + 3x8^0 + 5x8^{-1} = (139.625)_{10}$
- Note that each octal digit can be represented with three bits.
 - $(111)_2 = (7)_8$

Convert an Integer from Decimal to Octal

For each digit position:

- 1. Divide decimal number by the base (8)
- 2. The remainder is the lowest-order digit
- 3. Repeat first two steps until no divisor remains.

Example for $(175)_{10}$

Answer
$$(175)_{10} = (a_2 a_1 a_0)_2 = (257)_8$$

27

Understanding Hexadecimal Numbers

- Hexadecimal numbers are made of 16 digits:
 - (0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F)
- How many items does an hex number represent?
 - $(3A9F)_{16} = 3x16^3 + 10x16^2 + 9x16^1 + 15x16^0 = (14999)_{10}$
- What about fractions?
 - $(2D3.5)_{16} = 2x16^2 + 13x16^1 + 3x16^0 + 5x16^{-1} = (723.3125)_{10}$
- Note that each hexadecimal digit can be represented with four bits.
 - $(1110)_2 = (E)_{16}$

Converting Between Base 16 and Base 2

$$3A9F_{16} = 0011 1010 1001 1111_2$$

- ° Conversion is easy!
 - O Determine 4-bit value for each hex digit
- Note that there are 2⁴ = 16 different values of four bits
- Easier to read and write in hexadecimal.
- Representations are equivalent!

29

Converting Between Base 16 and Base 8

$$3A9F_{16} = \underbrace{0011}_{3} \underbrace{1010}_{1001} \underbrace{1111_{2}}_{1111_{2}}$$

$$3A9F_{16} = \underbrace{0011}_{3} \underbrace{1010}_{1001} \underbrace{1011}_{111_{2}}$$

$$35237_{8} = \underbrace{011}_{3} \underbrace{101}_{101} \underbrace{010}_{011} \underbrace{011}_{111_{2}}$$

- 1. Convert from Base 16 to Base 2
- 2. Regroup bits into groups of three starting from right
- 3. Ignore leading zeros
- 4. Each group of three bits forms an octal digit.

Putting It All Together

Decimal	Binary	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

- Binary, octal, and hexadecimal similar
- Easy to build circuits to operate on these representations
- Possible to convert between the three formats

31

"Why do programmers always mix up Halloween and Ch

Binary Addition

- Very simple
 - 0 + 0 = 0
 - 0 + 1 = 1
 - 1 + 0 = 1
 - 1 + 1 = 10
 - 1 + 1 + 1 = 11
 - 1 + 1 + 1 + 1 = 100

33

Binary Addition Example

• Let's add 111101 and 10111

How To Represent Signed Numbers

- Plus and minus sign used for decimal numbers: 25 (or +25), -16, etc.
- For computers, desirable to represent everything as bits.
- Three types of signed binary number representations: signed magnitude, 1's complement, 2's complement.
- In each case: left-most bit indicates sign: positive (0) or negative (1).

Consider signed magnitude:

35

One's Complement Representation

- Sign magnitude doesn't work try adding a number to its negative (e.g. 00000001 + 10000001)
- The one's complement of a binary number involves inverting all bits.
 - 1's comp of 00110011 is 11001100
 - 1's comp of 10101010 is 01010101
- To find negative of 1's complement number take the 1's complement.

Two's Complement Representation

- The two's complement of a binary number involves inverting all bits and adding 1.
 - 2's comp of 10101010 is 01010110
 - First, inversion of 10101010 is 01010101
 - Add 1 to 01010101: 01010110.
- To find negative of 2's complement number take the 2's complement.

37

2's Complement Addition

- Using 2's complement numbers, adding numbers is easy.
- Assume we have n=4 bit numbers
- Let's compute $(11)_{10}$ + $(3)_{10}$.
 - $(11)_{10}$ = 1011_2 in 2's comp. $(3)_{10}$ = 0011_2

2's Complement Addition (again)

- Now let's compute $(12)_{10} + (5)_{10}$.
- Again assume n=4 bit numbers
- Let's compute $(12)_{10}$ + $(5)_{10}$.
 - $(12)_{10}$ = 1100_2 in 2's comp.
 - $(5)_{10}$ = 0101₂ in 2's comp.

39

2's Complement Subtraction

- Basic idea is to take the 2's complement and add
- For example, suppose we wish to subtract +(0001)₂ from +(1100)₂.
- Let's compute $(12)_{10}$ + $(-1)_{10}$
 - $(12)_{10} = +(1100)_2 = 1100_2$ in 2's comp.
 - $(-1)_{10} = -(0001)_2 = 1111_2$ in 2's comp.

Step 1: Take 2's complement of 2nd operand

Step 2: Add binary numbers

Step 3: Ignore carry bit

Data Representation - ASCII Code

- · American Standard Code for Information Interchange
- ASCII is a 7-bit code, frequently used with an 8th bit for error detection (more about that in a bit).

Character	ASCII (bin)	ASCII (hex)	Decimal	Octal
Α	1000001	41	65	101
В	1000010	42	66	102
С	1000011	43	67	103
Z				
а				
1				
6				

41

Coding Systems

Text

- ASCII and EBCDIC
 - Fixed-length codes that can represent any single character of data as a string of eight bits. (A = 01000001)
 - Unicode
 - A longer (32 bits per character is common) code that can be used to represent text-based data in virtually any written language.
- Graphics data
 - often stored as a bitmap which the colour to be displayed at each pixel stored in binary form. (16 colours = 4 bits/pixel, 16 mill colours = 3 bytes)
- Audio data
 - waveform audio is common; MP3 compression makes audio files somewhat smaller. (CD quality = 2 byte samples taken at 44,100 samples/sec)
- Video data
 - requires a great deal of storage space, but can be compressed. (30 frames a sec, 256 colour image @640X480 = 307,200 bytes/frame)

Coding Systems for Text-Based Data

