CS 3530: Assignment 7b

Fall 2023

Problem 7.6 (10 points)

Problem

Show that P is closed under complement.

Hint: As we discussed in class, construct the language (e.g. $PCAT = \{\langle P_1, P_2, w \rangle | P_1, P_2 \in P \text{ and } w \text{ is a string, } w = x \cdot y, x \in P_1 \text{ and } y \in P_2\}$), then provide a deterministic machine that decides the language in polynomial time.

Solution to P closed under complement.

assume a language $P1 \in P$ in which P the the class of languages which are decidable in polynomial time the TM M which decides $\overline{P1}$ is as follows

M = "On input w:

- 1. check if $w \in P1$
- 2. if $w \in P1$, reject
- 3. if $w ! \in P1$, accept"

Since w must be finite this is decidable in polynomial time

Problem 7.7 (10 points)

Problem

Show that NP is closed under union and concatenation.

Hint: As we discussed in class, construct the language (e.g. $NPCAT = \{\langle NP_1, NP_2, w \rangle | NP_1, NP_2 \in NP \text{ and } w \text{ is a string, } w = x \cdot y, x \in NP_1 \text{ and } y \in NP_2 \}$), then describe a certificate and a verifier that deterministically verifies the certificate in polynomial time.

Solution to NP closed under union.

 $NPUN = \{\langle NP_1, NP_2, w \rangle | NP_1, NP_2 \in NP \text{ and } w \text{ is a string, where either } w \in NP1 \text{ or } w \in NP2 \}$

let T_{NP1} and T_{NP2} be the machines that decide NP1 and NP2

we will construct a machine T_{NPu} that decides the union of NP1 and NP2

 T_{NPu} = "On input w:

- 1. run T_{NP1} on w, if T_{NP1} accepts, accept
- 2. run T_{NP2} on w, if T_{NP2} accepts, accept
- 3. else reject"

Since T_{NP1} and T_{NP2} are both polynomial the union of the two will also be polynomial

Solution to NP closed under concatenation.

 $NPCAT = \{\langle NP_1, NP_2, w \rangle | NP_1, NP_2 \in NP \text{ and } w \text{ is a string, } w = x \cdot y, x \in NP_1 \text{ and } y \in NP_2 \})$

let T_{NP1} and T_{NP2} be the machines that decide NP1 and NP2

we will construct a machine T_{NPc} that decides the concatenation of NP1 and NP2

 T_{NPc} = "On input w:

- 1. split w into w1 and w2 so that w1w2 = w
- 2. run T_{NP1} on w1, if T_{NP1} rejects, reject
- 3. run T_{NP2} on w2, if T_{NP2} rejects, reject
- 4. else, accept