Jump Measurement Platform

This project is designed to measure an athlete's jump parameters, including:

- Flight Time: The duration the athlete spends in the air.
- Jump Height: The calculated height based on flight time.
- Impact Force: The force exerted upon landing.
- Body Mass: The athlete's mass is calculated from load cell readings.

Hardware Components

The system is built using the following components:

- ESP32-WROOM-32: A powerful microcontroller with Wi-Fi and Bluetooth capabilities.
- ADS1256: A high-resolution ADC (Analog-to-Digital Converter) for precise load cell readings.
- YZC-516C Load Cells (x4): Force sensors to measure the applied load.

Component Links

- ESP32-WROOM-32
- ADS1256
- YZC-516C Load Cell

Wiring Connections

ESP32 to ADS1256 (SPI)

ADS1256 Pin	ESP32 Pin
VCC (5V)	5V
GND	GND
DIN (MOSI)	GPIO23
DOUT (MISO)	GPIO19
SCLK	GPIO18
CS	GPIO5
DRDY	GPIO16
POWN	5V

Load Cells to ADS1256

The system now uses **four** YZC-516C load cells, each connected in **differential mode**:

- Cell 1: White to AIN0, Green to AIN1
- Cell 2: White to AIN2, Green to AIN3
- Cell 3: White to AIN4, Green to AIN5

• Cell 4: White to AIN6, Green to AIN7

Wiring per cell: - Red \to +5V Power - Black \to GND - White \to Signal + - Green \to Signal -

Driver Installation

To use the ESP32 with your PC, install the CH340 driver from the following link: CH340 Driver Installation

Software Installation

To install the required libraries, run the following command:

```
pip install -r requirements.txt
```

Usage

Once the hardware is set up and software dependencies are installed, you can run the program using:

python main.py

Requirements

• Python 3.12 or higher ## Description of the mathematical calculations in jump tests

Description of the steps and mathematical formulas used in the internal functions of the tests:

- Test Depth Jump
- Test Normal Jump
- Test Calculate Force
- Test Calculate Mass

${\bf 1.} \ {\bf testDepthJump}$

Threshold calculations:

1. Weight

The athlete's weight is calculated as the product of mass and gravity:

weight =
$$m \cdot g$$

2. Net force

The net force applied is the difference between the measured force and the weight:

$$F_{\text{net}}(t) = F(t) - \text{weight}$$

3. Acceleration

The instantaneous acceleration is given by:

$$a(t) = \frac{F_{\rm net}(t)}{m}$$

4. Amortization start threshold (t_0)

The first index t_0 where the force exceeds a certain percentage of the weight:

$$t_0 = \min\{t \ge 0 : F(t) \ge \alpha_{\text{start}} \text{ weight}\}, \quad \alpha_{\text{start}} = \frac{\text{start_threshold\%}}{100}$$

5. Impact velocity

Before contact, the subject falls from a known height h; the impact velocity is

$$v_{\rm impact} = -\sqrt{2gh}$$

6. Velocity during amortization

Integrating the acceleration (cumulative trapezoidal method) starting from $v_{\rm impact};$

$$v(t) = v_{\text{impact}} + \int_{t_0}^t a(\tau) \,d\tau$$

7. Push-off start (t_1)

The first instant after t_0 when velocity reaches zero (within a threshold):

$$t_1 = \min\{t \ge t_0 : |v(t)| \le \varepsilon_v\}$$

8. Peak amortization force (t_2)

$$t_2 = \arg\min_{t_0 \le t < t_1} F(t)$$

9. Take-off (t_3)

$$t_3 = \min\{t \ge t_1 : F(t) \le \alpha_{\text{takeoff}} \text{ weight}\}, \quad \alpha_{\text{takeoff}} = \frac{\text{takeoff_threshold\%}}{100}$$

10. Landing (t_4)

$$t_4 = \min\{t \ge t_3 : F(t) > \alpha_{\text{takeoff}} \text{ weight}\}$$

11. Peak landing force (t_5)

$$t_5 = \arg\max_{t \ge t_4} F(t)$$

Value calculations:

1. Push-off impulse

Calculated by integrating the net force between push-off start and take-off:

$$I = \int_{t_1}^{t_3} \left[F(\tau) - m g \right] d\tau$$

 $2. \ \, \textbf{Take-off velocity}$

From the impulse I:

$$v_0 = \frac{I}{m}$$

3. Jump height (from force)

From energy conservation:

$$h_{\text{force}} = \frac{v_0^2}{2\,g}$$

4. Contact time and flight time

• Contact time:

$$\Delta t_c = t_3 - t_0$$

• Flight time:

$$\Delta t_f = t_4 - t_3$$

5. Jump height (from flight time)

Assuming uniformly accelerated motion up and down:

$$h_{\text{flight}} = \frac{1}{2} g \left(\frac{\Delta t_f}{2} \right)^2$$

6. Estimated average height

$$h_{\rm avg} = \frac{h_{\rm force} + h_{\rm flight}}{2}$$

2. testNormalJump

Threshold calculations:

1. Weight

weight =
$$m \cdot g$$

2. Start Movement (t_0)

$$t_0 = \min \big\{\, t \geq 0 : F(t) \leq \alpha_{\rm start} \, \text{weight} \big\}, \quad \alpha_{\rm start} = \frac{\text{start_threshold\%}}{100}$$

3. Start Deceleration (t_2)

$$t_2 = \min\{t \ge t_0 : F(t) \ge \text{weight}\}$$

4. Start Braking (t_1)

$$t_1 = \arg\min_{t_0 \le t < t_2} F(t)$$

5. Take-off (t_4)

$$t_4 = \min\{t \ge t_2 : F(t) \le \alpha_{\text{takeoff weight}}\}, \quad \alpha_{\text{takeoff}} = \frac{\text{takeoff_threshold\%}}{100}$$

6. Peak Take-off Force (t_3)

$$t_3 = \arg \max_{t_2 < t < t_4} F(t)$$

7. Landing (t_5)

$$t_5 = \min\{t \ge t_4 : F(t) > \alpha_{\text{takeoff}} \text{ weight}\}$$

8. Peak Landing Force (t_6)

$$t_6 = \arg\max_{t \ge t_5} F(t)$$

- 9. Negative impulse and balancing
 - Negative (eccentric) impulse:

$$I_{-} = \int_{t_0}^{t_2} \left[F(\tau) - m g \right] d\tau$$

• Cumulative deceleration:

$$A(t) = \int_{t_2}^t \left[F(\tau) - m g \right] d\tau$$

• Balancing (t_b) :

$$t_b = \min\{t \ge t_2 : A(t) \ge |I_-|\}$$

10. End of push-off (t_7)

$$t_7 = \min\{t \ge t_b : F(t) \le \text{weight}\}$$

Value calculations: Same as Test Depth Jump, but the impulse integral is taken from **balancing** to **take-off**:

$$I = \int_{t_h}^{t_4} \left[F(\tau) - m g \right] d\tau$$

followed by: - $v_0 = I/m$

- $h_{\text{force}} = v_0^2/(2 g)$ $h_{\text{flight}} = \frac{1}{2} g(\Delta t_f/2)^2$ $h_{\text{avg}} = (h_{\text{force}} + h_{\text{flight}})/2$

3. Test Calculate Force

1. Mean force

$$\bar{F} = \frac{1}{N} \sum_{i=1}^{N} F_i$$

2. Index of maximum force

$$k = \arg\max_{i} F_{i}$$

3. **Resulting mass** (from mean force):

$$m_{\rm avg} = rac{ar{F}}{g}$$

4. Maximum mass (from peak force):

$$m_{\max} = \frac{F_k}{g}$$

4. Test Calculate Mass

1. Mean force

$$\bar{F} = \frac{1}{N} \sum_{i=1}^{N} F_i$$

2. Resulting mass:

$$m = \frac{\bar{F}}{g}$$

This project enables precise measurement of an athlete's jump performance, providing valuable data for training, performance evaluation, and biomechanical analysis.