9.20 Paper Presentation:

Matrix Factorization Methods and its Variants

Yibin Xiong

September 20, 2021

1/29

Table of Contents

- Collaborative Filtering & Collaborative Ranking
- Quantum General Functional Matrix Factorization Using Gradient Boosting
- Sefficient Second-Order Gradient Boosting for Conditional Random Fields

Yibin Xiong 2 / 29

Problem Setup: Recommendation System

Predict a user's preference of an item, then make recommendations

- Given transaction records, try to predict how likely a user u will buy the item i
- Given movie ratings on Netflix, try to predict what score a user u will give for a movie i
- Given retweet records (and more information) on Twitter, try to predict what tweet(s) i a user u is interested in

Problem Setup: Recommendation System

Predict a user's preference of an item, then make recommendations

- Given transaction records, try to predict how likely a user u will buy the item i
- Given movie ratings on Netflix, try to predict what score a user u will give for a movie i
- Given retweet records (and more information) on Twitter, try to predict what tweet(s) i a user u is interested in

Let r be a matrix with r_{ui} being the entry on the u-th row and i-th column. r_{ui} represents the rating that user u gives to item i.

r has many missing entries (i.e. r is sparse) whose values we need to predict.

Traditional Methods: Neighborhood Model

- 1. Neighborhood Model
 - Assume i) similar users have similar preferences
 - ii) a user have similar preference for similar items
 - Interpolate the missing values based on some nearest neighbors

Traditional Methods: Neighborhood Model

1. Neighborhood Model

- Assume i) similar users have similar preferences
 - ii) a user have similar preference for similar items
- Interpolate the missing values based on some nearest neighbors

Algorithm:

- Calculate the Pearson correlation coefficient ρ_{ij} between 2 items i and j based on users' rating histories
- Get the similarity measure $s_{i,j}$ by shrinking ρ_{ij}

$$s_{i,j} = \frac{n_{ij}}{n_{ij} + \lambda} \rho_{ij}$$

Estimate the missing rating from user u to item i

$$\hat{r}_{ui} = b_{ui} + rac{\sum_{j \in S_{(i,u)}^k} s_{ij} (r_{uj} - b_{uj})}{\sum_{j \in S_{(i,u)}^k} s_{ij}}$$

Yibin Xiong 4/29

Baseline Estimates

A baseline estimate of r_{ui} , denoted as $b_{u,i}$ is defined by

$$b_{ui} = \mu + b_u + b_i$$

where b_u , b_i are the *observed deviation* of the user and the item from the average level μ

Baseline Estimates

A baseline estimate of r_{ui} , denoted as $b_{u,i}$ is defined by

$$b_{ui} = \mu + b_u + b_i$$

where b_u , b_i are the observed deviation of the user and the item from the average level μ

To estimate b_u and b_i , we minimize the regularized sum square error

$$\min_{b^*} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - \mu - b_u - b_i)^2 + \lambda_1 (\sum_u b_u^2 + \sum_i b_i^2)$$

regularize to avoid overfitting caused by sparse data

Traditional Methods: LFM

2. Latent Factor Model

- Latent Feedback: as opposed to explicit feedback (i.e. ratings)
 E.g. previous history of ratings, which movies (out of all) the user has rated
- Latent Factor: some factors from latent feedback that influence the rating

Algorithm:

- Associate user u with a latent factor vector $p_u \in \mathbb{R}^d$ and item i with $q_i \in \mathbb{R}^d$
- Predict the rating by

$$\hat{r}_{ui} = b_{ui} + p_u^T q_i$$

This algorithm is also called SVD. Based on this, we define the SVD++[3]

Yibin Xiong 6 / 29

SVD

1. Most basic version

- Given rating matrix r, we fill 0 or average values to the missing entries.
- Then we do singular value decomposition (SVD) to r and get $r = P\Sigma Q^T$, where Σ is a diagonal matrix consisting of singular values σ .
- We pick the top k singular values and the corresponding columns/rows in P and Q^T to reconstruct the rating matrix. The matrix \hat{r} gives us the predicted ratings.
- However, crude interpolation and inaccurate result!

2. A better version

- Let \tilde{r} be a **dense** matrix that consists of all rating records we have, without any missing values.
- We do SVD on \tilde{r} and get $\tilde{r} = \tilde{P} \tilde{\Sigma} \tilde{Q}^T$. Pick the top k columns/rows of \tilde{P} and \tilde{Q}^T that represents crucial factors related to the users and items.
- When predicting a new user u_{new} , we construct a vector $p_{new} \in \mathbb{R}^{k-1}$ and do $p_{new}\tilde{\Sigma}_k\tilde{Q}_{\nu}^T$ to get the predicted ratings.

ii) least square regression

¹2 ways: i) pseudo-inverse $p_{new} = r_{new}^T \tilde{Q}_k \tilde{\Sigma}_{\nu}^{-1}$

SVD

3. Funk SVD: Factor \tilde{r} into 2 matrices $\tilde{r} = PQ^T$

Based on this idea, we just find the user vector and item vector(by min I2 regression error) that captures crucial latent factors in low dimensional spaces

$$\min_{p^*,q^*,b^*} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - \mu - b_u - b_i - p_u^T q_i)^2 + \lambda (\|p_u\|^2 + \|q_i\|^2 + b_u^2 + b_i^2)$$

9/29

SVD++

Idea: Combine the neighborhood model and latent factor model

Improved neighborhood model

$$\hat{r}_{ui} = \mu + b_u + b_i + |R^k(i; u)|^{-1/2} \sum_{j \in R^k(i; u)} (r_{uj} - b_{uj}) w_{ij} + |N^k(i; u)|^{-1/2} \sum_{j \in N^k(i; u)} c_{ij}$$

$$\min_{b_*, w_*, c_*} \sum_{(u,i) \in \mathcal{K}} \left(r_{ui} - \mu - b_u - b_i - |\mathcal{N}^k(i;u)|^{-\frac{1}{2}} \sum_{j \in \mathcal{N}^k(i;u)} c_{ij} \right) \\
- |\mathcal{R}^k(i;u)|^{-\frac{1}{2}} \sum_{j \in \mathcal{R}^k(i;u)} (r_{uj} - b_{uj}) w_{ij}^2 \\
+ \lambda_4 \left(b_u^2 + b_i^2 + \sum_{j \in \mathcal{R}^k(i;u)} w_{ij}^2 + \sum_{j \in \mathcal{N}^k(i;u)} c_{ij}^2 \right)$$

Yibin Xiong 10/29

SVD++

Introduce the idea of latent factors q_i^T for items

$$\hat{r}_{ui} = \mu + b_u + b_i + q_i^T \left(|R(u)|^{-1/2} \sum_{j \in R(u)} (r_{uj} - b_{uj}) x_j + |N(u)|^{-1/2} \sum_{j \in N(u)} y_j \right)$$

Each item i is associated with 3 factor vectors q_i, x_i , and y_i

$$\min_{q_*, x_*, y_*, b_*} \sum_{(u,i) \in \mathcal{K}} \left(r_{ui} - \mu - b_u - b_i - q_i^T \left(|R(u)|^{-\frac{1}{2}} \sum_{j \in R(u)} (r_{uj} - b_{uj}) x_j + |N(u)|^{-\frac{1}{2}} \sum_{j \in N(u)} y_j \right) \right)^2 + \lambda_5 \left(b_u^2 + b_i^2 + ||q_i||^2 + \sum_{j \in R(u)} ||x_j||^2 + \sum_{j \in N(u)} ||y_j||^2 \right) \tag{14}$$

Use gradient descent to update the parameters

Yibin Xiong 11/29

CF with Short Term Preferences [4]

Long-term model(traditional):

$$\widehat{r}_{ui} = b_u + b_i + \left(p_u + \frac{\sum_{j \in N(u)} y_j}{\sqrt{|N(u)|}}\right)^T q_i \tag{1}$$

Short-term model(new):

$$\widehat{r}_{ui}(t) = b_u + b_i + \left(p_u + \frac{\sum_{j \in N(u)} y_j}{\sqrt{|N(u)|}} + \frac{\sum_{j \in N(u,t)} \xi_j}{\sqrt{|N(u,t)|}}\right)^T q_i$$
(2)

 y_j , ξ_j are associated with item j

Yibin Xiong 12/29

Collaborative Ranking: Recommend Top k Useful Tweets

• Start from collaborative filtering. We use a simple SVD algorithm to estimate the score/rating

$$\hat{y}_{ui} = \mu + b_u + b_i + p_u^T q_i$$

• Given user u and 2 items k and h, we model the pairwise ranking probability as

$$P(r(k) > r(h)|u) = sigmoid(\hat{y}_{uk} - \hat{y}_{uh}) = \frac{1}{1 + e^{-(\hat{y}_{uk} - \hat{y}_{uh})}}$$

Collaborative Ranking [1]

- We define the dataset $\mathcal{D} = \{ \langle u, k, h \rangle \mid k \in Re(u), h \notin Re(u) \}$
- ullet Then we minimize the negative log likelihood over ${\cal D}$

$$\min \sum_{< u,k,h> \in \mathcal{D}} \ln(1+e^{-(\hat{y}_{uk}-\hat{y}_{uh})}) + \mathsf{L2} \ \mathsf{regularization}$$

Yibin Xiong 14 / 29

Table of Contents

Collaborative Filtering & Collaborative Ranking

- General Functional Matrix Factorization Using Gradient Boosting
- 3 Efficient Second-Order Gradient Boosting for Conditional Random Fields

Yibin Xiong 15 / 29

Motivation

- Insights from Matrix Factorization:
 - Use auxiliary information (i.e. latent feedback) to overcome *data* sparsity
 - Map auxiliary information into a lower-dimensional space of latent factors

Motivation

- Insights from Matrix Factorization:
 - Use auxiliary information (i.e. latent feedback) to overcome data sparsity
 - Map auxiliary information into a lower-dimensional space of latent factors
- Key task: learn the optimal mapping/encoding
- Previously: Find p_i , $q_j \in \mathbb{R}^k$ by minimizing L2 regression loss (with regularization) for each user i and item j
- New: Search for the best function f in a functional space \mathcal{F} by gradient boosting [2]

Structure

Matrix Factorization:

$$\hat{Y}(i,j,x) = U^{T}(i,x) \ V(j,x)$$
, where x is auxiliary information.

Construct the user latent factor vector by a linear combination of features ²

$$\forall$$
 latent dimension k : $U_k(i,x) = \sum_s \alpha_{k,s} f_{k,s}(i,x), f_{k,s} \in \mathcal{F}$

 \circ Usually, \mathcal{F} is the class of decision trees or step functions.

Yibin Xiong 17 / 29

²In implementation, the weights are a constant ϵ , also known as damping factor to avoid overfitting

Structure

Matrix Factorization:

$$\hat{Y}(i,j,x) = U^{T}(i,x) \ V(j,x)$$
, where x is auxiliary information.

Construct the user latent factor vector by a linear combination of features ²

$$\forall$$
 latent dimension k : $U_k(i,x) = \sum_s \alpha_{k,s} f_{k,s}(i,x), f_{k,s} \in \mathcal{F}$

 \circ Usually, ${\cal F}$ is the class of decision trees or step functions.

Choose the optimal feature function f by minimizing

$$\mathcal{L} = \sum_{i,j} I(Y_{ij} - \hat{Y}_{ij}) + \sum_{k,s} \Omega(f_{k,s})$$

where Ω represents the *complexity* of a learner

²In implementation, the weights are a constant ϵ , also known as damping factor to avoid overfitting

Optimization Details

At a timestep, we want to add a feature function f(i,x) to $U_k(i,x)$. Then

$$L(f) = \sum_{i,j} l(\mathbf{Y}_{ij}, \hat{\mathbf{Y}}_{ij} + f(i, \mathbf{x}) \mathbf{V}_{kj})$$

$$= \sum_{i,j} l(\mathbf{Y}_{ij}, \hat{\mathbf{Y}}_{ij}) + \sum_{i,j} (g_{ij} \mathbf{V}_{kj}) f(i, \mathbf{x})$$

$$+ \frac{1}{2} \sum_{i,j} (h_{ij} \mathbf{V}_{kj}^2) f^2(i, \mathbf{x}) + o(f^2(i, \mathbf{x}))$$

$$= \tilde{L}(f) + o(f^2(i, \mathbf{x}))$$
(5)

We use $\tilde{L}(f) + \Omega(f)$ to find the best feature function f.

The regularization term is defined as

$$\Omega(f) := \gamma |C| + \frac{1}{2} \lambda \sum_{c=1}^{|C|} \beta_c^2$$

Yibin Xiong 18 / 29

Optimization Details: Feature Function

Segmentation Function: divide data into different *clusters* based on auxiliary information, then learn a value for each cluster

- o Complex, higher-order: CART (regression trees)
- Simple: step functions

19 / 29

Optimization Details: Feature Function

Segmentation Function: divide data into different *clusters* based on auxiliary information, then learn a value for each cluster

- o Complex, higher-order: CART (regression trees)
- Simple: step functions

Let β_c denote the leaf value for cluster c. We choose the optimal β_c by minimizing the regularized L2 loss.

$$\beta_c^* = -\frac{\sum_{i,j,\mathbf{x}\in I_c} g_{ij} \mathbf{V}_{kj}}{\sum_{i,j,\mathbf{x}\in I_c} h_{ij} \mathbf{V}_{kj}^2 + \lambda}$$
(9)

Time-based Step Functions

- Users' preference change over time ⇒ model users' "local" (or short-term) preferences
- We divide the given period into a series of time bins and use indicator functions for each bin.

$$\hat{Y}(i,j,t) = U_{i,\mathsf{binid(t)}}^{\mathsf{T}} V_j$$

• User-specific: Each user has his own feature function over time

Time-based Step Functions

Figure 2. Illustration of Time-dependent Feature Function

Yibin Xiong 21 / 29

Demographic-based Decision Trees

- Use users' demographic data (e.g. age, gender, occupation) to produce latent features
- Divide users into different cluster (leaves) based on demographic split rules
- Demographic means user-independent
- Efficiency compared with time-based step functions:
 - \circ Fewer times of feature function construction (users in the same cluster share a feature function f)
 - \circ Each individual f is more complex and involves more computational cost

Demographic-based Decision Trees

Figure 3. Illustration of Demographic Feature Function

Yibin Xiong 23 / 29

Algorithm: Split Rule Search

Algorithm 2 Tree Split Finding with Missing Value

```
Require: I: instance set, n_p: number of properties
   qain \leftarrow 0
   G_{all} \leftarrow \sum_{i,j \in I} g_{ij} \mathbf{V}_{kj}, H_{all} \leftarrow \sum_{i,j \in I} h_{ij} \mathbf{V}_{kj}^2
   for p = 1 to n_n do
       I_p \leftarrow \{(i, j, x) \in I | x_p \neq missing\}
        {enumerate default goto right}
       G_{left} \leftarrow 0, H_{left} \leftarrow 0
       for (i, j, x) in sorted (I_p, ascent order) do
           G_{left} \leftarrow G_{left} + g_{ij} \mathbf{V}_{kj}
           H_{left} \leftarrow H_{left} + h_{ij} \mathbf{V}_{kj}^2
           G_{right} \leftarrow G_{all} - G_{left}, H_{right} \leftarrow H_{all} - H_{left}
           gain \leftarrow \max(gain, \frac{G_{left}^2}{H_{reft}} + \frac{G_{right}^2}{H_{reft}} - \frac{G_{all}^2}{H_{right}})
       end for
        {enumerate default goto left}
       G_{right} \leftarrow 0, H_{right} \leftarrow 0
        for (i, j, x) in sorted (I_n, descent order) do
           G_{right} \leftarrow G_{right} + q_{ij} \mathbf{V}_{ki}
           H_{right} \leftarrow H_{right} + h_{ij} \mathbf{V}_{kj}^2
           G_{left} \leftarrow G_{all} - G_{right}, H_{left} \leftarrow H_{all} - H_{right}
gain \leftarrow \max(gain, \frac{G_{left}^2}{H_{left} + 1} + \frac{G_{right}^2}{H_{right} + 1} - \frac{G_{all}^2}{H_{right} + 1})
       end for
   end for
   output split and default direction with max gain
```

→ 4 분 > 4 분 > - 분 - ∽ Q ○

Table of Contents

Collaborative Filtering & Collaborative Ranking

- Quantum Control of the Control of
- Sefficient Second-Order Gradient Boosting for Conditional Random Fields

25/29

Motivation

Problem:

random variables in CRF are dependent \Rightarrow Hessian matrices are **dense**

Solution:

- Derive a Markov Chain mixing rate bound to quantify the dependencies
- Use gradient boosting to iteratively minimize an upper bound of the loss function

Given an input $x \in \mathcal{X}$, a Conditional Random Field (CRF) defines the distribution over $y \in \mathcal{Y}$ as

$$P(y|x) = \frac{\exp(\Phi(y,x))}{\sum_{y' \in \mathcal{Y}} \exp(\Phi(y',x))}$$

The model Φ usually factorizes as a sum of unary and pairwise (edge) potential function $\phi_i: \mathcal{X} \to \mathbb{R}$

$$\phi(y,x) = \sum_{i=1}^{m} \phi_i(x)\mu_i(y), \ \phi_i \in \mathcal{F}, \mu_i \in \mathcal{N} \cup \mathcal{E}$$

subject to
$$\phi_i = \phi_i$$
 for $(i, j) \in \mathcal{C}$

(ロト (母) (量) (重) (重) (重) (型) (で Yibin Xiong27/29

- $\mathcal{N} = \{\mathbb{1}(y_t = k)\}$, $\mathcal{E} = \{\mathbb{1}(y_s = k_1, y_t = k_2)\}$ are sets of indicator functions for each node and edge state
- Each μ_i corresponds to an event: $y_t = k$ for a node and $y_s = k_1, y_t = k_2$ for an edge

28 / 29

- $\mathcal{N} = \{\mathbb{1}(y_t = k)\}$, $\mathcal{E} = \{\mathbb{1}(y_s = k_1, y_t = k_2)\}$ are sets of indicator functions for each node and edge state
- Each μ_i corresponds to an event: $y_t = k$ for a node and $y_s = k_1, y_t = k_2$ for an edge
- $\mathcal{F} = \mathcal{F}_N \cup \mathcal{F}_{\mathcal{E}}$ is the family of potential functions.

- $\mathcal{N} = \{\mathbb{1}(y_t = k)\}$, $\mathcal{E} = \{\mathbb{1}(y_s = k_1, y_t = k_2)\}$ are sets of indicator functions for each node and edge state
- Each μ_i corresponds to an event: $y_t = k$ for a node and $y_s = k_1, y_t = k_2$ for an edge
- $\mathcal{F} = \mathcal{F}_N \cup \mathcal{F}_{\mathcal{E}}$ is the family of potential functions.
- $m{\circ}$ \mathcal{C} is the set of constraints, which defines the *parameter sharing* of potential functions

References

- Kailong Chen et al. "Collaborative personalized tweet recommendation". In: Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval. 2012, pp. 661–670.
- Tianqi Chen et al. "General functional matrix factorization using gradient boosting". In: *International Conference on Machine Learning*. PMLR. 2013, pp. 436–444.
- Yehuda Koren. "Factorization meets the neighborhood: a multifaceted collaborative filtering model". In: *Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining.* 2008, pp. 426–434.
- Diyi Yang et al. "Collaborative filtering with short term preferences mining". In: *Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval*. 2012, pp. 1043–1044.

Yibin Xiong 29 / 29

4 D > 4 B > 4 B > 4 B >