Model przewodnictwa Drudego

Magdalena Dudek Kinga Świderek

Model Drudego

→ Klasyczny model elektronów swobodnych

Opisuje ruch elektronów w metalu. Czerpie z teorii kinetyczno-molekularna gazu doskonałego - zakłada, że elektrony w metalu można traktować jako swobodnie poruszające się cząsteczki, które zderzają się z jonami w sieci krystalicznej metalu.

Opisuje całą populację, nie pojedynczy elektron.

→ przybliżenie elektronów niezależnych

elektrony są niezależne, co oznacza, że zaniedbuje się oddziaływania elektrostatyczne między elektronami oraz między elektronami a jonami, poza samymi procesami zderzeń.

→ przybliżenie elektronów swobodnych

- brak obecności pola oznacza ruch prostoliniowy i jednostajny
- obecność pola oznacza ruch opisany równaniami Newtona, czyli elektron przyspiesza w kierunku przeciwnym do wektora pola.

```
# a = (q * E) / m
acceleration = (ELECTRON CHARGE * vector(electric_field, 0, 0)) / ELECTRON_MASS
electron.velocity += acceleration * TIME_STEP
```

```
electron.physical_position += electron.velocity * TIME_STEP
```

→ prawdopodobieństwo zderzenia

Średni czas swobodny między zderzeniami to au

Prawdopodobieństwo zderzenia na jednostkę czasu wynosi $1/\tau$.

Prawdopodobieństwo wystąpienia zderzenia w nieskończenie małym przedziale czasu:

$$dP(t)\sim \frac{dt}{\tau}$$

 τ = Czas relaksacji tj. średni czas między zderzeniami

Czas relaksacji au

Czasy relaksacji obliczone wg teorii Drudego [x10⁻¹⁴ s]

$$\sigma = \frac{l}{S \cdot R}$$
 $\tau = \frac{m \sigma}{ne^2}$.

$$n = \frac{N}{V} = 6.023 \times 10^{23} \frac{Z\rho}{A}$$

σ = przewodnictwo elektryczne

→ zmierz eksperymentalnie

https://fizyka.wip.pcz.pl/wp-content/uploads/20 21/10/CW-5.pdf

n = gęstość elektronów

→ oszacuj na podstawie struktury

m = masa elektronu e = ładunek elektronu

→ stałe

ELEMENT	77 K	273 K	373 K
Li	7.3	0.88	0.61
Na	17	3.2	
K	18	4.1	
Rb	14	2.8	
Cs	8.6	2.1	
Cu	21	2.7	1.9
Ag	20	4.0	2.8
Au	12	3.0	2.1
Be		0.51	0.27
Mg	6.7	1.1	0.74
Ca		2.2	1.5
Sr	1.4	0.44	
Ba	0.66	0.19	
Nb	2.1	0.42	0.33
Fe	3.2	0.24	0.14
Zn	2.4	0.49	0.34
Cd	2.4	0.56	
Hg	0.71		
AI	6.5	0.80	0.55
Ga	0.84	0.17	
In	1.7	0.38	0.25
TI	0.91	0.22	0.15
Sn	1.1	0.23	0.15
Pb	0.57	0.14	0.099
Bi	0.072	0.023	0.016
Sb	0.27	0.055	0.036

Relaxation times are calculated from the data in Tables 1.1 and 1.2, and Eq. (1.8). The slight temperature dependence of n is ignored.

→ reset prędkości ~ temperatury

Elektrony osiągają równowagę cieplnej poprzez zderzenia z siecią krystaliczną – po zderzeniu wyłaniają się w losowym kierunku z prędkością odpowiednią do temperatury obszaru, w którym nastąpiło zderzenie. Im wyższa temperatura tego obszaru, tym większa prędkość wychodzących elektronów.

$$v_{
m th} = \sqrt{rac{k_{
m B}T}{m}}.$$

```
if uniform(0, 1) < TIME STEP / scattering_time:
    # Resample thermal velocity
    electron.velocity = random_thermal_velocity()
else:
    # a = (q * E) / m
    acceleration = (ELECTRON CHARGE *
vector(electric field, 0, 0)) / ELECTRON MASS
    electron.velocity += acceleration * TIME_STEP</pre>
```