Isomorfismo Entre Grafos Teoria dos Grafos — QXD0152

Prof. Atílio Gomes Luiz gomes.atilio@ufc.br

Universidade Federal do Ceará

 1° semestre/2021

Tópicos desta aula

- Igualdade entre grafos
- Isomorfismo entre grafos
- Condições necessárias para o isomorfismo

Introdução

Introdução

- Muitas vezes, após investigarmos dois ou mais grafos, temos a intuição de que eles são basicamente o mesmo grafo, ou seja, possuem a mesma estrutura.
 - Basicamente, toda propriedade que for provada para um deles será verdadeira para todos os demais que estiverem no mesmo grupo.

Igualdade entre grafos — Definição

- Dois grafos G e H são iguais, denotado por G = H, se:
 - \circ V(G) = V(H);
 - $\circ E(G) = E(H)$; e
 - $\circ \psi_G = \psi_H$
- Quais entre os grafos abaixo são iguais?

Isomorfismo entre grafos

- Definição: Um isomorfismo entre dois grafos simples G e H é uma função bijetora θ: V(G) → V(H) tal que:
 - ∘ $uv \in E(G)$ se e somente se $\theta(u)\theta(v) \in E(H)$.

- Definição: Um isomorfismo entre dois grafos simples G e H é uma função bijetora θ: V(G) → V(H) tal que:
 - ∘ $uv \in E(G)$ se e somente se $\theta(u)\theta(v) \in E(H)$.
- Dizemos que dois grafos simples G e H são isomorfos se existe um isomorfismo entre G e H e denotamos isso por G ≅ H.
 Se G e H não são isomorfos, representamos isso por G ≇ H.

- Definição: Um isomorfismo entre dois grafos simples G e H é uma função bijetora θ: V(G) → V(H) tal que:
 - $uv \in E(G)$ se e somente se $\theta(u)\theta(v) \in E(H)$.
- Dizemos que dois grafos simples G e H são isomorfos se existe um isomorfismo entre G e H e denotamos isso por G ≅ H.
 Se G e H não são isomorfos, representamos isso por G ≇ H.

Exemplo: Os dois grafos abaixo são isomorfos?

- **Definição:** Um isomorfismo entre dois grafos simples G e H é uma função bijetora $\theta \colon V(G) \to V(H)$ tal que:
 - ∘ $uv \in E(G)$ se e somente se $\theta(u)\theta(v) \in E(H)$.
- Dizemos que dois grafos simples G e H são isomorfos se existe um isomorfismo entre G e H e denotamos isso por G ≅ H.
 Se G e H não são isomorfos, representamos isso por G ≇ H.

Exemplo: Os dois grafos abaixo são isomorfos?

$$\theta(1) = b \quad \theta(2) = d$$

$$\theta(3) = f \quad \theta(4) = c$$

$$\theta(5) = e \quad \theta(6) = a$$

Condições necessárias para o Isomorfismo

Como descobrir se dois grafos são isomorfos?

 Intuitivamente, dois grafos são isomorfos se eles podem ser desenhados no plano do mesmo modo.

Como descobrir se dois grafos são isomorfos?

 Intuitivamente, dois grafos são isomorfos se eles podem ser desenhados no plano do mesmo modo.

- Uma abordagem trivial para decidir se dois grafos G e H são isomorfos seria considerar todas as possíveis permutações de vértices de H e checar se alguma delas induz um isomorfismo.
 - \circ Esta abordagem leva tempo O(n!).

Como descobrir se dois grafos são isomorfos?

 Intuitivamente, dois grafos são isomorfos se eles podem ser desenhados no plano do mesmo modo.

- Uma abordagem trivial para decidir se dois grafos G e H são isomorfos seria considerar todas as possíveis permutações de vértices de H e checar se alguma delas induz um isomorfismo.
 - \circ Esta abordagem leva tempo O(n!).
- Infelizmente ainda não conhecemos um algoritmo rápido (polinomial) para determinar se dois grafos são ou não isomorfos.
- Ninguém ainda provou que não existe tal algoritmo.
 - É um problema em aberto!

Invariante de grafos

- **Definição:** Uma invariante de grafos é uma propriedade de um grafo que é preservada pelo isomorfismo.
- A fim de mostrar que dois grafos não são isomorfos, uma abordagem melhor que checar todas os possíveis isomorfismos consiste em encontrar uma invariante de grafos que varia nos dois.
- Quais propriedades são invariantes?
 - o ordem e tamanho
 - o grau máximo
 - o presença de ciclos
 - o presença de subgrafo específico
 - o ...

Segue da definição de isomorfismo:

Condição 1: Se dois grafos
$$G$$
 e H são isomorfos, então $|V(G)| = |V(H)|$ e $|E(G)| = |E(H)|$. (Por quê?)

 Essa condição é necessária mas não é suficiente. Dois grafos podem ter mesma ordem e tamanho mas não serem isomorfos.

Segue da definição de isomorfismo:

Condição 1: Se dois grafos
$$G$$
 e H são isomorfos, então $|V(G)| = |V(H)|$ e $|E(G)| = |E(H)|$. (Por quê?)

- Essa condição é necessária mas não é suficiente. Dois grafos podem ter mesma ordem e tamanho mas não serem isomorfos.
 - ∘ Exemplo: C_6 e $C_3 \cup C_3$

Segue da definição de isomorfismo:

Condição 1: Se dois grafos
$$G$$
 e H são isomorfos, então $|V(G)| = |V(H)|$ e $|E(G)| = |E(H)|$. (Por quê?)

- Essa condição é necessária mas não é suficiente. Dois grafos podem ter mesma ordem e tamanho mas não serem isomorfos.
 - Exemplo: C_6 e $C_3 \cup C_3$
- Para qual outra característica do grafo podemos olhar em busca de determinar a existência ou não do isomorfismo?

Segue da definição de isomorfismo:

Condição 1: Se dois grafos
$$G$$
 e H são isomorfos, então $|V(G)| = |V(H)|$ e $|E(G)| = |E(H)|$. (Por quê?)

- Essa condição é necessária mas não é suficiente. Dois grafos podem ter mesma ordem e tamanho mas não serem isomorfos.
 - Exemplo: C_6 e $C_3 \cup C_3$
- Para qual outra característica do grafo podemos olhar em busca de determinar a existência ou não do isomorfismo?
 - Note que: todos os vértices no primeiro grafo possuem grau 2, mas isso não acontece no segundo grafo.

Da discussão do slide anterior, chegamos na seguinte condição:

Condição 2. Se dois grafos G e H são isomorfos, então as suas sequências de graus são iguais.

Demonstração.

• Como G e H são isomorfos, existe um isomorfismo $\theta \colon V(G) \to V(H)$.

Da discussão do slide anterior, chegamos na seguinte condição:

Condição 2. Se dois grafos G e H são isomorfos, então as suas sequências de graus são iguais.

Demonstração.

- Como G e H são isomorfos, existe um isomorfismo $\theta \colon V(G) \to V(H)$.
- Seja $u \in V(G)$ e suponha $\theta(u) = v$, $v \in V(H)$. Vamos mostrar que $d_G(u) = d_H(v)$.

Da discussão do slide anterior, chegamos na seguinte condição:

Condição 2. Se dois grafos G e H são isomorfos, então as suas sequências de graus são iguais.

Demonstração.

- Como G e H são isomorfos, existe um isomorfismo $\theta \colon V(G) \to V(H)$.
- Seja $u \in V(G)$ e suponha $\theta(u) = v$, $v \in V(H)$. Vamos mostrar que $d_G(u) = d_H(v)$.
- Suponha que u é adjacente a x_1, x_2, \ldots, x_k em G e não adjacente a w_1, w_2, \ldots, w_ℓ em G. Assim, $|V(G)| = k + \ell + 1$.

Da discussão do slide anterior, chegamos na seguinte condição:

Condição 2. Se dois grafos G e H são isomorfos, então as suas sequências de graus são iguais.

Demonstração.

- Como G e H são isomorfos, existe um isomorfismo $\theta \colon V(G) \to V(H)$.
- Seja $u \in V(G)$ e suponha $\theta(u) = v$, $v \in V(H)$. Vamos mostrar que $d_G(u) = d_H(v)$.
- Suponha que u é adjacente a x_1, x_2, \ldots, x_k em G e não adjacente a w_1, w_2, \ldots, w_ℓ em G. Assim, $|V(G)| = k + \ell + 1$.
- Então, $\theta(u) = v$ é adjacente a $\theta(x_1), \dots, \theta(x_k)$ em H e não adjacente a $\theta(w_1), \dots, \theta(w_\ell)$. Portanto, $d_G(k) = k = d_H(u)$.

Da discussão do slide anterior, chegamos na seguinte condição:

Condição 2. Se dois grafos G e H são isomorfos, então as suas sequências de graus são iguais.

Demonstração.

- Como G e H são isomorfos, existe um isomorfismo $\theta \colon V(G) \to V(H)$.
- Seja $u \in V(G)$ e suponha $\theta(u) = v$, $v \in V(H)$. Vamos mostrar que $d_G(u) = d_H(v)$.
- Suponha que u é adjacente a x_1, x_2, \ldots, x_k em G e não adjacente a w_1, w_2, \ldots, w_ℓ em G. Assim, $|V(G)| = k + \ell + 1$.
- Então, $\theta(u) = v$ é adjacente a $\theta(x_1), \dots, \theta(x_k)$ em H e não adjacente a $\theta(w_1), \dots, \theta(w_\ell)$. Portanto, $d_G(k) = k = d_H(u)$.

Obs.: Ter a mesma sequência de graus também não é condição suficiente para o isomorfismo. Exemplo: $C_3 \cup C_3$.

Exercício 1

• Determine se os grafos F_1 e F_2 abaixo são isomorfos.

Exercício 2

• Determine se os grafos H_1 e H_2 abaixo são isomorfos.

Isomorfismo e Complementos

O isomorfismo preserva tanto adjacências quanto não adjacências. Esta observação prova o seguinte resultado:

Proposição: Sejam G e H grafos simples. Então, $G \cong H$ se e somente se $\overline{G} \cong \overline{H}$.

Esta proposição pode ser útil ao se analisar grafos densos. Pois, quando um grafo é denso, pode ser mais fácil analisar o seu complemento.

Exemplo: Os grafos abaixo são isomorfos?

Dois grafos cúbicos G e H

Isomorfismo e Complementos

O isomorfismo preserva tanto adjacências quanto não adjacências. Esta observação prova o seguinte resultado:

Proposição: Sejam G e H grafos simples. Então, $G \cong H$ se e somente se $\overline{G} \cong \overline{H}$.

Esta proposição pode ser útil ao se analisar grafos densos. Pois, quando um grafo é denso, pode ser mais fácil analisar o seu complemento.

Exemplo: Os grafos abaixo são isomorfos?

Dois grafos cúbicos G e H

Complementos de G e H

Grafos auto-complementares

• Encontre os complementos dos grafos abaixo. Qual a relação existente entre cada grafo acima e o seu complemento?

Grafos auto-complementares

• Encontre os complementos dos grafos abaixo. Qual a relação existente entre cada grafo acima e o seu complemento?

• **Definição:** Um grafo simples G é auto-complementar se $G \cong \overline{G}$.

Grafos auto-complementares

• Encontre os complementos dos grafos abaixo. Qual a relação existente entre cada grafo acima e o seu complemento?

- **Definição:** Um grafo simples G é auto-complementar se $G \cong \overline{G}$.
- Os grafos acima são todos os grafos auto-complementares com no máximo 5 vértices.
- O número de grafos auto-complementares com n vértices já foi computado para os primeiros valores de n e pode ser consultado online (https://oeis.org/A000171)
 - \circ 1, 0, 0, 1, 2, 0, 0, 10, 36, 0, 0, 720, 5600, 0, 0, 703760, 11220000, . . .

Exercício

Exercício: Prove o teorema abaixo:

Teorema: Se G é um grafo auto-complementar com n vértices e m arestas, então $m=\frac{n(n-1)}{4}$ e $n\equiv 0,1\pmod 4$.

Exercício

• Exercício: Quantos grafos com 4 vértices existem?

Material Adicional

Material Adicional

Links na internet:

- Uma apresentação descontraída: https://medium.com/@jackson. barreto/isomorfismo-em-grafos-43d34c220c66
- Wikipedia (pt-br): https://pt.wikipedia.org/wiki/Isomorfismo_de_grafos

O algoritmo mais eficiente conhecido atualmente para o problema de isomorfismo entre grafos foi desenvolvido por um teórico da computação, chamado László Babai. Alguns links (em inglês) sobre essa descoberta:

- Revista Quanta Magazine: https://www.quantamagazine.org/algorithm-solves-graph-isomorphism-in-record-time-20151214
- Artigo do Laszlo Babai no ICM 2018: https://eta.impa.br/dl/109.pdf

Exercícios

Exercícios

- (1) Dê exemplo de três grafos que possuam a mesma ordem, o mesmo tamanho, a mesma sequência de graus, mas que não sejam isomorfos.
- (2) Classifique as seguintes afirmações como verdadeiras ou falsas e prove sua resposta:
 - (a) quaisquer dois grafos isomorfos possuem a mesma sequência de graus.
 - (b) quaisquer dois grafos com a mesma sequência de graus são isomorfos.
- (3) Prove que dois grafos simples são isomorfos se e somente se os seus complementos são isomorfos.

FIM