Indian Institute of Technology Roorkee

CSN-353 Theory of Computation	End Semester Exam
Total Marks: 50	Time: 3 Hours
True/False Questions (10 Marks)	
1. $L=\{\alpha\beta\alpha\gamma\mid\alpha,\beta,\gamma\in\Sigma^*,\alpha=\epsilon, \beta = \gamma \}$ is a Context-Free	Language.
Solution. True.	
2. Let L be a context-free language (CFL), $x \in L$, and a proper cannot be accepted by a deterministic pushdown automaton mode.	
Solution. True.	
3. If L is a context-free language (CFL) and $x \in L$ with $ x \ge p$ constant, then the number of strings in L is infinite.	, where p is the pumping
Solution. True.	
4. If L_1 and L_2 are recognized by Turing machines (TMs) M_1 at a TM that recognizes L_1L_2 .	and M_2 , then there exists
Solution. True.	
5. Given a grammar G of length n , we can find an equivalent grammar for G in time $O(n)$ and the resulting grammar has	- The state of the
Solution. False.	
6. Neither the language TOTAL = $\{M \mid M \text{ halts on all inputs recursively enumerable.}\}$	s} nor its complement is
Solution. True.	
7. The class of recursively enumerable sets is closed under union	n and intersection.
Solution. True.	

8. A multi-tape Turing Machine can recognize a language that no single tape TM can recognize.

Solution. False.

9. There exists a Language L for which there is an NDTM M to accept it, but there is no DTM to accept the same language L.

 $oxed{Solution.}$ False.

10. A context-free grammar is said to be linear if, in each production rule, at most, one non-terminal occurs on the right-hand side.

Solution. True. \Box

Multiple Choice Questions (20 Marks)

- 1. Consider the symmetric difference of two languages A and B (over the same alphabet), denoted by $A \triangle B$. Which of the following statements is/are **TRUE**?
 - (a) If A and B are both context-free languages (CFLs), then $A\triangle B$ must be a CFL.
 - (b) If A is a CFL and B is not a CFL, then $A\triangle B$ must be a CFL.
 - (c) If A is a CFL and B is regular, then $A\triangle B$ must be a CFL.
 - (d) If A and B are regular languages, then $A \triangle B$ is always context-free.
- 2. Consider the languages:

$$L_1 = \{a^m b^m c^{m+n} \mid m, n > 1\},$$

$$L_2 = \{a^m b^n c^{m+n} \mid m, n > 1\}.$$

Which of the following statements is **TRUE**?

- (a) Both L_1 and L_2 are context-free languages (CFLs).
- (b) Neither L_1 nor L_2 is a context-free language.
- (c) L_1 is not a CFL, but L_2 is a CFL.
- (d) L_1 is a CFL, but L_2 is not a CFL.
- 3. Consider the two grammars G and G' with the start symbols S and S', and with the following productions:
 - Productions of G:

$$S \rightarrow aS \mid B, \quad B \rightarrow bB \mid b.$$

• Productions of G':

$$S' \to aA' \mid bB', \quad A' \to aA' \mid B', \quad B' \to bB' \mid \epsilon.$$

Which of the following statements is **TRUE**?

- (a) L(G) = L(G').
- (b) L(G) is strictly contained in L(G').
- (c) L(G') is strictly contained in L(G).
- (d) Neither L(G) is contained in L(G') nor L(G') is contained in L(G).
- 4. What is the language over the alphabet $\{a, b\}$ that is accepted by the following PDA? The PDA accepts by empty stack. Here, \bot is the initial bottom marker for the stack.

- (a) $\{a^n b^n \mid n > 0\}$
- (b) $\{a^m b^n \mid m, n \ge 0\}$
- (c) $\{a^m b^n \mid m, n \ge 1\}$
- (d) $L\{(a+b)^*b\}$
- 5. Let Σ_1 and Σ_2 be disjoint alphabets, $\Sigma = \Sigma_1 \cup \Sigma_2$, and $L \subseteq \Sigma^*$. Denote by L_1 the language over Σ_1 obtained by deleting all symbols of Σ_2 from the strings in L. Likewise, let L_2 denote the language over Σ_2 obtained by deleting all symbols of Σ_1 from the strings in L.

For example, if $\Sigma_1 = \{a\}$, $\Sigma_2 = \{b\}$, and $L = \{abab^2ab^3...ab^n, | n \ge 1\}$, then we have:

$$L_1 = \{a^n \mid n \ge 1\}, \quad L_2 = \{b^{n(n+1)/2} \mid n \ge 1\}.$$

Which of the following statements is/are **FALSE**?

(a) If L is a DCFL, then both L_1 and L_2 must be DCFL.

- (b) If both L_1 and L_2 are DCFL, then L must be a DCFL.
- (c) If L_1 is a regular language and L_2 is a DCFL, then L must be a DCFL.
- (d) If L is a regular language, then both L_1 and L_2 must be regular languages.
- 6. Let M be a Turing machine over the alphabet Σ with L(M) = L. Let M' be the Turing machine obtained from M by swapping the roles played by the accept and reject states of M. Finally, let L' = L(M'), and $\sim L$ denote the complement of L (in Σ^*).

Which of the following statements is/are always **TRUE**?

- (a) $L' = \sim L$
- (b) $L' \neq \sim L$
- (c) $L' \subseteq \sim L$
- (d) $\sim L \subseteq L'$
- 7. Which of the following statements about multi-tape Turing machines is **TRUE**?
 - (a) Multi-tape Turing machines can recognize a strictly larger class of languages than single-tape Turing machines.
 - (b) Every multi-tape Turing machine can be simulated by a single-tape Turing machine with only a quadratic increase in time complexity.
 - (c) Multi-tape Turing machines require exponentially more states than single-tape Turing machines to recognize the same language.
 - (d) The language classes recognized by single-tape and multi-tape Turing machines are fundamentally different.
- 8. Which of the following statements is/are **FALSE**?
 - (a) For every non-deterministic Turing machine, there exists an equivalent deterministic Turing machine.
 - (b) Turing recognizable languages are closed under union and complementation.
 - (c) Turing decidable languages are closed under intersection and complementation.
 - (d) Turing recognizable languages are closed under union and intersection.
- 9. The graph below shows the value #a-#b plotted against prefixes of a word $x \in \{a,b\}^*$. Analyze the graph carefully and identify the language represented by it.
 - (a) $L = \{x \in \{a, b\}^* \mid \#a(x) > \#b(x)\}$
 - (b) $L = \{x \in \{a, b\}^* \mid \#a(x) < \#b(x)\}$
 - (c) $L = \{x \in \{a, b\}^* \mid \#a(x) = \#b(x)\}$
 - (d) $L = \{x \in \{a, b\}^* \mid \#a(x) + \#b(x) \text{ is even} \}$

10. What language is generated by the unrestricted grammar $G = (\{S, B, a, b, c\}, \{a, b, c\}, R, S)$, where R consists of the following productions?

$$S \to aBSccc \mid aBccc$$

$$Ba \to aB$$
, $Bc \to bbc$, $Bb \to bbb$

- (a) $\{a^n b^{3n} c^{3n} \mid n \ge 0\}$
- (b) $\{a^n b^{2n} c^{3n} \mid n \ge 0\}$
- (c) $\{a^n b^n c^n \mid n > 0\}$
- (d) $[a^n b^{2n} c^{3n} \mid n > 0]$

- 1. (a) Define a Turing Machine formally.
 - (b) Explain how a multitape Turing Machine can be simulated using a single-tape Turing Machine. [3]

Solution.

A probable outline of the solution:

(a) A Turing Machine (TM) is defined as a 7-tuple:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}),$$

where:

- Q: A finite set of states.
- Σ : The input alphabet (does not include the blank symbol \sqcup).
- Γ : The tape alphabet $(\Sigma \subseteq \Gamma, \text{ and } \sqcup \in \Gamma)$.
- δ : The transition function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$, where L and R indicate moving the tape head left or right, respectively.
- q_0 : The start state $(q_0 \in Q)$.
- q_{accept} : The accept state $(q_{\text{accept}} \in Q)$.
- q_{reject} : The reject state $(q_{\text{reject}} \in Q)$, where $q_{\text{reject}} \neq q_{\text{accept}}$.

A Turing Machine operates by reading the input from the tape, modifying the tape according to the transition function, and moving the tape head until it reaches either q_{accept} or q_{reject} .

- (b) A multitape Turing Machine (MTM) can be simulated by a single-tape Turing Machine (STM) as follows:
 - Encoding the Tapes: Represent the contents of all k tapes of the MTM on a single tape of the STM. Use special delimiter symbols (e.g., #) to separate the contents of each tape. For example, if there are 3 tapes with contents aabb, bba, and ab, the single tape representation could be:

#aabb#ba#ab#

- **Simulating Tape Heads:** Use markers or pointers to keep track of the positions of the tape heads for each of the *k* tapes. For example, you can encode the tape head position by placing a special symbol or annotation near the respective character.
- **Simulating Transitions:** The STM simulates the MTM by:
 - i. Scanning the entire single tape to read the symbols under the virtual tape heads for each tape.
 - ii. Applying the transition function of the MTM based on the current state and the symbols read.
 - iii. Updating the symbols under the virtual tape heads and moving the virtual tape heads left or right by scanning and modifying the tape as necessary.
- Time Complexity: The STM requires extra steps to simulate the k-tape MTM because it must scan the single tape to locate the positions of the virtual tape heads. This increases the time complexity by a quadratic factor, resulting in an overall time complexity of $O(T^2)$, where T is the runtime of the MTM.

[2]

2. Consider the language $L = \{a^n b^{n^2} \mid n \ge 0\}$. Use the Pumping Lemma for CFLs to determine whether L is a context-free language or not. Clearly explain your assumptions. [5]

Solution.

A probable outline of the solution:

Answer: $L = \{a^n b^{n^2} \mid n \ge 0\}$ is **not** a context-free language.

Explanation:

We will use the Pumping Lemma for context-free languages (CFLs) to prove that L is not context-free. The Pumping Lemma states:

If L is a context-free language, then there exists a pumping length $p \ge 1$ such that any string $z \in L$ with $|z| \ge p$ can be split into z = uvwxy such that:

- (a) vwx has a length $|vwx| \le p$.
- (b) $vx \neq \epsilon$ (at least one of v or x is non-empty).
- (c) For all $i \geq 0$, the string $uv^i wx^i y \in L$.

We will attempt to show that L does not satisfy these conditions.

Assumptions: - Let p be the pumping length guaranteed by the Pumping Lemma. - Consider the string $z = a^p b^{p^2} \in L$, where n = p.

Splitting z = uvwxy: - The substring vwx has $|vwx| \le p$, so vwx consists of either: - Only a's, - Only b's, or - A combination of a's and b's.

Case Analysis:

- (a) Case 1: vwx contains only a's. Pumping v and x changes the number of a's in z. For $i \neq 1$, the number of a's in uv^iwx^iy is no longer p, but the number of b's remains p^2 . Hence, $uv^iwx^iy \notin L$, as the number of a's does not match the square root of the number of b's.
- (b) Case 2: vwx contains only b's. Pumping v and x changes the number of b's in z. For $i \neq 1$, the number of b's in uv^iwx^iy is no longer p^2 , but the number of a's remains p. Hence, $uv^iwx^iy \notin L$, as the number of b's is no longer the square of the number of a's.
- (c) Case 3: vwx contains both a's and b's. Pumping v and x disrupts the order of a's and b's in z. For $i \neq 1$, uv^iwx^iy is no longer of the form $a^nb^{n^2}$. Hence, $uv^iwx^iy \notin L$.

Conclusion: In all cases, pumping v and x causes the resulting string uv^iwx^iy to fall outside L. Therefore, L does not satisfy the Pumping Lemma for CFLs, and we conclude that L is **not a context-free language**.

3. Design a Turing Machine (TM) M that decides the language:

$$L = \{0^{2^n} \mid n \ge 0\}.$$

- A Turing Machine (TM) M that **decides** $L = \{ 0^{2^n} \mid n \ge 0 \}.$
 - $$\begin{split} &A \ TM \ M \ is \\ &(Q, \Sigma, \Gamma, \delta, \, q_1, \, q_{accept}, \, q_{reject}) \\ &- \quad Q = \{q_1, \ldots, q_5, \, q_{accept}, \, q_{reject} \, \} \\ &- \quad \Sigma = \{0\} \\ &- \quad \Gamma = \{0, x, \sqcup\} \end{split}$$

Solution.

A probable outline of the solution:

Example Execution:

For w = 00000000 (8 0's):

- q_0 : Validate input; all symbols are 0, proceed to q_{mark} .
- q_{mark} : Mark every second 0: 0X0X0X0X.
- q_{scan} : Scan back and verify remaining 0's. Repeat the marking process.
- Second iteration: Mark every second 0: XXXXXXXXX.
- Final iteration: Verify that only one 0 remains; transition to q_{accept} .

Conclusion: The Turing Machine M accepts strings whose lengths are powers of 2 and rejects all others, thus deciding the language $L = \{0^{2^n} \mid n \geq 0\}$.

Clearly explain the steps your Turing Machine takes to decide if the given string belongs to L. [5]

4. Consider the following language over $\Sigma = \{a, b, c\}$:

$$L_1 = \{a^i(bc)^j \mid i, j > 0 \text{ and } i > j\}.$$

- (a) Design a PDA $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ to accept L_1 . M must contain at most two states and clearly mention whether it accepts by final state, empty stack, or both.
- (b) Provide a detailed explanation of the transition function δ of your PDA, and describe how it ensures that i > j.

Solution We take $Q = \{s,t\}$ with the start state s and no final states $(F = \emptyset)$. The machine accepts by empty stack. The alphabets are $\Sigma = \{a,b,c\}$ and $\Gamma = \{a,b,\bot\}$. The transitions are described in the following figure.

In the start state s, the machine reads the initial block of a's. For every a read from the input, an a is pushed to the stack. M subsequently makes an ϵ -transition to the state t to read the block of (bc)'s, that follows the block of a's. Only if a matching a is found at the top of the stack, the reading of one occurrence of bc is initiated. The a at the top of the stack is replaced by b to indicate that the reading of bc is only half-way through. Only if a c is available at the input at this stage, this c is consumed, and the intermediate marker b is popped out of the stack exposing the next a to be matched against the next occurrence of bc.

When an input of L_1 is fully read by M, the stack contains i-j occurrences of a and the bottom marker \bot . M uses the transitions $\epsilon, a/\epsilon$ and $\epsilon, \bot/\epsilon$ against the loop at the state t, in order to pop the excess a's and the bottom marker \bot . If M uses the transition $\epsilon, a/\epsilon$ more than i-j times before reading all the j occurrences of bc, the machine gets stuck before reading the entire input.

Solution.

A probable outline of the solution:

Transition Function δ : [2]

• Push a's onto the stack:

$$\delta(s, a, \bot) = (s, A \bot), \quad \delta(s, a, A) = (s, AA)$$

When reading a's, push A onto the stack. This counts the number of a's (i).

• Pop A for each bc pair:

$$\delta(s, b, A) = (s, A), \quad \delta(s, c, A) = (s, \epsilon)$$

When reading a b, leave the stack unchanged (waiting for c), and when reading a c, pop A from the stack. Each bc pair corresponds to one A being popped, effectively matching j with i.

• Transition to final state when i > j:

$$\delta(s, \epsilon, A) = (f, \epsilon)$$

When no more input remains, and there is at least one A on the stack, transition to the final state f. This ensures i > j, as there are unmatched A's remaining.

• Reject otherwise:

$$\delta(s, \epsilon, \perp) = \text{reject}$$

If the stack is empty (\bot) but more input is expected, reject the string.

How the PDA Ensures i > j:

The PDA maintains a balance between i and j using the stack:

- Each a pushes an A onto the stack, counting i.
- Each bc pair pops an A, reducing the stack count by 1 for each j.
- After processing the input, if the stack is non-empty (A's remain), it means i > j. The PDA transitions to the final state and accepts the string.
- If the stack becomes empty before all bc pairs are processed, or if bc pairs remain unmatched, the PDA rejects the string.