

The Guggenheim Museum in Bilbao (Image courtesy: BBC.com)

What is the minimum number of guards?

What is the minimum number of guards?

Placing minimum number of guards

What is the minimum number of guards?

Placing minimum number of guards

What is the minimum number of guards?

Placing minimum number of guards

Art Gallery Problem [Victor Klee, 1973]

- Input : Art Gallery
- Output: Minimum number of guards that can safe-guard or cover the interior walls of the gallery

The Guggenheim Museum in Bilbao: hard to supervise (Image courtesy: BBC.com)

Input representation

- How do we represent the input / art gallery in geometric terms?
- Polygon

Input representation: Polygon Formal Definition

Let $v_0, v_1, v_2, \ldots, v_{n-1}$ be n points in the plane.

Let
$$e_0 = v_0 v_1$$
, $e_1 = v_1 v_2$, ..., $e_i = v_i v_{i+1}$, ..., $e_{n-1} = v_{n-1} v_0$

be n segments connecting the points.

Then these segments bound a polygon iff

- 1. The intersection of each pair of segments adjacent in the cyclic ordering is the single point shared between them: $e_i \cap e_{i+1} = v_{i+1}$, for all i = 0, ..., n-1.
- 2. Nonadjacent segments do not intersect: $e_i \cap e_j = \emptyset$, for all $j \neq i + 1$.

Non-simple polygon

Recall

- 1. The intersection of each pair of segments adjacent in the cyclic ordering is the single point shared between them: $e_i \cap e_{i+1} = v_{i+1}$, for all i = 0, ..., n-1.
- 2. Nonadjacent segments do not intersect: $e_i \cap e_j = \emptyset$, for all $j \neq i + 1$.
- e₁ and e₄ intersect
- Condition 2 does not hold

Polygon

- Polygon: region of plane bounded by a finite collection of line segments forming a simple closed curve
- Why is it called a curve?
- Why is it called a closed curve?
- Why is it called a simple closed curve?

Polygon

A simple closed curve

The reason these segments define a *curve* is that they are connected end to end; the reason the curve is *closed* is that they form a cycle; the reason the closed curve is *simple* is that nonadjacent segments do not intersect.

The points v_i are called the *vertices* of the polygon, and the segments e_i are called its *edges*. Note that a polygon of n vertices has n edges.

Jordan Curve theorem

Theorem 1.1.1 (Jordan Curve Theorem). Every simple closed plane curve divides the plane into two components.

Polygon

- The polygon P divides the plane into two parts:
 - Interior
 - Exterior
 - Exterior is unbounded
 - Interior is bounded

- Boundary of P is denoted by ∂P
- $-9D \subseteq D$

Polygon

- Convention of numbering the vertices of P
 - Counter clockwise order
 - If we walk along the boundary
 of P, the interior is always to
 the Left of us

Art Gallery Problem: Geometric problem

- Art gallery: Polygon (P)
- Polygon: region of plane bounded by a finite collection of line segments forming a simple closed curve

Placing Guards

- Guard can be placed anywhere interior to the polygon
- Guard can not see through walls
- Guard can turn around 360°

- Guard has 360° visibility
- Different types of guards: point guard, vertex guard, mobile guard

Visibility

- A guard is a point
- Point x is visible to point y iff the closed segment xy is nowhere exterior to the polygon

Guards themselves do not block the visibility of each other

Visibility

- The vertex is the Grazing contact of line xy
- Definition of visibility which we already know: Point x is visible to point y iff the closed segment xy is nowhere exterior to the polygon
- According to the above definition: x is visible to y, even though there is a grazing contact between them

Definition of clear visibility

A vertex can block vision in the case of clear visibility

x has clear visibility to y if $xy \subseteq P$ and $xy \cap \partial P \subseteq \{x, y\}$.

Visibility: Covering a polygon

- A set of guards cover a polygon if every point in the polygon is visible to some guard
- What we have to do is: Given a simple Polygon
 P with n vertices, compute the minimum
 number of guards which cover P

Reference

J. O Rourke, Computational Geometry in C,
 2/e, Cambridge University Press, 1998

Thank you