Functional API

LATEST SUBMISSION GRADE

1	\cap		0/
-1	U	'U	/0

1.

Question 1

Which of these steps are needed for building a model with the Functional API? (Select three from the list below)

- 1. Explicitly define an input layer to the model.
- 2. Define the input layer of the model using any Keras layer class (e.g., Flatten(), Dense(), ...)
- 3. Define disconnected intermediate layers of the model.
- 4. Connect each layer using python functional syntax.
- 5. Define the model using the input and output layers.
- 6. Define the model using only the output layer(s).

1 / 1 point

0

1, 4, 5

O

1, 4, 6

0

1, 3, 5

O

2, 4, 5

Correct

Correct!

2.

Question 2

Is the following code correct for building a model with the Sequential API?

1 / 1 point

O

False

 \bigcirc

True

Correct

Correct! This is how you build a functional model

3.

Question 3

Only a single input layer can be defined for a functional model.

1 / 1 point

()

False

O

True

Correct

Correct!

4.

Question 4

What are Branch Models?

1 / 1 point

•

A model architecture with non-linear topology, shared layers, and even multiple inputs or outputs.

C
A model architecture with linear stack of layers.
C
A model architecture where you can split the model into different paths, and cannot merge them later.
C
A model architecture with a single recurring path.
Correct
Correct!
5. Question 5
One of the advantages of the Functional API is the option to build branched models with multiple outputs, where different loss functions can be implemented for each output.
1 / 1 point C
False
\odot
True
Correct
Correct!
6.
Question 6 A siamese network architecture has:
1 / 1 point
1 input, 1 output
C
1 input, 2 outputs
2 inpute 2 outpute
2 inputs, 2 outputs

⊙
2 inputs, 1 output
Correct
Correct!
7.
Question 7 What is the output of each twin naturals incide a Sigman Naturals architecture?
What is the output of each twin network inside a Siamese Network architecture?
1 / 1 point C
A number
$_{\odot}$
An output vector
C
A softmax probability
A Softmax probability
C
Binary value, 1 or 0
Correct
Correct!
8. Question 8
What is the purpose of using a custom contrastive loss function for a siamese model?
1 / 1 point
A custom built function is required because it is not possible to use a built-in loss function with the
Lambda layer.
C
As a custom built function, it provides better results and it is faster to run.
⊙
It is a custom built function that can calculate the loss on similarity comparison between two items.

A custom loss function is required for using the RMSprop() optimizer.

Correct

Correct!