I mpulse response refers to the reaction of any dy namic response to some external change. The external change basically refers to impulse. Here a with audio signal of the sun shot (impulse) and the recording of the sunshot in the range (impulse response) we can develop a "transfer" function that describes the system. We can convolve this transfer function with the any audio signal, in this case a violin recording and produce an impulse response; which is the sound of violin played in the San range

2. Y(E)====x(#-1)+=x(+-10)

In terms of the equation, it definitly heakes sense as an eache channel $\pm x(t-1)$ shows that input x(t) is delayed by a second with half of the amplitude. $\pm x(t-10)$ shows that the input x(t) is delayed by 10 seconds and with $\pm x(t)$ amplitude.

$$y(t) = x * h(t) = h * x(t)$$

 $y(t) = \frac{1}{2}x(t-1) + \frac{1}{4}x(t-10)$
 $y(t) = \frac{1}{2}x(t-1) + \frac{1}{4}x(t-10)$
 $y(t) = \frac{1}{2}x(t-1) + \frac{1}{4}x(t-10)$

$$\frac{1}{T} = \frac{1}{J_{TK}} \left(e^{-j\frac{2\pi}{4}} - e^{j\frac{\pi}{4}} \right) = \frac{1}{J_{TK}} \left(e^{j\frac{\pi}{4}} - e^{j\frac{\pi}{4}} \right)$$

$$= \frac{1}{J_{TK}} \left(e^{j6} - e^{-j6} \right) = Sin6$$

K= odd
$$\Rightarrow$$
 $\frac{1}{\pi l^{2}}$ or $-\frac{1}{\pi l^{2}}$

K= even $= 0$

($k = \frac{\sin(\sqrt{k})}{\pi l^{2}}$ $\chi'(k) = \frac{1}{2} \frac{\pi l^{2}}{k^{2}} \frac{\pi l^{2}}{k^{2}}$

See Sraph eval at when $\frac{1}{12} = 5$, 19 , 25 ?

C. The edge has a spike that we can't seem to get rid of no matter how many terms we add, As $k \to \infty$, the edges of the discontinuity decreases but it never seems to go away

(4 . a $\chi(k) = \chi(k - \sqrt{k})$ $\chi'(k) = \frac{1}{2} \frac{\pi l^{2}}{k^{2}} \frac{\pi l^{2$

I added x = x + np.exp(1j*2*np.pi/T*k)*Coeff*np.exp(1j*2*np.pi/T*k*ts) to FourierSeries1.ipynb