Sistemi operativi a.a. 2018-19

Informazioni sul corso

prof. Francesco Zanichelli

Docente

Prof. Francesco Zanichelli

Tel. 0521 905710

E-mail francesco.zanichelli@unipr.it

- Per conoscere meglio le attività di ricerca e per info su progetti, internati, tesi: http://dsg.ce.unipr.it
- Ricevimento: su appuntamento concordato via email

Logistica del corso

Orario Lezioni: Mer 10:30-12:30, aula E

Gio 10:30-12:30, aula O

(domani 28/02 lezione annullata)

Esercitazioni: In orario di lezione

Gio 10:30-12:30 : LabInf 1-2-3

□ Crediti: 6 CFU → almeno 48 ore di attività didattica

- Organizzazione in tre parti:
 - Lezioni in aula
 - Esercitazioni in aula e in laboratorio

Organizzazione del corso

- Esercitazioni UNIX, aula e laboratorio:
 - la parte fondamentale del corso
 - indispensabile la frequenza
- Supporto esercitazioni:
 - Tutor da definire

Logistica del corso

 Sito dell'insegnamento, con materiali didattici ed informazioni:

https://elly.dia.unipr.it/2018/course/view.php?id=412

- Login tramite servizio CAS di Ateneo (nome.cognome@unipr.it e pwd)
- Selezionare Lauree Triennali -> LIET -> II anno -> "SISTEMI OPERATIVI"
- Obbligatorio essere registrati sul sito dell'insegnamento
- Comunicazioni su risultati esami, lezioni, etc., in genere solo attraverso il sito.

Programma di massima - teoria

- Introduzione ai sistemi operativi, ruolo e servizi
- Concetto di processo e multiprogrammazione
- Interazione tra processi; problema delle sezioni critiche
- Programmazione concorrente in ambiente globale
- Programmazione concorrente in ambiente locale
- Problemi di gestione di risorse, deadlock
- Scheduling della CPU
- Trend dei sistemi operativi attuali

Programma di massima - laboratorio ed esercitazioni

- Introduzione a UNIX
- Interazione con l'utente: file system, shell e comandi
- Programmazione di sistema UNIX
 - Primitive per la gestione di I/O e processi
 - Primitive per la sincronizzazione e comunicazione in UNIX nel modello a scambio di messaggi (segnali, pipe, FIFO, socket)

Esame

- Due prove:
 - Prova scritta di teoria
 - Prova pratica (al calcolatore): programmazione di sistema UNIX (utilizzo delle System Call)
- Il voto finale è calcolato come media delle due prove (entrambe devono essere sufficienti)
- Le prove possono essere sostenute nello stesso appello (preferibile) o in appelli diversi:
 - Teoria: al mattino ore 9.30
 - Pratica: al pomeriggio ore 14.30

Esame

- Il voto viene verbalizzato immediatamente dopo il superamento delle due prove
- Il voto può essere rifiutato (con il meccanismo di Esse3)
 - Il voto è perso e non più recuperabile
- Prova intermedia di teoria (data da definire): prima settimana di Maggio
 - Il voto conseguito rimane valido fino all'appello di febbraio dell'anno successivo

Appelli ufficiali

- Sessione estiva :
 - N. 3 appelli tra giugno e luglio (da definire)
- III sessione (da confermare):
 - N. 2 appelli tra fine agosto e fine settembre (da definire)

SisOp 2017/18 - Info

Iscrizione all'esame

- Per ogni appello 3 liste su Esse3 (iscriversi):
 - Prova scritta
 - Prova pratica
 - Prova verbalizzante
- Chi ha superato la prova scritta in corso d'anno, dovrà iscriversi alle liste della prova pratica e della prova verbalizzante dell'appello in cui decide di completare l'esame
- La prova verbalizzante è una prova fittizia che serve per pubblicare il voto finale e consentire allo studente di accettarlo o rifiutarlo

Testi di Sistemi Operativi e Programmazione Concorrente

- A. <u>Silberschatz</u>, P.B. Galvin, G. Gagne, "Sistemi operativi Concetti ed esempi", settima / ottava edizione, Pearson Education Italia, 2006/2009.
 - cap. 1,2,3 tutto / cap. 4 solo 4.1 / cap. 5
 tutto tranne 5.4 e 5.5
 - cap. 6 6.1, 6.2, 6.4. 6.5, 6.6.1 / cap. 7 / cap 88.1 e 8.2 / cap 14 leggere tutto

- Non indispensabile per l'esame
- Anche: A. <u>Silberschatz</u>, P.B. Galvin, G. Gagne, "Operating System Concepts", oppure "Operating System Concepts with Java", (from <u>6th</u> to <u>9th</u> ed.), Wiley, 2004-2012.

Altri testi consigliati

- P. Ancillotti, M. Boari, A. Ciampolini, G. Lipari, Sistemi Operativi, McGraw-Hill, Seconda edizione, 2007
- Molti testi generalisti di Sistemi operativi sono disponibili presso la biblioteca di Ingegneria e Architettura; oltre a quelli citati:
- Dietel, Dietel & Choffness (anche in italiano)
- Tanenbaum (idem)
- Anderson & Dahlin
- □ Etc...

Altri testi consigliati

- A.S. Tanenbaum, "I Moderni Sistemi Operativi," Jackson Libri, 1995.
- Per la programmazione di sistema in UNIX:
 - K. Wall, M. Watson, M. Whitis, "Programmare in Linux – Tutto & Oltre", Apogeo, 2000
- Possibile alternativa:
 - W.R. Stevens, "Advanced Programming in the UNIX Environment," Addison-Wesley, 1993.

Risorse utili su internet

- GAPIL (Guida alla Programmazione in Linux, S. Piccardi): http://gapil.truelite.it/index.html
- Unix Programming FAQ:
 http://www.faqs.org/faqs/unix-faq/programmer/faq/
 (le domande più frequenti riguardo alla programmazione UNIX)
- Unix SOCKET FAQ;
 http://www.developerweb.net/forum/
 domande più frequenti riguardo alla programmazione delle socket UNIX

Materiali didattici & risorse

- Copie delle diapositive:
 - Non necessariamente complete, suscettibili di aggiornamenti durante il corso; utili come supporto alla frequenza effettiva
 - Accessibili man mano tramite il sito web del corso, talvolta last minute
- E' obbligatorio essere registrati sul sito entro il 15 marzo 2019.
 - Il sito verrà utilizzato in modo sostanziale come unico canale per lo scambio di informazioni, anche urgenti (variazioni orario lezioni ed esami, calendario, risultati, assegnamenti, etc.)

LINUX

- una versione completa e affidabile di UNIX
- disponibile per PC x86 Intel/AMD e numerose altre piattaforme
- strumento indispensabile per le esercitazioni
- include gli strumenti di sviluppo necessari
 - compilatore C (gcc)
 - editor (vi , emacs, xemacs)
 - debugger (gdb, ddd)
 - manuali on-line (comandi e primitive)

Numerose distribuzioni (RedHat Fedora, Mandriva, SUSE(in laboratorio vecchia openSUSE 11.2), Debian, <u>Ubuntu, Mint,...)</u>

Può coesistere facilmente con Windows in diverse modalità:

- 1. modalità dual-boot (scelta del S.O. all'avvio del sistema) con
 - A. installazione di Linux in partizione separata di HD/SSD (possibilità di ridimensionare una partizione Windows esistente per ottenere lo spazio per una nuova partizione Linux
 - B. avvio ed eventuale installazione da chiavetta USB (Unetbootin)
 - C. (installazione di Linux all'interno della partizione di Windows)
- 2. modalità macchina virtuale
 - ⇒ installazione di un applicazione di virtualizzazione (Vmware Player, Virtualbox) e installazione/download di un macchina virtuale Linux
- 3. modalità ambiente operativo POSIX in Windows
 - installazione dell'applicazione CYGWIN (http://www.cygwin.com)
 - Windows Subsystem for Linux

Numerose guide all'installazione (HOWTO)

⇒ cercare con google "guida installazione Linux" – ad es. https://www.linux.it/installare

Una varietà di Sistemi Operativi

Netbook

PC desktop/laptop

Cos'è un Sistema Operativo ?

