1. Sformułuj I prawo Kirchhoffa.

Algebraiczna suma prądów w węźle jest równa zeru.

2. Sformułuj II prawo Kirchhoffa.

Algebraiczna suma napięć w obwodzie zamkniętym jest równa zeru.

3. Jak brzmi twierdzenie Thevenina-Nortona? Dla jakiej klasy obwodów ma zastosowanie?
Dla dowolnej pary zacisków, dowolny układ liniowy można zastąpić źródłem zastępczym napięciowym bądź prądowym.

4. Opisz, w jaki sposób wyznacza się parametry źródła zastępczego w oparciu o twierdzenie Thevenina?

Aby określić parametry źródła zastępczego postępujemy następująco:

Wyznaczamy opór zastępczy Rw

Usuwamy z dwójnika źródła niezależne (napięciowe zwieramy, prądowe rozwieramy). Wyznaczamy opór powstałego dwójnika bezźródłowego.

• Wyznaczamy zastępczą siłę elektromotoryczną ET

Rozwieramy zaciski dwójnika i wyznaczamy na nich napięcie U0.

5. Opisz, w jaki sposób wyznacza się parametry źródła zastępczego w oparciu o twierdzenie Nortona?

W celu określenia parametrów źródła zastępczego:

Wyznaczamy opór zastępczy Rw

Usuwamy z dwójnika źródła niezależne (napięciowe zwieramy, prądowe rozwieramy). Wyznaczamy opór powstałego dwójnika bezźródłowego.

Wyznaczamy zastępczą wydajność prądową JN

Zwieramy zaciski dwójnika i wyznaczamy prąd zwarciowy Iz. Zastępcza wydajność prądowa JN jest równa prądowi zwarciowemu Iz.

6. Korzystając z twierdzenia Thevenina wyznaczono zastępczą siłę elektromotoryczną ET = 5 V i rezystancję wewnętrzną Rw = 50 Ω . Wyznacz wartość napięcia panującego na rezystancji obciążenia Ro = 100 Ω .

$$U_0 = E_T \cdot \frac{R_0}{R_0 + R_w} = \frac{1}{5} V \cdot \frac{100}{150} = \frac{10}{3} V = 3\frac{1}{3}$$

7. Korzystając z twierdzenia Nortona wyznaczono zastępczą wydajność prądową JN = 40 mA i rezystancję wewnętrzną Rw = 100 Ω . Wyznacz wartość prądu płynącego przez rezystancję obciążenia Ro = 300 Ω .

8. Korzystając z twierdzenia Thevenina wyznaczono zastępczą siłę elektromotoryczną ET = 5 V i rezystancję wewnętrzną Rw = 50 Ω . Wyznacz wartość prądu płynącego przez oporność obciążenia Ro = 150 Ω .

$$U_{0} = 5V \cdot \frac{\frac{3}{150}}{100} = \frac{15}{5}V = 3\frac{3}{5}V$$

$$J_{0} = \frac{U}{R} = \frac{15}{150}V = \frac{3}{5}\frac{3}{5}V = \frac{1}{5}\frac{1}{5}$$

9. Korzystając z twierdzenia Nortona wyznaczono zastępczą wydajność prądową JN = 40 mA i rezystancję wewnętrzną Rw = 100Ω . Wyznacz wartość napięcia panującego na rezystancji

obcigżenia Ro = 200Ω .

$$\beta_0 = 40 \text{ mA} \cdot \frac{100}{300} = \frac{40}{3} \text{ mA}$$

$$U_0 = 0.5 = \frac{40}{3} \text{ mA} \cdot 200 \cdot \Omega = 2666 \cdot \frac{2}{3} \text{ mV} = 2 \cdot \frac{2}{3} \text{ V}$$

10. Zdefiniuj zasadę superpozycji. Do jakiej klasy obwodów nie może być zastosowana?

Zasada superpozycji polega na wyznaczeniu w obwodzie prądów i napięć wywołanych przez poszczególne źródła energii działające pojedynczo i następnym ich zsumowaniu. W ten sposób można wyznaczyć wartości prądów i napięć w obwodzie, w którym istnieje wiele źródeł napięciowych bądź prądowych. Zasada superpozycji nie jest zastosowalna do obwodów, które zawierają elementy nieliniowe, takie jak diody półprzewodnikowe.

11. Co oznacza termin "dopasowanie energetyczne dla prądu stałego"?

Dopasowanie energetyczne w obwodach prądu stałego oznacza zapewnienie warunków umożliwiających przekazanie maksymalnej mocy ze źródła do obciążenia

12. Co to jest moc prądu stałego?

Moc prądu stałego jest to ilość energii przekazywanej lub zużywanej przez elementy w obwodzie.

13. Korzystając z twierdzenia Thevenina wyznaczono zastępczą siłę elektromotoryczną ET = 5 V i rezystancję wewnętrzną Rw = 50 Ω . Jaka moc wydzieli się w dołączonym oporniku o rezystancji 20 Ω , a jaka w przypadku opornika o rezystancji 50 Ω ? W którym przypadku mamy do czynienia z dopasowaniem energetycznym?

Dopasowanie energetyczne występuje w przypadku drugim, ponieważ dopasowanie energetyczne występuje w tedy gdy Ro = Rw.

14. Korzystając z twierdzenia Nortona wyznaczono zastępczą wydajność prądową JN = 100 mA i rezystancję wewnętrzną Rw = 100 Ω . Jaka moc wydzieli się w dołączonym oporniku o rezystancji 100 Ω , a jaka w przypadku opornika o rezystancji 50 Ω ? W którym przypadku mamy do czynienia z dopasowaniem energetycznym?

$$P_{1} = \frac{\left(\frac{100 \text{ mA} \cdot 100 \text{ n}}{400 + 100}\right)^{2}}{\left(\frac{100 \text{ mA} \cdot 100 \text{ n}}{400}\right)^{2}} \cdot 100 = \frac{1}{4} \text{ W}$$

$$P_{1} = \frac{\left(\frac{100 \text{ mA} \cdot 100 \text{ n}}{400 + 50}\right)^{2}}{\left(\frac{100 \text{ mA} \cdot 50}{400 + 50}\right)^{2}} \cdot 50 = \frac{2}{8} \text{ W}$$

Dopasowanie energetyczne występuje w przypadku pierwszym, ponieważ dopasowanie energetyczne występuje w tedy gdy Ro = Rw.