First steps in CUDA!(1)

We have seen how to use libraries to use a GPU. What if we want to **write our own functions**?

- 1. define a GPU kernel
- 2. set the number of threads to run it
- 3. use thread index to parallelize the code

- 1. CUDA introduces 3 keywords: __host__, __kernel__ and __global__.
 - __host__ a function running on CPU
- __device__ a function running on GPU called from GPU
- _global_ a function running on GPU called from GPU or CPU

Example:

```
__global__ void myFunc(float *myParam)
{
...
```

2. CUDA uses a hierarchical structure:

- a grid is composed of threadblocks
- a threadblock is composed of threads

The number of threadblocks in the grid and number of threads in each threadblock is set when launching the kernel to the GPU:

• myFunc<<<4,32>>>(myParams): we launch the kernel myFunc with the parameters myParams using a grid of 4 threadblocks of 32 threads each: 128 threads will execute the function.

First steps in CUDA! (2)

3. All threads launched will execute the same code!

Built-in variable allows to identify the different threads:

- threadIdx.x: index of thread in a threadblock
- blockDim.x: number of threads in a threadblock
- blockldx.x: index of threadblock in the grid
- gridDim.x: number of threadblocks in the grid

Example: multiply each element of an array T with a constant C

```
__global__ void multiply(int N, float *T, float C) {
    int index = blockldx.x * blockDim.x + threadldx.x;
    if (index >= N)
        return;
    T[index] = T[index]*C;
}
```

multiply<<<4096,256>>>(N, T, C);

index is unique to each thread! Be careful with the bounds! How many blocks to launch?

Profiling: Nsight Compute (1)

Nsight Compute is a tool to profile **GPU kernels**.

Several metrics can be gathered using sections and sets. By default, set *basic* is selected.

In summary, Nsight Compute can be used to have a detailed analysis of each GPU kernel, and the trace is stored in a .ncu-rep file. It can then be visualized with ncu-ui.

Some useful commands:

- ncu –list-sets : displays the list of available sets.
- ncu –set name : selects the set called *name*.
- ncu –list-sections : displays the list of available sections.
- ncu –section name : selects the section called *name*.

To profile, overwrite the output, with all metrics available and then visualize:

ncu -o profile -f --set full ./myApp ncu-ui profile.ncu-rep

TMPDIR should be set in multi-users sessions to avoid concurrency.

Profiling: Nsight Compute (2)

Nsight Compute also has a GUI tool that sums up the different metrics collected and also gives hints about performance improvement for a kernel.

ROOFLINE PERFORMANCE MODEL (1)

- Performance model (simple)
- Performance assessment
- Sets up the performance expectation
- Identify performance bottlenecks
- Performance upper-bounds
- Architecture-oriented model
- Three ingredients:
 - Communication
 - Computation
 - Locality

ROOFLINE PERFORMANCE MODEL (2)

- At the level of a kernel, determine:
 - Floating-point operations per seconds (FLOPS/s)
 - Arithmetic intensity (AI)
- Al: kernel's ratio of computation to traffic
 - FLOPS per byte
- Traffic is the volume of data to/from memory
- Compute-bound Vs Memory-bound

Dec. 2024

ROOFLINE PERFORMANCE MODEL (3)

- Theoretical peak performance
 - Number of floating-point operations per seconds (Xflops/s)
- Theoretical peak bandwidth
 - Number of byte transferred from main memory per seconds (Xbytes/s)
- Vendor-defined from hardware specifications
- Many tools available to determine the roofline of the underlying hardware

Dec. 2024

ROOFLINE PERFORMANCE MODEL (4)

ROOFLINE PERFORMANCE MODEL (5)

two-socket 26-core Intel Skylake Intel advisor / Likwid

Occupancy

An important factor for performance is called Occupancy. An occupancy of 100% means that each SM is used at maximum capability. The theoretical occupancy can be computed with:

Th-Occ = (max nb of threadblocks per SM * nb of threads per threadblock / 32) / max nb of warps per SM

Max number of warps per SM is equal to the max number of threads per SM divided by 32, e.g. max 1536 threads \rightarrow max 48 warps.

The number of threads per threadblock is set by the user.

The max number of blocks per SM depends on several factors: number of registers that the kernel needs, the amount of shared memory per threadblock, and the number of threads per threadblock.

Nsight Compute will give you all this information;) It can also show the roofline model.

Task #1: launch your custom implementation of GEMM on a GPU

Open the file cuda_gemm.cu. You will find already implemented: allocation of the matrices, memory transfers, a call to CPU blas_gemm as reference. All you will need to do is: write the function gemmV1 and call it!

Indications:

- remember that threads work in parallel so we need independent writes. Make one thread compute one single element of the output matrix C.
- number of threads and number of threadblocks can be 2D (threadldx.x/y, blockDim.x/y, blockIdx.x/y, ...) with dim3 gridSize(M,N); dim3 blockSize(m,n); kernel<<<gri>gridSize, blockSize>>> will launch MN blocks with mn threads.
- play with the different parameters (size of matrices, number of threads per block, ...) and look at the performance / profile with Nsight Compute.

GEMM pseudo-code for CPU:

for i=0,...,M-1 do
for j=0,...,N-1 do
sum = 0
for k=0,...,K-1 do
sum += A[i,k] * B[k,j]

$$C[i,j] = \alpha * sum + \beta * C[i,j]$$

make cuda_gemm && ./cuda_gemm

Thread communication through Shared Memory

One of the most critical part when writing high performance GPU kernels is the data transfers:

- global memory (RAM): high latency, high storage
- shared memory: average latency, limited storage
- registers: quick memory, very limited storage

Elements from the global memory have to be loaded to registers and/or shared memory, but the bandwidth is slower.

Goal: reduce number of accesses to global memory!

Shared memory can be declared with **__shared**__ inside a GPU kernel: one allocation per threadblock.

All threads in the same threadblock can read/write into the same shared memory: communication is possible.

Synchronization will be necessary in most cases.

```
__shared__ int smem[256];

//Threads can write into smem

__syncthreads();

//Threads can read into smem
```

Shared memory can also be configured through a 3rd parameter in kernel launch and adding the keyword *extern* in the declaration inside the GPU kernel code.

myFunc<<<gridSize, blockSize, 256*sizeof(int)>>>(myParams);

Task #2: improve performance with Shared Memory

Open the file cuda_gemm.cu. The goal is to write the function gemmV2, making use of the shared memory to reduce the number of global memory accesses.

Indications:

- shared memory is very limited! You won't be able to store a whole row of A (or a whole column of B) if K is large.
- a threadblock should compute a small rectangle of C: if you compute a row or a column you will re-use less data. The good idea is to iteratively load tiles of A and B of size tileMxtileK and tileKxtileN to compute a tile of C of size tileMxtileN (for each threadblock).
- play with the different parameters (size of matrices, number of threads per block, ...) and look at the performance / profile with Nsight Compute.

make cuda_gemm && ./cuda_gemm

Task #3: Higher arithmetic intensity

Open the file cuda_gemm.cu. The goal is to write the function gemmV3, increasing the arithmetic intensity compared to gemmV2.

Remarks:

- increasing TILE_M and/or TILE_N reduces the number of global memory loads for computing one sub matrix of size TILE_MxTILE_N
- extreme case: TILE_M=M and TILE_N=N. We have no parallelism between blocks and limited number of threads → each thread must compute several results
- we can adopt a 2-level blocking strategy: each threadblock computes a tile of the result (higher tile size = less *global* memory loads) and each thread computes a sub-tile of each tile (higher sub-tile size = less *shared* memory loads)
- currently a thread: two SM loads for 1 multiplication/addition, quite bad

make cuda_gemm && ./cuda_gemm