ساختمان داده و الگوريتم ها (CE203)

جلسه ششم: مرتب سازی سریع

> سجاد شیرعلی شهرضا پاییز 1401 شنبه،16 مهر 1401

اطلاع رساني

بخش مرتبط کتاب برای این جلسه: 5

مرتب سازی سریع

یک نمونه واقعی و کاربردی از الگوریتم های تصادفی

QUICKSORT OVERVIEW

EXPECTED RUNNING TIME

O (n log n)

WORST-CASE RUNNING TIME

 $O(n^2)$

QUICKSORT OVERVIEW

EXPECTED RUNNING TIME

O (n log n)

WORST-CASE RUNNING TIME

 $O(n^2)$

In practice, it works great! It's competitive with MergeSort (& often better in some contexts!), and it runs *in place* (no need for lots of additional memory)

Let's use DIVIDE-and-CONQUER again!

Select a pivot at random

Partition around it

Recursively sort L and R!

Select a pivot

Select a pivot

3 2 7 6 1 5 4 8

Pick this pivot uniformly at random!

Partition around it

Partition around pivot: L has elements less than pivot, and R has elements greater than pivot.

Select a pivot

Partition around it

Recurse!

Select a pivot

Partition around it

Recurse!

QUICKSORT: PSEUDO-PSEUDOCODE

```
QUICKSORT(A):
    if len(A) <= 1:</pre>
        return
    pivot = random.choice(A)
    PARTITION A into:
        L (less than pivot) and
        R (greater than pivot)
    Replace A with [L, pivot, R]
    QUICKSORT(L)
    QUICKSORT(R)
```

RECURRENCE RELATION

```
QUICKSORT(A):
    if len(A) <= 1:
        return
    pivot = random.choice(A)
    PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
    Replace A with [L, pivot, R]
    QUICKSORT(L)
    QUICKSORT(R)
```

Recurrence Relation for QUICKSORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

IDEAL RUNTIME?

```
QUICKSORT(A):
    if len(A) <= 1:</pre>
        return
    pivot = random.choice(A)
    PARTITION A into:
        L (less than pivot) and
        R (greater than pivot)
    Replace A with [L, pivot, R]
    QUICKSORT(L)
    QUICKSORT(R)
```

Recurrence Relation for QUICKSORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

IDEAL RUNTIME?

```
QUICKSORT(A):
    if len(A) <= 1:
        return
   pivot = random.choice(A)
   PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
   Replace A with [L, pivot, R]
   QUICKSORT(L)
   QUICKSORT(R)
```

Recurrence Relation for QUICKSORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

In an ideal world, the pivot would split the array exactly in half, and we'd get:

$$T(n) = T(n/2) + T(n/2) + O(n)$$

IDEAL RUNTIME?

```
Recurrence Relation for
QUICKSORT(A):
                                                  QUICKSORT
    if len(A) <= 1:
        return
                         In an ideal world:
                                                      + T(|R|) + O(n)
    pivot = random
                                                      T(1) = O(1)
    PARTITION A ir
                       T(n) = 2 \cdot T(n/2) + O(n)
        L (less th
                          T(n) = O(n \log n)
        R (greater
                                                      the pivot would split the
    Replace A with LL, pivot, KJ
                                            array exactly in half, and we'd get:
    QUICKSORT(L)
                                         T(n) = T(n/2) + T(n/2) + O(n)
    QUICKSORT(R)
```

WORST-CASE RUNTIME

```
QUICKSORT(A):
    if len(A) <= 1:
        return
    pivot = random.choice(A)
    PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
    Replace A with [L, pivot, R]
    QUICKSORT(L)
    QUICKSORT(R)
```

Recurrence Relation for QUICKSORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

WORST-CASE RUNTIME

```
QUICKSORT(A):
    if len(A) <= 1:
        return
   pivot = random.choice(A)
   PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
   Replace A with [L, pivot, R]
   QUICKSORT(L)
   QUICKSORT(R)
```

Recurrence Relation for QUICKSORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

With the unluckiest randomness, the pivot would be either min(A) or max(A):

$$T(n) = T(0) + T(n-1) + O(n)$$

WORST-CASE RUNTIME

```
Recurrence Relation for
QUICKSORT(A):
                                                   QUICKSORT
    if len(A) <= 1:
        return
                 With the worst "randomness"
                                                           T(|R|) + O(n)
    pivot = ra
                                                            = O(1)
    PARTITION
                          T(n) = T(n-1) + O(n)
        L (less
                              T(n) = O(n^2)
        R (grea
                                                           domness, the pivot
                          (recursion tree/table or substitution method!)
    Replace A w.
                                                          nin(A) or max(A):
    QUICKSORT(L)
                                            T(n) = T(0) + T(n-1) + O(n)
    QUICKSORT(R)
```


AN **INCORRECT** PROOF:

AN **INCORRECT** PROOF:

• E[|L|] = E[|R|] = (n-1)/2

AN ASIDE: why is E[|L|] = (n-1)/2?

$$E[|L|] = E[|R|]$$
 (by symmetry)

$$E[|L| + |R|] = n - 1$$

(because L and R make up everything except the pivot)

$$E[|L|] + E[|R|] = n - 1$$

(by linearity of expectation)

$$2 \cdot E[|L|] = n - 1$$

(plugging the first line)

$$E[|L|] = (n - 1)/2$$
(Solving for E[|L|])

AN **INCORRECT** PROOF:

- E[|L|] = E[|R|] = (n-1)/2
- If this occurs, then T(n) = T(|L|) + T(|R|) + O(n) could be written as T(n) = 2T(n/2) + O(n).

AN INCORRECT PROOF:

- E[|L|] = E[|R|] = (n-1)/2
- If this occurs, then T(n) = T(|L|) + T(|R|) + O(n) could be written as T(n) = 2T(n/2) + O(n).
- Therefore, the expected running time is O(n log n)!

AN **INCORRECT** PROOF:

- E[|L|] = E[|R|] = (n-1)/2
- If this occurs, then T(n) = T(|L|) + T(|R|) + O(n) could be written as T(n) = 2T(n/2) + O(n).
- Therefore, the expected running time is O(n log n)!

Why is this wrong?

AN **INCORRECT** PROOF:

- E[|L|] = E[|R|] = (n-1)/2
- If this occurs, then T(n) = T(|L|) + T(|R|) + O(n) could be written as T(n) = 2T(n/2) + O(n).
- Therefore, the expected running time is O(n log n)!

Why is this wrong?

Well, for starters, we can use the exact same argument to prove something false...

```
SLOW SORT(A):
   if len(A) <= 1:
       return randomly choose either!
   pivot = either max(A) OR min(A)
   PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
   Replace A with [L, pivot, R]
   SLOW SORT(L)
   SLOW SORT(R)
```

```
SLOW SORT(A):
   if len(A) <= 1:</pre>
       return
                       randomly choose either!
   pivot = either max(A) or min(A)
   PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
   Replace A with [L, pivot, R]
    SLOW SORT(L)
    SLOW SORT(R)
```

Recurrence Relation for SLOW SORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

```
SLOW SORT(A):
   if len(A) <= 1:</pre>
       return
                       randomly choose either!
   pivot = either max(A) or min(A)
   PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
   Replace A with [L, pivot, R]
    SLOW SORT(L)
    SLOW SORT(R)
```

Recurrence Relation for SLOW SORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

Same recurrence relation!
We also still have:

$$E[|L|] = E[|R|] = (n-1)/2$$

```
SLOW SORT(A):
   if len(A) <= 1:</pre>
       return
                       randomly choose either!
   pivot = either max(A) or min(A)
   PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
   Replace A with [L, pivot, R]
    SLOW SORT(L)
    SLOW SORT(R)
```

Recurrence Relation for SLOW SORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

Same recurrence relation!

We also still have:

$$E[|L|] = E[|R|] = (n-1)/2$$

But now, one of |L| or |R| is always n-1 & the runtime is $\Theta(n^2)$, with probability 1

SLOW SORT(A): if len(A) return pivot = e**PARTITION** L (les R (gre Replace A **SLOW SORT** SLOW SORT (R)

Recurrence Relation for SORT

We could use the exact same (incorrect) proof to prove that **SLOWSort** has expected runtime **O(n log n)**, when it actually has expected runtime of $\Theta(n^2)$...

 $\Gamma(|\mathbf{R}|) + O(n)$) = O(1)

nce relation! Il have:] = (n-1)/2

 \mathbb{R} or \mathbb{R} is always n-1 & the runtime is $\Theta(\mathbf{n}^2)$, with probability 1

AN **INCORRECT** PROOF:

- E[|L|] = E[|R|] = (n-1)/2
- If this occurs, then T(n) = T(|L|) + T(|R|) + O(n) could be written as T(n) = 2T(n/2) + O(n).
- Therefore, the expected running time is O(n log n)!

Why is this wrong?

AM

Basically:

E[f(x)] is *not necessarily* the same as f(E[x])

e.g. $E[X^2]$ is not the same as $(E[X])^2$

We were reasoning about T(E[x]) instead of E[T(x)]

wny is this wrong:

Instead, to prove that the expected runtime of QuickSort is O(n log n), we're going to count the **number of comparisons** that this algorithm performs, and take the expectation of that!

How many times are any two items compared?

QUICKSORT

```
QUICKSORT(A):
    if len(A) <= 1:
        return
    pivot = random.choice(A)
    PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
    Replace A with [L, pivot, R]
    OUICKSORT(L)
    OUICKSORT(R)
```

Worst case runtime:

 $O(n^2)$

Expected runtime:

O(n log n)

- Select a better pivot
 - Ideally, split the array into two equal parts
 - Select the median as pivot

- Select a better pivot
 - Ideally, split the array into two equal parts
 - Select the median as pivot
- If the pivot is median, then we will have:
 - \circ T(n) = 2T(n/2) + O(n) = O(n log n)

- Select a better pivot
 - Ideally, split the array into two equal parts
 - Select the median as pivot
- If the pivot is median, then we will have:
 - \circ T(n) = 2T(n/2) + O(n) = O(n log n)
- How to select the median in O(n)?

- Select a better pivot
 - Ideally, split the array into two equal parts
 - Select the median as pivot
- If the pivot is median, then we will have:
 - \circ T(n) = 2T(n/2) + O(n) = O(n log n)
- How to select the median in O(n)?
 - Will also see it in Algorithm Design course!

مرتب سازی سریع در عمل

چگونگی پیاده سازی (و آیا واقعا کسی از آن استفاده می کند؟)

IMPLEMENTING QUICKSORT

In practice, a more clever approach (Lomuto) is used to implement PARTITION, so that the entire QuickSort algorithm can be implemented "in-place" (i.e. via swaps, rather than constructing separate L or R subarrays)

7 2 3 6 1 5 4 8

Choose pivot & swap with last element so pivot is at the end.

Choose pivot & swap with last element so pivot is at the end.

Choose pivot & swap with last element so pivot is at the end.

Choose pivot & swap with last element so pivot is at the end.

Choose pivot & swap with last element so pivot is at the end.

2 3 7 8 1 5 4 6

Choose pivot & swap with last element so pivot is at the end.

23781546

Choose pivot & swap with last element so pivot is at the end.

Choose pivot & swap with last element so pivot is at the end.

⇒ so

Choose pivot & swap with last element so pivot is at the end.

Initialize and

Increment until it sees something smaller than pivot, **swap** the things ahead of the bars & increment both bars

Repeat until the bar reaches the end, then swap the pivot into the right place.

Choose pivot & swap with last element so pivot is at the end.

Initialize and

Choose pivot & swap with last element so pivot is at the end.

Initialize and Increment until it sees something smaller than pivot, **swap** the things ahead of the bars & increment both bars

____ \ t

Repeat until the bar reaches the end, then swap the pivot into the right place.

Choose pivot & swap with last element so pivot is at the end.

Initialize and Increment until it sees something smaller than pivot, **swap** the things ahead of the bars & increment both bars

Repeat until the bar reache the end, then swap the pivot into the right place.

Choose pivot & swap with last element so pivot is at the end.

Initialize and

Choose pivot & swap with last element so pivot is at the end.

Increment until it sees something smaller than pivot, **swap** the things ahead of the bars & increment both bars

Repeat until the bar reaches the end, then swap the pivot into the right place.

IMPLEMENTING QUICKSORT

There's another in-place partition algorithm called Hoare Partition that's even more efficient as it performs less swaps.

QUICKSORT vs. MERGESORT

	QuickSort (random pivot)	MergeSort (deterministic)
Runtime	Worst-case: O(n²) Expected: O(n log n)	Worst-case: O(n log n)
Used by	Java (primitive types), C (qsort), Unix, gcc	Java for objects, perl
In-place? (i.e. with O(log n) extra memory)	Yes, pretty easily!	Easy if you sacrifice runtime (O(nlogn) MERGE runtime). Not so easy if you want to keep runtime & stability.
Stable?	No	Yes
Other Pros	Good cache locality if implemented for arrays	Merge step is really efficient with linked lists

You do not need to understand any of this stuff right now

