The Computation of All Maximal Independent Sets

Bron-Kerbosch Algorithm. Example

- 1. $S_0 = Q_0^- = \emptyset$, $Q_0^+ = X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$.
- 2. $S_1 = \{x_1\}, Q_1^- = \emptyset, Q_1^+ = \{x_4, x_5, x_6, x_7\}.$
- 3. $S_2 = \{x_1, x_4\}, Q_2^- = \emptyset, Q_2^+ = \emptyset. \{x_1, x_4\} \text{maximal independent set.}$
- 4. (a backtracking step) $S_1 = \{x_1\}, Q_1^- = \{x_4\}, Q_1^+ = \{x_5, x_6, x_7\}$ (we retrieve Q_1^- and Q_1^+ from the step 2 and change them).
- 5. $S_2 = \{x_1, x_5\}, Q_2^- = \emptyset, Q_2^+ = \{x_6, x_7\}.$
- 6. $S_3 = \{x_1, x_5, x_6\}, Q_3^- = \emptyset, Q_3^+ = \{x_7\}.$
- 7. $S_4 = \{x_1, x_5, x_6, x_7\}, Q_4^- = \emptyset, Q_4^+ = \emptyset. \{x_1, x_5, x_6, x_7\}$ maximal independent set.
- 8. $S_3 = \{x_1, x_5, x_6\}, Q_3^- = \{x_7\}, Q_3^+ = \emptyset$ (we retrieve Q_3^- and Q_3^+ from the step 6 and change them) (the condition (8) is satisfied \Rightarrow a backtracking step).
- 9. $S_2 = \{x_1, x_5\}, Q_2^- = \{x_6\}, Q_2^+ = \{x_7\}$ (the condition (8) is satisfied \Rightarrow a backtracking step).
- 10. $S_1 = \{x_1\}, Q_1^- = \{x_4, x_5\}, Q_1^+ = \{x_6, x_7\}$ (we retrieve Q_1^- and Q_1^+ from the step 4 and change them; we will do so at all backtracking steps) (the condition (3.8) is satisfied \Rightarrow a backtracking step).

- 11.
- 12. $S_0 = \emptyset$, $Q_0^- = \{x_1\}$ (this means that we have already considered all maximal independent sets with x_1 and prohibit its use), $Q_0^+ = \{x_2, x_3, x_4, x_5, x_6, x_7\}$.
- 13. $S_1 = \{x_2\}, Q_1^- = \emptyset, Q_1^+ = \{x_4, x_6\}.$
- 14. $S_2 = \{x_2, x_4\}, Q_2^- = \emptyset, Q_2^+ = \emptyset \{x_2, x_4\} \text{maximal independent set.}$
- 15. $S_1 = \{x_2\}, Q_1^- = \{x_4\}, Q_1^+ = \{x_6\}.$
- 16. $S_2 = \{x_2, x_6\}, Q_2^- = \emptyset, Q_2^+ = \emptyset \{x_2, x_6\}$ maximal independent set.
- 17. $S_1 = \{x_2\}, Q_1^- = \{x_4, x_6\}, Q_1^+ = \emptyset$ (the condition (8) is satisfied \Rightarrow a backtracking step).
- 18. $S_0 = \emptyset$, $Q_0^- = \{x_1, x_2\}$ (this means that we have already considered all maximal independent sets with x_1, x_2 and prohibit their use), $Q_0^+ = \{x_3, x_4, x_5, x_6, x_7\}$.
- 19. $S_1 = \{x_3\}, Q_1^- = \emptyset, Q_1^+ = \{x_4\}$
- 20. $S_2 = \{x_3, x_4\}, Q_2^- = \emptyset, Q_2^+ = \emptyset \{x_3, x_4\}$ maximal independent set.
- 21. $S_1 = \{x_3\}, Q_1^- = x_4, Q_1^+ = \emptyset$ (the condition (8) is satisfied \Rightarrow a backtracking step)
- 22. $S_0 = \emptyset$, $Q_0^- = \{x_1, x_2, x_3\}$, $Q_0^+ = \{x_4, x_5, x_6, x_7\}$. The condition (8) is satisfied, but we could not do a backtracking step \Rightarrow Stop (all maximal independent sets have been found)
 - $\{x_1, x_4\}, \{x_1, x_5, x_6, x_7\}, \{x_3, x_4\}, \{x_2, x_6\}, \{x_2, x_4\}$ maximal independent sets
 - $\{x_1, x_5, x_6, x_7\}$, maximum independent set, $\alpha[G] = 4$ the independence number of the graph G.

Boolean arithmetic. Example

Consider the same example.

$$\varphi' = (x_1' + x_2')(x_1' + x_3')(x_2' + x_3')(x_2' + x_5')(x_2' + x_7')(x_3' + x_5') *$$

$$*(x_3' + x_6')(x_3' + x_7')(x_4' + x_5')(x_4' + x_6')(x_4' + x_7') =$$

$$= (x_1' + x_2'x_3')(x_2' + x_3'x_7')(x_5' + x_2'x_3')(x_3' + x_6'x_7')(x_4' + x_5'x_6'x_7') =$$

$$= (x_1'x_2' + x_1'x_3'x_7' + x_2'x_3')(x_5' + x_2'x_3')(x_3'x_4' + x_6'x_7'x_4' + x_5'x_6'x_7') =$$

$$= (x_1'x_2'x_5' + x_1'x_3'x_7'x_5' + x_2'x_3')(x_3'x_4' + x_6'x_7'x_4' + x_5'x_6'x_7') =$$

$$= (x_1'x_2'x_5'x_6'x_7' + x_1'x_3'x_7'x_5'x_4' + x_1'x_3'x_7'x_5'x_6' + x_2'x_3'x_4' + x_2'x_3'x_5'x_6'x_7').$$

So, we have 5 maximal independent sets: