MATH 318 Formula Sheet

Probability Theory

Probability Function:

•
$$0 < P < 1$$

•
$$P(S) = 1$$

•
$$E_1 \cap E_2 = \emptyset \implies P(E_1 \cup E_2) = P(E_1) + P(E_2)$$

•
$$P(E_1) + P(E_2) = P(E_1 \cup E_2) + P(E_1 \cap E_2)$$

Conditional Probability:

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

Two events are said to be independent if:

$$P(E \cap F) = P(E)P(F)$$

Theorem 1. Let $F_1, F_2 \dots F_n$ be a partition of the sample space S. Assume $F_i \cap F_i = \emptyset$ for any $i \neq j$. Then for any event $E \subset S$,

1.
$$P(E) = \sum_{i=1}^{n} P(E|F_i)P(F_i)$$

2.
$$P(F_j|E) = \frac{P(E|F_j)P(F_j)}{\sum_{i=1}^{n} P(E|F_i)P(F_i)}$$
 (Bayes' Formula)

Random Variables

Memory-less Property:

$$P(X > m + n | X > n) = P(X > m)$$

Expectation Value:

$$\langle X \rangle = \sum_{i=0}^{\infty} x_i p(X = x_i) = \sum_{i=0}^{\infty} x_i p(x_i)$$
$$\langle X \rangle = \int_{-\infty}^{\infty} x f(x) dx$$

$$\langle X \rangle = \int_{-\infty}^{\infty} x f(x) dx$$

Cumulative Distribution Function:

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

Law of the Unconscious Statistician:

$$\langle g(X) \rangle = \int_{-\infty}^{\infty} g(x) f(x) dx$$

Linearity of Expectation:

$$\langle aX + b \rangle = a \langle X \rangle + b$$

Moments:

n-th moment of
$$X = \begin{cases} \int_{-\infty}^{\infty} x^n f(x) dx \\ \sum_{i=1}^{\infty} x_i^n p(x_i) \end{cases}$$

Variance:

$$Var(X) = \langle (X - \langle X \rangle)^2 \rangle = \langle X^2 \rangle - \langle X \rangle^2$$

Joint Continuity:

$$P((X,Y) \in C) = \iint_C f(x,y) dx dy$$

Marginal Distribution:

$$P(X \in A) = P(X \in A, Y \in \mathbb{R}) = \int_A \int_{-\infty}^{\infty} f(x, y) \, dy \, dx$$

Independence:

If X, Y are independent, then

$$P(X \le a, Y \le b) = P(X \le a)P(Y \le b)$$

$$\langle g(X)h(Y)\rangle = \langle g(X)\rangle \langle h(Y)\rangle$$

Covariance:

$$Cov(X, Y) = \langle (X - \langle X \rangle)(Y - \langle Y \rangle) \rangle = \langle XY \rangle - \langle X \rangle \langle Y \rangle$$

Correlation Coefficient:

$$\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}} \in [-1,1]$$

Cauchy-Swartz Inequality:

$$|\langle XY\rangle|^2 \le \langle X^2\rangle \langle Y^2\rangle$$

Sum of Random Variables:

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

$$F_{X+Y}(a) = \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x) f_Y(y) \, dx \, dy$$

$$f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) \, dy$$

Conditional Probability Distribution:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Conditional Expectation:

$$\langle X|Y\rangle = \sum_{x} x p_{X|Y}(x,y)$$

$$\langle X|Y\rangle = \int_{-\infty}^{\infty} x f_{X|Y}(x, y) dx$$

$$\langle X \rangle = \langle \langle X | Y \rangle \rangle = \sum_{y} \langle X | Y = y \rangle P(Y = y)$$

$$\langle X \rangle = \langle \langle X | Y \rangle \rangle = \int_{-\infty}^{\infty} \langle X | Y = y \rangle f_Y(y) dy$$

Characteristic Functions

$$\phi_X(t) = \langle e^{itX} \rangle \quad M(t) = \langle e^{tX} \rangle$$

Extracting Moments:
$$\frac{d^n}{dt^n}|_{t=0}\phi(t) = \langle i^n X^n \rangle$$

Inversion Theorem:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi(t) e^{-itx} dt$$

Shifting:

$$\phi_{aX+b}(t) = e^{itb}\phi_X(at)$$

Convergence of Random Variables

Convergence in Distribution:

$$\lim_{n\to\infty} F_n(x) = F(x) \ \forall x \ \text{cont.} \iff X_n \xrightarrow{D} X$$

Thm (*Continuity Theorem*):

Let X_1, X_2, \ldots be random variables with CDFs

 F_1, F_2, \ldots and characteristics functions ϕ_1, ϕ_2, \ldots Then

· If $F_n \to F$, where F is the CDF of some random variable X, then $\lim_{n\to\infty} \phi_n(t) = \phi(t)$.

· If $\lim_{t \to \infty} \phi_n(t) = \phi(t)$ and $\phi(t)$ is continuous at t = 0, then ϕ is the characteristic function of some random variable X and $F_n \to X$ and $X_n \xrightarrow{D} X$.

Thm (*Weak Law of Large Numbers*): Let $X_1, X_2, ... X_n$ be iid random variables. Assume $\langle X \rangle = \mu < \infty$. Let

$$S_n = \sum_{i=1}^n X_i$$
. Then $\frac{S}{n} \xrightarrow{D} \mu$.

Thm (*Central Limit Theorem*): Let X_i be iid random variables. Let $\langle X_i \rangle = \mu < \infty$, $Var(X_i) = \sigma^2 < \infty$, and $S_n = \sum_{i=1}^n X_i$. Then

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{D} N(0, 1).$$

Statistical Estimation

Def (*Estimator*): A function of the data that is used to estimate the unknown parameter.

Estimator of the mean μ :

Sample Mean
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Estimator of the variance σ^2 :

Sample Variance
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Def (*Confidence Interval*): For some interval $A \subset \mathbb{R}$, an estimator is in the a% confidence level if $P(\bar{X} \in A) = a\%$.

Random Walks

Symmetric random walks in \mathbb{Z}^d :

Number of visits to the origin $M: \langle M \rangle = (1-u)^{-1}$. Probability walk returns to the origin $u = 1 - 1/\langle M \rangle$. If u = 1, the walk is recurrent, otherwise transient.

Markov Chains

Transition Matrix P: Rows add to 1.

One-Step Transition Probability:

$$P_{ij} = P(X_{n+1} = j | X_n = i)$$
 $\sum_{j} P_{ij} = 1$

N-Step Transition Probability:

$$P^n = P(X_{l+n} = j | X_l = i)$$

Chapman-Kolmogorov Equation:

$$P_{ij}^{n+m} = \sum_{k} P_{ik}^{n} P_{kj}^{n}$$

$$P^{n+m} = P^{n} P^{m}$$

Classification of States:

- A state *i* is absorbing if $P_{ii} = 1$
- j is accessible from i if $P_{ij}^n > 0$ for some n.
- i and j communicate (i ↔ j) if j is accessible from i and i is accessible from j.
- If *i* is recurrent and *j* is accessible from $i, i \leftrightarrow j$.
- If i is recurrent and $i \leftrightarrow j$, then j is also recurrent.

Irreducibility:

A Markov chain is irreducible if there is only one class (all states communicate).

Periodicity of state *i*:

Period
$$d = \gcd\{n \ge 1 : P_{ii}^n > 0\}$$

$$d = 1 \implies i$$
 is aperiodic

Transience and Recurrence:

$$f_i = P(\exists n \text{ s.t. } X_n = i | X_0 = i)$$

 $f_i = 1 \implies i$ is recurrent (every path leads to i)

 $f_i < 1 \implies i$ is transient

Recurrent State for T_i = time of first return to i:

$$\langle T_i | X_0 = i \rangle < \infty \implies \text{positive recurrent}$$

$$\langle T_i | X_0 = i \rangle = \infty \implies \text{null recurrent}$$

Def (*Ergodic*): A aperiodic, positive recurrent state is called ergodic. A Markov chain is ergodic if all its states are ergodic.

Thm (*Existence of Equilibrium Distribution*): For an irreducible, ergodic Markov chain, the limit

$$\pi_j = \lim_{n \to \infty} P_{ij}^n$$

exists for all j and is independent of state i.

- 1. π is the unique solution of $\pi = \pi P$ and $\sum_j \pi_j = 1$
- 2. Let $N_j(n)$ be the number of visits to state j after n steps. Then $\pi_j = \lim_{n \to \infty} \frac{N_j(n)}{n}$
- 3. $\pi_i = 1/m_i$ where $m_i = \langle T_i | X_0 = j \rangle$

Time Reversal:

Given a Markov chain $(X_n)_{n=0}^N$ with stationary distribution π and with $P(X_0 = j) = \pi_j$, let $Y_n = X_{N-n}$. Then $(Y_n)_{n=0}^N$ is a Markov chain with transition probabilities $Q_{ij} = P_{ji} \frac{\pi_j}{\pi_i}$ and stationary distribution π .

Def (*Time Reversibility*): A markov chain is time reversible if $Q_{ij} = P_{ij} \ \forall i, j$. In this case, $\pi_i P_{ij} = \pi_j P_{ji}$.

Random Variables

Distribution	Mass/Density Function	Mean	Variance	Characteristic Function
Binomial (n, p)	$p(i) = \binom{n}{i} p^{i} (1-p)^{n-i}$	_		$(1 - p + e^{it})^n$
	$p(k) = (1-p)^{k-1}p$	1/ <i>p</i>	$\frac{1-p}{p^2}$	$\frac{pe^{it}}{1 - (1 - p)e^{it}}$
$Poisson(\lambda)$	$p(i) = \frac{\lambda^{i}}{i!} e^{-\lambda}$	λ	λ	$e^{\lambda(e^{it}-1)}$
Uniform (a, b)	$p(i) = \frac{\lambda^{i}}{i!} e^{-\lambda}$ $f(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$ $f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{ita} - e^{itb}}{it(b-a)}$
Exponential(λ)	$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$	$1/\lambda$	$1/\lambda^2$	$\frac{\lambda}{\lambda - it}$
$Normal(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$e^{i\mu t-\sigma^2t^2/2}$

Reserved Reserved