## Deep Learning for Augmented Reality

Vincent Lepetit



## monocular depth prediction



We show qualitative results on the DAVIS dataset.

Images were processed individually frame-by-frame. No temporal information was used in any way.

This is zero-shot cross-dataset transfer.
The DAVIS dataset was never seen during training.



## the problem





# a simple application to AR

Jiao *et al*. [15]



NYUv2-Depth Ground Truth Depth





Ours





Manual insertion







## a possible architecture: U-Net









$$\mathbf{h}_1 = [g(\mathbf{f}_{1,1} * \mathbf{x}), \dots, g(\mathbf{f}_{1,m} * \mathbf{x})]$$





$$\mathbf{h}_1 = [g(\mathbf{f}_{1,1} * \mathbf{x}), \dots, g(\mathbf{f}_{1,m} * \mathbf{x})]$$
  
$$\mathbf{h}_2 = [g(\mathbf{f}_{2,1} * \mathbf{h}_1), \dots, g(\mathbf{f}_{2,m_2} * \mathbf{h}_1)]$$





$$\mathbf{h}_1 = [g(\mathbf{f}_{1,1} * \mathbf{x}), \dots, g(\mathbf{f}_{1,m} * \mathbf{x})]$$

$$\mathbf{h}_2 = [g(\mathbf{f}_{2,1} * \mathbf{h}_1), \dots, g(\mathbf{f}_{2,m_2} * \mathbf{h}_1)]$$

$$\mathbf{h}_3 = \text{pooling}(\mathbf{h}_2)$$





$$\mathbf{h}_{1} = [g(\mathbf{f}_{1,1} * \mathbf{x}), \dots, g(\mathbf{f}_{1,m} * \mathbf{x})]$$

$$\mathbf{h}_{2} = [g(\mathbf{f}_{2,1} * \mathbf{h}_{1}), \dots, g(\mathbf{f}_{2,m_{2}} * \mathbf{h}_{1})]$$

$$\mathbf{h}_{3} = \text{pooling}(\mathbf{h}_{2})$$

$$\mathbf{h}_{4} = [g(\mathbf{f}_{4,1} * \mathbf{h}_{3}), \dots, g(\mathbf{f}_{4,m_{4}} * \mathbf{h}_{3})]$$





$$\mathbf{h}_1 = [g(\mathbf{f}_{1,1} * \mathbf{x}), \dots, g(\mathbf{f}_{1,m} * \mathbf{x})]$$

$$\mathbf{h}_2 = [g(\mathbf{f}_{2,1} * \mathbf{h}_1), \dots, g(\mathbf{f}_{2,m_2} * \mathbf{h}_1)]$$

$$\mathbf{h}_3 = \text{pooling}(\mathbf{h}_2)$$

$$\mathbf{h}_4 = [g(\mathbf{f}_{4,1} * \mathbf{h}_3), \dots, g(\mathbf{f}_{4,m_4} * \mathbf{h}_3)]$$

















 $\mathbf{h}_{16} = \mathrm{UpSampling}(\mathbf{h}_{15})$ 









$$\mathbf{h}_{16} = \text{UpSampling}(\mathbf{h}_{15}) \mathbf{h}_{17} = [g(\mathbf{f}_{17,1} * \mathbf{h}_{16}), \dots, g(\mathbf{f}_{17,m_{17}} * \mathbf{h}_{16})]$$





$$\mathbf{h}_{16} = \text{UpSampling}(\mathbf{h}_{15})$$

$$\mathbf{h}_{17} = [g(\mathbf{f}_{17,1} * \mathbf{h}_{16}), \dots, g(\mathbf{f}_{17,m_{17}} * \mathbf{h}_{16})]$$

$$\mathbf{h}_{18} = [g(\mathbf{f}_{18,1} * \mathbf{h}_{17}), \dots, g(\mathbf{f}_{18,m_{18}} * \mathbf{h}_{17})]$$







#### U-Net: Skip Connections



The loss can be, for example (but see next slides):

$$\mathcal{L}(\Theta) = \|D - \hat{D}\|^2$$

$$\mathcal{L}(\Theta) = |D - \hat{D}|$$



$$\mathcal{L}(\Theta) = \sum_i |\log D_i - \log \hat{D}_i|$$
 (depth defined up to a scale factor)

## dataset used by MiDaS





## dataset used by MiDaS

| Dataset          | Indoor | Outdoor | Dynamic     | Video | Dense       | Accuracy | Diversity | Annotation   | Depth            | # Images     |
|------------------|--------|---------|-------------|-------|-------------|----------|-----------|--------------|------------------|--------------|
| DIML Indoor [31] | ] /    |         |             | /     | 1           | Medium   | Medium    | RGB-D        | Metric           | 220K         |
| MegaDepth [11]   |        | ✓       | <b>(✓</b> ) |       | <b>(✓</b> ) | Medium   | Medium    | SfM          | No scale         | 130K         |
| ReDWeb [32]      | 1      | 1       | ✓           |       | 1           | Medium   | High      | Stereo       | No scale & shift | 3600         |
| WSVD [33]        | 1      | ✓       | ✓           | 1     | 1           | Medium   | High      | Stereo       | No scale & shift | 1.5 <b>M</b> |
| 3D Movies        | 1      | 1       | 1           | 1     | 1           | Medium   | High      | Stereo       | No scale & shift | 75K          |
| DIW [34]         | 1      | 1       | 1           |       |             | Low      | High      | User clicks  | Ordinal pair     | 496K         |
| ETH3D [35]       | 1      | ✓       |             |       | 1           | High     | Low       | Laser        | Metric           | 454          |
| Sintel [36]      | 1      | 1       | ✓           | 1     | ✓           | High     | Medium    | Synthetic    | (Metric)         | 1064         |
| KITTI [28], [29] |        | 1       | <b>(✓</b> ) | 1     | <b>(✓</b> ) | Medium   | Low       | Laser/Stereo | Metric           | 93K          |
| NYUDv2 [30]      | 1      |         | <b>(✓</b> ) | 1     | 1           | Medium   | Low       | RGB-D        | Metric           | 407K         |
| TUM-RGBD [37]    | 1      |         | <b>(✓</b> ) | 1     | 1           | Medium   | Low       | RGB-D        | Metric           | 80K          |



## architecture used by MiDaS





Monocular Relative Depth Perception with Web Stereo Dat. Supervision. Ke Xian, Chunhua Shen, Zhiguo Cao, Hao Lu, Yang Xiao, Ruibo Li, Zhenbo Luo. CVPR 2018.

## MiDaS

Uses the disparity: 
$$\mathbf{d} = \frac{1}{D}$$

Depth is predicted up to a scale factor.







## MiDaS

Uses the disparity:  $\mathbf{d} = \frac{1}{D}$ 

Or, more exactly, the scale- and shift-independent disparities:

$$(s,t) = \arg\min_{s,t} \sum_{i=1}^{M} (s\mathbf{d}_i + t - \mathbf{d}_i^*)^2,$$

$$\hat{\mathbf{d}} = s\mathbf{d} + t, \quad \hat{\mathbf{d}}^* = \mathbf{d}^*,$$

or (more robust):

$$t(\mathbf{d}) = \text{median}(\mathbf{d}), \quad s(\mathbf{d}) = \frac{1}{M} \sum_{i=1}^{M} |\mathbf{d} - t(\mathbf{d})|$$

$$\hat{\mathbf{d}} = \frac{\mathbf{d} - t(\mathbf{d})}{s(\mathbf{d})}, \quad \hat{\mathbf{d}}^* = \frac{\mathbf{d}^* - t(\mathbf{d}^*)}{s(\mathbf{d}^*)}$$



### MiDaS

Loss:

$$\mathcal{L}_{ssi}(\hat{\mathbf{d}}, \hat{\mathbf{d}}^*) = \frac{1}{2M} \sum_{i=1}^{M} \rho \left( \hat{\mathbf{d}}_i - \hat{\mathbf{d}}_i^* \right)$$

(and variants)

$$\text{Regularization:} \quad \mathcal{L}_{reg}(\hat{\mathbf{d}}, \hat{\mathbf{d}}^*) = \frac{1}{M} \sum_{k=1}^K \sum_{i=1}^M \left( |\nabla_x R_i^k| + |\nabla_y R_i^k| \right) \qquad \text{where } R_i = \hat{\mathbf{d}}_i - \hat{\mathbf{d}}_i^*$$

## some failure cases









## unsupervised depth prediction







Unsupervised Monocular Depth Estimation with Left-Right Consistency. Clément Godard Oisin Mac Aodha Gabriel J. Brostow. CVPR 2017.

## Unsupervised depth estimation





## Unsupervised depth estimation





input image (right)



#### unsupervised depth estimation (naive)





#### unsupervised depth estimation



### unsupervised depth estimation





### unsupervised depth estimation

$$C_s\!=\!\alpha_{ap}(C_{ap}^l\!+\!C_{ap}^r)\!+\!\alpha_{ds}(C_{ds}^l\!+\!C_{ds}^r)\!+\!\alpha_{lr}(C_{lr}^l\!+\!C_{lr}^r)$$

$$C_{ap}^{l}\!=\!\frac{1}{N}\!\sum_{l,l}\!\alpha\frac{1\!-\!\mathrm{SSIM}(I_{ij}^{l},\!\tilde{I}_{ij}^{l})}{2}\!+\!(1\!-\!\alpha)\Big\|I_{ij}^{l}\!-\!\tilde{I}_{ij}^{l}\Big\|$$

$$C_{ds}^{l} = \frac{1}{N} \sum_{i,j} \left| \partial_{x} d_{ij}^{l} \left| e^{-\left\| \partial_{x} I_{ij}^{l} \right\|} + \left| \partial_{y} d_{ij}^{l} \left| e^{-\left\| \partial_{y} I_{ij}^{l} \right\|} \right| \right.$$

$$C_{lr}^{l} = \frac{1}{N} \sum_{i,j} \left| d_{ij}^{l} - d_{ij+d_{ij}^{l}}^{r} \right|$$

$$ext{SSIM}(x,y) = rac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

$$ext{SSIM}(x,y) = \left[ l(x,y)^{lpha} \cdot c(x,y)^{eta} \cdot s(x,y)^{\gamma} 
ight]$$

$$l(x,y) = rac{2\mu_x \mu_y + c_1}{\mu_x^2 + \mu_y^2 + c_1}$$

$$c(x,y) = rac{2\sigma_x\sigma_y + c_2}{\sigma_x^2 + \sigma_y^2 + c_2}$$

$$s(x,y) = rac{\sigma_{xy} + c_3}{\sigma_x \sigma_y + c_3}$$







## two-image 3D geometry recovery





DeMoN: Depth and Motion Network for Learning Monocular Stereo. Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus Mayer, Eddy Ilg, Alexey Dosovitskiy, Thomas Brox. CVPR 2017.

## DeMoN: Depth and Motion Network for Learning Monocular Stereo

Benjamin Ummenhofer<sup>\*,1</sup> Huizhong Zhou<sup>\*,1</sup> Jonas Uhrig<sup>1,2</sup>
Nikolaus Mayer<sup>1</sup> Eddy Ilg<sup>1</sup> Alexey Dosovitskiy<sup>1</sup> Thomas Brox<sup>1</sup>

<sup>1</sup>University of Freiburg <sup>2</sup>Daimler AG R&D

#### DeMoN architecture





#### DeMoN architecture









### DeMoN loss function

$$\mathcal{L}_{ ext{depth}} = \sum_{i,j} |s\xi(i,j) - \hat{\xi}(i,j)|$$

$$\begin{aligned} \mathcal{L}_{\text{normal}} &= \sum_{i,j} \left\| \mathbf{n}(i,j) - \hat{\mathbf{n}}(i,j) \right\|_2 \\ \mathcal{L}_{\text{flow}} &= \sum_{i,j} \left\| \mathbf{w}(i,j) - \hat{\mathbf{w}}(i,j) \right\|_2 \end{aligned}$$

$$egin{aligned} \mathcal{L}_{ ext{rotation}} &= \|\mathbf{r} - \hat{\mathbf{r}}\|_2 \ \mathcal{L}_{ ext{translation}} &= \|\mathbf{t} - \hat{\mathbf{t}}\|_2 \end{aligned}$$

$$\mathcal{L}_{ ext{grad } \xi} = \sum_{h \in \{1, 2, 4, 8, 16\}} \sum_{i, j} \left\| \mathbf{g}_h[\xi](i, j) - \mathbf{g}_h[\hat{\xi}](i, j) 
ight\|_2$$



$$\mathbf{g}_h[f](i,j) = \left(rac{f(i+h,j) - f(i,j)}{|f(i+h,j)| + |f(i,j)|}, rac{f(i,j+h) - f(i,j)}{|f(i,j+h)| + |f(i,j)|}
ight)^{ op}$$