Es. 1.2019

94 90 91

b: {90,9+} {91,92} {93}

6:
$$\{q_0, q_4\}$$
 $\{q_1, q_2\}$ $\{q_3\}$

$$\{q_1, q_2\}$$

start
$$\{q_0, q_4\}$$
 \xrightarrow{b} $\{q_3\}$

(b.)
$$P = \{ \{q_0, q_4\} \rightarrow \alpha \{q_0, q_4\} \mid b \{q_1, q_2\}, \{q_2, q_2\} \rightarrow \alpha \{q_2, q_2\} \mid b \{q_3\}, \{q_3\} \rightarrow \alpha \{q_2, q_2\} \mid b \{q_0, q_4\} \mid \epsilon \}$$

Es. 2.2019

Se regolare, per il l'ump:my lemma $\exists w = xyz \mid |xy| \le m$, $y \ne \varepsilon$, $xy^i \ne \varepsilon$ ε La $\forall i \in \mathbb{N}$. $y \in \omega$ compositione non vuota d: 0; $x \ne deve$ essere accettato, ma così facendo vi sono meno 0 e la stringa viola la conditione di ε La, ξ . Quind: ε non è regolare.

$$p = \begin{cases} E \rightarrow OI2 \mid OE2 \end{cases}$$
 accettà L_2 , quind: L_2 è libero. $I \rightarrow \varepsilon \mid 1I2$

Se libero, per il l'umping lemma I w = abcde | | bcd | \le m, bd \delta \epsilon, abicdie \epsilon L3 VieN. bcd van può contenere contemporaneamente o e 2:

- · se non contiene 0, allora be d'contengono solo 1 e 2; ace deve essere accettata da L3, ma rimuovendo be d'la condizione di L3 viene violata perché vengono rimossi 1 e 2, mentre rimanyano costanti gli 0, 2.
- · se non contiene 2, allora be d'contengono solo 0 e 1; ace deve essere accettata da L3, ma rimuovendo be d'la condizione di L3 viene violata perché vengono rimossi. O e 1 mentre rimanyano costant: i 2, 4.

Es. 3.2019

```
int n-greater (int A[], int n, int k) {
    if (m == 0 || A[0] >= k) {
        return n;
    } else if (n == 1) {
        return o;
    } else {
        return n-greater (A+1, n-1, k);
    }
}
```

Es. 5. 2019

L regolare ⇒ prefix (L) regolare. Dato un DFA D

che accetta L, si può costruire un DFA D' che ne copi
tutto eccetto gli stati finali, che diventano gli stati di D

attraverso ci almeno uno stato finale è raggiungibile. D'
accetta prefix (L).