Graph Convolutional Networks A Tutorial

Naganand Y

1 / 10

Overview

- T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks
- Important real-world datasets are in the form of graphs/networks
 - Knowledge graphs, Social Networks, World Wide Web, etc.
- A challenge is to generalize well-established neural networks to such structured datasets

 Naganand Y
 4 Jan 2017
 2 / 10

Problem Statement

Graph
$$G = (V, E)$$
, $N = |V|$

- Inputs:
 - Adjacency matrix $A_{N\times N}$
 - A feature matrix $X_{N \times D}$ (A feature description x_i for every node i)
- Output:
 - A feature matrix $Z_{N\times F}$ (at the node-level)
- Neural Network Layers:
 - $H^{(0)} = X$
 - $H^{(l+1)} = f(H^{(l)}, A)$
 - $H^{(L)} = Z$

A Simple Neural Network

3 / 10

Propagation Rule: An Example

$$f(H^{(I)}, A) = \sigma(AH^{(I)}W^{(I)})$$

 Naganand Y
 4 Jan 2017
 4 / 10

Propagation Rule: An Example

weight matrix for the *I*-th layer
$$f(H^{(I)},A)=\sigma\Big(AH^{(I)}W^{(I)}\Big)$$

Propagation Rule: An Example

4 / 10

Limitations of the Rule

$$f(H^{(I)}, A) = \sigma(AH^{(I)}W^{(I)})$$

- ullet For every node i, we do not take into account the feature vector of i
 - Enforce self-loops i.e. use $\hat{A} = A + \mathcal{I}$
- $AH^{(l)}$ will completely change the scale of the feature vectors
 - Normalize A i.e. use $D^{-1}A$
 - $D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ is more interesting

$$f(H^{(I)}, A) = \sigma(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(I)}W^{(I)})$$

4 Jan 2017

5 / 10

Naganand Y GCN

Embedding the Karate Club Network

$$f(H^{(I)}, A) = \sigma(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(I)}W^{(I)})$$

Figure: Colors denote communities of modularity-based clustering

Naganand Y GCN 4 Jan 2017 6 / 10

Embedding the Karate Club Network

$$f(H^{(I)}, A) = \sigma(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(I)}W^{(I)})$$

Figure: Colors denote communities of modularity-based clustering

- L = 3
- $X = \mathcal{I}$
- $W^{(I)}$ is random

 Naganand Y
 GCN
 4 Jan 2017
 6 / 10

Embedding the Karate Club Network

$$f(H^{(I)}, A) = \sigma(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(I)}W^{(I)})$$

Figure: Colors denote communities of modularity-based clustering

Figure : GCN embedding (with random weights)

- Embedding closely resembles the community structure
- No feature vectors!
- Weights are random and no training updates!

Semi-Supervised Node Classification

$$f(H^{(I)}, A) = \sigma(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(I)}W^{(I)})$$

- Note everything in the model is differentiable and parameterized
- Add some labels (e.g. one label per community)
- Train the model to learn weights

 Naganand Y
 GCN
 4 Jan 2017
 7 / 10

Semi-Supervised Learning: A 2-layer Example

$$Z = f(X, A) = softmax \left(\tilde{A} \cdot ReLU(\tilde{A}XW^{(0)})W^{(1)} \right)$$

- $W^{(0)} \in \mathbb{R}^{D \times H}$ and $W^{(1)} \in \mathbb{R}^{H \times F}$
- Minimize

$$\mathcal{L} = -\sum_{I \in \mathcal{Y}_L} \sum_{f=1}^F Y_{If} \ln Z_{If}$$

ullet Train $W^{(0)}$ and $W^{(1)}$ using gradient descent

4 Jan 2017

8 / 10

Naganand Y GCN

Semi-Supervised Learning for the Karate Club Network

(Semi-Supervised Learning)

9 / 10

Experiments

- Citation networks
 - Citeseer, Cora and Pubmed
 - They contain sparse bag-of-words feature vectors for each document
 - Citation links are treated as (undirected) edges to construct A
- Knowledge Graph (NELL)
 - Each (e_1, r, e_2) is assigned separate (e_1, r_1) and (e_2, r_2)
 - Entity nodes are described by sparse feature vectors
 - Each relation node is assigned a unique one-hot feature vector
- The method outperforms related methods (upto 6% improvement)

4 Jan 2017

10 / 10