8. Time series, interrupted time series and difference-in-differences

LPO.7870: Research Design and Data Analysis II

Sean P. Corcoran

LPO 7870 (Corcoran)

Lecture

Last update: April 8, 2024

1/52

Last time

Regression discontinuity designs

- When a treatment is assigned using a precise rule based on a continuous characteristic (a "running variable"). Treatment can be "sharp" or "fuzzy."
- Under certain assumptions, the jump in mean outcomes at the cutpoint can be interpreted as the causal effect of the treatment.
- The aim is to use regression to estimate that jump. We looked at different ways of modeling and estimating this discontinuity.
- The RD assumptions suggest a number of validity checks:
 - ► Test for discontinuities in baseline covariates or "placebo" outcomes.
 - Test for manipulation in the running variable.

LPO.7870 (Corcoran)

Lecture

Last undate: April 8 2024

Tonight

- Different data structure: cross-section, time series, panel
- Time series models used for forecasting
- Interrupted time series research designs
- Difference-in-differences

I PO 7970 (Corcoran)

Lecture 8

Last update: April 8, 2024

3 / 52

Tonight's sample datasets

We will refer to three datasets tonight (on Github):

- State_school_finance_panel_1990_2010.dta: state-level school finance and related data. 1990-2010.
- NYCbkfastlunch.dta: school-level data from NYC on breakfast and lunch program participation.
- dynarski .dta: data from Dynarski (2003) on Social Security survivor's benefits and college enrollment.

Types of data

Types of data

Most of the analyses we've seen thus far have been with **cross-sectional** data: typically, many units (i) at one point in time.

	state_name	year	expp_co2	personal_i~c
1	Alaska	2000	11482.09	30508
2	Alabama	2000	7331.784	24067
3	Arkansas	2000	6936.413	22574
4	Arizona	2000	6878.881	26293
5	California	2000	8705.413	33404
6	Colorado	2000	8182.125	33986
7	Connecticut	2000	12616.86	41920
8	District of Columbia	2000	15008.14	40462
9	Delaware	2000	11159.94	31009
0	Florida	2000	7687.295	29079
1	Georgia	2000	8632.021	28541
2	Hawaii	2000	8217.213	29024
3	Iowa	2000	8633.758	27285
4	Idaho	2000	7132.013	24685
5	Illinois	2000	9507.251	32645
6	Indiana	2000	9506.387	27459

Types of data

Variables in our regression equations were often subscripted *i* to represent the cross-sectional units:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

LPO.7870 (Corcoran)

Last update: April 8, 2024

7 / 52

8 / 52

Types of data

Some analyses call for **time series** data: one unit observed at multiple points in time (t).

Corcoran)	_			Last undate: A
)	Tennessee	2006	7586.821	32885
3	Tennessee	2005	7694.059	31327
7	Tennessee	2004	7779.926	30285
5	Tennessee	2003	7539.207	29041
5	Tennessee	2002	7292.418	28162
ł	Tennessee	2001	7204.988	27551
3	Tennessee	2000	7085.176	26689
2	Tennessee	1999	6931.634	25370
	Tennessee	1998	6743.191	24462
)	Tennessee	1997	6599.753	23031
3	Tennessee	1996	6264.442	22136
3	Tennessee	1995	5872.513	21339
7	Tennessee	1994	5815.078	20283
5	Tennessee	1993	5663.499	19331
5	Tennessee	1992	5612.848	18527
l .	Tennessee	1991	5403.432	17242
3	Tennessee	1990	5779.153	16574
	state_name	year	expp_co2	personal_i~c

Types of data

Variables in a time series regression equations are typically subscripted t to represent the time periods:

$$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + u_t$$

LPO.7870 (Corcoran) Lecture 8 Last update: April 8, 2024 9 / 52

Types of data

Panel data is many cross-sectional units (i) observed at multiple points in time (t).

	state_name	year	expp_co2	personal_i~c
5	Alaska	2005	12606.64	36911
7	Alaska	2006	13115.29	38951
3	Alaska	2007	15148.9	41316
7	Alabama	2005	8439.994	29681
3	Alabama	2006	8936.927	31208
}	Alabama	2007	9491.025	32528
3	Arkansas	2005	8821.27	27858
9	Arkansas	2006	8929.807	29385
)	Arkansas	2007	8977.985	31353
}	Arizona	2005	7156.699	32223
)	Arizona	2006	7785.889	34326
L	Arizona	2007	7995.629	35441
)	California	2005	9118.798	38731
L	California	2006	9526.36	41518
2	California	2007	10042.94	43211
L	Colorado	2005	8970.674	38795
2	Colorado	2006	8817.396	41181
3	Colorado	2007	9469.688	42724
2	Connecticut	2005	14359.31	48134

PO.7870 (Corcoran) Lecture 8 Last update: April 8, 2024 10 / 52

Time series applications

We will be looking at research designs with both time series and panel data. Why might time series data be useful?

- · Forecasting: predicting the future using information from the past
- Impact analysis: in <u>some</u> cases, may be able to infer the effects of a policy change or other event

LPO.7870 (Corcoran) Lecture 8 Last update: April 8, 2024 11/52

Time series applications

These are very different approaches!

- With forecasting, we're not estimating any causal effects—just trying to get the best out-of-sample prediction—so omitted variables bias is not really an issue.
- With impact analysis, we <u>are</u> interested in causal inference, so we must be very attentive to omitted variables bias.

Time series data also introduces other issues we must pay attention to, like correlation over time in observed values.

Forecasting

Forecasting

Forecasting models can get very complex—stock traders use very sophisticated ones—but the idea is to use data from past periods to predict observations in the future.

- Autoregression: predicting future values of Y using past values of Y.
- Can also use linear and nonlinear fits to past values to predict future values.

Autoregression

Models generally take the form:

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \beta_2 Y_{t-1} + u_t$$

In this type of model Y in period t is usually strongly correlated with Y in period t-1. This is called **autocorrelation** or **serial correlation**. It is important to account for this in calculating standard errors.

LPO.7870 (Corcoran)

Lecture 8

Last undate: April 8 2024

15 / 52

Estimating time trends

Another approach is to fit a linear (or nonlinear) function of time. For example, with annual data, choose a base year where t=0. A linear regression on t is:

$$Y_t = \beta_0 + \beta_1 t + u_t$$

A quadratic function of t:

$$Y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + u_t$$

Estimating time trends

Predicting school expenditures per pupil in Tennessee using 1990-2008 data and a linear time trend:

LPO.7870 (Corcoran) Lecture 8 Last update: April 8, 2024 17/52

Estimating time trends

Estimated regression coefficients (uses 1990-2008):

. reg expp co2 yeart if year<=2008

reg expp_co	2 yeart if yea	r<=2008					
Source	SS	df	MS	Numbe	er of ob	s =	19
				F(1,	17)	=	371.79
Model	13676317.7	1	13676317.7	Prob	> F	=	0.0000
Residual	625346.734	17	36785.102	R-squ	uared	=	0.9563
				Adj I	R-square	d =	0.9537
Total	14301664.4	18	794536.91	Root	MSE	=	191.79
expp_co2	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
yeart _cons	154.8985 5391.339	8.033385 84.63696		0.000 0.000	137.9 5212.		171.8474 5569.908

Estimating time trends

Things look different—and less useful—if you include 2009 and 2010 with a linear (or quadratic) fit:

Something clearly happened in 2009.

LPO.7870 (Corcoran)	Last update: April 8, 2024	19 / 52

Interrupted time series

Interrupted time series

In an **interrupted time series** (ITS), there is some kind of treatment or intervention that happens at a specific point in time. (It "interrupts" the time series). The treatment might be best represented by an intercept shift (where $Post_t=1$ if t is \geq the treatment date):

$$Y_t = \beta_0 + \beta_1 t + \beta_2 Post_t + u_t$$

Or, it might be represented by an intercept shift and and slope change:

$$Y_t = \beta_0 + \beta_1 t + \beta_2 Post_t + \beta_3 Post_t \times t + u_t$$

Here there is an interaction between t and "Post".

LPO.7870 (Corcoran) Lecture 8 Last update: April 8, 2024 21 / 52

Interrupted time series

ITS models are sometimes used to make causal inferences about the <u>effect</u> of a treatment, although we should generally be cautious doing so. Example: effect of charging for directory assistance in Cincinnati:

LPO.7870 (Corcoran)

Lecture

Last update: April 8, 2024

Interrupted time series

The above example can make a strong claim to causal inference:

- There is a very clear intervention time point (1974).
- The effect is instantaneous and very large.
- There is no ambiguity about the functional form since we have a long time series (since 1962) and a pretty predictable trend.
- There are no known alternative explanations for the large and sudden drop in directory assistance calls at the same point in time.

LPO.7870 (Corcoran)

Lecture 8

Last update: April 8, 2024

23 / 52

Interrupted time series in education

It can be challenging to meet these conditions in education policy research. Why?

- Long time series are often not available, which makes it difficult to find a functional form to establish the trend.
- Interventions are often not instantaneous, but take time to implement and observe the effects of.
- Effect sizes are usually small—nothing like the Cincinnati example.

Consequently, we need better methods to discern the counterfactual. What would have happened to the treated group (students, schools, districts, state) had they not been treated.

LPO.7870 (Corcoran) Lecture 8 Last update: April 8, 2024 24 / 52

Internal validity in ITS: history

The most common threat to internal validity in a simple ITS is **history**—that some other event occurred around the same time as the intervention and could have produced the same effect. Possible solutions:

- Add a control group (exposed to the same history).
- Add a nonequivalent dependent variable.
- The narrower the intervals measured (e.g., monthly rather than yearly), the fewer the historical events that can explain the findings within that interval.

Note: stock analysts often work with high-frequency data (e.g., minutes) giving them the opportunity to estimate the effect of "events" on a stock price, such as announcements (like a new CEO).

LPO.7870 (Corcoran) Lecture 8 Last update: April 8, 2024 25/52

Internal validity in ITS: instrumentation

Another threat is **instrumentation**, where the way an outcome was measured changes at the same time that the intervention occurred. This can happen in education when news tests are adopted or tests are re-scaled.

 In Chicago, when Orlando Wilson took over the CPD (1960), he changed reporting requirements, making reporting more accurate.
 The result appeared to be an increase in crime when he took office.

It is important to have a deep understanding of the outcome measure over time and ask about any changes that may have been made (and when).

Lecture 8 Last update: April 8, 2024 26 / 52

Internal validity in ITS: diffusion

Another threat to ITS validity is **diffusion**, when there is ambiguity about when the intervention took effect

ullet For example, legislation may pass in year t but not take effect or be fully implemented until year t+1 or t+2

PO.7870 (Corcoran) Lecture 8 Last update: April 8, 2024 27 / 52

Difference-in-differences

Difference-in-differences

Difference-in-differences is a design that—in its most common (but not only) application—contrasts *changes over time* for treated and untreated groups. DD is often used with **natural experiments**, settings in which an external force "naturally" assigns units into treatment and control groups.

DD models are typically estimated with *panel* or *repeated cross-section* data. But they can also work with other data structures.

LPO.7870 (Corcoran)

Lecture

Last update: April 8, 2024

29 / 52

High-stakes testing in Chicago

Do test-based "high-stakes" accountability policies improve student academic performance?

- A potential "natural experiment": in Chicago, the Iowa Test of Basic Skills (ITBS) became "high stakes" for students and schools in 1997.
 The test was administered—but was "low stakes"—prior to that year.
 The test is given in grades 3, 6, and 8.
- Many other districts in Illinois also regularly administered the ITBS to these grades, but the test was low stakes.

Note: this is a simplified example inspired by Jacob (2005).

Consider two comparisons:

- "Cross-sectional": the mean scores of Chicago 6th graders in 1998 (treated) vs. other Illinois 6th graders in 1998 (untreated).
- "Interrupted time series (ITS)": the pre-to-post change in mean scores of Chicago 6th graders between 1996 and 1998.

Clearly, a better ITS design would have more data points than two—to better establish a trend—but this is just an example!

LPO.7870 (Corcoran) Lecture 8 Last update: April 8, 2024 31 / 52

High-stakes testing in Chicago

The cross sectional comparison in 1998 suggests *worse* outcomes for Chicago:

$$Y_{Chicago,1998} - Y_{Other,1998} = 54 - 56 = -2$$

The first difference for Chicago suggests a large improvement:

$$Y_{Chicago,1998} - Y_{Chicago,1996} = 54 - 42 = +12$$

Conflicting conclusions!

LPO.7870 (Corcoran)

Lecture

Last update: April 8, 2024

33 / 52

High-stakes testing in Chicago

Problems:

- The cross sectional comparison fails to recognize that Chicago 6th graders performed worse in 1996 than 6th graders in other districts did (i.e., baseline differences between treated and untreated—an omitted variables bias problem).
- The first difference is unable to differentiate between a treatment effect for Chicago (if any) and gains between 1996 and 1998 common to all cohorts (accounting for "history").

LPO 7870 (Corcoran)

Lecture

Last update: April 8, 2024

Under the assumption that the change over time in other (untreated) districts represents what would have happened in Chicago (treated) in the absence of treatment, we can contrast changes in the two, or the difference-in-differences:

LDO 7070 (C-----)

1 . 0

---d---- A--il 8 2024

35 / 52

High-stakes testing in Chicago

The difference-in-differences:

$$\delta_{DD} = \underbrace{\left(Y_{Chicago,1998} - Y_{Chicago,1996}\right)}_{\text{Change in Chicago}} - \underbrace{\left(Y_{Other,1998} - Y_{Other,1996}\right)}_{\text{Change in other districts}}$$
$$\delta_{DD} = \left(54 - 42\right) - \left(56 - 51\right) = +7$$

The differencing of the two "first differences" represents the **second difference**. There was a "counterfactual" gain of 5 implied by the other districts.

An equivalent way to write δ_{DD} :

$$\delta_{DD} = \underbrace{\left(Y_{Chicago,1998} - Y_{Other,1998}\right)}_{\text{Difference "post"}} - \underbrace{\left(Y_{Chicago,1996} - Y_{Other,1996}\right)}_{\text{Difference "pre"}}$$

Writing δ_{DD} this way makes it clear we are "netting out" pre-existing differences between the two groups.

Note in this example δ_{DD} was calculated using only four numbers (mean scores in Chicago and other districts for 1996 and 1998).

LPO.7870 (Corcoran)

Lecture 8

Last update: April 8, 2024

37 / 52

Card & Krueger (1994)

A classic DD study of the impact of the minimum wage on fast food employment (an industry likely to be affected by the minimum wage).

- NJ increased its minimum wage in April 1992, PA did not.
- Card & Krueger collected data on employment at fast food restaurants in NJ and Eastern PA before and after the minimum wage increase.

Next figure: the minimum wage increase seemed to be "binding." That is, it really did lead to higher starting wages in NJ. (This is important—if the minimum wage were not binding, it wouldn't make for a very interesting study).

LPO.7870 (Corcoran)

Lecture

Last update: April 8, 2024

Card & Krueger (1994)

Last update: April 8, 2024

39 / 52

Card & Krueger (1994)

Main result (portion of Table 3 in C&K):

	Stores by State				
	PA	NJ	NJ – PA		
FTE before	23.3	20.44	-2.89		
	(1.35)	(-0.51)	(1.44)		
FTE after	21.15	21.03	-0.14		
	(0.94)	(0.52)	(1.07)		
Change in mean FTE	-2.16	+0.59	2.76		
	(1.25)	(0.54)	(1.36)		

Standard errors in parentheses. FTE=full time equivalent employees.

Mean employment fell in PA and *rose* in NJ, for $\delta_{DD}=2.76$. A surprising result to many economists who expected to see a reduction in employment following an increase in the minimum wage.

LPO.7870 (Corcoran) Lecture 8 Last update: April 8, 2024 40 / 52

2x2 difference-in-differences

The two examples thus far are the simplest form of difference-indifferences:

- Two groups: treated and an untreated comparison
- Two time periods: pre and post, before and after treatment occurs
- Treated units are all treated at the same time

DD can accommodate much more complicated designs (e.g., staggered treatment, multiple groups).

LPO.7870 (Corcoran)

Lecture 8

Last update: April 8, 2024

41 / 52

Causal interpretation of difference-in-differences

Under what conditions might the difference-in-differences design estimate a causal effect?

The key condition is the **parallel trends assumption**: the change over time for the control group represents what would have happened to the treatment group had they not been treated.

 We often "test" the parallel trends assumption by looking at trends in the two groups prior to treatment. If trends were similar before treatment, we might expect them to remain similar in the absence of treatment.

Parallel trends assumption

The key assumption in DD is parallel trends: that the time trend in the absence of treatment would be the same in both groups.

LPO.7870 (Corcoran)

Lecture

Last update: April 8, 2024

43 / 52

Parallel trends assumption

Size of baseline difference in treated and untreated groups doesn't matter.

Violation of parallel trends assumption

LDO 7070 (C-----)

.

E / E2

Regression difference-in-differences (2x2)

With many units (i) and two groups ($D_i = 0$ or $D_i = 1$) observed in "pre" and "post" periods, we can use regression to estimate δ_{DD} :

$$Y_{it} = \alpha + \beta D_i + \lambda POST_t + \delta(D_i \times POST_t) + u_{it}$$

where $D_i=1$ for units i who are ultimately treated, and $POST_t=1$ for observations in the "post" period. The post period is the same for all units.

Very easy to implement in Stata, especially with factor variable notation: reg γ i.evertreated##i.post

Regression difference-in-differences (2x2)

$$Y_{it} = \alpha + \beta D_i + \lambda POST_t + \delta(D_i \times POST_t) + u_{it}$$

 α is the pre-period mean for the $D_i = 0$ group

 $\alpha+\beta$ is the pre-period mean for the $D_i=1$ group

 β is the baseline mean difference between the $D_i = 0$ and $D_i = 1$

 $\alpha + \lambda$ is the *post*-period mean for the $D_i = 0$ group

 λ is the change over time for the $D_i = 0$ group

 $\alpha + \beta + \lambda + \delta$ is the *post*-period mean for the $D_i = 1$ group

 $\lambda + \delta$ is the change over time for the $D_i = 1$ group

 δ is the differential change over time for the $D_i = 1$ group (DD)

LPO.7870 (Corcoran)

Lecture 8

Last update: April 8, 2024

7 / 52

Regression difference-in-differences (2x2)

Example: some NYC schools adopted a breakfast in the classroom program in 2010. What was the impact of this program on average daily participation in breakfast?

reg bkfast_part i.everbic##i.post

. reg bkrast_p	art 1.everbic	##1.post				
Source	SS	df	MS	Number of obs	3 =	6,160
				F(3, 6156)	=	122.75
Model	6.66627777	3	2.22209259	Prob > F	=	0.0000
Residual	111.439598	6,156	.018102599	R-squared	=	0.0564
		-,		Adj R-squared	i =	0.0560
Total	118.105875	6,159	.019176145		=	.13455
bkfast_part	Coef.	Std. Err.	t	P> t [95% 0	Conf.	Interval]
1.everbic	.0364431	.011215	3.25	0.001 .01445	578	.0584285
1.post	.0004512	.0035743	0.13	0.90000655	557	.0074581
everbic#post						
1 1	.2219777	.0177852	12.48	0.000 .18711	125	.256843

.2450239

.2538713

Another example: financial aid eligibility

Part 1 This exercise will replicate the simple difference-in-differences result from chapter 8 of Murnane & Willett. This example comes from Dynarski (2003), who looked at the effects of Social Security survivor's benefits on college enrollment. The dataset used here is from the NLSY and consists of high school seniors in 1979-1983. The file is called dynarski.dta and is available via Github:

use https://github.com/spcorcor18/LPO-8852/raw/main/data/dynarski.dta, clear

- Do a cross-tabulation of yearsr (the year in which the student is a senior) and offer
 (= 1 if the student was a senior in a year in which Social Security survivor's benefits
 were available). What is the best way to define the "treatment period" here, and which
 students are "treated?"?
- 2. Estimate a first difference model for the effect of survivor's benefits by limiting the analysis to the "ever treated," comparing outcomes in the treated and non-treated periods. The outcomes of interest are oall (whether the student was enrolled full time in college by age 23) and hgc23 (the highest grade completed by age 23). You can do this with an OLS regression and be sure to use the sampling weights weight=[wt88]. Your results can be compared to Table 8.1 in Murnane & Willett.
- 3. Now estimate a <u>difference-in-differences</u> model of the effect of survivor's benefits by including the "never treated" group in the regression. Again be sure to use the sampling weights. Your results can be compared to Table 8.2 in Murnane & Willett.

NOTE: by "first difference" I mean the ITS.

LPO.7870 (Corcoran) Lecture 8 Last update: April 8, 2024 49 / 52

Another example: financial aid eligibility

Table 8.1 "First difference" estimate of the causal impact of an offer of \$6,700 in financial aid (in 2000 dollars) on whether high-school seniors whose fathers were

(a) Direct :	Estimate						
H.S. Senior Cohort	Number of	Was Student's		Avg Value of COLL	Group	H_0 : $\mu_{OFFER} = \mu_{NO\ OFFER}$	
Cohort	Students	Father Deceased	Receive an Offer of SSSB Aid?	(standare error)	d Difference in Avg Value of COLL	t-statistic	p-value
1979-81	137	Yes	Yes (Treatment Group)	0.560 (0.053)	0.208*	2.14	0.017*
1982-83	54	Yes	No (Control Group)	0.352 (0.081)			
p <0.10; *; †One-taile		<0.01; *** p <	0.001.				
(b) Linear	r-Probability	Model (OL.	S) Estimate	7 × 2 1 1			0.1
Predictor	Es	timate	Standar	d Error	H_0	: β = 0;	
					-statistic	p-value	
Intercept OFFER		352***	0.0		4.32 2.23	0.000 0.013†	

p <0.10; * p <0.05; ** p <0.01; *** p <0.001.

Another example: financial aid eligibility

Table 8.2 Direct "difference-in-differences" estimate of the impact of an offer of \$6,700 in financial aid (in 2000 dollars) on whether high-school seniors whose fathers were decreased attended college by age 23. in the United States

H.S. Senior	Number of	Was Student's	Did H.S. Seniors	Avg Value of COLL	Value of	"Difference in Differences"	
Cohort	Students	Father Deceased?	Receive an Offer of SSSB Aid?	(standard error)		Estimate (standard error)	<i>p</i> -value
1979-81	137	Yes	Yes (Treatment Group)	0.560 (0.053)	0.208 (First Diff)		
1982-83	54	Yes	No (Control Group)	0.352 (0.081)	(riisi Dijj)	0.182*	0.033
1979-81	2,745	No	No	0.502 (0.012)	0.026	(0.099)	
982-83	1,050	No	No	0.476 (0.019)	(Second Diff)	

⁻p <0.10; * p <0.05; ** p <0.01; *** p <0.001. *One-tailed test.

Last update: April 8, 2024

51 / 52

Next time

More with panel data!

LPO.7870 (Corcoran)

- See S&W chapter 10
- Sample papers on syllabus, including Jack et al. (2023) on pandemic learning mode and student outcomes