On Valency Problems of Saxl Graphs

Hong Yi Huang

Southern University of Science and Technology

November 17, 2020

Joint work with Jiyong Chen

Outline

Preliminaries

- 2 The Strategy
- Our Results
- Problems

Bases

Let $G \leq \operatorname{Sym}(\Omega)$ with $|\Omega| < \infty$.

- Base: $\Delta \subset \Omega$ such that the point-wise stabiliser $G_{(\Delta)} = 1$.
- Base size: minimal cardinality of bases, denoted by b(G).
- Base size set: a base Δ such that $|\Delta| = b(G)$.

Bases

Let $G \leq \operatorname{Sym}(\Omega)$ with $|\Omega| < \infty$.

- Base: $\Delta \subset \Omega$ such that the point-wise stabiliser $G_{(\Delta)} = 1$.
- Base size: minimal cardinality of bases, denoted by b(G).
- Base size set: a base Δ such that $|\Delta| = b(G)$.

With the natural actions,

- $b(S_n) = n 1$;
- $b(A_n) = n 2$;
- $b(GL_n(q)) = n$, and a base size set is exactly a basis of \mathbb{F}_q^n over \mathbb{F}_q .

Bases

Let $G \leq \operatorname{Sym}(\Omega)$ with $|\Omega| < \infty$.

- Base: $\Delta \subset \Omega$ such that the point-wise stabiliser $G_{(\Delta)} = 1$.
- Base size: minimal cardinality of bases, denoted by b(G).
- Base size set: a base Δ such that $|\Delta| = b(G)$.

With the natural actions,

- $b(S_n) = n 1$;
- $b(A_n) = n 2;$
- $b(GL_n(q)) = n$, and a base size set is exactly a basis of \mathbb{F}_q^n over \mathbb{F}_q .

Suppose G is transitive.

- G is regular $\iff b(G) = 1$.
- If G is Frobenius then b(G) = 2.
- If G is sharply k-transitive then b(G) = k.

Primitive Groups

Recall that $G \leq \operatorname{Sym}(\Omega)$ is called primitive if

- G is transitive, and
- G_{α} is maximal in G.

Primitive Groups

Recall that $G \leq \operatorname{Sym}(\Omega)$ is called primitive if

- G is transitive, and
- G_{α} is maximal in G.

Theorem (O'Nan-Scott).

Let G be a primitive group. Then G is of one of the following types: HA, AS, HS, HC, PA, TW, SD, CD.

Primitive Groups

Recall that $G \leq \operatorname{Sym}(\Omega)$ is called primitive if

- G is transitive, and
- G_{α} is maximal in G.

Theorem (O'Nan-Scott).

Let G be a primitive group. Then G is of one of the following types: HA, AS, HS, HC, PA, TW, SD, CD.

Li-Zhang 2011: Classified all primitive groups with soluble stabilisers.

Almost Simple Groups

Theorem (Classification of Finite Simple Groups).

Let G be a non-abelian finite simple group. Then G is isomorphic to one of the following:

- an alternating group A_n with $n \ge 5$;
- a group of Lie type;
- one of 26 sporadic groups.

Almost Simple Groups

Theorem (Classification of Finite Simple Groups).

Let G be a non-abelian finite simple group. Then G is isomorphic to one of the following:

- an alternating group A_n with $n \ge 5$;
- a group of Lie type;
- one of 26 sporadic groups.

Theorem (Schreier Conjecture).

The outer automorphism group of a finite simple group is soluble.

Almost Simple Groups

Theorem (Classification of Finite Simple Groups).

Let G be a non-abelian finite simple group. Then G is isomorphic to one of the following:

- an alternating group A_n with $n \ge 5$;
- a group of Lie type;
- one of 26 sporadic groups.

Theorem (Schreier Conjecture).

The outer automorphism group of a finite simple group is soluble.

A group G is called almost simple if

$$soc(G) = T \cong Inn(T) \lesssim G \lesssim Aut(T)$$

for some non-abelian simple group T.

Bases for Primitive Groups

Let $G \leq \operatorname{Sym}(\Omega)$ be an almost simple primitive group.

- Cameron-Kantor 1993: Conjectured $b(G) \le c$ if G is non-standard.
- Liebeck-Shalev 1999: c exists.
- Burness-Liebeck-Shalev 2009: c = 7 is optimal.
- Burness 2018: Determined groups with b(G) = 6.

Bases for Primitive Groups

Let $G \leq \operatorname{Sym}(\Omega)$ be an almost simple primitive group.

- Cameron-Kantor 1993: Conjectured $b(G) \le c$ if G is non-standard.
- Liebeck-Shalev 1999: c exists.
- Burness-Liebeck-Shalev 2009: c = 7 is optimal.
- Burness 2018: Determined groups with b(G) = 6.

Let $G \leq \operatorname{Sym}(\Omega)$ be primitive with soluble stabiliser.

- Seress 1996: $b(G) \le 4$ if G is also soluble.
- Burness 2020+: $b(G) \le 5$.

Saxl Graphs

Saxl first proposed determining all primitive groups G with b(G) = 2. Burness-Giudici 2020: Saxl graph $\Sigma(G)$:

- Vertex set Ω ;
- $\alpha \sim \beta$ if $\{\alpha, \beta\}$ is a base.

Saxl Graphs

Saxl first proposed determining all primitive groups G with b(G)=2. Burness-Giudici 2020: Saxl graph $\Sigma(G)$:

- Vertex set Ω;
- $\alpha \sim \beta$ if $\{\alpha, \beta\}$ is a base.

We have

- $b(G) \ge 3 \implies \Sigma(G)$ empty;
- b(G) = 1 and G transitive $\implies \Sigma(G)$ complete.

First Observations

Proposition.

Suppose G is transitive with b(G) = 2 and $\Sigma(G)$ is the Saxl graph of G.

- **1** $\Sigma(G)$ is G-vertex-transitive.

- **4** $\Sigma(G)$ is *G*-arc-transitive if *G* is 2-transitive.
- **5** $\Sigma(G)$ is G-arc-semiregular.

Indeed, $\Sigma(G)$ is the union of all regular orbital graphs of G.

Burness-Giudici Conjecture

Conjecture (Burness-Giudici 2020).

Let G be primitive and b(G) = 2. Then any two vertices in $\Sigma(G)$ has a common neighbour.

Note that if $\operatorname{val}(\Sigma(G)) > \frac{1}{2}|\Omega|$ then the conjecture is verified. This gives a motivation to study the valency problems.

$val(\Sigma(G)) = r|H|$

Proposition.

Suppose G is transitive with b(G) = 2 and $\Sigma(G)$ is the Saxl graph of G. Then $\Sigma(G)$ has valency r|H|, where H is the point stabiliser and r is the number of regular suborbits of G.

$val(\Sigma(G)) = r|H|$

Proposition.

Suppose G is transitive with b(G) = 2 and $\Sigma(G)$ is the Saxl graph of G. Then $\Sigma(G)$ has valency r|H|, where H is the point stabiliser and r is the number of regular suborbits of G.

$val(\Sigma(G)) = r|H|$

Proposition.

Suppose G is transitive with b(G) = 2 and $\Sigma(G)$ is the Saxl graph of G. Then $\Sigma(G)$ has valency r|H|, where H is the point stabiliser and r is the number of regular suborbits of G.

By val(G, H) we mean the valency of the Saxl graph of G with stabiliser H. In particular, |H| divides val(G, H).

Outline

- Preliminaries
- 2 The Strategy
- Our Results
- Problems

Arc Stabilisers

Let $G \leq \operatorname{\mathsf{Sym}}(\Omega)$ be transitive and $H = G_{\alpha}$ be the point stabiliser. Set

$$\delta(A) := \{ g \in G \mid H \cap H^g = A \} = \{ g \in G \mid G_{(\alpha,\alpha^g)} = A \}.$$

Arc Stabilisers

Let $G \leq \operatorname{\mathsf{Sym}}(\Omega)$ be transitive and $H = G_{\alpha}$ be the point stabiliser. Set

$$\delta(A) := \{ g \in G \mid H \cap H^g = A \} = \{ g \in G \mid G_{(\alpha,\alpha^g)} = A \}.$$

Lemma.

We have

- $\bullet G = \biguplus_{A \leq H} \delta(A).$
- **2** val $(G, H) = \frac{|\delta(1)|}{|H|}$.
- **3** For any $A \leq H$ and $h \in H$, $\delta(A^h) = \delta(A)h$ and so $|\delta(A^h)| = |\delta(A)|$.

It is difficult to determine $|\delta(A)|$ directly.

The Strategy to Calculate $|\delta(A)|$

Consider the poset $P = (\{A \mid A \leq H\}, \leq)$. Define

$$\Delta(A) = \{ g \in G \mid H \cap H^g \ge A \}$$

and

$$c(A,B) = \begin{cases} 1 & \text{if } A \leq B; \\ 0 & \text{otherwise.} \end{cases}$$

It is straightforward to see that

$$|\Delta(A)| = \sum_{B \geq A} |\delta(B)| = \sum_{B \in P} c(A, B) |\delta(B)|.$$

Reduction

The size of P is generally very large. We "reduce" the size of P by the following methods.

```
P
\downarrow conjugacy in H
S
\downarrow possible arc stabilisers \mathcal{I}
```

Reduction

The size of P is generally very large. We "reduce" the size of P by the following methods.

$$P$$
 \downarrow conjugacy in H
 S
 \downarrow possible arc stabilisers
 \mathcal{I}

It follows that

$$|\Delta(A)| = \sum_{B \in \mathcal{I}} \eta(A, B) |\delta(B)|,$$

where $\eta(A, B) = |\{B^h \mid B^h \ge A\}|.$

Note that $|\Delta(A)| = \sum_{B \in \mathcal{I}} \eta(A, B) |\delta(B)|$ is a system of linear equations. Write this in the matrix form we have

$$\Delta = M\delta \implies \delta = M^{-1}\Delta.$$

Note that $|\Delta(A)| = \sum_{B \in \mathcal{I}} \eta(A, B) |\delta(B)|$ is a system of linear equations. Write this in the matrix form we have

$$\Delta = M\delta \implies \delta = M^{-1}\Delta.$$

• Ordering \mathcal{I} : $C_i \leq C_j$ if $i \leq j$.

Note that $|\Delta(A)| = \sum_{B \in \mathcal{I}} \eta(A, B) |\delta(B)|$ is a system of linear equations. Write this in the matrix form we have

$$\Delta = M\delta \implies \delta = M^{-1}\Delta.$$

- Ordering \mathcal{I} : $C_i \leq C_j$ if $i \leq j$.
- $M = [\eta(C_i, C_j)]$ is upper-triangular and unipotent.

Note that $|\Delta(A)| = \sum_{B \in \mathcal{I}} \eta(A, B) |\delta(B)|$ is a system of linear equations. Write this in the matrix form we have

$$\Delta = M\delta \implies \delta = M^{-1}\Delta.$$

- Ordering \mathcal{I} : $C_i \leq C_j$ if $i \leq j$.
- $M = [\eta(C_i, C_j)]$ is upper-triangular and unipotent.
- It suffices to find Δ . Indeed, we have

$$|\Delta(A)| = \sum_{B \in \mathcal{S} \cap A^G} \frac{|H||N_G(B)|}{|N_H(B)|}.$$

Note that $|\Delta(A)| = \sum_{B \in \mathcal{I}} \eta(A, B) |\delta(B)|$ is a system of linear equations. Write this in the matrix form we have

$$\Delta = M\delta \implies \delta = M^{-1}\Delta.$$

- Ordering \mathcal{I} : $C_i \leq C_j$ if $i \leq j$.
- $M = [\eta(C_i, C_j)]$ is upper-triangular and unipotent.
- It suffices to find Δ . Indeed, we have

$$|\Delta(A)| = \sum_{B \in S \cap A^G} \frac{|H||N_G(B)|}{|N_H(B)|}.$$

We only need to find ${\mathcal I}$ and normalisers. This is generally very difficult!

An Example

Let $G=\mathsf{PSL}_2(17)$ and $H=\langle x\rangle:\langle y\rangle\cong D_{16}$. Then $H\cap H^g\cong 1,\mathbb{Z}_2,\mathbb{Z}_2^2$ or H. Indeed,

$$\mathcal{I} = \{1, \langle y \rangle, \langle xy \rangle, \langle x^4, y \rangle, \langle x^4, xy \rangle, H\}$$

and

$$\delta = M^{-1}\Delta = \begin{bmatrix} 1 & 4 & 4 & 2 & 2 & 1 \\ & 1 & 0 & 1 & 0 & 1 \\ & & 1 & 0 & 1 & 1 \\ & & & 1 & 0 & 1 \\ & & & & 1 & 1 \\ & & & & & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2448 \\ 144 \\ 1444 \\ 48 \\ 48 \\ 16 \end{bmatrix},$$

which implies $|\delta(1)| = 1536$ and so val(G, H) = 96.

Outline

- Preliminaries
- 2 The Strategy
- Our Results
- 4 Problems

Prime Valency

Proposition (Burness-Giudici 2020).

Suppose G is transitive with b(G) = 2 and $\Sigma(G)$ is the Saxl graph of G. Then $\Sigma(G)$ has prime valency p if and only if G is one of the following:

- ② $G = S_3$, p = 2 and $\Sigma(G) \cong K_3$.
- **3** $G = \mathsf{AGL}_1(2^f)$, where $p = 2^f 1$ is a Mersenne prime and $\Sigma(G) \cong \mathcal{K}_{p+1}$.

Prime-power Valency

Theorem (Chen-H. 2020+).

Suppose G is almost simple primitive with b(G) = 2 stabiliser H. Then the Saxl graph $\Sigma(G)$ has prime-power valency if and only if (G, H) is one of the following:

- **1** $(G, H) = (M_{10}, 8:2)$ and val(G, H) = 32.
- ② $(G,H)=(\operatorname{PGL}_2(q),D_{2(q-1)})$, where $q\geq 17$ is a Fermat prime or q=9, $\Sigma(G)$ is isomorphic to the Johnson graph J(q+1,2) and $\operatorname{val}(G,H)=2(q-1)$.

Frobenius Group

Recall that a group H is called Frobenius if there exists a non-trivial proper subgroup L < H such that $L \cap L^h = 1$ for any $h \in H \setminus L$.

- Frobenius complement: L.
- Frobenius kernel: the subgroup K consisting the identity element and those elements that are not in any conjugate of L.

Frobenius Group

Recall that a group H is called Frobenius if there exists a non-trivial proper subgroup L < H such that $L \cap L^h = 1$ for any $h \in H \setminus L$.

- Frobenius complement: L.
- Frobenius kernel: the subgroup K consisting the identity element and those elements that are not in any conjugate of L.
- H = K:L.
- If *K* is cyclic, then so does *L*.

Frobenius Groups with Cyclic Kernel

Theorem (Chen-H. 2020+).

Suppose G is a finite primitive permutation group with stabiliser H, where H=K:L is Frobenius with cyclic kernel K. Write $L=\langle y\rangle$. Then

$$\mathsf{val}(G, H) = |G: H| + |K| - 1 + \frac{|K|}{|L|} \sum_{1 \neq d||L|} \mu(d) |N_G(\langle y^{\frac{|L|}{d}} \rangle)|,$$

where μ is the Möbius function.

Alternating and Symmetric Groups

This can be applied to various problems. For example

Corollary.

Let $G=S_p$ and $H=\mathsf{AGL}_1(p)\cong \mathbb{Z}_p{:}\mathbb{Z}_{p-1}$ with $p\geq 5$ a prime. Then

$$val(G, H) = (p-2)! + p - 1 + p \sum_{1 \neq d \mid (p-1)} \mu(d)\phi(d)d^{\frac{p-1}{d}-1} \left(\frac{p-1}{d} - 1\right)!.$$

Corollary.

Let $G=A_p$ and $H=\mathsf{AGL}_1(p)\cap A_p\cong \mathbb{Z}_p{:}\mathbb{Z}_{(p-1)/2}$ with $p\geq 5$ a prime and $p\neq 7,11,17,23$. Then

$$val(G, H) = (p-2)! + p - 1 + p \sum_{1 \neq d \mid \frac{p-1}{2}} \mu(d) \phi(d) d^{\frac{p-1}{d}-1} \left(\frac{p-1}{d} - 1 \right)!.$$

Alternating and Symmetric Groups

Theorem (Chen-H. 2020+).

Let G be an almost simple primitive group with socle A_n and soluble stabiliser H. If b(G) = 2, then (G, H, val(G, H)) is listed in the following.

G	Н	val(G, H)
A_5	<i>S</i> ₃	6
M_{10}	$AGL_1(5)$	20
M_{10}	8:2	32
$PGL_2(9)$	D_{16}	16
A_9	$ASL_2(3)$	432
A_p	$\mathbb{Z}_p:\mathbb{Z}_{(p-1)/2}$	See above
S_p	$AGL_1(p)^{n}$	See above

Odd Valency

Proposition (Burness-Giudici 2020).

Let G be an almost simple primitive group with stabiliser H and b(G) = 2. If val(G, H) is odd then one of the following holds:

- $(G, H) = (M_{23}, 23:11).$
- ② $(G, H) = (A_p, \mathbb{Z}_p : \mathbb{Z}_{(p-1)/2})$, where $p \equiv 3 \pmod{4}$ is a prime and (p-1)/2 is composite.
- **3** soc(G) = $L_r^{\epsilon}(q)$ and $H \cap \text{soc}(G) = \mathbb{Z}_a$: \mathbb{Z}_r , where r is an odd prime, $a = \frac{q^r \epsilon}{(q \epsilon)(r, q \epsilon)}$ and $G \neq \text{soc}(G)$.

Odd Valency

Case (2) can be easily shown impossible by above. Moreover, we analysis the case when $G = \mathsf{PGL}_r^\epsilon(q)$. These lead the following.

Theorem (Chen-H. 2020+).

Let G be an almost simple primitive group with stabiliser H and b(G) = 2. Then val(G, H) is odd only if one of the following holds:

- **1** $G = M_{23}$ and H = 23:11.
- ② $G = \mathsf{L}^{\epsilon}_r(q).O \leq \mathsf{P}\mathsf{\Gamma}\mathsf{L}^{\epsilon}_r(q)$ with r prime and $O \leq \mathsf{Out}(\mathsf{L}^{\epsilon}_r(q))$, but $G \nleq \mathsf{P}\mathsf{G}\mathsf{L}^{\epsilon}_r(q)$, with $H = \mathbb{Z}_a: \mathbb{Z}_r.O$, where $a = \frac{q^r \epsilon}{(q \epsilon)(r, q \epsilon)}$.

Outline

Preliminaries

- 2 The Strategy
- Our Results
- 4 Problems

Conjectures

To calculate the valency we need to determine all possible arc stabilisers $H \cap H^g$ for $g \in G$. This leads the following conjecture, which may be of independent interest.

Conjecture.

Let G be a finite primitive permutation group with stabiliser H. Then for any $g \notin H$, either $H \cap H^g = 1$ or $H \cap H^g$ is not normal in H.

The conjecture is verified when:

- $|\Omega| \le 4095$;
- $H \cap H^g$ has odd order.

Conjectures

The only known genuine example of almost simple primitive group with odd valency is M_{23} with stabiliser 23:11. Is there any more?

Conjecture.

Let G be an almost simple primitive group with stabiliser H. Then val(G, H) is odd if and only if $G = M_{23}$ and H = 23:11.

Other Problems on Saxl Graphs

Connectivity:

- How to characterise the connectivity of Saxl graphs of transitive permutation groups?
- The Burness-Giudici Conjecture.
- When does val(G, H) = |H|?

Other Problems on Saxl Graphs

Connectivity:

- How to characterise the connectivity of Saxl graphs of transitive permutation groups?
- The Burness-Giudici Conjecture.
- When does val(G, H) = |H|?

Automorphisms:

- When $G = Aut(\Sigma(G))$?
- To what extent does $\Sigma(G)$ determine G up to permutation isomorphism?
- When is $\Sigma(G)$ Cayley?

Other Problems on Saxl Graphs

Connectivity:

- How to characterise the connectivity of Saxl graphs of transitive permutation groups?
- The Burness-Giudici Conjecture.
- When does val(G, H) = |H|?

Automorphisms:

- When $G = Aut(\Sigma(G))$?
- To what extent does $\Sigma(G)$ determine G up to permutation isomorphism?
- When is $\Sigma(G)$ Cayley?

Cycles:

- Euler cycle? The conjecture above.
- Hamiltonian cycle?

Thank you for your attention!