Probability and Computing, 2nd Edition

Solutions to Chapter 2: Discrete Random Variables and Expectation

Hahndeul Kim

 $\mathrm{June}\ 2025$

$$\mathbf{E}[X] = \left(\sum_{i=1}^{k} i\right)/k = (k+1)/2.$$

2.2

The probability to type "proof" is $1/26^5$. As there are 1,000,000-5+1=999,996 positions to start the word "proof", the desired probability would be $999996/26^5$ by the linearity of expectations.

2.3

Take f as $f(x) = -x^2$ and X as a random variable with Pr(X = 1) = Pr(X = 1)2) = 1/2. Then, $-5/2 = \mathbf{E}[f(X)] < f(\mathbf{E}[X]) = -9/4$. Take f as f(x) = x and X as above. Then, $\mathbf{E}[f(X)] = f(\mathbf{E}[X]) = 3/2$. Take f as $f(x) = x^2$ and X as above. Then, $9/4 = f(\mathbf{E}[X]) < \mathbf{E}[f(X)] = 5/2$.

2.4

Take $f(x) = x^k$, which is convex when k is an positive even integer. Then by Jensen's inequality, $\mathbf{E}[f(X)] \ge f(\mathbf{E}[X])$ holds.

2.5

Let the event that X is even be Y. Then $\Pr(Y) = \sum_{i=0,2,\dots} {n \choose i} (\frac{1}{2})^n$ holds. As is known, $\sum_{i=0,2,...} {n \choose i} = 2^{n-1}$, so $\Pr(Y) = \frac{1}{2}$ is valid.

2.6

- (a) X_1 can be 2, 4 or 6. Therefore $\mathbf{E}[X|X_1$ is even] = $(3+4+\cdots+8)\times\frac{1}{18}+(5+6+\cdots+10)\times\frac{1}{18}+(7+8+\cdots+12)\times\frac{1}{18}=\frac{15}{2}$. (b) $\mathbf{E}[X|X_1=X_2]=(2+4+6+8+10+12)\times\frac{1}{6}=7$. (c) $\mathbf{E}[X_1|X=9]=(3+4+5+6)\times\frac{1}{4}=\frac{9}{2}$. (d) $\mathbf{E}[X_1-X_2|X=k]=0$, since X_1 and X_2 are independent dice rolls.

2.7

(a)
$$\sum_{k=1}^{\infty} p(1-p)^{k-1} q(1-q)^{k-1} = pq \cdot \frac{1}{1-(1-p)(1-q)} = \frac{pq}{p+q-pq}$$
.

(b)
$$\mathbf{E}[\max(X,Y)] = \sum_{k=1}^{\infty} \Pr(X \ge k \text{ or } Y \ge k) = \sum_{k=1}^{\infty} (1 - \Pr(X < k, Y < k)) =$$

$$\begin{split} &\sum_{k=1}^{\infty} \big(1 - \big(1 - (1-p)^{k-1}\big) \big(1 - (1-q)^{k-1}\big) \big) \\ &= \sum_{k=1}^{\infty} \big((1-p)^{k-1} + (1-q)^{k-1} - (1-p)^{k-1} (1-q)^{k-1}\big) = \frac{1}{p} + \frac{1}{q} - \frac{1}{p+q-pq}. \\ &(c) \ \Pr(\min(X,Y) = k) = \Pr(X = k) \Pr(Y \ge k) + \Pr(Y = k) \Pr(X \ge k) - \\ &\Pr(X = Y = k) = (1-p)^{k-1} (1-q)^{k-1} (p+q-pq) = (1-(p+q-pq))^{k-1} (p+q-pq). \\ &(d) \ \mathbf{E}[X|X \le Y] = \mathbf{E}[\min(X,Y)] = 1/(p+q-pq), \text{ since } \min(X,Y) \sim Geom(p+q-pq) \text{ from the previous exercise.} \end{split}$$

(a) Expected number of girls: $\mathbf{E}[G] = 1 \times \sum_{i=1}^{k} (\frac{1}{2})^i = 1 - 2^{-k}$.

Expected number of boys: $\mathbf{E}[B] = (\frac{1}{2})^k \times k + \sum_{i=1}^k (\frac{1}{2})^i \times (i-1) = \frac{2^k - 1}{2^k}$.

(b) The number of total children now follows Geom(1/2). Thus, $\mathbf{E}[G+B]=2$ holds. Since $\mathbf{E}[G]=\lim_{k\to\infty}\frac{2^k-1}{2^k}=1$ holds using the result of the previous exercise, $\mathbf{E}[B]=1$.

2.9

(a)
$$\mathbf{E}[\max(X_1, X_2)] = \sum_{i=1}^k \frac{i^2 - (i-1)^2}{k^2} \times i = \frac{4k^2 + 3k - 1}{6k}.$$

 $\mathbf{E}[\min(X_1, X_2)] = \sum_{i=1}^k \frac{(k+1-i)^2 - (k-i)^2}{k^2} \times i = \frac{2k^2 + 3k + 1}{6k}.$

- (b) Since two dice are independent, $\mathbf{E}[X_1] = \mathbf{E}[X_2] = \frac{k+1}{2}$. Therefore, the claim holds.
- (c) By the linearity of expectations, $\mathbf{E}[\max(X_1, X_2)] + \mathbf{E}[\min(X_1, X_2)] = \mathbf{E}[\max(X_1, X_2) + \min(X_1, X_2)]$ holds. Since $\{\max(X_1, X_2), \min(X_1, X_2)\} = \{X_1, X_2\}$, $\mathbf{E}[\max(X_1, X_2) + \min(X_1, X_2)] = \mathbf{E}[X_1 + X_2] = \mathbf{E}[X_1] + \mathbf{E}[X_2]$ holds, again by the linearity of expectations. Thus, the claim in the previous exercise must be true.

2.10

(a) Base case: when n=1,2, it is trivial from the definition of convexity. Inductive step: Suppose that the claim holds for n=k. Now, let $\sum_{i=1}^{k+1} \lambda_i = 1$ and $x_1, ..., x_{k+1} \in \mathbb{R}$. Then, by the definition of convexity, $f(\sum_{i=1}^{k+1} \lambda_i x_i) \leq (1-\lambda_{k+1}) f(\frac{1}{1-\lambda_{k+1}} (\sum_{i=1}^{k} \lambda_i x_i)) + \lambda_{k+1} f(x_{k+1}) \text{ holds. Now, from the inductive hypothesis, } (1-\lambda_{k+1}) f(\frac{1}{1-\lambda_{k+1}} (\sum_{i=1}^{k} \lambda_i x_i)) \leq (1-\lambda_{k+1}) \sum_{i=1}^{k} \frac{\lambda_i}{1-\lambda_{k+1}} f(x_i) = 0$

 $\sum_{i=1}^{k} \lambda_i f(x_i) \text{ holds. Therefore, } f(\sum_{i=1}^{k+1} \lambda_i x_i) \leq \sum_{i=1}^{k+1} \lambda_i f(x_i). \blacksquare$ (b) If X takes on only finitely many values, we can denote the set of possible values as $\{x_1,...,x_n\}$. Then, since $\sum_i \Pr(X=x_i)=1$, $f(\sum_{i=1}^n \Pr(X=x_i)x_i) \le 1$ $\sum_{i=1}^{n} \Pr(X = x_i) f(x_i)$ holds from the previous exercise. This is equivalent to $f(\mathbf{E}[X]) \leq \mathbf{E}[f(X)]$

2.11

Inductive proof.

Base case: It is trivial on n = 1.

When
$$n = 2$$
, $\mathbf{E}[X_1 + X_2 | Y = y] = \sum_{i} \sum_{j} (i + j) \Pr(X_1 = i, X_2 = j | Y = y)$

When
$$n=2$$
, $\mathbf{E}[X_1+X_2|Y=y]=\sum_i\sum_j(i+j)\Pr(X_1=i,X_2=j|Y=y)$
 $=\sum_i\sum_ji\Pr(X_1=i,X_2=j|Y=y)+\sum_i\sum_jj\Pr(X_1=i,X_2=j|Y=y).$
Now, by the law of total probability, above equation is equivalent to $\sum_ii\Pr(X_1=i|Y=y)+\sum_ij\Pr(X_2=j|Y=y)=\mathbf{E}[X_1|Y=y]+\mathbf{E}[X_2|Y=y].$

$$\sum_{i} i \Pr(X_1 = i | Y = y) + \sum_{j} j \Pr(X_2 = j | Y = y) = \mathbf{E}[X_1 | Y = y] + \mathbf{E}[X_2 | Y = y].$$

Inductive step: Suppose that the claim holds for
$$n = k$$
. Then,
$$\mathbf{E}[\sum_{i=1}^{k+1} X_i | Y = y] = \mathbf{E}[X_{k+1} | Y = y] + \mathbf{E}[\sum_{i=1}^{k} X_i | Y = y] = \sum_{i=1}^{k+1} \mathbf{E}[X_i | Y = y]. \blacksquare$$

2.12

The expected number of cards to draw to see all n cards is equivalent to the coupon collector's problem in the textbook. Let X_i be the number of draws to perform to observe the *i*th card. Then $X_i \sim Geom(1-\frac{i-1}{n})$ holds, deriving

$$\mathbf{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbf{E}[X_i] = \sum_{i=1}^{n} \frac{n}{n-i+1} = \sum_{i=1}^{n} \frac{n}{i}.$$

 $\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbf{E}[X_{i}] = \sum_{i=1}^{n} \frac{n}{n-i+1} = \sum_{i=1}^{n} \frac{n}{i}.$ Let Y_{i} be the indicator variable that is 1 if ith card was not chosen within 2n draws. Then the expected number of unchosen cards would be $\sum_{i=1}^{n} \mathbf{E}[Y_i] =$

Using the same idea, the expected number of cards chosen only once would be $n \times {2n \choose 1} \frac{1}{n} \left(\frac{n-1}{n}\right)^{2n-1}$.

2.13

- (a) The exercise is equivalent to the coupon collector's problem, since the probability of observing the *i*th coupon stays as $1 - \frac{2i-2}{2n} = 1 - \frac{i-1}{n}$.
- (b) For any positive integer k, the result is equivalent. The probability of observing the ith coupon is $1 \frac{ki-k}{kn} = 1 \frac{i-1}{n}$.

The nth flip must be head. Taking this into account, there would be $\binom{n-1}{k-1}$ ways to assign the ordering of k-1 heads and n-k tails. Therefore, $\Pr(X=n)=\binom{n-1}{k-1}p^k(1-p)^{n-k}$.

2.15

Since it is inefficient to algebraically compute the expectation of a negative binomial distribution, simply introduce $X_1, ..., X_k$ where X_i denotes the number of flips performed after (i-1)th head until ith head. Then, $\mathbf{E}[\sum_{i=1}^{\kappa} X_i] =$ $\sum_{i=1}^{\kappa} \mathbf{E}[X_i] = k/p.$

2.16

(a) Take $n=2^k$, and let X_i be an indicator variable that is 1 if a streak of length $\log_2 n + 1 = k + 1$ occurred starting from the *i*th flip.

Then
$$\mathbf{E}[\sum_{i=1}^{n-k} X_i] = \sum_{i=1}^{n-k} \mathbf{E}[X_i] = (n-k)(\frac{1}{2})^k = 1 - \frac{\log_2 n}{n} \text{ holds.}$$

Now, $1 - \frac{\log_2 n}{n}$ is $1 - o(1)$ since $\lim_{n \to \infty} \frac{\log_2 n}{n} = 0$.

(b) Let $\lfloor \log_2 n - 2 \log_2 \log_2 n \rfloor = \delta$. Note that the desired probability is upperbounded by the probability that all disjoint δ blocks are not a streak, which is $(1-(\frac{1}{2})^{\delta-1})^{\lfloor n/\delta\rfloor}$.

$$(1 - (\frac{1}{2})^{\delta - 1})^{\lfloor n/\delta \rfloor} \le (1 - (\frac{1}{2})^{\log_2 n - 2\log_2 \log_2 n})^{\lfloor n/\delta \rfloor} = (1 - \frac{(\log_2 n)^2}{n})^{\lfloor n/\delta \rfloor}$$

$$\le (1 - \frac{(\log_2 n)^2}{n})^{n/\log_2 n} \le e^{-\log_2 n} = n^{-\log_2 e} \le n^{-1} (1 - x \le e^{-x}).$$

2.17

 $\mathbf{E}[Y_0] = 1$, $\mathbf{E}[Y_1] = 2p$ obviously holds. Now, we have $\mathbf{E}[Y_i|Y_{i-1} = j] = 1$ 2pj for $i \geq 1$. Then, by the definition of conditional expectation, $\mathbf{E}[Y_i]$ $\mathbf{E}[\mathbf{E}[Y_i|Y_{i-1}]] = \sum_{j} 2pj \Pr(Y_{i-1} = j) = 2p\mathbf{E}[Y_{i-1}].$ Thus, $\mathbf{E}[Y_i] = (2p)^i$, and the expected total number of copies $\mathbf{E}[\sum_{i=0}^{\infty} Y_i]$ is bounded if p < 1/2.

2.18

Inductive proof.

Base case: It is trivial on n = 1.

Inductive step: Suppose that $Pr(X_k = I_i) = 1/k$ for all i where X_k is the item stored after the kth item (I_k) appeared.

Then, $\Pr(X_{k+1} = I_i) = \Pr(X_k = I_i) \times (1 - \frac{1}{k+1}) = \frac{1}{k+1}$ for all $1 \le i \le k$, and obviously $\Pr(X_{k+1} = I_{k+1}) = \frac{1}{k+1}$ which is the probability of replacement.

2.19

Let X_k be the item stored after the kth item appeared. Since k=1 is trivial, we will solve for $k \geq 2$. Then $\Pr(X_k=i)=(\frac{1}{2})^{k+1-i}$ for all $2 \leq i \leq k$ and $\Pr(X_k=1)=\Pr(X_k=2)$.

2.20

Let X_i be an indicator variable that is 1 if $\pi(i) = i$. Then the expected number of fixed points would be $\mathbf{E}[\sum_{i=1}^n X_i] = \sum_{i=1}^n \mathbf{E}[X_i] = n \times \frac{1}{n}$.

2.21

$$\mathbf{E}\left[\sum_{i=1}^{n} |a_i - i|\right] = \sum_{i=1}^{n} \mathbf{E}[|a_i - i|] = \sum_{i=1}^{n} \sum_{j=1}^{n} |j - i| = \sum_{i=1}^{n} \frac{1}{n} \left(\sum_{j=1}^{i-1} j + \sum_{j=1}^{n-i} j\right)$$
$$= \sum_{i=1}^{n} \frac{1}{n} (i^2 - i) = \frac{n^2 - 1}{3}.$$

2.22

In bubble sort, the number of all possible pairs (i, j) that a_i and a_j are inverted is equivalent to the number of inversions that need to be corrected.

Let X be the number of inversions. Then $\mathbf{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr(a_i > a_j) =$

 $\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{2}$, since all numbers are distinct and the input is a random permutation

Thus,
$$\mathbf{E}[X] = \sum_{i=1}^{n} \frac{1}{2}(n-i) = \frac{n(n-1)}{4}$$
.

2.23

Let X_i be the number of swaps needed for the *i*th element. Since the input is a random permutation, $\mathbf{E}[X_i] = (i-1)/2$.

Thus, the expected number of swaps would be $\mathbf{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbf{E}[X_i] = \frac{n(n-1)}{4}$.

Let X be the number of dice rolls, and X_1 be the result of the first roll.

Then $\mathbf{E}[X] = \mathbf{E}[X|X_1 = 6] \Pr(X_1 = 6) + \mathbf{E}[X+1] \Pr(X_1 \neq 6)$ holds by the memoryless property.

Thus, $\mathbf{E}[X] = \frac{1}{6}(\frac{1}{6} \times 2 + \frac{5}{6}\mathbf{E}[X+2]) + \frac{5}{6}\mathbf{E}[X+1] = \frac{35}{36}\mathbf{E}[X] + \frac{7}{6}.$ \therefore $\mathbf{E}[X] = 42.$

2.25

- (a) To make the test negative, all the people in the pool need to be negative, which happens with probability $(1-p)^k$. Thus, the desired probability is $1-(1-p)^k$.
- (b) Since there are n/k pools, the number of expected necessary tests would be $(n/k) \times ((1-(1-p)^k) \times 1 + (1-p)^k \times (k+1)) = n(1+\frac{1}{k}-(1-p)^k).$
- (c) Compute the derivative of the expectation derived in (b), and numerically solve the gradient being zero.
- (d) $n(1+\frac{1}{k}-(1-p)^k) < n$ must hold for the pooling method to be better than naïve method. The inequality evaluates to $\frac{1}{k} < (1-p)^k$ for a fixed k.

2.26

Let X_i be the number of *i*-cycles in the graph. Then, the expected number of cycles would be $\mathbf{E}[\sum_{i=1}^n X_i] = \sum_{i=1}^n \mathbf{E}[X_i]$.

$$\mathbf{E}[X_i] = \binom{n}{i} \frac{(k-1)!}{n(n-1)\cdots(n-k+1)} = \frac{n!}{(n-i)!i!} \frac{(i-1)!(n-i)!}{n!} = \frac{1}{i} \text{ holds. Thus, } \mathbf{E}[\sum_{i=1}^n X_i] = \sum_{i=1}^n \frac{1}{i} = H(n) \text{ (harnomic number)}.$$

2.27

 $\mathbf{E}[X] = \sum_{i=1}^{\infty} x \Pr(X = x) = \sum_{i=1}^{\infty} (6/\pi^2) x^{-1} = \infty$, which follows from the well-known divergence of harmonic series.

2.28

If the player won at the kth spin for the first time, the total money lost is $(1+2+\cdots+2^{k-2})$, and earned money is 2^{k-1} . Since $(1+2+\cdots+2^{k-2})=2^{k-1}-1$, the player eventually wins a dollar.

 $\mathbf{E}[X] = \sum_{i=1}^{\infty} (\frac{1}{2})^i (2^{i-1} - 1) = \sum_{i=1}^{\infty} (\frac{1}{2} - (\frac{1}{2})^i) = \infty$. This implies that this strategy is impractical and would lead to bankruptcy, since the player has a finite amount of money.

Let $S_n = \sum_{j=0}^n X_j$. Then from the linearity of expectations for a finite number of random variables, $\mathbf{E}[S_n] = \sum_{j=0}^n \mathbf{E}[X_j]$ holds. Here, RHS converges from the given absolute convergence, and thus LHS should also converge. Thus, applying $\lim_{n\to\infty}$ on each side, we get $\mathbf{E}[\sum_{j=0}^{\infty} X_j] = \sum_{j=0}^{\infty} \mathbf{E}[X_j]$.

2.30

Since a player needs to lose all previous j-1 bets in order to participate in the jth bet, $\mathbf{E}[X_j] = (1-(\frac{1}{2})^{j-1})\times 0 + (\frac{1}{2})^j\times 2^{j-1} + (\frac{1}{2})^j\times (-2^{j-1}) = 0$ holds. $\sum_{j=0}^{\infty}\mathbf{E}[X_j] = 0$ holds, thus the linearity of expectations does not hold here.

This exercise does not fall under the circumstances of exercise 2.29, since $\sum_{j=0}^{\infty} \mathbf{E}[|X_j|] = \infty$ holds.

2.31

The expected winnings would be $\sum_{k=1}^{\infty} (\frac{1}{2})^k \times \frac{2^k}{k} = \sum_{k=1}^{\infty} \frac{1}{k} = \infty$. Thus, the player should be willing to pay any amount of money to play the game.

2.32

(a) By definition, $\Pr(E_i) = 0$ for $i \leq m$, and $\Pr(E) = \sum_{i=1}^n \Pr(E_i)$ is true.

If i > m, then the *i*th candidate must be the best among all n candidates, and the second-best candidate must be one of the first m candidates. Thus, $\Pr(E_i) = \frac{1}{n} \times \frac{m}{i-1}$.

Therefore,
$$\Pr(E) = \sum_{i=m+1}^{n} \frac{1}{n} \times \frac{m}{i-1} = \frac{m}{n} \sum_{j=m+1}^{n} \frac{1}{j-1}$$
.

(b) Since
$$\sum_{j=m+1}^{n} \frac{1}{j-1} \ge \int_{m+1}^{n+1} \frac{1}{x-1} dx = \ln n - \ln m$$
, $\Pr(E) \ge \frac{m}{n} (\ln n - \ln m)$ holds.

Also, since
$$\sum_{j=m+1}^{n} \frac{1}{j-1} \le \int_{m}^{n} \frac{1}{x-1} dx = \ln(n-1) - \ln(m-1)$$
, $\Pr(E) \ge \frac{m}{n} (\ln(n-1))$

 $1) - \ln(m-1)$ holds.

(c) For a fixed n, $\frac{\partial}{\partial m} \frac{m(\ln n - \ln m)}{n} = \frac{\ln n - \ln m - 1}{n} = 0$ when m = n/e. This choice of m is the maximizer, since the given formula has only one local maximum w.r.t. m.

Since
$$\frac{m(\ln n - \ln m)}{n} = 1/e$$
 when $m = n/e$, $\Pr(E) \ge 1/e$ holds by (b).