图论作业(4.28)

中国人民大学 信息学院 崔冠宇 2018202147

P48, T1 至少两个顶的树其最长轨的起止顶皆是叶, 试证明之.

证明: 设 $P = v_0 v_1 \dots v_n$ 是树 T 的最长轨, 我们证明 v_0, v_n 是叶. 因若不然, 则有 $d(v_0) \geq 2$. 由于它是最长轨的端点, 与它相邻的顶点只能在 P 上. 如果 v_0 与 $v_i (i \geq 2)$ 邻接, 则 T 有圈, 与 T 是树矛盾, 所以 v_0 是叶. 同样地, v_n 也是叶. \square

P48, T2 如果一棵树仅有两个叶, 则此树就是一条轨.

证明: 设 T 是一棵仅有两个叶的树,即有 $\varepsilon = \nu - 1$,且除两个叶之外,其余顶点度数大于等于2. 假若此树不是一条轨,则必有度大于2的顶点存在. 由握手定理: $2\varepsilon = 2(\nu - 1) = \sum_{v \in V(T)} d(v) > 2 + 2(\nu - 2) = 2(\nu - 1)$,矛盾. 故此树只能为一条轨. \square

P48, T3 证明: 若 T 是树, 且 $\Delta(T) \ge n$, 则 T 至少有 n 个叶.

证明: 反证法. 设 T 有 l(l < n) 个叶, 其余顶点度数大于等于2. 由握手定理: $2\varepsilon = 2(\nu - 1) = \sum_{v \in V(T)} d(v) \ge n + 2(\nu - 1 - l) + l > 2(\nu - 1)$, 矛盾. 所以 T 至少有 n 个叶. \square

P48, **T4** 图 G 为林当且仅当 $\varepsilon = \nu - \omega$, ω 是 G 的连通片个数, $\omega > 1$.

证明: ⇒: 设 G 的每棵树 T_i 有 ν_i 个顶点和 $\varepsilon_i = \nu_i - 1$ 条边 $(i = 1, 2, ..., \omega)$, 所以 $\varepsilon = \varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_\omega = (\nu_1 - 1) + (\nu_2 - 1) + \cdots + (\nu_\omega - 1) = \nu - \omega$.

 \Leftarrow : 设 G 的每个连通分量 G_i 有 ν_i 个顶点和 ε_i 条边 $(i=1,2,\ldots,\omega)$. 对某个 G_i , 因其连通, 所以 $\varepsilon_i \geq \nu_i - 1$. 此时 $\varepsilon = \varepsilon_1 + \cdots + \varepsilon_\omega \geq (\nu_1 - 1) + \cdots + (\nu_\omega - 1) = \nu - \omega$. 而由条件, $\varepsilon = \nu - \omega$, 所以对每一个连通分量都有 $\varepsilon_i = \nu_i - 1$, 即每个连通分量都是树, 故 G 是森林. \square

P48, **T8** 证明: 设 $G \neq \delta(G) \geq k$ 的单图, $T \neq k+1$ 个顶的树, 则 G 中有与 T 同构的子图. 证明: 对 k 作数学归纳.

- ① k = 0, 1 时, 容易验证结论成立. (此时 $T \in K_1$ 和 K_2 .)
- ② 假设对 $\delta \geq k-1$ 的任何单图 H, 以及任何 k 个顶的树 T_1 , 存在树 F 满足: $T_1 \cong F \subseteq H$. 现在设 T 是 k+1 阶树, $\delta(G) \geq k$. 设 u 是 T 的树叶, v 是 u 的邻接顶点, 则 T-u 是 k 阶树, 又因为 $\delta(G) \geq k \geq k-1$, 由归纳假设, 存在树 F 满足 $T-u \cong F \subseteq G$. 如下图所示, 设 v_1 是与 T 中 v 相对应

的 F 中的点,因为 $d_G(v_1) \ge k > |V(F)| - 1$,所以 $\exists w \in (V(G) - V(F))$,使得 $(v_1, w) \in E(G)$. 现在取 $F \cup (v_1, w)$,则该子图和 T 同构.

结合 ① ②, 由数学归纳法, 得命题对任意自然数 k 都成立. \square

P48, T8 示意图.

补充题. 写出一个求树中心的算法.

解: 先证明去掉一棵树 T 的所有叶子, 树的中心不变. 显然对树上某顶点 u, 它的离心率 $e(u) = \max\{d(u,v)|v\in V(T)\}$ 只有当 v 是叶才可能取得. 所以对于去掉 T 的所有叶得到的树 T', 有 $e_T(u)=e_{T'}(u)+1$, 显然 T 和 T' 具有相同中心.

所以不断去除树的叶子, 树的中心都不变, 直到剩下一点或相邻的两点为止, 就得到了树的中心.