Classe:	4A INF -	- Nome:	Cognome:	Data:	/	/

Gestione delle Figure Geometriche nel Piano Cartesiano

Introduzione

Sviluppa un'applicazione Java per la gestione di figure geometriche nel piano cartesiano. L'applicazione, ricevute in input le coordinate dei punti che definiscono una figura (3 punti per un triangolo, 4 punti per un quadrilatero, ecc.), dovrà calcolare perimetro e area. A tale scopo, si utilizzi la seguente formula per il calcolo dell'area di un poligono:

Formula dell'area di un poligono

L'area di un poligono con n vertici può essere calcolata utilizzando la formula del determinante o la formula di Gauss:

$$A = \frac{1}{2} |x_1(y_2 - y_n) + x_2(y_3 - y_1) + x_3(y_4 - y_2) + \dots + x_n(y_1 - y_{n-1})|$$
 (1)

dove:

- $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ sono le coordinate dei vertici del poligono, ordinate in senso orario o antiorario.
- Il valore assoluto assicura che l'area sia sempre positiva.

In Java, questa formula può essere implementata come segue:

```
double area = 0;
for (int i = 0; i < vertici.length; i++) {
    int j = (i + 1) % vertici.length;
    area += vertici[i].getX() * vertici[j].getY();
    area -= vertici[i].getY() * vertici[j].getX();
}
return Math.abs(area) / 2;
```

Esempio di utilizzo delle classi

```
// Test delle figure
Punto p1 = new Punto(0, 0);
Punto p2 = new Punto(3, 0);
Punto p3 = new Punto(3, 4);
Punto p4 = new Punto(0, 4);
Triangolo triangolo = new Triangolo(p1, p2, p3);
System.out.println("Area triangolo: " + triangolo.calcolaArea());
System.out.println("Perimetro triangolo: " + triangolo.calcolaPerimetro());
// Test rettangolo
Rettangolo rettangolo = new Rettangolo(p1, p2, p3, p4);
System.out.println("Area rettangolo: " + rettangolo.calcolaArea());
System.out.println("Perimetro rettangolo: " + rettangolo.calcolaPerimetro());
// Test quadrato
Punto q1 = new Punto(0, 0);
Punto q2 = new Punto(2, 0);
Punto q3 = new Punto(2, 2);
Punto q4 = new Punto(0, 2);
Quadrato quadrato = new Quadrato(q1, q2, q3, q4);
System.out.println("Area quadrato: " + quadrato.calcolaArea());
System.out.println("Perimetro quadrato: " + quadrato.calcolaPerimetro());
```

1 Classe Punto

La classe Punto rappresenta un punto nel piano cartesiano (x,y) con le seguenti caratteristiche:

- Due variabili private di tipo double: x e y.
- Un costruttore che accetti le coordinate x e y.
- Un costruttore di copia che crei un nuovo punto a partire da un punto esistente.
- Metodi getter e setter per le coordinate.
- Un metodo distanza (Punto p) che calcoli la distanza tra due punti.
- Un metodo equals (Punto p) per verificare se due punti coincidono.
- Un metodo toString() che restituisca una rappresentazione testuale del punto.

2 Classe FiguraGeometrica

La classe FiguraGeometrica deve:

- Contenere un array di oggetti Punto per memorizzare i vertici della figura.
- Includere un costruttore che accetti un array di punti.
- Fornire un metodo per calcolare il perimetro della figura.
- Fornire un metodo per calcolare l'area della figura.

3 Classi Triangolo, Quadrato e Rettangolo

3.1 Classe Triangolo

La classe Triangolo deve soddisfare i seguenti requisiti:

- Utilizzare la classe Punto per rappresentare i tre vertici.
- Includere un costruttore che accetti tre oggetti Punto.
- Utilizzare il costruttore di copia della classe Punto per memorizzare i vertici.
- Implementare un metodo per calcolare l'area del triangolo utilizzando la formula di Erone:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

dove $a,\ b,\ c$ sono i lati del triangolo e s è il semiperimetro:

$$s = \frac{a+b+c}{2}$$

• Implementare un metodo per calcolare il perimetro:

$$P = a + b + c$$

3.2 Classe Rettangolo

La classe Rettangolo deve:

- Essere una sottoclasse di FiguraGeometrica.
- Avere un costruttore che accetti quattro oggetti Punto.

• Implementare un metodo per calcolare l'area utilizzando la formula:

$$A = \text{base} \times \text{altezza}$$

dove la base e l'altezza possono essere determinate calcolando la distanza tra i punti adiacenti.

• Implementare un metodo per calcolare il perimetro:

$$P = 2 \times (\text{base} + \text{altezza})$$

3.3 Classe Quadrato

La classe Quadrato deve:

- Essere una sottoclasse della classe Rettangolo.
- Includere un costruttore che accetti quattro oggetti Punto.
- Implementare un metodo per calcolare l'area usando la formula:

$$A = lato^2$$

• Implementare un metodo per calcolare il perimetro:

$$P = 4 \times \text{lato}$$

4 Esempi di Test

4.1 Test Triangolo Rettangolo

Punti di input:

- $P_1(0,0)$
- $P_2(3,0)$
- $P_3(3,4)$

Output atteso:

Area triangolo: 6.0 Perimetro triangolo: 12.0

4.2 Test Rettangolo

Punti di input:

- $P_1(0,0)$
- $P_2(3,0)$
- $P_3(3,4)$
- $P_4(0,4)$

Output atteso:

Area rettangolo: 12.0 Perimetro rettangolo: 14.0

4.3 Test Quadrato

Punti di input:

- $Q_1(0,0)$
- $Q_2(2,0)$
- $Q_3(2,2)$
- $Q_4(0,2)$

Output atteso:

Area quadrato: 4.0 Perimetro quadrato: 8.0

4.4 Test Pentagono Irregolare

Punti di input:

- $V_1(0,0)$
- $V_2(2,1)$
- $V_3(3,3)$
- $V_4(1,4)$
- $V_5(-1,2)$

Output atteso:

Area pentagono: 9.0

$$A = \frac{1}{2} |0(1-2) + 2(3-0) + 3(4-1) + 1(2-3) + (-1)(0-4)|$$

$$A = \frac{1}{2} |0(-1) + 2(3) + 3(3) + 1(-1) + (-1)(-4)|$$

$$A = \frac{1}{2}|0+6+9-1+4| = \frac{18}{2} = 9.0$$