浙江大学 20<u>20</u> - 20<u>21</u> 学年<u>春</u>学期 《化工热力学》期末考试试卷

课程号: 09120261, 开课学院: 化学工程与生物工程学院

考试试卷: A 卷 √、B 卷 (请在选定项上打 √)

考试形式: 闭√、开卷(请在选定项上打√),允许带 无存储功能计算器 入场

考试日期: 2021 年 4 月 30 日, 考试时间: 120 分钟

诚信考试,沉着应考,杜绝违纪。

题序	_	11	Ξ	四	总 分
得分					
评卷人					

- 一、是否题(共15小题,每小题2分,共30分)
- 1. 对于理想溶液的某一容量性质 M,则 $M_i = M_i$
- 2. 理想气体混合物就是一种理想溶液
- 3. 纯物质由液体变为蒸汽,必须经过汽化的相变化过程
- 4. 由于水由液体变为气体涉及相变,故热力学关系式不再适用
- 5. 系统经历不可逆循环后, 熵值必增加
- 6. 逸度系数是一个有量纲的热力学函数
- 7. 由于偏离函数的参考态是同温的理想气体,所以不能用偏离函数计算变温过程
- 8. 混合物气液平衡准则 $\hat{f}_{i}^{v} = \hat{f}_{i}^{l}$
- 9. 对于一个二元混合物系统, 若当在某浓度范围内组分 1 符合 Henry 规则, 在相同的浓度范围内另组分 2 也可能符合 Henry 规则
- 10. 理想系统的气液平衡常数 $K_i = 1$
- 11.一定压力下,组成相同的混合物的露点温度和泡点温度不可能相同
- 12.体系从初态变化到终态,无论经历何种过程,其理想功是相同的
- 13. 能满足热力学一致性的气液平衡数据就是高质量的数据
- 14. 在 (1) (2) 系统的气液平衡中,若 (1) 是轻组分,(2) 是重组分,则 $y_1 > x_1$, $y_2 < x_3$
- 15. 如果一个反应产物的摩尔吉氏函数数值低于反应物的,则该反应会自发进行,直至某一反应物完全转化

二、选择题(共8小题,	每小题 2 分, 共 16 分)					
1. 某二元混合物的超额摩尔吉氏函数 $\frac{G^{\rm E}}{RT}$ = 1. $2x_1x_2$,则第二组分基于 Lewis—Randall 规则的对称归—化活							
	K1						
度系数模型为	D 1 0		D 1 0 2				
	B.1.2 $x_1 x_2$	$C.2.4 x_1 x_2$	$D.1.2 x_1^2$				
2. 实际压缩制冷循环中,							
A. 等焓过程	B. 等熵过程	C. 熵增过程	D.可逆过程				
3. 某流体在稳流装置内经历一个不可逆过程, 做出一定的功, 带走一定热量, 则流入系统与流出系统的熵差							
A.大于0	B. 等于 0	C.小于0	D. 无法确定				
4. 下列选项中影响家用空调制冷循环效率的因素有哪些							
A. 过程不可逆性	B.室温	C. 制冷剂黏度	D. 压缩机输出功率				
$5.$ 完全理想过程的相对挥发度 α_{ij} 可以表示为							
$\mathrm{A.}\frac{p_i^\mathrm{s}}{p_j^\mathrm{s}}$	B. $p_i^s p_j^s$	C. p_i^s / p	D. p_j^s / p				
6. 吉氏函数变化与 $p-V-T$ 关系为 $G(T,p)-G^x=RT\ln f$,则 G^x 的状态应为							
A.T和p下纯理想气体		B. T 和零压的纯理想气体					
C. T 和单位压力的纯理想气体							
7. $p \rightarrow 0$ 时, $\left[\frac{RT}{p} - V(T, p)\right] =$							
A.0		B. 很高的 T 时为 0					
C. 与第三 virial 系数有关		D. 在 Boyle 温度时为 0					
8. 指定压力下的纯物质,当温度高于临界温度时,流体的性质为							
A. 过冷液体	B. 超临界流体	C. 过热蒸汽	D. 无法确定				
三、填空题 (每小题 4 分, 共 16 分)							
$1.$ 用 Lewis $-$ Randall 规则定义的活度系数 γ_i 与用 Henry 规则定义的 γ_i^* 之间的关系为。							
2. 写出下列气液平衡下热力学关系表达式							
(1) 低压下混合物气液平衡体系气相总压力表达式为。							
(2) 普话化气液平衡准则的组分逸度系数表达式为							

(3) 等温等压下,Gibbs-Duhem 方程的活度系数表达式为_____。

3.请将采用再热循环的朗肯循环过程示意在T-S图上画出,并对每一过程进行简单描述

4. 描述下列二元 p-x-y 图中的变化过程 $A \rightarrow B \rightarrow C \rightarrow D$

四、计算题(第1题必做,后3题选做2题,共38分)

1. (16 分) 某蒸汽透平机,进入压力为 1471kPa,温度为 480℃的过热蒸汽,排气压力为 68.6kPa。透平机 既不是可逆的,也不是绝热的,实际输出的轴功相当于可逆绝热功的 85%。同时损失热量 7.11kJ。环境温度为 20℃,求此过程的损失功。

已知: 初始状态 $H_1 = 3423 \text{kJ} \cdot \text{kg}^{-1}$, $S_1 = 7.511 \text{ kJ} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$, 若经历等熵过程, 终态 $H_2 = 2660 \text{ kJ} \cdot \text{kg}^{-1}$

2. (11 分) 求室温下压力为 0.9MPa 的压缩空气的有效能。假设环境温度 293K, 空气是理想气体

3. $(11 \, \text{分})$ 某一服从 p(V-b)=RT 状态方程的理想气体,从 $1000\,b$ 等温可逆膨胀至 $2000\,b$,所做的功应是理想气体经过相同过程所做功的多少倍?

4. (11 分) 试计算 75℃,总压为 40MPa 下 CO_2 在水中的溶解度。已知:75℃下 CO_2 在水中的 Henry 常数 $H_{1,2} = 409.57 \text{MPa} \text{ , } CO_2$ 在无限稀水中的偏摩尔体积 $\overline{V}_i^{\infty} = 31.4 \text{ cm}^3 \cdot \text{mol}^{-1}$ 。提示: $\left(\frac{\partial \ln H_{i,\text{sol}}}{\partial p}\right)_{T,x} = \frac{\overline{V}_i^{\infty}}{RT}$