IN THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1 1. (Original) A read channel, comprising:
- 2 an equalizer configured to equalize a digital signal to provide equalized
- 3 reproduced signals; and
- 4 a Viterbi detector capable of receiving the equalized reproduced signals and
- 5 converting the reproduced signals into a digital output signal indicative of data stored on
- 6 a recording medium;
- 7 wherein the equalizer is implemented using a coefficient learning circuit that
- 8 adaptively updates coefficients for the equalizer based upon a cosine function.
- 1 2. (Original) The read channel of claim 1, wherein the coefficient
- 2 learning circuit adjusts coefficients using a tap coefficient update equation having a first
- 3 parameter, k, for modifying a magnitude response.
- 1 3. (Previously Presented) The read channel of claim 2, wherein the
- 2 first parameter, k, is adjusted according to k=k-g*(f(a_{k+1})+f(a_{k-1}))*e_k, where k is the
- 3 cosine equalizer parameter for modifying the magnitude response, g is an update
- 4 attenuation gain, f() is a predetermined cosine function, a_{k+1} represents a bit to be
- 5 detected at time k+1, a_{k-1} represents a bit to be detected at time k-1, and e_k is an error
- 6 signal based on a difference between a noisy equalized signal and a desired noiseless
- 7 signal.

- 1 4. (Original) The read channel of claim 2, wherein the coefficient
- 2 learning circuit adjusts coefficients using a tap coefficient update equation having a
- 3 second parameter, j, for modifying a phase response.
- 1 5. (Previously Presented) The read channel of claim 4, wherein the
- second parameter, j, is adjusted according to $j=j-g*(f(a_{k+2})+f(a_{k-2}))*e_k$, where j is the
- 3 cosine equalizer parameter for modifying the phase response, g is an update attenuation
- 4 gain, f() is a predetermined cosine function, a_{k+2} represents a bit to be detected at time
- 5 k+2, a_{k-2} represents a bit to be detected at time k-2, and e_k is an error signal based on a
- 6 difference between a noisy equalized signal and a desired noiseless signal,
- 1 6. (Original) The read channel of claim 1, wherein the coefficient
- 2 learning circuit adjusts coefficients using a tap coefficient update equation having a
- 3 parameter, j, for modifying a phase response.
- 1 7. (Currently Amended) The read channel of claim 1, wherein the coefficient
- 2 learning circuit adjusts coefficients, w_i, according to w_i=w_i-g*f(a_{k·i})*e_k, where g is a
- 3 provided update attenuation gain and [[$f(a_{k+1})$]] $\underline{f()}$ is a predetermined cosine function
- 4 and [[a_{k+i}]] a_{k-i} represents a bit to be detected at time [[k+I]] k-i.
- 1 8. (Original) The read channel of claim 7, wherein $f(a_{k+1})$ is chosen to be
- 2 akir-akir, wherein written bits that are to be detected, akir, are convolved with a PR4
- 3 response based upon the cosine function.

(Original) 1 9. The read channel of claim 7, wherein f(ak-i) is chosen to be 2 $a_{k,i} + a_{k,i-1} - a_{k,i-2} - a_{k,i-3}$, wherein written bits that are to be detected, $a_{k,i}$, are convolved 3 with the EPR4 response based upon the cosine function. 1 10. (Original) The read channel of claim 7, wherein f(ak-i) is chosen to be 2 abile, wherein written bits that are to be detected, abile, are convolved with the based upon 3 the cosine function. 1 11. The read channel of claim 7, wherein f(ak.i) is chosen to be (Original) 2 akihk, wherein written bits that are to be detected, aki, are convolved with hk based upon 3 the cosine function. 1 12. (Original) A waveform equalizer that equalizes a waveform of a 2 reproduction signal obtained by reproducing marks and non-marks recorded on a 3 recording medium, comprising: 4 a delay element that delays a propagation of the reproduced signal; 5 a plurality of multipliers that multiply predetermined coefficients by the 6 reproduction signal and the delayed signal from the delay element: 7 a coefficient learning circuit that adaptively updates the predetermined 8 coefficients for each of the plurality of multipliers; and 9 an adder that adds outputs from the plurality of multipliers; 10 wherein the coefficient learning circuit adaptively updates coefficients for the 11 equalizer based upon a cosine function.

Appl. No. 10/809,230 HSJ920030206US1/(HTTG.062-0528) Amdt. Dated October 27, 2006 Reply to Office Action of August 30, 2006

1

16.

- 1 13. (Original) The waveform equalizer of claim 12, wherein the 2 coefficient learning circuit adjusts coefficients using a tap coefficient update equation 3 having a first parameter, k, for modifying a magnitude response.
- 1 14. (Previously Presented) The waveform equalizer of claim 13, 2 wherein the first parameter, k, is adjusted according to $k=k-g*(f(a_{k+1})+f(a_{k-1}))*e_k$, where k 3 is the cosine equalizer parameter for modifying the magnitude response, g is an update 4 attenuation gain, f() is a predetermined cosine function, ak+1 represents a bit to be 5 detected at time k+1, a_{k-1} represents a bit to be detected at time k-1, and e_k is an error 6 signal based on a difference between a noisy equalized signal and a desired noiseless 7 signal.
- 1 15. (Original) The waveform equalizer of claim 13, wherein the 2 coefficient learning circuit adjusts coefficients using a tap coefficient update equation 3 having a second parameter, i, for modifying a phase response,
- (Previously Presented) The waveform equalizer of claim 15, 2 wherein the second parameter, j, is adjusted according to $j=j-g*(f(a_{k+2})+f(a_{k-2}))*e_k$, where 3 j is the cosine equalizer parameter for modifying the phase response, g is an update 4 attenuation gain, f() is a predetermined cosine function, ak+2 represents a bit to be 5 detected at time k+2, ak-2 represents a bit to be detected at time k-2, and ek is an error 6 signal based on a difference between a noisy equalized signal and a desired noiseless 7 signal.

- 1 17. (Original) The waveform equalizer of claim 12, wherein the
- 2 coefficient learning circuit adjusts coefficients using a tap coefficient update equation
- 3 having a parameter, j, for modifying a phase response.
- 1 18. (Currently Amended) The waveform equalizer of claim 12, wherein the
- 2 coefficient learning circuit adjusts coefficients, w_i, according to w_i=w_i-g*f(a_{k-i})*e_k
- 3 where g is a provided update attenuation gain and and $[[f(a_{k-i})]][f(a)]$ is a predetermined
- 4 cosine function and [[a_{k+i}]] \underline{a}_{k-i} represents a bit to be detected at time [[k+I]] $\underline{k-i}$.
- 1 19. (Original) The waveform equalizer of claim 18, wherein $f(a_{k-1})$ is
- 2 chosen to be a_{k-i}-a_{k-i-2}, wherein written bits that are to be detected, a_{k-i}, are convolved
- 3 with a PR4 response based upon the cosine function.
- 1 20. (Original) The waveform equalizer of claim 18, wherein $f(a_{k-1})$ is
- 2 chosen to be $a_{k-i} + a_{k-i-1} a_{k-i-2} a_{k-i-3}$, wherein written bits that are to be detected, a_{k-i} , are
- 3 convolved with the EPR4 response based upon the cosine function.
- 1 21. (Original) The waveform equalizer of claim 18, wherein f(a_{k-i}) is
- 2 chosen to be a_{k-i}t_k, wherein written bits that are to be detected, a_{k-i}, are convolved with t_k
- 3 based upon the cosine function.

Appl. No. 10/809,230 HSJ920030206US1/(HITG.062-0528) Amdt. Dated October 27, 2006 Reply to Office Action of August 30, 2006

(Original)

23.

1

1 22. (Original) The waveform equalizer of claim 18, wherein $f(a_{k\cdot i})$ is
2 chosen to be $a_{k\cdot i}h_k$, wherein written bits that are to be detected, $a_{k\cdot i}$, are convolved with h_k 3 based upon the cosine function.

A signal processing system, comprising:

- 2 memory for storing data therein; and
 3 a processor, coupled to the memory, for equalizing a digital signal to provide
 4 equalized reproduced signals, the processor adaptively updates coefficients for the
 5 equalizer based upon a cosine function.
- 1 24. (Original) The signal processing system of claim 23, wherein the
 2 processor adjusts coefficients using a tap coefficient update equation having a first
 3 parameter, k, for modifying a magnitude response.
- 1 25. (Previously Presented) The signal processing system of claim 24, 2 wherein the first parameter, k, is adjusted according to $k=k-g*(f(a_{k+1})+f(a_{k-1}))*e_k$, where k 3 is the cosine equalizer parameter for modifying the magnitude response, g is an update 4 attenuation gain, f() is a predetermined cosine function, ak+1 represents a bit to be 5 detected at time k+1, a_{k-1} represents a bit to be detected at time k-1, and e_k is an error 6 signal based on a difference between a noisy equalized signal and a desired noiseless 7 signal.

Appl. No. 10/809,230 HSJ920030206US1/(HTIG.062-0528) Amdt. Dated October 27, 2006 Reply to Office Action of August 30, 2006

- 1 26. (Original) The signal processing system of claim 24, wherein the
 2 processor adjusts coefficients using a tap coefficient update equation having a second
 3 parameter, j, for modifying a phase response.
- 1 27. (Previously Presented) The signal processing system of claim 26, 2 wherein the second parameter, i, is adjusted according to $i=i-g^*(f(a_{k+1})+f(a_{k+1}))^*e_k$, where 3 j is the cosine equalizer parameter for modifying the phase response, g is an update 4 attenuation gain, f() is a predetermined cosine function, ak+2 represents a bit to be 5 detected at time k+2, ak-2 represents a bit to be detected at time k-2, and ek is an error 6 signal based on a difference between a noisy equalized signal and a desired noiseless 7 signal.
- 1 28. (Original) The signal processing system of claim 23, wherein the
 2 processor adjusts coefficients using a tap coefficient update equation having a parameter,
 3 j, for modifying a phase response.
- 1 29. (Currently Amended) The signal processing system of claim 23, wherein
 2 the coefficient learning circuit adjusts coefficients, w_i, according to w_i=w_i-g*f(a_{k-i})*e_k,
 3 where g is a provided update attenuation gain and and [[f(a_{k-i})]] f(_) is a predetermined
 4 cosine function and [[a_{k-i}]] a_{k-i} represents a bit to be detected at time [[k+1]] k_-i.

- 1 30. (Original) The signal processing system of claim 29, wherein $f(a_{k+1})$ is
- 2 chosen to be a_{k-i}-a_{k-i-2}, wherein written bits that are to be detected, a_{k-i}, are convolved
- 3 with a PR4 response based upon the cosine function.
- 1 31. (Original) The signal processing system of claim 29, wherein $f(a_{k+1})$ is
- 2 chosen to be $a_{k+1} + a_{k+1-1} a_{k+1-2} a_{k+1-3}$, wherein written bits that are to be detected, a_{k+1} , are
- 3 convolved with the EPR4 response based upon the cosine function.
- 1 32. (Original) The signal processing system of claim 29, wherein $f(a_{k-1})$ is
- 2 chosen to be a_{k-i}t_k, wherein written bits that are to be detected, a_{k-i}, are convolved with t_k
- 3 based upon the cosine function.
- 1 33. (Original) The signal processing system of claim 29, wherein $f(a_{k-i})$ is
- 2 chosen to be $a_{k,i}h_k$, wherein written bits that are to be detected, $a_{k,i}$, are convolved with h_k
- 3 based upon the cosine function.

Appl. No. 10/809,230 HSJ920030206US1/(HITG.062-0528) Amdt. Dated October 27, 2006 Reply to Office Action of August 30, 2006

(Original) 1 34. A magnetic storage device, comprising: 2 a magnetic storage medium for recording data thereon; 3 a motor for moving the magnetic storage medium; 4 a head for reading and writing data on the magnetic storage medium; 5 an actuator for positioning the head relative to the magnetic storage medium; and a data channel for processing encoded signals on the magnetic storage medium, 6 7 the data channel comprising an equalizer configured to equalize a digital signal to 8 provide equalized reproduced signals and a Viterbi detector capable of receiving the 9 equalized reproduced signals and converting the reproduced signals into a digital output 10 signal indicative of data stored on a recording medium; wherein the equalizer is 11 implemented using a coefficient learning circuit that adaptively updates coefficients for 12 the equalizer based upon a cosine function. 1 35. The magnetic storage device of claim 34, wherein the (Original) 2 equalizer adjusts coefficients using a tap coefficient update equation having a first 3 parameter, k, for modifying a magnitude response.

Appl. No. 10/809,230 HSJ920030206US1/(HITG:062-0528) Amdt. Dated October 27, 2006 Reply to Office Action of August 30, 2006

6

1 36. (Previously Presented) The magnetic storage device of claim 35,

wherein the first parameter, k, is adjusted according to k=k-g*(f(a_{k+1})+f(a_{k-1}))*e_k, where k

is the cosine equalizer parameter for modifying the magnitude response, g is an update

attenuation gain, f() is a predetermined cosine function, a_{k+1} represents a bit to be

detected at time k+1, a_{k-1} represents a bit to be detected at time k-1, and e_k is an error

signal based on a difference between a noisy equalized signal and a desired noiseless

7 signal.

1 37. (Original) The magnetic storage device of claim 35, wherein the

equalizer adjusts coefficients using a tap coefficient update equation having a second
 parameter, j, for modifying a phase response.

1 38. (Previously Presented) The magnetic storage device of claim 37, 2 wherein the second parameter, i, is adjusted according to $i=i-g^*(f(a_{k+2})+f(a_{k+2}))^*e_k$, where 3 j is the cosine equalizer parameter for modifying the phase response, g is an update 4 attenuation gain, f() is a predetermined cosine function, ak+2 represents a bit to be 5 detected at time k+2, a_{k-2} represents a bit to be detected at time k-2, and e_k is an error 6 signal based on a difference between a noisy equalized signal and a desired noiseless 7 signal.

1 39. (Original) The magnetic storage device of claim 34, wherein the
2 equalizer adjusts coefficients using a tap coefficient update equation having a parameter,
3 j, for modifying a phase response.

- 1 40. (Currently Amended) The magnetic storage device of claim 34, wherein
- 2 the coefficient learning circuit adjusts coefficients, w_i, according to w_i=w_i-g*f(a_{k-i})*e_k
- 3 where g is a provided update attenuation gain and and $[[f(a_{k-i})]] f()$ is a predetermined
- 4 cosine function and [[a_{k+i}]] \underline{a}_{k-i} represents a bit to be detected at time [[k+I]] $\underline{k-i}$.
- 1 41. (Original) The magnetic storage device of claim 40, wherein $f(a_{k-1})$ is
- 2 chosen to be a_{k-1} - a_{k-1} -2, wherein written bits that are to be detected, a_{k-1} , are convolved
- 3 with a PR4 response based upon the cosine function.
- 1 42. (Original) The magnetic storage device of claim 40, wherein $f(a_{k-1})$ is
- 2 chosen to be $a_{k,i} + a_{k,i+1} \cdot a_{k,i+2} a_{k,i+3}$, wherein written bits that are to be detected, $a_{k,i}$, are
- 3 convolved with the EPR4 response based upon the cosine function.
- 1 43. (Original) The magnetic storage device of claim 40, wherein $f(a_{k-i})$ is
- 2 chosen to be a_{k-i}t_k, wherein written bits that are to be detected, a_{k-i}, are convolved with t_k
- 3 based upon the cosine function.
- 1 44. (Original) The magnetic storage device of claim 40, wherein $f(a_{k-1})$ is
- 2 chosen to be a_{k-1}h_k, wherein written bits that are to be detected, a_{k-1}, are convolved with h_k
- 3 based upon the cosine function.

1	45. (Original) A read channel, comprising:
2	means for equalizing a digital signal to provide equalized reproduced signals; and
3	means, coupled to the means for equalizing, for receiving the equalized
4	reproduced signals and converting the reproduced signals into a digital output signal
5	indicative of data stored on a recording medium;
6	wherein the means for equalizing is implemented using means for adaptively
7	updating coefficients for the means for equalizing based upon a cosine function.
1	46. (Original) A waveform equalizer that equalizes a waveform of a
2	reproduction signal obtained by reproducing marks and non-marks recorded on a
3	recording medium, comprising:
4	means for delaying propagation of a reproduced signal;
5	means for multiplying predetermined coefficients by the reproduced signal and
6	the delayed signal from the means for delaying;
7	means for adaptively updating the predetermined coefficients for the means for
8	multiplying; and
9	means for adding outputs from the means for multiplying;
10	wherein the means for adaptively updating the predetermined coefficients updates
11	the predetermined coefficients based upon a cosine function.