Seminární úlohy 7

1. Vlnová funkce základního stavu elektronu v atomu vodíku (kvantová čísla $n=1,\ l=0,$ m=0) má ve sférických souřadnicích tvar $\psi_{100}\left(r,\theta\varphi\right)=R_{10}(r)Y_{00}(\theta,\varphi),$ kde:

$$R_{10}(r) = \frac{2}{\sqrt{a_0^3}} \exp\left(-\frac{r}{a_0}\right),$$
$$Y_{00}(\theta, \varphi) = \frac{1}{\sqrt{4\pi}},$$

 a_0 je Bohrův poloměr. Hustota pravděpodobnosti výskytu elektronu v bodě o souřadnicích (r, θ, φ) je $\psi_{100}\psi_{100}^*$ (* značí komplexní sdružení). Vypočítejte marginální hustotu pravděpodobnosti $f_r(r)$ pro vzdálenost elektronu od jádra.

[řešení:
$$f_r(r) = \frac{4}{a_0^3} r^2 \exp\left(-\frac{2r}{a_0}\right)$$
]

2. Při experimentu bylo provedeno 10 opakovaných měření náhodných proměnných $a,\,b,\,c,$ které mají normální rozdělení. Byly získány následující hodnoty:

a	b	c
30	10.1	9.9
31	9.5	9.5
39	12.1	9.2
40	12.5	9.0
41	13.5	9.1
42	12.4	8.9
39	11.4	9.3
45	12.6	8.8
36	8.8	10.2
46	13.0	8.7

Na základě naměřených dat vyšetřete korelaci náhodných proměnných a, b, c. Proveďte odhad očekávané hodnoty a chyby veličiny $y = \frac{3ab}{c^2}$.

[řešení:
$$\rho(a,b) = 0.73 \pm 0.16, \, \rho(a,c) = -0.74 \pm 0.15, \, \rho(b,c) = -0.81 \pm 0.12, \, y = 15.8 = \pm 5.5.$$
]

1