Online Shoppers INTENTIONS

Peut-on prévoir vos achats?

Sommaire

01

Pré-processing

- Description du dataset
- Transformation des données

02

Analyse des variables

- Analyse des corrélations
- Analyses bivariées
- Analyses multivariées

03

Modèles de prédictions

- Machine Learning
- Deep Learning

04

API

- Transformation des modèles en API
- Utilisation de Flask

"The world is now awash in data and we can see consumers in a lot clearer way."

Max Levchin

04

Préprocessing

Attributs

Revenue

Durée par type (3)

- Administrative Duration
- Informational Duration
- Product Related Duration

Type de page (3)

- Administrative
- Informational
- Product related

Temporalité (3)

- Month
- Special day
- Week-end

Attributs

Rates (2)

- Bounce Rates
- Exit Rates

Session informatique (3)

- Traffic Type
- Browser
- OperatingSystems

Page Values

Autre (2)

- Visitor Type
- Region

Page Value ou valeur d'une page

Chiffre d'Affaire généré par le e-commerce

Nombre vues uniques de la page

Page Value de B = (2x'10 + 100) / 2 = 60

Création de PageValueBool

15% de probabilité d'achat pour l'ensemble des données

On obtient une corrélation de 0.6 entre PageValueBool et Revenue Nous n'avions que 0.49 avec PageValue.

On en déduit que cette nouvelle colonne aura un meilleur impact dans nos modèles

Encodage et classification

Variables multiclasses

- Type de visiteur
- Mois

Variables binaires

- Revenue
- Week-End

Variables > 0

- Product Related
- Administrative
- Informational

18 variables

35 variables

Transformation des données

Standard scaler

$$z = rac{x - \mu}{\sigma}$$

X

Imputation

Normalisation

02

Analyse des variables

Analyses bivariées et multivariées

Analyse de différentes variables en fonction de notre target 'Revenue'

La durée passée sur une page influe-t-elle sur l'achat ?

	0	1
Administrative_Duration	148.707322	163.539476
Informational_Duration	156.155632	179.319090
ProductRelated_Duration	1073.283248	1882.128257

Bounce Rate et Revenue

- Une page avec un taux < 1% à plus de chance de mener à un achat
- Les taux de rebonds pour les achats sont beaucoup plus faibles

Exit Rate et Revenue

- +50% des achats ont un exit Rate < 2%
- Plus il est faible plus il y a de chances qu'un achat ait lieu

Il y a-t-il un lien entre les variables exit et bounce rates?

Coefficient de Pearson entre BounceRate et ExitRate = 0.91

Cela indique donc que lorsqu'une page web a un taux de rebond faible, elle a également un taux de sortie faible. Il y a de grandes chances que cette page mène à un achat

Le mois de la recherche influe-t-il sur l'achat?

On observe que que c'est au mois de novembre qu'une session a le plus de chance de finir sur un achat.

En effet, au mois de novembre, il y a 25.3% de chance que la session aboutisse à un achat.

Y-a-t-il un lien avec la variable special day?
Non.

En effet, en regroupant par jours spéciaux, on se rend compte avec notre variable ratio (%) que 1831 achats se font avec des SpecialDay de 0, soit 95.96% des achats totaux.

	SpecialDay	Revenue_x	prod_x	Revenue_y	prod_y	ratio
4	0.8	1	11	0	314	3.384615
2	0.4	1	13	0	230	5.349794
5	1.0	1	10	0	144	6.493506
1	0.2	1	14	0	164	7.865169
3	0.6	1	29	0	322	8.262108
0	0.0	1	1831	0	9248	16.526762

Quelles sont les variables les plus corrélées à Revenue?

- 1 PageValueBool: 0.6
- 2 Page value: 0.49
- 3 ExitRates : -0.21
- 4 Admin: 0.17

- 5 Product Related: 0.16
- 6 Nov: 0.15
- 7 Product Related Duration: 0.15
- 8 BounceRates : -0.15

03

Modèles de prédiction

Division du dataset

	Test	Choix	
N estimators	- 100 - 200 - 500	100	
Max features	• Auto • Sqrt	Sqrt	
Max Depth	• 4 • 6 • 8	8	
Criterion	Gini Entropy	entropy	

Correlation des variables à "Revenue"

Importance des variables du modèle

Jaccard Score - REVENUE = 0 : 0.8922048997772829 Jaccard Score - REVENUE = 1: 0.4773218142548596

F1 SCORE: 0.8977727784759437

⊢ CTI	mateurs
L ЭШ	IIIalbulə

	precision	recall	f1-score	support
0	0.93	0.96	0.94	2090
1	0.72	0.59	0.65	376
accuracy			0.90	2466
macro avg	0.82	0.77	0.79	2466
weighted avg	0.90	0.90	0.90	2466

Autres modèles

	MSE	MAE	R2	Jacc_score0	Jacc_score1	F1
Algorithm						
Random Forest	0.09	0.09	0.26	0.90	0.48	0.90006
svc	0.10	0.10	0.25	0.89	0.48	0.89885
KNN_Class	0.10	0.10	0.24	0.89	0.46	0.89656
Logistic_regression	0.10	0.10	0.24	0.89	0.46	0.89635
XGBoost	0.10	0.10	0.24	0.89	0.46	0.89571
Decision_tree	0.10	0.10	0.19	0.89	0.43	0.88808
GaussianNB_Class	0.12	0.12	0.06	0.87	0.41	0.87658

Deep Learning

- Utilisation de tensorFlow et Keras
- 2 modèles possible, ici en modèle séquentiel

Comment créer un modèle simple?

modele.add(Dense(nb_neurones, activation=ma_fonction))

1ère couche : les entrées

 Les caractéristiques de la forme d'entrée Couches intermédiaires

 Connectées aux autres couches Dernière couche = couche de sortie

 Les caractéristiques de la forme de sortie

Exemple simple

- Première couche 3 entrées
- 2e couche: 4 neuronnes
- 3e couche: 4 neuronnes
- 4e couche: 1 sortie
- Tous les neuronnes d'entrées sont connectés à tous les neuronnes de sorties

Notre modèle

- 3 couches de calculs
- 1ere couche: 8 entrées
- Fonction 'Relu' pour les couches intermédiaires
- Couche de sortie en sigmoide
- Compilateur : loss binary crossentropy
- Metrics: accuracy

F1 score = 0.90

Layer (type)	Output Shape	Param #
layer1 (Dense)	(None, 8)	72
layer2 (Dense)	(None, 32)	288
layer3 (Dense)	(None, 2)	66
otal params: 426 rainable params: 426 on-trainable params: 0		

Quel est le meilleur modèle?

	MSE	MAE	R2	Jacc_score0	Jacc_score1	F1
DeepLearning	NaN	NaN	NaN	NaN	NaN	0.90361
Random Forest	0.09	0.09	0.26	0.90	0.48	0.90006
svc	0.10	0.10	0.25	0.89	0.48	0.89885
KNN_Class	0.10	0.10	0.24	0.89	0.46	0.89656
Logistic_regression	0.10	0.10	0.24	0.89	0.46	0.89635
XGBoost	0.10	0.10	0.24	0.89	0.46	0.89571
Decision_tree	0.10	0.10	0.19	0.89	0.43	0.88808
GaussianNB_Class	0.12	0.12	0.06	0.87	0.41	0.87658

Et avec tout le dataset, ça donne quoi ?

- Haute accuracy sur le train (+0.95)
- Faible sur le test (0.87)
- => Sur-apprentissage ou "overfitting"!

Model: "sequential_2"		
Layer (type)	Output Shape	Param #
layer1 (Dense)	(None, 30)	930
layer2 (Dense)	(None, 64)	1984
layer3 (Dense)	(None, 2)	130
Total params: 3,044 Trainable params: 3,044 Non-trainable params: 0		

04

API

http://localhost:9000/?mod=KNN&pvBool=1&pv=1&exiRa=1&prodRel=1&nov=1&prodRelDur=1&bounRa=1&admi=1

Connection locale

BEST
ALL
KNN
GNB
SVC
DT
LR
XGB
RF
DEEP

Les 8 variables, séparées ou dans *ls*La valeur par défaut de chaque variable est sa moyenne dans le train

Retourne 0 ou 1 (Pour être implémenté dans un autre code)

Sauf pour ALL qui retourne un string : [nom du modèle] => valeur, ...

MERCI POUR VOTRE ECOUTE