Interstellar Interceptors

Mission design for rendezvous with objects in hyperbolic orbits

Jorge Martínez

Supervised by:

Josep M. Trigo-Rodríguez (ICE-CSIC/IEEC) Eloy Peña-Asensio (Politecnico di Milano)

Universidad Internacional de Valencia

May 22, 2024

What are interstellar objects?

Definition

Interstellar objects (ISOs) are asteroids, comets or planetary bodies moving through interstellar medium (ISM) without being gravitationally bound to a star.

ISOs follow hyperbolic orbits

Why are interstellar objects important?

They present a unique opportunity to study extraterrestrial bodies that have traversed vast cosmic distances.

Why are interstellar objects important?

They present a unique opportunity to study extraterrestrial bodies that have traversed vast cosmic distances.

Their study can unleash information about:

- Better understanding the formation of planetary systems
- Exploring the origins of life by analyzing their chemical composition
- Technological motivation

Why are interstellar objects important?

They present a unique opportunity to study extraterrestrial bodies that have traversed vast cosmic distances.

Their study can unleash information about:

- Better understanding the formation of planetary systems
- Exploring the origins of life by analyzing their chemical composition
- Technological motivation

Motivation of this work

Devise orbits for rendezvous with ISOs to study their physical properties.

Discovered interstellar objects

There are two confirmed ISOs to this day:

1I/'Oumuamua

2I/Borisov

Discovered interstellar objects

There are two confirmed ISOs to this day:

1I/'Oumuamua

2I/Borisov

These interlopers present the following orbit attributes:

- Hyperbolic orbits
- High relative velocity
- High inclination w.r.t. the ecliptic plane
- Discovered close to the direction of the Solar Apex

Orbits of 11/'Oumuamua and 21/Borisov

1I/'Oumuamua orbit top view

2I/Borisov orbit top view

1I/'Oumuamua orbit side view

2I/Borisov orbit side view

Navigating through space: the Lambert's problem

Lambert's problem is the Boundary Value Problem (BVP) in the context of the restricted two-body problem dynamics.

Geometry of the Lambert's problem

$$\ddot{\vec{r}} = -\frac{\mu}{r^3}\vec{r} \quad \begin{cases} & \vec{r}(t_1) = \vec{r_1} \\ & \vec{r}(t_2) = \vec{r_2} \end{cases}$$

Navigating through space: the Lambert's problem

Lambert's problem is the Boundary Value Problem (BVP) in the context of the restricted two-body problem dynamics.

Geometry of the Lambert's problem

$$\ddot{\vec{r}} = -\frac{\mu}{r^3}\vec{r} \quad \begin{cases} & \vec{r}(t_1) = \vec{r_1} \\ & \vec{r}(t_2) = \vec{r_2} \end{cases}$$

Solve for the orbit which passes through $\vec{r_1}$ and $\vec{r_2}$ over a finite amount of time $\Delta t = t_2 - t_1$.

Estimating the cost of the maneuver using the C_3 energy

Lambert's problem computes the initial velocity $\vec{v_1}$ and final velocity $\vec{v_2}$ of the orbit.

- First impulse: $\Delta v_1 = ||v_1 v_{\text{origin}}||$
- Last impulse: $\Delta v_2 = ||v_2 v_{\mathsf{iso}}||$

Estimating the cost of the maneuver using the C_3 energy

Lambert's problem computes the initial velocity $\vec{v_1}$ and final velocity $\vec{v_2}$ of the orbit.

- First impulse: $\Delta v_1 = ||v_1 v_{\text{origin}}||$
- Last impulse: $\Delta v_2 = ||v_2 v_{\mathsf{iso}}||$

The total cost of the maneuver is $\Delta v = \Delta v_1 + \Delta v_2$. This relates with the fuel mass via the Tsiolkovsky rocket equation:

$$\Delta v = v_{\rm e} \ln \left(rac{m_0}{m_f}
ight)$$

Estimating the cost of the maneuver using the C_3 energy

Lambert's problem computes the initial velocity $\vec{v_1}$ and final velocity $\vec{v_2}$ of the orbit.

- First impulse: $\Delta v_1 = ||v_1 v_{\text{origin}}||$
- Last impulse: $\Delta v_2 = \|v_2 v_{\mathsf{iso}}\|$

The total cost of the maneuver is $\Delta v = \Delta v_1 + \Delta v_2$. This relates with the fuel mass via the Tsiolkovsky rocket equation:

$$\Delta v = v_{\rm e} \ln \left(\frac{m_0}{m_f} \right)$$

The characteristic energy for hyperbolic orbits C_3 is defined as:

$$C_3 = v_{\infty}^2$$

Minimizing the cost of the maneuver

Porkchop plots are used to find the optimal launch and arrival dates by solving Lambert's problem for a variety of trajectories.

Minimizing the cost of the maneuver

Porkchop plots are used to find the optimal launch and arrival dates by solving Lambert's problem for a variety of trajectories.

Analyzed scenarios

The analyzed scenarios in this work for each discovered ISO include:

- Direct transfer between the Earth and the ISO
- Direct transfer between the L2 point and the ISO

Analyzed scenarios

The analyzed scenarios in this work for each discovered ISO include:

- Direct transfer between the Earth and the ISO
- Direct transfer between the L2 point and the ISO

Lagrange points for the Sun Earth-Moon system

11/'Oumuamua: direct prograde transfer from Earth

Direct transfer from Earth

11/'Oumuamua: direct prograde transfer from L2

Direct transfer from L2

11/'Oumuamua: summary of results

Δv launch Earth [km/s]	Δv launch L2 [km/s]	Reduction [%]
13.85	3.80	72.56

Launch energy comparison

ΔV arrival Earth [km/s]	ΔV arrival L2 [km/s]	Reduction [%]
62.33	61.46	1.40

Arrival velocity comparison

C_3 launch Earth [km ² /s ²]	C_3 launch L2 [km ² /s ²]	Reduction [%]
192.00	14.41	92.51

Characteristic energy comparison

21/Borisov: direct prograde transfer from Earth

Direct transfer from Earth

21/Borisov: direct prograde transfer from L2

Direct transfer from Earth

2I/Borisov: summary of results

Δv launch Earth [km/s]	Δv launch L2 [km/s]	Reduction [%]
16.90	5.85	65.38

Launch energy comparison

ΔV arrival Earth [km/s]	ΔV arrival L2 [km/s]	Reduction [%]
33.00	33.02	-0.06

Arrival velocity comparison

C_3 launch Earth [km ² /s ²]	C_3 launch L2 [km ² /s ²]	Reduction [%]
286.00	34.30	88.08

Characteristic energy comparison

Conclusions

L2 as the optimal launching point

Launching an intercepting spacecraft from L2 is more fuel efficient. These results agree with the ones presented by the Comet Interceptor mission.

Conclusions

L2 as the optimal launching point

Launching an intercepting spacecraft from L2 is more fuel efficient. These results agree with the ones presented by the Comet Interceptor mission.

A direct transfer is possible

Existing propulsive technologies allow for a direct transfer from Earth to an ISO with similar characteristics to 1I/Oumuamua and 2I/Borisov.

Conclusions

L2 as the optimal launching point

Launching an intercepting spacecraft from L2 is more fuel efficient. These results agree with the ones presented by the Comet Interceptor mission.

A direct transfer is possible

Existing propulsive technologies allow for a direct transfer from Earth to an ISO with similar characteristics to 1I/'Oumuamua and 2I/Borisov.

Need of increased vigilance in the search for ISOs

Both optimum transfer dates take place prior the discovery of 1I/Oumuamua and 2I/Borisov. Surveillance of the sky is crucial to detect future ISOs.

Future work

Generating a synthetic population of ISOs

Synthetic orbits of ISOs can be generated by using Monte-Carlo simulations. This could allow to predict future ISO encounters.

Future work

Generating a synthetic population of ISOs

Synthetic orbits of ISOs can be generated by using Monte-Carlo simulations. This could allow to predict future ISO encounters.

Drafting optimum transfers

Optimum transfers can be solved for previous synthetic data. Solutions would be used by future missions parked at L2.

Future work

Generating a synthetic population of ISOs

Synthetic orbits of ISOs can be generated by using Monte-Carlo simulations. This could allow to predict future ISO encounters.

Drafting optimum transfers

Optimum transfers can be solved for previous synthetic data. Solutions would be used by future missions parked at L2.

Trajectory optimization

A combination of multiple gravity assists and deep space maneuvers may allow for a more efficient transfer to an ISO, depending on the scenario.