

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁷ : C12N 15/31, C07K 14/40, A61K 38/17, 39/00, G01N 33/50		A1	(11) Numéro de publication internationale: WO 00/28037 (43) Date de publication internationale: 18 mai 2000 (18.05.00)
<p>(21) Numéro de la demande internationale: PCT/FR99/02739</p> <p>(22) Date de dépôt international: 9 novembre 1999 (09.11.99)</p> <p>(30) Données relatives à la priorité: 98/14147 10 novembre 1998 (10.11.98) FR</p> <p>(71) Déposant (<i>pour tous les Etats désignés sauf US</i>): HOECHST MARION ROUSSEL [FR/FR]; 1, Terrasse Bellini, F-92800 Puteaux (FR).</p> <p>(72) Inventeurs; et</p> <p>(75) Inventeurs/Déposants (<i>US seulement</i>): /BORDON-PALLIER, Florence [FR/FR]; 37, Boulevard Beethoven, F-78280 Guyancourt (FR). CAMIER, Sylvie [FR/US]; 66, Oakmont Avenue, Piemont, CA 94610 (US). SENTENAC, André [FR/FR]; Service de Biochimie et Génétique Moléculaire, Bât. 142 CEA/SACLAY, F-91191 Gif sur Yvette (FR).</p> <p>(74) Mandataire: VIEILLEFOSSE, Jean-Claude; Hoechst Marion Roussel, 102, route de Noisy, F-93235 Romainville Cedex (FR).</p>		<p>(81) Etats désignés: AE, AL, AU, BA, BB, BG, BR, CA, CN, CR, CU, CZ, DM, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MA, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ZA, brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Publiée <i>Avec rapport de recherche internationale.</i></p>	

(54) Title: CATFIIIA CANDIDA ALBICANS tfIIIA GENE (CatfIIIA) AND THE CODED CATFIIIA PROTEIN

(54) Titre: GENE tfIIIA DE CANDIDA ALBICANS (CatfIIIA) ET LA PROTEINE CODEE CATFIIIA

(57) Abstract

The invention concerns the *Candida albicans* transcription factor hereafter referred to as CATFIIIA and its analogues as well as the polynucleotides (RNA, DNA) coding for said protein or for polypeptides analogues of said protein. The invention also concerns the method for preparing said polypeptides and polynucleotides, their use for preparing inhibitors of said transcription factor CATFIIIA capable of being used as antifungal agents and pharmaceutical compositions containing said inhibitors.

(57) Abrégé

La présente invention concerne le facteur de transcription de *Candida albicans* nommé ci-après CATFIIIA et ses analogues ainsi que les polynucléotides (ARN, ADN) codant pour cette protéine ou pour les polypeptides analogues de cette protéine et également le procédé de préparation de ces polypeptides et polynucléotides, leur utilisation pour la préparation d'inhibiteurs de ce facteur de transcription CATFIIIA pouvant être utilisés comme agents antifongiques et les compositions pharmaceutiques contenant de tels inhibiteurs.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave de Macédoine	TM	Turkménistan
BF	Burkina Faso	GR	Grèce	ML	Mali	TR	Turquie
BG	Bulgarie	HU	Hongrie	MN	Mongolie	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MR	Mauritanie	UA	Ukraine
BR	Brésil	IL	Israël	MW	Malawi	UG	Ouganda
BY	Bélarus	IS	Islande	MX	Mexique	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	NE	Niger	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NL	Pays-Bas	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norvège	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NZ	Nouvelle-Zélande	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire démocratique de Corée	PL	Pologne		
CM	Cameroun	KR	République de Corée	PT	Portugal		
CN	Chine	KZ	Kazakhstan	RO	Roumanie		
CU	Cuba	LC	Sainte-Lucie	RU	Fédération de Russie		
CZ	République tchèque	LI	Liechtenstein	SD	Soudan		
DE	Allemagne	LK	Sri Lanka	SE	Suède		
DK	Danemark	LR	Libéria	SG	Singapour		
EE	Estonie						

Gène tfIIIA de Candida albicans (CatfIIIA) et la protéine codée CATFIIIA.

La présente invention concerne le facteur de transcription de *Candida albicans* nommé ci-après CATFIIIA et ses analogues ainsi que les polynucléotides (ARN, ADN) codant pour cette protéine ou pour les polypeptides analogues de cette protéine.

La présente invention concerne également le procédé de préparation de ces polypeptides et polynucléotides, leur utilisation pour l'étude des mécanismes de la transcription chez *Candida albicans* et pour la préparation d'inhibiteurs de ce facteur de transcription CATFIIIA pouvant être utilisés comme agent antifongiques et les compositions pharmaceutiques contenant de tels inhibiteurs.

La présente invention concerne donc notamment un nouveau facteur de transcription de *Candida albicans* et la séquence d'ADN codant pour ce facteur de transcription, leur préparation et leurs utilisations.

Nous utiliserons également ci-après les abréviations suivantes : AA pour acides aminés, AN pour acides nucléiques, ARN pour acide ribonucléique, RNase pour ribonucléase, ADN ou DNA pour acide désoxyribonucléique, ADNc pour ADN complémentaire, pb pour paires de bases, PCR pour réaction en chaîne par une polymérase, CA ou *Candida a.* pour *Candida albicans* et SC ou *Saccharomyces c.* pour *Saccharomyces cerevisiae*.

On utilisera également le terme screening qui désigne une technique de criblage spécifique et le terme primer qui désigne un oligonucléotide utilisé en amorce.

Le terme polynucléotides désigne ci-après les polynucléotides de la présente invention soit les séquences d'ADN et également ARN codant pour le facteur CATFIIIA de la présente invention et ses homologues ayant la même fonction de facteur de transcription. Le terme CAtfIIIA a le sens donné ci-dessus à polynucléotides.

Le terme polypeptides désigne ci-après les polypeptides de la présente invention soit le facteur CATFIIIA de la présente invention et ses analogues ou homologues

fonctionnels tels que définis ci-après, ayant donc la même fonction de facteur de transcription. Le terme CATFIIIA a le sens donné ci-dessus à polypeptides.

Nous appellerons tfIIIA (ou tfC2) le gène codant pour le facteur de transcription TFIIIA tandis que CAtfIIIA (ou CAtfC2) désigne le gène codant pour le facteur de transcription de *Candida albicans* CATFIIIA.

Le spectre des infections fongiques connues s'étend de l'attaque fongique de la peau ou des ongles à des infections mycotiques plus graves d'organes internes. De telles infections et les maladies qui en résultent sont identifiées comme des mycoses. Des substances antimycotiques à effets fongistatiques ou fongicides, sont utilisées pour le traitement de ces mycoses.

La présente invention concerne ainsi l'identification de substances antimycotiques et notamment de substances anti-*Candida albicans*.

La présente invention concerne ainsi des inhibiteurs de facteurs de transcription pouvant être utilisés comme agents antifongiques.

Candida albicans est une levure pathogène qui cause des maladies infectieuses dans l'organisme humain. Dans le but de trouver des moyens de traiter des maladies, on peut choisir des cibles intracellulaires et le facteur de transcription TFIIIA peut être l'une de ces cibles.

Dans les organismes eucaryotes, ce facteur joue un rôle clé dans l'initiation de la transcription des gènes ARN 5S par la RNA-polymérase III. En particulier, pour SC qui est une levure proche de CA, il a été montré que cette levure SC ne pouvait pas survivre sans une source additionnelle de ARN 5S lorsque le gène chromosomique du facteur TFIIIA était interrompu, cet ARN 5S additionnel étant synthétisé au moyen d'un plasmide sans la participation du facteur TFIIIA (référence: S. Camier, A.-M. Dechampesme, A. Sentenac./Proc. Natl. Acad. Sci. (1995) 92, 9338-9342).

Le gène tfIIIA et la protéine correspondante TFIIIA seraient impliqués dans la régulation du mécanisme biologique de la transcription comme indiqué ci-après.

Depuis que la protéine TFIIIA a été purifiée comme facteur de transcription pour la première fois en 1980 à partir d'ovocytes de Xénope [Segall et Al, J. Biol. Chem., 255, 11986-11991 (1980)], des travaux ont été menés *in vivo* 5 et *in vitro* dans le Xénope pour étudier le mécanisme de contrôle de la transcription exercé par TFIIIA. On a ainsi montré que TFIIIA de Xénope est nécessaire pour l'initiation de la transcription du gène ARN 5S [Sakonji et al, Cell 19, 13-25 (1980)] et se lie à une région de contrôle interne du 10 gène ARN 5S [Bogenhagen et al, Cell, 19, 27-35 (1980)].

La séquence en nucléotides de l'ADNc de tfIIIA de xénope et la séquence correspondante en acides aminés ont déjà été publiées [Ginberg et al, Cell, 39, 479-489 (1984)]. On peut noter que ce gène code pour une protéine ayant 9 doigts de 15 zinc, un doigt de zinc correspondant à un motif contenant deux cystéines et deux histidines reliées par un atome de zinc (CYS2 HIS2) (C2H2). Cette structure en doigt de zinc constitue un domaine de liaison des protéines à l'ADN et est donc considérée comme un domaine essentiel pour un groupe de 20 protéines qui se lient à l'ADN (DNA binding proteins). [Miller et al, Embo J., 4, 1607-1614 (1985)]

On peut noter que l'on connaît d'autres facteurs de transcription se liant à l'ADN qui possèdent également cette structure en doigt de zinc tels que par exemple, chez l'être 25 humain, XT1 du gène de la tumeur humaine de Wilms, [Gessier et al, Nature, 343, 774-778 (1990)], le répresseur humain de transcription YY1 [Shi et al, Cell, 67, 377-388 (1991)], la protéine MAZ associée au promoteur cMYC [Bossone et al, Proc. Natl. Acad. Sci., USA, 89, 7452-7456 (1992)] ou encore sp1 30 [Kuwahara et al, J. Biol. Chem., 29, 8627-8631 (1990)].

L'étude de différents organismes tels que notamment l'homme, le xénope ou *Candida albicans* a montré qu'il existe ce que l'on peut appeler une famille de facteurs de transcriptions TFIIIA possédant les caractéristiques suivantes : 35
- ils sont associés à l'ARN polymérase III
- ils possèdent 9 doigts de zinc
- ils sont indispensables pour la transcription du gène codant pour l'ARN 5S.

Une fonction essentielle connue de la protéine codée par le gène tfIIIA (tfC2) de la levure est d'initier la transcription du gène de l'ARN 5S chez *Saccharomyces cerevisiae* (Camier et al., Proc. Natl. Acad. Sa USA (1995) 5 92 : 9338-9342).

La présente invention a ainsi permis d'isoler les polynucléotides ADN et ARN codant pour la protéine du facteur de transcription CATIIIA de *Candida albicans* et de révéler leurs séquences nucléotidiques.

- 10 La présente invention a donc pour objet un polynucléotide isolé contenant une séquence nucléotidique choisie dans le groupe suivant :
- a) un polynucléotide ayant au moins 50 % ou au moins 60 % et de préférence au moins 70 % d'identité avec un polynucléotide 15 codant pour un polypeptide ayant la fonction de facteur de transcription et ayant une séquence en acides aminés homologue de la séquence SEQ ID N°3 indiquée ci-après.
 - b) un polynucléotide complémentaire du polynucléotide a)
 - c) un polynucléotide comprenant au moins 15 bases consécutives du polynucléotide défini en a) et b).
- 20 La présente invention a ainsi pour objet un polynucléotide défini ci-dessus tel que ce polynucléotide est un ADN.

La présente invention a ainsi pour objet un polynucléotide défini ci-dessus tel que ce polynucléotide est un 25 ARN.

La présente invention a plus précisément pour objet le polynucléotide tel que défini ci-dessus comprenant la séquence de nucléotides SEQ ID N°1.

La présente invention a ainsi permis d'isoler la 30 séquence d'ADN codant pour le facteur de transcription de *Candida albicans* CATIIIA.

La présente invention a également permis de révéler la séquence d'acides nucléiques du gène CAtfIIIA et également la 35 séquence d'acides aminés de la protéine CATIIIA codée par ce gène.

La présente invention a ainsi pour objet une séquence d'ADN telle que définie par le polynucléotide ci-dessus caractérisée en ce que cette séquence d'ADN est celle du gène

CATfIIIA codant pour une protéine ayant la fonction biologique du facteur de transcription de *Candida albicans* CATfIIIA et contenant la séquence de nucléotides SEQ ID N°1. Une telle séquence SEQ ID n°1 de la présente invention 5 comprend donc 2060 nucléotides.

La présente invention a précisément pour objet une séquence d'ADN telle que définie ci-dessus ayant la séquence commençant au nucléotide 720 et se terminant au nucléotide 1955 de SEQ ID N°1.

10 Une telle séquence comprend donc 1236 nucléotides.

La présente invention a aussi pour objet la séquence d'ADN du gène CATfIIIA telle que définie ci-dessus codant pour la séquence d'acides aminés SEQ ID N°3.

La séquence SEQ ID N°3 comprend donc 412 AA.

15 La présente invention a particulièrement pour objet la séquence d'ADN codant pour le facteur de transcription CATfIIIA telle que définie ci-dessus ainsi que les séquences d'ADN qui hybrident avec celle-ci et/ou présentent des homologies significatives avec cette séquence ou des 20 fragments de celle-ci et ayant la même fonction.

La présente invention a également pour objet une séquence d'ADN telle que définie ci-dessus comprenant des modifications introduites par suppression, insertion et/ou substitution d'au moins un nucléotide codant pour une 25 protéine ayant la même activité biologique que le facteur de transcription CATfIIIA.

La présente invention a notamment pour objet la séquence d'ADN telle que définie ci-dessus ainsi que les séquences d'ADN qui ont une homologie de séquence nucléotidique d'au 30 moins 50 % ou au moins 60 % et de préférence au moins 70 % avec ladite séquence d'ADN.

La présente invention a ainsi également pour objet la séquence d'ADN telle que définie ci-dessus ainsi que les séquences d'ADN qui codent pour une protéine de fonction 35 similaire dont la séquence en AA a une homologie d'au moins 40 % et notamment de 45 % ou d'au moins 50 %, plutôt au moins 60 % et de préférence au moins 70 % avec la séquence en AA codée par ladite séquence d'ADN.

Par séquences qui hybrident, on inclut les séquences d'ADN qui hybrident avec l'une des séquences d'ADN ci-dessus sous des conditions standard de stringence élevée, moyenne ou basse et qui codent pour un polypeptide ayant la même fonction de facteur de transcription. Les conditions de stringence sont celles réalisées dans les conditions connues de l'homme du métier telles que celles décrites par Sambrook et al, Molecular cloning, Cold Spring Harbor Laboratory Press, 1989. De telles conditions de stringence sont par exemple une hybridation à 65°C, pendant 18 heures dans une solution 5 x SSPE ; 10 x Denhardt's ; 100 µg/ml ADNss ; 1 % SDS suivie de 3 lavages pendant 5 minutes avec 2 x SSC ; 0,05 % SDS, puis 3 lavages pendant 15 minutes à 65°C dans 1 x SSC ; 0,1 % SDS. Les conditions de forte stringence comprennent par exemple une hybridation à 65°C, pendant 18 heures dans une solution 5 x SSPE ; 10 x Denhardt ; 100 µg/ml ADNss ; 1 % SDS suivie de 2 lavages pendant 20 minutes avec une solution 2 x SSC ; 0,05 % SDS à 65°C suivis d'un dernier lavage pendant 45 minutes dans une solution 0,1 x SSC ; 0,1 % SDS à 65°C. Les conditions de stringence moyenne comprennent par exemple un dernier lavage pendant 20 minutes dans une solution 0,2 x SSC, 0,1 % SDS à 65°C.

Par séquences qui présentent des homologies significatives, on inclut les séquences ayant une identité modérée ou importante de séquence nucléotidique avec l'une des séquences d'ADN ci-dessus et qui codent pour une protéine ayant la même fonction de facteur de transcription.

Par séquence d'ADN similaires, on entend ainsi des séquences d'ADN qui peuvent appartenir à d'autres mycètes que *Candida albicans* et notamment à SC, et qui sont similaires ou identiques à la séquence d'ADN du gène de *Candida albicans* CatfIIIA. Ces séquences d'ADN similaires ne sont pas forcément identiques à la séquence d'ADN du gène de *Candida albicans* CatfIIIA. L'homologie de séquence au niveau nucléotidique peut-être modérée ou importante. La présente invention concerne ainsi notamment les séquences d'ADN qui présentent une homologie de séquence nucléotidique d'au moins 50 %, de façon préférée d'au moins 60 % et de façon encore

plus préférée d'au moins 70 % avec la séquence CAtfIIIA de la présente invention.

De plus, ces séquences d'ADN similaires ne codent pas forcément pour des protéines identiques, au niveau de la 5 séquence en acides aminés, à la protéine codée par le gène CAtfIIIA. Ainsi la présente invention concerne notamment les séquences d'ADN qui codent pour des protéines dites homologues ayant une homologie de séquence en acides aminés d'au moins 40 %, notamment 45 %, de façon préférée au moins de 10 50 %, de façon plus préférée au moins de 60 % et de façon encore plus préférée au moins de 70 % avec la protéine codée par CAtfIIIA de la présente invention.

Le gène de la présente invention est représenté comme une séquence ADN simple brin comme indiqué dans SEQ ID N°1 15 mais il est entendu que la présente invention inclut la séquence ADN complémentaire de cette séquence ADN simple brin et inclut également la séquence ADN dite double brin constituée de ces deux séquences ADN complémentaires d'une de l'autre.

20 La séquence d'ADN telle que définie ci-dessus est un exemple de combinaison de codons codant pour les acides aminés correspondant à la séquence d'acides aminés SEQ ID N°3, mais il est entendu également que la présente invention inclut toute autre combinaison arbitraire de codons codant 25 pour cette même séquence d'acides aminés SEQ ID N°3.

Pour la préparation des polynucléotides et notamment des séquences d'ADN telles que définies ci-dessus, des séquences d'ADN modifiées comme indiqué ci-dessus ou encore des séquences d'ADN homologues telles que définies ci-dessus, on 30 peut utiliser les techniques connues de l'homme du métier et notamment celles décrites dans l'ouvrage de Sambrook, J. Fritsh, E. F. S Maniatis, T. (1989) intitulé : 'Molecular cloning : a laboratory manual', Laboratory, Cold Spring Harbor NY.

35 Les séquences d'ADN homologues telles que définies ci-dessus peuvent notamment être isolées selon les méthodes connues de l'homme du métier par exemple par la technique de PCR en utilisant des amorces nucléotidiques dégénérées pour

amplifier ces ADN à partir de banques génomiques ou de banques d'ADNc des mycètes correspondants. Les ADNc peuvent également être préparés à partir de mARN isolés de mycètes d'espèces différentes étudiées dans le cadre de la présente invention telles que *Candida albicans* mais par exemple et tout aussi bien : *Candida stellatoidea*, *Candida tropicalis*, *Candida parapsilosis*, *Candida krusei*, *Candida pseudotropicalis*, *Candida quillermondii*, *Candida glabrata*, *Candida lusianiae* ou *Candida rugosa* ou encore des mycètes telles que *Saccharomyces cerevisiae* ou encore des mycètes du type *Aspergillus* ou *Cryptococcus* et notamment, par exemple, *Aspergillus fumigatus*, *Coccidioides immitis*, *Cryptococcus neoformans*, *Histoplasma capsulatum*, *Blastomyces dermatitidis*, *Paracoccidioides brasiliensis* and *Sporothrix schenckii* ou encore des mycètes des classes des phycomycètes or eumycètes en particulier les sous-classes de basidiomycètes, ascomycètes, mehiascomycétales (levure) et plectascales, gymnascales (champignon de la peau et des cheveux) ou de la classe des hyphomycètes, notamment les sous-classes conidiosporales et thallosporales parmi lesquels les espèces suivantes : *mucor*, *rhizopus*, *coccidioides*, *paracoccidioides* (*blastomyces*, *brasiliensis*), *endomyces* (*blastomyces*), *aspergillus*, *menicillium* (*scopulariopsis*), *trichophyton* (*ctenomyces*), *epidermophton*, *microsporon*, *piedraia*, *hormodendron*, *phialophora*, *sporotrichon*, *cryptococcus*, *candida*, *geotrichum*, *trichosporon* ou encore *toropsulosis*.

Les polynucléotides de la présente invention peuvent ainsi être obtenus en utilisant les méthodes usuelles de clonage et de criblage telles que celles de clonage et séquençage à partir de fragments d'ADN chromosomique extraits de cellules. Par exemple, pour obtenir les polynucléotides de la présente invention, on peut partir d'une banque de fragments d'ADN chromosomique. On peut préparer une sonde correspondant à un oligonucléotide marqué par un élément radioactif, constituée de préférence de 17 nucléotides ou plus et dérivée d'une séquence partielle. Les clones contenant un ADN identique à celui de la sonde peuvent être ainsi identifiés sous des conditions stringentes. Par le

séquençage de clones individuels ainsi identifiés, en utilisant des primers de séquençage issus de la séquence d'origine, il est alors possible de prolonger la séquence dans les deux directions pour déterminer la séquence du gène 5 comp^{te}t. De façon usuelle et efficace, un tel séquençage peut être réalisé en utilisant un ADN double brin dénaturé préparé à partir d'un plasmide. De telles techniques sont décrites par Maniatis, T. Fritsch, E.F. et Sambrook comme indiqué ci-dessus. (Laboratory Manual, Cold Spring Harbor, New York 10 (1989) (notamment en 1.90 et 13.70 dans les chapitres de screening par hybridation et séquençage à partir de ADN double brin dénaturé).

Dans le cadre de la présente invention, on pourrait notamment utiliser une banque de fragments d'ADN 15 chromosomique de *Candida albicans* comme indiqué ci-après à l'exemple 1 dans la partie expérimentale.

Une description détaillée des conditions opératoires dans lesquelles a été réalisée la présente invention est donnée ci-après.

20 L'invention a tout particulièrement pour objet le polypeptide ayant la fonction de facteur de transcription CATFIIIA et ayant la séquence d'acides aminés SEQ ID N°3 codée par la séquence d'ADN telle que définie ci-dessus et les analogues de ce polypeptide.
25 Par analogues de polypeptides, on entend les polypeptides dont la séquence d'acides aminés a été modifiée par substitution, suppression ou addition d'un ou plusieurs acides aminés mais qui conservent la même fonction biologique. De tels polypeptides analogues peuvent être produits
30 spontanément ou peuvent être produits par modification post-transcriptionnelle ou encore par modification de la séquence ADN de la présente invention comme indiqué ci-dessus, en utilisant les techniques connues de l'homme du métier : parmi ces techniques, on peut citer notamment la technique de
35 mutagénèse dirigée connue de l'homme du métier (Kramer, W., et al., Nucl. Acids Res., 12, 9441 (1984) ; Kramer, W. and Fritz, H.J. , Methods in Enzymology, 154, 350 (1987) ; Zoller, M.J. and Smith, M. Methods in Enzymology, 100, 468

(1983)).

La synthèse d'ADN modifiés peut être faite comme indiqué ci-dessus et notamment en utilisant des techniques de synthèse chimique bien connues telles que par exemple la méthode au phosphotriester [Letsinger, R.L and Ogilvie, K.K., K. Am. CHEM. Soc., 91, 3350 (1969) ; Merrifield, R.B., Sciences, 150, 178 (1968)] ou la méthode à la phosphoamidite [Beaucage, S.L and Caruthers, M .H., Tetrahedron Lett., 22, 1859 (1981) ; McBRIDE, L.J. and Caruthers, M.H. Tetrahedron Lett., 10 24 245 (1983)] ou encore par la combinaison de ces méthodes.

Les polypeptides de la présente invention peuvent donc être préparés par les techniques connues de l'homme du métier, notamment partiellement par synthèse chimique ou encore par la technique de l'ADN recombinant par expression dans une cellule hôte procaryote ou eucaryote comme indiqué ci-après.

La présente invention a particulièrement pour objet le procédé de préparation de la protéine recombinante CATFIIIA ayant la séquence d'acides aminés SEQ ID N°3 comprenant l'expression de la séquence d'ADN telle que définie ci-dessus dans un hôte approprié puis l'isolement et la purification de ladite protéine recombinante.

Pour produire le polypeptide de la présente invention, on peut notamment utiliser les techniques de l'ADN recombinant en utilisant les méthodes de génie génétique et de culture cellulaire connues de l'homme du métier. On peut ainsi procéder par les étapes suivantes : d'abord préparation du gène approprié, puis incorporation de ce gène dans un vecteur, transfert du vecteur porteur du gène dans une cellule hôte appropriée, production du polypeptide par expression du gène, isolement du polypeptide, le polypeptide ainsi produit pouvant être ensuite purifié.

Les polypeptides de la présente invention obtenus par l'expression des polynucléotides de la présente invention peuvent être purifiés à partir de cultures de cellules transformées par les méthodes bien connues de l'homme du métier telles que précipitation au sulfate d'ammonium ou à l'éthanol, extraction en conditions acides, chromatographie

échangeuse d'anions ou de cations, chromatographie d'interaction hydrophobique, chromatographie d'affinité, chromatographie à l'hydroxylapatite et la chromatographie à haute performance liquide (HPLC). Des techniques bien connues de l'homme du métier peuvent être utilisées pour régénérer la protéine lorsque celle-ci est dénaturée durant son isolement ou sa purification.

Les séquences d'ADN selon la présente invention et notamment SEQ ID N°1 et SEQ ID N°2 peuvent être préparées selon les techniques connues de l'homme du métier notamment par synthèse chimique ou par criblage d'une banque génomique ou d'une banque d'ADNc à l'aide de sondes d'oligonucléotides de synthèse par les techniques connues d'hybridation, ainsi amplification d'ADN à partir de fragments isolés ou encore 15 par réverse transcriptase à partir d'ARN messager (ARNm). L'avantage de la technique comprenant d'abord l'isolement d'ARNm par extraction des ARN totaux puis la synthèse d'ADNc à partir de ces ARNm par réverse transcriptase réside notamment dans le fait que l'ARNm ne contient pas les introns alors que ces séquences non codantes sont présentes dans 20 l'ADN génomique.

On peut procéder en utilisant les techniques usuelles de clonage connues de l'homme du métier et notamment décrites dans l'ouvrage de Sambrook, J. Fritsh, E. F. S Maniatis, T. 25 (1989) intitulé: 'Molecular cloning : a laboratory manual', Laboratory, Cold Spring Harbor NY.

Dans ces techniques, on peut procéder au clonage par insertion de fragment dans un plasmide qui peut être fourni avec un kit commercial adapté puis transformation d'une 30 souche bactérienne par le plasmide ainsi obtenu. On peut utiliser notamment la souche E. coli XL1 Blue ou DH5 alpha. Les clones peuvent ensuite être cultivés pour extraire l'ADN plasmidique selon les techniques classiques de l'homme du métier référencées ci-dessus (Sambrook, Fritsh et Maniatis). 35 On peut procéder au séquençage de l'ADN du fragment amplifié contenu dans l'ADN plasmidique.

Les polypeptides de la présente invention peuvent être obtenus par expression dans une cellule hôte contenant un

polynucléotide selon la présente invention et notamment une séquence d'ADN codant pour un polypeptide de la présente invention précédée d'une séquence promoteur convenable. La cellule hôte peut être une cellule procaryote, par exemple E. coli, ou une cellule eucaryote telle que les levures comme par exemple les ascomycètes parmi lesquels les saccharomyces ou encore des cellules de mammifères comme par exemple des cellules Cos.

La présente invention a particulièrement pour objet le vecteur d'expression contenant une séquence d'ADN telle que définie ci-dessus.

Dans le vecteur d'expression, une telle séquence d'ADN est donc ainsi notamment la séquence d'ADN du gène CATfIIIA codant pour une protéine ayant la fonction biologique du facteur de transcription de Candida albicans CATfIIIA et contenant la séquence de nucléotides SEQ ID N°1 .

Dans le vecteur d'expression, une telle séquence d'ADN est ainsi plus particulièrement la séquence d'ADN commençant au nucléotide 720 et se terminant au nucléotide 1955 de SEQ ID N°1.

Dans le vecteur d'expression, une telle séquence d'ADN est ainsi encore plus particulièrement celle du gène CATfIIIA tel que défini ci-dessus codant pour la séquence d'acides aminés SEQ ID N°3.

Dans le vecteur d'expression, une telle séquence d'ADN est ainsi une séquence d'ADN telle que définie ci-dessus codant pour le facteur de transcription CATfIIIA ainsi que les séquences d'ADN qui hybrident avec celle-ci et/ou présentent des homologies significatives avec cette séquence ou des fragments de celle-ci ou encore les séquences d'ADN comprenant des modifications introduites par suppression, insertion et/ou substitution d'au moins un nucléotide codant pour une protéine ayant la même activité biologique que le facteur de transcription CATfIIIA.

Dans le vecteur d'expression, une telle séquence d'ADN est notamment une séquence d'ADN telle que définie ci-dessus ainsi que les séquences d'ADN similaires qui ont une homologie de séquence nucléotidique d'au moins 50 % ou au

moins 60 % et de préférence au moins 70 % avec ladite séquence d'ADN ou encore les séquences d'ADN similaires qui codent pour une protéine dont la séquence en AA a une homologie d'au moins 40 % et notamment de 45 % ou d'au moins 5 50 %, plutôt au moins 60 % et de préférence au moins 70 % avec la séquence en AA codée par ladite séquence d'ADN. Les vecteurs d'expression sont des vecteurs permettant l'expression de la protéine sous le contrôle d'un promoteur convenable. Un tel vecteur peut être un plasmide, un cosmid 10 ou un ADN viral. Pour les cellules procaryotes, le promoteur peut être par exemple le promoteur lac, le promoteur trp, le promoteur tac, le promoteur β -lactamase ou le promoteur PL. Pour les cellules de levure, le promoteur peut être par exemple le promoteur PGK ou le promoteur GAL. Pour les 15 cellules de mammifères, le promoteur peut être par exemple le promoteur SV40 ou les promoteurs de l'adénovirus.

Des vecteurs type Baculovirus peuvent être aussi utilisés pour l'expression dans des cellules d'insectes. Les cellules hôtes sont par exemple des cellules procaryotes 20 ou des cellules eucaryotes. Les cellules procaryotes sont par exemple E. coli, Bacillus ou Streptomyces. Les cellules hôtes eucaryotes comprennent des levures ainsi que des cellules d'organismes supérieurs, par exemple des cellules de mammifères ou des cellules d'insectes. Les cellules de mammifères 25 sont par exemple des fibroblastes tels que des cellules CHO ou BHK de hamster et des cellules Cos de singe. Les cellules d'insectes sont par exemple des cellules SF9.

La présente invention concerne donc un procédé qui comprend l'expression d'un polynucléotide selon la présente 30 invention codant pour la protéine CATFIIIA dans une cellule hôte transformée par un polynucléotide selon la présente invention et notamment une séquence d'ADN codant pour la séquence en acides aminés SEQ ID N°3. Dans la réalisation d'un tel procédé, la cellule hôte est notamment une cellule 35 eucaryote.

Pour la réalisation de la présente invention, les vecteurs utilisés peuvent être par exemple pGEX ou pBAD et la cellule hôte peut être E. coli ou par exemple le vecteur pYX222 et

la cellule hôte peut être notamment *Saccharomyces cerevisiae*.

La présente invention a notamment pour objet la cellule hôte transformée avec un vecteur tel que défini ci-dessus et renfermant une séquence d'ADN selon la présente invention.

- 5 La présente invention a ainsi pour objet le procédé de préparation d'une protéine recombinante selon la présente invention, tel que défini ci-dessus, dans lequel la cellule hôte est *E. coli DH5 alpha* ou *E. coli XL1-Blue* ou notamment *Saccharomyces cerevisiae*.
- 10 Un exposé détaillé des conditions dans lesquelles peuvent être menées les opérations indiquées ci-dessus est donné ci-après dans la partie expérimentale. On a ainsi obtenu un plasmide dans lequel est inséré le gène de la présente invention et on obtient ainsi également ce plasmide introduit 15 dans une cellule hôte en opérant selon les techniques usuelles connues de l'homme du métier.

La présente invention a très précisément pour objet le plasmide déposé à la CNCM sous le numéro I-2072.

- Il s'agit ainsi précisément de la souche *XL1-Blue/Yep24-*
20 *Catfc2* renfermant le gène *CAtfIIIA* selon la présente invention.

Ce gène correspond donc à la séquence 720-1955 de SEQ ID N°1.

- Les conditions opératoires dans lesquelles a été réalisée la 25 présente invention sont décrites ci-après dans la partie expérimentale.

La protéine TFIIIA codée par le gène *CAtfIIIA* est donc un facteur de transcription. En effet, la protéine TFIIIA codée par le gène de la présente invention a un rôle 30 biologique comme protéine se liant à l'ADN et serait utile comme facteur de transcription.

En particulier, le gène de la présente invention est exprimé dans différents tissus et joue un rôle important dans l'initiation de la transcription du gène de l'ARN ribosomal 5S.
35 L'étude de ces facteurs peut également être utile dans l'analyse des mécanismes de régulation de la transcription.

La présente invention a ainsi pour objet un procédé de criblage de produits antifongiques caractérisé en ce qu'il

comprend une étape où l'on mesure l'activité de facteur de transcription de CATFIIIA tel que défini ci-dessus en présence de chacun des produits dont on souhaite déterminer les propriétés antifongiques et l'on sélectionne les produits 5 ayant un effet inhibiteur sur cette activité.

La mise en évidence dans le cadre de la présente invention de l'homologie fonctionnelle des facteurs de transcription de *Candida albicans* et *Saccharomyces cerevisiae*, illustrée dans la partie expérimentale ci-après, 10 permet d'envisager de nombreuses applications pour le facteur de transcription CATFIIIA de la présente invention.

En particulier du fait qu'il apparaît que l'activité de SCTFIIIA est essentielle pour la survie cellulaire, des substances inhibitrices de cette activité peuvent être 15 utilisables comme agents antifongiques, soit en tant que médicaments soit sur le plan industriel.

Par exemple, pour cibler des substances antifongiques telles que des substances actives sur *Candida albicans*, on mesure l'activité de CATFIIIA ou de l'un de ses homologues 20 fonctionnels constitué par un facteur de transcription TFIIIA en présence de chacun des produits dont on souhaite déterminer les propriétés antifongiques et l'on sélectionne les produits ayant un effet inhibiteur sur cette activité.

On peut effectuer un tel criblage en mesurant l'activité 25 de transcription de TFIIIA en présence d'activateurs ou d'inhibiteurs potentiels à tester. La transcription de l'ARN 5S peut par exemple être mesurée *in vitro* directement en détectant la synthèse de l'ARN 5S dans un milieu réactionnel approprié.

30 L'activité de transcription peut également être mesurée *in vivo* par un test de viabilité cellulaire. Par exemple, l'activité de transcription peut être avantageusement mesurée dans des cellules d'un mutant de *Saccharomyces cerevisiae* n'exprimant pas TFIIIA de SC transformées par le gène 35 CAtfIIIA.

L'invention englobe également l'utilisation d'un produit sélectionné comme indiqué ci-dessus pour ses propriétés inhibitrices d'un facteur de transcription TFIIIA pour

l'obtention d'un agent antifongique.

La présente invention sera mieux comprise à l'aide de la partie expérimentale qui suit et qui décrit le clonage du gène CAtfIIIA de la présente invention.

5 La présente invention a ainsi pour objet l'utilisation d'un produit sélectionné par le procédé de criblage de produits antifongiques tel que défini ci-dessus pour l'obtention d'un agent antifongique.

La présente invention a également pour objet l'utilisation du gène du facteur de transcription CAtfIIIA de Candida albicans ou du facteur de transcription codé par ce gène tel que défini ci-dessus pour la sélection d'un produit ayant des propriétés antifongiques tel que défini ci-dessus et utilisé comme inhibiteur du facteur de transcription de 15 Candida albicans.

La présente invention a également pour objet les compositions pharmaceutiques renfermant à titre de principe actif au moins un inhibiteur du facteur de transcription de Candida albicans telles que définies ci-dessus.

20 De telles compositions peuvent notamment être utiles pour traiter les infections fongiques topiques et systémiques. Les compositions pharmaceutiques indiquées ci-dessus peuvent être administrées par voie buccale, rectale, par voie parentérale ou par voie locale en application topique sur la peau et les muqueuses ou par injection par voie intraveineuse ou intramusculaire. Ces compositions peuvent être solides ou liquides et se présenter sous toutes les formes pharmaceutiques couramment utilisées en médecine humaine comme, par exemple, les comprimés simples ou dragéifiés, les gélules, 25 les granulés, les suppositoires, les préparations injectables, les pommades, les crèmes, les gels et les préparations en aérosols ; elles sont préparées selon les méthodes usuelles. Le principe actif peut y être incorporé à des excipients habituellement employés dans ces compositions 30 pharmaceutiques, tels que le talc, la gomme arabique, le lactose, l'amidon, le stéarate de magnésium, le beurre de cacao, les véhicules aqueux ou non, les corps gras d'origine animale ou végétale, les dérivés paraffiniques, les glycols, 35

les divers agents mouillants, dispersants ou émulsifiants, les conservateurs.

La posologie sera variable selon le produit utilisé, le sujet traité et l'affection en cause.

5 La présente invention a ainsi notamment pour objet l'utilisation des compositions telles que définies ci-dessus comme agents antifongiques.

La présente invention a encore pour objet une méthode d'induction d'une réponse immunologique chez un mammifère 10 comprenant l'inoculation à ce mammifère du polypeptide selon la présente invention tel que défini ci-dessus ou un fragment de ce polypeptide ayant la même fonction de façon à produire un anticorps permettant de protéger l'animal contre la maladie.

15 La présente invention a ainsi pour objet des anticorps dirigés contre les polypeptides de la présente invention tels que définis ci-dessus ayant la fonction de facteur de transcription CATFIIIA ou contre un fragment de ces polypeptides ayant la même fonction et codés par les polynucléotides de la 20 présente invention et notamment par une séquence d'ADN telle que définie ci-dessus.

Les polypeptides de la présente invention peuvent ainsi être utilisés comme immunogènes pour produire des anticorps immunospécifiques de ces polypeptides. Le terme anticorps 25 utilisé désigne les anticorps aussi bien monoclonaux que polyclonaux, chimériques, simple chaîne, les anticorps non humains et les anticorps humains, aussi bien que les fragments Fab, incluant ainsi les produits d'une banque d'immunoglobuline Fab. Les anticorps générés contre les 30 polypeptides de la présente invention peuvent être obtenus par administration des polypeptides de la présente invention ou de fragments portant des épitopes, leurs analogues ou encore des cellules à un animal, de préférence non humain, en utilisant des protocoles de routine pour la préparation 35 d'anticorps monoclonaux. De tels anticorps peuvent être préparés par les méthodes bien connues dans ce domaine telles que celles décrites dans l'ouvrage Antibodies, Laboratory manuel Ed. Harbow et David Larre, Cold Spring Harbor

laboratory Eds, 1988.

La présente invention a ainsi tout particulièrement pour objet un anticorps dirigé contre la protéine CATFIIIA de la présente invention ou un fragment de cette protéine ayant 5 notamment la même fonction.

La présente invention a encore pour objet l'utilisation du gène du facteur de transcription CAtfIIIA ou du facteur de transcription codé par ce gène tel que défini ci-dessus pour la préparation de compositions utiles pour le diagnostic ou 10 le traitement de maladies causées par la levure pathogène *Candida albicans*.

La présente invention concerne aussi l'utilisation des polynucléotides de la présente invention comme réactifs de diagnostic. La détection d'un polynucléotide selon la 15 présente invention codant pour la protéine TFIIIA de *Candida albicans* ou de ses analogues chez un eucaryote en particulier un mammifère et plus particulièrement un être humain, peut constituer un moyen de diagnostic d'une maladie : ainsi, on peut détecter un tel polynucléotide selon la présente 20 invention et notamment une séquence d'ADN par une grande variété de techniques chez un eucaryote en particulier un mammifère et plus particulièrement un être humain, infectés par un organisme contenant au moins l'un des polynucléotides de la présente invention. Les acides nucléiques pour une 25 telle utilisation d'outil de diagnostic peuvent être détectés à partir de cellules ou de tissus infectés, tels que l'os, le sang, le muscle, le cartilage ou la peau. Pour cette détection, l'ADN génomique peut être utilisé directement ou encore être amplifié par PCR ou une autre technique 30 d'amplification. Les ARN ou ADN et ADNc peuvent également être utilisés dans le même but. Par les techniques d'amplification, la lignée du mycète présent dans un eucaryote en particulier un mammifère et plus particuliè- 35 rement un être humain, peut être caractérisée par l'analyse du génotype. Des délétions ou des insertions peuvent être détectées par le changement de taille du produit amplifié par comparaison avec le génotype de la séquence de référence. Les points de mutations peuvent être identifiés par hybridation

de l'ADN amplifié avec les séquences, marquées par un élément radioactif, de polynucléotides de la présente invention. Des séquences parfaitement complémentaires peuvent ainsi être distinguées de duplex qui résistent mal à la digestion par 5 des nucléases. Les différences de séquences d'ADN peuvent aussi être détectées par des altérations de la mobilité électrophorétique de fragments d'ADN dans des gels, avec ou sans agent dénaturant, ou par un séquençage direct d'ADN (référence : Myers et al. *Science*, 230 : 1242 (1985)).

10 Des changements de séquences à des localisations spécifiques peuvent aussi être révélées par des expériences de protection contre des nucléases telles que RNase I et S1 ou par des méthodes de clivage chimique (référence : Cotton et al., *Proc Natl Acad Sci, USA*, 85 : 4397-4401 (1985)).

15 Des cellules contenant l'un des polynucléotides de la présente invention portant des mutations ou des polymorphismes peuvent aussi être détectées par un grand nombre de techniques permettant notamment de déterminer le sérotype. Par exemple, la technique RT-PCR peut être utilisée pour 20 détecter les mutations. Il est particulièrement préféré d'utiliser les techniques de RT-PCR en conjonction avec des systèmes de détection automatique, tels que par exemple dans la technique GeneScan. ARN et ADNC peuvent être utilisés dans les techniques PCR ou RT-PCR. Par exemple, des amorces 25 complémentaires des polynucléotides codant pour les polypeptides de la présente invention peuvent être utilisés pour identifier et analyser les mutations.

Des amorces peuvent ainsi être utilisées pour amplifier un ADN isolé de l'individu infecté. De cette façon des mutations 30 dans la séquence d'ADN peuvent être détectées et utilisées pour diagnostiquer l'infection et déterminer le sérotype ou le classement de l'agent infectieux. De telles techniques sont usuelles pour l'homme du métier et sont décrites notamment dans le manuel 'Current Protocols in Molecular 35 Biology', Ausubel et al, ed. John Wiley & sons, Inc., 1995).

La présente invention concerne ainsi un procédé de diagnostic d'une maladie et de préférence d'une infection fongique provoquée notamment par *Candida albicans* telles que

des mycoses comme indiqué ci-dessus, ce procédé comprenant la détermination à partir d'un échantillon prélevé sur un individu infecté, d'une augmentation de la quantité de polynucléotide de la présente invention. Un tel polynucléotide peut notamment avoir une séquence d'ADN de la présente invention telle que définie ci-dessus.

Des augmentations ou des diminutions de la quantité de polynucléotides peuvent être mesurées par les techniques bien connues de l'homme du métier telles que notamment l'amplification, la PCR, RT PCR, Northern blotting ou autres techniques d'hybridation.

De plus, une méthode de diagnostic en accord avec la présente invention consiste en la détection d'une expression trop importante de polypeptides de la présente invention, par comparaison avec des échantillons de contrôle constitués de tissus normaux non infectés utilisés pour détecter la présence d'une infection.

Les techniques qui peuvent être utilisées pour détecter ainsi les quantités de protéines exprimées dans un échantillon d'une cellule hôte sont bien connues de l'homme du métier. On peut ainsi citer par exemple les techniques de radioimmunoassay ou de competitive-binding, analyse par Western Blot et test ELISA (ref Ausubel indiqué ci-dessus).

La présente invention a encore pour objet un kit pour le diagnostic d'infections fongiques comprenant une séquence d'ADN selon la présente invention telle que définie ci-dessus ou une séquence ayant une fonction similaire ou un fragment fonctionnel de cette séquence, le polypeptide codé par cette séquence ou un fragment polypeptidique ayant la même fonction ou un anticorps dirigé contre un tel polypeptide codé par cette séquence d'ADN ou contre un fragment de ce polypeptide. Ce kit pourra ainsi contenir une séquence d'ADN selon la présente invention telle que définie ci-dessus et par exemple la séquence d'ADN SEQ ID N°1 ou un fragment de cette séquence ou encore la séquence 720 à 1955 de SEQ ID N°1.

Un tel kit pourra de même contenir un polypeptide selon la présente invention ou un fragment de ce polypeptide et notamment la protéine ayant la séquence en AA SEQ ID N°3 ou

encore un anticorps tel que défini ci-dessus.

Un tel kit peut-être préparé selon les méthodes bien connues de l'homme du métier.

Les séquences SEQ ID N° 1 à 9 indiquées dans la présente invention sont décrites ci-après.

La partie expérimentale ci-après permet de décrire la présente invention sans toutefois la limiter.

Partie expérimentale

Exemple 1 : Clonage et séquençage du gène CAtfIIIA

10 a) Conditions de culture :

La bactérie *Escherichia coli* (*E. coli*) de la lignée DH5 alpha (Gibco BRL) ou XL1- Blue type K12 (Stratagène) a été utilisée pour la préparation des plasmides de la présente invention.

15 La croissance de cette bactérie a été effectuée selon les conditions usuelles en milieu liquide LB qui renferme 10 g de bactotryptone, 5 g d'extrait de levure et 10 g de NaCl pour un litre d'eau et qui renferme également 100 microg/ml d'ampicilline (SIGMA).

20 La colonie a été prélevée sur milieu solide LB + agar + ampicilline puis cultivée dans 100 ml de milieu LB et incubée jusqu'à DO (600 nm) = 0.8.

L'incubation a été effectuée à 37°C sous atmosphère normale et agitation à 225 rpm.

25 La viabilité de la souche est vérifiée lorsque la souche pousse sur milieu LB + ampicilline à 100 microg/ml.

On peut noter qu'un gène de résistance à l'ampicilline Bla fait partie du vecteur dans lequel sont clonés les fragments de CAtfIIIA. Ainsi, la sélection des souches renfermant les

30 plasmides contenant le gène tfIIIA de *Candida albicans* de la présente invention peut être opérée par la culture des souches dans ce milieu renfermant de l'ampicilline (100 microg/ml), un tel milieu permettant la survie uniquement des souches qui renferment le gène de résistance à l'ampicilline 35 et ainsi uniquement des souches qui renferment le gène tfIIIA de *Candida a.* de la présente invention.

Pour la conservation des souches obtenues, 15 % de glycérol sont ajoutés au milieu de culture : les cultures sont donc

conservées dans le milieu de suspension LB +100 microgrammes/ml d'ampicilline + 15 % de glycérol à la concentration bactérienne de DO (600 nm = 0.8 sous forme d'aliquots en cryotubes de 1 ml par tube.

- 5 Pour le séquençage, l'ADN plasmidique de plusieurs bactéries issues de chacun des clonages indiqués ci-après est préparé en utilisant un kit commercial (Qiagen Plasmids kit). Les fragments correspondant à la séquence du gène CAtfIIIA sont séquencés sur les deux brins suivant les techniques
10 classiques connues de l'homme du métier (utilisation du séquenceur ABI 377 XL, Perkin Elmer).

b) Clonage et séquençage du gène CAtfIIIA :

Dans le cadre de la présente invention, le gène codant pour le facteur de transcription de CA soit SEQ ID N°1 représenté
15 à la figure 1 a été isolé à partir de la banque de fragment génomique de Candida albicans. (Sanglard et al., Antimicrobial agents and chemotherapy 39, 2378-2386, (1995)). La structure du gène a été identifiée par séquençage.
La stratégie utilisée repose sur l'hypothèse que SC et CA
20 sont des levures proches dont la structure des gènes peut être homologue.

On a procédé comme suit :

Dans le cadre de la présente invention, en utilisant le site internet de Standford qui permet d'accéder aux séquences
25 préliminaires du génome de Candida albicans, une fraction de séquence homologue à tfIIIA de S. cerevisiae a été identifiée. Ce fragment contient un cadre ouvert de lecture (258 pb) codant pour une protéine pour laquelle on peut identifier deux motifs en doigts de zinc et une région riche
30 en résidus sérine caractéristique du facteur TFIIIA de SC. Ce cadre ouvert de lecture contient en réalité 259 nucléotides. Afin d'amplifier le fragment correspondant de Candida albicans, deux oligonucléotides ont été sélectionnés dans cette séquence. Ces oligonucléotides sont les suivants :
35 INT CAND situé à la position 720-740 de SEQ ID N°1 et nommé SEQ ID N°4 et
3' CAND situé à la position 955-978 de SEQ ID N°1 et nommé SEQ ID N°5.

On a ainsi obtenu un fragment de 259 paires de bases. Il a d'abord été confirmé par PCR qu'il est possible d'amplifier un fragment d'ADN génomique de CA, préparé à partir de cellules de CA par les méthodes usuelles connues de l'homme du métier, et d'autre part dans la banque de gènes de CA. Ces oligonucléotides ont aussi permis de synthétiser un fragment d'ADN à partir d'ADN génomique de *Candida albicans* afin de préparer une sonde marquée au ^{32}P (phosphore 32) en utilisant un kit (Mega Prime, Amersham).

Ce fragment a été utilisé pour le criblage de la banque de fragments génomiques Sau 3A de *Candida albicans* clonés dans le site BamHI du vecteur YEp24 (multicopie-Ura3) [Botstein et al., *Gene*, 8, 17-24, (1979)].

Les cellules *E. coli* DH5 alpha transformées avec le vecteur YEp24 (vecteur multicopie avec gène de sélection URA3) contenant les fragments décrits ci-dessus (17000 clones) sont étalées sur des boîtes contenant un milieu LB + ampicilline et cultivées à 37°C .

Une réplique sur filtre de nitrocellulose est ensuite traitée par des techniques connues de l'homme du métier comme par exemple NaOH : 0,5M, 5 minutes ; Tris-HCl : 1M (pH = 7,5) 5 minutes ; NaCl 1,5M/Tris-HCl 0,5M (pH 7,5). Pour le séchage, les filtres sont gardés pendant 10 minutes à 80°C puis fixés aux UV (Stratalinker). Préhybridation et hybridation sont réalisées dans un tampon de NaPO₄ (pH 7,2) 0,5M ; EDTA 10mM ; SDS 7 % (réf., Church et Gilbert, *PNAS* 81 : 1991 (1984)). La sonde est marquée au ^{32}P avec le kit MegaPrime et (alpha ^{32}P)dCTP (Amersham UK). L'hybridation est réalisée pendant toute la nuit à 65°C . Les filtres sont ensuite lavés dans 1 % SDS, 40 mM NaPO₄ (pH 7,2), six fois pendant 5 minutes à 65°C et ils sont ensuite soumis à une autoradiographie pendant toute la nuit.

L'hybridation sur filtre avec la sonde marquée au ^{32}P a permis de sélectionner plusieurs clones positifs qui ont été réensemencés sur boîtes afin de les isoler. Des clones individuels ont ainsi été isolés.

On a ainsi obtenu trois types de clones que l'on nomme 9, 18

et 47 contenant trois inserts différents du gène CAtfIIIA de la présente invention : l'analyse par PCR a confirmé la présence du fragment de 259 pb.

Les plasmides YEp24 contenant des inserts de *Candida albicans* 5 ont été récupérés à partir de ces colonies. La carte de restriction de chacun de ces plasmides a été établie, et a permis de constater que tous les inserts provenaient d'une même région du génome de *Candida albicans*. Pour le séquençage de cette région on a utilisé les oligonucléotides suivants :

10 INT-Cand situé à la position : 720-740 de SEQ ID N°1 et nommé SEQ ID N°4

3'-Cand situé à la position : 955-978 de SEQ ID N°1 et nommé SEQ ID N°5

Cont-Int situé à la position : 719-741 de SEQ ID N°1 et nommé 15 SEQ ID N°6

Can-Kor1 situé à la position 1365-1389 de SEQ ID N°1 et nommé SEQ ID N°7

et le séquenceur ABI 377 XL (Perkin Elmer). Le séquençage de cette région a permis de mettre en évidence les points 20 suivants :

1) Les trois clones contiennent tous seulement un cadre de lecture ouvert, ininterrompu de 1236 pb avec la même séquence qui code pour une protéine.

2) Le cadre de lecture ouvert code pour une protéine de 412 25 AA qui montre une homologie importante avec le facteur TFIIIA de *Saccharomyces cerevisiae*. L'analyse de la protéine permet de retrouver les 9 motifs en doigt de zinc qui sont caractéristiques du facteur de transcription TFIIIA. La comparaison des séquences protéique de CATFIIIA et TFIIIA de 30 SC, permet de mettre en évidence une similarité de 50 % et une identité de 45 %. Pour la traduction en acides aminés il a été tenu compte du fait que dans *Candida albicans* le codon CTG est traduit en Sérine et qu'il y a 2 codons CTG dans *Candida albicans* TFIIIA.

35 On peut noter :

- La conservation de la région riche en Sérine dans la partie N-terminale
- la présence d'une très longue région intermédiaire entre

les doigts de zinc 8 et 9 caractéristique de SC.

Les différences de séquence entre les protéines TFIIIA de SC et TFIIIA de Candida albicans se situent dans la partie C-terminale en dehors des motifs en doigt de zinc.

5 Le plasmide YEp24 contenant la région promotrice et la séquence codante pour CATFIIIA a été transformé dans la souche E. Coli XL1 Blue puis déposé sous le numéro I-2072 à la CNCM, Institut Pasteur 25 rue de Docteur ROUX 75015 Paris, le 15 septembre 1998.

10 Exemple 2 : expression du gène tfIIIA

Un fragment contenu dans le clone 9 a été amplifié par PCR en utilisant des amorces contenant les séquences reconnues par les enzymes de restriction EcoRI et XhoI et s'hybridant au gène tfC2, les amorces sont les suivantes :

15 5'-EcoTF situé à la position 720-732 de SEQ ID N°1 et nommé SEQ ID N°8 et

3'-XhoI situé à la position 1946-1960 de SEQ ID N°1 et nommé SEQ ID N°9.

On procède donc à une amplification par PCR de l'ADN
20 génomique de la façon suivante :

0,5 microgrammes d'ADN du clone 9 sont ajoutés à 50 microlitres d'une solution réactionnelle contenant 200 nanogrammes/ml de chaque dNTP, les primers indiqués ci-dessus à raison de 25 micromoles/l pour chacun, 2mM MgCl₂, 1 x Pfu
25 Buffer, 5U Pfu polymérase (Perkin Elmer).

Le milieu réactionnel est soumis à 30 cyclés PCR correspondant chacun à 94°C pendant 30 secondes, puis à 60°C pendant 45 secondes puis à 72°C pendant 1 minute.

Le fragment contenant la séquence codante de CATFIIIA a été
30 sous-cloné dans les vecteurs pYX122 (CEN, HIS 3) et pYX222 (2 micron, HIS3) (R et D System). Ce plasmide a été utilisé pour transformer des cellules de Saccharomyces c. YWRI (Mat alpha, can 1-100, his 3-11, leu 2-3, 112 trp 1-1, ura 3-1, ade 2-1, tfC2 :: leu2 + pJA230), (Camier et al, Proc. Natl.
35 Acad. Sci. 92 9338-9342, 1995).

La souche transformée selon les mêmes méthodes que celles indiquées ci-dessus permet l'expression du facteur de transcription TFIIIA de Candida albicans contenant un tag HA.

Conclusion

Les réalisations expérimentales indiquées ci-dessus montrent donc les points suivants :

- 1) Le gène du facteur TFIIIA de *Candida albicans* a été isolé 5 dans trois clones 9, 18 et 47 obtenus comme indiqué ci-dessus à l'exemple 1 à partir de la banque de gènes de *Candida albicans* en utilisant une technique d'hybridation. La structure de ce gène a été identifiée par séquençage.
- 2) La protéine CATFIIIA du gène CAtfIIIA obtenue à l'exemple 10 1 est constituée de 412 AA et montre une forte homologie avec le facteur TFIIIA de SC. Cette protéine contient une région riche en résidus SER dans la partie N-terminale et 9 doigts de zinc dont la disposition est identique à celle de la protéine TFIIIA de SC.
- 15 3) Le sous-clonage du gène du facteur TFIIIA de *Candida albicans* a été réalisé et le gène a été placé sous contrôle d'un promoteur de SC.

REVENDICATIONS

- 1) Polynucléotide isolé contenant une séquence nucléotidique choisie dans le groupe suivant:
 - 5 a) un polynucléotide ayant au moins 50 % ou au moins 60 % et de préférence au moins 70 % d'identité avec un polynucléotide codant pour un polypeptide ayant la fonction de facteur de transcription et ayant une séquence en acides aminés homologue de la séquence SEQ ID N°3.
 - 10 b) un polynucléotide complémentaire du polynucléotide a).
 - c) un polynucléotide comprenant au moins 15 bases consécutives du polynucléotide défini en a) et b).
- 2) Polynucléotide selon la revendication 1 tel que ce polynucléotide est un ADN.
- 15 3) Polynucléotide selon la revendication 1 tel que ce polynucléotide est un ARN.
- 4) Polynucléotide tel que défini à la revendication 2 comprenant la séquence de nucléotides SEQ ID N°1
- 5) Séquence d'ADN telle que définie aux revendications 1, 2
- 20 et 4 caractérisée en ce que cette séquence d'ADN est celle du gène CAtfIIIA codant pour une protéine ayant la fonction biologique du facteur de transcription de Candida albicans CATFIIIA et contenant la séquence de nucléotides SEQ ID N°1
- 6) Séquence d'ADN selon la revendication 5 ayant la séquence
- 25 commençant au nucléotide 720 et se terminant au nucléotide 1955 de SEQ ID N°1.
- 7) Séquence d'ADN du gène CAtfIIIA selon la revendication 5 ou 6 codant pour la séquence d'acides aminés SEQ ID N°3 (412 AA).
- 30 8) Séquence d'ADN codant pour le facteur de transcription CATFIIIA selon les revendications 5 à 7 ainsi que les séquences d'ADN qui hybrident avec celle-ci et/ou présentent des homologies significatives avec cette séquence ou des fragments de celle-ci et ayant la même fonction.
- 35 9) Séquence d'ADN selon les revendications 5 à 8 comprenant des modifications introduites par suppression, insertion et/ou substitution d'au moins un nucléotide codant pour une protéine ayant la même activité biologique que le facteur de

transcription CATFIIIA.

- 10) Séquence d'ADN selon l'une des revendications 5 à 9 ainsi que les séquences d'ADN qui ont une homologie de séquence nucléotidique d'au moins 50 % ou au moins 60 % et de 5 préférence au moins 70 % avec ladite séquence d'ADN.
- 11) Séquence d'ADN selon l'une des revendications 5 à 10 ainsi que les séquences d'ADN qui codent pour une protéine de fonction similaire dont la séquence en AA a une homologie d'au moins 40 % et notamment de 45 % ou d'au moins 50 %, 10 plutôt au moins 60 % et de préférence au moins 70 % avec la séquence en AA codée par ladite séquence d'ADN.
- 12) Polypeptide ayant la fonction de facteur de transcription CATFIIIA et ayant la séquence d'acides aminés SEQ ID N°3 codée par la séquence d'ADN selon l'une des revendications 5 15 à 11 et les analogues de ce polypeptide.
- 13) Procédé de préparation de la protéine recombinante CATFIIIA ayant la séquence d'acides aminés SEQ ID N°3 comprenant l'expression de la séquence d'ADN selon l'une des revendications 5 à 11 dans un hôte approprié puis l'isolement 20 et la purification de ladite protéine recombinante.
- 14) Vecteur d'expression contenant la séquence d'ADN selon l'une des revendications 5 à 11.
- 15) Cellule hôte transformée avec un vecteur selon la revendication 14.
- 25 16) Procédé tel que défini à la revendication 13 dans lequel la cellule hôte est E. coli DH5 alpha ou E. coli XL1-Blue.
- 17) Procédé tel que défini à la revendication 13 dans laquelle la cellule hôte est Saccharomyces cerevisiae.
- 18) Plasmide déposé à la CNCM sous le numéro I-2072.
- 30 19) Procédé de criblage de produits antifongiques caractérisé en ce qu'il comprend une étape où l'on mesure l'activité de facteur de transcription de CATFIIIA tel que défini à la revendication 12 en présence de chacun des produits dont on souhaite déterminer les propriétés antifongiques et l'on 35 sélectionne les produits ayant un effet inhibiteur sur cette activité.
- 20) Utilisation d'un produit sélectionné par le procédé selon la revendication 19 pour l'obtention d'un agent antifongique.

- 21) Utilisation du gène du facteur de transcription CAtfIIIA de *Candida albicans* ou du facteur de transcription codé par ce gène selon l'une des revendications 5 à 12 pour la sélection d'un produit ayant des propriétés antifongiques 5 selon la revendication 19 comme inhibiteur du facteur de transcription de *Candida albicans*.
- 22) Compositions pharmaceutiques renfermant à titre de principe actif au moins un inhibiteur du facteur de transcription de *Candida albicans* tel que défini à la 10 revendication 21.
- 23) Utilisation des compositions telles que définies à la revendication 22 comme agents antifongiques.
- 24) Méthode d'induction d'une réponse immunologique chez un mammifère comprenant l'inoculation à ce mammifère du 15 polypeptide tel que défini à la revendication 12 ou un fragment de ce polypeptide ayant la même fonction de façon à produire un anticorps permettant de protéger l'animal contre la maladie.
- 25) Anticorps dirigé contre le polypeptide tel que défini à 20 la revendication 12 ou un fragment de ce polypeptide ayant la même fonction.
- 26) Utilisation du gène CAtfIIIA ou du facteur de transcription codé par ce gène selon l'une des revendications 5 à 12 pour la préparation de compositions utiles pour le 25 diagnostic ou le traitement de maladies causées par la levure pathogène *Candida albicans*.
- 27) Kit pour le diagnostic d'infections fongiques comprenant une séquence d'ADN tel que défini à l'une des revendications 5 à 11 ou une séquence ayant une fonction similaire ou un 30 fragment fonctionnel de cette séquence, le polypeptide codé par cette séquence ou un fragment polypeptidique ayant la même fonction ou un anticorps dirigé contre un tel polypeptide codé par cette séquence d'ADN ou contre un fragment de ce polypeptide.

LISTAGE DE SEQUENCE

<110> Hoechst Marion Roussel

<120> Gène tfIIIA de Candida albicans (CATfIIIA) et la protéine codée CATfIIIA.

<130> BREVET 9824

<140>
<141>

<160> 9

<170> PatentIn Vers. 2.0

<210> 1

<211> 2060

<212> ADN

<213> Candida albicans

<400> 1
ctttattagg aagattggct aggccatTTT gtattacggg tctccaaagt gcaattgttt 60
tagtaaatat ccaatcattg ggcttcagtg tgaatggggg ttgtcaatct cttgggtgtag 120
aaataggcgc aggcctccga atccccaaaaa aagaagaatc aggatgtctc ggctgcaaga 180
ttttagcca tggcaaATgc cgaaaaatga aaaaaaaaaaa aaagtctact gggcccacct 240
acaaaaaggaa aagtgattga actagatcag tagtggtctg gaccctctat aattttataa 300
tattgtcacg ggctttagaa tttgtataat tgtgtgtctg acactctgtg gttaatatct 360
ggacatctcg ttccccctgt gaagggtcgt ctgtaatgaa ttcatgatca agaataat 420
gactttgctc acttcataga gtgccgactt gattattatt gagctttatc ctctgtaata 480
tatcgtaacc acttgactta tttccttgtt gtgggattca ctggatga tgatgttaac 540
caaatgtaat tggtacaatc ctttttgtcc ttgtcgac ttccttaat atcgactt 600
atttcattaa tgagacgcaa cgcatTCCTC tctccataga aaaaaaaaaat aacaaactga 660
aaaaataaaac agcggacctc atctttttt ttcaatcca cttttatcta ctttattcaa 720
tgagtgaaag tgacgaaacc aaatcgatat catcttaat atcttcttct tttcatcac 780
gtcccaaaaa gtatattgc acatatgaag ggtgtgataa agcctataat cgaccatcat 840
tattagagca acatTTAAGA acccacAGTA atgatcgacc gtataatgt acagtggacg 900
attgtgataa agcatttttc agaaaatcac atttggaaac acatattgtt tcacattccg 960
aaaaaaaaacc attccattgt tcagtgtgt gtaaagggt taattctcg caacacttga 1020
aaagacatga aatcacccat acaaagtcat ttaaatgtac atttgaaaat tgtcaagaag 1080
cattttataa acatcaatct ttaagacatc atatattatc tggtcatgaa aaaacattaa 1140
cgtgtaaaca atgtaataaa gtttcactc gaccttcaaa attagcacaa cataaattaa 1200
aacatcatgg tggatctect gcttatcaat gtgattcatcc tggttgtttt aaaaatttcc 1260

aaacttggtc agtattacaa tttcatataa aacaactgca tccaaaactt aaatgtccta 1320
 aatgtggtaa aggttgtt gggaaaaaag gtttatcttc acatatgtta agtcatgatg 1380
 attctaccat gatcaaaata tggacttgcg attattgtga tgtggggaaa ttgc当地 1440
 aaaatgaatt agttgaacat tataatatct tccatgatgg taatatccct gatgatttat 1500
 taaaggaaac tgaagtgaaa aaatttagaga acctattaga tcaaggatcg aaattaaata 1560
 atttgc当地 ga attagaaaca gagaaattaa aagtggaaaga agatgaagaa gatgaagaag 1620
 atagtctaga tgaaaaaaga agtgc当地 ttgcatgatc aatgtcagct caaagatcaa 1680
 taaaatcatt tactgcttct ttggaaggtt caaagagtgt ttctaaactt attctgaata 1740
 gtggaaagaa gatcaattgt cctaagaata attgtgatag aatgtttct agagaatatg 1800
 atttacgtcg acatttgaaa tggcatgatg ataatttaca aagaatttgc tcattcttaa 1860
 atagtataga aaaagaagaa actccagaag gtgaaccatt ggttaaaaaa gccaggatgg 1920
 atttattgcc aaatgaaaca tcagtgattt ctgc当地ata tacatttaaa attatattaa 1980
 cattttatt tccttaatt ttatcccc ttggc当地ttt tatttacat tatttaactt 2040
 gacatattac tctcttaatg 2060

<210> 2
 <211> 1239
 <212> ADN
 <213> Candida albicans

<220>
 <221> CDS
 <222> (1) ..(1236)

<400> 2
 atg agt gaa agt gac gaa acc aaa tcg ata tca tct tta ata tct tct 48
 Met Ser Glu Ser Asp Glu Thr Lys Ser Ile Ser Ser Leu Ile Ser Ser
 1 5 10 15

tct tct tca tca cgt ccc aaa aag tat att tgc aca tat gaa ggg tgt 96
 Ser Ser Ser Arg Pro Lys Lys Tyr Ile Cys Thr Tyr Glu Gly Cys
 20 25 30

gat aaa gcc tat aat cga cca tca tta tta gag caa cat tta aga acc 144
 Asp Lys Ala Tyr Asn Arg Pro Ser Leu Leu Glu Gln His Leu Arg Thr
 35 40 45

cac agt aat gat cga ccg tat aaa tgt aca gtg gac gat tgt gat aaa 192
 His Ser Asn Asp Arg Pro Tyr Lys Cys Thr Val Asp Asp Cys Asp Lys
 50 55 60

gca ttt ttc aga aaa tca cat ttg gaa aca cat att gta tca cat tcc 240
 Ala Phe Phe Arg Lys Ser His Leu Glu Thr His Ile Val Ser His Ser
 65 70 75 80

gaa aaa aaa cca ttc cat tgt tca gtg tgt ggt aaa ggg gtt aat tct 288
 Glu Lys Lys Pro Phe His Cys Ser Val Cys Gly Lys Gly Val Asn Ser
 85 90 95

cga caa cac ttg aaa aga cat gaa atc acc cat aca aag tca ttt aaa		336	
Arg Gln His Leu Lys Arg His Glu Ile Thr His Thr Lys Ser Phe Lys			
100	105	110	
tgt aca ttt gaa aat tgtcaa gaa gca ttt tat aaa cat caa tct tta		384	
Cys Thr Phe Glu Asn Cys Gln Glu Ala Phe Tyr Lys His Gln Ser Leu			
115	120	125	
aga cat cat ata tta tct gtt cat gaa aaa aca tta acg tgt aaa caa		432	
Arg His His Ile Leu Ser Val His Glu Lys Thr Leu Thr Cys Lys Gln			
130	135	140	
tgt aat aaa gtt ttc act cga cct tca aaa tta gca caa cat aaa tta		480	
Cys Asn Lys Val Phe Thr Arg Pro Ser Lys Leu Ala Gln His Lys Leu			
145	150	155	160
aaa cat cat ggt gga tct cct gct tat caa tgt gat cat cct ggt tgt		528	
Lys His His Gly Gly Ser Pro Ala Tyr Gln Cys Asp His Pro Gly Cys			
165	170	175	
ttt aaa aat ttc caa act tgg tca gta tta caa ttt cat ata aaa caa		576	
Phe Lys Asn Phe Gln Thr Trp Ser Val Leu Gln Phe His Ile Lys Gln			
180	185	190	
ctg cat cca aaa ctt aaa tgt cct aaa tgt ggt aaa ggt tgt gtt ggg		624	
Ser His Pro Lys Leu Lys Cys Pro Lys Cys Gly Lys Gly Cys Val Gly			
195	200	205	
aaa aaa ggt tta tct tca cat atg tta agt cat gat gat tct acc atg		672	
Lys Lys Gly Leu Ser Ser His Met Leu Ser His Asp Asp Ser Thr Met			
210	215	220	
atc aaa ata tgg act tgt gat tat tgt gat gtg ggg aaa ttt gca aag		720	
Ile Lys Ile Trp Thr Cys Asp Tyr Cys Asp Val Gly Lys Phe Ala Lys			
225	230	235	240
aaa aat gaa tta gtt gaa cat tat aat atc ttc cat gat ggt aat atc		768	
Lys Asn Glu Leu Val Glu His Tyr Asn Ile Phe His Asp Gly Asn Ile			
245	250	255	
cct gat gat tta tta aag gaa act gaa gtg aaa aaa tta gag aac cta		816	
Pro Asp Asp Leu Leu Lys Glu Thr Glu Val Lys Lys Leu Glu Asn Leu			
260	265	270	
tta gat caa gga tcg aaa tta aat aat ttg cat gaa tta gaa aca gag		864	
Leu Asp Gln Gly Ser Lys Leu Asn Asn Leu His Glu Leu Glu Thr Glu			
275	280	285	
aaa tta aaa gtg gaa gaa gat gaa gaa gat gaa gaa gat agt cta gat		912	
Lys Leu Lys Val Glu Glu Asp Glu Glu Asp Glu Glu Asp Ser Leu Asp			
290	295	300	
gaa aaa aga agt gat gtt aga tca gac tca atg tca gct caa aga tca		960	
Glu Lys Arg Ser Asp Val Arg Ser Asp Ser Met Ser Ala Gln Arg Ser			
305	310	315	320
ata aaa tca ttt act gct tct ttg gaa ggt tca aag agt gtt tct aaa		1008	
Ile Lys Ser Phe Thr Ala Ser Leu Glu Gly Ser Lys Ser Val Ser Lys			
325	330	335	
ctt att ctg aat agt ggg aag aag atc aat tgt cct aag aat aat tgt		1056	
Leu Ile Ser Asn Ser Gly Lys Lys Ile Asn Cys Pro Lys Asn Asn Cys			
340	345	350	

gat aga atg ttt tct aga gaa tat gat tta cgt cga cat ttg aaa tgg 1104
 Asp Arg Met Phe Ser Arg Glu Tyr Asp Leu Arg Arg His Leu Lys Trp
 355 360 365

cat gat gat aat tta caa aga att gag tca ttc tta aat agt ata gaa 1152
 His Asp Asp Asn Leu Gln Arg Ile Glu Ser Phe Leu Asn Ser Ile Glu
 370 375 380

aaa gaa gaa act cca gaa ggt gaa cca ttg gtt aaa aaa gcc agg atg 1200
 Lys Glu Glu Thr Pro Glu Gly Glu Pro Leu Val Lys Lys Ala Arg Met
 385 390 395 400

gat tta ttg cca aat gaa aca tca gtg att tct cga taa 1239
 Asp Leu Leu Pro Asn Glu Thr Ser Val Ile Ser Arg
 405 410

<210> 3
<211> 412
<212> PRT
<213> Candida albicans

<400> 3
Met Ser Glu Ser Asp Glu Thr Lys Ser Ile Ser Ser Leu Ile Ser Ser
 1 5 10 15

Ser Ser Ser Ser Arg Pro Lys Lys Tyr Ile Cys Thr Tyr Glu Gly Cys
 20 25 30

Asp Lys Ala Tyr Asn Arg Pro Ser Leu Leu Glu Gln His Leu Arg Thr
 35 40 45

His Ser Asn Asp Arg Pro Tyr Lys Cys Thr Val Asp Asp Cys Asp Lys
 50 55 60

Ala Phe Phe Arg Lys Ser His Leu Glu Thr His Ile Val Ser His Ser
 65 70 75 80

Glu Lys Lys Pro Phe His Cys Ser Val Cys Gly Lys Gly Val Asn Ser
 85 90 95

Arg Gln His Leu Lys Arg His Glu Ile Thr His Thr Lys Ser Phe Lys
 100 105 110

Cys Thr Phe Glu Asn Cys Gln Glu Ala Phe Tyr Lys His Gln Ser Leu
 115 120 125

Arg His His Ile Leu Ser Val His Glu Lys Thr Leu Thr Cys Lys Gln
 130 135 140

Cys Asn Lys Val Phe Thr Arg Pro Ser Lys Leu Ala Gln His Lys Leu
 145 150 155 160

Lys His His Gly Gly Ser Pro Ala Tyr Gln Cys Asp His Pro Gly Cys
 165 170 175

Phe Lys Asn Phe Gln Thr Trp Ser Val Leu Gln Phe His Ile Lys Gln
 180 185 190

Ser His Pro Lys Leu Lys Cys Pro Lys Cys Gly Lys Gly Cys Val Gly
 195 200 205

Lys Lys Gly Leu Ser Ser His Met Leu Ser His Asp Asp Ser Thr Met
210 215 220

Ile Lys Ile Trp Thr Cys Asp Tyr Cys Asp Val Gly Lys Phe Ala Lys
225 230 235 240

Lys Asn Glu Leu Val Glu His Tyr Asn Ile Phe His Asp Gly Asn Ile
245 250 255

Pro Asp Asp Leu Leu Lys Glu Thr Glu Val Lys Lys Leu Glu Asn Leu
260 265 270

Leu Asp Gln Gly Ser Lys Leu Asn Asn Leu His Glu Leu Glu Thr Glu
275 280 285

Lys Leu Lys Val Glu Glu Asp Glu Glu Asp Glu Asp Ser Leu Asp
290 295 300

Glu Lys Arg Ser Asp Val Arg Ser Asp Ser Met Ser Ala Gln Arg Ser
305 310 315 320

Ile Lys Ser Phe Thr Ala Ser Leu Glu Gly Ser Lys Ser Val Ser Lys
325 330 335

Leu Ile Ser Asn Ser Gly Lys Lys Ile Asn Cys Pro Lys Asn Asn Cys
340 345 350

Asp Arg Met Phe Ser Arg Glu Tyr Asp Leu Arg Arg His Leu Lys Trp
355 360 365

His Asp Asp Asn Leu Gln Arg Ile Glu Ser Phe Leu Asn Ser Ile Glu
370 375 380

Lys Glu Glu Thr Pro Glu Gly Glu Pro Leu Val Lys Lys Ala Arg Met
385 390 395 400

Asp Leu Leu Pro Asn Glu Thr Ser Val Ile Ser Arg
405 410

<210> 4
<211> 21
<212> ADN
<213> Candida albicans

<400> 4
atgagtgaaa gtgacgaaac c

21

<210> 5
<211> 24
<212> ADN
<213> Candida albicans

<400> 5
attggaatgg ttttttttcg gaat

24

<210> 6
<211> 23
<212> ADN
<213> Candida albicans

<400> 6
tggtttcgtc actttcactc att

23

<210> 7
<211> 25
<212> ADN
<213> Candida albicans

<400> 7
atgttaagtc atgatgattc tacca

25

<210> 8
<211> 27
<212> ADN
<213> Candida albicans

<400> 8
ccttagaatt caccatgagt gaaaagtg

27

<210> 9
<211> 27
<212> ADN
<213> Candida albicans

<400> 9
gctgagctcg agtattatcg agaaaatc

27

INTERNATIONAL SEARCH REPORT

In. [REDACTED] Application No
PCT/EP 99/02739

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/31 C07K14/40 A61K38/17 A61K39/00 G01N33/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07K C12N A61K G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>ARCHAMBAULT J ET AL: "The deduced sequence of the transcription factor TFIIIA from <i>Saccharomyces cerevisiae</i> reveals extensive divergence from <i>Xenopus</i> TFIIIA" JOURNAL OF BIOLOGICAL CHEMISTRY, US, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, vol. 267, no. 5, 15 February 1992 (1992-02-15), page 3282-3288 XP002108811 ISSN: 0021-9258 ---</p>	1-12
A	<p>WO 97 37230 A (SCRIPTGEN PHARM INC; HARVARD COLLEGE (US)) 9 October 1997 (1997-10-09) -----</p>	19

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

8 February 2000

Date of mailing of the international search report

14/02/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Schönwasser, D

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FR 99/02739

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: **Claims 20-23**
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
See supplementary sheet INFORMATION FOLLOW-UP PCT/ISA/210

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR 99/02739

Continuation of Box I.2**Claims Nos.: 20.23**

It was not possible to carry out a significant search for Claims 20-23, since said claims attempt to define the subject matter for which protection is being sought by the aim to be achieved, that is the use of an antifungal product (or its composition, see Claim 22) without having previously defined the antifungal product by characteristics peculiar thereto (for example, by the chemical formula, the nucleotide/protein sequence, the molecular weight etc.). As a result, the subject matter of said claims is not clearly defined (PCT Article 5 and 6).

The applicant's attention is drawn to the fact that claims, or parts of claims, concerning inventions in respect of which no search report has been established need not be the subject of a preliminary examination report (PCT Rule 66.1 (e)). The applicant is warned that the guideline adopted by the EPO acting in its capacity as International Preliminary Examining Authority is not to proceed with a preliminary examination of a subject matter unless a search has been carried out thereon. This position will remain unchanged, notwithstanding that the claims have or have not been modified, either after receiving the search report, or during any procedure under Chapter II.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/FR 99/02739

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9737230 A	09-10-1997	US 5863762 A	26-01-1999	CA 2250121 A EP 0894269 A

RAPPORT DE RECHERCHE INTERNATIONALE

De. Internationale No
PCT/FR 99/02739

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 C12N15/31 C07K14/40 A61K38/17 A61K39/00 G01N33/50

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)
CIB 7 C07K C12N A61K G01N

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	ARCHAMBAULT J ET AL: "The deduced sequence of the transcription factor TFIIIA from <i>Saccharomyces cerevisiae</i> reveals extensive divergence from <i>Xenopus</i> TFIIIA" JOURNAL OF BIOLOGICAL CHEMISTRY, US, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, vol. 267, no. 5, 15 février 1992 (1992-02-15), page 3282-3288 XP002108811 ISSN: 0021-9258 ---	1-12
A	WO 97 37230 A (SCRIPTGEN PHARM INC; HARVARD COLLEGE (US)) 9 octobre 1997 (1997-10-09) -----	19

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- "&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

8 février 2000

Date d'expédition du présent rapport de recherche internationale

14/02/2000

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Schönwasser, D

RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale n°

PCT/FR 99/02739

Cadre I Observations – lorsqu'il a été estimé que certaines revendications ne pouvaient pas faire l'objet d'une recherche (suite du point 1 de la première feuille)

Conformément à l'article 17.2)a), certaines revendications n'ont pas fait l'objet d'une recherche pour les motifs suivants:

1. Les revendications n°s _____ se rapportent à un objet à l'égard duquel l'administration n'est pas tenue de procéder à la recherche, à savoir:

2. Les revendications n°s 20–23 se rapportent à des parties de la demande internationale qui ne remplissent pas suffisamment les conditions prescrites pour qu'une recherche significative puisse être effectuée, en particulier:
voir feuille supplémentaire SUITE DES RENSEIGNEMENTS PCT/ISA/210

3. Les revendications n°s _____ sont des revendications dépendantes et ne sont pas rédigées conformément aux dispositions de la deuxième et de la troisième phrases de la règle 6.4.a).

Cadre II Observations – lorsqu'il y a absence d'unité de l'invention (suite du point 2 de la première feuille)

L'administration chargée de la recherche internationale a trouvé plusieurs inventions dans la demande internationale, à savoir:

1. Comme toutes les taxes additionnelles ont été payées dans les délais par le déposant, le présent rapport de recherche internationale porte sur toutes les revendications pouvant faire l'objet d'une recherche.

2. Comme toutes les recherches portant sur les revendications qui s'y prétaient ont pu être effectuées sans effort particulier justifiant une taxe additionnelle, l'administration n'a sollicité le paiement d'aucune taxe de cette nature.

3. Comme une partie seulement des taxes additionnelles demandées a été payée dans les délais par le déposant, le présent rapport de recherche internationale ne porte que sur les revendications pour lesquelles les taxes ont été payées, à savoir les revendications n°s _____

4. Aucune taxe additionnelle demandée n'a été payée dans les délais par le déposant. En conséquence, le présent rapport de recherche internationale ne porte que sur l'invention mentionnée en premier lieu dans les revendications; elle est couverte par les revendications n°s _____

Remarque quant à la réserve

- Les taxes additionnelles étaient accompagnées d'une réserve de la part du déposant.
 Le paiement des taxes additionnelles n'était assorti d'aucune réserve.

RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale No. PCT/FR 99 A2739

SUITE DES RENSEIGNEMENTS INDIQUES SUR PCT/SA/ 210

Suite du cadre I.2

Revendications nos.: 20-23

Il n'a pas été possible d'effectuer une recherche significative pour les revendications 20 - 23, parce que ces revendications essaient de définir l'objet de la protection par le but à atteindre, c. a. d. l'utilisation d'un produit antifongique (ou sa composition, voir revendication 22) sans avoir défini le produit antifongiques par des caractéristiques propres à ce dernier (comme par exemple la formule chimique, la séquence nucléotique/protéique, le poids moléculaire etc.). De ce fait l'objet de ces revendications n'est pas clairement défini (Articles 5 et 6 PCT).

L'attention du déposant est attirée sur le fait que les revendications, ou des parties de revendications, ayant trait aux inventions pour lesquelles aucun rapport de recherche n'a été établi ne peuvent faire obligatoirement l'objet d'un rapport préliminaire d'examen (Règle 66.1(e) PCT). Le déposant est averti que la ligne de conduite adoptée par l'OEB agissant en qualité d'administration chargée de l'examen préliminaire international est, normalement, de ne pas procéder à un examen préliminaire sur un sujet n'ayant pas fait l'objet d'une recherche. Cette attitude restera inchangée, indépendamment du fait que les revendications aient ou n'aient pas été modifiées, soit après la réception du rapport de recherche, soit pendant une quelconque procédure sous le Chapitre II.

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

de Internationale No

T/FR 99/02739

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
WO 9737230	A 09-10-1997	US 5863762 A CA 2250121 A EP 0894269 A	26-01-1999 09-10-1997 03-02-1999

