UNIT 2 COMPLEX NUMBERS

Structure

- 2.0 Introduction
- 2.1 Objectives
- 2.2 Complex Numbers
- 2.3 Algebra of Complex Numbers
- 2.4 Conjugate and Modules of a Complex Number
- 2.5 Representation of a Complex Numbers as Points in a Plane and Polar form of a Complex Number
- 2.6 Powers of Complex Numbers
- 2.7 Answers to Check Your Progress
- 2.8 Summary

2.0 INTRODUCTION

All the numbers with which we have dealt so far were real numbers. However, some solutions in mathematics, such as solving quadratic equations require a new set of numbers. This new set of numbers is called the set of *complex numbers*.

If we solve the equation $x^2 = 4$ for x, we find the equation has two solutions. $x^2 = 4 \Rightarrow x = \sqrt{4} = 2$ or $x = -\sqrt{4} = -2$.

If we solve the equation $x^2 = -1$ in a similar way, we would expect it to have two solutions also.

$$x^2 = -1$$
 should imply $x = \sqrt{-1}$ or $x = -\sqrt{-1}$.

Each proposed solution of the equation $x^2 = -1$ involves the symbol $\sqrt{-1}$. For years it was believed that square roots of negative numbers denoted by $\sqrt{-5}$, $\sqrt{-2}$ and $\sqrt{-6}$ were nonsense. In the 17^{th} century, these symbols were termed *imaginary numbers* by Rene Descartes (1596-1650). Now, the imaginary numbers are no longer thought to be impossible. In fact imaginary numbers have important uses in several branches mathematics and physics.

The number $\sqrt{-1}$ occurs so often in mathematics, that we give it a special symbol. We use better i to denote $\sqrt{-1}$. Since i stand for $\sqrt{-1}$, it immediately follows that $i^2 = -1$. The power of i with natural exponent produces an interesting pattern, as follows:

$$i^{1} = i$$
, $i^{2} = -1$, $i^{3} = -i$, $i^{4} = 1$, $i^{5} = i$, $i^{6} = -1$, $i^{7} = -i$, $i^{8} = 1$
also $i^{-1} = -i$, $i^{-2} = -1$, $i^{-3} = i$, $i^{-4} = 1$

2.1 OBJECTIVES

After studying this unit, you will be able to:

- define complex number and perform algebraic operations such as addition, substraction, multiplication and division on the complex numbers;
- find modulus, argument and conjugate of a complex number;
- represent complex numbers in the argand plane;
- write polar form of a complex number;
- use Demoivre's theorem; and
- find cube roots of unity and verify some of the identities involving them.

2.2 COMPLEX NUMBERS

Definition : A *complex number* is any number that can be put in the form a + bi, where a and b are real number and $i = \sqrt{-1}$. The form a + bi is called **standard form** for complex number. The number a is called the real part of the complex number. The number b is called imaginary part of the complex number.

We usually denote a complex number by z. We write z = a + bi. The real part of z is denoted by Re (z) and the imaginary part of z is denoted by Im(z).

Figure 1

If b = 0, the complex number a + bi is the real number a. Thus, any real number is a complex number with zero imaginary part. In other words, the set of real numbers is a subset of the set of complex numbers.

Equality of two Complex Numbers

Two complex numbers are equal if and only if their real parts are equal and also their imaginary parts are equal.

Thus if, $z_1 = a + bi$ and $z_2 = c + di$ are two complex numbers, then $z_1 = z_2$, that is, a + bi = c + di if and only if a = c and b = d.

Example 1 (a)

- (a) Find x and y if 3x + 4i = 12 8yi
- (b) Find a and b if (4a-3) + 7i = 5 + (2b-1)i

Solution:

(a) Since the two complex numbers are equal, their real parts are equal and their imaginary parts are equal:

$$3x = 12$$
 and $4 = 8y \Rightarrow x = 4$ and $y = -1/2$

(b) The real parts are 4a - 3 and 5. The imaginary parts are 5 and 2b - 1.

$$4a - 3 = 5$$
 and $7 = 2b - 1 \Rightarrow 4$ $a = 8$ and $2b = 8 \Rightarrow a = 2$ and $b = 4$.

2.3 ALGEBRA OF COMPLEX NUMBERS

Addition of two Complex Numbers

Two complex numbers such as $z_1 = a + bi$ and $z_2 = c + di$ are added as if they are algebraic binomials:

$$z_1 + z_2 = (a + bi) + (c + di) = (a + c) + (b + d)i$$

Observe that a + bi = (a + 0i) + (0 + bi). In other words, a + bi is the sum of the real number a and the imaginary number bi.

Also observe that $z_1 + z_2$ is a complex number.

Illustration

(i)
$$(3+4i)+(7-6i)=(3+7)+(4-6)i=10-2i$$

(ii)
$$(8-3i) + (6-2i) = (8+6) + (-3-2)i = 14-5i$$

Subtraction of Complex Numbers

If $z_1 = a + bi$ and $z_2 = c + di$, we define $z_1 - z_2$ as $z_1 + (-z_2)$.

That is,
$$z_1 - z_2 = (a + bi) + ((-c) + (-d)i) = (a - c) + (b - d)i$$

Algebra - II Example 2

Fill in the blanks

(i)
$$(-4+10i)+(-1+2i)=...$$
 (ii) $(-6+17i)+(4-11i)=...$

(ii)
$$(-4+2i)+(7-2i)=...$$
 (iv) $(3-5i)+(-3+5i)=...$

Solution

(i)
$$-5 + 12i$$

(ii)
$$-2 + 6i$$

Example 3

Fill in the blanks

(i)
$$-(3+4i) = \dots$$

(ii)
$$(3-2i)-(4-3i)=\dots$$

(iii)
$$(2+3i)-(i)$$

(iv)
$$(5+2i)-2=...$$

Solution

(i)
$$-3-4i$$

(ii)
$$-1 + i$$

(iii)
$$2 + 2i$$

(iv)
$$3 + 2i$$

Multiplication of Complex Numbers

Two complex numbers such as $z_1 = a + bi$ and $z_2 = c + di$ are multiplied as if they were algebraic binomials, with $i^2 = -1$;

$$z_1$$
 $z_2 = (a + bi)(c + di) = (ac - bd) + (ad + bc)i$

By definition, product of two complex numbers is again a complex number. Also observe that yi = (y + 0i) (0 + 1i) and is, thus the product of the real number y and the imaginary number i.

Illustration 1

$$(3+2i)(4+5i) = 12+5i+8i+10i^2 = 12+15i+8i-10=2+23i$$
 [: $i^2 = -1$] and $(2+5i)(7+3i) = 14+6i+35i+15i^2 = 14+6i+35i-15=-1+41i$ [: $i^2 = -1$]

Example 4 Perform the indicated operations and write the results in the form of a + bi

(i)
$$(2+3i)^2$$
 (ii) $(1+i)^3$ (iii) $(\sqrt{5}+7i)(\sqrt{5}-7i)$

Solution

(i)
$$(2+3i)^2 = (2+3i)(2+3i) = (2)(2) + (2)(3i) + (2)(3i) + (3i)(3i)$$

= $4+6i+6i+9i^2 = 4+12i-9 = -5+12i$

(ii)
$$(1+i)^3 = (1+i)(1+i)(1+i) = (1+i+i+i^2)(1+i) = (1+i+i-1)(1+i)$$

= $2i(1+i) = 2i - 2i^2 = -2 + 2i$

(iii)
$$(\sqrt{5} + 7i)(\sqrt{5} - 7i) = (\sqrt{5})(\sqrt{5}) - (\sqrt{5})(7i) + (\sqrt{5})(7i) - (7i)(7i)$$

$$= 5 + 7(\sqrt{5}i) - 7(\sqrt{5}i) - 49i^2 = 5 + 49 = 54$$

Multiplicative Inverse of a Non-Zero Complex Number

If $a + i \ b \neq 0$ is any complex number, then there exists a complex number x + iy such that

$$(a+i b) (x+i y) = 1 + 0i =$$
the multiplicative identity in C .

The number x + iy is called the multiplicative inverse of (a + ib) in C.

Now,
$$(a + ib)(x + iy) = 1 + 0i \Rightarrow (ax - by) + i(ay - bx) = 1 + 0i$$

[multiplication of complex numbers]

$$\Rightarrow$$
 $ax - by = 1$ and $ay + bx = 0$ [equality of two complex numbers]

$$\Rightarrow$$
 $ax - by - 1 = 0$ and $ay + bx = 0$

Solving these equations for x and y, we have

$$x = \frac{a}{a^2 + h^2} \tag{1}$$

$$y = \frac{-b}{a^2 + h^2} \tag{2}$$

both of which exist in **R**, because $(a + ib) \neq 0$ i.e., at least one of a, b is different from zero.

Algebra - II

Thus, the multiplicative inverse is of a + ib is

$$x + iy = \frac{a}{a^2 + b^2} - i \frac{a}{a^2 + b^2} = \frac{a - ib}{a^2 + b^2}$$

Thus, every non-zero complex number has a multiplicative inverse in C.

Division in Complex Numbers

If $\mathbb{Z}_1 = x + i y$ and $\mathbb{Z}_2 = a + ib \neq 0$,

then

$$\frac{Z_1}{Z_2} = \frac{x + iy}{a + ib} = (x + iy) \frac{1}{(a + ib)}$$

$$= (x + iy) \frac{(a - ib)}{(a^2 + b^2)}$$

$$= \frac{ax + by}{a^2 + b^2} + i \frac{bx - ay}{a^2 + b^2}$$

Example 5 If $\left(\frac{1-i}{1+i}\right)^{100} = a + ib$, then show that a = 1 and b = 0

Solution: We have

$$\frac{1-i}{1+i} = \frac{(1-i)}{(1-i)} \frac{(1-i)}{(1+i)} = \frac{(1-i)^2}{1^2 - i^2}$$
$$= \frac{1-2i+i^2}{2} = \frac{1-2i-1}{2} = -i$$

Thus,
$$\left(\frac{1-i}{1+i}\right)^{100} = (-i)^{100} = 1$$

 $\therefore a + ib = 1 \Rightarrow a = 1 \text{ and } b = 0$

Example 6 : If $x = -2 - \sqrt{3}i$, find the value of $2x^4 + 5x^3 + 7x^2 - x + 41$.

Solution:

$$x = -2 - \sqrt{3} i, \Rightarrow x + 2 = -\sqrt{3} i \Rightarrow (x + 2)^2 = (-\sqrt{3} i)^2$$

\Rightarrow x^2 + 4x + 4 = -3 or x^2 + 4x + 7 = 0

We now divide $2x^4 + 5x^3 + 7x^2 - x + 41$ by $x^2 + 4x + 7$

$$x^{2} + 4x + 7 \int 2x^{4} + 5x^{3} + 7x^{2} - x + 41$$

$$2x^{4} + 8x^{3} + 14x^{2}$$

$$9 \quad 9 \quad 9$$

$$-3x^{3} - 7x^{2} - x + 41$$

$$-3x^{3} - 12x^{2} - 21x$$

$$9 \quad 9$$

$$5x^{2} + 20x + 41$$

$$5x^{2} + 20x + 35$$

$$9 \quad 9$$

$$6$$

Thus,
$$2x^4 + 5x^3 + 7x^2 - x + 41 = (x^2 + 4x + 7)(2x^2 - 3x + 5) + 6$$

$$=(0)(2x^2-3x+5)+6=6$$

$$\therefore$$
 value of $2x^4 + 5x^3 + 7x^2 - x + 41$ for $x = -2 - \sqrt{3}i$ is 6.

Check Your Progress - 1

1. Is the following computation correct?

$$\sqrt{-5} \sqrt{-7} = \sqrt{(-5)(-7)} = \sqrt{35}$$

- 2. Express each one of the following in the standard form a + ib.
 - (i) $\frac{1}{5-4i}$ (ii) $\frac{7+2i}{2-7i}$ (iii) $\frac{1}{\cos\theta + i\sin\theta}$ (iv) $\frac{2-\sqrt{-25}}{1-\sqrt{-16}}$
- 3. Find the multiplicative inverse of

(i)
$$\frac{1+i}{1-i}$$
 (ii) $(1+\sqrt{3}i)^2$ (iii) $(1+i)(1+2i)$

4. Find the value of $x^4 - 4x^3 + 4x^2 + 8x + 40$

when
$$x = 3 + 2i$$
.

5. If $(x + iy)^{1/3} = a + ib$, prove that

$$\frac{x}{a} + \frac{y}{b} = 4(a^2 - b^2)$$

6. Find the smallest positive integer for which

$$\left(\frac{1+i}{1-i}\right)^n = 1$$

2.4 CONJUGATE AND MODULUS OF A COMPLEX **NUMBER**

Conjuate of a Complex Number

Definition: If $\mathbf{z} = x + i y$, $x, y \in \mathbf{R}$ is a complex number, then the complex number x - iy is called conjugate of z and is denoted by \bar{z} .

For instance,

$$\overline{2+3i} = 2-3i$$
, $\overline{3-4i} = 3+4i$, $\overline{i} = -i$ and

$$\overline{3} = \overline{3 + 0i} = 3 - 0i = 3$$

Some properties of Complex Conjugates

1.
$$\overline{\overline{Z}} = Z$$

$$2. \qquad \overline{Z_1 Z_2} = \overline{Z_1} \ \overline{Z_2}$$

$$\overline{Z_1} + \overline{Z_2} = \overline{Z_1} + \overline{Z_2}$$

$$\overline{Z_1} + \overline{Z_2} = \overline{Z_1} + \overline{Z_2}$$
 4. $\overline{\left(\frac{Z_1}{Z_2}\right)} = \frac{\overline{Z_1}}{\overline{Z_2}} if Z_2 \neq 0$

5 If
$$\mathbf{Z} = a + ib$$
, then

$$\mathbf{Z} + \mathbf{\overline{Z}} = 2 \ a = 2 \ (\mathbf{Z})$$

and
$$\mathbb{Z} - \overline{\mathbb{Z}} = 2 i \mathbf{b} = 2i \operatorname{Im} (\mathbb{Z})$$

6.
$$\mathbf{Z} = \mathbf{\bar{Z}}$$

 \Leftrightarrow **Z** is real

7.
$$\mathbf{Z} = -\mathbf{\bar{Z}}$$

 \Leftrightarrow **Z** is imaginary

Modulus of a Complex Number

Definition: If $\mathbb{Z} = x + iy$, $x, y \in \mathbb{R}$ is a complex number, then the real number $\sqrt{x^2 + y^2}$ is called the modulus of the complex number \mathbb{Z} , and is denoted by $|\mathbb{Z}|$.

For instance, if
$$\mathbb{Z} = 2 + 3i$$
, then $|\mathbb{Z}| = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13}$ and if $\mathbb{Z} = 5 - 12i$, then $|\mathbb{Z}| = \sqrt{5^2 + (-12)^2} = \sqrt{25 + 144} = \sqrt{169} = 13$
Note that

$$|\mathbf{Z}| = |-\mathbf{Z}| = |-\mathbf{\overline{Z}}| = |\mathbf{Z}|.$$

and if c is a real number, then $|c\mathbf{Z}| = |c| |\mathbf{Z}|$

Some properties of Modulus of complex numbers

1.
$$|\mathbf{Z}|^2 = \mathbf{Z} \, \mathbf{\overline{Z}}$$

2.
$$|\mathbf{Z}| = 0 \iff \mathbf{Z} = 0$$

3.
$$\frac{1}{z} = \frac{\overline{z}}{|z|^2} \text{ if } \overline{z} \neq 0$$

4.
$$|\mathbf{Z}_1\mathbf{Z}_2| = |\mathbf{Z}_1| |\mathbf{Z}_2|$$

5.
$$\left|\frac{\mathbf{Z}_1}{\mathbf{Z}_2}\right| = \frac{|\mathbf{Z}_1|}{|\mathbf{Z}_2|} \text{ if } \mathbf{Z}_2 \neq 0$$
 6. $-|\mathbf{Z}| \leq \mathbf{Z} \leq |\mathbf{Z}|$

$$6. - | \mathbf{Z} | \le \mathbf{Z} \le | \mathbf{Z}$$

7.
$$|\mathbf{Z}_1 + \mathbf{Z}_2|^2 = |\mathbf{Z}_1|^2 + |\mathbf{Z}_2|^2 + \mathbf{Z}_1 \overline{\mathbf{Z}}_2 + \overline{\mathbf{Z}}_1 \mathbf{Z}_2$$

= $|\mathbf{Z}_1|^2 + |\mathbf{Z}_2|^2 + 2Re(\mathbf{Z}_1 \overline{\mathbf{Z}}_2)$

Example 7: If $a + ib \neq 0$, show that

$$\left| \frac{a - ib}{a + ib} \right| = 1$$

Solution : Let = a + ib, then = a - ib

Since $|\overline{Z}| = |\overline{Z}|$, we get

$$1 = \frac{|\overline{\mathbf{Z}}|}{|\mathbf{Z}|} = \left| \frac{\overline{\mathbf{Z}}}{\mathbf{Z}} \right| = \left| \frac{a - ib}{a + ib} \right|$$

$$\left[\because \left|\frac{\mathbf{Z}_1}{\mathbf{Z}_2}\right| = \frac{|\mathbf{Z}_1|}{|\mathbf{Z}_2|}\right]$$

Example 8: If
$$x + iy = \sqrt{\frac{a+ib}{c+id}}$$
, then $x^2 + y^2 = \sqrt{\frac{a^2+b^2}{c^2+d^2}}$

Solution:

$$(x+iy)^2 = \frac{a+ib}{c+id}$$

$$\Rightarrow |(x+iy)^2| = \left|\frac{a+ib}{c+id}\right|$$

$$\Rightarrow |(x+iy)|^2 = \left| \frac{a+ib}{c+id} \right| \left[\because \frac{|\mathbf{Z}_1|}{|\mathbf{Z}_2|} = \left| \frac{\mathbf{Z}_1}{\mathbf{Z}_2} \right| \right]$$

$$\Rightarrow \left(\sqrt{x^2 + y^2}\right)^2 = \frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2}}$$

$$\Rightarrow x^2 + y^2 = \sqrt{\frac{a^2 + b^2}{c^2 + d^2}}$$

Example 9: If $(a-ib)(x+iy) = (a^2+b^2)i$ and $a+ib \neq 0$, show that x=b and y = a.

Solution: Let $\mathbf{Z} = a + ib$, then $\mathbf{Z} \ \bar{\mathbf{Z}} = a^2 + b^2$

Now,
$$(a+ib)(x-iy) = (a^2 + b^2)i$$

$$\Rightarrow$$
 $\mathbf{Z}(x+iy) = \mathbf{Z}\mathbf{\bar{Z}}i$

$$\Rightarrow x + iy = \overline{Z}i = (a - ib)i = ai + b$$

$$\Rightarrow x = b, y = a$$

[by definition of equality of Compex Numbers]

Algebra - II Check Your Progress – 2

- 1. Let $\mathbb{Z} = x + iy$ and $\omega = \frac{1 i\mathbb{Z}}{\mathbb{Z} i}$. If $|\omega| = 1$, show that \mathbb{Z} is purely real.
- 2. If $|\mathbf{Z}| = 1$, $\mathbf{Z} \neq -1$ show that $\frac{\mathbf{Z} 1}{\mathbf{Z} + 1}$ is purely imaginary
- 3. If $|\mathbf{z} \mathbf{i}| = |\mathbf{z} + \mathbf{i}|$, show that Im $(\mathbf{Z}) = 0$.
- 4. If (a + bi)(3 + i) = (1 + i)(2 + i), find a and b.
- 5. If $(\cos \theta + i \sin \theta)^2 = x + iy$, that show $x^2 + y^2 = 1$.

2.5 REPRESENTATION OF A COMPLEX NUMBERS AS POINTS IN A PLANE AND POLAR FORM OF A COMPLEX NUMBER

Let OX and OY be two rectangular axes in a plane with their point of intersection as the origin.

To each ordered pair (x,y) there corresponds a point P in the plane such that the x-coordinate of P is x and the y – coordinate of P is y. Thus, to a complex number z = x + iy where corresponds a point P(x,y) in the plane. Conversely, to every point P'(x', y') there corresponds a complex number x' + iy'.

Thus, there is one-to-one correspondence between the set C of all complex numbers and the set of all the points in a plane.

For Example, the complex number 4 + 3i is represented by the point (4, 3) and the point (-3, -4) represents the complex number -3 - 4i.

We note that the points corresponding to the complex numbers of the type a lie on the x-axis and the complex numbers of the type bi are represented by points on the y-axis.

Note that the points z and -z are symmetric with respect to point O, while points z and $-\overline{z}$ are symmetric with respect to the real axis, since if z = x + iy, then -z - (-x) + i(-y) and $\overline{z} = x + i(-y)$. See Figure 3.

Remark : Since the points on the *x*-axis represent complex number *z* with I(z) = 0, the *x*-axis is also known as the real axis. Points on the y-axis represent complex numbers z with R(z) = 0, the y-axis is also known as the imaginary axis. The plane is called as the *Argand plane*, *Argand diagram*, *complex plane or Gaussian plane*.

Note that
$$OP = \sqrt{x^2 + y^2} = |z|$$

Polar Representation of Complex Numbers

Let P(z) represents the complex number z = x + iy as shown in the complex plane. Recall that the modulus or the absolute value of the complex number z is defined as the length OP. It is denoted by |z|. Thus if r = OP; we have

$$r = |z| = OP$$

$$= \sqrt{OM^2 + PM^2} = \sqrt{x^2 + y^2}$$

$$= \sqrt{[Re(z)]^2 + [Im(z)]^2}$$

$$y \uparrow$$

$$r = |z|$$

$$\theta = arg(z)$$

$$x \to M$$
Figure 5

If θ be the angle which OP makes with OX in anticlockwise sense, then θ is called the *argument* or *amplitude* of the complex number z = x + iy.

Now in the right triangle \triangle OMP,

$$x = OM = OP \cos \theta = r \cos \theta \tag{1}$$

$$y = MP = OP \sin \theta = r \sin \theta \tag{2}$$

Thus, the complex number z can be written as

$$z = x + iy = r \cos \theta + ir \sin \theta = r (\cos \theta + i \sin \theta)$$

This, is known as the *polar* form of the complex number.

Squaring and adding (1) and (2) we have

$$x^2 + y^2 = r^2 cos^2 \theta + r^2 sin^2 \theta = r^2 (cos^2 \theta + sin^2 \theta) = r^2.1 = r^2$$
[Pythagorean identity]
Thus $r^2 = x^2 + y^2$ or $r = \sqrt{x^2 + y^2}$

which is the *modulus* of the complex number z = x + iy.

Dividing (2) and (1), we have

$$\frac{y}{x} = \frac{r \sin \theta}{r \cos \theta} = \tan \theta \Rightarrow \tan \theta = \frac{y}{x}.$$

 θ is the argument of the complex number z = x + iy.

The value of θ ($-\pi < \theta \le \pi$) is called the *principal* value of the argument or amplitude of z. We denote it by Arg z instead of arg z.

2.6 POWERS OF COMPLEX NUMBERS

Product of *n* **Complex Numbers**

We first take up product of complex numbers.

$$z_1 z_2 \dots z_n = r_1 r_2 \dots r_n [\cos(\theta_{1} + \theta_{2} + \dots + \theta_{n}) + i \sin(\theta_{1} + \theta_{2} + \dots + \theta_{n})]$$

However, we shall not prove this statement.

When
$$r_1 = r_2 = \dots r_n = 1$$
, we get
$$(\cos \theta_1 + i \sin \theta_1) (\cos \theta_2 + i \sin \theta_2) \dots (\cos \theta_n + i \sin \theta_n)$$

$$= \cos (\theta_{1+} \theta_{2+} \dots \theta_n) + i \sin(\theta_{1+} \theta_{2+} \dots \theta_n)$$
(1)

Corollary 1. $\cos(\theta_1 + \theta_2) = \cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2$ and

2.
$$\sin(\theta_1 + \theta_2) = \sin\theta_1 \cos\theta_2 + \cos\theta_1 \sin\theta_2$$

Proof From (1), above we have

$$\cos(\theta_{1} + \theta_{2}) + i \sin(\theta_{1} + \theta_{2})$$

$$= (\cos\theta_{1} + i \sin\theta_{1}) (\cos\theta_{2} + i \sin\theta_{2})$$

$$= (\cos\theta_{1} \cos\theta_{2} - \sin\theta_{1} \sin\theta_{2}) + i (\sin\theta_{1} \cos\theta_{2} + \cos\theta_{1} \sin\theta_{2})$$

Equating real and imaginary parts, we get

$$\cos(\theta_{1+}\theta_{2}) = \cos\theta_{1}\cos\theta_{2} - \sin\theta_{1}\sin\theta_{2}$$

and
$$\sin(\theta_{1+}\theta_{2}) = \sin\theta_{1}\cos\theta_{2} + \cos\theta_{1}\sin\theta_{2}$$

De Moivre's Theorem (for Integral Index)

Taking $\theta_1 = \theta_2 \dots \theta_n = \theta$ in (1) we obtain

$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$

This proves the result for positive integral index.

However, it is valid for every integer n.

Example 10: Use De Moivre's theorem to find $(\sqrt{3} + i)^3$.

Solution: We first put $\sqrt{3} + i$ in the polar form.

Let
$$\sqrt{3} + i = r(\cos\theta + i\sin\theta)$$

 $\Rightarrow \sqrt{3} = r\cos\theta \text{ and } 1 = r\sin\theta$
 $\Rightarrow (\sqrt{3})^2 + 1^2 = r^2(\cos^2\theta + \sin^2\theta)$
 $\Rightarrow r^2 = 4 \Rightarrow r = 2$
Thus, $\sqrt{3} + i = 2(\cos\theta + i\sin\theta)$
 $\Rightarrow \sqrt{3} = 2\cos\theta \text{ and } 1 = 2\sin\theta$
 $\Rightarrow 2\cos\theta = \frac{\sqrt{3}}{2} \text{ and } \sin\theta = \frac{1}{2}$
 $\Rightarrow \theta = 30^\circ$.
Now, $(\sqrt{3} + i)^3 = [2\cos(30^\circ) + i\sin(30^\circ)]^3$
 $= 2^3 [\cos(30^\circ) + I\sin(30^\circ)]^3$

8
$$[\cos(3 \times 30^\circ) + i \sin(3 \times 30^\circ)]$$
 [De Moivre's theorem]

$$= 8 (\cos 90^{\circ} + i \sin 90^{\circ}) = 8(0+i)$$

$$=$$
 $8i$

Cube Roots of Unity

Let
$$x = (1)^{1/3}$$

$$\Rightarrow x^3 = 1 \Rightarrow x^3 - 1 = 0 \Rightarrow (x - 1)(x^3 + x + 1) = 0$$

Therefore, either $x - 1 = 0 \Rightarrow (x - 1)(x^2 + x + 1) = 0$

$$\Rightarrow either \ x = 1 \ or \ x = \frac{-1 \ \pm \ \sqrt{(1-4)}}{2} = \frac{-1 \pm \sqrt{(-3)}}{2} = \frac{-1 \pm i \ \sqrt{(3)}}{2}$$

Thus, the three cube roots of unity are, $1, \frac{-1}{2} + i \frac{\sqrt{3}}{2}, \frac{-1}{2} - i \frac{i\sqrt{3}}{2}$

Hence, there are three cube roots of unity.

Out of these one root (i.e., 1) is real and remaining two viz.,

$$\frac{-1+i\sqrt{(3)}}{2}$$
 and $\frac{-1-i\sqrt{(3)}}{2}$ are complex.

We usually denote the cube root $\frac{-1}{2} + \frac{\sqrt{3}}{2}i$ by ω note that

$$\omega^2 = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^2 = \frac{1}{4} - \frac{3}{4} - \frac{2\sqrt{3}}{4}i = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

Hence, the cube roots of unity are 1, ω , ω^2 .

Also, note that $\omega^3 = 1$.

Some properties of Cube Roots of Unity

1.
$$1 + \omega + \omega^2 = 0$$

2.
$$\omega^3 = 1$$

3.
$$\frac{1}{\omega} = \omega^2$$
 and $\frac{1}{\omega^2} = \omega$

Example 11: If 1, ω , ω^2 are cube roots of unity, show that

(i)
$$(1+\omega)^2 - (1+\omega)^3 + \omega^2 = 0$$

(ii)
$$(2-\omega)(2-\omega^2)(2-\omega^{10})(2-\omega^{11})=49$$

Solution: (i) As $1 + \omega + \omega^2 = 0$, we get

$$1 + \omega = -\omega^2$$
 and $1 + \omega^2 = -\omega$

Thus,

$$(1 + \omega)^2 - (1 + \omega^2)^3 + \omega^2$$

$$= (-\omega^2)^2 - (-\omega)^3 + \omega^2$$

$$= \omega^4 + \omega^3 + \omega^2 = \omega^3 \omega + 1 + \omega^2$$

 $= \omega + 1 + \omega^2 = 0$

(ii) Since
$$\omega^{10} = (\omega^3)^3 \omega = \omega$$

and
$$\omega^{11} = (\omega^3)^3 \ \omega^2 = \omega^2$$
,

Thus
$$(2-\omega)$$
 ($2-\omega^2$) ($2-\omega^{10}$) ($2-\omega^{11}$)

$$=(2-\omega)(2-\omega^2)(2-\omega)(2-\omega^2)$$

$$=[(2-\omega)(2-\omega^2)]^2$$

$$= [4 - 2\omega - 2\omega^2 + \omega^3]^2$$

$$= [4 - 2(\omega + \omega^2) + 1]^2$$

$$= [4 - 2(-1) + 1]^2$$

$$=7^2=49$$

Example 12: If x = a + b, $y = a \omega + b \omega^2$

and
$$z = a \omega^2 + b\omega$$
, show that

$$xyz = a^3 + b^3$$

Solution: xyz

$$= (a+b) (a\omega + b\omega^2) (a\omega^2 + b\omega)$$

$$= (a + b) (a^3 \omega^3 + ab\omega^4 + ab\omega^2 + b^2\omega^3)$$

=
$$(a+b)(a^2 + ab(\omega^3\omega + \omega^2) + b^2)$$
 [: $\omega^3 = 1$]

$$= (a+b)[a^2+ab(-1)+b^2)]$$

$$= (a+b)(a^2-ab+b^2)$$

$$= a^3 + b^3 \qquad [\because a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

 $[:: \omega + \omega^2 = -1]$

Algebra - II Check Your Progress - 3

- 1. Calculate
 - (i) $(\cos 30^{\circ} + i \sin 30^{\circ}) (\cos 60^{\circ} + i \sin 60^{\circ})$
 - (ii) $(\cos \theta + i \sin \theta) (\cos \theta i \sin \theta)$
 - (iii) $(\cos 45^{\circ} + i \sin 45^{\circ})^2$
- 2. Use identities

$$\cos (\theta_1 + \theta_2) = \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2$$

$$\sin (\theta_1 + \theta_2) = \sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2 \text{ to obtain values of}$$

- (i) $\cos (75^{\circ})$ (ii) $\sin 75^{\circ}$
- (iii) $\cos (90^{\circ} + \theta)$ (iv) $\sin (90^{\circ} + \theta)$
- (v) $\cos (105^{\circ})$ (vi) $\sin (105^{\circ})$
- 3. Using the identities in Question 2, show that

$$\tan (\theta_1 + \theta_2) = \frac{\tan \theta_1 + \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2}$$

- 4. If 1, ω , ω^2 are three cube roots of unity, show that
 - (i) $(1 + \omega) (1 + \omega^2)(1 + \omega^4)(1 + \omega^6)(1 + \omega^8) = 2$
 - (ii) $(1 \omega^2 + \omega^2)^5 + (1 \omega^2 \omega^2)^5 = 32$
 - (iii) $(2+3\omega+2\omega^2)^9 = (2+3\omega+3\omega^2)^9 = 1$
- 5. If x = a + b, $y = a \omega + b\omega^2$ and

 $\mathbf{Z} = a\omega^2 + b\omega$, show that

- (i) x+y+z=0 (ii) $x^2+y^2+z^2=6ab$
- (ii) $x^3 + y^3 + z^3 = 3(a^3 + b^3)$

2.7 ANSWERS TO CHECK YOUR PROGRESS

1. No.

The formula $\sqrt{a}\sqrt{b} = \sqrt{ab}$

holds when at least one of a, $b \ge 0$.

2. (i)
$$\frac{1}{5-4i} = \frac{5+4i}{(5-4i)(5+4i)} = \frac{(5+4i)}{25+16}$$
$$= \frac{5}{41} + \frac{4}{41}i$$

(ii)
$$\frac{7+2i}{2-7i} = \frac{7+2i}{-2i^2-7i} = \frac{7+2i}{(-i)(7+2i)} = \frac{-1}{i} = \frac{i^2}{i} = i$$

(iii)
$$\frac{1}{\cos\theta + i\sin\theta} = \frac{\cos\theta - i\sin\theta}{(\cos\theta + i\sin\theta)(\cos\theta - i\sin\theta)}$$
 Complex Numbers

$$=\frac{\cos\theta-i\sin\theta}{(\cos^2\theta-i^2\sin^2\theta)}=\frac{\cos\theta-i\sin\theta}{(\cos^2\theta+i^2\sin^2\theta)}=\cos\theta-i\sin\theta$$

(iv)
$$\frac{2 - \sqrt{-25}}{1 - \sqrt{-16}} = \frac{2 - 5i}{1 - 4i} = \frac{(2 - 5i)}{(1 - 4i)} \frac{(1 + 4i)}{(1 + 4i)}$$
$$= \frac{2 - 5i + 8i - 20i^2}{1 - 16i^2}$$
$$= \frac{22 + 3i}{17} = \frac{22}{17} + \frac{3}{17}i$$

3. (i) Multiplicative inverse of $\frac{1+i}{1-i}$ is

$$\frac{1-i}{1+i} = \frac{1-i}{1+i} \frac{1-i}{1-i} = \frac{(1-i)^2}{1^2-i^2} = \frac{1+i^2-2i}{1+1} = \frac{1-1-2i}{2} = -i$$

(i) Multiplicative inverse of $(1 + \sqrt{3} i)^2$ is

$$\frac{1}{(1+\sqrt{3}i)^2} = \frac{(1-\sqrt{3}i)^2}{\left((1+\sqrt{3}i)(1-\sqrt{3}i)\right)^2} = \frac{1-2\sqrt{3}i+3i^2}{(1+3)^2} = \frac{1-2\sqrt{3}i-3}{16}$$
$$= \frac{-2-2\sqrt{3}i}{16} = -\frac{1}{8}(1+\sqrt{3}i)$$

(ii) We have

$$(1+i)(1+2i) = 1+1i+2i+2i=1+3i-2=-1+3i$$

Its multiplicative inverse is

$$\frac{1}{-1+3i} = \frac{-1-3i}{(-1+3i)(-1-3i)}$$

$$= \frac{-1-3i}{1-9i^2} = \frac{-1-3i}{1+9} = -\frac{1}{10} - \frac{3}{10}i = -\frac{1}{10}(1+3i)$$

4.
$$x = 3 + 2i \implies x - 3 = 2i$$

$$\Rightarrow (x-3)^2 = (2 i)^2 \Rightarrow x^2 - 6x + 9 = -4$$
or $x^2 - 6x + 13 = 0$

Let's divide $x^4 - 4x^3 + 4x^2 + 8x + 39$ by $x^2 - 6x + 13$.

$$x^{2} - 6x + 13 \overline{\smash)x^{4} - 4x^{3} + 4x^{2} + 8x + 40} x^{2} + 2x + 3$$

$$x^{4} - 6x^{3} + 13x^{2}$$

$$x^{4} - 6x^{3} + 13x^{2}$$

$$x^{2} - 6x^{3} + 13x^{2}$$

$$x^{2} - 12x^{2} + 26x$$

$$x^{3} - 12x^{2} + 26x$$

$$x^{2} - 18x + 40$$

$$x^{2} - 18x + 39$$

$$x^{2} - 18x + 39$$

$$x^{2} - 18x + 39$$

$$x^{3} - 18x + 39$$

Thus,
$$x^4 - 4x^3 + 4x^2 + 8x + 40$$

$$= (x^2 - 6x + 13)(x^2 + 2x + 3) + 1$$

$$= 0 + 1 = 1$$
5. $x + iy = (a + ib)^3 = a^3 + i^3b^3 + 3a(ib)(a + ib)$

$$= (a^3 - 3a^2b) + i(3a^2b - b^3)$$

$$\Rightarrow x = a^3 - 3a^2b \text{ and } y = 3a^2b - b^3$$

$$\Rightarrow \frac{x}{a} = a^2 - 3b^2 \text{ and } \frac{y}{b} = 3a^2 - b^2$$

$$\Rightarrow \frac{x}{a} + \frac{y}{b} = (a^2 - 3b^2) + (3a^2 - b^2) = 4(a^2 - b^2)$$
6. We have $\frac{1+i}{1-i} = \frac{-i^2+i}{1-i} = \frac{i(1-i)}{1-i} = i$

$$(\frac{1+i}{1-i})^n = i^n$$

$$\therefore \text{ The smallest value of } n \text{ is } 4.$$

Check Your Progess – 2

1. Let
$$\mathbf{Z} = x + iy$$

Now, $|\omega| = 1 \implies |1 - i\mathbf{Z}| = |\mathbf{Z} - i|$
 $\Rightarrow |1 - i(x + iy)| = |x + iy - i|$
 $\Rightarrow |(1 + y) - ix| = |x + (y - 1)i|$
 $\Rightarrow |(1 + y) - ix|^2 = |x + (y - 1)i|^2$
 $\Rightarrow (1 + y)^2 + x^2 = x^2 + (y - 1)^2$
 $\Rightarrow 1 + 2y + y^2 = y^2 - 2y + 1 \Rightarrow 4y = 0 \text{ or } y = 0$
 $\therefore \mathbf{Z} = x \Rightarrow \mathbf{Z} \text{ is purely real.}$

2. Let
$$\mathbb{Z} = x + iy$$

As $|\mathbb{Z}| = 1$, we get $x^2 + y^2 = 1$

Now,
$$\frac{Z-1}{Z+1} = \frac{(x-1)+iy}{(x+1)+iy}$$

$$= \frac{[(x-1)+iy][(x+1)-iy]}{(x+1)^2+y^2}$$

$$= \frac{(x^2-1)+y^2+iy(x+1-x+1)}{x^2+2x+1+y^2}$$

$$= \frac{(1-1)+2ixy}{2(x+1)} = \frac{xy}{x+1}i$$

$$\Rightarrow \frac{Z-1}{Z+1} \text{ is purely imaginary.}$$

3. Let $\mathbf{Z} = x + iy$

$$|\mathbf{Z} - i| = |\mathbf{Z} + i|$$

$$\Rightarrow |x + iy - i| = |x + iy + i|$$

$$\Rightarrow |x + i (y - I)|^2 = |x + i (y + I)|^2$$

$$\Rightarrow x^2 + (y - 1)^2 = x^2 + (y + 1)^2$$

$$\Rightarrow (y - 1)^2 - (y + 1)^2 = 0$$

$$\Rightarrow -4y = 0 \Rightarrow y = 0$$

Thus, Im $(\mathbf{Z}) = 0$

4.
$$a + bi = \frac{(1+i)(2+i)}{3+i} = \frac{2-1+3i}{3+i}$$

$$= \frac{1+3i}{3+i} = \frac{(1+3i)(3-i)}{(3+i)(3-i)}$$

$$= \frac{3+3+(9-1)i}{9+1} = \frac{6+8i}{10}$$

$$= \frac{3}{5} + \frac{4}{5}i \implies a = \frac{3}{5}, \quad b = \frac{4}{5}$$

5.
$$|(\cos\theta + i\sin\theta)^2| = |x + iy|$$

$$|\cos\theta + i\sin\theta|^2 = |x + iy|$$

$$\Rightarrow |\cos\theta + i\sin\theta|^2 = \sqrt{x^2 + y^2}$$

$$\Rightarrow \left(\sqrt{\cos^2\theta + \sin^2\theta}\right)^2 = \sqrt{x^2 + y^2}$$

$$\Rightarrow x^2 + y^2 = 1$$

Check Your Progress - 3

1. (i)
$$\cos (30^{\circ} + 60^{\circ}) + i \sin (30^{\circ} + 60^{\circ})$$

= $\cos 90^{\circ} + i \sin 90^{\circ} = i$

(ii)
$$(\cos \theta)^2 - i^2 \sin^2 \theta = \sin^2 \theta + \sin^2 \theta = 1$$

(iii)
$$\cos (2(45^\circ) + i \sin (2(45^\circ)))$$

= $\cos 90^\circ + i \sin 90^\circ = i$

2. (i)
$$\cos 75^{\circ} = \cos (45^{\circ} + 30^{\circ})$$

$$= \cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \frac{1}{2} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

$$= \frac{(\sqrt{3} - 1)\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

(ii)
$$\sin 75^\circ = \sin (45^\circ + 30^\circ)$$

= $\sin 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ$

$$= \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \frac{1}{2}$$
$$= \frac{\sqrt{3} + 1}{2\sqrt{2}} = \frac{\sqrt{6} + \sqrt{4}}{4}$$

(iii)
$$\cos (90^{\circ} + \theta) = \cos 90^{\circ} \cos \theta - \sin 90^{\circ} \sin \theta$$

= $(0) (\cos \theta) - (1) \sin \theta = -\sin \theta$

(iv)
$$\sin (90^{\circ} + \theta) = \sin 90^{\circ} \cos \theta + \cos 90^{\circ} \sin \theta$$

= $(1) (\cos \theta) + (0) \sin \theta = \cos \theta$

(v)
$$\cos (105^\circ) = \cos (60^\circ + 45^\circ)$$

$$= \cos 60^{\circ} \cos 45^{\circ} - \sin 60^{\circ} \sin 45^{\circ}$$

$$= \frac{1}{2} \cdot \frac{1}{\sqrt{2}} - \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} = -\left(\frac{\sqrt{3} - 1}{2\sqrt{2}}\right)$$

$$=-\frac{\sqrt{6}-\sqrt{2}}{4}$$

(vi)
$$\sin (105^\circ) = \sin 60^\circ + 45^\circ$$
)

$$= \sin 60^{\circ} \cos 45^{\circ} (\cos \theta) + \cos 60^{\circ} \sin 45^{\circ}$$

$$= \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} - \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = -\left(\frac{\sqrt{3} + 1}{2\sqrt{2}}\right)$$

$$= -\frac{\sqrt{6} + \sqrt{2}}{4}$$

3.
$$\tan \left(\theta_1 + \theta_2\right) = \frac{\sin(\theta_1 + \theta_2)}{\cos(\theta_1 + \theta_2)}$$
$$= \frac{\sin\theta_1\cos\theta_2 + \cos\theta_1\sin\theta_2}{\cos\theta_1\cos\theta_2 - \sin\theta_{11}\sin\theta_2}$$

Divide the numerator and denominator by $\cos \theta_1 \cos \theta_2$ to obtain

$$\tan (\theta_1 + \theta_2) = \frac{\tan \theta_1 + \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2}$$

4. (i)
$$(1+\omega)(1+\omega^2)(1+\omega^4)(1+\omega^6)(1+\omega^8)$$

= $(1+\omega)(1+\omega^2)(1+\omega)(1+1)(1+\omega^2)$
= $2((1+\omega)(1+\omega^2))^2 = 2((-\omega^2)(-\omega))^2 = 2\omega^6 = 2$

(ii)
$$(1 - \omega + \omega^2)^5 + (1 + \omega - \omega^2)^5$$

 $= (-\omega - \omega)^5 + (-\omega^2 - \omega^2)^5$
 $= (-2)^5 \omega^5 + (-2)^5 (\omega^2)^5$
 $= -32\omega^2 - 32\omega = -32(\omega^2 + \omega)$
 $= (-32)(-1) = 32$

(iii)
$$(2 + 3\omega + 2\omega^2)^9$$

$$= (2 + 2\omega + 2\omega^2 + \omega)^9 = (0 + \omega)^9 = \omega^9 = 1$$
and $(2 + 2\omega^2 + 2\omega^2)^9 = (2 + 2\omega + 2\omega^2 + \omega^2)^9$

$$= (0 + \omega^2)^9 = \omega^{18} = 1$$

5. (i)
$$x + y + z = a (1 + \omega^2 + \omega) b (1 + \omega^2 + \omega)$$

= (0) + b(0) = 0

(ii)
$$x^2 + y^2 + z^2$$

$$= (a^{2} + b^{2} + 2ab) + (a^{2}\omega^{2} + b^{2}\omega^{4} + 2ab\omega^{3}) + (a^{2}\omega^{4} + b^{2}\omega^{2} + 2ab\omega^{3})$$

$$= a^{2}(1 + \omega^{2} + \omega^{2}) + b^{2}(1 + \omega^{4} + \omega^{2}) + 2ab(1 + \omega^{3} + \omega^{3})$$

$$= a^{2}(0) + b^{2}(0) + 2ab(1 + 1 + 1) = 6ab$$

We know that

$$x^{3} + y^{3} + z^{3} - xyz$$

$$= (x + y + z) (x^{2} + y^{2} + z^{2} - yz - zx - xy)$$

$$= 0$$
Thus, $x^{3} + y^{3} + z^{3} = 3xyz$.
Also, $xyz = (a + b) (a\omega + b\omega^{2})(a\omega^{2} + b\omega)$

$$= (a+b) [a^{3}\omega^{3} + b^{2}\omega^{3} + ab (\omega^{2} + \omega^{4})]$$

$$= (a+b) (a^{2} + b^{2} - ab) = a^{3} + b^{3}$$
Thus,
$$x^{3} + y^{3} + z^{3} - 3xyz = 3 (a^{3} + b^{3})$$

2.8 SUMMARY

In this unit, first of all, in **section 2.2**, the concept of complex number is defined. In **section 2.3**, various algebraic operations, viz., addition, subtraction, multiplication and division of two complex numbers are defined and illustrated with suitable examples. In **section 2.4**, concepts of conjugate of a complex number and modulus of a complex number are defined and explained with suitable examples. The properties of conjugate and modulus operations are stated without proof. In **section 2.5**, representation of a complex number as a point in a plane, in cartesian and polar forms, are explained. Finally, in **section 2.6**, DeMoivre's Theorem for integral index, for finding nth power of a complex number, is illustrated with a number of examples. Also, some properties of cube roots of unity are discussed.

Answers/Solutions to questions/problems/exercises given in various sections of the unit are available in **section 2.7**.