

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{65} + u^{64} + \dots + 3u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 65 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{65} + u^{64} + \dots + 3u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} - 2u^{3} + u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{9} - 4u^{7} - 3u^{5} + 2u^{3} - u \\ u^{9} + 5u^{7} + 7u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{22} - 11u^{20} + \dots - 3u^{4} + 1 \\ u^{22} + 12u^{20} + \dots + 8u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{11} + 6u^{9} + 12u^{7} + 8u^{5} + u^{3} + 2u \\ u^{13} + 7u^{11} + 17u^{9} + 16u^{7} + 6u^{5} + 5u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{24} - 13u^{22} + \dots - 2u^{2} + 1 \\ -u^{26} - 14u^{24} + \dots - 10u^{4} - u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{59} - 32u^{57} + \dots + 5u^{3} - 2u \\ -u^{61} - 33u^{59} + \dots + 3u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{64} 4u^{63} + \cdots 24u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{65} + 35u^{64} + \dots - 3u - 1$
c_2, c_7	$u^{65} + u^{64} + \dots + u + 1$
c_3, c_6	$u^{65} - u^{64} + \dots + u + 1$
c_4, c_5, c_{10} c_{11}	$u^{65} + u^{64} + \dots + 3u + 1$
c ₈	$u^{65} - 9u^{64} + \dots - 871u + 109$
c_9, c_{12}	$u^{65} + 11u^{64} + \dots + 1417u + 187$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{65} - 9y^{64} + \dots + y - 1$
c_2, c_7	$y^{65} + 35y^{64} + \dots - 3y - 1$
c_3, c_6	$y^{65} - 53y^{64} + \dots - 99y - 1$
c_4, c_5, c_{10} c_{11}	$y^{65} + 71y^{64} + \dots - 3y - 1$
<i>C</i> ₈	$y^{65} - 13y^{64} + \dots + 40113y - 11881$
c_9, c_{12}	$y^{65} + 43y^{64} + \dots - 640031y - 34969$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.595719 + 0.578948I	-7.70647 + 11.34340I	-8.26251 - 9.40428I
u = -0.595719 - 0.578948I	-7.70647 - 11.34340I	-8.26251 + 9.40428I
u = -0.599254 + 0.561085I	-8.54295 + 2.41798I	-9.80276 - 3.05774I
u = -0.599254 - 0.561085I	-8.54295 - 2.41798I	-9.80276 + 3.05774I
u = 0.589572 + 0.570914I	-4.51819 - 6.51331I	-5.31750 + 6.37538I
u = 0.589572 - 0.570914I	-4.51819 + 6.51331I	-5.31750 - 6.37538I
u = 0.538749 + 0.569567I	-0.93086 - 6.41545I	-3.67996 + 9.86351I
u = 0.538749 - 0.569567I	-0.93086 + 6.41545I	-3.67996 - 9.86351I
u = 0.220912 + 0.733421I	-2.38478 - 6.60693I	-2.78190 + 7.82097I
u = 0.220912 - 0.733421I	-2.38478 + 6.60693I	-2.78190 - 7.82097I
u = 0.569041 + 0.489543I	-4.59319 - 1.95369I	-11.39399 + 3.79158I
u = 0.569041 - 0.489543I	-4.59319 + 1.95369I	-11.39399 - 3.79158I
u = -0.621187 + 0.418285I	-8.96370 + 1.72981I	-11.03048 - 3.35966I
u = -0.621187 - 0.418285I	-8.96370 - 1.72981I	-11.03048 + 3.35966I
u = -0.505578 + 0.547288I	-0.07972 + 2.16929I	-1.40597 - 3.65142I
u = -0.505578 - 0.547288I	-0.07972 - 2.16929I	-1.40597 + 3.65142I
u = -0.624357 + 0.395701I	-8.24591 - 7.19806I	-9.88810 + 3.21124I
u = -0.624357 - 0.395701I	-8.24591 + 7.19806I	-9.88810 - 3.21124I
u = 0.613226 + 0.403101I	-5.01179 + 2.41777I	-6.90071 - 0.01179I
u = 0.613226 - 0.403101I	-5.01179 - 2.41777I	-6.90071 + 0.01179I
u = 0.274381 + 0.668482I	-2.83652 + 1.62881I	-4.05285 + 1.38314I
u = 0.274381 - 0.668482I	-2.83652 - 1.62881I	-4.05285 - 1.38314I
u = -0.043462 + 0.719036I	2.69348 + 2.02135I	4.11374 - 4.67175I
u = -0.043462 - 0.719036I	2.69348 - 2.02135I	4.11374 + 4.67175I
u = -0.195350 + 0.687690I	0.60698 + 2.16613I	0.97582 - 4.91748I
u = -0.195350 - 0.687690I	0.60698 - 2.16613I	0.97582 + 4.91748I
u = 0.537336 + 0.377380I	-1.48399 + 2.68474I	-5.93567 - 3.09855I
u = 0.537336 - 0.377380I	-1.48399 - 2.68474I	-5.93567 + 3.09855I
u = -0.463936 + 0.448567I	-0.422225 + 1.251880I	-2.42688 - 4.39107I
u = -0.463936 - 0.448567I	-0.422225 - 1.251880I	-2.42688 + 4.39107I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.15190 + 1.44967I	-2.33616 - 4.48271I	0
u = -0.15190 - 1.44967I	-2.33616 + 4.48271I	0
u = 0.14927 + 1.46063I	0.981805 - 0.236082I	0
u = 0.14927 - 1.46063I	0.981805 + 0.236082I	0
u = -0.16115 + 1.46529I	-2.88598 + 4.47628I	0
u = -0.16115 - 1.46529I	-2.88598 - 4.47628I	0
u = 0.09486 + 1.50450I	4.62328 + 0.70657I	0
u = 0.09486 - 1.50450I	4.62328 - 0.70657I	0
u = 0.486503 + 0.034595I	-4.82132 - 4.20427I	-10.67761 + 3.89462I
u = 0.486503 - 0.034595I	-4.82132 + 4.20427I	-10.67761 - 3.89462I
u = 0.15753 + 1.51877I	2.03909 - 4.52101I	0
u = 0.15753 - 1.51877I	2.03909 + 4.52101I	0
u = -0.12554 + 1.53196I	6.27220 + 3.29095I	0
u = -0.12554 - 1.53196I	6.27220 - 3.29095I	0
u = -0.14729 + 1.54850I	6.93976 + 4.52566I	0
u = -0.14729 - 1.54850I	6.93976 - 4.52566I	0
u = -0.18149 + 1.54544I	-1.55418 + 5.25395I	0
u = -0.18149 - 1.54544I	-1.55418 - 5.25395I	0
u = 0.05974 + 1.55575I	4.61583 + 0.48659I	0
u = 0.05974 - 1.55575I	4.61583 - 0.48659I	0
u = -0.440342	-1.55260	-7.73470
u = 0.17813 + 1.55071I	2.53593 - 9.30655I	0
u = 0.17813 - 1.55071I	2.53593 + 9.30655I	0
u = 0.15865 + 1.55295I	6.15977 - 8.94433I	0
u = 0.15865 - 1.55295I	6.15977 + 8.94433I	0
u = -0.18134 + 1.55369I	-0.6147 + 14.1782I	0
u = -0.18134 - 1.55369I	-0.6147 - 14.1782I	0
u = -0.03741 + 1.57557I	8.26236 + 2.91932I	0
u = -0.03741 - 1.57557I	8.26236 - 2.91932I	0
u = -0.00764 + 1.58238I	10.48530 + 2.18126I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.00764 - 1.58238I	10.48530 - 2.18126I	0
u = 0.04591 + 1.58470I	5.45364 - 7.49920I	0
u = 0.04591 - 1.58470I	5.45364 + 7.49920I	0
u = -0.311030 + 0.259147I	-0.362697 + 1.022000I	-5.86257 - 6.20252I
u = -0.311030 - 0.259147I	-0.362697 - 1.022000I	-5.86257 + 6.20252I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{65} + 35u^{64} + \dots - 3u - 1$
c_2, c_7	$u^{65} + u^{64} + \dots + u + 1$
c_{3}, c_{6}	$u^{65} - u^{64} + \dots + u + 1$
c_4, c_5, c_{10} c_{11}	$u^{65} + u^{64} + \dots + 3u + 1$
c ₈	$u^{65} - 9u^{64} + \dots - 871u + 109$
c_9, c_{12}	$u^{65} + 11u^{64} + \dots + 1417u + 187$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{65} - 9y^{64} + \dots + y - 1$
c_2, c_7	$y^{65} + 35y^{64} + \dots - 3y - 1$
c_3, c_6	$y^{65} - 53y^{64} + \dots - 99y - 1$
c_4, c_5, c_{10} c_{11}	$y^{65} + 71y^{64} + \dots - 3y - 1$
c ₈	$y^{65} - 13y^{64} + \dots + 40113y - 11881$
c_9, c_{12}	$y^{65} + 43y^{64} + \dots - 640031y - 34969$