第 15 章 电磁场与电磁波

求位移电流

1. 位移电流的定义

- · 为了使安培环路定理在非稳恒的情况下普遍适用,引入位移电流,将电流的类别扩大
- · 位移电流密度

$$\boldsymbol{j}_{\mathrm{d}} = \frac{\mathrm{d}\boldsymbol{D}}{\mathrm{d}t}$$

$$I_{\rm d} = \frac{\mathrm{d}\Phi_{\rm D}}{\mathrm{d}t}$$

 $\mathbf{j}_{\mathrm{d}} = \frac{\mathrm{d}\mathbf{D}}{\mathrm{d}t}$ · **位移电流** $I_{\mathrm{d}} = \frac{\mathrm{d}\Phi_{\mathrm{D}}}{\mathrm{d}t}$ (方向规定为 \mathbf{D} 增量的方向)

如何求位移电流

- ・通过第 10 章的知识,由U、 $m{E}$ 等参数求出D,再通过定义式求出 $m{j}_{\!\scriptscriptstyle d}$,进而求出 $m{I}_{\!\scriptscriptstyle d}$
- **例1** 一平板电容器两极板面积为S,极板间距为d,两极板与一电压 $V=V_0\sin\omega t$ 的交流电源连接,则 穿过电容器的位移电流密度为 ,位移电流的大小为

解 由定义式:
$$j_{\rm d} = \frac{{\rm d}D}{{\rm d}t} = \epsilon_0 \frac{{\rm d}E}{{\rm d}t} = \frac{\epsilon_0}{d} \frac{{\rm d}V}{{\rm d}t} = \frac{\epsilon_0 \omega V_0}{d} \cos \omega t$$
 $I_{\rm d} = j_{\rm d}S = \frac{\epsilon_0 \omega V_0}{d} S \cos \omega t$

$$I_{\rm d} = j_{\rm d} S = \frac{\varepsilon_0 \omega V_0}{d} S \cos \omega t$$

麦克斯韦方程组

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{V} \rho dV = \sum q \qquad ($$

$$\oint_{L} \mathbf{E} \cdot d\mathbf{l} = -\frac{d\mathbf{\Phi}_{m}}{dt} = -\int \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S} \qquad ($$

$$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0 \qquad (1$$

$$\oint_{L} \mathbf{H} \cdot d\mathbf{l} = \sum I + \frac{d\mathbf{\Phi}_{D}}{dt} = \int_{S} \mathbf{j} \cdot d\mathbf{S} + \int_{S} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{S}$$

Ξ 电磁波

1. 电磁波的性质

电磁波是横波,传播的是电场 \mathbf{E} 和磁场 \mathbf{H} ,两者垂直,传播方向恒为 $\mathbf{E} \times \mathbf{H}$,速度为光速 $c = 1/\sqrt{\mu_0 \epsilon_0}$

2. 能流密度与S

- $\cdot S$: 电磁波的**能流密度**(单位时间通过垂直于传播方向的单位面积的能量)
- · 矢量形式: $S = E \times H$ (坡印亭矢量)
- $oldsymbol{\mathsf{M}}$ **2** 图中表示一正在充电的平行板电容器。电容器圆形极板的半径为R,极板间 距离为 d。试计算电容器界面处的能流密度,并通过能流密度计算单位时间 内进入电容器内部的总能量。

由全电流的安培环路定理,半径 R 处的磁场强度 $H = \frac{\pi R^2 j_d}{2\pi R} = \frac{\epsilon_0 R}{2} \frac{dE}{dt}$, 俯视顺时针 则能流密度 $S = EH = \frac{\epsilon_0 RE}{2} \frac{dE}{dt}$ (方向指向轴线), 能量 $A = 2\pi R dS = \pi R^2 d\epsilon_0 E \frac{dE}{dt}$