

Best Guided Backtracking Search Algorithm for Numerical Optimization Problems

Wenting Zhao

E-mail: inweriok@qq.com

MLA Lab, Shandong University

Outline

- ☐ Introduction to Evolutionary Algorithms
- Backtracking Search Optimization Algorithm (BSA)
- Best Guided BSA
- Experiments
- Conclusions
- References

What is optimization problem?

General form:

min x	$f(\mathbf{x})$	$\mathbf{x} \in \mathfrak{R}^n$
s. t.	$g_i(\mathbf{x}) \le 0$	$i=1\ldots m$
	$\mathbf{h}_{j}(\mathbf{x}) = 0$	$j=m+1\dots q$
	$l_k \le x_k \le u_k$	k = 1n

For example:

$$\min_{\mathbf{x}} f(\mathbf{x}) = x_1 + x_2$$
s. t.
$$-x_1 + x_2 + 50 \le 0$$

$$0 \le x_1 \le 100$$

$$0 \le x_2 \le 100$$

What is computational intelligence?

- Computational Intelligence^[1] is the study of adaptive mechanisms to enable or facilitate *intelligent behavior* in *complex and changing environments*.
- Computational Intelligence is the computational part of the artificial intelligence.
- Computational Intelligence investigates nature-inspired computational methodologies and approaches to address complex real-world problems where traditional approaches, i.e., first principles modeling or explicit statistical modeling, are ineffective or infeasible.

General categories of CI

Evolutionary computation

■ Evolutionary Computation (EC): which is a kind of optimization methodology inspired by the mechanisms of biological evolution and behaviors of living organisms

■ Evolutionary algorithms (EAs) are a meta-heuristic stochastic search technique based on Darwinian "survival-of-the-fittest" principle, leveraging computationally useful aspects of natural evolution processes.

Evolutionary algorithm

- Genetic Algorithm (GA), Differential Evolution (DE), Evolutionary Programming (EP), Genetic Programming (GP), et al.
- Swam Intelligence (*SI*) based Algorithm: Particle swarm optimization (*PSO*), Ant Colony Optimization (ACO), Cuckoo Search (CS), Harmony Search (HS), et al.
- A good SI algorithm survey can be found in [CoRR, abs/1307.4186, 2013]

MLA Lab

Evolutionary algorithm

☐ EAs: can be divided into two groups

Constructed Algorithms: ACO, HS, GA, et al.

how to construct a solution during evolutionary process

Evolved Algorithms: PSO, CS, DE, **BSA**, et al.

how to have a solution evolved during evolutionary process

General paradigm of EAs

Evolutionary algorithms

■ Major characteristics of EAs:

Population(s) of candidate solutions

Fitness-guided population variations during search

Variation with inheritance

Replacement (survival-of-the-fittest)

- A new evolutionary algorithm proposed by Pinar Civicioglu in 2013^[13].
- Has a simple structure that is effective, fast and capable of solving multimodal problems.
- Can be divided into five processes:
 - Initialization
 - Selection-I
 - Mutation
 - Crossover
 - Selection-II

Initialization: initializes the population P and historical population old P.

$$P_{i,j} \sim U(low_j, up_j)$$
$$oldP_{i,j} \sim U(low_j, up_j)$$

where i = 1, 2, ..., N and j = 1, 2, ..., D.

N: population size

D: dimension of the problem

low: lower bound of the element

up: upper bound of the element

N $\begin{bmatrix} p_{1,1} & p_{1,2} & p_{1,3} & p_{1,4} & p_{1,5} \\ p_{2,1} & p_{2,2} & p_{2,3} & p_{2,4} & p_{2,5} \\ p_{3,1} & p_{3,2} & p_{3,3} & p_{3,4} & p_{3,5} \end{bmatrix} = \begin{bmatrix} 4 & 50 & 2 & 0.5 & 6 \\ 3 & 33 & 1 & 0.2 & 8 \\ 6 & 49 & 3 & 0.7 & 3 \\ 6 & 49 & 3 & 0.7 & 3 \\ 2 & 37 & 6 & 0.4 & 1 \end{bmatrix}$

Selection-I: updates the historical population *oldP* to be used for calculating the search direction. This process consists of 2 steps.

Step 1— Redefine *oldP* at the beginning of each iteration.

$$oldP = \begin{cases} P, a < b \\ oldP, otherwise \end{cases} (a, b \sim U(0, 1))$$

Step 2— Randomly change the order of the individuals in *oldP*

$$oldP := permuting(oldP)$$

Mutation: generates the initial form of the trial population *Mutant*

Step 1— Calculate a binary integer-valued matrix map:

$$map = \begin{matrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{matrix}$$

Step 2— Update Mutant:

$$Mutant_{i,j} = \begin{cases} P_{i,j} & , & map_{i,j} = 1 \\ Mutant_{i,j} & , & otherwise \end{cases}$$

$$P_i^{next} = \begin{cases} Mutant_i, & f(Mutant_i) \leq f(P_i) \\ P_i, & otherwise \end{cases}$$
 f is the objective function

$Mutant_i$	f(Muta	(nt_i)			P_i		$f(P_i)$	
(0.7, 50, 2, 0.8, 4.3)	120		_A y	(4, 50	, 2, 0.5	5, 6)	146	
(6.3, 79.8, 9.1, 0.2, 8)	270		VC	(3, 33	, 1, 0.2	2, 8)	298	
(6, 58.7, 11.0, 0.8, 3)	331			(6, 49	, 3, 0.	7, 3)	210	
(2, 93.4, 4.4, 0.2, 9.1)	259			(2, 37	, 6, 0.4	4, 1)	345	
	0.7	50	2	8.0	4.3			
	→ 6.3	79.8	9.1	0.2	8			
	6	49	3	0.7	3	•		
	2	93.4	4.4	0.2	9.1			

Pros:

- ✓ Simple— has a single parameter and not sensitive to the parameter value
- ✓ Previous experiences— uses an external archive *oldP* to store experiences gained from previous generation
- ✓ Exploration ability(global search ability)— the permuting makes the individuals be chosen randomly in the mutation operator

Cons:

Exploitation ability(local search ability)— by utilizing experiences, BSA may be led to poor exploitation ability on later iteration stage. [15]

Key factors influencing the efficacy of EAs

■Algorithm aspects:

- Search strategy and the associated parameter settings
- Population size(s) and structure(s)
- Computation budget
- Problem aspects:
 - Objective function formulation
 - Solution representation
- Various population structures have been studied
- ☐ Key efforts have been put on search strategies

Best Guided BSA

- Best guided operator is proposed to hybridize with BSA: Best guided operator enhances exploitation ability because the mutant individuals are strongly attracted new around the current best individual.
- ■BG operator is performed during the later stage of evolution and the original mutation operator is called during the early stage.
 - Best guided operator

$$Mutant_i = P_i + F \times (P_{best} - P_i)$$

4. Experiments

Experiment 1:

- BGBSA is verified on CEC-2013 benchmark test suite including unimodal functions F1–F5, basic multimodal functions F6–F20 and composition functions F21 F28 [14] compared with BSA.
- Evaluation: error values.
- Parameter setting:

Population size	Dimension	Stage control	FES	DimRate
30	30	0.75	300000	1

The Effect of BGBSA at 30-dim CEC-2013

	BSA	BGBSA		
	AvgEr ±StdEr	AvgEr <u>+</u> StdEr		P value
Fun1	1.01e-30±3.49e-30	$1.01e-30\pm3.49e-30$	=	1.000000
Fun2	1.37e+06 <u>+</u> 5.35e+05	4.26e+05±2.13e+05	+	0.000020
Fun3	4.54e+06 <u>+</u> 4.60e+06	6.44e+06 <u>+</u> 9.98e+06	=	0.861162
Fun4	1.27e+04 <u>+</u> 3.58e+03	4.95e+03±1.93e+03	+	0.000018
Fun5	$0.00e + 00 \pm 0.00e + 00$	$5.05e-31\pm2.52e-30$	=	1.000000
Fun6	2.74e+01±2.47e+01	2.74e+01±2.64e+01	=	0.492633
Fun7	6.82e+01 <u>+</u> 1.35e+01	5.94e+01±1.36e+01	=	0.082653
Fun8	2.09e+01±6.72e-02	$2.09e+01\pm3.98e-02$	=	0.618641
Fun9	2.73e+01±2.75e+00	2.58e+01±2.86e+00	=	0.078001
Fun10	1.90e-01 <u>±</u> 1.42e-01	$1.49e-01\pm1.59e-01$	=	0.287862
Fun11	7.96e-02 <u>±</u> 2.75e-01	$3.98e-02\pm1.99e-01$	=	1.000000
Fun12	8.71e+01 <u>±</u> 2.14e+01	8.36e+01±1.74e+01	=	0.492633
Fun13	1.49e+02±2.53e+01	1.42e+02±2.19e+01	=	0.287862
Fun14	3.56e+00±1.73e+00	$1.52e + 00 \pm 1.28e + 00$	+	0.000157

The Effect of BGBSA at 30-dim CEC-2013

Continue...

	BSA	BGBSA		
	AvgEr <u>+</u> StdEr	AvgEr <u>+</u> StdEr		P value
Fun14	$3.56e + 00 \pm 1.73e + 00$	1.52e+00 <u>+</u> 1.28e+00	+	0.000157
Fun15	$3.81e+03\pm4.16e+02$	3.48e+03 <u>+</u> 4.60e+02	+	0.002259
Fun16	$1.26e + 00 \pm 1.66e - 01$	$1.10e + 00 \pm 3.01e - 01$	+	0.021418
Fun17	$3.09e+01\pm1.75e-01$	$3.06e + 01 \pm 1.06e - 01$	+	0.000029
Fun18	1.16e+02 <u>+</u> 1.99e+01	9.78e+01 <u>+</u> 1.90e+01	+	0.002947
Fun19	$1.07e + 00 \pm 2.11e - 01$	$1.13e + 00 \pm 2.38e - 01$	=	0.312970
Fun20	$1.14e + 01 \pm 4.91e - 01$	$1.10e + 01 \pm 6.39e - 01$	+	0.017253
Fun21	$2.67e + 02 \pm 8.00e + 01$	2.90e+02 <u>+</u> 4.91e+01	=	0.142970
Fun22	$4.33e+01\pm1.72e+01$	2.59e+01 <u>+</u> 1.12e+01	+	0.000602
Fun23	$4.36e + 03 \pm 5.00e + 02$	4.09e+03 <u>+</u> 3.81e+02	+	0.042207
Fun24	$2.33e+02\pm1.03e+01$	$2.35e+02\pm1.16e+01$	=	0.396679
Fun25	2.89e+02 <u>+</u> 8.80e+00	2.81e+02 <u>+</u> 1.44e+01	+	0.028314
Fun26	$2.00e+02\pm1.32e-02$	$2.00e + 02 \pm 7.07e - 03$	+	0.000029
Fun27	$8.89e + 02 \pm 1.45e + 02$	8.85e+02 <u>+</u> 1.10e+02	=	0.798248
Fun28	$3.00e+02\pm1.95e-13$	$3.00e + 02 \pm 1.62e - 13$	=	0.637352
+/=/-				12/16/0

The Effect of BGBSA at 30-dim CEC-2013

the convergence curves of BSA and BGBSA for selected benchmark functions.

- Compare with other variants of BSA.
- HBD^[15], IBSA^[16], COOBSA^[17] and unmodified backtracking search algorithm (BSA).
- Evaluation method: Friedman test

D	BGBSA	HBD	IBSA	COOBSA
10	1.93	1.93	2.14	4
30	1.84	1.89	2.27	4
50	1.75	1.93	2.32	4

- Compared with other algorithms proposed during CEC-2013.
- NBIPOP-aCMA[17], fk-PSO [18], SPSO2011[19], SPSOABC[20], and PVADE[21].
- Evaluation: Friedman test ranking

Methods	NBIPOP-aCMA	BGBSA	SPSOABC	fk-PSO	PVADE	SPSO2011
Ranking	1.8	3.11	3.3	3.57	3.93	5.29

- The effect of the stage control parameter α .
- Evaluation: Friedman test ranking

α	0.55	0.65	0.75	0.85	0.95
Ranking	3.09	2.71	2.61	3.05	3.54

5. Conclusions

- Best guided operator is designed.
- The proposed algorithm combined the historical experience and the experience from the best individual obtained so far to enhance the convergence speed on the later stage of iteration.
- Experiments demonstrate the competitive performance of the proposed method.

6. References

- [1] Engelbrecht A P. Computational intelligence: an introduction. John Wiley & Sons, 2007.
- [2] Goldberg D E. Genetic algorithms in search optimization and machine learning. Reading Menlo Park: Addison-wesley, 1989.
- [3] Dorigo M, Birattari M, Stützle T. Ant colony optimization. Computational Intelligence Magazine, IEEE, 2006, 1(4): 28-39.
- [4] Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem. Evolutionary Computation, IEEE Transactions on, 1997, 1(1): 53-66.
- [5] Kennedy J. Particle swarm optimization. Encyclopedia of machine learning. Springer US, 2011: 760-766.
- [6] Eberhart R C, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science. 1995, 1: 39-43.
- [7] Zhang Y, Wang S, Ji G. A comprehensive survey on particle swarm optimization algorithm and its applications. Mathematical Problems in Engineering, 2015, 2015: 1.

- [11] Glover F. Tabu search-part I. ORSA Journal on computing, 1989, 1(3): 190-206.
- [12] Glover F. Tabu search—part II. ORSA Journal on computing, 1990, 2(1): 4-32.
- [13] Civicioglu, P. (2013). "Backtracking search optimization algorithm for numerical optimization problems." Applied Mathematics and Computation 219(15): 8121-8144.
- [14] Liang J, Qu B, Suganthan P, Hernández-Díaz A G. Problem definitions and evaluation criteria for the cec 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, 2013
- [15] Wang, L., Zhong, Y., Yin, Y., et al.: A hybrid backtracking search optimization algorithm with differential evolution. Mathematical Problems in Engineering (2015)

[17] Xu, Q., Guo, L., Wang, N., Li, X.: Opposition-based backtracking search algorithm for numerical optimization problems. In: 5th International Conference on Intelligence Science and Big Data Engineering, pp. 223–234. Springer, Switzerland(2015)

[18] Loshchilov, I.: Cma-es with restarts for solving cec 2013 benchmark problems. In:

2013 IEEE Congress on Evolutionary Computation, pp. 369–376. IEEE Press (2013)

[19] Nepomuceno, F.V., Engelbrecht, A.P.: A self–adaptive heterogeneous pso for realparameter optimization. In: 2013 IEEE Congress on Evolutionary Computation, pp.

361–368. IEEE Press (2013)

[20] Zambrano-Bigiarini, M., Clerc, M., Rojas, R.: Standard particle swarm optimisation 2011 at cec-2013: A baseline for future pso improvements. In: 2013 IEEE Congress on Evolutionary Computation, pp. 2337–2344. IEEE Press (2013)

[21] El-Abd, M.: Testing a particle swarm optimization and artificial bee colony hybrid algorithm on the cec13 benchmarks. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1901 2215–2220. IEEE Press (2013)

[22] Coelho, L.D.S., Ayala, V.H., Freire, R.Z.: Population's variance-based adaptive differential evolution for real parameter optimization. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1672–1677. IEEE Press (2013)

Thanks for your attention!

