Problem Stotement

Show that the Fisher in Fronton matrix in the maltivariate vormal model, when
$$x = (x_1, x_2, \dots, x_n)$$

I maltivariate vormal model, when $x = (x_1, x_2, \dots, x_n)$
 $x_1 = N \in \mathbb{N}$ and $x_1 = (x_1, x_2, \dots, x_n)$
 $x_1 = N \in \mathbb{N}$ and $x_2 = (x_1, x_2, \dots, x_n)$
 $x_1 = N \in \mathbb{N}$ and $x_2 = (x_1, x_2, \dots, x_n)$
 $x_1 = N \in \mathbb{N}$ and $x_2 = (x_1, x_2, \dots, x_n)$
 $x_1 = N \in \mathbb{N}$ and $x_2 = (x_1, x_2, \dots, x_n)$
 $x_1 = N \in \mathbb{N}$ and $x_2 = (x_1, x_2, \dots, x_n)$
 $x_1 = N \in \mathbb{N}$ and $x_2 = (x_1, x_2, \dots, x_n)$
 $x_1 = N \in \mathbb{N}$ and $x_2 = (x_1, x_2, \dots, x_n)$
 $x_1 = N \in \mathbb{N}$ and $x_2 = (x_1, x_2, \dots, x_n)$
 $x_1 = N \in \mathbb{N}$ and $x_2 = (x_1, x_2, \dots, x_n)$
 $x_1 = N \in \mathbb{N}$ and $x_2 = (x_1, x_2, \dots, x_n)$
 $x_1 = N \in \mathbb{N}$ and $x_2 = N \in \mathbb{N}$ and $x_1 = N \in \mathbb{N}$ and

2.	Problem Statement
0	Show, that are efficient estimated whose Fisher information matrix is independent of 0 is distributed as
	8~N[0, J-17
	Solution
	Efficient => un biased => E[Ô] = 0
burno"	(5 CRLB => E[(0-6)(0-6)] = 5-1(0)
X	However J is independent of 0, so
	E[(0-6)(0-6)]= J-1 where J-1 13 1
	Secratione of o
(So 0~ N(0,5-1)

3	. Problem statement
	Consider a condon sample of scalar random variables
	X = (X0, X1,, XN-1)
	with f(xn10) = 1 exp (-(xn-0)2/202)
	The parameter of interest 0 is normally distributed with
e e	a) Find the conditional density of O guer x.
daring.	b) Find the conditional mean and variance of a guen x.
_	a) Compare E[OID] to OM.
	(1)
	Solution
	a) $f(0 x) = f(0) \cdot f(x 0)$
	= 1 exp(-(0-m)2/2502) 1 500 exp(-(xi-0)2/252)
	= $(2\pi)^{-(2\pi)}$, $\exp(-(0-m)^2/2\sigma_0^2)$, $\exp(-\frac{2}{2}(x_1-0^2)/2\sigma_0^2)$
	= (27)- NII (0-m)2 + \(\frac{1}{\sigma_0 \cdot \sigma_1 \sigma_1 \cdot \frac{1}{\sigma_0 \cdot \sigma_1 \cdot \sigma_1 \cdot \frac{1}{\sigma_0 \cdot \sigma_1 \cdot \sigma_1 \cdot \frac{1}{\sigma_0 \cdot \sigma_1 \cdot \sigma_1 \cdot \sigma_1 \cdot \sigma_1 \cdot \frac{1}{\sigma_0 \cdot \sigma_1
	= ((07)-14/2) exp (-2000000 (0-100000000000000000000000000000
	= C, exp(-1/2002 (0202-2020m+02m2+00 = (x;2-2x:0+02))
	= C; 2xp (-1 (020°-20°0m -20°2N. X0 + No 602))
	2000 N-1
0	· exp (-1 (002 \ x 8,2 + 02, 2)
	C2

4.	Problem Statement
	Define loss function L[0,0(8)] = HTa[0,0(6)]
	WITH TI = [TI, 172,, TP] : TI >0 Vi,
	a [0, 0.(x)] = 10; -0,(x)
	show that he conditional nok may be written as
	[do F(010) TT a[0, 0(D)] = \$ TiB
mond	\[\langle \text{ f(0) \text{ for a [0, \delta (\delta)]} = \frac{\frac{1}{2} \text{ ii; B}}{1 \text{ iii as }} \] where \[\beta = -\int_{\delta 0} \frac{\delta (\delta 1 \text{ f(0) \delta (\delta)]}{\delta (\delta 1 \text{ f(0) \delta (\delta)]}} \] \[\begin{align*} \text{ for a [0, \delta (\delta)] = \frac{\frac{1}{2} \text{ ii; B}}{\delta (\delta 1 \text{ f(0) \delta (\delta)]}} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} \text{ f(0) \delta (\delta 1 \text{ f(0) \delta (\delta)]} \] \[\begin{align*} f(0)
	a) conditional risk = $E[L(0, 6(x))]$ = $\int_{-\infty}^{\infty} f(0 x) L(0, 6(x)) d0$
	= (°f(0(x)) L(0,6(x)) d0
	$= \int_{\partial F} (0 x) \pi \tau \cdot a [0, \delta(x)] = \int_{\partial F} (0 x) \pi \cdot 0; -0; \infty $
	Fac 0: > 0: :
	- 5°; 20; f(0;12) (0; - ê; (2)
	For 6: < 0; '
	50; F(0;1x) (0; -6;0x)
	We combine those integrals by adding Them;
	- Sio; f(0;1x) (0; -0; ds) + Sio; f(0;1x) (0; -6; (d)) = Sio; f(0;1x) \(\beta\); \(\beta
	Sinnel to product of product of the
	= - 3 (6) (7) (7) (7) (7) (7) (7)
	= = = Ti (-) doif(oilx) (0:-0:(0)) + (oilx) (0:-0:(0))
	$=\sum_{i=1}^{n}\pi_{i}B$
	1=1

Minimizing estimate gives $= [L(0,6\alpha)] = 0$ $\Rightarrow \sum_{i=1}^{n} T_i (-\int_{-\infty}^{0} J_0 \cdot f(0ilx) (0i + \hat{e}_i(x))$ $+\int_{0}^{\infty} J_0 \cdot f(0ilx) (0i - \hat{e}_i(x)) = 0$ $T_i = 0$ is touch. Only other way for the sum to be 0 if the two integrals are equal: $\int_{0}^{\infty} J_0 \cdot f(0ilx) (0i - \hat{e}_i(x)) = \int_{0}^{\infty} J_0 \cdot f(0ilx) (0i - \hat{e}_i(x))$ Thus 0i must be the median so that both integrals are equal.

```
6. Problem Statement
Minimize The quadratic form (y-x) (y-x) subject to The constraint x = HO. should And 2 = PHY, where
             PHUE H (HTH)-IHT.
Then apply This result to the quadratic form (y-x) Tw (y-x) for win full rank, symmetric. Interpret the resul
Solution
                                " OTHTY
min (4- HO) (4- HO) = 4TY - 4THO - OTHT 4 + OTHT HO = (10)
 2f = -2yTH + OT (HTH + HTH) = 20THTH - 2yTH = 0
         Now, use The save agreech on the Pollary minimitation.
  min (y-1+0) W (y-1+0)
 FOD = YWY - YWHO - OTHTWY + OTHTWHO
 2 = - YTWH - YTWTH + OT (HTUTH + HTWH) =0
           SMCC W is symmetric, wit z w
40 SE = - 24TWH + 20THTWH =0
            YTWH = OTHTWH
HTWY = HTWH O
              0 = (HTWH) HTWY
       R= A (HTWH)-1 HTWY
```

7,	Problem Statement
•	Suppose that a uniform rounding quantizer is used to quantize on arbitrary roundom variable x to L quantization error e=x-2 for large L. What is The noise power of e in terms of L and B?
	Solution
	Assume that $0 \le x \le a$ let $a = 1$ without loss of generality. Then the number of runtization levels $13 28 = L$ and the difference between quantization levels $\Delta = 1$. Assume that when a value is sample it is quantized to the nearest quantization level:
	B=Z L=4 0.75 +
	0.5
	0.25 - c negative
	o e positive
	Then The error e=x-2 is distributed uniformly from
	As it is increased D decreases and Mix distribution tightens
	-1 0 2 0 2
7	he noise power $E[\cdot e^2] = \int_{-\infty}^{\infty} f_e(e) \cdot e^2 \cdot de = \int_{-\infty}^{\frac{1}{2}} e^2 de$ $= \int_{-\infty}^{\infty} \left[\frac{1}{3} e^3 \right]_{-\infty}^{\infty} = \int_{-\infty}^{\infty} \left[\frac{\Delta^3}{24} - \frac{\Delta^3}{24} \right]_{-\infty}^{\infty} = \int_{-\infty}^{\infty} \left[\frac{\Delta^3}{24} - \frac{\Delta^3}{24} \right]_{-\infty}^{\infty} = \int_{-\infty}^{\infty} \left[\frac{\Delta^3}{24} - \frac{\Delta^3}{24} \right]_{-\infty}^{\infty}$
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

8	Problem statement
	Euppose X is an nodimensional vector with XNN (um, 02). Find a test to determine whether or not u &0 or M >0. Poto Dat X is corrupted with noise.
	Y = Y Om 1 X
	Where \$50 and Or 1 is an unknown rotation or Thogonal to m.
COMMI	Solution & Get X in torrs of its orthogonal companients
metorx	S= span(m) and let T= St, The orthogonal complement of S on Rn. Let PT be a projection of X ST and Pe be a projection X SS.
	Men $x = P_7 \cdot x + P_5 \cdot x$.
	Let Q be a refation matrix st. QQT=I.
	Note: Q. Psx = (Prapt + Ps) Psx = Psx and Q. Prx = Proprx
	with Y = ram1 x the problem 13:
	Ho ~ N (MO QMIX, 8°I), MEO HI ~ N (MO QMIX, 8°I), MEO
	O sufficient statistic is to mity. Then out test becomes
1	$\beta(\vec{+}) = \begin{cases} 1 & t > y & '.H, \\ 0 & t \leq y & '.H_0 \end{cases}$
	20 + ≤ v : Ho