Control Computarizado - La transformada z

Kjartan Halvorsen

2020-07-02

El mundo según el controlador discreto

Figure 1.1 Schematic diagram of a computer-controlled system.

Sistemas muestreados $\frac{1}{100}$ son invariantes en el tiempo continuo

Figure 1.9 Simulation of the disk arm servo with deadbeat control (solid). The sampling period is $h = 1.4/\omega_0$. The analog controller from Example 1.2 is also shown (dashed).

Sistemas LTI discretos

$$\begin{array}{c}
u(k) \\
\hline
g
\end{array}$$

Caso general (no-causal)

$$y(k) = g * u = \sum_{n=-\infty}^{\infty} g(n)u(k-n)$$

Caso causal

$$y(k) = g * u = \sum_{n=0}^{\infty} g(n)u(k-n)$$

g(k) se llama la sequencia de ponderación.

Sistemas LTI discretos

Respuesta al impulso

Si la señal de entrada es un impulso unitario

$$y(k) = \sum_{n=0}^{\infty} g(n)\delta(k-n) = g(k)$$

La respuesta de un sistema LSI discreta causal es una suma de valores previod de la señal de entreda

$$y(k) = g * u = \sum_{n=0}^{\infty} g(n)u(k-n)$$

La sequencia de ponderación g(k) es también la respuesta al impulso del sistema.

Actividad Cuál es la respuesta del sistema si la respuesta al impulse es como abajo

Eigenfunciónes de sistemas LTI discretos

Si la señal de entrada al sistema es una función exponencial compleja

$$u(k)=z_1^k, \quad z_1\in\mathbb{C}$$

la respuesta será también una función exponencial compleja de la misma forma

$$y(k) = \sum_{n=0}^{\infty} g(n)u(k-n) = \sum_{n=0}^{\infty} g(n)z_1^{k-n} = \sum_{n=0}^{\infty} g(n)z_1^k z_1^{-n}$$
$$= z_1^k \sum_{n=0}^{\infty} g(n)z_1^{-n} = z_1^k G(z_1).$$

La transformada de Laplace

Definición (ecuación de análisis)

$$F(s) = \mathcal{L}\left\{f(t)\right\} = \int_0^\infty f(t) e^{-st} dt$$

Transformada inversa (ecuación de síntesis)

$$f(t) = \mathcal{L}^{-1}\{F(s)\} = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} F(s) \mathrm{e}^{st} ds$$

La transformada z

Definición (ecuación de análisis)

$$F(z) = \mathcal{Z}\left\{f(kh)\right\} = \sum_{k=0}^{\infty} f(kh)z^{-k}$$

Transformada inversa (ecuación de síntesis)

$$f(kh) = \frac{1}{2\pi i} \oint_r F(z) z^{k-1} dz$$

La transformada de Laplace de una señal muestreada

$$f_s(t) = f(t)m(t) = f(t)\sum_{k=-\infty}^{\infty} \delta(t-kh) = \sum_{k=-\infty}^{\infty} f(t)\delta(t-kh) = \sum_{k=-\infty}^{\infty} f(kh)\delta(t-kh)$$

$$F_{s}(s) = \mathcal{L}\left\{f_{s}(t)\right\} = \int_{0}^{\infty} \left(\sum_{k=-\infty}^{\infty} f(kh)\delta(t-kh)\right) e^{-st} dt$$
$$= \sum_{k=0}^{\infty} \int_{0}^{\infty} f(kh)\delta(t-kh)e^{-st} dt = \sum_{k=0}^{\infty} f(kh)e^{-skh}$$
$$= \sum_{k=0}^{\infty} f(kh)\left(e^{-sh}\right)^{k}$$

La transformada de Laplace de una señal muestreada

Nota:

$$F_s(s)=\sum_{k=0}^\infty f(kh)\left(\mathrm{e}^{-sh}
ight)^k$$
 transformada de Laplace $F(z)=\sum_{k=0}^\infty f(kh)z^{-k}$ transformada z

La transformada z de una señal muestreada corresponde a su transformada de Laplace bajo la relación

$$z = e^{sh}$$

entre el dominio s de la transformada de Laplace y el dominio z de la tranformada z.

La transformada más importante

$$f(kh) = \alpha^{kh}, \quad \alpha \in \mathbb{C}$$

$$F(z) = \mathcal{Z}\left\{f(kh)\right\} = \sum_{k=0}^{\infty} f(kh)z^{-k} = \sum_{k=0}^{\infty} \alpha^{kh}z^{-k} = \sum_{k=0}^{\infty} \left(\alpha^{h}\right)^{k} z^{-k}$$
$$= \sum_{k=0}^{\infty} \left(\frac{\alpha^{h}}{z}\right)^{k} = \frac{1}{1 - \frac{\alpha^{h}}{z}} = \frac{z}{z - \alpha^{h}}, \quad \left|\frac{\alpha^{h}}{z}\right| < 1$$

$$\alpha^{kh} \quad \stackrel{\mathcal{Z}}{\longleftrightarrow} \quad \frac{z}{z - \alpha^h}$$

Otras parejas

Actividad (manda por Remind) Usa la definición de la transformada z

$$F(z) = \mathcal{Z}\left\{f(kh)\right\} = \sum_{0}^{\infty} f(kh)z^{-k}$$

o el resultado

$$\alpha^{kh} \quad \stackrel{\mathcal{Z}}{\longleftrightarrow} \quad \frac{z}{z - \alpha^h}$$

para calcular las siguientes transformadas de señales derechas (son zero para argumentos negativos)

$$f(kh) \qquad F(z)$$
a) $f(kh) = \beta$
b) $f(kh) = (-1)^k$
c) $f(kh) = e^{i\omega_1 kh}$
d) $f(kh) = \delta(k-3)$
e) $f(kh) = \cos(\omega_1 kh)$

Otras parejas - solución

$$F(z) = \mathcal{Z}\left\{f(kh)\right\} = \sum_{0}^{\infty} f(kh)z^{-k}$$

o el resultado

$$\alpha^{kh} \quad \stackrel{\mathcal{Z}}{\longleftrightarrow} \quad \frac{z}{z - \alpha^h}$$

f(kh)	F(z)	Comentario
a) $f(kh) = \beta$	$\beta \frac{z}{z-1}$	$f(kh) = \beta(1)^{kh}$
$b)\ f(\mathit{kh}) = (-1)^k$	$\frac{z}{z+1}$	$\alpha^h = -1$
c) $f(kh) = e^{i\omega_1kh}$	$\frac{z}{z-e^{i\omega_1 h}}$	
$d)\ f(kh) = \delta(k-3)$	$\sum_{k=0}^{\infty} \delta(k-3) z^{-k} = z^{-3}$	
e) $f(kh) = \cos(\omega_1 kh)$	$\frac{z(z-\cos\omega_1 h)}{z^2-2\cos(\omega_1 h)z+1}$	$\cos\omega_1 h = \frac{1}{2} e^{i\omega_1 h} + \frac{1}{2} e^{-i\omega_1 h}$

Propiedades básicas de la transformada z

Table 2.2 Some properties of the *z*-transform.

1. Definition.

$$F(z) = \sum_{k=0}^{\infty} f(kh)z^{-k}$$

2. Inversion. $f(kh) = \frac{1}{2\pi i} \oint F(z)z^{k-1} dz$

3. Linearity.

$$Z\{af + \beta g\} = aZf + \beta Zg$$

4. Time shift.

$$\mathcal{Z}\{q^{-n}f\} = z^{-n}F$$

 $\mathcal{Z}\{q^nf\} = z^n(F - F_1) \text{ where } F_1(z) = \sum_{i=0}^{n-1} f(jh)z^{-j}$

5. Initial-value theorem. $f(0) = \lim_{z \to \infty} F(z)$

6. Final-value theorem.

If $(1-z^{-1})F(z)$ does not have any poles on or outside the unit circle, then $\lim_{k\to\infty} f(kh) = \lim_{z\to 1} (1-z^{-1})F(z)$.

7. Convolution.

$$\mathcal{Z}\lbrace f*g\rbrace = \mathcal{Z}\left\lbrace \sum_{n=0}^{k} f(n)g(k-n) \right\rbrace = (\mathcal{Z}f)(\mathcal{Z}g)$$

Solución de sistemas discretos

Aplicando la transformada z a la ecuación en diferencias

$$(q^2 + a_1 q + a_2)y_k = (b_0 q^2 + b_1 q + b_2) u_k$$

da

$$z^{2}Y - z^{2}y(0) - zy(1) + a_{1}zY - a_{1}zy(0) + a_{2}Y =$$

$$b_{0}z^{2}U - b_{0}z^{2}u(0) - b_{0}zu(1) + b_{1}zU - b_{1}zu(0) + b_{2}U$$

$$Y(z) = \underbrace{\frac{\big(y(0) - b_0 u(0)\big)z^2 + \big(y(1) + a_1 y(0) - b_0 u(1) - b_1 u(0)\big)z}{z^2 + a_1 z + a_2}}$$

respuesta transiente

$$+ \underbrace{\frac{b_0z^2 + b_1z + b_2}{z^2 + a_1z + a_2}}_{} U(z)$$

función de transferencia

respuesta a la señal de entrada

Solución de sistemas discretos

In general, la respuesta de un LTI discreto

$$(q^n + a_1 q^{m-1} + \cdots + a_n) y(k) = (b_0 q^m + b_1 q^{m-1} + \cdots + b_m) u(k)$$

es

$$Y(z) = \frac{\beta(z)}{A(z)} + \frac{B(z)}{A(z)}U(z)$$

Cuando el sistema está inicialmente relajado:

$$Y(z) = \frac{B(z)}{A(z)}U(z) = G(z)U(z)$$

Convolución en dominio de tiempo es multiplicación en dominio de z

La transformada z juega el mismo papel para sistemas discretos, como juega la transformada de Laplace para sistemas continuosas!

Usando J = 1 y h = 1.

Ecuación en diferencias para el sistema de lazo cerrado (usando K=0.5):

$$\theta(k+2) - 2\theta(k+1) + \theta(k) = 0.1\theta_{ref}(k) - 0.5(\theta(k) - 0.8\theta(k-1))$$

$$\theta(k+3) - 2\theta(k+2) + 1.5\theta(k+1) - 0.4\theta(k) = 0.1\theta_{ref}(k+1)$$

Calcula el respuesta a un escalón unitario en $\theta_{ref}(k)$! Tenemos

$$\theta(k+3) - 2\theta(k+2) + 1.5\theta(k+1) - 0.4\theta(k) = 0.1\theta_{ref}(k+1)$$

Tomando la transformada z

$$(z^3 - 2z^2 + 1.5z - 0.4)\Theta(z) = 0.1z\Theta_{ref}(z) = 0.1\frac{z^2}{z - 1}$$

$$\Theta(z) = 0.1\frac{z^2}{(z - 1)(z^3 - 2z^2 + 1.5z - 0.4)}$$

$$\theta(k) = \mathcal{Z}^{-1}\{\Theta(z)\} = \mathcal{Z}^{-1}\left\{0.1\frac{z^2}{(z - 1)(z^3 - 2z^2 + 1.5z - 0.4)}\right\}$$

Solución usando expansión de fracciones parciales:

$$\Theta(z) = 0.1 \frac{z^2}{(z-1)(z^3 - 2z^2 + 1.5z - 0.4)}$$

$$= 0.1 \frac{z^2}{(z-1)(z-0.62)(z-0.69 + 0.41i)(z-0.69 - 0.41i)}$$

$$= 0.1 \frac{z^2}{(z-1)(z-0.62)(z^2 - 1.38z + 0.64)}$$

$$= \frac{A}{z-1} + \frac{B}{z-0.62} + \frac{Cz + D}{z^2 - 1.38z + 0.64}$$

$$A = \lim_{z \to 1} (z - 1)\Theta(z) = 1.01$$
, etc.

$$\Theta(z) = \frac{1.01}{z - 1} - \frac{0.60}{z - 0.62} + \frac{0.03 - 0.41z}{z^2 - 1.38z + 0.64}$$

$$\Theta(z) = \frac{1.01}{z - 1} - \frac{0.60}{z - 0.62} + \frac{0.03}{z^2 - 1.38z + 0.64} - \frac{0.41z}{z^2 - 1.38z + 0.64}$$

Aplicando la transformada z inversa (ayuda de Wolfram) para cada uno de los terminos

$$\theta(k) = 1.01u_s(k-1) - 0.60(0.62)^{k-1} - 0.05(0.8)^k \left(\cos(0.53k) + 19.9\sin(0.53k)\right)$$

Ejercicio

La ecuación en diferencias para el compensador lead $F(s) = K \frac{s+b}{s+a}$ que vímos en la primera clase

$$(t)$$
 (t)
 (t)
 (t)
 (t)

era (con los valores a=8, b=1, h=0.1, K=1)

$$u_2(k+1) - 0.2u_2(k) = \theta(k+1) - 0.9\theta(k)$$

Calcula la respuesta del sistema a una señal escalón unitario.