PATENT APPLICATION

PATIENT SELECTABLE JOINT KNEE ARTHROPLASTY DEVICES

Inventors:

Wolfgang FITZ

Philipp LANG

Daniel STEINES

Konstantinos TSOUGARAKIS

Rene VARGAS-VORACEK

Hacene BOUADI

Cecily Anne SNYDER

Assignee:

Imaging Therapeutics, Inc.

Entity:

Small

Robins & Pasternak LLP 1731 Embarcadero Road, Suite 230 Palo Alto, CA 94303

Tel: 650 493-3400 Fax: 650 493-3440

20

25

Patent Application For

PATIENT SELECTABLE KNEE ARTHROPLASTY DEVICES

By

Wolfgang Fitz

Philipp Lang
Daniel Steines
Konstantinos Tsougarakis
Rene Vargas-Voracek
Hacene Bouadi
Cecily Anne Snyder

CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation-in-part of U.S. Serial No. 10/724,010 filed November 25, 2003 entitled "Patient Selectable Joint Arthroplasty Devices and Surgical Tools Facilitating Increased Accuracy, Speed and Simplicity in Performing Total and Partial Joint Arthroplasty," which is a continuation-in-part of U.S. Serial No. 10/305,652 entitled "Methods and Compositions for Articular Repair," filed November 27, 2002, which is a continuation-in-part of U.S. Serial No. 10/160,667, filed May 28, 2002, which in turn claims the benefit of U.S. Serial Number 60/293,488 entitled "Methods To Improve Cartilage Repair Systems", filed May 25, 2001, U.S. Serial Number 60/363,527, entitled "Novel Devices For Cartilage Repair, filed March 12, 2002 and U.S. Serial Numbers 60/380,695 and 60/380,692, entitled "Methods And Compositions for Cartilage Repair," and "Methods for Joint Repair," filed May 14, 2002, all of which applications are hereby incorporated by reference in their entireties.

10

15

20

[0002] This application is also a continuation-in-part of U.S. application 10/681,750 filed October 7, 2003 entitled "MINIMALLY INVASIVE JOINT IMPLANT WITH 3-DIMENSIONAL GEOMETRY MATCHING THE ARTICULAR SURFACES."

FIELD OF THE INVENTION

[0003] The present invention relates to orthopedic methods, systems and devices and more particularly relates to methods, systems and devices for articular resurfacing in the knee.

BACKGROUND OF THE INVENTION

There are various types of cartilage, *e.g.*, hyaline cartilage and fibrocartilage. Hyaline cartilage is found at the articular surfaces of bones, *e.g.*, in the joints, and is responsible for providing the smooth gliding motion characteristic of moveable joints. Articular cartilage is firmly attached to the underlying bones and measures typically less than 5mm in thickness in human joints, with considerable variation depending on the joint and the site within the joint.

[0005] Adult cartilage has a limited ability of repair; thus, damage to cartilage produced by disease, such as rheumatoid and/or osteoarthritis, or trauma can lead to serious physical deformity and debilitation. Furthermore, as human articular cartilage ages, its tensile properties change. The superficial zone of the knee articular cartilage exhibits an increase in tensile strength up to the third decade of life, after which it decreases markedly with age as detectable damage to type II collagen occurs at the articular surface. The deep zone cartilage also exhibits a progressive decrease in tensile strength with increasing age, although collagen content does not appear to

10

15

20

25

decrease. These observations indicate that there are changes in mechanical and, hence, structural organization of cartilage with aging that, if sufficiently developed, can predispose cartilage to traumatic damage.

[0006] Once damage occurs, joint repair can be addressed through a number of approaches. One approach includes the use of matrices, tissue scaffolds or other carriers implanted with cells (e.g., chondrocytes, chondrocyte progenitors, stromal cells, mesenchymal stem cells, etc.). These solutions have been described as a potential treatment for cartilage and meniscal repair or replacement. See, also, International Publications WO 99/51719 to Fofonoff, published October 14, 1999; WO01/91672 to Simon et al., published 12/6/2001; and WO01/17463 to Mannsmann. published March 15, 2001; U.S. Patent No. 6,283,980 B1 to Vibe-Hansen et al., issued September 4, 2001, U.S. Patent No. 5,842,477 to Naughton issued December 1, 1998, U.S. Patent No. 5,769,899 to Schwartz et al. issued June 23, 1998, U.S. Patent No. 4,609,551 to Caplan et al. issued September 2, 1986, U.S. Patent No. 5,041,138 to Vacanti et al. issued August 29, 1991, U.S. Patent No. 5,197,985 to Caplan et al. issued March 30, 1993, U.S. Patent No. 5,226,914 to Caplan et al. issued July 13, 1993, U.S. Patent No. 6,328,765 to Hardwick et al. issued December 11, 2001, U.S. Patent No. 6,281,195 to Rueger et al. issued August 28, 2001, and U.S. Patent No. 4,846,835 to Grande issued July 11, 1989. However, clinical outcomes with biologic replacement materials such as allograft and autograft systems and tissue scaffolds have been uncertain since most of these materials do not achieve a morphologic arrangement or structure similar to or identical to that of normal, disease-free human tissue it is intended to replace. Moreover, the

10

15

20

25

mechanical durability of these biologic replacement materials remains uncertain.

[0007] Usually, severe damage or loss of cartilage is treated by replacement of the joint with a prosthetic material, for example, silicone, *e.g.* for cosmetic repairs, or metal alloys. See, *e.g.*, U.S. Patent No. 6,383,228 to Schmotzer, issued May 7, 2002; U.S. Patent No. 6,203,576 to Afriat et al., issued March 20, 2001; U.S. Patent No. 6,126,690 to Ateshian, et al., issued October 3, 2000. Implantation of these prosthetic devices is usually associated with loss of underlying tissue and bone without recovery of the full function allowed by the original cartilage and, with some devices, serious long-term complications associated with the loss of significant amount of tissue and bone can include infection, osteolysis and also loosening of the implant.

[0008] Further, joint arthroplasties are highly invasive and require surgical resection of the entire or the majority of the articular surface of one or more bones. With these procedures, the marrow space is reamed in order to fit the stem of the prosthesis. The reaming results in a loss of the patient's bone stock. U.S. Patent 5,593,450 to Scott et al. issued January 14, 1997 discloses an oval domed shaped patella prosthesis. The prosthesis has a femoral component that includes two condyles as articulating surfaces. The two condyles meet to form a second trochlear groove and ride on a tibial component that articulates with respect to the femoral component. A patella component is provided to engage the trochlear groove. U.S. Patent 6,090,144 to Letot et al. issued July 18, 2000 discloses a knee prosthesis that includes a tibial component and a meniscal component that is adapted to be engaged with the tibial component through an asymmetrical engagement.

10

15

20

25

[0009] A variety of materials can be used in replacing a joint with a prosthetic, for example, silicone, e.g. for cosmetic repairs, or suitable metal alloys are appropriate. See, e.g., U.S. Patent No. 6,443,991 B1 to Running issued September 3, 2002, U.S. Patent No. 6,387,131 B1 to Miehlke et al. issued May 14, 2002; U.S. Patent No. 6,383,228 to Schmotzer issued May 7. 2002; U.S. Patent No. 6,344,059 B1 to Krakovits et al. issued February 5. 2002; U.S. Patent No. 6,203,576 to Afriat et al. issued March 20, 2001; U.S. Patent No. 6,126,690 to Ateshian et al. issued October 3, 2000; U.S. Patent 6,013,103 to Kaufman et al. issued January 11, 2000. Implantation of these prosthetic devices is usually associated with loss of underlying tissue and bone without recovery of the full function allowed by the original cartilage and, with some devices, serious long-term complications associated with the loss of significant amounts of tissue and bone can cause loosening of the implant. One such complication is osteolysis. Once the prosthesis becomes loosened from the joint, regardless of the cause, the prosthesis will then need to be replaced. Since the patient's bone stock is limited, the number of possible replacement surgeries is also limited for joint arthroplasty.

[0010] As can be appreciated, joint arthroplasties are highly invasive and require surgical resection of the entire, or a majority of the, articular surface of one or more bones involved in the repair. Typically with these procedures, the marrow space is fairly extensively reamed in order to fit the stem of the prosthesis within the bone. Reaming results in a loss of the patient's bone stock and over time subsequent osteolysis will frequently lead to loosening of the prosthesis. Further, the area where the implant and the bone mate degrades over time requiring the prosthesis to eventually be replaced. Since the patient's bone stock is limited, the number of possible

10

15

20

25

replacement surgeries is also limited for joint arthroplasty. In short, over the course of 15 to 20 years, and in some cases even shorter time periods, the patient can run out of therapeutic options ultimately resulting in a painful, non-functional joint.

[0011] U.S. Patent No. 6,206,927 to Fell, et al., issued March 27, 2001, and U.S. Patent No. 6,558,421 to Fell, et al., issued May 6, 2003, disclose a surgically implantable knee prosthesis that does not require bone resection. This prosthesis is described as substantially elliptical in shape with one or more straight edges. Accordingly, these devices are not designed to substantially conform to the actual shape (contour) of the remaining cartilage in vivo and/or the underlying bone. Thus, integration of the implant can be extremely difficult due to differences in thickness and curvature between the patient's surrounding cartilage and/or the underlying subchondral bone and the prosthesis. U.S. Patent 6,554,866 to Aicher, et al. issued April 29, 2003 describes a mono-condylar knee joint prosthesis.

Interpositional knee devices that are not attached to both the tibia and femur have been described. For example, Platt et al. (1969) "Mould Arthroplasty of the Knee," Journal of Bone and Joint Surgery 51B(1):76-87, describes a hemi-arthroplasty with a convex undersurface that was not rigidly attached to the tibia. Devices that are attached to the bone have also been described. Two attachment designs are commonly used. The McKeever design is a cross-bar member, shaped like a "t" from a top perspective view, that extends from the bone mating surface of the device such that the "t" portion penetrates the bone surface while the surrounding surface from which the "t" extends abuts the bone surface. See McKeever, "Tibial Plateau Prosthesis," Chapter 7, p. 86. An alternative attachment design is the

10

15

20

25

MacIntosh design, which replaces the "t" shaped fin for a series of multiple flat serrations or teeth. See Potter, "Arthroplasty of the Knee with Tibial Metallic Implants of the McKeever and MacIntosh Design," Surg. Clins. Of North Am. **49(4)**: 903-915 (1969).

[0013] U.S. Patent 4,502,161 to Wall issued March 5, 1985, describes a prosthetic meniscus constructed from materials such as silicone rubber or Teflon with reinforcing materials of stainless steel or nylon strands. U.S. Patent 4,085,466 to Goodfellow et al. issued March 25, 1978, describes a meniscal component made from plastic materials. Reconstruction of meniscal lesions has also been attempted with carbon-fiber-polyurethane-poly (L-lactide). Leeslag, et al., Biological and Biomechanical Performance of Biomaterials (Christel et al., eds.) Elsevier Science Publishers B.V., Amsterdam. 1986. pp. 347-352. Reconstruction of meniscal lesions is also possible with bioresorbable materials and tissue scaffolds.

[0014] However, currently available devices do not always provide ideal alignment with the articular surfaces and the resultant joint congruity. Poor alignment and poor joint congruity can, for example, lead to instability of the joint. In the knee joint, instability typically manifests as a lateral instability of the joint. Further, none of these solutions take into account the fact that roughly 80% of patients undergoing knee surgery have a healthy lateral compartment and only need to repair the medial condyle and the patella. An additional 10% only have damage to the lateral condyle. Thus, 90% of patients do not require the entire condylar surface repaired.

[0015] Thus, there remains a need for compositions for joint repair, including methods and compositions that facilitate the integration between the

cartilage replacement system and the surrounding cartilage which takes into account the actual damage to be repaired.

SUMMARY OF THE INVENTION

The present invention provides novel devices and methods for replacing a portion (e.g., diseased area and/or area slightly larger than the diseased area) of a knee joint (e.g., cartilage and/or bone) with one or more implants, where the implant(s) achieves a near anatomic fit with the surrounding structures and tissues. In cases where the devices and/or methods include an element associated with the underlying articular bone, the invention also provides that the bone-associated element achieves a near anatomic alignment with the subchondral bone. The invention also provides for the preparation of an implantation site with a single cut, or a few relatively small cuts. The invention also provides a kit which includes one or more implants used to achieve optimal joint correction.

15

5

10

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] Fig. 1A is a block diagram of a method for assessing a joint in need of repair according to the invention wherein the existing joint surface is unaltered, or substantially unaltered, prior to receiving the selected implant.

Fig. 1B is a block diagram of a method for assessing a joint in need of repair according to the invention wherein the existing joint surface is unaltered, or substantially unaltered, prior to designing an implant suitable to achieve the repair.

20

[0018] Fig. 2A is a perspective view of a joint implant of the invention suitable for implantation at the tibial plateau of the knee joint. Fig. 2B is a top

10

15

view of the implant of Fig. 2a. Fig. 2c is a cross-sectional view of the implant of Fig. 2B along the lines C-C shown in Fig. 2B. Fig. 2D is a cross-sectional view along the lines D-D shown in Fig. 2B. Fig. 2E is a cross-sectional view along the lines E-E shown in Fig. 2B. Fig. 2F is a side view of the implant of Fig. 2A. Fig. 2G is a cross-sectional view of the implant of Fig. 2A shown implanted taken along a plane parallel to the sagittal plane. Fig. 2H is a cross-sectional view of the implant of Fig. 2A shown implanted taken along a plane parallel to the coronal plane. Fig. 2I is a cross-sectional view of the implant of Fig. 2A shown implanted taken along a plane parallel to the axial plane. Fig. 2J shows a slightly larger implant that extends closer to the bone medially (towards the edge of the tibial plateau) and anteriorly and posteriorly. Fig. 2K is a side view of an alternate embodiment of the joint implant of Fig. 2A showing an anchor in the form of a keel. Fig. 2L is a bottom view of an alternate embodiment of Fig. 2A showing an anchor.

FIG. 2M is a side view of an exemplary embodiment of the joint implant of FIG. 2A. FIG. 2N-O are alternative embodiments of the implant showing the lower surface have a trough for receiving a cross-bar. FIG. 2P illustrates a variety of cross-bars. FIGS. 2Q-R illustrate the device implanted within a knee joint.

[0019] Figs. 3A and B are perspective views of a joint implant suitable for use on a condyle of the femur from the inferior and superior surface viewpoints, respectively. Fig. 3c is a side view of the implant of Fig. 3A.

Fig. 3D is a view of the inferior surface of the implant; Fig. 3E is a view of the superior surface of the implant and Fig. 3F is a cross-section of the implant.

Fig. 3G is an axial view of a femur with the implant installed thereon. Fig. 3H is an anterior view of the knee joint without the patella wherein the implant is

10

15

20

25

installed on the femoral condyle. Fig. 3i is an anterior view of the knee joint with an implant of Fig. 3A implanted on the femoral condyle along with an implant suitable for the tibial plateau, such as that shown in Fig. 2.

[0020] Figs. 4A-H depict another implant suitable for placement on a femoral condyle. Fig. 4A is a slightly perspective view of the implant from the superior surface. Fig. 4B is a side view of the implant of Fig. 4A. Fig. 4C is a top view of the inferior surface of the implant; Fig. 4D and E are perspective side views of the implant. Fig. 4F is an axial view of a femur with the implant installed thereon. Fig. 4G is an anterior view of the knee joint without the patella wherein the implant is installed on the femoral condyle. Fig. 4H is an anterior view of the knee joint with an implant of Fig. 4A implanted on the femoral condyle along with an implant suitable for the tibial plateau, such as that shown in Fig. 2.

[0021] Figs. 5A-N are depictions of another implant suitable for placement on the femoral condyle. Fig. 5A is a top view of the inferior surface of the implant. Fig. 5B is a slightly perspective view of the superior surface of the implant. Fig. 5c is a perspective side view of the implant from a first direction; Fig. 5D is a slightly perspective side view of the implant from a second direction. Fig. 5E is a side view of the implant; Fig. 5F is a view of the superior surface of the implant; Figs. 5G and H are cross-sectional views of the implant along the lines G and H shown in Fig. 5F. Fig. 5i is an axial view of a femur with the implant installed on the femoral condyles. Fig. 5J is an anterior view of the knee joint without the patella wherein the implant is installed on the femoral condyle. Fig. 5K is an anterior view of the knee joint with an implant of Fig. 5A implanted on the femoral condyles along with an implant suitable for the tibial plateau, such as that shown in Fig. 2. Figs. 5L-M

10

15

20

depicts a device implanted within the knee joint. **Fig. 5N** depicts an alternate embodiment of the device which accommodates an partial removal of the condyle.

[0022] Figs. 6A-G illustrate the device shown in Fig. 5 along with a graphical representation of the cross-sectional data points comprising the surface map.

[0023] Figs. 7A-c depict in implant suitable for use on a patella.

[0024] Figs. 8A-c depict representative side views of a knee joint with any of the devices taught installed therein. Fig. 8A depicts the knee with a condyle implant and a patella implant. Fig. 8B depicts an alternate view of the knee with a condyle implant and a patella implant wherein the condyle implant covers a greater portion of the surface of the condyle in the posterior direction. Fig. 8c illustrates a knee joint wherein the implant is provided on the condyle, the patella and the tibial plateau.

DETAILED DESCRIPTION OF THE INVENTION

[0025] The following description is presented to enable any person skilled in the art to make and use the invention. Various modifications to the embodiments described will be readily apparent to those skilled in the art, and the generic principles defined herein can be applied to other embodiments and applications without departing from the spirit and scope of the present invention as defined by the appended claims. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein. To the extent necessary to achieve a complete understanding of the invention

10

15

20

25

disclosed, the specification and drawings of all issued patents, patent publications, and patent applications cited in this application are incorporated herein by reference.

[0026] As will be appreciated by those of skill in the art, methods recited herein may be carried out in any order of the recited events which is logically possible, as well as the recited order of events. Furthermore, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein.

[0027] The practice of the present invention employs, unless otherwise indicated, conventional methods of x-ray imaging and processing, x-ray tomosynthesis, ultrasound including A-scan, B-scan and C-scan, computed tomography (CT scan), magnetic resonance imaging (MRI), optical coherence tomography, single photon emission tomography (SPECT) and positron emission tomography (PET) within the skill of the art. Such techniques are explained fully in the literature and need not be described herein. See, *e.g.*, X-Ray Structure Determination: A Practical Guide, 2nd Edition, editors Stout and Jensen, 1989, John Wiley & Sons, publisher; Body CT: A Practical Approach, editor Slone, 1999, McGraw-Hill publisher; X-ray Diagnosis: A Physician's Approach, editor Lam, 1998 Springer-Verlag, publisher; and Dental Radiology: Understanding the X-Ray Image, editor Laetitia Brocklebank 1997, Oxford University Press publisher. *See also*, The Essential Physics of Medical Imaging (2nd Ed.), Jerrold T. Bushberg, et al.

10

15

20

25

[0028] The present invention provides methods and compositions for repairing joints, particularly for repairing articular cartilage and for facilitating the integration of a wide variety of cartilage repair materials into a subject. Among other things, the techniques described herein allow for the customization of cartilage repair material to suit a particular subject, for example in terms of size, cartilage thickness and/or curvature. When the shape (e.g., size, thickness and/or curvature) of the articular cartilage surface is an exact or near anatomic fit with the non-damaged cartilage or with the subject's original cartilage, the success of repair is enhanced. The repair material can be shaped prior to implantation and such shaping can be based, for example, on electronic images that provide information regarding curvature or thickness of any "normal" cartilage surrounding the defect and/or on curvature of the bone underlying the defect. Thus, the current invention provides, among other things, for minimally invasive methods for partial joint replacement. The methods will require only minimal or, in some instances, no loss in bone stock. Additionally, unlike with current techniques, the methods described herein will help to restore the integrity of the articular surface by achieving an exact or near anatomic match between the implant and the surrounding or adjacent cartilage and/or subchondral bone.

[0029] Advantages of the present invention can include, but are not limited to, (i) customization of joint repair, thereby enhancing the efficacy and comfort level for the patient following the repair procedure; (ii) eliminating the need for a surgeon to measure the defect to be repaired intraoperatively in some embodiments; (iii) eliminating the need for a surgeon to shape the material during the implantation procedure; (iv) providing methods of evaluating curvature of the repair material based on bone or tissue images or

10

15

20

25

based on intraoperative probing techniques; (v) providing methods of repairing joints with only minimal or, in some instances, no loss in bone stock; and (vi) improving postoperative joint congruity.

[0030] Thus, the methods described herein allow for the design and use of joint repair material that more precisely fits the defect (e.g., site of implantation) and, accordingly, provides improved repair of the joint.

[0031] I. ASSESSMENT OF JOINTS AND ALIGNMENT

The methods and compositions described herein can be used to treat defects resulting from disease of the cartilage (e.g., osteoarthritis), bone damage, cartilage damage, trauma, and/or degeneration due to overuse or age. The invention allows, among other things, a health practitioner to evaluate and treat such defects. The size, volume and shape of the area of interest can include only the region of cartilage that has the defect, but preferably will also include contiguous parts of the cartilage surrounding the cartilage defect.

[0033] As will be appreciated by those of skill in the art, size, curvature and/or thickness measurements can be obtained using any suitable technique. For example, one-dimensional, two-dimensional, and/or three-dimensional measurements can be obtained using suitable mechanical means, laser devices, electromagnetic or optical tracking systems, molds, materials applied to the articular surface that harden and "memorize the surface contour," and/or one or more imaging techniques known in the art. Measurements can be obtained non-invasively and/or intraoperatively (e.g., using a probe or other surgical device). As will be appreciated by those of skill in the art, the thickness of the repair device can vary at any given point

14

10

15

20

25

depending upon the depth of the damage to the cartilage and/or bone to be corrected at any particular location on an articular surface.

[0034] FIG. 1A is a flow chart showing steps taken by a practitioner in assessing a joint. First, a practitioner obtains a measurement of a target joint 10. The step of obtaining a measurement can be accomplished by taking an image of the joint. This step can be repeated, as necessary. 11 to obtain a plurality of images in order to further refine the joint assessment process. Once the practitioner has obtained the necessary measurements, the information is used to generate a model representation of the target joint being assessed 30. This model representation can be in the form of a topographical map or image. The model representation of the joint can be in one, two, or three dimensions. It can include a physical model. More than one model can be created 31, if desired. Either the original model, or a subsequently created model, or both can be used. After the model representation of the joint is generated 30, the practitioner can optionally generate a projected model representation of the target joint in a corrected condition 40. Again, this step can be repeated 41, as necessary or desired. Using the difference between the topographical condition of the joint and the projected image of the joint, the practitioner can then select a joint implant 50 that is suitable to achieve the corrected joint anatomy. As will be appreciated by those of skill in the art, the selection process 50 can be repeated 51 as often as desired to achieve the desired result.

[0035] As will be appreciated by those of skill in the art, the practitioner can proceed directly from the step of generating a model representation of the target joint 30 to the step of selecting a suitable joint replacement implant 50 as shown by the arrow 32. Additionally, following selection of suitable joint

10

15

20

25

replacement implant 50, the steps of obtaining measurement of target joint 10, generating model representation of target joint 30 and generating projected model 40, can be repeated in series or parallel as shown by the flow 24, 25, 26.

[0036] Fig. 1B is an alternate flow chart showing steps taken by a practitioner in assessing a joint. First, a practitioner obtains a measurement of a target joint 10. The step of obtaining a measurement can be accomplished by taking an image of the joint. This step can be repeated, as necessary. 11 to obtain a plurality of images in order to further refine the joint assessment process. Once the practitioner has obtained the necessary measurements. the information is used to generate a model representation of the target joint being assessed 30. This model representation can be in the form of a topographical map or image. The model representation of the joint can be in one, two, or three dimensions. The process can be repeated 31 as necessary or desired. It can include a physical model. After the model representation of the joint is assessed 30, the practitioner can optionally generate a projected model representation of the target joint in a corrected condition 40. This step can be repeated 41 as necessary or desired. Using the difference between the topographical condition of the joint and the projected image of the joint, the practitioner can then design a joint implant 52 that is suitable to achieve the corrected joint anatomy, repeating the design process 53 as often as necessary to achieve the desired implant design. The practitioner can also assess whether providing additional features, such as lips, pegs, or anchors, will enhance the implants' performance in the target joint.

[0037] As will be appreciated by those of skill in the art, the practitioner can proceed directly from the step of generating a model representation of the

10

15

20

25

target joint **30** to the step of designing a suitable joint replacement implant **52** as shown by the arrow **38**. Similar to the flow shown above, following the design of a suitable joint replacement implant **52**, the steps of obtaining measurement of target joint **10**, generating model representation of target joint **30** and generating projected model **40**, can be repeated in series or parallel as shown by the flow **42**, **43**, **44**.

[0038] The joint implant selected or designed achieves anatomic or near anatomic fit with the existing surface of the joint while presenting a mating surface for the opposing joint surface that replicates the natural joint anatomy. In this instance, both the existing surface of the joint can be assessed as well as the desired resulting surface of the joint. This technique is particularly useful for implants that are not anchored into the bone.

[0039] As will be appreciated by those of skill in the art, the physician, or other person practicing the invention, can obtain a measurement of a target joint 10 and then either design 52 or select 50 a suitable joint replacement implant.

[0040] II. REPAIR MATERIALS

[0041] A wide variety of materials find use in the practice of the present invention, including, but not limited to, plastics, metals, crystal free metals, ceramics, biological materials (e.g., collagen or other extracellular matrix materials), hydroxyapatite, cells (e.g., stem cells, chondrocyte cells or the like), or combinations thereof. Based on the information (e.g., measurements) obtained regarding the defect and the articular surface and/or the subchondral bone, a repair material can be formed or selected. Further, using one or more of these techniques described herein, a cartilage

10

15

20

25

replacement or regenerating material having a curvature that will fit into a particular cartilage defect, will follow the contour and shape of the articular surface, and will match the thickness of the surrounding cartilage. The repair material can include any combination of materials, and typically includes at least one non-pliable material, for example materials that are not easily bent or changed.

[0042] A. METAL AND POLYMERIC REPAIR MATERIALS

[0043] Currently, joint repair systems often employ metal and/or polymeric materials including, for example, prostheses which are anchored into the underlying bone (e.g., a femur in the case of a knee prosthesis). See, e.g., U.S. Patent No. 6,203,576 to Afriat, et al. issued March 20, 2001 and 6,322,588 to Ogle, et al. issued November 27, 2001, and references cited therein. A wide-variety of metals are useful in the practice of the present invention, and can be selected based on any criteria. For example, material selection can be based on resiliency to impart a desired degree of rigidity. Non-limiting examples of suitable metals include silver, gold, platinum, palladium, iridium, copper, tin, lead, antimony, bismuth, zinc, titanium, cobalt, stainless steel, nickel, iron alloys, cobalt alloys, such as Elgiloy®, a cobaltchromium-nickel alloy, and MP35N, a nickel-cobalt-chromium-molybdenum alloy, and NitinolTM, a nickel-titanium alloy, aluminum, manganese, iron. tantalum, crystal free metals, such as Liquidmetal® alloys (available from LiquidMetal Technologies, www.liquidmetal.com), other metals that can slowly form polyvalent metal ions, for example to inhibit calcification of implanted substrates in contact with a patient's bodily fluids or tissues, and combinations thereof.

10

15

20

25

[0044] Suitable synthetic polymers include, without limitation, polyamides (e.g., nylon), polyesters, polystyrenes, polyacrylates, vinyl polymers (e.g., polyethylene, polytetrafluoroethylene, polypropylene and polyvinyl chloride), polycarbonates, polyurethanes, poly dimethyl siloxanes, cellulose acetates, polymethyl methacrylates, polyether ether ketones, ethylene vinyl acetates, polysulfones, nitrocelluloses, similar copolymers and mixtures thereof. Bioresorbable synthetic polymers can also be used such as dextran, hydroxyethyl starch, derivatives of gelatin, polyvinylpyrrolidone, polyvinyl alcohol, poly[N-(2-hydroxypropyl) methacrylamide], poly(hydroxy acids), poly(epsilon-caprolactone), polylactic acid, polyglycolic acid, poly(dimethyl glycolic acid), poly(hydroxy butyrate), and similar copolymers can also be used.

Other materials would also be appropriate, for example, the polyketone known as polyetheretherketone (PEEKTM). This includes the material PEEK 450G, which is an unfilled PEEK approved for medical implantation available from Victrex of Lancashire, Great Britain. (Victrex is located at www.matweb.com or see Boedeker www.boedeker.com). Other sources of this material include Gharda located in Panoli, India (www.ghardapolymers.com).

[0046] It should be noted that the material selected can also be filled. For example, other grades of PEEK are also available and contemplated, such as 30% glass-filled or 30% carbon filled, provided such materials are cleared for use in implantable devices by the FDA, or other regulatory body. Glass filled PEEK reduces the expansion rate and increases the flexural modulus of PEEK relative to that portion which is unfilled. The resulting product is known to be ideal for improved strength, stiffness, or stability.

25

Carbon filled PEEK is known to enhance the compressive strength and stiffness of PEEK and lower its expansion rate. Carbon filled PEEK offers wear resistance and load carrying capability.

- [0047] As will be appreciated, other suitable similarly biocompatible thermoplastic or thermoplastic polycondensate materials that resist fatigue, have good memory, are flexible, and/or deflectable have very low moisture absorption, and good wear and/or abrasion resistance, can be used without departing from the scope of the invention. The implant can also be comprised of polyetherketoneketone (PEKK).
- 10 [0048] Other materials that can be used include polyetherketone (PEK), polyetherketoneetherketoneketone (PEKEKK), and polyetheretherketoneketone (PEEKK), and generally a polyaryletheretherketone. Further other polyketones can be used as well as other thermoplastics.
- 15 [0049] Reference to appropriate polymers that can be used for the implant can be made to the following documents, all of which are incorporated herein by reference. These documents include: PCT Publication WO 02/02158 A1, dated Jan. 10, 2002 and entitled Bio-Compatible Polymeric Materials; PCT Publication WO 02/00275 A1, dated Jan. 3, 2002 and entitled Bio-Compatible Polymeric Materials; and PCT Publication WO 02/00270 A1, dated Jan. 3, 2002 and entitled Bio-Compatible Polymeric Materials.
 - [0050] The polymers can be prepared by any of a variety of approaches including conventional polymer processing methods. Preferred approaches include, for example, injection molding, which is suitable for the production of polymer components with significant structural features, and

10

15

20

25

rapid prototyping approaches, such as reaction injection molding and stereolithography. The substrate can be textured or made porous by either physical abrasion or chemical alteration to facilitate incorporation of the metal coating. Other processes are also appropriate, such as extrusion, injection, compression molding and/or machining techniques. Typically, the polymer is chosen for its physical and mechanical properties and is suitable for carrying and spreading the physical load between the joint surfaces.

[0051] More than one metal and/or polymer can be used in combination with each other. For example, one or more metal-containing substrates can be coated with polymers in one or more regions or, alternatively, one or more polymer-containing substrate can be coated in one or more regions with one or more metals.

[0052] The system or prosthesis can be porous or porous coated. The porous surface components can be made of various materials including metals, ceramics, and polymers. These surface components can, in turn, be secured by various means to a multitude of structural cores formed of various metals. Suitable porous coatings include, but are not limited to, metal, ceramic, polymeric (e.g., biologically neutral elastomers such as silicone rubber, polyethylene terephthalate and/or combinations thereof) or combinations thereof. See, e.g., U.S. Pat. No. 3,605,123 to Hahn, issued September 20, 1971. U.S. Pat. No. 3,808,606 to Tronzo issued May 7, 1974 and U.S. Pat. No. 3,843,975 to Tronzo issued October 29, 1974; U.S. Pat. No. 3,314,420 to Smith issued April 18, 1967; U.S. Pat. No. 3,987,499 to Scharbach issued October 26, 1976; and German Offenlegungsschrift 2,306,552. There can be more than one coating layer and the layers can

10

15

20

25

have the same or different porosities. See, e.g., U.S. Pat. No. 3,938,198 to Kahn, et al., issued February 17, 1976.

The coating can be applied by surrounding a core with powdered polymer and heating until cured to form a coating with an internal network of interconnected pores. The tortuosity of the pores (e.g., a measure of length to diameter of the paths through the pores) can be important in evaluating the probable success of such a coating in use on a prosthetic device. See, also, U.S. Pat. No. 4,213,816 to Morris issued July 22, 1980. The porous coating can be applied in the form of a powder and the article as a whole subjected to an elevated temperature that bonds the powder to the substrate. Selection of suitable polymers and/or powder coatings can be determined in view of the teachings and references cited herein, for example based on the melt index of each.

[0054] B. BIOLOGICAL REPAIR MATERIAL

material either alone or in combination with non-biological materials. For example, any base material can be designed or shaped and suitable cartilage replacement or regenerating material(s) such as fetal cartilage cells can be applied to be the base. The cells can be then be grown in conjunction with the base until the thickness (and/or curvature) of the cartilage surrounding the cartilage defect has been reached. Conditions for growing cells (e.g., chondrocytes) on various substrates in culture, ex vivo and in vivo are described, for example, in U.S. Patent Nos. 5,478,739 to Slivka et al. issued December 26, 1995; 5,842,477 to Naughton et al. issued December 1, 1998; 6,283,980 to Vibe-Hansen et al., issued September 4, 2001, and 6,365,405 to

15

20

25

Salzmann et al. issued April 2, 2002. Non-limiting examples of suitable substrates include plastic, tissue scaffold, a bone replacement material (e.g., a hydroxyapatite, a bioresorbable material), or any other material suitable for growing a cartilage replacement or regenerating material on it.

5 [0056] Biological polymers can be naturally occurring or produced *in vitro* by fermentation and the like. Suitable biological polymers include, without limitation, collagen, elastin, silk, keratin, gelatin, polyamino acids, cat gut sutures, polysaccharides (*e.g.*, cellulose and starch) and mixtures thereof. Biological polymers can be bioresorbable.

[0057] Biological materials used in the methods described herein can be autografts (from the same subject); allografts (from another individual of the same species) and/or xenografts (from another species). See, also, International Patent Publications WO 02/22014 to Alexander et al. published March 21, 2002 and WO 97/27885 to Lee published August 7, 1997. In certain embodiments autologous materials are preferred, as they can carry a reduced risk of immunological complications to the host, including reabsorption of the materials, inflammation and/or scarring of the tissues surrounding the implant site.

In one embodiment of the invention, a probe is used to harvest tissue from a donor site and to prepare a recipient site. The donor site can be located in a xenograft, an allograft or an autograft. The probe is used to achieve a good anatomic match between the donor tissue sample and the recipient site. The probe is specifically designed to achieve a seamless or near seamless match between the donor tissue sample and the recipient site.

The probe can, for example, be cylindrical. The distal end of the probe is

10

15

20

25

typically sharp in order to facilitate tissue penetration. Additionally, the distal end of the probe is typically hollow in order to accept the tissue. The probe can have an edge at a defined distance from its distal end, e.g. at 1 cm distance from the distal end and the edge can be used to achieve a defined depth of tissue penetration for harvesting. The edge can be external or can be inside the hollow portion of the probe. For example, an orthopedic surgeon can take the probe and advance it with physical pressure into the cartilage. the subchondral bone and the underlying marrow in the case of a joint such as a knee joint. The surgeon can advance the probe until the external or internal edge reaches the cartilage surface. At that point, the edge will prevent further tissue penetration thereby achieving a constant and reproducible tissue penetration. The distal end of the probe can include one or more blades, saw-like structures, or tissue cutting mechanism. For example, the distal end of the probe can include an iris-like mechanism consisting of several small blades. The blade or blades can be moved using a manual, motorized or electrical mechanism thereby cutting through the tissue and separating the tissue sample from the underlying tissue. Typically, this will be repeated in the donor and the recipient. In the case of an iris-shaped blade mechanism, the individual blades can be moved so as to close the iris thereby separating the tissue sample from the donor site.

[0059] In another embodiment of the invention, a laser device or a radiofrequency device can be integrated inside the distal end of the probe. The laser device or the radiofrequency device can be used to cut through the tissue and to separate the tissue sample from the underlying tissue.

[0060] In one embodiment of the invention, the same probe can be used in the donor and in the recipient. In another embodiment, similarly

10

15

20

25

shaped probes of slightly different physical dimensions can be used. For example, the probe used in the recipient can be slightly smaller than that used in the donor thereby achieving a tight fit between the tissue sample or tissue transplant and the recipient site. The probe used in the recipient can also be slightly shorter than that used in the donor thereby correcting for any tissue lost during the separation or cutting of the tissue sample from the underlying tissue in the donor material.

[0061] Any biological repair material can be sterilized to inactivate biological contaminants such as bacteria, viruses, yeasts, molds, mycoplasmas and parasites. Sterilization can be performed using any suitable technique, for example radiation, such as gamma radiation.

[0062] Any of the biological materials described herein can be harvested with use of a robotic device. The robotic device can use information from an electronic image for tissue harvesting.

[0063] In certain embodiments, the cartilage replacement material has a particular biochemical composition. For instance, the biochemical composition of the cartilage surrounding a defect can be assessed by taking tissue samples and chemical analysis or by imaging techniques. For example, WO 02/22014 to Alexander describes the use of gadolinium for imaging of articular cartilage to monitor glycosaminoglycan content within the cartilage. The cartilage replacement or regenerating material can then be made or cultured in a manner, to achieve a biochemical composition similar to that of the cartilage surrounding the implantation site. The culture conditions used to achieve the desired biochemical compositions can include, for example, varying concentrations. Biochemical composition of the cartilage

10

15

20

25

replacement or regenerating material can, for example, be influenced by controlling concentrations and exposure times of certain nutrients and growth factors.

[0064] III. DEVICE DESIGN

[0065] A. CARTILAGE MODELS

[0066] Using information on thickness and curvature of the cartilage, a physical model of the surfaces of the articular cartilage and of the underlying bone can be created. This physical model can be representative of a limited area within the joint or it can encompass the entire joint. For example, in the knee joint, the physical model can encompass only the medial or lateral femoral condyle, both femoral condyles and the notch region, the medial tibial plateau, the lateral tibial plateau, the entire tibial plateau, the medial patella, the lateral patella, the entire patella or the entire joint. The location of a diseased area of cartilage can be determined, for example using a 3D coordinate system or a 3D Euclidian distance as described in WO 02/22014.

[0067] In this way, the size of the defect to be repaired can be determined. This process takes into account that, for example, roughly 80% of patients have a healthy lateral component. As will be apparent, some, but not all, defects will include less than the entire cartilage. Thus, in one embodiment of the invention, the thickness of the normal or only mildly diseased cartilage surrounding one or more cartilage defects is measured. This thickness measurement can be obtained at a single point or, preferably, at multiple points, for example 2 point, 4-6 points, 7-10 points, more than 10 points or over the length of the entire remaining cartilage. Furthermore, once the size of the defect is determined, an appropriate therapy (e.g., articular

10

15

20

25

repair system) can be selected such that as much as possible of the healthy, surrounding tissue is preserved.

[0068] In other embodiments, the curvature of the articular surface can be measured to design and/or shape the repair material. Further, both the thickness of the remaining cartilage and the curvature of the articular surface can be measured to design and/or shape the repair material. Alternatively, the curvature of the subchondral bone can be measured and the resultant measurement(s) can be used to either select or shape a cartilage replacement material. For example, the contour of the subchondral bone can be used to re-create a virtual cartilage surface: the margins of an area of diseased cartilage can be identified. The subchondral bone shape in the diseased areas can be measured. A virtual contour can then be created by copying the subchondral bone surface into the cartilage surface, whereby the copy of the subchondral bone surface connects the margins of the area of diseased cartilage. In shaping the device, the contours can be configures to mate with existing cartilage or to account for the removal of some or all of the cartilage.

[0069] Fig. 2A shows a slightly perspective view of a joint implant 200 of the invention suitable for implantation at the tibial plateau of the knee joint. As shown in Fig. 2A, the implant can be generated using, for example, a dual surface assessment, as described above with respect to Figs. 1A and B.

[0070] The implant 200 has an upper surface 202, a lower surface 204 and a peripheral edge 206. The upper surface 202 is formed so that it forms a mating surface for receiving the opposing joint surface; in this instance partially concave to receive the femur. The concave surface can be variably

10

15

20

25

concave such that it presents a surface to the opposing joint surface, *e.g.* the a negative surface of the mating surface of the femur it communicates with. As will be appreciated by those of skill in the art, the negative impression, need not be a perfect one. Alternatively, it can be configured to mate with an implant configured for the opposing condyle.

The lower surface **204** has a convex surface that matches, or nearly matches, the tibial plateau of the joint such that it creates an anatomic or near anatomic fit with the tibial plateau. Depending on the shape of the tibial plateau, the lower surface can be partially convex as well. Thus, the lower surface **204** presents a surface to the tibial plateau that fits within the existing surface. It can be formed to match the existing surface or to match the surface after articular resurfacing.

[0072] As will be appreciated by those of skill in the art, the convex surface of the lower surface 204 need not be perfectly convex. Rather, the lower surface 204 is more likely consist of convex and concave portions that fit within the existing surface of the tibial plateau or the re-surfaced plateau. Thus, the surface is essentially variably convex and concave.

[0073] Fig. 2B shows a top view of the joint implant of Fig. 2A. As shown in Fig. 2B the exterior shape 208 of the implant can be elongated. The elongated form can take a variety of shapes including elliptical, quasi-elliptical, race-track, etc. However, as will be appreciated the exterior dimension is typically irregular thus not forming a true geometric shape, e.g. ellipse. As will be appreciated by those of skill in the art, the actual exterior shape of an implant can vary depending on the nature of the joint defect to be corrected. Thus the ratio of the length L to the width W can vary from, for

10

15

20

25

example, between 0.25 to 2.0, and more specifically from 0.5 to 1.5. As further shown in **Fig. 2B**, the length across an axis of the implant **200** varies when taken at points along the width of the implant. For example, as shown in **Fig. 2B**, $L_1 \neq L_2 \neq L_3$.

Turning now to Figs. 2c-E, cross-sections of the implant shown in Fig. 2B are depicted along the lines of C-C, D-D, and E-E. The implant has a thickness t1, t2 and t3 respectively. As illustrated by the cross-sections, the thickness of the implant varies along both its length L and width W. The actual thickness at a particular location of the implant 200 is a function of the thickness of the cartilage and/or bone to be replaced and the joint mating surface to be replicated. Further, the profile of the implant 200 at any location along its length L or width W is a function of the cartilage and/or bone to be replaced.

[0075] Fig. 2F is a lateral view of the implant 200 of Fig. 2A. In this instance, the height of the implant 200 at a first end h_1 is different than the height of the implant at a second end h_2 . Further the upper edge 208 can have an overall slope in a downward direction. However, as illustrated the actual slope of the upper edge 208 varies along its length and can, in some instances, be a positive slope. Further the lower edge 210 can have an overall slope in a downward direction. As illustrated the actual slope of the lower edge 210 varies along its length and can, in some instances, be a positive slope. As will be appreciated by those of skill in the art, depending on the anatomy of an individual patient, an implant can be created wherein h_1 and h_2 are equivalent, or substantially equivalent without departing from the scope of the invention.

10

15

20

25

Fig. 2g is a cross-section taken along a sagittal plane in a body showing the implant 200 implanted within a knee joint 1020 such that the lower surface 204 of the implant 200 lies on the tibial plateau 1022 and the femur 1024 rests on the upper surface 202 of the implant 200. Fig. 2H is a cross-section taken along a coronal plane in a body showing the implant 200 implanted within a knee joint 1020. As is apparent from this view, the implant 200 is positioned so that it fits within a superior articular surface 224. As will be appreciated by those of skill in the art, the articular surface could be the medial or lateral facet, as needed.

[0077] Fig. 2i is a cross-section along an axial plane of the body showing the implant 200 implanted within a knee joint 1020 showing the view taken from an aerial, or upper, view. Fig. 2j is a cross-section of an alternate embodiment where the implant is a bit larger such that it extends closer to the bone medially, *i.e.* towards the edge 1023 of the tibial plateau, as well as extending anteriorly and posteriorly.

[0078] Fig. 2k is a cross-section of an implant 200 of the invention according to an alternate embodiment. In this embodiment, the lower surface 204 further includes a joint anchor 212. As illustrated in this embodiment, the joint anchor 212 forms a protrusion, keel or vertical member that extends from the lower surface 204 of the implant 200 and projects into, for example, the bone of the joint. Additionally, as shown in Fig. 2L the joint anchor 212 can have a cross-member 214 so that from a bottom perspective, the joint anchor 212 has the appearance of a cross or an "x." As will be appreciated by those of skill in the art, the joint anchor 212 could take on a variety of other forms while still accomplishing the same objective of providing increased stability of the implant 200 in the joint. These forms include, but are

10

15

20

25

not limited to, pins, bulbs, balls, teeth, etc. Additionally, one or more joint anchors 212 can be provided as desired. Fig. 2M and N illustrate cross-sections of alternate embodiments of a dual component implant from a side view and a front view.

In an alternate embodiment shown in Fig. 2m it may be 100791 desirable to provide a one or more cross-members **220** on the lower surface 204 in order to provide a bit of translation movement of the implant relative to the surface of the femur, or femur implant. In that event, the crossmember can be formed integral to the surface of the implant or can be separate pieces that fit within a groove 222 on the lower surface 204 of the implant 200. The groove can form a single channel as shown in Fig. 2N1, or can have more than one channel as shown in Fig. 2N2. In either event, the cross-bar then fits within the channel as shown in Figs. 2N1-N2. The cross-bar members 220 can form a solid or hollow tube or pipe structure as shown in Fig. 2P. Where two, or more, tubes 220 communicate to provide translation, a groove **221** can be provided along the surface of one or both cross-members to interlock the tubes into a cross-bar member further stabilizing the motion of the cross-bar relative to the implant **200**. As will be appreciated by those of skill in the art, the cross-bar member 220 can be formed integrally with the implant without departing from the scope of the invention.

[0080] As shown in Figs. 2Q-R, it is anticipated that the surface of the tibial plateau will be prepared by forming channels thereon to receive the cross-bar members. Thus facilitating the ability of the implant to seat securely within the joint while still providing movement about an axis when the knee joint is in motion.

10

15

20

25

Turning now to Figs. 3A-i an implant suitable for providing an opposing joint surface to the implant of Fig. 2A is shown. This implant corrects a defect on an inferior surface of the femur 1024 (e.g., the condyle of the femur that mates with the tibial plateau) and can be used alone, i.e., on the femur 1024, or in combination with another joint repair device.

[0082] Fig. 3A shows a perspective view of the implant 300 having a curved mating surface 302 and convex joint abutting surface 304. The joint abutting surface 304 need not form an anatomic or near anatomic fit with the femur in view of the anchors 306 provided to facilitate connection of the implant to the bone. In this instance, the anchors 306 are shown as pegs having notched heads. The notches facilitate the anchoring process within the bone. However, pegs without notches can be used as well as pegs with other configurations that facilitate the anchoring process. Pegs and other portions of the implant can be porous coated. The implant can be inserted without bone cement or with use of bone cement. The implant can be designed to abut the subchondral bone, i.e. it can substantially follow the contour of the subchondral bone. This has the advantage that no bone needs to be removed other than for the placement of the peg holes thereby significantly preserving bone stock.

[0083] The anchors 306 could take on a variety of other forms without departing from the scope of the invention while still accomplishing the same objective of providing increased stability of the implant 300 in the joint. These forms include, but are not limited to, pins, bulbs, balls, teeth, etc. Additionally, one or more joint anchors 306 can be provided as desired. As illustrated in Fig. 3, three pins are used to anchor the implant 300. However, more or fewer

10

15

20

joint anchors, or pins, can be used without departing from the scope of the invention.

[0084] Fig. 3B shows a slightly perspective superior view of the bone mating surface 304 further illustrating the use of three anchors 306 to anchor the implant to the bone. Each anchor 306 has a stem310 with a head 312 on top. As shown in Fig. 3c, the stem 310 has parallel walls such that it forms a tube or cylinder that extends from the bone mating surface 304. A section of the stem forms a narrowed neck 314 proximal to the head 312. As will be appreciated by those of skill in the art, the walls need not be parallel, but rather can be sloped to be shaped like a cone. Additionally, the neck 314 need not be present, nor the head 312. As discussed above, other configurations suitable for anchoring can be used without departing from the scope of the invention.

Turning now to Fig. 3D, a view of the tibial plateau mating surface 302 of the implant 300 is illustrated. As is apparent from this view, the surface is curved such that it is convex or substantially convex in order to mate with the concave surface of the plateau. Fig. 3E illustrates the upper surface 304 of the implant 300 further illustrating the use of three pegs 306 for anchoring the implant 300 to the bone. As illustrated, the three pegs 306 are positioned to form a triangle. However, as will be appreciated by those of skill in the art, one or more pegs can be used, and the orientation of the pegs 306 to one another can be as shown, or any other suitable orientation that enables the desired anchoring. Fig. 3F illustrated a cross section of the implant 300 taken along the lines F-F shown in Fig. 3E.

10

15

20

25

[0086] Fig. 3g illustrates the axial view of the femur 1000 having a lateral condyle 1002 and a medial condyle 1004. The intercondylar fossa is also shown 1006 along with the lateral epicondyle 1008 and medial epicondyle 1010. Also shown is the patellar surface of the femur 1012. The implant 300 illustrated in Fig. 3A, is illustrated covering a portion of the lateral condyle. The pegs 306 are also shown that facilitate anchoring the implant 300 to the condyle.

Fig. 3H illustrates a knee joint 1020 from an anterior perspective. The implant 300 is implanted over the lateral condyle. As shown in Fig. 3I the implant 300 is positioned such that it communicates with an implant 200 designed to correct a defect in the tibial plateau, such as those shown in Figs. 2.

[0088] Figs. 4A and 4B illustrate another implant 400. As shown in Fig. 4A, the implant 400 is configured such that it covers both the lateral and medial femoral condyle along with the patellar surface of the femur 1012. The implant 400 has a lateral condyle component 410 and a medial condyle component 420 and a bridge 430 that connects the lateral condyle component 410 to the medial condyle component 420 while covering at least a portion of the patellar surface of the femur 1012. The implant 400 can optionally oppose one or more of the implants, such as those shown in Fig. 2. Fig. 4B is a side view of the implant of Fig. 4A. As shown in Fig. 4B, the superior surface 402 of the implant 400 is curved to correspond to the curvature of the femoral condyles. The curvature can be configured such that it corresponds to the actual curvature of one or both of the existing femoral condyles, or to the curvature of one or both of the femoral condyles after

20

resurfacing of the joint. One or more pegs **430** can be provided to assist in anchoring the implant to the bone.

[0089] Fig. 4c illustrates a top view of the implant 400 shown in Fig. 4a. As is should be appreciated from this view, the inferior surface 404 of the implant 400 is configured to conform to the shape of the femoral condyles, e.g. the shape healthy femoral condyles would present to the tibial surface in a non-damaged joint.

[0090] Figs. 4D and E illustrate perspective views of the implant from the inferior surface (*i.e.*, tibial plateau mating surface).

10 [0091] Fig. 4F illustrates the axial view of the femur 1000 having a lateral condyle 1002 and a medial condyle 1004. The intercondylar fossa is also shown 1006 along with the lateral epicondyle 1008. The implant 400 illustrated in Fig. 4A, is illustrated covering both condyles and the patellar surface of the femur 1012. The pegs 430 are also shown that facilitate anchoring the implant 400 to the condyle.

[0092] Fig. 4G illustrates a knee joint 1050 from an anterior perspective. The implant 400 is implanted over both condyles. As shown in Fig. 4H the implant 400 is positioned such that it communicates with an implant 200 designed to correct a defect in the tibial plateau, such as those shown in Figs. 2.

[0093] As will be appreciated by those of skill in the art, the implant 400 can be manufactured from a material that has memory such that the implant can be configured to snap-fit over the condyle. Alternatively, it can be shaped such that it conforms to the surface without the need of a snap-fit.

10

15

20

25

[0094] Figs. 5A and 5B illustrate yet another implant 500 suitable for repairing a damaged condyle. As shown in Fig. 5A, the implant 500 is configured such that it covers only one of the lateral or medial femoral condyles 510. The implant differs from the implant of Fig. 3 in that the implant 500 also covers at least a portion of the patellar surface of the femur 512.

[0095] The implant can optionally oppose one or more of the implants, such as those shown in Fig. 2 and can be combined with other implants, such as the implants of Fig. 3. Fig. 5c is a perspective side view of the implant of Fig. 5a. As shown in Fig.5c, the superior surface 502 of the implant 500 is curved to correspond to the curvature of the femoral condyle that it mates with and the portion of the patellar surface of the femur that it covers. One or more pegs 530 can be provided to assist in anchoring the implant to the bone.

[0096] Fig. 5p illustrates a perspective top view of the implant 500 shown in Fig. 5a. As is should be appreciated from this view, the inferior surface 504 of the implant 500 is configured to conform to the projected shape of the femoral condyles, e.g. the shape healthy femoral condyles would present to the tibial surface in a non-damaged joint.

[0097] Fig. 5E is a side view of the implant 500 illustrating the pegs 530 extending from the superior surface. Fig. 5F illustrates the superior surface of the implant 500 with the pegs 530 extending from the superior surface. Figs. 5G and H illustrate cross-sections along the lines G-G and H-H shown in Fig. 5F.

[0098] Fig. 5i illustrates the axial view of the femur 1000 having a lateral condyle 1002 and a medial condyle 1004. The intercondylar fossa is

10

15

20

25

also shown 1006 along with the lateral epicondyle 1008 and the medial epicondyle 1010. The patellar surface of the femur 1012 is also illustrated. The implant 500, illustrated in Fig. 5A, is shown covering the lateral condyle and a portion of the patellar surface of the femur 1012. The pegs 530 are also shown that facilitate anchoring the implant 500 to the condyle and patellar surface.

[0099] Fig. 5J illustrates a knee joint 1020 from an anterior perspective. The implant 500 is implanted over the lateral condyle. Fig. 5κ illustrates a knee joint 1020 with the implant 500 covering the medial condyle 1004. As illustrated in Figs. 5κ and κ the shape of the implant 500 corresponding to the patella surface can take on a variety of curvatures without departing from the scope of the invention.

[00100] Turning now to Fig. 5L and M the implant 500 is positioned such that it communicates with an implant 200 designed to correct a defect in the tibial plateau, such as those shown in Figs. 2.

[00101] In another embodiment of the invention, the implant 500 can have a superior surface 502 which substantially confirms to the surface of the condyle but which has at one flat portion corresponding to an oblique cut on the bone as shown in Fig. 5N.

[00102] Figs. 6A-G illustrate the implant 500 of Fig. 5 with a graphical representation of the cross-sections 610, 620 from which a surface shape of the implant is derived. Fig. 6A illustrates a top view of the implant 500 sitting on top of the extracted surface shape 600. This view of the implant 500 illustrates a notch 514 associated with the bridge section of the implant 512 which covers the patellar surface of the femur (or the trochlea region) to

10

15

20

25

provide a mating surface that approximates the cartilage surface. As will be appreciated by those of skill in the art, the shape of an implant designed for the medial condyle would not necessarily be a mirror image of the implant designed for the lateral condyle because of differences in anatomy. Thus, for example, the notch *514* would not be present in an implant designed for the medial condyle and the patellar surface of the femur.

[00103] Fig. 6B illustrates a bottom view of the implant 500 layered over another derived surface shape 601. Fig. 6c is a bottom view showing the implant 500 extending through the extracted surface shape 600 shown in Fig. 6A. Fig. 6D is a close-up view of the Fig. 6c showing the condylar wing of the implant covering the extracted surface 600. Fig. 6E illustrates a top posterior view of the implant 500 positioned over the graphical representation of the surface shape 600. Fig. 6F is an anterior view and Fig. 6g is a bottom-posterior view.

[00104] Figs. 7A-c illustrate a variety of patellar implants 700 having one or more pegs 710 as shown in Fig. 7B-c. As will be appreciated by those of skill in the art, other designs can be arrived at using the teachings of this disclosure without departing from the scope of the invention.

[00105] Figs. 8A-c illustrate a lateral view of a knee 1020 having a combination of the implants of implanted thereof. In Fig. 8A, an implant covering the condyle 800, is illustrated. Suitable implants can be, for example, those shown in Figs. 3-6, as will be appreciated the portion of the condyle covered anterior to posterior can include the entire weight bearing surface, a portion thereof, or a surface greater than the weight bearing surface. Thus, for example, the implant can be configured to terminate prior to the sulcus

10

15

20

25

terminalis or after the sulcus terminalis (e.g., the groove on the femur that coincides with the area where load bearing stops). As shown in Figs. 8A-B, a patellar implant 700 can also be provided. Fig. 8c illustrates a knee having a condyle implant 800, a patellar implant 700 and an implant for the tibial plateau 200.

[00106] The arthroplasty system can be designed to reflect aspects of the tibial shape, femoral shape and/or patellar shape. Tibial shape and femoral shape can include cartilage, bone or both. Moreover, the shape of the implant can also include portions or all components of other articular structures such as the menisci. The menisci are compressible, in particular during gait or loading. For this reason, the implant can be designed to incorporate aspects of the meniscal shape accounting for compression of the menisci during loading or physical activities. For example, the undersurface 204 of the implant 200 can be designed to match the shape of the tibial plateau including cartilage or bone or both. The superior surface 202 of the implant 200 can be a composite of the articular surface of the tibia (in particular in areas that are not covered by menisci) and the meniscus. Thus, the outer aspects of the device can be a reflection of meniscal height. Accounting for compression, this can be, for example, 20%, 40%, 60% or 80% of uncompressed meniscal height.

[00107] Similarly the superior surface **304** of the implant **300** can be designed to match the shape of the femoral condyle including cartilage or bone or both. The inferior surface **302** of the implant **300** can be a composite of the surface of the tibial plateau (in particular in areas that are not covered by menisci) and the meniscus. Thus, at least a portion of the outer aspects of the device can be a reflection of meniscal height. Accounting for

25

compression, this can be, for example, 20%, 40%, 60% or 80% of uncompressed meniscal height. These same properties can be applied to the implants shown in **Figs. 4-6**, as well.

[00108] In some embodiments, the outer aspect of the device reflecting the meniscal shape can be made of another, preferably compressible material. If a compressible material is selected it is preferably designed to substantially match the compressibility and biomechanical behavior of the meniscus. The entire device can be made of such a material or non-metallic materials in general.

10 **[00109]** The height and shape of the menisci for any joint surface to be repaired can be measured directly on an imaging test. If portions, or all, of the meniscus are torn, the meniscal height and shape can be derived from measurements of a contralateral joint or using measurements of other articular structures that can provide an estimate on meniscal dimensions.

15 [00110] In another embodiment, the superior face of the implants 300, 400 or 500 can be shaped according to the femur. The shape can preferably be derived from the movement patterns of the femur relative to the tibial plateau thereby accounting for variations in femoral shape and tibiofemoral contact area as the femoral condyle flexes, extends, rotates, translates and glides on the tibia and menisci.

[00111] The movement patterns can be measured using any current or future test know in the art such as fluoroscopy, MRI, gait analysis and combinations thereof.

[00112] The arthroplasty can have two or more components, one essentially mating with the tibial surface and the other substantially

10

15

20

25

articulating with the femoral component. The two components can have a flat opposing surface. Alternatively, the opposing surface can be curved. The curvature can be a reflection of the tibial shape, the femoral shape including during joint motion, and the meniscal shape and combinations thereof.

[00113] Examples of single-component systems include, but are not limited to, a plastic, a polymer, a metal, a metal alloy, crystal free metals, a biologic material or combinations thereof. In certain embodiments, the surface of the repair system facing the underlying bone can be smooth. In other embodiments, the surface of the repair system facing the underlying bone can be porous or porous-coated. In another aspect, the surface of the repair system facing the underlying bone is designed with one or more grooves, for example to facilitate the in-growth of the surrounding tissue. The external surface of the device can have a step-like design, which can be advantageous for altering biomechanical stresses. Optionally, flanges can also be added at one or more positions on the device (e.g., to prevent the repair system from rotating, to control toggle and/or prevent settling into the marrow cavity). The flanges can be part of a conical or a cylindrical design. A portion or all of the repair system facing the underlying bone can also be flat which can help to control depth of the implant and to prevent toggle.

[00114] Non-limiting examples of multiple-component systems include combinations of metal, plastic, metal alloys, crystal free metals, and one or more biological materials. One or more components of the articular surface repair system can be composed of a biologic material (e.g. a tissue scaffold with cells such as cartilage cells or stem cells alone or seeded within a substrate such as a bioresorable material or a tissue scaffold, allograft.

10

15

20

25

autograft or combinations thereof) and/or a non-biological material (e.g., polyethylene or a chromium alloy such as chromium cobalt).

[00115] Thus, the repair system can include one or more areas of a single material or a combination of materials, for example, the articular surface repair system can have a first and a second component. The first component is typically designed to have size, thickness and curvature similar to that of the cartilage tissue lost while the second component is typically designed to have a curvature similar to the subchondral bone. In addition, the first component can have biomechanical properties similar to articular cartilage, including but not limited to similar elasticity and resistance to axial loading or shear forces. The first and the second component can consist of two different metals or metal alloys. One or more components of the system (e.g., the second portion) can be composed of a biologic material including, but not limited to bone, or a non-biologic material including, but not limited to hydroxyapatite, tantalum, a chromium alloy, chromium cobalt or other metal alloys.

[00116] One or more regions of the articular surface repair system (e.g., the outer margin of the first portion and/or the second portion) can be bioresorbable, for example to allow the interface between the articular surface repair system and the patient's normal cartilage, over time, to be filled in with hyaline or fibrocartilage. Similarly, one or more regions (e.g., the outer margin of the first portion of the articular surface repair system and/or the second portion) can be porous. The degree of porosity can change throughout the porous region, linearly or non-linearly, for where the degree of porosity will typically decrease towards the center of the articular surface repair system. The pores can be designed for in-growth of cartilage cells,

10

15

20

25

cartilage matrix, and connective tissue thereby achieving a smooth interface between the articular surface repair system and the surrounding cartilage.

[00117] The repair system (e.g., the second component in multiple component systems) can be attached to the patient's bone with use of a cement-like material such as methylmethacrylate, injectable hydroxy- or calcium-apatite materials and the like.

[00118] In certain embodiments, one or more portions of the articular surface repair system can be pliable or liquid or deformable at the time of implantation and can harden later. Hardening can occur, for example, within 1 second to 2 hours (or any time period therebetween), preferably with in 1 second to 30 minutes (or any time period therebetween), more preferably between 1 second and 10 minutes (or any time period therebetween).

Con be adapted to receive injections. For example, the external surface of the articular surface repair system can have one or more openings therein. The openings can be sized to receive screws, tubing, needles or other devices which can be inserted and advanced to the desired depth, for example, through the articular surface repair system into the marrow space. Injectables such as methylmethacrylate and injectable hydroxy- or calcium-apatite materials can then be introduced through the opening (or tubing inserted therethrough) into the marrow space thereby bonding the articular surface repair system with the marrow space. Similarly, screws or pins, or other anchoring mechanisms. can be inserted into the openings and advanced to the underlying subchondral bone and the bone marrow or epiphysis to achieve fixation of the articular surface repair system to the bone. Portions or

10

15

20

all components of the screw or pin can be bioresorbable, for example, the distal portion of a screw that protrudes into the marrow space can be bioresorbable. During the initial period after the surgery, the screw can provide the primary fixation of the articular surface repair system. Subsequently, ingrowth of bone into a porous coated area along the undersurface of the articular cartilage repair system can take over as the primary stabilizer of the articular surface repair system against the bone.

[00120] The articular surface repair system can be anchored to the patient's bone with use of a pin or screw or other attachment mechanism. The attachment mechanism can be bioresorbable. The screw or pin or attachment mechanism can be inserted and advanced towards the articular surface repair system from a non-cartilage covered portion of the bone or from a non-weight-bearing surface of the joint.

[00121] The interface between the articular surface repair system and the surrounding normal cartilage can be at an angle, for example oriented at an angle of 90 degrees relative to the underlying subchondral bone. Suitable angles can be determined in view of the teachings herein, and in certain cases, non-90 degree angles can have advantages with regard to load distribution along the interface between the articular surface repair system and the surrounding normal cartilage.

[00122] The interface between the articular surface repair system and the surrounding normal cartilage and/or bone can be covered with a pharmaceutical or bioactive agent, for example a material that stimulates the biological integration of the repair system into the normal cartilage and/or

10

15

20

bone. The surface area of the interface can be irregular, for example, to increase exposure of the interface to pharmaceutical or bioactive agents.

[00123] E. PRE-EXISTING REPAIR SYSTEMS

[00124] As described herein, repair systems of various sizes, curvatures and thicknesses can be obtained. These repair systems can be catalogued and stored to create a library of systems from which an appropriate system for an individual patient can then be selected. In other words, a defect, or an articular surface, is assessed in a particular subject and a pre-existing repair system having a suitable shape and size is selected from the library for further manipulation (e.g., shaping) and implantation.

[00125] F. MINI-PROSTHESIS

[00126] As noted above, the methods and compositions described herein can be used to replace only a portion of the articular surface, for example, an area of diseased cartilage or lost cartilage on the articular surface. In these systems, the articular surface repair system can be designed to replace only the area of diseased or lost cartilage or it can extend beyond the area of diseased or lost cartilage, e.g., 3 or 5 mm into normal adjacent cartilage. In certain embodiments, the prosthesis replaces less than about 70% to 80% (or any value therebetween) of the articular surface (e.g., any given articular surface such as a single femoral condyle, etc.), preferably, less than about 50% to 70% (or any value therebetween), more preferably less than about 20% to 30% (or any value therebetween), even more preferably less than about 20% to 30% (or the articular surface.

10

15

20

[00127] The prosthesis can include multiple components, for example a component that is implanted into the bone (e.g., a metallic device) attached to a component that is shaped to cover the defect of the cartilage overlaying the bone. Additional components, for example intermediate plates, meniscal repair systems and the like can also be included. It is contemplated that each component replaces less than all of the corresponding articular surface. However, each component need not replace the same portion of the articular surface. In other words, the prosthesis can have a bone-implanted component that replaces less than 30% of the bone and a cartilage component that replaces 60% of the cartilage. The prosthesis can include any combination, provided each component replaces less than the entire articular surface.

[00128] The articular surface repair system can be formed or selected so that it will achieve a near anatomic fit or match with the surrounding or adjacent cartilage or bone. Typically, the articular surface repair system is formed and/or selected so that its outer margin located at the external surface will be aligned with the surrounding or adjacent cartilage.

[00129] Thus, the articular repair system can be designed to replace the weight-bearing portion (or more or less than the weight bearing portion) of an articular surface, for example in a femoral condyle. The weight-bearing surface refers to the contact area between two opposing articular surfaces during activities of normal daily living (e.g., normal gait). At least one or more weight-bearing portions can be replaced in this manner, e.g., on a femoral condyle and on a tibia.

10

15

20

25

[00130] In other embodiments, an area of diseased cartilage or cartilage loss can be identified in a weight-bearing area and only a portion of the weight-bearing area, specifically the portion containing the diseased cartilage or area of cartilage loss, can be replaced with an articular surface repair system.

[00131] In another embodiment, the articular repair system can be designed or selected to replace substantially all of the articular surface, e.g. a condyle.

[00132] In another embodiment, for example, in patients with diffuse cartilage loss, the articular repair system can be designed to replace an area slightly larger than the weight-bearing surface.

[00133] In certain aspects, the defect to be repaired is located only on one articular surface, typically the most diseased surface. For example, in a patient with severe cartilage loss in the medial femoral condyle but less severe disease in the tibia, the articular surface repair system can only be applied to the medial femoral condyle. Preferably, in any methods described herein, the articular surface repair system is designed to achieve an exact or a near anatomic fit with the adjacent normal cartilage.

[00134] In other embodiments, more than one articular surface can be repaired. The area(s) of repair will be typically limited to areas of diseased cartilage or cartilage loss or areas slightly greater than the area of diseased cartilage or cartilage loss within the weight-bearing surface(s).

[00135] In another embodiment, one or more components of the articular surface repair (e.g., the surface of the system that is pointing towards the underlying bone or bone marrow) can be porous or porous coated. A

10

15

20

25

variety of different porous metal coatings have been proposed for enhancing fixation of a metallic prosthesis by bone tissue in-growth. Thus, for example, U.S. Pat. No. 3,855,638 to Pilliar issued December 24, 2974, discloses a surgical prosthetic device, which can be used as a bone prosthesis, comprising a composite structure consisting of a solid metallic material substrate and a porous coating of the same solid metallic material adhered to and extending over at least a portion of the surface of the substrate. The porous coating consists of a plurality of small discrete particles of metallic material bonded together at their points of contact with each other to define a plurality of connected interstitial pores in the coating. The size and spacing of the particles, which can be distributed in a plurality of monolayers, can be such that the average interstitial pore size is not more than about 200 microns. Additionally, the pore size distribution can be substantially uniform from the substrate-coating interface to the surface of the coating. In another embodiment, the articular surface repair system can contain one or more polymeric materials that can be loaded with and release therapeutic agents including drugs or other pharmacological treatments that can be used for drug delivery. The polymeric materials can, for example, be placed inside areas of porous coating. The polymeric materials can be used to release therapeutic drugs, e.g. bone or cartilage growth stimulating drugs. This embodiment can be combined with other embodiments, wherein portions of the articular surface repair system can be bioresorbable. For example, the first layer of an articular surface repair system or portions of its first layer can be bioresorbable. As the first layer gets increasingly resorbed, local release of a cartilage growth-stimulating drug can facilitate in-growth of cartilage cells and matrix formation.

[00136] In any of the methods or compositions described herein, the articular surface repair system can be pre-manufactured with a range of sizes, curvatures and thicknesses. Alternatively, the articular surface repair system can be custom-made for an individual patient.

[00137] IV. MANUFACTURING

[00138] A. SHAPING

5

10

15

20

25

[00139] In certain instances shaping of the repair material will be required before or after formation (e.g., growth to desired thickness), for example where the thickness of the required cartilage material is not uniform (e.g., where different sections of the cartilage replacement or regenerating material require different thicknesses).

[00140] The replacement material can be shaped by any suitable technique including, but not limited to, mechanical abrasion, laser abrasion or ablation, radiofrequency treatment, cryoablation, variations in exposure time and concentration of nutrients, enzymes or growth factors and any other means suitable for influencing or changing cartilage thickness. See, e.g., WO 00/15153 to Mansmann published March 23, 2000; If enzymatic digestion is used, certain sections of the cartilage replacement or regenerating material can be exposed to higher doses of the enzyme or can be exposed longer as a means of achieving different thicknesses and curvatures of the cartilage replacement or regenerating material in different sections of said material.

[00141] The material can be shaped manually and/or automatically, for example using a device into which a pre-selected thickness and/or curvature has been input and then programming the device using the input information to achieve the desired shape.

[00142] In addition to, or instead of, shaping the cartilage repair material, the site of implantation (e.g., bone surface, any cartilage material remaining, etc.) can also be shaped by any suitable technique in order to enhance integration of the repair material.

[00143] B. SIZING

5

10

15

20

25

[00144] The articular repair system can be formed or selected so that it will achieve a near anatomic fit or match with the surrounding or adjacent cartilage, subchondral bone, menisci and/or other tissue. The shape of the repair system can be based on the analysis of an electronic image (e.g. MRI, CT, digital tomosynthesis, optical coherence tomography or the like). If the articular repair system is intended to replace an area of diseased cartilage or lost cartilage, the near anatomic fit can be achieved using a method that provides a virtual reconstruction of the shape of healthy cartilage in an electronic image.

In one embodiment of the invention, a near normal cartilage surface at the position of the cartilage defect can be reconstructed by interpolating the healthy cartilage surface across the cartilage defect or area of diseased cartilage. This can, for example, be achieved by describing the healthy cartilage by means of a parametric surface (e.g. a B-spline surface), for which the control points are placed such that the parametric surface follows the contour of the healthy cartilage and bridges the cartilage defect or area of diseased cartilage. The continuity properties of the parametric surface will provide a smooth integration of the part that bridges the cartilage defect or area of diseased cartilage with the contour of the surrounding healthy cartilage. The part of the parametric surface over the area of the

10

15

20

25

cartilage defect or area of diseased cartilage can be used to determine the shape or part of the shape of the articular repair system to match with the surrounding cartilage.

[00146] In another embodiment, a near normal cartilage surface at the position of the cartilage defect or area of diseased cartilage can be reconstructed using morphological image processing. In a first step, the cartilage can be extracted from the electronic image using manual, semiautomated and/or automated segmentation techniques (e.g., manual tracing, region growing, live wire, model-based segmentation), resulting in a binary image. Defects in the cartilage appear as indentations that can be filled with a morphological closing operation performed in 2-D or 3-D with an appropriately selected structuring element. The closing operation is typically defined as a dilation followed by an erosion. A dilation operator sets the current pixel in the output image to 1 if at least one pixel of the structuring element lies inside a region in the source image. An erosion operator sets the current pixel in the output image to 1 if the whole structuring element lies inside a region in the source image. The filling of the cartilage defect or area of diseased cartilage creates a new surface over the area of the cartilage defect or area of diseased cartilage that can be used to determine the shape or part of the shape of the articular repair system to match with the surrounding cartilage or subchondral bone.

[00147] As described above, the articular repair system can be formed or selected from a library or database of systems of various sizes, curvatures and thicknesses so that it will achieve a near anatomic fit or match with the surrounding or adjacent cartilage and/or subchondral bone. These systems can be pre-made or made to order for an individual patient. In order to control

10

15

20

25

the fit or match of the articular repair system with the surrounding or adjacent cartilage or subchondral bone or menisci and other tissues preoperatively, a software program can be used that projects the articular repair system over the anatomic position where it will be implanted. Suitable software is commercially available and/or readily modified or designed by a skilled programmer.

[00148] In yet another embodiment, the articular surface repair system can be projected over the implantation site using one or more 3-D images. The cartilage and/or subchondral bone and other anatomic structures are extracted from a 3-D electronic image such as an MRI or a CT using manual, semi-automated and/or automated segmentation techniques. A 3-D representation of the cartilage and/or subchondral bone and other anatomic structures as well as the articular repair system is generated, for example using a polygon or NURBS surface or other parametric surface representation. For a description of various parametric surface representations see, for example Foley, J.D. et al., Computer Graphics: Principles and Practice in C; Addison-Wesley, 2nd edition, 1995).

[00149] The 3-D representations of the cartilage and/or subchondral bone and other anatomic structures and the articular repair system can be merged into a common coordinate system. The articular repair system can then be placed at the desired implantation site. The representations of the cartilage, subchondral bone, menisci and other anatomic structures and the articular repair system are rendered into a 3-D image, for example application programming interfaces (APIs) OpenGL® (standard library of advanced 3-D graphics functions developed by SGI, Inc.; available as part of the drivers for PC-based video cards, for example from www.nvidia.com for NVIDIA video

10

15

20

25

cards or www.3dlabs.com for 3Dlabs products, or as part of the system software for Unix workstations) or DirectX® (multimedia API for Microsoft Windows® based PC systems; available from www.microsoft.com). The 3-D image can be rendered showing the cartilage, subchondral bone, menisci or other anatomic objects, and the articular repair system from varying angles, e.g. by rotating or moving them interactively or non-interactively, in real-time or non-real-time.

[00150] The software can be designed so that the articular repair system, including surgical tools and instruments with the best fit relative to the cartilage and/or subchondral bone is automatically selected, for example using some of the techniques described above. Alternatively, the operator can select an articular repair system, including surgical tools and instruments and project it or drag it onto the implantation site using suitable tools and techniques. The operator can move and rotate the articular repair systems in three dimensions relative to the implantation site and can perform a visual inspection of the fit between the articular repair system and the implantation site. The visual inspection can be computer assisted. The procedure can be repeated until a satisfactory fit has been achieved. The procedure can be performed manually by the operator; or it can be computer-assisted in whole or part. For example, the software can select a first trial implant that the operator can test. The operator can evaluate the fit. The software can be designed and used to highlight areas of poor alignment between the implant and the surrounding cartilage or subchondral bone or menisci or other tissues. Based on this information, the software or the operator can then select another implant and test its alignment. One of skill in the art will readily

10

15

20

25

be able to select, modify and/or create suitable computer programs for the purposes described herein.

[00151] In another embodiment, the implantation site can be visualized using one or more cross-sectional 2-D images. Typically, a series of 2-D cross-sectional images will be used. The 2-D images can be generated with imaging tests such as CT, MRI, digital tomosynthesis, ultrasound, or optical coherence tomography using methods and tools known to those of skill in the art. The articular repair system can then be superimposed onto one or more of these 2-D images. The 2-D cross-sectional images can be reconstructed in other planes, e.g. from sagittal to coronal, etc. Isotropic data sets (e.g., data sets where the slice thickness is the same or nearly the same as the inplane resolution) or near isotropic data sets can also be used. Multiple planes can be displayed simultaneously, for example using a split screen display. The operator can also scroll through the 2-D images in any desired orientation in real time or near real time; the operator can rotate the imaged tissue volume while doing this. The articular repair system can be displayed in cross-section utilizing different display planes, e.g. sagittal, coronal or axial, typically matching those of the 2-D images demonstrating the cartilage. subchondral bone, menisci or other tissue. Alternatively, a three-dimensional display can be used for the articular repair system. The 2-D electronic image and the 2-D or 3-D representation of the articular repair system can be merged into a common coordinate system. The articular repair system can then be placed at the desired implantation site. The series of 2-D crosssections of the anatomic structures, the implantation site and the articular repair system can be displayed interactively (e.g. the operator can scroll

10

15

20

25

through a series of slices) or non-interactively (e.g. as an animation that moves through the series of slices), in real-time or non-real-time.

[00152] C. RAPID PROTOTYPING

[00153] Rapid protyping is a technique for fabricating a three-dimensional object from a computer model of the object. A special printer is used to fabricate the prototype from a plurality of two-dimensional layers. Computer software sections the representations of the object into a plurality of distinct two-dimensional layers and then a three-dimensional printer fabricates a layer of material for each layer sectioned by the software. Together the various fabricated layers form the desired prototype. More information about rapid prototyping techniques is available in US Patent Publication No 2002/0079601A1 to Russell et al., published June 27, 2002. An advantage to using rapid prototyping is that it enables the use of free form fabrication techniques that use toxic or potent compounds safely. These compounds can be safely incorporated in an excipient envelope, which reduces worker exposure

[00154] A powder piston and build bed are provided. Powder includes any material (metal, plastic, etc.) that can be made into a powder or bonded with a liquid. The power is rolled from a feeder source with a spreader onto a surface of a bed. The thickness of the layer is controlled by the computer. The print head then deposits a binder fluid onto the powder layer at a location where it is desired that the powder bind. Powder is again rolled into the build bed and the process is repeated, with the binding fluid deposition being controlled at each layer to correspond to the three-dimensional location of the device formation. For a further discussion of this process see, for example,

US Patent Publication No 2003/017365A1 to Monkhouse et al. published September 18, 2003.

[00155] The rapid prototyping can use the two dimensional images obtained, as described above in Section I, to determine each of the two-dimensional shapes for each of the layers of the prototyping machine. In this scenario, each two dimensional image slice would correspond to a two dimensional prototype slide. Alternatively, the three-dimensional shape of the defect can be determined, as described above, and then broken down into two dimensional slices for the rapid prototyping process. The advantage of using the three-dimensional model is that the two-dimensional slices used for the rapid prototyping machine can be along the same plane as the two-dimensional images taken or along a different plane altogether.

[00156] Rapid prototyping can be combined or used in conjunction with casting techniques. For example, a shell or container with inner dimensions corresponding to an articular repair system can be made using rapid prototyping. Plastic or wax-like materials are typically used for this purpose. The inside of the container can subsequently be coated, for example with a ceramic, for subsequent casting. Using this process, personalized casts can be generated.

[00157] Rapid prototyping can be used for producing articular repair systems. Rapid prototyping can be performed at a manufacturing facility. Alternatively, it may be performed in the operating room after an intraoperative measurement has been performed.

5

10

15

[00158] III. KITS

[00159] One ore more of the implants described above can be combined together in a kit such that the surgeon can select the implants to be used during surgery.

5 [00160] The foregoing description of embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention and the various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims equivalents thereof.