Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа №4.5.2

Интерференция лазерного излучения

Студент

Северилов Павел 671 группа

Цель работы: исследовать зависимость видности интерференционной картины от разности хода интерферирующих лучей и от их поляризации.

В работе используются: гелий-неоновый лазер, интерферометр Майкельсона с подвижным зеркалом, фотодиод с усилителем, осциллограф С1-76, поляроид, линейка.

1. Теоретическая часть

Лазер состоит из двух зеркал, составляющих лазерный резонатор, и расположенной между ними газообразной усиливающей среды, состоящей из гелия и неона. Характерное расстояние между зеркалами $-0.2 \div 1$ м.

Излучение распространяется по резонатору в прямом и обратном направлениях. При этом максимальным усилением обладают волны, для которых набег фазы при полном обходе резонатора кратен 2π . Тогда можно сформулировать условие на разность частот излучения. Так как:

$$\frac{2\pi}{\lambda}2L = 2\pi m, \quad L = m\lambda, \quad \nu_m = \frac{mc}{2L},$$

тогда:

$$\Delta \nu_m = \nu_{m+1} - \nu_m = \frac{c}{2L},\tag{1}$$

где L — длина резонатора, m — целое число. Поэтому лазер генерирует отдельные типы колебаний, называемые модами, удовлетворяющие условию (1).

Спектральная ширина отдельной моды определяется добротностью резонатора лазера и мощностью излучения. В He-Ne лазере из-за малого усиления активной среды используются зеркала с высоким отражением. добротность резонатора большая и спектральная ширина моды может быть очень узкой, вплоть до единиц Γ ц. Ввиду наличия тепловых флуктуаций длины резонатора типичная ширина моды составляет 10^5 Γ ц. Количество генерируемых мод определяется шириной спектра усиления активной среды. Эта ширина складывается из естественной ширины линии излучения атомов неона и доплеровского уширения, вызванного тепловым движением атомов. При температуре 400К ширина по полувысоте спектра излучения газообразного неона равна $1.5 \cdot 10^9$ Γ ц.

Вследствие тепловых флуктуаций длина резонатора меняется, в результате чего моды "переползают"с одного края контура на другой, там исчезают, а на другом краю рождаются новые. Таким образом температура нестабильность приводит к медленным изменениям амплитуд колебаний в лазерных модах и числа самих мод.

Видность интерференционной картины. Если в плоскости наблюдения две плоские волны с длиной волны λ_0 сходятся под малым углом α , то наблюдается интерференционная картина в виде последовательности темных и светлых полос с расстоянием между ними:

$$\Delta x = \frac{\lambda_0}{\alpha} \tag{2}$$

Рис. 1: Осциллограмма сигналов фотодиода

Для оценки чёткости интерференционной картины в окрестности некоторой точки используют параметр видимости:

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},\tag{3}$$

где I_{max} и I_{min} — максимальная и минимальная интенсивности света интерференционной картины вблизи выбранной точки. Человеческий глаз может уверенно различать чередование светлых и темных полос при $V \geq 0, 1$.

Пусть интерферируют две волны с амплитудами A_m и B_m . Если в точке наблюдения разность фаз между волнами равна $k_m l$, где k_m – волновое число, l – разность хода, то интенсивность света в этой точке:

$$I_m = A_m^2 + B_m^2 + 2A_m B_m \cos(k_m l) \tag{4}$$

В максимуме интенсивность $I_{max} = (A_m + B_m)^2$, в минимуме $I_{min} = (A_m - B_m)^2$. Отсюда видность:

$$V_1 = \frac{2\sqrt{\delta}}{1+\delta},\tag{5}$$

где $\delta = (B_m/A_m)^2$.

Рассмотрим влияние спекрального состава на видность интерференционной картины:

$$V_2(l) = \frac{\sum_{n=1}^{\infty} A_n^2 cos(\frac{2\pi\Delta\nu nl}{c})}{\sum_{n=1}^{\infty} A_n^2}.$$
 (6)

Введем также поправку к видности, связанную с углом между плоскостями поляризации падающих волн:

$$V_3 = \cos\beta,\tag{7}$$

где β — угол между плоскостями поляризации. Кроме того, по данным осциллограммы (рис.1) можно определить

$$\delta = \frac{h_1}{h_2} \tag{8}$$

$$V = \frac{h_4 - h_3}{h_4 + h_3},\tag{9}$$

где V — полная видимость. Если имеют место все три фактора уменьшения видимости: неравенство амплитуд, несовпадение поляризаций и разная оптическая задержка между интерферирующими пучками, то:

$$V = V_1 \cdot V_2 \cdot V_3. \tag{10}$$

2. Экспериментальная установка

Рис. 2: Схема экспериментальной установки

Экспериментальная установка представляет собой интерферометр Майкельсона, смонтированный на вертикально стоящей плите. Источником света служит гелий-неоновый лазер ($\lambda_0 = 632, 8$ нм). Пучок лазерного излучения отражается от зеркала З и проходит через ромб Френеля(РФ).

Пучок 1 проходит поляроид Π_1 , отражается под небольшим углом от зеркала 3_1 , снова проходит поляроид Π_1 и, частично отражаясь от диагональной плоскости делительного кубика, выходит из интерферометра, попадая на зеркало 3_3 и фотодиод Φ Д. При этом можно вращать Π_1 , изменяя плоскость поляризации.

Пучок 2 проходит линзу Π , поляроид Π_2 , отражается от зеркала \Im_2 , снова проходит Π_2 , линзу Π и делительный кубик, выходит из интерферометра, попадает на зеркало \Im_3 и далее на фотодиод Φ Д. Таким образом, от зеркала \Im_3 под небольшим углом друг к другу идут на фотодиод два пучка, проходящие через разные плечи интерферометра. Для питания усилителя сигнала фотодиода и управления пьезокерамикой используется блок питания Π .

3. Установка и параметры измерения

Расстояние между зеркалами лазера: 65 см.

Зависимость видности от угла β поворота поляроида

Таблица 1: Измерим зависимость видности ν_3 от угла поворота поляроида при нулевой разности хода

лода										
β , °	h_1	h_2	h_3	h_4	δ	ν	ν_1	ν_3	$\cos \beta$	$\cos^2\beta$
90	0,2	1	1	1,6	0,200	0,231	0,745	0,310	0,000	0,000
80	0,6	5,4	5,4	6,6	0,111	0,100	0,600	0,167	0,174	0,030
70	0,5	5,4	5	7	0,093	0,167	0,557	0,299	0,342	0,117
60	0,4	5,3	4,8	6,6	0,075	0,158	0,511	0,309	0,500	0,250
50	0,5	5,2	4,4	7	0,096	0,228	0,566	0,403	0,643	0,413
40	0,9	5,2	4,1	8	0,173	0,322	0,709	0,454	0,766	0,587
30	0,4	2,1	2,5	6,6	0,190	0,451	0,733	0,614	0,866	0,750
20	0,6	2,1	1,2	4,1	0,286	0,547	0,831	0,658	0,940	0,883
15	0,7	2,1	1,1	5,6	0,333	0,672	0,866	0,776	0,966	0,933
10	0,6	2,1	1,1	5,4	0,286	0,662	0,831	0,796	0,985	0,970
5	0,6	2,2	1	5,6	0,273	0,697	0,821	0,849	0,996	0,992
0	0,9	2,2	1	5,2	0,409	0,677	0,908	0,746	1,000	1,000

Рис. 3: График зависимости $\nu(\cos^2\beta)$

Зависимость видности ν_2 от координаты x блока

Таблица 2: Измерим зависимость видности ν_2 от координаты x блока

$\begin{bmatrix} x \end{bmatrix}$	h_1	h_2	h_3	h_4	δ	ν	ν_1	ν_2
10	0,9	4	2,8	6,8	0,225	0,417	0,774	0,538
14	0,85	3,15	2,0	6,2	0,270	0,512	0,818	0,626
16	0,4	2,9	2,6	6,4	0,138	0,422	0,653	0,647
18	0,9	4,9	3,1	8,0	0,184	0,441	0,724	0,610
20	2,3	2,8	1,8	8,0	0,821	0,633	0,995	0,636
25	2,3	1,3	2,6	4,7	0,565	0,288	0,961	0,299
30	4,7	1,5	5,6	6,6	0,319	0,082	0,857	0,096
32	4,5	1,8	5,8	6,5	0,400	0,057	0,904	0,063
34	4,5	2,7	6,8	7,7	0,600	0,062	0,968	0,064
40	2,4	1,6	3,4	4,7	0,667	0,160	0,980	0,164
43	0,9	3,7	4,2	5,2	0,243	0,106	0,793	0,134
50	2,2	2,8	4,8	6,2	0,786	0,127	0,993	0,128
60	2,2	2,7	4,6	5,3	0,815	0,071	0,995	0,071
70	2,2	0,9	2,9	5,5	0,409	0,310	0,908	0,341
74	2,2	2,9	2,3	8,0	0,759	0,553	0,991	0,559
78	2,3	1,4	1,2	6,4	0,609	0,684	0,970	0,705
80	2,4	1,4	1,1	6,5	0,583	0,711	0,965	0,736
83	2,4	1,8	1,5	6,9	0,750	0,643	0,990	0,650
85	4,9	0,4	3,8	6,9	0,082	0,290	0,528	0,548
87	4,7	1,3	3,8	8,25	0,277	0,369	0,824	0,448
88	4,0	1,3	3,6	7,2	0,325	0,333	0,861	0,387

Рис. 4: График зависимости $\nu_2(x)$

По полученному графику определим примерный размер резонатора лазера:

$$2L \approx 80 - 16 = 64 \text{ cm}$$

Тогда межмодовое расстояние равно:

$$\Delta \nu_m = \frac{c}{2L} = 4,7 \cdot 10^8 \ \Gamma$$
ц

Полуширина первого максимума:

$$l_{1/2} = 8 \text{ cm}$$

Тогда диапазон частот, в котором происходит генерация продольных мод оценивается выражением:

$$\Delta F = \frac{\sqrt{\ln 2} \cdot c}{\pi \cdot l_{1/2}} = 9,9 \cdot 10^8$$
 Гц

Оценим число генерируемых лазером продольных мод:

$$n \approx 1 + 1.2 \frac{L}{l_{1/2}} = 6$$

4. Вывод

Исследуя видность интерференционной картины излучения гелий-неонового лазера мы измерили диапазон частот, в котором происходит генерация продольных мод, число продольных мод. Почти точно определили размер резонатора. Зависимость $\nu_2(\cos^2)\beta$ оказалась линейной, но не проходящей через через ноль (поляроид не перекрывал свет полностью).