CES-27 Processamento Distribuído

MapReduce

Prof Juliana Bezerra Prof Celso Hirata Prof Vitor Curtis

Outline

- What is MapReduce?
- MapReduce Execution Overview
- Curiosities
 - Failure Tolerance
 - Task Granularity
 - Combiner Function
- Patterns and applications

MapReduce

- Reference paper: J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters", Google, 2004
- MapReduce is a programming model and an associated implementation for processing and generating large data sets
 - Inspired by the map and reduce primitives present in Lisp and many other functional languages
 - Map: (input shard) → intermediate(key/value pairs)
 - A **map** operation to each logical "record" in our input in order to compute a set of intermediate **key/value pairs**
 - Reduce: intermediate(key/value pairs) → result files
 - A reduce operation to all the values that shared the same key, in order to combine the derived data appropriately
 - Focus: high performance
 - ... but hides the details of parallelization, fault-tolerance, data distribution and load balancing in a library

Word Count - A Typical Example

- Input: Large number of text documents (or a big one document)
- Operation: Compute word count across all the documents
- Solution
 - Mapper: For every word in a document, output (word, "1")
 - Reducer: Sum all occurrences of words and output (word, totalCount)

Word Count - A Typical Example

```
map(String input_key, String input_value):
    // input_key: document name
    // input_value: document contents
    for each word w in input_value:
        EmitIntermediate(w, "1");
```

```
reduce(String output_key, Iterator intermediate_values):
    // output_key: a word
    // intermediate values: list of counts
    int result = 0;
    for each v in intermediate_values:
        result += ParseInt(v);
    Emit(AsString(result));
Only v of the given
    output_key
```


Who has MapReduce?

- Google
 - Original proprietary implementation
- Apache Hadoop MapReduce
 - Most common (open-source) implementation
 - Built based on specs defined by Google
 - Proprietary solutions:
 - Amazon Elastic MapReduce (run on Amazon EC2)
 - IBM Hadoop
- Apache Spark
 - A fast and general open-source engine for large-scale data processing
 - It has MapReduce and other things
 - SPARK SQL, SPARK Streaming, MLlib (Machine Learning) and GraphX (graph processing)
 - Spark is capable to run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk

Outline

- What is MapReduce?
- MapReduce Execution Overview
- Curiosities
 - Failure Tolerance
 - Task Granularity
 - Combiner Function
- Patterns and applications

MapReduce Execution Overview

- Keep in mind:
 - □ map task ≠ map worker ≠ user-defined Map function
 - reduce task ≠ reduce worker ≠ user-defined *Reduce* function

- The MapReduce library in the user program first splits the input files into M pieces of typically 16 megabytes to 64 megabytes (MB) per piece (controllable by the user via an optional parameter).
- It then starts up many copies of the program on a cluster of machines ⇒ fork processes

Note: We say split or shard

- One of the copies of the program is special – the master (leader).
- The rest are workers that are assigned work by the master.
- There are M map tasks and R reduce tasks to assign.
- The master picks idle workers and assigns each one a map task or a reduce task.

- A worker who is assigned a map task reads the contents of the corresponding input split.
- It calls userdefined *Map* function.
- The
 intermediate
 key/value pairs
 produced by the
 Map function are
 buffered in
 memory.

- Periodically, the buffered pairs are written to local disk, partitioned into R regions by the partitioning function.
 - Default function: hash(key) mod R
 - "Map worker" partitions the data by keys
 - It also decides which of R reduce workers will work on which key
- The locations of these buffered pairs on the local disk are passed back to the **master**, who is <u>responsible for</u> <u>forwarding these</u> <u>locations to the reduce</u> workers.

- When a reduce worker
 is notified by the master
 about these locations, it
 uses remote procedure
 calls to read the buffered
 data from the local disks
 of the map workers.
- When a reduce worker has read all intermediate data
 - It sorts it by the intermediate keys
 - All occurrences of the same key are grouped together.
- The sorting is needed because typically many different keys map to the same reduce task.
 - If the amount of intermediate data is too large to fit in memory, an external sort is used.

- The reduce worker iterates over the sorted intermediate data and, for each unique intermediate key encountered,...
 - It passes the key and the corresponding set of intermediate values to the user's Reduce function.
 - < key, (value1, value2, value3, value4, ...) >
- The output of the Reduce function is appended to a final output file for this reduce partition

- When all map tasks and reduce tasks have been completed, the master wakes up the user program.
 - At this point, the MapReduce call in the user program returns back to the user code.
- The output of the MapReduce execution is available in the R output files
 - Typically, users do not need to combine these R output files into one file
 - They often pass these files as input to another MapReduce call, or
 - They use them from another distributed application that is able to deal with input that is partitioned into multiple files

Outline

- What is MapReduce?
- MapReduce Execution Overview
- Curiosities
 - Failure Tolerance
 - Task Granularity
 - Combiner Function
- Patterns and applications

Failure Tolerance

Master Data Structures

- State (idle, in-progress, or completed) of each map task
 or reduce task
- Identity of the worker machine (for non-idle tasks)
- Locations and sizes of the R intermediate file regions produced by the map task

Master Failure

- One approach
 - Master writes periodic checkpoints of the master data structures
 - If the master task dies, a **new copy can be started** from the last **checkpointed** state.
- Current approach (with one master)
 - To abort the MapReduce computation if the master fails.
 - **Clients** can check for this condition and **retry** the MapReduce operation if they desire.

Failure Tolerance

Worker Failure

- The master **pings** every **worker** periodically.
- If no response in a certain amount of time, the master marks the worker as failed.

- Any map task or reduce task <u>in progress</u> on a failed worker is also reset to idle and becomes eligible for rescheduling.
- Any map tasks <u>completed</u> by the worker are **reset** back to their initial idle state, and therefore become **eligible for scheduling** on other workers.
 - Because the output of map tasks is stored on the local disk(s) of the failed machine and is therefore inaccessible.
 - <u>Completed</u> reduce tasks do not need to be re-executed since their output is stored in a global file system
- When a map task is executed first by worker A and then later executed by worker B (because A has failed), all workers executing reduce tasks are notified of the re-execution. Any reduce task that has not already read the data from worker A will read the data from worker B.

Task Granularity

MapReduce subdivide:

- map phase into M pieces
- reduce phase into R pieces

Master must:

- Make O(M + R) scheduling decisions
- Keep O(M * R) state in memory
 - However, it is **small**!
 - Approximately **one byte** of data per "map task / reduce task" pair.

• In practice:

- Choose M so that each individual task is roughly 16 MB to 64
 MB of input data
- Make R a small multiple of the number of worker machines we expect to use.
- M = 200.000 and R = 5.000, using 2.000 worker machines

Combiner Function

- In some cases, there is a significant repetition in the intermediate keys produced by each map task
 - In word count example: <the, 1>
- The **Combiner function** is executed on each machine that performs a map task
 - Typically the same code is used to implement both the combiner and the reduce functions

Outline

- What is MapReduce?
- MapReduce Execution Overview
- Curiosities
 - Failure Tolerance
 - Task Granularity
 - Combiner Function
- Patterns and applications

Patterns and applications

- 23 patterns grouped into six categories
 - Summarization (*)
 - Top-down summaries to get a top-level view
 - Filtering (*)
 - Extract interesting subsets of the data
 - Data Organization
 - Reorganize and restructure data to work with other systems or to make MapReduce analysis easier
 - Joins
 - Bringing and analyze different data sets together to discover interesting relationships
 - Metapatterns
 - Piece together several patterns to solve a complex problem or to perform several analytics in the same job
 - Input and output
 - Custom the way to use Hadoop to input and output data.

- A general pattern for calculating aggregated statistical values over your data
 - To deal with numerical data or counting
 - To group data by specific fields

- Word count, Record count
- Min, max, count of a particular event
 - E.g. Given a list of tweets (username, date, text), determine first and last time an user commented and the number of times

- Average, median, standard deviation
 - E.g. Given a list of tweets (username, date, text), determine the average comment length per hour of day

Inverted Index

- General case: we want to build a map of some term to a list of identifiers
- E.g. We want to add StackOverflow links to each Wikipedia page that is referenced in a StackOverflow comment.
 - So, Given a set of user's comments, build an inverted index of Wikipedia URLs to a set of answer post IDs

Counting with Counters

- To calculate a global sum entirely on the map side without producing any output. It is map-only job!
- E.g. Count the number of users from each state using Hadoop custom counters

- It evaluates each record separately and decides, based on some condition, whether it should stay or go
 - To collate/group data

Filtering

• It simply evaluates each record separately and decides, based on some condition, whether it should stay or go.

- Filtering (Distributed Grep)
 - E.g. Given a list of tweets (username, date, text), determine the tweets that contain a *word*

Filtering - Tracking a thread of events

• E.g. By filtering for that user's IP address, you are able to get a good view of that particular user's activities.

Filtering - Data cleansing

• E.g. To validate that each record is well-formed and remove any junk that does occur.

Filtering - Simple random sampling

• E.g. If you want a simple random sampling of your data set, you can use filtering where the evaluation function randomly returns true or false.

Removing low scoring data

• E.g. If you can score your data with some sort of scalar value, you can filter out records that don't meet a certain threshold.

Bloom filtering

- It does the same thing as filtering pattern, but it has a unique evaluation function applied to each record.
- E.g. Hot list

Top N

- Retrieve a relatively small number of top N records, according to a ranking scheme in your data set, no matter how large the data.
- E.g. Given a list a list of tweets (username, date, text), determine the 5 users that wrote longer tweets

Distinct

- You have data that contains similar records and you want to find a unique set of values.
- E.g. Given a list of user's comments, determine the distinct set of user IDs.

```
map(key, record):
    emit record, null

reduce(key, records):
    emit key
```

System Health Monitoring in Google

- Monitoring service talks to every server frequently
- Collect: health signals, activity information, configuration data
- Store time-series data forever
- Parallel analysis of repository data MapReduce
- E.g. DRAM errors observed in a new Gmail cluster

Geographical Data in Google

- Problems that Google Maps has used MapReduce to solve
 - Locating roads connected to a given intersection
 - Rendering of map tiles
 - Finding nearest feature to a given address or location

Example:

- Input: List of roads and intersections
- Map: Creates pairs of connected points (road, intersection) or (road, road)
- Sort: Sort by key
- Reduce: Get list of pairs with same key
- Output: List of all points that connect to a particular road