UCSC Silicon Valley Extension Advanced C Programming

Recursion

Instructor: Radhika Grover

Overview

- Exhaustive search techniques using recursion and backtracking
- Applications:
 - Maze solving
 - Knapsack problem
 - Variants of minimum spanning trees

Exhaustive search

- Tries all possible solutions also called brute force.
 - Generates all possible solutions (candidates)
 - Checks if a candidate solution is valid
- Advantage: simple to implement
- Disadvantage: cost to generate all candidate solutions

Backtracking

- Abandons a partial solution that cannot be completed to create a complete solution (dead end).
- Returns back to a previous step and chooses a different back.
- Improves exhaustive search

Backtracking

S₁, S₂, S₃, S₄, S₅: partial solutions

backtracking

Knapsack Problem

Maximize
$$\sum_{j=1}^{n} v_j x_j$$

$$subject\ to \sum_{j=1}^{n} w_j x_j \le c$$

$$x_j \varepsilon \{0, 1\}, j = 1, 2, ..., n$$

Cost: \$20

Weight: 10 lbs

Cost: \$6

Weight: 2 lbs

Cost: \$15

Weight: 3 lbs

0-1 Knapsack Problem

Goal: Maximize Value

Store in bag with a capacity of 10 lbs

Types of Knapsack Problems

Bounded

- Fixed amount m_j of each type

$$x_j \varepsilon \{0, 1..., mj\}, j = 1, 2, ..., n$$

Unbounded

Unlimited amount of each type

$$x_j \ge 0$$
, integer $j = 1, 2, ..., n$

Multiple Choice

- Choose exactly 1 item jfrom each of K classes N_i , i=1,...,k

Maximize
$$\sum_{i=1}^{k} \sum_{j \in N_i} v_{ij} x_{ij}$$

subject to $\sum_{i=1}^{k} \sum_{j \in N_i} w_{ij} x_{ij} \le c$,

$$\sum_{j \in N_i} x_{ij} = 1, i = 1, ..., k$$
$$x_{ij} \in 0, 1, i = 1, ..., k, j \in N_i$$

Types of Knapsack Problems (continued)

Subset-sum

Value v_j is equal to weight w_j for each item in 0-1
 Knapsack problem.

Maximize
$$\sum_{j=1}^{n} w_j x_j$$

subject to $\sum_{j=1}^{n} w_j x_j \le c$
 $x_{ij} \in 0, 1, i = 1, ..., k, j \in N_i$

Fractional

$$0 \le x_i \le 1, 1 \le i \le n$$

- Multi-constraint
 - Most general form

Maximize
$$\sum_{j=1}^{n} v_j x_j$$

subject to $\sum_{j=1}^{n} w_{ij} x_j \le c_i$, $i = 1, ..., m$
 $x_i \ge 0$ integer, $j = 1, ..., n$

Applications

- 0-1: Find an optimal investment plan given *n* projects, the profit from each project is *p_j*, cost to invest in a project is *w_j*, and only *c* dollars are available.
- Multiple-choice: Choose one of N_i dishes in each of k courses in a restaurant without exceeding amount of c calories.

Applications

- Subset-sum
- Fractional
- Multi-constraint

Solutions

- Exhaustive search
- Greedy algorithm
- Branch and bound
- Dynamic programming
- Approximation algorithms
- Genetic algorithms

Exhaustive Search

- Brute-force search
- Explores all—pick one
- A recursive strategy
- Running time?

Generate binary number


```
current value = value[index] * select + current value
Current weight = weight[index] * select + current weight
```


	value	weight
000	0	0
001		
010		
011		
100		
101		
110		
111		

	value	weight
000	0	0
001	15	3
010		
011		
100		
101		
110		
111		

	value	weight
000	0	0
001	15	3
010	6	2
011		
100		
101		
110		
111		

	value	weight
000	0	0
001	15	3
010	6	2
011	21	5
100		
101		
110		
111		

	value	weight
000	0	0
001	15	3
010	6	2
011	21	5
100	20	10
101		
110		
111		

	value	weight
000	0	0
001	15	3
010	6	2
011	21	5
100	20	10
101	35	13
110		
111		

	value	weight
000	0	0
001	15	3
010	6	2
011	21	5
100	20	10
101	35	13
110	26	12
111		

	value	weight
000	0	0
001	15	3
010	6	2
011	21	5
100	20	10
101	35	13
110	26	12
111	41	15

not feasible not feasible not feasible

Generate n-digit binary numbers

```
#include <stdio.h>
#include <string.h>
// generates 3 digit binary numbers
#define NUM DIGITS 10
typedef struct {
   char str[NUM_DIGITS+1];
}Seq;
void enumerate(int index, Seq seq) {
   //printf("index: %d seq: %s \n", index, seq.str);
    // reached a leaf node, print out the binary sequence and return
   if (index == NUM_DIGITS-1) {
      printf("%s \n", seq.str);
      return;
    index++;
   // create seq1 (with an added 1) and seq0 (with an added 0) to store the new binary sequence.
   Seq seq1, seq0;
   strcpy(seq1.str, seq.str);
   strcpy(seq0.str, seq.str);
   strcat(seq1.str, "1");
   strcat(seq0.str, "0");
   // continue the recursion
   enumerate(index, seq1);
   enumerate(index, seq0);
```

Generate n-digit binary numbers

```
int main(void) {
    Seq seq;
    strcpy(seq.str,"\0");
    enumerate(-1, seq);
    return 0;
}
```

Program output:

```
111
110
101
100
011
010
001
000
```


	value	weight
000	0	0
001	15	3
010	6	2
011	21	5
100	20	10
101	35	13
110	26	12
111	41	15

Solution = 21 **Improve this algorithm using backtracking**

```
#include <stdio.h>
#include <string.h>
                                                                                                               int main(void) {
                                               typedef struct {
#define SIZE 3
                                                                                                                   Seq seq;
                                                  char str[SIZE+1];
                                                                                                                   strcpy(seq.str,"\0");
                                               }Seq;
                                                                                                                   knapsack(-1, 0, 0, seq);
int weight[] = {10, 2, 3};
                                                                                                                   printf(" Max value : %d ", maxValue);
int value[] = {20, 6, 15};
                                                                                                                   return 0;
int maxAllowedWeight = 11;
int maxValue = 0;
void knapsack(int index, int currentValue, int currentWeight, Seq seq) {
    printf(" Knapsack : %s current value: %d current weight: %d\n" , seq.str, currentValue, currentWeight);
     if (currentWeight > maxAllowedWeight)// weight exceeds maximum weight, backtrack
       return;
     if (currentValue > maxValue)
                                     //record max value found so far
       maxValue = currentValue;
     if (index == SIZE-1)
             return;
   index++; // next item in bag
   Seq seq1, seq0;
   strcpy(seq1.str, seq.str);
   strcpy(seq0.str, seq.str);
   strcat(seq1.str, "1");
   strcat(seq0.str, "0");
   knapsack(index, value[index]+currentValue, weight[index]+currentWeight, seq1);
   knapsack(index, currentValue, currentWeight, seq0);
```


value = KS([\$20, \$6, \$15], 10 lbs)

value = KS([\$20, \$6, \$15], 10 lbs)

value = \$15 + KS([\$20, \$6], 10 lbs - 3 lbs)

value = KS([\$20, \$6, \$15], 10 lbs)

value = \$15 + KS([\$20, \$6], 10 lbs - 3 lbs)

value = \$6 + KS([\$20], 7 lbs - 2 lbs)

value = KS([\$20, \$6, \$15], 10 lbs)

value = KS([\$20, \$6, \$15], 10 lbs)

36

value = KS([\$20, \$6, \$15], 10 lbs)

Empty list, return 0.

value = KS([\$20, \$6, \$15], 10 lbs)

Empty list, return 0.

value = KS([\$20, \$6, \$15], 10 lbs)

value = KS([\$20, \$6, \$15], 10 lbs)

value = KS([\$20, \$6, \$15], 10 lbs)

value = KS([\$20, \$6, \$15], 10 lbs)

value = KS([\$20, \$6, \$15], 10 lbs)

value = KS([\$20, \$6, \$15], 10 lbs)

value = KS([\$20, \$6, \$15], 10 lbs)

value = KS([\$20, \$6, \$15], 10 lbs)

value = KS([\$20, \$6, \$15], 10 lbs)

value = KS([\$20, \$6, \$15], 10 lbs)

value = KS([\$20, \$6, \$15], 10 lbs)

value = KS([\$20, \$6, \$15], 10 lbs)

Exercise: Write the code for the recursive Solution to 0-1 Knapsack

Greedy Strategies

- Choose item with maximum value
- Choose item with lightest weight
- Choose item with highest value/weight ratio.

Greedy Algorithm

- Compute the value-to weight ratios:
 - $r_i = v_i/w_i$
- Sort the items in non-increasing order of value to weight ratios
- For all items do:
 - If current item fits into the knapsack, add it to knapsack

Running Time for Greedy Approach

- 1. Sorting takes O(NlogN), where N is the number of items.
- 2. The for loop takes O(N)

Total time is O(NlogN)

Requires a one-dimensional array to store the solution.

Fractional Knapsack

- Greedy approach
 - Sort in the ratio value/weight
 - Continue adding items with highest ratios, add as much of last item as possible
 - Optimal

References

Cormen, Thomas H., et al. *Introduction to Algorithms*. The MIT Press, 2014

https://en.wikipedia.org/wiki/Knapsack_problem