8.3

Introduction to Recurrent Neural Networks

Part 3: Encoding Inputs Using Embedding Layers

Sebastian Raschka and the Lightning Al Team

Recurrent neural networks (RNNS) for modeling sequences

Recurrent neural network (RNN) Deep Learning Fundamentals, Urlinesame RNN Lightning Al

Suppose we implement a simple RNN that predicts the next character in a sentence:

"Sunny days are the best days to go for a walk or have a picnic."

A simple RNN that predicts the next character

Desired outputs:

Sentence:

"Sunny days are the best days to go for a walk or have a picnic."

Character inputs: S Unit 8

Remember one-hot encoding?

	Α	В	С	D	Е	H	G	Н		J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z
S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
N	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
N	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0
Y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

One-hot encoded input letter

One-hot encoded input letter

	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	X	Y	Z
S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

Weight matrix

```
[[0.6912, 0.8765, 0.4939],
 [0.6342, 0.7481, 0.7717],
 [0.8395, 0.2128, 0.3696],
 [0.4900, 0.1509, 0.0689],
 [0.2587, 0.9171, 0.8670],
 [0.7213, 0.9922, 0.5701],
 [0.7598, 0.5231, 0.3666],
 [0.5150, 0.5216, 0.9682],
 [0.2248, 0.0261, 0.4427],
 [0.1818, 0.6863, 0.8713],
 [0.4192, 0.1566, 0.9004],
 [0.8102, 0.5741, 0.4241],
 [0.1116, 0.0466, 0.2786],
 [0.9816, 0.7363, 0.5899],
 [0.9224, 0.3672, 0.6972],
 [0.1207, 0.3372, 0.2128],
 [0.0660, 0.1524, 0.8440],
 [0.2162, 0.5640, 0.0988],
 [0.2605, 0.3766, 0.3502],
 [0.2334, 0.4757, 0.7581],
 [0.7382, 0.9807, 0.4762],
 [0.2369, 0.8102, 0.8798],
 [0.6932, 0.2671, 0.8018],
 [0.9593, 0.5302, 0.4290],
 [0.6231, 0.8825, 0.8836],
 [0.4623, 0.8503, 0.7279]]
```

```
[[0.6912, 0.8765, 0.4939],
 [0.6342, 0.7481, 0.7717],
 [0.8395, 0.2128, 0.3696],
 [0.4900, 0.1509, 0.0689],
 [0.2587, 0.9171, 0.8670],
 [0.7213, 0.9922, 0.5701],
 [0.7598, 0.5231, 0.3666],
 [0.5150, 0.5216, 0.9682],
 [0.2248, 0.0261, 0.4427],
 [0.1818, 0.6863, 0.8713],
 [0.4192, 0.1566, 0.9004],
 [0.8102, 0.5741, 0.4241],
 [0.1116, 0.0466, 0.2786],
 [0.9816, 0.7363, 0.5899],
 [0.9224, 0.3672, 0.6972],
 [0.1207, 0.3372, 0.2128],
 [0.0660, 0.1524, 0.8440],
 [0.2162, 0.5640, 0.0988],
 [0.2605, 0.3766, 0.3502],
 [0.2334, 0.4757, 0.7581],
 [0.7382, 0.9807, 0.4762],
 [0.2369, 0.8102, 0.8798],
 [0.6932, 0.2671, 0.8018],
 [0.9593, 0.5302, 0.4290],
 [0.6231, 0.8825, 0.8836],
 [0.4623, 0.8503, 0.7279]]
```

```
[[0.6912, 0.8765, 0.4939],
[0.6342, 0.7481, 0.7717],
[0.8395, 0.2128, 0.3696],
[0.4900, 0.1509, 0.0689],
 [0.2587, 0.9171, 0.8670],
[0.7213, 0.9922, 0.5701],
[0.7598, 0.5231, 0.3666],
[0.5150, 0.5216, 0.9682],
[0.2248, 0.0261, 0.4427],
[0.1818, 0.6863, 0.8713],
[0.4192, 0.1566, 0.9004],
[0.8102, 0.5741, 0.4241],
[0.1116, 0.0466, 0.2786],
 [0.9816, 0.7363, 0.5899],
[0.9224, 0.3672, 0.6972],
[0.1207, 0.3372, 0.2128],
 [0.0660, 0.1524, 0.8440],
[0.2162, 0.5640, 0.0988],
[0.2605, 0.3766, 0.3502],
[0.2334, 0.4757, 0.7581],
 [0.7382, 0.9807, 0.4762],
 [0.2369, 0.8102, 0.8798],
 [0.6932, 0.2671, 0.8018],
 [0.9593, 0.5302, 0.4290],
[0.6231, 0.8825, 0.8836],
[0.4623, 0.8503, 0.7279]]
```

```
[[0.6912, 0.8765, 0.4939],
 [0.6342, 0.7481, 0.7717],
 [0.8395, 0.2128, 0.3696],
 [0.4900, 0.1509, 0.0689],
 [0.2587, 0.9171, 0.8670],
 [0.7213, 0.9922, 0.5701],
 [0.7598, 0.5231, 0.3666],
 [0.5150, 0.5216, 0.9682],
 [0.2248, 0.0261, 0.4427],
 [0.1818, 0.6863, 0.8713],
 [0.4192, 0.1566, 0.9004],
 [0.8102, 0.5741, 0.4241],
 [0.1116, 0.0466, 0.2786],
 [0.9816, 0.7363, 0.5899],
 [0.9224, 0.3672, 0.6972],
 [0.1207, 0.3372, 0.2128],
 [0.0660, 0.1524, 0.8440],
 [0.2162, 0.5640, 0.0988],
 [0.2605, 0.3766, 0.3502],
 [0.2334, 0.4757, 0.7581],
 [0.7382, 0.9807, 0.4762],
 [0.2369, 0.8102, 0.8798],
 [0.6932, 0.2671, 0.8018],
 [0.9593, 0.5302, 0.4290],
 [0.6231, 0.8825, 0.8836],
 [0.4623, 0.8503, 0.7279]]
```

```
1 \times 0.2605 = 0.2605
```

```
[[0.6912, 0.8765, 0.4939],
 [0.6342, 0.7481, 0.7717],
 [0.8395, 0.2128, 0.3696],
 [0.4900, 0.1509, 0.0689],
 [0.2587, 0.9171, 0.8670],
 [0.7213, 0.9922, 0.5701],
 [0.7598, 0.5231, 0.3666],
 [0.5150, 0.5216, 0.9682],
 [0.2248, 0.0261, 0.4427],
 [0.1818, 0.6863, 0.8713],
 [0.4192, 0.1566, 0.9004],
 [0.8102, 0.5741, 0.4241],
 [0.1116, 0.0466, 0.2786],
 [0.9816, 0.7363, 0.5899],
 [0.9224, 0.3672, 0.6972],
 [0.1207, 0.3372, 0.2128],
 [0.0660, 0.1524, 0.8440],
 [0.2162, 0.5640, 0.0988],
 [0.2605, 0.3766, 0.3502],
 [0.2334, 0.4757, 0.7581],
 [0.7382, 0.9807, 0.4762],
 [0.2369, 0.8102, 0.8798],
 [0.6932, 0.2671, 0.8018],
 [0.9593, 0.5302, 0.4290],
 [0.6231, 0.8825, 0.8836],
 [0.4623, 0.8503, 0.7279]]
```

```
1 \times 0.3766 = 0.3766
```

```
[[0.6912, 0.8765, 0.4939],
 [0.6342, 0.7481, 0.7717],
 [0.8395, 0.2128, 0.3696],
 [0.4900, 0.1509, 0.0689],
 [0.2587, 0.9171, 0.8670],
 [0.7213, 0.9922, 0.5701],
 [0.7598, 0.5231, 0.3666],
 [0.5150, 0.5216, 0.9682],
 [0.2248, 0.0261, 0.4427],
 [0.1818, 0.6863, 0.8713],
 [0.4192, 0.1566, 0.9004],
 [0.8102, 0.5741, 0.4241],
 [0.1116, 0.0466, 0.2786],
 [0.9816, 0.7363, 0.5899],
 [0.9224, 0.3672, 0.6972],
 [0.1207, 0.3372, 0.2128],
 [0.0660, 0.1524, 0.8440],
 [0.2162, 0.5640, 0.0988],
 [0.2605) 0.3766, 0.3502],
 [0.2334, 0.4757, 0.7581],
 [0.7382, 0.9807, 0.4762],
 [0.2369, 0.8102, 0.8798],
 [0.6932, 0.2671, 0.8018],
 [0.9593, 0.5302, 0.4290],
 [0.6231, 0.8825, 0.8836],
 [0.4623, 0.8503, 0.7279]]
```

```
1 \times 0.3502 = 0.3502
```

```
[[0.6912, 0.8765, 0.4939],
 [0.6342, 0.7481, 0.7717],
 [0.8395, 0.2128, 0.3696],
 [0.4900, 0.1509, 0.0689],
 [0.2587, 0.9171, 0.8670],
 [0.7213, 0.9922, 0.5701],
 [0.7598, 0.5231, 0.3666],
 [0.5150, 0.5216, 0.9682],
 [0.2248, 0.0261, 0.4427],
 [0.1818, 0.6863, 0.8713],
 [0.4192, 0.1566, 0.9004],
 [0.8102, 0.5741, 0.4241],
 [0.1116, 0.0466, 0.2786],
 [0.9816, 0.7363, 0.5899],
 [0.9224, 0.3672, 0.6972],
 [0.1207, 0.3372, 0.2128],
 [0.0660, 0.1524, 0.8440],
[0.2162, 0.5640, 0.0988],
 [0.2605, 0.3766, 0.3502],
 [0.2334, 0.4757, 0.7581],
 [0.7382, 0.9807, 0.4762],
 [0.2369, 0.8102, 0.8798],
 [0.6932, 0.2671, 0.8018],
 [0.9593, 0.5302, 0.4290],
 [0.6231, 0.8825, 0.8836],
 [0.4623, 0.8503, 0.7279]]
```

Result of the vector matrix multiplication:

```
[0.2605, 0.3766, 0.3502]
Sebastian Raschka
```

Deep Learning Fundamentals, Unit 8

```
[[0.6912, 0.8765, 0.4939],
 [0.6342, 0.7481, 0.7717],
 [0.8395, 0.2128, 0.3696],
 [0.4900, 0.1509, 0.0689],
 [0.2587, 0.9171, 0.8670],
 [0.7213, 0.9922, 0.5701],
 [0.7598, 0.5231, 0.3666],
 [0.5150, 0.5216, 0.9682],
 [0.2248, 0.0261, 0.4427],
 [0.1818, 0.6863, 0.8713],
 [0.4192, 0.1566, 0.9004],
 [0.8102, 0.5741, 0.4241],
 [0.1116, 0.0466, 0.2786],
 [0.9816, 0.7363, 0.5899],
 [0.9224, 0.3672, 0.6972],
 [0.1207, 0.3372, 0.2128],
 [0.0660, 0.1524, 0.8440],
 [0.2162, 0.5640, 0.0988],
[0.2605](0.3766,)(0.3502],
 [0.2334, 0.4757, 0.7581],
 [0.7382, 0.9807, 0.4762],
 [0.2369, 0.8102, 0.8798],
 [0.6932, 0.2671, 0.8018],
 [0.9593, 0.5302, 0.4290],
 [0.6231, 0.8825, 0.8836],
 [0.4623, 0.8503, 0.7279]]
```

This matrix multiplication is very inefficient compared to an index-based lookup

Replace multiplication between one-hot encoded vector and matrix with index look-up

Result of the vector matrix multiplication:

```
[0.2605, 0.3766, 0.3502]
Sebastian Raschka
```

Deep Learning Fundamentals, Unit²8

```
[[0.6912, 0.8765, 0.4939],
[0.6342, 0.7481, 0.7717],
[0.8395, 0.2128, 0.3696],
[0.4900, 0.1509, 0.0689],
[0.2587, 0.9171, 0.8670],
[0.7213, 0.9922, 0.5701],
[0.7598, 0.5231, 0.3666],
[0.5150, 0.5216, 0.9682],
[0.2248, 0.0261, 0.4427],
[0.1818, 0.6863, 0.8713],
[0.4192, 0.1566, 0.9004],
[0.8102, 0.5741, 0.4241],
 [0.1116, 0.0466, 0.2786],
[0.9816, 0.7363, 0.5899],
[0.9224, 0.3672, 0.6972],
[0.1207, 0.3372, 0.2128],
 [0.0660, 0.1524, 0.8440],
[0.2162, 0.5640, 0.0988],
 [0.2605, 0.3766, 0.3502],
[0.2334, 0.4/5/, 0./581],
[0.7382, 0.9807, 0.4762],
[0.2369, 0.8102, 0.8798],
 [0.6932, 0.2671, 0.8018],
 [0.9593, 0.5302, 0.4290],
[0.6231, 0.8825, 0.8836],
 [0.4623, 0.8503, 0.7279]]
```

One-hot encoded ("sparse") representation of "S U N N Y"

	Α	В	С	D	Ε	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z
S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
N	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
N	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0


```
Embedded ("dense")
representation of
"S U N N Y"
```

```
[[0.9816, 0.7363, 0.5899], [0.2605, 0.3766, 0.3502], [0.7382, 0.9807, 0.4762], [0.6231, 0.8825, 0.8836]]
```

Embedding layer

```
[[0.6912, 0.8765, 0.4939],
 [0.6342, 0.7481, 0.7717],
 [0.8395, 0.2128, 0.3696],
 [0.4900, 0.1509, 0.0689],
 [0.2587, 0.9171, 0.8670],
 [0.7213, 0.9922, 0.5701],
 [0.7598, 0.5231, 0.3666],
 [0.5150, 0.5216, 0.9682],
 [0.2248, 0.0261, 0.4427],
 [0.1818, 0.6863, 0.8713],
 [0.4192, 0.1566, 0.9004],
 [0.8102, 0.5741, 0.4241],
 [0.1116. 0.0466. 0.2786]
[0.9816, 0.7363, 0.5899],
 [0.9224, 0.3672, 0.6972],
 [0.1207, 0.3372, 0.2128],
 [0.0660, 0.1524, 0.8440],
 [0.2162. 0.5640. 0.0988]
[0.2605, 0.3766, 0.3502],
 10_2334 0 4757 0 75211
[0.7382, 0.9807, 0.4762],
 [0.2369, 0.8102, 0.8798],
 [0.6932, 0.2671, 0.8018],
 [0.9593. 0.5302. 0.4290]
[0.6231, 0.8825, 0.8836],
[0.4623, 0.8503, 0.7279]]
         Lightning Al
```

Coming back to the character-level RNN ...

A simple RNN that predicts the next character

Desired outputs:

Sentence:

"Sunny days are the best days to go for a walk or have a picnic."

Character inputs: S Unit 8 Deep Learning Fundamentals, Unit 8

Sebastian Raschka

Deep Learning Fundamentals, Unit 8

Lightning Al

Feed one-hot encoded inputs and let the hidden layer do the embedding.

Optimal embedding is "learned" during training.

Sebastian Raschka

Deep Learning Fundamentals, Unit 8

Lightning Al

Character inputs: S

U

N

Sebastian Raschka

Deep Learning Fundamentals, Unit 8

Lightning Al

Word vs character embeddings

Advantages / disadvantages of character embeddings vs. word embeddings

- + require less memory (English: 26 letters + punctuation)
- + Smaller output layers
- Can create nonsense words
- Worse at capturing long-distance dependencies

Next: PyTorch Embedding Layer Example