First Name:

Last Name:

In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
```

```
In [2]:

pd.set_option('display.float_format', lambda x:'%.2f'%x)

gapminder = pd.read_csv('gapminder.csv', low_memory=False)
gapminder.head()
Using a lambda function to round numeric values to 2 decimals.
```

Out[2]:

	country	incomeperperson	alcconsumption	armedforcesrate	breastcancerper100th	С
0	Afghanistan		.03	.5696534	26.8	
1	Albania	1914.99655094922	7.29	1.0247361	57.4	22374
2	Algeria	2231.99333515006	.69	2.306817	23.5	29321
3	Andorra	21943.3398976022	10.17			
4	Angola	1381.00426770244	5.57	1.4613288	23.1	
4						•

In [3]:

```
gapminder['oilperperson'] = pd.to_numeric(gapminder['oilperperson'],errors='coerce')
gapminder['relectricperperson'] = pd.to_numeric(gapminder['relectricperperson'],errors='coe
gapminder['co2emissions'] = pd.to_numeric(gapminder['co2emissions'],errors='coerce')
```

Scenario 1 - Linear & Multiple

sub1

In [4]:

```
sub1 = gapminder[['oilperperson', 'relectricperperson', 'co2emissions']].dropna()
sub1.head()
```

Out[4]:

	oilperperson	relectricperperson	co2emissions
2	0.42	590.51	2932108666.67
6	0.64	768.43	5872119000.00
9	1.91	2825.39	12970092666.67
10	1.55	2068.12	4466084333.33
11	0.36	921.56	511107666.67

Centre oilperperson, relectricperperson and co2emissions

use sub1

In [5]:

```
# center quantitative variables for regression analysis
sub1['oilperperson_c'] = (sub1['oilperperson'] - sub1['oilperperson'].mean())
sub1['relectricperperson_c'] = (sub1['relectricperperson'] - sub1['relectricperperson'].mea
sub1['co2emissions_c'] = (sub1['co2emissions'] - sub1['co2emissions'].mean())
sub1.head()
```

Out[5]:

	oilperperson	relectricperperson	co2emissions	oilperperson_c	relectricperperson_c	co2e	All data are centered by
2	0.42	590.51	2932108666.67	-1.06	-1145.94	-1235	subtracting the mean
6	0.64	768.43	5872119000.00	-0.85	-968.02	-941	value
9	1.91	2825.39	12970092666.67	0.43	1088.94	-231	
10	1.55	2068.12	4466084333.33	0.06	331.68	-1081	
11	0.36	921.56	511107666.67	-1.12	-814.89	-1477	
◀ 📗						•	

Multi variable linear regression

predict co2emission (y) using relectricperperson(x1) and oilperperson(x2)

```
In [20]:
```

```
reg1 = smf.ols('co2emissions_c ~ relectricperperson_c + oilperperson_c', data=sub1).fit()
print (reg1.summary())
```

R-squared shows 0% variables are explained with our model,

a Prob(fstatistic) of 0.5 indicates we should accept null hypothesis: there is no correlation.

OLS Regression Results

==			_			
	co2emissio	ns_c	R-s	quared:		0.0
20 Model:		OL C	۸di	. R-squared:		-0.0
12		UL3	Auj	. K-Squareu.		-0.0
Method:	Least Squ	ares	F-s	tatistic:		0.62
05	22032 390	u. c.s		caciscie.		0.02
Date:	Sun, 25 Mar	2018	Pro	b (F-statist	ic):	0.5
41	•			•	•	
Time:	12:5	7:49	Log	-Likelihood:		-163
2.7						
No. Observations:		63	AIC	:		327
1.						
Df Residuals:		60	BIC	:		327
8.						
Df Model:		2				
Covariance Type:	nonro	bust				
=======================================	========	=====	-===	=======	========	=======
========					p. L. I	FO 025
0.0751	coet	std	err	t	P> t	[0.025
0.975]						
Intercept	-1.669e-06	5 624	-+00	-2 976-16	1 000	-1.12e+10
1.12e+10	1.0000 00	3.020	-105	2.570 10	1.000	1.120110
relectricperperson_c	3.434e+06	3.246	-+06	1.058	0.294	-3.06e+06
9.92e+06	31.13.16.00	312.0		2.050	0.23	3.000.00
oilperperson_c	-9.47e+08	3.656	2+09	-0.260	0.796	-8.25e+09
6.35e+09						
=======================================	:	=====			========	=======
==						
Omnibus:	116	.246	Dur	bin-Watson:		1.7
62						
Prob(Omnibus):	0	.000	Jar	que-Bera (JB) :	4225.1
98						
Skew:	5	.891	Pro	b(ЈВ):		0.
00						
Kurtosis:	41	.351	Con	d. No.		2.04e+
03						
=======================================		=====	====:		=======	
==						
-						

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.04e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

Scenario 2 - Linear

sub2

In [7]:

```
# convert to numeric format
gapminder['employrate'] = pd.to_numeric(gapminder['employrate'], errors='coerce')
sub2 = gapminder[['relectricperperson', 'employrate']].dropna()
sub2.head()
```

Out[7]:

	relectricperperson	employrate
1	636.34	51.40
2	590.51	50.50
4	173.00	75.70
6	768.43	58.40
7	603.76	40.10

Turn values into numeric, drop Non number values, and display the first 5 rows.

scatter plot to show relationship between employment rate (x) and electricity use per person (y)

In [8]:

```
%matplotlib notebook
plt.figure()
scat1 = sns.regplot(x="relectricperperson", y="employrate", fit_reg=True, data=sub2)
plt.xlabel('Electricity Use Per Person')
plt.ylabel('Employment Rate')
```


We can see most data does not fit into regression model.

Out[8]:

Text(0,0.5,'Employment Rate')

Centre relectricperperson and employrate use sub2

In [9]:

```
sub2['relectricperperson_c'] = (sub2['relectricperperson'] - sub2['relectricperperson'].mea
sub2['employrate_c'] = (sub2['employrate'] - sub2['employrate'].mean())
sub2.head()
```

Out[9]:

	relectricperperson	employrate	relectricperperson_c	employrate_c
1	636.34	51.40	-543.99	-6.41
2	590.51	50.50	-589.82	-7.31
4	173.00	75.70	-1007.33	17.89
6	768.43	58.40	-411.90	0.59
7	603.76	40.10	-576.57	-17.71

All data are centered by subtracting the mean value

Linear regression between relectricperperson (x) and employrate (y)

```
In [10]:
```

```
reg2 = smf.ols('employrate_c ~ relectricperperson_c', data=sub2).fit()
print (reg2.summary())
```

R-squared shows 0% variables are explained with our model,

a Prob(fstatistic) of
0.09 indicates

we should accept null hypothesis: there is no correlation.

OLS Regression Results

=======================================	=======	======		========	=======	=======
== Dep. Variable: 21	employı	rate_c	R-sc	uared:		0.0
Model:		OLS	Adi	R-squared:		0.0
14			- 3	- 4		
Method: 77	Least So	quares	F-st	atistic:		2.8
Date:	Sun, 25 Mai	2018	Prob	(F-statistic):	0.09
Time:	12	:48:40	Log-	Likelihood:		-487.
No. Observations:		134	AIC			97
8.7 Df Residuals:		132	BIC			98
4.5		_				
<pre>Df Model: Covariance Type:</pre>	noni	1 robust				
======================================			=====	:========	=======	=======
========						
0.975]	coef	std		t	P> t	[0.025
Intercept 1.582	5.662e-15	0.	.800	7.08e-15	1.000	-1.582
relectricperperson_c 0.002	0.0008	0.	.000	1.696	0.092	-0.000
=======================================	========		=====		=======	
==						
Omnibus: 02		1.259	Durt	oin-Watson:		2.0
Prob(Omnibus): 53		0.533	Jaro	µue-Bera (ЈВ):		1.2
Skew:		0.228	Prob)(JB):		0.5
34 Kurtosis:		2.874	Cond	l. No.		1.68e+
03						
=======================================	========				======	=======
==						

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.68e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

Scenario 3 - Polynomial

scatter plot to show polynomial (order 2) relationship between employment rate (x) and electricity use per person (y)

In [11]:

```
#fit second order polynomial
# run the 2 scatterplots together to get second order fit lines
plt.figure()
scat1 = sns.regplot(x="relectricperperson_c", y="employrate_c", order=2, data=sub2)
plt.xlabel('Electricity Use Per Person')
plt.ylabel('Employment Rate')
```


Analyzing dataset with polynomial regression model, from the plot, we can see more data are aligned with this prediction model.

Out[11]:

Text(0,0.5,'Employment Rate')

Polynomial regression between relectric perperson (x - order 2) and employrate (y)

```
In [12]:
```

```
reg2 = smf.ols('employrate_c ~ I(relectricperperson_c**2)', data=sub2).fit()
print (reg2.summary())
```

Although the R-squared value remains 0%, Prob(f-statistic)

dropped to 0.6% indicates we can reject null hypothesis now.

OLS Regression Results

=======================================	=========	=====		========	
== Dep. Variable:	employrat	e_c	R-squared:		0.0
54 Mar da 1		_	Add D		0.0
Model: 47		ULS	Adj. R-squar	ea:	0.0
Method:	Least Squa	res	F-statistic:		7.6
06 Date:	Sun, 25 Mar 2	01 8	Proh (F-stat	istic)·	0.006
64	5un, 25 nai 2	010	1100 (1 3646	13010).	0.000
Time: 06	12:49	:22	Log-Likeliho	od:	-485.
No. Observations:		134	AIC:		97
4.1					
Df Residuals: 9.9		132	BIC:		97
Df Model:		1			
Covariance Type:	nonrob 				
=======================================					
[0.025 0.975]			std err		
Intercept -2.187 1.032	-0	.5780	0.814	-0.710	0.479
I(relectricperperson 5.76e-08 3.5e-07	_c ** 2) 2.03	7e-07	7.39e-08	2.758	0.007
=======================================	========	=====	========	========	
Omnibus:	0.	919	Durbin-Watso	n:	2.0
Prob(Omnibus):	0.	632	Jarque-Bera	(JB):	0.8
Skew:	0.	194	Prob(JB):		0.6
47 Kurtosis: 07	2.	924	Cond. No.		1.14e+
==	=========	=====		=======	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.14e+07. This might indicate that there are

strong multicollinearity or other numerical problems.

Scenario 4 - Multiple & poly

sub3

In [13]:

```
sub3 = gapminder[['oilperperson', 'relectricperperson', 'co2emissions','employrate']].dropr
sub3.head()
```

Out[13]:

	oilperperson	relectricperperson	co2emissions	employrate
2	0.42	590.51	2932108666.67	50.50
6	0.64	768.43	5872119000.00	58.40
9	1.91	2825.39	12970092666.67	61.50
10	1.55	2068.12	4466084333.33	57.10
11	0.36	921.56	511107666.67	60.90

Centre employrate, oilperperson, relectricperperson and co2emissions

use sub3

In [14]:

```
sub3['employrate_c'] = (sub3['employrate'] - sub3['employrate'].mean())
sub3['oilperperson_c'] = (sub3['oilperperson'] - sub3['oilperperson'].mean())
sub3['relectricperperson_c'] = (sub3['relectricperperson'] - sub3['relectricperperson'].mea
sub3['co2emissions_c'] = (sub3['co2emissions'] - sub3['co2emissions'].mean())
```

All data are centered by

subtracting the mean value

Multiple and polynomial regression between oilperperson(x1) + co2emissions(x2) relectricperperson(x3 - order 2) and employrate (y)

In [15]:

reg3 = smf.ols('employrate_c ~ oilperperson_c + co2emissions_c + I(relectricperperson_c**2) print (reg3.summary())

OLS Regression Results						
=======	======	======	=======		========	:========
Dep. Variab	le:	empl	oyrate_c	R-squared:		0.1
86 Model:			OLS	Adj. R-squa	red:	0.1
44 Method:		Least	Squares	F-statistic	:	4.4
81 Date:		Sun, 25	Mar 2018	Prob (F-sta	tistic):	0.006
70 Time:			12:50:27	Log-Likelih	ood:	-210.
13 No. Observa	tions:		63	AIC:		42
8.3 Df Residual	s:		59	BIC:		43
6.8 Df Model:			3			
Covariance	Type:	n	onrobust			
	=======					
			coef	std err	t	P> t
[0.025	0.975] 					
Intercept			-0.8489	0.937	-0.906	0.369
oilperperso			0.6155	0.522	1.179	0.243
-0.429 co2emission			1.533e-11	2.01e-11	0.761	0.450
-2.5e-11 I(relectric 5.6e-08	perperson _.		2.047e-07	7.43e-08	2.755	0.008
=======	======	======	=======		========	:=======
== Omnibus:			0.228	Durbin-Wats	on:	2.3
24 Prob(Omnibu	s):		0.892	Jarque-Bera	(JB):	0.0
68 Skew:			0.080	Prob(JB):		0.9
67 Kurtosis:			2.998	Cond. No.		4.67e+
10 ====================================	======	======	=======		=======	:=======
Warnings: [1] Standar	d Errors a	assume th	at the cova	ariance matr	ix of the err	rors is corre

- ctly specified.
- [2] The condition number is large, 4.67e+10. This might indicate that there

strong multicollinearity or other numerical problems.

shows only 10% variables are explained by regression model, Prob(fstatistic) is 0.6%, means we should reject null hypothesis.

R-squared value

Evaluating model

Plot qqplot for the above regression (reg3)

In [16]:

```
import statsmodels.api as sm
fig4=sm.qqplot(reg3.resid, line='r')
```

C:\Users\jc443343\AppData\Local\Continuum\anaconda3\lib\site-packages\statsm odels\compat\pandas.py:56: FutureWarning: The pandas.core.datetools module i s deprecated and will be removed in a future version. Please use the pandas. tseries module instead.

from pandas.core import datetools

The QQ plot gives a roughly straight line, which means both sets of quantiles came from the same distribution.

Residual plot for the above regression (reg3)

In [17]:

```
# simple plot of residuals
stdres=pd.DataFrame(reg3.resid pearson)
                                                                       The data are
plt.figure()
                                                                       equally spaced
plt.plot(stdres, 'o', ls='None')
                                                                       above and below
1 = plt.axhline(y=0, color='r')
                                                                       line of 0,
plt.ylabel('Standardized Residual')
                                                                       shows dataset
plt.xlabel('Observation Number')
                                                                       is suitable for
                                                                       linear
                                                                       regression.
       2
       1
   Standardized Residual
```

Calculate percentage of observations over 2 standardized deviation

Calculating percentage of outliers using 2 std.

In [18]:

```
percentage_over2sd = (np.count_nonzero( stdres[0] > 2) + np.count_nonzero( stdres[0] < -2))
print (percentage_over2sd)</pre>
```

7.936507936507936

Calculate percentage of observations over 2.5 standardized deviation

Calculating percentage of outliers using 2.5 std.

In [19]:

```
percentage_over2_5sd = (np.count_nonzero( stdres[0] > 2.5) + np.count_nonzero( stdres[0] <
print (percentage_over2_5sd)</pre>
```

0.0

Example answer - students can do any combination

On your own, perform

Multiple and polynomial regression between oilperperson, co2emissions, relectricperperson to predict employrate (y)

experiment with explanatory variable (oilperperson, co2emissions, relectricperperson) and their order

```
reg4 = smf.ols('employrate_c ~ oilperperson_c + I(co2emissions_c**2) + I(relectricperperson
print (reg4.summary())
```

OLS Regression Results

==============	===============			
== Dep. Variable: 96	employrate_c	R-squared:	-0.3	R-squared value shows only 10%
Model:	OLS	Adj. R-squared:	-0.4	variables are explained by
Method:	Least Squares	F-statistic:	-17.	regression model, Prob(f-
Date:	Sun, 25 Mar 2018	Prob (F-statistic):	1.	statistic) is 0.6%, means we
00 Time:	13:27:39	Log-Likelihood:	-227.	should reject null
No. Observations:	63	AIC:	45	hypothesis.
8.2 Df Residuals: 2.5	61	BIC:	46	
Df Model:	1			
Covariance Type:	nonrobust			
	=			

=======	======	coef	std err	t	P> t
[0.025	0.975]	COCT	Scu Cii	C	17[0]
Intercept		4.706e-15	1.92e-15	2.449	0.017
8.64e-16					
oilperperso 1.39e-22	_	-7.646e-23	3.12e-23	-2.449	0.017 -
I(co2emissi	ons_c ** 2)	-3.936e-22	2.03e-22	-1.934	0.058
I(relectric 3.84e-08	perperson_c ** 2) 3.81e-07	2.095e-07	8.55e-08	2.449	0.017
==========	=======================================	=======	=======	=======	========
Omnibus:		39.077	Durbin-Wats	on:	2.1
Prob(Omnibu	s):	0.000	Jarque-Bera	(JB):	155.1
Skew:		1.682	Prob(JB):		1.99e-
Kurtosis: 30		9.915	Cond. No.		1.41e+
========	===========	========		=======	=========
==					

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is corre ctly specified.
- [2] The smallest eigenvalue is 5.22e-15. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Evaluate your model

Use ggplot

In [40]:

```
import statsmodels.api as sm
fig5=sm.qqplot(reg4.resid, line='r')
```


The QQ plot gives a roughly straight line, which means both sets of quantiles came from the same distribution.

Evaluate your model

Use residual plot

In [41]:

```
# simple plot of residuals
stdres=pd.DataFrame(reg4.resid_pearson)
plt.figure()
plt.plot(stdres, 'o', ls='None')
l = plt.axhline(y=0, color='r')
plt.ylabel('Standardized Residual')
plt.xlabel('Observation Number')
```


The data are equally spaced above and below line of 0, shows dataset is suitable for linear regression, however, we have one significant outlier.

Out[41]:

Text(0.5,0,'Observation Number')

Calculate percentage of observations over 2 standardized deviation

In [42]:

```
percentage_over2sd = (np.count_nonzero( stdres[0] > 2) + np.count_nonzero( stdres[0] < -2))
print (percentage_over2sd)</pre>
```

1.5873015873015872

Calculate percentage of observations over 2.5 standardized deviation

In [43]:

 $percentage_over2_5sd = (np.count_nonzero(stdres[0] > 2.5) + np.count_nonzero(stdres[0] < print (percentage_over2_5sd)$

1.5873015873015872