

特開平7-191247

(43)公開日 平成7年(1995)7月28日

(51)Int.CI.
G02B 7/02識別記号 庁内整理番号
A

F I

技術表示箇所

審査請求 未請求 請求項の数 1 O L (全6頁)

(21)出願番号 特願平5-333368
 (22)出願日 平成5年(1993)12月27日

(71)出願人 000109277
 チノン株式会社
 長野県諏訪市高島1丁目21番17号
 (72)発明者 穂高 弘
 長野県諏訪市高島一丁目21番17号 チノン
 株式会社内
 (72)発明者 小畠 良和
 長野県諏訪市高島一丁目21番17号 チノン
 株式会社内
 (72)発明者 有賀 哲夫
 長野県諏訪市高島一丁目21番17号 チノン
 株式会社内
 (74)代理人 弁理士 樽澤 裏 (外2名)

最終頁に続く

(54)【発明の名称】レンズ保持構体

(57)【要約】

【目的】 レンズの組み替えを容易にでき、レンズ面精度を低下せず、熱による変形を吸収して歪みの発生を防止できるレンズ保持構体を提供する。

【構成】 レンズ11をレンズ11の外周に嵌合する保持環12、および、レンズ11の外周に嵌合する保持枠13により、径方向に保持する。保持環12が嵌合しているレンズ11の鉗部11bは、保持枠13のフランジ部13aと、保持枠13の上部に螺合している環状のレンズ押え14とにより、上下から挟持する。温度変化の激しい環境下で使用した場合、保持枠13との線膨張係数の違いにより、レンズ11の径方向には保持枠13に対する変形が生じる。レンズ11の外周と保持環12との間に形成された第1の隙間16および第1の接合部17と、保持環12と保持枠13との間に形成された第2の接合部20および第2の隙間21との動きにより、レンズ11とほぼ同じ線膨張係数を有する保持環12が弾性変形を生じてレンズ11の変形を吸収する。

【特許請求の範囲】

【請求項1】レンズと、環状に形成され内周にて前記レンズの外周を保持する保持環と、環状に形成され内周にて前記保持環を保持する保持枠とを具備したレンズ保持構体において、

前記レンズの外周および前記保持環の内周の間には、これらの周方向に沿って所定長さに形成され複数個ほぼ等間隔に配置した第1の間隙と、

これら第1の間隙以外の部分に相手側との接合する第1の接合部とを有し、

前記保持環の外周と前記保持枠の内周との間には、前記第1の間隙に対応する範囲内にそれぞれ位置し、これら第1の間隙より小さい周方向長さを有する部分にて互いに相手側と接合する第2の接合部と、

この接合部分以外に設けられた第2の間隙とを有することを特徴としたレンズ保持構体。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、高熱源の近傍や温度変化の激しい環境下などで使用可能なレンズ保持構体に関する。

【0002】

【従来の技術】近時、光学系にプラスチック製のレンズが多く用いられるようになってきている。そして、このプラスチックレンズを光学系に使用した場合、熱によりレンズが膨張すると、レンズとこのレンズを固定する固定枠との線熱膨張係数の違いにより、レンズに歪みが生じ、光学特性が損なわれてしまう。特に、高熱源を持つプロジェクタや温度変化の激しい環境下で使用した場合この傾向が著しい。

【0003】また、従来、熱によるレンズの膨張収縮に伴う上述の問題に対しては、特開昭61-46918号公報、特開昭62-23513号公報、および、特開昭62-32017号公報に記載されているように、レンズとこのレンズを保持する保持枠との間に弾性体を介在させ、この弾性体によりレンズの熱変形を吸収したり、実開平5-50402号公報に記載されているように、プラスチックのレンズそのものの外周面に、プラスチックレンズの外周方向に沿った切欠凹部を設けるとともに、レンズの外周近くの部分に外周に沿いつつ光軸方向に貫通する円弧状の溝孔を形成し、レンズの熱変形をこれら切欠凹部や円弧状の溝孔によって吸収するなどの構成が採られている。

【0004】しかしながら、レンズと保持枠との間に弾性体を介在させたものでは、弾性体として、ゴム系の接着剤をレンズと保持枠との間の狭い空間内に注入する難しい作業があるため、多くの工数を要する。また、レンズを接着剤により保持枠に固着した後は、このレンズを保持枠から取り外すことができなくなり、レンズの不良などが発生した場合、他のレンズとの組み替えが困難に

なる。

【0005】また、プラスチックのレンズそのものに、切欠凹部や円弧状の溝孔を形成したものでは、レンズの成型時にウエルドなどが生じ、溝孔部分にクラックが発生するおそれがあり、成型が困難となる。さらに、切欠凹部や溝孔等が不均一であると、レンズ面に歪みが生じレンズ面精度が低下する。さらに、溝孔を追加加工する場合は、加工代が別途かかりコストが上昇する。

【0006】

10 【発明が解決しようとする課題】上述のように、従来装置では、弾性体を用いた場合、レンズの組み替えが困難であり、切欠凹部や溝孔を設けるものではレンズの成型が難しく、レンズ面精度の低下が生じるおそれがある問題を有している。

【0007】本発明の目的は、レンズの組み替えが容易に行なえ、レンズ面精度の低下などをきたすことなく、熱による変形を吸収してその歪みの発生を防止できるレンズ保持構体を提供することにある。

【0008】

20 【課題を解決するための手段】本発明は、レンズと、環状に形成され内周にて前記レンズの外周を保持する保持環と、環状に形成され内周にて前記保持環を保持する保持枠とを具備したレンズ保持構体において、前記レンズの外周および前記保持環の内周の間には、これらの周方向に沿って所定長さに形成され複数個ほぼ等間隔に配置した第1の間隙と、これら第1の間隙以外の部分に相手側との接合する第1の接合部とを有し、前記保持環の外周と前記保持枠の内周との間には、前記第1の間隙に対応する範囲内にそれぞれ位置し、これら第1の間隙より小さい周方向長さを有する部分にて互いに相手側と接合する第2の接合部と、この接合部分以外に設けられた第2の間隙とを有するものである。

【0009】

【作用】本発明は、レンズの外周と保持環との間に形成された第1の間隙および第1の接合部と、保持環の外周と保持枠の内周との間に形成された第2の接合部および第2の間隙とが、レンズの熱膨張時および熱収縮時に伴う変形を、弾性によって吸収するのでレンズの歪を防止でき、安定したレンズ性能を得ることができる。

40 【0010】

【実施例】以下、本発明のレンズ保持構体の一実施例を図面を参照して説明する。

【0011】図1において、11はプラスチックによるレンズで、このレンズ11は所定の曲率を成すレンズ本体部11aと、このレンズ本体部11aの周縁部に形成された平板な鋼部11bとで構成される。

【0012】また、レンズ11の外周にプラスチックによる環状の保持環12の内周が嵌合し、この保持環12はレンズ11と同等の線膨張係数を持っており、レンズ11を保持する。

【0013】さらに、保持環12の外周に同様に環状の保持枠13が嵌合し、この保持環13はレンズ11および保持環12より線膨張係数の小さい材質により形成され、保持環12の外周を保持する。そして、この保持枠13の下部内周には、図2で示すように、水平方向のフランジ部13aが設けられており、このフランジ部13aの上面により、保持環12を一体的に取付けたレンズ11の鈎部11bの下面を支持する。また、この保持枠13の上部内周にはねじ溝13bが螺刻されており、ここには、環状をなすレンズ押え14の外周が螺合している。さらに、このレンズ押え14は、図2に示すように、フランジ部13aとともにレンズ11の鈎部11bを上下から挟持し、レンズ11をこのレンズ11の光軸に沿うスラスト方向に押える。

【0014】ここで、レンズ11の外周と保持環12の内周との間には、これらレンズ11および保持環12の周方向に沿って所定長さに形成された第1の間隙16が、複数個ほぼ等間隔に配置されている。すなわち、第1の間隙16が3個、長さ方向中心がそれぞれ120°間隔をなすように配置されている。また、これら第1の間隙16以外の部分は相手側との第1の接合部17となる。ここで、第1の間隙16および第1の接合部17は、レンズ11の鈎部11aの外周面に、3個の凹部19を、所定長さ形成したことによつて生じる。

【0015】また、保持環12の外周と保持枠13の内周との間には、相手方との第2の接合部20が複数個、たとえば3個設けられている。この第2の接合部20は、第1の間隙16に対応する範囲内の長さ方向中心部にそれぞれ位置し、これら第1の間隙16の周方向長さより小さい周方向長さを有する。もちろん、この第2の接合部20以外は第2の間隙21となる。そして、第2の接合部20は、保持環12の外周面を120°間隔で3か所、突出形成することにより生じる。

【0016】上記構成において、レンズ11の組付状態では、レンズ11は、レンズ11の外周に嵌合する保持環12、および、レンズ11の外周に嵌合する保持枠13により、径方向に保持されているので、レンズ11が径方向にずれたり、がたつたりすることはなく、正確な位置関係で保持固定することができる。また、前述のように保持環12が嵌合しているレンズ11の鈎部11bは、保持枠13のフランジ部13aと、保持枠13の上部に螺合している環状のレンズ押え14とにより、上下から挟持されているので、レンズ11は、レンズ11の光軸に沿うスラスト方向に対しても確実に保持され、がたつきなどを生じることなく、正確な位置決め固定を行うことができる。

【0017】さらに、高熱源を持つプロジェクタなど、温度変化の激しい環境下で使用した場合、保持枠13との線膨張係数の違いにより、レンズ11の径方向には保持枠13に対する変形が生じる。この変形に対しては、レンズ11の外周と保持環12との間に形成された第1の間隙16および第1の接合部17と、保持環12と保持枠13との間に形

成された第2の接合部20および第2の隙間21との働きにより、レンズ11とほぼ同じ線膨張係数を有する保持環12が弾性変形を生じてレンズ11の変形を吸収する。したがつて、変形によってレンズ11自体が歪むことはない。

【0018】ここで、上述した保持環12の弾性変形は次のように生じる。

【0019】まず、レンズ11が膨張すると、その応力はレンズ11と保持環12との接合部17に作用する。また、保持環12は保持枠13に対して第2の接合部20により接合しており、その他の部分は第2の隙間21となっている。そして、この第2の隙間21は、レンズ11と保持環12との間の第1の隙間16と部分的に重合しており、この重合部分において弾性変形が可能となる。たとえばレンズ11が膨張した場合、この膨張によって生じた応力は、重合部分が第2の接合部20を支点として第2の隙間21の方向に彈性的に変形することにより吸収される。

【0020】このように、レンズ11の熱による膨張および収縮を吸収できるので、光学性能を安定化することができる。この結果、従来適用困難であった温度下でのプラスチックレンズの適用が可能となり、レンズ11を有する装置のコストダウンおよび軽量化を図ることができる。

【0021】同様に、プラスチックレンズの使用範囲が拡大され、特に、高付加価値で小ロットのもの、たとえばプロジェクタ用投影レンズのように、高熱源を有する大型特殊レンズなどにも適用可能となる。また、組み立てに際して、特別な技術を要することなく、従来の組込技術をそのまま使用できるので、組立作業の複雑化が生ずることはない。さらに、レンズ11は保持環12を介して保持枠13に組み込んでいるので、組み替えの必要が生じた場合は、保持環12を取り付けたレンズ11を保持枠13から取り外し、該当するレンズ11に保持環12を取り付けて、保持枠13内に取り付ければよい。すなわち、従来は、レンズを一旦保持枠内に組み込んだ後には組み替えは困難であったが、上記実施例によれば、このレンズ組み替えを何等問題を生じることなく容易に行なうことができる。

【0022】なお、図1の構成において、レンズ11と保持環12との間は、遊嵌状態よりは互いに嵌着しているほうが望ましく、レンズ11と保持環12との間を接着剤によって接着したり、あるいは、レンズ11が歪まない程度に保持環12内に圧入してもよい。また、上述のようにして一体化されたレンズ11と保持環12とは、がたが生じないように、保持環12の弾性変形を利用して保持枠13内に圧入されていることが望ましいが、この場合、レンズ11の熱による膨張、収縮を考慮して、これらを許容できるよう余裕を持って圧入する。

【0023】次に、他の実施例を図3および図4を参照して説明する。

【0024】この実施例も、図1および図2に示す実施

例と同様に、レンズ11に対し保持環12および保持枠13を設け、さらに、レンズ11のスラスト方向に対してフランジ部13a およびレンズ押え14を設けている。

【0025】ここで、図1および図2に示す実施例では、レンズ11と保持環12との間の第1の間隙16は、レンズ11の外周に形成した凹部19によって生じさせていたが、図2の実施例では、レンズ11には凹部19を形成せず、保持環12の内周の対応する部分に凹部23を形成することにより、第1の間隙16を生じさせている。すなわち、外側に設けられた保持枠13との第2の接合部20が、周方向に沿う長さ方向の中心に位置する配置関係で、この第2の接合部20より充分大きい周方向長さを有する凹部23を形成することにより、第1の間隙16を生じさせている。

【0026】このように形成した場合も、外側に位置する第2の間隙21と、内側に位置する第1の間隙16とは部分的に重合するので、この重合部分において弾性変形が可能となる。すなわち、レンズ11が膨張した場合、重合部分が第2の接合部20を支点として第2の間隙21の方向に弾性的に変形する。したがって、この弾性変形により熱変形に伴う応力は吸収され、レンズ11に歪みが生じることはない。

【0027】次に、また他の実施例を図5および図6を参照して説明する。

【0028】この実施例も、図1および図2の実施例と同様に、レンズ11に対し保持環12、保持枠13、この保持枠13のフランジ部13a およびレンズ押え14を持ってい

る。

【0029】図1および図2に示す実施例と異なるのは、保持環12の外周と保持枠13の内周との間に形成される第2の接合部20の構成である。すなわち、図1および図2に示す実施例では、第2の接合部20は保持環12の外周の所定箇所を突出して形成することにより、この部分を第2の接合部20としていたが、図5および図6に示す実施例では、保持環12の外周は突出形成せず、保持枠13の内周の所定箇所を突出して形成することにより第2の接合部20を生じさせている。すなわち、この第2の接合部20は、内側に形成された第1の間隙16の、周方向中心部分と対向する保持枠13の内周部分を突出形成することにより形成される。また、この第2の接合部20以外の保持枠13の内周は、保持環12の外周とともに第1の間隙16を形成する。

【0030】このように形成した場合も、外側の第2の間隙21と内側の第1の間隙16との重合部分が生じるので、たとえばレンズ11が膨張した場合、この重合部分が第2の接合部20を支点として外側の第2の間隙21の方向に弾性的に変形し、熱変形に伴う応力を吸収する。したがって、レンズ11に歪みが生じることはない。

【0031】次に、さらに他の実施例を図7および図8を参照して説明する。

【0032】この実施例では、レンズ11と保持環12との間の第1の間隙16は、図3および図4に示す実施例と同様に、保持環12の外周に形成した凹部23によって生じさせている。また、保持環12の外周と保持枠13の内周との間の第2の間隙21は、図5および図6に示す実施例と同様に、保持枠13の内周の所定箇所を突出して形成し、これを第2の接合部20としたことにより生じさせている。この第2の接合部20は、内側に形成された第1の間隙16の、周方向に沿う中心部分と対向する部分に形成される。

【0033】この場合も、外側の第2の間隙21と内側の第1の間隙16との重合部分が生じ、レンズ11の膨張時には、この重合部分が第2の接合部20を支点として外側の第2の間隙21の方向に弾性変形し、熱変形に伴う応力を吸収する。したがって、レンズ11に歪みが生じることはない。

【0034】ここで、図1および図2、図5および図6に示す実施例では、第1の間隙16を得るためにレンズ11の外周に凹部19を形成しているが、図3および図4、図7および図8に示す実施例では、レンズ11に凹部19を形成しなくてもよいので、レンズ11の成型が容易で、制作コストを低く抑えることができる。また、現存するプラスチックレンズに対しても、保持環12を取り付けることにより上述の実施例のように構成することができるの

で、大幅なコストダウンが可能になるとともに、プラスチックレンズの共通化も可能である。

【0035】なお、図3および図4、図5および図6、および、図7および図8の各実施例においても、レンズ11と保持環12との間は、互いに嵌着しているほうが望ましく、これらレンズ11および保持環12の間を接着剤で接着したり、レンズ11が歪まない程度に保持環12内に圧入してもよい。また、一体化されたレンズ11と保持環12とを、保持環12の弾性変形を利用して保持枠13内に圧入する場合、レンズ11の熱による膨張、収縮を考慮して、これらを許容できるように余裕を持たせて構成する。

【0036】また、上記いずれの実施例においても、レンズ11のスラスト方向の支持は、レンズ11の鈑部11b を、外周に取り付けられた保持環12とともに、保持枠13のフランジ部13a とレンズ押え14とにより上下から挟持することにより行なわれるが、レンズ11と保持環12とを接着剤などで固着すれば、図9で示すように、保持環12の部分のみを挟持するようにしてもよい。

【0037】ここで、レンズ11が薄い場合は、そのスラスト方向の熱膨張は少なく、光学的な歪も無視できる。したがって、このような場合は、図1ないし図8に示すように、鈑部11b も保持環12とともに上下から挟持しても問題はない。しかし、レンズ11が厚くなると、熱による膨張量も多くなり、上述のように鈑部11b を上下から挟持した場合、膨張による光学的な歪は無視できなくなる。このような場合、図5で示すように、保持環12のみ

を上下から挟持し、レンズ11の鍔部11bを上下から挟持しない構成にすると、スラスト方向に熱膨張が生じても、光学的な歪みはほとんど生じず、熱変形による悪影響を解消することができる。

【0038】

【発明の効果】本発明のレンズ保持構体によれば、レンズの外周と保持環との間に形成された第1の間隙および第1の接合部と、保持環の外周と保持枠の内周との間に形成された第2の接合部および第2の間隙とを有するため、レンズの組み替えを容易に行なうことができ、さらに、熱によるレンズの変形を吸収して歪みの発生を防止するので、高精度の安定した光学特性を得ることができる。

【図面の簡単な説明】

【図1】本発明のレンズ保持構体の一実施例を示す正面断面図である。

【図2】同上縦断面図である。

10

【図3】同上他の実施例を示す正面断面図である。

【図4】同上縦断面図である。

【図5】同上また他の実施例を示す正面断面図である。

【図6】同上縦断面図である。

【図7】同上さらに他の実施例を示す正面断面図である。

【図8】同上縦断面図である。

【図9】同上またさらに他の実施例を示す正面断面図である。

【符号の説明】

11 レンズ

12 保持環

13 保持枠

16 第1の間隙

17 第1の接合部

20 第2の接合部

21 第2の間隙

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図8】

【図9】

【図 7】

フロントページの続き

(72)発明者 久保田 洋治
長野県諏訪市高島一丁目21番17号 チノン
株式会社内