Dependent Types in GHC

John Leo

Halfaya Research

April 8, 2017

References

- Pointer to this talk on github
- Pointer to references

What are Dependent Types?

```
data \mathbb{N}: Set where zero: \mathbb{N} suc: \mathbb{N} \to \mathbb{N} data Vec (A:Set): \mathbb{N} \to Set where []: Vec \ A \ zero _{:::_{-}}: \{n: \mathbb{N}\} \to A \to Vec \ A \ n \to Vec \ A \ (suc \ n)
```

Vector Append

$$-+$$
: N → N → N
zero + $n = n$
suc $m + n = \text{suc } (m + n)$
 $-++$: { $A : \text{Set}$ } → { $m : \mathbb{N}$ } →
Vec $A m \to \text{Vec } A n \to \text{Vec } A (m + n)$
[] ++ $y = y$
($x :: xs$) ++ $y = x :: (xs ++ y)$

Vector Lookup

```
data Fin: \mathbb{N} \to \operatorname{Set} where \operatorname{zero}: \{n: \mathbb{N}\} \to \operatorname{Fin} (\operatorname{suc} n) \ \operatorname{suc}: \{n: \mathbb{N}\} \to \operatorname{Fin} n \to \operatorname{Fin} (\operatorname{suc} n)
\operatorname{lookup}: \{A: \operatorname{Set}\} \to \{n: \mathbb{N}\} \to \operatorname{Fin} n \to \operatorname{Vec} A n \to A \ \operatorname{lookup} () \quad [] -- \operatorname{can} \text{ be omitted} \ \operatorname{lookup} \operatorname{zero} (x::\_) = x \ \operatorname{lookup} (\operatorname{suc} n) (\_:: xs) = \operatorname{lookup} n xs
```

Some Basic Types

```
data Bool : Set where
```

true : Bool false : Bool

data
$$\equiv \{A : Set\} : A \rightarrow A \rightarrow Set \text{ where}$$

 $\mathsf{refl}:\, \{a:\, A\} \to a \equiv a$

Vector Lookup 2

```
<: \mathbb{N} \to \mathbb{N} \to \mathsf{Bool}
      < zero = false
   zero < suc n = true
   suc m < suc n = m < n
   lookup': \{A : Set\} \rightarrow \{n : \mathbb{N}\} \rightarrow \{n : \mathbb{N
                                         (m: \mathbb{N}) \to m < n \equiv \text{true} \to \text{Vec } A \ n \to A
   lookup' _ () []
lookup' zero refl (x := ) = x
lookup' (suc m) p (\_:: xs) = lookup' m p xs
```

Why Use Dependent Types?

- More expressive and precise
- Propositions as Types (PAT, Curry-Howard Correspondence):
 - Universal Quantification (\forall) corresponds to Π types.
 - $\Pi_{x:A}B(x)$ or $(x:A)\to B_x$.
 - Existential Quantification (\exists) corresponds to Σ types.

$$\Sigma_{x:A}B(x)$$
 or $(x:A)\times B_x$.

Dependent Types are Not New

1971 System F	1988 CiC
1971 Martin-Löf Type Theory	1989 Coq
1972 LCF/ML	1990 Haskell
1978 Hindley-Milner (H 1969)	1990 Nordström, et al, ALF
1979 Constructive math and	1998 Cayenne
computer programming	1999 Agda 1
1982 Damas-Milner	1991 Caml Light
1983 Standard ML	1996 OCaml
1984 Calculus of	2007 Agda 2
Constructions	2011 Idris
1984 NuPrl	2013 Homotopy Type Theory
1985 Miranda	2013 Lean
1987 Caml	2015 Cubical Type Theory

The Golden Age is Now

- Better correctness guarantees for software.
- Mechanical verification of mathematics.
- DeepSpec, etc.
- BigProof, etc.

Robert Harper

Eventually all the arbitrary programming languages are going to be just swept away with the oceans, and we will have the permanence of constructive, intuistionistic type theory as the master theory of computation—without doubt, in my mind, no question. So, from my point of view—this is a personal statement—working in anything else is a waste of time.

CMU Homotopy Type Theory lecture 1, 52:56-53:20.

Killer Apps for Typed Functional Programming

- Big Data
- Program Correctness
- Security

Dependent Types in Haskell

Richard Eisenberg's PhD Thesis

- Introduction
- Preliminaries
- Motivation
- Dependent Haskell
- PICO: The Intermediate Language
- Type Inference and Elaboration, or how to BAKE a PICO
- Implementation
- Related and Future Work

Time Line

From Richard Eisenberg's Blog:

When can we expect dependent types in GHC?

The short answer:

GHC 8.4 (2018) at the very earliest.

More likely 8.6 or 8.8 (2019-20).

Nat

```
{-# LANGUAGE ExplicitForAll, GADTs, TypeFamilies,
             TypeOperators, TypeInType #-}
import Data.Kind (Type)
data Nat :: Type where
  Zero :: Nat
  Succ :: Nat -> Nat
   data N : Set where
     zero: N
```

suc: $\mathbb{N} \to \mathbb{N}$

Vector

```
data Vec :: Type -> Nat -> Type where

VNil :: \forall (a :: Type). Vec a 'Zero

VCons :: \forall (a :: Type)(n :: Nat).

a -> Vec a n -> Vec a ('Succ n)

data Vec (A : Set) : \mathbb{N} \rightarrow Set where

[] : Vec A zero

_::_ : \{n : \mathbb{N}\} \rightarrow A \rightarrow \text{Vec } A \ n \rightarrow \text{Vec } A \ (\text{suc } n)
```

Plus

Append

```
(++) :: \forall (a :: Type)(m :: Nat)(n :: Nat).
            Vec a m \rightarrow Vec a n \rightarrow Vec a (m + n)
VNil
               ++ v = v
VCons x u ++ v = VCons x (u ++ v)
      \_++\_: \{A : \mathsf{Set}\} \to \{m \ n : \mathbb{N}\} \to \{m \ n : \mathbb{N}\} \to \{m \ n : \mathbb{N}\}
        Vec A m \rightarrow Vec A n \rightarrow Vec A (m + n)
      [] ++ y = y
     (x :: xs) ++ y = x :: (xs ++ y)
```

Fin

```
data Fin :: Nat -> Type where FZero :: \forall (n :: Nat). Fin (Succ n) FSucc :: \forall (n :: Nat). Fin n -> Fin (Succ n)  

data Fin : \mathbb{N} \to \mathsf{Set} where zero : \{n : \mathbb{N}\} \to \mathsf{Fin} (suc n) suc : \{n : \mathbb{N}\} \to \mathsf{Fin} n \to \mathsf{Fin} (suc n)
```

Lookup

```
lookup :: \forall (a :: Type) (n :: Nat). Fin n -> Vec a n -> a lookup FZero (VCons x _) = x lookup (FSucc n) (VCons _ xs) = lookup n xs  | \text{lookup} : \{A: \mathsf{Set}\} \to \{n: \mathbb{N}\} \to \mathsf{Fin} \ n \to \mathsf{Vec} \ A \ n \to A \\ | \text{lookup} () \quad [] -- \mathsf{can} \ \mathsf{be} \ \mathsf{omitted} \\ | \text{lookup zero} \ (x:: \_) = x \\ | \text{lookup} \ (\mathsf{suc} \ n) \ (\_:: xs) = \mathsf{lookup} \ n \ xs
```

\equiv and <

```
data (a :: k) :~: (b :: k) where
  Refl :: ∀ (k :: Type)(a :: k). a :~: a
type family (m :: Nat) < (n :: Nat) where
               < Zero = False
  'Zero < ('Succ ) = True
  ('Succ m) < ('Succ n) = m < n
    data \equiv {A : Set} : A \rightarrow A \rightarrow Set where
      refl : \{a: A\} \rightarrow a \equiv a
    \langle \cdot \mathbb{N} \to \mathbb{N} \to \mathsf{Bool} \rangle
     < zero = false
    zero < suc n = true
    suc m < suc n = m < n
```

Attempt at Lookup'

```
lookupBad :: \forall (a :: Type)(m :: Nat)(n :: Nat).
                  m \rightarrow m < n : \tilde{}: True \rightarrow Vec a n \rightarrow a
  • Expected a type, but 'm' has kind 'Nat'
  • In the type signature:
        lookupBad :: \forall (a :: Type) (m :: Nat) (n :: Nat).
                           m \rightarrow (m < n) : \tilde{} : True \rightarrow Vec a n \rightarrow a
> :k (->)
(->) :: Type -> Type -> Type
     lookup': \{A : \mathsf{Set}\} \to \{n : \mathbb{N}\} \to \{n : \mathbb{N}\}
       (m:\mathbb{N}) \to m < n \equiv \text{true} \to \text{Vec } A \ n \to A
     lookup' _ () []
     lookup' zero refl (x :: \_) = x
     lookup' (suc m) p (\_:: xs) = lookup' m p xs
```

22 / 27

Singleton Nat

```
data SNat :: Nat -> Type where
```

SZero :: SNat 'Zero

SSucc :: \forall (n :: Nat). SNat n -> SNat ('Succ n)

Lookup'

```
lookup' :: \forall (a :: Type)(m :: Nat)(n :: Nat).
               SNat m \rightarrow m < n :^{\sim}: True \rightarrow Vec a n \rightarrow a
lookup' SZero Refl (VCons x _) = x
lookup' (SSucc m) Refl (VCons _ xs) = lookup' m Refl xs
     lookup': \{A : \mathsf{Set}\} \to \{n : \mathbb{N}\} \to \{n : \mathbb{N}\}
       (m: \mathbb{N}) \to m < n \equiv \text{true} \to \text{Vec } A \ n \to A
     lookup' _ () []
     lookup' zero refl (x := ) = x
     lookup' (suc m) p (\_:: xs) = lookup' m p xs
```

Another Variation

```
nth :: \forall (a :: Type)(m :: Nat)(n :: Nat).

(m < n) ~ 'True => SNat m -> Vec a n -> a

nth SZero (VCons a _) = a

nth (SSucc m) (VCons _ as) = nth m as
```

Lookup' vs Nth

```
lookup' :: \forall (a :: Type)(m :: Nat)(n :: Nat).
           SNat m \rightarrow m < n : \tilde{}: True \rightarrow Vec a n \rightarrow a
lookup' _ _ VNil = undefined
lookup' SZero Refl (VCons x _) = x
lookup' (SSucc m) Refl (VCons _ xs) = lookup' m Refl xs
nth :: \forall (a :: Type)(m :: Nat)(n :: Nat).
       (m < n) ~ 'True => SNat m -> Vec a n -> a
nth VNil = undefined
nth SZero (VCons a _) = a
nth (SSucc m) (VCons _ as) = nth m as
  • Couldn't match type 'True' with 'False'
    Inaccessible code in
      a pattern with constructor: VNil :: \forall a. Vec a 'Zero,
      in an equation for 'nth'
```