About

These notes are from the Metric Geometry and Gerrymandering Group's (MGGG) workshop at Tufts University, August 7th-11th, 2017. For more information about the workshop itself, see http://sites.tufts.edu/gerrymandr.

As taking notes in LaTeX on-the-fly is not an easy task, I am sure this document is full of typos, sloppy notation, and small mathematical errors. If you find such an error, please send me an email at {ianzach+notes[at]seas.upenn.edu} so I can correct it.

MGGG Workshop at Tufts University

Tufts University

Lecture 1: Test Document

Professor Professor Q Fictional

Zach Schutzman

Introduction

Why theory?

- 1. Minimal approach to understanding the idea of **computation**.
- 2. What makes computation tick?
- 3. Theory anticipates technology.
- 4. Models of computation are interesting.

Mathematics!

Should know:

- 1. Sets
- 2. Functions
- 3. Relations
- 4. Logic
- 5. Proofs
- 6. Graphs

Definition 1.1 An alphabet is a non-empty, finite set of characters.

Definition 1.2 A string s (over an alphabet Σ) is a finite ordered sequence of elements of Σ .

Definition 1.3 The empty string, ϵ , is the sequence of no symbols, and is in fact a valid string.

Definition 1.4 Let Σ^* be the set of all strings over Σ .

Definition 1.5 A language over Σ is any subset of Σ^* .

The empty set is a language. This is *not* the same as the language only containing the empty string.

Finite State Machines: A First Model

Scalability (asymptotics) is a requirement for any interesting model.

To compute on larger and larger inputs, a computer needs memory. What is the minimum amount of memory you need to do something interesting?

Definition 1.6 A finite state machine will be a model with a constant amount of memory.

The states of an FSM correspond to memory (a machine with k states can have 2^k 'bits' of memory).

Example: define the language $\mathcal{L} = \{s \in \Sigma^* | s \text{ has an odd number of } 1s\}.$

Definition 1.7 A deterministic finite automaton (DFA), M, is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$.

Q, the set of states.

 Σ , the alphabet

 $\delta: Q \times \Sigma \to Q$, the transition function

 q_0 , the start state

F, the accept states

Definition 1.8 M accepts a string $s = s_1 s_2 \dots s_k$ if there is a sequence of states in M starting with q_0 and ending in a final state $q_0 q_1 \dots q_k$ such that $\delta(q_i, s_{i+1}) = q_{i+1}$.

Definition 1.9 If $\mathcal{L} = \{s | M \ accepts \ s\}$, the we say M recognizes \mathcal{L} .

Definition 1.10 If a language \mathcal{L} is recognized by some DFA, then it is **regular**.

Definition 1.11 A nondeterministic finite automaton (NFA), M, is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$.

Q, the set of states.

 Σ , the alphabet

 $\delta: Q \times \Sigma \cup \{\epsilon\} \to \mathcal{P}(Q)$, the transition function

 q_0 , the start state

F, the accept states

Now, δ maps the current state and input character or ϵ to some subset of states.

Definition 1.12 A string s is accepted by and NFA M if there is some path for s from the start state to a final state.

Definition 1.13 M recognizes a language \mathcal{L} consisting of all strings it accepts.

Example: let $\mathcal{L} = \{s \mid the \ 3rd \ last \ character \ is \ a \ 1\}.$

