RÉPUBLIQUE ISLAMIQUE DE MAURITANIE MINISTÈRE DE L'ÉDUCATION NATIONALE DIRECTION DES EXAMENS ET DE L'ÉVALUATION SERVICE DES EXAMENS

Série : Sciences de la nature Épreuve : Mathématiques

Durée : 4heures Coefficient : 6

Baccalauréat 201 4 session Complémentaire

Exercice 1 (3 points)

Un questionnaire à choix multiples (QCM) comporte 8 questions indépendantes. Pour chacune d'elles, quatre réponses sont proposées dont une seule correcte. Un élève répond au hasard à chaque question du QCM. On note X le nombre de réponses correctes qu'il a données. On considère les événements suivants :

A: L'élève a toutes les réponses correctes.

B: L'élève n'a aucune réponse correcte.

C: L'élève a au moins une réponse correcte.

D: L'élève a exactement deux réponses correctes.

Parmi les réponses proposées pour chaque question ci-après, une seule réponse est exacte.

CAUC	te.			
N °	Question	Réponse A	Réponse B	Réponse C
1	L'ensemble de valeurs de X est :	{0,1,2,,8}	{0,1,,4}	{1,2,,8}
2	La probabilité de l'événement A est :	$\frac{1}{4} \times 8$	$\left(\frac{1}{4}\right)^8$	$\left(\frac{1}{8}\right)^8$
3	La probabilité de l'événement B est :	$1-\left(\frac{1}{4}\right)^8$	$\left(\frac{3}{4}\right)^8$	$1-\left(\frac{7}{8}\right)^8$
4	La probabilité de l'événement C est :	$1-\left(\frac{1}{4}\right)^8$	$\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^7$	$1-\left(\frac{3}{4}\right)^8$
5	La probabilité de l'événement D est :	$C_8^2 \left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right)^6$	$\left(\frac{1}{4}\right)^2$	$1-\left(\frac{3}{4}\right)^6$
6	Le nombre de réponses correctes de l'élève, que l'on peut espérer est :	8	6	2

Recopie sur la feuille de réponse et complète le tableau ci-contre en choisissant la bonne réponse.

nne 💮							
	Question n°	1	2	3	4	5	6
	Réponse						

Exercice 2(5 points)

Le plan complexe est muni d'un repère orthonormé direct $(O;\vec{u},\vec{v})$.

- 1) On considère les nombres : $z_1 = \frac{-1+7i}{3+4i}$, $z_2 = (1+i)^2$ et $z_3 = \frac{4-8i}{1+3i}$.
 - a) Donner la forme algébrique de chacun des nombres z_1 , z_2 et z_3 .
 - b) Donner la forme trigonométrique de chacun des nombres z_1 , z_2 et z_3 .
- 2.a) Placer dans le repère $(O; \vec{u}, \vec{v})$ les points A , B et C d'affixes respectives $z_A = 1+i$, $z_B = 2i$ et $z_C = -2-2i$.
- b) Montrer que le triangle ABC est rectangle.

- c) Déterminer et construire l'ensemble Δ des points M d'affixe z tel que : $\left| \frac{z+2+2i}{z-2i} \right| = 1$.
- d) Déterminer l'affixe du point D tel que le quadrilatère ABCD soit un parallélogramme. Placer D.
- 3) Résoudre dans \Box l'équation : $z^2 + 2z + 10 = 0$.

Exercice 3(5 points)

Soit f la fonction définie sur \Box par : $f(x) = (x^2 + 2x + 1)e^x$

Soit C sa courbe représentative dans le repère orthonormal (O; i, j) d'unité 1cm.

- 1.a) Montrer que $\lim_{x \to 0} f(x) = 0$. Interpréter graphiquement.
- b) Montrer que $\lim_{x \to +\infty} f(x) = +\infty$ et calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement.
- 2.a) Calculer f'(x) et vérifier que la courbe C admet deux tangentes horizontales que l'on déterminera.
- b) Dresser le tableau de variation f.
- 3) Déterminer l'intersection de C avec les axes des coordonnées puis construire C dans $(O; \vec{i}, \vec{j})$.
- 4) Soit g la restriction de f sur l'intervalle $[0; +\infty]$.
- a) Montrer que g réalise une bijection de $[0;+\infty[$ sur un intervalle J que l'on déterminera.
- b) Donner une équation de la tangente T à C au point d'abscisse 0 et calculer (g⁻¹)'(1).
- 5.a) Déterminer les réels a, b et c tels que la fonction définie par $F(x) = (ax^2 + bx + c)e^x$ soit une primitive de f sur \Box .
- b) Calculer l'aire du domaine plan délimité par la courbe $\, C \,$, l'axe des abscisses et les droites d'équations respectives $\, x = -1 \,$ et $\, x = 0 \,$.

Exercice 4(7 points)

Partie A

On considère la fonction g définie sur l'intervalle $0; +\infty$ par : $g(x) = 2 - x - \ln x$.

- 1.a) Calculer $\lim_{x\to 0^+} g(x)$ et $\lim_{x\to +\infty} g(x)$.
- b) Calculer la dérivée g'(x) et dresser le tableau de variation de g.
- 2.a) Montrer que g réalise une bijection de]0;+∞[sur un intervalle J que l'on déterminera.
- b) Montrer que l'équation g(x) = 0 admet dans $]0; +\infty[$ une unique solution α . Vérifier que $1,55 \le \alpha \le 1,56$
- c) En déduire le signe de la fonction g sur l'intervalle $]0;+\infty[$.

Partie B

Soit f la fonction définie sur l'intervalle 0; + ∞ par : $f(x) = (1 - \frac{1}{x})(1 - \ln x)$

On désigne par (C) la courbe représentative de f dans le plan rapporté à un repère orthonormal $(O; \vec{i}, \vec{j})$.

- 1.a) Démontrer que $\lim_{x\to 0^+} f(x) = -\infty$, $\lim_{x\to +\infty} f(x) = -\infty$ et $\lim_{x\to +\infty} \frac{f(x)}{x} = 0$.
- b) Interpréter graphiquement les limites précédentes.
- 2.a) Calculer la dérivée f'(x). Vérifier que pour tout réel x de $0; +\infty$, $f'(x) = \frac{g(x)}{x^2}$.

- b) Montrer que $f(\alpha) = \frac{(\alpha 1)^2}{\alpha}$ et donner une valeur approchée de $f(\alpha)$ à 10^{-1} près.
- c) Dresser le tableau de variation de la fonction f.
- 3) Déterminer les coordonnées des points d'intersection de (C) avec l'axe des abscisses. Tracer (C).
- 4.a) En utilisant une intégration par parties, calculer l'intégrale $I = \int_1^x \ln t dt$.
- b) En remarquant que $f(x) = 1 \ln x \frac{1}{x} + \frac{1}{x} \ln x$, donner une primitive F de f sur $[1; +\infty[$.
- c) Calculer l'aire S du domaine plan limité par la courbe (C), l'axe des abscisses et les droites d'équations x=1 et x=e.

