# Confidential Compute for RISC-V Platforms

AP-TEE TG proposal (presented by Ravi Sahita)

For Trusted Computing SIG

Assignee - Security HC

## Confidential Computing

Confidential Computing is the protection of data in use by performing computation in a Hardware-based Trusted Execution Environment.

This definition is independent of topological location, which processor does it, and whether encryption or some other isolation technique is used.

The protection of data in use is against a well-defined adversary.

## Key properties of a HW-based TEE for Conf. Comp.

A Trusted Execution Environment (TEE) is an environment that provides a level of assurance of three key properties:

- Data confidentiality
- Data integrity
- Code integrity

#### Additional desirable characteristics:

- Code confidentiality
- Authenticated Launch
- Programmability
- Attestatability -- This is a required from the Trusted Computing SIG perspective
- Recoverability

### Confidential Compute Threat Model

User/System Software attacks

Protocol attacks

Cryptographic attacks

Basic hardware attacks

Basic upstream supply-chain attacks

Advanced hardware attacks

Upstream hardware supply-chain attacks

uArch and Arch Side-channel attacks\*

Detailed threat model has been defined and documented here.

We note that different implementations will have varying degrees of resistance to attacks

The TC SIG (or proposed TG) does not aim to specify any threats as out of scope.

#### RVI Gaps → AP-TEE TG Charter

Why should we do this? And why now?

 Confidential Computing is at an inflection point and all compute domains (Data Center/Servers to Embedded) require support for it - alternate architectures have solutions in place

What are the key gap areas? [TG components proposed below described on next slide]

- AP-TEE TG to cover Reference Architecture, Interfaces, Uncover potential ISA gaps
  - Interfaces must be designed to be extensible to future ISA (via gap analysis) --normative.
  - ISA proposals -- request FT/TG as needed -- normative.
  - Security Arch for CC -- Separate living doc also use as an Implementers Guide.

Who else do /should we work with?

- Within RVI Security HC/Trusted Computing SIG, TEE TG, CFI SIG, Software HC (Hypervisor SIG), SOC infrastructure SIG (IOMMU, QoS, RAS ...), DataCenter SIG
- **Outside RVI** Confidential Computing Consortium (CCC), Trusted Computing Group (TCG), Internet Engineering Task Force (IETF), Distributed Management Task Force (DMTF), PCIe, CXL

Intel SGX, TDX AMD SEV-ES-SNP ARM Trustzone, CCA RISC-V?

RISC-V AP-TEE TG addresses this gap

CCC

Open Enclave SDK Keystone Project Veraison

IETF RATS
TCG DICE
DMTF SPDM
PCIe IDE, TDISP

## AP-TEE TG Charter: Reference Arch



# AP-TEE TG Charter: Interfaces





| Area                                    | Function                                                                                                                                                                                                                           | Resources                                 |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| AP-TEE TH-ABI                           | SBI Extension Interface implemented by the TSM via TEECALL for use by OS/VMM to manage TVMs                                                                                                                                        | TG WG members                             |
| AP-TEE TG-ABI                           | SBI Extension Interface implemented by the TSM via ECALL for use by TVM guest workloads                                                                                                                                            |                                           |
| TEE Security Manager (TSM)              | TSM is a RISC-V 64 bit SW module that uses RISC-V H-extension and implements TH and TG-ABI. It is in the TCB for all TVM workloads (Expected to be HW-vendor signed and may be HW-operator signed)                                 | Rivos<br>contributes to<br>start          |
| M-mode FW                               | Minimal SBI extensions (TCB component) to support TSM initialization, TEECALL, TEERET implementation. It is in the TCB for all TVM workloads (Expected to be HW-vendor signed and may be HW-operator signed) - Collab with OpenSBI | Expecting collaborators on these existing |
| Linux, KVM (Host<br>OS/VMM)             | Untrusted (enlightened) host OS/VMM that manage resources for TVM-based confidential workloads [TSM enforces security properties] - Collab with Hypervisor SIG                                                                     | projects from<br>SW HC                    |
| Linux (TVM Guest OS),<br>Guest Firmware | Enlightened guest OS/runtime (in TCB of TVM workload) - Collab with SW HC                                                                                                                                                          |                                           |

#### AP-TEE TG Charter: Platform specific & ISA (Scope)

|  | Area                             | Function                                                                  | Resources                                                           |
|--|----------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|
|  | CPU                              | AP-TEE mode qualifier ; Memory page access-control isolation properties   | TG members                                                          |
|  | IOMMU                            | AP-TEE mode qualifier; Memory page access-control isolation properties    | + IOMMU TG                                                          |
|  | TLB, Caches                      | AP-TEE mode qualifier                                                     | TG members                                                          |
|  | Interconnect,<br>Fabrics         | Platform-specific cryptographic memory isolation and mode qualifier       | AP-TEE TG<br>members to<br>document +<br>Implementation<br>feedback |
|  | Memory (volatile and persistent) | Platform-specific cryptographic memory isolation and mode qualifier       |                                                                     |
|  | HW Root-of-trust                 | Platform-specific subsystem to support HW Attestation, Sealing interfaces |                                                                     |
|  | Devices                          | Device-specific subsystem to support Device attestation, link security    |                                                                     |

**Security Arch for CC and Implementers Guide** covers these as recommendations:

- Mapping of mitigations to threat model
- Recommendations for crypto modes
- Attestation protocols, formats



#### Proposed AP-TEE TG workstreams



Seeking TSC Approval to form AP-TEE TG with this charter