Beispiel 1. Sei k ein Körper, somit entspricht $d_{k[x]}: k[x] \longrightarrow \Omega_{k[x]/k}$, $f \longmapsto f'd_{k[x]}(x)$ der analytischen Ableitung.

Teste dies an $f(x) = ax^2 + bx + c$:

$$d(f(x)) = a \cdot d(x^2) + b \cdot d(x) = (2ax + b)d(x) = f'(x)d(x)$$

Beispiel 2. Sei k ein Körper und $K = k(\{x_i\}_{i \in \{1,...,n\}})$ der Körper der rationalen Funktionen in n Varablen über k.

Dann ist $\{x_i\}_{i\in\{1,\ldots,n\}}$ eine Differenzialbasis von $\Omega_{K/k}$.

Beweis. Sehe $K = k[x_1, \dots, x_n][k[x_1, \dots, x_n]^{-1}]$ als Lokalisierung. Somit gilt nach LOKALISIERUNG und POLYNOMRING:

$$\Omega_{K/k} \simeq K \otimes \Omega_{k[x_1,\dots,x_n]/k} \simeq K \otimes \bigoplus_{i \in \{1,\dots,n\}} k[x_1,\dots,x_n] \langle d_{k[x_1,\dots,x_n]}(x_i) \rangle \simeq K \langle d_{k[x_1,\dots,x_n]}(x_i) \rangle$$

Somit ist $\{x_i\}_{i\in\{1,\ldots,n\}}$ ein Erzeugenden-System von $\Omega_{K/k}$.

Lemma 3. Sei $R \longrightarrow S \subset T$ ein Ringhomomorphismus und $S \subset T$ eine seperabel und algebraische Körpererweiterung. Dann gilt:

$$\Omega_{T/R} = T \otimes_S \Omega_{S/R}$$

Beweis. Wähle $\alpha \in T$ mit $S[\alpha] = T$ und sei f(x) das Minimalpolynom von α . Betrachte dazu die conormale Sequenz von $\pi : S[x] \longrightarrow S[x]/(f) \simeq T$ [vlg. ??]:

$$(f)/(f^2) \xrightarrow{1 \otimes d_{S[x]}} T \otimes_{S[x]} \Omega_{S[x]/R} \xrightarrow{D\pi} \Omega_{T/R} \longrightarrow 0$$

Wende nun 16.6 auf $\Omega_{S[x]/R}$ an und tensoriere mit T, somit gilt:

$$T \otimes_{S[x]} \Omega_{S[x]/R} \simeq T \otimes_S \Omega_{S/R} \oplus T \langle d_{Sx} \rangle$$

Zusammen mit der Conormalen Sequenz bedeutet dies

$$\Omega_{T/R} \simeq (T \otimes_S \Omega_{S/R} \oplus T \langle d_{Sx} \rangle) / (d_{S[x]}(f))$$

Wenn wir $d_{S[x]}:(f) \longrightarrow T \otimes_S \Omega_{S/R} \oplus T\langle d_{Sx}\rangle$ genauer betrachten sehen wir: [betrachte dazu beispiel 1]:

$$d_{S[x]}((f)) = J \oplus (f'(\alpha)d_{S[x]}) = J \oplus T(\rangle \text{wobei } J \subseteq T \otimes_S \Omega_{S/R} \text{ ein Ideal ist.}$$

Für die letzte Gleichheit nutze, dass $T \supset S$ seperabel und somit $f(\alpha) \neq 0$ ist und nach obiger Wahl $K = S[\alpha]$ gilt.

Damit erhalten wir nun:

$$\Omega_{T/R} \simeq (T \otimes_S \Omega_{S/R})/J$$

 $\Rightarrow T \otimes_S \Omega_{S/R} \hookrightarrow \Omega_{T/R} \text{ ist surjektiv.}$

Somit muss J = 0 gelten und es folgt $T \otimes_S \Omega_{S/R} \simeq \Omega_{T/R}$.