année scolaire 2022-2023Professeur : $Zakaria\ Haouzan$ Établissement : $Lyc\acute{e}e\ SKHOR\ qualifiant$

Devoir N°1-semestre 2 Filière Tronc Commun Scientifique Durée 1h00

_Chimie 7pts ______

La caféine, présente dans le café, le thé, le chocolat, les boissons au cola, est un stimulant pouvant être toxique à forte dose (plus de 600mg par jour). Sa formule chimique est $C_8H_{10}N_4O_2$.

- 1. Quelle est la masse molaire de la caféine?(avec M(N) = 14g/mol).....(1pt)
- 2. Quelle quantité de matière de caféine y-a-t-il dans une tasse de café contenant 80 mg de caféine?(1pt)

- 5. Un café décaféiné en grains (ou moulu) ne doit pas contenir plus de 0,10 % en masse de caféine.Quelle quantité de matière maximale de caféine y-a-t-il dans un paquet de café décaféiné de masse 250g ?(2pt)

_Physique 13pts _____

Un solide (S) de masse m = 200 g est maintenue à l'équilibre sur un plan incliné parfaitement lisse d'inclinaison $\alpha=30^\circ$ par rapport à l'horizontale par l'intermédiaire d'un ressort de masse négligeable, de constante de raideur $k=40N.m^{-1}$ et allongé. L'axe du ressort fait un angle $\beta=20^\circ$ avec la ligne de la grande pente du plan incliné.

- 1. Rappeler la condition d'équilibre d'un solide soumis à trois forces non parallèles.
- 2. Faire l'inventaire des forces appliquées sur le solide (S) et les représenter sur le schéma ci-contre.
- 3. Ecrire la condition vectorielle d'équilibre du solide (S).
- 4. Déterminer les expressions des coordonnées de ces forces dans le repère orthonormé.
- 5. Exprimer l'allongement ΔL du ressort en fonction de m, g, α , K et β . Calculer ΔL .

Donnée: L'intensité de pesanteur: g = 10N/kg.

Partie 2:	Équilibre	d'un corp	s solide en	rotation	autour	d'un axe
fixe					• • • • • •	$\dots (6 \mathrm{pts})$

Un homme maintient en équilibre un panneau de centre G, de masse m=50kg, et de longueur OA=2m dans une position inclinée d'un angle $\alpha=60^\circ$ avec le sol. Il exerce en H, à la distance OH=1,7m une force \vec{F} perpendiculaire au panneau comme indique la figure ci-contre. Le panneau peut tourner autour de l'axe (Δ) passant par O

1. Faire l'inventaire des forces appliquées sur le panneau, et les représenter sur la figure(2pts)
2. Enoncer le théorème des moments
3. Trouver l'expression du moment de chaque force appliquée sur le panneau(1pt)
4. En utilisant le théorème des moments, montrer que l'expression de l'intensité de la force \vec{F} appliquée par l'homme s'écrit sous la forme : $F = \frac{m.g.OA.cos\alpha}{2.OH}$
, et calculer sa valeur