DECISION TREE

Decision tree

- Each root node and internal node represent a specific input variable
 - Root and internal node tests each attribute
 - $x_1 > 1$
 - \blacksquare x_3 is orange
- Each branch corresponds to the result of the test of node
 - Yes/No
 - Values of attribute
 - Orang/Green
 - Long/Short
- Each leaf node assigns a class

In each node, how to choose attribute? how to split branches?

Decision Tree Algorithm

How to determine which one is the most effective?

Need some criteria for measure of effectiveness

Splitting Criteria

- Categorical target Classification
 - Entropy
 - Gini impurity
- Continuous target Regression
 - MSE
 - Friedman MSE
 - MAE

Splitting Criteria: Purity

 Select each split of a node so that in each of the child nodes are purer or less impure than that in the parent node

No Improvement on purity

Perfect Split

- Entropy and Gini impurity are measures of impurity
 - Split a node toward decreasing impurity → Maximize reduction in impurity

Entropy

- Expected value of the information
 - The entropy quantifies how "informative" or "surprising" the entire random variable is, averaged on all its possible outcomes
- Entropy H of event X

Expectation value Probability function

For discrete random variable X

$$H(X) = \sum_{i} P(x_i)I(x_i) = -\sum_{i} P(x_i)\log_b P(x_i)$$

- \blacksquare X with possible values of $\{x_1, x_2, ..., x_n\}$
- \blacksquare Commonly b is 2 (10, e are also used)

Example: Entropy

- \Box When you flip one coin(X)
 - \blacksquare Possible output of X: (H), (T)
 - P(H) = 0.5, P(T) = 0.5

$$H(X) = -P(H) \log_2 P(H) - P(T) \log_2 P(T)$$

= -0.5\log_2 0.5 - 0.5\log_2 0.5
= 1

- \Box When you flip two coins (X)
 - Possible output of X: (H,H), (H,T), (T,H), (T,T)
 - P(H,H) = P(H,T) = P(T,H) = P(T,T) = 0.25

$$H(X) = -P(H,H) \log_2 P(H,H) - P(H,T) \log_2 P(H,T) - P(T,H) \log_2 P(T,H) - P(T,T) \log_2 P(T,T)$$

$$= -4 \times 0.25 \log_2 0.25$$

$$= 2$$

How to Define Effectiveness of Split

- If split is effective, information gain is large
 - Information gain=reduction of uncertainty

Information gain with the split on attribute a

Entropy of new state after split=normalized sum of entropy of split sets

$$H(T|a) = \sum_{i}^{n} \frac{|T'_{i}|}{|T|} \cdot H(T'_{i})$$

■ T is split to $T'_1, T'_2, ..., T'_n$

Example: Calculate Information Gain through Entropy

The node is split by age to predict profit of company

Age(x)	old	old	old	mid	mid	mid	mid	new	new	new
Profit(y)	down	down	down	down	down	up	up	up	up	up

$$H(T) = -P(down) \log_2 P(down) - P(up) \log_2 P(up)$$
$$= -2 \times 0.5 \log_2 P(0.5) = 1$$

Age(x)	old	old	old
Profit(y)	down	down	down

$$H(T_1') = -1\log_2 1 = 0$$

$$H(T_2') = -\frac{2}{7}\log_2\frac{2}{7} - \frac{5}{7}\log_2\frac{5}{7} \approx 0.86$$

$$IG=H(before)-H(after)=1-0.86\times\frac{7}{10}=1-0.602=0.398$$

Gini Impurity

Gini Impurity: measure of impurity

$$G(T) = \sum_{i \neq j} P(i|T)P(j|T) = 1 - \sum_{j} P(j|T)^{2} = 1 - \sum_{j} \left(\frac{n_{j}(T)}{n(T)}\right)^{2}$$

- P(j|t) is the probability of output j in node T
- \blacksquare n(t) is the total number of samples in node T
- $\mathbf{n}_{i}(t)$ is the number of samples with output j in node T

Example: Calculate Information Gain through Gini Impurity

The node is split by age to predict profit of company

Age(x)	old	old	old	mid	mid	mid	mid	new	new	new
Profit(y)	down	down	down	down	down	up	up	up	up	up

$$G(T) = 1 - P^{2}(down) - P^{2}(up)$$

$$= 1 - \left(\frac{5}{10}\right)^{2} - \left(\frac{5}{10}\right)^{2} = 0.5$$
| Is age old?

Age(x)	old	old	old
Profit(y)	down	down	down

$$G(T_1') = 1 - \left(\frac{3}{3}\right)^2 = 0$$

$$G(T_2') = 1 - \left(\frac{2}{7}\right)^2 - \left(\frac{5}{7}\right)^2 \approx 0.41$$

$$IG=G(before)-G(after)=0.5-0.41\times\frac{7}{10}=0.5-0.287=0.213$$

Question

 Predict profit of companies based on age of company, type of company, and competition status

Competition	Type	Profit
yes	S/W	down
no	S/W	down
no	H/W	down
yes	S/W	down
yes	H/W	down
no	H/W	up
no	S/W	up
yes	S/W	up
no	H/W	up
no	S/W	up
	yes no no yes yes no no yes no	yes S/W no S/W no H/W yes S/W yes H/W no H/W no S/W yes S/W no S/W yes S/W

- 1) How much information gain based on Entropy is obtained with the splitting on competition?
- 2) How much information gain based on Gini impurity is obtained with the splitting on type of company?

Decision Tree Algorithm: C4.5

- Procedure of C4.5
 - Check for terminal conditions
- (No fulfilled terminal conditions) For each input variable x, calculate the normalized information gain from splitting on x
- (Any terminal condition is fulfilled) Create leaf node and move onto step 1 with different internal node
 - Create a decision node that splits on the input variable with the highest normalized information gain
 - Repeat this process until there is no internal node

Terminal conditions

- 1. All the samples in the list belong to the same class
- 2. None of the features provide any information gain

Class	χ_1	x_2
1	1	4
1	2	6
1	2	5
0	2	4
0	2	3
1	3	6
1	4	6
0	4	5
0	4	4
0	5	4

$$G = 1 - \left(\frac{5}{10}\right)^2 - \left(\frac{5}{10}\right)^2 = 0.5$$

$$G = 1 - \left(\frac{2}{7}\right)^2 - \left(\frac{5}{7}\right)^2 \approx 0.4083$$
 $G = 1 - \left(\frac{3}{3}\right)^2 - \left(\frac{0}{3}\right)^2 = 0$

$$IG = 0.5 - 0.408 \times \frac{7}{10} - 0 \times \frac{3}{10} = 0.2144$$

Class	x_1	x_2
1	1	4
1	2	6
1	2	5
0	2	4
0	2	3
1	3	6
1	4	6
0	4	5
0	4	4
0	5	4
· · · · · · · · · · · · · · · · · · ·		

$$G = 1 - \left(\frac{1}{1}\right)^2 - \left(\frac{0}{1}\right)^2 = 0$$
 $G = 1 - \left(\frac{1}{6}\right)^2 - \left(\frac{5}{6}\right)^2 \approx 0.278$

$$IG = \left(0.408 - 0 \times \frac{1}{7} - 0.278 \times \frac{6}{7}\right) \times \frac{7}{10} \approx 0.11$$

Class	x_1	x_2
1	1	4
1	2	6
1	2	5
0	2	4
0	2	3
1	3	6
1	4	6
0	4	5
0	4	4
0	5	4

$$G = 1 - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = 0.5$$
 $G = 1 - \left(\frac{0}{4}\right)^2 - \left(\frac{4}{4}\right)^2 = 0$

$$IG = \left(0.278 - 0.5 \times \frac{2}{6} - 0 \times \frac{4}{6}\right) \times \frac{6}{10} \approx 0.067$$

x_1	x_2
1	4
2	6
2	5
2	4
	3
3	6
4	6
4	5
4	4
5	4
	1 2 2 2 2 3 4 4 4

$$G = 1 - \left(\frac{1}{1}\right)^2 - \left(\frac{0}{1}\right)^2 = 0 \qquad G = 1 - \left(\frac{0}{1}\right)^2 - \left(\frac{1}{1}\right)^2 = 0$$

$$IG = \left(0.5 - 0 \times \frac{1}{2} - 0 \times \frac{1}{2}\right) \times \frac{2}{10} = 0.1$$

Step	Impurity Change	Total impurity
0	0.000	0.500
1	0.214	0.286
2	0.119	0.167
3	0.067	0.100
4	0.100	0.000

When Does Tree Stop Growing?

- Growing full-size tree can cause overfitting
 - Low classification accuracy on test set
- Introduce pruning step after growing tree
 - Pruning simplifies the tree by trimming some branches of the fully grown tree
 - Generate several pruned trees and select best tree
- There are several popular pruning algorithms
 - Reduced error pruning: Starting at leaf node, each node is replaced with its most popular class and if the prediction accuracy is not affected then the change is kept
 - Cost complexity pruning: Cost complexity pruning removes subtree based on cost complexity measure at each step

Misclassification cost at node t

$$r(t) = \min_{i} \sum_{k=1}^{K} C(i|k)p(k|t) \rightarrow r(t) = 1 - \max_{k} p(k|t)$$

$$\Box \quad C(i|k) = \begin{cases} 1, & \text{if } i \neq k \\ 0, & \text{if } i = k \end{cases}$$

- p(k|t) is probability that class of data point is k given that it is in node t
- □ Misclassification cost at tree *T*

$$R(T) = \sum_{t \in \tilde{T}} r(t)p(t) = \sum_{t \in \tilde{T}} R(t)$$

- \Box \tilde{T} is set of terminal nodes of tree T
- p(t) is probability that data point is in node t
- $\Box \quad \mathsf{Set}\, R(t) = r(t)p(t)$

Cost complexity measure

Complexity parameter
$$R_{\alpha}(T) = R(T) + \alpha |T|$$

|T| is tree complexity=the number of terminal nodes

■ For a terminal node t

$$R_{\alpha}(t) = R(t) + \alpha$$

For a subtree at t

$$R_{\alpha}(T_t) = R(T_t) + \alpha |T_t|$$

 \Box Cost complexity pruning prunes subtree at t which minimizes

$$\alpha(t) = \frac{R(t) - R(T_t)}{|T_t| - 1}$$

■ Prune subtree if $R_{\alpha}(t) \leq R_{\alpha}(T_t)$

 $R(t_2) = r(t_2)p(t_2)$ $=\left(1-\frac{5}{7}\right)\times\frac{7}{10}=0.2$ $= (1-1) \times \frac{1}{10} + (1-1) \times \frac{1}{10} + (1-1) \times \frac{1}{10} + (1-1) \times \frac{4}{10}$ $\alpha(t_2) = \frac{0.2 - 0}{4} \approx 0.067$

Pros and Cons of Decision Tree

- Pros
 - Easy interpretation
 - Non-parametric approach
 - Inherently non-linear
 - Easy to handle categorical variables
 - Implicitly perform feature selection
- Cons
 - Large computing cost
 - Lack of linearity or main effects
 - Each node only considers single variable
 - Many algorithms has been proposed to overcome this problem

- CART
 - Classification And Regression Tree (CART) is one of decision tree algorithms
 - Decision tree can be also used for regression analysis

- New split rule
 - Entropy and Gini impurity are not appropriate split measure for regression analysis
 - MSE (Mean Squared Error)
 - The split that most decreases the MSE is selected

$$\hat{y}_i = \frac{\sum_{j \in t_i} y_j}{|t_i|}$$

$$R(t_i) = \frac{1}{N_{t_i}} \sum_{j \in t_i} (y_j - \hat{y}_i)^2$$

$$IG = p(t_p) R(t_p) - p(t_r) R(t_r) - p(t_l) R(t_l)$$

Friedman MSE

$$\begin{split} \hat{y}_i &= \frac{\sum_{j \in t_i} y_j}{|t_i|} \\ IG &= \frac{N_{t_r} N_{t_l}}{N_{t_r} + N_{t_l}} \big(\hat{y}_{t_r} - \hat{y}_{t_l} \big)^2 \end{split}$$

- New split rule
 - MAE (Mean Absolute Error)
 - The split that minimizes the L1 loss using the median of each terminal node is selected

$$\hat{y}_i$$
 = the median of each terminal node

$$R(t_i) = \frac{1}{N_{t_i}} \sum_{j \in t_i} \left| y_j - \hat{y}_i \right|$$

$$IG = p(t_p) R(t_p) - p(t_r) R(t_r) - p(t_l) R(t_l)$$

Drawback of regression tree

