Final Project - Human Protein Atlas Image Classification

隊名:NTU_r06521504_隊名我想想

隊員: 陳譽仁 土木所交通組 R06521504

趙浩雅 土木所交通組 R06521511

Introduction & Motivation

近幾年,深度學習成為機器學習中最受重視的一區,而藉由此技術完成的影像辨識系統被廣泛的運用在各個領域;其中,藉由影像辨識的系統,可輔助醫療判斷細胞狀況,藉以進行醫療診斷之輔助。考量到台灣未來 AI 的潛在姓,本次報告我們便選擇相關題目,利用 CNN 架構去進行圖像辨識,並用ensemble 的架構去加強模型。在建立模型部分,本次報告參考兩個方面,分別為 paper 與競賽上參賽者分享的 Kernel。

a. Paper 方面,本報告參考了 Zhao et al., 2018 的研究[1],本篇論文是對大腦腫瘤進行辨識與圖像的分區(segmentation),在模式比較底層的部分引用了 Fully Convolutional Neural Network 所衍伸的架構,在模式中的一些部份疊上前幾層的結果,如下圖。

雖然分區不是本報告所選主題要做的事情,但是因為該主題是要辨識散布在圖片上的一些特徵,其中的架構或許可以拿來參考。因此,參考了 FCN 的文章[2],這個架構將模式較後面的部分 upsampling,再與前面 maxpooling 前的卷積層結果相加以保留一些特徵在圖片上的位置資訊。

b. 參考的 Kernel 則是來自 Kaggle 上的 Kernel[3],其中包含完整的程式碼,其模式為數個卷積層的疊加,其中一個卷積層有四個平行的卷積層,各自使用不同的 kernel 大小,應該是為了方便取出不同大小的特徵並疊加在一起。

Data Preprocessing \ Feature Engineering

目前讀取資料的方法、f1 score 的計算、Data generator 參考本競賽其他參加者在 Kernel 分享的程式碼[3],對圖片資料先用 np.stack 的方式將同一細胞之紅、綠、藍、黃圖連接,以便在之後 training 過程讀取特徵值。為了增強數據,本報告用 imgaug 的套件將圖片進行平移、縮放、錯切等動作並加入少量的噪音,由於擔心其數據會造成過大偏差,未使用像素平移。考慮到有部分種類數量過少,會在訓練過程中被忽略或著是被切除,在最開始切資料的時候我們另外進行篩選,避免出現未訓練該項目的狀況。

Model Description

本報告於開始先建立一個 CNN+DNN 的基礎模型,其架構如下圖所示:

Layer (type)Output Shape	Param #	Connected to
=======================================	======:	=======================================
input_1 (InputLayer) (None, 256,	, 256, 4) 0	
batch_normalization_1 (BatchNor	(None, 256, 25	56, 4) 16input_1[0][0]
conv2d_1 (Conv2D) (None, 2 batch_normalization_1[0][0]	54, 254, 32) 11	84

batch_normalization_2 (BatchNor (None, 254, 254, 32) 128	conv2d_1[0][0]	
max_pooling2d_1 (MaxPooling2D) (None, 127, 127, 32) 0 batch_normalization_2[0][0]		
dropout_1 (Dropout) (None, 127, 127, 32) 0 max_pooling2d_1[0][0]	
batch_normalization_3 (BatchNor (None, 127, 127, 32) 128	dropout_1[0][0]	
conv2d_2 (Conv2D) (None, 63, 63, 64) 18496 batch_normalization_3[0][0]		
batch_normalization_4 (BatchNor (None, 63, 63, 64) 256	conv2d_2[0][0]	
conv2d_3 (Conv2D) (None, 61, 61, 64) 36928 batch_normalization_4[0][0]		
batch_normalization_5 (BatchNor (None, 61, 61, 64) 256	conv2d_3[0][0]	
conv2d_4 (Conv2D) (None, 59, 59, 64) 36928 batch_normalization_5[0][0]		
batch_normalization_6 (BatchNor (None, 59, 59, 64) 256	conv2d_4[0][0]	
max_pooling2d_2 (MaxPooling2D) (None, 29, 29, 64) 0 batch_normalization_6[0][0]		
dropout_2 (Dropout) (None, 29, 29, 64) 0 max_pooling2d_2[0)[0]	
batch_normalization_7 (BatchNor (None, 29, 29, 64) 256	dropout_2[0][0]	
conv2d_5 (Conv2D) (None, 27, 27, 128) 73856 batch_normalization_7[0][0]		
batch_normalization_8 (BatchNor (None, 27, 27, 128) 512	conv2d_5[0][0]	
conv2d_6 (Conv2D) (None, 25, 25, 128) 147584 batch_normalization_8[0][0]		
batch_normalization_9 (BatchNor (None, 25, 25, 128) 512	conv2d_6[0][0]	

conv2d_7 (Conv2D) batch_normalization_9[0	(None, 23, 23, 128) D][0]	147584
dropout_3 (Dropout)	(None, 23, 23, 128)	0 conv2d_7[0][0]
global_average_pooling	2d_1 (Glo (None, 32)	0 dropout_1[0][0]
global_average_pooling	2d_2 (Glo (None, 64)	0 dropout_2[0][0]
global_average_pooling	2d_3 (Glo (None, 128	3)0 dropout_3[0][0]
concatenate_1 (Concate global_average_po	ooling2d_2[0][0]	4)0 global_average_pooling2d_1[0][0]
batch_normalization_10	(BatchNo (None, 224	4)896 concatenate_1[0][0]
dense_1 (Dense)	(None, 256)57600	batch_normalization_10[0][0]
dropout_4 (Dropout)	(None, 256)0 dense_	1[0][0]
batch_normalization_11	(BatchNo (None, 256	6)1024 dropout_4[0][0]
dense_2 (Dense)	(None, 256)65792	batch_normalization_11[0][0]
dropout_5 (Dropout)	(None, 256)0 dense	2[0][0]
dense_3 (Dense)	(None, 28) 7196	dropout_5[0][0]
activation_1 (Activation)	(None, 28) 0 (dense_3[0][0]

Total params: 597,388 Trainable params: 595,268 Non-trainable params: 2,120

並以此模型架構做參數調整、包含將 kernelsize 設定與其他 dropout 的數值調整,另外建置出八個基礎模型,進行 40 次 epoch 訓練。下圖為模型在訓練過程中 lose 與 F1 數值變化:

Train lose、Validation lose、Train F1 · Validation F1 變化過程

從圖片中可發現,原本的模型在經過四十次 epochs 後 Validation F1 大約落在 0.3-0.35 之間,而且有些還有上升趨勢。所以本報告後續用 pretrain model 用微調(Fine-tune)的方式,對 CNN 與 DNN 部分進行重新訓練,另外產生 24 個 model,兩者過程分別如下:

圖二 Base model 1 pretrain 後用 CNN 繼續訓練 10 個 epochs 後 Train lose、Validation lose、Train F1 · Validation F1 變化過程

圖三 Base model 1 pretrain+CNN 後用 DNN 繼續訓練 4 個 epochs 後 Train lose、Validation lose、Train F1·Validation F1 變化過程

圖四 Base model 1 pretrain+CNN+DNN 後用 DNN 繼續訓練 2 個 epochs 後
Train lose、Validation lose、Train F1 · Validation F1 變化過程

從圖片趨勢中可以發現,後續訓練已經有一些 overfitting 的現象,不過其 validation F1 依舊有些許上升。最後本報告依照試驗後採用 model 0,

model 1, model 2,model 3,model 4 與 model 6 · 權重部分先是參考 Validation F1 的數值 (約在 0.42-0.47 之間) 後並進行平移(-0.34) · 最後依 照得到的權重比用 ensemble 的方式進行預測。在 kaggle 上得到 public score 0.448 與 private score 0.423 的成績。

25 submissions for NTU_r06521504_隊名我想想		Sort by	Most recent
All Successful Selected			
Submission and Description	Private Score	Public Score	Use for Final Score
4channels_cnn_from_scratch.csv a few seconds ago by Yu-Jen Chen	0.423	0.448	
add submission details			

Experiment and Discussion

在最後 ensemble 的部分,從之前測試中可發現平移權重大小其實對最後數據相差極高。以 0.34 與 0.36 做平移值,其相差的 public score 可以差到 0.02。

另外,我們也曾經將 32 個模型中前期未經過 CNN 與 DNN 的模型一併放入 ensemble,在權重都為 1 的狀況下,雖然 public score 並沒有比較高 (0.428),但是後來 private score 出來後可發現其數值較其他模型的 private score 要高(0.428),推測此部分是因為權重未調整到最佳數據,如果進行調整,或許可以得到更高的分數。

Conclusion

本次報告我們先用 CNN 與 DNN 的模型進行訓練,並使用 ensemble 的方式加強模型強度,最終得到不錯的成果。

Reference

- 1. X. Zhao, Wu, Y., Song, G., Li, Z., Zhang, Y., and Fan, Y., "A deep learning model integrating FCNNs and CRFs for brain tumor segmentation," *Medical image analysis*, 43, 98-111, 2018
- 2. Jonathan Long, Evan Shelhamer, Trevor Darrell; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp.

3431-3440

Michal Haltuf, "CNN 128x128x4, Keras from scratch [LB 0.328]," kaggle.com, Oct. 30, 2018. [Online]. Available:
 https://www.kaggle.com/rejpalcz/cnn-128x128x4-keras-from-scratch-lb-0 328?fbclid=lwAR2SbpFcM0WhZfs7I9xelukyE6e9bMoUKX_kjxo3fUhaFeS2UUM6QQ2LpT8. [Accessed Dec. 14, 2018].