日本国特許庁

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

2000年 3月10日

出願番号

Application Number:

特願2000-067778

出 願 人 Applicant (s):

日本碍子株式会社

2001年 2月 9日

特 許 庁 長 官 Commissioner, Patent Office

川新

特2000-067778

【書類名】 特許願

【整理番号】 PCK15217GA

【提出日】 平成12年 3月10日

【あて先】 特許庁長官殿

【国際特許分類】 H01L 41/09

【発明者】

【住所又は居所】 愛知県名古屋市瑞穂区須田町2番56号 日本碍子株式

会社内

【氏名】 武内 幸久

【発明者】

【住所又は居所】 愛知県名古屋市瑞穂区須田町2番56号 日本碍子株式

会社内

【氏名】 七瀧 努

【発明者】

【住所又は居所】 愛知県名古屋市瑞穂区須田町2番56号 日本碍子株式

会社内

【氏名】 大和田 巌

【特許出願人】

【識別番号】 000004064

【氏名又は名称】 日本碍子株式会社

【代理人】

【識別番号】 100077665

【弁理士】

【氏名又は名称】 千葉 剛宏

【選任した代理人】

【識別番号】 100077805

【弁理士】

【氏名又は名称】 佐藤 辰彦

【手数料の表示】

【予納台帳番号】 001834

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9724024

【プルーフの要否】

要

【書類名】明細書

【発明の名称】

ディスプレイの駆動装置及びディスプレイの駆動方法

【特許請求の範囲】

【請求項1】

光源からの光が導入される光導波板と、該光導波板の一方の板面に対向して設けられ、かつ多数の画素に対応した数のアクチュエータ部が配列された駆動部を具備し、入力される画像信号の属性に応じて前記光導波板に対する前記アクチュエータ部の接触・離隔方向の変位動作を制御して、前記光導波板の所定部位の漏れ光を制御することにより、前記光導波板に前記画像信号に応じた映像を表示させるディスプレイの駆動装置において、

1つ以上のアクチュエータ部にて1つのドットが構成され、1つ以上のドットで1つの画素が構成される場合に、

全アクチュエータ部に対してオフセット電位(バイアス電位)を印加する第1の駆動回路と、前記画像信号に基づいてドット毎に発光信号と消光信号からなるデータ信号を出力する第2の駆動回路と、第1及び第2の駆動回路を制御する信号処理回路とを具備し、

前記信号処理回路は、少なくとも時間変調方式で階調制御すべく前記第2の駆動回路を制御することを特徴とするディスプレイの駆動装置。

【請求項2】

請求項1記載のディスプレイの駆動装置において、

1枚の画像の表示期間を1フレームとし、該1フレームを複数に分割した際の 1つの分割期間をサブフィールドとしたとき、

前記サブフィールドは、当該サブフィールドに割り当てられる単位階調レベル に応じた時間的長さに設定されていることを特徴とするディスプレイの駆動装置

【請求項3】

請求項2記載のディスプレイの駆動装置において、

前記第2の駆動回路は、各ドットについて、それぞれの階調レベルに応じた表

示時間を必要なサブフィールドに割り当てて作成されたドットデータをデータ信号として前記ドットに関するアクチュエータ部に出力するように前記信号処理回路にてタイミング制御されることを特徴とするディスプレイの駆動装置。

【請求項4】

請求項3記載のディスプレイの駆動装置において、

前記信号処理回路は、

入力される前記画像信号に基づいて全ドットに割り当てるべきドットデータを 得るデータ作成手段と、

各ドット毎に設けられ、前記ドットデータを対応するドットに対してサブフィールドの開始タイミングに合わせて出力するデータ転送部とを有することを特徴とするディスプレイの駆動装置。

【請求項5】

請求項4記載のディスプレイの駆動装置において、

前記データ転送部は、

一定のタイミングに基づくビットシフト動作によってドットデータを受け取る 第1のシフトレジスタと、

第1のシフトレジスタに格納されたドットデータをパラレルに受け取り、前記ドットデータのビット情報を前記サブフィールドの時間的長さに応じたタイミングに基づいて順次出力する第2のシフトレジスタとを有することを特徴とするディスプレイの駆動装置。

【請求項6】

請求項1記載のディスプレイの駆動装置において、

1枚の画像の表示期間を1フレームとし、該1フレームを複数に等分割した際の1つの分割期間をリニアサブフィールドとしたとき、

前記第2の駆動回路は、各ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するように前記信号処理回路にてタイミング制御されることを特徴とするディスプレイの駆動装置。

【請求項7】

請求項6記載のディスプレイの駆動装置において、

前記信号処理回路は、

入力される前記画像信号に基づいて全ドットに割り当てるべきドットデータを 得るデータ作成手段と、

前記ドットデータを構成するビット情報をリニアサブフィールドの開始タイミングに合わせて対応するドットに出力するデータ転送部とを有することを特徴とするディスプレイの駆動装置。

【請求項8】

請求項7記載のディスプレイの駆動装置において、

前記第2の駆動回路は、複数のドライバICを有し、

前記データ転送部は、1つの第1データ出力回路と、該第1データ出力回路の 出力端子の数に応じた第2データ出力回路を有し、

前記第1データ出力回路は、前記ドライバIC1個当たりの出力数をk、前記ドライバICの割当て数をm、最大階調レベルに応じたビット数をnとしたとき、1フレームの期間に、各出力端子に対し、k×m×nで構成されるデータ群が割り当てられ、各出力端子において、前記データ群を所定のタイミング毎にドット順次に出力し、

前記第2データ出力回路は、前記ドライバICの割当て数mに応じた出力端子を有し、前記第1のデータ出力回路からのデータを前記出力端子を通じてパラレルに、割り当てられたドライバICに出力することを特徴とするディスプレイの駆動装置。

【請求項9】

光源からの光が導入される光導波板と、該光導波板の一方の板面に対向して設けられ、かつ多数の画素に対応した数のアクチュエータ部が配列された駆動部を具備し、入力される画像信号の属性に応じて前記光導波板に対する前記アクチュエータ部の接触・離隔方向の変位動作を制御して、前記光導波板の所定部位の漏れ光を制御することにより、前記光導波板に前記画像信号に応じた映像を表示させるディスプレイの駆動装置において、

1つ以上のアクチュエータ部にて1つのドットが構成され、1つ以上のドット

で1つの画素が構成される場合に、

奇数行の画素と偶数行の画素を交番的に選択する第1の駆動回路と、選択行の 画素に対し、前記画像信号に基づいてドット毎に発光信号と消光信号からなるデ ータ信号を出力する第2の駆動回路と、第1及び第2の駆動回路を制御する信号 処理回路とを具備し、

前記信号処理回路は、少なくとも時間変調方式で階調制御すべく前記第1及び 第2の駆動回路を制御することを特徴とするディスプレイの駆動装置。

【請求項10】

請求項9記載のディスプレイの駆動装置において、

1枚の画像の表示期間を1フレーム、該1フレームを2つに分離した期間を1フィールドとし、該1フィールドを複数に分割した際の1つの分割期間をサブフィールドとしたとき、

前記サブフィールドは、当該サブフィールドに割り当てられる単位階調レベル に応じた時間的長さに設定されていることを特徴とするディスプレイの駆動装置

【請求項11】

請求項10記載のディスプレイの駆動装置において、

前記第2の駆動回路は、前記第1の駆動回路にて選択された行の各ドットについて、それぞれの階調レベルに応じた表示時間を必要なサブフィールドに割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するように前記信号処理回路にてタイミング制御されることを特徴とするディスプレイの駆動装置。

【請求項12】

請求項11記載のディスプレイの駆動装置において、

前記信号処理回路は、

入力される前記画像信号に基づいて前記選択行に関するドットに割り当てるべきドットデータを得るデータ作成手段と、

1フィールドの期間に選択されるドットの数に応じて設けられ、前記ドットデータを選択されたドットに対してサブフィールドの開始タイミングに合わせて出

力するデータ転送部とを有することを特徴とするディスプレイの駆動装置。

【請求項13】

請求項12記載のディスプレイの駆動装置において、

前記データ転送部は、

一定のタイミングに基づくビットシフト動作によってドットデータを受け取る 第1のシフトレジスタと、

第1のシフトレジスタに格納されたドットデータをパラレルに受け取り、前記ドットデータのビット情報を前記サブフィールドの時間的長さに応じたタイミングに基づいて順次出力する第2のシフトレジスタとを有することを特徴とするディスプレイの駆動装置。

【請求項14】

請求項9記載のディスプレイの駆動装置において、

1枚の画像の表示期間を1フレーム、該1フレームを2つに分離した期間を1フィールドとし、該1フィールドを複数に等分割した際の1つの分割期間をリニアサブフィールドとしたとき、

前記第2の駆動回路は、前記第1の駆動回路にて選択された行の各ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するように前記信号処理回路にてタイミング制御されることを特徴とするディスプレイの駆動装置。

【請求項15】

請求項14記載のディスプレイの駆動装置において、

前記信号処理回路は、

入力される前記画像信号に基づいて1フィールドの期間に選択されるすべての ドットに割り当てるべきドットデータを得るデータ作成手段と、

前記ドットデータを構成するビット情報をリニアサブフィールドの開始タイミングに合わせて対応するドットに出力するデータ転送部とを有することを特徴とするディスプレイの駆動装置。

【請求項16】

請求項15記載のディスプレイの駆動装置において、

前記第2の駆動回路は、複数のドライバICを有し、

前記データ転送部は、1つの第1データ出力回路と、該第1データ出力回路の 出力端子の数に応じた第2データ出力回路を有し、

前記第1データ出力回路は、前記ドライバIC1個当たりの出力数をk、前記ドライバICの割当て数をm、最大階調レベルに応じたビット数をnとしたとき、1フィールドの期間に、各出力端子に対し、k×m×nで構成されるデータ群が割り当てられ、各出力端子において、前記データ群を所定のタイミング毎にドット順次に出力し、

前記第2データ出力回路は、前記ドライバICの割当て数mに応じた出力端子を有し、前記第1のデータ出力回路からのデータを前記出力端子を通じてパラレルに、割り当てられたドライバICに出力することを特徴とするディスプレイの駆動装置。

【請求項17】

光源からの光が導入される光導波板と、該光導波板の一方の板面に対向して設けられ、かつ多数の画素に対応した数のアクチュエータ部が配列された駆動部を具備し、入力される画像信号の属性に応じて前記光導波板に対する前記アクチュエータ部の接触・離隔方向の変位動作を制御して、前記光導波板の所定部位の漏れ光を制御することにより、前記光導波板に前記画像信号に応じた映像を表示させるディスプレイの駆動装置において、

1つ以上のアクチュエータ部にて1つのドットが構成され、1つ以上のドットで1つの画素が構成される場合に、

全画素において所定行のドットを順番に選択する第1の駆動回路と、前記画像信号に基づいてドット毎に発光信号と消光信号からなるデータ信号を出力する第2の駆動回路と、第1及び第2の駆動回路を制御する信号処理回路とを具備し、

前記信号処理回路は、少なくとも時間変調方式で階調制御すべく前記第1及び 第2の駆動回路を制御することを特徴とするディスプレイの駆動装置。

【請求項18】

請求項17記載のディスプレイの駆動装置において、

前記所定行が三原色に合わせて3行であることを特徴とするディスプレイの駆動装置。

【請求項19】

請求項17又は18記載のディスプレイの駆動装置において、

前記ドットの選択に同期して前記光源の発色が切り換えられることを特徴とするディスプレイの駆動装置。

【請求項20】

請求項17~19のいずれか1項に記載のディスプレイの駆動装置において、

1枚の画像の表示期間を1フレーム、該1フレームを前記所定行数に合わせて 複数に分離した期間を1フィールドとし、該1フィールドを複数に分割した際の 1つの分割期間をサブフィールドとしたとき、

前記サブフィールドは、当該サブフィールドに割り当てられる単位階調レベル に応じた時間的長さに設定されていることを特徴とするディスプレイの駆動装置

【請求項21】

請求項20記載のディスプレイの駆動装置において、

前記第2の駆動回路は、前記第1の駆動回路にて選択された行の各ドットについて、それぞれの階調レベルに応じた表示時間を必要なサブフィールドに割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するように前記信号処理回路にてタイミング制御されることを特徴とするディスプレイの駆動装置。

【請求項22】

請求項21記載のディスプレイの駆動装置において、

前記信号処理回路は、

入力される前記画像信号に基づいて前記選択行に関するドットに割り当てるべきドットデータを得るデータ作成手段と、

1フィールドの期間に選択されるドットの数に応じて設けられ、前記ドットデータを選択されたドットに対してサブフィールドの開始タイミングに合わせて出力するデータ転送部とを有することを特徴とするディスプレイの駆動装置。

【請求項23】

請求項22記載のディスプレイの駆動装置において、

前記データ転送部は、

一定のタイミングに基づくビットシフト動作によってドットデータを受け取る 第1のシフトレジスタと、

第1のシフトレジスタに格納されたドットデータをパラレルに受け取り、前記ドットデータのビット情報を前記サブフィールドの時間的長さに応じたタイミングに基づいて順次出力する第2のシフトレジスタとを有することを特徴とするディスプレイの駆動装置。

【請求項24】

請求項17~19のいずれか1項に記載のディスプレイの駆動装置において、

1枚の画像の表示期間を1フレーム、該1フレームを前記所定行数に合わせて 複数に分離した期間を1フィールドとし、該1フィールドを複数に等分割した際 の1つの分割期間をリニアサブフィールドとしたとき、

前記第2の駆動回路は、前記第1の駆動回路にて選択された行の各ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するように前記信号処理回路にてタイミング制御されることを特徴とするディスプレイの駆動装置。

【請求項25】

請求項24記載のディスプレイの駆動装置において、

前記信号処理回路は、

入力される前記画像信号に基づいて1フィールドの期間に選択されるすべての ドットに割り当てるべきドットデータを得るデータ作成手段と、

前記ドットデータを構成するビット情報をリニアサブフィールドの開始タイミングに合わせて対応するドットに出力するデータ転送部とを有することを特徴とするディスプレイの駆動装置。

【請求項26】

請求項25記載のディスプレイの駆動装置において、

前記第2の駆動回路は、複数のドライバICを有し、

前記データ転送部は、1つの第1データ出力回路と、該第1データ出力回路の 出力端子の数に応じた第2データ出力回路を有し、

前記第1データ出力回路は、前記ドライバIC1個当たりの出力数をk、前記ドライバICの割当て数をm、最大階調レベルに応じたビット数をnとしたとき、1フィールドの期間に、各出力端子に対し、k×m×nで構成されるデータ群が割り当てられ、各出力端子において、前記データ群を所定のタイミング毎にドット順次に出力し、

前記第2データ出力回路は、前記ドライバICの割当て数mに応じた出力端子を有し、前記第1のデータ出力回路からのデータを前記出力端子を通じてパラレルに、割り当てられたドライバICに出力することを特徴とするディスプレイの駆動装置。

【請求項27】

請求項1~26のいずれか1項に記載のディスプレイの駆動装置において、

前記信号処理回路は、前記ドット毎の輝度ばらつきを補正するための輝度補正 手段を有することを特徴とするディスプレイの駆動装置。

【請求項28】

請求項1~27のいずれか1項に記載のディスプレイの駆動装置において、

前記信号処理回路は、前記階調レベルに対する表示特性を線形的にするための 線形補正手段を有することを特徴とするディスプレイの駆動装置。

【請求項29】

請求項28記載のディスプレイの駆動装置において、

前記表示特性は、少なくとも前記画像信号の送出系における階調レベルに対する表示特性であることを特徴とするディスプレイの駆動装置。

【請求項30】

請求項1~29のいずれか1項に記載のディスプレイの駆動装置において、

1 枚の画像の表示期間を1フレームとしたとき、該1フレーム内の任意のタイミングにおいて光源のパワーを少なくとも2段階で切り換える調光制御手段を有することを特徴とするディスプレイの駆動装置。

【請求項31】

請求項1~30のいずれか1項に記載のディスプレイの駆動装置において、

1枚の画像の表示期間を1フレームとしたとき、該1フレーム内に全ドットを 前記光導波板に対して隔離させる準備期間を有することを特徴とするディスプレ イの駆動装置。

【請求項32】

請求項31記載のディスプレイの駆動装置において、

前記準備期間は、前記第1の駆動回路の出力レベルの変化に伴って形成される ことを特徴とするディスプレイの駆動装置。

【請求項33】

光源からの光が導入される光導波板と、該光導波板の一方の板面に対向して設けられ、かつ多数の画素に対応した数のアクチュエータ部が配列された駆動部を 具備し、入力される画像信号の属性に応じて前記光導波板に対する前記アクチュ エータ部の接触・離隔方向の変位動作を制御して、前記光導波板の所定部位の漏れ光を制御することにより、前記光導波板に前記画像信号に応じた映像を表示させるディスプレイの駆動方法において、

1つ以上のアクチュエータ部にて1つのドットが構成され、1つ以上のドットで1つの画素が構成される場合に、

全ドットに対してオフセット電位を印加し、

前記画像信号に基づいてドット毎に発光信号と消光信号からなるデータ信号を 出力し、

少なくとも時間変調方式で階調制御することを特徴とするディスプレイの駆動 方法。

【請求項34】

請求項33記載のディスプレイの駆動方法において、

1枚の画像の表示期間を1フレームとし、該1フレームを複数に分割した際の 1つの分割期間をサブフィールドとしたとき、

前記サブフィールドは、当該サブフィールドに割り当てられる単位階調レベル に応じた時間的長さに設定されていることを特徴とするディスプレイの駆動方法

【請求項35】

請求項34記載のディスプレイの駆動方法において、

各ドットについて、それぞれの階調レベルに応じた表示時間を必要なサブフィールドに割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するようにタイミング制御することを特徴とするディスプレイの駆動方法。

【請求項36】

請求項35記載のディスプレイの駆動方法において、

入力される前記画像信号に基づいて全ドットに割り当てるべきドットデータを 得、

全ドットについて、前記ドットデータを対応するドットにサブフィールドの開始タイミングに合わせて出力することを特徴とするディスプレイの駆動方法。

【請求項37】

請求項36記載のディスプレイの駆動方法において、

一定のタイミングに基づくビットシフト動作によってドットデータを受け取り

次いで、前記ドットデータをパラレルに受け取った後、前記ドットデータのビット情報を前記サブフィールドの時間的長さに応じたタイミングに基づいて順次 出力することを特徴とするディスプレイの駆動方法。

【請求項38】

請求項33記載のディスプレイの駆動方法において、

1枚の画像の表示期間を1フレームとし、該1フレームを複数に等分割した際の1つの分割期間をリニアサブフィールドとしたとき、

各ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当てて作成されたドットデータを前記アクチュエータ部に出力するようにタイミング制御することを特徴とするディスプレイの駆動方法。

【請求項39】

請求項38記載のディスプレイの駆動方法において、

入力される前記画像信号に基づいて全ドットに割り当てるべきドットデータを 得、

前記ドットデータを構成するビット情報をリニアサブフィールドの開始タイミングに合わせて対応するドットに出力することを特徴とするディスプレイの駆動方法。

【請求項40】

請求項39記載のディスプレイの駆動方法において、

全ドットを複数にグループ分けし、

ドライバIC1個で駆動するドット数をk、1つのグループにおけるドライバ ICの割当て数をm、最大階調レベルに応じたビット数をnとしたとき、1フレームの期間に、各グループに対し、k×m×nで構成されるデータ群を割り当て

各グループにおいて、前記データ群を所定のタイミング毎にドット順次に出力 することを特徴とするディスプレイの駆動方法。

【請求項41】

光源からの光が導入される光導波板と、該光導波板の一方の板面に対向して設けられ、かつ多数の画素に対応した数のアクチュエータ部が配列された駆動部を具備し、入力される画像信号の属性に応じて前記光導波板に対する前記アクチュエータ部の接触・離隔方向の変位動作を制御して、前記光導波板の所定部位の漏れ光を制御することにより、前記光導波板に前記画像信号に応じた映像を表示させるディスプレイの駆動方法において、

1つ以上のアクチュエータ部にて1つのドットが構成され、1つ以上のドットで1つの画素が構成される場合に、

奇数行の画素と偶数行の画素を交番的に選択し、

選択行の画素に対し、前記画像信号に基づいてドット毎に発光信号と消光信号 からなる表示用情報を出力し、

少なくとも時間変調方式で階調制御することを特徴とするディスプレイの駆動 方法。

【請求項42】

請求項41記載のディスプレイの駆動方法において、

1枚の画像の表示期間を1フレーム、該1フレームを2つに分離した期間を1フィールドとし、該1フィールドを複数に分割した際の1つの分割期間をサブフィールドとしたとき、

前記サブフィールドは、当該サブフィールドに割り当てられる単位階調レベル に応じた時間的長さに設定されていることを特徴とするディスプレイの駆動方法

【請求項43】

請求項42記載のディスプレイの駆動方法において、

選択された行の各ドットについて、それぞれの階調レベルに応じた表示時間を必要なサブフィールドに割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するようにタイミング制御することを特徴とするディスプレイの駆動方法。

【請求項44】

請求項43記載のディスプレイの駆動方法において、

入力される前記画像信号に基づいて前記選択行に関するドットに割り当てるべきドットデータを得、

1フィールドの期間に選択されるドットについて、前記ドットデータを選択されたドットに対してサブフィールドの開始タイミングに合わせて出力することを 特徴とするディスプレイの駆動方法。

【請求項45】

請求項44記載のディスプレイの駆動方法において、

一定のタイミングに基づくビットシフト動作によってドットデータを受け取り

次いで、ドットデータをパラレルに受け取った後、前記ドットデータのビット 情報を前記サブフィールドの時間的長さに応じたタイミングに基づいて順次出力 することを特徴とするディスプレイの駆動方法。

【請求項46】

請求項41記載のディスプレイの駆動方法において、

1枚の画像の表示期間を1フレーム、該1フレームを2つに分離した期間を1フィールドとし、該1フィールドを複数に分割した際の1つの分割期間をリニアサブフィールドとしたとき、

選択された行の各ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するようにタイミング制御することを特徴とするディスプレイの駆動方法。

【請求項47】

請求項46記載のディスプレイの駆動方法において、

入力される前記画像信号に基づいて1フィールドの期間に選択されるすべての ドットに割り当てるべきドットデータを得、

前記ドットデータを構成するビット情報をリニアサブフィールドの開始タイミングに合わせて対応するドットに出力することを特徴とするディスプレイの駆動方法。

【請求項48】

請求項47記載のディスプレイの駆動方法において、

1フィールドの期間に選択されるドットを複数にグループ分けし、

ドライバIC1個で駆動するドット数をk、1つのグループにおけるドライバ ICの割当て数をm、最大階調レベルに応じたビット数をnとしたとき、1フィールドの期間に、各グループに対し、k×m×nで構成されるデータ群を割り当て、

各グループにおいて、前記データ群を所定のタイミング毎にドット順次に出力 することを特徴とするディスプレイの駆動方法。

【請求項49】

光源からの光が導入される光導波板と、該光導波板の一方の板面に対向して設けられ、かつ多数の画素に対応した数のアクチュエータ部が配列された駆動部を 具備し、入力される画像信号の属性に応じて前記光導波板に対する前記アクチュ エータ部の接触・離隔方向の変位動作を制御して、前記光導波板の所定部位の漏 れ光を制御することにより、前記光導波板に前記画像信号に応じた映像を表示させるディスプレイの駆動方法において、

1つ以上のアクチュエータ部にて1つのドットが構成され、1つ以上のドットで1つの画素が構成される場合に、

全画素において所定行のドットを順番に選択し、

前記画像信号に基づいてドット毎に発光信号と消光信号からなるデータ信号を 出力し、

少なくとも時間変調方式で階調制御することを特徴とするディスプレイの駆動 方法。

【請求項50】

請求項49記載のディスプレイの駆動方法において、

前記所定行が三原色に合わせて3行であることを特徴とするディスプレイの駆動方法。

【請求項51】

請求項49又は50記載のディスプレイの駆動方法において、

前記ドットの選択に同期させて前記光源の発色が切り換えられることを特徴と するディスプレイの駆動方法。

【請求項52】

請求項49~51のいずれか1項に記載のディスプレイの駆動方法において、

1枚の画像の表示期間を1フレーム、該1フレームを前記所定行数に合わせて 複数に分離した期間を1フィールドとし、該1フィールドを複数に分割した際の 1つの分割期間をサブフィールドとしたとき、

前記サブフィールドは、当該サブフィールドに割り当てられる単位階調レベル に応じた時間的長さに設定されていることを特徴とするディスプレイの駆動方法

【請求項53】

請求項52記載のディスプレイの駆動方法において、

選択された行の各ドットについて、それぞれの階調レベルに応じた表示時間を 必要なサブフィールドに割り当てて作成されたドットデータを前記ドットに関す るアクチュエータ部に出力するようにタイミング制御することを特徴とするディスプレイの駆動方法。

【請求項54】

請求項53記載のディスプレイの駆動方法において、

入力される前記画像信号に基づいて前記選択行に関するドットに割り当てるべきドットデータを得、

1フィールドの期間に選択されるドットについて、前記ドットデータを選択されたドットに対してサブフィールドの開始タイミングに合わせて出力することを 特徴とするディスプレイの駆動方法。

【請求項55】

請求項54記載のディスプレイの駆動方法において、

一定のタイミングに基づくビットシフト動作によってドットデータを受け取り

次いで、ドットデータをパラレルに受け取った後、前記ドットデータのビット 情報を前記サブフィールドの時間的長さに応じたタイミングに基づいて順次出力 することを特徴とするディスプレイの駆動方法。

【請求項56】

請求項49~51のいずれか1項に記載のディスプレイの駆動方法において、

1枚の画像の表示期間を1フレーム、該1フレームを前記所定行数に合わせて 複数に分離した期間を1フィールドとし、該1フィールドを複数に等分割した際 の1つの分割期間をリニアサブフィールドとしたとき、

選択された行の各ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するようにタイミング制御することを特徴とするディスプレイの駆動方法。

【請求項57】

請求項56記載のディスプレイの駆動方法において、

入力される前記画像信号に基づいて1フィールドの期間に選択されるすべての ドットに割り当てるべきドットデータを得、 前記ドットデータを構成するビット情報をリニアサブフィールドの開始タイミングに合わせて対応するドットに出力することを特徴とするディスプレイの駆動方法。

【請求項58】

請求項57記載のディスプレイの駆動方法において、

1フィールドの期間に選択されるドットを複数にグループ分けし、

ドライバIC1個で駆動するドット数をk、1つのグループにおけるドライバ ICの割当て数をm、最大階調レベルに応じたビット数をnとしたとき、1フィールドの期間に、各グループに対し、k×m×nで構成されるデータ群を割り当て、

各グループにおいて、前記データ群を所定のタイミング毎にドット順次に出力 することを特徴とするディスプレイの駆動方法。

【請求項59】

請求項33~58のいずれか1項に記載のディスプレイの駆動方法において、 前記ドット毎の輝度ばらつきを補正するための輝度補正処理を行うことを特徴

【請求項60】

とするディスプレイの駆動方法。

請求項33~59のいずれか1項に記載のディスプレイの駆動方法において、 前記階調レベルに対する表示特性を線形的にするための線形補正処理を行うこ とを特徴とするディスプレイの駆動方法。

【請求項61】

請求項60記載のディスプレイの駆動方法において、

前記表示特性は、少なくとも前記画像信号の送出系における階調レベルに対する表示特性であることを特徴とするディスプレイの駆動方法。

【請求項62】

請求項33~61のいずれか1項に記載のディスプレイの駆動方法において、

1 枚の画像の表示期間を1フレームとしたとき、該1フレーム内の任意のタイミングにおいて光源のパワーを少なくとも2段階で切り換える調光制御処理を行うことを特徴とするディスプレイの駆動方法。

【請求項63】

請求項33~62のいずれか1項に記載のディスプレイの駆動方法において、

1枚の画像の表示期間を1フレームとしたとき、該1フレーム内に全ドットを 前記光導波板に対して隔離させる期間を有することを特徴とするディスプレイの 駆動方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、消費電力が小さく、画面輝度の大きなディスプレイの駆動装置及びディスプレイの駆動方法に関し、特に、入力される画像信号の属性に応じて光導波板に対するアクチュエータ部の接触・離隔方向の変位動作を制御して、光導波板の所定部位の漏れ光を制御することにより、光導波板に画像信号に応じた映像を表示させるディスプレイの駆動装置及びディスプレイの駆動方法に関する。

[0002]

【従来の技術】

従来から、表示装置として、陰極線管(CRT)、液晶表示装置、プラズマディスプレイ等の表示装置が知られている。

[0003]

陰極線管としては、通常のテレビジョン受像機やコンピュータ用のモニタ装置等が知られているが、画面は明るいものの、消費電力が大きく、また、画面の大きさに比例して表示装置全体の奥行きが大きくなるという問題がある。また、表示画像の周辺部で分解能が低下し、像又は図形が歪む、記憶作用がない、大型表示ができないなどの難点もある。

[0004]

この理由は、電子銃から放射された電子ビームを大きく偏向させることから、電子ビームがブラウン管の蛍光面に斜めに到達する箇所では発光点(ビームスポット)が広がり、像が斜めに表示されるようになる。これにより、表示画像に歪みが生じることになる。また、ブラウン管内部の大きな空間を真空に保つには限度があるからである。

[0005]

一方、液晶表示装置は、装置全体を小型化でき、消費電力が少ないという利点があるものの、画面の輝度が劣り、画面視野角度が狭いという問題がある。また、電圧レベルにより階調表現を行うようにしているため、駆動回路の構成が非常に複雑になるという難点がある。

[0006]

例えば、デジタルデータ線を用いた場合、その駆動回路は、コンポーネントRGBデータ(各8ビット)を所定期間保持するラッチ回路と、電圧セレクタと、階調数に応じた種類の電圧レベルに切り換えるマルチプレクサと、該マルチプレクサからの出力データをデジタルデータ線に加えるための出力回路を有して構成される。この場合、階調数が大きくなるとマルチプレクサにおいて非常に多くのレベルの切換え動作が必要になり、それに伴って、回路構成が複雑になる。

[0007]

アナログデータ線を用いた場合、その駆動回路は、順次入力されるコンポーネントRGBデータ(各8ビット)を水平方向に整列させるためのシフトレジスタと、シフトレジスタからのパラレルデータを所定期間保持するラッチ回路と、電圧レベルの調整をとるレベルシフタと、レベルシフタからの出力データをアナログ信号に変換するD/A変換器と、該D/A変換器からの出力信号をアナログデータ線に加えるための出力回路を有して構成される。この場合、D/A変換器において、オペアンプを使用することにより、階調に応じた所定の電圧を得るようにしているが、階調の範囲が広くなると、高精度の電圧を出力するオペアンプを使用する必要があり、構造が複雑になると共に価格も高くなるという欠点がある

[0008]

プラズマディスプレイは、液晶表示装置と同様に、表示部自体が体積をとらないため、小型化が可能であり、平板な表示面であるため、見やすいという長所があり、特に、交流型プラズマディスプレイにおいては、セルの記憶作用により、リフレッシュメモリが不要であるという長所も有する。

[0009]

ところで、前記プラズマディスプレイにおいては、セルに記憶作用を持たせる ために、印加電圧の極性を交番的に切り換えて放電を持続させる必要がある。そ のため、駆動回路に、X方向のサスティンパルスを発生させるための第1のパル ス発生器と、Y方向のサスティンパルスを発生させるための第2のパルス発生器 を設ける必要があり、駆動回路の構成がどうしても複雑になるという問題がある

[0010]

一方、本出願人は、前記CRT、液晶表示装置やプラズマディスプレイでの問題を解消するために、新規な表示装置を提案した(例えば、特開平7-287176号公報参照)。この表示装置は、図66に示すように、画素毎に配列されたアクチュエータ部1000を有し、各アクチュエータ部1000は、圧電/電歪層1002と該圧電/電歪層1002の上面及び下面にそれぞれ形成された上部電極1004と下部電極1006とを具備したアクチュエータ部本体1008と、該アクチュエータ部本体1008の下部に配設された振動部1010と固定部1012からなる基体1014とを有して構成されている。アクチュエータ部本体1008の下部電極1006は、振動部1010と接触して、振動部1010により前記アクチュエータ部本体1008が支持されている。

[0011]

前記基体1014は、振動部1010及び固定部1012が一体となってセラミックスにて構成され、更に、基体1014には、前記振動部1010が薄肉になるように凹部1016が形成されている。

[0012]

また、アクチュエータ部本体1008の上部電極1004には、光導波板1018との接触面積を所定の大きさにするための変位伝達部1020が接続されており、図66の例では、前記変位伝達部1020は、アクチュエータ部1000が静止している通常状態において、光導波板1018に近接して配置され、励起状態において前記光導波板1018に光の波長以下の距離で接触するように配置されている。

[0013]

そして、前記光導波板1018の例えば端部から光1022を導入する。この場合、光導波板1018の屈折率の大きさを調節することにより、全ての光1022が光導波板1018の前面及び背面において透過することなく内部で全反射する。この状態で、前記上部電極1004及び下部電極1006を通してアクチュエータ部1000に画像信号の属性に応じた電圧信号を選択的に印加して、該アクチュエータ部1000に通常状態による静止と励起状態による変位を行わせることにより、前記変位伝達部1020の光導波板1018への接触・離隔が制御され、これにより、前記光導波板1018の所定部位の散乱光(漏れ光)1024が制御されて、光導波板1018に画像信号に応じた映像の表示がなされる

[0014]

この表示装置によれば、(1)消費電力を少なくできること、(2)画面輝度を大きくすることができること、(3)カラー画面にする場合において、画素数を白黒画面の場合に比して増加させる必要がないこと等の利点を有する。

[0015]

【発明が解決しようとする課題】

上述のような表示装置の周辺回路においては、例えば図67に示すように、多数の画素が配列された表示部1030と、1つの行を構成する多数の画素(画素群)に対して共通とされた垂直選択線1032が必要な行数分導出された垂直シフト回路1034と、1つの列を構成する多数の画素(画素群)に対して共通とされた信号線1036が必要な列数分導出された水平シフト回路1038を有して構成されている。

[0016]

そのため、水平シフト回路 1 0 3 8 から選択行の画素群に対して出力される表示情報(出力電圧)が非選択行に関する画素群にも印加されることになり、不必要な画素(アクチュエータ部)を駆動せざるを得ない。従って、不必要な消費電力が発生し、低消費電力化において不利になるおそれがある。

[0017]

また、垂直走査期間内に、行選択数を大きくとりながらメモリ効果等により輝

度やコントラストの向上を図るには、垂直シフト回路に対して高電圧で、かつ、 少なくとも3つのレベルの電源電圧を供給する必要があり、垂直シフト回路のカスタムIC化が困難になるおそれがある。また、この場合、ICの多出力化、小型化が困難になり、駆動ICの実装スペースが大きくなることから、ディスプレイの薄型化を妨げるおそれがある。

[0018]

本発明はこのような課題を考慮してなされたものであり、アクチュエータ部を駆動するための駆動回路のカスタムIC化が容易になるだけでなく、ベア・チップ、TCP等の実装外形サイズが小さく、かつ、多出力のICを用いることにより、駆動ICを実装する部分の省スペース化、駆動ICの小型化、低コスト化が容易になり、ディスプレイの設計、製作の自由度を大きくすることができ、ディスプレイの薄型化も容易で低消費電力化も可能となるディスプレイの駆動装置及びディスプレイの駆動方法を提供することを目的とする。

[0019]

【課題を解決するための手段】

本発明は、光源からの光が導入される光導波板と、該光導波板の一方の板面に対向して設けられ、かつ多数の画素に対応した数のアクチュエータ部が配列された駆動部を具備し、入力される画像信号の属性に応じて前記光導波板に対する前記アクチュエータ部の接触・離隔方向の変位動作を制御して、前記光導波板の所定部位の漏れ光を制御することにより、前記光導波板に前記画像信号に応じた映像を表示させるディスプレイの駆動装置において、1つ以上のアクチュエータ部にて1つのドットが構成され、1つ以上のドットで1つの画素が構成される場合に、全アクチュエータ部に対してオフセット電位(バイアス電位)を印加する第1の駆動回路と、前記画像信号に基づいてドット毎に発光信号と消光信号からなるデータ信号を出力する第2の駆動回路と、第1及び第2の駆動回路を制御する。

[0020]

これにより、第1の駆動回路を通じて全てのアクチュエータ部に対してオフセ

ット電位(バイアス電位)が印加される。この状態で、信号処理回路は、入力される画像信号に基づいて第2の駆動回路を階調制御し、第2の駆動回路からドット毎に発光信号と消光信号からなるデータ信号が出力される。

[0021]

発光信号が供給されたドットに関するアクチュエータ部においては、光導波板側に接近するというオン動作が行われ、当該ドットについて発光が行われることになる。一方、消光信号が供給されたドットに関するアクチュエータ部においては、光導波板に対して離隔するというオフ動作が行われ、当該ドットについて消光が行われることになる。

[0022]

このように、本発明に係るディスプレイの駆動装置においては、第1の駆動回路に供給すべき電源電圧として1種類のオフセット用電源電圧で済み、また、第2の駆動回路に供給すべき電源電圧として2種類の電源電圧で済む。これにより、第1及び第2の駆動回路のカスタムIC化が容易になるだけでなく、ベア・チップ、TCP等の実装外形サイズが小さく、かつ、多出力のICを用いることにより、駆動ICを実装する部分の省スペース化、駆動ICの小型化、低コスト化が容易になり、ディスプレイの設計、製作の自由度を大きくすることができ、ディスプレイの薄型化も容易で低消費電力化も可能となる。これは、ディスプレイの製造コストの低廉化につながる。

[0023]

そして、1枚の画像の表示期間を1フレームとし、該1フレームを複数に分割 した際の1つの分割期間をサブフィールドとしたとき、前記サブフィールドを、 当該サブフィールドに割り当てられる単位階調レベルに応じた時間的長さに設定 するようにしてもよい。

[0024]

この場合、前記第2の駆動回路としては、各ドットについて、それぞれの階調 レベルに応じた表示時間を必要なサブフィールドに割り当てて作成されたドット データをデータ信号として前記ドットに関するアクチュエータ部に出力するよう に前記信号処理回路にてタイミング制御されるようにしてもよい。 [0025]

そして、前記信号処理回路を、入力される前記画像信号に基づいて全ドットに割り当てるべきドットデータを得るデータ作成手段と、各ドット毎に設けられ、前記ドットデータを対応するドットに対してサブフィールドの開始タイミングに合わせて出力するデータ転送部とを設けて構成するようにしてもよい。

[0026]

この場合、前記データ転送部を、一定のタイミングに基づくビットシフト動作によってドットデータを受け取る第1のシフトレジスタと、第1のシフトレジスタに格納されたドットデータをパラレルに受け取り、前記ドットデータのビット情報を前記サブフィールドの時間的長さに応じたタイミングに基づいて順次出力する第2のシフトレジスタとを設けて構成してもよい。

[0027]

一方、1枚の画像の表示期間を1フレームとし、該1フレームを複数に等分割した際の1つの分割期間をリニアサブフィールドとしたとき、各ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するように、前記第2の駆動回路を前記信号処理回路にてタイミング制御するようにしてもよい。

[0028]

そして、前記信号処理回路を、入力される前記画像信号に基づいて全ドットに割り当てるべきドットデータを得るデータ作成手段と、前記ドットデータを構成するビット情報をリニアサブフィールドの開始タイミングに合わせて対応するドットに出力するデータ転送部とを有して構成してもよい。

[0029]

この場合、前記第2の駆動回路に、複数のドライバICを設け、前記データ転送部として、1つの第1データ出力回路と、該第1データ出力回路の出力端子の数に応じた第2データ出力回路を有して構成し、前記第1データ出力回路を、前記ドライバICの割当て数をm、最大階調レベルに応じたビット数をnとしたとき、1フレームの期間に、各出力端

子に対し、k×m×nで構成されるデータ群が割り当てられ、各出力端子において、前記データ群を所定のタイミング毎にドット順次に出力するように構成し、前記第2データ出力回路を、前記ドライバICの割当て数mに応じた出力端子を有し、前記第1のデータ出力回路からのデータを前記出力端子を通じてパラレルに、割り当てられたドライバICに出力するように構成してもよい。

[0030]

次に、本発明は、光源からの光が導入される光導波板と、該光導波板の一方の 板面に対向して設けられ、かつ多数の画素に対応した数のアクチュエータ部が配 列された駆動部を具備し、入力される画像信号の属性に応じて前記光導波板に対 する前記アクチュエータ部の接触・離隔方向の変位動作を制御して、前記光導波 板の所定部位の漏れ光を制御することにより、前記光導波板に前記画像信号に応 じた映像を表示させるディスプレイの駆動装置において、1つ以上のアクチュエ ータ部にて1つのドットが構成され、1つ以上のドットで1つの画素が構成され る場合に、奇数行の画素と偶数行の画素を交番的に選択する第1の駆動回路と、 選択行の画素に対し、前記画像信号に基づいてドット毎に発光信号と消光信号か らなるデータ信号を出力する第2の駆動回路と、第1及び第2の駆動回路を制御 する信号処理回路とを具備し、前記信号処理回路を、少なくとも時間変調方式で 階調制御すべく前記第1及び第2の駆動回路を制御するように構成する。

[0031]

これにより、第1の駆動回路を通じて例えば奇数行の画素に関する全てのアクチュエータ部が選択され、この状態で、信号処理回路は、入力される画像信号に基づいて第2の駆動回路を階調制御し、第2の駆動回路からドット毎に発光信号と消光信号からなるデータ信号が出力される。

[0032]

発光信号が供給されたドットに関するアクチュエータ部においては、光導波板側に接近するというオン動作が行われ、当該ドットについて発光が行われることになる。一方、消光信号が供給されたドットに関するアクチュエータ部においては、光導波板に対して離隔するというオフ動作が行われ、当該ドットについて消光が行われることになる。

[0033]

次いで、第1の駆動回路を通じて今度は偶数行の画素に関する全てのアクチュエータ部が選択され、この状態で、信号処理回路は、同じく入力される画像信号に基づいて第2の駆動回路を階調制御し、第2の駆動回路からドット毎に発光信号と消光信号からなるデータ信号が出力される。

[0034]

このように、本発明に係るディスプレイの駆動装置においては、第1の駆動回路に供給すべき電源電圧として2種類の選択用の電源電圧で済み、また、第2の駆動回路に供給すべき電源電圧として2種類の電源電圧で済む。これにより、第1及び第2の駆動回路のカスタムIC化が容易になるだけでなく、ベア・チップ、TCP等の実装外形サイズが小さく、かつ、多出力のICを用いることにより、駆動ICを実装する部分の省スペース化、駆動ICの小型化、低コスト化が容易になり、ディスプレイの設計、製作の自由度を大きくすることができ、ディスプレイの薄型化も容易で低消費電力化も可能となる。これは、ディスプレイの製造コストの低廉化につながる。

[0035]

そして、1枚の画像の表示期間を1フレーム、該1フレームを2つに分離した 期間を1フィールドとし、該1フィールドを複数に分割した際の1つの分割期間 をサブフィールドとしたとき、前記サブフィールドを、当該サブフィールドに割 り当てられる単位階調レベルに応じた時間的長さに設定するようにしてもよい。

[0036].

この場合、前記第2の駆動回路としては、前記第1の駆動回路にて選択された 行の各ドットについて、それぞれの階調レベルに応じた表示時間を必要なサブフィールドに割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するように前記信号処理回路にてタイミング制御されるようにして もよい。

[0037]

そして、前記信号処理回路を、入力される前記画像信号に基づいて前記選択行 に関するドットに割り当てるべきドットデータを得るデータ作成手段と、1フィ ールドの期間に選択されるドットの数に応じて設けられ、前記ドットデータを選択されたドットに対してサブフィールドの開始タイミングに合わせて出力するデータ転送部とを設けて構成するようにしてもよい。

[0038]

この場合、前記データ転送部を、一定のタイミングに基づくビットシフト動作 によってドットデータを受け取る第1のシフトレジスタと、該第1のシフトレジ スタに格納されたドットデータをパラレルに受け取り、前記ドットデータのビッ ト情報を前記サブフィールドの時間的長さに応じたタイミングに基づいて順次出 力する第2のシフトレジスタとを設けて構成してもよい。

[0039]

一方、1枚の画像の表示期間を1フレーム、該1フレームを2つに分離した期間を1フィールドとし、該1フィールドを複数に等分割した際の1つの分割期間をリニアサブフィールドとしたとき、前記第1の駆動回路にて選択された行の各ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するように、前記第2の駆動回路を前記信号処理回路にてタイミング制御するようにしてもよい。

[0040]

そして、前記信号処理回路を、入力される前記画像信号に基づいて1フィールドの期間に選択されるすべてのドットに割り当てるべきドットデータを得るデータ作成手段と、前記ドットデータを構成するビット情報をリニアサブフィールドの開始タイミングに合わせて対応するドットに出力するデータ転送部とを有して構成してもよい。

[0041]

この場合、前記第2の駆動回路に、複数のドライバICを設け、前記データ転送部として、1つの第1データ出力回路と、該第1データ出力回路の出力端子の数に応じた第2データ出力回路を有して構成し、前記第1データ出力回路を、前記ドライバICの割当て数をm、最大階調レベルに応じたビット数をnとしたとき、1フィールドの期間に、各出力

端子に対し、k×m×nで構成されるデータ群が割り当てられ、各出力端子において、前記データ群を所定のタイミング毎にドット順次に出力するように構成し、前記第2データ出力回路を、前記ドライバICの割当て数mに応じた出力端子を有し、前記第1のデータ出力回路からのデータを前記出力端子を通じてパラレルに、割り当てられたドライバICに出力するように構成してもよい。

[0042]

次に、本発明は、光源からの光が導入される光導波板と、該光導波板の一方の板面に対向して設けられ、かつ多数の画素に対応した数のアクチュエータ部が配列された駆動部を具備し、入力される画像信号の属性に応じて前記光導波板に対する前記アクチュエータ部の接触・離隔方向の変位動作を制御して、前記光導波板の所定部位の漏れ光を制御することにより、前記光導波板に前記画像信号に応じた映像を表示させるディスプレイの駆動装置において、1つ以上のアクチュエータ部にて1つのドットが構成され、1つ以上のドットで1つの画素が構成される場合に、全画素において所定行のドットを順番に選択する第1の駆動回路と、前記画像信号に基づいてドット毎に発光信号と消光信号からなるデータ信号を出力する第2の駆動回路と、第1及び第2の駆動回路を制御する信号処理回路とを具備し、前記信号処理回路は、少なくとも時間変調方式で階調制御すべく前記第1及び第2の駆動回路を制御するように構成する。

[0043]

これにより、第1の駆動回路を通じて、所定行のうち、例えば各1行目のドットに関する全てのアクチュエータ部が選択され、この状態で、信号処理回路は、入力される画像信号に基づいて第2の駆動回路を階調制御し、第2の駆動回路からドット毎に発光信号と消光信号からなるデータ信号が出力される。

[0044]

発光信号が供給されたドットに関するアクチュエータ部においては、光導波板側に接近するというオン動作が行われ、当該ドットについて発光が行われることになる。一方、消光信号が供給されたドットに関するアクチュエータ部においては、光導波板に対して離隔するというオフ動作が行われ、当該ドットについて消光が行われることになる。

[0045]

次いで、第1の駆動回路を通じて、今度は、所定行のうち、例えば各2行目のドットに関する全てのアクチュエータ部が選択され、この状態で、信号処理回路は、同じく入力される画像信号に基づいて第2の駆動回路を階調制御し、第2の駆動回路からドット毎に発光信号と消光信号からなるデータ信号が出力される。

[0046]

同様に、第1の駆動回路を通じて、所定行のうち、各n行目のドットに関する全てのアクチュエータ部が選択され、この状態で、信号処理回路は、同じく入力される画像信号に基づいて第2の駆動回路を階調制御し、第2の駆動回路からドット毎に発光信号と消光信号からなるデータ信号が出力される。

[0047]

このように、本発明に係るディスプレイの駆動装置においては、第1の駆動回路に供給すべき電源電圧として2種類の選択用の電源電圧で済み、また、第2の駆動回路に供給すべき電源電圧として2種類の電源電圧で済む。これにより、第1及び第2の駆動回路のカスタムIC化が容易になるだけでなく、ベア・チップ、TCP等の実装外形サイズが小さく、かつ、多出力のICを用いることにより、駆動ICを実装する部分の省スペース化、駆動ICの小型化、低コスト化が容易になり、ディスプレイの設計、製作の自由度を大きくすることができ、ディスプレイの薄型化も容易で低消費電力化も可能となる。これは、ディスプレイの製造コストの低廉化につながる。

[0048]

前記所定行としては、三原色に合わせて3行としてもよい。この場合、前記ドットの選択に同期させて前記光源の発色を切り換えるようにしてもよい。

[0049]

これにより、光源から3原色の光が出射されることになるため、白色光源を使用した場合と比して、ブランク輝度(画素発光部以外の光導波板の欠陥等による発光輝度)が1/3となり、コントラストの向上を図ることができる。

[0050]

また、光源から例えば赤色光が出射されている場合に、赤色に関するドットを

発光させることができるため、色純度が向上し、画質の改善を有効に図ることができる。

[0051]

そして、前記構成において、1枚の画像の表示期間を1フレーム、該1フレームを前記所定行数に合わせて複数に分離した期間を1フィールドとし、該1フィールドを複数に分割した際の1つの分割期間をサブフィールドとしたとき、前記サブフィールドを、当該サブフィールドに割り当てられる単位階調レベルに応じた時間的長さに設定するようにしてもよい。

[0052]

この場合、第2の駆動回路としては、前記第1の駆動回路にて選択された行の各ドットについて、それぞれの階調レベルに応じた表示時間を必要なサブフィールドに割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するように前記信号処理回路にてタイミング制御されるようにしてもよい。

[0053]

そして、信号処理回路を、入力される前記画像信号に基づいて前記選択行に関するドットに割り当てるべきドットデータを得るデータ作成手段と、1フィールドの期間に選択されるドットの数に応じて設けられ、前記ドットデータを選択されたドットに対してサブフィールドの開始タイミングに合わせて出力するデータ転送部とを設けて構成するようにしてもよい。

[0054]

この場合、前記データ転送部を、一定のタイミングに基づくビットシフト動作によってドットデータを受け取る第1のシフトレジスタと、第1のシフトレジスタに格納されたドットデータをパラレルに受け取り、前記ドットデータのビット情報を前記サブフィールドの時間的長さに応じたタイミングに基づいて順次出力する第2のシフトレジスタとを設けて構成してもよい。

[0055]

一方、1枚の画像の表示期間を1フレーム、該1フレームを前記所定行数に合わせて複数に分離した期間を1フィールドとし、該1フィールドを複数に等分割

した際の1つの分割期間をリニアサブフィールドとしたとき、前記第1の駆動回路にて選択された行の各ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するように、前記第2の駆動回路を前記信号処理回路にてタイミング制御するようにしてもよい。

[0056]

そして、前記信号処理回路を、入力される前記画像信号に基づいて1フィールドの期間に選択されるすべてのドットに割り当てるべきドットデータを得るデータ作成手段と、前記ドットデータを構成するビット情報をリニアサブフィールドの開始タイミングに合わせて対応するドットに出力するデータ転送部とを有して構成してもよい。

[0057]

この場合、前記第2の駆動回路は、複数のドライバICを設け、前記データ転送部は、1つの第1データ出力回路と、該第1データ出力回路の出力端子の数に応じた第2データ出力回路を有して構成し、前記第1データ出力回路を、前記ドライバIC1個当たりの出力数をk、前記ドライバICの割当て数をm、最大階調レベルに応じたビット数をnとしたとき、1フィールドの期間に、各出力端子に対し、k×m×nで構成されるデータ群が割り当てられ、各出力端子において、前記データ群を所定のタイミング毎にドット順次に出力するように構成し、前記第2データ出力回路を、前記ドライバICの割当て数mに応じた出力端子を有し、前記第1のデータ出力回路からのデータを前記出力端子を通じてパラレルに、割り当てられたドライバICに出力するように構成してもよい。

[0058]

上述の発明に係るディスプレイの駆動装置において、前記信号処理回路は、前記ドット毎の輝度ばらつきを補正するための輝度補正手段を有するようにしてもよい。これにより、製造上の各ドットの輝度ばらつきが吸収され、画質の向上を図ることができる。

[0059]

また、前記信号処理回路は、前記階調レベルに対する表示特性を線形的にする

ための線形補正手段を有するようにしてもよい。これにより、各ドットにおいて、階調レベルの変化に応じて表示特性が線形的に変化することになるため、正確な画像表示が可能になるだけでなく、コントラストの向上を図ることができ、表示画像に鮮鋭感を持たせることができる。

[0060]

この場合、前記表示特性として、少なくとも前記画像信号の送出系における階調レベルに対する表示特性としてもよい。例えば現行のカラーテレビ方式では、受像機のコスト低減を図るために送像(送出)側でガンマ補正を行うようにしている。このガンマ補正はあくまでもブラウン管を対象としたものであるため、本発明のように光導波板を用いたディスプレイに対しては不要な補正となる。そこで、本発明では、前記線形補正手段によって送出系における階調レベルに対する表示特性を線形的に補正することができるため、ガンマ補正されたテレビ信号を表示する場合であっても画像の高彩度部分の解像度が低下するということがなくなり、表示画像に鮮鋭感を持たせることが可能となる。

[0061]

また、本発明において、1枚の画像の表示期間を1フレームとしたとき、該1フレーム内の任意のタイミングにおいて光源のパワーを少なくとも2段階で切り換える調光制御手段を有するようにしてもよい。

[0062]

これにより、例えばリニアサブフィールドを用いたディスプレイに適用した場合、各リニアサブフィールドの輝度レベルを光源の調光によって変化させることができ、例えば光源のパワーの切換えを100%と25%とした場合は、輝度レベル4と輝度レベル1を有するリニアサブフィールドが光源のパワーの切換えタイミングに応じて任意に定義され、輝度レベル1のみで64階調を表現していた場合に、256階調まで広げることができる。また、1フレーム中に100%のパワーを使用しないため、消費電力の低減を図ることができる。

[0063]

また、本発明において、1枚の画像の表示期間を1フレームとしたとき、該1 フレーム内に全ドットを前記光導波板に対して隔離させる準備期間を有するよう にしてもよい。これにより、例えば前記準備期間を実質的な画像表示期間の前に 設定することで、全ドットがオフ状態となった段階から画像が表示されることに なるため、アクチュエータ部の離隔についての応答性が劣化することがなくなり 、ディスプレイの歩留まりの向上、並びに信頼性の向上を図ることができる。

[0064]

前記準備期間は、前記第1の駆動回路の出力レベルの変化に伴って形成されることが好ましい。これは、第2の駆動回路の出力レベルの変化で前記準備期間を 形成するようにしてもよいが、前記出力レベルの変化をデータ信号に重畳させる 必要があり、コスト的に不利になるおそれがあるからである。

[0065]

次に、本発明は、光源からの光が導入される光導波板と、該光導波板の一方の板面に対向して設けられ、かつ多数の画素に対応した数のアクチュエータ部が配列された駆動部を具備し、入力される画像信号の属性に応じて前記光導波板に対する前記アクチュエータ部の接触・離隔方向の変位動作を制御して、前記光導波板の所定部位の漏れ光を制御することにより、前記光導波板に前記画像信号に応じた映像を表示させるディスプレイの駆動方法において、1つ以上のアクチュエータ部にて1つのドットが構成され、1つ以上のドットで1つの画素が構成される場合に、全ドットに対してオフセット電位を印加し、前記画像信号に基づいてドット毎に発光信号と消光信号からなるデータ信号を出力し、少なくとも時間変調方式で階調制御することを特徴とする。

[0066]

これにより、まず、全てのアクチュエータ部に対してオフセット電位 (バイアス電位) が印加される。この状態で、入力される画像信号に基づいて、ドット毎に発光信号と消光信号からなるデータ信号が出力される。

[0067]

発光信号が供給されたドットに関するアクチュエータ部においては、光導波板側に接近するというオン動作が行われ、当該ドットについて発光が行われることになる。一方、消光信号が供給されたドットに関するアクチュエータ部においては、光導波板に対して離隔するというオフ動作が行われ、当該ドットについて消

光が行われることになる。

[0068]

このように、本発明に係るディスプレイの駆動方法においては、ドットを選択すべき電源電圧として1種類のオフセット用電源電圧で済み、また、発光信号及び消光信号を作成するための電源電圧として2種類の電源電圧で済む。これにより、ドットの発光、消光を行わせるための駆動回路のカスタムIC化が容易になるだけでなく、ベア・チップ、TCP等の実装外形サイズが小さく、かつ、多出力のICを用いることにより、駆動ICを実装する部分の省スペース化、駆動ICの小型化、低コスト化が容易になり、ディスプレイの設計、製作の自由度を大きくすることができ、ディスプレイの轉型化も容易で低消費電力化も可能となる。これは、ディスプレイの製造コストの低廉化につながる。

[0069]

そして、1枚の画像の表示期間を1フレームとし、該1フレームを複数に分割 した際の1つの分割期間をサブフィールドとしたとき、前記サブフィールドを、 当該サブフィールドに割り当てられる単位階調レベルに応じた時間的長さに設定 するようにしてもよい。

[0070]

この場合、各ドットについて、それぞれの階調レベルに応じた表示時間を必要なサブフィールドに割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するようにタイミング制御するようにしてもよい。

[0071]

そして、入力される前記画像信号に基づいて全ドットに割り当てるべきドット データを得、全ドットについて、前記ドットデータを対応するドットにサブフィ ールドの開始タイミングに合わせて出力するようにしてもよい。

[0072]

この場合、一定のタイミングに基づくビットシフト動作によってドットデータを受け取り、次いで、前記ドットデータをパラレルに受け取った後、前記ドットデータのビット情報を前記サブフィールドの時間的長さに応じたタイミングに基づいて順次出力するようにしてもよい。

[0073]

一方、1枚の画像の表示期間を1フレームとし、該1フレームを複数に等分割した際の1つの分割期間をリニアサブフィールドとしたとき、各ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当てて作成されたドットデータを前記アクチュエータ部に出力するようにタイミング制御するようにしてもよい。

[0074]

そして、入力される前記画像信号に基づいて全ドットに割り当てるべきドット データを得、前記ドットデータを構成するビット情報をリニアサブフィールドの 開始タイミングに合わせて対応するドットに出力するようにしてもよい。

[0075]

この場合、全ドットを複数にグループ分けし、ドライバIC1個で駆動するドット数をk、1つのグループにおけるドライバICの割当て数をm、最大階調レベルに応じたビット数をnとしたとき、1フレームの期間に、各グループに対し、k×m×nで構成されるデータ群を割り当て、各グループにおいて、前記データ群を所定のタイミング毎にドット順次に出力するようにしてもよい。

[0076]

次に、本発明は、光源からの光が導入される光導波板と、該光導波板の一方の板面に対向して設けられ、かつ多数の画素に対応した数のアクチュエータ部が配列された駆動部を具備し、入力される画像信号の属性に応じて前記光導波板に対する前記アクチュエータ部の接触・離隔方向の変位動作を制御して、前記光導波板の所定部位の漏れ光を制御することにより、前記光導波板に前記画像信号に応じた映像を表示させるディスプレイの駆動方法において、1つ以上のアクチュエータ部にて1つのドットが構成され、1つ以上のドットで1つの画素が構成される場合に、奇数行の画素と偶数行の画素を交番的に選択し、選択行の画素に対し、前記画像信号に基づいてドット毎に発光信号と消光信号からなる表示用情報を出力し、少なくとも時間変調方式で階調制御することを特徴とする。

[0077]

これにより、例えば奇数行の画素に関する全てのアクチュエータ部が選択され

、この状態で、入力される画像信号に基づいて、ドット毎に発光信号と消光信号 からなるデータ信号が出力される。

[0078]

発光信号が供給されたドットに関するアクチュエータ部においては、光導波板側に接近するというオン動作が行われ、当該ドットについて発光が行われることになる。一方、消光信号が供給されたドットに関するアクチュエータ部においては、光導波板に対して離隔するというオフ動作が行われ、当該ドットについて消光が行われることになる。

[0079]

次いで、偶数行の画素に関する全てのアクチュエータ部が選択され、この状態で、同じく入力される画像信号に基づいて、ドット毎に発光信号と消光信号からなるデータ信号が出力される。

[0080]

このように、本発明に係るディスプレイの駆動方法においては、ドットを選択すべき電源電圧として2種類の選択用の電源電圧で済み、また、発光信号及び消光信号を作成するための電源電圧として2種類の電源電圧で済む。これにより、ドットを順次選択して発光、消光を行わせるための駆動回路のカスタムIC化が容易になるだけでなく、ベア・チップ、TCP等の実装外形サイズが小さく、かつ、多出力のICを用いることにより、駆動ICを実装する部分の省スペース化、駆動ICの小型化、低コスト化が容易になり、ディスプレイの設計、製作の自由度を大きくすることができ、ディスプレイの轉型化も容易で低消費電力化も可能となる。これは、ディスプレイの製造コストの低廉化につながる。

[0081]

そして、1枚の画像の表示期間を1フレーム、該1フレームを2つに分離した 期間を1フィールドとし、該1フィールドを複数に分割した際の1つの分割期間 をサブフィールドとしたとき、前記サブフィールドを、当該サブフィールドに割 り当てられる単位階調レベルに応じた時間的長さに設定するようにしてもよい。

[0082]

この場合、選択された行の各ドットについて、それぞれの階調レベルに応じた

表示時間を必要なサブフィールドに割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するようにタイミング制御してもよい。

[0083]

そして、入力される前記画像信号に基づいて前記選択行に関するドットに割り 当てるべきドットデータを得、1フィールドの期間に選択されるドットについて 、前記ドットデータを選択されたドットに対してサブフィールドの開始タイミン グに合わせて出力するようにしてもよい。

[0084]

一定のタイミングに基づくビットシフト動作によってドットデータを受け取り、次いで、ドットデータをパラレルに受け取った後、前記ドットデータのビット情報を前記サブフィールドの時間的長さに応じたタイミングに基づいて順次出力するようにしてもよい。

[0085]

また、1枚の画像の表示期間を1フレーム、該1フレームを2つに分離した期間を1フィールドとし、該1フィールドを複数に分割した際の1つの分割期間をリニアサブフィールドとしたとき、選択された行の各ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するようにタイミング制御してもよい。

[0086]

また、入力される前記画像信号に基づいて1フィールドの期間に選択されるすべてのドットに割り当てるべきドットデータを得、前記ドットデータを構成するビット情報をリニアサブフィールドの開始タイミングに合わせて対応するドットに出力するようにしてもよい。

[0087]

この場合、1フィールドの期間に選択されるドットを複数にグループ分けし、ドライバIC1個で駆動するドット数をk、1つのグループにおけるドライバICの割当て数をm、最大階調レベルに応じたビット数をnとしたとき、1フィールドの期間に、各グループに対し、k×m×nで構成されるデータ群を割り当て

、各グループにおいて、前記データ群を所定のタイミング毎にドット順次に出力 するようにしてもよい。

[0088]

次に、本発明は、光源からの光が導入される光導波板と、該光導波板の一方の板面に対向して設けられ、かつ多数の画素に対応した数のアクチュエータ部が配列された駆動部を具備し、入力される画像信号の属性に応じて前記光導波板に対する前記アクチュエータ部の接触・離隔方向の変位動作を制御して、前記光導波板の所定部位の漏れ光を制御することにより、前記光導波板に前記画像信号に応じた映像を表示させるディスプレイの駆動方法において、1つ以上のアクチュエータ部にて1つのドットが構成され、1つ以上のドットで1つの画素が構成される場合に、全画素において所定行のドットを順番に選択し、前記画像信号に基づいてドット毎に発光信号と消光信号からなるデータ信号を出力し、少なくとも時間変調方式で階調制御することを特徴とする。

[0089]

これにより、所定行のうち、例えば各1行目のドットに関する全てのアクチュ エータ部が選択され、この状態で、入力される画像信号に基づいて階調制御が行 われ、ドット毎に発光信号と消光信号からなるデータ信号が出力される。

[0090]

発光信号が供給されたドットに関するアクチュエータ部においては、光導波板側に接近するというオン動作が行われ、当該ドットについて発光が行われることになる。一方、消光信号が供給されたドットに関するアクチュエータ部においては、光導波板に対して離隔するというオフ動作が行われ、当該ドットについて消光が行われることになる。

[0091]

次いで、前記所定行のうち、例えば各2行目のドットに関する全てのアクチュエータ部が選択され、この状態で、入力される画像信号に基づいて階調制御が行われ、ドット毎に発光信号と消光信号からなるデータ信号が出力される。

[0092]

同様に、前記所定行のうち、各n行目のドットに関する全てのアクチュエータ

部が選択され、この状態で、入力される画像信号に基づいて階調制御が行われ、 ドット毎に発光信号と消光信号からなるデータ信号が出力される。

[0093]

このように、本発明に係るディスプレイの駆動方法においては、ドットを選択すべき電源電圧として2種類の選択用の電源電圧で済み、また、発光信号及び消光信号を作成するための電源電圧として2種類の電源電圧で済む。これにより、ドットを順次選択して発光、消光を行わせるための駆動回路のカスタムIC化が容易になるだけでなく、ベア・チップ、TCP等の実装外形サイズが小さく、かつ、多出力のICを用いることにより、駆動ICを実装する部分の省スペース化、駆動ICの小型化、低コスト化が容易になり、ディスプレイの設計、製作の自由度を大きくすることができ、ディスプレイの轉型化も容易で低消費電力化も可能となる。これは、ディスプレイの製造コストの低廉化につながる。

[0094]

前記所定行としては、三原色に合わせて3行としてもよい。この場合、前記ドットの選択に同期させて前記光源の発色を切り換えるようにしてもよい。

[0095]

これにより、光源から3原色の光が出射されることになるため、白色光源を使用した場合と比して、ブランク輝度(画素発光部以外の光導波板の欠陥等による発光輝度)が1/3となり、コントラストの向上を図ることができる。

[0096]

また、光源から例えば赤色光が出射されている場合に、赤色に関するドットを 発光させることができるため、色純度が向上し、画質の改善を有効に図ることが できる。

[0097]

そして、前記方法において、1枚の画像の表示期間を1フレーム、該1フレームを前記所定行数に合わせて複数に分離した期間を1フィールドとし、該1フィールドを複数に分割した際の1つの分割期間をサブフィールドとしたとき、前記サブフィールドを、当該サブフィールドに割り当てられる単位階調レベルに応じた時間的長さに設定するようにしてもよい。

[0098]

この場合、選択された行の各ドットについて、それぞれの階調レベルに応じた 表示時間を必要なサブフィールドに割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するようにタイミング制御するようにして もよい。

[0099]

そして、入力される前記画像信号に基づいて前記選択行に関するドットに割り 当てるべきドットデータを得、1フィールドの期間に選択されるドットについて 、前記ドットデータを選択されたドットに対してサブフィールドの開始タイミン グに合わせて出力するようにしてもよい。

[0100]

一定のタイミングに基づくビットシフト動作によってドットデータを受け取り、次いで、ドットデータをパラレルに受け取った後、前記ドットデータのビット情報を前記サブフィールドの時間的長さに応じたタイミングに基づいて順次出力するようにしてもよい。

[0101]

また、1枚の画像の表示期間を1フレーム、該1フレームを前記所定行数に合わせて複数に分離した期間を1フィールドとし、該1フィールドを複数に等分割した際の1つの分割期間をリニアサブフィールドとしたとき、選択された行の各ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当てて作成されたドットデータを前記ドットに関するアクチュエータ部に出力するようにタイミング制御してもよい。

[0102]

また、入力される前記画像信号に基づいて1フィールドの期間に選択されるすべてのドットに割り当てるべきドットデータを得、前記ドットデータを構成するビット情報をリニアサブフィールドの開始タイミングに合わせて対応するドットに出力するようにしてもよい。

[0103]

この場合、1フィールドの期間に選択されるドットを複数にグループ分けし、

ドライバIC1個で駆動するドット数をk、1つのグループにおけるドライバI Cの割当て数をm、最大階調レベルに応じたビット数をnとしたとき、1フィー ルドの期間に、各グループに対し、k×m×nで構成されるデータ群を割り当て 、各グループにおいて、前記データ群を所定のタイミング毎にドット順次に出力 するようにしてもよい。

[0104]

上述の発明に係るディスプレイの駆動方法において、前記ドット毎の輝度ばら つきを補正するための輝度補正処理を行うようにしてもよい。また、前記階調レ ベルに対する表示特性を線形的にするための線形補正処理を行うようにしてもよ い。この場合、前記表示特性は、少なくとも前記画像信号の送出系における階調 レベルに対する表示特性とすることができる。

[0105]

また、本発明において、1枚の画像の表示期間を1フレームとしたとき、該1フレーム内の任意のタイミングにおいて光源のパワーを少なくとも2段階で切り換える調光制御処理を行うようにしてもよい。

[0106]

また、本発明において、1枚の画像の表示期間を1フレームとしたとき、該1フレーム内に全ドットを前記光導波板に対して隔離させる準備期間を有するようにしてもよい。この場合、前記準備期間は、前記第1の駆動回路の出力レベルの変化に伴って形成されることが好ましい。

[0107]

【発明の実施の形態】

以下、本発明に係るディスプレイの駆動装置及びディスプレイの駆動方法の実施の形態例(以下、単に実施の形態に係る駆動装置と記す)を図1~図65を参照しながら説明するが、その前に、本実施の形態に係る駆動装置が適用されるディスプレイの構成について図1~図13を参照しながら説明する。

[0108]

このディスプレイ10は、図1に示すように、ディスプレイ10としての表示 面積を有する導光板12の背面に、複数個の表示素子14が配列されて構成され ている。

[0109]

各表示素子14は、図2に示すように、光源16からの光18が導入される光 導波板20と、該光導波板20の背面に対向して設けられ、かつ多数のアクチュ エータ部22が画素に対応してマトリクス状あるいは千鳥状に配列された駆動部 24を有して構成されている。

[0110]

画素の配列構成は、例えば図3に示すように、垂直方向に並ぶ2つのアクチュエータ部22にて1つのドット26が構成され、水平方向に並ぶ3つのドット26(赤色ドット26R、緑色ドット26G及び青色ドット26B)で1つの画素28が構成されている。更に、この表示素子14においては、画素28の並びを水平方向に16個(48ドット)、垂直方向に16個(16ドット)としている

[0111]

そして、このディスプレイ10は、図1に示すように、例えばVGAの規格に 準拠すべく、水平方向に640画素(1920ドット)が並び、垂直方向に48 0画素(480ドット)が並ぶように、導光板12の背面に、表示素子14を水 平方向に40個、垂直方向に30個配列させるようにしている。

[0112]

導光板12は、ガラス板やアクリル板等の可視光領域での光透過率が大であって均一なものが使用され、各表示素子14間は、ワイヤボンディングや半田付け、端面コネクタ、裏面コネクタ等で接続することにより相互間の信号供給が行えるようになっている。

[0113]

なお、前記導光板12と各表示素子14の光導波板20は屈折率が類似したものが好ましく、導光板12と光導波板20とを貼り合わせる場合には、透明な接着剤を用いてもよい。この接着剤は、導光板12や光導波板20と同様に、可視光領域で均一で、高い透過率を有することが好ましく、また、屈折率も導光板12や光導波板20と近いものに設定することが画面の明るさを確保する上で望ま

しい。

[0114]

ところで、各表示素子14においては、図2に示すように、各アクチュエータ 部22上に、それぞれ画素構成体30が積層されている。画素構成体30は、光 導波板20との接触面積を大きくして画素に応じた面積にする機能を有する。

[0115]

駆動部24は、例えばセラミックスにて構成されたアクチュエータ基板32を有し、該アクチュエータ基板32の各画素28に応じた位置にアクチュエータ部22が配設されている。前記アクチュエータ基板32は、一主面が光導波板20の背面に対向するように配置されており、該一主面は連続した面(面一)とされている。アクチュエータ基板32の内部には、各画素28に対応した位置にそれぞれ後述する振動部を形成するための空所34が設けられている。各空所34は、アクチュエータ基板32の他端面に設けられた径の小さい貫通孔36を通じて外部と連通されている。

[0116]

前記アクチュエータ基板32のうち、空所34の形成されている部分が薄肉とされ、それ以外の部分が厚肉とされている。薄肉の部分は、外部応力に対して振動を受けやすい構造となって振動部38として機能し、空所34以外の部分は厚肉とされて前記振動部38を支持する固定部40として機能するようになっている。

[0117]

つまり、アクチュエータ基板32は、最下層である基板層32Aと中間層であるスペーサ層32Bと最上層である薄板層32Cの積層体であって、スペーサ層32Bのうち、アクチュエータ部22に対応する箇所に空所34が形成された一体構造体として把握することができる。基板層32Aは、補強用基板として機能するほか、配線用の基板としても機能するようになっている。なお、前記アクチュエータ基板32は、一体焼成であっても、後付けであってもよい。

[0118]

ここで、アクチュエータ部22と画素構成体30の具体例を図4~図13に基

づいて説明する。なお、図4~図13の例では、後述する桟42と光導波板20 との間にギャップ形成層44を設けた場合を示す。

[0119]

まず、アクチュエータ部22は、図4に示すように、前記振動部38と固定部40のほか、該振動部38上に直接形成された圧電/電歪層や反強誘電体層等の形状保持層46と、該形状保持層46の上面と下面に形成された一対の電極48 (ロウ電極48a及びカラム電極48b)とを有する。

[0120]

一対の電極48は、図4に示すように、形状保持層46に対して上下に形成した構造や片側だけに形成した構造でもよいし、形状保持層46の上部のみに一対の電極48を形成するようにしてもよい。

[0121]

一対の電極48を形状保持層46の上部のみに形成する場合、一対の電極48 の平面形状としては、図5に示すように、多数のくし歯が相補的に対峙した形状 としてもよく、その他、特開平10-78549号公報にも示されているように 、渦巻き状や多枝形状などを採用することができる。

[0122]

形状保持層46の平面形状を例えば楕円形状とし、一対の電極48をくし歯状に形成した場合は、図6A及び図6Bに示すように、形状保持層46の長軸に沿って一対の電極48のくし歯が配列される形態や、図7A及び図7Bに示すように、形状保持層46の短軸に沿って一対の電極48のくし歯が配列される形態などがある。

[0123]

そして、図6A及び図7Aに示すように、一対の電極48のくし歯の部分が形状保持層46の平面形状内に含まれる形態や、図6B及び図7Bに示すように、一対の電極48のくし歯の部分が形状保持層48の平面形状からはみ出した形態などがある。図6B及び図7Bに示す形態の方がアクチュエータ部22の屈曲変位において有利である。

[0124]

ところで、図4に示すように、一対の電極48として、形状保持層46の上面に例えば口ウ電極48aを形成し、形状保持層46の下面にカラム電極48bを形成した場合においては、図2に示すように、アクチュエータ部22を空所34側に凸となるように一方向に屈曲変位させることも可能であり、その他、図8に示すように、アクチュエータ部22を光導波板20側に凸となるように、他方向に屈曲変位させることも可能である。なお、図8に示す例は、ギャップ形成層44(図4参照)を形成しない場合を示す。

[0125]

一方、画素構成体30は、例えば図4に示すように、アクチュエータ部22上に形成された変位伝達部としての白色散乱体50と色フィルタ52と透明層54の積層体で構成することができる。

[0126]

更に、図9に示すように、白色散乱体50の下層に光反射層56を介在させるようにしてもよい。この場合、光反射層56とアクチュエータ部22間に絶縁層58を形成することが望ましい。

[0127]

画素構成体30の他の例としては、例えば図10に示すように、アクチュエータ部22上に形成された変位伝達部を兼ねる有色散乱体60と透明層54の積層体で構成することもできる。この場合も図11に示すように、アクチュエータ部22と有色散乱体60との間に光反射層56と絶縁層58を介在させるようにしてもよい。

[0128]

また、この表示素子14においては、図2、図4及び図8に示すように、光導波板20とアクチュエータ基板32との間において、画素構成体30以外の部分に形成された桟42を有して構成され、図8の例では、桟42の上面に直接光導波板20が固着された場合を示している。桟42の材質は、熱、圧力に対して変形しないものが好ましい。

[0129]

桟42は、例えば画素構成体30の四方に形成することができる。ここで、画

素構成体30の四方とは、図12に示すように、例えば画素構成体30が平面ほば矩形あるいは楕円であれば、各コーナー部に対応した位置などが挙げられ、1つの桟42が隣接する画素構成体30と共有される形態を示す。

[0130]

桟42の他の例としては、図13に示すように、桟42に少なくとも1つの画素構成体30を囲む窓部42aを有するように構成してもよい。代表的な構成例としては、例えば、桟42自体を板状に形成し、更に画素構成体30に対応した位置に画素構成体30の外形形状に類似した形状の窓部(開口)42aを形成する。これによって、画素構成体30の側面全部が桟42によって囲まれたかたちになり、アクチュエータ基板32と光導波板20との固着が更に強固なものとなる。

[0131]

ここで、表示素子14の各構成部材、特に各構成部材の材料等の選定について 説明する。

[0132]

まず、光導波板20に入射される光18としては、紫外域、可視域、赤外域のいずれでもよい。光源16としては、白熱電球、重水素放電ランプ、蛍光ランプ、水銀ランプ、メタルハライドランプ、ハロゲンランプ、キセノンランプ、トリチウムランプ、発光ダイオード、レーザー、プラズマ光源、熱陰極管(又はそのフィラメント状熱陰極の代わりにカーボンナノチューブーフィールドエミッタを配置したもの)、冷陰極管などが用いられる。

[0133]

振動部38は、高耐熱性材料であることが好ましい。その理由は、アクチュエータ部22を有機接着剤等の耐熱性に劣る材料を用いずに、固定部40によって直接振動部38を支持させる構造とする場合、少なくとも形状保持層46の形成時に、振動部38が変質しないようにするため、振動部38は、高耐熱性材料であることが好ましい。

[0134]

また、振動部38は、アクチュエータ基板22上に形成される一対の電極48

におけるロウ電極48aに通じる配線とカラム電極48bに通じる配線(例えば データ線)との電気的な分離を行うために、電気絶縁材料であることが好ましい

[0135]

従って、振動部38は、高耐熱性の金属あるいはその金属表面をガラス等のセラミック材料で被覆したホーロウ等の材料であってもよいが、セラミックスが最適である。

[0136]

振動部38を構成するセラミックスとしては、例えば安定化された酸化ジルコニウム、酸化アルミニウム、酸化マグネシウム、酸化チタン、スピネル、ムライト、窒化アルミニウム、窒化珪素、ガラス、これらの混合物等を用いることができる。安定化された酸化ジルコニウムは、振動部38の厚みが薄くても機械的強度が高いこと、靭性が高いこと、形状保持層46及び一対の電極48との化学反応性が小さいこと等のため、特に好ましい。安定化された酸化ジルコニウムとは、安定化酸化ジルコニウム及び部分安定化酸化ジルコニウムを包含する。安定化された酸化ジルコニウムでは、立方晶等の結晶構造をとるため、相転移を起こさない。

[0137]

一方、酸化ジルコニウムは、1000℃前後で、単斜晶と正方晶とで相転移し、この相転移のときにクラックが発生する場合がある。安定化された酸化ジルコニウムは、酸化カルシウム、酸化マグネシウム、酸化イットリウム、酸化スカンジウム、酸化イッテルビウム、酸化セリウム又は希土類金属の酸化物等の安定化剤を、1~30モル%含有する。振動部22の機械的強度を高めるために、安定化剤が酸化イットリウムを含有することが好ましい。このとき、酸化イットリウムは、好ましくは1.5~6モル%含有し、更に好ましくは2~4モル%含有することであり、更に0.1~5モル%の酸化アルミニウムが含有されていることが好ましい。

[0138]

また、結晶相は、立方晶+単斜晶の混合相、正方晶+単斜晶の混合相、立方晶

+正方晶+単斜晶の混合相などであってもよいが、中でも主たる結晶相が、正方晶、又は正方晶+立方晶の混合相としたものが、強度、靭性、耐久性の観点から最も好ましい。

[0139]

振動部 38 がセラミックスからなるとき、多数の結晶粒が振動部 38 を構成するが、振動部 38 の機械的強度を高めるため、結晶粒の平均粒径は、0.05 ~ 2μ mであることが好ましく、 $0.1\sim1\mu$ mであることが更に好ましい。

[0140]

固定部40は、セラミックスからなることが好ましいが、振動部38の材料と同一のセラミックスでもよいし、異なっていてもよい。固定部40を構成するセラミックスとしては、振動部38の材料と同様に、例えば、安定化された酸化ジルコニウム、酸化アルミニウム、酸化マグネシウム、酸化チタン、スピネル、ムライト、窒化アルミニウム、窒化珪素、ガラス、これらの混合物等を用いることができる。

[0141]

特に、この表示素子14で用いられるアクチュエータ基板32は、酸化ジルコニウムを主成分とする材料、酸化アルミニウムを主成分とする材料、又はこれらの混合物を主成分とする材料等が好適に採用される。その中でも、酸化ジルコニウムを主成分としたものが更に好ましい。

[0142]

なお、焼結助剤として粘土等を加えることもあるが、酸化珪素、酸化ホウ素等のガラス化しやすいものが過剰に含まれないように、助剤成分を調節する必要がある。なぜなら、これらガラス化しやすい材料は、アクチュエータ基板32と形状保持層46とを接合させる上で有利ではあるものの、アクチュエータ基板32と形状保持層46との反応を促進し、所定の形状保持層46の組成を維持することが困難となり、その結果、素子特性を低下させる原因となるからである。

[0143]

即ち、アクチュエータ基板32中の酸化珪素等は重量比で3%以下、更に好ましくは1%以下となるように制限することが好ましい。ここで、主成分とは、重

量比で50%以上の割合で存在する成分をいう。

[0144]

形状保持層46は、上述したように、圧電/電歪層や反強誘電体層等を用いることができるが、形状保持層46として圧電/電歪層を用いる場合、該圧電/電 歪層としては、例えば、ジルコン酸鉛、マグネシウムニオブ酸鉛、ニッケルニオブ酸鉛、亜鉛ニオブ酸鉛、マンガンニオブ酸鉛、マグネシウムタンタル酸鉛、ニッケルタンタル酸鉛、アンチモンスズ酸鉛、チタン酸鉛、チタン酸バリウム、マグネシウムタングステン酸鉛、コバルトニオブ酸鉛等、又はこれらの何れかの組合せを含有するセラミックスが挙げられる。

[0145]

主成分がこれらの化合物を50重量%以上含有するものであってもよいことはいうまでもない。また、前記セラミックスのうち、ジルコン酸鉛を含有するセラミックスは、形状保持層46を構成する圧電/電歪層の構成材料として最も使用頻度が高い。

[0146]

また、圧電/電歪層をセラミックスにて構成する場合、前記セラミックスに、 更に、ランタン、カルシウム、ストロンチウム、モリブデン、タングステン、バ リウム、ニオブ、亜鉛、ニッケル、マンガン等の酸化物、若しくはこれらの何れ かの組合せ、又は他の化合物を、適宜、添加したセラミックスを用いてもよい。

[0147]

例えば、マグネシウムニオブ酸鉛とジルコン酸鉛及びチタン酸鉛とからなる成分を主成分とし、更にランタンやストロンチウムを含有するセラミックスを用いることが好ましい。

[0148]

圧電/電歪層は、緻密であっても、多孔質であってもよく、多孔質の場合、その気孔率は40%以下であることが好ましい。

[0149]

形状保持層46として反強誘電体層を用いる場合、該反強誘電体層としては、 ジルコン酸鉛を主成分とするもの、ジルコン酸鉛とスズ酸鉛とからなる成分を主 成分とするもの、更にはジルコン酸鉛に酸化ランタンを添加したもの、ジルコン酸鉛とスズ酸鉛とからなる成分に対してジルコン酸鉛やニオブ酸鉛を添加したものが望ましい。

[0150]

特に、下記の組成のようにジルコン酸鉛とスズ酸鉛からなる成分を含む反強誘電体膜をアクチュエータ部22のような膜型素子として適用する場合、比較的低電圧で駆動することができるため、特に好ましい。

[0151]

P b $_{0.99}$ N b $_{0.02}$ [(Z r $_{x}$ S n $_{1-x}$) $_{1-y}$ T i $_{y}$] $_{0.98}$ O $_{3}$ 但し、0.5 < x < 0.6, 0.05 < y < 0.063, 0.01 < N b < 0.03

また、この反強誘電体膜は、多孔質であってもよく、多孔質の場合には気孔率30%以下であることが望ましい。

[0152]

そして、振動部38の上に形状保持層46を形成する方法としては、スクリーン印刷法、ディッピング法、塗布法、電気泳動法等の各種厚膜形成法や、イオンビーム法、スパッタリング法、真空蒸着法、イオンプレーティング法、化学気相蒸着法(CVD)、めっき等の各種薄膜形成法を用いることができる。

[0153]

この実施の形態においては、振動部38上に前記形状保持層46を形成するにあたっては、スクリーン印刷法やディッピング法、塗布法、電気泳動法等による 厚膜形成法が好適に採用される。

[0154]

これらの手法は、平均粒径0.01~5μm、好ましくは0.05~3μmの 圧電セラミックスの粒子を主成分とするペーストやスラリー、又はサスペンション、エマルジョン、ゾル等を用いて形成することができ、良好な圧電作動特性が 得られるからである。

[0155]

特に、電気泳動法は、膜を高い密度で、かつ、高い形状精度で形成することができることをはじめ、「電気化学および工業物理化学 Vol. 53, No. 1

(1985), p63~68 安斎和夫著」あるいは「第1回電気泳動法による セラミックスの高次成形法 研究討論会 予稿集(1998), p5~6, p2 3~24」等の技術文献に記載されるような特徴を有する。従って、要求精度や 信頼性等を考慮して、適宜、手法を選択して用いるとよい。

[0156]

また、前記振動部 380 厚みと形状保持層 460 厚みは、同次元の厚みであることが好ましい。なぜなら、振動部 380 厚みが極端に形状保持層 460 厚みより厚くなると(1 桁以上異なると)、形状保持層 460 焼成収縮に対して、振動部 380 ぞの収縮を妨げるように働くため、形状保持層 460 とアクチュエータ基板 22 界面での応力が大きくなり、はがれ易くなる。反対に、厚みの次元が同程度であれば、形状保持層 460 焼成収縮にアクチュエータ基板 32 (振動部 380) が追従し易くなるため、一体化には好適である。具体的には、振動部 380 厚みは、 $1\sim100$ μ mであることが好ましく、 $3\sim50$ μ mが更に好ましく、 $5\sim20$ μ mが更になお好ましい。一方、形状保持層 46 は、その厚みとして $5\sim20$ μ mが更になお好ましく、 $5\sim30$ μ mが更になお好ましい。

[0157]

前記形状保持層46の上面及び下面に形成されるロウ電極48a及びカラム電極48b、あるいは形状保持層46上に形成される一対の電極48は、用途に応じて適宜な厚さとするが、0.01~50μmの厚さであることが好ましく、0.1~5μmが更に好ましい。また、前記ロウ電極48a及びカラム電極48bは、室温で固体であって、導電性の金属で構成されていることが好ましい。例えば、アルミニウム、チタン、クロム、鉄、コバルト、ニッケル、銅、亜鉛、ニオブ、モリブデン、ルテニウム、ロジウム、銀、スズ、タンタル、タングステン、イリジウム、白金、金、鉛等を含有する金属単体又は合金が挙げられる。これらの元素を任意の組合せで含有していてもよいことはいうまでもない。

[0158]

光導波板20は、その内部に導入された光18が前面及び背面において光導波板20の外部に透過せずに全反射するような光屈折率を有するものであり、導入

される光18の波長領域での透過率が均一で、かつ高いものであることが必要である。このような特性を具備するものであれば、特にその材質は制限されないが、具体的には、例えばガラス、石英、アクリル等の透光性プラスチック、透光性セラミックスなど、あるいは異なる屈折率を有する材料の複数層構造体、又は表面にコーティング層を設けたものなどが一般的なものとして挙げられる。

[0159]

また、画素構成体30に含まれる色フィルタ52及び有色散乱体60等の着色層とは、特定の波長領域の光だけを取り出すために用いられる層であり、例えば特定の波長の光を吸収、透過、反射、散乱させることで発色させるものや、入射した光を別の波長のものに変換させるものなどがある。透明体、半透明体及び不透明体を単独、もしくは組み合わせて用いることができる。

[0160]

構成は、例えば染料、顔料、イオンなどの色素や蛍光体を、ゴム、有機樹脂、 透光性セラミックス、ガラス、液体等の内部に分散、溶解したものや、それらの 表面に塗布したもの、更には上述の色素や蛍光体等の粉末を焼結させたり、プレ スして固めたものなどがある。材質及び構造については、これらを単独で用いて もよいし、これらを組み合わせて用いてもよい。

[0161]

色フィルタ52と有色散乱体60との違いは、光18を導入した光導波板20 に画素構成体30を接触させて発光状態にしたときに、着色層のみでの反射、散 乱による漏れ光の輝度値が、画素構成体30及びアクチュエータ部22を含めた 全構成体の反射、散乱による漏れ光の輝度値の0.5倍以上であれば、その着色 層は有色散乱体60であると定義し、0.5倍未満であればその着色層は色フィ ルタ52であると定義する。

[0162]

測定法の具体例を挙げると、光18が導入された光導波板20の背面に、前記着色層単体を接触させたとき、該着色層から該光導波板20を通過し、前面に漏れ出した光の正面輝度がA(nt)であり、また、該着色層の光導波板20と接する反対側の面に更に画素構成体30を接触させたとき、前面に漏れ出した光の

正面輝度がB(nt)であったとすると、A \ge 0.5 \times Bを満たすときは、前記着色層は有色散乱体 60であり、A<0.5 \times Bを満たすときは色フィルタ 52である。

[0163]

上述の正面輝度とは、輝度を測定する輝度計と前記着色層とを結ぶ線が、前記 光導波板20の前記着色層と接する面に対して垂直であるように輝度計を配置(輝度計の検出面は光導波板20の板面に平行)して計測した輝度である。

[0164]

有色散乱体 6 0 の利点は、層の厚みにより色調や輝度が変化しにくいことであり、そのための層形成法として、層厚の厳密な制御は難しいが、コストが安いスクリーン印刷など、多種の適用が可能である。

[0165]

また、有色散乱体 6 0 が変位伝達部を兼ねることにより、層形成プロセスを簡略化できるほか、それら全体の層厚を薄くできるため、表示素子 1 4 全体の厚みを薄くすることが可能であり、また、アクチュエータ部 2 2 の変位量低下の防止・及び応答速度の向上が可能である。

[0166]

色フィルタ52の利点は、光導波板20がフラットで表面平滑性が高いため、 光導波板20側に層を形成するときには、層形成が容易になり、プロセスの選択 の幅が広がり、安価になるだけでなく、色調、輝度に影響を及ぼす層厚の制御が 容易になる。

[0167]

なお、色フィルタ52や有色散乱体60等の着色層の膜形成法としては、特に制限はなく、公知の各種の膜形成法を適用することができる。例えば光導波板20やアクチュエータ部22の面上に、チップ状、フィルム状の着色層を直接貼り付けるフィルム貼着法のほか、着色層の原材料となる粉末、ペースト、液体、気体、イオン等を、スクリーン印刷、フォトリソグラフィ法、スプレー・ディッピング、塗布等の厚膜形成手法や、イオンビーム、スパッタリング、真空蒸着、イオンプレーティング、CVD、めっき等の薄膜形成手法により成膜し、着色層を

形成する方法がある。

[0168]

また、前記画素構成体30としてその全部あるいは一部に発光層を設けるようにしてもよい。この発光層としては蛍光体層が挙げられる。この蛍光体層は、不可視光(紫外線や赤外線)によって励起され、可視光を発光するものや、可視光によって励起されて可視光を発光するものがあるが、いずれでもよい。

[0169]

また、前記発光層として、蛍光顔料も用いることができる。この蛍光顔料を用いると、顔料自体の色、即ち、反射色にほぼ一致する波長の蛍光が加わるものは、それだけ色刺激が大きく、鮮やかに発光するため、表示素子やディスプレイの高輝度化に対してより好ましく用いられ、一般的な昼光蛍光顔料が好ましく用いられる。

[0170]

また、発光層として、輝尽性蛍光体や、燐光体、あるいは蓄光顔料も用いられる。これらの材料は、有機材料、無機材料のいずれでもよい。

[0171]

そして、上述した発光材料を単独で用いて発光層を形成したもの、これらの発 光材料を樹脂に分散させたものを用いて発光層を形成したもの、あるいはこれら の発光材料を樹脂に溶解させたもので発光層を形成したものが好ましく用いられ る。

[0172]

発光材料の残光時間としては、1秒以下が好ましく、より好ましくは30m秒がよい。更に好ましくは数m秒以下がよい。

[0173]

そして、画素構成体30の全部あるいはその一部として前記発光層を用いた場合は、光源16として、前記発光層を励起する波長の光を含み、励起に十分なエネルギー密度を有していれば、特に制限はない。例えば、冷陰極管、熱陰極管(又はそのフィラメント状熱陰極の代わりにカーボンナノチューブーフィールドエミッタを配置したもの)、メタルハライドランプ、キセノンランプ、赤外線レー ザを含むレーザ、ブラックライト、ハロゲンランプ、白熱電球、重水素放電ランプ、蛍光ランプ、水銀ランプ、トリチウムランプ、発光ダイオード、プラズマ光源などが用いられる。

[0174]

次に、前記ディスプレイ10の動作を図2を参照しながら簡単に説明する。この動作説明においては、図14に示すように、各アクチュエータ部22のロウ電極48aに印加されるオフセット電位として例えば10Vを使用し、各アクチュエータ部22のカラム電極48bに印加されるオン信号及びオフ信号の電位としてそれぞれ0V及び60Vを使用した例を示す。

[0175]

従って、カラム電極48bにオン信号が印加されたアクチュエータ部22においては、カラム電極48b及びロウ電極48a間に低レベル電圧(-10V)がかかり、カラム電極48bにオフ信号が印加されたアクチュエータ部22においては、カラム電極48b及びロウ電極48a間に高レベル電圧(50V)がかかることになる。

[0176]

そして、まず、光導波板20の例えば端部から光18が導入される。この場合、画素構成体30が光導波板20に接触していない状態で、光導波板20の屈折率の大きさを調節することにより、全ての光18が光導波板20の前面及び背面において透過することなく内部で全反射させるようにする。光導波板20の反射率nとしては、1.3~1.8が望ましく、1.4~1.7がより望ましい。

[0177]

この例においては、アクチュエータ部22の自然状態において、画素構成体30の端面が光導波板20の背面に対して光18の波長以下の距離で接触しているため、光18は、画素構成体30の表面で反射し、散乱光62となる。この散乱光62は、一部は再度光導波板20の中で反射するが、散乱光62の大部分は光導波板20で反射されることなく、光導波板20の前面(表面)を透過することになる。これによって、全てのアクチュエータ部22がオン状態となり、そのオン状態が発光というかたちで具現され、しかも、その発光色は画素構成体30に

含まれる色フィルタ52や有色散乱体60あるいは上述した発光層の色に対応したものとなる。この場合、全てのアクチュエータ部22がオン状態となっているため、ディスプレイ10の画面からは白色が表示されることになる。

[0178]

この状態から、あるドット26に対応するアクチュエータ部22にオフ信号が 印加されると、当該アクチュエータ部22が図2に示すように、空所20側に凸 となるように屈曲変位、即ち、一方向に屈曲変位して、画素構成体30の端面が 光導波板20から離間し、当該アクチュエータ部22がオフ状態となり、そのオ フ状態が消光というかたちで具現される。

[0179]

つまり、このディスプレイ10は、画素構成体30の光導波板20への接触の 有無により、光導波板20の前面における光の発光(漏れ光)の有無を制御する ことができる。

[0180]

特に、このディスプレイ10では、光導波板20に対して画素構成体30を接近・離隔方向に変位動作させる1つの単位を垂直方向に並べたものを1ドットとし、このドットが水平方向に3つ並んだもの(赤色ドット26R、緑色ドット26G及び青色ドット26B)を1画素とし、この画素を多数マトリクス状、あるいは各行に関し千鳥状に配列するようにしているため、入力される画像信号の属性に応じて各画素での変位動作を制御することにより、陰極線管や液晶表示装置並びにプラズマディスプレイと同様に、光導波板20の前面、即ち、表示面に画像信号に応じたカラー映像(文字や図形等)を表示させることができる。

[0181]

そして、このディスプレイ10において、前記ロウ電極48a及びカラム電極48bに通じる配線は、図15に示すように、多数のアクチュエータ部22の行数に応じた本数の配線70と、全アクチュエータ部22の数に応じた本数のデータ線72とを有する。配線70は途中で共通配線74とされる。

[0182]

また、このディスプレイ10は、アクチュエータ部22のカラム電極48bと

データ線72とが接続され、1行のアクチュエータ部22に対して共通の配線7 0が接続され、前記データ線72はアクチュエータ基板32の例えば背面側に形成されている。

[0183]

配線70は、前列のアクチュエータ部22に関するロウ電極48aから導出されて当該アクチュエータ部22に関するロウ電極48aに接続されて、一つの行に関し、シリーズに配線された形となっている。また、カラム電極48bとデータ線72とはアクチュエータ基板32に形成されたスルーホール78を通じて電気的に接続される。

[0184]

なお、各配線70と各データ線72とが交差する部分には、互いの配線70及び72間の絶縁をとるためにシリコン酸化膜、ガラス膜、樹脂膜等からなる図示しない絶縁膜が介在されている。

[0185]

そして、第1の実施の形態に係る駆動装置200Aは、図15に示すように、ディスプレイ10の周辺に実装されたロウ電極駆動回路202と、カラム電極駆動回路204と、少なくともカラム電極駆動回路204を制御する信号処理回路206とを有して構成されている。

[0186]

口ウ電極駆動回路202は、共通配線74及び各配線70を介して全アクチュエータ部22の口ウ電極48aにオフセット電位(バイアス電位)を供給するように構成されており、1種類のオフセット用電源電圧が電源部208を通じて供給されている。

[0187]

カラム電極駆動回路 2 0 4 は、全ドット数に対応した数のドライバ出力 2 1 0 と、所定数のドライバ出力 2 1 0 が組み込まれた複数のドライバIC 2 1 0 B とを有して構成され、前記ディスプレイ 1 0 の各データ線 7 2 にパラレルにデータ信号を出力して、全ドットにそれぞれデータ信号を供給するように構成されている。

[0188]

各ドライバIC210Bは、図16に示すように、例えば240ビット構成のシフトレジスタ212を有し、該シフトレジスタ212の各ビットに対してそれぞれデータ転送部230とドライバ出力210が接続されて構成されている。シフトレジスタ212に供給される240ビットのデータ(ブロックデータDb)の各ビットデータは、それぞれ対応するドットに供給するためのドットデータDdである。

[0189]

データ転送部230は、2つのシフトレジスタ (第1及び第2のシフトレジスタ250及び252)で構成することができる。

[0190]

第1のシフトレジスタ250は、一定のシフトクロックPc1(=T/6)に基づくビットシフト動作によってドットデータDdをシリーズに受け取り、6ビットのドットデータDdが受け取られた段階で該6ビットのドットデータDdをパラレルに出力する直列入力並列出力のシフトレジスタにて構成することができる。

[0191]

第2のシフトレジスタ252は、前記第1のシフトレジスタ250に格納されたドットデータDdをパラレルに受け取り、前記ドットデータDdのビット情報を前記サブフィールドSF1~SF6の時間的長さに応じたタイミング(T/2、T/4、・・・、T/64)を有するシフトクロックPc2に基づいて順次出力する並列入力直列出力のシフトレジスタで構成することができる。

[0192]

即ち、この第2のシフトレジスタ252においては、第1のシフトレジスタ250から転送された時点で、LSBに格納された0ビット目のビット情報がそのままカラム電極駆動回路204の対応するドライバ出力210に供給され、最初のシフトクロックPc2(=T/2)が経過した時点で、全体のビット情報が右側にビットシフトし、LSBに位置する1ビット目のビット情報がそのままドライバ出力210に供給されることになる。

[0193]

次いで、シフトクロックPc2(=T/4)が経過した時点で、全体のビット情報が右側にビットシフトし、LSBに位置する2ビット目のビット情報がそのままドライバ出力210に供給されることになる。同様に、シフトクロックPc2がT/8、T/16、T/32及びT/64というように順次経過するたびに、全体のビット情報がビットシフトし、ビットシフトするたびにLSBに位置することになる3ビット目、4ビット目、5ビット目及び6ビット目のビット情報が順次ドライバ出力210に供給されることになる。

[0194]

そして、各ドライバ出力210には、2種類のデータ用電源電圧が同じく電源 部208を通じて供給されている。

[0195]

カラム電極駆動回路204から全ドットに対してデータ線72が接続されることから、データ線72を引き回すための広い領域を確保する必要があり、しかも、データ線72の配線長の増加に伴う配線容量及び配線抵抗による時定数の影響(信号の減衰等)を考慮する必要があるが、この例では、ディスプレイ10を1200個の表示素子14に分割しているため、カラム電極駆動回路204からのデータ線72の引き回しは、表示素子14単位に考慮すればよく、広い配線形成のための領域を確保する必要はない。また、配線容量及び配線抵抗についても表示素子14単位に考慮すればよいため、信号の減衰等は生じない。

[0196]

前記2種類のデータ用電源電圧は、後述するようにアクチュエータ部22を下方に屈曲変位させるのに十分な高レベル電圧とアクチュエータ部22を元の状態に復帰させるのに十分な低レベル電圧である。

[0197]

信号処理回路206は、少なくとも時間変調方式で階調制御すべく前記カラム電極駆動回路204を制御するように構成されている。

[0198]

ここで、時間変調方式による階調制御について、図17及び図18を参照しな

がら説明する。まず、1枚の画像の表示期間を1フレームとし、該1フレームを 例えば6つに分割した際の1つの分割期間をサブフィールドとしたとき、最初の サブフィールド(第1サブフィールドSF1) が最も長く、サブフィールドの経 過毎に1/2の割合で短くなるように設定される。

[0199]

このサブフィールドの長さをデータ値の大きさで表した場合、図17に示すように、第1サブフィールドSF1の期間を例えば「64」としたとき、第2サブフィールドSF2は「32」、第3サブフィールドSF3は「16」、第4サブフィールドSF4は「8」、第5サブフィールドSF5は「4」、第6サブフィールドSF6は「2」として設定される。

[0200]

そして、信号処理回路206において、全ドットについて、それぞれの階調レベルに応じた表示時間を各サブフィールドSF1~SF6に割り当ててドットデータを作成し、これらドットデータをそれぞれデータ信号としてカラム電極駆動回路204を通じて各サブフィールドSF1~SF6の期間に出力する。

[0201]

ここで、1つのドットデータでみた場合、そのドットの階調レベルに応じた表示時間が各サブフィールドに割り当てられた時間幅に振り分けられるため、すべてのサブフィールドに振り分けられる場合やいくつかのサブフィールドに振り分けられる場合とがある。

[0202]

例えば、当該ドットの階調レベルが例えば126である場合、すべてのサブフィールドSF1~SF6が選択されることになり、ドットデータとしては、「00000」のビット列となる。また、階調レベルが78である場合は、第1、第4、第5及び第6サブフィールドSF1、SF4、SF5及びSF6が選ばれることになり、ドットデータとしては、「011000」のビット列となる。

[0203]

データ信号は、ドットデータを構成するビット列の各ビット情報に応じて高レベル及び低レベルに変化するアナログ信号であり、ビット情報が論理的に「O」

であれば、低レベル電圧(オン信号)とされ、ビット情報が論理的に「1」であれば、高レベル電圧(オフ信号)とされる。

[0204]

即ち、当該アクチュエータ部 2 2 に対して出力されるデータ信号の出力形態としては、例えば選択されたサブフィールドについてはオン信号(低レベル電圧)が出力され、選択されないサブフィールドについてはオフ信号(高レベル電圧)が出力されるという形態となる。

[0205]

そして、前記信号処理回路206は、具体的には、図18に示すように、動画出力機器220からの例えばプログレッシブ方式の動画信号Sv(例えばアナログ動画信号)と同期信号Ssを入力して、フレーム単位にデジタルの画像データDvに変換し、画像メモリ222(フレームバッファ)に書き込む画像データ処理回路224と、ドット単位に設定された階調補正データDcが記録される補正データメモリ226と、画像メモリ222からの画像データDvと補正データメモリ226からの階調補正データDcを読み出し、これらを乗算して補正済画像データDhとする表示コントローラ228とを有して構成されている。

[0206]

動画出力機器220としては、例えば記録媒体に記録された動画あるいは通信 (電波、ケーブル等を含む)によって送られてくる動画を受け取って出力するV TRやパーソナルコンピュータ等が挙げられる。

[0207]

表示コントローラ228は、画像メモリ222から画像データDvを読み出す第1の読出し回路232と、補正データメモリ226からの階調補正データDcを読み出す第2の読出し回路234と、第1及び第2の読出し回路232及び234から読み出された画像データDv及び階調補正データDcを乗算して補正済画像データDhとする乗算回路236と、該乗算回路236にて得られた補正済画像データDhを並列に出力する出力ポート238とを有する。

[0208]

ここで、この第1の実施の形態に係る駆動装置200Aにおけるデータ転送レ

ートを考えると、1フレームの期間T内に1ドット当たり6ビットのデータを伝送する必要から、

43 H z × 6 b i t × $(640 \times 3 \times 480) = 238$ M b p s となる。そして、カラム電極駆動回路 204 として動作クロックが例えば 1 M H z の I C を用いた場合は、238 M H z / 1 M H z = 238 並列の 1 ビット伝送が必要となる。

[0209]

従って、表示コントローラ228における出力ポートOPは、データ伝送のための出力端子を238個有し、乗算回路236から出力される補正済画像データ Dhをそれぞれ出力端子に対応させて並べ替えて、各出力端子からそれぞれブロックデータDbとして並列に出力するようになっている。この場合、各出力端子から並列にそれぞれ1ビット単位に転送されるレート(転送レート)は1MHzとなっている。

[0210]

第1の実施の形態に係る駆動装置200Aは、基本的には以上のように構成されるものであり、次にその作用効果について説明する。

[0211]

まず、画像データ処理回路 2 2 4 に動画出力機器 2 2 0 からの動画信号 S v と同期信号 S s が入力される。該画像データ処理回路 2 2 4 は、入力された動画信号 S v を同期信号 S s に基づいてフレーム単位にデジタルの画像データ D v に変換し、画像メモリ 2 2 2 (フレームバッファ)に書き込む。

[0212]

表示コントローラ228は、画像メモリ222に書き込まれた画像データDvと補正データメモリ226からの階調補正データDcを読み出し、これらを乗算して補正済画像データDh(1ドット単位に6ビットのドットデータが配列された画像データ)とする。

[0213]

補正済画像データDhは、出力ポートOPにおいて、それぞれ出力端子に対応 させたデータ形態に並べ替えられた後、該出力ポートOPから238並列で1ビ ット/1MHzの転送レートで出力され、それぞれ対応するドライバIC210 Bに供給される。

[0214]

各ドライバIC210Bでは、出力ポートOPから送られてくるブロックデータDbがシフトレジスタ212に供給され、該シフトレジスタ212に240個のビット列が揃った段階で、該ビット列がそれぞれ対応するデータ転送部230にドットデータDdとして並列に送られるようになっている。

[0215]

即ち、各データ転送部230は、シフトレジスタ212から送られてくるドットデータDdを一定のシフトクロックPc1で読み込んで、各サブフィールドSF1~SF6の開始タイミング(T/2、T/4、・・・、T/64)に応じたタイミングでドットデータDdを出力するという動作を行う。

[0216]

各データ転送部230から出力されたドットデータDdは、それぞれ対応するドライバ出力210に供給される。ドライバ出力210は、ドットデータDdに含まれるビット情報に基づいたデータ信号に変換してそれぞれ対応するドットにデータ線72を通じて出力する。

[0217]

即ち、各ドットには、対応するドットデータDdに含まれるビット情報が、各 サブフィールドSF1~SF6の開始タイミングに同期してインクリメントされ ながらデータ信号として供給されることになる。

[0218]

これによって、ディスプレイ10の画面上には、画像データDvに応じたカラー映像が表示されることになる。

[0219]

このように、第1の実施の形態に係る駆動装置200Aにおいては、1つ以上のアクチュエータ部22にて1つのドット26が構成され、1つ以上のドット26で1つの画素28が構成される場合に、全アクチュエータ部22に対してオフセット電位(バイアス電位)を印加するロウ電極駆動回路202と、画像データ

Dvに基づいてドット毎にオン信号とオフ信号からなるデータ信号を出力するカラム電極駆動回路204と、ロウ電極駆動回路202及びカラム電極駆動回路204を制御する信号処理回路206とを具備し、該信号処理回路206において、少なくとも時間変調方式で階調制御すべくカラム電極駆動回路204を制御するようにしたので、ロウ電極駆動回路202に供給すべき電源電圧として1種類のオフセット用電源電圧で済む。これにより、ロウ電極駆動回路202のカスタムIC化が容易になり、駆動装置200Aの設計、製作の自由度を大きくすることができ、低消費電力化も可能となる。

[0220]

更に、カラムドライバIC(カラム電極駆動回路204)についても、IC自身に例えばPWM変調等の高機能を有するような高価なものを必要とせず、基本的にデータ入力シフトレジスタとレベルシフタを有するだけの多出力、低価格ICを使用することができる。これらはベア・チップ、TCP等の実装外形サイズを小型化する上でも有利であり、駆動ICが実装される部分の省スペース化がしやすいことから、ディスプレイ10の轉型化も容易になる。これは、ディスプレイ10の製造コストの低廉化につながる。

[0221]

上述の例では、各アクチュエータ部22の口ウ電極48aに印加されるオフセット電位を10Vにした場合を示したが、その他、図19に示すように、前記オフセット電位を0Vにしてもよい。この場合、オフセット電位として接地電位を使用すればよいため、電源の数を1つ減らすことができる。

[0222]

また、その他の例としては、図20に示すように、電圧印加の極性を逆にするようにしてもよい。例えばオフセット電位を+50Vとし、オン信号及びオフ信号の各電位を60V及び0Vとすればよい。この場合、形状保持層46の分極方向も逆になる。

[0223]

次に、第2の実施の形態に係る駆動装置200Bについて図21~図27を参照しながら説明する。

[0224]

この第2の実施の形態に係る駆動装置200Bは、信号処理回路206での時間変調方式による階調制御が一部異なり、図21に示すように、1枚の画像の表示期間を1フレームとし、該1フレームを複数に等分割した際の1つの分割期間をリニアサブフィールドとしたとき、信号処理回路206は、各ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当ててドットデータを作成するようになっている。

[0225]

例えば、最大階調が64階調であれば1フレームの期間に63個のリニアサブフィールドLSF1~LSF63が割り付けられ、ドットデータDdは、1つのリニアサブフィールド当たり1ビットのデータ構成となる。

[0226]

具体的には、あるドットの階調レベルが62であれば、図22Aに示すように、0ビットと1ビットがそれぞれ「1」であり、残りの連続する2ビットから63ビットにわたって「0」であるドットデータが作成され、階調レベルが8であれば、図22Bに示すように、連続する0ビットから55ビット目にわたって「1」であり、残りの連続する56ビットから63ビットにわたって「0」であるドットデータが作成されることになる。

[0227]

そして、この第2の実施の形態に係る駆動装置200Bは、図23に示すように、第1の実施の形態に係る駆動装置200A(図18参照)とほぼ同様の構成を有するが、信号処理回路206のデータ出力系の構成と、カラム電極駆動回路204における各ドライバIC210Bの構成が以下のように異なる。

[0228]

即ち、信号処理回路 2 0 6 のデータ出力系、即ち、表示コントローラ 2 2 8 の 後段にデータ転送部 2 3 0 が接続されている。そして、表示コントローラ 2 2 8 の乗算回路 2 3 6 は、第 1 及び第 2 の読出し回路 2 3 2 及び 2 3 4 から読み出された画像データ D v 及び階調補正データ D c を乗算して補正済画像データ D h (ドット単位に最大階調に応じたビット数のドットデータが配列された画像データ

)とし、出力ポートOPを介してそのまま後段のデータ転送部230に出力する

[0229]

ドライバIC210Bは、図24に示すように、例えば240ビット構成のシフトレジスタ212を有し、該シフトレジスタ212の各ビットに対してドライバ出力210が接続されて構成されている。

[0230]

ここで、この第2の実施の形態に係る駆動装置200Bにおけるデータ転送レートを考えると、1/64フレームの期間(T/64)内に1ビットのデータを 伝送する必要から、

 $(43 \times 64 \text{ Hz}) \times 1 \text{ bit} \times (640 \times 3 \times 480) = 2.5 \text{ Gbps}$ となる。そして、カラム電極駆動回路 204 として動作クロックが例えば 1 MHz $2 \text{ old on } 1 \text{ Certain } 2 \text{ old on } 1 \text{ Certain } 2 \text{ old on } 1 \text{ Certain } 2 \text{ old on } 1 \text{ Certain } 2 \text{ old on } 1 \text{ Certain } 2 \text{ old on } 2 \text{$

[0231]

従って、前記データ転送部230としては、前記ドットデータDdを構成する ビット情報を各リニアサブフィールドLSF1~LSF64の開始タイミングに 合わせて出力する回路構成が採用され、例えば図25に示すように、1つの第1 データ出力回路270と、該第1データ出力回路270の出力端子の数に応じた 第2データ出力回路272を有して構成される。

[0232]

前記第1データ出力回路270は、全ドライバIC210Bを複数にグループ分けし、ドライバIC210B1個当たりの出力数(ドライバIC210Bが出力するドット数)をk、1つのグループにおけるドライバIC210Bの割当て数をm、最大階調に応じたビット数をnとしたとき、1フレームの期間Tに、各出力端子に対し、k×m×nで構成されるデータ群が割り当てられ、各出力端子において、前記データ群を所定のタイミング毎にドット順次に出力するように構成されている。

[0233]

前記第2データ出力回路272は、前記ドライバIC210Bの割当て数mに 応じた出力端子を有し、前記第1データ出力回路270から供給されたデータを 前記複数の出力端子を通じてパラレルに、割り当てられたドライバIC210B に出力するように構成されている。

[0234]

例えば、ドライバIC210B1個当たりの出力数(ドライバIC210Bが 出力するドット数)を240とし、グループ毎に40個のドライバIC210B を割り当て、第1データ出力回路270の出力端子の数を96個とした場合、第 1データ出力回路 2 7 0 の各出力端子 φ 1 ~ φ 9 6 には、それぞれ 4 0 個の出力 端子φ100~φ139を有する第2データ出力回路272が接続されることに なり、この場合、 $9.6 \times 4.0 = 3.8.4.0$ 個の並列出力が可能となる。

[0235]

そして、前記第1データ出力回路270は、図26に示すように、表示コント ローラ228から供給された補正済画像データDhを240×40個=9600 個のドットデータ毎に分割し、各出力端子φ1~φ96毎に、9600個のドッ トデータDdを割り当てる。

[0236]

1つの出力端子(例えば出力端子φ1)をみた場合、図27に示すように、9 600個のドットデータDdの同一ビット位置にあるビット情報をドット単位に 並べてなる9600ビットのビット列300をドットデータDdの0~63ビッ トについて作成し、更に、これらビット列を0~63ビットの順番に並べてなる ビット列データ302を作成する。

[0237]

そして、このビット列データ302をT/64の時間内に240 \times 40=96 00ビット(ビット列300の長さ)だけ第1データ出力回路270の基準クロ ックに同期させてビットシフトさせながら出力端子・1から出力する。基準クロ ックを例えば40MHzとしたとき、9600ビット構成のビット列300を構 成する40ビット構成のビット列300Bの転送周波数が1MHzとなり、カラ ム電極駆動回路204の転送周波数と同じにすることができる。従って、この第

6 7

1データ出力回路270として、基準クロックが40MHz以上(例えば44. 9MHz)のICを使用することにより、時間的余裕をもってビット列300を 転送することができる。

[0238]

第2データ出力回路272は、40ビット構成のビット列300Bがラッチされる毎に40個の出力端子 φ100~φ139よりパラレルにカラム電極駆動回路204の対応する40個のドライバIC210Bに出力する。この一連の動作が240回繰り返されて、各ドライバIC210Bのシフトレジスタ212に240ビット構成のビット列が格納される。

[0239]

シフトレジスタ212に格納されたビット列の各ビット情報はそれぞれドットデータDdとなる。この時点で、シフトレジスタ212から240個のドットデータDdがそれぞれ対応する240個のドライバ出力210に並列に出力される。ドライバ出力210は、ドットデータDdに含まれるビット情報に基づいたデータ信号に変換してそれぞれ対応するドットにデータ線72を通じて出力する。

[0240]

上述の動作がすべてのドットに対して順次繰り返されることによって、ディスプレイ10の画面上には、画像データに応じたカラー映像が表示されることになる。

[0241]

このように、第2の実施の形態に係る駆動装置200Bにおいても、前記第1の実施の形態に係る駆動装置200Aと同様に、ロウ電極駆動回路202のカスタムIC化が容易になり、駆動装置200Bの設計、製作の自由度を大きくすることができ、低消費電力化も可能となる。

[0242]

更に、カラムドライバICについても、IC自身に例えばPWM変調等の高機能を有するような高価なものを必要とせず、基本的にデータ入力シフトレジスタとレベルシフタを有するだけの多出力、低価格ICを使用することができる。これらはベア・チップ、TCP等の実装外形サイズを小型化する上でも有利であり

、駆動 I Cが実装される部分の省スペース化がしやすいことから、ディスプレイ 10の薄型化も容易になる。これは、ディスプレイ10の製造コストの低廉化に つながる。

[0243]

次に、第3の実施の形態に係る駆動装置200Cについて図28〜図33を参照しながら説明する。

[0244]

この第3の実施の形態に係る駆動装置200Cは、図28に示すように、第1の実施の形態に係る駆動装置200Aと同様の構成を有するが、ロウ電極駆動回路202が、インターレース方式の画像信号に合わせて奇数行の画素と偶数行の画素を交番的に選択するように構成されている点と、カラム電極駆動回路204を構成するドライバ出力210の数が、全ドット数の1/2である点、即ち、ドライバIC210Bの数が第1の実施の形態に係る駆動装置200Aにおける数の1/2である点で異なる。垂直方向に並ぶ2つのドットの駆動を1つのドライバ出力210が受け持つようになっている。

[0245]

第3の実施の形態に係る駆動装置200Cの信号処理回路206での時間変調方式による階調制御は、図29に示すように、1枚の画像の表示期間を1フレーム、該1フレームを2つに分離した期間を1フィールドとし、該1フィールドを例えば6つに分割した際の1つの分割期間をサブフィールドとしたとき、最初のサブフィールド(第1サブフィールドSF1)が最も長く、サブフィールドの経過毎に1/2の割合で短くなるように設定される。

[0246]

そして、ロウ電極駆動回路202は、奇数行に対して共通に設けられた第1のドライバ280と、偶数行に対して共通に設けられた第2のドライバ282を有し、各ドライバ280及び282は、1フィールド毎に選択信号と非選択信号を交番的に出力するように構成されている。奇数行を選択する場合は、第1及び第2のドライバ280及び282からそれぞれ選択信号及び非選択信号が出力され、偶数行を選択する場合は、第1及び第2のドライバ280及び282からそれ

6 9

ぞれ非選択信号及び選択信号が出力される。

[0247]

第1及び第2のドライバ280及び282での選択信号及び非選択信号の切換 えは、図30に示すように、信号処理回路206に設けられたタイミング発生回 路284からの検出信号Sjの入力に基づいて行われる。このタイミング発生回 路284は、動画出力機器220から供給される同期信号Ssに基づいてフィー ルド期間の開始タイミングを検出する回路である。

[0248]

また、カラム電極駆動回路204のドライバ出力210に対応して設けられるデータ転送部230としては、第1の実施の形態に係る駆動装置200Aにおけるデータ転送部230(図16参照)を使用することができる。垂直方向に並ぶ2ドットに対して1つのドライバ出力210が割り当てられることから、データ転送部230から出力されるドットデータDdは2ドットに対するデータとなる。即ち、2ドット毎のドットデータDdとなる。

[0249]

また、この第3の実施の形態に係る駆動装置200Cでは、図31に示すように、ロウ電極駆動回路202の第1及び第2のドライバ280及び282から出力される選択信号として10V、非選択信号として-50Vを使用し、また、カラム電極駆動回路204の各ドライバ出力210を通じて出力されるオン信号として0V、オフ信号として60Vを使用した例を示す。

[0250]

従って、ロウ電極48aに選択信号が印加され、カラム電極48bにオン信号が印加されたアクチュエータ部22においては、カラム電極48b及びロウ電極48a間に低レベル電圧(-10V)がかかることになり、当該アクチュエータ部22は自然状態、つまり、発光状態となる。

[0251]

口ウ電極48aに選択信号が印加され、カラム電極48bにオフ信号が印加されたアクチュエータ部22においては、カラム電極48b及びロウ電極48a間に高レベル電圧(50V)がかかることになり、当該アクチュエータ部22は一

方向に屈曲変位し、消光状態となる。

[0252]

口ウ電極48aに非選択信号が印加されたアクチュエータ部22においては、 カラム電極48bに印加されるオン信号又はオフ信号に拘わらず、カラム電極4 8b及び口ウ電極48a間に高レベル電圧(50V又は110V)がかかること になり、当該アクチュエータ部22は一方向に屈曲変位し、消光状態となる。

[0253]

第3の実施の形態に係る駆動装置200Cは、基本的には以上のように構成されるものであり、次にその作用効果について説明する。

[0254]

まず、図30に示すように、画像データ処理回路224に動画出力機器220からの例えばインターレース方式の動画信号Sv(例えばアナログ動画信号)と同期信号Ssが入力され、タイミング発生回路284には、動画出力機器220からの同期信号Ssが入力される。

[0255]

前記画像データ処理回路 2 2 4 は、入力された動画信号 S v を同期信号 S s に基づいてフィールド単位にデジタルの画像データ D v に変換し、画像メモリ 2 2 2 (フィールドバッファ) に書き込む。タイミング発生回路 2 8 4 は、同期信号 S s から 1 フィールド期間 T f の開始タイミングを検出して検出信号 S j として ロウ電極駆動回路 2 0 2 に出力する。

[0256]

表示コントローラ228は、画像メモリ222からの画像データDvと補正データメモリ226からの階調補正データDcを読み出し、これらを乗算して補正済画像データDh(2ドット単位に6ビットのドットデータが配列された画像データ)とする。

[0257]

補正済画像データDhは、出力ポートOPにおいて、それぞれ出力端子に対応させたデータ形態に並べ替えられた後、該出力ポートOPから238並列で1ビット/1MHzの転送レートで出力され、それぞれ対応するドライバIC210

Bに供給される。

[0258]

そして、各ドライバIC210Bにおけるシフトレジスタ212において240個のビット列が揃った段階で、該ビット列がそれぞれ対応するデータ転送部230に並列に送られる。

[0259]

2ドット単位に設けられたデータ転送部230は、表示コントローラ228から送られてくるドットデータDdを一定クロック(Tf/6)で読み込んで、サブフィールドSF1~SF6の開始タイミングに応じたタイミングでドットデータDdを出力するという動作を行う。2ドット毎に出力されたドットデータDdはそれぞれ対応するドライバ出力210に供給される。

[0260]

一方、ロウ電極駆動回路202においては、タイミング発生回路284からの 検出信号Sjの入力に基づいて1フィールド毎に奇数行及び偶数行を交番的に選 択する。

[0261]

そして、カラム電極駆動回路204は、ドットデータDdに含まれるビット情報に基づいたデータ信号に変換して、垂直方向に並ぶ2ドット単位にデータ線72を通じて出力する。

[0262]

即ち、垂直方向に並ぶ2ドットには、対応するドットデータDdに含まれるビット情報が、サブフィールドSF1~SF6の開始タイミングに同期してインクリメントされながらデータ信号として供給されることになるが、垂直方向に並ぶ2ドットのうち、ロウ電極駆動回路202によって選択された行のドットに対して実質的にデータ信号が供給されることになる。次のフィールド期間では、前回非選択とされた行のドットに対して実質的にデータ信号が供給されることになる

[0263]

上述の動作が順次繰り返されることで、ディスプレイ10の画面上には、画像

データDvに応じたカラー映像が表示されることになる。

[0264]

このように、第3の実施の形態に係る駆動装置200Cにおいては、1つ以上のアクチュエータ部22にて1つのドット26が構成され、1つ以上のドット26で1つの画素28が構成される場合に、奇数行の画素と偶数行の画素を交番的に選択するロウ電極駆動回路202と、選択行の画素に対し、前記画像信号に基づいてドット毎に発光信号と消光信号からなるデータ信号を出力するカラム電極駆動回路204と、ロウ電極駆動回路202及びカラム電極駆動回路204を制御する信号処理回路206において、少なくとも時間変調方式で階調制御すべく前記ロウ電極駆動回路202及びカラム電極駆動回路204を制御するようにしたので、ロウ電極駆動回路202に供給すべき電源電圧として2種類の電源電圧で済む。これにより、ロウ電極駆動回路202に供給すべき電源電圧として2種類の電源電圧で済む。これにより、ロウ電極駆動回路202のカスタムIC化が容易になり、駆動装置200Cの設計、製作の自由度を大きくすることができ、低消費電力化も可能となる。

[0265]

更に、カラムドライバICについても、IC自身に例えばPWM変調等の高機能を有するような高価なものを必要とせず、基本的にデータ入力シフトレジスタとレベルシフタを有するだけの多出力、低価格ICを使用することができる。これらはベア・チップ、TCP等の実装外形サイズを小型化する上でも有利であり、駆動ICが実装される部分の省スペース化がしやすいことから、ディスプレイ10の薄型化も容易になる。これは、ディスプレイ10の製造コストの低廉化につながる。

[0266]

上述の例では、ロウ電極駆動回路202の第1及び第2のドライバ280及び282から出力される選択信号として10V、非選択信号として-50Vを使用した場合を示したが、その他、図32に示すように、選択信号を0Vとし、非選択信号を-60Vとしてもよい。この場合、選択信号の電位として接地電位を使用すればよいため、電源の数を1つ減らすことができる。

[0267]

また、その他の例としては、図33に示すように、電圧印加の極性を逆にするようにしてもよい。例えば選択信号として50V、非選択信号として110Vを使用し、オン信号及びオフ信号の各電位を60V及び0Vとすればよい。この場合、形状保持層46の分極方向も逆になる。

[0268]

次に、第4の実施の形態に係る駆動装置200Dについて図34及び図35を 参照しながら説明する。

[0269]

この第4の実施の形態に係る駆動装置200Dは、信号処理回路206での時間変調方式による階調制御が一部異なり、図34に示すように、1枚の画像の表示期間を1フレーム、該1フレームを2つに分離した期間を1フィールドとし、該1フィールドを複数に等分割した際の1つの分割期間をリニアサブフィールドとしたとき、信号処理回路206は、各2ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当ててドットデータを作成するようになっている。

[0270]

この第4の実施の形態に係る駆動装置200Dにおける信号処理回路は、図35に示すように、第2の実施の形態に係る駆動装置200Bの信号処理回路206(図23参照)とほぼ同じ構成を有するが、動画出力機器220から供給される同期信号Ssに基づいてフィールド期間の開始タイミングを検出するタイミング発生回路284を有する点で異なる。

[0271]

そして、表示コントローラ228の後段に接続されるデータ転送部としては、 第2の実施の形態に係る駆動装置200Bにおけるデータ転送部230を使用す ることができる。

[0272]

この第4の実施の形態に係る駆動装置200Dにおいても、前記第2の実施の 形態に係る駆動装置200Bと同様に、ロウ電極駆動回路202のカスタムIC 化が容易になり、駆動装置200Dの設計、製作の自由度を大きくすることがで き、低消費電力化も可能となる。

[0273]

更に、カラムドライバICについても、IC自身に例えばPWM変調等の高機能を有するような高価なものを必要とせず、基本的にデータ入力シフトレジスタとレベルシフタを有するだけの多出力、低価格ICを使用することができる。これらはベア・チップ、TCP等の実装外形サイズを小型化する上でも有利であり、駆動ICが実装される部分の省スペース化がしやすいことから、ディスプレイ10の薄型化も容易になる。これは、ディスプレイ10の製造コストの低廉化につながる。

[0274]

上述の第3及び第4の実施の形態に係る駆動装置200C、200Dにおいては、口ウ電極駆動回路202において奇数行の画素と偶数行の画素を交番的に選択するようにしたが、その他、口ウ電極駆動回路202において3行以上の画素を順番に選択するようにしてもよい。

[0275]

次に、第5の実施の形態に係る駆動装置200Eについて図36~図39を参照しながら説明する。

[0276]

この第5の実施の形態に係る駆動装置200Eが適用される表示素子における 画素の配列構成は、例えば図36に示すように、水平方向に並ぶ2つのアクチュ エータ部22にて1つのドット26が構成され、垂直方向に並ぶ3つのドット2 6(赤色ドット26R、緑色ドット26G及び青色ドット26B)で1つの画素 28が構成されている。

[0277]

そして、第5の実施の形態に係る駆動装置200Eの信号処理回路206での時間変調方式による階調制御は、図37に示すように、1枚の画像の表示期間を1フレーム、該1フレームを3つに分離した期間を1フィールド(第1フィールド、第2フィールド及び第3フィールド)とし、該1フィールドを例えば6つに分割した際の1つの分割期間をサブフィールドとしたとき、最初のサブフィール

ド(第1 サブフィールドS F 1)が最も長く、サブフィールドの経過毎に1/2 の割合で短くなるように設定される。

[0278]

図38に示すように、ロウ電極駆動回路202は、3n-2行に対して共通に設けられた第1のドライバ500と、3n-1行に対して共通に設けられた第2のドライバ502と、3n行に対して共通に設けられた第3のドライバ504とを有し、各ドライバ500、502及び504は、1フィールド毎に選択信号と非選択信号を順番に出力するように構成されている。

[0279]

3n-2行を選択する場合は、第1、第2及び第3のドライバ500、502及び504からそれぞれ選択信号、非選択信号及び非選択信号が出力され、3n-1行を選択する場合は、第1、第2及び第3のドライバ500、502及び504からそれぞれ非選択信号、選択信号及び非選択信号が出力され、3n行を選択する場合は、第1、第2及び第3のドライバ500、502及び504からそれぞれ非選択信号、非選択信号及び選択信号が出力される。

[0280]

第1、第2及び第3のドライバ500、502及び504での選択信号及び非選択信号の切換えは、図39に示すように、信号処理回路206に設けられたタイミング発生回路506からの検出信号Skの入力に基づいて行われる。即ち、ロウ電極駆動回路202は、タイミング発生回路506からの同期信号Ssに合わせて、3n-2行のドットと3n-1行のドットと3n行のドット(n=1、2、・・・)をそれぞれ順番に選択する。

[0281]

このタイミング発生回路506は、動画出力機器220から供給される同期信号Ssに基づいて1フレーム期間を3分割したタイミングの検出信号Skを生成して出力する。

[0282]

信号処理回路206の画像データ処理回路224は、動画出力機器220からの例えばプログレッシブ方式の動画信号Sv(例えばアナログ動画信号)とタイ

ミング発生回路 5 0 6 からの検出信号 S k が入力されて、例えば3 原色(赤、緑及び青)単位にデジタルの画像データ D v に変換し、それぞれ赤用画像メモリ2 2 2 R、緑用画像メモリ2 2 2 B に書き込むように構成されている。

[0283]

第1の読出し回路232は、タイミング発生回路506からの検出信号Skの入力に基づいて3種類の画像メモリ222R、222G及び222Bから順次画像データDvを読み出すように構成されている。

[0284]

光源16は、タイミング発生回路506からの検出信号Skの入力に基づいて3種類の光(例えば赤色光、緑色光及び青色光)を順次切り換えて出射するように構成されている。

[0285]

また、カラム電極駆動回路204は、ドライバ出力210の数が、全ドット数の1/3であって、ドライバIC210Bの数が第1の実施の形態に係る駆動装置200Aにおける数の1/3となっており、垂直方向に並ぶ3つのドットの駆動を1つのドライバ出力210が受け持つようになっている。

[0286]

カラム電極駆動回路204のドライバ出力210に対応して設けられるデータ 転送部としては、第1の実施の形態に係る駆動装置200Aにおけるデータ転送 部230(図16参照)を使用することができる。垂直方向に並ぶ3ドットに対 して1つのドライバ出力210が割り当てられることから、データ転送部230 から出力されるドットデータDdは3ドットに対するデータとなる。即ち、3ドット毎のドットデータDdとなる。

[0287]

また、この第5の実施の形態に係る駆動装置200Eでは、例えば図31に示すように、ロウ電極駆動回路202の第1、第2及び第3のドライバ500、502及び504から出力される選択信号として10V、非選択信号として-50Vを使用し、また、カラム電極駆動回路204の各ドライバ出力210から出力

されるオン信号としてOV、オフ信号として60Vを使用することができる。

[0288]

第5の実施の形態に係る駆動装置200Eは、基本的には以上のように構成されるものであり、次にその作用効果について説明する。

[0289]

まず、図39に示すように、画像データ処理回路224に動画出力機器220からの例えばプログレッシブ方式の動画信号Sv(例えばアナログ動画信号)と同期信号Ssが入力され、タイミング発生回路506には、動画出力機器220からの同期信号Ssが入力される。タイミング発生回路506は、入力される同期信号Ssに基づいて1フレーム期間を3分割したタイミングの検出信号Skを生成して出力する。

[0290]

前記画像データ処理回路224は、入力された動画信号Svをタイミング発生回路506からの検出信号Skに基づいて、3原色(赤、緑及び青)単位にデジタルの画像データDvに変換し、それぞれ赤用画像メモリ222R、緑用画像メモリ222G及び青用画像メモリ222Bに書き込む。

[0291]

表示コントローラ228は、各画像メモリ222R、222G及び222Bからの画像データDvと補正データメモリ226からの階調補正データDcを読み出し、これらを乗算して補正済画像データDh(3ドット単位に6ビットのドットデータが配列された画像データ)とする。

[0292]

補正済画像データDhは、出力ポートOPにおいて、それぞれ出力端子に対応させたデータ形態に並べ替えられた後、該出力ポートOPから238並列で1ビット/1MHzの転送レートで出力され、それぞれ対応するドライバICに供給される。

[0293]

そして、各ドライバIC210Bにおけるシフトレジスタ212において24 0個のビット列が揃った段階で、該ビット列がそれぞれ対応するデータ転送部2

7 8

30に並列に送られる。

[0294]

3ドット単位に設けられたデータ転送部230は、シフトレジスタ212から送られてくるドットデータDdを一定クロック(Tf/6)で読み込んで、サブフィールドSF1~SF6の開始タイミングに応じたタイミングでドットデータDdを出力するという動作を行う。3ドット毎に出力されたドットデータDdはそれぞれ対応するドライバ出力210に供給される。

[0295]

一方、口ウ電極駆動回路 2 0 2 においては、タイミング発生回路 5 0 6 からの検出信号 S k の入力に基づいて 1 フィールド毎に 3 n - 2 行、 3 n - 1 行及び 3 n 行を順番に選択する。このとき、光源 1 6 からはタイミング発生回路 5 0 6 からの検出信号 S k の入力に基づいて 1 フィールド毎に赤色光、緑色光及び青色光が順番に出射される。

[0296]

そして、カラム電極駆動回路204は、ドットデータDdに含まれるビット情報に基づいたデータ信号に変換して、垂直方向に並ぶ3ドット単位にデータ線72を通じて出力する。

[0297]

即ち、垂直方向に並ぶ3ドットには、対応するドットデータDdに含まれるビット情報が、サブフィールドSF1~SF6の開始タイミングに同期してインクリメントされながらデータ信号として供給されることになるが、垂直方向に並ぶ3ドットのうち、第1フィールドの期間(例えば赤色光が出射されている期間)においては、ロウ電極駆動回路202によって選択された3n-2行(赤色に関する行)のドットに対して実質的にデータ信号が供給されることになる。次の第2フィールドの期間(例えば緑色光が出射されている期間)では、前回非選択とされた3n-1行(緑色に関する行)のドットに対して実質的にデータ信号が供給され、次の第3フィールドの期間(例えば青色光が出射されている期間)では、前回非選択とされた3n行(青色に関する行)のドットに対して実質的にデータ信号が供給されることになる。

[0298]

上述の動作が順次繰り返されることで、ディスプレイ10の画面上には、画像 データDvに応じたカラー映像が表示されることになる。

[0299]

このように、第5の実施の形態に係る駆動装置200Eにおいては、1つ以上のアクチュエータ部22にて1つのドット26が構成され、1つ以上のドット26で1つの画素28が構成される場合に、3n-2行の画素、3n-1行の画素及び3n行の画素(n=1、2、・・・)を順番に選択するロウ電極駆動回路202と、選択行の画素に対し、前記画像信号に基づいてドット毎に発光信号と消光信号からなるデータ信号を出力するカラム電極駆動回路204と、ロウ電極駆動回路202及びカラム電極駆動回路204を制御する信号処理回路206とを具備し、前記信号処理回路206において、少なくとも時間変調方式で階調制御すべく前記ロウ電極駆動回路202及びカラム電極駆動回路204を制御するようにしたので、ロウ電極駆動回路202に供給すべき電源電圧として2種類の電源電圧で済む。これにより、ロウ電極駆動回路202のカスタムIC化が容易になり、駆動装置200Eの設計、製作の自由度を大きくすることができ、低消費電力化も可能となる。

[0300]

更に、カラムドライバIC(カラム電極駆動回路204)についても、IC自身に例えばPWM変調等の高機能を有するような高価なものを必要とせず、基本的にデータ入力シフトレジスタとレベルシフタを有するだけの多出力、低価格ICを使用することができる。これらはベア・チップ、TCP等の実装外形サイズを小型化する上でも有利であり、駆動ICが実装される部分の省スペース化がしやすいことから、ディスプレイ10の薄型化も容易になる。これは、ディスプレイ10の製造コストの低廉化につながる。

[0301]

特に、この第5の実施の形態に係る駆動装置200Eにおいては、光源16から3原色の光を出射するようにしているため、白色光源を使用した場合と比して、ブランク輝度(画素発光部以外の光導波板の欠陥等による発光輝度)が1/3

となり、コントラストの向上を図ることができる。

[0302]

また、光源16から例えば赤色光が出射されている場合に、赤色に関するドットを発光させるようにしているため、色純度が向上し、画質の改善を有効に図ることができる。

[0303]

次に、第6の実施の形態に係る駆動装置200Fについて図40及び図41を 参照しながら説明する。

[0304]

この第6の実施の形態に係る駆動装置200Fは、信号処理回路206での時間変調方式による階調制御が一部異なり、図40に示すように、1枚の画像の表示期間を1フレーム、該1フレームを3つに分離した期間を1フィールドとし、該1フィールドを複数に等分割した際の1つの分割期間をリニアサブフィールドとしたとき、信号処理回路206は、各3ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当ててドットデータを作成するようになっている。

[0305]

この第6の実施の形態に係る駆動装置200Fにおける信号処理回路は、図41に示すように、第4の実施の形態に係る駆動装置200Dの信号処理回路206(図35参照)とほぼ同じ構成を有するが、動画出力機器220から供給される同期信号Ssに基づいてフィールド期間の開始タイミングに応じた検出信号Skを出力するタイミング発生回路506を有する点で異なる。

[0306]

そして、表示コントローラ228の後段に接続されるデータ転送部としては、 第2の実施の形態に係る駆動装置200Bにおけるデータ転送部230を使用す ることができる。

[0307]

この第6の実施の形態に係る駆動装置200Fにおいても、前記第2の実施の 形態に係る駆動装置200Bと同様に、ロウ電極駆動回路202のカスタムIC 化が容易になり、駆動装置200Fの設計、製作の自由度を大きくすることができ、低消費電力化も可能となる。

[0308]

更に、カラムドライバIC(カラム電極駆動回路204)についても、IC自身に例えばPWM変調等の高機能を有するような高価なものを必要とせず、基本的にデータ入力シフトレジスタとレベルシフタを有するだけの多出力、低価格ICを使用することができる。これらはベア・チップ、TCP等の実装外形サイズを小型化する上でも有利であり、駆動ICが実装される部分の省スペース化がしやすいことから、ディスプレイ10の薄型化も容易になる。

[0309]

第1~第6の実施の形態に係る駆動装置200A~200Fが適用されるディスプレイ10あるいは表示素子14においては、例えば図2に示すように、アクチュエータ部22の自然状態において発光とし、アクチュエータ部22の口ウ電極48aとカラム電極48b間に高レベル電圧を印加したときにアクチュエータ部22を空所34側に凸となるように屈曲変位させて消光させるようにしたが、その他、光導波板20の背面に画素構成体30を接触・離隔することにより、アクチュエータ部22をオン動作/オフ動作させる際に、形状保持層46に電圧を印加して発生する歪みに加えて、光導波板20の背面と画素構成体30の接触面(端面)との間に静電気を発生させ、この静電気による引力、斥力をアクチュエータ部22のオン動作/オフ動作に利用するようにしてもよい。

[0310]

結果として、アクチュエータ部22の駆動中に、誘電分極を発生させて静電気による引力を利用してアクチュエータ部22のオン特性(画素構成体30の接触性や接触方向への応答性等)の向上を図る構成や、静電気による引力のみならず、斥力も利用することにより、アクチュエータ部22のオン特性以外にオフ特性(画素構成体30の離隔性や離隔方向への応答性等)の向上をも図ることができる。

[0311]

例えば、アクチュエータ部22のオン特性のみの向上を図る場合は、単に画素

構成体30の接触面(端面)及び光導波板20自体又は光導波板20の背面にコーティング材を配して、これらを誘電分極させればよい。

[0312]

更に、例えばアクチュエータ部22のオン特性とオフ特性の両方を向上させる場合は、誘電分極された画素構成体30の接触面に対して、静電気による引力、 斥力のいずれも発生するように、光導波板20の背面に透明電極や金属薄膜を配 してその電気極性を切り換えればよい。

[0313]

具体的に、前記構成について図42A~図43Bを参照しながら説明する。アクチュエータ部22の自然状態において発光とし、例えば図4に示すように、形状保持層46の上面に口ウ電極48a、下面にカラム電極48bが形成された図42A及び図42Bに示す表示素子14において、光導波板20の背面のうち、アクチュエータ部22に対応した位置にそれぞれ透明電極290を形成する。

[0314]

そして、アクチュエータ部22をオン動作させて発光させる場合は、図42Aに示すように、当該アクチュエータ部22に対応する透明電極290とロウ電極48aとの間に電圧(Vc>Va)を印加し、ロウ電極48aとカラム電極48bとの間の電圧をほぼゼロとしておく(Va≒Vb)。

[0315]

これにより、透明電極290とロウ電極48aとの間に働く静電引力で画素構成体30は光導波板20側に押し付けられる。この押圧力により、輝度の向上、応答速度の向上が図られる。

[0316]

一方、アクチュエータ部 2 2 をオフ動作させて消光させる場合は、図4 2 Bに示すように、当該アクチュエータ部 2 2 に対応する透明電極 2 9 0 とロウ電極 4 8 a との間の電圧をほぼゼロにしておき (V c ≒ V a)、ロウ電極 4 8 a とカラム電極 4 8 b との間に電圧 (V a < V b) を印加する。

[0317]

これにより、アクチュエータ部22は空所34側に凸となるように屈曲変位し

、画素構成体30は光導波板20から離隔することになる。

[0318]

ところで、前記透明電極290を、光導波板20の背面や、画素構成体30の 端面のいずれに形成してもよいが、画素構成体30の端面に形成する方が好まし い。これは、アクチュエータ部22上のロウ電極48aとの距離が小さくなり、 より大きな静電力を発生させることができるからである。

[0319]

また、光導波板20の背面に形成された透明電極290は、画素構成体30の 離隔性を向上させる効果がある。一般に、画素構成体30の接触、離隔によって 画素構成体30や光導波板20に生ずる局所的な表面電荷を生ずるが、これは、 画素構成体30が光導波板20に接触するのを助ける。しかし、この場合、画素 構成体30が光導波板20に貼り付いてしまうという不都合が生じやすくなる。

[0320]

そこで、光導波板20の背面に透明電極290を形成することで、局所的な表面電荷の発生を緩和し、前記不都合(貼り付き)が低減され、画素構成体30の 離隔性が向上する。

[0321]

前記透明電極290を形成して静電気を利用する構成は、図43A及び図43 Bに示すような表示素子14、即ち、形状保持層46の上面に一対の電極(ロウ電極48aとカラム電極48b)を形成した表示素子14にも適用することができる。

[0322]

つまり、光導波板20の背面に透明電極290を形成し、この透明電極290 とアクチュエータ部22の上面に設けられた一対の電極48a及び48bとの間 に電圧 (Vc>Va、Vc>Vb)を印加すると、両者の間に静電気が発生する

[0323]

ここで、アクチュエータ部22の自然状態において消光の場合を考えたとき、 当該アクチュエータ部22をオン動作させて発光させる場合、一対の電極48a 及び48b間の電圧(Va<Vb<Vc)によってアクチュエータ部22が光導波板20に向かって屈曲変位すると共に、前記静電気の引力によって、画素構成体30が光導波板20側に急速に接近し、発光状態となる。反対に、透明電極290と一対の電極48a及び48bとの間に電圧を印加しない状態(Va≒Vb≒Vc)では、アクチュエータ部22がオフ動作し、アクチュエータ部22の剛性によって光導波板20から離隔し、消光状態となる。

[0324]

このような静電気を利用した表示素子14を多数配列させて構成されたディスプレイ10に対しても、第1~第6の実施の形態に係る駆動装置200A~200Fを適用させることができる。

[0325]

上述の第1~第6の実施の形態に係る駆動装置200A~200Fが適用されるディスプレイ10においては、アクチュエータ部22の構成、特に、形状保持層46を1層構造としたが、その他、図44に示すように、形状保持層46を多層構造とし、各層に一対の電極48a及び48bを互い違いに形成するようにしてもよい。図44の例では、1層目の形状保持層46aの下面と2層目の形状保持層46bの上面にカラム電極48bを形成し、1層目と2層目の間に口ウ電極48aを形成した例を示す。このように、形状保持層46を多層にして一対の電極48a及び48bを互い違いに形成することにより、アクチュエータ部22のパワー(変位力)を向上させることができ、画素構成体30(図2参照)の離隔性を向上させることができる。

[0326]

ところで、上述の第1~第6の実施の形態に係る駆動装置200A~200Fにおいては、補正データメモリ226に格納する補正のための情報として、図45に示すように、少なくともドット毎の輝度ばらつきを補正するための輝度補正データが展開された輝度補正テーブル600を用いるようにしてもよい。この場合、補正データメモリ226に展開された輝度補正テーブル600と第2の読出し回路234が輝度補正手段602として機能することになる。

[0327]

ここで、輝度補正機能について図46及び図47を参照しながら説明する。まず、輝度補正テーブル600の作成を行うが、その前提としてディスプレイ10の各ドットの輝度ばらつきを測定する。

[0328]

具体的には、ディスプレイ10の全ドットに対して例えばグレースケールの中間レベル(フルスケールとして256の階調レベルとしたとき、例えば128の階調レベル)の信号を与えて表示させ、この状態で例えばCCDカメラで全ドットの各輝度を測定して、このディスプレイ10の実測輝度分布を求める。

[0329]

その後、測定した各ドットの輝度実測値に基づいて、前記実測輝度分布の平滑 化処理を行い、理論輝度分布を求める。平滑化処理としては、例えば平均化処理 、最小自乗法、高次曲線近似等が挙げられる。

[0330]

なお、図46及び図47に、例えば1行目の各ドットの輝度分布を示す。これらの図において、×で示すプロットが実測輝度分布であり、●で示すプロットが理論輝度分布を示す。

[0331]

図46に示すように、実測輝度分布における各ドットの輝度実測値のばらつきが小さく、平滑化処理によって滑らかな理論輝度分布(曲線B参照)となる場合は、すべてのドットについて輝度補正を行う。

[0332]

輝度補正の具体的手法について説明すると、図46のドット#1、#3、#4、#6等に示すように、輝度実測値が輝度理論値よりも大きい場合は、補正係数として1未満の値を用い、

輝度実測値×補正係数≒輝度理論値 となる補正係数を当該ドットの輝度補正データとして輝度補正テーブル600に

登録する。

[0333]

一方、図47のドット#2、#5、#7等に示すように、輝度実測値が輝度理

論値よりも小さい場合は、補正係数として1を用い、該補正係数を当該ドットの輝度補正データとして輝度補正テーブル600に登録する。この結果、×をプロットした実測輝度分布よりも均一化された輝度分布(曲線A参照)が得られる。

[0334]

完成したディスプレイ10によっては、図47に示すように、局部的に輝度実 測値が低い場合がある。図47では、ドット#3と#7が極端に低くなっており 、そのまま平滑化処理しても、曲線Cに示すように、理論輝度分布が滑らかにな らないだけでなく、平均輝度を不要に低下させてしまう場合がある。

[0335]

このような場合は、輝度実測値が極端に低いドットを無視して平滑化処理を行うことにより、曲線Dに示すように、滑らかな曲線を有する理論輝度分布を求める。輝度補正の具体的手法は上述と同様である。

[0336]

このように、前記輝度補正手段602を用いることにより、製造上の各ドットの輝度ばらつきが吸収され、画質の向上を図ることができる。

[0337]

また、上述の第1~第6の実施の形態に係る駆動装置200A~200Fにおいては、補正データメモリ226に格納する補正のための情報として、図48に示すように、各ドットの階調レベルに対する表示特性を線形的にするための線形補正データが展開された線形補正テーブル610を用いるようにしてもよい。この場合、補正データメモリ226に展開された線形補正テーブル610と第2の読出し回路234が線形補正手段612として機能することになる。

[0338]

ここで、線形補正機能について図49A~図49Cを参照しながら説明する。 まず、線形補正テーブル610の作成を行うが、上述の輝度補正の場合と同様に 、その前提としてディスプレイ10の各ドットの輝度を測定する。

[0339]

具体的には、ディスプレイ10の全ドットに対して例えばグレースケールを段階的に増加させた信号を与えて表示させ、この状態で例えばCCDカメラを用い

て、全ドットについてグレースケールの階調レベルの変化に対する輝度の変化特性(発光輝度特性)を測定する。各ドットに対するプロット数は、補正データメモリ226の容量や演算速度に応じて決定される。図49Aに、ある1つのドットについての発光輝度特性を示す。

[0340]

その後、測定した各ドットの発光輝度特性に基づいて、各ドットについて、それぞれ発光輝度特性を線形化するための重み係数を求める。図49Bに、ある1つのドットの発光輝度特性に対応する重み係数の変化特性を示す。

[0341]

各ドットについての重み係数は上述の発光輝度特性を求める際にプロットした 分だけ求められ、これらプロット数に応じた数分の重み係数の配列が当該ドット に関する線形化のためのルックアップテーブルとして定義される。そして、この ようなルックアップテーブルが各ドットについて求められ、線形補正テーブル6 10として補正データメモリ226に登録される。なお、プロット間の重み係数 は表示段階において例えば一次近似(折れ線近似)等で求めるようにしてもよい

[0342]

そして、実際の表示段階においては、第1の読出し回路232を通じてあるドットの入力階調レベルが読み出され、第2の読出し回路234を通じて、当該ドットに関するルックアップテーブルから読み出された前記入力階調レベルに対応する重み係数あるいは一次近似で求められた重み係数が読み出され、後段の乗算回路236において、入力階調データ値×重み係数が計算され、線形化階調データとして出力されることになる(図49C参照)。

[0343]

このように、前記線形補正手段 6 1 2 を用いることにより、各ドットにおいて、階調レベルの変化に応じて表示特性が線形的に変化することになるため、正確な画像表示が可能になるだけでなく、コントラストの向上を図ることができ、表示画像に鮮鋭感を持たせることができる。

[0344]

ところで、ディスプレイ10を通じてテレビ信号の映像を表示する場合は、以下のような線形補正処理が行われる。即ち、例えば現行のカラーテレビ方式では、受像機のコスト低減を図るために送像(送出)側でガンマ補正を行うようにしている。このガンマ補正はあくまでもブラウン管を対象としたものであるため、図50Aに示すような発光輝度特性となる。そのため、ガンマ補正がかけられたテレビ信号の映像をディスプレイ10を通じてそのまま表示すると、画像の高彩度部分の解像度が低下し、鮮鋭感が失われるという問題が生じる。

[0345]

そこで、本実施の形態では、図50Bに示すように、ガンマ補正を打ち消すような重み係数の配列を各ドットに関する線形化のためのルックアップテーブルとして定義するようにしてもよい。

[0346]

これにより、図50Cに示すように、送出系(送像系)における階調レベルに対する表示特性(ガンマ補正がかけられた表示特性)を線形的に補正することができるため、ガンマ補正されたテレビ信号を表示する場合であっても画像の高彩度部分の解像度が低下するということがなくなり、表示画像に鮮鋭感を持たせることが可能となる。

[0347]

また、第1~第6の実施の形態に係る駆動装置200A~200Fにおいては、図51に示すように、1フレーム内の任意のタイミングにおいて光源16のパワーを少なくとも2段階で切り換える調光制御手段640を有するようにしてもよい。

[0348]

この調光制御手段640による光源16のパワーの切換えは、信号処理回路206に設けられたタイミング発生回路284からの検出信号Smの入力に基づいて光源駆動回路642で行うようにしてもよい。このタイミング発生回路284は、動画出力機器220から供給される同期信号Ssに基づいて光源16のパワーの切換えタイミングを検出する。

[0349]

例えば、第2の実施の形態に係る駆動装置200Bに基づいて説明すると、該第2の実施の形態に係る駆動装置200Bにおいては、図21に示すように、1枚の画像の表示期間を1フレームとし、該1フレームを例えば63個に等分割した際の1つの分割期間をリニアサブフィールドとしたとき、信号処理回路206は、各ドットについて、それぞれの階調レベルに応じた表示時間を必要なリニアサブフィールドに連続的に割り当ててドットデータを作成するようになっている

[0350]

そこで、この例では、図52Aに示すように、63個のリニアサブフィールドの後ろに3つのリニアサブフィールドを加え、第1のリニアサブフィールドLSF1から第63のリニアサブフィールドLSF63までの期間については光源16のパワーを100%とし、後ろの第64のリニアサブフィールドLSF64から第66のリニアサブフィールドLSF66までの期間については光源16のパワーを25%とする。

[0351]

これにより、各リニアサブフィールドの表示期間がすべて同じであっても、第 1のリニアサブフィールドLSF1から第63のリニアサブフィールドLSF6 3までの各リニアサブフィールドは、第64のリニアサブフィールドLSF64 から第66のリニアサブフィールドLSF66までの各リニアサブフィールドの 4倍の輝度を有することになる。

[0352]

従って、図52Bに示すように、階調レベル1を表現する場合は、第64のリニアサブフィールドLSF64にオン信号が出力され、階調レベル2を表現する場合は、第64及び第65のリニアサブフィールドLSF64及びLSF65に連続してオン信号が出力されることになる。また、階調4を表現する場合は、第63のリニアサブフィールドLSF63にオン信号が出力され、階調レベル5を表現する場合は、第63及び第64のリニアサブフィールドLSF63及びLSF64にオン信号が連続して出力されることになる。また、階調レベル14を表現する場合は、第61~第65のリニアサブフィールドLSF61~LSF65

にオン信号が連続して出力されることになる。

[0353]

つまり、この例では、3つのリニアサブフィールドLSF64~LSF66を加えただけで、いままで64階調だけしか表現できなかったものが、256階調 (0~255)まで表現することが可能となる。また、3つのリニアサブフィールドLSF64~LSF66を加えるだけであるため、1フレームが64個のリニアサブフィールドで構成されたものに対して、1リニアサブフィールドの表示期間をほとんど変更する必要がなく、設計変更の問題はほとんどない。また、光源16のパワーが25%となっている期間が1フレームの3/66という短い期間であるため、白表示を行ったときの輝度低下はほとんどない。

[0354]

上述の例では、63個のリニアサブフィールドLSF1~LSF63の後ろに3つのリニアサブフィールドLSF64~LSF66を加えて、光源16のパワーを100%と25%で切り換えるようにしたが、その他、図53Aに示すように、63個のリニアサブフィールドLSF1~LSF63のうち、前半の32個のリニアサブフィールドLSF1~LSF32について光源16のパワーを100%とし、後半の31個のリニアサブフィールドLSF33~LSF63について光源16のパワーを50%としてもよい。

[0355]

この場合は、各リニアサブフィールドの表示期間がすべて同じであっても、前半の第1~第32のリニアサブフィールドLSF1~LSF32における各リニアサブフィールドは、後半の第33~第63のリニアサブフィールドLSF33~LSF63における各リニアサブフィールドの2倍の輝度を有することになる

[0356]

従って、図53Bに示すように、階調レベル1を表現する場合は、第33のリニアサブフィールドLSF33にオン信号が出力され、階調レベル2を表現する場合は、第32のリニアサブフィールドLSF32にオン信号が出力されることになり、階調3を表現する場合は、第32及び第33のリニアサブフィールドL

SF32及びLSF33にオン信号が連続して出力され、階調5を表現する場合は、第31~第33のリニアサブフィールドLSF31~LSF33にオン信号が連続して出力されることになる。

[0357]

つまり、この例では、いままで64階調だけしか表現できなかったものが、96階調(0~95)まで表現することが可能となる。また、63個のリニアサブフィールドLSF1~LSF63に対してすべて光源16のパワーを100%とした場合は、低レベルの階調表現をする場合でも光源16のパワーが100%であるのに比して、この例では、光源16のパワーが50%の期間が任意のタイミングで入ってくるため、低消費電力を実現することができる。

[0358]

また、この例においては、画像メモリ222に蓄積された次のフレームの画像の平均輝度を解析して、その平均輝度が高い画像であれば、該次のフレームは光源16のパワーを100%に固定して63個のリニアサブフィールドLSF1~LSF63による階調表現を行うようにしてもよい。この場合、全体的に輝度が低下して見えるということを防ぐことができる。

[0359]

なお、光源16としては、応答特性の優れた高速冷陰極管(立ち上がり速度 0 . 1 m s 以内)やLED(立ち上がり速度 2 O n s 以内)又はカーボンナノチューブーフィールドエミッタを陰極に配置した蛍光管を用いることができる。

[0360]

次に、第1~第6の実施の形態に係る駆動装置200A~200Fにおいて、 以下に示すような駆動方法を取り入れるようにしてもよい。

[0361]

まず、例えば第2の実施の形態に係る駆動装置200Bでの通常の駆動について説明すると、図54Aに示すように、1つのドットについて見た場合に、該ドットの階調レベルに応じてオフ信号を出力すべき期間とオン信号を出力すべき期間が決定される。

[0362]

そして、オフ信号を出力すべき期間においては、図54Aに示すように、カラム電極48bに例えば0V、図54Bに示すように、ロウ電極48aに例えば55V(固定)がそれぞれ印加され、図54Cに示すように、当該ドットにはその電位差である55Vが印加されて、結果的に消光状態となる。そして、オン信号を出力すべき期間に差し掛かった時点で、図54Aに示すように、カラム電極48bに例えば最大60V、図54Bに示すように、ロウ電極48aに例えば55V(固定)がそれぞれ印加され、図54Cに示すように、当該ドットにはその電位差である-5Vが印加されて、発光状態となる。

[0363]

この通常の動作では、ドット毎に1フレームの開始時点から階調表現が行われるため、フレームの開始時点で画素構成体30を光導波板20から十分に離隔させる必要があるが、画素構成体30の離隔時の応答が遅いことに起因して、もしくは経時的に画素構成体30の離隔性が損なわれていき、画素構成体30の離隔時の応答が遅くなり、最悪の場合は、画素構成体30が光導波板20にくっついたまま離隔しないことが生じる可能性がある。

[0364]

図55A及び図55Bに、前記通常動作でのドット26の発光特性を測定した 実験結果を示す。この実験は、あるドット26への印加電圧Vcの波形(図55 A参照)を計測しながら、当該ドット26から散乱される光の強度変化(Ld) をアバランシェ・フォト・ダイオード(APD)で測定したものである。図55 Bから、この発光特性は1フレームの開始時点からゆっくりとオフ状態に向かっ ており、1フレーム内でのオフ応答が遅いことがわかる。

[0365]

これを防止するために、ロウ電極48aに印加すべき電圧を例えば100Vにした場合、オン信号の出力期間において発光状態を実現させるためには、オン信号の期間においてカラム電極48bに印加すべき電圧を105Vにしなければならない。この場合、ドライバIC210Bの耐圧を大きくする必要があり、その分、ドライバIC210Bが大きくなり、高価となる。

[0366]

そこで、本例では、図56A~図56Cに示すように、1フレームの最初の所定期間(準備期間Tp)において、全ドットを確実に離隔させるための電圧(離隔電圧)を印加する。この準備期間Tpとしては、1フレーム全体(例えば1/60Hz=16.7ms)に対して、発光輝度にほとんど影響を与えない程度の時間(例えば1msec)を割り当てる。

[0367]

そして、例えば1フレームが開始した時点で準備期間Tpに入り、図56Aに示すように、全ドットのカラム電極48bに例えば0V、図56Bに示すように、ロウ電極48aに離隔電圧、例えば100V以上をそれぞれ印加し、図56Cに示すように、全ドットにその電位差である100V以上を印加させる。これによって、全ドットは、1フレームの開始と共に、確実に消光状態となり、ほとんど部品を追加することなく、画素構成体30の離隔特性の向上を図ることができ、ディスプレイ10の歩留まりを向上させることができる。

[0368]

図57A及び図57Bに、前記準備期間を設けた場合でのドット26の発光特性を測定した実験結果を示す。この実験も、あるドット26への印加電圧Vcの波形(図57A参照)を計測しながら、当該ドット26から散乱される光の強度変化(Ld)をアバランシェ・フォト・ダイオード(APD)で測定したものである。図57Bから、この発光特性は1フレームの開始時点から急峻にオフ状態に向かっており、1フレーム内でのオフ応答が非常に速いことがわかる。

[0369]

この準備期間Tpに印加される離隔電圧はロウドライバで発生されるため、ドライバIC210Bの耐圧以上の電圧、即ち、画素構成体30を十分に離隔方向に変位させる電圧を設定することができる。従って、ドライバIC210Bを変更する必要はない。

[0370]

また、ロウ電極駆動回路202は、例えば図58に示すように、全ドットを共通に駆動できる回路であり、簡単に、かつ、安価に実現可能である。図58に示す回路の動作について簡単に説明すると、準備期間Tpでは、第1の入力端子6

20に高レベル信号、第2の入力端子622に低レベル信号がそれぞれ入力される。これにより、第1のフォトカプラ624がオン状態、第2のフォトカプラ626がオフ状態となって、後段のCMOSトランジスタ628の各ゲートに高レベル信号が印加され、その結果、NMOSトランジスタTr1がオンとなり、出力端子630から高レベル信号(100V)が出力されることになる。

[0371]

一方、準備期間Tp以外の期間では、第1の入力端子620に低レベル信号、第2の入力端子622に高レベル信号がそれぞれ入力される。これにより、第1のフォトカプラ624がオフ状態、第2のフォトカプラ626がオン状態となって、後段のCMOSトランジスタ628の各ゲートに低レベル信号が印加され、その結果、PMOSトランジスタTr2がオンとなり、出力端子630から低レベル信号(55V)が出力されることになる。

[0372]

更に、上述の第1、第3及び第5の実施の形態に係る駆動装置200A、200C及び200Eが示すサブフィールド駆動や第2、第4及び第6の実施の形態に係る駆動装置200B、200D及び200Fが示すリニアサブフィールド駆動において、画像処理による多階調化(例えば誤差拡散法やディザ法など)を加えることによって、表現できる階調数を増やすことができる。

[0373]

また、上述のようなサブフィールド駆動やリニアサブフィールド駆動を用いずに、画像処理による階調表現のみを使用することで、各ドットはオン状態あるいはオフ状態で固定となるため、消費電力の低い静止画像を表示することができ、例えば電子ポスターに用いて好適である。この場合、表示する静止画像を別の画像に描き替えるときのみ、ドットを変位駆動すればよいため、消費電力を大幅に低減することができる。

[0374]

更に、表示パターンによっては、一定の静止画像を表示する領域と動画像を表示する領域を混在させる場合があるが、このような表示パターンに対応させるために、表示コントローラを動画対応の回路系(サブフィールド駆動やリニアサブ

フィールド駆動)と静止画対応の回路系(画像処理による階調表現のみ)の2系統を用意することで、動画/静止画の混在表示を消費電力を大幅に抑えて行うことができる。これらの表示形態は、例えば地上波、インターネット、電話回線、衛星あるいはケーブルテレビにおける集中局からコンテンツ(デジタルコンテンツやアナログコンテンツ)を配信する広告等の表示に好適である。

[0375]

特に、インターネットを用いた場合、圧縮処理された静止画もしくは動画ファイルを、コンテンツ配信用集中局から配信することが好ましい。集中局から配信されたファイルは、インターネット接続されたディスプレイ側で解凍され、表示データとなる。この場合、画像データ処理回路224の前段に、圧縮ファイルデコーダ回路を設ければよい。また、ディスプレイ側(コンテンツ受信側)に、ハードディスク等の外部記憶装置を設けることで、画像コンテンツを記憶させておき、表示時には、この外部記憶装置から画像コンテンツを読み出すようにしてもよい。この場合、集中局から配信されるコンテンツを、一旦、ディスプレイ側の外部記憶装置に蓄積することができる。

[0376]

このような方法により、インターネット等で複数のディスプレイと集中局を接続させることで、集中局から、ディスプレイの設置場所、時間帯等に合わせた最適なコンテンツの表示を一括集中管理することができる。

[0377]

ここで、上述の機能を実現する1つの使用形態(第1の具体例に係る使用形態)を図59に基づいて説明する。

[0378]

この第1の具体例に係る使用形態は、図59に示すように、例えば画像メモリ222として、静止画用のフレームバッファ700と動画用のフレームバッファ702を設置する。そして、例えばネットワーク704からの各種データを受信して後段の回路系に出力するインターフェース回路706と、該インターフェース回路706から出力されるデータから画像に関するファイル(静止画ファイルや動画ファイル)と制御データとに分離するデータ分離回路708と、該データ

分離回路 7 0 8 からの制御データに基づいて、表示コントローラ 2 2 8 を例えば表示素子 1 4 単位に制御(静止画に対応する制御と動画に対応する制御)を行う出力制御回路 7 1 0 と、画像データ処理回路 2 2 4 の前段に設置され、かつ、圧縮された画像に関するファイルを解凍して静止画データと動画データに復元する圧縮ファイルデコーダ回路 7 1 2 とを設けることで実現することができる。

[0379]

これにより、集中局714からネットワーク704を介してインターフェース回路706にて受信されたデータがデータ分離回路708にて画像に関するファイルと制御データとに分離され、それぞれ圧縮ファイルデコーダ回路712及び出力制御回路710に供給される。

[0380]

圧縮ファイルデコーダ回路 7 1 2 は、供給された画像に関するファイルを解凍して静止画データと動画データに復元し、後段の画像データ処理回路 2 2 4 に出力する。画像データ処理回路 2 2 4 は、復元した静止画データを静止画用のフレームバッファ 7 0 0 に格納し、動画データを動画用のフレームバッファ 7 0 2 に格納する。

[0381]

一方、出力制御回路 7 1 0 は、データ分離回路 7 0 8 からの制御データに基づいて表示コントローラ 2 2 8 を制御する。ここで、制御データとしては、例えば静止画を表示する表示素子 1 4 のアドレスデータ等を用いることができる。出力制御回路 7 1 0 は、この制御データに基づいて表示コントローラ 2 2 8 における第 1 及び第 2 の読出し回路 2 3 2 及び 2 3 4 やデータ転送部 2 3 0 を静止画用と動画用に分離する。

[0382]

これにより、表示コントローラ228のうち、静止画用に振り分けられた回路 系によって、静止画用のフレームバッファ700から静止画データが読み出され て、アドレスデータが示す複数の表示素子14を通じて静止画が表示され、動画 用に振り分けられた回路系によって、動画用のフレームバッファ702から動画 データが読み出されて、アドレスデータが示す複数の表示素子14以外の複数の 表示素子14を通じて動画が表示されることになる。

[0383]

更に、第2の具体例に係る使用形態としては、個々のディスプレイ10において、電源電流等をモニタし、その結果を、それぞれディスプレイ10のステータス情報として、集中局714に定期的に送信するようにしてもよい。

[0384]

この場合、図60に示すように、電源部208に監視回路720を設け、その出力をステータス情報として送信するインターフェース回路706を設けることで実現される。これにより、集中局714から遠隔地にある複数のディスプレイ10が故障しているかどうかを管理することが可能となる。

[0385]

次に、第3の具体例に係る使用形態は、経時変化に伴う輝度低下を補正するというものである。つまり、長時間、表示駆動をさせていると、時間の経過に伴って、ドットのオン特性(画素構成体30が光導波板20の一主面に接触する特性)が悪くなり、表示輝度の低下を引き起こすおそれがある。これを防止するために、ドットのオン電圧を小さく(絶対値を大きく)することで、表示輝度を初期段階とほぼ同様のレベルに維持させることができる。

[0386]

具体的な回路構成としては、図61に示すように、電源部208内に設置された各種電圧生成系(ロウ電極48aに印加されるロウ電圧を生成するロウ電圧生成系722、カラム電極48bに印加されるオン電圧を生成するオン電圧生成系724及びカラム電極48bに印加されるオフ電圧を生成するオフ電圧生成系726)のうち、例えばオン電圧生成系724において、可変電圧が生成できるようにする。図61の例では、可変抵抗728を設けた例を示す。そして、電源部208の前段に集中局714からの電圧変更に関する情報を受信するインターフェース回路706と、該インターフェース回路706からの前記情報に基づいて可変抵抗728を制御して前記オン電圧を所望の電圧に設定する電圧制御回路730とを設けて構成する。

[0387]

そして、工場において、輝度低下の監視に使用されるディスプレイ10で計測を行った結果を集中局714で管理し、各地域に設置されたディスプレイ10のうち、輝度が低下する時期に該当するディスプレイ10に対して電圧変更に関する情報をネットワーク704を介して送信する。ディスプレイ10側では、集中局714からの前記情報をインターフェース回路706を介して受信し、オン電圧生成系724で生成されるオン電圧を所望の電圧に変更する。

[0388]

例えば、設置時点において、ロウ電圧が50V、オン電圧が50Vである場合、オン動作すべきドットには0Vが印加されることになる。そして、経時変化によって、輝度が低下し始めた時期に、電圧変更の情報が供給されることで、オン電圧が例えば52Vに変更される。これによって、オン動作すべきドットには0Vよりも低い-2Vが印加され、画素構成体30は更に光導波板20に向かって変位することになり、オン時の輝度が向上することになる。

[0389]

更に時間が経過して輝度が低下する時期に、再び電圧変更の情報が供給されることで、オン電圧が例えば54Vに変更される。これによって、オン動作すべきドットには0Vよりも低い-4Vが印加され、画素構成体30は更に光導波板20に向かって変位することになり、オン時の輝度が向上することになる。

[0390]

上述の使用形態では、工場での監視用のディスプレイ10を使って輝度が低下する時期を割り出すようにしたが、その他、現場の管理人から電子メールや電話等を使って輝度が低下していることを連絡してもらい、この輝度低下の連絡に基づいて、当該ディスプレイ10に向かって集中局714から電圧変更の情報を送信するという方法も好ましく採用される。

[0391]

上述の例では、ネットワーク704を使用して遠隔操作した例を示したが、もちろん、ディスプレイ10自体に電圧を変更する機能を持たせるようにしてもよい。例えば、電圧制御回路730内に設置された複数のレジスタに、予め輝度が低下する時期を示す時間情報と可変抵抗728に供給する電圧値をそれぞれ格納

しておき、該電圧制御回路730の前段に接続されたタイマー732 (図61参照)からの時間情報がレジスタ内の時間情報の1つと一致したときに、当該レジスタに格納された電圧値によって可変抵抗728を制御して、所望のオン電圧にすることで輝度の低下を抑えることができる。

[0392]

また、他の例としては、複数の表示素子14のうち、例えば表示画面の周辺に配列された表示素子14にダミーのアクチュエータ部22を作り込んでおき、このアクチュエータ部22の変位状態をセンサ(歪みゲージなど)で検出し、該ダミーのアクチュエータ部22におけるオン動作時の変位に基づいて輝度が低下しているか否かを判別する、というものである。

[0393]

この判別の手法としては、図62に示すように、多数のダミーのアクチュエータ部22の群734からそれぞれセンサを通じて出力される検出信号を発光輝度計算部736に供給し、該発光輝度計算部736において、前記検出信号の束から表示画面の全体の輝度を近似計算させる。一方、電圧制御回路730内のレジスタにしきい値を格納しておく。そして、電圧制御回路730は、発光輝度計算部736からの近似値が該しきい値よりも低下したときに、全体の輝度が低下したものとして、オン電圧生成系724の可変抵抗728を制御し、所望のオン電圧にする。これによって、発光輝度を初期状態に維持させることができる。

[0394]

また、他の例としては、図63に示すように、ディスプレイ10の表示面を左右に移動するラインセンサ740を設置し、定期的にディスプレイ10において白表示を行いながらラインセンサ740を駆動し、発光輝度をラインセンサ740で検出するという手法も好ましく採用される。

[0395]

この場合も、ラインセンサ740から順次出力される撮像信号を発光輝度計算部736に供給し、該発光輝度計算部736において、連続的に供給される撮像信号に基づいて表示画面の全体の輝度を計算させる。電圧制御回路730内のレジスタにはしきい値を格納しておき、発光輝度計算部736からの計算値が該し

きい値よりも低下したときに、全体の輝度が低下したものとして、オン電圧生成系724の可変抵抗728を制御し、所望のオン電圧にする。これによって、発光輝度を初期状態に維持させることができる。

[0396]

上述の例は、カラム電極48bに印加されるオン電圧を制御することによって 輝度補正を行った場合であるが、その他、光源16を制御することでも輝度補正 を実現することができる(第4の具体例に係る使用形態)。

[0397]

光源16として、例えば冷陰極管等を用いた場合は、図64に示すように、複数本の冷陰極管742を束ねてリフレクタ(図示せず)内に設置することで1つの光源16を構成することができる。この場合、規定の数(例えば12本)の冷陰極管742Aに加えて、複数(例えば4本)の予備の冷陰極管724Bを設置し、予備の冷陰極管724Bと電源744との間にそれぞれスイッチSw1、Sw2、・・・、Swnを挿入接続しておく。そして、光源16の電流を電流検出手段746を用いて監視し、電流検出手段746からの電流値に基づいて、光源16から発する光量が低下したか否かを判別し、低下した場合は、スイッチング制御回路748を通じて、予備の冷陰極管742Bの中から所定数(例えば1本)の冷陰極管742Bに対応するスイッチをオンにして、光量を増大させる。

[0398]

もちろん、この光源16による輝度補正は、以下のような手法を採用するようにしてもよい。まず、現場の管理人から輝度が低下していることを連絡してもらい、この連絡に基づいて集中局714からネットワーク704を介して輝度補正を行うべき情報を流す。該当するディスプレイ10は、インターフェース回路706を通じて、当該情報を受け取って、スイッチング制御回路748に供給する。スイッチング制御回路748は、供給された情報に基づいて予備の冷陰極管742Bの中から所定数(例えば1本)の冷陰極管742Bに対応するスイッチをオンにする。これによって光源16の光量が増大し、輝度が向上することとなる

[0399]

ところで、使用時間の経過に伴って、色フィルタの蛍光顔料の退色が進み、特に青色の色フィルタの退色が進行することが知られている。そこで、予備の冷陰極管742Bとして少なくとも1本の青色を発光する冷陰極管を設置しておき、現場からの退色している旨の連絡に基づいて、前記予備としての青色の冷陰極管を点灯させるようにしてもよい。

[0400]

また、予備の冷陰極管 7 4 2 Bの選択的点灯に加えて、光源 1 6 を冷却するためのファン 7 5 0 の出力を調整するようにしてもよい。これにより、急激な温度変化を抑えることができ、長時間の使用が可能となると共に、温度変化に伴う輝度むらなどを抑えることができる。この場合、図 6 4 に示すように、例えばインターフェース回路 7 0 6 からの選択的点灯に関する情報に基づいてファン 7 5 0 を駆動制御するファン駆動制御回路 7 5 2 を設ければよい。

[0401]

上述の例では、表示コントローラ228の周辺装置を制御することで輝度調整を行った場合を示したが、その他、図65に示すように、表示コントローラ228の補正データメモリ226内に論理的に割り付けられた輝度補正テーブル600内の値を変えることで、輝度調整を行うようにしてもよい(第5の具体例に係る使用形態)。

[0402]

この場合、図65に示すように、あるディスプレイ10の輝度が低下した時点で、例えば集中局714から当該ディスプレイ10に対して、輝度が低下したときに使用すべき輝度補正値の群をネットワーク704を介して送信する。当該ディスプレイ10においては、集中局714からの補正値をインターフェース回路706を通じて受け取る。後段のテーブル作成部760は、受け取られた補正値に基づいて新たな輝度補正テーブルを作成し、補正データメモリ226に格納されている輝度補正テーブル600に上書きする。

[0403]

新たな輝度補正テーブル600からの各種輝度補正値によって、輝度の低下が 抑えられるように各ドットが動作するため、表示輝度を初期段階とほぼ同様のレ ベルに維持させることができる。

[0404]

この輝度補正テーブル600を上書きする手法は、集中局714からの供給のほか、図61と同様に、タイマー732からの時間情報に基づいてテーブル作成部760で新たな輝度補正テーブル600を作成するようにしてもよいし、図62や図63と同様に、ダミーのアクチュエータ部22の群734あるいはラインセンサ740から発光輝度計算部736を通じて出力された計算値に基づいて、テーブル作成部760で新たな輝度補正テーブル600を作成するようにしてもよい。

[0405]

輝度補正テーブル600の書換えは、輝度低下の補償手段としてだけなく、退 色によるホワイトバランスのいずれも補償することができる。例えば、青色が退 色した場合、青色のみの輝度レベルを向上させるように、輝度補正係数の書換え を行うことで、ホワイトバランスを初期段階とほぼ同じレベルに維持させること ができる。

[0406]

このように、図60~図65に示す第2~第5の具体例に係る使用形態を採用することで、ディスプレイ10に対するメンテナンスをネットワーク704を利用して、あるいは自己診断的に自動的に行うことが可能となる。通常、多数の表示素子14が配列されたディスプレイ10に対するメンテナンスにおいては、簡単な作業であっても、一応、メンテナンス作業員が現場まで駆けつけて修理を行うようにしている。そのため、メンテナンスにかかる費用が莫大になり、ディスプレイ10の普及にとって思わしくない。

[0407]

しかし、上述の第2~第5の具体例に係る使用形態を採用すれば、輝度調整などの簡単なメンテナンス作業を自動的に行うことができ、メンテナンスにかかる 費用の大幅なる低減を図ることができる。また、1つの輝度調整でも各種使用形 態に応じてメンテナンス料金を設定することで、きめ細かなメンテナンスサービ スを提供することができ、ディスプレイ10の普及に貢献することができる。

[0408]

そして、本発明に係るディスプレイの表示原理を用いれば、そのまま、光出力のON/OFF及び選択的な光出力を行う光スイッチを構成することができる。即ち、光が導入され、漏れることなく伝える光導波路として機能する光導波体と、該光導波体の一方に対向して設けられ、かつ、1つ又は多数の光スイッチ接点に対応した数のアクチュエータ部が配列された駆動部を具備し、入力される光スイッチ制御信号に応じて前記光導波体に対する前記アクチュエータ部の接触・離隔方向の変位動作を制御して、前記光導波体の所定部位の漏れ光を制御することにより、光出力のON/OFF及び選択的に特定の出力にのみ光を取り出す光スイッチを構成することができる。

[0409]

なお、この発明に係るディスプレイの駆動装置及びディスプレイの駆動方法は、上述の実施の形態に限らず、この発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。

[0410]

【発明の効果】

以上説明したように、本発明に係るディスプレイの駆動装置及びディスプレイの駆動方法によれば、アクチュエータ部を駆動するための駆動回路のカスタムI C化が容易になり、ディスプレイの設計、製作の自由度を大きくすることができ 、低消費電力化も可能となる。

【図面の簡単な説明】

【図1】

本実施の形態に係る駆動装置が適用されるディスプレイの概略構成を示す斜視図である。

【図2】

表示素子の構成を示す断面図である。

【図3】

表示素子の画素構成を示す説明図である。

【図4】

アクチュエータ部と画素構成体の第1の構成例を示す断面図である。

【図5】

アクチュエータ部に形成される一対の電極の平面形状の一例を示す図である。

【図6】

図6Aは形状保持層の長軸に沿って一対の電極のくし歯を配列させた1つの例を示す説明図であり、図6Bは他の例を示す説明図である。

【図7】

図7Aは形状保持層の短軸に沿って一対の電極のくし歯を配列させた1つの例を示す説明図であり、図7Bは他の例を示す説明図である。

【図8】

表示素子の他の構成を示す断面図である。

【図9】

アクチュエータ部と画素構成体の第2の構成例を示す断面図である。

【図10】

アクチュエータ部と画素構成体の第3の構成例を示す断面図である。

【図11】

アクチュエータ部と画素構成体の第4の構成例を示す断面図である。

【図12】

画素構成体の四方にそれぞれ桟を形成した場合の構成を示す説明図である。

【図13】

桟の他の構成を示す説明図である。

【図14】

ロウ電極駆動回路から出力されるオフセット電位(バイアス電位)と、カラム 電極駆動回路から出力されるオン信号及びオフ信号の電位並びにロウ電極とカラ ム電極間に加わる電圧の関係を示す表図である。

【図15】

第1及び第2の実施の形態に係る駆動装置の構成を示す回路図である。

【図16】

第1の実施の形態に係る駆動装置のカラム電極駆動回路におけるドライバIC

の構成を示すブロック図である。

【図17】

第1の実施の形態に係る駆動装置での階調制御を説明するために、特に、1フレームを複数のサブフィールドに分割した例を示す図である。

【図18】

第1の実施の形態に係る駆動装置における信号処理回路を示すブロック図である。

【図19】

口ウ電極駆動回路から出力されるオフセット電位(バイアス電位)と、カラム 電極駆動回路から出力されるオン信号及びオフ信号の電位並びに口ウ電極とカラ ム電極間に加わる電圧の関係の他の例を示す表図である。

【図20】

口ウ電極駆動回路から出力されるオフセット電位(バイアス電位)と、カラム 電極駆動回路から出力されるオン信号及びオフ信号の電位並びに口ウ電極とカラ ム電極間に加わる電圧の関係の更に他の例を示す表図である。

【図21】

第2の実施の形態に係る駆動装置での階調制御を説明するために、特に、1フレームを複数のリニアサブフィールドに等分割した例を示す図である。

【図22】

図22Aは第2の実施の形態に係る駆動装置で作成されるドットデータにおいて、階調レベルが62の場合のビット配列を示す説明図であり、図22Bは同じく階調レベルが8の場合のビット配列を示す説明図である。

【図23】

第2及び第4の実施の形態に係る駆動装置における信号処理回路を示すブロック図である。

【図24】

第2の実施の形態に係る駆動装置で使用されるドライバICの構成を示すブロック図である。

【図25】

第2の実施の形態に係る駆動装置で使用されるデータ転送部の構成を示すブロック図である。

【図26】

第1データ出力回路でのデータ分割を示す説明図である。

【図27】

第1データ出力回路から第2データ出力回路へのデータの転送形態を示す説明 図である。

【図28】

第3及び第4の実施の形態に係る駆動装置の構成を示す回路図である。

【図29】

第3の実施の形態に係る駆動装置での階調制御を説明するために、特に、1フレームを2つのフィールドに分割し、更に1フィールドを複数のサブフィールド に分割した例を示す図である。

【図30】

第3の実施の形態に係る駆動装置における信号処理回路を示すブロック図である。

【図31】

口ウ電極駆動回路から出力される選択信号及び非選択信号の電位とカラム電極 駆動回路から出力されるオン信号及びオフ信号の電位並びに口ウ電極とカラム電 極間に加わる電圧の関係を示す表図である。

【図32】

ロウ電極駆動回路から出力される選択信号及び非選択信号の電位とカラム電極 駆動回路から出力されるオン信号及びオフ信号の電位並びにロウ電極とカラム電 極間に加わる電圧の関係の他の例を示す表図である。

【図33】

ロウ電極駆動回路から出力される選択信号及び非選択信号の電位とカラム電極 駆動回路から出力されるオン信号及びオフ信号の電位並びにロウ電極とカラム電 極間に加わる電圧の関係の更に他の例を示す表図である。

【図34】

第4の実施の形態に係る駆動装置での階調制御を説明するために、特に、1フレームを2つのフィールドに分割し、更に1フィールドを複数のリニアサブフィールドに等分割した例を示す図である。

【図35】

第4の実施の形態に係る駆動装置における信号処理回路を示すブロック図である。

【図36】

第5の実施の形態に係る駆動装置が適用される表示素子の画素構成を示す説明 図である。

【図37】

第5の実施の形態に係る駆動装置での階調制御を説明するために、特に、1フレームを3つのフィールドに分割し、更に1フィールドを複数のサブフィールド に分割した例を示す図である。

【図38】

第5及び第6の実施の形態に係る駆動装置の構成を示す回路図である。

【図39】

第5の実施の形態に係る駆動装置における信号処理回路を示すブロック図である。

【図40】

第6の実施の形態に係る駆動装置での階調制御を説明するために、特に、1フレームを3つのフィールドに分割し、更に1フィールドを複数のリニアサブフィールドに等分割した例を示す図である。

【図41】

第6の実施の形態に係る駆動装置における信号処理回路を示すブロック図である。

【図42】

図42Aは静電気を利用した表示素子の一例において、その発光状態の場合を示す断面図であり、図42Bはその消光状態の場合を示す断面図である。

【図43】

図43Aは静電気を利用した表示素子の他の例において、その発光状態の場合を示す断面図であり、図43Bはその消光状態の場合を示す断面図である。

【図44】

アクチュエータ部の他の構成を示す断面図である。

【図45】

輝度補正手段を説明するためのブロック図である。

【図46】

各ドットの輝度分布の一例を示す特性図である。

【図47】

各ドットの輝度分布の他の例を示す特性図である。

【図48】

線形補正手段を説明するためのブロック図である。

【図49】

図49Aはある1つのドットの発光輝度特性を示す図であり、図49Bは発光輝度特性を線形化するための重み係数を示す特性図であり、図49Cは線形化された後の発光輝度分布を示す特性図である。

【図50】

図50Aはガンマ補正がかけられたテレビ信号の発光輝度特性を示す図であり、図50Bはガンマ補正を打ち消すための重み係数を示す特性図であり、図50 Cは線形化された後の発光輝度分布を示す特性図である。

【図51】

調光制御手段を説明するためのブロック図である。

【図52】

図52Aは光源の切換えタイミングの一例を示すタイミングチャートであり、 図52Bは階調レベルに応じて選択されるリニアサブフィールドの組合せの一例 を示すタイミングチャートである。

【図53】

図53Aは光源の切換えタイミングの他の例を示すタイミングチャートであり、図53Bは階調レベルに応じて選択されるリニアサブフィールドの組合せの他

の例を示すタイミングチャートである。

【図54】

図54Aは通常の駆動においてカラム電極に印加される信号を示す波形図であり、図54Aはロウ電極に印加される信号を示す波形図であり、図54Cはドットに印加される電圧を示す波形図である。

【図55】

図55Aは通常動作における印加電圧波形を示す図であり、図55Bはその光 強度分布を示す図である。

【図56】

図56Aは準備期間を設けた場合においてカラム電極に印加される信号を示す 波形図であり、図56Aはロウ電極に印加される信号を示す波形図であり、図5 6Cはドットに印加される電圧を示す波形図である。

【図57】

図57Aは準備期間を設けた場合における印加電圧波形を示す図であり、図57Bはその光強度分布を示す図である。

【図58】

ロウ電極駆動回路に用いられる回路の一例を示す図である。

【図59】

第1の具体例に係る使用形態を示すブロック図である。

【図60】

第2の具体例に係る使用形態を示すブロック図である。

【図61】

第3の具体例に係る使用形態を示すブロック図である。

【図62】

第3の具体例に係る使用形態の第1の変形例を示すブロック図である。

【図63】

第3の具体例に係る使用形態の第2の変形例を示すブロック図である。

【図64】

第4の具体例に係る使用形態を示すブロック図である。

【図65】

第5の具体例に係る使用形態を示すブロック図である。

【図66】

提案例に係る表示装置を示す構成図である。

【図67】

表示装置の周辺回路を示すブロック図である。

【符号の説明】

1	0	 デ	1	ス	プ	レ	ィ
_	•	,	- 1		_	_	

14…表示素子

18…光

22…アクチュエータ部

30…画素構成体

3 8 …振動部

46…形状保持層

4 8 b … カラム電極

70…配線

74…共通配線

200A~200F…駆動装置

204…カラム電極駆動回路

208…電源部

220…動画出力機器

224…画像データ処理回路

228…表示コントローラ

260…シフトレジスタ

270…第1データ出力回路

280…第1のドライバ

290…透明電極

602…輝度補正手段

12…導光板

16…光源

20…光導波板

24…駆動部

32…アクチュエータ基板

40…固定部

48a…ロウ電極

6 2 …散乱光

72…データ線

76…バリスタ

202…ロウ電極駆動回路

206…信号処理回路

210…ドライバ出力

222…画像メモリ

226…補正データメモリ

230…データ転送部

250…第1のシフトレジスタ 252…第2のシフトレジスタ

262…出力回路

272…第2データ出力回路

282…第2のドライバ

600…輝度補正テーブル

610…線形補正テーブル

特2000-067778

6 1 2 …線形補正手段

640…調光制御手段

642…光源駆動回路

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

5

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

FIG. 12

【図13】

FIG. 13

【図14】

FIG. 14

オフセット電位	オン信号	オフ信号
カンピンド電位	0V	60V
10V	-10V	50V
100	(発光)	(消光)

【図15】

【図16】

【図17】

【図18】

【図19】

FIG. 19

オフセット電位	オン信号	オフ信号
カンヒノー電圧	0V	60V
0V	0V	60V

【図20】

FIG. 20

オフセット電位	オン信号	オフ信号
カンピンド電位	60V	OV
50V	-10V	50V

【図21】

【図22】

【図23】

【図24】

【図25】

FIG. 25

【図26】

【図27】

【図28】

【図29】

【図30】

【図31】

FIG. 31

		オン信号	オフ信号
		٥٧	60V
選択信号	10V	-10V (発光)	50V (消光)
非選択 信号	-50V	50V (発光)	110V (消光)

【図32】

FIG. 32

		オン信号	オフ信号
		0V	60V
選択 信号	ov	ov	60V
非選択 信号	-60V	60V	120 V

【図33】

FIG. 33

		オン信号	オフ信号
		60V	OV
選択 信号	50V	-10V	50V
非選択 信号	110V	50V	110V

【図34】

【図35】

【図36】

【図37】

【図38】

【図39】

【図40】

F1G. 40

【図41】

【図42】

【図43】

【図44】

【図45】

FIG. 45

【図46】

FIG. 46

【図47】

FIG. 47

【図48】

FIG. 48

【図49】

FIG. 49A

FIG. 49B

FIG. 49C

【図50】

FIG. 50A

FIG. 50B

FIG. 50C

【図51】

FIG. 51

【図52】

FIG. 52A

FIG. 52B

4 6

【図53】

FIG. 53A

FIG. 53B

【図54】

【図55]

【図56】

【図57】

【図58】

【図59】

【図60】

【図61】

【図62】

5 6

【図63】

【図64】

【図65】

FIG. 65

【図66】

FIG. 66

【図67】

【書類名】要約書

【要約】

【課題】アクチュエータ部を駆動するための駆動回路のカスタムIC化を容易にし、ディスプレイの設計、製作の自由度を大きくする。

【解決手段】ディスプレイ10の周辺に実装されたロウ電極駆動回路202と、カラム電極駆動回路204と、少なくともカラム電極駆動回路204を制御する信号処理回路206とを有して構成する。ロウ電極駆動回路202は、共通配線74及び各配線70を介して全アクチュエータ部22のロウ電極48aにオフセット電位(バイアス電位)を供給するように構成され、1種類のオフセット用電源電圧が電源部208を通じて供給される。カラム電極駆動回路204は、全ドット数に対応した数のドライバ出力210を有して構成され、前記ディスプレイ10の各データ線72にパラレルにデータ信号を出力して、全ドットにそれぞれデータ信号を供給するように構成される。各ドライバ出力210には、2種類のデータ用電源電圧が同じく電源部208を通じて供給される。

【選択図】図15

出願人履歴情報

識別番号

[000004064]

1. 変更年月日

1990年 8月24日

[変更理由]

新規登録

住 所

愛知県名古屋市瑞穂区須田町2番56号

氏 名

日本碍子株式会社