QEEE DSA05 DATA STRUCTURES AND ALGORITHMS

G VENKATESH AND MADHAVAN MUKUND LECTURE 8, 2 SEPTEMBER 2014

Tasks with constraints

- * For a foreign trip you need to
 - * Get a passport
 - * Buy a ticket
 - * Get a visa
 - * Buy travel insurance
 - * Buy foreign exchange
 - * Buy gifts for your hosts

Tasks with constraints

- * There are constraints
 - * Without a passport, you cannot buy a ticket or travel insurance
 - * You need a ticket and insurance for the visa
 - * You need the visa for foreign exchange
 - * You don't want to invest in gifts unless the trip is confirmed

Goal

* Find a sequence in which to complete the tasks, respecting the constraints

Model using graphs

- * Vertices are tasks
- * Edge from Task1 to Task2 if Task1 must come before Task2
 - * Getting a passport must precede buying a ticket
 - * Getting a visa must precede buying foreign exchange

* Passport, Ticket, Insurance, Visa, Forex, Gift

exchange

Passport, Ticket, Insurance, Visa, Forex, Gift

Passport, Insurance, Ticket, Visa, Gift, Forex

* Cyclic dependencies are unsatisfiable

* G = (V,E), a directed graph

- * G = (V,E), a directed graph
- * No cycles

- * G = (V,E), a directed graph
- * No cycles
 - * No directed path from any v in V back to itself

- * G = (V,E), a directed graph
- * No cycles
 - * No directed path from any v in V back to itself
- * Such graphs are also called DAGs

- * Given a DAG $G = (V,E), V = \{1,2,...,n\}$
- * Enumerate the vertices as {i₁,i₂,...,i_n} so that
 - * For any edge (j,k) in E,
 - j appears before k in the enumeration

- * Given a DAG $G = (V,E), V = \{1,2,...,n\}$
- * Enumerate the vertices as {i₁,i₂,...,i_n} so that
 - * For any edge (j,k) in E,
 - j appears before k in the enumeration
- * Also known as topological sorting

* Observation

* Observation

* A directed graph with cycles cannot be topologically ordered

* Observation

- * A directed graph with cycles cannot be topologically ordered
- * Path from j to k and from k to j means
 - * j must come before k
 - * k must come before j
 - * Impossible!

* Claim

* Every directed acyclic graph can be topologically ordered

* Claim

* Every directed acyclic graph can be topologically ordered

* Strategy

- * First list vertices with no incoming edges
- * Then list vertices whose incoming neighbours are already listed

*

* indegree(v): number of edges into v

- * indegree(v): number of edges into v
- * outdegree(v): number of edges out of v

- * indegree(v): number of edges into v
- * outdegree(v): number of edges out of v
- * Every dag has at least one vertex with indegree 0

- * indegree(v): number of edges into v
- * outdegree(v): number of edges out of v
- * Every dag has at least one vertex with indegree 0
 - * Start with any v such that indegree(v) > 0

- * indegree(v): number of edges into v
- * outdegree(v): number of edges out of v
- * Every dag has at least one vertex with indegree 0
 - * Start with any v such that indegree(v) > 0
 - * Walk backwards to a predecessor so long as indegree > 0

- * indegree(v): number of edges into v
- * outdegree(v): number of edges out of v
- * Every dag has at least one vertex with indegree 0
 - * Start with any v such that indegree(v) > 0
 - * Walk backwards to a predecessor so long as indegree > 0
 - * If no vertex has indegree 0, within n steps we will complete a cycle!

- * Pick a vertex with indegree 0
 - * No dependencies
 - * Enumerate it and delete it from the graph

- * Pick a vertex with indegree 0
 - * No dependencies
 - * Enumerate it and delete it from the graph
- * What remains is again a DAG!

- * Pick a vertex with indegree 0
 - * No dependencies
 - * Enumerate it and delete it from the graph
- * What remains is again a DAG!
- * Repeat the step above
 - * Stop when the resulting DAG is empty

1 4 2 5 3 6

0

1 4 2 5 3 6 7

1 4 2 5 3 6 7 8

```
function TopologicalOrder(G)
for i = 1 to n
  indegree[i] = 0
  for j = 1 to n
   indegree[i] = indegree[i] + A[j][i]
for i = 1 to n
  choose j with indegree[j] = 0
   enumerate j
   indegree[j] = -1
   for k = 1 to n
     if A[j][k] == 1
       indegree[k] = indegree[k]-1
```

* Complexity is O(n²)

- * Complexity is O(n²)
 - * Initializing indegree takes time O(n²)

- * Complexity is O(n²)
 - * Initializing indegree takes time O(n²)
 - * Loop n times to enumerate vertices
 - * Inside loop, identifying next vertex is O(n)
 - * Updating indegrees of neighbours is O(n)

* Using adjacency list

- * Using adjacency list
 - * Scan lists once to compute indegrees O(m)

- * Using adjacency list
 - * Scan lists once to compute indegrees O(m)
 - * Put all indegree 0 vertices in a queue

- * Using adjacency list
 - * Scan lists once to compute indegrees O(m)
 - * Put all indegree 0 vertices in a queue
 - * Enumerate head of queue and decrement indegree of neighbours degree(j), overall O(m)

- * Using adjacency list
 - * Scan lists once to compute indegrees O(m)
 - * Put all indegree 0 vertices in a queue
 - * Enumerate head of queue and decrement indegree of neighbours degree(j), overall O(m)
 - * If indegree(k) becomes 0, add to queue

- * Using adjacency list
 - * Scan lists once to compute indegrees O(m)
 - * Put all indegree 0 vertices in a queue
 - * Enumerate head of queue and decrement indegree of neighbours degree(j), overall O(m)
 - * If indegree(k) becomes 0, add to queue
- * Overall O(n+m)

Topological ordering revisited

```
function TopologicalOrder(G) //Edges are in adjacency list
for i = 1 to n { indegree[i] = 0 }
for i = 1 to n
  for (i,j) in E //proportional to outdegree(i)
    indegree[j] = indegree[j] + 1
for i = 1 to n
  if indegree[i] == 0 { add i to Queue }
while Queue is not empty
  j = remove_head(Queue)
  for (j,k) in E //proportional to outdegree(j)
    indegree[k] = indegree[k] - 1
    if indegree[k] == 0 { add k to Queue }
```

* Imagine these are courses

* Edgesare prerequisites

* Equivalent to finding longest path in the DAG

- * Equivalent to finding longest path in the DAG
- * If indegree(j) = 0, longest_path_to(j) = 0

- * Equivalent to finding longest path in the DAG
- * If indegree(j) = 0, longest_path_to(j) = 0
- * If indegree(k) > 0, longest_path_to(k) is
 - 1 + max{ longest_path_to(j) } among all
 - incoming neighbours j of k

- * To compute longest_path_to(k)
 - * Need longest_path_to(j) for all incoming neighbours of k

- * To compute longest_path_to(k)
 - * Need longest_path_to(j) for all incoming neighbours of k
- * If j is an incoming neighbour, (j,k) in E
 - * j is enumerated before k in topological order

- * To compute longest_path_to(k)
 - * Need longest_path_to(j) for all incoming neighbours of k
- * If j is an incoming neighbour, (j,k) in E
 - * j is enumerated before k in topological order
- * Hence, compute longest_path_to(i) in topological order

* Let i₁,i₂,...,i_n be a topological ordering of V

- * Let i₁,i₂,...,i_n be a topological ordering of V
- * All neighbours of ik appear before it in this list

- * Let i₁,i₂,...,i_n be a topological ordering of V
- * All neighbours of ik appear before it in this list
- * From left to right, compute longest_path_to(ik) as
 - 1 + max{ longest_path_to(ij) } among all
 - incoming neighbours ij of ik

- * Let i₁,i₂,...,i_n be a topological ordering of V
- * All neighbours of ik appear before it in this list
- * From left to right, compute longest_path_to(ik) as
 - 1 + max{ longest_path_to(ij) } among all incoming neighbours ij of ik
- * Can combine this calculation with topological sort

1	4	2			
0	1	0			

1	4	2	5		
0	1	0	1		

1	4	2	5	3		
0	1	0	1	1		

1	4	2	5	3	6	
0	1	0	1	1	2	

1	4	2	5	3	6	7	
0	1	0	1	1	2	3	

1	4	2	5	3	6	7	8
0	1	0	1	1	2	3	4

Topological ordering with longest path

```
function TopologicalOrderWithLongestPath(G)
for i = 1 to n
  indegree[i] = 0; LPT[i] = 0
  for j = 1 to n
   indegree[i] = indegree[i] + A[j][i]
for i = 1 to n
  choose j with indegree[j] = 0
   enumerate j
   indegree[j] = -1
   for k = 1 to n
     if A[j][k] == 1
       indegree[k] = indegree[k]-1
       LPT[k] = max(LPT[k], 1 + LPT[j])
```

Topological ordering with longest path

- * This implementation has complexity is O(n²)
- * As before, we can use adjacency lists to improve the complexity to O(m+n)

Topological ordering with longest path 2

```
function TopologicalOrder(G) //Edges are in adjacency list
for i = 1 to n \{ indegree[i] = 0; LPT[i] = 0 \}
for i = 1 to n
  for (i, j) in E //proportional to outdegree(i)
    indegree[j] = indegree[j] + 1
for i = 1 to n
  if indegree[i] == 0 { add i to Queue }
while Queue is not empty
  j = remove_head(Queue)
  for (j,k) in E //proportional to outdegree(j)
    indegree[k] = indegree[k] - 1
    LPT[k] = max(LPT[k], 1 + LPT[j])
    if indegree \lceil k \rceil == \emptyset  { add k to Queue }
```

Summary

- * Dependencies are naturally modelled using DAGs
- * Topological ordering lists vertices without violating dependencies
- * Longest path in a DAG represents minimum number of steps to list all vertices in groups