Gradient Descent Convergence

Yingzhen Li

Department of Computing Imperial College London

y@liyzhen2

yingzhen.li@imperial.ac.uk

October 24, 2022

Gradient descent

We can use gradient descent to find the solution of

$$\theta^* = \arg\min L(\theta)$$

But when does gradient descent converge to a (local) optimum?

Skills you will learn from this lecture:

- Analysing linear regression models
- Applying eigendecomposition techniques

Fitting linear regression models:

► Dataset:
$$\mathcal{D} = \{\mathbf{X}, \mathbf{y}\},\$$

$$\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_N]^\top \in \mathbb{R}^{N \times D},\$$

$$\mathbf{y} = [\mathbf{y}_1, ..., \mathbf{y}_N]^\top \in \mathbb{R}^{N \times 1}$$

• Goal: find $\theta \in \mathbb{R}^{D \times 1}$ such that

$$y \approx X\theta$$

A typical linear regression model:

- $x \in \mathbb{R}^{D \times 1}$: input features; $y \in \mathbb{R}$: output value
- Model and loss:

$$f(x, \theta) = x^{T}\theta, \quad y = f(x, \theta) + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^{2})$$

$$L(\theta) = \frac{1}{2\sigma^{2}} \sum_{n} (f(x_{n}, \theta) - y_{n})^{2}$$

A typical linear regression model:

- $x \in \mathbb{R}^{D \times 1}$: input features; $y \in \mathbb{R}$: output value
- Model and loss:

$$f(x, \theta) = x^{\top} \theta, \quad y = f(x, \theta) + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2)$$

$$L(\theta) = \frac{1}{2\sigma^2} \sum_{n} (f(x_n, \theta) - y_n)^2$$

• Rewriting the loss in matrix form:

$$L(\boldsymbol{\theta}) = \frac{1}{2\sigma^2} ||\mathbf{y} - \mathbf{X}\boldsymbol{\theta}||_2^2$$

Gradient descent to find θ^* :

Assume constant step-sizes $\gamma_t = \gamma$:

- 1. Define **starting point** θ_0 , set $t \leftarrow 0$
- 2. Set $\theta_{t+1} = \theta_t \gamma_t \nabla_{\theta} L(\theta_t), t \leftarrow t+1$

$$\begin{aligned} \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t - \gamma_t \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_t) \\ &= \boldsymbol{\theta}_t - \gamma \frac{1}{\sigma^2} \mathbf{X}^\top (\mathbf{X} \boldsymbol{\theta}_t - \mathbf{y}) \end{aligned}$$

Gradient descent to find θ^* :

Assume constant step-sizes $\gamma_t = \gamma$:

- 1. Define **starting point** θ_0 , set $t \leftarrow 0$
- 2. Set $\theta_{t+1} = \theta_t \gamma_t \nabla_{\theta} L(\theta_t), t \leftarrow t+1$

$$\begin{aligned} \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t - \gamma_t \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_t) \\ &= \boldsymbol{\theta}_t - \gamma \frac{1}{\sigma^2} \mathbf{X}^\top (\mathbf{X} \boldsymbol{\theta}_t - \mathbf{y}) \\ &= (\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^\top \mathbf{X}) \boldsymbol{\theta}_t + \frac{\gamma}{\sigma^2} \mathbf{X}^\top \mathbf{y} \end{aligned}$$

3. Repeat 1 until stopping criterion.

Gradient descent to find θ^* :

Assume constant step-sizes $\gamma_t = \gamma$:

• GD returns the following iterative updates:

$$\boldsymbol{\theta}_{t+1} = (\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X}) \boldsymbol{\theta}_t + \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{y}$$

• We would like to figure out θ_t as a function of θ_0 and γ ! (and also other hyper-parameters & data)

Arithmetico-geometric sequence:

If a sequence $\{\theta_0, \theta_1, ..., \theta_T\}$ is defined by

$$\boldsymbol{\theta}_{t+1} = \mathbf{B}\boldsymbol{\theta}_t + \boldsymbol{c}, \quad t \geqslant 0,$$

Then we have

$$\theta_{t+1} = \mathbf{A}(\theta_t + \boldsymbol{\beta}) - \boldsymbol{\beta}$$
, for some $\mathbf{A}, \boldsymbol{\beta}$.

Arithmetico-geometric sequence:

If a sequence $\{\theta_0, \theta_1, ..., \theta_T\}$ is defined by

$$\theta_{t+1} = \mathbf{B}\theta_t + \mathbf{c}, \quad t \geqslant 0,$$

Then we have

$$\theta_{t+1} = \mathbf{A}(\theta_t + \boldsymbol{\beta}) - \boldsymbol{\beta}$$
, for some $\mathbf{A}, \boldsymbol{\beta}$.

Let's work out what are **A** and β :

$$\theta_{t+1} = \mathbf{A}(\theta_t + \boldsymbol{\beta}) - \boldsymbol{\beta} = \mathbf{B}\theta_t + c$$

$$\Leftrightarrow \mathbf{A}\theta_t + (\mathbf{A} - \mathbf{I})\boldsymbol{\beta} = \mathbf{B}\theta_t + c$$

$$\Leftrightarrow \mathbf{A} = \mathbf{B}, \quad \boldsymbol{\beta} = (\mathbf{B} - \mathbf{I})^{-1}c$$

Arithmetico-geometric sequence:

If a sequence $\{\theta_0, \theta_1, ..., \theta_T\}$ is defined by

$$\theta_{t+1} = \mathbf{B}\theta_t + \mathbf{c}, \quad t \geqslant 0,$$

Then we have

$$\theta_{t+1} = \mathbf{A}(\theta_t + \boldsymbol{\beta}) - \boldsymbol{\beta}$$
, for some $\mathbf{A}, \boldsymbol{\beta}$.

Let's work out what are **A** and β :

$$egin{aligned} eta_{t+1} = & \mathbf{A}(m{ heta}_t + m{eta}) - m{eta} = & \mathbf{B}m{ heta}_t + c \ & \Leftrightarrow & \mathbf{A}m{ heta}_t + (\mathbf{A} - \mathbf{I})m{eta} = & \mathbf{B}m{ heta}_t + c \ & \Leftrightarrow & \mathbf{A} = \mathbf{B}, \quad m{eta} = & (\mathbf{B} - \mathbf{I})^{-1}c \end{aligned}$$
 $\Rightarrow \quad m{ heta}_{t+1} = & \mathbf{B}(m{ heta}_t + (\mathbf{B} - \mathbf{I})^{-1}c) - (\mathbf{B} - \mathbf{I})^{-1}c$
 $\Rightarrow \quad m{ heta}_t = & \mathbf{B}^t(m{ heta}_0 + (\mathbf{B} - \mathbf{I})^{-1}c) - (\mathbf{B} - \mathbf{I})^{-1}c \end{aligned}$

Gradient descent to find θ^* :

Assume constant step-sizes $\gamma_t = \gamma$:

• GD returns the following iterative updates:

$$\boldsymbol{\theta}_{t+1} = (\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\mathsf{T}} \mathbf{X}) \boldsymbol{\theta}_t + \frac{\gamma}{\sigma^2} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Solving this iterative update returns:

Gradient descent to find θ^* :

Assume constant step-sizes $\gamma_t = \gamma$:

• GD returns the following iterative updates:

$$\boldsymbol{\theta}_{t+1} = (\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\mathsf{T}} \mathbf{X}) \boldsymbol{\theta}_t + \frac{\gamma}{\sigma^2} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Solving this iterative update returns:

$$\boldsymbol{\theta}_t = (\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X})^t (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*) + \boldsymbol{\theta}^*, \quad \boldsymbol{\theta}^* = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

• GD converges $(\theta_t \to \theta^*)$ if $(\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X})^t (\theta_0 - \theta^*) \to \mathbf{0}$

Gradient descent with constant step-size to find θ^* :

$$\boldsymbol{\theta}_t = (\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X})^t (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*) + \boldsymbol{\theta}^*, \quad \boldsymbol{\theta}^* = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

• The ℓ_2 distance between θ_t and θ^* :

$$||\boldsymbol{\theta}_t - \boldsymbol{\theta}^*||_2^2 = ||(\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^\top \mathbf{X})^t (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)||_2^2$$
$$= |(\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)^\top (\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^\top \mathbf{X})^{2t} (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)|$$

Gradient descent with constant step-size to find θ^* :

$$\boldsymbol{\theta}_t = (\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X})^t (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*) + \boldsymbol{\theta}^*, \quad \boldsymbol{\theta}^* = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

• The ℓ_2 distance between θ_t and θ^* :

$$||\boldsymbol{\theta}_t - \boldsymbol{\theta}^*||_2^2 = ||(\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^\top \mathbf{X})^t (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)||_2^2$$
$$= |(\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)^\top (\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^\top \mathbf{X})^{2t} (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)|$$

Fact:
$$\lambda_{min}(\mathbf{A})||\mathbf{x}||_{2}^{2} \leq \mathbf{x}^{\top}\mathbf{A}\mathbf{x} \leq \lambda_{max}(\mathbf{A})||\mathbf{x}||_{2}^{2}$$
:
$$||\boldsymbol{\theta}_{t} - \boldsymbol{\theta}^{*}||_{2}^{2} \geq \lambda_{min}((\mathbf{I} - \frac{\gamma}{\sigma^{2}}\mathbf{X}^{\top}\mathbf{X})^{2t})||\boldsymbol{\theta}_{0} - \boldsymbol{\theta}^{*}||_{2}^{2}$$

$$||\boldsymbol{\theta}_{t} - \boldsymbol{\theta}^{*}||_{2}^{2} \leq \lambda_{max}((\mathbf{I} - \frac{\gamma}{\sigma^{2}}\mathbf{X}^{\top}\mathbf{X})^{2t})||\boldsymbol{\theta}_{0} - \boldsymbol{\theta}^{*}||_{2}^{2}$$

Gradient descent with constant step-size to find θ^* :

$$\boldsymbol{\theta}_t = (\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X})^t (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*) + \boldsymbol{\theta}^*, \quad \boldsymbol{\theta}^* = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

• The ℓ_2 distance between θ_t and θ^* :

$$||\boldsymbol{\theta}_t - \boldsymbol{\theta}^*||_2^2 = ||(\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^\top \mathbf{X})^t (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)||_2^2$$
$$= |(\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)^\top (\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^\top \mathbf{X})^{2t} (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)|$$

Fact:
$$\lambda_{min}(\mathbf{A})||\mathbf{x}||_{2}^{2} \leq \mathbf{x}^{\top}\mathbf{A}\mathbf{x} \leq \lambda_{max}(\mathbf{A})||\mathbf{x}||_{2}^{2}$$
:
$$||\boldsymbol{\theta}_{t} - \boldsymbol{\theta}^{*}||_{2}^{2} \geq \lambda_{min}((\mathbf{I} - \frac{\gamma}{\sigma^{2}}\mathbf{X}^{\top}\mathbf{X})^{2})^{t}||\boldsymbol{\theta}_{0} - \boldsymbol{\theta}^{*}||_{2}^{2}$$

$$||\boldsymbol{\theta}_{t} - \boldsymbol{\theta}^{*}||_{2}^{2} \leq \lambda_{max}((\mathbf{I} - \frac{\gamma}{\sigma^{2}}\mathbf{X}^{\top}\mathbf{X})^{2})^{t}||\boldsymbol{\theta}_{0} - \boldsymbol{\theta}^{*}||_{2}^{2}$$

Gradient descent with constant step-size to find θ^* :

$$\lambda_{min}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2 \leq ||\boldsymbol{\theta}_t - \boldsymbol{\theta}^*||_2^2 \leq \lambda_{max}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2$$

$$\lambda_{min} := \lambda_{min}((\mathbf{I} - \frac{\gamma}{\sigma^2}\mathbf{X}^{\top}\mathbf{X})^2) \geqslant 0, \quad \lambda_{max} := \lambda_{max}((\mathbf{I} - \frac{\gamma}{\sigma^2}\mathbf{X}^{\top}\mathbf{X})^2)$$

Gradient descent with constant step-size to find θ^* :

$$\lambda_{min}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2 \leq ||\boldsymbol{\theta}_t - \boldsymbol{\theta}^*||_2^2 \leq \lambda_{max}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2$$

$$\lambda_{min} := \lambda_{min}((\mathbf{I} - \frac{\gamma}{\sigma^2}\mathbf{X}^{\top}\mathbf{X})^2) \geqslant 0, \quad \lambda_{max} := \lambda_{max}((\mathbf{I} - \frac{\gamma}{\sigma^2}\mathbf{X}^{\top}\mathbf{X})^2)$$

Convergence properties in difference cases:

- 1. λ_{max} < 1: always converge
- 2. $\lambda_{min} \ge 1$: always diverge
- 3. λ_{min} < 1 but $\lambda_{max} \ge$ 1: convergence depending on θ_0

Gradient descent with constant step-size to find θ^* :

$$\lambda_{min}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2 \leq ||\boldsymbol{\theta}_t - \boldsymbol{\theta}^*||_2^2 \leq \lambda_{max}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2$$

$$\lambda_{min} := \lambda_{min}((\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X})^2) \geqslant 0, \quad \lambda_{max} := \lambda_{max}((\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X})^2)$$

Deriving the eigenvalues λ_{min} , λ_{max} :

Gradient descent with constant step-size to find θ^* :

$$\lambda_{min}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2 \leq ||\boldsymbol{\theta}_t - \boldsymbol{\theta}^*||_2^2 \leq \lambda_{max}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2$$

$$\lambda_{min} := \lambda_{min}((\mathbf{I} - \frac{\gamma}{\sigma^2}\mathbf{X}^{\top}\mathbf{X})^2) \geqslant 0, \quad \lambda_{max} := \lambda_{max}((\mathbf{I} - \frac{\gamma}{\sigma^2}\mathbf{X}^{\top}\mathbf{X})^2)$$

Deriving the eigenvalues λ_{min} , λ_{max} :

• If λ is an eigenvalue of $\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X}$, then λ^2 is an eigenvalue of $(\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X})^2$

Gradient descent with constant step-size to find θ^* :

$$\lambda_{min}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2 \leq ||\boldsymbol{\theta}_t - \boldsymbol{\theta}^*||_2^2 \leq \lambda_{max}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2$$

$$\lambda_{min} := \lambda_{min}((\mathbf{I} - \frac{\gamma}{\sigma^2}\mathbf{X}^{\top}\mathbf{X})^2) \geqslant 0, \quad \lambda_{max} := \lambda_{max}((\mathbf{I} - \frac{\gamma}{\sigma^2}\mathbf{X}^{\top}\mathbf{X})^2)$$

Deriving the eigenvalues λ_{min} , λ_{max} :

- If λ is an eigenvalue of $\mathbf{I} \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X}$, then λ^2 is an eigenvalue of $(\mathbf{I} \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X})^2$
- If λ is an eigenvalue of $\mathbf{X}^{\top}\mathbf{X}$, then $1 - \frac{\gamma\lambda}{\sigma^2}$ is an eigenvalue of $\mathbf{I} - \frac{\gamma}{\sigma^2}\mathbf{X}^{\top}\mathbf{X}$:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{q} = \lambda\mathbf{q} \quad \Leftrightarrow \quad (\mathbf{I} - \frac{\gamma}{\sigma^2}\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{q} = (1 - \frac{\gamma\lambda}{\sigma^2})\mathbf{q}$$

Gradient descent with constant step-size to find θ^* :

$$\lambda_{min}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2 \leq ||\boldsymbol{\theta}_t - \boldsymbol{\theta}^*||_2^2 \leq \lambda_{max}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2$$

$$\lambda_{min} := \lambda_{min}((\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X})^2) \geqslant 0, \quad \lambda_{max} := \lambda_{max}((\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X})^2)$$

• If λ is an eigenvalue of $\mathbf{X}^{\top}\mathbf{X}$, then $(1 - \frac{\gamma\lambda}{\sigma^2})^2$ is an eigenvalue of $(\mathbf{I} - \frac{\gamma}{\sigma^2}\mathbf{X}^{\top}\mathbf{X})^2$

Gradient descent with constant step-size to find θ^* :

$$\lambda_{min}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2 \leq ||\boldsymbol{\theta}_t - \boldsymbol{\theta}^*||_2^2 \leq \lambda_{max}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2$$

$$\lambda_{min} := \lambda_{min}((\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X})^2) \geqslant 0, \quad \lambda_{max} := \lambda_{max}((\mathbf{I} - \frac{\gamma}{\sigma^2} \mathbf{X}^{\top} \mathbf{X})^2)$$

- If λ is an eigenvalue of $\mathbf{X}^{\top}\mathbf{X}$, then $(1 - \frac{\gamma\lambda}{\sigma^2})^2$ is an eigenvalue of $(\mathbf{I} - \frac{\gamma}{\sigma^2}\mathbf{X}^{\top}\mathbf{X})^2$
- $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is positive semi-definite $\Rightarrow \lambda \geqslant 0$

Gradient descent with constant step-size to find θ^* :

$$\lambda_{min}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2 \leq ||\boldsymbol{\theta}_t - \boldsymbol{\theta}^*||_2^2 \leq \lambda_{max}^t ||\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*||_2^2$$

$$\lambda_{min} := \lambda_{min}((\mathbf{I} - \frac{\gamma}{\sigma^2}\mathbf{X}^{\top}\mathbf{X})^2) \geqslant 0, \quad \lambda_{max} := \lambda_{max}((\mathbf{I} - \frac{\gamma}{\sigma^2}\mathbf{X}^{\top}\mathbf{X})^2)$$

- If λ is an eigenvalue of $\mathbf{X}^{\top}\mathbf{X}$, then $(1 - \frac{\gamma\lambda}{\sigma^2})^2$ is an eigenvalue of $(\mathbf{I} - \frac{\gamma}{\sigma^2}\mathbf{X}^{\top}\mathbf{X})^2$
- $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is positive semi-definite $\Rightarrow \lambda \geqslant 0$
- Ensuring convergence: we want $\lambda_{max} = \max(1 \frac{\gamma \lambda}{\sigma^2})^2 < 1$

$$\Rightarrow \gamma < \frac{2\sigma^2}{\lambda_{max}(\mathbf{X}^{\top}\mathbf{X})}$$

To ensure convergence at **any** initialisation: $\gamma < 2\sigma^2/\lambda_{max}(\mathbf{X}^{\top}\mathbf{X})$ **Q:** Can we use larger step-sizes?

To ensure convergence at any initialisation: $\gamma < 2\sigma^2/\lambda_{max}(\mathbf{X}^{\top}\mathbf{X})$

Q: Can we use larger step-sizes?

A: Yes and No.

1. You choose a step-size $\gamma \geqslant 2\sigma^2/\lambda_{min}(\mathbf{X}^{\top}\mathbf{X}) \implies \text{diverge}$

To ensure convergence at **any** initialisation: $\gamma < 2\sigma^2/\lambda_{max}(\mathbf{X}^{\top}\mathbf{X})$

Q: Can we use larger step-sizes?

A: Yes and No.

- 1. You choose a step-size $\gamma \ge 2\sigma^2/\lambda_{min}(\mathbf{X}^{\top}\mathbf{X})$ \Rightarrow diverge
- 2. You choose a step-size $\gamma \in \left[\frac{2\sigma^2}{\lambda_{max}(\mathbf{X}^{\top}\mathbf{X})}, \frac{2\sigma^2}{\lambda_{min}(\mathbf{X}^{\top}\mathbf{X})}\right) \Rightarrow \text{good luck}$
 - Convergence result may be sensitive to initialisation θ_0

To ensure convergence at **any** initialisation: $\gamma < 2\sigma^2/\lambda_{max}(\mathbf{X}^{\top}\mathbf{X})$ If you want to test your luck: choose $\gamma \in \left[\frac{2\sigma^2}{\lambda_{max}(\mathbf{X}^{\top}\mathbf{X})}, \frac{2\sigma^2}{\lambda_{min}(\mathbf{X}^{\top}\mathbf{X})}\right)$ Is my choice of γ robust to initialisation of $\boldsymbol{\theta}_0$?

To ensure convergence at **any** initialisation: $\gamma < 2\sigma^2/\lambda_{max}(\mathbf{X}^{\top}\mathbf{X})$ If you want to test your luck: choose $\gamma \in \left[\frac{2\sigma^2}{\lambda_{max}(\mathbf{X}^{\top}\mathbf{X})}, \frac{2\sigma^2}{\lambda_{min}(\mathbf{X}^{\top}\mathbf{X})}\right)$ Is my choice of γ robust to initialisation of θ_0 ?

Depending on the condition number:

$$\kappa(\mathbf{X}^{\top}\mathbf{X}) := \frac{\lambda_{max}(\mathbf{X}^{\top}\mathbf{X})}{\lambda_{min}(\mathbf{X}^{\top}\mathbf{X})}$$

 $\kappa(X^TX) \approx 1$

Need careful choice of step-sizes if the loss is "very stretched"

To ensure convergence at **any** initialisation: $\gamma < 2\sigma^2/\lambda_{max}(\mathbf{X}^\top\mathbf{X})$ If you want to test your luck: choose $\gamma \in \left[\frac{2\sigma^2}{\lambda_{max}(\mathbf{X}^\top\mathbf{X})}, \frac{2\sigma^2}{\lambda_{min}(\mathbf{X}^\top\mathbf{X})}\right)$ Is my choice of γ robust to initialisation of θ_0 ?

Depending on the condition number:

$$\kappa(\mathbf{X}^{\top}\mathbf{X}) := \frac{\lambda_{max}(\mathbf{X}^{\top}\mathbf{X})}{\lambda_{min}(\mathbf{X}^{\top}\mathbf{X})}$$

 $\kappa(X^TX) \approx 1$

 $\kappa(X^TX) \gg 1$

Need careful choice of step-sizes if the loss is "very stretched"

• Note: $\kappa(\mathbf{X}^{\top}\mathbf{X}) = \kappa(\mathbf{X})^2 = \frac{\sigma_{max}(\mathbf{X})}{\sigma_{min}(\mathbf{X})}$

In general the loss function is non-quadratic nor convex:

In general the loss function is non-quadratic nor convex:

Local quadratic approximation when $\theta_t \approx \theta^*$:

- locally approximate $L(\theta_t) \approx L(\theta^*) + \frac{1}{2}(\theta_t \theta^*)^\top \nabla^2 L(\theta^*)(\theta_t \theta^*)$ (in linear regression $\nabla^2 L(\theta) \propto \mathbf{X}^\top \mathbf{X}$)
- $\kappa(\nabla^2 L)$ can tell whether the loss is "locally stretched"

Let's see what happens for different step-sizes.

Image shows:

- Path of θ_t from Gradient Descent
- Constant step size $\gamma_t = \gamma$

Let's see what happens for different step-sizes.

Image shows:

- Path of θ_t from Gradient Descent
- Constant step size $\gamma_t = \gamma$

Let's see what happens for different step-sizes.

Image shows:

- Path of θ_t from Gradient Descent
- Constant step size $\gamma_t = \gamma$

Let's see what happens for different step-sizes.

Image shows:

- Path of θ_t from Gradient Descent
- Constant step size $\gamma_t = \gamma$

Let's see what happens for different step-sizes.

Image shows:

- Path of θ_t from Gradient Descent
- Constant step size $\gamma_t = \gamma$

Let's see what happens for different step-sizes.

Image shows:

- Path of θ_t from Gradient Descent
- Constant step size $\gamma_t = \gamma$

Choosing step-size: summary

Summary on choosing step size:

- too small: slow convergence
- too large: divergence
- just right: depends on problem (often: trial and error)

Choosing step-size: summary

Summary on choosing step size:

- too small: slow convergence
- too large: divergence
- just right: depends on problem (often: trial and error)

Rule of thumb: Start from a relatively large step size, decrease step size as getting closer to a (local) optimum.

Exercises

Finish relevant exercises in the exercise sheet

 You should be able to analyse more advanced gradient-based optimisation methods for linear regression

Next lecture: multivariate probability

Pre-requisite knowledge: univariate probability