Math 416 Lecture Note: Week 12

Daesung Kim

1 Orthogonality

Definition 1.1. Let V be an inner product space over $F, x, y \in V$, and S a subset of V.

- (i) We say x and y are orthogonal if $\langle x, y \rangle = 0$.
- (ii) We say S is orthogonal if $\langle z, w \rangle = 0$ for all $z, w \in S$, $z \neq w$.
- (iii) We say x is a unit vector if ||x|| = 1.
- (iv) We say S is orthonormal if S is orthogonal and consists of unit vectors.

Example 1.2. Let $V = \mathbb{R}^2$ be equipped with the standard inner product (dot product), then $S_1 = \{(1,0),(0,1)\}$ is orthonormal, $S_2 = \{(1,1),(1,-1)\}$ is orthogonal, and $S_3 = \{(1,0),(1,1)\}$ is not orthogonal

Definition 1.3. Let V be an inner product space over F. A orthonormal basis for V is a basis which is orthonormal.

Theorem 1.4. Let V be an inner product space over F and $S = \{v_1, \dots, v_k\}$ be an orthogonal subset of V. If $y \in \text{Span}(S)$, then

$$y = \sum_{i=1}^k \frac{\langle y, v_i \rangle}{\|v_i\|^2} v_i.$$

Proof. Since $y \in \text{Span}(S)$, there exist a_1, \dots, a_k such that

$$y = a_1 v_1 + \dots + a_k v_k.$$

Then, for each $i = 1, 2, \dots, k$,

$$\langle y, v_i \rangle = \left\langle \sum_{j=1}^k a_j v_j, v_i \right\rangle = \sum_{j=1}^k a_j \left\langle v_j, v_i \right\rangle = a_i \|v_i\|^2$$

because S is orthogonal. This finishes the proof.

Corollary 1.5. Let V be an inner product space over F and $S = \{v_1, \dots, v_k\}$ be an orthonormal subset of V. If $y \in \text{Span}(S)$, then

$$y = \sum_{i=1}^{k} \langle y, v_i \rangle v_i.$$

Corollary 1.6. Let V be an inner product space over F and S be an orthogonal subset of V consisting of nonzero vectors. Then, S is linearly independent.

Proof. Let $v_1, \dots, v_k \in S$ and $\sum_{i=1}^k a_i v_i = 0$. We apply the previous theorem with y = 0, then

$$a_i = \frac{\langle 0, v_i \rangle}{\|v_i\|^2} = 0$$

for all $i = 1, 2, \dots, k$. Thus, S is linearly independent.

Example 1.7. Let $V = \mathbb{R}^3$ be equipped with dot product and $v = 2e_1 + 3e_2 + 4e_3$. Then,

$$\langle v, e_1 \rangle = 2, \qquad \langle v, e_2 \rangle = 3, \qquad \langle v, e_3 \rangle = 4.$$

Definition 1.8. A matrix $A \in \mathcal{M}_{n \times n}(F)$ is called unitary when $F = \mathbb{C}$ (and orthogonal when $F = \mathbb{R}$) if Q is invertible and $Q^{-1} = Q^*$.

We simply use the terminology "orthogonal" for both cases $F=\mathbb{R}$ and $F=\mathbb{C}.$

Theorem 1.9. A matrix $A \in \mathcal{M}_{n \times n}(F)$ is orthogonal if and only if the set of the columns of A is orthonormal.

Proof. HW.

Remark 1.10. Let $V = F^n$, β be an orthonormal basis, and γ the standard basis. Then, $Q = [I]^{\gamma}_{\beta}$ is orthogonal.

2 Gram-Schmidt orthogonalization process

Theorem 2.1. Every finite dimensional inner product space has an orthonormal basis.

Proof. It suffices to show that there exists a basis which is orthogonal. Let V be an inner product space over F and β is a basis. If n=1, then it is trivial. For $n \geq 2$, we will construct an orthogonal basis β' from β . This method is called the Gram–Schmidt orthogonalization process. To illustrate this process, suppose $\beta = \{v_1, v_2\}$ is a basis for V. We want to find another basis $\beta' = \{w_1, w_2\}$ that is orthonormal. First, let $w_1 = v_1/||v_1||$. The idea of defining w_2 is to decompose v_2 as the sum of the orthogonal and non-orthogonal part with respect to w_1 . That is,

$$v_2 = \overbrace{\left\langle v_2, w_1 \right\rangle w_1}^{\text{Non-orthogonal to } w_1} + \underbrace{\left(v_2 - \left\langle v_2, w_1 \right\rangle w_1 \right)}_{\text{Orthogonal to } w_1}.$$

Thus, we define $w_2' = v_2 - \langle v_2, w_1 \rangle w_1$ and $w_2 = w_2' / ||w_2'||$. In general, we can construct an orthonormal basis by the induction. We complete this by the next theorem.

Theorem 2.2 (the Gram-Schmidt orthogonalization process). Let V be an inner product space over F and $S = \{v_1, \dots, v_n\}$ be a linearly independent subset of V. We define $S' = \{w_1, \dots, w_n\}$ by the following inductive way: Let $w_1 = v_1$. For $k = 2, \dots, n$,

$$w_k = v_k - \sum_{j=1}^{k-1} \frac{\langle v_k, w_j \rangle}{\|w_j\|^2} w_j.$$

Then, S' is orthogonal and Span(S) = Span(S').

Proof. Use an induction on n. If n=1, then S=S' so that it is done. Suppose $n\geq 2$ and the theorem is true for n-1. That is, if we let $T=\{v_1,\cdots,v_{n-1}\}$ and $T'=\{w_1,\cdots,w_{n-1}\}$, then T' is orthogonal and $\mathrm{Span}(T)=\mathrm{Span}(T')$ by the induction hypothesis. For $k=1,2,\cdots,n-1$, we have

$$\langle w_n, w_k \rangle = \left\langle v_n - \sum_{j=1}^{n-1} \frac{\langle v_k, w_j \rangle}{\|w_j\|^2} w_j, w_k \right\rangle$$

$$= \langle v_n, w_k \rangle - \sum_{j=1}^{n-1} \frac{\langle v_k, w_j \rangle}{\|w_j\|^2} \langle w_j, w_k \rangle$$

$$= \langle v_n, w_k \rangle - \frac{\langle v_k, w_k \rangle}{\|w_k\|^2} \langle w_k, w_k \rangle$$

$$= 0.$$

Thus, $S' = T \cup \{w_n\}$ is orthogonal.

Note that $\operatorname{Span}(T) = \operatorname{Span}(T')$, $S = T \cup \{v_n\}$, and $S' = T' \cup \{w_n\}$. To show $\operatorname{Span}(S) = \operatorname{Span}(S')$, it suffices to show that $v_n \in \operatorname{Span}(S')$ and $w_n \in \operatorname{Span}(S)$. This follows from

$$v_n = w_n + \sum_{j=1}^{n-1} \frac{\langle v_k, w_j \rangle}{\|w_j\|^2} w_j \in \text{Span}(S')$$

and

$$w_n = v_n - \sum_{j=1}^{n-1} \frac{\langle v_k, w_j \rangle}{\|w_j\|^2} w_j \in \text{Span}(S)$$

because $\{w_1, \dots, w_{n-1}\} \subset \operatorname{Span}(S)$.

Example 2.3. Let $S = \{v_1 = (1, 0, 1), v_2 = (0, 1, 1), v_3 = (1, 3, 3)\}$ be a linearly independent subset of \mathbb{R}^3 . By the Gram-Schmidt process, we get $w_1 = v_1$,

$$w_2 = v_2 - \frac{\langle v_2, w_1 \rangle}{\|w_1\|^2} w_1 = (0, 1, 1) - \frac{1}{2} (1, 0, 1) = (-\frac{1}{2}, 1, \frac{1}{2}) = \frac{1}{2} (-1, 2, 1),$$

and

$$w_3 = v_3 - \frac{\langle v_3, w_1 \rangle}{\|w_1\|^2} w_1 - \frac{\langle v_3, w_2 \rangle}{\|w_2\|^2} w_2$$

= $(1, 3, 3) - 2(1, 0, 1) - \frac{4}{3}(-1, 2, 1)$
= $\frac{1}{3}(1, 1, -1)$.

Then, $\beta' = \{w_1, w_2, w_3\}$ is an orthogonal basis for \mathbb{R}^3 .

Example 2.4. Let $V = \mathcal{P}(\mathbb{R})$ be the space of all polynomials with real coefficients and $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ be defined by

$$\langle f, g \rangle = \frac{1}{2} \int_{-1}^{1} f(x)g(x) dx.$$

Then, $\langle \cdot, \cdot \rangle$ is an inner product. Let $e_n(x) = x^n$ for each integer $n \ge 0$ and $\beta = \{e_n(x) : n \ge 0\}$. We apply the Gram-Schmidt process to β . Let $f_0(x) = 1$,

$$f_1(x) = e_1(x) - \frac{\langle e_1, f_0 \rangle}{\|f_0\|^2} f_0(x) = x - \frac{1}{2} \int_{-1}^1 x \, dx = x,$$

and

$$f_2(x) = e_2(x) - \frac{\langle e_2, f_0 \rangle}{\|f_0\|^2} f_0(x) - \frac{\langle e_2, f_1 \rangle}{\|f_1\|^2} f_1(x) = x^2 - \frac{1}{3}.$$

We can continue this procedure and get $\beta' = \{f_n : n \geq 0\}$. We call $f_n(x)$ the Legendre polynomial.

Definition 2.5. Let V be an inner product space over F and β is an orthonormal subset of V. We define the Fourier coefficients of x relative to β by $c_y = \langle x, y \rangle$ for each $y \in \beta$.

Example 2.6. Let V = C([-1,1]) be the space of all continuous functions $f: [-1,1] \to \mathbb{R}$ and $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ be defined by

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx.$$

Let

$$S = \{\frac{1}{\sqrt{2}}\} \cup \{\sin(\pi nx) : n = 1, 2, \dots\} \cup \{\cos(\pi nx) : n = 1, 2, \dots\}.$$

Note that S is an orthonormal subset. Let $h(x) = |x| \in V$. To see the Fourier coefficients of f relative to S, we compute that

$$\left\langle h, \frac{1}{\sqrt{2}} \right\rangle = \frac{1}{\sqrt{2}} \int_{-1}^{1} |x| \, dx = \sqrt{2} \int_{0}^{1} x \, dx = \frac{1}{\sqrt{2}},$$

 $\langle h, \sin(\pi nx) \rangle = 0$ by symmetry, and

$$\langle h, \cos(\pi n x) \rangle = 2 \int_0^1 x \cos(\pi n x) \, dx = -\frac{2}{\pi^2 n^2} \int_0^{\pi n} \sin x \, dx = \begin{cases} 0, & \text{if } n \text{ is even,} \\ -\frac{4}{\pi^2 n^2} & \text{if } n \text{ is odd.} \end{cases}$$

It is well-known (Parseval's identity) that

$$f(x) = \left\langle f, \frac{1}{\sqrt{2}} \right\rangle \frac{1}{\sqrt{2}} + \sum_{n=1}^{\infty} (\left\langle f, \sin(\pi n x) \right\rangle \sin(\pi n x) + \left\langle f, \cos(\pi n x) \right\rangle \cos(\pi n x)).$$

This yields that

$$|x| = \frac{1}{2} - \sum_{n: \text{ odd}} \frac{4\cos(\pi nx)}{\pi^2 n^2}$$

for $x \in [-1, 1]$. In particular, if x = 0, then

$$\sum_{n: \text{ odd}} \frac{1}{n^2} = \frac{\pi^2}{8},$$

which implies in turn that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

3 Orthogonal complements and projections

Definition 3.1. Let V be an inner product space over F and S a nonempty subset of V. The orthogonal complement of S, denoted by S^{\perp} , is the set of all vectors in V that are orthogonal to S.

Example 3.2. Note that $\{0\}^{\perp} = V \text{ and } V^{\perp} = \{0\}.$

Example 3.3. Let $V = \mathbb{R}^2$ and $S = \{e_1\}$, then $S^{\perp} = \operatorname{Span}(\{e_2\})$. If $S = \{v\}$, $v \neq 0$, and $\langle v, w \rangle = 0$, then $S = \operatorname{Span}(\{w\})$.

Example 3.4. Let $V = \mathbb{R}^3$ and $S = \{e_1\}$, then $S^{\perp} = \text{Span}(\{e_2, e_3\})$. Note that S is indeed the yz-plane. If $S = \{e_1, e_2\}$, then S^{\perp} is the z-axis.

Theorem 3.5. Let V be an inner product space over F and W a finite dimensional subspace of V. Then, every vector y in V can be written uniquely as y = w + z where $w \in W$ and $z \in W^{\perp}$. Moreover, if $\{u_1, \dots, u_n\}$ is an orthonormal basis for W, then

$$w = \sum_{i=1}^{n} \langle y, u_i \rangle u_i.$$

Proof. Let $y \in V$, then we can decompose it into the orthogonal part and non-orthogonal part as we did in the Gram-Schmidt process. That is,

$$y = \left(\sum_{i=1}^{n} \langle y, u_i \rangle u_i\right) + \left(y - \sum_{i=1}^{n} \langle y, u_i \rangle u_i\right) = w + z.$$

One can see that $w \in W$ and for each u_i ,

$$\langle z, u_i \rangle = \left\langle y - \sum_{i=1}^n \langle y, u_i \rangle u_i, u_j \right\rangle = \langle y, u_j \rangle - \sum_{i=1}^n \langle y, u_i \rangle \langle u_i, u_j \rangle = 0,$$

which implies that $z \in W^{\perp}$ (HW). So, it suffices to show that this decomposition is unique. This follows from the fact that $W \cap W^{\perp} = \{0\}$ (HW). Suppose y = w + z = w' + z' where $w, w' \in W$ and $z, z' \in W^{\perp}$. Then,

$$w - w' = z' - z \in W \cap W^{\perp} = \{0\}$$

and so w = w' and z = z'.

Definition 3.6. Let V be an inner product space over F and W a finite dimensional subspace of V. The orthogonal projection of y onto W, denoted by $\operatorname{proj}_W(y)$, is a vector w in W such that y = w + z and $z \in W^{\perp}$. The theorem ensures that this definition is well-defined.

Remark 3.7. Let V be an inner product space over F and W a finite dimensional subspace of V. We define $\operatorname{proj}_W: V \to W$ by $y \to \operatorname{proj}_W(y)$. One can see that this is indeed a linear transformation.

Example 3.8. Let W be a plain in \mathbb{R}^3 given by x + y + z = 0. Then, W is a subspace of \mathbb{R}^3 , $W = \text{Span}(\{v_1, v_2\})$, and $W^{\perp} = \text{Span}(\{v_3\})$ where $v_1 = (1, -1, 0), v_2 = (0, 1, -1),$ and $v_3 = (1, 1, 1).$

For each $u \in \mathbb{R}^3$, we define T(u) by the closest vector in W from u. We define a linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ by $u \to T(u)$. Previously, we have seen that

$$T(x,y,z) = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2x - y - z \\ -x + 2y - z \\ -x - y + 2z \end{pmatrix}.$$

Let $A = [T]_{\gamma}$ and γ be the standard basis for \mathbb{R}^3 , then

$$I - A = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} - & v_3 & - \\ - & v_3 & - \\ - & v_3 & - \end{pmatrix}.$$

In particular, $u - T(u) \in W^{\perp}$ for all $u \in \mathbb{R}^3$.

This example suggests that $T(u) = \operatorname{proj}_W(u)$, that is, T is the orthogonal projection onto W. In other words, we can interpret $\operatorname{proj}_W(y)$ as the "closest" vector in W from y. The next result asserts that this is the case

Corollary 3.9. Let V be an inner product space over F and W a finite dimensional subspace of V. If $y \in V$ and $w = \operatorname{proj}_W(y)$, then

$$||y - x|| \ge ||y - w||$$

for all $x \in W$. Moreover, equality holds if and only if x = w.

Proof. Let y = w + z where $w \in W$ and $z \in W^{\perp}$. Since $w - x \in W$, we have

$$||y - x||^2 = ||(w - x) + z||^2$$

$$= ||w - x||^2 + \langle w - x, z \rangle + \langle z, w - x \rangle + ||z||^2$$

$$= ||w - x||^2 + ||z||^2$$

$$\geq ||z||^2$$

$$= ||y - w||^2.$$

Theorem 3.10. Let V be a finite dimensional inner product space over F and W a subspace of V, then

$$\dim(V) = \dim(W) + \dim(W^{\perp}).$$

Proof. Let $\dim(V) = n$, $\dim(W) = k$, and $1 \le k \le n$. Suppose $\{w_1, \cdots, w_k\}$ be a basis for W. By the Gram–Schmidt process, we get an orthonormal basis $\beta = \{v_1, \cdots, v_k\}$ for W. By the basis extension theorem, we have a basis $\{v_1, \cdots, v_k, w_{k+1}, \cdots, w_n\}$ for V. By the Gram–Schmidt process again, we get an orthonormal basis $\gamma = \{v_1, \cdots, v_k, w_{k+1}, \cdots, v_n\}$ for V. Note that along the process the vectors in β does not change because β is already orthonormal. Let $\beta' = \{v_{k+1}, \cdots, v_n\}$. We claim that β' is a basis for W^{\perp} . First, β' is linearly independent because it is a subset of β which is linearly independent. And $\beta' \subset W^{\perp}$ because γ is orthonormal and so β' is perpendicular to W. It suffices to show that β' spans W^{\perp} . Suppose $w \in W^{\perp}$, then

$$w = \sum_{i=1}^{n} a_i v_i$$

for some $a_i \in F$. Since $w \in W^{\perp}$ and γ is orthonormal, we get

$$\langle w, v_j \rangle = \left\langle \sum_{i=1}^n a_i v_i, v_j \right\rangle = \sum_{i=1}^n a_i \left\langle v_i, v_j \right\rangle = a_j = 0$$

for all $j = 1, 2, \dots, k$. Thus,

$$w = \sum_{i=1}^{n} a_i v_i = \sum_{i=k+1}^{n} a_i v_i,$$

which implies that β' spans W^{\perp} as desired.

References

[FIS] Freidberg, Insel, and Spence, *Linear Algebra*, 4th edition, 2002.

[Bee] Beezer, A First Course in Linear Algebra, Version 3.5, 2015.

Department of Mathematics, University of Illinois at Urbana-Champaign $E\text{-}mail\ address\text{:} \texttt{daesungk@illinois.edu}$