VERKFRÆÐILEGAR BESTUNARAÐFERÐIR

Day 11 - Group 2

T-423-ENOP

Arnar Gylfi Haraldsson arnarh23@ru.is

Hafþór Árni Hermannsson hafthorh20@ru.is

Ragnheiður Gná Gústafsdóttir ragnheidurg@ru.is

Exercise 1

Description

Consider a data pairs provided in a file exercise_1_data.mat, and shown in a plot: Construct a linear regression model of this data using basis functions of the form: 1, $\sin(x)$, $\cos(x)$, $\sin(2x)$, $\cos(2x)$, ..., $\sin(nx)$, $\cos(nx)$. Plot both the input data and the regression function for different values of n. Plot approximation error versus n. What is the smallest n ensuring sufficient accuracy of the regression model in this case?

Functionality

The code has the following steps and attributes:

- It starts by loading the contents of exercise_1_data.mat into a vector called y, initializes the x vector with one column of length Y as ones and a integer vector nv that spans from 1 to n.
- For each value of n a column of sin(nx) and a column of cos(nx) is added onto the X matrix.
- λ is calculated with equation (1).
- Y_{pred} is calculated with equation (2).
- The data points and predicted curve is plotted together.
- The approximation error vs n is calculated and then plotted.

$$\lambda = (X^T X)^{-1} X^T y \tag{1}$$

$$Y_{pred} = X * \lambda \tag{2}$$

We chose to plot within the for loop for each n to be able to see the progress the regression made with each n.

Solution

The regression was done for n = 2, 5, 8 and 20. The results of these regression models are displayed in figures 1 to 4. The error is displayed in figure 5, on that it can be observed that between n=37 to n=40 the error drops significantly. When using the cursor on the matlab figure the biggest difference can be seen between n=37 and n=38, where is drops from 0.0382 to 2.4988e-11. Therefore the smallest n=38 ensuring sufficient accuracy of the regression model in this case is n=38.

Figure 1: n = 2

Figure 2: n = 5

Figure 3: n = 8

Figure 4: n = 20

Figure 5: The error of the regression model on a logarithmic scale for better visualization.

Exercise 2

Description

The following dataset is provided:

The objective is to:

- 1. Plot the data and think of possible nonlinear regression model that has no more than five parameters.
- 2. Implement the model and obtain its parameters using Isqnonlin routine from Matlab Optimization Toolbox.
- 3. Plot both the input data and the regression function.

Functionality

After plotting up the data the first time it was decided that a combination of cos(x) and exp(-x) would represent the data the best due to the visual shape of it. The objective function for the Isqnonlin routine was therefore:

$$Obj_func1(param, x) = param(1) * cos(param(2) * x) + param(3) * exp(-param(4) * x)$$
 (3)

Then to find a better fit three more terms were added, 1, x and x^2 . Then the objective function for the lsqnonlin routine became:

$$Obj_func2(param, x) = param(1) + param(2) * x + param(3) * x^2$$

$$+ param(4) * cos(param(5) * x) + param(6) * exp(-param(7) * x)$$
 (4)

Result

Figure 6: Data points and both regression functions developed.

Exercise 3

Description

Create a radial basis function surrogate model for function exercise_3_function. The domain is [-3,3][-3,3]. Use uniform-grid base set with N = 9, 25, 49, 100, and 169 points. Use Gaussian basis functions with c = 1. Make the surface plot of f and the surface plot of the RBF model; indicate base points as black dots. Calculate the approximation error for each N using a separate set of 100 test points generated using LHS.

Functionality

This script implements a Radial Basis Function (RBF) surrogate model for a given function exercise_3_function within the domain $[-3,3] \times [-3,3]$. The main operations performed by the script are as follows:

1. Parameter Initialization: Initialize, grid size, N and Gaussian basis function parameter c.

2. Original Function Evaluation and Plotting:

- Generate a grid and evaluate the original function on this grid.
- Plot the original function as a surface plot.

3. Test Points Generation Using Latin Hypercube Sampling (LHS):

- Generate 100 test points within the domain using LHS.
- Evaluate the function at these test points.

4. RBF Surrogate Model Construction and Evaluation:

- Loop through each *N* value:
 - Generate uniform grid base points.
 - Compute the Gaussian RBF matrix.
 - Evaluate the function at the base points.
 - Solve for the RBF model weights.
 - Predict function values at the base points.
 - Calculate the approximation error using LHS test points.
 - Plot the RBF surrogate model.

5. Output:

- Surface plots of the original function and RBF surrogate models.
- Approximation errors for each *N* value displayed in the console.

Result

Table 1: LHS approximation error

N	Approximation Error
9	1.2639
25	0.20266
49	0.02651
100	0.0038961
169	0.00023315

Figure 7: N = 9

Figure 8: N = 25

Figure 9: N = 49

Figure 10: N = 100

Figure 11: N = 169

Figure 12: LHS error on a logarithmic scale compared to values of N