IFN501 - System Modeling and Simulation

Session 3: Introduction to Computer Simulation (Part 2)

Daniel Febrian Sengkey

Department of Electrical Engineering Faculty of Engineering Universitas Sam Ratulangi

Outline

Different Types of Simulation

References

Acknowledgement

When not specifically defined, the contents of this presentation are adapted from [1].

- Continuous
- Monte Carlo
- Discrete Event
- Agent-based Modeling

Continuous Simulation

- Concerned with modeling a set of equations over time
- The set of equations represents a system
- System may consist of algebraic system, game theoretic models, statistical models, or differential equations
- The parameters may continuously changing
- Examples:
 - 4 WD suspension system
 - Competition between 2 populations
 - Population and/or urban growth

Monte Carlo Simulation

Definition

A scheme employing random numbers, which is used for solving certain stochastic or deterministic problems where the <u>passage of time plays</u> no role.

- Invented by John Von Neumann for his experiments in atomic bomb
- ► Based on random numbers the name itself invokes the thoughts of gambling, gaming and chance
- The model is not influenced by time
- The use of random number generators gives Monte Carlo simulation characteristics not common to continuous simulation
- Example: paintball game between two groups

Discrete Event Computer Simulation

- Characterized by the passage of blocks of time during which nothing happens, punctuated by events which change the state of the system.
- Example: Customers at an ATM
 - Events: arrive, wait for service, receive service, depart
 - The duration of each event can be different e.g follows certain distribution pattern (See Tables 1 and 2)

Discrete Event Computer Simulation - Example

Table 1: Time between customer arrivals

Time (min.)	Percentage (%)	Time (min.)	Percentage (%)
1	5	6	20
2	7	7	10
3	8	8	8
4	10	9	7
5	20	10	5

Table 2: Service durations

Time (min.)	Percentage (%)	Time (min.)	Percentage (%)
1	10	4	25
2	25	5	10
3	30		

Discrete Event Computer Simulation - Example

- In [1] the example was coded and ran as a GPSS simulation for 1000 hours of simulated time
- Some results:
 - Maximum waiting line size is 5 customers
 - Average waiting time is 1.381 minutes
 - Utilization time is 76.3%
 - Average length of the waiting line is 0.251 customer
 - ► The machine was used 10898 times by 10898 customers
- The results can be used for evaluation and to determine if another machine is needed.

Agent-based Modeling

- Addresses the simultaneous interactions of multiple agents to simulate, recreate, study, and predict complex phenomenon.
- Common elements:
 - Multiple agents modeled and scaled with various levels of detail (granularity)
 - Decision-making heuristics and rules
 - Adaptive behaviors or learning
 - Interaction rules or topology
 - Environment for interaction often consisting of constrained resources

References I

[1] R. McHaney, <u>Understanding Computer Simulation</u>. Ventus Publishing, 2009.