【专题】 含参函数问题

1. 设 $a \in \mathbf{R}$, 函数 $f(x) = \begin{cases} \cos(2\pi x - 2\pi a) & , x < a \\ x^2 - 2(a+1)x + a^2 + 5 & , x \geqslant a \end{cases}$, 若 f(x) 在区间 $(0, +\infty)$ 内恰有

6 个零点,则 a 的取值范围是

- $\text{A. } (2,\frac{9}{4}] \cup (\frac{5}{2},\frac{11}{4}] \qquad \text{B. } (\frac{7}{4},2) \cup (\frac{5}{2},\frac{11}{4}) \qquad \text{C. } (2,\frac{9}{4}] \cup [\frac{11}{4},3) \qquad \text{D. } (\frac{7}{4},2) \cup [\frac{11}{4},3]$

2. 已知函数 $f(x)=\left\{ egin{array}{ll} 2\sqrt{x} & ,0\leqslant x\leqslant 1 \\ \dfrac{1}{x} & ,x>1 \end{array}
ight.$,若关于 x 的方程 $f(x)=-\dfrac{1}{4}x+a$ $(a\in\mathbf{R})$ 恰有两个

互异的实数解,则 a 的取值范围为

- A. $\left[\frac{5}{4}, \frac{9}{4}\right]$

- 敗解,则 a 的取值范围为 $\mathrm{B.}\ (\frac{5}{4},\frac{9}{4}] \qquad \qquad \mathrm{C.}\ (\frac{5}{4},\frac{9}{4}] \cup \{1\} \qquad \qquad \mathrm{D.}\ [\frac{5}{4},\frac{9}{4}] \cup \{1\}$

- 3. 已知函数 $f(x) = \begin{cases} x^2 x + 3 & , x \leq 1 \\ x + \frac{2}{x} & , x > 1 \end{cases}$, 设 $a \in \mathbf{R}$, 若关于 x 的不等式 $f(x) \geqslant |\frac{x}{2} + a|$ 在 \mathbf{R} 上恒成立,则 a 的取值范围是
 - A. $\left[-\frac{47}{16}, 2\right]$
- B. $\left[-\frac{47}{16}, \frac{39}{16}\right]$ C. $\left[-2\sqrt{3}, 2\right]$ D. $\left[-2\sqrt{3}, \frac{39}{16}\right]$

4. 已知 $a \in \mathbf{R}$, 函数 $f(x) = \begin{cases} x^2 + 2x + a - 2 &, x \leq 0 \\ -x^2 + 2x - 2a &, x > 0 \end{cases}$, 若对任意 $x \in [-3, +\infty)$, $f(x) \leq |x|$ 恒成立,则 a 的取值范围为

第2页(共6页)

5.	已知 $a>0$,函数 $f(x)=\left\{ egin{array}{ll} x^2+2ax+a & ,x\leqslant 0 \\ -x^2+2ax-2a & ,x>0 \end{array} \right.$,若关于 x 的方程 $f(x)=ax$ 恰有 2 个互异的实数解,则 a 的取值范围为
6.	设 $a \in \mathbf{R}$,对任意实数 x ,用 $f(x)$ 表示 $ x -2$, $x^2-ax+3a-5$ 中的较小者,若函数 $f(x)$ 至少有三个零点,则 a 的取值范围为
6.	
6.	
6.	
6.	
6.	

7.	若函	ó数	f(x)	=2	$\sqrt{x^2}$	-ax	$- \epsilon $	ax -	- 2 -	+1	恰有	一个	零点	烹,贝		的耶	双值?	范围;	为 _			
8.	设 <i>a</i> 为 _				f(x))=a	ax^2 -	-2x	: -	x^2 -	- ax	+1	,差	f(x)	x) 悄	合有	两个	零点	烹,贝	$\parallel a$	的取	值范围
1																						

9.	已知	日函数 $f(x) = x^2 + a x+1 $.
	(1)	当 $a > 2$ 时,判断 $f(x)$ 在 \mathbf{R} 上的单调性;
		记 $f(x)$ 在 \mathbf{R} 上的最小值为 $g(a)$,求 $g(a)$ 的表达式及其最大值.
10		1.55 米ケ f () 2 1 2 (C D
10.		国函数 $f(x) = x^2 - 1 - x^2 + ax (a \in \mathbf{R}, a)$ 为常数).
10.	(1)	若函数 $y = f(x)$ 是偶函数,求实数 a 的值;
10.	(1)	
10.	(1)	若函数 $y = f(x)$ 是偶函数,求实数 a 的值;
10.	(1)	若函数 $y = f(x)$ 是偶函数,求实数 a 的值;
10.	(1)	若函数 $y = f(x)$ 是偶函数,求实数 a 的值;
10.	(1)	若函数 $y = f(x)$ 是偶函数,求实数 a 的值;
10.	(1)	若函数 $y = f(x)$ 是偶函数,求实数 a 的值;
10.	(1)	若函数 $y = f(x)$ 是偶函数,求实数 a 的值;
10.	(1)	若函数 $y = f(x)$ 是偶函数,求实数 a 的值;
10.	(1)	若函数 $y = f(x)$ 是偶函数,求实数 a 的值;
10.	(1)	若函数 $y = f(x)$ 是偶函数,求实数 a 的值;
10.	(1)	若函数 $y = f(x)$ 是偶函数,求实数 a 的值;
10.	(1)	若函数 $y = f(x)$ 是偶函数,求实数 a 的值;
10.	(1)	若函数 $y = f(x)$ 是偶函数,求实数 a 的值;
10.	(1)	若函数 $y = f(x)$ 是偶函数,求实数 a 的值;

	(1)	若 $g(x)$ 是奇函数,求 a 的值并判断 $g(x)$ 的单调性(单调性不需证明); 对任意 $x_1 \in [-1, +\infty)$,总存在唯一的 $x_2 \in [2, +\infty)$,使得 $f(x_1) = g(x_2)$ 成立,求正数 a 的取值范围.
	已知	$f(x) = \ln(ax), \ a > 0, \ g(x) = \ln x^b.$
		若 $a = e$, $b = -1$, 求 $f(x) \cdot g(x)$ 的最大值;
((2)	若 $a=2$,求关于 x 的不等式 $\frac{g(x)}{f(x)} \leq 0$ 的解集;
		$F(x) = f(x) + g(x) $,对于给定实数 b ,均有 x 满足 $F(x) \leq 1$,求 a 的取值范围.

11. 已知函数 $f(x) = 2^{x+1}$, g(x) = x|x - 2a|.