Midterm Review

- Logistics: Exam Wednesday, any 90 mins
 - · Use any non-human resource
 - · No class on Wednesday
 - · Office hours:
 - · Today 10-11am
 - · Tomorrow 1-2 pm
 - (Not on Wednesday)
- Topics: Modular arithmetic

 - · Symmetries of a square
 - · Definition/properties/examples of groups
 - · Sn (injective/surjective, cycle notation, composition, order)
 - · Orders of elements (definition/ properties/examples)
 - · Subgroups (definition/examples)
- Sample Exam: Ignore Problem 5

Math 335, Midterm 1

October 4, 2019

Name:

Problem	Points Scored	Total Points Possible
1		8
2		8
3		8
4		8
5		8
Total		40

Problem 1: You do not need to show any work or give justifications on this problem.

(a) Fill in the blank with a number in the range $\{0, 1, 2, 3, 4, 5\}$:

$$-7 \equiv \underline{5} \mod 6.$$
 $\left(-7 \equiv -1 \equiv 5 \mod 6\right)$

(b) We've seen that the set $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ is a group under the operation of addition modulo 6. In this group, what is the inverse of 2?

(because
$$2+4=0 \leftarrow identity$$
)

(c) Give an example of a proper montrivial subgroup of \mathbb{Z}_6 . (Write out your subgroup explicitly, by listing all of its elements.)

$$\{0,2,4\}$$
 or $\{0,3\}$

(d) Give an example of a subset of \mathbb{Z}_6 that is *not* a subgroup.

Problem 2: Which of the following are groups? In each case, circle "group" or "not a group"; you do not need to justify your answer.

(a) $G = \{0, 2\}$, where the operation is addition modulo 4.

not a group

(b) $G = \{1, 2, 3\}$, where the operation is multiplication modulo 4.

group

Not closed because 2eG but 2.2=0 isn't in G

(c) $G = \{\text{nonzero integers}\}\$, where the operation is multiplication.

group

Doesn't contain inverses, e.g. inv of $2 = \frac{1}{2} \notin G$

(d) $G = \{\text{rotational symmetries of a square}\} = \{I, R_{90}, R_{180}, R_{270}\},$ where the operation is composition.

	I	Rao	Riso	R270
not a group 📘	I	R4.	Ruo	Reza
R ₁₀	Rho	Riso	R27-	I
Rizo	Riso	Rzz.	I	Res
R ₂₇₀	Res	I	R.	Riso

Problem 3: Suppose G is a group with four elements,

$$G = \{a, b, c, d\},\$$

and the group table for G is the following:

d	d	c	b	a	
a*d=b	b	a	c	d	a
a + b + d = a	a	b	d	c	b
(C*b = b	d	c	b	(a)	c
C# 4 = 0	c	d	a	b	d

In other words, the entry in the top-right corner means that a * d = b.

(a) What is the identity element of G? Briefly explain how you know.

(b) What is the inverse of a? Briefly explain how you know.

b, because
$$a * b = b * a = c$$
 and c is the identity

(c) Is the operation on G commutative—that is, is G abelian? Briefly explain how you know.

Problem 4: You do not need to show any work or give justifications on this problem.

(a) Carefully define what it means to say that a function $f: A \to B$ is **injective** (or **one-to-one**).

$$f: A \longrightarrow B$$
 is injective if $\forall a_1, a_2 \in A$,
 $f(a_1) = f(a_2) \Longrightarrow a_1 = a_2$.

(b) In the symmetric group S_5 , let

$$\alpha = (1, 2, 3, 5), \quad \beta = (1, 3, 4).$$

What is $\alpha \circ \beta$? Express your answer in cycle notation, as a composition of disjoint cycles.

$$(1,2,3,5) \circ (1,3,4) = (1,5)(2,3,4)$$

(c) In the symmetric group S_6 , what is the order of

$$f = (1,3) (2,6,5,4)$$
?

ora(f) =
$$lcm(2,4) = 4$$

(d) If f is the same permutation as in part (c), what is f^8 ?

$$f^8 = (f^4)^2 = e^2 = e$$

SKIP THIS PROBLEM— Problem 5: HAVEN'T COVERED THIS

(a) Carefully define what it means for a group G to be \mathbf{cyclic} .

MATERIAL YET

(b) Let

$$U_4 = \{1, -1, i, -i\} \subseteq \mathbb{C}^*,$$

which is a group under multiplication of complex numbers. Explain how you know that U_4 is cyclic.

(c) Let

$$\mathbb{Z}_5 = \{0, 1, 2, 3, 4\},\$$

which is a group under addition modulo 5. In this group, what is $\langle 3 \rangle$? List all of its elements.