

程序代写代做 CS编程辅导

CMT1県製造ual Computing

VII.1 Curves WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

Xianfang Sun

QQ: 749389476

https://tutorcs.com

School of Computer Science & Informatics
Cardiff University

Overview

- ➤ Curve represe释语忧闷气代做 CS编程辅导
 - Explicit repre
 - Implicit repression
- > Parametric representation of curves
 - Piecewise polynomia curves (spline curves)
 - Bézier curves Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

Curves

> A curve is a set of 程序ition * Yakacp 编辑 编码 ing with one

degree of freedom

WeChat: cstutorcs

- > Useful to describe shapes on a higher level exam Help
 - Not only straight lines or curved shapes approximated by short line segments tutores@163.com
 - Simpler to create, Quit and analyse
 - More accurate rendesing and less storage (compared to linear approximation)

Explicit Representation

Explicit curve: y = 程序代写代做 CS编程辅导

• Essentially a *function plot* over some interval $x \in [a, b]$

- Properties:
 - Simple to compute points and plot them
 - Simple to check whitethe tratpoint be on curve
 - Cannot represent closed or multi-valued curves:
 Only one y value for each x value (a function)

Implicit Representation

- > Define curves imp腱胞份智感的微胞的细胞精确uation system
 - Straight line in $2 \Rightarrow By + C = 0$
 - Circle of radius $\mathbb{R}^2 + y^2 R^2 = 0$
 - Conic section: $A = \frac{Conic section}{Conic section}$: $A = \frac{Conic section}{Conic section}$:
 - Matrix/vector representation up to order two:

$$x^{T}Mx^{V+e}C^{T}x^{a+e}$$
 $sstutor(x = [x y]^{T})$

- > In 3D, two equations are needed ect Exam Help (1 equation restricts 1 variable, but there are 3 variables) • Straight line: Ax + By + Cz + D = 0,

$$EQQ:FJ/4936924791 = 0$$

• A circle in x-y planes: xtutoxcs=c6m

$$z = 0$$

Properties of Implicit Curves

- > Mainly use polyno指海域写新的nas编程輔新。
- > Coefficients determine properties
- > Properties:
 - Hard to render (hit like live non-linear equation system)
 - Simple to check whether a point lies on curve
 - Can represent closed dramusti-walused curves

Parametric Curves

- x(u), y(u), z(u) a we ushally by nomial or rational functions in u Assignment Project Exam Help
- u ∈ [a, b], usually u ∈ [0, 1]
 Email: tutorcs@163.com
 Parameter function maps parameter to model coordinates
 - Parameter space (parameter domain)
 - Model space: x, Mtzs (Cartesian spordinates)

Properties of Parametric Curves

- > Properties: 程序代写代做 CS编程辅导
 - Simple to rende பூர் இது புக்க parameter function)
 - Hard to check where a point lies on curve (must compute the mapping from (x, y, z) to u; involves solving non-linear equations)
 - Can represent classed or multivalued curves

Parametric Polynomial Curves

Describe coordinates by 男人物的编程辅导

$$x(u) = \sum_{l=0}^d A_l u^l \text{ and } \sum_{l=0}^d B_l u^l, \quad z(u) = \sum_{l=0}^d C_l u^l$$

- > Smooth (infinitely ntiable)
- > Higher order curves (34) cause numerical problems
- > Hard to control shape by interpolation

Bernstein Polynomials

➤ Bernstein basis polypomials 做 CS编程辅导

- Property: $\sum_{l=0}^{d} b_{l}^{W}(u) = 1 \text{ for } u \in [0,1]$
- A Bernstein polynomial is a linear combination of Bernstain basis polynomial is a linear combination of

$$B(u) = \sum_{l=0}^{d} \beta_{l}^{2} b_{l}^{2} (u), u \in [0, 1].$$
https://tutorcs.com

Cubic Bernstein Basis Polynomials

> There are 4 cubic 程序内stein hasis 编设和如ials

Piecewise Polynomial Curves

- ➤ Cut curve into segments and represent each segment as polynomial curve
- > Can use low-orde mial curves, e.g. cubic (order 3)
- > But how to guara a coothness at the joints?
 - ◆Continuity pro原語常

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutores.com

Spline Curves

- > In general, piecewise polynomial 编译解 are called splines
 - Motivated by loftsman's spline
 - Long narrov wood or plastic
 - Shaped by like shifts (called ducks)
 - Gives curves that among mooth or fair

Bézier Curves

➤ Represent a polynomial segment as 编程辅导

- $b_l^d(u): l^{\text{th}}$ Bernstain basis polynomial of degree d.
- Cubic Bézier curve (d = 3) has four control points d = 3 has four control points • Note that $\sum_{l=0}^{u} b_l^d(u) = 1$ for $u \in [0, 1]$ https://tutorcs.com

Convex combination of control points

Properties of Bézier Curves

> Convex hull:

EDNVEX NUII: 程序代写代做 CS编程辅导
• curve lies inside the convex hull of its control points

> Endpoint interpol

$$Q(0) = \mu_d$$

$$Q(1) = \mu_d$$

> Tangents

WeChat: cstutorcs

$$Q'(0) = d(p_1 - p_0)$$

 $Q'(1) = d(p_d - p_{d-1})$ Project Exam Help

- Symmetry
 - Q(u) defined by 17-498 154 Pqual to Q(1 - u) defined by p_d, \dots, p_0 https://tutorcs.com

Smooth Bézier Curves

- > Smooth joint between two Régiers p_1 order p_2 with control points $\{p_0, \dots, p_d\}$, $\{p'_0, \dots, p'_d\}$ respectively
 - C_0 : same end-co into into at joints: $p_d = p'_0$ (due to end-points)
 - C_1 : control points \vec{p}_{d-1} , $\vec{p}_d = p'_0$, p'_1 must be collinear (due to tangent vectors) tutorcs

Continuity conditions create restrictions on control points

Parametric/Geometric Continuity

- ➤ Parametric continuity。代写代做 CS编程辅导
 - C⁰: curves are joined
 - C¹: first derivati、是实现是qual at the joint points
 - C²: first *and* sec**al** vatives are equal
 - Cⁿ: first through wth derivatives are equal
- ▶ Geometric continuity:

 Assignment Project Exam Help
 G⁰: The curves touch at the joint points

 - G1: The curves also ihare a some on the curves also in the curves al at the joint points (first parivatives are proportional)
 - G²: The curves also share a common centre of curvature https://tutorcs.com at the joint points (first and second derivatives are proportional)

Smoothness / Continuity

- > Curve should be smooth to some order at joints
- > Different types of continuity at joints
- > Geometric continue in the geometric viewpoint
- > Parametric contin

➤ Parametric continuity of order *n* implies geometric continuity of order *n*, but not vice versa.

Summary

- ➤ What is the implic **and Mesphilist Copses Meshation** of a curve? What are the advantages and disadvantages of these representations.
- What are piecewish netric polynomial curves (splines)? What is the advantage of this representation? What is the main problem estutores
- What are Bézier Curves and thow are they defined? What properties do they have?
 What is the major problem when using piecewise
- What is the major problem when using piecewise polynomial curves? What conditions do the control points of a Bézier Curve have to fulfill in order to get Co/C1 continuous curves?