Θεωρία Γραφημάτων 3η Διάλεξη

Α. Συμβώνης

Εθνικό Μετσοβείο Πολυτέχνειο Σχολή Εφαρμόσμενος Μαθηματικών και Φυσικών Επιστημών Τόμεας Μαθηματικών

Φεβρουάριος 2015

Μονοπάτια-Κύκλοι και Αποστάσεις

Έστω ένα γράφημα G(V,E) το οποίο μπορεί να έχει παράλληλες ακμές ή βρόγχους.

Περίπατος:

Ένας περίπατος μήκους ${m k}$ είναι μια ακολουθία $\pi = < v_0 \ e_1 \ v_1 \dots \ v_{k-1} \ e_k \ v_k > \alpha$ πό εναλλασσόμενες κορυφές και ακμές του γραφήματος ${m G}$ έτσι ώστε $e_i = (v_{i-1},v_i), 1 \le i \le k$

 $v_1 e_1 v_2 e_2 v_1 e_5 v_4 e_9 v_4 e_8 v_5$

 (v_0, v_k) -περίπατος, v_0, v_k : τερματικές κορυφές ή άκρα του περιπάτου

Περιήγηση:

Ένας περίπατος με ταυτόσημες τερματικές κορυφές

 $v_6 \ e_{11} \ v_5 \ e_{10} \ v_6 \ e_7 \ v_3 \ e_6 \ v_4 \ e_8 \ v_5 \ e_{10} \ v_6$

Μονοκονδυλιά (Trail):

Ένας περίπατος χωρίς επαναλαμβανόμενες ακμές

V₁ e₁ V₂ e₂ V₁ e₅ V₄

Μονοπάτι:

Ένας περίπατος χωρίς επαναλαμβανόμενες κορυφές

 $v_1 e_2 v_2 e_4 v_3 e_7 v_6$

Κύκλος:

Ένα μονοπάτι με ταυτόσημες τερματικές κορυφές

Για Απλά Γραφήματα

Περίπατος:

Μία ακολουθία κορυφών $\pi = < v_0 \ v_1 \dots v_k >$ τέτοια ώστε $(v_{i-1}, v_i) \in E, 1 < i < k$

• *P_k* το γράφημα-μονοπάτι με *k* κορυφές

$$P_k = (\{v_1, v_2, \dots, v_k\}, \{e_i = (v_i, v_{i+1}) : 1 \le i < k\})$$

• C_k το γράφημα-κύκλος με k κορυφές

$$\mathcal{C}_k = \left(\left\{v_1, v_2, \dots, v_k\right\}, \left\{e_i = \left(v_i, v_{i+1}\right) : 1 \leq i < k\right\} \cup \left(v_k, v_1\right)\right)$$

Χορδή:

Μια ακμή
$$e=(v_i,v_j)$$
 που ενώνει δυο κορυφές ενός κύκλου/μονοπατιού $\pi=< v_0 \ v_1 \ v_2 \dots v_j \dots v_k >$, όπου $e\notin \pi$, ή ισοδύναμα $i\notin \{j-1,j+1\}$

Άχορδο μονοπάτι/άχορδος κύκλος

Οπή:

Ένα επαγόμενο υπογράφημα ενός γραφήματος το οποίο [επαγόμενο υπογράφημα] είναι άχορδος κύκλος

Ερώτηση 3.1: Έστω ένα γράφημα G και ένας κύκλος του C μήκους k. Είναι το επαγόμενο υπογράφημα από τις κορυφές του C ισομορφικό με το C_k ?

Ερώτηση 3.2: Έστω γράφημα G με $\delta(G) \geq 2$. Να δειχθεί ότι το G περιέχει κύκλο.

Ερώτηση 3.3: Έστω απλό γράφημα G με $\delta(G) \geq 2$. Να δειχθεί ότι το G περιέχει κύκλο μήκους $\geq \delta(G) + 1$. Ισχύει για γραφήματα με βρόγχους/παράλληλες ακμές?

Ερώτηση 3.4: Έστω απλό γράφημα G με $\delta(G) \geq k$. Να δειχθεί ότι το G έχει ένα μονοπάτι μήκους k.

Λήμμα 3.1:

Έστω γράφημα G και $u,v\in V(G)$. Το G περιέχει έναν (u,v)-περίπατο ανν περιέχει ένα (u,v)-μονοπάτι

Απόδειξη :

Προφανές. Από τον ορισμό του μονοπατιού

- " \Rightarrow " Θα δείξουμε ότι: "Αν το G περιέχει ένα (u,v)-περίπατο W τότε το G περιέχει ένα (u,v)-μονοπάτι το οποίο αποτελείται από κορυφές του W"
 - Έστω ένας περίπατος $W = [u = v_1, \dots, v_k = v]$ ελάχιστου μήκους στο G για τον οποίο η πρόταση δεν ισχύει.
 - Η κορυφή *ν* εμφανίζεται μόνο μία φορά στο *W*
 - Εξετάζουμε τον περίπατο $W' = [u = v_1, \dots, v_{k-1}]$ που προκύπτει από την αφαίρεση της κορυφής v_k από το W
 - To W' έχει μήκος $< k \Rightarrow \exists (u, v_{k-1})$ -μονοπάτι P με κορυφές του W και δεν περιλαμβάνει την κορυφή v
 - Το μονοπάτι P ακολουθούμενο από την ακμή (v_{k-1}, v) είναι ένα (u, v)-μονοπάτι αποτελούμενο από κορυφές του W άτοπο \checkmark

Θεώρημα 3.2:

Έστω γράφημα G και έστω A ο πίνακας γειτνίασης του. Τότε η τιμή A^ℓ [i,j] είναι ο αριθμός των διαφορετικών (v_i,v_j) -περιπάτων μήκους ℓ στο G

Απόδειξη [Με επαγωγή στο ℓ]:

βάση: Ισχύει για
$$\ell=1$$
. $A[i,j]=1 \Leftrightarrow (v_i,v_j) \in E$
$$\Leftrightarrow \exists (v_i,v_j)\text{-μονοπάτι μήκους 1} \checkmark$$

Ε.Υ. Έστω ότι ισχύει για $k=\ell-1$, δηλαδή $A^{\ell-1}[i,j]$ είναι ο αριθμός των διαφορετικών (ν_i,ν_j) -περιπάτων μήκους $\ell-1$

E.B.
$$A^\ell = A^{\ell-1} \times A \Rightarrow$$

$$A^\ell[i,j] = \sum_{k=1}^{|V(G)|} A^{\ell-1}[i,k] A[k,j]$$

Κάθε ένας από τους $A^{\ell-1}[i,k]$ (v_i,v_k) -περιπάτους που ακολουθείται από την ακμή (v_k,v_j) είναι ένας (v_i,v_j) -περίπατος

Ερώτηση 3.5: Ισχύει για γραφήματα με βρόγχους και παράλληλες ακμές?

• Για πολυγραφήματα: $A[i,j] = |\{e : e = (v_i, v_i) \in E\}|$

Απόσταση:

Έστω γράφημα G και $u, v \in V(G)$. Η απόσταση dist(u, v) είναι το μήκος του ελαχίστου (u, v)-μονοπατιού στο G.

• $\operatorname{dist}(u,v) = +\infty$ εάν δεν υπάρχει (u,v)-μονοπάτι.

Πρόταση 3.3 (Τριγωνική ανισότητα):

Έστω γράφημα G και $u,v,w\in V(G)$ τρεις κορυφές του G. Τότε ισχύει:

$$dist(u, v) + dist(v, w) \ge dist(u, w)$$

Απόδειξη:

- Έστω ότι $\operatorname{dist}(u, v) + \operatorname{dist}(v, w) \neq +\infty$, αλλιώς ισχύει τετριμμένα.
- dist(u, v) το μήκος του ελάχιστου (u, v)-μονοπατιού P_{uv}
- $\operatorname{dist}(v,w)$ το μήκος του ελάχιστου (v,w)-μονοπατιού P_{vw}
- Η παράθεση $P_{uw} = P_{uv}P_{vw}$ δημιουργεί (u,w)-μονοπάτι με μήκος $\geq \alpha$ πό το ελάχιστο (u,w)-μονοπάτι.
- \Rightarrow dist(u, v) + dist(v, w) \geq dist(u, w)

Λήμμα 3.4:

Έστω γράφημα G. Κάθε περιήγηση περιττού μήκους στο G περιέχει έναν περιττό κύκλο στο G

Απόδειξη [με επαγωγή στο μήκος ℓ της περιήγησης]:

- Έστω W μια περιήγηση περιττού μήκους ℓ .
 - Βάση: $\ell=1\Rightarrow$ Η περιήγηση είναι βρόγχος, δηλαδή κύκλος μήκους 1
 - Ε.Υ. Έστω ότι κάθε περιήγηση περιττού μήκους $<\ell$ περιέχει έναν περιττό κύκλο
 - Ε.Β. Έστω W μια περιήγηση περιττού μήκους ℓ

Περίπτωση 1: Η W δεν περιέχει επαναλαμβανόμενες κορυφές

⇒ Τότε η W είναι εξ' ορισμού [περιττός] κύκλος

Περίπτωση 2: Η W περιέχει επαναλαμβανόμενη κορυφή, έστω u [εκτός της κοινής τερματικής κορυφής]

- Η W μπορεί να διαμελιστεί σε δύο μικρότερες περιηγήσεις W₁, W₂
- Μιας και η W είναι περιττού μήκους, μια εκ των W_1 , W_2 είναι επίσης περιττού μήκους, έστω η W_1
- Από Ε.Υ. η W₁ περιέχει περιττό κύκλος, άρα και η W

Θεώρημα 3.5:

Ένα γράφημα είναι διμερές ανν δεν περιέχει κύκλους περιττού μήκους.

Απόδειξη :

"
$$\Longrightarrow$$
" Έστω διμερές γράφημα $G=(A,B,E)$

- Έστω κύκλος $C = [v_1 \ v_2 \dots \ v_k = v_1]$ και έστω $v_1 \in A$
 - \Rightarrow $v_2 \in B, v_3 \in A,$

$$v_4 \in B, \dots$$

$$\Rightarrow$$
 $v_{2i-1} \in A$ και $v_{2i} \in B \forall i \geq 1$

$$\Rightarrow$$
 $v_k = v_1 \in A \Rightarrow k = 2i - 1 \text{ yia } i \geq 1$

$$\Rightarrow$$
 0 κύκλος *C* έχει άρτιο μήκος \checkmark

- "Έστω γράφημα G που δεν περιέχει περιττούς κύκλους. Θα βρούμε διαμέριση A, B του V(G) και θα δείξουμε ότι δεν υπάρχει ακμή $e=(u,v):u,v\in A$ ή $u,v\in B$
 - Έστω κορυφή u και A, B τα σύνολα κορυφών που βρίσκονται σε άρτια και περιττή απόσταση από την u αντίστοιχα

$$A \cap B = \emptyset$$
 και $u \in A$ [dist $(u, u) = 0$]

- Έστω ακμή $e = (x, y) : x, y \in A$ [όμοια εάν $x, y \in B$]
- Η περιήγηση

$$W = \{\underbrace{u \dots x}_{\text{άρτιο}} \underbrace{y \dots u}_{\text{άρτιο}}\}$$

στο G είναι περιττού μήκους

⇒ Η W περιέχει έναν περιττό κύκλο [από λήμμα 3.1 σελ. 51]

Άτοπο γιατί το *G* δεν περιέχει περιττούς κύκλους.

$$\Rightarrow$$
 Κάθε ακμή $e = (u, v)$ έχει $u \in A, v \in B$ ή $u \in B, v \in A$

Εκκεντρότητα κορυφής του G [eccentricity]:

$$ecc(v) = \max_{v \in V(G)} dist(v, u)$$

Διάμετρος του G:

$$diam(G) = \max_{v \in V(G)} ecc(v)$$

Ακτίνα του G:

$$rad(G) = \min_{v \in V(G)} ecc(v)$$

Αντιδιαμετρικές κορυφές $x, y \in V(G)$:

$$dist(x, y) = diam(G)$$

Κεντρική κορυφή:

Κάθε κορυφή $v \in V(G) : ecc(v) = rad(G)$

Κέντρο του G:

$$center(G) =$$
 { $v : v \in V(G)$ και $ecc(v) = rad(G)$ }

Απόκεντρη κορυφή:

Κάθε κορυφή $v \in V(G) : ecc(v) = diam(G)$

Κέντρο του G:

diam(G) = 6rad(G) = 3 $center(G) = \{ \bullet \}$ $far(G) = \{ \bullet \}$

$$far(G) = \{v : v \in V(G) \text{ και } ecc(v) = diam(G)\}$$

Θεώρημα 3.6:

Για κάθε γράφημα G ισχύει

$$rad(G) \le diam(G) \le 2rad(G)$$

Απόδειξη :

- i. $rad(G) \leq diam(G)$ άμεσα, από τους ορισμούς \checkmark
- ii. $diam(G) \leq 2rad(G)$
 - Έστω 2 "αυθαίρετες" κορυφές $x, y \in V(G)$: $\operatorname{dist}(x, y) = \operatorname{diam}(G)$
 - Έστω $v \in V(G)$ μια κεντρική κορυφή \Rightarrow $\operatorname{dist}(v, x) < \operatorname{ecc}(v) = \operatorname{rad}(G)$

$$dist(v, y) < ecc(v) = rad(G)$$

• Από τριγωνική ανισότητα:

$$dist(x,y) \le dist(x,v) + dist(v,y)$$

$$\Rightarrow \operatorname{diam}(G) < 2\operatorname{rad}(G)$$

Θεώρημα 3.7:

Για κάθε γράφημα
$$G$$
, είτε $\operatorname{center}(G) = \operatorname{far}(G)$
$$\text{ } \text{ } \text{ } \operatorname{center}(G) \cap \operatorname{far}(G) = \emptyset$$

Απόδειξη :

• $\text{'Eστω} v \in \text{center}(G) \cap \text{far}(G)$

$$\Rightarrow \left\{ \begin{array}{l} \nu \in \operatorname{center}(G) & \Rightarrow \operatorname{ecc}(\nu) = \operatorname{rad}(G) \\ \nu \in \operatorname{far}(G) & \Rightarrow \operatorname{ecc}(\nu) = \operatorname{diam}(G) \end{array} \right\}$$
$$\Rightarrow \operatorname{diam}(G) = \operatorname{rad}(G) \tag{1}$$

 $\forall u \in V(G)$ ισχ $\overleftarrow{\text{ύει}}$:

$$rad(G) \le ecc(u) \le diam(G)$$
 (2)

(1),(2) \Rightarrow Όλες οι κορυφές έχουν ίδια εκκεντρότητα $\Rightarrow \quad \operatorname{center}(G) = \operatorname{far}(G)$

Ερώτηση 3.6: Να δειχθεί ότι για κάθε δένδρο T ισχύει ότι $|\text{center}(T)| \in \{1,2\}$.

Ερώτηση 3.7: Να σχεδιαστεί αλγόριθμός που υπολογίζει το κέντρο center(T) ενός δένδρου T.

Ερώτηση 3.8: Έστω ένα συνδεδεμένο γράφημα G. Είναι το center(G) πάντα συνδεδεμένο?

Ερώτηση 3.9: Να υπολογιστούν τα rad(G), diam(G), center(G), far(G) όπου G το γράφημα

- i. $M_{a,b}$: το πλέγμα διαστάσεων $a \times b$
- ii. Q_r : ο υπερκύβος διάστασης r πόσα ζεύγη αντιδιαμετρικών κορυφών έχει ο Q_r ?

Ερώτηση 3.10: Να δειχθεί ότι για κάθε γράφημα G ισχύει diam $(G) > \delta(G)$.

Αποσυνθέσεις Απόστασης

Αποσύνθεση απόστασης:

Έστω γράφημα G και κορυφή $u \in V(G)$. Η αποσύνθεση απόστασης του G ως προς την u είναι η ακολουθία συνόλων $A(u) = \begin{bmatrix} X_0, X_1, \dots, X_{\text{ecc}(u)} \end{bmatrix}$ όπου

 $X_i = \{v : v \in V(G) \text{ } \kappa\alpha\iota \text{ } \operatorname{dist}(u, v) = i\}$

$$A(1) = \left\{ \begin{array}{c} \{1\}, \\ \{2, 3, 4\}, \\ \{5, 6, 7, 8\}, \\ \{10\}, \\ \{9, 11\} \end{array} \right\}$$

Εναλλακτικός ορισμός:

Έστω γράφημα G και κορυφή $u \in V(G)$. Η αποσύνθεση απόστασης του G ως προς την u είναι η ακολουθία συνόλων $A(u) = \left[X_0, X_1, \ldots, X_{\mathrm{ecc}(u)}\right]$ όπου

$$X_0 = \{u\}$$

$$X_i = N_G(X_{i-1}) \setminus \bigcup_{i=0}^{i-1} X_i, \quad 1 \le i \le \mathrm{ecc}(u)$$

Σημείωση:
$$X_i \cap X_j = \emptyset$$

$$\forall 0 \le i < j \le \operatorname{ecc}(u)$$

Λήμμα 3.8:

Έστω $A(u) = \begin{bmatrix} X_0, X_1, \dots, X_{\mathrm{ecc}(u)} \end{bmatrix}$ η αποσύνθεση απόστασης του G ως προς την u. Τότε $\forall 0 \leq i \leq j \leq \mathrm{ecc}(u)$ και $\forall x, y \in V(G): x \in X_i, y \in X_j$, κάθε μονοπάτι P που συνδέει τις κορυφές x και y τέμνει όλα τα σύνολα $X_i \dots X_j$

Απόδειξη :

- Έστω $x=u_0,u_1,\ldots,u_{q-1},u_q=y$ ένα (x,y)-μονοπάτι. Το μονοπάτι αντιστοιχεί στην ακολουθία $a=[a_0,a_1,\ldots,a_q]$ όπου $u_\ell\in X_{a_\ell}$, $0\leq \ell\leq q$
- $a_0 = 1, a_a = j$
- Στην ακολουθία a ισχύει $|a_{k-1} a_k| \le 1, \forall 0 < k < q$ [διαδοχικοί όροι απέχουν το πολύ κατά 1]
- \Rightarrow Η a περιλαμβάνει όλους τους αριθμούς στο διάστημα $i \dots j$

Λήμμα 3.9:

Έστω γράφημα G και έστω κορυφή $u \in V(G)$. Τότε ο αριθμός των μονοπατιών μήκους ℓ που έχουν την u ως άκρο τους είναι το πολύ

$$d(u)(\Delta(G)-1)^{\ell-1}$$

Απόδειξη:

• Έστω P_u^i , $1 \le i \le \ell$ το σύνολο των μονοπατιών που έχουν την u ως το ένα άκρο τους και έχουν μήκος

$$|P_u^1| = d(u) \tag{3}$$

- Κάθε μονοπάτι του P_u^{i+1} , $1 \le i < \ell$ αποτελεί επέκταση ενός μονοπατιού του P_u^i
- Έστω o(P) το άλλο άκρο κάθε μονοπατιού που ξεκινάει από την u.

$$|P_u^{i+1}| \leq \sum_{P \in P_u^i} d(o(P)) - 1 \leq \sum_{P \in P_u^i} \Delta(G) - 1 \leq |P_u^i| (\Delta(G) - 1)$$

$$|P_u^{i+1}| \le |P_u^i|(\Delta(G) - 1)$$
 (4)

$$(3),(4) \Rightarrow |P_u^{\ell}| \le d(u)(\Delta(G) - 1)^{\ell - 1}$$

Λήμμα 3.10:

Έστω γράφημα G με $\Delta(G) \leq d$. Τότε για κάθε κορυφή $u \in V(G)$ υπάρχουν το πολύ $1+\frac{d}{d-2}((d-1)^\ell-1)$ κορυφές του G σε απόσταση $\leq \ell$ από την u

Απόδειξη :

- Έστω $A(u) = [X_0, X_1, \dots, X_\ell]$ η αποσύνθεση απόστασης του G ως προς την u
- Εξ' ορισμού $|X_i|$, $0 \le i \le \ell$ είναι το πλήθος των κορυφών σε απόσταση i από την u $\Rightarrow \exists \ge |X_i|$ μονοπάτια από την u προς το X_i μήκους i

$$\begin{split} \sum_{i=0}^{\ell} |X_i| & \leq 1 + \sum_{i=1}^{\ell} d(u)(\Delta(G) - 1)^{i-1} \leq 1 + \sum_{i=1}^{\ell} d(d-1)^{i-1} \\ & = 1 + d \sum_{i=0}^{\ell-1} (d-1)^i \stackrel{*}{=} 1 + \frac{d}{d-2}((d-1)^{\ell} - 1) \end{split}$$

[* Άθροισμα S_n n όρων γεωματρικής προόδου $S_n=1+\lambda+\lambda^2+\cdots+\lambda^{n-1}=\frac{\lambda^n-1}{\lambda-1}$]

Θεώρημα 3.11:

Έστω γράφημα G με $\mathrm{rad}(G) \leq r$ και $\Delta(G) \leq d$. Τότε $|V(G)| \leq 1 + \frac{d}{d-2}((d-1)^r - 1)$

Απόδειξη:

Με εφαρμογή του προηγούμενου λήμματος για κάποια κορυφή $u \in \text{center}(G)$

Πλάτος απόστασης του G ως προς την u:

$$\pi\alpha(u) = \max\{|X_i|\}, X_i \in A_G(u) = \left[X_0, X_1, \dots, X_{\mathrm{ecc}(u)}\right]$$

Πλάτος απόστασης γραφήματος:

$$\pi\alpha(G) = \min_{u \in V(G)} \left\{ \pi\alpha(u) \right\}$$

Θεώρημα 3.12:

Έστω γράφημα G. Τότε ισχύει ότι $\pi\alpha(G) \geq \frac{|V(G)|-1}{\operatorname{diam}(G)}$

Απόδειξη:

• Έστω
$$u \in \mathit{V}(\mathit{G}) : \pi\alpha(u) = \pi\alpha(\mathit{G})$$
 και έστω $A(u) = \left[\mathit{X}_0, \mathit{X}_1, \ldots, \mathit{X}_{\mathrm{ecc}(u)}\right]$

$$|V(G)| \le 1 + \sum_{i=1}^{\operatorname{ecc}(u)} |X_i| \le 1 + \operatorname{ecc}(u)\pi\alpha(u) \le 1 + \operatorname{diam}(G)\pi\alpha(G)$$

$$\Rightarrow \pi\alpha(G) \geq \frac{|V(G)|-1}{\operatorname{diam}(G)}$$

Περίμετρος γραφήματος G [που περιέχει κύκλο(υς)]:

 $\operatorname{crm}(G)$: μήκος ενός μέγιστου [μήκους] κύκλου του G

3 5

Περιφέρεια γραφήματος G [που περιέχει κύκλο(υς)]:

 $\mathrm{girth}(\mathit{G})$: μήκος ενός ελάχιστου [μήκους] κύκλου του G

$$crm(G) = 7$$

κύκλος:

$$girth(G) = 3$$

Θεώρημα 3.13:

Έστω απλό γράφημα G που περιέχει κύκλο(υς). Τότε $\delta(G) \leq \operatorname{crm}(G) - 1$

Απόδειξη :

- Έστω $P = (u_0, u_1, ..., u_k)$ ένα μέγιστο μονοπάτι του G
- Όλες οι κορυφές του $N_G(u)$ ανήκουν στο μονοπάτι
 - $\Rightarrow |N_G(u)| \ge \delta(G)$ γείτονες της u ανήκουν στο μονοπάτι
 - $\Rightarrow \exists$ κύκλος μήκους $\geq \delta(G) + 1$ στο G
 - $\Rightarrow \delta(G) < \operatorname{crm}(G) 1$

Θεώρημα 3.14:

Κάθε γράφημα G με πυκνότητα $\epsilon(G) \geq 1$ περιέχει κύκλο.

Απόδειξη [Με επαγωγή στο |V(G)|, $\left(\epsilon(G) = \frac{|E(G)|}{|V(G)|}\right)$]:

Ισχύει εξ' ορισμού για κάθε γράφημα με βρόγχους ή παράλληλες ακμές.
 Άρα θα το δείξουμε για απλά γραφήματα.

Bάση: $n = 3 \Rightarrow m \ge 3$

μοναδικό γράφημα

- Ε.Υ. Έστω ότι κάθε γράφημα H με $\epsilon(H) \geq 1$ και $3 \leq |V(H)| < n$ έχει κύκλο
- E.B. Έστω γράφημα G με $\epsilon(G) \ge 1$ και 3 < |V(G)| = n Περίπτωση 1: $\delta(G) \ge 2$

Δημιουργούμε τον περίπατο όπου ξεκινώντας από μια κορυφή, βγαίνουμε από αυτή από διαφορετική ακμή από αυτήν που μπήκαμε. Ο περίπατος μπορεί να συνεχίζεται συνέχεια γιατί $\delta(G) \geq 2$. Μετά από |V(G)| βήματα θα επαναληφθεί ακμή \Rightarrow κύκλος \checkmark

Περίπτωση 2: $\delta(G) \leq 1$

• Υπάρχει κορυφή u με $d(u) = 1 \Rightarrow G \setminus u$ έχει

$$\epsilon(G \backslash u) = \frac{|E(G \backslash u)|}{|V(G \backslash u)|} = \frac{|E(G)| - 1}{|V(G)| - 1} \ge \frac{|E(G)|}{|V(G)|} \ge 1$$

 $\stackrel{\text{E.Y.}}{\Longrightarrow} G \backslash u$ έχει κύκλο $\Rightarrow G$ έχει κύκλο \checkmark

Θεώρημα 3.15:

Έστω γράφημα G με κύκλο(υς) και $\delta(G) \geq d$. Τότε ισχύει

$$|V(G)| \ge \left\{ egin{array}{ll} 1 + d \sum\limits_{i=0}^{r-1} (d-1)^i & \mathrm{girth}(G) = 2r+1 \ 2 \sum\limits_{i=0}^{r-1} (d-1)^i & \mathrm{girth}(G) = 2r \ \end{array}
ight.$$

Απόδειξη :

Περίπτωση 1: girth(G) = 2r + 1

- Έστω X_0, X_1, \ldots, X_r τα πρώτα r+1 σύνολα μιας αποσύνθεσης απόστασης A(u) ως προς κάποια κορυφή $u \in V(G)$ η οποία ανήκει σε έναν κύκλο μήκους girth(G)
- $\forall v \in X_i$, $1 \le i \le r$ η v έχει ακριβώς 1 γείτονα στο X_{i-1}

[Διαφορετικά, έστω ότι είχε 2 γείτονες w_1 και $w_2 \in X_{i-1}$

- \Rightarrow \exists μονοπάτια $u \rightarrow w_1$ και $u \rightarrow w_2$ ίδιου μήκους (i-1)
- $\Rightarrow \exists$ κύκλος μήκους το πολύ 2i < 2r < girth(G) άτοπο (ορισμός girth(G))]
- $|X_i| \ge (d-1)|X_{i-1}|, 2 \le i \le r$ $|X_0| = 1,$ $|X_1| \ge d$
- $|V(G)| \ge \sum_{i=0}^{r} |X_i| \ge 1 + d + d(d-1) + \dots + d(d-1)^{r-1}$ = $1 + d \sum_{i=0}^{r-1} (d-1)^i$

Περίπτωση 2: girth(G) = 2r

- Έστω (u,v) μια αυθαίρετη ακμή του G που ανήκει σε κύκλο μήκους girth(G)
- $G' = G \setminus (u, v) \cup \{(u, w), (w, v)\}$
- Έστω X_0, X_1, \ldots, X_r τα πρώτα r+1 σύνολα μιας αποσύνθεσης απόστασης A(w)
- $\forall y \in X_i$, 2 ≤ $i \le r$ η y έχει έναν ακριβώς γείτονα στο X_{i-1}

[Εάν $\exists y \in X_i$, $2 \le i \le r$ με 2 γείτονες στο X_{i-1} Τότε έχω στο G' κύκλο μεγέθους $\le 2i \Rightarrow$ Τότε έχω στο G κύκλο μεγέθους $\le 2i - 1$ $\le 2r - 1 < \mathrm{girth}(G)$ άτοπο]

• $|X_0| = 1 |X_1| = 2 |X_i| \ge (d-1)|X_{i-1}|, 2 < i \le r$

$$|V(G')| \ge \sum_{i=0}^{r} |X_i| \ge 1 + 2 + 2(d-1) + \dots + 2(d-1)^{r-1} = 1 + 2\sum_{i=0}^{r-1} (d-1)^i$$
 (5)

$$|V(G)| = |V(G')| - 1 \tag{6}$$

$$(5),(6) \Rightarrow |V(G)| \ge 2 \sum_{i=0}^{r-1} (d-1)^i \quad \checkmark$$