Metody Numeryczne - Lista 5

Janusz Szwabiński

Uwaga!

- interpolacja wielomianowa własne implementacje i funkcje biblioteczne,
- interpolacja funkcjami sklejanymi funkcje biblioteczne,
- aproksymacja własne implementacje i funkcje biblioteczne.
- 1. Gęstość powietrza ρ zmienia się z wysokością h w następujący sposób:

h (km)	0	3	6
$\rho (\mathrm{kg/m^3})$	1,225	0,905	0,652

Wyraź $\rho(h)$ jako funkcję kwadratową w h.

2. W poniższej tabeli przedstawiony jest współczynnik oporu c_D sfery w cieczy jako funkcja liczby Reynoldsa Re. Korzystając z naturalnych funkcji sklejanych, znajdź c_D dla $Re=5,\,50,\,$ i 5000.

Re	0,2	2	20	200	2000	20000
c_D	103	13,9	2,72	0,8	0,401	0,433

- 3. Rozwiąż zad. 2 przy pomocy interpolacji wielomianowej.
- 4. Wyznacz parametry a i b tak, aby funkcja $f(x) = ae^{bx}$ aproksymowała poniższe dane w sensie najmniejszych kwadratów.

\overline{x}	1,2	2,8	4,3	5,4	6,8	7,9
\overline{y}	7,5	16,1	38,9	67,0	146,6	266,2

Policz odchylenie standardowe. Wyniki przedstaw na wykresie.

5. Kinematyczna lepkość wody μ_k zmienia się z temperaturą T według poniższej tabeli. Wyznacz wielomian trzeciego stopnia, który najlepiej aproksymuje te dane i skorzystaj z niego do obliczenia μ_k dla $T=10^\circ,\,30^\circ,\,60^\circ$ i $90^\circ.$

T (°C)							
$\mu_k (10^{-3}m^2/s)$	1,79	1,13	0,696	0,519	0,338	0,321	0,296

6. Dopasuj funkcję liniową i kwadratową do danych

\overline{x}	1,0	2,5	3,5	4,0	1,1	1,8	2,2	3,7
y	6,008	15,722	27,13	33,772	5,257	9,549	11,098	28,828

Wyniki przedstaw na wykresie. Która aproksymacja jest lepsza?