Kef Name:

You must show your work to get full credit.

1. The sequence $a_1, a_2, a_3 \dots$ is defined by

$$a_n = 2a_{n-1} - a_{n-2} \quad \text{for} \quad n \ge 3$$

and $a_1 = 1$, $a_2 = 4$. Write the first five terms in the sequence.

$$a_1 = \frac{l}{4}$$

$$a_3 =$$

$$a_4 = 10$$

$$a_5 = 13$$

2. Show that $a_n = 1 + 2^n$ is a solution to

$$a_{n+2} = 3a_{n+1} - 2a_n$$
 for $n \ge 0$

and $a_0 = 2$ and $a_1 = 3$

$$3(n+1) - 2(n) = 3(1+2^{n+1}) - 2(1+2^n)$$

$$= 3 + 3 \cdot 2^{n+1} - 2 - 2^{n+1}$$

$$= 1 + 2 \cdot 2^{n+1}$$

$$= 2^{n+2}$$