

Hello there,

I am Nour Fadila Zemouri

Master 2 degree student at University of Algiers 1 - Benyousef Benkheda -

Field of study: ARTIFICIAL INTELLIGENCE

1 What is supervised Machine Learning

Some supervised Machine Learning Examples

Some common supervised Machine Learning Algorithms

4 Challenge

What we will see?

Some common supervised Machine Learning Algorithms

k-Nearest Neighbors
Linear Regression
Logistic Regression
Support Vector Machines (SVMs)
Decision Trees and Random Forests
Neural networks

1 What is supervised Machine Learning

Some supervised Machine Learning Examples

Some common supervised Machine Learning Algorithms

4 Challenge

What we will see?

Decision Tree?

11111

Decision trees (DTs)
non-parametric supervised
learning method that is commonly
used in data mining, it is also
widely used in machine learning
for both Classification and
Regression.

The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.

How does it work?

- The tree in the previous example is called Classification tree as the target is to classify objects in 6 classes.
- Regression trees are represented in the same manner, just they predict continuous values like price of a house.
- The tree is built in a **Descending** manner (from root to leaves) by choosing at each level an attribute to partition the data.
- The tree generation process takes place in two phases:
 - 1. Recursive to-down construction of the tree
 - 2. Pruning/Removing branches that introduce noise to improve classification quality (reduce error rate).

How does it work?

Growing a tree involves deciding on which feature to choose and what conditions to use

for splitting, along with knowing when to stop.

New Example: Day 14: Rain / High / Weak?

→ Play = Yes

Day	Outlook	Humidity	Wind	Play
1	Sunny	High	Weak	No
2	Sunny	High	Strong	No
3	Overcast	High	Weak	Yes
4	Rain	High	Weak	Yes
5	Rain	Normal	Weak	Yes
6	Rain	Normal	Strong	No
7	Overcast	Normal	Strong	Yes
8	Sunny	High	Weak	No
9	Sunny	Normal	Weak	Yes
10	Sunny	Normal	Strong	Yes
11	Overcast	High	Strong	Yes
12	Overcast	Normal	Weak	Yes
13	Rain	High	Strong	No
14	Rain	High	Weak	?

Construction: which attribute to split on?

Want to measure « purity » of the split

- More certain about Yes/No after the split:
- → Pure set (4 yes /0 No) => completely certain (100%)
- → Impure (3yes/3 No) => completely uncertain (50%)
- → must be symmetric: 4 Yes/ 0 No as pure as 0 Yes / 4 No

Construction: How to select an attribute?

Entropy H(S): a measure of the amount of uncertainty in the dataset.

• Mathematical Representation of Entropy (Binary Classification):

$$H(S) = -p_{(+)} \log_2 p_{(+)} - p_{(-)} \log_2 p_{(-)}$$

S ... subset of training examples $p_{(+)} / p_{(-)}$... % of positive / negative examples in S

Construction: Example on how to calculate **Entropy?**

impure (3 yes / 3 no):

$$H(S) = -\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1$$
 bits

pure set (4 yes / 0 no):

$$H(S) = -\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4} = 0$$
 bits

Construction: Entropy In general

Construction: How to select an attribute?

Information GAIN: is the measure of uncertainty in S that was reduced after splitting set S on attribute A.

• Mathematical Representation:

$$Gain(S,A) = H(S) - \sum_{V \in Values(A)} \frac{|S_V|}{|S|} H(S_V)$$

A: Attribute in the Dataset

V: Possible Values of A

S: Set of Examples X

 S_v : Subset where $X_A = V$

Construction: Example on how to calculate Information GAIN?

Gain (S, Wind) = $H(S) - {}^{8}/_{14} H(S_{weak}) - {}^{6}/_{14} H(S_{weak})$ = $0.94 - {}^{8}/_{14} * 0.81 - {}^{6}/_{14} * 1.0$ = 0.049

Construction: Problem with Information Gain?

Information Gain Biased towards attributes with many values

- The attribute Day has many values, because it uniquely identifies each day, but we do not want to include it in the decision tree.
- Deciding whether or not to play tennis based on the day number is unlikely to generalize to days not seen before (overfitting).

Solution?

Information Gain Ratio

Construction: Information Gain Ratio

 To counter this problem, Ross Quinlan proposed to choose theattribute with highest information gain ratio from among the attributes whose information gain is average or higher.

$$SplitEntropy(S,A) = -\sum_{V \in Values(A)} \frac{\left|S_{V}\right|}{\left|S\right|} \log \frac{\left|S_{V}\right|}{\left|S\right|}$$

$$GainRatio(S,A) = \frac{Gain(S,A)}{SplitEntropy(S,A)}$$

A: Candidate Attribute

V: Possible Values of A

S: Set of Examples X

 S_v : Subset where $X_A = V$

Construction: ID3 Algorithm

- ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan used to generate a decision tree from a dataset.
- ID3 iteratively (repeatedly) dichotomizes(divides) features into two or more groups at each step.
- At each iteration the best feature is selected to create a node.
- Most generally ID3 is only used for classification problems with nominal features only
- ID3 uses the concepts of entropy and gain to determine which attribute to test in each node.
- ID3 cannot support examples in which attribute values are missing.

Construction: ID3 Algorithm

- The steps of ID3 Algorithm:
- 1. The ID3 algorithm begins with the original set S as the root node.
- 2. On each iteration, the algorithm iterates through every unused attribute of the set S and calculates the entropy or the information gain of that attribute.
- 3. It then selects the attribute which has the smallest entropy (or largest information gain) value.
- 4. The set S is then partitioned by the selected attribute to produce subsets of the data.
- 5. Repeat for the remaining features until we run out of all features, or the decision tree has all leaf nodes

Construction: Overfitting

- Sometimes it looks like the tree memorized the training data set, which will give
 100% accuracy on the training data set
- → Our tree has grown much!!
- → Solution?

Pruning Decision Trees

Construction: Pruning

- Pruning can start at either root or the leaves.
- The simplest method of pruning starts at leaves and removes each node with most popular class in that leaf, this change is retained if it does not deteriorate accuracy. It is also called reduced error pruning.
- This is done by separating the actual training set into two sets: Training data set D and
 Validation data set V.
- Prepare the decision tree using the training data set D.
- Then continue prune the tree accordingly to optimize the accuracy of the validation data set V

Continuous Attribute

- To deal with continuous values attributes, create a split
- Example: (Temperature > 50,4) = True/ False
- To take into account numeric attributes, ID3 has been extended in C4.5.

Let practice!!

Problem?

Computer vision

You see this:

<=	United-States	40	0	2174	Male	White	Not-in-family	Adm-clerical	Never-married	13	Bachelors	77510	State-gov	39
<=	United-States	13	0	0	Male	White	Husband	Exec-managerial	Married-civ-spouse	13	Bachelors	83311	Seir-emp-not-inc	50
<=	United-States	40	0	0	Male	White	Not-in-family	Handlers-cleaners	Divorced	9	HS-grad	215646	Private	38
<=	United-States	40	0	0	Male	Black	Husband	Handlers-cleaners	Married-civ-spouse	7	11th	234721	Private	53
<=	Cuba	40	0	0	Female	Black	Wife	Prof-specialty	Married-civ-spouse	13	Bachelors	338409	Private	28
<=	United-States	40	0	0	Female	White	Wife	Exec-managerial	Married-civ-spouse	14	Masters	284582	Private	37
<=	Jamaica	16	0	0	Female	Black	Not-in-family	Other-service	Married-spouse-absent	5	9th	160187	Private	49
>	United-States	45	0	0	Male	White	Husband	Exec-managerial	Married-civ-spouse	9	HS-grad	209642	Self-emp-not-inc	52
>	United-States	50	0	14084	Female	White	Not-in-family	Prof-specialty	Never-married	14	Masters	45781	Private	31
>	United-States	40	0	5178	Male	White	Husband	Exec-managerial	Married-civ-spouse	13	Bachelors	159449	Private	42
>	United-States	80	0	0	Male	Black	Husband	Exec-managerial	Married-civ-spouse	10	Some-college	280464	Private	37
>	India	40	0	0	Male	Asian-Pac-Islander	Husband	Prof-specialty	Married-civ-spouse	13	Bachelors	141297	State-gov	30
<=	United-States	30	0	0	Female	White	Own-child	Adm-clerical	Never-married	13	Bachelors	122272	Private	23
<=	United-States	50	0	0	Male	Black	Not-in-family	Sales	Never-married	12	Assoc-acdm	205019	Private	32
>	?	40	0	0	Male	Asian-Pac-Islander	Husband	Craft-repair	Married-civ-spouse	11	Assoc-voc	121772	Private	40
<=	Mexico	45	0	0	Male	Amer-Indian-Eskimo	Husband	Transport-moving	Married-civ-spouse	4	7th-8th	245487	Private	34
<=	United-States	35	0	0	Male	White	Own-child	Farming-fishing	Never-married	9	HS-grad	176756	Self-emp-not-inc	25
<=	United-States	40	0	0	Male	White	Unmarried	Machine-op-inspct	Never-married	9	HS-grad	186824	Private	32
<=	United-States	50	0	0	Male	White	Husband	Sales	Married-civ-spouse	7	11th	28887	Private	38
>	United-States	45	0	0	Female	White	Unmarried	Exec-managerial	Divorced	14	Masters	292175	Self-emp-not-inc	43
>	United-States	60	0	0	Male	White	Husband	Prof-specialty	Married-civ-spouse	16	Doctorate	193524	Private	40
<=	United-States	20	0	0	Female	Black	Unmarried	Other-service	Separated	9	HS-grad	302146	Private	54
<=	United-States	40	0	0	Male	Black	Husband	Farming-fishing	Married-civ-spouse	5	9th	76845	Federal-gov	35
<=	United-States	40	2042	0	Male	White	Husband	Transport-moving	Married-civ-spouse	7	11th	117037	Private	43
<=	United-States	40	0	0	Female	White	Unmarried	Tech-support	Divorced	9	HS-grad	109015	Private	59

Big database with a lot of features and instances

What is neural network

A neural network is a series of algorithms that endeavors to recognize underlying relationships in a set of data through a process that mimics the way the human brain operates.

- Nodes (neurons)
- Adaptive Weights (synaptic strength)
- Interconnection pattern between layers of neurons

Let us break down our neuron

Activation function

The activation function is a mathematical "gate" in between the input feeding the current neuron and its output going to the next layer. It is function of transformation that maps the input signals into output signals that are needed for the neural network to function.

Most commonly used activation functions:

Neural networks tasks

Neural Network Can Do Many Tasks by changing the Activation Function of Output Layer

- Binary Classification
- Multiclass Classification.
- Single Output Regression
- Multiple Output Regression
- Binary Multi-Label Classification.

Binary Classification/ Single Output Regression

Multiclass Classification/ Multiple Output Regression

How does it work?

Forward Propagation

Backpropagation

Overfitting in neural networks

- The capacity of the network increases with more hidden units and more hidden layers: Neural Nets can have lots of parameters (weights) 10s of millions in practice!
- BUT "With great power comes great overfitting." Boris Ivanovic, 2016
- Overfitting is a risk, especially if limited data.

Preventing Overfitting in neural networks

- Regularization.
- Standard ways to limit the capacity of a neural net:
 - Limit the number of hidden units.
 - Weight Decay: Limit the size of the Weights.
 - Early Stopping: Stop the learning before it has time to overfit.
 - At each iteration of gradient descent, check the network cost on validation set.
 - Stop once validation error starts to increase (although train error will still be decreasing)

Let practice!!

1 What is supervised Machine Learning

Some supervised Machine Learning Examples

Some common supervised Machine Learning Algorithms

4 Challenge

What we will see?

In this challenge you will have to implement Linear Regression algorithm for one variable using what we've seen in the first session.

Database:

https://drive.google.com/drive/folders/1POXWinRoZmj3KOymX_X87Bm9hvF_uzOK?usp=sharing

Script skeleton:

https://colab.research.google.com/drive/1mG8aRXDYFGGo6K_3FkZfJ45PBKp2OfNI?usp=sharing

The desired Output:

Resources

[Machine Learning | Andrew Ng]:
 https://www.youtube.com/watch?v=PPLop4L2eGk&list=PLLssT5z_DsK-h9vYZkQkYNWcltqhlRJLN

