1

What is claimed is:

	. (1. A method for characterizing ingress events in a network environment having return
Q	.h	path communications being accomplished in a plurality of frequency bands, the method
	3	comprising the steps of:
	ر 4	(a) detecting one or more ingress events in the return path over a pre-determined
	-	time period;
	5	(b) marking the frequency band wherein each ingress event exceeds a pre-
	6	determined threshold;
	7 8	(c) marking each time interval in which the ingress events exceeds a pre-
	9	determined threshold; and
	10	(d) creating a time/frequency map of the ingress events, wherein the time/frequency
	11	map contains the results of steps (b) and (c).
Ú	11	map contains the results of our ()
	1	2. The method of claim 1 wherein the time/frequency map is characterized by marking
ų.	2	each ingress event that exceeds the pre-determined threshold with a "1".
7	_	cuon ingrees or sin
ī	1	3. The method of claim 1, further comprising the step of:
) N	2	(e) evaluating the time/frequency map/and
	3	(f) mitigating the return path ingress based on the evaluation of the time/frequency
=	4	map.
	5	
	1	4. The method of claim 3 wherein step (f) is accomplished by attenuating the return path
	2	signal.
	1	5. The method of claim 4 wherein the attenuation is performed based on a power-level
	2	equalization algorithm.
	1	6. The method described in claim 3 wherein step (f) is accomplished by isolating the return
	2	path signal.

7. The method of claim , further comprising the steps of:

1

2	(e) summing the results of the marking process of slep (c) across a plurality of
3	frequency bands within a specific time interval.
1	8. The method of claim 7, further comprising the steps of:
2	(f) labeling the ingress event as a wideband ingress event if the sum obtained in
3	step (e) exceeds a pre-determined wideband ingress threshold.
1	9. The method of claim 7, further comprising the steps of:
2/	(f) labeling the ingress event as a narrowband ingress if the sum obtained in step
d	(e) is below a pre-determined narrowband threshold.
1	10. The method of claim 1, further comprising the steps of:
2	(e)summing the results of marking process of step (c) across a plurality of time
3	intervals within a specific frequency band.
1	11. The method of claim 10, further comprising the step of:
2	(f) labeling the ingress event as a narrowband ingress event when the sum obtained
3	in step (e) exceeds a pre-determined narrowband ingress threshold.
1	12. The method of claim 10, further comprising the step of:
2	(f) labeling the ingress event as wideband ingress when the sum obtained in step
3	(e) exceeds a pre-determined wideband ingress threshold.
	,
1	13. The method of claim 1 wherein the step (a) occurs at the head-end.
-	10. The medica of claim I wherem the step (a) decails at the head cha.
1	14. The mode of a faire 1 and a min the same (a) and a single (i.i.)
1	14. The method of claim 1 wherein the step (a) occurs substantially near the subscriber
2	location.
1	15. The method of claim 1 wherein the step (a) occurs at a test point in the network.
	1

16. The method of claim 1 wherein the step (a) occurs at a head-end of the network.

1

2

3

4

5

6

1

2

3

4

5

1

2

1

- 1 17. The method of claim 1 wherein the step (a) utilizes ingress measurements extending 2 across the return frequency band.
- 1 18. The method of claim 1 wherein the step (a) takes place in a sub-band of the return 2 frequency band.
- 1 19. The method of claim 1 wherein the step (a) takes place in an active sub-band of the return frequency band.
 - 20. The method of claim 1 wherein the step (a) takes place in an inactive sub-band of the return frequency band.
 - 21. The method of claim 1 wherein the step (a) comprises the steps of:
 - (1) measuring an average return path signal power in the return frequency band;
 - (2) comparing the average return path signal power to a detection threshold; and
 - (3) determining the presence of an ingress event in the return frequency band based on the result of the comparison.
 - 22. The method of claim 1 wherein step (a) comprises the steps of:
 - retrieving information on channel usage to distinguish active sub-bands from inactive sub-bands; and
 - (2) detecting the presence of ingress in the inactive sub-bands of the return path.
 - 23. The method of claim 22 wherein the information on channel usage is retrieved from the head-end.
- 24. The method of claim 22 wherein channel usage is detected automatically at a location substantially near the subscriber location.
 - 25. The method of claim 1 wherein step (a) comprises the steps of:

	2	(1) retrieving information on channel usage to distinguish active sub-bands from
	3	inactive sub-bands; and
	4	(2) detecting the presence of ingress in the active sub-bands of the return path.
	5	
	1	26. The method of claim 25 wherein the information on the channel usage is retrieved
./	2	from the head-end.
5 1	1	27. The method of claim 25 wherein the channel usage is detected automatically at a
	2	location substantially near the subscriber location.
. ===	1	28. The method of claim 27 wherein the automated detection of channel usage comprises
	2	the steps of:
IJ.	3	(1) estimating a power spectrum density (PSD) of a return path signal;
Ä	4	(2) correlating the PSD with a set of stored PSDs;
III III	5	(3) determining a frequency at peak correlation; and
'₩	6	(4) creating a frequency band in use.
	1	29. The method described in claim 25 wherein the active band is in use by an in-home
	2	device.
	1	30. The method described in claim 25 wherein the active band is in use by a
	2	communications gateway.