Министерство науки и высшего образования Российской Федерации

Федеральное государственное вюджетное образовательное учреждение высшего образования Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»			
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»			
НАПРАВЛЕНІ	ИЕ ПОДГОТОВКИ «09.03.04 Программная инженерия»			

ОТЧЕТ по лабораторной работе №1

Название:	Расстояние Ле	евенштейна и Дамерау – Левенп	тейна
Дисциплина:		Анализ алгоритмов	
Студент	ИУ7-56Б Группа	Подпись, дата	Ковель А.Д. И. О. Фамилия
Преподаватель		Подпись, дата	Волкова Л.Л. И.О.Фамилия

Оглавление

		Стран	ица			
1	Вве	дение	2			
2	Ана	литический раздел	3			
	2.1	Расстояние Левенштейна	3			
	2.2	Расстояние Дамерау – Левенштейна	4			
	2.3	Рекурсивная формула	4			
	2.4	Матрица расстояний	5			
	2.5	Рекурсивный алгоритм расстояния Дамерау-Левенштейна с				
		мемоизацией	6			
	2.6	Вывод	7			
3	Конструкторский раздел					
	3.1	Матричные итерационные алгоритмы	8			
	3.2	Модификация матричных алгоритмов	8			
	3.3	Рекурсивные алгоритмы	8			
	3.4	Вывод	9			
4	Text	нологический раздел	13			
	4.1	Требования к ПО	13			
	4.2	Средства реализации	13			
	4.3	Листинги кода	13			
		Реализация алгоритмов	13			
		Утилиты	18			
	4.4	Тестовые данные	19			
	4.5	Вывол	19			

1 Введение

Нахождение редакционного расстояния — одна из задач компьютерной лингвистики, которая находит применение в огромном количестве областей, начиная от предиктивных систем набора текста и заканчивая разработкой искусственного интеллекта. Впервые задачу поставил советский ученый В. И. Левенштейн [Lev1965], впоследствии её связали с его именем. В данной работе будут рассмотрены алгоритмы редакционного расстояния Левенштейна и расстояние Дамерау — Левенштейна.

Расстояния Левенштейна — метрика, измеряющая разность двух строк символов, определяемая в количестве редакторских операций (а именно удаления, вставки и замены), требуемых для преобразования одной последовательности в другую. Расстояние Дамерау — Левенштейна — модификация, добавляющая к редакторским операциям транспозицию, или обмен двух соседних символов местами.

Алгоритмы находят применение не только в компьютерной лингвистике (например, при реализации предиктивных систем при вводе текста), но и, например, при работе с утилитой diff и ей подобными. Также у алгоритма существуют более неочевидные применения, где операции проводятся не над буквами в естественном языке. Алгоритм применяется для распознавания текста на нечетких фотографиях. В этом случае сравниваются последовательности черных и белых пикселей на каждой строке изображения. Нередко алгоритм используется в биоинформатике для определения схожести разных участков ДНК или РНК.

Алгоритмы имеют некоторое количество модификаций, позволяющих эффективнее решать поставленную задачу. В данной работе будут предложены реализации алгоритмов, использующие парадигмы динамического программирования.

Цель лабораторной работы – получить навыки динамического программирования. Задачами лабораторной работы являются изучение и реализация алгоритмов Левенштейна и Дамерау — Левенштейна, применение парадигм динамического программирования при реализации алгоритмов и сравнительный анализ алгоритмов на основе экспериментальных данных.

2 Аналитический раздел

2.1 Расстояние Левенштейна

Редакторское расстояние (расстояние Левенштейна) – это минимальное количество операций вставки, удаления и замены, необходимых для превращения одной строки в другую. Каждая редакторская операция имеет цену (штраф). В общем случае, имея на входе строку $X = x_1x_2...x_n$ и $Y = y_1y_2...y_n$, расстояние между ними можно вычислить с помощью операций:

- delete $(u, \varepsilon) = \delta$
- $insert(\varepsilon, v) = \delta$
- replace $(u,v)=\alpha(u,v)\leq 0$ (здесь, $\alpha(u,u)=0$ для всех u).

Необходимо найти последовательность замен с минимальным суммарным штрафом. Далее, цена вставки и удаления будет считаться равной 1. Пусть даны строки s1 = s1[1..L1], s2 = s2[1..L2], s1[1..i] - подстрока s1 длинной i, начиная с 1-го символа, s2[1..j] - подстрока s2 длинной i, начиная с 1-го символа. Расстояние Левентштейна посчитывается следующей формулой:

$$D(s1[1..i], s2[1..j]) = \begin{cases} 0 & i = 0, j = 0 \\ i & i > 0, j = 0 \\ j, & j > 0, i = 0 \end{cases}$$

$$min(D(s1[1..i], s2[1..j - 1]) + 1$$

$$, min(D(s1[1..i - 1], s2[1..j]) + 1,$$

$$, min(D(s1[1..i - 1], s2[1..j]) + 1$$

$$+ \begin{bmatrix} 0, & s1[i] = s2[j] \\ 1 \end{cases}$$

$$(2.1)$$

2.2 Расстояние Дамерау – Левенштейна

Расстояние Дамерау – Левенштейна – модификация расстояния Левенштейна, добавляющая транспозицию к редакторским операциям, предложенными Левенштейном (см. 2.1). изначально алгоритм разрабатывался для сравнения текстов, набранных человеком (Дамерау показал[damerau], что 80% человеческих ошибок при наборе текстов составляют перестановки соседних символов, пропуск символа, добавление нового символа, и ошибка в символе. Поэтому метрика Дамерау-Левенштейна часто используется в редакторских программах для проверки правописания).

Используя условные обозначения, описанные в разделе 2.1, рекурсивная формула для нахождения расстояния Дамерау – Левенштейна f(i,j) между подстроками $x_1...x_i$ и $y_1...y_j$ имеет следующий вид:

$$f_{X,Y}(i,j) = \begin{cases} \delta_i & j = 0 \\ \delta_j & i = 0 \end{cases}$$

$$min \begin{cases} \alpha(x_i, y_i) + f_{X,Y}(i-1, j-1) \\ \delta + f_{X,Y}(i-1, j) \\ \delta + f_{X,Y}(i, j-1) \\ \delta + f_{X,Y}(i-2, j-2) & i, j > 1x_i = y_{j-1}x_{i-1} = y_j \\ \infty & \text{иначе;} \end{cases}$$

$$(2.2)$$

2.3 Рекурсивная формула

Используя условные обозначения, описанные в разделе 2.2, рекурсивная формула для нахождения расстояния Дамерау- Левенштейна f(i,j) между

подстроками $x_1...x_i$ и $y_1...y_j$ имеет следующий вид:

$$f_{X,Y}(i,j) = \begin{cases} \delta_i & j = 0 \\ \delta_j & i = 0 \end{cases}$$

$$min \begin{cases} \alpha(x_i, y_i) + f_{X,Y}(i-1, j-1) \\ \delta + f_{X,Y}(i-1, j) \\ \delta + f_{X,Y}(i, j-1) & \text{иначе.} \end{cases}$$

$$\begin{bmatrix} \delta + f_{X,Y}(i-2, j-2) & i, j > 1x_i = y_{j-1}x_{i-1} = y_j \\ \infty & \text{иначе.} \end{cases}$$

$$(2.3)$$

 $f_{X,Y}$ — редакционное расстояние между двумя подстроками — первыми i символами строки X и первыми j символами строки Y. Очевидны следующие утверждения:

- Если редакционное расстояние нулевое, то строки равны: $f_{XY}=0 \Rightarrow X=Y$
- Редакционное расстояние симметрично: $f_{X,Y} = f_{Y,X}$
- Максимальное значение $f_{X,Y}$ размерность более длинной строки: $f_{X,Y} \leq max(|X|,|Y|)$
- Минимальное значение $f_{X,Y}$ разность длин обрабатываемых строк: $f_{X,Y} \geq abs(|X|-|Y|)$
- Аналогично свойству треугольника, редакционное расстояние между двумя строками не может быть больше чем редакционные расстояния каждой из этих строк с третьей:

$$f_{X,Y} \le f_{X,Z} + f_{Z,Y}$$

2.4 Матрица расстояний

В 2001 году был предложен подход, использующий динамическое программирование. Этот алгоритм, несмотря на низкую эффективность, один

из самых гибких и может быть изменен в соответствии с функцией нахождения расстояния, по которой производится расчет[Navarro2001].

Пусть $C_{0..|X|,0..|Y|}$ – матрица расстояний, где $C_{i,j}$ – минимальное количество редакторских операций, необходимое для преобразования подстроки $x_1...x_i$ в подстроку $y_1...y_j$. Матрица заполняется следующим образом:

$$Ci, j = \begin{cases} i & j = 0\\ j & i = 0\\ C_{i-1,j-1} + \alpha(x_i, y_i), & \\ C_{i-1,j} + 1, & \text{иначе.} \\ C_{i,j-1} + 1) \end{cases}$$
 (2.4)

При решении данной задачи используется ключевая идея динамического программирования — чтобы решить поставленную задачу, требуется разбить на отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Здесь небольшие подзадачи — это заполнение ячеек таблицы с индексами i < |X|, j < |Y|. После заполнения всех ячеек матрицы в ячейке $C_{|X|,|Y|}$ будет записано искомое расстояние.

2.5 Рекурсивный алгоритм расстояния Дамерау-Левенштейна с мемоизацией

При реализации рекурсивного алгоритма используется мемоизация — сохранение результатов выполнения функций для предотвращения повторных вычислений. Отличие от формулы 2.4 состоит лишь в начальной инициализации матрицы флагом ∞ , котрый сигнализирует о том, была ли обработана ячейка. В случае если ячейка была обработана, алгоритм переходит к следующему шагу.

2.6 Вывод

Обе вариации алгоритма редакторского расстояния могут быть реализованы как рекурсивно, так и итеративно. Итеративная реализация может быть осуществлена с помощью парадигм динамического программирования, используя матрицу расстояний. [damerau]

3 Конструкторский раздел

В данном разделе представлены схемы реализуемых алгоритмов и их модификации.

3.1 Матричные итерационные алгоритмы

На рисунке 3.1 изображена схема алгоритма нахождения расстояния Дамерау – Левенштейна итеративно с использованием матрицы расстояний.

3.2 Модификация матричных алгоритмов

Мемоизация - это прием сохранения промежуточных результатов, которые могут еще раз понадобиться в ближайшее время, чтобы избежать их повторного вычисления. Матричный алгоритм нахождения расстояния Дамерау − Левенштейна может быть модифицирован, используя мемоизацию − достаточно инициализировать матрицу значением ∞, которое будет рассмотрено в качестве флага. На рисунке 3.3 изображена схема алгоритма, использующая этот прием.

3.3 Рекурсивные алгоритмы

На рисунке 3.2 изображена схема рекурсивного алгоритма нахождения расстояния Дамерау – Левенштейна.

3.4 Вывод

На основе формул и теоретических данных, полученных в аналитическом разделе, были спроектированы схемы алгоритмов.

Рисунок 3.1 – Схема итерационного алгоритма расстояния Дамерау – Левенштейна с заполнением матрицы расстояний

Рисунок 3.2 — Схема рекурсивного алгоритма расстояния Дамерау - Левенштейна

Рисунок 3.3 — Схема рекурсивного алгоритма расстояния Левенштейна с мемоизацией

4 Технологический раздел

4.1 Требования к ПО

Программа должна отвечать следующим требованиям:

- ПО корректно реагирует на любые действия пользователя;
- ПО возвращает полученное расстояние;
- ПО принимает текстовые данные в любой раскладке.
- Время отклика программы на любое действие пользователя должно быть приемлемым.

4.2 Средства реализации

Для реализации ПО был выбран компилируемый многопоточный язык программирования Golang, поскольку язык отличается легкой и быстрой сборкой программ, автоматическим управлением памяти и понятным синтаксисом. В качестве среды разработки была выбрана среда VS Code, написание сценариев осуществлялось утилитой make.

4.3 Листинги кода

Реализация алгоритмов

В качестве представления строковых данных был выбран тип rune[**rune**] – псевдоним для типа int32.

В листингах 4.1 - 4.5 приведены реализации алгоритмов, описанных в разделе 2.

Листинг 4.1 – Программный код нахождения расстояния Левенштейна итеративно

```
func LevenshteinMatrixIterative(src, dest []rune) int {
           srcLen, destLen := len(src), len(dest)
2
           rows, cols := srcLen + 1, destLen + 1
           DMtx := matrix.IMtxInit(rows, cols, 0)
           for i := 1; i < rows; i++ {
                DMtx[i][0] = i
           }
           for j := 1; j < cols; j++ {
10
               DMtx[0][j] = j
11
           }
13
           match := 0
14
           for i := 1; i < rows; i++ {
15
                for j := 1; j < cols; j++ {
16
                    if src[i - 1] == dest[j - 1] {
17
                         match = 0
                    } else {
19
                         match = 1
20
                    }
21
                    insert := DMtx[i][j-1]+1
22
                    delete := DMtx[i - 1][j] + 1
23
                    \texttt{replace} \; := \; \texttt{DMtx[i - 1][j - 1]} \; + \; \texttt{match}
24
25
                    min := utils.MinOfInt(insert, delete, replace)
26
                    DMtx[i][j] = min
27
                }
28
           }
29
           return DMtx[rows - 1][cols - 1]
30
      }
```

В рекурсивной части алгоритма нахождения расстояния Левенштейна с мемоизацией в качестве входных данных выступают не только строки, но еще и матрица расстояний. Поскольку все функции нахождения расстояния приведены к единому виду, было решено разделить реализацию алгоритма на две части — часть с запуском рекурсии и начальной инициализацией и рекурсивная часть алгоритма. Таким образом, пользователь с матрицей расстояний никак не взаимодействует.

Листинг 4.2 – Программный код нахождения расстояния Левенштейна с мемоизацией

```
func LevenshteinPartialMemo(src, dest []rune) int {
```

```
srcLen, destLen := len(src), len(dest)
3
          rows, cols := srcLen + 1, destLen + 1
           DMtx := matrix.IMtxInit(rows, cols, -1)
           ans := _partialMemoHelper(src, dest, srcLen, destLen, DMtx)
           return ans
      }
9
10
      func _partialMemoHelper(src, dest []rune, i, j int,
11
      DMtx matrix.IMtx) int {
12
           if j == 0 {
13
               return i
14
          }
15
           if i == 0 {
16
               return j
17
          }
18
           if DMtx[i][j] != -1 {
20
               return DMtx[i][j]
21
22
          }
23
          match := 1
24
          if src[i - 1] == dest[j - 1] {
25
               match = 0
26
          }
27
28
                  := _partialMemoHelper(src, dest, i, j - 1, DMtx) + 1
29
           delete := _partialMemoHelper(src, dest, i - 1, j, DMtx) + 1
30
           replace := match + _partialMemoHelper(src, dest, i - 1, j - 1, DMtx)
31
32
          min := utils.MinOfInt(insert, delete, replace)
33
           DMtx[i][j] = min
34
35
          return DMtx[i][j]
36
      }
```

Аналогично листингу 4.2, реализация рекурсивного алгоритма разделена на две функции с целью унификации всех функций расстояния.

Листинг 4.3 — Программный код нахождения расстояния Левенштейна с рекурсией

```
func LevenshteinRecursive(src, dest []rune) int {
    srcLen, destLen := len(src), len(dest)
```

```
ans := _lRecursiveHelper(src, dest, srcLen, destLen)
          return ans
      }
      func _lRecursiveHelper(src, dest []rune, i, j int) int {
          if (utils.MinOfInt(i, j) == 0) {
10
              return utils.Max2Int(i, j)
11
          }
13
          match := 1
14
          if (src[i - 1] == dest[j - 1]) {
               match = 0
16
          }
17
18
          insert := _lRecursiveHelper(src, dest, i, j - 1) + 1
19
          delete := _lRecursiveHelper(src, dest, i - 1, j) + 1
20
          replace := match + _lRecursiveHelper(src, dest, i - 1, j - 1)
21
22
          min := utils.MinOfInt(insert, delete, replace)
23
          return min
      }
25
```

Листинг 4.4 – Программный код нахождения расстояния Дамерау – Левенштейна итеративно

```
func DamerauLevenshteinIterative(src, dest []rune) int{
          srcLen, destLen := len(src), len(dest)
          rows, cols := srcLen + 1, destLen + 1
          DMtx := matrix.IMtxInit(rows, cols, 0)
          for i := 1; i < rows; i++ {
               DMtx[i][0] = i
          for j := 1; j < cols; j++ {
10
               DMtx[0][j] = j
11
          }
12
13
          match := 0
14
          min := 0
15
          for i := 1; i < rows; i++ {
16
               for j := 1; j < cols; j++ {
17
                   if \ src[i - 1] == dest[j - 1] {
18
                       match = 0
19
                   } else {
20
                       match = 1
21
                   }
22
```

```
23
                   insert := DMtx[i][j - 1] + 1
24
                   delete := DMtx[i - 1][j] + 1
                   replace := DMtx[i - 1][j - 1] + match
26
                   transpose := -1
27
                   if i > 1 && j > 1 {
29
                        transpose = DMtx[i - 2][j - 2] + 1
30
                   }
32
                   if i > 1 \&\& j > 1 \&\& src[i - 1] == dest[j - 2]
33
                   && src[i - 2] == dest[j - 1] {
34
                        min = utils.MinOfInt(insert, delete, replace, transpose)
35
                   } else {
36
                        min = utils.MinOfInt(insert, delete, replace)
37
38
                   DMtx[i][j] = min
39
               }
41
           DMtx[srcLen][destLen] = min
42
           return DMtx[srcLen][destLen]
      }
44
```

Листинг 4.5 — Программный код нахождения расстояния Дамерау — Левенштейна рекурсивно

```
func DamerauLevenshteinRecursive(src, dest []rune) int {
          srcLen, destLen := len(src), len(dest)
          ans := _dRecursiveHelper(src, dest, srcLen, destLen)
          return ans
      }
      func _dRecursiveHelper(src, dest []rune, i, j int) int {
          if (utils.MinOfInt(i, j) == 0) {
10
              return utils.Max2Int(i, j)
11
          }
12
13
          match := 1
14
          if (src[i - 1] == dest[j - 1]) {
15
              match = 0
16
          }
17
18
          insert := _dRecursiveHelper(src, dest, i, j - 1) + 1
19
          delete := _dRecursiveHelper(src, dest, i - 1, j) + 1
          replace := match + _dRecursiveHelper(src, dest, i - 1, j - 1)
21
22
```

```
transpose := -1
23
24
          if i > 1 && j > 1 {
               transpose =_dRecursiveHelper(src, dest, i - 2, j - 2) + 1
26
          }
27
          min := 0
29
          if transpose != -1 && src[i - 1] == dest[j - 2]
30
          && src[i - 2] == dest[j - 1] {
               min = utils.MinOfInt(insert, delete, replace, transpose)
32
          } else {
33
               min = utils.MinOfInt(insert, delete, replace)
35
          return min
36
      }
```

Утилиты

В листингах 4.6 - 4.8 приведены используемые утилиты.

Листинг 4.6 – Функция нахождения минимума из N целых чисел

```
func MinOfInt(values ...int) int {
    min := values[0]

for _, i := range values {
    if min > i {
        min = i
    }

return min
}
```

Листинг 4.7 – Функция нахождения максимума из двух целых чисел

```
func Max2Int(v1, v2 int) int {

if v1 < v2 {

return v2

}

return v1

}
```

Листинг 4.8 – Определение типа целочисленной матрицы; его инициализация и вывод

```
type IMtx [][]int
```

```
func IMtxInit(rows, cols, filler int) IMtx {
3
           mtx := make(IMtx, rows)
           for i := range mtx {
               mtx[i] = make([]int, cols)
               for j := 0; j < cols; j++ {
                   mtx[i][j] = filler
               }
9
           }
           return mtx
11
      }
12
13
      func IMtxLog(mtx IMtx, rows, cols int) {
14
           for i := 0; i < rows; i++ {
15
               for j := 0; j < cols; j++ {
16
                   fmt.Print(mtx[i][j])
17
                   fmt.Print(" ")
18
               }
               fmt.Println("")
20
           }
21
      }
```

4.4 Тестовые данные

Nº	S_1	S_2	LIter	LRec	LRecMem	DLIter	DLRec
1	« »	« »	0	0	0	0	0
2	«book»	«back»	2	2	2	2	2
3	«critical»	«colleague»	8	8	8	8	8
4	«reptile»	«perfume»	2	2	2	2	2
5	«note»	${\rm *fset}{\rm *}$	4	4	4	3	3
6	«bow»	«elbow»	2	2	2	2	2
6	«same»	«same»	0	0	0	0	0

4.5 Вывод

На основе схем из конструкторского раздела были разработаны программные реализации требуемых алгоритмов.

Contents

4.1	Требования к ПО	13
4.2	Средства реализации	13
4.3	Листинги кода	13
	Реализация алгоритмов	13
	Утилиты	18
4.4	Тестовые данные	19
4.5	Вывод	19