What is Claimed Is:

1	Sal > 1. A method for receiving an optical double sideband signal over an optical
2	fiber system, comprising the steps of;
3	splitting the received optical double sideband signal into an upper sideband signal and
4	a lower sideband signal;
5	photodetecting said upper sideband;
6	photodetecting said lower sideband; and
<u>\$</u> 7	combining said photodetected upper sideband signal with said photodetected lower
₩ ₩ 8	sideband signal.
8 1 2	2. The method according to claim 1, further comprising the steps of
<u> </u>	dispersion compensating said photodetected upper sideband signal; and
± 3	dispersion compensating said photodetected lower sideband signal.
1 2 2	3. The method according to claim 1, further comprising the steps of:
2	equalizing said photodetected upper sideband signal; and
3	equalizing said photodetected lower sideband signal.
1	4. The method according to claim 2, further comprising the steps of:
2	equalizing said dispersion compensated upper sideband signal; and
3	equalizing said dispersion compensated lower sideband signal.
4	5. The method according to claim 1, wherein said combining step is performed
5	using a diversity combiner.

6. The method according to claim 1, wherein said optical double sideband signal
is amplitude modulated.
7. The method according to claim 2, wherein said dispersion compensating step
of said photodetected upper sideband and dispersion compensating step of said photodetected
lower sideband is performed concurrently.
8. The method according to claim 1, wherein said photodetection step of said
upper sideband and said photodetection step of said lower sideband is performed
concurrently.
9. The method according to claim 3, wherein said equalization step of said
photodetected upper sideband and said equalization step of said photodetected lower
sideband is performed concurrently.
10. The method according to claim 3, wherein the steps of photodetecting and
equalizing of said upper sideband and the steps of photodetecting and equalizing said lower
sideband are performed serially.
11. The method according to claim 3, wherein a plurality of the photodetecting
and equalizing steps of said upper sideband and a plurality of the photodetecting and
equalizing steps of said lower sideband are performed serially.
12. The method according to claim 3, wherein a plurality of the photodetecting
and equalizing steps of said upper sideband and a plurality of the photodetecting and
equalizing steps of said lower sideband are performed concurrently.

•		
1	13.	The method according to claim 4, wherein the photodetecting, dispersion
2	compensating	and equalizing steps of said upper sideband and the photodetecting, dispersion
3	compensating	and equalizing steps of said lower sideband are performed concurrently.
1	14.	The method according to claim 1, wherein said combining step is a
2	summation.	
1	15.	The method according to claim 1, wherein said combining step is a weighted
2	summation.	
1	16.	The method according to claim 1, wherein said combining step further
2	comprises the	steps of:
3	delayi	ng one sideband signal relative to the other sideband signal; and
4	summ	ing the two signals.
1	17.	The method according to claim 1, wherein said combination step is selection
2	of better outp	ut.
1	18.	The method according to claim 1, wherein said combination step is based on
2	link propertie	s
1	19.	The method according to claim 1, further comprising the step of filtering the
2	optical signal	
1	20.	The method according to claim 19, wherein said filtering step is performed
2	using a fiber l	Bragg grating (FBG).

1	21. The method according to claim 19, wherein said filtering step is performed
2	using a thin-film filter.
1	22. A method for generating transmitting, and receiving an optical double
2	sideband signal, comprising the steps of:
3	generating an optical carrier;
4	sending said optical carrier to a modulator;
5	concurrently encoding an input data signal to produce a encoded data signal;
5 6	intensity modulating said fine encoded data signal to produce an optical double
4 6 7 8 8 9	sideband signal;
8	transmitting said optical double sideband signal over a fiber link;
9	splitting the received optical double sideband signal into an upper sideband signal and
10	a lower sideband signal;
造0 計1 1 1 1 1 1 1 1	photodetecting said upper sideband;
12	photodetecting said lower sideband; and
13	combining said photodetected upper sideband signal with said photodetected lower
14	sideband signal.
1	23. A method of receiving an optical double sideband signal, comprising the steps
2	of:
3	receiving an optical double sideband signal;
4	splitting said received optical double sideband signal using a splitter into two
5	branches;

6	concurrently processing the resulting two branches by applying a filter to each branch		
7	to produce a filtered upper sideband signal and a filtered lower sideband signal;		
8	concurrently applying a photodetector to said filtered upper sideband signal and to		
9	said filtered lower sideband signal to produce a photodetected upper sideband signal and a		
10	photodetected lower sideband signal; and		
. 11	combining said photodetected upper sideband signal and said photodetected lower		
12	sideband signal using a combiner to produce an output signal.		
10 1	24. The method according to claim 23, wherein said combining step is a diversity		
2	combiner.		
1 2	25. The method according to claim 23, wherein said splitting step transmits an		
2 ₃≦	equal optical power to each branch.		
1 2	26. The method according to claim 25, wherein said splitting step is performed		
2	using a 3dB splitter.		
1	27. A method of generating, transmitting and receiving an optical double sideband		
2	signal comprising the steps of:		
3	generating an optical carrier,		
4	sending said optical carrier to a modulator;		
5	concurrently encoding an input data signal to produce a encoded data signal;		
6	intensity modulating said line encoded data signal to produce an optical double		
7	sideband signal;		
8	transmitting said optical double sideband signal over a fiber link;		

9	receiving said optical double sideband signal;
10	splitting said received optical double sideband signal using a splitter into two
11	branches;
12	concurrently processing the resulting two branches by applying a filter to each branch
13	to produce a filtered upper sideband signal and a filtered lower sideband signal;
14	concurrently applying a photodetector to said filtered upper sideband signal and to
15	said filtered lower sideband signal to produce a photodetected upper sideband signal and a
<u>-16</u>	photodetected lower sideband signal; and
·□ ·□7 ·□	combining said photodetected upper sideband signal and said photodetected lower
116 17 18 1	sideband signal using a combiner to produce an output signal.
1 1	28. The method according to claim 22, wherein said combining step performed
<u>±</u> 2	using a diversity combiner.
· 2	29. The method according to claim 22, wherein said splitting step is performed
	using a 3 dB splitter.
2	