	Definición	Ejemplo
R reflexiva	aRa	.≥. : nat ↔ nat
R irreflexiva	⊸aRa	.<. : nat ↔ nat
R simétrica	aRb ⇒ bRa	<pre>hno : Persona ↔ Persona hno(a,b) ≡ "a es hermano de b"</pre>
R asimétrica	aRb ⇒ ¬bRa	.<. : nat ↔ nat
R antisimétrica	aRb ∧ bRa ⇒ a=b	.⊆. : 2 ^A ↔ 2 ^A
R transitiva	aRb ∧ bRc ⇒ aRc	. .: nat \leftrightarrow nat a b \equiv (\exists d : b = d*a)
R equivalencia	R reflexiva, simétrica, transitiva	$.\equiv_{m}. : nat \leftrightarrow nat$ $a \equiv_{m} b \equiv m \mid (a-b)$
R orden parcial	R reflexiva, transitiva, antisimétrica	. .: nat \leftrightarrow nat a b = (3d : b = d*a)
R orden total	R orden parcial ∧ (∀a,b : aRb ∨ bRa)	.≤. : nat ↔ nat

Propiedad	Definición	Alternativa
R reflexiva	xRx	I⊆R
R irreflexiva	¬(xRx)	I∩R = Ø
R simétrica	xRy ≡ yRx	$R = R^{T}$
R antisimétrica	xRy ∧ yRx ⇒ x=y	$R \cap R^T \subseteq I$
R asimétrica	xRy ⇒ ¬(yRx)	$R \cap R^T = \emptyset$
R transitiva	xRy ∧ yRz ⇒ xRz	$R^2 \subseteq R$

R equivalencia R reflexiva, simétrica, transitiva

R orden parcial R reflexiva, transitiva, antisimétrica

R orden total R orden parcial \land ($\forall a,b \mid : aRb \lor bRa$)

clausura reflexiva $r(R) = I \cup R$

clausura simétrica $s(R) = R \cup R^T$

clausura transitiva $R^+ = (\cup k \mid 0 < k : R^k)$

clausura refl-trans $R^* = (\cup k \mid 0 \le k : R^k)$

 $\langle Def \circ \rangle$ $(\exists z \mid xR^Tz \land zRy)$ $\langle Def \cdot T \rangle$ $(\exists z \mid zRx \land zRy)$

orden estricto = irreflexivo y transitivo

	Definición	Ejemplo
R total	(∃b:B : aRb)	.<. : nat ↔ nat
R univoca		pred : nat ↔ nat
R función parcial	$aRb_1 \wedge aRb_2 \Rightarrow b_1=b_2$	pred = { (x,y) y=x-1}
		Si b ₁ =a-1 y b ₂ =a-1
		entonces
		$b_1 = b_2$
R 1-1		suc : nat ↔ nat
R inyectiva	$a_1 Rb \wedge a_2 Rb \Rightarrow a_1 = a_2$	suc={ (x, y) y=x+1}
		Si b=a ₁ +1 y b=a ₂ +1
		entonces
		$a_1 = a_2$
R sobre	(∃a:A : aRb)	.<. : int ↔ int
R sobreyectiva		
R función	R unívoca A R total	suc : nat ↔ nat
		suc={ (x, y) y=x+1}
R biyección	R función ∧ R 1-1 ∧ R sobre	I: A ↔ A
R biyectiva		$I = \{(x,y) \mid x=y\}$

(∃b:B|: aRb)

R unívoca (función parcial)

 $aRb_1 \wedge aRb_2 \Rightarrow b_1=b_2$

R 1-1 (inyectiva)

 $a_1Rb \wedge a_2Rb \Rightarrow a_1=a_2$

R sobre (sobreyectiva)

(∃a:A|: aRb)

R función

R unívoca A R total

R biyección (biyectiva)

R función ∧ R 1-1 ∧ R sobre

Nótese que toda clase de equivalencia tiene, al menos, un elemento. Claramente:

$$(\bigcup a|:[a]) = A.$$

Las clases de equivalencia cumplen las siguientes propiedades:

Teo B: Sea R: A ↔ A equivalencia. Las siguientes afirmaciones son equivalentes:

- a aRb
- **b** [a] \cap [b] $\neq \emptyset$
- c [a] = [b]

Def C: Sea A conjunto. $P \subseteq 2^A$ es una partición de A si y solo si se cumplen las siguientes condiciones:

- $\mathbf{a} \quad (\cup \mathbf{B} : \mathbf{P} | : \mathbf{B}) = \mathbf{A}$
- **b** $(\forall B_1, B_2: P | B_1 \neq B_2: B_1 \cap B_2 = \emptyset)$

Entonces:

- Las clases de equivalencia de una relación de equivalencia R: A ↔A son una partición de A.

$$E(x,y) \equiv (\exists B:P \mid : x \in B \land y \in B)$$

Nótese que:

- R total \equiv dom R = A
- R total $\equiv R^T$ sobre
- R sobre \equiv ran R = B
- $R univoca \equiv R^T 1-1$
- R biyección = R^T biyección.

$$(\exists ! x: U | : R.x) \equiv (\exists x: U | : R.x) \land (\forall a,b: U | R.a \land R.b : a=b)$$

 $(\exists ! x: U | : R.x) \equiv \#\{x: U | R.x\} = 1$

Si se tienen dos funciones

$$f: A \rightarrow B$$

g: $B \rightarrow C$

Para x∈dom f:

$$(x,f.x) \in f$$

 $(f.x,g(f.x)) \in g.$

(= ---, 9 (= ---, ,

Y entonces:

$$(x,g(f.x)) \in f \circ g.$$

Así que la función

$$f \circ g: A \rightarrow C$$

es tal que

$$(f \circ g) \cdot x = g(f \cdot x)$$
.

La notación relacional no parece práctica para componer funciones. En cambio, se prefiere denotar, cuando se trata de composición funcional:

$$g \cdot f : A \rightarrow C$$

de modo que

$$g \cdot f = f \cdot g$$
.

Y entonces:

$$(g \cdot f) \cdot x = g(f \cdot x)$$

El operador • se suele omitir, y se escribe gf para significar g•f .

6.7.2 Secuencias y sucesiones

Para recordar:

dados dos conjuntos A, B se ha definido el producto cartesiano

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

Se generaliza a un número n de conjuntos, n≥0, así:

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid (\forall i \mid 1 \le i \le n : a_i \in A_i)\}$$

Los elementos de un producto cartesiano de n conjuntos son n-tuplas. En una tupla importa el orden de los elementos y siempre hay n elementos mencionados (incluso, si hay repeticiones).

Cuando los conjuntos que participan en un n-producto cartesiano son todos iguales, digamos A, el producto se denota A^n .

Def A: Una n-secuencia de elementos de A es un elemento de Aⁿ.

Def B: Una n-secuencia de elementos de A es una función $f: \{k: nat | 0 \le i \le n\} \rightarrow A$

Las dos definiciones son equivalentes (cada una representa la otra). En vez de la notación de tuplas, usando paréntesis corrientes, se acostumbra usar

$$\langle a_0, a_1, ..., a_{n-1} \rangle$$

para enfatizar que se habla de una secuencia.

Se denota

Seq[A] : el conjunto de las secuencias sobre A.

Una 0-secuencia de elementos de A es la secuencia *vacía* (de A). Se denota $\langle \rangle$ o también ϵ (y en otros textos, λ).

6.7.2.1 Operaciones sobre secuencias / sucesiones

Seq[A] se puede definir recursivamente. La siguiente notación indica cómo puede hacerse esto de manera sistemática³:

```
TAD Seq[A]

* ε : → Seq // una constante

* .⊲. : A × Seq → Seq // prepend, añadir por atrás
```

Parecería que esta fuera una definición con problemas, porque está definiendo secuencias suponiendo que ya se tiene un conjunto de secuencias para describir las imágenes de ϵ y \triangleleft . En realidad, se quiere decir lo siguiente:

Seq₀ =
$$\{\varepsilon\}$$

Seq_{n+1} = Seq_n \cup $\{s \mid s = a \triangleleft s_n, a \in A, s_n \in Seq_n\}, n \ge 0$
Seq = $(\bigcup n \mid : Seq_n)$

Nótese que la secuencia $\langle a_1, a_2, ..., a_n \rangle$ se puede denotar con

$$a_1 \triangleleft (a_2 \triangleleft ... \triangleleft (a_n \triangleleft \epsilon)...)$$

y, por convención, escribir esto como

$$a_1 \triangleleft a_2 \triangleleft ... \triangleleft a_n \triangleleft \epsilon$$
.

O sea, se tiene una representación para cualquier secuencia de A, en términos de ε y <.

m

Ahora, se pueden añadir operaciones definidas de la siguiente forma:

```
head: Seq A → A
 head(a \triangleleft s) = a
 tail: Seq A \rightarrow Seq A
 tail(\epsilon) = \epsilon
 tail(a \triangleleft s) = s
isempty: Seq A \rightarrow bool
isempty(ε)
isempty(a \triangleleft s) = false
last: Seq A → A
last(a⊲s) = if isempty(s) then a else last(s) fi
size: Seq A \rightarrow nat
size(\epsilon) = 0
size(a \triangleleft s) = size(s) + 1
^{\circ} : Seq A \times Seq A \rightarrow Seq A
\epsilon ^t = t
(a \triangleleft s)^t = a \triangleleft (s^t)
```

Obsérvese que las operaciones definidas son funciones parciales, en general. Y, en muchos casos, se trata de funciones. Por ejemplo, no se define $head(\epsilon)$, por lo que head es función parcial. Sin embargo, tail e isempty sí están definidas unívocamente para toda posible secuencia, de modo que son funciones.

Metateorema de representación

 ${\tt X_s}$ expresión de conjuntos que menciona variables, Ø, U, $~\cup,~\cap,~.^c$ ${\tt X_p}$ expresión booleana cambiando así:

 $\ \cap \ \rightarrow \land, \ \cup \ \rightarrow \lor, \ .^c \ \rightarrow \lnot, \ \varnothing \ \rightarrow \ \text{false, $\tt U$} \ \rightarrow \ \text{true}$

Entonces:

Operaciones de conjuntos \leftrightarrow Operaciones de lógica proposicional

∩ : ∧
∪ : ∨
.º : ¬
Ø : false
U : true

Matemáticas	Informática	Significado	Elementos
Ø	{}, void	Conjunto vacío	
U (no estándar)		Conjunto universo	Todos "los que interesan"
N	nat	Números naturales	0,1,2,3,
Z	int	Números enteros	,-3,-2,-1,0,1,2,3,
\mathbf{Z}^{+}	int ⁺	Números enteros	1,2,3,
		positivos	
R		Números reales	0, -17, 17.23, π, e, (ejemplos)
Q	real float	Números reales	p/q:R, con p,q:Z,q≠0
	rat	racionales	
Q ⁺	real ⁺	Números racionales	p/q:R, con p,q:Z ⁺ , q≠0
	float ⁺	positivos	
	rat ⁺		
С		Números complejos	a+ib, con a,b: \mathbf{R} , i= $\sqrt{(-1)}$

Notación	Se lee	Significado	Ejemplos
A ⊆ B	A contenido en B A subconjunto de B	Todo elemento de A es elemento de B: $(\forall x \mid : x \in A \Rightarrow x \in B)$	{1,2} ⊆ {1,2} nat ⊆ int
A C B	A contenido propiamente en B A subconjunto propio de B	Todo elemento de A es elemento de B, pero no todo elemento de B es elemento de A: A ⊆ B ∧ ¬(B ⊆ A)	{1,2} ⊂ {1,2,3,4} nat ⊂ int
A ∪ B	A unión B	Conjunto que contiene los elementos de A y los de B: $\{x \mid \ x \in A \ \lor \ x \in B\}$	$A = \{1,2\}$ $B = \{1,3,5\}$ $A \cup B = \{1,2,3,5\}$
A ∩ B	A intersección B	Conjunto que contiene los elementos comunes de A y de B: $\{x \mid x \in A \land x \in B\}$	$A = \{1, 2\}$ $B = \{1, 3, 5\}$ $A \cap B = \{1\}$
A\B A-B	A menos B	Conjunto que contiene los elementos en A que no están en B: {x x ∈ A ∧ x ∉ B}	A = {1,2} B = {1,3,5} A\B = {2} B\A = {3,5}
A ^C	A complemento	Conjunto de elementos del universo que no están en A:	U\A
2 ^A P (A)	Potencia de A Partes de A	Conjunto de subconjuntos de A: {B B ⊆ A }	$A = \{1,3,5\}$ $2^{A} = \{\emptyset, \{1\}, \{3\}, \{5\}, \{1,3\}, \{1,5\}, \{3,5\}, \{1,3,5\}\}$
#A	Cardinal de A Tamaño de A	Número de elementos en A: (+x x∈A : 1)	$A = \{1, 3, 5\}$ #A = 3 $\#(2^{A}) = 8$
A × B	A cruz B Producto cartesiano de AyB	Conjunto de parejas, cada una con el primer elemento en A y el segundo en B: { (a,b) a ∈ A ∧ b ∈ B}	$A = \{1,3,5\} $ $C = \{-1,3\} $ $A\times C = \{(1,-1), (1,3), (3,-1), (3,3), (5,-1), (5,3)\} $

$$A \subseteq B \equiv (\forall x: U | x \in A \Rightarrow x \in B)$$

$$A \cup B = \{x: U | x \in A \vee x \in B\}$$

$$A \cap B = \{x: U | x \in A \wedge x \in B\}$$

$$A^{c} = \{x: U | x \notin A\}$$

$$A \setminus B = \{x: U | x \in A \wedge x \notin B\}$$

$$2^{A} = \{x: U | x \in A \wedge x \notin B\}$$

$$2^{A} = \{x: U | x \in A \wedge x \notin B\}$$

$$2^{A} = \{x: U | x \in A \wedge x \notin B\}$$

$$2^{A} = \{x: U | x \in A \wedge x \notin B\}$$

$$2^{A} = \{x: U | x \in A \wedge x \notin B\}$$

$$2^{A} = \{x: U | x \in A \wedge x \notin B\}$$

Axioma: Pertenencia ∪

 $y \in (\bigcup k \mid Q : E) \equiv (\exists k \mid Q : y \in E)$

Axioma: Pertenencia ∩

 $y \in (\cap k \mid Q : E) \equiv (\forall k \mid Q : y \in E)$

Axioma: Pertenencia

Axioma: Igualdad

$$y \in \{x: U \mid p.x\} \equiv p.y$$

$$A = B \equiv (\forall x: U \mid : x \in A \equiv x \in B)$$

Teo A: (Igualdad de conjuntos)

(1)
$$A = B \equiv A \subseteq B \land B \subseteq A$$

(2)
$$A = \{x | p(x)\}, B = \{x | q(x)\}: A = B \equiv (\forall z | : p(z) \equiv q(z))$$

Teo A: (De Morgan) $(A \cup B)^c = A^c \cap B^c$

Identidad	A ∩ U = A	
∪-Identidad	$A \cup \emptyset = A$	
Dominancia	$A \cap \emptyset = \emptyset$	
∪-Dominancia	A U U = U	
Idempotencia	A ∩ A = A	
∪-Idempotencia	A U A = A	
Doble complemento	(A°)° = A	
	$A \cap B = B \cap A$	
∪-Conmutatividad	A U B = B U A	
	$A \cap (B \cap C) = (A \cap B) \cap (A \cap C)$	
∪-Asociatividad	$A \cup (B \cup C) = (A \cup B) \cup (A \cup C)$	
Distributividad ∩/∪	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
Distributividad ∪/ ∩	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
De Morgan	(A ∪ B) ° = A° ∩ B°	
De Morgan	(A ∩ B)° = A° ∪ B°	
Absorción	A ∪ (A ∩ B) = A	
Absorción	$A \cap (A \cup B) = A$	
Medio excluído	A U A° = U	
Contradicción	$A \cap A^c = \emptyset$	
Definición de ⊆	$A \subseteq B = (\forall x : U : x \in A \Rightarrow x \in B)$	
Contrapositiva	$A \subseteq B = B^{c} \subseteq A^{c}$	
Distributividad <u></u>	$A \subseteq (B \cap C) = (A \subseteq B) \land (A \subseteq C)$	

Para mostrar la ley de absorción para conjuntos:

$$A \cup (A \cap B) = A$$

basta probar que⁵:

$$A \lor (A \land B) \equiv A.$$

Para mostrar la ley de contrapositiva en conjuntos

$$A \subseteq B = B^{\circ} \subseteq A^{\circ}$$

basta probar que:

$$A \Rightarrow B \equiv \neg B \Rightarrow \neg A$$
.

Y esto es verdad, precisamente, por la ley de contrapositiva en lógica.

Para mostrar la ley de medio excluido en conjuntos

$$A \cup A^c = U$$

basta probar que:

$$A \vee \neg A$$
.

Y esto es verdad, precisamente, por la ley del medio excluido en lógica.

a Para mostrar la segunda ley de absorción para conjuntos:

$$A \cap (A \cup B) = A$$

basta probar el dual

$$A \cup (A \cap B) = A$$
.

Y esto es verdad por la primera ley de absorción en conjuntos.

b Para mostrar la ley de contradicción en conjuntos

$$A \cap A^c = \emptyset$$

basta probar el dual:

$$A \cup A^{c} = U$$
.

Y esto es verdad, precisamente, por la ley del medio excluido en lógica.

$$egin{aligned} A\setminusarnothing=A \ A-A=arnothing \ A-B=arnothing\leftrightarrow A\subseteq B \ A-B=A\leftrightarrow A\cap B=arnothing \ (A\cap B)\cap (A\setminus B)=arnothing \ ,\ (A\cap B)\cup (A\setminus B)=A \ A^{\complement}=U\setminus A \end{aligned}$$

Si se considera un conjunto universal, la diferencia entre dos conjuntos es la intersección del primero con el complemento del segundo:

$$A \setminus B = A \cap B^{\mathbb{C}}$$

También es de hacer notar que si:

$$A - B = C$$
,

$$A \neq C + B$$

$$A \setminus B = A \cap B^{\complement}$$

$$U^{\complement}=\varnothing$$
 , $\varnothing^{\complement}=U$

- Propiedad involutiva. El complementario del complementario de A es el propio A: $(A^{\complement})^{\complement} = A$
- La unión de un conjunto y su complementario es el conjunto universal:

$$A \cup A^{\complement} = U$$

• Un conjunto y su complementario son disjuntos:

$$A\cap A^{\complement}=arnothing$$

• El complementario de A está contenido en el complementario de cualquier subconjunto de A: $B \subset A \to A^{\complement} \subset B^{\complement}$

Leyes de De Morgan

- El complementario de la unión de dos conjuntos es la intersección de los complementarios:
 (A ∪ B)^C = A^C ∩ B^C
- El complementario de la intersección de dos conjuntos es la unión de los complementarios:
 (A ∩ B)^C = A^C ∪ B^C

$$\langle A \cap \emptyset = \emptyset; SAP \rangle$$
 $A \cup B = B$
 $\langle Def \subseteq \rangle$
 $A \subseteq B$
 $A \cap U$
 $\langle Medio Excluido \rangle$
 $A \cap U \cap (B \cup B^c)$
 $A \cap U \cap (B \cup B^c)$

$$\langle I = I^{T} \rangle$$

 $\langle (R \cup I)^{T} = R^{T} \cup I^{T} \rangle$

 $A \cap (B \cup B^c)$

$$\begin{array}{rcl} & A \subseteq B^{C} \\ = & \left\langle X \subseteq Y \equiv X \cap Y = X \right\rangle \\ & A \cap B^{C} = A \\ \Rightarrow & \left\langle X = Y \Rightarrow X \cap Z = Y \cap Z \right\rangle \end{array}$$