Giuseppe Cordeiro

1)

2)TABELA VERDADE DA 1/2 SOMA

3. Componentes que possuem portas lógicas necessárias para a construção de um meio somador:

Figura 3 - Porta XOR - 74LS86

74LS86 Pinout VCC 14 13 12 11 10 9 8 1 2 3 4 5 6 7 GND

Figura 4 - Porta AND - 74LS08

74LS08 Pinout VCC 14 13 12 11 10 9 8 1 2 3 4 5 6 7 GND

Figura 5 - Porta OR - 74LS32

4. Pinos de alimentação (VCC e GND) e os pinos de entrada e saída de cada porta lógica:

Figura 6 – Pinos Porta XOR

74LS86 Pin Configuration

Pin No	Pin Name	Description				
1	1A	INPUT 1 of GATE 1				
2	1B	INPUT 2 of GATE 1				
3	1Y	OUTPUT of GATE 1				
4	2A	INPUT 1 of GATE 2				
5	2B	INPUT 2 of GATE 2				
6	2Y	OUTPUT of GATE 2				
7	GND	Ground pin				
8	3Y	OUTPUT of GATE 3				
9	3B	INPUT 2 of GATE 3				
10	3A	INPUT 1 of GATE 3				
11	4Y	OUTPUT of GATE 4				
12	48	INPUT 2 of GATE 4				
13	4A	INPUT 1 of GATE 4				
14	vcc	Supply Voltage				

Figura 7 - Pinos Porta AND

74LS08 Pin Configuration

Pin No	Pin Name	Description				
1	A1	INPUT 1 of GATE 1				
2	B1	INPUT 2 of GATE 1				
3	Q1	OUTPUT of GATE 1				
4	A2	INPUT 1 of GATE 2				
5	B2	INPUT 2 of GATE 2				
6	Q2	OUTPUT of GATE 2				
7	GND	Ground				
8	A3	INPUT 1 of GATE 3				
9	B3	INPUT 2 of GATE 3				
10	Q3	OUTPUT of GATE 3				
11	A4	INPUT 1 of GATE 4				
12	B4	INPUT 2 of GATE 4				
13	Q4	OUTPUT of GATE 4				
14	VCC	Supply Voltage				

Figura 8 - Pinos Porta OR

74LS32 Pin Configuration

Pin No	Pin Name	Description				
1	1A	INPUT 1 of GATE 1				
2	1B	INPUT 2 of GATE 1				
3	1Y	OUTPUT of GATE 1				
4	2A	INPUT 1 of GATE 2				
5	2B	INPUT 2 of GATE 2				
6	2Y	OUTPUT of GATE 2				
7	GND	Ground Pin				
8	3Y	OUTPUT of GATE 3				
9	3B	INPUT 2 of GATE 3				
10	3A	INPUT 1 of GATE 3				
11	4Y	OUTPUT of GATE 4				
12	4B	INPUT 2 of GATE 4				
13	4A	INPUT 1 of GATE 4				
14	vcc	Supply Voltage				

Pergunta 1-

Resposta: Se a entrada de uma porta lógica estiver flutuando, seu comportamento será indefinido, podendo resultar em oscilações, consumo excessivo de energia ou mau funcionamento do circuito. Para evitar isso, é recomendado o uso de resistores pull-up ou pull-down para definir um nível lógico estável.

6. 1/2 somador no tinkercad

https://www.tinkercad.com/things/kPyR59bbVGv-half-adder

8. Somador completo

https://www.tinkercad.com/things/4TuwyTlgt3F-full-adder-1-bit

9. Tabela verdade somador completo

I	Cin	Т	A 0	Т	В0	Т	Sum	1	Cout	Т
-		- -		- -		- -		1		- [
Ī	0	1	0	Ī	0	1	0	Ī	0	1
Ī	0	1	0	Ī	1	1	1	Ī	0	1
Ī	0	1	1	Ī	0	1	1	Ī	0	1
Ī	0	1	1	Ī	1	1	0	Ī	1	1
Ī	1	1	0	Ī	0	1	1	Ī	0	1
Ī	1	1	0	Ī	1	1	0	Ī	1	1
I	1	Ī	1	Ī	0	1	0	Ī	1	1
I	1	1	1	Ī	1	1	1	Ī	1	1

10. Um somador de 4 bits é um circuito digital projetado para somar dois números binários de 4 bits. Ele é formado por quatro somadores completos (full-adders) interligados em série. Cada somador completo processa um par de bits correspondentes dos números de entrada, além de um bit de transporte (carry-in) gerado pelo somador anterior. O primeiro somador recebe um carry-in inicial de zero, e os somadores seguintes utilizam o carry-out do estágio anterior como seu carry-in. Ao final, o circuito produz um resultado binário de 4 bits e um bit de carry-out, que indica um possível estouro (overflow) caso a soma ultrapasse a capacidade de 4 bits.

Circuito do Somador de 4 bits

Pergunta 2

O principal desafio relacionado ao tempo em um somador de 4 bits é a propagação do carry. Em um somador com múltiplos bits, cada somador completo precisa aguardar o resultado do carry do estágio anterior antes de finalizar sua própria operação de adição. Esse atraso é acumulativo, ou seja, o tempo total necessário para concluir a soma de 4 bits depende tanto da quantidade de bits quanto do tempo que cada carry leva para se propagar através dos somadores. Esse fenômeno pode limitar a velocidade do circuito, especialmente em somadores com um grande número de bits.

Pergunta 3

Considerando um atraso médio de 10 nanossegundos (ns) por porta lógica, o tempo total necessário para a operação de um somador de 4 bits é de 90 ns. No início (tempo 0), o primeiro somador completo leva 30 ns para calcular a soma e o carry (vai-um). Os somadores subsequentes, que já calcularam suas somas, aguardam apenas a propagação do carry anterior, resultando em um atraso adicional de 20 ns por estágio. Assim, o tempo médio necessário, Tmed, pode ser calculado com base no número total de bits, n, utilizando a fórmula:

Tmed = 30 ns + 20 ns * (n-1)

Pergunta 4

Para um somador de 32 bits são necessários 32 somadores de 1 bit.

Pergunta 5

Dada a fórmula abstraída na questão 3, tem-se:

Tmed = 30 ns + 20 ns * 32-1 => Tmed = 30 ns + 620 ns => Tmed = 650 ns

Pergunta 6

Uma maneira de aumentar a velocidade do somador é eliminar a dependência da propagação do carry entre os estágios. No somador Carry-Lookahead Adder (CLA), cada estágio calcula diretamente seu próprio carry de entrada com base nas entradas iniciais (bits e carry-in), sem precisar aguardar o carry propagado dos estágios anteriores. Isso é feito por meio de circuitos adicionais que preveem os carries de forma antecipada, utilizando as entradas iniciais. Como resultado, o somador consegue determinar todos os carries simultaneamente, reduzindo drasticamente o tempo de propagação e acelerando o processo de adição. Essa abordagem torna o CLA significativamente

mais rápido do que somadores convencionais, especialmente para operações com um grande número de bits.

Calculadora de 4 bits

Meia soma

Somador completo

Somador de 4bits

Decod

