	doc_1		doc_2		decision	id
			authors	Stefano Markidis		
			title	The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?		
cases			publication_date 2021-03-12 00:26:34+00:00			
	authors title	Stefano Markidis The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?	source	SupportedSources.ARXIV		
			journal	None		
			volume			
	nublication date	2021-11-19 00:00:00	doi			
	source	SupportedSources.OPENALEX	urls	 http://arxiv.org/pdf/2103.09655v2 http://arxiv.org/abs/2103.09655v2 		
	journal	Frontiers in big data				
	volume	4		• http://arxiv.org/pdf/2103.09655v2		
	doi	10.3389/fdata.2021.669097	id	id8655035502166189145	DUPLICATES 3	S 31
	urls	 https://openalex.org/W3216718982 https://doi.org/10.3389/fdata.2021.669097 https://www.frontiersin.org/articles/10.3389/fdata.2021.669097/pdf 	abstract	Physics-Informed Neural Networks (PINN) are neural networks encoding the problem governing equations, such as Partial Differential Equations (PDE), as a part of the neural network. PINNs have emerged as a new essential tool to solve various challenging problems, including computing linear systems arising from PDEs, a task for which several traditional methods exist. In this work, we focus first on evaluating the potential of PINNs as linear solvers in the case of the Poisson equation, an omnipresent equation in scientific computing. We characterize PINN linear solvers in terms of accuracy and performance under different network configurations (depth, activation		
	id	id5120292415242574272		functions, input data set distribution). We highlight the critical role of transfer learning. Our results show that low-frequency components of the solution converge quickly as an effect of the F-principle. In contrast, an accurate solution of the high frequencies requires an	; are	
	abstract					
	versions			exceedingly long time. To address this limitation, we propose integrating PINNs into traditional linear solvers. We show that this integration leads to the development of new solvers whose performance is on par with other high-performance solvers, such as PETSc		
				onjugate gradient linear solvers, in terms of performance and accuracy. Overall, while the accuracy and computational performance are ill a limiting factor for the direct use of PINN linear solvers, hybrid strategies combining old traditional linear solver approaches with new nerging deep-learning techniques are among the most promising methods for developing a new class of linear solvers.		
			versions			