

Introducción

Aprendizaje Supervisado

- Espacio de las muestras de entrada: ${\cal X}$
- ullet Espacio de las salidas: ${\mathcal Y}$

Dados:

- ullet Conjunto de **entrenamiento**: $S = \{x_i,\ y_i\}_{i=1}^N$, con $x_i,y_i \in \mathcal{X} imes \mathcal{Y}$
- Visión probabilística: $x_i, y_i \sim P(X,Y)$

Objetivo:

- ullet Aprender una regla de predicción (hipótesis), $h:\mathcal{X} o\mathcal{Y}$
- Visión probabilística: estimar P(Y|X)

Aprendizaje Supervisado

Estrategia básica:

• MLE de algún modelo paramétrico

$$rg \max_{w} \prod_{i=1}^{N} P(y_i|x_i,w)$$

Facilidades:

- ${\cal Y}$ es tiene dimensión baja
- Es sencillo cuantificar el error

Aprendizaje No Supervisado

Dados:

- No hay salidas: $S = \{x_i\}_{i=1}^N$, con $x_i \in \mathcal{X}$
- Visión probabilística: $x_i \sim P(X)$

Objetivo:

- Estimar P(X)
- Inferir alguna propiedad de P(X)

Retos del Aprendizaje No Supervisado

- *X* generalmente es de alta dimensión
- Propiedades de interés que queremos inferir son más complejas que simples parámetros
- No hay una medida directa de cuantificar el error
- Métodos heurísticos no solo para motivar los algoritmos sino también para medir la calidad de los resultados

Buen proxy de la dificultad de cada área!!

Una taxonomía de algoritmos de aprendizaje no supervisado según su objetivo

- Métodos de estimación de densidades
- Manifold learning: PCA, PCA no lineal, self-organizing maps, modelos de variables latentes, ...
- Encontrar regiones convexas del espacio que contengan modas de P(X): análisis de cluster, modelos de mixturas, ...
- Muestrear de P(X): GAN, autoencoders, autoencoders variacionales, ...

Repaso Álgebra Lineal

Aplicaciones lineales

ullet Dado $oldsymbol{x} \in \mathbb{R}^D$, una **aplicación (función) lineal** $f: \mathbb{R}^N o \mathbb{R}^M$ se expresa como

$$f(\boldsymbol{x}) = W \boldsymbol{x}$$

donde W es una matriz de tamaño $M \times N$.

• Para el caso M=N, los **autovalores** $\lambda\in\mathbb{R}$ y los **autovectores** $m{v}\in\mathbb{R}^M$ son los elementos que cumplen

$$W oldsymbol{v} = \lambda oldsymbol{v}$$

• Si los vectores columna de $W = [w_1, \ldots, w_M]$ son ortonormales (esto es, $w_i^\intercal w_j = 0, w_i^\intercal w_i = 1$), se dice que W es una proyección ortonormal. En este caso, los vectores $[w_1, \ldots, w_M]$ forman una base ortonormal.

Derivadas matriciales

• Será necesario considerar derivadas de vectores respecto a escalares. En este caso,

$$\left(rac{\partial oldsymbol{a}}{\partial x}
ight)_i = rac{\partial oldsymbol{a}_i}{\partial x}$$

• También podemos derivar respecto a vectores o matrices:

$$\left(rac{\partial x}{\partial oldsymbol{a}}
ight)_i = rac{\partial x}{\partial oldsymbol{a}_i}, \left(rac{\partial oldsymbol{a}}{\partial oldsymbol{b}}
ight)_{i,j} = rac{\partial oldsymbol{a}_i}{\partial oldsymbol{b}_j}$$

• *Ejercicio*. Probar que

$$rac{\partial oldsymbol{x}^{ op}oldsymbol{a}}{\partial oldsymbol{x}} = rac{\partial oldsymbol{a}^{ op}oldsymbol{x}}{\partial oldsymbol{x}} = oldsymbol{a}$$

y que

$$rac{\partial m{A}m{B}}{\partial m{x}} = rac{\partial m{A}}{\partial m{x}} m{B} + rac{\partial m{B}}{\partial m{x}} m{A}.$$

Optimización

• Queremos optimizar una función diferenciable $f(\boldsymbol{x})$ tal que $f:\mathbb{R}^N \to \mathbb{R}$. Los **óptimos locales** verifican

$$\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} = 0$$

• En el caso de querer optimizar f(x) sujeto a demás a una restricción g(x) = 0, podemos utilizar el **Teorema de los multiplicadores de Lagrange** y optimizar la siguiente función objetivo (ya sin restricciones):

$$f(oldsymbol{x}) + \lambda g(oldsymbol{x})$$

Métodos Lineales reducción de dimensionalidad

Análisis de Componentes Principales

Dos definiciones alternativas

- Proyección ortogonal de datos a subespacio de dimensión inferior tal que varianza de proyecciones es máxima
- Proyección lineal que minimiza el *coste medio de proyección* = distancia media cuadrática entre datos y sus proyecciones
- Ambos dan lugar al mismo algoritmo!
- Diferentes aplicaciones: reducción de dimensionalidad, compresión, visualización de datos, extracción de variables predictoras...

Formulación por Máxima Varianza

PCA: Formulación por Máxima Varianza (1)

- Dados: $x_n \in \mathbb{R}^D, \quad n=1,\ldots,N$
- Objetivo: encontrar proyección lineal $\pi:\mathbb{R}^D\to\mathbb{R}^M$ tal que M< D y se maximize la varianza de los datos proyectados.
- Ejemplo $\mathbb{R}^2 \to \mathbb{R}^1$:

PCA: Formulación por Máxima Varianza (2)

- Empezamos considerando proyección a \mathbb{R} (M=1).
- Una proyección viene representada por su dirección, esto es, un vector $\boldsymbol{u}_1 \in \mathbb{R}^D$. Como sólo nos interesa la dirección, imponemos $\boldsymbol{u}_1^\mathsf{T} \boldsymbol{u}_1 = 1$.
- $\boldsymbol{u}_1^{\mathsf{T}} x_n$ es la proyección del n-ésimo punto.
- También nos interesa calcular:
 - La media de los datos proyectados

$$rac{1}{N}\sum_{n=1}^{N}oldsymbol{u}_{1}^{\intercal}x_{n}=oldsymbol{u}_{1}ar{x}_{n}$$

La varianza de los datos proyectados

$$rac{1}{N}\sum_{n=1}^N(oldsymbol{u}_1^\intercal x_n - oldsymbol{u}_1^\intercal ar{x})^2 = oldsymbol{u}_1^\intercal oldsymbol{S} oldsymbol{u}_1$$

PCA: Formulación por Máxima Varianza (3)

• Ahora ya podemos plantear un problema de optimización, con objetivo:

$$\max_{oldsymbol{u}_1} oldsymbol{u}_1^\intercal oldsymbol{S} oldsymbol{u}_1$$

• con la restricción:

$$oldsymbol{u}_1^\intercal oldsymbol{u}_1$$

• Para resolverlo, utilizamos la formulación Lagrangiana, con lo que lo convertimos al siguiente problema de optimización sin restricciones:

$$\max_{oldsymbol{u}_1} oldsymbol{u}_1^\intercal oldsymbol{S} oldsymbol{u}_1 + \lambda_1 (oldsymbol{u}_1^\intercal oldsymbol{u}_1 - 1)$$

Derivamos...

PCA: Formulación por Máxima Varianza (4)

Queda que

$$oldsymbol{S}oldsymbol{u}_1=\lambda_1oldsymbol{u}_1$$

es decir, u_1 es autovector de la matriz de covarianzas S.

Más aún,

$$oldsymbol{u}_1^{\intercal} oldsymbol{S} oldsymbol{u}_1 = \lambda_1$$

la varianza es precisamente el mayor autovalor

• El autovector u_1 asociado al mayor autovalor, λ_1 es conocido como *primera componente principal*.

Minimización de Error de Proyección

PCA: Minimización de Error de Proyección (1)

- Considérese el conjunto de observaciones $\{x_n\}_{n=1}^N$, donde $x_n \in \mathbb{R}^D$
- $\{u_i\}_{i=1}^D$: base ortonormal completa de dimension D

$$x_n = \sum_{i=1}^D lpha_{ni} u_i.$$

• Sin pérdida de generalidad

$$x_n = \sum_{i=1}^D (x_n^ op u_i) u_i \, .$$

• Interés: aproximar dato usando representación que requiera M < D parámetros.

PCA: Minimización de Error de Proyección (2)

• Representamos el subespacio de dimensión M con los primeros M vectores de la base

$$ilde{x}_n = \sum_{i=1}^M (z_{ni}u_i) + \sum_{i=M+1}^D b_iu_i.$$

• Escogemos $\{z_{in}\}$, $\{b_i\}$ y $\{u_i\}$ para distorsión introducida por reducción de dimensión

$$J=rac{1}{N}\sum_{n=1}^N\|x_n- ilde{x}_n\|^2.$$

• Minimizando respecto $\{z_{in}\}$

$$z_{nj} = x_n^ op u_j$$

• Minimizando respecto $\{b_i\}$

$$b_j = \left(rac{1}{N}\sum_{n=1}^N x_n^ op
ight)^ op u_j = ar{x}^ op u_j$$

PCA: Minimización de Error de Proyección (3)

• Substituyendo en la expresión de $ilde{x}_n$

$$egin{aligned} x_n - ilde{x}_n &= \sum_{i=M+1}^D \left\{ (x_n - ar{x})^ op u_i
ight\} u_i \end{aligned}$$

ullet Vector desplazamiento ortogonal al *subespacio principal*. Substituendo en J

$$J = rac{1}{N} \sum_{n=1}^N \sum_{i=M+1}^D \left(x_n^ op u_i - ar{x}^ op u_i
ight)^2 = \sum_{i=M+1}^D u_i^ op S u_i^ op$$

Donde
$$S = rac{1}{N} \sum_{i=1}^N (x_n - ar{x}) (x_n - ar{x})^ op.$$

ullet Falta minimizar respecto de $\{u_i\}$, sujeto a $u_i^ op u_i = 1$

PCA: Minimización de Error de Proyección (4)

• Intuición: D=2 y M=1: encontra u_2 que minimice $J=u_2^ op Su_2$, sujeto a $u_2^Tu_2=1$.

$$ilde{J} = u_2^ op S u_2 + \lambda_2 (1 - u_2^ op u_2)$$

- Derivando e igualando a 0: $Su_2 = \lambda_2 u_2 \Rightarrow$ todo autovector define un punto estacionario.
- En el mínimio $J = \lambda_2$: escogemos u_2 con autovalor mínimo. Luego **subespacio principal** definido por autovectores de autovalor máximo.

PCA: Minimización de Error de Proyección (5)

• Solución general: escoger como $\{u_i\}$ los autovectores de la matriz de covarianza

$$Su_i = \lambda_i u_i$$

- El valor de distorsión es entonces $J = \sum_{i=M+1}^{D} \lambda_i$.
- J será mínimo si escogemos los D-M autovectores de menor autovalor.
- Los autovectores definiendo el subespacio principal, serán los de mayor autovalor.

Aplicaciones de PCA

ullet Cada punto de dimensión D se representa como vector de dimensión M

$$ilde{x}_n = ar{x} \sum_{i=1}^M (x_n^ op - ar{x}^ op u_i) u_i \, .$$

Aplicación: visualización de datos

- Es conveniente realizarla antes de elegir el modelo predictivo, para tener una idea de cómo es la estructura de los datos.
- Representar los datos directamente es fácil cuando están en 2D ó 3D.
- ¿Cómo hacerlo cuando D >> 3?. Situación habitual:
 - \circ MNIST: $D=28\times28$.
 - \circ CIFAR10: $D = 32 \times 32 \times 3$.
- Con PCA: $z = XW^{\top}$ donde
 - 1. W es $M \times D$.
 - 2. X es la matriz de datos $N \times D$.

- Código en *src/tSNE_coil20R.R*.
- Base de datos COIL20: imágenes de 20 objetos desde 72 ángulos diferentes.

- Código en *src/tSNE_coil20R.R*.
- Base de datos COIL20: imágenes de 20 objetos desde 72 ángulos diferentes.

- Código en *src/tSNE_coil20R.R*.
- Base de datos COIL20: imágenes de 20 objetos desde 72 ángulos diferentes.

- Código en *src/tSNE_coil20R.R*.
- Base de datos COIL20: imágenes de 20 objetos desde 72 ángulos diferentes.

Ejemplo práctico

• Proyección a 2D mediante PCA:

Cuestiones de implementación

Datos de alta dimensionalidad

- En muchos casos D > N, por ejemplo imágenes: $|D| = \operatorname{ancho} \times \operatorname{alto} \times 3$.
- La complejidad de calcular los autovectores de una matriz $D \times D$ escala según $\mathcal{O}(D^3)$.
- N puntos en un espacio de dimensión D>N forman un subespacio de dimensión N-1 (¡o menos!).
- No tiene sentido aplicar PCA con M > N-1: saldrán autovalores 0.

Datos de alta dimensionalidad

- Consideramos $oldsymbol{X} \in \mathbb{R}^{N imes D}$ cuya fila n-ésima es $x_n ar{x}$.
- La matriz de covarianzas es $\boldsymbol{S} = N^{-1} \boldsymbol{X}^{\intercal} \boldsymbol{X}$, luego obtenemos autovectores mediante

$$rac{1}{N}oldsymbol{X}^{\intercal}oldsymbol{X}oldsymbol{u}_i=\lambda_ioldsymbol{u}_i$$

ullet Multiplicando ambos miembros por la izquierda por $oldsymbol{X}$ llegamos a

$$rac{1}{N}oldsymbol{X}oldsymbol{X}^\intercal(oldsymbol{X}oldsymbol{u}_i) = \lambda_i(oldsymbol{X}oldsymbol{u}_i)$$

con lo que $m{v}_i = m{X}m{u}_i$ es un autovector de la matriz $N^{-1}m{X}m{X}^\intercal$, de tamaño N imes N.

• ¡La complejidad ahora es $\mathcal{O}(N^3)$!

Datos de alta dimensionalidad

- Pero tenemos que obtener los autovectores en el espacio original...
- Multiplicando ahora por X^{T} :

$$(rac{1}{N}oldsymbol{X}^{\intercal}oldsymbol{X})(oldsymbol{X}^{\intercal}oldsymbol{v}_i) = \lambda_i(oldsymbol{X}^{\intercal}oldsymbol{v}_i)$$

• Con lo que $X^{\mathsf{T}}v_i$ es autovector de S con mismo autovalor λ_i .

En resumen:

- 1. Calculamos autovectores v_i .
- 2. $\boldsymbol{u}_i = \boldsymbol{X}^{\intercal} \boldsymbol{v}_i$ y normalizamos \boldsymbol{u}_i .
- 3. En concreto,

$$oldsymbol{u}_i = rac{1}{(N\lambda_i)^2} oldsymbol{X}^\intercal oldsymbol{v}_i$$

Análisis de Componentes Principales Probabilístico

PCA Probabilístico

- PCA = solución de máxima verosimilitud de modelo probabilístico de variables latentes.
- Permite tratamiento natural de datos ausentes.
- Permite la formulación Bayesiana en la que la dimensión del subespacio principal puede ser aprendida de los datos.
- Permite modelizar densidades condicionadas a clases y por tanto clasificar.
- Puede generar muestras de la distribución de interés.

PPCA - Modelo Generativo

- Idea: explicar cómo los datos observados se han generado a partir de variables latentes.
- Cada dato observado **x** se ha generado de esta manera:
 - 1. Se muestrea la variable latente $\mathbf{z} \sim \mathcal{N}(\mathbf{z}|0, \mathbf{I})$.
 - 2. $\mathbf{x} = \mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon}$. Donde $\boldsymbol{\epsilon}$ sigue una distribución normal de media 0 y covarianza $\sigma^2 \mathbf{I}$.
- Ahora, supongamos que queremos determinar \mathbf{W} , $\boldsymbol{\mu}$ y σ^2 usando máxima verosimilitd. Necesitamos escribir la distribución marginal $p(\mathbf{x})$.

$$p(oldsymbol{x}) = \int p(oldsymbol{x} | oldsymbol{z}) p(oldsymbol{z}) doldsymbol{z}$$

• Como estamos ante un modelo lineal-Gaussiano, la marginal seguirá una distribución normal con

$$egin{aligned} \mathbb{E}[oldsymbol{x}] &= \mathbb{E}[oldsymbol{W}oldsymbol{z} + oldsymbol{\mu} + oldsymbol{\epsilon}] &= \mathbb{E}[oldsymbol{W}oldsymbol{z} + oldsymbol{\epsilon})^ op] &= \mathbb{E}[oldsymbol{W}oldsymbol{z} oldsymbol{V}^ op] + \mathbb{E}[oldsymbol{\epsilon}oldsymbol{\epsilon}^ op] &= oldsymbol{W}oldsymbol{W}^ op + oldsymbol{\sigma}^2 oldsymbol{I} &= oldsymbol{C} \end{aligned}$$

PPCA - Solución de máxima verosimilitud

• Dado un conjunto de datos observados $(X) = \{x_n\}$, la log-verosimilitud viene dada por

$$egin{aligned} \log p(oldsymbol{X}|oldsymbol{W},oldsymbol{\mu},\sigma^2) &= \sum_{n=1}^N \log p(oldsymbol{x}_n|oldsymbol{W},oldsymbol{\mu},\sigma^2) \ &= -rac{ND}{2} \mathrm{log}(2\pi) - rac{N}{2} \mathrm{log}(|oldsymbol{C}|) - rac{1}{2} \sum_{n=1}^N (oldsymbol{x}_n - oldsymbol{\mu})^ op oldsymbol{C}^{-1} (oldsymbol{x}_n - oldsymbol{\mu}) \end{aligned}$$

 Tipping and Bishop, Probabilistic principal component analysis resuelven el problema de optimización.

$$egin{align} oldsymbol{\mu} &= ar{oldsymbol{x}} \ oldsymbol{W}_{ML} &= oldsymbol{U}_M (oldsymbol{L}_M - \sigma^2 oldsymbol{I})^{1/2} oldsymbol{R} \ \sigma_{ML}^2 &= rac{1}{D-M} \sum_{i=M+1}^D \lambda_i \end{aligned}$$

PPCA - Recuperando PCA

- PCA: proyección de puntos de un espacio D-dimensional a uno M-dimensional.
- PPCA: al revés. Para aplicaciones, invertimos esta proyección usando el teorema de Bayes.
- Cualquier punto x, puede ser resumido usando media y covarianza a posteriori.

$$\mathbb{E}[oldsymbol{z}|oldsymbol{x}] = oldsymbol{M}^{-1}oldsymbol{W}_{ML}^{ op}(oldsymbol{x} - ar{oldsymbol{x}}) ext{cov}[oldsymbol{z}|oldsymbol{x}] = \sigma^2oldsymbol{M}^{-1}$$

$$\operatorname{con} \boldsymbol{M} = \boldsymbol{W}^{ op} \boldsymbol{W} + \sigma^2 \boldsymbol{I}.$$

- En el límite $\sigma^2 \to 0$, la media a posteriori representa una proyección ortogonal del punto al espacio latente y la covarianza es cero, por tanto la densidad es singular, recuperando PCA.
- **IMPORTANTE**: PPCA permite definir una distribución Gaussiana multivariante en la que el número de grados de libertad, puede ser contralado y al mismo tiempo capturar correlaciones en los datos.

Métodos Lineales reducción de dimensionalidad

Factorización de matrices no negativas

NMF - Algoritmo

ullet Sea f X la matriz N imes p de observaciones. Buscamos aproximarla por

$$\mathbf{X} \simeq \mathbf{WH}$$

- **W** matrix $N \times r$ y **H** matriz $r \times p$. **X**, **W** y **H** tiene todos sus elementos no negativos.
- **W** y **H** son tales que minimizan alguna función de coste.
- Tantos algoritmos diferentes como funciones de coste. Dos comunes:
 - 1. Norma de Frobenius

$$\|\mathbf{X} - \mathbf{W}\mathbf{H}\|^2 = \sum_{i=1}^N \sum_{j=1}^p \left(\mathbf{X}_{ij} - [\mathbf{W}\mathbf{H}]_{ij}
ight)^2$$

2. Divergencia Kullback-Leibler

$$D(X \| \mathbf{W} \mathbf{H}) = \sum_{i=1}^{N} \sum_{j=1}^{p} \left(\mathbf{X}_{ij} \log rac{\mathbf{X}_{ij}}{[\mathbf{W} \mathbf{H}]_{ij}} - \mathbf{X}_{ij} + [\mathbf{W} \mathbf{H}]_{ij}
ight)^2$$

Aquí se explica cómo resolver los problemas de optimización correspondientes.

Ejercicio

Demuéstrese que encontrar \mathbf{WH} que minimizan la *Divergencia Kullback-Leibler*, equivale a maximizar la log-verosimilitud de un modelo que asume $\mathbf{X}_{ij} \sim \text{Po}([\mathbf{WH}]_{ij})$. Es decir, \mathbf{X}_{ij} sigue una distribución de Poisson de media $[\mathbf{WH}]_{ij}$.

NMF - Sistemas de Recomendación

- Muchos usos: sistemas de recomendación, minería de textos, reducción de dimensionalidad
- Ejemplo: Sistemas de recomendación.

	C1	C2	C3	C4	C5			S1	S2							
P1							P1					C1	C2	C3	C4	C5
P2						_	$\mathbf{P2}$			\sim S1	$\mathbf{S1}$					
P3						~	P3			_ ^	S2					
$\mathbf{P4}$							$\mathbf{P4}$									

- Cada elemento de **X** es número de compras que el cliente ha realizado del producto.
- Cada columna de **W** define un segmento. Cuanto mayor es el *peso* de un producto en el segmento, más determinado está este segmento por el producto.
- Las columnas de **H** asignan a cada cliente pesos de pertenencia a cada segmento.
- Cada cliente está descrito por una combinación lineal de segmentos, con coeficientes dados por las columnas de **H**.

NMF - Sistemas de Recomendación

- Cada cliente se genera como combinación de variables ocultas (segmentos). NMF genera estas variables.
- El analista debe interpretar los segmentos
- ¿Cómo recomendar?
- 1. Reconstruír la matrix **X**.
- 2. Para un cliente dado, recomendar productos con mayor peso.
- 3. Para un producto dado, recomendar a los clientes que mayor peso dan al producto.

¿Cómo usarías la Factorización No Negativa de Matrices en problemas de minería de textos?

Métodos no lineales reducción de dimensionalidad

Métodos no lineales

- PCA realiza una transformación lineal a los datos: $z_n = \mathbf{W} x_n$.
- ¿Cómo podemos extenderlo de forma no lineal?
- ¡Apilando múltiples capas!

$$egin{aligned} z_n^{(1)} &= \sigma(\mathbf{W}^{(i)} x_n) \ & \cdots \ z_n^{(i+1)} &= \sigma(\mathbf{W}^{(i)} z_n^{(i)}) \end{aligned}$$

donde σ es una función no lineal (por ejemplo $\sigma(z) = \max\{0,z\}$).

- Es la base de los *autoencoders* (autocodificadores), uno de los bloques principales del *deep learning* (aprendizaje pofundo).
- Ejemplo de autoencoders en Keras

t-distributed Stochastic Neighbor Embedding (tSNE)

- Usaremos técnicas de reducción de dimensionalidad, concretamente aquellas que:
 - 1. Preserven distancias.
 - 2. Preserven topologías.
- TODO 1-2 slides con teoría

Ejemplo práctico

- Base de datos COIL20: imágenes de 20 objetos desde 72 ángulos diferentes.
- Proyección a 2D mediante PCA:

Ejemplo práctico

• Proyección a 2D mediante tSNE:

Referencias

- 1. Randal J. Barnes Matrix Differentiation (and some othe stuff)
- 2. Lee and Seung Algorithms for Non-negative Matrix Factorization
- 3. Tipping and Bishop, Probabilistic principal component analysis