Chapter - 1

Multiple Choice Questions

(Encircle the correct answer choice)

1.	For any complex number $oldsymbol{z}$, it is	always true that $ z $ is equal to
	(a) $ z $ (b) $ -z $ (c)	
2.	If z_1 and z_2 are any two com	
		(b) $ z_1+z_2 \leq z_1 + z_2 $
	(c) $ z_1-z_2 < z_1 - z_2 $	(d) $ z_1+z_2 \geq z_1 + z_2 $
3.	If z_1 and z_2 are two complex nu	mber then
	(a) $\overline{z_1 + z_2} = \overline{z_1 + z_2}$	(b) $\overline{z_1 z_2} = \overline{z}_1 \overline{z}_2$
÷	(c) $ z_1z_2 = z_1 z_2 $	
4.	The numbers which can be put	in the form of $\frac{p}{q}$ $p, q \in \mathbb{Z}, q \neq 0$ are
	(a) Rational numbers	(b) Irrational numbers
	(c) Natural numbers	(d) Integers
5.	The numbers which cannot be	written in the form of $\frac{p}{q}$, $p, q \in \mathbb{Z}$,
	$q \neq 0$ are	
	(a) Rational numbers	
		(d)Whole numbers
6.	A decimal which has only a fini part is called.	te numbers of digits in its decimal
	(a) Terminating decimal	(b) Non-terminating decimal
	(c) Recurring decimal	(d) Non recurring
7.	A decimal in which one or more	digits repeat indefinitely in its
	decimal part is called	
	(a) Terminating decimal	(b) Periodic decimal
	(c) Infinite set	(d) Repeated number
8. .	Every recurring decimal is	
	(a) a rational number	(b) an Irrational number
	(c) a prime integer	(d) a whole number
9.	A non terminating and a non i	recurring decimal is
	(a) a rational number	(b) an Irrational number
	(c) Periodic number	(d) a sequence
10.		
		(c) an Integer (d) a prime integer
11.		
: .	(a) Rational (b) Irrational	(c) Natural number (d) None
12.	$\frac{22}{7}$ is	
	(a) Pational (b) Innotional	(a) on Intag . (d) a whole number

13.	π is the ratio	
٠.	(a) circumference of circle length of diameter	(b) circumference of circle length of Radius
	(c) length of diameter circumference of circle	(d) length of Radius
		circumference of circle
14.	Every Integer is also a	
	(a) a rational number	(b) an Irrational number
	(c) a Natural number	_(d) a decimal number
15 .	If n is a prime number, then	\sqrt{n} is
*	(a) a rational number	(b) an Irrational number
•	(c) an Integer	(d) periodic number
16.	If n is a negative number, th	en \sqrt{n} is
	(a) a rational number	(b)an Irrational number
	(c) only negative integer	(d) a pure Imaginary
17.	The number '0' is	
	(a)a rational number	(b) an integer
	(c) Even number	(d) all of these
18.	The number '0' is	
	(a) a non positive integer	
	(c) Real number (d) whole	number (e) all of these
19.	If $a, b \in \mathbb{R}$ and $(a + b) \in \mathbb{R}$ then	n this property of real numbers is
	(a) Closure property w. r. t.+	(b)Commutative property w. r. t +
	(c) Associative property w. r. t	+ (d) Additive property
20 .	For $a, b \in R$ if $a + b = b + a$, then	
	(a) Closure property w. r. t +	(b) commutative property w. r. t
		+ (d) Distributive property
21.	Multiplicative Inverse of 0 is	
	(a) 0 (b) Any real number	
22 .	If a is any non-zero real numbe	r, then its multiplicative inverse i
•	(a) $-a$ (b) $\frac{1}{a}$	(c) $-\frac{1}{a}$ (d) Not defined
99		
40.	For all $a \in \mathbb{R}$, $a = a$ is pr	(c) Transitive (d) Trichotomy
94	For all $a, b \in \mathbb{R}$, $a = b \Rightarrow b = a$	
44.		
9 E	the contract of the contract o	(c) symmetric (d) Trichotomy
4 0 .	For a , b , $c \in \mathbb{R}$ if $a = b$, $b = c \Rightarrow$	
0 <i>e</i> -	The state of the s	(c) cancellation (d) symmetric
<i>2</i> 0.	For $a, b, c \in R$ $a = b \Rightarrow a + c =$	•
07		(c) cancellation (d) Additive
41,	For $a, b, c \in R$ $a' + c = b + c \Rightarrow c$	<i>i – o</i> , then it is Property

```
28. For a, b, c \in R a = b \Rightarrow ac = bc, then it is ... property
      (a) Commutative (b) Closure (c) Transitive (d) Multiplicative
29. For a, b, c \in R and a > b, b > c \Rightarrow a > c, then it is ... property
      (a)Transitive (b)Trichotomy (c) Cancellation
                                                           (d) Inverse
30. For a, b \in R, if a < b and c > 0, then which is true
      (a) a + c > b + c (b) ac > bc (c) ac < bc
31. For a, b c \in R if a > b and c < 0, then
                                      (c) ac < bc (d) a - b < 0
      (a) a+c < b+c (b) ac > bc
32. If a > 0 and b < 0, then
                        (b) ab < 0 (c) a + b \ge 0 (d) a - b < 0
      (a) ab > 0
33. The set \{1, -1\} is closed w. r. t
                                                               (d) None
      (a) Addition (b) Multiplication
                                             (c) Subtraction
34. The set {1} has closure property w. r. t
                                                               (d) None
     (a) Addition
                       (b) Subtraction
                                             (c) Division
35. a(b+c-d) = ab + ac - ad is ----- property
     (a) Left distributive (b) Right distributive (c) Associative (d) none
36. If a < b then
    (a) a < b (b) \frac{1}{a} < \frac{1}{b} (c) \frac{1}{a} > \frac{1}{b} (d) a - b > 0
37. If \frac{a}{b} = \frac{ka}{bb}, k \neq 0, this rule is called
  (a) Rules of product of fractions (b) Golden rule of fraction
  (c) Rules of Quotient of fractions (d) principle for equality of fraction
38. If n is an even Integer, then (i)^n is equal to
                    (b)-i
                                     (c) \pm 1
                                                      (d) \pm i
39. If n is an odd number then (i) n is equal to
                  (b)-i
                                     (c) \pm 1
                                                       (d) \pm i
     (a) i
40. If n is an integral multiple of 4, then (i) n is equal to
     (a) 1 (b) -1
                                     (c) \pm 1
41. If a + ib = c + id, then it must be true that
     (a) a = c \& b = d
                                    (b) a = -c & b = d
      (c) a = d \& b = c
                                    (d) ad = bc
42. If a + ib is complex number , then its conjugate is
                                      (c) \sqrt{a^2+b^2}
     (a) a - ib
                    (b) -a - ib
                                                         (d) ab
43. If z is any real number, then its conjugate is
     (a) a real number (b)complex number (c) any Integer (d) zero
44. If k is any real number and a + ib is a complex number, then
     (a) |k(a+ib)| = ka+ib
                                      (b) |k(a+ib)| = ka - ikb
     (c) |k(a+ib)| = \sqrt{k^2(a^2+b^2)} (d) None of these
45. The additive identity in set of complex num ers is
    (a) (0, 0)
                    (b) (0, 1)
                                      (c)(1,0)
                                                       (d) (1, 1)
```

46.	The multiplicat	ive Identity of c	omplex numbers is)
•	•	(b) (0, 1)		(d) (1, 1)
47.	The additive In			
			(c) $(-a, -b)$	$(\mathbf{d}) \; (-a, b)$
48.	The multiplicati	ve Inverse of (o		
	(a) $(\frac{a}{a^2+b^2}, \frac{a}{a})$	$\frac{b}{^2+b^2})$	(b) $\left(\frac{a}{a^2+b^2}\right)$,	$\frac{-b}{a^2+b^2})$
,	(c) $(\frac{-a}{a^2+b^2})$,	$\frac{b}{a^2+b^2})$	(d) $(\frac{a}{\sqrt{a^2+b^2}},$	$\frac{-b}{\sqrt{a^2+b^2}}$
49.	(0, 1) is equal t	0		
	(a) 1	(b) <i>i</i>	(c)-i	(d) 0
50 .	$(0, 1)^2$ is equal	~ ,		
	(a) 1	(b) -1	(c) <i>i</i>	(d)-i
51.	$(0, 1)^3$ is equal	to		
	(a) 1	(b) -1	(c) i •	(d)-i
52.	$(0, 1)^4$ is equal	to _		
	(a) 1	(b) –1	(c) i	(d)-i
53.	$(-i)^{19}$ is equal	to		
	(a) i	(b)-i	(c) 1	(d) -1
	<u>-21</u>			
54 .	$(-1)^{\frac{1}{2}}$ is equal	to		
	(a) i	(b) $-i$	(c) 1	(d) -1
55.	(0, 3) (0, 5) is eq	ual to	•	
	(a) 15	(b) - 15	(c) - 8i	(d) $8i$
56 .	The sum of two	conjugate comp	lex numbers is	
	(a) a real numb	er	(b) an imagi	nary number
	(c) real or imag	inary number	(d) not defir	ıed
57.			omplex numbers	
•			(b) an imagi	
			er (d) not defin	ed .
58.	The multiplicative	·	• •	
•	(a) $(\frac{-4}{65}, \frac{-7}{65})$	(b) $(\frac{4}{65}, \frac{-7}{65})$	(c) $(\frac{-4}{\sqrt{65}}, \frac{-7}{\sqrt{65}})$ (d) $(\frac{4}{\sqrt{65}}, \frac{-7}{\sqrt{65}})$
59 .	Factors of $3(x^2 + y^2)$	v²) are		
	(a) $3(x+y)(x-y)$		(b) $3(x + iy)$	(x-iy)
	(c) $\sqrt{3} (x + iy)(x$	– iy)	(d) none	
60 . :	Real part of $\frac{2+}{1}$			
-	(a) 1	(b) 2	(c) -1	(d) $\frac{1}{2}$
61.	Imaginary part o	of $(-2 + 3i)^3$ is eq	qual to	6.TA

62 .	If R is the set of real numbers, then	product R x R is called
	(a) Cartesian plane ((b) Argand diagram
	(c) Ordered pair ((d) real line
	The geometrical plane on which coo	rdinate system has been
.**	specified is called	
	(a) Coordinate plane or real plane	(b) Argand diagram
	(c)Cartesian plane	(d) Real line
64.	If a point A of a coordinate plane co	rresponds to the ordered pai
•	(a, b), then a and b are called.	
	(a) Coordinates of point A	(b) Value of point A
	(c)Abscissa of point A	(d) ordinates of point A
	If point A of the coordinate plane co	rresponds to the ordered pair
	(a, b) then,	
-	(a) a is abscissa of point A	
	(c) a & b are coordinates of point.	· · · · · · · · · · · · · · · · · · ·
66.	The modulus value of a complex number	
		e) origin (d) (x, y)
67.	If $z = x + iy$, then $ z =$	
	(a) $\sqrt{x^2 + y^2}$ (b) $\sqrt{x^2 - y^2}$ (c)	c) $x - iy$ (d) $x^2 + y^2$
68.	If $z_1 = 2 + 3i$, $z_2 = 1 - i$ then $ z_1 z_2 $	=
	(a) $\sqrt{13}$ (b) $\sqrt{26}$ (c)	$\sqrt{15}$ (d) 26
69.	The correct statement of De Mover's	
	$(\cos \theta + i \sin \theta)^n$ is equal to	
		(b) $(\cos n \theta + i \sin n \theta)$
	(c) $(n \cos \theta + i n \sin \theta)$	(d) $(\cos n \theta - i \sin n \theta)$
70.	Polar form of $1 + i\sqrt{3}$ is	
		(b) $2 (\cos 60^{\circ} - i \sin 60^{\circ})$
		(d) $\cos 60^{\circ} + i \sin 60^{\circ}$
71.	Real part of $(x+iy)^n$ is	
	_	(b) $\sin n \theta$
		(d) $r^n \sin n \theta$
72.	Polar form of $(\sqrt{3} + i)$ is	
		π π
	(a) $2(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6})$	(b) $2(\cos \frac{\pi}{6} - i \sin \frac{\pi}{6})$
		<u> </u>
	(c) $2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$	(d) $2(\cos\frac{\pi}{3}-i\sin\frac{\pi}{3})$
		3
73.	If z is a real number, then	
	(a) $z = z$ (b) $z = z $ (c) zz	$= z \qquad \text{(d) } \overline{z} = -z$
74.	If $\overline{z} = 3 - 5i$, then $ z ^2$ is equal to	
٠	(a) 34 (b) $\sqrt{34}$ (c) 1	16 (d) none
	(0)	-c (u) none

(c) $\theta = -\tan^{-1}(xy)$

(b) $\theta = \tan \frac{y}{x}$

(d) $\theta = -\tan \left(\frac{y}{x}\right)$

78. If |x+5i| = 3, then x is equal to

 $(a) \pm 4$

 $(b) \pm 4i$

 $(c) \pm 22i$

(d) none of these

79. Golden rule of fraction is that for $k \neq 0$

(b) $\frac{ab}{b}$

80. The set (1, -1) possesses closure property w.r.t.

(a) addition (b) multiplication (c) division (d) subtraction

81. (-1)³ equals:

(a) 1

(b) = 1

(e) i ·

(d) = i

82. The modulus of Z is:

(a) $\sqrt{a^2-h^2}$

(b) $a^2 + b^2$

(c) $\sqrt{a^2+b^2}$ (d) $\sqrt{a^2-(ib)^2}$

88. 0.1428571428571----- is:

(a) irrational number

(b) rational number

(c) natural number

(d) decimal number

ill equals:

(a) i

(b) 1

(c) = 1

(d) -i

Chapter - 2

Multiple Choice Questions

(Encircle the correct answer choice)

1. If A

B and B

A then which is true

(a) A = B (b) $A \neq B$

(e) $A \cap B = \emptyset$

 $\bullet = \mathsf{EUA}(\mathsf{b})$

If (1 - 1) correspondence can be established in two sets A and B, then it must be true that

(a) A = B

(b) A ~ B

(e) A 门 B = d

(d) A∩B≠ ø

8. The set N of natural numbers and O of odd number are

(a) $N \sim 0$ (b) $N \cap O \neq \emptyset$ (c) $N \cup O = O$

(d) none of these

4.	The set N and Z are		
	(a) Equivalent sets	(b) Equal sets	* a
	(c) Disjoint sets	(d) finite sets	- •
5.	Which of the following is true	9	* * * * * * * * * * * * * * * * * * *
	(a) $N \subset Z$ (b) $Z \subset Q$	(c) $Q \subset R$ (d) all of these	
6.	If a set S has ni elements, the	en number of subsets in S are	
\$	(a) m^2 (b) 2^m	(c) $2^{m \times m}$ (d) m	
7.	If A⊆ B, then		
	(a) B is super set of A	(b) $A \cap B = \emptyset$	
	(c) $B - A = A - B$	(b) $A \cap B = \phi$ (d) $A \cap B \neq \phi$	
	If a set S has no proper subse		
O:	(a) a singleton set		
		(c) not a set	
	If a set S has one proper sub-	· •	
Ø:	(a) a singleton set		
_	(c) an infinite set		
10.		then number of elements in P	/ <u>@</u> \ =
***	(a) n ² (b) 2"		(19)
.11.	The set of all subsets of a set		
**	(a) Power set	(b) Subset	
	(a) Power set (c) Super set	(d) Infinite set	
10	If S = (), then order of set		
±#1		o) Infinite set (d) not def	inod :
19	The Power set of an empty s		mea
	(a) No elements		
	(c) Infinity many elements	(d) Two elements	· .
14.	If $n(S) = m$, then $n(P(S))$	(m) i ma sisiusiins	
7.41	(a) m ³ (b) 2 ^m	(e) guzin (e) m is edinatio	
	The set of all elements unde		
291	(a) Universe of discourse	fa) I juittense	
	(a) Universe of discourse (c) an infinite set	(d) Pinite set	
14	The set of real numbers bety	. (u/ Finite est	
+ V:	(a) Infinite set (b) (0)	(c) finite set (c) a gro	13.00
17.	Tabular form of $\{x \mid x \in \mathbb{Q},$	/c/ mile ser (c) a gro	up
# 11	(a) (b) (b) (t	(e) all Designal (d) (0)	٠
18.	Which of the following is tru	(c) all Rational (d) {2}	
5 B1	(a) a a 1 l a 1 l	(b) A a No.1	
-	(a) a e { a } (b) \$\phi \subseteq \{ a \}	(B) P E (G)	
	(a) b = ((a))	(a) P = { (P)}	•
19.	The set builder form of AUB	is equal to	
	(a) (x x ∈ A ∧ x ∈ B)	(b) (x x ∈ A ∨ x ∈ B)	•
	4 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 5 4 6 1 1 1 1 2 2 3 4 4 1	

```
20. The set builder form of A \cap B is equal to
        (a) \{x \mid x \in A \land x \in B\}
                                                  (b) \{x \mid x \in A \lor x \in B\}
        (c) \{x \mid x \in A \land x \notin B\}
                                                  (d) \{x \mid x \in B \land x \notin A\}
 21. The set builder form of A - B is equal to
        (a) \{x \mid x \in A \land x \in B\}
                                                  (b) \{x \mid x \in A \lor x \in B\}
                                                 (d) \{x \mid x \in B \land x \notin A\}
        (c) \{x \mid x \in A \land x \notin B\}
 22. The set builder form of B - A is equal to
        (a) \{x \mid x \in A \land x \in B\}
                                                  (b) \{x \mid x \in A \lor x \in B\}
       (c) \{x \mid x \in A \land x \notin B\}
                                                  (d) \{x \mid x \in B \land x \notin A\}
23. If A \cap B = \emptyset, then A and B are
       (a) Disjoint sets
                                                  (b) over lapping sets
       (c) Equal sets
                                                  (d) Equivalent sets.
24. If A \cap B \neq \emptyset then A and B are
                                                 (b) over lapping sets
       (a) Disjoint sets
       (c) Equal sets
                                                 (d) Equivalent sets
25. In set builder form Ac is written as
                                               (b) \{x \mid x \in U \lor x \in A\}
       (a) \{x \mid x \in U \land x \in A\}
       (c) \{x \mid x \in U \land x \notin A\}
                                               (d) \{x \mid x \in A \land x \notin U\}
26. If a set consists of those elements of A which are not in B, then the set is
       (a) AUB
                           (b) A[]B
                                               (c) A - B
                                                                   (d) B - A
27. Let A and B are two non empty sets and U be a universal set, then A - B
       (a) A \cap B^c
                           (b) B - A
                                               (c) U
28. If A \cap B \neq \phi i,e sets A and B are disjoint, then n (A \bigcup B) is equal to
       (a) n(A) + n(B)
                                                (b) n (A). n (B)
       (c) n(A) + n(B) - n(A \cap B)
                                                (d) n(A \cap B)
 29. If A \cap B \neq \phi i.e sets A and B are overlapping, then n (A \cup B) is
    equal to
        (a) n(A) + n(B)
                                                (b) n (A) n (B)
        (c) n(A) + n(B) - n(A \cap B)
                                                (d) n(A \cap B)
30. If A \subseteq B, then n (A \cup B) is equal to
       (a) n(A)
                         (b) n(B)
                                               (c) n (A | B)
                                                                       (d) 0
31. If B \subseteq A, then n (A \cup B) is equal to
                       (b) n(\mathbf{B})
       (a) n (A)
                                               (c) n (A[]B)
32. If A \cap B = \emptyset, then n (A \cap B) is equal to
      (a) n (A)
                                               (c) n (A \cap B)
                         (b) n(B)
33. If A \cap B \neq \phi i.e. A and B are overlapping sets, then n (A \cap B)
                                             (b) n(A) + n(B)
       (a) 0
       (c) n (A) n (B)
                                             (d) cannot be determined
34. If A \subseteq B, then n(A \cap B) is equal to
                                                                     (d) n(A). n(B)
       (a) n(A)
                      (b) n(B)
                                        (c) n(A) + n(B)
```

35,	If $B \subseteq A$ then, $n (A \cap B)$ is equ	ial to	
•	(a) $n(A)$ (b) $n(B)$		(d) $n(A)$, $n(B)$
36.	If A and B are Disjoint sets i.e. A		
٠.		(b) n (B)	
	(c) $n(A) + n(B) - n(A \cup B)$		(B)
37.	If A and B are disjoint sets	i,e $A \cap B = \phi$, t	hen $n(B-A)$
	(a) n (A) + n (B)	(b) n (A) n (B)
٠٠.	(c) $n(A) + n(B) - n(A \cup B)$		
38.	If $A \subseteq B$, then $n (A - B)$ is eq	the state of the s	
٠.	(a) n (A) (b) n (B)	(c) n (A∩]	B) (d) 0
	If $B \subseteq A$, then $n (B-A)$ is equ	_	
٠.	(a) n (A) (b) n (B)	(c) n (A∩1	B) (d) 0
	If $B \subseteq A$, $A - B \neq \phi$, then n		
	(a) $n(A)$ (b) $n(B)$		n (B) (d) 0
41.	Which of following is true		
	(a) $AU \phi = A$. (b) $A \cap \phi = \phi$	(c) $A - \phi = A$	(d) All of these
42.	Which of following is true		
	(a) $\phi - A = \phi$	(b) AUA=A	
	(c) $A \cap A = A$	$(d) A - A = \phi$	(e) all of these
43.	Which of following is true		*
7.5	(a) AUU=U (b) A- U= ø	
	(c) $A \cap U = A$ (d)	$) \cup -A = A'$	(e) all of these
44.	If $A \cup B = A$, then		
	(a) $A \subseteq B$ (b) $B \subseteq A$	(c) $A = \phi$	(d) None of these
45.	De Morgan's Laws are		
	(a) $(A \cup B)' = A' \cup B'$	$(b)(A \cup B)' = A$	Y∩B'
	$(c)(A \cup B)' = A' + B'$	(d) (AUB) '=(A	A∩B) ′
46 .	De Morgan's Laws are		
	(a) $(A \cap B)^c = A^c \cap B^c$	$(b)(A \cap B) = A$	A° UB°
	(c) $(A \cap B) = A \cap B \cap A$	$(d) (A \cap B)^c =$	(A∪B) °
47.	The way of drawing conclusi	ons form a limite	d number of *
	observations is called		
~	(a) An Induction	(b) deduction	
10	(c) proposition	(d) postulate	
48.	The way of drawing conclusion true is called	ons form premise	s believed to be
•	true is called (a) an Induction	(b) doduction	
	(c) proposition	(b) deduction	

49.	A statement which is accepted to b to find other conclusion is called.	e true without proof and used
	(a) An Induction (b) deduction
		l) postulate
50 .	0. Logic in which every statement is rega	rded as true or false is called
	(a) Aristotelian logic (b	
	(c) Proposition (d	l) postulate
51.	1. The logic in which there is a scope	·
	is called.	
	(a) Aristotelian logic (b) Non Aristotelian logic
•		l) postulate
52 .	2. A statement which can be decided	
	(a) proposition (b) postulate
	(c) compound proposition (d) truth value
53.	The symbol which is used to denote	e negation of a proposition is
	$(a) \sim \qquad (b) \rightarrow \qquad (c) \land $	(d) v
54.	4. If $p \rightarrow q$ is a conditional, then p is	called
	(a)antecedent (b) conclusion (c) of	consequence (d) conjunction
55 .	5. If $p \rightarrow q$ is a Implication, then q :	is called
	(a) Hypothesis (b) conclusion (c) antecedent (d) converse
56 .	The symbol which is used to combine	ne propositions is called
	(a) Connective	(b)Negation
٠.	(c) operator	(d) compound proposition
57.	7. If p and q be two propositions, than	
	(a) Conjunction	(b) disjunction
	(c) conditional	(d) Bi conditional
58.	3. If p and q be two propositions, then	$p \rightarrow q$ is
		(b) disjunction
		(d) Bi conditional
59 ,		
		(b) disjunction
	* * ·	(d) Bi conditional
60.		
		(b) contradiction
		(d) contingency
61.		
		(b) contradiction
		(d) contingency
62.		
		(b) absurdity
		(d) Equivalence
63.	,	
	(a) Tautology (b) absurdity (c) co	ontingency (d) Equivalence

64.	If P be any proposition then $(p \land \neg p)$ is
	(a) Tautology (b) absurdity
	(c) contingency (d) Equivalence
65.	If $\sim p \rightarrow q$ is a conditional, then its converse is
	(a) $q \rightarrow \neg p$ (b) $p \rightarrow \neg q$ (c) $\neg q \rightarrow p$ (d) $\neg q \rightarrow \neg p$
66.	If $\sim p \rightarrow q$ is a conditional then its inverse is
	(a) $q \rightarrow \sim p$ (b) $p \rightarrow \sim q$ (c) $\sim q \rightarrow p$ (d) $\sim q \rightarrow \sim p$
67.	If $\sim p \rightarrow q$ is a conditional then its contra positive is
	(a) $q \rightarrow \sim p$ (b) $p \rightarrow \sim q$ (c) $\sim q \rightarrow p$ (d) $\sim q \rightarrow \sim p$
68.	If p is a proposition $4 < 5$, q is a proposition $2 + 5 = 8$, than truth
	value of $p \wedge q$ is
	(a) T (b) F (c) Neither T nor F (d) Either T or F
69.	If p is a proposition $4 < 5$, q is a proposition $2 + 5 = 8$, then truth
	value of $p \vee q$ is
	(a) T (b) F (c) Nether T for F (d) Either T or F
70.	If p is a proposition $4 < 5$, q is a proposition $2 + 5 > 8$, then truth
	value of $p \rightarrow q$ is
	(a) T (b) F (c) Nether T for F (d) Either T or F
71.	If p is a proposition $4 < 5$, q is a proposition $2 + 5 \neq 8$, than
	truth value of $p \leftrightarrow q$ is
70	(a) T (b) F (c) Nether T for F (d) Either T or F
12.	For the propositions p and q , $(p \land q) \rightarrow p$ is (a) Tautology (b) Absurdity
	(a) Tautology (b) Absurdity (c) contingency (d) none of these
73 .	For the propositions p and q , $p \rightarrow (p \lor q)$ is
	(a) Tautology (b) Absurdity (c) contingency (d) none of these
74.	The words or symbols which convey the idea of quantity or
	number is called
	(a)Quantifier (b) Negation
	(c) conditional (d) Truth table
75.	
	consideration is called
	(a)Universal quantifier (b) Existential Quantifier
	(c) Universal set (d) Non of these
76.	The logical form of $(A \cap B)' = A' \cup B'$ is
	(a) $\sim (p \wedge q) = \sim p \wedge \sim q$ (b) $\sim (p \wedge q) = \sim p \vee \sim q$
	(c) $\sim (p \vee q) = \sim p \vee \sim q$ (d) $\sim (p \vee q) = \sim p \wedge \sim q$
77.	The logical form of $(A \cup B)^c = A^c \cap B^c$ is
•	(a) $\sim (p \wedge q) = \sim p \wedge \sim q$ (b) $\sim (p \wedge q) = \sim p \vee \sim q$
	(c) $\sim (p \vee q) = \sim p \vee \sim q$ (d) $\sim (p \vee q) = \sim p \wedge \sim q$

```
78. If p and q are two propositions, then truth set of p \vee q is
        (a) P \cap Q
                    (b) P \bigcup Q
                                         (c) P-Q
                                                             (d) Q - P
 79. If p and q are two propositions then truth set of p \wedge q is
        (a) P \cap Q
                      (b) P \bigcup Q
                                          (c) P - Q
80. If p and q be two propositions, then truth set of p \rightarrow q is
      (a) P' \bigcup Q
                     (b) P'∩Q
                                        (c) P = Q
                                                         (d) P \cap Q'
81. Truth set of p \leftrightarrow q is
     (a) P'∩ Q'
                                        (c) P = Q
                      (b) P'U Q'
                                                         (d) P U Q
82. If p is a proposition, then truth set of \sim p is
       (a) P'
                       (b) U
                                        (c) ø
                                                         (d) None
83. Truth set of a tautology is
       (a) Universal set (b) \phi
                                        (c) True
                                                         (d) False
84. Truth set of a contradiction is
       (a) Universal set (b) \phi
                                        (c) True
                                                         (d) False
85. Logical form of AU(B\capC)= (AUB)\cap (AUB) is
                                           (b) p \lor (q \land r) = (p \lor q) \land (p \lor r)
       (a) p \lor (q \land r) = (p \lor q) \land r
       (e) p \land (q \lor r) = (p \land q) \lor (p \land r) (d) p \land (q \lor r) = (p \land q) \lor r
86. If set A has 2 elements and B has 4 elements, then number of
    elements in A \times B is
                                              (d) None of These
                (b) 8
       (a) 6
                              (c)16
87. Every subset of Cartesian product A × B is called
                           (b) Function
       (a) Relation
                                            (c) Domain
                                                             (d) Range
88. The empty set { } being the subset of A×B is
       (a) Binary relation.
                                          (b) Function
                                          (d) None of these
       (c) Ordered pair
89. If f: A \to B be a function, then it is an into function if
       (a) Range = B
                                         (b) Range \subset B
       (c)Range is not repeated
                                          (d)Domain \neq A
90. A function f: A \to B is called an on to if
       (a) Domain \subset A
                                          (b) Range \subset B
                                          (d) Domain ~ Range
       (c) Range = B
91. A function f: A \rightarrow B is (1-1) if
     (a) Domain ⊂ A
                                        (b) Range \subset B
      (c) Domain = Range
                                          (d) Range is not repeated
92. A function f: A \rightarrow B is (1-1) and onto if
       (a) Domain = A
                                 (b) Range \subseteq B
       (c) Domain = Range
                              (d)Range = B and Range is not repeated
     A (1-1) function is also called ...... Function
      (a) Injective
                       (b) Surjective
                                           (c) Bijective
                                                            (d) Inverse
     An onto function is also called ...... Function
       (a) Injective
                      (b) Surjective
                                          (c) Bijective
                                                             (d) Inverse
```

95.	A $(1-1)$ and on to function is also called Function
	(a) Injective (b) Surjective (c) Bijective (d) Inverse
96.	Inverse of a function Exists only if it is
	(a) Injective (b) Bijective (c) Surjective (d) all of these
97.	The function $f = \{(x, y) \mid y = mx + c\}, m \& c \text{ are real number is }$
	(a) Linear (b) Quadratic (c) A circle (d) A point
98.	
	(a) Linear (b) Quadratic (c) A circle (d) A point
99 .	Inverse of line is
	(a) a line (b) a parabola (c) a point (d) not defined
100.	If $y = \sqrt{x}$, $x \ge 0$ is a function, then its inverse is
777	(a) a line (b) a parabola (c) a point (d) not a function
101.	The function $f = \{(x, y) \mid y = x\}$ is
	(a) Identity function (b) Null function
ŕ	(a) Identity function (b) Null function (c) not a function (d) similar function
102.	If a set A has 2 elements and B has 3 elements, then different
	relations in A× B are
	(a) 5 (b) 6 (c) 8 (d) 64
103.	If a set A has 2 elements and B has 3 elements, then different
	function in A× B are
	(a) 6 (b) 8 (c) 9 (d) not defined
104.	If a set A has m elements and B has n elements, than relations in A× E
	(a) $m \times n$ (b) $2^{m \times n}$ (c) $m + n$ (d) $(m \times n)^2$
105.	If a set S has n elements, then different relations is A
	(a) $2n$ (b) 2^{2n} (c) n^2 (d) 2^n
106.	The Inverse function of $\{(x, y) \mid y = m \ x + c\}$ is
•	(a) $\{(y, x) \mid x = my + c\}$ (b) $\{(x, y) \mid x = my + c\}$
	(c) $\{(y, x) \mid y = mx\}$ (d) not a function
107.	An operation which is performed on a single number is called
•	(a)Unary operation (b)Binary operation
	(c)Relation (d) function
108.	Squaring a number is
	(a) unary operation (b) Binary operation
	(c) relation (d) function
109.	Which of the following is not a binary operation
	and the contract of the contra
4 4 4	
110.	For a non empty set G , a function from $G \times G \to G$ is called
	(a) Binary operation (b) Unary operation
	(c) Groupied (d) Binary relation

```
111. Any subset of G \times G is called
        (a) Binary operation
                                            (b)relation
       (c)function
                                            (d)Cartesian product
112. The set \{1, -1, i, -i\} is closed w.r. t
        (a) +
                     (b) -
113. The set of odd number is not closed w. r. t
                      (b) \times
114. Let S be a not empty set and * is binary operation in it. If
       closure property holds in S, then S is
        (a) Groupied
                         (b) Semi group
                                           (c) Monoid
                                                          (d) Group
115. If N is set of natural number, then (N, +) is
        (a) Groupied (b) Semi group
                                           (c) Monoid
                                                           (d) Group
       If W is the set of whole numbers, than (W, +) is
116.
                                           (c) Monoid
        (a) Groupied (b) Semi group
                                                        (d) Group
117. If N is set of natural number, then (N, \times) or (N, \cdot) is
        (a) Groupied
                        (b) Semi group
                                           (c) Monoid
                                                          (d) Group
118. For a non empty sets S, (P(S), \cap) is
        (a) Groupied
                        (b) Semi group
                                           (c) Monoid
                                                          (d) Group
119. For a non empty sets S, (P(S), \bigcup) is
        (a) Groupied
                        (b) Semi group (c) Monoid
                                                           (d) Group
120. If Z is set of Integers, than (Z, ·) is
        (a) Groupied
                        (b) Semi group (c) Monoid
                                                           (d) Group
121. If R is the set of real numbers, then (R, +) is
                       (b) Semi group
      (a) Groupied
                                          (c) Monoid
                                                          (d) Group
122. If Q is the set of rational numbers, than (Q, \cdot)
        (a) Groupied (b) Semi group (c) Monoid
                                                          (d) Group
123. If S is non empty set. Then identity element in P(S), w.r. t \cap
                       (b) S
                                   (c) \{ \phi \}
        (a) { }
                                                     (d) does not exist
124. If S is non empty set. Than identity element in P(S), w.r. t U
                      (b) S
                                    (c) \{ \phi \}
                                                     (d) does not exist
       (a) { }
125. The set of non-zero real numbers w.r. t multiplication is
       (a) Groupied (b) Semi group
                                         (c) Monoied
                                                          (d) Group
126. Identity element in (C, +) is
       (a) (0, 0)
                       (b) (0, 1)
                                          (c) (1,0)
                                                        (d) (1,1)
127. Identity element in (C, \cdot) is
       (a) (0, 0)
                       (b) (0, 1)
                                         (c) (1, 0)
                                                        (d) (1, 1)
128. The set of first elements of ordered pairs in a relation is called its:
                                                   (d) relation
    (a) domain
                   (b) range
                                  (c) co-domain
129.
      If A and B are disjoint sets then:
       (a) A \cup B = \emptyset (b) A \cap B = \emptyset (c) A \subset B
                                                     (d) A - B = \phi
       If S = \{1, 2, 3, 4, 5, 6\} then n(S) equals:
       (a) 2^6
                       (b) 6
                                        (c) 6!
                                                     (d) - 6
```

131.	If $A = \phi$, then $P(A)$ is:
	(a) Empty set (b) $\{0\}$ (c) $\{\phi\}$ (d) none of these
120	The graph of linear function is:
104,	(a) circle (b) straight line (c) parabola (d) triangle
133	A system of linear equations involves at least equation(s):
T.00.	(a) 1 (b) 2 (c) 3 (d) 4
134.	If $A \subseteq B$, then $A \cap B$ is equal to:
1011	(a) ϕ (b) A (c) B (d) -A
105	
199.	If $A = \{1, 2, 3\}$, $B = \{3, 4\}$, then $A - B$ is:
126	(a) {4} (b) {1, 2} (c) {1, 4} (d) {3} The number of elements in a set B is 4, the number of elements in P(B)
100.	(a) 16 (b) 12 (c) 8 (d) 4
137	The number of all subsets of a set having three elements is:
TO ((a) 4 (b) 6 (c) 8 (d) 10
138	Set of all possible sub sets of a set S is called:
100.	(a) equivalent set (b) empty set (c) power set (d) sub set
139	Set of integers is a group w.r.t:
1001	(a) addition (b) multiplication (c) subtraction (d) division
140.	f is function from A to B. Domain of f is equal to:
,•	(a) any subset of A (b) $A \times B$ (c) A (d) B
141.	Every function is a:
	(a) relation (b) inverse function
	(c) one to one (d) none of these
142.	Inverse of any element of a group is:
	(a) not unique (b) unique
	(c) has many inverses (d) none of these
r	
Cha	pter - 3 Multiple Choice Questions
,	(Encircle the correct answer choice)
•	
1. A	rectangular array of numbers enclosed by a pair of brackets is called a
	(a) matrix (b) Row (c) column (d) determinant
2. Th	e horizontal lines of numbers in a matrix are called
	(a) Rows (b) column (c) column matrix (d) Row matrix
	e vertical lines of numbers in a matrix are called
	(a) Rows (b) columns (c) column matrix (d) Row matrix
	a matrix A has m rows and n column, then order of A is
	(a) $m \times n$ (b) $n \times m$ (c) $m + n$ (d) m^n
	e element a_{ij} of any matrix A is present in
	(a) i^{th} row and j^{th} column (b) i^{th} column and j^{th} row
•	(c) $(i + j)$ th row and column (d) $(i - j)$ th row and column

```
6. Any matrix A is called real if all ai are
      (a) real numbers (b) Imaginary numbers
                                                    (c) 0 (d) 1
 7. If any matrix A has only one row, then it is called
      (a) row matrix
                                (b)column matrix
      (c)Square matrix
                                  (d)Rectangular matrix
8. If any matrix A has only one column, then it is called
                                 · (b) column matrix
      (a) row matrix
    (c) Square matrix
                                 (d) Rectangular matrix
9. If a matrix A has same numbers of rows and column, then A is called
      (a) row matrix
                                  (b)column matrix
      (c)Square matrix
                                  (d) Rectangular matrix
10. If any matrix A has different numbers of rows and column, then A is
      (a) row matrix
                                  (b) column matrix
     (c) Square matrix
                                  (d) Rectangular matrix
11. Any matrix of order m \times 1 is called
     (a) row matrix
                                  (b) column matrix
     (c) Square matrix
                                  (d) Rectangular matrix
12. Any matrix of order 1 \times n is called
     (a) row matrix
                                  (b) column matrix
     (c) Square matrix
                                  (d) Rectangular matrix
13. For the square matrix A = [a_{ij}]_{n \times n}, the elements
       a11, a22, a33 ann are
    (a) principal diagonal or leading diagonal (b) Secondary diagonal
      (c) central row
                                              (d) central column
14. For the matrix A = [a_{ij}]_{n \times n}, the elements
       J_{1n}, a_{2n-1}, a_{3n-2}, a_{4n-3},... a_{n-1} form
      (a) Main diagonal
                                   (b) Leading diagonal
      (c) principal diagonal (d) Secondary diagonal
15. For the square matrix A = \{a_{ij}\}. If all a_{ij} = 0, i \neq j and at least one
       \alpha_{ij} \neq 0, i = j, than A is called
       (a) Diagonal matrix
                                    (b) Scalar matrix
       (c) Identity matrix
                                    (d) Null matrix
16. For the square matrix A = [a_{ij}]. If all a_{ij} = 0, i \neq j and all a_{ij} = k.
       (non zero) for i=j, then A is called
       (a) Diagonal matrix (b) Scalar matrix
       (c) Identity matrix
                                   (d) Null matrix
17. If all off diagonal elements are zeros and at least one of the
   leading diagonal is non zero, then matrix is called
       (a) Diagonal matrix
                                    (b) Scalar matrix
      (c) Identity matrix
                                 (d) Null matrix
18. The matrix [7] is
       (a) square matrix
                                  (b) Row matrix
       (c)column matrix
                                   (d) all of these
```

19.	If A is a matrix of order $m \times n$, than the matrix of order $n \times n$ is called
	(a) Transpose of A (b) Inverse of A
	(c)Main diagonal of A (d) Echelon form of A
20.	Two matrix A and B are said to be conformable for addition if
	(a)number of columns in A= number of rows in B
٠,	(b) number of rows in B = number of columns in A
	(c) rows of $A = \text{columns of } B$ (d) order of $A = \text{order of } B$
21.	If $[a_{ij}] = A$, and $[b_{ij}] = B$, then $A = B$ if and only if
	(a) order of A = order of B (b) $a_{ij} = b_{ij}$, $i = j$ only
	(c) $a_{ij} = b_{ij}$ ($i \neq j$ only) (d) $a_{ij} = b_{ij}$ for all $i \& j$
22.	For any two matrices A and B. (A + B)t is equal to
	(a) $A^{t} + B^{t}$ (b) $(A+B)$ (c) $A^{t} B^{t}$ (d) $B^{t} A^{t}$
23.	(AB) tis equal to
• •	(a) $B^t A^t$ (b) $A^t B^t$ (c) $A B$ (d) $(B A)^t$
24.	$(k, AB)^{t} =$
	(a) $\mathbf{k} \mathbf{A}^{t} \mathbf{B}^{t}$ (b) $\mathbf{k} \mathbf{B}^{t} \mathbf{A}^{t}$ (c) $\mathbf{k}(\mathbf{B}\mathbf{A})^{t}$ (d) $\mathbf{k}^{t} (\mathbf{A}\mathbf{B})$
25.	Let A be any matrix and n is an Integer, then $A + A + A + + t$
	n terms
	(a) A^n (b) $n A$ (c) A^{n-1} (d) $(n+1) A$
26 .	Two matrix A and B are conformable for multiplication AB if
	(a) number of columns in $A = number of rows in B$
•	(b) number of rows in $B = number of columns in A$
	(c) number of rows in A= number of rows in B
	(d) number of columns in $A = number of columns in B$
27 .	If A is a matrix of order m \times n and B of order n \times q, then order o
	AB is
	(a) $m \times q$ (b) $n \times n$ (c) $m \times m$ (d) $q \times m$
28 .	If A is of order 2×3 and B of order 4×2, then order of AB
	(a) 2×2 (b) 3×4 (c) 4×3 (d) Non
29 .	If A is of order 2×3 and B of order 4×2, then order of BA
	(a) 2×2 (b) 3×4 (c) 4×3 (d) Non
30.	If AB = BA, then which is true
	(a) A and B are multiplicative inverse of each other
	(b) One of A or B is null matrix
	(c) One of A or B is identity matrix (d) all of these
31.	For any square matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $ A $ is equal to (a) $ab - cd$ (b) $ad - bc$ (c) $ac - bd$ (d) $bc - ad$ If $A = \begin{bmatrix} -7 \end{bmatrix}$, than $ A $ is equal to
	(a) $ab-cd$ (b) $ad-bc$ (c) $ac-bd$ (d) $bc-ad$
32 .	If $A = [-7]$, than $ A $ is equal to
1.5	(a) 7 (b) 7 (a) (b) 7

88.	8. If A is any square matrix of $a = a + b = a + b$	· ·	· ·
84.	4. If A is any square matrix and A (a) Additive Inverse of A (c) Transpose of A	$AB = BA = I \cdot th$	en B is called
35.	5. If A+B=B+A=O, then B is (a) Additive Inverse of A (c) Transpose of A	called	
36.	3. If adjoint of $A = \begin{bmatrix} -1 & -2 \\ 3 & 4 \end{bmatrix}$	Then matrix	
·	(a) $\begin{bmatrix} -1 & -2 \\ 4 & 3 \end{bmatrix}$ (b) $\begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}$	(e) $\begin{bmatrix} -4 & 3 \\ -2 & 1 \end{bmatrix}$	$ (d) \begin{bmatrix} 4 & 2 \\ -3 & -1 \end{bmatrix} $
37 .	7. If A is a non-singular matrix, t		1
	(a) $\frac{1}{ A }$ Adj. A (b) $\frac{-1}{ A }$ adj. A	(c) adj.A	(d) A adj. A
88.	3. If $AX = B$, then X is equal to (a) $A^{-1}B$ (b) $\frac{B}{A}$	(c) B A=1	(d) all of these
40.). Inverse of a matrix exist if it is (a)Singular	(b)Non-singula (d)Rectangula hold in matrix e (c)Closure	ir r matrix multiplication (d) None
	obtained by deleting i th row and a_{ij} is equal to (a) M_{ij} (b) $(-1)^{i+j} M_{ij}$	j th column of A	. Then Minor of
	l. Let A= [aij] be a square matrix sobtained by deleting in row and of aij is equal to	and M_{ij} is the de	terminant
• •	(a) M_{ij} (b) $(-1)^{i*j}M_{ij}$ I. For any square matrix A. It is a		
	(A) $A=A^1$ (b) $=A=\overline{A}$	(c) A = A	$(d) A^{-1} = \frac{1}{A}$
44.	For any triangular matrix A, A (a)Product of leading diagonal eleme (b)Sum of leading diagonal eleme (c)Product of secondary diagonal	ments ents	

45. P	. If all entries of a square matrix then value of $ kA $ is equal to		
	. (a) k A (b) k A	(c) A	$(d) k^3 A $
46.	. For any non singular matrix A	I, It is true that	
	(a) $A^{-1} = A$ (b) $ A = A$	(c) $(A^{-1})^t = (A^t)^{-1}$)= (d) Non
47.	. For any non singular matrix A,		
	(a) $(A^{-1})^{-1} = A$ (b) $(A^{t})^{t} = A$	(c) $\overline{A} = A$	(d) all of these
48.	For any non-singular Matric		
	(a) $(AB)^{-1} = B^{-1}A^{-1}$	(b) (AB) =B : A	1
	(a) $(AB)^{-1} = B^{-1}A^{-1}$ (c) $AB = BA$	(d) all of these	
49.	A square matrix $A = [a_{ij}]$ for which		
	(a) Upper Triangular	(b) lower Trian	gular
•		(d) Hermition	Swies
80.	A square matrix $A = [aij]$ for which		han A leasled
901		(b) lower Trian	•
	(c) Symmetric	·	å miar.
Z1	A triangular matrix is always a	(d) Hermition	
0 1.			4
; .		(b) Scalar matr	11X
		(d) all of these	
97.	Any square matrix A is called		/ IX A A = 1 T
.	(a) $ A = 0$ (b) $ A \neq 0$		(a) $AA^{-1} = 1$
99.	A non empty set F is called fie		Year of the second
	(a) F is a an abelian group und		
	(b) F- (0) is an abelian group un		
	(c) Right distributive property		all of these
54.	Which of the following sets is a fi		
	• • • • • • • • • • • • • • • • • • • •		all of these
55.	Which of the following sets is not	a field	
	(a) R (b) Q	(c) C (d)	Z
56.	The system of linear Equations	involving the se	me variables
	are equivalent if they have		
((a)Number of equations = number	of variables (b)	same solutions
((c)different solutions	(d)infinity	many solutions
	A square matrix A is symmet		
	(a) $A^{l} = A$ (b) $A^{l} = A$		1) (
AS.	A square matrix A is skew sy		#/ \12 / — — F%
- U	for At - A Alt At - A		4. / A., A
# A	(a) $A^{i} = A$ (b) $A^{i} = A$	$(6) (A)^{n} \equiv A (6)$	1):(A)! =.= A;
98.	A COMMON MACHINE A 10 TAXABLE		
	(a) A = A (b) A = A	$(6) (\overline{A})^{!} \equiv A (6)$	$(\overline{A})^{\sharp} = A$
60.	A square matrix, Allegrew. He	rmitian if	
	(a) A! ■ A (b) A! ■ = A	(a) (A) = A (a	1) (A) = A

61.	The main diagonal elements of a s	kew symmetric matrix must be
	(a)1	(b)0
-	(c) any non zero number	(d) any complex number
62.	The main diagonal elements of a s	kew Hermitian matrix must be
•	(a) 1	(b) 0
•	(c) any non zero number	(d) any complex number
63,	In echelon form of a matrix, the	e first non zero entry is called
	(a) leading entry	(b) first entry
•	(c) Preceding entry	(d)Diagonal entry
64.	The additive inverse of a matri	x exist only if it is
٠	(a) singular	(b) non singular
	(c)null matrix	(d) any matrix of order $m \times n$
65 .	The multiplicative inverse of a	matrix exist only if it is
	(a) singular	(b) non singular
•	(c)null matrix	(d) any matrix of order $m \times n$
	[a b] 2 3	
66.	If $\begin{vmatrix} a & b \\ 0 & 7 \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ 1 & -9 \end{vmatrix}$ then	
	(a) $a = -3$ (b) $a = b$	(c) $a = \frac{1}{a}$ (d) $a = \frac{-1}{a}$
	(a) a = 0	(c) $a - 3$ (a) $a - 3$
67.	The number of non zero rows in ech	
	(a) order of a matrix	(b)Rank of a matrix
	(c)leading	(d)leading row
68.	If A is any square matrix then	A+A ^t is a
	(a) Symmetric	(b)skew symmetric
	(c)Hermitian	(d)skew hermitian
69.	If A is any square matrix then	$A - A^t$ is a
	(a) Symmetric	(b)skew symmetric
	(c)Hermitian	(d)skew hermitian
70.	If A is any square matrix then	$A + (\overline{A})^{t}$ is a
		(b)skew symmetric
		(d)skew hermitian
	If A is any square matrix then	
	(a) Symmetric	
		(b)skew symmetric (d)skew hermitian
	If A is symmetric (skew symmetric)	
	(a) singular	
		(b) non-singular
	(c) Symmetric	(d) Anti symmetric
	In a homogeneous system of linear	
1.5	a)Trivial solution	(b)non trivial solution
	c)exact solution	(d)Non
74	If $AX = O$, then $X = \begin{pmatrix} b & C \\ c & C \end{pmatrix}$	(c) A=1 (d) not possible
	(0) [(0) []	ini a i ini mat magama

75.	If a system of linear equation called a/an	s have no solution at all, then it is
	(a) Consistent system	(b) Inconsistent system
	(c) Trivial system	(d) Non Trivial system
76.		
	does not possess the unique so	
		± 4 (d) any real number
77		$\lambda y = 0$ has non trivial solution,
	then λ is	or in the second of the second
		± 4 (d) any real number
		(u) any real number
78.	If $\begin{bmatrix} 2x+3 & 1 \\ -3 & 4 \end{bmatrix} = \begin{bmatrix} -1+x & 1 \\ -3 & 4 \end{bmatrix}$,	then x =
	-3 4 -3 4	•
	(a) 3 (b) -3 (c)	
		17
<u> </u>		
79.	The cofactor A_{22} of $\begin{bmatrix} 1 & 2 & 4 \\ -1 & 2 & 5 \\ 0 & 1 & -1 \end{bmatrix}$	is
	0 1 -	1
	(a) 0 (b) -1 (c)	
90	If $A = [a_{ij}]_{3 \times 3}$, then $I_3 A$ is e	· · · · · · · · · · · · · · · · · · ·
00.		-
Q1	(a) A (b) A ⁻¹ (c) Not If all the entries of a row of a s	
		quare maurix A are zero , men
	A equals:	0 (d) - A
	(a) 1 (b) -1 (c)	$\mathbf{O} = \mathbf{A}$
82.	If $\begin{vmatrix} x & 4 \\ 5 & 10 \end{vmatrix} = 0 \Rightarrow x \text{ equals}$:	
	5 10	
	(a) 2 (b) 4 (c)	6 (d) 8
88.	The inverse of unit matrix is:	
•		kew symmetric (d) rectangular
84.	Transpose of a row matrix is:	(4) 100141-
	(a) diagonal matrix	(b) zero matrix
	(c) column matrix	(d) scalar matrix
	AND MONATORING TRANSPORTERS	AND MARKET STREAMSTER
•		1
-	4	

Chapter - 4

Multiple Choice Questions

(Encircle the correct answer choice)

1. The equation $ax^2 + bx + 9 \equiv 0$ will be quadratic if

(a) $a \equiv 0$, $b \neq 0$ (b) $a \neq 0$ (c) $a \equiv b \equiv 0$ (d) $b \equiv any real number$ 2. solution set of the equation $x^2 = 4x + 4 \equiv 0$ is

(a) $\{2, =2\}$ (b) $\{2\}$ (c) $\{=2\}$ (d) $\{4, =4\}$

3. The quadratic formula for solving the	
(a) $x = -b \pm \frac{\sqrt{b^2 - 4ac}}{2a}$	$(b) x = -b \pm \sqrt{\frac{b^2 - 4ac}{2a}}$
	$(d) x = b \pm \sqrt{\frac{b^2 + 4ac}{2a}}$
4. To convert $ax^{2n} + bx^n + c = 0$ ($a \neq a$	0) into quadratic form, the
correct substitution	
(a) $y = x^n$ (b) $y = x^{2n}$	(c) $y = x^{-n}$ (d) $y = 1/x$
5. The equation in which variable qua	ntity occurs in exponent is called
(a) Exponentional function(c) Reciprocal equation	(b) Exponent ional equation
(c) Reciprocal equation	(d) quadratic equation
6. To convert $4^{1-x} + 4^{1-x} = 10$ into	quadratic, the substitution is
(a) $y = 4^{1-x}$ (b) $y = 4^{1+x}$	(c) $y = 4^x$ (d) $y = 4^{-x}$
7. The equation which remains uncha	anged if x is replaced by $\frac{1}{x}$, the
it is called	
(a) Exponentional function	
(c) Reciprocal equation	
8. The equations involving radical expre	
	(b) radical equations
(c) Quadratic equations	
9. The roots which satisfy radical fre	e equation but not radical
equation are called	
(a) Extraneous roots	(b) radical roots
(c)original roots	(d) exact roots
10. The cube roots of unity are	
(a) 1, $\frac{-1+i\sqrt{3}}{2}$, $\frac{1+i\sqrt{3}}{2}$	(b) 1, $\frac{-1-i\sqrt{3}}{2}$, $\frac{1-i\sqrt{3}}{2}$
	2 Z
(c) $1, \frac{-1+i\sqrt{3}}{2}, \frac{-1-i\sqrt{3}}{2}$	(d) $1, \frac{-1-i\sqrt{3}}{2}, \frac{1-i\sqrt{3}}{2}$
2 , 2	2 , 2
11. The cube roots of −1 are	
(a) -1 , $\frac{-1+i\sqrt{3}}{2}$, $\frac{1-i\sqrt{3}}{2}$	(b) -1 , $\frac{-1-i\sqrt{3}}{2}$, $\frac{1+i\sqrt{3}}{2}$
(c) $-1, \frac{1+i\sqrt{3}}{2}, \frac{1-i\sqrt{3}}{2}$	(d) -1 , $\frac{-1+i\sqrt{3}}{2}$, $\frac{-1+i\sqrt{3}}{2}$
12. Sum of all cube roots of 64, is	
(a) 0 (b) 1	(c) 64 (d) -64
13. Product of all cube roots of -1	
(a) 0 (b) 1	(c) 1 (d) Non

```
14. 16\omega^4 + 16\omega^8 =
                                                          (d) -1
                    (b) -16
       (a) 0
                                      (c) 16
 15. (-1+\sqrt{-3})^5 + (-1-\sqrt{-3})^5 is equal to
     (a) 0
                       (b) 32
                                     (c) -32
                                                          (d) - 1
 16. The sum of all four forth roots of unity is
      (a) unity
                      - (b) 0 -
                                      (c) -1
                                                         (d) Non
 17. The product of all four forth roots of unity is
       (a) unity
                       (b) 0
                                    (c) -1
                                                         (d) Non
18. The sum of all four forth roots are 16 is
       (a) 16
                       (b) -16
                                    (c) 0
                                                         (d) 1
19. The Product of all four forth roots of 81 is
       (a) -81
                       (b) 81
                                     (c) \cdot 0
                                                      (d) 1
20. The complex cube roots of unity are ..... each other
       (a) Additive inverse of
                                        (b) Equal to each other
       (c) Conjugate of each other (d) Non of these
21. The complex cube roots of unity are ..... each other
      (a) Multiplicative inverse of each other (b) Reciprocal of each other
       (c) Square of each other
                                            (d) all of these
22. The complex forth roots of unity are ... each other
      (a) Additive inverse (b) equal to (c) square of (d) Non
23. If sum of all cube roots unity is equal to x^2 + 1, than x is equal to
      (a)-1
                      (b) 0
                                     (c) \pm i
24. If product of all cube roots of unity is equal to p^2+1, then p is
      (a) -1
                      (b) 0.
                                      (c) \pm i
                                                     (d) 1
25. The complex forth roots of unity are .... each other
      (a) Multiplicative Inverse
                                     (b) complex conjugate
      (c)Additive inverse
                                      (d) all of these
26. The expression a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 a_n \neq 0 is a polynomial
   of degree n, if n is any
       (a) Integer
                                       (b) non-negative integer
       (c) Positive Integer
                                     (d) Real number
27. The expression x^2 + \frac{1}{x} - 3 is
       (a) polynomial of degree 2
                                    (b) polynomial of degree 3
       (c) polynomial of degree 1
                                      (d) not a polynomial
28. If f(x) is divided by x-a; then Divided = (Divisor) (....) + Remainder
       (a) Divisor
                     (b) Dividend
                                      (c) Quotient (d) f(a)
    If f(x) is divided by x-a, then by remainder theorem, Remainder is
       (a) f(a)
                   (b) f(-a) (c) f(a) + R
                                                        (d) x - a = R
30. The polynomial (x-a) is a factor of f(x) if and only if
       (a) f(a) = 0 (b) f(a) = R (c) quotient = R (d) x = -a
```

-		
31.	$x-2$ is a factor of x^2-kx	+4, if k is
• . :	(a) 2 (b) 4	(c) $k = 8$ (d) -4
32.	If $x = -2$ is a root of $kx^4 - 1$	
	(a) 2 (b) -2	(c) 1 $(d) - 1$
33.	$x + a$ is a factor of $x^n + a^n$	when n is
	(a) any integer	
		(d) any real number
34.	$x-a$ is a factor of x^n-a^n , if	n is
•	(a) any integer (c) any odd integer	(b) any positive integer
	(c) any odd integer	(d) any real number
35.	Sum of roots of $ax^2 - bx - c =$	$= 0 \text{ is } (a \neq 0)$
	(a) $\frac{b}{a}$ (b) $\frac{-b}{a}$	(c) $\frac{c}{a}$ (d) $\frac{-c}{a}$
	u u	a a
36.	Product of $ax^2 - bx - c = 0$ is	
•	(a) $\frac{b}{a}$ (b) $\frac{-b}{a}$	(c) $\frac{c}{a}$ (d) $\frac{-c}{a}$
	u u	•
37.	sum of roots of any quadra	
	(a) $\frac{coefficient \ of \ x^2}{coefficient \ of \ x}$	(b) coefficient of x
1.7	coefficient of x	coefficient of x2
	(c) $-\frac{coeffiant\ of\ x}{coeffciant\ of\ x^2}$	(d) $\frac{\text{constant term}}{\text{coefficient of } x^2}$
38.	Product of roots of any qua	
	(a) coefficient of x^2	(b) coefficient of x
	(a) $\frac{coefficient\ of\ x^2}{coefficient\ of\ x}$	(b) $\frac{\text{coefficient of } x}{\text{coefficient of } x^2}$
. •	·	
	(c) $-\frac{coeffiant \ of \ x}{coeffciant \ of \ x^2}$	(d) $\frac{\text{constant term}}{\text{coefficient of } x^2}$
39.	If sum of roots of $7x^2 + px =$	
4.0	(a) 7 (b) 49	(c) -49 (d) q
40.	If product of roots of $7x^2 - y$	
4-4	(a) 7 (b) -7	(c) P (d) 49
41.	If 2 and -5 are roots of a que	dratic equation , then equation is
	(a) $x^2 - 3x - 10 = 0$	$(b) x^2 - 3x + 10 = 0$
40	$(c) x^{2} + 3x = 10 = 0.$	(d) $x^2 + 3x + 10 = 0$ unt of roots of a quadratic equation
42.	it o and P are sum and prod	not of roots of a quadratic equation.
	unen equation is	(b) and + Cont D = 0
	(e) $x^2 + Sx - P = 0$	(b) $x^{3} + Sx + P = 0$ (d) $x^{3} = Sx = P = 0$
	(E) M. HM. I A	$(a) x = 3x = P = 0$ $(a) x = 2x + A = 0$, then value of $\alpha + \beta$
₹¥:		
	(a) $\frac{2}{3}$ (b) $\frac{-2}{3}$	(e) $\frac{1}{2}$ (d) $\frac{1}{2}$
•	7 3 7 3	g g

```
44. If p and q are the roots of 8x^2 - 3x - 16 = 0 then pq is equal to
         (a) 2
                           (b) -2
                                                           (d) None
                                             (c) p + q
 45. If ax^2 + bx + c = 0, then discriminant is
                         (b) \sqrt{b^2 + 4ac}
         (a) \sqrt{b^2 - 4ac}
                                             (c) b^2 - 4ac
                                                             (d) b^2 + 4ac
 46. If roots of ax^2 + bx + c = 0, (a \ne 0) are real , then
        (a) b^2 - 4ac \ge 0
                                              (b) b^2 - 4ac < 0
        (c) b^2 - 4ac \neq 0
                                              (d) b^2 - 4ac \le 0
 47. The roots of ax^2 + bx + c = 0 are imaginary, if
        (a) b^2 - 4ac > 0
                                             (b) b^2 - 4ac < 0
         (c) b^2 - 4ac = 0
                                             (d) b^2 - 4ac \neq 0
     The roots of ax^2 + bx + c = 0 are equal, if
       (a) b^2 - 4ac > 0
                                             (b) b^2 - 4ac < 0
       (c) b^2 - 4ac = 0
                                             (d) b^2 + 4ac = 0
49. If discriminant is positive and perfect square, then roots are
       (a) Real & distinct
                                        (b) Imaginary & distinct
        (c) Rational & distinct
                                        (d) irrational and distinct
50. If discriminant is positive and not perfect square, then roots are
       (a) Real & distinct
                                        (b) Imaginary & distinct
       (c) Rational & distinct
                                        (d) irrational and distinct
51. If discriminant is negative, then roots are
       (a) Real & distinct
                                        (b) Imaginary & distinct
       (c) Rational & distinct
                                        (d) irrational and distinct
52. If discriminant is zero, then roots are
       (a) Real & distinct
                                       (b) Real & equal
       (c) Rational & unequal
                                       (d) None of these
53.
      The roots of 2x^2 - bx + 8 = 0 are imaginary, if
        (a) b^2 < 64 (b) b^2 > 64
                                       (c) b^2 = 64
                                                      (d) b = \pm 8
54. The equation of the form ax^2+bx+c=0 where a, b, c \in R a \neq 0, is called
        (a) Reciprocal equation
                                        (b) Quadratic equation
       (c) Exponential equation
                                        (d) polynomial expression
55. Quadratic equation is also called
       (a) 2<sup>nd</sup> degree polynomial equation
                                            (b) Polynomial expression
       (c) Radical equation
                                           (d) All of these
56. Degree of Quadratic equation is
       (a) 0
                       (b) 1
                                                    (d) None
                                        (c) 2
57. Graph of quadratic equation is
       (a) Straight line
                            (b) Circle
                                        (c) Square
                                                          (d) Parabola
58. Basic techniques for solving quadratic equations is/are
                           (b) 2
                                           (c) 3
     To solve ax^2 + bx + c = 0 where a, b, c \in R \& a \neq 0, we can use
59.
     (a) Factorization
                                     (b)Completing square
      (c) Quadratic formula
                                       (d) All of these
```

	OBJECTIVE PART		
60.	The equation of the form $(x+a)(x+b)$ Where $a+b=c+d$, can be converted (a) Reciprocal equation (b) Quadrat (c) Exponential equation (d) All of the	into ic equation	= k
61.	For any $n \in \mathbb{Z}$, ω^n is equivalent to one of		
	(a) 1, ω , ω^2 (b) ω , ω^2 (c) 1,	ω (d) 1, α) ²
62.	$\omega^{28} + \omega^{29} + 1 =$		
	(a) 0 (b) 1 (c) -	1 (d) ω	
63.	Four forth roots of unity are		•
	(a) ± 1 , $\pm i$ (b) 0, ω, ω^2 (c) 1, $\frac{-1+i\sqrt{3}}{2}$	$\frac{1-i\sqrt{3}}{2}$,0 (d))Non
64.	Synthetic division is a process of (a) addition (b) multiplication (c) subtra	action (d) divis	sion
65.	$x^2 + x - 6 = 0$ has roots:		
	(a) Real (b) Equal (c) Comp	lex (d) Triv	ial
66.	Roots of equation $x^2 + 2x + 3 = 0$ are:		
	(a) real (b) equal (c) ration		nary
	If the roots $px^2 + qx + 1 = 0$ are equal, then		^
	(a) $q^2 + 4p = 0$ (b) $p^2 + 4q = 0$ (c) $q^2 - 4q = 0$	$p=0 \text{(a) } p^2-4c$	q = v
68.	A quadratic equation $Ax^2 + Bx + C = 0$ becomes $Ax^2 + $	mes linear equa (d) $A = B$	tion 11 = C
			The second second second

Chapter - 5

Multiple Choice Questions

(Encircle the correct answer choice)

1. An open sentence formed by using sign of '=' is called a /an (c) Rational fraction (d) Theorem (a) equation (b) formula 2. If an equation is true for all values of the variable, then it is called (a) a conditional equation (b) an identity (c) proper rational fraction (d) All of these 3. If an equation is true only for particular values of the variable, then it is (a) a conditional equation (b) an identity (d) a formula (c) proper rational fraction 4. $(x+3)(x+4) = x^2 + 7x + 12$ is a / an (b) identity (a) conditional equation (d) Linear factors (c) proper fraction $\sin^2\theta + \cos^2\theta$ is a/an (b) identity (a) conditional equation (d) Theorem (c) proper fraction

6. To express a single rational functions is called	
(a) partial fractions	(b) partial fraction resolution (d) Improper fraction
7. When a single rational fraction	
	then each single fraction is called
	(b) partial fraction resolution(d) Improper fraction
8. The value of a, when $(a+b)^2 = a^2$	
(a) an integer only	(d) some the determined
· _ · _ · _ · _ · _ · _ · _ · _ · _	(d) cannot be determined
9. If $\begin{vmatrix} 7x & 3x \\ 2x^2 & p \end{vmatrix} = 7xp - 6x^3$ is a/ ar	n.
(a) equation (b) identity	(c)determinant (d)Non
10. The quotient of two polynomi	als $\frac{p(x)}{q(x)}$, $q(x) \neq 0$ is called
. (a) Rational fraction	(b)An irrational fraction
(c) Proper fraction.	(d) Partial fraction
11. A fraction $\frac{p(x)}{q(x)}$ is a proper fra	ction if
 (a)degree of p(x) < degree of q(x) (c) degree of p(x) > degree of p(x) 	(d)degree of $p(x) \ge$ degree of $q(x)$
12. A fraction $\frac{p(x)}{q(x)}$ is an imprope	n notional function if
12. A fraction $\frac{1}{a(x)}$ is an imprope	i fational fraction if
(a) degree of $p(x)$ < degree of $q(x)$	(b) degree of $p(x)$ = degree of $q(x)$
(c) degree of $p(x) \le$ degree of $p(x)$	(d) degree of $p(x) \ge \text{degree of } q(x)$
13. A mixed form of fraction is	(-) and a supplied that the supplied to the su
(a)an integer + improper fraction	
(b)a polynomial + improper fraction	
(c) a polynomial + proper fraction	
(d)a polynomial + rational fraction	
14. When a rational fraction is separate always	ed into partial fractions, then Result is
(a) a conditional equations	(b) an identity
(c) a partial fraction	(d) an improper fraction
15. The partial fractions of $\frac{x^2 - 10x}{(x-1)(x^2 - 1)}$	$\frac{+13}{5x+6}$ are of the form
(a) $\frac{A}{x-1} + \frac{Bx+C}{x-3} + \frac{Dx+E}{x-2}$	(b) $\frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}$
(c) $Ax+B$	(d) None of these

16.
$$\frac{x^2 - 5x + 7}{(x - 1)(x^2 - 1)} = \frac{A}{x - 1} + \dots$$

(a)
$$\frac{B}{x+1}$$

(a)
$$\frac{B}{x+1}$$
 (b) $\frac{B}{(x-1)^2} + \frac{C}{x+1}$ (c) $\frac{B}{x-1} + \frac{C}{x+1}$ (d) $\frac{Dx+E}{x^2-1}$

$$(c)\frac{B}{x-1} + \frac{C}{x+1}$$

$$(d) \frac{Dx + E}{x^2 - 1}$$

17. The number of partial fraction of $\frac{x^3}{x(x+1)(x^2-1)}$ are

18. The number of partial fraction of $\frac{x^5}{x(x+1)(x^2-4)}$ free

19. The number of partial fraction of $\frac{x^4}{x^3-1}$ are

20. If, $\frac{7x+25}{(x+3)(x+4)} = \frac{A}{x+3} + \frac{B}{x+4}$, then B is equal to

(b)
$$-3$$
 (c) 4

$$(d)-4$$

-21. If $\frac{x^2-10x+13}{(x-1)(x^2-5x+6)} = \frac{A}{x-2} + \frac{B}{x-3} + \frac{C}{x-1}$, then C is equal to

$$(d) -4$$

If $\frac{2x^2+x^2-x-3}{x(2x+3)(x-1)} = \frac{A}{x} + \frac{8}{2x+3} + \frac{C}{x-1}$, then A is equal to (b) 2 (c) x

(d) none of these

23. Partial fractions of $\frac{x^2+1}{(x-1)(x+1)}$ are of the form

(a)
$$\frac{Ax+B}{x^2-1}$$

(b)
$$\frac{A}{x-1} + \frac{B}{x+1}$$

(a)
$$\frac{Ax+B}{x^2-1}$$
 (b) $\frac{A}{x-1} + \frac{B}{x+1}$ (c) $1 + \frac{A}{x-1} + \frac{B}{x+1}$ (d) $1 + \frac{Ax+B}{x^2-1}$

(d)1 +
$$\frac{Ax+B}{x^2-1}$$

24. If $\frac{1}{(x+1)^2(x^2-1)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{(x+1)^2} + \frac{D}{(x+1)^3}$, then A =

(a)
$$\frac{1}{8}$$

(b)
$$-\frac{1}{2}$$

(a)
$$\frac{1}{8}$$
 (b) $-\frac{1}{2}$ (c) $-\frac{1}{8}$

$$(d) - \frac{1}{4}$$

25. A quadratic factor which can not be written as a product of linear factors with real coefficients is called

- (a) an irreducible factor
- (b) reducible factor
- (c) an irrational factor
- (d) an improper factor

Which is a reducible factor

(a)
$$x^3 - 6x^2 + 8x$$

(b)
$$x^2 + 16x$$

(b)
$$x^2 + 16x$$
 (c) $x^2 + 5x - 6$ (d) all of these

27. Particle fraction of $\frac{1}{r^2-1}$ =

(a)
$$\frac{1}{2(x-1)} + \frac{1}{2(x+1)}$$
 (b) $\frac{1}{2(x-1)} - \frac{1}{2(x+1)}$

(b)
$$\frac{1}{2(x-1)} - \frac{1}{2(x+1)}$$

(c)
$$-\frac{1}{2(x-1)} + \frac{1}{2(x+1)}$$
 (d) $-\frac{1}{2(x-1)} - \frac{1}{2(x+1)}$

(d)
$$-\frac{1}{2(x-1)} - \frac{1}{2(x+1)}$$

28. Partial fraction of $\frac{x^2+1}{x^3+1}$ will be of the form

(a)
$$\frac{A}{x-1} - \frac{B}{x^2 - x + 1}$$
 (b) $\frac{A}{x+1} - \frac{B}{x^2 - x + 1}$ (c) $\frac{A}{x+1} + \frac{Bx + c}{x^2 - x + 1}$ (d) $\frac{A}{x+1} - \frac{Bx + c}{x^2 - x - 1}$

(b)
$$\frac{A}{x+1} - \frac{B}{x^2 - x + 1}$$

(c)
$$\frac{A}{x+1} + \frac{Bx+c}{x^2-x+1}$$

(d)
$$\frac{A}{x+1} - \frac{Bx+c}{x^2-x-1}$$

29. Number of partial fractions of the fraction $\frac{1}{x(x-1)^3}$ are:

30. Conditional equation 2x + 3 = 0 holds when x is equal to:

(a)
$$-\frac{3}{2}$$
 (b) $\frac{3}{2}$ (c) $\frac{1}{3}$

(b)
$$\frac{3}{2}$$

(e)
$$\frac{1}{3}$$

31. The quotient of two polynomials $\frac{P(x)}{O(x)}$, $Q(x) \neq 0$ with no common

factor is called:

- (a) algebraic relation
- (b) rational fraction
- (c) partial fraction
- (d) polynomial

32. The partial fractions of $\frac{1}{(x+1)(x-1)}$ are:

(a)
$$\frac{1}{2(x-1)} - \frac{1}{2(x+1)}$$
 (b) $\frac{1}{2(x+1)} - \frac{1}{2(x-1)}$

(b)
$$\frac{1}{2(x+1)} - \frac{1}{2(x-1)}$$

(c)
$$\frac{1}{2(x-1)} + \frac{1}{2(x+1)}$$

(c)
$$\frac{1}{2(x-1)} + \frac{1}{2(x+1)}$$
 (d) $-\frac{1}{2(x+1)} - \frac{1}{2(x-1)}$

Chapter - 6

Multiple Choice Questions

(Encircle the correct answer choice)

1. An arrangement of numbers according to some definite rule is called

2. A sequence is also know a	8
	(b) Progression
(c) Arrangement	(d) Complex sequence
3. A sequence is a function wh	
(c) Natural numbers	(b) Rational numbers (Q) (d) real number
	R i.e set of real numbers, is called
	(b) Imaginary sequence
(c) Natural sequence	(d) Complex sequence
5. If $a_n = \{n + (1)^n\}$, then $a_{10} = (1)^n$	
(a) 10 (b) 9	·
6. The last term of an infinite	
(a) is n th term (b) is a_n (c) is general term (d)dose not exist
7. The next term of the sequen	
•	(c) 124 (d) none of these
8. If $a_n \ a_{n-1} = n + 1$ and $a_4 = 1$	4 then $a_5 =$
	(c) 14 (d) 20
9. If $a_n = n \ a_{n-1}$, $a_1 = 1$ then $a_n = 1$	
(a) 6 (b) 24	
	$a - a_n$ is the same number for all $n \in \mathbb{N}$,
n > 1, is called	
(a) A.P (b) G.P	(c) H.P (d) none of these
11. If $\{a_n\}$ is an Arithmetic sequ	ence then common difference is
(a) a_{n+1} a_{n-1}	(b) a_{n+1} a_n
(c) $a_n a_{n+1}$	(d) $a_{n-1} \ a_{n+1}, n \in \mathbb{N}, n \geq 1$
12. The semeral term of an A.P	is
$(a) a_n = a + (n-1) d$	(b) $a_n = a - (n-1) d$
(c) $a_n = a + (n+1) d$	$(d) a_n = a - (n+1) d$
13. If $a_n = 5 - 3n + 2n^2$, then a_{2n}	
	(b) $5 - 6n + 4n^2$
	(d) $5 - 6n + 8n^2$
14. If $a_{n-2} = 3n - 11$, then $a_n =$	
	(c) $3n-9$ (d) $3n-13$
15. If n^{th} term of an A.P is $3n -$	
	(c) 12 (d) cannot be determined
16. n^{th} term of the series $\left(\frac{1}{3}\right)^2$	$(5)^2 (7)^2$
16. n^{th} term of the series $\left(\frac{1}{2}\right)$	*1+ - + - +
(a) $\left(\frac{2n-1}{3}\right)^2$ (b) $\left(\frac{2n+1}{3}\right)^2$	(c) $\left(\frac{2n}{3}\right)^2$ (d) cannot be determined
17. If a_{n-1} , a_n a_{n+1} are in A.P., t	hen a_n is called
	(c) H.M (d) Mid point

18. Arithmetic mean between c and d is	
(a) $\frac{c+d}{2}$ (b) $\frac{c+d}{2cd}$ (c) $\frac{2cd}{c+d}$ (d) $\frac{2}{c+d}$	
19. If $a_{n-1}a_n$, a_{n+1} are in A.P then $a_n =$	
(a) $\frac{a_{n-1}+a_{n+1}}{2}$ (b) $\frac{a_{n+1}-a_{n-1}}{2}$ (c) $a_{n+1}-a_{n-1}$ (d) $\frac{a_{n-1}-a_{n+1}}{2}$	
20. The Arithmetic mean between $\sqrt{2}$ and $3\sqrt{2}$ is	
(a) $4\sqrt{2}$ (b) $\frac{4}{\sqrt{2}}$ (c) $\sqrt{2}$ (d) none of the	se
21. The sum of terms of a sequence is called	
(a) Partial sum (b) Series (c) Finite sum (d) none of the	3e
22. Forth partial sum of the sequence $\{n^2\}$ is (a) 16 (b) 1 + 4 + 9 + 16 (c) 8 (d) 1 + 2 + 3 +	
23. Sum of n term of an Arithmetic series S_n is equal to	*
(a) $\frac{n}{2}[2a + (n-1)d]$ (b) $\frac{n}{2}[a + (n-1)d]$	•
(c) $\frac{n}{2} [2a + (n+1) d]$ (d) $\frac{n}{2} (2a+l)$	
24. Sum of n term of an Arithmetic series in S_n is equal to	
(a) $\frac{n}{2}$ $(a_1 + a_n)$ (b) $\frac{n}{2}$ $(a_1 - 1)$ (c) $\frac{a + a_n}{2}$ (d) $n(a_1 + a_n)$)
25. For any G.P the common ratio r is equal to	
(a) $\frac{a_n}{a_{n+1}}$ (b) $\frac{a_{n-1}}{a_n}$ (c) $\frac{a_n}{a_{n-1}}$ (d) $a_{n+1}-a_n$ for $n \in \mathbb{N}, n > 1$	
26. No term of a G.P is	. •
(a) 0 (b) 1 (c) negative (d) imaginary number 27. The general term of a G. P is	
(a) $a_n = ar^{n-1}$ (b) $a_n = ar^n$ (c) $a_n = ar^{n+1}$ (d) $a_n = \frac{a}{r^n-1}$	
28. If a, G, b are in G.P. then	
(a) $G = ab$ (b) $G = \pm \sqrt{ab}$ (c) $G = \frac{a+b}{2}$ (d) $G = \frac{2ab}{a+b}$	
29. If a, G, b are in G.P. then G is called	
(a) common ratio (b) Geometric mean	
(c) centre (d) Geometric series	
30. If G_1 , G_2 , G_3 , G_n be Geometric means between a and b , then $G = a$	
• (a) $\sqrt{G_1 G_2 \dots G_n}$ (b) $(G_1 G_2 \dots G_n)^{\frac{1}{n}}$	
(c) $\frac{G_1 + G_2 + + G_n}{n}$ (d) $\frac{1}{n}$ ($G_1, G_2,, G_n$)	•

31. Sum of n term of a geometric series S_n is equal to

(a)
$$\frac{a(1 + r^n)}{1 + r}$$
 (b) $\frac{a(1 + r^{n-1})}{1 + r}$

(b)
$$\frac{a(1 + r)^{-1}}{1 + r}$$

$$(c)\frac{a(r^n-1)}{1-r}$$

(c)
$$\frac{a(r^{n}-1)}{1-r}$$
 (d) ar^{n-1} , for $r \neq 1$

32. The sum of infinite geometric series is valid if

(a)
$$|r| > 1$$

(b)
$$|r| = 1$$

(a)
$$|r| > 1$$
 (b) $|r| = 1$ (c) $|r| \ge 1$ (d) $|r| < 1$

33. For the series $1+5+25+125+\ldots+\infty$, the sum is

$$(a) - 4$$

(c)
$$\frac{1-5^n}{-4}$$

(c) $\frac{1-5^n}{4}$ (d) not defined

34. An infinite geometric series is convergent if

(a)
$$|r| > 1$$
 (b) $|r| = 1$ (c) $|r| \ge 1$

(b)
$$|r| = 1$$

(c)
$$|r| > 1$$

(d)
$$|r| < 1$$

35. An infinite geometric series is Divergent if

(a)
$$|r| < 1$$

(b)
$$|r| \neq 1$$

(c)
$$r = 0$$

(d)
$$|r| > 1$$

36. If sum of a series is defined, then it is called

(a) Convergent series

(b) Divergent series

(c) finite series

(d) Geometric series

37. If sum of a series in not defined, then it is called

(a) Convergent series

(b) Divergent series

(c) finite series

(d) Infinite series

38. If the series $\frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{8} + \dots$ is convergent, then

(a)
$$|x| \le 2$$

(a)
$$|x| \le 2$$
 (b) $|x| \le 1$

(c)
$$0 < x < 2$$
 (d) $|x| \ge 2$

39. If the series $\frac{2}{3}x + \frac{4}{9}x^2 + \frac{8}{27}x^3 + ...$ is Divergent, then

$$(a) \mid \frac{2}{3}x \mid < 1$$

(a)
$$|\frac{2}{3}x| < 1$$
 (b) $\frac{2}{3}|x| < 1$ (c) $|x| \ge 1$ (d) $|\frac{2}{3}x| \ge 1$

(c)
$$|x| \geq 1$$

$$(d) \mid \frac{2}{3}x \mid \geq 1$$

40. The interval in which series $1 + 2x + 4x^2 + 8x^3 + ...$ is convergent is

(a)
$$-2 < x < 2$$

(b)
$$-\frac{1}{2} < x < \frac{1}{2}$$

(a)
$$-2 < x < 2$$
 (b) $-\frac{1}{2} < x < \frac{1}{2}$ (c) $|2x| > 1$ (d) $|x| < 1$

41. If the reciprocals of the terms of a sequence form an A.P, then it is

- (a) Harmonic sequence
- (b) Arithmetic sequence
- (c) Reciprocal sequence
- (d) series

42. The n^{th} term of $\frac{1}{2}$, $\frac{1}{5}$, $\frac{1}{8}$ is

(a)
$$\frac{1}{3n-1}$$
 (b) $3n-1$

(b)
$$3n - 1$$

(c)
$$2n + 1$$

(c)
$$2n+1$$
 (d) $\frac{1}{3n+1}$

43. General term of an H.P is

(a)
$$a_n = \frac{1}{a + (n+1) d}$$

(b)
$$a_n = \frac{1}{a + (n-1) d}$$

(c)
$$a_n = \frac{1}{a+nd}$$

(d)
$$a_n = a + (n \ 1) d$$

44. Harmonic me	an between 2	and 8 is		•
(a) 5	(b) $\frac{16}{5}$	(c) ± 4	$(d) \frac{5}{1}$	<u>6</u>
45. If A, G, and H	are Arithme	tie, Geometi	ric and Har	monic means
between two p	ositive numb	er, then		
(a) $G^2 = A H$		(b) A, G,	H are in G.	P
(c) $A > G > I$	I	(d) all of t	hese	
46. If A, G, and I	I are Arithm	etic , Geome	tric and H	armonic means
between two r		•	•	
(a) $G^2 = A H$	•	(b) A, G,	H are in G.	P
(c) $A < G < I$		(d) all of t		
47. If a and b are	two negative	number, th	ien	
(a) A< G <h< td=""><td></td><td>(b) $A > G$</td><td></td><td></td></h<>		(b) $A > G$		
(c) A = G = I		(d) $A \ge G$		
48. If a and b are	e two positive	e number,	then	
(a) A< G <h< td=""><td></td><td>(b) $A > G$</td><td>> H</td><td></td></h<>		(b) $A > G$	> H	
(c) A = G = F	I .	(d) $A \leq G$:	≤H	
49. If a and b hav	e opposite sig	ns then Geo	metric mea	an is
(a) an imagi	nary number	(b) non ze	ro real nur	nber
(c) Real nur	nber	(d) Negati	ve	
50. If $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$	T. A NA B. A		•	•
$50. 11 a^n + b^n$	18 A.M Detwe	en a & b, ti	nen <i>n</i> 18 eq	ual to
<i>(</i> ,), 0			1	
(a) 0	(b) -1	(c) 1	$(d)\frac{1}{2}$	•
$ a^n + b^n$			•	
51. If $\frac{a^n+b^n}{a^{n-1}+b^{n-1}}$	is G.M betwe	en $a & b$, th	en niseq	ual to
			1	
(a) 0	(b) – 1	(c) 1	(d) $\frac{1}{2}$	
$a^{n+1} + b^{n+1}$			-	
52. If $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ i	s H .M betwe	en $a & b$, t	nen niseq	ual to
(a) 0	(b) -1	(c) 1	(d) ±	
			•	
58. If a, ar2, ar4	form a G.	P then 🙏	_ 	is
	· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	gr= gr=	
(a) an A . P		(b) a G .P		
(c) an H. P		(a) a recipi	rocal seque	nce
54. $\sum n$ is equal to		.		
(a) $\frac{n(n+1)}{2}$	(b) $\frac{n(n+1)(2)}{6}$	$\frac{(n+1)}{(e)}$	$\frac{n^*(n+1)^*}{2}$	(d) n^2
	-		2	
55. $\sum n^2$ is equal to			. 04	
(a) $\frac{n(n+1)}{n(n+1)}$	(b) $\frac{n(n+1)(2)}{6}$	(n + 1)	$n^{2}(n+1)^{2}$	(d) n^2
rest (I	res A	(4)	7.	feet in

56.	$\sum n^3$ is equal to		
	(a) $\frac{n(n+1)}{2}$ (b) $\frac{n(n+1)(2n+1)}{6}$	(c) $\frac{n^2(n+1)^2}{4}$	(d) $\frac{n(n+1)}{2}$
57 .	If $S_n = (n+1)^2$, then S_{2n} is equal		
	(a) $2n + 1$	(b) $4n^2 + 4n +$	1
٠.	(c) $(2n-1)^2$	(d) cannot be	determined
58.	The sum of n A.Ms between a &	b is equal to	
	(a) $n\left(\frac{a+b}{2}\right)$	(b) $n(a + b)$	
	(c) $n [a + (n-1)d]$	(d) $a + (n-1)$) <i>d</i>
	The sum of 5 A.Ms between 2 &		
-	(a) 25 (b) 50 (c		(d) 10
60 .			G.M. between
	(a) less than their A.M.		
	(c) Greater than A.M.	(d) None of the	ese
61.			
-	(a) arithmetic progression		rogression
	(c) harmonic progression		
62 .	If $ r < 1$, then, $S_n =$		
	$a_1(1-r^n)$ $a_1(r^n-1)$	$a_1(r^n-1)$	$a_1(1-r^n)$
	(a) $\frac{a_1(1-r'')}{1-r}$ (b) $\frac{a_1(r''-1)}{1-r}$	r-1	r-1
63.	With usual notations, AH equal	S	
	(a) A^2 (b) H^2	(c) G^2	$(d) -G^2$
64.	If $a_{n-1} = 2n + 1$, then a_n is equal	to	
.**	(a) $2n+3$ (b) $2n-3$		(d) $2n + 1$
65.	With usual notation nth term of		
	(a) $a_n = a_1 + (n+1) d$		(i-1)d
	$(c) a_n = a_1 + a_{n+1}$	(d) $a_n = a_1 + (n_1 + n_2)$	
	G. M between -2 and 8 is:		
		(c) $16 \text{ or } -16$	(d) 3 or -5
67.	H. M between -2 and 8 equals:		
	-3 -16	-16	- (a) -5
	(a) $\frac{-3}{16}$ (b) $\frac{-16}{3}$	$\frac{(c)}{5}$	$\frac{(a)}{16}$
68.	n^{th} term of A.P is:		
		(a) = a = 1	a_1
	(a) $a_1 + nd$ (b) $a_1 + (n-1)d$	(c) nai + a	$n \rightarrow a$
69.	Fifth term of $\frac{1}{3}, \frac{1}{5}, \frac{1}{7}$ is		
-			. 1)

70. $\frac{1}{2}, \frac{1}{7}, \frac{1}{12}, \dots$ is: (a) An A.P (b) G.P (c) H.P (d) Harmonic series 71. If G_1 , G_2 , G_n are n geometric means between a and b, then $(G_1 . G_2 G_n)^{1/n}$ is. (a) $\frac{a+b}{2}$ (b) $\frac{2ab}{a+b}$ (c) \sqrt{ab} 72. Harmonic mean between two numbers 'a' and 'b' is: (b) $\pm \sqrt{ab}$ (c) $\frac{2ab}{a+b}$ (d) $\frac{a+b}{2ab}$ (a) $\frac{a+b}{2}$ 73. General term of a sequence is $(-1)^n n^2$. Its 4th term is: (b) -16 (c) 16 (d) 4Chapter - 7 **Multiple Choice Questions** (Encircle the correct answer choice) The factorial notation was introduced by (a) Christian kramp (b) Newton (c) Candy (d) Boyal n! = n(n-1)(n-2)...3.2.1 is defined only when n is (a) positive integer (b) an integer (c) Real number (d) whole number 3. 0! is equal to (c) -1 (d) not defined (a) 0 (b) 1 4. (-1)! is equal to (c) -1 (d) not defined (a) 0 (b) 1 5. The factorial form of 12.11.10. is (a) $\frac{12!}{9!}$ (b) 12! (c) $(\frac{12}{9})!$ (d) (12!).(9!)The factorial form of $n (n-1) (n-2) \dots (n-r+1)$ is (a) $\frac{n!}{(n-r)!}$ (b) $\frac{n!}{n-r!}$ (c) $\frac{n!}{(n-r-1)!}$ (d) $\frac{n!}{(n-r+1)!}$ 7. The factorial form of 6.5.4 is (a) $(\frac{6}{2})!$ (c) 5! (b) 6! (d) None of these 8. If an event A can occurs in p ways B can occur in q ways then number of way that both events can occur is = (a)p' + q (b) p. q (c) (pq)! (d) (p + q)! **9.** An arrangement of n objects according to some definite order is called (a) Combination (b) permutation

(d) ordered arrangement

(c) factorial

,	· ·		· ·
10. An arrangemen	it of n objects	,without any ord	er is called
(a) Combinati	on	(b) permutation (d) ordered ar	on
(c) factorial		(d) ordered ar	rangement
11. An arrangemen	it of n objects	taking r out of the	nen at a time without
any order is	i · · · ·		en e
(a) nC_r	$(b)^{\cdot n} P_r$	(c) $(n+r)!$	(d) (nr)!
12. An arrangemen	it of n objects	taking r out of th	nen at a time, with
some definit	te order is		
(a) ${}^{n}C_{i}$	(b) $^{n}P_{r}$	(c) $(n+r)!$	(d) (nr)!
13. 8.7.6 is equa	ıl to		
(a) 8P_3	(b) 8C_3	(c) ⁸ P ₅	(d) ⁸ C ₅
14. In a permutation	on " P_r or $P(n,$	r), it is always	true that
(a) $n \ge r$	(b) $n < r$	(c) $n \leq r$	(d) $n < 0, r < 0$
15. Different signals	of 5 flags of dif	ferent colures, us	ing 3 at a time is
		(c) 120	(d) 10
16. If $r = n$, then "	Pris equal to		475.0
	(b) (<i>n</i> - <i>r</i>)!	(c) 1	(d) 0
17. ${}^{10}P_7$ is equal to			(3)
(a) 10	(b) 720	(c) 120	(d) non of these
18. If these are p li	ke object of or	he kind and q lik	te object of 2 nd kind
		it permutation a	re
$(a) = \frac{n!}{n!}$	$\frac{n!}{(pq)!}$ (b) $\frac{n!}{(pq)}$	$\frac{1}{1}$ (c) $\frac{n!}{-1-1}$	(d) $n! - 1$
19. Different circul	ar permutation	ons of n objects a	re
(a) n!	(b) $(n-1)$)! (c) $(n+1)!$	(0) n - 1
	ways that a n	ecklace of n dead	ls of different colures
be made is			/m 1\1
(a) n!	(b) $\frac{n!}{2}$	(c) $\frac{n!-1}{2}$	$(d) \frac{(n-1)!}{2}$
		· —	· · · · · · · · · · · · · · · · · · ·
21. The numbers of	f permutation	s of the word PA	NAMA are
(a) 120	(b) 20	(c) 10	(a) ou
22. The numbers of			
word starts wit	h Pis	(c) 10	(1) 00
(a) 120	(b) 20	(c) 10,	(a) bu
23. 5 Persons can			
(a) 120	(b) 24	(c) 720	(a) 12
24. $^{n}P_{n}$ is equal to,			(d) $\frac{n!}{r!(n+r)!}$
$(a) \stackrel{\underline{n}!}{=}$	(b) - n	$=$ (c) $\frac{n!}{(n!)!}$	$(d) \frac{h!}{d! (n+1)!}$
		(n = r)!	***
25. ${}^{n}C_{r}$ is equal to			
(a) <u>n!</u>	(b) = n!	$= (e) \frac{n!}{(n-r)!}$	$(d) \frac{n!}{n!(n-1)!}$
(8) [4]	- 127 P.(n = P)	(n-r)!	```'

26. Complementary combination is		4
(a) ${}^{n}C_{r} = {}^{n}C_{r-1}$ (b) ${}^{n}C_{r} = {}^{n}C_{n-r}$	$(c) {}^{n}C_{r+1} = {}^{n}C_{r}$	-1 (d) $^nC_r = ^nI$
27. If ${}^{n}C_{8} = {}^{n}C_{12}$, then <i>n</i> is equal to		
	(c) 20	(d) 4
28. The number of Triangles of an n si	ded polygon is	
(a) ${}^{n}C_{3}$ (b) ${}^{n}P_{3}$	(c) $^{n}P_{3}-n$	
29. $n-1C_r + n-1C_{r-1} = 0$		
(a) $n^{-1}C_r$ (b) nC_r	(c) $n-1C_{r-1}$	(d) ${}^nC_{r-1}$
30. ${}^{n}C_{7} + {}^{n}C_{8} =$		
(a) $n+1C_7$ (b) $n+1C_8$	(c) $^{n+1}C_9$	(d) $^{*}C_{9}$
31. The number of Diagonals of a 5 side	ed polygon is	
(a) 5. (b) 20		(d) 10
32. The number of Triangles of a 5 sid	led Polygon is	
(a) 5 (b) 10		
33. A hockey 11 out of 15 players be se		t teams if a
particular players must be selected is		
(a) $^{15}C_{11}$ (b) $^{15}P_{11}$	(c) ${}^{14}C_{10}$	(d) $^{14}C_{10}$
34. The set of all possible outcomes of a	n experiment	is
(a) Sample space	(b) Event	
	(d) Random I	
35. Any particular outcome of an exper		•
	(b) an Event	
	(d) Random Va	
36. A fair coin is tossed, the probability	of getting a he	ead or tail is
(a)1 (b) 0 (c)	$\frac{1}{2}$	d) $\frac{1}{4}$
37. For two events A and B if $A \cap B = \phi$,	then events A ar	id B are called
(a) mutually exclusive (b		
(c) Overlapping (d		
38. If A and B are mutually exclusive (Disj	·	
	0 and 1 (d) r	
39. If two events A and B have equa		
the events are		
(a) Equally likely (b)	Not equally li	kely
) not mutually	
40. If E be an event of a sample space S		
(a) $P(E) = \frac{n(E)}{n(S)}$ (b) $0 < P(E) < 1$	(c) $P(E) > 1$ (c)	d) all of these
41. If E be an event of a sample space S	, then	
المنافق		
(a) $P(E) = \frac{n(S)}{n(E)}$ (b)	$0 \le P(E) \le 1$	
	all of these	

42. If an event always occurs, then it is called
(a) Null event (b) possible event
(c) certain event (d) independent event
43. If E is a certain event, then
(a) $P(E) = 0$ (b) $P(E) = 1$ (c) $0 < P(E) < 1$ (d) $P(E) > 1$
44. If E is an impossible event, then
(a) $P(E) = 0$ (b) $P(E) = 1$ (c) $P(E) \neq 0$ (d) $0 < P(E) < 1$
45. Non occurrence of an event E is denoted by
(a) \sim E (b) \overline{E} (c) E ^c (d) all of these
46. If E be an event of a sample space S, then
(a) $P(E)=1+P(\overline{E})$ (b) $P(\overline{E})=1+P(E)$
(c) $P(E)=1-P(\overline{E})$ (d) $P(\overline{E})=1-P(E)$
47. Let $S = \{1, 2, 3,, 10\}$ the probability that a number is divisible by 4 is
(a) $\frac{2}{5}$ (b) $\frac{1}{5}$ (c) $\frac{1}{10}$ (d) $\frac{1}{2}$
48. There are 5 green and 3 red balls in a box. One ball is taken, the
probability that ball is green or red is
(a) $\frac{3}{8}$ (b) 1 (c) $\frac{15}{8}$ (d) $\frac{15}{64}$
(a) $\frac{8}{8}$ (b) 1 (c) $\frac{8}{8}$ (d) $\frac{64}{64}$
49. These are 5 green and 3 red balls in a box the one ball taken is
probability of getting a black ball is.
(a) 0 (b) 1 . (c) $\frac{15}{8}$ (d) $\frac{15}{64}$
(a) 0 (b) 1 (c) $\frac{20}{8}$ (d) $\frac{64}{64}$
50. Three dice are rolled simultaneously, then $n(S)$ is equal to
(a) 36 (b) 18 (c) 216 (d) 6
51. A coin is tossed 5 times, then n (S) is equal to
(a) 32 (b) 25 (c) 10 (d) 20
52. A bag contain 40 balls out of which 15 are black, then probabilit
of a ball not black is
(a) $\frac{3}{8}$ (b) $\frac{5}{8}$ (c) $\frac{15}{8}$ (d) $\frac{15}{64}$
53. Two teams A and B are playing a match, the probability that
team A dose not loose is
(a) $\frac{1}{3}$ (b) $\frac{2}{3}$ (c) 1 (d) 0
54. If P(E) = $\frac{7}{12}$, $n(S) = 8400$, $n(E)$ is equal to
(a) 108 (b) 4900 (c) 144 (d) 14400
55. A die is rolled, the probability of getting 3 or 5 is
(a) $\frac{2}{3}$ (b) $\frac{1}{3}$ (c) $\frac{15}{36}$ (d) $\frac{1}{36}$
化二类化二类 化二氯化二二氢化二二氢化二氢甲基化二氢二氢二氢二氢二氯二氯二氯

56	A die is rolle	i the probabi	lity of gotti	na g on an aran	arimhan ia
JU.				ng 3 or an even	
	(a) $\frac{1}{12}$	(b) $\frac{2}{3}$	(c) $\frac{1}{3}$	(d) non of t	hese
57.	A coin is toss	ed 4 times, th	en probabil	ity that at least	one head
		in 4 tosses is			
		•	•	3	
	(a) $\frac{1}{16}$	(b) $\frac{15}{16}$	(c) $\frac{1}{4}$	$(d)\frac{3}{4}$	
58.			and the second s	$A \cup B$) is equal t	0
	(a) $P(A) +$	$P(B) - P(A \cap I)$	(b) P	(A). P(B)	•
	(c) $P(A) +$	$P(B) - P(A \cap I)$	3) (d) 1	P(A∩B)	•
59 .				n $P(A \cup B)$ is eq	ual to
		+ P(B)	the second second		
		+ P(B) - P(A)			
60,		i i		4,6} then $P(A \cup 1)$	3) is equal to
•	$\frac{1}{2}$ $\frac{3}{2}$	$a \geq \frac{2}{}$	<u>9</u>	(1) 0	
	$\begin{array}{c} (\mathbf{a}) \ \overline{5} \end{array}$	(b) $\frac{2}{5}$	(c) $\overline{100}$	(a) U	
61.	If two event do	not effect the	occurrence c	r non occurrence	of each other
	then, these	are called			
	(a)Indeper	ident events	(b)	Dependent ever	its
	(c) Equal e	vents	(d)	Different events	3
62 .	If two event	effect the occ	urrence or	non occurrence	of each
•	other, then	these are call	ed		•
	(a)Indeper	ident events	(b)	Dependent ever	its
	(c) Equal e			Different events	
63.]	If A, B and C	are Independ	ent event, t	hen $P(A \cap B \cap C)$	is equal to
.*				P(A). $P(B)$. $P(C)$	
	(c) $P(A \cup I)$	3U <i>C</i>)		none	
64.]	If A. B and C	are disjoint	events the	n P(AUBUC) i	s equal to
	(c) $P(A \cap B)$	n <i>C</i>)	(A)	P(A). $P(B)$. $P(C)$	
				A CONTRACTOR OF THE CONTRACTOR	
65.]	$\text{If P(A)} = \frac{3}{7},$	$P(B) = \frac{7}{9}, P($	$A \cap B$) is eq	ual to	
	5	. 3		94	
	(a) $\frac{\pi}{9}$	(b) $\frac{7}{4}$	(c)	$\frac{94}{63}$ (d) None	of these
66. I	f A and B are t	wo independe	nt events ,P($A \cap B) = \frac{1}{169}, P(A) =$	$=\frac{1}{13}, P(B) =$
	$(a)\frac{1}{a}$	$\frac{1}{2}$	/ _~ \ 10	(d) $\frac{12}{169}$	
	(a) 13	(b) 2097	(c) 13	(a) 169	
67. 7	The number of	ways for sitting	4 persons	in a train on a st	raight sofa is
	(a) 24	(b) 6	(c) 4	(d) None	
68. I	Four persons	want to sit in	a circular s	ofa, the total wa	
	(a) 24	and the second s		(d) None of	

	UBJE	CLIVE PART		
	rawn from a deck it is an ace card is		ng cards. The p	robability
(a) $\frac{2}{13}$	(b) $\frac{4}{13}$	(c) $\frac{1}{13}$	(d) $\frac{17}{13}$	
70. If ${}^{n}C_{6} = {}^{n}C_{12}$, then n equals	•		
(a) 18	(b) 12.	(c) 6	(d) 20	

71. For independent events $P(A \cap B) =$

(a) P(A) + P(B) (b) P(A) - P(B) (c) $P(A) \cdot P(B)$ (d) $\frac{P(A)}{P(A)}$

72. If $\binom{n}{12} = \binom{n}{8}$, then the value of n =(a) 15 (b) 16 (c) 18 (d) 20

73. If A and B are disjoint event then $P(A \cup B) =$

(a) P(A) + P(B) (b) $P(A) + P(B) - P(A \cap B)$ (c) $P(A) - P(B) + P(A \cap B)$ (d) $P(A) + P(B) - P(A \cap B)$

74. With usual notation ${}^{n}P_{n}$ equals:

(a) n (b) 0 (c) 0! (d) n!

75. If ${}^{n}C_{6} = {}^{n}C_{8}$ then, *n* equals:

(a) 20 (b) 24 (c) 14 (d) -14

76. Sample space for tossing a coin is:
(a) {H}
(b) {T}
(c) {H, H}
(d) {H, T}

77. Probability of non-occurrence of an event E is equal to:

(a) 1 - P(E) (b) $P(E) + \frac{n(s)}{n(E)}$ (c) $\frac{n(s)}{n(E)}$ (d) 1 + P(E)

Chapter - 8

Multiple Choice Questions

(Encircle the correct answer choice)

1. The statement $4^n > 3^n + 4$ is true when (a) n = 0 (b) n = 1

a) n = 0 (b) n

(c) $n \ge 2$ (d) n is any positive integer

2. The statement $3^n < n!$ is true, when

(a) n = 2 (b) n = 4 (c) n = 6 (d) n > 6

3. The general term of the binomial expansion $(a + x)^n$ is $(a) \binom{n}{r} a^n x^r \qquad (b) \binom{n}{r} a^{n-r} x^r \qquad (c) \binom{n}{r} a^r r^{n-r} \qquad (d) \binom{n}{r} (a x)^{n-r}$

4. The number of terms in the expansion of $(a+b)^n$ are
(a) n (b) n+1 (c) 2^n (d) 2^{n-1}

```
5. In the expansion (a + x)^n, the sum of exponents of a and x is
                       (b) n-1
                                       (c) n+1 (d) 2n
 6. The (r+1) th term in the expansion of (a+x)^n is
      (c) \binom{n}{x} a^{n-r+1} x^{r+1}
 7. In the expansion (a+x)^n the exponent of 'a'
       (a) decreases from n to 0
                                        (b) Increases from 0 to n
       (c) remains n every where
                                        (d) becomes n at the end
8. In the expansion (a + x)^n the exponent of 'x'
       (a) decreases from n to 0
                                              (b) Increases from 0 to n
       (c) remains n every where
                                          (d) becomes 0 at the end
9. Middle term/s in the expansion of (a + b)^{11} is/are
               (b) T_5 \& T_6
                                        (c) T_6 \& T_7
                                                             (d) T<sub>5</sub>
10. Middle term/s in the expansion of (a-3x)^{14} is/are
                      (b) T<sub>8</sub>
                                        (c) T_6 \& T_7
      6^{th} term of the expansion (a+2x)^{13} is
      (a) \binom{13}{5}a^8. x^5. (b) \binom{13}{5}a^8. 2^5. x^5. (c) \binom{13}{8}a^5. x^8. (d) \binom{13}{8}a^5. 2^8. x^8
      4th term from the end in the expansion of (a + b)^9 is
12.
         (a) T_6
                 (b) T_4
                                        (c) T<sub>7</sub>
                                                         (d) non of these
13. The term independent of x in the expansion of (a + 2x)^n is
      (a) first term (b) Middle term (c) last term (d) 2<sup>nd</sup> last term
14. The coefficient of the last term in the expansion of (2-x)^7 is
       (a) 1
                      (b) -1 (c) 7
15. Sum of all binomial coefficients in the expansion of (a + x) is
         (a) 2^{n}
                      (b) 2^{n-1}
                                      (c) 2^{n+1}
                                                        (d) n + 1
16. Sum of odd binomial coefficients in the expansion of (a + x)^n is
         (a) 2^n
                       (b) 2^{n-1}
                                       (c) 2^{n+1}
                                                         (d) n + 1
17. Sum of even binomial coefficients in the expansion of (a + x) is
         (a) 2^n
                      (b) 2^{n-1}
                                       (c) 2^{n+1}
                                                        (d) n + 1
            (b) 2^{n+1} (c) 2^{n-1} (d) cannot be determined
                 +\binom{2n}{2}+\ldots+\binom{2n}{2n} is equal to
                                      (c) 2^{2n-1}
                        (b) 2^{2n}
```

20. If n is odd, the middle term/s in $(a + x)^n$ is/are (a) $(\frac{n+1}{2})^{th}$ (b) $(\frac{n}{2} + 1)^{th}$ (c) $(\frac{n+1}{2})^{\text{th}} & (\frac{n+3}{2})^{\text{th}}$ (d) $(\frac{n}{2}+1)^{\text{th}} & (\frac{n}{2}+2)^{\text{th}}$ 21. If n is even the middle terms in $(a + x)^n$ is (a) $(\frac{n+1}{2})^{th}$ (b) $(\frac{n}{2} + 1)^{th}$ (c) $(\frac{n+1}{2})^{\text{th}} & (\frac{n+3}{2})^{\text{th}}$ (d) $(\frac{n}{2}+1)^{\text{th}} & (\frac{n}{2}+2)^{\text{th}}$ 22. Which term of $(x + 2)^8$ is independent of x(a) First (b) Second (c) Middle 23. The series $(1+x)^n$ is valid if (a) x < 1 (b) -1 < x < 1 (c) x > 1**24.** $1 + x + x^2 + x^3 + ...$ is equal to (a) $(1+x)^{-1}$ (b) $(1-x)^{-1}$ (c) $(1+x)^{-2}$ (d) $(1-x)^{-2}$ 25. $1-x+x^2-x^3+...$ is equal to (c) $(1+x)^{-2}$ (a) $(1+x)^{-1}$ (b) $(1-x)^{-1}$ (d) $(1-x)^{-2}$ **26.** When n is negative or fraction, then general term of $(1 + x)^n$ is (a)T_r= $\frac{n(n-1)(n-2)...(n-r+1)}{r!}x^r$ (b) $T_{r+1} = \frac{n(n-1)(n-2)...(n-r+1)}{r!}x^r$ (c) $T_r = n(n-1)(n-2) ... 3.2.1. x^r$ (d) $T_{r+1} = \binom{n}{r} x^r$ 27. If $T_{r+1} = \begin{pmatrix} 10 \\ r \end{pmatrix}$ $(-2)^r (x)^{10-2r}$, The term independent of x is (b) 5th (c) 4th (d) 6th **28.** The sum of exponents of a and b in every term of the expansion $(a + b)^{\mu}$ is (b) 0(c) 2n(a) 1 The expansion of $(1-2x)^{-2}$ is valid if (a) |x| < 0 (b) $|x| < \frac{1}{2}$ (c) |x| < 2 (d) |x| < 1**30.** $n^2 > n + 3$ is true for: (a) $n \ge 3$ (b) $n \ge 1$ (c) $n \ge 2$ (d) $n \ge -1$ 31. If n is odd number, then middle term in expansion $(a + x)^n$ is: (a) $\frac{n+1}{2}$ (b) $\frac{n+3}{2}$ (c) $\frac{n-1}{2}$ (d) $\frac{n+1}{2}$ and $\frac{n+3}{2}$

The expansion $(1-4x)^{-2}$ is valid if: (a) $|x| < \frac{1}{4}$ (b) $|x| > \frac{1}{4}$ (c) -1 < x < 1 (d) |x| < -133. The middle term in the expansion of $(a+b)^n$ is $(\frac{n}{2}+1)$; then n is: (b) even (c) prime (a) odd (d) none of these 34. Number of terms in the expansion of $(1 + x)^n$ is: (b) n/2(c) n-1(d) n + 1The number of terms in the expansion of $(a + b)^{20}$ is: (a) 18 (b) 20 (d) 19° Chapter - 9 Multiple Choice Questions (Encircle the correct answer choice) 1. Two rays with a common starting point form: (a) Triangle (b) Angle (c) Radian (d) Minute 2. The common starting point of two rays is called: (b) Initial point (a) Origin (c) Vertex (d) All of these 3. If the rotation of angle is counter clockwise, then angle is: (a) Negative (b) Positive (c) Non-negative (d) None of these 4. If the initial ray OA rates in anti-clockwise direction in such a way that it coincides with itself, the angle then formed is: (a) 180° (b) 270° (c) 300° 5. One Rotation in anticlockwise direction is equal to (a) 180° (b) 270° (c) 360° (d) 90° 6. Straight line angle is equal to (a) $\frac{1}{2}$ rotation (b) π radian (c) 180° (d) All of these 7. One right angle is equal to is equal to (a) $\frac{\pi}{2}$ radian (b) 90° (c) $\frac{1}{4}$ rotation (d) All of these 8. 1º is equal to (a) 30 minute (b) 60 minute (c) $\frac{1}{60}$ minute (d) $\frac{1}{2}$ minute 9. 1º is equal to (a) 360'' (b) 3600'' (c) $\left(\frac{1}{360}\right)$ (d) 60''

10. 60th part of 1° is	· ·		
· ·	71	ute (c) l Radia	n (d) π Radian
11. 60th part of 1' is	equal to		
(a)) 1'	· · ·	(c) 60"	(d) 3600"
12. 3600th part of 1° i	s equal to		
(a) 1'	(b), 1"	(c)) 60"	(d)) 3600"
13. Sexagesimal sys	ter, is also calle	d:	
(a) German sy	/s'.cem	(b) English	system
(c) C.G.S system	^r ém	(d) S I syst	em
14. 16°30' is equal	to		
(a) 16.5°	(b) $\frac{32^{\circ}}{2}$	(c) 16.05°	(d)16.2°
15. Conversion of 2	1.256° to D°m's"	form is:	•
(a) 21° , 25° , 6°	· · · · · · · · · · · · · · · · · · ·		$2''$ (d) 21° , $30'$, 2
16. The an gle subte	nded at the cent	re of the circle	by an arc whose
ler oth is equ	al to the radius	of the circle is c	alled:
(a) 1 Dagge	(b) 1'	(c) 1Radian	(d) 1"
17. The system of a	numlor magairei	ment in which s	ingle is measure
in radian is calle		MCMU III WINOII C	11810 10 111000
	nal system	(h) Circular s	vstem
(a) Sexagesin	ystem	(d)Gradient	system
18. Relation between	on the length of s	n arc of a circle	and the circula
	s central angle i		
	•		1 .
V	(b) $\theta = \ell r$		· — ·
19. With usual nota			
	(b) cm ²	(c) No unit	(d)cm ³
20. 1° is equal to			
(a) $\left(\frac{\pi}{180}\right)^{\circ}$	(b) $\frac{180}{\pi}$ radian	(c) $\left(\frac{180}{\pi}\right)^{\circ}$	(d) $\frac{\pi}{180}$ radian
21. 1º is equal to			
	(b) 0.0175 rac	d (c) 1.75 rad	(d)0.00175 rad
22. 1 Radian is equ			
		(180)°	(#)°
(a) $\frac{\pi}{180}$ rad	(b) $\frac{180}{\pi}$ rad	(c) $\left(\frac{180}{\pi}\right)$	(d) $\left(\frac{n}{180}\right)$
23. 1 radian is equa	al to		
(a) 57.296°	(b) 5.7296°	(c) 175.27°	(d) 17.5270
24. 3 radian	•		
(a) 171.888 ⁰	(b) 120 ⁰	(c) 300°	$(d)270^{0}$

25.	. 1050 =radian		•
•	(a) $\frac{7\pi}{12}$ (b) $\frac{2\pi}{3}$	(c) $\frac{5\pi}{12}$ (d) $\frac{5\pi}{6}$	
26	3"= radian	12	
20.		41π 27721π	•
٠	(a) $\frac{337}{270}$ (b) $\frac{1}{216000}$	(c) $\frac{41\pi}{720}$ (d) $\frac{27721\pi}{32400}$	• '.
27.	$\frac{\pi}{4}$ radian = deg		
	(a) 45° (b) 30°	(c) 60° (d) 75°	
28.	Circular measure of angle between	n the hands of a watch at 4-o clock	aŗe
, ,	(a) 45° (b) 120°	c) $\frac{3\pi}{2}$ (d) 270°	
29.	If $\ell = 1.5 \text{ cm } \& r = 2.5 \text{ c}$, the		•
	(a) $\frac{3}{5}$ (b) $\frac{3}{3}$	(c) 3.75 (d) None	
30.	If $\theta = 45^{\circ}$, $r = 18$ mm, then	<i>ℓ</i> =	
· ,		(c) 810 (d) 810 mm	
31	Area of sector of circle of radi	us r is:	
,	(a) $\frac{1}{2}r^2\theta$ (b) $\frac{1}{2}r\theta^2$		
32 .	Angles with same initial and t	erminal sides are called:	
		(b) Allied angles	11.0
	``	(n) winen guilles	
	(c) Conterminal angles		
33.	(c) Conterminal angles If angle θ is in degree, then the	(d) Quad rental angle e angle conterminal with θ is	•
33.	(c) Conterminal angles If angle θ is in degree, then th (a) $\theta + 180^{0} k$, $k \in \mathbb{Z}$	(d) Quad rental angle e angle conterminal with θ is (b) θ +360° k , $k \in \mathbb{Z}$	
	(c) Conterminal angles If angle θ is in degree, then th (a) $\theta + 180^{0} k$, $k \in \mathbb{Z}$ (c) $\theta + 90^{0} k$, k	 (d) Quad rental angle e angle conterminal with θ is (b) θ +360° k , k ∈ Z (d) None of these 	
	(c) Conterminal angles If angle θ is in degree, then th (a) $\theta + 180^0 k$, $k \in \mathbb{Z}$ (c) $\theta + 90^0 k$, k If angle θ is in radian then an	 (d) Quad rental angle e angle conterminal with θ is (b) θ +360° k , k ∈ Z (d) None of these gle conterminal with θ is: 	
	(c) Conterminal angles If angle θ is in degree, then th (a) $\theta + 180^0 k$, $k \in \mathbb{Z}$ (c) $\theta + 90^0 k$, k If angle θ is in radian then and (a) $\theta + 2k \pi$, $k \in \mathbb{Z}$	(d) Quad rental angle e angle conterminal with θ is (b) $\theta + 360^{\circ} k$, $k \in \mathbb{Z}$ (d) None of these gle conterminal with θ is: (b) $\theta + k\pi$, $k \in \mathbb{Z}$	
34.	(c) Conterminal angles If angle θ is in degree, then th (a) $\theta + 180^{0} k$, $k \in \mathbb{Z}$ (c) $\theta + 90^{0} k$, k If angle θ is in radian then angle $\theta + 2k\pi$, $k \in \mathbb{Z}$ (c) $-\theta + 2k\pi$, $k \in \mathbb{Z}$	(d) Quad rental angle e angle conterminal with θ is (b) $\theta + 360^{\circ} k$, $k \in \mathbb{Z}$ (d) None of these gle conterminal with θ is: (b) $\theta + k\pi$, $k \in \mathbb{Z}$ (d) $-(\theta + 2\pi)$	its
34.	(c) Conterminal angles If angle θ is in degree, then the (a) $\theta + 180^0 k$, $k \in \mathbb{Z}$ (c) $\theta + 90^0 k$, k If angle θ is in radian then and (a) $\theta + 2k\pi$, $k \in \mathbb{Z}$ (c) $-\theta + 2k\pi$, $k \in \mathbb{Z}$ If the vertex lies at the origin of respectively.	(d) Quad rental angle e angle conterminal with θ is (b) $\theta + 360^{\circ} k$, $k \in \mathbb{Z}$ (d) None of these gle conterminal with θ is: (b) $\theta + k\pi$, $k \in \mathbb{Z}$ (d) $-(\theta + 2\pi)$ ectangular coordinate system and	its
34.	(c) Conterminal angles If angle θ is in degree, then th (a) $\theta + 180^{0} k$, $k \in \mathbb{Z}$ (c) $\theta + 90^{0} k$, k If angle θ is in radian then angle $\theta + 2k\pi$, $k \in \mathbb{Z}$ (c) $-\theta + 2k\pi$, $k \in \mathbb{Z}$	(d) Quad rental angle e angle conterminal with θ is (b) $\theta + 360^{\circ} k$, $k \in \mathbb{Z}$ (d) None of these gle conterminal with θ is: (b) $\theta + k\pi$, $k \in \mathbb{Z}$ (d) $-(\theta + 2\pi)$ ectangular coordinate system and	its
34.	(c) Conterminal angles If angle θ is in degree, then the (a) $\theta + 180^0 k$, $k \in \mathbb{Z}$ (c) $\theta + 90^0 k$, k If angle θ is in radian then and (a) $\theta + 2k\pi$, $k \in \mathbb{Z}$ (c) $-\theta + 2k\pi$, $k \in \mathbb{Z}$ If the vertex lies at the origin of radial side along the positive α	(d) Quad rental angle e angle conterminal with θ is (b) $\theta + 360^{\circ} k$, $k \in \mathbb{Z}$ (d) None of these gle conterminal with θ is: (b) $\theta + k\pi$, $k \in \mathbb{Z}$ (d) $-(\theta + 2\pi)$ ectangular coordinate system and axis, then angle is called: (b) Conterminal angle	its
34. 35.	 (c) Conterminal angles If angle θ is in degree, then the (a) θ +180° k, k ∈ Z (c) θ + 90° k, k If angle θ is in radian then and (a) θ +2kπ, k ∈ Z (c) -θ + 2kπ, k ∈ Z If the vertex lies at the origin of reinitial side along the positive α (a) Acute angle 	 (d) Quad rental angle e angle conterminal with θ is (b) θ +360° k, k ∈ Z (d) None of these gle conterminal with θ is: (b) θ + kπ, k ∈ Z (d) - (θ + 2π) ectangular coordinate system and the example and the example is called: (b) Conterminal angle (c) Quadrental angle 	its
34. 35.	 (c) Conterminal angles If angle θ is in degree, then the (a) θ +180° k, k ∈ Z (c) θ + 90° k, k If angle θ is in radian then and (a) θ +2kπ, k ∈ Z (c) -θ + 2kπ, k ∈ Z If the vertex lies at the origin of radian initial side along the positive x (a) Acute angle (c) Angle in standard position An angle is in standard position (a) at origin (b) at x-axis 	 (d) Quad rental angle e angle conterminal with θ is (b) θ +360° k, k ∈ Z (d) None of these gle conterminal with θ is: (b) θ + kπ, k ∈ Z (d) - (θ + 2π) ectangular coordinate system and exaxis, then angle is called: (b) Conterminal angle (c) at y -axis (d) in 1st Quadrental 	rant
34. 35.	 (c) Conterminal angles If angle θ is in degree, then the (a) θ +180° k, k ∈ Z (c) θ + 90° k, k If angle θ is in radian then and (a) θ +2kπ, k ∈ Z (c) -θ + 2kπ, k ∈ Z If the vertex lies at the origin of radian initial side along the positive of (a) Acute angle (c) Angle in standard position (b) at x-axis If initial and the terminal side 	 (d) Quad rental angle e angle conterminal with θ is (b) θ +360° k, k ∈ Z (d) None of these gle conterminal with θ is: (b) θ + kπ, k ∈ Z (d) - (θ + 2π) ectangular coordinate system and exaxis, then angle is called: (b) Conterminal angle (c) at y -axis (d) in 1st Quadrental 	rant
34. 35.	 (c) Conterminal angles If angle θ is in degree, then the (a) θ +180° k, k ∈ Z (c) θ + 90° k, k If angle θ is in radian then and (a) θ +2kπ, k ∈ Z (c) -θ + 2kπ, k ∈ Z If the vertex lies at the origin of radian initial side along the positive x (a) Acute angle (c) Angle in standard position An angle is in standard position (a) at origin (b) at x-axis 	 (d) Quad rental angle e angle conterminal with θ is (b) θ +360° k, k ∈ Z (d) None of these gle conterminal with θ is: (b) θ + kπ, k ∈ Z (d) - (θ + 2π) ectangular coordinate system and exaxis, then angle is called: (b) Conterminal angle (c) at y -axis (d) in 1st Quadrental 	rant

38.	0^{0} , 90^{0} , 180^{0} , 270^{0} & 360^{0} are:	.1		
	(a) Coterminal angle	(b) Quadra	ntal angle	
	(c) Allied angles	(d)None of	these	
39 .	$\sin^2\theta + \cos^2\theta$ is equal to .			
	(a) 0 (b) 1	(c) -1	(d) $Sec^2 \theta$	
40.	$1+ \tan^2\theta$ is equal to			
	(a) $\operatorname{Cosec2} \theta$ (b) $\operatorname{Sin}^2 \theta$	(c) $\sec^2 \theta$	(d) $\cot^2\theta$	
41.	$\csc^2 \theta - \cot^2 \theta$ is equal to		,	
	(a) 0 (b) 1		(d) 2	•
42.	If $\sin\theta < 0 \& \cos \theta > 0$, then the ter	minal arm of	angle lies in	Quad.
	(a) I (b) II	(c) III	(d) IV	. 1
43.	If $\cot \theta > 0$ & $\csc \theta > 0$, then the te			. Quad
	(a) I (b) II	(c) III	(d) IV	
44.	If $\tan \theta < 0$ & cosec $\theta > 0$, then the	terminal arm	of angle lies in	Qua
;	(a) I (b) II			
45.	If $\sec \theta < 0$ & $\sin \theta < 0$, then the terms			Quad
	(a) I (b) II	(c) III	(d) IV	
46.	In right angle Triangle, the mea	asure of the	side opposite t	o 30º is
	(a) Half of Hypotenuse	(b) Half of	base	
٠.	(c) Double of base			
47.	The point (0, 1) lies on terminal	l side of the	angle:	
	(a) 0 (b) 90°	(c) 180°	(d) 270°	
48.	The point $(-1, 0)$ lies on terminate	al side of an	gle:	•
	(a) 0 (b) 90°			12.00
49 .	The point $(0, -1)$ lies on termina	ıl side of ang	;le:	
	(a) 0 (b) 90°	(c) 180°	(d) 270°	
EΛ	$2 \sin 45^{\circ} + \frac{1}{2} \csc 45^{\circ} =$			
ou.	$\frac{2 \sin 45^{\circ} + - \csc 45^{\circ} -}{2}$			
	$\sim \sqrt{2}$ as 3	/-> 1	/4\ 1	•
	(a) $\sqrt{\frac{2}{3}}$ (b) $\frac{3}{\sqrt{2}}$	(c) -1	(d) 1	•
5.1	Domain of $\sin \theta$ is			
UI.	(a) R	$(b) \theta \in \mathbb{R}$	but $\theta \neq n\pi$, $n \in$: Z
•	(c) $\theta \in \mathbb{R}$ but $\theta \neq (2n+1) \frac{\pi}{2}$, $n \in$	Z (d) None	e of these	
= 0		•		• .
oz.	Domain of $\cos \theta = \frac{1}{2}$	(h) A =	R but $\theta \neq n\pi$, n	- 7
:	(a) R	(0) 0 €	n but 0 + nn, n	e Z
	(c) $\theta \in \mathbb{R}$ but $\theta \neq (2n+1) \frac{\pi}{2}$, $n \in$	Z (d) None	e of these	
				:
53.	Domain of $\tan \theta =$			•
	(a) $\theta \in \mathbb{R}$ but but $\theta \neq n \pi$, $n \in \mathbb{Z}$	(b) R		
• •	(c) $\theta \in \mathbb{R}$ but $\theta \neq (2n+1) \frac{\pi}{2}$, $n \in$	7. (d) n m	$n \in \mathbb{Z}$	
	(C) U E TO DUTO TO (AITO 12) 7, 10 E	(w) (D,78.)		

54. Domain cot $\theta =$

(a)
$$\theta \in \mathbb{R}$$

(b)
$$\theta \in \mathbb{R}$$
 but $\theta \neq n\pi$, $n \in \mathbb{Z}$

(c)
$$\theta \in \mathbb{R}$$
 but $\theta \neq (2n+1)$ $\frac{\pi}{2}$, $n \in \mathbb{Z}$ (d) $\mathbb{R} - \{0\}$

55. Domain of sec $\theta =$

(a)
$$\theta \in \mathbb{R}$$

(b)
$$\theta \in \mathbb{R}$$
 but but $\theta \neq n\pi$, $n \in \mathbb{Z}$

(c)
$$R - (1,1)$$

(d)
$$\theta \in \mathbb{R}$$
 but $\theta \neq (2 n+1) \frac{\pi}{2}$, $n \in \mathbb{Z}$

56. Domain of cosec $\theta =$

(a)
$$\theta \in \mathbb{R}$$

(b)
$$\theta \in \mathbb{R}$$
 but $\theta \neq n\pi$, $n \in \mathbb{Z}$

(c)
$$\theta \in R$$
 but $\theta \neq (2 n+1) \frac{\pi}{2}$, $n \in Z$ (d) $R - [1,1]$

57. Domain of $\sin^2\theta + \cos^2\theta = 1$

(a)
$$\theta \in \mathbb{R}$$

(b)
$$\theta \in R$$
 but $\theta \neq n \pi$, $n \in Z$

(c)
$$\theta \in R$$
 but $\theta \neq (2 \cdot n + 1) \frac{\pi}{2}$, $n \in Z$ (d) $R - [1, 1]$

58. Sec θ cosec θ sin θ cos θ =

(c)
$$\sin \theta$$

(d)
$$\cos \theta$$

59. (Sec θ + tan θ) (sec θ - tan θ) =

(b)
$$\sec^2 \theta$$

(c)
$$tan^2\theta$$

(d)
$$1-2 \tan^2\theta$$

$$60. \ \frac{1-\sin\theta}{\cos\theta} =$$

(a)
$$\frac{\cos\theta}{1-\sin\theta}$$

(b)
$$\frac{\cos \theta}{1 + \sin \theta}$$

(c)
$$\frac{\sin\theta}{1-\cos\theta}$$

(a)
$$\frac{\cos\theta}{1-\sin\theta}$$
 (b) $\frac{\cos\theta}{1+\sin\theta}$ (c) $\frac{\sin\theta}{1-\cos\theta}$ (d) $\frac{\sin\theta}{1+\cos\theta}$

61. Which of the following is not quadrental angle

(b)
$$-90^{\circ}$$

(c)
$$-180^{\circ}$$

62. Which of the following is quadrental angle

(b)
$$-90^{\circ}$$

(c)
$$-250^{\circ}$$

63. Which of the following is quadrental angle

(a)
$$-180^{\circ}$$

(b)
$$-90^{\circ}$$

(c)
$$-270^{\circ}$$

Chapter - 10

Multiple Choice Questions

(Encircle the correct answer choice)

Distance between the points $P_1(x_1, y_1) \& P_2(x_2, y_2)$ is:

(a)
$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

(c) $d = \sqrt{(x_1 - x_2)^2 + (y_2 - y_1)^2}$

(b)
$$d = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

(c)
$$d = \sqrt{(x_1 - x_2)^2 + (y_2 - y_1)^2}$$

	ODUÇO III	IAPINI	
2.	Distance between the points A (3	3, 8) & (5, 6) is:	
	(a) $2\sqrt{2}$ (b) 3 (c)		<u>/2</u>
3.	Fundamental law of Trigonometr		•
	(a) $\cos \alpha \cos \beta + \sin \alpha \sin \beta$	·	
	(c) $\sin \alpha \cos \beta + \cos \alpha \sin \beta$		
4.	$\cos (\alpha - \beta)$ is equal to		
	(a) $\cos \alpha \cdot \cos \beta + \sin \alpha \sin \beta$	(b) cos α cos	$\beta - \sin \alpha \sin \beta$
	(c) $\sin \alpha \cos \beta + \cos \alpha \sin \beta$	(d) $\sin \alpha \cos \alpha$	$\beta - \cos \alpha \sin \beta$
5 .	$\cos (\alpha + \beta)$ is equal to		
٠	(a) $\cos \alpha \cdot \cos \beta + \sin \alpha \sin \beta$	(b) cos α cos	β – $\sin \alpha \sin \beta$
	(c) $\sin \alpha \cos \beta + \cos \alpha \sin \beta$	(d) $\sin \alpha \cos \alpha$	$\beta - \cos \alpha \sin \beta$
6.	$\sin (\alpha - \beta)$ is equal to		
•	(a) $\cos \alpha \cdot \cos \beta + \sin \alpha \sin \beta$	(b) cos α cos	$\beta - \sin \alpha \sin \beta$
	(c) $\sin \alpha \cos \beta + \cos \alpha \sin \beta$	(d) $\sin \alpha \cos \alpha$	$\beta - \cos \alpha \sin \beta$
7.	$\sin (\alpha + \beta)$ is equal to		
	(a) $\cos \alpha \cdot \cos \beta + \sin \alpha \sin \beta$	(b) cos α cos	$\beta - \sin \alpha \sin \beta$
	(c) $\sin \alpha \cos \beta + \cos \alpha \sin \beta$	(d) sin α cos	$\beta - \cos \alpha \sin \beta$
8.	$\cos\left(\frac{\pi}{2}-\beta\right)$ is equal to		
	(a) $\cos \beta$ (b) $-\cos \beta$	(c) sin β	(d) $-\sin \beta$
9.	$\cos{(\beta + \frac{\pi}{2})}$ is equal to		•
	(a) $\cos \beta$ (b) $-\cos \beta$	(c) Sin β	$(d) - \sin \beta$
10.	$\sin (\beta - \frac{\pi}{2})$ is equal to		
	(a) $\cos \beta$ (b) $-\cos \beta$	(c) $\sin \beta$ (d	$-\sin \beta$
11.	$\cos (2\pi - \theta)$ is equal to		
	(a) $\cos \theta$ (b) $\cos \theta$	(c) $\sin \theta$ (d)	$\theta = \sin\theta$
12 .	$\sin (2\pi - \theta)$ is equal to .		
	(a) $\cos \theta$ (b) $-\cos \theta$	(c) $\sin \theta$ (d	$-\sin\theta$
13.	Tan $(\alpha + \beta)$ is equal to		
:	(a) $\frac{\tan \alpha - \tan \beta}{1 + \tan \alpha + \cot \beta}$	(b) $\tan \alpha + \tan \beta$	
•	$1 - \tan \alpha \tan \beta$	$1 + \tan \alpha \tan \beta$	
	$tan \alpha - tan \beta$	$\sim 100 \alpha + 100 B$	the state of the state of

 $\frac{1 - \tan \alpha \tan \beta}{1 - \tan \alpha + \tan \beta}$ $\frac{(c) \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}}$

 $1 + \tan \alpha \tan \beta$

14. Tan $(\alpha - \beta)$ is equal to

(b) $\frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$ (d) $\frac{\tan \alpha + \tan \beta}{1 + \tan \alpha \tan \beta}$

 $1 - \tan \alpha \tan \beta$

15.	Angles associated with ba		are θ to a right angle
. .	(a) Conterminal angle(c) Allied angles		n standard positions angles
16.	$\sin\left(\frac{\pi}{2}-\theta\right)$ is equal to		
	(a) $\cos \theta$ (b) $\sin \theta$	$n \theta$ (c) $-\cos \theta$	(d) $-\sin\theta$
17.	$\sin\left(\frac{\pi}{2} + \theta\right)$ is equal to		
	(a) $\cos \theta$ (b) $\sin \theta$	$n \theta$ (c) $-\cos \theta$	$(d) - \sin \theta$
18.	$\cos\left(\frac{\pi}{2}-\theta\right)$ is equal to		
	(a) $\cos \theta$ (b) $\sin \theta$	$n \theta$ (c) $-\cos \theta$	(d) $-\sin\theta$
19.	$\cos\left(\frac{\pi}{2} + \theta\right)$ is equal to		
	(a) $\cos \theta$ (b) $\sin \theta$	$n \theta$ (c) $-\cos \theta$	(d) $-\sin\theta$
20.	$\tan(\frac{\pi}{2}-\theta)$ is equal to		
	(a) $\cot \theta$ (b) ta	$n \theta$ (c) $-\cot \theta$	(d) –tan θ
21.	$\tan\left(\frac{\pi}{2} + \theta\right)$ is equal to		
	(a) $\cot \theta$ (b) ta	$n \theta$ (c) $-\cot \theta$	(d) –tan θ
22. .	$\sin (\pi - \theta)$ is equal to	•	
	(a) $\sin \theta$ (b) $\cos \theta$	$s\theta$ (c) $-\sin\theta$	$(d) - \cos \theta$
23.	$\sin(\pi + \theta)$ is equal to		7.13
0.4	(a) $\sin \theta$ (b) co	$\mathbf{s}\mathbf{\theta}$ (c) $-\mathbf{s}\mathbf{i}\mathbf{n}\mathbf{\theta}$	(d) $-\cos\theta$
	$\cos (\pi - \theta)$ is equal to (a) $\sin \theta$ (b) $\cos \theta$	A (a) ain A	(d) $-\cos\theta$
	$\cos (\pi + \theta)$ is equal to		(d) -coso
	(a) $\sin \theta$ (b) $\cos \theta$		(d) $-\cos\theta$
	$\tan (\pi - \theta)$ is equal to		
	(a) $\tan \theta$ (b) $-\epsilon$	$\cot \theta \qquad (c) - \tan \theta$	(d) $\cot \theta$
	tan $(\pi + \theta)$ is equal to		
	(a) $\tan \theta$ (b) $-\epsilon$	$\cot \theta \qquad \text{(c) } -\tan \theta$	(d) $\cot \theta$
28.	$\sin\left(\frac{3\pi}{2}-\theta\right)$ is equal to		
29.	(a) $\sin \theta$ (b) or $\sin \left(\frac{3\pi}{2} + \theta\right)$ is equal to	$\cos \theta$ (c) $\sin \theta$	(d) – cos θ
	2 (a) Sinθ (b) c	$\cos \theta$ (c) $\sin \theta$	$(d) - \cos \theta$

30.
$$\cos\left(\frac{3\pi}{2} + \theta\right)$$
 is equal to

(a) $\sin\alpha$ (b) $\cos\theta$ (c) $\sin\theta$ (d) $-\cos\theta$

31. $\cos\left(\frac{3\pi}{2} - \theta\right)$ is equal to

(a) $\sin\theta$ (b) $\cos\theta$ (c) $\sin\theta$ (d) $-\cos\theta$

32. $\tan\left(\frac{3\pi}{2} + \theta\right)$ is equal to

(a) $\tan\theta$ (b) $\cot\theta$ (c) $-\tan\theta$ (d) $-\cot\theta$

33. $\tan\left(\frac{3\pi}{2} - \theta\right)$ is equal to

(a) $\tan\theta$ (b) $\cot\theta$ (c) $-\tan\theta$ (d) $-\cot\theta$

34 $\sin\left(2\pi - \theta\right)$ is equal to

(a) $\sin\theta$ (b) $\cos\theta$ (c) $-\sin\theta$ (d) $-\cos\theta$

35. $\sin(2\pi + \theta)$ is equal to

(a) $\sin\theta$ (b) $\cos\theta$ (c) $-\sin\theta$ (d) $-\cos\theta$

36. $\cos(2\pi + \theta)$ is equal to

(a) $\sin\theta$ (b) $\cos\theta$ (c) $-\sin\theta$ (d) $-\cos\theta$

37. $\tan(2\pi - \theta)$ is equal to

(a) $\tan\theta$ (b) $\cot\theta$ (c) $-\tan\theta$ (d) $-\cot\theta$

38. $\tan(2\pi + \theta)$ is equal to

(a) $\tan\theta$ (b) $\cot\theta$ (c) $-\tan\theta$ (d) $-\cot\theta$

39. $\cos315^{\circ}$ is equal to

(a) 1 (b) 0 (c) $\frac{1}{\sqrt{2}}$ (d) $\frac{\sqrt{3}}{2}$

40. $\sin540^{\circ}$ is equal to

(a) 1 (b) 0 (c) $\frac{1}{\sqrt{3}}$ (d) -1

42. $\sec(-300^{\circ})$ is equal to

(a) 1 (b) 0 (c) $\frac{1}{\sqrt{3}}$ (d) -1

42. $\sec(-300^{\circ})$ is equal to

(a) 1 (b) 2 (c) 0 (d) -1

43. $\sin(180 + \alpha)$. $\sin(90 - \alpha)$ is equal to

(a) $\sin \alpha \cos \alpha$ (b) $-\sin \alpha \cos \alpha$ (c) $\cos \gamma$ (d) $-\cos \gamma$

44. If α, β and γ are the angles of Δ ABC, then $\sin(\alpha + \beta)$ is equal to

(a) $\sin\gamma$ (b) $-\sin\gamma$ (c) $\cos\gamma$ (d) $-\cos\gamma$

45. If
$$\alpha$$
, β and γ are the angles of Δ ABC, then $\cos \frac{(\alpha + \beta)}{2} =$

(a)
$$\sin \frac{\pi}{2}$$

(b)
$$-\sin\frac{\pi}{2}$$
 (c) $\cos\frac{\pi}{2}$ (d) $-\cos\frac{\pi}{2}$

(c)
$$\cos \frac{\pi}{2}$$

$$(d) - \cos \frac{\pi}{2}$$

46. If
$$\alpha$$
, β and γ are the angles of Δ ABC, then $\cos{(\alpha+\beta)}$ is equal to

(b)
$$-\sin \gamma$$

$$(d) - \cos \gamma$$

47.
$$\frac{\cos 11^{0} + \sin 11^{0}}{\cos 11^{0} - \sin 11^{0}} =$$

(a)
$$\tan 56^{\circ}$$
 (b) $\tan 34^{\circ}$

(b)
$$\tan 34^\circ$$

(c)
$$\cot 56^{\circ}$$

48. $\sin 2\alpha$ is equal to

(a)
$$\cos^2\alpha - \sin^2\alpha$$

(c)
$$2 \sin \alpha \cos \alpha$$

49.
$$\cos 2\alpha$$
 is equal to

(a)
$$\cos^2 \alpha - \sin^2 \alpha$$

(c)
$$1 - 2 \sin^2 \alpha$$

50.
$$\tan 2 \alpha$$
 is equal to

(a)
$$\frac{2\tan\alpha}{1+\tan2\alpha}$$

(c)
$$\frac{2\tan^2\alpha}{1-\tan^2\alpha}$$

(b)
$$2\cos^2 \alpha - 1$$

(b) $1 + \cos^2 2 \alpha$

(d) $2 \sin 2 \alpha \cos 2 \alpha$

(b)
$$\frac{2\tan\alpha}{1-\tan^2\alpha}$$

(d)
$$\frac{2\tan^2\alpha}{1-\tan^2\alpha}$$

51,
$$\cos \frac{\alpha}{2} =$$

(a)
$$\pm \sqrt{\frac{1+\sin\alpha}{2}}$$
 (b) $\pm \sqrt{\frac{1-\cos\alpha}{2}}$ (c) $\pm \sqrt{\frac{1+\cos\alpha}{2}}$ (d) $\pm \sqrt{\frac{1-\sin\alpha}{2}}$

(c)
$$\pm \sqrt{\frac{1+\cos\alpha}{2}}$$
 (

(d)
$$\pm \sqrt{\frac{1-\sin\alpha}{2}}$$

52.
$$\sin \frac{\alpha}{2}$$
 is equal to

(a)
$$\pm \sqrt{\frac{1+\sin\alpha}{2}}$$
 (b) $\pm \sqrt{\frac{1-\cos\alpha}{2}}$ (c) $\pm \sqrt{\frac{1+\cos\alpha}{2}}$ (d) $\pm \sqrt{\frac{1-\sin\alpha}{2}}$

(c)
$$\pm \sqrt{\frac{1+\cos\alpha}{2}}$$

(d)
$$\pm \sqrt{\frac{1-\sin\alpha}{2}}$$

53. $\sin 3\alpha$ is equal to

(a)
$$3 \sin \alpha - 4\sin^3 \alpha$$

(c)
$$4 \sin \alpha - 3 \sin^3 \alpha$$

54. $\cos 3 \alpha$ is equal to

(a)
$$3\cos\alpha - 4\cos\alpha$$

(c)
$$4\cos^3\alpha - 3\cos\alpha$$

$$55. \quad \frac{1-\cos\alpha}{\sin\alpha} =$$

(a)
$$\tan \frac{\alpha}{2}$$

(b)
$$\cos \frac{\alpha}{2}$$

(b)
$$3 \sin \alpha + 4 \sin^3 \alpha$$

(d) 4 Sin
$$\alpha$$
 + 3 sin³ α

(b)
$$3\cos^3\alpha + 4\cos\alpha$$

(d)
$$4\cos^3\alpha + 4\cos\alpha$$

(a)
$$\tan \frac{\alpha}{2}$$
 (b) $\cos \frac{\alpha}{2}$ (c) $\sin \frac{\alpha}{2}$ (d) $\sec \frac{\alpha}{2}$

 $(\sin \alpha + \sin \beta)$ is equal to

(a)
$$2 \sin\left(\frac{\alpha+\beta}{2}\right) \cos\left(\frac{\alpha-\beta}{2}\right)$$
 (b) $2 \cos\left(\frac{\alpha+\beta}{2}\right) \sin\left(\frac{\alpha-\beta}{2}\right)$

(c)
$$2\cos{(\frac{\alpha+\beta}{2})}\cos{(\frac{\alpha-\beta}{2})}$$

(b)
$$2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

(c)
$$2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
 (d) $-2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$

57. $\sin \alpha - \sin \beta =$

(a)
$$2 \sin{\left(\frac{\alpha+\beta}{2}\right)} \cos{\left(\frac{\alpha-\beta}{2}\right)}$$

(c)
$$2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

(a)
$$2 \sin{(\frac{\alpha+\beta}{2})} \cos{(\frac{\alpha-\beta}{2})}$$
 (b) $2 \cos{(\frac{\alpha+\beta}{2})} \sin{(\frac{\alpha-\beta}{2})}$

(d)
$$-2 \sin{\left(\frac{\alpha+\beta}{2}\right)} \sin{\left(\frac{\alpha-\beta}{2}\right)}$$

58. $\cos \alpha + \cos \beta$

(a)
$$2 \sin{\left(\frac{\alpha+\beta}{2}\right)} \cos{\left(\frac{\alpha-\beta}{2}\right)}$$

(c)
$$2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

(a)
$$2 \sin{(\frac{\alpha+\beta}{2})} \cos{(\frac{\alpha-\beta}{2})}$$
 (b) $2 \cos{(\frac{\alpha+\beta}{2})} \sin{(\frac{\alpha-\beta}{2})}$

$$(d) -2 \sin\left(\frac{\alpha+\beta}{2}\right) \sin\left(\frac{\alpha-\beta}{2}\right)$$

 $\cos \alpha - \cos \beta =$

(a)
$$2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$$

(c)
$$2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

 $2 \sin 7\theta \cos 3\theta =$

(a)
$$\sin 10\theta + \sin 4\theta$$

(c)
$$\cos 10\theta + \cos 4\theta$$

 $2\cos 5\theta \sin 3\theta$ is equal to

(a)
$$\sin \theta - \sin 2\theta$$

(c)
$$\sin 4\theta - \sin \theta$$

62. $2 \sin 7\theta \sin 2\theta$ is equal to

(a)
$$\cos 5\theta - \cos 9\theta$$

(c)
$$\sin 9\theta + \sin 5\theta$$

63. $\sin 12^{\circ} \sin 46^{\circ}$ is equal to

(a)
$$\frac{1}{2} (\cos 34^{\circ} - \cos 58^{\circ})$$

(c)
$$(\cos 58^{\circ} - \cos 34^{\circ})$$

64. Which is the allied angle:

(a)
$$90^{\circ} + \theta$$
 (b) $60^{\circ} + \theta$

(b)
$$60^{\circ} + \theta$$

The value of sin 420° is:

(a)
$$\frac{1}{2}$$

(b)
$$\frac{\sqrt{3}}{2}$$

(b) $2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$

(d)
$$-2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

(b) $\sin 5\theta + \sin 2\theta$

(d)
$$\cos 5\theta - \cos 2\theta$$

(b) $\sin 8\theta + \sin 2\theta$

(d)
$$\sin 4\theta + \sin \theta$$

(b)
$$\cos 9\theta - \cos 5\theta$$

(d)
$$\sin 9\theta + \sin 5\theta$$

(b)
$$\frac{1}{2}$$
 (cos 580 - cos 340)

(d)
$$\frac{1}{2}$$
 ($\cos 58^{\circ} + \cos 34^{\circ}$)

(c)
$$45^{\circ} + \theta$$
 (d) $30^{\circ} + \theta$

(c)
$$-\frac{1}{2}$$
 (d) $-\frac{\sqrt{3}}{2}$

66. 2 sinx cosx is equal to: (c) $\sin x/2 \cos x/2$ (d) none of these (a) $\sin x$ (b) $\sin 2x$ The value of $\cos(\alpha - 2\pi)$ is equal to: (a) $-\cos \alpha$ (b) $-\sin \alpha$ (c) $\cos \alpha$ (d) $\sin \alpha$ 68. The value of $\sin 7\pi$ is equal to: (a) 0(c) -1(d) 1/2Chapter - 11 Multiple Choice Questions Encircle the correct answer choice) 1. Domain of $y = \sin x$ is (a) - x < x < x $(b)-1\leq x\leq 1$ (d) $x \ge 1, x \le -1$ $(c) - \infty < x < \infty, x \neq n\pi, n \in \mathbb{Z}$ 2. Domain of $y = \cos x$ is $(a) - \infty < x < \infty$ $(b)-1\leq x\leq 1$ (c) $-\infty \le x \le \infty$, $x \ne n \pi$, $n \in \mathbb{Z}$ (d) $x \ge 1$, $x \le -1$ 3. Domain of y = Tan x is $(a) - \infty < x < \infty$ $(b) - \infty < x < \infty, x \neq n\pi, n \in \mathbb{Z}$ (c) $-\infty < x < \infty, x \neq \frac{(2n+1) \pi}{2}, n \in \mathbb{Z}$ (d) $-\pi \le x \le \pi$ 4. Domain of $y = \cot x$ is $(a) - \infty < x < \infty$ (c) $-\infty < x < \infty, x \neq \frac{(2n+1) \pi}{2}, n \in \mathbb{Z}$ (d) $-\pi \le x \le \pi$ 5. Domain of $y = \sec x$ is (a) $-\infty < x < \infty$ (b) $-\infty < x < \infty, x \neq n \pi, n \in \mathbb{Z}$ (c) $-\infty < x < \infty, x \neq \frac{(2n+1)\pi}{2}, n \in \mathbb{Z}$ (d) $-\pi \le x \le \pi$ **6.** Domain of $y = \csc x$ is (b) $-\infty < x < \infty, x \neq n\pi, n \in \mathbb{Z}$ $(a) - \infty < x < \infty$ (c) $-\infty < x < \infty, x \neq \frac{(2n+1) \pi}{2}, n \in \mathbb{Z}$ (d) $-\pi \le x \le \pi$ 7. Range of $y = \sin x$ is (a) R (b) $-1 \le y \le 1$ (c) $(-\infty, 1) \cup (1, \infty)$ (d) -1 < y < 18. Range of $y = \cos x$ is (a) R (b) [-1, 1] (c) -1 < y < 1 (d) $(-\infty, 1) \cup (1, \infty)$ Range of $y = \tan x$ is (a) $(-\infty, \infty)$ (b) [-1, 1] (c) Q (d) $R - \{0\}$ 10. Range of $y = \cot x$ is

(a) R

(b) R - [-1, 1] (c) $R - \{0\}$ (d) Z

11.	Range of y (a) R (c) $-1 \le y$	(b) y=	≥ 1 or $y \leq -1$	
12.	Range of y (a) R	= Cosec x is (b) $y =$	$\geq 1 \text{ or } y \leq -1$	
	measure of t	e number which when a the angle gives the same	added to the original value of the function	n is called
14.	(a) Doma Period of si	• • • • • •	(c) co domain	(d) perio
	(a) π	(b) 2π	(c) -2π	(d) $\frac{\pi}{2}$
15.	Period of ec	osec θ is	•	
	(a) π	(b) 2π	(c) -2π	$(d) \frac{3\pi}{2}$
16.	Period of ta	$\mathbf{n} \; \boldsymbol{\theta} \; \mathbf{is}$		Q #F
	(a) π	(b) 2 π	(c) -2π	(d) $\frac{3\pi}{2}$
17.	Period of c	ot θ is		o –
• •	(a) π	(b) 2 π	(c) -2π	$(d) \frac{3\pi}{2}$
18.	Period of se	$ec \theta is$		0 –
	(a) π	(b) 2π	(c) -2π	(d) $\frac{3\pi}{2}$
19.	Period of co	osθ is	€	
	(a) π	(b) 2π	(c) -2π	(d) $\frac{3\pi}{2}$
20 .]	period of sir	13x is		-
	(a) π	(b) 2π	(c) $\frac{2\pi}{3}$	(d) 6π
21.]	Period of co	s 2x is		
• .	(a) 2π	(b) π	(c) 4 π	(d) $\frac{\pi}{2}$
22. I	Period of ta	n 4 x		
٠	(a) $\frac{\pi}{4}$	(b) 4 π	(c) 8 π	(d) $\frac{\pi}{2}$
23. I	Period of co	t 3 <i>x</i> is		
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{3}$	(c) $\frac{2\pi}{3}$	(d) 3π

<u> </u>		OBJECTIVE	EPART 22	
24.	Period of sec	2x is		•
,	(a) π	(b) 2π	(c) $\frac{\pi}{2}$	(d) 4π
25.	Period of cos	ec 3x is		
• • •	(a) π	(b) $\frac{\pi}{3}$	(c) $\frac{2\pi}{3}$	(d) 3π
26.	Period of sin	$\frac{x}{3}$ is		
•	(a) 2π	$\text{(h) } \frac{2\pi}{3}$	(c) 6 π	(d) 3 π
27.	Period of cos	$\frac{x}{6}$ is		•
·	(a) 12 π	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{6}$	(d) 3π
28.	Period of $\cot \frac{3}{2}$	<u>c</u>		
	(a) 2π	(b) $\frac{\pi}{2}$	(c) π	(d) $\pi/4$
29.	Period of 3 cos	$\frac{x}{5}$ is		
	(a) $\frac{10\pi}{3}$	(b) $\frac{6\pi}{5}$	(c) 10 π	(d) $\frac{5 \pi}{3}$
30.	Period of 2 co	$\sec \frac{x}{4}$ is		
	(a) 2π	(b) 4 π	(c) $\frac{\pi}{2}$	(d) 8 π
31.	Period of 3 ta			•
	•	(b) 7 π	(c) $\frac{14\pi}{3}$	(d) 14 π
32.	(a) Breaks	rigonometric func segments line segments	(b) sharp co	the second secon
33.		function $y = \sin 2x$ x = -1		een the lines $y = -1$
34.	The graph of	sine function in the	ne interval $[0, 2\pi]$] is called
35.	The graph of	function $y = 2\sin x$ x = -1	x, will be betwe	en the lines

36. The trigonometric functions repeat their values after adding or subtracting 2π in basic angle x. This behavior is called (b) periodicity (c) continuity (a) period (d) range Chapter - 12 Multiple Choice Questions (Encircle the correct answer choice) A "Triangle" has: (a) Two elements (b) 3 Elements (d) 6 Elements (c) 4 Elements 2. At the top of a cliff 80m high the angle of depression of a beat is α . If the distance between the boat and foot of clif is $80\sqrt{3}$ m, then angle α is (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{3}$ (d) $\frac{3\pi}{4}$ When we look an object above the horizontal ray, the angle formed is (a) Angle of Elevation (b) Angle of depression (d) Angle of reflection (c) Angle of incidence 4. When we look an object below the horizontal ray, the angle formed is (a) Angle of Elevation (b) Angle of depression (c) Angle of incidence (d) Angle of reflection 5. A Triangle which is not right is called: (a) Oblique triangle (b) Isosceles triangle (c) Scalene triangle (d) Right Isosceles triangle 6. To solve an oblique triangle, we use: (b) Law of cosines (a) Law of sines (c) Law of tangents (d) All of these 7. In any triangle ABC, $\frac{b^2+c^2-a^2}{2bc}$ (a) Cos a (b) Sin α (c) Cos B (d) Cos y 8. Which can be reduced to Pythagoras theorem: (a) Law of sines (b) Law of cosines (c) Law of tangents (d)Half angle formulas 9. In any triangle ABC, if $\beta = 90^{\circ}$, then $b^2 = c^2 + a^2 - 2ac \cos \beta$ becomes: (a) Law of sin (b) Law of Tangents (c) Pythagoras Theorem (d) None of these 10. In any triangle ABC, Law of of tangent is: (a) $\frac{a-b}{a+b} = \frac{\tan(\alpha-\beta)}{\tan(\alpha+\beta)}$ (b) $\frac{a-b}{a-b} = \frac{\tan(\alpha+\beta)}{a}$ (c) $\frac{a-b}{a+b} = \frac{\tan(\frac{\alpha-\beta}{2})}{\tan(\frac{\alpha+\beta}{2})}$. (d) $\frac{a-b}{a+b} = \frac{\tan(\frac{\alpha+\beta}{2})}{\tan(\frac{\alpha-\beta}{2})}$

11. In any triangle ABC,
$$\sqrt{\frac{(s-b)(s-c)}{bc}}$$
 =

(a)
$$\sin \frac{\alpha}{2}$$

(b)
$$\cos \frac{\alpha}{2}$$

(c)
$$\sin \frac{\beta}{2}$$

(a)
$$\sin \frac{\alpha}{2}$$
 (b) $\cos \frac{\alpha}{2}$ (c) $\sin \frac{\beta}{2}$ (d) $\sin \frac{\gamma}{2}$

12. In any triangle ABC, $\sqrt{\frac{(s-a)(s-c)}{ac}}$ is equal to

(a)
$$\sin \frac{\alpha}{2}$$

(a)
$$\sin \frac{\alpha}{2}$$
 (b) $\cos \frac{\alpha}{2}$ (c) $\sin \frac{\beta}{2}$ (d) $\sin \frac{\gamma}{2}$

(c)
$$\sin \frac{\beta}{2}$$

(d)
$$\sin \frac{\gamma}{2}$$

13. In any triangle ABC, $\sqrt{\frac{(s-a)(s-b)}{ab}} = \frac{a}{ab}$

(a)
$$\sin \frac{\alpha}{2}$$

(a)
$$\sin \frac{\alpha}{2}$$
 (b) $\cos \frac{\alpha}{2}$ (c) $\sin \frac{\beta}{2}$ (d) $\sin \frac{\gamma}{2}$

(c)
$$\sin \frac{\beta}{2}$$

(d)
$$\sin \frac{\gamma}{2}$$

14. In any triangle ABC, $\cos \frac{\alpha}{2}$ is equal to

(a)
$$\sqrt{\frac{s(s-a)}{ab}}$$

(b)
$$\sqrt{\frac{s(s-b)}{ac}}$$

(c)
$$\sqrt{\frac{s(s-a)}{bc}}$$

(a)
$$\sqrt{\frac{s(s-a)}{ab}}$$
 (b) $\sqrt{\frac{s(s-b)}{ac}}$ (c) $\sqrt{\frac{s(s-a)}{bc}}$ (d) $\sqrt{\frac{s(s-c)}{ab}}$

15. In any triangle ABC, $\cos \frac{\beta}{2}$ is equal to

(a)
$$\sqrt{\frac{s(s-a)}{ab}}$$

(b)
$$\sqrt{\frac{s(s-b)}{ac}}$$

(a)
$$\sqrt{\frac{s(s-a)}{ab}}$$
 (b) $\sqrt{\frac{s(s-b)}{ac}}$ (c) $\sqrt{\frac{s(s-a)}{bc}}$ (d) $\sqrt{\frac{s(s-c)}{ab}}$

(d)
$$\sqrt{\frac{s(s-c)}{ab}}$$

16. In any triangle ABC, $\cos \frac{\gamma}{2}$ is equal to

(a)
$$\sqrt{\frac{s(s-a)}{ab}}$$
 (b) $\sqrt{\frac{s(s-b)}{ac}}$ (c) $\sqrt{\frac{s(s-a)}{bc}}$ (d) $\sqrt{\frac{s(s-c)}{ab}}$

(b)
$$\sqrt{\frac{s(s-b)}{ac}}$$

(c)
$$\sqrt{\frac{s(s-a)}{bc}}$$

(d)
$$\sqrt{\frac{s(s-c)}{ab}}$$

17. In any triangle ABC, with usual notations, s is equal to

(a)
$$a+b+c$$

(b)
$$\frac{a+b+c}{2}$$

(a)
$$a + b + c$$
 (b) $\frac{a+b+c}{2}$ (c) $\frac{a+b+c}{3}$ (d) $\frac{abc}{2}$

(d)
$$\frac{abc}{2}$$

18.
$$\sqrt{\frac{s(s-a)}{(s-b)(s-c)}} =$$

(a)
$$\sin \frac{\alpha}{2}$$
 (b) $\cos \frac{\alpha}{2}$ (c) $\tan \frac{\alpha}{2}$ (d) $\cot \frac{\alpha}{2}$

(b)
$$\cos \frac{\alpha}{2}$$

(c)
$$\tan \frac{\alpha}{2}$$

(d)
$$\cot \frac{\alpha}{2}$$

19. $\sqrt{\frac{s(s-b)}{(s-a)(s-c)}} =$

(a)
$$\sin \frac{\beta}{2}$$

(b)
$$\cos \frac{\beta}{2}$$

(a)
$$\sin \frac{\beta}{2}$$
 (b) $\cos \frac{\beta}{2}$ (c) $\tan \frac{\beta}{2}$ (d) $\cot \frac{\beta}{2}$

(d)
$$\cot \frac{\beta}{2}$$

20.	In any triangle ABC, $\sqrt{\frac{s(s-c)}{(s-a)(s-b)}}$ is equal to
	(a) $\sin \frac{\gamma}{2}$ (b) $\cos \frac{\gamma}{2}$ (c) $\tan \frac{\gamma}{2}$ (d) $\cot \frac{\gamma}{2}$
21.	In any triangle ABC, $\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ is equal to
	(a) $\sin \frac{\gamma}{2}$ (b) $\cos \frac{\gamma}{2}$ (c) $\tan \frac{\gamma}{2}$ (d) $\cot \frac{\gamma}{2}$
22.	In any triangle ABC, $\sqrt{\frac{(s-a)(s-c)}{s(s-b)}}$
	(a) $\tan \frac{\beta}{2}$ (b) $\tan \frac{\gamma}{2}$ (c) $\tan \frac{\gamma}{2}$ (d) $\sec \frac{\gamma}{2}$
23.	In any triangle ABC, $\sqrt{\frac{(s+a)(s+b)}{s(s+c)}} =$
	(a) $\sin \frac{\gamma}{2}$ (b) $\cos \frac{\gamma}{2}$ (c) $\tan \frac{\gamma}{2}$ (d) None of these
(a (c)	We can solve an oblique triangle, if:) One side and two angles are known Two sides and their included angles are known To solve an oblique Triangle when measure of three sides are
	given, we can use: (a) Hero Formula (b) Law of Cosines (c) Law of Tangents (d) Pythagoras theorem
26.	The smallest angle of \triangle ABC, when a = 37.34, b=3.24, and c = 35.06 is (a) α (b) β (c) γ (d) cannot be determined
27.	Area of Triangle in terms of measure of two sides and their included angle is:
	(a) $\frac{1}{2}bc\sin\alpha$ (b) $\frac{1}{2}ca\sin\beta$ (c) $\frac{1}{2}ab\sin\gamma$ (d) All of these
28.	In any triangle ABC, Area of Triangle is: (a) $bc \sin \alpha$ (b) $\frac{1}{2} ca \sin \alpha$ (c) $\frac{1}{2} ab \sin \gamma$ (d) $\frac{1}{2} ab \sin \beta$
29.	Area of Triangle in terms of measure of one side and two angles is:
	(a) $\frac{1}{2} \frac{a^2 \sin \beta \sin \gamma}{\sin \alpha}$ (b) $\frac{1}{2} \frac{b^2 \sin \alpha \sin \gamma}{\sin \beta}$
• 	(c) $\frac{1}{2} \frac{c^2 \sin \alpha \cdot \ln \beta}{\sin \gamma}$ (d) All of these

30.	In any triang			
				$\sqrt{(s-a)(s-b)(s-c)}$
	(c) $\Delta = \sqrt{s(a)}$	(s-a)(s-b)(s-c)	(d) Δ =	$\frac{a+b+c}{2}$
31.				Z ich one of them is not true
	1		-	1
	(a) $\Delta = \frac{1}{2}a$	$ib\sin\gamma$	(b) ∆ =	$\frac{1}{2}bc\sin\alpha$
	(c) $\Delta = \frac{1}{2}$	$\frac{a\sin\beta\sin\gamma}{\sin\alpha}$	(d) Δ ² =	s (s a) (s b) (s c)
32.				of a Trianlge is called entre (d) Escribed circle
33.	the state of the s			ctors of the sides of the
	Trianlge is		•	•
	(a)circum c		(b)In ce	entre •
*	(c)Escribed co		(d)orth	
34				vertices of a Triangle is:
0 1.	(a) Circum		(b) In-I	
٠.				•
	(c) e- Radiu	8	(d) Dia	meter .
35.	. In any triang	le ABC, with us	ual notation	ns. $\frac{a}{-}$ =
			-1	$2\sin\alpha$
•	(a) r	(b) r_1	(c) R	(d) Δ
0.0				b
36.	. In any triang	le ABC, with usu	al notation	$8, {\sin \beta} =$
	•	(b) $2 r_1$		
97				
37.	in any triangle	e ABC, with usus	notations	s , $\sin \gamma =$
	(a) R	$\frac{c}{c}$	$(c)\frac{2R}{c}$	$(d) \frac{R}{}$
	(α) 1	(b) $\frac{c}{2R}$	c	$\frac{(a)}{2}$
38.	. In any triangl	e ABC, with usu		· •
				- ·
	(a) $\frac{1}{\Lambda}$	(b) $\frac{abc}{4\Delta}$	(c) $\frac{1}{1}$	$(\mathbf{d}) = \frac{2}{1}$
00				
39.	. In any triang	le ABC, with usu	ial notation	abc =
• .	(a) R	(b) Rs	(c) 4RΔ	(d) $\frac{\Delta}{s}$
40.	The circle drawn	inside a Triangle	touching its	three sides internally is
		ed circle		
	(c) circum ci		(d) Escrib	
41	• •			· · · · · · · · · · · · · · · · · · ·
Z.1.				les of the Triangle is:
	(a) In centre	· ·	(b) e-cent	
	(c) circum centre		(d) Ex - centre	

		1.0	•
42. In Radius is denoted by			
	(c) r		(d) s
43. In any triangle ABC, with			s r is equal
(a) $\frac{s}{\Delta}$ (b) $\frac{\Delta}{s}$	(c) s	Δ	(d) $\frac{a}{2\sin\alpha}$
44. A circle which touches one	side of the T	riangle exte	
other two produced side	•		•
(a) Escribed circle (b) E			ll of these
45. The point where the inters		•	
bisector of the other two			
(a) Escribed centre (b) Ex-	centre (c) e	-centre (d) a	il of these
46. In any triangle ABC, with	usual notati	ons, $\frac{\Delta}{s-a}$:	
(a) R (b) r	(c)	r_1 (d)	Sin α
47. In any triangle ABC, with			•
(a) $\frac{\Delta}{s-a}$ (b) $\frac{\Delta}{s}$	$-\frac{b}{b}$ (c)	$\frac{-}{s-c}$ (a)	γ
48. In any triangle ABC, with	usual notati	ons, $r:R:$	r_1
(a) 1: 2: 3 (b) 3: 3	2: 1 (c) 1:	3: 2 (d)	1:1: 1
49. In any triangle ABC, with	usual notati	ons, Law of	Sine is:
(a) $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$	(b) -	$\frac{a}{a} = \frac{b}{a} = \frac{a}{a}$	<u> </u>
a b c		$\sin \alpha \sin \beta$	$\sin \gamma$
(c) $a : \sin \alpha = b : \sin \beta = c$	$: \sin \gamma (d) A$	ll of these	•
50. The area of triangle ABC	is		
(a) $\frac{1}{2}bc\sin\beta$ (b) $\frac{1}{2}bc\sin\gamma$	(c) $\frac{1}{2}bc\sin\theta$	α (d) $\frac{1}{2}bc$ si	$n(\alpha+\beta+\gamma)$
51. For a circum circle, R =		_	
(a) $\frac{abc}{4\Delta}$ (b) $\frac{a}{4s\Delta}$	abc	4Δ	
(a) $\frac{1}{4\Delta}$ (b) $\frac{1}{4s\Delta}$	(c) $\overline{\Delta}$	$\frac{(a)}{abc}$	
52. In a triangle ABC if $\beta = 6$	60° , $\gamma = 15^{\circ}$,	then α equ	als:
(a) 90° (b) 180°			
53. With usual notation r_3 equ	ıals		
(a) $\frac{\Delta}{}$ (b) $\frac{\Delta}{}$	(c) Δ	(d) Δ	
(a) $\frac{\Delta}{s-a}$ (b) $\frac{\Delta}{s-b}$	s-c	s + a	
54. With usual notations, $\frac{\Delta}{s-c}$	– is equal to	•	•
(a) r (b) r_1		(d) r ₃	
55. With usual notation r2 is e			
(a) Δ (b) Δ		(d) s	
\ \—\ \—\ \—\ \—\ \—\ \—\ \—\ \—\ \—\ \	(-)	· · · · · · · · · · · · · · · · · · ·	

Chapter - 13

Multiple Choice Questions

(Encircle the correct answer choice)

Note: Here we are dealing with principal function or capital function i.e.

- Instead of sin x, we use Sin x.
 Instead of cos x, we use Cos x
 Instead of tan x we use Tan x etc. While in chapter 11, General functions were discussed and symbols sinx, tanx etc. were used.
- 2. Here we are restricting the domain to make the function (1-1), so that its inverse is to be calculated.
- 3. Inverse of general Trigonometric functions does not exist. It exists only when function is (1-1), to make the function (1-1), we restrict the domain of the function and we call the function principal or capital functions. We denote the principal functions as:

$$y = \sin x$$
, $y = \cos x$, $y = \sec x$
 $y = \operatorname{Cosec} x$, $y = \operatorname{Tan} x$, $y = \operatorname{Cot} x$

1. If $y = \sin x$, then Domain is

$$(a) - \frac{\pi}{2} \le x \le \frac{\pi}{2}.$$

(c)
$$[0, \pi], x \neq \frac{\pi}{2}$$

(d)
$$[-\frac{\pi}{2}, \frac{\pi}{2}], x \neq 0$$

2. If $y = \cos x$, then Domain is

$$(a) - \frac{\pi}{2} \le x \le \frac{\pi}{2}.$$

(c)
$$[0, \pi], x \neq \frac{\pi}{2}$$

3. If $y = \operatorname{Sec} x$, then Domain is

$$(a) - \frac{\pi}{2} \le x \le \frac{\pi}{2}$$

(c)
$$[0, \pi], x \neq \frac{\pi}{2}$$

4. If $y = \operatorname{Cosec} x$, then Domain is

$$(a) - \frac{\pi}{2} \le x \le \frac{\pi}{2}$$

(c)
$$[0, \pi], x \neq \frac{\pi}{2}$$

(b)
$$0 \le x \le \pi$$

(b) $0 \le x \le \pi$

(d)
$$[-\frac{\pi}{2}, \frac{\pi}{2}], x \neq 0$$

(b)
$$0 \le x \le \pi$$

(d)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], x \neq 0$$

(b)
$$0 \le x \le \pi$$

(d)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], x \neq 0$$

5. If
$$y = \operatorname{Tan} x$$
, then domain is

(a)
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
 (b) $-\frac{\pi}{2} < x < \frac{\pi}{2}$ (c) $0 < x < \pi$ (d) $0 \le x \le \pi$

6. If
$$y = \cot x$$
, then domain is

(a)
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
 (b) $-\frac{\pi}{2} < x < \frac{\pi}{2}$ (c) $0 < x < \pi$ (d) $0 \le x \le \pi$

7. If
$$y = \sin x$$
, then range is

(a)
$$-1 \le y \le 1$$
 (b) $(-\infty, +\infty)$ or R (c) $y \le -1$ or $y \ge 1$ (d) $y < -1$ or $y > 1$

8. If
$$y = \cos x$$
, then range is

$$(a) -1 \le y \le 1$$

(c)
$$y \le -1$$
 or $y \ge 1$

9. If
$$y = \operatorname{Tan} x$$
, Then range is
(a) $-1 \le y \le 1$

(c)
$$v < -1$$
 or $v > 1$

(c)
$$y \le -1$$
 or $y \ge 1$

10. If,
$$y = \text{Cot } x$$
, then range is
(a) $-1 \le y \le 1$

(c)
$$y \le -1$$
 or $y \ge 1$

11. If
$$y = \operatorname{Cosec} x$$
, then range is

(a)
$$-1 \le y \le 1$$
 (b) $(-\infty, +\infty)$ or R
-1 or $y > 1$

12. If
$$y = \operatorname{Sec} x$$
, then range is

$$(a) -1 \le y \le 1$$

(c)
$$y \le -1$$
 or $y \ge 1$

13. If
$$y = \sin^{-1}x$$
, then domain is

$$(a) -1 \le x \le 1$$

(c)
$$x \ge -1$$
 or $x \le 1$

14. If
$$y = \cos^{-1} x$$
, then Domain is

$$(a) -1 \le x \le 1$$

(c)
$$x \ge -1$$
 or $x \le 1$

15. If
$$y = \text{Tan}^{-1} x$$
, then domain is

$$(a) -1 \le x \le 1$$

(c)
$$x \ge -1$$
 or $x \le 1$

16. If
$$y = \cot^{-1} x$$
, then Domain is

$$(a) -1 \le x \le 1$$

(c)
$$x \ge -1$$
 or $x \le 1$

17. If
$$y = See^{-1}x$$
, then Domain is

(a)
$$-1 \le x \le 1$$

(c)
$$x \ge -1$$
 or $x \le 1$

18. If
$$y = \operatorname{Cosec}^{-1}x$$
, then Domain is

$$(\mathbf{a}) - 1 \le x \le 1$$

(c)
$$x \ge -1$$
 or $x \le 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$y < -1$$
 or $y > 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$y < -1 \text{ or } y > 1$$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$y < -1$$
 or $y > 1$

(c)
$$y \le -1$$
 or $y \ge 1$ (d) $y < 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$y < -1$$
 or $y > 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$x \le -1$$
 or $x \ge 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$x \le -1$$
 or $x \ge 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$x \le -1$$
 or $x \ge 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$x \le -1$$
 or $x \ge 1$

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$x \le -1$$
 or $x \ge 1$.

(b)
$$(-\infty, +\infty)$$
 or R

(d)
$$x \le -1$$
 or $x \ge 1$

19. If $y = \operatorname{Sin}^{-1} x$, then range is

(a)
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
 (b) $0 \le x \le \pi$ (c) $-\frac{\pi}{2} < x < \frac{\pi}{2}$ (d) $0 < x < \pi$

20. If $y = \cos^{-1}x$, then range is

(a)
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
 (b) $0 \le x \le \pi$ (c) $-\frac{\pi}{2} < x < \frac{\pi}{2}$ (d) $0 < x < \pi$

21. If $y = \text{Tan}^{-1}x$, then range is

(a)
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
 (b) $0 \le x \le \pi$ (c) $-\frac{\pi}{2} < x < \frac{\pi}{2}$ (d) $0 < x < \pi$

22. If $y = \cot^{-1}x$, then range is

(a)
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
 (b) $0 \le x \le \pi$ (c) $-\frac{\pi}{2} < x < \frac{\pi}{2}$ (d) $0 < x < \pi$

23. If $y = \text{See}^{-1}x$, then range is

(a)
$$0 \le y \le \pi, \ y \ne \frac{\pi}{2}$$
 (b) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}, \ y \ne 0$

(c)
$$0 < y < \pi$$
 (d) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

24. If $y = \operatorname{Cosec}^{-1}x$, then range is

(a)
$$0 \le y \le \pi$$
, $y \ne \frac{\pi}{2}$
(b) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, $y \ne 0$
(c) $0 < y < \pi$
(d) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

- (a) trigonometric function
- (b) (1-1) function

(c) onto function

(c) $0 < y < \pi$

(d) an into function

26. If $y = \sin^{-1}x$, then which is not true

- (b) domain of Inverse function is value of x(a) $x = \sin y$
- (c) $y = (Sin)^{-1}$ (d) range of Inverse function is value of y

27. $\sin^{-1}x =$

(a)
$$\frac{\pi}{2} - \cos^{-1}x$$
 (b) $\frac{\pi}{2} - \sin^{-1}x$ (c) $\frac{\pi}{2} + \cos^{-1}x$ (d) $\frac{\pi}{2} - \csc^{-1}x$

28. $\cos^{-1} x = ...$

(a)
$$\frac{\pi}{2} - \cos^{-1}x$$
 (b) $\frac{\pi}{2} - \sin^{-1}x$ (c) $\frac{\pi}{2} - \sec^{-1}x$ (d) $\frac{\pi}{2} + \cos^{-1}x$

29. Cosec $^{-1}x = .$

(a)
$$\frac{\pi}{2} - \sec^{-1}x$$
 (b) $\frac{\pi}{2} - \csc^{-1}x$ (c) $\frac{\pi}{2} + \csc^{-1}x$ (d) $\frac{\pi}{2} - \sin^{-1}x$

30. Sec
$$-1x =$$

(a)
$$\frac{\pi}{2}$$
 - $\csc^{-1}x$ (b) $\frac{\pi}{2}$ - $\sec^{-1}x$ (c) $\frac{\pi}{2}$ - $\cos^{-1}x$ (d) $\frac{\pi}{2}$ + $\sec^{-1}x$

31. Tan -1x =

(a)
$$\frac{\pi}{2} - \tan^{-1}x$$
 (b) $\frac{\pi}{2} - \cot^{-1}x$ (c) $\frac{\pi}{2} + \tan^{-1}x$ (d) $\frac{\pi}{2} + \cot^{-1}x$

32. Cot
$$^{-1}$$
 $x = \dots$

(a)
$$\frac{\pi}{2} - \tan^{-1}x$$
 (b) $\frac{\pi}{2} - \cot^{-1}x$ (c) $\frac{\pi}{2} + \tan^{-1}x$ (d) $\frac{\pi}{2} + \cot^{-1}x$

33. Sin
$$(\cos^{-1}\frac{\sqrt{3}}{2}) = \dots$$

(a)
$$\frac{\pi}{6}$$
 (b) $\frac{1}{2}$ (c) $-\frac{1}{2}$ (d) $\frac{\sqrt{3}}{2}$

34.
$$\cos (Tan^{-1}0) = \dots$$

(a) 0 (b) 1 (c)
$$\frac{\pi}{2}$$
 (d) -1

35. Sec
$$[\sin^{-1}(-\frac{1}{2})] = \dots$$

(a)
$$\frac{2}{\sqrt{3}}$$
 (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{1}{2}$ (d) $-\frac{2}{\sqrt{3}}$

36.
$$\sin^{-1}(\frac{1}{2}) =$$

(a)
$$\frac{\pi}{6}$$
 (b) $-\frac{\pi}{6}$ (c) $-\frac{\pi}{3}$ (d) $\frac{\pi}{3}$

37.
$$\cos^{-1}(\frac{1}{2}) = \dots$$

(a)
$$\frac{\pi}{6}$$
 (b) $-\frac{\pi}{6}$ (c) $-\frac{\pi}{3}$ (d) $\frac{\pi}{3}$

38.
$$Tan^{-1}(-\frac{1}{3}) = \dots$$

(a)
$$\frac{\pi}{6}$$
 (b) $-\frac{\pi}{6}$ (c) $-\frac{\pi}{3}$ (d) $\frac{\pi}{3}$

39. Tan
$$-1(\sqrt{3}) = \dots$$

(a)
$$\frac{\pi}{6}$$
 (b) $-\frac{\pi}{6}$ (c) $-\frac{\pi}{3}$ (d) $\frac{\pi}{3}$

40.
$$Cot^{-1}(-1) =$$

$$(a)\frac{\pi}{4}$$

$$(a)\frac{\pi}{4} \qquad (b) - \frac{\pi}{4}$$

(c)
$$\frac{3\pi}{4}$$

$$(d)-\frac{3\pi}{4}$$

41. Tan Tan $^{-1}(-1) =$

$$(a) -1$$

(c)
$$\frac{\pi}{4}$$

(c)
$$\frac{\pi}{4}$$
 (d) $-\frac{\pi}{4}$

42. Cos (Sin $^{-1}\frac{1}{\sqrt{2}}$) =

(a)
$$\frac{2}{\sqrt{3}}$$
 (b) $\frac{\sqrt{3}}{2}$

(b)
$$\frac{\sqrt{3}}{2}$$

(e)
$$\frac{1}{2}$$

(d)
$$\frac{1}{\sqrt{2}}$$

48. Sec (Cos⁻¹ $\frac{1}{2}$) =

(a) 2 (b)
$$\frac{\sqrt{3}}{2}$$

(c)
$$\frac{\pi}{3}$$

(d)
$$\frac{2}{\sqrt{3}}$$

44. Tan $\cos^{-1} \frac{\sqrt{3}}{2} =$

(a)
$$\sqrt{3}$$

(a)
$$\sqrt{3}$$
 (b) $\frac{1}{\sqrt{3}}$

(c)
$$\frac{\pi}{3}$$

(d)
$$\frac{\pi}{6}$$

45. Cosec $(Tan^{-1}(-1)) = ...$

(a)
$$\frac{1}{\sqrt{2}}$$

(a)
$$\frac{1}{\sqrt{2}}$$
 (b) $-\frac{1}{\sqrt{2}}$

(c)
$$\sqrt{2}$$

(d)
$$-\sqrt{2}$$

46. Sin $(\sin^{-1}\frac{1}{2}) = \dots$

(a)
$$\frac{1}{2}$$
 (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{6}$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{6}$$

(d)
$$\frac{\sqrt{3}}{2}$$

47. Tan $(\sin^{-1}(-\frac{1}{2})) = \dots$

(a)
$$\sqrt{3}$$

(b)
$$-\sqrt{3}$$

(a)
$$\sqrt{3}$$
 (b) $-\sqrt{3}$ (c) $\frac{1}{\sqrt{3}}$

$$(d) - \frac{1}{\sqrt{3}}$$

48. Sin -1A + Sin -1B is equal to

(a)Sin ⁻¹(A
$$\sqrt{1-B^2}$$
 + B $\sqrt{1-A^2}$)

(a)Sin⁻¹(A
$$\sqrt{1-B^2}$$
 + B $\sqrt{1-A^2}$) (b)Sin⁻¹(A $\sqrt{1-B^2}$ -B $\sqrt{1-A^2}$)

(c)
$$\sin^{-1}(B\sqrt{1-A^2}) - (A\sqrt{1-B^2})$$
 (d) $\sin^{-1}(AB\sqrt{1-A^2)(1-B^2})$

49. $\sin^{-1} A - \sin^{-1} B = ...$

(a)Sin⁻¹(
$$A\sqrt{1-B^2} + B\sqrt{1-A^2}$$
) (b)Sin⁻¹($A\sqrt{1-B^2} - B\sqrt{1-A^2}$)

(b)Sin
$$^{-1}(A\sqrt{1-B^2}-B\sqrt{1-A^2})$$

(c)Sin⁻¹ (B
$$\sqrt{1-A^2}$$
) - (A $\sqrt{1-B^2}$) (d)Sin⁻¹ (AB $\sqrt{(1-A^2)(1-B^2)}$

(d)Sin⁻¹ (AB
$$\sqrt{(1-A^2)(1-B^2)}$$

50.
$$Cos^{-1} A + Cos^{-1} B =$$

(a)
$$\cos^{-1}(AB - \sqrt{(1-A^2)(1-B^2)})$$

(c)Cos⁻¹(AB +
$$\sqrt{(1+A^2)(1+B^2)}$$
)

51.
$$\cos^{-1}A - \cos^{-1}B = \dots$$

(a)
$$\cos^{-1}(AB - \sqrt{(1-A^2)(1-B^2)})$$

(c)Cos⁻¹(AB +
$$\sqrt{(1+A^2)(1+B^2)}$$
)

52.
$$Tan^{-1}A + Tan^{-1}B =$$

(a) Tan⁻¹
$$(\frac{A-B}{1+AB})$$

(c) Tan
$$^{-1}(\frac{A-B}{1-AB})$$

(a) Tan
$$^{-1}(\frac{A-B}{1+AB})$$

(c) Tan
$$\cdot 1(\frac{A-B}{1-AB})$$

54. 2 Tan
$$-1$$
A =

(a) Tan
$$^{-1}(\frac{A}{1-A^2})$$

(c)
$$Tan^{-1}(\frac{2A}{1+A^2})$$

55. Sin
$$^{-1}$$
 ($-x$) =

$$(a) - \sin^{-1} x$$

(b)
$$Sin^{-1} x$$

56. $Cos^{-1}(-x)$

(a)
$$Cos^{-1}x$$

(b)
$$Sin^{-1} x$$

57.
$$Tan^{-1}(-x) = \dots$$

(a)
$$- \text{Tan}^{-1}x$$
 (b) $\pi - \tan^{-1}x$

58.
$$2 \sin^{-1} A = \dots$$

(a)
$$\sin^{-1}(2A \sqrt{1-A^2})$$

(c) Sin ⁻¹ (2A
$$\sqrt{1+A^2}$$
)

59.
$$2\cos^{-1}A =$$

(a)
$$Cos^{-1}(2A^2-1)$$

(c)
$$Cos^{-1}(2A-1)$$

60. Cosec
$$^{-1}$$
 ($-x$) =

(a)
$$-Cosec^{-1}x$$

(c)
$$\pi - \operatorname{Cosec}^{-1} x$$

(b)Cos⁻¹(AB +
$$\sqrt{(1-A^2)(1-B^2)}$$
)

(d)
$$\cos^{-1}(AB - \sqrt{(1+A^2)(1+B^2)})$$

(b)Cos⁻¹(AB +
$$\sqrt{(1-A^2)(1-B^2)}$$
)

(d)Cos⁻¹(AB -
$$\sqrt{(1+A^2)(1+B^2)}$$

(b) Tan
$$^{-1}(\frac{A+B}{1-AB})$$

(d) Tan
$$^{-1}(\frac{A+B}{1+AB})$$

(b) Tan
$$^{-1}(\frac{A+B}{1-AB})$$

(d) Tan
$$^{-1}(\frac{A+B}{1+AB})$$

(b) Tan
$$^{-1}(\frac{2A}{1-A})$$

(d)
$$Tan^{-1}(\frac{A}{1+A^2})$$

(c)
$$\pi - \sin^{-1} x$$
 (d) $\pi - \sin x$

(c)
$$\pi - \cos^{-1} x$$
 (d) $- \cos^{-1} x$

(c)
$$\cot^{-1}x$$
 (d) $\operatorname{Tain}^{-1}x$

(b)
$$\sin^{-1}(A \sqrt{1-A^2})$$

(d)
$$\cos^{4}(2A\sqrt{1-A^2})$$

(b)
$$\cos^{-1}(1-2A^2)$$

(d)
$$Cos^{-1}(2A^2+1)$$

(d)
$$\pi - \operatorname{Sin}^{-1} x$$

- **61.** Sec⁻¹ (-x)
 - (a) $Cos^{-1}x$
- (b) $Sec^{-1} x$ (c) $\pi Sec^{-1} x$ (d) $Sec^{-1} x$

- **62.** $\cot^{-1}(-x) = \dots$

 - (a) $= \cot^{-1}x$ (b) $\pi \tan^{-1}x$ (c) $\pi \cot^{-1}x$
- (d) $Tan^{-1} x$

- **63.** $Tan \left| \cos^{-1} \frac{\sqrt{3}}{2} \right| =$
 - (a) $\frac{1}{\sqrt{3}}$ (b) $\frac{\sqrt{3}}{2}$ (c) $\sqrt{3}$
- (d) $\frac{2}{\sqrt{2}}$

- 64. $Tan^{-1} \left| \frac{2A}{1-A^2} \right|$ is equal to:

 - (a) $Tan^{-1}A$ (b) $Tan^{-1}\left(\frac{2}{A}\right)$ (c) $2Tan^{-1}A$ (d) $Tan^{-1}\left(\frac{A}{2}\right)$

- **65.** $Tan^{-1}(2A) =$

 - (a) $Tan^{-1}\left(\frac{A}{2}\right)$ (b) $Tan^{-1}\left(\frac{2}{A}\right)$ (c) $2Tan^{-1}A$ (d) Non of these

Chapter - 14

Multiple Choice Questions

(Encircle the correct answer choice)

- 1. An equation containing at least one trigonometric function is called:
 - (a) Trigonometric function
- (b) Trigonometric equation
- (c) Trigonometric value
- (d) Periodic equation
- 2. If Sin $x = \frac{1}{2}$, then solution in the interval $[0, 2\pi]$ is:

- (a) $\{\frac{\pi}{6}, \frac{5\pi}{6}\}$ (b) $\{\frac{\pi}{6}, \frac{7\pi}{6}\}$ (c) $\{\frac{\pi}{2}, \frac{4\pi}{2}\}$ (d) $\{\frac{\pi}{2}, \frac{2\pi}{2}\}$
- 3. If $\cos x = \frac{1}{2}$, then reference angle is:

 - (a) $\frac{\pi}{3}$ (b) $-\frac{\pi}{6}$ (c) $\frac{\pi}{6}$

- 4. If Sin $x = -\frac{1}{2}$, then reference angle is:

 - (a) $\frac{\pi}{3}$ (b) $-\frac{\pi}{3}$ (c) $\frac{\pi}{6}$

5. General Solution of $\tan x = 1$ is:

(a)
$$\{\frac{\pi}{4} + n\pi, \frac{5\pi}{4} + n\pi\}$$

(a)
$$\{\frac{\pi}{4} + n\pi, \frac{5\pi}{4} + n\pi\}$$
 (b) $\{\frac{\pi}{4} + 2n\pi, \frac{5\pi}{4} + 2n\pi\}$

(c)
$$\{\frac{\pi}{4}+n \pi, \frac{3\pi}{4} n \pi\}$$

(c)
$$\{\frac{\pi}{4} + n \pi, \frac{3\pi}{4} n \pi\}$$
 (d) $\{\frac{\pi}{4} + 2n \pi, \frac{3\pi}{4} + 2n \pi\}, n \in \mathbb{Z}$

If $\tan 2x = -1$, then solution in the interval $[0, \pi]$ is:

(a)
$$\frac{\pi}{8}$$
 (b) $\frac{\pi}{4}$ (c) $\frac{3\pi}{8}$

(b)
$$\frac{\pi}{4}$$

(c)
$$\frac{3\pi}{8}$$

(d)
$$\frac{3\pi}{4}$$

7. If $\sin x + \cos x = 0$, then value of $x \in [0, 3\pi]$

(a)
$$\{\frac{\pi}{4}, \frac{3\pi}{4}\}$$

(b)
$$\{\frac{\pi}{4}, \frac{7\pi}{4}\}$$

(a)
$$\{\frac{\pi}{4}, \frac{3\pi}{4}\}$$
 (b) $\{\frac{\pi}{4}, \frac{7\pi}{4}\}$ (c) $\{\frac{3\pi}{4}, \frac{7\pi}{4}\}$ (d) $\{\frac{\pi}{4}, \frac{-\pi}{4}\}$

(d)
$$\left\{\frac{\pi}{4}, \frac{-\pi}{4}\right\}$$

8. If Sin 2 $x = \frac{\sqrt{3}}{2}$, then $x \in [0, \pi]$ is

(a)
$$\{\frac{\pi}{6}, \frac{5\pi}{6}\}$$

(b)
$$\{\frac{\pi}{6}, \frac{\pi}{12}\}$$

(a)
$$\{\frac{\pi}{6}, \frac{5\pi}{6}\}$$
 (b) $\{\frac{\pi}{6}, \frac{\pi}{12}\}$ (c) $\{\frac{\pi}{6}, \frac{5\pi}{6}\}$ (d) $\{\frac{\pi}{6}, \frac{\pi}{3}\}$

(d)
$$\{\frac{\pi}{6}, \frac{\pi}{3}\}$$

9. General solution of the equation $1 + \cos x = 0$ is:

(a)
$$\{\pi + 2 n \pi\}$$

(b)
$$\{\pi + n\pi\}, n \in \mathbb{Z}$$

(c)
$$\{-\pi + n \pi\}$$

General solution of $4 \sin x - 8 = 0$ is:

(a)
$$\{\pi+2 n \pi\}$$

(b)
$$\{\pi+n \ \pi\}, n \in \mathbb{Z}$$

(c)
$$\{-\pi + n \pi\}$$

11. If $\sin x = \cos x$, then value of x is:

(a)
$$\{\frac{\pi}{4}\}$$

(b)
$$\{\frac{\pi}{4}, \frac{5\pi}{4}\}$$

(c)
$$\{\frac{\pi}{4}, \frac{3\pi}{4}\}$$

(a)
$$\{\frac{\pi}{4}\}$$
 (b) $\{\frac{\pi}{4}, \frac{5\pi}{4}\}$ (c) $\{\frac{\pi}{4}, \frac{3\pi}{4}\}$ (d) $\{\frac{3\pi}{4}, \frac{5\pi}{4}\}$

12 If $\cot \theta = \frac{1}{\sqrt{2}}$, then value of θ in $[0, \pi]$ is:

(a)
$$\frac{\pi}{3}$$

(b)
$$\frac{\pi}{6}$$

(a)
$$\frac{\pi}{3}$$
 (b) $\frac{\pi}{6}$ (c) $\{\frac{\pi}{3}, \frac{\pi}{6}\}$

13 Solution of equation $2 \sin x + \sqrt{3} = 0$ in 4th Quadrant is:

(a)
$$\frac{\pi}{3}$$

(a)
$$\frac{\pi}{3}$$
 (b) $\frac{-\pi}{3}$

(c)
$$\frac{-\pi}{6}$$

(d)
$$\frac{11\pi}{6}$$

14. If $\sin x = \cos x$, then General solution is:

(a)
$$\{\frac{\pi}{4} + n\pi, n \in \mathbb{Z}\}$$

(b)
$$\{\frac{\pi}{\Delta} + 2n\pi, n \in \mathbb{Z}\}$$

(c)
$$\{\frac{\pi}{4} + n\pi, \frac{5\pi}{4} + n\pi, n \in Z\}$$

(c)
$$\{\frac{\pi}{4} + n\pi, \frac{5\pi}{4} + n\pi, n \in \mathbb{Z}\}\$$
 (d) $\{\frac{\pi}{4} + 2n\pi, \frac{5\pi}{4} + 2n\pi, n \in \mathbb{Z}\}\$

15.	
	(a) $\{\frac{2\pi}{3}, \frac{4\pi}{3}\}$ (b) $\{\frac{\pi}{3}, \frac{\pi}{6}\}$
•	(c) $\{\frac{\pi}{3}, \frac{2\pi}{3}, \frac{\pi}{6}\}$ (d) $\{\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}\}$
16.	3 3 6 3 3 3 3 3 1 1 1 4 $\sin^2 x = 3$, then value of x in $[0, \pi]$ is:
	(a) $\{\frac{\pi}{3}, \frac{2\pi}{3}\}$ (b) $\{\frac{\pi}{6}, \frac{5\pi}{6}\}$ (c) $\{\frac{\pi}{3}, \frac{\pi}{6}\}$ (d) $\{\frac{2\pi}{3}, \frac{5\pi}{6}\}$
17.	For the general solution, we first find the solution in the interval whose length is equal to its:
18.	(a) range (b) domain (c) co-domain (d) period All trigonometric function are
19.	General solution of every trigonometric equation consists of: (a) one solution only (b) two solutions
20.	(c) infinity many solutions (d) No real solution If $\sin 2x = \cos x$, then values of x in $[0,\pi]$ are:
	(a) $\{\frac{\pi}{6}, \frac{5\pi}{6}\}$ (b) $\{\frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}\}$ (c) $\{\frac{\pi}{2}, \frac{\pi}{6}\}$ (d) $\{\frac{\pi}{2}, \frac{\pi}{3}, \frac{2\pi}{3}\}$
21	If $\sin x = 0$, then solution set is: (a) $\{0\}$ (b) $\{\pi\}$ (c) $\{n\pi, n \in \mathbb{Z}\}$ (d) $\{2\pi, n \in \mathbb{Z}\}$
22.	If sin = 1, then solution set is: (a) $\{\frac{\pi}{2}\}$ (b) $\{\frac{\pi}{2} + n\pi, \frac{3\pi}{2} + n\pi, n \in \mathbb{Z}\}$
92	(c) $\{\frac{\pi}{2} + 2n\pi\}$ (d) $\{n\pi, n \in \mathbb{Z}\}$
20.	If $\cos x = 1$, then solution set is: (a) $\{0\}$ (b) $\{\pi\}$ (c) $\{2 \ n\pi, \ n \in \mathbb{Z}\}$ (d) $\{\frac{\pi}{2} + 2 \ n \ \pi, \ n \in \mathbb{Z}\}$
24.	If $\cos x = 0$, then solution set is:
•	(a) $\{\frac{\pi}{2}\}$ (b) $\{\frac{3\pi}{2}\}$ (c) $\{\frac{\pi}{2}+2n\pi, n \in \mathbb{Z}\}$ (d) $\{2n\pi, n \in \mathbb{Z}\}$
25.	If $\tan x = 0$, then solution set is: (a) $\{0\}$ (b) $\{\pi\}$ (c) $\{n\pi, n \in \mathbb{Z}\}$ (d) $\{2\pi, n \in \mathbb{Z}\}$
26.	If $\cot x = 0$, then solution set is:
•	(a) $\{\frac{\pi}{2}\}$ (b) $\{\frac{3\pi}{2}\}$ (c) $\{\frac{\pi}{2} + 2n\pi, n \in \mathbb{Z}\}$ (d) $\{2n\pi, n \in \mathbb{Z}\}$

27. If cosec x = 1, then solution set is:

(a)
$$\{-\frac{\pi}{2}\}$$
 (b) $\{\frac{3\pi}{2}\}$ (c) $\{\frac{\pi}{2} + 2n\pi, n \in \mathbb{Z}\}$ (d) $\{2n\pi, n \in \mathbb{Z}\}$

28. If $\sec x = 1$, then solution set is:

(a)
$$\{0\}$$
 (b) $\{\pi\}$ (c) $\{n\pi, n \in \mathbb{Z}\}$ (d) $\{2n\pi, \in \mathbb{Z}\}$

29. If $\sin x = -1$, then solution set is:

(a)
$$\{-\frac{\pi}{2}\}$$
 (b) $\{-\frac{3\pi}{2}\}$ (c) $\{-\frac{\pi}{2} + n\pi, n \in \mathbb{Z}\}$ (d) $\{2n\pi, n \in \mathbb{Z}\}$

30. If $\cos x = -1$, then solution set is:

(a)
$$\{\pi\}$$
 (b) $\{\pi + n\pi, n \in Z\}$ (c) $\{\pi + 2n\pi, n \in Z\}$ (d) $\{2n\pi, n \in Z\}$

31. If $\csc = -1$, then solution set is:

(a)
$$\{-\frac{\pi}{2}\}$$
 (b) $\{-\frac{3\pi}{2}\}$ (c) $\{-\frac{\pi}{2}+n\pi, n\in \mathbb{Z}\}$ (d) $\{2n\pi, n\in \mathbb{Z}\}$

32. If $\sec x = -1$, then solution set is =

(a)
$$\{0\}$$
 (b) $\{\pi\}$ (c) $\{2n\pi, n \in \mathbb{Z}\}$ (d) $\{\pi + 2n\pi, n \in \mathbb{Z}\}$

33. If $\tan 4x = 1$, then value of x in $[0, 2\pi]$ is:

(a)
$$\{\frac{\pi}{4}, \frac{5\pi}{4}\}$$
 (b) $\{\frac{\pi}{16}, \frac{5\pi}{16}\}$ (c) $\{\frac{\pi}{8}, \frac{5\pi}{8}\}$ (d) $\{\frac{\pi}{8}, \frac{\pi}{16}\}$

34. One solution of $\sec x = -2$ is:

(a)
$$\frac{2\pi}{3}$$
 (b) $\frac{\pi}{3}$ (c) $\frac{4\pi}{5}$ (d) $\frac{-\pi}{3}$

35. If $\cos \theta = -\frac{1}{2}$ and $\sin \theta = \frac{-\sqrt{3}}{2}$, then θ is:

(a)
$$\frac{\pi}{3}$$
 (b) $\frac{2\pi}{3}$ (c) $\frac{4\pi}{3}$ (d) $\frac{5\pi}{3}$

36. Sin $2x = \frac{\sqrt{3}}{2}$ has two values of x in the interval:

(a)
$$[0, \frac{\pi}{2}]$$
 (b) $[0, 2\pi]$ (c) $[-\pi, \frac{\pi}{2}]$ (d) $\left[\frac{-\pi}{2}, 0\right]$

37. Solution of $\sin x = \frac{1}{2}$ in $[0,\pi]$ is:

(a)
$$\frac{\pi}{3}$$
 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{6}, \frac{5\pi}{6}$ (d) $\frac{-\pi}{6}$

ANSWERS

Chapter - 1

ANSWERS KEY

```
(1) d
        (2) b
                (3) d
                       (4) a
                              (5) b
                                      (6) a (7) b (8) a (9) b (10) a
(11) b
       (12) a
               (13) a (14) a (15) b
                                     (16) d (17) d (18) e (19) a (20) b
(21) c
               (28) a (24) c (25) a (26) d (27) c (28)d (29) a (80) c
       (22) b
(31) c (32) b (33) b (34) c (35) a (36) c (37) b (38) c (39) d (40) a
                             (45) a (46) c (47) d (48) a (49) b (50) b
(41) a (42) a
              (43) a
                      (44) c
(51) d (52) a
              (53) a
                      (54) b (55) b (56) a (57) a (58) c (59) b (60) a
                             (65) d (66) c (67) a (68) b (69) b (70) a
(61) b (62) a
              (63) a (64) a
                              (75) c (76) a (77) b (78) b (79) a (80) a
(71) c (72) a
              (73) a (74) b
(81) c (82) c
              (83) b
                      (84) a
```

Chapter-2

ANSWER KEY

```
(1) a
        (2) b (3) a
                        (4) a (5) d (6) b (7) a
                                                        (8) b (9) a
                                                                        (10) b
(11) a (12) a (13) b (14) b (15) a (16) a (17) a (18) c (19) b
                                                                        (20) a
(21) c (22) d (23) a (24) b (25) c (26) c (27) a (28) a (29) c
                                                                        (30) b
(31) a, (32) d (33) d (34) a (35) b (36) a (37) a
                                                        (38) d (39) d
                                                                        (40) c
(41) d (42) e (43) e (44) b (45) b (46) b (47) a (48) b (49) d
                                                                       ຸ (50) a
(51) b (52) a (53) a (54) a (55) b (56) a (57) a
                                                        (58) c (59) d
                                                                         (60) a
(61) d (62) b (63) a (64) b (65) a (66) b (67) c
                                                        (68) b (69) a
                                                                         (70) b
(71) a (72) a (73) a (74) a (75) a
                                       (76) b (77) d (78) b (79) a (80) d
(81) c (82) a (83) a (84) b (85) b (86) b (87) a (88) a (89) b (90) c (91) d (92) d (98) a (94) b (95) c (96) c (97) a (98) b (99) a (100) d
(101) a (102) b (103) c (104)b (105) b (106) b (107) a (108) a (109) c (110) a
(111) b (112) c (113) a (114) a (115) b (116) c (117) c (118) c (119) c (120) c
(121) c (122) c (123) b (124) a (125) d (126) a (127) c (128)a (129) b (130) b
(131) c (132) b (133) a (134) b (135) b (136)a (137) c (138) c (139)a (140)c,a
(141)a (142) b
```

Chapter- 3

ANSWERS KEY

```
(2) a
               (3)b (4) a (5) a (6) a (7) a (8) b (9) c
                                                                  (10) d
(11) b (12) a (13) a (14) d (15) a (16) b (17) a (18) d (19) a
                                                                 (20) d
(21) d (22) a (23) a (24) b (25) b (26) a (27) a (28) d (29) c
                                                                 (30) d
(31) b (32) b (33) d (34) b (35) a (36) d (37) a (38) a (39) b
                                                                (40) b
(41) a (42) d (43) c (44) a (45) d (46) c (47) d (48) d (49) a
                                                                 (50) b
(51) d (52) a (53) d (54) d (55) d (56) b (57) a (58) b (59) c
                                                               (60) d
(61) b (62) b (63) a (64) d (65) b (66) a (67) b (68) a (69) b
                                                                 (70) c
(71) d (72) c (73) a (74) b (75) b (76) a (77) a (78) d (79) b
                                                                 (80) a
(81) c (82) a (83) a (84) c
```

Chapter- 4

ANSWERS KEY

```
(1) b (2) b (3) a (4) a (5) a (6) c (7) c (8) b (9) a (10) c (11) c (12) a (13) c (14) b (15) c (16) b (17) c (18) c (19) a (20) c (21) d (22) a (23) c (24) b (25) d (26) b (27) d (28) c (29) a (30) a (31) b (32) d (33) c (34) a (35) a (36) d (37) c (38) d (39) c (40) a (41) c (42) a (43) a (44) b (45) c (46) a (47) b (48) c (49) c (50) d (51) b (52) b (53) a (54) b (55) a (56) c (57) d (58) c (59) d (60) b (61) a (62) a (63) a (64) d (65) a (66) d (67) c (68) b
```

Chapter- 5

ANSWERS KEY

(1) a (2) b (3) a (4) b (5) b (6) b (7) a (8) b (9) b (10) a (11) a (12) d (13) c (14) b (15) b (16) b (17) c (18) d (19) b (20) a (21)a (22) a (23) c (24) a (25) a (26) d (27) b (28) c (29) d (30) a (31) b (32) a

Chapter-6

ANSWERS KEY

```
(1) a (2) b (3) c (4) a (5) c (6) d (7) a . (8) d (9) b (10) a (11) b (12) a (13) d (14) b (15) b (16) a (17) a (18) a (19) a (20) b (21) b (22) b (23) a (24) a (25) c (26) a (27) a (28) b (29) b (30) b (31) a (32) d (33) d (34) d (35) d (36) a (37) b (38) a (39) d (40) b (41) a (42) a (43) a (44) b (45) d (46) d (47) a (48) b (49) a (50) a (51) d (52) b (53) b (54) a (55) b (56) c (57) b (58) a (59) a (60) a (61) a (62) a (63) c (64) a (65) d (66) a (67) b (68) b (69) c (70) c (71) c (72) c (73) c
```

Chapter- 7

ANSWERS KEY

```
(1) a (2) a (3) b (4) d (5) a (6) a (7) c (8) b (9) b (10) b (11) a (12) b (13) a (14) a (15) a (16) a (17) d (18) c (19) b (20) d (21) a (22) b (23) b (24) c (25) b (26) b (27) c (28) a (29) b (30) b (31) a (32) b (33) c (34) a (35) b (36) a (37) a (38) a (39) a (40) a (41) b (42) c (43) b (44) a (45) b (46) c (47) b (48) b (49) a (50) c (51) a (52) b (53) b (54) b (55) b (56) b (57) a (58) a (59) c (60) b (61) a (62) b (63) b (64) a (65) a (66) a (67) a (68) b (69) c (70) a (71) c (72) d (73) a (74) d (75) c (76) d (77) a
```

Chapter - 8

ANSWERS KEY

```
(1) c (2) d (3) b (4) b
                           (5) a (6) b (7) a (8) b (9) c (10) b
(11) a (12) c (13) a (14) b (15) a (16) b (17) b (18) b (19) b (20) c
(21) b (22) d (23) b (24) b (25) a (26) b (27) d (28) d (29)b (30) a
```

(31) d (32) a (33) b (34) d (35) c

Chapter- 9

ANSWERS KEŸ

```
(1) b
       (2) c
               (3) b
                       (4) d
                               (5) c (6) d (7) d
                                                     (8) b (9) b (10) b
       (12) b (13) b (14) a
(11) b
                             (15) c (16) c (17) b (18) c (19) c (20) d
(21) b
       (22) c (23) a
                      (24) a
                              (25) a 26) b (27) a (28) b (29) a (30) a
(31) a
       (32) c (33) b (34) a (35) c (36) a (37) b (38) b (39) b (40) c
(41) b
       (42) d (43) a
                      (44) b
                             (45) c (46) a (47) b (48) c (49) d
                                                                 (50) b
(51) a
       (52) a (53) c (54) b (55) d (56) b (57) a (58) a (59) a
                                                                 (60) b
(61) d
       (62) b (63) d
```

Chapter- 10

ANSWERS KEY

```
(4) a (5) b (6) d (7) c
       (2) a
               (3) b
                                                    (8) c
                                                           (9) d
                                                                  (10) b
(11) a (12) d (13) d (14) b
                             (15) c (16) a (17) a (18) b (19) d
                                                                  (20) a
(21) c (22) a (23) c (24) d
                             (25) d (26) c (27) a (28) d (29) d (30) c
(31) d (32) d (33) b (34) c
                            (35) a (36) b (37) c (38) a
                                                           (39) c
                                                                  (40) b
(41) a (42) b (43) a (44) a
                            (45) a
                                     (46) d (47) a (48) c (49) d
                                                                   (50) b
(51) c (52) b (53) a (54) c
                             (55) a
                                      (56) a (57) b (58) c (59) d (60) a
(61) a (62) a (63) b (64) a
                            (65) b
                                     (66) b (67) c (68) a
```

Chapter- 11

ANSWERS KEY

```
(1) a (2) a
               (3) c
                      (4) b
                             (5) c (6) b (7) b
                                                  (8) b
                                                         (9) a (10) a
(11) b
      (12) b (13) d (14) b (15) b (16) a (17) a (18) b (19) b (20) c
       (22) a (23) b (24) a
(21) b
                             (25) c (26) c (27) a (28) a (29) c (30) d
(31) b (32) d (33) b (34) d
                             (35) d (35) b
```

Chapter- 12

ANSWERS KEY

```
(1) d
        (2) b (3) a (4) b
                              (5) a (6) d (7) a
                                                   (8) b
                                                         (9) c
                                                                 (10) c.
       (12) c (13) d (14) c (15) b (16) d (17) b 18) d (19) d (20) d
(11) a
(21) c.
       (22) a (23) d (24) d (25) b
                                    (26) b (27) d (28) c (29) d (30) c
       (32) a (33) a (34) a (35) c
(31) c
                                    (36) c (37) b (38) b (39) c (40) a
       (42) b (43) b (44) d (45) d (46) c (47) c (48) a (49) d (50) c
(41) a
       (52) d (53) a (54) c (55) a
(51) a
```

Chapter- 13

ANSWERS KEY

```
(1) a (2) b (3) c (4) d (5) b (6) c (7) a (8) a (9) b (10) b (11) c (12) c (13) a (14) a (15) b (16) b (17) c (18) c (19) a (20) b (21) c (22) d (23) a (24) b (25) b (26) a (27) a (28) b (29) a (30) a (31) b (32) a (33) b (34) b (35) a (36) a (37) d (38) a (39) d (40) c (41) a (42) d (43) a (44) b 45) d (46) a (47) d (48) a (49) b (50) a (51) b (52) a (53) b (54) b (55) a (56) c (57) a (58) a (59) a (60) a (61) c (62) c (68) a (64) c (65) d
```

Chapter- 14

ANSWERS KEY

(1) b (2) a (3) a (4) c (5) a (6) a (7) c (8) d (9) a (10) d (11) b (12) a (13)b (14) c (15) d (16) a (17) d (18) a (19) c (20) b (21) c (22) c (28) c (24) c (25) c (26) c (27) c (28) d (29) a (30) c (31) a (32) d (33) b (34) a (35) c (36) a (37) c