

Politechnika Wrocławska

Wydział Elektroniki, Fotoniki i Mikrosystemów

Sterowanie Procesami Ciągłymi

Sprawozdanie nr 4 Identyfikacja obiektu dyskretnego

Prowadzący: dr hab. inż. Grzegorz Mzyk

> Wykonała: Zuzanna Mejer, 259382

> > Termin zajęć: czwartek TP, 9:15

Spis treści

1	Cel ćwiczenia	2
2	Generowanie danych	2
3	Identyfikacja obiektu	3
4	Błąd estymatora i wielokrotne powtórzenie pomiaru	5
5	Podsumowanie i wnioski	7

1 Cel ćwiczenia

Celem ćwiczenia była identyfikacja obiektu dyskretnego na podstawie wygenerowanych danych oraz późniejsza ocena jakości identyfikacji w zależności od liczby pomiarów.

2 Generowanie danych

Dany jest obiekt dyskretny opisany wzorem:

$$y_k = 3u_k + 2u_{k-1} + 1u_{k-2} + z_k, (1)$$

gdzie z_k, u_k są od siebie niezależne. Wejście u_k jest opisane funkcją randn, która generuje liczby o rozkładzie normalnym. Z kolei z_k jest opisane funkcją rand - 0.5, która generuje liczby o rozkładzie równomiernym z zakresu [-0.5; 0.5]. Wykorzystując przedstawiony skrypt (rys. 1), wygenerowano ciąg par (rys. 2):

$$\{(u_k, y_k)\}_{k=3}^N \tag{2}$$

gdzie N to liczba ciągu par. Rozpoczęto od k=3 ze względu na nieznajomość wcześniejszych zdarzeń (u_0,u_{-1}) .

```
clear all;
 2
       close all;
 3
 4
       % GENEROWANIE DANYCH
 5
       i = 1000;
 6
 7
       uk = zeros(i, 1);
 8
       yk = zeros(i, 1);
 9
       m = zeros(i, 2);
10
11
       for j = 3:1:i
12
           uka = randn();
13
           uk(j) = uka;
14
           zk = rand() - 0.5;
15
           yka = 3*uk(j) + 2*uk(j-1) + uk(j-2) + zk;
16
           yk(j) = yka;
17
           m(j, 1) = uka;
           m(j, 2) = yka;
18
19
       end
20
```

Rys. 1: Skrypt w Matlabie do wygenerowania danych

∦ Variables - m											
m ×											
10	00x2 double										
	1	2	3								
1	0	0									
2	0	0									
3	0.5377	2.0188									
4	-2.2588	-5.2878									
5	0.3188	-3.4262									
6	-0.4336	-2.8752									
7	3.5784	10.6517									
8	-1.3499	3.1441									
9	0.7254	3.0402									
10	0.7147	1.8870									
11	-0.1241	2.1982									
12	1.4090	5.1531									
13	0.6715	4.2441									
14	0.7172	5.3377									
15	0.4889	3.8304									
16	0.7269	3.7679									
17	0.2939	2.4955									
18	0.8884	3.5116									
19	-1.0689	-1.5898									
20	-2.9443	-9.7587									
21	0.3252	-6.1648									
22	1.3703	1.3514									
23	-0.1022	2.6406									
24	0.3192	2.4186									
25	-0.8649	-2.0687									
26	-0.1649	-1.7589									
27	1.0933	2.3398									
28	-0.8637	-0.3896									
29	0.6007	0.8307									
30	-1.1135	-3.0044									
21	1 5226	2 0120									

Rys. 2: Fragment wygenerowanego ciągu 1000 par od trzeciego elementu

3 Identyfikacja obiektu

W tej części zakłada się, że nie jest znany dokładny dyskretny opis obiektu (1), a jedynie jego postać:

$$y_k = a_0 \cdot u_k + a_1 \cdot u_{k-1} + a_2 \cdot u_{k-2} + z_k, \tag{3}$$

gdzie a_0, a_1, a_2 to wartości szukane. W celu zidentyfikowania obiektu wygenerowano macierze X_N oraz Y_N zawierające kolejne elementy ciągu par:

$$X_{N} = \begin{bmatrix} u_{3} & u_{2} & u_{1} \\ u_{4} & u_{3} & u_{2} \\ \dots & \dots & \dots \\ u_{N} & u_{N-1} & u_{N-2} \end{bmatrix} \qquad Y_{N} = \begin{bmatrix} y_{1} \\ y_{2} \\ \dots \\ y_{N} \end{bmatrix}$$

$$(4)$$

Ze względu na nieznajomość wcześniejszych zdarzeń (u_0, u_{-1}) , wycięto 2 pierwsze wiersze macierzy X_N , których nie pokazano już w powyższym wzorze.

Do znalezienia a_0, a_1, a_2 przyjęto estymator:

$$\hat{\Theta} = \begin{bmatrix} \hat{a_0} \\ \hat{a_1} \\ \hat{a_2} \end{bmatrix} = (X_N^T \cdot X_N)^{-1} \cdot X_N^T \cdot Y_N \tag{5}$$

W celu wyznaczenia estymatora wygenerowano skrypt w Matlabie (rys. 3). Otrzymane wyniki zostały przedstawione na rys. 4

```
21
       % IDENTYFIKACJA
22
23
      xn = zeros(i, 3);
24
      yn = zeros(i, 1);
25
26
      for j = 3:1:i
27
           yn(j-2) = m(j,2);
28
           xn(j-2, 1) = m(j, 1);
           xn(j-2, 2) = m(j-1, 1);
29
           xn(j-2, 3) = m(j-2, 1);
30
31
      end
32
      estymator = inv(xn' * xn) * xn' *yn;
33
34
```

Rys. 3: Skrypt w Matlabie do wyznaczenia wartości estymowanych

yn x m x estymator x 3x1 double			yn x m x estymator x → 3x1 double			yn x m x estymator x 3x1 double		
	1			1		1		
1	2.9938		1	3.0234	1	3.0041		
2	1.9914		2	1.9856	2	1.9997		
3	0.9948		3	1.0057	2	1.0034		
4			4		3	1.0054		

Rys. 4: Oszacowany estymator wartości a_0, a_1, a_2 - 3 próby

Na rys. 4 przedstawione zostały 3 próby wyliczenia estymatora. Przyjął on wartości:

$$\hat{\Theta}_{1} \approx \begin{bmatrix} 2,99\\1,99\\0,99 \end{bmatrix} \qquad \hat{\Theta}_{2} \approx \begin{bmatrix} 3,02\\1,99\\1,01 \end{bmatrix} \qquad \hat{\Theta}_{3} \approx \begin{bmatrix} 3,00\\2,00\\1,00 \end{bmatrix}$$
 (6)

Zatem w przybliżeniu: $a_0 = 3$, $a_1 = 2$, $a_2 = 1$, co zgadza się z rzeczywistym opisem obiektu dyskretnego (1).

4 Błąd estymatora i wielokrotne powtórzenie pomiaru

Wyznaczono błąd, odejmując wartość rzeczywistą od wartości pochodzącej z identyfikacji, a następnie wyznaczono normę euklidesową otrzymanego wektora:

$$\Delta_N = norm(\hat{\Theta} - \Theta) \tag{7}$$

Skrypt opisany w poprzednich punktach (rys. 13) powtórzono R razy po to, żeby otrzymać wiele estymatorów i żeby móc obliczyć uśredniony błąd estymatora dla danej liczby próbek N:

$$E(N) = \frac{1}{R} \sum_{R=1}^{R} \Delta_N \tag{8}$$

Ponadto, całość powtórzono jeszcze kilkukrotnie dla różnej liczby próbek N=100:500:10000 (rys. 5, 6).

```
clear all;
1
       close all;
 3
 4
      phi = [3;2;1];
 5
       for N = 100:500:10000
 6
 7
 8
           for r = 1:1:10 %5 estymatorow dla kazdej liczby probek
 9
               i = N;
10
11
12
               % GENEROWANIE DANYCH
13
               uk = zeros(i, 1);
14
               yk = zeros(i, 1);
15
               m = zeros(i, 2);
16
17
               for j = 3:1:i
18
                   uka = randn();
19
                   uk(j) = uka;
20
                   zk = rand() - 0.5;
21
                   yka = 3*uk(j) + 2*uk(j-1) + uk(j-2) + zk;
22
                   yk(j) = yka;
23
                   m(j, 1) = uka;
24
                   m(j, 2) = yka;
25
               end
26
```

Rys. 5: Cały skrypt do wyznaczenia zależności błędu od liczby pomiarów

```
27
               % IDENTYFIKACJA
28
               xn = zeros(i, 3);
29
               yn = zeros(i, 1);
30
               for j = 3:1:i
31
32
                   yn(j-2) = m(j,2);
33
                   xn(j-2, 1) = m(j, 1);
34
                   xn(j-2, 2) = m(j-1, 1);
35
                   xn(j-2, 3) = m(j-2, 1);
36
               end
37
38
               estymator = inv(xn' * xn) * xn' *yn;
               estymator r(1, r) = estymator(1);
39
               estymator r(2, r) = estymator(2);
40
41
               estymator r(3, r) = estymator(3);
42
43
               norma\ roznicy(1, r) = norm(estymator r - phi);
44
           end
45
               e = 1/r *sum(norma roznicy);
46
               hold on;
               plot(N, e, 'b*', 'MarkerSize', 12);
47
48
               hold on;
49
               grid on;
50
      end
51
52
```

Rys. 6: Cały skrypt do wyznaczenia zależności błędu od liczby pomiarów - kontynuacja

Dzięki temu narysowano jaki jest wpływ liczby pomiarów na średni błąd estymatora (rys. 7, 8).

Rys. 7: Zależność średniego błędu estymatora od liczby pomiarów dla 5 wygenerowanych estymatorów

Rys. 8: Zależność średniego błędu estymatora od liczby pomiarów dla 10 wygenerowanych estymatorów

5 Podsumowanie i wnioski

Po wykonaniu ćwiczenia sformułowano następujące wnioski:

- Identyfikacja obiektu przebiegła poprawnie i pozwoliła na dokładne wyznaczenie parametrów opisujących badany obiekt.
- Wyznaczone wartości estymatora niewiele różniły się od rzeczywistych wartości, a po zaokrągleniu były z nimi identyczne.
- Średni błąd estymatora identyfikacji jest zależny od liczby pomiarów. Im więcej pomiarów, tym błąd estymatora dąży do 0. Na rys. 8 dla 100 pomiarów błąd $E(N) \approx 0,075$, podczas gdy dla 10 000 pomiarów zmalał do wartości $E(N) \approx 0,01$.
- Funkcja błędu estymatora od liczby próbek przypomina funkcję eksponencjalną.