Discrete Monotonic Limits

by Sven Nilsen, 2020

In this paper I introduce discrete monotonic limits, which are larger than continuous limits.

A monotonic function has the property:

$$x \ge y \qquad \qquad = > \qquad \qquad f(x) \ge f(y)$$

One can construct discrete monotonic functions out of ranges $[a_i, b_i)$, which can describe discrete sets. To generalize constructions to support continuous sets, one can use Dual Number Monotonic Density. A Dual Number Monotonic Density measures the discrete/continuous increase of a range $[a_i, k_i, b_i)$:

$$k_i := x_i + y_i \epsilon$$

 $x_i : real$
 $y_i : real$
 $\epsilon^2 = 0$
 $(x_i = 0) \lor (y_i = 0)$

Dual Number Monotonic Density can be used to reason about semantics of discrete vs continuous sets. The intuition behind this representation implies a limit where a continuous set becomes discrete.

This idea might be familiar from experienced users of painting software:

If you draw an almost-vertical line in painting software without anti-aliasing, then when zooming in, the pixels becomes easily noticeable because of regular "jumps".

A monotonic function of type `real \rightarrow real` can not describe a vertical line, because it would mean that the function returns multiple values for some input value. However, one can get arbitrary close: For any point on a continuous function, there exists a continuous function with a larger increase at the same point. This is done by simply increasing the `y_i` component.

There is a way of increasing the steepness of a curve greater than any continuous function:

When the monotonic density is discrete, the x_i component is non-zero and the y_i component is zero. A such dual number is greater than any dual number with a zero x_i component. However, even if discrete increases are larger than all continuous ones, one can always create a larger discrete increase!