UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ECUACIONES DIFERENCIALES ORDINARIAS (MAT. 521.218)

PRACTICA $N^{\circ}4$ (EDO de Orden Superior: Primera Parte)

Problema 1. En los siguientes ejercicios , encuentre todas las soluciones de la ecuación diferencial y bosqueje varias de ellas.

- a) y'' = 2, y(0) = 0
- b) y'' = x/6, y'(0) = 0 (*)
- c) y'' = x/6, y(0) = 0

Problema 2. En los ejercicios que siguen, utilice la linealidad del operador L, esto es, $L(c_1y_1 + c_2y_2) = c_1L(y_1) + c_2L(y_2)$.

- i) Encuentre una solución particular para L(y) = cosx si se sabe que $L(e^x) = 4cosx$.
- ii) Encuentre una solución particular para $L(y) = 5e^x$ si se sabe que $L(senx) = e^x$.
- iii) Encuentre una solución particular para $L(y)=x^3+senx\;$ si se sabe que $L(e^x)=5senx\;$ y $L(cosx)=\frac{1}{4}x^3.$ (*)
- iv) Encuentre algunas soluciones de L(y) = 0 si se sabe que $L(x + e^x) = senx$ y $L(e^{-x}) = 4senx$. (*)
- v) Para $Ly = y'' xy y^2 = 0$. Muestre que el operador L es no lineal hago lo mismo para $Ly = y'' xy^2 y = 0$. (*)

Problema 3. En los ejerciones que siguen utilice que $W \neq 0$ (Wronskiano no nulo) es equivalente a que las soluciones de una ecuación homogénea formen un conjunto fundamental (esto es, una base para el espacio vectorial solución).

- a) Verifique que senx, cosx son soluciones de y'' + y = 0. Determine si existe un conjunto fundamental de soluciones.
- b) Encuentre todas las soluciones de la forma x^r para $x^2y''-6y=0$ en $(0,\infty)$ y determine si forman un conjunto fundamental de soluciones.
- c) Encuentre todas las soluciones de la forma x^r para $x^2y'' xy' + y = 0$ en $(0, \infty)$ y determine si forman un conjunto fundamental de soluciones. (*)

Problema 4. (*)

Sea y_1 la solución sobre $(0, \infty)$ de:

$$x^2y'' + y' + xy = 0$$
, $y(1) = 1$, $y'(1) = 1$.

y sea y_2 la solución sobre $(0, \infty)$ de $x^2y'' + y' + xy = 0$, y(1) = 0, y'(1) = -1,

- a) Verifique que $\{y_1, y_2\}$ es un conjunto fundamental de soluciones de $x^2y'' + y' + xy = 0$
- b) Sea y_3 la solución de

$$x^2y'' + y' + xy = 0$$
, $y(1) = 2$, $y'(1) = 0$

Determine las constantes c_1 y c_2 de modo que $y_3 = c_1y_1 + c_2y_2$.

Problema 5. Si y_1 e y_2 son funciones derivables con $y_1(x) \cdot y_2(x) \neq 0$. Demuestre que si $y_1'y_2 - y_1y_2' = 0$ para toda x entonces $y_1 = cy_2$ para alguna constante c.

Problema 6. Para buscar una segunda solución y_2 de la EDO a coeficientes variables dada, haga $y_2(x) = y_1(x) \cdot z(x)$ donde z'(x) = u(x).

- (i) Para $x \in (0, \infty)$, verifique que $y_1(x) = x^2$ es solución de la EDO lineal a coeficientes variables $x^2y'' 4xy' + 6y = 0$. Encuentre otra solución linealmente independiente con y_1 . (*)
- (ii) Lo mismo anterior para $x^2y'' xy' + (x^2 2)y = 0$. y la función $y_1(x) = xe^x$.

Problema 7. En los siguientes ejercicios, verifique que el conjunto dado es un conjunto fundamental de soluciones para la ecuación homogénea asociada y que y_p es una solución particular. Después encuentre la solución general de la ecuación diferencial y resuelva el problema de valor inicial.

a)
$$y'' + y = 1$$
, $y(0) = 0$, $y'(0) = 0$, $\{sen x, cos x\}$, $y_p = 1$

b)
$$y'' - y = e^{3x}$$
, $y(0) = 0$, $y'(0) = 1$, $\{e^x, e^{-x}\}$, $y_p = \frac{1}{8}e^{3x} + 1$

c)
$$y'' - 2y' + y = 4e^{2x}$$
, $y(0) = 0$, $y'(0) = 0$, $\{e^x, xe^x\}$, $y_p = 4e^{2x}$ (*)

d)
$$x^2y'' + 4xy' + 2y = 2lnx + 3,$$

 $y(1) = 0, \quad y'(1) = 2, \quad \{x^{-1}, x^{-2}\}, \quad y_p = lnx, \quad x > 0$

Problema 8. Verifique que $-\frac{1}{3}$ sen2x es una solución de $y'' + y = sen2x, -\frac{1}{3}$ cos2x es una solución de y'' + y = (cos2x) y $\{senx, cosx\}$ es un conjunto fundamental de soluciones para y'' + y = 0. Encuentre la solución general de y'' + y = sen2x + cos2x.

Problema 9.(*)

Verifique que e^{2x} es una solución de $y''-2y'+y=e^{2x}$, 1 es una solución de y''-2y'+y=1, y $\{e^x, xe^x\}$ es un conjunto fundamental de soluciones para y''-2y'+y=0. Encuentre la solución general de $y''-2y'+y=1+e^{2x}$.

Problema 10. Determine si cada uno de los siguientes conjuntos de funciones es linealmente independiente en C(I), para el intervalo I dado.

- a) $\{1, e^{-x}, 2e^{2x}\}; I = R$, b) $\{\ln(x), x \ln(x)\}; I = (0, +\infty)$
- c) $\{e^{ax} \operatorname{sen}(bx), e^{ax} \cos(bx)\}; I = R, d) \{\tan(x), |\tan(x)|\}; I = (-\pi/2, \pi/2)$ (*)
- e) $\{1, \sec^2(x), 1 \cos(x)\}; I = R$ (*) f) $\{\sqrt{1 x^2}, x\}, I = (-1, 1)$

Problema 11. Encuentre operadores diferenciales lineales que aniquilen a las funciones: a) $\cos^2(x)$; b) $x^3 \sin(4x)$ (*); c) $x (8x-3) \cos(5x)$; d) $x \sin(x-1) e^{-3x}$ (*)

 $\begin{array}{l} \rm JMS/CMG/jms. \\ 10/09/2007. \end{array}$