Introduction

Oscillatory processes generalize stationary stochastic processes by allowing their spectral properties to evolve over time. Central to this representation is the gain function $A(t,\omega)$, a complex-valued function that works in conjunction with an underlying spectral density $S(\omega)$ to produce time-varying spectral characteristics. The magnitude $|A(t,\omega)|$ scales the spectral power at each frequency and time, while the argument $\arg A(t,\omega)$ introduces frequency-dependent phase shifts. The effective spectral density at time t becomes $|A(t,\omega)|^2 S(\omega)$, showing how the gain function and underlying spectral density work together multiplicatively.

Definition 1. (Stationary Process) A stochastic process $\{X(t), t \in \mathbb{R}\}$ is stationary when its covariance R(s,t) depends only on the lag: R(s,t) = R(t-s) for all $s,t \in \mathbb{R}$.

Definition 2. (Complex orthogonal random measure) Let (E, \mathcal{E}) be a measurable space. A complex orthogonal random measure is a map $\Phi: \mathcal{E} \to L^2(\Omega; \mathbb{C})$ such that:

1. (Null and σ -additivity in L^2) $\Phi(\varnothing) = 0$, $\Phi(A \cup B) = \Phi(A) + \Phi(B)$ for disjoint A, $B \in \mathcal{E}$, and for any disjoint sequence $(A_n)_{n \ge 1} \subset \mathcal{E}$,

$$\Phi\!\!\left(\bigcup_{n\geq 1} A_n\right) = \sum_{n\geq 1} \Phi(A_n) \quad in \ L^2.$$

2. (Zero mean and covariance) There exists a finite measure μ on (E, \mathcal{E}) such that, for all $A, B \in \mathcal{E}$,

$$\mathbb{E}[\Phi(A)] = 0, \qquad \mathbb{E}[\Phi(A) \; \overline{\Phi(B)}] = \mu \, (A \cap B).$$

In particular, for all $A \in \mathcal{E}$, $\mathbb{E}[|\Phi(A)|^2] = \mu(A)$, and for disjoint A, B the increments are orthogonal in L^2 .

Theorem 3. (Spectral Representation of Oscillatory Processes) A realization of an oscillatory process Z(t) is one that satisfies

$$Z(t) = \int_{-\infty}^{\infty} A_t(\omega) e^{i\omega t} d\Phi(\omega) = \int_{-\infty}^{\infty} h(t, u) X(u) du, \qquad (1)$$

where $A_t(\omega)$ is a gain function and Φ is a complex orthogonal random measure. The stationary reference process is

$$X(u) = \int_{-\infty}^{\infty} e^{i\omega u} d\Phi(\omega). \tag{2}$$

In the sense of Priestley's canonical definition, the oscillatory kernel h and the gain A_t form a Fourier pair (in the sense of distributions) with the convention

$$h(t,u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} A_t(\lambda) e^{i\lambda(t-u)} d\lambda, \qquad A_t(\omega) = \int_{-\infty}^{\infty} h(t,u) e^{-i\omega(t-u)} du.$$
 (3)

If Z is real-valued, the conjugate symmetry conditions hold:

$$A_t(\omega) = A_t^*(-\omega), \qquad d\Phi(-\omega) = d\Phi^*(\omega).$$
 (4)

Proof. Using (2) and Fubini/Tonelli in L^2 ,

$$\begin{split} Z(t) = & \int_{-\infty}^{\infty} h(t,u) \ X(u) \ du = \int_{-\infty}^{\infty} h(t,u) \bigg(\int_{-\infty}^{\infty} e^{i\omega u} \ d\Phi(\omega) \bigg) du \\ = & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(t,u) \ e^{i\omega u} \ du \ d\Phi(\omega). \end{split}$$

By the canonical Fourier relation (3),

$$\int_{-\infty}^{\infty} h(t, u) e^{i\omega u} du = \frac{1}{2\pi} \int_{-\infty}^{\infty} A_t(\lambda) e^{i\lambda t} \left(\int_{-\infty}^{\infty} e^{i(\omega - \lambda)u} du \right) d\lambda = A_t(\omega) e^{i\omega t}.$$

Therefore $Z(t) = \int A_t(\omega) \ e^{i\omega t} \ d\Phi(\omega)$, proving (1). Real-valuedness follows from (4) by a standard change of variables.

Theorem 4. (Eigenfunction Property for Stationary Processes) Let $R(\tau)$ be a stationary covariance function and define the integral operator

$$(Kf)(t) = \int_{-\infty}^{\infty} R(t-s) \ f(s) \ ds. \tag{5}$$

Then

$$K e^{i\omega t} = S(\omega) e^{i\omega t}, \tag{6}$$

where the eigenvalue is the spectral density

$$S(\omega) = \int_{-\infty}^{\infty} R(\tau) e^{-i\omega\tau} d\tau.$$
 (7)

Proof. $(Ke^{i\omega \cdot})(t) = \int_{-\infty}^{\infty} R(t-s) \ e^{i\omega s} \ ds = \int_{-\infty}^{\infty} R(\tau) \ e^{i\omega(t-\tau)} \ d\tau$ $= e^{i\omega t} \int_{-\infty}^{\infty} R(\tau) \ e^{-i\omega \tau} \ d\tau = S(\omega) \ e^{i\omega t}.$

Theorem 5. (Eigenfunction Property for Oscillatory Processes) Assume absolute continuity: the spectral measure $dF(\omega) = S(\omega) \ d\omega$ with $S(\omega) \ge 0$. Let

$$C(s,t) = \int_{-\infty}^{\infty} A_s(\omega) \ A_t^*(\omega) \ S(\omega) \ d\omega, \qquad (Kf)(t) = \int_{-\infty}^{\infty} C(t,s) \ f(s) \ ds. \tag{8}$$

Define the oscillatory functions

$$\phi(t,\omega) = A_t(\omega) e^{i\omega t}. \tag{9}$$

Suppose the time-orthogonality identity (in the sense of distributions)

$$\int_{-\infty}^{\infty} A_s^*(\lambda) \ A_s(\omega) \ e^{i\omega s} \ ds = 2\pi \ \delta(\omega - \lambda). \tag{10}$$

Then, for each ω ,

$$(K\phi(\cdot,\omega))(t) = S(\omega) \ \phi(t,\omega). \tag{11}$$

Proof.
$$(K\phi(\cdot,\omega))(t) = \int_{-\infty}^{\infty} C(t,s) \ \phi(s,\omega) \ ds$$

$$\begin{split} &= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} A_t(\lambda) \ A_s^*(\lambda) \ S(\lambda) \ d\lambda \right) A_s(\omega) \ e^{i\omega s} \ ds \\ &= \int_{-\infty}^{\infty} A_t(\lambda) \ S(\lambda) \left[\int_{-\infty}^{\infty} A_s^*(\lambda) \ A_s(\omega) \ e^{i\omega s} \ ds \right] d\lambda \\ &= \int_{-\infty}^{\infty} A_t(\lambda) \ S(\lambda) \ (2\pi) \ \delta \left(\omega - \lambda\right) \ d\lambda \\ &= 2\pi \ A_t(\omega) \ S(\omega) = S(\omega) \ \phi(t, \omega), \end{split}$$

where the last equality uses $\phi(t,\omega) = A_t(\omega) e^{i\omega t}$ and the 2π factor matches the Fourier normalization implicit in (10) and (3).

Lemma 6. (Orthogonality Property) With the Fourier convention used above,

$$\int_{-\infty}^{\infty} A_s^*(\lambda) \ A_s(\omega) \ e^{i\omega s} \ ds = 2 \pi \ \delta(\lambda - \omega).$$

Proof. For the orthogonal random measure Φ ,

$$\mathbb{E}[d\,\Phi(\lambda)\,\,d\,\Phi^*(\omega)] \,=\, 2\,\pi\,\,\delta\,(\lambda-\omega)\,\,S(\lambda)\,\,d\,\lambda,$$

under the absolute continuity assumption $dF(\omega) = S(\omega) d\omega$ and the chosen Fourier constants. The representation

$$Z(t) = \int_{-\infty}^{\infty} A_t(\omega) e^{i\omega t} d\Phi(\omega),$$

combined with this covariance structure, yields the stated time-orthogonality identity for the modulating amplitudes, consistent with the normalization used in (3).

Theorem 7. (Real-Valued Oscillatory Processes) The process Z(t) is real-valued if and only if

$$A_t(\omega) = A_t^*(-\omega)$$
 and $d\Phi(-\omega) = d\Phi^*(\omega)$. (12)

Proof. Compute

$$Z^*(t) = \int_{-\infty}^{\infty} A_t^*(\omega) \ e^{-i\omega t} \ d\Phi^*(\omega).$$

Set $\omega = -\nu$ so $d\omega = -d\nu$, then

$$Z^{*}(t) = \int_{-\infty}^{\infty} A_{t}^{*}(-\nu) \ e^{i\nu t} \ d\Phi^{*}(-\nu) = \int_{-\infty}^{\infty} A_{t}^{*}(-\omega) \ e^{i\omega t} \ d\Phi^{*}(-\omega).$$

Thus $Z(t) = Z^*(t)$ for all t holds if and only if $A_t(\omega) = A_t^*(-\omega)$ and $d\Phi(\omega) = d\Phi^*(-\omega)$ for all ω . The converse direction is immediate by substitution.

Theorem 8. (Eigenfunction Conjugate Pairs) With $\phi(t,\omega) = A_t(\omega) e^{i\omega t}$ and $A_t(\omega) = A_t^*(-\omega)$,

$$\phi^*(t,\omega) = \phi(t,-\omega).$$

Proof.
$$\phi^*(t,\omega) = (A_t(\omega) e^{i\omega t})^* = A_t^*(\omega) e^{-i\omega t} = A_t(-\omega) e^{-i\omega t} = A_t(-\omega) e^{i(-\omega)t} = \phi(t,-\omega).$$

Theorem 9. (Filter Kernel: Dual Fourier Formula) With the Fourier convention fixed above,

$$h(t,u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} A_t(\omega) e^{i\omega(t-u)} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi(t,\omega) e^{-i\omega u} d\omega.$$

Proof.
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \phi(t, \omega) e^{-i\omega u} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} A_t(\omega) e^{i\omega t} e^{-i\omega u} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} A_t(\omega) e^{i\omega(t-u)} d\omega.$$

Theorem 10. (Inverse Relations)

$$A_t(\omega) = \int_{-\infty}^{\infty} h(t, u) \ e^{-i\omega(t-u)} \ du, \qquad \phi(t, \omega) = \int_{-\infty}^{\infty} h(t, u) \ e^{-i\omega u} \ du. \tag{13}$$

Proof. Using the dual formula and the identity $\int_{-\infty}^{\infty} e^{i(\lambda-\omega)u} du = 2\pi \delta(\lambda-\omega)$,

$$\int_{-\infty}^{\infty} h(t, u) \ e^{-i\omega(t-u)} \ du = \int_{-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} A_t(\lambda) \ e^{i\lambda(t-u)} \ d\lambda \right] e^{-i\omega(t-u)} \ du$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} A_t(\lambda) \ e^{i\lambda t} e^{-i\omega t} \left(\int_{-\infty}^{\infty} e^{-i(\lambda-\omega)u} \ du \right) d\lambda$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} A_t(\lambda) \ e^{i\lambda t} e^{-i\omega t} \ 2\pi \ \delta(\lambda-\omega) \ d\lambda$$

$$= A_t(\omega).$$

The formula for $\phi(t,\omega)$ follows by multiplying both sides by $e^{i\omega t}$ or directly from the dual formula.