METODE INTELIGENTE DE REZOLVARE A PROBLEMELOR REALE

Laura Dioşan Graph-based learning

Facultatea de Matematică și Informatică Universitatea Babeș-Bolyai

- Why?
- How?
- Applications

Graphs

- a type of data structure having two components:
 - nodes (or vertices)
 - Homogenous
 - Heterogenous
 - edges, which connect two nodes
 - Unidirectional
 - Bidirectional
 - With or without weights

a graph = a collection of loosely inter-connected nodes via

edges

undirected graph

directed graph

complete graph

Graph NNs

■ neural network architectures that operate on a graph.

□ Aim:

- for each node in the graph to learn an embedding containing information about its neighborhood (nodes directly connected to the target node via edges).
- This embedding can then be used for different problems like node labelling, node prediction, edge prediction, etc.

■ Real-life applications

- Social Network Analysis Similar posts prediction, tags prediction, and recommending content to users.
- Natural Sciences GNNs have also gained popularity in dealing with molecular interactions like protein-protein interactions.
- Recommender Systems A heterogenous graph can be used to capture relationships between users and items to recommend relevant items to a buyer.

Why graphs?

- Graphs (= networks, systems) are a general language for describing and modeling complex systems
- Many data are represented as graphs

Social networks

Information networks: Web & citations

Economic networks

Internet

Biomedical networks

Networks of neurons

Why graphs?

- Graphs (= networks, systems) are a general language for describing and modeling complex systems
- Many data are represented as graphs
- Universal language for describing complex data
 - Networks from science, nature, and technology are more similar than one would expect
- Shared vocabulary between fields
 - Computer Science, Social science, Physics, Economics, Statistics, Biology
- Data availability (+computational challenges)
 - Web/mobile, bio, health, and medical
- Impact!
 - Social networking, Social media, Drug design

Machine learning with / in graphs

- Node classification
 - Predict the type of a given node
 - Classifying the function of proteins in the interactome!
 - See Ganapathiraju, M. K., Thahir, M., Handen, A., Sarkar, S. N., Sweet, R. A., Nimgaonkar, V. L., ... & Chaparala, S. (2016). Schizophrenia interactione with 504 novel protein–protein interactions. NPJ schizophrenia, 2(1), 1-10. https://www.nature.com/articles/npjschz201612

Machine Learning

Machine learning with / in graphs

- Node classification
- Link prediction
 - Predict whether two nodes are linked
 - Recommender systems

User-User Connections

- Social Relations
- Same Profiles ...

User-Item Interactions

- Implicit Feedback
- Explicit Feedback ...

Item-Item Connections

- Same Attributes
- External Knowledge ...

Machine learning with / in graphs

- Node classification
 - Predict a type of a given node
- Link prediction
 - Predict whether two nodes are linked
- Community detection
 - Identify densely linked clusters of nodes
- Network similarity
 - How similar are two (sub)networks

Data structures

- Text/speech -> sequences -> RNN
- Images -> regular grids (matrix) -> CNN
- Graphs
 - Arbitrary size
 - Complex topological structure

Convolutions over data

 Combine the information from the current element with that from neighbours Σw_ih_i

How to deal with more complex graphs?

- Graph convolutions involve similar local operations on nodes.
- Nodes are now object representations and not activations
- The ordering of neighbors should not matter
- The number of neighbors should not matter.
- N(i) are the neighbors of node i
- c_{ii} is a normalization constant

$$h_{4}^{l+1} = W_{4}h_{4}^{l} + W_{0}h_{0}^{l} + W_{1}h_{1}^{l} + W_{2}h_{2}^{l} + W_{3}h_{3}^{l}$$

$$h_{i}^{l+1} = W_{i}h_{i}^{l} + \sum_{j \in \mathcal{N}(i)} \frac{1}{c_{ij}}W_{j}h_{j}^{l}$$

Convolutions over graphs

Without attention:
$$h_i^{l+1} = W_i h_i^l + \sum_{j \in \mathcal{N}(i)} \frac{1}{c_{ij}} W_j h_j^l$$

With attention:

$$h_i^{l+1} = W_i h_i^l + \sum_{j \in \mathcal{N}(i)} \frac{1}{c_{ij}} \frac{\alpha_{ij}}{\alpha_{ij}} W_j h_j^l$$

 h_3

- Updates from some neighbors can be more important than others.
- Attention over neighbors allows graph convolutions to focus on specific neighbors
- $oldsymbol{\sigma}$ is a non-linearity, usually ReLU or LeakyReLU.

where
$$\alpha_{ij} = \frac{e^{\sigma(a^T[Wh_i||Wh_j])}}{\sum_{k \in \mathcal{N}(i)} e^{\sigma(a^T[Wh_i||Wh_k])}}$$

Naïve approach

- A fusion between the adjacency matrix and other node features -> input for an ANN
- + easy
- a lot of parameters = O(no of nodes)
- doesn't work for graphs of different sizes
- not invariant to node ordering

Graph convolutional networks

- Node's neighbourhood defines a computational graph
- An ML algorithm is used to learn how to transform and transmit the information across the nodes

step1: generate node embeddings based on local graph neighbourhood

Every node defines a computation graph based on its neighbourhood

step1: setup for generating node embeddings based on local graph neighbourhood

- Aggregation by an order invariant operator
 - Average (mean) or Max or Sum

- step2: prepare the model training
 - Parameters of the graph model: Wk, Bk
 - Classification weights θ
 - Loss function
 - E.g supervised binary classification task = safe or toxic drug

- E.g. unsupervised task random walk optimization
 - See DeepWalk https://arxiv.org/pdf/1403.6652.pdf
 - See node2vec https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

INPUT GRAPH

step3: train the model and test

Step 4: generalize for new nodes / graphs

Graph CNNs - applications

- Action Genome: Understanding Action with Spatio-Temporal Scene Graphs
 - http://actiongenome.org
 - Ji, Krishna et al. Action Genome: Actions as Compositions of Spatio-Temporal Scene Graphs, CVPR 2020

RecSys

- Pinterest PinSage
 - https://medium.com/pinterest-engineering/pinsage-a-newgraph-convolutional-neural-network-for-web-scalerecommender-systems-88795a107f48
 - https://arxiv.org/pdf/1806.01973.pdf
- Model and predict side effects of drug pairs
 - http://snap.stanford.edu/decagon/
 - https://arxiv.org/pdf/1802.00543.pdf

Data generation

- Drug discovery = Molecule generation (with high value of a given chemical property)
 - https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf
 - https://github.com/bowenliu16/rl graph generation
 - https://www.cell.com/cell/pdf/S0092-8674(20)30102-1.pdf

Additional information

- Code example for GNN
 - https://colab.research.google.com/drive/1DIQm9rOx2mT1bZETEeVUThxcrP1RKgAn
- Data
 - SNAP project
 - http://snap.stanford.edu/
 - Open Graph Benchmark
 - https://ogb.stanford.edu/
- GNN and RecSys
 - https://github.com/yazdotai/graph-networks#tensorflow-implementations
 - https://next-nus.github.io/slides/tuto-cikm2019-public.pdf
- Graph-based Deep Learning
 - https://github.com/naganandy/graph-based-deep-learning-literature
 - https://www.cs.mcgill.ca/~wlh/grl_book/
 - https://github.com/thunlp/GNNPapers

Materials are considered from various sources like:

- Fei-Fei Li's lecture about Graph Convolutions http://vision.stanford.edu/teaching/cs231n/slides/2020/lecture 18.pdf
- Jure Leskovec's Lecture about Graph NNs https://web.stanford.edu/class/cs224w/
- https://www.pyg.org/
- Graph Representation Learning Book, by W. Hamilton https://www.cs.mcgill.ca/~wlh/grl_book/
- Network Science, by A. Barabasi https://networksciencebook.com/
- ...