NAME: RETHINAGIRI G

ROLL NO: 225229130

COURSE TITLE: PRACTICAL MACHINE LEARNING LAB

Lab 09. Employee Hopping Prediction using Random Forests

Step-1

In [1]: import pandas as pan

In [2]: emp=pan.read_csv("C:\\Users\\user\\Downloads\\dataset_pml\\Employee_hopping.csv")

In [3]: emp.head()

Out[3]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber	 R
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1	 _
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	2	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	4	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	5	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	7	

5 rows × 35 columns

dtype='object')

In [6]: emp.dtypes

Out[6]: Age int64 Attrition object BusinessTravel object DailyRate int64 Department object int64 DistanceFromHome Education int64 object EducationField EmployeeCount int64 EmployeeNumber int64 EnvironmentSatisfaction int64 Gender object HourlyRate int64 JobInvolvement int64 int64 JobLevel object JobRole JobSatisfaction int64 object MaritalStatus MonthlyIncome int64 MonthlyRate int64 NumCompaniesWorked int64 Over18 object OverTime object PercentSalaryHike int64 PerformanceRating int64 RelationshipSatisfaction int64 StandardHours int64 StockOptionLevel int64 TotalWorkingYears int64 TrainingTimesLastYear int64 WorkLifeBalance int64 YearsAtCompany int64 YearsInCurrentRole int64 YearsSinceLastPromotion int64 YearsWithCurrManager int64 dtype: object

In [7]: emp.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

# 	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
dtype	es: int64(26), object(9)		

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

```
In [44]: emp["Age"].value_counts()
Out[44]: 35
                78
                77
          34
          36
                69
          31
                69
          29
                68
          32
                61
          30
                60
          33
                58
          38
                58
                57
          40
          37
                50
          27
                48
          28
                48
          42
                46
          39
                42
          45
                41
                40
          41
          26
                39
                33
          44
          46
                33
                32
          43
                30
26
          50
          25
          24
                26
          49
                24
          47
                24
                22
          55
          51
                19
          53
                19
          48
                19
          54
                18
          52
                18
          22
                16
          56
                14
                14
          23
          58
                14
                13
          21
          20
                11
          59
                10
          19
                 9
8
5
4
          18
          60
          57
          Name: Age, dtype: int64
```

Step-2 [Extract X and y]

```
In [9]: X=emp.drop("Attrition",axis=1)
In [10]: y=emp["Attrition"].values
```

Step-3. [Feature Engineering]

```
In [11]: emp.dtypes
Out[11]: Age
                                       int64
         Attrition
                                      object
         BusinessTravel
                                      object
         DailyRate
                                       int64
         Department
                                      object
         DistanceFromHome
                                       int64
         Education
                                       int64
         EducationField
                                      object
         EmployeeCount
                                       int64
         EmployeeNumber
                                       int64
         EnvironmentSatisfaction
                                       int64
         Gender
                                      object
         HourlyRate
                                       int64
         JobInvolvement
                                       int64
         JobLevel
                                       int64
         JobRole
                                      object
         JobSatisfaction
                                       int64
         MaritalStatus
                                      object
         MonthlyIncome
                                       int64
         MonthlyRate
                                       int64
         NumCompaniesWorked
                                       int64
         Over18
                                      object
         OverTime
                                      object
         PercentSalaryHike
                                       int64
         PerformanceRating
                                       int64
         RelationshipSatisfaction
                                       int64
         StandardHours
                                       int64
         StockOptionLevel
                                       int64
         TotalWorkingYears
                                       int64
         TrainingTimesLastYear
                                       int64
         WorkLifeBalance
                                       int64
         YearsAtCompany
                                       int64
         YearsInCurrentRole
                                       int64
         YearsSinceLastPromotion
                                       int64
         YearsWithCurrManager
                                       int64
         dtype: object
         emp_dum=["BusinessTravel","EducationField","Department","Gender","JobRole","MaritalStatus","Over18","OverTime"]
In [12]:
In [13]: dummiesX = pan.get_dummies(X,columns=emp_dum)
```

```
In [14]: X.shape
Out[14]: (1470, 34)
In [15]: y.shape
Out[15]: (1470,)
         Step-5. [Model Development]
In [16]: from sklearn.model_selection import train_test_split as tts
         X_train,X_test,y_train,y_test=tts(dummiesX,y,test_size=.25,random_state=42)
In [17]: from sklearn.ensemble import RandomForestClassifier
         rf= RandomForestClassifier()
         rf.fit(X_train,y_train)
Out[17]: RandomForestClassifier()
In [18]: y_pred=rf.predict(X_test)
         Step-6 [Testing]
In [19]: from sklearn.metrics import *
In [20]: | accuracy_score(y_test, y_pred)
Out[20]: 0.875
In [21]: classification_report(y_test,y_pred)
Out[21]: '
                                      recall f1-score
                                                         support\n\n
                                                                                                                       320\n
                                                                                                            0.93
                         precision
                                                                               No
                                                                                        0.88
                                                                                                  0.99
         Yes
                    0.67
                              0.08
                                        0.15
                                                    48\n\n
                                                              accuracy
                                                                                                  0.88
                                                                                                             368\n
                                                                                                                     macro avg
                                         368\nweighted avg
         0.77
                    0.54
                                                                 0.85
                                                                            0.88
                                                                                      0.83
                                                                                                 368\n'
                              0.54
```

Step-7 [Feature importance value]

In [23]: f_name=pan.DataFrame(imp,index=X_train.columns,columns=["Feature Importance Values"])
f_name

Out[23]:

	Feature Importance Values
Age	0.052945
DailyRate	0.044065
DistanceFromHome	0.040692
Education	0.016959
EmployeeCount	0.000000
EmployeeNumber	0.041710
EnvironmentSatisfaction	0.024784
HourlyRate	0.038643
Jobinvolvement	0.021441
JobLevel	0.022928
JobSatisfaction	0.024275
MonthlyIncome	0.074983
MonthlyRate	0.043055
NumCompaniesWorked	0.034251
PercentSalaryHike	0.027410
PerformanceRating	0.004445
RelationshipSatisfaction	0.021041
StandardHours	0.000000
StockOptionLevel	0.031562
TotalWorkingYears	0.043943
TrainingTimesLastYear	0.024333
WorkLifeBalance	0.018173
YearsAtCompany	0.041259
YearsInCurrentRole	0.029054
YearsSinceLastPromotion	0.024266
YearsWithCurrManager	0.030736
BusinessTravel_Non-Travel	0.004018
BusinessTravel_Travel_Frequently	0.010216
BusinessTravel_Travel_Rarely	0.006290

Feature Importance Values

EducationField_Human Resources	0.002165
EducationField_Life Sciences	0.007110
EducationField_Marketing	0.006501
EducationField_Medical	0.007105
EducationField_Other	0.003775
EducationField_Technical Degree	0.006424
Department_Human Resources	0.001780
Department_Research & Development	0.006238
Department_Sales	0.007757
Gender_Female	0.006738
Gender_Male	0.006196
JobRole_Healthcare Representative	0.001444
JobRole_Human Resources	0.001931
JobRole_Laboratory Technician	0.009630
JobRole_Manager	0.001821
JobRole_Manufacturing Director	0.001805
JobRole_Research Director	0.001162
JobRole_Research Scientist	0.006311
JobRole_Sales Executive	0.008183
JobRole_Sales Representative	0.009964
MaritalStatus_Divorced	0.006004
MaritalStatus_Married	0.007219
MaritalStatus_Single	0.016589
Over18_Y	0.000000
OverTime_No	0.035302
OverTime_Yes	0.033371

In [24]: import matplotlib.pyplot as mat

In [25]: import seaborn as sb In [26]: mat.figure(figsize=(20,10)) sb.barplot(x=f_name.index,y=f_name["Feature Importance Values"]) mat.xticks(rotation=75) mat.xlabel("Names") mat.ylabel("Imp_Values")

Out[26]: Text(0, 0.5, 'Imp_Values')

Step-8 [Visualize your RF Decision Tree using graphviz]

```
In [28]: !type tree1.dot
```

Step-09

C:\Users\user\anaconda3\lib\site-packages\sklearn\ensemble_forest.py:560: UserWarning: Some inputs do not have OOB sc ores. This probably means too few trees were used to compute any reliable OOB estimates. warn(

Out[30]:

oob

n_trees		
15.0	0.160617	
20.0	0.153358	
30.0	0.144283	
40.0	0.141561	
50.0	0.144283	
100.0	0.144283	
150.0	0.143376	
200.0	0.142468	
300.0	0.142468	
400.0	0.145191	

In []:

```
In [31]: ax=rf_oob_df.plot(legend=False,marker='o',figsize=(10,5))
ax.set(ylabel='out-of-bag erroe')
```

Out[31]: [Text(0, 0.5, 'out-of-bag erroe')]

Step-11 [DecisionTreeClassifier]

```
In [32]: from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.metrics import*

In [33]: dt = DecisionTreeClassifier(criterion='entropy')

In [34]: dt.fit(X_train, y_train)

y_pred = dt.predict(X_test)
```

```
In [37]: | from sklearn.tree import DecisionTreeClassifier
         import sklearn.tree as tree
         clf = DecisionTreeClassifier(criterion='entropy')
         clf.fit(X train, y train)
Out[37]: DecisionTreeClassifier(criterion='entropy')
In [38]: with open("tree2.dot", "w") as f:
             f = tree.export_graphviz(clf, out_file=f, max_depth=5, impurity=False,
                                       feature_names=X_train.columns.values,
                                       class names=["Yes", "No"], filled=True)
In [39]: !type tree2.dot
         digraph Tree {
         node [shape=box, style="filled", color="black", fontname="helvetica"];
         edge [fontname="helvetica"];
         0 [label="OverTime Yes <= 0.5\nsamples = 1102\nvalue = [913, 189]\nclass = Yes", fillcolor="#ea9b62"];</pre>
         1 [label="TotalWorkingYears <= 2.5\nsamples = 780\nvalue = [698, 82]\nclass = Yes", fillcolor="#e89050"];
         0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"];
         2 [label="JobRole Research Scientist <= 0.5\nsamples = 71\nvalue = [46, 25]\nclass = Yes", fillcolor="#f3c5a5"];
         1 \to 2;
         3 [label="HourlyRate <= 58.5\nsamples = 51\nvalue = [28, 23]\nclass = Yes", fillcolor="#fae8dc"];</pre>
         2 \rightarrow 3;
         4 [label="EnvironmentSatisfaction <= 2.5\nsamples = 18\nvalue = [5, 13]\nclass = No", fillcolor="#85c3ef"];
         3 \to 4;
         5 [label="samples = 9\nvalue = [0, 9]\nclass = No", fillcolor="#399de5"];
         4 -> 5;
         6 [label="MonthlyIncome <= 2192.5\nsamples = 9\nvalue = [5, 4]\nclass = Yes", fillcolor="#fae6d7"];
         4 -> 6;
         7 [label="(...)", fillcolor="#C0C0C0"];
         6 -> 7;
         10 [label="(...)", fillcolor="#C0C0C0"];
In [40]: print("Accuracy:", accuracy score(y test, y pred))
```

Accuracy: 0.7717391304347826

In [41]: print("Classification Report : ",classification_report(y_test,y_pred)) Classification Report : precision recall f1-score support No 0.89 0.84 0.87 320 0.22 0.29 0.25 48 Yes 0.77 accuracy 368 0.57 0.56 368 macro avg 0.55

0.79

368

0.77

weighted avg

0.80