$1 \mod 4$

Полосовой RC-фильтр

1. Объяснение:

На низких частотах емкостной импеданс велик и шум на выходе это шум e_2 одного резистора R. На высоких частотах малый импеданс емкостей эффективно закорачивает выход, делая выходной шум малым. Коэффициент передачи имеет максимум на частоте f_0 . Спад коэффициента передачи на низких частотах при постоянстве уровня шума на выходе обеспечивает резкий рост коэффициента шума.

Формула коэффициента шума $K=20lg\left(\frac{e_n(f)}{\sqrt{4kTR}}\right)$

Рис. 1: $f_0 = 50k, \Delta f = 152k, K = 0.33,$ с теорией сходится

Рис. 2: $n(f_0)=5.88n, n(10f_0)=1.56n, \sigma=2.86\mu,$ оба резистора шумящие

Рис. 3: $n(f_0)=4.96n, n(10f_0)=960p, \sigma=2.15\mu, R_{s_2}$ не шумящий

Рис. 4: $n(f_0)=240p, n(10f_0)=250p, \sigma=370n, R_2$ нешумящий

Рис. 5:
$$e(f_0) = 17.7n$$
, $e(f_0/10) = 73.45n$, $e(f_0/100) = 728.6n => K(f_0) = 7.9$, $K(f_0/10) = 20.4$, $K(f_0/100) = 41$

Полосовой LC-фильтр нижних частот

На низких частотах индуктивный импеданс мал, а емкостный велик. При этом шум на выходе создается параллельным соединением r||R и отличен от нуля. С учетом малости коэффициента передачи это приводит к высокому уровню коэффициента шума. На высоких частотах большой индуктивный импеданс эффективно отключает резистор г. Получается обычная интегрирующая RC-цепь с нулевым коэффициентом шума. Таким образом, в фильтре на параллельном контуре с омическим сопротивлением индуктивности г обнаруживается рост коэффициента шума на частотах ниже резонанса.

Формула коэффициента шума
$$K=20lg\left(\frac{e_n(f)}{\sqrt{4kTR}}\right)$$

Рис. 6: $f_0=102k, \Delta f=36k, K(f_0)=0.5, K(0)=0.02,$ с теорией сходится

Рис. 7: $n(f_0)=7.9n, n(f_0/100)=1.8n, \sigma=1.8\mu,$ оба шумящие

Рис. 8: $n(f_0)=355p, n(f_0/100)=1.0n, \sigma=228.9n, R_3$ шумящий

Рис. 9: $n(f_0)=1.8n, n(f_0/100)=11.2n, \sigma=1.7\mu, R_{\rm s3}$ шумящий

Рис. 10: $e(f_0)=15.4n, e(f_0/100)=68.3n, e(10f_0)=10.9n=>K(f_0)=31.5, K(f_0/100)=18.9, K(10f_0)=15.8$

$2 \mod 615$

1. $I_c = 1 \; {
m MA}, r_b = 100 \; {
m Om}$ Такой ток соответствует $I_1 = 13.5 \; {
m MkA}.$

Измерение шумового коллекторного тока

Рис. 11: $h_{21} = 85.1$

Рис. 12: Варьирование $H_s = [10, 1000k|Log10]$

Рис. 13: Варьирование RB = [0, 100|25]

Рис. 14: Варьирование $H_s = [10, 1000|Log10]$ для $I_c = 0.1m, I_1 = 1.83\mu$

Рис. 15: Варьирование RB = [0, 100|25] для $I_c = 0.1m, I_1 = 1.83\mu$

Варьирование H_s ожидаемо дает различные значения тока на выходе, причем при больших сопротивлениях ток больше. От сопротивления ток на коллекторе зависит линейно, т.е. увеличивается в 10 раз при шаге варьирования.

При уменьшении подаваемого тока нелинейно падает ток на коллекторе.

Варьируя объемное сопротивление базы при нулевом сопротивлении H_s , подаваемый ток с H_s равен нулю, а вклад остается только у теплового шума объемного сопротивления базы, что и повышает ток при увеличении тока пропорционально корню из его значения $(I_c \cdot r)$.

Измерение коэффициента шума

1. $R_s = 40$ k.

Рис. 16: Шумовой ток, варьирование R

При низком сопротивлении R коэффициент шума падает, и в пределе i=1.42 нА. Шумовая температура составит T=300 K, а усилителя $R_n=5$ кОм. На выходе $\sigma\approx 200$ нА.

3 model6

1.
$$U_p = 1.1 \text{ B}, R_g = 25 \text{ Om}, I_d = 1m$$
?

Исследование шумового тока

U_p	2	1.8	1.6	1.4	1.2	1.0	0.8	0.6	0.4	0.2
S	1.13	1.44	1.65	1.80	1.92	2.02	2.11	2.18	2.24	2.29

Таблица 1: Для
$$U_p=1.1V\,rac{1}{S}pprox 0.5$$

Рис. 17: Крутизна транзистора

Рис. 18: Шумовой ток, варьирование U_p

r									0.4	
i_d , p	3.37	3.05	2.88	2.78	2.71	2.66	2.62	2.59	2.56	2.54

Таблица 2: Для $U_p=1.1V\,\gamma=rac{i_d^2}{4kTS}pprox 0.65$

H, Meg	0	0.5	1	1.5	2
i_d , n	2.83	64.26	129.34	192.09	257.77

При мегаомном сопротивлении H ток совпадает с током при подключенном шумящем сопротивлении R, что неудивительно вследствии рассматриваемого диапазона частот и напряжений.

Рис. 19: Шумовой ток, варьирование Н

Исследование коэффициента шума

Рис. 20: Шумовой ток, варьирование R

Как видно, при сопротивлении R стремящемся к нулю, шумовое значение составит 3 нА. Шумовое сопротивление из формулы $R_n = \sqrt{\frac{\gamma R_g}{S}} \approx 18$ кОм. Шумовая температура составляет 300 К. А при $R=R_n$ шум на выходе равен $\sigma=17.7$ нА.

Рис. 21: Шумовой ток, $R=R_n$