Auterion

Overview of multicopter control from sensors to motors

Matthias Grob and Mathieu Bresciani
Auterion

July 6, 2020

Matthias Grob

GitHub: MaEtUqR

PX4 maintainer since 2017

Focus: Multicopter flight control

Mathieu Bresciani

GitHub: bresch

PX4 maintainer since 2018

Focus: estimation and multicopter control

Outline

- **01.** Multicopter overview
- **02.** IMU pipeline
 - Estimation and control paths
- **03.** Flight task update
 - Setpoint continuity
 - Acceleration setpoints
- 04. Quaternion attitude control
- **05.** Control allocation (aka mixing)
 - In a nutshell
 - Airmode

Multicopter overview

Two paths

Estimation: low rate, unfiltered

Driver

- Sensor_gyro frequency:
 IMU_GYRO_RATEMAX (400hz 4khz) → rate controller frequency (default: 800Hz)
- Accelerometer clip counter used by EKF2 against asymmetric railing
- Activate FIFO logging using SDLOG_PROFILE
- Show FFT and spectrograms in logs.px4.io

Estimation path

- Vehicle_imu and vehicle_attitude ODR: IMU_INTEG_RATE
- Delayed-time EKF frequency: 100Hz (hardcoded FILTER_UPDATE_PERIOD_MS)
- Vehicle_imu: 1 per IMU (New) sensor_combined: voted IMU
- Multi-EKF (1 per IMU) coming soon...

Control path

Low-pass filters (Butterworth 2nd order) cutoffs:

- Acceleration: IMU_ACCEL_CUTOFF
- Angular velocity: IMU_GYRO_CUTOFF
- Angular acceleration:
 IMU_DGYRO_CUTOFF

Notch filter (gyro only):

- Notch frequency: IMU_GYRO_NF_FREQ
- Bandwidth: IMU_GYRO_NF_BW

Flight task update

- Setpoint continuity when switching mode / task
 - Problem: Vehicle state not enough
 - Idea: Hand over last setpoint set from previous task during switch

```
/**
 * Call once on the event where you switch to the task
 * @param last setpoint last output of the previous task
 * @return true on success, false on error
virtual bool activate(vehicle local position setpoint s last setpoint);
```

- New task takes over setpoints
- Acceleration setpoint execution
 - See next

Acceleration setpoints

- Any setpoint combination
 - Every dimension x, y, z, yaw
 - Horizontal setpoint pair x, y

- Velocity control output is acceleration
 - Gains rescaledMPC_{XY/Z}_VEL_{P/I/D}_ACC

Flight task output - Position control input

trajectory setpoint

Local world frame

- 3D position
- 3D velocity
- 3D acceleration
- 3D jerk [log]
- 3D thrust
- Yaw (heading)
- Yawspeed

$$\frac{g}{hover\ thrust} \approx \frac{10\frac{m}{s^2}}{50\%} = 20$$

Acceleration setpoints

New strategy for attitude generation

- Problem: Collective thrust dynamics much faster than rotational dynamics
- Solution: Tilt independent of vertical acceleration
- Example
 - 4m/s² horizontal acceleration
 - → tilt angle using gravity
 - 2m/s² upwards acceleration
 - → adjust collective thrust
- Body z of attitude setpoint quaternion aligned with thrust direction

Flight task plans

Separate flight task

Instantiated in position control.

Inheritance → **Libraries**

Confusing structure limits reuse.

Goal: Sequential readability

Extend to "flight mode"

Allow rate and attitude setpoints to cover all modes.

Import navigator states

One "flight mode" for: Takeoff, RTL, land, mission, ...

Use with other vehicle types

Can use "flight modes" since output is more flexible.

Hook up with state machine

Structure based on mode's properties.

Quaternion attitude control

Principle

- Quaternion error

$$q_{setpoint} = q_{estimate} \cdot q_{error}$$
 $q_{estimate}^{-1} \cdot q_{setpoint} = q_{error}$

 $q_{estimate}$

- Angular velocity setpoint to correct

$$q_{error} = \begin{bmatrix} \cos(\frac{\alpha}{2}) \\ \sin(\frac{\alpha}{2})\vec{n} \end{bmatrix} \vec{\omega}_{setpoint}$$

Nonlinear Quadrocopter Attitude Control

Dario Brescianini, Markus Hehn and Raffaello D'Andrea

Matthias Grob and Mathieu Bresciani 13

Control allocation

In a nutshell

Desired forces Actuator outputs (**u**) and torques (m)

Control

allocation

How to add a new geometry

Create new geometry file in src/lib/mixer/MultirotorMixer/geometries/foo.toml with a new key (e.g.: key = "4fo") and add to CMakel ists.txt

Then in ROMFS/px4fmu_common/

Create new mixer file mixers/foo.main.mix with a line containing the new key:

R: 4fo 10000 10000 10000 0

Set the new mixer in init.d/airframes/myconfig

set MIXER foo

Control allocation

Airmode

- Parameter: MC_AIRMODE
- Use Roll/Pitch mode for VTOL planes and multirotors with weak yaw authority
- Use Roll/Pitch/Yaw mode for multirotors with strong yaw authority (e.g.: racers)
- For better performance, use thrust linearization: THR_MDL_FAC

Warning: Only activate airmode when the control loops are properly tuned!

Auterion

Thank you!

May your preflight check pass