

Módulo práctico 1: Mapas de desplazamiento con niveles de detalle

Procesadores Gráficos y Aplicaciones en Tiempo Real Profesores: Alberto Sánchez, Óscar D. Robles y Juan P. Brito

Máster en Informática Gráfica, Juegos y Realidad Virtual

Escuela Técnica Superior de Ingeniería Informática

Índice

- Estructura y evaluación
- Módulo Práctico 1: Mapas de desplazamiento

Estructuración de las prácticas

- Leer normativa en el campus virtual
 - Presentación de la asignatura
- 2 módulos prácticos (todos)
 - Familiarización con los principios de cada etapa del cauce.
 - Ejercicios muy sencillos.
 - Carácter didáctico pero muy útiles.
 - Muy ampliables ©.
- Alumnos con asignatura completa
 - Práctica adicional en Vulkan (hablar primero conmigo)
 - Se puede hacer desde las partes ampliables de cada módulo práctico
 - Instanciación, render mutihebra, deferred ...
 - Proyecto
 - Si es sobre CGP: Tiene que estar hecho en >Vulkan
 - Presentar un pre-proyecto antes
 - Habrá que exponerlo en clase.

Evaluación

- El trabajo realizado en las prácticas
 - 30 % de la nota global
 - Es necesario aprobarlas todas.
 - Ejercicios propuestos (y la memoria) puntúan hasta un 7
 - 2 puntos por las partes de ampliación
 - Se proporcionarán posibles líneas a seguir
 - Enviadme un mail con 4 o 5 técnicas en las que trabajaríais.
 - Podéis proponer trabajos alternativos.
 - 1 punto por la entrega en tiempo.
 - Absolutamente necesario entregar una memoria descriptiva así como todo lo necesario para poder compilar/ejecutar los proyectos (código, assets etc ...).
- Proyecto
 - 20% para aquellos que seleccionen esta asignatura como completa
 - Las prácticas pasaran a valer en este caso 20% cada tema

Evaluación

- Se pueden hacer por parejas
 - Todos los integrantes deberán conocer el proyecto en profundidad
 - Sólo uno de los integrantes enviará los proyectos y el material necesario, pero dejará claro los integrantes del proyecto.
- Todos los módulos prácticos (y el proyecto) tendrán un deadline
 - Aproximadamente 3 semanas después de la sesión práctica
 - Cuidado, se os pueden solapar.
 - Habrá post-dedline pero con penalización
- Se puede solicitar una defensa
 - Aclarar dudas del proyecto.
 - Problemas.
- ¡Por favor, no hagáis trampas!
 - Prácticas muy similares serán consideradas copias! → Implica el suspenso!
 - Si os basáis en código que no es vuestro, referenciado y realizad alguna aportación destacable.
 - Indicad que se ha hecho sobre el proyecto utilizado como base.

Mapas de desplazamiento con niveles de detalle

 Objetivo: Familiarización con las etapas de geometría y teselación en un supuesto práctico basado en mapas de desplazamiento con niveles de detalle.

Vídeo

Unreal Engine 3 Official Samaritan Demo

Desglose en sub-módulos

- Sub-módulo 1:
 - Toma de contacto con las etapas de geometría y teselación.
 - Ejercicios muy básicos
- Sub-módulo 2:
 - Aplicación de mapas de desplazamiento
 - Generación de un sistema de niveles de detalle
- Fecha de entrega: **04/03/2020**

- Tareas para la etapa de geometría
 - Se práctica del proyecto de la práctica anterior
 - Introducir etapa de geometría (pass-through)
 - Introducir un nuevo pipe de rendering con las operaciones sobre geometría
 - Dibujado de primitivas básicas
 - Puntos
 - Normales por vértice y faceta
 - Modo alambre

- Tareas para la etapa de teselación
 - Introducir función para cargar un quad como un VBO y dibujar con Patches.
 - Introducir las etapas de TCS y TES
 - Subdividir el Quad utilizando los niveles de teselación internos y externos
 - Parametrizarlos en la interfaz mediante commands
 - Añadir un nuevo método similar al de creación de un quad pero para triángulos
 - Modificar los shaders para que subdividan correctamente el triángulo

- Aplicación de un modelo de mapas de desplazamiento
 - Utilizaremos la tetera del ejemplo "3. WebGL Teapot JSON Model", en la categoría "1.Low Level" así como su textura asociada.
 - Modificar la función para renderizar quads para que sea capaz de renderizar este modelo
 - Cargar de textura
 - uniform sampler2D nombreTextura; //! texture["textures/ficheroTextura.jpg"]
 - Interpretar la información de la textura como un desplazamiento
 - Eg: Escalar * ComponenteDeColor

- Aplicación de niveles de detalle dinámicos
 - Introducir una técnica de niveles de detalle dinámicos
 - Distancia a la cámara
 - Silueta del objeto
 - Ärea ocupada en pantalla
 - ...

Ampliación del módulo práctico 2

- Vector displacement mapping
- Procedural displacements
- Heightmaps aplicados a terrenos
- Mapas de altura basados en Perlin-Noise.
- Subdivision techniques on GPU
- Refinamiento de siluetas.
- Otras técnicas que en las que os gustaría trabajar.
- ... Vuestras propias propuestas ②.

Bibliografía

Schäfer, H., Niessner, M., Keinert, B., Stamminger, M., & Loop, C. T. (2014, April).
State of the Art Report on Real-time Rendering with Hardware Tessellation.
In Eurographics (State of the Art Reports) (pp. 93-117).

