Thermodynamique 1S – TD4

1 Cycle décrit par un gaz parfait

L'état initial d'une mole de gaz parfait est caractérisé par $p_A = 2 \cdot 10^5$ Pa et $V_A = 14$ L. On fait subir successivement à ce gaz les transformations réversibles suivantes :

- a. $A \rightarrow B$: détente isobare qui double son volume,
- b. $B \to C$: compression isotherme qui le ramène à son volume initial,
- c. $C \to A$: refroidissement isochore qui le ramène à son état initial.
- 1. À quelle température s'effectue la compression isotherme? En déduire la pression maximale atteinte.
- 2. Représenter le cycle de transformations dans le diagramme (p, V).
- 3. Calculer les travaux et quantités de chaleur échangés par le système au cours du cycle en fonction de p_A , V_A et $\gamma = C_p/C_v = 7/5$ (supposé constant dans le domaine de températures étudié).
- 4. Vérifier $\Delta U = 0$ pour le cycle.

2 Transformations d'un gaz parfait

Reprendre l'exercice 3 du TD3 et calculer les quantités de chaleur mises en jeu dans chacune des transformations.

3 Compressions d'un gaz parfait

Un cylindre, muni d'un piston mobile sans frottement, de surface S et de masse négligeable, contient une masse m=1 g d'hélium (masse molaire $\mathcal{M}_{\mathrm{He}}=4$ g·mol⁻¹), assimilable à un gaz parfait, à la température initiale de 300 K. Les parois du cylindre et du piston sont adiabatiques. La pression atmosphérique vaut 10^5 Pa.

- 1. Donner la valeur initiale des variables d'état (p_0, V_0, T_0) de l'hélium.
- 2. Soit p_1 la pression du gaz à l'équilibre lorsqu'on exerce une force F sur le piston de façon à comprimer l'hélium. Calculer le rapport $x = p_1/p_0$.
- 3. La force F est exercée en plaçant "d'un seul coup" sur le piston une masse élevée. Qu'observe t'on ? L'état final du gaz est défini par (p_1, V_1, T_1) . Exprimer les rapports V_1/V_0 et T_1/T_0 en fonction de x, R et la chaleur massique à volume constant.
- 4. La force F est exercée en plaçant lentement et successivement sur le piston des masselottes. L'état final du gaz est défini par (p_2, V_2, T_2) . Lors d'une telle transformation, le produit pV^{γ} est une constante où γ est le coefficient adiabatique du gaz. Exprimer les rapports V_2/V_0 et T_2/T_0 .

4 Extensivité de l'énergie interne

Un réservoir R_1 de volume V_1 contient un gaz parfait diatomique à la température T_1 sous une pression p_1 . Un réservoir R_2 de volume V_2 contient un gaz parfait diatomique à la température T_2 sous une pression p_2 . Ces deux réservoirs sont parfaitement isolés du milieu extérieur. Deux transformations sont proposées :

- a. R_1 et R_2 sont mis en contact et se mettent en équilibre thermique. Les volumes V_1 et V_2 sont demeurés invariants pendant la transformation.
- b. R_1 et R_2 sont mis en contact et se mettent en équilibre thermique. Les pressions p_1 et p_2 sont demeurées invariantes pendant la transformation.

Données: $V_1 = 10 \text{ L}$, $V_2 = 5 \text{ L}$, $T_1 = 300 \text{ K}$, $T_2 = 350 \text{ K}$, $p_1 = 4 \text{ bar et } p_2 = 8 \text{ bar}$.

Dans chaque cas,

- 1. Préciser l'état du fluide après la transformation décrite (pression, volume et température),
- 2. Calculer la quantité de chaleur et le travail échangés,
- 3. Calculer la variation d'énergie interne des deux gaz.

5 Transformations de gaz parfait

Une mole de gaz parfait à c_p et c_V constants subit les transformations réversibles suivantes :

- 1. $A \to B$: compression isochore avec $p_B = 2p_A$,
- 2. $B \to C$: dilatation isobare avec $V_C = 2V_A$,
- 3. $C \to D$: détente isotherme avec $V_D = 3V_A$,
- 4. $D \to E$: détente adiabatique réversible avec $V_E/V_D = (4/3)^{1/\gamma}$ avec γ le coefficient isentropique.

On demande de:

- 1. Exprimer p_E en fonction de p_A .
- 2. Tracer ces transformations dans un diagramme de Clapeyron.
- 3. Pour chacune des transformations, donner l'expression du travail échangé, de la quantité de chaleur échangée et de la variation d'énergie interne.
- 4. Exprimer le travail, la quantité de chaleur et la variation d'énergie interne au cours de la transformation de A à E en fonction de T_A et T_E .
- 5. Sur le diagramme de la question 2, hachurer en bleu la surface correspondante au travail reçu au cours de la transformation ABCDE. Iniquer si ce travail est positif ou négatif.

6 Détente polytropique d'un gaz parfait

On considère la détente polytropique réversible d'un gaz parfait le menant d'un état 1 à un état 2. Cette détente se caractérise par la relation $pV^k = \text{constante}$, où k est une constante positive. On considère que le coefficient est constant dans le domaine de température considéré.

Pour quelles valeurs du coefficient k la détente s'accompagne t'elle :

- a. D'absorption de chaleur et d'un échauffement du gaz ?
- b. D'absorption de chaleur et d'un refroidissement du gaz ?
- c. D'un dégagement de chaleur ?