A random variable X has the following probability function:

Values of X, x: -2 -1 0 1 2 3 p(x): $0 \cdot 1$ k $0 \cdot 2$ 2k $0 \cdot 3$ k

(i) Find the value of k, and calculate mean and variance.

(ii) Construct the c.d.f. F(X) and draw its graph.

Sol
$$\sum P(x) = 1 = 0.1 + k + 0.2 + 2k + 0.3 + k$$

$$=) ux + o.6 = 1$$

$$F(x) = 0.1$$

Continuous Random Variable. A random variable X is said to be

continuous if it can take all possible values between certain limits. In other words, a random variable is said to be continuous when its different values cannot be put in 1-1 correspondence with a set of positive integers.

A continuous random variable is a random variable that (at least conceptually) can be measured to any desired degree of accuracy. Examples of continuous random variables are age, height, weight etc.

Probability Density Function (Concept and Definition). Consider the

small interval (x, x + dx) of length dx round the point x. Let f(x) be any continuous

function of x so that f(x) dx represents the probability that X falls in the in-

finitesimal interval (x, x + dx). Symbolically

$$P\left(x\leq X\leq x+dx\right)=f_{X}\left(x\right)\,dx$$

In the figure, f(x) dx represents the area bounded by the curve y = f(x), x-axis and the ordinates at the points x and x + dx. The function $f_X(x)$ so defined is known as probability density function or simply density function of random variable X and is usually abbreviated as

p.d.f. The expression, f(x) dx, usually written as dF(x), is known as the probability differential and the curve y = f(x) is known as the probability density curve or simply probability curve.

Definition. p.d.f. $f_X(x)$ of the r.y. X is defined as:

$$f_X(x) = \lim_{\delta x \to 0} \frac{P(x \le X \le x + \delta x)}{\delta x}$$

The probability for a variate value to lie in the interval dx is f(x) dx and hence the probability for a variate value to fall in the finite interval $[\alpha, \beta]$ is:

$$P\left(\alpha \leq X \leq \beta\right) = \int_{\alpha}^{\beta} f(x) dx$$

which represents the area between the curve y = f(x), x-axis and the ordinates at $x = \alpha$ and $x = \beta$. Further since total probability is unity, we have $\int_a^b f(x) dx = 1$, where [a, b] is the range of the random variable X. The range of the variable may be finite or infinite.

 $a \leq x \leq l$ J(X) ON $p(x \leq x \leq \beta) = \int_{-\infty}^{\infty} f(x) dx$ The probability density function (p.d.f.) of a random variable (r.v.) X usually denoted by $f_X(x)$ or simply by f(x) has the following obvious properties

(ii)
$$f(x) \ge 0, -\infty < x < \infty$$

(ii) $\int_{-\infty}^{\infty} f(x) dx = 1$
(iii) The probability $P(E)$ given by $P(E) = \int_{E} f(x) dx$

is well defined for any event E.

Example The diameter of an electric cable, say X, is assumed to be a continuous random variable with p.d.f. f(x) = 6x(1-x), $0 \le x \le 1$.

(i) Check that above is p.d.f.,

(ii) Determine a number b such that P(X < b) = P(X > b) $G_{\times} - G_{\times} \ge$

Sol
$$f(n) = 6 \times (1-x)$$

$$f(1) = 0$$

$$f(0.5) = 6(0.5)(1-0.5)$$

= $6 \times (0.5)(0.5)$

f(n)dn = 11 0 E X E 1 $\int_{0}^{\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx$ $o + \int_{-\infty}^{\infty} f(x) dx + 0$

$$\int_{0}^{1} f(x) dx = \int_{0}^{1} 6x(1-x) dx = 1$$

$$= \int_{0}^{1} (3x^{2} - 6x^{2}) dx = \begin{bmatrix} 3x^{2} - 6x^{2} \\ 3x^{2} - 6x^{2} \end{bmatrix}$$

$$= \int_{0}^{1} (3x^{2} - 6x^{2}) dx = \begin{bmatrix} 3x^{2} - 6x^{2} \\ 3x^{2} - 6x^{2} \end{bmatrix}$$

$$= \int_{0}^{1} (3x^{2} - 2(1)^{3}) - (0 - 0)$$

$$= 3 - 2 - 0 = 1$$

$$P(0.4 \le x \le 0.6) = \begin{cases} 0.6 \\ f(x) dx \end{cases}$$

$$0.296 \\ 0.4 \\ 6x - 6x^{2}) dx$$

$$0.296 \\ 0.4 \\ 8x^{2} - 6x^{3} \\ 0.4 \\ 0.4$$

$$\rho(6u \le x \le 0.6) = \begin{bmatrix} 3 \times 2 - 2 \times 3 \\ -2 \times (0.6)^2 - 2 \times (0.6)^2 \end{bmatrix} - (3(0.4)^2 - 2(0.4)^3$$

$$= 3(0.36) - 2(0.216) - 3(0.16)$$

$$+ 2(0.064)$$

$$= 1.08 - 0.432 - 0.48 + 0.128$$

$$= 0.296$$

$$p(x \le 0.3) = p(0 \le x \le 0.3)$$

$$0 \le x \le 1$$

$$= \int_{0.3}^{0.3} f(n) dn = \int_{0.3}^{0.3} (6x - 6n^2) dn$$

$$= \int_{0.3}^{0.3} f(n) dn = \int_{0.3}^{0.3} f(n) dn =$$

$$= (3(6.3)^{2} - 2(0.3)^{3}) - (0.0)$$

$$= 3(0.09) - 2(0.027)$$

$$= 0.27 - 0.084$$

$$= 0.216$$

$$\rho(x \ge 8) = \rho(x > 78) \qquad 0 \le x \le 1$$
=)
$$\rho(o \le x \le 8) = \rho(k \le x \le 1)$$

$$\int_{0}^{8} (6x - 6x^{2}) dn = \int_{0}^{1} (6x - 6n^{2}) dx$$

$$\int_{0}^{8} (6x^{2} - n^{3}) \int_{0}^{8} = 8 \left[\frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{1}$$

Example A continuous random variable X has a p.d.f.

$$f(x) = 3x^2$$
, $0 \le x \le 1$. Find a and b such that

(i)
$$P\{X \le a\} = P\{X > a\}$$
, and

(ii)
$$P\{X > b\} = 0.05$$
.

$$p(x \neq a) = p(x > a)$$

$$\rho(o \leq x \leq a) = \rho(o < x < 1)$$

$$\int ^{\alpha} b n^2 dn = \int ^{\beta} n^2 dn$$

$$\begin{bmatrix} x^3 \\ 3 \end{bmatrix}^9 = \begin{bmatrix} x^3 \\ 3 \end{bmatrix}_0$$

$$a^2 o = 1 - a^3$$

$$\alpha^3 = \frac{1}{2}$$

$$a = \left(\frac{1}{2}\right)^{1/3}$$

$$P(X > B) = 0.05$$

$$P(B < X < 1) = 0.05$$

$$|-0.05 - A^{3}|$$

$$|3x^{2}dx = 0.05$$

$$|3x^{3}| = 0.05$$

$$|A = (0.95)^{1/3}$$

$$1 - 13 = 0.05$$

$$1 - 0.05 - 13$$

$$1 - 0.95$$

$$1 - 0.95$$