15.7. PROBLEMS 581

(1) Prove that the characteristic polynomial $P_A(\lambda)$ is given by

$$P_A(\lambda) = \lambda^{n-2} P(\lambda),$$

with

$$P(\lambda) = \begin{bmatrix} \lambda - 1 & -2 & -3 & -4 & \cdots & -n+3 & -n+2 & -n+1 & -n \\ -\lambda - 1 & \lambda - 1 & -1 & -1 & \cdots & -1 & -1 & -1 & -1 \\ 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \ddots & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & -2 & 1 \end{bmatrix}.$$

(2) Prove that the sum of the roots λ_1, λ_2 of the (degree two) polynomial $P(\lambda)$ is

$$\lambda_1 + \lambda_2 = n^2$$
.

The problem is thus to compute the product $\lambda_1\lambda_2$ of these roots. Prove that

$$\lambda_1 \lambda_2 = P(0)$$
.

(3) The problem is now to evaluate $d_n = P(0)$, where

I suggest the following strategy: cancel out the first entry in row 1 and row 2 by adding a suitable multiple of row 3 to row 1 and row 2, and then subtract row 2 from row 1.