Private-Key Encryption and Pseudorandomness (Part II)

Yu Zhang

Harbin Institute of Technology

Cryptography, Autumn, 2020

Outline

- 1 Stream Ciphers and Multiple Encryption
- **2** Constructing CPA-Secure Encryption Schemes
- 3 Modes of Operation
- 4 Security Against Chosen-Ciphertext Attacks (CCA)

Content

- 1 Stream Ciphers and Multiple Encryption
- 2 Constructing CPA-Secure Encryption Schemes
- 3 Modes of Operation
- 4 Security Against Chosen-Ciphertext Attacks (CCA)

Security for Multiple Encryptions

The multiple-message eavesdropping experiment $\mathsf{PrivK}^{\mathsf{mult}}_{\mathcal{A},\Pi}(n)$:

- 1 \mathcal{A} is given input 1^n , outputs $\vec{M}_0=(m_0^1,\ldots,m_0^t)$, $\vec{M}_1=(m_1^1,\ldots,m_1^t)$ with $\forall i,|m_0^i|=|m_1^i|$.
- 2 $k \leftarrow \mathsf{Gen}(1^n)$, a random bit $b \leftarrow \{0,1\}$ is chosen. Then $c^i \leftarrow \mathsf{Enc}_k(m_b^i)$ and $\vec{C} = (c^1, \ldots, c^t)$ is given to \mathcal{A} .
- **3** \mathcal{A} outputs b'. If b' = b, $PrivK^{mult}_{\mathcal{A},\Pi} = 1$, otherwise 0.

Definition of Multi-Encryption Security

Definition 1

 Π has indistinguishable multiple encryptions in the presence of an eavesdropper if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{mult}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$$

Question:

Does any cipher we have learned so far have indistinguishable multiple encryptions in the presence of an eavesdropper?

Attack On Deterministic Multiple Encryptions

Question:

Generally, if Π 's encryption function is **deterministic**, i.e., a plaintext will be always encrypted into the same ciphertext with the same key, is Π multiple-encryption-secure?

Attack:

For the deterministic encryption, the adversary may generate $m_0^1=m_0^2$ and $m_1^1\neq m_1^2$, and then outputs b'=0 if $c^1=c^2$, otherwise b'=1.

Stream Ciphers

- Stream cipher: Encrypting by XORing with pseudorandom stream
- State of the art: No standardized and popular one¹
 Security is questionable, e.g., RC4 in WEP protocol in 802.11,
 Linear Feedback Shift Registers (LFSRs)

WARNING

Don't use any stream cipher. If necessary, construct one from a block cipher.

¹eStream project worked on it. Salsa20/12 is a promising candidate.

Secure Multiple Encryptions Using a Stream Cipher

Initial vector IV is chosen u.a.r and public Q: which mode is better in your opinion?

Related Keys: Real World Cases

Keys (the IV-key pair) for multiple enc. must be independent

Attacks on 802.11b WEP

Unsynchronized mode: $\mathsf{Enc}(m_i) := \langle IV_i, G(IV_i || k) \oplus m_i \rangle$

- Length of IV is 24 bits, repeat IV after $2^{24} \approx 16 \text{M}$ frames
- lacktriangle On some WiFi cards, IV resets to 0 after power cycle
- $IV_i = IV_{i-1} + 1$. For RC4, recover k after 40,000 frames

Chosen-Plaintext Attacks (CPA)

CPA: the adversary has the ability to obtain the encryption of plaintexts of its choice

A story in WWII

- Navy cryptanalysts believe the ciphertext "AF" means "Midway island" in Japanese messages
- But the general did not believe that Midway island would be attacked
- Navy cryptanalysts sent a plaintext that the freshwater supplies at Midway island were low
- Japanese intercepted the plaintext and sent a ciphertext that "AF" was low in water
- The US forces dispatched three aircraft carriers and won

CPA Indistinguishability Experiment

The CPA indistinguishability experiment $\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$:

- $1 k \leftarrow \mathsf{Gen}(1^n)$
- 2 $\mathcal A$ is given input 1^n and **oracle access** $\mathcal A^{\mathsf{Enc}_k(\cdot)}$ to $\mathsf{Enc}_k(\cdot)$, outputs m_0,m_1 of the same length
- **3** $b \leftarrow \{0,1\}$. Then $c \leftarrow \operatorname{Enc}_k(m_b)$ is given to \mathcal{A}
- **4** A continues to have oracle access to $Enc_k(\cdot)$, outputs b'
- **5** If b'=b, $\mathcal A$ succeeded $\operatorname{PrivK}^{\mathsf{cpa}}_{\mathcal A,\Pi}=1$, otherwise 0

Definition of CPA Security

Definition 2

 Π has indistinguishable encryptions under a CPA (CPA-secure) if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$$

• Q: Is any cipher we have learned so far CPA-secure? Why?

Proposition 3

Any private-key encryption scheme that is CPA-secure also is **multiple-encryption-secure**.

Q: Does multiple-encryption-security mean CPA-security? (homework)

Content

- 1 Stream Ciphers and Multiple Encryption
- **2** Constructing CPA-Secure Encryption Schemes
- 3 Modes of Operation
- 4 Security Against Chosen-Ciphertext Attacks (CCA)

Concepts on Pseudorandom Functions

- **Keyed function** $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ $F_k: \{0,1\}^* \to \{0,1\}^*, F_k(x) \stackrel{\text{def}}{=} F(k,x)$
- **Look-up table** $f: \{0,1\}^n \rightarrow \{0,1\}^n$ with size = ? bits
- Function family $Func_n$: all functions $\{0,1\}^n \to \{0,1\}^n$. $|Func_n| = 2^{n \cdot 2^n}$
- Length Preserving: $\ell_{key}(n) = \ell_{in}(n) = \ell_{out}(n)$

Definition of Pseudorandom Function

Intuition: A PRF F generates a function F_k that is indistinguishable from truly random selected function f (look-up table) in Func_n.

However, the function has **exponential length**. Give D the deterministic **oracle access** $D^{\mathcal{O}}$ to the functions \mathcal{O} .

Definition 4

An efficient length-preserving, keyed function F is a **pseudorandom function (PRF)** if \forall PPT distinguishers D,

$$\left|\Pr[D^{F_k(\cdot)}(1^n)=1] - \Pr[D^{f(\cdot)}(1^n)=1]\right| \leq \mathsf{negl}(n),$$

where f is chosen u.a.r from Func_n.

Q: Is the fixed-length OTP a PRF?

Questions

Q: Without knowing the key and the oracle access, could anyone learn something about the output from the input with a non-negligible probability?

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a secure PRF. Is G a secure PRF?

$$G((k_1, k_2), x) = F(k_1, x) || F(k_2, x)$$

$$G(k,x) = F(k,x \oplus 1^n)$$

$$G(k,x) = F(k,x) \bigoplus F(k,x \oplus 1^n)$$

CPA-Security from Pseudorandom Function

Construction 5

- \blacksquare Fresh random string r.
- $F_k(r)$: |k| = |m| = |r| = n.
- Gen: $k \in \{0,1\}^n$.
- Enc: $s := F_k(r) \oplus m$, $c := \langle r, s \rangle$.
- Dec: $m := F_k(r) \oplus s$.

Theorem 6

If F is a PRF, this fixed-length encryption scheme Π is CPA-secure.

Proof of CPA-Security from PRF

Idea: First, analyze the security in an idealized world where f is used in $\tilde{\Pi}$; next, claim that if Π is insecure when F_k was used then this would imply F_k is not PRF by reduction.

Proof.

Reduce D to A:

Proof of CPA-Security from PRF (Cont.)

Proof.

Analyze $\Pr[\mathsf{Break}]$, Break means $\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\tilde{\Pi}}(n) = 1$: \mathcal{A} collects $\{\langle r_i, f(r_i) \rangle\}$, $i = 1, \ldots, q(n)$ with q(n) queries; The challenge $c = \langle r_c, f(r_c) \oplus m_b \rangle$.

- Repeat: $r_c \in \{r_i\}$ with probability $\frac{q(n)}{2^n}$. \mathcal{A} can know m_b .
- Repeat: As OTP, $\Pr[\mathsf{Break}] = \frac{1}{2}$

$$\begin{split} \Pr[\mathsf{Break}] &= \Pr[\mathsf{Break} \land \mathsf{Repeat}] + \Pr[\mathsf{Break} \land \overline{\mathsf{Repeat}}] \\ &\leq \Pr[\mathsf{Repeat}] + \Pr[\mathsf{Break} | \overline{\mathsf{Repeat}}] \\ &\leq \frac{q(n)}{2^n} + \frac{1}{2}. \end{split}$$

$$\begin{split} &\Pr[D^{F_k(\cdot)}(1^n)=1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)=1] = \frac{1}{2} + \varepsilon(n). \\ &\Pr[D^{f(\cdot)}(1^n)=1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\tilde{\Pi}}(n)=1] = \Pr[\mathsf{Break}] \leq \frac{1}{2} + \frac{q(n)}{2^n}. \\ &\Pr[D^{F_k(\cdot)}(1^n)=1] - \Pr[D^{f(\cdot)}(1^n)=1] \geq \varepsilon(n) - \frac{q(n)}{2^n}. \ \varepsilon(n) \ \text{is negligible}. \end{split}$$

CPA-Security from PRF for Arbitrary-Length

■ For arbitrary-length messages, $m = m_1, \dots, m_\ell$

$$c := \langle r_1, F_k(r_1) \oplus m_1, r_2, F_k(r_2) \oplus m_2, \dots, r_\ell, F_k(r_\ell) \oplus m_\ell \rangle$$

Corollary 7

If F is a PRF, then Π is CPA-secure for arbitrary-length messages.

■ Efficiency: |c| = 2|m|.

Pseudorandom Permutations

- **Bijection**: *F* is one-to-one and onto
- Permutation: A bijective function from a set to itself
- **Keyed permutation**: $\forall k, F_k(\cdot)$ is permutation
- \blacksquare F is a bijection \iff F^{-1} is a bijection

Definition 8

An efficient, keyed permutation F is a **strong pseudorandom permutation (PRP)** if \forall PPT distinguishers D,

$$\left|\Pr[D^{F_k(\cdot),F_k^{-1}(\cdot)}(1^n)=1] - \Pr[D^{f(\cdot),f^{-1}(\cdot)}(1^n)=1]\right| \leq \mathsf{negl}(n),$$

where f is chosen u.a.r from the set of permutations on n-bit strings.

If F is a pseudorandom permutation then is it a PRF?

Questions

Let $X = \{0, 1\}$ (1 bit), answer the following questions.

- \blacksquare What are the functions in the permutation over X?
- **2** $K = \{0, 1\}$, what is the simplest permutation F(k, x) over X?
- \blacksquare Is your F a secure PRP?
- 4 Is your F a secure PRF?
- 5 What if $X = \{0, 1\}^{128}$ and $K = \{0, 1\}^{128}$?
- **6** Could you give a (or another) PRP over $X = \{0, 1\}^{128}$?

Proposition 9

IF F is a PRP and additionally $\ell_{in}(n) \geq n$, then F is also a PRF.

Content

- 1 Stream Ciphers and Multiple Encryption
- 2 Constructing CPA-Secure Encryption Schemes
- 3 Modes of Operation
- 4 Security Against Chosen-Ciphertext Attacks (CCA)

PRF, PRP, PRG, and Modes of Operation

Modes of Operation:

- A way of encrypting arbitrary-length messages using a PRP or PRF
- A way of constructing a PRG from a PRP or PRF

Electronic Code Book (ECB) Mode

- Q: is it indistinguishable in the presence of an eavesdropper?
- \blacksquare Q: can F be any PRF?

Attack on ECB mode

Cipher Block Chaining (CBC) Mode

- *IV*: initial vector, a fresh random string.
- \blacksquare Q: is it CPA-secure? what if IV is always 0?
- **Q**: is the encryption parallelizable, i.e., outputting c_2 before getting c_1 ?
- \blacksquare Q: can F be any PRF?

Output Feedback (OFB) Mode

- Q: is it CPA-secure?
- Q: is the encryption parallelizable?
- \blacksquare Q: can F be any PRF?

Counter (CTR) Mode

- lacktriangledown ctr is an IV
- Q: is it CPA-secure?
- Q: is the encryption parallelizable?
- \blacksquare Q: can F be any PRF?

CTR Mode Is CPA-secure

Theorem 10

If F is a PRF, then randomized CTR mode is CPA-secure.

Proof.

The message length and the number of query are q(n).

Overlap: the sequence for the challenge overlaps the sequences for the queries from the adversary.

ctr*: ctr in the challenge. ctr $_i$: ctr in the queries, $i=1,\ldots,q(n)$. Overlap: ctr $_i-q(n)<$ ctr* < ctr $_i+q(n)$.

$$\Pr[\mathsf{Overlap}] \le \frac{2q(n)-1}{2^n} \cdot q(n)$$

Proof of CPA-secure CTR Mode (Cont.)

Proof.

See proof of theorem 6. (1) Analyze Break : $PrivK_{\Delta \tilde{\Pi}}^{cpa}(n) = 1$.

$$\begin{split} \Pr[\mathsf{Break}] &= \Pr[\mathsf{Break} \land \mathsf{Overlap}] + \Pr[\mathsf{Break} \land \overline{\mathsf{Overlap}}] \\ &\leq \Pr[\mathsf{Overlap}] + \Pr[\mathsf{Break}|\overline{\mathsf{Overlap}}] \\ &\leq \frac{2q(n)^2}{2^n} + \frac{1}{2}. \end{split}$$

(2) Reduce D to A

$$\begin{split} \Pr[D^{f(\cdot)}(1^n) = 1] &= \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\tilde{\Pi}}(n) = 1] \leq \frac{2q(n)^2}{2^n} + \frac{1}{2} \\ \Pr[D^{F_k(\cdot)}(1^n) = 1] &= \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] \leq \frac{1}{2} + \varepsilon(n) \\ &\text{If } F \text{ is PRP}, \varepsilon(n) \text{ is negligible.} \end{split}$$

IV Should Not Be Predictable

If IV is predictable, then CBC/OFB/CTR mode is not CPA-secure. Q: Why? (homework)

Bug in SSL/TLS 1.0

IV for record #i is last CT block of record #(i-1).

API in OpenSSL

```
void AES_cbc_encrypt (
   const unsigned char *in,
   unsigned char *out,
   size_t length,
   const AES_KEY *key,
   unsigned char *ivec, User supplies IV
   AES_ENCRYPT or AES_DECRYPT);
```

Content

- 1 Stream Ciphers and Multiple Encryption
- 2 Constructing CPA-Secure Encryption Schemes
- 3 Modes of Operation
- 4 Security Against Chosen-Ciphertext Attacks (CCA)

Security Against CCA

The CCA indistinguishability experiment $PrivK_{A,\Pi}^{cca}(n)$:

- **2** \mathcal{A} is given input 1^n and oracle access $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ and $\mathcal{A}^{\mathsf{Dec}_k(\cdot)}$, outputs m_0, m_1 of the same length.
- **3** $b \leftarrow \{0,1\}.$ $c \leftarrow \operatorname{Enc}_k(m_b)$ is given to \mathcal{A} .
- 4 \mathcal{A} continues to have oracle access except for c, outputs b'.
- If b' = b, \mathcal{A} succeeded $\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi} = 1$, otherwise 0.

Definition 11

 Π has indistinguishable encryptions under a CCA (CCA-secure) if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$$

Understanding CCA-security

- In real world, the adversary might conduct CCA by influencing what gets decrypted
 - If the communication is not authenticated, then an adversary may send certain ciphertexts on behalf of the honest party
- CCA-security implies "non-malleability"
- None of the above scheme is CCA-secure

CCA against Construction 5

 ${\cal A}$ gives m_0,m_1 and gets $c=\langle r,F_k(r)\oplus m_b\rangle$, and then queries c' which is the same with c except that a single bit is flipped. The $m'=c'\oplus F_k(r)$ should be the same with m_b except ____?

Q: Show that the above modes (CBC, OFB and CTR) are also not CCA-secure. (homework)

Padding-Oracle Attacks: Real-world Case

CAPTCHA server will return an error when deciphering the CT of a CAPTCHA text received from a user.

Padding-Oracle Attacks

PKCS #5 Padding: append b bytes of b to the message in order to make the total length a multiple of the block length (append a dummy block if needed). The decryption server will return a **Bad Padding Error** for incorrect padding.

Padding-Oracle Attacks:

■ In a one-block CBC, by modifying the 1st byte of IV, attacker can learn whether m is NULL. If yes, error will occur.

- append $\{b\}^b$ as a dummy block if m is NULL
- change the 1st byte of IV from x to y, get decrypted block $(x \oplus y \oplus b) \| \{b\}^{b-1}$, and trigger an error

Padding-Oracle Attacks (Cont.)

- If no error, then learn whether m is 1 byte by modifying the 2nd byte of IV and so on (changing the ciphertext)
- $lue{}$ Once learn the length of m, learn the last byte of m (s) by modifying the one before the last block in the ciphertext
- $m_{last} = \cdots s \|\{b\}^b, c_{last-1} = \cdots t \|\{\cdot\}^b$
- \blacksquare modify c_{last-1} to $c'_{last-1} = \cdots u \| (\{\cdot\}^b \oplus \{b\}^b \oplus \{b+1\}^b)$
- \blacksquare Q: If no padding error, then s=?

Summary

- Asymptotic approach, proof of reduction, indistinguishable
- PRG, PRF, PRP, stream cipher, block cipher
- Security/construction against eavesdropping/CPA
- EBC, CBC, OFB, CTR
- CCA, padding-oracle attack