

Swiss Institute of **Bioinformatics**

MULTIOMICS **DATA ANALYSIS** AND INTEGRATION

The Omics Data Explosion

Modern scientific technologies are able to generate massive datasets to describe specific phenotypes illustrating a biological phenomenon

Data Structures

 One-way data is a vector, with a single data value for each element of the single dimension (n)

 Two-way data is a matrix, with a single data value for each element of two separate dimensions (n,p)

High dimensionality (n << p)
Multicollinearity between variables
Missing values
Biological/analytical variability

Adding extra dimensions leads to an exponential increase of the hypothesis space size → Relevant hypotheses become harder to find

Knowledge Discovery In Omics

Analytics

Data Production

- √ Sample preparation
- ✓ Data acquisition

Data Processing

- √ Signal extraction
- ✓ Filtering
- ✓ Normalisation
- ✓ Annotation

Information Content Signal

Knowledge

Biological Interpretation

- ✓ Extract relevant information
 - ✓ Link to existing knowledge
 - ✓ Biological validation

Chemometrics

Multivariate Analysis

- ✓ Exploration
- √ Classification
- ✓ Pattern Recognition
- √ Variables contribution

Bioinformatics

Multiple Data Sources Omics

- ✓ Different biological scales
 - ✓ Cell/tissue/organism
 - ✓ Systems biology

- ✓ Different stages of a process
 - ✓ Dose
 - ✓ Toxicity
 - ✓ Disease progression

- ✓ Different analytical techniques
 - ✓ Heterogeneous data
 - ✓ Separation or spectral methods

MultiOmics & Systems Roles

Information

Embracing Complexity

How does a complex system work?

Examine separately springs, gears, shafts, etc. how they fit together

or

Consider all the elements at once and how they fit and interact together

DATA INTEGRATION

MULTIGROUP ANALYSIS

DATA FUSION

MULTITABLE ANALYSIS

MULTIVIEW ANALYSIS

MULTISET ANALYSIS

MULTIBLOCK ANALYSIS

Nature Of The Data

QUANTITATIVE

- Continuous: numeric variables that can take any value between a certain set of real numbers
- Discrete: numeric variables that only consist of integers

QUALITATIVE

- Nominal: categorical variable that cannot be ranked
 - Ordinal: categorical variable that can be ranked
- Binary: categorical variable that is either true or false

Data Homo/Heterogeneity

Homogeneous data: data blocks all measured on the same scale e.g. quantitative data

Heterogeneous data: data blocks measured on different scales e.g. quantitative, ordinal, qualitative, binary

MultiOmics Data Integration

AIMS

- Molecular signatures
- Biological processes
- Mechanistic insights
- Interplay between layers
 - Holistic view

METHODS

- Matrix factorization
- Network-based approaches (multiplex, multilayer)
- Bayesian approaches
- Machine learning (embeddings)

Methods Based On Components

Data High Dimensionality
Variables Correlations
Biological Variability
Experimental Noise

Projection methods

- ✓ analyze datasets of high dimensionality
- ✓ provide knowledge about systems
- ✓ find unsuspected relationships
- summarize the data with a small number of factors

- Visualize the samples' distribution
- Visualize correlations between variables

Model Objectives

Search for a subspace providing an effective representation of the data Build a multivariate model (PCA, PLS, OPLS)

 $^{\circ}$

Dimension

Analyse the model

Search for patterns/groupings

Prediction performance

Evaluate the variables' contributions Rank the variables

Find the most relevant biomarkers

Discriminant Signal Analysis Representation (LDA) (PCA)

Dimension 1

