Seminorio 1

Josu Pérez Zarra onondia

(1) En R3: a) n(x,y,z) = |x| + 2|y| + 3 |y-z| i) (n(e, y, 2) = 0 (=> x=y=2=0? n(0,0,0) = 101 + 2101 + 310-01 = 0 =)) $N(x,y,z) = 0 \Rightarrow |x| + 2|y| + 3|y-z| = 0$ => X=Y=2=0 ii) ¿ n (αx, αy, α t) = |α|· n (×, y, ≥)? = |x||x| + 2|x|.|4| + 3|x(y-2)| = = |x|1x|+ 2|x(1y1 + 3|x|1/-21 $= |\alpha|(|x| + 2|y| + 3|y-2|) = |\alpha| \cdot \Lambda(x, y, 2)$ (ii) ¿ n(x,+x2, y,+y2, 2,+22) & h(x,y,2,)+ n(x2, y2,22)? Des. triongular para de volor absoluto $N(x_1+x_2, y_1+y_2, z_1+z_2) =$ $= |x_1+x_2| + 2|y_1+y_2| + 3|y_1+y_2-2_1-2_2|$ $\leq |x_1| + |x_2| + 2|y_1| + 2|y_2| + 3|y_1-2| + 3|y_2-2|$

Scanned by CamScanner

d)
$$n(x, y, z) = |x| + 2|y| + |3y - 2|$$

i) $i)(n(x, y, z) = 0) = |x - y| = z = 0$

(=)

 $x = y = z = 0 \Rightarrow n(x, y, z) = |0| + 2|0| + |30 - 0| = 0$

$$|x| = 0 \Rightarrow x = 0$$

$$|x| = 0 \Rightarrow x = 0$$

$$|x| = 0 \Rightarrow y = 0 \Rightarrow x = y = z = 0$$

(i) $(x, y, z) = 0 \Rightarrow |x| + 2|y| + |3y - z| = 0 \Rightarrow x = y = z = 0$

(ii) $(x, y, z) = 0 \Rightarrow |x| + 2|y| + |3y - z| = 0 \Rightarrow x = y = z = 0$

(iii) $(x, y, z) = (x + 2|y| + |3y - z| = 0)$

(began so sumados particles on $(x, y, z) = 0$

(iv) $(x, y, z) = (x + 2|y| + |3y - z| = 0)$

(began so sumados particles on $(x, y, z) = 0$

(iv) $(x, y, z) = (x + 2|y| + |3y - z| = 0)$

(began so sumados particles on $(x, y, z) = 0$

(iv) $(x, y, z) = (x + 2|y| + |3y - z| = 0)$

(began so sumados particles on $(x, y, z) = 0$

(c) $(x, y, z) = (x + 2|y| + |3y - z| = 0)$

(c) $(x, y, z) = (x + 2|x| + |3x| +$

Hemos probabo: $n(x_1+x_2, y_1+y_2, z_1+z_2) \leq n(x_2, y_1, z_1) + n(x_2, y_2, z_2)$ Como se complen todos los propiedodes, d) es norma.

$$\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2$$

dem .:

dem:

La norma asocioda a un producto escolor se define cono:

$$\|x\| = \sqrt{x}, x$$
 for tento:

 $\|x\|^2$
 $\|x\|^2$
 $\|x\|^2$
 $\|x\|^2$
 $\|x||^2$
 $\|x||^2$

=)
$$||x+y||^2 = ||x||^2 + 2\langle x,y \rangle + ||y||^2$$

(+) $||x-y||^2 = ||x||^2 - 2\langle x,y \rangle + ||y||^2$

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$$
.

En
$$\mathbb{R}^2$$
 y $\|\cdot\|_1$ tomordo $(1,0)$ y $(0,1)$ \rightarrow $(1,0)$ y $(0,1)$ \rightarrow $(1,0)$ $(1$

C3) Probor:

x, y ∈ Rn. ||x+y|| = ||x||+ ||y|| (=>)] = 2 ∈ R, 2 ≠ 0: x = 2y

demos:

Observamos que x=2y => ||x||=||2y||=|2|||y||=>

$$|\mathcal{X}| = \frac{\|\mathbf{x}\|}{\|\mathbf{y}\|} \implies |\mathcal{X}|^2 = \lambda^2 = \frac{\|\mathbf{x}\|^2}{\|\mathbf{y}\|^2}$$

Tomomos:

| omomos:

$$\angle 0,0 > = \langle x-2y, x-2y \rangle = \langle x,x \rangle - \lambda \langle x,y \rangle - \lambda \langle y,x \rangle$$

 $+ \lambda^2 \langle y,y \rangle = ||x||^2 - 2\lambda \langle x,y \rangle + \frac{||x||^2}{||y||^2} ||y||^2 =$

$$= 2||x||^2 - 22\langle x, y \rangle = 0 \Rightarrow ||x||_{||y||}$$

=
$$2||x||^2 - 22\langle x, y \rangle = 0$$
 =) $||x||^{\frac{1}{2}}||$
tomorbo vol. abs
=) $||x||^2 = 2\langle x, y \rangle$ =) $|||x||^2 || = ||x|| \cdot |\langle x, y \rangle||$ =)

Entonces:

Enlarces:
$$(x+y, x+y) = 1 + y = (x, x) + (x, y) + (y, x) + (y, y) = (x+y, x+y) = ($$

$$= \| \times \|^2 + 2 < \times, y > + \| y \|^2$$

$$= \| \times \|^2 + 2 \langle \times, y \rangle + \| y \|$$

$$\begin{cases} 2 \rangle 0, & 2 = \frac{\| \times \|}{\| y \|} \implies \langle \times, y \rangle = \| \times \| \cdot \| y \|$$

$$\begin{cases} 2 \rangle 0, & 2 = -\frac{\| \times \|}{\| y \|} \implies \langle \times, y \rangle = -\| \times \| \cdot \| y \|$$

$$\begin{cases} 2 \rangle 0, & 2 = -\frac{\| \times \|}{\| y \|} \implies \langle \times, y \rangle = -\| \times \| \cdot \| y \|$$

$$(2.50 \Rightarrow ||x||^2 + 2\langle x, y \rangle + ||y||^2 = (||x|| + ||y||)^2 \Rightarrow$$

$$\begin{cases} 2 < 0 \implies ||x||^2 + 2 < x, y > + ||y||^2 = (||x|| - ||y||)^2 \end{cases}$$

Es devir, si 200 no va a ser cieto. Ejemplo en R2:) Si tomamos x= (1,0), y= (-1,0): 11x+y11 = 11(2,0)+(-2,0)11=0 $||x|| + ||y|| = ||(1,0)|| + ||(-1,0)|| = 1+1 = 2 \neq 0 = ||x+y||$ No se da siempre! Sin emborga:) C4) A c R^ a)¿A = int(A)Ugrca)? for doble inclusion: => Vr>0, B(a,r) () A + Ø. Tenemos dos cosos: ic? Tomonos a E A ⇒ a∈ int(A) B(a,r) cA ⇒ B(a,r)∩Ac + Ø ⇒ a∈ fr(A) B(a,r) &A Es evidente que int(A) CA. Dado ac int(A), 3 r>o: B(a,r)cA (c; (=) at B(a,r)cA =) at A. Tomomos XE gr(A) => Vr>o: B(x,r) \(A \neq \alpha, B(x,r) \(\Lambda A \neq \alpha \) De aqui no podemos ofirmor que x 6 A. Ejemplo: A = gaeR: aco} fr(A)= {0}. Oefr(A) pero O&A Por toto esta inclusión no es sierta => → No es cieto.

p) (A < A')

A' = {xeR": \r>0, B(x,r) \cappa + \psi }

No recesoriamente, contraejemplo:

A = [0,1]U{3}

Observomes que $\exists r=1$, $B^{\#}(3,1) \cap A=\emptyset \Rightarrow 3 \not\in A'$ pero 3eA.

No es cieto.

c) A objecto (A = int (A) (Angr(A) = Ø

Sup.; que A = int(A) = {a \in R^n: \(\frac{1}{2}\)r>0, \(\text{B}(x,r) \cap A\)}

Vermos que Anfr(A) = Ø. Tomomos ye fr(A) =>

Vroo, B(Y,r) \(A \neq A B(y,r) \(A^c \neq B \rightarrow \)

B(y,r)&A, pues 326B(y,r) t.q. 26A y 2&A.

Pero como a = int(A) y Vr>0, B(Y,r) n Ac + pr =>

⇒ Y#A. >> Anfr(A) = Ø

Sup.: Angr(A) = Ø. Veomos que A = int(A). A o int(A) es tiviol. Vermos si cit (A) > A. Dalo x 6 A, subemos que *# fr(A) => => o: B(x,r) c A o B(x,r) c Ac. Si fuod B(x,r)cAc => x & A y alegorismos a un absurdo =>

B(x,r) c A = A cut(A) = A = int(A)

Así queda demostrada la dable implicación.

Si B(x,r) $\Lambda A^{\zeta} = \emptyset \Rightarrow B(x,r) \in A \Rightarrow x \in int(A) \in A \Rightarrow x \in A$ $\implies x \in A \Rightarrow \overline{A} \in A \Rightarrow A = \overline{A}$

Probaba la doble inclusión. la ofirmación es cierta.

) (5) A, B c R2,

a) A acotodo \Rightarrow A comporto

Sup.: $\exists M > 0$ t.q. A c B(0,0), M). Veomos que A'
es comporto porque es $\forall B \in A'$ (B infinito), $B' \neq \emptyset$, $\exists z \in B'$, $z \in B$.

Vomos a probur que A' está oxotoda. Red. abs. Supengomos

que $\exists x \in A'$ t.q. $x \notin B((0,0), M)$. Por una purte,

que $\exists x \in A'$ t.q. $x \notin B((0,0), M)$. Por una purte, $\forall r > 0$. $B'(x,r) \cap A \neq \emptyset$. Por otra $\forall y \in B''$ (x,r), $||y-(0,0)|| \geq M$.

Es devir, $\exists y \in A$ t.q. $y \in B((0,0), M)$ $\subset A'$ que es absurdo.

La controlicción proviene de suponer que A' no está oxotodo.

No sé como denestror $A' = \overline{A'}$ o $(A')' \subset A!$ (que A' es cerrodo).

Si tomo BCA' infinto, puedo orotorlo y por Bolzono Weirstrons B' # Ø, pero no se como demostrar que ExeB' t.q. xeA'.

b) $B = \overline{B} \Rightarrow fr(B) \subset \overline{B}$ Sup. $B = \overline{B} \Rightarrow \forall x \in B$, $B(x,r) \cap B \neq \emptyset \quad \forall r > 0$ Sea $y \in fr(B) \Rightarrow \forall r > 0$, $B(y,r) \cap B \neq \emptyset \quad A \quad B(y,r) \cap B \neq \emptyset$ $\Rightarrow \forall r > 0$, $B(y,r) \cap B \neq \emptyset \Rightarrow y \in \overline{B} = B \Rightarrow fr(B) \subset B \cap B$ c) B oxotodo $\Rightarrow \overline{B}$ comporto Tengo problemos similares $a \rightarrow b$ d) AUB = AUB

)

Dodo $x \in \overline{AUB} \Rightarrow \forall r > 0$, $B(x,r) \cap AUB \neq \emptyset \Rightarrow$ $\Rightarrow (B(x,r) \cap A) \cup (B(x,r) \cap B)$, $\neq \emptyset \Rightarrow Al menos$ $\Rightarrow (B(x,r) \cap A) \cup (B(x,r) \cap B)$, $\neq \emptyset \Rightarrow Al menos$ $\Rightarrow (B(x,r) \cap A) \cup (B(x,r) \cap B)$, $\neq \emptyset \Rightarrow Al menos$ $\Rightarrow (B(x,r) \cap A) \cup (B(x,r) \cap B)$, $\Rightarrow Al menos$ $\Rightarrow (B(x,r) \cap A) \cup (B(x,r) \cap B)$, $\Rightarrow Al menos$ $\Rightarrow (B(x,r) \cap A) \cup (B(x,r) \cap B)$, $\Rightarrow Al menos$ $\Rightarrow (B(x,r) \cap A) \cup (B(x,r) \cap B)$, $\Rightarrow Al menos$ $\Rightarrow Al menos$ $\Rightarrow Al menos$

Sea $\times \in \overline{A} \cup \overline{B} \Rightarrow Sin \text{ pérdida de generalidad, } \times \in \overline{A} \Rightarrow$ $\forall r > 0 \quad B(\times, r) \cap A \neq \emptyset \Rightarrow (B(\times, r) \cap A) \cup (B(\times, r) \cap B) \neq \emptyset$ $(A \cup B' = P \Rightarrow A' = B' = P) \Rightarrow \forall r > 0 \quad B(\times, r) \cap (A \cup B) \neq \emptyset \Rightarrow$ $\times \in \overline{A} \cup \overline{B}$

Demodiodo por doble inclusión.

a) A = {(x,y) & R2: xy = 0}

 $A = \{(x,y) \in \mathbb{R}^2 : x=0 \text{ or } y=0 \}$ No es abieto.

Vr>0, B((0,0), r)) AC + Ø => (0,0) & A pro (0,0) & int(A)

No es abierto.

Tomomos (0,0). Vr>0, IXEI t.g. (x,0) B(c0,0), r)

=) B((0,0), r) × Q × R (hay infinites inacionales cera de

un rational, R es denso.

c)
$$C = \{(x,y) \in \mathbb{R}^2 : |x| - |y| \neq 1\}$$

$$C = \{(x,y) \in \mathbb{R}^2 : |x| - |y| > 1 \text{ is } |x| - |y| < 1\}$$

$$C = \{(x,y) \in \mathbb{R}^2 : |x| - |y| > 1 \text{ is } |x| - |y| < 1\}$$

$$1 = \{(x,y) \in \mathbb{R}^2 : |x| - |y| > 1 \text{ is } |x| - |y| < 1\}$$

$$1 = \{(x,y) \in \mathbb{R}^2 : (x) = (x$$

- a) $\lim_{(x,y)\to(0,0)} y \cdot \operatorname{Sen}\left(\frac{1}{xy}\right)$ $(x,y)\in\mathbb{R}^2$
- Si este limite existiera, debosio de ser igual a

Si existiera:

$$0 \leq \lim_{(y,y) \to (0,0)} y \cdot \operatorname{Sen}(\frac{1}{xy}) \leq \lim_{y \to 0} y \cdot 1 = 0$$

$$=) \lim_{(x,y) \to (0,0)} y. \operatorname{Sen}(\frac{1}{xy}) = 0$$

b) $\lim_{(x,y)\to(2,\infty)} y$. Sen $\left(\frac{1}{xy}\right)$

No puedo ocatorlo como en el coso a). Si 3 debería ser igual a: ing. egu.

 $\lim_{(2-\frac{1}{n},n)\to(2,\infty)} \cdot \Omega \cdot \operatorname{Sen}\left(\frac{4}{(2-\frac{1}{n})n}\right) = \lim_{n\to\infty} n \operatorname{sen}\left(\frac{1}{2n-1}\right) \approx$

=
$$\lim_{n\to\infty} n \cdot \frac{1}{2^{n-1}} = \frac{1}{2}$$
 / (No puedo asegurar que $\frac{1}{2}$).

C)
$$\lim_{(x,y) \to (0,0)} (1+xy) \xrightarrow{x+y}$$

Si $\exists L \to L = \lim_{(x,y) \to (0,0)} (1+xy) \xrightarrow{x+y}$, $T = S_{(x,y) \to R^2} : x=y$?

$$\Rightarrow L = \lim_{x \to 0} (1+x^2) \xrightarrow{2x} = \lim_{x \to 0} (1+x^2) \xrightarrow{x} \xrightarrow{x} = \lim_{x \to 0} (1+x^2) \xrightarrow{x} = \lim_{x \to 0} (1+x^2) \xrightarrow{x} = \lim_{x \to 0} (1+xy) \xrightarrow{x} = \lim_{x$$

$$\lim_{(\times,\times)\to(0,0)} \frac{\sqrt{|x^2|}}{(\times|x|+|y|)} = \lim_{x\to 0} \frac{|x|}{2|x|} = \frac{1}{2}$$

$$\lim_{(x,4x)\to(0,0)} \frac{\sqrt{|4x^2|}}{|x|+|4x|} = \frac{|2|\cdot|x|}{5\cdot|x|} = \frac{|2|}{5} \neq \frac{1}{2}$$

$$\lim_{(x,y) \to (0,0)} \frac{2|x|^3 - |x|^2}{2|x|} = \lim_{x \to 0} \frac{2|x|^3 - |x|^2}{2|x|} = \lim_{x \to 0} |x|^2 - \frac{|x|}{2} = 0$$