고급 미적분 훈련

Written by Ikhan Choi Solved by Ikhan Choi

Contents

Chap	oter 1. 함수	5
1.	증가함수	6
2.	미분을 사용하지 않는 부등식	7
3.	접선	9
4.	볼록성	10
5.	지수함수와 로그함수	11
6.	평균값정리	12
Chap	oter 2. 수열	13
1.	선형점화식	14
2.	스퀴즈정리	15
3.	고정점정리	16
4.	무한급수	17
5.	수렴속도와 발산속도	18
6.	가합성이론	19
Chap	oter 3. 삼각법	21
1.	특수각의 활용	22
2.	복소평면과 복소지수	23
3.	삼각치환	24
4.	논증기하학의 삼각대칭식	25
5.	특수함수열	26
6.	직교성	27
7	적부변화과 짓돗적부	28

Chapter 0. Contents

Chap	oter 4. 적분	29
1.	유리함수의 부정적분	30
2.	역함수	31
3.	삼각치환적분	32
4.	정적분의 수렴	33
5.	적분부등식	34

CHAPTER 1

함수

 Chapter 1. 함수
 1. 증가함수

1. 증가함수

2. 미분을 사용하지 않는 부등식

PROBLEM 2.1. 양수 x, y가 xy = 1를 만족할 때 2x + y의 최솟값을 구하여라.

SOLUTION. 산술기하평균 부등식에 따라

$$2x + y \ge 2\sqrt{2xy} = 2\sqrt{2}.$$

또한, $x = \frac{1}{\sqrt{2}}$, $y = \sqrt{2}$ 일 때 $2x + y = 2\sqrt{2}$ 이다. 따라서 답은 $2\sqrt{2}$.

PROBLEM 2.2. 실수 x에 대하여 다음 함수 $f: \mathbb{R} \to \mathbb{R}$ 의 최댓값과 최솟값을 구하여라:

$$f(x) = \frac{x^2 - x + 1}{x^2 + x + 1}.$$

SOLUTION 1. 잠시 $x \neq 0$ 인 경우만 생각하자. $t = x + \frac{1}{x}$ 라고 하면 t의 범위는 $(-\infty, -2) \cup (2, \infty)$ 이다.

$$f(x) = \frac{t-1}{t+1} = 1 - \frac{2}{1+t}$$

이므로 $x \in \mathbb{R} - \{0\}$ 에 대한 f의 범위는 그래프를 그려 확인해보면 $\left(\frac{1}{3},1\right) \cup (1,3)$ 이다. f(0) = 1이므로 f의 범위는 $\left(\frac{1}{3},3\right)$ 이고 답은 최솟값 $\frac{1}{3}$, 최댓값 3이다.

SOLUTION 2. f(x)=k를 만족하는 실수 x가 존재하는 k를 구하자. 방정식 f(x)=k를 x에 대해 정리하면 $(k-1)x^2+(k+1)x+(k-1)=0$ 이고, 판별식 $D=(k+1)^2-4(k-1)(k-1)=-(3k-1)(k-3)$ 이 0 이상일 필요충분조건은 $\frac{1}{3} \leq k \leq 3$ 이다. 따라서 답은 최솟값 $\frac{1}{3}$, 최댓값 3이다.

NOTE 1. 많은 학생들은 최댓값과 최솟값을 구하는 문제에서 기계적으로 미분을 하려는 경향이 있다. 하지만 의외로 미적분학의 복잡한 계산 없이 부등식 문제가 깔끔히 풀리는 경우가 있는데 대표적으로 산술기하 부등식 및 코시 슈바르츠 부등식과 같은 절대부등식을 이용하는 방법과 이차방정식의 판별식을 사용하는 방법, 두 가지가 있다. 우선 이 문제처럼 분모분자가 이차식인 유리함수에서 유용하게 사용될 수 있고, 또한 코시 슈바르츠 부등식의 가장 표준적인 증명에도 사용된다.

Note 2. 함수의 최댓값과 최솟값이란 그 함수의 치역의 최댓값과 최솟값으로 정의될 수 있다.

NOTE 3. 이 문제에서 f의 정의역은 $\mathbb R$ 전체였지만, 유리함수의 형태를 보자마자 정의역이 어떻게 제한되는지 생각하는 습관을 가지는 것이 좋다. 여담으로, 실수 x에 대해 x^2+x+1 와 x^2-x+1 가 항상 양수라는 사실은 생각보다 많은 문제에서 이용된다.

 Chapter 1. 함수
 3. 접선

3. 접선

 Chapter 1. 함수
 4. 볼록성

4. 볼록성

5. 지수함수와 로그함수

6. 평균값정리

CHAPTER 2

수열

 Chapter 2. 수열
 1. 선형점화식

1. 선형점화식

 Chapter 2. 수열
 2. 스퀴즈정리

2. 스퀴즈정리

 Chapter 2. 수열
 3. 고정점정리

3. 고정점정리

 Chapter 2. 수열
 4. 무한급수

4. 무한급수

등비급수, 망원급수, 테일러급수, 급수판정법

5. 수렴속도와 발산속도

 Chapter 2. 수열
 6. 가합성이론

6. 가합성이론

CHAPTER 3

삼각법

1. 특수각의 활용

2. 복소평면과 복소지수

3. 삼각치환

4. 논중기하학의 삼각대칭식

5. 특수함수열

6. 직교성

7. 적분변환과 진동적분

CHAPTER 4

적분

1. 유리함수의 부정적분

 Chapter 4. 적분
 2. 역함수

2. 역함수

 Chapter 4. 적분
 3. 삼각치환적분

3. 삼각치환적분

4. 정적분의 수렴

 Chapter 4. 적분
 5. 적분부등식

5. 적분부등식