





# Comparison of Planetary Boundary Layer Height Derived using Different Lidar Systems

<u>Damao Zhang<sup>1</sup></u>, Chitra Sivaraman<sup>1</sup>, Jennifer Comstock<sup>1</sup>, Larry Berg<sup>1</sup>, Rob Newsom<sup>1</sup> Laura Riihimaki<sup>2</sup>

<sup>1</sup>Atmospheric Sciences & Global Change, PNNL, WA

<sup>2</sup>Cooperative Institute for Research in the Environment Sciences, NOAA, CO

[08].[Atmospheric Boundary layer Processes]

[28-June], [12:00]

[Tuesday\_08\_P05]

## Introduction



- The planetary boundary layer height (PBLHT) has been widely determined using in situ radiosonde data. However, radiosonde data has poor temporal resolution
- Lidar remote sensing provides hightemporal and continuous observations.
  PBLHT can be determined from
  several methods including methods
  using gradients of aerosol backscatter
  intensity from lidar measurements,
  methods using variance of vertical air
  motion from Doppler lidar
  measurements
- DOE ARM (https://www.arm.gov/) deploys state-of-the-arm remote sensing instruments at fixed sites and AMF field campaigns



Source: https://www.ssec.wisc.edu/aeri/

### Methods to Derive PBLHT



#### **PBLHT-Sonde:**

- Heffter method (Heffter 1980)
- Liu-Liang method: convective, neutral, and stable regimes (Liu and Liang 2010)
- Bulk Richardson Number method (Sorensen 1998)

#### **PBLHT-MPL**

Wavelet Covariance of lidar backscatter (Sawyer and Li 2013)

#### **PBLHT-CEIL**

oCL31 built-in software using an enhanced gradient method

#### **PBLHT-DL**

OW Variance threshold of 0.04 m<sup>-2</sup>s<sup>-2</sup> (Berg et al., 2017)



# Methods to Derive PBLHT



| Measurements        | Characteristics                                                                     | ARM sites                                                                       |
|---------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Sonde               | Reliable Poor temporal resolution                                                   | SGP(2001-2021),<br>ENA(2013-2021),<br>NSA(2002-2021),<br>AMF field campaigns    |
| Micropulse<br>Lidar | Strong aerosol signal Overlap correction issues below 400m; elevated aerosol layers | SGP (2014-2021),<br>CACTI                                                       |
| Ceilometer          | Read-time display<br>and monitoring<br>Elevated aerosol<br>layers                   | SGP (2012-2021),<br>ENA (2013-2021),<br>NSA (2013-2021),<br>AMF field campaigns |
| Doppler Lidar       | Good for PBL<br>development state<br>Low SNR > 2km                                  | SGP (2010-2021)                                                                 |



## Comparison of Derived PBLHT



 PBLHT from different lidar measurements compare well with PBLHT\_SONDE under neutral and convective PBL regimes but has no correlation with PBLHT\_SONDE under the stable PBL regime.



## Diurnal Cycles and Seasonal Variations of PBLHT





- PBLHTs from lidar measurements show similar diurnal cycles and seasonal variations as PBLHT SONDE
- During daytime, generally PBLHT\_DL > PBLHT\_CEIL > PBLHT\_MPL