

Computação Gráfica/LEIC

Primeiro Teste Intermédio de Avaliação

31/3/2006

Nome:	Turma:

1. Na figura junta, a superfície horizontal possui as características de reflexão indicadas. L representa uma fonte de luz pontual de valor I_P e V_1 e V_2 são dois pontos de observação. Considerando nula a iluminação ambiente, responda às alíneas seguintes, justificando.

$$Ka = 0.1$$
; $Kd = 0$; $Ks = 0.9$; $n = ?$
 $Ia = 0$; $Ip = 3$

a)	Em que ponto da superfície referida se obtém o maior valor de iluminação visto pelo
	observador V_2 ?

b) Determine o valor de n tal que a iluminação no ponto P, vista de V_1 , seja dupla da que é vista do ponto V_2 .

c) Apresente uma nova solução para os valores dos parâmetros de reflexão da superfície, de forma que a iluminação em P, observada a partir de V_1 e de V_2 , tenha o mesmo valor.

N	ome: Turma:
2.	Comente a afirmação: "As mapping textures são úteis para aumentar o realismo das ima-
	gens mas não são aplicáveis a formas poligonais que não sejam rectângulos".
3.	Na situação inicial, a flecha 3D da figura junta coincide com a aresta vertical do cubo representado; o seu bico e o centro da sua base inferior coincidem com os vértices da mesma aresta. Pretende-se aplicar, ao objecto, uma sequência de transformações geométricas de forma que, na situação final, passe a ocupar a posição superior apresentada na figura, novamente com o bico e o centro da sua base coincidentes com dois dos vértices da face superior do cubo. Determine, em notação simbólica, a matriz de transformação 3D necessária. Nota: o cubo apresenta 10 unidades de aresta; três das suas arestas coincidem com o sistema de eixos.