2º Teste de Instrumentação MIEF

Nome:

Número:

1-A montagem da Fig. 1 foi usada para aquisição de sinal ECG com largura de banda entre as frequências f1 e f2 com f1<f2.

- a) Calcule o ganho total da montagem?
- b)Mostre como calculava f1 e f2, completando em baixo as expressões?

$$f1 = \pi \mu \Omega$$
 $f2 = \pi \mu \Omega$

- c) Como reduzia neste circuito a tensão de modo comum?
- d)Comente o uso do p-MOSFET no circuito?
- e) Para isolamento do amplificador de instrumentação da Fig. 1, qual era o método dos estudados que aconselhava para eliminar a interferência da rede elétrica?
- 2-Considere vários elétrodos de diferentes materiais. O elétrodo A (platina depositada por evaporação) só funciona bem na gama das frequências maiores que 150 Hz. O elétrodo B apresenta excelentes características para gravar e estimular na gama dos 0.5-50 Hz. O elétrodo C (titânio) apresenta uma alta resistividade e não é aconselhável para sinais de amplitude até 3 mV. O elétrodo D sinterizado tem resistividade baixa e é usado para sinais de amplitude 10-150 μV e na gama de frequências 0.5-50 Hz. O elétrodo E é excelente só para corrente contínua onde apresenta elevada amplitude.

Responda no quadro colocando cruzes (atenção resposta errada desconta uma resposta certa):

	ECG	EEG	EMG	EOG	IrO2	AgCl/Ag	Epoxy	Sputtered
Elétr. A								
Elétr. B								
Elétr. C								
Elétr. D								
Elétr. E								

3- Na figura 2 está representada uma probe ultra-sons para deteção do movimento do sangue num vaso sanguíneo.

- a) Porquê o interesse no cálculo da variação de Doppler Δf?
- b) Mostre como calculava neste caso específico a variação de Doppler Δf , sabendo que a velocidade do sangue em relação à probe é V_{sangue} , a frequência dos ultrassons da probe é f_{probe} , a velocidade dos ultrassons no tecido é V_{tecido} .

 $\Delta f =$

- c) Se a probe estivesse colocada a 90 graus o que acontecia?
- d) Em termos de probes de ultra-sons para imagem médica. Responda no quadro colocando cruzes (atenção resposta errada desconta uma resposta certa):

	Maior resolução	Maior penetração	Larga área para analisar	Muito pequena área para analisar
Probe Curva 4 MHz				
Probe Fase linear 15 MHz				
Probe Fase linear 1 MHz				