1

Assignment 4

Taha Adeel Mohammed - CS20BTECH11052

Download all python codes from

https://github.com/Taha-Adeel/AI1103/tree/main/ Assignment 4/Codes

and latex-tikz codes from

https://github.com/Taha-Adeel/AI1103/tree/main/ Assignment 4

1 Problem (GATE 2021 (ST) Q.19)

Let $\{X_n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables each having uniform distribution on (0,2). For $n\geq 1$, let

$$Z_n = -\log_e \left(\prod_{i=1}^n (2 - X_i) \right)^{\frac{1}{n}}.$$

Then, as $n \to \infty$, the sequence $\{Z_n\}_{n\geq 1}$ converges almost surely to _____ (Round of to 2 decimal places).

2 SOLUTION (GATE 2021 (ST) Q.19)

Simplifying Z_n , we have

$$Z_n = -\log_e \left(\prod_{i=1}^n (2 - X_i) \right)^{\frac{1}{n}}$$
 (2.0.1)

$$= -\frac{1}{n} \cdot \log_e \left(\prod_{i=1}^n (2 - X_i) \right)$$
 (2.0.2)

$$= \sum_{i=1}^{n} \left((-\log_e (2 - X_i)) \cdot \frac{1}{n} \right)$$
 (2.0.3)

$$= E(-\log_e(2 - X_i))$$
 (2.0.4)

Let *X* and *Z* be random variables. *X* follows a uniform distribution from 0 to 2.

$$X \sim \mathcal{U}[0,2],\tag{2.0.5}$$

and let
$$Z = -\log_{e}(2 - X)$$
 (2.0.6)

The sequence X_n converges in distribution to X. i.e.

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x), \tag{2.0.7}$$

From **The Law of Large Numbers**, we have that for large n, $Z_n = E(-\log_e(2 - X_i))$ should be close to $E(-\log_e(2 - X)) = E(Z)$. i.e.

$$\Pr\left(\lim_{n\to\infty} Z_n = E(Z)\right) = 1 \tag{2.0.8}$$

If $\Pr(\lim_{n\to\infty} Y_n = Y) = 1$, we say that Y_n almost surely converges to Y. Therefore, by (2.0.8) as $n\to\infty$, Z_n almost surely converges to E(Z).

The CDF of Z is defined as

$$F_Z(z) = \Pr\left(Z \le z\right) \tag{2.0.9}$$

$$= \Pr\left(-\log_e(2 - X) \le z\right) \tag{2.0.10}$$

$$= \Pr(\log_{e}(2 - X) \ge -z) \tag{2.0.11}$$

$$= \Pr(2 - X \ge \exp(-z))$$
 (2.0.12)

$$= \Pr(X \le 2 - \exp(-z)) \tag{2.0.13}$$

$$= F_X (2 - \exp(-z))$$
 (2.0.14)

The CDF for X $(F_X(x))$, a uniform distribution on (0,2) is given by

$$F_X(x) = \begin{cases} 0 & x < 0 \\ \frac{x}{2} & 0 \le x \le 2 \\ 1 & x > 2 \end{cases}$$
 (2.0.15)

Substituting the above in (2.0.14),

$$F_X(2 - \exp(-z)) = \begin{cases} 0 & 2 - \exp(-z) < 0\\ 1 - \frac{\exp(-z)}{2} & 0 \le 2 - \exp(-z) \le 2\\ 1 & 2 - \exp(-z) > 2 \end{cases}$$
 (2.0.16)

After some algebra, the above conditions yield

$$F_Z(z) = \begin{cases} 0 & z < -\log_e(2) \\ 1 - \frac{\exp(-z)}{2} & z \ge -\log_e(2) \end{cases}$$
 (2.0.17)

$$\implies f_Z(z) = \frac{d(F_Z(z))}{dz} = \begin{cases} 0 & z < -\log_e(2) \\ \frac{\exp(-z)}{2} & z \ge -\log_e(2) \end{cases}$$
(2.0.18)

Fig. 0: $F_Z(z)$

Now calculating the expectation value for Z, we have

$$E(Z) = \int_{-\ln 2}^{\infty} z f_Z(z) dz$$
 (2.0.19)

$$= \int_{-\ln 2}^{\infty} \frac{z e^{-z}}{2} dz$$
 (2.0.20)

$$= \left[\frac{-(z+1)e^{-z}}{2} \right]_{-\ln 2}^{\infty}$$
 (2.0.21)

$$= 1 - \ln(2) \tag{2.0.22}$$

$$\approx 0.3068$$
 (2.0.23)

From (2.0.8), we have as $n \to \infty$, Z_n almost surely converges to $E(Z) = 0.3068 \approx 0.31$ (Rounded to 2 decimal places).

Ans: 0.31