

Aula 05 - Análise dos Modos e Efeitos das Falhas (FMEA).

Professor: Douglas Aquino Moreno

Introdução ao FMEA

 A Análise de Modos de Falha e Efeitos (FMEA) é a técnica mais utilizada atualmente para análise de risco. A análise de risco é uma atividade essencial em diversos contextos, como na concepção e fabricação de produtos.

Exemplo de Análise de Risco:

- Imagine um caçador-coletor organizando uma caçada. Ele realiza, de forma intuitiva, uma análise de risco, considerando perigos como predadores e sede, e tomando precauções para garantir uma caçada bem-sucedida. Essa prática de avaliar riscos continua até hoje no mundo empresarial.
- A FMEA é uma metodologia eficaz para identificar possíveis falhas nos processos de concepção e fabricação, permitindo medidas proativas para minimizar riscos e evitar a insatisfação do cliente.

Como Funciona a FMEA?

- A FMEA examina seus processos de produção e identifica defeitos potenciais que podem impactar o cliente final.
- Antes de realizar uma FMEA formal, recomenda-se um exercício simples:
 - Percorra sua linha de produção e pergunte-se "O que pode dar errado aqui e afetar o cliente?".
 - Pergunte também à equipe de produção sobre os problemas comuns no processo.
 - A FMEA transforma esse conhecimento em uma estrutura que permite tomar ações para minimizar riscos.

- O FMEA foi desenvolvido pelos militares americanos no final da década de 1940, como uma resposta a falhas em munições.
- Posteriormente, a metodologia foi adotada pela NASA, que a utilizou para minimizar riscos em suas missões espaciais.
- Na década de 1970, a Ford Motor Company incorporou o FMEA após incidentes envolvendo o modelo Ford Pinto.
- Desde então, o uso da FMEA se expandiu para diversas indústrias que exigem alta confiabilidade, como a automotiva, semicondutores e petróleo e gás.

Análise de Risco na FMEA

• Uma etapa importante de qualquer análise de risco é o escopo do processo. É necessário identificar todas as etapas e variações do processo, bem como os possíveis defeitos que podem ocorrer. Fontes de variação incluem incidentes de sucata, devoluções de clientes e feedback de operadores e especialistas da indústria.

Etapas da concepção da FMEA

- 1. Definir o processo que será analisado;
- 2. Definir a equipe, priorizando os aspectos multidisciplinares;
- 3. Definir a não conformidade (modo da falha);
- 4. Identificar seus efeitos;
- 5. Identificar sua causa principal e outras causas;
- 6. Priorizar as falhas através do nível de risco;
- 7. Agir através de ações preventivas (detecção);
- 8. Definir o prazo e o responsável pela ação preventiva.

Exemplo: Demora no banho

Processo ou ação	Efeito da falha	Causa básica da falha	Meio de detecção		
Tomar banho	Demora no banho	Pequeno fluxo de água no banheiro	Verificar sistema de bombeamento de água		
			Inspeção do sistema de água		
			Planejar a utilização de água através de escala		
		Chuveiro sem pressão	Inspeção dos tipos de componentes utilizados no sistema		

Análise de Risco na FMEA

- Após isso, busca-se identificar os índices de risco, hierarquizando-os através dos pesos atribuídos a cada um dos itens, onde:
 - Ocorrência de causa (O): probabilidade da causa existir e provocar uma falha;
 - Gravidade do efeito (G): probabilidade em que o cliente identifica e é prejudicado pela falha;
 - Detecção da falha: probabilidade da falha ser detectada antes do produto chegar ao cliente.
- Geralmente, utiliza-se a escala de 1 a 10 para hierarquizar os itens analisados pelo FMEA.

 Escala/pesos para os itens: Ocorrência de Causa (O) e Gravidade do Efeito (G)

Nunca	Raramente	Muito baixa	Baixa	Moderada para baixa	Moderada	Moderada para alta	Alta	Muito alta	Sempre
1	2	3	4	5	6	7	8	9	10

Escala/pesos para o item: Detecção de Falha (D)

Nunca	Raramente	Muito baixa	Baixa	Moderada para baixa	Moderada	Moderada para alta	Alta	Muito alta	Sempre
10	9	8	7	6	5	4	3	2	1

Desta forma, podemos gerar o seguinte formulário:

Processo ou ação	Efeito da falha	G	Causa básica da falha	0	Meio de detecção	D	Indice de Risco (GxOxD)	
Tomar banho	Demora no banho	9	Pequeno fluxo de água no	7	Verificar sistema de bombeamento de água	5	315	
		9 banheiro	7	Inspeção do sistema de água	4	252		
			9		7	Planejar a utilização de água através de escala	1	63
			9	Chuveiro sem pressão	6	Inspeção dos tipos de componentes utilizados no sistema	3	162

 Após o preenchimento do formulário, busca-se a ação preventiva a ser adotada, o prazo e o responsável.

Ações Pre	eventivas	
Medida	Prazo	Responsável
Instalar bomba hidráulica	1 mês	João
Projetar novo sistema	5 meses	José
Fazer escala	2 dias	Joaquim
Instalar chuveiro apropriado ao sistema	15 dias	Pedro
instalar chuveiro apropriado ao sistema	15 dias	Pedro

- "Vamos supor que estamos gerenciando uma linha de montagem de automóveis. O que pode acontecer se uma máquina de solda automática falhar? Como isso impacta a produção e como podemos evitar essa falha?"
- Cenário: "Na montagem das portas, um robô é responsável por alinhar e fixar as portas nas dobradiças do veículo. Se esse processo falhar, o alinhamento pode ficar fora do padrão, resultando em portas que não fecham corretamente."

Quais são os modos de falha possíveis para o processo de montagem das portas?

- Modo de Falha: "Quais são as maneiras pelas quais uma máquina ou processo pode falhar? Por exemplo, a máquina de solda pode não realizar a solda corretamente."
- Efeito da Falha: "Qual seria o impacto dessa falha? No caso da solda, a estrutura do carro pode não estar segura, levando a recall ou, pior, acidentes."
- Causa Potencial: "Por que essa falha pode acontecer?
 Pode ser devido a um desgaste no braço da máquina de solda ou falha no software de controle."

Tabela FMEA

Modo de Falha	Efeito da Falha	Causa Potencial	Severidade (S)	Probabilidade de Ocorrência (O)	Detecção (D)	RPN	Ação Recomendada
Alinhamento incorreto	Porta não fecha corretamente	Erro no sensor de alinhamento	8	7	6	336	Calibrar sensores semanalmente
Dobradiças mal fixadas	Porta pode se soltar	Parafuso mal apertado	9	5	4	180	Testar torque dos parafusos

Severidade (S):

- A severidade avalia o impacto da falha, ou seja, o quão grave seria o efeito dessa falha no sistema ou produto. Ela é classificada em uma escala de 1 a 10, onde:
 - 1: O impacto é mínimo, quase imperceptível, com efeitos insignificantes no funcionamento.
 - 10: O impacto é extremamente grave, podendo resultar em falhas críticas, acidentes, grandes prejuízos financeiros ou até mesmo risco à vida.
- **Exemplo**: Se uma falha na linha de montagem de automóveis leva a um erro estrutural no carro, a severidade seria alta (ex: 9 ou 10), pois afeta diretamente a segurança.

Ocorrência (O):

- A ocorrência avalia a probabilidade de a falha acontecer. Também usa uma escala de 1 a 10, onde:
 - 1: A falha é altamente improvável, com poucas chances de ocorrer.
 - 10: A falha é altamente provável, acontecendo com frequência ou em um sistema sem controle adequado.
- **Exemplo**: Se uma máquina de solda na linha de produção tem falhas constantes por falta de manutenção, a ocorrência seria alta (ex: 7 ou 8).

Detecção (D):

- A detecção avalia a capacidade de detectar a falha antes que ela cause um problema maior. A escala de 1 a 10 indica o quão difícil é perceber a falha antecipadamente, onde:
 - 1: A falha é fácil de ser detectada e há mecanismos eficientes para identificá-la rapidamente.
 - 10: A falha é quase impossível de ser detectada antes de causar um problema significativo.
- Exemplo: Se não houver sistemas de monitoramento para detectar falhas em uma máquina crítica, a detecção seria baixa (ex: 8 ou 9), pois a falha só seria percebida após afetar a produção.

RPN (Risk Priority Number):

• O RPN é o Número de Prioridade de Risco e é calculado multiplicando os três fatores (Severidade, Ocorrência e Detecção):

$$RPN = S \times O \times D$$

• O RPN é usado para priorizar quais falhas precisam ser tratadas primeiro. Quanto maior o RPN, maior o risco da falha, e mais urgente é a necessidade de uma ação corretiva. A escala varia de 1 a 1000.

Exemplo: Se uma falha tem Severidade 9, Ocorrência 6 e Detecção 4, o RPN seria:

$$RPN = 9 \times 6 \times 4 = 216$$

Esse valor indica que essa falha precisa de atenção para mitigar os riscos.

Qual falha tem o RPN mais alto? Como podemos reduzir o risco?

Problema no Checkout de um E-commerce

Modo de Falha	Efeito da Falha	Causa Potencial	Severidade (S)	Ocorrência (O)	Detecção (D)	RPN
Pagamento não processa	Cliente desiste da compra	Erro no gateway de pagamento	8	5	4	160
Página trava na finalização	Cliente não conclui a compra	Excesso de requisições no servidor	7	6	3	126

ATIVIDADE

Cálculo de RPN (FMEA)

- https://professor.pucgoias.edu.br/sitedocente/admin/arquivosUpload/ 7460/material/Ferramentas%20da%20Qualidade.pdf
- https://ucj.com.br/blog/5w1h-plano-de-acao/
- https://modularcursos.com.br/fmea-7-passos-para-implantacao/
- https://www.publi.com.br/5w2h-o-que-e-e-como-aplicar-no-seu-pl anejamento/

OBRIGADO!

MEUS CONTATOS:

douglasaquino817@gmail.com (63) 999835068

