TD3 bis: Fonctions

Exercice 1:

Déterminer la nature des fonctions suivantes : injectives, surjectives, bijectives?

$$f: \mathbb{N}^2 \to \mathbb{N}$$
$$(p,q) \mapsto 2^p 3^q$$

$$g: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (x+y,xy)$

$$h: \mathbb{Z} \times \mathbb{N}^* \to \mathbb{Q}$$

$$(p,q) \mapsto p + \frac{1}{q}$$

$$i: \mathbb{C} \setminus \{-3\} \to \mathbb{C} \setminus \{i\}$$

$$z \mapsto \frac{iz - i}{z + 3}$$

$$j: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto xy$

$$k: \mathbb{N} \to \mathbb{N}$$

$$n \mapsto \left\lfloor \frac{n}{2} \right\rfloor$$

Exercice 2:

Soit f

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \frac{2x}{1+x^2}$$

- (a) f est-elle injective?
- (b) f est-elle surjective?
- (c) Montrer que $f(\mathbb{R}) = [-1; 1]$.
- (d) Soit

$$g: [-1;1] \to [-1;1]$$
$$x \mapsto f(x)$$

(on peut aussi noter $g=f_{|[-1;1]}^{|[-1;1]}$) Montrer que g est bijective de deux façons différentes ! (e) Déterminer sa réciproque.

Exercice 3:

Soit

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 et $g: \mathbb{R} \to \mathbb{R}^2$ $x \mapsto (x, x^2)$

- (a) Déterminer $f \circ g$ et $g \circ f$.
- (b) f est-elle injective? surjective?
- (c) g est-elle injective? surjective?
- (d) $f \circ g$ est-elle injective? surjective?
- (e) $g \circ f$ est-elle injective? surjective?

Exercice 4:

Soit f

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x(1-x)$

- (a) Soit $y \in \mathbb{R}$, trouver les antécédents de y.
- (b) Restreindre l'ensemble de départ et d'arriver pour rendre f bijective.

Exercice 5:

- (a) Déterminer une bijection de $\mathbb{N} \to \mathbb{N}^*$.
- (b) Déterminer une bijection de $\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \to \left\{\frac{1}{n} \mid n \in \mathbb{N}^*\right\}$
- (c) Déduire une bijection de $[0;1] \rightarrow [0;1[$.
- (d) Déterminer une bijection de $\mathbb{N} \to \mathbb{Z}$.

Exercice 6:

Soit

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x + \frac{1}{e^x + 1}$$

- (a) Montrer que f est bijective.
- (b) Montrer que $g: x \mapsto \frac{1-x^2}{1+x^2}$ est une bijection de \mathbb{R}^+ dans un intervalle à préciser. Trouver sa réciproque.