US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication

Kind Code

A1

Publication Date

August 07, 2025

Inventor(s)

LITTLEFIELD; TIMOTHY R et al.

METHOD OF MANUFACTURE OF CUSTOM HEADWEAR BY ADDITIVE MANUFACTURE

Abstract

A method for fabricating a custom headwear for a subject is described. The method comprises generating a three-dimensional head data file for the subject and determining contour lines on the head; automatically generating a headwear data file. The method yet further comprises utilizing the headwear data file to generate a shape for a desired headwear, the shape having an interior configured to restrain growth of the head in first predetermined areas. Still further, the method comprises generating contour lines for the custom headwear.

Inventors: LITTLEFIELD; TIMOTHY R (MESA, AZ), LUISI; JEROLD N (PHOENIX,

AZ), KECHTER; GEORGE E (LOVES PARK, IL)

Applicant: CRANIAL TECHNOLOGIES, INC. (TEMPE, AZ)

Family ID: 63672785

Assignee: CRANIAL TECHNOLOGIES, INC. (TEMPE, AZ)

Appl. No.: 19/085970

Filed: March 20, 2025

Related U.S. Application Data

parent US continuation 18479040 20230930 parent-grant-document US 12299836 child US 19085970

parent US continuation 17178739 20210218 parent-grant-document US 11810261 child US 18479040

parent US continuation 16925700 20200710 parent-grant-document US 11776228 child US 17178739

parent US continuation 15474684 20170330 parent-grant-document US 10710356 child US 16925700

Publication Classification

Int. Cl.: G06T19/20 (20110101); A61F5/058 (20060101); B29C64/386 (20170101); B29K105/04 (20060101); B29L31/48 (20060101); B33Y30/00 (20150101); B33Y50/02 (20150101); B33Y80/00 (20150101)

U.S. Cl.:

CPC **G06T19/20** (20130101); **A61F5/05891** (20130101); **B29C64/386** (20170801);

B33Y30/00 (20141201); **B33Y50/00** (20141201); **B33Y50/02** (20141201); **B33Y80/00** (20141201); B29K2105/04 (20130101); B29L2031/4807 (20130101); G06T2210/22

(20130101); G06T2210/41 (20130101); G06T2219/2016 (20130101)

Background/Summary

[0001] This application is a continuation of U.S. patent application Ser. No. 18/479,040 which is a continuation of Ser. No. 17/178,739 filed Feb. 18, 2021, now U.S. Pat. No. 11,810,261 which is a continuation of Ser. No. 16/925,700 filed Jul. 10, 2020 which is a continuation of Ser. No. 15/474,684 filed Mar. 30, 2017, now U.S. Pat. No. 10,710,356. This application is related to U.S. Pat. Nos. 10,846,925; 10,703,084; 10,726,617; 10,463,525; 10,561,521; 10,603,203; and 10,682,846. This application is particularly related to U.S. Pat. No. 10,726,617. All the aforesaid Applications and Patents being owned by the Assignee of this invention. The disclosures of all the aforesaid Applications and Patents are specifically incorporated herein in their entireties.

[0002] The present invention pertains to custom cranial remodeling devices custom manufactured for subject patients and methods of manufacturing such devices.

[0003] The applicant of the present invention has pioneered the treatment of plagiocephaly in infants through the use of cranial remodeling devices that are each custom manufactured for each infant patient and has pioneered the customized manufacture of such devices.

[0004] One method of manufacturing custom cranial remodeling devices comprises capturing a three-dimensional digital image of the entirety of a patient's head to produce a digital file of the entire head, processing the digital file to generate a second digital file that represents a three-dimensional digital image of the entirety of a desired head shape for the patient, fabricating a life size model of the desired head shape, vacuum thermo-forming a foam liner onto the life size model, vacuum thermo-forming a hard plastic onto the foam liner, generating trim lines for the device, projecting the trim lines onto the hard plastic, cutting the trim lines, and manually finishing the trimmed cranial remodeling device.

[0005] Each different step in a manufacturing process presents the possibility of introduction of error or inaccuracy. Accordingly, it is desirable to reduce the number of steps to manufacture custom cranial remodeling devices.

[0006] In addition, a clinician typically captures the three-dimensional digital image of the entirety of a patient's head at a clinic and the manufacturing steps occur at one or more other physical locations. Because of the physical separation of the clinic and the manufacturing locations, the custom cranial remodeling device must be shipped from the manufacturing facility to the clinic resulting in a time delay that is measured in days.

[0007] Accordingly, it is also desirable to provide point of service manufacturing of cranial remodeling devices such that the manufacture occurs at the clinic location.

[0008] Optimally it is desirable to change out cranial remodeling devices frequently. By adding a foam liner, the cranial remodeling devices could be adjusted by a clinician to accommodate for the

patient's growth. The foam liner is provided to extend the life of the product.

[0009] In addition, the inside foam liner does not always compress evenly under vacuum. When released from vacuum, there is some spring back of the material. The result of the spring back may result in the foam layer not retaining conformance to the model.

[0010] Accordingly, it is also desirable to manufacture cranial remodeling devices that are so accurately manufactured and easily manufactured such that it is not necessary to include a foam layer.

SUMMARY

[0011] An embodiment of apparatus to provide point of service manufacture of a custom cranial remodeling device for correction of cranial deformity of a subject comprises apparatus disposed at a physical location for capturing three-dimensional digital data of the head of the subject and generating a three-dimensional digital data file representative of the head; an additive manufacture device located at the same physical location; a processor that operates to process the three-dimensional digital data file to produce a device file comprising the shape for the custom cranial remodeling device and to provide the device file to the additive manufacture device. The additive manufacture device operates to utilize the device file to manufacture the custom cranial remodeling device at the physical location.

[0012] In various embodiments, the processor is located at one of the same physical location or at a location physically removed from the physical location.

[0013] In various embodiments, prior to providing device file to the additive manufacture device, the processor operates to modify the device file to include one or more removable manufacturing supports for the custom cranial remodeling device to facilitate additive manufacture of the custom cranial remodeling device.

[0014] In various embodiments, the processor operates to determine a plurality of different layers for incorporation into the cranial remodeling device and provides data for the different layers in the device file, and the additive manufacture device manufactures the custom cranial remodeling device with the plurality of different layers.

[0015] In the various embodiments, the processor automatically selects the plurality of different layers to comprise one or both of different strength and material properties.

[0016] In the various embodiments, the processor automatically selects the plurality of different layers to apply different forces over different areas of the head.

[0017] The processor may select the plurality of different layers such that none of the different layers comprises a foam layer.

[0018] In an embodiment, the processor operates to generate alignment marks in the device file for the additive manufacture device to print alignment marks on the custom cranial remodeling device to aide fitting the custom cranial remodeling device.

[0019] The processor may operate to select the plurality of different layers such that one of the different layers comprises a foam layer.

[0020] In an embodiment, the processor generates guidelines data in the device file, and the additive manufacture device utilizes the guidelines data to print guidelines on the custom remodeling device.

[0021] In various embodiments, the processor generates electronic sensor manufacture data in the device file, and the additive manufacture device utilizes the electronic sensor data to automatically manufacture one or more corresponding electronic sensors into the custom cranial remodeling device.

[0022] The processor may generate electronic sensor manufacture data in the device file for one or more electronic sensors operable to determine pressure applied to the head when the custom cranial remodeling device is worn on the head, and the additive manufacture device utilizes the electronic sensor data to automatically manufacture one or more corresponding electronic sensors into the custom cranial remodeling device.

[0023] In various embodiments, the processor generates electronic sensor manufacture data in the device file, the electronic sensor is operable to confirm that the custom cranial remodeling device is being correctly worn on the head, and the additive manufacture device utilizes the electronic sensor data to automatically manufacture one or more corresponding electronic sensors into the custom cranial remodeling device.

[0024] In various embodiments, the additive manufacture device may be utilized to automatically print one or more electronic transducers into the custom cranial remodeling device.

[0025] The one or more electronic transducers may be useable to determine one or more of tilt and turn of the head, whether the custom cranial remodeling device is being worn, and the frequency of predetermined head motions.

[0026] In various embodiments, the additive manufacture device automatically forms components integral with the custom cranial remodeling device. The components may comprise one or more of apparatus for fastening the cranial remodeling device in place on the head, electronic transducers, and electronic sensors.

[0027] In various embodiments, the processor identifies regions on the interior of the cranial remodeling device where one layer of the plurality of layers is to contact the head and other regions on the interior of the cranial remodeling device where the interior surface of the cranial remodeling device is to be spaced apart from the head. The additive manufacture device manufactures the cranial remodeling device with the regions and other regions.

[0028] An embodiment of a method for fabricating a custom cranial remodeling device for correction of cranial deformities in a subject, comprises: generating a three-dimensional digital data file for the subject at a clinic by capturing a three-dimensional data file representative of the head of the subject utilizing apparatus operating to capture three-dimensional data representative of the head, the apparatus located at the clinic; utilizing a processor to process the three-dimensional digital data file to produce a device file comprising the shape for the custom cranial remodeling device; and manufacturing the custom cranial remodeling device at the clinic by utilizing an additive manufacture device located at the clinic to operate with the three-dimensional digital data file.

[0029] In various embodiments, the method comprises providing the processor at one of the clinic or a location physically removed from the clinic.

[0030] In various embodiments, the method comprises modifying the digital data file prior to utilizing the additive manufacture device to include one or more removable manufacturing supports for the custom cranial remodeling device to facilitate additive manufacture of the custom cranial remodeling device.

[0031] In various embodiments, the method comprises utilizing the processor to determine a plurality of different layers for incorporation into the cranial remodeling device, and utilizing the additive manufacture device to manufacture the custom cranial remodeling device with the plurality of different layers.

[0032] In various embodiments, the processor automatically selects the plurality of different layers to comprise one or both of different strength and material properties.

[0033] The method may comprise automatically selecting the plurality of different layers to apply different forces over different areas of the head.

[0034] The method may further comprise selecting the plurality of different layers such that none of the different layers comprises a foam layer.

[0035] In various embodiments the method comprises utilizing the additive manufacture device to print alignment marks on the custom cranial remodeling device to aide fitting the custom cranial remodeling device.

[0036] The method may comprise selecting the plurality of different layers such that one of the different layers comprises a foam layer.

[0037] In various embodiments, the method comprises utilizing the additive manufacture device to

print clinician guidelines on the custom remodeling device.

[0038] In various embodiments, the method comprises utilizing the additive manufacture device to print clinician guidelines on the custom cranial remodeling device.

[0039] In various embodiments, the method may comprise utilizing the additive manufacture device to print automatically print one or more electronic sensors into the custom cranial remodeling device.

[0040] In various embodiments, the method may comprise depositing one or more electronic sensors operable to determine the pressure level applied to the head when the custom cranial remodeling device is worn on the head.

[0041] In various embodiments, the method may comprise depositing one or more electronic sensors to confirm that the custom cranial remodeling device is being correctly worn on the head. [0042] In various embodiments, the method may comprise utilizing the additive manufacture device to print to automatically print one or more electronic transducers into the custom cranial remodeling device.

[0043] In various embodiments, the one or more electronic transducers may be useable to determine one or more of tilt and turn of the head, whether the custom cranial remodeling device is being worn, and the frequency of predetermined head motions.

[0044] In various embodiments, the method may comprise utilizing the additive manufacture device to automatically form components integral to the custom cranial remodeling device. [0045] In the various embodiments, the components comprise one or more of apparatus for fastening the cranial remodeling device in place on the head, electronic transducers, and electronic sensors.

[0046] In various embodiments, the method may comprise utilizing the processor to identify regions on the interior of the cranial remodeling device where one layer of the plurality of layers is to contact the head and other regions on the interior of the cranial remodeling device where the interior surface of the cranial remodeling device is to be spaced apart from the head.
[0047] In various embodiments, the method comprises locating apparatus for generating a three-dimensional digital data file for the subject at the clinic, locating the processor at the clinic, and locating the additive manufacture device at the clinic.

[0048] An embodiment of a point of service method at a clinic for fabricating a custom cranial remodeling device for correction of cranial deformities in a subject, comprises: generating a three-dimensional digital data file for the head of a subject located at the clinic by capturing a three-dimensional data file representative of the head utilizing digital image capture apparatus located at the clinic; utilizing, at the clinic, a processor to process the three-dimensional digital data file at the clinic by: automatically processing the scan data file to generate contour lines for the custom cranial remodeling device on the scanned head, automatically processing the scan data file to generate a modified head shape with the scanned head shape having the contour lines, utilizing the modified head shape data file to generate a shape for a desired copolymer cranial remodeling band, projecting lines outward from the contour lines to the outer surface of the desired copolymer cranial remodeling device, and utilizing the contour lines to produce a device file comprising the shape for the custom cranial remodeling device. The method further comprises manufacturing the custom cranial remodeling device at the clinic by utilizing an additive manufacture device located at the clinic.

[0049] An embodiment of a method for fabricating a cranial remodeling device for correction of cranial deformities in a subject comprises generating a three-dimensional head data file for the head of the subject; identifying predetermined anthropometric reference points on the head represented by the three-dimensional head data file; automatically utilizing the predetermined anthropometric reference points to calculate contour lines on the head represented by the three-dimensional head data file for the cranial remodeling device; automatically generating a modified head shape data file for the head; juxtaposing the modified head shape represented by the modified head shape data file

with the head represented by the three-dimensional head data file having the contour lines thereon; utilizing the modified head shape data file to generate a shape for a desired of a cranial remodeling device, the shape having an interior surface to contact the head and an outer surface; projecting lines outward from the contour lines to the outer surface; and utilizing the projected lines to establish cranial remodeling device contour lines for the cranial remodeling device.

[0050] The method may further comprise generating a three-dimensional device data file comprising the contoured shape.

[0051] The method may further comprise providing the three-dimensional device data file to an additive manufacturing device.

[0052] The method may further comprise utilizing the additive manufacturing device to manufacture the cranial remodeling device from the three-dimensional device data file.

[0053] In various embodiments, the method may comprise utilizing a three-dimensional printer as the additive manufacturing device.

[0054] Embodiments of the method may comprise modifying the three-dimensional data file by automatically orienting the three-dimensional head data file to a predetermined plane by first automatically identifying two predetermined anthropometric points on the head and utilizing the two anthropometric points to form a horizontal plane to which the head is rotated to produce a standardized oriented head data file for an oriented head shape.

[0055] In various embodiments, the method may comprise determining predetermined reference points on the head, and automatically selective utilizing the predetermined reference points to calculate the contour lines.

[0056] The method may comprise generating a three-dimensional device data file comprising the contoured shape.

[0057] The method may further comprise providing the three-dimensional device data file to an additive manufacturing device.

[0058] The method may comprise utilizing the additive manufacturing device to manufacture the cranial remodeling device from the three-dimensional device data file.

[0059] In various embodiments, the method may comprise utilizing a three-dimensional printer as the additive manufacturing device.

[0060] In embodiments, the method comprises capturing digital data for the three-dimensional head data file from the head.

[0061] In embodiments, the method may comprise capturing the digital data with one of digital image capture apparatus and scanning apparatus.

[0062] An embodiment of a method for creating a device data file for use by a three-dimensional printer to print a cranial remodeling device for correction of a deformed head shape in an infant comprises: generating a three-dimensional data file of the deformed head shape; processing the three-dimensional data file to generate a three-dimensional modified data file for a modified head shape for the infant; utilizing the modified head shape to generate a device data file for a cranial remodeling device; automatically determining predetermined reference points on the captured deformed head shape; automatically utilizing the predetermined reference points to calculate contour lines on the deformed head shape; projecting lines outward from the contour lines to the outer surface of the modified head shape; and modifying the modified head shape represented by the device file by utilizing the projected lines to establish contour lines for the cranial remodeling device in the device file.

[0063] An embodiment of a method for fabricating a cranial remodeling device for correction of cranial deformities in a subject comprises: generating a three-dimensional head data file for the head of the subject; identifying predetermined reference points on the head represented by the three-dimensional head data file; automatically selectively utilizing the predetermined reference points to calculate contour lines on the head represented by the three-dimensional head data file for the cranial remodeling device; automatically generating a modified head shape data file for the

head; juxtaposing the modified head shape represented by the modified head shape data file with the head represented by the three-dimensional head data file having the contour lines thereon; utilizing the modified head shape data file to generate a shape for a desired of a cranial remodeling device, the shape having an interior surface to contact the head and an outer surface; projecting lines outward from the contour lines to the outer surface; and utilizing the projected lines to establish cranial remodeling device contour lines for the cranial remodeling device.

[0064] Embodiments of the method may comprise generating a three-dimensional device data file comprising the contoured shape.

[0065] Embodiments of the method may comprise providing the three-dimensional device data file to an additive manufacturing device and utilizing the additive manufacturing device to manufacture the cranial remodeling device from the three-dimensional device data file.

[0066] Various embodiments of the method comprise modifying the three-dimensional data file by automatically orienting the three-dimensional head data file to a predetermined plane by first automatically identifying two predetermined anthropometric points on the head and utilizing the two predetermined anthropometric points to form a horizontal plane to which the head is rotated to produce a standardized oriented head data file for an oriented head shape.

[0067] Various embodiments comprise determining predetermined anthropometric points on the head, and automatically utilizing the predetermined anthropometric points to calculate the contour lines.

[0068] Various embodiments may comprise generating a three-dimensional device data file comprising the contoured shape.

[0069] Various embodiments may comprise capturing digital data for the three-dimensional head data file from the head.

[0070] Embodiments may comprise capturing the digital data with one of digital image capture apparatus and scanning apparatus.

[0071] A method for creating a device data file for use by a three-dimensional printer to print a cranial remodeling device for correction of a deformed head shape in an infant comprises: generating a three-dimensional data file of the deformed head shape; processing the three-dimensional data file to generate a three-dimensional modified data file for a modified head shape for the infant; utilizing the modified head shape to generate a device data file for a cranial remodeling device; automatically determining predetermined anthropometric points on the captured deformed head shape; automatically utilizing the predetermined anthropometric points to calculate contour lines on the deformed head shape; projecting lines outward from the contour lines to the outer surface of the modified head shape; and modifying the modified head shape represented by the device file by utilizing the projected lines to establish contour lines for the cranial remodeling device in the device file.

[0072] An embodiment of a custom cranial remodeling device to correct a deformed head of a subject comprises an inner layer shaped to contact the head of the subject at predetermined areas, the inner layer deposited by an additive manufacturing device, an outer layer deposited by the additive manufacturing device, and the inner layer and the outer layer are each formed by the additive manufacture device utilizing a device data file derived from a subject data file, the subject data file representative of the shape of the deformed head, the device data file determining the shape of the cranial remodeling device to correct the shape of the deformed head.

[0073] In an embodiment, the device data file is derived from the subject data file and a modified data file. The modified data file is derived from the subject data file and is representative of a modified head shape.

[0074] In an embodiment, the device data file is derived by one or more processors: determining contour lines for the custom cranial remodeling device on the deformed head shape utilizing the data file; juxtaposing a digital representation of the modified shape on the deformed head shape; projecting the contour lines outward from the deformed head onto the modified shape; and utilizing

the contour lines to produce the device file.

[0075] In various embodiments the inner layer comprises portions positioned to contact the head at predetermined surface areas of the head.

[0076] In various embodiments, the inner layer comprises a plurality of separate portions, each portion configured to contact one of a corresponding plurality of areas on the head.

[0077] In various embodiments the cranial remodeling device comprises one or more removable manufacturing supports to facilitate additive manufacture of the custom cranial remodeling device. [0078] In various embodiments of the cranial remodeling device at least one intermediate layer is provided between the inner layer and the outer layer. The intermediate layer deposited by the additive manufacturing device.

[0079] In the various embodiments, the inner layer, the outer layer and the intermediate layer each comprise one or both of different strength and material properties.

[0080] In various embodiments the cranial remodeling device comprises alignment marks deposited on the cranial remodeling device by the additive manufacture device, the alignment marks aide fitting the custom cranial remodeling device.

[0081] One embodiment comprises a plurality of different layers comprising the inner and outer layers and one or more intermediate layers, the plurality of layers comprising one or more of different strength properties, material properties, and configurations, each layer of the plurality of layers is deposited by the additive manufacturing device.

[0082] In various embodiments, at least one layer of the plurality of layers comprises a cellular configuration.

[0083] In at least one embodiment, at least one layer of the plurality of layers comprises carbon fibers integrated therein.

[0084] In various embodiments, one or more electronic sensors are manufactured by the additive manufacture device into the custom cranial remodeling device.

[0085] Certain embodiments may comprise one or more electronic sensors operable to determine pressure levels applied to the head when the custom cranial remodeling device is worn on the head. The one or more electronic sensors are manufactured into the custom cranial remodeling device by the additive manufacture device.

[0086] Embodiments may comprise one or more electronic sensors operable to confirm that the custom cranial remodeling device is being correctly worn on the head. The one or more electronic sensors are manufactured into the custom cranial remodeling device by the additive manufacture device.

[0087] Embodiments may comprise one or more electronic transducers manufactured into the custom cranial remodeling device by the additive manufacture device. The one or more electronic transducers may be useable to determine one or more of tilt and turn of the head, whether the custom cranial remodeling device is being worn, and the frequency of predetermined head motions. [0088] Various embodiments may comprise components integrally formed with the custom cranial remodeling device by the additive manufacture device. The components may comprise one or more of apparatus for fastening the cranial remodeling device in place on the head, electronic transducers, and electronic sensors.

[0089] An embodiment of a custom headwear device to be worn on the head of a subject comprises: an inner layer shaped to contact the head of the subject at predetermined areas, the inner layer deposited by an additive manufacturing device; an outer layer deposited by the additive manufacturing device; and the inner layer and the outer layer are each formed by the additive manufacture device utilizing a device data file derived from a subject data file, the subject data file representative of the shape of the head.

[0090] In various embodiments of the custom headwear device, the device data file is derived by one or more processors: determining contour lines for the custom headwear device on the head shape utilizing the data file; projecting the contour lines outward from the deformed head onto the

modified shape; and utilizing the contour lines to produce the device file.

[0091] In various embodiments of the custom headwear device, the inner layer comprises portions positioned to contact the head at predetermined surface areas of the head.

[0092] In various embodiments of the custom headwear device, the inner layer comprises a plurality of separate portions, each portion configured to contact one of a corresponding plurality of areas on the head.

[0093] In various embodiments of the custom headwear device, one or more removable manufacturing supports are deposited to facilitate additive manufacture of the custom headwear device.

[0094] Various embodiments of the custom headwear device comprise at least one intermediate layer between the inner layer and the outer layer, the intermediate layer deposited by the additive manufacturing device.

[0095] In various embodiments of the custom headwear device, the inner layer, the outer layer and the intermediate layer each comprise one or both of different strength and material properties. [0096] Various embodiments of the custom headwear device comprise alignment marks deposited on the custom headwear device by the additive manufacture device, the alignment marks aide fitting the custom remodeling device.

[0097] Various embodiments of the custom headwear device comprise guidelines printed by the additive manufacture device on the custom remodeling device.

[0098] Various embodiments of the custom headwear device comprise a plurality of different layers comprising the inner and outer layers and one or more intermediate layers, the plurality of layers comprising one or more of different strength properties, material properties, and configurations. [0099] In various embodiments of the custom headwear device, at least one layer of the plurality of layers comprises a cellular configuration.

[0100] In various embodiments of the custom headwear device, at least one layer of the plurality of layers comprises carbon fibers integrated therein.

[0101] Various embodiments of the custom headwear device comprise one or more electronic sensors manufactured by the additive manufacture device into the custom cranial remodeling device.

[0102] Various embodiments of the custom headwear device comprise one or more electronic sensors operable to determine pressure levels applied to the head when the custom headwear device is worn on the head; and the one or more electronic sensors are manufactured into the custom headwear device by the additive manufacture device.

[0103] Various embodiments of the custom headwear device comprise one or more electronic transducers manufactured into the custom headwear device by the additive manufacture device. [0104] In various embodiments of the custom headwear device, the one or more electronic transducers are useable to determine one or more of tilt and turn of the head, whether the custom cranial remodeling device is being worn, and the frequency of predetermined head motions. [0105] Various embodiments of the custom headwear device comprise components integrally formed with the custom cranial remodeling device by the additive manufacture device; and the components comprise one or more of apparatus for fastening the cranial remodeling device in place on the head, electronic transducers, and electronic sensors.

Description

BRIEF DESCRIPTION OF THE DRAWING

[0106] The invention will be better understood by a reading of the following detailed description of embodiments of the invention in which like reference indicators designate like elements and in which:

- [0107] FIG. **1** illustrates an embodiment of a point of service manufacture facility;
- [0108] FIG. **2** is a screen shot of a frontal view of the head of a subject;
- [0109] FIG. **3** is a screen shot of a left side view of the head of FIG. **2**;
- [0110] FIG. **4** is a screen shot of the rear of the head of FIG. **2**;
- [0111] FIG. **5** is a screen shot of a perspective view of the head of FIG. **2** having contour lines thereon;
- [0112] FIG. **6** is a screen shot of the perspective view of the head as shown in FIG. **5** having a modified head shape juxtaposed thereon;
- [0113] FIG. **7** is a screen shot of the perspective view of FIG. **6** further having an image of a cranial remodeling device thereon and lines projecting from the contour lines through the cranial remodeling device;
- [0114] FIGS. **8**, **9**, and **10** illustrate the direction of the projecting lines of FIG. **7** from a top view, left side view and frontal view respectively;
- [0115] FIG. **11** is a cross section through a portion of an embodiment of a cranial remodeling device; and
- [0116] FIG. **12** is a cross section of a cranial remodeling device taken along lines **12-12** of FIG. **11**. DETAILED DESCRIPTION
- [0117] Turning now to FIG. 1, a clinic **100** is shown provides a point of service manufacturing apparatus for the manufacture of cranial remodeling devices. At this point of service manufacture clinic, an infant **101** that has plagiocephaly has a three-dimensional digital image captured of its head by digital capture apparatus **103**. Digital capture apparatus **103** may be one of a known apparatus that is used to capture three-dimensional digital images of the entirety of a head. For example, digital capture apparatus **103** may use a laser or other beam emitting scanner of a type described in U.S. Pat. Nos. 6,572,572 and 6,340,353, both of which are assigned to the assignee of this invention. Digital capture apparatus **103** may alternatively comprise optical capture apparatus such as that described in U.S. Pat. Nos. 7,142,701, 7,162,075, 7,245,743, 7,280,682, 7,305,369, 7,542,950, 8,103,088, and 8,217,993 all of which are also assigned to the assignee of this invention. The disclosures of all the above-listed patents are incorporated herein by reference. [0118] Image capture apparatus 103 processes the captured data and generates a captured head data file **105** for the subject's head. In addition, image capture apparatus **103** processes data file **105** to generate a modified head data file **107**. The head shape represented by modified head data file **107**. represents a desired or corrected head shape for the subject. The methodology for generating the modified head shape data file is described in the above-identified patents and additionally in U.S. Pat. Nos. 8,442,288, 8,442,308, 8,472,686, 8,494,237, and 8,787,657 all of which are assigned to the assignee of this invention. The disclosures of these additional patents are incorporated herein by reference.
- [0119] The captured head data file **105** and modified head data file are both accessed by processor **109** executing program **111** to generate a device data file **113** that completely defines a custom cranial remodeling device for subject **101**. The operation of processor **109** executing program **111** is described in detail herein below.
- [0120] Device data file **113** is provided to an additive manufacture device **115**. Additive manufacture device **115** utilizes device data file **113** to manufacture a custom cranial remodeling device **117** for subject **101**.
- [0121] Additive manufacture device **115**, in one embodiment is a commercially available three-dimensional printer that is operable to deposit layers of material to form cranial remodeling device **117**. It will be recognized by those skilled in the art that there are various types of additive manufacture devices that are commercially available and the present invention encompasses those various types of additive manufacture devices.
- [0122] The embodiment shown in FIG. **1** provides digital capture apparatus **103** and additive manufacture device **115** at the same physical location. In addition, processor **109** may also be

located at the same physical location or located remotely from the clinic **100** and data linked thereto to provide the effect of being located at clinic **100**.

[0123] It will be further appreciated by those skilled in the art that although a separate processor **109** is shown in FIG. **1**, processor **109** is merely representative and may comprise one or more processors that are either located at clinic **100** or at a remote location or some combination thereof. Still further processor **109** may be incorporated into digital capture unit **103** such that the processor of digital capture unit also executes program **111** to generate device file **113**.

[0124] Digital capture apparatus **103** operates on captured subject head data representing the digital image of the head of subject **101** to mathematically remove the subject's body and other extraneous information to establish a subject data file. The digital image of the subject's body is mathematically cropped or removed leaving just digital data representative of the digital image of the subject's head to provide three-dimensional cropped subject data.

[0125] The three-dimensional cropped subject data is oriented into a predetermined standardized orientation for further processing to produce a cropped and oriented data file that is referred to as the captured head data file **105**.

[0126] It will be appreciated by those skilled in the art that in other embodiments, program **111** may provide the cropping and orientation functions that are provided by digital capture apparatus **103**.

[0127] Processor **109**, executing program **111**, utilizes captured head data file **105** to generate curvature maps of the subject's head. A plurality of different types of curvature maps are generated by processor **109**, executing program **111**. Specific ones of the curvature maps are used to locate specific curvatures and features for a cranial remodeling device. Program **111** is utilized to create, reference, and cross-reference the curvature maps to determine an optimal position of a device contour.

[0128] The term "contour" as used herein is the shape that defines the what in the past has been called "trim lines" for cranial remodeling devices that were formed by first thermoforming foam and plastic layers onto a head model and then cutting or trimming the foam and plastic to a final shape of the cranial remodeling device to be worn on the head of a subject.

[0129] The program identifies anthropometric landmarks to determine the contour of the device. [0130] In the embodiment describe below, the cranial remodeling device comprises bottom and top contour lines **117***a*, **117***b*. The bottom contour line **117***a* and the top contour line **117***b* are each calculated for cranial remodeling device **117** by processor **109** executing program **111** operating initially captured head data file **105**.

[0131] Turning now to FIGS. **2** and **3** execution of program **111** to calculate bottom contour line **117***a* is described first and then the execution of program **111** to calculate top contour line **117***b* is described.

[0132] FIG. **2** illustrates a curvature map **201** of a frontal view head of subject **101**. Program **111** is executable to determine a bottom anterior contour line segments or splines by first mathematically defining two exocanthion locations **203***a*, **203***b*, the two frontozygomatics points **205***a*, **205***b* on the head, and the glabella **207**. Using these five points **203***a*, **203***b*, **205***a*, **205***b*, **207** as a spatial reference, an elliptical cylinder shape is used to create the orbit contour splines **209***a*, **209***b*. [0133] Program **111** executed by processor **109** identifies the sagittal plane **215** and uses sagittal plane **215** to identify the location of a key portion **211** of cranial remodeling device **117**. In the embodiment, program **111** as executed by processor **109** generates a contour for key portion **211**. Key portion **211** dips a predetermined distance below an orbital horizontal that is identified by program **111**.

[0134] Turning now to FIG. **3**, program **111** as executed by processor **109** identifies a coronal plane **301** on the head and anterior temporal extension lines **303***a*, **303***b* are attached to the ends of the orbital splines **209***a*, **209***b* at the exocanthions **203***a*, **203***b* and continue down parallel to coronal plane **301**.

- [0135] Program **111**, executed by processor **109** generates ear contours or splines **305** for each ear. The location of ear contours **305** are determined by mathematically defining the top ear points **307**, bottom ear points **309**, front ear points **311** and back of ear points**313** and connecting the points **307**, **309**, **311**, **313** for each ear with a curved spline **315**. In addition to determining the ear contours **305**, the midway point of the total length of the ear is defined.
- [0136] The location, size and shape of the temporal piece contours **315** are determined by using the mathematically defined exocanthion points **203***a*, **203***b* and front ear points **311**. The location of the bottom **317** of the temporal contour **315** is a predetermined portion x of the ears total length y above the bottom ear point **309**.
- [0137] Program **111**, executed by processor **109**, calculates a neck inflection portion of the contour. The location of the neck inflection contour portion is determined by using a mathematically defined neck inflection and the ears bottom points **309**. The final location of the neck inflection point **321** is determined by calculating a weighted average between the mathematically defined neck inflection point and the ear bottom points **309**.
- [0138] Program **111**, executed by processor **109**, calculates an angle of the neck inflection contour is determined by calculating a guideline that connects the neck inflection point **321** to a chin point **323**.
- [0139] Program **111**, executed by processor **109**, calculates mastoid contours **331**. The location, size and shape of the mastoid contours **331** are determined by using the mathematically defined ear points **307**, **309**, **311**, **313**, the neck inflection point **321** and chin point **323**. A guideline **325** that connects the neck inflection point **321** to the chin point **323** is calculated. A line **331** perpendicular to the guideline **325** is placed a predetermined distance from the posterior ear point **313**.
- [0140] Curved contour portions **333** are each calculated, sized and positioned to be tangent to the back of the ear spline **305** and contact both the neck inflection point **321** to guide line **325** and line **331**. The shape of each curved contour portion **333** is different for each head.
- [0141] In the embodiment, cranial remodeling device **117** further comprises a top contour **117***b*.
- [0142] Program **111**, executed by processor **109**, identifies a point **221** of low curvature on the sagittal midline **223** above the frontal bones as the location of an anterior superior contour. Program
- **111**, executed by processor **109**, identifies a point **401** of low curvature on the sagittal plane **223** above the Occipital bones as the height location of the posterior superior as shown in FIG. **4**.
- [0143] Program **111**, executed by processor **109**, determines an anterior corner front starting point **225** from a standard offset of sagittal plane **223**.
- [0144] Program **111**, executed by processor **109**, determines an anterior corner lateral starting point **341** in the coronal direction utilizing curvatures associated with the coronal suture.
- [0145] Program **111**, executed by processor **109**, determines a posterior corner back starting point **405** in the sagittal direction by calculating a standard offset of the mathematically derived sagittal plane **223**.
- [0146] Program **111**, executed by processor **109**, determines a posterior corner lateral starting point **351** in the coronal direction using the curvatures associated with the coronal plane **301**.
- [0147] Program **111**, executed by processor **109**, by performing the above calculations and operations, defines top contour **117***b* and bottom contour **117***a* on the oriented head shape as shown in drawing figures and most clearly shown in FIGS. **1** and **5**.
- [0148] Once the top and bottom contours **117***b*, **117***a* are created on the unmodified head shape, program **111**, executed by processor **109**, juxtaposes modified head shape **600** onto unmodified head shape **200** as shown in FIG. **6**.
- [0149] Program **111**, executed by processor **109**, utilized modified head shape **600** to generate a multilayered cranial remodeling device **700** juxtaposed onto modified head shape **600**. At this point, multilayered cranial remodeling device **700** extends over substantially all of modified head shape **600** as shown in FIG. **7**.
- [0150] Program **111**, executed by processor **109**, projects lines **701** from top contour **117***b* and

bottom contour **117***a* through juxtaposed modified head shape **600** and through juxtaposed multilayer cranial remodeling device **700** as shown in FIG. **7**.

[0151] Lines **701** are projected from unmodified head shape **200**. As shown in FIGS. **8**, **9**, and **10**, to maintain an optimal relationship to the modified head shape **600**, lines **701** are projected directly right and left for lateral contours **801** and front/back for anterior and posterior contours **803**. Where the right and left lines transition to the front and back lines **805** the projection of the lines is radial. [0152] Program **111**, executed by processor **109**, utilizes projected lines **701** to define bottom and top contours **117***a*, **117***b* onto multilayered cranial remodeling device **700** to generate a device file **113**.

[0153] In generating device file **113**, program **111**, executed by processor **109**, selects the properties of each of a plurality of layers for the cranial remodeling device **117**.

[0154] Additive manufacture device **115** of FIG. **1** utilizes device file **113** to manufacture a cranial remodeling device by depositing a plurality of layers as shown in FIG. **11**. FIG. **11** is a cross-section of a portion of a cranial remodeling device **117** and is intended to be representative of embodiments of such a device. Other embodiments may have more or less layers deposited by additive manufacture.

[0155] One embodiment of a custom cranial remodeling device **117** to correct a deformed head of a subject comprises an inner layer **1101** shaped to contact the head of the subject at predetermined areas. The inner layer **1101** is deposited by additive manufacturing device **115** shown in FIG. **1**. Cranial remodeling device **117** comprises an outer layer **1103** deposited by the additive manufacturing device **115**. The inner layer **1101** and the outer layer **1103** are each formed by the additive manufacture device utilizing device data file **113** derived from a subject or captured head data file **105**. The subject data file **105** is representative of the shape of the deformed head of the subject **101**.

[0156] Device data file **113** determines the shape of the cranial remodeling device **117** to correct the shape of the deformed head.

[0157] In an embodiment, device data file **113** is derived from subject data file **105** and a modified data file **107**. The modified data file **107** is representative of a modified head shape.

[0158] Device data file **113** is derived by one or more processors **109** operable to: determining contour lines **117***a*, **117***b* for custom cranial remodeling device **117***e* on the deformed head shape **200** shown in FIGS. **2** through **10**; juxtaposing a digital representation **600** of the modified shape on the deformed head shape **200** as shown in FIGS. **6** and **7**; projecting the contour lines **117***a*, **117***b* outward from the deformed head shape **200** onto the modified shape **600**; and utilizing the contour lines to produce the device data file **113**.

[0159] In various embodiments the inner layer comprises portions positioned to contact the head at predetermined surface areas of the head.

[0160] In various embodiments, inner layer **1101** comprises a plurality of separate portions that are not shown in the drawing figures. Each separate portion of inner layer **1101** is configured to contact one of a corresponding plurality of areas on the head shape **200**.

[0161] In various embodiments, cranial remodeling device **117** comprises one or more removable manufacturing supports, that are not shown in the drawing figures, to facilitate additive manufacture of custom cranial remodeling device **117**. The supports are provided solely to facilitate additive manufacture and are removed prior to utilization of cranial remodeling device **117**. The supports may be of any convenient configuration and may be comprised from an additive material that is easily dissolved or is otherwise easily removable from the finished cranial remodeling device.

[0162] In various embodiments, the inner layer **1101**, the outer layer **1103** and the intermediate layer **1105** each comprise one or both of different strength and material properties. Device data file **113** as generated by processor **109** executing program **111** automatically determines the material deposited for each layer **1101**, **1103**, **1105** and any configuration details for each layer **1101**, **1103**,

1105.

[0163] In various embodiments, cranial remodeling device **117** comprises alignment marks deposited on the cranial remodeling device **117** by additive manufacture device **115**. The alignment marks aid a clinician in fitting custom cranial remodeling device **117** to subject **101**. The alignment marks may be formed by incorporation of various landmarks such as depressions or protrusions or other identifications formed into a layer and visible to a clinician.

other identifications formed into a layer and visible to a clinician.

[0164] One embodiment comprises a plurality of different layers comprising inner layer 1101, outer layer 1103 and one or more intermediate layers 1105, the plurality of layers comprising one or more of different strength properties, material properties, and configurations, each layer 1101, 1103, 1105 of the plurality of layers is deposited by the additive manufacturing device.

[0165] In various embodiments, at least one layer of the plurality of layers comprises a cellular configuration as shown in FIG. 12. Although a rectangular cellular construction is shown in FIG. 12, it will be understood by those skilled in the art, that various configurations may be selected. By way of non-limiting example, the cellular construction may present a beehive cellular construction. The use of a cellular construction may present particular advantages for certain embodiments. For example, the use of a cellular construction may provide greater strength and a lighter weight cranial remodeling device.

[0166] In at least one embodiment, at least one layer of the plurality of layers comprises carbon fibers integrated therein. For example, outer layer **1103** may comprise carbon fibers to provide greater strength and lighter weight to cranial remodeling device **117**.

[0167] By utilizing additive manufacture, one or more electronic sensors may be embedded in cranial remodeling device **117** as part of the additive manufacture protocol presented by device data file **113**.

[0168] The one or more electronic sensors may be operable to determine pressure levels applied to the subject's head when custom cranial remodeling device **117** is worn.

[0169] The one or more electronic sensors may further be operable to confirm that custom cranial remodeling device **117** is being correctly worn on the subject's head.

[0170] In other embodiments one or more electronic transducers are manufactured into the custom cranial remodeling device **117** by the additive manufacture device **115**. The one or more electronic transducers may be useable to determine one or more of tilt and turn of the subject's head, whether the custom cranial remodeling device **117** is being worn, and the frequency of predetermined head motions.

[0171] Various embodiments may comprise components integrally formed with the custom cranial remodeling device **117** by the additive manufacture device **115**. The components may comprise one or more of apparatus for fastening the cranial remodeling device in place on the head, electronic transducers, and electronic sensors.

[0172] Although the embodiments described above are for custom cranial remodeling devices, 117 other embodiments may be for custom headwear devices to be worn on the head of a subject. Embodiments of custom headwear devices may comprise: an inner layer 1101 shaped to contact the head of the subject at predetermined areas, the inner layer deposited by an additive manufacturing device; an outer layer 1103 deposited by the additive manufacturing device. The inner layer 1101 and the outer layer 1103 are each formed by the additive manufacture device 115 utilizing a device data file 113 derived from a subject or captured head data file105. The subject data file 105 is representative of the shape of the head.

[0173] In various embodiments of the custom headwear device, the device data file is derived by one or more processors **109**: determining contour lines **117***a* for the custom headwear device **117** on the head shape **200** utilizing device data file **113**; projecting the contour lines **117***a* outward from the head as shown in FIG. **7**; and utilizing the contour line **117**as to produce the device file. It will be apparent to those skilled in the art that if the custom headwear device **117** is not intended to be utilized for cranial remodeling, but, for example is a protective headwear device that there is no

- modified head shape **600** and the shape of the protective headwear device **700** is juxtaposed directly onto the subject head shape **200**. The contour lines **117***a* are then projected outward as shown in FIG. **7** to provide contour lines for the protective headwear device and to generate the corresponding custom headwear device data for use by additive manufacture device **115**.
- [0174] In various embodiments of the custom headwear device **117**, inner layer **1101** comprises portions positioned to contact the head at predetermined surface areas of the head.
- [0175] In various embodiments of the custom headwear device, inner layer **1101** may comprise a plurality of separate portions, each portion configured to contact one of a corresponding plurality of areas on the subject's head.
- [0176] In various embodiments of the custom headwear device **117**, one or more removable manufacturing supports as described herein above are deposited to facilitate additive manufacture of the custom headwear device.
- [0177] Various embodiments of the custom headwear device **117** comprise at least one intermediate layer **1105** between the inner layer **1101** and the outer layer **1103**, the intermediate layer **1105** is deposited by the additive manufacturing device.
- [0178] In various embodiments of the custom headwear device **117**, the inner layer **1101**, the outer layer **1103**, and the intermediate layer **1105** each comprise one or both of different strength and material properties.
- [0179] Various embodiments of the custom headwear device **117**comprise alignment marks as described herein above.
- [0180] Various embodiments of the custom headwear device **117** comprise guidelines printed by the additive manufacture device on the custom headwear device as described herein above.
- [0181] Various embodiments of the custom headwear device comprise a plurality of different layers comprising inner layer **1101**, outer layer **1103**, and one or more intermediate layers **1105**, the plurality of layers comprising one or more of different strength properties, material properties, and configurations.
- [0182] In various embodiments of the custom headwear device **117**, at least one layer **1105** of the plurality of layers comprises a cellular configuration as shown in FIG. **12** and as described herein above.
- [0183] In various embodiments of the custom headwear device **117**, at least one layer of the plurality of layers comprises carbon fibers integrated therein.
- [0184] Various embodiments of the custom headwear device **117** may comprise one or more electronic sensors manufactured by the additive manufacture device into the custom headwear device.
- [0185] Various embodiments of the custom headwear device comprise one or more electronic sensors operable to determine pressure levels applied to the head when the custom headwear device is worn on the head; and the one or more electronic sensors are manufactured into the custom headwear device by the additive manufacture device.
- [0186] Various embodiments of the custom headwear device **117** comprise one or more electronic transducers manufactured into the custom headwear device by the additive manufacture device. [0187] In various embodiments of the custom headwear device **117**, the one or more electronic transducers are useable to determine one or more of tilt and turn of the head, whether the custom
- cranial remodeling device is being worn, and the frequency of predetermined head motions.
- [0188] Various embodiments of the custom headwear device comprise components integrally formed with the custom cranial remodeling device by the additive manufacture device; and the components comprise one or more of apparatus for fastening the cranial remodeling device in place on the head, electronic transducers, and electronic sensors.
- [0189] In various embodiments, the methods and apparatus described for manufacture of cranial remodeling devices may also be used to manufacture custom headwear devices for subjects such as, by way of non-limiting example, sports helmets and protective helmets. In the manufacture of

custom headwear devices, contour lines may be calculated on a captured subject data file representative of the shape of the subject's head that is captured utilizing one of digital image capture apparatus and scanning apparatus. The contour lines may be extended outward from the contour lines on the head image data representative of the subject's head through a calculated multi-layered headwear device juxtaposed onto the subject's head image data as described herein above. [0190] The invention has been described in terms of various embodiments. It will be apparent to those skilled in the art that various modifications may be made without departing from the scope of the invention. It is intended that the invention be limited in scope only by the claims appended hereto.

Claims

- 1. A computer implemented method for generating a headwear digital data file utilizable for fabricating a custom headwear for a subject's head, said method comprising: utilizing digital capture apparatus to capture data for said subject's head; generating a three-dimensional head digital data file representative of said subject's head, said three-dimensional head digital data file comprising said data captured by said digital capture apparatus; executing on one or more processors the steps of: identifying one or more anthropometric features in said three-dimensional head digital data file; utilizing said one or more-anthropometric features to determine one or more contour lines on said head shape represented by said three-dimensional head digital data file, said one or more contour lines corresponding to one or more peripheral edges of said custom outer surface; processing said three-dimensional head digital data file to generate a headwear digital data file comprising a shape for said custom headwear shape comprising a custom inner surface and a custom outer surface; and processing said headwear digital data file with said contour lines to determine said one or more peripheral edges for said custom outer surface.
- **2.** The method of claim 1, wherein: said one or more contour lines corresponds to one or more peripheral edges of said custom inner surface; and said method comprises processing said headwear digital data file with said contour lines to determine inner surface peripheral edges.
- **3**. The method of claim 2, comprising: processing said headwear digital data file with said peripheral edges to generate a three-dimensional device digital data file for manufacture of said custom headwear.
- **4.** The method of claim 1, comprising: processing said headwear digital data file with said peripheral edges to generate a three-dimensional device digital data file for manufacture of said custom headwear.
- **5.** The method of claim 1, comprising: processing said headwear digital data file with said contour lines to determine inner surface peripheral edges for said custom outer surface.
- **6**. The method of claim 1, comprising: modifying said three-dimensional head digital data file by orienting said three-dimensional head data file to produce a standardized oriented head digital data file for an oriented head shape.
- 7. The method of claim 1, comprising: identifying predetermined points on said head in said three-dimensional head data file; and utilizing said predetermined points to orient said three-dimensional head digital.
- **8**. The method of claim 1, comprising: generating an inner layer comprising said inner surface in said three-dimensional device digital data file; and generating an outer layer comprising said outer surface in said three-dimensional device digital data file.
- **9**. The method of claim 1, comprising: generating at least one layer of cellular configuration between said inner surface and said outer surface in said three-dimensional device digital data file.
- **10**. The method of claim 1, comprising: generating an outer layer comprising said outer surface in said three-dimensional device data file, said outer layer comprising fibers integrated therein.
- 11. The method of claim 1, comprising: generating a plurality of layers between said inner surface

and said outer surface in said three-dimensional data file.

- **12**. The method of claim 11, comprising: generating at least one layer of said plurality of layers to be of cellular configuration.
- **13**. The method of claim 11, comprising: generating said plurality of layers to comprise one or more layers comprising one or more of different strength properties, material properties, and configurations.
- 14. A computer implemented method for generating a headwear digital data file utilizable for fabricating a custom headwear for a subject's head, said custom headwear having a custom inner surface to contact said head and having a custom outer surface, said method comprising: utilizing digital capture apparatus to capture data for the shape said subject's head; generating a three-dimensional head digital data file representative of said shape, said three-dimensional head digital data file comprising said data captured by digital capture apparatus; executing on one or more processors the steps of: receiving said three-dimensional head digital data file; utilizing one or more of features comprising curvatures, and points on said subject's head shape in said three-dimensional head digital data file to calculate one or more contour lines on said head shape represented by said three-dimensional head digital data file, said one or more contour lines corresponding to one or more peripheral edges of said custom outer surface; and processing said three-dimensional head digital data file to generate a headwear digital data file comprising a shape for said custom headwear shape comprising said custom inner surface, said custom outer surface, and said one or more peripheral edges.
- **15**. The method of claim 14, comprising: orienting said three-dimensional head digital data file to a standardized orientation.
- 16. A computer implemented method for generating a headwear digital data file utilizable for fabricating a custom headwear for a subject's head, said method comprising: utilizing digital capture apparatus to capture data for a head shape of said subject's head; generating a three-dimensional head digital data file representative of said head shape, said three-dimensional digital data file comprising said data captured by digital capture apparatus; executing on one or more processors the steps of: utilizing one or more of curvatures, features and points in said three-dimensional head digital data file to determine one or more contour lines on said head shape, said one or more contour lines corresponding to one or more peripheral edges of said custom outer surface; processing said three-dimensional head digital data file to generate a headwear digital data file comprising said peripheral edges, and comprising a shape for said custom headwear.
- **17**. The method of claim 16, comprising: orientating said three-dimensional head digital data file to a standardized orientation.