Základní informace pro studenty k začátku semestru

- Časy cvičení dle rozvrhu
- E-mail: Matous.Cabalka@vutbr.cz
- Místnost: A1/1935
- Zápočty: 2×12 bodů + bod za Maplem celkem max. 25
 - Termíny zápočtů: 6.-7. týden, 11.-13. týden
 - Z každého zápočtu alespoň 6 bodů
 - Klidně zvlášť pro ty, kteří chtějí jít na předtermín
 - U zápočtů možnost získat bonusové body
- Maximálně 2 absence
 - Lze nahradit ve stejném týdnu u jiného kolegy
- Založit fb skupinu pro sdílení podkladů od cvičícího
- Možnost předzápočtové konzultace a konzultace před zkouškou
- Kdo je přednášející?
- Zdůraznit, že 1M za hodně kreditů a je důležité zvládnout nejen kvůli kreditům ale i kvůli snazšímu studiu celkově

Matematická logika

Definice 1. (Výrok)

Výrok je tvrzení, o němž lze říct, zda je pravdivé či nikoli. Nechť je A výrok. Pokud je pravdivý, pak píšeme p(A) = 1, pokud je nepravdivý, pak je p(A) = 0. Hodnoty 0, 1 jsou pravdivostní hodnoty.

Poznámka:

Elementární výrok je takové tvrzení, které je dále nedělitelné a neobsahuje žádné logické spojky.

Logické spojky

Definice 2. (Nulární logické spojky)

Existují dvě nulární spojky - pravda/tautologie (označované symboly T nebo \top) a nepravda/kontradikce (označované symboly F nebo \bot). Tautologie je tvrzení, které je vždy pravdivé. Kontradikce je naopak tvrzení, které je vždy nepradivé.

Příklad 3.

Tautologie: "Přijdu, nebo nepřijdu."

Kontradikce: "Nikdy jsem nebyl ve škole."

Definice 4. (Unární logické spojky)

Jedinou unární logickou spojkou je negace označovaná symbolem \neg (tj. $\neg A$), nebo pomocí apostrofu (A'). Pokud je p(A) = 1, pak $p(\neg A) = 0$ a naopak.

Definice 5. (Binární logické spojky)

Nejčastěji používanými binárními spojkami jsou konjunkce ("a", \land), disjunkce ("nebo", \lor), implikace ("jestliže ..., pak...", \rightarrow , \Rightarrow), a ekvivalence ("právě tehdy, když", \leftrightarrow , \Leftrightarrow).

Definice 6. (Tabulka logických hodnot)

Hodnoty výroků a výrokových formulí nejčastěji zaznamenáváme do tabulky logických hodnot.

A	B	$\neg A$	$A \wedge B$	$A \vee B$	$A \to B$	$A \leftrightarrow B$
1	1	0	1	1	1	1
1	0	0	0	1	0	0
0	1	1	0	1	1	0
0	0	1	0	0	1	1

Věta 7. Platí následující vztahy pro negace složených výroků:

- a) $\neg(\neg A) = A$,
- b) $\neg (A \land B) = \neg A \lor \neg B$,
- c) $\neg (A \lor B) = \neg A \land \neg B$,
- d) $\neg (A \rightarrow B) = A \land \neg B$,
- e) $\neg (A \leftrightarrow B) = (A \lor B) \land (\neg A \lor \neg B)$.

Věta 8. Následující výrokové formule jsou tautologie:

- a) $(A \to B) \leftrightarrow (\neg B \to \neg A)$,
- b) $((A \to B) \land (B \to C)) \to (A \to C),$
- c) $(A \leftrightarrow B) \leftrightarrow ((A \to B) \land (B \to A))$.

Definice 9. Nechť jsou dány symboly o a *. Pak následující zákony nazýváme:

- a) $a \circ b = b \circ a$ komutativní zákon.
- b) $a \circ (b \circ c) = (a \circ b) \circ c$ asociativní zákon
- c) $a \circ (b * c) = (a \circ b) * (a \circ c)$ distributivní zákon.

Věta 10. Pro logické spojky ∧, ∨ platí komutativní, asociativní a distributivní zákony:

- a) $A \wedge B = B \wedge A$, $A \vee B = B \vee A$,
- b) $A \wedge (B \wedge C) = (A \wedge B) \wedge C$ $A \vee (B \vee C) = (A \vee B) \vee C$,
- c) $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C), \qquad A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C).$

Definice 11. (Výrokové kvantifikátory)

V matematice se nejčastěji užívají dva kvantifikátory:

- 1. **Obecný kvantifikátor**, který se značí ∀ a čte se "pro každé".
- 2. Existenční kvantifikátor, který se značí ∃ a čte se "existuje alespoň jeden".

Kvantifikátory doplňují proměnnou a množinu, například " $\forall x \in X$ platí A(x)", nebo " $\exists x \in X$ takové, že platí A(x)".

Věta 12. (Negace výroků s kvantifikátory)

Nechť A(x) je výroková formule s proměnnou $x \in X$, potom

- a) negací výroku " $\forall x \in X$ platí A(x)" je výrok " $\exists x \in X$ tak, že platí A(x)",
- b) negací výroku " $\exists x \in X$ tak, že platí A(x)" je výrok " $\forall x \in X$ platí A(x)".

Základy teorie množin