H19: Differentiaalvergelijkingen van eerste orde

DV van de 1ste orde: oplossingen

- Algemene oplossing
 - Alle oplossingen voor een vergelijken met evenveel constanten als de orde van de vergelijking
- Particuliere oplossing
 - De bijkomende voorwaarde wordt beginvoorwaarde of randvoorwaarde genoemd.
 Waaruit je C kan berekenen.
- (Singuliere oplossing)

De **integraalkromme** stelt de algemene oplossing van een familie krommen voor.

Separabele differentiaalvergelijkingen

$$y' = f(x) * g(y)$$

$$\frac{dy}{dx} = f(x) * g(y)$$

$$\frac{dy}{g(y)} = f(x)dx$$

$$\int \frac{dy}{g(y)} = \int f(x)dx$$

$$= F(x) + C$$

Zie Toepassingen 19-5 tot 19-11

Vergelijkingen die herleid kunnen worden naar separabele DV

$$y' = f\left(\frac{y}{x}\right)$$

Men substitueert $u = \frac{y}{x}$

Waaruit volgt: $y' = u + x \frac{du}{dx}$

f(u) = u + xu'

y' = f(ax + by + c)

Men substitueert u = ax + by + c

Afleiden naar x: u' = a + by'

u' = a + b f(u)

H27:

Dubbelintegraal van een functie van twee veranderlijken over een vlak gebied.

Dubbelintegraal in cartesiaanse coördinaten

Volume van "cilindrisch" lichaam met grondvlak G en met "Boven" vlak het oppervlak z = f(x,y).

Stelling van Fubini (dubbelintegraal) is enkel geldig voor normale integratiegebieden G. Elke verticale (horizontale) heeft hoogstens 2 snijpunten met de rand van G.

Dubbelintegraal: praktische berekening

1ste integratie volgorde: van onder naar boven

We integreren eerst naar y bij vaste x, dan naar x.

$$\iint\limits_G f(x,y)dA = \int_a^b \left(\int_{f_1(x)}^{f_2(x)} f(x,y)dy \right) dx$$

2de integratie volgorde: van links naar rechts

We integreren naar x bij vaste y, dan naar y.

$$\iint\limits_G f(x,y)dA = \int_c^d \left(\int_{g_1(y)}^{g_2(y)} f(x,y)dx \right) dy$$

Dubbelintegraal in poolcoördinaten

$$dA = r * d\theta * dr$$

$$\iint\limits_{G} f(x,y)dA = \int_{\alpha}^{\beta} \left(\int_{r=f_{1}(\vartheta)}^{r=f_{2}(\vartheta)} f(r\cos\vartheta, r\sin\vartheta) \, r \, dr \right) d\vartheta$$

H29 (deel) Toepassingen

Oppervlakte van een vlag gebied G

$$\iint\limits_G 1*dA$$

Massa van een vlak gebied

$$m = \iint\limits_G dm = \iint\limits_G \rho(x, y) dA$$

Massamiddelpunt (zwaartepunt) van een vlak gebied

$$x_{M} = \frac{\iint_{G} x \rho(x, y) dA}{\iint_{G} \rho(x, y) dA} \qquad y_{M} = \frac{\iint_{G} y \rho(x, y) dA}{\iint_{G} \rho(x, y) dA}$$

Traagheidsmoment t.o.v. een as

$$I_d = m. l^2$$

$$I_d = \iint_G l^2 dm = \iint_G l^2 \rho(x, y) dA$$

$$I_x = \iint_G y^2 \, \rho(x, y) dA \qquad I_y = \iint_G x^2 \, \rho(x, y) dA$$

Stelling evenwijdige assen

$$I_d = I_{d0} + Ma^2$$

Massa M en loodrecht afstand a

Gemiddelde waarde van een functie over een gebied

$$\langle f(x) \rangle = \frac{1}{b-a} \int_a^b f(x) dx$$

$$\langle f(x,y) \rangle = \frac{1}{opp \ G} \iint_G f(x,y) dA$$

H20: Lineaire DV van 1ste orde

Structuur van de algemene oplossing

lineair als y' = A + By

 $met\ A\ en\ B\ functies\ van\ x\ alleen$

standaardgedaante:

$$y' + f(x)y = g(x)$$
 storingsfunctie

wanneer: g(x) = 0 DV gereduceerd / homogeen

 $g(x) \neq 0$ DV niet gereduceerd / niet-homogeen

f(x) = a een lineaire eerste orde DV met constante coëfficiënt

STELLING:

Zij y' + f(x)y = g(x) een lineaire eerste orde DV. ledere oplossing y is te schrijven als de som van y_g en y_p . Waarbij y_g de algemene oplossing is (

gereduceerde DV) en y_p een particuliere oplossing.

$$y = y_q + y_p$$

Oplossing van de gereduceerde lineaire DV

Kan gevonden worden door scheiding van de veranderlijken. (separabel)

$$\frac{dy}{dx} + f(x)y = 0$$

$$\frac{dy}{y} = -f(x)y$$

$$\int \frac{dy}{y} = \int -f(x)dx$$

$$ln|y| = -\int f(x)dx + lnC$$

$$ln\frac{|y|}{C} = -\int f(x)dx$$

$$y_g = K e^{-\int f(x)dx} \quad met K = \pm C$$

met constante coëfficiënt:

$$y_g = K e^{-ax}$$

De lineaire DV van de eerste orde bepalen

Methode A:

Variatie van de constante

we vertrekken van de A.O. , we vervangen de integratieconstante door de functie K(x). We gaan na of $y = K(x) e^{-\int f(x) dx}$ een oplossing kan zijn van de niet-gereduceerde DV.

$$y = K(x) e^{-\int f(x)dx}$$
$$y' = K'(x)e^{-\int f(x)dx} - K(x)f(x) e^{-\int f(x)dx}$$

substitutie van de uitdrukkingen in de DV:

$$K'(x)e^{-\int f(x)dx} - K(x)f(x)e^{-\int f(x)dx} + f(x)K(x)e^{-\int f(x)dx} = g(x)$$

$$K'(x)e^{-\int f(x)dx} = g(x)$$

$$K(x) = \int g(x) e^{\int f(x)dx} dx$$

we besluiten dat:

$$y_p = e^{-\int f(x)dx} * \int g(x) e^{\int f(x)dx} dx$$

De algemene oplossing van de niet-gereduceerde lineaire DV van de 1ste orde:

$$y = y_g + y_p$$

$$y = K e^{-\int f(x)dx} + e^{-\int f(x)dx} * \int g(x) e^{\int f(x)dx} dx$$

$$y = e^{-\int f(x)dx} \left[K + \int g(x) e^{\int f(x)dx} dx \right]$$

ALLEEN voor DV met CONSTANE COËFICIËNT!!!

De gedaante van y_p is voorspelbaar, als dezelfde vorm als g(x) **eventueel met toevoeging van factor** ${\bf x}$ om te voorkomen dat y_p een term bevat die ook voorkomt in y_g .

Storingslid	Voorspelde ${oldsymbol y}_p$
Veeltermfunctie $p_n(x)$	Veeltermfunctie $q_n(x)$
C sinwx of C coswx	$Acos\omega x + Bsin\omega x$
$C e^{mx} met m \neq -a$	$A e^{mx}$
$C e^{mx} met m = -a$	Axe^{mx}

Methode B:

(staat niet inde cursus vermeld zie PowerPoint voor voorbeelden)

 $y=y_g+\ y_p$ in één keer bepalen.

$$y' + f(x)y = g(x)$$

Stel $\mu(x) = e^{\int f(x)dx}$ en vermenigvuldig beide leden met deze factor.

$$\mu y' + \mu f(x)y = \mu g(x)$$

waarbij
$$\mu' = \mu f(x)$$

$$(\mu y)' = \mu g(x)$$

$$y = \frac{1}{\mu} \int \mu g(x) \ dx + K$$

Toepassingen van lineaire DV van de eerste orde

Een milieuvraagstuk

Gevraagd wordt na te gaan hoe de waterkwaliteit in het meer evolueert in de tijd.

Instroom: $a \left[\frac{kg}{l} \right] . R \right[$

$$a\left[\frac{kg}{l}\right].R\left[\frac{l}{min}\right].\Delta t\left[min\right]$$

Uitstroom:
$$\frac{x}{V} \left[\frac{kg}{l} \right] . S \left[\frac{l}{min} \right] . \Delta t \left[min \right]$$

waarbij $\frac{x}{v}\left[\frac{kg}{l}\right]$ de concentratie in het water is dat naar buiten

stroomt

balans: $x(t + \Delta t) = x(t) + instroom - uitstroom$

$$x(t + \Delta t) = x(t) + a.R.\Delta t - \frac{x(t)}{V(t)}.S.\Delta t$$

$$\frac{x(t+\Delta t)}{x(t)} = a.R - \frac{x(t)}{V(t)}.S$$

$$\lim_{\Delta t \to 0} \frac{x(t + \Delta t)}{x(t)} = a.R - \frac{x(t)}{V(t)}.S$$

$$\frac{dx}{dt} = aR - \frac{x(t)}{V(t)}.S$$

waarin
$$V(t) = V_0 + (R - S)t$$

Zo bekomen we de lineaire DV van de 1^{ste} orde:

$$\frac{dx}{dt} + \frac{S}{V_0 + (R - S)t} x = a R$$

Bijzonder geval:

Zowel de instroomdebiet als uitstroomdebiet zijn gelijk. (R = S)

We bekomen een lineaire eerste orde DV met een constante coëfficiënt.

$$\frac{dx}{dt} + \frac{R}{V_0}x = aR$$

$$x_g = Ke^{-\frac{R}{V_0}t}$$

Vermist we zitten met een constante term, voorspellen:

We zitten met een storingsfunctie van het type veeltermfunctie van de 0^{de} graad:

$$x_p = A$$

$$0 + \frac{R}{V_0}A = aR$$

$$A = x_p = aV_0$$

$$x(t) = Ke^{-\frac{R}{V_0}t} + aV_0$$

Invullen van de beginvoorwaarden nl x(0) = 0

$$K = -aV_0$$

Uiteindelijke DV:

$$x(t) = aV_0 \left(1 - e^{-\frac{R}{V_0}t}\right)$$

De differentiaalvergelijking van Bernoulli

Sommige niet-lineaire DV kunnen door substitutie worden teruggebracht tot een lineaire DV.

Met gedaante:

$$y' + p(x)y = q(x)y^n$$

 $met n \neq 0 of 1$

$$\frac{y'}{y^n} + \frac{1}{y^{n-1}}p(x) = q(x)$$

via substitutie van $z = \frac{1}{v^{n-1}}$

$$z' = \frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx} = (1 - n)y^{-n} \cdot y' = (1 - n)\frac{y'}{y^n}$$

dus

$$\frac{y'}{y^n} = \frac{z}{(1-n)}$$

$$z' + (1-n)p(x)z = q(x)$$

Logistische groei

$$\frac{dP}{dt} = aP - bP^2$$

omzetten naar een DV van het Bernoulli-type:

$$\frac{dP}{dt} - aP = bP^2$$

$$\frac{1}{P^2}\frac{dP}{dt} - a\frac{1}{P} = -b$$

$$z' + az = b$$

We hebben dus te maken met een Lineaire DV:

$$z_g = Ke^{-at}$$

We mogen z_p voorspellen:

Stel $z_p = A$

$$A = z_p = \frac{b}{a}$$

dus

$$\frac{1}{P} = z = Ke^{-at} + \frac{b}{a}$$

beginvoorwaarde: $P(0) = P_0$

$$K = \frac{1}{P_0} - \frac{b}{a}$$

uiteindelijke DV:

Gilles Callebaut

$$P(t) = \frac{aP_0}{bP_0 + (a - bP_0)e^{-at}}$$

H22: Lineaire differentiaalvergelijkingen van de tweede orde

Structuur van de algemene oplossing

$$y'' + f_1(x)y' + f_2(x)y = g(x)$$

Oplossing van de gereduceerde lineaire DV van tweede orde (y_a)

$$y'' + f_1(x)y' + f_2(x)y = 0$$

Belangrijke eigenschap: voor elke 2 oplossingen y_1 en y_2 , ook elke lineaire combinatie een oplossing is, nl $y = C_1 y_1 + C_2 y_2$, staat bekend als het **lineair superpositieprincipe**.

Als deze 2 oplossingen **lineair onafhankelijk basisoplossingen** zijn dan geldt ook het omgekeerde.

lin. afh. $\Leftrightarrow C_1 y_1 + C_2 y_2 = 0 \implies C_1 = C_2 = 0$

Nagaan door de determinant van Wronski:

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \neq 0$$

We beperken ons tot DV van de tweede orde met constante coëfficiënten.

$$y'' + ay' + by = 0$$

we laten ons inspireren door de oplossing bij een DV van de eerste orde, dus door substitutie in de DV toont dat $e^{\lambda x}$ slechts een oplossing kan zijn als λ voldoet aan de volgende bewerking, de **karakteristieke vergelijking**:

$$\lambda^2 + a\lambda + b = 0$$

$$y_1 = e^{\lambda_1 x} en y_2 = e^{\lambda_2 x}$$

criterium van de wronskiaan:

$$\begin{vmatrix} e^{\lambda_1 x} & e^{\lambda_2 x} \\ \lambda_1 e^{\lambda_1 x} & \lambda_2 e^{\lambda_2 x} \end{vmatrix} = e^{\lambda_1 x} \cdot \lambda_2 e^{\lambda_2 x} - e^{\lambda_2 x} \cdot \lambda_1 e^{\lambda_1 x} = e^{\lambda_1 x} \cdot e^{\lambda_2 x} (\lambda_2 - \lambda_1) \neq 0$$

De A.O. is dus van de vorm:

$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$

$$y_1 = e^{\lambda x} en y_2 = xe^{\lambda x}$$

criterium van de wronskiaan:

$$\begin{vmatrix} e^{\lambda x} & xe^{\lambda x} \\ \lambda e^{\lambda x} & x\lambda e^{\lambda x} + e^{\lambda x} \end{vmatrix} = e^{\lambda x} \cdot (\lambda xe^{\lambda x} + e^{\lambda x}) - xe^{\lambda x} \cdot \lambda e^{\lambda x} = e^{(\lambda x)^2} (\lambda x + 1 - \lambda x) \neq 0$$

De A.O. is dus van de vorm:

$$y = C_1 e^{\lambda x} + C_2 x e^{\lambda x}$$

geval 3: twee complex toegevoegde wortels $A = \alpha + 1B$ en $A = \alpha - 1B$

$$y_1 = e^{(\alpha+j\beta)x} en y_2 = e^{(\alpha-j\beta)x}$$

formule van Euler:

$$e^{\pm jx} = cosx \pm jsinx$$

$$e^{(\alpha+j\beta)x} + e^{(\alpha-j\beta)x} = e^{\alpha x}(\cos\beta x + j\sin\beta x) + e^{\alpha x}(\cos\beta x - j\sin\beta x) = 2e^{\alpha x}(\cos\beta x)$$

en

$$e^{(\alpha+j\beta)x} - e^{(\alpha-j\beta)x} = e^{\alpha x}(\cos\beta x + j\sin\beta x) - e^{\alpha x}(\cos\beta x - j\sin\beta x) = 2je^{\alpha x}(\sin\beta x)$$

$$\begin{vmatrix} e^{\alpha x}(\cos\beta x) & e^{\alpha x}(\sin\beta x) \\ \alpha e^{\alpha x}(\cos\beta x) - e^{\alpha x}\beta(\sin\beta x) & \alpha e^{\alpha x}(\sin\beta x) + e^{\alpha x}\beta(\cos\beta x) \end{vmatrix}$$

$$= e^{\alpha x}(\cos\beta x).(\alpha e^{\alpha x}(\sin\beta x) + e^{\alpha x}\beta(\cos\beta x)) - e^{\alpha x}(\sin\beta x).(\alpha e^{\alpha x}(\cos\beta x) - e^{\alpha x}\beta(\sin\beta x))$$

$$= e^{2\alpha x}((\cos\beta x).(\alpha(\sin\beta x) + \beta(\cos\beta x)) - (\sin\beta x).(\alpha(\cos\beta x) - \beta(\sin\beta x)))$$

$$= \beta e^{2\alpha x}(\cos^2\beta + \sin^2\beta)$$

 $=\beta e^{2\alpha x}$

De A.O. is dus van de vorm: $y = C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x$

voorspellen van de particuliere oplossing (y_p)

Storingslid	Voorspelde ${\boldsymbol{y}}_p$
Veeltermfunctie $p_n(x)$	Veeltermfunctie $q_n(x)$
En nul is geen wortel van de kar. vgl.	
C sinwx of C coswx	$Acos\omega x + Bsin\omega x$
$C e^{mx} met m \neq -a$	A e ^{mx}
$C e^{mx} met m = -a$	Axe^{mx}

nog aan te vullen!!!!

H23: De laplacetransformatie

Definitie

$$L \{f(t)\} = F(s) = \int_0^{+\infty} e^{-st} f(t)dt$$

Uitgewerkte belangrijke functies zie bijlage

Eigenschappen

Schaalverandering

$$L \{f(at)\} = \frac{1}{a} F\left(\frac{s}{a}\right)$$

Eerste verschuivingseigenschap (verschuiving in het t-domein)

(verschuiving naar rechts)

$$L \{f(t-a).u(t-a)\} = e^{-as}F(s)$$

Tweede verschuivingseigenschap (verschuiving in het s-domein)

$$L \{e^{at} f(t)\} = F(s-a)$$

Afgeleide van de laplacegetransformeerde

(niet zo belangrijk)

$$\frac{d^n}{ds^n}F(s) = L\left\{(-1)^n t^n f(t)\right\}$$

Integraal van de laplacegetransformeerde

(niet zo belangrijk)

$$\int_{s}^{+\infty} F(x)dx = L \left\{ \frac{f(t)}{t} \right\}$$

Laplacegetransformeerde van een afgeleide

$$L \{f'(t)\} = s L \{f(t)\} - f(0^+)$$

$$L \{f''(t)\} = s^2 L \{f(t)\} - sf(0^+) - f'(0^+)$$

De inverse laplacetransformatie

$$L^{-1}{F(s)}$$

- Rechtstreeks (basisformules)
- Partiële breuksplitsing
- convolutiestelling

Lineariteitseigenschap

$$L^{-1}{F(s) + G(s)} = L^{-1}{F(s) + L^{-1}{G(s)}}$$
$$L^{-1}{c.F(s)} = c.L^{-1}{F(s)}$$

Verschuivingseigenschappen

$$L^{-1}{F(s-a)} = e^{at}f(t)$$

$$L^{-1}{e^{-as}F(s)} = f(t-a).u(t-a)$$

Inversie door splitsing in partieelbreuken

Eerste geval: F(s) bezit n verschillende enkelvoudige polen

enkel de toepassing van deze formule moet gekend zijn

$$F(s) = \frac{K_1}{s - p_1} + \frac{K_2}{s - p_2} + \dots + \frac{K_n}{s - p_n}$$

$$L^{-1}{F(s)} = L^{-1} \left\{ \frac{T(s)}{N(s)} \right\} = \sum_{i=1}^{n} K_i L^{-1} \left\{ \frac{1}{s - p_1} \right\} = \sum_{i=1}^{n} K_i e^{p_i t}$$

$$met K_i = \lim_{s \to p_i} (s - p_i) F(s)$$

Tweede geval: F(s) bezit meervoudige polen

enkel de toepassing van deze formule moet gekend zijn

$$F(s) = \frac{K_1}{s - p_i} + \frac{K_2}{(s - p_i)^2} + \dots + \frac{K_n}{(s - p_n)^k}$$

$$L^{-1}{F(s)} = \sum_{j=1}^k K_{i,j} e^{p_i t} \frac{t}{(j-1)!} + L^{-1} \left\{ \frac{T(s)}{N(s)} \right\}$$

$$met \ K_{i,1} = \frac{1}{(k-1)!} \lim_{s \to p_i} \frac{d^{k-1}}{ds^{k-1}} \left[(s - p_i)^k F(s) \right]$$

Opmerking: de coëfficiënten van de partieelbreuken die horen bij complex toegevoegde polen zelf toegevoegd complex zijn.

Inversie door convolutie

$$(f * g)(t) = \int_0^t f(u)g(t - u)du$$

- het convolutieproduct is commutatief
- 1 is geen neutraal element

$$L \ \{f * g\} = \ L \ \{f\} \cdot L \ \{g\}$$

$$L^{-1}\{F(s) \cdot G(s)\} = L^{-1}\{F(s)\} \cdot L^{-1}\{G(s)\} = f(t) * g(t)$$

Oplossen van lineaire DV met beginvoorwaarden d.m.v. de laplacetransformatie

Eerste orde DV

$$y' + ay = f(t)$$

$$L \{f'(t)\} = s L \{f(t)\} - f(0^+) = sY(s) - y(0^+)$$

$$sY(s) - y(0) + aY(s) = F(s)$$

$$Y(s) = \frac{F(s)}{s+a} + \frac{y(0)}{s+a}$$

$$\Rightarrow y(t) = L^{-1} \left\{ \frac{F(s)}{s+a} \right\} + y(0^+) L^{-1} \left\{ \frac{1}{s+a} \right\}$$
$$y(t) = f(t) * e^{-at} + y_0 e^{-at}$$

Tweede orde DV

$$y'' + ay' + by = f(t)$$

$$L \{f'(t)\} = s \ L \{f(t)\} - f(0^+) = sY(s) - f(0^+)$$

$$L \{f''(t)\} = s^2 \ L \{f(t)\} - sf(0^+) - f'(0^+) = s^2Y(s) - sf(0^+) - f'(0^+)$$

$$s^2Y(s) - sf(0^+) - f'(0^+) + a[sY(s) - f(0^+)] + bY(s) = F(s)$$

$$s^2Y(s) + asY(s) + bY(s) = F(s) + (s + a)f(0^+) + f'(0^+)$$

$$Y(s) = \frac{F(s)}{s^2 + as + b} + y_0 \frac{s + a}{s^2 + as + b} + y_0' \frac{1}{s^2 + as + b}$$

$$\Rightarrow y(t) = L^{-1} \left\{ \frac{F(s)}{s^2 + as + b} \right\} + \underbrace{y_0 L^{-1} \left\{ \frac{s + a}{s^2 + as + b} \right\} + y_0' L^{-1} \left\{ \frac{1}{s^2 + as + b} \right\}}_{y_g}$$

H24: Functies van twee of meer veranderlijken en partiële afgeleiden

Partiële afgeleiden

$$\left(\frac{\partial f}{\partial x}\right)_0 = rico\ van\ raaklijn\ t\ in\ (x_0, y_0, z_0)aan\ K: z = f(x, y_0)$$

$$\left(\frac{\partial f}{\partial y}\right)_0 = rico\ van\ raaklijn\ t'in\ (x_0, y_0, z_0)aan\ K': z = f(x_0, y)$$

Raakvlak aan oppervlak

Nu bepalen de raaklijnen t en t' een vlak α , het raakvlak in P aan \sum

De vectoren:

$$t_1 = \vec{1}_x + \left(\frac{\partial f}{\partial x}\right)_0 \vec{1}_z$$
 en $t_2 = \vec{1}_y + \left(\frac{\partial f}{\partial y}\right)_0 \vec{1}_z$

Een normaalvector \vec{n} :

$$\vec{n} = \vec{t_1} \times \vec{t_2} = \begin{vmatrix} \vec{1}_x & \vec{1}_y & \vec{1}_z \\ 1 & 0 & \left(\frac{\partial f}{\partial x}\right)_0 \\ 0 & 1 & \left(\frac{\partial f}{\partial y}\right)_0 \end{vmatrix} = -\left(\frac{\partial f}{\partial x}\right)_0 \vec{1}_x - \left(\frac{\partial f}{\partial y}\right)_0 \vec{1}_y + \vec{1}_z$$

De vergelijking van het raakvlak α in $P(x_0, y_0, z_0)$ aan \sum : z = f(x, y) is daarom:

$$z - z_0 = \left(\frac{\partial f}{\partial x}\right)_0 (x - x_0) + \left(\frac{\partial f}{\partial y}\right)_0 (y - y_0)$$

De kettingregel voor partiële afgeleiden

$$z = f(x(t), y(t))$$

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Bijzonder geval van de kettingregel:

$$z = f(x, y(x))$$

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \frac{dy}{dx}$$

Partiële afgeleide van tweede orde

stelling van Schwarz:

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x \partial y}$$

$$\frac{\partial^2 f}{\partial x^2}$$

$$\frac{\partial^2 f}{\partial y^2}$$

Extrema

Lokale extrema

Als f een lokaal extremum bereikt in (x_0, y_0) dan geldt:

$$\left(\frac{\partial f}{\partial x}\right)_0 = \left(\frac{\partial f}{\partial y}\right)_0 = 0$$

NIET OMGEKEERD!

 $\operatorname{Als}\left(\frac{\partial f}{\partial x}\right)_0 = \left(\frac{\partial f}{\partial y}\right)_0 = 0 \text{ dan heet het punt in } (x_0, y_0) \text{ een stationair punt of kritisch punt}.$

Berekenen van de hessiaan:

$$\Delta_{(x_0,y_0)} = \begin{vmatrix} \left(\frac{\partial^2 f}{\partial x^2}\right)_0 & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \left(\frac{\partial^2 f}{\partial y^2}\right)_0 \end{vmatrix}$$

We trekken ons besluit op basis van het teken van de hessiaan:

$$\Delta_{(x_0,y_0)} > 0$$
 Extremum!

MIN als $\left(\frac{\partial^2 f}{\partial x^2}\right)_0 > 0$ MAX als $\left(\frac{\partial^2 f}{\partial x^2}\right)_0 < 0$

Vergelijken met de leider (eerste rij, eerste kolom in de hess.)

$$\Delta_{(x_0,y_0)} < 0$$
 Geen extremum, zadelpunt

$$\Delta_{(x_0,y_0)} = 0$$
 Geen besluit

Differentiaal

Totale differentiaalvorm

definitie:

$$u(x,y)dx + v(x,y)dy$$
 a.s.a. $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$

H25: Richtingsafgeleiden en gradiënt

Richtingsafgeleiden van een functie

Gradiënt

De **gradiënt** van f in (x_0, y_0) is de vector $\vec{\nabla} = \left(\frac{\partial f}{\partial x}\right)_0 \vec{1}_x + \left(\frac{\partial f}{\partial y}\right)_0 \vec{1}_y$

Richtingsafgeleide

$$(D_{\vec{u}}f)_P = (gradf)_P \cdot \vec{u} = \left(\frac{\partial f}{\partial x}\right)_0 u_x + \left(\frac{\partial f}{\partial y}\right)_0 u_y = |(gradf)_P| \cdot \cos \alpha$$

De richtingsafgeleide in een bepaalde richting is dus de **component van de gradiëntvector** in die richting.

De gradiëntvector van een functie in een punt geeft de **richting** aan volgens dewelke de functie f het **snelst verandert** vanuit dat punt.

De zin van de gradiëntvector is de zin van toename van f vanuit het beschouwde punt.

De grootte van het maximale tempo van verandering is gelijk aan de lengte van de gradiëntvector.

Meetkundige toepassing van de gradiënt

Gradiëntvector is de normaalvector van de niveaukrommen van de functie.

raaklijn in een punt van een kromme met impliciete cartesiaanse verg. F(x, y) = 0

$$\left(\frac{\partial f}{\partial x}\right)_0 (x - x_0) + \left(\frac{\partial f}{\partial y}\right)_0 (y - y_0) = 0$$

Functies van drie veranderlijken

$$grad f(x, y, z) = \left(\frac{\partial f}{\partial x}\right)_0 \vec{1}_x + \left(\frac{\partial f}{\partial y}\right)_0 \vec{1}_y + \left(\frac{\partial f}{\partial z}\right)_0 \vec{1}_z$$

Gradiëntvector is de normaalvector van de niveauoppervlakken van de functie.

raakvlak in een punt van een kromme met impliciete cartesiaanse verg. F(x, y, z) = 0

$$\left(\frac{\partial f}{\partial x}\right)_0 (x - x_0) + \left(\frac{\partial f}{\partial y}\right)_0 (y - y_0) + \left(\frac{\partial f}{\partial z}\right)_0 (z - z_0) = 0$$

H26: Gebonden extremumvraagstukken en de methode van Lagrange

Gebonden extremumvraagstuk

Methode 1

Uit de nevenvoorwaarde g(x,y)=0 y bepalen als functie van x en extrema zoeken van f(x,h(x))

Methode 2

Multiplicatorenmethode van Lagrange.

$$\varphi(x, y, \lambda) = f(x, y) - \lambda g(x, y)$$

Extremum als:

$$\frac{\partial \varphi}{\partial x} = \frac{\partial \varphi}{\partial y} = \frac{\partial \varphi}{\partial \lambda} = 0$$

Functies van drie veranderlijken

met één nevenvoorwaarde

$$\varphi(x, y, z, \lambda) = f(x, y, z) - \lambda g(x, y, z)$$

met twee nevenvoorwaarden

$$\varphi(x, y, z, \lambda, \mu) = f(x, y, z) - \lambda g_1(x, y, z) - \mu g_2(x, y, z)$$

H28

Tripelintegraal van een functie van drie veranderlijken

Tripelintegraal in cartesiaanse coördinaten

Praktische berekening

$$\iiint\limits_R f(x,y,z)dV = \iint\limits_{R_{xy}} \left(\int_{z=f_1(x,y)}^{z=f_2(x,y)} f(x,y,z)dz \right) dA$$

(Dit hoeft niet perse in die volgorde.)

Tripelintegraal in cilindercoördinaten

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z$$

$$dV = r dr dz d\theta$$

Integratie volgorde

- Eerst naar z integreren (van onder naar boven doorlopen)
- Eerst naar r integreren (radiaal doorlopen vanop de z-as evenwijdig met het xy-vlak)

$$\iiint\limits_R f(x,y,z)dV = \iint\limits_{R_{xy}} \left(\int_{z=f_1(x,y)}^{z=f_2(x,y)} f(r\cos\theta,r\sin\theta,z) r \, dr \right) dA$$

Tripelintegraal in bolcoördinaten

$$x = r \cos \theta \sin \varphi$$
$$y = r \sin \theta \sin \varphi$$
$$z = z \cos \varphi$$

$$dV = r^2 \sin \varphi \ dr \ d\theta \ d\varphi$$

Integratie volgorde

 eerst integreren naar r dan naar θ dan naar φ (lichaam wordt radiaal doorlopen vanuit de oorsprong)

$$\iiint\limits_R f(x,y,z)dV = \iint\limits_{R_{xy}} \left(\int_{z=f_1(x,y)}^{z=f_2(x,y)} f(r\cos\theta,r\sin\theta,z) r \, dr \right) dA$$

Wanneer moeten we wat gebruiken?

Cilindercoördinaten

Bolcoördinaten

Lichamen met **axiale** symmetrie

Lichamen met centrale symmetrie

H29 (deel) Toepassingen

Volume van een ruimtelijk gebied

$$\iiint\limits_R 1 \ dV = volume \ van \ R$$

Massamiddelpunt van een ruimtelijk gebied

$$x_{M} = \frac{\iiint_{R} x \rho(x, y, z) dV}{\iiint_{R} \rho(x, y, z) dV} \quad y_{M} = \frac{\iiint_{R} y \rho(x, y, z) dV}{\iiint_{R} \rho(x, y, z) dV} \quad z_{M} = \frac{\iiint_{R} z \rho(x, y, z) dV}{\iiint_{R} \rho(x, y, z) dV}$$

Traagheidsmoment van een ruimtelijk lichaam t.o.v. een as

$$I_x = x_M = \iiint_R (y^2 + z^2) \rho(x, y, z) dV$$

(analoog voor I_y en I_z)

Massa van een ruimtelijk gebied

$$m = \iiint\limits_R dm = \iiint\limits_R \rho(x, y, z) dV$$

Volume ruimtelijk gebied

Tripelintegraal naar dubbelintegraal (cilindrisch lichaam)

Volume van R = $\iiint_R dV$

$$= \iint\limits_{G} \left(\int_{z=0}^{z=f(x,y)} dz \right) dA = \iint\limits_{G} f(x,y) dA$$

Tripelintegraal naar enkelvoudige integraal (omwentelingslichaam)

Volume van R = $\iiint_R dV$

$$= \iiint_{R} r \, dr \, d\theta \, dz$$

$$= \int_{\theta=0}^{\theta=2\pi} \int_{z=a}^{z=b} \left(\int_{r=0}^{r=f(z)} r \, dr \right) dz \, d\theta$$

$$= \int_{\theta=0}^{\theta=2\pi} \int_{z=a}^{z=b} \left(\frac{1}{2} [r^2]_0^{f(z)} \right) dz \, d\theta$$

$$= \frac{2\pi}{2} \int_{z=a}^{z=b} f(z)^2 dz$$

$$= \pi \int_{a}^{b} f(z)^2 dz$$