Discrete Mathematics

FTA, binary relation, equivalence relation, equivalence class, congruence, mod, floor, ceiling, residue class, \mathbb{Z}_n

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

FTA Proof

THEOREM: If $a, b, c \in \mathbb{Z}$, $c \mid ab$ and gcd(c, a) = 1, then $c \mid b$.

- There exist s, t such that $1 = \gcd(a, c) = as + ct$.
 - b = bas + bct
 - $c|ab, c|ct \Rightarrow c|(bas + bct) \Rightarrow c|b$

THEOREM: If p is a prime and p|ab, then p|a or p|b.

- p|a: done
- $p \nmid a \Rightarrow \gcd(p, a) = 1$
 - $gcd(p, a) = 1 \land p|ab \Rightarrow p|b$

Fundamental Theorem of Arithmetic: proof of uniqueness

- Suppose that $n = p_1 \cdots p_r = q_1 \cdots q_s$, where p_i , q_j are all primes
 - $p_1|n \Rightarrow p_1|q_1 \cdots q_s \Rightarrow p_1|q_j \text{ for some } j \Rightarrow p_1 = q_j$
 - W.l.o.g., we suppose that j=1. Then $p_2\cdots p_r=q_2\cdots q_s$
 - The theorem is true by induction.

FTA Applications

THEOREM: Suppose that $a=p_1^{\alpha_1}\cdots p_r^{\alpha_r}$, $b=p_1^{\beta_1}\cdots p_r^{\beta_r}$. Then $d:=p_1^{\min(\{\alpha_1,\beta_1\})}\cdots p_r^{\min(\{\alpha_r,\beta_r\})}=\gcd(a,b)$.

- *d* is a common divisor of *a*, *b*
- *d* is largest among the common divisors
 - Suppose that d' is a common divisor of a, b
 - $d' = p_1^{e_1} \cdots p_r^{e_r}$
 - $d'|a \Rightarrow e_i \leq \alpha_i$ for all $i \in [r]$; $d'|b \Rightarrow e_i \leq \beta_i$ for all $i \in [r]$
 - $e_i \leq \min\{\alpha_i, \beta_i\}$ for all $i \in [r]$

THEOREM: There are infinitely many primes.

- Suppose there are only n primes: $p_1, ..., p_n$
- By FTA, $N = p_1 \cdots p_n + 1$ must be a product of primes
- $\exists i \in [n]$ such that $p_i | N$
- But $p_i \nmid N$

Equivalence Relation

DEFINITION: Let *A*, *B* be two sets. A **binary relation** from *A* to

B is a subset $R \subseteq A \times B$. // aRb means $(a, b) \in R$

EXAMPLE: $R = \{(a, a) : a \in \mathbb{Z}^+\}$ is a binary relation from \mathbb{Z}^+ to \mathbb{Z}^+

• aRb means that a = b; R is "="

DEFINITION: Let A be a set. An **equivalence relation**

R on A is a binary relation R from A to A such that

- **Reflexive**: aRa for all $a \in A$
- **Symmetric**: $aRb \Rightarrow bRa$ for all $a, b \in A$
- **Transitive**: $aRb, bRc \Rightarrow aRc$ for all $a, b, c \in A$

DEFINITION: The **equivalence class** of $a \in A$ is the set

$$[a]_R = \{b \in A : aRb\}$$

Equivalence Class

THEOREM: Let R be an equivalence relation on A. For any $a, b \in A$, $[a]_R = [b]_R$ if and only if aRb.

- \Rightarrow : $[a]_R = [b]_R \Rightarrow a \in [b]_R \Rightarrow aRb$
- *⇐*: *aRb*
 - $\forall x \in [a]_R$, xRa
 - $\forall x \in [a]_R, xRb$
 - $[a]_R \subseteq [b]_R$
 - similarly, $[b]_R \subseteq [a]_R$

THEOREM: Let *R* be an equivalence relation on *A*. For any

$$a, b \in A$$
, either $[a]_R \cap [b]_R = \emptyset$ or $[a]_R = [b]_R$

- $[a]_R \cap [b]_R = \emptyset$: done
- $[a]_R \cap [b]_R \neq \emptyset$
 - $\exists c \in [a]_R \cap [b]_R$
 - cRa, cRb
 - aRb (i.e., $[a]_R = [b]_R$)

The equivalence classes under R form a partition of A.

Partition: a set $\{A_1, A_2, ..., A_n\}$ nonempty subsets of A

•
$$A_i \cap A_j = \emptyset, \forall i \neq j$$

•
$$\bigcup_{i=1}^n A_i = A$$

Congruence

THEOREM: Let $n \in \mathbb{Z}^+$. Then $R = \{(a, b) \in \mathbb{Z}^2 : n | (a - b)\}$ is an equivalence relation on \mathbb{Z} (from \mathbb{Z} to \mathbb{Z}).

- R is a binary relation from \mathbb{Z} to \mathbb{Z}
 - Reflexive: $n|(a-a) \Rightarrow aRa$
 - Symmetric: $aRb \Rightarrow n|(a-b) \Rightarrow n|(b-a) \Rightarrow bRa$
 - Transitive: $aRb, bRc \Rightarrow n|(a-b), n|(b-c) \Rightarrow n|(a-c) \Rightarrow aRc$

DEFINITION: Let $n \in \mathbb{Z}^+$ and $R = \{(a, b) \in \mathbb{Z}^2 : n | (a - b) \}$.

- The notation $a \equiv b \pmod{n}$ means that aRb.
 - $a \equiv b \pmod{n}$ is called a **congruence**
 - Read as: a is congruent to b modulo n
 - *n* is called the **modulus** of the congruence
 - $a \not\equiv b \pmod{n}$: $(a,b) \notin R$, or equivalently $n \nmid (a-b)$
 - Read as: a is not congruent to b modulo n

Congruence

- **THEOREM:** Let $n \in \mathbb{Z}^+$. For any $a \in \mathbb{Z}$, there is a unique integer r such that $0 \le r < n$ and $a \equiv r \pmod{n}$.
 - **Existence**: by division algorithm, $\exists q, r \in \mathbb{Z} \text{ s.t. } 0 \le r < n, a = qn + r$
 - $a \equiv r \pmod{n}$
 - **Uniqueness**: suppose that $0 \le r' < n$ and $a \equiv r' \pmod{n}$
 - $|r r'| < n \text{ and } r \equiv r' \pmod{n}$
 - |r-r'| < n and n|(r-r')
 - r = r'
- **DEFINITION:** Let $a, n \in \mathbb{Z}$ and n > 0. Then there are unique integers q, r such that $0 \le r < n$ and a = nq + r.
 - We define $a \mod n$ as r.

Residue Class

DEFINITION: Let $\alpha \in \mathbb{R}$.

- $\lfloor \alpha \rfloor$: **floor** of α , the largest integer $\leq \alpha$
- $[\alpha]$: **ceiling** of α , the smallest integer $\geq \alpha$
 - If a = nq + r, then $q = \lfloor a/n \rfloor$ and r = a nq
- **DEFINITION:** Let $a \in \mathbb{Z}$, $n \in \mathbb{Z}^+$. We denote the equivalence class of a under the equivalence relation mod n with $[a]_n$ and call it the **residue class of** a mod n.
 - $[a]_n = a + n\mathbb{Z} = \{a + nx : x \in \mathbb{Z}\}$
 - any element of $[a]_n$ is a **representative** of $[a]_n$
- **EXAMPLE:** $[0]_6 = \{0, \pm 6, \pm 12, ...\}; [1]_6 = \{..., -11, -5, 1, 7, 13, ...\}; ...$
- **THEOREM:** Let $n \in \mathbb{Z}^+$. For any $a \in \mathbb{Z}$, there is a unique integer r such that $0 \le r < n$ and $[a]_n = [r]_n$.
 - $r = a \mod n$

\mathbb{Z}_n

COROLLARY: $\{[0]_n, [1]_n, ..., [n-1]_n\}$ is a partition of \mathbb{Z} .

- $\mathbb{Z} = [0]_n \cup [1]_n \cup \cdots \cup [n-1]_n$
- $[a]_n \cap [b]_n = \emptyset$ for all $a, b \in \{0, 1, ..., n 1\}$

DEFINITION: Let n be any positive integer. We define \mathbb{Z}_n to be set of all residue classes modulo n.

- $\mathbb{Z}_n = \{[0]_n, [1]_n, \dots, [n-1]_n\}$
 - $\mathbb{Z}_n = \{0,1,...,n-1\};$
- $\mathbb{Z}_n = \{[1]_n, [2]_n, ..., [n]_n\}$
 - $\mathbb{Z}_n = \{1, 2, ..., n\}$

EXAMPLE: Two representations of the set \mathbb{Z}_6

- $\mathbb{Z}_6 = \{[0]_6, [1]_6, [2]_6, [3]_6, [4]_6, [5]_6\}$ = $\{0,1,2,3,4,5\}$
- $\mathbb{Z}_6 = \{[-3]_6, [-2]_6, [-1]_6, [0]_6, [1]_6, [2]_6\}$ = $\{-3, -2, -1, 0, 1, 2\}$

\mathbb{Z}_n

DEFINITION: Let $n \in \mathbb{Z}^+$. For all $[a]_n$, $[b]_n \in \mathbb{Z}_n$, define

- **addition**: $[a]_n + [b]_n = [a + b]_n$
- subtraction: $[a]_n [b]_n = [a b]_n$
- multiplication: $[a]_n \cdot [b]_n = [a \cdot b]_n$

Well-defined? If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$, then $a \pm b \equiv a' \pm b' \pmod{n}$ and $ab \equiv a'b' \pmod{n}$.

- Hence, $[a]_n \pm [b]_n = [a']_n \pm [b']_n$; $[a]_n \cdot [b]_n = [a']_n \cdot [b']_n$
 - $a \equiv a' \pmod{n} \Rightarrow n \mid (a a') \Rightarrow \exists x \text{ such that } a a' = nx$
 - $b \equiv b' \pmod{n} \Rightarrow n | (b b') \Rightarrow \exists y \text{ such that } b b' = ny$
 - (a+b) (a'+b') = nx + ny
 - (a-b) (a'-b') = nx ny
 - ab a'b' = a(b b') + b'(a a') = any + b'nx