

LiDAR Data Synthesis with Denoising Diffusion Probabilistic Models R2DM

R2DM Introduction

- 使用 DDPM 框架构建
- 从三个方面设计整体模型:
 - 1. Loss Function
 - 2. Data Representation
 - 3. Spatial Inductive Bias
- 使用 KITTI-360 以及 KITTI-RAW 两个 Datasets 进行了对应的 Ablation Study 以及 Evaluation

Related Works

- 1. VAE + GAN
- 2. 关于 Range Image 中 ray-drop 噪声的研究

Ray-drop 指的是一种离散丢失噪声,导致图像上出现离散的缺失点。这种噪声使得 range image 的数据完整性下降,影响后续处理效果

- 3. DUSty:基于 GAN 的模型,分离 range image 中的噪声部分,生成"去噪"版本的图像,同时估计缺失部分的丢失概率,帮助理解和模拟噪声的分布
- 4. LiDARGen: Score-based Diffusion Model,通过朗格纹动力学采样存在的问题:
 - 1. 与前人工作提升较小
 - 2. 由于 time-step 过大,采样效率太低

Proposed Method: Preliminary

1) Forward diffusion process: Conveniently, since the forward diffusion process follows the additive Gaussian, the noisy samples z_t at arbitrary timestep t can be given by:

$$q(\boldsymbol{z}_t \mid \boldsymbol{x}) = \mathcal{N}(\alpha_t \boldsymbol{x}, \sigma_t^2 \mathbf{I}), \tag{1}$$

where α_t and σ_t are parameters to determine the noising schedule. For example, the most popular schedule is α -cosine schedule [13] where $\alpha_t = \cos(\pi t/2)$ and $\sigma_t = \sin(\pi t/2)$. This transition distribution can be re-parameterized as:

$$\boldsymbol{z}_t = \alpha_t \boldsymbol{x} + \sigma_t \boldsymbol{\epsilon}, \tag{2}$$

where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and the signal-to-noise ratio of \mathbf{z}_t can be defined as $\lambda_t = \alpha_t^2/\sigma_t^2 = \cot^2(\pi t/2)$. In addition, the transition of latent variables $q(\mathbf{z}_t \mid \mathbf{z}_s)$ from timestep s to t, for any $0 \le s < t \le 1$, can be written as:

$$q(\boldsymbol{z}_t \mid \boldsymbol{z}_s) = \mathcal{N}(\alpha_{t|s}\boldsymbol{z}_s, \sigma_{t|s}^2 \mathbf{I}), \tag{3}$$

where $\alpha_{t|s} = \alpha_t/\alpha_s$ and $\sigma_{t|s}^2 = \sigma_t - \alpha_{t|s}\sigma_s$.

2) Reverse diffusion process: Given the distributions above, the reverse diffusion process $p(z_s \mid z_t)$ is given by:

$$p(\boldsymbol{z}_s \mid \boldsymbol{z}_t) = \mathcal{N}(\boldsymbol{\mu}_t(\boldsymbol{x}, \boldsymbol{z}_t), \Sigma_t^2 \mathbf{I}),$$

$$\boldsymbol{\mu}_t(\boldsymbol{x}, \boldsymbol{z}_t) = \frac{\alpha_{t|s}\sigma_s^2}{\sigma_t^2} \boldsymbol{z}_t + \frac{\alpha_s\sigma_{t|s}^2}{\sigma_t^2} \boldsymbol{x}, \qquad \Sigma_t^2 = \frac{\sigma_{t|s}^2\sigma_s^2}{\sigma_t^2}. \tag{4}$$

3) Training: The training objective of DDPM is to estimate the unknown x in Eq. 4 by a neural network, where U-Net [20] is generally used. In general, ϵ -prediction and ϵ -loss [12] are preferable; re-parameterizing x as a function of noise ϵ by Eq. 2. The loss function is given by:

$$\mathcal{L} = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), t \sim \mathcal{U}(0, 1)} \left[\|\boldsymbol{\epsilon} - \hat{\boldsymbol{\epsilon}}(\boldsymbol{z}_t, \lambda_t)\|_2^2 \right], \tag{5}$$

where $\hat{\epsilon}(\cdot)$ is the neural network predicting the noise ϵ from z_t and the corresponding λ_t .

4) Sampling: Once the training is complete, we can sample data by recursively evaluating $p(z_s \mid z_t)$ where x is approximated by $\hat{x} = (z_t - \sigma_t \hat{\epsilon}(z_t, \lambda_t))/\alpha_t$ with a finite number of steps T from t = 1 to t = 0.

Proposed Method: Loss Function

$$\mathcal{L} = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), t \sim \mathcal{U}(0, 1)} \left[\|\boldsymbol{\epsilon} - \hat{\boldsymbol{\epsilon}}(\boldsymbol{z}_t, \lambda_t)\|_2^2 \right]$$

- 上图展示了使用 L2 范式的损失函数
- Monocular depth estimation using diffusion models 提出了 L1 范式的损失函数对较大的深度值和噪点有更强的鲁棒性,因此在单目深度估计任务中有更好的表现
- 本文提出了将 L1 范式和 L2 范式相结合的 Huber Loss

Proposed Method: Data Representation

- 1. 使用 range view 的形式,将 range 和 reflectance intensity 从笛卡尔坐标映射到 equirectangular image 上
- 2. 对 range value 进行对数缩放

$$m{d}_{\log} = rac{\log(m{d}+1)}{\log(d_{\max}+1)},$$

3. 同时测试了使用 Standard Metric Depth 以及 Inverse Depth 处理深度

Proposed Method: Spatial inductive bias

- LiDARGen 直接将笛卡尔坐标系的角度显式地作为空间归纳偏置 concat,文中称之为 identity function(恒等函数)
- 作者认为单独有坐标值缺少水平上的连续性以及高频细节
- 提出了两种 Positional Encoding 的方式:
 - Spherical Harmonics: 使用正交的球谐函数基函数表示笛卡尔坐标
 - Fourier Features: 使用 log2-spaced Scheme 将仰角和方位角扩展到二次方频率

Spatial bias (b) Details of the reverse diffusion process

(a) Range/reflectance image-based diffusion model

Circular

processing

 \rightarrow ϵ -loss or

 ϵ -prediction

Fig. 2. Overview of R2DM. (a) The diffusion processes are performed on the range/reflectance image representation. (b) U-Net is trained to recursively denoise the latent variables z_t at t>0, conditioned by the beam angle-based spatial bias and the scheduled signal-to-noise ratio λ_t .

Proposed Method: Noise Prediction Model

TABLE I
ARCHITECTURE COMPARISON OF DIFFUSION-BASED MODELS

Method	U-Net architecture	# params	msec/step†	
LiDARGen [6]	RefineNet [31] in [10]	29,694,082	47.17	
R2DM (ours)	Efficient U-Net [15]	31,099,650	15.77	

[†] Average time of 1000 runs on our GPU w/ PyTorch compilation.

(a) Range/reflectance image-based diffusion model

(b) Details of the reverse diffusion process

Fig. 2. Overview of R2DM. (a) The diffusion processes are performed on the range/reflectance image representation. (b) U-Net is trained to recursively denoise the latent variables z_t at t > 0, conditioned by the beam angle-based spatial bias and the scheduled signal-to-noise ratio λ_t .

Experiments: Compared with LiDARGen

- 1. 在 64 beam 的 KITTI-360 数据集上进行,每个 LiDAR 数据都被投影到 64 × 1024 的 range view image 上
- 2. 消融实验变量设置为3个:
 - 1. Loss Function
 - 2. Range Representation
 - 3. Positional Encoding
- 4. 在NVIDIA A6000 GPU 上使用 300k 步数训练了 20 个 GPU hours,以 1024 步数采样 10k 个样本消耗了 30 个 GPU hours

TABLE II

QUANTITATIVE COMPARISON OF KITTI-360 GENERATION.

			Configurations [‡]		Image	Point cloud	Point cloud BEV	
Method (Framework)	NFE	Loss	Range	Positional encoding	FRD ↓	FPD ↓	$\overline{\text{MMD}_{\times 10^4}}$	$JSD_{\times 10^2} \downarrow$
LiDARGen (NCSNv2) [6]	1160 [†]	L_2	Log-scale	Identity	579.39	90.29	7.39	7.38
Ours (DDPM) config A	256	L_2	Log-scale	Identity	202.40	7.11	1.67	4.52
config B	256	L_1	Log-scale	Identity	382.35	21.42	7.70	8.28
config C	256	Huber	Log-scale	Identity	174.83	11.20	1.55	4.71
config D	256	L_2	Metric	Identity	229.28	12.03	1.47	4.01
config E	256	L_2	Inverse	Identity	188.84	19.66	1.85	3.12
config F	256	L_2	Log-scale	w/o spatial bias	910.67	253.21	40.45	18.05
config G	256	L_{2}^{-}	Log-scale	Spherical harmonics	180.60	4.90	2.18	4.12
config H	256	$\overline{L_2}$	Log-scale	Fourier features	153.73	3.92	0.68	2.17

[†] Five steps for each of the 232 noise levels. ‡ The shaded cells indicate the differences from config A.

Experiments: Compared with LiDARGen

- 1. Range View 模态: FRD 指标
 - 在 RangeNet-53 的特征空间上计算生成的 range view 与真实的 rang view 分布之间的 Frechet Distance
- 2. Point Cloud 模态: FPD 指标

在 PointNet 的特征空间上计算生成的 range view 与真实的 rang view 分布之间的 Frechet Distance

- 3. BEV 模态: JSD & MMD
 - 1. JSD

$$JSD(P||Q) = \frac{1}{2}KL(P||M) + \frac{1}{2}KL(Q||M)$$

其中 $M = \frac{1}{2}(P+Q)$ 是 P 和 Q 的平均分布。

2. MMD

$$MMD(P,Q) = \left\| \frac{1}{m} \sum_{i=1}^m \phi(x_i) - \frac{1}{n} \sum_{j=1}^n \phi(y_j) \right\|$$

其中, ϕ 是核映射函数,用于将数据映射到高维特征空间,使得在该空间中的均值差异能够表征两者的分布差异。

Experiments: Compared with LiDARGen

Fig. 4. Comparison of diffusion-based methods. For overall metrics, our method achieved better scores with the significantly lower number of function evaluations (NFE), against 1160 steps of LiDARGen [6].

Experiments: Compared with GAN Method

TABLE III

QUANTITATIVE COMPARISON ON KITTI-RAW GENERATION.

	Image	Point cloud	BEV		
Method	FRD ↓	FPD ↓	$\overline{\text{MMD}\times 10^4}\downarrow$	$JSD \times 10^2 \downarrow$	
Vanilla GAN [3, 4] DUSty v1 [4] DUSty v2 [5]	N/A N/A	3657.60 223.63 98.02	1.02 0.80 0.22	5.03 2.87 2.86	
R2DM $(T = 256)$ R2DM $(T = 512)$ R2DM $(T = 1024)$	215.27 209.24 207.31	128.74 89.62 70.34	0.72 0.65 0.44	3.79 3.76 3.56	

FRD is not available for the baselines [4, 5] which do not support the reflectance.

line in FPD. We believe that the performance gap with the KITTI-360 experiment lies in the setup of range images. In KITTI-360 experiments, the range images were downscaled to alleviate missing points called ray-drop noises. In contrast, the range images of KITTI-Raw were also downscaled but the ray-drop noises were retained to be closer to raw scan data. It is considered that there is room for further ingenuity to handle noisy settings, such as full resolution.