Unbalanced-Bridge used in PIPO

Fig. 3. The unbalanced-Bridge structure

$S_8(x y)$		y															
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
\overline{x}	0	5E	F9	FC	00	3F	85	ВА	5B	18	37	B2	C6	71	СЗ	74	9D
	1	A7	94	OD	E1	CA	68	53	2E	49	62	EB	97	A 4	OE	2D	DO
	2	16	25	AC	48	63	D1	EA	8F	F7	40	45	B1	9E	34	1B	F2
	3	В9	86	03	7F	D8	7A	DD	3C	EO	СВ	52	26	15	AF	8C	69
	4	C2	75	70	1C	33	99	В6	C7	04	3B	BE	5A	FD	5F	F8	81
	5	93	AO	29	4D	66	D4	EF	OA	E5	CE	57	АЗ	90	2A	09	6C
	6	22	11	88	E4	CF	6D	56	AB	7B	DC	D9	BD	82	38	07	7E
	7	B5	9A	1F	F3	44	F6	41	30	4C	67	EE	12	21	8B	A8	D5
	8	55	6E	E7	OB	28	92	A1	CC	2B	80	91	ED	D6	64	4F	A2
	9	BC	83	06	FA	5D	FF	58	39	72	C5	CO	B4	9B	31	1E	77
	A	01	ЗЕ	ВВ	DF	78	DA	7D	84	50	6B	E2	8E	AD	17	24	C9
	В	AE	8D	14	E8	D3	61	4A	27	47	FO	F5	19	36	9C	ВЗ	42
	C	1D	32	В7	43	F4	46	F1	98	EC	D7	4E	AA	89	23	10	65
	D	88	A 9	20	54	6F	CD	E6	13	DB	7C	79	05	ЗА	80	BF	DE
	E	E9	D2	4B	2F	OC	A 6	95	60	OF	2C	A 5	51	6A	C8	ЕЗ	96
	F	ВО	9F	1 A	76	C1	73	C4	35	FE	59	5C	B8	87	3D	02	FB

We have used the "bitsliced implementation of the S8 (in C code)" in [1] to get the table of three S-boxes in the bridge structure.

The bridge.py code verifies the compliance of the obtained S-boxes in the bridge structure with the 8-bit PIPO S-box table.

8-bit S-box of PIPO (Example: S(C2)=B7)

7~0	7	6	5	4	3	2	1	0
15~8	15	14	13	12	11	10	9	8
23~16	23	22	21	20	19	18	17	16
31~24	31	30	29	28	27	26	25	24
39~32	39	38	37	36	35	34	33	32
47~40	47	46	45	44	43	42	41	40
55~48	55	54	53	52	51	50	49	48
63~56	63	62	61	60	59	58	57	56

X[0]

X[1]

X[2]

X[3]

X[4]

X[6]

X[7]

[1]. Kim, Hangi, et al. "A new method for designing lightweight S-boxes with high differential and linear branch numbers, and its application." *IEEE Access* 9 (2021): 150592-150607.