

产品操作手册

协作型平行电爪PGC系列

本文档为PGC系列产品的操作手册,适用机型如下:

适用型号	最大夹持力	全行程
PGC-50-35	50 N	35 mm
PGC-140-50	140 N	50 mm
PGC-300-60	300 N	60 mm

| 目 录 |

1.	夹爪概况	04
	1.1 指示灯定义	04
	1.2 线序定义	05
2.	Modbus-RTU控制	06
	2.1 RS485调试软件说明	06
	2.1.1 调试软件安装及接线	06
	2.1.2 调试软件使用说明	07
	2.2 RS485默认配置	11
	2.3 指令说明	11
	2.3.1 命令格式	11
	2.3.2 命令总览	12
	2.3.3 命令详解	13
	2.3.3.1 初始化夹爪	13
	2.3.3.2 力值	14
	2.3.3.3 位置	14
	2.3.3.4 速度	15
	2.3.3.5 初始化状态反馈	.15
	2.3.3.6 夹持状态反馈	16
	2.3.3.7 位置反馈	17
	2.3.3.8 写入保存	17
	2.3.3.9 初始化方向	18
	2.3.3.10 设备ID	.18
	2.3.3.11 波特率	19
	2.3.3.12 停止位	19
	2.3.3.13 校验位	
	2.3.3.14 IO参数测试	20
	2.3.3.15 IO模式开关	21
	2.3.3.16 IO输出输入高低电平选择	21
	2.3.3.17 IO参数配置	22
3.	IO控制	.24
	3.1 IO配置	24
	3.2 IO使用	.26
4.	夹爪通讯格式与IO详解	.27
	4.1 夹爪接线方式	27

	4.2 夹爪通讯格式详解	27
	4.2.1 485指令03功能码详解	28
	4.2.2 485指令06功能码详解	29
	4.3 夹爪IO输入输出详解	30
	4.3.1 夹爪IO输入详解	30
	4.3.2 夹爪IO输出详解	31
	4.4 夹爪IO输入输出测试方法	31
	4.4.1 夹爪IO输入测试方法	31
	4.4.2 夹爪IO输出测试方法	32
5.	夹爪控制流程	34
	5.1 Modbus-RTU模式控制流程	34
	5.2 IO模式控制流程	35
6.	注意事项	

1. 夹爪概况

PGC系列为协作型平行电爪,数字代表夹爪的最大夹持力。夹爪配有一对平行指尖,运动过程中对称运行,可以满足设备的不同安装条件。并配有一个8芯的通讯接口。并具有以下特点:

力位速可控:夹爪可以对夹爪的夹持位置、夹持力值和运行速度进行编程调节,可以任意组合搭配。

多种通讯方式:夹爪本体采用标准的**Modbus-RTU**协议和**IO模式**进行控制。其他如USB、EtherCAT、CAN、TCP/IP等通讯协议可通过协议转换器进行转接。

夹持判断:夹持过程中采用力控和位控相结合的方式。

夹持反馈:夹爪的状态可以通过编程进行读取,也可以根据夹爪本体的指示灯进行判断。

指尖可定制:可根据实时情况对指尖的进行替换,适用于精密加工、零件组装等领域。

夹爪可与市面上主流的机器人和工业控制器PLC与工控机相连,内置驱动,在使用时只需接线就能控制夹爪。可在以下场景使用但不限于:

夹爪应用场景

- ✓ 机床上下料;
- ✓ 工件抓取与搬运;
- ✓ 包装抓取;
- ✓ 实验室移液;
- ✓ 新零售行业;
- ✓ 教学科研;
- √ ...

1.1 指示灯定义

夹爪可对夹爪的状态实时进行反馈。除了可用指令进行读取,也可以在指示灯的颜色上进行判断:

指示灯颜色说明

- ·未初始化状态:红灯闪烁,其他灯不亮。
- ·初始化完成状态: 蓝灯常亮, 表示进入可操作的状态。
- ·接收到命令状态:红灯快速闪烁一次(由于此时蓝灯常亮,因此夹爪指示灯会呈现偏紫色的状态)。
- ·夹住物体状态:绿灯常亮,其他灯不亮。
- ·物体掉落状态:绿灯闪烁。

1.2 引脚定义

夹爪本体上的线序定义如图1.1所示:

序号	蓝色线标对 应出线颜色	定义	说明
1	红	24V	电源直流24V正极
2	白	INPUT1	IO模式数字输入1
3	棕	INPUT2	IO模式数字输入2
4	橙	OUTPUTI	IO模式数字输出1
5	黄	OUTPUT2	IO模式数字输出2
6	黑	GND	电源直流GND负极
7	蓝	485_B	通讯线正,T/R-
8	绿	485_A	通讯线正,T/R+
9	编织线	PGND	外壳(PE)接口

图1.1 线缆线标图

[注:请根据线标区分线序,如出现线标丢失、脱落、遗忘等情况,请联系我司工作人员,配合确定线序。如不联系我司工作人员,因接错线序,导致夹爪损坏,后果自负。]

2. Modbus-RTU控制

夹爪命令采用标准的Modbus-RTU进行控制。Modbus-RTU指令的部分说明请查阅2.3.1 命令格式(Modbus-RTU是市面上标准的通讯格式,广泛用于工业领域,具体详细格式请在网络上查阅);具体接线方式请查阅2.1.1 调试软件安装及接线;具体通讯寄存器地址说明请查阅2.3.3 命令详解。

2.1 RS485调试软件说明

调试软件专门用于在电脑端对夹爪进行控制和设置调试参数。由于电脑端一般没有RS485接口,需要使用USB转485模块将接口转换为USB接口,便于夹爪在电脑端进行调试和控制。

2.1.1 调试软件安装及接线

通过调试软件进行连接,本质上是通过RS485接口进行控制,具体连线需要连接夹爪端的 **24V, GND, 485_A(T/R+,485+), 485_B(T/R-,485-)**共4根线,电源为24V直流稳压电源,将模块的USB插口插入到电脑的USB接口。**不同系列的接线定义不同,请按照具体夹爪的说明书进行接线**,如下所示:

485A接入485转USB模块T/R+; 485B接入485转USB模块T/R-

图2.1 RS485连接方式图

(此图为蓝色线标接线图,黄色线标参考表1.3接线即可)

接线说明

- ① 当设备(电脑)有RS485接口时,通讯可以直接接入RS485+和RS485-通讯线而不通过USB转485模块。
- ② 通过此种方式接线,可以使用其它串口调试软件(如Modbus Poll等)进行调。

软件可以在官网上进行下载,软件安装过程中**集成有软件和驱动**,二者一起进行安装。安装 过程中建议勾选**创建快捷方式**。

图2.2(a) 安装界面

图2.2(b) 驱动安装界面

2.1.2 调试软件使用说明

在使用前,需要按照使用说明(见2.1.1 调试软件安装及接线)接好对应接线。

打开软件,软件会自动识别串口,自动识别夹爪的波特率,ID号等信息进行自动连接。如下图所示:

图2.3 主控界面

具体界面说明如下所示:

界面说明

- ① **初始化及演示模式:**夹爪运行前需要进行初始化用于标定零点,演示模式为一个循环程序。
- ② 控制界面:可以针对夹爪的位置、力值、速度进行控制。
- ③ 夹持状态:实时显示夹爪的夹持状态。
- ④ 位置电流实时图:实时显示位置,电流。电流表示内部电机的电流,并非夹爪实际消耗的电流。电流实时图可以体现夹持力的稳定性。
- ⑤ 参数设置:可以针对Modbus-RTU的配置参数,如波特率、校验位等进行配置;IO模式为对IO模式相关参数进行配置。

夹爪本体采用Modbus-RTU进行通讯,可以往寄存器内部读写数据,可以在视图-【寄存器】 处对夹爪数据进行读写数据,包含控制、反馈、用户参数、I/O参数如下图所示:

0 2017-2021 DH-Robotics. All rights reserved

图2.4 寄存器控制

您可以在【I/O参数】处对夹爪I/O参数进行设置和配置,**当修改参数后,请注意点击保存按钮进行保存**。下图是打开IO模式的操作:

图2.5 打开IO模式

切换IO步骤如下所示:

切换IO模式步骤:

- ① **打开IO模式:**先打开IO模式。
- ②配置4组10参数:针对夹爪的4组参数,包含位置、力进行设置。
- ③ 保存:点击保存按钮,即可将参数写入Flash内部寄存器,重启即可控制。
- ④ **重启:**重启后,夹爪自动初始化,状态灯变为蓝色。即切换成IO模式成功,您可根据 INPUT信号对夹爪进行控制,运行状态会通过OUTPUT进行反馈。

注意:

- ① IO模式和485模式控制有所冲突。
- ② 在此软件中,夹爪开放IO模式后,485模式受限,无法在软件上,操作控制夹爪。
- ③ IO模式打开后,不影响485通讯功能。
- ④ IO和485通讯,可以同时控制,遵循'先发先响应,后发后响应'的原则。

2.2 RS485默认配置

夹爪ID:1

波特率:115200

数据位:8 停止位:1

校验位:无校验位

2.3 指令说明

2.3.1 命令格式

夹爪采用标准的Modbus-RTU协议,支持03、04、06、10功能码。

夹爪在控制时,一般使用03、06功能码对夹爪进行读取控制。03功能码及06功能码为**读取写入单一寄存器**,控制指令由地址码(1个字节),功能码(1个字节),起始地址(2个字节),数据(2个字节),校验码(2个字节)五个部分组成。我们以初始化指令0106010000149F6为例,如表2.1所示。

地址码	功能码	寄存器地址	寄存器数据	CRC校验码
01	06	01 00	00 01	49 F6

表2.1 命令格式

地址码:表示夹爪的ID号。可在设备ID中进行修改,默认是1。01代表夹爪的Modbus ID为01。 **功能码:**描述对夹爪的读写操作,是对夹爪读取数据,还是写入数据到夹爪,常见功能码有 03(读取保持寄存器)、06(写入保持寄存器)。初始化指令功能码为06代表准备写入。

寄存器地址:夹爪功能对应地址。初始化指令地址为0x0100。

寄存器数据:写入数据到具体的寄存器地址,从而实现控制读取数据。初始化指令为写入01代表进行初始化。

CRC校验码:保证终端设备不去响应那些在传输过程中发生改变的数据,保证系统的安全性和效率。CRC校验采用16位的循环亢余方法,根据前面数据进行转换,可知初始化指令的CRC校验码为49 F6。

如需要读取多个寄存器地址或写入寄存器地址时,可以采用04(0x)和10(0x)功能码对夹 爪连续寄存器地址进行读写,具体控制指令格式请查阅Modbus-RTU标准协议 www.ip33.com/crc.html。

2.3.2 命令总览

命令由**基础控制地址表**和参数配置地址表组成。

基础控制地址表:包含初始化、力值、位置、速度及其对应的反馈命令,是主要的控制指令。如表2.2所示。

参数配置表:包含夹爪的参数配置,包括可以写入Modbus-RTU的相关配置以及IO相关配置。需要注意的是,在配置完需要的参数后,需要在0x0300处写入Flash保存。如表2.3所示。

功能	Modbus地址 (16进制)	说明	写入	读取
初始化 夹爪	256 (0x0100)	重新标定夹爪 和回零位	1:回零位(找单向位置); 0xA5:重新标定	0:未处于初始化过程; 1:处于初始化过程;2:初始化中
力值	257(0x0101)	夹爪力值	20-100,百分比	读取当前设定力值
位置	259 (0x0103)	运动到指定位置	0-1000,千分比	读取当前设定位置
速度	260 (0x0104)	以设定速度 运行	1-100,百分比	读取当前设定速度
初始化 状态反馈	512 (0x0200)	反馈当前夹爪的 初始化状态	——此Modbus地址仅读取	0:未初始化;1:初始化成功
夹持状 态反馈	513 (0x0201)	反馈当前夹爪 的夹持状态	——此Modbus地址仅读取	0:运动中,1:到达位置; 2:夹住物体;3:物体掉落
位置反馈	514 (0x0202)	反馈当前夹爪 位置信息	——此Modbus地址仅读取	读取当前实时位置

表2.2 基础控制地址表

功能	Modbus地址 (16进制)	1910 - 5		读取
写入保存	768 (0x0300)	写入flash	0:默认,1:将所有 参数写入flash	写入flash操作, 默认读取返回0
初始化方向	769 (0x0301)	配置夹爪初始 化方向	0:打开;1:关闭(默认:0)	读取当前的设定值
设备ID	770 (0x0302)	配置夹爪ModbusID	1-255 (默认:1)	读取当前的设定值
波特率	771 (0x0303)	配置夹爪Modbus 波特率	0-5:115200,57600, 38400,19200,9600, 4800(默认:0)	读取当前的设定值
停止位	772 (0x0304)	配置夹爪Modbus 停止位	0:1停止位; 1:2停止位(默认:0)	读取当前的设定值
校验位	773 (0x0305)	配置夹爪Modbus 校验位	0:无校验;1:奇校验; 2:偶校验(默认:0)	读取当前的设定值

IO参数 测试	1024 (0x0400)	直接控制4组 IO功能	1;2;3;4	——此Modbus地址仅写入
IO模式 开关	1026 (0x0402)	开启IO功能开关	0:关闭,1:开启 (默认:0关闭)	读取当前的设定值
IO参数 配置	1029-1040 (0x0405-0410)	四组IO参数	位置1,力值1,速度1到 位置4,力值4,速度4	读取当前的设定值

表2.3 参数配置地址表

2.3.3 命令详解

2.3.3.1 初始化夹爪

该命令为夹爪初始化相关命令,地址为 0x0100。具体初始化命令详细介绍如下表2.4所示。

功能	地址	说明	写入	读取
初始化夹爪	0x0100	重新标定 夹爪和回零位	写入0x01:回零位 (找单向位置); 写入0xA5: 重新标定	0:未处于初始化过程; 1:处于初始化过程; 2:初始化中

表2.4 初始化指令

RS485连接控制前需进行初始化夹爪,用于重新标定夹爪和回零位,夹爪初始化过程中请 勿控制。根据夹爪型号的不同,初始化时间为0.5-3秒左右,请在初始化结束后进行控制。0x01和 0xA5 二者在功能上有所区分,如下所示:

0x01:写入0x01将根据**2.3.3.9 初始化方向**寄存器的值执行单方向初始化,来寻找最大位置或最小位置(即单方向极限位),之后根据保存的总行程值(参见0xA5)计算位置百分比。若初始化方向为张开,夹爪当前位置也是张开,则视觉上夹爪初始化无动作。

0xA5:无论夹爪处于任何位置和状态,发送0xA5后,夹爪进行一次闭合到张开的动作。 注:

- 1.0xA5指令初始化过程中是在寻找最大和最小位置,如果在此过程中最大或最小位置被阻挡,会识别错误的行程,如图2.6的0位置就会识别为夹持物体的宽度。
 - 2.客户更换指尖后,需要进行0xA5初始化并进行保存。
 - 3.0x01指令是控制夹爪单方向初始化,行程则为上次0xA5初始化后进行保存的行程。

图2.6 错误初始化示例

初始具体执行初始化命令如下所示:

执行初始化成功 (写操作):

发送:0106010000149F6返回:0106010000149F6完全进行初始化(写操作):

发送:01 06 01 00 00 A5 48 4D **初始化后发送保存指令,见2.3.3.8写入保存** 返回:01 06 01 00 00 A5 48 4D,**再使用0x01功能码,行程会和A5保持一致**

2.3.3.2 力值

该命令为夹爪力值相关命令,地址为0x0101。具体力值命令详细介绍如下表2.5所示。

功能	地址	说明	写入	读取
力值	0x0101	设置力值	20-100,百分比	读取当前设定力值

表2.5 力值指令

力的数值范围为20-100(%),对应16进制数据为 00 14 – 00 64。当您设定了力值之后,夹爪会在位置移动中,以**设定力值**去夹持或者撑开目标物体。

以设置并读取30%力值为例:

设置30%力值(写操作):

发送:01 06 01 01 00 1E 59 FE 返回:01 06 01 01 00 1E 59 FE

读取当前设定力(读操作):

发送:01 03 01 01 00 01 D4 36 返回:01 03 02 xx xx crc1 crc2

2.3.3.3 位置

该命令为夹爪设置位置相关命令,地址为0x0103。具体位置命令详细介绍如下表2.6所示。

功能	地址	说明	写入	读取
位置	0x0103	设定夹爪位置	0-1000,千分比	读取当前设定位置

表2.6 位置指令

位置数值范围为0-1000(%),对应16进制数据为0000-03E8,可以在0x0202地址处读取实时位置,请查阅2.3.3.8位置反馈。以设置并读取500(‰)位置为例:

设置500位置(写操作):

发送:01 06 01 03 01 F4 78 21 返回:01 06 01 03 01 F4 78 21

读取当前设定位置(读操作): 发送:01 03 01 03 00 01 75 F6 返回:01 03 02 xx xx crc1 crc2 读取当前实时位置(读操作): 发送:01 03 02 02 00 01 24 72 返回:01 03 02 xx xx crc1 crc2

2.3.3.4 速度

该命令为夹爪设置速度相关命令,地址为 0x0104。具体速度命令详细介绍如下表2.7所示。

功能	地址	说明	写入	读取
速度	0x0104	以设定速度运行	1-100,百分比	读取当前设定速度

表2.7 速度指令

速度数值范围为1-100(%),对应16进制数据为0001-0064。以设置并读取50(%)速度为例:

设置50% 速度 (写操作): 发送:0106010400324822 返回:0106010400324822

读取当前速度(读操作): 发送:010301040001C437 返回:010302xxxxcrc1crc2

2.3.3.5 初始化状态反馈

该命令为夹爪读取初始化状态反馈相关命令,地址为 0x0200。具体初始化状态反馈详细介绍如下表2.8所示。

功能	地址	说明	写入	读取
初始化状态反馈	0x0200	反馈当前夹爪的 初始化状态	不能写入	0:未初始化; 1:初始化成功

表2.8 初始化状态反馈

初始化状态反馈可用于获取是否进行了初始化。具体读取指令如下所示:

读取初始化状态(读操作): 发送:0103020000185B2

返回:0103020000B844(当前为未初始化状态)

2.3.3.6 夹持状态反馈

该命令为夹爪夹持状态反馈相关命令,地址为 0x0201。具体夹持状态反馈详细介绍如下表2.9所示。

功能	地址	说明	写入	读取
夹持状态反馈	0x0201	0:运动中,1:到达位置; 2:夹住物体;3:物体掉落	不能写入	00;01;02;03

表2.9 夹持状态反馈

夹持状态反馈用于读取目前夹爪的状态,可分为4种状态,如下所示:

反馈状态说明

不同的返回的指令数据,代表夹爪的不同状态,具体状态如下:

·00:夹爪处干正在运动状态。

·01:夹爪停止运动,且夹爪未检测到夹到物体。

·02:夹爪停止运动,且夹爪检测到夹到物体。

·03:夹爪检测到夹住物体后,发现物体掉落。

注:如果夹爪在到达指定位置前夹住物体,那么此时也认为夹爪已经夹住物体(反馈为:02)。

读取夹持状态反馈 (读操作):

发送:01 03 02 01 00 01 D4 72

返回:01030200023985(返回02代表夹住物体)

2.3.3.7 位置反馈

该命令为夹爪位置实时反馈命令,地址为0x0202。具体位置反馈详细介绍如下表2.10所示。

功能	地址	说明	写入	读取
位置反馈	0x0202	反馈当前夹爪 实时位置	不能写入	读取当前实时位置

表2.10 位置反馈

位置反馈可用于读取当前夹爪实时位置。具体读取指令如下所示:

读取位置状态(读操作):

发送:01 03 02 02 00 01 24 72 返回:01 03 02 xx xx crc1 crc2

2.3.3.8 写入保存

该命令为夹爪写入保存配置参数相关命令,地址为 0x0300。具体写入保存详细介绍如下表2.11所示。

功能	地址	说明	写入	读取
写入保存	0x0300	保存手动配置 的参数	0:默认,1:将所有参数 写入flash	不可读取,默认返回0

表2.11 写入保存

写入保存可用于保存IO配置以及RS485的参数配置。具体设置指令如下所示:

写入保存(写操作):

发送:01 06 03 00 00 01 48 4E 返回:01 06 03 00 00 01 48 4E

注意

·若对夹爪进行过IO配置以及RS485的参数配置。必须要在此命令下对参数进行FLASH写入保存。(提示:写入操作会持续1-2秒,期间不会响应其他命令,因此建议不要在实时控制中使用此命令)

2.3.3.9 初始化方向

该命令为夹爪设置夹爪初始化方向相关命令,地址为 0x0301。具体设置初始化方向命令详细介绍如下表2.12所示。

功能	地址	说明	写入	读取
初始化方向	0x0301	配置初始化方向	0:打开;1:关闭;(默认:0)	读取当前设定值

表2.12 初始化方向

设备ID可用于配置夹爪初始化方向为打开或关闭,默认为0打开。

当写入0时,夹爪会运行到最大的张开位置,并作为初始起点。

当写入1时,夹爪会运行到最小的闭合位置,并作为初始起点。

设置初始化方向 为关闭 (写操作):

发送:010603010001198E

返回:010603010001198E

写入保存(写操作):

发送:01 06 03 00 00 01 48 4E 返回:01 06 03 00 00 01 48 4E

2.3.3.10 设备ID

该命令为夹爪设置夹爪设备ID相关命令,地址为 0x0302。具体设置设备ID命令详细介绍如下表2.13所示。

功能	地址	说明	写入	读取
设备ID	0x0302	配置夹爪Modbus ID	1-247 (默认:1)	读取夹爪Modbus ID

表2.13 设备ID

设备ID可用于配置夹爪Modbus ID,默认为1。当有多个采用Modbus-RTU协议的设备时,可以通过改变ID的方式同时控制多台设备,具体设置夹爪ID命令如下:

设置设备ID 为1 (写操作):

发送:01 06 03 02 00 01 E9 8E

返回:010603020001E98E

写入保存(写操作):

发送:01 06 03 00 00 01 48 4E 返回:01 06 03 00 00 01 48 4E

2.3.3.11 波特率

该命令为夹爪配置波特率相关命令,地址为 0x0303。具体波特率配置详细介绍如下表2.14 所示。

功能	地址	说明	写入	读取
波特率	0x0303	0-5:115200,57600, 38400,19200,9600, 4800(0:默认)	0;1;2;3;4;5	读取波特率

表2.14 波特率设置

波特率命令可用于修改波特率大小,默认为115200,推荐默认。具体设置波特率指令如下:设置夹爪波特率为115200(写操作):

发送:01 06 03 03 00 00 79 8E 返回:01 06 03 03 00 00 79 8E

写入保存(写操作):

发送:01 06 03 00 00 01 48 4E 返回:01 06 03 00 00 01 48 4E

2.3.3.12 停止位

该命令为夹爪配置停止位相关命令,地址为0x0304。具体设置停止位详细介绍如下表2.15所示。

功能	地址	说明	写入	读取
停止位	0x0304	配置夹爪Modbus 停止位	0:1停止位;1:2停止位	读取停止位

表2.15 停止位设置

停止位命令可用于修改停止位位数,默认为1停止位,推荐默认。具体设置停止位指令如下:

设置夹爪停止位为1 (写操作): 发送:01 06 03 04 00 00 C8 4F

返回:010603040000C84F

写入保存(写操作):

发送:01 06 03 00 00 01 48 4E 返回:01 06 03 00 00 01 48 4E

2.3.3.13 校验位

该命令为夹爪配置校验位相关命令,地址为 0x0305。具体设置校验位详细介绍如下表2.16所示。

功能	地址	说明	写入	读取
校验位	0x0305	配置夹爪Modbus 校验位	0:无校验; 1:奇校验; 2:偶校验	读取校验位

表2.16 校验位设置

校验位命令可用于修改校验位,默认为无校验位,推荐默认。具体设置校验位指令如下:

设置夹爪校验位为无校验位(写操作):

发送:01 06 03 05 00 00 99 8F 返回:01 06 03 05 00 00 99 8F

写入保存(写操作):

发送:01 06 03 00 00 01 48 4E 返回:01 06 03 00 00 01 48 4E

2.3.3.14 10参数测试

该命令为夹爪通过Modbus-RTU协议控制夹爪的4组已设定的IO参数,地址为0x0400。具体IO控制详细介绍如下表2.17所示。

功能	地址	说明	写入	读取
IO参数测试	0x0400	通过发送数据 控制4组IO	1;2;3;4	读取IO控制

表2.17 IO控制

IO参数测试可用于直接运行设定的4组IO参数,即使断电,4组IO参数的力值位置和速度并不会改变,所以可以尽快将设备执行到运行状态。具体IO控制指令如下所示:

设置夹爪为第一组IO状态(写操作):

发送:01060400001493A 返回:01060400001493A

注意

·如您需使用Modbus-RTU来控制4组IO参数,需关闭IO模式开关。

2.3.3.15 IO模式开关

该命令为设置IO模式开关相关命令,地址为 0x0402。具体IO模式开关详细介绍如下表2.18 所示。

功能	地址	说明	写入	读取
IO模式开关	0x0402	是否开启IO功能	0:关闭,1:开启	读取设定值

表2.18 IO模式开关

IO模式开关是用于是否打开IO模式的开关,有0和1两种状态。两种状态下对应的控制范围如下表2.19所示。

前端开关状态	对应状态	Modbus-RTU控制	IO控制
0	IO模式关闭	可以	不可以
1	IO模式打开	不可以	可以

表2.19 IO模式开关对应范围

设置IO模式开关为关(写操作): 发送:010604020000293A 返回:010604020000293A

写入保存(写操作):

发送:01 06 03 00 00 01 48 4E 返回:01 06 03 00 00 01 48 4E

2.3.3.16 IO输出输入高低电平选择

该命令为夹爪设置IO模式下输出和输入IO类型开关,地址为 0x0402-0x0403,具体切换IO模式下IO类型详细介绍如下表2.20所示。

功能	地址	说明	写入	读取
IO输出 高低 电平选择	0x0402	设置IO输出IO 信号类型	0:0V有效(默认); 1:24V有效	读取当前的设定值
IO输入 高低 电平选择	0x0403	设置IO输入IO 信号类型	0:0V有效(默认); 1:24V有效	读取当前的设定值

表2.20 IO控制

IO输出输入高低电平选择命令可用于切换IO输出类型,默认输入输出NPN类型,输出0V,0 V触发高电平。如需修改成PNP类型,即输入输出24V有效,需要在此地址进行配置,具体配置如下所示:

设置输出类型24V有效(写操作):

发送:01 06 04 02 00 01 E8 FA

返回:010604020001E8FA

再发送写入保存指令(写操作):

发送:01 06 03 00 00 01 48 4E

返回:01060300001484E

设置输出类型0V有效(写操作):

发送:01 06 04 03 00 00 78 FA

返回:01060403000078FA

再发送写入保存指令(写操作):

发送:01 06 03 00 00 01 48 4E

返回:01060300001484E

2.3.3.17 10参数配置

该命令为夹爪配置4组IO参数相关命令,地址为0x0405-0x0410。具体IO参数配置详细介绍如下表2.21所示。

功能	高字节	低字节	说明	写入	读取
		0x05	第1组位置	0-1000,千分比	
第1组IO参数设置		0x06	第1组力值	20-100,百分比	
		0x07	第1组速度	1-100,百分比	
fr /		0x08	第2组位置	0-1000,千分比	
第2组IO参数设置	0x04	0x09	第2组力值	20-100,百分比	
		0x0A	第2组速度	1-100,百分比	读取
45 - 45		0x0B	第3组位置	0-1000,千分比	当前的值
第3组IO 参数设置		0x0C	第3组力值	20-100,百分比	
		0x0D	第3组速度	1-100,百分比	
第4组IO 参数设置		0x0E	第4组位置	0-1000,千分比	
		0x0F	第4组力值	20-100,百分比	
		0x10	第4组速度	1-100,百分比	

表2.21 IO参数配置

IO参数配置可用于配置IO参数。以设置第一组目标位置为300,目标力为30%,目标速度为30%为例:

设置I/O模式下第一组状态(写操作):

发送:01 06 04 05 01 2C 98 B6(目标位置300)

返回:01 06 04 05 01 2C 98 B6

发送:01 06 04 06 00 1E E8 F3 (目标力值30%)

返回:01 06 04 06 00 1E E8 F3

发送:01 06 04 07 00 1E B9 33 (目标速度30%)

返回:01 06 04 07 00 1E B9 33

3.10控制

IO模式是工业上常见的控制方式,以硬件接线的形式对夹爪进行控制。在使用IO控制时,需要提前将夹爪设置为IO模式,并设置好夹爪4组IO状态。

3.1 10配置

IO模式的4种状态可通过串口软件进行配置,或者通过我司的调试软件对夹爪的参数进行配置,具体接线方式和配置方式请参考下图:

夹爪信号定义	控制设备
Input 1	DO /D-Out / Digital Output
Input 2	DO /D-Out / Digital Output
Output 1	DI /D-In / Digital Input
Output 2	DI /D-In / Digital Input
24V	24V/24V+
0 V	0V/24V-/GND

四组参数配置完成后,即可通过设置INPUT 1和INPUT 2引脚状态控制夹爪,通过检测输出引脚OUTPUT 1和OUTPUT 2可以获取夹爪状态。

具体配置如下图所示:

图3.1 IO设置

切换IO模式步骤

① **打开IO模式:**先打开IO模式。

② 配置4组IO参数:针对夹爪的4组参数,包含位置、力、速度进行设置。

③ 保存:点击保存按钮,即可将参数写入Flash内部寄存器,重启即可控制。

④ **重启:**重启后即切换成IO模式成功,您可根据INPUT信号对夹爪进行控制,运行状态会通过OUTPUT进行反馈。

通过设置INPUT 1和INPUT 2引脚状态 (0V和高阻 (断开) 状态) 来控制夹爪。由于每个INPUT 引脚都识别两种输入状态, 所以可以设置为四种夹爪状态 (00 10 01 11)。具体引脚状态对应如表 3.1所示。

INPUT 1	INPUT 2	引脚状态	I/O状态	执行动作
高阻(断开)	高阻(断开)	0 0	第1组状态	目标位置1,目标力1,目标速度1
0V	高阻(断开)	10	第2组状态	目标位置2,目标力2,目标速度2
高阻(断开)	0V	0 1	第3组状态	目标位置3,目标力3,目标速度3
0V	0V	11	第4组状态	目标位置4,目标力4,目标速度4

表3.1 INPUT1 INPUT2对应IO状态表

注:高阻状态即电阻值极大状态,对应夹爪不接线时状态,下同。

通过检测输出引脚OUTPUT 1和OUTPUT 2可以获取夹爪当前状态,夹爪在运行过程中,可以读取4种夹爪状态。具体如表3.2所示。

OUTPUT 1	OUTPUT 2	引脚状态	指令内容
高阻(断开)	高阻(断开)	0 0	夹爪处于运动状态
0V	高阻(断开)	10	夹爪未夹到物体,处于到位状态
高阻(断开)	0V	0 1	夹爪检测到夹住物体
0V	0V	11	夹爪检测到物体掉落

表3.2 OUTPUT1 OUTPUT2 反馈状态表

注意

- ·数字**IO默认**输入输出都为NPN型,输入输出都为0V有效。**(低电平有效禁止接24V,导 致夹爪损坏后果自负)**
- ·输入输出可以配置。若需改为PNP型,即输入输出24V有效(高电平有效禁止接地或0 V,导致夹爪损坏后果自负),需提前与我司进行沟通。

3.2 IO使用

当配置完参数后,硬件上需要连接24V、GND、INPUT 1、INPUT 2、OUTPUT 1、OUTPUT 2。将INPUT和OUPUT接好对应的设备,确认好接线无误后重启,夹爪会自动进行初始化。然后根据INPUT信号对夹爪进行控制。运行状态会通过OUTPUT进行反馈。

4. 夹爪通讯格式与IO详解

4.1 夹爪接线方式

夹爪采用标准Modbus-RTU通讯协议,RS-485接口通讯。 接线方式为半双工接线,如图4.1.

图4.1 接线

USB转485模块正面朝上, USB转485模块通电之后**电源指示灯亮红色**;

上方接口处右侧2个接口为485A/B线。**示范夹爪**颜色为**绿色A**,**蓝色B**。夹爪信号线颜色定义请参考**线标为准**。

4.2 夹爪通讯格式详解

夹爪默认通讯格式为:115200波特率;数据长度8;停止位1,无奇偶检验。上位机与夹爪通讯格式要一致。如不一致无法通讯请修改上位机或者夹爪通讯格式,夹爪通讯格式修改之后需重启。修改夹爪通讯格式请参考相应的夹爪说明书。

4.2.1 485指令03功能码详解

硬件采用RS-485,主从式半双工通讯,主站呼叫从站,从站应答方式通讯。

注:485指令均为16进制;寄存器地址请参考夹爪说明书内的命令总览。

夹爪常用功能码为03;06两个功能码,下方表4.1为03功能码使用简介。

举例指令: 01 03 01 03 00 01 75F6 03功能码: 读取寄存器值

1	2	3	4	5	6	7	8
ID	功能码	起始寄存器 高字节	起始寄存器 低字节	寄存器数量 高字节	寄存器数量 低字节	CRC校验码 低字节	CRC校验码 高字节
01	03	01	03	00	01	75	F6

表4.1 功能码使用简介

第1字节为从站ID 范围(1~254);

第2字节为功能码03H 读取寄存器内数值;

第3、4字节为起始寄存器 要读取寄存器的开始地址;

第5、6字节为要读取寄存器的数量 0001代表只读取当前0103寄存器;

第7、8字节为CRC校验码 计算1~6字节的CRC16校验码。

举例指令说明:主站读取从站ID为1,0103寄存器开始的0001个寄存器的值返回主站。 注意事项:

如读取寄存器数量改为0002,就是读取0103开始的2个寄存器,0103与0104。需注意,读取数量是按照顺序往下读取,无法跳跃读取。例如0104寄存器和0106寄存器,需通过两个读取指令。或者读取数量改为0003,读取0104 0105 0106三个寄存器的值。不能通过一个指令单独读取0104 与0106。

从站返回指令: 01 03 02 03 E8 B8FA

1	2	3	4	5	6	7
ID	功能码	返回 字节总数	寄存器当前 数据1	寄存器当前 数据2	CRC校验码 低字节	CRC校验码 高字节
01	03	02	03	E8	В8	FA

表4.2 功能码使用简介

第1字节为从站ID 第2字节为功能码03H 第3字节为返回数据长度 第4、5字节为返回数据内容 第6、7字节为CRC校验码 范围(1~254); 主站读取数值返回; 返回2个字节长度数据; 返回的数据内容为03E8; 计算1~6字节CRC16校验码。

返回指令说明:

主站向从站发送读取指令0103 0103 0001 75F6,从站给主站返回指令0103 02 03E 8 B8FA。

解释:ID为1的从站返回2个字节长度的数据03E8(16进制),转化为10进制为1000。0 103寄存器地址在夹爪设定里面代表位置寄存器。返回的数据代表当前夹爪在1000位置上。

4.2.2 485指令06功能码详解

举例指令:0106 0103 03E8 7888 06功能码:写单个寄存器值

1	2	3	4	5	6	7	8
ID	功能码	寄存器地址 高字节	寄存器地址 低字节	写入数据 高字节	写入数据 低字节	CRC校验码 低字节	CRC校验码 高字节
01	06	01	03	03	E8	78	88

表4.3 功能码使用简介

第1字节为从站ID 范围(1~254); 第2字节为功能码06H 主站写入数值到从站寄存器; 第3、4字节为寄存器地址 写入数据的单个寄存器地址; 第5、6字节为写入数据 03E8转换成10进制为1000;

第7、8字节为CRC校验码 计算1~6字节的CRC16校验码。

举例指令说明:

主站写入数据到ID为1的从站单个寄存器0103内。写入的数据为03E8。0103为位置寄存器,此指令表示控制夹爪移动到1000位置上。

注意事项:使用06功能码写入数据,当从站接受正确时会返回一样的指令与校验码,表示此指令正确接受写入。例如主站发送:0106 0103 03E8 7888 从站返回:0106 0103 03E8 7888。

4.3 夹爪IO输入输出详解

4.3.1 夹爪IO输入详解

注:夹爪IO输入是通过两根NPN型IO控制线对夹爪进行4种状态控制。具体IO参数设置请参考相关夹爪说明书IO控制章节。此处仅说明NPN型的输出输入原理。夹爪IO输入线为两根,线序定义参考线标。两根IO线每根有两种状态,对应01。两根线共4种输入。如下表4所示。INPUT代表输入。

INPUT 1	INPUT 2	引脚状态	I/O状态	执行动作
高阻(0)	高阻(0)	0 0	第1组状态	目标位置1,目标力1,目标速度1
0 V (1)	高阻(0)	1 0	第2组状态	目标位置2,目标力2,目标速度2
高阻(0)	0 V (1)	0 1	第3组状态	目标位置3,目标力3,目标速度3
0 V (1)	0 V (1)	1 1	第4组状态	目标位置4,目标力4,目标速度4

表4.4 IO状态

表4 INPUT1、2解释:

由于每根线有两种输出状态0和1,高阻状态在夹爪设定里面代表0;**NPN是0V有效**,所以0V就代表NPN三极管回路导通,在夹爪设定里面代表1。一根IO线每次只能输出一种状态也就是一个0或者1,**两根线互相组合一共有4种输入状态**,代表4种夹爪输入信号。

高阻与0V解释:

NPN三极管为0V有效,与PNP三极管的24V有效相反。下面使用图片解释NPN三极管。

图4.2 NPN图解

NPN三极管解释:黑色框表示为PCB板内部电路,24V为夹爪电源输入进去,经过NPN三极管变成0V输出,当夹爪输入INPUT IO线接入0V电压时,NPN三极管导通,向PCB板输入电流。PCB板感应到三极管输出的电流,确定此时INPUT输入为状态1;当夹爪输入INPUT断开0V时,NPN三极管断路,电阻值为无限大,设定状态为高阻,也就是断开,此时INPUT输入为0。

4.3.2 夹爪IO输出详解

注:IO输出与输入均为NPN。IO输出为OUTPUT。线序颜色定义请参考线标。

只有在**打开夹爪IO控制**的情况下,**夹爪才会向IO输出信号线输出信号**。

打开IO控制,夹爪会向IO线输出当前夹爪的运行状态。如下表4.5所示。

OUTPUT 1	OUTPUT 2	引脚状态	指令内容
高阻(0)	高阻(0)	0 0	夹爪处于运动状态
0 V (1)	高阻(0)	1 0	夹爪未夹到物体,处于到位状态
高阻(0)	0 V (1)	0 1	夹爪检测到夹住物体
0 V (1)	0 V (1)	1 1	夹爪检测到物体掉落

表4.5 OUTPUT1、OUTPUT2 反馈状态

表5 OUTPUT解释:

夹爪处于运动状态时,两个输出IO线不输出信号为高阻(断开)状态,NPN三极管不导通,电阻无限大;夹爪处于到位状态时,PCB板控制IO输出1线的NPN三极管导通向上位机或PLC输出0V电压。IO输出2线依然为高阻(断开)状态,产生1/0信号输入上位机或者PLC的两个IO点,让上位机或者PLC的两个IO点通过两根IO输出线区分夹爪状态。

NPN三极管输出解释: NPN三极管电路图请参考图2。夹爪为NPN输出,相连接的PLC或上位机应该为NPN类型。NPN型PLC或上位机输入IO公共端为24V。夹爪IO输出线连接到PLC或上位机的输入IO点。当夹爪IO输出信号为0V时,PLC或上位机IO公共端为24V,产生一个24V电压差,PLC或上位机IO点导通。PLC或上位机接收到夹爪0V信号。反之夹爪为高阻(断开)状态时,PLC或上位机IO点与夹爪IO输出信号线为断路状态。夹爪为0V状态时,PLC与上位机IO点与夹爪IO输出信号线为导通状态。

4.4 夹爪IO输入输出测试方法

准备工具:万用表、24VDC电源,待测试大寰夹爪。

准备工作:使用DH-Robotics连接好夹爪,打开IO模式。设置好IO参数方便测试。

4.4.1 夹爪IO输入测试方法

当夹爪IO模式打开之后,把INPUT1接入到24V电源0V接口上去,INPUT2悬空,此时夹爪输入信号为(10)会按照IO设置内的第二组参数运行。

INPUT 1	INPUT 2	引脚状态	I/O状态	执行动作
0 V (1)	高阻(0)	1 0	第2组状态	目标位置2,目标力2,目标速度2

表4.6 10参数-2

当夹爪INPUT1断开0V后悬空, INPUT2接入24V电源0V。此时夹爪输入信号为(01),夹爪会按照IO设置内的第3组参数运行。

INPUT 1	INPUT 2	引脚状态	I/O状态	执行动作
高阻(0)	0V(1)	0 1	第3组状态	目标位置3,目标力3,目标速度3

表4.7 10参数-3

INPUT 1	INPUT 2	引脚状态	I/O状态	执行动作
0V(1)	0V(1)	1 1	第4组状态	目标位置4,目标力4,目标速度4

表4.8 10参数-4

当夹爪INPUT1与INPUT2都接入24V电源0V。此时夹爪输入信号为(11),夹爪会按照IO设置内的第四组参数运行。

INPUT 1	INPUT 2	引脚状态	I/O状态	执行动作
高阻(0)	高阻(0)	0 0	第1组状态	目标位置1,目标力1,目标速度1

表4.9 10参数-1

当夹爪INPUT1与INPUT2都断开0V。此时夹爪输入信号为(00),夹爪会按照IO设置内的第一组参数运行。

测试以上四种IO参数,如夹爪均能正确动作,说明夹爪输入IO正常。

4.4.2 夹爪IO输出测试方法

注:在打开IO模式下,用IO输入方式控制夹爪,IO输出才会有信号反馈。

首先使用万用表连接24V电源正极,另一端连接夹爪其中一根输出IO线。输出IO线输出信号时为0V,此时与24V电源正极有24V的电压差,通过24V电压差来判断IO有没有输出正确的信号。

打开IO控制,设置好IO参数,可参照图3的IO设置。连接好万用表和夹爪。

图4.3 IO设置

图4.4 夹持状态

OUTPUT 1	OUTPUT 2	引脚状态	指令内容
高阻(0)	高阻(0)	0 0	夹爪处于运动状态
0V (1)	高阻(0)	1 0	夹爪未夹到物体,处于到位状态
高阻(0)	0V (1)	0 1	夹爪检测到夹住物体
0V (1)	0V (1)	1 1	夹爪检测到物体掉落

表4.6 10参数

把夹爪的输入INPUT1接入0V,夹爪会运动到第二组IO参数位置,夹爪显示图4中的到位后,测试OUTPUT1和OUTPUT2的电压,OUTPUT1的电压显示为24V,OUTPUT2的电压显示为0V左右为正确。

解释:OUTPUT1为什么显示24V却在表格里面显示0V。

因为**OUTPUT1输出的是0V电压,万用表另一端接入的是24V电压**,与OUTPUT1有24 V的电压差。当万用表显示24V时,说明OUTPUT1输出的是0V,所以表6上显示的是0V。解释:**OUTPUT2为什么显示0V却在表格里面显示高阻(断开)。**

在前面"输入IO测试方法"里面讲到过,**高阻就是断开状态**,所以电源24V与OUTPUT2 之间是断路状态,没有电压产生,万用表上显示为0V。

其他输出状态测试方法,均参考上方测试到位信号输出。

5. 夹爪控制流程

5.1 Modbus-RTU模式控制流程

5.2 IO模式控制流程

6. 注意事项

- · 安装产品本体时,请勿施加强烈的冲击和过大的力矩。
- · 夹爪手指在非系统规划运行内,由外力导致夹爪手指被动运行,将可能导致夹爪异常。
- ·请保持出厂时设定的控制参数。不按出厂参数使用,可能会导致异常,需进行参数调整请联系 技术支持。
- · 带抱闸的机型建议给夹爪提供独立电源供电。
- · 配线作业和检查时,请先切断电源。

微信公众号

深圳市大寰机器人科技有限公司 DH-Robotics Technology Co., Ltd.

深圳市南山区粤兴三道二号虚拟大学园综合楼A507 www.dh-robotics.com info@dh-robotics.com