[Inner Product Spaces]

Definition: Let (V,F) be a vector space. An inner product is a map of the form $\langle \cdot,\cdot \rangle: V \times V \to F$ such that for all $x,y,z \in V$ and $c \in F$ the following axioms hold:

(P1)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$
 (conjugate symmetry)

(P2) a. $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$ (linearity in the first argument) b. $\langle cx,y\rangle=c\langle x,y\rangle$ (homogeneity in the first argument)

(P3)
$$\langle x, x \rangle \geq 0$$
 and $\langle x, x \rangle = 0$ iff $x = 0_v$ (positive definiteness)

fill missing parts

Theorem: "Cauchy-Schwarz Inequality" Let (V, F) be a vector space with an inner product $\langle \cdot, \cdot \rangle$. Then for all $x, y \in V$ the following inequality holds:

$$|\langle x,y
angle|^2 \leq \langle x,x
angle \langle y,y
angle$$

Proof: Let $x, y \in V$ and $c \in F$.

1.
$$0 \leq \langle x - cy, x - cy
angle \ = \langle x, x
angle - \langle x, cy
angle - \langle cy, x
angle + \langle cy, cy
angle \ = \langle x, x
angle - \overline{c} \langle x, y
angle - c \langle y, x
angle + |c|^2 \langle y, y
angle \ = \langle x, x
angle - \overline{c} \langle x, y
angle - \overline{c} \langle x, y
angle + |c|^2 \langle y, y
angle \ = \langle x, x
angle - 2Re(c \langle x, y
angle) + |c|^2 \langle y, y
angle$$

#EE501 - Linear Systems Theory at METU