Informe de Proyecto – INF-225-2018-1-CC Proyecto "Buggers Kings" 2018-08-26

Integrantes:

Nombres y Apellidos	Email	ROL USM
Ignacio Rodrigo Valenzuela Albornoz	ignacio.valenzuel.14@sansano.usm.cl	201473055-1
Felipe Antonio Figueroa Arancibia	felipe.figueroaa@sansano.usm.cl	201573006-7
Alex Sebastian Jara Andrade	alex.jara.14@sansano.usm.cl	201473027-6

Contenido del Informe a Entregar

Co	contenido del Informe a Entregar	
1.	Requisitos clave (Final)	3
2.	Árbol de Utilidad (Final)	4
3.	Modelo de Software (Final)	5
4.	Trade-offs entre tecnologías (final)	6
5	Deuda técnica incurrida	8

1. Requisitos clave (Final)

Tabla 1: Requisitos funcionales (actualizados)

Req. funcional.	Descripción y medición (máximo 2 líneas).	Cambios
Obtener datos históricos	Poder obtener los datos histórico de las acciones de una empresa por medio de parámetros indicados (ej:fechas).	Sin modificaciones.
Elegir opción	Poder elegir entre opción Americana o Europea.	Sin modificaciones.
Graficar resultado	Sistema debe mostrar un gráfico que muestre el comportamiento de la acción y su trayectoria en el tiempo.	Sin modificaciones.
Cargar csv	Poder cargar archivo csv de forma manual o vía descarga de la página web correspondiente.	Sin modificaciones.
Entregar predicción del valor de la acción	El sistema debe entregar un valor predictivo que estime el precio de una acción en el futuro.	Sin modificaciones.

Tabla 2: Requisitos extra-funcionales (actualizados)

Req. extra-funcional	Descripción y medición (máximo 2 líneas)	Cambios
Datos provenientes	Los datos deben ser obtenidos de el sitio web	Sin
de Yahoo! Finances.	de Yahoo! Finance.	modificaciones.
Sistema on-line y	El software debe poder ser utilizado de	Agregado.*
off-line	manera online y offline.	
Rapidez de cálculo	El cálculo de la predicción debe durar menos	Desambiguado*
	de 10 segundos.	
Responsivo	El producto debe adaptarse a diversos dispositivos.	Desambiguado.*
	alspositivos.	

^{*}Respecto la tabla de requisitos elicitada en el "Entregable 1".

2. Árbol de Utilidad (Final)

3. Modelo de Software (Final)

4. Trade-offs entre tecnologías (final)

Decisión	Softgoal	Evaluación	Razonamiento
Usar Python para la	Compatibility	+	Permite una mejor implementación del cálculo en la aplicación web
operatoria matemática.	Performance	-	Respecto al cálculo matemático demuestra una peor eficiencia al ejecutar en comparación con otros lenguajes estadísticos.
Usar R para la operatoria matemática.	Performance	+	Respecto al cálculo matemático demuestra una mejor eficiencia al ejecutar.
	Compatibility	-	La integración requiere más esfuerzo que utilizar Python.
Crear una versión de escritorio y web	Portability	++	Permite que el usuario pueda obtener los resultados en cualquier momento en caso de no poseer acceso a internet.
Modo offline	Reliability	+	Poder funcionar pese a no haber conexión a internet aumenta la disponibilidad del producto.

	Integrity	-	Los datos pueden quedar desactualizados tras un periodo de tiempo.
Utilizar Django	Reusability	+	Ya que Python facilitaba el cálculo, escoger un framework para el backend como Django que ocupaba el mismo lenguaje sería una implementación más sencilla, además que el patrón MTV que ofrece es lo más adecuado para el problema
	Performance	-	El framework de Django es bastante grande para el tamaño de este proyecto, hay muchas herramientas que en realidad no se utilizan.
Descargar la información	Reliability	++	Disponibilidad de los datos de todas las empresas en modo offline.
de todas las empresas cuando sea posible.	Performance		Almacenar toda esa información es costoso en memoria, y una gran parte siquiera se utilizará. Además de los recursos utilizados en descargarla

5. Deuda técnica incurrida

Ítem deuda técnica	Razonamiento	Impacto
Optimización del proceso de cálculo.	En este caso tiene mayor prioridad que el programa sea eficaz a que sea eficiente. El cálculo era rápido de implementar pero difícil de optimizar.	El software tardará en responder con los resultados más del tiempo inicialmente deseado.
Método americano	Este método era el más complicado de implementar debido a la libertad de terminar la fecha de ejercicio en cualquier instante, por lo que había que hacer un caso para cada fecha de término distinta, por lo que se prioriza el desarrollo del método europeo.	Alto impacto debido a que no se cumple un requisito relevante. Falta de un método de predicción.
Interface	Se decidió dejar como deuda técnica debido a su leve impacto en la funcionalidad del software.	Impacto bajo, no hay funcionalidades que se encuentren comprometidas debido a su ausencia.