CSC0056: Data Communication

Lecture 15: Real-Time Data Communications

Instructor: Chao Wang 王超

Department of Computer Science and Information Engineering

Course information

- Instructor: Chao Wang 王超 (https://wangc86.github.io/)
 - Email: cw@ntnu.edu.tw
 - Office: Room 511, Applied Science Building, Gongguan Campus
 - Office hours: Wednesdays and Fridays, 10am-noon, or by appointment
- Course website: https://wangc86.github.io/csc0056/
 - Homework submission: via NTNU Moodle (https://moodle.ntnu.edu.tw/)
- Course meetings: Mondays 9:10-12:10 in C007, Gongguan Campus

Acknowledgement: Some slides' materials in this course are borrowed with permission from the 2014 edition of the course taught by Prof. Yao-Hua Ho 賀耀華 Figures are obtained from the textbook available at http://web.mit.edu/dimitrib/www/datanets.html

Outline of lecture 15

- A review of flow control (Section 6.5.1 in particular)
- Timing aspects of data communications
- Real-time data communications
- Case study: Real-time event processing

References for lecture 15

- Section 6.5.1 of the course required textbook (https://wangc86.github.io/csc0056/#resource)
- Industrial Internet Reference Architecture v1.9 (https://www.iiconsortium.org/IIRA.htm)
- Gomaa, Hassan. Real-Time Software Design for Embedded Systems. Cambridge University Press, 2016.
- Chao Wang, Christopher Gill, and Chenyang Lu. *Real-Time Middleware for Cyber-Physical Event Processing*. ACM Transactions on Cyber-Physical Systems 3, 3, Article 29 (August 2019) (https://wangc86.github.io/pdf/tcps-cpep.pdf)
- Chao Wang, Christopher Gill, Chenyang Lu. FRAME: Fault Tolerant and Real-Time Messaging for Edge Computing. IEEE International Conference on Distributed Computing Systems (ICDCS), 2019. (https://wangc86.github.io/pdf/icdcs19-frame.pdf)

Review of flow control

- Following our discussion in lecture 14, networked applications may have requirements in
 - data latency (e.g., online gaming)
 - data rate (e.g., video streaming)
- Flow control is needed to help the network meet those application requirements in various situations:
 - total amount of arriving flows > overall network capacity
 - retransmissions caused by transient congestion (e.g., the Aloha protocol)
 - IoT edge processing
 - internal network control (e.g., data replication for fault tolerance)

Review of flow control (cont.)

- In lecture 14, we have discussed
 - window flow control
 - flow rate control (the classic leaky bucket scheme)
 - flow rate adjustment (problem transformation to optimal routing)

Flow rate adjustment

stment a penalty function to avoid minimize $\sum_{(i,j)} D_{ij}(F_{ij}) + \left(\sum_{w \in W} e_w(r_w)\right) \text{ of very small}$ subject to $\sum x_p = r_w$. for all $w \in W$ $p \in P_m$ $x_p \ge 0$, for all $p \in P_w$, $w \in W$ $0 \le r_w \le \overline{r}_w$, for all $w \in W$ Input Rate r.

Flow rate adjustment (cont.)

ullet Use $y_w=\overline{r}_w-r_w$ to represent the the blocked portion of a flow

minimize
$$\sum_{(i,j)} D_{ij}(F_{ij}) + \sum_{w \in W} E_w(y_w)$$
 subject to
$$\sum_{p \in P_w} x_p + y_w = \overline{r}_w. \quad \text{for all } w \in W$$

$$x_p \geq 0. \quad \text{for all } p \in P_w. \ w \in W$$

$$y_w \geq 0, \quad \text{for all } w \in W$$
 where
$$E_w(y_w) = e_w(\overline{r}_w - y_w)$$

Equivalence with the optimal routing

A quick review of optimal routing

$$D_{1}(X_{1}) = (c_{1} - X_{1})^{2} D_{2}(X_{2}) = (c_{2} - X_{1})^{2}$$

$$D(X) = D_{1}(X_{1}) + D_{2}(X_{2}) \qquad r=3 \qquad x_{1} \quad c_{1}=3$$

$$D_{1}(X_{1}) = (c_{1} - X_{1})^{-1}$$

solution by computing the total wst for each case:

$$(X_1, X_1) = (0,3)$$

$$\Rightarrow total cost = -1$$

Suppose we exclusively use the second path. The optimal

 $D_2(x_2) = (c_2 - x_2)^{-1}$

I Now, suppose we use both paths! Then the optimal condition leads to

Condition leads to
$$\frac{1}{(5-V')^2} \le \frac{1}{(3-0)^2} \Rightarrow V \le 2$$

$$\begin{cases} \frac{1}{(5-k_1)^2} = \frac{1}{(3-k_1)^2} \\ \frac{1}{(5-k_1)^2} = \frac{1}{(3-k_1)^2} \\ \frac{1}{(5-k_1)^2} = \frac{1}{(3-k_1)^2} \\ \frac{1}{(5-k_1)^2} = \frac{1}{(3-k_1)^2} = \frac{1}{(3-k_1)^2}$$

this means that for r=3 we should not exclusively use the second path.

$$=\frac{24}{30} \times \frac{25}{30} \times \frac{25}{10} \times \frac{2$$

The optimality condition for flow control

$$x_p^* > 0 \quad \Rightarrow \quad d_p^* \leq d_{p'}^*. \quad \text{for all } p' \in P_w. \text{ and } d_p^* \leq -e_w'(r_w^*) \quad (6.7a)$$

$$r_w^* < \overline{r}_w \quad \Rightarrow \quad -e_w'(r_w^*) \leq d_p^*. \quad \text{for all } p \in P_w \quad (6.7b)$$
where d_p^* is the first derivative length of path $p [d_p^* = \sum_{(i,j) \in p} D_{ij}'(F_{ij}^*). \text{ and } F_{ij}^*$ is the total flow of link (i,j) corresponding to $\{x_p^*\}$].

That is derived from the following:
$$-\text{Pin}(r_w^*) \cdot S - d_p^* \cdot S \geq 0$$
this equation represents the change of the overflow link. Be sure to the cost pertaining to path p read the presentation on Plazz and p_{by} , for detail account

and P522 for detail account

c example 63 in the textbook.

Example: optimal flow control

Consider the cost function

$$\frac{\partial}{\partial p_2}(p) = \frac{-\alpha}{+2}$$

 \overline{r} Destination $\overline{r} - r = y$ Overflow

Now, suppose y=0 $\Rightarrow Y=V$ and according to the optimal condition we have:

$$\frac{C}{(C-F)^{2}} = -\left(\frac{-a}{F^{2}}\right)$$

$$\Rightarrow F = C \sqrt{a}$$

$$\sqrt{a} + \sqrt{c}$$

link

Example: optimal flow control (cont.)

Outline of lecture 15

- A review of flow control (Section 6.5.1 in particular)
- Timing aspects of data communications
- Real-time data communications
- Case study: Real-time event processing

Practical considerations in data communication: timing

- Timing is important!
 - Example 1: stock trading Al
 - Learn from data and make timely trading decisions
 - Example 2: autonomous vehicles
 - Detect pedestrians and prevent accidents

- Low-latency communication
- Real-time communication
 - Given multiple data flows, which one to process first?

https://www.tradingacademy.com/financial-education-center/high-frequency-trading.aspx

https://www.com-magazin.de/news/internet-dinge/neues-gesetz-autonomes-fahren-in-deutschland-1220648.html

Low-latency data communications

- Low latency is an essential feature in many networked applications
- Example: emergency notification
 - Fire
 - Flood
 - •
- Example: acute weather prediction and notification
 - Earthquake and tsunami
 - Volcanic eruption
 - Tornado

Low-latency → Real-time

- Conceptually, in data communication, fast enough is good enough
- Deadline: a way to specify what we meant by fast enough
- Soft deadlines vs. hard deadlines
 - Missing a soft deadline is not desirable but may be acceptable
 - Missing a hard deadline will lead to disastrous consequences
- Soft/hard real-time system: a system that meets soft/hard deadlines

Examples of soft/hard deadlines:

Soft deadlines Hard deadlines

Real-time data communications

- For networked applications, people often specify end-to-end deadline for data communications
 - From "data created by a sensor" (one end)
 to "data received by an application" (the other end)
- From one end of the system to the other end:
 - Sender
 - Link(s) between sender and intermediary
 - Intermediary (messaging broker/event service/edge computing)
 - Link(s) between intermediary and receiver
 - Receiver

Real-time data communications

- For networked applications, people often specify end-to-end deadline for data communications
 - From "data created by a sensor" (one end) to "data received by an application" (the other end)
- From one end of the system to the other end:
 - Sender
 - Link(s) between sender and intermed
 - Intermediary
 - Link(s) between intermediary and receiv
 - Receiver

We may assume that links are reliable and have bounded latency (using what we have learned in this course, for example).

Data communication intermediaries

- Purposes:
 - Decoupling senders and receivers
 - Simplifying senders and receivers
- Example intermediary: TAO, MQTT, NSQ, ...

O_i: operations (filtering, transformation, encryption, ...)

Outline of lecture 15

- A review of flow control (Section 6.5.1 in particular)
- Timing aspects of data communications
- Real-time data communications
- Case study: Real-time event processing

Industrial Internet of Things (IIoT)

- Synergizing sensing, analytics, and control
 - Cloud computing for high capacity

A model for event processing

- Latency requirements
- Temporal semantics:
 - Absolute time consistency on an event's elapse time since creation
 - Relative time consistency on the difference between event's creation time

 | IloT devices | IloT event service | IloT applications |

O_i: operations (filtering, transformation, encryption, ...)

Real-time cyber-physical event processing

• Processing in the order of priorities propagated from application:

- Temporal semantics enforcement
 - Absolute time consistency

 Relative time consistency: track both the earliest and the latest event creations per operator

Processing architecture

Latency performance

99th percentile latency (unit: ms)

Priority	Service	Number of middle-priority streams				
		3	6	9	12	15
High	Flink	3.8 ± 0.1	5.9 ± 0.2	12.6 ± 0.4	52.6 ± 4.1	448.9 ± 171.7
6	CPEP	0.8 ± 0.0	0.7 ± 0.0	0.7 ± 0.0	0.7 ± 0.0	0.7 ± 0.0
Middle	Flink	4.5 ± 0.1	6.4 ± 0.2	11.3 ± 0.4	28.9 ± 0.5	107.9 ± 18.1
	CPEP	1.6 ± 0.0	1.8 ± 0.0	2.2 ± 0.0	2.5 ± 0.0	3.0 ± 0.1
Low	Flink	5.2 ± 0.3	7.4 ± 0.2	15.5 ± 0.6	43.3 ± 1.3	679.8 ± 274.0
	CPEP	3.7 ± 0.3	4.8 ± 0.2	6.8 ± 0.6	10.6 ± 1.0	33.4 ± 0.2

CPEP maintained high-priority latency performance as workload increased.

CPEP differentiated latency according to priority level.

Benefits of shedding inconsistent events

Improve the throughput of consistent events.

Save CPU utilization.

Dependability issues in computing systems

- What if some of the network components may fail to work?
- How to keep applications running properly while fixing the underlying network problems?
- Will fault-tolerance affect the performance of a data network?
 In which ways? How to amend it?

Loss tolerance

- An IoT service must deliver messages reliably, but
 - fault-tolerant systems can be slow or costly
 - heterogeneous traffic and platforms can increase pessimism

Message loss-tolerance requirement

- Application-specific requirements to an IoT service
 - L_i : the tolerable number of consecutive losses for topic i

Value of L_i	Application examples			
0	emergency response; predictive maintenance			
k > 0	condition monitoring			

Raw Data
Interpolated Curve
Interpolated Points

(4.80,5.68)

(4.80,5.68)

Raw Data
Interpolated Curve
Interpolated Points

Raw X

(Within the tolerable number, applications may use estimates for the missing data.)

Image source: https://www.originlab.com/doc/Origin-Help/Math-Inter-Extrapoltate-YfromX