

SIMULACION

- TECNICA PARA IMITAR EN UN COMPUTADOR
- LAS OPERACIONES DE LOS <u>SISTEMAS</u> DEL MUNDO REAL
- A MEDIDA QUE <u>EVOLUCIONAN EN EL TIEMPO</u>,
- MEDIANTE <u>MODELOS</u> QUE LOS REPRESENTAN DE FORMA REALISTA

La Naturaleza de la Simulación

- La simulación de un sistema es la operación con un modelo que es una representación del sistema, es sensible a las manipulaciones, y a partir del cual se pueden inferir propiedades sobre el comportamiento del sistema real
- La simulación puede considerarse una alternativa a los modelos analíticos consistente en un técnica que <u>imita en un computador</u> las operaciones del sistema real a medida que <u>evoluciona en el tiempo</u>

CONDICIONES GENERALES DE UTILIZACION DE LA SIMULACION (SHANNON)

- 1. No existe una formulación matemática completa del problema, o no se han desarrollado aún los métodos analíticos para resolver el modelo matemático.
- 2. Existen los métodos analíticos, pero las hipótesis simplificadoras, necesarias para su aplicación, desvirtúan las soluciones obtenidas y su interpretación.
- 3. Los métodos analíticos existen, y en teoría están disponibles, pero los procedimientos numéricos son tan arduos y complejos que la simulación constituye un método más sencillo para obtener una solución.
- 4. Es deseable observar una historia simulada del proceso dentro de un horizonte temporal dado para poder estimar ciertos parámetros.
- 5. La simulación constituye la mejor alternativa por la dificultad de realizar experiencias en el contexto real.
- 6. Es necesario realizar una *compresión temporal* para estudiar la evolución del sistema a largo plazo.

ETAPAS DE UN ESTUDIO DE SIMULACION

- 1. Definición del problema y planificación del estudio
- 2. Recogida de Datos
- 3. Formulación del modelo de simulación
- 4. Construcción y verificación del programa para computador del modelo
- 5. Ejecuciones de prueba del modelo
- 6. Validación del modelo
- 7. Diseño de los experimentos de simulación
- 8. Ejecución de los experimentos.
- 9. Análisis de los resultados

GENERACIÓN DE DÍGITOS ALEATORIOS MÉTODO DE LOS CUADRADOS MEDIOS [VON NEUMANN, 1951]

- Partir de un número cualquiera (es recomendable un número par) de n dígitos x₀
- Elevarlo al cuadrado y extraer los n dígitos del medio → un nuevo número x₁

Repertir el proceso

• Ejemplo: $x_0 = 5729$

 $x_0^2 = 32/8214/41$

 $x_1 = 8214$

Generación de 60 números de cuatro dígitos partiendo del 5729:

3214	2842	0415	1456	4250	1405
9140	0769	1722	1199	0625	9740
5396	5913	9652	4376	3906	8676
1168	9635	1611	1493	2568	2729
3642	8332	5953	2290	5946	4474
2641	4222	4382	2441	3549	0166
9748	8252	2019	9584	5954	0275
0235	0955	0763	8530	4501	0756
0552	9120	5821	7609	2590	5715
3047	1744	8840	8968	7081	6612

UPC

GENERADORES CONGRUENCIALES LINEALES (GCL)

 El estado en el paso n es el número entero x_n, definido por la recurrencia:

$$x_n = (ax_{n-1} + c) \mod m$$

donde m > 0 es el módulo, a > 0 es el multiplicador y c es una constante aditiva. $s_n \leftrightarrow x_n$ y el espacio de estados es S = {0, 1, ..., m-1}

• Para producir valores en el intervalo [0,1] basta con definir la función de salida como: $u_n = G(x_n) = \frac{X_n}{m}$

- Cuando c = 0 se trata de un generador lineal congruencial multiplicativo (GLCM).
- El máximo periodo para un GCL es m (en general)
- Para un GLCM no puede exceder m-1, puesto que $x_n = 0$ es un estado absorbente que hay que evitar.
- Los valores típicos de m son: $m = 2^{31} 1$, \acute{o} m = 2^{32}

EJEMPLOS DE GENERADORES CONGRUENCIALES LINEALES

• EJEMPLO 1: $Z_i = (5Z_{i-1} + 3) \pmod{16} \pmod{Z_0} = 7$

i	Zi	Ui	i	Zi	Ui	i	Zi	Ui	i	Zi	Ui
0	7		5	10	0.625	10	9	0.563	15	4	0.250
1	6	0.375	6	5	0.313	11	0	0.000	16	7	0.438
2	1	0.063	7	12	0.750	12	3	0.188	17	6	0.375
3	8	0.500	8	15	0.938	13	2	0.125	18	1	0.063
4	11	0.688	9	14	0.875	14	13	0.813	19	8	0.500

GENERACIÓN DE V.A. DISCRETAS

$$\chi = \{x_1, ..., x_k\}, x_1 < ... < x_k$$

$$P(\{X = x_i\}) = p_i > 0 \ i = 1, ..., k$$

$$F_X(x_i) = \sum_{j=1}^i P(\{X = x_j\}) = \sum_{j=1}^i p_j$$

El procedimiento de generación de un número pseudoaleatorio por el método de *método de la tabla de búsqueda* parte de la generación de un valor pseudoaleatori r en el intervalo [0,1) y facilita como resultado un valor aleatorio de la distribució discreta $x = x_i$ si,

$$x = x_i$$
 si $\sum_{j=1}^{i-1} p_j \le r_k < \sum_{j=1}^{i} p_j$

LEY GEOMÉTRICA

$$F_X(i) = \sum_{j=1}^{i} p_X(j) = \sum_{j=1}^{i} P(\{X = j\}) = \sum_{j=1}^{i} p \cdot (1-p)^{j-1} = 1 - (1-p)^{i+1} \quad i = 1, 2, ...$$

$$x = i \quad si \quad \sum_{j=1}^{i-1} p_j = 1 - (1-p)^i \le r < \sum_{j=1}^{i} p_j = 1 - (1-p)^{i+1}$$

LEY BINOMIAL

```
Leer n i p;
x=0;

Para i=1 hasta n hacer

Generar un valor aleatorio r dentro
del intervalo [0,1);

Si r≤p entonces x=x+1;

FinPara
```

GENERACIÓN DE V.A. CONTINUAS

MÉTODO DE LA INVERSA: DISTRIBUCIÓN EXPONENCIAL

$$r = 1 - e^{-\alpha \cdot x} \implies x = \frac{\ln(1 - r)}{-\alpha} \implies \frac{\ln(r)}{-\alpha}$$

DISTRIBUCIÓN K-Erlang (K etapas exponenciales, de parámetro α

$$x = \frac{\ln(\prod_{i=1}^k r_i)}{-\alpha}$$

LEY de POISSON

$$Y=0; i=1$$

(1) <u>Mientras</u> *Y*<1:

General r dentro de [0,1)

$$y_i = \frac{\ln(r_i)}{-\alpha}$$

$$Y=y_i+Y$$
;
FinMientras

(2)
$$x = i - 1$$

Ley Hiperexponencial, Ley Hipoexponencial?

LEY NORMAL $N(\mu,\sigma)$

T.C.L

$$F_{Z}(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \cdot e^{-x^{2}/2} \cdot dx \quad -\infty \le z \le +\infty$$

v.a i.i.d.

$$\overline{Y_1,\ldots,Y_n}$$
 $\overline{Y_n} = \frac{1}{n} \sum_{i=1}^n Y_i$ $Z = (\overline{Y_n} - \mu_Y) / \frac{\sigma_y}{\sqrt{n}}$ \longrightarrow $N(0,1)$

Generar
$$r_1, ..., r_n$$
 Unif. En [0,1) $z = \left(\frac{1}{n} \sum_{i=1}^n r_i - 0.5\right) / \frac{1}{\sqrt{12 \cdot n}}$

$$x = \mu + \sigma \cdot z$$

Método de Box-Muller

$$\begin{cases} x_1 = \cos(2\pi r_2)(-2\ln(r_1))^{0.5} \\ x_2 = \sin(2\pi r_2)(-2\ln(r_1))^{0.5} \end{cases}$$

UPC

SIMULACIONES CON HORIZONTE FINITO (I)

- La simulación se inicia en un estado específico (por ejemplo, el sistema vacío y el servidor desocupado, en una cola con un único servidor), y se ejecuta hasta que se produce un suceso determinado que identifica el fin de la simulación (por ejemplo el fin de la jornada de trabajo)
- El output no puede alcanzar el estado estacionario ⇒ la estimación de cualquier parámetro a partir del output dependerá del transitorio, y por tanto de las condiciones iniciales.
- Sean X₁, X₂,...., X_n los n valores observados durante la simulación:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \longrightarrow E(\overline{X}_n) = \mu$$

es por definición un estimador insesgado de μ , pero como las X_i son, en general, variables aleatorias dependientes (por ejemplo, en muchos sistemas de colas las X_i están correlacionadas positivamente), el estimador de la variancia $VAR(\overline{X}_n)$ está fuertemente sesgado:

$$S_n^2(X) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

SIMULACIONES CON HORIZONTE FINITO (II)

- Alternativa: ejecutar k replicaciones independientes de la simulación del sistema •
- Cada replicación parte del mismo estado y utiliza muestras independientes de números pseudoaleatorios
- Suponiendo que la replicación i-ésima produce los datos de output
- $X_{i1}, X_{i2}, ..., X_{in}$ •
- ullet
- Entonces las medias muestrales $Y_i = \frac{1}{n} \sum_{j=1}^{n} X_{ij}$ Son variableas aleatorias IID y $\overline{Y}_k = \frac{1}{k} \sum_{i=1}^{k} Y_i$ •
- Es también un estimador insesgado de μ, y la variancia muestral de las Yi

$$S_k^2(Y) = \frac{1}{k-1} \sum_{i=1}^k (Y_i - \overline{Y}_k)^2$$

Es un estimador insesgado de $VAR(\overline{\chi}_n)$. Si además n y k son suficientemente grandes, el intervalo deconfianza 1- α para μ es:

$$\overline{Y}_{k} \pm t_{k-1,1-\frac{\alpha}{2}} \frac{S_{k}(Y)}{\sqrt{k}}$$