ANOVA:

Q1: To assess the significance of possible variation in performance in a certain test between the convent schools of a city, a common test was given to a number of students taken at a random from the 5th class of the 3 schools concerned. The result is given as follows:

Α	В	С
9	13	14
11	12	13
13	10	17
9	15	7
8	5	9

Make the Analysis of Variance of the given data. (Null Hypo: No Significance Variation in the schools).

Solution:

Null Hypothesis = No variation between schools

Alt. Hypothesis = There is variation between schools.

Source of Variation	Sum of Square	Degrees of freedom	Mean Square	F
Between the	SSC	(c-1)	MSC = SSC/df1	F = MSC/MSE
Sample Within the	SSE	(n-c)	MSE = SSE/df2	_
sample		(11 0)	11.32 332/412	

Α	В	С
9	13	14
11	12	13
13	10	17
9	15	7
8	5	9

$$\overline{X}_{A} = \frac{50}{5} = 10$$
, $\overline{X}_{B} = \frac{55}{5} = 11$, $\overline{X}_{C} = \frac{60}{5} = 12$
 $\overline{X} = \frac{\overline{X}_{A} + \overline{X}_{B} + \overline{X}_{C}}{3} = \frac{10 + 11 + 12}{3} = \frac{33}{3} = 11$

SSC Calculation:

<i>X</i> _A − <i>₹</i>	(×̄A−×̄) ₇	$\bar{X}_{\mathcal{B}} - \bar{\Xi}$	$(\bar{X}_{\mathcal{B}} - \bar{X})^2$	(x̄c~x̄)	(x _c -\(\bar{x}\)^2
10-11 =-1	I	11-11=0	0	12-11=1	1
10-11=-1	1	11-11=0	0	12-11=1	1
10-11 = -1	1	11-11=0	0	12-11=1	(
10-11=-1	1	11-11=0	0	12-11=1	(

10-11=-1	1	11-11=0	ð	12-11=1	l l
Sumation	5		0		5

$$SSC = \sum (\bar{x}_{A} - \bar{x})^{2} + \sum (\bar{x}_{B} - \bar{x})^{2} + \sum (\bar{x}_{C} - \bar{x})^{2}$$

$$= 5 + 0 + 5$$

$$SSC = 10$$

SSE Calculation:

A-XA	(A-XA)2	B-XB	(B-XB)2	c - ۶ _C	$(C-\overline{\chi}_c)^2$
9-10=-1	1	13-11=2	4	14-12=2	4
11-10=1	1	12-11=1		13-12=1	
13-10=3	9	10 -11= 1		17-12=5	25
9-10=-1	1	15-11-4	16	ノーひころ	5
8-10=-2	4	5-116	36	9-12 =-3	9
乞	(16)		(58)		(64)

$$SSE = \sum (A - \overline{X}_A)^2 + \sum (B - \overline{X}_B)^2 + \sum (C - \overline{X}_C)^2$$

$$= 16 + 58 + 64$$

$$SSE = 138$$

Substituting : " -

Source of Variation	Sum of Square	Degrees of freedom	Mean Square	F
Between the Sample	SSC = 10	df = (c-1) = 3-1 = 2	MSC = SSC/df = 10/2 = 5	F = MSC/MSE = 5/11.5 = 0.435
Within the sample	SSE = 138	df = (n-c) = 15 - 3 = 12	MSE = SSE/df = 138/12 = 11.5	

Q2: 2-Way ANOVA

The following data represents the number of Units of Tablet production (in thousands) per day by five different technicians by using 4 different machines.

- a. Tell whether the mean productivity of the different machines are same?
- b. Test whether the 5 technicians differ w.r.t. the mean productivity?

Machines	А	В	С	D
Technicians				
Р	54	48	57	46
Q	56	50	62	53
R	44	46	54	42
S	53	48	56	44
T	48	52	59	48

Solution:

Source of Variance	Sum of	Degree of	Mean sum of	F
	Squares	Freedom	squares	
Between the	SSC	df = c-1	MSC= SSC/(c-1)	MSC/MSE
columns				

Between the rows	SSR	df = r-1	MSR = SSR/(r-1)	MSR/MSE
Residual Errors	SSE	df = (c-1)(r-1)	MSE =	
			SSE/(c-1)(r-1)	
Total Sum of	SST	df = n-1		
Square				

Step1: Calculation of grand total and correction factor.

Mid Value = (42+62)/2 = 52.

However, Let's assume mid value for easy calculation as 50. (You can take 51 or 52 also.)

	А	В	С	D	Row Total
Р	54 – 50 = 4	48-50 = -2	57-50 =7	46-50 =-4	<mark>5</mark>
Q	56-50=6	50-50 =0	62-50 =12	53-50 =3	<mark>21</mark>
R	44-50=-6	46-50 =-4	54-50 =4	42-50 =-8	<mark>-14</mark>
S	53-50=3	48-50 =-2	56-50 =6	44-50 =-6	<mark>1</mark>
T	48-50 = -2	52-50 =2	59-50 =9	48-50 =-2	<mark>7</mark>
Col Total	<mark>5</mark>	<mark>-6</mark>	<mark>38</mark>	<mark>-17</mark>	Grand
					Total = 20

Correction Factor =
$$T^2/N$$

= $(Grand Total)^2/N$
= $(20)^2/20$

=20

Note: N = Total observations = 5 * 4 = 20

Step2: Calculation of SSC
$$SSC = (\sum A)^{2} + (\sum B)^{2} + (\sum C)^{2} + (\sum D)^{2} - (\sum D)^{2} + (\sum D)^{2$$

- 288.8

Step 3: Calculation of SSR
$$SSR = \left(\frac{\sum P}{N}\right)^{2} + \left(\frac{\sum Q}{N}\right)^{2} + \left(\frac{\sum P}{N}\right)^{2} + \left(\frac{\sum P}{N$$

Step 4: Calculation of SST

SST = Sum of square of all observations residuals – correction factor
$$SST = 4^{2} + 6^{2} + (-6)^{2} + 3^{2} + (-2)^{2} + (-2)^{2} + (-2)^{2} + \cdots + (-6)^{2} + (-2)^{2} - 20$$

Source of Variance	Sum of Squares	Degree of Freedom	Mean sum of squares	F
Between the columns	SSC = 288.8	df = c-1 = 4-1 =3	MSC= SSC/(c-1) =288.8/3 =96.27	MSC/MSE = 96.27/9.76 =9.86
Between the rows	SSR = 158	df = r-1 =5-1 =4	MSR = SSR/(r-1) = 158/4 =39.5	MSR/MSE = 39.5/9.76 =4.05
Residual Errors	SSE = SST - (SSC+SSR) = 564 - 288.8 - 158 = 117.2	df = (c-1)(r-1) =(4-1)(5-1) =12	MSE = SSE/(c-1)(r-1) = 117.2/12 = 9.76	
Total Sum of Square	SST = 564	df = n-1 = 20-1 = 19		

Let's see the Tabulated value of F:

For Between the columns, df1 = 12, df2 = 3. (F)tab = 3.49

(F)tab < (F)calc; Hence, Null is rejected. i.e. there is significant variation between the columns.

For Between the rows, df1 = 12, df2=4, (F)tab = 3.26

(F)tab < (F)calc; Hence, Null is rejected. i.e. there is significant variation between the rows.

Reference:

F-Table for alpha 0.05

Table A.5. F-distribution where $\alpha = 0.05$

_																			
\mathbf{V}_1	V ₂	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	161.4	199.5	215.7	224.6	230.2	23.4.0	236.8	238.0	240.5	241.9	243.0	245.0	248.0	249.1	250.1	251.1	252.2	253.3	254.3
2	18.51	19.00	19.16	19.25	19.30	19.33				19.40			19.45	19.45	19.46	19.47	19.48	19.49	
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	5.99	5.14	4.76	4.53	4.39	4.93	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
	5112	1120	5100	5105	5140	5151	5125	0.100	5110	511.4	5107	5101	21,7	2170	2.00	2100	2.77	2170	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2,24	2.19	2.15	2.11	2.06	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.99	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
00	3.84	3.00	2.60	2.37	2.21	2.10	2.09	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00
30	3.04	3.00	2.00	2.37	2.21	2.10	2.01	1.94	1.00	1.03	1.73	1.0/	1.57	1.52	1.40	1.39	1.52	1.22	1.00

Adapted from E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 1, 1958, pp. 157-63, Table 18, by permission of the Biometrika Trustees.