ФИНАЛ 2016

Задача 1. Ако числото a е рационално и числото $b = (2 + a - a^2) \times \sqrt{3} + 2 - a$ е също рационално, тогава най- малката стойност на b е:

A) 0

B) 1

C) 2

D) 3

Задача 2. Разглеждаме двойките естествени числа (1, n), (2, n - 1), ..., (n - 1, 2), (n, 1). Ако сборът на цифрите на числата от всяка група е 23, да се определи n.

A) 499

B) 994

C) 949

D) друг отговор

Задача 3. В числовото равенство, известно като "задача на индийския математик Бхаскара" вместо последното число е записана буквата A. Определете A.

$$\sqrt{10 + \sqrt{24} + \sqrt{40} + \sqrt{60}} = \sqrt{2} + \sqrt{3} + A$$

A) 5

B) 6

 \mathbf{C}) $\sqrt{5}$

 \mathbf{D}) $\sqrt{6}$

Задача 4. Права през върха A на успоредник ABCD пресича диагонала BD в точка M. Точка M дели диагонала BD в отношение 1:2, считано от върха D. В какво отношение правата AM разделя страната CD, считано от точка D?

A) 1:1

B) 1:2

(C) 2:1

D) 3:1

Задача 5. Ако за всяка стойност на а е изпълнено, че

$$a^5 + a + 1 = (a^2 + \alpha a + 1) \times (a^3 + \beta a^2 + 1)$$
, тогава $\alpha + 3\beta =$

 $\mathbf{A}) - 2$

B) -1

C) 2

D) 4

Задача 6. Сборът от реалните корени на уравнението

$$(1+x) \times (1+x^2) \times (1+x^4) = 1-x^8$$
 e:

A) -1

B) (

C) 1

D) 2

Задача 7. Намерете разстоянието от пресечната точка на графиките на функциите y = -2x и y = 3 - 3x до ординатната ос.

 \mathbf{A}) -3

B) 3

(C) - 6

D) 6

Задача 8. Квадрат и кръг имат обща част. Лицето на квадрата, лицето на общата част и лицето на кръга се отнасят, както 4:1:17. Колко процента от лицето на фигурата е лицето на общата част?

A) 5

B) 10

C) 15

D) 20

Задача 9. През 1808 г. немският математик Карл Гаус въвежда означението [x] и с него означава най-голямото цяло число, което не е по-голямо от x. Колко са естествените числа n, за които $\left[\frac{n^2+n}{3}\right]$ е просто число?

A) 1 **B**) 2 **C**) 3 **D**) повече от 3

Задача 10. Колко са точките (x, y), чиито координати са цели отрицателни числа, и 2x + 3y + 8 > 0?

A) 0 **B)** 1 **C)** 2 **D)** повече от 2

Задача 11. Триъгълник ABC е равностранен със страна 3 cm. Точките M, N и P са съответно от страните BA, AC и CB, и такива че $MN\bot AC$, $NP\bot CB$ и $PM\bot AB$. Да се пресметне дължината на отсечката AM.

Задача 12. Пресметнете разликата на реалните числа x и y, ако $x = \frac{9}{x} + y$ и $y = \frac{16}{y} + x$.

Задача 13. Всяка от цифрите 1, 2, 3, 4, 5, 6, 7, 8 и 9 е използвана по един път, при записването на петцифрено, трицифрено и едноцифрено число. Получило се найголямото възможно произведение. Колко е сборът на трите числа?

Задача 14. С колко най-малък брой различни цифри можем да запишем 6 числа, които при делението на 6 да дават различни остатъци?

Задача 15. В някоя година три последователни месеца имат по 4 недели. Кои са възможните сборове от дните на тези три последователни месеца?

Задача 16. Да се пресметне стойността на израза

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{34}+\sqrt{35}} + \frac{1}{\sqrt{35}+6}.$$

Задача 17. От квадрат със страна 10 *см* изрязваме от двата противоположни ъгъла по едно квадратче, всяко със страна 1 *см*. На колко най-много правоъгълници с размери 1 *см* на 2 *см* може да разрежем получената фигура?

Задача 18. Пресметнете произведението на реалните корени на уравнението

$$(x+1) \times (x+2) \times (x+3) \times (x+4) \times (x+5) = 120.$$

Задача 19. Ако N е цяло число, колко са възможните остатъци при делението на N^4 на 5? **Задача 20.** Публиката, състояща се от 200 човека, приветствала тримата мускетари Атос, Портос и Арамис. Арамис се ръкувал със 130 човека от публиката, Портос — със 140, а Арамис — със 150. Най-малко с колко човека от публиката са се ръкували и тримата?