Numerical Simulation of the 2D Ising Model Using the Metropolis Algorithm

A powerful technique in statistical mechanics for understanding phase transitions in ferromagnetic materials.

Isabelle Byrne

Introduction – The Ising Model

- Developed by Ernst Ising in 1925
- The Ising model is a mathematical model used in statistical mechanics to study **ferromagnetic** materials.
- It consists of an $n \times n$ lattice of particles, represented by spins $(S_i \pm 1)$, that **interact with their nearest neighbors**.
- Describes phase transitions from ferromagnetism (ordered) to paramagnetism (disordered).
- The phase transition occurs at a **critical temperature**, T_c , where $T_c = 2.269 \dots \text{J/K}_b$. The system is ordered when $T < T_c$ and disordered when $T > T_c$.

Ferromagnetism occurs when electron spins spontaneously align parallel to each other, creating a net magnetic moment below a critical temperature. For example, Iron is ferromagnetic below 1043K (770°C), meaning it maintains a magnetic moment even in the absence of an external magnetic field, which is why it can be used to make permanent magnets and is attracted to magnetic fields.

Introduction - Statistical Mechanics

Statistical Mechanics utilizes a powerful probability function for systems in thermodynamic equilibrium via the partition function:

Partition Function

$$Z = \sum_{i} e^{-\beta E_i}$$

Probability Function

$$P_{\mu} = \frac{1}{Z}e^{-\beta E_{\mu}}$$

This probability is known as the Boltzmann distribution, where $\beta = 1/k_BT$. It shows that:

- States with lower energy are exponentially more likely than states with higher energy
- As temperature increases (β decreases), the exponential term becomes less steep, making the probability distribution more uniform

Another fundamental principle in statistical mechanics and stochastic processes is the **detailed balance principle**:

Detailed Balance

$$p_i P(i \to j) = p_j P(j \to i)$$

This principle will be used to enforce that the simulation converges to the correct equilibrium distribution

 $Our\ goal\$ is to simulate the 2D Ising model using the Metropolis-Hastings algorithm to observe the phase transitions that occur at the critical temperature.

By plotting magnetization versus temperature and validating against known analytical solutions, we aim to demonstrate how a ferromagnetic material loses its magnetic properties above the critical temperature Tc, while showing convergence to theoretical predictions as the lattice size increases.

Metropolis-Hastings Algorithm

A Monte-Carlo Simulation

The algorithm finds the equilibrium state in the magnet at a particular temperature. We initialize with a random distribution of spin up and spin down particles (represented with a +1 or -1), and iterate over the system:

- 1. Get the current state of the lattice, E_i
- 2. Pick a random particle on the lattice and flip the spin sign, E_j . Calculate the change in energy induced by this sign change, $\Delta E = E_j E_i$. We want to find the probability that the system will accept this new state and update the system accordingly.
 - If $\Delta E < 0$, $P(i \rightarrow j) = 1$. The flip is favored and the sign change is accepted.
 - If $\Delta E \geq 0$, $P(i \rightarrow j) = e^{-\beta \Delta E}$. The change will be accepted based on the probability from the detailed balance principle.
- 3. Repeat n^2 times per step to \approx update each particle once

Energy Equation

$$E_{\mu} = -J \sum_{\langle i,j \rangle} S_i S_j - h S_i$$

ΔE Equation

$$\Delta E = 2JS_i \sum_{\langle i,j \rangle} S_j - hS_i$$

Example

 ΔE Equation

$$\Delta E = 2JS_i \sum_{\langle i,j \rangle} S_j$$

$$\Delta E_{i} = 2J S_{i} \sum_{\langle i,j,i \rangle} S_{j} + h S_{i} , J = 1, h = 0$$

$$= 2S_{i} \sum_{\langle i,j,i \rangle} S_{j} = 2S_{i} (S_{i+\frac{1}{2}} + S_{i-\frac{1}{2}} + S_{i+\frac{1}{2}} + S_{i-\frac{1}{2}})$$

$$= 2(-1 - 1 - 1 + 1)$$

$$= 2(-2) = -4$$

The negative value indicates that the flipped spin moves the system to a lower energy level and thus is favorable.

Implementation Details/Edge Cases

1 Boundary conditions

To handle the boundary spins, periodic boundaries are used using modulo/if-else statements

3 Finite-Size Scaling Analysis

This problem bridges the gap between the finite simulation and theoretical predictions for infinite systems, highlighting the impacts of simulation size.

- The lager the lattice, the more closely the simulation will mimic theoretical predictions of T_c . However, the simulation will be more computationally expensive.
- Typically, one would want to find a good trade-off between accuracy and speed.
- Using periodic boundaries helps to mitigate the effects of this problem, but as we will see in the results, there is still an impact on the apparent critical temperature

2 Monte Carlo Update Rule

This is the heart of the Metropolis algorithm. We decide whether to flip the spin based on the energy change and the current temperature.

```
@njit
def metropolis_step(spins, J, T, n):
    """Perform one Metropolis update step for the system."""
    for _ in range(n ** 2):  # Attempt to flip each spin once on average
        i, j = np.random.randint(0, n, size=2)
        deltaE = compute_delta_energy(spins, J, i, j, n)
        if deltaE <= 0 or np.random.rand() < np.exp(-deltaE / T):
            spins[i, j] *= -1</pre>
```

4 Testing

Based on the resulting graph, we know if the simulation is performing as expected if:

- Magnetization is ≈ 1 when $T < T_c$
- Magnetization is ≈ 0 when $T > T_c$
- Magnetization transitions from 1 to 0 around the known T_c

Results - Observing Phase Transitions

Heating Ising Model Simulation

128 x 128 lattice at T=0.010 J/kb

Step 1/10000 with 1282 updates per step

Results - Observing Phase Transitions

Cooling Ising Model Simulation

128 x 128 lattice at T=4.000 J/kb

Step 1/20000 with 1282 updates per step

Results – Finite-Scaling Results

Conclusion

Main Goals:

- **1. Critical Temperature Verification** Successfully observed phase transition in the 2D Ising model with the estimated T_c converging around the known exact solution of 2.269 J/K_b .
- **2. Finite-Size Scaling** Demonstrated proper scaling behavior with system size, showing the effects on accuracy.

Other accomplishments:

- **Computational Performance-** Achieved significant speedup through Numba optimization, enabling simulations of larger lattices in reasonable timeframes.
- **Visualization-** Created dynamic visualizations of the phase transition, showing how magnetization and energy values are affected in real-time.