Canadian Intellectual Property Office

Industry Canada

Intellectuelle du Canada An Agency of

Un organisme d'Industrie Canada

Office de la Propri,t,

(11) CA 2 466 264

(13) A1

(40) 22.05.2003 (43) 22.05.2003

(12)

(21) 2 466 264

(22) 27.09.2002

(51) Int. Cl. 7:

C12N 9/90, G06F 19/00, A61K 45/00, A61P 25/00, A61P 43/00, A61P 3/04, A61P 37/08, C30B 29/58

(85) 05.05.2004

(86) PCT/JP02/009994

WO03/042381

(30)

2001/346035 JP 12.1 1.2001

(71)JAPAN SCIENCE AND TECHNOLOGY AGENCY, 4-1-8, Honcho Kawaguchi-shi 332-0012, SAITAMA, XX (JP). OSAKA BIOSCIENCE INSTITUTE, 2-4, Furuedai 6-chome Suita-shi 565-0874, OSAKA, XX (JP). RIKEN,

2-1 Hirosawa Wako-shi □ 351-0198, SAITAMA, XX (JP). (72)

URADE, YOSHIHIRO (JP). KUMASAKA, TAKASHI (JP). HAYAISHI, OSAMU (JP). MIYANO, MASASHI (JP). KINUGASA, SHIGEHIRO (JP). MATSUMURA, HIROYOSHI (JP). YAMAMOTO, MASAKI (JP). IRIKURA, DAISUKE (JP). INOUE, TSUYOSHI (JP). KAI, YASUSHI (JP). OKANO, YOUSUKE (JP).

KIRBY EADES GALE BAKER

STRUCTURE TRIDIMENSIONNELLE DE PROSTAGLANDINE SYNTHASE DE TENTE SONT UTILISATION THREE-DIMENSIONAL STRUCTURE OF PROSTAGLANDIN DE SYNTHASE AND UTILIZATION THEREOF (54) (54)

(57)

It is intended to provide a method of designing an antiallergic agent, a sleep controlling agent, an antiobestic and a remedy for brain injury acting via the inhibition of the biosynthesis of prostaglandin human-origin D2. Crystals of a complex of hematopoietic prostaglandin D synthase, glutathione and a substrate analog or an inhibitor, etc. are prepared and the three-dimensional structural coordinate of each atom in the complex is determined by X-ray crystal analysis.

me 1 所立.

70 1 of 25.7

12 3 36 C

20 1 25 2

Office de la Propriété Intellectuelle du Canada

Un organisme d'Industrie Canada Canadian Intellectual Property Office

An agency of Industry Canada

CA 2466264 A1 2003/05/22

(21) 2 466 264

(21) Z 400 Z04

(12) DEMANDE DE BREVET CANADIEN CANADIAN PATENT APPLICATION

(13) A1 -

(86) Date de dépôt PCT/PCT Filing Date: 2002/09/27

(87) Date publication PCT/PCT Publication Date: 2003/05/22

(85) Entrée phase nationale/National Entry: 2004/05/05

(86) N° demande PCT/PCT Application No.: JP 2002/009994

(87) N° publication PCT/PCT Publication No.:2003/042381

(30) Priorité/Priority: 2001/11/12 (2001/346035) JP

(51) Cl.Int.⁷/Int.Cl.⁷ C12N 15/00, A61P 37/08, A61P 3/04, A61P 43/00, A61P 25/00, A61K 45/00, C12N 9/90

(71) Demandeurs/Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, JP; OSAKA BIOSCIENCE INSTITUTE, JP; RIKEN, JP

(72) Inventeurs/Inventors: URADE, YOSHIHIRO, JP; HAYAISHI, OSAMU, JP; INOUE, TSUYOSHI, JP; KAI, YASUSHI, JP;

(74) Agent: KIRBY EADES GALE BAKER

(54) Titre: STRUCTURE TRIDIMENSIONNELLE DE PROSTAGLANDINE SYNTHASE DET SONT UTILISATION (54) Title: THREE-DIMENSIONAL STRUCTURE OF PROSTAGLANDIN DESYNTHASE AND UTILIZATION THEREOF

(57) Abrégé/Abstract:

It is intended to provide a method of designing an antiallergic agent, a sleep controlling agent, an antiobestic and a remedy for brain injury acting via the inhibition of the biosynthesis of prostaglandin D₂. Crystals of a complex of human-origin hematopoietic prostaglandin D synthase, glutathione and a substrate analog or an inhibitor, etc. are prepared and the three-dimensional structural coordinate of each atom in the complex is determined by X-ray crystal analysis.

CA 2466264 A1 2003/05/22

(21) 2 466 264

(13) A1

(72) Inventeurs(suite)/Inventors(continued): OKANO, YOUSUKE, JP; KINUGASA, SHIGEHIRO, JP; MATSUMURA, HIROYOSHI, JP; IRIKURA, DAISUKE, JP; YAMAMOTO, MASAKI, JP; KUMASAKA, TAKASHI, JP; MIYANO, MASASHI, JP

10

1

CA 02466264 2004-05-05

ABSTRACT OF THE DISCLOSURE

It is intended to provide a method of designing an anti-allergic agent, sleep controlling agent, anti-obestic agent and remedy for brain injury acting via the inhibition of biosynthesis of prostaglandin D₂. Crystal of a complex of human origin hematopoietic prostaglandin D synthase, glutathione, and a substrate analog or an inhibitor, etc are prepared and the three-dimensional structural coordinate of each atom in the complex is determined by X-ray crystal analysis.

_2 <u>o</u>f ≥

5

10 -

15

20

25

CA 02466264 2004-05-05

1

SPECIFICATION

THREE-DIMENSIONAL STRUCTURE OF PROSTAGLANDIN D SYNTHASE AND UTILIZATION THEREOF

BACKGROUND OF THE INVENTION

The present invention relates to three-dimensional structures of hematopoietic prostaglandin D synthase (which may refer to as "PGDS" hereinafter), and a method for designing PGDS inhibitor using the three-dimensional structures.

Prostaglandin D_2 (PGD₂) is synthesized in vivo by PGDS from prostaglandin H_2 (PGH₂). There are two types of PGDS, i.e., brain-type PGDS and hematopoietic PGDS. Hematopoietic PGDS absolutely requires glutathione for the enzymatic reaction while brain-type PGDS also causes the enzymatic reaction in the presence of thiol reagents other than glutathione.

 PGD_2 is synthesized in central nervous system by brain-type PGDs, and has the function of sleep induction, thermodepression, inhibition of secretion of corpus luteum hormone and control of response of pain and odor. PGD_2 is synthesized in peripheral tissue by hematopoietic PGDs, and is known to have physiological function such as dilation of

2

bronchoconstruction, vessel, peripheral blood inhibition of platelet coagulation and act as an allergic mediator released from mast cells (Lewis, R. A., Soter, N. A., Diamond, P. T., Austen, K. F., Oates, J. A. & Roberts, L. J. Prostaglandin D_2 generation after activation of rat 5 and human mast cells with anti-IgE. J. Immunol., 129, 1627-It is reported that allergic reaction is 1631 (1982)). significantly reduced in knockout mouse of prostaglandin D2 receptor protein (DP receptor) (Matsuoka, T., Hirata, M., Tanaka, H., Takahashi, Y., Murata, T., Kabashima, K., 10 Sugimito, Y., Kobayashi, T., Ushikubi, F., Aze, Y., Yoshida, N., Honda, Y., Nagai, H. & Narumiya, S. Prostaglandin D2 as a mediator of allergic ashma. Science, 287, 2013-2017 There is another prostaglandin D2 receptor (CRTH (2000)). receptor) in Th2 lymphocytes, eosinophils, and basophils 15 involved in allergic:reaction, which promotes chemotaxis of those inflammatory cells (Hirai, H., Tanaka, K., Yoshie, O., Ogawa, K., Kenmotsu, K., Takamori, Y., Ichimasa, M., Sugamura, K., Nakamura, M., Takano, S., and Nagata, K., Prostaglandin D2 selectively induces chemotaxis in T helper 20 eosinophils and basophils via type 2 cells, transmembrane receptor CRTH2, J. Exp. Med., 193, 255-261 The synthesis of prostaglandin D_2 in mast cells .(2001)). (Urade, Y., Ujihara, M., Horiguchi, Y., Igarashi, M., Nagata, A., Ikai, K. and Hayaishi, O. Mast cells contain 25

15

20

25

3

spleen-type prostaglandin D synthase, J. Biol. Chem., 265, 371-375 (1990)) and human Th2 lymphocytes (Tanaka, K., Ogawa, K., Sugamura, K., Nakamura, M., Takano, S. and Nagata, K., Differential production of prostaglandin D2 by human helper T cell subsets, J. Immunol., 164, 2277-2280 (2000)) is made by hematopoietic PGDS.

If a compound capable of inhibiting the enzymatic activity of PGDS, it would become possible to control PGD2 synthesis to obtain anti-allergic agent, sleep control agent and anti-obesity agent.

Recently, an attempt to design medicine from three dimensional structure of protein has been made. However, no one has succeeded in determining the three dimensional structure of human hematopoietic PGDS. It is hence difficult to design an inhibitor of human hematopoietic PGDS from the three dimensional structure thereof. It is an object of the present invention to clarify the three dimensional structure of human hematopoietic PGDS to provide a method for designing an inhibitor of human hematopoietic PGDS using the three dimensional structure.

The inventors has succeeded in preparing crystals of complexes of human hematopoietic PGDS (which has as metal ion calcium ion (referred to as "calcium type" hereinafter)

or magnesium ion (referred to as "magnesium type"

وأأرساه

5

10

15

20

Δ

hereinafter)), glutathione (GSH) which is a cofactor of PGDS, and analog of prostaglandin H_2 (PGH₂) which is a substrate of PGDS or several types of inhibitor of PGDS. The inventor has succeeded in clarifying the three dimensional structure of those complex with crystallography technique using X-ray diffraction method for the first time.

The present invention is related to a complex of human calcium type heamatopoietic PGDS having an amino acid sequence of SEQ. ID NO 1 and glutathione which has a three dimensional structure represented by the structural coordinates in Table 1.

The present invention is related to a complex of human magnesium type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1 and glutathione which has a three dimensional structure represented by the structural coordinates in Table 2.

The present invention is related to a complex of human calcium type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and 9,11-dideoxy -9 α ,11 α methanoepoxyprostaglandin F_{2 α} (referred to as "U46" hereinafter) which has a three dimensional structure represented by the structural coordinates in Table 3.

U46 is represented by the formula: (Formula 1)

10

15

5

and is an analog of prostaglandin H_2 (PGH₂) which is a substrate of PGDS

The present invention is related to a complex of human magnesium type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and U46 which has a three dimensional structure represented by the structural coordinates in Table 4.

The present invention is related to a complex of human calcium type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and 9,11-dideoxy -9 α ,11 α epoxymetanoprostaglandin F $_{2~\alpha}$ (referred to as "U44" hereinafter) which has a three dimensional structure represented by the structural coordinates in Table 5.

U44 is represented by the formula:
(Formula 2)

10

15

6

and is an analog of prostaglandin H_2 which is a substrate of PGDS

The present invention is related to a complex of human magnesium type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and U44 which has a three dimensional structure represented by the structural coordinates in Table 6.

The present invention is related to a complex of human calcium type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and Cibacron Blue(trade mark) (1-amino-4-{4-[4-chloro-6-(2-sulfo-phenylamino)-[1,3,5]triazine-2-ylmethyl]-3-sulfo-phenylamino}-9,10-dioxo-9,10-dihydroanthracene-2-sulfonic acid) which has a three dimensional structure represented by the structural coordinates in Table 7.

Cibacron Blue is represented by the formula:
(Formula 3)

0.362

. J. 2: 1

5

7

and is known as an inhibitor of PGDS (Thomson, A. M., Meyer, D. J. & Hayes, J. p. Sequence, catalytic properties and expression of chicken glutathione-dependent prostaglandin D_2 synthase, a novel class Sigma glutathione S-transferase. Biochem. J., 333, 317-325 (1998)).

The present invention is related to a complex of human magnesium type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and 4-benzhydryloxy
1-{3-(1H-tetrazol-5-yl)-propyl}piperidine (referred to as "HQL-79" hereinafter) which has a three dimensional structures represented by the structural coordinates in Table 8.

HQL-79 is represented by the formula:

15 (Formula 4)

and is known to have anti-allergic activity(Matsushita N, Hizue M, Aritake K, Hayashi K, Takada A, Mitsui K, Hayashi M, Hirotsu I, Kimura Y, Tani T and Nakajima H,

10

20

8

Pharmacological studies on the novel anti-allergic drug HQL-79: I. Anti-allergic and anti-asthmatic effects in various experimental models. Japanese Journal of Pharmacology, 78, 1-10 (1998)).

The present invention is further related to use of at least one structural coordinates selected from the group consisting of the structural coordinates represented in Tables 1-8 in selecting a compound inhibiting human hematopoietic PGDS.

The present invention is related to a method for selecting an inhibitor of human hematopoietic PGDS, comprising steps of:

- (a) providing at least one structural coordinates selected from the group consisting of the structural coordinates represented in Tables 1-8 which characterizes an active site of human hematopoietic PGDS;
- (b) providing steric structure of a candidate compound; and
- (c) fitting the candidate compound to the active site of human hematopoietic PGDS to select the inhibitor.

The amino acid residues involved in the active site of human hematopoietic PGDS are Tyr8, Phe9, Asn10, Met11, Arg12, Gly13, Arg14, Ala15, Glu16, Leu17, Trp39, Pro40, Glu41, Ile42, Lys43, Gly49, Lys50, Ile51, Pro52, Ile53, His62, Gln63, Ser64, Leu65, Asp93, Thr94, Leu95, Asp96,

10

15

20

9

Asp97, Phe98, Met99, Ser100, Cys101, Phe102, Phe103, Trp104, Ala105, Glu106, Lys107, Lys108, Gln109, Asp110, Vall11, Lys112, Glu113, Gln114, Met115, Phe116, Tyr152, Trp153, Glu154, Ile155, Leu156, Ser157, Thr158, Thr159, Leu160, Leu161, Vall62, Phe163, Thr197, Lys198, and Leu199.

The term "fit" means that a candidate compound is optimized in energy and configuration to the active site of human hematopoietic PGDS. A compound is selected in such a manner that the contact area of a candidate compound with human hematopoietic PGDS is maximum when the compound binds to the active site of human hematopoietic PGDS, and that the binding mode between the compound and the active site of human hematopoietic pGDS is maximum.

Preferably, it is confirmed that the thus selected inhibitor has the inhibiting effect of PGDS by contacting the inhibitor with hematopoietic PGDS in the presence of prostaglandin H_2 .

In addition, the inhibitor is confirmed whether it has at least one biological activity selected from the group consisting of anti-allergic activity, sleep control activity, anti-obesity activity and brain wound healing activity.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the three-dimensional structure of a complex of human hematopoietic prostaglandin D synthase

足 12 元

Se 20 5

5

10

15 ·

20

25

10

(PGDS) (calcium type) and glutathione. PGDS forms a dimer, and there is a metal ion-binding site in the center of the dimer.

Figure 2 shows PGDS monomer structure viewed from the side of the monomer.

Figure 3 shows a surface structure of PGDS viewed from the same direction as in Figure 2.

Figure 4 is an enlarged view of surface structure of PGDS complexed with calcium, glutathione, and U46. Oxygen atom of cyclopentane ring of U46 forms hydrogen bond with glutathione

Figure 5 shows three-dimensional structure of PGDS complexed with calcium, glutathione and U44. Alpha chain of the substrate analogue is surrounded by Lys107, Lys112 and Lys198 of PGDS which are basic amino acid residues. The residues form salt-bridge with carboxylate of the α chain. In magnesium-type PGDS, similar three-dimensional structure is observed.

Figure 6 shows three dimensional structure of PGDS complexed with magnesium, glutathione and U46.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

(1) Human hematopoietic prostaglandin D synthase

The amino acid sequence of human hematopoietic prostaglandin D synthase is known. The method for

10

15

20 1

CA 02466264 2004-05-05

11

preparing it is also disclosed (Japanese Patent Kokai No. 322773/1997). Although it is possible to obtain the enzyme from human tissue, it is convenient to prepare it using recombinant technique.

For example, an expression plasmid (pT7-7hPGDS) which comprises cDNA encoding human hematopoietic prostaglandin D synthase having amino acid sequence of SEQ. ID. NO. 1 under the control of T7 polymerase gene promoter is constructed (Japanese Patent Kokai No. 322773/1997). Escherichia coli BL21 (DE-3) is transformed with the expression plasmid using modified calcium chloride method (Inoue, et al., Gene 96:23-28 (1990)). Escherichia coli pYKl transformed with the expression plasmid is deposited under accession number FERM BP-5489 in National Institute of Advanced Industrial Science and Technology.

Escherichia coli pYKl is cultured in LB medium (containing 50 μ g/ml of ampicillin) at 37 °C overnight. IPTG (isopropylthio β -D-galactoside) is then added to final concentration of 0.4mM and Escherichia coli pYKl is further cultured for additional 4 to 6 hours.

After the completion of cultivation, the bacteria is fractured by ultrasonic, centrifuged at 13,000 rpm at 4°C for 15 minutes to remove precipitates. Fractionation is effected with ammonium sulfate. Fraction of 40% to 60% saturation of ammonium sulfate is obtained and dialyzed

10

15

20

25

CA 02466264 2004-05-05

12

against 50 mM sodium phosphate buffer. The dialyzed solution is applied to Glutathione Sephalose 4B column and purified by affinity chromatography.

(II) Crystal of human hematopoietic prostaglandin D synthase complex

Crystallization of protein utilizes a property of protein that it is deposited under some conditions as a crystal when protein is made from dissolving condition to non-dissolving condition by adding a precipitating agent to a solution of protein of interest, or by reducing amount of solution by vaporizing solvent.

The inventors have found that human hematopoietic PGDS complex is successfully crystallized with hanging drop vapor diffusion method. The hanging drop vapor diffusion method is a method wherein a mixed solution of protein solution with a precipitating solution is hanged up on a glass plate using surface tension and the solution is enclosed with another precipitating solution having higher concentration in a sealed space to form a crystal of the protein. Due to vapor diffusion, the concentration of the precipitating agent is gradually higher to obtain a crystal. When large crystal is required, a crystal obtained in a first crystallization and having a size of about 0.01 mm is selected and re-crystallized again with macro-seeding

method (Stura, E. A. & Wilson, L. A. Applications of the streak seeding technique in protein crystallization. J. of Crystal Growth, 110, 270-282 (1991).) to obtain a crystal having size of about 0.3 x 0.3 x 1.5 mm which is proper for X-ray diffraction experiment.

The conditions for preparing of eight human hematopoietic PGDS complexes are described hereinafter.

(1)Complex of human hematopoietic PGDS with calcium and glutathione

10 Composition:

•			Internal Sol.	External Sol.
() ()	Precipitatat-	PEG 6000	14%	16%
	ing agent	`. 		
	Buffer	Tris buffer	50mM	100mM
15	Admixture	Glutathione	5mM	10mM
		dithiothreitol	5mM	10mM
:	:	Calcium chloride	2.5mM	5mM
:		Dioxane	1%	2%
	Protein	PGDS	5mg/mL	_

20 Temperature: 20°C, pH:8.4

(2)Complex of human hematopoietic PGDS with magnesium and glutathione

composition:

Internal Sol. External Sol.

B 17.

CA 02466264 2004-05-05

14

Precipitatat-	PEG 6000	14%	16%
ing agent			
Buffer	Tris buffer	50mM	100mM
Admixture	Glutathione	5mM	10mM
	dithiothreitol	5mM	10mM
	Magnesium chloride	2.5mM	5mM
	Dioxane	1%	2%
Protein	PGDS	5mg/mL	

Temperature:20℃, pH:8.4

10

5

(3)Complex of human hematopoietic PGDS with calcium, glutathione and 9,11-dideoxy -9 α ,11 α -methanoepoxyprostaglandine $F_{2\alpha}$ (U46)

Composition:

1 5	<i>i</i> .	Å	Internal Sol.	External Sol.
	Precipitatat-	PEG 6000	14%	16%
;	ing agent	1.		
	Buffer	Tris buffer	50mM	100mM
	Admixture	Glutathione	5mM	10mM
20	•	dithicthreitol	5mM	1 OmM
	•	Calcium chloride	2.5mM	5mM
ï.		Dioxame	1%	2%
	• .	U46	10mM	_
. "	Protein	PGDS	5mg/mL	-

25 Temperature: 20°C, pH:8.4

ž. . . .

15

(4)Complex of human hematopoietic PGDS with magnesium, glutathione and 9,11-dideoxy -9 α ,11 α -methanoepoxyprostaglandine $F_{2\alpha}$ (U46)

5 Composition:

		Internal Sol.	External Sol.
Precipitatat	- PEG 6000	14%	16%
ing agent	;		
Buffer	Tris buffer	50mM	100mM
Admixture	Glutathione	5mM	10mM
•	dithiothreitol	5mM	10mM
:	Magneşium chlorid	le 2.5mM	5mM
	Dioxaņe	1%	2%
· · · · · · · · · · · · · · · · · · ·	U46	10mM	_
Protein	PGDS	5mg/mL	

• Temperature: 20°C, pH:8.4

(5) Complex of human hematopoietic PGDS with calcium, glutathione and 9,11-dideoxy -9 α ,11 α -epoxymethanoprostaglandine $F_{2\alpha}$ (U44)

Composition:

			Internal Sol.	External Sol.
Precipitatat-	PEG	6000	14%	16%
ing agent		•		
Buffer	Tris	buffer	50mM	100mM

15

20 '

CA 02466264 2004-05-05

16

,	ē.			
Protein	PGDS	5mg/mL	_	
•	U46	5mM	-	
	Dioxane	1%	2%	
·	Calcium chloride	2.5mM	5mM	
• •	dithiqthreitol	5mM	10mM	
Admixture	Glutathione	5mM	10mM	

Temperature:20°C, pH:8.4

(6) Complex of human hematopoietic PGDS with magnesium, glutathione and 9,11-dideoxy -9 α ,11 α -epoxymethanoprostaglandine $F_{2\alpha}(U44)$

Composition:

		Internal Sol.	External Sol.
Precipitatat-	PEG 6000	14%	16%
ing agent	\$ 		
Buffer	Tris huffer	50mM	100mM
Admixture	Glutathione	5mM	10mM
•	dithigthreitol	5mM	10mM
* ,	Magneqium chloric	de 2.5mM	5mM
	Dioxane	1%	2%
	U44	5mM	-
Protein	PGDS	5mg/mL	

Temperature: 20°C, pH:8.4

(7) Complex of human hematopoietic PGDS with calcium,

4. 22 . . . 24

5 3 C 2 3

20

25

CA 02466264 2004-05-05

17

glutathione and Cibacron Blue (trade mark) (1-amino-4-{4-[4-chloro-6-(2-sulfo-phenylamino)-[1,3,5]triazine-2ylmethyl]-3-sulfo-phenylamino}-9,10-dioxo-9,10-dihydroanthracene-2-sulfonic acid)

Composition: 5

	44.		Internal Sol.	External Sol.
•	Precipitatat-	PEG 6000	14%	16%
	ing agent	\$		
	Buffer	Tris buffer	50mM	100mM
10	Admixture	Glutathione	5mM	10mM
	. t	dithiothreitol	5mM	10mM
		Calcium chloride	2.5mM	5mM
		Dioxane	1%	2%
•	: .	Cibacron Blue	1mM	-
15	Protein	PGDS	5mg/mL	

Temperature:20°C, pH:8.4

: (8) Complex of human hematopoietic PGDS with calcium, glutathione and 4-benzhydryloxy-1-{3-(1H-tetrazol-5-yl)propyl}piperidine (HQL-79)

Composition:

	ži,			
_	·	Internal Sol.	External Sol	
Precipitatat-	PEG 6 000	14%	16%	
ing agent	<u>.</u>			
Buffer	Tris buffer	50mM	100mM	

. * #1.

10

15

CA 02466264 2004-05-05

18

Admixture	Glutathione	5mM	10mM	
	dithiothreitol	5mM	10mM	
	Calcium chloride	2.5mM	5mM	
	Dioxane	1%	2%	
5.	HQL-79	saturated	-	
Protein	PGDS	5mg/mL	-	

Temperature: 20°C, pH:8.4

(III) Three-dimensional coordinate of human hematopoietic PGDS complex

Three-dimensional structure of human hematopoietic PGDS complex is clarified using X-ray crystallography from the crystal of human hematopoietic PGDS complex obtained from (II).

Data collection was carried out for mercury derivative crystal of human hematopoietic PGDS of the calcium type in SPring-8 RIKEN beam line BL45XD in consideration of anomalous dispersion effect. Data collection was carried out using synchrotron radiation lights of three wavelengths of 1.009Å, 1.04Å and 1.10Å to calculate eight positions of mercury from the analysis of Patterson function. The position is made precise using the program MLPHARE (Otwinowski, Z. in Proceedings of CCP4 Study Weekend, Isomorphous Replacement and Anomalous Scattering, edited by Sawyer, L., Issacs, N., and Bailey, S. [Science and

15

CA 02466264 2004-05-05

19

Engineering Research Council (England) Daresbury Lab., Warrington, U.K.], pp. 80-86 (1993)) to obtain electron density of the enzyme. Enzyme model was constructed on graphics workstation to obtain an enzyme model of human hematopoietic PGDS of the calcium type in high accuracy using a refinement program CNS (Brunger, A. T., Adams, P. D., Clore, G. M., DaLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L. Crystallography & MMR system: A new software suite for macromolecular structure determination. Acta Cryst., D54, 905-921 (1998)).

The other structural model was obtained in high accuracy with the program CNS using the calcium type model firstly obtained as the search model.

Crystallographic data obtained for the crystals prepared in (II)(1) to (II)(8) are as follows:

Crystal	(1)	(2)	(3)	(4)
Space group	P2 ₁	P2 ₁	P2 ₁	P1
Resolution(Å)	37.3-1.8	30.9-1.7	37.3-2.0	33.8-1.2
No.of water molecules	1089	983	744	1587
R _{cryst} (%)	19.3	21.0	20.6	18.0
R _{free} (%)	22.6	24.1	25.2	19.1

25 R.m.s.deviation of

CA 02466264 2004-05-05

20

	bond length(Å)	0.005	0.006	0.006	0.006
	Bond angles (deg.)	1.1	1.0	1.0	1.2
:	dihedral angles(deg.)	20.3	20.1	20.2	20.6
A	verage B(Ų)	18.7	24.5	18.2	14.9
A	verage B of GSH(Ų)	17.7	27.2	20.8	10.0

•	Crystal	(5)	(6)	(7)	(8)
• • :	Space group	P2 ₁	P2 ₁	P2 ₁	P1
10	Resolution(Å)	37.4-1.8	29.0-2.0	91.6-2.1	500-1.45
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	No.of water molecules	858	1639	858	1398
	R _{cryst} (%)	21.2	17.8	20.3	19.2
	R _{free} (%)	24.7	23.0	25.7	20.7
	R.m.s.deviation of				
15	bond length(Å)	0.006	0.006	0.007	0.012
	Bond angles(deg.)	1.0	1.1	1.1	1.3
	dihedral angles(deg.)	20.4	20.6	20.1	20.1
	Average B(Å ²)	22.8	19.5	22.4	14.4
	Average B of GSH(Ų)	23.6	15.1	44.8	11.6

20.

Table 1 represents the structural coordinates of the complex of human hematopoietic PGDS with calcium and glutathione; Table 2 represents the structural coordinates of the complex of human hematopoietic PGDS with magnesium and glutathione; Table 3 represents the structural

10

15

20

21

coordinates of the complex of human hematopoietic PGDS with glutathione and 9,11-dideoxy -9 α ,11 α methanoepoxyprostaglandine F 2 (U46); Table 4 represents the structural coordinates of the complex of human hematopoietic PGDS with magnesium, glutathione and 9,11dideoxy -9 α ,11 α -methanoepoxyprostaglandine F $_{2}$ $_{\alpha}$ (U46); Table 5 represents the structural coordinates of the human, hematopoietic PGDS with calcium, complex οf and 9,11-dideoxy -9 glutathione α ,11 epoxymethanoprostaglandine F_{2a} (U44); Table 6 represents the structural coordinates of the complex of human hematopoietic PGDS with calcium, glutathione and 9,11dideoxy -9 α ,11 α repoxymethanoprostaglandine F $_2$ $_{\alpha}$ (U44); Table 7 represents the structural coordinates of the complex of human hematopoietic PGDS with calcium, glutathione and Cibacron Blue (trade mark); represents the structural coordinates of the complex of human hematopoietic PGDS with magnesium, glutathione and 4benzhydryloxy-1-{3-(1H-tetrazol-5-yl)-propyl)piperidine (HQL-79).

Each table represents three-dimensional structural coordinates according to the format of Protein Data Bank (http://rcsb. org/pdb/, USA). "ATOM" at the first column indicates that the row describes atom coordinates; the second column indicates the atom number; the third column

CA 02466264 2004-05-05

22

indicates the atom type in the amino acid residue or the like, for example, carbonyl carbon atom is represented by C ,and carbonyl oxygen atom is represented by O,; the fourth column indicates the amino acid residue or the like; the fifth column indicates the class of molecule; the sixth column indicates the amino acid number; the seventh, eighth, and ninth columns indicate coordinates of the atom (in A for X-axis, Y-axis, and Z-axis directions in the order); the tenth column indicates the occupancy of the atom (in the present invention 1.00 for all atoms); and the eleventh column indicates the temperature factor of the atom. The twelveth column indicates the class of molecule like the fifth column.

- 15 (IV) Three-dimensional structure and binding site of human hematopoietic PGDS complex.
 - (1) Complex of human hematopoietic PGDS with calcium and glutathione

Prostaglandin D synthase form a dimer and calcium ion exists in the center of the dimer (see Fig.1). Calcium has no influence on the glutathione binding, but increases the reaction rate of PGDS enzyme. Glutathione binds to Tyr8, Arg14, Trp39, Gly49, Lys50, Ile51, Pro52, Gln63 and Ser64 of PGDS.

(2) Complex of human hematopoietic PGDS with magnesium and

15

CA 02466264 2004-05-05

23

glutathione

In accordance with the change of metal ion in the center of the dimer from calcium ion to magnesium ion, coordination structure of water molecule to the metal ion is significantly changed. Magnesium increases the affinity of glutathione to PGDS by more than 3 times.

- (3) Complex of human hematopoietic PGDS with calcium, glutathione and 9,11-dideoxy -9 α ,11 α -methanoepoxyprostaglandine F_{2a} (U46)
- In the complex, there exists calcium ion in the center of the dimer as in (1). In addition, substrate analog, U46, binds to PGDS. U46 binds to Tyr8, Gly3, Arg14, Gln36, Trp104, Gln36, Trp104, Gln36, Trp104, Gln109, Lys112, Tyr152, Lys198, and Leu199 of PGDS, and GSH. Carboxyl group of U46 is hydrogen bonded to either of Gln109, Lys112, or Lys198 of PGDS. Oxygen atom at C11 site of U46 is positioned at 4.6Å from S atom of GSH. The ω chain of U46 approachs Tyr152 existing in the deepest portion of substrate binding site to van der Waals contact distance.
- (4) Complex of human hematopoietic PGDS with magnesium, glutathione and 9,11-dideoxy -9 α ,11 α -methanoepoxyprostaglandine $F_{2,\alpha}$ (U46)

The structure of the complex differs from that of (3) in that magnesium ion exists in the center of the dimer. Although the α chain of U46 is positioned near Gln109,

15

24

Lys112 and Lys198 of PGDS, it is not hydrogen bonded but is in van der Waals contact. Oxygen atom at 11 site of U46 is hydrogen bonded to Gln36 of PGDS through water molecule. The OH group in the ω chain of U46 is hydrogen bonded to rotated Arg14 and the ω chain is out of the pocket. Ether which is a solvent for U46 binds at the aperture between Trp104 of PGDS and U46 molecule.

8017

(5) Complex of human hematopoietic PGDS with calcium, glutathione and 9,11-dideoxy -9 α ,11 α -epoxymethanoprostaglandine $F_{2\alpha}$ (U44)

The complex differs from that of (1) to (4) in that a substrate analog U44 binds to PGDS. In the calcium-binding structure, although the binding site of U44 is the same as that of U46, the manner of hydrogen bonding differs. Although they are both in the calcium-binding form, being different from U46, α -chain of U44 is hydrogen bonded with to all of Gln109, Lys112, and Lys198 of PGDS, and oxygen atom at 9 site is hydrogen bonded through water to Gln36. The α -chain of U44 is about 5 Å apart from back Tyr152, differing from the structure of (3).

៩៤...

(6) Complex of human hematopoietic PGDS with magnesium, glutathione and 9,11-dideoxy -9 α ,11 α -epoxymethanoprostaglandine $F_{2\alpha}$ (U44)

Although this complex is identical with (5) in that they are complexes with substrate analog U44, it is

3.5

10

20 -

25

different from (5) in that the metal ion positioned in the center of dimer is magnesium ion.

- (7) Complex of human hematopoietic PGDS with calcium, glutathione and Cibacron Blue (trade mark)
- The complex differs from the above six structures in that it is a complex with an inhibitor Cibacron Blue. Metal ion in the center of the dimer is calcium. Cibacron Blue binds to Phe9, Gly10, Gly13, Arg14, Gln36, Met99, Ser100, Trp104, Glu106, Lys107, Gln109, Lys112, Tyr152, Cys156, Lys198, and Leu199 of PGDS, and GSH
 - (8) Complex of human hematopoietic PGDS with magnesium, glutathione and 4-benzhydryloxy-1-{3-(1H-tetrazol-5-yl)-propyl}piperidine (HQL-79)

The complex is different from (1) to (6) in that it is a complex with an inhibitor HQL-79, and an inhibitor different from (7) is used. Magnesium ion is bonded in the center of the dimer. Induce-fit phenomenon is caused due to the binding of HQL-79, and space group is changed from P2₁ to P1. HQL-79 binds to Tyr8, Phe9, Arg14, Met99, Phe102, Trp104, Tyr152, Ile155, Thr159, Phe163, and Leu199 of PGDS and GSH.

(V) Use of three dimensional coordinates for preparing inhibitor of human hematopoietic prostaglandin D synthase

A compound capable of inhibiting human hematopoietic

. 5

·15

25

CA 02466264 2004-05-05

26

PGDS can be selected using three-dimensional coordinates of Tables 1 to 8.

The present invention is related to a method for selecting an inhibitor of human hematopoietic PGDS, comprising steps of:

- (a) providing at least one of these structural coordinates selected from the group consisting of the structural coordinates represented in Tables 1-8 which characterizes an active site feature of human hematopoietic PGDS;
 - (b) providing steric structure of a candidate compound; and
 - (c) fitting the candidate compound to the active site of human hematopoietic PGDS to select the inhibitor.
 - The amino acid residues involved in the active site of human hematopoietic PGDS are Tyr8, Phe9, Asn10, Met11, Arg12, Gly13, Arg14, Ala15, Glu16, Leu17, Trp39, Pro40, Glu41, Ile42, Lys43, Gly49, Lys50, Ile51, Pro52, Ile53, His62, Gln63, Ser64, Leu65, Asp93, Thr94, Leu95, Asp96, Asp97, Phe98, Met99, Ser100, Cys101, Phe102, Phe103, Trp104, Ala105, Glu106, Lys107, Lys108, Gln109, Asp110, Val111, Lys112, Glu113, Gln114, Met115, Phe116, Tyr152, Trp153, Glu154, Ile155, Leu156, Ser157, Thr158, Thr159, Leu160, Leu161, Val162, Phe163, Thr197, Lys198, and Leu19
 - Based on the three-dimensional structure information,

15

27

energy using various programs so that the binding to the active site of the enzyme occurs in the most appropriate orientation. This procedure is automatically effected for all commercially available compounds to compare free energy to select compound which readily bind to the active site of the enzyme. Compound thus obtained is used as basic backbone, and more stable derivative is designed to synthesize more stable compound to develop new inhibitor of the enzyme.

It is preferred to design inhibitor using computer. For example, Indigo 2, a workstation supplied by Silicon Graphics, Inc., is suitable as a computer used for designing inhibitors. However, the computer is not limited to this one, and any computer may be used so long as it is tuned to run an appropriate program. Likewise, there is no particular limitation on the computer storage medium. For example, Insight II, a computer program commercially available from Accelrys, Inc. may be used as a program for designing. In particular, a program Ludi or DOCK, a module of Insight II specially prepared for such purposes, may be used alone or in combination to facilitate identification, searching, evaluation, or designing.

In designing of inhibitor, there are conceptually two steps. The first step is to find a compound which serves

153° 42°

m3. 480

r- 31. 15 %

10

15

20

25

28

as a starting point for drug design, known for those skilled in the art as a lead compound. The next step is optimization of the lead compound wherein compounds having better properties as medicines, for example, having better activity, having better pharmacokinetics, or having less toxicities and side effects are sought starting from the lead compound.

The step in which a lead compound is found using the structure coordinates of the PGDS complex provided by the present invention is achieved, for example, using a database in a computer into which structures of plural compounds have been entered, by a method in which interactions between three-dimensional structures of a compound in the database and PGDS are sorted out in a visual manner one after another, or by a method in which amplitudes of binding energy are calculated one after another using a computer and compounds which stably bind to PGDS are found from the database. Although it is preferred database of compound's structures contains that the determined three-dimensional structure coordinates entered therein, for low molecular weight compounds, it does not have to be a database of three-dimensional structure coordinates, because such low molecular weight compounds may change their conformations relatively freely, and also because three-dimensional structure coordinates for each

20

25 -

CA 02466264 2004-05-05

29

conformation can be derived by calculations in a relatively short time. In the latter cases, information for chemical covalent bonds of low molecular weight compounds are entered into the database.

Specifically, in the visual method, PGDS complexes are firstly displayed on a computer screen according to the structure coordinates of the present invention. In this step, although a three-dimensional representation may be made on the computer screen using, for example, Crystal Eye as described above, visual examinations can also be achieved without using such a three-dimensional representation.

to Chemical interactions considered be include electrostatic interaction, hydrophobic interaction, hydrogen bonding, van der Waals interaction, and the like. Thus, the structure should be comprehensively examined whether it is favorable for interactions, for example, so that functional groups which tend to bear negative charge such as carboxyl group, nitro group, and halogens interact with amino acid residues in PGDS having positive charge such as lysine, arginine, and histidine, so that functional groups which tend to bear positive charge such as amino, and guanidyl groups interact with amino acid imino, residues in PGDS having negative charge such as glutamic acid and aspartic; acid, so that hydrophobic functional

10

15

20

25

30

groups such as aliphatic groups and aromatic groups interact with hydrophobic amino acid residues such as isoleucine, valine, leucine, alanine, methionine, that and tryptophan phenylalanine, functional groups involved in hydrogen bonding such as hydroxyl and amide groups can form hydrogen bonds with backbone or side chain portions of PGDS, so that binding between the compound and PGDS causes no steric hindrance, and so that empty spaces are filled to minimize such empty spaces and maximize van der Waals interaction. Thus, electrostatic interaction, hydrophobic interaction, van der Waals interaction, hydrogen bonding, and other factors are visually and comprehensively considered to determine whether or not the compound is suitable as a lead compound.

In the method by energy evaluation with a computer, the energy of binding between a compound and PGDS is determined by molecular force field calculations. Such calculations are applied to each compound in the database to find a certain compound which may serve as a lead compound capable of stable binding. As a molecular force field used in the calculations, for example, CVFF, AMBER force field optimized for proteins, which is contained in DISCOVER module of Insight II program may be used. In addition, some computer programs like Ludi in Insight II

 $\mathfrak{G}_{\mathbb{R}^{3}}$ (

第4章

5

10

15

20

31

can automatically output candidates for lead compound when three-dimensional structure coordinates of interacting amino acid residues in a protein molecule are given, and such programs may also be applied to the method of present invention.

Furthermore, the visual examinations and the examination considering energy are not strictly sorted out from each other, and both techniques may be used in combination as appropriate.

The next step, in which optimization of the lead compound is conducted using the structure coordinates of the PGDS complex is used for the purpose of, where a lead compound which binds to PGDS has already been found by the above method or separately found in an experimental manner, optimizing the lead compound to obtain a better compound, for example, a compound having higher biological activities as an inhibitor or a compound having a structure favorable for oral administration as a medicine. It becomes possible only after a precise picture of chemical bonding between the lead compound and PGDS has been elucidated to directly find a site which is not optimal for interactions between the lead compound and PGDS and to design a new compound having an optimal functional group at that site, thereby enabling to design a more optimized compound.

For visual examinations with a computer, a model of

15

20 ...

25

the complex between the lead compound and PGDS is firstly displayed on a computer screen by entering the threedimensional structure coordinates of the lead compound and the structure coordinates of PGDS provided by the present invention into a computer on which a computer program expressing three-dimensional coordinates of molecules runs or into a storage medium of the computer. In this step, although a three-dimensional representation may be made on the computer screen using, for example, Crystal Eye as described above, visual examinations can also be achieved without using such a three-dimensional representation. is a logical designing of a compound to modify the lead compound so as to yield a compound more favorably or a compound having better interacting with PGDS pharmacokinetics while retaining the interactions.

Chemical interactions to be considered are the same as those in the step to find a lead compound, and a new compound having better properties as an inhibitor is finally designed starting from the lead compound.

In the method by energy evaluation with a computer, the energy of binding between a new compound designed from the lead compound and PGDS is determined by molecular force field calculations to judge the validity of the design. In addition, it is also possible to use a method in which other molecules such as solvent molecules are additionally

5

10 '

20

25

33

included in the model and the free energy is determined using molecular dynamics to derive a compound capable of stable binding. As a molecular force field used in the calculations, for example, CVFF, AMBER force field optimized for proteins, which is contained in DISCOVER module of Insight II program may be used.

Furthermore, the visual examinations and the method by energy evaluations may be used in combination as appropriate.

After a candidate compound for inhibitor of hematopoietic PGDS is thus selected, the selected compound is contacted with the enzyme in the presence of the substrate (prostaglandin H₂) to confirm an ability of the compound to inhibit the enzymatic activity (Shimizu, T., Yamamoto, S., and Hayaishi, O. (1979). Purification and properties of prostaglandin D synthase from rat brain. J. Biol. Chem. 254, 5222-5228). The measurement of the enzymatic activity is, for example, carried out as follows:

The substrate $[1^{-14}C]$ prostaglandin (PG)H₂ is prepared by reacting $[1^{-14}C]$ arachidonic acid with cyclooxygenase. Since PGH₂ is easily decomposed in aqueous solution (half-life: about 5 minutes), it is dried and stored at a low temperature (-80°C). The enzymatic reaction is carried out by injecting with microsyringe 1 μ 1 of PGH₂ solution (acetone or nonvolatile diethleneglycohol solution) to 50 μ

T. 63.14.

20

34

of 0.1 M phosphate buffer (pH 7.5) containing 1mM glutathione and the enzyme. After the reaction is effected for $30\!\sim\!60$ seconds, the reaction is quenched by adding 300 ice-cooled ether/methanol/0.1M citric mixture(20:4:1 v/v/v), and the substrate and the reaction product are extracted with ether under acidic condition. Anhydrous sodium sulfate is then added to the reaction solution to remove water. An aliquot (about 50 μ 1) of organic layer is applied on silica gel thin layer in a cool room (about 4° C) and silica gel thin layer chromatography (development solvent: ether/methanol/acetic acid (9:2:0.1)) is carried out in a freezer (-20 $^{\circ}\mathrm{C}$). After the development, radioactivity of PGD2 fraction and other fraction are measured and the enzyme activity is calculated from the ratio of conversion to PGD2.

Alternatively, enzyme reaction is carried out using commercially available non-labeled PGH₂. After the reaction, PGH₂ is decomposed to 12(S)-hydroxy-8,10-trans-5-cis-heptadecatrienolic acid with the treatment by FeCl₂ before quantifying with reverse phase HPLC using $11-\beta$ -PGE₂ as an internal standard or commercially available ELISA to quantify PGD₂.

Since inhibitor of hematopoietic PGDS can be antiallergic agent, sleep control agent, anti-obesity agent, and brain wound healing agent pharmacological activity of

.

10

20

25

. --- . -- -- --

35

the inhibitor is measured as each medicine.

A method for measuring pharmacological activity as anti-allergic agent is described in Fugner A, Bechtel W. D., Kuhn, F. J. and Mierau, J. In vitro and in vivo studies of epinastine. non-sedating antihistamine the Arzneimittelforschung, 38, 1446-1453 (1988); Kamei, C., Izushi, K., Adachi, Y., Shimazawa, M. and Tasaka, K. Inhibitory effect of epinastine on the type II-IV allergic guinea pigs. in mice, rats and reactions Arzneimittelforschung, 41, 1150-1153 (1991). Activity of anti-allergic agent is measured as follows: Candidate compound for prostaglandin D synthase inhibitor administered to animal or cell. Allergic reaction in animal or the production of prostaglandin D2 from cell is 15 measured to evaluate the activity in individual or the activity in cell of candidate compound. Alternatively, for example, any allergen is administered to animal before candidate compound for prostaglandin D synthase inhibitor is administered and systemic allergic reaction of the animal is observed to evaluate efficacy of the candidate Alternatively, for example, any allergen is compound. administered to animal to put the animal in allergic Cells are collected from the animal, and the condition. candidate compound of prostaglandin D synthase inhibitor is added to the cells in vitro. The amount of prostaglandin 5

5,70

10

15

20

36

 D_2 prepared by the stimulation of cell with allergen is measured to evaluate of efficacy of the candidate compound.

A method for measuring pharmacological activity as sleep control agent is described in Huang, Z.-H., Qu, W.-M., Li, W.-D., Mochizuki, T., Eguchi, N., Watanabe, T., Urade, Y. & Hayaishi, O. Arousal effect f orexin A depends on activation of the histaminergic system. Proc. Natl. Acad. Sci. USA, 98, 9965,9970 (2001). For example, the activity is measured as follows: When prostaglandin D synthase inhibitor is administered in ventricle of the brain of mouse, significant sleep disturbance occurs. On the other when prostaglandin D₂ is administered in ventricle of the brain of mouse, sleep is induced. Accordingly, the candidate compound of prostaglandin D synthase inhibitor is administered to animal and sleep condition is observed to evaluate medical efficacy of the candidate compound. The measurement of sleep condition of animal is, for example, carried out by measuring brain wave, electromyogram, activity, feeding and water-drinking amount, temperature, etc. from time to time.

A method for measuring pharmacological activity as anti-obesity agent is described in Ikeda H, Taketomi S, Sugiyama Y, Shimura Y, Sohda T, Meguro K & Fujita T. Effects of pioglitazone on glucose and lipid metabolism in normal and insulin resistant animals. Arzneimittelforschung,

· 5 · .

10

15

37

40, 156-162 (1990) and Sohda T, Mizuno K, Momose Y, Ikeda H, Fujita T & Meguro K. Studies on anti-diabetic agents. 11. Novel thiazolidinedione derivatives as potent hypoglycemic and hypolipidemic agents. J. Med. Chem., 35, 2617-2626 (1992).

The measurement of pharmacological activity as antiobesity agent is carried out as follows: Prostaglandin D synthase inhibitor candidate is administered to animal and activity of the candidate compound in individual is measured by measuring obesity condition of animal. example, high fatty food is given to animal and the candidate compound of prostaglandin D synthase inhibitor is then administered to animal. Obesity condition of animal is, for example, estimated by measuring body weight, active mass, feeding amount, fat weight, biochemical value in blood, etc. from time to time.

The measurement of activity of brain wound healing agent in individual is carried out as follows: the candidate compound is measured by of efficacy 20 dadministering the candidate compound of prostaglandin D synthase inhibitor to animal and measuring the degree of For example, it is measured by brain wound healing. administering the candidate compound of prostaglandin D synthase inhibitor to traumatic cerebral cortex wound (Stab wound) model (Salhia B et al, Brain Res., 888:87-97, 2000;

19.4°, 18.4° 1

€4] tru :

The fall of

30 22 25 16 3

42 70 .

5

CA 02466264 2004-05-05

38

Asahi M., et al., J. Neurosci., 21:7724-7732, 2001; Garcia de Yebenes E., et al., J. Neurochem., 73:812-1999). The measurement of brain wound healing is effected by measuring for example, amount of behavior, immunohistochemical staining, amount of expressed gene.

39

Table 1

Three-dimensional structural coordinate of the complex of human hematopoietic PGDS with calcium and glutathione

.5	MOTA	4966	N	TYR	A	8	-2.182	-4.051	33.067	1.00 13.69	Α
-	ATOM	4967	CA	TYR	A	8	-0.772	-4.337	33.302	1.00 13.75	A
	ATOM	4968	СВ	TYR	Α	8	0.013	-3.029	33.442	1.00 12.77	A
	ATOM	4969	CG	TYR	Α	8	1.519	-3.203	33.467	1.00 11.97	A
	ATOM	4970	CD1	TYR	A	8	2.186	-3.810	32.407	1.00 11.66	A
10	ATOM	4971	CE1	TYR	Α	8	3.576	-3.936	32.403	1.00 11.17	A
	ATOM	4972	CD2	TYR	A	8	2.279	-2.725	34.535	1.00 11.40	A
ŧ	ATOM	4973	CE2	TYR	A	8	3.666	-2.843	34.545	1.00 11.23	A
4,	ATOM	4974	CZ	TYR	A	8	4.307	-3.447	33.475	1.00 11.71	A
	ATOM	4975	ОН	TYR	A	8	5.680	-3.555	33.475	1.00 12.03	A
15	ATOM	4976	С	TYR	A	8	-0.651	-5.143	34.588	1.00 14.05	A
•	ATOM	4977	0	TYR	A	8	-1.650	-5.413	35.253	1.00 14.34	A
	ATOM	4978	N	PHE	A	9	0.569	-5.539	34.932	1.00 14.40	A
·.	ATOM	4979	CA	PHE	A	9	0.793	-6.283	36.165	1.00 15.06	A
· ·	ATOM	4980	СВ	PHE	A	9	2.198	-6.887	36.177	1.00 15.16	A
20	ATOM	4981	CG	PHE	A	9	2.369	-8.046	35.234	1.00 16.21	A
•.	ATOM	4982	CD1	PHE	Α	9	3.275	-7.974	34.180	1.00 16.15	A
·1	ATOM	4983	CD2	PHE	A	9	1.633	-9.214	35.406	1.00 16.28	A
: -	ATOM	4984	CE1	PHE	A	9	3.450	-9.050	33.307	1.00 16.56	A
	ATOM	4985	CE2	PHE	A	9	1.797	-10.299	34.540	1.00 16.94	A
25	ATOM	4986	CZ	PHE	A	9	2.708	-10.215	33.490	1.00 16.76	A

•	ATOM	4987	С	PHE	A	9	0.644	-5.318	37.339	1.00 15.24	A
	ATOM	4988	0	PHE	A	9	0.482	-4.111	37.139	1.00 14.55	A
	ATOM	4989	N	ASN	A	10	0.692	-5.847	38.559	1.00 15.45	A
	ATOM	4990	CA	ASN	Α	10	0.577	-5.003	39.742	1.00 15.61	A
5	ATOM	4991	СВ	ASN	A	10	-0.020	-5.775	40.925	1.00 16.21	A
:	ATOM	4992	CG	ASN	Α	10	-0.106	-4.926	42.189	1.00 16.84	A
	ATOM	4993	OD1	ASN	A	10	-0.304	-3.707	42.124	1.00 17.30	A
	ATOM	4994	ND2	ASN	A	10	0.032	-5.566	43.344	1.00 17.59	A
;	ATOM	4995	С	ASN	A	10	1.940	-4.458	40.125	1.00 15.68	A
10	АТОМ	4996	О	ASN	A	10	2.594	-4.955	41.040	1.00 15.31	A
	MOTA	4997	N	MET	A	11	2.371	-3.438	39.396	1.00 15.55	A
	ATOM	4998	CA	MET	A	11	3.644	-2.784	39.650	1.00 15.24	A
	ATOM	4999	СВ	MET	Α	11	4.823	-3.726	39.351	1.00 17.25	A
_1	ATOM	5000	CG	MET	A	11	4.880	-4.298	37.949	1.00 19.23	A
15	ATOM	5001	SD	MET	Α	11	6.385	-5.318	37.662	1.00 22.67	A
	ATOM	5002	CE	MET	A	11	5.752	-6.968	37.938	1.00 21.71	A
	ATOM	5003	С	MET	A	11	3.705	-1.543	38.772	1.00 14.23	A
	ATOM	5004	0	MET	A	11	2.864	-1.363	37.894	1.00 13.37	A
	ATOM	5005	N	ARG	A	12	4.671	-0.669	39.031	1.00 13.48	A
20	ATOM	5006	CA	ARG	Α	12	4.804	0.537	38.227	1.00 12.43	A
	MOTA	5007	СВ	ARG	Α	12	5.841	1.480	38.844	1.00 12.14	A
	ATOM	5008	CG	ARG	Ą	12	5.472	1.978	40.246	1.00 12.08	A
	ATOM	5009	CD	ARG	A	12	6.475	3.012	40.757	1.00 11.93	A
•	MOTA	5010	NE	ARG	A	12	7.833	2.474	40.769	1.00 12.08	A
25	ATOM	5011	CZ	ARG	A	12	8.301	1.623	41.680	1.00 12.27	A

41

4.4 A											
	MOTA	5012	NH1	ARG	Α	12	7.520	1.210	42.671	1.00 12.04	A
۲.,	MOTA	5013	NH2	ARG	A	12	9.550	1.174	41.589	1.00 11.83	A
:	ATOM	5014	С	ARG	A	12	5.232	0.080	36.838	1.00 12.15	A
	ATOM	5015	0	ARG	Α	12	4.517	0.285	35.858	1.00 12.05	A
5	ATOM	5016	N	GLY	A	13	6.393	-0.563	36.770	1.00 12.02	A
	ATOM	5017	CA	GLY	Α	13	6.898	-1.068	35.509	1.00 11.77	A
3.	ATOM	5018	С	GLY	A	13	6.769	-0.128	34.328	1.00 11.54	A
:	ATOM	5019	0	GLY	A	13	6.967	1.080	34.449	1.00 11.13	A
:	ATOM	5020	N	ARG	A	14	6.418	-0.702	33.183	1.00 11.75	A
10	ATOM	5021	CA	ARG	Α	14	6.277	0.040	31.939	1.00 11.78	A
	ATOM	5022	СВ	ARG	A	14 .	6.507	-0.912	30.766	1.00 12.75	A
۶.	ATOM	5023	CG	ARG	A	14	7.908	-1.488	30.767	1.00 14.50	A
<i>€</i>	ATOM	5024	CD	ARG	A	14	8.186	-2.373	29.566	1.00 15.97	A
	. ATOM	5025	NĚ	ARG	A	14	9.622	-2.433	29.307	1.00 18.20	A
15	ATOM	5026	CZ	ARG	A	14	10.303	-1.488	28.666	1.00 19.33	A
	ATOM	5027	NH1	ARG	A	14	9.678	-0.413	28.202	1.00 19.36	A
	ATOM	5028	NH2	ARG	A	14	11.613	-1.603	28.516	1.00 20.58	A
	ATOM	5029	С	ARG	A	14	4.945	0.753	31.770	1.00 11.74	A
	ATOM	5030	0	ARG	A	14	4.748	1.488	30.801	1.00 11.56	A
20	ATOM	5031	N	ALA	A	15	4.031	0.548	32.709	1.00 11.10	Α
	ATOM	5032	CA	ALA	A	15	2.728	1.191	32.618	1.00 10.68	A
	ATOM	5033	СВ	ALA	Ą	15	1.644	0.237	33.111	1.00 10.84	A
	ATOM	5034	С	ALA	A	15	2.665	2.492	33.400	1.00 10.23	A
	ATOM	5035	0	ALA	A	15	1.789	3.322	33.157	1.00 10.48	A
25	ATOM	5036	N	GLU	Α	16	3.600	2.679	34.327	1.00 9.72	A

 $\tilde{\gamma} \circ \gamma z$

1.91,21

: .:.

CA 02466264 2004-05-05

.· .		MOTA	5037	CA	GLU	A	16	3.618	3.870	35.169	1.00	9.10	A
	:::	MOTA	5038	СВ	GLU	A	16	4.808	3.809	36.132	1.00	9.10	A
	•	ATOM	5039	CG	GLU	A	16	4.692	4.729	37.336	1.00	9.09	A
		ATOM	5040	CD	GLU	A	16	3.527	4.369	38.243	1.00	9.08	A
5		ATOM	5041	OE1	GLU	A	16	2.920	3.291	38.061	1.00	9.56	A
	•	ATOM	5042	OE2	GLU	A	16	3.218	5.163	39.150	1.00	9.58	A
	٠.	ATOM	5043	С	GLU	Α	16	3.646	5.194	34.409	1.00	9.31	A
•		ATOM	5044	0	GLU	Α	16	3.032	6.170	34.837	1.00	8.78	Α
		ATOM	5045	N	ILE	A	17	4.361	5.237	33.288	1.00	9.01	A
10		ATOM	5046	CA	ILE	A	17	4.435	6.471	32.517	1.00	8.95	A
		ATOM	5047	СВ	ILE	A	17	5.388	6.335	31.303	1.00	9.06	A
		ATOM	5048	CG2	ILE	À	17	4.929	5.211	30.385	1.00	8.42	A
		ATOM	5049	CG1	ILE	A	17	5.449	7.658	30.531	1.00	8.92	A
	<u>:</u> .	ATOM	5050	CD1	ILE	A	17	5.944	8.827	31.354	1.00	9.68	A
15		ATOM	5051	С	ILE	A	17	3.038	6.861	32.044	1.00	9.27	A
÷ .		ATOM	5052	0	ILE	A	17	2.701	8.044	31.989	1.00	9.18	A
		ATOM	5242	N	TRP	Α	39	-2.568	-14.235	33.625	1.00	32.11	A
		ATOM	5243	CA	TRP	A	39	-1.844	-13.679	32.486	1.00	31.66	A
	•	MOTA	5244	СВ	TRP	A	39	-0.384	-13.406	32.876	1.00	30.89	A
20	<i>.</i> *.	ATOM	5245	CG	TRP	A	39	0.496	-12.996	31.726	1.00	30.01	A
	•	MOTA	5246	CD2	TRP	A	39	0.197	-12.029	30.710	1.00	29.51	A
	•	ATOM	5247	CE2	TRP	A	39	1.310	-11.981	29.840	1.00	29.33	A
÷		ATOM	5248	CE3	TRP	A	39	-0.901	-11.197	30.449	1.00	29.25	A
•		ATOM	5249	CD1	TRP	A	39	1.741	-13.478	31.440	1.00	29.80	A
25	:	ATOM	5250	NE1	TRP	A	39	2.237	-12.875	30.308	1.00	29.45	A

· .	·	MOTA	5251	CZ2	TRP	A	39	1.356	-11.136	28.726	1.00	29.02	A
		MOTA	5252	CZ3	TRP	A	39	-0.854	-10.356	29.340	1.00	28.91	Α
		ATOM	5253	сн2	TRP	A	39	0.269	-10.333	28.493	1.00	28.96	A
•	•	ATOM	5254	С	TRP	A	39	-1.892	-14.593	31.255	1.00	31.85	A
5	*.	ATOM	5255	0	TRP	A	39	-2.215	-14.142	30.156	1.00	31.82	A
		ATOM	5256	N	PRO	A	40	-1.571	-15.888	31.424	1.00	31.95	A
	1	ATOM	5257	CD	PRO	A	40	-1.187	-16.569	32.675	1.00	32.13	Α
•		ATOM	5258	CA	PRO	A	40	-1.586	-16.839	30.306	1.00	32.00	A
		ATOM	5259	СВ	PRO	A	40	-1.477	-18.186	31.007	1.00	32.11	A
10	•	ATOM	5260	CG	PRO	A	40	-0.591	-17.866	32.170	1.00	31.99	A
		ATOM	5261	С	PRO	A	40	-2.830	-16.740	29.427	1.00	31.94	A
		ATOM	5262	0	PRO	A	40	-2.734	-16.751	28.200	1.00	32.11	A
	1.	ATOM	5263	N	GLU	A	41	-3.995	-16.645	30.060	1.00	31.73	Α
	: .	ATOM	5264	CA	GLU	Α	41	-5.258	-16.542	29.338	1.00	31.51	A
15	<i>:</i>	ATOM	5265	СВ	GLU	Α	41	-6.433	-16.620	30.319	1.00	32.22	A
.•		ATOM	5266	CG	GLU	A	41	-7.807	-16.488	29.668	1.00	33.37	A
	•	ATOM	5267	CD	GLU	A	41	-8.272	-17.772	29.001	1.00	34.21	A
•		ATOM	5268	OE1	GLU	A	41	-7.544	-18.301	28.131	1.00	34.63	A
		ATOM	5269	OE2	GLU	A	41	-9.374	-18.251	29.351	1.00	34.59	A
20	,	MOTA	5270	С	GLU	A	41	-5.344	-15.236	28.550	1.00	30.86	A
		ATOM	5271	0	GLU	A	41	-5.612	-15.240	27.347	1.00	30.86	A
·: .	. ** : _,	ATOM	5272	N	ILE	A	42	-5.116	-14.122	29.239	1.00	29.82	A
	:	ATOM	5273	CA	ILE	A	42	-5.174	-12.797	28.624	1.00	28.89	Α
٠.	٦		5274	СВ	ILE				-11.697				A
25		MOTA	5275	CG2	ILE	A	42	-4.936	-10.323	29.011	1.00	29.10	A

44

	ATOM 5	276 CG1	ILE A	42	-5.973	-11.780	30.776	1.00 29.24	A
	ATOM 5	277 CD1	ILE A	42	-5.692	-10.894	31.969	1.00 29.54	A
	ATOM 5	278 C	ILE A	42	-4.162	-12.637	27.492	1.00 28.04	A
	ATOM 5	279 0	ILE A	42	-4.476	-12.078	26.442	1.00 27.96	A
5	ATOM 5	280 N	LYS A	43	-2.949	-13.128	27.718	1.00 27.12	A
	ATOM 5	281 CA	LYS A	43	-1.877	-13.041	26.733	1.00 26.46	A
	ATOM 5	282 CB	LYS A	43	-0.644	-13.791	27.243	1.00 26.21	A
٠.	атом 5	283 CG	LYS A	43	0.542	-13.791	26.286	1.00 26.04	A
	ATOM 5	284 CD	LYS A	43	1.639	-14.723	26.785	1.00 25.92	A
10	ATOM 5	285 CE	LYS A	43	2.864	-14.705	25.878	1.00 26.04	A
1	ATOM 5	286 NZ	LYS A	43	3.565	-13.389	25.888	1.00 25.88	A
	ATOM 5	287 C	LYS A	43	-2.282	-13.599	25.371	1.00 26.05	A
	ATOM 5	288 0	LYS A	43	-1.989	~13.002	24.333	1.00 25.81	A
	атом 5	328 N	GLY A	49	0.690	-10.284	22.410	1.00 14.48	A
15	ATOM 5	329 CA	GLY A	49	0.907	-10.936	23.690	1.00 14.19	A
	ATOM 5	330 C	GLY A	49	1.776	-10.250	24.725	1.00 14.00	A
	ATOM 5	331 0	GLY A	49	2.495	-10.913	25.474	1.00 13.78	A
:	ATOM 5	332 N	LYS A	50	1.702	-8.928	24.792	1.00 13.70	A
	ATOM 5	333 CA	LYS A	50	2.505	-8.180	25.749	1.00 13.72	A
20	ATOM 5	334 CB	LYS A	50	3.703	-7.544	25.032	1.00 14.43	Α
	ATOM 5	335 CG	LYS A	50	4.612	-8.550	24.344	1.00 15.06	Α
	ATOM 5	336 CD	LYS A	50	5.479	-9.277	25.357	1.00 15.66	Α
9 1	ATOM 5	337 CE	LYS A	50	6.250	-10.411	24.705	1.00 16.36	Α
	ATOM 5	338 NZ	LYS A	50	6.972	-9.943	23.493	1.00 16.93	A
25	ATOM 5	339 C	LYS A	50	1.689	-7.085	26.416	1.00 13.59	A

3017.

J 100 E

· ; .	ATOM	5340	0	LYS A	50	0.670	-6.644	25.888	1.00 13.10	A
.:	MOTA	5341	N	ILE A	51	2.142	-6.661	27.588	1.00 13.34	A
:	MOTA	5342	CA	ILE A	51	1.484	-5.588	28.305	1.00 13.51	A
	ATOM	5343	СВ	ILE A	51	0.720	-6.100	29.544	1.00 14.11	A
5	MOTA	5344	CG2	ILE A	51	-0.628	-6.656	29.113	1.00 14.02	A
	ATOM	5345	CG1	ILE A	51	1.563	-7.135	30.299	1.00 14.40	A
	ATOM	5346	CD1	ILE A	51	0.909	-7.639	31.571	1.00 15.17	A
	MOTA	5347	С	ILE A	51	2.543	-4.578	28.724	1.00 13.35	A
	ATOM	5348	0	ILE A	51	3.731	-4.892	28.769	1.00 13.56	A
10	ATOM	5349	N	PRO A	52	2.122	-3.355	29.061	1.00 13.08	A
	ATOM	5350	CD	PRO A	52	3.043	-2.244	29.369	1.00 13.17	A
	ATOM	5351	CA	PRO A	52	0.732	-2.892	29.086	1.00 12.94	Α
	ATOM	5352	СВ	PRO A	52	0.838	-1.561	29.813	1.00 12.82	A
	АТОМ	5353	CG	PRO A	52	2.132	-1.022	29.259	1.00 13.02	A
15	ATOM	5354	С	PRO A	52	0.017	-2.716	27.749	1.00 12.81	A
	АТОМ	5355	0	PRO A	52	0.625	-2.677	26.677	1.00 12.35	A
	ATOM	5356	N	ILE A	53	-1.300	-2.611	27.846	1.00 12.88	A
	ATOM	5357	CA	ILE A	53	-2.140	-2.343	26.697	1.00 13.33	A
	MOTA	5358	СВ	ILE A	53	-2.916	-3.585	26.200	1.00 13.90	A
20	ATOM	5359	CG2	ILE A	53	-1.950	-4.591	25.585	1.00 14.50	A
	MOTA	5360	CG1	ILE A	53	-3.736	-4.186	27.339	1.00 14.62	A
• •	ATOM	5361	CD1	ILE A	53	-4.703	-5.260	26.878	1.00 15.26	A
	ATOM	5362	С	ILE Ą	53	-3.132	-1.312	27.213	1.00 13.08	A
<i>:</i>	ATOM	5363	0	ILE A	53	-3.373	-1.222	28.421	1.00 13.05	A
25	MOTA	5423	N	HIS A	62	-1.221	-0.970	22.034	1.00 11.06	A

	ATOM	5424	CA	HIS	A	62 -	0.137	-1.598	22.788	1.00	10.38	A
•	ATOM	5425	СВ	HIS	A	62	0.135	-3.029	22.287	1.00	10.67	A
	ATOM	5426	CG	HIS	A	62	0.735	-3,103	20.917	1.00	11.13	A
	ATOM	5427	CD2	HIS	A	62	1.972	-3.468	20.504	1.00	10.67	A
5	ATOM	5428	ND1	HIS	A	62	0.027	-2.801	19.773	1.00	11.52	A
	. ATOM	5429	CE1	HIS	A	62	0.800	-2.978	18.718	1.00	11.13	A
	ATOM	5430	NE2	HIS	A	62	1.987	-3.383	19.134	1.00	12.00	A
	ATOM	5431	С	HIS	A	62	1.136	-0.748	22.707	1.00	9.83	A
	ATOM	5432	0	HIS	A	62	1.162	0.263	22.007	1.00	9.03	A
10	MOTA	5433	N	GLN	Α	63	2.169	-1.173	23.436	1.00	9.33	A
	MOTA	5434	CA	GLN	A	63	3.456	-0.486	23.515	1.00	8.74	A
	MOTA	5435	СВ	GLN	A	63	4.009	-0.166	22.119	1.00	8.90	A
•	MOTA	5436	CG	GLN	Α	63	4.690	-1.358	21.414	1.00	8.45	A
	MOTA	5437	CD	GLN	A	63	6.016	-1.771	22.058	1.00	9.03	A
15	MOTA	5438	OE1	GLN	A	63	6.588	-1.032	22.858	1.00	7.87	A
	ATOM	5439	NE2	GLN	Α	63	6.513	-2.954	21.691	1.00	8.38	A
	MOTA	5440	С	GLN	A	63	3.316	0.778	24.362	1.00	8.66	A
	MOTA	5441	0	GLN	A	63	2.739	1.783	23.938	1.00	7.74	A
	MOTA	5442	N	SER	A	64	3.855	0.704	25.574	1.00	8.31	A
20	MOTA	5443	CA	SER	A	64	3.766	1.789	26.543	1.00	8.33	A
	ATOM	5444	СВ	SER	A	64	4.595	1.446	27.787	1.00	8.01	A
		5445	OG	SER	A	64	5.978	1.416	27.493	1.00	7.87	A
	ATOM	5446	С	SER	Ą	64	4.153	3.172	26.040	1.00	8.36	A
	ATOM	5447	0	SER	A	64	3.435	4.133	26.290	1.00	8.26	A
25	АТОМ	5448	N	LEU	A	65	5.274	3.287	25.333	1.00	8.41	A

47

			ATOM	5449	CA	LEU	A	65	5.708	4.601	24.866	1.00	8.36	A
			MOTA	5450	СВ	LEU	A	65	7.197	4.568	24.514	1.00	8.81	A
			ATOM	5451	CG	LEU	A	65	8.082	4.104	25.687	1.00	9.51	A
			MOTA	5452	CD1	LEU	A	65	9.553	4.275	25.322	1.00	10.70	A
	5		ATOM	5453	CD2	LEU	A	65	7.763	4.915	26.941	1.00	9.59	A
		•	ATOM	5454	С	LEU	A	65	4.867	5.102	23.691	1.00	8.52	A
			ATOM	5455	0	LEU	A	65	4.659	6.308	23.540	1.00	8.38	A
			ATOM	5662	N	ASP	A	93	13.380	7.412	24.678	1.00	8.42	A
		V.	ATOM	5663	CA	ASP	A	93	13.975	6.203	24.118	1.00	9.01	A
٠.	10		ATOM	5664	СВ	ASP	A	93	14.076	6.291	22.584	1.00	9.85	A
			ATOM	5665	CG	ASP	A	93	12.788	5.838	21.886	1.00	11.05	A
			ATOM	5666	OD1	ASP	A	93	12.750	5.784	20.630	1.00	11.80	A
			ATOM	5667	OD2	ASP	A	93	11.809	5.531	22.605	1.00	11.10	A
			MOTA	5668	С	ASP	A	93	15.344	5.869	24.740	1.00	8.95	A
	15		ATOM	5669	0	ASP	A	93	15.656	4.696	24.951	1.00	9.47	A
			ATOM	5670	N	THR	A	94	16.156	6.881	25.036	1.00	8.96	A
			MOTA	5671	CA	THR	A	94	17.462	6.638	25.661	1.00	8.70	A
•	:		ATOM	5672	СВ	THR	A	94	18.240	7.965	25.849	1.00	9.08	A
			ATOM	5673	OG1	THR	A	94	18.678	8.430	24.568	1.00	8.81	A
	20		ATOM	5674	CG2	THR	A	94	19.462	7.778	26.759	1.00	8.34	A
			ATOM	5675	С	THR	A _.	94	17.264	5.948	27.017	1.00	9.09	A
			ATOM	5676	0	THR	Ą	94	17.967	4.987	27.347	1.00	8.99	A
•		;	ATOM	5677	N	LEU	A	95	16.302	6.442	27.792	1.00	8.65	A
			ATOM	5678	CA	LEU	A	95	15.996	5.867	29.094	1.00	9.14	A
	25		ATOM	5679	СВ	LEU	Α	95	14.965	6.725	29.838	1.00	9.16	A

भगा अल

15 1 15 10

	ATOM 5680	CG	LEU A	95	15.454	8.091	30.320	1.00	9.32	A
	атом 5681	CD1	LEU A	95	14.308	8.874	30.967	1.00	9.37	A
	ATOM 5682	CD2	LEU A	95	16.580	7.876	31.328	1.00	9.77	A
·	ATOM 5683	С	LEU A	95	15.462	4.452	28.934	1.00	9.18	A
5	ATOM 5684	0	LEU A	95	15.891	3.539	29.634	1.00	8.68	A
	ATOM 5685	N	ASP A	96	14.529	4.272	28.003	1.00	9.39	A
	ATOM 5686	CA	ASP A	96	13.950	2.960	27.759	1.00	9.93	A
	ATOM 5687	СВ	ASP A	96	12.878	3.058	26.668	1.00	11.27	A
	ATOM 5688	CG	ASP A	96	12.035	1.796	26.564	1.00	12.51	A
10	ATOM 5689	OD1	ASP A	96	11.700	1.220	27.616	1.00	14.48	A
	ATOM 5690	OD2	ASP A	96	11.698	1.382	25.444	1.00	13.59	A
	ATOM 5691	С	ASP A	96	15.051	1.981	27.354	1.00	9.66	A
	ATOM 5692	0	ASP A	96	15.094	0.854	27.845	1.00	9.47	A
	ATOM 5693	N	ASP A	97	15.951	2.419	26.476	1.00	9.43	A
15	ATOM 5694	CA	ASP A	97	17.054	1.567	26.034	1.00	9.98	A
	ATOM 5695	СВ	ASP A	97	18.033	2.334	25.134	1.00	9.49	A
	атом 5696	CG	ASP A	97	17.466	2.650	23.760	1.00	10.73	A
	ATOM 5697	OD1	ASP A	97	18.142	3.390	23.013	1.00	10.05	A
	ATOM 5698	OD2	ASP A	97	16.365	2.164	23.425	1.00	10.69	A
20	ATOM 5699	С	ASP A	97	17.845	1.038	27.230	1.00	10.11	A
	ATOM 5700	0	ASP A	97	18.159	-0.150	27.296	1.00	10.03	A
	ATOM 5701	N	PHE A	98	18.185	1.923	28.164	1.00	10.63	A
	ATOM 5702	CA	рне д	98	18.965	1.507	29.325	1.00	11.09	A
	ATOM 5703	СВ	PHE A	98	19.440	2.717	30.134	1.00	11.78	A
25	ATOM 5704	ĊG	PHE A	98	20.383	2.358	31.255	1.00	12.44	A

	: ,	АТОМ	5705	CD1	PHE	A	98	21.628	1.793	30.983	1.00 12.99	A
-		ATOM	5706	CD2	PHE	A	98	20.016	2.555	32.579	1.00 12.82	A
		MOTA	5707	CE1	PHE	A	98	22.494	1.425	32.022	1.00 13.35	A
	• (ATOM	5708	CE2	PHE	A	98	20.869	2.193	33.623	1.00 13.21	. A
5		MOTA	5709	CZ	PHE	Α	98	22.109	1.627	33.343	1.00 13.21	. А
•	(,	MOTA	5710	С	PHE	A	98	18.181	0.565	30.231	1.00 11.33	A
		MOTA	5711	0	PHE	A	98	18.683	-0.494	30.616	1.00 11.57	Α
		MOTA	5712	N	MET	A	99	16.951	0.944	30.568	1.00 11.37	A
		MOTA	5713	CA	MET	A	99	16.125	0.113	31.429	1.00 12.06	A
10		MOTA	5714	СВ	MET	A	99	14.782	0.796	31.715	1.00 12.55	A
		MOTA	5715	CG	MET	A	99	14.894	2.142	32.413	1.00 13.10) A
		MOTA	5716	SD	MET	A	99	15.806	2.070	33.972	1.00 14.07	A
		MOTA	5717	CE	MET	A	99	14.630	1.211	35.020	1.00 14.27	A
		MOTA	5718	С	MET	A	99	15.877	-1.260	30.812	1.00 12.60) A
15		ATOM	5719	0	MET	A	99	15.754	-2.253	31.528	1.00 12.65	5 A
÷		ATOM	5720	N	SER	A :	100	15.807	-1.316	29.484	1.00 12.96	5 A
		ATOM	5721	CA	SER	A :	100	15.567	-2.576	28.784	1.00 13.81	L A
		ATOM	5722	СВ	SER	A :	100	15.121	-2.302	27.344	1.00 14.23	B A
		ATOM	5723	OG	SER	A :	100	13.828	-1.725	27.328	1.00 15.92	2 A
20		ATOM	5724	С	SER	A	100	16.789	-3.494	28.785	1.00 14.13	3 A
		ATOM	5725	0	SER	A :	100	16.669	-4.686	28.507	1.00 14.04	1 A
		ATOM	5726	N	CYS	Ą	101	17.959	-2.938	29.097	1.00 14.6	7 A
		ATOM	5727	CA	CYS 2	A 1	01	19.187	-3.723	29.152	1.00 15.64	A
		ATOM	5728	СВ	CYS	Α	101	20.415	-2.812	29.235	1.00 16.1	A 0
25	.•	ATOM	5729	SG	CYS	A	101	20.893	-2.013	27.701	1.00 17.9	2 A

	MOTA	5730	С	CYS	Ą	101	19.197	-4.670	30.350	1.00	15.85	A
. •	MOTA	5731	0	CYS	A	101	19.926	-5.662	30.350	1.00	15.88	Α
	ATOM	5732	N	PHE	A	102	18.404	-4.361	31.373	1.00	15.73	A
	ATOM	5733	CA	PHE	A	102	18.343	-5.214	32.562	1.00	15.76	A
5	MOTA	5734	СВ	PHE	A	102	17.748	-4.462	33.754	1.00	15.27	A
	ATOM	5735	CG	PHE	A	102	18.613	-3.348	34.258	1.00	15.10	A
	ATOM	5736	CD1	PHE	A	102	18.642	-2.125	33.600	1.00	14.99	A
	ATOM	5737	CD2	PHE	A	102	19.414	-3.527	35.380	1.00	14.73	A
	ATOM	5738	CE1	PHE	A	102	19.457	-1.092	34.050	1.00	15.09	A
10	ATOM	5739	CE2	PHE	Α	102	20.237	-2.500	35.841	1.00	14.94	A
	ATOM	5740	CZ	PHE	A	102	20.256	-1.280	35.174	1.00	14.83	A
	ATOM	5741	С	PHE	Α	102	17.505	-6.455	32.295	1.00	16.19	A
:	MOTA	5742	0	PHE	A	102	16.415	-6.366	31.728	1.00	15.63	A
	MOTA	5743	N	PRO	A	103	18.009	-7.632	32.699	1.00	16.76	A
15	MOTA	5744	CD	PRO	A	103	19.356	-7.845	33.260	1.00	17.02	A
	ATOM	5745	CA	PRO	A	103	17.319	-8.914	32.512	1.00	17.47	A
	ATOM	5746	СВ	PRO	Α	103	18.456	-9.923	32.609	1.00	17.20	A
	MOTA	5747	CG	PRO	A	103	19.315	-9.315	33.668	1.00	17.07	A
	MOTA	5748	С	PRO	A	103	16.246	-9.145	33.577	1.00	18.16	A
20	MOTA	5749	0	PRO	Α	103	16.363 -	10.043	34.418	1.00	18.22	A
	ATOM	5750	N	TRP	Α	104	15.197	-8.331	33.525	1.00	18.78	A
. •	ATOM	5751	CA	TRP	A	104	14.099	-8.414	34.482	1.00	19.84	A
	ATOM	5752	СВ	TRP	A	104	13.017	-7.381	34.141	1.00	18.95	A
	ATOM	5753	CG	TRP	Α	104	13.517	-5.971	34.076	1.00	18.24	A
25	АТОМ	5754	CD2	TRP	Α	104	13.896	-5.144	35.182	1.00	17.79	Α

51

	- ATOM 5755	CE2 TRP A 104	14.321 -3.906	34.652 1.00 17.69 A	
	ATOM 5756	CE3 TRP A 104	13.921 -5.329	36.572 1.00 17.54 A	
•	ATOM 5757	CD1 TRP A 104	13.720 -5.224	32.951 1.00 17.72 A	
	ATOM 5758	NE1 TRP A 104	14.201 -3.981	33.289 1.00 17.64 A	
5	ATOM 5759	CZ2 TRP A 104	14.765 -2.856	35.463 1.00 17.79 A	
. ,	ATOM 5760	CZ3 TRP A 104	14.363 -4.282	37.379 1.00 17.58 A	
:	ATOM 5761	CH2 TRP A 104	14.778 -3.064	36.820 1.00 17.48 A	
:	ATOM 5762	C TRP A 104	13.449 -9.790	34.572 1.00 20.99 A	
	ATOM 5763	O TRP A 104	13.031 -10.207	35.650 1.00 21.33 A	
10	ATOM 5764	N ALA A 105	13.359 -10.493	33.447 1.00 22.46 A	
	ATOM 5765	CA ALA A 105	12.720 -11.807	33.434 1.00 23.88 A	
	ATOM 5766	CB ALA A 105	11.878 -11.961	32.169 1.00 23.69 A	
	ATOM 5767	C ALA A 105	13.685 -12.982	33.565 1.00 24.90 A	
	ATOM 5768	O ALA A 105	13.262 -14.136	33.576 1.00 25.13 A	
.15	ATOM 5769	N GLU A 106	14.976 -12.686	33.675 1.00 26.10 A	
.,	ATOM 5770	CA GLU A 106	15.996 -13.721	33.803 1.00 27.43 A	
,	ATOM 5771	CB GLU A 106	17.388 -13.083	33.790 1.00 27.61 A	
	ATOM 5772	CG GLU A 106	18.550 -14.065	33.842 1.00 28.16 A	
*. · ·	ATOM 5773	CD GLU A 106	18.455 -15.144	32.775 1.00 28.35 A	
20	ATOM 5774	OE1 GLU A 106	17.850 -16.200	33.045 1.00 28.68 A	
	ATOM 5775	OE2 GLU A 106	18.973 -14.931	31.662 1.00 28.90 A	
	ATOM 5776	C GLU A 106	15.823 -14.543	35.077 1.00 28.31 A	
	ATOM 5777	O GLU A 106	15.898 -14.010	36.185 1.00 28.41 A	
	ATOM 5778	•	15.591 -15.842	34.908 1.00 29.48 A	

 $5 \odot 2^{-}$

 $\delta(\mathcal{H})$

3.00

 $r \sim r$

CA 02466264 2004-05-05

,	ATOM 5780	СВ	LYS A 107	14.695 -18.028	35.594	1.00 31.06	A
	* ATOM 5781	CG	LYS A 107	13.187 -18.016	35.779	1.00 31.97	Α
• .	ATOM 5782	CD	LYS A 107	12.495 -17.030	34.864	1.00 32.92	A
	ATOM 5783	CE	LYS A 107	10.983 -17.201	34.945	1.00 33.65	A
5	ATOM 5784	NZ	LYS A 107	10.485 -17.067	36.346	1.00 34.05	A
	ATOM 5785	С	LYS A 107	16.775 -17.133	36.630	1.00 31.06	A
	ATOM 5786	0	LYS A 107	16.874 -17.465	37.810	1.00 31.19	A
•	ATOM 5787	N	LYS A 108	17.810 -17.094	35.796	1.00 31.69	A
	ATOM 5788	CA	LYS A 108	19.163 -17.421	36.231	1.00 32.35	A
10	ATOM 5789	СВ	LYS A 108	20.082 -17.563	35.017	1.00 32.50	A
	ATOM 5790	CG	LYS A 108	19.634 -18.632	34.033	1.00 32.81	A
	ATOM 5791	CD	LYS A 108	20.454 -18.602	32.757	1.00 33.35	A
	ATOM 5792	CE	LYS A 108	19.977 -19.664	31.777	1.00 33.34	A
	ATOM 5793	NZ	LYS A 108	20.660 -19.552	30.454	1.00 33.69	A
15	ATOM 5794	С	LYS A 108	19.668 -16.305	37.143	1.00 32.68	A
	ATOM 5795	0	LYS A 108	20.180 -15.288	36.675	1.00 32.69	A
	ATOM 5796	N	GLN A 109	19.518 -16.510	38.447	1.00 33.05	A
	ATOM 5797	CA	GLN A 109	19.923 -15.529	39.443	1.00 33.40	A
	ATOM 5798	СВ	GLN A 109	19.719 -16.101	40.846	1.00 34.05	A
20	ATOM 5799	CG	GLN A 109	18.943 -15.175	41.763	1.00 34.95	Α
	ATOM 5800	CD	GLN A 109	17.561 -14.854	41.223	1.00 35.27	A
	ATOM 5801	OE1	GLN A 109	16.934 -13.878	41.633	1.00 35.73	A
	ATOM 5802	NE2	GLN A 109	17.077 -15.682	40.301	1.00 35.62	A
	ATOM 5803	С	GLN A 109	21.360 -15.042	39.293	1.00 33.21	A
25	ATOM 5804	0	GLN A 109	21.619 -13.842	39.374	1.00 33.28	A

	MOTA	5805	N	ASP A	110	22.290	-15.966	39.078	1.00	32.78	A
	MOTA	5806	CA	ASP A	110	23.692	-15.597	38.927	1.00	32.30	A
	MOTA	5807	СВ	ASP A	110	24.569	-16.852	38.841	1.00	32.93	A
	ATOM	5808	CG	ASP A	110	24.303	-17.670	37.592	1.00	33.42	A
. 5	'ATOM	5809	OD1	ASP A	110	23.137	-18.065	37.371	1.00	33.92	A
	ATOM	5810	OD2	ASP A	110	25.263	-17.921	36.832	1.00	33.95	A
	ATOM	5811	С	ASP A	110	23.891	-14.734	37.684	1.00	31.55	A
	ATOM	5812	0	ASP A	110	24.641	-13.759	37.708	1.00	31.47	A
	MOTA	5813	N	VAL A	111	23.211	-15.096	36.600	1.00	30.50	A
10	ATOM	5814	CA	VAL A	111	23.310	-14.352	35.350	1.00	29.55	A
	MOTA	5815	СВ	VAL A	111	22.661	-15.130	34.188	1.00	29.61	A
	MOTA	5816	CG1	VAL A	111	22.743	-14.322	32.907	1.00	29.78	A
	MOTA	5817	CG2	VAL A	111	23.353	-16.469	34.017	1.00	29.84	A
	MOTA	5818	С	VAL A	111	22.613	-13.000	35.485	1.00	28.61	Α
15	MOTA	5819	0	VAL A	111	23.069	-11.995	34.939	1.00	28.38	A
	MOTA	5820	N	LYS A	112	21.509	-12.986	36.224	1.00	27.55	A
*	MOTA	5821	CA	LYS A	112	20.746	-11.763	36.435	1.00	26.48	A
	MOTA	5822	СВ	LYS A	112	19.414	-12.083	37.117	1.00	26.47	A
	MOTA	5823	CG	LYS A	112	18.452	-10.907	37.177	1.00	25.94	A
20	MOTA	5824	CD	LYS A	112	17.173	-11.278	37.904	1.00	26.05	A
•	MOTA	5825	CE	LYS A	112	16.181	-10.125	37.906	1.00	25.77	A
	ATOM	5826	NZ	LYS A	112	14.951	-10.457	38.676	1.00	25.64	A
	ATOM	5827	С	LYS A	112	21.523	-10.765	37.287	1.00	26.12	A
	ATOM	5828	0	LYS A	112	21.631	-9.589	36.941	1.00	25.60	A
25	ATOM	5829	N	GLU A	113	22.062	-11.243	38.404	1.00	25.24	A

54

	ATOM 5830	CA G	GLU A 113	22.818 -	-10.393	39.314	1.00 25.10	A
	ATOM 5831	CB G	SLU A 113	23.128 -	11.159	40.605	1.00 25.39	A
<i>i</i> ,	ATOM 5832	CG G	GLU A 113	23.862 -	10.347	41.669	1.00 25.63	A
	ATOM 5833	CD G	SLU A 113	23.026	-9.213	42.248	1.00 25.83	A
5	ATOM 5834	OE1 G	SLU A 113	23.522	-8.525	43.170	1.00 25.56	A
	ATOM 5835	OE2 G	SLU A 113	21.880	-9.008	41.786	1.00 25.58	A
	ATOM 5836	C G	SLU A 113	24.113	-9.891	38.676	1.00 24.67	A
	ATOM 5837	0 G	GLU A 113	24.578	-8.791	38.975	1.00 24.33	A
-	ATOM 5838	N · G	GLN A 114	24.689 -	-10.702	37.796	1.00 24.42	A
10	ATOM 5839	CA G	GLN A 114	25.926 -	-10.341	37.116	1.00 24.24	A
	ATOM 5840	CB G	GLN A 114	26.438 -	-11.538	36.308	1.00 24.91	A
. !	ATOM 5841	CG G	GLN A 114	27.868 -	-11.417	35.789	1.00 25.97	A
	ATOM 5842	CD G	GLN A 114	28.030 -	-10.372	34.700	1.00 26.74	A
	ATOM 5843	OE1 G	GLN A 114	27.278 -	-10.353	33.723	1.00 26.88	A
15	ATOM 5844	NE2 G	GLN A 114	29.026	-9.502	34.856	1.00 27.12	A
	ATOM 5845	C G	SLN A 114	25.685	-9.148	36.193	1.00 23.68	A
	ATOM 5846	0 0	GLN A 114	26.465	-8.194	36.180	1.00 23.45	A
	ATOM 5847	N M	ÆТ А 115	24.598	-9.196	35.429	1.00 22.98	A
	ATOM 5848	CA M	ÆТ А 115	24.284	-8.113	34.503	1.00 22.57	A
20	АТОМ 5849	CB M	ÆТ А 115	23.229	-8.566	33.489	1.00 24.00	A
	атом 5850	CG M	ÆT A 115	22.980	-7.560	32.371	1.00 25.61	A
	ATOM 5851	SD M	MET A 115	24.507	-6.939	31.592	1.00 28.29	A
	атом 5852	CE M	MET A 115	24.966	-8.333	30.583	1.00 27.44	A
	атом 5853	C M	MET A 115	23.815	-6.855	35.228	1.00 21.47	A
. 25	АТОМ 5854	O M	MET A 115	24.191	-5.747	34.851	1.00 20.89	A

20 of 20

್ಷಕ್ಕೆ ಎಡೆ ಆಕ್ಕೆ ಸೇ

 $j_{1,2,3,3}\in \mathbb{Z}$

CA 02466264 2004-05-05

55

4.	ATOM	5855	N	PHE	A	116	22.998	-7.025	36.265	1.00	20.55	A
÷ .	ATOM	5856	CA	PHE	A	116	22.515	-5.882	37.033	1.00	19.83	A
•	. ATOM	5857	СВ	PHE	A	116	21.626	-6.334	38.195	1.00	19.24	A
•••	ATOM	5858	CG	PHE	Α	116	20.154	-6.260	37.901	1.00	18.22	A
5	ATOM	5859	CD1	PHE	Α	116	19.554	-7.163	37.030	1.00	17.96	Α
	ATOM	5860	CD2	PHE	Α	116	19.368	-5.284	38.501	1.00	17.91	A
	MOTA	5861	CE1	PHE	Α	116	18.186	-7.096	36.761	1.00	17.74	A
	MOTA	5862	CE2	PHE	A	116	18.001	-5.205	38.241	1.00	17.75	A
	MOTA	5863	CZ	PHE	Α	116	17.409	-6.114	37.368	1.00	17.62	Α
10	MOTA	5864	С	PHE	Α	116	23.701	-5.110	37.593	1.00	20.07	A
	MOTA	5865	0	PHE	Α	116	23.789	-3.891	37.450	1.00	19.59	Α
	MOTA	6152	N	TYR	A	152	9.211	10.332	32.716	1.00	8.70	A
	ATOM	6153	CA	TYR	A	152	9.897	9.070	32.511	1.00	8.91	A
	MOTA	6154	СВ	TYR	Α	152	10.120	8.824	31.021	1.00	9.31	A
15	ATOM	6155	CG	TYR	Α	152	10.158	7.355	30.660	1.00	10.11	A
٠.	ATOM	6156	CD1	TYR	Α	152	9.197	6.466	31.160	1.00	10.35	A
	ATOM	6157	CE1	TYR	Α	152	9.215	5.109	30.811	1.00	10.49	A
	ATOM	6158	CD2	TYR	Α	152	11.137	6.854	29.804	1.00	10.28	A
	ATOM	6159	CE2	TYR	A	152	11.160	5.505	29.448	1.00	10.37	A
20	АТОМ	6160	CZ	TYR	A	152	10.206	4.642	29.950	1.00	10.60	A
:	ATOM	6161	ОН	TYR	Α	152	10.245	3.314	29.587	1.00	10.57	A
,	АТОМ	6162	С	TYR	Ą	152	11.211	9.033	33.272	1.00	9.20	A
•	АТОМ	6163	0	TYR	Ą	152	11.622	7.982	33.759	1.00	9.19	A
	ATOM	6164	N	TRP	Å	153	11.869	10.180	33.386	1.00	9.22	A
25	ATOM	6165	CA	TRP	A	153	13.113	10.224	34.135	1.00	9.64	A

43 y 2 3 , 4

p. 1961

	ATOM	6166	СВ	TRP A	153	13.752	11.613	34.067	1.00	10.03	A
; ;	MOTA	6167	CG	TRP A	153	14.748	11.836	35.157	1.00	10.79	A
	MOTA	6168	CD2	TRP A	153	15.900	11.033	35.441	1.00	11.30	A
	ATOM	6169	CE2	TRP A	153	16.521	11.583	36.585	1.00	11.43	A
5	MOTA	6170	CE3	TRP A	153	16.467	9.899	34.841	1.00	11.63	A
2	MOTA	6171	CD1	TRP A	153	14.717	12.816	36.111	1.00	10.88	A
,	ATOM	6172	NE1	TRP A	153	15.780	12.669	36.974	1.00	11.27	A
:-	ATOM	6173	CZ2	TRP A	153	17.682	11.040	37.142	1.00	11.66	A
	ATOM	6174	CZ3	TRP A	153	17.629	9.354	35.398	1.00	12.00	A
10	ATOM	6175	СН2	TRP A	153	18.221	9.931	36.539	1.00	11.19	A
	ATOM	6176	С	TRP A	153	12.836	9.867	35.593	1.00	9.64	A
	ATOM	6177	0	TRP A	153	13.518	9.022	36.175	1.00	9.85	A
	ATOM	6178	N	GLU A	154	11.827	10.504	36.177	1.00	9.88	A
••	ATOM	6179	CA	GLU A	154	11.491	10.260	37.570	1.00	9.73	A
15	ATOM	6180	СВ	GLU A	154	10.379	11.222	38.007	1.00	10.24	A
	MOTA	6181	CG	GLU A	154	10.187	11.310	39.509	1.00	11.28	A
	MOTA	6182	CD	GLU A	154	9.315	10.199	40.035	1.00	11.50	A
	MOTA	6183	OE1	GLU A	154	9.291	9.987	41.267	1.00	12.33	A
	MOTA	6184	OE2	GLU A	154	8.645	9.543	39.207	1.00	12.17	A
20	ATOM	6185	С	GLU A	154	11.081	8.802	37.785	1.00	9.53	A
	ATOM	6186	0	GLU A	154	11.468	8.180	38.776	1.00	9.12	A
	ATOM	6187	N	ILE A	155	10.320	8.257	36.837	1.00	8.98	Α
	ATOM	6188	CA	ILE A	155	9.870	6.875	36.904	1.00	8.87	A
	ATOM	6189	СВ	ILE A	155	8.810	6.599	35.815	1.00	8.72	A
25	ATOM	6190	CG2	ILE A	155	8.550	5.097	35.683	1.00	9.06	A

Sympley

CA 02466264 2004-05-05

_												
•	ATOM	6191	CG1	ILE	A	155	7.524	7.354	36.173	1.00	8.74	A
	ATOM	6192	CD1	ILE	Α	155	6.467	7.383	35.064	1.00	8.73	A
•	ATOM	6193	С	ILE	A	155	11.035	5.888	36.782	1.00	9.35	Α
	ATOM	6194	0	ILE	A	155	11.180	4.986	37.609	1.00	9.36	A
5	ATOM	6195	N	CYS	Α	156	11.873	6.063	35.766	1.00	9.31	Α
	ATOM	6196	CA	CYS	A	156	13.012	5.175	35.589	1.00	10.15	A
	ATOM	6197	СВ	CYS	Α	156	13.734	5.471	34.269	1.00	10.37	Α
	ATOM	6198	sG	CYS	Α	156	12.770	5.037	32.774	1.00	11.81	A
	ATOM	6199	С	CYS	Α	156	14.008	5.280	36.741	1.00	10.50	A _.
10	ATOM	6200	0	CYS	Α	156	14.480	4.262	37.247	1.00	10.92	A
	MOTA	6201	N	SER	Α	157	14.325	6.499	37.163	1.00	10.75	A
	ATOM	6202	CA	SER	Α	157	15.291	6.680	38.246	1.00	10.88	A
	ATOM	6203	СВ	SER	Α	157	15.633	8.167	38.431	1.00	11.09	A
	ATOM	6204	OG	SER	A	157	14.501	8.948	38.749	1.00	11.29	A
15	ATOM	6205	С	SER	A	157	14.813	6.073	39.565	1.00	11.31	A
:	ATOM	6206	0	SER	A	157	15.618	5.576	40.357	1.00	11.45	A
	ATOM	6207	N	THR	Α	158	13.506	6.113	39.799	1.00	11.14	A
	ATOM	6208	CA	THR	Α	158	12.932	5.538	41.008	1.00	11.46	A
	MOTA	6209	СВ	THR	Α	158	11.396	5.654	40.996	1.00	10.96	A
20	ATOM	6210	OG1	THR	A	158	11.028	7.026	41.168	1.00	11.35	A
, t	ATOM	6211	CG2	THR	Α	158	10.775	4.806	42.114	1.00	10.93	Α
	ATOM	6212	С	THR	Ą	158	13.310	4.059	41.104	1.00	11.75	Α
	ATOM	6213	0	THR	Ą	158	13.749	3.588	42.151	1.00	11.75	A
	ATOM	6214	N	THR	A	159	13.139	3.328	40.006	1.00	11.91	A
25	ATOM	6215	CA	THR	A	159	13.470	1.910	40.002	1.00	12.52	A

	MOTA	6216	СВ	THR A	159	12.884	1.205	38.760	1.00	12.63	A
	MOTA	6217	OG1	THR A	159	11.455	1.252	38.832	1.00	12.91	A
	MOTA	6218	CG2	THR A	159	13.327	-0.263	38.705	1.00	12.73	A
	MOTA	6219	С	THR A	159	14.978	1.666	40.084	1.00	12.45	A
5	МОТА	6220	0	THR A	159	15.424	0.723	40.739	1.00	12.48	A
ŧ	MOTA	6221	N	LEU A	160	15.767	2.516	39.436	1.00	12.52	A
	ATOM	6222	CA	LEU A	160	17.215	2.356	39.490	1.00	12.72	A
	MOTA	6223	СВ	LEU A	160	17.908	3.355	38.555	1.00	12.33	A
	ATOM	6224	CG	LEU A	160	17.690	3.148	37.047	1.00	13.04	A
10	ATOM	6225	CD1	LEU A	160	18.367	4.267	36.268	1.00	12.38	A
	ATOM	6226	CD2	LEU A	160	18.247	1.793	36.629	1.00	12.53	A
	ATOM	6227	С	LEU A	160	17.716	2.563	40.922	1.00	12.87	A
,	ATOM	6228	0.	LEU A	160	18.607	1.850	41.380	1.00	13.07	Α
	ATOM	6229	N	LEU A	161	17.130	3.528	41.628	1.00	13.22	A
15	ATOM	6230	CA	LEU A	161	17.530	3.828	43.000	1.00	13.77	A
	ATOM	6231	СВ	LEU A	161	16.833	5.102	43.490	1.00	13.77	A
	ATOM	6232	CG	LEU A	161	17.314	6.417	42.863	1.00	13.80	A
	ATOM	6233	CD1	LEU A	161	16.371	7.552	43.241	1.00	13.46	A
	. ATOM	6234	CD2	LEU A	161	18.736	6.723	43.329	1.00	13.49	A
20	MOTA	6235	С	LEU A	161	17.252	2.684	43.967	1.00	14.34	A
	MOTA	6236	0	LEU A	161	17.839	2.619	45.050	1.00	14.37	A
	MOTA	6237	N	VAL A	162	16.350	1.792	43.578	1.00	14.42	A
	ATOM	6238	CA	VAL A	162	16.019	0.639	44.404	1.00	15.39	A
•	MOTA	6239	СВ	VAL A	162	14.826	-0.146	43.813	1.00	15.43	A
25	MOTA	6240	CG1	VAL A	162	14.643	-1.467	44.565	1.00	15.56	A

		ATOM	6241	CG2	VAL	A	162	13.559	0.698	43.910	1.00	15.37	A
	-	ATOM	6242	С	VAL	Α	162	17.232	-0.289	44.493	1.00	16.01	A
		ATOM	6243	0	VAL	Α	162	17.490	-0.899	45.535	1.00	16.21	A
		MOTA	6244	N	PHE	Α	163	17.982	-0.381	43.399	1.00	16.34	Α
•	5 ·	ATOM	6245	CA	PHE	Α	163	19.160	-1.237	43.354	1.00	17.20	A
		ATOM	6246	СВ	PHE	A	163	19.218	-1.999	42.026	1.00	17.31	A
	•	ATOM	6247	CG	PHE	Α	163	17.979	-2.791	41.729	1.00	18.00	A
	•	ATOM	6248	CD1	PHE	Α	163	16.865	-2.177	41.173	1.00	18.03	A
		ATOM	6249	CD2	PHE	Α	163	17.917	-4.149	42.029	1.00	18.06	A
	10	ATOM	6250	CE1	PHE	Α	163	15.704	-2.900	40.922	1.00	18.23	A
		ATOM	6251	CE2	PHE	Α	163	16.757	-4.884	41.782	1.00	18.01	A
		ATOM	6252	CZ	PHE	Α	163	15.649	-4.258	41.227	1.00	18.18	A
		ATOM	6253	С	PHE	Α	163	20.470	-0.482	43.553	1.00	17.48	A
		ATOM	6254	0	PHE	Α	163	21.473	-1.078	43.937	1.00	17.90	A
	15	ATOM	6528	N	THR	A	197	4.591	-0.941	45.453	1.00	17.89	A
		ATOM	6529	CA	THR	Α	197	5.221	-2.157	44.953	1.00	17.58	A
		ATOM	6530	СВ	THR	A	197	4.623	-2.571	43.592	1.00	17.29	A
		ATOM	6531	OG1	THR	A	197	4.796	-1.501	42.652	1.00	17.06	A
<i>:</i>	• .	ATOM	6532	CG2	THR	Α	197	3.135	-2.881	43.732	1.00	17.03	A
	2,0	ATOM	6533	С	THR	A	197	6.712	-1.903	44.780	1.00	17.29	A
		ATOM	6534	0	THR	A	197	7.139	-0.757	44.661	1.00	17.19	A
:		MOTA	6535	N	LYS	Ą	198	7.507	-2.967	44.775	1.00	17.12	A
÷		АТОМ	6536	CA	LYS	A	198	8.948	-2.813	44.620	1.00	17.28	A
		ATOM	6537	СВ	LYS	A	198	9.647	-4.168	44.727	1.00	17.40	A
	25	ATOM	6538	CG	LYS	A	198	11.159	-4.088	44.582	1.00	17.55	A

.,1	ATOM 6	5539 CD	LYS A	198	11.792	-5.459	44.688	1.00 17.80	A
	MOTA	6540 CE	LYS A	198	13.304	-5.355	44.747	1.00 17.96	A
	ATOM (6541 NZ	LYS A	198	13.944	-6.692	44.918	1.00 19.01	A
	ATOM (6542 C	LYS A	198	9.292	-2.172	43.280	1.00 17.06	A
5	ATOM (6543 0	LYS A	198	9.996	-1.163	43.225	1.00 16.95	A
	ATOM (6544 N	LEU A	199	8.783	-2.762	42.205	1.00 17.25	A
•	ATOM (6545 CA	LEU A	199	9.049	-2.271	40.860	1.00 17.51	A
:	ATOM (6546 CB	LEU A	199	9.557	-3.420	39.987	1.00 18.10	A
·	MOTA	6547 CG	LEU A	199	10.722	-4.239	40.550	1.00 18.31	A
10	ATOM (6548 CD1	LEU A	199	11.046	-5.365	39.591	1.00 18.98	Α
	ATOM (6549 CD2	LEU A	199	11.941	-3.350	40.768	1.00 18.60	A
	: ATOM	6550 _C	LEU A	199	7.804	-1.655	40.228	1.00 17.54	A
	ATOM (6551 0	LEU A	199	6.789	-1.503	40.943	1.00 17.46	A
	ATOM (6552 OXT	LEU·A	199	7.864	-1.331	39.025	1.00 17.38	A
15	ATOM (6613 N1	GSH H	200	8.267	-2.783	25.084	1.00 18.14	Н
	ATOM (6614 CA1	GSH H	200	6.892	-3.012	25.512	1.00 18.05	н
•	ATOM (6615 C1	GSH H	200	6.253	-1.716	26.049	1.00 17.74	Н
	ATOM (6616 011	GSH H	200	6.974	-0.743	26.300	1.00 17.76	Н
	ATOM	6617 012	GSH H	200	4.957	-1.770	26.305	1.00 17.69	Н
20	ATOM	6618 CB1	GSH H	200	6.915	-4.033	26.658	1.00 18.51	Н
	ATOM (6619 CG1	GSH H	200	6.911	-5.492	26.184	1.00 19.29	Н
	ATOM	6620 CD1	GSH H	200	7.126	-6.355	27.445	1.00 18.72	Н
	ATOM	6621 OE1	. GSH H	200	8.184	-6.947	27.593	1.00 19.64	н
	MOTA	6622 N2	GSH H	200	6.110	-6.407	28.322	1.00 18.69	Н
25	АТОМ	6623 CA2	GSH H	200	6.216	-7.299	29.489	1.00 18.57	Н

61

• •				~	~~~		200	E 272	_0 100	29.291	1.00 19.14	Н
:		MOTA	6624	C2	GSH	н	200	5.273	-8.489			п
		MOTA	6625	02	GSH	Н	200	4.151	-8.358	28.784	1.00 19.07	Н
		ATOM	6626	СВ2	GSH	Н	200	5.800	-6.596	30.799	1.00 18.29	Н
• :	::	ATOM	6627	SG2	GSH	Н	200	7.094	-5.503	31.467	1.00 17.57	Н
. 5		ATOM	6628	N3	GSH	Н	200	5.713	-9.677	29.767	1.00 19.66	Н
		ATOM	6629	CA3	GSH	Н	200	4.866	-10.887	29.805	1.00 20.05	Н
	è	ATOM	6630	C3	GSH	Н	200	5.256	-11.824	28.677	1.00 20.59	Н
:		ATOM	6631	031	GSH	Н	200	4.643	-12.911	28.623	1.00 20.61	Н
		ATOM	6632	032	GSH	Н	200	6.164	-11.461	27.881	1.00 20.69	Н
10		MOTA	6633	CA+2	CA2	M	900	12.319	1.399	22.690	1.00 23.39	M
		ATOM	6700	он2	WAT	s	68	14.121	2.911	22.047	1.00 14.43	S
		ATOM	6701	он2	WAT	s	69	10.382	0.015	22.374	1.00 17.83	S
	•	ATOM	6702	ОН2	WAT	S	70	6.835	1.587	23.510	1.00 10.00	S
		ATOM	6703	он2	WAT	s	71	9.084	0.596	24.637	1.00 20.95	S
15		ATOM	6704	он2	WAT	S	72	7.464	2.364	29.866	1.00 18.58	S
	٠.	MOTA	6705	он2	WAT	s	73	6.627	3.292	32.747	1.00 10.51	S
	4	ATOM	6706	ОН2	WAT	s	74	10.027	-0.425	37.514	1.00 16.92	S
٠.		ATOM	6707	он2	WAT	s	75	8.932	1.748	36.205	1.00 14.34	S
٠, .		ATOM	6708	OH2	WAT	s	76	9.214	3.513	38.532	1.00 18.39	s
20	• •	ATOM	6736	ОН2	WAT	s	106	8.886	-7.534	20.205	1.00 13.51	S
,)		ATOM	6737	он2	WAT	s	107	3.110	-4.937	22.720	1.00 12.05	s
:		ATOM	6738	он2	WAT	s	108	0.868	-6.588	23.134	1.00 10.94	S
1;7		ATOM	6739	OH2	TAW	s	109	5.765	-8.770	20.668	1.00 22.48	s
		ATOM	6740	он2	TAW	s	110	7.826	-6.141	22.398	1.00 11.14	S
25	•	ATOM	6741	ОН2	WAT	s	111	5.382	-6.173	21.467	1.00 10.04	S

5 <u>11</u> 3

6918,

f. est

CA 02466264 2004-05-05

62

٠	AT	MC	6742	OH2	WAT	S	112	13.216	-1.032	21.636	1.00	18.10	s
	ΑT	MC	6744	он2	WAT	s	114	17.856	-1.808	25.058	1.00	20.41	s
	АТ	MC	6760	он2	TAW	s	130	3.197	-14.232	20.833	1.00	51.90	s
	AT	MC	6991	OH2	WAT	s	374	1.473	2.207	40.356	1.00	10.67	s
5	ΑT	MO	6992	он2	WAT	s	375	4.951	1.805	44.037	1.00	15.41	s
٠.	 AT	OM	7014	ОН2	WAT	s	399	-1.260	-6.795	21.531	1.00	15.82	s
	AT	МО	7015	он2	WAT	s	400	-2.774	-4.748	20.376	1.00	27.99	s
	AT	ОМ	7018	ОН2	WAT	s	403	2.577	0.177	41.980	1.00	13.62	s
	AT	ОМ	7019	он2	WAT	s	404	0.564	-8.538	39.036	1.00	23.05	s
10	AT	OM	7020	ОН2	WAT	S	405	8.238	-9.999	31.265	1.00	29.66	s
	AT	OM	7040	ОН2	WAT	s	426	11.203	0.001	32.951	1.00	36.44	s
	AT	ОМ	7041	он2	WAT	s	428	15.066	-17.180	32.416	1.00	31.37	s
	AT	OM	7042	он2	WAT	S	429	10.965	-7.436	30.782	1.00	46.48	s
	AT	ОМ	7053	он2	WAT	s	443	-2.454	-1.326	35.257	1.00	9.90	S
15	AT	ОМ	7075	он2	WAT	s	476	9.258	-15.961	22.392	1.00	35.74	s
	· AT	ОМ	7079	ОН2	WAT	s	484	18.667	-6.199	25.509	1.00	51.86	s
·	AT	ОМ	7181	он2	WAT	S	609	14.259	0.633	24.144	1.00	13.45	s
*	AT	ОМ	7185	он2	WAT	s	616	6.184	-5.556	45.296	1.00	23.90	s
···	ΑT	ОМ	7186	OH2	WAT	s	617	8.234	-7.048	46.247	1.00	26.45	s
20	ΑT	ОМ	7201	он2	WAT	s	637	8.943	-7.562	24.594	1.00	21.20	s
	ΓA	МО	7202	OH2	WAT	S	638	10.718	-9.017	21.394	1.00	20.69	s
	ΑT	ОМ	7203	он2	WAT	S	639	6.772	-12.758	20.621	1.00	31.01	s
	AT	ОМ	7204	ОН2	WAT	s	640	4.298	-12.631	22.679	1.00	44.61	S
	AT	MO	7205	OH2	WAT	S	642	11.438	-5.078	25.419	1.00	41.38	S
								2.956					

f- • ;} =

	ATOM	7232	он2	WAT	s	690	14.369	-9.780	30.964	1.00 44.36	S
	ATOM	7233	он2	WAT	s	692	18.178	-7.756	40.325	1.00 19.70	s
:	ATOM	7235	OH2	WAT	s	696	7.112	-5.132	42.047	1.00 21.00	s
	ATOM	7237	ОН2	TAW	s	698	8.595	-7.307	41.589	1.00 30.04	s
<u>+</u> 5	ATOM	7238	он2	WAT	s	699	13.321	-7.321	42.140	1.00 27.80	s
Ť	ATOM	7240	он2	WAT	s	702	-6.903	-2.845	28.812	1.00 20.55	s
	ATOM	7245	он2	WAT	s	707	10.773	3.112	22.561	1.00 18.01	s
	ATOM	7249	он2	WAT	s	713	14.133	-12.827	37.720	1.00 37.72	s
	ATOM	7257	он2	WAT	Ş	729	9.660	-4.357	34.020	1.00 40.28	s
1.0	MOTA	7260	ОН2	WAT	s	735	10.625	-2.519	35.392	1.00 46.30	s
	ATOM	7291	он2	WAT	s	783	8.130	-9.654	27.367	1.00 21.27	s
: •	ATOM	7318	он2	WAT	S	831	5.332	-11.112	19.145	1.00 24.71	s
*, ·	ATOM	7333	он2	TAW	s	860	15.591	-0.692	20.940	1.00 38.98	s
	ATOM	7334	он2	WAT	s	861	15.057	-5.068	23.204	1.00 45.10	s
15	МОТА	7336	он2	WAT	s	864	17.064	-8.176	25.940	1.00 41.30	s
	ATOM	7368	он2	TAW	s	916	4.717	-6.156	42.468	1.00 32.94	S
i .·	ATOM	7371	он2	TAW	s	920	19.610	-12.642	30.175	1.00 31.99	s
•	MOTA	7386	он2	WAT	s	948	12.372	1.268	20.616	1.00 22.94	S
	ATOM	7399	он2	WAT	s	968	7.575	-13.636	26.467	1.00 40.77	S
20	МОТА	7400	ОН2	WAT	S	969	13.034	-12.270	21.957	1.00 29.54	s
* · · · · · · · · · · · · · · · · · · ·	ATOM	7415	он2	WAT	T	1	13.128	-8.340	38.325	1.00 43.19	Т
	ATOM	7416	ОН2	WAT	Т	2	9.607	-8.619	44.219	1.00 27.56	Т
	ATOM	7503	он2	WAT	T;	98	3.711	-6.417	45.304	1.00 30.04	Т
	ATOM	7507	ОН2	WAT	T	102	-3.417	-7.320	40.850	1.00 33.06	T
25	ATOM	7602	он2	WAT	T.	203	14.604	-1.609	23.500	1.00 40.59	Т

45 ... 529

CA 02466264 2004-05-05

64

ATOM 7612 OH2 WAT T 215 4.830 -13.737 33.438 1.00 4 ATOM 7613 OH2 WAT T 216 5.093 -14.055 32.065 1.00 3 ATOM 7616 OH2 WAT T 219 11.030 -2.293 26.081 1.00 3 ATOM 7619 OH2 WAT T 225 7.449 -9.230 35.544 1.00 4	37.10 т 45.80 т	•
	45.80 т	
ATOM 7619 OH2 WAT T 225 7.449 -9.230 35.544 1.00 4		•
	40.53 ጥ	
5 ATOM 7620 OH2 WAT T 226 10.479 -7.325 36.925 1.00 4		1
ATOM 7632 OH2 WAT T 263 16.989 -4.269 24.857 1.00 3	37.79 т	1
ATOM 7633 OH2 WAT T 264 16.818 -0.589 23.119 1.00 3	33.03 т	•
ATOM 7634 OH2 WAT T 265 12.877 -2.966 24.468 1.00 4	44.25 т	1
ATOM 7637 OH2 WAT T 268 15.829 -10.496 25.604 1.00 3	39.46 т	•
10 ATOM 7638 OH2 WAT T 269 12.401 -18.158 31.715 1.00 2	28.89 т	•
ATOM 7669 OH2 WAT T 341 6.084 -13.571 24.399 1.00 4	44.58 т	•
ATOM 7670 OH2 WAT T 342 12.132 -14.509 26.051 1.00 3	36.17 т	•
ATOM 7723 OH2 WAT T 439 10.138 -4.873 30.054 1.00 3	32.06 т	•

15 <u>Table 2</u>

Three-dimensional coordinate of the complex of human hematopoietic PGDS with magnesium and glutathione

	MOTA	4966	N	TYR .	A	8	24.798	32.294	34.444	1.00 2	7.67	Α
20	ATOM	4967	CA	TYR .	A	8	23.375	32.556	34.622	1.00 2	7.57	A
* *	MOTA	4968	СВ	TYR .	A	8	22.609	31.228	34.679	1.00 2	6.91	A
	ATOM	4969	CG	TYR .	Ą	8	21.105	31.363	34.647	1.00 2	26.02	Α
•	МОТА	4970	CD1	TYR .	A	8	20.462	31.990	33.580	1.00 2	25.80	A
•	АТОМ	4971	CE1	TYR .	A	8	19.075	32.097	33.536	1.00 2	25.34	A
25	ATOM	4972	CD2	TYR	A	8	20.319	30.843	35.674	1.00 2	25.72	Α

		4072	OE2	myp ·	7	8	18.935	30.943	35.642	1.00 25.34	Α
• • •		-		TYR Z							
	ATOM	4974	CZ	TYR /	A	8	18.315	31.571	34.570	1.00 25.28	Α
•	MOTA	4975	ОН	TYR I	A	8	16.945	31.672	34.539	1.00 24.76	Α
: :	MOTA	4976	С	TYR .	A	8	23.147	33.349	35.907	1.00 28.01	A
5	MOTA	4977	0	TYR .	A	8	24.086	33.591	36.667	1.00 28.14	A
	ATOM	4978	N	PHE .	A	9	21.906	33.767	36.140	1.00 28.37	A
٠.	ATOM	4979	CA	PHE	A	9	21.572	34.518	37.349	1.00 28.74	A
	ATOM	4980	СВ	PHE	A	9	20.161	35.097	37.247	1.00 28.79	A
• • •	ATOM	4981	CG	PHE	A	9	20.034	36.202	36.236	1.00 29.08	A
10	ATOM	4982	CD1	PHE	A	9	19.031	36.169	35.273	1.00 29.16	A
	ATOM	4983	CD2	PHE	A	9	20.917	37.276	36.250	1.00 29.06	A
• • •	ATOM	4984	CE1	PHE	A	9	18.905	37.192	34.335	1.00 29.23	A
<i>:</i> .	ATOM	4985	CE2	PHE	A	9	20.800	38.303	35.319	1.00 29.41	A
•	ATOM	4986	CZ	PHE	A	9	19.792	38.260	34.357	1.00 29.36	A
15 ⁻	ATOM	4987	С	PHE	A	9	21.656	33.583	38.547	1.00 28.97	A
•	AŢŌM	4988	0	PHE	A	9	21.790	32.369	38.385	1.00 29.03	A
•	ATOM	4989	N	ASN	A	10	21.590	34.145	39.749	1.00 29.09	A
. ·	ATOM	4990	CA	ASN	A	10	21.650	33.326	40.952	1.00 29.24	A
· :.	ATOM	4991	СВ	ASN	A	10	22.167	34.143	42.140	1.00 29.62	A
20	ATOM	4992	CG	ASN	A	10	22.162	33.350	43.434	1.00 30.03	A
•	ATOM	4993	OD1	ASN	A	10	22.370	32.134	43.432	1.00 30.13	A
	ATOM	4994	ND2	ASN	Ą	10	21.936	34.037	44.548	1.00 30.35	A
	ATOM	4995	С	ASN	A	10	20.276	32.753	41.266	1.00 29.04	A
	ATOM	4996	0	ASN	A	10	19.516	33.318	42.049	1.00 29.10	A
25	ATOM	4997	N	MET	A	11	19.962	31.627	40.631	1.00 28.94	A

: .	MOTA	4998	CA	MET	Ą	11	18.685	30.942	40.824	1.00	28.66	A
	ATOM	4999	СВ	MET	Ą	11	17.514	31.854	40.429	1.00	29.86	Α
	ATOM	5000	CG	MET	Ą	11	17.483	32.272	38.969	1.00	31.35	A
	ATOM	5001	SD	MET	A.	11	16.034	33.301	38.540	1.00	33.72	A
5	АТОМ	5002	CE	MET	A	11	16.695	34.947	38.769	1.00	33.16	A
	ATOM	5003	С	MET	A	11	18.663	29.681	39.972	1.00	27.66	A
	АТОМ	5004	0	MET	A	11	19.541	29.479	39.139	1.00	27.28	A
	MOTA	5005	N	ARG	A	12	17.674	28.822	40.193	1.00	26.89	A
	ATOM	5006	CA	ARG	A	12	17.568	27.598	39.410	1.00	25.99	A
10	ATOM	5007	СВ	ARG	A	12	16.467	26.700	39.978	1.00	26.19	A
	ATOM	5008	CG	ARG	A	12	16.714	26.250	41.418	1.00	26.84	A
	ATOM	5009	CD	ARG	A	12	15.638	25.265	41.874	1.00	26.77	A
	ATOM	5010	NE	ARG	A	12	14.298	25.835	41.763	1.00	27.30	A
	ATOM	5011	CZ	ARG	A	12	13.794	26.737	42.598	1.00	27.44	A
15	ATOM	5012	NH1	ARG	A	12	14.518	27,177	43.621	1.00	27.56	A
•	MOTA	5013	NH2	ARG	A	12	12.570	27.209	42.404	1.00	27.81	Α
÷	ATOM	5014	С	ARG	A	12	17.236	28.011	37.977	1.00	25.35	Α
	MOTA	5015	0	ARG	A	12	18.030	27.800	37.065	1.00	25.01	Α
	MOTA	5016	N	GLY	A	13	16.062	28.607	37.797	1.00	24.64	A
20	MOTA	5017	CA	GLY	Α	13	15.645	29.067	36.485	1.00	23.90	A
·.,	MOTA	5018	С	GLY	A	13	15.900	28.126	35.326	1.00	23.52	A
	ATOM	5019	0	GLY	A	13	15.728	26.911	35.437	1.00	23.18	A
·	MOTA	5020	N	ARG	A	14	16.333	28.696	34.205	1.00	22.72	A
!	ATOM	5021	CA	ARG	A	14	16.592	27.920	32.998	1.00	22.38	A
25	MOTA	5022	СВ	ARG	Α	14	16.417	28.824	31.781	1.00	22.47	Α

	MOTA	5023	CG	ARG .	A	14	15.004	29.342	31.659	1.00	22.96	A
•	MOTA	5024	CD	ARG .	A	14	14.807	30.214	30.443	1.00	23.81	Α
	АТОМ	5025	NE	ARG	A	14	13.386	30.325	30.135	1.00	24.80	A
	ATOM	5026	CZ	ARG .	A	14	12.680	29.375	29.529	1.00	25.43	A
5	ATOM	5027	NH1	ARG	A	14	13.267	28.245	29.154	1.00	25.67	A
	. ATOM	5028	NH2	ARG	A	14	11.381	29.547	29.319	1.00	26.33	A
•	ATOM	5029	С	ARG	Α	14	17.946	27.221	32.940	1.00	21.87	A
	MOTA	5030	0	ARG	A	14	18.206	26.450	32.021	1.00	21.54	A
	ATOM	5031	N	ALA	Α	15	18.811	27.474	33.914	1.00	21.26	A
10	ATOM	5032	CA	ALA	A	15	20.109	26.826	33.910	1.00	20.98	A
	ATOM	5033	СВ	ALA	Α	15	21.180	27.785	34.416	1.00	21.37	A
	ATOM	5034	С	ALA	A	15	20.106	25.567	34.761	1.00	20.63	A
	MOTA	5035	0	ALA	A	15	21.055	24.785	34.724	1.00	20.56	A
•	MOTA	5036	N	GLU	A	16	19.040	25.361	35.524	1.00	20.39	A
15	MOTA	5037	CA	GLU	A	16	18.985	24.198	36.401	1.00	20.26	A
	MOTA	5038	СВ	GLU	A	16	17.739	24.260	37.284	1.00	20.92	A
	ATOM	5039	CG	GLU	Α	16	17.825	23.399	38.537	1.00	21.66	A
	MOTA	5040	CD	GLU	A	16	19.007	23.757	39.425	1.00	22.12	A
٠.	ATOM	5041	OE1	GLU	A	16	19.405	24.943	39.461	1.00	22.58	A
20	ATOM	5042	OE2	GLU	A	16	19.537	22.850	40.097	1.00	22.29	A
	ATOM	5043	С	GLU	A	16	19.030	22.871	35.656	1.00	19.57	A
	ATOM	5044	0	GLU	Ą	16	19.665	21.924	36.121	1.00	19.37	A
	ATOM	5045	N	ILE	Ą	17	18.371	22.791	34.502	1.00	19.00	A
	MOTA	5046	CA	ILE	Ą	17	18.374	21.539	33.749	1.00	18.27	A
25	ATOM	5047	СВ	ILE	A	17	17.459	21.621	32.483	1.00	18.13	Α

68

	ATOM 5048	CG2	ILE A	17	17.933	22.726	31.549	1.00 17.76	A
•	: ATOM 5049	CG1	ILE A	17	17.431	20.262	31.771	1.00 17.74	A
	атом 5050	CD1	ILE A	17	16.815	19.144	32.603	1.00 17.40	A
· · · · .	атом 5051	С	ILE A	17	19.795	21.141	33.354	1.00 18.40	A
5 /	ATOM 5052	0	ILE A	17	20.135	19.956	33.327	1.00 18.19	Α
	ATOM 5242	N	TRP A	39	24.784	42.507	34.947	1.00 44.42	A
	ATOM 5243	CA	TRP A	39	24.103	41.994	33.763	1.00 44.13	A
	ATOM 5244	СВ	TRP A	39	22.630	41.726	34.082	1.00 44.08	A
•	ATOM 5245	CG	TRP A	39	21.834	41.243	32.905	1.00 44.04	A
10	ATOM 5246	CD2	TRP A	39	22.234	40.267	31.932	1.00 43.94	A
	ATOM 5247	CE2	TRP A	39	21.162	40.122	31.023	1.00 43.97	A
	ATOM 5248	CE3	TRP A	39	23.391	39.500	31.741	1.00 43.89	A
• :	ATOM 5249	CD1	TRP A	39	20.576	41.637	32.555	1.00 44.04	A
,	ATOM 5250	NE1	TRP A	39	20.166	40.970	31.427	1.00 44.07	A
15	ATOM 5251	CZ2	TRP A	39	21.212	39.242	29.936	1.00 43.96	A
	ATOM 5252	CZ3	TRP A	39	23.442	38.623	30.657	1.00 43.92	A
	атом 5253	CH2	TRP A	. 39	22.356	38.503	29.770	1.00 43.91	A
	АТОМ 5254	С	TRP A	. 39	24.202	42.927	32.553	1.00 44.00	A
	ATOM 5255	0	TRP A	. 39	24.614	42.507	31.472	1.00 43.93	A
20	ATOM 5256	N	PRO A	40	23.828	44.207	32.720	1.00 43.84	A
	ATOM 5257	CD	PRO A	40	23.435	44.869	33.978	1.00 43.81	A
	ATOM 5258	CA	PRO A	40	23.881	45.178	31.622	1.00 43.62	A
:	ATOM 5259	СВ	PRO A	40	23.764	46.516	32.347	1.00 43.72	A
٠.	ATOM 5260	CG	PRO A	40	22.860	46.182	33.488	1.00 43.84	A
25	ATOM 5261	С	PRO A	40	25.141	45.091	30.760	1.00 43.33	A

2012

U1..

CA 02466264 2004-05-05

69

	•								
,	ATOM 5262	0	PRO A	40	25.059	45.100	29.533	1.00 43.30	A
	: ATOM 5263	N	GLU A	41	26.301	45.003	31.402	1.00 42.98	A
•	ATOM 5264	CA	GLU A	41	27.569	44.921	30.681	1.00 42.61	A
	ATOM 5265	СВ	GLU A	41	28.741	45.127	31.647	1.00 43.08	A
5	ATOM 5266	CG	GLU A	41	30.113	44.941	31.007	1.00 43.66	A
	ATOM 5267	CD	GLU A	41	30.405	45.969	29.924	1.00 44.03	A
	ATOM 5268	OE1	GLU A	41	31.411	45.800	29.198	1.00 44.15	A
	ATOM 5269	OE2	GLU A	41	29.633	46.946	29.804	1.00 44.31	A
	ATOM 5270	С	GLU A	41	27.742	43.593	29.953	1.00 42.03	A
10	ATOM 5271	0	GLU A	41	28.054	43.560	28.761	1.00 42.06	A
, ,	ATOM 5272	N	ILE A	42	27.541	42.501	30.681	1.00 41.22	A
	ATOM 5273	CA	ILE A	42	27.682	41.162	30.124	1.00 40.49	A
	ATOM 5274	СВ	ILE A	42	27.419	40.098	31.209	1.00 40.55	A
	ATOM 5275	CG2	ILE A	42	27.600	38.703	30.631	1.00 40.56	Α
15	атом 5276	CG1	ILE A	42	28.376	40.319	32.382	1.00 40.56	A
	ATOM 5277	CD1	ILE A	42	28.048	39.497	33.608	1.00 40.65	A
	ATOM 5278	С	ILE A	42	26.722	40.933	28.959	1.00 39.90	A
	ATOM 5279	0	ILE A	42	27.076	40.294	27.971	1.00 39.65	A
	ATOM 5280	N	LYS A	43	25.511	41.468	29.083	1.00 39.26	A
20	ATOM 5281	CA	LYS A	43	24.485	41.321	28.055	1.00 38.70	A
,	ATOM 5282	СВ	LYS A	43	23.218	42.066	28.482	1.00 38.64	A
	ATOM 5283	CG	LYS A	43	22.040	41.922	27.529	1.00 38.63	A
•	ATOM 5284	CD	LYS A	43	20.862	42.769	27.995	1.00 38.51	A
	ATOM 5285	CE	LYS A	43	19.702	42.725	27.010	1.00 38.59	Α
25	ATOM 5286	NZ	LYS A	43	19.088	41.374	26.908	1.00 38.47	A

24.1

	: ATOM 5287	С	LYS A	43	24.941	41.821	26.682	1.00 38.32	A
••	ATOM 5288	0	LYS A	43	24.657	41.195	25.656	1.00 38.07	A
•:	ATOM 5328	N	GLY A	49	22.169	38.393	23.696	1.00 27.72	A
	ATOM 5329	CA	GLY A	49	21.892	39.053	24.959	1.00 26.80	A
5	ATOM 5330	С	GLY A	49	20.981	38.310	25.914	1.00 26.17	A
	ATOM 5331	0	GLY A	49	20.163	38.922	26.607	1.00 25.97	Α
	ATOM 5332	N	LYS A	50	21.123	36.991	25.961	1.00 25.32	A
': ••	ATOM 5333	CA	LYS A	50	20.301	36.179	26.845	1.00 24.71	A
	_ АТОМ 5334	СВ	LYS A	50	19.164	35.522	26.052	1.00 25.17	A
10	ATOM 5335	CG	LYS A	50	18.256	36.493	25.314	1.00 26.18	A
	ATOM 5336	CD	LYS A	50	17.362	37.263	26.267	1.00 26.58	A
•	ATOM 5337	CE	LYS A	50	16.619	38.387	25.552	1.00 27.00	A
·	ATOM 5338	NZ	LYS A	50	15.862	37.901	24.367	1.00 27.09	A
	атом 5339	С	LYS A	50	21.114	35.095	27.527	1.00 24.20	A
15	ATOM 5340	0	LYS A	50	22.118	34.625	26.994	1.00 23.51	A
:	ATOM 5341	N	ILE A	51	20.672	34.705	28.716	1.00 23.62	A
	ATOM 5342	CA	ILE A	51	21.329	33.642	29.462	1.00 23.69	A
	ATOM 5343	СВ	ILE A	51	22.023	34.170	30.743	1.00 23.40	A
	ATOM 5344	CG2	ILE A	51	23.331	34.852	30.373	1.00 23.31	A
20	ATOM 5345	CG1	ILE A	51	21.086	35.106	31.510	1.00 23.39	A
	ATOM 5346	CD1	ILE A	51	21.696	35.661	32.779	1.00 23.78	Α
	ATOM 5347	С	ILE A	51	20.270	32.609	29.822	1.00 23.77	A
	ATOM 5348	0	ILE A	51	19.074	32.888	29.754	1.00 23.72	A
	ATOM 5349	N	PRO A	52	20.697	31.411	30.239	1.00 24.02	A
25	ATOM 5350	CD	PRO A	52	19.778	30.321	30.607	1.00 24.22	A

71

	MOTA	5351	CA	PRO A	A	52	22.089	30.979	30.378	1.00	24.24	A
٠.	ATOM	5352	СВ	PRO A	A	52	21.958	29.708	31.211	1.00	24.34	A
	ATOM	5353	CG	PRO .	A	52	20.692	29.124	30.659	1.00	24.40	A
•	ATOM	5354	С	PRO .	A	52	22.843	30.711	29.082	1.00	24.32	A
5	MOTA	5355	0	PRO .	A	52	22.258	30.608	27.999	1.00	24.21	A
	ATOM	5356	N	ILE .	A	53	24.160	30.614	29.214	1.00	24.37	A
	MOTA	5357	CA	ILE .	A	53	25.030	30.287	28.099	1.00	24.60	A
	ATOM	5358	СВ	ILE .	A	53	25.771	31.517	27.524	1.00	24.79	A
	MOTA	5359	CG2	ILE	A	53	24.772	32.471	26.876	1.00	24.74	A
10	MOTA	5360	CG1	ILE	A	53	26.583	32.210	28.623	1.00	24.92	A
	MOTA	5361	CD1	ILE	A	53	27.597	33.207	28.088	1.00	25.21	A
•	MOTA	5362	С	ILE	A	53	26.051	29.318	28.659	1.00	24.74	A
	MOTA	5363	0	ILE	A	53	26.312	29.312	29.864	1.00	24.56	A
:	ATOM	5423	N	HIS	A	62	24.282	28.843	23.471	1.00	20.06	A
15	ATOM	5424	CA	HIS	Α	62	23.143	29.461	24.151	1.00	19.14	A
	ATOM	5425	СВ	HIS	Α	62	22.885	30.885	23.631	1.00	19.13	A
	ATOM	5426	CG	HIS	A	62	22.437	30.944	22.205	1.00	19.63	A
	ATOM	5427	CD2	HIS	Α	62	21.300	31.421	21.646	1.00	19.62	A
	ATOM	5428	ND1	HIS	A	62	23.222	30.509	21.159	1.00	20.17	A
20 :	ATOM	5429	CE1	HIS	Α	62	22.592	30.721	20.018	1.00	19.92	A
•	MOTA	5430	NE2	HIS	A	62	21.423	31.275	20.285	1.00	20.10	A
•	MOTA	5431	С	HIS	Ą	62	21.887	28.607	24.010	1.00	18.09	A
•	MOTA	5432	0	HIS	A	62	21.914	27.591	23.321	1.00	17.56	A
	MOTA	5433	N	GLN	A	63	20.804	29.046	24.659	1.00	17.49	A
25	MOTA	5434	CA	GLN	A	63	19.512	28.342	24.693	1.00	16.80	A

 $\mathbb{Q}(a, \lambda)$

5 : 4

CA 02466264 2004-05-05

72

-	MOTA	5435	СВ	GLN	A	63	19.042	27.971	23.285	1.00 1	17.09	A
	MOTA	5436	CG	GLN	A	63	18.397	29.137	22.515	1.00 1	17.33	A
	мота	5437	CD	GLN	A	63	17.113	29.658	23.165	1.00 1	17.51	A
	MOTA	5438	OE1	GLN	A	63	16.514	28.993	24.013	1.00 1	17.71	A
5	MOTA	5439	NE2	GLN	A	63	16.676	30.846	22.750	1.00 1	L8.20	A
	ATOM	5440	С	GLN	A	63	19.621	27.095	25.575	1.00 1	16.48	A
	MOTA	5441	0	GLN	Α	63	20.248	26.098	25.202	1.00 1	15.97	A
	ATOM	5442	N	SER	A	64	18.983	27.166	26.740	1.00 1	L6.15	A
	ATOM	5443	CA	SER	A·	64	19.038	26.099	27.733	1.00 1	16.55	A
10	MOTA	5444	СВ	SER	A	64	18.163	26.463	28.948	1.00 1	16.41	A
	MOTA	5445	OG	SER	A	64	16.780	26.507	28.637	1.00	17.25	A
	ATOM	5446	С	SER	A	64	18.705	24.688	27.258	1.00	16.42	A
	ATOM	5447	0	SER	A	64	19.395	23.736	27.625	1.00	16.29	A
:	MOTA	5448	N	LEU	A	65	17.661	24.545	26.449	1.00	16.61	A
15	MOTA	5449	CA	LEU	A	65	17.266	23.221	25.979	1.00	16.62	A
	MOTA	5450	СВ	LEU	A	65	15.803	23.242	25.518	1.00	17.28	A
	MOTA	5451	CG	LEU	A	65	14.804	23.694	26.599	1.00	17.94	Α
	ATOM	5452	CD1	LEU	A	65	13.381	23.514	26.100	1.00	18.29	A
	MOTA	5453	CD2	LEU	A	65	15.023	22.904	27.884	1.00	18.01	A
20	MOTA	5454	С	LEU	A	65	18.183	22.699	24.874	1.00	16.53	A
	MOTA	5455	0	LEU	A	65	18.384	21.484	24.739	1.00	16.69	A
	MOTA	5662	N	ASP	Ą	93	9.437	20.470	25.569	1.00	14.02	A
	MOTA	5663	CA	ASP	Ą	93	8.852	21.675	24.974	1.00	15.28	A
	MOTA	5664	СВ	ASP	A	93	8.823	21.563	23.440	1.00	16.56	A
25	MOTA	5665	CG	ASP	A	93	10.139	22.002	22.800	1.00	18.16	A

ţwię

	MOTA	5666	OD1	ASP	A	93	10.212	22.113	21.549	1.00	19.71	A
•	ATOM	5667	OD2	ASP	A	93	11.116	22.243	23.549	1.00	19.34	A
	MOTA	5668	С	ASP	A	93	7.457	22.002	25.521	1.00	15.10	A
	MOTA	5669	0	ASP	A	93	7.103	23.178	25.671	1.00	15.47	A
5	ATOM	5670	N	THR	A	94	6.662	20.973	25.813	1.00	14.79	A
	МОТА	5671	CA	THR	A	94	5.327	21.184	26.365	1.00	14.62	A
	ATOM	5672	СВ	THR	A	94	4.568	19.838	26.465	1.00	14.82	A
	ATOM	5673	OG1	THR	A	94	4.196	19.423	25.140	1.00	14.81	A
	MOTA	5674	CG2	THR	A	94	3.298	19.969	27.309	1.00	15.03	A
10	MOTA	5675	С	THR	A	94	5.475	21.860	27.736	1.00	15.22	A
	MOTA	5676	О	THR	A	94	4.758	22.805	28.051	1.00	14.83	A
	ATOM	5677	N	LEU	A	95	6.424	21.390	28.533	1.00	15.45	A
	MOTA	5678	CA	LEU	A	95	6.664	21.978	29.846	1.00	16.14	A
•	ATOM	5679	СВ	LEU	A	95	7.663	21.130	30.630	1.00	16.28	A
15	ATOM	5680	CG	LEU	A	95	7.107	19.798	31.120	1.00	16.61	A
	MOTA	5681	CD1	LEU	A	95	8.245	18.898	31.594	1.00	16.85	A
•	ATOM	5682	CD2	LEU	A	95	6.103	20.052	32.240	1.00	17.08	A
	ATOM	5683	С	LEU	A	95	7.215	23.388	29.693	1.00	16.49	A
	MOTA	5684	0	LEU	A	95	6.745	24.327	30.344	1.00	16.45	A
20	ATOM	5685	N	ASP	A	96	8.208	23.540	28.823	1.00	16.67	A
	ATOM	5686	CA	ASP	Α	96	8.824	24.850	28.621	1.00	17.83	A
	ATOM	5687	СВ	ASP	A	96	10.001	24.736	27.646	1.00	18.40	A
2	ATOM	5688	CG	ASP	A	96	11.004	25.860	27.815	1.00	19.35	A
	ATOM	5689	OD1	ASP	A	96	11.519	26.027	28.946	1.00	20.31	A
25	ATOM	5690	OD2	ASP	Α	96	11.278	26.572	26.827	1.00	19.91	A

74

•	MOTA	5691	С	ASP A	A	96	7.817	25.883	28.119	1.00	18.10	A
	MOTA	5692	0	ASP	A	96	7.850	27.046	28.536	1.00	17.78	A
•	· ATOM	5693	N	ASP .	A	97	6.918	25.464	27.230	1.00	18.27	A
	MOTA	5694	CA	ASP .	A	97	5.902	26.376	26.700	1.00	18.83	A
5	MOTA	5695	СВ	ASP .	Α	97	4.957	25.644	25.741	1.00	19.25	A
	MOTA	5696	CG	ASP	A	97	5.582	25.365	24.386	1.00	20.04	A
	MOTA	5697	OD1	ASP	A	97	4.980	24.595	23.611	1.00	20.50	A
	MOTA	5698	OD2	ASP	A	97	6.660	25.914	24.085	1.00	20.61	A
	АТОМ	5699	С	ASP	A	97	5.070	26.968	27.835	1.00	18.89	A
10	ATOM	5700	0	ASP	A	97	4.828	28.175	27.878	1.00	18.39	A
	ATOM	5701	N	PHE	A	98	4.630	26.107	28.750	1.00	19.13	A
	ATOM	5702	CA	PHE	A	98	3.814	26.547	29.875	1.00	19.65	A
	MOTA	5703	СВ	PHE	Α	98	3.311	25.342	30.686	1.00	20.03	A
•	MOTA	5704	CG	PHE	A	98	2.426	25.718	31.854	1.00	20.47	A
15	ATOM	5705	CD1	PHE	A	98	1.249	26.436	31.650	1.00	20.90	A
	ATOM	5706	CD2	PHE	A	98	2.794	25.390	33.159	1.00	20.78	A
	ATOM	5707	CE1	PHE	A	98	0.451	26.827	32.732	1.00	21.07	A
	ATOM	5708	CE2	PHE	A	98	2.007	25.773	34.246	1.00	21.32	Α
	ATOM	5709	CZ	PHE	A	98	0.837	26.495	34.035	1.00	21.00	A
20	ATOM	5710	С	PHE	A	98	4.598	27.495	30.776	1.00	20.02	A
	ATOM	5711	0	PHE	A	98	4.125	28.583	31.089	1.00	20.09	A
	ATOM	5712	N	MET	A	99	5.793	27.090	31.195	1.00	20.31	A
	MOTA	5713	CA	MET	A	99	6.607	27.937	32.064	1.00	21.46	A
	ATOM	5714	СВ	MET	A	99	7.934	27.249	32.397		21.92	A
25	ATOM	1 5715	CG	MET	A	99	7.805	25.906	33.110	1.00	22.64	Α

y: 78 c1.25

 $\chi^{*} \leftrightarrow c r \, 2e$

J. 30.2

CA 02466264 2004-05-05

75

•								
· · · .	ATOM 5716	SD	MET A 99	6.818	25.981	34.620	1.00 23.36	A
٠,	ATOM 5717	CE	MET A 99	7.919	26.938	35.719	1.00 23.75	A
	ATOM 5718	С	MET A 99	6.885	29.294	31.416	1.00 21.88	A
. :	ATOM 5719	0	MET A 99	6.921	30.321	32.101	1.00 21.92	A
5 .	ATOM 5720	N	SER A 100	7.068	29.297	30.097	1.00 22.34	A
	ATOM 5721	CA	SER A 100	7.356	30.530	29.359	1.00 23.09	A
	ATOM 5722	CB	SER A 100	7.848	30.196	27.946	1.00 22.97	A
ė.	ATOM 5723	OG	SER A 100	9.105	29.535	27.992	1.00 22.88	A
•	ATOM 5724	С	SER A 100	6.169	31.486	29.280	1.00 23.87	A
10	ATOM 5725	0	SER A 100	6.337	32.665	28.953	1.00 23.83	A
	ATOM 5726	N	CYS A 101	4.973	30.980	29.569	1.00 24.59	A
	ATOM 5727	CA	CYS A 101	3.769	31.812	29.551	1.00 25.73	A
	ATOM 5728	СВ	CYS A 101	2.504	30.950	29.642	1.00 26.18	A
	ATOM 5729	SG	CYS A 101	2.072	30.045	28.134	1.00 27.14	A
15	ATOM 5730	С	CYS A 101	3.764	32.802	30.711	1.00 26.07	A
	ATOM 5731	0	CYS A 101	3.164	33.869	30.611	1.00 26.17	A
	ATOM 5732	N	PHE A 102	4.424	32.452	31.814	1.00 26.61	A
	ATOM 5733	CA	PHE A 102	4.448	33.344	32.969	1.00 27.42	A
	ATOM 5734	СВ	PHE A 102	4.968	32.621	34.218	1.00 27.19	A
20 :	ATOM 5735	CG	PHE A 102	4.090	31.491	34.683	1.00 26.99	A
	атом 5736	CD1	PHE A 102	4.118	30.261	34.035	1.00 26.96	A
	ATOM 5737	CD2	PHE A 102	3.232	31.657	35.769	1.00 27.14	A
	ATOM 5738	CE1	PHE A 102	3.308	29.205	34.459	1.00 27.01	A
:	ATOM 5739	CE2	PHE A 102	2.418	30.609	36.202	1.00 26.99	A
25	ATOM 5740	CZ	PHE A 102	2.456	29.378	35.542	1.00 27.14	A

y (18.112

5 00 2

	•							
	ATOM 5741	С	PHE A 102	5.298	34.587	32.719	1.00 27.95	A
••	ATOM 5742	0	PHE A 102	6.423	34.495	32.237	1.00 27.67	A
	ATOM 5743	N	PRO A 103	4.761	35.774	33.045	1.00 28.91	A
	ATOM 5744	CD	PRO A 103	3.381	36.039	33.496	1.00 29.00	A
5	ATOM 5745	CA	PRO A 103	5.496	37.027	32.845	1.00 29.76	A
٠	ATOM 5746	СВ	PRO A 103	4.381	38.061	32.792	1.00 29.51	A
	ATOM 5747	CG	PRO A 103	3.410	37.534	33.798	1.00 29.21	A
	ATOM 5748	С	PRO A 103	6.470	37.276	33.995	1.00 30.76	A
	ATOM 5749	0	PRO A 103	6.244	38.155	34.828	1.00 30.85	A
10	ATOM 5750	N	TRP A 104	7.555	36.508	34.027	1.00 31.83	A
•	ATOM 5751	CA	TRP A 104	8.551	36.628	35.089	1.00 33.11	A
	ATOM 5752	СВ	TRP A 104	9.647	35.572	34.917	1.00 32.91	A
	ATOM 5753	CG	TRP A 104	9.124	34.178	34.737	1.00 32.96	A
	ATOM 5754	CD2	TRP A 104	8.713	33.275	35.772	1.00 32.96	A
15	ATOM 5755	CE2	TRP A 104	8.269	32.092	35.141	1.00 33.00	A
	АТОМ 5756	CE3	TRP A 104	8.677	33.351	37.174	1.00 33.00	A
	ATOM 5757	CD1	TRP A 104	8.918	33.525	33.555	1.00 32.88	A
	ATOM 5758	NE1	TRP A 104	8.405	32.271	33.789	1.00 32.93	A
	ATOM 5759	CZ2	TRP A 104	7.792	30.992	35.862	1.00 33.01	A
20	ATOM 5760	CZ3	TRP A 104	8.201	32.255	37.890	1.00 33.07	A
	ATOM 5761	CH2	TRP A 104	7.766	31.093	37.231	1.00 32.98	A
	ATOM 5762	С	TRP A 104	9.205	38.003	35.194	1.00 34.03	A
	ATOM 5763	0	TRP A 104	9.515	38.460	36.291	1.00 34.18	A
	ATOM 5764	N	ALA A 105	9.414	38.657	34.055	1.00 35.15	A
25	ATOM 5765	CA	ALA A 105	10.052	39.972	34.038	1.00 36.46	A

77

	MOTA	5766	СВ	ALA A	105	10.943	40.095	32.804	1.00 36.36	A
	ATOM	5767	С	ALA A	105	9.054	41.128	34.075	1.00 37.41	A
	MOTA	5768	0	ALA A	105	9.450	42.294	34.080	1.00 37.56	A
	ATOM	5769	N	GLU A	106	7.765	40.806	34.101	1.00 38.52	A
5	ATOM	5770	CA	GLU A	106	6.723	41.828	34.133	1.00 39.67	A
	ATOM	5771	СВ	GLU A	106	5.344	41.166	34.069	1.00 39.95	Α
	ATOM	5772	CG	GLU A	106	4.165	42.130	34.045	1.00 40.21	A
	ATOM	5773	CD	GLU A	106	4.304	43.209	32.989	1.00 40.48	A
•••	· ATOM	5774	OE1	GLU A	106	4.932	44.251	33.276	1.00 40.68	A
10	ATOM	5775	OE2	GLU A	106	3.796	43.014	31.864	1.00 40.58	Α
	ATOM	5776	С	GLU A	106	6.819	42.701	35.381	1.00 40.42	A
	ATOM	5777	0	GLU A	106	6.609	42.231	36.500	1.00 40.56	Α
	ATOM	5778	N	LYS A	107	7.136	43.978	35.189	1.00 41.30	A
•	ATOM	5779	CA	LYS A	107	7.250	44.895	36.315	1.00 42.22	A
15	ATOM	5780	СВ	LYS A	107	8.092	46.110	35.927	1.00 42.33	A
:	ATOM	5781	CG	LYS A	107	9.587	45.866	36.016	1.00 42.56	A
	ATOM	5782	CD	LYS A	107	10.000	45.596	37.457	1.00 42.79	A
	ATOM	5783	CE	LYS A	107	11.501	45.396	37.583	1.00 42.86	A
	ATOM	5784	NZ	LYS A	107	12.264	46.598	37.132	1.00 43.08	A
20	ATOM	5785	С	LYS A	107	5.890	45.343	36.831	1.00 42.73	A
	ATOM	5786	0	LYS A	107	5.719	45.571	38.030	1.00 42.99	A
	MOTA	5787	N	LYS A	108	4.925	45.465	35.927	1.00 43.26	A
	MOTA	5788	CA	LYS A	108	3.575	45.875	36.299	1.00 43.78	A
	MOTA	5789	СВ	LYS A	108	2.734	46.106	35.041	1.00 43.97	A
25	MOTA	5790	CG	LYS A	108	3.322	47.146	34.099	1.00 44.32	Α

ક હ્યું એ

: 500

:`!`

CA 02466264 2004-05-05

78

		MOTA	5791	CD	LYS	A	108	2.459	47.357	32.862	1.00	44.57	A
	•	MOTA	5792	CE	LYS	A	108	2.469	46.142	31.950	1.00	44.80	A
		MOTA	5793	NZ	LYS	Α	108	1.672	46.386	30.716	1.00	45.09	Α
		МОТА	5794	С	LYS	Α	108	2.937	44.793	37.169	1.00	44.07	A
5 ;	•	MOTA	5795	0	LYS	Α	108	2.342	43.841	36.662	1.00	44.03	A
		ATOM	5796	N	GLN	A	109	3.069	44.954	38.483	1.00	44.42	A
		ATOM	5797	CA	GLN	Α	109	2.535	44.001	39.453	1.00	44.80	A
		ATOM	5798	СВ	GLN	A	109	2.686	44.569	40.870	1.00	45.10	A
	:	ATOM	5799	CG	GLN	A	109	2.511	43.547	41.989	1.00	45.66	A
10		ATOM	5800	CD	GLN	A	109	3.703	42.612	42.129	1.00	45.85	A
		MOTA	5801	OE1	GLN	Α	109	3.740	41.763	43.022	1.00	46.01	A
		ATOM	5802	NE2	GLN	A	109	4.688	42.767	41.247	1.00	46.00	A
	:	ATOM	5803	С	GLN	A	109	1.070	43.648	39.197	1.00	44.83	A
		ATOM	5804	0	GLN	A	109	0.675	42.484	39.288	1.00	44.88	A
15	•	ATOM	5805	N	ASP	Α	110	0.267	44.656	38.876	1.00	44.78	A
		ATOM	5806	CA	ASP	A	110	-1.153	44.451	38.616	1.00	44.83	A
		ATOM	5807	СВ	ASP	A	110	-1.816	45.784	38.257	1.00	45.28	A
		ATOM	5808	CG	ASP	Α	110	-1.243	46.399	36.992	1.00	45.63	A
•	ì	MOTA	5809	OD1	ASP	Α	110	-0.023	46.675	36.958	1.00	45.86	A
20		MOTA	5810	OD2	ASP	Α	110	-2.016	46.605	36.030	1.00	46.00	A
	,	MOTA	5811	С	ASP	A	110	-1.399	43.437	37.496	1.00	44.67	A
		АТОМ	5812	0	ASP	Ą	110	-2.296	42.600	37.590	1.00	44.60	A
		АТОМ	5813	N	VAL	A	111	-0.597	43.519	36.439	1.00	44.34	A
•	٠	АТОМ	5814	CA	VAL	A	111	-0.730	42.621	35.298	1.00	44.07	A
25.		АТОМ	5815	СВ	VAL	A	111	-0.112	43.254	34.031	1.00	44.24	A

 $2 \leq 26$

11.567-

2 1. 2

n Atr

79

	ATOM	5816	CG1	VAL	Ą	111	-0.338	42.352	32.828	1.00	44.21	Α
	ATOM	5817	CG2	VAL	A.	111	-0.718	44.628	33.794	1.00	44.30	A
	ATOM	5818	С	VAL	Α	111	-0.058	41.273	35.556	1.00	43.75	A
	ATOM	5819	0	VAL	A	111	-0.571	40.229	35.157	1.00	43.61	A
5	ATOM	5820	N	LYS	A	112	1.088	41.305	36.227	1.00	43.49	A
••	ATOM	5821	CA	LYS	A	112	1.834	40.093	36.534	1.00	43.29	A
	ATOM	5822	СВ	LYS	A	112	3.161	40.452	37.207	1.00	43.21	A
	MOTA	5823	CG	LYS	A	112	4.040	39.255	37.531	1.00	43.24	A
•	ATOM	5824	CD	LYS	A	112	5.354	39.686	38.160	1.00	43.22	A
10	ATOM	5825	CE	LYS	Α	112	6.284	38.499	38.369	1.00	43.30	A
	ATOM	5826	NZ	LYS	Α	112	7.585	38.911	38.962	1.00	43.09	A
	ATOM	5827	С	LYS	Α	112	1.036	39.159	37.440	1.00	43.21	A
	ATOM	5828	0	LYS	Α	112	0.865	37.976	37.136	1.00	43.01	A
•	ATOM	5829	N	GLU	A	113	0.547	39.703	38.551	1.00	43.11	A
15	ATOM	5830	CA	GLU	A	113	-0.230	38.935	39.521	1.00	42.91	A
•	ATOM	5831	СВ	GLU	Α	113	-0.676	39.849	40.670	1.00	43.22	A
	ATOM	5832	CG	GLU	A	113	-1.401	39.138	41.808	1.00	43.46	A
	ATOM	5833	CD	GLU	A	113	-0.473	38.290	42.660	1.00	43.66	A
	ATOM	5834	OE1	GLU	A	113	-0.951	37.683	43.644	1.00	43.73	A
20	MOTA	5835	OE2	GLU	Α	113	0.738	38.232	42.348	1.00	43.75	A
	MOTA	5836	С	GLU	Α	113	-1.460	38.288	38.884	1.00	42.68	A
	MOTA	5837	0	GLU	A	113	-1.799	37.142	39.187	1.00	42.56	A
	АТОМ	5838	N	GLN	Α	114	-2.121	39.031	38.002	1.00	42.28	A
	MOTA	5839	CA	GLN	Α	114	-3.323	38.552	37.326	1.00	41.94	A
25	ATOM	5840	СВ	GLN	A	114	-3.979	39.712	36.568	1.00	42.26	Α

.

: a. ... ·

		MOTA	5841	CG	GLN .	A	114	-5.404	39.462	36.083	1.00	42.72	A
	••	MOTA	5842	CD	GLN	A	114	-5.470	38.624	34.821	1.00	42.97	A
		ATOM	5843	OE1	GLN	A	114	-4.796	38.918	33.830	1.00	43.14	A
		MOTA	5844	NE2	GLN	Α	114	-6.302	37.584	34.841	1.00	43.11	A
5	٠	ATOM	5845	С	GLN	Α	114	-3.030	37.396	36.372	1.00	41.52	A
		ATOM	5846	0	GLN	Α	114	-3.796	36.435	36.294	1.00	41.60	A
	:	ATOM	5847	N	MET	Α	115	-1.919	37.488	35.648	1.00	40.93	A
		MOTA	5848	CA	MET	A	115	-1.549	36.439	34.706	1.00	40.35	A
	:	ATOM	5849	СВ	MET	Α	115	-0.437	36.930	33.774	1.00	40.74	A
10	ξ.	MOTA	5850	CG	MET	Α	115	-0.045	35.930	32.692	1.00	41.32	A
	•	ATOM	5851	SD	MET	A	115	-1.436	35.356	31.684	1.00	42.13	A
	•	ATOM	5852	CE	мет	Α	115	-1.186	36.293	30.162	1.00	42.02	A
•		ATOM	5853	С	MET	Α	115	-1.105	35.168	35.436	1.00	39.61	A
•		ATOM	5854	0	MET	Α	115	-1.398	34.059	34.990	1.00	39.35	A
15	;·	ATOM	5855	Ņ	PHE	Α	116	-0.405	35.332	36.556	1.00	38.88	A
	٠	ATOM	5856	CA	PHE	Α	116	0.056	34.188	37.335	1.00	38.26	A
,	;	ATOM	5857	СВ	PHE	A	116	0.942	34.638	38.501	1.00	38.13	A
		ATOM	5858	CG	PHE	Α	116	2.406	34.690	38.170	1.00	37.93	A
		ATOM	5859	CD1	PHE	Α	116	2.893	35.593	37.232	1.00	37.95	A
20		ATOM	5860	CD2	PHE	A	116	3.304	33.838	38.808	1.00	37.87	A
	,	ATOM	5861	CE1	PHE	A	116	4.254	35.646	36.930	1.00	37.97	A
		ATOM	5862	CE2	PHE	Ą	116	4.665	33.882	38.514	1.00	37.79	A
		ATOM	5863	CZ	PHE	A	116	5.141	34.789	37.575	1.00	37.96	A
	. •	ATOM	5864	С	PHE	A	116	-1.114	33.385	37.886	1.00	38.04	A
25		ATOM	5865	0	PHE	A	116	-1.147	32.161	37.769	1.00	37.81	A

81

		MOTA	6152	N	TYR A	Ą 152	13.539	17.574	33.797	1.00 16.38	A
		ATOM	6153	CA	TYR A	A 152	12.825	18.812	33.538	1.00 16.80	A
		MOTA	6154	СВ	TYR 2	A 152	12.658	19.044	32.028	1.00 17.06	A
		ATOM	6155	CG	TYR A	A 152	12.623	20.514	31.669	1.00 17.96	A
		ATOM	6156	CD1	TYR A	A 152	13.677	21.359	32.026	1.00 18.34	A
		ATOM	6157	CE1	TYR A	A 152	13.642	22.720	31.737	1.00 19.38	A
		ATOM	6158	CD2	TYR A	A 152	11.530	21.074	31.003	1.00 17.98	A
	:	ATOM	6159	CE2	TYR A	A 152	11.491	22.442	30.706	1.00 19.01	A
		ATOM	6160	CZ	TYR A	A 152	12.548	23.256	31.077	1.00 19.24	A
10		ATOM	6161	ОН	TYR A	A 152	12.517	24.604	30.789	1.00 20.15	A
	•	ATOM	6162	С	TYR A	A 152	11.470	18.861	34.239	1.00 16.67	A
		ATOM	6163	0	TYR A	A 152	11.031	19.932	34.652	1.00 16.60	A
		ATOM	6164	N	TRP A	A 153	10.804	17.713	34.379	1.00 16.52	A
		ATOM	6165	CA	TRP A	A 153	9.518	17.691	35.071	1.00 16.67	A
1:5	·:. · .	ATOM	6166	СВ	TRP A	A 153	8.870	16.299	35.002	1.00 16.89	A
•		ATOM	6167	CG	TRP A	A 153	7.851	16.082	36.080	1.00 17.11	A
		ATOM	6168	CD2	TRP A	A 153	6.691	16.883	36.345	1.00 17.34	Α
		ATOM	6169	CE2	TRP A	A 153	6.067	16.349	37.496	1.00 17.61	Α
Ç.		ATOM	6170	CE3	TRP A	A 153	6.122	18.001	35.726	1.00 17.51	Α
20		MOTA	6171	CD1	TRP A	153	7.879	15.120	37.053	1.00 17.56	Α
		АТОМ	6172	NE1	TRP A	153	6.815	15.278	37.906	1.00 17.47	Α
	•	MOTA	6173	CZ2	TRP A	A. 153	4.893	16.893	38.038	1.00 17.62	Α
		MOTA	6174	CZ3	TRP A	153	4.954	18.548	36.264	1.00 17.52	A
		MOTA	6175	сн2	TRP A	153	4.352	17.990	37.410	1.00 17.93	A
25		АТОМ	6176	С	TRP A	153	9.719	18.073	36.540	1.00 16.90	Α

56.2

. . . .

 $\mathbb{Z}(z_{2},z)$

CA 02466264 2004-05-05

	ATOM	6177	0	TRP	A	153	8.963	18.874	37.101	1.00	16.93	A
• •	MOTA	6178	N	GLU .	Α	154	10.746	17.502	37.156	1.00	16.92	A
	ATOM	6179	CA	GLU .	A	154	11.035	17.762	38.561	1.00	17.77	A
7	, ATOM	6180	СВ	GLU .	Α	154	12.168	16.846	39.037	1.00	18.50	A
5	· ATOM	6181	ÇG	GLU	A	154	12.341	16.793	40.555	1.00	20.34	A
	ATOM	6182	CD	GLU	A	154	13.143	17.942	41.115	1.00	21.37	A
	ATOM	6183	OE1	GLU	A	154	13.106	18.142	42.352	1.00	22.31	A
: .	MOTA	6184	OE2	GLU	A	154	13.825	18.645	40.336	1.00	22.41	A
	MOTA	6185	С	GLU	Α	154	11.409	19.223	38.779	1.00	17.80	A
10	ATOM	6186	0	GLU	A	154	10.992	19.841	39.765	1.00	17.40	A
•	MOTA	6187	N	ILE	Α	155	12.189	19.766	37.848	1.00	17.91	A
	MOTA	6188	CA	ILE	Α	155	12.632	21.158	37.916	1.00	18.46	A
	MOTA	6189	СВ	ILE	Α	155	13.704	21.442	36.837	1.00	18.42	A
	MOTA	6190	CG2	ILE	Α	155	13.999	22.953	36.754	1.00	18.94	A
15	ATOM	6191	CG1	ILE	Α	155	14.972	20.643	37.160	1.00	18.56	A
	MOTA	6192	CD1	ILE	Α	155	16.070	20.752	36.113	1.00	17.73	A
	ATOM	6193	С	ILE	A	155	11.468	22.133	37.748	1.00	18.60	A
·	ATOM	6194	0	ILE	Α	155	11.320	23.084	38.527	1.00	18.55	A
No.	ATOM	6195	N	CYS	Α	156	10.640	21.901	36.734	1.00	18.62	A
20	ATOM	6196	CA	CYS	A	156	9.495	22.768	36.498	1.00	19.08	A
·	ATOM	6197	СВ	CYS	Α	156	8.808	22.418	35.170	1.00	19.21	A
	ATOM	6198	SG	CYS	Ą	156	9.783	22.809	33.694	1.00	20.15	A
•	ATOM	6199	С	CYS	A	156	8.479	22.675	37.633	1.00	18.95	A
	MOTA	6200	0	CYS	A	156	7.950	23.689	38.082	1.00	19.21	A
25	MOTA	6201	N	SER	A	157	8.210	21.461	38.108	1.00	18.70	A

		АТОМ	6202	CA	SER A	157	7.229	21.301	39.175	1.00	18.57	Α
:		MOTA	6203	СВ	SER A	157	6.890	19.820	39.388	1.00	18.17	A
		MOTA	6204	OG	SER A	157	8.042	19.055	39.674	1.00	18.09	A
		ATOM	6205	С	SER A	157	7.715	21.933	40.476	1.00	18.73	A
5	٠	ATOM	6206	0	SER A	157	6.911	22.420	41.269	1.00	18.90	A
٠,	•	ATOM	6207	N	THR A	158	9.025	21.928	40.694	1.00	18.86	A
:		ATOM	6208	CA	THR A	158	9.586	22.536	41.898	1.00	19.39	A
٠.,		ATOM	6209	СВ	THR A	158	11.124	22.436	41.915	1.00	19.38	A
	:	MOTA	6210	OG1	THR A	158	11.513	21.058	41.992	1.00	19.86	A
10		MOTA	6211	CG2	THR A	158	11.697	23.181	43.111	1.00	19.72	A
.:.	٠.	ATOM	6212	С	THR A	158	9.180	24.011	41.953	1.00	19.58	A
		ATOM	6213	0	THR A	158	8.727	24.502	42.989	1.00	19.55	A
		ATOM	6214	N	THR A	159	9.336	24.714	40.836	1.00	19.71	A
		ATOM	6215	CA	THR A	159	8.977	26.129	40.791	1.00	20.16	A
15		ATOM	6216	СВ	THR A	159	9.553	26.810	39.531	1.00	20.13	A
		ATOM	6217	OG1	THR A	159	10.981	26.811	39.617	1.00	20.61	A
		ATOM	6218	CG2	THR A	159	9.067	28.255	39.425	1.00	20.46	A
		MOTA	6219	С	THR A	159	7.468	26.347	40.855	1.00	20.37	A
. !		ATOM	6220	0	THR A	159	6.996	27.261	41.529	1.00	20.42	A
20		MOTA	6221	N	LEU A	160	6.701	25.509	40.163	1.00	20.18	A
•	-	MOTA	6222	CA	LEU À	160	5.258	25.651	40.195	1.00	20.20	Α
		ATOM	6223	СВ	LEU A	160	4.607	24.665	39.229	1.00	20.20	Α
		ATOM	6224	CG	LEU À	160	4.790	24.985	37.742	1.00	20.36	A
; ∵		ATOM	6225	CD1	LEU A	160	4.148	23.883	36.919	1.00	20.38	A
2,5		ATOM	6226	CD2	LEU A	160	4.171	26.340	37.411	1.00	20.08	A

5

15

20

: 25

CA 02466264 2004-05-05

84

÷	ATOM	6227	С	LEU	Α	160	4.720	25.430	41.607	1.00	20.21	A
;	MOTA	6228	0	LEU	A	160	3.812	26.133	42.043	1.00	19.87	A
	MOTA	6229	N	LEU	Α	161	5.290	24.459	42.321	1.00	20.19	A
· ·	MOTA	6230	CA	LEU	Α	161	4.853	24.148	43.686	1.00	20.28	A
,	ATOM	6231	СВ	LEU	Α	161	5.580	22.902	44.207	1.00	20.48	A
	MOTA	6232	CG	LEU	Α	161	5.015	21.562	43.713	1.00	20.77	A
	ATOM	6233	CD1	LEU	Α	161	6.014	20.435	43.957	1.00	20.74	A
	ATOM	6234	CD2	LEU	Α	161	3.700	21.283	44.419	1.00	20.80	A
	MOTA	6235	С	LEU	A	161	5.048	25.312	44.655	1.00	20.60	A
Į.	ATOM	6236	0	LEU	A	161	4.329	25.426	45.651	1.00	20.50	A
.·`	MOTA	6237	N	VAL	A	162	6.021	26.170	44.364	1.00	20.44	A
	ATOM	6238	CA	VAL	A	162	6.282	27.335	45.207	1.00	20.53	A
	ATOM	6239	СВ	VAL	A	162	7.546	28.101	44.744	1.00	20.23	A
:	ATOM	6240	CG1	VAL	Α	162	7.622	29.466	45.434	1.00	20.06	A
٠.	ATOM	6241	CG2	VAL	A	162	8.792	27.291	45.050	1.00	19.98	A
	ATOM	6242	C	VAL	A	162	5.097	28.290	45.150	1.00	21.05	A
	ATOM	6243	0	VAL	A	162	4.711	28.879	46.160	1.00	21.34	A
	ATOM	6244	N	PHE	A	163	4.524	28.452	43.963	1.00	21.34	A
	ATOM	6245	CA	PHE	A	163	3.395	29.356	43.785	1.00	21.75	A
	MOTA	6246	CB	PHE	A	163	3.517	30.080	42.448	1.00	21.81	A
	MOTA	6247	CG	PHE	Ä	163	4.798	30.832	42.290	1.00	22.12	A
	ATOM	6248	CD1	PHE	Ą	163	5.912	30.223	41.723	1.00	22.14	A
	MOTA	6249	CD2	PHE	Ą	163	4.904	32.147	42.735	1.00	22.21	A
-	· ATOM	6250	CE1	PHE	A	163	7.114	30.915	41.598	1.00	22.33	Α
	MOTA	6251	CE2	PHE	A	163	6.103	32.845	42.615	1.00	22.06	A

. 2

y of S.

... [

1002

± 3' ,'

CA 02466264 2004-05-05

	- '										
	•	MOTA	6252	CZ	PHE A	163	7.211	32.232	42.048	1.00 22.23	Α
	· •	MOTA	6253	С	PHE A	163	2.035	28.679	43.866	1.00 21.93	A
٠.`		ATOM	6254	0	PHE A	163	1.016	29.351	44.006	1.00 22.09	A
		MOTA	6528	N	THR A	197	16.938	29.580	46.456	1.00 42.04	A
!	5	ATOM	6529	CA	THR A	197	16.335	30.780	45.882	1.00 42.10	A
		ATOM	6530	СВ	THR A	197	17.042	31.183	44.574	1.00 41.93	A
		ATOM	6531	OG1	THR A	197	17.071	30.063	43.680	1.00 41.66	Α
	:	ATOM	6532	CG2	THR A	197	18.466	31.642	44.858	1.00 41.90	Α
		MOTA	6533	С	THR A	197	14.852	30.565	45.588	1.00 42.37	A
1	0	MOTA	6534	0	THR A	197	14.363	29.436	45.631	1.00 42.08	A
•	/	MOTA	6535	N	LYS A	198	14.140	31.649	45.288	1.00 42.36	A
		АТОМ	6536	CA	LYS A	198	12.712	31.566	44.992	1.00 42.71	A
		ATOM	6537	СВ	LYS A	198	12.052	32.947	45.102	1.00 42.62	A
. ,		ATOM	6538	CG	LYS A	198	10.532	32.914	44.946	1.00 42.36	A
1	5. ·	ATOM	6539	CD	LYS A	198	9.902	34.305	44.974	1.00 42.26	A
• .		ATOM	6540	CE	LYS A	198	10.279	35.121	43.746	1.00 42.29	A
	•	ATOM	6541	NZ	LYS A	198	9.661	36.480	43.744	1.00 42.09	A
7		ATOM	6542	С	LYS A	198	12.451	30.995	43.599	1.00 42.44	A
· ;		ATOM	6543	0	LYS A	A 198	11.440	30.331	43.376	1.00 43.10	A
2	0.	ATOM	6544	N	LEU A	A 199	13.359	31.257	42.664	1.00 42.38	A
	<i>.</i> ·	ATOM	6545	CA	LEU A	A 199	13.208	30.762	41.302	1.00 41.31	A
	•	ATOM	6546	СВ	LEU A	199	13.021	31.929	40.328	1.00 41.79	A
:		MOTA	6547	CG	LEU 2	A 199	11.826	32.851	40.580	1.00 41.74	A
		ATOM	6548	CD1	LEU A	A 199	11.825	33.976	39.562	1.00 41.87	A
2	5	ATOM	6549	CD2	LEU A	A 199	10.537	32.054	40.500	1.00 41.99	A

••	MOTA	6550	С	LEU	A	199	14.415	29.940	40.880	1.00	41.18	A
	MOTA	6551	0	LEU	A	199	15.357	29.815	41.690	1.00	40.87	A
	ATOM	6552	OXT	LEU	Α	199	14.404	29.431	39.740	1.00	40.62	A
•	ATOM	6613	N1	GSH	н	200	14.652	30.753	26.106	1.00	31.06	Н
.5	ATOM	6614	CA1	GSH	Н	200	16.043	30.929	26.532	1.00	30.39	Н
•	ATOM	6615	C1	GSH	Н	200	16.615	29.624	27.134	1.00	29.87	Н
:	ATOM	6616	011	GSH	Н	200	15.850	28.693	27.401	1.00	29.01	Н
	ATOM	6617	012	GSH	Н	200	17.912	29.630	27.407	1.00	29.27	Н
	ATOM	6618	CB1	GSH	Н	200	16.079	32.017	27.617	1.00	30.85	Н
10	ATOM	6619	CG1	GSH	Н	200	16.018	33.443	27.054	1.00	30.90	Н
	ATOM	6620	CD1	GSH	Н	200	15.735	34.381	28.252	1.00	30.62	Н
•	ATOM	6621	OE1	GSH	Н	200	14.695	35.035	28.263	1.00	30.67	Н
	MOTA	6622	N2	GSH	Н	200	16.666	34.424	29.226	1.00	30.63	н
	ATOM	6623	CA2	GSH	Н	200	16.479	35.316	30.387	1.00	30.99	Н
15	MOTA	6624	C2	GSH	Н	200	17.327	36.467	30.245	1.00	31.16	Н
	MOTA	6625	02	GSH	Н	200	18.505	36.372	29.874	1.00	30.98	Н
	MOTA	6626	CB2	GSH	Н	200	16.883	34.616	31.709	1.00	30.96	Н
	MOTA	6627	SG2	GSH	Н	200	15.567	33.583	32.426	1.00	31.20	Н
	MOTA	6628	N3	GSH	Н	200	16.793	37.649	30.634	1.00	31.83	Н
20	MOTA	6629	CA3	GSH	Н	200	17.595	38.892	30.738	1.00	32.45	H
	ATOM	6630	C3	GSH	Н	200	17.196	39.860	29.638	1.00	32.93	Н
•	MOTA	6631	031	GSH	Н	200	17.851	40.926	29.570	1.00	33.18	Н
	ATOM	6632	032	GSH	Н	200	16.268	39.526	28.858	1.00	33.08	H
	ATOM	6634	MG+2	MG2	M	902	10.400	26.589	23.001	1.00	23.91	M
25	ATOM	6641	ОН2	TAW	s	7	11.530	25.061	23.828	1.00	37.06	s

87

	ATOM	6642	OH2	WAT	s	8	9.540	27.210	24.684	1.00	24.57	S
	ATOM	6643	он2	WAT	s	9	9.510	28.276	22.036	1.00	26.85	S
	MOTA.	6644	он2	TAW	s	10	11.074	26.182	21.146	1.00	25.39	S
	MOTA	6645	он2	WAT	s	11	8.769	25.220	22.701	1.00	23.15	S
5	ATOM	6646	он2	WAT	s	12	12.343	27.736	23.214	1.00	21.75	S
	ATOM	6655	он2	WAT	s	21	16.153	24.647	33.762	1.00	15.93	s
	MOTA	6660	он2	WAT	s	26	22.016	34.735	24.315	1.00	19.54	S
•	MOTA	6690	он2	WAT	s	56	19.895	31.455	26.292	1.00	20.15	S
	ATOM	6722	OH2	WAT	s	88	15.099	33.768	23.429	1.00	20.21	S
10	MOTA	6746	он2	WAT	s	112	13.586	26.219	37.252	1.00	28.05	S
	ATOM	6749	он2	WAT	s	115	29.682	31.074	30.423	1.00	32.25	S
	ATOM	6757	он2	WAT	s	123	20.931	25.748	41.633	1.00	32.02	S
i, 	ATOM	6758	он2	WAT	s	124	17.734	33.757	22.543	1.00	19.10	S
	MOTA	6770	он2	WAT	s	136	13.426	24.600	39.459	1.00	28.07	S
15	ATOM	6774	он2	WAT	s	140	16.050	26.391	24.708	1.00	22.82	s
	ATOM	6782	он2	WAT	S	148	14.395	37.589	28.342	1.00	35.97	S
	MOTA	6811	он2	WAT	s	177	19.958	32.909	23.887	1.00	18.07	S
	MOTA	6829	он2	WAT	s	195	14.106	35.347	25.480	1.00	25.75	S
	ATOM	6840	он2	TAW	s	206	14.044	35.490	20.956	1.00	20.11	S
20	MOTA	6928	он2	WAT	s	294	25.213	29.402	36.456	1.00	21.97	s
	MOTA	6929	он2	WAT	s	295	4.780	29.656	25.498	1.00	28.39	S
£	ATOM	6940	он2	WAT	s	306	11.910	36.992	22.272	1.00	27.44	S
	ATOM	7008	он2	WAT	S	374	19.731	28.119	43.144	1.00	34.76	S
	ATOM	7079	он2	WAT	s	445	9.001	41.153	37.697	1.00	40.98	S
25	ATOM	7085	он2	TAW	s	451	14.312	39.335	22.120	1.00	52.27	S

17 S. 3

	АТОМ 7095	OH2 WAT S 461	11.445	36.299	24.804	1.00 39.65	S
	ATOM 7123	OH2 WAT S 489	11.366	30.498	26.166	1.00 37.93	s
•	ATOM 7129	OH2 WAT S 495	16.228	23.406	21.692	1.00 34.70	S
	ATOM 7138	OH2 WAT S 504	21.673	36.938	40.112	1.00 39.58	s
; 5	атом 7140	OH2 WAT S 506	8.186	35.879	39.587	1.00 35.09	s
	· ATOM 7155	OH2 WAT S 521	17.208	36.485	21.785	1.00 33.85	s
	атом 7179	OH2 WAT S 545	7.692	39.218	31.544	1.00 38.01	s
. :	ATOM 7184	OH2 WAT S 550	16.301	40.121	43.773	1.00 42.74	s
•	атом 7205	OH2 WAT S 571	16.471	40.729	21.826	1.00 44.98	s
10	ATOM 7219	OH2 WAT S 585	12.552	26.597	33.929	1.00 43.65	S
	атом 7229	OH2 WAT S 595	17.756	38.966	20.182	1.00 39.29	S
	ATOM 7231	OH2 WAT S 597	13.596	27.392	25.614	1.00 33.67	s
· v.	ATOM 7235	OH2 WAT S 601	8.227	29.798	24.106	1.00 42.88	S
	атом 7250	OH2 WAT S 616	12.430	28.404	38.196	1.00 28.06	s
15	ATOM 7302	OH2 WAT S 668	8.268	32.489	24.271	1.00 34.58	s
	ATOM 7306	OH2 WAT S 672	13.738	43.695	22.850	1.00 40.33	s
	ATOM 7350	OH2 WAT S 716	16.122	38.680	37.510	1.00 37.39	s
	ATOM 7351	OH2 WAT S 717	12.657	31.864	34.383	1.00 37.30	s
	ATOM 7362	OH2 WAT S 728	24.227	34.662	22.649	1.00 33.80	S
20	АТОМ 7363	OH2 WAT S 729	25.788	32.632	21.734	1.00 31.91	s
•	АТОМ 7398	OH2 WAT S 764	15.402	25.563	30.917	1.00 22.67	s
	АТОМ 7399	OH2 WAT S 765	13.051	32.782	31.072	1.00 31.89	S
	ATOM 7400	OH2 WAT S 766	10.600	32.486	30.037	1.00 38.06	s
	ATOM 7453	OH2 WAT S 818	10.407	33.035	26.315	1.00 34.27	s
25	ATOM 7454	OH2 WAT S 819	4.103	39.433	24.839	1.00 35.58	S

89

	ATOM	7455	OH2	WAT	S 820	8.800	40.482	25.686	1.00 38.38	S
:	MOTA	7466	он2	WAT	s 831	22.905	42.140	23.725	1.00 34.87	s
	MOTA	7523	он2	WAT	s 890	11.498	40.681	41.811	1.00 34.74	s
	ATOM	7533	он2	WAT	s 901	21.231	36.504	45.050	1.00 40.93	s
	MOTA	7540	он2	WAT	s 908	16.196	42.111	32.687	1.00 37.19	S
	MOTA	7588	он2	WAT	S1234	13.747	22.487	22.995	1.00 32.97	s

Table 3

Three-dimensional structural coordinate of the complex of human hematopoietic PGDS with calcium, glutathione and 9,11-dideoxy $-9\,\alpha$,11 α -methanoepoxyprostaglandine $F_{2\,\alpha}$ (U46)

٠.	MOTA	4966	N	TYR A.	8	-2.271	-4.196	32.836	1.00 14.93	Α
	ATOM	4967	CA	TYR A	8	-0.858	-4.474	33.097	1.00 15.12	A
15 .	ATOM	4968	СВ	TYR A	8	-0.097	-3.155	33.272	1.00 14.72	A
	ATOM	4969	CG	TYR A	8	1.411	-3.302	33.334	1.00 14.32	A
•	ATOM	4970	CD1	TYR A	8	2.128	-3.846	32.262	1.00 13.92	A
	ATOM	4971	CE1	TYR A	8	3.518	-3.985	32.321	1.00 13.52	Α
•	MOTA	4972	CD2	TYR A	8	2.125	-2.898	34.469	1.00 14.03	A
20	ATOM	4973	CE2	TYR A	8	3.508	-3.032	34.539	1.00 13.52	A
	ATOM	4974	CZ	TYR A	8	4.199	-3.577	33.461	1.00 13.52	A
•	MOTA	4975	ОН	TYR A	8	5.563	-3.718	33.529	1.00 13.03	A
	ATOM	4976	С	TYR A	8	-0.758	-5.293	34.384	1.00 15.52	A
:	ATOM	4977	0	TYR A	8	-1.775	-5.603	35.002	1.00 15.35	A
25	MOTA	4978	N	PHE A	9	0.460	-5.652	34.782	1.00 15.96	A

90

	ATOM	4979	CA	PHE	Α	9	0.654	-6.400	36.021	1.00 16.4	1 A
	ATOM			PHE	A	9	2.049	-7.029	36.071	1.00 16.6	2 A
	АТОМ	4981	CG	PHE	Α	9	2.240	-8.149	35.092	1.00 17.0	3 A
	ATOM	4982	CD1	PHE	A	9	3.165	-8.035	34.055	1.00 17.2	2 A
5	ATOM	4983	CD2	PHE	A	9	1.497	-9.322	35.209	1.00 17.2	9 A
	: ATOM	4984	CE1	PHE	A	9	3.352	-9.072	33.143	1.00 17.2	8 A
	MOTA	4985	CE2	PHE	A	9	1.671	-10.371	34.304	1.00 17.3	9 A
	MOTA	4986	CZ	PHE	A	9	2.603	-10.245	33.267	1.00 17.6	4 A
	MOTA	4987	С	PHE	A	9	0.495	-5.427	37.187	1.00 16.5	1 A
10	MOTA	4988	0	PHE	A	9	0.380	-4.220	36.975	1.00 16.4	.3 A
	MOTA	4989	N	ASN	A	10	0.485	-5.951	38.410	1.00 16.6	8 A
	ATOM	4990	CA	ASN	A	10	0.345	-5.114	39.595	1.00 17.1	.3 A
:	MOTA	4991	СВ	ASN	A	10	-0.235	-5.911	40.765	1.00 17.6	2 A
	ATOM	4992	CG	ASN	A	10	-0.251	-5.111	42.053	1.00 18.1	.8 A
15	ATOM	4993	OD1	ASN	A	10	-0.602	-3.927	42.060	1.00 18.9)1 A
	MOTA	4994	ND2	ASN	A	10	0.120	-5.751	43.151	1.00 18.7	74 A
	ATOM	4995	С	ASN	A	10	1.695	-4.539	39.996	1.00 17.0)8 A
	MOTA	4996	0	ASN	A	10	2.278	-4.934	41.002	1.00 17.0)4 A
	ATOM	4997	N	MET	A	11	2.189	-3.607	39.189	1.00 16.9	98 A
20	ATOM	4998	CA	MET	A	11	3.467	-2.962	39.448	1.00 16.7	70 A
	МОТА	4999	СВ	MET	A	11	4.626	-3.927	39.141	1.00 17.6	58 A
	, ATOM	5000	CG	MET	Ą	11	4.630	-4.530	37.748	1.00 18.9	92 A
	MOTA	5001	SD	MET	Ą	11	6.178	-5.456	37.353	1.00 20.	84 A
	MOTA	5002	CE	MET	A	11	5.595	-7.137	37.373	1.00 19.	96 A
25	MOTA	5003	С	MET	A	11	3.561	-1.708	38.587	1.00 15.	92 A

表广(图26)

. •									
÷	ATOM 5004	0	MET A	11	2.740	-1.512	37.702	1.00 15.49	A
	ATOM 5005	N	ARG A	12	4.531	-0.842	38.872	1.00 15.17	A
	- ATOM 5006	CA	ARG A	12	4.697	0.372	38.084	1.00 14.70	A
	ATOM 5007	СВ	ARG A	12	5.759	1.285	38.704	1.00 14.69	A
5	ATOM 5008	CG	ARG A	12	5.418	1.777	40.110	1.00 15.00	A
•	ATOM 5009	CD	ARG A	12	6.413	2.825	40.594	1.00 14.97	A
	ATOM 5010	NE	ARG A	12	7.785	2.323	40.634	1.00 15.22	A
	ATOM 5011	CZ	ARG A	12	8.265	1.490	41.556	1.00 15.45	A
	ATOM 5012	NH1	ARG A	12	7.485	. 1.052	42.536	1.00 15.40	A
10	ATOM 5013	NH2	ARG A	12	9.533	1.096	41.502	1.00 15.26	A
	ATOM 5014	С	ARG A	12	5.136	-0.069	36.695	1.00 14.31	A
	ATOM 5015	0	ARG A	12	4.432	0.147	35.710	1.00 13.90	A
	ATOM 5016	N	GLY A	13	6.301	-0.708	36.639	1.00 13.97	A
٠	ATOM 5017	CA	GLY A	13	6.837	-1.202	35.388	1.00 13.65	A
15	ATOM 5018	С	GLY A	13	6.705	-0.260	34.207	1.00 13.50	A
	ATOM 5019	0	GLY A	13	6.938	0.941	34.321	1.00 13.35	A
	АТОМ 5020	N	ARG A	14	6.309	-0.816	33.070	1.00 13.31	A
٠.	ATOM 5021	CA	ARG A	14	6.179	-0.047	31.848	1.00 13.30	A
	ATOM 5022	СВ	ARG A	14	6.431	-0.959	30.650	1.00 14.32	A
20	ATOM 5023	CG	ARG A	14	7.877	-1.395	30.542	1.00 16.00	A
	ATOM 5024	CD	ARG A	14	8.117	-2.259	29.325	1.00 17.28	A
	атом 5025	NE	ARG A	14	9.532	-2.265	28.979	1.00 18.88	A
:	ATOM 5026	CZ	ARG A	14	10.134	-1.329	28.246	1.00 19.26	A
	ATOM 5027	NH1	ARG A	14	9.444	-0.304	27.762	1.00 19.28	A
25	ATOM 5028	NH2	ARG A	14	11.442	-1.408	28.014	1.00 20.21	A

	MOTA	5029	С	ARG A	14	4.859	0.689	31.669	1.00	12.77	A
	ATOM	5030	0	ARG A	14	4.696	1.435	30.710	1.00	12.75	A
	ATOM	5031	N	ALA A	15	3.920	0.496	32.590	1.00	12.21	A
	АТОМ	5032	CA	ALA A	15	2.624	1.159	32.493	1.00	11.48	A
5	ATOM	5033	СВ	ALA A	15	1.531	0.245	33.019	1.00	11.52	A
	ATOM	5034	С	ALA A	15	2.596	2.464	33.261	1.00	10.95	A
	ATOM	5035	0	ALA A	. 15	1.780	3.352	32.977	1.00	10.86	A
	ATOM	5036	N	GLU A	. 16	3.490	2.580	34.238	1.00	10.32	A
•	ATOM	5037	CA	GLU A	. 16	3.546	3.771	35.087	1.00	9.76	A
10	ATOM	5038	СВ	GLU A	. 16	4.748	3.677	36.036	1.00	9.29	A
	ATOM	5039	CG	GLU A	. 16	4.648	4.565	37.277	1.00	8.91	A
	АТОМ	5040	CD	GLU A	. 16	3.485	4.192	38.189	1.00	8.41	A
	MOTA	5041	OE1	GLU A	16	2.858	3.134	37.983	1.00	8.43	A
	MOTA	5042	OE2	GLU A	16	3.199	4.960	39.125	1.00	8.51	A
15	ATOM	5043	С	GLU A	16	3.590	5.084	34.303	1.00	9.64	A
		5044	0	GLU A	16	2.999	6.071	34.730	1.00	9.63	A
	ATOM	5045	N	ILE A	17	4.287	5.096	33.166	1.00	9.45	A
	MOTA	5046	CA	ILE A	17	4.377	6.312	32.368	1.00	9.29	A
	ATOM	5047	СВ	ILE A	1	5.333	6.139	31.150	1.00	9.25	A
20	MOTA	5048	CG2	ILE A	A 1'	4.867	5.015	30.251	1.00	9.64	A
	ATOM	5049	CG1	ILE A	A 1'	5.413	7.442	30.358	1.00	9.55	A
	ATOM	5050	CD1	ILE A	A 1	5.988	8.596	31.168	1.00	9.78	A
	ATOM	5051	С	ILE A	A 1'	7 2.984	6.717	31.892	1.00		A
•:	ATOM	5052									A
25	ATOM	5242	N	TRP A	A 3	9 -2.591	-14.181	33.457	1.00	37.71	A

•	MOTA	5243	CA	TRP A	. 3	9	-1.830	-13.655	32.329	1.00	37.46	A
•	ATOM	5244	СВ	TRP A	. 3	9	-0.376	-13.394	32.737	1.00	37.38	A
	MOTA	5245	CG	TRP A	. 3	9	0.495	-12.956	31.594	1.00	37.31	A
	MOTA	5246	CD2	TRP A	. 3	9	0.174	-11.987	30.583	1.00	37.22	A
5	MOTA	5247	CE2	TRP A	. 3	9	1.277	-11.918	29.704	1.00	37.19	Α
	ATOM	5248	CE3	TRP A	. 3	9	-0.940	-11.171	30.336	1.00	37.22	A
: ::	ATOM	5249	CD1	TRP A	. 3	9	1.745	-13.416	31.295	1.00	37.27	A
	ATOM	5250	NE1	TRP A	. 3	9	2.220	-12.801	30.160	1.00	37.23	A
	ATOM	5251	CZ2	TRP A	. 3	9	1.300	-11.068	28.594	1.00	37.19	A
10	ATOM	5252	CZ3	TRP A	. 3	39	-0.916	-10.323	29.230	1.00	37.17	A
	ATOM	5253	CH2	TRP A	. 3	39	0.198	-10.281	28.374	1.00	37.16	Α
	АТОМ	5254	С	TRP A	A 3	39	-1.866	-14.602	31.124	1.00	37.40	Α
	ATOM	5255	0	TRP A	A 3	39	-2.138	-14.177	30.003	1.00	37.29	A
	ATOM	5256	N	PRO A	A 4	10	-1.597	-15.901	31.342	1.00	37.35	Α
15	ATOM	5257	CD	PRO A	A 4	10	-1.235	-16.548	32.616	1.00	37.43	A
	ATOM	5258	CA	PRO A	A 4	10	-1.605	-16.881	30.251	1.00	37.26	A
	MOTA	5259	СВ	PRO A	A 4	40	-1.489	-18.212	30.987	1.00	37.31	A
	ATOM	5260	CG	PRO A	A 4	40	-0.618	-17.854	32.153	1.00	37.40	A
	MOTA	5261	С	PRO A	A 4	40	-2.843	-16.817	29.363	1.00	37.11	A
20	ATOM	5262	0	PRO A	A 4	40	-2.739	-16.888	28.139	1.00	37.23	A
	MOTA	5263	N	GLU A	A 4	41	-4.011	-16.677	29.981	1.00	36.89	A
		5264	CA	GLU A	Α, 4	41	-5.265	-16.614	29.236	1.00	36.63	A
. :		5265	СВ	GLU A	A,	41	-6.457	-16.755	30.188	1.00	37.02	A
	ATOM	5266	CG	GLU Z	A _,	41	-7.757	-17.156	29.501	1.00	37.64	A
25	ATOM	5267	CD	GLU A	A.	41	-7.734	-18.601	29.023	1.00	38.10	A

100000

1 20 De

CA 02466264 2004-05-05

		MOTA	5268	OE1	GLU	A	41	-8.709	-19.033	28.364	1.00	38.32	A
٠.		ATOM	5269	OE2	GLU	A	41	-6.741	-19.307	29.311	1.00	38.26	A
	•	MOTA	5270	С	GLU	A	41	-5.381	-15.297	28.474	1.00	36.10	A
	•	MOTA	5271	0	GLU	Α	41	-5.703	-15.281	27.285	1.00	36.26	A
5		MOTA	5272	N	ILE	Α	42	-5.120	-14.194	29.166	1.00	35.28	A
		MOTA	5273	CA	ILE	A	42	-5.204	-12.874	28.553	1.00	34.47	A
		MOTA	5274	СВ	ILE	A	42	-4.980	-11.773	29.597	1.00	34.57	A
		ATOM	5275	CG2	ILE	A	42	-5.152	-10.406	28.953	1.00	34.48	A
	.,	ATOM	5276	CG1	ILE	A	42	-5.968	-11.952	30.750	1.00	34.54	A
10	٠.	ATOM	5277	CD1	ILE	A	42	-5.687	-11.076	31.944	1.00	34.74	A
٠		АТОМ	5278	С	ILE	A	42	-4.173	-12.715	27.441	1.00	33.83	A
	٠	ATOM	5279	0	ILE	A	42	-4.466	-12.161	26.384	1.00	33.69	A
	· ·.	ATOM	5280	N	LYS	A	43	-2.968	-13.213	27.691	1.00	33.07	A
		ATOM	5281	CA	LYS	A	43	-1.879	-13.133	26.729	1.00	32.30	A
15		ATOM	5282	СВ	LYS	A	43	-0.664	-13.899	27.258	1.00	32.18	A
	٠.	ATOM	5283	CG	LYS	Α	43	0.536	-13.883	26.324	1.00	32.18	A
	; }	ATOM	5284	CD	LYS	A	43	1.622	-14.833	26.798	1.00	32.02	A
. :		,. ATOM	5285	CE	LYS	A	43	2.795	-14.865	25.831	1.00	31.99	A
: .		ATOM	5286	NZ	LYS	A	43	3.484	-13.542	25.723	1.00	31.70	A
20		ATOM	5287	С	LYS	A	43	-2.267	-13.674	25.354	1.00	31.74	A
		ATOM	5288	0	LYS	A	43	-2.038	-13.022	24.333	1.00	31.67	A
		ATOM	5328	N	GLY	Ą	49	0.717	-10.483	22.236	1.00	21.45	A
	٠	АТОМ	5329	CA	GLY	A	49	0.900	-11.142	23.516	1.00	20.85	A
•	:	ATOM	5330	С	GLY	A	49	1.735	-10.433	24.567	1.00	20.53	A
25			5331	0	GLY	A	49	2.506	-11.072	25.276	1.00	20.53	A

.by 3.

CA 02466264 2004-05-05

2	ATOM 5332	N	LYS A	50	1.590	-9.120	24.688	1.00 20.06	A
•	ATOM 5333	CA	LYS A	50	2.354	-8.390	25.686	1.00 19.66	A
	АТОМ 5334	СВ	LYS A	50	3.683	-7.916	25.085	1.00 19.97	A
	атом 5335	CG	LYS A	50	4.636	-9.061	24.812	1.00 20.63	A
5	ATOM 5336	CD	LYS A	50	5.846	-8.644	24.024	1.00 21.03	A
	- атом 5337	CE	LYS A	50	6.699	-9.864	23.706	1.00 21.10	A
	атом 5338	NZ	LYS A	50	5.873	-10.927	23.044	1.00 21.21	A
٠	атом 5339	С	LYS A	50	1.601	-7.206	26.271	1.00 19.21	A
	ATOM 5340	0	LYS A	50	0.713	-6.633	25.636	1.00 18.74	A
10	том 5341	N	ILE A	51	1.963	-6.852	27.497	1.00 18.42	A
	ATOM 5342	CA	ILE A	51	1.354	-5.720	28.162	1.00 18.05	A
	атом 5343	СВ	ILE A	51	0.574	-6.149	29.414	1.00 18.14	A
	ATOM 5344	CG2	ILE A	51	-0.755	-6.739	29.010	1.00 17.97	A
:	'ATOM 5345	CG1	ILE A	51	1.404	-7.128	30.246	1.00 18.34	A
1′5	ATOM 5346	CD1	ILE A	51	0.681	-7.613	31.494	1.00 18.26	A
	ATOM 5347	С	ILE A	51	2.424	-4.699	28.538	1.00 17.67	A
:	ATOM 5348	0	ILE A	51	3.618	-5.012	28.572	1.00 17.72	A
	ATOM 5349	N	PRO A	52	2.002	-3.473	28.874	1.00 17.15	A
	ATOM 5350	CD	PRO A	52	2.906	-2.369	29.239	1.00 17.33	A
20	ATOM 5351	CA	PRO A	52	0.610	-3.021	28.909	1.00 16.82	A
	ATOM 5352	СВ	PRO A	52	0.703	-1.736	29.713	1.00 16.81	A
:	ATOM 5353	CG	PRO A	52	1.968	-1.159	29.205	1.00 16.96	A
	ATOM 5354	С	PRO A	52	-0.093	-2.777	27.584	1.00 16.60	A
	ATOM 5355	0	PRO A	52	0.526	-2.674	26.526	1.00 16.29	A
25	ATOM 5356	N	ILE A	53	-1.411	-2.678	27.672	1.00 16.36	A

	MOTA	5357	CA	ILE .	Α	53	-2.233	-2.361	26.522	1.00	16.17	A
	АТОМ	5358	СВ	ILE .	Α	53	-2.992	-3.587	25.980	1.00	16.14	A
	ATOM	5359	CG2	ILE .	A	53	-2.000	-4.620	25.440	1.00	16.39	A
•	ATOM	5360	CG1	ILE .	A	53	-3.875	-4.184	27.071	1.00	16.34	Α
· 5 -	ATOM	5361	CD1	ILE .	A	53	-4.859	-5.218	26.544	1.00	16.22	A
•	ATOM	5362	С	ILE .	A	53	-3.235	-1.325	27.015	1.00	15.98	A
	АТОМ	5363	o	ILE	Α	53	-3.563	-1.277	28.202	1.00	15.70	A
	MOTA	5423	N	HIS	A	62	-1.249	-1.093	22.011	1.00	11.78	A
	ATOM	5424	CA	HIS	A	62	-0.158	-1.730	22.757	1.00	11.13	A
10	ATOM	5425	СВ	HIS	A	62	0.120	-3.150	22.240	1.00	11.01	A
	ATOM	5426	CG	HIS	A	62	0.673	-3.202	20.848	1.00	10.84	A
	ATOM	5427	CD2	HIS	A	62	1.903	-3.533	20.392	1.00	10.56	A
	MOTA	5428	ND1	HIS	A	62	-0.087	-2.926	19.732	1.00	10.84	A
	ATOM	5429	CE1	HIS	A	62	0.650	-3.090	18.648	1.00	10.55	A
15	MOTA	5430	NE2	HIS	A	62	1.861	-3.458	19.021	1.00	10.75	A
	ATOM	5431	С	HIS	A	62	1.112	-0.882	22.665	1.00	10.62	A
	ATOM	5432	0	HIS	A	62	1.118	0.155	21.996	1.00	10.80	A
	ATOM	5433	N	GLN	Α	63	2.176	-1.337	23.332	1.00	10.07	A
	ATOM	5434	CA	GLN	A	63	3.465	-0.641	23.377	1.00	9.39	A
20	ATOM	5435	СВ	GLN	Α	63	3.957	-0.289	21.969	1.00	9.20	A
•	АТОМ	5436	CG	GLN	A	63	4.702	-1.417	21.248	1.00	8.99	A
:	ATOM	5437	CD	GLN	Ą	63	5.911	-1.932	22.027	1.00	8.95	A
	ATOM	5438	OE1	GLN	Ą	63	6.481	-1.220	22.858	1.00	8.52	A
	MOTA	5439	NE2	GLN	A _.	63	6.315	-3.165	21.745	1.00	8.76	A
25	ATOM	5440	С	GLN	A [']	63	3.324	0.618	24.223	1.00	8.90	A

97

	•											
• .	MOTA	5441	0	GLN A	A	63	2.781	1.629	23.769	1.00	9.08	A
	ATOM	5442	N	SER A	A	64	3.830	0.554	25.452	1.00	8.48	A
	MOTA	5443	CA	SER A	A	64	3.708	1.668	26.396	1.00	8.06	A
•	ATOM	5444	СВ	SER A	A	64	4.440	1.342	27.706	1.00	7.67	Α
5	MOTA	5445	OG	SER A	A	64	5.839	1.246	27.528	1.00	8.18	A
	MOTA	5446	С	SER A	A	64	4.143	3.045	25.902	1.00	7.75	A
	MOTA	5447	0	SER A	A	64	3.447	4.032	26.141	1.00	7.74	A
	ATOM	5448	N	LEU 2	A	65	5.284	3.126	25.225	1.00	7.75	A
	ATOM	5449	CA	LEU A	A	65	5.754	4.424	24.752	1.00	7.47	Α
10	ATOM	5450	СВ	LEU /	A	65	7.224	4.346	24.359	1.00	7.66	A
	ATOM	5451	CG	LEU .	A	65	8.162	3.849	25.461	1.00	7.74	A
	АТОМ	5452	CD1	LEU .	A	65	9.591	4.192	25.062	1.00	7.25	A
•	ATOM	5453	CD2	LEU .	A	65	7.820	4.516	26.812	1.00	7.33	A
	ATOM	5454	С	LEU .	A	65	4.928	4.945	23.586	1.00	7.33	A
15	ATOM	5455	0	LEU .	A	65	4.768	6.151	23.426	1.00	7.33	A
	ATOM	5662	N	ASP	A	93	13.523	7.274	24.597	1.00	7.43	A
	ATOM	5663	CA	ASP	A	93	14.133	6.074	24.039	1.00	7.59	A
	ATOM	5664	СВ	ASP	A	93	14.267	6.190	22.520	1.00	7.58	A
. •	MOTA	5665	CG	ASP	A	93	12.964	5.867	21.793	1.00	7.82	A
20	МОТА	5666	OD1	ASP	A	93	12.977	5.837	20.550	1.00	8.49	A
	MOTA	5667	OD2	ASP	A	93	11.937	5.640	22.466	1.00	7.73	A
	ATOM	5668	С	ASP	Ą	93	15.494	5.763	24.674	1.00	7.65	A
	АТОМ	5669	0	ASP	A	93	15.839	4.597	24.858	1.00	8.00	A
	ATOM	5670	N	THR	A	94	16.259	6.800	25.009	1.00	7.91	A
25	АТОМ	5671	CA	THR	A	94	17.561	6.608	25.646	1.00	8.08	A

100 8

19.3

4.6

CA 02466264 2004-05-05

		•											
		MOTA	5672	СВ	THR	Ą	94	18.281	7.963	25.879	1.00	8.13	A
	,	MOTA	5673	OG1	THR	A	94	18.619	8.547	24.617	1.00	8.31	A
		МОТА	5674	CG2	THR	A	94	19.557	7.772	26.701	1.00	8.08	A
	:	ATOM	5675	С	THR	A	94	17.361	5.905	26.993	1.00	8.54	A
5		ATOM	5676	0	THR	A	94	18.046	4.925	27.308	1.00	8.42	A
		ATOM	5677	N	LEU	A	95	16.424	6.410	27.788	1.00	8.76	A
		ATOM	5678	CA	LEU	Α	95	16.137	5.804	29.079	1.00	9.53	A
	. • :	ATOM	5679	СВ	LEU	A	95	15.107	6.642	29.851	1.00	9.33	A
	•	MOTA	5680	CG	LEU	A	95	15.647	7.972	30.383	1.00	9.50	A
10	•	MOTA	5681	CD1	LEU	A	95	14.517	8.827	30.949	1.00	9.22	A
		ATOM	5682	CD2	LEU	A	95	16.694	7.684	31.453	1.00	9.41	A
	٠.	ATOM	5683	С	LEU	A	95	15.618	4.377	28.879	1.00	9.79	A
	٠	A TOM	5684	O.	LEU	A	95	16.055	3.460	29.566	1.00	9.96	A
		ATOM	5685	N	ASP	Α	96	14.709	4.200	27.920	1.00	10.44	A
15	: ::	ATOM	5686	CA	ASP	A	96	14.123	2.896	27.626	1.00	11.05	A
		ATOM	5687	СВ	ASP	A	96	13.062	3.027	26.529	1.00	11.36	A
	•	ATOM	5688	CG	ASP	A	96	12.107	1.841	26.499	1.00	11.78	A
		ATOM	5689	OD1	ASP	A	96	11.640	1.431	27.579	1.00	12.41	A
;		ATOM	5690	OD2	ASP	Ą	96	11.806	1.334	25.409	1.00	12.03	A
20		ATOM	5691	С	ASP	A	96	15.182	1.876	27.201	1.00	11.34	A
		ATOM	5692	0	ASP	A	96	15.169	0.734	27.650	1.00	11.33	Α
		ATOM	5693	N	ASP	A	97	16.092	2.294	26.329	1.00	11.73	A
٠.	•	ATOM	5694	CA	ASP	A	97	17.154	1.412	25.875	1.00	12.14	A
		ATOM	5695	СВ	ASP	A	97	18.136	2.154	24.963	1.00	11.82	A
25		ATOM	5696	CG	ASP	A	97	17.599	2.373	23.544	1.00	11.92	A

99

		. ПОМ	5607	OD1	ASP	Δ	97	18.280	3.083	22.784	1.00	11.78	Α
									1.840	23.187	1.00		Α
	•	ATOM	5698 '	ODZ	ASP	A	97	16.524	1.040				Λ
		MOTA	5699	С	ASP	A	97	17.924	0.865	27.084	1.00	12.59	Α
	•	ATOM	5700	0	ASP	A	97	18.228	-0.326	27.150	1.00	12.62	Α
5		MOTA	5701	N	PHE	A	98	18.242	1.731	28.041	1.00	13.02	A
f	•	MOTA	5702	CA	PHE	A	98	18.992	1.296	29.219	1.00	13.80	A
		ATOM	5703	СВ	PHE	A	98	19.449	2.500	30.047	1.00	13.80	A
		MOTA	5704	CG	PHE	Α	98	20.332	2.127	31.203	1.00	14.07	A
	٠	MOTA	5705	CD1	PHE	Α	98	21.550	1.488	30.990	1.00	14.20	A
10		МОТА	5706	CD2	PHE	Α	98	19.937	2.391	32.507	1.00	14.15	A
		MOTA	5707	CE1	PHE	A	98	22.358	1.115	32.064	1.00	14.32	A
		ATOM	5708	CE2	PHE	A	98	20.736	2.022	33.583	1.00	14.28	A
	•	ATOM	5709	cz	PHE	A	98	21.948	1.384	33.361	1.00	14.12	A
		ATOM	5710	С	PHE	A	98	18.209	0.335	30.112	1.00	14.33	A
15		ATOM	5711	0	PHE	A	98	18.705	-0.739	30.467	1.00	14.62	A
		ATOM	5712	N	MET	A	99	16.992	0.722	30.482	1.00	14.73	A
		ATOM	5713	CA	MET	A	99	16.158	-0.120	31.329	1.00	15.34	A
		ATOM	5714	СВ	MET	Α	99	14.798	0.546	31.574	1.00	15.08	A
		ATOM	5715	CG	MET	A	99	14.878	1.932	32.202	1.00	14.94	A
20		ATOM	5716	SD	MET	A	99	15.699	1.910	33.803	1.00	14.67	A
	:	ATOM	5717	CE	MET	A	99	14.395	1.275	34.807	1.00	14.69	Α
	. :	ATOM	5718	С	MET	Ą	99	15.938	-1.489	30.691	1.00	16.11	A
	; ;	ATOM	5719	0	MET	A	99	15.882	-2.504	31.387	1.00	15.98	A
:	· ·/	MOTA	5720	N	SER	A	100	15.811	-1.516	29.366	1.00	16.74	A
25		ATOM	5721	CA	SER	A	100	15.576	-2.767	28.656	1.00	17.44	A

32(20

र भं ?

1.10-102.17

CA 02466264 2004-05-05

٠.	ATOM 5722	CB SER A 100	15.116 -2	2.479 27.225	1.00 17.47	A
•	ATOM 5723	OG SER A 100	13.823 -1	1.884 27.234	1.00 17.51	A
:	ATOM 5724	C SER A 100	16.797 -3	3.681 28.656	1.00 18.04	A
	ATOM 5725	O SER A 100	16.674 -4	1.888 28.436	1.00 18.07	A
5	ATOM 5726	N CYS A 101	17.972 -3	3.111 28.912	1.00 18.65	A
÷.	ATOM 5727	CA CYS A 101	19.196 -3	.905 28.964	1.00 19.36	A
	ATOM 5728	CB CYS A 101	20.428 -3	3.006 29.108	1.00 19.22	A
	ATOM 5729	SG CYS A 101	20.898 -2	2.082 27.630	1.00 20.13	Α
	ATOM 5730	C CYS A 101	19.167	4.889 30.134	1.00 19.75	A
10	ATOM 5731	0 CYS A 101	19.772 -	5.950 30.059	1.00 19.91	A
•	ATOM 5732	N PHE A 102	18.482	4.533 31.218	1.00 20.31	A
• e	ATOM 5733	CA PHE A 102	18.410 -	5.420 32.376	1.00 21.09	A
	ATOM 5734	CB PHE A 102	17.826 -	4.693 33.594	1.00 20.83	A
	ATOM 5735	CG PHE A 102	18.672 -	3.551 34.087	1.00 20.72	A
1.5	ATOM 5736	CD1 PHE A 102	18.775 -	2.376 33.344	1.00 20.56	Α
	ATOM 5737	CD2 PHE A 102	19.374 -	3.652 35.290	1.00 20.64	A
	ATOM 5738	CE1 PHE A 102	19.565 -	1.313 33.788	3 1.00 20.64	A
• :	ATOM 5739	CE2 PHE A 102	20.170 -	2.597 35.750	1.00 20.52	A
	ATOM 5740	CZ PHE A 102	20.267 -	1.423 34.996	5 1.00 20.66	A
20		C PHE A 102	17.554 -	6.645 32.060	1.00 21.79	A
	ATOM 5742	O PHE A 102	16.490 -	6.525 31.456	5 1.00 21.62	A
•	АТОМ 5743	N PRO A 103	18.024 -	7.844 32.450	1.00 22.58	A
	ATOM 5744	CD PRO A 103	19.392 -	8.117 32.928	8 1.00 22.84	A
	ATOM 5745	CA PRO A 103	3 17.297 -	9.098 32.21	1 1.00 23.41	A
`25 ≮:	ATOM 5746	CB PRO A 103	8 18.415 -1	0.133 32.18	5 1.00 23.19	A

· ••••		ATOM	5747	CG	PRO	A	103	19.353	-9.611	33.222	1.00	23.10	A
		ATOM	5748	С	PRO	Α	103	16.272	-9.366	33.321	1.00	24.25	A
		ATOM	5749	0	PRO	A	103	16.459	-10.248	34.160	1.00	24.19	A
		AŢOM	5750	N	TRP	A	104	15.191	-8.594	33.313	1.00	25.16	A
5		ATOM	5751	CA	TRP	A	104	14.142	-8.722	34.313	1.00	26.25	A
•		ATOM	5752	СВ	TRP	A	104	13.049	-7.673	34.072	1.00	25.95	A
:		ATOM	5753	CG	TRP	A	104	13.551	-6.261	33.946	1.00	25.64	A
	:	ATOM	5754	CD2	TRP	A	104	13.907	-5.375	35.016	1.00	25.47	A
		ATOM	5755	CE2	TRP .	A	104	14.332	-4.162	34.429	1.00	25.40	A
10		ATOM	5756	CE3	TRP .	A	104	13.909	-5.488	36.412	1.00	25.27	A
		AŢOM	5757	CD1	TRP	A	104	13.770	-5.568	32.788	1.00	25.58	A
٠		ATOM	5758	NE1	TRP .	A	104	14.237	-4.307	33.070	1.00	25.45	A
		ATOM	5759	CZ2	TRP .	A	104	14.757	-3.067	35.193	1.00	25.38	Α
		ATOM	5760	CZ3	TRP .	A	104	14.331	-4.398	37.173	1.00	25.16	A
15		ATOM	5761	СН2	TRP .	A	104	14.749	-3.205	36.560	1.00	25.21	A
	, .	ATOM	5762	C	TRP 2	A	104	13.511	-10.115	34.334	1.00	27.21	A
	.:	MOTA	5763	0	TRP A	A	104	13.078	-10.597	35.383	1.00	27.22	A
		ATOM	5764	N	ALA Z	A	105	13.472	-10.763	33.175	1.00	28.32	Α
,		MOTA	5765	CA	ALA A	A	105	12.872	-12.087	33.058	1.00	29.49	A
20	:	MOTA	5766	СВ	ALA Z	A :	105	12.207	-12.226	31.697	1.00	29.48	A
3,	. • •	MOTA	5767	С	ALA Z	Α :	105	13.853	-13.233	33.270	1.00	30.44	A
<i>i</i> .		MOTA	5768	0	ALA A	A.	105	13.445	-14.391	33.354	1.00	30.58	A
		ATOM	5769	N	GLU Z	Α	106	15.140	-12.917	33.369	1.00	31.43	Α
	!	ATOM	5770	CA	GLU Z	A i	106	16. 14 7	-13.954	33.552	1.00	32.55	A
25	:	ATOM	5771	СВ	GLU A	A	106	17.545	-13.338	33.620	1.00	32.51	Α

	ATOM 5772	CG	GLU A	106	18.634	-14.386	33.634	1.00 32.51	A
•	АТОМ 5773	CD	GLU Ą	106	18.498	-15.352	32.472	1.00 32.54	A
	ATOM 5774	OE1	GLU A	106	18.761	-16.555	32.662	1.00 32.34	A
	ATOM 5775	OE2	GLU A	106	18.129	-14.905	31.365	1.00 32.59	A
5	АТОМ 5776	С	GLU A	106	15.913	-14.809	34.791	1.00 33.37	A
	ATOM 5777	0	GLU A	106	15.830	-14.294	35.908	1.00 33.46	A
	· ATOM 5778	N	LYS A	107	15.813	-16.121	34.588	1.00 34.40	A
·	ATOM 5779	CA	LYS A	107	15.592	-17.048	35.695	1.00 35.40	A
	ATOM 5780	СВ	LYS A	107	14.830	-18.287	35.212	1.00 35.45	A
10 .	ATOM 5781	CG	LYS A	107	13.486	-17.992	34.553	1.00 35.72	A
	ATOM 5782	CD	LYS A	107	12.523	-17.293	35.497	1.00 35.84	A
	ATOM 5783	CE	LYS A	107	12.103	-18.197	36.639	1.00 36.12	A
	ATOM 5784	NZ	LYS A	107	11.273	-17.459	37.636	1.00 36.20	A
	ATOM 5785	С	LYS A	107	16.915	-17.471	36.336	1.00 36.00	A
15	ATOM 5786	0	LYS A	107	16.947	-17.902	37.490	1.00 36.10	A
	ÄTOM 5787	N	LYS A	108	18.003	-17.346	35.584	1.00 36.66	A
	ATOM 5788	CA	LYS A	108	19.325	-17.698	36.088	1.00 37.40	A
	ATOM 5789	СВ	LYS A	108	20.295	-17.894	34.923	1.00 37.54	A
	ATOM 5790	CG	LYS A	108	19.855	-18.959	33.941	1.00 37.73	A
20	ATOM 5791	CD	LYS A	108	20.783	-19.026	32.748	1.00 37.95	A
	ATOM 5792	CE	LYS A	108	20.335	-20.101	31.781	1.00 38.07	A
	ATOM 5793	NZ	LYS A	108	21.226	-20.180	30.593	1.00 38.35	A
	ATOM 5794	С	LYS A	108	19.824	-16.576	36.992	1.00 37.85	A
•••	ATOM 5795	0	LYS A	108	20.361	-15.575	36.514	1.00 37.87	A
25	ATOM 5796	N	GLN A	109	19.650	-16.751	38.298	1.00 38.38	A

••,	: .غ. 1	MOTA	5,797	CA	GLN	Α	109	20.057	-15.742	39.274	1.00	38.89	A
		MOTA	5798	СВ	GLN	Α	109	19.893	-16.287	40.696	1.00	39.27	A
	.: 1	ATOM	5799	CG	GLN	Α	109	19.103	-15.372	41.621	1.00	39.77	A
	: ;	ATOM	5800	CD	GLN	Α	109	17.631	-15.280	41.236	1.00	40.04	A
5		MOTA	5801	OE1	GLN	A	109	16.878	-14.472	41.791	1.00	40.13	A
	 	MOTA	5802	NE2	GLN	Α	109	17.214	-16.116	40.287	1.00	40.11	A
. •:	<u>.</u>	АТОМ	5803	С	GLN	Α	109	21.491	-15.264	39.081	1.00	38.96	A
	•	МОТА	5804	ο .	GLN	Α	109	21.755	-14.061	39.052	1.00	39.02	A
· .	. '	АТОМ	5805	N	ASP	Α	110	22.413	-16.211	38.951	1.00	39.02	A
10		ATOM	5806	CA	ASP	A	110	23.826	-15.890	38.773	1.00	39.02	A
	••••	ATOM	5807	СВ	ASP	Α	110	24.631	-17.178	38.608	1.00	39.32	A
* *		ATOM	5808	CG	ASP	Α	110	24.226	-17.956	37.375	1.00	39.50	A
		ATOM	5809	OD1	ASP	Α	110	23.005	-18.097	37.141	1.00	39.58	A
		ATOM	5810	OD2	ASP	Α	110	25.124	-18.429	36.648	1.00	39.67	A
15	٠.	MOTA	5811	С	ASP	Α	110	24.061	-14.977	37.571	1.00	38.89	A
		MOTA	5812	0	ASP	A	110	24.802	-13.999	37.663	1.00	38.88	A
		ATOM	5813	N	VAL	A	111	23.433	-15.302	36.445	1.00	38.64	A
	. ·	АТОМ	5814	CA	VAL	Α	111	23.581	-14.507	35.231	1.00	38.36	A
4		MOTA	5815	СВ	VAL	Α	111	23.054	-15.270	34.001	1.00	38.38	A
20		МОТА	5816	CG1	VAL	Α	111	23.198	-14.412	32.753	1.00	38.34	A
, · .	•	ATOM	5817	CG2	VAL	A	111	23.812	-16.573	33.842	1.00	38.44	A
	•	MOTA	5818	С	VAL	A	111	22.829	-13.183	35.349	1.00	38.10	A
		MOTA	5819	0	VAL	Ą	111	23.297	-12.145	34.880	1.00	37.99	A
٠.	:	MOTA	5820	N	LYS	A	112	21.663	-13.229	35.980	1.00	37.84	A
25		ATOM	5821	CA	LYS	Ą	112	20.851	-12.036	36.163	1.00	37.63	A

	ATOM	5822	CB	LYS	Ą	112	19.477	-12.	.414	36.719	1.00	37.62	Α
	MOTA	5823	CG	LYS	Α	112	18.545	-11.	. 233	36.904	1.00	37.60	A
	АТОМ	5824	CD	LYS	Α	112	17.185	-11.	. 663	37.410	1.00	37.64	A
	ATOM	5825	CE	LYS	A	112	16.284	-10.	.457	37.615	1.00	37.70	A
, 5 . '	АТОМ	5826	NZ	LYS	A	112	14.951	-10.	845	38.142	1.00	37.88	A
	ATOM	5827	С	LYS	Α	112	21.538	-11.	.050	37.105	1.00	37.48	A
-	ATOM	5828	0	LYS	A	112	21.554	-9.	846	36.850	1.00	37.36	A
	MOTA	5829	N	GLU	A	113	22.112	-11.	565	38.189	1.00	37.26	Α
	ATOM	5830	CA	GLU	A	113	22.796	-10.	723	39.166	1.00	37.10	A
10	MOTA	5831	СВ	GLU	A	113	23.143	-11.	537	40.420	1.00	37.36	A
	ATOM	5832	CG	GLU	A	113	23.579	-10.	692	41.622	1.00	37.69	A
	ATOM	5833	CD	GLU	A	113	22.449	-9.	851	42.207	1.00	37.86	A
	АТОМ	5834	OE1	GLU	A	113	22.711	-9.	076	43.157	1.00	37.95	A
	MOTA	5835	OE2	GLU	A	113	21.301	-9.	970	41.723	1.00	37.89	A
15	ATOM	5836	С	GLU	A	113	24.070	-10.	117	38.573	1.00	36.80	A
•	АТОМ	5837	0	GLU	Α	113	24.378	-8.	949	38.808	1.00	36.69	A
•	ATOM	5838	N	GLN	A	114	24.804	-10.	914	37.803	1.00	36.47	A
	ATOM	5839	CA	GLN .	A :	114	26.037	-10.	448	37.181	1.00	36.17	A
• •	MOTA	5840	СВ	GLN .	A	114	26.775	-11.	622	36.527	1.00	36.48	A
20	ATOM	5841	CG	GLN .	A :	114	27.387	-12.	597	37.525	1.00	37.03	A
	ATOM	5842	CD	GLN .	A	114	27.971	-13.	841	36.869	1.00	37.38	A
	ATOM	5843	OE1	GLN .	A	114	28.847	-13.	752	36.005	1.00	37.53	A
	ATOM	5844	NE2	GLN A	A :	114	27.487	-15.	012	37.282	1.00	37.45	A
	ATOM	5845	С	GLN A	A	114	25.768	-9.	359	36.148	1.00	35.76	A
25	ATOM	5846	0	GLN .	Α	114	26.582	-8.	452	35.963	1.00	35.71	A

	MOTA	5847	N	MET	Α	115	24.622	-9.447	35.481	1.00	35.26	A
	ATOM	5848.	CA	MET	A	115	24.253	-8.459	34.474	1.00	34.74	A
	ATOM	5849	СВ	MET	A	115	23.147	-9.006	33.573	1.00	35.14	A
	ATOM	5850	CG	MET	Α	115	22.929	-8.183	32.322	1.00	35.72	A
5	ATOM	5851	SD	MET	A	115	24.425	-8.101	31.312	1.00	36.85	A
	АТОМ	5852	CE	MET	A	115	25.020	-6.470	31.691	1.00	36.19	A
	АТОМ	5853	С	MET	A	115	23.792	-7.164	35.137	1.00	34.07	A
	ATOM	5854	0	MET	A	115	24.214	-6.079	34.745	1.00	34.00	A
		5855	N	PHE	A	116	22.926	-7.280	36.140	1.00	33.41	A
10	MOTA	5856	CA	PHE	Α	116	22.437	-6.104	36.856	1.00	32.72	A
	MOTA	5857	СВ	PHE	A	116	21.485	-6.507	37.982	1.00	32.41	A
	ATOM	5858	CG	PHE	A	116	20.039	-6.520	37.583	1.00	32.03	A
	АТОМ	5859	CD1	PHE	A	116	19.574	-7.415	36.627	1.00	31.76	A
	MOTA	5860	CD2	PHE	A	116	19.140	-5.630	38.164	1.00	31.87	A
15	АТОМ	5861	CE1	PHE	Α	116	18.235	-7.426	36.257	1.00	31.75	A
	МОТА	5862	ÇE2	PHE	A	116	17.798	-5.632	37.801	1.00	31.79	A
·. .·	АТОМ	5863	cz	PHE	A	116	17.343	-6.532	36.845	1.00	31.63	A
	АТОМ	5864	С	PHE	A	116	23.618	-5.353	37.452	1.00	32.46	A
	АТОМ	5865	0	PHE	A	116	23.775	-4.147	37.253	1.00	32.41	A
20 :	АТОМ	6152	N	TYR	A	152	9.234	10.144	32.617	1.00	9.71	A
• :	ATOM	6153	CA	TYR	A	152	9.916	8.878	32.397	1.00	9.80	A
	MOTA,	6154	СВ	TYR	A	152	10.132	8.650	30.901	1.00	9.99	A
		6155							30.526			
							9.213					
25	ATOM	6157	CE1	TYR	Ą	152	9.267	4.928	30.581	1.00	10.77	A

106

	атом 6	158 CD2	TYR A	152	11.243	6.698	29.742	1.00	10.42	Α
	ATOM 6	159 CE2	TYR A	152	11.308	5.353	29.375	1.00	10.66	A
	ATOM 6	160 CZ	TYR A	152	10.325	4.477	29.792	1.00	10.74	A
	атом 6	5161 OH	TYR A	152	10.393	3.156	29.410	1.00	10.82	A
 · 5	ATOM 6	3162 C	TYR A	152	11.245	8.820	33.157	1.00	9.88	A
	ATOM 6	5163 0	TYR A	152	11.655	7.755	33.621	1.00	9.73	A
	ATOM 6	5164 N	TRP A	153	11.907	9.965	33.296	1.00	9.89	A
	ATOM 6	5165 CA	TRP A	153	13.158	10.012	34.036	1.00	10.03	A
	ATOM 6	5166 CB	TRP. A	153	13.808	11.398	33.925	1.00	10.21	A
10	ATOM 6	5167 CG	TRP A	153	14.774	11.688	35.031	1.00	10.40	A
:	ATOM 6	5168 CD2	TRP A	153	15.930	10.920	35.389	1.00	10.68	A
	ATOM 6	5169 CE2	TRP A	153	16.491	11.521	36.539	1.00	10.78	A
	ATOM (5170 CE3	TRP A	153	16.544	9.783	34.853	1.00	10.67	A
	ATOM 6	6171 CD1	TRP A	153	14.688	12.696	35.943	1.00	10.44	A
15	ATOM (6172 NE1	TRP A	153	15.714	12.603	36.854	1.00	10.64	A
•	MOTA	6173 CZ2	TRP A	153	17.637	11.018	37.167	1.00	10.84	A
	MOTA	6174 CZ3	TRP A	153	17.689	9.282	35.478	1.00	10.82	A
	MOTA	6175 СН2	TRP A	153	18.220	9.902	36.623	1.00	10.64	A
	MOTA	6176 C	TRP A	153	12.893	9.676	35.502	1.00	10.03	A
20	ATOM (6177 0	TRP A	153	13.602	8.861	36.098	1.00	10.17	A
	ATOM	6178 N	GLU A	154	11.869	10.295	36.078	1.00	10.10	Α
)	MOTA	6179 CA	GLU A	154	11.524	10.048	37.474	1.00	10.17	A
	MOTA	6180 CB	GLU Ą	154	10.403	11.001	37.919	1.00	10.10	A
·.	ATOM	6181 CG	GLU A	154	10.138	11.016	39.422	1.00	9.74	A
25	MOTA	6182 CD	GLU A	154	9.268	9.858	39.879	1.00	9.86	A

3 110 m 2

कार्यद्वाप्तर

	ATOM	6183	OE1	GLU	A	154	9.252	9.560	41.095	1.00	9.89	A
	MOTA	6184	OE2	GLU	Α	154	8.588	9.247	39.027	1.00	9.57	A
. •	MOTA	6185	С	GLU	A	154	11.095	8.587	37.641	1.00	10.51	A
	ATOM	6186	0	GLU	A	154	11.481	7.927	38.608	1.00	10.53	Α
5	MOTA	6187	N	ILE	Α	155	10.321	8.079	36.683	1.00	10.63	A
	АТОМ	6188	CA	ILE	Α	155	9.855	6.700	36.739	1.00	10.71	A
	MOTA	6189	СВ	ILE	Α	155	8.823	6.430	35.625	1.00	10.90	A
	ATOM	6190	CG2	ILE	Α	155	8.485	4.944	35.555	1.00	10.77	A
	ATOM	6191	CG1	ILE	Α	155 ·	7.559	7.254	35.908	1.00	10.69	A
10	ATOM	6192	CD1	ILE	Α	155	6.531	7.198	34.810	1.00	10.76	A
•	ATOM	6193	·C	ILE	Α	155	11.013	5.710	36.641	1.00	10.99	A
	ATOM	6194	0	ILE	A	155	11.147	4.802	37.475	1.00	10.97	A
	АТОМ	6195	N	CYS	Α	156	11.863	5.902	35.638	1.00	11.08	A
	ATOM	6196	CA	CYS	Α	156	13.017	5.030	35.434	1.00	11.24	A
15	MOTA	6197	СВ	CYS	Α	156	13.719	5.390	34.120	1.00	11.05	A
	ATOM	6198	SG	CYS	Α	156	12.789	4.896	32.650	1.00	11.30	A
	, ATOM	6199	С	CYS	Α	156	14.018	5.108	36.583	1.00	11.50	A
	АТОМ	6200	0	CYS	Α	156	14.495	4.078	37.065	1.00	11.70	A
	ATOM	6201	N	SER	Α	157	14.334	6.325	37.019	1.00	11.70	A
20	MOTA	6202	CA	SER	Α	157	15.289	6.512	38.105	1.00	12.05	A
	MOTA	6203	СВ	SER	A	157	15.615	7.997	38.287	1.00	11.74	A
	ATOM	6204	og	SER	A	157	14.494	8.732	38.739	1.00	11.48	A
	ATOM	6205	С	SER	Ą	157	14.789	5.924	39.424	1.00	12.41	A
	ATOM	6206	0	SER	Ą	157	15.585	5.500	40.266	1.00	12.70	A
25	ATOM	6207	N	THR	A	158	13.475	5.905	39.612	1.00	12.70	A

•	ATOM	6208 [.]	CA	THR	A	158	12.913	5.341	40.829	1.00	13.05	A
	ATOM	6209	СВ	THR	A _.	158	11.379	5.466	40.853	1.00	13.03	A
	ATOM	6210	OG1	THR	A	158	11.014	6.842	41.007	1.00	12.82	A
	ATOM	6211	CG2	THR	A	158	10.791	4.659	42.011	1.00	12.99	A
5 .	АТОМ	6212	С	THR	Α	158	13.284	3.863	40.939	1.00	13.54	A
	ATOM	6213	0	THR	A	158	13.754	3.407	41.981	1.00	13.26	A
	ATOM	6214	N	THR	Α	159	13.068	3.113	39.863	1.00	14.14	A
	ATOM	6215	CA	THR	A	159	13.397	1.694	39.872	1.00	14.95	A
	MOTA	6216	СВ	THR	Α	159	12.878	0.995	38.597	1.00	15.00	A
10	ATOM	6217	OG1	THR	Α	159	11.445	1.015	38.607	1.00	15.26	A
	ATOM	6218	CG2	THR	Α	159	13.356	-0.459	38.537	1.00	15.00	A
•	MOTA	6219	С	THR	Α	159	14.901	1.459	40.021	1.00	15.25	A
	ATOM	6220	0	THR	A	159	15.324	0.580	40.775	1.00	15.54	A
	ATOM	6221	N	LEU	A	160	15.709	2.249	39.323	1.00	15.71	A
15	ATOM	6222	CA	LEU	A	160	17.158	2.105	39.410	1.00	16.22	A
. ·	ATOM	6223	СВ	LEU	A	160	17.851	3.066	38.437	1.00	16.17	A
	ATOM	6224	CG	LEU	A	160	17.681	2.778	36.940	1.00	16.23	A
	АТОМ	6225	CD1	LEU	Α	160	18.193	3.966	36.137	1.00	16.43	A
:	АТОМ	6226	CD2	LEU	A	160	18.413	1.502	36.548	1.00	15.89	A
20	ATOM	6227	С	LEU	A	160	17.653	2.366	40.831	1.00	16.63	A
	ATOM	6228	0	LEU	A	160	18.557	1.683	41.316	1.00	16.60	A
		6229	N	LEU	Ą	161	17.059	3.356	41.493	1.00	16.97	A
· .	ATOM	6230	CA	LEU	Ą	161	17.445	3.695	42.858	1.00	17.42	A
	ATOM	6231	СВ	LEU	Ą	161	16.733	4.972	43.316	1.00	16.98	A
25	ATOM	6232	CĢ	LEU	Ą	161	17.249	6.288	42.728	1.00	16.98	A

	ATOM	6233	CD1	LEU	Á	161	16.334	7.429	43.147	1.00	16.61	A
	MOTA	6234	CD2	LEU	A	161	18.682	6.546	43.201	1.00	16.65	A
. ,	MOTA	6235	С	LEU	Α	161	17.132	2.548	43.818	1.00	17.85	A
• • • • • •	ATOM	6236	0	LEU	A	161	17.722	2.449	44.895	1.00	18.15	A
5 j	MOTA	6237	N	VAL	Α	162	16.196	1.691	43.428	1.00	17.99	A
	ATOM	6238	CA	VAL	Α	162	15.831	0.548	44.245	1.00	18.31	A
•	ATOM	6239	СВ	VAL	Α	162	14.611	-0.199	43.647	1.00	18.37	A
	ATOM	6240	CG1	VAL	A	162	14.406	-1.530	44.354	1.00	18.47	A
	ATOM	6241	CG2	VAL	Α	162	13.356	0.660	43.788	1.00	18.42	A
10	ATOM	6242	С	VAL	Α	162	17.015	-0.418	44.340	1.00	18.61	A
	ATOM	6243	0	VAL	Α	162	17.236	-1.048	45.378	1.00	18.71	A
	ATOM	6244	N	PHE	A	163	17.781	-0.520	43.257	1.00	18.71	Α
	MOTA	6245	CA	PHE	A	163	18.938	-1.409	43.209	1.00	18.91	A
	ATOM	6246	СВ	PHE	A	163	18.999	-2.128	41.852	1.00	18.88	A
15	ATOM	6247	CG	PHE	Α	163	17.789	-2.965	41.558	1.00	18.73	Α
-	МОТА	6248	CD1	PHE	A	163	16.734	-2.448	40.822	1.00	18.63	A
	ATOM	6249	CD2	PHE	Α	163	17.678	-4.254	42.067	1.00	18.63	A
	АТОМ	6250	CE1	PHE	A	163	15.584	-3.198	40.599	1.00	18.60	A
7	ATOM	6251	CE2	PHE	A	163	16.529	-5.011	41.847	1.00	18.56	A
20	ATOM	6252	cz	PHE	Α	163	15.483	-4.480	41.114	1.00	18.40	A
	ATOM	6253	С	PHE	Α	163	20.262	-0.692	43.468	1.00	19.04	A
	ATOM	6254	0	PHE	Ą	163	21.251	-1.326	43.832	1.00	18.99	A
	MOTA	6528	N	THR	Ą	197	4.484	-1.111	45.252	1.00	22.77	A
, ř	ATOM	6529	CA		•		5.126					A
25 ·	ATOM	6530	СВ	THR	A	197	4.568	-2.649	43.296	1.00	22.64	A

		MOTA	6531	OG1	THR .	A	197	4.713	-1.524	42.419	1.00	22.39	Α
		ATOM	6532	CG2	THR	A	197	3.096	-3.040	43.393	1.00	22.49	A
٠.		: ATOM	6533	С	THR	A	197	6.627	-2.062	44.583	1.00	22.75	A
٠.	? · .:	АТОМ	6534	0	THR	Α	197	7.087	-0.922	44.636	1.00	22.48	A
. 5	ŧ.	ATOM	6535	N	LYS	A	198	7.390	-3.139	44.428	1.00	22.84	A
	;	ATOM	6536	CA	LYS	Α	198	8.835	-3.014	44.305	1.00	23.15	A
	•	ATOM	6537	СВ	LYS	Α	198	9.503	-4.385	44.446	1.00	23.45	A
	,	MOTA	6538	CG	LYS	A	198	11.027	-4.339	44.481	1.00	23.89	A
	- 1. - 2	ATOM	6539	CD	LYS	A	198	11.617	-5.719	44.748	1.00	24.34	A
10		ATOM	6540	CE	LYS	Α	198	13.135	-5.669	44.905	1.00	24.64	A
•	:	ATOM	6541	NZ	LYS	A	198	13.715	-7.011	45.224	1.00	24.86	A
	+ 1+	ATOM	6542	С	LYS	Α	198	9.201	-2.391	42.960	1.00	23.13	A
		ATOM	6543	0	LYS	A	198	9.917	-1.393	42.909	1.00	23.17	A
	•••	ATOM	6544	N	LEU	A	199	8.706	-2.980	41.876	1.00	23.24	A
15		ATOM	6545	CA	LEU	A	199	8.989	-2.475	40.537	1.00	23.52	A
		ATOM	6546	СВ	LEU	Α	199	9.571	-3.588	39.652	1.00	23.79	A
		ATOM	6547	CG	LEU	Α	199	10.941	-4.180	40.010	1.00	24.11	A
		ATOM	6548	CD1	LEU	Α	199	11.934	-3.056	40.302	1.00	24.28	A
		ATOM	6549	CD2	LEU	Α	199	10.810	-5.078	41.220	1.00	24.55	A
20		ATOM	6550	С	LEU	Ą	199	7.739	-1.894	39.871	1.00	23.53	A
		ATOM	6551	0	LEU	Α	199	6.704	-1.767	40.557	1.00	23.60	A
		ATOM	6552	ОХТ	LEU	A	199	7.807	-1.566	38.669	1.00	23.55	A
		ATOM	6688	N1	GSH	Н	200	8.305	-2.844	24.998	1.00	20.97	Н
٠.	٠.	ATOM	6689	CA1	GSH	H	200	6.911	-3.081	25.371	1.00	20.94	Н
25		MOTA	6690	C1	GSH	Н	200	6.240	-1.805	25.930	1.00	20.69	Н

	ATOM	6691	011	GSH	Н	200	6.937	-0.824	26.213	1.00 20.48	Н
	ATOM	6692	012	GSH	Н	200	4.943	-1.894	26.178	1.00 20.60	Н
	ATOM	6693	CB1	GSH	н	200	6.878	-4.158	26.465	1.00 21.02	Н
	MOTĄ	6694	CG1	GSH	Н	200	7.003	-5.588	25.927	1.00 21.34	Н
5	ATOM	6695	CD1	GSH	Н	200	7.105	-6.535	27.153	1.00 21.26	H
	ATOM	6696	OE1	GSH	Н	200	7.995	-7.376	27.180	1.00 21.54	H
·	ATOM	6697	N2	GSH	Н	200	6.151	-6.418	28.106	1.00 21.27	Н
;	MOTA	6698	CA2	GSH	н	200	6.171	-7.317	29.280	1.00 21.32	Н
	ATOM	6699	Ç2	GSH	Н	200	5.234	-8.508	29.053	1.00 21.45	н
10	АТОМ	6700	02	GSH	Н	200	4.092	-8.371	28.603	1.00 21.33	Н
	ATOM	6701	CB2	GSH	Н	200	5.676	-6.608	30.562	1.00 21.16	Н
	ATOM	6702	SG2	GSH	Н	200	6.895	-5.457	31.266	1.00 20.43	Н
,	ATON	6703	м3	GSH	Н	200	5.687	-9.697	29.521	1.00 21.62	Н
	ATOM	1 6704	CA3	GSH	Н	200	4.848	-10.902	29.598	1.00 21.77	Н
15	ATO	1 6705	С3	GSH	Н	200	5.235	-11.857	28.486	1.00 22.03	Н
	ATO	1 6706	031	GSH	Н	200	4.505	-12.857	28.339	1.00 22.01	Н
	ATOI	1 6707	032	GSH	Н	200	6.217	-11.556	27.749	1.00 22.31	Н
	ATON	1 6708	C1	U46	X	201	10.418	-9.029	32.023	1.00 34.62	Х
•	ATO	4 6709	C2	U46	X	201	9.663	-10.080	32.823	1.00 34.77	X
20	ATO	4 6710	C3	U46	x	201	9.043	-9.215	33.968	1.00 34.58	X
••	ATO	4 6711	C4	U46	x	201	8.603	-7.944	33.186	1.00 34.52	X
	ATO	4 6712	C5	U46	X	201	9.105	-8.297	31.751	1.00 34.55	X
	ATO	4 6713	06	U46	X	201	8.305	-9.318	31.150	1.00 34.69	X
										1.00 34.71	
25	АТО	M 6715	C14	U46	X	201	9.215	-6.627	33.663	1.00 33.95	x

31 12

242 823

CA 02466264 2004-05-05

	MOTA	6716	C16	U46	X,	201	8.636	-5.646	34.388	1.00 33.42	X
•	АТОМ	6717	C18	U46	X	201	9.270	-4.351	34.859	1.00 33.17	x
	АТОМ	6718	C20	U46	X	201	9.952	-3.549	33.738	1.00 33.13	x
· :	ATOM	6719	, C21	U46	X	201	10.163	-2.068	34.122	1.00 33.29	x
5	ATOM	6720	C24	U46	x	201	10.959	-1.283	33.062	1.00 33.44	x
· .:	ATOM	6721	C27	U46	x	201	10.626	0.219	33.069	1.00 33.39	x
	ATOM	6722	C30	U46	x	201	10.896	0.871	31.709	1.00 33.48	x
	АТОМ	6723	036	U46	X	201	10.227	-4.658	35.841	1.00 33.24	x
	ATOM	6724	C39	U46	X	201	7.877	-9.902	34.751	1.00 34.95	x
10	ATOM	6725	C41	U46	X	201	8.032	-9.785	36.257	1.00 35.34	x
;	ATOM	6726	C44	U4 6	X	201	8.610	-10.654	37.130	1.00 35.62	x
	MOTA	6727	C46	U46	X	201	9.261	-11.994	36.823	1.00 35.69	x
	ATOM	6728	C48	U46	X	201	10.726	-12.086	37.288	1.00 35.70	x
	ATOM	6729	· C51	U46	X	201	11.026	-13.433	37.990	1.00 35.67	x
15 🕎	ATOM	6730	C54	U46	X	201	12.522	-13.820	37.936	1.00 35.71	x
	ATOM	6731	057	U46	X	201	12.742	-14.998	38.563	1.00 35.58	X
	ATOM	6732	058	U46	x	201	13.394	-13.172	37.412	1.00 35.68	x
	ATOM	6734	CA+2	CA2	M	902	12.234	1.221	22.856	1.00 26.18	M
	ATOM	6797	ОН2	WAT	s	66	8.810	-7.551	20.104	1.00 14.22	s
20	ATOM	6798	он2	TAW	s	67	10.805	-8.913	21.442	1.00 18.79	s
V Mile	MOTA	6799	ОН2	WAT	S	68	7.756	-6.308	22.319	1.00 11.88	S
	MOTA	6800	он2	WAT	s	69	5.816	-8.813	20.585	1.00 16.62	S
	MOTA	6801	он2	TAW	S,	70	5.092	-6.137	21.429	1.00 8.34	s
. : . : : : : : : : : : : : : : : : : :	MOTA	6802	он2	WAT	s	71	5.256	-11.109	19.213	1.00 14.67	s
25	ATOM	6803	OH2	WAT	s	72	3.023	-5.015	22.562	1.00 5.39	S

42

CA 02466264 2004-05-05

4.	ATOM	6804	ОН2	WAT	s	73	0.826	-6.659	23.058	1.00 10	.24	s
	MOTA	6805	ОН2	WAT	s	74	2.776	-3.513	24.834	1.00 13	. 89	s
3	ATOM	6806	ОН2	WAT	s	75	11.519	-4.838	25.573	1.00 37	.60	s
·	ATOM	6807	он2	WAT	s	76	8.072	-9.994	27.106	1.00 23	. 21	s
5	ATOM	6808	ОН2	WAT	s	77	17.600	-2.336	25.194	1.00 29	.44	s
,) . \$	ATOM	6955	он2	WAT	s	228	-2.665	-1.375	34.872	1.00 12	. 13	s
	ATOM	6956	он2	WAT	S	229	0.635	-8.538	38.751	1.00 19	.36	S
	АТОМ	6957	он2	WAT	S	230	9.165	-7.382	41.775	1.00 33	.05	S
	ATOM	6958	он2	WAT	s	231	1.469	2.057	40.259	1.00 10	. 55	s
10	ATOM	6959	он2	WAT	s	232	2.424	-0.150	41.673	1.00 7	.92	S
	ATOM	6960	он2	WAT	s	233	4.681	1.576	43.702	1.00 20	.75	S
:	ATOM	6961	он2	WAT	s	234	9.069	3.394	38.480	1.00 10	.13	s
	ATOM	6962	он2	WAT	S	235	8.873	1.530	36.291	1.00 19	.33	S
	ATOM	6963	он2	WAT	s	236	9.962	-0.719	37.350	1.00 9	.21	S
15 /	ATOM	6964	он 2	TAW	s	237	6.538	3.283	32.602	1.00 4	.33	S
,	ATOM	6966	он2	WAT	s	239	6.866	-5.224	41.878	1.00 15	.47	S
: 6	MOTA	7098	он2	WAT	s	376	-2.658	-5.119	20.477	1.00 32	.13	s
	ATOM	7100	он2	WAT	S	378	9.041	5.776	21.830	1.00 29	. 33	S
	ATOM	7101	он2	TAW	s	379	16.468	-6.279	25.400	1.00 37	.77	s
20	ATOM	7102	он2	TAW	S	380	11.532	-7.763	23.742	1.00 26	.56	S
	ATOM	7103	он2	WAT	S	381	20.121	-7.464	24.596	1.00 31	37	S
•	ATOM	7206	он2	WAT	S	487	-6.959	-2.973	28.857	1.00 26	.99	S
	ATOM	7220	он2	WAT	S	502	19.741	-12.637	30.102	1.00 30	0.06	S
	ATOM	7228	он2	WAT	S	511	10.932	3.058	22.095	1.00 23	3.73	S
25	ATOM	7252	он2	WAT	S	537	14.068	2.624	22.159	1.00 17	7.19	S

114

	ATOM	7253	ОН2	TAW	S	538	10.354	-0.297	22.259	1.00	23.05	S
	ATOM	7254	ОН2	WAT	s	539	14.359	0.199	23.830	1.00	17.88	S
• • •	MOTA	7255	он2	WAT	s	540	13.565	-1.416	21.690	1.00	21.98	S
:	MOTA	7256	он2	WAT	s	541	14.359	-2.488	23.994	1.00	24.68	s
,	ATOM	7257	он2	WAT	s	542	6.700	1.457	23.387	1.00	7.45	S
•	АТОМ	7260	он2	WAT	s	545	6.810	4.437	20.115	1.00	9.33	S
	ATOM	7262	он2	WAT	s	548	7.372	2.188	29.676	1.00	13.81	S
•	ATOM	7263	он2	WAT	s	551	12.593	1.210	20.664	1.00	23.28	s
	ATOM	7279	он2	WAT	s	568	9.152	-7.664	24.541	1.00	28.73	s
1 *.	MOTA	7330	он2	WAT	s	621	-0.052	-8.417	43.049	1.00	41.72	s
: :	MOTA	7331	он2	WAT	s	622	4.610	-6.488	42.101	1.00	39.75	S
	ATOM	7334	он2	WAT	S	625	-5.505	-11.363	37.210	1.00	32.13	S
· · · · · · · · · · · · · · · · · · ·	MOTA	7365	он2	WAT	S	659	12.799	-12.693	21.817	1.00	29.74	s
. •	ATOM	7419	он2	WAT	s	719	3.738	-8.441	39.590	1.00	44.76	S
	МОТА	7420	он2	WAT	Ş	720	-3.644	-7.487	40.846	1.00	28.21	S
	АТОМ	7421	он2	WAT	s	721	9.250	0.354	24.552	1.00	31.35	S
	ATOM	7469	он2	WAT	s	779	13.344	-12.993	24.338	1.00	33.74	s
	ATOM	7478	он2	WAT	s	797	9.999	-4.902	29.944	1.00	42.20	s
		ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 7260 ATOM 7262 ATOM 7263 ATOM 7279 ATOM 7330 ATOM 7331 ATOM 7334 ATOM 7365 ATOM 7419	ATOM 7254 OH2 ATOM 7255 OH2 ATOM 7256 OH2 ATOM 7257 OH2 ATOM 7260 OH2 ATOM 7262 OH2 ATOM 7263 OH2 ATOM 7279 OH2 ATOM 7330 OH2 ATOM 7331 OH2 ATOM 7334 OH2 ATOM 7365 OH2 ATOM 7419 OH2 ATOM 7420 OH2 ATOM 7421 OH2 ATOM 7469 OH2	ATOM 7254 OH2 WAT ATOM 7255 OH2 WAT ATOM 7256 OH2 WAT ATOM 7257 OH2 WAT ATOM 7260 OH2 WAT ATOM 7262 OH2 WAT ATOM 7263 OH2 WAT ATOM 7279 OH2 WAT ATOM 7330 OH2 WAT ATOM 7331 OH2 WAT ATOM 7334 OH2 WAT ATOM 7334 OH2 WAT ATOM 7365 OH2 WAT ATOM 7419 OH2 WAT ATOM 7420 OH2 WAT ATOM 7421 OH2 WAT ATOM 7421 OH2 WAT	ATOM 7254 OH2 WAT S ATOM 7255 OH2 WAT S ATOM 7256 OH2 WAT S ATOM 7257 OH2 WAT S ATOM 7260 OH2 WAT S ATOM 7262 OH2 WAT S ATOM 7263 OH2 WAT S ATOM 7279 OH2 WAT S ATOM 7330 OH2 WAT S ATOM 7331 OH2 WAT S ATOM 7331 OH2 WAT S ATOM 7334 OH2 WAT S ATOM 7365 OH2 WAT S ATOM 7419 OH2 WAT S ATOM 7420 OH2 WAT S ATOM 7420 OH2 WAT S ATOM 7421 OH2 WAT S	ATOM 7254 OH2 WAT S 539 ATOM 7255 OH2 WAT S 540 ATOM 7256 OH2 WAT S 541 ATOM 7257 OH2 WAT S 542 ATOM 7260 OH2 WAT S 545 ATOM 7262 OH2 WAT S 548 ATOM 7263 OH2 WAT S 551 ATOM 7279 OH2 WAT S 568 ATOM 7330 OH2 WAT S 621 ATOM 7331 OH2 WAT S 622 ATOM 7334 OH2 WAT S 625 ATOM 7365 OH2 WAT S 659 ATOM 7419 OH2 WAT S 719 ATOM 7420 OH2 WAT S 720 ATOM 7421 OH2 WAT S 721 ATOM 7469 OH2 WAT S 779	ATOM 7254 OH2 WAT S 539 14.359 ATOM 7255 OH2 WAT S 540 13.565 ATOM 7256 OH2 WAT S 541 14.359 ATOM 7257 OH2 WAT S 542 6.700 ATOM 7260 OH2 WAT S 545 6.810 ATOM 7262 OH2 WAT S 548 7.372 ATOM 7263 OH2 WAT S 551 12.593 ATOM 7279 OH2 WAT S 568 9.152 ATOM 7330 OH2 WAT S 621 -0.052 ATOM 7331 OH2 WAT S 622 4.610 ATOM 7334 OH2 WAT S 625 -5.505 ATOM 7365 OH2 WAT S 659 12.799 ATOM 7419 OH2 WAT S 719 3.738 ATOM 7420 OH2 WAT S 720 -3.644 ATOM 7469 OH2 WAT S 721 9.250 ATOM 7469 OH2 WAT S 779 13.344	ATOM 7254 OH2 WAT S 539 14.359 0.199 ATOM 7255 OH2 WAT S 540 13.565 -1.416 ATOM 7256 OH2 WAT S 541 14.359 -2.488 ATOM 7257 OH2 WAT S 542 6.700 1.457 ATOM 7260 OH2 WAT S 545 6.810 4.437 ATOM 7262 OH2 WAT S 548 7.372 2.188 ATOM 7263 OH2 WAT S 551 12.593 1.210 ATOM 7279 OH2 WAT S 568 9.152 -7.664 ATOM 7330 OH2 WAT S 621 -0.052 -8.417 ATOM 7331 OH2 WAT S 622 4.610 -6.488 ATOM 7334 OH2 WAT S 625 -5.505 -11.363 ATOM 7365 OH2 WAT S 659 12.799 -12.693 ATOM 7419 OH2 WAT S 719 3.738 -8.441 ATOM 7420 OH2 WAT S 720 -3.644 -7.487 ATOM 7469 OH2 WAT S 779 13.344 -12.993	ATOM 7254 OH2 WAT S 539 14.359 0.199 23.830 ATOM 7255 OH2 WAT S 540 13.565 -1.416 21.690 ATOM 7256 OH2 WAT S 541 14.359 -2.488 23.994 ATOM 7257 OH2 WAT S 542 6.700 1.457 23.387 ATOM 7260 OH2 WAT S 545 6.810 4.437 20.115 ATOM 7262 OH2 WAT S 548 7.372 2.188 29.676 ATOM 7263 OH2 WAT S 551 12.593 1.210 20.664 ATOM 7279 OH2 WAT S 568 9.152 -7.664 24.541 ATOM 7330 OH2 WAT S 621 -0.052 -8.417 43.049 ATOM 7331 OH2 WAT S 622 4.610 -6.488 42.101 ATOM 7334 OH2 WAT S 625 -5.505 -11.363 37.210 ATOM 7365 OH2 WAT S 659 12.799 -12.693 21.817 ATOM 7419 OH2 WAT S 719 3.738 -8.441 39.590 ATOM 7420 OH2 WAT S 720 -3.644 -7.487 40.846 ATOM 7469 OH2 WAT S 779 13.344 -12.993 24.338	ATOM 7254 OH2 WAT S 539 14.359 0.199 23.830 1.00 ATOM 7255 OH2 WAT S 540 13.565 -1.416 21.690 1.00 ATOM 7256 OH2 WAT S 541 14.359 -2.488 23.994 1.00 ATOM 7257 OH2 WAT S 542 6.700 1.457 23.387 1.00 ATOM 7260 OH2 WAT S 545 6.810 4.437 20.115 1.00 ATOM 7262 OH2 WAT S 548 7.372 2.188 29.676 1.00 ATOM 7263 OH2 WAT S 551 12.593 1.210 20.664 1.00 ATOM 7279 OH2 WAT S 568 9.152 -7.664 24.541 1.00 ATOM 7330 OH2 WAT S 621 -0.052 -8.417 43.049 1.00 ATOM 7331 OH2 WAT S 622 4.610 -6.488 42.101 1.00 ATOM 7334 OH2 WAT S 625 -5.505 -11.363 37.210 1.00 ATOM 7365 OH2 WAT S 659 12.799 -12.693 21.817 1.00 ATOM 7419 OH2 WAT S 719 3.738 -8.441 39.590 1.00 ATOM 7420 OH2 WAT S 720 -3.644 -7.487 40.846 1.00 ATOM 7421 OH2 WAT S 721 9.250 0.354 24.552 1.00 ATOM 7469 OH2 WAT S 779 13.344 -12.993 24.338 1.00	ATOM 7254 OH2 WAT S 539 14.359 0.199 23.830 1.00 17.88 ATOM 7255 OH2 WAT S 540 13.565 -1.416 21.690 1.00 21.98 ATOM 7256 OH2 WAT S 541 14.359 -2.488 23.994 1.00 24.68 ATOM 7257 OH2 WAT S 542 6.700 1.457 23.387 1.00 7.45 ATOM 7260 OH2 WAT S 545 6.810 4.437 20.115 1.00 9.33 ATOM 7262 OH2 WAT S 548 7.372 2.188 29.676 1.00 13.81 ATOM 7263 OH2 WAT S 551 12.593 1.210 20.664 1.00 23.28 ATOM 7279 OH2 WAT S 568 9.152 -7.664 24.541 1.00 28.73 ATOM 7330 OH2 WAT S 621 -0.052 -8.417 43.049 1.00 41.72 ATOM 7331 OH2 WAT S 622 4.610 -6.488 42.101 1.00 39.75 ATOM 7334 OH2 WAT S 659 12.799 -12.693 21.817 1.00 29.74 ATOM 7419 OH2 WAT S 719 3.738 -8.441 39.590 1.00 44.76 ATOM 7420 OH2 WAT S 720 -3.644 -7.487 40.846 1.00 28.21 ATOM 7421 OH2 WAT S 721 9.250 0.354 24.552 1.00 31.35 ATOM 7469 OH2 WAT S 779 13.344 -12.993 24.338 1.00 33.74

20 Table 4

Three-dimensional structural coordinate of the complex of human hematopoietic PGDS with magnesium, glutathione and 9,11-dideoxy $-9\,\alpha$, 11 α -methanoepoxyprostaglandine $F_{2\,\alpha}$ (U46)

25 ATOM 4966 N TYR A 8 52.373 40.696 69.223 1.00 5.08 A

115

		АТОМ	4967	CA	TYR	A	8	50.981	40.835	69.625	1.00	5.19	Α
	· ::-	MOTA	4968	СВ	TYR	A	8	50.387	42.136	69.066	1.00	5.85	Α
		ATOM	4969	CG	TYR	A	8	49.055	42.515	69.678	1.00	5.32	A
		 MOTA	4970	CD1	TYR	A	8	48.943	42.758	71.047	1.00	5.34	A
5	• :	MOTA	4971	CE1	TYR	A	8	47.727	43.124	71.619	1.00	5.53	A
		A.TOM	4972	CD2	TYR	A	8	47.908	42.646	68.889	1.00	5.77	A
•		ATOM	4973	CE2	TYR	A	8	46.685	43.014	69.451	1.00	5.46	A
		АТОМ	4974	CZ	TYR	A	8	46.604	43.251	70.815	1.00	5.16	A
		ATOM	4975	ОН	TYR	A	8	45.399	43.630	71.365	1.00	5.90	A
10		ATOM	4976	С	TYR	A	8	50.221	39.643	69.062	1.00	5.81	A
	•	ATOM	4977	0	TYR	A	8	50.803	38.783	68.405	1.00	6.16	A
		ATOM	4978	N	PHE	A	9	48.928	39.581	69.347	1.00	6.65	A
,		ATOM	4979	CA	PHE	A	9	48.090	38.518	68.812	1.00	7.22	A
		МОТА	4980	СВ	PHE	A	9	46.752	38.461	69.556	1.00	10.27	A
15 [°]	٠.	МОТĄ	4981	CG	PHE	A	9	46.868	38.040	70.993	1.00	10.70	A
.		MOTA	4982	CD1	PHE	A	9	46.584	38.935	72.021	1.00	13.85	A
₹.		ATOM	4983	CD2	PHE	A	9	47.254	36.744	71.320	1.00	12.21	A
•		ATOM	4984	CE1	PHE	A	9	46.683	38.540	73.355	1.00	15.04	A
		ATOM	4985	CE2	PHE	A	9	47.356	36.343	72.650	1.00	13.46	A
20		ATOM	4986	CZ	PHE	A	9	47.070	37.242	73.668	1.00	14.40	A
	•	ATOM	4987	C	PHE	Ą	9	47.811	38.860	67.350	1.00	6.45	A
		ATOM	4988	0	PHE	Ą	9	48.173	39.943	66.873	1.00	6.51	A
		ATOM	4989	N	ASN	Ą	10	47.178	37.938	66.632	1.00	7.20	A
		ATOM	4990	CA	ASN	A	10	46.822	38.209	65.248	1.00	7.50	A
25		ATOM	4991	СВ	ASN	Ą	10	46.676	36.915	64.445	1.00	8.81	A

ng iliyof A

23% # 2 T

: · ·	ATOM	4992	CG	ASN A	Α	10	46.265	37.172	63.010	1.00	10.65	Α
	ATOM			ASN A			46.628	38.191	62.423		9.77	Α
	ATOM			ASN A			45.515	36.240	62.430	1.00	12.72	Α
	ATOM	4995	С	ASN A	A	10	45.489	38.952	65.305	1.00	7.31	A
5	ATOM	4996	0	ASN A	A	10	44.425	38.386	65.058	1.00	7.42	A
	ATOM	4997	N	MET 2	A	11	45.573	40.228	65.668	1.00	6.93	A
	ATOM	4998	CA	MET I	A	11	44.424	41.120	65.791	1.00	6.61	A
	ATOM	4999	СВ	MET A	A	11	43.816	41.082	67.202	1.00	9.76	A
	MOTA	5000	CG	MET A	A	11	43.251	39.768	67.703	1.00	12.58	A
10	MOTA	5001	SD	MET .	A	11	42.429	40.034	69.312	1.00	16.46	A
	ATOM	5002	CE	MET .	A	11	43.822	40.416	70.355	1.00	18.60	A
	MOTA	5003	С	MET .	A	11	44.958	42.529	65.612	1.00	4.89	A
	ATOM	5004	0	MET .	A	11	46.165	42.765	65.730	1.00	5.10	A
¥*	MOTA	5005	N	ARG .	A	12	44.065	43.471	65.333	1.00	4.88	A
15	MOTA	5006	CA	ARG .	A	12	44.481	44.863	65.248	1.00	4.58	A
	ATOM	5007	СВ	ARG .	A	12	43.377	45.722	64.630	1.00	4.90	A
	MOTA	5008	CG	ARG	A	12	43.101	45.396	63.166	1.00	4.93	A
	MOTA	5009	CD	ARG	A	12	42.125	46.404	62.550	1.00	5.92	A
	ATOM	5010	NE	ARG	A	12	40.874	46.486	63.301	1.00	5.59	A
20	MOTA	5011	CZ	ARG	A	12	39.925	45.558	63.273	1.00	6.68	A
	ATOM	5012	NH1	ARG	A	12	40.073	44.477	62.519	1.00	6.84	A
	ATOM	5013	NH2	ARG	A	12	38.841	45.699	64.025	1.00	7.34	A
	АТОМ	5014	С	ARG	Ą	12	44.716	45.251	66.711	1.00	4.87	A
	АТОМ	5015	0	ARG	A	12	45.835	45.568	67.112	1.00	5.24	A
25	ATOM	5016	N	GLY	A	13	43.647	45.193	67.500	1.00	5.06	A

	ATO	м 5017	CA	GLY	Ą	13	43.722	45.495	68.916	1.00	4.83	A
	ATO	м 5018	С	GLY	Ą	13	44.620	46.641	69.327	1.00	4.65	A
	АТО	м 5019	0	GLY	Ą	13	44.611	47.717	68.718	1.00	5.04	A
	ATO	м 5020	N	ARG	Ą	14	45.404	46.397	70.373	1.00	4.18	A
5	АТО	м 5021	CA	ARG	Ą	14	46.305	47.398	70.929	1.00	5.36	A
	OTA	м 5022	CB	ARG	A	14	46.573	47.085	72.401	1.00	5.09	A
	ATO	м 5023	CG	ARG	A	14	45.315	47.228	73.252	1.00	5.96	A
	ATO	м 5024	CD	ARG	A	14	45.594	46.965	74.727	1.00	8.03	A
	OTA	м 5025	NE	ARG	A	14	44.524	47.502	75.570	1.00	10.77	A
10	OTA	м 5026	CZ	ARG	A	14	43.670	46.772	76.281	1.00	12.04	A
	АТО	м 5027	NH1	ARG	A	14	43.742	45.449	76.268	1.00	13.88	A
	, ATO	м 5028	NH2	ARG	A	14	42.740	47.372	77.011	1.00	15.99	A
	ATO	м 5029	C	ARG	A·	14	47.618	47.571	70.188	1.00	4.92	A
.:	ATO	м 5030	0	ARG	A	14	48.394	48.465	70.509	1.00	6.47	A
15	ATO	м 5031	N	ALA	A	15	47.878	46.728	69.199	1.00	4.71	A
٠.;	ATO	м 5032	CA	ALA	A	15	49.111	46.864	68.439	1.00	4.73	A
	ATO:	м 5033	CB	ALA	A	15	49.617	45.491	68.020	1.00	7.01	A
	ATO	м 5034	С	ALA	A	15	48.907	47.729	67.203	1.00	4.72	A
	ATO	м 5035	0	ALA	A	15	49.867	48.277	66.661	1.00	4.50	A
20.	ATO	м 5036	N	GLU	A	16	47.656	47.882	66.775	1.00	4.21	A
	ATO	м 5037	CA	GLU	A	16	47.386	48.606	65.542	1.00	4.17	A
	ATO	M 5038	СВ	GLU	A	16	45.888	48.555	65.220	1.00	4.19	A
	ATO	м 5039	CG	GLU	Ą	16	45.564	48.801	63.741	1.00	5.10	A
	ATO	м 5040	CD	GLU	A	16	46.069	47.700	62.804	1.00	5.24	A
25	ATO	м 5041	OE1	GLU	A	16	46.619	46.682	63.283	1.00	5.72	A

118

	-	•											
:	•.	АТОМ	5042	OE2	GLU	A	16	45.907	47.864	61.575	1.00	5.89	A
	:	ATOM	5043	С	GLU	A	16	47.904	50.034	65.463	1.00	4.67	A
	:	АТОМ	5044	0	GLU	A	16	48.364	50.459	64.404	1.00	4.75	A
	;	ATOM	5045	N	ILE	A	17	47.859	50.776	66.566	1.00	4.26	A
. 5		ATOM	5046	CA	ILE	A	17	48.351	52.146	66.529	1.00	4.04	A
		ÀTOM	5047	СВ	ILE	A	17	48.092	52.876	67.889	1.00	5.08	A
		ATOM	5048	CG2	ILE	A	17	48.797	52.165	69.029	1.00	5.12	A
	٠.	ATOM	5049	CG1	ILE	A	17	48.539	54.337	67.794	1.00	4.72	A
	1	ATOM	5050	CD1	ILE	A	17	47.815	55.138	66.720	1.00	6.77	A
10		MOTA	5051	С	ILE	A	17	49.841	52.150	66.158	1.00	4.37	A
		MOTA	5052	0	ILE	A	17	50.301	53.003	65.394	1.00	5.08	A
ы;		MOTA	5242	N	TRP	A	39	50.877	31.481	73.859	1.00	14.53	A
•		ATOM	5243	CA	TRP	A	39	50.756	32.520	74.879	1.00	13.46	A
		ATOM	5244	СВ	TRP	A	39	49.282	32.747	75.231	1.00	13.58	A
15		ATOM	5245	CG	TRP	A	39	49.060	33.765	76.321	1.00	12.94	A
		МОТА	5246	CD2	TRP	A	39	49.582	35.102	76.384	1.00	12.06	A
		MOTA	5247	CE2	TRP	A	39	49.128	35.671	77.593	1.00	12.15	A
		ATOM	5248	CE3	TRP	A	39	50.392	35.874	75.537	1.00	10.40	A
:		ATOM	5249	CD1	TRP	A	39	48.328	33.591	77.460	1.00	13.75	A
20	:	ATOM	5250	NE1	TRP	A	39	48.365	34.728	78.230	1.00	13.97	A
	;	ATOM	5251	CZ2	TRP	A	39	49.454	36.974	77.981	1.00	11.46	A
•		ATOM	5252	CZ3	TRP	A	39	50.717	37.176	75.926	1.00	10.56	A
		ATOM	5253	CH2	TRP	Ą	39	50.247	37.709	77.137	1.00	10.60	A
	:	ATOM	5254	С	TRP	A	39	51.564	32.262	76.156	1.00	14.42	A
25		ATOM	5255	0	TRP	A	39	52.316	33.127	76.592	1.00	13.42	A

기념도 이글 ⁻

अंद्रेड्स अंदर

 \mathcal{F} , m

CA 02466264 2004-05-05

	MOTA	5256	N	PRO .	A	40	51.424	31.076	76.774	1.00 1	L3.83	A
	МОТА	5257	CD	PRO .	A	40	50.509	29.950	76.512	1.00 1	15.37	A
. • • •	ATOM	5258	CA	PRO .	A	40	52.202	30.843	77.995	1.00 1	13.84	A
·. ·	ATOM	5259	СВ	PRO .	A	40	51.885	29.388	78.329	1.00 1	14.82	A
5	ATOM	5260	CG	PRO	A	40	50.467	29.254	77.861	1.00 1	L5.27	A
	АТОМ	5261	С	PRO	A	40	53.697	31.089	77.809	1.00 1	14.02	A
;	АТОМ	5262	o	PRO	A	40	54.342	31.712	78.656	1.00	14.68	A
. :	АТОМ	5263	N	GLU	A	41	54.245	30.606	76.700	1.00 1	14.37	A
	АТОМ	5264	CA	GLU	A	41	55.664	30.784	76.422	1.00	15.32	A
10	ATOM	5265	СВ	GLU	A	41	56.079	29.953	75.205	1.00	18.64	A
	: ATOM	5266.	CG	GLU	A	41	54.940	29.199	74.548	1.00 2	25.28	A
	ATOM	5267	CD	GLU	A	41	55.423	28.170	73.548	1.00 2	27.49	A
	ATOM	5268	OE1	GLU	A	41	56.616	28.201	73.183	1.00	29.60	A
	MOTA	5269	OE2	GLU	A	41	54.608	27.334	73.116	1.00	30.19	A
15	MOTA	5270	С	GLU	A	41	56.005	32.253	76.188	1.00	13.50	A
	MOTA	5271	0	GLU	A	41	56.988	32.761	76.723	1.00	15.87	A
	ATOM	5272	N	ILE	A	42	55.190	32.931	75.388	1.00	12.31	A
	MOTA	5273	CA	ILE	Α	42	55.413	34.342	75.095	1.00	12.42	A
· .	ATOM	5274	СВ	ILE	A	42	54.407	34.852	74.031	1.00	12.64	A
20	MOTA	5275	CG2	ILE	A	42	54.485	36.374	73.916	1.00	12.49	A
	ATOM	5276	CG1	ILE	A	42	54.697	34.197	72.677	1.00	14.88	A
•	ATOM	5277	CD1	ILE	Ą	42	56.018	34.607	72.054	1.00	16.40	A
					•		55.276					
	ATOM	5279	0	ILE	Α	42	56.111	36.063	76.625	1.00	11.25	A
25	MOTA	5280	N	LYS	A	43	54.228	34.941	77.131	1.00	11.00	A

	ATOM	5281	CA	LYS A	43	53.969	35.697	78.351	1.00	10.64	A
, .	ATOM	5282	СВ	LYS A	43	52.722	35.144	79.052	1.00	9.83	A
	ATOM	5283	CG	LYS A	43	52.292	35.936	80.279	1.00	10.83	A
	ATOM	5284	CD	LYS A	43 .	51.053	35.326	80.910	1.00	12.63	A
5	ATOM	5285	CE	LYS A	43	50.652	36.051	82.183	1.00	14.51	A
	ATOM	5286	NZ	LYS A	43	49.477	35.397	82.820	1.00	14.93	A
	MOTA	5287	С	LYS A	43	55.143	35.703	79.323	1.00	12.13	A
	ATOM	5288	0	LYS A	43	55.384	36.699	80.005	1.00	12.18	A
	ATOM	5328	N	GLY A	49	53.610	40.833	81.753	1.00	7.16	A
10	MOTA	5329	CA	GLY A	49	52.668	39.832	81.287	1.00	8.61	A
	ATOM	5330	С	GLY A	49	51.654	40.290	80.260	1.00	6.93	A
	MOTA	5331	0	GLY A	49	50.653	39.608	80.038	1.00	7.98	A
	MOTA	5332	N	LYS A	50	51.907	41.429	79.619	1.00	6.55	A
	ATOM	5333	CA	LYS A	50	50.976	41.949	78.625	1.00	6.43	A
15	ATOM	5334	СВ	LYS A	50	50.305	43.240	79.120	1.00	7.04	A
	ATOM	5335	CG	LYS A	50	49.749	43.196	80.530	1.00	9.59	A
	АТОМ	5336	CD	LYS A	50	48.616	42.198	80.672	1.00	11.11	A
• •	ATOM	5337	CE	LYS A	50	48.089	42.190	82.097	1.00	15.13	A
	ATOM	5338	NZ	LYS A	50	49.205	42.086	83.079	1.00	17.69	A
20	ATOM	5339	С	LYS A	50	51.641	42.272	77.300	1.00	5.28	A
: :	ATOM	5340	0	LYS A	50	52.846	42.538	77.232	1.00	5.40	A
	MOTA	5341	N	ILE A	51	50.837	42.241	76.247	1.00	4.98	A
	MOTA	5342	CA	ILE Ý	51	51.300	42.612	74.923	1.00	5.31	A
	ATOM	5343	СВ	ILE A	51	51.297	41.414	73.929	1.00	6.08	A
25	ATOM	5344	CG2	ILE A	51	52.577	40.606	74.121	1.00	7.61	A

372 0

CA 02466264 2004-05-05

	* .										
	ATOM	5345	CG1	ILE A	51	50.044	40.552	74.104	1.00	7.83	A
	ATOM	5346	CD1	ILE A	51	49.971	39.380	73.132	1.00	11.35	A
· : ·	ATOM	5347	С	ILE A	51	50.350	43.716	74.449	1.00	4.83	A
	ATOM	5348	0	ILE A	51	49.228	43.847	74.929	1.00	5.85	A
5	ATOM	5349	N	PRO A	. 52	50.778	44.515	73.461	1.00	4.61	A
	ATOM	5350	CD	PRO A	. 52	50.013	45.710	73.057	1.00	4.91	A
*	ATOM	5351	CA	PRO A	. 52	52.047	44.434	72.746	1.00	4.74	A
	ATOM	5352	СВ	PRO A	. 52	51.803	45.352	71.556	1.00	5.22	A
: .:	MOTA	5353	CG	PRO A	. 52	51.008	46.472	72.190	1.00	6.07	A
10	ATOM	5354	C	PRO A	. 52	53.327	44.841	73.456	1.00	5.16	A
	MOTA	5355	0	PRO A	. 52	53.326	45.548	74.469	1.00	4.84	A
	MOTA	5356	N	ILE A	53	54.423	44.329	72.909	1.00	4.77	A
	ATOM	5357	CA	ILE A	. 53	55.747	44.742	73.323	1.00	4.63	A
	MOTA	5358	СВ	ILE A	53	56.576	43.680	74.116	1.00	5.58	A
15	MOTA	5359	CG2	ILE A	53	55.986	43.498	75.498	1.00	6.57	A
	ATOM	5360	CG1	ILE A	53	56.711	42.376	73.332	1.00	6.10	A
	MOTA	5361	CD1	ILE A	53	57.853	41.501	73.831	1.00	8.86	A
	MOTA	5362	С	ILE A	53	56.439	45.024	71.998	1.00	4.92	A
	MOTA	5363	0	ILE A	53	56.056	44.484	70.951	1.00	4.78	A
20	MOTA	5423	N I	HIS A	62	57.230	48.257	76.387	1.00	5.48	A
	ATOM	5424	CA	HIS A	62	55.869	47.762	76.529	1.00	5.13	A
	· ATOM	5425	СВ	HIS A	62	55.742	46.832	77.744	1.00	5.58	A
	ATOM	5426	CG	HIS A	62	55.930	47.514	79.060	1.00	4.58	A
٠٠,	ATOM	5427	CD2	HIS A	62	57.037	48.000	79.664	1.00	5.33	A
25	MOTA	5428	ND1	HIS A	62	54.877	47.778	79.911	1.00	5.59	A

i ili ge

CA 02466264 2004-05-05

	. : · .	АТОМ	5429	CE1	HIS	A	62	55.333	48.400	80.982	1.00	5.03	A
	÷	АТОМ	5430	NE2	HIS	A	62	56.639	48.549	80.860	1.00	6.03	A
		ATOM	5431	С	HIS	A	62	54.925	48.962	76.626	1.00	4.66	A
	:	ATOM	5432	0	HIS	A	62	55.386	50.105	76.654	1.00	5.51	A
5		ATOM	5433	N	GLN	A	63	53.619	48.684	76.647	1.00	4.29	A
	٠.٠	ATOM	5434	CA	GLN	A	63	52.542	49.684	76.704	1.00	4.47	A
	;	ATOM	5435	СВ	GLN	A	63	52.799	50.722	77.803	1.00	5.14	A
·	٠.	АТОМ	5436	CG	GLN	A	63	52.408	50.230	79.196	1.00	5.62	A
	4	ATOM	5437	CD	GLN	A	63	50.906	50.052	79.366	1.00	5.35	A
10 ·		АТОМ	5438	OE1	GLN	A	63	50.112	50.483	78.523	1.00	4.91	A
		ATOM	5439	NE2	GLN	A	63	50.508	49.434	80.474	1.00	5.54	A
		MOTA	5440	C	GLN	A	63	52.378	50.337	75.335	1.00	4.53	A
		MOTA	5441	0	GLN	A	63	53.197	51.150	74.908	1.00	4.75	A
٠.	· .	MOTA	5442	N	SER	A	64	51.298	49.970	74.652	1.00	4.47	A
15	:'	MOTA	5443	CA	SER	A	64	51.049	50.446	73.299	1.00	5.16	A
		ATOM	5444	СВ	SER	A	64	49.693	49.935	72.796	1.00	4.88	A
,		ATOM	5445	og	SER	A	64	48.605	50.551	73.460	1.00	5.68	A
-		АТОМ	5446	С	SER	A	64	51.149	51.942	73.054	1.00	4.97	A
		ATOM	5447	0	SER	A	64	51.742	52.366	72.062	1.00	5.10	A
20		ATOM	5448	N	LEU	A	65	50.583	52.749	73.943	1.00	4.29	A
		ATOM	5449	CA	LEU	Α	65	50.616	54.189	73.744	1.00	4.24	A
		ATOM	5450					49.468		74.514			
•	:	ATOM	5451	CG	LEU	Ą	65	48.110	54.218	74.171	1.00	6.96	A
		ATOM	5452	CD1	LEU	A,	65	47.017	54.953	74.937	1.00	9.08	A
25		ATOM	5453	CD2	LEU	A	65	47.857	54.274	72.666	1.00	8.54	A

•	•	٠.											
		MOŢA	5454	С	LEU A	Ą	65	51.962	54.802	74.114	1.00	4.91	A
		ATOM	5455	0	LEU A	į	65	52.360	55.817	73.544	1.00	5.28	A
		ATOM	5662	N	ASP A	À	93	44.344	59.210	75.556	1.00	4.56	A
	:	MOTA	5663	CA	ASP A	A	93	43.975	58.590	76.829	1.00	4.81	A
	5	ATOM	5664	СВ	ASP A	A	93	44.674	59.281	78.008	1.00	5.82	A
	• • •	ATOM	5665	CG	ASP A	A	93	46.052	58.688	78.299	1.00	6.27	A
	÷	MOTA	5666	OD1	ASP A	A	93	46.654	59.050	79.336	1.00	8.17	A
		MOTA	5667	OD2	ASP A	A.	93	46.534	57.858	77.497	1.00	6.94	A
		MOTA	5668	С	ASP A	Ą	93	42.455	58.581	77.031	1.00	4.64	A
:	10	ATOM	5669	0	ASP A	Ą	93	41.914	57.667	77.647	1.00	5.45	A
		АТОМ	5670	N	THR A	A	94	41.760	59.589	76.513	1.00	4.84	A
		ATOM	5671	CA	THR A	A	94	40.307	59.616	76.642	1.00	5.76	A
		ATOM	5672	СВ	THR A	A	94	39.745	60.972	76.166	1.00	6.34	A
		Атом	5673	OG1	THR A	A	94	40.156	61.992	77.086	1.00	7.42	A
	15	ATOM	5674	CG2	THR A	A	94	38.223	60.943	76.110	1.00	8.19	A
	· ·.	ATOM	5675	С	THR A	A	94	39.718	58.460	75.825	1.00	6.13	A
		MOTA	5676	0	THR A	Ą	94	38.803	57.764	76.276	1.00	6.09	A
٠.		ATOM	5677	N	LEU 2	A	95	40.253	58.247	74.628	1.00	4.62	A
		ATOM	5678	CA	LEU 2	A	95	39.788	57.153	73.785	1.00	5.06	A
	20 ·	ATOM	5679	СВ	LEU 2	A.	95	40.426	57.233	72.400	1.00	5.92	A
:	·. ·	ATOM	5680	CG	LEU A	A	95	39.966	58.395	71.519	1.00	6.51	A
		ATOM	5681	CD1	LEU Z	Ą	95	40.809	58.448	70.253	1.00	7.81	A
		ATOM	5682	CD2	LEU 2	Ą	95	38.495	58.215	71.174	1.00	8.77	A
		MOTA	5683	С	LEU Z	Ą	95	40.143	55.819	74.423	1.00	4.85	A
	25	ATOM	5684	0	LEU .	Ą	95	39.321	54.907	74.480	1.00	5.32	Α

* \$	MOTA	5685	N	ASP	A	96	41.373	55.711	74.912	1.00	5.08	A
	ATOM	5686	CA	ASP	A	96	41.830	54.472	75.524	1.00	4.86	Α
	ATOM	5687·	СВ	ASP	A	96	43.328	54.556	75.817	1.00	5.00	A
	ATOM	5688	CG	ASP	A	96	43.975	53.191	75.916	1.00	6.28	A
5	ATOM	5689	OD1	ASP	A	96	43.865	52.415	74.945	1.00	7.24	Α
•	ATOM	5690	OD2	ASP	A	96	44.593	52.896	76.958	1.00	8.87	A
	ÄTOM	5691	С	ASP	A	96	41.056	54.146	76.797	1.00	5.03	A
	ATOM	5692	0	ASP	A	96	40.784	52.978	77.082	1.00	5.59	A
•	ATOM	5693	N	ASP	A	97 ·	40.702	55.173	77.564	1.00	5.23	A
10	ATOM	5694	CA	ASP	A	97	39.926	54.974	78.784	1.00	5.46	A
	ATOM	5695	СВ	ASP	A	97	39.585	56.317	79.436	1.00	6.58	A
	MOTA	5696	CG	ASP	A	97	40.721	56.890	80.261	1.00	6.62	A
	ATOM	5697	OD1	ASP	A	97	40.597	58.061	80.677	1.00	7.17	A
*	ATOM	5698	OD2	ASP	A	97	41.721	56.185	80.504	1.00	7.79	A
15	ATOM	5699	С	ASP	A	97	38.621	54.269	78.426	1.00	6.00	A
	ATOM	5700	0	ASP	A	97	38.207	53.322	79.100	1.00	6.84	A
. :	АТОМ	5701	N	PHE	A	98	37.969	54.732	77.364	1.00	5.70	A
	ATOM	5702	CA	PHE	A	98	36.712	54.122	76.964	1.00	5.97	A
	ATOM	5703	СВ	PHE	A	98	36.013	54.962	75.898	1.00	6.49	A
20	ATOM	5704	CG	PHE	A	98	34.603	54.532	75.635	1.00	7.36	A
<i>.</i>	ATOM	5705	CD1	PHE	A	98	33.662	54.547	76.659	1.00	9.72	A
	ATOM	5706	CD2	PHE	Α	98	34.217	54.088	74.379	1.00	7.45	A
``,	ATOM	5707	CE1	PHE	Ą	98	32.354	54.123	76.434	1.00	10.12	A
	ATOM	5708	CE2	PHE	A _:	98	32.911	53.662	74.140	1.00	9.08	A
25	ATOM	5709	CZ	PHE	Ą	98	31.979	53.680	75.172	1.00	9.33	A

	атом 5710	С	PHE A 98	36.906	52.698	76.452	1.00	6.08	A
	ATOM 5711	O	PHE A 98	36.168	51.789	76.839	1.00	6.41	A
	атом 5712	N	MET A 99	37.896	52.490	75.589	1.00	6.17	A
	ATOM 5713	CA	MET A 99	38.146	51.152	75.062	1.00	5.91	A
5 .	ATOM 5714	СВ	MET A 99	39.330	51.155	74.091	1.00	7.58	A
·	ATOM 5715	·CG	MET A 99	39.159	52.043	72.860	1.00	7.35	A
	ATOM 5716	SD	MET A 99	37.673	51.709	71.886	1.00	7.56	A
	ATOM 5717	CE	MET A 99	38.136	50.177	71.036	1.00	9.56	A
: :	ATOM 5718	С	MET A 99	38.439	50.178	76.198	1.00	6.10	A
10	ATOM 5719	0	MET A 99	38.060	49.005	76.139	1.00	7.35	A
٠.	ATOM 5720	N	SER A 100	39.108	50.671	77.236	1.00	6.09	A
	ATOM 5721	CA	SER A 100	39.465	49.839	78.382	1.00	8.79	A
	ATOM 5722	CB	SER A 100	40.533	50.546	79.220	1.00	9.54	A
	ATOM 5723	OG	SER A 100	41.722	50.717	78.466	1.00	15.41	A
15	ATOM 5724	С	SER A 100	38.279	49.449	79.266	1.00	9.77	A
;	ATOM 5725	0	SER A 100	38.415	48.591	80.142	1.00	12.78	A
	ATOM 5726	N	CYS A 101	37.123	50.067	79.033	1.00	9.75	A
.*	ATOM 5727	CA	CYS A 101	35.920	49.764	79.808	1.00	11.59	A
	ATOM 5728	СВ	CYS A 101	34.892	50.892	79.680	1.00	12.49	A
20	ATOM 5729	SG	CYS A 101	35.263	52.370	80.617	1.00	15.69	A
	ATOM 5730	С	CYS A 101	35.260	48.469	79.351	1.00	10.47	Α
	ATOM 5731	0	CYS A 101	34.497	47.857	80.100	1.00	12.82	A
	ATOM 5732	N	PHE A 102	35.542	48.063	78.119	1.00	10.24	A
	. ATOM 5733	CA	PHE A 102	34.941	46.855	77.571	1.00		A
25	ATOM 5734	СВ	PHE A 102	35.009	46.877	76.045	1.00	10.28	A

:	АТОМ	5735	CG	PHE	Ą	102	34.151	47.936	75.420	1.00	8.84	A
	ATOM	5736	CD1	PHE	Ą	102	34.567	49.263	75.386	1.00	9.33	A
•	ATOM	5737	CD2	PHE	Ą	102	32.910	47.609	74.884	1.00	9.36	A
; >	MOTA	5738	CE1	PHE	A	102	33.756	50.251	74.829	1.00	8.74	A
5	ATOM	5739	CE2	PHE	Α	102	32.092	48.586	74.325	1.00	9.38	A
• •	ATOM	5740	CZ	PHE	A	102	32.516	49.911	74.297	1.00	7.96	A
	ATOM	5741	C .	PHE	A	102	35.581	45.577	78.097	1.00	11.75	A
•	MOTA	5742	0	PHE	Α	102	36.801	45.487	78.213	1.00	12.38	A
:	MOTĄ	5743	N	PRO	Α	103	34.755	44.566	78.420	1.00	12.10	A
10	ATOM	5744	CD	PRO	Α	103	33.282	44.633	78.463	1.00	12.55	A
8	ATOM	5745	CA	PRO	Α	103	35.232	43.278	78.937	1.00	13.72	A
	АТОМ	5746	СВ	PRO	Α	103	34.005	42.730	79.650	1.00	14.58	A
: :	ATOM	5747	CG	PRO	A	103	32.898	43.194	78.758	1.00	13.49	A
	ATOM	5748	С	PRO	Α	103	35.709	42.361	77.815	1.00	14.61	A
15 .	ATOM	5749	0	PRO	A	103	35.101	41.325	77.544	1.00	15.36	A
:	АТОМ	5750	N	TRP	A	104	36.804	42.744	77.171	1.00	14.45	A
• •	ATOM	5751	CA	TRP	A	104	37.352	41.968	76.068	1.00	15.73	A
	АТОМ	5752	СВ	TRP	A	104	38.617	42.634	75.529	1.00	15.71	A
	АТОМ	5753	CG	TRP	A	104	38.438	44.071	75.158	1.00	13.26	A
20	АТОМ	5754	CD2	TRP	Α	104	37.817	44.572	73.972	1.00	13.03	A
1 "	АТОМ	5755	CE2	TRP	A	104	37.825	45.981	74.063	1.00	11.27	A
	ATOM	5756	CE3	TRP	A _.	104	37.242	43.965	72.848	1.00	12.96	A
. 11	ATOM	5757	CD1	TRP	A	104	38.797	45.163	75.895	1.00	12.87	A
<i>:</i> .	ATOM	5758	NE1	TRP	Α	104	38.433	46.315	75.242	1.00	11.57	A
25	ATOM	5759	CZ2	TRP	Α	104	37.288	46.796	73.060	1.00	13.14	A

1 1 W

ા મ

CA 02466264 2004-05-05

	• :	MOTA	5760	CZ3	TRP A	104	36.707	44.776	71.853	1.00	13.80	A
	•	MOTA	5761	CH2	TRP A	104	36.731	46.176	71.970	1.00	14.33	A
		ATOM	5762	С	TRP A	104	37.670	40.516	76.424	1.00	17.38	A
•	٠.	ATOM	5763	o	TRP A	104	37.534	39.628	75.591	1.00	18.27	A
5	·.	ATOM	5764	N	ALA A	105	38.088	40.265	77.658	1.00	18.99	A
		ATOM	5765	CA	ALA A	105	38.443	38.907	78.053	1.00	21.60	A
		ATOM	5766	СВ	ALA A	105	39.670	38.942	78.956	1.00	21.34	A
	: .	ATOM	5767	С	ALA A	105	37.330	38.111	78.726	1.00	23.19	A
		ATOM	5768	0	ALA A	105	37.545	36.968	79.130	1.00	23.27	A
10	•	ATOM	5769	N	GLU A	106	36.144	38.700	78.843	1.00	24.01	A
		ATOM	5770	CA	GLU A	106	35.028	38.009	79.480	1.00	25.35	A
		ATOM	5771	СВ	GLU A	106	33.773	38.884	79.457	1.00	25.81	A
	;	А́том	5772	CG	GLU A	106	32.545	38.207	80.053	1.00	26.97	A
	٠	АТОМ	5773	CD	GLU A	106	32.799	37.651	81.443	1.00	27.81	A
15		ATOM	5774	ọE1	GLU A	106	33.119	38.441	82.356	1.00	28.08	A
	· j	'ATOM	5775	OE2	GLU A	106	32.681	36.419	81.620	1.00	28.82	A
		ATOM	5776	С	GLU A	106	34.735	36.666	78.819	1.00	25.88	A
,	· ·	ATOM	5777	0	GLU A	. 106	34.530	36.582	77.609	1.00	25.18	A
	••	ATOM	5778	N	LYS A	107	34.713	35.618	79.637	1.00	27.20	A
20	. : .	ATOM	5779	CA	LYS A	107	34.462	34.255	79.179	1.00	28.80	A
•	···	ATOM	5780	СВ	LYS A	. 107	34.794	33.252	80.292	1.00	29.93	A
·	?	ATOM	5781	CG	LYS A	107	36.017	33.600	81.132	1.00	31.92	A
٠.		ATOM	5782	CD	LYS A	107	35.769	34.840	81.986	1.00	33.29	A
٠.	٠.	ATOM	5783	CE	LYS A	107	36.998	35.235	82.776	1.00	35.16	A
25	:	MOTA	5784	NZ	LYS A	107	36.888	36.631	83.286	1.00	36.27	A

1: 1

CA 02466264 2004-05-05

•	٠.	•											
٠.	·· :·	ATOM	5785	С	LYS	A	107	33.000	34.085	78.779	1.00	28.48	A
• •	*	ATOM	5786	0	LYS	A	107	32.693	33.623	77.681	1.00	29.44	A
`,		МОТА	5787	N	LYS	A	108	32.107	34.456	79.690	1.00	28.29	A
,	· · . ·	ATOM	5788	CA	LYS	A	108	30.671	34.350	79.462	1.00	28.16	Α
5		ATOM	5789	СВ	LYS	A	108	29.920	34.648	80.761	1.00	29.14	Α
	·,	ATOM	5790	CG	LYS	A	108	30.297	33.723	81.911	1.00	30.38	A
		ATOM	5791	CD	LYS	A	108	29.548	34.069	83.188	1.00	32.02	A
:		MOTA	5792	CE	LYS	A	108	29.946	35.439	83.720	1.00	33.28	A
:	•	ATOM	5793	NZ	LYS	A	108	31.394	35.501	84.063	1.00	34.77	A
10	:	ATOM	5794	С	LYS	A	108	30.227	35.311	78.364	1.00	27.82	A
	•	ATOM	5795	0	LYS	A	108	30.147	36.521	78.576	1.00	26.75	A
		ATOM	5796	N	GLN	Α	109	29.932	34.759	77.191	1.00	27.48	A
		ATOM	5797	CA	GLN	Α	109	29.510	35.559	76.046	1.00	27.67	A
		ATOM	5798	СВ	GLN	A	109	29.326	34.662	74.820	1.00	29.61	A
15		ATOM	5799	CG	GLN	A	109	30.615	34.010	74.345	1.00	32.22	Α
: :		ATOM	5800	CD	GLN	A	109	31.706	35.024	74.043	1.00	33.48	A
		MOTA	5801	OE1	GLN	A	109	31.559	35.869	73.161	1.00	35.21	A
		ATOM	5802	NE2	GLN	A	109	32.808	34.943	74.779	1.00	33.63	A
		ATOM	5803	С	GLN	A	109	28.238	36.362	76.290	1.00	26.71	A
Ž0	:	ATOM	5804	0	GLN	A	109	28.121	37.497	75.833	1.00	25.25	A
		ATOM	5805	N	ASP	A	110	27.284	35.774	77.004	1.00	26.14	A
	ı	ATOM	5806	CA	ASP	A	110	26.030	36.459	77.293	1.00	25.81	A
		ATOM	5807	СВ	ASP	Ą	110	25.071	35.516	78.031	1.00	28.34	A
		ATOM	5808	CG	ASP	À	110	25.701	34.879	79.254	1.00	30.43	A
25		ATOM	5809	OD1	ASP	Α	110	25.955	35.597	80.242	1.00	31.82	A

~ · ·		MOTA	5810	OD2	ASP	Ą	110	25.945	33.654	79.226	1.00	33.72	A
	₹.	ATOM	5811	C	ASP	A	110	26.275	37.722	78.115	1.00	24.06	A
		ATOM	5812	0	ASP	A	110	25.718	38.781	77.823	1.00	23.68	A
	٠.	MOTA	5813	N	VAL	A	111	27.117	37.610	79.138	1.00	22.43	A
5 <u>:</u>		MOTA	5814	CA	VAL	A	111	27.433	38.748	79.994	1.00	20.34	A
		MOTĄ	5815	СВ	VAL	A	111	28.257	38.311	81.226	1.00	21.27	A
	•	MOTA	5816	CG1	VAL	A	111	28.620	39.523	82.070	1.00	22.02	Α
:		MOTA	5817	CG2	VAL	A	111	27.464	37.313	82.053	1.00	22.25	A
•		MOTA	5818	С	VAL	Α	111	28.240	39.778	79.215	1.00	18.84	A
10		MOTA	5819	0	VAL	A	111	28.005	40.980	79.309	1.00	17.77	A
		MOTA	5820	N	LYS	A	112	29.195	39.292	78.442	1.00	17.36	A
		MOTA	5821	CA	LYS	A	112	30.048	40.154	77.650	1.00	16.73	A
	. •	ATOM	5822	СВ	LYS	Α	112	31.037	39.287	76.919	1.00	17.64	A
	•	MOTA	5823	CG	LYS	A	112	32.075	40.014	76.182	1.00	18.95	A
15		ATOM	5824	CD	LYS	Α	112	32.954	38.942	75.717	1.00	21.64	Α
:		ATOM	5825	CE	LYS	A	112	34.038	39.471	74.948	1.00	22.51	A
	•	ATOM	5826	NZ	LYS	A	112	34.561	38.318	74.176	1.00	25.51	A
		ATOM	5827	С	LYS	A	112	29.242	40.977	76.656	1.00	15.52	A
		ATOM	5828	0	ĿŸS	A	112	29.410	42.192	76.550	1.00	13.43	A
20	,	ATOM	5829	N	GLU	A	113	28.366	40.298	75.925	1.00	14.92	A
	•	ATOM	5830 -	CA	GLU	A	113	27.520	40.947	74.938	1.00	15.67	A
		ATOM	5831	CB	GLU	Ą	113	26.626	39.904	74.271	1.00	18.01	A
	. 1	ATOM	5832	CG	GLU	Ą	113	25.680	40.492	73.263	1.00	23.31	A
• .		ATOM	5833	CD	GLU	A	113	24.799	39.452	72.598	1.00	25.74	A
25		ATOM	5834	OE1	GLU	Ą	113	25.338	38.456	72.073	1.00	27.13	A

•		ATOM	5835	OE2	GLU	Α	113	23.565	39.642	72.587	1.00	28.97	A
•	·'	MOTA	5836	C	GLU	Α	113	26.659	42.036	75.575	1.00	14.49	A
: .		ATOM	5837	0	GLU	Α	113	26.556	43.148	75.053	1.00	13.30	A
• •		ATOM	5838	N	GLN	A	114	26.046	41.709	76.708	1.00	14.04	A
5	٠.	ATOM	5839	CA	GLN	A	114	25.196	42.657	77.418	1.00	14.13	A
		ATOM	5840	СВ	GLN	Α	114	24.622	42.011	78.685	1.00	15.69	A
·	٠.	ATOM	5841	CG	GLN	A	114	23.799	42.961	79.545	1.00	18.28	A
	٠.	MOTA	5842	CD	GLN	A	114	22.512	43.407	78.874	1.00	19.74	A
		ATOM	5843	OE1	GLN	A	114	21.856	44.344	79.330	1.00	23.56	A
10		ATOM	5844	NE2	GLN	A	114	22.140	42.733	77.792	1.00	21.05	A
		ATOM	5845	С	GLN	A	114	25.966	43.920	77.793	1.00	13.10	A
		ATOM	5846	0	GLN	A	114	25.486	45.033	77.583	1.00	12.07	A
		ATOM	5847	N	MET	A	115	27.161	43.744	78.347	1.00	12.86	A
		АТОМ	5848	CA	MET	A	115	27.986	44.876	78.750	1.00	11.47	A
15		ATOM	5849	СВ	MET	A	115	29.219	44.375	79.516	1.00	14.17	A
	: <u>.</u>	ATOM	5850	CG	MET	A	115	30.295	45.433	79.785	1.00	19.50	A
•		MOTA	5851	SD	MET	A	115	31.315	45.040	81.253	1.00	26.29	A
	,	ATOM	5852	CE	MET	A	115	31.200	46.546	82.323	1.00	25.88	A
		ATOM	5853	С	MET	A	115	28.398	45.721	77.546	1.00	10.85	A
20	•	· ATOM	5854	0	MET	A	115	28.364	46.951	77.602	1.00	10.44	A
		ATOM	5855	N	PHE	A	116	28.786	45.063	76.458	1.00	10.25	A
:	:	MOTA	5856	CA	PHE	A	116	29.172	45.783	75.249	1.00	9.42	A
		ATOM	5857	СВ	PHE	Ą	116	29.552	44.810	74.126	1.00	9.27	A
	•	MOTA	5858	CG	PHE	A	116	31.026	44.519	74.038	1.00	11.09	A
25	ì,	ATOM	5859	CD1	PHE	Ą	116	31.687	43.865	75.070	1.00	10.32	A

	ATOM	5860	CD2	PHE .	A :	116	31.749	44.897	72.912	1.00	12.11	A
	ATOM	5861	CE1	PHE .	A :	116	33.053	43.589	74.985	1.00	12.71	A
:	ATOM	5862	CE2	PHE .	A :	116	33.113	44.629	72.814	1.00	11.83	A
	ATOM	5863	cz	PHE .	A :	116	33.766	43.972	73.853	1.00	11.75	A
5	ATOM	5864	С	PHE .	A	116	28.013	46.652	74.772	1.00	7.94	A
	ATOM	5865	0	PHE	A	116	28.193	47.826	74.460	1.00	8.19	A
()	МОТА	6152	N	TYR	A	152	44.548	57.094	66.166	1.00	5.28	A
:	MOTA	6153	CA	TYR	A	152	43.884	56.348	67.225	1.00	4.93	A
	ATOM	6154	СВ	TYR	A	152	44.409	56.744	68.612	1.00	5.14	A
10	MOTA	6155	CG	TYR	A	152	44.300	55.605	69.611	1.00	5.38	A
•	MOTA	6156	CD1	TYR	A	152	44.726	54.319	69.273	1.00	6.68	A
	MOTA	6157	CE1	TYR	A	152	44.646	53.268	70.177	1.00	6.58	A
	ATOM	6158	CD2	TYR	A	152	43.784	55.806	70.888	1.00	4.95	A
	АТОМ	6159	CE2	TYR	Α	152	43.702	54.755	71.804	1.00	4.84	A
15	ATOM	6160	CZ	TYR	A	152	44.136	53.492	71.439	1.00	5.18	A
	ATOM	6161	ОН	TYR	Α	152	44.081	52.443	72.330	1.00	6.87	A
,	ATOM	6162	С	TYR	A	152	42.372	56.492	67.156	1.00	5.08	A
	ATOM	6163	0	TYR	A	152	41.647	55.557	67.485	1.00	5.51	A
	: ATOM	6164	N	TRP	A	153	41.884	57.656	66.736	1.00	5.39	A
20	ATOM	6165	CA	TRP	Ą	153	40.442	57.818	66.600	1.00	5.76	A
	ATOM	6166	СВ	TRP	Ą	153	40.073	59.242	66.171	1.00	5.97	A
	MOTA	6167	CG	TRP	Ą	153	38.665	59.325	65.648	1.00	5.87	A
.5	MOTA	6168	CD2	TRP	Ą	153	37.471	58.920	66.332	1.00	5.91	A
	MOTA	6169	CE2	TRP	A	153	36.396	59.086	65.429	1.00	5.96	A
25	ATOM	6170	CE3	TRP	Ą	153	37.207	58.420	67.615	1.00	6.22	A

	ATOM	6171	CD1	TRP	A	153	38.274	59.723	64.399	1.00	7.17	A
	ATOM	6172	NE1	TRP	Ą	153	36.912	59.582	64.261	1.00	7.77	A
	ATOM	6173	CZ2	TRP	A	153	35.072	58.781	65.772	1.00	6.91	A
	ATOM	61.74	CZ3	TRP	Ą	153	35.886	58.116	67.956	1.00	7.15	A
5 _:	ATOM	6175	CH2	TRP	Α	153	34.839	58.294	67.032	1.00	7.76	Α
,	· · ATOM	6176	С	TRP	Α	153	39.930	56.835	65.546	1.00	5.37	A
3.7	АТОМ	6177	0	TRP	Α	153	38.934	56.144	65.756	1.00	5.17	A
•	АТОМ	6178	N	GLU	A	154	40.611	56.772	64.406	1.00	5.96	A
	· ATOM	6179	CA	GLU	A	154	40.176	55.877	63.343	1.00	5.72	A
10	ATOM	6180	СВ	GLU	A	154	41.009	56.110	62.079	1.00	6.13	A
	MOTA	6181	CG	GLU	A	154	40.449	55.429	60.833	1.00	6.44	A
	ATOM	6182	CD	GLU	A	154	40.878	53.979	60.703	1.00	6.70	A
	MOTA	6183	OE1	GLU	A	154	40.229	53.235	59.938	1.00	8.97	A
•	MOTA	6184	OE2	GLU	A	154	41.876	53.586	61.345	1.00	8.06	A
15	MOTA	6185	С	GLU	A	154	40.247	54.414	63.774	1.00	5.12	A
	MOTA	6186	0	GLU	A	154	39.355	53.625	63.467	1.00	6.20	A
	MOTA	6187	N	ILE	A	155	41.305	54.059	64.497	1.00	5.18	A
	MOTA	6188	CA	ILE	A	155	41.489	52.696	64.975	1.00	4.86	A
	MOTA	6189	СВ	ILE	A	155	42.901	52.549	65.580	1.00	5.47	A
20	ATOM	6190	CG2	ILE	Α	155	42.987	51.319	66.475	1.00	6.67	A
, · · ·	MOTA	6191	CG1	ILE	Α	155	43.925	52.501	64.440	1.00	5.20	A
	ATOM	6192	CD1	ILE	A	155	45.357	52.705	64.879	1.00	6.49	A
· .	· ATOM	6193	С	ILE	Ą	155	40.413	52.296	65.987	1.00	5.58	A
•	MOTA	6194	0	ILE	Α	155	39.780	51.247	65.851	1.00	5.20	A
25	ATOM	6195	N	CYS	Α	156	40.196	53.136	66.992	1.00	4.65	A

		MOTA	6196	CA C	YS A 156	39.190	52.838	68.007	1.00	5.13	A
		ATOM	6197	СВ	CYS A 156	39.216	53.888	69.121	1.00	5.71	A
	*	ATOM	6198	SG	CYS A 156	40.667	53.829	70.192	1.00	6.49	A
		ATOM	6199	С	CYS A 156	37.789	52.779	67.420	1.00	5.66	A
5		ATOM	6200	0	CYS A 156	37.026	51.855	67.710	1.00	6.21	A
	. :	ATOM	6201	N S	SER A 157	37.448	53.766	66.594	1.00	6.00	A
٠.		ATOM	6202	CA	SER A. 157	36.114	53.797	66.009	1.00	5.99	A
	÷.	ATOM	6203	СВ	SER A 157	35.843	55.146	65.317	1.00	6.89	A
		ATOM	6204	OG	SER A 157	36.766	55.420	64.282	1.00	6.66	A
10 .		ATOM	6205	c s	SER A 157	35.868	52.633	65.053	1.00	6.25	A
:		ATOM	6206	0	SER A 157	34.746	52.146	64.952	1.00	6.68	A
		ATOM	6207	N	THR A 158	36.902	52.170	64.358	1.00	6.04	A
	;	ATOM	6208	CA	THR A 158	36.717	51.043	63.452	1.00	6.77	A
		ATOM	6209	СВ	THR A 158	38.027	50.693	62.720	1.00	7.66	A
15		ATOM	6210	OG1	THR A 158	38.194	51.589	61.617	1.00	8.90	A
	٠	ATOM	6211	CG2	THR A 158	38.004	49.253	62.214	1.00	8.99	A
		MOTA	6212	С	THR A 158	36.219	49.827	64.225	1.00	7.46	A
		MOTA	6213	0	THR A 158	35.299	49.137	63.792	1.00	7.44	A
		MOTA	6214	N	THR A 159	36.813	49.572	65.380	1.00	6.82	A
20		ATOM	6215	CA	THR A 159	36.400	48.428	66.174	1.00	8.47	A
		ATOM	6216	СВ	THR A 159	37.480	48.070	67.201	1.00	8.32	A
		ATOM	6217	OG1	THR A 159	38.641	47.615	66.494	1.00	9.56	A
		ATOM	6218	CG2	THR A 159	37.005	46.971	68.140	1.00	8.90	A
		ATOM	6219	С	THR A 159	35.049	48.651	66.849	1.00	7.49	A
25		ATOM	6220	0	THR A 159	34.222	47.740	66.900	1.00	8.33	A

	ATOM	6221	N	LEU A	160	34.804	49.857	67.354	1.00	6.78	A
	ATOM	6222	CA	LEU A	160	33.519	50.125	67.988	1.00	6.38	A
	MOTA	6223	СВ	LEU A	160	33.498	51.531	68.588	1.00	6.84	A
	MOTA	6224	CG	LEU A	160	34.480	51.773	69.736	1.00	8.63	A
5 :	ATOM	6225	CD1	LEU A	160	34.360	53.209	70.217	1.00	11.20	A
•	ATOM	6226	CD2	LEU A	160	34.194	50.799	70.871	1.00	11.27	A
· · .	ATOM	6227	C	LEU A	160	32.384	49.979	66.974	1.00	7.24	A
	. ATOM	6228	0	LEU A	160	31.300	49.503	67.311	1.00	7.48	A
	АТОМ	6229	N	LEU A	161	32.642	50.383	65.733	1.00	6.66	A
10 .	ATOM	6230	CA	LEU A	161	31.641	50.297	64.673	1.00	8.42	A
	ATOM	6231	СВ	LEU A	161	32.156	50.972	63.403	1.00	9.08	A
· ·	АТОМ	6232	CG	LEU A	161	32.054	52.499	63.404	1.00	8.17	A
	A-TOM	6233	CD1	LEU A	161	32.903	53.074	62.283	1.00	9.90	A
	ATOM	6234	CD2	LEU A	161	30.594	52.915	63.251	1.00	9.54	A
15	ATOM	6235	С	LEU A	161	31.232	48.862	64.366	1.00	8.60	A
	ATOM	6236	0	LEU A	161	30.132	48.619	63.874	1.00	9.07	A
•	MOTA	6237	N Y	VAL A	62	32.116	47.914	64.652	1.00	8.54	A
	ATOM	6238	CA	VAL A	162	31.806	46.511	64.421	1.00	10.19	A
	MOTA	6239	СВ	VAL A	162	33.025	45.605	64.724	1.00	9.33	A
20	· ATOM	6240	CG1	VAL A	162	32.617	44.139	64.661	1.00	12.54	A
. X	MOTA	6241	CG2	VAL A	162	34.147	45.883	63.735	1.00	10.70	A
	MOTA	6242	C '	VAL A	62	30.656	46.102	65.337	1.00	10.61	A
	MOTA	6243	0	VAL A	62	29.756	45.367	64.933	1.00	12.29	A
: :	MOTA	6244	N	PHE A	163	30.685	46.593	66.574	1.00	9.62	A
25	ATOM	6245	CA	PHE A	163	29.657	46.250	67.550	1.00	9.97	A

		АТОМ	6246	СВ	PHE A	163	30.284	46.124	68.940	1.00	10.40	A
	: .	ATOM	6247	CG	PHE A	163	31.388	45.111	69.010	1.00	13.43	A
		АТОМ	6248	CD1	PHE A	163	32.699	45.461	68.698	1.00	14.97	A
		ATOM	6249	CD2	PHE A	163	31.112	43.796	69.360	1.00	16.10	A
5	-	ATOM	6250	CE1	PHE A	163	33.718	44.511	68.735	1.00	16.79	A
		ATOM	6251	CE2	PHE A	163	32.118	42.846	69.398	1.00	17.88	A
	•	ATOM	6252	cz	PHE A	163	33.428	43.199	69.086	1.00	18.31	A
·	: :	ATOM	6253	С	PHE A	163	28.476	47.214	67.605	1.00	9.96	A
		ATOM	6254	0	PHE A	163	27.414	46.865	68.116	1.00	10.98	A
10		ATOM	6528	N	THR A	197	41.100	40.642	60.451	1.00	6.55	A
	,	ATOM	6529	CA	THR A	. 197	40.708	40.042	61.711	1.00	6.54	A
	,,	ATOM	6530	СВ	THR A	197	41.867	40.118	62.727	1.00	7.01	A
	· ;	ATOM	6531	OG1	THR A	197	42.283	41.481	62.890	1.00	6.91	A
		ATOM	6532	CG2	THR A	. 197	43.048	39.300	62.229	1.00	7.77	A
15		ATOM	6533	С	THR A	197	39.489	40.776	62.251	1.00	6.16	A
	,·`	ATOM	6534	0	THR A	197	39.252	41.929	61.910	1.00	7.50	A
·:	•. •. •	ATOM.	6535	N	LYS A	198	38.708	40.110	63.091	1.00	7.12	A
		ATOM	6536	CA	LYS A	198	37.522	40.742	63.647	1.00	7.25	A
	÷	ATOM	.6537	СВ	LYS A	198	36.729	39.729	64.481	1.00	9.37	A
20	• •	ATOM	6538	CG	LYS A	198	35.536	40.316	65.222	1.00	12.51	A
; ;	٠	ATOM	6539	CD	LYS A	198	34.529	40.978	64.294	1.00	16.24	A
	•	ATOM	6540	CE	LYS A	198	33.878	39.974	63.358	1.00	16.57	A
\$ _.		ATOM	6541	NZ	LYS A	198	32.726	40.573	62.615	1.00	16.81	A
• :.	•	ATOM	6542	С	LYS A	198	37.910	41.945	64.507	1.00	7.23	A
25		ATOM	6543	0	LYS A	198	37.377	43.043	64.331	1.00	8.34	A

		•	MOTA	6544	N	LEU	A	199	38.853	41.729	65.419	1.00	7.65	A
			ATOM	6545	CA	LEU	A	199	39.316	42.775	66.325	1.00	7.68	A
			ATOM	6546	СВ	LEU	A	199	39.247	42.283	67.772	1.00	10.39	A
			ATOM	6547	CG	LEU	A	199	37.902	41.731	68.242	1.00	12.70	A
	5		ATOM	6548	CD1	LEU	A	199	38.057	41.197	69.652	1.00	15.45	A
			ATOM	6549	CD2	LEU	A	199	36.837	42.817	68.182	1.00	14.13	A
			ATOM	6550	С	LEU	A	199	40.735	43.235	66.028	1.00	7.07	A
;•			ATOM	6551	от1	LEU	Α	199	41.384	42.659	65.131	1.00	7.11	A
		; ;	ATOM	6552	от2	LEU	A	199	41.186	44.168	66.721	1.00	8.05	Α
	10		ATOM	6613	N1	GSH	Н	200	47.240	49.426	78.365	1.00	5.76	Н
			ATOM	6614	ÇA1	GSH	Н	200	48.071	48.329	77.882	1.00	6.49	Н
			ATOM	6615	C1	GSH	Н	200	48.552	48.593	76.433	1.00	5.96	Н
			ATOM	6616	011	GSH	Н	200	47.961	49.446	75.764	1.00	6.16	Н
			ATOM	6617	012	GSH	Н	200	49.623	47.939	76.023	1.00	5.89	Н
	15		ATOM	6618	CB1	GSH	н	200	47.193	47.058	77.940	1.00	7.07	Н
			MOTA	6619	CG1	GSH	н	200	47.971	45.743	77.668	1.00	7.43	Н
			ATOM	6620	CD1	GSH	Н	200	46.947	44.584	77.671	1.00	7.37	Н
			ATOM	6621	OE1	GSH	н	200	46.223	44.381	78.652	1.00	7.91	Н
		•	ATOM	6622	N2	GSH	н	200	47.074	43.729	76.649	1.00	6.87	Н
	20	: .	ATOM	6623	CA2	GSH	Н	200	46.310	42.477	76.623	1.00	6.95	Н
	t	•	ATOM	6624	C2	GSH	Н	200	47.130	41.349	77.273	1.00	8.08	Н
		,	ATOM	6625	02	GSH	Н	200	48.345	41.290	77.178	1.00	8.04	H
		,	ATOM	6626	CB2	GSH	Н	200	46.025	42.056	75.164	1.00	7.00	Н
			ATOM	6627	SG2	GSH	Н	200	44.867	43.164	74.287	1.00	8.63	Н
	25	:	MOTA	6628	N3	GSH	Н	200	46.473	40.585	78.154	1.00	10.11	Н

4.33

CA 02466264 2004-05-05

• •	ATOM 6629	CA3 GSH H	200	47.063	39.404	78.824	1.00	12.26	Н
	ATOM 6630	С3 GSH H	200	46.455	39.280	80.221	1.00	14.36	Н
	ATOM 6631	031 GSH H	200	46.823	38.312	80.902	1.00	17.27	Н
	ATOM 6632	032 GSH Н	200	45.621	40.144	80.600	1.00	17.25	Н
- 5	ATOM 6677	OH2 WAT S	1	45.932	55.216	78.140	1.00	11.00	s
	ATOM 6678	OH2 WAT S	2	44.001	53.704	79.474	1.00	8.61	s
	ATOM 6679	OH2 WAT S	3	45.044	54.147	82.027	1.00	9.47	s
<i>.</i>	ATOM 6680	OH2 WAT S	4	47.066	56.184	80.641	1.00	11.51	s
	· ATOM 6681	OH2 WAT S	5	44.400	56.542	80.238	1.00	6.66	s
10	ATOM 6682	OH2 WAT S	6	46.942	53.261	80.035	1.00	7.38	s
	ATOM 6689	OH2 WAT S	13	44.802	42.314	61.828	1.00	6.00	s
	ATOM 6692	OH2 WAT S	16	46.602	44.435	61.593	1.00	6.08	S
	ATOM 6693	OH2 WAT S	17	51.844	46.380	76.801	1.00	5.53	s
	ATOM 6694	OH2 WAT S	18	46.016	50.205	68.769	1.00	4.93	s
15	. АТОМ 6697	OH2 WAT S	21	46.289	50.659	71.607	1.00	6.24	s
	АТОМ 6699	OH2 WAT S	23	51.226	46.303	81.832	1.00	7.26	s
	ATOM 6701	OH2 WAT S	25	49.891	52.595	76.855	1.00	6.35	S
	ATOM 6702	OH2 WAT S	26	52.165	42.023	65.879	1.00	6.86	s
1	АТОМ 6703	OH2 WAT S	27	54.167	43.535	79.506	1.00	6.85	s
20	ATOM 6714	OH2 WAT S	38	47.233	52.192	77.524	1.00	8.27	s
	. ATOM 6718	OH2 WAT S	42	48.563	46.768	84.725	1.00	8.57	S
.:	АТОМ 6719	OH2 WAT S	43	58.660	41.683	70.327	1.00	7.93	S
	🥳 АТОМ 6733	OH2 WAT S	57	48.526	46.955	81.917	1.00	7.89	S
	ATOM 6748	OH2 WAT S	72	39.916	39.195	66.189	1.00	12.20	s
25	ATOM 6762	OH2 WAT S	88	52.225	56.098	78.210	1.00	11.05	S

		АТОМ	6783	ОН2	WAT	s	109	41.879	49.920	62.315	1.00	9.83	S
	· ·	ATOM	6784	он2	WAT	s	110	41.843	43.595	60.246	1.00	7.19	s
٠.		ATOM	6788	он2	WAT	s	114	50.291	44.524	83.978	1.00	11.55	s
•	••	ATOM	6791	он2	WAT	s	117	45.204	49.983	75.259	1.00	11.59	s
5 .		MOTA	6794	он2	WAT	s	121	36.093	43.586	61.844	1.00	10.06	s
		ATOM	6812	он2	WAT	S	140	46.502	35.525	67.908	1.00	16.03	s
		ATOM	6818	ОН2	WAT	s	146	46.548	45.276	81.207	1.00	1 1.87	s
		ATOM	6848	он2	WAT	s	177	47.305	35.643	80.850	1.00	15.13	s
		ATOM	6851	он2	WAT	s	180	42.393	49.873	82.928	1.00	14.77	s
10	٠.	ATOM	6888	он2	WAT	S	219	49.260	57.057	77.605	1.00	11.44	s
		ATOM	6894	он2	WAT	s	225	39.600	37.346	63.532	1.00	14.35	s
	`. **.	ATOM	6908	он2	TAW	s	239	44.676	42.614	80.064	1.00	17.81	s
	•	ATOM	6923	он2	WAT	s	256	51.755	42.823	85.972	1.00	15.23	s
	. :	ATOM	6936	он2	WAT	s	269	43.744	50.995	80.612	1.00	22.66	s
15	٤.	ATOM	6977	он2	WAT	s	310	41.854	37.441	65.183	1.00	14.71	s
		ATOM	6988	он2	WAT	s	321	52.715	31.754	68.251	1.00	25.02	s
	· ·	ATOM	7004	он2	WAT	s	338	47.955	36.940	60.191	1.00	23.06	s
•		ATOM	7020	он2	WAT	s	356	52.697	38.727	84.915	1.00	25.89	S
	:	ATOM	7035	он2	WAT	s	371	52.695	46.000	79.504	1.00	6.20	s
20		ATOM	7044	он2	TAW	s	380	45.939	45.946	85.168	1.00	15.59	S
		ATOM	7069	он2	TAW	s	409	58.139	37.692	70.855	1.00	19.42	s
•	•	ATOM	7121	он2	WAT	s	463	44.454	49.864	78.620	1.00	17.85	S
· .	. :	MOTA	7141	он2	WAT	s	486	38.783	46.154	59.815	1.00	18.01	s
•		ATOM	7185	он2	WAT	s	533	55.398	32.865	68.634	1.00	26.34	s
25		ATOM	7218	он2	WAT	s	568	39.362	52.746	81.658	1.00	20.82	S

٠.	:ATOM	7276	ОН2	TAW	s 6 30	54.033	36.951	83.283	1.00 30.8	87 S
	ATOM	7291	он2	TAW	s 6 47	59.120	37.414	73.286	1.00 30.1	.3 S
	ATOM	7297	он2	WAT	S § 53	43.339	48.112	81.026	1.00 26.2	0 S
	ATOM	7315	он2	WAT	s §77	41.879	54.425	82.374	1.00 22.8	86 S
5	MOTA	7345	он2	WAT	s 7 07	49.594	41.237	85.951	1.00 26.4	12 S
٠.	ATOM	7396	он2	WAT	s 160	33.326	48.774	82.446	1.00 41.0)1 s
	MOTA	7397	он2	WAT	s 761	44.428	46.156	82.727	1.00 21.4	16 S
	MOTA	7432	он2	TAW	s 198	37.760	35.933	64.870	1.00 24.8	36 S
	MOTA	7447	он2	WAT	s 815	44.586	33.922	63.810	1.00 27.1	L7 S
10	MOTA	7451	он2	WAT	s § 19	42.590	49.990	76.103	1.00 37.2	29 S
	ATOM	7491	он2	WAT	s 8 65	49.313	34.257	64.053	1.00 23.2	25 S
	MOTA	7551	он2	WAT	s 9 36	38.403	45.727	86.224	1.00 34.	77 S
	ATOM	75 59	он2	WAT	s 9 47	39.267	36.269	81.440	1.00 35.9	93 S
	: ATOM	7562	он2	WAT	s 🤶 50	46.311	34.424	83.694	1.00 37.	47 S
15	ATOM	7566	он2	WAT	s 954	49.354	35.076	61.559	1.00 34.3	30 S
	ATOM	7573	он2	WAT	s 9 62	41.074	48.947	64.727	1.00 6.	62 S
••	MOTA	7576	ОН2	WAT	s 965	42.360	48.144	66.991	1.00 8.3	16 S
:	ATOM	7580	ОН2	WAT	s 9 69	40.070	46.736	70.359	1.00 15.	63 S
	ATOM	7581	он2	WAT	s 9 70	40.472	46.466	67.816	1.00 11.	14 S
20	MOTA	7584	ОН2	WAT	s 974	46.488	28.447	69.078	1.00 22.	4 7 S
٠.	MOTA	7664	он2	WAT	s1 1 04	49.140	39.068	82.273	1.00 19.	35 S
·· · · ·	ATOM	7673	он2	WAT	S1117	49.385	36.341	85.538	1.00 28.	59 S
	MOTA	7675	ОН2	WAT	s i 119	41.071	46.806	79.458	1.00 26.	70 S
	MOTA	7676	ОН2	WAT	S1120	38.224	37.620	67.988	1.00 32.	98 S
25	ATOM	7678	он2	WAT	S1123	41.996	35.058	66.930	1.00 32.	93 S

140

		ATOM	7683	он2	WAT	S1129	47.152	42.956	85.367	1.00	37.94	S
•	•	АТОМ	7722	он2	WAT	S1180	36.068	36.649	75.341	1.00	43.94	S
		АТОМ	7732	он2	WAT	S1191	42.482	52.407	81.689	1.00	21.38	S
		MOTA	7733	он2	TAW	S1192	39.535	50.355	82.874	1.00	32.24	s
	5	ATOM	7737	он2	WAT	S1196	50.213	38.953	84.774	1.00	27.44	S
		ATOM	7843	он2	WAT	S1339	35.818	45.711	82.635	1.00	44.01	s
		ATOM	7853	он2	WAT	S1354	46.962	39.117	87.092	1.00	36.93	s
	•	ATOM	7874	он2	WAT	S1383	32.545	41.137	82.654	1.00	33.68	s
		АТОМ	7884	он2	WAT	S1 4 01	45.736	37.693	83.360	1.00	44.69	s
	10	ATOM	7926	он2	WAT	S1447	45.667	30.953	67.849	1.00	35.68	s
		ATOM	7927	он2	WAT	S1448	55.702	38.128	82.442	1.00	36.01	s
		ATOM	7948	он2	WAT	s1474	44.404	43.677	86.488	1.00	42.40	s
		ATOM	7952	он2	WAT	S1480	40.448	40.603	87.707	1.00	38.53	s
		ATOM	7954	он2	WAT	S1482	48.226	42.042	87.524	1.00	41.24	s
	15	ATOM	7996	он2	WAT	S1530	41.155	35.723	62.708	1.00	35.51	s
		ATOM	8019	он2	WAT	S1558	44.128	34.781	68.900	1.00	42.94	s
		ATOM	8020	он2	WAT	S1559	43.571	35.946	71.823	1.00	42.74	s
	÷	ATOM	8127	C1	U46	x 201	41.871	38.419	75.254	1.00	41.44	х
	٠,	МОТА	8128	C2	U46	X 201	40.838	38.243	74.213	1.00	41.53	х
	20	АТОМ	8129	С3	U46	x 201	40.546	39.776	73.818	1.00	41.45	x
		ATOM	8130	C4	U46	x 201	42.010	40.338	73.856	1.00	41.07	x
		ATOM	8131	C5	U46	x 201	42.792	39.065	74.274	1.00	41.56	x
		АТОМ	8132	06	U46	x 201	42.922	38.036	73.307	1.00	41.32	x
	•	ATOM	8133	C7	U46	x 201	41.676	37.405	73.215	1.00	41.76	x
	25	· ATOM	8134	C14	U46	x 201	42.399	41.346	74.949	1.00	40.61	х

A ... ?

3 4

CA 02466264 2004-05-05

141

	MOTA	8135	C16	U46	X	201	41.701	42.023	75.922	1.00	40.28	X
:	ATOM	8136	C18	U46	X	201	42.762	42.478	76.971	1.00	40.54	x
•	ATOM	8137	C20	U46	X	201	42.973	41.118	77.340	1.00	40.10	x
•	ATOM	8138	C21	U46	X	201	43.792	40.318	78.232	1.00	39.99	x
5	ATOM	8139	C24	U46	X	201	43.404	38.935	77.644	1.00	40.60	x
	ATOM	8140	C27	U46	X	201	43.941	37.551	78.094	1.00	41.02	x
	MOTA	8141	C30	U46	X	201	43.168	36.476	77.301	1.00	41.85	x
.•	ATOM	8142	036	U46	х	201	42.312	43.249	77.943	1.00	40.95	x
	ATOM	8143	C39	U46	x	201	39.913	39.986	72.481	1.00	41.80	x
10	ATOM	8144	C41	U46	x	201	38.932	38.921	72.298	1.00	42.50	x
	ATOM	8145	C44	U46	X	201	37.645	38.825	72.466	1.00	43.42	x
	ATOM	8146	C46	U46	X	201	36.596	39.762	72.916	1.00	43.47	х
• i•	АТОМ	8147	C48	U46	X	201	35.496	39.760	71.872	1.00	44.38	х
1 1	ATOM	8148	C51	U46	x	201	34.385	40.531	72.463	1.00	45.27	X
15	ATOM	8149	C54	บ46	X	201	33.109	40.654	71.681	1.00	45.90	x
ar A	ATOM	8150	057	U46	x	201	32.181	41.256	72.479	1.00	46.00	x
	ATOM	8151	058	U46	X	201	32.887	40.235	70.603	1.00	46.55	X

Table 5

Three-dimensional structural coordinate of the complex of human hematopoietic PGDS with calcium, glutathione and 9,11-dideoxy -9α , 11α -epoxymethanoprostaglandine $F_{2\alpha}$ (U44)

ATOM 4966 N TYR A 8 24.336 32.545 34.593 1.00 23.71 A
25 ATOM 4967 CA TYR A 8 22.908 32.784 34.729 1.00 23.39 A

	MOTA	4968	СВ	TYR A	8	22.170	31.441	34.781	1.00 22.82	A
•	ATOM	4969	CG	TYR A	8	20.663	31.544	34.721	1.00 22.10	A
	ATOM	4970	CD1	TYR A	8	20.024	32.094	33.606	1.00 21.74	A
<i>:</i> .	ATOM	4971	CE1	TYR A	8	18.634	32.184	33.541	1.00 21.38	A
5	ATOM	4972	CD2	TYR A	8	19.872	31.084	35.777	1.00 21.64	A
•	MOTA	4973	CE2	TYR A	8	18.481	31.170	35.723	1.00 21.52	A
	ATOM	4974	CZ	TYR A	8	17.872	31.721	34.602	1.00 21.33	A
	MOTA	4975	ОН	TYR A	8	16.504	31.801	34.542	1.00 21.12	A
	ATOM	4976	С	TYR A	8	22.659	33.572	36.016	1.00 23.34	A
10	ATOM	4977	0	TYR A	8	23.597	33.866	36.755	1.00 23.65	A
	ATOM	4978	N	PHE A	9	21.402	33.921	36.273	1.00 23.18	A
	ATOM	4979	CA	PHE A	9	21.042	34.657	37.478	1.00 23.08	A
	ATOM	4980	СВ	PHE A	9	19.635	35.237	37.348	1.00 23.27	A
	ATOM	4981	CG	PHE A	9	19.527	36.344	36.342	1.00 23.76	A
15	ATOM	4982	CD1	PHE A	9	18.642	36.248	35.273	1.00 23.77	A
	АТОМ	4983	CD2	PHE A	9	20.298	37.494	36.471	1.00 24.01	A
	ATOM	4984	CE1	PHE A	9	18.524	37.286	34.346	1.00 24.05	A
	ATOM	4985	CE2	PHE A	. 9	20.190	38.535	35.552	1.00 24.19	A
· · · · · · · · · · · · · · · · · · ·	ATOM	4986	CZ	PHE A	. 9	19.300	38.431	34.488	1.00 24.13	A
20	ATOM	4987	С	PHE A	. 9	21.085	33.712	38.666	1.00 22.94	A
	ATOM	4988	0	PHE A	. 9	21.182	32.497	38.491	1.00 22.79	A
; · ·	MOTA	4989	N	ASN A	10	21.014	34.263	39.873	1.00 22.88	A
; · · · · · · · · · · · · · · · · · · ·	MOTA	4990	CA	ASN A	. 10	21.039	33.427	41.064	1.00 22.79	A
	MOTA	4991	СВ	ASN A	. 10	21.504	34.217	42.288	1.00 22.91	A
25	MOTA	4992	CG	ASN A	10	21.505	33.369	43.546	1.00 22.98	A

••	ATOM	4993	OD1	ASN A	10	21.877	32.191	43.508	1.00 22.82	A
· .	ATOM	4994	ND2	ASN A	10	21.091	33.957	44.666	1.00 23.07	A
	АТОМ	4995	С	asn a	10	19.674	32.817	41.345	1.00 22.64	A
	АТОМ	4996	0	ASN A	10	18.942	33.272	42.225	1.00 22.44	A
5	ATOM	4997	N	MET A	11	19.340	31.785	40.576	1.00 22.50	A
: -	ATOM	4998	CA	MET A	11	18.080	31.070	40.723	1.00 22.24	A
;	ATOM	4999	СВ	MET A	11	16.895	31.982	40.360	1.00 23.52	A
٠.	ATOM	5000	CG	MET A	11	17.007	32.727	39.047	1.00 24.37	A
	ATOM	5001	SD	MET A	11	15.802	34.129	38.850	1.00 26.46	A
10	ATOM	5002	CE	MET A	11	16.836	35.517	39.396	1.00 25.81	A
1	ATOM	5003	С	MET A	11	18.090	29.814	39.857	1.00 21.50	A
	ATOM	5004	0	MET A	11	18.967	29.645	39.006	1.00 21.28	A
	ATOM	5005	N	ARG A	12	17.141	28.916	40.107	1.00 20.53	A
	ATOM	5006	CA	ARG A	12	17.043	27.684	39.339	1.00 19.59	A
15	МОТА	5007	СВ	ARG A	12	15.934	26.791	39.911	1.00 19.37	A
	ATOM	5008	CG	ARG A	12	16.161	26.371	41.367	1.00 19.34	A
	^ ATOM	5009	CD	ARG A	12	15.131	25.327	41.823	1.00 18.54	A
	MOTA	5010	NE	ARG A	12	13.767	25.844	41.732	1.00 18.63	Α
: ;	MOTA	5011	CZ	ARG A	12	13.276	26.789	42.524	1.00 18.61	A
20	ATOM	5012	NH1	ARG A	12	14.038	27.316	43.477	1.00 18.60	A
	ATOM	5013	NH2	ARG A	12	12.033	27.219	42.354	1.00 18.16	A
	ATOM	5014	С	ARG A	12	16.720	28.094	37.909	1.00 19.15	A
	ATOM	5015	0	ARG A	12	17.536	27.922	37.003	1.00 18.76	Α
'	ATOM	5016	N	GLY A	13	15.531	28.659	37.729	1.00 18.65	A
25	MOTA	5017	CA	GLY A	13	15.102	29.119	36.421	1.00 18.28	A

.; ·:.

CA 02466264 2004-05-05

	•	MOTA	5018	С	GLY A	13	15.414	28.194	35.262	1.00 18.14	A
		ATOM	5019	0	GLY A	13	15.277	26.972	35.366	1.00 17.63	A
		ATOM	5020	N	ARG A	14	15.863	28.793	34.162	1.00 17.96	A
٠	•	ATOM	5021	CA	ARG A	14	16.177	28.069	32.933	1.00 18.29	A
5		ATOM	5022	СВ	ARG A	14	16.047	29.022	31.738	1.00 18.89	A
٠	:	ATOM	5023	CG	ARG A	14	14.666	29.644	31.606	1.00 19.92	A
,		ATOM	5024	CD	ARG A	14	14.549	30.514	30.365	1.00 21.37	A
		ATOM	5025	NE	ARG A	14	13.164	30.648	29.917	1.00 22.61	A
		ATOM	5026	CZ	ARG A	14	12.361	31.673	30.191	1.00 23.60	A
10		ATOM	5027	NH1	ARG A	14	11.110	31.677	29.727	1.00 24.26	A
		ATOM	5028	NH2	ARG A	14	12.799	32.701	30.906	1.00 23.64	A
		ATOM	5029	С	ARG A	14	17.552	27.412	32.912	1.00 18.18	A
	•	ATOM	5030	0	ARG A	14	17.885	26.703	31.970	1.00 18.06	A
	v,	ATOM	5031	N	ALA A	15	18.355	27.634	33.943	1.00 18.06	A
15		ATOM	5032	CA	ALA A	15	19.680	27.027	33.964	1.00 18.18	A
	·.'	MOTA	5033	СВ	ALA A	15	20.689	27.991	34.579	1.00 18.24	A
		ATOM	5034	c .	ALA A	15	19.694	25.710	34.735	1.00 18.01	A
	· '.	ATOM	5035	0	ALA A	15	20.576	24.875	34.541	1.00 17.87	A
٠.		ATOM	5036	N	GLU A	16	18.712	25.520	35.607	1.00 18.14	A
20	· ::::	ATOM	5037	CA	GLU A	16	18.671	24.313	36.426	1.00 17.94	A
	;: <u>*</u>	ATOM	5038	СВ	GLU A	16	17.412	24.314	37.295	1.00 18.23	A
	4	ATOM	5039	CG	GLU A	16	17.518	23.451	38.545	1.00 18.77	A
•		ATOM	5040	CD	GLU A	16	18.639	23.897	39.478	1.00 19.23	A
		ATOM	5041	OE1	GLU A	16	19.109	25.046	39.354	1.00 19.68	A
25	٠	ATOM	5042	OE2	GLU A	16	19.043	23.099	40.349	1.00 19.82	A

	ATOM	5043	С	GLU	A	16	18.774	22.991	35.653	1.00 17.71	A
	ATOM	5044	0	GLU	A	16	19.443	22.063	36.102	1.00 17.63	A
	АТОМ	5045	N	ILE	A	17	18.124	22.900	34.497	1.00 17.52	A
	ATOM	5046	CA	ILE .	Α.	17	18.176	21.667	33.715	1.00 17.48	A
5 .	АТОМ	5047	СВ	ILE	A	17	17.312	21.776	32.436	1.00 17.22	A
	ATOM	5048	CG2	ILE .	A	17	17.790	22.941	31.585	1.00 17.01	A
	АТОМ	5049	CG1	ILE .	A	17	17.366	20.462	31.652	1.00 17.08	A
	ATOM	5050	CD1	ILE .	A	17	16.797	19.262	32.406	1.00 17.66	A
	АТОМ	5051	С	ILE .	A	17	19.611	21.316	33.330	1.00 17.59	A
10	АТОМ	5052	0	ILE .	A	17	19.977	20.143	33.255	1.00 17.72	A
	ATOM	5242	N	TRP	A	39	24.145	42.736	35.174	1.00 42.17	A
	АТОМ	5243	CA	TRP	A	39	23.529	42.160	33.983	1.00 41.90	A
	АТОМ	5244	СВ	TRP	A	39	22.062	41.812	34.261	1.00 41.67	A
	АТОМ	5245	CG	TRP	A	39	21.310	41.341	33.047	1.00.41.34	A
15	ATOM	5246	CD2	TRP	A	39	21.735	40.353	32.097	1.00 41.24	A
· :	ATOM	5247	CE2	TRP	A	39	20.708	40.233	31.133	1.00 41.24	A
	ATOM	5248	CE3	TRP	A	39	22.881	39.559	31.967	1.00 41.17	A
	ATOM	5249	CD1	TRP	A	39	20.082	41.765	32.632	1.00 41.33	A
	ATOM	5250	NE1	TRP	A	39	19.713	41.106	31.484	1.00 41.21	A
20	ATOM	5251	CZ2	TRP	A	39	20.794	39.348	30.051	1.00 41.18	A
	MOTA	5252	CZ3	TRP	A	39	22.967	38.678	30.891	1.00 41.18	A
	MOTA	5253	СН2	TRP	A	39	21.927	38.582	29.947	1.00 41.22	A
•	ATOM	5254	С	TRP	A	39	23.610	43.095	32.774	1.00 41.82	A
	MOTA	5255	0	TRP	A	39	23.990	42.678	31.681	1.00 41.83	A
25	ATOM	5256	N	PRO	A	40	23.253	44.376	32.956	1.00 41.74	A

146

	ATOM 5	257 CD	PRO A	.40	22.790	45.032	34.194	1.00	41.72	A
	ATOM 5	258 CA	PRO A	40	23.299	45.335	31.850	1.00	41.61	A
٠.	ATOM. 5	259 СВ	PRO A	40	23.085	46.672	32.553	1.00 4	41.71	A
•	ATOM 5	260 CG	PRO A	40	22.158	46.304	33.670	1.00 4	41.78	A
5 -	ATOM 5	261 C	PRO A	40	24.598	45.298	31.047	1.00	41.46	A
	ATOM 5	262 0	PRO A	40	24.571	45.278	29.818	1.00 4	11.46	A
	ATOM 5	263 N	GLU A	41	25.731	45.284	31.742	1.00	41.23	A
	ATOM 5	264 CA	GLU A	41	27.030	45.262	31.079	1.00	41.03	A
-	ATOM 5	265 CB	GLU A	41	28.147	45.542	32.088	1.00	41.50	A
10	ATOM 5	266 CG	GLU A	41	27.983	46.835	32.868	1.00	42.28	Α
	ATOM 5	267 CD	GLU A	41	26.844	46.776	33.870	1.00	42.66	A
	ATOM 5	268 OE1	GLU A	41	26.899	45.926	34.783	1.00	42.97	Α
	ATOM 5	269 OE2	GLU A	41	25.895	47.579	33.746	1.00	43.13	Α
	ATOM 5	270 C	GLU A	41	27.301	43.929	30.391	1.00	40.57	A
15	ATOM 5	271 0	GLU A	41	27.795	43.889	29.265	1.00	40.56	A
	ATOM 5	272 N	ILE A	42	26.977	42.839	31.078	1.00	39.94	A
•	ATOM 5	273 CA	ILE A	42	27.193	41.499	30.547	1.00	39.34	A
• •	ATOM 5	274 CB	ILE A	42	26.899	40.434	31.624	1.00	39.29	A
	ATOM 5	275 CG2	ILE A	42	27.163	39.043	31.071	1.00	39.27	A
20.	ATOM 5	276 CG1	ILE A	42	27.776	40.691	32.851	1.00	39.26	A
		277 CD1	ILE A	42	27.446	39.819	34.036	1.00	39.48	A
-: :	ATOM 5	5278 C	ILE A	42	26.316	41.223	29.332	1.00	38.87	A
	ATOM 5	279 0	ILE A	42	26.780	40.678	28.331	1.00	38.77	A
	ATOM 5	280 N	LYS A	43	25.047	41.605	29.434	1.00	38.49	A
25	ATOM 5	281 CA	LYS A	43	24.077	41.404	28.363	1.00	38.12	A

0, - ...

\$ 30

CA 02466264 2004-05-05

	ATOM	5282	СВ	LYS A	A	43	22.759	42.086	28.722	1.00	38.17	A
	ATOM	5283	CG	LYS 2	A	43	21.711	41.995	27.630	1.00	38.16	A
	ATOM	5284	CD	LYS A	A	43	20.457	42.760	28.004	1.00	38.30	A
	ATOM	5285	CE	LYS A	A	43	19.412	42.658	26.909	1.00	38.35	A
5	ATOM	5286	NZ	LYS 2	A	43	18.211	43.462	27.231	1.00	38.78	A
	MOTA	5287	С	LYS A	A	43	24.555	41.940	27.021	1.00	37.94	A
	ATOM	5288	0	LYS A	A	43	24.300	41.345	25.973	1.00	37.89	A
	ATOM	5328	N	GLY A	A	49	22.030	38.588	23.868	1.00	27.57	A
	ATOM	5329	CA	GLY A	A	49	21.714	39.214	25.141	1.00	26.68	A
10	ATOM	5330	С	GLY A	A	49	20.783	38.447	26.055	1.00	26.11	A
, ~ #	ATOM	5331	0	GLY A	A	49	19.969	39.047	26.759	1.00	26.15	A
	ATOM	5332	N	LYS .	A	50	20.902	37.124	26.055	1.00	25.32	A
	АТОМ	5333	CA	LYS A	A	50	20.058	36.286	26.899	1.00	24.83	A
	ATOM	5334	СВ	LYS A	A	50	18.987	35.584	26.055	1.00	25.06	A
15	ATOM	5335	CG	LYS A	A	50	18.013	36.530	25.374	1.00	25.51	A
	ATOM	5336	CD	LYS .	A	50	17.150	37.251	26.398	1.00	25.84	A
	ATOM	5337	CE	LYS .	A	50	16.263	38.306	25.752	1.00	26.47	A
	ATOM	5338	NZ	LYS .	A	50	15.382	37.745	24.694	1.00	26.77	Α
	ATOM	5339	С	LYS .	A	50	20.879	35.240	27.634	1.00	24.41	A
20	ATOM	·5340	0	LYS .	A	50	21.944	34.833	27.172	1.00	24.16	A
	ATOM	5341	N	ILE .	A	51	20.383	34.825	28.794	1.00	23.98	A
	ATOM	5342	CA	ILE .	A	51	21.045	33.800	29.586	1.00	23.81	A
	ATOM	5343	СВ	ILE .	Ą	51	21.654	34.373	30.889	1.00	23.59	Α
	ATOM	5344	CG2	ILE .	A	51	22.946	35.101	30.569	1.00	23.66	A
25	АТОМ	5345	CG1	ILE .	A	51	20.647	35.286	31.588	1.00	23.56	Α

	*;	АТОМ	5346	CD1	ILE .	A	51	21.166	35.889	32.865	1.00	24.20	A
	:	MOTA	5347	С	ILE .	A	51	20.012	32.737	29.925	1.00	23.69	A
٠.		ATOM	5348	0	ILE	A	51	18.812	32.984	29.833	1.00	23.80	A
		ATOM	5349	N	PRO .	A	52	20.461	31.545	30.341	1.00	23.80	A
5	· ::	ATOM	5350	CD	PRO	A	52	19.562	30.408	30.617	1.00	23.80	A
		MOTA	5351	CA	PRO .	A	52	21.862	31.148	30.517	1.00	23.83	A
		ATOM	5352	СВ	PRO	Α	52	21.744	29.860	31.315	1.00	23.75	A
·		ATÖM	5353	CG	PRO	A	52	20.522	29.241	30.696	1.00	23.82	A
		ATOM	5354	С	PRO .	A	52	22.657	30.935	29.234	1.00	24.05	A
10		ATOM	5355	0	PRO	A	52	22.107	30.869	28.132	1.00	23.56	A
		ATOM	5356	N	ILE	A	53	23.969	30.831	29.405	1.00	24.37	A
		ATOM	5357	CA	ILE .	A	53	24.883	30.580	28.305	1.00	24.89	A
		ATOM	5358	СВ	ILE	A	53	25.598	31.865	27.845	1.00	25.02	A
,	,	ATOM	5359	CG2	ILE	A	53	24.582	32.851	27.265	1.00	25.04	A
15		ATOM	5360	CG1	ILE .	A	53	26.353	32.488	29.018	1.00	25.09	A
	:	ATOM	5361	CD1	ILE .	A	53	27.139	33.725	28.651	1.00	25.71	A
		ATOM	5362	С	ILE	A	53	25.920	29.600	28.830	1.00	25.23	A
-		ATOM	5363	0	ILE .	A	53	26.251	29.620	30.017	1.00	25.22	A
*		ATOM	5423	N F	HIS A	. 6	52	24.143	29.233	23.623	1.00 2	2.53	A
20		ATOM	5424	CA	HIS.	A	62	22.973	29.778	24.304	1.00	21.30	A
		ATOM	5425	СВ	HIS	A	62	22.641	31.181	23.777	1.00	21.36	A
14.	'7	ATOM	5426	CG	HIS	A	62	22.241	31.212	22.334	1.00	21.08	A
٠.		АТОМ	5427	CD2	HIS	A	62	21.074	31.557	21.739	1.00	20.76	A
		ATOM	5428	ND1	HIS	A	62	23.112	30.897	21.314	1.00	21.06	A
25	;	MOTA	5429	CE1	HIS	A	62	22.502	31.050	20.152	1.00	20.77	A

149

		ATOM	5430	NE2	HIS A	62	21.264	31.449	20.382	1.00 21.11	A
	·	ATOM	5431	С	HIS A	62	21.754	28.875	24.145	1.00 20.50	A
		АТОМ	5432	0	HIS A	62	21.812	27.856	23.457	1.00 20.45	A
		ATOM	5433	N	GLN A	63	20.653	29.279	24.776	1.00 19.38	A
.5	.;	ATOM	5434	CA	GLN A	63	19.395	28.531	24.759	1.00 18.32	A
		MOTA	5435	СВ	GLN A	63	19.006	28.135	23.327	1.00 18.21	A
.*	٠	ATOM	5436	CG	GLN A	63	18.351	29.257	22.523	1.00 17.55	A
	:	ATOM	5437	CD	GLN A	63	17.052	29.748	23.159	1.00 17.51	A
		ATOM	5438	OE1	GLN A	63	16.447	29.061	23.990	1.00 16.96	A
10	· :·	ATOM	5439	NE2	GLN A	63	16.614	30.932	22.760	1.00 16.64	A
	• • •	ATOM	5440	С	GLN A	63	19.548	27.295	25.640	1.00 17.51	A
	·;	ATOM	5441	0	GLN A	63	20.204	26.326	25.262	1.00 17.52	A
·		АТОМ	5442	N	SER A	64	18.922	27.343	26.810	1.00 16.62	A
•		АТОМ	5443	CA	SER A	64	19.005	26.266	27.787	1.00 16.23	A
15	·	АТОМ	5444	СВ	SER A	64	18.109	26.580	28.994	1.00 15.75	A
		ATOM	5445	OG	SER A	64	16.739	26.636	28.636	1.00 16.02	A
	. *	АТОЙ	5446	С	SER A	64	18.690	24.871	27.264	1.00 16.04	A
1		ATOM	5447	0	SER A	64	19.416	23.927	27.561	1.00 15.93	A
		ATOM	5448	N .	LEU A	65	17.623	24.736	26.484	1.00 15.93	A
2.0,	·•.	ATOM	5449	CA	LEU A	65	17.243	23.426	25.969	1.00 16.08	A
·; .		ATOM	5450	СВ	LEU A	4 65	15.781	23.445	25.509	1.00 16.21	A
		ATOM	5451	CG	LEU A	4 65	14.757	23.960	26.532	1.00 16.82	A
	:	ATOM	5452	CDI	L LEU A	65	13.348	23.839	25.954	1.00 17.04	A
	•									1.00 16.97	
25		ATOM	5454	С	LEU A	4 65	18.168	22.953	24.846	1.00 16.25	A

1.1.1 ×

25 C

		АТОМ	5455	0	LEU A	65	18.403	21.753	24.693	1.00 16.15	A
٠.	, / <u>†</u>	MOTA	5662	N	ASP A	93	9.463	20.540	25.416	1.00 15.24	A
	٠	MOTA	5663	CA	ASP A	93	8.886	21.742	24.818	1.00 15.43	A
	: .:	MOTA	5664	СВ	ASP A	93	8.800	21.598	23.289	1.00 16.54	A
5	• :	MOTA	5665	CG	ASP A	93	10.083	22.013	22.578	1.00 17.29	A
,		АТОМ	5666	OD1	ASP A	93	10.162	21.833	21.338	1.00 18.80	A
	•	АТОМ	5667	OD2	ASP A	93	11.014	22.527	23.240	1.00 17.97	A
	٠.	ATOM	5668	C Z	ASP A	93	7.496	22.053	25.388	1.00 15.31	A
	·	MOTA	5669	0 2	ASP A	93	7.138	23.220	25.568	1.00 15.25	A
10		ATOM	5670	N	THR A	94	6.707	21.016	25.658	1.00 15.02	A
	:	ATOM	5671	CA	THR A	94	5.371	21.207	26.224	1.00 15.27	A
•	;	ATOM	5672	CB	THR A	94	4.640	19.861	26.399	1.00 15.32	A
	. i.	ATOM	5673	OG1	THR A	94	4.193	19.397	25.118	1.00 16.10	A
	• ;	АТОМ	5674	CG2	THR A	94	3.432	20.011	27.323	1.00 15.76	A
15	:	ATOM	5675	С	THR A	94	5.483	21.895	27.584	1.00 15.32	A
		ATOM	5676	0	THR A	94	4.756	22.843	27.878	1.00 14.89	A
	₹.	ATOM	5677	N	LEU A	A 95	6.406	21.408	28.407	1.00 15.54	A
		ATOM	5678	CA	LEU A	A 95	6.615	21.982	29.732	1.00 16.01	A
		ATOM	5679	СВ	LEU A	A 95	7.593	21.115	30.535	1.00 16.19	A
20	:	ATOM	5680	CG	LEU A	A 95	7.089	19.738	30.998	1.00 16.12	A
•	is. De	ATOM	5681	CD1	LEU A	A 95	8.230	18.966	31.648	1.00 16.47	A
		ATOM	5682	CD2	LEU	A 95	5.934	19.903	31.975	1.00 16.46	A
	;	ATOM	1 5683	С	LEU .	A , 95	7.167	23.402	29.590	1.00 16.45	A
;	••	ATOM	1 5684	0	LEU .	A 95	6.744	24.320	30.296	1.00 16.19	A
25		ATON	1 5685	N	ASP .	A 96	8.112	23.576	28.667	1.00 16.83	A

	ATOM	5686	CA	ASP A	96	8.718	24.886	28.435	1.00 17.42	A
	ATOM	5687	СВ	ASP A	96	9.834	24.776	27.388	1.00 17.70	A
	ATOM	5688	CG	ASP A	96	10.761	25.977	27.397	1.00 18.24	A
	MOTA	5689	OD1	ASP A	96	11.259	26.318	28.496	1.00 19.16	A
5 .	ATOM	5690	OD2	ASP A	96	11.004	26.566	26.314	1.00 17.96	A
:	МОТА	5691	c z	ASP A	96	7.670	25.906	27.982	1.00 17.76	Α
. (ATOM	5692	0 2	ASP A	96	7.707	27.074	28.383	1.00 17.65	A
	ATOM	5693	N	ASP A	97	6.741	25.463	27.140	1.00 18.16	A
	ATOM	5694	CA	ASP A	97	5.672	26.328	26.642	1.00 18.58	A
10	ATOM	5695	СВ	ASP A	97	4.759	25.559	25.681	1.00 18.77	A
·	ATOM	5696	CG	ASP A	97	5.388	25.333	24.313	1.00 19.31	A
	ATOM	5697	OD1	ASP A	97	4.838	24.515	23.539	1.00 19.60	A
28.	MOTA	5698	OD2	ASP A	97	6.420	25.973	24.007	1.00 19.36	A
	ATOM	5699	С	ASP A	97	4.820	26.880	27.786	1.00 18.77	A
15	ATOM	5700	0	ASP A	97	4.480	28.063	27.799	1.00 18.43	A
	ATOM	5701	N	PHE A	98	4.473	26.017	28.738	1.00 18.98	A
	ATOM	5702	CA	PHE A	98	3.644	26.427	29.865	1.00 19.59	A
	ATOM	5703	СВ	PHE A	98	3.170	25.208	30.662	1.00 19.85	A
	ATOM	5704	CG	PHE A	. 98	2.225	25.554	31.787	1.00 20.49	A
20	MOTA	5705	CD1	. PHE A	98	1.002	26.164	31.520	1.00 20.75	A
	ATOM	5706	CD2	PHE A	. 98	2.561	25.279	33.110	1.00 21.00	A
								32.557		
				-					1.00 20.81	
	ATOM	5709			-				1.00 21.25	
25	ATOM	5710	С	PHE A	98	4.382	27.373	30.798	1.00 19.70	A

152

		•								
	MOTA	5711	0	PHE A	98	3.849	28.407	31.193	1.00 19.84	A
* .	АТОМ	5712	N	MET A	99	5.610	27.010	31.148	1.00 19.93	A
į.	АТОМ	5713	CA	MET A	99	6.422	27.834	32.038	1.00 20.62	A
	ATOM	5714	СВ	MET A	99	7.759	27.150	32.323	1.00 20.56	A
5	АТОМ	5715	CG	MET A	99	7.642	25.794	32.999	1.00 20.77	A
	ATOM	5716	SD	MET A	99	6.765	25.897	34.599	1.00 20.94	A
:	ATOM	5717	CE	MET A	99	7.971	26.856	35.571	1.00 21.40	A
	ATOM	5718	С	MET A	99	6.684	29.200	31.418	1.00 21.19	A
,t	ATOM	5719	0	MET A	99	6.770	30.205	32.123	1.00 20.97	A
10	ATOM	5720	N	SER A 10	00	6.817	29.232	30.094	1.00 21.87	A
•	ATOM	5721	CA	SER A 1	100	7.088	30.480	29.391	1.00 22.86	A
	ATOM	5722	СВ	SER A 1	100	7.626	30.190	27.986	1.00 22.52	A
	АТОМ	5723	OG	SER A	L00	8.932	29.641	28.064	1.00 23.15	A
	ATOM	5724	С	SER A 10	00	5.874	31.400	29.310	1.00 23.42	A
15	АТОМ	5725	0	SER A 1	00	5.999	32.570	28.944	1.00 23.43	A
	АТОМ	5726	N	CYS A	01	4.705	30.871	29.656	1.00 24.43	A
	ATOM	5727	CA	CYS A 10)1	3.470	31.649	29.642	1.00 25.43	A
	АТОМ	5728	СВ	CYS A	L01	2.246	30.732	29.736	1.00 25.71	A
	ATOM	5729	SG	CYS A 1	L01	1.749	29.932	28.189	1.00 27.17	A
20	ATOM	5730	С	CYS A 1	L01	3.427	32.631	30.806	1.00 25.95	A
	ТОМ	5731	0	CYS A 1	L01	2.818	33.695	30.704	1.00 25.87	A
	ATOM	5732	N	PHE A 1	L02	4.060	32.272	31.919	1.00 26.64	A
	ATOM	5733	CA	PHE A	L02	4.055	33.150	33.084	1.00 27.61	A
	ATOM	5734	СВ	PHE A 1	L02	4.567	32.416	34.328	1.00 27.12	A
25	АТОМ	5735	CG	PHE A 1	102	3.679	31.293	34.780	1.00 26.71	A

1._3 of {.

2 _3 C A

...3.11

CA 02466264 2004-05-05

:	ATOM	5736	CD1	PHE	Α	102	3.627	30.100	34.067	1.00	26.53	A
	ATOM	5737	CD2	PHE	Α	102	2.904	31.422	35.930	1.00	26.49	A
	. ATOM	5738	CE1	PHE	Α	102	2.814	29.047	34.495	1.00	26.51	A
•	ATOM	5739	CE2	PHE	Α	102	2.089	30.378	36.366	1.00	26.35	A
5	MOTA	5740	cz	PHE	A	1 02	2.044	29.187	35.648	1.00	26.32	A
	ATOM	5741	С	PHE	A	102	4.896	34.401	32.862	1.00	28.66	A
	ATOM	5742	0	PHE	Α	102	6.020	34.328	32.366	1.00	28.59	A
	ATOM	5743	N	PRO	Α	i 103	4.353	35.572	33.228	1.00	29.73	A
	ATOM	5744	CD	PRO	A	103	2.973	35.797	33.697	1.00	29.81	A
10	MOTA	5745	CA	PRO	A	į03	5.059	36.846	33.070	1.00	30.81	A
	MOTA	5746	СВ	PRO	Α	103	3.927	37.865	33.132	1.00	30.54	A
	MOTA	5747	CG	PRO	A	103	3.012	37.251	34.137	1.00	30.22	A
	MOTA	5748	С	PRO	Α	103	6.087	37.050	34.183	1.00	31.87	A
	MOTA	5749	0	PRO	Α	103	5.896	37.883	35.069	1.00	31.89	A
15	АТОМ	5750	N	TRP	A	104	7.173	36.284	34.134	1.00	33.14	A
;·	ATOM	5751	CA	TRP	A	104	8.218	36.373	35.147	1.00	34.59	A
	. ATOM	5752	СВ	TRP	A	104	9.315	35.340	34.874	1.00	34.65	A
	ATOM	5753	CG	TRP	A	104	8.796	33.949	34.643	1.00	34.60	A
	ATOM	5754	CD2	TRP	A	104	8.342	33.023	35.639	1.00	34.60	A
20 -	MOTA	5755	CE2	TRP	A	104	7.930	31.852	34.965	1.00	34.60	A
	ATOM	5756	CE3	TRP	A	104	8.243	33.068	37.038	1.00	34.59	A
÷.	ATOM	5757	CD1	TRP	A	104	8.644	33.320	33.440	1.00	34.55	A
•	ATOM	5758	NE1	TRP	A	104	8.126	32.060	33.624	1.00	34.48	A
٠.		5759	CZ2	TRP	A	104	7.427	30.736	35.641	1.00	34.52	A
25	ATOM	5760	cz3	TRP	Α	104	7.743	31.959	37.709	1.00	34.54	Α

: :	MOTA	5761	CH2	TRP A	104	7.341	30.809	37.009	1.00	34.78	A
;	MOTA	5762	С	TRP A	104	8.837	37.765	35.207	1.00	35.65	A
	АТОМ	5763	0	TRP A	104	9.139	38.270	36.286	1.00	35.74	A
:	ATOM	5764	N	ALA A 1	105	9.024	38.379	34.044	1.00	37.02	A
5.	ATOM	5765	CA	ALA A 1	105	9.612	39.712	33.960	1.00	38.45	A
	ATOM	5766	СВ	ALA A	105	10.630	39.762	32.826	1.00	38.40	A
· · · · · ·	ATOM	5767	C i	ALA A 1	05	8.541	40.776	33.743	1.00	39.42	A
	ATOM	5768	0 1	ALA A i	05	8.562	41.497	32.744	1.00	39.67	A
٠.	ATOM	5769	N	GLU A 1	106	7.604	40.871	34.677	1.00	40.55	A
10	MOTA	5770	CA	GLU A	106	6.536	41.854	34.566	1.00	41.69	A
	ATOM	5771	СВ	GLU A 1	106	5.178	41.152	34.484	1.00	41.79	A
	АТОМ	5772	CG	GLU A 1	106	3.996	42.101	34.385	1.00	42.04	A
•	ATOM	5773	CD	GLU A 1	106	4.119	43.062	33.219	1,00	42.17	A
•	ATOM	5774	OE1	GLU A 1	L06	4.135	42.600	32.059	1.00	42.24	A
15	ATOM	5775	OE2	GLU A 1	L06	4.207	44.282	33.461	1.00	42.30	A
	ATOM	5776	С	GLU A 1	L06	6.549	42.817	35.745	1.00	42.38	A
	ATOM	5777	0	GLU A 1	L06	6.252	42.433	36.877	1.00	42.50	A
	ATOM	5778	N	LYS A 1	L 0 7	6.902	44.071	35.471	1.00	43.32	A
	ATOM	5779	CA	LYS A 1	L07	6.949	45.105	36.498	1.00	44.17	A
20	ATOM	5780	СВ	LYS A 1	L07	7.501	46.408	35.916	1.00	44.38	A
	ATOM	5781	CG	LYS A 1	L07	9.001	46.575	36.067	1.00	44.83	A
	ATOM	5782	CD	LYS A 1	L07	9.773	45.472	35.376	1.00	45.12	A
. :	ATOM	5783	CE	LYS A 1	.07	11.261	45.611	35.654	1.00	45.28	A
	ATOM	5784	NZ	LYS A 1	.07	11.534	45.551	37.119	1.00	45.38	A
25	ATOM	5785	С	LYS A 1	.07	5.573	45.364	37.100	1.00	44.67	A

155

			АТОМ	5786	0	LYS	Ą	107	5.431	45.477	38.318	1.00	44.70	Α
		:	ATOM	5787	N	LYS	Α	108	4.563	45.460	36.240	1.00	45.16	A
	•	7	том	5788	CA	LYS	A	108	3.197	45.701	36.688	1.00	45.71	A
		·	ATOM	5789	СВ	LYS	A	108	2.268	45.869	35.483	1.00	45.85	A
	5	•	MOTA	5790	CG	LYS	Α	108	2.686	46.978	34.531	1.00	46.17	A
			ATOM	5791	CD	LYS	Α	108	1.639	47.224	33.455	1.00	46.42	Α
	•		ATOM	5792	CE	LYS	A	108	1.458	46.017	32.549	1.00	46.68	A
			ATOM	5793	NZ	LYS	Α	108	0.371	46.242	31.554	1.00	46.81	A
		• (ATOM	5794	С	LYS	Α	108	2.731	44.533	37.551	1.00	46.00	A
	10	,. ,	MOTA	5795	0	LYS	Α	108	2.296	43.501	37.038	1.00	45.89	A
	1. X	•	ATOM	5796	N	GLN	Α	109	2.825	44.704	38.865	1.00	46.38	A
:	;		ATOM	5797	CA	GLN	A	109	2.438	43.660	39.809	1.00	46.76	A
		į.	MOTA	5798	СВ	GLN	A	109	2.710	44.125	41.242	1.00	47.02	A
			АТОМ	5799	CG	GLN	A	109	4.150	44.545	41.500	1.00	47.38	A
	15		MOTA	5800	CD	GLN	A	109	5.148	43.428	41.243	1.00	47.66	A
,		·	MOTA	5801	OE1	GLN	Α	109	5.062	42.353	41.842	1.00	47.81	A
		i	MOTA	5802	NE2	GLN	A	109	6.105	43.679	40.350	1.00	47.68	A
	*, *.	. 1	ATOM	5803	С	GLN	A	109	0.977	43.252	39.674	1.00	46.90	A
		Ì	ATOM	5804	0	GLN	Α	109	0.627	42.091	39.890	1.00	46.97	Α
	2.0		MOTA	5805	N	ASP	Α	110	0.127	44.209	39.315	1.00	47.00	Α
		. 1	ATOM	5806	CA	ASP	A	110	-1.301	43.948	39.159	1.00	47.06	Α
		. 1	MOTA	5807	СВ	ASP	A _.	110	-2.046	45.251	38.853	1.00	47.31	A
		1	MOTA	5808	CG	ASP	A	110	-1.945	46.256	39.982	1.00	47.59	A
		2	MOTA	5809	OD1	ASP	A	110	-2.246	45.881	41.136	1.00	47.70	A
	25	. 1	MOTA	5810	OD2	ASP	Α	110	-1.571	47.419	39.717	1.00	47.82	Α

1.458

9 11 1

211

2.47

CA 02466264 2004-05-05

	MOTA	5811	C A	SP A 11	10	-1.584	42.926	38.063	1.00	46.90	A
T.	АТОМ	5812	0 A	SP A 1,	LO	-2.203	41.891	38.314	1.00	46.87	A
	АТОМ	5813	n v	AL A 1	11	-1.127	43.220	36.850	1.00	46.72	A
	ATOM	5814	CA '	VAL A	111	-1.338	42.326	35.719	1.00	46.57	A
· 5	ATOM	5815	СВ	VAL A	111	-0.918	42.999	34.391	1.00	46.71	A
, ^ , ,	ATOM	5816	CG1	VAL A	111	0.588	43.192	34.357	1.00	46.96	A
	ATOM	5817	CG2	VAL A	111	-1.378	42.160	33.213	1.00	46.81	A
•	ATOM	5818	c v	AL A 1	11	-0.550	41.029	35.894	1.00	46.33	A
	ATOM	5819	o v	AL A 1	11	-0.967	39.970	35.426	1.00	46.33	A
10	ATOM	5820	N	LYS A	112	0.588	41.117	36.573	1.00	45.98	A
	ATOM	5821	CA	LYS A.	112	1.427	39.949	36.810	1.00	45.58	A
	АТОМ	5822	СВ	LYS A	112	2.772	40.383	37.397	1.00	45.70	A
	АТОМ	5823	CG	LYS A	112	3.753	39.245	37.630	1.00	45.79	A
	ATOM	5824	CD	LYS A	112	5.070	39.765	38.187	1.00	45.95	A
15	MOTA	5825	CE	LYS A	112	6.087	38.646	38.340	1.00	45.99	A
	ATOM	5826	NZ	LYS A	112	5.582	37.571	39.237	1.00	46.23	Α
	MOTA	5827	С	LYS A	112	0.732	38.985	37.768	1.00	45.31	A
:	. ATOM	5828	0	LYS A	112	0.597	37.793	37.481	1.00	45.18	A
•	ATOM	5829	N	GLU A	113	0.290	39.515	38.904	1.00	44.80	A
20 ,	ATOM	5830	CA	GLU A	113	-0.390	38.718	39.920	1.00	44.37	A
	АТОМ	5831	СВ	GLU A	113	-0.817	39.615	41.089	1.00	44.56	A
•	ATOM	5832	CG	GLU A	113	-1.246	38.872	42.346	1.00	44.72	A
								43.135			A
	ATOM	5834	OE1	GLU A	113	0.653	37.451	42.611	1.00	44.74	A
. 25	ATOM	5835	OE2	GLU Å	113	0.138	38.780	44.281	1.00	44.95	A

		. '	ATOM	5836	С	GLU	Ą	113	-1.620	38.044	39.316	1.00	43.91	A
•			ATOM	5837	0	GLU	A	113	-1.907	36.878	39.594	1.00	43.88	A
		÷	ATOM	5838	N	GLN	Α	114	-2.343	38.789	38.486	1.00	43.23	A
	•		ATOM	5839	CA	GLN	Α	114	-3.545	38.276	37.843	1.00	42.55	A
	5		АТОМ	5840	СВ	GLN	A	114	-4.243	39.392	37.063	1.00	43.01	A
	•		ATOM	5841	CG	GLN	A	114	-5.502	38.952	36.330	1.00	43.48	A
	•		ATOM	5842	CD.	GLN	A	114	-6.660	38.643	37.266	1.00	43.87	A
			ATOM	5843	OE1	GLN	A	114	-7.716	38.182	36.831	1.00	44.27	A
	:	٠	ATOM	5844	NE2	·GLN	A	114	-6.469	38.902	38.556	1.00	44.00	A
	10		ATOM	5845	С	GLN	A	114	-3.241	37.115	36.902	1.00	41.82	A
		•	ATOM	5846	0	GLN	Α	114	-3.862	36.058	36.993	1.00	41.68	A
			ATOM	5847	N	MET	A	115	-2.287	37.318	35.999	1.00	40.95	A
		,	ATOM	5848	CA	MET	Α	115	-1.914	36.286	35.039	1.00	40.08	A
	• •		ATOM	5849	СВ	MET	A	115	-0.823	36.806	34.096	1.00	40.62	A
	15	:	ATOM	5850	CG	MET	A	115	-1.283	37.947	33.197	1.00	41.32	A
			ATOM	5851	SD	MET	A	115	-0.084	38.396	31.912	1.00	42.25	A
	· ·	•	ATOM	5852	CE	MET	Α	115	0.892	39.641	32.771	1.00	42.06	A
			ATOM	5853	С	MET	A	115	-1.451	34.995	35.711	1.00	39.18	A
•			ATOM	5854	0	MET	A	115	-1.750	33.899	35.233	1.00	38.94	A
	2.0		ATOM	5855	N	PHE	A	116	-0.723	35.120	36.817	1.00	38.04	A
			ATOM	5856	CA	PHE	Α	116	-0.246	33.943	37.535	1.00	37.08	A
		,	ATOM	5857	СВ	PHE	Α	116	0.632	34.347	38.725	1.00	36.65	A
	,		ATOM	5858	CG	PHE	A	116	2.104	34.250	38.453	1.00	36.16	A
	•.		ATOM	5859	CD1	PHE	Α	116	2.707	35.072	37.509	1.00	36.15	A
•	25		ATOM	5860	CD2	PHE	Α	116	2.887	33.323	39.130	1.00	36.09	A

158

., .											
•••		ATOM	5861	CE1	PHE A	116	4.070	34.970	37.241	1.00 36.00	A
•		ATOM	5862	CE2	PHE A	116	4.250	33.213	38.870	1.00 36.03	A
•		ATOM	5863	CZ	PHE A	116	4.841	34.038	37.923	1.00 36.03	A
		ATOM	5864	С	PHE A	116	-1.406	33.087	38.033	1.00 36.66	Α
Б		ATOM	5865	0	PHE A	116	-1.454	31.882	37.782	1.00 36.40	A
:	•	ATOM	6152	N	TYR A	152	13.399	17.626	33.588	1.00 17.13	A
		ATOM	6153	CA	TYR A	152	12.704	18.883	33.352	1.00 16.94	A
		АТОМ	6154	СВ	TYR A	152	12.549	19.144	31.854	1.00 17.23	A
	;	ATOM	6155	CG	TYR A	152	12.463	20.619	31.522	1.00 17.59	A
10		ATOM	6156	CD1	TYR A	152	13.414	21.519	32.010	1.00 17.83	A
		АТОМ	6157	CE1	TYR A	152	13.368	22.871	31.673	1.00 18.02	A
:		ATOM	6158	CD2	TYR A	152	11.459	21.111	30.693	1.00 17.66	A
		ATOM	6159	CE2	TYR A	152	11.407	22.460	30.349	1.00 17.94	A
		ATOM	6160	CZ	TYR A	152	12.363	23.331	30.837	1.00 18.06	A
1,5		ATOM	6161	ОН	TYR A	152	12.339	24.652	30.461	1.00 18.13	A
1.31		ATOM	6162	С	TYR A	152	11.342	18.931	34.031	1.00 17.03	A
		ATOM	6163	0	TYR A	152	10.893	19.996	34.459	1.00 16.79	A
ŝ		ATOM	6164	N	TRP A	153	10.684	17.780	34.127	1.00 16.68	A
,, :	,	ATOM	6165	CA	TRP A	153	9.391	17.714	34.782	1.00 16.70	A
20	•	ATOM	6166	СВ	TRP A	153	8.792	16.311	34.662	1.00 17.07	A
e !		ATOM	6167	CG	TRP A	153	7.822	16.001	35.761	1.00 18.05	A
·:		ATOM	6168	CD2	TRP A	153	6.615	16.708	36.066	1.00 18.42	A
		ATOM	6169	CE2	TRP A	153	6.049	16.095	37.206	1.00 18.78	A
	· · ·	ATOM	6170	CE3	TRP A	153	5.956	17.800	35.488	1.00 18.93	A
. 25		ATOM	6171	CD1	TRP A	1 53	7.936	15.014	36.699	1.00 18.52	Α

...2012

1.,260

. 35/1

. . 2.35

CA 02466264 2004-05-05

	ATOM	6172	NE1	TRP	A :	153	6.874	15.065	37.570	1.00	18.65	A
	ATOM	6173	CZ2	TRP	A :	153	4.852	16.540	37.781	1.00	18.98	A
Á	ATOM	6174	CZ3	TRP	A :	153	4.761	18.245	36.063	1.00	19.09	A
•	ATOM	6175	СН2	TRP	A :	153	4.225	17.613	37.198	1.00	18.95	A
'5	ATOM	6176	С	TRP	A :	153	9.578	18.055	36.253	1.00	16.19	A
·	ATOM	6177	0	TRP	A :	153	8.844	18.868	36.804	1.00	16.11	A
	ATOM	6178	N	GLU	A :	154	10.571	17.429	36.879	1.00	15.99	A
:	ATOM	6179	CA	GLU	A :	154	10.850	17.652	38.301	1.00	15.99	A
*.	MOTA	6180	СВ	GLU	A :	154	11.985	16.725	38.759	1.00	16.41	A
10	ATOM	6181	CG	GLU	A :	154	12.159	16.644	40.282	1.00	17.45	A
· ·:	ATOM	6182	CD	GLU	A :	154	12.954	17.795	40.864	1.00	17.87	A
	АТОМ	6183	OE1	GLU	A :	154	12.895	18.000	42.103	1.00	18.47	A
	ATOM	6184	OE2	GLU	A :	154	13.648	18.489	40.093	1.00	18.04	A
	ATOM	6185	С	GLU	A :	154	11.208	19.112	38.564	1.00	15.58	A
15	· ATOM	6186	0	GLU .	Α :	154	10.793	19.697	39.568	1.00	15.32	A
. :	ATOM	6187	N	ILE	A :	155	11.973	19.694	37.647	1.00	14.97	A
•	АТОМ	6188	CA	ILE	A :	155	12.391	21.088	37.747	1.00	14.96	A
	ATOM	6189	СВ	ILE	A :	155	13.460	21.401	36.665	1.00	14.64	A
	ATOM	6190	CG2	ILE	A :	155	13.621	22.906	36.479	1.00	14.51	A
20	ATOM	6191	CG1	ILE	A 1	155	14.779	20.722	37.054	1.00	14.76	A
	ATOM	6192	CD1	ILE .	A :	155	15.871	20.787	35.989	1.00	14.27	A
.3.	ATOM	6193	С	ILE	A :	155	11.207	22.044	37.609	1.00	15.18	A
	ATOM	6194	0	ILE .	A I	155	11.032	22.952	38.425	1.00	15.10	A
:	ATOM	6195	N	CYS .	Α :	156	10.394	21.840	36.574	1.00	15.13	A
25	ATOM	6196	CA	CYS	A :	156	9.225	22.688	36.351	1.00	15.67	Α

3. : :

CA 02466264 2004-05-05

•		ATOM	6197	CB	CYS	A	156	8.573	22.365	34.998	1.00	15.61	A
		ATOM	6198	SG	CYS	A	156	9.519	22.879	33.537	1.00	16.74	A
		ATOM	6199	С	CYS	A	156	8.175	22.557	37.462	1.00	15.81	A
•		ĄTOM	6200	0	CYS	A	156	7.612	23.558	37.904	1.00	15.91	A
. 5		ATOM	6201	N	SER	A	157	7.904	21.331	37.905	1.00	15.84	Α
٠		АТОМ	6202	CA	SER	A	157	6.908	21.113	38.954	1.00	16.04	A
		ATOM	6203	СВ	SER	A	157	6.614	19.614	39.117	1.00	15.82	A
	;	ATOM	6204	OG	SER	A	157	7.799	18.879	39.353	1.00	15.23	A
		ATOM	6205	С	SER	A	157	7.375	21.713	40.279	1.00	16.34	A
10	•	ATOM	6206	0	SER	A	157	6.566	22.205	41.075	1.00	16.25	A
•		ATOM	6207	N	THR	A	158	8.681	21.678	40.519	1.00	16.57	A
		ATOM	6208	CA	THR	A	158	9.218	22.252	41.750	1.00	17.18	A
•		ATOM	6209	СВ	THR	A	158	10.756	22.149	41.796	1.00	17.24	A
		ATOM	6210	OG1	THR	A	158	11.129	20.790	42.058	1.00	17.94	Α
15		ATOM	6211	CG2	THR	A	158	11.324	23.039	42.895	1.00	17.40	A
:		ATOM	6212	С	THR	A	158	8.807	23.721	41.862	1.00	17.28	Α
		ATOM	6213	0	THR	Α	158	8.266	24.154	42.884	1.00	17.37	A
		ATOM	6214	N	THR	Α	159	9.056	24.484	40.805	1.00	17.51	Α
		ATOM	6215	CA	THR	A	159	8.705	25.900	40.790	1.00	17.92	A
20	·.	ATOM	6216	СВ	THR	A	159	9.303	26.594	39.543	1.00	17.65	A
:		ATOM	6217	OG1	THR	A	159	10.730	26.596	39.653	1.00	17.96	A
		ATOM	6218	CG2	THR	Α	159	8.812	28.033	39.421	1.00	18.36	A
		ATOM	6219	С	THR	Α	159	7.193	26.107	40.836	1.00	17.91	A
	:	ATOM	6220	0	THR	A	159	6.702	26.981	41.554	1.00	18.18	A
25		АТОМ	6221	N	LEU	Α	160	6.446	25.307	40.084	1.00	18.04	A

161

	ATO	M 6222	CA	LEU	A	160	4.995	25.448	40.098	1.00	18.10	A
•	ATO	M 6223	СВ	LEU	A	160	4.350	24.485	39.102	1.00	18.30	A
	ATO	M 6224	CG	LEU	A	160	4.599	24.829	37.627	1.00	18.44	Α
٠.	ATO:	м 6225	CD1	LEU	A	160	3.998	23.744	36.741	1.00	18.61	A
5	ATO	M 6226	. CD2	LEU	Α	160	3.995	26.185	37.298	1.00	18.31	A
•	ATO	M 6227	С	LEU	Α	160	4.445	25.190	41.500	1.00	18.29	A
	ATO	м 6228	0	LEU	A	160	3.524	25.874	41.939	1.00	18.04	A
	ATO	м 6229	N	LEU	A	161	5.014	24.209	42,199	1.00	18.58	A
	, ATO	м 6230	CA	LEU	A _.	161	4.562	23.867	43.554	1.00	18.65	A
10.	ATO	м 6231	СВ	LEU	Α	161	5.288	22.617	44.061	1.00	18.76	A
	ATO	м 6232	CG	LEU	Α	161	4.830	21.269	43.494	1.00	18.94	A
	ATO	м 6233	CD1	LEU	A	161	5.881	20.206	43.761	1.00	18.87	A
	ATO	M 6234	CD2	LEU	A	161	3.494	20.881	44.115	1.00	18.81	A
	ATO	M 6235	С	LEU	A	161	4.769	25.009	44.545	1.00	18.70	A
15	ATO	M 6236	0	LEU	A	161	4.100	25.078	45.580	1.00	18.70	A
:	. ATO	M 6237	N	VAL	A	162	5.713	25.892	44.242	1.00	18.91	A
	ATO	4 6238	CA	VAL	A	162	5.982	27.038	45.111	1.00	19.05	A
:	ATO	4 6239	СВ	VAL	A	162	7.268	27.775	44.679	1.00	18.98	A
	ATO	4 6240	CG1	VAL	A	162	7.376	29.108	45.403	1.00	19.21	A
20	ATO	4 6241	CG2	VAL	A	162	8.485	26.911	44.990	1.00	18.86	A
	ATO	1 6242	С	VAL	A	162	4.807	28.012	45.079	1.00	19.45	A
	ATO	4 6243	0	VAL	A	162	4.496	28.669	46.076	1.00	19.46	A
	ATO	4 6244	N	PHE	A	163	4.144	28.096	43.932	1.00	19.57	A
	ATO	1 6245	CA	PHE	A	163	3.013	28.998	43.797	1.00	20.03	A
25	ATO	4 6246	СВ	PHE	A	163	3.087	29.734	42.458	1.00	20.31	A

2 165 E CC

1 16 NA

345 52

r light of

3 10 1 4

CA 02466264 2004-05-05

	:	ATOM	6247	CG	PHE A	163	4.337	30.550	42.291	1.00 20.50	A
٠.		АТОМ	6248	CD1	PHE A	163	5.466	29.999	41.696	1.00 20.62	A
		ATOM	6249	CD2	PHE A	163	4.403	31.856	42.771	1.00 20.68	A
		ATOM	6250	CE1	PHE A	163	6.644	30.732	41.581	1.00 20.55	A
5		ATOM	6251	CE2	PHE A	163	5.578	32.598	42.661	1.00 20.66	A
	. :	ATOM	6252	CZ	PHE A	163	6.701	32.032	42.064	1.00 20.63	A
		ATOM	6253	С	PHE A	163	1.669	28.302	43.933	1.00 20.28	A
		ATOM	6254	0	PHE A	163	0.664	28.948	44.218	1.00 20.48	A
		ATOM	6528	N	THR A	197	16.338	29.399	46.423	1.00 26.20	A
10		ATOM	6529	CA	THR A	197	15.751	30.609	45.863	1.00 25.74	A
-		ATOM	6530	СВ	THR A	197	16.490	31.036	44.577	1.00 25.61	A
		ATOM	6531	OG1	THR A	197	16.472	29.955	43.637	1.00 25.05	A
		ATOM	6532	CG2	THR A	197	17.930	31.404	44.885	1.00 25.60	A
		АТОМ	6533	С	THR A	197	14.275	30.422	45.534	1.00 25.48	A
15		ATOM	6534	0	THR A	197	13.779	29.297	45.478	1.00 25.55	A
		ATOM	6535	N	LYS A	198	13.579	31.533	45.321	1.00 25.39	A
		ATOM	6536	CA	LYS A	198	12.158	31.503	44.987	1.00 25.33	A
	· . ;.	ATOM	6537	СВ	LYS A	198	11.588	32.923	44.977	1.00 25.43	A
		ATOM	6538	CG	LYS A	198	10.103	32.992	44.646	1.00 25.92	A
20		ATOM	6539	CD	LYS A	198	9.614	34.427	44.597	1.00 26.17	A
		ATOM	6540	CE	LYS A	198	8.186	34.502	44.089	1.00 26.49	A
•		ATOM	6541	NZ	LYS A	198	7.712	35.915	43.956	1.00 26.69	A
		ATOM	6542	С	LYS A	198	11.943	30.855	43.621	1.00 25.18	A
		ATOM	6543	0	LYS A	. 198	11.110	29.962	43.473	1.00 24.95	A
25		ATOM	6544	N	LEU A	199	12.699	31.313	42.628	1.00 25.13	Α

•	ATOM	6545	CA	LEU	A	199	12.595	30.781	41.270	1.00	25.12	A
	ATOM	6546	СВ	LEU	A	199	12.408	31.930	40.275	1.00	25.36	Α
	MOTA	6547	CG	LEU	Α	199	10.969	32.324	39.926	1.00	25.73	Α
	ATOM	6548	CD1	LEU	Α	199	10.105	32.362	41.171	1.00	25.91	Α
5	ATOM	6549	CD2	LEU	Α	199	10.981	33.665	39.212	1.00	25.98	A
	АТОМ	6550	С	LEU	Α	199	13.812	29.952	40.870	1.00	25.09	A
•	ATOM	6551	0	LEU	Α	199	14.823	29.989	41.603	1.00	24.71	A
	ATOM	6552	ОХТ	LEU	Α	199	13.742	29.281	39.817	1.00	24.81	A
	МОТА	6613	N1	GSH	Н	200	14.696	30.844	25.962	1.00	23.65	Н
10	ATOM	6614	CA1	GSH	Н	200	16.039	31.001	26.524	1.00	23.55	Н
	MOTA	6615	C1	GSH	Н	200	16.542	29.694	27.171	1.00	23.17	Н
	MOŢA	6616	011	GSH	Н	200	15.739	28.768	27.396	1.00	22.46	Н
	ATOM	6617	012	GSH	н	200	17.802	29.693	27.562	1.00	22.86	Н
	АТОМ	6618	СВ1	GSH	Н	200	15.985	32.066	27.622	1.00	23.81	Н
15	ATOM	6619	CG1	GSH	Н	200	15.892	33.498	27.090	1.00	24.34	н
	АТОМ	6620	CD1	GSH	Н	200	15.490	34.394	28.280	1.00	23.98	Н
	ATOM	6621	OE1	GSH	Н	200	14.442	35.015	28.215	1.00	24.41	Н
	АТОМ	6622	N2	GSH	Н	200	16.359	34.466	29.315	1.00	24.28	Н
	ATOM	6623	CA2	GSH	Н	200	16.110	35.405	30.441	1.00	24.46	Н
20	ATOM	6624	C2	GSH	Н	200	16.959	36.558	30.276	1.00	24.90	Н
	ATOM	6625	02	GSH	Н	200	18.145	36.447	29.952	1.00	24.83	Н
	АТОМ	6626	CB2	GSH	H	200	16.495	34.762	31.809	1.00	24.14	Н
	АТОМ	6627	SG2	GSH	H 5	200	15.212	33.684	32.529	1.00	23.62	Н
	ATOM	6628	N3	GSH	Н	200	16.418	37.764	30.605	1.00	25.69	Н
25	АТОМ	6629	CA3	GSH	Н	200	17.234	39.007	30.688	1.00	26.56	Н

164

	ATOM	6630	С3	GSH	Н	200	16.858	39.970	29.572	1.00	27.05	н
	ATOM	6631	031	GSH	Н	200	17.544	41.013	29.478	1.00	27.21	Н
	ATOM	6632	032	GSH	н	200	15.926	39.647	28.800	1.00	27.38	Н
	ATOM	6708	C1	U44	x	201	12.551	37.412	34.770	1.00	51.36	x
5 .	ATOM	6709	C2	U44	x	201	12.942	38.049	36.088	1.00	51.45	x
	ATOM	6710	С3	U44	x	201	13.074	36.818	37.021	1.00	51.46	x
	ATOM	6711	C4	U44	x	201	13.773	35.785	36.065	1.00	51.25	x
	ATOM	6712	C5	U44	x	201	13.862	36.633	34.758	1.00	51.32	x
	ATOM	6713	C7	U44	x	201	14.906	37.744	34.890	1.00	51.38	x
10	ATOM	6714	06	U44	x	201	14.219	38.627	35.787	1.00	51.43	x
	ATOM	6715	C14	U44	х	201	13.023	34.496	35.785	1.00	50.82	x
	АТОМ	6716	C16	U44	x	201	13.358	33.226	36.116	1.00	50.17	х
	АТОМ	6717	C18	U44	х	201	12.548	31.983	35.806	1.00	49.75	х
٠	ATOM	6718	C20	U44	x	201	12.422	31.711	34.291	1.00	49.34	x
15	АТОМ	6719	C21	U44	x	201	11.452	30.558	33.949	1.00	48.88	x
	: ATOM	6720	C24	U44	х	201	12.111	29.171	34.031	1.00	48.50	х
	ATOM	6721	C27	U44	x	201	11.176	28.042	33.569	1.00	48.26	x
•	MOTA	6722	C30	U44	x	201	11.730	26.655	33.911	1.00	47.93	x
	ATOM	6723	036	U44	х	201	11.255	32.146	36.348	1.00	49.97	х
20	ATOM	6724	C39	U44	х	201	13.871	37.120	38.326	1.00	51.81	x
	ATOM	6725	C41	U44	x	201	13.309	36.423	39.545	1.00	52.19	х
	ATOM	6726	C44	U44	х	201	12.673	36.957	40.612	1.00	52.52	x
. •	ATOM	6727	C46	U44	x	201	12.354	38.413	40.860	1.00	52.74	x
	ATOM	6728	C48	U44	x	201	11.089	38.600	41.702	1.00	52.91	x
25	MOTA	6729	C51	U44	x	: 201	10.411	39.953	41.420	1.00	53.03	x

105 (72)

135 (42)

134 A 2 1

CA 02466264 2004-05-05

•	ATOM	6730	C54	U44	x	201	8.878	39.832	41.396	1.00 53.12	x
	MOTA	6731	057	U44	x	201	8.298	41.019	41.144	1.00 53.23	x
	ATOM	6732	058	U44	x	201	8.266	38.823	41.572	1.00 53.07	x
:	ATOM	6734	CA+2	CA2	M	901	9.824	26.883	22.168	1.00 37.63	M
5	. ATOM	6747	он2	WAT	s	53	10.720	26.574	23.734	1.00 13.42	s
:	MOTA	6748	он2	WAT	S	54	8.700	27.621	24.867	1.00 30.29	s
	ATOM	6749	ОН2	WAT	s	55	11.193	25.711	20.926	1.00 38.39	s
	MOTA	6750	ОН2	WAT	s	56	8.649	29.181	22.554	1.00 40.32	s
:· •	MOTA	6751	он2	WAT	S	57	8.686	24.965	22.598	1.00 24.31	s
10	ATOM	6753	он2	WAT	S	59	12.609	27.997	22.910	1.00 26.01	s
	ATOM	6754	он2	WAT	S	60	16.147	26.525	24.446	1.00 13.92	s
*	ATOM	6805	он2	WAT	S	119	15.889	24.704	33.708	1.00 12.20	S
. :	ATOM	6817	он2	WAT	S	131	21.842	34.840	24.519	1.00 17.76	s
	ATOM	6831	OH2	WAT	S	145	13.761	25.970	37.415	1.00 14.51	S
15	ATOM	6838	он2	WAT	S	152	19.797	31.378	26.404	1.00 15.01	S
	ATOM	6840	ОН2	WAT	S	154	17.705	34.244	22.558	1.00 19.55	S
•	ATOM	6862	ОН2	WAT	S	176	15.045	34.087	23.449	1.00 22.78	S
	ATOM	6865	QH2	WAT	S	179	24.231	27.246	21.186	1.00 17.23	s
	ATOM	6868	ОН2	WAT	S	182	15.019	25.681	30.985	1.00 20.42	s
20	ATOM	6880	ОН2	WAT	S	194	18.957	28.395	43.148	1.00 25.25	S
	. ATOM	6884	он2	WAT	S	198	29.524	31.402	30.656	1.00 21.38	s
;·	ATOM	6891	ОН2	WAT	S	205	12.982	24.357	39.397	1.00 21.38 1.00 27.06 1.00 17.45	S
	ATOM	6911	он2	WAT	S,	225	20.243	26.057	41.600	1.00 17.45	S
	ATOM	6915	он2	WAT	s	229	13.072	28.340	28.775	1.00 23.00	s
25	ATOM	6920	он2	WAT	S	234	14.180	35.687	21.027	1.00 19.10	S

195 - 12

CA 02466264 2004-05-05

· · .	ATOM	6925	он2	WAT	s	239	16.432	26.840	45.110	1.00	20.16	S
	ATOM	6963	он2	WAT	s	277	9.688	38.330	46.556	1.00	22.33	s
:	ATOM	6971	он2	WAT	s	285	14.267	37.710	28.281	1.00	27.08	S
. : ::- ::::::::::::::::::::::::::::::::	ATOM	6979	ОН2	WAT	s	293	14.265	21.922	40.759	1.00	26.98	s
5	ATOM	7003	он2	WAT	s	318	14.285	33.826	42.961	1.00	21.76	s
	ATOM	7004	он2	WAT	s	319	18.057	40.943	23.782	1.00	35.39	S
	ATOM	7031	он2	WAT	s	349	17.934	35.785	45.678	1.00	28.45	S
	ATOM	7060	OH2	WAT	s	383	19.852	33.145	23.977	1.00	20.17	s
	ATOM	7071	он2	WAT	S	394	11.887	37.040	22.324	1.00	21.27	s
10	ATOM	7083	он2	WAT	s	407	13.826	35.564	25.333	1.00	32.89	s
	ĄTOM	7091	он2	WAT	s	415	12.313	24.839	23.220	1.00	28.21	s
•	ATOM	7128	он2	WAT	s	454	4.663	29.761	25.692	1.00	33.93	s
	ATOM	7130	OH2	WAT	s	456	21.062	36.900	40.187	1.00	38.49	s
	ATOM	7141	ОН2	WAT	s	467	16.347	39.603	43.840	1.00	38.49	S
15	ATOM	7172	ОН2	WAT	s	501	16.867	34.824	43.591	1.00	33.65	s
	ATOM	7178	OH2	WAT	S	508	13.919	42.210	21.359	1.00	42.62	s
, .	ATOM	7203	ОН2	WAT	S	535	24.768	29.671	36.812	1.00	21.16	s
	ATOM	7278	он2	WAT	s	624	9.448	41.034	37.745	1.00	45.08	s
:	ATOM	7311	ОН2	WAT	s	661	10.417	43.064	40.521	1.00	48.24	s
20	ATOM	7338	ОН2	WAT	s	690	4.520	39.297	24.898	1.00	35.89	S
: :	ATOM	7357	ОН2	WAT	S	710	11.398	29.430	37.336	1.00	55.44	S
	ATOM	7372	ОН2	WAT	s	725	29.681	36.478	31.530	1.00	46.34	S
:	ATOM	7377	ОН2	WAT	s	730	22.836	45.124	25.173	1.00	37.85	S
	ATOM	7421	он2	WAT	S	777	9.127	46.643	25.394	1.00	40.66	s
25	ATOM	7479	OH2	WAT	S	842	17.602	38.997	20.277	1.00	32.58	S

167

ATOM	7534	ОН2	WAT	s	900	16.041	43.445	43.323	1.00	38.46	s
ATOM	7540	ОН2	WAT	s	906	21.141	36.590	45.196	1.00	37.28	S
ATOM	7541	он2	WAT	s	907	25.332	34.472	44.401	1.00	47.03	s
ATOM	7551	он2	WAT	s	917	16.854	44.879	23.884	1.00	42.35	s
ATOM	7554	он2	WAT	s	920	8.757	33.269	28.017	1.00	43.49	s
ATOM	7647	ОН2	WAT	Т	22	14.573	42.133	41.410	1.00	38.47	Т
ATOM	7652	он2	WAT	Т	27	19.585	45.803	29.005	1.00	44.65	Т
ATOM	7655	ОН2	WAT	T	30	17.572	36.979	22.241	1.00	37.46	T
ATOM	7658	он2	WAT	т	35	6.940	39.912	44.003	1.00	34.76	т

10

5

Table 6

Three-dimensional structural coordinate of the complex of human hematopoietic PGDS with magnesium, glutathione and 9,11-dideoxy -9α , $1\frac{1}{4}\alpha$ -epoxymethanoprostaglandine $F_{2\alpha}$ (U44)

15.

25

-24.963 2.816 34.571 1.00 17.22 A N ATOM 4966 N TYR A 8 ATOM 4967 CA TYR A 8 -23.542 2.548 34.744 1.00 17.23 ATOM 4968 CB TYR A 8 -22.782 3.882 34.816 1.00 18.03 A C ATOM 4969 CG TYR A 8 -21.275 3.759 34.770 1.00 16.45 A C ATOM 4970 CD1 TYR A 8 -20.632 3.243 33.642 1.00 15.64 A C ATOM 4971 CE1 TYR A 8 -19.248 3.117 33.595 1.00 15.32 A C ATOM 4972 CD2 TYR A 8 -20.491 4.152 35.854 1.00 15.73 A C ATOM 4973 CE2 TYR A 8 -19.101 4.032 35.821 1.00 16.61 A C 3.511 34.688 1.00 15.90 A C ATOM 4974 CZ TYR A 8 -18.486 3.369 34.652 1.00 14.22 A O ATOM 4975 OH TYR A 8 -17.116

		MOTA	4976 [.]	С	TYR A	. 8	-23.334	1.757	36.033	1.00 18.22	A C
		ATOM	4977	0	TYR A	. 8	-24.286	1.500	36.765	1.00 18.88	A O
		MOTA	4978	N	PHE A	. 9	-22.090	1.365	36.297	1.00 19.45	A N
		MOTA	4979	CA	PHE A	. 9	-21.755	0.631	37.511	1.00 18.46	A C
5	÷	ATOM	4980	СВ	PHE A	. 9	-20.326	0.086	37.442	1.00 20.61	A C
		ATOM	4981	CG	PHE A	. 9	-20.127	-0.989	36.416	1.00 21.63	A C
		ATOM	4982	CD1	PHE A	. 9	-19.215	-0.817	35.380	1.00 23.34	A C
	•	ATOM	4983	CD2	PHE A	. 9	-20.830	-2.184	36.497	1.00 23.29	A C
	•	ATOM	4984	CE1	PHE A	. 9	-19.003	-1.824	34.439	1.00 23.36	A C
10		ATOM	4985	CE2	PHE P	A 9	-20.627	-3.197	35.564	1.00 23.79	A C
	÷	ATOM	4986	CZ	PHE A	A 9	-19.710	-3.016	34.531	1.00 24.43	A C
		ATOM	4987	С	PHE A	A 9	-21.844	1.610	38.669	1.00 19.26	A C
	•	ATOM	4988	0	PHE A	A 9	-22.025	2.812	38.457	1.00 18.28	A O
		ATOM	4989	N	ASN A	10	-21.720	1.102	39.892	1.00 19.26	A N
15		ATOM	4990	CA	ASN A	10	-21.768	1.967	41.062	1.00 20.39	A C
		ATOM	4991	СВ	ASN A	10	-22.307	1.229	42.289	1.00 19.56	A C
:		АТОМ	4992	CG	ASN A	10	-22.172	2.053	43.558	1.00 20.32	A C
	٠.	ATOM	4993	OD1	L ASN A	A 10	-22.514	3.239	43.580	1.00 20.34	A O
		ATOM	4994	ND2	2 ASN 2	A 10	-21.675	1.432	44.618	1.00 19.12	A N
20		ATOM	4995	С	ASN A	10	-20.382	2.503	41.374	1.00 20.96	A C
		ATOM	4996	0	ASN A	10	-19.672	1.971	42.228	1.00 20.75	A O
		ATOM	4997	N	MET A	11	-19.998	3.547	40.651	1.00 21.28	A N
74 174						3	-18.712				
						*				1.00 24.46	
25		ATOM	5000	CG	MET A	11	-17.593	2.644	39.097	1.00 28.37	A C

	· ATOM	5001	SD	MET	A	11	-16.405	1.269	38.962	1.00 31.57	A S
	ATOM	5002	CE	MET	Α	<u>1</u> 1	-17.463	-0.102	39.381	1.00 33.95	A C
•	ATOM	5003	С	MET	A	11	-18.690	5.449	39.971	1.00 17.84	A C
•	MOTA	5004	0	MET	A	11	-19.542	5.614	39.102	1.00 17.49	A O
· 5	MOTA	5005	N	ARG	Α	12	-17.747	6.346	40.230	1.00 15.79	A N
	ATOM	5006	CA	ARG	A	12	-17.652	7.567	39.440	1.00 14.18	A C
	ATOM	5007	СВ	ARG	A	12	-16.607	8.512	40.040	1.00 13.02	A C
	ATOM	5008	CG	ARG	A	12	-16.888	8.917	41.491	1.00 15.40	A C
	MOTA	5009	CD	ARG	A	12	-15.857	9.928	41.986	1.00 14.27	A C
10	MOTA	5010	NE	ARG	A	12	-14.488	9.425	41.848	1.00 15.20	A N
	ATOM	5011	CZ	ARG	A	12	-13.945	8.494	42.627	1.00 14.91	A C
	ATOM	5012	NH:	L ARG	G A	12	-14.649	7.957	43.613	1.00 15.94	AN
	ATOM	5013	NH	2 AR	G A	2	-12.700	8.094	42.416	1.00 14.17	A N
	ATOM	5014	С	ARG	A	12	-17.258	7.170	38.020	1.00 14.06	A C
15	ATOM	5015	0	ARG	A	12	-18.014	7.373	37.076	1.00 12.72	A O
	ATOM	5016	N	GLY	A	13	-16.067	6.598	37.889	1.00 13.50	A N
	MOTA	5017	CA	GLY	A	13	-15.581	6.151	36.598	1.00 13.43	A C
	MOTA	5018	С	GLY	A	13	-15.880	7.031	35.397	1.00 11.86	A C
	ATOM	5019	0	GLY	A	13	-15.654	8.240	35.420	1.00 10.45	ΑO
20	MOTA	5020	N	ARG	A	14	-16.398	6.406	34.343	1.00 11.37	A N
	MOTA	5021	CA	ARG	A	14	-16.708	7.100	33.096	1.00 12.46	A C
	MOTA	5022	СВ	ARG	A	14	-16.606	6.111	31.928	1.00 11.33	A C
						į	-15.177			1.00 13.46	A C
						79				1.00 17.48	
25	ATOM	5025	NE	ARG	A	14	-13.738	4.519	30.019	1.00 20.64	A N

170

٠.	ATOM	5026	cz	ARG A	14	-12.890	3.499	30.132	1.00 22.84	A C
	ATOM	5027	NH1	ARG A	14	-13.224	2.410	30.817	1.00 23.14	A N
	ATOM	5028	NH2	ARG A	14	-11.696	3.575	29.559	1.00 23.88	A N
ب	ATOM	5029	c	ARG A	į4	-18.058	7.809	33.049	1.00 11.90	A C
5	ATOM	5030	0	ARG A	14	-18.353	8.511	32.087	1.00 12.49	A O
:	ATOM	5031	N	ALA A	15	-18.871	7.637	34.084	1.00 12.15	A N
٠	ATOM	5032	CA	ALA A	15	-20.190	8.263	34.118	1.00 12.60	A C
	ATOM	5033	СВ	ALA A	15	-21.206	7.305	34.762	1.00 13.45	A C
	ATOM	5034	С	ALA A	1,5	-20.199	9.592	34.866	1.00 11.68	A C
10	ATOM	5035	0	ALA A	15	-21.085	10.423	34.658	1.00 11.89	A O
	ATOM	5036	N	GLU A	16	-19.209	9.795	35.727	1.00 13.81	A N
:	ATOM	5037	CA	GLU A	16	-19.141	11.007	36.534	1.00 13.28	A C
	АТОМ	5038	СВ	GLU A	16	-17.877	10.986	37.399	1.00 12.67	A C
	АТОМ	5039	CG	GLU A	16	-17.971	11.841	38.672	1.00 13.36	A C
15	ATOM	5040	CD	GLU A	16	-19.146	11.457	39.575	1.00 13.41	A C
	ATOM	5041	OE:	1 GLU A	16	-19.695	10.345	39.422	1.00 12.47	A O
	MOTA	5042	OE:	2 GLU A	16	-19.512	12.266	40.452	1.00 14.67	A O
	ATOM	5043	С	GLU A	16	-19.216	12.314	35.748	1.00 13.25	A C
••	ATOM	5044	0	GLU A	16	-19.903	13.245	36.167	1.00 11.55	A O
20	MOTA	5045	N	ILE A	17	-18.521	12.393	34.614	1.00 12.65	A N
<i>:</i>	MOTA	5046	CA	ILE A	17	-18.549	13.621	33.823	1.00 12.45	A C
	MOTA	5047	СВ	ILE A	17	-17.659	13.507	32.548	1.00 11.09	A C
	ATOM	5048	CG	2 ILE A	. 17	-18.158	12.384	31.642	1.00 9.92	A C
	ATOM	5049	CG	1 ILE A	. 17	-17.663	14.836	31.790	1.00 11.02	АC
25	ATOM	5050	CD	1 ILE A	17	-17.127	16.025	32.594	1.00 13.12	A C

18.01

11.012.1

1201

CA 02466264 2004-05-05

171

	-									
	АТОМ	5051	С	ILE A	17	-19.981	13.984	33.430	1.00 12.64	A C
•	. ATOM	5052	0	ILE A	17	-20.348	15.155	33.421	1.00 13.53	A O
•	· ATOM	5242	N	TRP A	وړٍّ د	-24.802	-7.318	35.073	1.00 35.03	A N
	ATOM	5243	CA	TRP A	4 3 9	-24.074	-6.905	33.874	1.00 33.95	A C
5 .	ATOM	5244	СВ	TRP A	4 9	-22.586	-6.705	34.193	1.00 30.71	A C
• ;	ATOM	5245	G	TRP A	4 3 9	-21.787	-6.208	33.021	1.00 27.71	A C
	ATOM	5246	CD2	TRP	A 39	-22.182	-5.206	32.072	1.00 26.24	A C
	ATOM	5247	CE2	TRP	A 39	-21.134	-5.085	31.130	1.00 27.24	A C
	ATOM	5248	CE3	TRP	A 39	-23.319	-4.401	31.925	1.00 25.00	A C
10	MOTA	5249	CD1	TRP	A 39	-20.549	-6.637	32.630	1.00 28.16	A C
	ATOM	5250	NE1	TRP	A 39	-20.152	-5.969	31.493	1.00 28.63	A N
·.	MOTA	5251	CZ2	TRP	A 39	-21.191	-4.191	30.054	1.00 26.14	A C
	ATOM	5252	CZ3	TRP	A 39	-23.377	-3.511	30.850	1.00 24.88	A C
	АТОМ	5253	СН2	TRP	A 39	-22.318	-3.416	29.931	1.00 25.30	A C
15	АТОМ	5254	С	TRP	A 39	-24.217	-7.861	32.683	1.00 34.33	A C
	АТОМ	5255	0	TRP	A 39	-24.633	-7.451	31.600	1.00 34.30	A O
٠.	АТОМ	5256	N	PRO	A 40	-23.880	-9.149	32.869	1.00 35.19	A N
	АТОМ	5257	CD	PRO	A 40	-23.513	-9.824	34.128	1.00 35.28	A C
	АТОМ	5258	CA	PRO	A 40	-23.985	-10.120	31.775	1.00 35.54	A C
20	ATOM	5259	СВ	PRO	A 40	-23.906	-11.460	32.499	1.00 36.12	A C
	АТОМ	5260	CG	PRO	A .40	-22.984	-11.156	33.638	1.00 36.50	A C
	ATOM	5261	С	PRO	A ,40	-25.259	-9.985	30.946	1.00 35.56	A C
	ATOM	5262	0	PRO	A 40	-25.200	-9.824	29.727	1.00 36.61	A 0
	ATOM	5263	N	GLU	A 41	-26.406	-10.043	31.614	1.00 34.82	AN
25	ATOM	5264	CA	GLU	A 41	-27.693	-9.942	30.935	1.00 35.20) A C

4.44

4.012

	ATOM	5265	СВ	GLU	A	41	-28.833	-10.189	31.931	1.00	37.14	A	С
	ATOM	5266	CG	GLU	A	41	-30.221	-10.044	31.328	1.00	41.54	A	С
	ATOM	5267	CD	GLU	A	41	-30.489	-11.046	30.219	1.00	44.14	A	С
' '	ATOM	5268	OE1	GLU	A	41	-31.529	-10.915	29.536	1.00	46.32	A	0
5	ATOM	5269	OE2	GLU	A	41	-29.665	-11.967	30.030	1.00	45.36	A	0
٠.	ATOM	5270	С	GLU	A	41	-27.911	-8.603	30.237	1.00	33.75	A	С
•	АТОМ	5271	0	GLU	Α	41	-28.460	-8.553	29.135	1.00	34.40	A	0
	ATOM	5272	N	ILE	A	42	-27.483	-7.521	30.880	1.00	31.53	A	N
•	АТОМ	5273	CA	ILE	A	42	-27.648	-6.181	30.322	1.00	28.99	A	С
10	ATOM	5274	СВ	ILE	A	42	-27.401	-5.106	31.402	1.00	28.48	A	С
·	АТОМ	5275	CG2	ILE	Α	42	-27.689	-3.721	30.833	1.00	27.91	A	С
·. ;	АТОМ	5276	CG1	ILE	A	42	-28.304	-5.369	32.608	1.00	27.61	A	С
- ·	ATOM	5277	CD1	ILE	A	42	-27.975	-4.530	33.821	1.00	29.35	A	С
	ATOM	5278	С	ILE	A	42	-26.709	-5.926	29.143	1.00	27.64	A	С
15	ATOM	5279	0	ILE	A	42	-27.114	-5.355	28.129	1.00	27.10	A	0
•	ATOM	5280	N	LYS	Α	43	-25.459	-6.353	29.283	1.00	26.84	A	N
•	ATOM	5281	CA	LYS	A	43	-24.457	-6.173	28.237	1.00	27.71	A	С
	ATOM	5282	СВ	LYS	Α	43	-23.160	-6.886	28.629	1.00	26.22	A	С
· ·.	ATOM	5283	CG	LYS	A	43	-22.062	-6.814	27.579	1.00	23.72	A	С
20		5284	CD	LYS	A	43	-20.871	-7.669	27.981	1.00	22.67	A	С
	ATOM	5285	CE	LYS	A	43	-19.747	-7.576	26.965	1.00	23.33	A	С
	ATOM	5286	ΝZ	LYS	A	43	-19.134	-6.217	26.936	1.00	21.56	A	N
	ATOM	5287	С	LYS	A	43	-24.940	-6.708	26.893	1.00	28.75	A	С
	ATOM	5288	0	LYS	A	43	-24.719	-6.090	25.852	1.00	28.75	A	0
25	ATOM	5328	N	GLY	A	49	-22.268	-3.248	23.763	1.00	15.23	A	N

173

	ATOM	5329	·CA	GLY	A	49	-21.927	-3.903	25.015	1.00	15.04	A	С
: ;	ATOM	5330	С	GLY	A	49	-21.064	-3.144	26.005	1.00	15.33	Α	С
	ATOM	5331	0	GLY	A	49	-20.313	-3.754	26.768	1.00	15.11	Α	0
•	ATOM	5332	N	LYS	A	50	-21.169	-1.821	26.007	1.00	13.57	Α	N
5	ATOM	5333	CA	LYS	A	50	-20.380	-1.008	26.926	1.00	14.57	Α	С
	ATOM	5334	СВ	LYS	A	50	-19.259	-0.274	26.173	1.00	15.57	Α	С
	ATOM	5335	CG	LYS	A	50	-18.310	-1.166	25.391	1.00	18.60	Α	С
	ATOM	5336	CD	LYS	A	50	-17.505	-2.069	26.308	1.00	21.95	Α	С
•	ATOM	5337	CE	LYS	A	50	-16.603	-2.992	25.504	1.00	24.43	Α	С
10	ATOM	5338	NZ	LYS	A	50	-15.681	-2.218	24.631	1.00	25.99	Α	N
·	ATOM	5339	С	LYS	A	50	-21.246	0.030	27.625	1.00	14.42	Α	С
٠.	ATOM	5340	0	LYS	A	50	-22.253	0.488	27.081	1.00	14.19	Α	0
	ATOM	5341	N	ILE	A	51	-20.848	0.394	28.840	1.00	14.37	A	N
	ATOM	5342	CA	ILE	A	51	-21.553	1.416	29.597	1.00	14.74	A	С
15.	ATOM	5343	СВ	ILE	A	51	-22.203	0.840	30.876	1.00	15.30	Α	С
٠.	MOTA	5344	CG2	ILE	A	51	-23.403	-0.008	30.497	1.00	17.79	Α	С
•	ATOM	5345	CG1	ILE	A	51	-21.187	0.020	31.675	1.00	15.08	Α	С
· : ·	MOTA	5346	CD1	ILE	A	51	-21.764	-0.585	32.950	1.00	15.84	A	С
, ř. ·	ATOM	5347	С	ILE	A	51	-20.526	2.490	29.949	1.00	14.66	A	С
20	ATOM	5348	0	ILE	A	51	-19.324	2.232	29.931	1.00	16.06	A	0
**	ATOM	5349	N	PRO	A	52	-20.982	3.700	30.299	1.00	15.26	A	N
	ATOM	5350	CD	PRO	A	52	-20.083	4.841	30.562	1.00	16.04	A	С
	ATOM	5351	CA	PRO	A	52	-22.379	4.124	30.396	1.00	15.40	A	С
· · · · · · · · · · · · · · · · · · ·							-22.276			1.00	15.83	Α	С
25	ATOM	5353	CG	PRO	A	52	-21.045	6.024	30.593	1.00	15.77	A	С

3 17 M.

""方字。

174

	:								
•	ATOM	5354	С	PRO A	52	-23.101	4.365	29.080	1.00 16.83 A C
	ATOM	5355	0	PRO A	52	-22.492	4.484	28.015	1.00 14.90 A O
•	ATOM	5356	N	ILE A	53	-24.420	4.438	29.188	1.00 17.77 A N
:	ATOM	5357	CA	ILE A	53	-25.288	4.730	28.067	1.00 18.90 A C
5 .	ATOM	5358	СВ	ILE A	53	-26.045	3.483	27.563	1.00 20.61 A C
:	ATOM	5359	CG2	ILE A	53	-25.054	2.435	27.075	1.00 20.84 A C
	ATOM	5360	CG1	ILE A	53	-26.938	2.928	28.675	1.00 21.82 A C
	ATOM	5361	CD1	ILE A	53	-27.891	1.842	28.211	1.00 24.03 A C
	ATOM	5362	C ·	ILE A	53	-26.286	5.708	28.662	1.00 18.88 A C
10	ATOM	5363	0	ILE A	53	-26.494	5.722	29.878	1.00 18.43 A O
	ATOM	5423	N	HIS A	62	-24.373	6.192	23.498	1.00 15.70 A N
•	MOTA	5424	CA	HIS A	62	-23.236	5.561	24.160	1.00 15.77 A C
	ATOM	5425	СВ	HIS A	62	-22.957	4.167	23.568	1.00 15.57 A C
	MOTA	5426	CG	HIS A	62	-22.517	4.179	22.134	1.00 14.35 A C
15	АТОМ	5427	CD2	HIS A	62	-21.358	3.778	21.556	1.00 15.17 A C
	MOTA	5428	ND1	HIS A	62	-23.332	4.598	21.104	1.00 17.10 A N
·	ATOM	5429	CE1	HIS A	62	-22.697	4.451	19.953	1.00 14.96 A C
,	АТОМ	5430	NE2	HIS A	62	-21.498	3.955	20.200	1.00 15.48 A N
,	АТОМ	5431	С	HIS A	62	-21.988	6.437	24.080	1.00 14.50 A C
20	ATOM	5432	0	HIS A	62	-22.007	7.489	23.442	1.00 13.29 A O
	ATOM	5433	N	GLN A	63	-20.913	5.997	24.734	1.00 13.87 A N
	ATOM	5434	CA	GLN A	6 3	-19.654	6.740	24.764	1.00 12.90 A C
	ATOM	5435	СВ	GLN A	6 3	-19.224	7.137	23.345	1.00 12.53 A C
	ATOM	5436	CG	GLN A	6 3	-18.581	6.001	22.545	1.00 11.52 A C
25	ATOM	5437	CD	GLN A	6 3	-17.268	5.533	23.160	1.00 12.20 A C

211 67

	АТОМ 5438	OE1 GLN A 63	-16.730	6.176	24.062	1.00 10.43	A O
	ATOM 5439	NE2 GLN A 63	-16.741	4.421	22.664	1.00 9.56	A N
,	ATOM 5440	C GLN A 63	-19.805	7.976	25.653	1.00 13.56	A C
:	ATOM 5441	O GLN A 63	-20.476	8.947	25.289	1.00 14.92	A O
5	ATOM 5442	N SER A 64	-19.167	7.924	26.817	1.00 10.97	A N
	ATOM 5443	CA SER A 64	-19.236	8.993	27.807	1.00 10.05	A C
	ATOM 5444	CB SER A 64	-18.322	8.658	28.995	1.00 9.89	A C
:	ATOM 5445	OG SER A 64	-16.955	8.727	28.627	1.00 8.82	A O
	ATOM 5446	C SER A 64	-18.932	10.411	27.323	1.00 8.80	A C
10	ATOM 5447	O SER A 64	-19.674	11.339	27.636	1.00 9.79	A O
-	ATOM 5448	N LEUA (5	-17.853	10.586	26.565	1.00 8.85	AN
	ATOM 5449	CALEUA 65	-17.483	11.917	26.091	1.00 8.19	A C
	ATOM 5450	CB LEU A 65	-16.009	11.933	25.671	1.00 7.83	A C
	ATOM 5451	. CG LEU A 65	-15.054	11.409	26.757	1.00 11.60	A C
15	ATOM 5452	CD1 LEU A §5	-13.618	11.479	26.253	1.00 11.43	AC
	ATOM 5453	CD2 LEU A 65	-15.220	12.226	28.041	1.00 8.48	A C
•	ATOM 5454	C LEU A 65	-18.374	12.419	24.956	1.00 10.83	AC
٠	ATOM 5455	O LEUA 65	-18.539	13.627	24.779	1.00 11.65	5 A O
	АТОМ 5662	N ASP A 93	-9.664	14.664	25.566	1.00 7.26	A N
20	ATOM 5663	B CA ASP A 93	-9.071	13.449	25.009	1.00 6.80	AC
	атом 5664	1 CB ASP A 93	-9.016	13.526	23.476	1.00 7.9	A C
	атом 5665	CG ASP A 93	-10.318	13.092	22.823	1.00 9.4	6 A C
		OD1 ASP A 93				1.00 10.4	3 A O
2	ATOM 566	OD2 ASP A 93	-11.302	12.855	23.556	1.00 6.6	6 A O
25	ATOM 566	8 C ASP A 93	-7.678	13.144	25.562	1.00 8.2	4 A C

		MOTA	5669	0	ASP A		9 3	-7.325	11.979	25.751	1.00	8.03	Α	0
		MOTĄ	5670	N	THR	A	94	-6.879	14.179	25.808	1.00	7.87	A	N
		MOTA	5671	CA	THR	Α	94	-5.541	13.973	26.354	1.00	7.89	A	С
		ATOM	5672	СВ	THR	A	94	-4.753	15.305	26.444	1.00	8.49	Α	С
5		ATOM	5673	OG1	THR	A	94	-4.329	15.693	25.125	1.00	8.47	Α	0
		ATOM	5674	CG2	THR	Α	94	-3.520	15.155	27.342	1.00	8.64	Α	С
		ATOM	5675	С	THR	Α	94	-5.679	13.342	27.740	1.00	8.60	Α	С
•		ATOM	5676	0	THR	Α	94	-4.912	12.455	28.110	1.00	8.25	Α	0
		ATOM	5677	N	LEU	Α	95	-6.669	13.797	28.499	1.00	8.02	Α	N
10	•	ATOM	5678	CA	LEU	Α	95	-6.905	13.248	29.826	1.00	7.48	Α	С
		ATOM	5679	СВ	LEU	A	95	-7.884	14.135	30.606	1.00	6.39	Α	С
		ATOM	5680	CG	LEU	Α	95	-7.345	15.483	31.102	1.00	6.45	Α	С
	٠.	ATOM	5681	CD1	LEU	Α	95	-8.480	16.323	31.676	1.00	7.27	A	С
. :		ATOM	5682	CD2	LEU	Α	95	-6.270	15.244	32.156	1.00	8.71	A	С
15		ATOM	5683	С	LEU	A	95	-7.464	11.829	29.700	1.00	8.84	A	С
		ATOM	5684	0	LEU	Α	95	-7.013	10.921	30.394	1.00	6.72	A	0
		MOTA	5685	N	ASP A	A	9 6	-8.426	11.639	28.794	1.00	9.13	Α	N
		ATOM	5686	CA	ASP	A	96	-9.042	10.328	28.600	1.00	8.40	Α	С
		ATOM	5687	СВ	ASP	Α	96	-10.213	10.421	27.614	1.00	9.89	A	С
20		ATOM	5688	CG	ASP	Α	96	-11.200	9.271	27.768	1.00	8.95	Α	С
_		ATOM	5689	OD1	ASP	Α	96	-11.674	9.046	28.903	1.00	11.48	A	0
	•	ATOM	5690	OD2	2 ASP	A	96	-11.515	8.599	26.761	1.00	8.48	A	0
		ATOM	5691	С	ASP A	A	96	-8.029	9.294	28.113	1.00	11.25	A	С
٠.		ATOM	5692	0	ASP 2	A	96	-8.083	8.129	28.516	1.00	11.68	A	0
25		ATOM	5693	N	ASP A	A	: 9 7	-7.107	9.714	27.249	1.00	10.40	A	N

	•	N/IION/	E C O 4	CA	A C'D	7.	97	-6.074	8.815	26.748	1 00	10.66	Α	C
		ATOM	5694		ASP									
	. •	MOTA	5695	СВ	ASP	Α	97	-5.108	9.552	25.815	1.00	9.42	A	С
		MOTA	5696	CG	ASP	A	97	-5.684	9.804	24.429	1.00	10.69	Α	С
•	:	MOTA	5697	OD1	ASP	A	97	-5.100	10.644	23.708	1.00	8.34	Α	0
5	:	ATOM	5698	OD2	ASP	Α	97	-6.693	9.166	24.050	1.00	9.39	Α	0
		MOTA	5699	C A	ASP A	A	9 7	-5.266	8.241	27.914	1.00	10.28	A	С
	•	ATOM	5700	O <i>I</i>	ASP A	A	97	-5.013	7.039	27.972	1.00	9.67	A	0
		ATOM	5701	N	PHE	A	98	-4.856	9.106	28.839	1.00	11.06	Α	N
		ATOM	5702	CA	PHE	Α	98	-4.057	8.667	29.984	1.00	13.17	A	С
10		ATOM	5703	СВ	PHE	Α	98	-3.508	9.871	30.767	1.00	12.79	Α	С
		ATOM	5704	CG	PHE	A	98	-2.540	9.487	31.861	1.00	14.46	A	С
		ATOM	5705	CD1	PHE	A	98	-1.365	8.800	31.558	1.00	14.40	A	С
		MOTA	5706	CD2	PHE	Α	98	-2.817	9.781	33.191	1.00	15.98	Α	С
•		ATOM	5707	CE1	PHE	Α	98	-0.480	8.409	32.568	1.00	17.26	A	С
15		ATOM	5708	CE2	PHE	Α	98	-1.938	9.394	34.214	1.00	16.31	A	С
		ATOM	5709	CZ	PHE	Α	98	-0.769	8.706	33.899	1.00	14.31	A	С
		ATOM	5710	С	PHE	A	98	-4.828	7.754	30.935	1.00	14.11	A	С
	. ;	ATOM	5711	О	PHE	A	98	-4.308	6.731	31.381	1.00	14.82	Α	0
•		ATOM	5712	N	MET	A	99	-6.063	8.125	31.252	1.00	14.73	A	N
20	•	ATOM	5713	CA	MET	A	99	-6.886	7.318	32.149	1.00	14.22	A	С
		ATOM	5714	СВ	MET	A	.99	-8.225	8.013	32.420	1.00	15.31	A	С
		ATOM	5715	CG	MET	A	99	-8.121	9.374	33.109	1.00	15.68	A	С
		ATOM	5716	SD	MET	Α	99	-7.267	9.310	34.694	1.00	15.84	A	s
		ATOM	5717	CE	MET	A	99	-8.515	8.541	35.722	1.00	16.08	A	С
25 🗵		ATOM	5718	С	MET	A	99	-7.150	5.939	31.548	1.00	16.86	A	С

Υ,	ATOM	5719	0	MET	A 99	-7.220	4.939	32.267	1.00	14.67	A	0
•	MOTA	5720	N	SER	A 100	-7.292	5.892	30.225	1.00	16.11	Α	N
	MOTA	5721	CA	SER	A 1 00	-7.561	4.641	29.523	1.00	16.96	Α	С
	MOTA	5722	СВ	SER	A 100	-8.084	4.936	28.115	1.00	16.86	A	С
5	ATOM	5723	OG	SER	A 100	-9.356	5.556	28.184	1.00	16.40	A	0
	MOTA	5724	С	SER	A 100	-6.350	3.717	29.442	1.00	19.01	A	С
	MOTA	5725	0	SER	A 100	-6.489	2.528	29.149	1.00	19.47	A	0
	MOTA	5726	N	CYS	A 101	-5.166	4.262	29.697	1.00	20.58	A	N
•	ATOM	5727	CA	CYS	A 101	-3.944	3.464	29.665	1.00	23.67	A	С
10	MOTA	5728	СВ	CYS	A 101	-2.707	4.368	29.693	1.00	26.07	A	С
	ATOM	5729	SG	CYS	A 101	-2.263	5.097	28.099	1.00	30.40	A	s
	ATOM	5730	C	CYS A	101	-3.876	2.484	30.836	1.00	23.47	Α	С
	MOTA	5731	0	CYS A	101	-3.257	1.426	30.729	1.00	24.00	A	0
	MOTA	5732	N	PHE	A 102	-4.504	2.833	31.953	1.00	23.47	Α	N
15	MOTA	5733	CA	PHE	A 102	-4.485	1.955	33.117	1.00	24.57	Α	С
	ATOM	5734	СВ	PHE	A 102	-5.012	2.681	34.360	1.00	22.30	Α	С
	ATOM	5735	CG	PHE	A 102	-4.128	3.798	34.832	1.00	21.46	Α	С
	ATOM	5736	CD1	PHE	A 102	-4.099	5.014	34.158	1.00	20.64	Α	С
	ATOM	5737	CD2	PHE	A 102	-3.313	3.631	35.949	1.00	20.02	Α	С
20	ATOM	5738	CE1	PHE	A 102	-3.267	6.055	34.590	1.00	21.12	A	С
	ATOM	5739	CE2	PHE	A 102	-2.480	4.662	36.387	1.00	20.36	A	С
	ATOM	5740	CZ	PHE	A 102	-2.458	5.875	35.705	1.00	18.32	Α	С
	MOTA	5741	С	PHE	A 102	-5.313	0.698	32.881	1.00	25.48	Α	С
	MOTA	57 4 2	0	PHE	A 102	-6.423	0.765	32.358	1.00	25.08	Α	0
25	ATOM	5743	N	PRO	A 103	-4.773	-0.471	33.259	1.00	27.90	A	N

J 300

i 3 m²

CA 02466264 2004-05-05

	. ATOM	5744	CD	PRO	A 1	03	-3.398	-0.682	33.750	1.00	27.31	A	С
	ATOM	5745	CA	PRO	A :	03	-5.466	-1.751	33.090	1.00	29.68	A	С
	ATOM	5746	СВ	PRO	A I	03	-4.323	-2.753	33.124	1.00	28.70	Α	С
	MOTA	5747	CG	PRO	A :	03	-3.410	-2.145	34.142	1.00	28.84	Α	С
5	ATOM	5748	С	PRO	A :	į 03	-6.471	-1.975	34.220	1.00	31.64	Α	С
	MOTA	5749	0	PRO	A :	03 1	-6.208	-2.740	35.150	1.00	32.46	A	0
	MOTA	5750	N	TRP	Α :	04	-7.619	-1.308	34.132	1.00	33.14	Α	N
· .	ATOM	5751	CA	TRP	A :	04	-8.652	-1.416	35.157	1.00	34.92	A	С
•	MOTA	5752	СВ	TRP	A :	04	-9.740	-0.360	34.936	1.00	34.59	A	С
10	MOTA	5753	CG	TRP	A :	04	-9.223	1.041	34.784	1.00	33.67	A	С
	MOTA	5754	CD2	TRP	A :	04	-8.909	1.959	35.838	1.00	32.46	A	С
	MOTA	5755	CE2	TRP	A	104	-8.451	3.149	35.233	1.00	33.36	A	С
	MOTA	5756	CE3	TRP	Α	104	-8.970	1.891	37.237	1.00	32.51	Α	С
	MOTA	5757	CD1	TRP	A	04	-8.949	1.692	33.615	1.00	33.31	A	С
15	ATOM	5758	NE1	TRP	A	104	-8.486	2.960	33.876	1.00	33.69	A	N
	ATOM	5759	CZ2	TRP	Α	104	-8.057	4.265	35.980	1.00	33.19	A	С
	ATOM	5760	CZ3	TRP	Α	04	-8.577	3.002	37.979	1.00	31.26	Α	С
	ATOM	5761	CH2	TRP	Α	104	-8.127	4.171	37.347	1.00	32.36	A	С
	ATOM	5762	С	TRP	A	104	-9.314	-2.787	35.225	1.00	36.55	A	С
20 :	ATOM	5763	0	TRP	A	104	-9.542	-3.317	36.312	1.00	36.03	Α	0
	MOTA	5764	N	ALA	A	105	-9.629	-3.353	34.064	1.00	39.05	A	N
	MOTA	5765	CA	ALA	A	105	-10.285	-4.657	34.001	1.00	41.04	A	С
-	MOTA	5766	СВ	ALA	Α	105	-11.224	-4.709	32.801	1.00	41.47	A	С
	MOTA	5767	С	ALA	A	105	-9.293	-5.812	33.936	1.00	42.49	A	С
25	MOTA	5768	0	ALA	Α	105	-9.615	-6.891	33.436	1.00	43.00	A	0

	ATOM	5769	N	GLU	Α	106	-8.087	-5.583	34.443	1.00	43.51	A 1	N
1	ATOM	5770	CA	GLU	Α	1 06	-7.055	-6.610	34.442	1.00	44.47	A	С
	ATOM	5771	СВ	GLU	Α	1 06	-5.669	-5.960	34.381	1.00	44.70	A	С
	АТОМ	5772	CG	GLU	Α	106	-4.502	-6.940	34.373	1.00	45.21	A	С
5	ATOM	5773	CD	GLU	Α	106	-4.626	-7.993	33.289	1.00	46.80	A f	С
	ATOM	5774	OE1	GLU	A	106	-5.375	-8.974	33.490	1.00	47.31	A	0
	ATOM	5775	OE2	GLU	A	106	-3.982	-7.837	32.230	1.00	46.33	Α	0
	ATOM	5776		GLU A	1	0 6	-7.170	-7.483	35.688	1.00 4	4.69 2	A C	
	ATOM	5777	0	GL	U 2	106	-7.17	74 -6.98	36.81	2 1.0	00 43.	85	A
10	0					4 6							
	ATOM	5778	N	LYS	Α	107	-7.275	-8.791	35.477	1.00	46.22	Α	N
	ATOM	5779	CA	LYS	Α	107	-7.386	-9.744	36.576	1.00	47.90	Α	С
•	MOTA	5780	СВ	LYS	Α	107	-8.160	-10.985	36.124	1.00	48.02	Α	С
	ATOM	5781	CG	LYS	Α	107	-9.649	-10.743	35.925	1.00	48.88	A	С
15	ATOM	5782	CD	LYS	A	107	-10.315	-10.333	37.233	1.00	49.71	A	С
	MOTA	5783	CE	LYS	A	107	-11.799	-10.060	37.043	1.00	50.86	A	С
	ATOM	5784	NZ	LYS	Α	107	-12.534	-11.251	36.534	1.00	51.17	A	N
	ATOM	5785	С	LYS	A	1 07	-6.010	-10.148	37.096	1.00	48.88	A	С
	ATOM	5786	0	LYS	A	107	-5.847	-10.426	38.284	1.00	49.63	A	0
20	ATOM	5787	N	LYS	Α	108	-5.025	-10.179	36.204	1.00	49.39	A	N
•	ATOM	5788	CA	LYS	A	108	-3.662	-10.534	36.584	1.00	50.95	A	С
	ATOM	5789	СВ	LYS	A	108	-2.780	-10.649	35.338	1.00	50.92	A	С
	ATOM	5790	CG	LYS	A	108	-3.244	-11.706	34.349	1.00	51.30	A	С
	MOTA	5791	CD	LYS	A	108	-2.370	-11.744	33.100	1.00	51.21	. A	С
25	ATOM	5792	CE	LYS	Α	108	-2.474	-10.450	32.306	1.00	51.88	Α	С

•	ATOM	5793	NZ	LYS	Α	108	-1.733	-10.517	31.015	1.00	51.47	A	N
	ATOM	5794	С	LYS	Α	108	-3.115	-9.452	37.514	1.00	51.93	A	С
:	ATOM	5795	0	LYS	Α	108	-2.605	-8.428	37.057	1.00	52.21	A	0
	ATOM	5796	N	GLN	Α	109	-3.228	-9.687	38.818	1.00	53.19	A	N
5	ATOM	5797	CA	GLN	Α	Î09	-2.770	-8.734	39.827	1.00	54.34	A	С
	ATOM	5798	СВ	GLN	Α	109	-3.029	-9.293	41.229	1.00	55.53	A	С
	ATOM	5799	CG	GLN	Α	109	-2.808	-8.292	42.359	1.00	57.97	A	С
	MOTA	5800	CD	GLN	Α	109	-3.896	-7.230	42.433	1.00	59.38	A	С
	MOTA	5801	OE1	GLN	Α	109	-3.833	-6.318	43.260	1.00	60.01	A	0
10	MOTA	5802	NE2	GLN	A	109	-4.90	3 -7.34	9 41.57	2 1.	00 59.	24	A
	N					\$							
٠, :	ATOM	5803	С	GLN	Α	109	-1.291	-8.372	39.689	1.00	53.97	A	С
	MOTA	5804	0	GLN	Α	109	-0.900	-7.231	39.939	1.00	54.03	A	0
· :	ATOM	5805	N	ASP	Α	1 10	-0.473	-9.344	39.296	1.00	53.79	A	N
15	ATOM	5806	CA	ASP	Α	110	0.961	-9.120	39.136	1.00	53.28	A	С
	ATOM	5807	СВ	ASP	A	10	1.687	-10.460	38.967	1.00	54.50	A	С
•	ATOM	5808	CG	ASP	Α	110	1.180	-11.256	37.777	1.00	56.41	Α	С
•	MOTA	5809	OD1	ASP	A	110	-0.040	-11.516	37.708	1.00	57.39	A	0
	ATOM	5810	OD2	ASP	A	110	2.005	-11.626	36.913	1.00	57.49	A	0
.20	MOTA	5811	С	ASP	A	110	1.276	-8.203	37.956	1.00	52.12	A	C
· • • • • • • • • • • • • • • • • • • •	ATOM	5812	0	ASP	A	110	2.309	-7.532	37.939	1.00	52.35	A	. 0
? · ·	ATOM	5813	N	VAL	A	111	0.381	-8.173	36.975	1.00	50.53	A	. N
	ATOM	5814	CA	VAL	A	111	0.565	-7.340	35.792	1.00	48.09	A	. с
	ATOM	5815	СВ	VAL	A	111	-0.020	-8.032	34.541	1.00	47.90) A	, C
25	ATOM	5816	CG1	VAL	Α	111	0.175	-7.153	33.313	1.00	47.0	7 A	r C

•	,												
	ATOM	5817	CG2	VAL	A	111	0.649	-9.382	34.343	1.00	46.18	A	С
	ATOM	5818	С	VAL	Α	1 11	-0.106	-5.980	35.973	1.00	47.23	Α	С
	ATOM	5819	0	VAL	Α	111	0.392	-4.959	35.497	1.00	46.02	Α	0
	. ATOM	5820	N	LYS	Α	1 12	-1.237	-5.974	36.670	1.00	46.23	Α	N
5	ATOM	5821	CA	LYS	Α	112	-1.981	-4.746	36.918	1.00	45.70	A	С
	ATOM	5822	СВ	LYS	Α	112	-3.328	-5.076	37.563	1.00	45.91	Α	С
	MOTA	5823	CG	LYS	Α	112	-4.205	-3.866	37.828	1.00	47.00	A	С
** **	MOTA	5824	CD	LYS	Α	1 112	-5.587	-4.288	38.294	1.00	46.65	A	С
	MOTA	5825	CE	LYS	Α	112	-6.505	-3.093	38.472	1.00	47.06	A	С
10	ATOM	5826	NZ	LYS	A	112	-7.882	-3.530	38.822	1.00	47.01	Α	N
	ATOM	5827	С	LYS	A	1 1 1 1	-1.197	-3.793	37.815	1.00	45.36	A	С
:	ATOM	5828	0	LYS	Α	112	-1.044	-2.611	37.499	1.00	43.76	Α	0
	АТОМ	5829	N	GLU	Α	113	-0.700	-4.316	38.931	1.00	45.30	A	N
	ATOM	5830	CA	GLU	Α	113	0.065	-3.520	39.885	1.00	45.81	A	С
15	ATOM	5831	СВ	GLU	A	113	0.434	-4.377	41.100	1.00	46.58	A	С
	ATOM	5832	CG	GLU	A	113	0.985	-3.602	42.292	1.00	46.95	A	С
	ATOM	5833	CD	GLU	A	113	-0.079	-2.797	43.024	1.00	47.25	A	С
	MOTA	5834	OE1	GLU	Α	113	0.232	-2.252	44.104	1.00	47.79	A	0
. · ;	ATOM	5835	OE2	GLU	A	113	-1.222	-2.708	42.526	1.00	46.47	A	0
20	MOTA	5836	C.	GLU	A	113	1.335	-2.963	39.244	1.00	45.70	A	С
	ATOM	5837	0	GLU	A	113	1.734	-1.832	39.520	1.00	45.29	A	0
	MOTA	5838	N	GLN	Α	114	1.961	-3.764	38.386	1.00	45.03	A	N
	ATOM	5839	CA	GLN	A	114	3.188	-3.364	37.703	1.00	44.59	A	С
	MOTA	5840	СВ	GLN	Α	114	3.757	-4.554	36.919	1.00	46.95	A	С
25	ATOM	5841	CG	GLN	Α	114	5.090	-4.301	36.224	1.00	49.65	A	С

183

k-													
	MOTA	5842	CD	GLN	Α	114	4.949	-3.515	34.933	1.00	51.80	Α	С
٠.	ATOM	5843	OE1	GLN	A	114	4.223	-3.920	34.024	1.00	54.22	A	0
	MOTA	5844	NE2	GLN	Α	114	5.650	-2.389	34.842	1.00	52.38	A	N
:	ATOM	5845	C	GLN	Α	114	2.956	-2.179	36.767	1.00	43.31	A	С
5	MOTA	5846	0	GLN	Α	114	3.720	-1.214	36.778	1.00	43.59	Α	0
:	ATOM	5847	N	MET	Α	1 115	1.902	-2.252	35.960	1.00	40.98	Α	N
	ATOM	5848	CA	MET	Α	1 15	1.586	-1.175	35.026	1.00	38.92	A	С
	ATOM	5849	СВ	MET	Α	1 1 1 1 1 1 1	0.543	-1.646	34.006	1.00	40.82	Α	С
	ATOM	5850	CG	MET	Α	1 15	0.066	-0.553	33.052	1.00	43.23	A	С
10	ATOM	5851	SD	MET	Α	115	1.400	0.229	32.107	1.00	46.86	Α	s
	ATOM	5852	CE	MET	A	1 115	0.903	-0.150	30.414	1.00	46.99	Α	С
	ATOM	5853	С	MET	Α	115	1.080	0.073	35.750	1.00	36.12	A	С
	ATOM	5854	0	MET	A	1 115	1.414	1.195	35.366	1.00	34.59	Α	0
	ATOM	5855	N	PHE	Α	116	0.277	-0.124	36.793	1.00	33.79	A	N
15	ATOM	5856	CA	PHE	A	116	-0.260	0.997	37.563	1.00	31.55	Α	С
	ATOM	5857	СВ	PHE	Α	116	-1.101	0.496	38.740	1.00	29.74	A	С
	ATOM	5858	CG	PHE	A	1 16	-2.580	0.648	38.544	1.00	26.92	A	С
	MOTA	5859	CD1	PHE	Α	. 1 16	-3.277	-0.205	37.697	1.00	26.13	A	С
	ATOM	5860	CD2	PHE	A	116	-3.280	1.647	39.214	1.00	25.49	A	С
20	MOTA	5861	CE1	PHE	A	116	-4.652	-0.069	37.520	1.00	25.62	A	C
•	ATOM	5862	CE2	PHE	A	116	-4.655	1.795	39.045	1.00	24.62	A	C
	ATOM	5863	cz	PHE	A	116	-5.343	0.935	38.196	1.00	25.52	A	C
	ATOM	5864	С	PHE	C A	116	0.852	1.885	38.108	1.00	31.56	A	C
	ATOM	5865	0	PHE	E A	116	0.850	3.100	37.905	1.00	29.53	A	0
25	ATOM	6152	N	TYF	₹ <i>1</i>	152	-13.728	17.655	33.722	1.00	8.61	A	N

1 67 m

20.2

CA 02466264 2004-05-05

		MOTA	6153	CA	TYR	A :	152	-13.021	16.402	33.504	1.00	9.79	A C
		MOTA	6154	СВ	TYR	A :	1 52	-12.841	16.120	32.003	1.00	7.44	A C
	•	MOTA	6155	CG	TYR	A :	52	-12.799	14.634	31.704	1.00	8.27	A C
		MOTA	6156	CD1	TYR	A :	152	-13.773	13.778	32.225	1.00	8.38	A C
5		ATOM	6157	CE1	TYR	A :	152	-13.742	12.403	31.973	1.00	10.32	A C
		ATOM	6158	CD2	TYR	À	152	-11.791	14.080	30.919	1.00	5.95	A C
		ATOM	6159	CE2	TYR	Α	152	-11.751	12.704	30.659	1.00	8.41	A C
		ATOM	6160	CZ	TYR	Α	152	-12.729	11.873	31.191	1.00	8.47	A C
	*	ATOM	6161	ОН	TYR	Α	152	-12.695	10.517	30.951	1.00	9.30	ΑO
10	•	ATOM	6162	С	TYR	Α	152	-11.671	16.387	34.209	1.00	10.81	A C
		ATOM	6163	0	TYR	Α	152	-11.237	15.344	34.695	1.00	13.37	Α .0
		ATOM	6164	N	TRP	A	1 1 2 3	-11.002	17.536	34.274	1.00	11.77	A N
		ATOM	6165	CA	TRP	A	153	-9.715	17.589	34.964	1.00	12.66	A C
		ATOM	6166	СВ	TRP	A	153 153	-9.082	18.981	34.855	1.00	13.54	A C
15		MOTA	6167	CG	TRP	Α	153	-8.073	19.251	35.950	1.00	13.64	A C
		АТОМ	6168	CD2	TRP	Α	1 53	-6.880	18.503	36.230	1.00	12.79	A C
	•	ATOM	6169	CE2	TRP	A	153	-6.280	19.084	37.372	1.00	13.87	A C
		ATOM	6170	CE3	TRP	A	153	-6.260	17.400	35.629	1.00	14.97	A C
:		ATOM	6171	CD1	TRP	A	153	-8.143	20.228	36.906	1.00	14.04	A C
20		ATOM	6172	NE1	TRP	A	1 53	-7.071	20.132	37.763	1.00	14.10	A N
		ATOM	6173	CZ2	TRP	A	153	-5.088	18.596	37.927	1.00	12.50	A C
		ATOM	6174	CZ3	TRP	A	153	-5.072	16.914	36.183	1.00	14.36	A C
·		MOTA	6175	CH2	TRP	A	153	-4.502	17.516	37.321	1.00	14.19	A C
		ATOM	6176	С	TRP	A	153	-9.878	17.232	36.441	1.00	11.85	A C
25	٠.	АТОМ	6177	0	TRP	Α	153	-9.107	16.434	36.981	1.00	12.51	A O

	ATOM	6178	N	GLU	A 1	54	-10.883	17.817	37.089	1.00	11.73	A	N
	MOTA	6179	CA	GLU	A Į	54	-11.134	17.564	38.512	1.00	10.94	A	С
	MOTA	6180	СВ	GLU	A 1	54	-12.231	18.510	39.027	1.00	11.59	A	С
	АТОМ	6181	CG	GLU	A I	54	-12.404	18.521	40.546	1.00	11.01	A	С
5	MOTA	6182	CD	GLU	A 1	54	-13.332	17.431	41.059	1.00	16.21	A	С
	MOTA	6183	OE1	GLU	A]	54 }	-13.328	17.170	42.284	1.00	14.24	A	0
	ATOM	6184	OE2	GLU	A 1	54	-14.078	16.842	40.248	1.00	16.08	A	0
•	ATOM	6185	С	GLU	A I	54	-11.536	16.108	38.739	1.00	11.33	A	С
	ATOM	6186	0	GLU	A :	54	-11.134	15.477	39.725	1.00	11.71	Α	0
10 ,	ATOM	6187	N	ILE	A	្នំ55	-12.327	15.580	37.815	1.00	10.60	A	N
	ATOM	6188	CA	ILE	Α :	55	-12.790	14.200	37.880	1.00	10.68	A	С
	ATOM	6189	СВ	ILE	A	155	-13.847	13.951	36.774	1.00	10.77	A	С
	ATOM	6190	CG2	ILE	A	55	-14.071	12.459	36.564	1.00	11.39	A	С
	MOTA	6191	CG1	ILE	Α	1 55	-15.148	14.671	37.154	1.00	12.20	A	С
15	MOTA	6192	CD1	ILE	A	55	-16.192	14.711	36.048	1.00	9.68	A	С
	MOTA	6193	С	ILE	A	155	-11.630	13.210	37.750	1.00	11.46	A	С
•	ATOM	6194	0	ILE	A	155 Ž	-11.493	12.292	38.567	1.00	12.61	A	0
	ATOM	6195	N	CYS	A	156	-10.789	13.402	36.735	1.00	10.83	A	N
	ATOM	6196	CA	CYS	Α	156	-9.642	12.524	36.514	1.00	10.78	A	С
20	MOTA	6197	СВ	CYS	A	156	-8.964	12.856	35.179	1.00	12.57	A	С
• • •	MOTA	6198	SG	CYS	Α	156	-9.924	12.424	33.698	1.00	11.44	A	S
•	ATOM	6199	С	CYS	A	156	-8.610	12.617	37.642	1.00	11.39	A	С
	MOTA	6200	0	CYS	À	156	-8.078	11.600	38.090	1.00	10.94	A	0
	ATOM	6201	N	SER	A	157	-8.327	13.836	38.096	1.00	10.71	Α	N
25	ATOM	6202	CA	SER	A	157	-7.348	14.035	39.160	1.00	11.64	A	C

186

	MOTA	6203	СВ	SER	A :	157	-7.005	15.526	39.312	1.00	8.14	A	С
	MOTA	6204	OG	SER	A	157	-8.149	16.309	39.581	1.00	8.71	Α	0
	ATOM	6205	С	SER	Α	157	-7.815	13.463	40.493	1.00	11.79	Α	С
	ATOM	6206	0	SER	Α	1 157	-7.000	12.976	41.280	1.00	12.03	A	0
5	MOTA	6207	N	THR	A	1 58	-9.119	13.521	40.750	1.00	10.51	Α	N
	ATOM	6208	CA	THR	A	1 58	-9.650	12.979	41.996	1.00	12.25	Α	С
	. ATOM	6209	СВ	THR	A	158	-11.188	13.142	42.086	1.00	12.13	Α	С
	ATOM	6210	OG1	THR	A	1 58	-11.512	14.507	42.379	1.00	11.92	Α	0
	ATOM	6211	CG2	THR	Α	158	-11.758	12.251	43.180	1.00	12.89	Α	С
10	MOTA	6212	С	THR	Α	158	-9.303	11.497	42.089	1.00	12.30	A	С
	ATOM	6213	0	THR	Α	į 158	-8.873	11.015	43.135	1.00	13.28	A	0
	АТОМ	6214	N	THR	Α	159	-9.484	10.778	40.986	1.00	11.79	A	N
;	MOTA	6215	CA	THR	Α	159	-9.189	9.352	40.949	1.00	12.60	A	С
	ATOM	6216	СВ	THR	A	159	-9.777	8.713	39.671	1.00	12.94	A	С
15	ATOM	6217	OG1	THR	Α	1 59	-11.207	8.818	39.711	1.00	13.88	Α	0
	MOTA	6218	CG2	THR	Α	159	-9.383	7.243	39.570	1.00	13.31	Α	С
٠	MOTA	6219	С	THR	A	159	-7.683	9.073	41.028	1.00	12.97	A	С
	MOTA	6220	О	THR	Α	159	-7.242	8.210	41.792	1.00	13.33	A	0
	ATOM	6221	N	LEU	A	160	-6.891	9.801	40.247	1.00	11.91	A	N
20	ATOM	6222	CA	LEU	A	160	-5.449	9.602	40.272	1.00	11.99	A	С
	ATOM	6223	СВ	LEU	Α	160	-4.767	10.506	39.243	1.00	11.62	A	С
<i>:</i> ·	ATOM	6224	CG	LEU	Α	160	-5.052	10.201	37.764	1.00	10.47	A	С
	MOTA	6225	CD1	LEU	Α	160	-4.377	11.244	36.896	1.00	11.07	A	С
*,	ATOM	6226	CD2	LEU	A	160	-4.547	8.806	37.399	1.00	9.49	A	С
25	ATOM	6227	С	LEU	Α	160	-4.869	9.862	41.667	1.00	13.79	Α	С

 $0 \le 2$

00.2

187

,	MOTA	6228	0	LEU	Α	1 60	-3.954	9.157	42.101	1.00	12.53	A	0
; ·	MOTA	6229	N	LEU	Α	1 61	-5.408	10.863	42.364	1.00	13.03	A	N
· .	ATOM	6230	CA	LEU	Α	1 61	-4.938	11.210	43.703	1.00	13.25	A	С
	ATOM	6231	СВ	LEU	Α	; 1 61	-5.638	12.476	44.209	1.00	13.43	A	С
5	ATOM	6232	CG	LEU	Α	161	-5.137	13.820	43.672	1.00	14.45	A	С
	ATOM	6233	CD1	LEU	Α	161	-6.127	14.924	44.045	1.00	11.48	A	С
	ATOM	6234	CD2	LEU	Α	161	-3.751	14.118	44.237	1.00	13.53	Α	С
	ATOM	6235	С	LEU	Α	1 61	-5.145	10.080	44.704	1.00	15.09	A	С
	ATOM	6236	0	LEU	Α	161	-4.415	9.979	45.691	1.00	16.09	A	0
10	ATOM	6237	N	VAL	Α	1 62	-6.143	9.238	44.459	1.00	14.39	A	N
	АТОМ	6238	CA	VAL	Α	162	-6.411	8.116	45.344	1.00	14.43	A	С
	ATOM	6239	СВ	VAL	Α	1 162	-7.700	7.366	44.938	1.00	15.83	A	С
:	MOTA	6240	CG1	VAL	Α	162	-7.769	6.019	45.655	1.00	11.08	A	С
. •	ATOM	6241	CG2	VAL	Α	162	-8.925	8.207	45.287	1.00	14.62	A	С
15	ATOM	6242	С	VAL	A	162	-5.242	7.140	45.304	1.00	15.52	Α	С
<i>'</i> :	ATOM	6243	0	VAL	Α	162	-4.861	6.579	46.329	1.00	16.41	A	0
	АТОМ	6244	N	PHE	Α	163	-4.667	6.951	44.119	1.00	14.68	A	N
	ATOM	6245	CA	PHE	Α	1 63	-3.543	6.036	43.955	1.00	15.48	A	С
	ATOM	6246	СВ	PHE	A	163	-3.660	5.286	42.624	1.00	16.17	A	С
20.	MOTA	6247	CG	PHE	A	163	-4.915	4.476	42.498	1.00	17.77	A	С
	ATOM	6248	CD1	PHE	A	163	-6.066	5.026	41.934	1.00	18.11	Α	С
	ATOM	6249	CD2	PHE	A	163	-4.962	3.172	42.978	1.00	17.18	A	С
· ·.	ATOM	6250	CE1	PHE	A	163	-7.243	4.284	41.852	1.00	18.08	A	С
,#	ATOM	6251	CE2	PHE	A	163	-6.134	2.422	42.901	1.00	17.00	A	С
25	ATOM	6252	ĊZ	PHE	Α	163	-7.277	2.981	42.338	1.00	18.37	Α	С

00.2

 $\{(r_t)_t\}$

200.2

•	ATOM	6253	С	PHE	A :	163	-2.179	6.714	44.041	1.00	15.57	Α	С
,	MOTA	6254	0	PHE	A :	63	-1.164	6.044	44.214	1.00	16.24	Α	0
	ATOM	6528	N	THR	A :	97	-17.099	5.832	46.606	1.00	22.13	Α	N
	ATOM	6529	CA	THR	A :	97	-16.501	4.631	46.037	1.00	20.93	A	С
5	ATOM	6530	СВ	THR	A :	197	-17.228	4.228	44.740	1.00	20.53	A	С
	MOTA	6531	og1	THR	A	1 197	-17.165	5.313	43.801	1.00	19.47	A	0
ŧ	MOTA	6532	CG2	THR	Α	97	-18.687	3.904	45.031	1.00	19.28	A	С
	ATOM	6533	С	THR	Α	197	-15.022	4.835	45.726	1.00	19.70	A	С
	ATOM	6534	0	THR	Α	: 1 ₉₇ ,	-14.532	5.964	45.709	1.00	19.73	A	0
10	MOTA	6535	N	LYS	Α	198	-14.320	3.734	45.480	1.00	18.70	A	N
;	ATOM	6536	CA	LYS	Α	∄ 1 98	12.895	3.773	45.164	1.00	20.70	Α	С
	АТОМ	6537	СВ	LYS	Α) 198	-12.321	2.354	45.158	1.00	20.27	A	С
	ATOM	6538	CG	LYS	Α	198	-10.822	2.287	44.939	1.00	21.83	A	С
	ATOM	6539	CD	LYS	Α	198	-10.393	0.877	44.552	1.00	24.28	A	С
15	ATOM	6540	CE	LYS	Α	198	-8.880	0.756	44.464	1.00 2	25.89	A (2
· · · ·	ATOM	6541	NZ	LYS	Α	198	-8.481	-0.584	43.937	1.00 2	28.24	A I	Ŋ
	MOTA	6542	С	LYS	A	198 198	-12.646	4.419	43.800	1.00	21.33	A	С
	MOTA	6543	0	LYS	A	198	-11.809	5.317	43.664	1.00	20.34	A	0
	ATOM	6544	N	LEU	Α	199	-13.377	3.949	42.793	1.00	21.84	Α	N
20	ATOM	6545	CA	LEU	A	199	-13.245	4.469	41.436	1.00	21.69	A	С
	ATOM	6546	СВ	LEU	Α	199	-12.977	3.321	40.459	1.00	23.94	A	С
	ATOM	6547	CG	LEU	Α	99	-11.787	2.419	40.793	1.00	25.29	Α	С
	ATOM	6548	CD1	LEU	A	199	-11.612	1.374	39.698	1.00	25.62	Α	С
	ATOM	6549	CD2	LEU	A	199	-10.528	3.263	40.927	1.00	25.82	A	С
25	ATOM	6550	С	LEU	Α	199	-14.497	5.220	41.004	1.00	21.61	. A	C

; . . . ; . . .

CA 02466264 2004-05-05

•	АТОМ	6551	OT1	LEU	Α	1 99	-15.506	5.171	41.740	1.00 20.08 A	0
	ATOM	6552	от2	LEU	Α	199	-14.454	5.846	39.923	1.00 21.69 A	0
•	MOTA	6613	N1	GSH	н	् ३ ००	-14.550	5.015	25.946	1.00 13.63 H	N
•	ATOM	6614	CA1	GSH	Н	300	-15.807	4.471	26.450	1.00 13.25 H	С
5	ATOM	6615	C1	GSH	Н	: 200	-16.630	5.539	27.221	1.00 12.75 H	С
· •	ATOM	6616	011	GSH	Н	200	-16.085	6.603	27.529	1.00 12.96 н	0
	MOTA	6617	012	GSH	Н	200 5	-17.891	5.250	27.492	1.00 15.28 Н	0
	ATOM	6618	CB1	GSH	Н	300	-15.460	3.288	27.375	1.00 13.02 н	С
	ATOM	6619	CG1	GSH	Н	200	-16.582	2.234	27.492	1.00 13.79 H	С
10	ATOM	6620	CD1	GSH	Н	200	-16.071	1.156	28.480	1.00 15.77 н	С
	ATOM	6621	OE1	GSH	Н	300	-15.102	0.436	28.187	1.00 15.88 н	0
:	MOTA	6622	N2 (GSH I	н 2	200	-16.842	0.986	29.567	1.00 14.96 H N	N
	MOTA	6623	CA2	GSH	Н	200	-16.537	-0.058	30.558	1.00 16.29 н	С
	MOTA	6624	C2	GSH	Н	200	-17.470	-1.253	30.341	1.00 17.28 н	С
15	ATOM	6625	02	GSH	Н	300	-18.558	-1.130	29.767	1.00 15.17 H	0
	ATOM	6626	СВ2	GSH	Н	200	-16.864	0.452	31.977	1.00 16.12 H	С
:	MOTA	6627	SG2	GSH	Н	200	-15.601	1.558	32.669	1.00 16.79 H	S
	MOTA	6628	и3	GSH	Н	200	-16.899	-2.457	30.507	1.00 19.59 H	N
; . ; .	MOTA	6629	CA3	GSH	Н	200	-17.689	-3.694	30.640	1.00 20.55 H	С
20	MOTA	6630	С3	GSH	Н	200	-17.281	-4.655	29.543	1.00 22.53 H	С
4						-				1.00 20.65 H	
										1.00 22.35 H	
•						4				1.00 70.39 X	
						į.				1.00 70.70 X	
25	ATOM	6710	C3	U44	X	201	-12.903	-1.37	1 36.540	1.00 70.14 X	C

	MOTA	6711	C4	U44	x	2 01	-13.965	-0.313	36.092	1.00	69.11	X	С
: ::	ATOM	6712	C5	U44	x	3 01	-14.677	-1.086	34.944	1.00	69.81	X	С
	MOTA	6713	C7	U44	x	2 01	-15.544	-2.216	35.493	1.00	70.48	X	С
	ATOM	6714	06	U44	x	201	-14.532	-3.138	35.915	1.00	70.45	X	0
5	MOTA	6715	C14	U44	x	201	-13.413	1.005	35.576	1.00	66.59	X	С
	ATOM	6716	C16	U44	х	201	-13.394	2.213	36.191	1.00	62.13	X	С
•	ATOM	6717	C18	U4 4	х	201	-12.818	3.501	35.639	1.00	58.63	X	C
	ATOM	6718	C20	U44	х	201	-12.819	3.574	34.090	1.00	55.24	X	С
	ATOM.	6719	C21	U44	х	201	-11.964	4.730	33.525	1.00	50.86	X	С
10	ATOM	6720	C24	U44	x	201	-12.612	6.108	33.730	1.00	48.35	X	С
	ATOM	6721	C27	U44	X	2 01	-11.669	7.268	33.392	1.00	45.75	X	С
	MOTA	6722	C30	U44	X	2 01	-12.193	8.608	33.921	1.00	40.82	X	С
	ATOM	6723	036	U44	x	201	-11.498	3.620	36.106	1.00	60.26	X	0
	MOTA	6724	C39	U44	x	201	-12.884	-1.741	38.072	1.00	70.91	X	С
15 :	ATOM	6725	C41	U44	X	201	-14.205	-1.601	38.816	1.00	72.25	X	С
, ,	ATOM	6726	C44	U44	x	201	-14.430	-1.700	40.146	1.00	73.15	X	С
	АТОМ	6727	C46	U44	x	201	-13.410	-1.976	41.224	1.00	73.77	X	С
	ATOM	6728	C48	U44	x	201	-13.173	-3.470	41.449	1.00	74.30	X	С
	ATOM	6729	C51	U44	x	201	-11.671	-3.799	41.522	1.00	74.31	X	С
20	ATOM	6730	C54	U44	X	201	-11.421	-5.228	42.015	1.00	74.04	X	С
• .	ATOM	6731	057	U44	X	201	-10.109	-5.499	42.071	1.00	74.59	X	0
· : .	MOTA	6732	058	U44	X	201	-12.270	-6.010	42.314	1.00	73.77	Х	0
:	MOTA	6734	MG+	2 MG	2 1	902	-10.576	8.691	23.110 1	.00 14	.30 M	MG	+2
	MOTA	6741	OH2	WAT	S	. 7	-12.220	10.128	23.608	1.00	19.80	S	0
25	MOTA	6742	ОН2	WAT	S	8	-9.999	7.991	24.913	1.00	16.06	S	0

	Α.													
			6743	OH2	WAT	S	9	-9.577	7.058	22.052	1.00	9.47	S	0
		MOTA	6744	он2	WAT	s	10	-11.304	9.428	21.145	1.00	20.89	s	0
		MOTA	6745	он2	TAW	s	11	-8.905	9.998	22.706	1.00	6.56	S	0
,		 MOTA	6746	он2	WAT	s	12	-12.342	7.553	23.132	1.00	5.11	s	0
5		MOTA	6755	он2	WAT	s	21	-16.321	10.562	33.715	1.00	12.00	s	0
		MOTA	6760	он2	WAT	s	26	-22.235	0.646	24.380	1.00	8.59	s	0
		ATOM	6790	он2	WAT	s	56	-19.949	3.890	26.386	1.00	14.06	s	0
		ATOM	6822	он2	TAW	s	88	-15.088	1.355	23.422	1.00	11.11	s	0
		ATOM	6845	он2	WAT	S	112	-14.218	9.379	37.460	1.00	10.60	s	0
10		ATOM	6848	он2	WAT	S	1 15	-30.009	4.031	30.556	1.00	20.47	s	0
:	•	ATOM	6856	он2	WAT	S	123	-21.028	9.378	41.645	1.00	13.15	s	0
		MOTA	6857	ОН2	WAT	s	124	-17.894	1.227	22.644	1.00	11.10	s	0
		ATOM	6869	ОН2	WAT	s	136	-13.700	11.068	39.668	1.00	12.06	S	0
		MOTA	6873	он2	WAT	s	140	-16.131	8.790	24.586	1.00	10.01	s	0
15		ATOM	6881	он2	WAT	S	148	-14.575	-2.288	28.277	1.00	24.82	S	0
		ATOM	6908	OH2	WAT	s	177	-20.137	2.340	24.117	1.00	8.16	S	0
		ATOM	6925	он2	WAT	s	195	-14.246	-0.057	25.568	1.00	26.38	S	0
		ATOM	6936	он2	WAT	s	206	-14.383	-0.255	21.039	1.00	21.10	S	0
		ATOM	7014	он2	WAT	s	294	-25.323	5.733	36.748	1.00	14.27	s	0
20	į	ATOM	7015	он2	WAT	S	295	-5.015	5.528	25.654	1.00	25.26	S (C
		ATOM	7026	он2	WAT	s	306	-12.125	-1.788	22.440	1.00	16.05	S	0
ţ.		ATOM	7091	он2	WAT	S	374	-19.550	6.899	43.308	1.00	15.60	S	0
		ATOM	7153	ОН2	WAT	' S	445	-10.080	-6.158	38.144	1.00	40.05	s	0
·		ATOM	7166	он2	WAT	S	461	-11.181	-0.389	24.993	1.00	32.17	S	0
25		ATOM	7189	он2	PAT	' S	489	-11.757	5.269	27.058	1.00	17.40	S	0

192

	ATOM	7201	OH2	WAT	s 5 (04	-21.955	-1.663	40.073	1.00	22.05	S	0
	MOTA	7212	ОН2	WAT	s 5	21	-17.307	-1.765	21.966	1.00	22.00	S	0
	ATOM	7233	он2	WAT	S 5	45	-7.572	-3.899	31.498	1.00	31.88	S	0
	MOTA	7238	он2	TAW	s 5	50	-16.631	-4.218	44.114	1.00	28.79	s	0
5	ATOM	7255	он2	TAW	s §	71	-16.386	-5.314	21.770	1.00	19.46	s	0
	ATOM	7274	он2	WAT	S 5	95	-17.930	-3.842	20.217	1.00	18.12	s	0
	ATOM	7276	он2	WAT	S 5	97	-13.769	7.885	25.487	1.00	10.50	s	0
	ATOM	7288	он2	WAT	S 6	16	-12.729	7.435	38.117	1.00	23.58	s	0
	ATOM	7322	он2	WAT	S 6	68	-8.910	2.771	24.376	1.00	47.74	s	0
10	ATOM	7353	он2	WAT	s 7	28	-24.717	0.462	23.216	1.00	26.35	s	0
	ATOM	7375	он2	WAT	s $\frac{1}{2}$	64	-15.374	9.583	31.111	1.00	11.02	s	0
	ATOM	7389	он2	WAT	S 8	20	-9.060	-6.376	26.123	1.00	42.71 \$	5 ()
	ATOM	7396	он2	WAT	S 8	31	-23.318	-6.716	23.568	1.00	37.58	s	0
	ATOM	7426	он2	WAT	S 9	01	-21.607	-1.120	45.347	1.00	32.16	s	0
15	ATOM	7495	H2 1	WAT :	\$12 9	5	-10.054	5.104	25.040	1.00	30.17	s	0
	ATOM	7535	он2	WAT	S13	41	-11.308	-8.312	40.840	1.00	33.98	s	0
•	ATOM	7536	он2	WAT	S13	42	-18.306	-0.785	45.664	1.00	23.47	s	0
<i>:</i>	MOTA	7548	он2	WAT	S13	55	-11.195	6.225	36.412	1.00	22.59	s	0
	ATOM	7552	он2	WAT	S13	61	-19.290	-9.723	41.426	1.00	33.42	S	0
20	ATOM	7553	ОН2	WAT	s1 3	62	-20.599	-6.591	22.350	1.00	29.05	s	0
	ATOM	7559	он2	WAT	s13	68	-9.450	1.544	29.448	1.00	32.22	s	0
	ATOM	7560	ОН2	WAT	s13	69	-6.410	-0.567	29.306	1.00	38.08	S	0
	ATOM	7566	ОН2	WAT	S13	376	-14.934	13.298	41.070	1.00	13.87	S	0
i	ATOM	7569	ОН2	WAT	S1	80	-17.170	8.649	45.004	1.00	13.87	S	0
25	ATOM	7585	ОН2	WAT	s1	98	-13.501	6.967	29.029	1.00	12.91	S	0
					•								

5

CA 02466264 2004-05-05

193

ATOM 7586 OH2 WAT S1399 -11.476 -0.026 31.088 1.00 30.86 S O 1.00 51.81 S O -4.514 39.356 ATOM 7591 OH2 WAT S1407 -15.761 1.00 42.90 S O ATOM 7592 OH2 WAT S1408 -15.589 -5.579 35.465 ATOM 7593 OH2 WAT S1409 -7.748 -3.886 41.337 1.00 28.05 S O 1.320 43.058 1.00 31.74 S O ATOM 7681 OH2 WAT S1560 -14.609 ATOM 7688 OH2 WAT S1371 -18.720 -5.226 24.140 1.00 37.27 S O 6.183 23.535 1.00 42.36 S O ATOM 7724 OH2 WAT S1614 -7.499 -9.600 -1.548 39.202 1.00 43.85 S O ATOM 7745 OH2 WAT S1636

10 <u>Table 7</u>

Three-dimensional structural coordinate of the complex of human hematopoietic PGDS with calcium, glutathione and Cibacron Blue

-2.882 -27.583 10.962 1.00 ATOM 1690 N TYR A .15 1.00 8.37 A -2.803 -26.193 11.399 8 ATOM 1691 TYR A -1.457 -25.586 10.986 1.00 8.12 TYR A 8 ATOM 1692 СВ 1.00 8.19 -1.151 -24.248 11.627 ATOM 1693 CG TYR A 8 -1.019 -24.131 13.013 1.00 7.49 A CD1 TYR A 8 ATOM 1694 7.97 A -0.726 -22.906 13.605 1.00 CE1 TYR A 20 ATOM 1695 -0.983 -23.099 10.850 1.00 8.28 ATOM 1696 CD2 TYR A 7.81 A 11.438 1.00 8 -0.688 -21.869 ATOM 1697 CE2 TYR A -0.562 -21.783 12.811 1.00 8.21 A TYR A **ATOM 1698** CZ8.12 A -0.268 -20.575 13.381 1.00 8 ATOM 1699 TYR A -3.932 -25.418 10.728 1.00 8.79 A TYR A 8 ATOM 1700 C 25

	ATOM 1701	O TYR A	8 -4.689 -25.979	9.943 1.00 8.57 A
	ATOM 1702	N PHE A	9 -4.047 -24.134	11.051 1.00 9.51 A
•	ATOM 1703	CA PHE A	9 -5.069 -23.291	10.446 1.00 10.44 A
	ATOM 1704	CB PHE A	9 -5.179 -21.963	11.191 1.00 10.48 A
5 .	ATOM 1705	CG PHE A	9 -5.739 -22.092	12.572 1.00 11.15 A
	ATOM 1706	CD1 PHE A	9 -5.022 -21.633	13.672 1.00 11.38 A
	ATOM 1707	CD2 PHE A	9 -6.976 -22.684	12.776 1.00 10.92 A
	ATOM 1708	CE1 PHE A	9 -5.539 -21.768	14.960 1.00 11.88 A
	ATOM 1709	CE2 PHE A	9 -7.497 -22.823	14.052 1.00 11.75 A
10	ATOM 1710	CZ PHE A	9 -6.778 -22.364	15.148 1.00 11.23 A
	ATOM 1711	C PHE A	9 -4.654 -23.010	9.011 1.00 11.01 A
	ATOM 1712	O PHE A,	9 -3.567 -23.405	8.584 1.00 10.55 A
	ATOM 1713	N ASN A 10	-5.518 -22.325	8.269 1.00 11.11 A
	ATOM 1714	CA ASN A 1	0 -5.204 -21.977	6.887 1.00 11.58 A
15	ATOM 1715	CB ASN A 1	0 -6.481 -21.836	6.048 1.00 11.02 A
	ATOM 1716	CG ASN A 1	0 -6.192 -21.414	4.615 1.00 12.05 A
	ATOM 1717	OD1 ASN A 1	0 -5.142 -21.747	4.049 1.00 11.74 A
	ATOM 1718	ND2 ASN A 1	0 -7.130 -20.690	4.012 1.00 12.36 A
	ATOM 1719	C ASN A 10	-4.439 -20.655	6.889 1.00 11.87 A
20	ATOM 1720	O ASN A 10	-4.998 -19.591	6.618 1.00 11.89 A
	ATOM 1721	n met a 1	.1 -3.163 -20.732	7.252 1.00 12.14 A
	ATOM 1722	CA MET A 1	-2.281 -19.570	7.276 1.00 12.22 A
	ÁTOM 1723	CB MET A 1	-2.681 -18.571	8.391 1.00 13.94 A
	ATOM 1724	CG MET A 1	-2.627 -19.064	9.826 1.00 16.67 A
25	ATOM 1725	SD MET A	-3.026 -17.743	11.102 1.00 19.82 A

195

.*	ATOM 1726	CE MET A 1	-4.782 -17.673	10.947	1.00	19.20	A
	ATOM 1727	C MET A 1	-0.849 -20.065	7.455	1.00	11.51	A
	ATOM 1728	O MET A 1	-0.619 -21.250	7.759	1.00	10.85	A
	ATOM 1729	N ARG A 12	0.109 -19.180	7.208	1.00	9.73	A
5	ATOM 1730	CA ARG A 1	1.508 -19.544	7.373	1.00	9.30	A
	ATOM 1731	CB ARG A	2.419 -18.405	6.880	1.00	9.27	A
	ATOM 1732	CG ARG A	2.249 -18.071	5.381	1.00	9.28	A
	ATOM 1733	CD ARG A	3.317 -17.072	4.886	1.00	9.18	A
	атом 1734	NE ARGA	3.265 -15.815	.5.625	1.00	9.17	A
10	ATOM 1735	CZ ARG A	2.303 -14.905	5.491	1.00	9.26	A
	ATOM 1736	NH1 ARG A	1.311 -15.106	4.633	1.00	9.26	A
	ATOM 1737	NH2 ARG A	2.320 -13.806	6.230	1.00	7.97	A
	ATOM 1738	C ARG A 1	2 1.692 -19.802	8.868	1.00	8.69	A
	атом 1739	O ARG A 1	2 1.922 -20.936	9.294	1.00	7.11	A
15	ATOM 1740	N GLY A	13 1.568 -18.742	9.660	1.00	8.23	A
	ATOM 1741	CA GLY A	13 1.686 -18.879	11.102	1.00	8.26	A
	атом 1742	C GLY A	2.843 -19.731	11.591	1.00	7.95	A
	ATOM 1743	O GLY A	13 3.942 -19.685	11.038	1.00	8.28	A
	ATOM 1744	N ARG A 1	4 2.587 -20.533	12.620	1.00	8.33	A
20	ATOM 1745	CA ARG A	14 3.623 -21.374	13.210	1.00	8.64	A
	ATOM 1746	CB ARG A	14 3.284 -21.628	14.676	1.00	10.55	A
	ATOM 1747	CG ARG A	14 3.169 -20.337	15.470	1.00	14.00	A
	ATOM 1748	CD ARG	14 2.974 -20.601	16.955	1.00	16.89	A
	ATOM 1749	NE ARG A	14 4.069 -20.046	17.745	1.00	20.03	A
25	ATOM 1750	CZ ARG A	14 5.312 -20.519	17.739	1.00	20.80	A

2.42

	ATOM 1751	NH1 ARG A	14	5.629 -21.561	16.988	1.00	22.98	A
	ATOM 1752	NH2 ARG A	14	6.242 -19.951	18.482	1.00	21.79	A
	ATOM 1753	C ARG A 1	4	3.894 -22.686	12.500	1.00	8.02	A
	АТОМ 1754	O ARG A 1	4	4.787 -23.438	12.888	1.00	7.13	A
5	ATOM 1755	N ALA A 1	5	3.136 -22.958	11.445	1.00	7.13	A
	ATOM 1756	CA ALA A	15	3.330 -24.197	10.706	1.00	6.67	A
	ATOM 1757	CB ALA A	15	1.987 -24.747	10.262	1.00	6.00	A
	ATOM 1758	C ALA A 1	5	4.221 -23.975	9.497	1.00	6.29	A
	ATOM 1759	O ALA A 1	5	4.765 -24.925	8.934	1.00	6.25	Α
10	ATOM 1760	N GLU A	16	4.383 -22.714	9.106	1.00	6.29	A
	ATOM 1761	CA GLU A	16	5.176 -22.402	7.915	1.00	5.84	A
	ATOM 1762	CB GLU A	16	5.209 -20.890	7.678	1.00	4.97	A
	ATOM 1763	CG GLU A	16	5.524 -20.485	6.235	1.00	5.83	A
	ATOM 1764	CD GLU A	16	4.520 -21.037	5.205	1.00	6.62	A
15	ATOM 1765	OE1 GLU A	16	3.472 -21.597	5.601	1.00	6.92	A
	ATOM 1766	OE2 GLU A	16	4.782 -20.883	3.984	1.00	6.47	A
•	атом 1767	C GLU A	16	6.597 -22.952	7.940	1.00	5.58	A
	ATOM 1768	O GLU A	16	7.085 -23.435	6.912	1.00	6.05	Α
	ATOM 1769	N ILE A	17	7.260 -22.890	9.095	1.00	5.19	A
20 .	ATOM 1770	CA ILE A	17	8.631 -23.382	9.203	1.00	5.07	A
	ATOM 1771	CB ILE A	17	9.222 -23.154	10.658	1.00	4.92	A
•	ATOM 1772	CG2 ILE A	17	8.396 -23.885	11.716	1.00	4.41	Α
	ATOM 1773	CG1 ILE A	17	10.668 -23.634	10.717	1.00	4.64	Α
	ATOM 1774	CD1 ILE A	17	11.531 -23.053	9.616	1.00	5.86	A
25	ATOM 1775	C ILE À	17	8.676 -24.858	8.805	1.00	4.81	. A

	атом 1776	0	ILE A	17	9.588 -25.305	8.103	1.00	4.95	Α
	ATOM 1966	N	TRP A	39	-11.923 -26.095	14.978	1.00 3	2.28	A
•	атом 1967	CA	TRP A	39	-10.853 -26.045	15.967	1.00 3	2.36	Α
	атом 1968	СВ	TRP A	39	-10.353 -24.604	16.130	1.00 3	2.57	A
. 5	ATOM 1969	CG	TRP A	39	-9.352 -24.410	17.236	1.00 3	2.92	Α
	ATOM 1970	CD2	TRP A	39	-8.212 -25.232	17.526	1.00 3	3.08	Α
	ATOM 1971	CE2	TRP A	39	-7.565 -24.666	18.648	1.00 3	3.25	A
	ATOM 1972	CE3	TRP A	39	-7.676 -26.392	16.950	1.00 3	3.06	A
	ATOM 1973	CD1	TRP A	39	-9.345 -23.408	18.164	1.00 3	3.31	Α
10	ATOM 1974	NE1	TRP A	39	-8.277 -23.554	19.015	1.00 3	2.95	Α
	ATOM 1975	CZ2	TRP A	39	-6.407 -25.220	19.208	1.00 3	3.30	A
	ATOM 1976	CZ3	TRP A	39	-6.522 -26.944	17.508	1.00 3	3.28	A
	ATOM 1977	СН2	TRP A	39	-5.902 -26.353	18.627	1.00 3	3.07	Α
<i>:</i> *	ATOM 1978	С	TRP A	39	-11.305 -26.596	17.323	1.00 3	2.24	A
15	ATOM 1979	0	TRP A	39	-10.653 -27.471	17.891	1.00 3	1.88	Α
	атом 1980	N	PRO A	40	-12.437 -26.098	17.850	1.00 3	32.29	A
•	ATOM 1981	CD	PRO A	40	-13.335 -25.084	17.264	1.00 3	32.39	A
:	ATOM 1982	CA	PRO A	40	-12.953 -26.557	19.147	1.00 3	32.22	A
	ATOM 1983	СВ	PRO A	40	-14.347 -25.943	19.198	1.00 3	32.41	A
20	ATOM 1984	CG	PRO A	40	-14.155 -24.651	18.462	1.00 3	32.65	A
	ATOM 1985	С	PRO A	40	-12.975 -28.077	19.343	1.00	31.96	A
	атом 1986	0	PRO A	40	-12.489 -28.579	20.355	1.00	31.96	A
•	атом 1987	N	GLU A	41	-13.527 -28.810	18.382	1.00	31.78	A
	атом 1988	CA	GLU A	41	-13.599 -30.263	18.503	1.00	31.71	A
25	атом 1989	СВ	GLU A	41	-14.590 -30.831	17.477	1.00	32.59	A

	MOTA	1990	CG	GLU	A	41	-16.039	-30.398	17.728	1.00	34.12	Α
	ATOM	1991	CD	GLU	A	41	-17.008	-30.864	16.651	1.00	34.74	Α
:	MOTA	1992	OE1	GLU	Α	41	-18.136	-30.324	16.602	1.00	35.16	Α
	ATOM	1993	OE2	GLU	Α	41	-16.650	-31.762	15.859	1.00	35.71	A
5	ATOM	1994	С	GLU	A	41	-12.248	-30.965	18.374	1.00	31.20	A
	ATOM	1995	0	GLU	Α	41	-12.026	-32.006	18.994	1.00	31.36	A
,	ATOM	1996	N	ILE	A	42	-11.341	-30.402	17.581	1.00	30.36	A
	ATOM	1997	CA	ILE	Α	42	-10.024	-31.008	17.404	1.00	29.44	A
	ATOM	1998	СВ	ILE	A	42	-9.329	-30.477	16.132	1.00	29.45	A
10 ,	ATOM	1999	CG2	ILE	A	42	-7.893	-30.971	16.070	1.00	29.10	A
:	ATOM	2000	CG1	ILE	A 4	2	-10.098	-30.946	14.896	1.00	29.17	A
	ATOM	2001	CD1	ILE	A	42	-9.533	-30.435	13.587	1.00	29.41	A
:	ATOM	2002	С	ILE	A	42	-9.133	-30.743	18.614	1.00	29.13	A
	ATOM	2003	0	ILE	E A	42	-8.395	-31.621	19.064	1.00	28.94	A
15	ATOM	2004	N	LYS	5 A	43	-9.215	-29.527	19.140	1.00	28.55	A
	АТОМ	2005	CA	LYS	5 A	43	-8.427	-29.129	20.294	1.00	28.30	A
;	ATOM	2006	СВ	LYS	5 A	43	-8.860	-27.739	20.757	1.00	28.78	A
	ATOM	2007	CG	LY	5 A	43	-8.047	-27.185	21.911	1.00	29.29	A
	ATOM	2008	CD	LY	5 A	43	-8.485	-25.778	22.266	1.00	29.95	A
20	MOTA	2009	CE	LY	S A	43	-7.585	-25.184	23.332	1.00	30.31	A
	MOTA	2010	NZ	LY	S A	43	-7.992	-23.795	23.662	1.00	31.39	A
	ATOM	2011	С	LY	SĄ	43	-8.554	-30.120	21.452	1.00	27.83	A
	ATOM	2012	0	LY	SĄ	43	-7.565	-30.471	22.088	1.00	27.33	A
	ATOM	2052	N	GL	Y A	49	-3.879	-29.189	23.684	1.00	18.08	A
25	ATOM	2053	C.P	GL	Y A	49	-4.819	-28.316	23.011	1.00	17.77	A

17 11 1

CA 02466264 2004-05-05

	ATOM 20)54 C	GLY A	49	-4.205 -27.233	22.144	1.00 17.36	A
	ATOM 20)55 0	GLY A	49	-4.742 -26.134	22.055	1.00 17.62	A
	ATOM 20)56 N	LYS A	. 50	-3.087 -27.533	21.492	1.00 16.57	A
	ATOM 20	057 CA	LYS A	. 50	-2.444 -26.544	20.635	1.00 15.44	A
5	ATOM 20	058 CB	LYS A	. 50	-1.252 -25.901	21.357	1.00 16.66	A
	ATOM 20	059 CG	LYS A	50	-1.576 -25.229	22.697	1.00 19.15	A
	ATOM 20	060 CD	LYS A	50	-2.571 -24.078	22.546	1.00 20.62	A
	ATOM 20	061 CE	LYS A	50	-2.752 -23.310	23.863	1.00 22.03	A
	ATOM 20	062 NZ	LYS A	50	-1.454 -22.751	24.383	1.00 23.09	A
10	ATOM 2	063 C	LYS A	50	-1.962 -27.136	19.308	1.00 14.12	A
	ATOM 2	064 0	LYS A	50	-1.634 -28.319	19.214	1.00 12.86	A
	ATOM 2	065 ท	ILE A	51	-1.935 -26.300	18.280	1.00 12.71	A
	ATOM 2	066 CA	ILE A	A 51	-1.442 -26.709	16.976	1.00 11.10	A
	ATOM 2	067 CB	ILE A	A 51	-2.556 -26.696	15.904	1.00 11.18	Α
15	ATOM 2	068 CG2	ILE A	A 51	-3.365 -27.995	15.981	1.00 9.64	A
	ATOM 2	069 CG1	ILE A	A 51	-3.448 -25.464	16.085	1.00 11.01	A
	ATOM 2	070 CD1	ILE A	A 51	-4.506 -25.325	15.031	1.00 11.08	A
	ATOM 2	071 C	ILE A	A 51	-0.361 -25.690	16.641	1.00 11.44	A
:	ATOM 2	0 ⁷ 2 0	ILE A	A 51	-0.312 -24.616	17.240	1.00 11.87	A
20.	ATOM 2	073 N	PRO A	A 52	0.490 -25.983	15.651	1.00 10.86	A
:	ATOM 2	074 CD	PRO A	A 52	1.653 -25.134	15.342	1.00 10.26	A
	ATOM 2	075 CA	PRO .	A 52	0.506 -27.193	14.826	1.00 9.60	A
•	ATOM 2	076 CB	PRO .	A 52	1.479 -26.827	13.715	1.00 10.27	A
:	ATOM 2	.077 CG	PRO	Ą 52	2.505 -26.052	14.470	1.00 10.74	A
. 25	ATOM 2	2078 C	PRO	A 52	0.917 -28.512	15.473	1.00 9.74	A

	ATOM 2079	O PRO A	52	1.654 -28.551	16.457	1.00	9.94	A
	ATOM 2080	N ILE A	53	0.429 -29.595	14.890	1.00	9.16	A
: .	атом 2081	CA ILE A	53	0.802 -30.928	15.316	1.00	9.11	A
	:ATOM 2082	CB ILE A	53	-0.356 -31.724	15.961	1.00	9.49	A
5	ATOM 2083	CG2 ILE A	53	-0.587 -31.248	17.399	1.00	9.33	A
	ATOM 2084	CG1 ILE A	53	-1.625 -31.588	15.116	1.00	10.59	A
	ATOM 2085	CD1 ILE A	53	-2.661 -32.627	15.451	1.00	10.74	A
	ATOM 2086	C ILE A	53	1.209 -31.624	14.028	1.00	8.87	A
: ;	ATOM 2087	O ILE A	53	0.795 -31.217	12.937	1.00	8.80	A
10	ATOM 2147	N HIS A	62	4.066 -32.477	18.677	1.00	7.17	A
	ATOM 2148	CA HIS A	62	3.585 -31.113	18.831	1.00	7.13	A
	ATOM 2149	CB HIS A	62	2.587 -30.991	20.005	1.00	6.95	A
	ATOM 2150	CG HIS A	62	3.182 -31.270	21.350	1.00	7.27	A
	ATOM 2151	CD2 HIS A	62	3.456 -30.449	22.392	1.00	6.74	A
15	ATOM 2152	ND1 HIS A	62	3.557 -32.535	21.750	1.00	7.14	A
	ATOM 2153	CE1 HIS A	62	4.030 -32.482	22.982	1.00	7.45	A
*	ATOM 2154	NE2 HIS A	62	3.981 -31.228	23.394	1.00	7.97	A
	ATOM 2155	C HIS A	62	4.749 -30.134	19.018	1.00	6.81	A
•	ATOM 2156	O HIS A	62	5.903 -30.550	19.138	1.00	6.11	A
20	ATOM 2157	N GLN A	63	4.416 -28.840	19.036	1.00	6.34	A
÷	ATOM 2158	CA GLN A	63	5.371 -27.738	19.167	1.00	6.36	A
	ATOM 2159	CB GLN A	63	6.378 -27.990	20.295	1.00	6.62	A
	ATOM 2160	CG GLN 🧸	63	5.846 -27.668	21.677	1.00	6.95	A
	ATOM 2161	CD GLN A	63	5.456 -26.197	21.848	1.00	7.39	A
25	ATOM 2162	OE1 GLN A	63	5.840 -25.338	21.058	1.00	7.03	A

201

		MOTA	2163	NE2	GLN .	A	63	4.702	-25.909	22.906	1.00	7.11	A
•		MOTA	2164	С	GLN .	Α	63	6.108	-27.532	17.848	1.00	6.58	A
		MOTA	2165	0	GLN .	A	63	6.976	-28.325	17.460	1.00	5.65	A
		MOTA	2166	N S	ER A		64	5.756	-26.451	17.163	1.00	7.01	A
5	·. ·	MOTA	2167	CA	SER .	A	64	6.327	-26.156	15.858	1.00	7.60	A
		ATOM	2168	СВ	SER	A	64	5.830	-24.788	15.369	1.00	7.93	A
		ATOM	2169	OG	SER	A	64	6.500	-23.724	16.016	1.00	10.49	A
٠.	:	ATOM	2170	С	SER	A	64	7.853	-26.230	15.726	1.00	7.47	A
		ATOM	2171	0	SER	A	64	8.355	-26.838	14.778	1.00	8.15	Α
10		ATOM	2172	N	LEU	A	65	8.590	-25.625	16.659	1.00	7.41	A
		ATOM	2173	CA	LEU	A	65	10.057	-25.630	16.588	1.00	6.62	Α
		ATOM	2174	СВ	LEU	Α	65	10.635	-24.537	17.507	1.00	6.26	Α
		ATOM	2175	CG	LEU	A	65	10.102	-23.122	17.220	1.00	6.77	A
		ATOM	2176	CD1	LEU	A	65	10.889	-22.083	18.008	1.00	7.45	A
15		ATOM	2177	CD2	LEU	A	65	10.218	-22.826	15.727	1.00	6.34	A
	•	ÄTOM	2178	С	LEU	A	65	10.650	-26.997	16.928	1.00	6.30	A
		ATOM	2179	0	LEU	A	65	11.690	-27.382	16.393	1.00	5.38	A
		ÄTOM	2386	Ŋ	ASP	Α	93	15.188	-19.341	18.472	1.00	6.02	A
	-	ATOM	2387	CA	ASP	A	93	14.502	-18.945	19.704	1.00	6.44	A
20		ATOM	2388	CB	ASP	A	93	15.115	-19.629	20.926	1.00	6.17	A
		ATOM	2389	CG	ASP	Α	93	14.656	-21.070	21.084	1.00	6.96	A
		ATOM	2390	OD1	ASP	A	93	15.143	-21.748	22.016	1.00	8.03	A
:		ATOM	2391	OD2	ASP	Ą	93	13.816	-21.527	20.286	1.00	7.18	A
		MOTA	2392	С	ASP	Ą	93	14.500	-17.427	19.910	1.00	6.65	A
25		ATOM	2393	0	ASP	Ą	93	13.550	-16.869	20.470	1.00	6.96	A

50,2

5也. 化

500

CA 02466264 2004-05-05

•	ATOM 2	2394	N	THR .	A	94	15.558	-16.761	19.467	1.00	6.46	A
	ATOM	2395	ÇA	THR	A	94	15.605	-15.312	19.606	1.00	7.09	A
•	ATOM :	2396	СВ	THR	A	94	16.967	-14.767	19.156	1.00	7.44	A
•	MOTA	2 39 7	OG1	THR	Α	94	17.958	-15.187	20.105	1.00	8.81	A
5	ATOM	2398	CG2	THR	Α	94	16.960	-13.229	19.084	1.00	8.28	A
•	MOTA	2399	С	THR	Α	94	14.457	-14.732	18.760	1.00	6.91	A
:	MOTA	2400	0	THR	A	94	13.724	-13.845	19.206	1.00	7.60	A
	ATOM	2401	N	LEU	Α	95	14.271	-15.265	17.559	1.00	6.06	A
•	MOTA	2402	CA	LEU	A	95	13.195	-14.795	16.687	1.00	6.05	A
.10	ATOM	2403	СВ	LEU	Α	95	13.322	-15.419	15.294	1.00	5.72	A
	MOTA	2404	CG	LEU	Α	95	14.587	-15.000	14.533	1.00	6.19	A
	ATOM	2405	CD1	LEU	A	95	14.726	-15.828	13.269	1.00	5.14	A
	ATOM	2406	CD2	LEU	A	95	14.531	-13.509	14.208	1.00	6.20	A
• •	ATOM	2407	С	LEU	A	95	11.835	-15.144	17.289	1.00	6.40	A
15	MOTA	2408	0	LEU	Α	95	10.930	-14.310	17.332	1.00	6.49	Α
	ATOM	2409	N	ASP	A	96	11.705	-16.367	17.788	1.00	6.39	A
	MOTA	2410	CA	ASP	A	96	10.448	-16.806	18.378	1.00	7.84	A
	MOTA	2411	СВ	ASP	A	96	10.531	-18.280	18.762	1.00	7.75	A
	MOTA	2412	CG	ASP	Ą	96	9.190	-18.956	18.699	1.00	7.99	A
20	ATOM	2413	OD1	ASP	A	96	8.526	-18.824	17.650	1.00	8.64	A
								-19.612			7.98	
								-15.970				
٠								-15.648				
								-15.622			8.47	
25	ATOM	2418	CA	ASP	Ą	97	10.810	-14.799	21.601	1.00	9.21	A

		АТОМ	2419	СВ	ASP A	A	97	12.129	-14.473	22.322	1.00	9.43	A
	:	: MOTA	2420	CG	ASP A	A	97	12.692	-15.652	23.121	1.00	10.37	A
	·. .•	ATOM	2421	OD1	ASP A	A	97	13.867	-15.570	23.540	1.00	10.72	A
•		MOTA	2422	OD2	ASP A	A	97	11.974	-16.651	23.342	1.00	11.19	Α
5	: •	ATOM	2423	С	ASP A	A	97	10.145	-13.487	21.161	1.00	9.58	A
	·:	MOTA	2424	0	ASP A	A	97	9.120	-13.097	21.709	1.00	9.77	A
		ATOM	2425	N	PHE .	A	98	10.726	-12.812	20.172	1.00	9.72	A
		MOTA	2426	CA	PHE .	A	98	10.162	-11.551	19.712	1.00	9.93	A
		АТОМ	2427	СВ	PHE .	A	98	11.082	-10.888	18.683	1.00	10.00	Α
10		ATOM	2428	CG	PHE .	A	98	10.641	-9.507	18.285	1.00	10.18	A
		ATOM	2429	CD1	PHE	A	98	10.605	-8.476	19.222	1.00	10.49	Α
		ATOM	2430	CD2	PHE	Α	98	10.236	-9.246	16.979	1.00	10.06	A
		ATOM	2431	CE1	PHE	A	98	10.164	-7.197	18.861	1.00	10.61	A
	,;	ATOM	2432	CE2	PHE	Α	98	9.798	-7.979	16.612	1.00	10.38	A
15	:	MOTA	2433	CZ	PHE	Α	98	9.762	-6.954	17.551	1.00	10.19	A
	·!	ATOM	2434	С	PHE	A	98	8.754	-11.721	19.126	1.00	10.12	A
		ATOM	2435	0	PHE	Α	98	7.838	-10.967	19.459	1.00	9.57	Α
		MOTA	2436	N	MET	A	99	8.572	-12.723	18.273	1.00	10.66	A
		ATOM	2437	CA	MET	A	99	7.266	-12.956	17.675	1.00	11.35	Α
20	•	ATOM	2438	СВ	MET	A	99	7.319	-14.137	16.697	1.00	11.47	A
		ATOM	2439	CG	MET	Ą	99	8.239	-13.935	15.491	1.00	11.14	A
·.		MOTA	2440	SD	MET	Ą	99	7.912	-12.430	14.557	1.00	11.29	A
		ATOM	2441	CE	MET	Ą	99	6.373	-12.849	13.740		10.00	Α
	•	ATOM	2442	С	MET	Ą	99		-13.223			12.00	A
25		ATOM	2443	0	MET	Ą	99	5.052	-12.804	18.596	1.00	12.28	A

204

	ATOM 2444	N	SER A 100	6.562 -13.909	19.823	1.00 12.46	A
	ATOM 2445	CA	SER A 100	5.579 -14.189	20.865	1.00 13.62	A
•	ATOM 2446	СВ	SER A 100	6.092 -15.288	21.808	1.00 13.99	A
	ATOM 2447	OG	SER A 100	6.241 -16.513	21.108	1.00 15.53	A
, . 5	ATOM 2448	С	SER A 100	5.181 -12.942	21.666	1.00 13.94	A
	ATOM 2449	0	SER A 100	4.196 -12.971	22.400	1.00 14.47	A
	ATOM 2450	N	CYS A 101	5.935 -11.853	21.520	1.00 14.58	A
	ATOM 2451	CA	CYS A 101	5.634 -10.596	22.222	1.00 15.68	A
	ATOM 2452	СВ	CYS A 101	6.759 -9.571	22.047	1.00 16.12	A
10	ATOM 2453	SG	CYS A 101	8.291 -9.874	22.933	1.00 20.40	A
	ATOM 2454	С	CYS A 101	4.362 -9.950	21.693	1.00 15.48	A
	ATOM 2455	0	CYS A 101	3.715 -9.184	22.404	1.00 15.75	A
	ATOM 2456	N	PHE A 102	4.012 -10.245	20.445	1.00 15.64	A
	ATOM 2457	CA	PHE A 102	2.825 -9.646	19.849	1.00 15.94	A
15	ATOM 2458	СВ	PHE A 102	2.898 -9.712	18.321	1.00 14.57	A
	ATOM 2459	CG	PHE A 102	4.035 -8.929	17.734	1.00 13.99	A
•	ATOM 2460	CD1	PHE A 102	5.336 -9.428	17.770	1.00 12.96	A
÷	ATOM 2461	CD2	PHE A 102	3.812 -7.684	17.158	1.00 13.28	A
	ATOM 2462	CE1	PHE A 102	6.393 -8.701	17.243	1.00 12.46	A
20	ATOM 2463	CE2	PHE A 102	4.865 -6.949	16.628	1.00 13.41	A
`.	ATOM 2464	CZ	PHE A 102	6.159 -7.459	16.671	1.00 12.82	A
	ATOM 2465	С	PHE A 102	1.529 -10.290	20.321	1.00 16.74	A
	ATOM 2466	0	рне 🐧 102	1.422 -11.517	20.399	1.00 16.41	A
•	ATOM 2467	N	PRO A 103	0.523 -9.460	20.642	1.00 17.53	A
25	ATOM 2468	CD	PRO A 103	0.599 -7.989	20.671	1.00 17.55	Α

 $3/268~\mathrm{ef}~26$

3,208,432.

120a - 20

3,146,912

CA 02466264 2004-05-05

•												
	ATOM	2469	CA	PRO	A	103	-0.791	-9.916	21.112	1.00	18.81	A
	MOTA	2470	СВ	PRO	A	103	-1.372	-8.658	21.748	1.00	18.35	A
.*	ATOM	2471	CG	PRO	Α	103	-0.855	-7.591	20.841	1.00	17.64	A
	MOŢA	2472	С	PRO	A	103	-1.646	-10.424	19.954	1.00	19.69	A
5	MOTA	2473	0	PRO	Α	103	-2.663	-9.827	19.613	1.00	20.09	Α
:	ATOM	2474	N	TRP	A	104	-1.221	-11.527	19.353	1.00	21.16	A
	MOTA	2475	CA	TRP	Α	104	-1.925	-12.097	18.215	1.00	22.57	A
	MOTA	2476	СВ	TRP	Α	104	-1.215	-13.364	17.740	1.00	22.05	A
	ATOM	2477	CG	TRP	Α	104	0.208	-13.135	17.325	1.00	22.03	A
10	ATOM	2478	CD2	TRP	Α	104	0.666	-12.577	16.085	1.00	22.05	Α.
	АТОМ	2479	CE2	TRP	Α	104	2.076	-12.530	16.144	1.00	22.03	Α
•	ATOM	2480	CE3	TRP	Α	104	0.022	-12.110	14.931	1.00	21.92	A
	ATOM	2481	CD1	TRP	Α	104	1.324	-13.393	18.060	1.00	21.72	A
	ATOM	2482	NE1	TRP	Α	104	2.449	-13.036	17.360	1.00	21.99	A
15	MOTA	2483	CZ2	TRP	Α	104	2.856	-12.037	15.092	1.00	22.09	A
	ATOM	2484	CZ3	TRP	Α	104	0.799	-11.618	13.883	1.00	22.10	A
	ATOM	2485	CH2	TRP	Α	104	2.199	-11.587	13.973	1.00	22.21	A
	ATOM	2486	С	TRP	Α	104	-3.398	-12.404	18.462	1.00	23.87	A
	ATOM	2487	0	TRP	Α	104	-4.227	-12.208	17.580	1.00	23.92	A
20	MOTA	2488	N	ALA	Α	105	-3.725	-12.880	19.658	1.00	25.71	A
•	ATOM	2489	CA	ALA	Α	105	-5.110	-13.223	19.973	1.00	27.71	Α
	ATOM	2490	СВ	ALA	Ą	105	-5.161	-14.573	20.686	1.00	27.28	A
	MOTA	2491	С	ALA	Ą	105	-5.827	-12.168	20.814	1.00	28.94	A
ë,	ATOM	1 2492	0		•			-12.503		1.00	29.77	A
· 25	ATOM	1 2493	N	GLU	A	106	-5.580	-10.897	20.527	1.00	30.28	A

1200 15

CA 02466264 2004-05-05

·	ATOM 2494	CA	GLU A 106	-6.227	-9.825	21.272	1.00 31.40	A
	ATOM 2495	СВ	GLU A 106	-5.290	-8.622	21.389	1.00 31.69	A
	ATOM 2496	CG	GLU A 106	-5.919	-7.415	22.061	1.00 32.04	A
	ATOM 2497	CD	GLU A 106	-6.531	-7.755	23.407	1.00 32.68	A
5	ATOM 2498	OE1	GLU A 106	-5.780	-8.147	24.328	1.00 33.12	A
	ATOM 2499	OE2	GLU A 106	-7.767	-7.636	23.540	1.00 32.39	A
•	ATOM 2500	С	GLU A 106	-7.529	-9.410	20.589	1.00 32.24	A
	ATOM 2501	0	GLU A 106	-7.526	-8.979	19.433	1.00 31.93	A
	ATOM 2502	N	LYS A 107	-8.640	-9.545	21.309	1.00 33.40	A
10	ATOM 2503	CA	LYS A 107	-9.951	-9.194	20.768	1.00 34.44	A
	ATOM 2504	СВ	LYS A 107	-11.064	-9.645	21.726	1.00 35.12	A
	ATOM 2505	CG	LYS A 107	-11.028	-11.140	22.042	1.00 36.21	Α
	ATOM 2506	CD	LYS A 107	-12.355	-11.678	22.594	1.00 36.94	A
•	ATOM 2507	CE	LYS A 107	-12.840	-10.921	23.833	1.00 37.48	A
15	ATOM 2508	NZ	LYS A 107	-13.493	-9.618	23.499	1.00 37.90	A
	ATOM 2509	С	LYS A 107	-10.082	-7.702	20.472	1.00 34.49	A
	ATOM 2510	0	LYS A 107	-10.542	-7.319	19.396	1.00 34.58	A
	ATOM 2511	N	LYS A 108	-9.683	-6.860	21.421	1.00 34.77	A
·	ATOM 2512	CA	LYS A 108	-9.755	-5.416	21.208	1.00 34.85	A
20	ATOM 2513	СВ	LYS A 108	-9.397	-4.654	22.488	1.00 35.43	A
	ATOM 2514	CG	LYS A 108	-10.511	-4.602	23.526	1.00 36.43	A
ž	" АТОМ 2515	CD	LYS A 108	-10.639	-5.902	24.298	1.00 37.04	A
	ATOM 2516	CE	LYS A 108	-9.476	-6.082	25.262	1.00 37.43	A
							1.00 37.89	
-25	. АТОМ 2518	С	LYS A 108	-8.796	-5.016	20.088	1.00 34.70	A

207

	•											
	MOTA	2519	О	LYS	Α	108	-7.578	-5.103	20.239	1.00	34.50	A
•	ATOM	2520	N	GLN	Α	109	-9.359	-4.575	18.968	1.00	34.41	A
	ATOM	2521	CA	GLN	Α	109	-8.575	-4.174	17.806	1.00	34.31	A
	MOTA	2522	СВ	GLN	Α	109	-9.511	-3.809	16.651	1.00	35.11	Α
. 5	MOTA	2523	CG	GLN	Α	109	-8.806	-3.584	15.327	1.00	36.38	A
	ATOM	2524	CD	GLN	Α	109	-8.007	-4.800	14.893	1.00	37.34	A
	ATOM	2525	OE1	GLN	Α	109	-8.525	-5.922	14.858	1.00	37.88	A
÷	ATOM	2526	NE2	GLN	Α	109	-6.737	-4.586	14.560	1.00	37.71	A
	ATOM	2527	С	GLN	Α	109	-7.632	-3.006	18.082	1.00	33.82	A
10	ATOM	2528	0	GLN	Α	109	-6.437	-3.086	17.802	1.00	33.77	A
	ATOM	2529	N	ASP	A	110	-8.178	-1.921	18.621	1.00	33.24	A
	ATOM	2530	CA	ASP	A	110	-7.393	-0.731	18.926	1.00	32.17	A
	ATOM	2531	СВ	ASP	A	110	-8.290	0.339	19.561	1.00	33.29	A
	ATOM	2532	CG	ASP	A	110	-9.147	-0.208	20.689	1.00	34.12	A
15	: ATOM	2533	OD1	ASP	Α	110	-8.607	-0.469	21.785	1.00	34.82	A
	ATOM	2534	OD2	ASP	A·	110	-10.365	-0.383	20.474	1.00	35.05	A
,	ATOM	2535	С	ASP	Α	110	-6.217	-1.045	19.845	1.00	30.99	A
	ATOM	2536	0	ASP	A	110	-5.103	-0.561	19.626	1.00	30.41	A
	ATOM	2537	N	VAL	A	111	-6.469	-1.852	20.870	1.00	29.43	A
20.	ATOM	2538	CA	VAL	A	111	-5.430	-2.236	21.815	1.00	28.27	A
	ATOM	2539	СВ	VAL	A	111	-6.010	-3.086	22.964	1.00	28.68	A
•	. ATOM	2540	CG1	VAL	A	111	-4.891	-3.532	23.899	1.00	28.43	A
	ATOM	2541	CG2	VAL	Ą	111	-7.061	-2.285	23.718	1.00	28.82	A
	ATOM	2542	С	VAL	A	111	-4.373	-3.061	21.089	1.00	27.11	A
25	ATOM	2543	0	VAL	A	111	-3.176	-2.848	21.258	1.00	26.42	A

1303

; or 2

13:2

CA 02466264 2004-05-05

	:							
.•	ATOM 2544	N	LYS A 112	-4.832	-4.005	20.276	1.00 26.09	A
	АТОМ 2545	CA	LYS A 112	-3.936	-4.866	19.518	1.00 25.03	A
•	ATOM 2546	СВ	LYS A 112	-4.754	-5.880	18.717	1.00 25.17	A
:	ATOM 2547	CG	LYS A 112	-3.932	-6.879	17.927	1.00 25.45	A
5	ATOM 2548	CD	LYS A 112	-4.832	-7.932	17.297	1.00 25.91	A
	ATOM 2549	CE	LYS A 112	-4.021	-8.973	16.535	1.00 26.40	A
	ATOM 2550	NZ	LYS A 112	-4.889	-10.025	15.934	1.00 26.69	A
	ATOM 2551	С	LYS A 112	-3.055	-4.044	18.580	1.00 24.09	A
	. ATOM 2552	0	LYS A 112	-1.832	-4.200	18.567	1.00 23.73	A
10	ATOM 2553	N	GLU A 113	-3.685	-3.161	17.810	1.00 22.88	A
	ATOM 2554	CA	GLU A 113	-2.980	-2.314	16.853	1.00 22.08	A
	: ATOM 2555	СВ	GLU A 113	-3.993	-1.498	16.036	1.00 23.03	A
· .	атом 2556	CG	GLU A 113	-3.394	-0.676	14.915	1.00 24.94	A
	ATOM 2557	CD	GLU A 113	-4.453	-0.101	13.976	1.00 26.15	A
15	атом 2558	OE1	GLU A 113	-5.181	-0.894	13.332	1.00 26.50	A
	атом 2559	OE2	GLU A 113	-4.556	1.142	13.881	1.00 27.05	A
	атом 2560	С	GLU A 113	3 -1.973	-1.383	17.532	1.00 20.78	A
**	ATOM 2561	0	GLU A 113	3 -0.874	-1.162	17.022	1.00 19.80	A
	атом 2562	N	GLN A 11	4 -2.345	-0.839	18.684	1.00 19.79	A
2.0	ATOM 2563	CA	GLN A 11	4 -1.450	0.047	19.406	1.00 19.27	A
,	ATOM 2564	СВ	GLN A 11	4 -2.154	0.632	20.634	1.00 20.01	A
	ATOM 2565	CG	GLN A 11	4 -1.301	1.615	21.423	1.00 21.19	A
							1.00 22.15	
•		OE1	•				1.00 23.10	
25	ATOM 2568	NE2	GLN A 11	4 -1.699	3.102	19.536	1.00 21.70	A

	ATOM	2569	С	GLN	A	114	-0.188	-0.709	19.838	1.00	18.22	A
	ATOM	2570	0	GLN	A	114	0.927	-0.242	19.604	1.00	17.80	A
	ATOM	2571	N	MET	A	115	-0.365	-1.877	20.452	1.00	17.56	A
•	ATOM	2572	CA	MET	Α	115	0.769	-2.676	20.908	1.00	17.24	A
5	АТОМ	2573	СВ	MET	Α	115	0.290	-3.905	21.693	1.00	19.31	A
•	ATOM	2574	CG	MET	Α	115	1.431	-4.735	22.269	1.00	21.86	A
•	ATOM	2575	SD	MET	Α	115	0.923	-5.795	23.655	1.00	26.35	A
•	ATOM	2576	CE	MET	A	115	0.941	-4.589	25.027	1.00	25.28	A
	ATOM	2577	С	MET	Α	115	1.655	-3.122	19.744	1.00	15.84	A
10	MOTA	2578	0	MET	Α	115	2.882	-3.125	19.860	1.00	15.55	A
	ATOM	2579	N	PHE	Α	116	1.035	-3.509	18.632	1.00	14.07	A
	ATOM	2580	CA	PHE	A	116	1.786	-3.928	17.452	1.00	13.26	A
-	ATOM	2581	СВ	PHE	Α	116	0.845	-4.301	16.300	1.00	12.53	A
	ATOM	2582	CG	PHE	A	116	0.588	-5.775	16.176	1.00	12.20	A
15	ATOM	2583	CD1	PHE	A	116	-0.130	-6.453	17.154	1.00	12.43	A
	АТОМ	2584	CD2	PHE	Α	116	1.076	-6.489	15.089	1.00	12.72	A
	ATOM	2585	CE1	PHE	A	116	-0.360	-7.817	17.052	1.00	12.44	A
	ATOM	2586	CE2	PHE	A	116	0.851	-7.864	14.974	1.00	12.31	A
	MOTA	2587	cz	PHE	A	116	0.131	-8.526	15.960	1.00	12.74	A
20	ATOM	2588	С	PHE	A	116	2.677	-2.775	17.002	1.00	12.47	A
•	ATOM	2589	0	PHE	Ą	116	3.870	-2.948	16.773	1.00	12.52	A
	ATOM	2876	N	TYR	A	152	13.612	-19.507	9.014	1.00	7.45	A
.*	MOTA	2877	CA	TYR	Ą	152	12.780	-18.882	10.032	1.00	7.80	A
	MOTA	2878	СВ	TYR	Ą	152	13.127	-19.416	11.419	1.00	7.71	A
25	MOTA	2879	CG	TYR	A	152	11.963	-19.316	12.386	1.00	8.94	A

3,244 of 25.

2 344 (12)

CA 02466264 2004-05-05

.:		ATOM	2880	CD1	TYR	Α	152	10.717	-19.858	12.063	1.00	9.56	A
		MOTA	2881	CE1	TYR	Α	152	9.649	-19.802	12.961	1.00	9.81	A
		MOTA	2882	CD2	TYR	Α	152	12.110	-18.706	13.630	1.00	9.51	A
		MOTA	2883	CE2	TYR	Α	152	11.050	-18.642	14.534	1.00	9.37	A
5		MOTA	2884	CZ	TYR	Α	152	9.828	-19.197	14.191	1.00	10.01	A
		ATOM	2885	ОН	TYR	Α	152	8.787	-19.193	15.101	1.00	10.22	A
		MOTA	2886	С	TYR	Α	152	12.871	-17.368	10.032	1.00	7.80	A
		АТОМ	2887	0	TYR	Α	152	11.906	-16.685	10.363	1.00	7.64	A
		ATOM	2888	N	TRP	Α	153	14.037	-16.848	9.671	1.00	7.83	A
10		ATOM	2889	CA	TRP	A	153	14.217	-15.409	9.615	1.00	8.29	A
		ATOM	2890	СВ	TRP	A	153	15.675	-15.058	9.323	1.00	8.19	A
		ATOM	2891	CG	TRP	A	153	15.826	-13.715	8.694	1.00	8.54	A
		ATOM	2892	CD2	TRP	Α	153·	15.414	-12.464	9.247	1.00	8.88	A
		ATOM	2893	CE2	TRP	A	153	15.716	-11.467	8.299	1.00	8.91	A
15		MOTA	2894	CE3	TRP	A	153	14.816	-12.087	10.458	1.00	9.75	A
		ATOM	2895	CD1	TRP	A	153	16.348	-13.438	7.466	1.00	8.71	A
		ATOM	2896	NE1	TRP	A	153	16.285	-12.087	7.219	1.00	9.04	A
		ATOM	2897	CZ2	TRP	A	153	15.440	-10.111	8.519	1.00	9.95	A
		ATOM	2898	CZ3	TRP	A	153	14.541	-10.734	10.676	1.00	9.92	A
20		ATOM	2899	CH2	TRP	A	153	14.855	-9.766	9.708	1.00	9.14	A
		ATOM	2900	С	TRP	A	153	13.336	-14.871	8.493	1.00	8.23	A
	v. V	ATOM	2901	0	TRP	A	153	12.676	-13.852	8.647	1.00	8.77	A
•		ATOM	2902						-15.572			8.71	A
<i>:</i> :	:i.	ATOM	2903	CA	GLU	Ą	154	12.547	-15.159	6.204	1.00	8.50	A
25	•	ATOM	2904	СВ	GLU	A	154	12.862	-16.034	4.995	1.00	8.57	Α

342 co 36

CA 02466264 2004-05-05

211

	атом 2	2905	CG	GLU A	154	12.336	-15.455	3.679	1.00	9.53	A
	ATOM 2	2906	CD	GLU A	154	10.920	-15.883	3.350	1.00	8.58	A
	ATOM 2	2907	OE1	GLU A	154	10.337	-15.318	2.400	1.00	9.21	A
	ATOM 2	2908	OE2	GLU A	154	10.397	-16.785	4.019	1.00	8.79	A
5 .	ATOM 2	2909	С	GLU 2	154	11.064	-15.205	6.496	1.00	8.22	A
	ATOM 2	2910	0	GLU 2	154	10.310	-14.309	6.102	1.00	8.84	A
	ATOM 2	2911	N	ILE A	A 155	10.650	-16.258	7.191	1.00	7.89	A
	ATOM :	2912	CA	ILE A	A 155	9.254	-16.444	7.547	1.00	6.85	A
	ATOM	2913	СВ	ILE A	A 155	9.041	-17.887	8.105	1.00	7.23	A
10	ATOM	2914	CG2	ILE A	A 155	7.742	-17.975	8.898	1.00	6.59	A
	ATOM :	2915	CG1	ILE	A 155	9.067	-18.893	6.939	1.00	7.31	A
•	ATOM	2916	CD1	ILE .	A 155	9.155	-20.382	7.343	1.00	5.54	A
	ATOM	2917	С	ILE .	A 155	8.816	-15.378	8.568	1.00	7.33	A
	ATOM	2918	0	ILE	A 155	7.801	-14.702	8.375	1.00	6.57	A
15	ATOM	2919	N	CYS	A 156	9.601	-15.196	9.628	1.00	7.49	A
	ATOM	2920	CA	CYS	A 156	9.245	-14.209	10.638	1.00	7.46	A
	ATOM	2921	СВ	CYS	A 156	10.227	-14.252	11.818	1.00	7.91	A
	ATOM	2922	SG	CYS	A 156	10.226	-15.769	12.755	1.00	8.41	A
	MOTA	2923	С	CYS	A 156	9.230	-12.799	10.029	1.00	7.56	A
20	ATOM	2924	0	CYS	A 156	8.238	-12.075	10.148	1.00	7.15	A
	MOTA	2925	N	SER	A 157	10.296	-12.427	9.319	1.00	7.31	A
	MOTA	2926	CA	SER	A 157	10.345	-11.095	8.733	1.00	7.15	A
	ATOM	2927	СВ	SER	<u>A</u> 157	11.739	-10.802	8.137	1.00	6.90	A
	ATOM	2928	OG	SER	A 157	12.045	-11.626	7.027	1.00	5.72	A
25	ATOM	2929	С	SER	Å 157	9.226	-10.893	7.706	1.00	7.42	A

21 : 7

	ATOM	2930	0	SER	A	157	8.700	-9.793	7.591	1.00	7.72	A
	ATOM	2931	N	THR	A	158	8.831	-11.938	6.980	1.00	7.58	A
	ATOM	2932	CA	THR	Α	158	7.744	-11.762	6.012	1.00	8.17	A
	ATOM	2933	СВ	THR	A	158	7.434	-13.070	5.248	1.00	8.62	A
5	ATOM	2934	OG1	THR	A	158	8.325	-13.172	4.128	1.00	9.05	A
	MOTA	2935	CG2	THR	A	158	5.989	-13.090	4.742	1.00	8.43	A
	MOTA	2936	С	THR	A	158	6.491	-11.257	6.733	1.00	8.44	A
	MOTA	2937	0	THR	Α	158	5.843	-10.317	6.278	1.00	7.98	A
	ATOM	2938	N	THR	A	159	6.178	-11.848	7.881	1.00	8.66	A
10	MOTA	2939	CA	THR	A	159	5.008	-11.421	8.630	1.00	9.74	A
	ATOM	2940	СВ	THR	A	159	4.661	-12.441	9.728	1.00	11.00	A
	ATOM	2941	OG1	THR	A	159	4.147	-13.633	9.113	1.00	11.94	A
	MOTA	2942	CG2	THR	A	159	3.603	-11.874	10.663	1.00	11.12	A
	MOTA	2943	С	THR	A	159	5.136	-10.016	9.248	1.00	9.29	A
15	MOTA	2944	0	THR	A	159	4.201	-9.222	9.163	1.00	9.32	A
	MOTA	2945	N	LEU	A	160	6.287	-9.707	9.850	1.00	9.10	Α
	ATOM	2946	CA	LEU	A	160	6.509	-8.394	10.464	1.00	8.76	A
	MOTA	2947	СВ	LEU	A	160	7.887	-8.342	11.143	1.00	8.08	A
<i>:</i>	MOTA	2948	CG	LEU	A	160	8.152	-9.296	12.318	1.00	8.40	A
20		2949					9.616		12.706	1.00		A
:								-8.925				
								-7.279				
		2952	0	LEU	A	160	5.912	-6.192	9.691	1.00	8.81	
								-7.553				
.25	MOTA	2954	CA	LEU	Ą	161	6.921	-6.586	7.131	1.00	9.84	A

	ATOM :	2955	СВ	LEU	A 161	7.637	-7.159	5.905	1.00	9.15	A	
	ATOM :	2956	CG	LEU	A 161	9.144	-6.881	5.882	1.00	9.55	A	
	ATOM :	2957	CD1	LEU	A 161	9.822	-7.612	4.700	1.00	9.05	A	
•	ATOM	2958	CD2	LEU	A 161	9.351	-5.388	5.757	1.00	8.83	A	
5	ATOM	2959	С	LEU	A 161	5.495	-6.184	6.768	1.00	10.43	A	
•	ATOM	2960	0	LEU	A 161	5.262	-5.090	6.249	1.00	10.78	A	
	ATOM	2961	N	VAL	A 162	4.542	-7.068	7.055	1.00	10.57	A	3 21× 11 2.
	MOTA	2962	CA	VAL	A 162	3.137	-6.794	6.776	1.00	11.31	A	2 - 10 12 April
	ATOM	2963	СВ	VAL	A 162	2.244	-8.045	7.041	1.00	11.09	A	
10	ATOM	2964	CG1	VAL	A 162	0.770	-7.682	6.916	1.00	12.11	A	
	ATOM	2965	CG2	VAL	A 162	2.585	-9.147	6.047	1.00	11.31	A	
٠	ATOM	2966	С	VAL	A 162	2.660	-5.648	7.662	1.00	11.94	Α	
÷	ATOM	2967	0	VAL	A 162	1.909	-4.789	7.214	1.00	12.85	A	
:	MOTA	2968	N	PHE	A 163	3.104	-5.622	8.916	1.00	12.19	A	
15	ATOM	2969	CA	PHE	A 163	2.681	-4.561	9.825	1.00	12.54	A	
	MOTA	2970	СВ	PHE	A 163	2.500	-5.112	11.239	1.00	13.07	A	
	MOTA	2971	CG	PHE	A 163	1.527	-6.248	11.321	1.00	14.49	A	
	MOTA	2972	CD1	PHE	A 163	1.959	-7.555	11.156	1.00	14.30	A	
•	ATOM	2973	CD2	PHE	A 163	0.168	-6.007	11.532	1.00	14.47	A	3 33 · ·4 5:
20	ATOM	2974	CE1	PHE	A 163	1.058	-8.618	11.197	1.00	15.26	A	
1	АТОМ	2975	CE2	PHE	E A 163	-0.743	-7.061	11.574	1.00	15.43	A	
	ATOM	2976	CZ	PHE	E A 163	-0.297	-8.371	11.406	1.00	14.83	A	
	MOTA	2977	С	PHE	E A 163	3.625	-3.362	9.868	1.00	12.48	A	
	ATOM	2978	0	PHE	E A 163	3.233	-2.280	10.305	1.00	12.19	A	
25	ATOM	3252	N	THE	R A 197	-2.372	-16.130	2.207	1.00	8.89	A	

214

٠	ATOM	3253	CA	THR A	197	-3.090	-15.716	3.399	1.00	9.12	A
	ATOM	3254	СВ	THR A	A 197	-3.159	-16.854	4.438	1.00	8.54	A
	ATOM	3255	og1	THR A	197	-1.826	-17.241	4.803	1.00	7.22	A
	MOTA	3256	CG2	THR A	A 197	-3.891	-18.055	3.859	1.00	8.20	A
5	ATOM	3257	С	THR Z	A 197	-2.349	-14.557	4.045	1.00	10.07	A
	MOTA	3258	0	THR A	A 197	-1.153	-14.380	3.829	1.00	9.98	A
	ATOM	3259	N	LYS A	A 198	-3.063	-13.756	4.821	1.00	11.83	A
	ATOM	3260	CA	LYS A	A 198	-2.431	-12.648	5.525	1.00	14.16	A
	ATOM	3261	СВ	LYS .	A 198	-3.407	-11.497	5.746	1.00	14.77	A
10	ATOM	3262	CG	LYS .	A 198	-2.803	-10.367	6.571	1.00	16.50	A
	ATOM	3263	CD	LYS .	A 198	-3.868	-9.483	7.196	1.00	17.64	A
;	ATOM	3264	CE	LYS	A 198	-3.217	-8.361	8.008	1.00	18.15	A
•	MOTA	3265	NZ	LYS	A 198	-4.215	-7.462	8.646	1.00	18.92	A
5	ATOM	3266	С	LYS	A 198	-2.042	-13.213	6.882	1.00	15.13	A
15	ATOM	3267	0	LYS	A 198	-2.869	-13.236	7.788	1.00	17.31	A
	ATOM	3268	N	LEU	A 199	-0.803	-13.670	7.005	1.00	14.65	A
	MOTA	3269	CA	LEU	A 199	-0.257	-14.254	8.234	1.00	13.81	A
	ATOM	3270	СВ	LEU	A 199	-1.137	-13.966	9.468	1.00	15.00	A
	MOTA	3271	CG	LEU	A 199	-1.354	-12.517	9.953	1.00	15.52	A
20	ATOM	3272	CD1	LEU	A 199	-2.352	-12.514	11.110	1.00	15.65	A
: .	ATOM	3273	CD2	LEU	A 199	-0.032	-11.901	10.400	1.00	16.55	Α
	ATOM	3274	С	LEU	A 199	-0.078	-15.770	8.070	1.00	13.40	A
•	ATOM	3275	0	LEU	A 199	0.673	-16.360	8.862	1.00	12.28	A
	ATOM	3276	гхо				-16.347				
25	ATOM	f 6573	N1	GSH	F 200	4.240	-22.620	20.817	1.00	44.60	F

97:016

421142

3 21/ 12

 $x: x \mapsto \frac{1}{2} \sqrt{x}$

CA 02466264 2004-05-05

•	•									
•	АТОМ	6574	.CA1	GSH	F	200	3.413 -23.575	20.073	1.00 44.99	F
	ATOM	6575	C1	GSH	F	200	4.146 -24.142	18.822	1.00 44.16	F
	ATOM	6576	011	GSH	F	200	5.277 -23.724	18.545	1.00 44.01	F
	ATOM	6577	012	GSH	F	200	3.502 -25.050	18.113	1.00 43.49	F
5	ATOM	6578	СВ1	GSH	F	200	2.101 -22.895	19.661	1.00 45.74	F
	ATOM	6579	CG1	GSH	F	200	1.180 -22.538	20.853	1.00 46.69	F
	ATOM	6580	CD1	GSH	F	200 -	0.010 -21.712	20.254	1.00 47.11	F
:	. ATOM	6581	OE1	GSH	F	200	-0.142 -20.530	20.586	1.00 47.97	F
	ATOM	6582	N2	GSH	F	200	-0.754 -22.340	19.334	1.00 47.00	F
10	ATOM	6583	CA2	GSH	F	200	-1.817 -21.594	18.641	1.00 46.63	F
	ATOM	6584	C2	GSH	F	200	-3.172 -22.214	18.985	1.00 46.78	F
	ATOM	6585	02	GSH	F	200	-3.381 -23.428	18.891	1.00 46.26	F
	ATOM	6586	СВ2	GSH	F	200	-1.659 -21.704	17.108	1.00 46.61	F
	ATOM	6587	SG2	GSH	F	200	-0.726 -20.334	16.354	1.00 45.55	F
15	ATOM	6588	N3	GSH	F	200	-4.138 -21.341	19.347	1.00 47.03	F
	ATOM	6589	CA3	GSH	F	200	-5.549 -21.727	19.555	1.00 47.63	F
	ATOM	6590	С3	GSH	F	200	-5.805 -21.983	21.029	1.00 47.96	F
<i>;</i>	ATOM	6591	031	GSH	F	200	-6.963 -22.325	21.339	1.00 48.33	F
sije. W	ATOM	6592	032	GSH	F	200	-4.849 -21.855	21.833	1.00 48.13	F
							1.320 -16.944			
	MOTA	6685	SA	CBD	v	201	0.790 -17.122	20.115	1.00 56.02	V
							1.575 -18.205			
· · · ·							-0.636 -17.464			
	ATOM	6688	03A	CBD	v	201	1.221 -15.829	20.717	1.00 55.92	V
25	ATOM	6689	C2	CBD	v	201	2.711 -17.027	18.129	1.00 55.38	V

216

		MOTA	6690	N2	CBD	V	201	3.702	-17.265	19.274	1.00	55.19	V
		MOTA	6691	С3	CBD	V	201	3.112	-16.894	16.760	1.00	55.20	V
		ATOM	6692	C4	CBD	V	201	4.532	-16.974	16.323	1.00	54.93	V
		ATOM	6693	04	CBD	V	201	5.374	-17.167	17.212	1.00	55.39	V
5		ATOM	6694	C5	CBD	V	201	5.017	-16.849	14.925	1.00	54.45	V
	•	ATOM	6695	С6	CBD	v	201	6.495	-16.945	14.509	1.00	54.14	v
: '	:	ATOM	6696	С7	CBD	v	201	6.812	-16.806	13.140	1.00	53.94	v
ŗ		ATOM	6697	C8	CBD	v	201	5.803	-16.585	12.172	1.00	53.98	v
		MOTA	6698	С9	CBD	V	201	4.432	-16.493	12.529	1.00	54.22	v
10		ATOM	6699	C10	CBD	V	201	4.023	-16.624	13.897	1.00	54.48	v
•		ATOM	6700	C11	CBD	V	201	2.621	-16.543	14.333	1.00	54.89	v
•		ATOM	6701	011	CBD	v	201	1.771	-16.353	13.468	1.00	54.55	V
		ATOM	6702	C12	CBD	V	201	2.094	-16.666	15.725	1.00	55.45	v
		ATOM	6703	C13	CBD	V	201	0.676	-16.584	16.095	1.00	56.18	V
15		MOTA	6704	C14	CBD	V	201	0.298	-16.725	17.474	1.00	55.98	V
		ATOM	6705	NB	CBD	v	201	-0.387	-16.360	15.063	1.00	57.55	V
		ATOM	6706	CB1	CBD	v	201	-4.096	-17.069	15.898	1.00	61.45	V
		ATOM	6707	SB	CBD	V	201	-5.117	-18.384	16.588	1.00	62.03	v
		ATOM	6708	01в	CBD	v	201	-5.591	-17.837	17.918	1.00	62.06	V
20	; ;	ATOM	6709	02В	CBD	v	201	-4.217	-19.550	16.781	1.00	62.13	V
•		ATOM	6710	03В	CBD	v	201	-6.22	1 -18.72	7 15.629	1.00	61.84	V
0.		ATOM	6711	CB2	CBD	V	201	-4.648	3 -15.80	6 15.457	1.00	61.61	V
<i>:</i> .		ATOM	6712	СВ3	CBD	v	201	-3.798	3 -14.78	3 14.909	1.00	60.85	V
-	. '	ATOM	6713	CB4	CBD	v	201	-2.41	5 -14.97	3 14.785	1.0	59.79	V
25		АТОМ	6714	СВ5	CBD	v	201	-1.83	8 -16.20	8 15.214	1.0	59.24	V

224, oj 11.

4,20<u>0,42</u>50

· 22. (15. (c)

12 V

CA 02466264 2004-05-05

		ATOM	6715	СВ6	CBD	V	201	-2.667	-17.266	15.769	1.00	60.28	V
	. · •	ATOM	6716	NC	CBD	v	201	-6.100	-15.699	15.626	1.00	62.61	V
		ATOM	6717	NC1	CBD	v	201	-7.272	-13.869	16.843	1.00	64.01	v
•		ATOM	6718	CC2	CBD	v	201	-7.958	-12.677	16.830	1.00	64.30	v
5	;:	ATOM	6719	XCL	CBD	v	201	-8.536	-11.955	18.433	1.00	64.97	v
•		ATOM	6720	NC3	CBD	v	201	-8.179	-12.086	15.587	1.00	64.60	V
	. •	ATOM	6721	CC4	CBD	V	201	-7.742	-12.647	14.411	1.00	64.72	V
•		ATOM	6722	NC5	CBD	V	201	-7.067	-13.826	14.459	1.00	64.27	V
		ATOM	6723	CC6	CBD	V	201	-6.835	-14.427	15.666	1.00	63.60	V
10		ATOM	6724	ND	CBD	V	201	-7.999	-11.990	13.118	1.00	65.16	V
		ATOM	6725	CD1	CBD	V	201	-6.460	-11.914	11.166	1.00	65.80	V
	:	ATOM	6726	SD	CBD	V	201	-5.663	-10.543	12.000	1.00	66.14	V
		ATOM	6727	01D	CBD	V	201	-4.963	-11.035	13.249	1.00	66.20	V
		ATOM	6728	02D	CBD	V	201	-6.740	-9.533	12.229	1.00	66.14	V
15	:	ATOM	6729	03D	CBD	V	201	-4.469	-9.967	11.283	1.00	66.06	V
		ATOM	6730	CD2	CBD	V	201	-7.612	-12.553	11.819	1.00	65.58	V
	. :	ATOM	6731	CD3	CBD	V	201	-8.282	-13.667	11.168	1.00	65.50	V
	1. 	ATOM	6732	CD4	CBD	V	201	-7.820	-14.138	9.898	1.00	65.62	V
		ATOM	6733	CD5	CBD	V	201	-6.689	-13.516	9.253	1.00	65.58	v
20	4	ATOM	6734	CD6	CBD	V	201	-6.009	-12.418	9.867	1.00	65.66	V
		ATOM	6736	CA+2	CA2	M	902	10.668	-20.783	23.896	1.00	51.04	M
•		ATOM	6737	он2	TAW	s	1	1.351	-21.691	3.667	1.00	7.98	s
	<i>i</i>	ATOM	6739	ОН2	WAT	S	3	-1.239	-27.422	7.740	1.00	3.33	S
٠	.:	ATOM	6740	OH2	TAW	S	4	8.134	-25.070	19.531	1.00	9.51	s
25		ATOM	6743	OH2	WAT	S	7	6.599	-20.828	11.162	1.00	4.11	S

		٠.												
·			ATOM	6747	он2	WAT	S	11	5.286	-16.048	7.235	1.00	3.73	S
	•	÷	MOTA	6751	он2	WAT	s	15	6.780	-21.479	14.227	1.00	6.02	S
		:	ATOM	6758	он2	WAT	s	22	0.702	-16.833	2.360	1.00	8.75	S
		٠	MOTA	6760	он2	WAT	s	24	7.629	-15.477	2.582	1.00	9.74	S
	5 .		MOTA	6761	он2	WAT	S	25	-2.129	-33.873	12.001	1.00	6.94	s
			MOTA	6772	он2	WAT	s	36	0.027	-13.756	1.035	1.00	15.53	S
			MOTA	6773	он2	WAT	s	37	2.414	-15.170	10.370	1.00	10.38	S
			MOTA	6777	OH2	WAT	s	42	9.861	-20.611	21.788	1.00	19.36	S
	٠		ATOM	6782	он2	WAT	s	47	-0.738	-19.696	3.763	1.00	7.26	S
1	0	·,	ATOM	6786	он2	TAW	s	51	-8.079	-21.562	9.291	1.00	11.54	S
		•	ATOM	6798	он2	WAT	s	63	11.971	-27.063	20.805	1.00	13.89	s
	•		MOTA	6799	он2	WAT	s	64	-6.746	-29.289	4.136	1.00	17.17	S
	.:		ATOM	6806	он2	WAT	s	71	2.082	-27.303	18.951	1.00	6.50	S
	:		ATOM	6808	ОН2	WAT	s	73	6.370	-34.029	20.049	1.00	7.66	S
1	5		ATOM	6833	он2	WAT	s	98	-0.925	-29.526	21.487	1.00	8.88	S
			MOTA	6873	он2	WAT	s	138	12.612	-27.001	23.449	1.00	21.34	s
	,	٠.	ATOM	6881	он2	WAT	S	146	1.862	-24.047	27.300	1.00	13.69	S
		•	ATOM	6900	он2	WAT	S	165	8.353	-19.515	24.914	1.00	21.77	S
		٠ <u>٠</u>	ATOM	6940	он2	TAW	s	205	-5.859	-14.566	5.222	1.00	13.11	S
2	0		ATOM	6972	он2	WAT	s	237	-2.575	-19.558	21.111	1.00	44.73	S
. •		•	MOTA	6992	он2	WAT	S	257	-8.895	-24.364	5.325	1.00	26.95	S
	٠. ٠									-17.589				
		4	MOTA	7000	он2	WAT	S	265	-5.639	-28.605	26.537	1.00	35.00	S
			ATOM	7015	он2	WAT	S	280	-6.647	-16.720	1.613	1.00	29.73	S
2	:5	٠.	ATOM	7031	он2	YAT	Ş	296	13.593	-19.947	25.168	1.00	25.03	S

223 11.2

223 11 2

CA 02466264 2004-05-05

	ATOM 7	053 OH	12 (TAW	s	318	6.658	-19.330	21.220	1.00	29.42	S
	ATOM 7	057 ОН	12 1	TAW	S	322	7.702	-22.083	20.657	1.00	26.23	S
	ATOM 7	060 OH	12	TAW	s	325	13.812	-24.922	22.589	1.00	25.62	S
	ATOM 7	066 OH	12 (WAT	s	331	-3.023	-35.741	20.966	1.00	51.90	S
5	атом 7	071 OH	12 1	TAW	s	336	8.646	-22.439	23.070	1.00	32.36	S
	атом 7	117 OF	12 1	TAW	S	383	-7.864	-19.607	18.001	1.00	49.01	S
	ATOM 7	119 OF	12 '	WAT	s	385	12.122	-19.312	22.304	1.00	36.04	s
	ATOM 7	149 OH	H2	WAT	s	415	4.500	-17.354	9.500	1.00	17.11	s
	ATOM 7	151 OF	н2	WAT	s	417	3.003	-10.979	2.789	1.00	8.57	s
10	ATOM 7	161 OF	н2	WAT	s	427	1.666	-28.319	21.869	1.00	9.23	s
	атом 7	173 OF	н2	WAT	s	439	1.707	-26.590	23.994	1.00	20.49	s
	ATOM 7	7175 OI	н2	WAT	s	441	-7.142	-12.553	6.181	1.00	27.77	s
	атом 7	7217 01	н2	WAT	s	483	-1.287	-25.245	26.731	1.00	38.16	s
,	ATOM 7	7239 01	н2	TAW	s	505	8.962	-18.324	22.747	1.00	40.69	s
15	ATOM 7	7269 O	н2	WAT	s	535	-8.231	-19.382	10.779	1.00	39.27	s
	ATOM 7	7291 O	н2	WAT	s	557	-7.790	-15.423	3.534	1.00	48.88	s
	ATOM 7	7294 0	н2	WAT	s	560	-6.131	-17.042	6.655	1.00	28.01	s
	MOTA	7305 0	н2	WAT	s	571	-5.344	-20.658	29.405	1.00	33.64	S
	ATOM T	7319 0	н2	WAT	s	585	-8.529	-10.641	23.648	1.00	36.23	S
20	`ATOM `	7335 0	н2	WAT	s	601	13.245	-24.342	20.045	1.00	20.43	s
	ATOM '	7341 0	н2	WAT	s	607	15.091	-23.061	18.509	1.00	28.00	s
\$2 \$2 \$3	ATOM	7342 0)H2	WAT	S	608	2.114	-23.889	24.521	1.00	24.13	s
at , ,	ATOM '	7354 0)Н2	WAT	Š	620	-5.822	-33.782	12.796	1.00	39.40	S
:	MOTA	7 41 2 C)H2	WAT	S	679	-4.210	-15.053	7.903	1.00	7.85	s
25	MOTA	7416 C	он2	WAT	ş	683	-11.812	-20.860	17.588	1.00	35.78	s

0.4490

25-43

Sec 30

CA 02466264 2004-05-05

220

		ATOM	7418	он2	WAT	S	685	-5.319	-36.445	17.400	1.00	36.65	S
		ATOM	7432	он2	WAT	s	701	0.414	-10.954	3.856	1.00	3.57	S
		ATOM	7433	OH2	WAT	s	702	3.171	-13.470	2.015	1.00	31.21	s
• `.		ATOM	7518	он2	WAT	s	792	-6.880	-19.345	1.064	1.00	28.83	s
5		ATOM	7544	он2	WAT	s	818	-14.589	-21.459	10.093	1.00	28.52	S
	, V ^t	MOTA	7546	OH2	WAT	s	820	-15.291	-27.899	16.026	1.00	38.45	s
	Ā	ATOM	7576	он2	WAT	s	850	4.135	-19.875	21.107	1.00	51.02	s
	·*	ATOM	7581	OH2	WAT	s	855	5.075	-11.173	29.078	1.00	44.63	s
		ATOM	7582	он2	WAT	s	856	-1.969	-27.093	28.386	1.00	36.21	s
10		ATOM	7590	он2	WAT	s	864	1.742	-9.916	24.316	1.00	49.81	s
í	1	ATOM	7591	он2	WAT	s	865	6.598	-16.698	4.969	1.00	27.41	s

Table 8

Three-dimensional structural coordinate of the complex of human hematopoietic PGDS with magnesium, glutathione and 4-benzhydryloxy-1-{3-(1H-tetrazol-5-yl)-propyl}piperidine (HQL-79)

20	ATOM 4	966 N	TYR A	8	17.463	-2.741	10.967	1.00	2.30	A
	ATOM 4	967 CA	TYR A	8	16.069	-2.648	11.384	1.00	2.27	A
	ATOM 4	968 CB	TYR A	8	15.463	-1.311	10.947	1.00	1.93	A
	ATOM 4	969 CG	TYR A	8	14.123	-1.007	11.579	1.00	1.75	A
	ATOM 4	970 CD1	TYR A	8	13.996	-0.888	12.962	1.00	1.76	A
25	ATOM 4	971 CE1	TYR A	8	12.771	-0.568	13.551	1.00	1.82	Α

 $\mathcal{Z}^{*}: \mathcal{A}^{*}$

27. 37

....

CA 02466264 2004-05-05

	ATOM	4972	CD2	TYR	Α	8	12.987	-0.803	10.792	1.00	1.81	A
•	ATOM	4973	CE2	TYR	Α	8	11.762	-0.479	11.366	1.00	2.19	A
	ATOM	4974	cz	TYR	A	8	11.658	-0.360	12.748	1.00	1.84	A
	MOTA	4975	ОН	TYR	A	8	10.456	-0.003	13.318	1.00	2.39	A
5 .	АТОМ	4976	С	TYR	A	8	15.320	-3.786	10.709	1.00	2.74	A
	ATOM	4977	0	TYR	A	8	15.902	-4.543	9.939	1.00	2.59	A
•	MOTA	4978	N	PHE	Α	9	14.033	-3.916	11.011	1.00	3.54	A
	· ATOM	4979	CA	PHE	Α	9	13.216	-4.945	10.378	1.00	4.12	A
	ATOM	4980	СВ	PHE	A	9	11.873	-5.079	11.102	1.00	4.53	A
10	ATOM	4981	CG	PHE	A	9	11.981	-5.579	12.511	1.00	4.71	A
	ATOM	4982	CD1	PHE	A	9	11.552	-4.791	13.577	1.00	5.32	A
	ATOM	4983	CD2	PHE	A	9	12.499	-6.844	12.777	1.00	5.02	A
	ATOM	4984	CE1	PHE	A	9	11.639	-5.256	14.889	1.00	5.60	A
	ATOM	4985	CE2	PHE	A	9	12.589	-7.316	14.085	1.00	5.47	A
15	АТОМ	4986	CZ	PHE	A	9	12.158	-6.521	15.142	1.00	5.95	A
	ATOM	4987	С	PHE	A	9	12.946	-4.517	8.936	1.00	4.36	A
	ATOM	4988	0	PHE	A	9	13.277	-3.398	8.532	1.00	4.11	A
• • :	ATOM	4989	N	ASN	A	10	12.354	-5.405	8.146	1.00	4.68	A
	АТОМ	4990	CA	ASN	Α	10	12.026	-5.046	6.778	1.00	5.42	A
20	ATOM	4991	СВ	ASN	Α	10	11.933	-6.278	5.880	1.00	5.82	A
:	ATOM	4992	CG	ASN	Α	10	11.502	-5.933	4.465	1.00	6.24	A
	ATOM	4993	OD1	ASN	ΙĄ	10	11.787	-4.841	3.954	1.00	6.66	A
	ATOM	4994	ND2	ASN	Ą	10	10.822	-6.869	3.814	1.00	7.65	A
	ATOM	4995	С	ASN	A	10	10.694	-4.319	6.813	1.00	5.70	A
25	ATOM	4996	0	ASN	Α.	10	9.636	-4.892	6.537	1.00	5.50	A

...

CA 02466264 2004-05-05

•	ATOM 4	4997	N	MET ?	A.	11	10.763	-3.054	7.208	1.00	6.01	A
٠.	ATOM .	4998	CA	MET A	Ą	11	9.597	-2.189	7.287	1.00	6.18	A
,	ATOM	4999	СВ	MET 2	A	11	8.725	-2.548	8.500	1.00	9.09	A
	MOTA	5000	CG	MET A	Ą	11	9.416	-2.585	9.840	1.00	11.64	A
5 .	ATOM !	5001	SD	MET A	A.	11	8.242	-3.077	11.159	1.00	15.13	A
	ATOM	5002	CE	MET A	A	11	8.390	-4.861	11.133	1.00	14.75	A
	ATOM	5003	С	MET A	A	11	10.072	-0.749	7.378	1.00	5.10	A
	АТОМ	5004	0	MET A	A	11	11.250	-0.502	7.633	1.00	4.65	A
	ATOM	5005	N	ARG .	A	12	9.168	0.193	7.132	1.00	4.17	A
10	ATOM	5006	CA	ARG .	A	12	9.518	1.607	7.220	1.00	3.48	A
	MOTA	5007	СВ	ARG .	A	12	8.395	2.484	6.640	1.00	3.58	A
	MOTA	5008	CG	ARG	A	12	8.129	2.254	5.147	1.00	4.20	A
	MOTA	5009	CD	ARG	A	12	7.130	3.273	4.574	1.00	4.87	A
	MOTA	5010	NE	ARG	A	12	5.888	3.302	5.344	1.00	5.23	A
15	ATOM	5011	CZ	ARG	A	12	4.941	2.372	5.278	1.00	5.80	A
	ATOM	5012	NH1	ARG	A	12	5.080	1.336	4.466	1.00	5.95	A
	ATOM	5013	NH2	ARG	A	12	3.865	2.465	6.052	1.00	5.74	A
	ATOM	5014	С	ARG	A	12	9.725	1.891	8.704	1.00	2.96	A
	ATOM	5015	0	ARG	A	12	10.844	2.170	9.144	1.00	2.74	A
20	MOTA	5016	N	GLY	A	13	8.639	1.808	9.466	1.00	2.56	A
	ATOM	5017	CA	GLY	A	13	8.697	2.009	10.904	1.00	2.19	A
	ATOM	5018	С	GLY	A	13	9.591	3.120	11.415	1.00	2.22	A
	ATOM	5019	0	GLY	Ą	13	9.625	4.212	10.850	1.00	2.01	A
	MOTA	5020	N	ARG	Ą	14	10.321	2.833	12.489	1.00	2.32	A
25	ATOM	5021	CA	ARG	Á	14	11.192	3.823	13.108	1.00	2.60	A

	MOTA	5022	СВ	ARG A	:	14	11.457	3.436	14.570	1.00	2.99	A
	ATOM	5023	CG	ARG A	:	14	10.223	3.584	15.442	1.00	4.04	A
	ATOM	5024	CD	ARG A	. :	14	10.492	3.265	16.906	1.00	5.12	A
•	MOTA	5025	NE	ARG A	. :	14	9.320	3.584	17.718	1.00	6.44	A
5 .	MOTA	5026	CZ	ARG A	. :	14	8.960	4.815	18.073	1.00	7.09	A
	MOTA	5027	NH1	ARG A	A :	14	9.688	5.867	17.709	1.00	7.50	A
	MOTA	5028	NH2	ARG A	A :	14	7.841	4.998	18.765	1.00	7.96	A
	ATOM	5029	С	ARG A	4	14	12.510	4.077	12.392	1.00	2.41	A
	ATOM	5030	0	ARG A	A	14	13.238	4.997	12.750	1.00	2.83	A
10	ATOM	5031	N	ALA A	A	15	12.822	3.277	11.378	1.00	2.21	A
	ATOM	5032	CA	ALA A	Ą	15	14.068	3.484	10.648	1.00	1.80	A
	MOTA	5033	СВ	ALA A	A	15	14.627	2.144	10.156	1.00	2.27	A
	ATOM	5034	С	ALA A	A	15	13.858	4.405	9.458	1.00	1.82	Α
	ATOM	5035	0	ALA A	A	15	14.815	4.976	8.938	1.00	1.57	A
15	MOTA	5036	N	GLU A	A	16	12.610	4.575	9.033	1.00	1.93	A
• •	MOTA	5037	CA	GLU A	A	16	12.359	5.372	7.840	1.00	1.94	A
	· ATOM	5038	СВ	GLU Z	Α	16	10.870	5.346	7.482	1.00	2.14	A
:	ATOM	5039	CG	GLU A	A	16	10.579	5.687	6.016	1.00	2.49	A
	АТОМ	5040	CD	GLU .	A	16	11.126	4.665	5.011	1.00	3.04	A
20	АТОМ	5041	OE1	GLU .	A	16	11.667	3.615	5.422	1.00	3.42	A
	ATOM	5042	OE2	GLU .	A	16	11.008	4.916	3.793	1.00	3.55	A
•	ATOM	5043	С	GLU	Ą	16	12.875	6.801	7.878	1.00	1.89	A
	MOTA	5044	0	GL U	Ą	16	13.356	7.302	6.866	1.00	1.73	A
	MOTA	5045	N	ILE	Ą	17	12.807	7.460	9.030	1.00	1.19	A
25	MOTA	5046	CA	ILE	Ą	17	13.306	8.825	9.107	1.00	1.35	A

	ATOM	5047	СВ	ILE A	A	17	13.031	9.454	10.510	1.00	1.50	A
.:	ATOM	5048	CG2	ILE .	A	17	13.702	8.649	11.614	1.00	1.52	A
;·	ATOM	5049	CG1	ILE .	A	17	13.514	10.909	10.532	1.00	1.26	A
•	ATOM	5050	CD1	ILE A	A	17	12.833	11.795	9.501	1.00	1.74	A
5	ATOM	5051	С	ILE A	A	17	14.807	8.856	8.760	1.00	1.44	A
	ATOM	5052	0	ILE A	A	17	15.275	9.775	8.079	1.00	2.26	A
	ATOM	5242	N	TRP 2	A	39	16.279	-11.644	14.583	1.00 1	1.83	A
÷ ∴	ATOM	5243	CA	TRP .	A	39	16.330	-10.580	15.586	1.00 1	1.41	A
•	ATOM	5244	СВ	TRP .	A	39	14.938	-9.947	15.714	1.00 1	0.48	A
10	ATOM	5245	CG	TRP 2	A	39	14.752	-8.981	16.856	1.00	9.62	A
	ATOM	5246	CD2	TRP 2	A	39	15.630	-7.913	17.256	1.00	9.22	A
	ATOM	5247	CE2	TRP 2	A	39	15.022	-7.269	18.356	1.00	9.06	A
•	ATOM	5248	CE3	TRP 2	A	39	16.865	-7.439	16.793	1.00	8.94	A
	ATOM	5249	CD1	TRP A	A	39	13.687	-8.935	17.705	1.00	9.52	A
15	ATOM	5250	NE1	TRP .	A	39	13.842	-7.915	18.607	1.00	9.30	A
	ATOM	5251	CZ2	TRP .	A	39	15.608	-6.173	19.005	1.00	8.71	A
	ATOM	5252	CZ3	TRP	A	39	17.450	-6.345	17.442	1.00	8.93	A
	ATOM	5253	CH2	TRP .	A	39	16.817	-5.729	18.536	1.00	8.40	A
	ATOM	5254	С	TRP .	A	39	16.848	-11.032	16.960	1.00 1	1.66	A
20	ATOM	5255	0	TRP .	A	39	17.710	-10.382	17.547	1.00 1	1.72	A
	ATOM	5256	N	PRO .	A	40	16.337	-12.156	17.487	1.00 1	.2.01	A
	ATOM	5257	CD	PRO .	A.	40	15.261	-13.023	16.971	1.00 1	.2.11	A
	ATOM	5258	CA	PRO .	À	40	16.795	-12.629	18.799	1.00 1	.2.31	A
:	MOTA	5259	СВ	PRO .	A	40	16.171	-14.016	18.894	1.00 1	.2.32	A
25	ATOM	5260	CG	PRO .	A	40	14.862	-13.816	18.203	1.00 1	.2.38	A

225

												_
· <u>;</u>	ATOM	5261	С	PRO .	A	40	18.308	-12.656	19.023	1.00	12.59	A
· ·	ATOM	5262	0	PRO .	A	40	18.799	-12.163	20.042	1.00	12.72	A
. <u>(</u>	MOTA	5263	N	GLU	A	41	19.053	-13.223	18.081	1.00	12.84	A
	ATOM	5264	CA	GLU	A	41	20.500	-13.309	18.231	1.00	13.09	A
5	ATOM	5265	СВ	GLU	A	41	21.054	-14.364	17.270	1.00	14.07	A
	АТОМ	5266	CG	GLU	A	41	20.459	-15.745	17.544	1.00	15.68	A
	ATOM	5267	CD	GLU	A	41	20.995	-16.831	16.634	1.00	16.54	A
	ATOM	5268	OE1	GLU	A	41	20.297	-17.854	16.473	1.00	17.39	A
	ATOM	5269	OE2	GLU	A	41	22.109	-16.677	16.088	1.00	17.54	A
10	ATOM	5270	С	GLU	A	41	21.229	-11.972	18.074	1.00	12.61	A
	ATOM	5271	0	GLU	A	41	22.373	-11.827	18.506	1.00	12.75	A
;	MOTA	5272	N	ILE	A	42	20.566	-10.995	17.467	1.00	11.99	A
	ATOM	5273	CA	ILE	Α	42	21.160	-9.673	17.307	1.00	11.37	A
	ATOM	5274	СВ	ILE	A	42	20.596	-8.939	16.065	1.00	11.34	A
15	MOTA	5275	CG2	ILE	A	42	20.978	-7.464	16.105	1.00	11.36	A
`∕' :.	ATOM	5276	CG1	ILE	A	42	21.128	-9.596	14.788	1.00	11.71	A
	ATOM	5277	CD1	ILE	A	42	20.546	-9.013	13.510	1.00	11.80	A
•	ATOM	5278	С	ILE	A	42	20.819	-8.870	18.561	1.00	11.10	A
	ATOM	5279	0	ILE	Α	42	21.665	-8.178	19.123	1.00	10.73	A
20	ATOM	5280	N	LYS	Α	43	19.571	-8.996	19.000	1.00	10.69	A
	ATOM	5281	CA	LYS	A	43	19.075	-8.292	20.176	1.00	11.07	A
	ATOM	5282	СВ	LYS	A	43	17.665	-8.788	20.506	1.00	10.56	A
	ATOM	5283	CG	LYS	Ą	43	17.027	-8.164	21.737	1.00	10.22	A
.:	ATOM	5284	CD	LYS	A	43	15.654	-8.770	21.969	1.00	10.10	A
25	ATOM	1 5285	CE	LYS	Á	43	14.982	-8.200	23.204	1.00	9.67	A

4<u>1</u> 7% ..

3.61.

 $\leq G^{-1}$

CA 02466264 2004-05-05

226

	ATOM 5286	NZ	LYS A	43	14.601	-6.767	23.037	1.00	9.62	A
	ATOM 5287	С	LYS A	43	19.986	-8.462	21.391	1.00	11.41	A
	ATOM 5288	0	LYS A	43	20.292	-7.495	22.089	1.00	11.31	A
	ATOM 5328	N	GLY A	49	18.949	-3.542	23.669	1.00	8.96	A
5 .	атом 5329	CA	GLY A	49	18.093	-4.495	22.982	1.00	8.21	A
	ATOM 5330	С	GLY A	49	16.991	-3.983	22.078	1.00	7.54	A
•	ATOM 5331	0	GLY A	49	15.959	-4.642	21.937	1.00	7.64	A
	ATOM 5332	N	LYS A	50	17.203	-2.832	21.444	1.00	6.95	A
:	ATOM 5333	CA	LYS A	50	16.197	-2.263	20.554	1.00	6.45	A
10	ATOM 5334	СВ	LYS A	50	15.528	-1.042	21.199	1.00	7.37	A
	ATOM 5335	CG	LYS A	50	14.831	-1.283	22.528	1.00	9.43	A
	АТОМ 5336	CD	LYS A	50	13.634	-2.197	22.385	1.00	10.69	A
	ATOM 5337	CE	LYS A	50	12.660	-2.004	23.550	1.00	11.86	A
	ATOM 5338	NZ	LYS A	50	13.354	-1.838	24.858	1.00	12.34	A
15	ATOM 5339	С	LYS A	50	16.803	-1.810	19.233	1.00	5.62	A
	ATOM 5340	0	LYS A	50	17.999	-1.515	19.152	1.00	4.99	A
	ATOM 5341	N	ILE A	51	15.968	-1.766	18.198	1.00	4.81	A
	ATOM 5342	CA	ILE A	51	16.386	-1.277	16.892	1.00	4.23	A
	ATOM 5343	СВ	ILE A	51	16.427	-2.400	15.821	1.00	4.50	A
20	ATOM 5344	CG2	ILE A	51	17.736	-3.173	15.951	1.00	4.04	A
	ATOM 5345	CG1	ILE A	51	15.214	-3.320	15.954	1.00	4.67	A
	ATOM 5346	CD1	ILE A	51	15.125	-4.353	14.851	1.00	5.01	A
	ATOM 5347	С	ILE A	51		-0.173				A
	ATOM 5348	0				-0.096				
25	ATOM 5349	N	PRO A	52	15.769	0.677	15.540	1.00	3.47	A

35 I

ې ت ځ

					14.929	1.849	15.221	1.00	3.53	A
	ATOM 5350	CD	PRO A	52				1.00	3.15	A
	ATOM 5351	CA	PRO A	52	17.011	0.704	14.767			
	ATOM 5352	СВ	PRO A	52	16.712	1.735	13.687	1.00	3.26	A
	АТОМ 5353	CG	PRO A	52	15.878	2.741	14.442	1.00	3.38	A
_	ATOM 5354	C	PRO A	52	18.294	1.063	15.490	1.00	3.11	A
5 .	ATOM 5355	0	PRO A	52	18.288	1.690	16.547	1.00	3.03	A
	ATOM 5355 ATOM 5356	N	ILE A	53	19.394	0.632	14.887	1.00	3.27	A
		CA	ILE A	53	20.723	0.974	15.351	1.00	3.18	A
	ATOM 5357		ILE A		21.495			1.00	3.72	A
	ATOM 5358		2 ILE A		20.858	-0.553		1.00	4.09	A
10	ATOM 5359				21.596	-1.386	15.064	1.00	4.16	A
,	ATOM 5360		1 ILE A			-2.510	15.594	1.00	5.20	A
	ATOM 5361	. (1)					14.074	1.00	3,15	A
٠.	ATOM 5362	2 C	ILE A						2.64	A
	АТОМ 5363	3 0	ILE A	5 3	21.090				3.50	A
15	ATOM 5423	3 N	HIS A	62	22.206	4.210				
	ATOM 542	4 C	A HIS	A 62	20.835	3.722	18.927	1.00		
٠	ATOM 542		B HIS	A 62	20.705	2.722	20.090	1.00	3.26	A
- S - S	ATOM 542		G HIS	A 62	20.931	3.31	8 21.44	5 1.00	3.82	2 A
			D2 HIS	- 4	22.047	3.81	3 22.03	1 1.00	3.92	2 A
	ATOM 542			art.				6 1.0	0 4.07	7 A
20	атом 542		ID1 HIS	9				8 1.0	0 3.9	3 A
:	ATOM 542		E1 HIS	3					0 4.3	8 A
,	ATOM 54	30 1	NE2 HIS	A 62						1 A
	ATOM 54	31	C HIS	A 62						
	ATOM 54	32	O HIS	A 6	2 20.34	2 6.0				
. 25	атом 54	33	N GLN	A 6	3 18.58	6 4.6	24 19.0	94 1.0	00 2.5	56 A

	ATOM	5434	CA	GLN	A	63	17.501	5.612	19.201	1.00	2.38	A
3 ,/-	ATOM	5435	СВ	GLN	A	63	17.730	6.586	20.366	1.00	2.32	A
	ATOM	5436	CG	GLN	A	63	17.350	6.000	21.730	1.00	2.96	Α
	ATOM	5437	CD	GLN	A	63	15.851	5.823	21.898	1.00	3.14	A
5	ATOM	5438	OE1	GLN	A	63	15.063	6.295	21.081	1.00	3.72	A
	ATOM	5439	NE2	GLN	A	63	15.449	5.151	22.971	1.00	3.70	A
	ATOM	5440	C	GLN	A	63	17.348	6.359	17.878	1.00	2.37	A
	ATOM	5441	0	GLN	A	63	18.164	7.212	17.516	1.00	2.00	A
	ATOM	5442	N	SER	A	64	16.279	6.028	17.160	1.00	2.43	A
10	ATOM	5443	CA	SER	A	64	16.037	6.600	15.841	1.00	2.49	A
•	ATOM	5444	СВ	SER	A	64	14.678	6.132	15.296	1.00	2.81	A
	ATOM	5445	OG	SER	A	64	13.591	6.666	16.036	1.00	3.28	A
	ATOM	5446	С	SER	A	64	16.138	8.113	15.705	1.00	2.23	A
	ATOM	5447	0	SER	A	64	16.742	8.603	14.750	1.00	2.28	A
15	ATOM	5448	N	LEU	Α	65	15.553	8.854	16.639	1.00	2.47	A
	ATOM	5449	CA	LEU	Α	65	15.581	10.307	16.548	1.00	2.69	A
	ATOM	5450	CB	LEU	Α	65	14.465	10.899	17.409	1.00	3.06	A
	ATOM	5451	CG	LEU	A	65	13.100	10.321	17.010	1.00	3.16	A
	ATOM	5452	CD1	LEU	A	65	11.993	10.980	17.835	1.00	4.12	A
20	ATOM	5453	CD2	LEU	A	65	12.854	10.538	15,522	1.00	3.74	A
	ATOM	5454	С	LEU	A	65	16.935	10.886	16.925	1.00	2.92	A
. :	ATOM	5455	0	LEU	A _.	65	17.330	11.935	16.411	1.00	3.32	A
	MOTA	5662	N	ASP	A	93	9.345	15.416	18.542	1.00	3.67	A
	MOTA	5663	CA	ASP	A	93	8.972	14.730	19.781	1.00	3.91	A
25	ATOM	5664	СВ	ASP	A	93	9.654	15.361	20.997	1.00	5.09	A

•	ATOM 5665	CG	ASP A	93	11.041	14.797	21.243	1.00	6.18	Α
	ATOM 5666	OD1	ASP A	93	11.674	15.203	22.246	1.00	7.93	A
	ATOM 5667	OD2	ASP A	93	11.495	13.945	20.442	1.00	7.01	A
: •	ATOM 5668	С	ASP A	93	7.462	14.714	19.985	1.00	3.61	A
5	ATOM 5669	0	ASP A	93	6.926	13.766	20.539	1.00	3.01	A
:	ATOM 5670	N	THR A	94	6.776	15.762	19.540	1.00	3.46	Α
•	ATOM 5671	CA	THR A	94	5.325	15.808	19.676	1.00	3.57	A
7	- ATOM 5672	СВ	THR A	94	4.792	17.195	19.258	1.00	3.73	A
:	ATOM 5673	OG1	THR A	94	5.167	18.152 ⁻	20.257	1.00	4.06	A
10	ATOM 5674	CG2	THR A	94	3.273	17.186	19.101	1.00	3.88	A
	ATOM 5675	С	THR A	94	4.721	14.702	18.811	1.00	3.74	A
	ATOM 5676	0	THR A	94	3.789	14.001	19.223	1.00	3.84	A
	ATOM 5677	N	LEU A	95	5.268	14.520	17.618	1.00	3.30	A
	ATOM 5678	CA	LEU A	95	4.766	13.475	16.740	1.00	3.42	A
15	ATOM 5679	СВ	LEU A	95	5.377	13.609	15.346	1.00	3.94	A
	ATOM 5680	CG	LEU A	95	4.919	14.812	14.518	1.00	4.38	A
	ATOM 5681	CD1	LEU A	95	5.763	14.924	13.245	1.00	4.83	A
	ATOM 5682	CD2	LEU A	95	3.444	14.650	14.184	1.00	5.05	A
	ATOM 5683	С	LEU A	95	5.117	12.113	17.323	1.00	3.25	A
20	ATOM 5684	0	LEU A	95	4.275	11.217	17.397	1.00	3.09	A
	ATOM 5685	N	ASP A	96	6.364	11.960	17.756	1.00	3.25	A
	ATOM 5686	CA	ASP A	96	6.796	10.687	18.305	1.00	3.69	A
	ATOM 5687	СВ	ASP A	96	8.301	10.702	18.585	1.00	4.27	A
	ATOM 5688	CG	ASP A	96	8.891	9.305	18.644	1.00	4.99	A
25	ATOM 5689	OD1	ASP A	96	8.774	8.574	17.637	1.00	6.02	A

	АТОМ	5690	OD2	ASP	A	96	9.478	8.933	19.684	1.00	6.06	A
	ATOM	5691	С	ASP	Α	96	6.038	10.316	19.573	1.00	3.81	A
	ATOM	5692	0	ASP	Α	96	5.791	9.137	19.819	1.00	3.60	A
	ATOM	5693	N	ASP	A	97	5.677	11.315	20.377	1.00	3.85	A
5.	MOTA	5694	CA	ASP	A	97	4.924	11.062	21.608	1.00	4.32	A
	ATOM	5695	СВ	ASP	Α	97	4.600	12.377	22.332	1.00	5.15	A
	ATOM	5696	CG	ASP	A	97	5.754	12.898	23.172	1.00	5.96	A
	ATOM	5697	OD1	ASP	A	97	5.657	14.053	23.647	1.00	6.78	A
	ATOM	5698	OD2	ASP	A	97	6.748	12.163	23.377	1.00	6.61	A
10	ATOM	5699	С	ASP	A	97	3.614	10.355	21.261	1.00	4.57	A
	ATOM	5700	0	ASP	A	97	3.214	9.403	21.931	1.00	4.45	A
	ATOM	5701	N	PHE	Α	98	2.947	10.823	20.210	1.00	4.32	A
	MOTA	5702	CA	PHE	Α	98	1.680	10.219	19.809	1.00	4.70	A
	ATOM	5703	СВ	PHE	A	98	0.956	11.086	18.778	1.00	5.18	Α
15	ATOM	5704	CG	PHE	A	98	-0.415	10.574	18.423	1.00	5.70	A
	MOTA	5705	CD1	PHE	A	98	-1.420	10.518	19.385	1.00	6.58	A
	MOTA	5706	CD2	PHE	A	98	-0.690	10.107	17.144	1.00	6.14	A
	ATOM	5707	CE1	PHE	A	98	-2.681	10.001	19.077	1.00	6.93	A
	ATOM	5708	CE2	PHE	A	98	-1.950	9.587	16.825	1.00	6.50	A
20	ATOM	5709	CZ	PHE	A	98	-2.945	9.534	17.798	1.00	6.64	A
	ATOM	5710	С	PHE	A	98	1.876	8.825	19.232	1.00	4.66	A
	ATOM	5711	0	PHE	Α	98	1.147	7.896	19.574	1.00	4.59	A
•	MOTA	5712	N	MET	Ą	99	2.857	8.678	18.352	1.00	4.84	A
	ATOM	5713	CA	MET	A	99	3.117	7.377	17.749	1.00	5.40	A
25	ATOM	5714	СВ	MET	Α	99	4.299	7.464	16.777	1.00	5.46	A

	MOTA	5715	CG	MET	A	99	4.123	8.469	15.638	1.00	5.83	A
	MOTA	5716	SD	MET	A	99	2.682	8.141	14.594	1.00	6.06	A
	ATOM	5717	CE	MET	Α	99	3.312	6.790	13.572	1.00	6.22	A
,	MOTA	5718	С	MET	A	99	3.420	6.339	18.832	1.00	6.00	A
5 :	MOTĄ	5719	0	MET	Α	99	2.994	5.188	18.739	1.00	6.05	A
	ATOM	5720	N	SER	Α	100	4.143	6.759	19.866	1.00	6.83	A
	ATOM	5721	CA	SER	A	100	4.523	5.860	20.951	1.00	8.20	A
	MOTA	5722	СВ	SER	Α	100	5.628	6.516	21.790	1.00	7.84	A
	ATOM	5723	OG	SER	A	100	6.767	6.802	20.987	1.00	8.21	A
10	ATOM	5724	С	SER	A	100	3.367	5.412	21.854	1.00	9.33	A
	ATOM	5725	0	SER	Α	100	3.524	4.476	22.646	1.00	9.63	A
	ATOM	5726	N	CYS	Α	101	2.211	6.062	21.721	1.00	10.45	A
	ATOM	5727	CA	CYS	A	101	1.029	5.738	22.528	1.00	12.16	A
	ATOM	5728	СВ	CYS	Α	101	-0.005	6.870	22.455	1.00	12.99	A
1,5	ATOM	5729	SG	CYS	A	101	0.391	8.383	23.352	1.00	16.33	A
	ATOM	5730	С	CYS	A	101	0.334	4.450	22.106	1.00	12.31	Α
	ATOM	5731	0	CYS	A	101	-0.382	3.836	22.900	1.00	12.62	A
	MOTA	5732	N	PHE	Α	102	0.526	4.044	20.857	1.00	12.65	A
	ATOM	5733	CA	PHE	A	102	-0.137	2.843	20.368	1.00	13.00	Α
20 :	MOTA	5734	СВ	PHE	A	102	-0.054	2.787	18.844	1.00	12.20	A
	MOTA	5735	CG	PHE	A	102	-0.888	3.838	18.165	1.00	11.64	A
	MOTA	5736	CD1	PHE	A	102	-0.514	5.179	18.211	1.00	11.24	A
	ATOM	5737	CD2	PHE	Ą	102	-2.065	3.493	17.507	1.00	11.38	A
	ATOM	5738	CE1	PHE	A	102	-1.297	6.164	17.610	1.00	11.11	A
25	ATOM	5739	CE2	PHE	A	102	-2.858	4.468	16.902	1.00	11.06	A

	ATOM !	5740	CZ	PHE	Α	102	-2.	474	5.809		16.953	1.00	10.93	A
	MOTA	5741	С	PHE	A	102	0.	382	1.557		20.998	1.00	13.83	A
	MOTA	5742	0	PHE	A	102	1.	580	1.275		20.975	1.00	13.59	A
	ATOM	5743	N	PRO	A	103	-0.	537	0.762		21.579	1.00	14.74	A
5	ATOM	5744	CD	PRO	A	103	-1.	976	1.093		21.609	1.00	14.92	A
	ATOM	5745	CA	PRO	A	103	-0.	297	-0.516		22.259	1.00	15.72	A
	ATOM	5746	СВ	PRO	A	103	-1.	578	-0.707	,	23.061	1.00	15.57	A
	ATOM	5747	CG	PRO	A	103	-2.	608	-0.199)	22.114	1.00	15.22	A
	ATOM	5748	С	PRO	A	103	-0.	800	-1.711	•	21.354	1.00	16.75	Α'
10	ATOM	5749	0	PRO	A	103	-0.	814	-2.639)	21.265	1.00	16.71	A
	MOTA	5750	N	TRP	A	104	1.	.146	-1.693	3	20.697	1.00	17.88	A
	MOTA	5751	CA	TRP	Α	104	1.	. 527	-2.786	5	19.812	1.00	19.32	A
	ATOM	5752	СВ	TRP	A	104	2	.792	-2.423	3	19.032	1.00	18.89	A
	ATOM	5753	CG	TRP	A	104	2	.548	-1.458	3	17.925	1.00	18.58	A
15	ATOM	5754	CD2	TRP	A	104	2	.010	-1.762	2	16.635	1.00	18.48	A
	ATOM	5755	CE2	TRP	A	104	1	.931	-0.548	8	15.918	1.00	18.52	A
	ATOM	5756	CE3	TRP	A	104	1	.584	-2.944	4	16.015	1.00	18.55	Α
	MOTA	5757	CD1	TRP	A	104	2	.767	-0.110	0	17.942	1.00	18.43	A
	ATOM	5758	NE1	TRP	A	104	2	.400	0.44	4	16.739	1.00	18.43	A
20	ATOM	5759	CZ2	TRP	A	104	1	.443	-0.48	1	14.610	1.00	18.51	A
	ATOM	5760	CZ3	TRP	Α	104	1	.099	-2.87	7	14.712	1.00	18.61	Α
	ATOM	5761	CH2								14.026		18.57	A
	ATOM	5762	С								20.562		20.48	A
	MOTA	5763	0	TRF	A	104	1	734	-5.17	0	19.964			
25	ATOM	5764	N	ALA	A	105	1	.965	-4.00	0	21.870	1.00	21.92	A

	: :- ATOM 5765	CA	ALA A 105	2.214	-5.182	22.688	1.00 23.42	A
• •	ATOM 5766	СВ	ALA A 105	3.036	-4.796	23.914	1.00 23.28	A
	ATOM 5767	С	: ALA A 105	0.943	-5.910	23.120	1.00 24.45	A
	ATOM 5768	0	ALA A 105	1.013	-6.976	23.732	1.00 24.65	A
5		N	GLU A 106	-0.217	-5.342	22.802	1.00 25.65	A
	, АТОМ 5770	CA	GLU A 106	-1.485	-5.962	23.174	1.00 26.85	Α
	атом 5771	СВ	GLU A 106	-2.660	-5.132	22.655	1.00 27.04	A
	ATOM 5772	CG	GLU A 106	-4.013	-5.813	22.819	1.00 27.53	A
	ATOM 5773	CD	GLU A 106	-4.291	-6.224	24.252	1.00 27.76	A
10	ATOM 5774	OE1	GLU A 106	-4.226	-5.354	25.146	1.00 27.91	A
	ATOM 5775	OE2	GLU A 106	-4.580	-7.417	24.484	1.00 28.01	A
	ATOM 5776	С	GLU A 106	-1.599	-7.391	22.649	1.00 27.52	A
	ATOM 5777	0	GLU A 106	-1.223	-7.680	21.512	1.00 27.83	A
	атом 5778	N	LYS A 107	-2.130	-8.275	23.487	1.00 28.30	A
15	ATOM 5779	CA	LYS A 107	-2.300	-9.682	23.139	1.00 28.87	A
,	ATOM 5780	СВ	LYS A 107	-2.444	-10.514	24.414	1.00 29.16	A
	ATOM 5781	CG	LYS A 107	-1.271	-10.395	25.373	1.00 29.57	A
	ATOM 5782	CD	LYS A 107	0.009	-10.925	24.750	1.00 29.90	A
	ATOM 5783	CE	LYS A 107	1.156	-10.889	25.748	1.00 30.13	A
20.	ATOM 5784	NZ	LYS A 107	0.857	-11.708	26.956	1.00 30.43	A
	ATOM 5785	С	LYS A 107	-3.509	-9.927	22.241	1.00 29.12	A
			LYS A 107					
	ATOM 5787	N	LYS 🐧 108	-4.689	-9.560	22.729	1.00 29.38	A
							1.00 29.63	
25	ATOM 5789	СВ	LYS A 108	-7.134	-9.496	22.872	1.00 30.00	Α

	MOTA	5790	CG	LYS 2	A	108	-7.169	-10.367	24.123	1.00	30.56	A
•	ATOM	5791	CD	LYS 2	A	108	-8.456	-10.178	24.922	1.00	30.98	A
	ATOM	5792	CE	LYS .	A	108	-9.673	-10.768	24.211	1.00	31.33	A
	АТОМ	5793	NZ	LYS 2	A	108	-9.995	-10.085	22.924	1.00	31.67	A.
5	ATOM	5794	С	LYS .	A	108	-5.969	-8.806	20.773	1.00	29.56	A
	ATOM	5795	0	LYS .	Α	108	-6.053	-7.588	20.929	1.00	29.53	A
	ATOM	5796	N	GLN .	Α	109	-5.912	-9.380	19.575	1.00	29.46	A
	ATOM	5797	CA	GLN .	A	109	-5.950	-8.594	18.348	1.00	29.31	A
	ATOM	5798	СВ	GLN .	A	109	-5.908	-9.519	17.130	1.00	29.60	A
10	ATOM	5799	CG	GLN .	A	109	-5.886	-8.795	15.788	1.00	30.07	A
	ATOM	5800	CD	GLN .	A	109	-4.671	-7.898	15.624	1.00	30.20	A
•	ATOM	5801	OE1	GLN .	A	109	-3.531	-8.347	15.745	1.00	30.51	A
•	ATOM	5802	NE2	GLN .	A	109	-4.911	-6.623	15.341	1.00	30.44	A
	MOTA	5803	С	GLN .	A	109	-7.213	-7.740	18.306	1.00	29.07	A
15	MOTA	5804	0	GLN	A	109	-7.197	-6.614	17.808	1.00	29.12	A
	ATOM	5805	N	ASP	A	110	-8.304	-8.281	18.838	1.00	28.67	A
•	ATOM	5806	CA	ASP	Α	110	-9.582	-7.576	18.871	1.00	28.20	A
	ATOM	5807	СВ	ASP	A	110	-10.662	-8.464	19.494	1.00	28.84	A
	MOTA	5808	CG	ASP	A	110	-10.698	-9.855	18.892	1.00	29.35	A
20 -	ATOM	5809	OD1	ASP	A	110	-11.510	-10.681	19.362	1.00	29.82	A
·	MOTA	5810	OD2	ASP	A	110	-9.918	-10.126	17.954	1.00	29.79	A
	MOTA	5811	С	ASP	A	110	-9.450	-6.303	19.700	1.00	27.49	A
	MOTA	5812	0	ASP	Ą	110	-9.794	-5.210	19.248	1.00	27.41	A
	MOTA	5813	N	VAL	A	111	-8.952	-6.466	20.921	1.00	26.54	Α
25	ATOM	5814	CA	VAL	A	111	-8.765	-5.352	21.844	1.00	25.62	A

235

•								_
•	атом 5815	СВ	VAL A 111	-8.261	-5.852	23.214	1.00 25.70	A
-	ATOM 5816	CG1	VAL A 111	-8.118	-4.687	24.176	1.00 25.75	A
	ATOM 5817	CG2	VAL A 111	-9.220	-6.892	23.769	1.00 25.72	A
•	ATOM 5818	С	VAL A 111	-7.751	-4.361	21.288	1.00 24.87	A
5	ATOM 5819	0	VAL A 111	-7.890	-3.150	21.457	1.00 24.76	A
	ATOM 5820	N	LYS A 112	-6.733	-4.893	20.623	1.00 23.93	A
	ATOM 5821	CA	LYS A 112	-5.679	-4.082	20.034	1.00 22.97	A
	ATOM 5822	СВ	LYS A 112	-4.645	-4.995	19.376	1.00 23.32	A
	ATOM 5823	CG	LYS A 112	-3.397	-4.302	18.873	1.00 23.86	A
10	атом 5824	CD	LYS A 112	-2.432	-5.333	18.305	1.00 24.32	A
	ATOM 5825	CE	LYS A 112	-1.157	-4.697	17.788	1.00 24.73	A
	атом 5826	NZ	LYS A 112	-0.215	-5.733	17.271	1.00 25.05	A
	атом 5827	С	LYS A 112	-6.259	-3.114	19.007	1.00 22.11	A
	ATOM 5828	0	LYS A 112	-5.962	-1.920	19.031	1.00 21.79	A
15	ATOM 5829	N	GLU A 113	-7.092	-3.636	18.111	1.00 21.14	A
	ATOM 5830	CA	GLU A 113	-7.715	-2.815	17.079	1.00 20.14	A
	ATOM 5831	СВ	GLU A 113	-8.529	-3.690	16.119	1.00 20.72	A
	атом 5832	CG	GLU A 113	-7.713	-4.763	15.412	1.00 21.85	A
	атом 5833	CD	GLU A 113	-8.491	-5.456	14.303	1.00 22.40	A
20	ATOM 5834	OE]	L GLU A 113	-7.956	-6.422	13.717	1.00 22.88	A
	ATOM 5835	OE2	2 GLU A 113	-9.632	-5.032	14.010	1.00 23.04	A
							1.00 19.20	A
							1.00 18.59	A
	ATOM 5838	N	GLN A 114	-9.313	-2.157	18.780	1.00 18.24	A
25	ATOM 5839	CA	GLN A 114	-10.211	-1.252	19.492	1.00 17.58	A

& 0.12

54.2

11

CA 02466264 2004-05-05

	ATOM S	5840	СВ	GLN	A	114	-10.867	-1.989	20.665	1.00	18.40	Α
	ATOM !	5841	CG	GLN	A	114	-11.701	-1.110	21.590	1.00	19.72	A
	ATOM !	5842	CD	GLN	Α	114	-12.983	-0.617	20.951	1.00	20.35	A
	ATOM !	5843	OE1	GLN	A	114	-13.741	0.141	21.560	1.00	21.36	A
5	ATOM !	5844	NE2	GLN	Α	114	-13.238	-1.045	19.721	1.00	21.11	A
	MOTA	5845	С	GLN	A	114	-9.433	-0.044	20.011	1.00	16.47	A
	ATOM	5846	0	GLN	Α	114	-9.841	1.101	19.822	1.00	15.90	A
	ATOM	5847	N	MET	A	115	-8.306	-0.308	20.664	1.00	15.39	A
	ATOM	5848	CA	MET	Α	115	-7.469	0.754	21.215	1.00	14.42	A
10	MOTA	5849	СВ	MET	A	115	-6.325	0.146	22.022	1.00	15.54	A
•	ATOM	5850	CG	MET	A	115	-6.800	-0.675	23.205	1.00	16.96	A
	MOTA	5851	SD	MET	A	115	-5.448	-1,470	24.079	1.00	18.84	A
<i>:</i>	ATOM	5852	CE	MET	A	115	-5.262	-2.923	23.139	1.00	18.77	A
	ATOM	5853	С	MET	A	115	-6.912	1.655	20.117	1.00	13.19	A
15	ATOM	5854	0	MET	A	115	-6.872	2.877	20.267	1.00	12.74	A
	MOTA	5855	N	PHE	A	116	-6.476	1.050	19.017	1.00	11.78	A
	ATOM	5856	CA	PHE	A	116	-5.947	1.813	17.890	1.00	10.59	A
	ATOM	5857	СВ	PHE	Α	116	-5.490	0.870	16.773	1.00	10.36	A
	MOTA	5858	CG	PHE	A	116	-4.061	0.413	16.901	1.00	10.46	A
20	ATOM	5859	CD1	PHE	A	116	-3.595	-0.162	18.081	1.00	10.57	A
	MOTA	5860	CD2	PHE	A	116	-3.180	0.559	15.836	1.00	10.60	A
· · · · · · · · · · · · · · · · · · ·	ATOM	5861	CE1	L PHE	A	116	-2.264	-0.584	18.196	1.00	10.91	A
	ATOM	5862	CE2	2 PHE	E Ą	116	-1.850	0.140	15.940	1.00	10.80	A
•							-1.395				10.66	
·. 25	ATOM	5864	С	PHI	ΞĄ	116	-7.028	2.746	17.352	1.00	9.91	A

9.64 J.17

CA 02466264 2004-05-05

i.	ATOM	5865	0	PHE	A	116	-6.784	3.926	17.107	1.00	9.44	A
	ATOM	6152	N	TYR	A	152	9.540	13.762	9,073	1.00	2.77	A
	ATOM	6153	CA	TYR	Α	152	8.881	12.942	10.085	1.00	2.75	A
	ATOM	6154	СВ	TYR	Α	152	9.375	13.285	11.493	1.00	2.46	A
5	ATOM	6155	CG	TYR	Α	152	9.275	12.107	12.439	1.00	2.52	A
	ATOM	6156	CD1	TYR	A	152	9.745	10.850	12.057	1.00	2.65	A
	ATOM	6157	CE1	TYR	A	152	9.704	9.767	12.931	1.00	2.76	A
	ATOM	6158	CD2	TYR	A	152	8.749	12.251	13.727	1.00	2.68	A
	ATOM	6159	CE2	TYR	Α	152	8.700	11.166	14.614	1.00	2.62	A
10	ATOM	6160	CZ	TYR	A	152	9.187	9.928	14.206	1.00	2.82	A
	АТОМ	6161	ОН	TYR	A	152	9.200	8.848	15.069	1.00	3.50	A
	ATOM	6162	С	TYR	A	152	7.367	13.051	10.016	1.00	2.91	A
	MOTA	6163	0	TYR	A	152	6.660	12.070	10.255	1.00	2.96	A
	ATOM	6164	N	TRP	Α	153	6.863	14.237	9.696	1.00	3.18	A
15 .	ATOM	6165	CA	TRP	A	153	5.424	14.392	9.562	1.00	3.43	A
	ATOM	6166	СВ	TRP	A	153	5.044	15.839	9.240	1.00	3.92	A
	ATOM	6167	CG	TRP	Α	153	3.631	15.957	8.702	1.00	4.79	A
	AŢOM	6168	CD2	TRP	A	153	2.425	15.511	9.340	1.00	5.21	A
	ATOM	6169	CE2	TRP	A	153	1.359	15.767	8.446	1.00	5.55	A
20	ATOM	6170	CE3	TRP	A	153	2.141	14.917	10.578	1.00	5.42	A
	ATOM	6171	CD1	TRP	A	153	3.256	16.454	7.485	1.00	5.26	A
	ATOM	6172	NE1	TRP	A	153	1.894	16.341	7.324	1.00	5.61	A
	ATOM	6173	CZ2	TRP	A	153 !	0.029	15.449	8.749	1.00	5.49	A
	MOTA	6174	CZ3	TRP	A	153	0.812	14.599	10.880	1.00	5.68	A
25	ATOM	6175	CH2	TRP	Α	153	-0.223	14.868	9.967	1.00	5.61	A

ear · "

: ::-

CA 02466264 2004-05-05

· · :	MOTA	6176	С	TRP	A	153	4.929	13.497	8.428	1.00	3.45	A
	MOTA	6177	0	TRP	A	153	3.935	12.797	8.576	1.00	3.37	A
	MOTA	6178	N	GLU	A	154	5.618	13.518	7.291	1.00	3.56	A
	MOTA	6179	CA	GLU	A	154	5.176	12.711	6.162	1.00	3.71	A
5	ATOM	6180	СВ	GLU	A	154	5.999	13.035	4.908	1.00	4.32	A
	ATOM	6181	CG	GLU	A	154	5.412	12.438	3.622	1.00	5.29	A
. :	ATOM	6182	CD	GLU	A	154	5.831	11.001	3.395	1.00	6.03	A
	ATOM	6183	OE1	GLU	A	154	5.164	10.291	2.610	1.00	7.04	A
	ATOM	6184	OE2	GLU	A	154	6.840	10.587	3.991	1.00	6.58	A
10	ATOM	6185	С	GLU	A	154	5.242	11.218	6.467	1.00	3.29	A
	ATOM	6186	0	GLU	A	154	4.349	10.463	6.092	1.00	3.50	A
	MOTA	6187	N	ILE	A	155	6.290	10.801	7.166	1.00	3.02	A
	ATOM	6188	CA	ILE	A	155	6.466	9.397	7.520	1.00	3.13	A
	ATOM	6189	CB	ILE	A	155	7.888	9.182	8.105	1.00	2.70	A
15	MOTA	6190	CG2	ILE	A	155	7.991	7.836	8.827	1.00	2.70	A
	MOTA	6191 .	CG1	ILE	A	155	8.912	9.275	6.974	1.00	2.60	A
	ATOM	6192	CD1	ILE	Α	155	10.341	9.455	7.455	1.00	2.55	A
•	ATOM	6193	С	ILE	A	155	5.393	8.931	8.509	1.00	3.34	A
	ATOM	6194	0	ILE	A	155	4.757	7.888	8.304	1.00	3.01	A
20	ATOM	6195	N	CYS	A	1 56	5.178	9.708	9.570	1.00	3.50	A
•	ATOM	6196	CA	CYS	A	156	4.176	9.345	10.570	1.00	4.03	A
	ATOM	6197	СВ	CYS	A	156	4.227	10.298	11.771	1.00	4.29	A
	ATOM	6198	SG	CYS	Ą	156	5.678	10.099	12.840	1.00	5.23	A
	ATOM	6199	С	CYS	A	156	2.767	9.339	9.989	1.00	4.27	A
25	ATOM	6200	0	CYS	A	156	2.009	8.390	10.199	1.00	4.23	A

	ATOM	6201	N	SER A	157	2.419	10.391	9.254	1.00	4.32	A
	АТОМ	6202	CA	SER A	157	1.085	10.469	8.668	1.00	4.75	A
	ATOM	6203	СВ	SER A	. 157	0.838	11.865	8.072	1.00	5.10	A
	ATOM	6204	OG	SER A	157	1.761	12.194	7.047	1.00	5.43	A
5	ATOM	6205	С	SER A	157	0.852	9.369	7.631	1.00	4.95	A
*	ATOM	6206	0	SER A	157	-0.264	8.874	7.487	1.00	4.57	A
	ATOM	6207	N	THR A	158	1.898	8.963	6.920	1.00	5.02	A
•	ATOM	6208	CA	THR A	158	1.731	7.901	5.937	1.00	5.46	A
	ATOM	6209	СВ	THR A	158	3.044	7.623	5.168	1.00	5.08	A
10	ATOM	6210	OG1	THR A	A 158	3.223	8.638	4.175	1.00	6.03	A
	ATOM	6211	CG2	THR A	A 158	3.002	6.255	4.484	1.00	5.35	A
	ATOM	6212	С	THR A	A 158	1.257	6.624	6.623	1.00	5.78	A
	MOTA	6213	0	THR A	A 158	0.330	5.963	6.153	1.00	6.22	A
	ATOM	6214	N	THR 2	A 159	1.868	6.273	7.749	1.00	6.08	A
15	АТОМ	6215	CA	THR .	A 159	1.439	5.056	8.416	1.00	6.86	A
	ATOM	6216	СВ	THR .	A 159	2.511	4.534	9.380	1.00	7.60	A
	ATOM	6217	OG1	THR .	A 159	3.698	4.230	8.633	1.00	8.88	A
	ATOM	6218	CG2	THR	A 159	2.029	3.261	10.065	1.00	8.45	A
	ATOM	6219	С	THR	A 159	0.102	5.219	9.141	1.00	6.36	A
20	ATOM	6220	0	THR	A 159	-0.716	4.304	9.136	1.00	6.28	A
	ATOM	6221	N	LEU	A 160	-0.139	6.378	9.749	1.00	6.36	A
	АТОМ	6222	CA	LEU	A 160	-1.416	6.583	10.433	1.00	6.28	A
	ATOM	6223	СВ	LEU	A 160	-1.442	7.938	11.145	1.00	6.43	A
	ATOM	1 6224	CG				8.064	12.344	1.00	6.55	A
25							9.446				A

240

	ATOM 6226	CD2	LEU A 160	-0.815	6.977	13.369	1.00	6.80	A
٠.	ATOM 6227	C,	LEU A 160	-2.567	6.505	9.428	1.00	6.52	A
	ATOM 6228	0	LEU A 160	-3.635	5.979	9.744	1.00	6.37	A
<i>:</i> ,	ATOM 6229	N	LEU A 161	-2.344	7.026	8.224	1.00	6.39	A
5	ATOM 6230	CA	LEU A 161	-3.369	7.006	7.178	1.00	6.80	A
		СВ	LEU A 161	-2.881	7.764	5.941	1.00	6.77	A
٠	атом 6232	CG	LEU A 161	-2.994	9.287	6.026	1.00	6.85	A
	ATOM 6233	CD1	LEU A 161	-2.211	9.934	4.893	1.00	6.96	A
	ATOM 6234	CD2	LEU A 161	-4.468	9.686	5.967	1.00	6.94	A
10	ATOM 6235	С	LEU A 161	-3.770	5.589	6.785	1.00	6.97	A
	ATOM 6236	0	LEU A 161	-4.869	5.370	6.272	1.00	7.11	A
	ATOM 6237	N	VAL A 162	-2.884	4.627	7.015	1.00	7.20	A
	атом 6238	CA	VAL A 162	-3.199	3.240	6.692	1.00	7.82	A
	ATOM 6239	СВ	VAL A 162	-1.963	2.317	6.867	1.00	7.65	A
15	ATOM 6240	CG1	VAL A 162	-2.372	0.853	6.720	1.00	8.05	A
,	ATOM 6241	CG2	VAL A 162	-0.905	2.673	5.830	1.00	7.94	A
٠.	ATOM 6242	С	VAL A 162	-4.308	2.760	7.620	1.00	8.18	A
	атом 6243	0	VAL A 162	-5.197	2.014	7.205	1.00	8.53	A
• .	ATOM 6244	N	PHE A 163	-4.257	3.204	8.875	1.00	8.35	A
20	ATOM 6245	CA	PHE A 163	-5.251	2.813	9.871	1.00	8.79	A
	атом 6246	СВ	PHE A 163	-4.612	2.753	11.263	1.00	9.22	A
	ATOM 6247	CG	PHE A 163	-3.511	1.746	11.376	1.00	10.12	A
	ATOM 6248	CD:	1 РНЕ 🐧 163	-2.201	2.083	11.058	1.00	10.55	A
	ATOM 6249	CD	2 PHE A 163	-3.792	0.440	11.773	1.00	10.59	A
25	ATOM 6250	CE	1 PHE A 163	-1.186	1.129	11.135	1.00	10.94	A

241

	ATOM 6251	CE2	PHE A 163	-2.787	-0.515	11.850	1.00	11.22	A
	ATOM 6252	CZ	PHE A 163	-1.481	-0.169	11.530	1.00	11.03	A
	ATOM 6253	С	PHE A 163	-6.454	3.745	9.920	1.00	8.73	A
٠	ATOM 6254	0	PHE A 163	-7.541	3.341	10.333	1.00	9.27	A
5	ATOM 6528	N	THR A 197	6.261	-2.354	2.065	1.00	5.54	A
	атом 6529	CA	THR A 197	5.873	-3.026	3.294	1.00	6.03	A
	атом 6530	СВ	THR A 197	7.027	-2.988	4.330	1.00	6.06	A
	ATOM 6531	OG1	THR A 197	7.395	-1.626	4.585	1.00	6.14	A
	ATOM 6532	CG2	THR A 197	8.251	-3.733	3.796	1.00	6.10	A
10	ATOM 6533	С	THR A 197	4.634	-2.343	3.865	1.00	6.45	A
	атом 6534	0	THR A 197	4.355	-1.181	3.559	1.00	6.41	A
	ATOM 6535	N	LYS A 198	3.889	-3.065	4.691	1.00	7.24	A
	ATOM 6536	CA	LYS A 198	2.679	-2.512	5.272	1.00	7.84	A
	ATOM 6537	СВ	LYS A 198	1.929	-3.596	6.046	1.00	8.50	A
15	атом 6538	CG	LYS A 198	0.529	-3.190	6.464	1.00	9.42	A
	ATOM 6539) CD	LYS A 198	-0.346	-3.015	5.237	1.00	10.37	A
	ATOM 6540) CE	LYS A 198	-1.794	-2.809	5.616	1.00	10.74	A
	ATOM 654	l nz	LYS A 198	-2.644	-2.633	4.407	1.00	11.54	A
	ATOM 6542	2 C	LYS A 198	2.996	-1.350	6.203	1.00	7.94	A
20	ATOM 654	3 0	LYS A 198	2.420	-0.263	6.082	1.00	8.01	A
	ATOM 654	4 N	LEU A 199	3.929	-1.589	7.119	1.00	8.20	A
	ATOM 654	5 CA	LEU A 199	4.335	-0.592	8.101	1.00	8.16	A
	ATOM 654	6 СВ	LEU 🧸 199	4.199	-1.180	9.510	1.00	8.84	A
	атом 654	7 CG	LEU A 199	2.859	-1.852	9.827	1.00	9.23	A
25	ATOM 654	8 CD	1 LEU A 199	2.923	-2.499	11.203	1.00	9.71	A

2 2°2′

45f.

	ATOM	6549	CD2	LEU	A	199	1.739	-0.827	9.745	1.00	9.80	A
••	ATOM	6550	С	LEU	A	199	5.775	-0.130	7.882	1.00	8.13	A
	ATOM	6551	OT1	LEU	A	99	6.440	-0.652	6.959	1.00	7.55	A
	ATOM	6552	от2	LEU	A	199	6.216	0.753	8.649	1.00	8.21	A
5	ATOM	6613	N1	GSH	н	4	12.088	5.233	20.820	1.00	7.13	Н
	ATOM	6614	CA1	GSH	Н	4	12.962	4.197	20.254	1.00	7.03	Н
	ATOM	6615	C1	GSH	Н	4	13.457	4.588	18.834	1.00	6.55	Н
	ATOM	6616	011	GSH	Н	4	12.879	5.504	18.242	1.00	6.42	н
	ATOM	6617	012	GSH	Н	4	14.524	3.959	18.368	1.00	5.57	Н
10	ATOM	6618	CB1	GSH	Н	4	12.145	2.885	20.215	1.00	7.92	Н
	ATOM	6619	CG1	GSH	Н	4	13.006	1.603	20.044	1.00	8.47	Н
•	ATOM	6620	CD1	GSH	Н	4	12.022	0.396	19.925	1.00	9.25	Н
•	ATOM	6621	OE1	GSH	Н	4	11.170	0.182	20.803	1.00	9.64	Н
-	ATOM	6622	N2	GSH	Н	4	12.250	-0.419	18.881	1.00	9.52	Н
15	ATOM	6623	CA2	GSH	Н	4	11.428	-1.623	18.662	1.00	10.30	Н
·	ATOM	6624	C2	GSH	Н	4	12.205	-2.870	19.063	1.00	10.93	Н
•	ATOM	6625	02	GSH	Н	4	13.436	-2.897	19.121	1.00	9.41	Н
:	ATOM	6626	СВ2	GSH	Н	4	11.161	-1.836	17.165	1.00	10.45	Н
	MOTA	6627	SG2	GSH	Н	4	10.101	-0.583	16.421	1.00	11.44	Н
20	ATOM	6628	и3	GSH	Н	4	11.453	-3.878	19.521	1.00	12.52	Н
	MOTA	6629	CA3	GSH	Н	4	11.906	-5.282	19.488	1.00	13.88	Н
	ATOM	6630	С3	GSH	Н	4	12.200	-5.722	20.899	1.00	14.49	Н
	MOTA	6631	031	GSH	Н	4	12.672	-6.865	21.036	1.00	15.15	Н
	АТОМ	6632	032	GSH	Н	4			21.826			
25	ATOM	6675	MG+2	MG2	M	901	10.564	10.708	23.002	1.00	6.47	M

243

:

* i . i .	•										
	ATOM	6761	C1	HQL :	x 201	0.783	3.731	14.700	1.00 1	4.62	X
	ATOM	6762	C2	HQL :	x 201	1.692	4.118	15.845	1.00 1	4.59	x
	ATOM	6763	С3	HQL :	x 201	3.106	3.797	15.836	1.00 1	4.55	x
	MOTA	6764	C4	HQL :	x 2 01	3.711	3.097	14.685	1.00 1	4.90	x
5	ATOM	6765	C5	HQL :	; X 2 01	5.187	2.827	14.734	1.00 1	5.13	x
	ATOM	6766	01	HQL :	x 2 01	5.430	1.582	13.989	1.00 1	6.49	x
	ATOM	6767	С6	HQL :	x 2 01	6.385	0.713	14.568	1.00 1	8.14	x
	ATOM	6768	C7	HQL :	x 2 01	5.869	0.071	16.022	1.00 1	8.91	x
.5	ATOM	6769	C8	HQL	x 2 01	5.795	-1.443	16.083	1.00 1	9.93	x
10	ATOM	6770	N1	HQL	X 2ॄ01	5.334	-2.091	14.799	1.00 2	0.61	x
	ATOM	6771	C9	HQL	x 201	5.405	-3.554	15.187	1.00 2	1.81	х
•	MOTA	6772	C10	HQL	x 201	5.034	-4.554	14.080	1.00 2	3.26	x
	ATOM	6773	C11	HQL	x 201	5.181	-5.967	14.572	1.00 2	4.56	х
	ATOM	6774	C12	HQL	x 201	4.877	-6.836	13.391	1.00 2	5.39	x
15	· ATOM	6775	N2	HQL	x 201	3.772	-6.819	12.624	1.00 2	5.84	х
	ATOM	6776	N3	HQL	x 201	3.922	-7.729	11.695	1.00 2	6.13	x
	АТОМ	6777	N4	HQL	x 201	5.093	-8.318	11.859	1.00 2	6.09	х
;	ATÔM	6778	N5	HQL	x 201	5.695	-7.787	12.893	1.00 2	25.73	x
	ATOM	6779	C13	HQL	x 201	6.228	-1.740	13.566	1.00 1	9.90	x
20	ATOM	6780	C14	HQL	x 201	6.591	-0.245	13.299	1.00 1	.8.75	x
	MOTA	6781	C15	HQL	x 201	5.994	4.025	14.243	1.00 1	L 4.5 7	x
	ATOM	6782	C16	HQL	x 201	6.642	4.886	15.312	1.00 1	14.43	x
•	ATOM	6783	C17	HQL	x 201	7.411	6.102	14.925	1.00 1	L4.09	x
	ATOM	6784	C18	HQL	x 20	7.560	6.480	13.475	1.00 1	14.22	x
25	ATOM	6785	C19	HQL	x 20	L 6.931	5.623	12.396	1.00	14.18	x

24/ 1/3 3

24, prz

... 24: 9. .

CA 02466264 2004-05-05

244

. :	MOTA	6786	C20	HQL	X	201	6.151	4.410	12.778	1.00	14.33	x
	ATOM	6787	C21	HQL	X	201	2.813	2.674	13.498	1.00	14.91	X
	ATOM	6788	C22	HQL	x	201	1.353	2.988	13.530	1.00	14.88	x
	ATOM	6790	он2	WAT	s	2	14.771	8.489	19.484	1.00	5.47	s
5	ATOM	6791	он2	WAT	s	3	11.680	1.507	3.580	1.00	5.07	s
	ATOM	6794	он2	WAT	s	6	16.764	2.346	18.953	1.00	6.31	s
	ATOM	6797	он2	WAT	S	9	10.902	6.761	11.193	1.00	3.72	s
	ATOM	6802	он2	WAT	S	14	17.269	-1.249	7.632	1.00	5.08	s
	ATOM	6804	OH2	WAT	S	16·	19.130	-0.458	21.382	1.00	6.03	S
10	ATOM	6807	ОН2	WAT	s	19	9.886	-0.690	3.622	1.00	4.46	s
	ATOM	6809	ОН2	WAT	s	21	11.248	7.004	14.090	1.00	4.99	s
	ATOM	6814	он2	WAT	s	26	23.738	-1.909	12.157	1.00	5.26	s
	ATOM	6818	он2	WAT	S	30	17.625	1.909	21.799	1.00	6.78	s
	ATOM	6824	он2	WAT	s	36	16.161	2.164	24.178	1.00	8.59	s
15	ATOM	6825	он2	WAT	S	37	6.016	5.686	6.917	1.00	8.02	s
	ATOM	6834	ОН2	WAT	S	46	6.979	0.708	2.055	1.00	6.31	s
	ATOM	6838	ОН2	WAT	s	50	12.098	8.108	20.192	1.00	7.43	s
	ATOM	6851	он2	WAT	S	63	5.327	2.748	9.978	1.00	10.75	s
	ATOM	6862	он2	WAT	s	74	7.157	4.594	9.351	1.00	8.69	s
20	ATOM	6875	ОН2	WAT	S	87	13.436	2.712	24.346	1.00	11.43	s
	ATOM	6881	он2	WAT	S	93	13.465	2.511	27.281	1.00	8.49	s
	ATOM	6917	он2	WAT	S	129	4.790	-5.831	4.947	1.00	16.22	s
	ATOM	6923	он2	WAT	s	135	11.522	-7.922	8.942	1.00	14.58	S
	ATOM	6927	OH2	WAT	S	139	7.332	5.571	25.452	1.00	13.15	S
25	ATOM	6931	он2	WAT	S	144	4.347	8.725	24.399	1.00	18.59	S

ફ સ્ટુ છે જ્યું

 $\xi = \tilde{\sigma} \otimes_{\mathbb{Z}}^{1/2}$

		ATOM	6936	он2	WAT	s	149	21.684	-0.730	22.365	1.00	19.24	s
		ATOM	6940	он2	WAT	s	153	6.829	6.961	4.592	1.00	11.46	s
		ATOM	6994	он2	WAT	s	207	9.472	5.801	21.506	1.00	15.51	s
		ATOM	6997	он2	WAT	s	210	5.042	-4.149	7.833	1.00	13.78	S
	· 5	ATOM	7091	он2	WAT	s	304	3.700	2.599	19.458	1.00	18.38	s
		ATOM	7143	он2	WAT	s	356 356	4.462	6.079	25.441	1.00	21.81	S
		ATOM	7153	он2	WAT	s	366	14.674	-8.789	5.088	1.00	25.86	s
		ATOM	7162	он2	WAT	s	375	14.316	13.133	20.343	1.00	19.71	s
		ATOM	7174	он2	WAT	s	387	8.250	1.189	18.665	1.00	24.62	s
. /	10	MOTA	7183	он2	WAT	s	396	20.328	-6.928	24.875	1.00	32.42	s
		ATOM	7223	он2	WAT	S	436	22.932	-6.039	12.661	1.00	30.30	s
		ATOM	7226	он2	WAT	S	439	10.226	-11.668	9.025	1.00	26.07	s
		ATOM	7227	он2	WAT	s	440	10.828	1.782	27.468	1.00	17.99	s
		ATOM	7231	он2	WAT	s	444	11.916	-14.217	16.326	1.00	26.35	S
	15	АТОМ	7244	он2	WAT	s	457	16.265	-1.371	28.167	1.00	34.60	s
		ATOM	7281	он2	WAT	s	494	7.021	-5.903	6.732	1.00	25.70	s
		ATOM	7290	он2	WAT	s	503	11.401	0.940	23.577	1.00	22.25	s
		ATOM	7313	он2	WAT	s	526	15.359	0.458	26.169	1.00	23.29	s
	· · · · · · · · · · · · · · · · · · ·	ATOM	7325	OH2	WAT	s	538 538	11.588	-8.884	22.349	1.00	25.83	S
٠.	20	ATOM	7341	он2	WAT	s	554	10.740	-8.906	19.123	1.00	36.43	S
	٠,	ATOM	7365	OH2	WAT	S	578	9.748	-2.511	21.886	1.00	32.74	s
		ATOM	7428	он2	WAT	s	641	9.454	12.503	23.240	1.00	7.54	s
		ТАТОМ	7429	он2	WAT	s	642	9.887	9.966	24.786	1.00	10.81	s
		ATOM	7430	он2	WAT	s	643	12.091	11.779	23.976	1.00	13.97	s
	25 :	ATOM	7431	он2	WAT	s	644	11.037	11.297	21.097	1.00	12.32	s

•	· ATOM 7432	OH2 WAT S 645	8.928 9.669	22.178	1.00 9.54	S
: '	ATOM 7433	OH2 WAT S 646	11.790 9.079	22.827	1.00 8.22	s
	ATOM 7445	OH2 WAT S 658	8.377 3.747	23.391	1.00 28.44	S
: •	ATOM 7448	OH2 WAT S 661	10.331 -0.751	28.752	1.00 36.87	s
5 .	ATOM 7449	OH2 WAT S 662	11.270 -5.110	29.771	1.00 27.40	s
· ·	ATOM 7473	OH2 WAT S 686	6.297 -7.443	3.798	1.00 34.15	s
:	ATOM 7482	OH2 WAT S 695	2.766 -7.409	6.323	1.00 31.70	S
	ATOM 7483	OH2 WAT S 696	3.236 -5.622	9.446	1.00 30.92	S
	. ATOM 7490	OH2 WAT S 703	7.547 8.295	24.274	1.00 13.98	s
10	ATOM 7498	OH2 WAT S 711	23.720 0.535	21.093	1.00 33.19	S
	ATOM 7518	OH2 WAT S 731	11.607 -11.967	17.559	1.00 29.38	s
	ATOM 7606	OH2 WAT S \$19	13.230 -5.747	25.483	1.00 31.58	s
	ATOM 7607	OH2 WAT S \$20	15.415 -8.549	26.956	1.00 34.91	s
	ATOM 7646	OH2 WAT S \$59	19.195 -6.110	26.916	1.00 43.51	S
15	АТОМ 7663	OH2 WAT S \$76	9.450 -8.128	10.745	1.00 28.17	s
	ATOM 7664	OH2 WAT S \$77	6.964 -8.045	9.036	1.00 32.76	S
	ATOM 7677	OH2 WAT S 990	-4.103 -2.947	14.907	1.00 31.94	s
÷.	ATOM 7685	OH2 WAT S 898	0.382 -6.331	13.311	1.00 40.22	S
-	АТОМ 7703	OH2 WAT S 916	12.503 -10.886	20.792	1.00 32.79	s
20	ATOM 7726	OH2 WAT S 939	9.361 1.904	25.025	1.00 24.74	S
•	АТОМ 7733	OH2 WAT S \$46	6.220 10.170	25.032	1.00 33.80	s
:	ATOM 7801	OH2 WAT S1014	9.686 -9.232	5.261	1.00 31.69	S
	* ATOM 7802	OH2 WAT S1015	3.009 -1.511	23.142	1.00 36.99	S
-	ATOM 7825	OH2 WAT S1038	12.443 -8.837	27.155	1.00 37.43	S
25	ATOM 7836	OH2 WAT S1049	2.595 0.473	29.257	1.00 34.46	S

	MOTA	7879	он2	WAT	S1 0 92	8.471	-3.139	15.245	1.00	24.42	S
	: ATOM	7889	он2	WAT	S1102	8.537	-5.669	15.531	1.00	33.36	s
	MOTA	7890	он2	WAT	s1103	9.120	-7.616	16.968	1.00	37.15	s
•	ATOM	7932	ОН2	WAT	S1147	2.722	0.246	25.232	1.00	38.87	S
5	MOTA	7933	он2	WAT	s1148	1.715	2.322	24.218	1.00	34.69	S
	MOTA	7946	он2	WAT	s1161	12.929	-1.852	29.410	1.00	40.70	S
	ATOM	8049	он2	WAT	S1264	5.506	-4.229	21.028	1.00	36.38	s
	ATOM	8050	ОН2	WAT	S12 65	7.355	-0.482	24.373	1.00	39.74	s
•	MOTA	8051	он2	WAT	s1266	5.564	-1.958	27.066	1.00	38.45	S
10	ATOM	8054	ОН2	WAT	S1269	1.047	-2.647	28.146	1.00	39.12	S

 $\chi \gg 1$

CA 02466264 2004-05-05

1/3

SEQUENCE LISTING

- (110) Japan Science and Technology Agency
- (110) Osaka Bioscience Institute
- (110) RIKEN
- (120) Three-Dimensional Structure Of Prostaglandin D Synthase and Utilization Thereof
- (130) 540008
- (150) JP 2001-346035
- (151) 2001-11-12
- (160) 1
- (210)
- **(211)** 198
- ⟨212⟩ PRT
- (213) Homo sapiens

5

(400) 1

Pro Asn Tyr Lys Leu Thr Tyr Phe Asn Met Arg Gly Arg Ala Glu Ile

10 15

Ile Arg Tyr Ile Phe Ala Tyr Leu Asp Ile Gln Tyr Glu Asp His Arg
20 25 30

Ile Glu Gln Ala Asp Trp Pro Glu Ile Lys Ser Thr Leu Pro Phe Gly

250 312

- .:::

257 257

CA 02466264 2004-05-05

2/3

35 40 45

Lys Ile Pro Ile Leu Glu Val Asp Gly Leu Thr Leu His Gln Ser Leu
50 55 60

Ala Ile Ala Arg Tyr Leu Thr Lys Asn Thr Asp Leu Ala Gly Asn Thr
65 70 75 80

Glu Met Glu Gln Cys His Val Asp Ala Ile Val Asp Thr Leu Asp Asp
85 90 95

Phe Met Ser Cys Phe Pro Trp Ala Glu Lys Lys Gln Asp Val Lys Glu
100 105 110

Gln Met Phe Asn Glu Leu Leu Thr Tyr Asn Ala Pro His Leu Met Gln
115 120 125

Asp Leu Asp Thr Tyr Leu Gly Gly Arg Glu Trp Leu Ile Gly Met Ser 130 135 140

Yal Thr Trp Ala Asp Phe Tyr Trp Glu Ile Cys Ser Thr Thr Leu Leu 145 150 155 160

Val Phe Lys Pro Asp Leu Leu Asp Asn His Pro Arg Leu Val Thr Leu
165 170 175

Arg Lys Lys Val Gln Ala Ile Pro Ala Val Ala Asn Trp Ile Lys Arg 180 185 190

250 J.Z.

CA 02466264 2004-05-05

3/3

Arg Pro Gln Thr Lys Leu

195

ಕಟ್ಟಳ ಭನ

C111 717

2 = 44 12 1

2 در فرود کا

5

20

25.

248

WHAT IS CLAIMED IS:

- 1. A complex of human calcium-type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1 and glutathione which has three dimensional structure represented by the structural coordinates in Table 1.
- 2. A complex of human magnesium-type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1 and glutathione which has three dimensional structure represented by the structural coordinates in Table 2.
- 3. A complex of human calcium-type hematopoietic pGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and 9,11-dideoxy -9 α ,11 α methanoepoxyprostaglandin F $_2$ which has three dimensional structure represented by the structural coordinates in Table 3.
 - 4. A complex of human magnesium-type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and 9,11-dideoxy -9 α ,11 α -methanoepoxyprostaglandin F $_2$ $_{\alpha}$ which has three dimensional structure represented by structural coordinate in Table 4.
 - 5. A complex of human calcium-type hematopoietic PGDS having amino acid sequence of SEQ. ID NO 1, glutathione and 9,11-dideoxy -9 α ,11 α -epoxymetanoprostaglandin F $_2$ $_\alpha$ which has three dimensional structure represented by the structural coordinates in

5

10

15

25

249

Table 5.

- 6. A complex of human magnesium-type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and 9,11-dideoxy -9 α ,11 α -epoxymetanoprostaglandin F $_2$ $_\alpha$ which has three dimensional structure represented by the structural coordinates in Table 6.
- 7. A complex of human calcium-type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and 1-amino-4-{4-[4-chloro-6-(2-sulfo-phenylamino)-[1,3,5]triazine-2-ylmethyl]-3-sulfo-phenylamino}-9,10-dioxo-9,10-dihydro-anthracene-2-sulfonic acid which has three dimensional structure represented by the structural coordinates in Table 7.
- 8. A complex of human magnesium type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and 4 benzhydryloxy-1-{3-(1H-tetrazol-5-yl)-propyl}piperidine which has three dimensional structure represented by the structural coordinates in Table 8.
- 9. Structural coordinates represented in Table 1 of a complex of human calcium-type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1 and glutathione.
 - 10. Structural coordinates represented in Table 2 of a complex of human magnesium-type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1 and glutathione.

5

10

15

20

25

- 11. Structural coordinates represented in Table 3 of a complex of human calcium-type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and 9.11-dideoxy $-9\alpha.11\alpha$ -methanoepoxyprostaglandin $F_{2\alpha}$.
- 12. Structural coordinates represented in Table 4 of a complex of human magnesium-type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and 9.11-dideoxy -9α ,11 α -methanoepoxyprostaglandin $F_{2\alpha}$.
- 13. Structural coordinates represented in Table 5 of a complex of human calcium-type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and 9.11-dideoxy $-9\alpha.11\alpha$ -epoxymetanoprostaglandin $F_{2\alpha}$.
 - 14. Structural coordinates represented in Table 6 of a complex of human magnesium-type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and 9.11-dideoxy $-9\alpha.11\alpha$ -epoxymetanoprostaglandin $F_{2\alpha}$.
 - 15. Structural coordinates represented in Table 7 of a complex of human calcium-type hematopoietic PGDS having an amino acid sequence of SEQ. ID NO 1, glutathione and 1-amino-4-{4-[4-chloro-6-(2-sulfo-phenylamino)-
 - [1,3,5]triazine-2-ylmethyl]-3-sulfo-phenylamino}-9,10-dioxo-9,10-dihydro-anthracene-2-sulfonic acid.
 - a complex of human magnesium type hematopoietic PGDS having amino acid sequence of SEQ. ID NO 1, glutathione and 4-

± 25 i i∮ 2

2.76 · + 2

4 250 82

benzhydryloxy-1-{3-(**]**H-tetrazol-5-yl)-propyl}piperidine.

- 17. Use of at least one structural coordinates selected from the group of structural coordinates represented by Tables 1 to 8 for selection of a compound inhibiting human hematopoietic PGDS.
- 18. A method for selecting an inhibitor of human hematopoietic PGDS, comprising steps of:
- (a) providing at least one structural coordinate selected from the group consisting of structural coordinates represented in Table 1-8 which characterizes an active site of human hematopoietic PGDS;
 - (b) providing steric structure of a candidate compound; and
 - (c) fitting the candidate to the active site of human hematopoietic PGDS to select the inhibitor.
 - 19. A method in accordance with Claim 18 which further comprising:
- (d) contacting the selected compound with the enzyme in the presence of prostaglandin H_2 to confirm an ability of the compound to inhibit the enzymatic activity of PGDS.
- 20. A method in accordance with Claim 18 or 19 which further comprising measuring whether the inhibitor has at least one biological activity selected the group consisting of anti-allergic activity, sleep control activity, anti25 obesity activity and brain wound healing activity.

- 21. An inhibitor of human hematopoietic PGDS selected by the method of Claim 18 or 19.
- 22. An anti-allergic agent, a sleep control agent, an anti-obestic agent or a brain wound healing agent selected by the method of Claim 20.

3 281 of 2 ...

CA 02466264 2004-05-05

Application number	ກຍ ທຸເຂ ້າວ de	demande:	JP02	1/09994
	1			/
Figures:	all		to 6)	· · · · · · · · · · · · · · · · · · ·
Pages:	.,			

Unscannable items
received with this application
(Request original documents in File Prep. Section on the 10th floor)

Documents reçu avec cette demande de pouvant être balayés (Communder les documents originaux dans la section de préparation des dossiers au 10ème étage)