3. Un résultat universel de convergence

Soit $(a_n)_{n\in\mathbb{N}}$ une suite d'entiers naturels non nuls. On note $(p_n)_{n\in\mathbb{N}}$ et $(q_n)_{n\in\mathbb{N}}$ les suites définies par :

$$\left\{ \begin{array}{l} p_0 = a_0 \\ q_0 = 1 \end{array} \right. \text{ et } \left\{ \begin{array}{l} p_1 = 1 + a_0 a_1 \\ q_1 = a_1 \end{array} \right. \text{ et } \forall n \in \mathbb{N}, \quad \left\{ \begin{array}{l} p_{n+2} = p_{n+1} a_{n+2} + p_n \\ q_{n+2} = q_{n+1} a_{n+2} + q_n \end{array} \right.$$

On admet que p_n et q_n sont des entiers naturels non nuls pour tout $n \in \mathbb{N}$ (récurrence immédiate).

- (a) Etudier la stricte monotonie de la suite $(q_n)_{n\in\mathbb{N}^*}$ et déterminer sa limite.
- (b) Montrer que pour tout $n \in \mathbb{N}$: $p_{n+1}q_n p_nq_{n+1} = (-1)^n$. (c) En déduire que les suites $\left(\frac{p_{2n}}{q_{2n}}\right)_{n \in \mathbb{N}}$ et $\left(\frac{p_{2n+1}}{q_{2n+1}}\right)_{n \in \mathbb{N}}$ sont adjacentes. On note ℓ leur limite commune.
- (d) Montrer que pour tout $n \in \mathbb{N}^*$: $\left|\ell \frac{p_n}{q_n}\right| < \frac{1}{q_n^2}$. On pourra remarquer que ℓ est compris entre $\frac{p_n}{q_n}$ et $\frac{p_{n+1}}{q_{n+1}}$.
 - (e) En déduire que ℓ est irrationnel.
 - (f) Montrer que pour tous $n \in \mathbb{N}$ et t > 0: $F_{n+2}(a_0, \ldots, a_{n+1}, t) = \frac{p_{n+1}t + p_n}{q_{n+1}t + q_n}$.
 - (g) En déduire que pour tout $n \in \mathbb{N} : F_n(a_0, \dots, a_n) = \frac{p_n}{q_n}$.

En conclusion, la suite de rationnels $(F_n(a_0,\ldots,a_n))_{n\in\mathbb{N}}$ converge vers un irrationnel, et ceci quelle que soit la suite $(a_n)_{n\in\mathbb{N}}$ d'entiers naturels non nuls choisie au départ.

1 Développement d'un irrationnel en fraction continue

Soit x un irrationnel supérieur à 1.

(a) Justifier la bonne définition de la suite $(x_n)_{n\in\mathbb{N}}$ définie par: $x_0=x$ et pour tout $n \in \mathbb{N}$, $x_{n+1} = \frac{1}{x_n - \lfloor x_n \rfloor}$.

On pose alors pour tout $n \in \mathbb{N}$: $a_n = \lfloor x_n \rfloor$.

(b) Montrer que a_n est un entier naturel non nul pour tout $n \in \mathbb{N}$.

On peut dès lors associer à la suite $(a_n)_{n\in\mathbb{N}}$ deux suites $(p_n)_{n\in\mathbb{N}}$ et $(q_n)_{n\in\mathbb{N}}$ comme à la question 3.

(c) Montrer, en exploitant notamment le résultat de la question 3.(f), que pour tout $n \in \mathbb{N} : x = \frac{p_{n+1}x_{n+2} + p_n}{q_{n+1}x_{n+2} + q_n}$

(d) En déduire que pour tout
$$n \in \mathbb{N}$$
: $\left| x - \frac{p_{n+1}}{q_{n+1}} \right| < \frac{1}{q_{n+1}^2}$, puis que $\lim_{n \to +\infty} F_n\left(a_0, \dots, a_n\right) = 0$. Conclusion : $x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$. La suite $(a_n)_{n \in \mathbb{N}}$ est appelée le développement de x en fraction continue.

Conclusion:
$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2 + \dots}}}$$
.