FYS1210

Robin A. T. Pedersen

January 31, 2016

Contents

1	Ford	ord	3
2	Uke	3	3
	2.1	Elektrisitet	3
		2.1.1 Ladning	3
		2.1.2 Strøm	4
		2.1.3 Spenning	4
	2.2	Leder og isolator	5
		2.2.1 Komponenter	5
		2.2.2 Ledere	6
	2.3	Ohms lov	6
	2.4	Serie- og parallellkobling	7
		2.4.1 Seriekobling	7
		2.4.2 Parallellkobling	7
	2.5	Kirchhoff	7
		2.5.1 Kirchhoffs lov om strømmer	7
		2.5.2 Kirchhoffs lov om spenninger	8
		2.5.3 Spenningsdeler	8
	2.6	Superposisjon	8
		2.6.1 Eksempel	8
3	Uke	4	11
	3.1	Thevenins Teorem	11
		3.1.1 Last-analyse	11
		3.1.2 Eksempel	12
		3.1.3 Nortons Teorem	13
	3.2	Spenningskilder - Batterier	13
		3.2.1 Virkemåte	13
		3.2.2 Maksimal effektoverføring	14
	3.3	Fysikalsk elektronikk	14
		3.3.1 Valensbånd	14
		3.3.2 Ledningsevne	15
		3.3.3 Eksitasjon	16

	3.4	Doping	16
		3.4.1 n-type	17
		3.4.2 p-type	17
	3.5	Vekselstrøm	17
		3.5.1 Begreper	17
		3.5.2 Root mean square	18
	3.6	DC-Offset	18
		Pulser	18
	0.1	3.7.1 Begreper	18
		3.7.2 Firkantbølge fra sinusbølger	18
		0.7.2 I II kuntoongo ira sinasoongoi	10
4	Uke	5	20
5	Uke	6	20
0	T T1	_	00
6	Uke	7	20
7	Uke	8	20
•	O Mo		
8	$\mathbf{U}\mathbf{k}\mathbf{e}$	9	20
9	Uke	10	20
10	T T1	11	20
10	Uke	11	20
11	Uke	12	20
	CHO		
12	Uke	13	20
13	Uke	14	20
14	Uke	15	20
4 P	T T1	10	00
15	Uke	16	20
16	Uke	17	20
10	OKC	11	20
17	Uke	18	20
18	$\mathbf{U}\mathbf{k}\mathbf{e}$	19	20
19	Uke	20	20
00	T T1	0.1	00
20	Uke	41	20
21	Uke	22	20
~ 1	O Ke		20
22	Uke	23	20

1 Forord

Dette dokumentet er hovedsaklig skrevet for meg selv i et forsøk på å tvinge hjernen min til å behandle informasjonen inneholdt i pensum. Kanskje vil det bli noe andre kan bruke hvis de ikke gidder å lese hele læreboka, eller det kan brukes som oppsummering før eksamen?

Jeg har kanskje vært litt lat og utålmodig på visse deler, så bjørn med meg.

Se etter feil og rapporter dem hvis du gidder.

2 Uke 3

Kap. 1, s.27-40

Kap. 3, s.76-77

Kap. 4, s.97-118

Kap. 5, s.131-141

Kap. 7, s.194-203

2.1 Elektrisitet

2.1.1 Ladning

Atomet

Vi vet fra ungdomsskolen at atomer består av protoner, nøytroner og elektroner. Elektronene e^- er negativt ladet og protonene p^+ positivt. Protoner og nøytroner er i atomets kjerne, mens elektronene ligger i "yttre skall".

Et ion er et atom med enten flere elektroner enn protoner, eller motsatt. Hvis det er flertall av elektroner kalles ionet negativt ladet.

Bohr model of Lithium (Li)

Enhet

SI enheten for ladning er Coulomb (C).

 $1 \, \mathrm{C} = 6.24 \times 10^{18} \mathrm{e}$

Hvor e står for elementærladning, den elektriske ladningen til et proton.

Ladning er rett og slett en egenskap en partikkel kan ha som spiller en rolle i elektromagnetisk kraft.

2.1.2 Strøm

Frie elektroner i bevegelse

Hvis et elektron slipper løs fra et atom kan det bevege seg fra et atom til et annet. Når slike "frie elektroner" beveger seg gjennom gjennom en ledning har vi det som kalles elektrisk strøm.

Strømretningen er definert som den retningen elektronene beveger seg. Altså fra negativ til positiv.

NB! Det har lenge vært vanlig å definere strømretningen motsatt fra dette.

Enhet

Strøm måles etter hvor mange ladninger som passerer et punkt i løpet av et sekund. SI enheten for strøm er Ampere (A) $1\,\mathrm{A} = C/s$

AC/DC TODO

2.1.3 Spenning

Potensiale

Negativt ladde partikler har en tiltrekkende kraft og positive partikler har en frastøtende kraft. Hvis du plasserer en negativ og en positiv partikkel ved siden av hverandre vil de bli tiltrukket av hverandre. På samme måte vil to like partikler frastøte hverandre.

Et batteri har en negativ og en positiv pol. Det vil være potensiale for en elektromagnetisk kraft som trekker de ladde partiklene mot hverandre. Dette potensialet er hva som kalles spenning.

Enhet

SI enheten for spenning er volt (V) Hvor J står energienheten Joule og C er Coulomb. 1 V = J/C

2.2 Leder og isolator

2.2.1 Komponenter

Motstand

En motstand, også kalt resistor, er en komponent som begrenser strømmen. Tenk på det som en kran du skrur igjen for å begrense antall elektroner som flyter forbi. Det refererer også til et stoffs begrensede ledningsevne.

Motstand noteres som R (for resistance) og måles i ohm Ω .

Kondensator

En kondensator (engelsk: capacitor) er en bøtte. Atpåtil en bøtte med hull i. Du fyller den med så mye vann du vil, men gjennom det lille hullet i bøtta kan bare en viss mengde vann renne.

Kondensatorer brukes til å motstå forandring i spenning. Med andre ord, holde spenning stabil.

Spole

En spole (engelsk: inductor) motstår forandring i strøm. Det er likheter mellom funksjonen til en spole og en kondensator, men måten de fungerer på er forksjellig.

2.2.2 Ledere

Leder

Ledere er materialer med liten motstand. Gode eksempler på ledere er metaller med et enslig elektron i sitt ytterste skall. Da er det lettere for elektroner å eksitere fra valensbåndet opp til ledningsbåndet. I disse materialene er det et mindre energigap mellom disse energibåndene.

Isolator

Isolatorer leder ikke strøm (ved mindre du *virkelig* påfører strøm). Kjennetegnet for isolatorer er at de har ekstremt høy motstand.

Halvleder

En halvleder har egenskaper midt i mellom ledere og isolatorer. De leder strøm dårligere enn ledere, men ikke så dårlig som isolatorer. Halvledere brukes bla. i transistorer og dioder og gjorde integrerte kretser mulig.

2.3 Ohms lov

Kort fortalt: Mer spenning gir mer strøm! Mer motstand gir mindre strøm.

Finere fortalt: Elektrisk strøm er direkte proporsjonal med spenning og omvendt proposjonal med motstand.

$$U = R \cdot I$$

$$U = \text{spenning}$$
 $R = \text{motstand}$ $I = \text{strøm}$

2.4 Serie- og parallellkobling

2.4.1 Seriekobling

I denne kretsen er 3 motstander koblet sammen i serie. Den totale motstanden i en seriekobling er gitt ved:

$$R_{total} = R_1 + R_2 + \dots + R_n$$

2.4.2 Parallellkobling

Den totale motstanden i en parallellkobling gis via den inverse av totalen.

$$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}$$

Tilfellet med kunn to motstander kan forenkles.

$$R_{total} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

2.5 Kirchhoff

2.5.1 Kirchhoffs lov om strømmer

Summen av strømmene rundt et knutepunkt er null. Eller sagt annerledes, summen av strømmene inn er lik summen av strømmene ut.

2.5.2 Kirchhoffs lov om spenninger

Summen av alle spenninger i en krets er null.

2.5.3 Spenningsdeler

Vi ser på tilfellet med to motstander seriekoblet til et batteri.

Hva er spenningen V_1 over motstanden R_1 ?

$$V_1 = \frac{R_1}{R_1 + R_2} \cdot V_{batteri}$$

Du kan tenke på det som dette:

Hvor stor del av kaka tar R_1 ? sin rettferdige andel: $\frac{R_1}{R_1+R_2}$ Hvor mye kake er det egentlig? $V_{batteri}$

2.6 Superposisjon

Superposisjonsprinsippet brukes til å finne verdier i kretser med mer enn én spenningskilde. For å finne spenningen rundt en komponent ser man på bidraget fra én spenningskilde om gangen. Når bidraget fra alle kildene er funnet, legger man det sammen for å få totalverdien.

2.6.1 Eksempel

Krets med to spenningskilder

$$V_{S1} = 15 \,\text{V}, \qquad V_{S2} = 3 \,\text{V}, \qquad R_1 = R_2 = R_3 = 1 \,\text{k}\Omega$$

I denne kretsen er det to spenningskilder som begge bidrar til å skape spenning V_1 rundt motstanden R_1 .

Bidrag fra første spenningskilde

Vi later som den ene spenningskilden V_{S2} ikke eksisterer og regner ut bidraget fra V_{S1} .

Motstandene R_1 og R_3 danner en parallellkobling som vi kan betrakte som én motstand R_{EQ} .

Siden R_1 og R_3 er parallellkoblet får man R_{EQ} via den inverse.

$$\frac{1}{R_{EQ}} = \frac{1}{R_1} + \frac{1}{R_3}$$

Eller, siden det bare er to motstander, via forenklingen.

$$R_{EQ} = \frac{R_1 \cdot R_3}{R_1 + R_3} = \frac{1 \cdot 1}{1 + 1} = \frac{1}{2}$$

Spenningen over R_1 vil være den samme som over R_3 , fordi de er parallellkoblet. Det er den samme spenningen som over hele R_{EQ} .

Siden vi vil finne spenningen over R_1 holder det da å regne ut spenningen over R_{EQ} .

$$V_{EQ} = V_{1(S1)} = \frac{R_{EQ}}{R_{EQ} + R_2} \cdot V_{S1} = \frac{\frac{1}{2}}{\frac{1}{2} + 1} \cdot 15 = 5 \text{ V}$$

 $V_{1(S1)}$ er da den delen av spenningen V_1 forårsaket av V_{S1} .

Bidrag fra andre spenningskilde

Denne gangen later vi som V_{S1} ikke eksisterer.

Tegnet på en annen måte ser vi at R_1 og R_2 også danner en parallellkobling. Den kan vi betrakte som R_{FQ} og regne ut på samme måte.

Totalmotstanden til R_{FQ} gis på samme måte som ista.

$$R_{FQ} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{1}{2}$$

Spenningen over R_{FQ} er lik spenningen over R_1 som er lik spenningen over R_2 .

$$V_{FQ} = V_{1(S2) = \frac{R_{FQ}}{R_{FQ} + R_3} \cdot V_{S2}} = \frac{\frac{1}{2}}{\frac{1}{2} + 1} \cdot 3 = 1 \text{ V}$$

Total spenning!

Nå som vi har regnet ut begge bidragene $V_{1(S1)}$ og $V_{1(S2)}$ kan vi legge dem sammen og få den totale spenningen V_1 .

$$V_1 = V_{1(S1)} + V_{1(S2)} = 5 + 1 = 6 \text{ V}$$

3 Uke 4

Kap. 7, s.203-217

Kap. 9, s.247-279

Kap. 12, s.364-382

Kap. 13, s.389-413

Kap. 15, s.462-500

Kap. 16, s.510-528

3.1 Thevenins Teorem

3.1.1 Last-analyse

Thevenins teorem er en regneteknikk hvor du kan betrakte noe komplisert som noe enkelt. Det brukes som regel for å regne på forksjellig last uten å måtte regne ut hele kretsen på nytt.

Alle topolede, lineære nettverk (krets)...

...kan erstattes med en spenningskilde V_{TH} og en motstand R_{TH} .

 $V_{TH} =$ Spenningen over polene uten last.

 $R_{TH}\!=\!\!\mathrm{Motstand}$ over polene når alle spenningskilder er kortsluttet og alle strømmer brutt.

3.1.2 Eksempel

Denne kretsen kan skrives om til å ligne på beskrivelsen av Thevenin ovenfor.

Vi regner ut V_{TH} :

Spenning målt over polene uten last, tilsvarer å måle spenning rundt R_3 .

(Husk at R_1 og R_2 står i serie)

$$V_{TH} = V_3 = \frac{R3}{(R_1 + R_2) + R_3} \cdot V_S$$

Vi regner ut R_{TH} :

Motstand over polene når spenningskilder er kortsluttet, blir som å betrakte kretsen som en parallellkobling.

$$R_{TH} = \frac{(R_1 + R_2)R_3}{(R_1 + R_2) + R_3}$$

3.1.3 Nortons Teorem

TODO

3.2 Spenningskilder - Batterier

3.2.1 Virkemåte

Pensum I fys12010 er å kunne beskrive hvordan et batteri fungerer.

Batterier deles i to grupper: oppladbare batterier og engangsbatterier. I fys1210 skal vi se nærmere på engangbatterier.

Det finnes mange typer engangsbatterier som blant annet: Sink-karbon batterier, alkaliske batterier og lithium batterier. Men de fleste batteriene er bygget realtivit likt:

Et batteri består av to elektroder, en anode som er negativ ladet og en katode som er postiv ladet. I tillegg har batteriet en elektrolytt som skiller disse fra hverandre. Dette er ofte en væske eller gele som kun leder ioner, men ikke elektroner.

Når man da kobler noe til batteriet, f.eks. en diode, slik at det blir en lukket krets så vil det oppstå en kjemisk reakjson der elektroner fra anoden beveger seg over til katoden. Akkurat som vist på tegningen.

3.2.2 Maksimal effektoverføring

TODO

3.3 Fysikalsk elektronikk

3.3.1 Valensbånd

Etter Niels Bohrr atommodell ligger elektroner i skall rundt atomkjernen.

Kobberatom med 29 protoner og 29 elektroner.

Skall 1: 2 elektroner

Skall 2: 8 elektroner

Skall 3: 18 elektroner

Skall 4: 1 elektron

Det ytterste elektronet har en svakere binding til kjernen og gjør at kobber

leder strøm så godt.

Energigap

Når man ser på de forskjellige energinivåene til disse skallene, kalles de for bånd. Det ytterste av disse båndene heter valensbåndet, og hvis et elektron her blir eksitert vil det komme opp i ledningsbåndet. I ledningsbåndet kan elektronet "flyte vekk" fra atomet.

3.3.2 Ledningsevne

Energi-gapet mellom valensbåndet og ledningsbåndet kan variere for forksjellige stoffer. Store gap, som gjør det vanskelig for et elektron å nå ledningsbåndet, er karakteristisk for isolatorer. Tilsvarende er gapet mindre i halvledere. Og i ledere er det er overlapp mellom valensbåndet og ledningsbåndet, som gjør at det leder strøm ved romtemperatur.

3.3.3 Eksitasjon

For at elektroner skal hoppe fra valensbåndet, over energigapet, til ledningsbåndet, må det få tilført energi. Energien kan komme fra andre partikler (varme) eller elektromagnetisk stråling (fotoner).

Bølgelengden λ som kreves for å eksiteres av et foton er

$$\lambda = \frac{hc}{E}$$

c = lyshastigheten = 3E8 = målt i meter per sekund m/s

h = plancks konstant = 6.626E-34 = målt i Joule ganger sekund = Js

E = energiforksjell til neste nivå = målt i elektronvolt = eV

Frekvensen f finner man ved

$$f = \frac{c}{\lambda}$$

Og energien E ved

$$E = hf$$

3.4 Doping

Når man f.eks. lager transistorer bruker man dopa halvledere.

Halvledere som karbon, silisium og germanium har 4 valenselektroner som etter oktettregelen danner kovalente bindinger.

Silisium atomer i diamantstruktur

oktettregelen: atomer "ønsker" å binde seg til hverandre s.a. de får 8 valenselektroner

3.4.1 n-type

For å dope et stoff som ovenfor, tilsetter man atomer med 3 eller 5 valenselektroner.

I n-type doping tilsettes atomer med 5 valenselektroner. Slike atomer kalles donor-atomer, da man får et ekstra elektron som kan flyte rundt.

Fosfor blandt silisium.

3.4.2 p-type

Akseptor-atomer med 3 valenselektroner gjør at det er "hull" der det skulle være et elektron. Disse hullene kan "ta imot" elektroner.

Bor blandt silisium.

3.5 Vekselstrøm

3.5.1 Begreper

TODO

3.5.2 Root mean square

TODO

3.6 DC-Offset

TODO

3.7 Pulser

3.7.1 Begreper

TODO

3.7.2 Firkantbølge fra sinusbølger

Ved å generere to sinusbølger kan man addere dem sammen for å tilnærme en firkantbølge.

Vi har to funksjoner:

 $a=2\sin x$

 $b=\sin 3x$

Lagt sammen blir c = a + b TODO

- 4 Uke 5
- 5 Uke 6
- 6 Uke 7
- 7 Uke 8
- 8 Uke 9
- 9 Uke 10
- 10 Uke 11
- 11 Uke 12
- 12 Uke 13
- 13 Uke 14
- 14 Uke 15
- 15 Uke 16
- 16 Uke 17
- 17 Uke 18
- 18 Uke 19
- 19 Uke 20
- 20 Uke 21
- 21 Uke 22
- 22 Uke 23