Igra Par - Nepar

Opis problema

Dva igrača, Par i Nepar bitaju svoje poteze, odnosno brojeve - 0 ili 1.

- Ako je suma ova dva broja na kraju poteza parna, Par dobija dobitak od +1, a Nepar dobija -1.
- Ako je suma neparna, Nepar dobija +1, a Par dobija -1.

Ovo je primer **zero-sum game**, u kojoj su ukupni dobici između igrača jednaki 0. Koliko jedan dobije, toliko drugi gubi.

1. Nešov Ekvilibrijum

Nešov ekvilibrijum se dešava kada ni jedan igrač ne može profitirati promenom svoje strategije.

Specifično, ovde:

- Koliko jedan igrač dobija zavisi i od odluke durgog igrača, a ne samo svoje.
- Čista strategija ne dobija veliku dobit jer drugi igrač može prilagoditi svoju i sebi poboljšati dobit.

Umesto toga, **mešana strategija** daje **Nešov ekvilibrijum**. Oba igrača trebaju na nasumičan način birati svoj potez, time onemogućiti protivniku da eksploatiše predvidljivost njihovih strategija:

Za igrača Par:
$$P(0) = P(1) = 0.5$$
.
za igrača Nepar: $P(0) = P(1) = 0.5$.

Gde je P(x) verovatnoća da se igra strategija x. Ovde:

Svaki igrač bira između 0 ili 1 sa 50% verovatnoće čineći očekivanu dobit partije jednaku
0, jer kao što je rečeno, nema prostora za eksploataciju predvidinosti strategije.

2. Primer igre koja ima čistu strategiju za Nešov Ekvilibrijum (Prisoner's Dilemma)

Na primer, igra poput **Prisoner's Dilemma**, ima jasniji Nešov Ekvilibrijum, odnosno stanje u kom oba igrača gube promenom svoje strategije:

Igrač A / Igrač B	Ćuti (Ć)	Clnkari (C)
Ćuti (Ć)	((2, 2))	((25, 0))
Cinkari (C)	((25, 0))	((9, 9))

- Nešov Ekvilibrijum: Oba igrača cinkare (C, C), jer ukoliko se ijedan odluči da ćuti rizikuje robiju od 25 godina, dok cinkarenjem osigurava sebe da ni u najgorem slučaju neće dobiti veliku robiju.
- Optimalan ishod: Ukoliko bi obojica ćutala ukupna kazna bi bila ubedljivo najmanja, međutim igrači se moraju osloniti da obećanje drugog, koji bi laganjem prošao bez ikakve kazne.

3. Gain Floor i Loss Ceiling

Definicija

Gornje Ograničenje (Gain Floor)

U

Predstavlja najbolji garantovani dobitak u najgorem mogućem scenariju za igrača. Odnosno predstavlja neki minimalni dobitak na koji igrač A može da računa dok igrač B sebi maksimizuje dobitak svojom strategijom. Matematički se definiše kao:

$$U = \max \min u(s_A, s_B),$$

Donje ograničenje (Loss Ceiling)

 \overline{U}

Predstavlja maksimalni gubitak jedan igrač mora da prihvati kao posledicu strategija drugog igrača koji sebi maksimizuje dobit. Matematički se definiše kao:

$$\overline{U} = \min \max u(s_A, s_B).$$

Račun za igrača Par:

1. Gain Floor:

Ako Nepar igra 0:

$$\min(u(0,0), u(1,0)) = \min(1,-1) = -1.$$

Ako Nepar igra 1:

$$\min(u(0,1), u(1,1)) = \min(-1,1) = -1.$$

Gain Floor:

$$U_P ar = \max(-1, -1) = -1.$$

2. Loss Ceiling:

Ako Nepar igra 0:

$$\max(u(0,0), u(1,0)) = \max(1,-1) = 1.$$

Ako nepar igra 1:

$$\max(u(0,1),u(1,1)) = \max(-1,1) = 1.$$

Loss Ceiling:

$$\overline{U_Par}=\min(1,1)=1.$$

Igra Koordinacije: Problem Iova

1. Postavka

Igrači:

• 2 lovca (Lovac A i Lovac B).

Strategije:

- JELEN: Kooperativna strategija gde ukoliko oba igrača love jelena dobijaju najveću nagradu, ali se izlažu riziku.
- ZEC: Sigurnija, ali manje nagradiva strategija gde lovci odlučuju da love zeca.

Nagrade:

Vrednosti nagrade lovcima su raspoređene u tabeli ispod:

	Lovac B: JELEN	Lovac B: ZEC
Lovac A: JELEN	(3, 3)	(0, 1)
Lovac A: ZEC	(1, 0)	(1, 1)

2. Nešov Ekvilibrijum

Definicija:

Podsećanja radi, Nešov ekvilibrijum je strategija, ili skup strategija koje daju najbolji ishod igračima i igrači menjanjem svoje strategije dovode sebe u rizik od gubljenja u igri.

Nešov ekvilibrijum u ovoj igri:

1. (JELEN, JELEN):

Oba igrača biraju da love jelena. Ukoliko bi i jedan igrač izašao iz dogovora i hteo da lovi zeca, ukupni dobitak bi se smanjio, ali bi on ostvatio prednost u odnosu na drugog igrača. Igrač koji bi želeo da lovi zeca bi imao siguran dobitak od nagrade, dok bi lovac na jelena ostao bez nagrade. Zbog toga ovaj slučaj *nije* Nešov ekvilibrijum

2. (ZEC, ZEC):

Oba igrača/lovca odlučuju da biraju zeca. Nagrada je manja (1), ali je sigurna. Ukoliko bi bilo koji igrač odlučio da lovi jelena, pretrpeo bi gubitak (0) u odnosu na drugog igrača. Zbog toga ova strategija *jeste* Nešov Ekvilibrijum.

3. Optimalna strategija

Analiza:

Ukupne dobiti igrača su:

```
• (JELEN, JELEN): (3 + 3 = 6)
```

• (JELEN, ZEC): (0 + 1 = 1)

• (ZEC, JELEN): (1+0=1)

• (ZEC, ZEC): (1 + 1 = 2)

Očito je da:

• (6 > 2, ; 6 > 1), što znaši da je (**JELEN, JELEN)** optimalna strategija ukoliko bi igrači sarađivali i igrali timski.

4. Strategija

Definicija:

Strategija koja je otporna na odluku drugog igrača, računajući očekivani dobitak u odnosu na odluku protivnika.

Očekivane dobiti:

1. Za lovca A ako bira JELEN:

Ako Lovac B bira JELEN verovatnoćom p:

$$EU_A(\text{JELEN}) = 3p + 0(1-p) = 3p$$

2. Za lovca A ako bira ZEC:

$$EU_A(ZEC) = 1p + 1(1-p) = 1$$

Presek je:

$$EU_A(\text{JELEN}) = EU_A(\text{ZEC})$$

$$3p=1 \quad \Rightarrow \quad p=rac{1}{3}$$

3. Isto važi i za lovca B:

$$EU_{B}(ext{JELEN}) = 3p, \quad EU_{B}(ext{ZEC}) = 1$$
 $p = rac{1}{3}$

Zaključak:

1. Ako je

$$p>rac{1}{3}$$

Odabrati strategiju **JELEN** jer je očekivana dobit veća. Bitno je znati verovatnoću kojom drugi lovac lovi jelena, ključno je poverenje.

2.

$$p<rac{1}{3}$$

Biranje strategije **ZEC** je bolje jer minimiyuje rizik od dobijanja nulte dobiti.

Gornje i donje ograničenje

Definicija

Gornje Ograničenje (Gain Floor)

 \underline{U}

Predstavlja najbolji garantovani dobitak u najgorem mogućem scenariju za igrača. Odnosno predstavlja neki minimalni dobitak na koji igrač A može da računa dok igrač B sebi maksimizuje dobitak svojom strategijom. Matematički se definiše kao:

$$\underline{U} = \max \min u(s_A, s_B),$$

Donje ograničenje (Loss Ceiling)

 \overline{U}

Predstavlja maksimalni gubitak jedan igrač mora da prihvati kao posledicu strategija drugog igrača koji sebi maksimizuje dobit. Matematički se definiše kao:

$$\overline{U} = \min \max u(s_A, s_B).$$

Račun

Lovac A: Gain Floor

$$U_A$$

 $egin{aligned} ext{Kada lovi jelena:} & \min(3,0) = 0, \ ext{Kada lovi zeca:} & \min(1,1) = 1, \ U_A = \max(0,1) = 1. \end{aligned}$

Lovac A: Loss Ceiling

$$\overline{U_A}$$

Kada lovac B lovi jelena:
$$\max(3,1)=3,$$
 Kada lovac B lovi zeca: $\max(0,1)=1,$
$$\overline{U_A}=\min(3,1)=1.$$

Za čistu strategiju:

$$\overline{U_A}=\overline{U_A}=1.$$

Zaključak

• (JELEN, JELEN) je najbolja strategija kada je verovatnoća saradnje (oba lovca su poštena i drže se dogovora da love jelena):

$$p>rac{1}{3}$$

Maksimizuje dobit oba igrača ali je izložena riziku poverenja.

• (**ZEC**, **ZEC**) je sigurnija kada prethodni uslov nije zadovoljen. Minimizuje potencijalni gubitak

Petar Popov Mladen Blizanac