Package 'DTHybrid'

April 10, 2014

Version 0.99.2		
Title DT-Hybrid Algorithm		
Author S. Alaimo		
Depends R (>= 3.0), methods, BiocGenerics, stats, gtools		
Suggests parallel		
LazyLoad yes		
Maintainer S. Alaimo <alaimos@dmi.unict.it></alaimos@dmi.unict.it>		
Description An implementation of the DT-Hybrid algorithm which has been described in Alaimo S, Pulvirenti A, Giugno R and Ferro A (2013). Drugtarget interaction prediction through domain-tuned network-based inference. Bioinformatics, 29(16), pp. 2004-2008.		
biocViews Bioinformatics, Networks, NetworkInference, NetworkAnalysis		
License file LICENSE		
R topics documented:		
computeRecommendation		
Index		
computeRecommendation Runs the DT-Hybrid algorithm on a bipartite network		
Description		
Compute the recommendations on a bipartite network by using the DT-Hybrid algorithm.		
Usage		
computeRecommendation(A, lambda=0.5, alpha=0.5, S=NA, S1=NA, cl=NA)		

Arguments

A	The adjacency matrix that represents the bipartite network. Given "n" nodes of type "X" and "m" nodes of type "Y", the adjacency matrix is an n by m matrix, where each element A[i,j] contains 1 if the X-node i interacts with the Y-node j, 0 otherwise.
alpha	Tuning parameter (value between 0 and 1) to adjust the performance of the algorithm.
lambda	Tuning parameter (value between 0 and 1) to adjust the performance of the algorithm.
S	A n by n similarity matrix where each element (value between 0 and 1) represents the similarity between two X-nodes.
S1	A m by m similarity matrix where each element (value between 0 and 1) represents the similarity between two Y-nodes.
cl	A cluster, generated with the function makeCluster available through packages snow or parallel, used to speed up the computation when the input matrices are too large.

Details

See cited document for more details.

Value

An n by m matrix where each element represents how much the interaction between an X-node and an Y-node is favorable.

Author(s)

Salvatore Alaimo

References

Alaimo S, Pulvirenti A, Giugno R and Ferro A (2013). Drug-target interaction prediction through domain-tuned network-based inference. Bioinformatics, 29(16), pp. 2004-2008.

Examples

```
# Example using a Drug-Target Interaction dataset
data(enzyme)

# Compute recommendation
result <- computeRecommendation(enzyme_r)
## Not run: print(result)

# Compute recommendation using similarity informations
result1 <- computeRecommendation(enzyme_r, S=enzyme_ts, S1=enzyme_ds)
## Not run: print(result1)

# Speeds up the computation process through the use of multiple threads
library(parallel)
cl <- makeCluster(detectCores())
result2 <- computeRecommendation(enzyme_r, S=enzyme_ts, S1=enzyme_ds, cl=cl)</pre>
```

enzyme 3

```
stopCluster(cl)
## Not run: print(result2)
```

enzyme

An example Drug-Target interaction network dataset.

Description

The enzyme dataset consists: i) an n by m matrix enzyme_r, which represents the bipartite network built upon the known drug-target interactions; ii) an n by n matrix enzyme_ts where each element is the sequence similarity between all pairs of genes in the bipartite network, computed using a normalized Smith-Waterman score (Smith and Waterman, J.Mol.Bio, 1981); iii) an m by m matrix enzyme_ds where each element is the 2D chemical similarity between all pairs of drugs in the example network, computed using the SIMCOMP algorithm (Hattori et al, J.Ame.Chem.Soc, 2003).

Usage

data(enzyme)

References

Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W. and Kanehisa, M., Prediction of drug-target interaction networks from the integration of chemical and genomic spaces, 2008.

Smith, T. F., Waterman, M. S. (1981), Identification of common molecular subsequences. Journal of molecular biology, 147(1), 195-197.

Hattori, M., Okuno, Y., Goto, S., and Kanehisa, M., Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc. 125, 11853-11865 (2003).

Index

```
*Topic datasets
enzyme, 3
*Topic manip
computeRecommendation, 1

computeRecommendation, 1

enzyme, 3
enzyme_ds (enzyme), 3
enzyme_r (enzyme), 3
enzyme_ts (enzyme), 3
```