Paradigma divide et impera Recursive binary search Merge sort

Liceo G.B. Brocchi - Bassano del Grappa (VI) Liceo Scientifico - opzione scienze applicate Giovanni Mazzocchin

Divide, conquer and combine

- Molti problemi sono risolvibili «naturalmente» in modo ricorsivo. Con naturalmente intendiamo dire che per questi problemi è più immediato trovare una soluzione ricorsiva rispetto ad una iterativa
- Questi algoritmi ricorsivi, per risolvere un problema, chiamano sé stessi su un certo numero di sottoproblemi almeno una volta. Questi procedimenti sono matematicamente validi in quando i sottoproblemi assomigliano al problema di partenza
- L'approccio che prevede la suddivisione di un problema in sottoproblemi (e la loro risoluzione ricorsiva) viene detto divide and conquer (in latino divide et impera)

Divide, conquer and combine

ll paradigma divide, conquer and combine si articola in tre

passaggi

1. <u>dividi</u> il problema in un certo numero di sottoproblemi

2. <u>conquista</u> i sottoproblemi, ossia risolvili ricorsivamente se i problemi sono di dimensione minima (casi base), non suddividerli più e risolvili direttamente

3. <u>combina</u> le soluzioni dei sottoproblemi e genera la soluzione del problema di partenza

- Conosciamo già un algoritmo fondato sul paradigma divide and conquer (senza combine): la **ricerca binaria**
- Lo avevamo implementato iterativamente
- Vedremo che è più facile scriverlo ricorsivamente, in quanto la natura di questo algoritmo è intrinsecamente ricorsiva
- La versione ricorsiva, in quanto esempio di tail recursion, sarà una specie di duale della versione iterativa: praticamente, la negazione della condizione di permanenza del ciclo costituirà il caso base della funzione ricorsiva

```
binary_search_I(A, low, high, key): returns bool
        bool found = false
        index = -1
        while (found == false AND low <= high):</pre>
           middle = (low + high) / 2
           if key == A[middle]:
               found = true
           else if key < A[middle]:
               high = middle - 1
           else
               low = middle + 1
        return found
```

Esempio di programmazione strutturata: nessun return o break all'interno del ciclo

Destrutturiamolo un po' per arrivare alla versione ricorsiva!

Praticamente, proviamo a scriverlo male

```
binary_search_I(A, low, high, key): returns bool
  while (low <= high):
        middle = (low + high) / 2
        if key == A[middle]:
            return true
        if low > high:
            return false
        if key < A[middle]:
            high = middle - 1
        else
        low = middle + 1</pre>
```

```
binary_search_R(A, low, high, key): returns bool
      if low > high:
          return false
      middle = (low + high) / 2
      if key == A[middle]:
          return true
      else if key < A[middle]:</pre>
          return binary_search_R(A, low, middle - 1, key)
      return binary_search_R(A, middle + 1, high, key)
```

- Vi sembrerà strano, ma possiamo ordinare una lista di elementi utilizzando un approccio divide, conquer and combine
- L'algoritmo di ordinamento **Merge sort** può essere descritto così, informalmente:
 - divide: dividi la lista di n elementi in 2 liste
 - conquer: ordina le 2 sottoliste ricorsivamente
 - combine: fondi (merge) le 2 sottoliste ordinate
- Merge sort è stato inventato da <u>John von Neumann</u>

 Prima di scrivere il codice di Merge sort, abbiamo bisogno di definire la procedura merge(A, p, q, r), i cui requisiti sono i seguenti:

dato un array A e tre indici p, q, r, con p <= q < r, per il quale:

- il sottoarray A[p..q] è ordinato
- il sottoarray A[q + 1, r] è ordinato

```
modifica A in modo da rendere A[p..r] completamente ordinato, fondendo gli elementi di A[p..q] e A[q + 1, r]
```


mergiamo L e R nell'array A

NB: numero degli elementi da mergiare è: r - p + 1

A va riempito da p a r con gli array L e R mergiati

gli elementi blu vengono confrontati. Il più piccolo viene posto nell'array A. In seguito non verrà più considerato, in quanto già «sistemato», e diventerà grigio

A

p

1 2 4 p

p

1 2 4 6 9 r

- Per scrivere la procedura *merge*, bisogna prestare molta attenzione a questo fatto: procedendo con la fusione dei due array, ad un certo punto ci si ritrova sempre con uno dei due array vuoto, ossia completamente *sistemato*
- Consideriamo un esempio in cui questo fatto è evidente. Mergiamo due mazzi di carte ordinati e impilati così. Confrontiamo sempre le carte in cima alle pile e impiliamo la più piccola nella pila vuota a destra

- Per scrivere la procedura *merge*, bisogna prestare molta attenzione a questo fatto: procedendo con la fusione dei due array, ad un certo punto ci si ritrova sempre con uno dei due array vuoto, ossia completamente *sistemato*
- Consideriamo un esempio in cui questo fatto è evidente. Mergiamo due mazzi di carte ordinati e impilati così. Confrontiamo sempre le carte in cima alle pile e impiliamo la più piccola nella pila vuota a destra

- Per scrivere la procedura *merge*, bisogna prestare molta attenzione a questo fatto: procedendo con la fusione dei due array, ad un certo punto ci si ritrova sempre con uno dei due array vuoto, ossia completamente *sistemato*
- Consideriamo un esempio in cui questo fatto è evidente. Mergiamo due mazzi di carte ordinati e impilati così. Confrontiamo sempre le carte in cima alle pile e impiliamo la più piccola nella pila vuota a destra

• Poniamo un **valore sentinella** alla base delle pile: scegliamo come sentinella $+\infty$, perché in qualsiasi confronto tra un numero $n \in +\infty$, $n \in \mathbb{N}$ è il minore, per cui sarà proprio n ad essere scelto


```
merge(A, low, middle, high):
    #needs additional memory, this is not an in-place algorithm
    left = A[low .. middle]
    right = A[middle + 1 .. high]
    left.add(+INF)
    right.add(+INF)
    left i = 0
    right_i = 0
    for i from low to high:
        if left[left_i] <= right[right_i]:</pre>
            A[i] = left[left i]
            left i = left i + 1
        else:
            A[i] = right[right_i]
            right_i = right_i + 1
```

- Sfruttiamo la procedura merge per ordinare un array!
- Vediamo il problema dell'ordinamento ricorsivamente:
 - se l'array A ha dimensione > 1:
 - dividiamo A in 2 metà (fase divide)
 - ordiniamo le 2 metà di A (fase conquer)
 - fondiamo le 2 metà ordinate, utilizzando merge (fase combine)
 - se l'array A ha dimensione <= 1:
 - non serve fare niente. Un array vuoto, o di un solo elemento, è banalmente ordinato

12 9 18 -13 100 40 -1 -3 9 22

applichiamo Merge sort sulla fetta verde

l'elemento medio della fetta è evidenziato, le fette grigie sono in sospeso

12 9 18 -13 100 40 -1 -3 9 22

applichiamo Merge sort sulla fetta verde

l'elemento medio della fetta è evidenziato, le fette grigie sono in sospeso

12 9 18 -13 100 40 -1 -3 9 22

applichiamo Merge sort sulla fetta verde

l'elemento medio della fetta è evidenziato, le fette grigie sono in sospeso

12 9 18 -13 100 40 -1 -3 9 22

applichiamo Merge sort sulla fetta verde

l'elemento medio della fetta è evidenziato

12 9 18 -13 100 40 -1 -3 9 22

applichiamo Merge sort sulla fetta verde

fetta di 1 elemento: già ordinata, niente da fare

applichiamo Merge sort sulla fetta verde

fetta di 1 elemento: già ordinata, niente da fare

l'elemento medio della fetta è evidenziato

12 9 18 -13 100 40 -1 -3 9 22

applichiamo merge sulla fetta verde

l'elemento medio della fetta è evidenziato

9 12 18 -13 100 40 -1 -3 9 22

la fetta verde è ordinata

9 12 18 -13 100 40 -1 -3 9 22

applichiamo Merge sort sulla fetta verde

fetta di 1 elemento: già ordinata, niente da fare

9 12 18 -13 100 40 -1 -3 9 22

applichiamo merge sulla fetta verde

9 12 18 -13 100 40 -1 -3 9 22

applichiamo Merge sort sulla fetta verde

9 12 18 -13 100 40 -1 -3 9 22

applichiamo Merge sort sulla fetta verde

fetta di 1 elemento: già ordinata niente da fare

9 12 18 -13 100 40 -1 -3 9 22

applichiamo Merge sort sulla fetta verde

fetta di 1 elemento: già ordinata, niente da fare

9 12 18 -13 100 40 -1 -3 9 22

applichiamo merge sulla fetta verde

9 12 18 -13 100 40 -1 -3 9 22

9 12 18 -13 100 40 -1 -3 9 22

applichiamo merge sulla fetta verde

 -13
 9
 12
 18
 100
 40
 -1
 -3
 9
 22

 -13
 9
 12
 18
 100
 40
 -1
 -3
 9
 22

applichiamo Merge sort sulla fetta verde

 -13
 9
 12
 18
 100
 40
 -1
 -3
 9
 22

applichiamo Merge sort sulla fetta verde

 -13
 9
 12
 18
 100
 40
 -1
 -3
 9
 22

applichiamo Merge sort sulla fetta verde

 -13
 9
 12
 18
 100
 40
 -1
 -3
 9
 22

applichiamo Merge sort sulla fetta verde

fetta di 1 elemento: già ordinata, niente da fare

 -13
 9
 12
 18
 100
 40
 -1
 -3
 9
 22

applichiamo Merge sort sulla fetta verde

fetta di 1 elemento: già ordinata, niente da fare

 -13
 9
 12
 18
 100
 40
 -1
 -3
 9
 22

applichiamo merge sulla fetta verde

 -13
 9
 12
 18
 100
 -1
 40
 -3
 9
 22

 -13
 9
 12
 18
 100
 -1
 40
 -3
 9
 22

applichiamo Merge sort sulla fetta verde

fetta di 1 elemento: già ordinata, niente da fare

applichiamo merge sulla fetta verde

 -13
 9
 12
 18
 100
 -3
 -1
 40
 9
 22

 -13
 9
 12
 18
 100
 -3
 -1
 40
 9
 22

applichiamo Merge sort sulla fetta verde

l'elemento medio della fetta è evidenziato, le fette grigie sono in sospeso

 -13
 9
 12
 18
 100
 -3
 -1
 40
 9
 22

applichiamo Merge sort sulla fetta verde

fetta di 1 elemento: già ordinata, niente da fare

 -13
 9
 12
 18
 100
 -3
 -1
 40
 9
 22

applichiamo Merge sort sulla fetta verde

fetta di 1 elemento: già ordinata, niente da fare

 -13
 9
 12
 18
 100
 -3
 -1
 40
 9
 22

applichiamo merge sulla fetta verde

-13 9 12 18 100 -3 -1 40 9 22

 -13
 9
 12
 18
 100
 -3
 -1
 40
 9
 22

applichiamo Merge sort sulla fetta verde

 -13
 9
 12
 18
 100
 -3
 -1
 9
 22
 40

 -13
 9
 12
 18
 100
 -3
 -1
 9
 22
 40

applichiamo merge sulla fetta verde

 -13
 -3
 -1
 9
 9
 12
 18
 22
 40
 100

la fetta verde è ordinata

l'array iniziale è ordinato

```
merge_sort(A, low, high):
    if low >= high:
        return
    middle = (low + high) / 2
    merge_sort(A, low, middle)
    merge_sort(A, middle + 1, high)
    merge(A, low, middle, high)
```

Da vedere a casa

Merge Sort vs Quick Sort