Math 113: Functional Analysis

Sair Shaikh

May 1, 2025

Problem 30. Suppose that X and Y are normed vector spaces.

1. Show that $\mathcal{L}(X,Y)$ is a normed vector space with respect to the operator norm defined in lecture such that:

$$||T(x)|| \le ||T||||x||$$

2. Show that if $S \in \mathcal{L}(Y, Z)$. Then,

$$||ST|| \le ||S||||T||$$

3. Show that:

$$||T|| = \inf\{a \ge 0 : ||T(x)|| \le a||x|| \quad \forall x \in X\}$$

Solution.

1. First, note that $\mathcal{L}(X,Y)$ is a vector space, through pointwise addition and scalar multiplication defined in Y, i.e. for $T,S\in\mathcal{L}(X,Y)$ and $\alpha\in\mathbb{F}$ we let:

$$(\alpha T + S)(x) := \alpha T(x) + S(x)$$

for all $x \in X$. Thus, we only need to show that the operator norm is a norm and satisfies the given property. Recall the definition of the operator norm for $T \in \mathcal{L}(X,Y)$:

$$||T|| = \sup_{||x|| \le 1} ||T(x)||$$

Non-Neg. Let $T \in \mathcal{L}(X,Y)$ be arbitrary. Then, for all $x \in X$ with $||x|| \le 1$, $||T(x)|| \ge 0$ by the non-negativity of the norm on Y. Thus, $||T|| \ge 0$.

Homogeneity. Let $T \in \mathcal{L}(X,Y)$ and $\alpha \in \mathbb{F}$. Then, for every $x \in X$, with $||x|| \leq 1$, we have that:

$$||(\alpha T)(x)|| = ||\alpha T(x)||$$
$$= |\alpha| \cdot ||T(x)||$$
$$\leq |\alpha| \cdot ||T||$$

using the homogeneity of the norm on Y. Thus,

$$||\alpha T|| \le |\alpha| \cdot ||T(x)||$$

Similarly, we also have:

$$|\alpha| \cdot ||T(x)|| = ||\alpha T(x)||$$
$$= ||(\alpha T)(x)||$$
$$\leq ||\alpha T||$$

Thus, we have:

$$|\alpha| \cdot ||T|| \le ||\alpha T||$$

Thus, we have shown that:

$$||\alpha T|| = |\alpha| \cdot ||T||$$

 \triangle ineq. Let $T, S \in \mathcal{L}(X, Y)$. For every $x \in X$, with $||x|| \leq 1$, we have:

$$||(T+S)(x)|| = ||T(x) + S(x)||$$

 $\leq ||T(x)|| + ||S(x)||$
 $\leq ||T|| + ||S||$

using the triangle inequality for the norm in Y. Thus,

$$||T + S|| \le ||T|| + ||S||$$

Pos. Def. To prove this, we first will show that $||T(x)|| \le ||T||||x||$ for all $x \in X$. For $x \in X$, by homogeneity (and non-negativity) of the norm on X:

$$\left| \left| \frac{1}{||x||} x \right| \right| = \frac{1}{||x||} \cdot ||x|| = 1$$

Thus, we note that:

$$\left| \left| T \left(\frac{1}{||x||} x \right) \right| \right| \le ||T||$$

By the linearity of T and the homogeneity of the norm in Y, this implies:

$$\frac{1}{||x||}||T(x)|| = \left| \left| \frac{1}{||x||}T(x) \right| \right|$$
$$= \left| \left| T\left(\frac{1}{||x||}x \right) \right| \right|$$
$$\le ||T||$$

Thus,

$$||T(x)|| \le ||T|| \cdot ||x||$$

Now, let $T \in \mathcal{L}(X,Y)$ be such that ||T|| = 0. Then, for all $x \in X$, we have that:

$$||T(x)|| \le ||T|| \cdot ||x||$$
$$= 0$$

However, by the non-negativity of the norm in Y, we must have that ||T(x)|| = 0 for all $x \in X$. Then, by positive definiteness of the norm in Y, we have that T(x) = 0 for all $x \in X$. Thus, T is the zero map.

Conversely, if T is the zero map, then for all $x \in X$ with $||x|| \le 1$, we have that:

$$||T|| = ||0 \cdot T|| = 0 \cdot ||T|| = 0$$

by homogeneity. Thus, the norm is positive definite.

Therefore, we have shown that the operator norm is a norm on $\mathcal{L}(X,Y)$ and satisfies for all $T \in \mathcal{L}(X,Y)$ and $x \in X$:

$$||T(x)|| \le ||T|| \cdot ||x||$$

2. For any $x \in X$, with ||x|| = 1, by applying the property from part 1 twice, we have that:

$$||ST(x)|| = ||S(T(x))||$$

 $\leq ||S|| \cdot ||T(x)||$
 $\leq ||S|| \cdot ||T|| \cdot ||x||$
 $= ||S|| \cdot ||T||$

Thus,

$$||ST|| \le ||S|| \cdot ||T||$$

3. Let $\alpha(T)$ be the defined infimum.

Since we have that $||T(x)|| \le ||T|| \cdot ||x||$ for all $x \in X$, ||T|| is in the set we are taking the infimum over. Thus, $\alpha(T) \ge ||T||$.

Moreover, by the definition of $\alpha(T)$, we have that for all $x \in X$ with $||x|| \leq 1$,

$$||T(x)|| \le \alpha(T)||x|| = \alpha(T)$$

Thus, $\alpha(T)$ is an upperbound on ||T(x)|| with $||x|| \leq 1$. Therefore, by the definition of the supremum, we have that:

$$||T|| \le \alpha(T)$$

Thus, we have shown that:

$$||T|| = \alpha(T) = \inf\{a \ge 0 : ||T(x)|| \le a||x|| \quad \forall x \in X\}$$

Problem 31. Suppose that X and Y are Banach spaces with $T \in \mathcal{L}(X,Y)$. Suppose that E is a closed proper subspace of X such that $E \subset \ker(T)$. Show that there is a unique operator $\overline{T} \in \mathcal{L}(X/E,Y)$ such that $\overline{T}(q(x)) = T(x)$ for all $x \in X$ where $q: X \to X/E$ is the quotient map. Moreover, $||\overline{T}|| = ||T||$.

Solution. We claim the map $\overline{T}: X/E \to Y$ given by:

$$\overline{T}([x]) = T(x)$$

satisfies the desired properties. We need to show that \overline{T} is well-defined, linear, satisfies $\overline{T}(q(x)) = T(x)$ for all $x \in X$, and satisfies $||\overline{T}|| = ||T||$ (hence is bounded/continuous).

Let $x, y \in X$ be such that [x] = [y]. Then, note that $x - y \in E \subset \ker(T)$. Thus, T(x) - T(y) = T(x - y) = 0. Thus, T(x) = T(y). Then, by the definition of \overline{T} , we have $\overline{T}([x]) = \overline{T}([y])$. Thus, \overline{T} is well-defined.

Next, let $[x], [y] \in X/E$ and $\alpha \in \mathbb{F}$ be arbitrary. Then, noting the linearity of q and T, we have that:

$$\begin{split} \overline{T}(\alpha[x] + [y]) &= \overline{T}([\alpha x + y]) \\ &= T(\alpha x + y) \\ &= \alpha T(x) + T(y) \\ &= \alpha \overline{T}([x]) + \overline{T}([y]) \end{split}$$

Thus, \overline{T} is linear.

Problem 33. Let E and X be Banach spaces with E finite dimensional.

- 1. Show that every linear map $S: E \to X$ is bounded.
- 2. Show that a linear map $T:X\to E$ is bounded if and only if $\ker(T)$ is closed.

Problem 34. Supposed that E and M are closed subspaces of a Banach space X. If E is finite dimensional, show that $E+M=\{x+y:x\in E\ y\in M\}$ is closed.

Problem 35. Suppose that X and Y are Banach spaces for $T \in \mathcal{L}(X,Y)$. Show that T is injective with closed range if and only if:

$$\inf\{||T(x)||:||x||=1\}>0$$

Problem 38. Let X be a normed vector space. A Banach space \tilde{X} is called a completion of X is there is an isometric isomorphism $\iota: X \to \tilde{X}$ onto a dense subspace of \tilde{X} . Show that any two completions $(tildeX_1, \iota_1)$ and (\tilde{X}_2, ι_2) are isometrically isomorphic by an isomorphism:

$$\Phi: \tilde{X}_1 \to \tilde{X}_2$$

such that $\Phi(\iota_1(x)) = \iota_2(x)$ for all $x \in X$.

Problem 39. Lets find a use for a genuine Minkowski functional. In this problem, we'll let $l_{\mathbb{R}}^{\infty}$ be the real Banach space of bounded sequences in \mathbb{R} . Define m on $l_{\mathbb{R}}^{\infty}$:

$$m(x) = \limsup_{n} x_n$$

We clearly have m(tx) = tm(x) if $t \ge 0$ and it is not hard to check that $m(x+y) \le m(x) + m(y)$ for all $x, y \in l_{\mathbb{R}}^{\infty}$. We want to show that there are Banach limits or what I prefer to call a generalized limit on $l_{\mathbb{R}}^{\infty}$. This is we want to show that there is a functional $L \in l_{\mathbb{R}}^{\infty^*}$ such that:

$$L(S(x)) = L(x)$$

where $S \in \mathcal{L}(l_{\mathbb{R}}^{\infty})$ is given by $S(x)_n = x_{n+1}$ and such that $\liminf_n x_n \leq L(x) \leq \limsup_n x_n$. (Hint provided).

Problem 40. Prove the following Lemma from lecture. Let X be a complex vector space. Every real linear functional of X is the real part of a complex linear functional on X. In fact, if $\phi = \Re(\psi)$ then $\psi(x) = \phi(x) - i\phi(ix)$.

Problem 41. Suppose that X is a normed vector space such that X^* is separable. Show that X is separable. (Hint provided).