

Introduction

Motivation

- A way to forecast food shortage, food supply, and hence better price and inventory management.
- Benefits agricultural distributors, food processing industries, and government

Dataset (total of 146 GB)

- MODIS Terra Surface Reflectance
- MODIS Surface Temperature
- USDA-FAS Surface and Subsurface Moisture
- USDA-NASS for masking
- The ground truth annual yields were collected in a county level from USDA QuickStats.

Quick Look at the Data: Image Sample

 MODIS Terra Surface Reflectance: 11 bands

MODIS Surface Temperature:2 bands

 USDA-FAS Surface and Subsurface Moisture: 2bands

USDA-NASS for masking:1 band

Quick Look at the Data: Ground Truth

- Yield distribution of all counties from year 2010 to year 2016
- The yield is not normally distributed

Image Preprocessing Steps

Image Value Distribution After Masking

 These value distribution will be important for feature engineering later in the study

Exploratory Data Analysis: MODIS Terra Reflectance

Exploratory Data Analysis: MODIS Temp & USDA Moisture

Workflow Summary: from Data to Model

- Using raw images for prediction would be extremely expensive because each image is about 100 x 100 x 11 and each year there are 38 images.
- After all preprocessing we have a total of 9000 images left (from year 2010-2016).
- Data from year 2016 will be used for test set, the rest is for training.

Model Results and Batch Size Optimization

Model	Mean Absolute Error (Bushel/Acre)	Percent Error from Mean
Custom CNN-LSTM	18.85	12.17%
Separable CNN-LSTM	24.11	15.57%
CNN-LSTM [5]	16.20	10.46%
3D-CNN	96.39	62.26%
CNN-LSTM-3D CNN	36.14	23.34%

Batch Size	Mean Absolute	
batth Size	Error (Bushel/Acre)	
8	61.92	
16	17.17	
32	16.20	
64	20.10	

Result Analysis: Geospatial Analysis

- Model tends to perform poorer in area with extremely low yields such as some parts
 of Montana and North Dakota.
- This could be due to the low amount of samples with this extreme.
- On the other hand, the model performs extremely well (percent error <10%) in the case with typical yields to high yields such as those in Iowa, Nebraska, and Illinois.

Result Analysis: Reducing the Number of Frames

- Using just 20 frames (roughly 2nd week of Aug.), we can already achieve percent error as low as 14.57% (compared to 10.46% if we use the images from the entire year).
- This is about 2 months before corn is typically harvested in October, although this could even be later in the year in warmer states.

Conclusion

- we have shown the correlation between different satellite images including reflectance, land temperature, and land moisture to corn yields in U.S.
- We leveraged these correlations to construct a CNN+RNN model that can capture both spatial and temporal information of these data to predict corn yields in a year.
- The model was able to predict with MAE of 10% at 38 frames per year, and as low as 15% even if only 20 frames were used. This is equivalent to taking images upto just August.
- Therefore, this model would allow user to be able to predict corn yields at county level early in the season.