```
In []: | import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.preprocessing import scale
         import sklearn.linear model as lm
         import statsmodels.formula.api as smf
         from statsmodels.stats.outliers influence import variance inflation factor
         import statsmodels.api as sm
In []: | from google.colab import drive
         drive.mount('/content/gdrive')
         Mounted at /content/gdrive
In [ ]:

    adv.info()

         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 200 entries, 0 to 199
         Data columns (total 4 columns):
                      Non-Null Count Dtype
             Column
             TV
                      200 non-null
                                   float64
             radio
                      200 non-null
                                  float64
          1
          2 newspaper 200 non-null float64
                      200 non-null
             sales
                                   float64
         dtypes: float64(4)
         memory usage: 6.4 KB
```

```
Out[17]:
            Unnamed: 0 Income Limit Rating Cards Age Education Gender Student Married Ethnicity Balance
                                        2 34
          0
                   1 14.891
                           3606
                                 283
                                                  11
                                                       Male
                                                              No
                                                                   Yes Caucasian
                                                                                 333
                   2 106.025
                           6645
                                 483
                                        3
                                          82
                                                  15 Female
                                                                                 903
                                                                   Yes
                                                                          Asian
                                                              Yes
                                        4 71
                   3 104.593 7075
                                                       Male
                                                                          Asian
                                                                                 580
          2
                                 514
                                                  11
                                                              No
                                                                    No
                   4 148.924
                                          36
                                                                                 964
          3
                           9504
                                 681
                                        3
                                                  11 Female
                                                              No
                                                                    No
                                                                          Asian
                   5 55.882 4897
                                 357
                                        2 68
                                                  16
                                                       Male
                                                              No
                                                                   Yes Caucasian
                                                                                 331
          4
```

credit.head()

Out[18]:		Unnamed: 0	Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity	Balance	Student2
	0	1	14.891	3606	283	2	34	11	Male	No	Yes	Caucasian	333	0
	1	2	106.025	6645	483	3	82	15	Female	Yes	Yes	Asian	903	1
	2	3	104.593	7075	514	4	71	11	Male	No	No	Asian	580	0
	3	4	148.924	9504	681	3	36	11	Female	No	No	Asian	964	0
	4	5	55.882	4897	357	2	68	16	Male	No	Yes	Caucasian	331	0

```
Auto.isna().sum()
          Auto.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 397 entries, 0 to 396
          Data columns (total 9 columns):
              Column
                          Non-Null Count Dtype
                          397 non-null
                                        float64
              mpg
           1
              cylinders
                          397 non-null
                                        int64
                                        float64
              displacement 397 non-null
              horsepower
                          397 non-null
                                        object
              weight
                          397 non-null
                                        int64
              acceleration 397 non-null
                                        float64
                          397 non-null
                                        int64
              year
                          397 non-null
                                        int64
              origin
           7
              name
                          397 non-null
                                        object
          dtypes: float64(3), int64(4), object(2)
          memory usage: 28.0+ KB
```


mpg	cylinders	displacement horsepower	weight	acceleration	year	origin name	
 : :	:	: :	- :	:	:	: :	
0 18	8	307 130	3504	12	70	1 chevrolet	
chevelle malibu	8	350 165	3693	11.5	70	1 buick sky	
lark 320 2 18 satellite	8	318 150	3436	11	70	1 plymouth	
3 16	8	304 150	3433	12	70	1 amc rebel	
sst 4 17	8	302 140	3449	10.5	70	1 ford tori	
no 5 15 xie 500	8	429 198	4341	10	70	1 ford gala	
6 14 impala	8	454 220	4354	9	70	1 chevrolet	
7 14	8	440 215	4312	8.5	70	1 plymouth	•

In []: Auto = pd.read_csv('/content/gdrive/MyDrive/ISLR/Auto.csv',na_values='?').dropna()
 print(Auto.to_markdown())

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin name	
 :	:	:	:	:	:	:	: -	: :	
0	 18 le malib	8	307	130	3504	12	70	1 chevrolet	
1 lark 32	15	8	350	165	3693	11.5	70	1 buick sky	
2 satelli	18	8	318	150	3436	11	70	1 plymouth	
3 sst	16	8	304	150	3433	12	70	1 amc rebel	
4	17	8	302	140	3449	10.5	70	1 ford tori	
no 5 xie 500	15	8	429	198	4341	10	70	1 ford gala	
6	14	8	454	220	4354	9	70	1 chevrolet	
impala	14	8	440	215	4312	8.5	70	1 plymouth	•

```
In []: | ##Least squares fit
sns.regplot(adv.TV,adv.sales,order=1) ##check ploynomila or not
```

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variables as keyword a rgs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x7f52ccf1f0a0>


```
In []: | Ir = lm.LinearRegression().
X = scale(adv.TV,with_mean=True,with_std=False).reshape(-1,1)
Y = adv.sales
lr.fit(X,Y)
print(lr.intercept_)
print(lr.coef_)
14.0225
```

RSS = np.sum((lr.intercept_+lr.coef_*X-Y.values.reshape(-1,1))**2)

[0.04753664]

```
In [ ]: | RSS
   Out[25]: 2102.5305831313512
In []: | lm fit1 = smf.ols('sales ~ TV', adv).fit()
             lm fit1.summary().tables[1]
   Out[26]:
                        coef std err
                                        t P>|t| [0.025 0.975]
              Intercept 7.0326
                              0.458 15.360 0.000
                                                 6.130
                                                        7.935
                   TV 0.0475
                              0.003 17.668 0.000
                                                 0.042 0.053
         ▶ adv.head(3)
In [ ]:
   Out[27]:
                  TV radio newspaper sales
              0 230.1
                       37.8
                                       22.1
                                  69.2
                 44.5
                       39.3
                                       10.4
                                 45.1
              2 17.2 45.9
                                 69.3
                                        9.3
         Im_fit2 = smf.ols('sales ~ newspaper', adv).fit()
             lm fit2.summary().tables[1]
   Out[28]:
                                           t P>|t| [0.025 0.975]
                           coef std err
               Intercept 12.3514
                                0.621 19.876 0.000 11.126 13.577
              newspaper 0.0547 0.017
                                       3.300 0.001
                                                    0.022 0.087
In [ ]:  ▶ ##Multiple Linear Regression
             lm_fit3 = smf.ols('sales ~ TV+radio+newspaper', adv).fit()
             lm_fit3.summary().tables[1]
   Out[29]:
                                           t P>|t| [0.025 0.975]
                          coef std err
               Intercept 2.9389
                                0.312
                                      9.422 0.000
                                                   2.324
                                                          3.554
                        0.0458
                                0.001 32.809 0.000
                                                   0.043
                                                          0.049
                         0.1885
                                0.009 21.893 0.000
                                                          0.206
                  radio
                                                   0.172
              newspaper -0.0010
                                0.006 -0.177 0.860 -0.013 0.011
```

```
In [ ]: ▶ ##Correlation Matrix
            adv.corr()
  Out[30]:
                            TV
                                  radio newspaper
                                                     sales
                   TV 1.000000 0.054809
                                         0.056648 0.782224
                  radio 0.054809 1.000000
                                         0.354104 0.576223
             newspaper 0.056648 0.354104
                                         1.000000 0.228299
                 sales 0.782224 0.576223
                                         0.228299 1.000000
In [ ]: ▶ ##RSS for Multiple regression
            ##https://qithub.com/JWarmenhoven/ISLR-python/blob/master/Notebooks/Chapter%203.ipynb
            lr = lm.LinearRegression()
            X = adv[['radio', 'TV']]
            Y = adv.sales
            lr.fit(X,Y)
            print(lr.intercept_)
            print(lr.coef_)
            2.9210999124051398
            [0.18799423 0.04575482]
In []: ▶ ##Other Considerations in the Regression Model
            credit.head(2)
```

Out[32]:		Unnamed: 0	Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity	Balance	Student2
	0	1	14.891	3606	283	2	34	11	Male	No	Yes	Caucasian	333	0
	1	2	106.025	6645	483	3	82	15	Female	Yes	Yes	Asian	903	1

```
In [ ]: N sns.pairplot(credit[['Balance','Age','Cards','Education','Income','Limit','Rating']])
```

Out[33]: <seaborn.axisgrid.PairGrid at 0x7f52cd3e14f0>

In []: ▶ credit.head(2)

Out[38]:		Unnamed: 0	Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity	Balance	Student2
	0	1	14.891	3606	283	2	34	11	Male	No	Yes	Caucasian	333	0
	1	2	106.025	6645	483	3	82	15	Female	Yes	Yes	Asian	903	1

```
In []:  ##Interaction between qualitative and quantative variables
lm_fit3 = smf.ols('Balance~Income',credit).fit()
print(lm_fit3.summary())
lm_fit4 = smf.ols('Balance~Income+Student2+Income*Student2',credit).fit()
print(lm_fit4.summary())
```

OLS Regression Results

===========	========	========		=======	=======	========	
Dep. Variable:		Balance	R-square			0.215	
Model:			Adj. R-s			0.213	
Method:	Leas	st Squares	F-statis	tic:		109.0	
Date:	Thu, 29	9 Dec 2022	Prob (F-	statistic):	1.03e-22	
Time:		05:50:06	Log-Like	elihood:		-2970.9	
No. Observations	:	400	AIC:			5946.	
Df Residuals:		398	BIC:			5954.	
Df Model:		1					
Covariance Type:		nonrobust					
	coef sto	d err	t		[0.025		
Intercept 246				0.000	181.247	311.783	
Income 6	.0484	3.579 1 0	0.440	0.000	4.909	7.187	
========= Omnibus:	=======		======= Durbin-k		=======	1.951	
Prob(Omnibus):		0.000	Jarque-B	Bera (JB):		20.975	
Skew:			Prob(JB)			2.79e-05	
Kurtosis:						02.2	
 Notes:	======== ors assume [†]	2.182 ======== that the co				93.3 ======= is correctl	y sp
======================================		that the co	variance m	atrix of	the errors	is correctl	y sp
Notes: [1] Standard Erro		that the co	variance m	matrix of ts	the errors	is correctl	y sp
Notes: [1] Standard Erro ====== Dep. Variable:		that the co OLS Regres Balance	variance m sion Resul	matrix of ts ed:	the errors	======= is correctl ========	y st
Notes: [1] Standard Erro ===================================	======================================	that the co OLS Regres: Balance OLS St Squares	variance m sion Resul ====== R-square Adj. R-s F-statis	matrix of ts ed: equared:	the errors	is correctl 0.280 0.274 51.30	y sr
Notes: [1] Standard Erro ===================================	======================================	that the co OLS Regress Balance OLS St Squares	variance m sion Resul ======= R-square Adj. R-s F-statis Prob (F-	natrix of ts ======= ed: equared: etic:	the errors	is correctl 0.280 0.274 51.30 4.94e-28	y sp
Notes: [1] Standard Erro Dep. Variable: Model: Method: Date: Time:	======== Lea: Thu, 29	that the condition of t	variance m sion Resul ======= R-square Adj. R-s F-statis Prob (F- Log-Like	natrix of ts ======= ed: equared: etic:	the errors	is correctl 0.280 0.274 51.30 4.94e-28 -2953.7	y sp
Notes: [1] Standard Erro ===================================	======== Lea: Thu, 29	that the cor OLS Regres: Balance OLS st Squares Dec 2022 05:50:06 400	variance m sion Resul ======= R-square Adj. R-s F-statis Prob (F- Log-Like	natrix of ts ======= ed: equared: etic:	the errors	is correctl ======= 0.280 0.274 51.30 4.94e-28 -2953.7 5915.	y st
Notes: [1] Standard Erro Dep. Variable: Model: Method: Date: Time: No. Observations Of Residuals:	======== Lea: Thu, 29	that the condition of t	variance m sion Resul ======= R-square Adj. R-s F-statis Prob (F- Log-Like	natrix of ts ======= ed: equared: etic:	the errors	is correctl 0.280 0.274 51.30 4.94e-28 -2953.7	y sr
Notes: [1] Standard Erro ==================================	======== Lea: Thu, 29	that the cor OLS Regress Balance OLS St Squares Dec 2022 05:50:06 400 396 3	variance m sion Resul ======= R-square Adj. R-s F-statis Prob (F- Log-Like	natrix of ts ======= ed: equared: etic:	the errors	is correctl ======= 0.280 0.274 51.30 4.94e-28 -2953.7 5915.	y sp
Notes: [1] Standard Erro Dep. Variable: Model: Method: Date: Time: No. Observations Of Residuals: Dof Model: Covariance Type:	Leas Thu, 29	that the cor OLS Regres: Balance OLS st Squares 9 Dec 2022 05:50:06 400 396 3	variance m sion Resul R-square Adj. R-s F-statis Prob (F- Log-Like AIC: BIC:	matrix of ts ed: equared: etic: estatistic	the errors =======):	is correctl ======== 0.280 0.274 51.30 4.94e-28 -2953.7 5915. 5931.	
Notes: [1] Standard Erro Dep. Variable: Model: Method: Date: Time: No. Observations Of Residuals: Dof Model: Covariance Type:	Leas Thu, 29	that the cor OLS Regres: Balance OLS st Squares 9 Dec 2022 05:50:06 400 396 3	variance m sion Resul R-square Adj. R-s F-statis Prob (F- Log-Like AIC: BIC:	matrix of ts ed: equared: stic: statistic	the errors =======	is correctl ====================================	
Notes: [1] Standard Erro ==================================	Leas Thu, 29	that the cor OLS Regres: Balance OLS st Squares Dec 2022 05:50:06 400 396 3 nonrobust	variance m sion Resul ======= R-square Adj. R-s F-statis Prob (F- Log-Like AIC: BIC:	matrix of ts d: quared: stic: statistic lihood:	the errors): t [0	is correctl 	==== 975]
Notes: [1] Standard Erro	Leas Thu, 29	that the cor OLS Regress Balance OLS St Squares Dec 2022 05:50:06 400 396 3 nonrobust	variance m sion Resul ======= R-square Adj. R-s F-statis Prob (F- Log-Like AIC: BIC:	matrix of ts ed: equared: stic: statistic elihood:	the errors t [0 00 134	is correctl 	==== 975]
Notes: [1] Standard Erro Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	Leas Thu, 29 : coef	that the cor OLS Regres Balance OLS St Squares Dec 2022 05:50:06 400 396 3 nonrobust	variance msion Resules R-square Adj. R-s F-statis Prob (F-Log-Like AIC: BIC:	matrix of ts ed: ed: equared: estatisticelihood:	the errors =======): ==========================	is correctl 	====

 Omnibus:
 107.788
 Durbin-Watson:
 1.952

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 22.158

Skew: 0.228 Prob(JB): 1.54e-05 Kurtosis: 309. 1.941 Cond. No.

Notes:

plt.show()

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [ ]: ▶ ##Non-linear relationships
            plt.scatter(Auto.horsepower, Auto.mpg)
            sns.regplot(Auto.horsepower, Auto.mpg,order=1,label='linear',scatter=False,color='red')
            sns.regplot(Auto.horsepower, Auto.mpg,order=2,label='order2',scatter=False,color='orange')
            sns.regplot(Auto.horsepower, Auto.mpg,order=5,label='order5',scatter=False,color='green')
```

/usr/local/lib/python3.8/dist-packages/seaborn/ decorators.py:36: FutureWarning: Pass the following variables as keyword a rgs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an ex plicit keyword will result in an error or misinterpretation.

warnings.warn(

/usr/local/lib/python3.8/dist-packages/seaborn/ decorators.py:36: FutureWarning: Pass the following variables as keyword a rgs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an ex plicit keyword will result in an error or misinterpretation.

warnings.warn(

/usr/local/lib/python3.8/dist-packages/seaborn/ decorators.py:36: FutureWarning: Pass the following variables as keyword a rgs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an ex plicit keyword will result in an error or misinterpretation.

warnings.warn(


```
In [ ]: Auto['horsepower2'] = Auto.horsepower**2
             Auto.head(2)
   Out[41]:
                mpg cylinders displacement horsepower weight acceleration year origin
                                                                                                 name horsepower2
             0 18.0
                           8
                                     307.0
                                                130.0
                                                       3504
                                                                   12.0
                                                                         70
                                                                                1 chevrolet chevelle malibu
                                                                                                            16900.0
             1 15.0
                           8
                                                                         70
                                     350.0
                                                165.0
                                                       3693
                                                                   11.5
                                                                                1
                                                                                         buick skylark 320
                                                                                                            27225.0
In [ ]: | lm fit4 = smf.ols('mpg~horsepower+horsepower2',Auto).fit()
             lm fit4.summary().tables[1]
   Out[42]:
                            coef std err
                                             t P>|t| [0.025 0.975]
                                  1.800
                                       31.604 0.000 53.360 60.440
                 Intercept 56.9001
              horsepower -0.4662
                                  0.031 -14.978 0.000 -0.527 -0.405
             horsepower2 0.0012
                                  0.000 10.080 0.000
                                                     0.001 0.001
In [ ]: ▶ ##find out the oder
             lr = lm.LinearRegression()
            X = Auto.horsepower.values.reshape(-1,1)
             Y = Auto.mpg
             lr.fit(X,Y)
             Auto['mpg_pred'] = lr.predict(X)
             Auto['res'] = Auto.mpg-Auto.mpg pred
             lr1 = lm.LinearRegression()
             X1 = Auto[['horsepower', 'horsepower2']]
             Y = Auto.mpg
             lr1.fit(X1,Y)
             Auto['mpg pred1'] = lr1.predict(X1)
             Auto['res1'] = Auto.mpg-Auto.mpg pred1
```

```
In [ ]: ▶
            fig, (ax1,ax2) = plt.subplots(1,2, figsize=(12,5))
            # Left plot
            sns.regplot(Auto.mpg pred, Auto.res,lowess=True,
                        ax=ax1, line kws={'color':'r', 'lw':1},
                        scatter kws={'facecolors':'None', 'edgecolors':'k', 'alpha':0.5})
            ax1.hlines(0,xmin=ax1.xaxis.get data interval()[0],
                       xmax=ax1.xaxis.get data interval()[1], linestyles='dotted')
            ax1.set title('Residual Plot for Linear Fit')
            # Right plot
            sns.regplot(Auto.mpg pred1, Auto.res1, lowess=True,
                        line kws={'color':'r', 'lw':1}, ax=ax2,
                        scatter kws={'facecolors':'None', 'edgecolors':'k', 'alpha':0.5})
            ax2.hlines(0,xmin=ax2.xaxis.get data interval()[0],
                       xmax=ax2.xaxis.get_data_interval()[1], linestyles='dotted')
            ax2.set title('Residual Plot for Quadratic Fit')
            for ax in fig.axes:
                ax.set_xlabel('Fitted values')
                ax.set ylabel('Residuals')
```

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variables as keyword a rgs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an ex plicit keyword will result in an error or misinterpretation.

warnings.warn(
/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variables as keyword a rgs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an ex plicit keyword will result in an error or misinterpretation.

warnings.warn(

1.0113846860681328 160.66830095856935 160.59287978597942

Out[4]

In []: ##LAB Assinments df = pd.read_csv('/content/gdrive/MyDrive/ISLR/Boston.csv') df.head(2)

]:		Unnamed: 0	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
	0	1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.9	4.98	24.0
	1	2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6

```
print(lm fit.params)
           print()
           print(lm_fit.conf_int())
           print()
           print(lm fit.summary().tables[1])
           Intercept
                       34.553841
           lstat
                        -0.950049
           dtype: float64
                             0
           Intercept 33.448457 35.659225
           lstat
                      -1.026148 -0.873951
                                   std err
                                                         P>|t|
                                                                    [0.025
                                                                               0.975]
                           coef
                        34.5538
                                     0.563
                                              61.415
                                                         0.000
                                                                    33.448
                                                                               35.659
           Intercept
           lstat
                         -0.9500
                                             -24.528
                                                         0.000
                                                                    -1.026
                                                                               -0.874
                                     0.039
        | lm_fit.predict(pd.DataFrame({'lstat':[5,10,15]}))
  Out[15]: 0
                29.803594
                25.053347
                20.303101
           dtype: float64
In [ ]: ▶ ##OR
           lr = lm.LinearRegression()
           X = df.lstat.values.reshape(-1,1)
           y = df.medv
           lr.fit(X,y)
           x_{test} = pd.DataFrame([5,10,15])
           y_pred = lr.predict(x_test)
           print(y_pred)
```

[29.80359411 25.05334734 20.30310057]

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variables as keyword a rgs: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x7f8f65c0deb0>


```
In [ ]: | influence = lm_fit.get_influence()
leverage = influence.hat_matrix_diag
np.argmax(leverage)
```

Out[17]: 374

```
        Out[7]:
        coef
        std err
        t
        P>|t|
        [0.025
        0.975]

        Intercept
        33.2228
        0.731
        45.458
        0.000
        31.787
        34.659

        Istat
        -1.0321
        0.048
        -21.416
        0.000
        -1.127
        -0.937

        age
        0.0345
        0.012
        2.826
        0.005
        0.011
        0.059
```

```
In [ ]: ► df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	506 non-null	int64
1	crim	506 non-null	float64
2	zn	506 non-null	float64
3	indus	506 non-null	float64
4	chas	506 non-null	int64
5	nox	506 non-null	float64
6	rm	506 non-null	float64
7	age	506 non-null	float64
8	dis	506 non-null	float64
9	rad	506 non-null	int64
10	tax	506 non-null	int64
11	ptratio	506 non-null	float64
12	black	506 non-null	float64
13	lstat	506 non-null	float64
14	medv	506 non-null	float64
4+	oc. £1oo+C4/	11) : -+(1/1)	

dtypes: float64(11), int64(4)

memory usage: 59.4 KB

```
In []: | #all_columns = "+".join(Boston.columns.difference(["medv"]))
#my_formula = "medv~" + all_columns
#lm = smf.ols(my_formula, data=Boston).fit()
lm_fit = smf.ols('medv~crim+zn+indus+chas+nox+rm+age+dis+rad+tax+ptratio+lstat',df).fit()
lm_fit.summary().tables[1]
```

	coef	std err	t	P> t	[0.025	0.975]
Intercept	41.6173	4.936	8.431	0.000	31.919	51.316
crim	-0.1214	0.033	-3.678	0.000	-0.186	-0.057
zn	0.0470	0.014	3.384	0.001	0.020	0.074
indus	0.0135	0.062	0.217	0.829	-0.109	0.136
chas	2.8400	0.870	3.264	0.001	1.131	4.549
nox	-18.7580	3.851	-4.870	0.000	-26.325	-11.191
rm	3.6581	0.420	8.705	0.000	2.832	4.484
age	0.0036	0.013	0.271	0.787	-0.023	0.030
dis	-1.4908	0.202	-7.394	0.000	-1.887	-1.095
rad	0.2894	0.067	4.325	0.000	0.158	0.421
tax	-0.0127	0.004	-3.337	0.001	-0.020	-0.005
ptratio	-0.9375	0.132	-7.091	0.000	-1.197	-0.678
Istat	-0.5520	0.051	-10.897	0.000	-0.652	-0.452

Out[10]:

```
crim
               zn indus chas
                                                       dis rad tax \
                                               age
                                  nox
                                          rm
    0.00632 18.0
                             0 0.538
                    2.31
                                       6.575 65.2 4.0900
                                                              1 296
0
1
    0.02731
              0.0
                    7.07
                                0.469
                                       6.421 78.9 4.9671
                                                              2 242
    0.02729
2
                    7.07
                                0.469 7.185 61.1 4.9671
                                                              2 242
              0.0
    0.03237
              0.0
                    2.18
                                0.458 6.998 45.8 6.0622
                                                              3 222
     0.06905
              0.0
                    2.18
                                0.458 7.147 54.2 6.0622
                                                              3 222
                                                                 . . .
         . . .
               . . .
                      . . .
                                   . . .
                                               . . .
. .
                                       6.593
                                              69.1
                                                    2.4786
    0.06263
              0.0
                   11.93
                                0.573
                                                              1 273
501
    0.04527
              0.0 11.93
                                0.573
                                       6.120 76.7 2.2875
                                                              1 273
502
    0.06076
              0.0 11.93
                                0.573
                                       6.976 91.0 2.1675
                                                              1 273
503
    0.10959
              0.0 11.93
                                0.573
                                       6.794 89.3 2.3889
                                                              1 273
504
505 0.04741
              0.0 11.93
                             0 0.573 6.030 80.8 2.5050
                                                              1 273
     ptratio
              black lstat
                            medv intercept
                      4.98
0
       15.3
             396.90
                            24.0
                                          1
1
       17.8
             396.90
                      9.14
                            21.6
                                          1
       17.8
             392.83
                      4.03 34.7
                                          1
       18.7
             394.63
                      2.94 33.4
                                          1
        18.7
             396.90
4
                      5.33 36.2
                                          1
        . . .
                 . . .
                        . . .
                             . . .
                                         . . .
. .
        21.0
             391.99
                      9.67
                            22.4
                                          1
501
502
        21.0 396.90
                      9.08 20.6
                                          1
503
        21.0 396.90
                      5.64 23.9
                                          1
504
        21.0 393.45
                      6.48 22.0
                                          1
505
        21.0 396.90
                      7.88 11.9
                                          1
```

[506 rows x 15 columns]

In []: | print(df.iloc[:,1:])

```
VIF
      feature
                 1.767486
0
         crim
                 2.298459
1
           zn
2
                 3.987181
        indus
                 1.071168
3
         chas
4
          nox
                 4.369093
                 1.912532
           rm
                 3.088232
6
          age
7
                 3.954037
          dis
8
                 7.445301
          rad
9
          tax
                 9.002158
10
                 1.797060
      ptratio
        lstat
                 2.870777
11
12 intercept 535.526619
```

/usr/local/lib/python3.8/dist-packages/statsmodels/tsa/tsatools.py:142: FutureWarning: In a future version of pandas all a rguments of concat except for the argument 'objs' will be keyword-only

x = pd.concat(x[::order], 1)

```
In []: | lm fit = smf.ols('medv~lstat+age+lstat*age',df).fit()
            lm fit.summary().tables[1]
  Out[55]:
                                        t P>|t| [0.025 0.975]
                        coef std err
             Intercept 36.0885
                              1.470 24.553 0.000 33.201 38.976
                              0.167 -8.313 0.000 -1.721 -1.063
                 Istat -1.3921
                 age
                      -0.0007
                              0.020 -0.036 0.971 -0.040
                                                        0.038
             Istat:age
                       0.0042
                              0.002 2.244 0.025
                                                 0.001
                                                        0.008
In []: | lm order1 = smf.ols('medv~ lstat', data=df).fit()
            lm order2 = smf.ols('medv~ lstat+ I(lstat ** 2.0)', data=df).fit()
            print(lm order2.summary().tables[1])
                                                                     P>|t|
                                    coef
                                            std err
                                                                                 [0.025
                                                                                             0.975]
             Intercept
                                42.8620
                                              0.872
                                                        49.149
                                                                     0.000
                                                                                41.149
                                                                                             44.575
            lstat
                                -2.3328
                                              0.124
                                                       -18.843
                                                                     0.000
                                                                                -2.576
                                                                                             -2.090
            I(lstat ** 2.0)
                                 0.0435
                                              0.004
                                                        11.628
                                                                     0.000
                                                                                 0.036
                                                                                              0.051

    import statsmodels.api as sm

In [ ]:
            table = sm.stats.anova lm(lm order1, lm order2)
            print(table) ##order2 is a superior model
               df resid
                                   ssr df diff
                                                     ss diff
                                                                        F
                                                                                 Pr(>F)
                   504.0 19472.381418
                                             0.0
                                                         NaN
                                                                      NaN
                                                                                    NaN
                   503.0 15347.243158
             1
                                             1.0 4125.13826 135.199822 7.630116e-28
```

```
In [ ]: ▶ ##OR
          df['lstat2']=df.lstat**2
          lm fit = smf.ols('medv~lstat+lstat2',df).fit()
          lm fit.summary().tables[1]
  Out[58]:
                   coef std err
                                t P>|t| [0.025 0.975]
          Intercept 42.8620
                        0.872 49.149 0.000 41.149 44.575
             Istat -2.3328
                        0.124 -18.843 0.000 -2.576
                                            -2.090
                        0.004 11.628 0.000
             Istat2
                  0.0435
                                       0.036
                                             0.051
df.head(2)
  Out[23]:
            Sales CompPrice Income Advertising Population Price ShelveLoc Age Education Urban US
          0 9.50
                                                120
                                                             42
                                                                         Yes Yes
                      138
                            73
                                     11
                                            276
                                                        Bad
                                                                    17
          1 11.22
                      111
                            48
                                     16
                                            260
                                                 83
                                                       Good
                                                             65
                                                                    10
                                                                         Yes Yes
       print(lm_fit.summary().tables[1])
          _____
                                                   P>|t|
                                                             [0.025
                         coef
                               std err
                                                                      0.975]
          Intercept
                      15.1829
                                         19.542
                                                   0.000
                                                                      16.710
                                 0.777
                                                            13.656
          Income
                       0.0108
                                 0.004
                                          2.664
                                                   0.008
                                                             0.003
                                                                       0.019
          Advertising
                                          7.078
                                                             0.087
                       0.1203
                                 0.017
                                                   0.000
                                                                       0.154
          Price
                      -0.0573
                                        -11.932
                                                   0.000
                                                            -0.067
                                                                      -0.048
                                 0.005
                      -0.0486
                                 0.007
                                         -6.956
                                                   0.000
                                                             -0.062
                                                                      -0.035
          Age
```

```
In [ ]: N ShelveLoc dummies = pd.get dummies(df.ShelveLoc,prefix='ShelveLoc').iloc[:,1:]
            ShelveLoc dummies
            df dummy = pd.concat([df, ShelveLoc dummies], axis=1)
            df dummy.head(2)
   Out[31]:
                Sales CompPrice Income Advertising Population Price ShelveLoc Age Education Urban US ShelveLoc_Good ShelveLoc_Medium
               9.50
                                                                                           Yes Yes
             0
                           138
                                    73
                                              11
                                                       276
                                                             120
                                                                      Bad
                                                                            42
                                                                                     17
                                                                                                                                0
             1 11.22
                           111
                                    48
                                              16
                                                       260
                                                              83
                                                                     Good
                                                                            65
                                                                                     10
                                                                                           Yes Yes
                                                                                                                1
                                                                                                                                0
         #https://qithub.com/qx0731/Sharing_ISL_python/blob/master/Chapter_3_sec_6.1_6.7.ipynb
         Im df dummy = smf.ols('Sales ~ Income + Advertising + Price + Age + ShelveLoc Good + ShelveLoc Medium', data = df dummy).fi
In [ ]:
            print(lm df dummy.summary().tables[1])
                                    coef
                                             std err
                                                              t
                                                                      P>|t|
                                                                                 [0.025
                                                                                             0.975]
            Intercept
                                                         24.575
                                 13.4006
                                                                     0.000
                                                                                 12.329
                                                                                             14.473
                                               0.545
            Income
                                  0.0136
                                              0.003
                                                          4.891
                                                                     0.000
                                                                                  0.008
                                                                                              0.019
            Advertising
                                                          9.076
                                                                                              0.129
                                  0.1057
                                              0.012
                                                                     0.000
                                                                                  0.083
            Price
                                              0.003
                                                        -18.436
                                                                                             -0.054
                                 -0.0606
                                                                     0.000
                                                                                 -0.067
                                 -0.0498
                                              0.005
                                                        -10.401
                                                                     0.000
                                                                                 -0.059
                                                                                             -0.040
            Age
            ShelveLoc Good
                                                                     0.000
                                                                                  4.423
                                                                                              5.328
                                  4.8756
                                              0.230
                                                         21.175
            ShelveLoc Medium
                                                         10.590
                                                                                              2.377
                                  2.0046
                                               0.189
                                                                     0.000
                                                                                  1.632
```

0.975]
14.473
5.328
2.377
0.019
0.129
-0.054
-0.040
5.3 2.3 0.0 0.3