User Guide für das ProKlaue Plugin

Installation unter Windows

Kai Hainke

14. April 2019

KAPITEL 1

INSTALLATION VON PYTHON PACKAGES FÜR DEN MAYA PYTHON INTERPRETER

Grundsätzlich gibt es zwei Varianten, die benötigten python libs zu installieren. Die erste Möglichkeit ist ein möglichst exakt gleichen Python-Interpreter (Version, Compiler-Version, Bit-Architektur, etc.) und die Packages dafür zu installieren und dann zu kopieren. Die zweite, hier empfohlene, Variante für Windows ist die Packages hier herunterzuladen, zu entpacken und in den »C: \Program Files\Autodesk\Maya2014\Python\lib\site-packages« Ordner zu verschieben. Die zur Zeit benötigten packages sind:

- numpy
- scipy
- scikit-learn (sklearn) (momentan nur benutzt bei den Achsen und Druck Scripts)

KAPITEL 2

INSTALLIEREN DES PLUGINS

Zur Installation des Plugins lädt man sich die aktuelle Version des Plugins aus dem Git herunter (Clone or download \rightarrow Download ZIP). Entpacken und Verschieben in den Ordner »Autodesk\maya<version>\bin\plug-ins«, so dass proKlaue.py direkt in diesem Verzeichnis liegt.

In Maya unter Windows \rightarrow Settings/Preferences \rightarrow Plugin Manager \rightarrow Refresh. Nach dem Eintrag proKlaue.py suchen und Loaded und Auto load auswählen. Zuletzt Windows \rightarrow Settings/Preferences \rightarrow Preferences \rightarrow Setting \rightarrow Selection \rightarrow Track selection order aktivieren.

Für mehr Informationen ist die Dokumentation zu konsultieren. Zu finden unter ProKlaue/doc/_build/html/index.html.

KAPITEL 3

INFORMATIONEN ZUM PROJEKT

3.1 Struktur

Einen groben Überblick gibt die folgende Liste:

- »scripts« Ordner mit Skripten (R/Python):
 - angles.py Script zum Tracken der Winkel in einer animierten Szene mit JCS (nach Groot und Suntay)
 - druck.R R Skript für die Zusammenführung von Fußungsfläche und Druckdaten
 - pressureStatistics.py Python Skript für die Zusammenführung von Fußungsfläche und Druckdaten (mit ~UtilFunctions.py für Funktionsdefinitionen)
 - calculateJointCS.py Python Skript f
 ür die Berechnung von Joint Coordinate Systems
 - axesToAnimated.py Python Skript für die Überführung von berechneten JCS von einer Szene in eine andere (bspw. von neutral zu animiert)
 - plotHeatmaps.R.py R Skript zum Plotten von Heatmaps mit Hilfe vorher erstellter Daten aus dem Maya-Command cmds.altitudeMap
- »pk_src« Ordner mit Maya Commands des Plugins, insbesondere
 - overlapStatistics.py zum Erstellen von Statistiken zur Überdeckung von zwei oder mehreren Objekten (relativ robuste Berechnung von Schnittvolumen), siehe auch intersection.py und vhacd.py
 - altitudeMap.py zum Erstellen von Höhenmaps
 - -front Vertices.py zum Abspeichern aller Vorderseiten-Segmente/Punkte von einer gegebenen Plane aus
 - normalize.py zum Ausrichten von Objekten anhand der Eigenvektoren ihrer Kovarianz-Matrix
 - misc.py mit verschiedenen, nützlichen, all-purpose Funktionen
- »bin« Executables für die VHACD Berechnung
- »doc« Sphynx Dokumentation
- »doc_user« Guides, Latex+pdf-Dateien
- »testdaten« Testdateien und mitunter auch Plots

3.2 Nützliche Dev-Tools

Für die Entwicklung der Scripts/Plugins bieten sich einige Tools an, lediglich eine Empfehlung, aber vlt. hilft es ja:

- RStudio für R
- PyCharm für Python
- MayaCharm (PyCharm Plugin zur Interaktion mit Maya)
- Sublime für das Anzeigen großer Textdateien
- Sphynx für Dokumentation
- git zur Versionierung