How Segmentation Model Learns?

Review: Per-Pixel Classification is Not All You Need for Semantic Segmentation

Bowen Cheng et al.

NeurIPS 2021

20 Dec. 2021 Sungguk Cha

TL; DR

- We introduce how segmentation models can learn.
- We review Per-Pixel Classification is Not All You Need for Semantic Segmentation which compares learning methods.

Contents

- Introduction to Learning to Segment
 - Image Classification to Segmentation
 - Per-pixel Classification vs Mask Classification
- MaskFormer
- Conclusion

Contents

- Introduction to Learning to Segment
 - Image Classification to Segmentation
 - Per-pixel Classification vs Mask Classification
- MaskFormer
- Conclusion

Introduction to Learning to Segment

- Image Classification to Segmentation
- Per-pixel Classification vs Mask Classification

Introduction to Learning to Segment

- Image Classification to Segmentation
- Per-pixel Classification vs Mask Classification

Image Classification to Segmentation

Image Classification to Segmentation

Copyright Sungguk Cha, 2021

Image Classification to Segmentation

Fig. Image segmentation overview

Introduction to Learning to Segment

- Image Classification to Segmentation
- Per-pixel Classification vs Mask Classification

Per-pixel Classification vs Mask Classification

Per-pixel Classification vs Mask Classification

• It can be seen as comparing

pixel-level supervision

VS

object-level supervision

Fully convolutional networks (FCN), U-Net, Deeplabs and SegFormer represent it.

Fully convolutional networks (FCN), U-Net, Deeplabs and SegFormer represent it.

Fully convolutional networks (FCN), U-Net, Deeplabs and SegFormer represent it.

It predicts the whole at once, and supervises it at once.

Mask-RCNN and SETR represent it.

Mask-RCNN and SETR represent it.

They **predict object regions** and learn by **object-level supervision**.

Mask-RCNN and SETR represent it.

They **predict object regions** and learn by **object-level supervision**.

Mask-RCNN and SETR represent it.

They **predict object regions** and learn by **object-level supervision**.

R-CNN is region proposal network that proposes target objects.

Original source: R-CNN, Ross Girshick et al.

Original source: Mask R-CNN, He K. et al.

These model learns by object-level supervision

Per-pixel Classification vs Mask Classification Summary

	Pixel-level supervision	Object-level supervision
Model	U-Net, DeepLab	Mask R-CNN
Supervision	Pixel-level loss	Object-level loss

This paper compares and contrasts the supervisions.

This paper compares and contrasts the supervisions

and presents *MaskFormer* that takes advantages of mask-supervision.

This paper compares and contrasts the supervisions and presents *MaskFormer* that takes advantages of mask-supervision using the exact same model, loss, and training procedure.

Contents

- Introduction to Learning to Segment
 - Image Classification to Segmentation
 - o Per-pixel Classification vs Mask Classification
- MaskFormer
- Conclusion

They contrasted the two supervisions in a simple following manner.

Figure: Per-pixel classification vs. mask classification

Instead of learning at once, mask supervision teaches **N** categories independently.

Figure: Per-pixel classification vs. mask classification

MaskFormer

Instead of learning at once, mask supervision teaches **N** categories independently. I.e., mask classification has N category-predictors.

Figure: Per-pixel classification vs. mask classification

MaskFormer

Figure: MaskFormer architecture

Baselines

(a) PerPixelBaseline

(b) PerPixelBaseline+

Baselines

For fair comparison w.r.t. #params, they experimented PerPixelBaseline+ as well.

(a) PerPixelBaseline

(b) PerPixelBaseline+

Experiments

Experiments

It outperforms SOTAs

in semantic segmentation (ADE20K)

and in panoptic segmentation (COCO)

Experiments on ADE20k

Experiments on ADE20k

Experiments on ADE20k

Table 1: **Semantic segmentation on ADE20K** val with 150 categories. Mask classification-based MaskFormer outperforms the best per-pixel classification approaches while using fewer parameters and less computation. We report both single-scale (s.s.) and multi-scale (m.s.) inference results with $\pm std$. FLOPs are computed for the given crop size. Frames-per-second (fps) is measured on a V100 GPU with a batch size of 1.³ Backbones pre-trained on ImageNet-22K are marked with [†].

	method	backbone	crop size	mIoU (s.s.)	mIoU (m.s.)	#params.	FLOPs	fps
CNN backbones	OCRNet [50]	R101c	520×520	×	45.3	I =	-	-
	DeepLabV3+ [9]	R50c	512×512	44.0	44.9	44M	177G	21.0
		R101c	512×512	45.5	46.4	63M	255G	14.2
	MaskFormer (ours)	R50	512×512	44.5 ± 0.5	46.7 ± 0.6	41M	53G	24.5
		R101	512×512	45.5 ± 0.5	47.2 ± 0.2	60M	73G	19.5
		R101c	512×512	46.0 ± 0.1	48.1 ± 0.2	60M	80G	19.0
8	SETR [53]	ViT-L [†]	512×512	-	50.3	308M	-	-
es	Swin-UperNet [29, 49]	Swin-T	512×512	-	46.1	60M	236G	18.5
Transformer backbones		Swin-S	512×512		49.3	81M	259G	15.2
		Swin-B [†]	640×640	.	51.6	121M	471G	8.7
		Swin-L [†]	640×640	<u>-</u>	53.5	234M	647G	6.2
	MaskFormer (ours)	Swin-T	512×512	46.7 ± 0.7	48.8 ± 0.6	42M	55G	22.1
		Swin-S	512×512	49.8 ± 0.4	51.0 ± 0.4	63M	79G	19.6
		Swin-B	640×640	51.1 ± 0.2	52.3 ± 0.4	102M	195G	12.6
		Swin-B [†]	640×640	52.7 ± 0.4	53.9 ± 0.2	102M	195G	12.6
		Swin-L [†]	640×640	54.1 ± 0.2	55.6 ± 0.1	212M	375G	7.9

Experiments on COCO panoptic

Table 3: **Panoptic segmentation on COCO panoptic** val **with 133 categories.** MaskFormer seamlessly unifies semantic- and instance-level segmentation without modifying the model architecture or loss. Our model, which achieves better results, can be regarded as a box-free simplification of DETR [4]. The major improvement comes from "stuff" classes (PQSt) which are ambiguous to represent with bounding boxes. For MaskFormer (DETR) we use the exact same post-processing as DETR. Note, that in this setting MaskFormer performance is still better than DETR (+2.2 PQ). Our model also outperforms recently proposed Max-DeepLab [42] without the need of sophisticated auxiliary losses, while being more efficient. FLOPs are computed as the average FLOPs over 100 validation images (COCO images have varying sizes). Frames-per-second (fps) is measured on a V100 GPU with a batch size of 1 by taking the average runtime on the entire val set *including post-processing time*. Backbones pre-trained on ImageNet-22K are marked with †.

	method	backbone	PQ	PQ^{Th}	PQ^{St}	SQ	RQ	#params.	FLOPs	fps
CNN backbones	DETR [4]	R50 + 6 Enc	43.4	48.2	36.3	79.3	53.8	-	-	
	MaskFormer (DETR)	R50 + 6 Enc	45.6	50.0 (+1.8)	39.0 (+2.7)	80.2	55.8	-	-	-
	MaskFormer (ours)	R50 + 6 Enc	46.5	51.0 (+2.8)	39.8 (+3.5)	80.4	56.8	45M	181G	17.6
	DETR [4]	R101 + 6 Enc	45.1	50.5	37.0	79.9	55.5	-	(+)	-
	MaskFormer (ours)	R101 + 6 Enc	47.6	52.5 (+2.0)	40.3 (+3.3)	80.7	58.0	64M	248G	14.0
Transformer backbones	Max-DeepLab [42]	Max-S	48.4	53.0	41.5	-	-	62M	324G	7.6
		Max-L	51.1	57.0	42.2	-	-	451M	3692G	-
	MaskFormer (ours)	Swin-T	47.7	51.7	41.7	80.4	58.3	42M	179G	17.0
		Swin-S	49.7	54.4	42.6	80.9	60.4	63M	259G	12.4
		Swin-B	51.1	56.3	43.2	81.4	61.8	102M	411G	8.4
		Swin-B [†]	51.8	56.9	44.1	81.4	62.6	102M	411G	8.4
Tra		Swin-L [†]	52.7	58.5	44.0	81.8	63.5	212M	792G	5.2

Ablation: MaskFormer vs per-pixel

Table 2: **MaskFormer** *vs.* **per-pixel classification baselines on 4 semantic segmentation datasets.** MaskFormer improvement is larger when the number of classes is larger. We use a ResNet-50 backbone and report single scale mIoU and PQSt for ADE20K, COCO-Stuff and ADE20K-Full, whereas for higher-resolution Cityscapes we use a deeper ResNet-101 backbone following [8, 9].

	Cityscapes (19 classes)		ADE20K (150 classes)		COCO-Stuff (171 classes)		ADE20K-Full (847 classes)	
m	mIoU	PQ^{St}	mIoU	PQ^{St}	mIoU	PQ^{St}	mIoU	PQ^{St}
PerPixelBaseline	77.4	58.9	39.2	21.6	32.4	15.5	12.4	5.8
PerPixelBaseline+	78.5	60.2	41.9	28.3	34.2	24.6	13.9	9.0
MaskFormer (ours)	78.5 (+0.0)	63.1 (+2.9)	44.5 (+2.6)	33.4 (+5.1)	37.1 (+2.9)	28.9 (+4.3)	17.4 (+3.5)	11.9 (+2.9)

Ablation: MaskFormer vs per-pixel

Table 2: **MaskFormer** *vs.* **per-pixel classification baselines on 4 semantic segmentation datasets.** MaskFormer improvement is larger when the number of classes is larger. We use a ResNet-50 backbone and report single scale mIoU and PQSt for ADE20K, COCO-Stuff and ADE20K-Full, whereas for higher-resolution Cityscapes we use a deeper ResNet-101 backbone following [8, 9].

	Cityscapes (19 classes)		ADE20K (150 classes)		COCO-Stuff (171 classes)		ADE20K-Full (847 classes)	
m	mIoU	PQ^{St}	mIoU	PQ^{St}	mIoU	PQ^{St}	mIoU	PQ^{St}
PerPixelBaseline	77.4	58.9	39.2	21.6	32.4	15.5	12.4	5.8
PerPixelBaseline+	78.5	60.2	41.9	28.3	34.2	24.6	13.9	9.0
MaskFormer (ours)	78.5 (+0.0)	63.1 (+2.9)	44.5 (+2.6)	33.4 (+5.1)	37.1 (+2.9)	28.9 (+4.3)	17.4 (+3.5)	11.9 (+2.9)

Contents

- Introduction to Learning to Segment
 - Image Classification to Segmentation
 - Per-pixel Classification vs Mask Classification
- MaskFormer
- Conclusion

It can be seen as dividing a harder problem into easier problems.

It can be seen as dividing a harder problem into easier problems.

Also it can be seen as solving a problem with multi-task learning point of view.

It can be seen as dividing a harder problem into easier problems.

Also it can be seen as solving a problem with multi-task learning point of view.

It works better.

