Ranks of elliptic curves

Karl Rubin

June 19, 2002

Fields Institute 10th Anniversary Celebration

Press the Escape key to leave full screen mode

Elliptic curves

An elliptic curve is a curve defined by an equation of the form

$$y^2 = x^3 + ax + b$$

with integer constants a,b such that

$$\Delta = -16(4a^3 + 27b^2) \neq 0.$$

(The discriminant Δ is nonzero if and only if $x^3 + ax + b$ has distinct roots in \mathbf{C} .)

Basic problem

Given an elliptic curve E, find all rational solutions:

$$E(\mathbf{Q}) = \{ \text{rational points on } E \} \cup \{ \infty \}.$$

Theorem (Fermat). If E is $y^2 = x^3 - x$, then

$$E(\mathbf{Q}) = \{(-1,0), (0,0), (1,0), \infty\}.$$

Addition law

 $E(\mathbf{Q})$ has a natural, geometrically defined addition law

3 collinear points sum to zero

which makes $E(\mathbf{Q})$ into a commutative group, with ∞ as the identity element.

Addition law

$$y^2 = x^3 - x + 1$$

$$P = (-\frac{11}{9}, \frac{17}{27})$$

$$R = \left(\frac{159}{121}, \frac{1861}{1331}\right)$$

$$P + Q \left(\frac{159}{121}, -\frac{1861}{1331}\right)$$

Addition law

If E is the elliptic curve $y^2 = x^3 + ax + b$, and

$$P = (x_1, y_1), \ Q = (x_2, y_2) \in E(\mathbf{Q})$$

with $x_1 \neq x_2$, then $P + Q = (x_3, y_3)$ with

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2,$$

$$y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right) x_3 - \left(\frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}\right).$$

Mordell's Theorem

Theorem (Mordell 1922) $E(\mathbf{Q})$ is a finitely generated commutative group.

In other words,

$$E(\mathbf{Q}) \cong \mathbf{Z}^r \oplus (\text{finite group}).$$

- The finite group is written $E(\mathbf{Q})_{tors}$, the subgroup of elements of finite order in $E(\mathbf{Q})$.
- The integer r is called the rank of E, and written rank(E).

Torsion subgroups

Theorem (Nagell 1935, Lutz 1937). If $(x,y) \in E(\mathbf{Q})_{\mathsf{tors}}$ and $(x,y) \neq \infty$, then

- $ullet x,y\in {f Z}$,
- either y = 0 or y^2 divides Δ .

Theorem (Mazur 1977). $E(\mathbf{Q})_{tors}$ is one of the following 15 groups:

$$\mathbf{Z}/n\mathbf{Z}$$
, with $1 \le n \le 10$ or $n = 12$, $(\mathbf{Z}/2m\mathbf{Z}) \times (\mathbf{Z}/2\mathbf{Z})$, with $1 \le m \le 4$,

and each of these groups occurs infinitely often.

Ranks

Question. Given E, how can one compute rank(E)?

Question. Which ranks can occur?

- Can the rank be arbitrarily large?
- Is every positive integer the rank of some elliptic curve? Of infinitely many elliptic curves?
- What is the distribution of ranks?

The answers to these questions are not known.

$Rank \ge$	Year	
4	1945	Wiman
6	1974	Penney & Pomerance
7	1975	Penney & Pomerance
8	1977	Grunewald & Zimmert
9	1977	Brumer & Kramer
12	1982	Mestre
14	1986	Mestre
15	1991	Mestre
17	1992	Nagao
19	1992	Fermigier
20	1993	Nagao
21	1994	Nagao & Kouya
22	1996	Fermigier
23	1998	Martin & McMillen
24	2000	Martin & McMillen

 $y^2 + xy + y = x^3 - 120039822036992245303534619191166796374x \\ + 504224992484910670010801799168082726759443756222911415116$

has rank at least 24. Some independent points:

```
(2005024558054813068, -16480371588343085108234888252), (-4690836759490453344, -31049883525785801514744524804), (4700156326649806635, -6622116250158424945781859743), (6785546256295273860, -1456180928830978521107520473), (7788809602110240789, -6462981622972389783453855713).
```

Mestre has constructed an elliptic curve

$$y^2 = x^3 + f(t)x + g(t)$$

with polynomials f(t), g(t), which has rank 14 over the rational function field $\mathbf{Q}(t)$. Specializing to rational values of t gives infinitely many curves E_t defined over \mathbf{Q} with rank at least 14.

Rank of $E_d: y^2 = x^3 - d^2x$.

d	rank	
1	0	Fermat (\sim 1640)
5	1	(-4, 6)
34	2	(-2,48), (-16,120)
1254	3	(-98, 12376), (109554, 36258840), (1650, 43560)
29274	4	Wiman (1945)
205015206	5	Rogers (2000)
61471349610	6	Rogers (2000)

Theorem. rank $(E_d) < \log(d)$.

Idea of Birch and Swinnerton-Dyer

If p is a prime not dividing Δ , then we can reduce the equation for E modulo p, to think of E as an elliptic curve over the finite field $\mathbf{Z}/p\mathbf{Z}$.

Birch and Swinnerton-Dyer suggested that the larger $E(\mathbf{Q})$ is, the larger the $E(\mathbf{Z}/p\mathbf{Z})$ should be "on average".

To check this, they computed

$$\prod_{p < X} \frac{\#(E(\mathbf{Z}/p\mathbf{Z}))}{p}$$

as X grows.

Idea of Birch and Swinnerton-Dyer

The L-function

Given E, define a Dirichlet series

$$L(E,s) = \prod_{p \nmid \Delta} (1 - \frac{1 + p - \#E(\mathbf{Z}/p\mathbf{Z})}{p^s} + \frac{p}{p^{2s}})^{-1} \prod_{p \mid \Delta} (1 + \frac{a_p}{p^s})^{-1}$$

where $a_p = 0$ or ± 1 is given by an explicit recipe.

This converges if $Re(s) > \frac{3}{2}$.

The L-function

Theorem (Wiles et al.). L(E,s) has an analytic continuation to ${\bf C}$ and a functional equation

$$\Lambda(s) = w_E \Lambda(2-s)$$

where $w_E=\pm 1$ and

$$\Lambda(s) = N^{s/2} (2\pi)^{-s} \Gamma(s) L(E, s)$$

with a positive integer N (the "conductor" of E).

The L-function

The Euler product

$$L(E,s) = \prod_{p \nmid \Delta} (1 - \frac{1 + p - \#E(\mathbf{Z}/p\mathbf{Z})}{p^s} + \frac{p}{p^{2s}})^{-1} \prod_{p \mid \Delta} (1 + \frac{a_p}{p^s})^{-1}$$

need not converge at s=1. But purely formally

$$L(E,1)$$
 "~" $\prod_{p \nmid \Delta} \frac{p}{\# E(\mathbf{Z}/p\mathbf{Z})}$.

So heuristically, the larger $E(\mathbf{Q})$ is, the larger the $\#E(\mathbf{Z}/p\mathbf{Z})$ will be, and the faster L(E,s) should approach zero as $s \to 1$.

Birch and Swinnerton-Dyer Conjecture

Conjecture (Birch & Swinnerton-Dyer, \sim 1960). rank $(E) = \operatorname{ord}_{s=1} L(E, s)$.

Theorem (Kolyvagin, Gross & Zagier, ... 1988).

- (i) $\operatorname{ord}_{s=1}L(E,s)=0 \Rightarrow \operatorname{rank}(E)=0.$
- (ii) $\operatorname{ord}_{s=1}L(E,s)=1 \Rightarrow \operatorname{rank}(E)=1.$
- (iii) $\operatorname{ord}_{s=1}L(E,s) \geq 2 \Rightarrow ???$

Example: $y^2 = x^3 - x$

For this E we have $\Delta=64$ and

$$L(E,s) = \prod_{p \neq 2} (1 - \frac{a_p}{p^s} + \frac{p}{p^{2s}})^{-1}$$

where
$$a_p= \begin{cases} 0 & \text{if } p\equiv 3\pmod 4, \\ 2n & \text{if } p\equiv 1\pmod 4, \ p=n^2+m^2 \\ & \text{with } n \text{ odd, } n\equiv m+1\pmod 4. \end{cases}$$

$$L(E,1) = .65551538857302995...$$

Thus (as Fermat proved) this curve has rank zero.

Parity

Recall the functional equation $\Lambda(s) = w_E \Lambda(2-s)$ with $w_E = \pm 1$. It follows that

$$\operatorname{ord}_{s=1}L(E,s)=\operatorname{ord}_{s=1}\Lambda(E,s)$$
 is $\left\{ egin{array}{ll} \operatorname{even} & \mbox{if } w_E=+1 \\ \mbox{odd} & \mbox{if } w_E=-1. \end{array}
ight.$

Parity Conjecture (weak consequence of BSD).

$$\mathsf{rank}(E) \ \mathsf{is} \ egin{cases} \mathsf{even} & \mathsf{if} \ w_E = +1 \\ \mathsf{odd} & \mathsf{if} \ w_E = -1. \end{cases}$$

Parity

Example. Let E_d be the elliptic curve $y^2 = x^3 - d^2x$, where d is a squarefree integer.

$$w_E = egin{cases} +1 & \text{if } |d| \equiv 1, 2, \, \text{or} \, 3 \pmod 8, \ -1 & \text{if } |d| \equiv 5, 6, \, \text{or} \, 7 \pmod 8. \end{cases}$$

So the Parity Conjecture implies that $rank(E_d)$ is odd (and therefore nonzero!) for half of the squarefree integers d.

Theorem. If $p \equiv 5$ or $7 \pmod{8}$ is prime, then $\operatorname{rank}(E_p) = 1$.

Parity

Theorem. If $p \equiv 5$ or $7 \pmod{8}$ is prime, then $\operatorname{rank}(E_p) = 1$.

Example: p=157. The simplest rational point of infinite order on $y^2=x^3-(157)^2x$ is

 $\left(-\frac{43565582610691407250551997}{609760250665615167250729},\right.$

 $\frac{562653616877773225244609387368307126580}{4761443825061635\underline{54005382044222449067}}\right).$

Quadratic twists

More generally, if E is $y^2 = x^3 + ax + b$, the quadratic twist of E by a nonzero integer d is

$$E_d: y^2 = x^3 + ad^2x + bd^3.$$

After a change of variables we can rewrite this as

$$dy^2 = x^3 + ax + b.$$

- ullet We may assume that d is squarefree.
- E and E_d are isomorphic over \mathbb{C} , but not over \mathbb{Q} , so $E(\mathbb{Q})$ and $E_d(\mathbb{Q})$ can be very different.

Ranks in a family of quadratic twists

Fix E. We want to study the distribution of rank (E_d) as d varies.

Let $S(X) = \{$ squarefree $d: |d| < X \}$. Define

- ullet the average rank $\operatorname{Avg}(E) = \lim_{X o \infty} rac{\sum_{d \in S(X)} \operatorname{rank}(E_d)}{\#S(X)}$,
- $\overline{\bullet\ N_*(E,X)} = \#\{d \in S(X) : {\sf rank}(E_d) \ {\sf is}\ *\}$, where the symbol * can be "2", "odd", " \geq 3", etc.,
- ullet the density $\mathrm{Dens}_*(E) = \lim_{X o \infty} rac{N_*(E,X)}{\#S(X)}$,

if these limits exist.

Ranks in a family of quadratic twists

The Parity Conjecture implies

- ullet Dens_{even} $(\overline{E})=1/2$ and Dens_{odd} $(\overline{E})=1/2$,
- $Avg(E) \geq 1/2$.

Conjecture (Goldfeld 1979). Avg(E) = 1/2.

Goldfeld's Conjecture says that the average rank is as small as the Parity Conjecture allows, which implies that

$$Dens_0(E) = Dens_1(E) = 1/2, \quad Dens_{>2}(E) = 0.$$

Ranks in the family $E_d: dy^2 = x^3 - x$

For the rest of the talk we fix E to be $y^2 = x^3 - x$.

Let $Avg^o(E)$ and $Dens^o_*(E)$ denote the average and density restricted to odd d.

Theorem (Heath-Brown 1994).

- (i) $Avg^{o}(E) \leq 1.2645$
- (ii) $\mathsf{Dens}_r(E) \leq 1.7313 \cdot 2^{-(r^2-r)/2}$
- (iii) $Dens_0(E) > 0$.

Ranks in the family $E_d:dy^2=x^3-x$

Theorem (Gouvêa & Mazur, Stewart & Top, Rubin & Silverberg).

unconditionally	assuming Parity Conjecture
$\overline{N_{\geq 1}(E,X)\gg X^{1/2}}$	$N_{\geq 1}(E,X)\gg X$
$N_{\geq 2}(E,X) \gg X^{1/3}$	$N_{\geq 2}(E,X)\gg X^{1/2}$
$N_{\geq 3}(E,X)\gg X^{1/6}$	$N_{\geq 3}(E,X)\gg X^{1/3}$
	$N_{\geq 4}(E, X) \gg X^{1/6}$

One expects
$$X^{3/4-\epsilon}\ll N_2(E,X)\ll X^{3/4+\epsilon}$$
 , $X^{3/4-\epsilon}\ll N_3(E,X)\ll X^{3/4+\epsilon}$,

but nobody has a good guess for $N_4(E,X)$.

Ranks in the family $E_d: dy^2 = x^3 - x$

Idea of proof: Let $f(t) = 6(t^{12} - 33t^8 - 33t^4 + 1)$. Then

$$E_{f(t)}: f(t)y^2 = x^3 - x$$

is an elliptic curve over $\mathbf{Q}(t)$ with 3 independent points

$$\left(-\frac{t^4-6t^2+1}{3(t^2+1)^2}, \frac{2}{9(t^2+1)^3}\right), \left(-\frac{t^4+6t^2+1}{3(t^2-1)^2}, \frac{2}{9(t^2-1)^3}\right), \left(\frac{t^4+1}{6t^2}, \frac{1}{36t^3}\right)$$

Specializing to $t \in \mathbf{Q}$ gives many curves of rank at least 3. Counting them gives a lower bound for $N_{\geq 3}(E,X)$. Counting the ones with $w_{E_d}=+1$ gives a (conjectural) lower bound for $N_{\geq 4}(E,X)$.

Problem: Given an elliptic curve

$$E: y^2 = x^3 + ax + b$$

and $r \in \mathbf{Z}^+$, find a polynomial $g(t) \in \mathbf{Q}[t]$ such that

$$E_{g(t)}: g(t)y^2 = x^3 + ax + b$$

has rank r over $\mathbf{Q}(t)$.

This would give an unconditional lower bound for $N_{\geq r}(E,X)$ and a conditional lower bound for $N_{\geq r+1}(E,X)$.

How to find such a g(t), with r "large"? Suppose

- ullet $E_{g(t)}$ has rank r over ${f Q}(t)$
- $E_{g(t)h(t)}$ has rank r' over $\mathbf{Q}(t)$.

Then $E_{g(t)}$ has rank r + r' over $\mathbf{Q}(t, \sqrt{h(t)})$.

If h(t) is *linear*, and $r' \ge 1$, then (with $u = \sqrt{h(t)}$)

- $ullet \mathbf{Q}(t, \sqrt{h(t)}) = \mathbf{Q}(u)$
- $E_{g(t(u))}$ has rank at least r+1 over $\mathbf{Q}(u)$.

• If E is $y^2=x^3+ax+b$, start with $g(t)=t^3+at+b$. Then r=1, from the point (t,1) on

$$E_{g(t)}: g(t)y^2 = x^3 + ax + b.$$

- Find (for some E) h(t) so $E_{g(t)h(t)}$ has rank 1 over $\mathbf{Q}(t)$. This gives $E_{g(t(u))}$ with rank 2 over $\mathbf{Q}(u)$.
- Repeat with the new, rank-2 g(t). Find (for some E) h(t) so $E_{g(t)h(t)}$ has rank at least 1 over $\mathbf{Q}(t)$. This gives $E_{g(t(u))}$ with rank at least 3 over $\mathbf{Q}(u)$.

This is how the examples in the previous theorem were found.

There is no example known of a curve E and a $g(t) \in \mathbf{Q}(t)$ such that $E_{g(t)}$ has rank at least 4 over $\mathbf{Q}(t)$.

Ranks in the family $E_d:dy^2=x^3-x$

Given d, it may be hard to find $(x,y) \in E_d(\mathbf{Q})$.

But given x, it is easy to find y and d such that $(x,y) \in E_d(\mathbf{Q})$: we can write $x^3 - x$ uniquely as the square of a rational number y times a squarefree integer d.

If $t \in \mathbf{Q}^{\times}$, let $\mathrm{sf}(t)$ denote the squarefree part of t, the unique squarefree integer such that $t/\mathrm{sf}(t)$ is a square.

If $x \in \mathbf{Q}$, $x \neq 0, \pm 1$ then x is the x-coordinate of a point of infinite order in $E_{\mathsf{sf}(x^3-x)}(\mathbf{Q})$.

Ranks in the family $E_d: dy^2 = x^3 - x$

If x=u/v with relatively prime integers u and v, and B>0, define

$$h(x) = \max\{1, \log(u), \log(v)\},$$

$$M(d, B) = \{x \in \mathbf{Q} : h(x) < B, \mathsf{sf}(x^3 - x) = d\}.$$

Lemma. For every d there is a $C_d \in \mathbf{R}^+$ such that for large B

$$M(d,B) \sim C_d B^{\mathsf{rank}(E_d)/2}$$
.

Thus $\overline{\operatorname{rank}}(E_d) > \operatorname{rank}(E_{d'}) \Rightarrow M(d,B) > \overline{M(d',B)}$ for sufficiently large B.

Searching for large ranks

- Let x run through all rational numbers x with h(x) < B and make a list of the values M(d,B).
- Pick out those d for which M(d,B) is large, and compute $\mathrm{rank}(E_d)$.
- N. Rogers implemented this method and found

$$rank(E_{205015206}) = 5,$$

$$rank(E_{61471349610}) = 6.$$

Searching for large ranks

If $a, b, c, d \in \mathbb{Z}^+$, let $\omega_{a,b,c,d} \in \mathbb{Z}^2$ be a shortest nonzero vector in the lattice

$$\{(u,v) \in \mathbf{Z}^2 : a^2 \mid u, b^2 \mid v, c^2 \mid u+v, d^2 \mid u-v\}$$

and define

$$Q(j,k) = \sum_{a,b,c,d=1}^{\infty} \frac{(abcd)^{2k}}{\|\omega_{a,b,c,d}\|^{4k} h(\omega_{a,b,c,d})^{j}}$$

summing over a,b,c,d such that, if $\omega_{a,b,c,d}=(u,v)$, then u and v are relatively prime and $uv(u+v)(u-v)\neq 0$.

Searching for large ranks

Define
$$S(j,k) = \sum_{x \in \mathbf{Q} - \{0,1,-1\}} |\mathsf{sf}(x^3 - x)|^{-k} h(x)^{-j}$$
.

Theorem (Rubin & Silverberg). If $j \in \mathbb{R}^+$, then the following are equivalent.

- (i) $\operatorname{rank}(E_d) < 2j$ for every $d \in \mathbf{Z}^+$,
- (ii) S(j,k) converges for some $k \geq 1$,
- (iii) S(j,k) converges for every $k \ge 1$,
- $\overline{\text{(iv) }Q(j,k)}$ converges for some $k\geq 1$,
- (v) Q(j,k) converges for every $k \geq 1$.