Semidefinite Optimization

Daniel Mao

Contents

1	First Chapter				
	1.1	Primal Problem and Dual Problem	1		
	1.2	Weak Duality	1		
2	Con	nplementary Slackness	3		

ii CONTENTS

Chapter 1

First Chapter

1.1 Primal Problem and Dual Problem

DEFINITION (Primal Problem). Let $C \in \mathbb{S}^n$. Let $b \in \mathbb{R}^m$. Let \mathcal{A} be a linear transformation from \mathbb{S}^n to \mathbb{R}^m . We define the **primal problem** to be the following.

(P) inf
$$\langle C, X \rangle$$

subject to $\mathcal{A}X = b$
 $X \succeq 0$

DEFINITION (Dual Problem). We define the **dual problem** of the above primal problem to be the following.

(D)
$$\sup b^{\top} y$$
 subject to
$$\mathcal{A}^* y + S = C$$

$$S \succeq 0$$

where \mathcal{A}^* denotes the adjoint of \mathcal{A} .

1.2 Weak Duality

THEOREM 1.1 (The Weak Duality Relation). Let \bar{X} be feasible in (P). Let (\bar{y}, \bar{S})

be feasible in (D). Then

$$\langle C, \bar{X} \rangle - b^{\top} \bar{y} \ge 0.$$

Proof. Since (\bar{y}, \bar{S}) is feasible, we have

$$C = \mathcal{A}^* y + S. \tag{1}$$

Since \bar{X} is feasible, we have

$$AX = b. (2)$$

Then

$$\begin{split} \left\langle C, \bar{X} \right\rangle - b^\top \bar{y} &= \left\langle \mathcal{A}^* y + S, \bar{X} \right\rangle - b^\top y, \text{ by equation (1)} \\ &= \left\langle \mathcal{A}^* \bar{y}, \bar{X} \right\rangle + \left\langle S, \bar{X} \right\rangle - b^\top \bar{y}, \text{ by linearity} \\ &= \left\langle \bar{y}, \mathcal{A} \bar{X} \right\rangle + \left\langle \bar{S}, \bar{X} \right\rangle - b^\top \bar{y}, \text{ by definition of adjoint} \\ &= \left\langle \bar{y}, b \right\rangle + \left\langle \bar{S}, \bar{X} \right\rangle - b^\top \bar{y}, \text{ by equation (2)} \\ &= \left\langle \bar{S}, \bar{X} \right\rangle \\ &\geq 0, \text{ since } X, S \succeq 0. \end{split}$$

That is, $\langle C, \bar{X} \rangle - b^{\top} \bar{y} \ge 0$.

COROLLARY 1.1.

- (1) If (P) is unbounded, then (D) is infeasible.
- (2) If (D) is unbounded, then (P) is infeasible.
- (3) If \bar{X} and (\bar{y}, \bar{S}) are feasible in (P) and (D) respectively and $\langle C, \bar{X} \rangle = b^{\top} \bar{y}$, then \bar{X} is optimal in (P) and (\bar{y}, \bar{S}) is optimal in (D).

Chapter 2

Complementary Slackness

PROPOSITION 2.0.1 (Complementary Slackness). Let $X, S \in \mathbb{S}^n_+$. Then $\langle X, S \rangle = 0$ if and only if XS = 0.