Energy Use and Consumption in German Households

Group 1:

Danqi, Fahimeh, and Ravi

Table of contents

- DigEn vs SOEP
- DigEn: The heat demand & The energy type
- Combined with SOEP:
 - Findings from income and Energy Costs
 - Space and Heat Analysis
 - Heating Costs w.r.t Living Space
- Why Choose Gas ?
- Effect of building architecture on heating
- Final Thoughts
- Key Findings

01

DigEn vs SOEP

DigEn vs SOEP

DigEn:

- Intuitive distribution of energy demand & energy type
- Some specific variables about the characteristics of the building (heat space, construction age, roof type)
- Different building uses: commercial vs residential

SOEP:

- Trends in some key variables over time (heat consumption, energy type)
- Information about the economy is provided (net income and rents)

DigEn:
The heat demand &
The energy type

- The Highest: 4.9e+06 KWh
 - The Mean: 8.5e+04 KWh
- Two areas with significantly higher heat demand
 - Aquis Plaza: 4.9e+06
 - Aachen Galeria: 3.1e+06

Commercial Area

- The most common choose
 - O Gas
 - oil Oil
 - Two higher heat demand area
 - Gas (Galerie)
 - Air heat pumps (Aquis)

For the overall,

Gas provides most of the heat demand.
It is still the main source of heat supply.

Oil also occupies a relatively important part of other energy types

Heat network should not be overlooked

Whether there are differences in the types of energy preferred by different area?

Split data to

Residential Area

Full Space: 1.2e+06 Total Energy Demand: 1.3e+08 KWh

Commercial Area

Commercial Total Full Space: 3.5e+05 Total Energy Demand: 1.6e+07 KWh

Residential Area:

The main heating energy source: **Gas Oil** and **Heat network** followed

Commercial Area:

the main heating energy source: **Gas**The second one: **Air Heat Pump**(Galerie occupies a large part)

Residential Area:

The main heating energy source: **Gas Oil** and **Heat network** followed

Commercial Area:

We can see that the **Heat network** also chosen by many commercial buildings. *Air heat pump* is not so widely used

Why the highest heat demand building *Aquis Plaza* choose the Air heat pump?

Aquis Plaza

- as a large commercial building, occupies a large space size and a large open spaces inside
- Its daily traffic and population density are also much higher than in other areas.

the building has a very high heating load.

Air heat pump

- provide heat efficiently.
- compared with traditional energy sources, it can adjust the temperature more flexibly and more environmentally friendly.

The main type of energy used for heating

- 1. Gas
- 2. Oil
- 3. Heat network

Questions:

- 1. What are the factors that affect the heating demand?
- 2. Why most buildings use Gas?

To find some trend in SOEP

Findings from income and Energy Costs

Heating costs considering monthly rent

Here, again:

★We see that heating costs fall into a defined range and don't follow a trend with respect to the monthly rent.

There are several outliers in heating cost, mostly seen in middle classes of rent.

Income

People from upper class of income, are getting richer by time. The increase for middle and low classes is going very slow and steady.

What share of income is spent on energy costs?

refrom 2020 is due to the impact of COVID-19.

→ Data after 2022 could give insight regarding the increase in energy costs due to the Russia and Ukraine war.

*3 assumptions for the increase in 2015: Energy conservation law entered into force on May 2014. There was an increase in usage of renewable energies, also we had a different questionnaire.

Space and Heat Analysis

Bigger Living Space = Higher Heating demand?

- Relationship between annual heat demand and size of the heated space for different building types.
- Here we can see **outliers with high consumption**.
- Outliers were from commercial and public buildings

Bigger Living Space = Higher Heating demand?

- Relationship between annual heat demand and size of the heated space for different building types.
- Here we can see outliers with high consumption.
- Outliers were from commercial and public buildings
- Eliminated the outliers with very high value of heat demand
- High Correlation between heated space i.e. size of dwelling and heat demand of dwelling
- Here we are focusing only on Residential buildings into consideration.

Bigger Living Space = Higher Heating demand and costs?

- Regression Results based on full_space
- near zero p-value
- high R-Squared value
- Indicates that full_space variable has significant impact on annual heat demand.

What does this imply?

- The values seem too perfect for heating prediction.
- Let us analyze the SOEP data from this perspective.

Bigger Living Space = Higher Heating demand and costs?

Space and heating demand relations in SOEP Data

Bigger Living Space = Higher Heating demand and costs?

Space and heating demand relations in SOEP Data

Bigger Living Space = Higher Heating demand and costs?

- Similar relation in SOEP data.
- But not as strong correlation as DigEn dataset.
- Thus the predictability here is not as good as DigEn dataset.
- What does this imply?
- Entries in DigEn dataset are too good to be true.
- DigEn: synthetic data, engineered for analysis.
- SOEP: Survey based, contains noise, based on guesstimates of the people during survey.
- Personally I would prefer combination of DigEn and SOEP.

2021 Data

	size of unit in sq meters						[SOEP Data]		
		OLS Regr	essio	n Resi	ults				
Dep. Variable:	heat_demand_kWh_Annual			R-squared:			0.166		
Model:			0LS	Adj.	R-squared:		0.165		
Method:		Least Squa	res	F-sta	atistic:		124.9		
Date:	We	d, 31 Jan 2	024	Prob	(F-statisti	c):	1.46e-26		
Time:		20:55	:40	Log-l	Likelihood:		-7070.3		
No. Observations:			628	AIC:			1.414e+04		
Df Residuals:			626	BIC:			1.415e+04		
Df Model:									
Covariance Type:		nonrob	ust						
========	======	coef	std	err	t	P> t	[0.025	0.975]	
const		6258.9889	2143	. 265	2.920	0.004	2050.129	1.05e+04	
size of unit in sq	meters	292.9452	26	215	11.175	0.000	241.464	344.426	
======================================	:======	487.047	==== Durl	=========== bin—Watson:			1.952		
Prob(Omnibus):		0.000	Jaro	que-Bera (JB):			2752.319		
Skew:		3.193	Prol	b(JB):			0.00		
Kurtosis:		24.132	Con	d. No			234.		

Heating Costs w.r.t Living Space

Living Space and Heating costs

- Lower class is living in sinal apar cinencs
- The wage gap in different classes affect their choice of housing.

Living Space and Heating costs

- Monthly heating demand has remained stable with average between 1000 KWh and 2500 KWh
- Note:2015 Data was imputed based on few additional questionnaire, thus it looks more broad compare to others.

Living Space and Heating costs

- 1991: Different classes are within 40 euro range
- 1995-2000: Gap reduces to 30 Euro
- Post 2005: Gaps grow wider with inflation and rising costs.
- Post 2020: again on the rise.
- Even though the energy demand for heat has remain stable, there is increase in heating costs.

Heating costs per Sqm of living space

- Average costs per Sqm of living space have increased.
- All time high in 2021 from SOEP data
- Bigger apartment might not be the best option.
- Only residential buildings were covered for this info.

Heating costs per Sqm of living space

- Wait this is surprising !!!!
- Upper class population is paying less money on heating per Sqm of living space.
- Lower class is paying the most.
- This may be caused by efficient heaters used by upper class.

Why Choose Gas?

Consume more than we produce

- We are dependent on gas.
- Consume more than we produce it.

Consume more than we produce

- We are dependent on gas.
- Consume more than we produce it.
- Thus arises the need to import to fulfil the demands.
 - o Import volumes are increasing to keep up with the demand

Consume more than we produce

- We are dependent on gas.
- Consume more than we produce it.
- Thus arises the need to import to fulfil the demands.
- Import amount has increased over the years
 - o Import volumes are increasing to keep up with the demand.
 - With ongoing economic sanctions on Russia, the supply has reduced and costs have increased.

Costs of Gas, oil and electricity over the years

- Costs are on the rise
- Gas is the most affordable option among these.
- The spike in 2022 is due to Ukraine-Russia Conflict.
- But the price is still affordable
 - o Germany quickly reached out to other countries for import of gas and LNG. 11
 - But the demand from household usage has also been decreased by 20% in 2023. 11
- What does this imply?

Annual expenditure on energy

- Costs are on the rise
- Gas is the most affordable option among these.
- The spike in 2022 is due to Ukraine-Russia Conflict.
- But the price is still affordable.
- What does this imply?
 - The annual expense is higher on energy, but still affordable. (but for how long?)

Effect of building architecture on heating

Roof Type

Gabled Roof : Roof with Two Slopes

Flat Roof : Horizontal rooftop

Hip Roof: 4 Sloping sides

Pent Roof : 1 Sloping side

Comparing annual heat demand for different roof types (and for three building types)

- Gable Roof:
 - Used in Majority of houses
 - Lowest median value despite high number of houses.

The data suggests that Gabled roof is most efficient in the residential houses.

Construction Year

[DigEn Data]

- In general we have higher number of apartments constructed before 2000's
- With heat demand between 50000 KWh and 100000 KWh
- After 2000's we see lower heat demand
- Are newly constructed apartments are more efficient in heat retention?

Construction Year

[DigEn Data]

- In general we have higher number of apartments constructed before 2000's
- With heat demand between 50000 KWh and 100000 KWh
- After 2000's we see lower heat demand
- Are newly constructed apartments are more efficient in heat retention?
- Analysing the means of these shows us the heat demand for new houses is indeed lower

Construction Year

[DigEn Data]

- In general we have higher number of apartments constructed before 2000's
- With heat demand between 50000 KWh and 100000 KWh
- After 2000's we see lower heat demand
- Are newly constructed apartments are more efficient in heat retention?
- Analysing the means of these shows us the heat demand for new houses is indeed lower

Conclusion: New House = More Efficient heating

Final Thoughts

Final Thoughts

- In Spite of increased price of Gas people are using it as the primary source for heating.
- Moderately sized apartments with Gabled roof and Gas as heating source are suggested for an average household.
- The Wage differences between different class is increasing by the year and people from lower class are paying more on heating.

Key Findings

Key findings

- In Spite increased price of Gas people are using it as the primary source for heating.
- Lower class population is spending more money on heating per sqm of their living space.
- Construction age and Roof type also good indicator of heating efficiency of an household

Reflection on Work Process

Reflection on Work Process

- Survey Data is not the easiest to handle
 - Questionnaires change from year to year, resulting in either missing data or finding the data in different sections
- Don't be restricted to data on the hand, do your own research and understand the domain you are working with.
- Having good questions in mind and a critical mindset are two important factors in finding meaningful results.

Thanks!

Do you have any questions?