William Stallings Computer Organization and Architecture

Chapter 2
Computer Evolution and Performance

ENIAC - background

- Electronic Numerical Integrator And Computer
- Eckert and Mauchly
- University of Pennsylvania
- Trajectory tables for weapons
- Started 1943
- Finished 1946
 - Too late for war effort
- Used until 1955

https://id.wikipedia.org/wiki/ENIAC

ENIAC - details

- Decimal (not binary)
- 20 accumulators of 10 digits
- Programmed manually by switches
- 18,000 vacuum tubes
- 30 tons
- 15,000 square feet
- 140 kW power consumption
- 5,000 additions per second

von Neumann/Turing

- Stored Program concept
- Main memory storing programs and data
- ALU operating on binary data
- Control unit interpreting instructions from memory and executing
- Input and output equipment operated by control unit
- Princeton Institute for Advanced Studies
 - IAS
- Completed 1952

Structure of von Neumann machine

IAS - details

- 1000 x 40 bit words
 - —Binary number
 - -2 x 20 bit instructions
- Set of registers (storage in CPU)
 - —Memory Buffer Register
 - —Memory Address Register
 - —Instruction Register
 - Instruction Buffer Register
 - —Program Counter
 - —Accumulator
 - —Multiplier Quotient

Structure of IAS – detail

Commercial Computers

- 1947 Eckert-Mauchly Computer Corporation
- UNIVAC I (Universal Automatic Computer)
- US Bureau of Census 1950 calculations
- Became part of Sperry-Rand Corporation
- Late 1950s UNIVACII
 - Faster
 - More memory

IBM

- Punched-card processing equipment
- 1953 the 701
 - IBM's first stored program computer
 - Scientific calculations
- 1955 the 702
 - Business applications
- Lead to 700/7000 series

Transistors

- Replaced vacuum tubes
- Smaller
- Cheaper
- Less heat dissipation
- Solid State device
- Made from Silicon (Sand)
- Invented 1947 at Bell Labs
- William Shockley et al.

Transistor Based Computers

Second generation machines

- NCR & RCA produced small transistor machines
- IBM 7000
- DEC 1957
 - -Produced PDP-1

Microelectronics

- Literally "small electronics"
- A computer is made up of gates, memory cells and interconnections
- These can be manufactured on a semiconductor
- e.g. silicon wafer

Generations of Computer

- Vacuum tube 1946-1957
- Transistor 1958-1964
- Small scale integration 1965 on
 - —Up to 100 devices on a chip
- Medium scale integration to 1971
 - -100-3,000 devices on a chip
- Large scale integration 1971-1977
 - -3,000 100,000 devices on a chip
- Very large scale integration 1978 -1991
 - -100,000 100,000,000 devices on a chip
- Ultra large scale integration 1991 -
 - —Over 100,000,000 devices on a chip

Moore's Law

- Increased density of components on chip
- Gordon Moore co-founder of Intel
- Number of transistors on a chip will double every year
- Since 1970's development has slowed a little
 - Number of transistors doubles every 18 months
- Cost of a chip has remained almost unchanged
- Higher packing density means shorter electrical paths, giving higher performance
- Smaller size gives increased flexibility
- Reduced power and cooling requirements
- Fewer interconnections increases reliability

Growth in CPU Transistor Count

IBM 360 series

- 1964
- Replaced (& not compatible with) 7000 series
- First planned "family" of computers
 - Similar or identical instruction sets
 - Similar or identical O/S
 - Increasing speed
 - Increasing number of I/O ports (i.e. more terminals)
 - Increased memory size
 - Increased cost
- Multiplexed switch structure

DEC PDP-8

- 1964
- First minicomputer
- Did not need air conditioned room
- Small enough to sit on a lab bench
- \$16,000
 - -\$100k+ for IBM 360
- Embedded applications & OEM
- BUS STRUCTURE

DEC - PDP-8 Bus Structure

Semiconductor Memory

- 1970
- Fairchild
- Size of a single core
 - —i.e. 1 bit of magnetic core storage
- Holds 256 bits
- Non-destructive read
- Much faster than core
- Capacity approximately doubles each year

Intel

- 1971 4004
 - First microprocessor
 - All CPU components on a single chip
 - **-4** bit
- Followed in 1972 by 8008
 - **-**8 bit
 - Both designed for specific applications
- 1974 8080
 - Intel's first general purpose microprocessor

Speeding it up

- Pipelining
- On board cache
- On board L1 & L2 cache
- Branch prediction
- Data flow analysis
- Speculative execution

Performance Balance

- Processor speed increased
- Memory capacity increased
- Memory speed lags behind processor speed

Login and Memory Performance Gap

Solutions

- Increase number of bits retrieved at one time
 - —Make DRAM "wider" rather than "deeper"
- Change DRAM interface
 - —Cache
- Reduce frequency of memory access
 - —More complex cache and cache on chip
- Increase interconnection bandwidth
 - —High speed buses
 - —Hierarchy of buses

I/O Devices

- Peripherals with intensive I/O demands
- Large data throughput demands
- Processors can handle this
- Problem moving data
- Solutions:
 - —Caching
 - Buffering
 - Higher-speed interconnection buses
 - —More elaborate bus structures
 - —Multiple-processor configurations

Typical I/O Device Data Rates

Key is Balance

- Processor components
- Main memory
- I/O devices
- Interconnection structures

Improvements in Chip Organization and Architecture

- Increase hardware speed of processor
 - -Fundamentally due to shrinking logic gate size
 - More gates, packed more tightly, increasing clock rate
 - Propagation time for signals reduced
- Increase size and speed of caches
 - Dedicating part of processor chip
 - Cache access times drop significantly
- Change processor organization and architecture
 - Increase effective speed of execution
 - —Parallelism

Problems with Clock Speed and Login Density

Power

- Power density increases with density of logic and clock speed
- Dissipating heat

RC delay

- Speed at which electrons flow limited by resistance and capacitance of metal wires connecting them
- Delay increases as RC product increases
- Wire interconnects thinner, increasing resistance
- Wires closer together, increasing capacitance

Memory latency

Memory speeds lag processor speeds

Solution:

More emphasis on organizational and architectural approaches

Intel Microprocessor Performance

Increased Cache Capacity

- Typically two or three levels of cache between processor and main memory
- Chip density increased
 - —More cache memory on chip
 - Faster cache access
- Pentium chip devoted about 10% of chip area to cache
- Pentium 4 devotes about 50%

More Complex Execution Logic

- Enable parallel execution of instructions
- Pipeline works like assembly line
 - Different stages of execution of different instructions at same time along pipeline
- Superscalar allows multiple pipelines within single processor
 - Instructions that do not depend on one another can be executed in parallel

Diminishing Returns

- Internal organization of processors complex
 - —Can get a great deal of parallelism
 - Further significant increases likely to be relatively modest
- Benefits from cache are reaching limit
- Increasing clock rate runs into power dissipation problem
 - —Some fundamental physical limits are being reached

New Approach – Multiple Cores

- Multiple processors on single chip
 - Large shared cache
- Within a processor, increase in performance proportional to square root of increase in complexity
- If software can use multiple processors, doubling number of processors almost doubles performance
- So, use two simpler processors on the chip rather than one more complex processor
- With two processors, larger caches are justified
 - Power consumption of memory logic less than processing logic
- Example: IBM POWER4
 - Two cores based on PowerPC

POWER4 Chip Organization

x86 Evolution (1)

- 8080
 - —first general purpose microprocessor
 - -8 bit data path
 - Used in first personal computer Altair
- 8086
 - much more powerful
 - -16 bit
 - instruction cache, prefetch few instructions
 - -8088 (8 bit external bus) used in first IBM PC
- 80286
 - 16 Mbyte memory addressable
 - -up from 1Mb
- 80386
 - -32 bit
 - Support for multitasking

x86 Evolution (2)

- 80486
 - sophisticated powerful cache and instruction pipelining
 - —built in maths co-processor
- Pentium
 - -Superscalar
 - Multiple instructions executed in parallel
- Pentium Pro
 - Increased superscalar organization
 - Aggressive register renaming
 - —branch prediction
 - —data flow analysis
 - —speculative execution

x86 Evolution (3)

- Pentium II
 - MMX technology
 - graphics, video & audio processing
- Pentium III
 - Additional floating point instructions for 3D graphics
- Pentium 4
 - Note Arabic rather than Roman numerals
 - Further floating point and multimedia enhancements
- Itanium
 - -64 bit
 - see chapter 15
- Itanium 2
 - Hardware enhancements to increase speed
- See Intel web pages for detailed information on processors

x86 Evolution (4)

- Pentium 4
 - Note Arabic rather than Roman numerals
 - Further floating point and multimedia enhancements
- Core
 - First x86 with dual core
- Core 2
 - 64 bit architecture
- Core 2 Quad 3GHz 820 million transistors
 - Four processors on chip
- x86 architecture dominant outside embedded systems
- Organization and technology changed dramatically
- Instruction set architecture evolved with backwards compatibility
- ~1 instruction per month added
- 500 instructions available
- See Intel web pages for detailed information on processors

PowerPC

- 1975, 801 minicomputer project (IBM) RISC
- Berkeley RISC I processor
- 1986, IBM commercial RISC workstation product, RT PC.
 - Not commercial success
 - Many rivals with comparable or better performance
- 1990, IBM RISC System/6000
 - RISC-like superscalar machine
 - POWER architecture
- IBM alliance with Motorola (68000 microprocessors), and Apple, (used 68000 in Macintosh)
- Result is PowerPC architecture
 - Derived from the POWER architecture
 - Superscalar RISC
 - Apple Macintosh
 - Embedded chip applications

PowerPC Family (1)

- 601:
 - Quickly to market. 32-bit machine
- 603:
 - Low-end desktop and portable
 - -32-bit
 - Comparable performance with 601
 - Lower cost and more efficient implementation
- 604:
 - Desktop and low-end servers
 - -32-bit machine
 - Much more advanced superscalar design
 - Greater performance
- 620:
 - High-end servers
 - —64-bit architecture

PowerPC Family (2)

- 740/750:
 - —Also known as G3
 - —Two levels of cache on chip
- G4:
 - -Increases parallelism and internal speed
- G5:
 - —Improvements in parallelism and internal speed
 - —64-bit organization

Embedded Systems ARM

- ARM evolved from RISC design
- Used mainly in embedded systems
 - —Used within product
 - —Not general purpose computer
 - Dedicated function
 - —E.g. Anti-lock brakes in car

Embedded Systems Requirements

- Different sizes
 - —Different constraints, optimization, reuse
- Different requirements
 - Safety, reliability, real-time, flexibility, legislation
 - —Lifespan
 - Environmental conditions
 - —Static v dynamic loads
 - —Slow to fast speeds
 - —Computation v I/O intensive
 - Descrete event v continuous dynamics

Possible Organization of an Embedded System

ARM Evolution

- Designed by ARM Inc., Cambridge, England
- Licensed to manufacturers
- High speed, small die, low power consumption
- PDAs, hand held games, phones
 —E.g. iPod, iPhone
- Acorn produced ARM1 & ARM2 in 1985 and ARM3 in 1989
- Acorn, VLSI and Apple Computer founded ARM Ltd.

ARM Systems Categories

- Embedded real time
- Application platform
 - -Linux, Palm OS, Symbian OS, Windows mobile
- Secure applications

Performance Assessment Clock Speed

- Key parameters
 - Performance, cost, size, security, reliability, power consumption
- System clock speed
 - In Hz or multiples of
 - Clock rate, clock cycle, clock tick, cycle time
- Signals in CPU take time to settle down to 1 or 0
- Signals may change at different speeds
- Operations need to be synchronised
- Instruction execution in discrete steps
 - Fetch, decode, load and store, arithmetic or logical
 - Usually require multiple clock cycles per instruction
- Pipelining gives simultaneous execution of instructions
- So, clock speed is not the whole story

System Clock

Instruction Execution Rate

- Millions of instructions per second (MIPS)
- Millions of floating point instructions per second (MFLOPS)
- Heavily dependent on instruction set, compiler design, processor implementation, cache & memory hierarchy

Benchmarks

- Programs designed to test performance
- Written in high level language
 - Portable
- Represents style of task
 - Systems, numerical, commercial
- Easily measured
- Widely distributed
- E.g. System Performance Evaluation Corporation (SPEC)
 - CPU2006 for computation bound
 - 17 floating point programs in C, C++, Fortran
 - 12 integer programs in C, C++
 - 3 million lines of code
 - Speed and rate metrics
 - Single task and throughput

SPEC Speed Metric

- Single task
- Base runtime defined for each benchmark using reference machine
- Results are reported as ratio of reference time to system run time
 - Tref_i execution time for benchmark i on reference machine
 - Tsut_i execution time of benchmark i on test system

$$r_i = \frac{Tref_i}{Tsut_i}$$

- Overall performance calculated by averaging ratios for all 12 integer benchmarks
 - Use geometric mean
 - Appropriate for normalized numbers such as ratios

$$r_G = \left(\prod_{i=1}^n r_i\right)^{1/n}$$

SPEC Rate Metric

- Measures throughput or rate of a machine carrying out a number of tasks
- Multiple copies of benchmarks run simultaneously
 - Typically, same as number of processors
- Ratio is calculated as follows:
 - Tref_i reference execution time for benchmark i
 - N number of copies run simultaneously
 - Tsuti elapsed time from start of execution of program on all N processors until completion of all copies of program
 - Again, a geometric mean is calculated

$$r_i = \frac{N \times Tref_i}{Tsut_i}$$

Amdahl's Law

- Gene Amdahl [AMDA67]
- Potential speed up of program using multiple processors
- Concluded that:
 - —Code needs to be parallelizable
 - Speed up is bound, giving diminishing returns for more processors
- Task dependent
 - Servers gain by maintaining multiple connections on multiple processors
 - Databases can be split into parallel tasks

Amdahl's Law Formula

- For program running on single processor
 - Fraction f of code infinitely parallelizable with no scheduling overhead
 - Fraction (1-f) of code inherently serial
 - —T is total execution time for program on single processor
 - N is number of processors that fully exploit parralle portions of code

$$Speedup = \frac{\text{time to execute program on a single processor}}{\text{time to execute program on } N \text{ parallel processors}} = \frac{T(1-f) + Tf}{T(1-f) + \frac{Tf}{N}} = \frac{1}{(1-f) + \frac{f}{N}}$$

Conclusions

- -f small, parallel processors has little effect
- -N ->∞, speedup bound by 1/(1-f)
 - Diminishing returns for using more processors

Internet Resources

- http://www.intel.com/
 - —Search for the Intel Museum
- http://www.ibm.com
- http://www.dec.com
- Charles Babbage Institute
- PowerPC
- Intel Developer Home

References

 AMDA67 Amdahl, G. "Validity of the Single-Processor Approach to Achieving Large-Scale Computing Capability", Proceedings of the AFIPS Conference, 1967.