

Report No.: EED32L00018302 Page 1 of 90

# **TEST REPORT**

Product : R500 Data Collector

Trade mark : Sino GNSS

By ComNov Technology Ltd.

Model/Type reference : R500 Serial Number : N/A

Report Number : EED32L00018302

FCC ID : 2ACHBR500 Date of Issue : Aug. 05, 2019

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

#### Prepared for:

ComNav Technology Ltd.
Building 2, No. 618 Chengliu Middle Rd.

#### Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Jay Zheng

Compiled by:

Report Seal

Alex Wu

Reviewed by:

Mare Xm

Ware Xin

Kevin yang

Date:

Aug. 05, 2019

Check No.: 3319509675





## 2 Version

| Version No. | Date       | Description |  |  |
|-------------|------------|-------------|--|--|
| 00          | 2019-08-05 | Original    |  |  |
|             |            |             |  |  |
| (40         |            |             |  |  |





Report No. : EED32L00018302 Page 3 of 90

3 Test Summary

| rest Summary                               |                                                                                      |                  |        |
|--------------------------------------------|--------------------------------------------------------------------------------------|------------------|--------|
| Test Item                                  | Test Requirement                                                                     | Test method      | Result |
| Antenna Requirement                        | 47 CFR Part 15 Subpart C Section<br>15.203/15.247 (c)                                | ANSI C63.10-2013 | PASS   |
| AC Power Line Conducted<br>Emission        | 47 CFR Part 15 Subpart C Section 15.207                                              | ANSI C63.10-2013 | PASS   |
| Conducted Peak Output<br>Power             | 47 CFR Part 15 Subpart C Section<br>15.247 (b)(1)                                    | ANSI C63.10-2013 | PASS   |
| 20dB Occupied Bandwidth                    | 47 CFR Part 15 Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10-2013 | PASS   |
| Carrier Frequencies Separation             | 47 CFR Part 15 Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10-2013 | PASS   |
| Hopping Channel Number                     | 47 CFR Part 15 Subpart C Section<br>15.247 (b)                                       | ANSI C63.10-2013 | PASS   |
| Dwell Time                                 | 47 CFR Part 15 Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10-2013 | PASS   |
| Pseudorandom Frequency<br>Hopping Sequence | 47 CFR Part 15 Subpart C Section<br>15.247(b)(4)&TCB Exclusion List<br>(7 July 2002) | ANSI C63.10-2013 | PASS   |
| RF Conducted Spurious<br>Emissions         | 47 CFR Part 15 Subpart C Section 15.247(d)                                           | ANSI C63.10-2013 | PASS   |
| Radiated Spurious emissions                | 47 CFR Part 15 Subpart C Section 15.205/15.209                                       | ANSI C63.10-2013 | PASS   |

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.





### Page 4 of 90

# 4 Content

| 1 COVER PAGE                                                          | 1  |
|-----------------------------------------------------------------------|----|
| 2 VERSION                                                             | 2  |
| 3 TEST SUMMARY                                                        | 3  |
| 4 CONTENT4 CONTENT                                                    | 4  |
| 5 TEST REQUIREMENT                                                    |    |
| 5.1 TEST SETUP                                                        | 5  |
| 5.1.1 For Conducted test setup.                                       |    |
| 5.1.2 For Radiated Emissions test setup                               |    |
| 5.1.3 For Conducted Emissions test setup                              | 6  |
| 5.2 TEST ENVIRONMENT                                                  | 6  |
| 5.3 TEST CONDITION                                                    | 6  |
| 6 GENERAL INFORMATION                                                 | 7  |
| 6.1 CLIENT INFORMATION                                                | 7  |
| 6.2 GENERAL DESCRIPTION OF EUT                                        | 7  |
| 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD                 |    |
| 6.4 DESCRIPTION OF SUPPORT UNITS                                      |    |
| 6.5 TEST LOCATION                                                     | _  |
| 6.6 DEVIATION FROM STANDARDS                                          |    |
| 6.7 ABNORMALITIES FROM STANDARD CONDITIONS                            |    |
| 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER                       |    |
| 6.9 Measurement Uncertainty (95% confidence levels, k=2)              |    |
| 7 EQUIPMENT LIST                                                      | 10 |
| 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION                          |    |
| Appendix A): 20dB Occupied Bandwidth                                  | 16 |
| Appendix B): Carrier Frequency Separation                             |    |
| Appendix C): Dwell Time                                               |    |
| Appendix D): Hopping Channel Number                                   |    |
| Appendix E): Conducted Peak Output Power                              |    |
| Appendix F). Band-edge for RF Conducted Emissions                     |    |
| Appendix O): No Conducted Optinous Emissions                          |    |
| Appendix I): Antenna Requirement                                      |    |
| Appendix K): Restricted bands around fundamental frequency (Radiated) |    |
| Appendix L): Radiated Spurious Emissions                              |    |
| PHOTOGRAPHS OF TEST SETUP                                             | 87 |
| PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS                             | 90 |
|                                                                       |    |



Report No. : EED32L00018302 Page 5 of 90

# 5 Test Requirement

### 5.1 Test setup

#### 5.1.1 For Conducted test setup



#### 5.1.2 For Radiated Emissions test setup

#### **Radiated Emissions setup:**



Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz



Figure 3. Above 1GHz



Report No.: EED32L00018302 Page 6 of 90

# 5.1.3 For Conducted Emissions test setup Conducted Emissions setup



### **5.2 Test Environment**

| Operating Environment: | 1       | 9   |    | 0 |
|------------------------|---------|-----|----|---|
| Temperature:           | 25°C    |     |    |   |
| Humidity:              | 56 % RH |     |    |   |
| Atmospheric Pressure:  | 101kPa  | 720 | 6) |   |

#### **5.3 Test Condition**

| Test Mode                                                                                      | Tv                | RF Channel |            |           |  |  |
|------------------------------------------------------------------------------------------------|-------------------|------------|------------|-----------|--|--|
| rest wode                                                                                      | Tx                | Low(L)     | Middle(M)  | High(H)   |  |  |
| GFSK/π/4DQPSK/                                                                                 | 2402MHz ~2480 MHz | Channel 1  | Channel 40 | Channel79 |  |  |
| 8DPSK(DH1,DH3, DH5)                                                                            |                   | 2402MHz    | 2441MHz    | 2480MHz   |  |  |
| TX mode: The EUT transmitted the continuous modulation test signal at the specific channel(s). |                   |            |            |           |  |  |

Test mode:

#### Pre-scan under all rate at Lowest channel 1

| Mode       | GFSK   |        |        |  |
|------------|--------|--------|--------|--|
| packets    | 1-DH1  | 1-DH3  | 1-DH5  |  |
| Power(dBm) | -3.412 | -3.450 | -3.371 |  |

| π/4DQPSK |                        |                                             |  |
|----------|------------------------|---------------------------------------------|--|
| 2-DH1    | 2-DH3                  | 2-DH5                                       |  |
| -3.881   | -3.833                 | -3.735                                      |  |
|          | 8DPSK                  |                                             |  |
| 3-DH1    | 3-DH3                  | 3-DH5                                       |  |
| -3.875   | -3.822                 | -3.704                                      |  |
|          | -3.881<br><b>3-DH1</b> | 2-DH1 2-DH3 -3.881 -3.833 8DPSK 3-DH1 3-DH3 |  |

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of  $\pi/4DQPSK$ , 3-DH5 packet the power is the worst case of 8DPSK.



Report No. : EED32L00018302 Page 7 of 90

## 6 General Information

## 6.1 Client Information

| Applicant:               | ComNav Technology Ltd.                  |     |
|--------------------------|-----------------------------------------|-----|
| Address of Applicant:    | Building 2, No. 618 Chengliu Middle Rd. |     |
| Manufacturer:            | ComNav Technology Ltd.                  |     |
| Address of Manufacturer: | Building 2, No. 618 Chengliu Middle Rd. | (2) |
| Factory:                 | ComNav Technology Ltd.                  |     |
| Address of Factory:      | Building 2, No. 618 Chengliu Middle Rd. |     |

# 6.2 General Description of EUT

| Product Name:                    | R500 Data Collector                  |                                                                                                           |  |  |
|----------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|
| Model No.(EUT):                  | R500                                 | (0.)                                                                                                      |  |  |
| Trade mark:                      | Sino GNSS® By ComNav Technology Ltd. |                                                                                                           |  |  |
| 730                              | BT4.0, 3.1+EDR                       | 2402MHz to 2480MHz                                                                                        |  |  |
| EUT Supports Radios application: | NFC                                  | 13.56MHz                                                                                                  |  |  |
|                                  | GSM                                  | 850/1900 GSM, GPRS, EGPRS                                                                                 |  |  |
|                                  | AC adapter                           | MODEL No.: HKA01105021-XE<br>INPUT: 100-240V~50/60Hz 0.5A<br>OUTPUT: 5V2.1A                               |  |  |
| Power Supply:                    | Li-ion Battery                       | MODEL No.: BL-R500<br>Capacity: 6500mAh, 24.0Wh<br>Nominal Voltage: 3.7V<br>Limited Charing Voltage: 4.2V |  |  |
| Sample Received Date:            | Jan. 25, 2019                        |                                                                                                           |  |  |
| Sample tested Date:              | Jan. 25, 2019 to Jul. 28, 2019       |                                                                                                           |  |  |





Report No. : EED32L00018302 Page 8 of 90

# 6.3 Product Specification subjective to this standard

| Operation  | Frequency:     | 2402MH      | z~2480MHz                               | (25)        | )             | (80)    |           |  |
|------------|----------------|-------------|-----------------------------------------|-------------|---------------|---------|-----------|--|
| Bluetooth  | Version:       | 3.1+EDR     | 2                                       | (6)         |               | (6)     |           |  |
| Modulatio  | n Technique:   | Frequen     | Frequency Hopping Spread Spectrum(FHSS) |             |               |         |           |  |
| Modulatio  | n Type:        | 2G          |                                         |             |               |         |           |  |
|            |                | ВТ          | BT GFSK, 8DPSK, π/4DQPSK                |             |               |         |           |  |
|            |                | NFC         | 10.                                     | FSK         | 0             |         | 100       |  |
| Number o   | f Channel:     | Channel: 79 |                                         |             |               |         |           |  |
| Hopping (  | Channel Type:  | Adaptive    | Adaptive Frequency Hopping systems      |             |               |         |           |  |
| Hardware   | Version:       | MB1236      | MB12364T000                             |             |               |         |           |  |
| Software ' | Version:       | VER_04      | 70_20180914                             | _RZ         |               | 100     | )         |  |
| Test Powe  | er Grade:      | N/A         |                                         |             |               |         |           |  |
| Test Softv | vare of EUT:   | N/A         |                                         |             |               |         |           |  |
| Antenna 1  | Type and Gain: | GSM 850     | 0 /5                                    | PIFA anteni | na, -2.16 dBi |         | 12        |  |
|            |                | PCS 190     | 00                                      | PIFA anteni | na, -0.12 dBi | )       | (6)       |  |
|            |                | ВТ          | 6                                       | PIFA anteni | na, 3.01 dBi  |         | 6         |  |
|            |                | NFC         |                                         | FPC antenr  | na, 0 dBi     |         |           |  |
| Test Volta | ige:           | AC 120V     | <sup>7</sup> , 60Hz, DC 3               | .7V         |               | Colon.  |           |  |
| Operation  | Frequency eac  | h of channe | el                                      | (40         |               | (4)     |           |  |
| Channel    | Frequency      | Channel     | Frequency                               | Channel     | Frequency     | Channel | Frequency |  |
| 1          | 2402MHz        | 21          | 2422MHz                                 | 41          | 2442MHz       | 61      | 2462MHz   |  |
| 2          | 2403MHz        | 22          | 2423MHz                                 | 42          | 2443MHz       | 62      | 2463MHz   |  |
| 3          | 2404MHz        | 23          | 2424MHz                                 | 43          | 2444MHz       | 63      | 2464MHz   |  |
| 4          | 2405MHz        | 24          | 2425MHz                                 | 44          | 2445MHz       | 64      | 2465MHz   |  |
| 5          | 2406MHz        | 25          | 2426MHz                                 | 45          | 2446MHz       | 65      | 2466MHz   |  |
| 6          | 2407MHz        | 26          | 2427MHz                                 | 46          | 2447MHz       | 66      | 2467MHz   |  |
| 7          | 2408MHz        | 27          | 2428MHz                                 | 47          | 2448MHz       | 67      | 2468MHz   |  |
| 8          | 2409MHz        | 28          | 2429MHz                                 | 48          | 2449MHz       | 68      | 2469MHz   |  |
| 9          | 2410MHz        | 29          | 2430MHz                                 | 49          | 2450MHz       | 69      | 2470MHz   |  |
| 10         | 2411MHz        | 30          | 2431MHz                                 | 50          | 2451MHz       | 70      | 2471MHz   |  |
| 11         | 2412MHz        | 31          | 2432MHz                                 | 51          | 2452MHz       | 71      | 2472MHz   |  |
| 12         | 2413MHz        | 32          | 2433MHz                                 | 52          | 2453MHz       | 72      | 2473MHz   |  |
| 13         | 2414MHz        | 33          | 2434MHz                                 | 53          | 2454MHz       | 73      | 2474MHz   |  |
| 14         | 2415MHz        | 34          | 2435MHz                                 | 54          | 2455MHz       | 74      | 2475MHz   |  |
| 15         | 2416MHz        | 35          | 2436MHz                                 | 55          | 2456MHz       | 75      | 2476MHz   |  |
| 16         | 2417MHz        | 36          | 2437MHz                                 | 56          | 2457MHz       | 76      | 2477MHz   |  |
| 17         | 2418MHz        | 37          | 2438MHz                                 | 57          | 2458MHz       | 77      | 2478MHz   |  |
| 18         | 2419MHz        | 38          | 2439MHz                                 | 58          | 2459MHz       | 78      | 2479MHz   |  |
| 19         | 2420MHz        | 39          | 2440MHz                                 | 59          | 2460MHz       | 79      | 2480MHz   |  |
| 20         | 2421MHz        | 40          |                                         | -           | - 11 mm       |         | 1000      |  |



Report No. : EED32L00018302 Page 9 of 90

#### 6.4 Description of Support Units

The EUT has been tested independently.

#### 6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

#### 6.6 Deviation from Standards

None.

#### 6.7 Abnormalities from Standard Conditions

None.

## 6.8 Other Information Requested by the Customer

None.

### 6.9 Measurement Uncertainty (95% confidence levels, k=2)

| No. | Item                            | Measurement Uncertainty |
|-----|---------------------------------|-------------------------|
| 1   | Radio Frequency                 | 7.9 x 10 <sup>-8</sup>  |
| 2   | DC newer conducted              | 0.46dB (30MHz-1GHz)     |
| 2   | RF power, conducted             | 0.55dB (1GHz-18GHz)     |
| 2   | Dedicted Churique emission test | 4.3dB (30MHz-1GHz)      |
| 3   | Radiated Spurious emission test | 4.5dB (1GHz-12.75GHz)   |
| 4   | Conduction emission             | 3.5dB (9kHz to 150kHz)  |
| 4   | Conduction emission             | 3.1dB (150kHz to 30MHz) |
| 5   | Temperature test                | 0.64°C                  |
| 6   | Humidity test                   | 3.8%                    |
| 7   | DC power voltages               | 0.026%                  |





Report No. : EED32L00018302 Page 10 of 90

# 7 Equipment List

| RF test system                         |                   |                                  |                  |                           |                               |  |  |
|----------------------------------------|-------------------|----------------------------------|------------------|---------------------------|-------------------------------|--|--|
| Equipment                              | Manufacturer      | Mode No.                         | Serial<br>Number | Cal. Date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |  |  |
| Spectrum<br>Analyzer                   | Keysight          | N9010A                           | MY54510339       | 03-01-2019                | 02-29-2020                    |  |  |
| Signal<br>Generator                    | Keysight          | N5182B                           | MY53051549       | 03-01-2019                | 02-29-2020                    |  |  |
| Temperature/<br>Humidity<br>Indicator  | biaozhi           | HM10                             | 1804186          | 07-26-2019                | 07-25-2020                    |  |  |
| High-pass<br>filter                    | Sinoscite         | FL3CX03WG18<br>NM12-0398-<br>002 | (0.)             | 01-09-2019                | 01-08-2020                    |  |  |
| High-pass<br>filter                    | MICRO-<br>TRONICS | SPA-F-63029-4                    |                  | 01-09-2019                | 01-08-2020                    |  |  |
| DC Power                               | Keysight          | E3642A                           | MY56376072       | 03-01-2019                | 02-29-2020                    |  |  |
| PC-1                                   | Lenovo            | R4960d                           |                  | 03-01-2019                | 02-29-2020                    |  |  |
| BT&WI-FI<br>Automatic<br>control       | R&S               | OSP120                           | 101374           | 03-01-2019                | 02-29-2020                    |  |  |
| RF control unit                        | JS Tonscend       | JS0806-2                         | 158060006        | 03-01-2019                | 02-29-2020                    |  |  |
| BT&WI-FI<br>Automatic<br>test software | JS Tonscend       | JS1120-3                         |                  | 03-01-2019                | 02-29-2020                    |  |  |





Page 11 of 90

| Equipment                              | Manufacturer           | Model No.            | Serial<br>Number   | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |
|----------------------------------------|------------------------|----------------------|--------------------|---------------------------|-------------------------------|
| 3M Chamber &<br>Accessory<br>Equipment | TDK                    | SAC-3                |                    | 05-24-2019                | 05-23-2022                    |
| RILOG Broadband<br>Antenna             | Schwarzbeck            | VULB9163             | 9163-618           | 07-26-2019                | 07-25-2020                    |
| Loop Antenna                           | Schwarzbeck            | FMZB 1519B           | 1519B-<br>076      | 04-25-2018                | 04-24-2021                    |
| Receiver                               | R&S                    | ESCI7                | 100938-<br>003     | 10-21-2019                | 10-20-2020                    |
| Multi device<br>Controller             | maturo                 | NCD/070/107<br>11112 | /美                 | 01-09-2019                | 01-08-2020                    |
| Temperature/<br>Humidity Indicator     | Shanghai<br>qixiang    | HM10                 | 1804298            | 07-26-2019                | 07-25-2020                    |
| Cable line<br>Cable line               | Fulai(7M)<br>Fulai(6M) | SF106<br>SF106       | 5219/6A<br>5220/6A | 01-09-2019<br>01-09-2019  | 01-08-2020<br>01-08-2020      |
| Cable line Cable line                  | Fulai(3M)              | SF106                | 5216/6A            | 01-09-2019                | 01-08-2020                    |
| Cable line                             | Fulai(3M)              | SF106                | 5217/6A            | 01-09-2019                | 01-08-2020                    |
|                                        |                        |                      |                    |                           |                               |
|                                        |                        |                      |                    |                           |                               |
|                                        |                        |                      |                    |                           |                               |
|                                        |                        | (4)                  |                    |                           |                               |
| <u> </u>                               |                        |                      |                    |                           |                               |
|                                        |                        |                      |                    |                           |                               |

3M Semi/full-anechoic Chamber



Page 12 of 90

|                                       |                  | 3M full-anechoi       | c Chamber        |                           |                            |
|---------------------------------------|------------------|-----------------------|------------------|---------------------------|----------------------------|
| Equipment                             | Manufacturer     | Model No.             | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date (mm-dd-yyyy) |
| RSE Automatic test software           | JS Tonscend      | JS36-RSE              | 10166            | 06-19-2019                | 06-18-2020                 |
| Receiver                              | Keysight         | N9038A                | MY57290136       | 03-27-2019                | 03-26-2020                 |
| Spectrum<br>Analyzer                  | Keysight         | N9020B                | MY57111112       | 03-27-2019                | 03-26-2020                 |
| Spectrum<br>Analyzer                  | Keysight         | N9030B                | MY57140871       | 03-27-2019                | 03-26-2020                 |
| TRILOG<br>Broadband<br>Antenna        | Schwarzbeck      | VULB 9163             | 9163-1148        | 04-25-2018                | 04-24-2021                 |
| Horn Antenna                          | Schwarzbeck      | BBHA 9170             | 9170-832         | 04-25-2018                | 04-24-2021                 |
| Horn Antenna                          | ETS-<br>LINDGREN | 3117                  | 00057407         | 07-10-2018                | 07-09-2021                 |
| Preamplifier                          | EMCI             | EMC184055SE           | 980596           | 05-22-2019                | 5-21-2020                  |
| Preamplifier                          | EMCI             | EMC001330             | 980563           | 05-08-2019                | 05-07-2020                 |
| Preamplifier                          | JS Tonscend      | 980380                | EMC051845<br>SE  | 01-16-2019                | 01-15-2020                 |
| Temperature/<br>Humidity<br>Indicator | biaozhi          | GM1360                | EE1186631        | 04-30-2019                | 04-29-2020                 |
| Fully Anechoic<br>Chamber             | TDK              | FAC-3                 |                  | 01-17-2018                | 01-16-2021                 |
| Filter bank                           | JS Tonscend      | JS0806-F              | 188060094        | 04-10-2018                | 04-09-2021                 |
| Cable line                            | Times            | SFT205-NMSM-<br>2.50M | 394812-0001      | 01-09-2019                | 01-08-2020                 |
| Cable line                            | Times            | SFT205-NMSM-<br>2.50M | 394812-0002      | 01-09-2019                | 01-08-2020                 |
| Cable line                            | Times            | SFT205-NMSM-<br>2.50M | 394812-0003      | 01-09-2019                | 01-08-2020                 |
| Cable line                            | Times            | SFT205-NMSM-<br>2.50M | 393495-0001      | 01-09-2019                | 01-08-2020                 |
| Cable line                            | Times            | EMC104-NMNM-<br>1000  | SN160710         | 01-09-2019                | 01-08-2020                 |
| Cable line                            | Times            | SFT205-NMSM-<br>3.00M | 394813-0001      | 01-09-2019                | 01-08-2020                 |
| Cable line                            | Times            | SFT205-NMNM-<br>1.50M | 381964-0001      | 01-09-2019                | 01-08-2020                 |
| Cable line                            | Times            | SFT205-NMSM-<br>7.00M | 394815-0001      | 01-09-2019                | 01-08-2020                 |
| Cable line                            | Times            | HF160-KMKM-<br>3.00M  | 393493-0001      | 01-09-2019                | 01-08-2020                 |





| Page | 13 | of | 90 |
|------|----|----|----|
| гачс | 10 | UΙ | JU |

Cal. Due date

| ~ | Equipment                             | Manufacturer | Model No. | Number | (mm-dd-yyyy) | (mm-dd-yyyy) |      |
|---|---------------------------------------|--------------|-----------|--------|--------------|--------------|------|
|   | Receiver                              | R&S          | ESCI      | 100435 | 05-20-2019   | 05-19-2020   |      |
|   | Temperature/<br>Humidity<br>Indicator | Defu         | TH128     | /      | 06-14-2019   | 06-13-2020   | (43) |
|   | LISN                                  | R&S          | ENV216    | 100098 | 05-08-2019   | 05-07-2020   | 6    |
|   | Barometer                             | changchun    | DYM3      | 1188   | 06-20-2019   | 06-19-2020   |      |
| G |                                       |              |           |        |              |              |      |
|   |                                       |              |           |        |              |              |      |
|   |                                       |              |           |        |              |              |      |
|   |                                       |              |           |        |              |              |      |
|   |                                       |              |           |        |              |              |      |
|   |                                       |              | (31)      |        |              |              |      |
| 6 |                                       |              |           |        |              |              |      |
|   |                                       |              |           |        |              |              |      |

**Conducted disturbance Test** 

Model No.

Manufacturer

Serial

Cal. date







# 8 Radio Technical Requirements Specification

Reference documents for testing:

| No. | Identity         | Document Title                                                    |
|-----|------------------|-------------------------------------------------------------------|
| 1   | FCC Part15C      | Subpart C-Intentional Radiators                                   |
| 2   | ANSI C63.10-2013 | American National Standard for Testing Unlicesed Wireless Devices |

#### **Test Results List:**

| . Cot i tocuito =ioti            |             |                            | / 23    |             |
|----------------------------------|-------------|----------------------------|---------|-------------|
| Test requirement                 | Test method | Test item                  | Verdict | Note        |
| Part15C Section<br>15.247 (a)(1) | ANSI 63.10  | 20dB Occupied<br>Bandwidth | PASS    | Appendix A) |



Page 15 of 90

| Part15C Section<br>15.247 (a)(1)     | ANSI 63.10 | Carrier Frequencies<br>Separation                                  | PASS | Appendix B) |
|--------------------------------------|------------|--------------------------------------------------------------------|------|-------------|
| Part15C Section 15.247<br>(a)(1)     | ANSI 63.10 | Dwell Time                                                         | PASS | Appendix C) |
| Part15C Section<br>15.247 (b)        | ANSI 63.10 | Hopping Channel Number                                             | PASS | Appendix D) |
| Part15C Section<br>15.247 (b)(1)     | ANSI 63.10 | Conducted Peak Output<br>Power                                     | PASS | Appendix E) |
| Part15C Section<br>15.247(d)         | ANSI 63.10 | Band-edge for RF<br>Conducted Emissions                            | PASS | Appendix F) |
| Part15C Section<br>15.247(d)         | ANSI 63.10 | RF Conducted Spurious<br>Emissions                                 | PASS | Appendix G) |
| Part15C Section 15.247<br>(a)(1)     | ANSI 63.10 | Pseudorandom<br>Frequency<br>Hopping Sequence                      | PASS | Appendix H) |
| Part15C Section<br>15.203/15.247 (c) | ANSI 63.10 | Antenna Requirement                                                | PASS | Appendix I) |
| Part15C Section<br>15.207            | ANSI 63.10 | AC Power Line<br>Conducted<br>Emission                             | PASS | Appendix J) |
| Part15C Section<br>15.205/15.209     | ANSI 63.10 | Restricted bands around fundamental frequency (Radiated) Emission) | PASS | Appendix K) |
| Part15C Section<br>15.205/15.209     | ANSI 63.10 | Radiated Spurious<br>Emissions                                     | PASS | Appendix L) |





Report No. : EED32L00018302 Page 16 of 90

# Appendix A): 20dB Occupied Bandwidth

#### **Test Result**

| Mode      | Channel. | 20dB Bandwidth [MHz] | 99% OBW [MHz] | Verdict |
|-----------|----------|----------------------|---------------|---------|
| GFSK      | LCH      | 1.038                | 0.89950       | PASS    |
| GFSK      | мсн      | 1.027                | 0.89627       | PASS    |
| GFSK      | НСН      | 1.034                | 0.89775       | PASS    |
| π /4DQPSK | LCH      | 1.289                | 1.1754        | PASS    |
| π /4DQPSK | MCH      | 1.289                | 1.1766        | PASS    |
| π /4DQPSK | HCH      | 1.286                | 1.1713        | PASS    |
| 8DPSK     | LCH      | 1.291                | 1.1871        | PASS    |
| 8DPSK     | MCH      | 1.291                | 1.1847        | PASS    |
| 8DPSK     | НСН      | 1.290                | 1.1820        | PASS    |





Report No.: EED32L00018302 Page 17 of 90

#### **Test Graph**













Page 18 of 90







Page 19 of 90









# **Appendix B): Carrier Frequency Separation**

### **Result Table**

| Mode     | Channel. | Carrier Frequency Separation [MHz] | Verdict |
|----------|----------|------------------------------------|---------|
| GFSK     | LCH      | 1.098                              | PASS    |
| GFSK     | MCH      | 1.030                              | PASS    |
| GFSK     | НСН      | 0.934                              | PASS    |
| π/4DQPSK | LCH      | 1.020                              | PASS    |
| π/4DQPSK | MCH      | 1.002                              | PASS    |
| π/4DQPSK | НСН      | 1.014                              | PASS    |
| 8DPSK    | LCH      | 1.016                              | PASS    |
| 8DPSK    | MCH      | 1.030                              | PASS    |
| 8DPSK    | нсн      | 1.002                              | PASS    |





Report No. : EED32L00018302 Page 21 of 90

## **Test Graph**







Page 22 of 90







Page 23 of 90







Report No. : EED32L00018302 Page 24 of 90

# Appendix C): Dwell Time

**Result Table** 

| Mode | Packet | Chann<br>el | Burst Width<br>[ms/hop/ch] | Total<br>Hops[hop*ch] | Dwell<br>Time[s] | Duty Cycle | Verdi<br>ct |
|------|--------|-------------|----------------------------|-----------------------|------------------|------------|-------------|
| GFSK | DH1    | LCH         | 0.368597                   | 320                   | 0.118            | 0.29       | PAS<br>S    |
| GFSK | DH1    | МСН         | 0.3698667                  | 320                   | 0.118            | 0.30       | PAS<br>S    |
| GFSK | DH1    | НСН         | 0.368597                   | 320                   | 0.118            | 0.30       | PAS<br>S    |
| GFSK | DH3    | LCH         | 1.62513                    | 160                   | 0.26             | 0.65       | PAS<br>S    |
| GFSK | DH3    | МСН         | 1.6264                     | 160                   | 0.26             | 0.65       | PAS<br>S    |
| GFSK | DH3    | НСН         | 1.62513                    | 160                   | 0.26             | 0.65       | PAS<br>S    |
| GFSK | DH5    | LCH         | 2.852                      | 106.7                 | 0.304            | 0.76       | PAS<br>S    |
| GFSK | DH5    | МСН         | 2.8612                     | 106.7                 | 0.305            | 0.76       | PAS<br>S    |
| GFSK | DH5    | НСН         | 2.852                      | 106.7                 | 0.304            | 0.76       | PAS<br>S    |





Report No. : EED32L00018302 Page 25 of 90

## **Test Graph**







Page 26 of 90







Page 27 of 90







Report No. : EED32L00018302 Page 28 of 90

# **Appendix D): Hopping Channel Number**

**Result Table** 

| Mode     | Channel. | Number of Hopping Channel | Verdict |
|----------|----------|---------------------------|---------|
| GFSK     | Нор      | 79                        | PASS    |
| π/4DQPSK | Нор      | 79                        | PASS    |
| 8DPSK    | Нор      | 79                        | PASS    |





Report No. : EED32L00018302 Page 29 of 90

### **Test Graph**













Page 30 of 90

# Appendix E): Conducted Peak Output Power

**Result Table** 

| Mode     | Channel. | Maximum Peak Output Power [dBm] | Verdict |
|----------|----------|---------------------------------|---------|
| GFSK     | LCH      | -3.371                          | PASS    |
| GFSK     | MCH      | -3.107                          | PASS    |
| GFSK     | HCH      | -6.863                          | PASS    |
| π/4DQPSK | LCH      | -3.735                          | PASS    |
| π/4DQPSK | MCH      | -3.631                          | PASS    |
| π/4DQPSK | HCH      | -7.626                          | PASS    |
| 8DPSK    | LCH      | -3.704                          | PASS    |
| 8DPSK    | MCH      | -3.597                          | PASS    |
| 8DPSK    | НСН      | -7.628                          | PASS    |





Report No. : EED32L00018302 Page 31 of 90

## **Test Graph**















Page 32 of 90







Page 33 of 90







Report No. : EED32L00018302 Page 34 of 90

# Appendix F): Band-edge for RF Conducted Emissions Result Table

| Mode     | Channel | Carrier<br>Frequency<br>[MHz] | Carrier<br>Power<br>[dBm] | Frequenc<br>y<br>Hopping | Max<br>Spurious<br>Level<br>[dBm] | Limit<br>[dBm] | Verdict |
|----------|---------|-------------------------------|---------------------------|--------------------------|-----------------------------------|----------------|---------|
| GFSK     | LCH     | 2402                          | -3.598                    | Off                      | -60.542                           | -23.6          | PASS    |
|          |         |                               | -2.296                    | On                       | -58.823                           | -22.3          | PASS    |
| GFSK     | НСН     | 2480                          | -7.220                    | Off                      | -59.685                           | -27.22         | PASS    |
|          |         |                               | -6.927                    | On                       | -58.715                           | -26.93         | PASS    |
| π/4DQPSK | LCH     | 2402                          | -4.616                    | Off                      | -60.397                           | -24.62         | PASS    |
|          |         |                               | -4.615                    | On                       | -59.151                           | -24.62         | PASS    |
| π/4DQPSK | НСН     | 2480                          | -9.197                    | Off                      | -59.999                           | -29.2          | PASS    |
|          |         |                               | -8.541                    | On                       | -59.173                           | -28.54         | PASS    |
| 8DPSK    | LCH     | 2402                          | -4.935                    | Off                      | -59.993                           | -24.94         | PASS    |
|          |         |                               | -4.097                    | On                       | -59.197                           | -24.1          | PASS    |
| (0.)     | НСН     | 2480                          | -8.486                    | Off                      | -59.975                           | -28.49         | PASS    |
| 8DPSK    |         |                               | -8.885                    | On                       | -59.239                           | -28.89         | PASS    |





Report No. : EED32L00018302 Page 35 of 90

## **Test Graph**







Page 36 of 90







Page 37 of 90







Page 38 of 90







Report No. : EED32L00018302 Page 39 of 90

# Appendix G): RF Conducted Spurious Emissions Result Table

| Mode     | Channel | Pref [dBm] | Puw[dBm]                             | Verdict |
|----------|---------|------------|--------------------------------------|---------|
| GFSK     | LCH     | -3.359     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| GFSK     | МСН     | -3.41      | <limit< td=""><td>PASS</td></limit<> | PASS    |
| GFSK     | HCH     | -6.872     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| π/4DQPSK | LCH     | -5.314     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| π/4DQPSK | MCH     | -4.471     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| π/4DQPSK | НСН     | -8.166     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 8DPSK    | LCH     | -4.799     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 8DPSK    | MCH     | -4.433     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| 8DPSK    | НСН     | -8.171     | <limit< td=""><td>PASS</td></limit<> | PASS    |





Report No. : EED32L00018302 Page 40 of 90

# **Test Graph**

































































































Report No.: EED32L00018302 Page 46 of 90

# Appendix H): Pseudorandom Frequency Hopping Sequence

## Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

#### **EUT Pseudorandom Frequency Hopping Sequence**

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:



Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.





Report No. : EED32L00018302 Page 47 of 90

## Appendix I): Antenna Requirement

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **EUT Antenna:**





The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 3.01dBi.



Report No. : EED32L00018302 Page 48 of 90

| 2) T                                                                        | the EUT was connected to Stabilization Network) which cower cables of all other under the unit being measured multiple power cables to a sexceeded.  The test was performed with EUT shall be 0.4 m from the efference plane was bonded to the ground reference plane was bonded to the test was performed with EUT shall be 0.4 m from the efference plane was bonded to the test was performed with efference plane was bonded to the test was performed with the product of the EUT and the column of the find the maximum of the interface cables must conducted measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AC power source throth provides a 50Ω/50µ nits of the EUT were round reference planed. A multiple socket of single LISN provided the dupon a non-metallipor-standing arrangement of the vertical ground refered to the horizontal ground associated equipment of the provided the closest point associated equipment emission, the relative | bugh a LISN 1 (Line $\mu$ H + 5Ω linear impersion in the same way as putlet strip was used the rating of the LISN ic table 0.8m abovement, the EUT was planeterence plane. The verticular reference plane in top of the ground ints of the LISN 1 and the ent was at least 0.8 element.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Impedal dance. To the LIS to conrect was not the ground acced on the Electrical ground acced to the Electrical ground acced to the Electrical ground acced the Electrical ground acced the Electrical ground acced the Electrical ground acced to the Electrical ground acceded the Electrical ground acceded the Electrical ground acceded to the Electrical ground accede |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3)Th<br>r<br>4) T<br>E<br>r<br>20<br>p<br>1<br>5) In                        | Stabilization Network) which was bonded to the grown the unit being measured multiple power cables to a sexceeded.  The tabletop EUT was placed reference plane. And for flow norizontal ground reference for the test was performed with EUT shall be 0.4 m from the reference plane was bonded as placed 0.8 m from the ground reference plane was bonded to the tabletop to the EUT and the column. This distance was beautiful to the units of the EUT and the order to find the maximum of the interface cables must be which the process of the tabletop to the tabletop to the tabletop the tabletop to the tabletop the tabletop the tabletop tabletop the tabletop | th provides a 50Ω/50µ nits of the EUT were round reference plane d. A multiple socket of single LISN provided the dupon a non-metallipor-standing arrangement a vertical ground refered to the horizontal ground associated equipment associated equipment emission, the relative                                                                                                                             | uH + 5Ω linear impedice connected to a secon in the same way as putlet strip was used the rating of the LISN ic table 0.8m abovement, the EUT was placed and reference plane. The verticular reference plane unit under test and but top of the ground ints of the LISN 1 and the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at le  | dance. In the LIS to control was not the ground the ground the LIS to control was not the ground the LIS to conded the LIS to referent the Employment and the Employm |
| 4) T<br>6<br>3)Th<br>7<br>4) T<br>6<br>7<br>9<br>1<br>9<br>1<br>1<br>5) In  | which was bonded to the growthe unit being measured multiple power cables to a sexceeded. The tabletop EUT was placed reference plane. And for flow norizontal ground reference with EUT shall be 0.4 m from the reference plane was bonded was placed 0.8 m from the ground reference plane for blane. This distance was bealt other units of the EUT and ISN 2.  The order to find the maximum of the interface cables must be for the interface cables must be the property of the interface cables must be the contract of the cables must be the contract of the cables must be the cables and the cables must be the cables and the cables are cables and the cables are cables as the cables are cables are cables as the cables | round reference plane d. A multiple socket of single LISN provided to ed upon a non-metallic por-standing arrangement e plane, th a vertical ground refer ed to the horizontal ground the boundary of the upor LISNs mounted or etween the closest pound associated equipment of emission, the relative                                                                                                                                                                                                                                           | e in the same way as putlet strip was used the rating of the LISN ic table 0.8m abovement, the EUT was placeference plane. The verteund reference plane unit under test and but top of the ground ints of the LISN 1 and the total and the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment wa | the LIS to conr was no the ground acced on tical ground the LIS conded to referent the Employment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| f r r e 3)Th r r 4) T E r r 1 1 2 5 l r c c c c c c c c c c c c c c c c c c | for the unit being measured multiple power cables to a sexceeded. The tabletop EUT was placed reference plane. And for flow norizontal ground reference with EUT shall be 0.4 m from the reference plane was bonded was placed 0.8 m from the ground reference plane was bonded at least two placed 0.8 m from the plane. This distance was becaused the color of the EUT and the color of the find the maximum of the interface cables must be the color of the interface cables must be the color of the interface cables must be the color of the color of the color of the color of the cables must be the color of the | d. A multiple socket of single LISN provided to the dedupon a non-metallite por-standing arrangement a vertical ground refer to the horizontal ground to the horizontal ground refer to the boundary of the upper LISNs mounted on the etween the closest point associated equipment emission, the relative                                                                                                                                                                                                                                       | butlet strip was used the rating of the LISN ic table 0.8m above tent, the EUT was placeference plane. The verticular reference plane init under test and but top of the ground ints of the LISN 1 and the positions of equipment was at least 0.8 in positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the positions of equipment was at least 0.8 in the LISN 1 and the positions of equipment was at least 0.8 in the LISN 1 and the positions of equipment was at least 0.8 in the LISN 1 and the positions of equipment was at least 0.8 in the LISN 1 and the LIS | to conr<br>was no<br>the ground<br>acced on<br>rear of<br>tical ground<br>e. The Lil<br>conded to<br>different<br>and the E<br>m from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3)Th<br>r<br>4) T<br>E<br>r<br>2<br>5<br>F<br>A<br>L                        | ne tabletop EUT was placed reference plane. And for floorizontal ground reference in the test was performed with EUT shall be 0.4 m from the reference plane was bonded in was placed 0.8 m from the ground reference plane for blane. This distance was beall other units of the EUT and LISN 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or-standing arrangement plane, the vertical ground refered to the horizontal ground arthe boundary of the upper LISNs mounted on the etween the closest point associated equipment emission, the relative                                                                                                                                                                                                                                                                                                                                         | eference plane. The rence plane. The vert pund reference plane unit under test and but top of the ground ints of the LISN 1 and the positions of equipmed positions of equipmed and the positions of equipmed and the positions of equipmed and the  | rear of tical group. The Library the Library the Edward the Employer ment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4) T<br>E<br>r<br>?<br>?<br>!<br>5) Ir                                      | The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for blane. This distance was beautiful and the sum of the EUT and the interface cables must be the sum of the interface cables must be all the sum of the interface cables must be the sum of the interface cables must be the sum of the interface cables.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | th a vertical ground refered to the horizontal ground refered to the horizontal grothe boundary of the upper LISNs mounted or etween the closest pound associated equipment emission, the relative                                                                                                                                                                                                                                                                                                                                                | rence plane. The vert<br>bund reference plane<br>init under test and b<br>n top of the ground<br>ints of the LISN 1 an<br>nent was at least 0.8<br>e positions of equipm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tical ground<br>e. The Lle<br>conded the referent<br>and the E<br>m from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5) Ir                                                                       | I was placed 0.8 m from to<br>ground reference plane for<br>plane. This distance was be<br>All other units of the EUT a<br>LISN 2.<br>In order to find the maximum<br>of the interface cables must                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the boundary of the upper LISNs mounted on the closest pound associated equipment emission, the relative                                                                                                                                                                                                                                                                                                                                                                                                                                          | unit under test and be<br>notop of the ground<br>ints of the LISN 1 and<br>nent was at least 0.8<br>e positions of equipm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onded to refere and the Eom from the ment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5) Ir<br>5) Ir                                                              | ground reference plane for plane. This distance was be all other units of the EUT and LISN 2.  In order to find the maximum of the interface cables must                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or LISNs mounted or<br>etween the closest pound<br>associated equipm<br>n emission, the relative                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n top of the ground<br>ints of the LISN 1 an<br>nent was at least 0.8<br>e positions of equipm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d referend the E<br>m from<br>ment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5) Ir                                                                       | blane. This distance was be<br>All other units of the EUT a<br>LISN 2.<br>In order to find the maximum<br>of the interface cables must                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | etween the closest pound associated equipments on the relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ints of the LISN 1 an<br>nent was at least 0.8<br>e positions of equipm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nd the E<br>m from<br>nent and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5) lr<br>c                                                                  | n order to find the maximum<br>of the interface cables must                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ć                                                                           | of the interface cables must                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mit <sup>.</sup>                                                            | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit (d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lBμV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             | requency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (3)                                                                         | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66 to 56*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56 to 46*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (G)                                                                         | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                             | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - t-                                                                        | ne limit decreases linearly MHz to 0.50 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | range 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NO                                                                          | TE : The lower limit is appli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cable at the transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | requency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| asurement Data                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| initial pre-scan was perform<br>asi-Peak and Average meas<br>ected.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ission w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                             | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Page 49 of 90

Product : R500 Data Collector Model/Type reference : R500

**Temperature** :  $22^{\circ}$  **Humidity** : 53%

#### Live line:



| No. | Freq.   |       | ding_Le<br>dBuV) | vel   | Correct<br>Factor | N     | leasuren<br>(dBuV) |       | Lir<br>(dB | nit<br>uV) |        | rgin<br>dB) |     |         |
|-----|---------|-------|------------------|-------|-------------------|-------|--------------------|-------|------------|------------|--------|-------------|-----|---------|
|     | MHz     | Peak  | QP               | AVG   | dB                | peak  | QP                 | AVG   | QP         | AVG        | QP     | AVG         | P/F | Comment |
| 1   | 0.2060  | 28.31 | 25.34            | 7.28  | 9.92              | 38.23 | 35.26              | 17.20 | 63.36      | 53.36      | -28.10 | -36.16      | Р   |         |
| 2   | 0.4100  | 21.57 | 18.24            | 8.56  | 9.89              | 31.46 | 28.13              | 18.45 | 57.65      | 47.65      | -29.52 | -29.20      | Р   |         |
| 3   | 0.5060  | 19.35 | 17.00            | 10.21 | 9.90              | 29.25 | 26.90              | 20.11 | 56.00      | 46.00      | -29.10 | -25.89      | Р   |         |
| 4   | 3.2260  | 29.88 | 26.58            | 13.96 | 9.72              | 39.60 | 36.30              | 23.68 | 56.00      | 46.00      | -19.70 | -22.32      | Р   |         |
| 5   | 4.8540  | 27.32 | 25.14            | 9.16  | 9.73              | 37.05 | 34.87              | 18.89 | 56.00      | 46.00      | -21.13 | -27.11      | Р   |         |
| 6   | 16.1660 | 26.95 | 23.03            | 21.28 | 9.96              | 36.91 | 32.99              | 31.24 | 60.00      | 50.00      | -27.01 | -18.76      | Р   |         |
|     |         |       |                  |       |                   |       |                    |       |            |            |        |             |     |         |





## Page 50 of 90





| No. | Freq.   |       | ding_Le<br>dBuV) | vel   | Correct<br>Factor | M     | leasuren<br>(dBuV) |       | Lin<br>(dB |       |        | rgin<br>dB) |     |         |
|-----|---------|-------|------------------|-------|-------------------|-------|--------------------|-------|------------|-------|--------|-------------|-----|---------|
|     | MHz     | Peak  | QP               | AVG   | dB                | peak  | QP                 | AVG   | QP         | AVG   | QP     | AVG         | P/F | Comment |
| 1   | 0.5220  | 32.80 | 28.57            | 21.93 | 9.93              | 42.73 | 38.50              | 31.86 | 56.00      | 46.00 | -17.50 | -14.14      | Р   |         |
| 2   | 0.6300  | 28.99 | 25.36            | 19.05 | 9.98              | 38.97 | 35.34              | 29.03 | 56.00      | 46.00 | -20.66 | -16.97      | Р   |         |
| 3   | 0.7340  | 26.54 | 23.45            | 17.71 | 9.81              | 36.35 | 33.26              | 27.52 | 56.00      | 46.00 | -22.74 | -18.48      | Р   |         |
| 4   | 1.1420  | 27.01 | 23.22            | 15.31 | 9.80              | 36.81 | 33.02              | 25.11 | 56.00      | 46.00 | -22.98 | -20.89      | Р   |         |
| 5   | 3.2139  | 32.68 | 28.67            | 14.66 | 9.72              | 42.40 | 38.39              | 24.38 | 56.00      | 46.00 | -17.61 | -21.62      | Р   |         |
| 6   | 16.1620 | 24.39 | 20.63            | 19.21 | 9.96              | 34.35 | 30.59              | 29.17 | 60.00      | 50.00 | -29.41 | -20.83      | Р   |         |

#### Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.





Report No.: EED32L00018302 Page 51 of 90

# Appendix K): Restricted bands around fundamental frequency (Radiated)

| Receiver Setup: | Frequency                                                                                                                                                                                                                                                                                                                          | Detector                                                                                                                                                                                                                             | RBW                                                                                                                                                | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remark                                                                                                        |                                    |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------|
|                 | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                         | Quasi-peak                                                                                                                                                                                                                           | 120kHz                                                                                                                                             | 300kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quasi-peak                                                                                                    |                                    |
|                 | AL 4011-                                                                                                                                                                                                                                                                                                                           | Peak                                                                                                                                                                                                                                 | 1MHz                                                                                                                                               | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak                                                                                                          | 1-8                                |
|                 | Above 1GHz                                                                                                                                                                                                                                                                                                                         | Peak                                                                                                                                                                                                                                 | 1MHz                                                                                                                                               | 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average                                                                                                       | ŝ                                  |
| Test Procedure: | Below 1GHz test proced                                                                                                                                                                                                                                                                                                             | ure as below:                                                                                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                    |
|                 | a. The EUT was placed at a 3 meter semi-ane determine the position b. The EUT was set 3 m was mounted on the to. The antenna height is determine the maximum polarizations of the and d. For each suspected e the antenna was tune table was turned from e. The test-receiver system Bandwidth with Maxim f. Place a marker at the | choic camber. The of the highest rad eters away from the pop of a variable-he varied from one man value of the field tenna are set to massion, the EUT value of the degrees to 360 cem was set to Peal num Hold Mode.                | e table wa<br>liation.<br>le interfer<br>light anter<br>leter to for<br>d strength<br>lake the n<br>was arran<br>meter to<br>degrees t<br>k Detect | ence-receinna tower. ur meters n. Both horneasuremeged to its 4 meters o find the i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wing antenna, above the gro-<br>rizontal and versit.  worst case an and the rotata maximum rear and Specified | wh<br>ound<br>ertic<br>d th<br>ble |
|                 | frequency to show cor                                                                                                                                                                                                                                                                                                              | mpliance. Also mea                                                                                                                                                                                                                   | asure any                                                                                                                                          | emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s in the restric                                                                                              |                                    |
|                 | frequency to show con<br>bands. Save the spec<br>for lowest and highest                                                                                                                                                                                                                                                            | mpliance. Also mea<br>trum analyzer plot.<br>channel                                                                                                                                                                                 | asure any                                                                                                                                          | emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s in the restric                                                                                              |                                    |
|                 | frequency to show con<br>bands. Save the spec                                                                                                                                                                                                                                                                                      | mpliance. Also meatrum analyzer plot. channel ure as below: we is the test site, where and change for the distance is 1 melowest channel, the distance are performed found the X axis                                                | change from table neter and he Higher ned in X, s positioni                                                                                        | r emissions<br>for each po<br>rom Semi-<br>0.8 meter<br>table is 1.5<br>st channel<br>Y, Z axis p<br>ng which i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Anechoic Charto 1.5 meter).                                                                                   | ulat                               |
| Limit:          | frequency to show conbands. Save the spector lowest and highest Above 1GHz test proceds.  G. Different between about to fully Anechoic Charmeter (Above 18GHzh. b. Test the EUT in the i. The radiation measure Transmitting mode, ar                                                                                              | mpliance. Also meatrum analyzer plot. channel ure as below: we is the test site, where and change for the distance is 1 melowest channel, the distance are performed found the X axis                                                | change fi<br>change fi<br>orm table<br>neter and<br>he Highe-<br>ned in X,<br>s positioni<br>encies me                                             | remissions<br>for each po<br>rom Semi-<br>0.8 meter<br>table is 1.5<br>st channel<br>Y, Z axis p<br>ng which i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Anechoic Charto 1.5 meter).                                                                                   | ulat                               |
| Limit:          | frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proceds g. Different between about to fully Anechoic Charmeter( Above 18GHz h. b. Test the EUT in the i. The radiation measure Transmitting mode, ar j. Repeat above proceds                                                                    | mpliance. Also meatrum analyzer plot. channel ure as below: we is the test site, mber and change for the distance is 1 m lowest channel, the ments are performed found the X axisures until all frequents.                           | change fi<br>change fi<br>orm table<br>neter and<br>he Highe-<br>ned in X,<br>s positioni<br>encies me                                             | remissions for each portion Semi-<br>0.8 meter table is 1.5 st channel Y, Z axis programming which is easured ware Rei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Anechoic Charto 1.5 meter).  cositioning for tis worse cas as complete.                                       | ulat                               |
| Limit:          | frequency to show conbands. Save the spector lowest and highest Above 1GHz test proceds.  g. Different between about to fully Anechoic Charmeter( Above 18GHz h. b. Test the EUT in the i. The radiation measure Transmitting mode, ar j. Repeat above proceds.  Frequency                                                         | mpliance. Also meatrum analyzer plot. channel ure as below: we is the test site, where and change for the distance is 1 mm lowest channel, the ments are performed found the X axis ures until all frequents.                        | change fi<br>change fi<br>orm table<br>neter and<br>he Highe-<br>ned in X,<br>s positioni<br>encies me                                             | rom Semi- 0.8 meter table is 1.5 st channel Y, Z axis p ng which i easured wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Anechoic Charto 1.5 meter).  cositioning for tis worse cas as complete.                                       | ulat                               |
| _imit:          | frequency to show conbands. Save the spector lowest and highest Above 1GHz test proceds.  G. Different between about to fully Anechoic Charmeter (Above 18GHz).  h. b. Test the EUT in the i. The radiation measure Transmitting mode, ar j. Repeat above proceds.  Frequency  30MHz-88MHz                                         | mpliance. Also meatrum analyzer plot. channel ure as below: we is the test site, where and change for the distance is 1 m lowest channel, the ments are performed found the X axis ures until all freques the Limit (dBµV/m 40.0)    | change fi<br>change fi<br>orm table<br>neter and<br>he Highe-<br>ned in X,<br>s positioni<br>encies me                                             | remissions for each por for Semi- 0.8 meter table is 1.5 st channel Y, Z axis p ng which i easured wa  Rei Quasi-pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Anechoic Charto 1.5 meter).  cositioning for tis worse cas as complete.  mark eak Value                       | ulat                               |
| Limit:          | frequency to show conbands. Save the spector lowest and highest Above 1GHz test proceds.  g. Different between about to fully Anechoic Charmeter( Above 18GHz h. b. Test the EUT in the i. The radiation measure Transmitting mode, ar j. Repeat above proceds.  Frequency  30MHz-88MHz  88MHz-216MHz                              | mpliance. Also meatrum analyzer plot. channel  ure as below:  we is the test site, maker and change for the distance is 1 m lowest channel, the ments are performed found the X axis ares until all freques  Limit (dBµV/m 40.0 43.5 | change fi<br>change fi<br>orm table<br>neter and<br>he Highe-<br>ned in X,<br>s positioni<br>encies me                                             | remissions for each por for eac | Anechoic Charto 1.5 meter).  cositioning for t is worse cas as complete.  mark eak Value                      | ulat                               |
| Limit:          | frequency to show conbands. Save the spector lowest and highest Above 1GHz test proceds.  G. Different between about to fully Anechoic Charmeter (Above 18GHz).  h. b. Test the EUT in the i. The radiation measure Transmitting mode, ar j. Repeat above proceds.  Frequency  30MHz-88MHz  88MHz-216MHz  216MHz-960MHz            | mpliance. Also meatrum analyzer plot. channel  ure as below:  we is the test site, which is the distance is 1 mm. lowest channel, the ments are performed found the X axis ures until all freques  Limit (dBµV/m 40.0 43.5 46.0      | change fi<br>change fi<br>orm table<br>neter and<br>he Highe-<br>ned in X,<br>s positioni<br>encies me                                             | remissions for each por for each por for Semi- 0.8 meter table is 1.5 st channel Y, Z axis p ng which i easured wa  Rei Quasi-pe Quasi-pe Quasi-pe Quasi-pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Anechoic Charto 1.5 meter).  cositioning for t is worse cas as complete.  mark eak Value eak Value            | ulat                               |





Page 52 of 90

Test plot as follows:

| Mode:   | GFSK Transmitting | Channel: | 2402 |
|---------|-------------------|----------|------|
| Remark: | Peak              |          |      |

### **Test Graph**



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
| 1  | 2390.0000      | 32.25                 | 13.37                 | -42.44                | 50.34             | 53.52             | 74.00             | 20.48          | Pass   | Horizontal |
| 2  | 2402.1464      | 32.26                 | 13.31                 | -42.43                | 94.35             | 97.49             | 74.00             | -23.49         | Pass   | Horizontal |





| Dog  | · 52 | of | 00 |
|------|------|----|----|
| Page | + ೦೦ | OI | УU |

| Mode:   | GFSK Transmitting | Channel: | 2402 |
|---------|-------------------|----------|------|
| Remark: | Peak              |          |      |

## **Test Graph**



| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1   | 2390.0000      | 32.25                 | 13.37                 | -42.44                | 49.38             | 52.56             | 74.00             | 21.44          | Pass   | Vertical |
| 2   | 2402.1464      | 32.26                 | 13.31                 | -42.43                | 97.16             | 100.30            | 74.00             | -26.30         | Pass   | Vertical |
| - 1 |                |                       | Name of the last      |                       | 100               |                   | 1.4               |                |        | -11-     |





Page 54 of 90

| Mode:   | GFSK Transmitting | Channel: | 2402 |
|---------|-------------------|----------|------|
| Remark: | AV                |          |      |

### **Test Graph**



| N | O Freq. [MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading [dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|---|---------------|-----------------------|-----------------|-----------------------|----------------|-------------------|-------------------|----------------|--------|------------|
| • | 1 2390.000    | 0 32.25               | 13.37           | -42.44                | 38.38          | 41.56             | 54.00             | 12.44          | Pass   | Horizontal |
| 2 | 2 2401.908    | 6 32.26               | 13.31           | -42.43                | 40.85          | 43.99             | 54.00             | 10.01          | Pass   | Horizontal |
| - |               |                       | No.             |                       |                |                   | 120               |                |        | -11-       |





| D   | _ | EE | - 4 | 00 | ١ |
|-----|---|----|-----|----|---|
| Pag | е | ວວ | OI  | ЭL | J |

| Mode:   | GFSK Transmitting | Channel: | 2402 |
|---------|-------------------|----------|------|
| Remark: | AV                |          |      |

#### **Test Graph**



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1  | 2390.0000      | 32.25                 | 13.37                 | -42.44                | 38.38             | 41.56             | 54.00             | 12.44          | Pass   | Vertical |
| 2  | 2402.0275      | 32.26                 | 13.31                 | -42.43                | 40.89             | 44.03             | 54.00             | 9.97           | Pass   | Vertical |





| Page | 56  | of | an |
|------|-----|----|----|
| Paue | 300 | OΙ | ษบ |

| Mode:   | GFSK Transmitting | Channel: | 2402 |
|---------|-------------------|----------|------|
| Remark: | Peak              |          |      |

## **Test Graph**



| N   | O Freq.<br>[MHz]   | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|-----|--------------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
| 1   | 2479.8185          | 32.37                 | 13.39                 | -42.39                | 93.84             | 97.21             | 74.00             | -23.21         | Pass   | Horizontal |
| 2   | <i>'</i>   /ΔΧ 5 " | 32.38                 | 13.38                 | -42.40                | 49.51             | 52.87             | 74.00             | 21.13          | Pass   | Horizontal |
| 548 |                    | - 1                   | No.                   |                       |                   |                   | 545               |                |        | _4         |





| D   | _ | $\Gamma$ | - 5 | 00 |
|-----|---|----------|-----|----|
| Pag | ᆫ | IJΙ      | OΙ  | ษบ |

| Mode:   | GFSK Transmitting | Channel: | 2480 |
|---------|-------------------|----------|------|
| Remark: | Peak              |          |      |

### **Test Graph**



| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1   | 2479.8185      | 32.37                 | 13.39                 | -42.39                | 93.84             | 97.21             | 74.00             | -23.21         | Pass   | Vertical |
| 2   | 2483.5000      | 32.38                 | 13.38                 | -42.40                | 49.85             | 53.21             | 74.00             | 20.79          | Pass   | Vertical |
| - 1 |                |                       | Name of the last      |                       | 100               |                   | 1.4               |                |        | -11-     |





Page 58 of 90

| Mode:   | GFSK Transmitting | Channel: | 2480 |  |
|---------|-------------------|----------|------|--|
| Remark: | AV                |          |      |  |

### **Test Graph**



|   | NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|---|------|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
|   | 1    | 2479.8623      | 32.37                 | 13.39                 | -42.39                | 39.58             | 42.95             | 54.00             | 11.05          | Pass   | Horizontal |
| T | 2    | 2483.5000      | 32.38                 | 13.38                 | -42.40                | 36.74             | 40.10             | 54.00             | 13.90          | Pass   | Horizontal |
| _ | -11- |                |                       | Name of the last      |                       | 100               |                   | 1.4               |                |        | -4-        |





| Mode:   | GFSK Transmitting | Channel: | 2480 |
|---------|-------------------|----------|------|
| Remark: | AV                |          |      |

## **Test Graph**



| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1   | 2479.8623      | 32.37                 | 13.39                 | -42.39                | 39.59             | 42.96             | 54.00             | 11.04          | Pass   | Vertical |
| 2   | 2483.5000      | 32.38                 | 13.38                 | -42.40                | 36.74             | 40.10             | 54.00             | 13.90          | Pass   | Vertical |
| 200 |                |                       |                       | •                     |                   | •                 |                   |                |        | -4-      |





Page 60 of 90

| Mode:   | π/4DQPSK Transmitting | Channel: | 2402 |
|---------|-----------------------|----------|------|
| Remark: | Peak                  |          |      |

### **Test Graph**



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
| 1  | 2390.0000      | 32.25                 | 13.37                 | -42.44                | 49.70             | 52.88             | 74.00             | 21.12          | Pass   | Horizontal |
| 2  | 2402.2653      | 32.26                 | 13.31                 | -42.43                | 92.72             | 95.86             | 74.00             | -21.86         | Pass   | Horizontal |





| Page | 61  | of | an |
|------|-----|----|----|
| Pau  | 201 | OI | ษบ |

| Mode:   | π/4DQPSK Transmitting | Channel: | 2402 |
|---------|-----------------------|----------|------|
| Remark: | Peak                  |          |      |

### **Test Graph**



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1  | 2390.0000      | 32.25                 | 13.37                 | -42.44                | 50.40             | 53.58             | 74.00             | 20.42          | Pass   | Vertical |
| 2  | 2402.1464      | 32.26                 | 13.31                 | -42.43                | 95.77             | 98.91             | 74.00             | -24.91         | Pass   | Vertical |





Page 62 of 90

| Mode:   | π/4DQPSK Transmitting | Channel: | 2402 |
|---------|-----------------------|----------|------|
| Remark: | AV                    |          |      |

### **Test Graph**



| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|------|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
| 1    | 2390.0000      | 32.25                 | 13.37                 | -42.44                | 38.39             | 41.57             | 54.00             | 12.43          | Pass   | Horizontal |
| 2    | 2402.0275      | 32.26                 | 13.31                 | -42.43                | 40.83             | 43.97             | 54.00             | 10.03          | Pass   | Horizontal |
| <br> |                |                       | Name of the last      |                       | 100               |                   | 1.4               |                |        | -11-       |





Page 63 of 90

| Mode:   | π/4DQPSK Transmitting | Channel: | 2402 |  |
|---------|-----------------------|----------|------|--|
| Remark: | AV                    |          |      |  |

## **Test Graph**



| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|------|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1    | 2390.0000      | 32.25                 | 13.37                 | -42.44                | 38.39             | 41.57             | 54.00             | 12.43          | Pass   | Vertical |
| 2    | 2402.0275      | 32.26                 | 13.31                 | -42.43                | 40.87             | 44.01             | 54.00             | 9.99           | Pass   | Vertical |
| - 11 |                |                       |                       |                       |                   |                   |                   |                |        | -4-      |





| Dogo | 64 | of | 00 |
|------|----|----|----|
| Page | 04 | OΙ | ЭU |

| Mode:   | π/4DQPSK Transmitting | Channel: | 2480 |  |
|---------|-----------------------|----------|------|--|
| Remark: | Peak                  |          |      |  |

### **Test Graph**



|   | NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|---|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
|   | 1  | 2479.8623      | 32.37                 | 13.39                 | -42.39                | 93.85             | 97.22             | 74.00             | -23.22         | Pass   | Horizontal |
|   | 2  | 2483.5000      | 32.38                 | 13.38                 | -42.40                | 49.33             | 52.69             | 74.00             | 21.31          | Pass   | Horizontal |
| _ |    |                |                       | Name of the last      |                       | 100               |                   | 1.4               |                |        | -4-        |





| Page | 65   | of | an |
|------|------|----|----|
| Page | oo e | OI | УU |

| Mode:   | π/4DQPSK Transmitting | Channel: | 2480 |
|---------|-----------------------|----------|------|
| Remark: | Peak                  |          |      |

### **Test Graph**



| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|------|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1    | 2479.8623      | 32.37                 | 13.39                 | -42.39                | 93.76             | 97.13             | 74.00             | -23.13         | Pass   | Vertical |
| 2    | 2483.5000      | 32.38                 | 13.38                 | -42.40                | 49.45             | 52.81             | 74.00             | 21.19          | Pass   | Vertical |
| 5485 |                |                       | No.                   |                       |                   |                   |                   |                |        | -4-      |





| Page | 66 | of | an |
|------|----|----|----|
| Page | סס | OI | УU |

| Mode:   | π/4DQPSK Transmitting | Channel: | 2480 |  |
|---------|-----------------------|----------|------|--|
| Remark: | AV                    |          |      |  |

### **Test Graph**



|   | NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|---|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
|   | 1   | 2479.9937      | 32.37                 | 13.39                 | -42.39                | 39.52             | 42.89             | 54.00             | 11.11          | Pass   | Horizontal |
|   | 2   | 2483.5000      | 32.38                 | 13.38                 | -42.40                | 36.73             | 40.09             | 54.00             | 13.91          | Pass   | Horizontal |
| _ | 110 |                | - 10                  |                       |                       | -15               |                   |                   |                |        | -11-       |





| Pag | _ | 67 | of | On |
|-----|---|----|----|----|
| Pau | е | וט | OI | УU |

| Mode:   | π/4DQPSK Transmitting | Channel: | 2480 |  |
|---------|-----------------------|----------|------|--|
| Remark: | AV                    |          |      |  |

### **Test Graph**



| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1   | 2479.8623      | 32.37                 | 13.39                 | -42.39                | 39.56             | 42.93             | 54.00             | 11.07          | Pass   | Vertical |
| 2   | 2483.5000      | 32.38                 | 13.38                 | -42.40                | 36.76             | 40.12             | 54.00             | 13.88          | Pass   | Vertical |
| 200 |                | - 10                  |                       | •                     | -15               | •                 |                   |                | •      | -4-      |





Page 68 of 90

| Mode:   | 8DPSK Transmitting | Channel: | 2402 |  |
|---------|--------------------|----------|------|--|
| Remark: | Peak               |          |      |  |

## **Test Graph**



| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
| 1   | 2390.0000      | 32.25                 | 13.37                 | -42.44                | 49.92             | 53.10             | 74.00             | 20.90          | Pass   | Horizontal |
| 2   | 2402.2653      | 32.26                 | 13.31                 | -42.43                | 92.74             | 95.88             | 74.00             | -21.88         | Pass   | Horizontal |
| 115 |                |                       |                       |                       | -17               |                   | 545               |                |        | -4-        |





Page 69 of 90

| Mode:   | 8DPSK Transmitting | Channel: | 2402 |
|---------|--------------------|----------|------|
| Remark: | Peak               |          |      |

### **Test Graph**



| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1   | 2390.0000      | 32.25                 | 13.37                 | -42.44                | 49.56             | 52.74             | 74.00             | 21.26          | Pass   | Vertical |
| 2   | 2402.1464      | 32.26                 | 13.31                 | -42.43                | 95.81             | 98.95             | 74.00             | -24.95         | Pass   | Vertical |
| 100 |                | - 10                  |                       |                       | 1.25              |                   |                   |                |        | -4-      |





Page 70 of 90

| Mode:   | 8DPSK Transmitting | Channel: | 2402 |
|---------|--------------------|----------|------|
| Remark: | AV                 |          |      |

#### **Test Graph**



| N | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|---|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
| 1 | 2390.0000      | 32.25                 | 13.37                 | -42.44                | 38.41             | 41.59             | 54.00             | 12.41          | Pass   | Horizontal |
| 2 | 2402.0275      | 32.26                 | 13.31                 | -42.43                | 40.73             | 43.87             | 54.00             | 10.13          | Pass   | Horizontal |





| Page | . 71 | of | On |
|------|------|----|----|
| Page | 7 (  | OΤ | 90 |

| Mode:   | 8DPSK Transmitting | Channel: | 2402 |  |
|---------|--------------------|----------|------|--|
| Remark: | AV                 |          |      |  |

## **Test Graph**



| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1   | 2390.0000      | 32.25                 | 13.37                 | -42.44                | 38.39             | 41.57             | 54.00             | 12.43          | Pass   | Vertical |
| 2   | 2402.0275      | 32.26                 | 13.31                 | -42.43                | 40.80             | 43.94             | 54.00             | 10.06          | Pass   | Vertical |
| - 1 |                |                       | No.                   |                       | 100               |                   | 1.4               |                |        | -11-     |





| Dogg | . 72       | of | 00 |
|------|------------|----|----|
| Page | <i>:</i> / | OI | УU |

| Mode:   | 8DPSK Transmitting | Channel: | 2480 |
|---------|--------------------|----------|------|
| Remark: | Peak               |          |      |

### **Test Graph**



|   | NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|---|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
| ſ | 1   | 2479.8185      | 32.37                 | 13.39                 | -42.39                | 93.82             | 97.19             | 74.00             | -23.19         | Pass   | Horizontal |
| Ī | 2   | 2483.5000      | 32.38                 | 13.38                 | -42.40                | 49.87             | 53.23             | 74.00             | 20.77          | Pass   | Horizontal |
| _ | 415 |                | - 10                  |                       |                       | 1.25              |                   |                   |                |        | -11-       |





| Dog  | 72          | of | 00 |
|------|-------------|----|----|
| Page | <i>=</i> /3 | OI | УU |

| Mode:   | 8DPSK Transmitting | Channel: | 2480 |
|---------|--------------------|----------|------|
| Remark: | Peak               |          |      |

### **Test Graph**



| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1   | 2479.8623      | 32.37                 | 13.39                 | -42.39                | 93.35             | 96.72             | 74.00             | -22.72         | Pass   | Vertical |
| 2   | 2483.5000      | 32.38                 | 13.38                 | -42.40                | 50.37             | 53.73             | 74.00             | 20.27          | Pass   | Vertical |
| 215 |                |                       |                       | •                     |                   |                   |                   |                |        | _4       |





| _   |      | -   |    |
|-----|------|-----|----|
| Pag | e 74 | ot. | 90 |

| Mode:   | 8DPSK Transmitting | Channel: | 2480 |    |
|---------|--------------------|----------|------|----|
| Remark: | AV                 |          |      | 7/ |

### **Test Graph**



| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|-----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
| 1   | 2480.2128      | 32.37                 | 13.39                 | -42.40                | 39.44             | 42.80             | 54.00             | 11.20          | Pass   | Horizontal |
| 2   | 2483.5000      | 32.38                 | 13.38                 | -42.40                | 36.73             | 40.09             | 54.00             | 13.91          | Pass   | Horizontal |
| - 1 |                |                       | Name of the last      |                       | 100               |                   | 120               |                |        | -11-       |





Page 75 of 90

| Mode:   | 8DPSK Transmitting | Channel: | 2480 |
|---------|--------------------|----------|------|
| Remark: | AV                 |          |      |

#### **Test Graph**



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1  | 2480.1252      | 32.37                 | 13.39                 | -42.40                | 39.44             | 42.80             | 54.00             | 11.20          | Pass   | Vertical |
| 2  | 2483.5000      | 32.38                 | 13.38                 | -42.40                | 36.76             | 40.12             | 54.00             | 13.88          | Pass   | Vertical |

#### Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of  $\pi/4DQPSK$  modulation type, the 3-DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.
- 2) As shown in this section, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor



Report No.: EED32L00018302 Page 76 of 90

## Appendix L): Radiated Spurious Emissions

| Receiver Setup: |                   |            |        |        |            |
|-----------------|-------------------|------------|--------|--------|------------|
|                 | Frequency         | Detector   | RBW    | VBW    | Remark     |
|                 | 0.009MHz-0.090MHz | Peak       | 10kHz  | 30kHz  | Peak       |
|                 | 0.009MHz-0.090MHz | Average    | 10kHz  | 30kHz  | Average    |
|                 | 0.090MHz-0.110MHz | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak |
|                 | 0.110MHz-0.490MHz | Peak       | 10kHz  | 30kHz  | Peak       |
|                 | 0.110MHz-0.490MHz | Average    | 10kHz  | 30kHz  | Average    |
|                 | 0.490MHz -30MHz   | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak |
| (40)            | 30MHz-1GHz        | Quasi-peak | 120kHz | 300kHz | Quasi-peak |
|                 | A1 4011-          | Peak       | 1MHz   | 3MHz   | Peak       |
|                 | Above 1GHz        |            |        |        | _          |

#### **Test Procedure:**

#### Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

Peak

1MHz

10Hz

Average

- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

#### Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter( Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

j. Repeat above procedures until all frequencies measured was complete.

| Frequency         | Field strength (microvolt/meter) | Limit<br>(dBµV/m) | Remark     | Measurement distance (m) |  |
|-------------------|----------------------------------|-------------------|------------|--------------------------|--|
| 0.009MHz-0.490MHz | 2400/F(kHz)                      | -                 | -10%       | 300                      |  |
| 0.490MHz-1.705MHz | 24000/F(kHz)                     | - /               | 30         | 30                       |  |
| 1.705MHz-30MHz    | 30                               | - \               | <u> </u>   | 30                       |  |
| 30MHz-88MHz       | 100                              | 40.0              | Quasi-peak | 3                        |  |
| 88MHz-216MHz      | 150                              | 43.5              | Quasi-peak | 3                        |  |
| 216MHz-960MHz     | 200                              | 46.0              | Quasi-peak | 3                        |  |
| 960MHz-1GHz       | 500                              | 54.0              | Quasi-peak | 3                        |  |
| Above 1GHz        | 500                              | 54.0              | Average    | 3                        |  |

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Report No.: EED32L00018302 Page 77 of 90

# **Radiated Spurious Emissions test Data:**

Product : R500 Data Collector Model/Type reference : R500

Temperature :  $23^{\circ}$  Humidity : 54%

### **Radiated Emission below 1GHz**

| Mode | e:             | GFSK T                | ransmitt        | ing                   |                   | Channel:          |                   | 2402           |        |          |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1    | 37.9548        | 11.65                 | 0.69            | -32.12                | 33.36             | 13.58             | 40.00             | 26.42          | Pass   | Н        |
| 2    | 63.9534        | 10.57                 | 0.92            | -32.05                | 35.11             | 14.55             | 40.00             | 25.45          | Pass   | Н        |
| 3    | 84.3254        | 8.09                  | 1.06            | -32.08                | 43.88             | 20.95             | 40.00             | 19.05          | Pass   | Н        |
| 4    | 193.7524       | 10.31                 | 1.63            | -31.96                | 47.01             | 26.99             | 43.50             | 16.51          | Pass   | Н        |
| 5    | 454.9025       | 16.28                 | 2.53            | -31.86                | 34.75             | 21.70             | 46.00             | 24.30          | Pass   | Н        |
| 6    | 687.5318       | 19.70                 | 3.14            | -32.06                | 37.08             | 27.86             | 46.00             | 18.14          | Pass   | Н        |
| 7    | 30.1940        | 10.51                 | 0.63            | -32.12                | 40.43             | 19.45             | 40.00             | 20.55          | Pass   | V        |
| 8    | 54.6405        | 12.46                 | 0.84            | -32.09                | 40.14             | 21.35             | 40.00             | 18.65          | Pass   | V        |
| 9    | 67.2517        | 9.71                  | 0.93            | -32.04                | 42.29             | 20.89             | 40.00             | 19.11          | Pass   | V        |
| 10   | 165.0375       | 8.18                  | 1.50            | -31.97                | 41.55             | 19.26             | 43.50             | 24.24          | Pass   | V        |
| 11   | 208.8859       | 11.13                 | 1.71            | -31.94                | 45.62             | 26.52             | 43.50             | 16.98          | Pass   | V        |
| 12   | 625.0575       | 19.20                 | 2.97            | -31.98                | 35.11             | 25.30             | 46.00             | 20.70          | Pass   | V        |

|   |           |                | 1 20                  |                 |                       | 1857              |                   | ( in the second   |                |        | 100      |
|---|-----------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| N | /lode     | :              | GFSK T                | ransmitt        | ing                   |                   | Channel:          |                   | 2441           |        |          |
| 1 | <b>10</b> | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|   | 1         | 37.6638        | 11.55                 | 0.69            | -32.11                | 34.42             | 14.55             | 40.00             | 25.45          | Pass   | Н        |
|   | 2         | 65.6996        | 10.12                 | 0.92            | -32.04                | 36.08             | 15.08             | 40.00             | 24.92          | Pass   | Н        |
|   | 3         | 82.4822        | 7.67                  | 1.05            | -32.07                | 43.74             | 20.39             | 40.00             | 19.61          | Pass   | Н        |
|   | 4         | 181.9172       | 9.18                  | 1.59            | -31.99                | 47.89             | 26.67             | 43.50             | 16.83          | Pass   | Н        |
| - | 5         | 454.8055       | 16.28                 | 2.53            | -31.86                | 35.24             | 22.19             | 46.00             | 23.81          | Pass   | Н        |
|   | 6         | 687.5318       | 19.70                 | 3.14            | -32.06                | 36.48             | 27.26             | 46.00             | 18.74          | Pass   | Н        |
| 9 | 7         | 30.0000        | 10.50                 | 0.63            | -32.12                | 41.80             | 20.81             | 40.00             | 19.19          | Pass   | V        |
|   | 8         | 54.9315        | 12.41                 | 0.84            | -32.08                | 39.77             | 20.94             | 40.00             | 19.06          | Pass   | V        |
|   | 9         | 66.4756        | 9.92                  | 0.93            | -32.05                | 42.33             | 21.13             | 40.00             | 18.87          | Pass   | V        |
|   | 10        | 184.3424       | 9.41                  | 1.59            | -31.98                | 41.10             | 20.12             | 43.50             | 23.38          | Pass   | V        |
|   | 11        | 208.8859       | 11.13                 | 1.71            | -31.94                | 45.90             | 26.80             | 43.50             | 16.70          | Pass   | V        |
|   | 12        | 625.0575       | 19.20                 | 2.97            | -31.98                | 36.01             | 26.20             | 46.00             | 19.80          | Pass   | V        |





Page 78 of 90

| Mode | e:             | GFSK 1                |                 | ing                   |                   | Channel:          |                   | 2480           |        |          |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1    | 43.6784        | 12.96                 | 0.74            | -32.11                | 31.99             | 13.58             | 40.00             | 26.42          | Pass   | Н        |
| 2    | 65.5056        | 10.17                 | 0.92            | -32.04                | 36.72             | 15.77             | 40.00             | 24.23          | Pass   | Н        |
| 3    | 82.0942        | 7.58                  | 1.05            | -32.07                | 43.33             | 19.89             | 40.00             | 20.11          | Pass   | Н        |
| 4    | 184.3424       | 9.41                  | 1.59            | -31.98                | 47.92             | 26.94             | 43.50             | 16.56          | Pass   | Н        |
| 5    | 455.8726       | 16.29                 | 2.54            | -31.85                | 35.44             | 22.42             | 46.00             | 23.58          | Pass   | Н        |
| 6    | 687.5318       | 19.70                 | 3.14            | -32.06                | 36.35             | 27.13             | 46.00             | 18.87          | Pass   | Н        |
| 7    | 37.4697        | 11.49                 | 0.68            | -32.11                | 38.36             | 18.42             | 40.00             | 21.58          | Pass   | V        |
| 8    | 56.2896        | 12.19                 | 0.86            | -32.07                | 40.59             | 21.57             | 40.00             | 18.43          | Pass   | V        |
| 9    | 66.1846        | 9.99                  | 0.93            | -32.05                | 41.07             | 19.94             | 40.00             | 20.06          | Pass   | V        |
| 10   | 184.3424       | 9.41                  | 1.59            | -31.98                | 41.77             | 20.79             | 43.50             | 22.71          | Pass   | V        |
| 11   | 208.8859       | 11.13                 | 1.71            | -31.94                | 45.88             | 26.78             | 43.50             | 16.72          | Pass   | V        |
| 12   | 625.0575       | 19.20                 | 2.97            | -31.98                | 35.39             | 25.58             | 46.00             | 20.42          | Pass   | V        |

| Mode | <b>:</b> :     | π/4DQF                | PSK Trar        | smitting              |                   | Channel:          |                   | 2402           |        |          |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1    | 31.7462        | 10.57                 | 0.64            | -32.12                | 36.09             | 15.18             | 40.00             | 24.82          | Pass   | Н        |
| 2    | 64.5355        | 10.42                 | 0.92            | -32.05                | 35.89             | 15.18             | 40.00             | 24.82          | Pass   | Н        |
| 3    | 83.2583        | 7.85                  | 1.05            | -32.07                | 43.16             | 19.99             | 40.00             | 20.01          | Pass   | H        |
| 4    | 184.1484       | 9.39                  | 1.59            | -31.98                | 47.47             | 26.47             | 43.50             | 17.03          | Pass   | Н        |
| 5    | 455.8726       | 16.29                 | 2.54            | -31.85                | 35.09             | 22.07             | 46.00             | 23.93          | Pass   | Н        |
| 6    | 687.5318       | 19.70                 | 3.14            | -32.06                | 35.25             | 26.03             | 46.00             | 19.97          | Pass   | Н        |
| 7    | 31.1641        | 10.55                 | 0.63            | -32.12                | 39.57             | 18.63             | 40.00             | 21.37          | Pass   | V        |
| 8    | 55.1255        | 12.38                 | 0.84            | -32.08                | 39.57             | 20.71             | 40.00             | 19.29          | Pass   | V        |
| 9    | 66.0876        | 10.02                 | 0.93            | -32.05                | 41.20             | 20.10             | 40.00             | 19.90          | Pass   | V        |
| 10   | 184.3424       | 9.41                  | 1.59            | -31.98                | 40.89             | 19.91             | 43.50             | 23.59          | Pass   | V        |
| 11   | 208.8859       | 11.13                 | 1.71            | -31.94                | 45.67             | 26.57             | 43.50             | 16.93          | Pass   | V        |
| 12   | 625.0575       | 19.20                 | 2.97            | -31.98                | 36.43             | 26.62             | 46.00             | 19.38          | Pass   | V        |















Page 79 of 90

|      | -1.0           |                       |                 | C 10                  |                   |                   |                   |                |        |          |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| Mode | <b>)</b> :     | π/4DQF                | PSK Tran        | nsmitting             |                   | Channel:          |                   | 2441           |        |          |
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1    | 32.8133        | 10.61                 | 0.64            | -32.11                | 34.27             | 13.41             | 40.00             | 26.59          | Pass   | Н        |
| 2    | 64.9235        | 10.32                 | 0.92            | -32.05                | 36.40             | 15.59             | 40.00             | 24.41          | Pass   | Н        |
| 3    | 82.5793        | 7.69                  | 1.05            | -32.07                | 42.29             | 18.96             | 40.00             | 21.04          | Pass   | Н        |
| 4    | 183.1783       | 9.30                  | 1.59            | -31.98                | 47.73             | 26.64             | 43.50             | 16.86          | Pass   | Н        |
| 5    | 455.7756       | 16.29                 | 2.54            | -31.85                | 35.32             | 22.30             | 46.00             | 23.70          | Pass   | Н        |
| 6    | 687.5318       | 19.70                 | 3.14            | -32.06                | 35.52             | 26.30             | 46.00             | 19.70          | Pass   | Н        |
| 7    | 38.6339        | 11.86                 | 0.70            | -32.11                | 37.45             | 17.90             | 40.00             | 22.10          | Pass   | V        |
| 8    | 55.4165        | 12.33                 | 0.84            | -32.07                | 39.56             | 20.66             | 40.00             | 19.34          | Pass   | V        |
| 9    | 66.5727        | 9.89                  | 0.93            | -32.05                | 40.88             | 19.65             | 40.00             | 20.35          | Pass   | V        |
| 10   | 184.3424       | 9.41                  | 1.59            | -31.98                | 39.92             | 18.94             | 43.50             | 24.56          | Pass   | V        |
| 11   | 208.8859       | 11.13                 | 1.71            | -31.94                | 45.42             | 26.32             | 43.50             | 17.18          | Pass   | V        |
| 12   | 625.0575       | 19.20                 | 2.97            | -31.98                | 35.12             | 25.31             | 46.00             | 20.69          | Pass   | V        |

| Mode | <b>:</b> :     | π/4DQF                | PSK Trar        | smitting              |                   | Channel:          |                   | 2480           |        |          |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1    | 37.9548        | 11.65                 | 0.69            | -32.12                | 33.19             | 13.41             | 40.00             | 26.59          | Pass   | Н        |
| 2    | 65.3115        | 10.22                 | 0.92            | -32.04                | 36.90             | 16.00             | 40.00             | 24.00          | Pass   | Н        |
| 3    | 82.3852        | 7.65                  | 1.05            | -32.08                | 42.63             | 19.25             | 40.00             | 20.75          | Pass   | Н        |
| 4    | 181.8202       | 9.17                  | 1.59            | -31.99                | 47.80             | 26.57             | 43.50             | 16.93          | Pass   | Н        |
| 5    | 455.7756       | 16.29                 | 2.54            | -31.85                | 35.21             | 22.19             | 46.00             | 23.81          | Pass   | Н        |
| 6    | 687.5318       | 19.70                 | 3.14            | -32.06                | 36.05             | 26.83             | 46.00             | 19.17          | Pass   | Н        |
| 7    | 30.0000        | 10.50                 | 0.63            | -32.12                | 39.92             | 18.93             | 40.00             | 21.07          | Pass   | V        |
| 8    | 55.2225        | 12.36                 | 0.84            | -32.07                | 40.62             | 21.75             | 40.00             | 18.25          | Pass   | V        |
| 9    | 65.6026        | 10.14                 | 0.92            | -32.04                | 41.14             | 20.16             | 40.00             | 19.84          | Pass   | V        |
| 10   | 184.3424       | 9.41                  | 1.59            | -31.98                | 40.41             | 19.43             | 43.50             | 24.07          | Pass   | V        |
| 11   | 208.8859       | 11.13                 | 1.71            | -31.94                | 45.34             | 26.24             | 43.50             | 17.26          | Pass   | V        |
| 12   | 625.0575       | 19.20                 | 2.97            | -31.98                | 35.17             | 25.36             | 46.00             | 20.64          | Pass   | V        |















Page 80 of 90

| Mode | <b>e</b> :     | 8DPSK                 | Transmi         | tting                 |                   | Channel:          |                   | 2402           |        |          |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1    | 43.8724        | 13.00                 | 0.74            | -32.11                | 32.19             | 13.82             | 40.00             | 26.18          | Pass   | Н        |
| 2    | 66.2816        | 9.97                  | 0.93            | -32.05                | 37.13             | 15.98             | 40.00             | 24.02          | Pass   | Н        |
| 3    | 83.3553        | 7.87                  | 1.05            | -32.07                | 41.53             | 18.38             | 40.00             | 21.62          | Pass   | Н        |
| 4    | 182.9843       | 9.28                  | 1.59            | -31.98                | 47.90             | 26.79             | 43.50             | 16.71          | Pass   | Н        |
| 5    | 445.3955       | 16.13                 | 2.50            | -31.89                | 35.04             | 21.78             | 46.00             | 24.22          | Pass   | Н        |
| 6    | 687.5318       | 19.70                 | 3.14            | -32.06                | 35.22             | 26.00             | 46.00             | 20.00          | Pass   | Н        |
| 7    | 30.0000        | 10.50                 | 0.63            | -32.12                | 41.40             | 20.41             | 40.00             | 19.59          | Pass   | V        |
| 8    | 55.2225        | 12.36                 | 0.84            | -32.07                | 40.90             | 22.03             | 40.00             | 17.97          | Pass   | V        |
| 9    | 66.4756        | 9.92                  | 0.93            | -32.05                | 41.51             | 20.31             | 40.00             | 19.69          | Pass   | V        |
| 10   | 184.3424       | 9.41                  | 1.59            | -31.98                | 40.54             | 19.56             | 43.50             | 23.94          | Pass   | V        |
| 11   | 208.8859       | 11.13                 | 1.71            | -31.94                | 45.37             | 26.27             | 43.50             | 17.23          | Pass   | V        |
| 12   | 625.0575       | 19.20                 | 2.97            | -31.98                | 35.59             | 25.78             | 46.00             | 20.22          | Pass   | V        |

| Mode | <b>)</b> :     | 8DPSK                 | Transmi         | tting                 |                   | Channel:          |                   | 2441           |        |          |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1    | 37.6638        | 11.55                 | 0.69            | -32.11                | 33.55             | 13.68             | 40.00             | 26.32          | Pass   | Н        |
| 2    | 65.2145        | 10.24                 | 0.92            | -32.04                | 35.97             | 15.09             | 40.00             | 24.91          | Pass   | Н        |
| 3    | 82.0942        | 7.58                  | 1.05            | -32.07                | 42.41             | 18.97             | 40.00             | 21.03          | Pass   | Н        |
| 4    | 181.4321       | 9.14                  | 1.58            | -31.99                | 47.21             | 25.94             | 43.50             | 17.56          | Pass   | Н        |
| 5    | 452.5743       | 16.24                 | 2.52            | -31.87                | 34.32             | 21.21             | 46.00             | 24.79          | Pass   | Н        |
| 6    | 687.5318       | 19.70                 | 3.14            | -32.06                | 35.64             | 26.42             | 46.00             | 19.58          | Pass   | Н        |
| 7    | 30.0970        | 10.50                 | 0.63            | -32.12                | 39.93             | 18.94             | 40.00             | 21.06          | Pass   | V        |
| 8    | 55.0285        | 12.40                 | 0.84            | -32.08                | 40.21             | 21.37             | 40.00             | 18.63          | Pass   | V        |
| 9    | 66.3786        | 9.94                  | 0.93            | -32.05                | 40.85             | 19.67             | 40.00             | 20.33          | Pass   | V        |
| 10   | 184.3424       | 9.41                  | 1.59            | -31.98                | 40.36             | 19.38             | 43.50             | 24.12          | Pass   | V        |
| 11   | 208.8859       | 11.13                 | 1.71            | -31.94                | 45.78             | 26.68             | 43.50             | 16.82          | Pass   | V        |
| 12   | 625.0575       | 19.20                 | 2.97            | -31.98                | 35.86             | 26.05             | 46.00             | 19.95          | Pass   | V        |





Page 81 of 90

| Mode | e:             | 8DPSK                 | Transmi         | tting                 |                   | Channel:          |                   | 2480           |        |          |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1    | 37.9548        | 11.65                 | 0.69            | -32.12                | 35.01             | 15.23             | 40.00             | 24.77          | Pass   | Н        |
| 2    | 64.8265        | 10.35                 | 0.92            | -32.05                | 36.78             | 16.00             | 40.00             | 24.00          | Pass   | Н        |
| 3    | 82.0942        | 7.58                  | 1.05            | -32.07                | 42.19             | 18.75             | 40.00             | 21.25          | Pass   | Н        |
| 4    | 182.3052       | 9.22                  | 1.59            | -31.99                | 47.25             | 26.07             | 43.50             | 17.43          | Pass   | Н        |
| 5    | 454.2234       | 16.27                 | 2.53            | -31.87                | 34.44             | 21.37             | 46.00             | 24.63          | Pass   | Н        |
| 6    | 687.5318       | 19.70                 | 3.14            | -32.06                | 34.51             | 25.29             | 46.00             | 20.71          | Pass   | Н        |
| 7    | 30.3880        | 10.52                 | 0.63            | -32.12                | 41.14             | 20.17             | 40.00             | 19.83          | Pass   | V        |
| 8    | 54.2524        | 12.52                 | 0.83            | -32.08                | 40.17             | 21.44             | 40.00             | 18.56          | Pass   | V        |
| 9    | 66.0876        | 10.02                 | 0.93            | -32.05                | 40.89             | 19.79             | 40.00             | 20.21          | Pass   | V        |
| 10   | 184.3424       | 9.41                  | 1.59            | -31.98                | 39.79             | 18.81             | 43.50             | 24.69          | Pass   | V        |
| 11   | 208.8859       | 11.13                 | 1.71            | -31.94                | 45.51             | 26.41             | 43.50             | 17.09          | Pass   | V        |
| 12   | 625.0575       | 19.20                 | 2.97            | -31.98                | 35.41             | 25.60             | 46.00             | 20.40          | Pass   | V        |





### **Transmitter Emission above 1GHz**

| Mode | e:             | GFSK T                | ransmitt        | ing                   |                   | Channel:          |                   | 2402           |        |          |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1    | 4804.0000      | 34.50                 | 4.55            | -40.66                | 45.81             | 44.20             | 74.00             | 29.80          | Pass   | Н        |
| 2    | 7206.0000      | 36.31                 | 5.81            | -41.02                | 44.48             | 45.58             | 74.00             | 28.42          | Pass   | Н        |
| 3    | 9608.0000      | 37.64                 | 6.63            | -40.76                | 43.19             | 46.70             | 74.00             | 27.30          | Pass   | Н        |
| 4    | 12010.0000     | 39.31                 | 7.60            | -41.21                | 43.89             | 49.59             | 74.00             | 24.41          | Pass   | Н        |
| 5    | 4804.0000      | 34.50                 | 4.55            | -40.66                | 45.02             | 43.41             | 74.00             | 30.59          | Pass   | V        |
| 6    | 7206.0000      | 36.31                 | 5.81            | -41.02                | 44.51             | 45.61             | 74.00             | 28.39          | Pass   | V        |
| 7    | 9608.0000      | 37.64                 | 6.63            | -40.76                | 43.57             | 47.08             | 74.00             | 26.92          | Pass   | V        |
| 8    | 12010.0000     | 39.31                 | 7.60            | -41.21                | 44.51             | 50.21             | 74.00             | 23.79          | Pass   | V        |

Page 82 of 90

| Mode | э:             | GFSK T                | ransmitt        | ing                   |                   | Channel:          |                   | 2441           |        |          |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1    | 4882.0000      | 34.50                 | 4.81            | -40.60                | 45.04             | 43.75             | 74.00             | 30.25          | Pass   | Н        |
| 2    | 7323.0000      | 36.42                 | 5.85            | -40.91                | 44.88             | 46.24             | 74.00             | 27.76          | Pass   | Н        |
| 3    | 9764.0000      | 37.71                 | 6.71            | -40.62                | 43.13             | 46.93             | 74.00             | 27.07          | Pass   | Η        |
| 4    | 12205.0000     | 39.42                 | 7.67            | -41.16                | 44.26             | 50.19             | 74.00             | 23.81          | Pass   | Н        |
| 5    | 4882.0000      | 34.50                 | 4.81            | -40.60                | 44.19             | 42.90             | 74.00             | 31.10          | Pass   | V        |
| 6    | 7323.0000      | 36.42                 | 5.85            | -40.91                | 43.80             | 45.16             | 74.00             | 28.84          | Pass   | V        |
| 7    | 9764.0000      | 37.71                 | 6.71            | -40.62                | 42.23             | 46.03             | 74.00             | 27.97          | Pass   | V        |
| 8    | 12205.0000     | 39.42                 | 7.67            | -41.16                | 44.50             | 50.43             | 74.00             | 23.57          | Pass   | V        |



 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$ 



Page 83 of 90

| Mod | e:             | GFSK T                | ransmitt        | ing                   |                   | Channel:          |                   | 2480           |        |          |
|-----|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1   | 4804.0000      | 34.50                 | 4.55            | -40.66                | 44.38             | 42.77             | 74.00             | 31.23          | Pass   | Н        |
| 2   | 7440.0000      | 36.54                 | 5.85            | -40.82                | 43.66             | 45.23             | 74.00             | 28.77          | Pass   | Н        |
| 3   | 9920.0000      | 37.77                 | 6.79            | -40.48                | 42.36             | 46.44             | 74.00             | 27.56          | Pass   | Н        |
| 4   | 12400.0000     | 39.54                 | 7.86            | -41.12                | 45.21             | 51.49             | 74.00             | 22.51          | Pass   | Н        |
| 5   | 4960.0000      | 34.50                 | 4.82            | -40.53                | 45.42             | 44.21             | 74.00             | 29.79          | Pass   | V        |
| 6   | 7440.0000      | 36.54                 | 5.85            | -40.82                | 45.48             | 47.05             | 74.00             | 26.95          | Pass   | V        |
| 7   | 9920.0000      | 37.77                 | 6.79            | -40.48                | 42.95             | 47.03             | 74.00             | 26.97          | Pass   | V        |
| 8   | 12400.0000     | 39.54                 | 7.86            | -41.12                | 45.69             | 51.97             | 74.00             | 22.03          | Pass   | V        |

| Mode | e:             | π/4DQF                | PSK Tran        | smitting              |                   | Channel:          |                   | 2402           |        |          |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1    | 4804.0000      | 34.50                 | 4.55            | -40.66                | 45.19             | 43.58             | 74.00             | 30.42          | Pass   | Н        |
| 2    | 7206.0000      | 36.31                 | 5.81            | -41.02                | 45.15             | 46.25             | 74.00             | 27.75          | Pass   | Н        |
| 3    | 9608.0000      | 37.64                 | 6.63            | -40.76                | 44.63             | 48.14             | 74.00             | 25.86          | Pass   | Н        |
| 4    | 12010.0000     | 39.31                 | 7.60            | -41.21                | 43.67             | 49.37             | 74.00             | 24.63          | Pass   | Н        |
| 5    | 4804.0000      | 34.50                 | 4.55            | -40.66                | 44.75             | 43.14             | 74.00             | 30.86          | Pass   | V        |
| 6    | 7206.0000      | 36.31                 | 5.81            | -41.02                | 44.18             | 45.28             | 74.00             | 28.72          | Pass   | V        |
| 7    | 9608.0000      | 37.64                 | 6.63            | -40.76                | 43.17             | 46.68             | 74.00             | 27.32          | Pass   | V        |
| 8    | 12010.0000     | 39.31                 | 7.60            | -41.21                | 43.39             | 49.09             | 74.00             | 24.91          | Pass   | V        |





Page 84 of 90

| Mode: |                | π/4DQF                | PSK Trar        | smitting              |                   | Channel: 2441     |                   |                |        |          |
|-------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| NO    | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1     | 4882.0000      | 34.50                 | 4.81            | -40.60                | 44.32             | 43.03             | 74.00             | 30.97          | Pass   | Н        |
| 2     | 7323.0000      | 36.42                 | 5.85            | -40.91                | 44.24             | 45.60             | 74.00             | 28.40          | Pass   | Н        |
| 3     | 9764.0000      | 37.71                 | 6.71            | -40.62                | 42.92             | 46.72             | 74.00             | 27.28          | Pass   | Н        |
| 4     | 12205.0000     | 39.42                 | 7.67            | -41.16                | 43.99             | 49.92             | 74.00             | 24.08          | Pass   | Н        |
| 5     | 4882.0000      | 34.50                 | 4.81            | -40.60                | 44.42             | 43.13             | 74.00             | 30.87          | Pass   | V        |
| 6     | 7323.0000      | 36.42                 | 5.85            | -40.91                | 44.02             | 45.38             | 74.00             | 28.62          | Pass   | V        |
| 7     | 9764.0000      | 37.71                 | 6.71            | -40.62                | 42.68             | 46.48             | 74.00             | 27.52          | Pass   | V        |
| 8     | 12205.0000     | 39.42                 | 7.67            | -41.16                | 43.76             | 49.69             | 74.00             | 24.31          | Pass   | V        |

| Mode | Mode:          |                       | PSK Tran        | smitting              |                   | Channel: 248      |                   |                | 2480   |          |  |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|--|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |  |
| 1    | 4960.0000      | 34.50                 | 4.82            | -40.53                | 45.60             | 44.39             | 74.00             | 29.61          | Pass   | Н        |  |
| 2    | 7440.0000      | 36.54                 | 5.85            | -40.82                | 44.97             | 46.54             | 74.00             | 27.46          | Pass   | Н        |  |
| 3    | 9920.0000      | 37.77                 | 6.79            | -40.48                | 43.61             | 47.69             | 74.00             | 26.31          | Pass   | Н        |  |
| 4    | 12400.0000     | 39.54                 | 7.86            | -41.12                | 44.51             | 50.79             | 74.00             | 23.21          | Pass   | Н        |  |
| 5    | 4960.0000      | 34.50                 | 4.82            | -40.53                | 45.38             | 44.17             | 74.00             | 29.83          | Pass   | V        |  |
| 6    | 7440.0000      | 36.54                 | 5.85            | -40.82                | 43.97             | 45.54             | 74.00             | 28.46          | Pass   | ٧        |  |
| 7    | 9920.0000      | 37.77                 | 6.79            | -40.48                | 41.99             | 46.07             | 74.00             | 27.93          | Pass   | V        |  |
| 8    | 12400.0000     | 39.54                 | 7.86            | -41.12                | 43.95             | 50.23             | 74.00             | 23.77          | Pass   | V        |  |





Page 85 of 90

| Mod | le:            | 8DPSK                 | Transmi         | tting                 |                   | Channel: 2402     |                   |                |        |          |
|-----|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| NO  | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1   | 4804.0000      | 34.50                 | 4.55            | -40.66                | 45.64             | 44.03             | 74.00             | 29.97          | Pass   | Н        |
| 2   | 7206.0000      | 36.31                 | 5.81            | -41.02                | 43.85             | 44.95             | 74.00             | 29.05          | Pass   | Н        |
| 3   | 9608.0000      | 37.64                 | 6.63            | -40.76                | 43.89             | 47.40             | 74.00             | 26.60          | Pass   | Н        |
| 4   | 12010.0000     | 39.31                 | 7.60            | -41.21                | 43.13             | 48.83             | 74.00             | 25.17          | Pass   | Н        |
| 5   | 4804.0000      | 34.50                 | 4.55            | -40.66                | 44.35             | 42.74             | 74.00             | 31.26          | Pass   | V        |
| 6   | 7206.0000      | 36.31                 | 5.81            | -41.02                | 45.21             | 46.31             | 74.00             | 27.69          | Pass   | V        |
| 7   | 9608.0000      | 37.64                 | 6.63            | -40.76                | 43.91             | 47.42             | 74.00             | 26.58          | Pass   | V        |
| 8   | 12010.0000     | 39.31                 | 7.60            | -41.21                | 43.27             | 48.97             | 74.00             | 25.03          | Pass   | V        |

| Mode | Mode:          |                       | Transmi         | tting                 |                   | Channel: 2441     |                   |                |        |          |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1    | 4882.0000      | 34.50                 | 4.81            | -40.60                | 44.77             | 43.48             | 74.00             | 30.52          | Pass   | Н        |
| 2    | 7323.0000      | 36.42                 | 5.85            | -40.91                | 44.43             | 45.79             | 74.00             | 28.21          | Pass   | Н        |
| 3    | 9764.0000      | 37.71                 | 6.71            | -40.62                | 43.37             | 47.17             | 74.00             | 26.83          | Pass   | Н        |
| 4    | 12205.0000     | 39.42                 | 7.67            | -41.16                | 43.88             | 49.81             | 74.00             | 24.19          | Pass   | Н        |
| 5    | 4882.0000      | 34.50                 | 4.81            | -40.60                | 45.72             | 44.43             | 74.00             | 29.57          | Pass   | V        |
| 6    | 7323.0000      | 36.42                 | 5.85            | -40.91                | 44.05             | 45.41             | 74.00             | 28.59          | Pass   | V        |
| 7    | 9764.0000      | 37.71                 | 6.71            | -40.62                | 43.22             | 47.02             | 74.00             | 26.98          | Pass   | V        |
| 8    | 12205.0000     | 39.42                 | 7.67            | -41.16                | 43.37             | 49.30             | 74.00             | 24.70          | Pass   | V        |





| Page | 26       | of  | an       |
|------|----------|-----|----------|
| rauc | $\omega$ | OI. | $\sigma$ |

| Mode: |                | 8DPSK                 | Transmi         | tting                 |                   | Channel: 2480     |                   |                |        |          |
|-------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| NO    | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
| 1     | 4960.0000      | 34.50                 | 4.82            | -40.53                | 46.07             | 44.86             | 74.00             | 29.14          | Pass   | Н        |
| 2     | 7440.0000      | 36.54                 | 5.85            | -40.82                | 44.06             | 45.63             | 74.00             | 28.37          | Pass   | Н        |
| 3     | 9920.0000      | 37.77                 | 6.79            | -40.48                | 42.02             | 46.10             | 74.00             | 27.90          | Pass   | Н        |
| 4     | 12400.0000     | 39.54                 | 7.86            | -41.12                | 44.17             | 50.45             | 74.00             | 23.55          | Pass   | Н        |
| 5     | 4960.0000      | 34.50                 | 4.82            | -40.53                | 44.98             | 43.77             | 74.00             | 30.23          | Pass   | V        |
| 6     | 7440.0000      | 36.54                 | 5.85            | -40.82                | 43.72             | 45.29             | 74.00             | 28.71          | Pass   | V        |
| 7     | 9920.0000      | 37.77                 | 6.79            | -40.48                | 42.54             | 46.62             | 74.00             | 27.38          | Pass   | V        |
| 8     | 12400.0000     | 39.54                 | 7.86            | -41.12                | 43.96             | 50.24             | 74.00             | 23.76          | Pass   | V        |

#### Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of  $\pi/4DQPSK$  modulation type, he 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. H owever, the peak field strength of any emission shall not exceed the maximum permitted average limits specifie d above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.





Report No. : EED32L00018302 Page 90 of 90

# **PHOTOGRAPHS OF EUT Constructional Details**

Refer to Report No. EED32L00018301 for EUT external and internal photos.

### \*\*\* End of Report \*\*\*

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

