Given two questions I was sent to day, limits vs. continuity at end points needs clarification. Let me try again.

def: f(x) is continuous at a if limf(x) = f(a)

This means () limf(x) is a real number

2) fra exists (a is in domain of f)

3 0 = 2

But what happens if a is the end point of a domain? For example, $f(x) = \sqrt{x}$ has a domain which is $[0, \infty)$. Is f(x) continuous at x = 0?

Yes! Continuity at end points of intervals only needs a one-sided limit. — see Definition 3 in 1.8 notes. So in this case ; since 0 is an end point, $f(x) = \sqrt{x}$ is continuous at x = 0 because $\lim_{x \to 0^+} \sqrt{x} = f(0) = 0$

However if we were just asked to evaluate $\lim \sqrt{x}$, we would in this case say DNE. $x \to 0$

* (This is where I may have confused some of you!)

 $\lim \sqrt{x} = \sqrt{0} = 0$ because when approaching from the right, all x are positive so can take \sqrt{x}

lim \sqrt{x} DNE because when approaching from left, $x \to 0^-$ x are negative, \sqrt{x} is undefined -- we can't approach from left.

50 0≠ DNE Therefore lim √x DNE, as one-sided limits x > 0 aren't same real number.