# 画像情報処理1 - 第9回 -

立命館大学 情報理工学部 画像・音メディアコース 岩本 祐太郎、徐 剛

## シラバス

- ・画像解析するための画像特徴を抽出する方法について学ぶ
- ・画像認識方法(顔,物体etc.)について学ぶ

|         | <u>,                                      </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 画像特徴の抽出 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9 / 徐剛  | 画像の微分、勾配、エッジ抽出、Sobelフィルタ<br>※【BCPレベル1~2】対面で実施、【BCPレベル3~4】webで実施                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 画像特徴の抽出 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10 / 徐剛 | Cannyフィルタ、ヒステリシス閾値処理<br>※【BCPレベル1~2】対面で実施、【BCPレベル3~4】webで実施                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | 画像特徴の抽出 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11 / 徐剛 | 2 次元特徴、コーナーの抽出、Harrisオペレータ<br>※【BCPレベル1~2】対面で実施、【BCPレベル3~4】webで実施                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 画像特徴の抽出 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12 / 徐剛 | ハフ空間、ハフ変換、直接抽出<br>※【BCPレベル1~2】対面で実施、【BCPレベル3~4】webで実施                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | 画像照合と認識1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13 / 徐剛 | テンプレートマッチング、輝度の線形変換、正規化相関<br>※【BCPレベル1~2】対面で実施、【BCPレベル3~4】webで実施                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | 画像照合と認識 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14 / 徐剛 | ディスタンスマップ、2次元パターンの探索、影や隠れにもロバストなエッジマッチング<br>※【BCPレベル1~2】対面で実施、【BCPレベル3~4】webで実施                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 確認テスト(60分)と解説(30分)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15 / 徐剛 | 第9~14回の授業内容についてのテスト<br>※【BCPレベル1~2】対面で実施、【BCPレベル3~4】webで実施                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | and the second s |

## 参考文献・データセット

- CG-ARTS, "ディジタル画像処理[改訂第二版]", 2020/2/26.
- 神奈川工科大学標準画像/サンプルデータ

http://www.ess.ic.kanagawa-it.ac.jp/app\_images\_j.html

※スライドの画像は画像処理でよく用いられる上記の標準画像を利用

## 画像処理「前提知識」

- 1. デジタル画像は離散化された数字の集まり
- 2. 画像の左上を原点にして、横軸x, 縦軸yとする



| 200 | 205 | 90  | 103 |
|-----|-----|-----|-----|
| 210 | 219 | 88  | 97  |
| 214 | 210 | 95  | 100 |
| 205 | 202 | 102 | 103 |

•

#### 今日の目的

• 画像処理・解析に興味を持ってもらう 画像特徴を抽出して何ができるのか? 産業応用、アプリケーション



・画像特徴の抽出の理解 画像認識 画像の微分、勾配、エッジ抽出、Sobelフィルタ







## 画像処理・解析の産業応用(どんなことができるのだろうか?)

- 画像認識, 自動運転, etc.
  - 画像認識(11分10秒~):

FeiFei Li: How we teach computers to understand pictures

URL:https://www.youtube.com/watch?v=40riCqvRoMs

■自動運転(7分30秒~):

Chris Urmson: How a Driverless car sees the road

URL: https://www.youtube.com/watch?v=tiwVMrTLUWg

- 画像解析
  - ■姿勢推定

Zhe Cao, et.al, "Realtime Multi-Person 2D Human Pose Estimation using Part Affinity Field, CVPR 2017"

URL: https://www.youtube.com/watch?v=pW6nZXeWIGM

#### • 画質改善

■解像度の改善

Super-resolution Technology [NEC official]

URL: https://www.youtube.com/watch?v=8DPHSwpDNVc

#### • 画像加工

#### ■ 顔表情のコピー

Justus Thies, et.al, "Face2Face: Real-ime Face Capture and Reenactment of RGB Videls", CVPR2016.

URL: http://www.graphics.stanford.edu/~niessner/thies2016face.html

#### ■ 画像生成

Phillip Isola, et.al., "Image-to-Image Translation with Conditional Adversal Nets", CVPR2017.

https://phillipi.github.io/pix2pix/

# 画像特徴の抽出 (画像の特徴って何?)

- 輝度
- 色(R,G,B)
- ・エッジ
- コーナー
- テクスチャ(模様)

• • •



テクスチャ

## 画像特徴の抽出(エッジ抽出)

人間の視覚情報処理では初期段階にエッジを検出する. そのためエッジの抽出は画像処理において重要!



https://jp.mathworks.com/help/images/ref/gabor.html

## 画像特徴の抽出(エッジ抽出)

エッジとは画像中で明るさ(輝度)が急激に変化する箇所をいう。

エッジ検出=輝度値が急激に変化する箇所を見つければよい.



#### エッジの種類



## 画像特徴の抽出(エッジ抽出)

輝度の変化量が大きいところを検出するには 画像を微分すればよい.

エッジ検出=輝度値が急激に変化する箇所を見つければよい. 輝度の変化量(傾き)を捉えればよい=画像を微分



#### 画像処理における微分【x方向】

画像における最小単位は1画素のため、隣の画素との差分を求めれば(数値)微分となる.



右側極限:
$$f'(x) = \lim_{\Delta x \to +0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

左側極限: 
$$f'(x) = \lim_{\Delta x \to -0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

 $\Delta x$ 動いたときにどれだけ変化するか = 傾き



離散画像の場合,

右側極限:  $\Delta x = 1$ 

左側極限:  $\Delta x = -1$ 

$$f'(x) = f(x+1) - f(x)$$

$$f'(x) = f(x) - f(x-1)$$

## 画像処理における微分【x方向】

$$\blacksquare f'(x) = 1 \cdot f(x+1) - 1 \cdot f(x)$$

| , ( ) | , ,  | , ,                     |   |
|-------|------|-------------------------|---|
|       |      |                         |   |
|       | f(x) | <i>f</i> ( <i>x</i> +1) |   |
|       |      |                         |   |
| •     | 面偽   |                         | • |

| $\frac{1}{x}$ | )  |   |
|---------------|----|---|
| 0             | 0  | 0 |
| 0             | -1 | 1 |
| 0             | 0  | 0 |

画像

$$\blacksquare f'(x) = 1 \cdot f(x) - 1 \cdot f(x-1)$$

| f(x-1) | f(x) |  |
|--------|------|--|
|        |      |  |
|        | 画像   |  |

| 0  | 0    | 0   |
|----|------|-----|
| -1 | 1    | 0   |
| 0  | 0    | 0   |
| 微り | テフィル | /タ2 |

Memo: 画像処理の場合,右極限からの微分値と左極限からの微分値が異なる. その平均

$$\blacksquare f'(x) = f(x+1)/2 - f(x-1)/2$$

| 0    | 0 | 0   |
|------|---|-----|
| -1/2 | 0 | 1/2 |
| 0    | 0 | 0   |

微分フィルタ3

※中心差分の考え方

※右方向を正

平均

## 【復習】フィルタリング処理

画像のフィルタリングは各画素をフィルタと重ね合わせ、要素毎の積をとりその和を求めればよい.

 $11 = -1 \cdot 12 + 1 \cdot 23$ 

| 10 | 15 | 20 | 25 | 80 | 85 |
|----|----|----|----|----|----|
| 12 | 13 | 23 | 83 | 90 | 93 |
| 13 | 23 | 80 | 92 | 55 | 67 |
| 12 | 92 | 74 | 62 | 22 | 23 |
| 90 | 92 | 63 | 18 | 23 | 22 |
| 88 | 60 | 15 | 23 | 31 | 18 |

画像(f)

|      | 0  | 0 | 0 |
|------|----|---|---|
| *1/2 | -1 | 0 | 1 |
|      | 0  | 0 | 0 |

フィルタ(g)

f\*g

|     | 11 |  |  |
|-----|----|--|--|
|     |    |  |  |
| 1/2 |    |  |  |
|     |    |  |  |
|     |    |  |  |

## 【復習】フィルタリング処理

画像のフィルタリングは各画素をフィルタと重ね合わせ、要素毎の積をとりその和を求めればよい.

 $11 = -1 \cdot 12 + 1 \cdot 23$ 

 $70 = -1 \cdot 13 + 1 \cdot 83$ 

| 10 | 15 | 20 | 25 | 80 | 85 |
|----|----|----|----|----|----|
| 12 | 13 | 23 | 83 | 90 | 93 |
| 13 | 23 | 80 | 92 | 55 | 67 |
| 12 | 92 | 74 | 62 | 22 | 23 |
| 90 | 92 | 63 | 18 | 23 | 22 |
| 88 | 60 | 15 | 23 | 31 | 18 |



画像(f)

フィルタ(g)

f\*g

|     | 11 | 70 |  |  |
|-----|----|----|--|--|
|     |    |    |  |  |
| 1/2 |    |    |  |  |
|     |    |    |  |  |
|     |    |    |  |  |

## 【復習】フィルタリング処理

画像のフィルタリングは各画素をフィルタと重ね合わせ、要素毎の積をとりその和を求めればよい.

 $11 = -1 \cdot 12 + 1 \cdot 23$  $70 = -1 \cdot 13 + 1 \cdot 83$ 

•

| 10 | 15  | 20 | 25 | 80              | 85 |
|----|-----|----|----|-----------------|----|
| 12 | 13  | 23 | 83 | <del>.</del> 90 | 93 |
| 13 | 23  | 80 | 92 | 55              | 67 |
| 12 | 92  | 74 | 62 | :22             | 23 |
| 90 | 92: | 63 | 18 | 23              | 22 |
| 88 | 60  | 15 | 23 | 31              | 18 |

\*1/2 -1 0 1 0 0 0

画像(f)

フィルタ(g)

f\*g

|     | 11  | 70  | 67  | 10  |  |
|-----|-----|-----|-----|-----|--|
|     | 67  | 69  | -25 | -25 |  |
| 1/2 | 62  | -30 | -52 | -39 |  |
|     | -27 | -74 | -40 | 4   |  |
|     |     |     |     |     |  |

#### Memo: 画像処理の場合,右極 限からの微分値と左極限から

## 画像の微<sup>の微分値が異なる。(DiffI)</sup>



image



Diff1 = G2 - G1



G1 = image\*f1'f1'(x) = f(x+1) - f(x) f2'(x) = f(x) - f(x-1)





G2 = image\*f2'



G3 = image \* f3' Diff2 = G3 - (G1 + G2)/2f3'(x) = f(x+1)/2 - f(x-1)/2

## 画像処理における微分【y方向】

 $\blacksquare f'(y) = 1 \cdot f(y+1) - 1 \cdot f(y)$ 

| , , | , , , , , , , , , , , , , , , , , , , |   |
|-----|---------------------------------------|---|
|     |                                       |   |
|     | f(y)                                  | * |
|     | f(y+1)                                |   |
|     | <b>画</b> 像                            |   |

| - | $\Gamma \circ f(y)$ |    |   |  |  |
|---|---------------------|----|---|--|--|
|   | 0                   | 0  | 0 |  |  |
| × | 0                   | -1 | 0 |  |  |
|   | 0                   | 1  | 0 |  |  |

画像 微分フィルタ1  $\blacksquare f'(y) = 1 \cdot f(y) - 1 \cdot f(y-1)$ 

|   | f(y-1) |       |
|---|--------|-------|
|   | f(y)   |       |
|   |        |       |
| • |        | <br>• |

|   | 0          | -1   | 0   |
|---|------------|------|-----|
| * | 0          | 1    | 0   |
|   | 0          | 0    | 0   |
|   | <u></u> 微分 | テフィル | /タ2 |

| f' | <i>(y)</i> | =f( | (y + | 1)/2 | 2-j | f(y) | <b>−</b> 1) | /2 |
|----|------------|-----|------|------|-----|------|-------------|----|
|    |            |     |      |      |     |      |             |    |

| 0 | -1/2 | 0 |
|---|------|---|
| 0 | 0    | 0 |
| 0 | 1/2  | 0 |

微分フィルタ3

※中心差分の考え方

※下方向を正

#### Memo: 画像処理の場合,右極 限からの微分値と左極限から

## 画像の微<sup>の微分値が異なる。(Diff1)</sup>



image



G1 = image\*f1'f1'(y) = f(y+1) - f(y) f2'(y) = f(y) - f(y-1)



G2 = image\*f2'



Diff1 = G2 - G1





G3 = image \* f3' Diff2 = G3 - (G1 + G2)/2

$$f3'(y) = f(y+1)/2 - f(y-1)/2$$

## 画像の微分

横方向の微分では**縦方向の線**が,**縦方向の微分**では **横方向の線**が検出される.



画像



横方向の微分(x)



縦方向の微分(y)

#### 画像の大きさ・方向

横方向の微分画像を $G_x(i,j)$ , 縦方向の微分画像を $G_y(i,j)$  としたとき, $(G_x(i,j),G_y(i,j))$ を**勾配**と呼ぶ。

#### ■ 勾配の大きさ

エッジは勾配の大きさが大きな箇所を検出すればよい.

$$\sqrt{(G_x(i,j))^2 + (G_y(i,j))^2}$$



#### ■ 勾配の方向

明るさの変化の大きい方向(エッジに対して垂直な方向)が得られる.

$$\tan^{-1}\frac{G_{y}(i,j)}{G_{x}(i,j)}$$

※ただし、ラジアン



#### (微分+平滑化) フィルタ

ノイズを抑えながらエッジを抽出するために、微分 フィルタと平滑化フィルタを組み合わせる.

微分+平滑化の流れ

入力画像 ── 横方向の微分 ── 縦方向の平滑化 ─ 出力画像 縦方向のエッジ検出 ノイズ低減

#### ■ プリューウィットフィルタ(Prewitt)



横方向の微分フィルタ 縦方向の平滑化フィルタ

※・1/6を省略

・出力が6倍になっている

ディジタル画像処理[改訂新版] 教科書P107, 図5.16参考

#### 補足:Prewittフィルタ





## (微分+平滑化) フィルタ

ノイズを抑えながらエッジを抽出するために、微分フィルタと平滑化フィルタを組み合わせる.

微分+平滑化の流れ

入力画像 — 横方向の微分 — 縦方向の平滑化 — 出力画像 縦方向のエッジ検出 ノイズ低減

平滑化の際に、中心に大きめの重みを付けている

単純平均→加重平均

#### ■ ソーベルフィルタ(Sobel)

# 0 0 0 -1/2 0 1/2 0 0 2/4 0 0 0 1/4 0

横方向の微分フィルタ 縦方向の平滑化フィルタ

| 等価    | -1 | 0 | 1 |
|-------|----|---|---|
| 1/8.* | -2 | 0 | 2 |
|       | -1 | 0 | 1 |



Sobelフィルタ

- ※・1/8を省略
  - ・出力が8倍になっている

## Prewitt & Sobel フィルタ

| 0  | 0 | 0 |
|----|---|---|
| -1 | 0 | 1 |
| 0  | 0 | 0 |

微分フィルタ



| 平匀0.票集扁盖 |  |
|----------|--|

| -1 | 0 | 1 |
|----|---|---|
| -1 | 0 | 1 |
| -1 | 0 | 1 |

Prewittフィルタ







Sobelフィルタ





#### (補足) 端の処理

入力画像の端にパディングをすることによって,入力 画像と出力画像サイズをそろえることができる.

| а | b | С | d |
|---|---|---|---|
| е | f | g | h |
| i | j | k | ı |
| m | n | 0 | р |

-1 0 1 -2 0 2 -1 0 1 出力画像(2x2)

入力画像(4x4)

- ・出力サイズが小さくなってしまう
- ・画像端にフィルタ処理ができない

## (補足)端の処理

入力画像の端にパディングをすることによって,入力 画像と出力画像サイズをそろえることができる.

| а | b | С | d |    |
|---|---|---|---|----|
| е | f | g | h |    |
| i | j | k | I | F. |
| m | n | 0 | р | 女王 |

| 入力画像 | (4x4) |
|------|-------|
|------|-------|

|        | 0 | 0 | 0 | 0 | 0 | 0 |
|--------|---|---|---|---|---|---|
|        | 0 | а | b | С | d | 0 |
|        | 0 | е | f | g | h | 0 |
| ,<br>J | 0 | i | j | k | L | 0 |
|        | 0 | m | n | 0 | р | 0 |
|        | 0 | 0 | 0 | 0 | 0 | 0 |

|   | -1 | 0 | 1 |       |
|---|----|---|---|-------|
| * | -2 | 0 | 2 | 出力画像  |
|   | -1 | 0 | 1 | (4x4) |

Sobel filter(3x3)

入力画像(6x6) パディング処理

※0を入れる以外にも端と同じ値を入れるなど複数の方法がある

## (補足)端の処理

入力画像の端にパディングをすることによって,入力 画像と出力画像サイズをそろえることができる.

例: フィルタが5x5の場合

| а | b | С | d |     |
|---|---|---|---|-----|
| е | f | g | h |     |
| i | j | k | I | 前   |
| m | n | 0 | р | 前処理 |

入力画像(4x4)

| 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 |
|---|---|---|---|----------|---|---|---|
| 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 |
| 0 | 0 | а | b | С        | d | 0 | 0 |
| 0 | 0 | e | f | <b>დ</b> | h | 0 | 0 |
| 0 | 0 | i | j | k        | - | 0 | 0 |
| 0 | 0 | m | n | 0        | Р | 0 | 0 |
| 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 |

\* filter(5x5) 出力(4x4)

フィルタNxNの 場合は端に(N-1)/2 0を入れればよい

入力画像(8x8)

※0を入れる以外にも端と同じ値を入れるなど複数の方法がある

#### 補足勾配方向の計算



|   | -1 | -1 | -1 |
|---|----|----|----|
| = | 0  | 0  | 0  |
|   | 1  | 1  | 1  |



#### 補足 matlabのatandとatan2d

atandの範囲 -pi/2 ~ pi/2 atan2dの範囲 -pi~pi



cannyフィルタの勾配方向の検出では問題にならないが、 両者をatandでは区別できない

atan2dだと両者を区別できる

atand:

atan2d: https://jp.mathworks.com/help/matlab/ref/atan2d.html

#### 練習問題9-1

一次微分に対して更に一次微分すれば、二次微分が得られる。

デジタル画像の水平方向の二次微分式を導け。ただし、中心画素とその左右の画素(あわせて3画素) のみを使う。

#### 練習問題9-2

D(-1,0), D(0,0), D(1,0)が与えられており、それらに対して、2次関数 $D(x,0) = ax^2 + bx + c$ を当てはめよ。そして、D(x)が最大になるxを求めよ。更に、これを使って小数座標のエッジ位置を求めることができる理由を述べよ。

#### 練習問題9-3

ある画素の水平方向の微分Ixと垂直方向の微分Iyに対して、それぞれの符号と絶対値の大小でケース分けすれば8の区間が得られるが、それぞれの区間のエッジの方向を図と角度で示せ。