

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

Question Bank - Unit 1 Deterministic Finite Automata

Questions from the Prescribed Textbook

Topic	Exercise No.	Question No's
DFA	2.1	Q1 - Q17

Extra Questions

- 1) Given the alphabet is $\{0, 1\}$, construct a DFA that accepts $L = \{w \mid w \text{ starts with } 0 \text{ and has odd length, or starts with } 1 \text{ and has even length} \}$.
- 2) Given the alphabet is $\{0, 1\}$, construct a DFA that accepts $L = \{w \mid \text{the length of } w \text{ is at most } 5\}$.
- 3) Given the alphabet is $\{0, 1\}$, construct a DFA that accepts L = $\{w \mid w \text{ is any string except } 11 \text{ and } 111\}$.
- 4) Given the alphabet is $\{0, 1\}$, construct a DFA that accepts $L = \{w \mid \text{every odd position of } w \text{ is a } 1\}$.
- 5) Given the alphabet is $\{0, 1\}$, construct a DFA that accepts $L = \{w \mid w \text{ contains at least two 0s and at most one 1}\}.$
- 6) Give a DFA/NFA for all strings in {0, 1}*, which represent (in binary) numbers which leave a remainder of 3 on dividing by 5.
- 7) Construct a DFA over the alphabet {a, b} such that the second symbol in the string is same as the penultimate. [Assume minimum length of the string is 4].
 - Note: Penultimate is the second last symbol.
 - Hint: First and Last symbol could be either a or b. Second and Second last symbol must be the same. In between, we can have any number of symbols
- 8) Construct a DFA over the alphabet {a, b} such that first symbol in the string is same as the last symbol and second symbol is same as the penultimate.
- 9) Construct a DFA that accepts binary strings that contains the substring 101; but before the substring 101 appears you must have seen odd number of 0's.
- 10)Construct a DFA over the alphabet $\{0,1\}$ that accepts the following language: $L = \{w \mid w \mod 3 = 0 \text{ where } w \text{ contains no leading 0's} \}$

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

Example:

The DFA does not accept the following strings: 00, 0000011

- 11)Construct a DFA that accepts strings containing at least two *a* s and ending with an even number of *b* s.
- 12) Construct a DFA that accepts Binary strings with no consecutive 0 s.
- 13)Construct a DFA that accepts strings over $\{a, b\}$ in which either all even-numbered symbols are a or all odd-numbered symbols are b. Show the computation for the string $w_1 = aababaa$ and for $w_2 = babaab$.
- 14)Construct a DFA that accepts the set of all strings that are palindromes of length 4. The alphabet is $\{a, b, c\}$.
- 15)Construct a DFA that accepts Binary strings containing exactly 2 occurrences of the substring 00.