Bifurcation analysis of microbiome steady states

Jean Carlson group

UCSB

October 12, 2018

Project Goal

- Move separatrix to switch steady states
- Change interaction matrix using SSR as a guide

Change in 2-D matrix

Change in K

$$M_{ab} = \vec{y_a}^T K \vec{y_b}$$
$$= \sum_{i=1, j=1}^{11, 11} \alpha_{ij} K_{ij}$$

- ▶ 121 coefficients
- ► Most are 0
- M_{ab} most sensitive to change in k_{ij} with the largest α_{ij} coefficient

Projection of ΔK back to 2-D

- ► Change in K is possible to change M_{ba}
- In this case M_{ba} does not change
- SSR coefficients for M_{ba} and M_{ab} may be orthogonal

Projection of ΔK back to 2-D

$$M_{ab} = \sum_{i=1,j=1}^{11,11} \alpha_{ij} K_{ij}$$
 $\sum_{i=1,j=1}^{120} \alpha_{ij} K_{ij}$ $\sum_{i=1,j=1}^{120} \beta_{ij} K_{ij}$

- ightharpoonup check the value of γ_{ii}
- nearly orthogonal, except one coefficient