

y'=-57, y(0) =1. y= est. let N=[10].

By forward Euler method, Unit = Un+ h(-5) un Vn E (0, N).

Thus Un+1 = (1-5h)" Up = (1-5h)".

Hence when 11-5h1<1 and h>0, i.e., 0<h<\frac{2}{5}, Until approach y. when |1-5h|=1 and h>0, i.e., $h=\frac{2}{5}$, $u_{n+1}=(-1)^{\frac{1}{3}}$ when |1-5h|>1 and h>0, i.e., $h>\frac{2}{5}$, Una diverges from y.

$$y'=5y$$
, $y(0)=1$, $y=e^{5t}$
Let $N=\left[\frac{10}{h}\right]$.
By backward Euler method, $U_{n+1}=U_n+h(5)$ $U_{n+1}=0$
 $=>(1-5h)$ $U_{n+1}=U_n$
 $=>U_n$

Thus
$$U_{n+1} = \frac{U_n}{(1-5h)^n} = \frac{1}{(1-5h)^n}$$

For |1-sh| > 1 and h > 0, i.e., $\frac{2}{5} < h$, $U_{n+1} = (-1)^n \cdot (sh-1)^n$ oscillates and converges to 0.

For |1-sh|=1 and h>0, i.e., $\frac{2}{s}=h$, $U_{n+1}=(-1)^n$ oscillates between 1 and -1.

For |1-5h|<1 and h>0, i.e., $\frac{2}{5}>h$, $U_{n+1}=(1-5h)^{n}$ diverges to infinity but can't approach to y

Since $e^{\frac{3t}{5}}$ grows much faster than $(1-5h)^{\frac{1}{5}}$ as $t\to\infty$.