Logic Design - Homework 10

(1) Analyze the FSM shown above. Write the state transition and output tables and sketch the state transition diagram. Describe in words what the FSM does.

(2) Analyze the FSM shown above. Write the state transition and output tables and sketch the state transition diagram. Describe in words what the FSM does. Recall that the *s* and *r* register inputs indicate *set* and *reset*, respectively.

- **(3)** Describe in words what the state machine in figure above does. Using **one-hot encodings**, complete a *state transition table* and *output table* for the FSM above. Write Boolean equations for the next state and output and sketch a schematic of the FSM.
- **(4)** Design a sequential circuit that outputs 2's complement of a bit sequence. The bit sequence will be given to the circuit in **reverse order**. For instance, if the given bit sequence is 0010101000, the circuit should output 1101011000.
- **(5)** Design a counter that will output 1, 2, 3, 5, 8, 13 and repeat again.

Number	Gray code		
0	0	0	0
1	0	0	1
2	0	1	1
3	0	1	0
4	1	1	0
5	1	1	1
6	1	0	1
7	1	0	0

3-bit Gray Code

- **(6)** Gray codes have a useful property in that consecutive numbers differ in only a single bit position.
- (a) Design a 3-bit modulo 8 Gray code counter FSM with no inputs and three outputs. (A modulo N counter counts from 0 to N 1, then repeats. When reset, the output should be 000. On each clock edge, the output should advance to the next Gray code. After reaching 100, it should repeat with 000.
- (b) Extend your modulo 8 Gray code counter to be an UP/DOWN counter by adding an UP input. If UP = 1, the counter advances to the next number. If UP = 0, the counter retreats to the previous number.

(7) Yukarıda durum diyagramı verilen ardışık devre A, B ve C olmak üzere 3 flip flop; bir X girdisi ve bir Y çıktısından oluşmaktadır. Kullanılmayan durumları "don't care" kabul ederek devreyi D flip flop'ları ile binary coding kullanarak tasarlayınız.

(8) D flip flop'larını ve binary coding kullanarak kullanarak 2 bitlik geriye sayan bir sayaç tasarlayınız. Bu devre X olmak üzere bir girdiye sahiptir. X=0 olduğunda flip flop'lar durumlarını korumaktadırlar. X=1 olduğunda yeni durum eski durumun 1 eksiği olmaktadır. Örneğin X=1 olduğunda o anki durum 11 ise yeni durum 10 olmaktadır.

(9) Aşağıda Moore tipi bir ardışık devreye ait durum diyagramı verilmiştir. Bu devreyi D flip flop'ları ile one-hot coding kullanarak tasarlayınız.

(10) Aşağıdaki devreyi D flip flop'ları ile binary coding kullanarak tasarlayınız.

(11) Aşağıda 3 duruma, 1 girdiye ve 1 çıktıya sahip bir ardışık devre için durum diyagramı verilmektedir. Durum tablosunu çiziniz ve D flip flop'ları ile one-hot coding kullanarak devreyi tasarlayınız.

(12) Aşağıda durum diyagramı verilen devreyi one-hot coding ile tasarlayınız.

