Finding the right cut-off: the strategy curve

CREDIT RISK MODELING IN R

Lore Dirick

Manager of Data Science Curriculum at Flatiron School

Constructing a confusion matrix

```
predict(log_reg_model, newdata = test_set, type = "response")
0.08825517 0.3502768 0.28632298 0.1657199 0.11264550
predict(class_tree, new data = test_set)
1 0.7873134 0.2126866
2 0.6250000 0.3750000
3 0.6250000 0.3750000
4 0.7873134 0.2126866
5 0.5756867 0.4243133
```


Cut-off?

A certain strategy

```
log_model_full <- glm(loan_status ~ ., family = "binomial", data = training_set)
predictions_all_full <- predict(log_reg_model, newdata = test_set, type = "response")
cutoff <- quantile(predictions_all_full, 0.8)
cutoff</pre>
```

```
80%
0.1600124
```

```
pred_full_20 <- ifelse(predictions_all_full > cutoff, 1, 0)
```



```
true_and_predval <- cbind(test_set$loan_status, pred_full_20)
true_and_predval</pre>
```

```
      test_set$loan_status
      pred_full_20

      1
      0
      0

      2
      0
      0

      3
      0
      1

      4
      0
      0

      5
      0
      1

      ...
      ...
```

```
accepted_loans <- pred_and_trueval[pred_full_20 == 0,1]
bad_rate <- sum(accepted_loans)/length(accepted_loans)
bad_rate</pre>
```

0.08972541

accept_rate	cutoff	bad_rate	
[1,]	1.00	0.5142	0.1069
[2,]	0.95	0.2122	0.0997
[3,]	0.90	0.1890	0.0969
[4,]	0.85	0.1714	0.0927
[5,]	0.80	0.1600	0.0897
[6,]	0.75	0.1471	0.0861
[7,]	0.70	0.1362	0.0815
[8,]	0.65	0.1268	0.0766
• • •		• • •	
[16,]	0.25	0.0644	0.0425
[17,]	0.20	0.0590	0.0366
[18,]	0.15	0.0551	0.0371
[19,]	0.10	0.0512	0.0309
[20,]	0.05	0.0453	0.0247
[21,]	0.00	0.0000	0.0000

The strategy curve

Let's practice!

CREDIT RISK MODELING IN R

CREDIT RISK MODELING IN R

Lore Dirick

Manager of Data Science Curriculum at Flatiron School

Until now

- Strategy table/curve : still make assumption
- What is "overall" best model?

Confusion matrix

Actual loan status v. Model prediction

	No default (0)	Default (1)
No default (0)	TN	FP
Default (1)	FN	TP

$$Accuracy = \frac{TP+TN}{TP+FP+TN+FN}$$

Sensitivity =
$$\frac{TP}{TP+FN}$$

Specificity =
$$\frac{TN}{TN+FP}$$

Accuracy?

Sensitivity =
$$\frac{TP}{TP+FN}$$

Specificity =
$$\frac{TN}{TN+FP}$$

Sensitivity =
$$\frac{TP}{TP+FN}$$

Specificity =
$$\frac{TN}{TN+FP}$$

Sensitivity =
$$\frac{TP}{TP+FN}$$

Specificity =
$$\frac{TN}{TN+FP}$$

Sensitivity =
$$\frac{TP}{TP+FN}$$

Specificity =
$$\frac{TN}{TN+FP}$$

Sensitivity =
$$\frac{TP}{TP+FN}$$

Specificity =
$$\frac{TN}{TN+FP}$$

Sensitivity =
$$\frac{TP}{TP+FN}$$

Specificity =
$$\frac{TN}{TN+FP}$$

Sensitivity =
$$\frac{TP}{TP+FN}$$

Specificity =
$$\frac{TN}{TN+FP}$$

Which one is better?

- AUC ROC-curve A = 0.75
- AUC ROC-curve B = 0.78

Let's practice!

CREDIT RISK MODELING IN R

Input selection based on the AUC

CREDIT RISK MODELING IN R

Lore Dirick

Manager of Data Science Curriculum at Flatiron School

ROC curves for 4 logistic regression models

ROC curves for 4 logistic regression models

ROC curves for 4 logistic regression models

AUC-based pruning

1) Start with a model including all variables (in our case, 7) and compute AUC

Area under the curve: 0.6512

2) Build 7 new models, where each time one of the variables is removed, and make PD-predictions using the test set

```
log_1_remove_amnt <- qlm(loan_status ~ grade + home_ownership + annual_inc + age + emp_cat + ir_cat,
                         family = "binomial",
                          data = training_set)
log_1_remove_grade <- glm(loan_status ~ loan_amnt + home_ownership + annual_inc + age + emp_cat + ir_cat,
                           family = "binomial",
                           data = training_set)
log_1_remove_home <- glm(loan_status ~ loan_amnt + grade + annual_inc + age + emp_cat + ir_cat,
                         family = "binomial",
                          data = training_set)
pred_1_remove_amnt <- predict(log_1_remove_amnt, newdata = test_set, type = "response")</pre>
pred_1_remove_grade <- predict(log_1_remove_grade, newdata = test_set, type = "response")</pre>
pred_1_remove_home <- predict(log_1_remove_home, newdata = test_set, type = "response")</pre>
```

3) Keep the model that led to the best AUC (AUC full model: 0.6512)

```
auc(test_set$loan_status, pred_1_remove_amnt)
```

Area under the curve: 0.6537

auc(test_set\$loan_status, pred_1_remove_grade)

Area under the curve: 0.6438

auc(test_set\$loan_status, pred_1_remove_home)

Area under the curve: 0.6537

4) Repeat until AUC decreases (significantly)

Let's practice!

CREDIT RISK MODELING IN R

Course wrap-up

CREDIT RISK MODELING IN R

Lore Dirick

Manager of Data Science Curriculum at Flatiron School

Other methods

- Discriminant analysis
- Random forest
- Neural networks
- Support vector machines

But... very classification-focused

- Timing aspect is neglected
- New popular method: survival analysis
 - PDs that change over time
 - Time-varying covariates can be included

Congratulations!

CREDIT RISK MODELING IN R

