

Neural Text-to-Speech @Microsoft - large scale production and ongoing exploration

Lei He Microsoft Azure Speech July 24. 2021

Outline

- Neural TTS dominates TTS production
 - A recap
 - Recent progresses
 - Robustness & Cost challenges
 - Transfer learning across speakers, styles/emotions and languages
 - A brief of MS' TTS service
- What is next/ongoing selected topics
 - Human parity TTS beyond sentence
 - Contextual aware neural TTS & Intelligent text analysis
 - Higher expressiveness
 - Cross speaker style transferring
 - Synergy of speech recognition and synthesis
 - TTS data augmentation for SR & Dual learning

A recap

Neural TTS

Voice

 Joint optimization of pronunciation and prosody + high-fidelity audio generation

• Learning from large datasets across speakers

Recent progress

- High fidelity, high natural neural TTS dominates the TTS products.
 - Across global tech-giants, top speech vendors, and startup companies.
- Two key contributors of Neural TTS production
 - Cost rapid evolution in neural vocoder, which keeps good fidelity (even not perfect) with much less computation load and efficient inference. $_{\rm 1}$
 - **Robustness** complicate attention mechanisms is removed in many TTS applications, which is proved to be efficient in majority of TTS scenarios $_{2/3}$; combine robust attention and large scale pretraining, the attention-based method is used in "rich scenarios" $_{4/5}$.
 - 1. IS2020: An Efficient Subband Linear Prediction for LPCNet-Based Neural Synthesis
 - 2. NIPS 2019: FastSpeech: Fast, Robust and Controllable Text to Speech
 - 3. ICLR 2021: FastSpeech 2: Fast and High-Quality End-to-End Text to Speech
 - 4. IS2019: Robust Sequence-to-Sequence Acoustic Modeling with Stepwise Monotonic Attention for Neural TTS
 - 5. IS2019: Exploiting Syntactic Features in a Parsed Tree to Improve End-to-End TTS

Recent progress (cont.)

- Learning from large diverse speech data, across speakers, styles and languages, became a foundation of production at scale.
 - Across speakers training in both acoustic model and neural vocoder is widely adopted, enable high quality voice customization (and personalization). $_{1/2}$
 - \bullet Style model is studied in different granularity, from sentence level style embedding to fine-grained prosody control. $_{3/4}$
 - Multi-lingual neural TTS enable the cross-lingual TTS (polyglot) and scale to new language with much less data. $_{5/6}$
 - 1. ArXiv:1812.05253, Modeling Multi-speaker Latent Space to Improve Neural TTS: Quick Enrolling New Speaker and Enhancing Premium Voice
 - 2. ICLR 2021: ADASPEECH: ADAPTIVE TEXT TO SPEECH FOR CUSTOM VOICE
 - 3. ICASSP2019: Learning Latent Representations for Style Control and Transfer in End-to-End Speech Synthesis
 - 4. Neural Networks 2021: Cycle consistent network for end-to-end style transfer TTS training
 - 5. IS2020: Towards Universal Text-to-Speech
 - 6. Arxiv:2103.03541v1, Multilingual Byte2Speech Text-To-Speech Models Are Few-shot Spoken Language Learners

Azure Text-to-Speech

Neural Voice

170 voices, 70+ languages (growing)
REST APIs
SDKs
Web portal
Cloud, on-prem

Custom Neural Voice

16 languages through self-service (growing)
REST APIs
SDKs
Web Portal
Cloud, on-prem

Neural TTS

Voice samples

LANGUAGE	VOICE	SAMPLE
English (UK)	Ryan	
	Mia	
English (US)	Jenny – general	
	Jenny – chat	
	Jenny – customer service	
	Jenny – Chinese *	

Style/emotion degree tuning

sad=0.5

sad=1.0 sad=1.5

sad=2.0

https://azure.microsoft.com/enus/services/cognitive-services/text-to-speech/

^{*} Cross language transfer in preview

Custom Neural Voice

Human-like voices custom made for your use case

300-2000 utterances (30 mins to 2 hours of speech data) to create a highly natural voice

Gating for responsible AI*

Human

Custom Neural Voice

https://speech.microsoft.com

What is next (selected topics)

- Human parity TTS beyond sentence level
- Controllable higher expressiveness
- Synergy of speech recognition and synthesis

• ...

Contextual aware neural TTS - Motivation

- Neural TTS shows close human parity quality
 - In sentence level synthesis and in target domains
 - With clear prosody gap in paragraph reading and dialogue conversation 😊
- Next step
 - Beyond sentence prosody model larger context
- Context defined here
 - **Paragraph** the context between continuous utterances in one paragraph.
 - <u>Dialogue conversation</u> the context between continuous turns in one conversation.

High level design - conversation

Conversational TTS

Experimental results

Models:

- M1: Modified Tacotron2
- M2: M1 + Auxiliary Encoder
- M3: M2 + Conversational Context Encoder

Training strategy:

- Pre-train a standard model with reading style TTS data set
- Train M1, M2 and M3 on top of the pretrained model respectively

Table 4. The results of CMOS tests. "U-level" and "C-level" donate the utterance level and conversation level respectively. Preference is calculated according to CMOS scores: the score greater than 0 means bias towards B, equal to 0 means neutral and less than 0 means bias towards A.

	CMOS		Prefere	nce (%)	(I
	CIVIOS	$\overline{M_1}$	Neutral	M_2	<i>p</i> -value
U-level	0.22	24.4	32.7	42.9	0.0001
C-level	0.62	21.0	20.0	59.0	0.0001

	CMOS -		Prefere	nce (%)	
	CIVIOS	M_2	Neutral	M_3	<i>p</i> -value
U-level	0.18	28.1	29.8	42.1	0.0001
C-level	0.39	28.0	15.0	57.0	0.001

Paragraph synthesis

• Introduce paragraph analyzed context encoder and decoder.

Rich audio content creation

- Long form, high expressiveness and "rich" content read out
 - Audio book, enhanced news/media reading, etc.
- Tech
 - Intelligent text analysis
 - Multi style, role and characters voice model
 - Contextual aware neural TTS

Style Transfer with Prosody Bottleneck

Figure 1: Overall structure of the proposed model

IS2021: Cross-speaker Style Transfer with Prosody Bottleneck in Neural Speech Synthesis

The Transfer Works?

Take the transferring Spk-A to Spk-B for example. Model refined using Spk-A and Spk-B's data.

- **Spk-A** _**self**: only use Spk-A for speaker id input during synthesis
- Spk-B _trans: use Spk-A id for prosody generation and Spk-B id during synthesis

The transferred voice can maintain the source prosody very well.

Samples: https://peterpanseu.github.io/index.html

Experiment

- Exp-1: training from scratch with sufficient data of both Source and Target speakers
- Exp-2: onboarding new source and target speakers with less data, given a pretrained model (150h, 80 speakers, 10 styles, A/B excluded)

Voices:

- Spk-A_Rec: Speaker A's recording, held out for test.
- **Spk-A_SD:** Speaker A's SD model, viewed as the upper boundary for style evaluation.
- Spk-B_SD: Speaker B's SD model, viewed as the lower boundary for style evaluation.
- Spk-B_Trans_CC: A Transformer TTS version of the cycle consistency loss enhanced method in [11].
- Spk-B_Trans_GMVAE: GMVAE-based style transfer model
- Spk-B_Trans_Pros: The proposed model.

Table 4: Prosody Measurement of Exp-1.

Model	Lf0_ Corr	Dur_ Corr	Energy Corr	Lf0_ RMSE
Spk-A_SD	0.425	0.848	0.915	0.255
Spk-B SD	0.226	0.749	0.659	0.302
Spk-B_Trans_CC	0.230	0.794	0.884	0.284
Spk-B Trans GMVAE	0.382	0.837	0.907	0.262
Spk-B Trans Pros	0.439	0.844	0.893	0.237

Table 5: Prosody Measurement of Exp-2.

Model	Lf0_ Corr	Dur_ Corr	Energy Corr	Lf0_ RMSE
Spk-A SD	0.638	0.843	0.931	0.175
Spk-B SD	0.402	0.786	0.892	0.222
Spk-B Trans GMVAE	0.503	0.821	0.91	0.198
Spk-B Trans Pros	0.66	0.842	0.917	0.156

Table 3: MOS.

Experiment Speaker Neutral Happy

10k

10k

500

500

A

A

B

Sad

Angry

Model	Exp-1	Exp-2
Recording_Spk-B	4.29 ± 0.05	4.29 ± 0.07
Spk-B_SD	4.01 ± 0.05	4.06 ± 0.07
Spk-B_Trans_CC	4.13 ± 0.04	1.51
Spk-B_Trans_GMVAE	4.08 ± 0.04	4.08 ± 0.06
Spk-B_Trans_Pros	4.07 ± 0.05	4.11 ± 0.07

Table 7: ABX (%).

Exp	Spk-B _SD	Spk-B_ Trans_ CC	Spk-B_ Trans_ GMVAE	Spk-B_ Trans_ Pros	Equal
1	18.4			77.7	4.0
1		27.3		62.2	10.6
1			28.9	63.2	7.9
2	29.3			66.3	4.3
2			30.3	63.9	5.8

Speech production, transmission and recognition

SR data augmentation via Universal TTS model

ICASSP2019: Using Personalized Speech Synthesis and Neural Language Generator for Rapid Speaker Adaptation IS2020: Rapid RNN-T Adaptation Using Personalized Speech Synthesis and Neural Language Generator ICASSP2020: Adaptation of RNN Transducer with text-to-speech technology for keyword spotting IS2020: Developing RNN-T Models Surpassing High-Performance Hybrid Models with Customization Capability

E2E SR domain scaling by semi-supervised training with neural TTS

Motivation

- It's challenging for an E2E SR model (e.g. RNN-T) in new domains with context or words different from training data.
- Joint training with neural TTS is helpful for E2E ASR models in low-resource scenarios, how about the effectiveness in scaling a well-trained ASR model to new domains with text-only corpus?
- Compared with other customization methods, are they complementary to each other or not?

Semi-supervised training with neural TTS

• Training framework

 $p(\text{text}|\text{speech}^{\sim}q(\text{speech}|\text{text},\theta), \phi)$

Results of RNN-T in domain scaling

- OOD task (with out-of-domain context):
 - Text-only corpus: ~75k sentences from a new domain, generated by randomly parsing the grammar and crowd sourcing.
 - Test set: 800 utterances from the same new domain.
- OOV task (with out-of-vocabulary words):
 - Text-only corpus: ~1.27M sentences generated using pre-designed OOV word list and pattern list.
 - Test set: 11k utterances from conversational data containing OOV words.

Table 1: Performance of semi-supervised training in new domains. WERR is the relative WER reduction. OOD Task has out-of-domain context; OOV Task has out-of-vocabulary words.

Method	WER (%)	WERR (%)
OOD Task		
Baseline	16.52	
+ Semi-supervised Training	6.37	61.4
OOV Task		
Baseline	27.50	
+ Semi-supervised Training	12.70	53.8

Table 5: Comparison & combination of different customization methods. WERR is the relative WER reduction. OOD Task has out-of-domain context; OOV Task has out-of-vocabulary words.

Method	WER (%)	WERR (%)
OOD Task		
Baseline	16.52	
+ Semi-supervised Training	6.37	61.4
+ ILME	5.71	65.4
+ Splicing Data	5.02	69.2
+ Semi-supervised Training	4.33	73.8
+ ILME	3.74	77.4
OOV Task		
Baseline	27.50	
+ Semi-supervised Training	12.70	53.8
+ Biasing	11.30	58.9

IS2021: Improving RNN_T for Domain Scaling Using Semi Supervised Training with Neural TTS

Dual learning – SR/TTS joint model

Overall framework

Dual learning for low resource language development

ICML 2019: Almost Unsupervised Text to Speech and Automatic Speech Recognition

re 1. The overall model structure for TTS and ASR. Figure (a): The unified training flow of our met

Figure 1. The overall model structure for TTS and ASR. Figure (a): The unified training flow of our method, which consists of a denoising auto-encoder (DAE) of speech and text, and dual transformation (DT) of TTS and ASR, both with bidirectional sequence modeling. Figure (b): The speech and text encoder and decoder based on Transformer. Figure (c): The input and output module for speech and text.

Thanks!

Q&A

helei@microsoft.com