

Background

Goal: a biological survey of soil mesofauna (and some macrofauna)

Mesofauna: invertebrates between 0.1mm and 2mm in size

Macrofauna: larger invertebrates that can reshape soil

Motivation: highly diverse, understudied, and very interesting

Limited scope to arthropods due to personal interest

Background: Arthropod taxonomy

Phylum **Arthropoda**

Materials & Methods

Berlese-Tullgren funnel:

light bulb heats and desiccates soil

mesofauna flee downward

mesofauna fall through mesh & into alcohol

Soil sources:

Chestnut Hill Reservoir, Newton Campus, University of Southern Mississippi

Methods

Berlese funnel in action

Berlese funnel product

Methods

Microscopes: V16, Z2

Post-processing: Extended Depth of Field plugin on ImageJ (Forster et al. 2004)

Color balance, brightness & contrast on ImageJ

I. Hexapoda

Diplura (double-tailed hexapod)

Composite image of a dipluran

Diplura

Dipluran head, ventral view. Note gnathal pouch (A)

Collembola (springtails): Entomobryomorpha

A: **furcula** or tails used for jumping

B: **collophore**—peglike structure formerly believed to help springtails to stick to surfaces

(kolla-embolos = glue-peg)

Collembola: Entomobryomorpha

Scales on springtail head and body (A). Note gnathal pouch (B)

Collembola: Symphypleona

Dorsal and ventral views of Symphypleonans

II. Myriapoda

Diplopoda (millipedes): Julida (round-backed)

Cylindroiulus punctatus juveniles carrying rows of ozopores (A)

Diplopoda: Polyxenida (bristly millipede)

Adult bristly millipede, with no ozopores (A)

Diplopoda: Polyxenida

Polyxenid bristles (A) with an entangled piece of debris (B)

Chilopoda (centipedes): Lithobiomorpha

"Tergite heteronomy" (A)—body segments alternate in length

Chilopoda: Lithobiomorpha

A: **chilopods**—"jaws" of centipedes, actually legs modified to carry venom

B: ocellus or single simple eye

Chilopoda: Geochilomorpha

Many more segments, with uniform lengths

Chilopoda: Geochilomorpha

No eyes at all!

III. Chelicerata

Mesostigmata (predatory mites)

Adult and juvenile

Feces?

Oribatida ("moss mites"):Damaeidae

Juvenile Damaeid with exuvial scalp (A). Waxy cerotegument (B) visible.

Oribatida: Damaeidae

Cerotegument (A) on leg

Surface of exuvial scalp

Other Oribatida

Ceratozetidae

Phthiracaridae

Discussion

New England forest soil appears richer in mesofauna

→ well-aerated & coarse vs. densely-packed Mississippi mud

Challenges:

Lamp accidentally cooked soil → naphthalene (moth balls)?

Alcohol evaporation under Z2 → glycerin?

Specimen drift under V16 → gels?

Future directions:

Assessment of biodiversity across soil types; leaf litter types
Finer diagnoses of springtails & mites, to eventually look at species diversity
Imaging of live mesofauna to document life histories

Questions?