中国科学技术大学计算机学院《数据隐私的方法伦理和实践》作业

2021.06.06

学生姓名: 胡毅翔

学生学号: PB18000290

计算机实验教学中心制 2019 年 9 月 1 CONCEPT OF DP 2

1 Concept of DP

1.1

Prove that the Laplace mechanism preserves $(\epsilon, 0)$ -DP.

Proof. Let $x \in \mathbb{N}^{|\mathcal{X}|}$ and $y \in \mathbb{N}^{|\mathcal{X}|}$ be such that $||x - y||_1 \leq 1$, and let $f(\cdot)$ be some function $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^k$. Let p_x denote the probability density function of $\mathcal{M}_L(x, f, \varepsilon)$, and let p_y denote the probability density function of $\mathcal{M}_L(y, f, \varepsilon)$. We compare the two at some arbitrary point $z \in \mathbb{R}^k$

$$\frac{p_x(z)}{p_y(z)} = \prod_{i=1}^k \left(\frac{\exp\left(-\frac{\varepsilon|f(x)_i - z_i|}{\Delta f}\right)}{\exp\left(-\frac{\varepsilon|f(y)_i - z_i|}{\Delta f}\right)} \right)$$

$$= \prod_{i=1}^k \exp\left(\frac{\varepsilon\left(|f(y)_i - z_i| - |f(x)_i - z_i|\right)}{\Delta f}\right)$$

$$\leq \prod_{i=1}^k \exp\left(\frac{\varepsilon|f(x)_i - f(y)_i|}{\Delta f}\right)$$

$$= \exp\left(\frac{\varepsilon \cdot ||f(x) - f(y)||_1}{\Delta f}\right)$$

$$\leq \exp(\varepsilon)$$

where the first inequality follows from the triangle inequality, and the last follows from the definition of sensitivity and the fact that $||x-y||_1 \le 1$. That $\frac{p_x(z)}{p_y(z)} \ge \exp(-\varepsilon)$ follows by symmetry.

1.2

Please explain the difference between $(\epsilon, 0)$ – DP and (ϵ, δ) -DP. Typically, what range of δ we're interested in? Explain the reason.

Solution. Even δ is negligible, there are theoretical distinctions between $(\varepsilon, 0)$ - and (ε, δ) - differential privacy.

- $(\varepsilon, 0)$ -differential privacy: for every run of the mechanism M(x), the output observed is (almost) equally likely to be observed on every neighboring database, simultaneously.
- (ε, δ) differential privacy: given an output $\xi \sim M(x)$ it may be possible to find a database y such that ξ is much more likely to be produced on y than it is when the database is x. The privacy loss (divergence) incurred by observation ξ :

$$\mathcal{L}_{\mathcal{M}(x)||\mathcal{M}(y)}^{(\xi)} = \ln \left(\frac{\Pr[\mathcal{M}(x) = \xi]}{\Pr[\mathcal{M}(y) = \xi]} \right)$$

 (ε, δ) - differential privacy ensures that for all adjacent x, y, the absolute value of the privacy loss will be bounded by ε with probability at least $1 - \delta$.

1 CONCEPT OF DP 3

Typically, we are interested in values of δ that are less than the inverse of any polynomial in the size of the database.

Because, for each piece of data in data set, there is a probability that it will be released. Each piece of different data in this ralease is independent, so this mechanism can release $n\delta$ sample. So in order to prevent such leakage, it must be less than 1/n.

1.3

Please explain the difference between DP and Local DP.

Solution. Definition of ϵ -local differential privacy is that a randomized function f satisfies ϵ local differential privacy if and only if for any two input tuples t and t' in the domain of f, and for any output t^* of f, we have:

$$\Pr[f(t) = t^*] \le \exp(\epsilon) \cdot \Pr[f(t') = t^*]$$

- 1. The notation $\Pr[\cdot]$ means probability. If f 's output is continuous, $\Pr[\cdot]$ is replaced by the probability density function.
- 2. Basically, local differential privacy is a special case of differential privacy where the random perturbation is performed by the users, not by the aggregator.
- 3. According to the above definition, the aggregator, who receives the perturbed tuple t, cannot distinguish whether the true tuple is t or another tuple t' with high confidence (controlled by parameter ϵ), regardless of the background information of the aggregator.
- 4. This provides plausible deniability to the user.

While the definition of differential privacy is that A randomized algorithm M with domain $\mathbb{N}^{|X|}$ is (ϵ, δ) -differentially private if for all $S \subset \text{Range }(M)$ and for all $x, y \in \mathbb{N}|X|$ such that $||x - y||_1 \leq 1$:

$$\Pr[M(x) \in S] \le \exp(\epsilon) \Pr[M(y) \in S] + \delta$$

where the probability space is over the coin flips of the mechanism M. If $\delta = 0$, we say that M is δ -differentially private.

We can find out the difference between LDP and DP is that DP restrictions on tuple $x, y \in \mathbb{N}|X|$ such that $||x - y||_1 \le 1$, while LDP restrictions on any two input tuples t and t'.

2 BASICS OF DP 4

2 Basics of DP

ID	Sex	Chinese	Mathematics	English	Physics	Chemistry	Biology
1	Male	96	58	80	53	56	100
2	Male	60	63	77	50	59	75
3	Female	83	86	98	69	80	100
2000	Female	86	83	98	87	82	92

Table 1: Scores of students in School A

Table 2 is the database records scores of students in School A in the final exam. We need to help teacher query the database while protecting the privacy of students' scores. The domain of this database is $\{$ Male, Female $\} \times \{0, 1, 2, ..., 100\}^6$. In this question, assume that two inputs X and Y are neighbouring inputs if X can be obtained from Y by removing or adding one element. Answer the following questions.

2.1

What is the sensitivity of the following queries:

1.
$$q_1 = \frac{1}{2000} \sum_{ID=1}^{2000} \text{Mathematics }_{ID}$$

2.
$$q_2 = \max_{ID \in [1,2000]} \text{ English }_{ID}$$

2.2

Design ϵ -differential privacy mechanisms corresponding to the two queries in 2.1 where $\epsilon = 0.1$. (Using Laplace mechanism for q_1 , Exponential mechanism for q_2 .)

2.3

Let $M_1, M_2, \ldots, M_{100}$ be 100 Gaussian mechanisms that satisfy (ϵ_0, δ_0) – DP, respectively, with respect to the database. Given $(\epsilon, \delta) = (1.25, 10^{-5})$, calculate σ for every query with the composition theorem (Theorem 3.16 in the textbook) and the advanced composition theorem (Theorem 3.20 in the textbook, choose $\delta' = \delta$) such that the total query satisfies (ϵ, δ) - DP.