Convolutional Nearest Neighbors:

Bowdoin

Reinterpreting Convolution Through K-Nearest Neighbor Selection

Mingi Kang, Jeova Farias Ph.D.

Bowdoin College, ME

INTRODUCTION

- Convolutional Nearest Neighbor (ConvNN) reinterprets convolution as k-nearest neighbor aggregation with flexible neighbor selection criteria.
- Standard convolution implicitly performs k-NN with fixed spatial distance (e.g., 3x3 kernel = k = 9 spatially-adjacent neighbors including self).
- ConvNN generalizes this by allowing neighbor selection based on:
 - Spatial distance (reduces to standard convolution)
 - Feature similarity (cosine/Euclidean)
 - reature similarity (cosine/Euclide
- Hybrid spatial-feature metrics
- Core Algorithm of ConvNN:
 - 1. Compute pairwise similarities between all spatial positions
 - 2. Select k-nearest neighbors per position via hard top-k
 - 3. Aggregate neighbors with learnable weights (1D convolution)

BASE ALGORITHM

ConvNN Visualization

1. Similarity Computation

$$S = XX^{\mathsf{T}} \in \mathbb{R}^{n \times n} \text{ where } S_{ij} = \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j$$

2. K-Nearest Neighbor Selection

$$I_k = k - argmax(XX^\top) \in \mathbb{R}^{n \times n}$$

Neighbors =
$$X[I_k[i,:],:] \in \mathbb{R}^{k \times n}$$

Algorithm 1 Convolutional Nearest Neighbors 1D

Input: $\mathbf{X} \in \mathbb{R}^{B \times C \times N}$ (batch × channels × tokens)

Parameters: k (number of neighbors)

Output: $\mathbf{Y} \in \mathbb{R}^{B \times C' \times N}$

1: **// For each batch element** 2: Let $X = \mathbf{X}[b,:,:]^{\top} \in \mathbb{R}^{N \times C}$ with columns $\mathcal{X} = \{\mathbf{x}_i\}_{i=1}^N$

2: Let $\mathbf{A} = \mathbf{A}[0,:,:] \in \mathbb{R}^{n \times n}$ w
3:

4: // Step 1: Compute similarity matrix

5: Assume each \mathbf{x}_i is ℓ_2 -normalized: $\|\mathbf{x}_i\|_2 = 1$ 6: Compute similarity: $S = XX^{\top} \in \mathbb{R}^{N \times N}$ where $S_{ij} = \mathbf{x}_i^{\top} \mathbf{x}_j$

8: // Step 2: Find k-nearest neighbors 9: $I_k = argmax_k(S) \in \{0, 1\}^{N \times N}$

10:

11: // Step 3: Gather features

12: **for** $i \in [1, N]$ **do**13: $\mathcal{N}_k(\mathbf{x}_i) = X[I_k[i, :], :] \in \mathbb{R}^{k \times C}$

14: $\mathbf{V}_{prime}[:,:,i\cdot k:(i+1)\cdot k] = \mathcal{N}_k(\mathbf{x}_i)^{\top}$ 15: **end for**

16:

17: // Step 4: Convolve

18: $\mathbf{Y} = \text{Conv1D}(\mathbf{V}_{prime}, \text{kernel_size} = k, \text{stride} = k)$

20: **return Y**

SIMILARITY COMPUTATION SPEED-UPS

- To reduce $O(N^2)$ complexity of all to all similarity computation, we introduce two sampling methods: Random and Spatial Sparsification.
- Trade-off between computational efficiency and neighbor selection quality is controlled by sampling parameter n (number of pixel sampled).

ARCHITECTURE AND TRAINING

- Architecture: VGG-11 with Conv2d layers replaced by ConvNN and branching layers
- Dataset: CIFAR-10 image classification
- **Training**: 60 epochs with AdamW (Ir=1e-5, wd=1e-6), StepLR scheduler (gamma=0.95, step=2)
- Variants tested:
 - Location-only (spatial distance)
 - Feature-only (cosine similarity)
 - Hybrid (weighted combination)
 - Branching with ratio (e.g., 50% Conv2d + 50% ConvNN)

RESULTS

Training and Test Loss

Comparison of Conv2d and Branching ConvNN

Branching ConvNN = Branching with branching ratio 0.500, kernel_size = 3, K = 9, Feature Similarity and Aggregation.

Model Accuracy by Kernel Size and Type Comparison of Conv2d and Branching ConvNN

Table 1: CIFAR10 ConvNN Branching Ratio (Color Similarity and Color Aggregation) Branching Ratio (λ) | Params | Top-1 Acc. | Test Loss | GFlops 0.000 $130.015M \mid 69.78\%$ 2.57Conv2d 0.293Branching 0.125130.015M73.49%1.810.325130.015M74.32%1.560.325Branching 0.2501.230.500130.015M73.61%0.325Branching 1.230.3250.75068.63%Branching 130.015M0.8751.33Branching 130.015M65.66%0.325ConvNN 1.000 $130.015M \mid 50.250\%$ 1.840.325

VGG 11 Architecture with kernel_size = 3 (Conv2d), K = 9 (ConvNN) Branching Models: $\lambda \times \text{ConvNN} + (1 - \lambda) \times \text{Conv2d}$

Table 2: CIFAR10 ConvNN Branching Ratio (Location + Color Similarity and Color

		6							
Aggregation)									
Models	Branching Ratio (λ)	Params	Top-1 Acc.	Test Loss	GFlops				
Conv2d	0.000	130.015M	69.78%	2.57	0.293				
Branching	0.125	130.015M	72.92 %	1.92	0.331				
Branching	0.250	130.015M	74.20 %	1.52	0.331				
Branching	0.500	130.015M	73.16 %	1.24	0.331				
Branching	0.750	130.015M	69.98 %	1.22	0.331				
Branching	0.875	130.015M	64.77%	1.33	0.331				
ConvNN	1.000	130.015M	52.70%	1.80	0.331				

VGG 11 Architecture with kernel_size = 3 (Conv2d), K = 9 (ConvNN) Branching Models: $\lambda \times \text{ConvNN} + (1 - \lambda) \times \text{Conv2d}$

Table 3: CIFAR10 ConvNN Branching Ratio (Location + Color Similarity and Location + Color Aggregation)

Models	Branching Ratio (λ)	Params	Top-1 Acc.	Test Loss	GFlops
Conv2d	0.000	$\mid 130.015M$	$\mid 69.78\%$	2.57	0.293
Branching	0.125	130.021M	73.75%	1.85	0.331
Branching	0.250	130.028M	75.22%	1.46	0.331
Branching	0.500	130.040M	74.52%	1.17	0.331
Branching	0.750	130.052M	69.49%	1.15	0.331
Branching	0.875	130.059M	66.14%	1.25	0.325
ConvNN	1.000	130.065M	60.09%	1.44	$\mid 0.325$

VGG 11 Architecture with kernel_size = 3 (Conv2d), K = 9 (ConvNN) Branching Models: $\lambda \times \text{ConvNN} + (1 - \lambda) \times \text{Conv2d}$

Model Performance vs. N

CONVOLUTION AND ATTENTION

1. Convolution

$$S = D = 2(1 - X^T X) \in \mathbb{R}^{n \times n} \text{ where } D_{ij} = ||x_i - x_j||_2^2 = 2(1 - x_i^T x_j)$$

$$I_k = k - argmax(2(1 - X^T X)) \in \mathbb{R}^{n \times n}$$

Neighbors =
$$X[I_k[i,:],:] \in \mathbb{R}^{k \times n}$$

2. Convolutional Nearest Neighbor

$$S = XX^{\mathsf{T}} \in \mathbb{R}^{n \times n}$$
 where $S_{ij} = \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j$

$$I_k = k - argmax(XX^{\mathsf{T}}) \in \mathbb{R}^{n \times n}$$

Neighbors =
$$X[I_k[i,:],:] \in \mathbb{R}^{k \times n}$$

3. Attention

$$QK^{T} \in \mathbb{R}^{n \times n}$$
 where $Q = w_{Q}X$, $K = w_{k}X$

$$A(Q, K) = softmax(\frac{QK^{T}}{\sqrt{d_k}}) \in \mathbb{R}^{n \times n}$$

Attention(Q, K, V) = A(Q, K)V where $V = w_vX$

DISCUSSION

- Hybrid similarity (spatial + feature) outperforms pure spatial or pure feature selection
- **Branching architecture** achieves best performance by combining ConvNN's global context with Conv2d's spatial locality.
- ConvNN unifies convolution and attention as neighbor aggregation differ:
 - Spatial-only → standard convolution
 - All positions with soft weights with linear projection → self-attention
 - ConvNN occupies the middle ground with hard, content-aware selection
- **Feature work**: Extend to Vision Transformers, explore learnable similarity metrics, investigate soft vs. hard selection.

REFERENCES

- A. Buades, B. Coll and J. . -M. Morel, "A non-local algorithm for image denoising," 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA, 2005, pp. 60-65 vol. 2, doi: 10.1109/CVPR.2005.38. Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). Plötz, Tobias, and Stefan Roth. "Neural nearest neighbors networks." Advances in Neural information
- Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).Plötz, Tobias, and Stefan Roth. "Neural nearest neighbors networks." Advances in Neural information processing systems 31 (2018).
- Wang, Xiaolong, et al. "Non-local neural networks." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2018.

 Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems* 30 (2017).