

Wave Equation

1. The One-dimensional (1-D) Wave Equation

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 \tag{1}$$

with a the wave speed.

- 2. Is a good representative equation for the Euler Equations
- 3. First part of the course we will use the 1-D Wave Equation to derive and analyze various aspects of accuracy, stability and efficiency
- 4. What motivates this model Equation?

One Dimensional Euler Equations

1. The Euler Equations are

$$\frac{\partial Q}{\partial t} + \frac{\partial E}{\partial x} = 0 \tag{2}$$

$$Q = \begin{bmatrix} \rho \\ \rho u \\ e \end{bmatrix}, \quad E = \begin{bmatrix} \rho u \\ \rho u^2 + p \\ u(e+p) \end{bmatrix}$$

(3)

Equation of state

$$p = (\gamma - 1) \left(e - \frac{1}{2} \rho(u^2) \right) \tag{4}$$

where γ is the ratio of specific heats, generally taken as 1.4.

Quasi-Linear Form

- 1. First we re-write the Euler Equations, Eq. 2, in chain rule form (Quasi-Linear)
- 2. Let $\frac{\partial E}{\partial x} = \left(\frac{\partial E}{\partial Q}\right) \frac{\partial Q}{\partial x}$, where $\frac{\partial E}{\partial Q}$ needs to be defined since E and Q are vectors.
- 3. The term $\frac{\partial E}{\partial Q}$ is a tensor, actually a Matrix defined as the Jacobian of the Flux Vector E with respect to Q.
- 4. Eq.2 can be rewritten as (A defined below)

$$\frac{\partial Q}{\partial t} + A \frac{\partial Q}{\partial x} = 0 \tag{5}$$

Generalized Forms

1. Redefine Q and E in terms of Independent Variables q_1, q_2, q_3 as

$$Q = \left[\begin{array}{c} q_1 \\ q_2 \\ q_3 \end{array} \right] = \left[\begin{array}{c} \rho \\ \rho u \\ e \end{array} \right]$$

$$E = \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = \begin{bmatrix} q_2 \\ \frac{q_2^2}{q_1} + (\gamma - 1) \left(q_3 - \frac{1}{2} \frac{q_2^2}{q_1} \right) \\ \frac{q_2}{q_1} \left(q_3 + (\gamma - 1) \left(q_3 - \frac{1}{2} \frac{q_2^2}{q_1} \right) \right) \end{bmatrix}$$

Jacobian Derivation

1. The definition of the Jacobian $A = \frac{\partial E}{\partial Q}$,

$$A = \begin{bmatrix} \frac{\partial e_1}{\partial q_1} & \frac{\partial e_1}{\partial q_2} & \frac{\partial e_1}{\partial q_3} \\ \frac{\partial e_2}{\partial q_1} & \frac{\partial e_2}{\partial q_2} & \frac{\partial e_2}{\partial q_3} \\ \frac{\partial e_3}{\partial q_1} & \frac{\partial e_3}{\partial q_2} & \frac{\partial e_3}{\partial q_3} \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ \frac{\gamma - 3}{2}u^2 & (3 - \gamma)u & \gamma - 1 \\ -\frac{\gamma e u}{\rho} + (\gamma - 1)u^3 & \frac{\gamma e}{\rho} - \frac{3(\gamma - 1)u^2}{2} & \gamma u \end{bmatrix}$$

Linear Diagonalized Form of Euler Equations

- 1. Freeze the Jacobian Matrix A at a reference state A_0
- 2. This can be justified by small perturbation theory, asymptotic analysis, etc.
- 3. We now have

$$\frac{\partial Q}{\partial t} + A_0 \frac{\partial Q}{\partial x} = 0 \tag{6}$$

4. The matrix A (and the corresponding A_0) has a complete set of eigenvectors and eigenvalues.

Eigensystem of A

- 1. Let $A = X\Lambda X^{-1}$ and conversely $\Lambda = X^{-1}AX$
 - (a) X is the 3×3 eigenvector matrix of A
 - (b) Λ is the diagonal eigenvalue matrix with elements, $\lambda_1, \lambda_2 \lambda_3$.
 - (c) For the Euler Equations, $\lambda_1 = u, \lambda_2 = u + c$, and $\lambda_3 = u c$ with $c = \sqrt{\frac{\gamma p}{\rho}}$, the speed of sound.

Diagonalization of Euler Equations

1. Using the Eigensystem of A_0 we can transform Eq.6 to

$$X_0^{-1} \left[\frac{\partial Q}{\partial t} + A_0 X_0 X_0^{-1} \frac{\partial Q}{\partial x} \right] = 0$$

$$\frac{\partial \left[X_0^{-1}Q\right]}{\partial t} + \left[X_0^{-1}A_0X_0\right] \frac{\partial \left[X_0^{-1}Q\right]}{\partial x} = 0$$

$$\frac{\partial W}{\partial t} + \Lambda_0 \frac{\partial W}{\partial x} = 0 \tag{7}$$

with
$$W = X_0^{-1}Q$$

Characteristic Form of Euler Equations

1. The Equations in Characteristic Form are uncoupled

$$\frac{\partial w_i}{\partial t} + \lambda_{0i} \frac{\partial w_i}{\partial x} = 0 \tag{8}$$

for i = 1, 2, 3

- 2. So for each i, we have the wave equation, Eq.1, where $u = w_i$ and $a = \lambda_{0i}$
- 3. Therefore, any process, analysis, stability, etc, results applied to the wave equation holds for each characteristic equation of w_i

Model Equation Justification

- 1. To Complete the process
 - (a) Transform back to physical variables $Q = X_0 W$
 - (b) X_0 is a constant matrix (it is made up of elements at the frozen state and therefore not a function of x, t)
 - (c) The resulting Q is just linear combinations of the w_i and any results applied to w_i also apply to q_i .
 - (d) For example, if any of the w_i are divergent (unstable, going to infinity, inaccurate, etc), the q_i behave consistently with the w_i

CONCLUSIONS

1. The wave equation Eq.1:

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 \tag{9}$$

is an appropriate model equation for the Euler Equations

2. GET USE TO SEEING IT FOR THE NEXT FEW WEEKS!!