# **OhioHealth Data Analytics/Modeling Exercise**

Submitted by Ali Haider Date 11/02/2020

# Importing libraries and the data set

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import statistics
from statistics import median
from scipy import stats
```

```
def read_csv(file_name):
    data = pd.read_csv(file_name, encoding = 'utf-8')

# fix encoding related errors
    data.columns = [col.replace('\xa0', '') for col in data.columns]
    for col in data.columns:
        data[col] = data[col].astype(str).str.replace(u'\xa0', '')
```

return data

```
#Sheet 'student1' of OH_dataset1
df1 = read_csv("student1.csv")
df1.head()
```

Out[224]:

In [224]:

In [291]:

In [223]:

|   | Studentid | year | score |
|---|-----------|------|-------|
| 0 | Α         | 94   | 320   |
| 1 | Α         | 94   | 348   |
| 2 | Α         | 92   | 365   |
| 3 | В         | 92   | 402   |
| 4 | В         | 92   | 354   |

In [234]:

```
#Sheet 'student2' of OH_dataset1
df2 = read_csv("student2.csv")
df2.head()
```

Out[234]:

|   | Studentid | Gender | Age | EconomicStatus |
|---|-----------|--------|-----|----------------|
| 0 | Α         | М      | 16  | high           |
| 1 | В         | F      | 15  | medium         |
| 2 | С         | F      | 18  | high           |
| 3 | D         | М      | 16  | low            |
| 4 | E         | М      | 16  | high           |

```
In [235]:
```

```
#OH_dataset2 of excercise
df3 = read_csv("OH_dataset2.csv")
df3.head()
```

#### Out[235]:

|   | Year | Month | TimeSeries |
|---|------|-------|------------|
| 0 | 2012 | 1     | 13         |
| 1 | 2012 | 2     | 12         |
| 2 | 2012 | 3     | 11         |
| 3 | 2012 | 4     | 10         |
| 4 | 2012 | 5     | 9          |

# A. Use dataset OH\_dataset1.xlsx (note it contains two sheets) and create R/Python code to answer below questions.

#### 1. Write code to retrieve mean and median scores for each student ID?

#### In [689]:

```
list dict scores = []
#Finding list of unique studenID
list studentID = list(df1["Studentid"])
list studentID = set(list studentID)
list studentID = sorted(list studentID)
#Make list of scores
for x in list studentID:
   f =[]
   for i in range(df1.shape[0]):
        if x == list(df1['Studentid'])[i]:
           lst = list(df1['score'])[i]
            f.append(lst)
    r = \{x: f\}
    list dict scores.append(r)
#Make a list of mean and median
list1 = []
for j in range(len(w)):
   letter dict = list dict scores[j]
   values_list = list(letter dict.values())
   values list = values list[0]
   values list = [int(k) for k in values list]
    float mean = statistics.mean(values list)
    rounded mean = round(float mean, 1)
    float median = median(values list)
    mean median list = [rounded mean, float median]
    list1.append(mean median list)
#Convert into data frame
Dict mean median = dict(zip(list studentID, list1))
Dict_mean_median = pd.DataFrame.from_dict(Dict_mean_median)
Dict_mean_median.index = ['Mean', 'Median']
Dict mean median
```

```
Out[689]:
```

 Mean
 344.3
 367.8
 415.3
 350.5
 494.0
 347
 422.7
 369.2
 420.7

 Median
 348.0
 377.0
 425.5
 350.5
 494.0
 348
 449.0
 356.5
 411.0

# 2. Create a new binary variable named result, which indicates whether a student scored above 400?

```
In [237]:
```

```
#Print True if student's score is greater than 400 and false when it is not
df1['score'] = pd.to_numeric(df1['score'])
df = df1["score"] >= 400
df = pd.concat([df1['Studentid'], df], axis=1)
df
```

## Out[237]:

| Studentid score |   |       |  |  |
|-----------------|---|-------|--|--|
| 0               | Α | False |  |  |
| 1               | Α | False |  |  |
| 2               | Α | False |  |  |
| 3               | В | True  |  |  |
| 4               | В | False |  |  |
| 5               | В | False |  |  |
| 6               | В | True  |  |  |
| 7               | С | True  |  |  |
| 8               | С | True  |  |  |
| 9               | С | True  |  |  |
| 10              | С | False |  |  |
| 11              | С | True  |  |  |
| 12              | С | False |  |  |
| 13              | D | False |  |  |
| 14              | D | False |  |  |
| 15              | E | True  |  |  |
| 16              | E | True  |  |  |
| 17              | F | False |  |  |
| 18              | F | False |  |  |
| 19              | F | False |  |  |
| 20              | G | False |  |  |
| 21              | G | True  |  |  |
| 22              | G | True  |  |  |
| 23              | н | False |  |  |
| 24              | н | True  |  |  |
| 25              | н | False |  |  |
| 26              | н | False |  |  |
|                 | _ | _     |  |  |

# 3. Write code to find out the gender and age of each student ID?

```
In [401]:

pd.concat([df2['Studentid'], df2['Gender'], df2['Age']], axis=1, keys=['Studentid', 'Gen der', 'Age'])
Out[401]:
```

|   | Studentid | Gender | Age |
|---|-----------|--------|-----|
| 0 | Α         | М      | 16  |
| 1 | В         | F      | 15  |
| 2 | С         | F      | 18  |
| 3 | D         | М      | 16  |
| 4 | E         | М      | 16  |
| 5 | F         | М      | 15  |
| 6 | G         | F      | 16  |
| 7 | н         | М      | 16  |
| 8 | 1         | F      | 17  |

# 4. Create a histogram to find out the distribution of score by gender? Is the distribution normal?

## In [671]:

```
#Making list of male and female scores
Male scores = []
Female_scores = []
for i in range(len(df1)):
    student id 1 = list(df1['Studentid'])[i]
    for j in range(len(df2)):
        student id 2 = list(df2['Studentid'])[j]
        student gender 2 = list(df2['Gender'])[j]
        if student_id_1 == student_id_2 and student_gender_2 == 'M':
            Male score = list(df1['score'])[i]
           Male scores.append(Male score)
        elif student id 1 == student id 2 and student gender 2 == 'F':
            Female_score = list(df1['score'])[i]
            Female scores.append(Female score)
#Plotting the histogram
x = Male_scores
y = Female scores
```

```
bins = np.linspace(300, 550, 20)

plt.title("Hstogram of students score")
plt.hist(x, bins, alpha=0.5, label='Male')
plt.hist(y, bins, alpha=0.5, label='Female')
plt.legend(loc='upper right')
plt.xlabel('scores', fontsize=16)
plt.ylabel('frequency', fontsize=16)
plt.show()
```



Distribution of Male scores is not normally distributed while female scores can be considered normally distributed due to the bell shape of the histogram.

# 5. Is there any statistical difference between male and female scores?

In [292]:

```
#Statistical significance testing
t_check=stats.ttest_ind(Male_scores, Female_scores)
t_check
alpha=0.05
if(t_check[1]<alpha):
    print('Male and Female scores are statistically different')
else:
    print('The difference in Male and Female scores is not statistically significant')</pre>
```

The difference in Male and Female scores is not statisticaly significant

# 6. For each student ID, what is the most recent score and which year was it?

```
In [373]:
```

```
#most recent score and year
df1['year'] = df1['year'].astype(int)
inDex = []
Recent_year_list = []

for j in range(len(df2)):
    recent_year = 0
    for i in range(len(df1)):
        student_id_1 = list(df1['Studentid'])[i]
```

Out[373]:

|   | Studentid | Recent_score | Recent_year |
|---|-----------|--------------|-------------|
| 0 | Α         | 320          | 94          |
| 1 | В         | 402          | 92          |
| 2 | С         | 480          | 94          |
| 3 | D         | 380          | 95          |
| 4 | E         | 499          | 94          |
| 5 | F         | 379          | 95          |
| 6 | G         | 462          | 94          |
| 7 | Н         | 450          | 95          |
| 8 | - 1       | 401          | 92          |

# B. Use dataset OH\_dataset1.xlsx (note it contains two sheets) and create R/Python code to answer below questions.

# 1. How would you recode gender as a 0/1 binary indicator?

```
In [388]:
gender_bin = pd.get_dummies(df2.Gender, prefix='Gender')
gender_bin.drop(['Gender_M'], axis=1)

pd.concat([df2['Studentid'], df2['Gender'], gender_bin['Gender_F']], axis=1, keys=['Studentid', 'Gender', 'Gender F'])
```

Out[388]:

|   | Studentid | Gender | Gender_F |
|---|-----------|--------|----------|
| 0 | Α         | М      | 0        |
| 1 | В         | F      | 1        |
| 2 | С         | F      | 1        |

| 3 | Studentid | Gender | Gender_P |
|---|-----------|--------|----------|
| 4 | E         | M      | 0        |
| 5 | F         | M      | 0        |
| 6 | G         | F      | 1        |
| 7 | н         | М      | 0        |
| 8 | 1         | F      | 1        |

Its 0 for male and 1 for female

# 2. Recode age as an ordinal variable using the following criteria:

```
a. < 15 = 1
```

b. 15 - 18 (both inclusive) = 2

c. > 18 = 3

In [404]:

```
Ordinal_variable_age = []
age_list = [int(i) for i in list(df2['Age'])]

for i in range(len(df2['Age'])):
    if age_list[i] < 15:
        Ordinal_variable_age.append(1)

    elif age_list[i] >= 15 and age_list[i] <= 18:
        Ordinal_variable_age.append(2)
    else:
        Ordinal_variable_age.append(3)

categorical_age = {'Age group': Ordinal_variable_age}
categorical_age = pd.DataFrame(data= categorical_age)
categorical_age

pd.concat([df2['Studentid'], df2['Age'], categorical_age['Age group']], axis=1, keys=['Studentid', 'Age', 'Age group'])</pre>
```

Out[404]:

|   | Studentid | Age | Age group |
|---|-----------|-----|-----------|
| 0 | Α         | 16  | 2         |
| 1 | В         | 15  | 2         |
| 2 | С         | 18  | 2         |
| 3 | D         | 16  | 2         |
| 4 | E         | 16  | 2         |
| 5 | F         | 15  | 2         |
| 6 | G         | 16  | 2         |
| 7 | Н         | 16  | 2         |
| 8 | 1         | 17  | 2         |
|   |           |     |           |

# 3. Build a machine learning algorithm to predict student's score using the other features. Use any model specification and data transformation you think is appropriate.

In [458]:

```
#Making the data structure
list year = []
list score = []
list Gender = []
list Age = []
list economic = []
for i in range(len(df1)):
   for j in range(len(df2)):
        if list(df1['Studentid'])[i] == list(df2['Studentid'])[j]:
           list year.append(list(df1['year'])[i])
           list_score.append(list(df1['score'])[i])
           list Gender.append(list(df2['Gender'])[j])
           list Age.append(list(df2['Age'])[j])
           list economic.append(list(df2['EconomicStatus'])[j])
data dict = {'Studentid': list(df1['Studentid']), 'year': list year, \
             'EconomicStatus': list economic, 'Gender': list Gender, 'Age': list Age,
score': list_score}
df6 = pd.DataFrame(data = data dict)
df6.head()
```

Out[458]:

|   | Studentid | year | <b>EconomicStatus</b> | Gender | Age | score |
|---|-----------|------|-----------------------|--------|-----|-------|
| 0 | Α         | 94   | high                  | М      | 16  | 320   |
| 1 | Α         | 94   | high                  | М      | 16  | 348   |
| 2 | Α         | 92   | high                  | М      | 16  | 365   |
| 3 | В         | 92   | medium                | F      | 15  | 402   |
| 4 | В         | 92   | medium                | F      | 15  | 354   |

Since the details in questions are not given so I made two assumptions which are as follow-

- We have to predict scores of a new student who is not in the given list
- The scores of each student are not the repition of a same course exam.

we can drop studentid column as it is not important for new student's score prediction

```
In [424]:

df6 = df6.drop(['Studentid'], axis=1)
```

Now we are all set and have to convert categorical columns into dummy variables.

```
In [438]:
```

```
#Making dummy variables of economic status columns
economic_bin = pd.get_dummies(df6.EconomicStatus, prefix='EconomicStatus')

#dropping medium column to prevent dummy variable trap
economic_bin = economic_bin[['EconomicStatus_high', 'EconomicStatus_low']]

#Making dummy variables of gender columns
```

```
gender_bin = pd.get_dummies(df6.Gender, prefix='Gender')

#dropping female column to prevent dummy variable trap
gender_bin = gender_bin[['Gender_M']]

#Concatenate all the columns
Data = pd.concat([df6['year'], economic_bin, gender_bin, df6['Age'], df6['score']], axis
=1)
Data.head()
```

#### Out[438]:

|   | year | EconomicStatus_high | EconomicStatus_low | Gender_M | Age | score |
|---|------|---------------------|--------------------|----------|-----|-------|
| ( | 94   | 1                   | 0                  | 1        | 16  | 320   |
|   | J 94 | 1                   | 0                  | 1        | 16  | 348   |
| 2 | 92   | 1                   | 0                  | 1        | 16  | 365   |
| ; | 92   | 0                   | 0                  | 0        | 15  | 402   |
| 4 | 92   | 0                   | 0                  | 0        | 15  | 354   |

## In [461]:

```
# Random Forest Regression
X = Data.iloc[:, 1:-1].values
y = Data.iloc[:, -1].values
# Splitting the dataset into the Training set and Test set
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, test size = 0.25, shuffle=True
                                                    random state=4)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X train = sc.fit transform(X train)
X_test = sc.transform(X test)
# Fitting Random Forest Classification to the Training set
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n estimators = 5, random state = 0)
regressor.fit(X_train, y_train)
#Predicting the Test set results
y pred = regressor.predict(X test)
y pred train = regressor.predict(X train)
#Evaluating the Algorithm
from sklearn import metrics
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean squared error(y test, y pred)))
```

Mean Absolute Error: 47.01613095238095
Mean Squared Error: 3832.81524606009

Root Mean Squared Error: 61.909734663137506

## In [678]:

```
# Support Vector Machine
from sklearn.svm import SVC
regressor = SVC(kernel = 'linear', random_state =0)
regressor.fit(X_train, y_train)

#Predicting the Test set results
y_pred = regressor.predict(X_test)
y_pred_train = regressor.predict(X_train)
```

```
#Evaluating the Algorithm
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
Mean Absolute Error: 0.25
Mean Squared Error: 0.25
```

The root mean squared error of random forest is less than that of SVM so we will chose random forest as our model.

The mean absolute error is 12% of the avergae score value. It has done a reasonably good job on our small dataset.

4. Create a new binary variable named result, which indicates whether a student scored above 400. Build a machine learning algorithm using this new binary variable as response variable and other features as predictors. Use any model specification and data transformation you think is appropriate

```
In [484]:
```

Root Mean Squared Error: 0.5

```
#Print 1 if student's score is greater than 400 and 0 when it is not
df1['score'] = pd.to_numeric(df1['score'])
df = df1["score"] > 400

binary_score = []
for i in range(len(df)):
    if df[i] == True:
        binary_score.append(1)
    else:
        binary_score.append(0)

binary_score = {'Binary_score': binary_score}
binary_score = pd.DataFrame(data = binary_score)

Data = pd.concat([df6['year'], economic_bin, gender_bin, df6['Age'], binary_score], axis
=1)
Data.head()
```

## Out[484]:

|   | year | EconomicStatus_high | EconomicStatus_low | Gender_M | Age | Binary_score |
|---|------|---------------------|--------------------|----------|-----|--------------|
| 0 | 94   | 1                   | 0                  | 1        | 16  | 0            |
| 1 | 94   | 1                   | 0                  | 1        | 16  | 0            |
| 2 | 92   | 1                   | 0                  | 1        | 16  | 0            |
| 3 | 92   | 0                   | 0                  | 0        | 15  | 1            |
| 4 | 92   | 0                   | 0                  | 0        | 15  | 0            |

#### In [679]:

```
sc = StandardScaler()
X train = sc.fit transform(X train)
X test = sc.transform(X test)
# Fitting Random Forest Classification to the Training set
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n estimators = 5, criterion = 'entropy', random stat
classifier.fit(X train, y train)
#Predicting the Test set results
y pred = classifier.predict(X test)
y pred train = classifier.predict(X train)
#Evaluating the Algorithm
from sklearn.metrics import classification report, confusion matrix, accuracy score
print("Confusion matrix is")
print(confusion matrix(y test, y pred))
print(classification_report(y_test,y_pred))
print("Accuracy from random forest model is" ,accuracy_score(y_test, y pred))
Confusion matrix is
[[2 1]
 [1 4]]
             precision recall f1-score support
                 0.67 0.67
          0
                                    0.67
                                                   3
                           0.80
                 0.80
                                     0.80
                                                  5
                                     0.75
                                                  8
   accuracy
                 0.73 0.73
                                    0.73
  macro avg
                 0.75
                           0.75
                                     0.75
weighted avg
Accuracy from random forest model is 0.75
In [680]:
# Training the SVM model on the Training set
from sklearn.svm import SVC
classifier = SVC(kernel = 'linear', random state = 0)
classifier.fit(X train, y train)
#Predicting the Test set results
y pred = classifier.predict(X test)
y pred train = classifier.predict(X train)
#Evaluating the Algorithm
print("Confusion matrix is")
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
print("Accuracy from random forest model is" ,accuracy score(y test, y pred))
Confusion matrix is
[[3 0]
 [2 3]]
             precision recall f1-score support
                  0.60
                          1.00
                                     0.75
                  1.00
                            0.60
                                      0.75
                                                  8
                                      0.75
   accuracy
                                    0.75
                  0.80
                            0.80
                                                  8
  macro avg
                 0.85
                            0.75
                                      0.75
weighted avg
Accuracy from random forest model is 0.75
```

# Feature Scaling

Both Random forest and Support vector machine showed 75% accuracy on 25% test set.

# C. Use dataset, OH\_dataset2.xlsx (note it's a monthly time series dataset) and create R/Python code to answer below questions.

# 1. Trend the series using a visualization plot.

```
In [520]:

df3.head()
```

#### Out[520]:

|   | Year | Month | TimeSeries |
|---|------|-------|------------|
| 0 | 2012 | 1     | 13         |
| 1 | 2012 | 2     | 12         |
| 2 | 2012 | 3     | 11         |
| 3 | 2012 | 4     | 10         |
| 4 | 2012 | 5     | 9          |

### In [539]:

```
# Concatinating Year and Month column
Data_Time_series = df3['Year'] + '-' + df3['Month']
Data_Time_series = pd.DataFrame({'YearMonth':Data_Time_series})

Data_Time_series = pd.concat([Data_Time_series, df3['TimeSeries']], axis=1)
Data_Time_series.head()
```

#### Out[539]:

|   | YearMonth | TimeSeries |
|---|-----------|------------|
| 0 | 2012-1    | 13         |
| 1 | 2012-2    | 12         |
| 2 | 2012-3    | 11         |
| 3 | 2012-4    | 10         |
| 4 | 2012-5    | 9          |

### In [540]:

```
plt.rc('font', size=12)
fig, ax = plt.subplots(figsize=(10, 6))

# Specify how our lines should look
ax.plot(Data_Time_series.YearMonth, Data_Time_series.TimeSeries, color='tab:blue', label
='Demand')

# Same as above
ax.set_xlabel('Year-Month')
ax.set_ylabel('Demand')
ax.set_title('Time series visualization')
ax.grid(True)
ax.legend(loc='upper left');
```

#### Time series visualization





# 2. Filter the level, trend and seasonality from the series

### In [588]:

```
# Time Series Decomposition
from statsmodels.tsa.seasonal import seasonal_decompose
df8 = Data_Time_series['TimeSeries']
df8 = df8.values
result = seasonal_decompose(df8, model='multiplicative', period=10)
result.plot()
pyplot.show()

df8 = df8.astype(np.float)
print("Level of the series or average is ", df8.mean())
```



Level of the series or average is 16.0

# 3. Use the dataset and any time series model building technique to predict the monthly value for next the 12 months for 2020

```
In [681]:
```

```
# Autocorellation plot
from pandas import datetime
from pandas.plotting import autocorrelation_plot
```

```
series = pd.Series(df8)
autocorrelation_plot(series)
plt.show()
print('Hence we will chose a lag of 3')
```

<ipython-input-681-fe3b82c3b118>:2: FutureWarning: The pandas.datetime class is deprecate
d and will be removed from pandas in a future version. Import from datetime module instea
d.

from pandas import datetime



Hence we will chose a lag of 3

### In [682]:

```
# ARIMA Forecasting
from statsmodels.tsa.arima_model import ARIMA
from pandas import DataFrame

# fit model
model = ARIMA(series, order=(3,1,0))
model_fit = model.fit(disp=0)
print(model_fit.summary())
# plot residual errors
residuals = DataFrame(model_fit.resid)
residuals.plot()
plt.show()
residuals.plot(kind='kde')
plt.show()
print(residuals.describe())
```

# ARIMA Model Results

| =========     | ========         | ========        |                     | :========     | =======       | ========  |
|---------------|------------------|-----------------|---------------------|---------------|---------------|-----------|
| Dep. Variable | e:               |                 | D.y No.             | Observations: |               | 95        |
| Model:        |                  | ARIMA(3, 1      | , 0) Log            | Likelihood    |               | -112.358  |
| Method:       |                  | CSS             | -mle S.D.           | of innovatio  | ns            | 0.784     |
| Date:         | Мс               | n, 02 Nov       | 2020 AIC            |               |               | 234.716   |
| Time:         |                  | 19:3            | 1:07 BIC            |               |               | 247.485   |
| Sample:       |                  |                 | 1 HQIC              |               |               | 239.876   |
|               |                  |                 |                     |               |               |           |
| =========     |                  |                 |                     |               |               |           |
|               | coef             | std err         | Z                   | P> z          | [0.025        | 0.975]    |
| const         | <br>-0.0651      | 0.420           | <br>-0.155          | 0.877         | <br>-0.889    | 0.759     |
| ar.L1.D.y     | 0.8067           | 0.098           | 8.202               | 0.000         | 0.614         | 0.999     |
| -             | 0.2481           | 0.126           | 1.962               | 0.050         | 0.000         | 0.496     |
| ar.L3.D.y     | -0.2415          | 0.099           | -2.428              | 0.015         | -0.436        | -0.047    |
| _             |                  |                 | Roots               |               |               |           |
| ==========    | ========<br>Real | :=======:<br>I1 | =======<br>maginarv | <br>Modul     | =======<br>us | Frequency |

|      | Real    | Imaginary | Modulus | Frequency |
|------|---------|-----------|---------|-----------|
| AR.1 | -1.8929 | -0.0000j  | 1.8929  | -0.5000   |
| AR.2 | 1.4600  | -0.2359j  | 1.4790  | -0.0255   |
| AR.3 | 1.4600  | +0.2359j  | 1.4790  | 0.0255    |



Its good to understand the data while applying a model. Fom the graph we can see that the Errors are not centered. The distribution of the residual errors is displayed. The results show that indeed there is a slight bias in the prediction (a non-zero mean in the residuals).

#### In [683]:

```
from sklearn.metrics import mean squared error
import matplotlib.patches as mpatches
X = series.values
size = int(len(X) * 0.66)
train, test = X[0:size], X[size:len(X)]
history = [x for x in train]
predictions = list()
for t in range(len(test)):
   model = ARIMA(history, order=(5,1,0))
   model_fit = model.fit(disp=0)
   output = model fit.forecast()
   yhat = output[0]
   predictions.append(yhat)
    jobs = test[t]
   history.append(jobs)
   print('predicted=%f, expected=%f' % (yhat, jobs))
error = mean squared error(test, predictions)
print('Test MSE: %.3f' % error)
# plot
red patch = mpatches.Patch(color='red', label='Predicted')
plt.legend(handles=[red patch])
plt.plot(test)
```

```
plt.plot(predictions, color='red')
plt.show()
predicted=22.494288, expected=23.000000
predicted=22.888132, expected=23.000000
predicted=22.597231, expected=23.000000
predicted=22.796899, expected=23.000000
predicted=22.710947, expected=23.000000
predicted=22.611069, expected=23.000000
predicted=23.057288, expected=22.000000
predicted=21.401094, expected=20.000000
predicted=18.434682, expected=18.000000
predicted=16.108357, expected=16.000000
predicted=13.936787, expected=14.000000
predicted=12.249132, expected=12.000000
predicted=10.648817, expected=11.000000
predicted=10.355641, expected=9.000000
predicted=7.869727, expected=9.000000
predicted=8.998038, expected=8.000000
predicted=8.040724, expected=8.000000
predicted=7.852205, expected=10.000000
predicted=11.932803, expected=12.000000
predicted=13.865628, expected=15.000000
predicted=18.164987, expected=18.000000
predicted=21.085890, expected=20.000000
predicted=21.775244, expected=22.000000
predicted=23.401709, expected=23.000000
predicted=23.332083, expected=23.000000
predicted=22.410572, expected=23.000000
predicted=22.331390, expected=23.000000
predicted=22.331221, expected=23.000000
predicted=22.733753, expected=22.000000
predicted=21.395724, expected=22.000000
predicted=21.703453, expected=21.000000
predicted=20.334096, expected=19.000000
predicted=17.504334, expected=17.000000
Test MSE: 0.618
```



Comparing test results on cross validation set allow us to validate the model. From the above analysis it looks like a good fit so we should move forward to predict for next 12 months

```
In [684]:
```

```
#Making predicitions of next 12 months
history = [x for x in train]
predictions = list()
for t in range(12):
    model = ARIMA(history, order=(5,1,0))
    model_fit = model.fit(disp=0)
    output = model_fit.forecast()
    yhat = output[0]
    predictions.append(yhat)
    jobs = test[t]
    history.append(jobs)
```

```
x train = []
for i in range(len(train)):
    x train.append(i+1)
length train = len(train)
length predictions = len(predictions)
length forecast = length train + length predictions
x predictions =[]
for i in range(length train, length forecast):
    x predictions.append(i+1)
print(x predictions)
plt.plot(x train, train, color='blue')
plt.plot(x predictions, predictions, color='red')
plt.title("ARIMA forecast of next 12 months")
plt.xlabel('Months', fontsize=16)
plt.ylabel('Predicted Demand', fontsize=16)
red_patch = mpatches.Patch(color='red', label='Predicted')
plt.legend(handles=[red patch])
plt.show()
```

## [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]



## Now using LSTM for time series

```
In [787]:
```

```
#LSTM for time series

test1 = test
train1 = train.reshape(-1, 1)

# Feature Scaling
from sklearn.preprocessing import MinMaxScaler
sc = MinMaxScaler(feature_range = (0, 1))
training_set_scaled = sc.fit_transform(train1)
```

### In [788]:

```
# Creating a data structure with 20 timesteps and 1 output
X_train = []
y_train = []
for i in range(20, len(train1)):
    X_train.append(training_set_scaled[i-20:i, 0])
```

```
y_train.append(training_set_scaled[i, 0])
X_train, y_train = np.array(X_train), np.array(y_train)

In [789]:
# Reshaping
```

X train = np.reshape(X train, (X train.shape[0], X train.shape[1], 1))

```
In [790]:
#Building the RNN
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Dropout
# Initialising the RNN
regressor = Sequential()
# Adding the first LSTM layer and some Dropout regularisation
regressor.add(LSTM(units = 50, return sequences = True, input shape = (X train.shape[1],
1)))
regressor.add(Dropout(0.2))
# Adding a second LSTM layer and some Dropout regularisation
regressor.add(LSTM(units = 50, return sequences = True))
regressor.add(Dropout(0.2))
# Adding a third LSTM layer and some Dropout regularisation
regressor.add(LSTM(units = 50, return sequences = True))
regressor.add(Dropout(0.2))
# Adding a fourth LSTM layer and some Dropout regularisation
regressor.add(LSTM(units = 50))
regressor.add(Dropout(0.2))
# Adding the output layer
regressor.add(Dense(units = 1))
# Compiling the RNN
regressor.compile(optimizer = 'adam', loss = 'mean squared error')
# Fitting the RNN to the Training set
regressor.fit(X_train, y_train, epochs = 500, batch size = 5)
Epoch 1/500
Epoch 2/500
9/9 [======== ] - Os 22ms/step - loss: 0.1723
Epoch 3/500
```

```
Epoch 4/500
9/9 [============ ] - Os 50ms/step - loss: 0.1365
Epoch 5/500
Epoch 6/500
Epoch 7/500
9/9 [======] - Os 32ms/step - loss: 0.1252
Epoch 8/500
Epoch 9/500
9/9 [============== ] - 0s 28ms/step - loss: 0.0796
Epoch 10/500
Epoch 11/500
Epoch 12/500
Epoch 13/500
```

| 9/9 [= |                                               | -   | 0s | 38ms/step - loss: | 0.0788 |
|--------|-----------------------------------------------|-----|----|-------------------|--------|
|        | 14/500<br>=================================== | -   | 0s | 41ms/step - loss: | 0.0776 |
|        | 15/500<br>==================================  | ı – | 0s | 36ms/step - loss: | 0.0659 |
| Epoch  | 16/500<br>]                                   |     |    |                   |        |
| Epoch  | 17/500<br>]                                   |     |    |                   |        |
| Epoch  | 18/500<br>]                                   |     |    |                   |        |
| Epoch  | 19/500<br>=================================== |     |    |                   |        |
| Epoch  | 20/500                                        |     |    |                   |        |
| Epoch  |                                               |     |    |                   |        |
| Epoch  | ]<br>22/500                                   |     |    |                   |        |
| Epoch  | ]<br>23/500                                   |     |    |                   |        |
| Epoch  | ]<br>24/500                                   |     |    | _                 |        |
| Epoch  | ]<br>25/500                                   |     |    | _                 |        |
|        | ]<br>26/500                                   | -   | 0s | 36ms/step - loss: | 0.0346 |
| 9/9 [= | ]<br>27/500                                   | -   | 0s | 41ms/step - loss: | 0.0265 |
| 9/9 [= |                                               | -   | 0s | 32ms/step - loss: | 0.0284 |
| 9/9 [= | ======================================        | -   | 0s | 28ms/step - loss: | 0.0236 |
| 9/9 [= | ======================================        | -   | 0s | 27ms/step - loss: | 0.0230 |
| 9/9 [= | =======================================       | -   | 0s | 28ms/step - loss: | 0.0262 |
| 9/9 [= | 31/500<br>]                                   | -   | 0s | 28ms/step - loss: | 0.0195 |
| 9/9 [= | 32/500<br>=================================== | -   | 0s | 28ms/step - loss: | 0.0133 |
| 9/9 [= | 33/500<br>=================================== | -   | 0s | 27ms/step - loss: | 0.0211 |
| 9/9 [= | 34/500<br>=================================== | -   | 0s | 28ms/step - loss: | 0.0174 |
|        | 35/500<br>==================================  | -   | 0s | 29ms/step - loss: | 0.0234 |
|        | 36/500<br>=================================== | -   | 0s | 38ms/step - loss: | 0.0119 |
|        | 37/500<br>=================================== | ı – | 0s | 41ms/step - loss: | 0.0156 |
| Epoch  | 38/500<br>]                                   |     |    |                   |        |
| Epoch  | 39/500<br>]                                   |     |    |                   |        |
| Epoch  | 40/500<br>]                                   |     |    |                   |        |
| Epoch  | 41/500                                        |     |    |                   |        |
| Epoch  | 42/500<br>]                                   |     |    |                   |        |
| Epoch  | 43/500                                        |     |    |                   |        |
| Epoch  | 44/500                                        |     |    |                   |        |
| Epoch  | 45/500                                        |     |    |                   |        |
| Epoch  | 46/500                                        |     |    |                   |        |
| Epoch  | 47/500                                        |     |    |                   |        |
| Epoch  | 48/500                                        |     |    |                   |        |
|        |                                               | -   | 0s | 28ms/step - loss: | 0.0097 |

```
9/9 [======== ] - Os 30ms/step - loss: 0.0107
Epoch 50/500
Epoch 51/500
9/9 [======] - 0s 30ms/step - loss: 0.0089
Epoch 52/500
Epoch 53/500
Epoch 54/500
Epoch 55/500
Epoch 56/500
Epoch 57/500
Epoch 58/500
Epoch 59/500
Epoch 60/500
Epoch 61/500
9/9 [=========== ] - 0s 43ms/step - loss: 0.0142
Epoch 62/500
Epoch 63/500
9/9 [======== ] - 0s 41ms/step - loss: 0.0115
Epoch 64/500
9/9 [======= ] - 0s 41ms/step - loss: 0.0082
Epoch 65/500
Epoch 66/500
9/9 [========= ] - 0s 40ms/step - loss: 0.0095
Epoch 67/500
9/9 [=========== ] - 0s 40ms/step - loss: 0.0130
Epoch 68/500
9/9 [=========== ] - 0s 39ms/step - loss: 0.0101
Epoch 69/500
Epoch 70/500
9/9 [======== ] - 0s 37ms/step - loss: 0.0091
Epoch 71/500
Epoch 72/500
Epoch 73/500
Epoch 74/500
9/9 [======== ] - Os 28ms/step - loss: 0.0113
Epoch 75/500
9/9 [============ ] - 0s 29ms/step - loss: 0.0152
Epoch 76/500
Epoch 77/500
9/9 [============= ] - 0s 29ms/step - loss: 0.0065
Epoch 78/500
9/9 [======] - 0s 27ms/step - loss: 0.0138
Epoch 79/500
9/9 [=======] - 0s 28ms/step - loss: 0.0117
Epoch 80/500
9/9 [======= ] - 0s 37ms/step - loss: 0.0233
Epoch 81/500
Epoch 82/500
Epoch 83/500
Epoch 84/500
9/9 [=========== ] - 0s 39ms/step - loss: 0.0177
Epoch 85/500
```

```
9/9 [======== ] - Os 39ms/step - loss: 0.0101
Epoch 86/500
Epoch 87/500
9/9 [======] - 0s 29ms/step - loss: 0.0103
Epoch 88/500
Epoch 89/500
Epoch 90/500
Epoch 91/500
Epoch 92/500
Epoch 93/500
Epoch 94/500
Epoch 95/500
9/9 [============== ] - Os 38ms/step - loss: 0.0071
Epoch 96/500
Epoch 97/500
9/9 [======== ] - 0s 41ms/step - loss: 0.0085
Epoch 98/500
9/9 [======= ] - 0s 40ms/step - loss: 0.0099
Epoch 99/500
9/9 [======== ] - 0s 36ms/step - loss: 0.0058
Epoch 100/500
9/9 [=======] - 0s 36ms/step - loss: 0.0099
Epoch 101/500
9/9 [======== ] - 0s 40ms/step - loss: 0.0064
Epoch 102/500
9/9 [========= ] - 0s 35ms/step - loss: 0.0087
Epoch 103/500
Epoch 104/500
Epoch 105/500
9/9 [======== ] - 0s 43ms/step - loss: 0.0096
Epoch 106/500
9/9 [======== ] - 0s 37ms/step - loss: 0.0089
Epoch 107/500
Epoch 108/500
9/9 [======== ] - 0s 41ms/step - loss: 0.0093
Epoch 109/500
Epoch 110/500
Epoch 111/500
9/9 [========= ] - 0s 38ms/step - loss: 0.0079
Epoch 112/500
9/9 [=============== ] - Os 45ms/step - loss: 0.0092
Epoch 113/500
9/9 [============== ] - Os 40ms/step - loss: 0.0082
Epoch 114/500
Epoch 115/500
9/9 [=========== ] - 0s 28ms/step - loss: 0.0033
Epoch 116/500
Epoch 117/500
Epoch 118/500
Epoch 119/500
Epoch 120/500
Epoch 121/500
```

|       | =======================================        | - | 0s | 28ms/step | _ | loss: | 0.0054 |
|-------|------------------------------------------------|---|----|-----------|---|-------|--------|
| 9/9 [ | 122/500<br>=================================== | _ | 0s | 37ms/step | _ | loss: | 0.0038 |
|       | 123/500<br>=================================== | _ | 0s | 42ms/step | _ | loss: | 0.0066 |
|       | 124/500<br>]                                   | _ | 0s | 41ms/step | _ | loss: | 0.0071 |
| Epoch | 125/500<br>==================================  |   |    | _         |   |       |        |
| Epoch |                                                |   |    | _         |   |       |        |
| Epoch | 127/500<br>=================================== |   |    | _         |   |       |        |
| Epoch |                                                |   |    |           |   |       |        |
| Epoch | 129/500                                        |   |    |           |   |       |        |
| Epoch | ]<br>130/500                                   |   |    | _         |   |       |        |
| Epoch | ]<br>131/500                                   |   |    |           |   |       |        |
| Epoch | ======================================         |   |    | _         |   |       |        |
| Epoch | ]<br>133/500                                   |   |    | _         |   |       |        |
| Epoch | ]<br>134/500                                   |   |    | _         |   |       |        |
|       | ======================================         | - | 0s | 38ms/step | - | loss: | 0.0054 |
|       | ======================================         | - | 0s | 40ms/step | - | loss: | 0.0065 |
| 9/9 [ | ======================================         | - | 0s | 42ms/step | - | loss: | 0.0071 |
| 9/9 [ | ======================================         | - | 0s | 41ms/step | - | loss: | 0.0057 |
| 9/9 [ | 139/500<br>=================================== | - | 0s | 42ms/step | - | loss: | 0.0046 |
| 9/9 [ | 140/500<br>140/500                             | - | 0s | 41ms/step | - | loss: | 0.0046 |
| 9/9 [ | 140/500<br>========]<br>141/500                | - | 0s | 38ms/step | - | loss: | 0.0049 |
| 9/9 [ | =======================================        | - | 0s | 36ms/step | - | loss: | 0.0071 |
| 9/9 [ | 142/500<br>=================================== | - | 0s | 41ms/step | - | loss: | 0.0063 |
| 9/9 [ | 143/500<br>=================================== | - | 0s | 37ms/step | - | loss: | 0.0049 |
| 9/9 [ | 144/500<br>=================================== | - | 0s | 37ms/step | - | loss: | 0.0059 |
| 9/9 [ | 145/500<br>==================================  | _ | 0s | 44ms/step | _ | loss: | 0.0056 |
| 9/9 [ | 146/500<br>=================================== | _ | 0s | 36ms/step | _ | loss: | 0.0087 |
| 9/9 [ | 147/500<br>=================================== | _ | 0s | 40ms/step | _ | loss: | 0.0059 |
|       | 148/500<br>=================================== | _ | 0s | 39ms/step | _ | loss: | 0.0052 |
|       | 149/500<br>=================================== | _ | 0s | 44ms/step | _ | loss: | 0.0044 |
|       | 150/500<br>=================================   | _ | 0s | 40ms/step | _ | loss: | 0.0056 |
| Epoch | 151/500<br>========]                           |   |    |           |   |       |        |
| Epoch | 152/500<br>=================================== |   |    |           |   |       |        |
| Epoch | 153/500<br>=======]                            |   |    |           |   |       |        |
| Epoch |                                                |   |    |           |   |       |        |
| Epoch |                                                |   |    |           |   |       |        |
| Epoch | <br>156/500<br>]                               |   |    |           |   |       |        |
|       | ======================================         | _ | US | Zoms/step | _ | TOSS: | 0.0039 |

```
Epoch 158/500
9/9 [========== ] - 0s 29ms/step - loss: 0.0048
Epoch 159/500
9/9 [=======] - 0s 26ms/step - loss: 0.0061
Epoch 160/500
9/9 [======== ] - 0s 28ms/step - loss: 0.0044
Epoch 161/500
Epoch 162/500
Epoch 163/500
Epoch 164/500
Epoch 165/500
Epoch 166/500
Epoch 167/500
9/9 [============== ] - 0s 39ms/step - loss: 0.0059
Epoch 168/500
Epoch 169/500
9/9 [========= ] - 0s 32ms/step - loss: 0.0044
Epoch 170/500
9/9 [=======] - 0s 37ms/step - loss: 0.0067
Epoch 171/500
Epoch 172/500
Epoch 173/500
9/9 [======== ] - 0s 39ms/step - loss: 0.0059
Epoch 174/500
9/9 [========= ] - 0s 36ms/step - loss: 0.0084
Epoch 175/500
Epoch 176/500
Epoch 177/500
Epoch 178/500
9/9 [========= ] - 0s 37ms/step - loss: 0.0042
Epoch 179/500
9/9 [======= ] - Os 43ms/step - loss: 0.0056
Epoch 180/500
9/9 [======== ] - 0s 38ms/step - loss: 0.0092
Epoch 181/500
Epoch 182/500
9/9 [========= ] - 0s 39ms/step - loss: 0.0051
Epoch 183/500
9/9 [=========== ] - 0s 38ms/step - loss: 0.0044
Epoch 184/500
9/9 [============== ] - 0s 42ms/step - loss: 0.0055
Epoch 185/500
9/9 [============== ] - Os 40ms/step - loss: 0.0042
Epoch 186/500
9/9 [======== ] - 0s 37ms/step - loss: 0.0039
Epoch 187/500
9/9 [======] - 0s 38ms/step - loss: 0.0037
Epoch 188/500
9/9 [======== ] - 0s 36ms/step - loss: 0.0060
Epoch 189/500
Epoch 190/500
9/9 [=======] - 0s 38ms/step - loss: 0.0050
Epoch 191/500
Epoch 192/500
9/9 [========== ] - 0s 32ms/step - loss: 0.0033
Epoch 193/500
```

| 9/9 [=======]                                             | _ | 0s  | 38ms/step - loss: 0.0041 |   |
|-----------------------------------------------------------|---|-----|--------------------------|---|
| Epoch 194/500<br>9/9 [=======]                            | _ | 0s  | 40ms/step - loss: 0.0041 |   |
| Epoch 195/500<br>9/9 [========]                           | _ | 0s  | 35ms/step - loss: 0.0039 | ) |
| Epoch 196/500<br>9/9 [=========]                          | _ | 0s  | 40ms/step - loss: 0.0041 |   |
| Epoch 197/500<br>9/9 [========]                           | _ | 0s  | 39ms/step - loss: 0.0029 | , |
| Epoch 198/500 9/9 [===========]                           | _ | 0s  | 39ms/step - loss: 0.0067 | , |
| Epoch 199/500<br>9/9 [=======]                            |   |     |                          |   |
| Epoch 200/500<br>9/9 [=======]                            |   |     |                          |   |
| Epoch 201/500<br>9/9 [========]                           |   |     |                          |   |
| Epoch 202/500<br>9/9 [========]                           |   |     |                          |   |
| Epoch 203/500 9/9 [===================================    |   |     |                          |   |
| Epoch 204/500                                             |   |     | -                        |   |
| 9/9 [========]<br>Epoch 205/500                           |   |     |                          |   |
| 9/9 [=========]<br>Epoch 206/500                          |   |     |                          |   |
| 9/9 [========]<br>Epoch 207/500                           |   |     |                          |   |
| 9/9 [========]<br>Epoch 208/500                           |   |     |                          |   |
| 9/9 [========]<br>Epoch 209/500                           |   |     |                          |   |
| 9/9 [========]<br>Epoch 210/500                           |   |     |                          |   |
| 9/9 [=======]<br>Epoch 211/500                            | - | 0s  | 42ms/step - loss: 0.0043 | i |
| 9/9 [===================================                  | - | 0s  | 41ms/step - loss: 0.0056 | ) |
| 9/9 [===================================                  | - | 0s  | 38ms/step - loss: 0.0048 | ; |
| 9/9 [===================================                  | - | 0s  | 38ms/step - loss: 0.0044 | : |
| 9/9 [===================================                  | - | 0s  | 38ms/step - loss: 0.0030 | ı |
| 9/9 [==========]<br>Epoch 216/500                         | - | 0s  | 43ms/step - loss: 0.0052 |   |
| 9/9 [===================================                  | - | 0s  | 44ms/step - loss: 0.0047 | , |
| 9/9 [=======]                                             | - | 0s  | 37ms/step - loss: 0.0043 | i |
| Epoch 218/500<br>9/9 [=================================== | - | 0s  | 43ms/step - loss: 0.0047 | , |
| Epoch 219/500<br>9/9 [=================================== | - | 0s  | 41ms/step - loss: 0.0063 | ; |
| Epoch 220/500<br>9/9 [=================================== | _ | 0s  | 42ms/step - loss: 0.0041 |   |
| Epoch 221/500<br>9/9 [=======]                            | _ | 0s  | 41ms/step - loss: 0.0044 |   |
| Epoch 222/500<br>9/9 [=======]                            | _ | 0s  | 39ms/step - loss: 0.0063 | j |
| Epoch 223/500 9/9 [===========]                           | _ | 0s  | 37ms/step - loss: 0.0049 | ) |
| Epoch 224/500<br>9/9 [=========]                          | _ | 0s  | 37ms/step - loss: 0.0065 | , |
| Epoch 225/500 9/9 [==================================     | _ | 0s  | 37ms/step - loss: 0.0032 |   |
| Epoch 226/500 9/9 [==========]                            |   |     |                          |   |
| Epoch 227/500<br>9/9 [=======]                            |   |     |                          |   |
| Epoch 228/500<br>9/9 [========]                           |   |     |                          |   |
| Epoch 229/500                                             |   | 7.5 | 1000. 0.0001             |   |

|                 |                                         | -   | 0s | 35ms/step | _ | loss: | 0.0029 |
|-----------------|-----------------------------------------|-----|----|-----------|---|-------|--------|
| 9/9 [=          | 230/500<br>:                            | ] – | 0s | 39ms/step | _ | loss: | 0.0035 |
|                 | 231/500<br>:                            | ] - | 0s | 37ms/step | _ | loss: | 0.0046 |
| 9/9 [=          | 232/500<br>:                            | -   | 0s | 34ms/step | _ | loss: | 0.0031 |
|                 | 233/500<br>                             | ] – | 0s | 37ms/step | _ | loss: | 0.0025 |
|                 | 234/500                                 | ] – | 0s | 33ms/step | _ | loss: | 0.0044 |
| Epoch           | 235/500                                 |     |    |           |   |       |        |
| Epoch           | 236/500                                 |     |    |           |   |       |        |
| Epoch           | 237/500                                 |     |    |           |   |       |        |
| Epoch           |                                         |     |    |           |   |       |        |
| Epoch           | 239/500                                 |     |    | _         |   |       |        |
| Epoch           | 240/500                                 |     |    | _         |   |       |        |
| Epoch           | 241/500                                 |     |    |           |   |       |        |
| Epoch           | 242/500                                 |     |    |           |   |       |        |
| Epoch           | 243/500                                 |     |    |           |   |       |        |
| Epoch           | 244/500                                 |     |    |           |   |       |        |
| Epoch           | 245/500                                 |     |    |           |   |       |        |
| Epoch           | 246/500                                 |     |    |           |   |       |        |
| Epoch           |                                         |     |    |           |   |       |        |
|                 |                                         | -   | 0s | 36ms/step | - | loss: | 0.0024 |
|                 |                                         | ] – | 0s | 33ms/step | - | loss: | 0.0029 |
|                 |                                         | -   | 0s | 29ms/step | - | loss: | 0.0033 |
| 9/9 [=          |                                         | ] – | 0s | 26ms/step | - | loss: | 0.0035 |
| 9/9 [=          | 252/500                                 | -   | 0s | 27ms/step | - | loss: | 0.0043 |
| 9/9 [=          | ======================================  | ] – | 0s | 27ms/step | - | loss: | 0.0035 |
| 9/9 [=          | 254/500<br>254/500                      | ] – | 0s | 36ms/step | - | loss: | 0.0047 |
| 9/9 [=          | 255/500<br>255/500                      | ] – | 0s | 37ms/step | - | loss: | 0.0032 |
| 9/9 [=          | :====================================== | ] – | 0s | 36ms/step | - | loss: | 0.0034 |
| 9/9 [=          | 256/500<br>                             | ] – | 0s | 40ms/step | _ | loss: | 0.0054 |
| 9/9 [=          | 257/500<br>                             | ] – | 0s | 36ms/step | - | loss: | 0.0046 |
| 9/9 [=          | 258/500<br>                             | -   | 0s | 40ms/step | _ | loss: | 0.0037 |
| 9/9 [=          | 259/500<br>                             | ] – | 0s | 40ms/step | _ | loss: | 0.0036 |
| 9/9 [=          | 260/500<br>                             | ] – | 0s | 34ms/step | _ | loss: | 0.0059 |
| Epoch<br>9/9 [= | 261/500                                 | -   | 0s | 36ms/step | _ | loss: | 0.0037 |
|                 | 262/500                                 | ] – | 0s | 41ms/step | _ | loss: | 0.0059 |
| Epoch           | 263/500                                 |     |    |           |   |       |        |
| Epoch           | 264/500<br>                             |     |    |           |   |       |        |
|                 | 265/500                                 | •   |    | , 2 сер   |   |       |        |

|        |                                                | ] – | 0s | 38ms/step - loss: 0 | 0.0088 |
|--------|------------------------------------------------|-----|----|---------------------|--------|
| -      | 266/500<br>=================================== | ] – | 0s | 36ms/step - loss: ( | 0.0058 |
|        | 267/500<br>=================================== | ] – | 0s | 39ms/step - loss: 0 | 0.0084 |
| Epoch  | 268/500<br>                                    |     |    |                     |        |
| Epoch  | 269/500<br>=================================== |     |    | <u>-</u>            |        |
| Epoch  | 270/500<br>                                    |     |    | <u>-</u>            |        |
| Epoch  | 271/500                                        |     |    | <u>-</u>            |        |
| Epoch  | 272/500                                        |     |    |                     |        |
| Epoch  | 273/500                                        |     |    |                     |        |
| Epoch  | 274/500                                        |     |    |                     |        |
| Epoch  | 275/500                                        |     |    |                     |        |
| Epoch  | 276/500                                        |     |    |                     |        |
| Epoch  | ======================================         |     |    |                     |        |
|        |                                                | ] – | 0s | 34ms/step - loss: 0 | 0.0021 |
| 9/9 [= |                                                | ] – | 0s | 39ms/step - loss: 0 | 0.0026 |
| 9/9 [= |                                                | ] – | 0s | 38ms/step - loss: 0 | 0.0035 |
| 9/9 [= | 281/500                                        | ] – | 0s | 34ms/step - loss: 0 | 0.0049 |
| 9/9 [= |                                                | ] – | 0s | 33ms/step - loss: 0 | 0.0034 |
| 9/9 [= | 282/500<br>=================================== | ] – | 0s | 35ms/step - loss: 0 | 0.0044 |
| 9/9 [= | 283/500<br>=================================== | ] – | 0s | 36ms/step - loss: 0 | 0.0060 |
| 9/9 [= | 284/500<br>=================================== | ] – | 0s | 34ms/step - loss: 0 | 0.0040 |
| 9/9 [= | 285/500<br>==================================  | ] – | 0s | 34ms/step - loss: 0 | 0.0076 |
| 9/9 [= | 286/500<br>=================================== | ] – | 0s | 33ms/step - loss: 0 | 0.0032 |
| 9/9 [= | 287/500<br>=================================== | ] – | 0s | 30ms/step - loss: 0 | 0.0039 |
|        | 288/500<br>=================================== | ] – | 0s | 29ms/step - loss: ( | 0.0044 |
|        | 289/500<br>=================================== | ] – | 0s | 31ms/step - loss: ( | 0.0059 |
| Epoch  | 290/500<br>==================================  |     |    |                     |        |
| Epoch  | 291/500<br>                                    |     |    |                     |        |
| Epoch  | 292/500<br>                                    |     |    |                     |        |
| Epoch  | 293/500<br>                                    |     |    |                     |        |
| Epoch  | 294/500<br>=================================== |     |    |                     |        |
| Epoch  | 295/500                                        |     |    |                     |        |
| Epoch  |                                                |     |    |                     |        |
| Epoch  | 297/500                                        |     |    |                     |        |
| Epoch  | 298/500                                        |     |    |                     |        |
| Epoch  | 299/500                                        |     |    |                     |        |
| Epoch  | 300/500                                        |     |    |                     |        |
|        | 301/500                                        | ] – | 0s | 37ms/step - loss: ( | 0.0025 |

| 9/9 [======                                               | ] – | 0s         | 36ms/step - loss: 0 | 0.0029   |
|-----------------------------------------------------------|-----|------------|---------------------|----------|
| Epoch 302/500<br>9/9 [=================================== | ] – | 0s         | 33ms/step - loss: 0 | 0.0028   |
| Epoch 303/500<br>9/9 [=================================== | ] – | 0s         | 34ms/step - loss: 0 | 0.0031   |
| Epoch 304/500 9/9 [==================================     | ] – | 0s         | 35ms/step - loss: 0 | 0.0027   |
| Epoch 305/500 9/9 [==================================     | 1 - | 0s         | 41ms/step - loss: 0 | 0.0037   |
| Epoch 306/500<br>9/9 [=================================== |     |            | <u>-</u>            |          |
| Epoch 307/500<br>9/9 [=================================== |     |            | <u>-</u>            |          |
| Epoch 308/500<br>9/9 [=================================== |     |            |                     |          |
| Epoch 309/500<br>9/9 [=================================== |     |            |                     |          |
| Epoch 310/500<br>9/9 [=================================== |     |            |                     |          |
| Epoch 311/500                                             |     |            |                     |          |
| 9/9 [===================================                  |     |            | <del>-</del>        |          |
| 9/9 [===================================                  |     |            | <del>-</del>        |          |
| 9/9 [===================================                  |     |            |                     |          |
| 9/9 [===================================                  |     |            |                     |          |
| 9/9 [===================================                  |     |            |                     |          |
| 9/9 [===================================                  |     |            |                     |          |
| 9/9 [===================================                  |     |            |                     |          |
| 9/9 [===================================                  | ] – | 0s         | 41ms/step - loss: 0 | 0.0035   |
| 9/9 [===================================                  | ] – | 0s         | 42ms/step - loss: 0 | 0.0039   |
| 9/9 [===================================                  | ] – | 0s         | 42ms/step - loss: 0 | 0.0045   |
| 9/9 [===================================                  | ] – | 0s         | 40ms/step - loss: 0 | 0.0058   |
| 9/9 [===================================                  | ] – | 0s         | 41ms/step - loss: 0 | 0.0043   |
| 9/9 [===================================                  | ] – | 0s         | 43ms/step - loss: 0 | 0.0049   |
| 9/9 [===================================                  | ] – | 0s         | 41ms/step - loss: 0 | 0.0033   |
| 9/9 [===================================                  | ] – | 0s         | 40ms/step - loss: 0 | 0.0038   |
| 9/9 [=========                                            | ] – | 0s         | 39ms/step - loss: 0 | 0.0037   |
| Epoch 327/500<br>9/9 [=================================== | ] – | 0s         | 45ms/step - loss: 0 | 0.0027   |
| Epoch 328/500<br>9/9 [=================================== | ] – | 0s         | 30ms/step - loss: 0 | 0.0066   |
| Epoch 329/500<br>9/9 [=================================== | ] – | 0s         | 27ms/step - loss: 0 | 0.0031   |
| Epoch 330/500<br>9/9 [=================================== | ] – | 0s         | 26ms/step - loss: 0 | 0.0027   |
| Epoch 331/500<br>9/9 [=================================== | ] – | 0s         | 29ms/step - loss: 0 | 0.0041   |
| Epoch 332/500<br>9/9 [=================================== | ] – | 0s         | 26ms/step - loss: 0 | 0.0029   |
| Epoch 333/500<br>9/9 [=================================== |     |            |                     |          |
| Epoch 334/500<br>9/9 [=================================== |     |            |                     |          |
| Epoch 335/500<br>9/9 [=================================== |     |            |                     |          |
| Epoch 336/500<br>9/9 [=================================== |     |            |                     |          |
| Epoch 337/500                                             |     | <i>,</i> , | 2.me, ecep 1005. 0  | . • 0027 |

|        |             | ] – | 0s | 35ms/step - loss: 0 | 0.0029 |
|--------|-------------|-----|----|---------------------|--------|
| 9/9 [= | 338/500     | ] – | 0s | 42ms/step - loss: 0 | 0.0040 |
| 9/9 [= | 339/500     | ] – | 0s | 41ms/step - loss: 0 | 0.0043 |
|        | 340/500     | ] – | 0s | 33ms/step - loss: 0 | 0.0038 |
|        | 341/500     | ] – | 0s | 38ms/step - loss: 0 | 0.0029 |
|        | 342/500<br> | ] – | 0s | 38ms/step - loss: 0 | 0.0031 |
| Epoch  | 343/500<br> |     |    |                     |        |
| Epoch  | 344/500<br> |     |    |                     |        |
| Epoch  | 345/500<br> |     |    |                     |        |
| Epoch  | 346/500<br> |     |    |                     |        |
| Epoch  | 347/500     |     |    |                     |        |
| Epoch  | 348/500     |     |    | <u>-</u>            |        |
| Epoch  | 349/500     |     |    |                     |        |
| Epoch  | 350/500     |     |    |                     |        |
| Epoch  | 351/500     |     |    |                     |        |
| Epoch  | 352/500     |     |    |                     |        |
| Epoch  | 353/500     |     |    |                     |        |
| Epoch  | 354/500     |     |    |                     |        |
| Epoch  | 355/500     |     |    |                     |        |
| Epoch  | 356/500     |     |    |                     |        |
| Epoch  | 357/500     |     |    |                     |        |
| Epoch  | 358/500     |     |    |                     |        |
| Epoch  | 359/500     |     |    |                     |        |
| Epoch  | 360/500     |     |    |                     |        |
| Epoch  | 361/500     |     |    |                     |        |
| Epoch  | 362/500     |     |    |                     |        |
| Epoch  | 363/500     |     |    |                     |        |
| Epoch  | 364/500     |     |    |                     |        |
| Epoch  | 365/500     |     |    |                     |        |
| Epoch  | 366/500     |     |    |                     |        |
| Epoch  | 367/500     |     |    |                     |        |
| Epoch  | 368/500     |     |    |                     |        |
| Epoch  | 369/500     |     |    |                     |        |
| Epoch  | 370/500     |     |    |                     |        |
| Epoch  | 371/500     |     |    |                     |        |
| Epoch  | 372/500     |     |    |                     |        |
|        | 373/500     | ] – | 0s | 26ms/step - loss: 0 | 0.0040 |

```
Epoch 374/500
Epoch 375/500
9/9 [======] - 0s 30ms/step - loss: 0.0055
Epoch 376/500
9/9 [========= ] - 0s 28ms/step - loss: 0.0032
Epoch 377/500
Epoch 378/500
Epoch 379/500
9/9 [======= ] - Os 29ms/step - loss: 0.0030
Epoch 380/500
Epoch 381/500
9/9 [======== ] - 0s 33ms/step - loss: 0.0040
Epoch 382/500
Epoch 383/500
9/9 [============== ] - Os 38ms/step - loss: 0.0041
Epoch 384/500
Epoch 385/500
9/9 [========= ] - 0s 35ms/step - loss: 0.0025
Epoch 386/500
9/9 [======= ] - Os 39ms/step - loss: 0.0035
Epoch 387/500
Epoch 388/500
9/9 [======= ] - 0s 36ms/step - loss: 0.0019
Epoch 389/500
Epoch 390/500
9/9 [========= ] - 0s 32ms/step - loss: 0.0028
Epoch 391/500
9/9 [========== ] - 0s 33ms/step - loss: 0.0054
Epoch 392/500
Epoch 393/500
9/9 [=======] - 0s 35ms/step - loss: 0.0029
Epoch 394/500
9/9 [=======] - 0s 39ms/step - loss: 0.0018
Epoch 395/500
Epoch 396/500
9/9 [======== ] - 0s 39ms/step - loss: 0.0025
Epoch 397/500
Epoch 398/500
Epoch 399/500
9/9 [=========== ] - 0s 39ms/step - loss: 0.0033
Epoch 400/500
9/9 [============== ] - Os 39ms/step - loss: 0.0019
Epoch 401/500
9/9 [============= ] - 0s 36ms/step - loss: 0.0029
Epoch 402/500
9/9 [======== ] - 0s 38ms/step - loss: 0.0039
Epoch 403/500
9/9 [======] - 0s 33ms/step - loss: 0.0042
Epoch 404/500
9/9 [======== ] - 0s 28ms/step - loss: 0.0037
Epoch 405/500
Epoch 406/500
Epoch 407/500
Epoch 408/500
Epoch 409/500
```

|       | ======================================         | _ | 0s | 41ms/step | _ | loss: | 0.0022 |
|-------|------------------------------------------------|---|----|-----------|---|-------|--------|
| 9/9 [ | 410/500<br>==================================  | - | 0s | 37ms/step | _ | loss: | 0.0047 |
| 9/9 [ | 411/500<br>=================================== | _ | 0s | 39ms/step | - | loss: | 0.0028 |
| 9/9 [ | 412/500<br>=================================== | - | 0s | 37ms/step | _ | loss: | 0.0028 |
|       | 413/500<br>=================================== | _ | 0s | 44ms/step | _ | loss: | 0.0042 |
|       | 414/500<br>=================================== | _ | 0s | 33ms/step | _ | loss: | 0.0036 |
|       | 415/500<br>==================================  | _ | 0s | 37ms/step | _ | loss: | 0.0034 |
|       | 416/500<br>=================================== | _ | 0s | 30ms/step | _ | loss: | 0.0032 |
| Epoch | 417/500                                        |   |    | _         |   |       |        |
| Epoch | 418/500                                        |   |    | _         |   |       |        |
| Epoch | 419/500                                        |   |    | _         |   |       |        |
| Epoch | 420/500<br>==================================  |   |    | _         |   |       |        |
| Epoch | 421/500<br>=================================== |   |    | _         |   |       |        |
| Epoch | 422/500<br>=================================== |   |    |           |   |       |        |
| Epoch | 423/500                                        |   |    |           |   |       |        |
| Epoch | ======================================         |   |    |           |   |       |        |
| Epoch | ]<br>425/500                                   |   |    | _         |   |       |        |
| Epoch | 426/500                                        |   |    | _         |   |       |        |
| Epoch | 427/500                                        |   |    | _         |   |       |        |
| Epoch | 428/500                                        |   |    |           |   |       |        |
| Epoch | 429/500                                        |   |    |           |   |       |        |
| Epoch | 430/500                                        |   |    |           |   |       |        |
| Epoch | 431/500                                        |   |    |           |   |       |        |
| Epoch | 432/500                                        |   |    |           |   |       |        |
| Epoch | 433/500                                        |   |    |           |   |       |        |
| Epoch | 434/500                                        |   |    |           |   |       |        |
| Epoch | 435/500                                        |   |    |           |   |       |        |
| Epoch | 436/500                                        |   |    |           |   |       |        |
| Epoch | 437/500                                        |   |    |           |   |       |        |
| Epoch | 438/500                                        |   |    |           |   |       |        |
| Epoch | ]<br>439/500                                   |   |    | _         |   |       |        |
| Epoch | ]<br>440/500                                   |   |    |           |   |       |        |
| Epoch | ]<br>441/500                                   |   |    |           |   |       |        |
| Epoch | ]<br>442/500                                   |   |    |           |   |       |        |
| Epoch | ]<br>443/500                                   |   |    |           |   |       |        |
| Epoch | ]<br>444/500                                   |   |    |           |   |       |        |
|       |                                                | - | 0s | 35ms/step | - | loss: | 0.0021 |

| 9/9 [===================================                  | ] – | 0s | 34ms/step - loss: 0.0013 | } |
|-----------------------------------------------------------|-----|----|--------------------------|---|
| Epoch 446/500<br>9/9 [=================================== | ] – | 0s | 38ms/step - loss: 0.0032 | ) |
| Epoch 447/500<br>9/9 [=================================== | ] – | 0s | 34ms/step - loss: 0.0020 | ) |
| Epoch 448/500 9/9 [==================================     | ] - | 0s | 37ms/step - loss: 0.0028 | } |
| Epoch 449/500 9/9 [==================================     | 1 - | 0s | 39ms/step - loss: 0.0021 | _ |
| Epoch 450/500<br>9/9 [=================================== |     |    | -                        |   |
| Epoch 451/500<br>9/9 [=================================== |     |    | -                        |   |
| Epoch 452/500<br>9/9 [=================================== |     |    |                          |   |
| Epoch 453/500                                             |     |    |                          |   |
| 9/9 [===================================                  |     |    |                          |   |
| 9/9 [===================================                  |     |    |                          |   |
| 9/9 [===================================                  |     |    | -                        |   |
| 9/9 [========<br>Epoch 457/500                            |     |    | -                        |   |
| 9/9 [========<br>Epoch 458/500                            |     |    |                          |   |
| 9/9 [========<br>Epoch 459/500                            |     |    |                          |   |
| 9/9 [===================================                  |     |    |                          |   |
| 9/9 [===================================                  |     |    |                          |   |
| 9/9 [===================================                  | ] – | 0s | 33ms/step - loss: 0.0033 | , |
| 9/9 [===================================                  | ] – | 0s | 31ms/step - loss: 0.0027 | 1 |
| 9/9 [===================================                  | ] – | 0s | 33ms/step - loss: 0.0031 |   |
| 9/9 [===================================                  | ] - | 0s | 34ms/step - loss: 0.0027 | 1 |
| 9/9 [===================================                  | ] – | 0s | 34ms/step - loss: 0.0033 | ) |
| 9/9 [===================================                  | ] – | 0s | 30ms/step - loss: 0.0030 | ) |
| 9/9 [===================================                  | ] – | 0s | 28ms/step - loss: 0.0024 |   |
| 9/9 [===================================                  | ] – | 0s | 29ms/step - loss: 0.0028 | ) |
| Epoch 469/500<br>9/9 [=================================== | ] – | 0s | 35ms/step - loss: 0.0031 |   |
| Epoch 470/500<br>9/9 [=================================== | ] – | 0s | 33ms/step - loss: 0.0022 |   |
| Epoch 471/500<br>9/9 [=================================== | ] - | 0s | 32ms/step - loss: 0.0032 |   |
| Epoch 472/500<br>9/9 [=================================== | ] – | 0s | 32ms/step - loss: 0.0028 | ; |
| Epoch 473/500<br>9/9 [=================================== | ] – | 0s | 34ms/step - loss: 0.0030 | ) |
| Epoch 474/500<br>9/9 [=================================== | ] – | 0s | 32ms/step - loss: 0.0020 | ) |
| Epoch 475/500 9/9 [==================================     | ] - | 0s | 33ms/step - loss: 0.0021 | _ |
| Epoch 476/500 9/9 [==================================     | ] – | 0s | 36ms/step - loss: 0.0022 | ) |
| Epoch 477/500<br>9/9 [=================================== |     |    |                          |   |
| Epoch 478/500<br>9/9 [=================================== |     |    |                          |   |
| Epoch 479/500<br>9/9 [=================================== |     |    |                          |   |
| Epoch 480/500<br>9/9 [=================================== |     |    |                          |   |
| Epoch 481/500                                             | 1 _ | υs | 57m5, 500p 1033. 0.0030  | • |

```
9/9 [======= - - 0s 38ms/step - loss: 0.0043
Epoch 482/500
Epoch 483/500
Epoch 484/500
Epoch 485/500
Epoch 486/500
Epoch 487/500
Epoch 488/500
Epoch 489/500
Epoch 490/500
Epoch 491/500
Epoch 492/500
Epoch 493/500
Epoch 494/500
9/9 [======== ] - 0s 35ms/step - loss: 0.0020
Epoch 495/500
9/9 [======== ] - 0s 34ms/step - loss: 0.0020
Epoch 496/500
Epoch 497/500
Epoch 498/500
Epoch 499/500
9/9 [=========== ] - 0s 35ms/step - loss: 0.0025
Epoch 500/500
Out[790]:
<tensorflow.python.keras.callbacks.History at 0x22e837fb220>
In [791]:
# testing
test1 = test.reshape(-1, 1)
In [ ]:
# Getting the predicted stock price of 2017
dataset total = np.concatenate((train1, test1), axis = 0)
inputs = dataset_total[len(dataset_total) - len(test1) - 20:]
inputs = inputs.reshape(-1,1)
inputs = sc.transform(inputs)
X \text{ test} = []
for i in range (20, 20 + len(test1)):
 X test.append(inputs[i-20:i, 0])
X test = np.array(X test)
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
#print(X test.shape)
\#X \text{ test} = X \text{ test.reshape}(-1, 1)
predicted demand = regressor.predict(X test)
predicted demand = sc.inverse transform(predicted demand)
```

In [793]:

# Visualising the results

```
plt.plot(predicted_demand, color = 'red', label = 'Prediction_LSTM')
plt.plot(test1, color = 'blue', label = 'Actual')
plt.title('12 months prediction using LSTM')
plt.xlabel('Months')
plt.ylabel('Demand')
plt.legend()
plt.show()
```



### In [794]:

```
MSE = np.square(np.subtract(predicted_demand, test1)).mean()
print("MSE from LSTM model is", MSE)
```

MSE from LSTM model is 0.7705398039637671

LSTM usally performs better than ARIMA but in this case we have small data and so MSE of ARIMA model was 0.61 which is better than 0.77 MSE of LSTM on test set. Using LSTM was like over killing the problem!