Synergy: Looking Beyond GPUs for DNN Scheduling on Multi-Tenant Clusters

Jayashree Mohan, Amar Phanishayee, and Janardhan Kulkarni, MS Research; Vijay Chidambaram, The University of Texas and VMware Research
USENIX OSDI'22

슬라이드 노트에 각 장별 설명이 나와있습니다!

Presented by Yejin Han yj0225@dankook.ac.kr

Introduction

- DNN training on multi-tenant clusters
 - Co-locating training workloads in a shared, multi-tenant cluster is a common setup

Introduction

- DNN training on multi-tenant clusters
 - Co-locating training workloads in a shared, multi-tenant cluster is a common setup

Existing DNN cluster schedulers allocate resources GPU-proportional

What is GPU-proportional allocation?

- User requests a fixed number of GPUs for their DNN job
- Other resources are allocated proportional to the number of GPUs

What is GPU-proportional allocation?

- User requests a fixed number of GPUs for their DNN job
- Other resources are allocated proportional to the number of GPUs

Motivation: Resource-sensitivity

DNNs exhibit varied sensitivity to the amount of CPU and DRAM

CPU: GPU	SKU
3:1	NVIDIA DGX-2 Internal servers at X
4:1	AWS p3.16xlarge
5:1	NVIDIA DGX-1 Azure NDv2
6:1	Azure NC24s_v3
(b) (GPU VM SKUs

We need to consider resource sensitivity of DNN training jobs

Motivation: Resource-sensitivity

Co-locate a CPU/memory sensitive job with an insensitive one

Figure 3: **Resource sensitive scheduling**. We compare the runtime of the jobs with two different schedules; GPU-proportional and resource-sensitive. By allocating resources disproportionately, CPU and memory sensitive jobs see increased throughputs which reduces the average JCT by $1.5 \times$.

Job	Model
J_1	ResNet18
J_2	Audio-M5
J_3	Transformer
J_4	GNMT

Table 1: Example jobs

Server	Job	GPU	CPU	Mem
S_1	J1	4	12	250
	J2	4	12	250
S_2	<i>J</i> 3	4	12	250
52	<i>J</i> 4	4	12	250

Table 2: GPU-proportional allocation

Server	Job	GPU	CPU	Mem
S_1	J1	4	23	400
	<i>J</i> 3	4	1	100
S_2	J2	4	12	450
S_2	<i>J</i> 4	4	12	50

Table 3: Resource-sensitive allocation

What are the challenges?

- What is the ideal resource requirement for each job?
- How can this be determined with low overhead?
- How should we pack these jobs onto servers efficiently?

- * FIFO: First In First Out
- * SRTF: Shortest Remaining Time First
- * LAS: Least Attained Service
- Synergy is a round-based scheduler that arbitrates GPU, CPU, and memory
- It identifies the job's best-case CPU/memory requirements
- It packs DNN jobs to the available servers

Optimistic Profiling

- Resource-sensitivity matrix for combinations of CPU and memory
- Predictable job performance to memory allocation
 - Using DNN-aware caching MinIO (VLDB'21)

Figure 4: **Optimistic profiling** empirically evaluates the sensitivity of a model to varying # CPUs assuming a fully cached dataset; the rest of the matrix is completed using estimation

(a) Memory Validation

Figure 5: **Optimistic profiling**.

Optimistic Profiling

Pick the minimum value of (CPU + memory) that saturates max throughput

(b) CPU validation

Figure 5: **Optimistic profiling**.

Job placement

- What is the best placement for a set of jobs in the given round?
- Multi-dimensional bin packing problem

Identifies runnable jobs for the current round from the scheduling queue

The next job to be scheduled with the priority is picked from the queue

Synergy checks if the jobs demand can be fitted in the cluster

- Synergy checks if the jobs demand can be fitted in the cluster
- If it does fit the cluster, then the job is assigned to the cluster

- Synergy check if the job's demand is greater than proportional share
- If so, switch to GPU-proportional share and retry

- Synergy check if the job's demand is greater than proportional share
- If so, switch to GPU-proportional share and retry

- Synergy check if the job's demand is greater than proportional share
- If so, switch to GPU-proportional share and retry

If the job still doesn't fit the cluster, then find the underutilized server

- Synergy identify the job that is allocated more than GPU-proportional share
- Then it switch the job to GPU-proportional share

- Synergy identify the job that is allocated more than GPU-proportional share
- Then it switch it to GPU-proportional share

- Synergy identify the job that is allocated more than GPU-proportional share
- Then it switch it to GPU-proportional share

Continue until no more free GPUs/jobs in the cluster

Experimental setup

Task	Model	Dataset	
Image	Shufflenetv2 [58] AlexNet [32] Resnet18 [28] MobileNetv2 [50] ResNet50 [28]	ImageNet [49]	
Language	GNMT [54] LSTM [47] Transformer-XL [16]	WMT16 [9] Wikitext-2 [36] Wikitext-103 [36]	
Speech	M5 [15] DeepSpeech [27]	Free Music [17] LibriSpeech [45]	

Table 4: Models used in this work.

- Performed on 4 servers on a MS cluster
- 10 DNN models (CNNs, RNNs, LSTMs)
- PyTorch 1.1.0
- 24 core CPU
- 500GB DRAM
- V100 GPU X 8

Physical cluster experiment

Policy (Metric)	Workload Split	Mechanism	Tim Deploy	e (hrs) Simulate
FIFO (Makespan)	60-30-10	Proportional Tune Opt	16 11.6	15.67 11.33 11.01
SRTF (Avg JCT)	30-60-10	Proportional Tune Opt	4.81 3.21	4.52 3.19 3.06
SRTF (99 Percentile JCT)	30-60-10	Proportional Tune Opt	17.32 8.59	16.85 8.54 8.21

Table 5: **Physical cluster experiments**. This table compares the makespan, average JCT, and 99th percentile JCT for two different traces; (1) a static trace using FIFO (2) a dynamic trace using SRTF. Synergy-TUNE improves makespan by $1.4\times$, average JCT by $1.5\times$ and 99th percentile JCT by $2\times$.

Synergy improves cluster objectives (makespan, Avg JCT, 99p JCT)

Simulation with production traces

	Avg JCT(hrs)		
Policy	SRTF	LAS	FIFO
GPU-prop.	30	32	71
Synergy	26	28	62

JC'	T (hrs)	Short	Long
A	Prop.	2	80
Avg	Synergy	1.7	68
000	Prop	9	660
99p	Synergy	4	641

(a) Average JCT with Synergy

(b) Cluster metrics (SRTF)

(c) JCT speedup across jobs

Figure 6: **Evaluation on Philly Trace**. On a real production trace, Synergy improves avg JCT across a range of scheduling policies over GPU-proportional scheduling. The JCT of individual jobs improves by upto $9 \times$ with Synergy.

Impact of workload split (% of image, language, and speech models)

DANKOOK UNIVERSIT

Conclusion

DNN training jobs in the cluster have different CPU and memory sensitivity

Synergy profiles auxiliary resource requirement and performs workload-aware allocation

It gives unutilized resources from one job to another, improving job performance

Synergy: Looking Beyond GPUs for DNN Scheduling on Multi-Tenant Clusters

Jayashree Mohan, Amar Phanishayee, and Janardhan Kulkarni, MS Research; Vijay Chidambaram, The University of Texas and VMware Research
USENIX OSDI'22

Thank You!

Presented by Yejin Han yj0225@dankook.ac.kr

