FinTech Bootcamp Project 2

Back-End Algorithmic Trading Model

Project Outline

Classification and regression model comparison Use FinTA package for technical indicators Pull in OHLCV data from Santiment for BTC

Notebook Overviews

BTC Golden Cross Model:

- Santiment BTC data time frame: 12/01/2018 12/01/2021 (3 years)
- FinTA 50 SMA x 200 SMA = Golden Cross
- 4 entries
- 3 exits
- Split data into training and test datasets
- Standardized data using StandardScaler
- Training data Support Vector Machine model accuracy score = 60%
- Testing data Support Vector Machine model accuracy score = 53%
 - Trading algorithm returns outperforms actual returns
- Training data Logistic Regression model accuracy score = 54%
- Testing data Logistic Regression model accuracy score = 48%
- Testing data model comparative analysis:
 - Logistic Regression model accuracy score = 48%
 - Support Vector Machine model accuracy score = 53%

ETH Golden Cross Model::

- Santiment ETH data time frame: 12/01/2018 12/01/2021 (3 years)
- FinTA 50 SMA x 200 SMA = Golden Cross
- 4 entries
- 3 exits
- Split data into training and test datasets
- Standardized data using StandardScaler
- Training data Support Vector Machine model accuracy score = 58%
- Testing data Support Vector Machine model accuracy score = 54%
 - Trading algorithm returns underperforms actual returns
- Training data Logistic Regression model accuracy score = 55%
- Testing data Logistic Regression model accuracy score = 45%
- Testing data model comparative analysis:
 - Logistic Regression model accuracy score = 45%
 - Support Vector Machine model accuracy score = 54%

Team Roles

Charles Panagopoulos - Project Manager Ian Melhorn - Quant Developer Will Pape - Quant Developer Samirah Djachechi - AWS Bot Strategist Benjamin Boule - AWS Bot Strategist Eugenio Ngondji - Lead Developer Alex Toenshoff - Machine Learning Developer

Strategy

Evaluate Risk Profile to make investment recommendations based on backtesting/sentiment. Furthermore, provide recommendations based on the users available funding and risk tolerance

Technical Indicators For Consideration

3 different trading models for a customer to choose from on a website or query from the bot

- Bollinger Bands 'BBANDS'
- Simple Moving Average 'SMA' or Exponential Moving Average 'EMA'
 - Short and long window crossover
- Relative Strength Index 'RSI'
- SuperTrend
- MACD
- CCI
- Ichimoku Cloud
- Parabolic SAR

Investment Horizon

Input field/function
Initial Investment

Action Items

- 1. Start with one asset to model
- 2. Build and test the model using one asset
- 3. Once proven, update model to reflect multiple assets

Helpful Tools

Create functions for everyone to call in individual jupyter files to maintain code consistency

Bot configuration

Bot name: Trading_BotOutput voice: Salli

Session timeout: 5 minutesSentiment analysis: No

• COPPA: No

Advanced options: No

• Leave default values for all other options.

Create the Cryptotrader intent, and configure some sample utterances as follows (you can add more utterances as you wish):

- I want to invest in crypto
- I'm {age} and I would like to do day trade
- I'm {age} and I want to invest for my retirement
- I want the best crypto currency to invest in
- I do not know what crypto currency to invest in
- I want to become rich with crypto
- I would like to grow my crypto portfolio
- I want a prediction of {value} performance

This bot will use five slots, three using built-in types and one custom slot named riskLevel. Define the three initial slots as follows:

Name	Slot type	Prompt
firstName	AMAZON.US_FIRST_NA ME	Thank you for trusting me to help, could you please give me your name? And email address?
age	AMAZON.NUMBER	Hello {firstName}, how old are you?
InvestmentAmount	AMAZON.NUMBER	How much do you want to invest?
value	Cryptocurrency	Would you like to invest in Bitcoin or Ethereum?
decision	Amazon.Yesintent	Would you like to purchase this model?

value: ETC image - https://images.mktw.net/im-336321?width=700&height=467

BTC image- https://cdn.pixabay.com/photo/2017/01/25/12/31/bitcoin-2007769 480.jpg

Error:

Output after selection of a value : (Brief description of code and its purpose)

Get the decision

Technical Requirements

The technical requirements for Project 2 are as follows.

- Create a Jupyter Notebook, Google Colab Notebook, or Amazon SageMaker Notebook to prepare a training and testing dataset.
- Optionally, apply a dimensionality reduction technique to reduce the input features, or perform feature engineering to generate new features to train the model.
- Create one or more machine learning models.
- Fit the model(s) to the training data.
- Evaluate the trained model(s) using testing data. Include any calculations, metrics, or visualizations needed to evaluate the performance.
- Show the predictions using a sample of new data. Compare the predictions if more than one model is used.
- Save PNG images of your visualizations to distribute to the class and instructional team and for inclusion in your presentation and your repo's README.md file.
- Use one new machine learning library, machine learning model, or evaluation metric that hasn't been covered in class.
- Create a README.md in your repo with a write-up summarizing your project. Be sure to include any usage instructions to set up and use the model.

Presentation Guidelines

You are free to structure your presentations to your liking, but students tend to have success with the following format.

- Title Slide
 - Include the name of the project and group members.

- Motivation & Summary Slide
 - Define the core message or hypothesis of your project.
- Model Summary
 - Elaborate on the predictive model used, describing why it was the best choice for the data.
- Data Cleanup & Model Training
 - Describe the exploration and cleanup process.
 - Discuss any problems that arose with preparing the data or training the model that you didn't anticipate.
 - Discuss the overall training process and highlight anything of interest with the training process: Cloud resources used, training time required, issues with training.
- Model Evaluation
 - Discuss the techniques you used to evaluate the model performance.
- Discussion
 - Discuss your findings. Was the model sufficient for the predictive task? If not, why not? What inferences or general conclusions can you draw from your model performance?
- Postmortem
 - o Discuss any difficulties that arose, and how you dealt with them.
 - Discuss any additional questions or problems that came up but you didn't have time to answer: What would you research next if you had two more weeks?
- Questions
 - Open-floor Q&A with the audience.

Presentation Requirements

The presentation requirements for the project are as follows.

Your presentation must:

- Be at least 8 to 10 minutes long (check with the instructor for the official presentation time).
- Describe the core message or hypothesis for your project.
- Describe the predictive model chose and why this model was chosen.
- Describe the data preparation and model training process.
- Describe the techniques used to evaluate the model performance.
- Summarize your conclusions and predictions. This should include a numerical summary (what data your model yielded), as well as visualizations of that summary (plots of the final model evaluation and predictions).
- Discuss the implications of your findings. This is where you get to have an open-ended discussion about what your findings mean.