# Lagrangian Hydrodynamics in Planar Symmetry

PHYSICS 598 CPA: Problem Set 5

Ricky Chue, Yinghe Lü, Wei-Ting Liao

### 1 Finite Difference Equations in Lagrangian Scheme

In planar geometry using the Lagrangian coordinates, the observer follows the fluid element as it moves through space and time. Let r be the spatial coordinate of a fluid element at t=0, while R=R(t,r)= spatial coordinate at any t>0. We can thus write the Lagrangian difference equations as:

$$\frac{DR}{Dt} = u \tag{1}$$

$$\frac{Du}{Dt} = -\frac{1}{\rho} \frac{\partial P}{\partial R} = -V_0 \left(\frac{R}{r}\right)^{\alpha - 1} \frac{\partial P}{\partial R} \tag{2}$$

$$\frac{D\epsilon}{Dt} = -P\frac{DV}{Dt} \tag{3}$$

where

$$V_0 = \frac{1}{\rho_0}, V = \frac{1}{\rho}$$

so that

$$V = V_0 \left(\frac{R}{r}\right)^{\alpha - 1} \frac{\partial R}{\partial r} = V_0 \frac{\partial R^{\alpha}}{\partial r^{\alpha}} \tag{4}$$

$$\epsilon = f(P, V) = \frac{PV}{\gamma - 1} \tag{5}$$

for perfect gas. To avoid discontinuity in shock waves, we introduce artificial viscosity into FDEs, so the equation becomes:

$$\frac{DR}{Dt} = u \tag{6}$$

$$\frac{Du}{Dt} = -\frac{1}{\rho} \frac{\partial (P+q)}{\partial R} \tag{7}$$

$$\frac{D\epsilon}{Dt} = -(P+q)\frac{DV}{Dt} \tag{8}$$

where

$$q = \begin{cases} \frac{l^2}{V} \left(\frac{\partial u}{\partial R}\right)^2 & \frac{\partial u}{\partial R} < 0\\ 0 & otherwise \end{cases}$$
 (9)

The parameter l here has the dimension of length, and q has the dimension of  $\rho u^2$ . In this case, the equations can reproduce jump conditions for a steady shock.

The parameter  $\alpha$  is determined by the dimension of our analysis. Assume  $V \propto \mathbb{R}^p$ , we can derive from Eqn.(4) that  $p = \alpha$ . So in 1D case, we choose  $\alpha = 1$  here.

## 2 Analytical Results

In general for a shock, we have the Rankine-Hugoniot jump conditions:

$$\rho_0 u_0 = \rho_1 u_1 \tag{10}$$

$$P_0 + \rho_0 u_0^2 = P_1 + \rho_1 u_1^2 \tag{11}$$

$$\epsilon_0 + \frac{P_0}{\rho_0} + \frac{u_0^2}{2} = \epsilon_1 + \frac{P_1}{\rho_1} + \frac{u_1^2}{2} \tag{12}$$

Solve the above equations, we get the ratio of the pressure, density and velocity at the front/back of the shock.

$$\frac{P_1}{P_0} = \frac{(\gamma+1)V_0 - (\gamma-1)V_1}{(\gamma+1)V_1 - (\gamma-1)V_0} = \frac{2\rho_0 u_0^2/P_0}{\gamma+1} - \frac{\gamma-1}{\gamma+1}$$
(13)

$$\frac{\rho_0}{\rho_1} = \frac{V_1}{V_0} = \frac{(\gamma+1)P_0 + (\gamma-1)P_1}{(\gamma+1)P_1 + (\gamma-1)P_0} = \frac{\gamma-1}{\gamma+1} + \frac{2}{\gamma+1} \frac{\gamma P_0}{\rho_0 u_0^2}$$
(14)

So that we know the speed of the fluid behind the shock (which is also the shock speed) can be given by:

$$u_0^2 = \frac{1}{2\rho_0} [(\gamma - 1)P_0 + (\gamma + 1)P_1] = \frac{c_0^2}{2\gamma} [(\gamma - 1) + (\gamma + 1)(\frac{P_1}{P_0})]$$
 (15)

Similarly, we also have

$$u_1^2 = \frac{c_0^2}{2\gamma} \frac{\left[ (\gamma + 1) + (\gamma - 1)(\frac{P_1}{P_0}) \right]^2}{(\gamma - 1) + (\gamma + 1)(\frac{P_1}{P_0})}$$
(16)

$$u_0 - U_{piston} = u_1 \tag{17}$$

## 3 Numerical Methods

Now discretize the system into many cells in space and time. Consider a staggered spatial coordinate mesh with spatial positions  $\{R_j\}$  and time sets  $\{t_n\}$ , for  $\forall j$ , we can evolve the above equations in time. So if we go from element n to n+1, we can rewrite the equations as:

$$u_j^{n+1} = u_j^n - \Delta t \left(\frac{V_j^0 + V_{j-1}^0}{2}\right) \left(\frac{R_j^n}{r_j^n}\right)^{\alpha - 1} \frac{P_j^n + q_j^n - P_{j-1}^n - q_{j-1}^n}{\frac{1}{2}(r_{j+1} - r_{j-1})}$$
(18)

$$R_i^{n+1} = R_i^n + \Delta t u_i^{n+1} \tag{19}$$

$$V_j^{n+1} = V_j^n \frac{(R_{j+1}^{n+1})^{\alpha} - (R_j^{n+1})^{\alpha}}{(r_{j+1})^{\alpha} - (r_j)^{\alpha}}$$
(20)

$$\epsilon_j^{n+1} = \epsilon_j^n - \left(\frac{P_j^n + P_j^{n+1}}{2} + q_j^{n+1}\right)(V_j^{n+1} - V_j^n) \tag{21}$$

$$P_j^{n+1} = (\gamma - 1) \frac{\epsilon_j^{n+1}}{V_j^{n+1}}$$
 (22)

$$q_j^n = \begin{cases} \frac{2a^2}{V_j^n + V_j^{n-1}} (u_{j+1}^n - u_j^n)^2 & (u_{j+1}^n - u_j^n) < 0\\ 0 & otherwise \end{cases}$$
 (23)

Here we have replaced l by  $a\Delta x$ , where a  $\sim 1.5$  - 2.0 . Note that here  $\rho$ , P and q are actually centered on the half-grid points in space and time. So we solve Eqns.(18) to (23) numerically, with j indexing from 0 to  $j_{max}$ , and n from 0 to  $n_{max}$ .

The time step is given by

$$\Delta t = min\left[\frac{b(R_{j+1}^n - R_j^n)}{c_i^n}\right] = min\left[\frac{b(R_{j+1}^n - R_j^n)}{(\gamma P_j^n/\rho_j^n)^{1/2}}\right]$$
(24)

Here b  $\sim 0.2$  for initial value . Depending on the requirements, we adjust b so as to control the time step size.

To simplify our computation, we first normalize the equations to a dimensionless form:

$$\rho \to \frac{\rho}{\rho_0}, P \to \frac{P}{P_0}, u \to \frac{u}{u_0}$$
$$\Delta t \to \frac{\Delta t}{t_0}, R \to \frac{R}{u_0 t_0}, \Delta x \to \frac{\Delta x}{u_0 t_0}$$

Here  $t_0$  is arbitrary, so we choose it to be 1. Now we have initial conditions:

$$\begin{split} P_{j}^{0} &= V_{j}^{0} = 1 \\ R_{j}^{0} &= j\Delta x \\ \epsilon_{j}^{0} &= \frac{P_{j}^{0}V_{j}^{0}}{\gamma - 1} = \frac{1}{\gamma - 1} \\ u_{j}^{0} &= \left\{ \begin{array}{cc} -U_{piston}/u_{0} & j = 0 \\ 0 & j = 1, 2...j_{max} \end{array} \right. \end{split}$$

As well as boundary conditions:

$$\rho_{j_{max}}^{n} = V_{j_{max}}^{n} = 1$$
$$u_{0}^{n} = -U_{piston}/u_{0}$$

for all n.

As indicated, we use  $\gamma = 5/3$  for equation of state. During evolution of time steps, Eqns. (22)(23) are coupled to each other. So we rewrite them as:

$$P_j^{n+1} = \frac{P_j^n(V_j^{n+1} - \frac{\gamma+1}{\gamma-1}V_j^n) + q_j^{n+1}(V_j^{n+1} - V_j^n)}{V_j^n - \frac{\gamma+1}{\gamma-1}V_j^{n+1}}$$
(25)

$$\epsilon_j^{n+1} = \frac{\epsilon_j^n - (\frac{P_j^n}{2} + q_j^{n+1})(V_j^{n+1} - V_j^n)}{1 + \frac{(\gamma - 1)((V_j^{n+1} - V_j^n)}{2V_i^{n+1}}}$$
(26)

#### 4 Results

#### 4.1 Rarefaction

In this case the piston is **withdrawn** from the fluid with (a)  $U = (1/10)U_{max}$  and (b)  $U = 10U_{max}$ , where  $U_{max} = (2/(\gamma - 1))C_0$ ,  $C_0 = (\gamma P_0/\rho_0)^{1/2}$ . So we can write the initial condition of velocity field as:

$$u_j^0 = \begin{cases} -k \frac{2\sqrt{\gamma}}{\gamma - 1} & j = 0\\ 0 & j = 1, 2...j_{max} \end{cases}$$

Here k=1/10 (case a) or 10(case b). The density, pressure and velocity profiles (density, pressure and velocity with respect to the spatial coordinate R) are plotted in Fig.1 and Fig.2 .

The non-dimensional analytical solutions are as following. First, the region with  $R > \sqrt{\gamma}t$  is left untouched. Therefore, flow properties in the untouched region are the same as the initial condition. Flow in the transition region has the following analytical solutions:

$$u = -\frac{2\sqrt{\gamma}}{\gamma + 1} \left[ 1 - \frac{R}{t} \right] \quad , \quad c = \sqrt{\gamma} + \frac{\gamma - 1}{2} u \equiv c(u) \; ,$$

$$\rho = (c/\sqrt{\gamma})^{2/(\gamma - 1)} \equiv \rho(u) \quad , \quad P = \rho^{\gamma} \equiv P(u) \; .$$
(27)

And, for  $R < \left[\sqrt{\gamma} - U_p \times (\gamma + 1)/2\right] \times t$ , flow will have constant properties as

$$u = -U_p$$
,  $c = c(-U_p)$ ,  $\rho = \rho(-U_p)$ ,  $P = P(-U_p)$ . (28)



Figure 1: Rarefaction with 0.1  $U_{\text{max}}$ . The two curves show how the wave is transported to the right with time t=0.7746 and t=3.098.



Figure 2: Rarefaction with 10  $U_{\rm max}$ . The two curves show how the wave is transported to the right with time.

### 4.2 Compression

Now we have the piston **plunged into** the fluid with the velocity (a)  $U = (1/10)C_0$  and (b)  $U = 10C_0$ . Different from the rarefaction case, we just need to change the boundary condition of velocity, with other parameters staying the same:

$$u_0^n = U_{piston}/u_0 = k\sqrt{\gamma}$$

. The density, pressure and velocity profiles ( density, pressure and velocity with respect to the spatial coordinate R) are plotted in Fig.3 and Fig.4 .



Figure 3: Compression with  $0.1\ C_0$ . The two curves show how the wave is transported to the right with time.



Figure 4: Compression with 10  $C_0$ . The two curves show how the shock is transported to the right with time.

#### 5 Discussion

#### 5.1 Comparing with Analytical Values

In Table 1, we have calculated  $P_1/P_0$ ,  $\rho_1/\rho_0$ , as well as the shock speed  $u_0$  for the analytical method.

| Case                | $P_1/P_0$ | $\rho_1/\rho_0$ | $u_0/c_0$ |
|---------------------|-----------|-----------------|-----------|
| $U = (1/10)U_{max}$ |           |                 | 1.57      |
| $U = 10U_{max}$     |           |                 | 40        |
| $U = -(1/10)C_0$    | 1.62      | 1.33            | 1.23      |
| $U = -10C_0$        | 2000      | 4               | 40        |

Table 1. Jump Conditions with Analytical Approach

As a comparison, all the same parameters using the output of numerical calculation are shown in Table 2.

| Case                | $P_1/P_0$ | $\rho_1/\rho_0$ | $u_0/c_0$ |
|---------------------|-----------|-----------------|-----------|
| $U = (1/10)U_{max}$ |           |                 |           |
| $U = 10U_{max}$     |           |                 |           |
| $U = -(1/10)C_0$    |           |                 |           |
| $U = -10C_0$        |           |                 |           |

Table 1. Jump Condition with Numerical Approach

We can see that in general, the analytical and numerical approaches are in good agreement with each other.

#### 5.2 Conservation of Energy

The total energy is given by integrating the energy of each element:

$$E = \int dr (\epsilon + \frac{1}{2}\rho u^2) = \int dr (\frac{PV}{\gamma - 1} + \frac{1}{2}\rho u^2)$$
 (29)

Numerically this becomes:

$$E^{n} = \sum_{j=1}^{j_{max}} \Delta x \left[ \frac{P_{j}^{n} V_{j}^{n}}{\gamma - 1} + \frac{1}{2} \rho_{j}^{n} (u_{j}^{n})^{2} \right]$$
 (30)

Compare this to the PdV work done by the piston, which is

$$W = \sum_{j=1}^{j_{max}} P_j^n V_j^n \tag{31}$$

We have plotted the energy evolution in Fig. 5 - 8.

## 5.3 Shock Propagation

The propagation speed of the shock is given by:

$${M_1}^2 = \frac{1 + \left[ \left( \gamma - 1 \right) / 2 \right] {M_0}^2}{\gamma {M_0}^2 - \left( \gamma - 1 \right) / 2}$$

So we can plot the shock speed  $U_s$  with time, which is shown in Fig. 9: