

Deep Learning for Science and Engineering Teaching Kit

Deep Learning for Scientists and Engineers

Lecture 3: Deep Neural Networks

Instructors: <u>George Em Karniadakis</u>, Khemraj Shukla, Lu Lu Teaching Assistants: Vivek Oommen and Aniruddha Bora

H Group

CRUNCH

The Deep Learning for Science and Engineering Teaching Kit is licensed by NVIDIA and Brown University under the Creative Commons Attribution-NonCommercial 4.0 International License.

Course Roadmap

Module-1 (Basics)

- Lecture 1: Introduction
- Lecture 2: A primer on Python, NumPy, SciPy and jupyter notebooks
- Lecture 3: Deep Learning Networks
- Lecture 4: A primer on TensorFlow and PyTorch
- Lecture 5: Training and Optimization
- Lecture 6: Neural Network Architectures

Module-3 (Codes & Scalability)

Lecture 11: Multi-GPU SciML

Module-2 (PDEs and Operators)

- Lecture 7: Machine Learning using Multi-Fidelity
 Data
- Lecture 8: Physics-Informed Neural Networks (PINNs)
- Lecture 9: PINN Extensions
- Lecture 10: Neural Operators

Contents

Workflow in training a deep neural network Basic concepts and terminology □ Regression versus classification ☐ Universal approximation theorem for functions and functionals Example of a regression of a discontinuous/oscillatory function Fundamental approximation theory for shallow and deep neural networks □ Activation functions and adaptivity ☐ Loss functions (simple and advanced) ☐ Forward/backpropagation and automatic differentiation Connecting neural networks with finite elements Summary References ☐ Main references: Chapter 6 of the book by Goodfellow et al. (2016) and Chapters 4 & 11 of A. Geron (2019) ☐ See all references in last slide

Fundamental Questions

Model Class

Gradient-based Optimization

Workflow in a Neural Network

- Input layer (layer 0): $z^0 = x \in \mathbb{R}^d$
- Hidden layers:
 - Layer 1: $z^1 = \sigma(\boldsymbol{W}^1 x + \boldsymbol{b}^1) \in \mathbb{R}^{N_1}$
 - Layer 2: $z^2 = \sigma(\boldsymbol{W}^2 z^1 + \boldsymbol{b}^2) \in \mathbb{R}^{N_2}$
- Output layer (layer 3):
 - $y = z^3 = W^3 z^2 + b^3 \in \mathbb{R}$

A Neural Network for Regression

 $lue{}$ Define the affine transformation in l-th layer

$$T^l(x) = \boldsymbol{W}^l x + \boldsymbol{b}^l$$

 \Box Activation function σ

Popular choices: $tanh(x), max\{x, 0\}$ (Rectified Linear Unit, ReLU)

 $lue{}$ The L-1 hidden layers of a feedforward neural network:

$$\mathcal{N}_{HL}(x) = \sigma \circ T^{L-1} \circ \dots \circ \sigma \circ T^1(x)$$

Where o denotes composition of functions

☐ For regression, a DNN Is typically of the form:

$$\mathcal{N}(x; \boldsymbol{\theta}) = T^L \circ \mathcal{N}_{HL}(x)$$

 $m \square$ Network parameters: $m heta = \{m W^l, m b^l\}_{1 \leq l \leq L}$

A Neural Network for Classification

 $lue{}$ For classification, define the softmax function for K classes

•
$$f_{SM}(\xi_i) = \frac{exp(\xi_i)}{\sum\limits_{j=1}^{K} exp(\xi_j)}$$

- $0 \le f_{SM}(\xi_i) \le 1$
- $\sum_{i} f_{SM}(\xi_i) = 1$
- Convert any vector ξ to a probability vector
- ☐ The DNN is typically of the form
 - $\mathcal{N}(x; \boldsymbol{\theta}) = f_{SM} \circ T^L \circ \mathcal{N}_{HL}(x)$

Building Different NNs: ResNet

- ☐ Residual network (**ResNet**)
- figspace Replace $\sigma \circ T^l$ with $I + \sigma \circ T^l$
- \Box *I* : Identity function
- $\square \mathcal{N}(x) = T^{L} \circ (I + \sigma \circ T^{L-1}) \circ \dots \circ (I + \sigma \circ T^{2}) \circ \sigma \circ T^{1}(x)$

Universal Function Approximation (single layer)

Definition. We say that σ is discriminatory if for a measure $\mu \in M(I_N)$

$$\int_{I_N} \sigma\left(W^1 x + b^1\right) d\mu(x) = 0$$

for all $W^1 \in \mathbb{R}^{n \times N}$ and $b^1 \in \mathbb{R}^n$ implies that $\mu = 0$. $(I_N \text{ is compact on } \mathbb{R}^N)$

Definition. We say that σ is sigmoidal if

$$\sigma(x) \to \begin{cases} 1 & \text{as } x \to +\infty \\ 0 & \text{as } x \to -\infty \end{cases}$$

Theorem. Let σ be any continuous discriminatory function. Then finite sums of the form

$$y = \sum_{j=1}^{N} W_{j}^{2} \sigma \left(W_{j}^{1} x + b_{j}^{1} \right)$$

are dense in $C(I_N)$. In other words, given any $f \in C(I_N)$ and $\epsilon > 0$, there is a sum, y, of the above form, for which

$$|y - f(x)| < \epsilon$$
 for all $x \in I_N$

The space of finite, signed regular Borel measures on I_N is denoted by $M(I_N)$

Note: The set of all functions y does not form a vector space since it is not closed under addition.

Universal Functional Approximation (single layer)

Theorem (Chen and Chen, 1993):

Suppose that U is a compact set in C[a,b],f is a continuous functional defined on U, and $\sigma(x)$ is a bounded sigmoidal function, then for any $\epsilon>0$, there exist m+1 points $a=x_0<...< x_m=b$, a positive integer N and constants $W_i^2,b_i,W_{i,j},i=1,2,...,N,$ j=1,2,...,m

Such that

$$\left| f(u) - \sum_{i=1}^{N} W_i^2 \sigma \left(\sum_{j=0}^{m} W_{i,j}^1 u(x_j) + b_i \right) \right| < \epsilon$$

holds for all $u \in U$.

 T.P. Chen and H. Chen, Approximations of continuous functionals by neural networks with application to dynamic systems, IEEE Transactions on Neural Networks, 910-918, 4(6), 1993.

Adaptive Basis Viewpoint

We consider a family of neural networks $\mathcal{N}_{\theta}: \mathbb{R}^d \to \mathbb{R}$ consisting of L-1 hidden layers of width N composed with a final linear layer, admitting the representation

$$\mathcal{N}_{\boldsymbol{\theta}}(x) = \sum_{i=1}^{N} \boldsymbol{W}_{i}^{L} \Phi_{i}(x; \boldsymbol{\theta}_{H})$$

where W^L and θ_H are the parameter corresponding to the final linear layer and the hidden layers respectively. We interpret θ as a concatenation of W^L and θ_H .

Loss Functions

- To learn $u:\Omega \to \mathbb{R}$
- \Box Given a dataset $\{(x_i, u(x_i))\}_{i=1}^m$
- Mean Squared Error (MSE) loss:

$$\cdot \mathcal{L}(\boldsymbol{\theta}) = \|u(x) - \mathcal{N}(x; \boldsymbol{\theta})\|_2^2 \approx \frac{1}{m} \sum_{i=1}^m (u(x_i) - \mathcal{N}(x_i; \boldsymbol{\theta}))^2$$

 \square In general, let $\{\mathcal{F}_k\}_{k=1}^K$ be a linear/nonlinear operator

•
$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{k=1}^{K} \lambda_k \|\mathcal{F}_k[u] - \mathcal{F}_k[\mathcal{N}]\|_2^2$$

- MSE is a special case with $\mathcal F$ be the identity
- PINN loss uses the PDE residual as the operator

Regression of a Discontinuous/Oscillatory Function in Physical & Fourier Domains

Long Tail, Hierarchical training, Spectral Bias, Discontinuity

Regression of a Discontinuous/Oscillatory Function in Physical & Fourier Domains

Data preparation

```
if name == " main ":
    # Data for Traning and Testing
    x = np.linspace(-np.pi, np.pi, 129, dtype=np.float64)
    x = np.reshape(x, (-1, 1))
    y = np.array([fun x(i) for i in x])
    F y = F transform(y[0:-1, 0])
    F y abs = abs(F y)
    x in 1 = np.linspace(-np.pi, -1.0e-3, 201)
    x in r = np.linspace(0., np.pi, 501)
    x \text{ in = np.concatenate}((x \text{ in 1, } x \text{ in r), } axis=0)
    y in = np.array([fun x(i) for i in x in])
    N i = 1
    No = 1
    L = 2
    N = 20
    net = Net(N_i, L, N, N_o)
    x train = torch.from numpy(x in.reshape(-1,1)).float()
    y train = torch.from numpy(y in.reshape(-1,1)).float()
    x \text{ test} = \text{torch.from numpy}(x.reshape(-1,1)).float()
    optimizer = torch.optim.Adam(net.parameters(), lr=1.0e-03)
    loss func = torch.nn.MSELoss()
```

Training Loop

```
for n in range(N_iter):
    prediction = net(inputs)
    loss = loss_func(prediction, outputs)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```


Approximation Rates

Convergence rate of shallow networks

Approximating functions defined on B^n , where

$$B^{n} = \left\{ \mathbf{x} : \|\mathbf{x}\|_{2} = \left(x_{1}^{2} + \dots + x_{n}^{2}\right)^{1/2} \le 1 \right\}$$

The Sobolev space $\mathcal{W}_{p}^{m} = \mathcal{W}_{p}^{m}\left(B^{n}\right)$ as the completion of $C^{m}\left(B^{n}\right)$ with respect to the norm

$$||f||_{m,p} = \begin{cases} \left(\sum_{0 \le |\mathbf{k}| \le m} ||D^{\mathbf{k}}f|_p^p\right)^{1/p}, & 1 \le p < \infty \\ \max_{0 \le |\mathbf{k}| \le m} ||D^{\mathbf{k}}f||_{\infty}, & p = \infty \end{cases}$$

Theorem (Maiorov 1999, lower and upper bounds) Let $n \geq 2$ and $m \geq 1$. For $M_N = \left\{ g = \sum_{i=1}^N c_i \sigma \left(w_i^\top x + b_i \right) \right\}$

$$\sup_{f \in \mathcal{W}_p^m, \|f\|_{m,p} \le 1} \inf_{g \in M_N} \|f - g\| \sim N^{-m/(n-1)}.$$

Approximation Theory

The power of deep neural networks: convergence in depth vs width

Theorem (Shen et al 2021) Given any positive integers and a Hölder continuous function f on $[0,1]^n |f(x)-f(y)| \leq \lambda |x-y|^{\alpha}$, there exists a FloorReLU network $f^{\mathcal{N}}$ with width $\max\{n,5N+13\}$ and depth 64nL + 3

$$\max_{x \in [0,1]^n} |f - f^{\mathcal{N}}| \le 3\lambda n^{\alpha/2} N^{-\alpha\sqrt{L}}$$

Here a Floor-ReLU network refers to a fully connected network built with Floor | | and ReLU activation functions (must have both). Idea of proof: using composition and nonlinearity of deep networks

- Exponential convergence in depth, algebraic convergence in width
- Lifting the curse of dimensionality

See also Yarotsky and Zhevnerchuk (2020), The phase diagram of approximation rates for deep neural networks, NeurIPS.

Approximation Theory

Some remarks

- The networks considered here are fully connected and feedforward networks, unless explicitly stated.
- Convergence rates are mostly characterized by the number of nonzero weights and biases in the literature.
- No optimization errors are included.
- Some references on approximation theory of neural networks.
 - ♦ Pinkus, A. (1999), Approximation theory of the MLP model in neural networks, Acta Numerica (1999), pp. 143-195.
 - ♦ Gühring, I., Raslan, M., and Kutyniok, G. (2020), Expressivity of Deep Neural Networks, arxiv: 2007.04759
- Other important topics:
 - Approximation of singular functions,
 - Approximation in various metrics.
 - Approximation with given data

Shallow networks vs Deep networks

Universal approximator: - Shallow networks: width $\rightarrow \infty$ - Deep networks: width $\sim d_{\rm in} + d_{\rm out}$ (for ReLU NN) [Hanin & Sellke, 2017] From approximation point of view: Deep networks perform better than shallow ones of comparable size [Mhaskar, 1996] \square $\epsilon^{-d/p}$ neurons can approximate C^p functions with error ϵ [Mhaskar, 1996] \square e.g., a 3-layer NN with 10 neurons per layer may be better than a 1-layer NN with 30 neurons $\Box \frac{\text{size deep}}{\text{size } e_{\text{obsPlant}}} \sim \epsilon^{d_{\text{in}}}$ [Mhaskar & Poggio, 2016] ☐ There exist functions expressible by a small 2-hidden-layer NN, which cannot be approximated by any shallow NN with the same accuracy, unless its width is exponential in the dimension. [Eldan & Shamir, 2016] ☐ The number of neurons needed by a shallow NN to approximate a function is exponentially larger than the number of neurons needed by a deep NN for a given accuracy level. [Liang & Srikant, 2017; Yarotsky, 2017]

Activation Functions

Conventional

Parameterized*

Tanh

$$\sigma(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
$$\sigma'(x) = 1 - \sigma^2(x)$$

$$\sigma'(x) = 1 - \sigma^2(x)$$

Sigmoid

CRUNCH

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

ReLU

$$\sigma(x) = \begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$$

$$\sigma'(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \\ \text{undefined if } x = 0 \end{cases}$$

Leaky ReLU

$$\sigma(x) = \begin{cases} 0.01x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

$$\sigma'(x) = \begin{cases} 0.01 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$$

Conventional

Parameterized

ELU

$$\sigma(x) = \begin{cases} \alpha(e^x - 1) & \text{if } x \le 0\\ x & \text{if } x > 0 \end{cases}$$

$$\sigma'(x) = \begin{cases} \alpha e^x & \text{if } x < 0\\ 1 & \text{if } x > 0\\ 1 & \text{if } x = 0 \text{ and } \alpha = 1 \end{cases}$$

Conventional

Parameterized

Swish

$$\sigma(x) = \frac{x}{1 + e^{-x}}$$

$$\sigma'(x) = \frac{\sigma(x)}{x} (1 + e^{-x} \sigma(x))$$

Activation Functions: A Recap

Adaptive Activation Functions: sin(x)

Adaptive Activation Functions: tanh(x)

Loss Functions: Implementation

Mean Absolute Error Loss:

```
import tensorflow as tf
mae = tf.keras.losses.MeanAbsoluteError()
loss = mae(y<sub>true</sub>, y<sub>pred</sub>)
```

Mean Square Error Loss:

```
import tensorflow as tf
mse = tf.keras.losses.MeanSquaredError()
loss = mse(y<sub>true</sub>, y<sub>pred</sub>)
```

Huber Loss:

```
import tensorflow as tf
hl= tf.keras.losses.Huber(delta=1.0)
loss = hl(y<sub>true</sub>, y<sub>pred</sub>)
```


Mean Absolute Error Loss:

```
import torch.nn as nn
mae = nn.L1Loss()
loss = mae(y<sub>pred</sub>, y<sub>true</sub>)
```

Mean Square Error Loss:

```
import torch.nn as nn
mse = nn.MSELoss()
loss = mse(y<sub>pred</sub>, y<sub>true</sub>)
```

Huber Loss:

```
import torch.nn as nn
hl = nn.HuberLoss(delta=1.0)
loss = hl(y<sub>pred</sub>, y<sub>true</sub>)
```


Differentiation: Four ways but only one counts: Automatic Differentiation (AD)

Hand-coded analytical derivative

$$f(x): \mathbb{R}^n \to \mathbb{R}^m$$

- Lots of human labor
- Error prone
- Numerical approximations, e.g., finite difference $\frac{\partial f}{\partial x_i} pprox \frac{f(x+\Delta x_i)-f(x)}{\Delta x_i}$
 - Two function evaluations (forward pass) per partial derivative
 - Truncation errors
- Symbolic differentiation (used in software programs such as Mathematica, Maxima, Maple, and Python library SymPy)
 - Chain rule
 - Expression swell: Easily produce exponentially large symbolic representations
- Automatic differentiation (AD; also called algorithmic differentiation)
 - Symbolic differentiation simplified by numerical evaluation of intermediate sub-expressions
 - Does not provide a general analytical expression for the derivative
 - But only the value of the derivative for a specific input *x*

Automatic Differentiation

- ☐ Exploits the fact that all computations are compositions of a small set of elementary expressions with known derivatives
- ☐ Employs the chain rule to combine these elementary derivatives of the constituent expressions.
- ☐ Two ways to compute first-order derivative:
 - ☐ Forward mode AD (details not discussed)
 - ☐ Cost scales linearly w.r.t. the input dimension
 - ☐ Cost is constant w.r.t. the output dimension
 - ☐ Reverse mode AD
 - ☐ Cost is constant w.r.t. the input dimension
 - ☐ Cost scales linearly w.r.t. the output dimension
- ☐ In deep learning, backpropagation == Reverse mode AD
 - ☐ The input dimension of the loss function is # of parameters, e.g., millions
 - ☐ The output dimension is 1: the loss value
- ☐ High-order derivatives:

CRUNCH TIME

- Nested-derivative approach: Apply first-order AD repeatedly
 - ☐ Cost scales exponentially in the order of differentiation
 - ☐ What we will use in this class, because the simplicity of implementation
- ☐ More efficient approaches, such as Taylor-mode AD (high-order chain rule)
 - Not supported in TensorFlow/PyTorch yet

Backpropagation

- ☐ We apply recursively the chain rule to implement Backprop
- ☐ Use computational graphs to accomplish backprop
- \Box Example: d = a * (a + b)

By chain rule:

$$\frac{\partial d}{\partial a} = \frac{\partial \bar{d}}{\partial a} + \frac{\partial \bar{d}}{\partial c} * \frac{\partial \bar{d}}{\partial a}$$

$$= c + a$$

$$\frac{\partial d}{\partial b} = \frac{\partial d}{\partial c} * \frac{\partial c}{\partial b} = a * 1 = c$$

Backpropagation

Forward Pass	Backward Pass
$x_1 = 2$	$\frac{\partial y}{\partial y} = 1$
$x_2 = 1$	
$v = -2x_1 + 3x_2 + 0.5 = -0.5$	$\frac{\partial y}{\partial z} = \frac{\partial (2z-1)}{\partial z} = 2$
$z = tanh(v) \approx -0.462$	$\frac{\partial y}{\partial v} = \frac{\partial y}{\partial z} \frac{\partial z}{\partial v} = \frac{\partial y}{\partial z} sech^2(v) \approx 1.573$
y = 2z - 1	$\frac{\partial y}{\partial x_1} = \frac{\partial y}{\partial v} \frac{\partial v}{\partial x_1} = \frac{\partial y}{\partial v} \times (-2) = -3.146$
	$\frac{\partial y}{\partial x_2} = \frac{\partial y}{\partial v} \frac{\partial v}{\partial x_2} = \frac{\partial y}{\partial v} \times 3 = 4.719$

Forward Pass:
$$Y = \phi(W * X + b)$$

Auto-differentiation:

$$\frac{\partial Y}{\partial X}$$

Backward Pass + Optimization:

$$L = Y - Y_{actual}$$
$$\frac{\partial L}{\partial W} = W_0 - \eta * \frac{\partial L}{\partial W}$$

Learning Rate

import torch
import torch.nn as nn

Forward Pass:
$$Y = \phi(W * X + b) \longrightarrow$$

Auto-differentiation:

$$\frac{\partial Y}{\partial X}$$

Yx = torch.autograd.grad(Y, X, create_graph=True)

Backward Pass + Optimization:

$$L = Y - Y_{actual}$$

$$\frac{\partial L}{\partial W} = W_0 - \eta * \frac{\partial L}{\partial W}$$

$$\eta$$

Connecting Neural Networks with Finite Elements (FEM) – 1D

Recall the hat function

$$\varphi(x) = \begin{cases} 2x & x \in \left[0, \frac{1}{2}\right], \\ 2(1-x) & x \in \left[\frac{1}{2}, 1\right], \\ 0, & \text{otherwise.} \end{cases}$$

$$\varphi(x) = 2 \operatorname{ReLU}(x) - 4 \operatorname{ReLU}(x - \frac{1}{2}) + 2 \operatorname{ReLU}(x - 1).$$

• Linear finite element basis function φ_i

$$\varphi_i = \varphi\left(\frac{x - x_{i-1}}{2h}\right) = \varphi\left(w_h x + b_i\right), \quad w_h = \frac{1}{2h}, \quad b_i = \frac{-(i-1)}{2}.$$

$$\varphi_i \in \text{Span}\left\{\text{ReLU}(wx + b), w, b \in \mathbb{R}\right\}$$

• The Linear FEM space in 1D is a subspace of shallow neural networks with the ReLU activation function.

Connection to FEM: d-D

 \diamondsuit For $d \ge 2$, the linear FEM space is not a subspace of shallow ReLU networks (He et al. 2020)

$$\left\{ \sum_{i=1}^{n} a_i \operatorname{ReLU}(w_i^T x + b_i), w_i \in \mathbb{R}^{1 \times d}, a_i, b_i \in \mathbb{R} \right\}$$

 \Diamond For $d \geq 2$, the linear FEM space is a subspace of deep ReLU networks (Arora et al. 2016).

- Arora R, Basu A, Mianjy P, Mukherjee A. Understanding deep neural networks with rectified linear units. arXiv preprint arXiv:1611.01491. 2016.
- He J, Li L, Xu J, Zheng C. ReLU deep neural networks and linear finite elements. arXiv preprint arXiv:1807.03973. 2018 Jul 11.

Summary

Neural Networks can approximate functions and functionals with arbitrary accuracy.
Deep Neural Networks are more expressive and can beat the curse-of-dimensionality.
Activation functions are important for accuracy and convergence speed.
Deep Neural Networks can be thought as nonlinear approximations with adaptive basis functions.
Regression and classification use different loss functions – loss functions can be meta-learned.
Forward/Backpropagation and Automatic Differentiation have optimal cost and machine precision.
Generalization and Optimization errors are often greater than Approximation errors.
Traditional methods, like finite elements, can be related to adaptive Deep Neural Networks.

References

- Chapter 6 of the book by Goodfellow et al. (2016).
- Arora R, Basu A, Mianjy P, Mukherjee A. Understanding deep neural networks with rectified linear units. arXiv preprint arXiv:1611.01491. 2016.
- Attali, J.-G. and Pages, G. (1997). Approximations of functions by a multilayer perceptron: a new approach. Neural Networks, 10(6):1069-1081.
- Burton, R. M. and Dehling, H. G. (1998). Universal approximation in p-mean by neural networks. Neural Networks, 11(4):661-667.
- Carpenter, M. et al. The Stan Math Library: Reverse-mode automatic differentiation in C++. arXiv preprint arXiv:1509.07164. 2015 Sep 23.
- Chen, T.P. and Chen, H.. Approximations of continuous functionals by neural networks with application to dynamic systems, IEEE Transactions on Neural Networks, 910-918, 4(6), 1993.
- Cybenko, G. Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals and Systems, 303-314, 2(4), 1989.
- Eldan, R. and Shamir, O.. The power of depth for feedforward neural networks. In Conference on Learning Theory, pp. 907–940, 2016.
- Hanin, B. and Sellke, M.. Approximating continuous functions by ReLU nets of minimal width. arXiv preprint arXiv:1710.11278, 2017.
- He J, Li L, Xu J, Zheng C. ReLU deep neural networks and linear finite elements. arXiv preprint arXiv:1807.03973. 2018 Jul 11.
- Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359-366.
- Jiang, C. and Chen, T. (1999). Denseness of superposition of one function with its translation and dilation in Sobolev space W^m₂ (Rⁿ). Neural Networks, 42(3):495 -500.
- Kolmogorov, A. N. (1957), On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition, Doklady Akademii Nauk SSSR, 114, pp. 953-956.
- Liang, S. and Srikant, R.. Why deep neural networks for function approximation? In International Conference on Learning Representations, 2017.
- Maiorov, V. (1999). On best approximation by ridge functions. Journal of Approximation Theory, 99(1):68-94.
- Maiorov, V. and Pinkus, A. (1999), Lower bounds for approximation by MLP neural networks, Neurocomputing 25, 81-91.
- Mhaskar, H. Neural networks for optimal approximation of smooth and analytic functions. Neural Computation, 8(1):164–177, 1996.
- Mhaskar, H. and Poggio, T. Deep vs. shallow networks: An approximation theory perspective. Analysis and Applications, 14(06):829–848, 2016.

References

- Shen, Z., Yang, H., and Zhang, S. (2021). Optimal approximation rate of ReLU networks in terms of width and depth. arXiv 2103.00502.
- Shen, Z., Yang, H., and Zhang, S. (2021). Deep network with approximation error being reciprocal of width to power of square root of depth. Neural Computation, 33(4):1005(1036.
- Suzuki, T. (2018). Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality, arXiv:1810.08033.
- Whitney, H. (1934), Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc., 36 (1): 63-89.
- Yarotsky, D.. Error bounds for approximations with deep ReLU networks. Neural Networks, 94: 103–114, 2017.

Thanks to: Prof. Zhongqiang Zhang, WPI

Dr. Apostolos Psaros, Fidelity/Brown U

Deep Learning for Science and Engineering Teaching Kit

Thank You

