Lecture 2: Data Frame, Matrix, List

Abhijit Dasgupta

September 19, 2018

Preamble

Practice makes perfect

- Start using RSeek
- Other resources on website http://www.araastat.com/BIOF339_PracticalR
- Beg, Borrow, Steal code that you need
 - R is open-source, so is meant to be shared

R coding conventions

```
# This is a comment, which doesn't get evaluated

1:3 # This is also a comment

## [1] 1 2 3

# Multi-line code

x <- c(1, 2, 3, 4, 5, 6, 7)

x

## [1] 1 2 3 4 5 6 7
```

Google has a style guide for how to write R code

R packages

R packages live on CRAN and its mirrors. To install an R package:

```
install.packages('dplyr', repos='http://cran.r-project.org')
```

or

knitr::include graphics('lecture2 img/install package.png')

R Packages

To use a package, or rather, use the functions from the package, you have to load it into R

library(dplyr)

We'll talk about packages later in the semester.

We will concentrate now on what is known as **Base R**, that is, the functions that are available when R is installed

Loading data

We will usually load CSV files, since they are the easiest for R. The typical suggestion if you have Excel data is to save the sheet as a CSV and then import it into R.

You can also load Excel files directly using either the readx1 or rio packages

The structure of data sets

Tables

- Data is typically in a rectangular format
 - spreadsheet, database table
 - CSV (comma-separated values) or TSV (tab-separated values) files
- Characteristic
 - Rows are observations
 - Columns are veriables

Ć	Excel File	Edit View	Insert Format To	ols Data \	Window Hel	p		:	\$ \$ △ () 🔄 🥅 🔻	③ ∦ •)) ·	🤶 == 100%	■ Mon 9:37	AM Q :	Ξ
•	• • I 🖺 🥫	I 10 + 05	₹			☑ Data	set_spine					Q~ Sea	rch Sheet		2+
ı .	lome Insert	Page Layout	Formulas Data	Review \	/iew	- 500	ooc_op.iio							(I) v	
							_				.,				
4	A	В	С	D	E	F	G	Н	1	J	K	L	М	N	
1	Pelvic incidence		Lumbar lordosis angle			Degree spondylolisthesis			Thoracic slope		-				
2	63.0278175		39.60911701	40.4752315	98.6729168	-0.254399986			14.5386		-28.658501		Abnormal		
3	39.05695098	10.06099147	25.01537822	28.9959595	114.405425	4.564258645			17.5323	16.78486	-25.530607		Abnormal		
4	68.83202098	22.21848205	50.09219357	46.6135389	105.985136	-3.530317314			17.4861	16.65897	-29.031888		Abnormal		
5	69.29700807	24.65287791	44.31123813	44.6441302	101.868495	11.21152344			12.7074	11.42447	-30.470246		Abnormal		
6	49.71285934	9.652074879	28.317406	40.0607845	108.168725	7.918500615		35.494	15.9546	8.87237	-16.378376		Abnormal		
7	40.25019968	13.92190658	25.1249496	26.3282931	130.327871	2.230651729		29.323	12.0036	10.40462	-1.512209		Abnormal		
8	53.43292815	15.86433612	37.16593387	37.568592		5.988550702			10.7146		-20.510434		Abnormal		
9	45.36675362	10.75561143	29.03834896	34.6111422	117.270068	-10.67587083	0.13197256		7.7676	7.60961	-25.111459		Abnormal		
10	43.79019026	13.5337531	42.69081398	30.2564372	125.002893	13.28901817	0.19040763		11.4234	10.59188	-20.020075		Abnormal		
11	36.68635286	5.010884121	41.9487509	31.6754687	84.2414152	0.664437117	0.36770014	26.2011	8.738	14.91416	-1.702097	21.432	Abnormal		
12	49.70660953	13.04097405	31.33450009	36.6656355	108.648265	-7.825985755	0.6880095		16.5097	15.17645	-0.502127	18.3437	Abnormal		
13	31.23238734	17.71581923	15.5	13.5165681	120.055399	0.499751446	0.60834276	21.4356	9.2589	14.76412	-21.724559	36.4449	Abnormal		
14	48.91555137	19.96455616	40.26379358	28.9509952	119.321358	8.028894629	0.13947817	32.7916	7.2049	8.61882	-1.215542	27.3713	Abnormal		
15	53.5721702	20.46082824	33.1	33.111342	110.966698	7.044802938	0.08193099	15.058	12.8127	12.00109	-1.734117	15.6205	Abnormal		
16	57.30022656	24.1888846	46.99999999	33.111342	116.806587	5.766946943	0.41672151	16.5158	18.6222	8.51898	-33.441303	13.2498	Abnormal		
17	44.31890674	12.53799164	36.098763	31.7809151	124.115836	5.415825143	0.66404088	9.5021	19.1756	7.25707	-32.893911	19.5695	Abnormal		
18	63.83498162	20.36250706	54.55243367	43.4724746	112.309492	-0.622526643	0.56067537	10.769	16.8116	11.41344	2.676002	17.3859	Abnormal		
19	31.27601184	3.14466948	32.56299592	28.1313424	129.011418	3.623020073	0.53448124	31.1641	18.6089	8.4402	4.482424	24.6513	Abnormal		
20	38.69791243	13.44474904	31	25.2531634	123.159251	1.429185758	0.30658054	28.3015	17.9575	14.75417	-14.252676	24.9361	Abnormal		
21	41.72996308	12.25407408	30.12258646	29.475889	116.585706	-1.244402488	0.46852593	28.5598	12.4637	14.1961	-20.392538	33.0265	Abnormal		
22	43.92283983	14.17795853	37.8325467	29.7448813	134.461016	6.451647637	0.28044621	12.4719	16.8965	10.32658	-4.986668	22.4667	Abnormal		
23	54.91944259	21.06233245	42.19999999	33.8571101	125.212716	2.432561437	0.17524457	23.0791	14.2195	14.14196	3.780394	24.9278	Abnormal		
24	63.07361096	24.41380271	53.99999999	38.6598083	106.42433	15.77969683	0.66638801	11.9696	17.6891	7.63771	-14.183602	44.2338	Abnormal		
25	45.54078988	13.06959759	30.29832059	32.4711923	117.98083	-4.987129618	0.56745008	23.8889	9.1019	7.70987	-19.37903	20.3649	Abnormal		
26	36.12568347	22.75875277	29	13.3669307	115.577116	-3.237562489	0.12647371	25.6206	15.7438	11.5561	-18.108941	24.1151	Abnormal		
27	54.12492019	26.65048856	35.32974693	27.4744316	121.447011	1.571204816	0.92868787	14.6686	13.57	16.12951	-17.630363	28.1902	Abnormal		
28	26.14792141	10.75945357	14	15.3884678	125.203296	-10.09310817	0.39197114	9.871	8.6406	15.78046	-19.650163	43.955	Abnormal		
29	43.58096394	16.5088837	46.99999999	27.0720802	109.271634	8.992815727	0.59417569	30.4577	17.97	10.79356	-25.180777	18.3196	Abnormal		
30	44.5510115	21.93114655	26.78591597	22.619865	111.07292	2.652320636	0.52789144	32.4275	10.2244	11.71324	-28.506125	28.047	Abnormal		
31	66.87921138	24.89199889	49.27859673	41.9872125	113.477018	-2.005891748	0.6772678	12.4271	8.2495	7.58784	-3.963385	27.3587	Abnormal		

,												2				_
_		Edit View	Insert Form	nat Too	ols Data	Window Hel	р			\$ \$ ▲ (9 🎟 🔻	③ 🖇 🜓 .	🤶 💴 100% 🗉	■ Mon 9:37	AM Q :	≡ _
•	<u> </u>) ● 🗓 🔒 🗠 + ೮ =						Dataset_spine					Q~ Search Sheet			<u>*</u> +
H	lome Insert	Page Layout	Formulas	Data	Review	View										
	Α	В	С		D	Е	F	G	н	1	J	К	L	М	N	
1	Pelvic incidence	Pelvic tilt	Lumbar lordosis	s angle	Sacral slope	Pelvic radius	Degree spondylolisthesis	Pelvic slope	Direct tilt	Thoracic slope	Cervical tilt	Sacrum angle	Scoliosis slope	Class attribute		
2	63.0278175	22.55258597	39.60	911701	40.4752315	98.6729168	-0.254399986	0.74450346	12.5661	14.5386	15.30468	-28.658501	43.5123	Abnormal		
3	39.05695098	10.06099147	25.01	537822	28.9959595	114.405425	4.564258645	0.41518568	12.8874	17.5323	16.78486	-25.530607	16.1102	Abnormal		
4	68.83202098	22.21848205	50.09	219357	46.6135389	105.985136	-3.530317314	0.47488916	26.8343	17.4861	16.65897	-29.031888	19.2221	Abnormal		
5	69.29700807	24.65287791	44.31	123813	44.6441302	101.868495	11.21152344	0.36934526	23.5603	12.7074	11.42447	-30.470246	18.8329	Abnormal		
6	49.71285934	9.652074879	28.	317406	40.0607845	108.168725	7.918500615	0.54336047	35.494	15.9546	8.87237	-16.378376	24.9171	Abnormal		
7	40.25019968	13.92190658	25.1	249496	26.3282931	130.327871	2.230651729	0.78999286	29.323	12.0036	10.40462	-1.512209	9.6548	Abnormal		
8	53.43292815	15.86433612	37.16	593387	37.568592	120.567523	5.988550702	0.19891957	13.8514	10.7146	11.37832	-20.510434	25.9477	Abnormal		
9	45.36675362	10.75561143	29.03	834896	34.6111422	117.270068	-10.67587083	0.13197256	28.8165	7.7676	7.60961	-25.111459	26.3543	Abnormal		
10	43.79019026	13.5337531	42.69	081398	30.2564372	125.002893	13.28901817	0.19040763	22.7085	11.4234	10.59188	-20.020075	40.0276	Abnormal		
11	36.68635286	5.010884121	41.9	487509	31.6754687	84.2414152	0.664437117	0.36770014	26.2011	8.738	14.91416	-1.702097	21.432	Abnormal		
12	49.70660953	13.04097405	31.33	450009	36.6656355	108.648265	-7.825985755	0.6880095	31.3502	16.5097	15.17645	-0.502127	18.3437	Abnormal		
13	31.23238734	17.71581923		15.5	13.5165681	120.055399	0.499751446	0.60834276	21.4356	9.2589	14.76412	-21.724559	36.4449	Abnormal		
14	48.91555137	19.96455616	40.26	379358	28.9509952	119.321358	8.028894629	0.13947817	32.7916	7.2049	8.61882	-1.215542	27.3713	Abnormal		
15	53.5721702	20.46082824		33.1	33.111342	110.966698	7.044802938	0.08193099	15.058	12.8127	12.00109	-1.734117	15.6205	Abnormal		
16	57.30022656	24.1888846	46.99	999999	33.111342	116.806587	5.766946943	0.41672151	16.5158	18.6222	8.51898	-33.441303	13.2498	Abnormal		
17	44.31890674	12.53799164	36.	098763	31.7809151	124.115836	5.415825143	0.66404088	9.5021	19.1756	7.25707	-32.893911	19.5695	Abnormal		
18	63.83498162	20.36250706	54.55	243367	43.4724746	112.309492	-0.622526643	0.56067537	10.769	16.8116	11.41344	2.676002	17.3859	Abnormal		
19	31.27601184	3.14466948	32.56	299592	28.1313424	129.011418	3.623020073	0.53448124	31.1641	18.6089	8.4402	4.482424	24.6513	Abnormal		
20	38.69791243	13.44474904		31	25.2531634	123.159251	1.429185758	0.30658054	28.3015	17.9575	14.75417	-14.252676	24.9361	Abnormal		
21	41.72996308	12.25407408	30.12	258646	29.475889	116.585706	-1.244402488	0.46852593	28.5598	12.4637	14.1961	-20.392538	33.0265	Abnormal		
22	43.92283983	14.17795853	37.8	325467	29.7448813	134.461016	6.451647637	0.28044621	12.4719	16.8965	10.32658	-4.986668	22.4667	Abnormal		
23	54.91944259	21.06233245	42.19	999999	33.8571101	125.212716	2.432561437	0.17524457	23.0791	14.2195	14.14196	3.780394	24.9278	Abnormal		
24	63.07361096	24.41380271	53.99	999999	38.6598083	106.42433	15.77969683	0.66638801	11.9696	17.6891	7.63771	-14.183602	44.2338	Abnormal		
25	45.54078988	13.06959759	30.29	832059	32.4711923	117.98083	-4.987129618	0.56745008	23.8889	9.1019	7.70987	-19.37903	20.3649	Abnormal		
26	36.12568347	22.75875277		29	13.3669307	115.577116	-3.237562489	0.12647371	25.6206	15.7438	11.5561	-18.108941	24.1151	Abnormal		
27	54.12492019	26.65048856	35.32	974693	27.4744316	121.447011	1.571204816	0.92868787	14.6686	13.57	16.12951	-17.630363	28.1902	Abnormal		
28	26.14792141	10.75945357		14	15.3884678	125.203296	-10.09310817	0.39197114	9.871	8.6406	15.78046	-19.650163	43.955	Abnormal		
29	43.58096394	16.5088837	46.99	999999	27.0720802	109.271634	8.992815727	0.59417569	30.4577	17.97	10.79356	-25.180777	18.3196	Abnormal		
30	44.5510115	21.93114655	26.78	591597	22.619865	111.07292	2.652320636	0.52789144	32.4275	10.2244	11.71324	-28.506125	28.047	Abnormal		
31	66.87921138	24.89199889	49.27	859673	41.9872125	113.477018	-2.005891748	0.6772678	12.4271	8.2495	7.58784	-3.963385	27.3587	Abnormal		

```
data_spine <- read.csv('lecture2_data/Dataset_spine.csv')</pre>
```

```
head(data spine)
```

```
Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
## 1
          63.02782 22.552586
                                      39.60912
                                                40.47523
## 2
    39.05695 10.060991
                                      25.01538 28.99596
## 3
    68.83202 22.218482
                                      50.09219 46.61354
      69.29701 24.652878
                                      44.31124
                                                44.64413
## 4
## 5
    49.71286 9.652075
                                      28.31741 40.06078
## 6
          40.25020 13.921907
                                      25.12495 26.32829
##
    Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
## 1
      98.67292
                            -0.254400 0.7445035 12.5661
                            4.564259 0.4151857 12.8874
    114.40543
## 2
    105.98514
                            -3.530317 0.4748892 26.8343
## 3
## 4
                                      0.3693453 23.5603
    101.86850
                            11.211523
                           7.918501 0.5433605 35.4940
## 5
    108.16872
                                               29.3230
## 6
       130.32787
                            2.230652
                                     0.7899929
    Thoracic.slope Cervical.tilt Sacrum.angle Scoliosis.slope
## 1
         14.5386 15.30468 -28.658501
                                             43.5123
## 2
     17.5323 16.78486 -25.530607 16.1102
## 3
      17 4861
                   16 65897 -29 031888 19 2221
```

- Assumes that the first row has variable names
- Replaces spaces with.
- Keeps numeric and character variables together

View(data_spine) ## It looks like a matrix


```
str(data_spine) ## Structure of a dataset
```

```
## 'data.frame': 310 obs. of 13 variables:
  $ Pelvic.incidence : num 63 39.1 68.8 69.3 49.7 ...
  $ Pelvic.tilt
               : num 22.55 10.06 22.22 24.65 9.65 ...
  $ Lumbar.lordosis.angle : num 39.6 25 50.1 44.3 28.3 ...
  $ Sacral.slope : num 40.5 29 46.6 44.6 40.1 ...
  $ Pelvic.radius : num 98.7 114.4 106 101.9 108.2 ...
  $ Degree.spondylolisthesis: num -0.254 4.564 -3.53 11.212 7.919 ...
                         : num 0.745 0.415 0.475 0.369 0.543 ...
  $ Pelvic.slope
   $ Direct.tilt : num 12.6 12.9 26.8 23.6 35.5 ...
  $ Thoracic.slope : num 14.5 17.5 17.5 12.7 16 ...
  $ Cervical.tilt : num 15.3 16.78 16.66 11.42 8.87 ...
  $ Sacrum.angle : num -28.7 -25.5 -29 -30.5 -16.4 ...
  $ Scoliosis.slope : num 43.5 16.1 19.2 18.8 24.9 ...
   $ Class.attribute
                         : Factor w/ 2 levels "Abnormal", "Normal":
```

So this is a data.frame object with 310 observations and 13 variables, of which one is a factor and the rest are numeric

It looks like a list of things

Dataframes

Dataframes are the primary mode of storing datasets in R

They were revolutionary in that they kept heterogeneous data together

They share properties of both a matrix and a list

```
class(data_spine)

## [1] "data.frame"
```

Technically, a data.frame is a list of vectors (or objects, generally) of the same length

Matrices

A matrix is a rectangular array of data of the same type

```
matrix(0, nrow=2, ncol=4)
       [,1] [,2] [,3] [,4]
## [1,]
## [2,] 0 0 0
matrix(letters, nrow=2)
       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
       "a" "c" "e" "g" "i" "k" "m" "o" "q" "s" "u" "w"
## [2,] "b" "d" "f" "h" "i" "l" "n" "p" "r" "t"
matrix(letters, nrow=2, byrow=T)
       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
## [2,] "n" "o" "p" "a" "r" "s" "t" "u"
```

Matrices

You can create a matrix from a set of *vectors* of the same length

```
x \leftarrow c(1,2,3,4)

y \leftarrow c(10,20,30,40)
```

Put columns together

```
cbind(c(1,2,3,4), c(10,20,30,40)) ## Column bind
```

Matrices

You can create a matrix from a set of *vectors* of the same length

```
x \leftarrow c(1,2,3,4)

y \leftarrow c(10,20,30,40)
```

Put rows together

```
example_matrix <- rbind(c(1,2,3,4), c(10,20,30,40)) ## Row bind
example_matrix</pre>
```

```
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
```

Extracting elements

```
example matrix
  [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
example matrix[1,] ## Extracts 1st row
## [1] 1 2 3 4
example_matrix[,2:3] ## extracts 2nd & 3rd columns
## [,1] [,2]
## [1,] 2 3
## [2,] 20 30
example_matrix[1,4]
## [1] 4
```

Matrix properties

```
example matrix
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
nrow(example_matrix) ## Number of rows
## [1] 2
ncol(example_matrix) ## Number of columns
## [1] 4
dim(example_matrix) ## shortcut for above
## [1] 2 4
```

Matrix arithmetic

```
example matrix
      [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
example matrix + 5 ## Add 5 to each element
      [,1] [,2] [,3] [,4]
## [1,]
## [2,] 15 25 35 45
example matrix * 2 ## Multiply each element by 2
      [,1] [,2] [,3] [,4]
## [1,] 2 4 6
## [2,] 20 40 60 80
```

```
example matrix
##
      [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
example_matrix2 <- rbind(3:6, 9:12)</pre>
example_matrix2
     [,1] [,2] [,3] [,4]
## [1,] 3 4 5 6
## [2,] 9 10 11 12
example matrix + example matrix2
      [,1] [,2] [,3] [,4]
## [1,] 4 6 8 10
## [2,] 19 30 41 52
```

```
example matrix
##
      [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
example_matrix2
      [,1] [,2] [,3] [,4]
       3 4 5 6
## [1,]
## [2,]
       9 10 11 12
example matrix * example matrix2 ## Not matrix multiplication, but elemen
      [,1] [,2] [,3] [,4]
## [1,] 3 8 15 24
## [2,] 90 200 330 480
```

```
rbind(example_matrix, example_matrix2)
```

```
cbind(example_matrix, example_matrix2)
```

```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 1 2 3 4 3 4 5 6
## [2,] 10 20 30 40 9 10 11 12
```

```
dim(example matrix2)
## [1] 2 4
t(example_matrix2) ## Transpose of a matrix
## [,1] [,2]
## [1,] 3 9
## [2,] 4 10
## [3,] 5 11
## [4,] 6 12
example matrix %*% t(example matrix2) ## Matrix multiplication
  [,1] [,2]
## [1,] 50 110
## [2,] 500 1100
```

Lists

Lists are collections of arbitrary objects in R

```
## [[1]]
## [1] "Andy" "Brian" "Harry"
##
## [[2]]
## [1] 12 16 16
##
## [[3]]
## [1] TRUE TRUE FALSE
##
## [[4]]
## [,1] [,2] [,3]
## [1,] 1 1 1
## [2,] 1 1 1
```

Extracting elements from lists

```
example_list[[3]]

## [1] TRUE TRUE FALSE

example_list[1:2]

## [[1]]
## [1] "Andy" "Brian" "Harry"
##
## [[2]]
## [1] 12 16 16
```

Extracting elements from lists

Named lists

```
example named list <- list('Names' = c('Andy', 'Brian', 'Harry'),</pre>
                     "YearsOfEducation" = c(12, 16, 16),
                     "Married" = c(TRUE, TRUE, FALSE),
                     'something' = matrix(1, nrow=2, ncol=3))
example named list[['Names']]
## [1] "Andy" "Brian" "Harry"
example named list$Names
## [1] "Andy" "Brian" "Harry"
example_named_list$Names[3]
## [1] "Harry"
```

Back to a Data Frame

A data.frame object is a **named list** where each element is of the same length

You can use both *matrix* and *list* functions to operate on data.frame objects!!

Data Frames

head(data spine)

```
Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
                                              40.47523
## 1
         63.02782
                   22.552586
                                     39.60912
## 2
    39.05695 10.060991
                                    25.01538 28.99596
    68.83202 22.218482
                                    50.09219 46.61354
## 4
    69.29701 24.652878
                                 44.31124 44.64413
## 5
    49.71286 9.652075
                                 28.31741 40.06078
## 6
        40.25020 13.921907
                                    25.12495 26.32829
   Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
## 1
      98.67292
                          -0.254400
                                    0.7445035 12.5661
## 2
                         4.564259 0.4151857 12.8874
    114.40543
                          -3.5303170.474889226.834311.2115230.369345323.5603
    105.98514
## 3
    101.86850
## 4
## 5
    108.16872
                       7.918501 0.5433605 35.4940
## 6
      130.32787
                          2.230652
                                    0.7899929 29.3230
   Thoracic.slope Cervical.tilt Sacrum.angle Scoliosis.slope
##
## 1
         ## 2
      17.5323 16.78486 -25.530607
                                          16.1102
```

Data Frames

```
dim(data_spine)

## [1] 310 13

nrow(data_spine)

## [1] 310

data_spine_small <- data_spine[1:4,] ## Matrix operation</pre>
```

Data Frames

```
data_spine_small[,2] ## Matrix extraction by position

## [1] 22.55259 10.06099 22.21848 24.65288

data_spine_small[[2]] ## List extraction by position

## [1] 22.55259 10.06099 22.21848 24.65288
```

Data Frames

```
data_spine_small[['Pelvic.tilt']] ## Named list extraction

## [1] 22.55259 10.06099 22.21848 24.65288

data_spine_small[,'Pelvic.tilt'] ## Data frame named column extraction

## [1] 22.55259 10.06099 22.21848 24.65288

data_spine_small$Pelvic.tilt ## Dollar sign extraction

## [1] 22.55259 10.06099 22.21848 24.65288
```

Data Frames

My preference is for

1. data frame named column extraction

```
data_spine_small[,'Pelvic.tilt'],
```

2. named list extraction

```
data_spine_small[['Pelvic.tilt']]
```

3. Dollar-based extraction

```
data_spine_small$Pelvic.tilt
```

Data Frames

```
data_spine_small[,c('Pelvic.tilt', 'Pelvic.slope','Class.attribute')]
```

```
## Pelvic.tilt Pelvic.slope Class.attribute

## 1 22.55259 0.7445035 Abnormal

## 2 10.06099 0.4151857 Abnormal

## 3 22.21848 0.4748892 Abnormal

## 4 24.65288 0.3693453 Abnormal
```

Filtering data frames

Boolean operators

Operator	Meaning
	Or
&	And
!	Not

Filtering data frames

data_spine[data_spine\$Pelvic.tilt > 20,]

```
Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
##
## 1
              63.02782
                         22.55259
                                             39.60912
                                                          40.47523
## 3
              68.83202
                      22.21848
                                             50.09219
                                                          46.61354
## 4
              69.29701 24.65288
                                                         44.64413
                                             44.31124
## 14
              53.57217 20.46083
                                             33.10000
                                                         33.11134
              57.30023 24.18888
                                             47.00000
## 15
                                                         33.11134
## 17
             63.83498 20.36251
                                            54.55243
                                                         43.47247
## 22
              54.91944
                         21.06233
                                             42.20000
                                                          33.85711
## 23
              63.07361
                         24.41380
                                             54.00000
                                                          38.65981
## 25
             36.12568 22.75875
                                             29.00000
                                                         13.36693
## 26
             54.12492
                      26.65049
                                             35.32975
                                                          27.47443
## 29
             44.55101
                      21.93115
                                             26.78592
                                                          22.61986
## 30
              66.87921
                      24.89200
                                             49.27860
                                                          41.98721
## 35
              59.59554
                      31.99824
                                             46.56025
                                                          27.59730
## 39
              55.84329 28.84745
                                             47.69054
                                                          26.99584
              66.28539 26.32784
## 44
                                             47.50000
                                                          39.95755
## 46
              50.91244
                         23.01517
                                             47.00000
                                                          27.89727
```

subset(data spine, Pelvic.tilt > 20) ## is equivalent

Filtering data frames

data_spine[data_spine\$Pelvic.tilt > 20 & data_spine\$Pelvic.slope > 0.85,

```
Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
##
                                    35.32975
## 26
           54.12492
                    26.65049
                                              27.47443
## 76
        70.22145 39.82272
                                    68.11840
                                              30.39873
## 84 81.10410 24.79417 77.88702
                                             56.30993
## 99 77.65512 22.43295 93.89278
                                              55.22217
          65.00796 27.60261
                                  50.94752
## 106
                                             37.40536
## 112 84.99896 29.61010
                                  83.35219
                                              55.38886
## 129 90.51396 28.27250
                            69.81394
                                              62.24146
## 179 80.65432 26.34438 60.89812
                                              54.30994
## 231 65.61180 23.13792 62.58218 42.47388
           54.60032 21.48897
                                    29.36022
## 303
                                              33.11134
     Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
##
## 26
        121.4470
                           1.571205
                                    0.9286879
                                             14.6686
## 76
    148.5256
                    145.378143 0.9466106 10.3840
## 84 151.8399
                         65.214616 0.9720056
                                             10.5715
## 99 123.0557
                         61.211187 0.9249029
                                              14.9502
## 106
                                    0.8673241
                                              12.1292
        116.5811
                          7.015978
```

subset(data spine, Pelvic.tilt > 20 & Pelvic.slope > 0.85)

Filtering data frames and selecting variables

```
##
      Direct.tilt Class.attribute
## 26
        14.6686
                     Abnormal
## 76
     10.3840
                     Abnormal
## 84
     10.5715
                      Abnormal
## 99 14.9502
                  Abnormal
      12.1292
## 106
                   Abnormal
      7.0551
## 112
                     Abnormal
## 129 13.5739
                      Abnormal
## 179 20.0845
                      Abnormal
## 231 30.0422
                        Normal
       30.8554
## 303
                        Normal
```

Adding a variable

```
data_spine_small[,'bad.angle'] <- c('No','Yes','No','No')
data_spine_small</pre>
```

```
Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
## 1
        63.02782
                  22.55259
                                  39.60912
                                           40.47523
## 2
    39.05695 10.06099 25.01538 28.99596
    68.83202 22.21848
## 3
                               50.09219 46.61354
        69.29701 24.65288
                                  44.31124 44.64413
## 4
   Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
## 1
     98.67292
                         -0.254400
                                  0.7445035 12.5661
## 2
   114.40543
                     4.564259 0.4151857 12.8874
## 3 105.98514
                         -3.530317 0.4748892 26.8343
                         11.211523 0.3693453 23.5603
## 4 101.86850
   Thoracic.slope Cervical.tilt Sacrum.angle Scoliosis.slope
## 1
    14.5386 15.30468 -28.65850 43.5123
## 2
    17.5323 16.78486 -25.53061 16.1102
    17.4861 16.65897 -29.03189 19.2221
## 3
        12.7074 11.42447
## 4
                           -30.47025 18.8329
   Class.attribute bad.angle
## 1
         Abnormal
```

```
data_spine_small$bad.angle <- ...
data_spine_small[['bad.angle']] <- ...</pre>
```

Removing a variable

```
data_spine_small[, -c(13,14)]

data_spine_small[,-c('Class.attribute', 'bad.angle')]

## The next two commands change the original data set

data_spine_small[c('Class.attribute', 'bad.angle')] <- NULL

data_spine_small[['bad.angle']] <- NULL</pre>
```

Creating derived variables

Creating derived variables

For deriving multiple variables into a data frame

head (mtcars)

```
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 ## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 ## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 ## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 ## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 ## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
```

For deriving multiple variables into a data frame

For deriving multiple variables into a data frame

```
str(mtcars)
```

```
## 'data.frame': 32 obs. of 13 variables:
           : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
  $ mpg
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
  $ disp : num 160 160 108 258 360 ...
  $ hp
          : num 110 110 93 110 175 105 245 62 95 123 ...
   $ drat : num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
  $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
  $ gsec : num 16.5 17 18.6 19.4 17 ...
  $ vs : num
   $ am : num
                 1 1 1 0 0 0 0 0 0 0 ...
   $ gear : num 4 4 4 3 3 3 3 4 4 4 ...
  $ carb : num 4 4 1 1 2 1 4 2 2 4 ...
          : num 33.6 33.6 36.5 34.2 29.9 ...
## $ kmpq
## $ low.mpg: Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 1 2 1 1 1 ...
```

Adding new data to a data frame

You can concatenate two data frames using rbind as long as the variable names and orders are the same

```
new_data = rbind(data_spine[1:4,], data_spine[c(8,22),])
new_data
```

```
##
     Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
## 1
            63.02782
                                                      40.47523
                       22.55259
                                          39.60912
           39.05695 10.06099
                                          25.01538 28.99596
## 3
     68.83202 22.21848
                                          50.09219 46.61354
                                       44.31124 44.64413
29.03835 34.61114
         69.29701 24.65288
## 4
## 8
        45.36675 10.75561
## 22
            54.91944
                     21.06233
                                         42.20000
                                                      33.85711
     Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
## 1
        98.67292
                               -0.254400 0.7445035
                                                      12.5661
     114.40543
## 2
                               4.564259 0.4151857
                                                      12.8874
## 3
    105.98514
                             -3.530317 0.4748892
                                                      26.8343
                                                      23.5603
    101.86850
                             11.211523 0.3693453
## 8
    117.27007
                              -10.675871 0.1319726 28.8165
       125.21272
                                        0.1752446
                               2.432561
                                                      23.0791
     Thoracic.slope Cervical.tilt Sacrum.angle Scoliosis.slope
## 1
           14.5386
                  15.30468 -28.658501
                                                 43.5123
           17.5323 16.78486 -25.530607
                                                 16.1102
```

Adding new data to a data frame

You can add columns of a new data frame to an existing data frame using cbind as long as the columns have no common names

```
## Pelvic.slope Class.attribute Sex Race

## 1 0.7445035 Abnormal M W

## 2 0.4151857 Abnormal F B

## 3 0.4748892 Abnormal M As

## 4 0.3693453 Abnormal M B
```