ENTROPIJA

Karno teorema

$$\eta \le \eta_K$$

$$\frac{Q_1 - Q_2}{Q_1} \le \frac{T_1 - T_2}{T_1}$$

"=" – grįžtamajam procesui;

"<" – negrįžtamajam procesui.

Santykis

$$1 - \frac{Q_2}{Q_1} \le 1 - \frac{T_2}{T_1}$$

galios ir bet kokiai kūnų sistemai, dirbančiai grįžtamuoju ("=") ir negrįžtamuoju ("<") ciklu, nepriklausomai nuo to, kiek kartų šis ciklas kartojasi.

- $Q_2 < 0$ atiduodamas šilumos kiekis.
- Gautą nelygybę galima perrašyti:

$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} \le 0$$

Tai <u>Klauzijaus redukuotųjų šilumų</u> nelygybė:

grįžtamojo Karno ciklo redukuotųjų šilumos kiekių suma lygi nuliui, o bet kokio negrįžtamojo ciklo – mažesnė už nulį.

• Q/T – redukuotasis šilumos kiekis.

• Termodinaminės sistemos gautojo šilumos kiekio ir absoliutinės temperatūros, kurioje jis buvo tiekiamas, santykis yra vadinamas redukuotuoju šilumos kiekiu.

Matavimo vienetai: J/K.

- Jeigu sistemos būsena kinta ne pagal Karno ciklą, o pagal bet kokį ciklą, tai jį galima įsivaizduoti kaip sumą daugelio mažų Karno ciklų.
- Tai galima išreikšti integralu:

$$\oint \frac{dQ}{T} \le 0$$

Redukuotųjų šilumų suma, sistemai pereinant iš vieno būvio į kitą, nepriklauso nuo proceso, o duotai dujų masei yra apsprendžiama sistemos pradine ir galine būsena.

Analogiškai redukuotųjų šilumų sumą galima išreikšti kaip skirtumą dviejų reikšmių tam tikros sistemos būsenos funkcijos, kuri vadinama entropija:

$$\Delta S = S_2 - S_1 = \int_1^2 \frac{dQ}{T}$$

Entropija gali būti nagrinėjama

Termodinaminiu požiūriu

Molekulinės – kinetinės teorijos požiūriu

Termodinaminis entropijos apibrėžimas

Termodinaminės sistemos entropija yra tokia sistemos būsenos funkcija, kurios elementarusis pokytis lygus grįžtamojo proceso elementariajam redukuotajam šilumos kiekiui:

$$\Delta S \ge \int_{1}^{2} \frac{dQ}{T}$$

"=" –grįžtamajam procesui,

">" –negrįžtamajam procesui.

Pati entropija gali būti randama tik integravimo konstantos tikslumu:

$$S = \int_{1}^{2} \frac{dQ}{T} + S_0$$

Molekulinės-kinetinės teorijos požiūriu

• Entropija – tai sistemos būsenos termodinaminės tikimybės matas.

• Entropija – tai sistemos netvarkos matas.

• Molekulių pasiskirstymų skaičius, atitinkantis konkrečią sistemos termodinaminę būseną, vadinamas šios būsenos termodinamine tikimybe w.

• Būsenos termodinaminė tikimybė - tai mikrobūsenų, realizuojančių makrobūseną, skaičius.

Bolcmanas nustatė, kad entropija yra proporcinga termodinaminės tikimybės natūriniam logaritmui:

$$S = k \cdot \ln w$$

kur k- Bolcmano konstanta.

II-as termodinamikos dėsnis

Antras termodinamikos dėsnis teigia:

izoliuotos sistemos entropija gali:

- tik *didėti*, jei sistemoje vyksta negrįžtamieji procesai,
- arba *nekisti*, jei sistemoje vyksta grįžtamieji procesai:

 $\Delta S \geq 0$.

• Izoliuotos sistemos entropija mažėti negali.

 Antras termodinamikos dėsnis parodo procesų vykimo kryptį: natūralūs procesai vyksta entropijos didėjimo kryptimi.

- Neizoliuotose sistemose entropija gali didėti, mažėti arba visai nesikeisti, žiūrint koks yra proceso pobūdis.
- Jei izoliuotos sistemos entropija didėja, tai jos būsena kinta tikėtiniausios, t. y. pusiausvirosios būsenos kryptimi.
- Negrįžtamųjų procesų metu, perduodant šilumą, entropija didėja.

Molekulinės-kinetinės teorijos požiūriu

• Izoliuotoje sistemoje procesai vyksta tik netvarkos didėjimo kryptimi.

Apibendrintas I-as ir II-as termodinamikos dėsniai

$$T \cdot dS \ge dU + dA$$

REALIOS DUJOS

Realių dujų molekulės, skirtingai nuo idealių dujų molekulių,-

- tarpusavyje sąveikauja, todėl atsiranda papildomas slėgis,
- pačios dujų molekulės užima tam tikrą tūrį, dėl to sumažėja laisvasis judėjimo tūris.

Realių dujų būseną aprašo Van der Vaalso lygtis

Vienam realių dujų moliui (m=μ):

$$\left(p + \frac{a}{V_{mol}^{2}}\right) \cdot \left(V_{mol} - b\right) = R \cdot T$$

a, b – Van der Vaalso konstantos

- Van der Vaalso lygis turi tris nežinomuosius (p, V, T), todėl matematiškai jos išspręsti negalime.
- Tai padaryti galima tik grafiniu būdu, brėžiant Van der Vaalso izotermes (*T*=*const*).
- Izobarės (p=const) ir izotermės susikirtimo taškas leis rasti dujų užimamą tūrį V, esant konkrečioms slėgio p ir temperatūros T vertėms.

Realių dujų vidinė energija

Realių dujų vidinė energija priklauso ne tik nuo temperatūros (T), bet ir nuo dujų užimamo tūrio (V):

$$U_{mol} = E_k + E_p = C_V \cdot T - \frac{\alpha}{V_{mol}}$$

$$(m=\mu)$$

FAZINIAI VIRSMAI

- Perėjimas iš vieno agregatinio būvio į kitą, lydymas virsmo šilumos sugėrimo arba išskyrimo ir savitojo tūrio pakitimo, vadinamas pirmos rūšies faziniu virsmu.
- Fazinio virsmo šilumą sugeriantys arba išskiriantys virsmai vadinami pirmosios rūšies faziniais virsmais.
- Pvz.: garavimas, kondensacija, lydymasis, kristalizacija, sublimacija ir t.t.

• Šiluma sunaudojama medžiagos fazinei būsenai pakeisti ir vadinama fazinio virsmo šiluma.

- Fazinio virsmo šiluma reikalinga traukos jėgoms nugalėti, kitaip tariant, tarpmolekulinės traukos neigiamai potencinei energijai kompensuoti.
- Temperatūrai kylant, medžiagos fazinio virsmo šiluma mažėja, o pasiekus kritinę temperatūrą, ji prilygsta nuliui.

• Antros rūšies faziniai virsmai – tai tokie perėjimai, kurie nėra lydimi fazinio virsmo šilumos sugėrimo ar išskyrimo, jų metu šuoliškai pakinta savitoji šiluminė talpa, šiluminio plėtimosi koeficientas ir kai kurios kitos medžiagos charakteristikos.

Antros rūšies fazinių virsmų pavyzdžiai:

- feromagnetiko virtimas paramagnetiku prie Kiuri temperatūros;
- lydinių virtimas superlaidininkais žemose temperatūrose ir t.t.

Klaiperono ir Klauzijaus lygtis

• Klaiperono ir Klauzijaus lygtis aprašo pirmos rūšies fazinius virsmus.

• Ji suriša slėgio ir temperatūros pokyčių santykį su fazinio virsmo šiluma, fazinio virsmo temperatūra ir tūrio pokyčiu šio virsmo metu.

$$\frac{dp}{dT} = \frac{q_{12}}{T \cdot (V_2 - V_1)}$$

- dp/dT parodo kreivės polinkį,
- dp/dT ženklas priklauso nuo tūrio pokyčio ženklo.

 Ji sieja dvifazės sistemos pusiausvyros slėgį ir temperatūrą.

• Jei žinome fazinę virsmo šilumą ir skystosios fazės tūrio V_2 bei dujinės fazės tūrio V_1 priklausomybę nuo temperatūros, tai išsprendę gautąją diferencialinę lygtį, randame slėgį, kuris irgi yra temperatūros funkcija.

Fazių pusiausvyrinė diagrama

Medžiaga gali būti trijose skirtingose fazėse:

- kietoje,
- skystoje,
- dujinėje.

Perėjimą iš vienos fazės į kitą vaizduojame kreivėmis AC, AK ir OA *p-T* pusiausvyrinėje diagramoje.

A-trigubas taškas, jame visos trys fazės yra pusiausvyroje.

T didėjant

- AC lydymasis
- AK garavimas
- OA sublimacija

Sublimacija - tai kieto kūno virtimas dujomis aplenkiant skystąją fazę.

T mažėjant

- AC kristalizacija
- AK kondensacija
- OA resublimacija

Resublimacija - tai dujų virtimas kietuoju kūnu aplenkiant skystąją fazę.