Note of Discrete Mathematics

Yzy

2020年3月19日

目录

1	Propositions				
2	命题等价式 Propositional Equvialent				
	2.1	逻辑等价式 Logical Equvialent	3		
	2.2	命题的可满足性 Propositional Satisfiability	3		
	2.3	谓词和量词 Predicates and Quantifiers	3		
	2.4	嵌套量词 Nested Quantifiers	5		
	2.5	推理规则 Rules of Inference	6		
	2.6	证明导论	6		
3	基本	结构:集合,函数,序列,求和与矩阵	7		
	3.1	集合 Sets	7		
		3.1.1 集合的大小	8		
		3.1.2 笛卡尔积 Cartesian Products	8		
	3.2	集合运算	9		
	3.3	函数 functions	10		
		3.3.1 一对一函数 one-to-one 或单射函数 injection	10		
		3.3.2 映上函数 onto 或满射函数 surjection	10		
		3.3.3 ——对应或双射函数 bijeciton	10		
		3.3.4 反函数	10		
		3.3.5 函数组成	11		
		3.3.6 函数的图	11		
	3.4	序列与求和	11		

	3.5	集合的基数 Cardinality	12
		3.5.1 可数集 countable sets	12
	3.6	矩阵 matrix	12
4	算法	Algorithm	13
4		Algorithm algorithm	
4	4.1		13

1 Propositions 命题

Theorem 1 A Propositions is a declarative sentence that is either true or false, but not both. 命题就是陈述性的语句,只有"对"或者"错"。

conjunction 合取— \land disjunction 析取— \lor exclusive or— \oplus conditional statements— $p \rightarrow q$: (等价于 $\neg p \land q$) 1 if p, then q(若 p, 则 q) 等价于 **p only if q(p 仅当 q)** converse(逆命题) of $p \rightarrow q$: $q \rightarrow p$ contrapositive(逆否命题) of $p \rightarrow q$: $\neg q \rightarrow \neg p$ 2 inverse(反命题) of $p \rightarrow q$: $\neg p \rightarrow \neg q$ 3 当两个 propositions 具有相同真值时,称为<u>等价</u>(equivalent). $p \leftrightarrow q$ (p 当且仅当 q) 与 $(p \rightarrow q) \land (q \rightarrow p)$ 等价

2 命题等价式 Propositional Equvialent

- 永真式 (tautology 重言式): 永远为真。
- 矛盾式 (contradiction): 永远为假。
- 可能式 (contingency): 既不是永真式又不是矛盾式。

¹条件语句作为一个数学概念不依赖于假设和结论之间的因果关系,而是用定义规定了它的真值!

²逆否命题与原命题具有相同的真值!

³逆命题和反命题是等价的!

2.1 逻辑等价式 Logical Equvialent

逻辑等价: 在所有情况下都有相同真值的两个复合命题, 称为逻辑等价。记为: $p \equiv q$. (注意: \equiv 并不是逻辑连接词)

德摩根律 DeMorgan's Laws : $\frac{\neg (p \land q) \equiv \neg p \lor \neg q}{\neg (p \lor q) \equiv \neg p \land \neg q}$

构建复合命题的真值表时,有几个命题变元,真值表就有 2^n 行。

27, 28 页: 表 6,7,8 有用的逻辑等价式

有如下事实: 若 $p \equiv q$ 且 $q \equiv r$, 则 $p \equiv r$.

2.2 命题的可满足性 Propositional Satisfiability

一个命题称为是: 可满足的 (satisfiable)—如果**存在一个赋值**使其真值为真 不可满足的 (unsatisfiable)—对**所有变元的真值赋值**都是假的

- 与非 (NAND) | , 顾名思义 $p|q \equiv \neg(p \land q)$
- 或非 (NOR) \downarrow , 同理 $p \downarrow q \equiv \neg (p \lor q)$

 $\{\neg \lor \land\}, \{\neg \lor\}, \{\neg \land\}, \{\downarrow\}$ 均是功能完备集 functional collection。 $A_1, ..., A_n$ 均为合取式,则 $A_1 \lor A_2 \lor ... \lor A_n$ 称为析取范式,合取范式反之亦然。

2.3 谓词和量词 Predicates and Quantifiers

n 个变量 x_1, x_2, \ldots, x_n 的语句表示成: $P(x_1, x_2, \ldots, x_n)$. $P(\ldots)$ 就是命题函数 P 在 n 元组 (x_1, x_2, \ldots, x_n) 的真值。P 也称为 **n 元谓词**。

全称量词 universal quantifiers 数学命题断言某一性质对于变量在某一特定域内的所有值为真,这一特定域成为变量的论域 (domain of discourse) 或全体域 (universe of discourse) 或域 (domain)

全称量词 (universal quantifiers)— \forall (注: 使用量词时必须先指定论域) $\forall x P(x)$ 表示 P(x) 的全称量化,"P(x) 对 x 在其论域的所有值为真,"也读作:"对所有 x,P(x)"。

存在量词 (existential quantifiers)—∃

 $\exists x P(x)$, "论域中存在一个个体 x 满足 P(x)。"

唯一性量词 (uniqueness quantifiers)—∃!

 $\exists ! x P(x)$ 表示: 存在一个唯一的 x 使得 P(x) 为真。(有且只有一个) 约束论域: 变量必须满足的条件直接放在量词的后面

如:

 $\forall x < 0 (x^2 > 0)$ 表示"对每一个满足 x>0 的实数 x 有 $x^2 > 0$ "—等价于:

 $\forall x (x < 0 \rightarrow x^2 > 0)$

 $\exists z > 0(z^2 = 0)$ 等价于 $\exists z(z > 0 \land z^2 = 0)$

由上可知,

- 全称量化的约束和一个条件语句的全称量化等价: $\forall x$ (约束条件) $P(x) \equiv \forall x$ (约束条件 $\rightarrow P(x)$)
- 存在量化的约束和一个合取式的存在量化等价

量词有最高的优先级 (precedence)

涉及量词的逻辑等价式:

例: $\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$

 $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$

- 全称量词对于一个合取式是可分配的, 但对析取式则不可分配。
- 存在量词对于一个析取式是可分配的, 但对合取式则不可分配。

量化表达式的否定

量词否定的规则成为量词的德摩根律:

 $\neg \forall x P(x) \equiv \exists x \neg P(x)$

 $\neg \exists x Q(x) \equiv \forall x \neg Q(x)$

空量化 null quantification—用于将量词左移

(1.4 练习 46 49) 假设 x 在 A 中均不作为自由变元出现,且论域非空:全称量词:

- $(\forall x P(x)) \lor A \equiv \forall (x P(x) \lor A)$
- $(\forall x P(x)) \land A \equiv \forall x (P(x) \land A)$
- $A \to \forall x P(x) \equiv \forall x (A \to P(x))$
- $\exists x P(x) \to A \equiv \forall x (P(x) \to A)$

存在量词:

- $(\exists x P(x)) \lor A \equiv \exists x (P(x) \lor A)$
- $(\exists x P(x)) \land A \equiv \exists x (P(x) \land A)$
- $A \to \exists x P(x) \equiv \exists x (A \to P(x))$
- $\forall x P(x) \to A \equiv \exists x (P(x) \to A)$

(以上逻辑等价式均可用分情况证明!)

2.4 嵌套量词 Nested Quantifiers

嵌套量词,即一个量词出现在另一个量词的作用域内,如: $\forall x \exists y(x+y) = 0$ 。注意,量词范围内的一切都可以认为是一个命题函数。

 $\forall x \exists y (x+y) = 0$ 可以描述为 $\forall x Q(x)$,其中 $Q(x) \equiv \exists y P(x,y)$, $P(x,y) \equiv x+y=0$.

将量化当做循环

如要判定 $\forall x \exists y P(x,y)$ 是否为真,对 x 的所有值循环。对每个 x 值,再对 y 值循环直到找到一个 y 使 P(x,y) 为真。如果对所有的 x 值都能找到一个 (或以上)y 值使 P(x,y) 为真,那么该表达式为真。

 $\exists x \forall y P(x,y), \exists x \exists y P(x,y)$ 同理。

量词顺序

在没有其他量词的语句中,在不改变量化式意义的前提下嵌套全称量词的 顺序是可以改变的。

嵌套量词的否定

方法: 通过连续地应用量词的德摩根律。

例: $\neg(\forall x \exists y (xy=1)) = \exists x \neg \exists y (xy=1) = \exists x \forall y \neg (xy=1) = \exists x \forall y (xy \neq 1)$ 注意, 把 ¬ 放量词后面时, 不改变变元的论域, 如: $\neg \forall x > 0 \exists y < 0 P(x,y) = \exists x > 0 \neg \exists y < 0 P(x,y)$

前束范式 prenex normal form,PNF

当且仅当表达形式为: $Q_1x_1Q_2x_2...Q_kx_kP(x_1,x_2,...,x_k)$, 其中每个 Q_i 都是全称量词或者存在量词,并且 $P(x_1,x_2,...,x_k)$ 是不含量词的谓词。

- 1.5 48 $\forall x P(x) \lor \forall x Q(x) \equiv \forall x \forall y (P(x) \lor Q(x))$
- 1.5 49 $\forall x P(x) \land \exists x Q(x) \equiv \forall x \exists y (P(x) \land Q(x))$
- 1.5 49 $\forall x P(x) \lor \exists x Q(x) \equiv \forall x \exists y (P(x) \lor Q(x))$

对唯一性量词有等价式: $\exists !xP(x) \equiv \exists x(P(x) \land \forall y(P(y) \rightarrow y = x)) \equiv \exists x \forall y(P(x) \leftrightarrow y = x)$

2.5 推理规则 Rules of Inference

论证 (argument): 一连串的命题并以结论作为最后的命题;

有效性 (valid): 结论或论证的最后一个命题必须根据论证过程前面的命题或前提 (premise) 的真实性推出;

一个论证是有效的**当且仅当**不可能出现所有前提为真而结论为假的情况,即它的所有前提为真蕴含着结论为真。

谬误 (fallacy): 错误推理。

如果前提均为真时结论为真,那么说这个论证形式是**有效的**, 也就是说这个推理规则是**可以用的!**

永真式 $(p \land (p \rightarrow q)) \rightarrow q$ 是假言推理 (modus ponens) 或分离规则 (law of detachment) 的推理规则的基础。它说明: 如果一个条件语句以及它的前提都为真, 那么结论肯定为真!

章节 1.6.3 常用推理规则表

- 化简律 $(p \land q) \rightarrow p$
- 附加律 $p \to (p \lor q)$
- 取拒式 $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$

消解律 $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$, 其中 $(q \lor r)$ 称为消解式常把假设和结论表示为子句(变量或其否定的一个析取式),再用消解律构造证明。**量化命题的推理规则**

1.6.7—全称实例,全称引入,存在实例,存在引入

1.6.8—命题和量化命题推理规则的组合使用:全称假言推理,全称取拒式

2.6 证明导论

定理 theorem: 一个能够被证明是真的语句。证明定理的方法:

p	q	value
T	T	T
T	F	F
F	T	T
F	F	T

- 直接证明法,利用条件语句 $p \rightarrow q$ 来构造
- 间接证明法 (反证法 proof by contrapositive), 利用 $p \to q \equiv \neg q \to \neg p$ 这一事实来构造
- 空证明 (vacuous proof) 即若前提 p 为假,则 $p \rightarrow q$ 一定为真
- 平凡证明 (trivial proof) 即若结论 q 为真,则 $p \rightarrow q$ 一定为真
- 归谬证明法 (proof by contradiction) 即找到一个矛盾式 $r \wedge \neg r$ 使得 $\neg p \to (r \wedge \neg r)$ 为真,则 p 为真
- 等价证明法为了证明 $p \leftrightarrow q$, 即要证明 $p \rightarrow q$ 和 $q \rightarrow p$ 都是真的
- 反例证明法要证明形如 $\forall x P(x)$ 的语句为假,则只需要找到一个反例即可
- 分情形证明法 $[(p_1 \lor p_2 \lor \cdots \lor p_n) \to q] \leftrightarrow [(p_1 \to q) \land (p_2 \to q) \land \cdots \land (p_n \to q)]$
- 穷举证明法 (proof by exhaustion) 通过检验相对少量的例子来证明

不失一般性 without loss of generality(WLOG)

一般是为了缩短篇幅,即后面的情况可以采用同样的(或有明显改变)论证来完成证明。

3 基本结构:集合,函数,序列,求和与矩阵

3.1 集合 Sets

集合是对象的一个无序聚集 (collection), 对象也称为元素 (element) 或成员 (member)

通常大写表示集合,小写表示集合中的元素。 $a \in A, a \notin A$

可用集合构造器 (set builder) 来描述集合: $O = \{x \mid x$ 是小于 10 的正奇数} $O = \{x \in Z^+ \mid x$ 为奇数, $x < 10\}$

集合相等 $\forall x(x \in a \leftrightarrow x \in B)$ 记为(A = B),只要元素相同,就算是顺序不同或者元素出现次数不同都是相等!

空集 (empty set or null set): Ø or {}

单元素集 (singleton set): 只有一个元素的集合。如: $\{\emptyset\}$,但是它不是空集! 可以类比为: $\emptyset\to$ 一个空文件夹 $\{\emptyset\}\to$ 一个文件夹中只有一个空文件夹 子集 (subsets): $A\subseteq B$ 当且仅当 $\forall x(x\in A\to x\in B)$

真子集 (proper subsets) $A \subset B$ 当且仅当 $\forall x(x \in A \to x \in B) \land \exists x(x \in B \land x \notin A)$

集合可以作为另一个集合的成员

例子: $A = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}, B = \{x \mid x$ 是集合 a,b 的子集} 注意到,这两个集合是相等的! 且 $a \notin A$, $\{a\} \in A$

3.1.1 集合的大小

令 S 为集合,若 S 中有 $\mathbf n$ 个不同的元素,且 $\mathbf n$ 为非负整数,则 S 为有限集。 $\mathbf n$ 为 S 的基数 (cardinality), 记为 | S |

幂集 (power set), S 的幂集是 S 所有子集的集合,记为 $\mathcal{P}(A)$ 。若 |S| = n, $|\mathcal{P}(S)| = 2^n$

3.1.2 笛卡尔积 Cartesian Products

有序 n 元组 (ordered n-tuple) (a_1, a_2, \ldots, a_n) 是以 a_1 为第一个元素...,是有序聚集!

有序 n 元组是相等的当且仅当每一对对应的元素相等,即 $a_i = b_i$ 有序二元组称为**序偶** (ordered pair):(a,b), (c,d)

笛卡尔积: $A \times B = \{(a,b) \mid a \in A \land b \in B\}$. 需要注意的是: 若 A, B 不为空集,又或 A,B 不等,则 $B \times A \neq A \times B$

而且, $(A \times B) \times C \neq A \times B \times C$

用 $A^n = A \times A \times, \dots, \times A$ 表示集合 A 与自身的笛卡尔积。

笛卡尔积 $A \times B$ 的一个子集 R 称为是从集合 A 到集合 B 的一个**关系 relation**,R 的元素是序偶,(第一个元素属于 A,第二个元素属于 B)。

真值集 truth set

将集合理论与谓词逻辑结合,给定谓词 P,论域 D,定义 P 的真值集为 D 中使 P(x) 为真的元素 x 组成的集合,记为 $\{x \in D \mid P(x)\}$ 练习题:

$$\mid A \mid = m, \mid B \mid = n, then \mid A \times B \mid = mn$$

$$\mid A \mid = m, \mid B \mid = n, \mid C \mid = p, then \mid A \times B \times C \mid = mnp$$

 $\mid A\mid =m, and n is a integral number, then \mid A^n\mid =m^n$

求有限集的所有子集的方法

令 $S = \{a_1, a_2, \dots, a_n\}$, 把 S 的每个子集用**长度为 n 的位串**表示,其中第 i 位为 1 当且仅当 $a_i \in S$ 。为了产生 S 的所有子集,列出所有 2^n 个长度为 n 的位串,再按照对应位置写出子集即可! (即利用二进制编码实现)

3.2 集合运算

差集:
$$A - B = A \cap \overline{B}$$

对称差 (symmetric difference)— \oplus , $A \oplus B$: 属于 A 或属于 B 但不同时属于 A 与 B 的元素组成的集合。对称差常用公式:

对称差定义
$$A \oplus B = (A \cup B) - (A \cap B)$$

对称差定义
$$A \oplus B = (A - B) \cup (B - A)$$

交換律
$$A \oplus B = B \oplus A$$

结合律 $A \oplus (B \oplus C) = (A \oplus B) \oplus C$ 可由定义证得

- $(A \oplus B) \oplus B = A$
- $A \oplus A = \emptyset$
- $A \oplus \varnothing = A$
- $A \oplus U = \overline{A}$
- $A \oplus \overline{A} = U$
- $\stackrel{\text{\tiny \bot}}{=} A \oplus B = C \text{ ff, } A \oplus C = B$

模糊集 fuzzy sets 全集 U 中每个元素在模糊集合 S 中都有一个隶属度,即在 [0,1] 范围内的实数。模糊集合 S 的表示法是列出元素及其隶属度 (0) 除外)。

模糊集的补集 元素在 \overline{S} 中的隶属度等于 1 减去在 S 中的隶属度

模糊集的并集 元素在两个集合 S, T 中的隶属度最大值

模糊集的交集 元素在两个集合 S, T 中的隶属度最小值

3.3 函数 functions

也称: 映射 mapping, 或变换 transformation. 对于 $A \to B$ 的函数,A 中元素在 B 中只能有一个指派。

3.3.1 一对一函数 one-to-one 或单射函数 injection

$$a, b \in A, \quad \forall a \forall b (f(a) = f(b) \to a = b)$$

3.3.2 映上函数 onto 或满射函数 surjection

即对 B 中每个元素 b 都是定义域 A 中某个元素的像!

3.3.3 ——对应或双射函数 bijeciton

即,既是单射,又是满射!

假设 $f: A \rightarrow B$ 。

要证明 f 是单射的: 证明对于任意 x, $y \in A$, 如果 f(x) = f(y), 则 x = y.

要证明 f 不是单射的:找到特定的 x, $y \in A$,使得 $x \neq y$ 且 f(x) = f(y)。

要证明 f 是满射的:考虑任意元素 $y \in B$,并找到一个元素 $x \in A$ 使得 f(x) = y。 要证明 f 不是满射的:找到一个特定的 $y \in B$,使得对于任意 $x \in A$ 有 $f(x) \neq y$ 。

3.3.4 反函数

f 为 A 到 B 的一一对应。 f^{-1} : 它指派给 b 的元素是 A 中使得 f(a)=b 唯一的元素 a。即有:当 f(a)=b 时 $f^{-1}(b)=a$ 。

3.3.5 函数组成

 $(f \circ g)(a) = f(g(a))$, 注意: 构造函数与它的反函数不论以什么次序合成, 得到的都是恒等函数!

3.3.6 函数的图

f 的图为: 序偶集合 $\{(a,b) \mid a \in A \text{ and } f(a) = b\}$

(n 为整数, x 为实数)

$$(1a) \lfloor x \rfloor = n$$
 当且仅当 $n \leqslant x \leqslant n+1$
 $(1b) \lceil x \rceil = n$ 当且仅当 $n-1 \leqslant x \leqslant n$
 $(1c) \lfloor x \rfloor = n$ 当且仅当 $x-1 \leqslant n \leqslant x$
 $(1d) \lceil x \rceil = n$ 当且仅当 $x \leqslant n \leqslant x+1$

$$(2)x-1 < x \le x < x+1$$

$$(3a) \left[-x \right] = -\lceil x \rceil$$

$$(3b) \lceil -x \rceil = -\lfloor x \rfloor$$

$$(4a) \lfloor x+n \rfloor = \lfloor x \rfloor + n$$

$$(4b) \lceil x+n \rceil = \lceil x \rceil + n$$

3.4 序列与求和

序列 sequence 是一个从整数集的一个子集到一个集合 S 的函数!用记号 a_n 表示整数 n 的像。 a_n 是序列的一个项 term。

几何级数是这样的序列: $a, ar, ar^2, \dots, ar^n, \dots$ 可知,几何级数是指数函数 $f(x) = ar^x$ 的离散的对应体。

递推关系

为序列的项找到一个显式公式,称为闭公式 closed formula,这时边说解决了带有初始条件的递推关系!

求和 Summations∑

求和式**下标平移** $\sum_{j=1}^{5} j^2 = \sum_{k=0}^{4} (k+1)^2$, $\sum_{s \in \{0,2,4\}} s$ 表示将集合中的元素全部相加!

3.5 集合的基数 Cardinality

一个有限集合 (finite sets) 的基数定义为该集合的元素个数。现扩展到无限 (infinite sets) 集合。

集合 A 与集合 B 有相同的基数,当且仅当存在从 A 到 B 的一个**一一对应**。 写成 |A| = |B|。

若存在一个从 A 到 B 的**一对一函数**,则 $|A| \le |B|$ 。进一步,若 A,B 的基数不同,则 |A| < |B|

3.5.1 可数集 countable sets

把无线集分为两组,一组是与自然数集有相同的基数,另一组是具有不同基数。

正整数集,整数集,有理数集是可数无限集。实数集是不可数的!

- 可数的: 集合或是有限集,或与自然数集有相同的基数。记为 $|S|=\aleph_0$,称作阿里夫零。
- 不可数的: 集合不可数

无限集是可数的当且仅当可以把集合中的元素排列成序列(下标是正整数)。这是因为从正整数集合到集合 S 的——对应关系 f 可以用序列 a_1 , a_2 , …, a_n , …表示, 其中 $a_1 = f(1)$, $a_2 = f(2)$, …, $a_n = f(n)$, …。

Theorem 2 若 A,B 是可数集合,则 $A \cup B$ 也是可数集合

Theorem 3 若集合 A,B 存在 $|A| \leq |B|$ 和 $|B| \leq |A|$, 那么 |A| = |B|

3.6 矩阵 matrix

矩阵简便记法 $\mathbf{A} = [a_{ij}]$, 表示 A 是其第 (i,j) 元素为 a_{ij} 的矩阵。

0-1 矩阵

所有元素为 0 或 1。两个 0-1 矩阵 A,B 的并: $A \lor B$; A,B 的交: $A \land B$,均

为对应元素位置的布尔运算!

两个 0-1 矩阵的**布尔积** (Boolean product): $\boldsymbol{A}\odot\boldsymbol{B}$, 类似矩阵的普通乘积,但是要用 \vee 代替加法,用 \wedge 代替乘法。

0-1 矩阵 A 的 r 次布尔幂记作:
$$A^{[r]}$$
, 且 $\underbrace{A^{[r]} = A \odot A \odot A \odot \cdots \odot A}_{r \uparrow A}$.

另外定义 $A^{[0]}$ 为 I_n 。

4 算法 Algorithm

4.1 algorithm

定义: 算法是进行一项计算或解决一个问题的准确指令的有限序列。

4.2 函数的增长 The Growth of Functions