

General Description

The MAX396/MAX397 low-voltage, CMOS analog multiplexers (muxes) offer low on-resistance (100 Ω max), which is matched to within 6Ω between switches and remains flat over the specified signal range (10Ω max). They also offer low leakage over temperature (input off-leakage current less than 1nA at +85°C) and fast switching speeds (transition time less than 250ns). The MAX396 is a 16-channel device, and the MAX397 is a dual 8-channel device.

The MAX396/MAX397 are fabricated with Maxim's lowvoltage silicon-gate process. Design improvements yield extremely low charge injection (5pC max) and guarantee electrostatic-discharge (ESD) protection greater than 2000V per Method 3015.7

These muxes operate with a single +2.7V to +16V supply or with ±2.7V to ±8V dual supplies, while retaining CMOS-logic input compatibility and fast switching. The MAX396/MAX397 are pin compatible with the industrystandard MAX306/MAX307, DG406/DG407, and DG506A/DG507A.

Applications

Sample-and-Hold Circuits **Avionics Battery-Operated Equipment** Low-Voltage Data Acquisition Systems

Automatic Test Equipment Communications Systems **Audio Signal Routing** Industrial Process Control Features

- ♦ Pin Compatible with MAX306/MAX307, DG406/DG407, DG506A/DG507A
- Single-Supply Operation (+2.7V to +16V) Dual-Supply Operation (±2.7V to ±8V)
- Low On-Resistance (100Ω max)
- **Guaranteed Ron Match Between Channels** (6 Ω max)
- ♦ Guaranteed Ron Flatness over Specified Signal Range (10 Ω max)
- ♦ Guaranteed Low Charge Injection (5pC max)
- ♦ Input Off-Leakage Current < 1nA at +85°C</p>
- ♦ Output Off-Leakage Current < 2.5nA at +85°C</p>
- ♦ Low Power Consumption < 10μW
- TTL/CMOS Compatible

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX396CPI	0°C to +70°C	28 Plastic DIP
MAX396CWI	0°C to +70°C	28 Wide SO
MAX396CAI	0°C to +70°C	28 SSOP
MAX396CQI	0°C to +70°C	28 PLCC**
MAX396C/D	0°C to +70°C	Dice*

Ordering Information continued on last page.

- *Contact factory for dice specifications.
- **Contact factory for package availability.

Pin Configurations/Functional Diagrams/Truth Tables

NIXIN

ABSOLUTE MAXIMUM RATINGS

(Voltage referenced to GND, unless otherwise note	ed.)
V+	0.3V to +17V
V+	-0.3V to -17V
V+ to V	0.3V to +17V
Voltage into Any Terminal (Note 1)(V 2V)	to $(V + + 2V)$
or 30mA (whichever	r occurs first)
Current into Any Terminal	±30mA
Peak Current into Any Terminal	±50mA
Continuous Power Dissipation (T _A = +70°C)	
Plastic DIP (derate 14.29mW/°C above +70°C)	1143mW
Wide SO (derate 12.50mW/°C above +70°C)	1000mW

SSOP (derate 9.52mW/°C above +70 PLCC (derate 10.53mW/°C above +7 CERDIP (derate 16.67mW/°C above	'0°C)842mW
Operating Temperature Ranges	
MAX39_C_I	0°C to +70°C
MAX39_E_I	40°C to +85°C
MAX39_MJI	55°C to +125°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10sec)	

Note 1: Signals on any terminal exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

 $(V+ = +5V \pm 10\%, V- = -5V \pm 10\%, GND = 0V, V_{AH} = V_{ENH} = 2.4V, V_{AL} = V_{ENL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP (Note 2)	MAX	UNITS	
SWITCH									
Analog Signal Range	V _{COM} , V _{NO}	(Note 3)				V-		V+	V
Channel On-Resistance	Ron	INO = 1mA, VCOM =	, 2 5\/	T _A = +25°C			60	100	Ω
Charinei On-Resistance	KON	INO - IIIIA, VCOM -	±3.5V	$T_A = T_{MIN}$ to	T _{MAX}			125	32
On-Resistance Matching	ΔRon	I _{NO} = 1mA, V _{COM} =	±3.5V,	$T_A = +25^{\circ}C$			1.8	6	Ω
Between Channels (Note 4)	ARON	V+ = 5V, V- = -5V		$T_A = T_{MIN}$ to	TMAX			8	32
On-Resistance Flatness	R _{FLAT(ON)}	I _{NO} = 1mA, V _{COM} =	±3V,	$T_A = +25^{\circ}C$			5	10	Ω
(Note 5)	TYFLAT(ON)	V + = 5V, V - = -5V		$T_A = T_{MIN}$ to	Тмах			13	22
NO Off-Leakage Current		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	±1 5V	$T_A = +25^{\circ}C$		-0.1	0.03	0.1	
(Note 6)	I _{NO(OFF)}	$V_{NO} = \pm 4.5V$, $V_{COM} = \mp 4.5V$, $V_{+} = 5.5V$, $V_{-} = -5.5V$		$T_A = T_{MIN}$	C, E	-1.0		1.0	nA
,		·		to T _{MAX}	М	-10		10	
		$V_{COM} = \pm 4.5V$		$T_A = +25^{\circ}C$		-0.2	0.05	0.2	
		$V_{NO} = \mp 4.5V$,	MAX396	· / (· IVIII V	C, E	-2.5		2.5	
COM Off-Leakage Current	ICOM(OFF)	V+ = 5.5V, V- = -5.5V		to T _{MAX}	М	-40		40	nA
(Note 6)	i colvi(or r)	$V_{COM} = \pm 4.5V$,		$T_A = +25^{\circ}C$		-0.1	0.03	0.1	
		$V_{NO} = \mp 4.5V$,	MAX397	$T_A = T_{MIN}$	C, E	-2.5		2.5	
		V+ = 5.5V, V- = -5.5V		to T _{MAX}	М	-20		20	
				$T_A = +25^{\circ}C$		-0.4	0.09	0.4	
		\/ 4 5\/	MAX396	I A - IIVIIIV	C, E	-5		5	
COM On-Leakage Current	I _{COM(ON)}	$V_{COM} = \pm 4.5V,$ $V_{NO} = 4.5V,$		to T _{MAX}	М	-60		60	nA
(Note 6)	·CONICON	1.100317		$T_A = +25^{\circ}C$,	-0.2	0.05	0.2	
			MAX397	$T_A = T_{MIN}$	C, E	-2.5		2.5	
				to T _{MAX}	M	-30		30	

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

(V+ = +5V ±10%, V- = -5V ±10%, GND = 0V, VAH = VENH = 2.4V, VAL = VENL = 0.8V, TA = TMIN to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
DIGITAL LOGIC INPUT	I.						
Logic High Input Voltage	V _{AH} , V _{ENH}			2.4			V
Logic Low Input Voltage	V _{AL} , V _{ENL}					8.0	V
Input Current with Input Voltage High	I _{AH} , I _{ENH}	$V_A = V_{EN} = 2.4V$		-0.1		0.1	μА
Input Current with Input Voltage Low	I _{AL} , I _{ENL}	$V_A = V_{EN} = 0.8V$		-0.1		0.1	μА
SUPPLY							
Power-Supply Range				±3		±8	V
Positive Supply Current	I+	V _{EN} = V _A = 0V/V+, V+ = 5.5V, V- = -5.5V	T _A = +25°C	-1		1	μA
Negative Supply Current	I-	$V_{EN} = V_A = 0V/V+, V+ = 5.5V$, V- = -5.5V	-1		1	μΑ
Ground Current	lovo	$V_{EN} = V_A = 0V/V_+$	$T_A = +25^{\circ}C$	-1		1	
Ground Current	IGND	V+ = 5.5V, V- = -5.5V	TA = TMIN to TMAX	-1		1	– μA
DYNAMIC							
Transition Time	trans	Figure 2	$T_A = +25^{\circ}C$		95	150	ns
Transition Time	TRANS	I igui e z	$T_A = T_{MIN}$ to T_{MAX}			250	113
Break-Before-Make Interval	topen	Figure 4	$T_A = +25^{\circ}C$	5	70		ns
Enable Turn-On Time	ton(EN)	Figure 3	$T_A = +25^{\circ}C$		100	150	ns
Enable rum on time	TON(EN)	riguic 5	$T_A = T_{MIN}$ to T_{MAX}			250	113
Enable Turn-Off Time	toff(EN)	Figure 3	$T_A = +25^{\circ}C$		55	150	ns
Enable rain on time	COLL (CIN)	- Igare e	$T_A = T_{MIN}$ to T_{MAX}			200	113
Charge Injection (Note 3)	VCTE	$C_L = 100pF$, $V_{NO} = 0V$, Figure			2	5	рС
Off-Isolation (Note 7)	VISO	$V_{EN} = 0V$, $R_L = 1k\Omega$, $f = 100kH$	$Z T_A = +25^{\circ}C$		-75		dB
Crosstalk Between Channels	V _{CT}	$V_{EN}=2.4V$, $f=100kHz$, $V_{NO}=1V_{p-p}$, $R_L=1k\Omega$, Figure	7 TA = +25°C		-92		dB
Logic Input Capacitance	CIN	f = 1MHz	T _A = +25°C		8		pF
NO Off-Capacitance	C _{NO} (OFF)	f = 1MHz, V _{EN} = V _{COM} = 0V	T _A = +25°C		11		pF
COM Off Capacitance	C0011(055)	f = 1MHz, MAX39	$T_{A} = +25^{\circ}C$		80		pF
COM Off-Capacitance	CCOM(OFF)	$V_{EN} = V_{COM} = 0V$ MAX39	7 1A = +25 C		40	pr	
COM On-Capacitance	Cookyors	f = 1MHz, MAX39	5 TA = 125°C		90		n.E
CON ON-Capacitatice	CCOM(ON)	$V_{EN} = V_{COM} = 0V$ MAX39	VIDIZ, $VIDIZ$, V		68		pF

ELECTRICAL CHARACTERISTICS—Single +5V Supply

(V+ = +5V ±10%, V- = 0V, GND = 0V, VAH = VENH = 2.4V, VAL = VENL = 0.8V, TA = TMIN to TMAX, unless otherwise noted.)

SWITCH VCOM VNO On-Resistance Note 3 on - 4 on - 5 on -	PARAMETER	SYMBOL	CONDITIONS			MIN	TYP (Note 2)	MAX	UNITS				
No - 1mA \ V com = 3.5V \ V \ V + 4.5V \ V \ V + 5.5V \ V \ V + 5.5V \ V \ V + 5.5V \ V \ V \ V \ V + 5.5V \ V \ V \ V \ V + 5.5V \ V \ V \ V \ V \ V + 5.5V \ V \ V \ V \ V \ V \ V + 5.5V \ V \ V \ V \ V \ V \ V \ V \ V \ V \	SWITCH									,			
On-Resistance Ron V+ = 4.5v Ta = Tmin to Tmax 280 Ω	Analog Signal Range	V _{COM} , V _{NO}	(Note 3)				V-		V+	V			
No - 1 mA No	On Posistanco	Post	I _{NO} = 1mA, V _{COM} =	= 3.5V,	$T_A = +25^{\circ}C$			120	225	0			
Service Channels (Note 4) ARON V= 4.5 V Ta = TMIN 10 TMAX 12 12 12 13 14 15 15 16 16 16 16 16 16	OII-Resistance	KON	V+ = 4.5V		TA = TMIN to	T _{MAX}			280	_ 52			
No off-Leakage Current (Note 8) No	9	ARON		= 3.5V,	$T_A = +25^{\circ}C$			2	10	0			
On-Resistance Flatness NFLAT V+ = 5V TA = TMIN 10 TMAX Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substitution Substitution TA = TMIN 10 TMAX TA = +25°C Substitution Substi	Between Channels (Note 4)	ZI (ON	V + = 4.5V		$T_A = T_{MIN}$ to	T_{MAX}			12	32			
NO Off-Leakage Current (Note 8) NO Off-Leakage Current (No Off-Leakage Current (Note 8) NO Off-Leakage Current (No Off-Leakage Current (No Off-Leakage Current (Note 8) NO Off-Leakage Current (No Off-Leakage Current (Note 8) NO Off-Leakage Current (No Of	On-Resistance Flatness	RELAT		= 3V, 2V, 1V;	$T_A = +25^{\circ}C$			5	16	0			
NO Off-Leakage Current (Note 8) NO Off-Leakage Current (No Off-Leakage Current (Note 8) NO Off-Leaka	On Resistance Flatiless	IVELAT	V+=5V			TMAX			20	32			
NO(OFF V+ = 5.5V NO(OFF V+ = 5.5V NO NO(OFF V+ = 5.5V NO NO NO NO NO NO NO N	NO Off Lookago Current		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	01/	$T_A = +25^{\circ}C$		-0.1	0.03	0.1				
COM Off-Leakage Current (Note 8) VCOM = 4.5V, VNO = 0V, V+ = 5.5V VCOM = 4.5V, VNO = 0V, V+ = 5.5V VCOM = 4.5V, VNO = 0V, V+ = 5.5V VCOM = 4.5V, VNO = 0V, V+ = 5.5V VCOM = 4.5V, VNO = 0V, V+ = 5.5V VCOM = 4.5V, VNO = 0V, V+ = 5.5V VCOM = 4.5V, VNO = 4.5		INO(OFF)		= 0 V ,		C, E	-1.0		1.0	nA			
COM Off-Leakage Current (Note 8) VOM = 0.0V, V+ = 5.5V VAM = 0.0M, V+ =	(,				14000	M	-10		10				
COM Off-Leakage Current (Note 8) V = 5.5V VOM = 4.5V, VNO = 0V, V+ = 5.5V VOM = 4.5V, VNO = 0V, V+ = 5.5V VOM = 4.5V, VNO = 0V, V+ = 5.5V VOM = 4.5V, VNO = 4.5V,			$V_{COM} = 4.5V$		$T_A = +25^{\circ}C$		-0.2	0.05	0.2				
COM Oif-Leakage Current (Note 8) COM(OFF) VCOM = 4.5V, VNO = 0V, VY = 5.5V TA = +25°C -0.2 0.02 0.2				MAX396	$T_A = T_{MIN}$	C, E	-2.5		2.5				
COM	COM Off-Leakage Current	loom(off)	V + = 5.5V		to T _{MAX}	M	-40		40	nΛ			
VNO = 0V, VH = 5.5V MAX397 TA = TMIN to TMAX TA = TMIN to	(Note 8)	(COM(OFF)	V _{COM} = 4.5V,		$T_A = +25^{\circ}C$	·	-0.2	0.02	0.2	- HA			
COM On-Leakage Current (Note 8) A			1	MAX397	$T_A = T_{MIN}$	C, E	-2.5		2.5				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					to T _{MAX}	M	-20		20				
COM On-Leakage Current (Note 8) ICOM(ON) VCOM = 4.5V, VNO = 4.5					T _A = +25°C	•	-0.4	0.09	0.4				
COM(ON) COM				MAX396	TA = TMIN	C, E	-5		5	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	COM On-Leakage Current	loouvous	$V_{NO} = 4.5V$,					to T _{MAX}	M	-60		60] _n
DIGITAL LOGIC INPUT Logic High Input Voltage VAH, VENH 2.4 V Logic Low Input Voltage VAL, VENL 0.8 V Input Current with Input Voltage High IAH, IENH VA = VEN = 2.4V -0.1 0.001 0.1 μA Input Current with Input Voltage Low IAL, IENL VA = 0V, VEN = 0.8V -0.1 0.001 0.1 μA SUPPLY Power-Supply Range 2.7 15 V Positive Supply Current I+ VEN = VA = 0V, V+; V+ = 5.5V; V- = 0V -1.0 0.06 1.0 μA IGND Supply Current I- VEN = V+, 0V; VA = 0V; TA = +25°C -1.0 0.08 1.0 μA	(Note 8)	ICOM(ON)			T _A = +25°C	_	-0.2	0.04	0.2				
DIGITAL LOGIC INPUT Logic High Input Voltage V _{AH} , V _{ENH} 2.4 V Logic Low Input Voltage V _{AL} , V _{ENL} 0.8 V Input Current with Input Voltage High I _{AH} , I _{ENH} V _A = V _{EN} = 2.4V -0.1 0.001 0.1 μA Input Current with Input Voltage Low I _{AL} , I _{ENL} V _A = 0V, V _{EN} = 0.8V -0.1 0.001 0.1 μA SUPPLY Power-Supply Range 2.7 15 V Positive Supply Current I+ V _{EN} = V _A = 0V, V+; V+ = 5.5V; V- = 0V -1.0 0.06 1.0 μA IGND Supply Current I _{CND} V _{EN} = V ₊ , 0V; V _A = 0V; T _A = +25°C -1.0 0.08 1.0 μA				MAX397	TA = TMIN	C, E	-2.5		2.5				
Logic High Input Voltage VAH, VENH 2.4 V Logic Low Input Voltage VAL, VENL 0.8 V Input Current with Input Voltage High IAH, IENH VA = VEN = 2.4V -0.1 0.001 0.1 μA Input Current with Input Voltage Low IAL, IENL VA = 0V, VEN = 0.8V -0.1 0.001 0.1 μA SUPPLY Power-Supply Range 2.7 15 V Positive Supply Current I+ VEN = VA = 0V, V+; V+ = 5.5V; V- = 0V -1.0 0.06 1.0 μA IGND Supply Current IGND Supply Current IGND Supply Current IGND Supply Current IA = +25°C -1.0 0.08 1.0 μA					to T _{MAX}	М	-30		30	1			
Logic Low Input Voltage VAL, VENL 0.8 V Input Current with Input Voltage High IAH, IENH VA = VEN = 2.4V -0.1 0.001 0.1 μA Input Current with Input Voltage Low IAL, IENL VA = 0V, VEN = 0.8V -0.1 0.001 0.1 μA SUPPLY Power-Supply Range 2.7 15 V Positive Supply Current I+ VEN = VA = 0V, V+; V+ = 5.5V; V- = 0V -1.0 0.06 1.0 μA Negative Supply Current I- VEN = VA = 0V, V+; V+ = 5.5V; V- = 0V -1.0 0.08 1.0 μA IGND Supply Current IGND VEN = V+, 0V; VA = 0V; TA = +25°C -1.0 0.08 1.0 μA	DIGITAL LOGIC INPUT												
Input Current with Input Voltage High IAH, IENH VA = VEN = 2.4V -0.1 0.001 0.1 μA Input Current with Input Voltage Low IAL, IENL VA = 0V, VEN = 0.8V Power-Supply Range 2.7 15 V Positive Supply Current I+ VEN = VA = 0V, V+; V+ = 5.5V; V- = 0V Negative Supply Current I- VEN = VA = 0V, V+; V+ = 5.5V; V- = 0V -1.0 0.08 1.0 μA	Logic High Input Voltage	V _{AH} , V _{ENH}					2.4			V			
Input Voltage High	Logic Low Input Voltage	V _{AL} , V _{ENL}							0.8	V			
SUPPLY Power-Supply Range 2.7 15 V Positive Supply Current I+ V _{EN} = V _A = 0V, V+; V+ = 5.5V; V- = 0V -1.0 0.06 1.0 μA Negative Supply Current I- V _{EN} = V _A = 0V, V+; V+ = 5.5V; V- = 0V -1.0 0.08 1.0 μA IGND Supply Current	•	I _{AH} , I _{ENH}	$V_A = V_{EN} = 2.4V$			-0.1	0.001	0.1	μА				
Power-Supply Range 2.7 15 V Positive Supply Current I+ $V_{EN} = V_A = 0V$, V+; V+ = 5.5V; V- = 0V -1.0 0.06 1.0 μA Negative Supply Current I- $V_{EN} = V_A = 0V$, V+; V+ = 5.5V; V- = 0V -1.0 0.08 1.0 μA IGND Supply Current IGND Supply	•	I _{AL} , I _{ENL}	V _A = 0V, V _{EN} = 0.8V			-0.1	0.001	0.1	μА				
Positive Supply Current I+ $V_{EN} = V_A = 0V$, V_+ ; $V_+ = 5.5V$; $V = 0V$ -1.0 0.06 1.0 μA Negative Supply Current I- $V_{EN} = V_A = 0V$, V_+ ; $V_+ = 5.5V$; $V = 0V$ -1.0 0.08 1.0 μA $V_{EN} = V_+$, V_+ , V_+ , V_+ , V_+ , V_+ V_+ , V_+ , V_+ V_+ , V	SUPPLY	1	ı							L			
Negative Supply Current I- $V_{EN} = V_A = 0V$, V_{+} ; $V_{+} = 5.5V$; $V_{-} = 0V$ -1.0 0.08 1.0 μA $V_{EN} = V_{+}$, $0V$; $V_{A} = 0V$	Power-Supply Range					2.7		15	V				
GND Supply Current GND $V_{EN} = V_{+}, 0V; V_{A} = 0V;$ $T_{A} = +25^{\circ}C$ $-1.0 + 0.08 + 1.0 + 0.08 + 1.0 + 0.08 + 1.0 + 0.08 + 0$	Positive Supply Current	1+	$V_{EN} = V_A = 0V, V_+; V_+ = 5.5V; V = 0V$			-1.0	0.06	1.0	μA				
IGND Supply Current I IGND I I I I I I I I I I I I I I I I I I I	Negative Supply Current	 -				-1.0	0.08	1.0	μΑ				
IGND Supply Current I IGND Lutter 5.7.1.1			V _{FN} = V+, 0V; V _A =	= 0V;	T _A = +25°C		-1.0	0.08	1.0	1			
	IGND Supply Current	IGND			TA = TMIN to	T _{MAX}	-1.0		1.0	- μA			

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

(V+ = +5V ±10%, V- = 0V, GND = 0V, VAH = VENH = 2.4V, VAL = VENL = 0.8V, TA = TMIN to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
DYNAMIC	1	1					
Transition Time (Note 3)	t==	V _{NO} = 3V, Figure 2	T _A = +25°C		105	245	nc
Transmon nine (Note 3)	ttrans	VNO = 3V, rigure 2	TA = TMIN to TMAX			350	ns
Break-Before-Make Interval	topen	(Note 3)	T _A = +25°C	10	65		ns
Enable Turn-On Time	tonyenn		$T_A = +25^{\circ}C$		125	200	nc
(Note 3)	ton(EN)		TA = TMIN to TMAX			275	ns
Enable Turn-Off Time	to==(=+)		T _A = +25°C		100	125	ns
(Note 3)	toff(EN)		TA = TMIN to TMAX			200	115
Charge Injection (Note 3)	V _{СТЕ}	$C_L = 100 pF$, $V_{NO} = 0V$, Figure 5	T _A = +25°C		1.5	5	рС

ELECTRICAL CHARACTERISTICS—Single +3V Supply

(V+ = +3V ±10%, V- = 0V, GND = 0V, VAH = VENH = 2.4V, VAL = VENL = 0.8V, TA = TMIN to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			TYP (Note 2)	MAX	UNITS
SWITCH		1					-
Analog Signal Range	Vanalog	(Note 3)		V-		V+	V
On-Resistance	Ron	$I_{NO} = 1 \text{mA}, V_{COM} = 1.5 \text{V},$	$T_A = +25^{\circ}C$		315	550	Ω
OII-Resistance	KON	V+=3V	TA = TMIN to TMAX			650	1 52
DYNAMIC							
Transition Time (Note 3)	trans	Figure 2, V _{IN} = 2.4V,	T _A = +25°C		230	575	- ns
Transition filme (Note 5)	TRANS	$V_{N01} = 1.5V, V_{N08} = 0V$	$T_A = T_{MIN}$ to T_{MAX}			750	113
Enable Turn-On Time (Note 3)	ton(EN)	Figure 3, V _{INH} = 2.4V, V _{INL} = 0V, V _{N01} = 1.5V	T _A = +25°C		260	500	ns
Enable Turn-Off Time (Note 3)	toff(EN)	Figure 3, V _{INH} = 2.4V, V _{INL} = 0V, V _{N01} = 1.5V	T _A = +25°C		135	400	ns
Charge Injection (Note 3)	Vсте	C _L = 100pF, V _{NO} = 0V, Figure 5	T _A = +25°C		1	5	рС

- **Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
- Note 3: Guaranteed by design.
- Note 4: $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 5:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges, i.e., V_{NO} = 3V to 0V and 0V to -3V.
- Note 6: Leakage parameters are 100% tested at maximum rated hot operating temperature, and guaranteed by correlation at +25°C.
- Note 7: Worst-case isolation is on channel 4 because of its proximity to the COM pin. Off-isolation = $20log\ V_{COM}/V_{NO}$, V_{COM} = output, V_{NO} = input to off switch.
- Note 8: Leakage testing at single supply is guaranteed by correlation testing with dual supplies.

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

F	PIN	MAME	FUNCTION	
MAX396	MAX397	NAME	FUNCTION	
1	1	V+	Positive Supply-Voltage Input	
2, 3, 13	_	N.C.	No Internal Connection	
_	2	COMB	Analog Signal B Output* (bidirectional)	
_	3, 13, 14	N.C.	No Internal Connection	
4–11	_	NO16-NO9	Analog Signal Inputs* (bidirectional)	
_	4–11	NO8B-NO1B	Analog Signal B Inputs* (bidirectional)	
12	12	GND	Logic Ground	
14–17	_	A3-A0	Logic Address Inputs	
_	15, 16, 17	A2, A1, A0	Logic Address Inputs	
18	18	EN	Logic Enable Input	
19–26	_	NO1-NO8	Analog Signal Inputs* (bidirectional)	
_	19–26	NO1A-NO8A	Analog Signal A Inputs* (bidirectional)	
27	27	V-	Negative Supply-Voltage Input	
28	_	COM	Analog Signal Output* (bidirectional)	
<u> </u>	28	COMA	Analog Signal A Output* (bidirectional)	

^{*}Analog signal inputs and outputs are names of convenience only; they are identical and interchangeable.

_Applications Information

Operation with Supply Voltages Other than ±5V

Using supply voltages less than $\pm 5V$ reduces the analog signal range. The MAX396/MAX397 multiplexers (muxes) operate with $\pm 3V$ to $\pm 8V$ bipolar supplies or with a +3V to +15V single supply. Connect V- to GND when operating with a single supply. Both devices can also operate with unbalanced supplies, such as +10V and -5V. The *Typical Operating Characteristics* graphs show typical onresistance with $\pm 3V$, $\pm 5V$, +3V, and +5V supplies. (Switching times increase by a factor of two or more for operation at 5V or below.)

These muxes operate with a single supply as low as 1V, although on-resistance and switching times become extremely high. Performance is not guaranteed below 2.7V. This is useful information only because it assures proper switch state while power supplies ramp up or down slowly.

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, then V-, followed by the logic inputs, NO, or COM. If power-supply sequencing

is not possible, add two small-signal diodes (D1, D2) in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog-signal range to one diode drop below V+ and one diode drop above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed 17V. These protection diodes are not recommended when using a single supply.

Figure 1. Overvoltage Protection Using External Blocking Diodes

Test Circuits/Timing Diagrams

Figure 2. Transition Time

Figure 3. Enable Switching Time

_Test Circuits/Timing Diagrams (continued)

Figure 4. Break-Before-Make Interval

Figure 5. Charge Injection (VCTE)

Test Circuits/Timing Diagrams (continued)

Figure 6. Off-Isolation (V_{ISO})

Figure 7. Crosstalk (VCT)

____Pin Configurations (continued)

Figure 8. NO/COM Capacitance

_Pin Configurations/Functional Diagrams/Truth Tables (continued)

_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX396EPI	-40°C to +85°C	28 Plastic DIP
MAX396EWI	-40°C to +85°C	28 Wide SO
MAX396EQI	-40°C to +85°C	28 PLCC**
MAX396MJI	-55°C to +125°C	28 CERDIP**
MAX397CPI	0°C to +70°C	28 Plastic DIP
MAX397CWI	0°C to +70°C	28 Wide SO
MAX397CAI	0°C to +70°C	28 SSOP
MAX397CQI	0°C to +70°C	28 PLCC**
MAX397C/D	0°C to +70°C	Dice*
MAX397EPI	-40°C to +85°C	28 Plastic DIP
MAX397EWI	-40°C to +85°C	28 Wide SO
MAX397EQI	-40°C to +85°C	28 PLCC**
MAX397MJI	-55°C to +125°C	28 CERDIP**

^{*}Contact factory for dice specifications.

_Chip Topographies

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

SUBSTRATE CONNECTED TO V+

SUBSTRATE CONNECTED TO V+

^{**} Contact factory for package availability.