

Computação Gráfica

Representação e Modelagem

Professora: Sheila Cáceres

Baseado nos slides da Prof. Soraia Musse

Modelagem

- Área da Computação Gráfica que estuda a criação de modelos dos objetos reais.
- Trata das técnicas interativas ou não (e também das interfaces) que podem ser usadas para criar um objeto.
- Como descrever/representar FORMA dos objetos (largura, altura, áreas,...)??
- Coleção de Métodos Matemáticos

Formas de representação (ou armazenamento)

- Trata das estruturas de dados utilizadas
- Em geral a forma de representação determina:
 - A estrutura de dados, a forma dos algoritmos de processamento, e o projeto de programas de baixo nível
 - O custo do processamento de um objeto
 - A aparência final de um objeto
 - A facilidade de alterar a forma de um objeto
- Em algumas técnicas a estrutura de dados para armazenar objetos é determinada pela técnica de modelagem.
- Existem várias formas de representação e modelagem de objetos 3D.
- Cada uma possui vantagens e desvantagens. Adaptam-se melhor para uma aplicação específica
- Dependem da natureza dos objetos e das operações/consultas que serão realizadas

Formas de Representação

- Representação vetorial e matricial
- Superficies
- Solidos
- Representação Aramada (lista de vértices e arestas)
- Superficies Limitantes (lista de vértices e faces)
- Enumeração Espacial (quadtrees e octrees)

Vetorial x Matricial

 Vetorial
 a) Coordenadas e primitivas gráficas
 b) Pontos por extenso MatricialMatriz de pontos

Superfícies

- apenas área
- Cascas infinitesimalmente finas, ocas
- abertas ou fechadas

Solidos

O interior também interessa.

Computer History Museum in Mountain View, California where it is catalogued as "Teapot used for Computer Graphics rendering"

Teapot (Martin Newell 1975)

Representação Aramada

- Wireframe = aramado
- Representação de um objeto somente através de suas arestas e vértices
- A visualização de objetos aramados é usada quando não é necessário um grande grau de realismo
 - Durante criação e manipulação do modelo/cena
 - Facilita a alteração (rápido de visualizar)
- Utilizam-se vetores, listas e tabelas
- Estruturas de dados mais utilizadas na Computação Gráfica 2D para armazenamento de modelos.

Vértices e Arestas

- Cubo de lado 1 com um dos vértices apoiado na origem do plano cartesiano.
- Representado pela lista de vértices:

Vértices	V1	V2	V3	V4	V5	V6	V7	V8
Coordenadas	(0,0,0)	(1,0,0)	(1,1,0)	(0,1,0)	(0,0,1)	(1,0,1)	(1,1,1)	(0,1,1)

Podemos utilizar vetores e matrices para armazenar os vértices

$$VERTICES_{CUBO} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Arestas Serão dadas pelo par (VÉRTICE INICIAL, VÉRTICE FINAL):

Arestas	V1-V2	V2-V3	V3-V4	V4-V1	V1-V5	V2-V6	V3-V7	V4-V8	V5-V6	V6-V7	V7-V8	V8-V5

Podemos utilizar vetores e matrices para armazenar as arestas

$$ARESTAS_{CUBO} = \begin{pmatrix} 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 1 & 5 & 6 & 7 & 8 & 6 & 7 & 8 & 5 \end{pmatrix}$$

Representação Aramada

- Podem se usar duas listas para representar os modelos.
 - Lista de vértices
 - Lista de Arestas
- Exemplo:

	Vertices	Arestas
	(geometria)	(topologia)
v1	x1,y1	v1,v2
v2	x2,y2	v1,v3
v3	x3,y3	v3,v4
v4	x4,y4	v2,v4

Exercício

 Crie uma estrutura de dados dos pontos vermelhos do objeto abaixo

Vertices?? Arestas??

Exercício

 Crie uma estrutura de dados dos pontos vermelhos do objeto abaixo

V	/ertices	Arestas			
(geometria)		(topologia)			
٧4	4,8	v7,v4			
v7	3,7	v4,v8			
۷8	5,7	v8,v9			
۷9	4,6	v9,v7			

Representação Aramada (mais exemplos)

Geometria (vértices)

	114 (1010100
$\frac{1}{2} (v_1) \\ 2 (v_2)$	$\begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{bmatrix}$
$3(v_3)$	x_3 y_3 z_3
$4 (v_4)$	X_4 Y_4 Z_4
$5 (v_5)$	x_5 y_5 z_5

1	$v_1 v_2$
2	$v_1 v_3$
3	$v_1 v_4$
4	$v_1 v_5$
5	$v_2 v_3$
6	$v_3 v_4$
7	$v_4 v_5$
8	$V_5 V_2$

Topologia (arestas)

Representação Aramada

- Vantagem
 - Rapidez
- Desvantagens
 - Difícil de entender/visualizar
 - Difícil (ou até impossível) realizar certas operações, tais como a determinação de massa, volume, inclusão ou edição de pontos
 - Impreciso para 3D (representação ambígua)

- Informalmente chamada de malha de polígonos.
- Forma de representação clássica na Computação Gráfica 3D
- Um objeto representado por um conjunto de polígonos (ou faces) que delimitam uma região fechada do espaço (limite ou superfície do objeto)
 - Representa uma superfície discretizada por faces planas
 - Podem ser triângulos (preferencialmente) ou quadrados
 - O objeto formado por esta técnica é normalmente chamado de POLIEDRO.

- A superfície limitante de um sólido separa os pontos de dentro do sólido dos pontos de fora.
- Características visuais do sólido tais como reflexão, transparência, textura e cor são características dessa superfície

- Estrutura de dados mais utilizada:
 - Tabela ou lista de vértices e faces
- Problemas
 - Aproximação de superfícies curvas
 - Grande espaço para armazenamento

Vértices (geometria)

1	x1	yl	zl
	x2		
	х3		
	x4		
	x5	-	
	x6		
7	x7	y7	z 7
	x8		
	x9		

Faces (topologia)

1	v1 v4 v5
2	v1 v5 v2
3	v1 v2 v3
4	v1 v3 v4
5	v4 v3 v7 v8
6	v5 v4 v8 v9
7	v2 v5 v9 v6
8	v3 v2 v6 v7
9	v6 v9 v8 v7

Fonte: http://www.frontiernet.net/~imaging/java3dviewer.html

- Nos últimos anos tem se trabalhado com diferentes níveis de detalhes
- Conforme a distância da câmera a um modelo aumenta, o espaço que ele ocupa na janela diminui, por isso, o detalhe com que é visualizado também diminui
- Pode-se definir diversas representações para um objeto que são "ativadas" de acordo com a distância da câmera (ou observador)

Suavização de superfícies

- Diferentes níveis de detalhe, podem aumentar ou diminuir o número de subdivisões da superfície
- Uma superfície suavizada é obtida por uma sequencia de refinamentos (subdivisões) sucessivos.

Suavização de superfícies

Grande aplicação.

Assistir

Podem assistir SIGGRAPH 2013:

> https://www.youtube.com/watch?v=JAFhkdGtHck Unified Particle Simulations:

https://www.youtube.com/watch?v=_jOWPWbvH5k

Filmes:

http://www.youtube.com/watch?v=rXOa5bWFRKwhttps://www.youtube.com/watch?v=qAGbcxiHZ9E

Enumeração Espacial (QUADTREES)

- Quadtrees são usadas para o armazenamento de objetos
 2D.
- Codifica-se o objeto por uma lista de células ocupadas armazenadas em forma de árvore

<u>Algoritmo</u>

- Divide-se o plano onde está o objeto em 4 partes iguais e classifica-se cada parte em:
 - Totalmente ocupada
 - Vazia
 - Parcialmente ocupada
- Quando uma célula for classificada como "parcialmente ocupada", ela é novamente dividida em 4 partes iguais e o processo de classificação é refeito para as novas partes
- O algoritmo repete-se até que só hajam cubos das duas primeiras classes (totalmente ocupada, vazia).

Enumeração Espacial (QUADTREES)

Enumeração Espacial (QUADTREES)

Enumeração Espacial (OCTREES)

 Árvore com 8 filhos" (caso particular da Enumeração Espacial) para 3D

Algoritmo:

- Envolve o objeto que em seguida é dividido em 8 cubos menores de igual tamanho, onde cada um é classificado em:
 - Cheio, caso o objeto ocupe todo o cubo
 - Vazio, caso o objeto n\u00e3o ocupe nenhuma parte do cubo
 - Cheio-Vazio, caso o objeto ocupe parte do cubo
- Quando houver a classificação em "Cheio-Vazio" ele é novamente dividido em 8 partes iguais e o processo de classificação é refeito para as novas partes
- O algoritmo repete-se até que só hajam cubos das duas primeiras classes

Enumeração Espacial (OCTREES)

Enumeração Espacial (OCTREES)

 Árvore com 8 filhos" (caso particular da Enumeração Espacial) para 3D

Algoritmo:

- Envolve o objeto que em seguida é dividido em 8 cubos menores de igual tamanho, onde cada um é classificado em:
 - Cheio, caso o objeto ocupe todo o cubo
 - Vazio, caso o objeto n\u00e3o ocupe nenhuma parte do cubo
 - Cheio-Vazio, caso o objeto ocupe parte do cubo
- Quando houver a classificação em "Cheio-Vazio" ele é novamente dividido em 8 partes iguais e o processo de classificação é refeito para as novas partes
- O algoritmo repete-se até que só hajam cubos das duas primeiras classes

Enumeração Espacial (Quadtrees e Octrees)

- Vantagens
 - É fácil determinar se um dado ponto pertence ou não ao sólido
 - Facilita a realização de operações de união, intersecção e diferença entre sólidos
- Desvantagem
 - Uma representação detalhada necessita de muita memória

Bibliografia

- Slides da Prof. Soraia Musse
- Livro: Hearn Baker. Computer Graphics with OpenGL