Лабораторная работа № 1.4.5

Изучение колебаний струны

Каменская Елизавета

27 октября 2020 г.

Цель работы

Исследование зависимости частоты колебаний струны от величины натяжения, а также условий установления стоячей волны, получающейся в результате сложения волн, идущих в противоположных направлениях.

Оборудование

Рейка со струной, звуковой генератор, постоянный магнит, разновесы.

Теоретическая справка

Основное свойство струны — гибкость — является следствием ее большой длины по сравнению с поперечными размерами. Даже струны, изготовлеппые из жестких материалов, практически не сопротивляются изгибу, если размер изгибаемого участка значительно больше поперечного размера струны. Это позволяет в дальнейшем при рассмотрении струны не учитывать изгибные напряжепия.

Горизонтально расположенная струна с закрепленными концами провисает в поле тяжести, если она плохо натянута. При увеличении натяжения струна вытягивается практически в прямую линию. Сила натяжения при этом значительно превосходит вес струны. Поэтому для прямой натянутой струны в дальнейшем силами тяжести будем пренебрегать.

Натянутая струна с жестко закрепленными концами удобна для изучения колебательных процессов. Это связано с тем, что в струне можно непосредственно наблюдать простейшие типы колебаний и волн, измерять их параметры и сравнивать результаты наблюдения с результатами теоретических расчетов.

Движение элементов струны может быть вызвано изменением ее формы или передачей ей импульса. Натяжение струны стремится вернуть её в начальное прямолинейное положение, и это приводит к тому, что возникает движение элементов струны. Возмущения бегут вдоль струны.

Волновое уравнение:

$$\frac{\delta^2 s}{\delta t^2} = \frac{\sigma}{\rho} \frac{\delta^2 s}{\delta x^2},$$

где ρ - плотность материала струны, σ - натяжение струны в равновесном состоянии.

В силу волнового уравнения скорость распространения поперечной волны на струне равна $__$

$$u = \sqrt{\frac{F}{\rho_l}} \tag{1}$$

, где F - сила натяжения струны, ρ_l - масса струны на единицу длины.

При заланной частоте ν длина волны

$$\lambda = \frac{u}{\nu} \tag{2}$$

Частоты собственных колебаний струны определяются формулой:

$$\nu_n = n \frac{u}{2l},\tag{3}$$

где l - длина струны, n - число полуволн.

Экспериментальная установка

Рис. 1: Схема экспериментальной установки

Схема экспериментальной установки изображена, на рис. 1. На массивной металлической рейке 1 установлены опора 2 и магнит 3, которые можно перемещать вдоль рейки, а также неподвижная опора 4. Один конец струны закреплен в изоляторе опоры 4. От него струна проходит между полюсами магнита через опору 2, которая дает возможность струне перемещаться в горизонтальном направлении, неподвижный блок и соединяется с чашкой 5, на которую помещают грузы. Такое устройство необходимо лля натяжения струны. К концу струны, закрепленному в изоляторе опоры 4, и к массивной металлической рейке 1 подводится переменное напряжение от звукового генератора 6. Движение струны вызывается силой Ампера, действующей на проводник с током в магнитном поле. Частота действия силы, раскачивающей струну, равна частоте колебаний тока, в струне, то есть частоте генератора.

В натянутой струне возникнут колебания и по ней побегут волны, которые отразятся от опор 2 и 4 и, сложившись друг с другом, создадут стоячую волну, если на длине струны уложится целое число полуволн.

В реальных условиях колебания струны существуют потери энергии, связанные с трением струны о воздух, передачей некоторого движения опорам, необратимыми процессами в самой струне и, возможно, какими-то другими процессами. Чтобы колебания струны происходили долго, нужно подводить энергию. В стационарном режиме подводимая энергия равна потерям эпергии. В данной установке сила Ампера, не только возбуждает, но и поддерживает колебания в струне.

Поток энергии при этом распространяется по всей струне. Однако в чисто стоячей волне распространение энергии невозможно. Наличие отличного от нуля коэффициента бегучести необходимо поэтому принципиально. Реально это приводит к размытию узлов стоячей волны. Если потери энергии за период колебаний малы по сравнению с запасом колебательной энергии в системе, то коэффициент бегучести значительно меньше единицы:

$$\frac{A_1 - A_2}{A_2} \ll 1. (4)$$

Здесь A_1 — амплитуда падающей волны, A_2 — амплитуда отраженной волны. В этом случае можно пользоваться соотношениями, полученными для чисто стоячей волны. Заметим, что величину $A_1^-A_2$ можно оценить по размытию узлов стоячей волны, она равна половине величины размытия. Амплитуда стоячей волны в пучности равна $2A_2$.

Если соотношение (4) выполняется не достаточно хорошо, то надо уменьшить величину подводимой от генератора энергии. При этом уменьшение потерь энергии происходит быстрее, чем уменьшение энергии в волне.

Необходимо сделать еще одно замечание. Действие силы Ампера, должно привести к поляризованным волнам, плоскость колебания которых перпендикулярна направлению магнитного поля. В реальных условиях на установке не всегда получаются липейно поляризованные волны.

Ход работы

1. Установим длину струны L = 50 см.

Диаметр струны: $d = 0.3 \text{ мм} = 3 \cdot 10^{-4} \text{ м}.$

Масса струны на единицу длины: $m/l = 568.4 \text{ мг/м} = 568.4 \cdot 10^{-6} \text{ кг/м}.$

Масса подвеса: 113.1 г.

Начальная масса грузов: 973.8 г.

2. Оценим скорость распространения волны по формуле (1):

$$u = \sqrt{\frac{Mg}{\rho_l}} = \sqrt{\frac{(0.9738 + 0.1131) \cdot 9.8}{568.4 \cdot 10^{-6}}} = 136.9 \text{ m/c}.$$

3. Рассчитаем частоту основной гармоники ν_1 :

$$u_n = \frac{u}{\lambda_n} = \frac{n}{2L} \sqrt{\frac{T}{\rho_l}} = n \frac{u}{2L} = 136.9$$
 Гц.

- 4. Настроим частоту ν генератора так, чтобы амплитуда сигнала была максимальна. Добьемся отсутствия нелинейных искажений, уменьшая амплитуду напряжения генератора и подстраивая при жтом частоту так, чтобы она соответствовала максимуму сигнала. Получим окончательное значение частоты основной гармоники: $\nu_1 = 138.57 \ \Gamma$ ц.
- 5. Проведем с помощью осциллографа измерения частот четных и нечетных гармоник для разных грузов (см. таблицу 1). Для наблюдения нечетных гармоник регистрирующий датчик размещаем в центре под струной (аналогично для основной гармоники). В случае четных гармоник во избежание взаимного влияния датчиков регистрирующий датчик сдвигаем в сторону зажима 3.

Масса груза, г	$ \nu_1$	ν_2	ν_3	$ u_4$	ν_5	ν_6	ν_7	ν_8	ν_9
990.0	138.7	276.9	423.1	568.9	708.2	861.4	991.9	1149.3	1282.8
1465.3	159.3	315.2	493.1	639.1	798.0	957.1	1116.1	1271.6	1336.2
1975.6	191.6	385.3	580.7	774.6	970.7	1161.7	1360.4	1753.1	1950.0
2306.6	202.7	411.2	612.7	822.4	1023.7	1233.6	1436.8	1644.8	1850.4
2760.0	223.8	448.7	672.3	848.5	1124.8	1348.0	1575.1	1801.8	2028.2

Таблица 1: Измерение частот гармоник на разных весах.

- 6. По формуле (3) рассчитаем скорости волн для разных сил натяжения (таблица 2).
- 7. Погрешность измерения u вычисляется по формуле (таблица 3):

$$\sigma = \frac{1}{N} \sqrt{\sum_{k=1}^{N} (u_k - \overline{u})^2}$$

F, H	9.7	14.36	19.36	22.60	27.05
u, м/с	141.5	158.56	198.82	204.99	223.29

Таблица 2: Скорости волны при разных силах натяжения струны.

$\sigma \mid 0.21 2.02 3.57 0.12$

Таблица 3: Погрешности измерений u.

- 8. Построим графики зависимости частоты ν_n от n для различных сил натяжения струны (рис. 2).
- 9. По формуле $\rho_l=\frac{F}{u^2}$ найдем значение погонной плотности струны: $\rho\approx 525.15$ мг/м. Погрешность измерений $\sigma_{\rho}=14,8$ мг/м, $\epsilon\approx 2.8\%$.

Построим график зависимости квадрата частоты от силы натяжения (рис. 3).

Рис. 2: Зависимость ν_n от n.

Рис. 3: Зависимость u^2 от F.

Вывод

В ходе работы была исследована зависимость частоты колебаний от силы натяжения струны, найдены скорости распространения волн при разных натяжениях и погонная плотность материала струны.