杭州电子科技大学学生期末试卷 A 卷

考试课程	大学物理 1		考试日期	20	19年6月	月 26	日	成 绩	
课程号	A0715011	教师号			任课教师名	下姓			
考生姓名		学号(8位)			年级			专业	

【请将答案直接写在试卷上,最后两页是草稿纸,不要将答案写在草稿纸上。】

- 一、单项选择题(每小题3分,共27分)
- 1. 某人骑自行车以速率 v 向正北方向行驶, 今有风以相同速率由东向西吹来, 试问人感到风 从哪个方向吹来?
 - (A) 东南方向吹来.
- (B) 东北方向吹来.
- (C) 西南方向吹来.
- (D)西北方向吹来
- 2. 质量为 50 g 的子弹,以 300 m/s 的速度沿图示 30° 角方向射入一原来静止的质量为 950 g的摆球中,摆线长度不可伸缩。子弹射入后与摆球一起运动的速度为

- (A) $4.5 \, m/s$
- (B) 9 m/s
- (C) $7.5 \, m/s$
- (D) 15m/s.
- 3. 轮圈半径为 R, 其质量 M 均匀布在轮缘上, 长为 R, 质量为 m 的均质辐条固定在轮心和轮缘 间,辐条共有 N 根。则通过轮心,垂直于轮平面轴的转动惯量为

(B)
$$(\frac{N}{12}m + M)R^2$$

(C)
$$(\frac{N}{3}m + \frac{M}{2})R^2$$
. (D) $(\frac{N}{12}m + \frac{M}{2})R^2$.

(D)
$$(\frac{N}{12}m + \frac{M}{2})R^2$$

- 4. 下列各种场中的保守力场为:

 - (A) 稳恒磁场; (B) 静电场;
- (C) 涡旋电场; (D) 变化磁场。

1

5. 如图 Q 02072 所示为一沿 x 轴放置的 "无限长"分段均匀带电直线, 电荷线密度分别为

 $+\lambda(x<0)$ 和 $-\lambda(x>0)$ 则 Oxy 坐标平面上点 (0,a) 处的场强 \bar{E} 为

(A) 0; (B)
$$\frac{\lambda}{4\pi\varepsilon_0 a}\bar{i}$$
;

(C)
$$\frac{\lambda}{2\pi\varepsilon_0 a}\vec{i}$$
;

(C)
$$\frac{\lambda}{2\pi\varepsilon_0 a}\vec{i}$$
; (D) $\frac{\lambda}{4\pi\varepsilon_0 a}(\vec{i}+\vec{j})$.

- 6. 一带正电荷的物体 M, 靠近一原不带电的金属导体 N, N 的左端感生出负电荷, 右端感生 出正电荷. 若将N的左端接地,如图所示,则
 - (A) N上所有电荷都入地.
 - (B) N上有负电荷入地.
 - (C) N上的电荷不动
 - (D) N上有正电荷入地.

7. 载流的圆形线圈(半径 a_1)与正方形线圈(边长 a_2)通有相同的电流强度 I。若两个线圈

中心 O_1 、 O_2 处的磁感应强度大小之比为1:2,则 $a_1:a_2$ 为

A. $\sqrt{2}\pi$: 4 B. $\sqrt{2}\pi$: 8 C. 1: 1 D. $\sqrt{2}\pi$: 1

- 8. 如图所示,M、N 为水平面内两根平行金属导轨,ab 与 cd 为垂直于导轨并可在其上自由滑 动的两根直裸导线. 外磁场垂直水平面向上. 当外力使 ab 向右平移时, cd
 - (A) 不动.
- (B) 转动.

- (C) 向左移动. (D) 向右移动。

- 9. 一瓶氦气和一瓶氦气质量密度相同,分子平均平动动能相同,而且它们都处于平衡状态, 则它们
 - (A) 温度相同、压强相同.
- (B) 温度、压强都不相同.
- (C) 温度相同,但氦气的压强大于氮气的压强,
- (D) 温度相同,但氦气的压强小于氦气的压强.

平均加速度

二、填空题(每小题 3 分,共 22 分)
10. (本题 3 分) 质量为 $m=1kg$ 物体,从静止出发在水平面内沿 x 轴运动,其受力方向与
运动方向相同,合力大小为 $F = 4 + 2x$,那么,当物体在 $X = 4m$ 时,其速率为 $V = _{}$ 。
11 (木斯 / 人) 医县
11. (本题 4 分) 质量 <i>m</i> =40 kg 的箱子放在卡车的车厢底板上,已知箱子与底板之间的静摩擦
系数为 μ_s =0.40,滑动摩擦系数为 μ_s =0.25,试分别写出在下列情况下,作用在箱子上的摩擦
力的大小和方向.
(1)卡车以 <i>a</i> = 2 m/s ² 的加速度行驶, <i>f</i> =, 方向
(2)卡车以 $a = -5$ m/s ² 的加速度急刹车, $f =$
12. (本题 3 分) 匀质圆盘水平放置,可绕过盘心的铅直轴自由转动,圆盘对该轴的转动惯量
为 $J_{\scriptscriptstyle 0}$,当转动角速度为 $\omega_{\scriptscriptstyle 0}$ 时,有一质量为 m 的质点落到圆盘上,并粘在距轴 $R \ / \ 3$ 处(R 为
圆盘半径),则它们的角速度 $\omega=$ 。
13. (本题 3 分) 如图所示. 试验电荷 q , 在点电荷+ Q 产生的电场中, 沿半径为 R 的整个圆弧的 $3/4$ 圆弧轨道由 a 点移到 d 点的过程中电场力 作功为
14. (本题 3 分)在相对介电常数为 ε_r 的各向同性的电介质中,电位移矢量与场强之间的关
系是
15. (本题 3 分) 一半径为 $r=10$ cm 的细导线圆环,流过强度 $I=3$ A 的电流,那么细环中心
的磁感强度 $B =$
16. (本题 3 分)如图所示,一磁铁竖直地自由落入一螺线管中,如果开关 K
是断开的,磁铁在通过螺线管的整个过程中,下落的平均加速度

重力加速度;如果开关K是闭合的,磁铁在通过螺线管的整个过程中,下落的

重力加速度.(空气阻力不计.填入大于,小于或等于)

三、计算题(本大题8小题,共51分)

17. (本题 6 分) 如图所示,质点 P 在水平面内沿一半径为 R=2 m 的圆轨道转动. 转动的角速度 ω 与时间 t 的函数关系为 $\omega = kt^2$ (k 为常量). 已知 t=2s 时,质点 P 的速度值为 32 m/s. 试求 t=1s 时,质点 P 的速度与加速度的大小.

18. (本题 8 分) 如图所示,在与水平面成 α 角的光滑斜面上放一质量为 m 的物体,此物体系于一劲度系数为 k 的轻弹簧的一端,弹簧的另一端固定. 设物体最初静止. 今使物体获得一沿斜面向下的速度,设起始动能为 E_{K0} ,试求物体在弹簧的伸长达到 x 时的动能.

19. (本题 8 分) 一质量为 m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图 所示. 轴水平且垂直于轮轴面,其半径为 r,整个装置架在光滑的固定轴承之上. 当物体从静止释放后,在时间 t 内下降了一段距离 S. 试求整个轮轴的转动惯量(用 m、r、t 和 S 表示).

20. (本题 5 分) 如图 Q_02236 所示,沿x 轴放置的一根长度为l 的不均匀带电细棒,电荷 线密度为 $\rho=\lambda_0(x-a)$, λ_0 为一常量。若取无穷远处为电势零点,求坐标原点 O 处的电势。

(设无穷远处为电势零点,积分公式:
$$\frac{dx}{\sqrt{x^2+a^2}} = \frac{d(x+\sqrt{x^2+a^2})}{x+\sqrt{x^2+a^2}}$$
)。

21. (本题 5 分)在 B=0.1 T 的均匀磁场中,有一个速度大小为 $v=10^4$ m/s 的电子沿垂直于 \bar{B} 的方向(如图)通过 A 点,求电子的轨道半径和旋转频率.

(基本电荷 $e = 1.60 \times 10^{-19}$ C, 电子质量 $m_e = 9.11 \times 10^{-31}$ kg)

22. (本题 6 分)均匀带电刚性细杆 AB,电荷线密度为 α ,绕垂直于直线的轴 O 以 ω 角速度匀速转动(O 点在细杆 AB 延长线上),如图所示,求: O 点的磁感应强度 \bar{B}_{α} .

23. (本题 8 分)均匀磁场 B被限制在半径 R=0. 10_m的无限长圆柱空间内,方向垂直纸面向外,设磁场以 dB/dt=50 T/s 的匀速率增加,已知 $\theta=\frac{\pi}{3}$, Oa=Ob=0. O8_m,试求等腰梯形导线框 abcd 的感应电动势,并判断感应电流的方向。

- (1) 试求气体的压强;
- (2) 设分子总数为 5.4×10^{22} 个,求气体的温度. (玻尔兹曼常量 $k=1.38 \times 10^{-23}$ J·K⁻¹)