MTH 435

Homework I

- (1) Show that there doesn't exist a rational number s such that $s^2 = 6$.
- (2) If $a, b \in \mathbb{R}$, show that |a+b| = |a| + |b| if and only if $ab \ge 0$.
- (3) Find all $x \in \mathbb{R}$ that satisfy the inequality

$$4 < |x+2| + |x-1| < 5.$$

- (4) Show that if $a, b \in \mathbb{R}$ then
 - $\max\{a,b\} = \frac{1}{2}(a+b+|a-b|)$ and $\min\{a,b\} = \frac{1}{2}(a+b-|a-b|)$ $\min\{a,b,c\} = \min\{\min\{a,b\},c\}$
- (5) Let $S_4 = \{1 (-1)^n / n : n \in \mathbb{N}\}$. Find $\inf S_4$ and $\sup S_4$
- (6) Let A and B bounded nonempty subsets of \mathbb{R} , and let $A + B = \{a + b : a \in A, b \in B\}$. Prove that $\sup(A+B) = \sup A + \sup B$ and $\inf(A+B) = \inf A + \inf B$.
- (7) Let X and Y be nonempty sets and let $h: X \times Y \to \mathbb{R}$ have bounded range in \mathbb{R} . Let $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$ be defined by

$$f(x) := \sup\{h(x,y) : y \in Y\}, \quad g(y) := \inf\{h(x,y) : x \in X\}$$

Prove that

$$\sup\{g(y):y\in Y\}\leq\inf\{f(x):x\in X\}$$

(8) If u > 0 is any real number and x < y, show that there exists a rational number r such that x < ru < y. (Hence the set $\{ru : r \in \mathbb{Q}\}$ is dense in \mathbb{R} .)

1