Linjär Algebra

Linjära kombinationer tillika linjära beroenden

Ali Leylani

2024-12-05

For problems 1-8, make sure that (if a linear combination exists) that the addition of the two vectors (multiplied by scalars) actually yields the resulting vector. Also graph all relevant vectors in an xy-coordinate system to make sure your answer makes sense.

- **1.** Given vectors $\mathbf{a} = \begin{bmatrix} 2 & -1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -3 & 4 \end{bmatrix}$, and $\mathbf{c} = \begin{bmatrix} 7 & -6 \end{bmatrix}$, determine if \mathbf{c} is a linear combination of \mathbf{a} and \mathbf{b} .
- **2.** For vectors $\mathbf{d} = \begin{bmatrix} 4 & -2 \end{bmatrix}$, $\mathbf{e} = \begin{bmatrix} -1 & 3 \end{bmatrix}$, and $\mathbf{f} = \begin{bmatrix} 7 & -1 \end{bmatrix}$, verify if \mathbf{f} is a linear combination of \mathbf{d} and \mathbf{e} .
- **3.** Given vectors $\mathbf{g} = \begin{bmatrix} 1 \ 5 \end{bmatrix}$ and $\mathbf{h} = \begin{bmatrix} -2 \ 3 \end{bmatrix}$, decide if $\mathbf{i} = \begin{bmatrix} 9 \ 19 \end{bmatrix}$ is a linear combination of \mathbf{g} and \mathbf{h} .
- **4.** Determine whether the vector $\mathbf{j} = \begin{bmatrix} 3 & -4 \end{bmatrix}$ can be expressed as a linear combination of vectors $\mathbf{k} = \begin{bmatrix} -1 & 2 \end{bmatrix}$ and $\mathbf{l} = \begin{bmatrix} 3 & -6 \end{bmatrix}$.
- **5.** Verify if the vector $\mathbf{m} = \begin{bmatrix} -2 \ 1 \end{bmatrix}$ can be represented as a linear combination of vectors $\mathbf{n} = \begin{bmatrix} 3 \ -5 \end{bmatrix}$ and $\mathbf{o} = \begin{bmatrix} -6 \ 3 \end{bmatrix}$.
- **6.** Check whether the vector $\mathbf{p} = \begin{bmatrix} 5 \ 2 \end{bmatrix}$ is a linear combination of vectors $\mathbf{q} = \begin{bmatrix} -1 \ 1 \end{bmatrix}$ and $\mathbf{r} = \begin{bmatrix} 3 \ -3 \end{bmatrix}$.
- 7. Determine if the vector $\mathbf{s}=\begin{bmatrix}-5\ 2\end{bmatrix}$ can be expressed as a linear combination of vectors $\mathbf{t}=\begin{bmatrix}1\ -4\end{bmatrix}$ and $\mathbf{u}=\begin{bmatrix}-2\ 8\end{bmatrix}$.
- **8.** Verify whether the vector $\mathbf{v}=\begin{bmatrix}2&-3\end{bmatrix}$ is a linear combination of vectors $\mathbf{w}=\begin{bmatrix}-4\ 1\end{bmatrix}$ and $\mathbf{x}=\begin{bmatrix}8&-2\end{bmatrix}$.

vektorer

For problems 9-10, make sure that (if a linear combination exists) that the addition of the two vectors (multiplied by scalars) actually yields the resulting vector. You do not have to graph any vectors in an xyz-coordinate system, unless you want to.

- **9.** Given vectors $\mathbf{a}=\begin{bmatrix}1\ 0\ -2\end{bmatrix}$ and $\mathbf{b}=\begin{bmatrix}2\ -1\ 3\end{bmatrix}$, determine if $\mathbf{c}=\begin{bmatrix}4\ -1\ -1\end{bmatrix}$ is a linear combination of \mathbf{A} and \mathbf{B} .
- **10.** For vectors $\mathbf{d}=\begin{bmatrix}2~4~-2\end{bmatrix}$ and $\mathbf{e}=\begin{bmatrix}-1~3~2\end{bmatrix}$, verify wether $\mathbf{f}=\begin{bmatrix}1~7~1\end{bmatrix}$ is a linear combination of said vectors.