

Furkan ÇAKMAK

1

Lecture Information Form - Weekly Subjects

BLM3051 Data Communication

Week :

Week	Date	Subjects		
1	04.10.2022	Introduction to Data Communication Standards Used on Data Communication, Architectural models		
2	11.10.2022	OSI Reference Model , Layers and Their Functions		
3	18.10.2022	Signaling and Signal Encoding		
4	25.10.2022	Parallel and Serial Transmission, Communication Media and Their Technical Specs., Multiplexing (TDM, FDM)		
5	01.11.2022	Error Detection and Error Correction Techniques		
6	08.11.2022	Data Link Control Techniques, Flow Control		
7	15.11.2022	Asynchronous and Synchronous Data Link Protocols (BSC, HDLC)		
8	22.11.2022	1. Vize Haftası		
9	29.11.2022	LAN Technologies Continued, IEEE 802.4, 802.5, 802.11		
10	06.12.2022	Connectionless and Connection Oriented Services, Switching		
11	13.12.2022	Wide Area Networking Technologies (X.25, ISDN, FR, ATM, xDSL.)		
12	20.12.2022	Communications Equipment's, TCP/IP Model, Security Issues		
13	27.12.2022	Research Presentation 1		
14	03.01.2022	Research Presentation 2		

OSI Refe	erence Mod	del - Reminding	BLM3051 Data Communication Week 3
	7	Application Layer	
	6	Presentation Layer	
	5	Session Layer	
	4		
	3	Network Layer	
	2	Data Link Layer	
	1	Physical Layer	
		Furkan Çakmak	

BLM3051 Data **Analog Signals** Communication Week 3 v - Amplitude Simple Analog Signals Frequency Time Volt - V sec (second) $f(t) = A\sin(2\pi f t + \phi)$ · Amper - A KHz msec (milli second) MHz µsec (micro second) • Watt-W GHz nsec (nano second) psec (pico second) • f - Frequency Complex Analogue Signals Cycle $f(t) = \sum_{n=1,3,5..}^{\infty} \frac{1}{n} \sin(2\pi n f t)$ • Hertz - Hz φ - Phase • Degree - ° • Radian - π 90° (π/2) Furkan Çakmak

Digital Signals

• Non-periodic
• Bit-rate
• The number of bits transferred in one second
• Bit-interval
• The time it takes to transmit one bit (in seconds)

Bit-Rate (6 bps)

Elements that Negatively Affect Communication

BLM3051 Data Communication

Week 3

- Distortion
 - Attenuation
 - dB
 - Solution: Amplifying
 - Analog?
 - Noise
 - Even Idle mode
 - Thermal noise
 - · Motion of atomic fragments
 - Impulse noise
 - Random electromagnetic signal
 - Cross talk
 - Delay
 - Propagation: Velocity of a sinusoidal signal in a transmission line

Furkan Cakmak

9

Data Carrying Capacity

BLM3051 Data Communication

Week 3

- Nyquist Theorem
 - The amount of data that can be sent per unit time
 - · H: Band width
 - V: Number of discrete voltages
 - · Not consider the noise
- Noise (dB)
 - Signal strength (sent): S
 - Strength of the current noise: N

 $data_{vel} = 2Hlog_2V \ bit/s \ ec$

 $SNR = 10log_{10} \frac{S}{N} dB$

Furkan Cakmak

Data Carrying Capacity - Con't

BLM3051 Data Communication

Wook 3

- Shannon-Hartley
 - · Data velocity with noise

$$data_{vel} = Hlog_2(1 + \frac{S}{N}) \ bit/s \ ec$$

- First, the highest data rate to be achieved is found according to the Shannon-Hartley formula.
- Then, according to the Nyquist formula, how many discrete voltage levels can be used in this bandwidth is determined.

Furkan Çakmak

11

Example

BLM3051 Data Communication

Week 3

 Since it is known that the SNR value on a transmission channel between 3KHz-4KHz is 24dB, what is the maximum rate that can be obtained and the number of discrete levels that can be used for transmission?

$$SNR = 10log_{10} \frac{S}{N} dB$$

$$data_{vel} = Hlog_2(1 + \frac{S}{N}) bit/sec$$

 $data_{vel} = 2Hlog_2V \ bit/sec$

$$10\log_{10}^{S/N} = 24dB$$
$$S/N = 10^{2,4} \cong 251$$

veri $hizi = 1000 \log_{2}^{(1+251)} bit / \sec \cong 8000 bit / \sec$

 $veri hizi = 8000bit/sec = 2*1000\log_2^v bit/sec$

$$4 = \log_2^{\nu}$$

$$v = 2^4 = 16$$

Furkan Cakmak

Coding of Signals • Digital - Digital • Computer - Printer • Analog - Digital • Microphone - Computer • Digital - Analog • Computer - Communication Lines • Analog - Analog • Radio - Radio Signal Lines

Furkan Çakmak

13

--

Analog - Digital Coding - Nyquist Theorem

Sampling at least twice the highest frequency component is required

Example:

If bandwith is 1000-4000Hz, sampling fre. must be 8000

Analog - Digital Coding - Concepts

BLM3051 Data Communication

Week 3

- Carrier Signal
- Bit and Baud Speed

Coding Technique	Unit	Baud Speed	Bit Speed	Bits / Baud
ASK, FSK, 2PSK	Bit	N	N	1
4PSK, 4QAM	Dibit	N	2N	2
8PSK, 8QAM	Tribit	N	3N	3
16QAM	Quadbit	N	4N	4
32QAM	Pentabit	N	5N	5
64QAM	Hexabit	⊢ N	6N	6
128QAM	Septabit	N	7N	7
256QAM	Octabit	N	8N	8

Furkan Çakmak

23

Analog - Analog Coding

BLM3051 Data Communication Week 3

- AM (Amplitude Modulation)
- FM (Frequency Modulation)
- PM (Phase Modulation)

Furkan Cakmal

