Review on Rings and Fields

Jiang-Hua Lu

The University of Hong Kong

Algebra II, HKU

Monday Jan 20, 2025

Course Outline

MATH4302, Algebra II, Course Outline

- Part I: Ring theory;
- Part II: Module theory.
- Part III: Field extensions and introduction to Galois theory;

References

- D. Dummit and R. Foote, Abstract Algebra, 3rd Edition, Parts II, III, IV;
- Frederick M. Goodman, "Algebra: Abstract and Concrete", Edition 2.6, Chapters 6-10 (available online).

Outline

In this file: $\S 1.1$.

1 Review of basic definitions and examples of rings and fields;

§1.1 Review on Rings and fields

Definition. A ring is a set R together with two maps

$$R \times R \longrightarrow R : (a, b) \longmapsto a + b,$$

 $R \times R \longrightarrow R : (a, b) \longmapsto ab,$

such that

- 1) (R, +) is an abelian group with 0 denoting its identity element;
- 2) (ab)c = a(bc) for all $a, b, c \in R$;
- 3) (a+b)c = ac + bc and a(b+c) = ab + ac for all $a, b, c \in R$;
- 4) there exists $1 \in R$, $1 \neq 0$, such that 1a = a1 = a for all $a \in R$.

In this course we will mostly only deal with commutative rings, i.e., ab = ba for all $a, b \in R$.

Definitions/facts.

- An element a in a ring R is called a unit if there exists $b \in R$ such that ab = ba = 1.
- The set of all units in a ring R is a group under multiplication in R.
- Two elements a and b in a commutative ring are said to be associates if a = ub for some unit u in R.
- A field is a non-zero commutative ring F such that for any $a \in F$, $a \ne 0$, there exists $a^{-1} \in F$ such that $aa^{-1} = 1$.
- A field is thus a non-zero commutative ring in which every non-zero element is a unit.

Definitions.

• Let R be a ring. The characteristic of R, denoted by char(R), is the smallest positive integer n, if exists, such that

$$n \cdot 1 \stackrel{\text{def}}{=} \underbrace{1 + 1 + \dots + 1}^{n} = 0.$$

If such an integer does not exist, we say that char(R) = 0.

- An element in a ring R is called a zero divisor if $a \neq 0$ and if there exists $b \in R \setminus \{0\}$ such that ab = ba = 0.
- A non-zero commutative ring *R* is called an integral domain if it has no zero divisor.

Lemma. If R is an integral domain, then $\operatorname{char}(R)=0$ or a prime number. Proof. Exercise.

Example:
$$R=\mathbb{Z}/n\mathbb{Z}$$
, where $n\geq 2$ is n integer. Have
$$\mathbb{Z}/n\mathbb{Z}=\{\overline{0},\,\overline{1},\,\ldots,\,\overline{n-1}\}.$$

• Case 1, n is prime: then $\mathbb{Z}/n\mathbb{Z}$ is a field. Indeed, for any $1 \le k \le n-1$, have $a,b \in \mathbb{Z}$ such that

$$ak + bp = 1,$$

which implies that $\overline{a} \ \overline{k} = \overline{1}$.

• Case 2, n is not prime: if n = ab with 1 < a, b < n, then \overline{a} and \overline{b} are zero-divisors.

Definitions. Let R be a commutative ring.

- An ideal in R is a subset I of R closed under addition and such that $ab \in I$ whenever $a \in I$ and $b \in R$.
- An ideal I is said to be prime if $I \neq R$ and if for any $a, b \in R$, if $ab \in I$, then $a \in I$ or $b \in I$.
- An ideal I is said to be maximal if $I \neq R$ and if whenever M is an ideal in R such that $I \subset M \subset R$ then either M = I or M = R.
- For $a \in R$, the ideal of R generated by a is denoted by aR or (a):

$$(a) = aR = \{ar : r \in R\},\$$

and is called a principal ideal of R.

Exercise: If R is an integral domain and $a, b \in R \setminus \{0\}$, then (a) = (b) iff a and b are associates.

Counter ex: \mathbb{Z}_{6} , 2=2.4, 4=2.2, (2)=(4)

Definition of the quotient ring R/I: Let R be a commutative ring and $I \subset R$ an ideal. Define the equivalence relation on R by

$$r_1 \sim r_2$$
 iff $r_1 - r_2 \in I$.

The set of equivalence classes $R/I = \{r+I : r \in R\}$ is a commutative ring:

$$(r_1+I)+(r_2+I)=r_1+r_2+I, (r_1+I)(r_2+I)=r_1r_2+I,$$

and $R \to R/I : r \mapsto r + I$, is a ring homomorphism.

Example: $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}.$

Lemma. Let R be a commutative ring and $I \subset R$ an ideal, $I \neq R$.

- **1** I is prime if and only if R/I is an integral domain;
- 2 I is maximal if and only if R/I is a field;
- Maximal ideals are prime ideals;
- **1** The zero ideal $\{0\} \subset R$ is prime if and only if R is an integral domain, and $\{0\}$ is maximal if and only if R is a field.

Proof: Homework.

Definition of the field of fractions for an integral domain.

Let R be an integral domain. Define equivalence relation on $R \times (R \setminus \{0\})$:

$$(a,b) \sim (c,d)$$
 iff $ad = bc$

and denote the equivalence class of (a, b) by $\frac{a}{b}$. Denote the set of all equivalence class by $\operatorname{Frac}(R)$, and define

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

Then $(\operatorname{Frac}(R), +, \cdot)$ is a field, called the fraction field of R, and

$$R \longrightarrow \operatorname{Frac}(R), \ r \longmapsto \frac{r}{1}$$

is an injective ring homomorphism.

Example:
$$\mathbb{Q} = \operatorname{Frac}(\mathbb{Z})$$
.

Constructions of new rings from old:

- Quotients by ideals.
- The sub-ring $\langle S \rangle$ of a ring R generated by a subset $S \subset R$:
 - **1** $\langle S \rangle$ is the smallest sub-ring of R containing S;
 - (S) is the intersection of all sub-rings of R containing S;
 - 3 $\langle S \rangle$ consists of all finite sums of products of elements in $\pm S$:

 $\langle S \rangle = \text{all finite sums of the form } s_1 s_2 \cdots s_n \text{ with } s_i \in \pm S.$

Example: The sub-ring of
$$\mathbb R$$
 generated by $S=\mathbb Z\cup\{\sqrt2\}$ s

$$\mathbb{Z}[\sqrt{2}] := \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}.$$

The polynomial ring R[x]:

Let R be a commutative ring. The ring of polynomials in x with coefficients in R is the set R[x] consisting of all

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \in R[x],$$

where $a_0, a_1, \ldots, a_n \in R$ and $a_n \neq 0$.

- The degree of f is defined to be n and is denoted by deg(f).
- a_0 is the constant term of f and a_n the leading coefficient of f.
- Assume that R is an integral domain. Then for $f, g \in R[x]$ non-zero,

$$\deg(fg) = \deg(f) + \deg(g).$$

• For f = 0, define $deg(f) = -\infty$.

As a consequence of

$$\deg(fg) = \deg(f) + \deg(g), \quad f, g \in R[x], \ f \neq 0, \ g \neq 0,$$

we have

Lemma: Let R be an integra domain. Then

- \bullet R[x] is an integral domain;
- 2 $R[x_1, x_2] = R[x_1][x_2]$ is an integral domain;
- **3** For any integer $n \ge 1$,

$$R[x_1,x_2,\ldots,x_n]=R[x_1,\ldots,x_n][x_n]$$

is an integral domain.

4 If F = FracR, then the fraction field of $R[x_1, x_2, \dots, x_n]$ s

$$F(x_1,...,x_n) = \left\{ \frac{f(x_1,...,g_n)}{g(x_1,...,x_n)} : f,g \in R[x_1,x_2,...,x_n] \neq 0 \right\}.$$

Examples of rings:

- Algebraic number theory: the sets $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, consisting respectively of all integers, rational numbers, real numbers, and complex numbers, are commutative rings. All of them except \mathbb{Z} are fields, and $\mathbb{Q} = \operatorname{Frac}(\mathbb{Z})$.
- Sub-rings or quotient rings: for an integer $n \ge 1$,

$$\mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$$

is field if and only if n is a prime number; Also

$$\begin{split} \mathbb{Z}[\sqrt{-1}] &= \{a+b\sqrt{-1}: a,b\in\mathbb{Z}\} &\quad \text{(the ring of Gaussian integers)}, \\ \mathbb{Q}[\sqrt{-1}] &= \{a+b\sqrt{-1}: a,b\in\mathbb{Q}\} &\quad \text{(the field of Gaussian rationals)}. \end{split}$$

Examples of rings:

- Polynomial rings: If R is a commutative ring, the multi-variable polynomial rings $R[x_1, \ldots, x_m] = R[x_1][x_2] \cdots [x_m]$ and their quotients lie at the foundation of Algebraic Geometry.
- Rings of functions: For a set X and $R = \mathbb{R}$ or \mathbb{C} , have function ring

 $\operatorname{Fun}(X;R)$ = the set of all maps from X to R.

When X is a topological space or a manifold, one has the sub-ring of continuous or differentiable functions on X.

- Matrix rings: if R is a ring, the set of all $n \times n$ matrices with entries in R is naturally a (typically non-commutative) ring with standard matrix addition and multiplication.
- Rings of formal power series R[[x]]: To be covered in tutorial.