

Yao Garbled Circuit

Classic Garbling

Classic Garbling

Permute bits

[Beaver-Micali-Rogaway]

Security property

Garbling of function: Gb(f), En(X)

Encoding of input: X

Output: y=f(x)

should be indistinguishable from

Sim(f,y)

Free XOR garbling [Kolesnikov-Schneider]

$$C_0 = A_0 + B_0$$
 Le $A_0 + B_0 + R$ $A_1 = A_0 + R$ $B_1 = B_0 + R$

Let R be a random string s.t. R mod 2 =1

Free XOR garbling [Kolesnikov-Schneider]

$$C_0 = A_0 + B_0$$
 $C_1 = A_0 + B_0 + R$

No extra information needed
 $A_0 = B_0 + R$
 $A_1 = A_0 + R$
 $B_1 = B_0 + R$

Let R be a random string s.t. R mod 2 =1

Evaluator simply XORs input wires to compute output wire. Secure with good Enc.

[Chou-Katz-Kumaresan-Zhou]

Why is gate by gate garbing the

Garbling gate by gate has disadvantages.

gate-by-gate introduces extra depth to the degarble circuit

Each AND
gate
incurs extra
depth of
cryptographic
H function

If the original circuit has depth d, then the garbled circuit may have depth d*depth(H)

Q: Does gate-by-gate garbling minimize the size of the garbling?

Alternatives to gate-by-gate garbling?

N-input gate = 2^n rows

[Boyar-Peralta]

$$c_{\wedge}(f_{2n}) \le 2^{n+1} - n - 2$$

of AND
gates needed to
compute a function
of 2n vars

$$c_{\wedge}(f_{2n}) \le 2^{n+1} - n - 2$$

This implies that the SIZE of a garbled circuit for f_{2n} using just AND gates is less than

$$2^{n+3} - 4n - 8$$
 ciphertexts

$$4 \cdot c_{\wedge}(f_{2n}) \le 4(2^{n+1} - n - 2) < 2^{2n}$$

(Jarhled How Heduct

[Naor-Pinkas-Sumner]

Garbled Row Reduction

[Naor-Pinkas-Sumne

N-input gate = 2^n-1 rows

Still better to use AND2 gates

$$3 \cdot c_{\wedge}(f_{2n}) \le 3(2^{n+1} - n - 2) < 2^{2n} - 1$$

2-10 \ Jar Din [Naor-Pinkas-Sumner]

View the problem of garbling as one of secret sharing

2-10 \ Jar Din [Naor-Pinkas-Sumner]

2-10 \ Jar Din [Naor-Pinkas-Sumner]

2-10/ garbino [Naor-Pinkas-Sumner]

Still better to use AND2 gates

Because XOR gates are not FREE!

EXOR Oarbing [Mohassel-Rosulek]

Gates requires 0,1,2 ciphertexts

Half-gate Garbling

[Zahur-Evans-Rosulek]

$$(a \land z) + (a \land (b+z) = a \land b$$
random bit

Half-gate Garbling

[Zahur-Evans-Rosulek]

$$(a \land z) + (a \land (b + z) = a \land b$$
random bit

Generator knows z

$$z=0$$

$$H(A_0) \oplus C_0$$

$$H(A_1) \oplus C_0$$

$$z=1$$

$$H(A_0) \oplus C_0$$

$$H(A_1) \oplus C_1$$

Step 1: Apply Garbled Row Reduction

Step 1: Apply Garbled Row Reduction

$$z=0$$
 $z=1$ 0 0 $H(A_1) \oplus H(A_0)$ $H(A_1) \oplus C_1$ $C_0 = H(A_0)$ $C_1 = C_0 + R$

Step 2: Free XOR

Step 2: Free XOR

 $C_1 = C_0 + R$

Step 2: Free XOR

Evaluator knows b+z

$$b+z=0$$
 $H(A_0) + D_0$
 $H(A_1) + D_0$

$$b+z=1$$
 $H(A_0) + D_0$
 $H(A_1) + D_1$

Work in progress

Malkin-Pastro-shelat

$$A$$
 B
 R
 $H(A)$
 $H(B)$
 $H(A+R)$
 $H(B+R)$

$$\begin{bmatrix} 1 & 0 & a & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1-a & 0 & a & 0 \\ \hline 0 & 1 & b & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1-b & 0 & b \\ \hline 0 & 0 & p_b & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} A \\ B \\ R \\ H(A) \\ H(B) \\ H(A+R) \\ H(B+R) \end{bmatrix}$$

Input A
$$\begin{bmatrix} A + aR \\ aH(A) + (1+a)H(A+R) \end{bmatrix}$$
Input B =
$$\begin{bmatrix} B + bR \\ bH(B) + (1+a)H(B+R) \end{bmatrix}$$

$$H(A) + H(A+R) + p_bR \\ A + H(B) + H(B+R) \end{bmatrix}$$

Garbled gate

$$\begin{bmatrix} 1 & 0 & a & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1-a & 0 & a & 0 \\ \hline 0 & 1 & b & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1-b & 0 & b \\ \hline 0 & 0 & p_b & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$A$$
 B
 R
 $H(A)$
 $H(B)$
 $H(A+R)$
 $H(B+R)$

 v_b

 v_a

 v_b

$$= \begin{bmatrix} A + aR \\ aH(A) + (1+a)H(A+R) \\ B + bR \\ bH(B) + (1+a)H(B+R) \\ \hline H(A) + H(A+R) + p_bR \\ A + H(B) + H(B+R) \end{bmatrix}$$

This is what the evaluator does to the gate.

$$\begin{bmatrix} 1 & 0 & a & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1-a & 0 & a & 0 \\ \hline 0 & 1 & b & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1-b & 0 & b \\ \hline 0 & 0 & p_b & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$A$$
 B
 R
 $H(A)$
 $H(B)$
 $H(A+R)$
 $H(B+R)$

$$= \begin{bmatrix} A + aR \\ aH(A) + (1+a)H(A+R) \\ B + bR \\ bH(B) + (1+a)H(B+R) \\ \hline H(A) + H(A+R) + p_bR \\ A + H(B) + H(B+R) \end{bmatrix}$$

$$\begin{bmatrix} v_b \\ 1 \\ 0 \\ 1 \\ v_a \\ v_b \end{bmatrix} = (v_b + v_b)(A) + (v_b a + v_a p_b)R + (v_b a + v_a p_b)R + (1 + a + v_a)H(A) + (1 - b + v_b)H(B) + (a + v_a)H(A + R) + (b + v_b)H(B + R)$$

$$\begin{bmatrix} 1 & 0 & a & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1-a & 0 & a & 0 \\ \hline 0 & 1 & b & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1-b & 0 & b \\ \hline 0 & 0 & p_b & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} A \\ B \\ R \\ H(A) \\ H(B) \\ H(A+R) \\ H(B+R) \end{bmatrix}$$

$$= \begin{bmatrix} A + aR \\ aH(A) + (1+a)H(A+R) \\ B + bR \\ bH(B) + (1+a)H(B+R) \\ \hline H(A) + H(A+R) + p_bR \\ A + H(B) + H(B+R) \end{bmatrix} \begin{bmatrix} v_b \\ 1 \\ 0 \\ 1 \\ v_a \\ v_b \end{bmatrix}^T = \begin{bmatrix} 0 \\ (ab + p_a p_b)R \\ (1+p_a)H(A) \\ (1+p_b)H(B) \\ p_aH(A+R) \\ p_bH(B+R) \end{bmatrix}$$

e.g. when $p_a=p_b=0$, $C_0=H(A)+H(B)$, $C_1=C_0+R$

Why would this scheme be secure?

$$\begin{bmatrix} 1 & 0 & a & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1-a & 0 & a & 0 \\ \hline 0 & 1 & b & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1-b & 0 & b \\ \hline 0 & 0 & p_b & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} A \\ B \\ R \\ H(A) \\ H(B) \\ H(A+R) \\ H(B+R) \end{bmatrix}$$

Step 1: Crypto argument about H.

Step 2: Rank argument about matrix.

Why then the world's mine oyster/Which I with sword will open.

Sum of quadratic terms

```
1+a
                     b
                                       0
                              0
\mathcal{U}_{\mathcal{C}}
                              0
                                                          b
                                    1+b
              0 1
                                                0
                                                          0
                              0
                                       0
                                                      0
v_a
0
                  0
                       0
                                       0
                                                      0
                                                          0
                              0
                                             1+c
                                       0
                                                0
                                                          0
                                                              0
                      p_b
v_a
                                                0
1
                                                         1
                      p_c
                                                      0
                              0
                                       1
                                                              0
                                                      0
                                                         0
                                       0
                              0
```

$$\begin{bmatrix} A \\ B \\ C \\ R \\ H(A) \\ H(B) \\ H(C) \\ H(A+R) \\ H(B+R) \\ H(C+R) \end{bmatrix}$$

Generalized 1/2-gate garbling

Thm: Any quadratic polynomial in n-variables can be garbled using n ciphertexts.

(nk bits)

Sum of quadratic terms

```
0
                    1+b
                             0 b
                                        H(A)
                          0
                               0
                0
                     0
                             0
v_a
                                        H(B)
                0
                     0
                             0 0
                         1+c
                                        H(C)
                     0
                             1 0
                                 0
                                       H(A+R)
           p_c
                  1
                                       H(B+R)
H(C+R)
                     0
```

$$ab + bc + ac$$

Generalized 1/2-gate garbling

Thm: Any quadratic polynomial in n-variables can be garbled using n ciphertexts and non-adaptive H queries.

$\lceil v_b v_c \rceil$	1	0	0	\boldsymbol{A}	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	\overline{A}	0	0	\boldsymbol{A}	0	0							
v_b											\overline{A}	0	0	\boldsymbol{A}	0	0	C
$v_a v_c$	0	1	0	В	0	0	0	0	0	0							$\mid \mid R$
1	0	0	0	0	0	\overline{B}	0	0	В	0							H(A)
v_c											0	\overline{B}	0	0	B	0	H(B)
$v_a v_b$	0	0	1	С	0	0	0	0	0	0							H(C)
1	0	0	0	0	0	0	\overline{C}	0	0	C							H(A+R)
v_a											0	0	\overline{C}	0	0	C	H(B+R)
v_a	0	0	0	$p_b p_c$	1	0	0	1	0	0			$1+p_c$			p_c	H(C+R)
v_b	0	0	0	$p_a p_c$	0	1	0	0	1	0	$1+p_a$		p_a				G(A)
v_c	0	0	0	$p_a p_b$	0	0	1	0	0	1		$1 + p_{b}$			p_b		G(B)
$v_b v_c$	1	0	0	0	0	0	0	0	0	0		1			1		G(C)
$v_a v_c$	0	1	0	0	0	0	0	0	0	0			1			1	G(A+R)
$v_a v_b$	0	0	1	0	0	0	0	0	0	0	1			1			G(B+R)
	A	В	С	R	h(A)			hA'			gА			$g\overline{A}$		-	$\int G(C+R)$

$$(p_b + b)(p_c + c)a = abc + abp_c + acp_b + ap_bp_c$$

$$(p_a + a)(p_c + c)b = abc + abp_c + bcp_a + bp_ap_c$$

$$(p_a + a)(p_b + b)c = abc + acp_b + bcp_a + cp_bp_c$$

$$v_ap_bp_c = ap_bp_c + p_ap_bp_c$$

$$v_bp_ap_c = bp_ap_c + p_ap_bp_c$$

$$v_cp_ap_b = cp_ap_b + p_ap_bp_c$$

	1	0	0	A	0	0	0	0	0	0	0	0	0	0	0	0 7
1	0	0	0	0	\overline{A}	0	0	\boldsymbol{A}	0	0						
v_b											\overline{A}	0	0	A	0	0
$v_a v_c$	0	1	0	В	0	0	0	0	0	0						
1	0	0	0	0	0	\overline{B}	0	0	В	0						
v_c											0	\overline{B}	0	0	B	0
$v_a v_b$	0	0	1	С	0	0	0	0	0	0						
1	0	0	0	0	0	0	\overline{C}	0	0	C						
v_a											0	0	\overline{C}	0	0	C
v_a	0	0	0	$p_b p_c$	1	0	0	1	0	0			$1+p_c$			p_c
v_b	0	0	0	$p_a p_c$	0	1	0	0	1	0	$1+p_a$		p_a			
v_c	0	0	0	$p_a p_b$	0	0	1	0	0	1		$1 + p_{b}$			p_b	
$v_b v_c$	1	0	0	0	0	0	0	0	0	0		1			1	
$v_a v_c$	0	1	0	0	0	0	0	0	0	0			1			1
$v_a v_b$	0	0	1	0	0	0	0	0	0	0	1			1		
	\overline{A}	В	C	R	h(A)			hA'			gA			$g\overline{A}$		

$$\begin{bmatrix}
A \\
B \\
C \\
R \\
H(A) \\
H(B) \\
H(C) \\
H(A+R) \\
H(B+R) \\
H(C+R) \\
G(A) \\
G(B) \\
G(C) \\
G(A+R) \\
G(B+R) \\
G(C+R)
\end{bmatrix}$$

$$(p_b + b)(p_c + c)a = abc + abp_c + acp_b + ap_bp_c$$

$$(p_a + a)(p_c + c)b = abc + abp_c + bcp_a + bp_ap_c$$

$$(p_a + a)(p_b + b)c = abc + acp_b + bcp_a + cp_bp_c$$

$$v_ap_bp_c = ap_bp_c + p_ap_bp_c$$

$$v_bp_ap_c = bp_ap_c + p_ap_bp_c$$

$$v_cp_ap_b = cp_ap_b + p_ap_bp_c$$

Generalized 1/2-gate garbling

Thm: Any degree-k polynomial in n-variables can be garbled using $\sum_{i=0}^{k-1} \binom{n}{i}$ ciphertexts

and non-adaptive H queries.

...versus 2ⁿ previously

Wins on adaptivity

May win on size

Fig. 2. Garbling matrix G_f for $f = x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_3 \cdot x_4$.

		T	1 0 0 0		0							0		0					0								0		
($\alpha_2\alpha_3 + \alpha_3\alpha_4$	\ _	(10000	-	0	0	0	0	0	Ü	0	0	0	0	Ū	0	0	0	0	0	0	0	0	0	0	0	0	0	
- 1	$\alpha_1\alpha_3$	1	0 1 0 0	2	0	0	0	0	O	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
- 1	$\alpha_1\alpha_2 + \alpha_1\alpha_4$	1	0 0 1 0	9	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O	į
	$\alpha_1\alpha_3$		0 0 0 1		0	0	0	0	O	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ļ
	α_1	1	0 0 0 0	$a_2a_3 + a_3a_4$	1	1	0	0	0	0	0	0	$\neg a_2$	$\neg a_2$	a_2	a_2	$\neg a_3$	$\neg a_3$	a_3	a_4	$\neg a_1$	a_4	$\neg a_4$	a_4	0	0	0	0	
- 1	α_2	1	0 0 0 0	$a_1 a_3$	0	0	1	1	O	0	0	0	$\neg a_1$	a_1	$\neg a_1$	a_1	0	0	0	0	0	0	O	0	$\neg a_3$	$\neg a_3$	a_3	a_3	1
	α_3	1	0 0 0 0	$a_1 a_2 + a_1 a_4$	0	0	0	0	1	1	0	0	0	0	0	0	$\neg a_1$	a_1	$\neg a_1$	a_1	0	0	0	0	$\neg a_2$	a_2	$\neg a_2$	a_2	İ
	$lpha_4$		0 0 0 0	$a_1 a_3$	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	$\neg a_1$	a_1	$\neg a_1$	a_1	0	0	0	0	
	$\alpha_1\alpha_2$		0 0 1 0	0	0	0	O	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	O	0	0	
	$\alpha_1\alpha_3$		0 1 0 1	0	0	O	0	0	O	O	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	
1	$\alpha_1^{}\alpha_4^{}$	1	0 0 1 0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	ł
1	$\alpha_2^{2}\alpha_3^{2}$	1	1 0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	_
	$\alpha_2 \alpha_4$		0 0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 .	=
	$\alpha_3 \alpha_4$		1 0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1		0 0 0 0	0	$\neg x_1$	x_1	0	0	O	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
- 1	1	1	0000	0	0	0	$\neg x_2$	x_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
- 1	1	1	0000		0	0	0	0	$\neg x_3$	x_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	1		0000	0	0	0	0	0	0		$\neg x_4$	x_{A}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1		0000	0	0	0	0	0	0	0	0	0		$\neg x_1 x_2$	$x_1 \neg x_2$	$x_1 x_2$	0	0	0	0	0	0	0	0	0	0	0	0	
	1		0000	0	0	0	0	0	0	0	0	0	0	0	0	0	$\neg x_1 \neg x_3$	$\neg x_1 x_2$	$x_1 \neg x_3$	$x_1 x_3$	0	0	0	0	0	0	0	0	
- 1	1	1	0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō	0	0	$\neg x_1 \neg x_4$	$\neg x_1 x_4$	$x_1 \neg x_4$	$x_1 x_4$	0	0	0	0	1
- 1	1	1	0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\neg x_2 \neg x_3$	$\neg x_2 x_3$	$x_2 \neg x_3$	x_2x_3	+
	1		0000		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
/	1	/	0000		0	0	0	0	0	0	0	0	Õ	0	0	Õ	Õ	Õ	0	0	Õ	Õ	0	Õ	Õ	Õ	Õ	0	J
\	. 1	/	(0000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	/

Reductionism fails

Every linear garbling scheme for AND requires 2*k bits. [Zahur-Evans-Rosulek]

Non-linear garbling

Non-linear garbling

Q: Can non-linear garbling beat linear schemes?

Why study Garbled circuits?

other or to the second
2-party Secure computation

0\endo

2-party Secure computation

Parallelizability is KEY

