# Units & Dimensions



# Types of **Quantities**?

#### **Physical Quantity**

A Quantity that can be measured is called as Physical Quantity. Length, Mass, Velocity, Temperature, Area, Volume, Density Etc... Measurable Quantities



### Non - Physical Quantity

A Quantity that cannot be measured is called as Non- Physical Quantity. **Building, Bus, Room, Road, Mumbai** Etc... Non-Measurable Quantities



# How are **physical quantities** classified?



# How are **physical quantities** classified?

#### **Fundamental Quantity**

A physical quantity which does not depend on any other physical quantity for its measurement.

### **Derived Quantity**

The physical quantities which are expressed in terms of more than one fundamental quantities.

# What are Fundamental Quantities?

# There are 7 fundamental quantities

| Fundamental Quantity | S.I Unit | Symbol |
|----------------------|----------|--------|
| Length               | Meter    | m      |
| Mass                 | Kilogram | kg     |
| Time                 | Second   | s      |
| Temperature          | Kelvin   | К      |
| Electric current     | Ampere   | Α      |
| Luminous intensity   | Candela  | Cd     |
| Amount of substance  | Mole     | mol    |

\*\*\* Candela is Measure of intensity or brightness of Light.

# What are Fundamental Quantities?

# There are **2** supplementary quantities

| Supplementary Quantity | S.I unit  | Symbol |
|------------------------|-----------|--------|
| Plane angle            | Radian    | rad    |
| Solid angle            | Steradian | sr     |





# The Derived Quantities

The Physical quantities that <u>depend upon</u> other physical quantity for its measurement are known as derived quantities.

The measurement of derived quantities directly depends upon other quantities. So in order to measure the derived quantity, one must measure the quantities that it depends upon.

\*\*\* Except 7 fundamental quantities, all other quantities are derived quantities.

# The Derived Quantities

Velocity (m/s)



Acceleration (m/s2)



Work (kg-m2/s2) or J



Work = Force x displacement

Pressure ( kg m<sup>-1</sup> s<sup>-2</sup>) or Pa



# What are units and system of units?

# What are units and system of units?

Unit of a physical quantity is a standard used for the measurement of that physical quantity.

### System of units

A set or collection of Fundamental & Derived Unit is called as system of unit.

# What are units and system of units?



| SYSTEM | Length     | Mass     | Time   |
|--------|------------|----------|--------|
| F.P.S. | Foot       | Pound    | Second |
| C.G.S. | Centimetre | Gram     | Second |
| M.K.S. | Metre      | Kilogram | Second |

# SI Units: International System of Units



# What are dimensions and their symbol?

### Dimension

Power to which fundamental quantity must be raised in order to obtain the unit of the given quantity.

**Symbol for Dimensions** 

**General Form** 

[LMT] or [MLT]

[LMTKA] or [MLTKA]

# What are dimensions and their symbol?

| Symbol               | for Dimension                                   | S              |
|----------------------|-------------------------------------------------|----------------|
| Fundamental Quantity | Dimension                                       | Representation |
| Length               | [M <sup>0</sup> L <sup>1</sup> T <sup>0</sup> ] | L              |
| Mass                 | [M <sup>1</sup> L <sup>0</sup> T <sup>0</sup> ] | М              |
| Time                 | [M°L°T1]                                        | Т              |
| Temperature          | [M°L°T°K1A°]                                    | К              |
| Electric current     | [M°L°T°K°A¹]                                    | A/I            |

<sup>\*\*\*</sup> Luminous Intensity - C

<sup>\*\*\*</sup> Amount of Substance - mol

# How to find dimensions of derived quantities?

### Dimension of Speed

| Step 1 | Speed = Distance<br>Time                                 |
|--------|----------------------------------------------------------|
| Step 2 | Speed = $\frac{[M^{0}L^{1}T^{0}]}{[M^{0}L^{0}T^{1}]}$    |
| Step 3 | Speed = [M <sup>a</sup> L <sup>1</sup> T <sup>-1</sup> ] |

# How to find dimensions of derived quantities?

# Dimension of Temperature Gradient

| Step 1 | Temp Gradient = Temp Distance                                                   |
|--------|---------------------------------------------------------------------------------|
| Step 2 | Temp Gradient = $\frac{[M^0L^0T^0K^1]}{[M^0L^1T^0K^0]}$                         |
| Step 3 | Temp Gradient = [M <sup>0</sup> L <sup>-1</sup> T <sup>0</sup> K <sup>1</sup> ] |

Find the dimensions of Area.

- **A.**  $[M^0 L^2 T^0]$
- B. [MLT<sup>2</sup>]
- C.  $[M^0L^0T^1]$
- D. None of these



Question Find the dimensions of Area.

| Step 1 | Area = Length x Breadth          |
|--------|----------------------------------|
| Step 2 | SI Unit = m x m = m <sup>2</sup> |
| Step 3 | Dimension = [Mº L² Tº]           |



#### Find the dimensions of Volume

- A.  $[M^0 L^3 T^2]$
- B. [M<sup>2</sup> L<sup>2</sup> T<sup>0</sup>]
- C. [Mº L³ Tº]
- D. [M<sup>o</sup> L<sup>3</sup> T<sup>-1</sup>]



Find the dimensions of Volume.

| Step 1 | Volume = Length x Breadth x Height   |
|--------|--------------------------------------|
| Step 2 | SI Unit = m x m x m = m <sup>3</sup> |
| Step 3 | Dimension = [Mº L³ Tº]               |



#### Find the dimension of Density

**A.** 
$$[M^1 L^{-3} T^0]$$

C. 
$$[M^{-1} L^{-3} T^{0}]$$

**D.** 
$$[M^1 L^3 T^0]$$

### Find the **dimension** of **Density**.

| Step 1 | Density ( $\rho$ ) = $\frac{\text{Mass}}{\text{Volume}}$              |
|--------|-----------------------------------------------------------------------|
| Step 2 | Density ( $\rho$ ) = $\frac{[M^1 L^0 T^0]}{[M^0 L^3 T^0]}$            |
| Step 3 | Density ( $\rho$ ) = [M <sup>1</sup> L <sup>-3</sup> T <sup>0</sup> ] |

#### Find the dimension of Momentum

- **A.** [M<sup>-1</sup> L<sup>0</sup> T<sup>0</sup>]
- **B.**  $[M^0 L^{-1} T^2]$
- C.  $[M^{-2} L^{-3} T^{0}]$
- D.  $[M^1 L^1 T^{-1}]$

# How to find dimensions of derived quantities?

Find the dimension of Momentum.

| Step 1 | Momentum (p) = Mass x Velocity                |
|--------|-----------------------------------------------|
| Step 2 | Momentum (p) = $[M^1L^0T^0]$ $[M^0L^1T^{-1}]$ |
| Step 3 | Momentum (p) = $[M^1 L^1 T^{-1}]$             |

Velocity = 
$$\frac{\text{Distance}}{\text{Time}}$$
  
Velocity =  $\frac{[\text{M}^{\circ} \text{ L}^{1} \text{ T}^{0}]}{[\text{M}^{\circ} \text{ L}^{0} \text{ T}^{1}]}$ 

Find the dimensions of Force.

- **A.** [M<sup>-1</sup> L<sup>0</sup> T<sup>0</sup>]
- **B.**  $[M^0 L^{-1} T^2]$
- C.  $[M^{-2} L^{-3} T^{0}]$
- D. [M¹ L¹ T⁻²]

#### Find the dimensions of Force

Force = Mass × acceleration  
= m × a

Dimensions of Mass = 
$$[M^1 L^0 T^0]$$
 =  $[M^0 L^1 T^{-1}]$   
Dimensions of Acceleration =  $[M^0 L^1 T^{-2}]$   
 $\therefore$  Dimensions of Force =  $[M^1 L^0 T^0]$   $[M^0 L^1 T^{-2}]$ 

#### Find the dimensions of Gravitational Constant

- **A.**  $[M^1 L^{-3} T^0]$
- **B.**  $[M^{-1} L^3 T^{-2}]$
- C.  $[M^1 L^1 T^{-2}]$
- **D.**  $[M^1 L^3 T^0]$

#### Find the dimensions of Gravitational Constant

Formula of gravitational force,

$$F = \frac{Gm_1m_2}{r^2}$$

$$\therefore G = \frac{Fr^2}{m_1m_2}$$

Where  $G \rightarrow$  Universal constant of gravitation

 $m_1, m_2 \longrightarrow Masses$ 

r --> Distance between the two masses

Dimensions of Force = 
$$[M^1 L^1 T^{-2}]$$

Dimensions of Length = 
$$[M^0 L^1 T^0]$$

Dimensions of 
$$r^2 = [M^0 L^2 T^0]$$

Dimensions of Mass = 
$$[M^1 L^0 T^0]$$

∴ Dimensions of G = 
$$\frac{[M^1 L^1 T^{-2}] [M^0 L^2 T^0]}{[M^2 L^0 T^0]}$$

$$= \frac{[M^1 L^3 T^{-2}]}{[M^2 L^0 T^0]}$$

Dimensions of G = 
$$[M^{-1} L^3 T^{-2}]$$

Find the dimensions of CHARGE.

- **A.** [M<sup>o</sup> L<sup>o</sup> T<sup>1</sup> A<sup>1</sup>]
- B. [Mº Lº T¹ A-¹]
- C.  $[M^{-1} L^1 T^2 A^1]$
- D. None of these

### Solution:

$$Q = I \times t$$

Dimensions of Current (I) = 
$$[M^{\circ} L^{\circ} T^{\circ} A^{1}]$$

Dimensions of Time (t) = 
$$[M^{\circ} L^{\circ} T^{1}]$$

$$\therefore \text{ Dimensions of Q} = [M^{\circ} L^{\circ} T^{\circ} A^{1}] \quad [M^{\circ} L^{\circ} T^{1}]$$

Dimensions of Q = 
$$[M^0 L^0 T^1 A^1]$$

#### Find the dimensions of Electric Potential

D.None of these

### Solution:

Energy (U) = charge (Q) 
$$\times$$
 potential (V)

Dimensions of U =  $[M^1 L^2 T^{-2}]$ 

Dimensions of Q =  $[M^0 L^0 T^1 A^1]$ 

$$\therefore \text{ Dimensions of V} = \frac{\left[M^1 L^2 T^{-2}\right]}{\left[M^0 L^0 T^1 A^1\right]}$$

Dimensions of  $V = [M^1 L^2 T^{-3} A^{-1}]$ 

#### Find the dimensions of Resistance

**B.** 
$$[M^1 L^2 T^{-3} A^{-1}]$$

C. 
$$[M^1 L^2 T^{-3} A^{-2}]$$

D. None of these

### Solution:

By Ohm's Law,

Resistance = 
$$\frac{\text{Potential}}{\text{Current}}$$

$$R = \frac{V}{I}$$

Dimensions of V = 
$$[M^1 L^2 T^{-3} A^{-1}]$$

Dimensions of I = 
$$A^1$$

$$\therefore \quad \text{Dimensions of R} \qquad = \frac{\left[\mathsf{M}^1\,\mathsf{L}^2\,\mathsf{T}^{-3}\,\mathsf{A}^{-1}\right]}{\left[\mathsf{M}^0\,\mathsf{L}^0\,\mathsf{T}^0\,\mathsf{A}^1\right]}$$

Dimensions of R = 
$$[M^1 L^2 T^{-3} A^{-2}]$$

Of the following quantities, which one has dimension <u>different</u> from the remaining 2?

- A. Energy per unit volume
- B. Force per unit area
- C. Angular momentum per unit mass
- D. All A,B,C are same

### Solution:

[energy per unit volume] 
$$= \frac{M^1L^2T^{-2}}{L^3} = M^1L^{-1}T^{-2}$$
[force per unit area] 
$$= \frac{M^1L^1T^{-2}}{L^2} = M^1L^{-1}T^{-2}$$
[angular momentum per unit mass] 
$$= ML^2T^{-1}/M^1 = L^2T^{-1}$$

### Dimensions of commonly used Physical Quantities

| S.No. | Physical Quantity (Mechanics)           | SI Units                          | Dimensional<br>formula          |
|-------|-----------------------------------------|-----------------------------------|---------------------------------|
| 1.    | Velocity = displacement/time            | m/s                               | M <sup>0</sup> LT <sup>-1</sup> |
| 2.    | Acceleration = velocity/time            | m/s²                              | M <sup>0</sup> LT -2            |
| 3.    | Force = mass × acceleration             | kg-m/s <sup>2</sup> = Newton or N | MLT -2                          |
| 4.    | Work = force × displacement             | kg-m²/s² = N-m = Joule or         | ML <sup>2</sup> T <sup>-2</sup> |
| 5.    | Energy                                  | J<br>N-m                          |                                 |
| 6.    | Torque = force × perpendicular distance | IV-III                            |                                 |
| 7.    | Power = work/time                       | J/s or watt                       | ML <sup>2</sup> T <sup>-3</sup> |
| 8.    | Momentum = mass × velocity              | Kg-m/s                            | MLT -1                          |
| 9.    | Impulse = force × time                  | Kg-m/s or N-s                     | MLT -1                          |

| 10. | Angle = arc/radius                                    | radian or <u>rad</u>  | M <sub>0</sub> L <sub>0</sub> T <sub>0</sub> |
|-----|-------------------------------------------------------|-----------------------|----------------------------------------------|
| 11. | Strain = $\frac{\Delta L}{L}$ or $\frac{\Delta V}{V}$ | no units              |                                              |
| 12. | Stress = force/area                                   | N/m <sup>2</sup>      | ML -1T -2                                    |
| 13. | Pressure = force/area                                 | N/m <sup>2</sup>      | ML -1T -2                                    |
| 14. | Modulus of elasticity = stress/strain                 | N/m <sup>2</sup>      | ML -1T -2                                    |
| 15. | Frequency = 1/ time period                            | per sec or hertz (Hz) | M <sup>0</sup> L <sup>0</sup> T -1           |
| 16. | Angular velocity = angle/time                         | rad/s                 | M <sup>0</sup> L <sup>0</sup> T -1           |
| 17. | Moment of inertia = (mass) (distance) <sup>2</sup>    | kg-m²                 | ML <sup>2</sup> T <sup>0</sup>               |
| 18. | Surface tension = force/length                        | N/m                   | ML <sup>0</sup> T <sup>-2</sup>              |
| 19. | Gravitational constant                                | N-m²/kg²              | M-1L3T -2                                    |
|     | = Force × (distance) <sup>2</sup> (mass) <sup>2</sup> |                       |                                              |

| S.No. | Physical Quantity         | SI Units                                         | Dimensional<br>formula                                            |
|-------|---------------------------|--------------------------------------------------|-------------------------------------------------------------------|
| 1.    | Thermodynamic temperature | kelvin (K)                                       | M ºLºT ºK                                                         |
| 2.    | Heat                      | joule                                            | ML <sup>2</sup> T <sup>-2</sup>                                   |
| 3.    | Specific heat             | Jkg <sup>-1</sup> K <sup>-1</sup>                | M <sup>0</sup> L <sup>2</sup> T <sup>-2</sup> K <sup>-1</sup>     |
| 4.    | Latent heat               | J kg <sup>-1</sup>                               | M <sup>0</sup> L <sup>2</sup> T - <sup>2</sup>                    |
| 5.    | Universal gas constant    | J mol <sup>-1</sup> K <sup>-1</sup>              | ML <sup>2</sup> T <sup>-2</sup> K <sup>-1</sup> mol <sup>-1</sup> |
| 6.    | Boltzmann's constant      | JK-1                                             | ML <sup>2</sup> T <sup>-2</sup> K <sup>-1</sup>                   |
| 7.    | Stefan's constant         | Js <sup>-1</sup> m <sup>-2</sup> K <sup>-4</sup> | MT -3K -4                                                         |
| 8.    | Planck's constant         | Js                                               | ML <sup>2</sup> T -1                                              |
| 9.    | Solar constant            | J m <sup>-2</sup> s <sup>-1</sup>                | ML <sup>0</sup> T <sup>-3</sup>                                   |
| 10.   | Thermal conductivity      | Js-1m-1 K-1                                      | MLT <sup>-3</sup> K <sup>-1</sup>                                 |
| 11.   | Thermal resistance        | Kscal <sup>-1</sup>                              | M-1L-2T3K                                                         |
| 12.   | Enthalpy                  | cal                                              | ML <sup>2</sup> T <sup>-2</sup>                                   |
| 13.   | Entropy                   | cal K <sup>-1</sup>                              | ML <sup>2</sup> T - <sup>2</sup> K - <sup>1</sup>                 |

#### **Quantities having same Dimensions**

| Dimension                                       | Quantity                                                                                                                                                   |  |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $[M^0L^0T^{-1}]$                                | Frequency, angular frequency, angular velocity, velocity gradient and decay constant                                                                       |  |
| $[M^1L^2T^{-2}]$                                | Work, internal energy, potential energy, kinetic energy, torque, moment of force                                                                           |  |
| $[M^1L^{-1}T^{-2}]$                             | Pressure, stress, Young's modulus, bulk modulus, modulus of rigidity, energy density                                                                       |  |
| $[M^{1}L^{1}T^{-1}]$                            | Momentum, impulse                                                                                                                                          |  |
| $[M^0L^1T^{-2}]$                                | Acceleration due to gravity, gravitational field intensity                                                                                                 |  |
| $[M^1L^1T^{-2}]$                                | Thrust, force, weight, energy gradient                                                                                                                     |  |
| $[M^{1}L^{2}T^{-1}]$                            | Angular momentum and Planck's constant                                                                                                                     |  |
| $[M^{1}L^{0}T^{-2}]$                            | Surface tension, Surface energy (energy per unit area)                                                                                                     |  |
| [M <sup>0</sup> L <sup>0</sup> T <sup>0</sup> ] | Strain, refractive index, relative density, angle, solid angle, distance gradient, relative permittivity (dielectric constant), relative permeability etc. |  |
| $[M^0L^2T^{-2}]$                                | Latent heat and gravitational potential                                                                                                                    |  |
| $[ML^2T^{-2}K^{-1}]$                            | Thermal capacity, gas constant, Boltzmann constant and entropy                                                                                             |  |
| [M <sup>0</sup> L <sup>0</sup> T <sup>1</sup> ] | $\sqrt{\frac{I}{g}}$ , $\sqrt{\frac{m}{k}}$ , $\sqrt{\frac{R}{g}}$ , where $I = \text{length } g = \text{acceleration due to gravity, } m = \text{mass,}$  |  |
|                                                 | k = spring constant, R = Radius of earth                                                                                                                   |  |
| [M <sup>0</sup> L <sup>0</sup> T <sup>1</sup> ] | $\frac{L}{R}$ , $\sqrt{LC}$ , RC where L = inductance, R = resistance, C = capacitance                                                                     |  |
| [ML <sup>2</sup> T <sup>-2</sup> ]              | $I^2Rt$ , $\frac{V^2}{R}t$ , $VIt$ , $qV$ , $LI^2$ , $\frac{q^2}{C}$ , $CV^2$ where $I = \text{current}$ , $t = \text{time}$ , $q = \text{charge}$ ,       |  |
|                                                 | L = inductance, C = capacitance, R = resistance                                                                                                            |  |