

이론, 실습, 시뮬레이션 디지털논리회로

Chapter 04. 논리게이트

학습목표 및 목차

- 논리게이트와 논리 레벨의 기본 개념을 이해할 수 있다.
- 논리게이트의 동작 원리 및 진리표, 게이트 기호들을 이해하고 이를 활용할 수 있다.
- 정논리와 부논리에 대해 설명할 수 있다.
- 게이트들의 전기적인 특성을 이해하고 이를 활용할 수 있다.

01. 논리 레벨

02. NOT 게이트와 버퍼 게이트

03. AND 게이트

04. OR 게이트

05. NAND 게이트

06. NOR 게이트

07. XOR 게이트

08. XNOR 게이트

09. 정논리와 부논리

01 논리 레벨

■ TTL과 CMOS 논리 레벨 정의 영역

Transistor

디지털 회로에서 전자스위치로 사용되는 반도체 소자. 베이스에 적 절 한 전 압을 인 가 하 여 컬렉터-에미터 접합이 개방 또 는 단 락된 스위치처럼 동작한다.

1. NOT 게이트

■ 한 개의 입력과 한 개의 출력을 갖는 게이트로 논리 부정을 나타낸다.

진리표	진리표 동작파형			
A F 0 1 1 0	입력 A 1 0 1 0 출력 F 0 1 0 1	A—— F		

논리식
$F = \overline{A} = A$ '

2. 버퍼

- 버퍼(buffer)는 입력된 신호를 변경하지 않고, 입력된 신호 그대로를 출력하는 게 이트로 단순한 전송을 의미한다.
- 입력 신호가 1인 경우에는 출력 신호는 1이 되고, 입력 신호가 0인 경우에는 출력 신호는 0이 된다.

IC 7407 **핀 배치도**

■ 3상태(tri-state) 버퍼

■ 출력이 3개 레벨(High, Low, 하이 임피던스) 중의 하나를 갖는 논리소자

하이 임피던스 : 입력과 출력이 연결되어 있지 않은 상태

■ AND 게이트의 기본 개념(2입력)

■ 입력이 모두 1(on)인 경우에만 출력은 1(on)이 되고, 입력 중에 0(off)인 것이 하나라도 있을 경우에는 출력은 0(off)이 된다.

진리표	동작파형	논리기호
A B F 0 0 0 0 1 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A \longrightarrow F$
1 0 0	F 0 0 0 1 0	논리식
1 1 1		$F = AB = A \cdot B$

■ AND 게이트의 회로 표현과 IC

■ AND 게이트의 기본 개념(3입력)

진리표	동작파형	논리식
A B C F 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0	A 0 0 0 0 1 1 1 0 B 0 0 1 1 0 0 1 1 0 C 0 1 0 1 0 1 0 1 0 F 0 0 0 0 0 0 0 1 0	$F = ABC = A \cdot B \cdot C$ 논리기호 A - B - F
1 0 0 0 1 0 1 0	IC 7411 핀 배치도	
1 1 0 0 1 1 1 1	V _{CC} 1C 1Y 3C 3B 3A 3Y 14 13 12 11 10 9 8	
	1 2 3 4 5 6 7 1A 1B 2A 2B 2C 2Y GND	

■ AND 게이트를 이용한 자동차 좌석벨트 경보 시스템

- 점화스위치(A)가 켜지고(High) 좌석벨트(B)가 풀려있는 상태(High)를 감지
- 점화스위치가 켜지면 타이머가 작동되어 타이머 C가 30초 동안 High로 유지
- 점화 스위치가 켜지고, 좌석벨트가 풀려있고, 타이머가 작동하는 3가지 조건하에서 AND 게이트의 출력은 High가 되며, 운전자에게 주의를 환기시키는 경보음이울리게 된다.
- 30초간 경보음 동작 후에는 경보음은 울리지 않으며, 처음부터 좌석벨트가 채워 져 있으면 경보음은 울리지 않는다.

■ OR 게이트의 기본 개념(2입력)

■ 입력이 모두 0인 경우에만 출력은 0이 되고, 입력 중에 1이 하나라도 있으면, 출력은 1이 된다.

진리표				동작파형	논리식
A	В	F		A 0 0 1 1 0	F = A + B
0	0	0		B 0 1 0 1 0	
0	1	1			논리기호
1	0	1		F 0 1 1 1 0	4
1	1	1	•		B F

■ OR 게이트의 회로 표현과 IC

■ OR 게이트의 회로 표현과 IC

진리표	동작파형	논리식
A B C F 0 0 0 0	A 0 0 0 0 1 1 1 0	F = A + B + C
0 0 1 1	$B \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0 1 0 1	C 0 1 0 1 0 1 0 1 0	논리기호
0 1 1 1	$F = 0 \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$	4
1 0 0 1		$A \longrightarrow F$
1 0 1 1		
1 1 0 1		
1 1 1 1		

■ OR 게이트를 이용한 침입 탐지 시스템

- 일반 가정에서 출입문 1개와 창문 2개가 있다고 가정
- 출입문과 창문에 설치된 각 센서는 자기 스위치(magnetic switch)로서 문이 열려 있을 때 High를 출력하고, 닫혀있을 때에는 Low를 출력한다.

■ NAND 게이트의 기본 개념(2입력)

- 입력이 모두 1인 경우에만 출력은 0이 되고, 그렇지 않을 경우에는 출력은 1이 된다.
- 이 게이트는 AND 게이트와는 반대로 작동하는 게이트로서, NOT AND의 의미로 NAND 게이트라고 부른다.

진리표	동작파형	논리식
$egin{array}{ c c c c c c c c c c c c c c c c c c c$		$F = \overline{AB} = \overline{A \cdot B}$
0 0 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0 1 1	B 0 1 0 1 0	논리기호
1 0 1		$A \longrightarrow F$
1 1 0	F 1 1 1 0 1	B————————————————————————————————————
		$A \longrightarrow F$

■ NAND 게이트의 기본 개념(3입력)

진리표	동작파형	논리식
A B C F 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1	お当場 A 0 0 0 0 1 1 1 1 0 B 0 0 1 1 0 0 1 1 0 C 0 1 0 1 0 1 0 1 0 F 1 1 1 1 1 1 1 0 1	본 대식 $F = \overline{ABC} = \overline{A \cdot B \cdot C}$ 본리기호 $A \longrightarrow C \longrightarrow C \longrightarrow C$

■ NAND 게이트의 IC

■ NOR 게이트의 기본 개념(2입력)

- 입력이 모두 0인 경우에만 출력은 1이 되고, 입력 중에 하나라도 1이 있는 경우는 출력은 0이 된다.
- 이 게이트는 OR 게이트와는 반대로 작동하는 게이트로, NOT OR의 의미로 NOR 게이트라고 부른다.

	진리표 동작파형				논리식					
A	В	F				_			1 .	$F = \overline{A + B}$
0		1		A	0	0	1	1	0	
	0	1		B	0	1	0	1	0	논리기호
0	1	0		D] '] '		4
1	0	0		F	1	0	0	0	1	$B \longrightarrow F$
1	1	0							J	
										$A \longrightarrow F$

■ NOR 게이트의 기본 개념(3입력)

진리표	동작파형	논리식		
A B C F 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0	A 0 0 0 0 1 1 1 0 0 B 0 0 1 1 0 0 1 0 C 0 1 0 1 0 1 0 1 0 T F 1 0 0 0 0 0 0 0 1	$F = \overline{A + B + C}$ 본리기호 $A \longrightarrow F$		

■ NOR 게이트 IC

07 XOR(eXclusive-OR) 게이트

■ XOR 게이트의 기본 개념(2입력)

- 입력 중 홀수 개의 1이 입력된 경우에 출력은 1이 되고 그렇지 않은 경우에는 출력은 0이 된다.
- 2입력 XOR 게이트의 경우, 두 개의 입력 중 하나가 1이면 출력이 1이 되고, 두 개의 입력 모두가 0이거나 또는 두 개의 입력 모두가 1이라면 출력은 0이 된다.

진리표	동작파형	논리식
A B F	A 0 0 1 1 0	$F = A \oplus B = \overline{A}B + A\overline{B}$
0 0 0	B 0 1 0 1 0	논리기호
1 0 1	F 0 1 1 0 0	$A \longrightarrow F$
1 1 0		B——— I

07 XOR(eXclusive-OR) 게이트

■ XOR 게이트의 기본 개념

07 XOR(eXclusive-OR) 게이트

■ XOR 게이트의 기본 개념(3입력)

진리표	동작파형	논리식
A B C F 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1 1	A 0 0 0 0 1 1 1 0 B 0 0 1 1 0 0 1 1 0 C 0 1 0 1 0 1 0 1 0 F 0 1 1 0 1 0 0 1 0	$F = A \oplus B \oplus C$ 본리기호 $A \longrightarrow F$

08 XNOR(eXclusive-NOR) 게이트

■ XNOR 게이트의 기본 개념(2입력)

- 입력 중 짝수 개의 1이 입력될 때 출력이 1이 되고, 그렇지 않은 경우에는 출력은 0이 된다.
- 출력값은 XOR 게이트에 NOT 게이트를 연결한 것이므로 XOR 게이트와 반대이다.
- 2입력 XNOR 게이트의 경우 두 개의 입력이 다를 때 출력이 0이 되고, 두 개의 입력이 같으면 출력은 1이 된다.

진리표	동작파형	논리식
A B F 0 0 1 0 1 0 1 0 0 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$F = \overline{AB} + AB$ $= \overline{A \oplus B}$ $= A \Box B$
논리기호	$ \begin{array}{c c} A \longrightarrow \\ B \longrightarrow \\ \end{array} $	$A \rightarrow F$

08 XNOR(eXclusive-NOR) 게이트

■ XOR 게이트의 기본 개념(3입력)

09 정논리와 부논리

■ 논리 개념

전압레벨	정논리	부논리
+5V	High=1	High=0
0V	Low=0	Low=1

■ 정논리 AND = 부논리 OR

전압레벨			정논리 AND				부논리 OR		
A	В	F	A	В	F		A	В	F
L	L	L	0	0	0		1	1	1
L	H	L	0	1	0		1	0	1
H	L	L	1	0	0		0	1	1
H	H	H	1	1	1 1		0	0	0

09 정논리와 부논리

■ 정논리 NAND = 부논리 NOR

7	전압레벨			정논리 NAND			부논리 NOR		
A	В	F		A	В	F	A	В	F
L	L	Н		0	0	1	1	1	0
L	H	Н		0	1	1	1	0	0
Н	L	H		1	0	1	0	1	0
H	H	$\mid L \mid$		1	1	0	0	0	1

☞ 표현 방법이 다를 뿐 실제로 정논리와 부논리는 논리적으로는 같다.

09 정논리와 부논리

■ 정논리와 부논리간의 게이트 대용

정논리	\leftrightarrow	부논리	정논리	\leftrightarrow	부논리
AND		OR	XOR		XNOR
OR		AND	XNOR		XOR
NAND		NOR	NOT		NOT
NOR		NAND			

전파지연시간

• 신호가 입력되어서 출력될 때까지의 시간을 말하며, 게이트의 동작속도이다.

전력소모

• 게이트가 동작할 때 소모되는 전력량

잡음여유도

┃• 최대로 허용된 잡음 마진

팬-아웃

- 하나의 게이트의 출력으로부터 다른 여러 개의 입력들로 공급되는 전류
- 정상적인 동작으로 하나의 출력이 최대 몇 개의 입력으로 연결되는가를 나타낸다.

1. 전파지연시간(gate propagation delay time)

■ 신호가 입력되어서 출력될 때까지의 시간을 말하며, 게이트의 동작 속도를 나타 낸다.

■ 주요 디지털 IC 계열별 특성표

	t _{PHL} (max) [ns]	t _{PLH} (max) [ns]	$V_{OH} \ (min) \ [V]$	V _{OL} (max) [V]	V _{IH} (min) [V]	V _{IL} (max) [V]	I _{OH} (max) [mA]	I _{OL} (max) [mA]	I _{IH} (max) [μΑ]	I _{IL} (max) [mA]
7400	22	15	2.4	0.4	2	0.8	-0.4	16	40	-1.6
74S00	4.5	5	2.7	0.5	2	0.8	-1	20	50	-2
74LS00	15	15	2.7	0.4	2	0.8	-0.4	8	20	-0.4
74ALS00	11	8	3	0.4	2	0.8	-0.4	8	20	-0.1
74F00	5	4.3	2.5	0.5	2	0.8	-1	20	20	-0.6
74HC00	23	23	3.84	0.33	3.15	0.9	-4	4		
74AC00	8	6.5	4.4	0.1	3.15	1.35	-75	75		
74ACT00	9	7	4.4	0.1	2	0.8	-75	75		

 $t_{PHL}: L$ 에서 H로 변할 때의 전파지연시간

 V_{OH} : 논리 레벨 H일 때 출력전압

 V_{IH} : 논리 레벨 H일 때 입력전압

 $I_{OH}, I_{OL}, I_{IH}, I_{IL}$: 위와 같을 때 전류

 $t_{PLH}: H$ 에서 L로 변할 때의 전파지연시간

 V_{OL} : 논리 레벨 L일 때 출력전압

 V_{II} : 논리 레벨 L일 때 입력전압

2. 전력소모(power dissipation)

■ 게이트가 동작할 때 소모되는 전력

$$P_{CC} = V_{CC} \times I_{CC}$$

3. 잡음역유도(noise margin)

■ 디지털 회로에서 데이터의 값에 변경을 주지 않는 범위 내에서 최대로 허용된 Noise Margin을 의미

<입출력 전압 범위>

<LS-TTL의 입출력 레벨>

4. 팬-인(fan-in)과 팬-악옷(fan-out)

- 팬-아웃은 1 개의 게이트에서 다른 게이트의 입력으로 연결 가능한 최대 출력단의 수를 의미
- 팬-인은 1 개의 게이트에 입력으로 접속할 수 있는 단수를 의미

5. 싱크전류(sink current)와 소스전류(source current)

싱크전류출력 쪽으로 전류가 흘러 들어간다는 의미소스전류출력에서 바깥으로 전류가 흐른다는 의미

74**시리즈** TTL**의 경우에 많은 칩에서 싱크전류는** 16mA**까지 가능하며**, **소스전류는** 0.25mA **이하다**.

- 높은 팬-아웃 IC를 LSI 출력측에 접속하기 위한 소자로서 74LS06, 74LS07과 같은 버퍼를 사용한다.
- 이들은 게이트에 외부로부터 공급되는 싱크전류를 40mA까지 허용하며, 게이트 가 공급하는 소스전류는 0.25mA다.

6. 풀-업 저항과 풀-다운 저항

- 입력레벨의 불확실성을 제거하여 정확한 신호를 얻기 위하여 사용하는 저항
- 풀-업 저항 : 전원 쪽으로 연결할 때 사용
- 풀-다운 저항 : 접지 쪽으로 연결할 때 사용
- 적절한 풀-업, 풀-다운 저항으로서는 3~10KΩ을 사용

floating

디지털 회로에서 High도 Low도 아닌 논리 레벨

* 풀-업 저항을 사용하지 않으면 불확실한 입력신호가 될 수 있다.

7. IC 계열별 특징

- 디지털 IC: **TTL** (Transistor-Transistor Logic), **CMOS** (Complementary Metal Oxide Semiconductor)
- TTL : BJT와 Diode로 구성
- CMOS: NMOS와 PMOS FET로 구성
 - CMOS의 장점: TTL에 비해 소비전력이 적고 사용전압 범위가 넓다
 - CMOS의 단점 : TTL에 비해서 속도가 떨어진다.
 - 고속의 CMOS IC가 개발되어 TTL과 비슷한 보급 성향을 보이고 있다.
- TTL 중에서는 74계열 외에 군용과 같이 열악한 환경에서도 동작할 수 있도록 개 발된 54 계열이 있다.
 - 74 계열의 작동 온도 범위 : 0~70℃
 - 54 계열은 작동 온도 범위 : -55~125 ℃
- TTL은 LS(low power-schottky), F(fast) 타입이 CMOS는 4000B 계열, HC(high speed CMOS) 타입이 주로 사용된다.

■ TTL과 CMOS 특성 비교

구분	ΠL	CMOS
전원전압	4.75~5.25V	종래형 : 3~8V, 고속형 : 2~6V
논리레벨 전압(Low)	0~0.8V	1~1/3V _{DD}
논리레벨 전압(High)	2.4~5.0V	2/3~V _{DD}
Fan-out	10개	50 ⁷ H
소비전력	10mW	10 μW
최대 동작주파수	LS형 : 45MHz, ALS형 : 100MHz	종래형 : 2MHz, 고속형 : 45MHz
형태	74LSxx, 74ALSxx, 74Fxx, 74ASxx	40xxx, 14xxx, 74HCxxx
잡음 역유도(V)	2.4V	3V
장단점	 전파지연시간이 짧다. 소비전력이 크다. 잡음여유도가 작다. 온도에 따라 threshold 전압이 크게 변한다. 	 소비전력이 작다. 낮은 전압에서 동작한다. 잡음여유도가 크다. 구조가 간단하여 집적화가 쉽다. 전원전압 범위가 넓다. 정전 파괴가 쉽다.

■ TTL/CMOS Family 이름 규칙

감사합니다 ☺

