# Упражнения: Прости пресмятания

Задачи за упражнение в клас и за домашно към курса "Основи на програмирането" @ СофтУни.

# 1. Празно Visual Studio решение (Blank Solution)

Създайте празно решение (**Blank Solution**) във Visual Studio. Решенията (solutions) във Visual Studio обединяват **група проекти**. Тази възможност е изключително удобна, когато искаме да работим по няколко проекта и бързо да превключваме между тях или искаме да обединим логически няколко взаимосвързани проекта.

В настоящото практическо занимание ще използваме **Blank Solution с няколко проекта** за да организираме решенията на задачите от упражненията – всяка задача в отделен проект и всички проекти в общ solution.

- 1. Стартирайте Visual Studio.
- 2. Създайте нов **Blank Solution**: [File] → [New] → [Project].



3. Изберете от диалоговия прозорец [Templates] → [Other Project Types] → [Visual Studio Solutions] → [Blank Solution] и дайте подходящо име на проекта, например "Simple-Calculations":























Сега имате създаден празен Visual Studio Solution (с 0 проекта в него):



Целта на този blank solution е да добавяте в него по един проект за всяка задача от упражненията.

### 2. Пресмятане на лице на квадрат

Първата задача от тази тема е следната: да се напише конзолна програма, която въвежда цяло число а и пресмята лицето на квадрат със страна а. Задачата е тривиално лесна: въвеждате число от конзолата, умножавате го само по себе си и печатате получения резултат на конзолата.

1. Създайте нов проект в съществуващото Visual Studio решение. В Solution Explorer кликнете с десен бутон на мишката върху **Solution 'Simple-Calculations'**. Изберете [Add] → [New Project...]:



2. Ще се отвори диалогов прозорец за избор на тип проект за създаване. Изберете С# конзолно приложение с име "Square-Area":























Вече имате solution с едно конзолно приложение в него. Остава да напишете кода за решаване на задачата.

3. Отидете в тялото на метода **Main(string[] args)** и напишете кода от картинката по-долу:

```
namespace Square_Area
{
    Oreferences
    class Program
    {
        Oreferences
        static void Main(string[] args)
        {
            Console.Write("a = ");
            var a = int.Parse(Console.ReadLine());
            var area = a * a;
            Console.Write("Square = ");
            Console.WriteLine(area);
        }
    }
}
```

Кодът въвежда цяло число с a = int.Parse(Console.ReadLine()), след това изчислява area = a \* a и накрая печата стойността на променливата area.

4. Стартирайте програмата с [Ctrl+F5] и я тествайте с различни входни стойности:



5. **Тествайте** решението си в **judge системата**: <a href="https://judge.softuni.bg/Contests/Practice/Index/151#0">https://judge.softuni.bg/Contests/Practice/Index/151#0</a>. Трябва да получите 100 точки (напълно коректно решение):





















| Submissions           |                                  |                     |         |
|-----------------------|----------------------------------|---------------------|---------|
|                       |                                  |                     | Ó       |
| Points                | Time and memory used             | Submission date     |         |
| <b>////</b> 100 / 100 | Memory: 7.77 MB<br>Time: 0.013 s | 20:06:36 21.01.2016 | Details |

# 3. От инчове към сантиметри

Да се напише програма, която **чете от конзолата число** (не непременно цяло) и преобразува числото **от инчове в сантиметри**. За целта **умножава инчовете по 2.54** (защото 1 инч = 2.54 сантиметра).

1. Първо създайте нов С# конзолен проект в решението "Simple-Calculations". Кликнете с мишката върху решението в Solution Explorer и изберете [Add] → [New Project...]:



Изберете [Visual C#] → [Windows] → [Console Application] и задайте име "Inches-to-Centimeters":























2. Напишете кода на програмата. Може да си помогнете с примерния код от картинката:

```
static void Main(string[] args)
{
    Console.Write("inches = ");
    var inches = double.Parse(Console.ReadLine());
    var centimeters = inches * 2.54;
    Console.Write("Centimeters = ");
    Console.WriteLine(centimeters);
}
```

3. Стартирайте програмата, както обикновено с [Ctrl+F5]:



Изненада! Како става? Програмата не работи правилно... Всъщност това не е ли предходната програма? Във Visual Studio текущият активен проект в един solution е маркиран в получерно и може да се сменя:





















4. За да включите режим на автоматично преминаване към текущия проект, кликнете върху главния solution с десния бутон на мишката и изберете [Set StartUp Projects...]:



Ще се появи диалогов прозорец, от който трябва да се избере [Startup Project] → [Current selection]:



5. Сега отново стартирайте програмата, както обикновено с [Ctrl+F5]. Този път ще се стартира текущата отворена програма, която преобразува инчове в сантиметри. Изглежда работи коректно:



6. Сега превключете към преходната програма (лице на квадрат). Това става с двоен клик на мишката върху файла Program.cs от предходния проект "Square-Area" в панела [Solution Explorer] на Visual Studio:





















7. Натиснете пак [Ctrl+F5]. Този път трябва да се стартира другият проект:



8. Превключете обратно към проекта "Inches-to-Centimeters" и го стартирайте с [Ctrl+F5]:

**Превключването между проектите** е много лесно, нали? Просто избираме файла със сорс кода на програмата, кликваме го два пъти с мишката и при стартиране тръгва програмата от този файл.

9. Тествайте с дробни числа, например с 2.5:



**Внимание:** в зависимост от регионалните настройки на операционната система, е възможно вместо **десетична точка** (US настройки) да се използва **десетична запетая** (BG настройки). Ако програмата очаква десетична точка и бъде въведено число с десетична запетая или на обратно (бъде въведена десетична точка когато се очаква десетична запетая), ще се получи следната грешка:















```
C:\WINDOWS\system32\cmd.exe
                                                                      inches = 2,5
Unhandled Exception: System.FormatException: Input string was not in a
correct format.
   at System.Number.ParseDouble(String value, NumberStyles options, Num
berFormatInfo numfmt)
   at System.Double.Parse(String s)
   at Inches to Centimeters.Program.Main(String[] args) in C:\Projects\
Simple-Calculations\Inches-to-Centimeters\Program.cs:line 14
```

Препоръчително е да промените настройките на компютъра си, така че да се използва десетична точка:





10. Вече е време за тестване в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#1. Решението би трябвало да бъде прието като напълно коректно:

























### 4. Поздрав по име

Да се напише програма, която **чете от конзолата име на човек** и отпечатва "**Hello**, **<name**>!", където **<name>** е въведеното преди това име.

1. Първо създайте нов C# конзолен проект с име "Greeting" в решението "Simple-Calculations":



2. Напишете кода на програмата. Ако се затруднявате, може да ползвате примерния код по-долу:















3. Стартирайте програмата с [Ctrl+F5] и я тествайте:

```
C:\WINDOWS\system32\cmd.exe
                                       ×
Enter your name: Svetlin Nakov
Hello, Svetlin Nakov!
Press any key to continue
```

4. Тествайте в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#2. Преди да пратите решението сложете коментар на първия ред, който печата "Enter your name".

### 5. Съединяване на текст и числа

Напишете С# програма, която прочита от конзолата име, фамилия, възраст и град и печата съобщение от следния вид: "You are <firstName> <lastName>, a <age>-years old person from <town>".

- Добавете към текущото Visual Studio решение още един конзолен C# проект с име "Concatenate-Data".
- 2. Напишете кода, който чете входните данни от конзолата:

```
var firstName = Console.ReadLine();
var lastName = Console.ReadLine();
var age = int.Parse(Console.ReadLine());
var town = Console.ReadLine();
```

You are (8) (1), a (2) years old person from (1).",

3. Допишете код, който отпечатва описаното в условието на задачата съобщение.

На горната картинка кодът е нарочно даден размазан, за да помислите как да си го напишете сами.

ritions, Leutiness, age, touril;

- 4. Тествайте решението локално с [Ctrl+F5] и въвеждане на примерни данни.
- 5. Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#3.

# 6. Лице на трапец

Напишете програма, която чете от конзолата три числа **b1**, **b2** и **h** и **пресмята лицето на трапец** с основи **b1** и **b2** и височина **h**. Формулата за лице на трапец е (b1 + b2) \* h / 2.

На фигурата по-долу е показан трапец със страни 8 и 13 и височина 7. Той има лице (8 + 13) \* 7 / 2 = 73.5.





















- 1. Добавете към текущото Visual Studio решение още един конзолен С# проект с име "Trapezoid-Area".
- 2. Напишете кода, който чете входните данни от конзолата, пресмята лицето на трапеца и го отпечатва:

```
static void Main(string[] args)
{
    var b1 = double.Parse(Console.ReadLine());

    Console.WriteLine("Trapezoid area = " + area);
}
```

Кодът на картинката е нарочно размазан, за да си го доизмислите и допишете сами.

- 3. Тествайте решението локално с [Ctrl+F5] и въвеждане на примерни данни.
- 4. Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#4.

### 7. Периметър и лице на кръг

Напишете програма, която чете от конзолата **число r** и пресмята и отпечатва **лицето** и **периметъра на кръг** / окръжност с радиус r.

| вход | изход                                                   |
|------|---------------------------------------------------------|
| 3    | Area = 28.2743338823081<br>Perimeter = 18.8495559215388 |
| 4.5  | Area = 63.6172512351933<br>Perimeter = 28.2743338823081 |

За изчисленията можете да използвате следните формули:

- area = Math.PI \* r \* r
- perimeter = 2 \* Math.PI \* r

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#5.

# 8. Лице на правоъгълник в равнината

Правоъгълник е зададен с координатите на два от своите срещуположни ъгъла (x1, y1) – (x2, y2). Да се пресметнат площта и периметъра му. Входът се чете от конзолата. Числата x1, y1, x2 и y2 са дадени по едно наред. Изходът се извежда на конзолата и трябва да съдържа два реда с по една число на всеки от тях – лицето и периметъра.

| вход                 | изход       |
|----------------------|-------------|
| 60<br>20<br>10<br>50 | 1500<br>160 |
| 30<br>40<br>70       | 2000<br>180 |

















| -10    |             |
|--------|-------------|
| 600.25 | 350449.6875 |
| 500.75 | 2402        |
| 100.50 |             |
| -200.5 |             |

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#6.

# 9. Графично приложение: конвертор от BGN към EUR

Създайте графично приложение (GUI application), което пресмята стойността в евро (EUR) на парична сума, зададена в **лева** (BGN). При промяна на стойността в лева, равностойността в евро трябва да се преизчислява автоматично. Използвайте курс лева / евро: 1.95583.



Добавете към текущото Visual Studio решение още един проект. Този път създайте Windows Forms приложение със С# с име "BGN-to-EUR-Converter":



- 2. Подредете следните UI контролите във формата:
  - NumericUpDown с име numericUpDownAmount ще въвежда сумата за конвертиране
  - Label с име labelResult ще показва резултата след конвертиране
  - Още два Label компонента, служещи единствено за статично изобразяване на текст

Графичният редактор за потребителски интерфейс може да изглежда по подобен начин:





















3. Задайте настройки на формата и на отделните контроли:

### FormConverter



- Text = "BGN to EUR"
- Font.Size = 12
- MaximizeBox = False
- MinimizeBox = False
- FormBorderStyle = FixedSingle

### numericUpDownAmount



- Value = 1
- Minimum = 0
- Maximum = 10000000
- TextAlign = Right
- DecimalPlaces = 2

### labelResult



- AutoSize = False
- BackColor = PaleGreen





















- TextAlign = MiddleCenter
- Font.Size = 14
- Font.Bold = True
- 4. Дефинирайте обработчици на събития по контролите:



Хванете следните събития:

- FormConverter.Load (кликнете върху формата с мишката 2 пъти)
- numericUpDownAmount.ValueChanged (кликнете върху NumericUpDown контролата 2 пъти)
- numericUpDownAmount. KeyUp (изберете Events от таблото Properties и кликнете 2 пъти върху KeyUp)

Събитието **Form.Load** се изпълнява при стартиране на програмата, преди да се появи прозореца на приложението. Събитието **NumericUpDown.ValueChanged** се изпълнява при промяна на стойността в полето за въвеждане на число. Събитието **NumericUpDown.KeyUp** се изпълнява след натискане на клавиш в полето за въвеждане на число. При всяко от тези събития ще преизчисляваме резултата.

За хващане на събитие ползвайте иконката със събитията в Properties прозореца във Visual Studio:



Сложете следния С# код за обработка на събитията:

```
private void FormConverter_Load(object sender, EventArgs e)
{
   ConvertCurrency();
}
```



















```
private void numericUpDownAmount_ValueChanged(object sender, EventArgs e)
{
   ConvertCurrency();
}
private void numericUpDownAmount_KeyUp(object sender, KeyEventArgs e)
{
   ConvertCurrency();
}
```

Всички прихванати събития извикват метода **ConvertCurrency()**, който конвертира зададената сума от лева в евро и показва резултата в зелената кутийка.

5. Напишете кода (програмната логика) за конвертиране от лева към евро:

```
private void ConvertCurrency()
{
  var amountBGN = this.numericUpDownAmount.Value;
  var amountEUR = amountBGN * 1.95583m;
  this.labelResult.Text =
    amountBGN + " BGN = " +
    Math.Round(amountEUR, 2) + " EUR";
}
```

6. Стартирайте проекта с [Ctrl+F5] и тествайте дали работи правилно.

### 10. Лице на триъгълник

Напишете програма, която чете от конзолата **страна** и **височина** на **триъгълник** и пресмята неговото лице. Използвайте формулата за лице на триъгълник: area = a \* h / 2. Закръглете резултата до **2 знака след десетичната точка** използвайки Math.Round(area, 2).

| вход               | изход                 |
|--------------------|-----------------------|
| 20<br>30           | Triangle area = 300   |
| 15<br>35           | Triangle area = 262.5 |
| 7.75<br>8.45       | Triangle area = 32.74 |
| 1.23456<br>4.56789 | Triangle area = 2.82  |

Тествайте решението си в judge системата: <a href="https://judge.softuni.bg/Contests/Practice/Index/151#7">https://judge.softuni.bg/Contests/Practice/Index/151#7</a>.

# 11. Конзолен конвертор: от градуси °С към градуси °F

Напишете програма, която чете **градуси по скалата на Целзий** (°C) и ги преобразува до **градуси по скалата на Фаренхайт** (°F). Потърсете в Интернет подходяща формула, с която да извършите изчисленията. Закръглете резултата до **2 знака след десетичната точка**. Примери:

| вход | изход |
|------|-------|
| 25   | 77    |

| вход | изход |
|------|-------|
| 0    | 32    |

| вход | изход |
|------|-------|
| -5.5 | 22.1  |

| вход | изход |
|------|-------|
| 32.3 | 90.14 |



















#### **12**. Конзолен конвертор: от радиани в градуси

Напишете програма, която чете **ъгъл в радиани** (rad) и го преобразува в **градуси** (deg). Потърсете в Интернет подходяща формула. Числото  $\pi$  в C# програми е достъпно чрез **Math.PI**. Закръглете резултата до найблизкото цяло число използвайки Math.Round(). Примери:

| вход   | изход |
|--------|-------|
| 3.1416 | 180   |

| вход   | изход |
|--------|-------|
| 6.2832 | 360   |

| вход   | изход |
|--------|-------|
| 0.7854 | 45    |

| вход   | изход |
|--------|-------|
| 0.5236 | 30    |

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#9.

#### Конзолен конвертор: USD към BGN **13**.

Напишете програма за конвертиране на щатски долари (USD) в български лева (BGN). Закръглете резултата до **2 цифри** след десетичната запетая. Използвайте фиксиран курс между долар и лев: **1 USD** = **1.79549 BGN**.

| вход | изход     |
|------|-----------|
| 20   | 35.91 BGN |

| вход | изход      |
|------|------------|
| 100  | 179.55 BGN |

| вход | изход     |
|------|-----------|
| 12.5 | 22.44 BGN |

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#10.

#### \* Конзолен междувалутен конвертор 14.

Напишете програма за конвертиране на парична сума от една валута в друга. Трябва да се поддържат следните валути: BGN, USD, EUR, GBP. Използвайте следните фиксирани валутни курсове:

| Курс  | USD     | EUR     | GBP     |
|-------|---------|---------|---------|
| 1 BGN | 1.79549 | 1.95583 | 2.53405 |

Входът е сума за конвертиране + входна валута + изходна валута. Изходът е едно число – преобразуваната сума по посочените по-горе курсове, закръглен до 2 цифри след десетичната точка. Примери:

| вход | изход     |
|------|-----------|
| 20   | 35.91 BGN |
| USD  |           |
| BGN  |           |

| вход | изход     |
|------|-----------|
| 100  | 51.13 EUR |
| BGN  |           |
| EUR  |           |

| вход                | изход    |
|---------------------|----------|
| 12.35<br>EUR<br>GBP | 9.53 GBP |

| вход   | изход      |
|--------|------------|
| 150.35 | 138.02 EUR |
| USD    |            |
| EUR    |            |

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#11.

### \*\* Пресмятане с дати: 1000 дни на Земята **15.**

Напишете програма, която въвежда рождена дата във формат "dd-MM-уууу" и пресмята датата, на която се навършват 1000 дни на Земята от тази рождена дата и я отпечатва в същия формат. Денят на раждане се счита за първи ден на Земята (рождената дата + 0 дни), следващият ден се счита за втори ден на Земята (рождената дата + 1 ден) и т.н. След 999 дни идва 1000-ният ден на Земята – това е търсеният резултат.

| вход       | изход      |
|------------|------------|
| 25-02-1995 | 20-11-1997 |
| 07-11-2003 | 02-08-2006 |
| 30-12-2002 | 24-09-2005 |





















| 01-01-2012 | 26-09-2014 |
|------------|------------|
| 14-06-1980 | 10-03-1983 |

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/151#12. He печатайте нищо допълнително на конзолата освен изискваната дата!

\* Подсказки: потърсете информация за типа DateTime в С# и по-конкретно разгледайте методите ParseExact(str, format), AddDays(count) и ToString(format). С тяхна помощ може да решите задачата, без да е необходимо да изчислявате дни, месеци и високосни години.

#### \* Графично приложение: хвани бутона! 16.



Създайте забавно графично приложение "хвани бутона": една форма съдържа един бутон. При преместване на курсора на мишката върху бутона той се премества на случайна позиция. Така се създава усещане, че "бутонът бяга от мишката и е трудно да се хване". При "хващане" на бутона се извежда съобщениепоздрав.

\* Подсказка: напишете обработчик за събитието Button. Mouse Enter и премествайте бутона на случайна позиция. Използвайте генератор за случайни числа

Random. Позицията на бутона се задава от свойството Location. За да бъде новата позиция на бутона в рамките на формата, можете да направите изчисления спрямо размера на формата, достъпен от свойството ClientSize. Можете да ползвате следния код за ориентир:

```
private void buttonCatchMe_MouseEnter(object sender, EventArgs e)
{
    Random rand = new Random();
    var maxWidth = this.Width - buttonCatchMe.ClientSize.Width;
    var maxHeight = this.Height - buttonCatchMe.ClientSize.Height;
    this.buttonCatchMe.Location = new Point(
        rand.Next(maxWidth), rand.Next(maxHeight));
}
```



















