Projekt

Sterowniki robotów

Założenia projektowe

$\begin{array}{c} Humanistycznie~upo \mathring{A} \mathring{Z}ledzony~robot\\ akrobatyczny \end{array}$

HURA

Skład grupy: Albert Lis, 235534 MichaÅĆ MoruÅĎ, 235986

Termin: srTP15???

Prowadzący: mgr inż. Wojciech DOMSKI

Spis treści

1	Opi	s projektu	2
2	Zało	ożenia projektowe	2
	2.1	Mechanika	2
	2.2	Elektronika	2
	2.3	Komunikacja	3
3	Har	rmonogram pracy	9
	3.1	Zakres prac	3
	3.2	Kamienie milowe	3
	3.3	Wykres Gantta	3
		Podział pracy	

To musi się znaleźć:

k
1 in [0,1.0] — poprawne opracowanie dokumentu w systemie składania tekstu La
TeX, wykorzystanie dostarczonego szablonu

k2 in [0,0.5] — przynajmniej dwie pozycje literaturowe traktujące o problematyce projektu

k3 in [0,0.5] — przynajmniej 2 pozycje ściśle związane z wykorzystanym sprzętem, układami elektronicznymi, modułami, itp.

k4 in [0,1.5] — merytoryczna część założeń projektowych

k5 in [0,0.5] — podział prac w projekcie na zadania.

1 Opis projektu

Celem projektu jest zbudowanie zdalnie sterowanego robota jezdnego. Robot będzie sterowany za pomocą akcelerometru w telefonie. Dane będą przesyłanie za pomocą Wi-Fi lub Bluetooth. Regulacja prędkości będzie się odbywać za pomocą regulatora PID. Dane o prędkości będą pobierane z enkoderów znajdujących się w kołach robota. Opcjonalnie robot będzie wyświetlał szczegółowe dane o swoim stanie wewnętrznym za pomocą wbudowanego w płytkę z mikrokontrolerem wyświetlacza LCD.

Rysunek 1: Architektura systemu

2 Założenia projektowe

2.1 Mechanika

1. Naped

Napęd będzie realizowany na tylną oś za pomocą silnika szczotkowego DC. Regulacja prędkości oparta o regulator PID oraz sterowanie PWM.

2. Sterowanie

Skręcanie będzie oparte o serwomechanizm. Serwomechanizm realizuje skręt przednich kół za pomocą poprzecznej belki przymocowanej do kół.

3. Rama

Rama zbudowana z klocków lego. Posiada duże możliwości dopasowania do zmian w trakcie projektu.

2.2 Elektronika

1. Mikrokontroler

Sterownik dostarczony przez prowadzącego STM32L476GDiscovery.

2. Pomiar prędkości

Realizowany za pomocą enkoderów znajdujących się w kołach robota.

3. Zasilanie

Oparte o akumulatory li-ion 18650 lub powerbank. Dopasowanie napięcia za pomocą przetwornicy step-up MT3608 do napędu kół oraz step-down do zasilania mikrokontrolera i modułu Wi-Fi w standardzie 3.3V.

2.3 Komunikacja

- 1. Połączenie ze smartfonem Realizowane za pomocą modułu Wi-Fi ESP8266. W telefonie do komunikacji posłuży aplikacja RoboRemo.
- 2. Połączenie modułu Wi-Fi z mikrokontrolerem Realizowane za pomocą portu szeregowego.

3 Harmonogram pracy

3.1 Zakres prac

1. Zapoznanie się z mikrokontrolerem Wykorzystane to tego celu zostaną poradniki ze strony www.forbot.pl. [1–3]

3.2 Kamienie milowe

- 1. Implementacja działającego prototypu sterowanego joystickiem na płytce.
- 2. Implementacja regulacji prędkości w oparciu o regulator PID.
- 3. Implementacja sterowania smartfonem.

3.3 Wykres Gantta

Należy wstawić diagram Gantta oraz określić ścieżkę krytyczną. Ponadto zaznaczyć i opisać kamienie milowe.

Rysunek 2: Diagram Gantta

3.4 Podział pracy

Każdy z członków grupy powinien w każdym etapie mieć wymienione od 2 do 4 zadań. Przykładowa tabele podziału zadań dla etapu II (Tab. 1) oraz dla etapu III (Tab. 2) zostały przedstawione poniżej. Przy podziałe prac nie uwzględniamy tworzenia dokumentacji projektu!

Przykładowy podział prac:

Albert Lis	%	Michał Moruń	%
Schemat elektryczny i elektroniczny		Schemat mechaniczny	
Budowanie odpowiednich algorytmów		Budowanie odpowiednich algorytmów	
Budowa modułu elektronicznego		Budowa modułu mechanicznego	
Integracja części mechanicznej oraz		Integracja części mechanicznej oraz	
elektronicznej		elektronicznej	

Tabela 1: Podział pracy – Etap II

Albert Lis	%	Michał Moruń	%
Utworzenie modułu integrującego robota z		Utworzenie modułu integrującego robota z	
telefonem		telefonem	
Integracja ze sobą wszystkich modułów		Integracja ze sobą wszystkich modułów	
Stworzenie interfejsu użytkownika		Stworzenie interfejsu użytkownika	

Tabela 2: Podział pracy – Etap III

Literatura

- $[1]\ {\rm Kurs\ STM32\ F4\ z}$ wykorzystaniem HAL oraz Cube
- $[2]\ {\rm Kurs}\ {\rm STM32}\ {\rm F1}\ {\rm z}$ wykorzystaniem bibliotek STD Periph
- $[3]\ {\rm Kurs\ STM32\ F1}$ z wykorzystaniem bibliotek HAL
- [4] ESP8266 Arduino Core Documentation
- [5] Teoria sterowania w ćwiczeniach