1. Direct products.

(a) Let $G = A_1 \times \cdots \times A_n$, and for each i, let B_i be a normal subgroup of A_i . Prove that $B_1 \times \cdots \times B_n \subseteq G$ and that

$$(A_1 \times \cdots \times A_n)/(B_1 \times \cdots \times B_n) \cong (A_1/B_1) \times \cdots \times (A_n/B_n).$$

[Hint: You may use (without proof) the fact that, for groups C_1, \ldots, C_n , if for each i, you have a homomorphism $\varphi_i : A_i \to C_i$, then

$$\varphi_1 \times \cdots \times \varphi_n : A_1 \times \cdots \times A_n \to C_1 \times \cdots \times C_n$$

defined by

$$(a_1,\ldots,a_n)\mapsto(\varphi(a_1),\ldots,\varphi(a_n))$$

is a homomorphism as well.]

Proof. Let $(a_1, a_2, \ldots, a_n) \in G$. We have that $a_i^{-1} \in A_i$ for every i such that $1 \leq i \leq n$, so $a^{-1} = (a_1^{-1}, a_2^{-1}, \ldots, a_n^{-1}) \in G$. Now fix $b = (b_1, b_2, \cdots, b_n) \in B_1 \times \cdots \times B_n$. We know that, for every i such that $1 \leq i \leq n$, we have that $B_i \subseteq A_i$. Hence, $a_i b a_i^{-1} \in B_i$ by the definition of normal subgroups. Thus, this gives us that,

$$aba^{-1} = (a_1b_1a_1^{-1}, \dots, a_nb_na_n^{-1}) \in B$$

Since a was arbitrary in G and b was arbitrary in B, we have that $B \subseteq G$.

Now we have that,

$$(A_1 \times \cdots \times A_n)/(B_1 \times \cdots \times B_n) = \{a(B_1 \times \cdots \times B_n) \mid a \in G\}$$

and,

$$(A_1/B_1) \times \cdots \times (A_n/B_n) = \{a_1B_1 \mid a_1 \in A_1\} \times \cdots \times \{a_nB_n \mid a_n \in A_n\}$$

Define $\varphi : \{a(B_1, \dots, B_n) \mid a \in G\} \to \{a_1B_1 \mid a_1 \in A_1\} \times \dots \times \{a_nB_n \mid a_n \in A_n\}$ such that $\varphi(a(B_1 \times \dots \times B_n))) = a_1B_1 \times \dots \times a_nB_n$ where $a = (a_1, \dots, a_n)$.

Now let $a, a' \in A$ and suppose $\varphi(a(B_1 \times \cdots \times B_n))) = \varphi(a'(B_1 \times \cdots \times B_n)))$. Then,

$$a_1B_1 \times \cdots \times a_nB_n = a'_1B_1 \times \cdots \times a'_nB_n$$

That is,

$$a_1B_1 = a'_1B_1$$

$$a_2B_2 = a'_2B_2$$

$$\vdots$$

$$a_nB_n = a'_nB_n$$

Since $B_i \leq A_i$, we have that $a_i = a_i'$ for every i. Thus, φ is injective. Now suppose $a_1' \in A_1, \ldots, a_n' \in A_n$ and consider $a_1'B_1, \ldots, a_n'B_n$. Since $a_1' \in A_1, \ldots, a_2' \in A_2$, we can define $a' = (a_1', \ldots, a_n') \in G$. Hence, it is clear that,

$$\varphi(a'(B_1 \times \cdots \times B_n)) = a'_1 B_1 \times \cdots a'_n B_n$$

Thus, φ is surjective and hence is a bijection.

(b) Let G be a group, and let $G^n = G \times \cdots \times G$ (n factors). Define an action of S_n by

$$\sigma \cdot (g_1, g_2, \dots, g_n) = (g_{\sigma^{-1}(1)}, g_{\sigma^{-1}(2)}, \dots, g_{\sigma^{-1}(n)}),$$

for $g_i \in G$ and $\sigma \in S_n$. For example, for n = 4, we have

$$(124) \cdot (g_1, g_2, g_3, g_4) = (g_4, g_1, g_3, g_2).$$

(i) Check that this, indeed, defines a group action of S_n on G^n . (Make a particular note here of why you need σ^{-1} in the subscript, rather than σ .)

Proof. Let $\sigma, \tau \in S_n$ and let $g = (g_1, g_2, \ldots, g_n) \in G^n$. We have,

$$\tau(\sigma(g)) = \tau(g_{\sigma^{-1}(1)}, g_{\sigma^{-1}(2)}, \dots, g_{\sigma^{-1}(n)})$$

$$= (g_{\tau^{-1}(\sigma^{-1}(1))}, g_{\tau^{-1}(\sigma^{-1}(2))}, \dots, g_{\tau^{-1}(\sigma^{-1}(n))})$$

$$= (\sigma\tau) \circ q$$

Now let $1 \in S_n$ be the identity element. Observe that $1^{-1} = 1$. Then,

$$1(g) = (g_1, \dots, g_n)$$
$$= q$$

Hence, this defines a valid group action.

(ii) For $q \in G$, let

$$g^{(i)} = (g_1, g_2, \dots, g_n),$$
 where
$$\begin{cases} g_j = g & \text{if } j = i, \\ g_j = 1 & \text{otherwise.} \end{cases}$$

For example, if n = 4, then $g^{(3)} = (1, 1, g, 1)$. Show $\sigma \cdot g^{(i)} = g^{(\sigma(i))}$.

Proof. Fix $g \in G$ and consider $g^{(i)} = (g_1, g_2, \dots, g_n)$ where $g_i = g$ and all other entries are 1. Now fix $\sigma \in S_n$. We have,

$$\sigma \cdot g^{(i)} = (g_{\sigma^{-1}(1)}, g_{\sigma^{-1}(2)}, \dots, g_{\sigma^{-1}(n)})$$

Hence, we see that the element g is moved to the position $\sigma^{-1}(i)$. All of the other entries remain 1. Hence,

$$\sigma \cdot g^{(i)} = g^{\sigma^{-1}(i)}$$

(iii) Show that

$$\varphi_{\sigma}: G^n \to G^n$$
 defined by $\bar{g} \mapsto \sigma \cdot \bar{g}$

is an automorphism of G^n . Deduce that $\varphi: S_n \to \operatorname{Aut}(G^n)$ is an injective homomorphism.

- 2. **Semidirect products.** Let A and B be groups, and let $B \subseteq A$ via automorphisms of A. Define $A \rtimes B$ with respect to this action.
 - (a) Prove that $C_B(A) = \ker$, where $C_B(A) = \{b \in B \mid ba = ab \text{ for all } b \in B\}$ (and \ker is the kernel of the action of B on A).

Proof. Let $b \in C_B(A)$. Then ab = ba for for every $a \in A$. Hence, we have $b^{-1}ab = a$

- (b) We showed that $A \subseteq A \rtimes B$. Show $(A \rtimes B)/A \cong B$. [Hint: Consider the map $(a,b) \mapsto b$ and set up a 1st isomorphism theorem argument.]
- (c) Let $Z = \langle x \rangle$ be the infinite cyclic group.
 - (i) Compute Aut(Z). [Hint. x must map to a generator of Z.]
 - (ii) Classify all actions of Z on itself that correspond to automorphisms (i.e. actions where for each $z \in Z$, the map $\varphi_z : Z \to Z$ defined by $a \mapsto z \cdot a$ is an automorphism.)
 - (iii) Classify all semidirect products of Z with itself. [i.e. How many examples are there of $Z \rtimes Z$, which depends intrinsically on the action of Z on itself.]