

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2001-233225

(43)Date of publication of application : 28.08.2001

(51)Int.CI.

B62D 5/04

(21)Application number : 2000-043330

(71)Applicant : KOYO SEIKO CO LTD

(22)Date of filing : 21.02.2000

(72)Inventor : SANO OSAMU
TAKEI SATOYUKI
OKA KUNIHIRO
YAMAMOTO KAZUTOSHI

(54) ELECTRIC POWER STEERING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To reduce backlash quantity of an engage part between a worm and a worm wheel by a coil spring energizing a rolling bearing and improve durability of the coil spring.

SOLUTION: A sliding bearing 13 supports a worm 71 interlocked with rotation of a motor 6 for assisting the steering in a housing 8. A coil spring 18 is wound around a periphery of the sliding bearing 13 in such a way an axis thereof being circular. The sliding bearing 13 is energized to the radial direction by the coil spring 18. Thus, backlash quantity of an engage part of the worm 71 and a worm wheel 72 can be reduced.

LEGAL STATUS

[Date of request for examination] 09.01.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's
decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公 開 特 許 公 報 (A)

(11)特許出願公開番号
特開2001-233225
(P2001-233225A)

(43)公開日 平成13年8月28日(2001.8.28)

(51) Int.Cl.
B 62 D 5/04

識別記号

F I
B 62D 5/04

テーマコード(参考)
3D033

審査請求・未請求・請求項の数 3 OI: (全 7 頁)

(21) 出庫番号 特願2000-43330(P2000-43330)

(71) 出願人 000001247

光洋精工株式会社

大阪府大阪市中央区南船場3丁目5番8号

(22)出願日 平成12年2月21日(2000.2.21)

(72) 発明者 佐野 修

大阪府大阪市中央区南

光洋精工株式会社内

(72) 発明者 武井 智行

大阪府大阪市中央区南堀

光洋精工株式会社内

(74)代理人 100078868

井理士 河野 登夫

最終頁に統く

(54) 【発明の名称】 電動式蛇取装置

(57) 【要約】

【課題】 転がり軸受を付勢するコイルばねによってウォーム及びウォームホイールの噛合部のバックラッシュ量を少なくすることができるとともに、コイルばねの耐久性を向上することができるようにする。

【解決手段】 操舵補助用のモータ6の回転に連動するウォーム7-1をハウジング8内に支持する軸受をすべり軸受とし、該すべり軸受1-3の外周にコイルばね1-8をその軸心が環状になるように巻回し、該コイルばね1-8がすべり軸受1-3をラジアル方向へ付勢することによりウォーム7-1及びウォームホイール7-2の噛合部のバックラッシュ量を少なくするようにした。

【特許請求の範囲】

【請求項1】 操舵補助用のモータの回転に連動し、ハウジング内に軸受を介して回転可能に支持される小径ギヤ及び該小径ギヤに噛合し、前記小径ギヤの回転中心と非平行に配される操舵軸に取付けられる大径ギヤを備え、前記モータの回転によって操舵補助するようにした電動式舵取装置において、前記軸受はすべり軸受であり、該すべり軸受の外周にコイルばねをその軸心が環状になるように巻回してあることを特徴とする電動式舵取装置。

【請求項2】 前記コイルばねの巻き付け角が軸心に対して30°乃至75°である請求項1記載の電動式舵取装置。

【請求項3】 前記小径ギヤの前記モータと反対側端部は前記すべり軸受が支持し、小径ギヤのモータ側端部は転がり軸受が支持している請求項1又は請求項2記載の電動式舵取装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は操舵補助力の発生源としてモータを用いてなる電動式舵取装置に関する。

【0002】

【従来の技術】自動車の舵取りは、車室の内部に配された操舵輪の回転操作を、舵取用の車輪（一般的には前輪）の操向のために車室の外部に配された舵取機構に伝えて行われる。

【0003】図6は従来例における電動式舵取装置の断面図、図7は減速機構部分の断面図である。自動車用の電動式舵取装置としては、図6に示すように、例えば舵取りのための操舵輪100に連結される第1の操舵軸101と、該操舵軸101の下端にトーションバー102を介してその上端が同軸的に連結され、その下端が車輪に繋がる舵取機構に連結される第2の操舵軸103と、操舵輪100を回転することによって第1の操舵軸101に加わるトルクを前記トーションバー102に生じる捩れによって検出するトルクセンサ104と、該トルクセンサ104の検出結果に基づいて駆動される操舵補助用のモータ105と、該モータ105の出力軸に繋がり、該出力軸の回転を減速して前記第2の操舵軸103に伝達するウォーム106及びウォームホイール107を有する減速機構とを備え、操舵輪100の回転に応じた舵取機構の動作を前記モータ105の回転により補助し、舵取りのための運転者の労力負担を軽減するように構成されている。

【0004】減速機構を構成するウォーム106は図7に示す如く一対の転がり軸受108、108を介してハウジング110の嵌合孔に支持され、ウォームホイール107が設けられている第2の操舵軸103は一対の転がり軸受109、109を介してハウジング110の嵌合孔に支持され、ラジアル方向及びアキシアル方向への

移動が阻止されている。

【0005】このようにウォーム106及びウォームホイール107が用いられる場合、その噛合部のバックラッシュ量を少なくするため、ウォーム106及びウォームホイール107の回転中心間距離と、前記軸受108、109が嵌合される嵌合孔の中心間距離とが許容範囲内で一致するように加工されたウォーム106、ウォームホイール107、転がり軸受108、109、第2の操舵軸103、ハウジング110が選択され組み立てられているが、この組立てに多くの時間を要することになり、また、ウォーム106及びウォームホイール107の歯の摩耗が増大することによってバックラッシュ量が増加することになり、改善策が要望されていた。

【0006】また、モータ105の出力軸に繋がるウォーム106を支持する転がり軸受108、108の外周面と前記ハウジング110の嵌合孔との間にゴム製のゴム環を設けるか、又は、ウォーム106を支持する転がり軸受108、108の内周面とウォーム106の軸部との間に前記ゴム環を設け、該ゴム環の弾性復元力によってウォーム106をラジアル方向へ付勢し、ウォーム106及びウォームホイール107の噛合部のバックラッシュ量を少なくするように構成された電動式舵取装置が知られている。

【0007】

【発明が解決しようとする課題】ところが、以上の如くゴム環を用いてバックラッシュ量を少なくするように構成された従来の電動式舵取装置にあっては、操舵の都度転がり軸受の外周に設けたゴム環にラジアル方向への荷重及び回転トルクが加わることになるため、ゴム環にへたり等の劣化が生じ易く、この劣化によってバックラッシュ量が増加するという問題があり、また、ゴム環自身の弾性復元力がウォームを付勢するため、この付勢による予圧荷重の設定の自由度が比較的低いし、また、ゴム環が拡径によって組み付けられるととき、該ゴム環が破損する恐れが多かった。また、グリース等の潤滑剤によって劣化する恐れがあった。

【0008】本発明は斯る事情に鑑みてなされたものであり、操舵補助用のモータの回転に連動する小径ギヤをすべり軸受が支持し、該すべり軸受の外周にコイルばねをその軸心が環状になるように巻回してある構成としたり、小径ギヤのモータと反対側端部はすべり軸受が支持して、該すべり軸受の外周に前記コイルばねを巻回してあり、小径ギヤのモータ側端部は転がり軸受が支持してある構成としたりすることにより、コイルばねによってバックラッシュ量を少なくすることができ、しかも、このコイルばねの耐久性を向上することができるとともに、予圧荷重の設定の自由度を比較的多くすることができる電動式舵取装置を提供することを目的とする。

【0009】また、コイルばねの巻き付け角を軸心に対して30°乃至75°とすることにより、撓み量に対する

る弾性復元力の変化量を比較的少なくすることができます、小径ギヤ及び大径ギヤの噛合部の抵抗を小さくすることができる電動式舵取装置を提供することを目的とする。

【0010】

【課題を解決するための手段】第1発明に係る電動式舵取装置は、操舵補助用のモータの回転に連動し、ハウジング内に軸受を介して回転可能に支持される小径ギヤ及び該小径ギヤに噛合し、前記小径ギヤの回転中心と非平行に配される操舵軸に取付けられる大径ギヤを備え、前記モータの回転によって操舵補助するようにした電動式舵取装置において、前記軸受はすべり軸受であり、該すべり軸受の外周にコイルばねをその軸心が環状になるように巻回してあることを特徴とする。

【0011】第3発明に係る電動式舵取装置は、前記小径ギヤの前記モータと反対側端部は前記すべり軸受が支持し、小径ギヤのモータ側端部は転がり軸受が支持していることを特徴とする。

【0012】第1発明及び第3発明にあっては、小径ギヤをハウジング内に支持するとき、コイルばねを内周部と外周部との間で若干撓ませた状態で該コイルばねをすべり軸受とともにハウジング内に挿入支持し、小径ギヤにラジアル方向への予圧を加える。この予圧によって小径ギヤが大径ギヤへ付勢され、これら小径ギヤ及び大径ギヤの噛合部のバックラッシュ量を少なくすることができ、しかも、すべり軸受を用い、該すべり軸受の外周にその軸心が環状になるように巻回してあるコイルばねが設けてあるため、ハウジングの軸受周りを小形化でき、軽量化を図ることができる。また、コイルばねを環状に巻回することにより形成されているため、ゴム環を用いた従来のものに比較してコイルばねの耐久性を高めることができるとともに、予圧荷重の設定の自由度を比較的多くすることができ、また、組み付け時にコイルばねが破損することを防止することができる。

【0013】第2発明に係る電動式舵取装置は、前記コイルばねの巻き付け角が軸心に対して30°乃至75°であることを特徴とする。

【0014】第2発明にあっては、コイルばねが内周部と外周部との間で30°乃至75°に傾斜しているため、撓み量に対する弾性復元力の変化量を比較的少なくすることができ、小径ギヤ及び大径ギヤの噛合部の抵抗を小さくすることができる。従って、モータが操舵補助した後の操舵輪の戻り抵抗を小さくすることができ、操舵輪を円滑に戻すことができる。

【0015】

【発明の実施の形態】以下本発明をその実施の形態を示す図面に基づいて詳述する。図1は本発明に係る電動式舵取装置の断面図である。電動式舵取装置は、一端が舵取りのための操舵輪1に繋がり、他端に筒部を有する第1の操舵軸2と、前記筒部内に挿入されてその一端が前記操舵軸2の他端に同軸的に連結され、前記操舵輪1に

加わる操舵トルクの作用によって捩れるトーションバー3と、その一端部が前記筒部の周りに挿入され、その他端が前記トーションバー3の他端に同軸的に連結される第2の操舵軸4と、前記トーションバー3の捩れに応じた第1及び第2の操舵軸2、4の相対回転変位量によって前記操舵輪1に加わる操舵トルクを検出するトルクセンサ5と、該トルクセンサ5が検出したトルクに基づいて駆動される操舵補助用のモータ6と、該モータ6の回転に連動し、該回転を減速して第2の操舵軸4に伝達する小径ギヤ（以下ウォームと云う）71及び大径ギヤ（以下ウォームホイールと云う）72を有する減速機構7と、前記トルクセンサ5及び前記減速機構7が収容されるハウジング8とを備え、このハウジング8に前記モータ6が取付けられている。

【0016】ハウジング8は、前記トルクセンサ5を収容する第1の収容部8aと、該収容部8aに連続し、前記ウォームホイール72を収容する第2の収容部8bと、該収容部8bに連続し、前記ウォーム71を収容する第3の収容部8cとを備えている。

【0017】図2は減速機構部分の断面図である。収容部8cはウォーム71の軸長方向に長くなっている。その長手方向一端に第1の嵌合孔81が設けられ、該嵌合孔81に保持筒9が圧入によって嵌合されている。また、収容部8cの他端には第2の嵌合孔82及び該嵌合孔82に連続するねじ孔83が設けられ、該ねじ孔83にねじ環10が螺着されている。また、収容部8cの長手方向中間には後記する第2の軸受の一端が略半円形の座体11を介して当接する当接部84が設けられている。

【0018】また、ハウジング8には前記第3の収容部8cに連通するケースを有する前記モータ6が取付けられている。

【0019】減速機構7は、前記モータ6の出力軸60に繋がる軸部71aを有するウォーム71と、前記第2の操舵軸4の中間に嵌合固定されるウォームホイール72とを備え、これらウォーム71及びウォームホイール72の噛合により前記出力軸60の回転を減速して第2の操舵軸4に伝達し、該第2の操舵軸4からユニバーサルジョイントを経て例えればラックピニオン式舵取機構（図示せず）へ伝達するようになっている。

【0020】ウォーム71は第2の操舵軸4の軸芯と交叉するように配置されており、その一端の軸部71aにオイルレスのブッシュ12が嵌合固定されており、該ブッシュ12に筒形のすべり軸受13が回転自在に嵌合され、該すべり軸受13が前記保持筒9内に遊嵌されることによって、一端の軸部71aが第1の嵌合孔81に回転自在に支持され、他端の軸部71aが転がり軸受14を介して前記第2の嵌合孔82に回転自在に支持され、前記ねじ孔83に螺着されたねじ環10が転がり軸受14の外輪に当接し、該ねじ環10、前記座体11及

び当接部84によって転がり軸受14の軸長方向への移動を拘束している。また、他端の軸部71aが総筒15の内面にスプライン嵌合されて前記出力軸60に連結されている。尚、一端の軸部71aには止め輪16が設けられ、該止め輪16によってウォーム71がモータ6と反対方向へ移動することを拘束してある。

【0021】図3は図2のIII-III線の拡大断面図である。すべり軸受13は、前記保持筒9に遊嵌してその嵌合隙間量だけ保持筒9に対しラジアル方向への移動を可能としてあり、また、外周面には複数の環状溝17、17が離隔して設けてあり、これら環状溝17、17に前記保持筒9の内周面と接触するコイルばね18、18がその軸心が環状になるように嵌合保持してある。また、このすべり軸受13及び前記保持筒9の周方向一部には夫タピン孔13a、9aが設けてあり、これらピン孔13a、9aに回止めピン19を挿入することによりすべり軸受13の保持筒9に対する回転を阻止し、この相対回転によってコイルばね18、18が摩耗することを防止してある。

【0022】図4はコイルばねの正面図、図5はコイルばねの撓み量と弾性復元力との関係を示す図である。コイルばね18は線径が0.1乃至0.2mmの金属線をコイル状に巻回したものであり、これらコイルばね18、18をその軸心が環状になるように巻回し、その両端を結合してある。これらコイルばね18、18はその内周部が前記環状溝17に保持され、外周部が前記保持筒9の内周面に接触し、内周部及び外周部の間の撓みによってすべり軸受13をラジアル方向へ付勢し、ウォーム71をウォームホイール72との噛合部へ付勢している。また、コイルばね18は巻き付け角が軸心に対して30°乃至75°となるように傾斜させ、撓み量に対する弾性復元力の変化量を比較的少なくしてある。

【0023】実施の形態において、ウォーム71を組み込む場合、例えば環状溝17にコイルばね18が嵌合保持されたすべり軸受13を内部に遊嵌してなる保持筒9をハウジング8の第1の嵌合孔81に圧入して取付けた状態で、第2の嵌合孔82から第3の収容部8cにウォーム71を挿入し、該ウォーム71の一端側軸部71aに嵌合固定されたブッシュ12を前記すべり軸受13に嵌合支持とともに、第2の嵌合孔82及びウォーム71の他端側軸部71aに転がり軸受14を嵌合し、ねじ環10をねじ孔83に螺着することにより転がり軸受14の外輪を座体11及びねじ環10間で挟み込みウォーム71の軸長方向への移動を拘束する。

【0024】この組込まれたウォーム71を付勢するコイルばね18は、その内周部がすべり軸受13に当接し、全周位置からすべり軸受13を付勢するため、ウォーム71及びウォームホイール72の噛合部のバックラッシュ量を少なくすることができる。しかも、ウォーム71及びウォームホイール72の歯の摩耗量が増大した

り、合成樹脂製のウォームホイール72が冬季の低温等によって収縮したりすることによって噛合状態が経時変化したときにおいてもバックラッシュ量を少なくすることができます。

【0025】さらに、コイルばね18はその軸心が環状になるように巻回してあるため、ゴム環を用いた従来のものに比較してコイルばね18の耐久性を高めることができ、長期間にかけて良好に使用することができるとともに、予圧荷重の設定の自由度を比較的多くすることができ、また、組み付け時にコイルばねが破損することを防止することができる。また、すべり軸受13の外周りにコイルばね18が設けてあるため、ハウジング8の軸受周りを小形化でき、軽量化を図ることができる。また、予圧を加えた状態においてはコイルばね18の撓み量に対する弾性復元力の変化量が比較的少ないため、ウォーム71及びウォームホイール72の噛合抵抗を小さくすることができ、モータ6が操舵補助した後の操舵輪の戻り抵抗を小さくすることができる。

【0026】尚、以上説明した実施の形態では、ハウジング8に固定する保持筒9を設け、該保持筒9に遊嵌するすべり軸受13にコイルばね18を保持したが、その他、すべり軸受13に環状溝17を設ける代わりに該環状溝17を保持筒9の内周面に設け、該コイルばね18を保持筒9に保持してもよいし、また、前記保持筒9をなくし、前記ハウジング8の第1の嵌合孔81又はすべり軸受13の外周に少なくとも一つの環状溝17を設け、該環状溝17に前記コイルばね18を保持してもよい。しかし、実施の形態の如く保持筒9を設けることにより、コイルばね18及びすべり軸受13のハウジング8内への組込が容易にできる。また、ブッシュ12をなくし、ウォーム71の一端側軸部71aをすべり軸受13に直接嵌合してもよい。

【0027】また、コイルばね18はその両端を結合して環状としてあるが、コイルばねの両端を結合することなくコイルばねを例えば前記環状溝17内でその軸心が略C字形になるように巻回することにより環状としてもよい。また、コイルばね18は複数である他、一つとしてもよい。

【0028】また、以上説明した実施の形態の減速機構7は、ウォームである小歯車71及びウォームホイールである大歯車72を備えたウォーム歯車である他、ハイポイドピニオンである小歯車71及びハイポイドホイールである大歯車72を備えたハイポイド歯車であってもよい。

【0029】

【発明の効果】第1発明及び第3発明によれば、コイルばねをその軸心が環状になるように巻回し、該コイルばねがすべり軸受をラジアル方向へ付勢するため、小径ギヤ及び大径ギヤの噛合部のバックラッシュ量を良好に少なくすることができ、しかも、すべり軸受を用い、該す

すべり軸受の外周にコイルばねが設けてあるため、ハウジングの軸受周りを小形化でき、軽量化を図ることができる。

【0030】さらにコイルばねはその軸心が環状になるように巻回してあるため、ゴム環を用いた従来のものに比較してコイルばねの耐久性を高めることができ、長期間にかけてバックラッシュによる音鳴りが自動車の車室に洩れることを防止できるとともに、予圧荷重の設定の自由度を比較的多くすることができ、また、組み付け時にコイルばねが破損することを防止することができる。

【0031】第2発明によれば、コイルばねが内周部と外周部との間で30°乃至75°に傾斜しており、撓み量に対する弾性復元力の変化量を比較的少なくすることができますため、小径ギヤ及び大径ギヤの噛合抵抗を小さくすることができ、モータが操舵補助した後の操舵輪の戻り抵抗を小さくでき、操舵輪を円滑に戻すことができる。

【図面の簡単な説明】

【図1】本発明に係る電動式舵取装置の断面図である。

【図2】本発明に係る電動式舵取装置の減速機構部分の断面図である。

【図3】図2のIII-III線の拡大断面図である。

【図4】本発明に係る電動式舵取装置のコイルばねの正面図である。

【図5】本発明に係る電動式舵取装置のコイルばねの撓み量と弾性復元力との関係を示す図である。

【図6】従来における電動式舵取装置の断面図である。

【図7】従来における電動式舵取装置の減速機構部分の断面図である。

【符号の説明】

4	操舵軸
6	モータ
7	減速機構
7 1	小径ギヤ（ウォーム）
7 2	大径ギヤ（ウォームホイール）
8	ハウジング
1 3	すべり軸受
1 8	コイルばね

【図3】

【図4】

【図5】

【図6】

【図7】

フロントページの続き

(72) 発明者 岡 邦洋

大阪府大阪市中央区南船場三丁目5番8号
光洋精工株式会社内

(72) 発明者 山本 和俊

大阪府大阪市中央区南船場三丁目5番8号
光洋精工株式会社内
Fターム(参考) 3D033 CA04