CSci 127: Introduction to Computer Science Hunter College, City University of New York Spring 2020

This course presents an overview of computer science (CS) with an emphasis on problem-solving and computational thinking through 'coding': computer programming for beginners. Other topics include: organization of hardware, software, and how information is structured on contemporary computing devices. This course is pre-requisite to several introductory core courses in the CS Major. The course is also required for the CS minor. MATH 12500 or higher is strongly recommended as a co-req for intended Majors.

Course Designers:

- Dr. Katherine St. John
- Dr. William Sakas
- Prof. Eric Schweitzer

Course Instructors:

- Dr. Tiziana Ligorio (office hours)
- Katherine Howitt, adjunct lecturer

IMPORTANT:

The course has lecture on Tuesday mornings and required weekly quizzes & code reviews in Lab 1001E (see lab hours below and your Blackboard account for scheduling information).

This is a HYBRID course which means that you are responsible for independently reading the weekly Lab found in the "Handouts" column in the Course Outline below.

Starting February 6, there is a programming assignment due EVERY DAY. <u>Programming Assignments</u> are directly related to Labs and Lectures.

Lecture notes will also be posted weekly in the "Handouts" column in Course Outline below.

Lecture: Tuesday 9:45-11:00 118 HN Assembly Hall

Lab Hours: There is a dedicated computer laboratory, North 1001E for this course:

- Staffed Hours: Monday-Friday, 11am to 6:30pm, when classes are in session.
- Reservation link available on Blackboard on the left sidebar.
- Holiday, Lab Schedule and Program Due Dates (grid format; more details in the list format below)
- Undergraduate Teaching Assistants

Useful Links:

- Syllabus
- Programming Assignments
- Quiz & Code Review Topics and Deadlines

- ASCII Table
- Book & tutorial pages:
 - Python: How to Think Like a Computer Scientist by Miller et al.
 - Logical Circuits: <u>Burch's Logic & Circuits</u>, <u>Explain Logic Gates</u>
 - Machine Language: <u>U Idaho reference sheet</u>, <u>MIPS Wikibooks</u>
 - C++: Cplusplus Tutorial, C++ Tutorials Point, The Rook's Guide to C++

Course Outline:

Week:		Topics:	Handouts:	Quiz & Code Review:	Reading:
#1	Lecture: 28 January	Syllabus & Class Policies, Introductions, Introduction to Python: definite loops, simple output, primitive data types, overview of objects & modules; What is an algorithm?	Syllabus, Programming Assignments, Hello, World, Hexagon example, Fancier hexagon, Lecture Notes		Think CS: <u>Chapter 1</u> & <u>Chapter 4</u>
	Lab & Quiz: 28-31 January, 3 February	Getting started with Python & IDLE; Using modules and definite loops	<u>Lab 1</u>	Academic Integrity	
#2	Lecture: 4 February	Strings & Lists: looping through strings, console I/O, ASCII representation CS Survey: Prof. William Sakas (computational linguistics)	Loop Puzzle 1, Loop Puzzles 2, Caesar Cipher example, input() example, Lecture notes		Think CS: Chapter 2 & Chapter 3
	Lab, Quiz, & Code Review: 4-10 February	String methods; Problem	Lab 2	Loops & Turtles	
#3	Lecture: 11 February	Arithmetic; Indexing & Slicing; Colors, Hexadecimal notation; Prof. John Ranellucci, Educational Psychology	Event Timing (Arithmetic Challenge), Slicing Challenges, Color Challenges, Lecture notes		Think CS: Section 8.11 & Chapter 11, Numpy tutorial (DataCamp)
		Arrays and images in numpy, hexadecimal representation of colors (image processing)	Lab 3	Strings & Loops	
12 February	Lincoln's Birth	day: Lab closed			
17 February	President's Day	r: Lab closed	Ι	Ι	T

2020 Lu a	 -		er Science, Hunter College, CUNY	, Spring 2020 I	TT1: 1 GG
#4	Lecture: 18 February	More on Lists & Arrays; Images; Decisions; Airplane Design	Loop & Slice Challenges, Decision Challenges, turtleString.py, Lecture notes		Think CS: <u>Chapter 7</u> & <u>Chapter 11</u>
	Lab, Quiz, & Code Review: 18-24 February	Programming with decisions & files (flood maps)		Loops & Unix	
#5	Lecture: 25 February	Logical Expressions, Circuits, Binary Numbers; CS Survey: Bernard Desert & Elise Harris (CUNY2X@Hunter)	Types & Decisions Challenges, Logical Operators Challenges, SemesterIfAndExample, Basic Gates, Circuit Challenge1, Circuit Challenge2, Circuit Challenge3, Lecture notes		Think CS: Chapter 7, Burch's Logic & Circuits, Explain
	Lab, Quiz, & Code Review: 25-28 February, 2 March	More on Decisions (snow pack); Circuits & Logical Expressions	<u>Lab 5</u>	Decisions & Color	
#6	Lecture: 3 March	Accessing formatted data; CS Survey: Prof. Kelle Cruz (Astrophysics)	Arithmetic Challenges, List/String Challenges, Lecture notes		Think CS: Chapter 6, 10-minutes to Pandas Tutorial, DataCamp
		CSV files via pandas (population change); Shell Scripts, github	<u>Lab 6</u>	Circuits, Truth Tables, & Logical Expressions	Pandas Tutorial, Ubuntu Terminal Reference Sheet
#7	Lecture: 10 March	Functions; NYC OpenData CS Survey: Brian Campbell, Hunter College Alumnus and Software Engineer at Seamless	Motto Challenge, quarterImage.py, Hello with main(), Prep #1.2, Total & Tax Challenge, Greet Example, Happy Example, Jam Example, Month String Example, NYC OpenData Lecture notes		Think CS: Chapter 6, 10-minutes to Pandas Tutorial, DataCamp Pandas
	Lab, Quiz, & Code Review: 10-16 March	OpenData NYC (shelter data); Using main() functions; Python from the command line	Lab 7	Formatted Data & Shell Commands	Tutorial
12-19	Instructional R	ecess - No Lecture, Online he	lp via email and Blackbo	ard Discussion	on Board

		CSCI 121, Introduction to Comput	ior denomina, mammar demogra, demo	.,	
April	available				
#8	Lecture: 24 March	More Functions & Parameters;	Decisions & Functions Example, Dessert Exam Questions, Foo example, Koalas, Lecture notes		Think CS: Chapter 6
	Lab, Quiz, & Code Review: 24-26 March	Binning data (parking tickets); Top-down design (herd of turtles); Command line git	Lab 8	Functions & More Pandas	
27 March - 1 April	Recalibration F	eriod - No Lecture, No Onlin	ne Help	1	
2-6 April	Online Help an	d Code Review 8 resume			
7 April	Wednesday at I	Hunter - No Lecture			
8-10 April	Spring Recess	- No Online Help			
#9	Lecture: 14 April	Programming with Functions, Top-down Design; Mapping GIS Data (Folium); Random Number Generation; Preview: Indefinite Loops	Sisters Example, numsConvert.py num2string example, Distance Check, Random Walk, Lecture notes		Think CS: Chapter 6, folium tutorial
	Lab, Quiz, & Code Review: 14-20 April	Folium/leaflet.js (mapping CUNY locations); Finding errors; Regular expressions (command line)	Lab 9	Parameters & Functions	
#10	Lecture: 21 April	Indefinite Loops; Simulations; Design Patterns: Max;	Nums & While, Max Num, Random Search (turtles), Lecture notes		Think CS: Chapter 8
		More on Indefinite loops; Writing functions; unit testing	<u>Lab 10</u>	More on Functions & Top-down Design	
#11	Lecture: 28 April	Python Recap; Simplified Machine Language; Design Patterns: Searching;	Search, WeMIPS Emulator,		U Idaho reference sheet, MIPS Wikibooks
	Lab, Quiz, & Code Review: 28 April - 4 May	Simplified machine language	<u>Lab 11</u>	Indefinite Loops & Simulations	
#12	Lecture: 5 May	Introduction to C++: program structure, data	cin/cout example, convert example,		<u>Cplusplus</u> <u>Tutorial</u> ,

020		CSci 127, Introduction to Comput	er Science, Hunter College, CUNY	, Spring 2020	
		representation and I/O.	loops example,		<u>C++</u>
		Final Exam Overview	growth example, nested loops,		Tutorials Point,
	Lab, Quiz, & Code Review: 5-11 May	Using gcc	<u>Lab 12</u>	Simplified Machine Language & More Unix	The Rook's Guide to C++
#13	Lecture: 12 May	C++ control structures	Decision example (C++), Logical Expressions (C++), Input Checking (C++), Input Checking, II (C++), Growth Example (C++),		Cplusplus Tutorial, C++ Tutorials Point, The Rook's Guide to
	Lab, Quiz, & Code Review: 12-14 May	Control Structures in C++	<u>Lab 13</u>	Introduction to C++	<u>C++</u>
MONDAY 18 May 9am-11am		Final Exam	Final Exam Information		

(This file was last modified on 27 January 2020.)