Моделирование настроения новостей

Кармазин Василий ПИН-43 Уманский Александр ПИН-43

17 Декабря 2019

1 Вступление

Каждый день мы встречаемся с различными новостями. Информация идёт отовсюду: телевидение интернет, радио, социальные сети. И зачастую новости имеют негативный окрас. Поэтому мы решили улучшить новостные фильтры, чтобы люди могли защитить себя, детей от негативного или неприемлемого контента.

2 Обработка новостей

Мы использовали данные из открытых источников. Данные включают в себя 8263 различные новостные статьи с тремя различными метками оценки настроения: *Негативные*, *Позитивные*, *Нейтральные*. (Рис. 1).

¹https://www.kaggle.com/c/sentiment-analysis-in-russian

Рис. 1: Распределение настроения новостей в данных

Откажемся от части информации в данных, которые упростят эксперимент, а также избавимся от выбросов и аномалий.

Наши ограничения:

- Возьмём из новостей только русские слова
- Приведём все слова к нормальной форме через библиотеку pymorphy 2^2 .
- Не будем использовать новостные статьи, где больше 10000 символов

После данной обработки осталось 7732 статьи.

3 Описание моделей

Мы попробуем два метода:

Hauвный, который основывается на построении множеств для каждого класса и взвешивания их частоты встречаемости в статьях.

Cmamucmuveckuй, преобразуем наши данные так, чтобы можно было воспользоваться статистическими методами, а именно, логистической регрессией.

Проверять качество моделей будем метрикой F1-score³

²https://pymorphy2.readthedocs.io

³https://en.wikipedia.org/wiki/F1-score

3.1 Наивный метод

Сначала построим множества слов для каждого класса статей: S_{neg} , S_{pos} , S_{neu} - множества слов из статей с негативной, позитивной и нейтральной меткой, соответственно.

Построим множества уникальных слов для множеств S_{neg} и S_{pos} .

$$W_{neg} = S_{neg}/S_{pos}$$
 и $W_{pos} = S_{pos}/S_{neg}$

Пусть $Freq_y(x)$ - функция, которая определяет частоту встречаемости слова x в множестве y. Тогда для оценки настроения новости воспользуемся простым алгоритмом. (Algorithm 1).

```
sentiment = 0
for word in words do
    if word in W_{pos} then
        word_{freq} = Freq_{neg}(word)
        polarity = 1
    end
    if word in W_{pos} then
        word_{freq} = Freq_{pos}(word)
       polarity = -1
    end
    if word in W_{neu} then
        neutral_{freq} = Freq_{neu}(word) \ 	ext{if } word_{freq} > rac{neutral_{freq}}{2} 	ext{ then} \ 	ext{ } sentiment += rac{word_{freq}*polarity}{2}
          continue
        if neutral_{freq} > word_{freq} then
         sentiment += word_{freq} * polarity
    end
end
```

Algorithm 1: Оценка настроения новостной статьи

Пройдёмся по всем словам статьи, проверяем имеется ли слово в W_{pos} или W_{neg} , если да, то сравниваем частоты встречаемости этого слова относительно $He \~umpan \ bh bix$. Суммируем все слова статьи и получаем общую оценку настроения статьи.

Дальше нормируем оценку на количество слов в тексте и подбираем два порога, которые будут определять нейтральную часть.

3.2 Логистическая регрессия

Преобразуем текст в численные значения, чтобы на них обучить логистическую регрессию.

Будем использовать TF- IDF^4 - это статистическая мера оценки важности слова, основываясь на частотах встречаемости слова в тексте и в документе.

Частота слова t в документе d:

$$tf(t,d) = \frac{n_t}{\sum_k n_k}$$

Обратная частота документа:

$$idf(t, D) = \log \frac{|D|}{|\{d_i \in D | t \in d_i\}|}$$

TF-IDF является произведением двух сомножителей:

$$tf - idf(t, d, D) = tf(t, d) \times idf(t, D)$$

На самом деле, **TF-IDF** можно применять не только к одиным словам, но и к нескольким, тем самым считая меру важности комбинаций слов, или применять к нескольким символам: униграммам, биграммам, триграммам и тд.

Мы будем использовать все три статистики, но стоит учесть, что это много информации, в том числе и лишней, поэтому мы выберем N=30000 самых часто встречаемых случаев.

Тогда текст статьи представляется в виде вектора $news_{vector} \in \mathcal{R}^N$, где по элементам 0, если в тексте нет слова, и tf-idf(слова), если есть.

На $news_{vector}$ векторах будем строить многоклассовую логистическую регрессию, которую называют Softmax Regression⁵.

 $^{^4 \}rm https://ru.wikipedia.org/wiki/TF-IDF$

⁵http://deeplearning.stanford.edu/tutorial/supervised/SoftmaxRegression/

4 Эксперименты

Наивный метод показал, что он хорошо различает между собой хорошие и плохие новости, а вот нейтральные сильно путаются, что видно на распределении нормированной оценки (Рис. 2).

Рис. 2: Распределение нормированной оценки настроения

Результаты множества слов.

- В хороших словах встречаются такие: делегация, экспедиция, упражнение, наставник, транскаспийский и тд.
- В плохих словах: терентьев, оштрафовать, взяточничество, тюремный, вирус, санкционирование и тд.

Подобрали пороговые коэффициенты: если оценка текста выше 0.1, то он позитивный, если ниже -0.05, то негативный, иначе нейтральный.

Рис. 3: Матрица ошибок наивной модели

На матрице ошибок наивного метода (Рис. 3). видно, что модель никогда не путает хорошие новости с плохими и наоборот.

Основные метрики по наивной модели

	precision	recall	f1-score	support
negative	0.73	0.68	0.71	1337
neutral	0.66	0.72	0.69	3734
positive	0.70	0.63	0.66	2661

Логистическая регрессия показала лучше результат, в целом, она распознаёт больше статей и меньше ошибается (Рис. 4). В этой модели иногда бывают ошибки между хорошими и плохими новостями, но такие ошибки очень редкие, ими можно пренебречь.

Рис. 4: Матрица ошибок многоклассовой логистической регрессии

По матрице ошибок видно, что модель чаще путает позитивные и негативные классы с нейтральными, чем между самими классами. По метрикам модель имеет сильно лучше результат, чем наивный метод.

Основные метрики по логистической регрессии

	precision	recall	${ m f1\text{-}score}$	$_{ m support}$
negative	0.89	0.82	0.85	1337
neutral	0.87	0.90	0.88	3734
positive	0.89	0.88	0.88	2661

Код экспериментов находится в открытом доступе⁶

5 Исследование модели

Хочется узнать, почему наша модель делает те или иные выводы про новости, на что модель обращает внимание, какие у неё есть недостатки.

5.1 Важность слов для модели

Визуализируем веса логистической регрессии, тем самым покажем важность слов для каждой категории новостей (Рис. 5).

 $^{^6}$ https://github.com/e1four15f/math-modeling-institute

y=negative top features		y=neutral top features		y=positive top features		
Weight?	Feature	Weight?	Feature	Weight?	Feature	
+1.497	word:не	+1.144	word:ноябрь	+1.137	word:ребёнок	
+1.353	word:ндс	+0.909	word:университет	+1.042	word:ергожин	
+1.187	char: не	+0.815	word:грипп	+0.928	word:aBryct	
+1.124	word:ктж	+0.801	word:изделие	+0.828	word:рубль	
+1.045	word:бишимбаев	+0.788	word:назначить	+0.823	word:лёгкий	
+1.040	word:сократиться	+0.765	word:тариф на	+0.815	word:соревнование	
+1.001	word:из за	+0.758	word:депутат	+0.790	word:июнь	
+0.987	word:суд	+0.754	word:взрыв	+0.788	word:pĸ	
+0.982	word:шахта	153	25 more positive	+0.771	word:женщина	
+0.956	+0.956 word:убыток		14656 more negative		14382 more positive	
+0.941	word:инцидент	-0.761 word:комиро		15599 more negative		
+0.925	word:произойти	-0.763	word:миллион тенг	-0.769	char:не	
+0.909	word:коррупционный	-0.765	word:куандык	-0.783	word:какой	
+0.900	word:арестовать	-0.772	word:жангуразовый	-0.785	word:произойти	
+0.888	word:куандык	-0.788	word:шымкент	-0.805	word:на	
+0.841	word:куандык бишимбаев	-0.796	word:казавтопром	-0.822	word:причина	
+0.825	word:долг	-0.819	word:ергожин	-0.865	word:убыток	
+0.809	word:что	-0.841	word:июнь	-0.872	word:из за	
+0.809	word:единица	-0.898	word:сентябрь	-1.111	word:что	
+0.785	word:рейтинг	-0.904	word:август	-1.131	word:суд	
12744 more positive		-0.916	word:самолёт	-1.241	char: не	
17237 more negative		-0.969	word:поезд	-1.649	word:не	

Рис. 5: Веса логистической регрессии

По словам можно заметить, что выборка новостей из Казахстана и связана с политикой, это даёт сильное смещение, что не очень хорошо. Это можно видеть по словам: бишимбаев, ергожин, ктж (Казахстанские железные дороги). Печально, что модель считает, что слова взрыв и грипп нейтральными. В позитивных словах не видно зависимостей.

5.2 Поведение на Зеленоградских новостях

Мы решили проверить модель на Зеленоградских новостях. Для сокращения, приведём только заголовок статьи и оставим ссылки на источник.

Результаты модели на наших новостях

Результат модели	Заголовок новости
neutral	На «зебре» у поликлиники автомобиль
	наехал на женщину с ребенком ⁷
negative	Вандалов осудили за порчу детской
	площадки и осквернение подъезда дома ⁸
neutral	В январе проезд по Новой Ленинградке
	ночью с транспондером сделают бесплатным ⁹
negative	На новой «зебре» в 11-м микрорайоне
	сбили ребенка ¹⁰
neutral	Очевидец заснял уснувшего перед
neuttai	светофором таксиста ¹¹
positive	Матвей Елисеев трижды попал в
positive	тридцатку лучших на Кубке мира ¹²
negative	Женщине присудили 230 тысяч рублей
	за падение на лестнице у ТЦ «Столица» ¹³
neutral	На месте регбийного поля у
	5-го микрорайона собираются построить стадион ¹⁴
positive	Врачи горбольницы спасли
	девушку после ДТП и вернули ей возможность ходить ¹⁵
noutral	Власти Зеленограда одобрили
neutral	проект реновации 19-го микрорайона ¹⁶

Поведение на небольшой выборке из 10 новостей.

 $^{^7 \}mathrm{https://www.netall.ru/incidents/news/1136839.html}$

⁸https://www.netall.ru/society/news/1136797.html

⁹https://www.netall.ru/transport/news/1136717.html

 $^{^{10} \}rm https://www.netall.ru/incidents/news/1136624.html$

 $^{^{11} \}rm https://www.netall.ru/incidents/news/1136580.html$

 $^{^{12}}$ https://www.netall.ru/sport/news/1136564.html

 $^{^{13}\}rm https://www.netall.ru/society/news/1136381.html$ $^{14}\rm https://www.netall.ru/realty/news/1136372.html$

¹⁵https://www.netall.ru/medicine/news/1136287.html

 $^{^{16} \}rm https://www.netall.ru/realty/news/1131857.html$