PED Lab Report

Group No -	8

Group Member - Gopal Gupta (20CH30008)

Yash Saraswat (20CH10087) Arsh Singh (20CH10088) Yuvika (20CH30037)

Given

Feed_Composition (x_f)	0.18	w/w%
	0.205663189	%mole
x_d	0.9	%mole
x_b	0.05	%mole
Density of feed	0.866279581	g/cc
Density of Top	0.876923385	g/cc
Density of Bottom	0.864234398	g/cc
Average Density	0.869145788	g/cc
M_wf	89.12071535	g
Feed	34	tonnes/hr
	381.5050167	Kmole/hr
Distillate	69.86622074	Kmole/hr
Bottom	311.638796	Kmole/hr

Given Antoines Parameter

 $log_10(P_sat) = a - b/(t + C)$ Where $P_sat in kPa and t in C$

	Benzene	Toluene	
a	6.01905	6.08436	
b	1204.637	1347.62	
С	220.089	219.787	
Density	0.8787	0.8636	g/cc
Boiling Point	80.05	110.6	С

mole fraction Distillate	0.9	0.1	
mole fraction Botton	0.05	0.95	
P_sat in kPa_82	107.4882374	41.5807802	Кра
P_sat in kPa_dew	138.6547304	55.31399965	Кра

T in C in Reflux Drum (Bubble point)	82	С
Top Col Temperature(Dew point of		
D)	90.61545523	С

Bubble pressure reflux drum 100.8974917 Kpa

Considering 0.3 kg/cm^2 positive gauge pressure therefore it operate a 101.325 Kpa + 0.3 kg/cm^2

P_Top_col 130.3182234 130.3206574

P_sat in kPa 300.0514161 131.3977763

T in C for Boiler 120.0257793 C

Bubble pressure for bottom colm 139.8304583 Kpa

Temperature ©		Pure Compor	nent Vapour Pressure(Kpa)
		Benzene	Toluene
Col Top	90.61545523	138.6547304	55.31399965
Col Bot	120.0257793	300.0514161	131.3977763

alpha_top	2.506684226
alpha_bot	2.283534962

MATLAB Code for the Calculations Using McCabe's Thiele Method:

```
warning off;
% Using McCabe Thiele Method
% Given Variable
x f = 0.205663189;
x_d = 0.9;
x_w = 0.05;
q = 1;
alpha = 2.392509367;
efficiency = 0.7;
options = optimset('display' , 'off');
% plotting the 45 degree line for the equilibrium plot
%plot([0 1], [0 1], 'k');
%grid on;
%hold on;
xlabel('Reflux Ratio');ylabel('Stages');
% The equilibrium curve and plotting it
y_eq = @(x) alpha * x / (1 - (1 - alpha) * x);
x_{eq} = @(y) y / (alpha + (1 - alpha) * y);
%fplot(y_eq, [0 1],'r',LineWidth=0.20);
%set(gca, 'xlim', [0 1]);
%set(gca, 'ylim', [0 1]);
% feed line or q line
q_slope = q / (q - 1);
q_{intersept} = -x_{f} / (q - 1);
q_{eqn} = @(x) q_{slope} * x + q_{intersept};
if q > 1
    %fplot(q_eqn,[x_f y_eq(x_f)])
elseif q == 1
    %plot([x_f x_f],[x_f y_eq(x_f)],'b')
elseif q == 0
    plot([x_eq(x_f) x_f],[x_f x_f],'b')
elseif q > 0 && q < 1
    x_{\min} = fsolve(@(x) q_eqn(x) - y_eq(x),x_f,options);
    %fplot(q_eqn,[x_lim x_f])
end
% R_min and R calculation
if q == 1
    x_pinch = x_f;
else
    x_{pinch} = fsolve(@(x) q_eqn(x) - y_eq(x), x_f, options);
y_{pinch} = y_{eq}(x_{pinch});
R_{min_slope} = (x_d - y_{pinch})/(x_d - x_{pinch});
R_{min_intersept} = x_d * (1 - R_{min_slope});
R_min = x_d / R_min_intersept - 1;
Actual_Stages = zeros(1, size(1.05: 0.05 : 2.0,2));
Ideal_Stages = zeros(1,size(1.05: 0.05 : 2.0,2));
Rect_Stages = zeros(1,size(1.05: 0.05 : 2.0,2));
Strip_Stages = zeros(1,size(1.05: 0.05 : 2.0,2));
```

```
Ac Rect Stages = zeros(1, size(1.05: 0.05: 2.0, 2));
Ac_Strip_Stages = zeros(1, size(1.05: 0.05 : 2.0,2));
i = 1;
for Ratio = 1.05:0.05:2.0
    R_{\text{pinch\_line}} = @(x) R_{\text{min}}/(R_{\text{min}+1}) * x + x_d / (R_{\text{min}} + 1);
    %fplot(R_pinch_line, [0 x_d])
    R = Ratio*R min;
    % Rectifying Section operating line
    Rec_op_line = @(x) R/(R+1) * x + x_d / (R + 1);
    % Stripping Section operating line
    % Finding the intersection of the q and rec op line
    if q == 1
        x_intr_point = x_f;
    else
        x_{intr_point} = fsolve(@(x) Rec_op_line(x) - q_eqn(x), x_f, options);
    end
    y intr point = Rec op line(x intr point);
    % plotting the Rectifying Section operating line and stripping section
operating line
    %plot([x_d x_intr_point], [x_d y_intr_point]);
    %plot([x_intr_point x_w], [y_intr_point x_w]);
    % Rectifying Section Stages
    x_re_stage_hor_1 = x_d;
    y_re_stage_hor_1 = x_d;
    rectifying_counter = 0;
    while x_re_stage_hor_1 > x_intr_point
        y_re_stage_hor_2 = y_re_stage_hor_1;
        x_re_stage_hor_2 = x_eq(y_re_stage_hor_2);
        x_re_stage_ver = x_re_stage_hor_2;
        y_re_stage_ver = Rec_op_line(x_re_stage_ver);
        % Plotting the stage
        %plot([x re stage hor 1, x re stage hor 2], [y re stage hor 1
y_re_stage_hor_2],'m');
        %plot([x_re_stage_hor_2, x_re_stage_ver], [y_re_stage_hor_2
y_re_stage_ver],'m');
        re_stage_x = x_re_stage_hor_1;
        x_re_stage_hor_1 = x_re_stage_ver;
        y_re_stage_hor_1 = y_re_stage_ver;
        rectifying_counter = rectifying_counter + 1;
    end
    rectifying_stages = rectifying_counter - ...
        (x_re_stage_hor_2 - x_intr_point)/(x_re_stage_hor_2 - re_stage_x);
    Rect_Stages(i) = Rect_Stages(i) + ceil(rectifying_stages);
    % Stripping Section Stages
    % stripping section equation
    strp_slope = (x_w - y_intr_point)/(x_w - x_intr_point);
    strp_intrcpt = x_w - strp_slope * x_w;
    strp_eq_x = @(y) (y - strp_intrcpt)/strp_slope;
```

```
str_stage_x_ver_1 = x_w;
    str_stage_y_ver_1 = x_w;
    str counter = 0;
    while str_stage_y_ver_1 < y_intr_point</pre>
        str_stage_x_ver_2 = str_stage_x_ver_1;
        str stage y ver 2 = y eq(str stage x ver 2);
        str_stage_y_hor = str_stage_y_ver_2;
        str_stage_x_hor = strp_eq_x(str_stage_y_hor);
        % Plotting the stage
        %plot([str_stage_x_ver_1 str_stage_x_ver_2], [str_stage_y_ver_1
str stage y ver 2],Color=[1 .2 0]);
        %plot([str_stage_x_ver_2 str_stage_x_hor], [str_stage_y_ver_2
str_stage_y_hor],Color=[1 .2 0]);
        str_stage_y = str_stage_y_ver_1;
        str_stage_x_ver_1 = str_stage_x_hor;
        str_stage_y_ver_1 = str_stage_y_hor;
        str counter = str counter + 1;
    end
    stripping_stages = str_counter - ...
        (y_re_stage_hor_2-y_intr_point)/(y_re_stage_hor_2 - str_stage_y);
    Strip_Stages(i) = Strip_Stages(i) + ceil(stripping_stages);
    Ideal_Stages(i) = Ideal_Stages(i) +
ceil(stripping_stages+rectifying_stages)+1;
    no_act_stages_re = ceil(rectifying_stages/efficiency);
    Ac_Rect_Stages(i) = Ac_Rect_Stages(i) + no_act_stages_re;
    no act_stages_str = ceil(stripping_stages/efficiency);
    Ac Strip Stages(i) = Ac Strip Stages(i) + no act stages str;
    %fprintf("\n The Number of Theoretical Stages in the distillation column is
%4.2f.\n",rectifying_stages+stripping_stages);
    %fprintf("\n The Number of Actual Stages in the distillation column is
%2.0f.\n",no_act_stages_str+no_act_stages_re);
    Actual Stages(i) = Actual Stages(i) + (no act stages str+no act stages re+1);
    i = i + 1;
rat = 1.05:0.05:2.0;
plot(rat, Actual_Stages);
set(gca, 'xlim', [1.0 2.1]);
set(gca, 'ylim', [13 32]);
ylabel("Number of Stages");xlabel("R/R_m");
set(gca, 'FontSize',15);
plot_data = [rat;Rect_Stages; Strip_Stages; Ideal_Stages;Ac_Rect_Stages;
Ac Strip Stages; Actual Stages]';
```

Plot Of R/R_min VS Number of Stages:

Tray Design Calculation

Molecular Weight Of Feed

M_f	89.12071535 g
M_d	79.20529801 g
M_b	91.18170267 g

Flow Rate

mole fraction Distillate	0.9	0.1
mole fraction Botton	0.05	0.95

Feed(Q_f)	381.5050167	Kmole/hr
	9.44444444	kg/sec
Distillate	69.86622074	Kmole/hr
Bottom	311.638796	Kmole/hr

Distillate flow(m_D)	5547.377926 kg/hr
	1.540938313 kg/sec
Bottom Flow(m_B)	28452.62207 kg/hr
	7.903506132 kg/sec
R_min	2.926293512 Kg/sec
R/R min	1.2

Design of a bubble cap tray for the top tray condition specified as

Vapour Flow Rate(m_V)	6.93497614	kg/sec
Liquid Flow Rate(m_L)	5.397816464	kg/sec
Density Of the Vapour(rho_V)	3.414469017	kg/m^3
Density Of the Liquid(rho_L)	874.7730234	kg/m^3
Flow Rate of Vapour(Q_V)	2.031055519	m^3/s
Flow Rate of Liquid(Q_L)	0.006170534	m^3/s
	22.2139215	m^3/hr

Tray Diameter (Estimation by Fair and Mathews Correlation)

F_LV	0.048628071		$\underline{}_L$	$\sqrt{\rho_V}$
LN(F_LV)	-3.023554328	ΓLV	$-\frac{\overline{m_V}}{\sqrt{1}}$	$/\overline{\rho_L}$

Tray spacing (mm)	a3	a2	al	a0
300	-0.0157	-0.1863	-0.7713	-2.7708
450	-0.0178	-0.2027	-0.8161	-2.5493
600	-0.0172	-0.2071	-0.8609	-2.3289
900	-0.0182	-0.2156	-0.8951	-2.1038

	900	-0.0182 -0.2	156 -0.8951	
Tray spacing		600 mm		
$\ln(C_{+}) = a^{2} \left[\ln(F_{++}) \right]^{3}$	2 (ln/F)	$1^2 + a1 \left(\ln / E \right)$	11 + 20 11	000

$\operatorname{III}(C_{SB}) = u_{S}(\operatorname{III}(T_{LV}))$	$+ a2\{\ln(ILV)\} + a1\{\ln(ILV)\} + a0$
LN(C_sb)	-2.331780849
C_sb	0.097122632

Assuming 75% flooding

j	0.85	
Surface tension(sigma)	20	dyne/cm

$$U_{V,n} = \left(\frac{j}{100}\right) (\sigma/20)^{0.2} C_{sb} \sqrt{\frac{(\rho_L - \rho_V)}{\rho_V}}$$

U_V,n

1.31879178 m/s

Typically, as a first trial, the weir length can be considered to be 0.77D equivalent to Adc = 0.12A, i.e., k is 12%.

downcomer area fraction (k)

0.12 %

$$D = \left\{ \frac{4(m_V/\rho_V)}{\pi(1 - k/100)} \left(\frac{1}{U_{V,n}} \right) \right\}^{1/2}$$

tower diameter(D)

1.49 m

Table 17.8 Increment criteria for vessels fa	bricated from pla	ates.		
D (mm)	450	1000	3000	5000
Increment (mm)	50	100	200	300
Therefore, Tower Diameter (D)	1600	mm	62.99216	inches
Area	2.01	m^2		

Actual Number of Trays

Rectification Section Tray	10
Stripping Section Tray	8
Feed Tray	1

Column_rec+Strp Height	9600	mm
Feed tray Spacing(1.5 TS)	900	mm

Additional 150 mm over the normal tray spacing whenever the downcomer is provided with a separate seal pan.

TS + 150 750 mm

Minimum TS is 1200 mm where manholes are provided. One manhole is to be provided after 8 to 10 trays.

Manhole Spacing (2 number)

2400 mm

Tower top dome height up to TTL (tangent length) may be twice the regular spacing

of the tray or minimum 1200 mm from the top tray deck.

2 TS	1200 mm	า
Tower Height	14900 mm	า
	14.9 m	

Thickness of the Column(pd/2fj+p) 1.393228435 mm

Therefore, Thickness is around 1.5 mm and this thickeness is not availabe so we take thockness as 5 mm

t	5	mm
Carbon Steel Cost	70	rs/kg
Density of Carbon Steel	7840	kg/m^3
Cost Of the Column	205513.441	Rs

Diameter (inches)		Cost/Plate (Rs)
	60	55000
	70	65000
	80	85000
	90	110000
	100	120000

Total Cost Of the tray
Tatal Cost of Column and Tray

1087489.32 Rs 1293002.761 Rs

Heat Load of the Reboiler and Condenser

	Benzene		Toluene
Cpl (kJ/kmol K), average		134.8	155.96
Cpv (kJ/kmol K), average		82.44	103.7
Heat of vaporisation at NBP, I (kJ/kmol)		30.77	38.06

C_p_L_mix	136.916	(kJ/kmol K)
C_p_V_mix	84.566	(kJ/kmol K)
Heat of Vap_mix	31.499	kJ/kmol
Q_v	-239579.0731	W
Q_I	-289400.1919	W
Duty of Condenser	528979.2651	W

OverAll Heat Transfer Coefficient_condense 65 Btu/ft^2.F.h

369.0895 W/m^2.K

LMTD 46.25550541

Area of Condenser 30.9844312 m^2

333.513319 ft^2

Reboiler load,

 $Q_{reb} = Q_c + Enthalpy$ leaving with D + Enthalpy leaving with B - Enthalpy entering with F

Benzene	Toluene
	Benzene

82745.39026 50088.5 J/mol

Enthalpy of Saturated Feed 56804.83303 J/Kg

Enathalpy Of Distillate 79479.70285 J/Kg
Enathalpy Of Bottom 51721.35985 J/Kg

Duty of Reboiler 522912.5984 W LMTD for Reboiler 8.400273952

 OverAll Heat Transfer Coefficient
 567.5
 W/m^2.K

 Area Of the Reboiler
 109.6906954
 m^2

 1180.699676
 ft^2

Cost Table for Condenser

Heat transfer Area(ft^2)		Cost(Rs)
	0	0
	1000	780000
	1200	950000
	1400	1220000
	1600	1450000

Cost Of Condenser 255451.2072 RS

Cost Table forReboiler

Heat transfer Area(ft^2)		Cost(Rs)
	0	0
	1000	400000
	1400	500000
	1800	620000
	2200	800000
	2600	1000000

Cost Of Reboiler 434820.9341 RS

Total Cost 4759859.765 Rs

Salvage 1903943.906 life 10

Total Annual Cost ₹ 9,51,971.95 Rs/Year

Operating Cost

Flow Rate of Water Condenser 8.996246004 kg/s

Cost of cooling water 0.25 rs/1000 kg
Cost of cooling water for Operating 8000 hrs 64772.97123 Rs/Year

Flow Rate of Steam 0.193671333 Kg/s
Steam Price 0.2 Rs/kg
Cost of the steam for Operating 8000 hrs 1115546.876 Rs/Year

Total Cost per Annum incluing operating co 2132291.801 Rs/Year

Tray Hydraulics

Flow Rate of Liquid

Q_L	22.21392	m^3/hr
Q_V	2.031056	m^3/s

Number of passes

Diameter of Tray(D)	1.6	m
Length of Calming Zone	0.1	m
Length of Weir(I_w) = 0.76D	1.216	m
Liquid loading (O 1/1 w)	18.26803	m^3/hr (n

Since Liquid Loading is less than 62 m^3/hr (m l_w), So single pass is OK

Area of Distribution over Tray

For X = I_dc/D
$$\frac{\tilde{A}_{dc}}{A} = (50/\pi) \times \left\{ 2 \sin^{-1} \chi - \sin(2 \sin^{-1} \chi) \right\}$$
 A dc/A
$$0.12$$

Downcomer Width

$$w_{dc} = \frac{50 \times \{1 - \cos\{\sin^{-1}(\chi)\}\}}{100} \times D$$

100		
w_dc	0.280062	m
Area of Tray (A)	2.01	m^2
Area of Downcomer (A_dc)	0.2412	m^2
Area of Calming(A_cal)	0.1216	m^2

Taking End Wastage Around 5% we get

Area of End Wastage(A_w) 0.0201 m^2

From Fig. 14.12, net tray perforated area $A_{o,tray} = A - (2A_{dc} + 2A_{calming} + A_{end wastage} + A_{backing strips})$.

Considering 10% loss of total area due to backing strips, from geometry net tray perforated Area(Ao,tray)

1.201085 m^2

Tray Layout

Since D > 1.2 m, cap nominal size, d_cap = 100 mm

d_cap	100	mm
-------	-----	----

From Table 14.6, we select carbon steel caps of 100 mm nominal size for which

Cap OD	104	mm
ID	98.44	mm
height	76	mm
Cap Area(A_cap)	0.008495	m^2
Height of Shroud ring	6	mm
skirt height	25	mm
Trapezoidal slot with no. of slots	26	
R_s	0.5	mm
slot dimensions 8.5 mm * 4.2 mm		
C_s	0.74	
h_s	32	mm

Area Ratios

reversal/riser	1.52
slot/riser	1.69
annular/riser (r)	1.25
slot/cap	0.62

Pitch (P = 1.25 * OD) 130

Considering triangular pitch, number of caps per m2 of net perforated area of tray A_o,tray

number of Caps per m^2 69 **Total Number of Caps** 84

Weir height

h_w = cap skirt clearance (25 mm) + shroud ring height (6 mm) + slot height (32 mm) + static seal (10 mm)

73 mm h w 12.16667 % (OK) h w/TS

Height over weir

22.1473 mm h ow $h_{ow} = 750 \left(\frac{m_L}{\rho_L l_w}\right)^{2/3}$ 22.15mm(> 10 mm specified as minimum in text)

Tray pressure drop

<i>.</i> .			
A_riser/A_cap	0.366864	A_{slot}/A_{cap}	Ariser
A_riser/cap	0.003116 m^2	$\overline{A_{slot}/A_{riser}}$	A_{cap}
Total riser area per tray in m2 , Ar	0.261783 m^2		
Dry cap coefficient(Kc)	0.502931 mm/r	n.s	

$$K_c = 0.6373 \times r^2 - 2.0386 \times r + 2.0554$$

Rho_V/Rho_L 0.003903 $h_{dry} = 273.4 K_c \frac{\rho_V}{\rho_L} \left(\frac{Q_V}{A_r}\right)^2$ 32.30702 mm h_dry

Head loss through wet slots

Slot area per tray (A_s) 0.442413 m^2 Maximum slot capacity formula 1.88924 m^3/s Q V,max $Q_{max} - C_s A_s \sqrt{h_{sh} \left(\frac{\rho_L - \rho_V}{\rho_V}\right)}$ 1.075065 $Q_V/Q_V,max$

The above Ratio is in the Range to operate

38 mm h so (h s + h shroud)Mean Tray Diameter 1.408 m 0.004382 m^3/s/m Q_L/Mean Tray Diameter

Tray Layout

0.519938 m Distance of weir from Tray Center 1.361839 m Width of Calming Zone Average tray width where caps are placed 1.48092 m average no of caps per row 11.39169 No. of rows to accommodate 84 Caps 7.373796 Gap between rows 112.5833 mm Maximum number of rows that can be 7.460049 > 7.37 (Hence, OK) accommodated

Actual layout needs to be done to finalise number of rows but

7 rows can be accommodated and further calculations consider 7 rows

Gamma = (gap between caps/cap OD)		0.25
s = Cap skirt clearance	25.4	mm
h_lo = h_w + h_ow	95.1473	mm

Considering square pitch, number of caps per m2 of net perforated area of tray A_o,tray

number of Caps per m^2	60	
Total Number of Caps	72	
Total riser area per tray in m2 , Ar	0.224385	m^2
h_dry	43.97344	mm
C_s	0.74	
Slot area per tray (A_s)	0.379211	m^2
Q_V,max	1.533634	m^3/s
Q_V/Q_V,max	1.324342	

The above suugest overloaded Slots

Liquid gradient

$$V_{\rm o}\sqrt{\rho_{\rm v}} = 0.8197 \times \frac{(Q_{\rm v} \text{ in m}^3/\text{s})}{(A \text{ in m}^2)} \sqrt{\rho_{\rm v} \text{ in kg/m}^3}$$

1.530531 ft/s 21.17251 gpm $V_ov\rho_v$ liquid load per ft mean tray width, f

C_v can be found from fig.14.13 using the f and V_oV ρ _v

$$\int (Q_L/l_w) \int_{-\infty}^{\infty} \exp\left(0.0900 \times (\ln(f))^2 - 0.0238 \times \ln(f) + 2.4146\right)$$

$$\left\{ \frac{(Q_L/l_w)}{C_d} \right\} = \exp\left\{ 0.0899 \times \{\ln(f)\}^2 - 0.0238 \times \ln(f) + 2.4146 \right\}$$

 $\Delta = C_v \times No. \ of \ rows \times \delta$

 $\Delta = 1.14*7*\delta$

 $\{(Q_L/l_w)/C_d\}$

$$\left\{\frac{\left(Q/L_{w}\right)}{C_{d}}\right\} = 0.2015 \times \left(\frac{\gamma}{1+\gamma}\right) \times \delta^{0.5} \times \left\{1.6 \times \delta + 3 \times \left(h_{w} + h_{ow} + \Delta/2 + \frac{0.3 \times s}{\gamma}\right)\right\}$$

Putting $\{(Q_L/I_w)/C_d\}$ and $\Delta = 1.14*7*\delta$ in the above expression and solving for del

24.04011

$\{(Q_L/I_w)/C_d\}$	24.0401	(Using the E	quation Above)
δ	2.157149	mm/row	_
Δ	17.21405	17	mm (say)

Drop through aerated liquid(h_al)

Riser slot seal, h_ss	13	mm
dynamic slot seal,h_ds	43.6473	mm
F_Va	2.456822	$F_{Va} = U_{Va} \rho_V^{1/2}$
$\beta = -0.0255 \times (F_{Va})^3 + 0.1744 \times (F_{Va})^2$	$-0.4282 \times$	$F_{Va}+0.9979$
Beta	0.620415	
h_al = Beta * h_ds	27.07945	mm
h_tray=h_dry+h_so+h_al	109.0529	mm
Vanour distribution		-

Vapour distribution

$$h_cap = h_dry + h_so$$
 81.97344 mm r_cvd 0.209995

Corrected 'approach to flooding'

A_n	1.7688	m^2
U_V,n	1.148267	m/s
U_fV,n	1.55152	
j = U_V,n/U_fV,n	0.740092	≈74 %
approach to flooding (Ok)		

Downcomer dynamics

Therefore, Downcomer Velocity is sufficiently below choking limit Throw of liquid over weir into downcomer is not important in case of segmental downcomers and hence omitted.

Weep holes

$A_n,L = A - (A_dc + A_o,tray)$	0.567715	m^2
A_n,L summed over all trays	10.78659	m^2

As per the general recommendation (275 - 280 mm² of weep hole area per m² of net open liquid tray area summed over all trays),

We consider total area occupied by weep holes as 277.75 mm^2 per m^2 A_n,L

Total weep hole area, A_wh	2995.974	mm^2	
Area A_wh on each tray	157.6828	mm^2	
Assuming d_wh	3	mm	
number of weep holes per tray, N_wh	22.30756		23

Distillation Column (Benzene recovery column) Summary:

Customer ID: IIT Kharagpur, India Designer: PED GROUP – 8

Date: March, 03, 2023

D, Tray/Tower diameter (m)	1.6	
A, tower area (m²)	2.01	
A, active area (m ²)	1.201085	
Adc, downcomer area (m²)	0.2412	
NP, number of passes	1	
W_dc(m)	0.280061542	
lw, weir length (m)	1.216	
hw, weir height (mm)	73	
Downcomer type	Segmental	
A_dc(% of A)	12	
Loadings @ Tray	8	
TS, mm	600	
Vapour	kg/s	6.93497614
	m3/s	2.031055519
	P_v, kg/m3	3.414469017
Liquid	kg/s	5.397816464
	m3/s	22.2139215
	P_I kg/m³	874.7730234
Pressure Drop	QL/lw, m3/s per m	0.004382481
	hw, mm	73
	h_tray, mm liq.	109.0528855
A_dc,clearance (m²)	0.0304	
h_dc,pr_drop, mm liq.	6.807904943	
hL,dc, mm liq.	228.008086	
Residence time, sec	8.912608306	