## Analysis 2 Hausaufgabenblatt Nr. 10

Jun Wei Tan\* and Jonas Hack

Julius-Maximilians-Universität Würzburg

(Dated: January 25, 2024)

**Problem 1.** Begründen Sie, warum die Determinante det :  $\mathbb{R}^{n \times n} \to \mathbb{R}$  unendlich oft differenzierbar ist, und bestimmen Sie die Ableitung im Punkt  $X \in \mathbb{R}^{n \times n}$ . Welche besondere Form nimmt (Ddet)(Id) an?

**Problem 2.** Ist  $U \subset \mathbb{R}^n$  offen und  $f: U \to \mathbb{R}$  zweimal differenzierbar, so kann die zweite Ableitung  $D^2f$  in jedem Punkt  $x \in U$  durch eine blineare Abbildung  $\mathrm{Hom}(\mathbb{R}^n,\mathbb{R}^n;\mathbb{R})$  darstellen. Für eine gegebene Basis auf dem  $\mathbb{R}^n$ -wir wählen die kanonische Basis hier - lassen sich bilineare Abbildungen durch eine Matrix  $A \in \mathbb{R}^{n \times n}$  darstellen, die sog. Hesse-Matrix Hf mit

$$Hf(x,y) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}\right]_{i,j=1,\dots,n} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{pmatrix}.$$

Hier wurde schon ausgenutzt, dass die partiellen Ableitungen nach dem Satz von Schwarz vertauschen, die Hesse-Matrix ist also symmetrisch.

Es sei nun  $f: \mathbb{R}^n \to \mathbb{R}$  mit

$$f(x) = \frac{1}{2}x^{T}Ax = \frac{1}{2}\sum_{i,j=1}^{n} a_{ij}x_{i}x_{j}$$

für eine Matrix  $A \in \mathbb{R}^{n \times n}$ .

- (a) Zeigen Sie, dass f in (0,0) ein Minimum, Maximum oder Sattelpunkt genau dann besitzt, wenn die Hesse-Matrix von f (in (0,0)) positiv semi- negativ semi- bzw. indefinit ist.
- (b) Zeigen Sie durch ein Beispiel, dass für allgemeine Funktionen mit positiv (bzw. negativ) semidefiniter Hesse-Matrix im kritischen Punkt kein lokales Minimum (bzw. Maximum) vorliegen muss.

 $<sup>^{\</sup>ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

## Problem 3. Es sei

$$F: \mathbb{R}^2 \to \mathbb{R}^2, \qquad F(x,y) = (x^2 - y^2, 2xy)^T.$$

- (a) Berechnen Sie die Jacobi-Matrix von F.
- (b) In welchem Punkt  $p \in \mathbb{R}^2$  existiert die Inverse von JF(p)?
- (c) Finden Sie eine lokale inverse Abbildung  $F^{-1}$  von F in einer Umgebung von p = (1,0) = F(1,0) und berechnen Sie die Ableitung von  $F^{-1}$  in p.
- (d) Ist F auf dem ganzen Gebiet  $\{p \in \mathbb{R}^2 | JF(p) \text{ invertierbar}\}$  global invertierbar?

**Problem 4.** Mithilfe des Satzes über implizite Funktionen beweisen wir die Glattheit der Inversen-Abbildung inf:  $GL(n) \to GL(n)$ . Gehen Sie wie folgt vor:

- (a) Begründen Sie, dass die Abbildung  $A \cdot B \to AB$  auf  $\mathbb{R}^{(n \times n)^2}$  unendlich oft differenzierbar ist.
- (b) Nutzen Sie dan Satz über implizite Funktionen, um inf  $\in \mathcal{C}^{\infty}(GL(n), GL(n))$  zu beweisen.

Hinweis: Betrachten Sie  $A \cdot B = Id$