Takeaways Day 1

Before today

Hello, could you please fit a linear regression for me using gradient descent? Also use linear algebra to do it.

K bye thanks!

You: *terrified pear noises*

Now:

You: *somewhat understanding but still quite confused pear noises*

Needed

How wrong are you?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Needed

How wrong are you?

On average

Needed

Updating

$$J(\theta_0,\theta_1) = \frac{1}{2m} \sum_{i}^{m} (\theta_0 + \theta_1 \cdot x^{(i)} - y^{(i)})^2$$

Cost function and gradient descent

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left((h_\theta(x^{(i)}) - y^{(i)}) \cdot x^{(i)} \right)$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Procedure

- Start with random theta values
- Calculate your hypothesis function: the linear regression prediction
- Calculate the errors
- Calculate the partial derivatives for each theta
- Take a small step

1	x1	x2	x3
1	0.5	0.2	0.8
1	0.9	-0.4	0.45

Theta_0	
Theta_1	
Theta_2	
Theta_3	

Errors =

pred_1
Pred_2
Pred_3

	y_1
_	y_2
	y_3

Take a step

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left((h_\theta(x^{(i)}) - y^{(i)}) \cdot x^{(i)} \right)$$

Theta old – alpha * partial derivative = theta new