DÉRIVATION

I. Limite en zéro d'une fonction

Exemples:

1) Soit la fonction f définie sur $]-\infty$; $0[\cup]0$; $+\infty[$ par $f(x) = \frac{(x+1)^2-1}{x}$.

L'image de 0 par la fonction f n'existe pas. On s'intéresse cependant aux valeurs de f(x) lorsque x se rapproche de 0.

						-			
x	-0,5	-0,1	-0,01	-0,001		0,001	0,01	0,1	0,5
f(x)	1,5	1,9	1,99	1,999	?	2,001	2,01	2,1	2,5

On constate que f(x) se rapproche de 2 lorsque x se rapproche de 0. On dit que la limite de f lorsque x tend vers 0 est égale à 2 et on note : $\lim_{x\to 0} f(x) = 2$.

2) Soit la fonction g définie sur $]-\infty$; $0[\cup]0$; $+\infty[$ par $g(x)=\frac{1}{x^2}$.

A l'aide de la calculatrice, on constate que g(x) devient de plus en plus grand lorsque x se rapproche de 0.

On dit que la limite de g lorsque x tend vers 0 est égale à $+\infty$ et on note : $\lim_{x\to 0} g(x) = +\infty$.

<u>Définition</u>: On dit que f(x) a pour limite L lorsque x tend vers 0 si les valeurs de f(x) peuvent être aussi proche de L que l'on veut pourvu que x soit suffisamment proche de 0.

On note : $\lim_{x\to 0} f(x) = L$ et on lit : La limite de f(x) lorsque x tend vers 0 est égale à L.

II. Nombre dérivé

1) Rappel : Pente d'une droite

Soit une fonction f définie sur un intervalle I. Soit deux réels a et b appartenant à I tels que a < b.

Soit A et B deux points de la courbe représentative de f d'abscisses respectives a et b.

La pente (ou le coefficient directeur) de la droite (AB) est égal à : $\frac{f(b)-f(a)}{b-a}$.

2

2) Fonction dérivable

Soit une fonction f définie sur un intervalle I. Soit un réel a appartenant à I.

Soit A et M deux points de la courbe représentative de f d'abscisses respectives a et a+h, avec $h \neq 0$.

La pente de la droite (AM) est égale à :

$$\frac{f(a+h)-f(a)}{a+h-a} = \frac{f(a+h)-f(a)}{h}.$$

Lorsque le point M se rapproche du point A, la pente de la droite (AM) est égale à la

limite de $\frac{f(a+h)-f(a)}{h}$ lorsque h tend vers 0.

Cette pente s'appelle le nombre dérivé de f en a et se note f'(a).

<u>Définition</u>: On dit que la fonction f est **dérivable** en a s'il existe un nombre réel L, tel que : $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = L$.

L est appelé le **nombre dérivé** de f en a et se note f'(a).

Méthode : Démontrer qu'une fonction est dérivable

Vidéo https://youtu.be/UmT0Gov6yyE

Vidéo https://youtu.be/lv5 mw1EYBE

Soit la fonction trinôme f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$. Démontrer que f est dérivable en x = 2.

On commence par calcular
$$\frac{f(2+h)-f(2)}{h}$$
 pour $h \neq 0$:

$$\frac{f(2+h) - f(2)}{h}$$

$$= \frac{(2+h)^2 + 2(2+h) - 3 - 2^2 - 2 \times 2 + 3}{h}$$

$$= \frac{4+4h+h^2+4+2h-8}{h}$$

$$= \frac{6h+h^2}{h}$$

$$= \frac{h(6+h)}{h}$$

$$= 6+h$$

Donc:
$$\lim_{h\to 0} \frac{f(2+h)-f(2)}{h} = \lim_{h\to 0} 6 + h = 6$$

On en déduit que f est dérivable en x = 2. Le nombre dérivé de f en 2 vaut 6 et on note : f'(2) = 6.

III. Tangente à une courbe

Soit une fonction f définie sur un intervalle I et dérivable en un nombre réel a appartenant à I.

f'(a) est le nombre dérivé de f en a.

A est un point d'abscisse a appartenant à la courbe représentative C_f de f.

<u>Définition</u>: La **tangente** à la courbe C_f au point A est la droite passant par A de pente le nombre dérivé f'(a).

Méthode : Déterminer le coefficient directeur d'une tangente à une courbe

Vidéo https://youtu.be/0jhxK55jONs

On considère la fonction trinôme f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$ dont la dérivabilité en 2 a été étudiée plus haut.

Déterminer la pente de la tangente à la courbe représentative de f au point A de la courbe d'abscisse 2.

On a vu que le nombre dérivé de f en 2 vaut 6.

Ainsi la tangente à la courbe représentative de f au point A de la courbe d'abscisse 2 est la droite passant par A et de pente (coefficient directeur) 6.

Propriété : Une équation de la tangente à la courbe C_f en A est : y = f'(a)(x - a) + f(a).

<u>Démonstration</u>:

Vidéo https://youtu.be/Jj0ql6-o2Uo

La tangente a pour pente f'(a) donc son équation est de la forme : y = f'(a)x + b où b est l'ordonnée à l'origine.

Déterminons b :

La tangente passe par le point A(a; f(a)), donc :

$$f(a) = f'(a) \times a + b$$
 soit: $b = f(a) - f'(a) \times a$

On en déduit que l'équation de la tangente peut s'écrire :

$$y = f'(a)x + f(a) - f'(a) \times a$$

$$y = f'(a)(x - a) + f(a)$$

Méthode : Déterminer une équation d'une tangente à une courbe

Vidéo https://youtu.be/fKEGoo50Xmo

■ Vidéo https://youtu.be/7-z62dSkkTQ

On considère la fonction trinôme f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$.

Déterminer une équation de tangente à la courbe représentative de f au point A de la courbe d'abscisse 2.

On a vu plus haut que la pente de la tangente est égal à 6.

Donc son équation est de la forme : y = 6(x - 2) + f(2), soit :

$$y = 6(x - 2) + 2^2 + 2 \times 2 - 3$$

$$y = 6x - 7$$

Une équation de tangente à la courbe représentative de f au point A de la courbe d'abscisse 2 est y = 6x - 7.

IV. Dérivées des fonctions usuelles

1) Exemple:

Vidéo https://youtu.be/-nRmE8yFSSg

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^2$. Démontrons que pour tout x réel, on : f'(x) = 2x.

Calculons le nombre dérivé de la fonction f en un nombre réel quelconque a.

Pour
$$h \neq 0$$
: $\frac{f(a+h)-f(a)}{h} = \frac{(a+h)^2-a^2}{h} = \frac{a^2+2ah+h^2-a^2}{h} = \frac{h(2a+h)}{h} = 2a+h$
Or: $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \lim_{h\to 0} 2a+h = 2a$

Pour tout nombre a, on associe le nombre dérivé de la fonction f égal à 2a. On a donc défini sur \mathbb{R} une fonction, notée f' dont l'expression est f'(x) = 2x. Cette fonction s'appelle la fonction dérivée de f.

Le mot « dérivé » vient du latin « derivare » qui signifiait « détourner un cours d'eau ».

Le mot a été introduit par le mathématicien franco-italien *Joseph Louis Lagrange* (1736 ; 1813) pour signifier que cette nouvelle fonction dérive (au sens de "provenir") d'une autre fonction.

Définitions : Soit *f* une fonction définie sur un intervalle I.

On dit que f est **dérivable** sur I si elle est dérivable en tout réel x de I.

Dans ce cas, la fonction qui à tout réel x de l'associe le nombre dérivé de f en x est appelée **fonction dérivée** de f et se note f'.

2) Formules de dérivation des fonctions usuelles :

Fonction f	Ensemble de définition de f	Dérivée f'	Ensemble de définition de f'
$f(x) = a, a \in \mathbb{R}$	\mathbb{R}	f'(x)=0	\mathbb{R}
$f(x) = ax, a \in \mathbb{R}$	\mathbb{R}	f'(x) = a	\mathbb{R}
$f(x) = x^2$	\mathbb{R}	f'(x) = 2x	\mathbb{R}
$f(x) = x^n$ $n \ge 1 \text{ entier}$	\mathbb{R}	$f'(x) = nx^{n-1}$	R
$f(x) = \frac{1}{x}$	ℝ\{0}	$f'(x) = -\frac{1}{x^2}$	ℝ\{0}
$f(x) = \frac{1}{x^n}$ $n \ge 1 \text{ entier}$	ℝ\{0}	$f'(x) = -\frac{n}{x^{n+1}}$	ℝ\{0}
$f(x) = \sqrt{x}$	[0; +∞[$f'(x) = \frac{1}{2\sqrt{x}}$]0; +∞[

Exemples:

Vidéo https://youtu.be/9Mann4wOGJA

- 1) Soit la fonction f définie sur \mathbb{R} par $f(x) = x^4$ alors f est dérivable sur \mathbb{R} et on a pour tout x de \mathbb{R} , $f'(x) = 4x^3$.
- 2) Soit la fonction f définie sur $\mathbb{R}\setminus\{0\}$ par $f(x)=\frac{1}{x^5}$ alors f est dérivable sur $]-\infty$; 0[et sur]0; $+\infty[$ et on a pour tout x de $\mathbb{R}\setminus\{0\}$, $f'(x)=-\frac{5}{x^6}$.

Démonstration la fonction inverse :

Vidéo https://youtu.be/rQ1XfMN5pdk

Soit la fonction f définie sur $\mathbb{R}\setminus\{0\}$ par $f(x)=\frac{1}{x}$. Démontrons que pour tout x de $\mathbb{R}\setminus\{0\}$, on a : $f'(x)=-\frac{1}{x^2}$.

Pour $h \neq 0$ et $h \neq -a$:

$$\frac{f(a+h)-f(a)}{h} = \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \frac{\frac{a-a-h}{a(a+h)}}{h} = \frac{\frac{-h}{a(a+h)}}{h} = -\frac{1}{a(a+h)}$$

$$Or: \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} = \lim_{h \to 0} \left(-\frac{1}{a(a+h)} \right) = -\frac{1}{a^2}$$

Pour tout nombre a, on associe le nombre dérivé de la fonction f égal à $-\frac{1}{a^2}$. Ainsi, pour tout x de $\mathbb{R}\setminus\{0\}$, on a : $f'(x)=-\frac{1}{x^2}$.

3) Démonstration :

Non dérivabilité de la fonction racine carrée en 0

Vidéo https://youtu.be/N5wnOoLDrjo

Soit la fonction f définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$.

On calcule le taux de variation de f en 0 :

Pour
$$h > 0$$
: $\frac{f(0+h)-f(0)}{h} = \frac{\sqrt{0+h}-\sqrt{0}}{h} = \frac{\sqrt{h}}{h} = \frac{\sqrt{h}\sqrt{h}}{h\sqrt{h}} = \frac{h}{h\sqrt{h}} = \frac{1}{\sqrt{h}}$
Or: $\lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0} \frac{1}{\sqrt{h}} = +\infty$.

En effet, lorsque h tend vers $0, \frac{1}{\sqrt{h}}$ prend des valeurs de plus en plus grandes.

Donc f n'est pas dérivable en 0.

Géométriquement, cela signifie que la courbe représentative de la fonction racine carrée admet une tangente verticale en 0.

V. Opérations sur les fonctions dérivées

1) Somme, produit, inverse, quotient de dérivées

Exemple:

Soit la fonction f définie sur \mathbb{R} par $f(x) = x + x^2$.

Pour $h \neq 0$:

$$\frac{f(a+h)-f(a)}{h} = \frac{a+h+(a+h)^2-a-a^2}{h}$$

$$= \frac{a+h+a^2+2ah+h^2-a-a^2}{h}$$

$$= \frac{h+2ah+h^2}{h}$$

$$= 1+2a+h$$

Donc :
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} 1 + 2a + h = 1 + 2a$$
.

Alors f est dérivable sur \mathbb{R} et on a pour tout x de \mathbb{R} , f'(x) = 1 + 2x.

On pose pour tout x de \mathbb{R} , u(x) = x et $v(x) = x^2$. On a ainsi : f(x) = u(x) + v(x).

Pour tout x de \mathbb{R} , u'(x) = 1 et v'(x) = 2x.

On constate sur cet exemple que : f'(x) = u'(x) + v'(x).

Soit encore : (u + v)'(x) = u'(x) + v'(x)

Formules d'opération sur les fonctions dérivées :

u et v sont deux fonctions dérivables sur un intervalle I.

u+v est dérivable sur l	(u+v)'=u'+v'
ku est dérivable sur I, où k est une constante	(ku)' = ku'
uv est dérivable sur l	(uv)' = u'v + uv'
$\frac{1}{u}$ est dérivable sur I, où u ne s'annule pas sur I	$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$
$\frac{u}{v}$ est dérivable sur l, où v ne s'annule pas sur l	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

Démonstration pour le produit :

- On veut démontrer que :
$$\lim_{h\to 0} \frac{(uv)(a+h)-(uv)(a)}{h} = u'(a)v(a) + u(a)v'(a)$$

$$\frac{(uv)(a+h)-(uv)(a)}{h} = \frac{u(a+h)v(a+h)-u(a)v(a)}{h}$$

$$= \frac{u(a+h)v(a+h)-u(a)v(a+h)+u(a)v(a+h)-u(a)v(a)}{h}$$

$$= \frac{(u(a+h)-u(a))v(a+h)+u(a)(v(a+h)-v(a))}{h}$$

$$= \frac{u(a+h)-u(a)}{h} v(a+h) + u(a) \frac{v(a+h)-v(a)}{h}$$

En passant à la limite lorsque h tend vers 0, on a :

$$\lim_{h\to 0} \frac{u(a+h)-u(a)}{h} = u'(a) \text{ et } \lim_{h\to 0} \frac{v(a+h)-v(a)}{h} = v'(a)$$
Car u et v sont dérivables sur I.

Et,
$$\lim_{h \to 0} v(a+h) = v(a)$$
.

Soit,
$$\lim_{h \to 0} \frac{(uv)(a+h) - (uv)(a)}{h} = \frac{u'(a)v(a) + u(a)v'(a)}{h}$$

Ainsi : (uv)' = u'v + uv'

Méthode : Calculer les dérivées de sommes, produits et quotients de fonctions

- Vidéo https://youtu.b<u>e/ehHoLK98Ht0</u>
- Vidéo https://youtu.be/1f0Guei0 zk
- Vidéo https://youtu.be/OMsZNNIIdrw
- Vidéo https://youtu.be/jOuC7ag3YkM
- Vidéo https://youtu.be/-MfEczGz_6Y

Calculer les fonctions dérivées des fonctions suivantes :

1)
$$f_1(x) = 5x^3$$

2)
$$f_2(x) = 3x^2 + 4\sqrt{x}$$

$$3) f_3(x) = \frac{1}{2x^2 + 5x}$$

4)
$$f_4(x) = (3x^2 + 4x)(5x - 1)$$
 5) $f_5(x) = \frac{6x - 5}{x^3 - 2x^2 - 1}$

$$5) f_5(x) = \frac{6x - 5}{x^3 - 2x^2 - 1}$$

1)
$$f_1(x) = 5u(x)$$
 avec $u(x) = x^3 \rightarrow u'(x) = 3x^2$

Donc:
$$f_1'(x) = 5u'(x) = 5 \times 3x^2 = 15x^2$$

2)
$$f_2(x) = u(x) + v(x)$$
 avec $u(x) = 3x^2 \rightarrow u'(x) = 6x$

$$v(x) = 4\sqrt{x} \to v'(x) = 4\frac{1}{2\sqrt{x}} = \frac{2}{\sqrt{x}}$$

Donc:
$$f_2'(x) = u'(x) + v'(x) = 6x + \frac{2}{\sqrt{x}}$$

3)
$$f_3(x) = \frac{1}{u(x)}$$
 avec $u(x) = 2x^2 + 5x \rightarrow u'(x) = 4x + 5$

Donc:
$$f_3'(x) = -\frac{u'(x)}{u(x)^2} = -\frac{4x+5}{(2x^2+5x)^2}$$

4)
$$f_4(x) = u(x)v(x)$$
 avec $u(x) = 3x^2 + 4x \rightarrow u'(x) = 6x + 4$
$$v(x) = 5x - 1 \rightarrow v'(x) = 5$$

Donc:
$$f_4'(x) = u'(x)v(x) + u(x)v'(x) = (6x + 4)(5x - 1) + (3x^2 + 4x) \times 5$$

= $30x^2 - 6x + 20x - 4 + 15x^2 + 20x$
= $45x^2 + 34x - 4$

5)
$$f_5(x) = \frac{u(x)}{v(x)}$$
 avec $u(x) = 6x - 5 \rightarrow u'(x) = 6$
$$v(x) = x^3 - 2x^2 - 1 \rightarrow v'(x) = 3x^2 - 4x$$

Donc:
$$f_5'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}$$

$$= \frac{6(x^3 - 2x^2 - 1) - (6x - 5)(3x^2 - 4x)}{(x^3 - 2x^2 - 1)^2}$$

$$= \frac{6x^3 - 12x^2 - 6 - 18x^3 + 24x^2 + 15x^2 - 20x}{(x^3 - 2x^2 - 1)^2}$$

$$= \frac{-12x^3 + 27x^2 - 20x - 6}{(x^3 - 2x^2 - 1)^2}$$

2) Composée de dérivées

Fonction	Ensemble de définition	Dérivée	
f(ax+b)	f dérivable sur l	af'(ax+b)	

Exemple:
$$f(x) = \sqrt{5x - 4}$$

Alors $f'(x) = 5 \frac{1}{2\sqrt{5x - 4}} = \frac{5}{2\sqrt{5x - 4}}$
En effet: $(5x - 4)' = 5$ et $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$

VI. Cas de la fonction valeur absolue

- 1) Valeur absolue d'un nombre (rappels)
- Vidéo https://youtu.be/O61rmOdXg9I

Exemples:

- La valeur absolue de -5 est égale à 5.
- La valeur absolue de 8 est égale à 8.

<u>Définition</u>: La **valeur absolue** d'un nombre A est égal au nombre A si A est positif, et au nombre –A si A est négatif.

La valeur absolue de A se note |A|.

Exemple:

$$|x-5| = \begin{cases} x-5, si \ x \ge 5 \\ 5-x, si \ x \le 5 \end{cases}$$

2) Fonction valeur absolue

<u>Définition</u>: La **fonction valeur absolue** est la fonction f définie sur \mathbb{R} par f(x) = |x|.

Propriété : La fonction valeur absolue est strictement décroissante sur l'intervalle $]-\infty$; 0] et strictement croissante sur l'intervalle $[0; +\infty[$.

$$\frac{\text{Éléments de démonstration :}}{f(x) = \begin{cases} -x \ sur \] - \infty \ ; \ 0]} \\ x \ sur \ [0 \ ; \ + \infty[$$

Sur chacun des intervalles $]-\infty$; 0] et $[0; +\infty[$, la fonction f est une fonction affine.

Représentation graphique :

Remarque:

Dans un repère orthogonal, la courbe de la fonction valeur absolue est symétrique par rapport à l'axe des ordonnées.

3) Étude de la dérivabilité en 0 :

Soit la fonction f définie sur $[0; +\infty[$ par f(x) = |x|.

On calcule le taux de variation de f en 0 :

- Si
$$h > 0$$
, $\frac{f(0+h)-f(0)}{h} = \frac{|0+h|-|0|}{h} = \frac{|h|}{h} = \frac{h}{h} = 1$

Car |h| = h, si h > 0.

- Si
$$h < 0$$
, $\frac{f(0+h)-f(0)}{h} = \frac{|0+h|-|0|}{h} = \frac{|h|}{h} = \frac{-h}{h} = -1$

Car |h| = -h, si h < 0.

 $\mathrm{Donc}: \lim_{h \to 0} \frac{f(h) - f(0)}{h} \ \, \mathrm{n'existe\ pas\ car\ d\'epend\ du\ signe\ de}\ \, h.$

La fonction valeur absolue n'est donc pas dérivable en 0.

En observant la courbe représentative de la fonction valeur absolue, on comprend bien qu'il n'existe pas de tangente à la courbe en 0.

Cependant, il est à noter que la fonction $x \mapsto |x|$ est dérivable en tout nombre différent de 0.

Méthode : Démontrer qu'une fonction valeur absolue n'est pas dérivable

Soit la fonction g définie sur \mathbb{R} par g(x) = |x - 5|.

La fonction g est-elle dérivable en x = 5 ?

On commence par calculer $\frac{g(5+h)-g(5)}{h}$ pour $h \neq 0$. $\frac{g(5+h)-g(5)}{h} = \frac{|5+h-5|-|5-5|}{h} = \frac{|h|}{h}$

$$\left| \frac{g(5+h) - g(5)}{h} = \frac{|5+h-5| - |5-5|}{h} = \frac{|h|}{h} \right|$$

$$\frac{g(5+h)-g(5)}{h} = \begin{cases} \frac{h}{h} = 1, \ pour \ h > 0\\ \frac{-h}{h} = -1, \ pour \ h < 0 \end{cases}$$

 $\lim_{h\to 0}\frac{g(5+h)-g(5)}{h} \text{ n'est pas égale à un unique nombre réel.}$

La fonction g n'est pas dérivable en x = 5.

VII. Étude des variations d'une fonction

<u>Théorème</u>: Soit une fonction *f* définie et dérivable sur un intervalle I.

- Si $f'(x) \le 0$, alors f est décroissante sur l.
- Si $f'(x) \ge 0$, alors f est croissante sur I.

1) Exemple d'une fonction du second degré

Méthode : Étudier les variations d'une fonction polynôme du second degré

Vidéo https://voutu.be/EXTobPZzORo

Soit la fonction f définie sur \mathbb{R} par $f(x) = 2x^2 - 8x + 1$.

- 1) Calculer la fonction dérivée de f.
- 2) Déterminer le signe de f en fonction de x.
- 3) Dresser le tableau de variations de f.
- 1) Pour tout x réel, on a : $f'(x) = 2 \times 2x 8 = 4x 8$.
- 2) On commence par résoudre l'équation f'(x) = 0.

Soit :
$$4x - 8 = 0$$

Donc
$$4x = 8$$
 et $x = \frac{8}{4} = 2$.

La fonction f' est une fonction affine représentée par une droite dont le coefficient directeur 4 est positif.

Elle est donc d'abord négative (avant x = 2) puis ensuite positive (après x = 2).

3) On dresse alors le tableau de variations on appliquent le théanhaire.

3) On dresse alors le tableau de variations en appliquant le théorème :

X	-∞	2	+∞
f'	_	Ф	+
f		→ _7 /	*

En effet :
$$f(2) = 2 \times 2^2 - 8 \times 2 + 1 = -7$$
.

La fonction f admet un minimum égal à -7 en x = 2.

2) Exemple d'une fonction du troisième degré

Méthode: Dresser le tableau de variations d'une fonction polynôme du 3e degré

Vidéo https://youtu.be/23 Ba3N0fu4

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 + \frac{9}{2}x^2 - 12x + 5$.

- 1) Étudier les variations de f et dresser le tableau de variation.
- 2) Dans repère, représenter graphiquement la fonction f.

1) Pour tout x réel, on a : $f'(x) = 3x^2 + 9x - 12$. Commençons par résoudre l'équation f'(x) = 0 :

Le discriminant du trinôme $3x^2 + 9x - 12$ est égal à $\Delta = 9^2 - 4 \times 3 \times (-12) = 225$

L'équation possède deux solutions :
$$x_1 = \frac{-9 - \sqrt{225}}{2 \times 3} = -4$$
 et $x_2 = \frac{-9 + \sqrt{225}}{2 \times 3} = 1$

On en déduit le tableau de variations de *f* :

2)

VIII. Extremum d'une fonction

<u>Théorème</u>: Soit une fonction *f* définie et dérivable sur un intervalle ouvert I. Si la dérivée f' de f s'annule et change de signe en un réel c de l alors f admet un extremum en x = c.

Méthode: Rechercher un extremum

Vidéo https://youtu.be/zxyKLgnlMlk

La fonction f définie sur \mathbb{R} par $f(x) = 5x^2 - 3x + 4$ admet-elle un extremum sur \mathbb{R} ?

Pour tout x réel, on a : f'(x) = 10x - 3

Et:
$$f'(x) = 0$$
 pour $x = \frac{3}{10}$.

On dresse alors le tableau de variations :

En effet :
$$f\left(\frac{3}{10}\right) = \frac{71}{20}$$

La fonction f admet donc un minimum égal à $\frac{71}{20}$ en $x = \frac{3}{10}$.

IX. Position relative de deux courbes

Méthode : Étudier la position relative de deux courbes

Vidéo https://youtu.be/ON14GJOYogw

Soit f et g deux fonctions définies sur $[2; +\infty[$ par $: f(x) = x^3$ et g(x) = -5x + 18. Étudier la position relative des courbes représentatives C_f et C_g .

On va étudier le signe de la différence f(x) - g(x):

On pose : $h(x) = f(x) - g(x) = x^3 + 5x - 18$.

Pour tout *x* de [2; $+\infty$ [, on a : $h'(x) = 3x^2 + 5$

Donc h'(x) > 0.

On en déduit que la fonction h est strictement croissante sur $[2; +\infty[$.

On construit le tableau de variations :

$$h(2) = 2^3 + 5 \times 2 - 18 = 0$$

D'après le tableau de variations, on a $h(x) \ge 0$.

Soit: $f(x) - g(x) \ge 0$ et donc $f(x) \ge g(x)$.

On en déduit que la courbe C_f est au-dessus de la courbe C_g sur l'intervalle [2; $+\infty$ [.

X. Dérivées d'une fonction composée

1) Définition

Exemple:

Vidéo https://youtu.be/08HgDgD6XL8

On considère la fonction f définie par $f(x) = \sqrt{x-3}$ La fonction f est la composée de deux fonctions u et v telles que :

$$u \qquad v \\ f: x \mapsto x - 3 \mapsto \sqrt{x - 3}$$

Les fonctions u et v sont définies par : u(x) = x - 3 et $v(x) = \sqrt{x}$

On dit que la fonction f est la composée de ${\color{red} u}$ par ${\color{red} v}$ et on note :

$$f(x) = v \circ u(x) = v(u(x)) = \sqrt{x-3}$$

<u>Définition</u>: Soit une fonction u définie sur un intervalle I et prenant ses valeurs dans un intervalle J. Soit une fonction v définie sur un intervalle K tel que $J \subset K$. On appelle **fonction composée** de u par v la fonction notée $v \circ u$ définie sur l'intervalle I par : $v \circ u$ (x) = v(u(x)).

Méthode: Composer deux fonctions

Vidéo https://youtu.be/sZ2zqEz4hug

1) On considère les fonctions u et v définies par : $u(x) = \frac{1}{x}$ et $v(x) = \sqrt{x}$.

Exprimer les fonctions $v \circ u$ et $u \circ v$ en fonction de x.

2) Même question avec $u(x) = x^2 + x$ et $v(x) = \frac{x}{x+1}$.

1) On a :
$$u(x) = \frac{1}{x}$$
 et $v(x) = \sqrt{x}$

$$v \circ u(x) = v(u(x)) = \sqrt{\frac{1}{x}}$$

$$u \circ v(x) = u(v(x)) = \frac{1}{\sqrt{x}}$$

2) On a :
$$u(x) = x^2 + x$$
 et $v(x) = \frac{x}{x+1}$

$$v \circ u(x) = v(u(x)) = \frac{x^2 + x}{x^2 + x + 1}$$

$$u \circ v(x) = u(v(x)) = \left(\frac{x}{x+1}\right)^2 + \frac{x}{x+1}$$

2) Formule de dérivation d'une fonction composée

<u>Propriété</u>: Soit une fonction u définie et dérivable sur un intervalle I et prenant ses valeurs dans un intervalle J.

Soit une fonction v définie et dérivable sur un intervalle K tel que $J \subset K$.

La fonction $f = v \circ u$ est dérivable sur l'intervalle I et on a : $f'(x) = v'(u(x)) \times u'(x)$ ou encore $f' = v' \circ u \times u'$

Admis

Méthode : Déterminer la dérivée d'une fonction composée (cas général)

Vidéo https://voutu.be/lwcFgnbs0Ew

Déterminer la dérivée de la fonction f définie sur \mathbb{R} par $f(x) = e^{x^2+1}$.

On considère les fonctions u et v définies par : $u(x) = x^2 + 1$ et $v(x) = e^x$

Alors:
$$f(x) = e^{x^2+1} = v(u(x))$$

On a:
$$u'(x) = 2x$$
 et $v'(x) = e^x$
Donc: $f'(x) = v'(u(x)) \times u'(x)$
 $= e^{x^2+1} \times 2x$
 $= 2xe^{x^2+1}$

3) Cas particuliers de fonctions composées

Fonction	Ensemble de définition	Dérivée	
\sqrt{u}	u(x) > 0	$\frac{u'}{2\sqrt{u}}$	
u^n avec $n \in \mathbb{Z}^*$	$ Si n < 0, \\ u(x) \neq 0 $	$nu'u^{n-1}$	
e^u	\mathbb{R}	$u'e^u$	

Démonstrations:

$$-\sqrt{u(x)} = v \circ u(x) \text{ avec } v(x) = \sqrt{x}$$

Donc
$$\left(\sqrt{u(x)}\right)' = v'\left(u(x)\right) \times u'(x) = \frac{1}{2\sqrt{u(x)}} \times u'(x)$$
, car $v'(x) = \frac{1}{2\sqrt{x}}$

Soit
$$(\sqrt{u(x)})' = \frac{u'(x)}{2\sqrt{u(x)}}$$

$$-(u(x))^n = v \circ u(x) \text{ avec } v(x) = x^n$$

Donc
$$((u(x))^n)' = v'(u(x)) \times u'(x) = n(u(x))^{n-1} \times u'(x)$$
, car $v'(x) = nx^{n-1}$
Soit $((u(x))^n)' = nu'(x)(u(x))^{n-1}$

- Démonstration analogue pour « e^u ».

Méthode : Déterminer la dérivée de fonctions composées (cas particuliers)

- Vidéo https://youtu.be/kE32Ek8BXvs
- Vidéo https://voutu.be/5G4Aa8gKH o

Déterminer la dérivée des fonctions définies par :

a)
$$f(x) = \sqrt{3x^2 + 4x - 1}$$

b)
$$g(x) = (2x^2 + 3x - 3)^4$$
 c) $h(x) = 2e^{\frac{1}{x}}$

$$c) h(x) = 2e^{\frac{1}{x}}$$

a) On pose :
$$f(x) = \sqrt{u(x)}$$
 avec $u(x) = 3x^2 + 4x - 1 \rightarrow u'(x) = 6x + 4$

Donc:
$$f'(x) = \frac{u'(x)}{2\sqrt{u(x)}}$$

= $\frac{6x+4}{2\sqrt{3x^2+4x-1}}$
= $\frac{3x+2}{\sqrt{3x^2+4x-1}}$

b) On pose :
$$g(x) = (u(x))^4$$
 avec $u(x) = 2x^2 + 3x - 3 \rightarrow u'(x) = 4x + 3$

Donc:
$$g'(x) = 4u'(x)(u(x))^3$$

= $4(4x + 3)(2x^2 + 3x - 3)^3$

c) On pose :
$$h(x) = 2e^{u(x)}$$
 avec $u(x) = \frac{1}{x} \to u'(x) = -\frac{1}{x^2}$

Donc:
$$h'(x) = 2u'(x)e^{u(x)}$$

$$= 2 \times \left(-\frac{1}{x^2}\right)e^{\frac{1}{x}}$$

$$= -\frac{2}{x^2}e^{\frac{1}{x}}$$

4) Étude d'une fonction composée

Méthode: Étudier une fonction composée (1)

- Vidéo https://youtu.be/0MwFVTHZdpo
- Vidéo https://youtu.be/j-pKLxjHNJw
- Vidéo https://youtu.be/7c7HeV8cMvo → difficile, pour experts
- Vidéo https://youtu.be/95eLAWaSwwc
- Vidéo https://youtu.be/a1Z29PuSQ64
- Vidéo https://youtu.be/mM24gzGuWcA

On considère la fonction f définie par $f(x) = \sqrt{\frac{2x}{3x+1}}$

On note C sa courbe représentative dans un repère.

1) Déterminer l'ensemble de définition de f.

- 2) Étudier les limites de f aux bornes de son ensemble de définition et en déduire les équations des asymptotes à la courbe C.
- 3) Étudier les variations de f.
- 4) Tracer les asymptotes à la courbe C puis la courbe C.
- 1) La fonction racine carrée est définie sur $[0; +\infty[$ donc la fonction f est définie pour $\frac{2x}{3x+1} \ge 0$

On dresse le tableau de signe :

х	-∞		_ :	1 3		0)		+∞
2 <i>x</i>		_			_	()	+	
3x + 1		_	()	+			+	
$\frac{2x}{3x+1}$		+			_	()	+	

Donc la fonction f est définie sur $\left]-\infty; -\frac{1}{3}\right[\cup [0; +\infty[$.

2) - Recherche des limites à l'infini :

La limite de la fonction rationnelle sous la racine est une forme indéterminée. Levons l'indétermination :

$$\frac{2x}{3x+1} = \frac{2x}{x(3+\frac{1}{x})} = \frac{2}{3+\frac{1}{x}}$$

Or
$$\lim_{x \to +\infty} 3 + \frac{1}{x} = 3$$
 donc $\lim_{x \to +\infty} \frac{2}{3 + \frac{1}{x}} = \frac{2}{3}$

Et donc :
$$\lim_{x \to +\infty} \frac{2x}{3x+1} = \frac{2}{3}$$

On en déduit, comme limite de fonction composée, que $\lim_{x\to+\infty} \sqrt{\frac{2x}{3x+1}} = \sqrt{\frac{2}{3}}$.

On démontre de même que
$$\lim_{x \to -\infty} \sqrt{\frac{2x}{3x+1}} = \sqrt{\frac{2}{3}}$$
.

Ainsi, la droite d'équation $y = \sqrt{\frac{2}{3}}$ est asymptote horizontale à la courbe \mathcal{C} en $+\infty$ et en $-\infty$.

- Recherche de la limite en $-\frac{1}{3}$:

$$\lim_{x \to -\frac{1}{3}^{-}} 3x + 1 = 0^{-} \text{ et } \lim_{x \to -\frac{1}{3}^{-}} 2x = -\frac{2}{3} \operatorname{donc} \lim_{x \to -\frac{1}{3}^{-}} \frac{2x}{3x+1} = +\infty.$$

Donc, comme limite de fonction composée, on a : $\lim_{x \to -\frac{1}{3}^-} \sqrt{\frac{2x}{3x+1}} = +\infty$.

En effet :
$$\lim_{X\to +\infty} \sqrt{X} = +\infty$$
, en considérant que $X = \frac{2x}{3x+1}$.

Ainsi la droite d'équation $x = -\frac{1}{3}$ est asymptote verticale à la courbe C.

3) On pose :
$$u(x) = \frac{2x}{3x+1}$$

$$u'(x) = \frac{2(3x+1)-3\times 2x}{(3x+1)^2}$$
$$= \frac{6x+2-6x}{(3x+1)^2}$$
$$= \frac{2}{(3x+1)^2}$$

Donc:

$$f'(x) = \frac{u'(x)}{2\sqrt{u(x)}} = \frac{\frac{2}{(3x+1)^2}}{2\sqrt{\frac{2x}{3x+1}}} = \frac{\frac{1}{(3x+1)^2}}{\sqrt{\frac{2x}{3x+1}}}$$

Et donc f'(x) > 0.

On dresse le tableau de variations :

х	-∞ - -	<u>1</u>	+∞
f'(x)	+	///////////////////////////////////////	+
f(x)	$\sqrt{\frac{2}{3}}$	///////////////////////////////////////	$\sqrt{\frac{2}{3}}$

<u>A noter</u>: On met une double barre pour la dérivée en 0. En effet, si x = 0, le dénominateur de la dérivée s'annulerait. La fonction dérivée f' n'est pas définie en 0.

Méthode: Étudier une fonction composée (2)

Vidéo https://youtu.be/l4HkvkpqiNw

Vidéo https://youtu.be/Vx0H1DV3Yqc

Vidéo https://youtu.be/2RIBQ1LiNYU

Soit f la fonction définie sur \mathbb{R} par $f(x) = xe^{-\frac{x}{2}}$.

- a) Étudier les limites de f à l'infini.
- b) Calculer la dérivée de la fonction f.
- c) Dresser le tableau de variations de la fonction f.
- d) Tracer la courbe représentative de la fonction f.
- a) $\lim_{x \to -\infty} -\frac{x}{2} = +\infty$, donc comme limite d'une fonction composée : $\lim_{x \to -\infty} e^{-\frac{x}{2}} = +\infty$.

En effet, $\lim_{X\to +\infty}e^X=+\infty$ en posant $X=-\frac{x}{2}$. Or, $\lim_{X\to -\infty}x=-\infty$.

Donc $\lim_{x \to -\infty} x e^{-\frac{x}{2}} = -\infty$, comme limite d'un produit.

- $\lim_{x \to +\infty} e^{-\frac{x}{2}} = 0$ et $\lim_{x \to +\infty} x = +\infty$. Il s'agit d'une forme indéterminée du type « $0 \times \infty$ ».

Levons l'indétermination :

$$xe^{-\frac{x}{2}} = \frac{x}{e^{\frac{x}{2}}} = 2\frac{\frac{x}{2}}{e^{\frac{x}{2}}}$$

Par croissance comparée, on a : $\lim_{x \to +\infty} \frac{e^{\frac{2}{\lambda}}}{\frac{x}{\lambda}} = +\infty$.

En effet, $\lim_{Y \to +\infty} \frac{e^X}{X} = +\infty$, en considérant que $X = \frac{x}{2}$.

Donc, $\lim_{x \to +\infty} \frac{\hat{z}}{x} = 0$, comme inverse de limite.

Et donc : $\lim_{x \to +\infty} 2 \frac{\frac{x}{2}}{\frac{x}{e^{\frac{x}{2}}}} = 0$ Soit : $\lim_{x \to +\infty} x e^{-\frac{x}{2}} = 0$.

b) On a:

$$f'(x) = e^{-\frac{x}{2}} + x \times \left(-\frac{1}{2}\right)e^{-\frac{x}{2}} = \left(1 - \frac{x}{2}\right)e^{-\frac{x}{2}}$$

En effet : $\left(e^{-\frac{x}{2}}\right)' = \left(-\frac{1}{2}\right)e^{-\frac{x}{2}}$

c) Comme $e^{-\frac{x}{2}} > 0$, f'(x) est du signe de $1 - \frac{x}{2}$.

f'est donc positive sur l'intervalle $]-\infty$; 2] et négative sur l'intervalle $[2; +\infty[$.

On dresse le tableau de variations :

X	-∞		2		+∞
f'(x))	+	0	_	
f(x)	-∞		$\frac{2}{e}$		0

En effet : $f(2) = 2e^{-\frac{2}{2}} = 2e^{-1} = \frac{2}{e}$

d)

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales