# 1 Análisis Sísmico

### 1.1 Factor de Zona

La ubicación de este proyecto es en la ciudad de Cusco, en el distrito de Cusco. Siguiendo los parámetros de la norma de diseño sismorresistente E.030 de octubre de 2018, la estructura se encuentra en la Zona 2.

Table 1: Factor de zona

| FACTOR DE ZONA SEGÚN E-030 |              |  |  |  |  |  |
|----------------------------|--------------|--|--|--|--|--|
| ZONA                       | $\mathbf{Z}$ |  |  |  |  |  |
| 4                          | 0.45         |  |  |  |  |  |
| 3                          | 0.35         |  |  |  |  |  |
| 2                          | 0.25         |  |  |  |  |  |
| 1                          | 0.10         |  |  |  |  |  |



Fuente: E-030 (2018)

Este factor se interpreta como la aceleración máxima horizontal en el suelo rígido con una probabilidad de 10~% de ser excedida en 50~años

#### 1.2 Factor de suelo

Este factor se interpreta como un factor de modificación de la aceleración pico del suelo para un perfil determinado respecto al pefil tipo S1.

Table 2: Factor de suelo

| FACTOR DE SUELO SEGÚN E-030 |      |      |      |      |  |  |  |  |  |  |
|-----------------------------|------|------|------|------|--|--|--|--|--|--|
| SUELO                       | SO   | S1   | S2   | S3   |  |  |  |  |  |  |
| ZONA                        |      |      |      |      |  |  |  |  |  |  |
| 4                           | 0.80 | 1.00 | 1.05 | 1.10 |  |  |  |  |  |  |
| 3                           | 0.80 | 1.00 | 1.15 | 1.20 |  |  |  |  |  |  |
| 2                           | 0.80 | 1.00 | 1.20 | 1.40 |  |  |  |  |  |  |
| 1                           | 0.80 | 1.00 | 1.60 | 2.00 |  |  |  |  |  |  |

Fuente: E-030 (2018)

### 1.2.1 Periodos de suelo

#### 1.3 Sistema Estructural

Después de realizar el análisis sísmico se determino que los sistemas estructurales en X, Y son: Muros y pórticos respectivamente.

# 1.4 Factor de Amplificación sísmica

Se determina según el artículo 11 de la E-030

Table 3: Periodos de suelo

|   |    | PERIODO "Tp" y "Tl" SEGÚN E-030 |      |      |      |  |  |  |  |
|---|----|---------------------------------|------|------|------|--|--|--|--|
|   |    | Perfil de suelo                 |      |      |      |  |  |  |  |
|   |    | S0                              | S1   | S2   | S3   |  |  |  |  |
|   | Тр | 0.30                            | 0.40 | 0.60 | 1.00 |  |  |  |  |
| Ì | Tl | 3.00                            | 2.50 | 2.00 | 1.60 |  |  |  |  |

Fuente: E-030 (2018)

Table 4: coeficiente básico de reducción

| SISTEMAS ESTRUCTURALES                                    |                                       |  |  |  |  |  |  |
|-----------------------------------------------------------|---------------------------------------|--|--|--|--|--|--|
| Sistema Estructural                                       | Coeficiente Básico de<br>Reducción Ro |  |  |  |  |  |  |
| Acero:                                                    | ·                                     |  |  |  |  |  |  |
| Porticos Especiales Resistentes a Momento (SMF)           | 8                                     |  |  |  |  |  |  |
| Porticos Intermedios Resistentes a Momento (IMF)          | 5                                     |  |  |  |  |  |  |
| Porticos Ordinarios Resistentes a Momento (OMF)           | 4                                     |  |  |  |  |  |  |
| Porticos Ordinarios Resistentes a Momento (OMF)           | 7                                     |  |  |  |  |  |  |
| Porticos Ordinarios Concentricamente Arrriostrados (OCBF) | 4                                     |  |  |  |  |  |  |
| Porticos Excentricamente Arriostrados (EBF)               | 8                                     |  |  |  |  |  |  |
| Concreto Armado:                                          | ·                                     |  |  |  |  |  |  |
| Porticos                                                  | 8                                     |  |  |  |  |  |  |
| Dual                                                      | 7                                     |  |  |  |  |  |  |
| De muros estructurales                                    | 6                                     |  |  |  |  |  |  |
| Muros de ductilidad limitada                              | 4                                     |  |  |  |  |  |  |
| Albañilería Armada o Confinada                            | 3                                     |  |  |  |  |  |  |
| Madera                                                    | 7                                     |  |  |  |  |  |  |

Fuente: E-030 (2018)

Figure 1: Factor de amplificación



Fuente: Muñoz (2020)

### 1.4.1 Factor de Importancia

#### 1.4.2 Análisis modal Art. 26.1 E-030

### Art. 26.1.1

En cada dirección se consideran aquellos modos de vibración cuya suma de masas efectivas sea por lo menos el 90% de la masa total, pero se toma en cuenta por lo menos los tres primeros modos predominantes en la dirección de análisis.

Table 5: Factor de Uso o Importancia

|                     | CATEGORIA DE LA EDIFICACION                                                                          |                  |  |  |  |  |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|--|--|--|
| CATEGORIA           | DESCRIPCION                                                                                          | FACTOR U         |  |  |  |  |  |  |  |  |
|                     | A1: Establecimiento del sector salud (públicos y pri-                                                | Con aislamiento  |  |  |  |  |  |  |  |  |
| A Edificaciones     | vados) del segundo y tercer nivel, según lo normado                                                  | 1.0  y sin       |  |  |  |  |  |  |  |  |
| Escenciales         | por el ministerio de salud.                                                                          | aislamiento 1.5. |  |  |  |  |  |  |  |  |
| Lisconciaios        | A2: Edificaciones escenciales para el manejo de las                                                  |                  |  |  |  |  |  |  |  |  |
|                     | emergencias, el funcionamiento del gobierno y en                                                     | 1.50             |  |  |  |  |  |  |  |  |
|                     | general aquellas que puedan servir de refugio después                                                |                  |  |  |  |  |  |  |  |  |
|                     | de un desastre.                                                                                      |                  |  |  |  |  |  |  |  |  |
|                     | Edificaciones donde se reúnen gran cantidad de                                                       |                  |  |  |  |  |  |  |  |  |
| B Edificaciones Im- | personas tales como cines, teatros, estadios, col-                                                   |                  |  |  |  |  |  |  |  |  |
| portantes           | iseos, centros comerciales, terminales de buses de pasajeros, establecimientos penitenciarios, o que | 1.30             |  |  |  |  |  |  |  |  |
| portantes           | guardan patrimonios valiosos como museos y bib-                                                      |                  |  |  |  |  |  |  |  |  |
|                     | liotecas.                                                                                            |                  |  |  |  |  |  |  |  |  |
|                     | Edificaciones comunes tales como: viviendas, ofic-                                                   |                  |  |  |  |  |  |  |  |  |
| C Edificaciones Co- | inas, hoteles, restaurantes, depósitos e instalaciones                                               | 1.00             |  |  |  |  |  |  |  |  |
| munes               | industriales cuya falla no acarree peligros adicionales                                              | 1.00             |  |  |  |  |  |  |  |  |
|                     | de incendios o fugas de contaminantes.                                                               |                  |  |  |  |  |  |  |  |  |
| D Edificaciones     | Construcciones provisionales para depósitos, casetas                                                 | A criterio del   |  |  |  |  |  |  |  |  |
| temporales          | y otras similares.                                                                                   | proyectista      |  |  |  |  |  |  |  |  |

Fuente: E-30 (2018)

# Art. 26.1.2

En cada dirección se consideran aquellos modos de vibración cuya suma de masas efectivas sea por lo menos el 90% de la masa total, pero se toma en cuenta por lo menos los tres primeros modos predominantes en la dirección de análisis.

Las rigideces laterales pueden calcularse como la razon entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaluados para la misma condición de carga.

Table 6: Periodos y porcentajes de masa participativa

| Mode | Period | UX    | UY    | RZ    | $\operatorname{Sum} \operatorname{UX}$ | $\operatorname{Sum} \operatorname{UY}$ | $\operatorname{SumRZ}$ |
|------|--------|-------|-------|-------|----------------------------------------|----------------------------------------|------------------------|
| 1    | 0.360  | 0.864 | 0.000 | 0.000 | 0.864                                  | 0.000                                  | 0.000                  |
| 2    | 0.273  | 0.000 | 0.872 | 0.000 | 0.864                                  | 0.872                                  | 0.000                  |
| 3    | 0.225  | 0.000 | 0.000 | 0.850 | 0.864                                  | 0.872                                  | 0.850                  |
| 4    | 0.101  | 0.119 | 0.000 | 0.000 | 0.983                                  | 0.872                                  | 0.850                  |
| 5    | 0.077  | 0.000 | 0.112 | 0.000 | 0.983                                  | 0.984                                  | 0.850                  |
| 6    | 0.062  | 0.000 | 0.000 | 0.132 | 0.983                                  | 0.984                                  | 0.982                  |
| 7    | 0.048  | 0.017 | 0.000 | 0.000 | 1.000                                  | 0.984                                  | 0.982                  |
| 8    | 0.037  | 0.000 | 0.016 | 0.000 | 1.000                                  | 1.000                                  | 0.982                  |
| 9    | 0.029  | 0.000 | 0.000 | 0.018 | 1.000                                  | 1.000                                  | 1.000                  |
|      |        |       |       |       |                                        |                                        |                        |

#### 1.4.3 Irregularidad de Rigidez-Piso Blando

#### Tabla N°9 E-030

Existe irregularidad de rigidez cuando, en cualquiera de las direcciondes de análisis, en un entrepiso la rigidez lateral es menor que 70% de la rigidez lateral del entrepiso inmediato superior, o es menor que 80% de la rigidez lateral promedio de los tres niveles superiores adyacentes. Las rigideces laterales pueden calcularse como la razón entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relatibo en el centro de masas, ambos evaluados para la misma condición de carga

#### Tabla N°9 E-030

Existe irregularidad extrema de rigidez cuando, en cualquiera de las direcciones de análisis, en un entrepiso la rigidez lateral es menor que 60% de la rigidez lateral del entrepiso inmediato superior, o es menor que 70% de la rigidez lateral promedio de los tres niveles superiores adyacentes. Las rigideces laterales pueden calcularse como la razon entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaluados para la misma condición de carga.

Las rigideces laterales pueden calcularse como la razon entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaluados para la misma condición de carga.

Table 7: Irregularidad de rigidez

| Story  | OutputCase | VX     | VY     | Rigidez Lateral(k) | 70%k previo | 80%Prom(k) | is_reg  |
|--------|------------|--------|--------|--------------------|-------------|------------|---------|
| Story3 | SDx Max    | 37.537 | 9.565  | 18791.749          |             |            | Regular |
| Story2 | SDx Max    | 74.277 | 19.164 | 28433.680          | 13154.224   |            | Regular |
| Story1 | SDx Max    | 95.209 | 24.671 | 35703.618          | 19903.576   |            | Regular |

Table 8: Irregularidad de rigidez

| Story  | ${\bf Output Case}$ | VX     | VY     | ${\rm Rigidez\ Lateral}(k)$ | 70% kprevio | 80%Prom(k) | $is\_reg$ |
|--------|---------------------|--------|--------|-----------------------------|-------------|------------|-----------|
| Story3 | SDy Max             | 11.261 | 31.883 | 18765.862                   |             |            | Regular   |
| Story2 | SDy Max             | 22.283 | 63.881 | 28442.075                   | 13136.104   |            | Regular   |
| Story1 | SDy Max             | 28.563 | 82.237 | 35708.771                   | 19909.452   |            | Regular   |

#### 1.5 Irregularidad de Masa o Peso

### Tabla N°9 E-030

Se tiene irregularidad de masa (o peso) cuando el peso de un piso determinado según el artículo 26, es nayor que 1,5 veces el peso de un piso adyascente. Este criterio no se aplica en azoteas ni en sótanos

Las rigideces laterales pueden calcularse como la razon entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaluados para la misma condición de carga.

Table 9: Irregularidad de Masa o Peso

| Story  | Masa   | 1.5 Masa | Tipo de Piso | $is\_reg$ |
|--------|--------|----------|--------------|-----------|
| Story3 | 9.191  |          | Azotea       | Regular   |
| Story2 | 13.850 | 20.774   | Piso         | Regular   |
| Story1 | 14.612 | 21.918   | Piso         | Regular   |
| Base   | 2.723  |          | Sotano       | Regular   |

#### 1.5.1 Irregularidad Torsional

#### Tabla N°9 E-030

Existe irregularidad torsional cuando, en cualquiera de las direcciones de análisis el desplazamiento relativo de entrepiso en un edificion ( $\Delta_{max}$ ) en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1,3 veces el desplazamineto relativo promedio de los extremos del mismo entrepiso para la condicion de carga ( $\Delta_{prom}$ ). Este crriterio sólo se aplica en edificios con diafragmas rígidos y sólo si el máximo desplazamiento relativo de entrepiso es mayor que 50% del desplazamiento permisible indicado en la Tabla N° 11

# Tabla N°9 E-030

Existe irregularidad torsional cuando, en cualquiera de las direcciones de análisis el desplazamiento relativo de entrepiso en un edificion ( $\Delta_{max}$ ) en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1,3 veces el desplazamineto relativo promedio de los extremos del mismo entrepiso para la condicion de carga ( $\Delta_{prom}$ ). Este crriterio sólo se aplica en edificios con diafragmas rígidos y sólo si el máximo desplazamiento relativo de entrepiso es mayor que 50% del desplazamiento permisible indicado en la Tabla N° 11

Table 10: Irregularidad Torsional

| Story  | OutputCase | Direction | Max Drift | Avg Drift | Ratio | Height | Drifts   | < Driftmax/2 | Es Regular |
|--------|------------|-----------|-----------|-----------|-------|--------|----------|--------------|------------|
| Story3 | SDx Max    | X         | 0.004028  | 0.003867  | 1.042 | 3.6    | 0.005035 | False        | Regular    |
| Story3 | SDx Max    | Y         | 0.000643  | 0.000622  | 1.034 | 3.6    | 0.000804 | True         | Regular    |
| Story2 | SDx Max    | X         | 0.004952  | 0.004773  | 1.037 | 3.6    | 0.006190 | False        | Regular    |
| Story2 | SDx Max    | Y         | 0.000826  | 0.000802  | 1.03  | 3.6    | 0.001032 | True         | Regular    |
| Story1 | SDx Max    | X         | 0.004885  | 0.004718  | 1.036 | 5      | 0.004397 | False        | Regular    |
| Story1 | SDx Max    | Y         | 0.00083   | 0.000808  | 1.028 | 5      | 0.000747 | True         | Regular    |

Table 11: Irregularidad Torsional

| Story  | OutputCase | Direction | Max Drift | Avg Drift | Ratio | Height | Drifts   | < Driftmax/2 | Es Regular |
|--------|------------|-----------|-----------|-----------|-------|--------|----------|--------------|------------|
| Story3 | SDy Max    | X         | 0.001227  | 0.00117   | 1.049 | 3.6    | 0.001534 | True         | Regular    |
| Story3 | SDy Max    | Y         | 0.00176   | 0.001751  | 1.005 | 3.6    | 0.002200 | True         | Regular    |
| Story2 | SDy Max    | X         | 0.001508  | 0.001443  | 1.045 | 3.6    | 0.001885 | True         | Regular    |
| Story2 | SDy Max    | Y         | 0.002307  | 0.002297  | 1.004 | 3.6    | 0.002884 | True         | Regular    |
| Story1 | SDy Max    | X         | 0.001486  | 0.001426  | 1.042 | 5      | 0.001337 | True         | Regular    |
| Story1 | SDy Max    | Y         | 0.002355  | 0.002346  | 1.004 | 5      | 0.002119 | True         | Regular    |

# 1.5.2 Irregularidad por Esquinas Entrantes

# Tabla N°9 E-030

La estructura se califica como irregular cuando los diafragmas tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50% del área bruta del diafragma.

También existe irregularidad cuando, en cualquiera de los pisos y para cualquiera de las direcciones de análisis, se tiene alguna sección transversal del diafragma con un área neta resistente menor que 25% del área de la sección transversal total de la misma dirección calculada con las dimensiones totales de la planta.

Figure 2: Irregularidad por discontinuidad del diafragma





Fuente: Muñoz (2020)

Table 12: Irregularidad por discontinuidad del diafragma (a)

| Longitud del aligerado (L1)      | 7.51    | $\mathbf{m}$ |
|----------------------------------|---------|--------------|
| Espesor del aligerado (e1)       | 0.05    | $\mathbf{m}$ |
| Area del aligerado A1=L1· e1     | 0.38    | $m^2$        |
| Longitud de la losa macisa (L2)  | 2.25    | $\mathbf{m}$ |
| Espesor de la losa macisa (e2)   | 0.2     | $\mathbf{m}$ |
| Area de la losa macisa A1=L1· e1 | 0.45    | $m^2$        |
| Ratio                            | 118.42  | %            |
| Ratio límite                     | 25.00   | %            |
| Verificación                     | Regular |              |

Table 13: Irregularidad por discontinuidad del diafragma (b)

| ${f A}{f b}{f e}{f r}{f t}{f u}{f r}{f a}$ | Largo (m)                | Ancho (m)     | <b>Área</b> $m^2$ |
|--------------------------------------------|--------------------------|---------------|-------------------|
| 1                                          | 4.02                     | 2.30          | 9.25              |
| 2                                          | 1.10                     | 2.30          | 2.53              |
| 3                                          | 1.20                     | 19.00         | 22.80             |
|                                            | Área total de aberturas: |               | $34.58 \ m^2$     |
|                                            | Área total de la planta: |               | $120.41 \ m^2$    |
|                                            | Ratio:                   |               | 28.72~%           |
|                                            |                          | Ratio límite: | 50.00~%           |
|                                            |                          | Verificación: | Regular           |

Las rigideces laterales pueden calcularse como la razon entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaluados para la misma condición de carga.