Lecture #10

Syntax Analysis - IV

Follow Sets

• Definition:

- Follow(X) = { $t \mid S \rightarrow^* \alpha X t \beta$ }
- 't' is said to follow of 'X' if we can obtain a sentential form where the terminal 't' comes immediately after 'X'
- Follow set for a given symbol never concerns what the symbol can generate, but depends on where that symbol can appear in the derivations.
- If $(X \rightarrow AB)$ then
 - First(B) is in Follow(A) and
 - Follow(X) is in Follow(B)
 - If $(B \rightarrow * \epsilon)$ then
 - Follow(X) is in Follow(A)

Follow Sets

- •To build FOLLOW(X)
 - 1. Add \$ to FOLLOW(S) [If S is the start symbol]
 - 2. If $(A \to \alpha B\beta)$, then Add everything in FIRST(β) except ϵ to FOLLOW(B)
 - 3. If $((A \rightarrow \alpha B\beta \text{ and } \beta \rightarrow^* \epsilon) \text{ or } (A \rightarrow \alpha B))$ Add everything in FOLLOW(A) to FOLLOW(B)
- ε never appears in Follow sets, so Follow sets are just sets of terminals
- Find the follow sets in the grammar:

$$\begin{array}{ll} E \rightarrow T \; X & X \rightarrow + E \mid \epsilon \\ T \rightarrow (\; E \;) \mid \text{int } Y & Y \rightarrow * \; T \mid \epsilon \end{array}$$

Parsing Table Construction

- for each production $A \rightarrow \alpha$ {
 - for each terminal 't' in FIRST(α)
 - $M[A, t] = \alpha$;
 - if ε is in FIRST(α), then
 - for each terminal 'b' (including '\$') in Follow (A)
 - $M[A, b] = \alpha$;

Construct a parsing table for the grammar:

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$