Algebra II

January 8, 2024

How To Prove a Big Theorem

- 1. Reduce to a linear algebra problem.
- 2. Solve the linear algebra problem.

Grades

- Weekly Homework
 - For completion, graded by peers or presented. Survey to follow.
- Midterm
- Final
 - March 18, 2024
 - 4:00 PM to 7:00 PM

Office Hours

McHenry 4174

Monday / Wednesday from 1:05 PM to 2:05 PM.

E-mail ahead if arriving promptly at 1:05 PM.

Definition: Module

Let R be a ring.

A (left) R-module is a set M with binary operations $: R \times M \to M$ and $+ : M \times M \to M$ such that

- 1. (M, +) is an Abelian group.
 - (a) $\exists 0 \in M$ such that $\forall m \in M$, m + 0 = m = 0 + m.
 - (b) $\forall m \in M, \exists n \in M \text{ such that } m+n=0=n+m.$
 - (c) $\forall m_1, m_2, m_3 \in M$, $(m_1 + m_2) + m_3 = m_1 + (m_2 + m_3)$.
 - (d) $\forall m_1, m_2 \in M, m_1 + m_2 = m_2 + m_1.$
- 2. Distibution.

$$(r_1 + r_2) \cdot m = r_1 \cdot m + r_2 \cdot m$$

 $r \cdot (m_1 + m_2) = r \cdot m_1 + r \cdot m_2$

3. $1 \cdot m = m$ where $1 \in R$ is the multiplicative identity.

4.
$$(r_1 \cdot r_2) \cdot m = r_1 \cdot (r_2 \cdot m)$$

• Note that • may represent scalar multiplication or multiplication in the ring.

Example 1

 $n \in \mathbb{Z}, n = 1, 2, 3, ..., R = \mathbb{R}, M = \mathbb{R}^n$, equipped with + vector addition and · scalar multiplication.

Example 2

Let R be your favorite field \mathbb{Z}/p , \mathbb{Q} , \mathbb{C} , \mathbb{F}_q , \mathbb{Q}_p , and $M = \mathbb{R}^n$. Similarly with rings $R = \mathbb{Z}$, $R = \mathbb{Z}[x]$, etc.

Example 3

Let $R = \mathbb{Z}$ and M be your favorite Abelian group.

Example 4

Let *R* be any ring (e.g. $\mathbb{Z}[x]$) and *M* be any left ideal (e.g. $R \cdot x + R \cdot 3$).

Example 5

$$\operatorname{Fix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2 \times 2}(\mathbb{R}).$$

Let $R = \mathbb{R}[x]$, the polynomial ring, and $M = \mathbb{R}^2$ where + is standard addition, and \cdot is matrix multiplication.

$$x \cdot m = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot m$$

Example 6

Let R be any ring and M be functions $R \to R$ where + and \cdot are pointwise operations.

Example 6'

Let $R = \mathbb{R}$ and have M require that f is continuous, differntiable, etc.

January 10, 2024

Course website online.

Homework due Wednesday.

Today: Chapter 10 in Dummit and Foote.

Basic Definitions and Examples

Let R be a ring (usually abelian and with identity) and M be a left R-module.

Definition: Submodule

A subset $N \subseteq M$ is a R-submodule if and only if

- 1. it is an additive subgroup of M and
- 2. if $r \in R$ and $x \in N$, then $rx \in N$.

Proposition:

 $N \subseteq M$ is a submodule if and only if

- 1. $N \neq \emptyset$ and
- 2. if $r \in R$ and $x, y \in N$, then $rx + y \in N$.

Example 1

If $R = \mathbb{Z}$, this is just the definition of a subgroup.

Example 2

If $R = \mathbb{R}$, this is just the definition of a real vector space.

Example 3

 $\{0\}$ and M are both submodules of M.

Example 4

Let
$$R = \mathbb{R}[t]$$
, $M = R$, $N = (t-1) \cdot R$.

Example 5

Let
$$R = \mathbb{Z}/4$$
, $M = R$, $N = \{0 + \mathbb{Z}/4, 2 + \mathbb{Z}/4\}$.

Definition: R-Algebra

Let R be an abelian ring with identity and A be a ring with identitity. An R-algebra is a ring homomorphism $f:R\to A$ such that

- 1. f(1) = 1 and
- 2. $f(R) \subseteq Z(A)$, the center of A.

Example 1

If A is a ring wtih identity, then $f: \mathbb{Z} \to A$ such that $f(n) = \underbrace{1 + \dots + 1}_{n \text{ times}}$ makes A into an algebra.

Example 2

If L/K is a field extension, then the inclusion $K \hookrightarrow L$ is a K-algebra.

Example 3

 $\mathbb{Z} \hookrightarrow \mathbb{Q}$ is a \mathbb{Z} -algebra.

Example 4

$$f_0: \mathbb{R}[t] \to \mathbb{R}, f_0(p) = p(0).$$

Can replace f_0 with $f_1(p) = p(1)$ or any other choice.

Example 5

 \mathbb{H} are expresions of the form $a+b\vec{i}+c\vec{j}+d\vec{k}$ with $a,b,c,d\in\mathbb{R}$ and $i^2=j^2=k^2=-1$. $f:\mathbb{R}\to\mathbb{H},\ f(a)=a$ is an \mathbb{R} -algebra. What about $g:\mathbb{C}\to\mathbb{H}$ with g(a+bi)=a+bi? No, since $g(\mathbb{C})\notin Z(\mathbb{H})$.

Quotient Modules and Module Homomorphisms

Definition: Module Homomorphism

Let R be a ring with identitity and M_1, M_2 be left R-modules. An R-module homomorphism $\phi: M_1 \to M_2$ is a function that preserves + and \cdot .

Example 1

 $R = \mathbb{Z}$ and ϕ is any homomorphism of abelian groups.

Example 2

 $R = \mathbb{R}$ and ϕ is the collection of linear transformations.

Example 3

 $Id_M: M \to M$ and $0: M \to N$, the identitity and zero homomorphisms, are R-module homomorphisms.

Example 4

Let
$$M = \underbrace{R \times \cdot \times R}_{n\text{-times}}, \ N = R \text{ and } \pi_i : M \to N \text{ such that } \pi_i(r_i, \ldots, r_n) = r_i.$$
 Consider $\pi_i : R \times R \to R$ with $\pi_1(a_1, a_2) = a_1.$ Then $\ker(\pi_1) = \{(0, a_2) \mid a_2 \in R\}$ and $\operatorname{im}(\pi_1) = R.$

Example 5

Let M be column vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ with $x, y \in \mathbb{R}$ and $R = \mathbb{R}$. Fix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then define $\phi : M \to N$ as $\phi \begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.

Definition: Module Isomorphism

An R-module isomorphism is an R-module homomorphism $\phi: M_1 \to M_2$ such that the inverse function exists and is an R-module homomorphism.

4

Definition: Kernel

The kernel is $ker(\phi) = \{x \in M \mid \phi(x) = 0\}.$

Definition: Image

The image is $im(\phi) = {\phi(x) \mid x \in M}$.

Definition: Homomorphism R-Module

 $\operatorname{Hom}_R(M_1, M_2)$ is the set of all R-module homomorphisms $M_1 \to M_2$.

Equipped with pointwise addition and scalar multiplication, it forms an *R*-module.

Proposition:

 $\phi: M \to N$ is an *R*-module homomorphism if and only if

$$\phi(rx + y) = r\phi(x) + \phi(y)$$

for all $x, y \in M$ and $r \in R$.

Proposition:

Pointwise addition and scalar multiplication $\operatorname{Hom}_R(M,N)$ into an R-module.

Proposition:

Composition of *R*-module homomorphisms is an *R* module homomorphism.

$$M_1 \xrightarrow{\dot{\phi}_1} M_2 \xrightarrow{\phi_2} M_3 \rightsquigarrow \phi_2 \circ \phi_1.$$

Proposition:

 $\operatorname{Hom}_R(M,M)$ is a ring under composition and an R-algebra under $f:R\to \operatorname{Hom}_R(M,M)$ with $f(r)=\phi_r$ and $\phi_r(x)=rx$.

Construction of Quotient R-Modules

Let R be a ring with identity, M be an R-module and N submodule.

We want a new module, M/N, and an R-module homomorphism $\phi: M \to M/N$ such that $\ker(\phi) = N$ and $\operatorname{im}(\phi) = M/N$.

Define an equivalence relation \sim on M by $x \sim y$ if and only if $x - y \in N$.

So $x \sim 0 \iff x \in N$.

Define M/N as the set of equivalence classes for \sim , and write x + N the equivalence class of x.

Define $(x+N) \oplus (y+N) = (x+y) + N$ and $r \odot (x+N) = (rx) + N$.

January 17, 2024

Definition: Quotient R-Modules

Let *R* be a ring with identity, *M* an *R*-module, and $N \subseteq M$ a submodule.

The quotient module M/N is defined by taking the quotient additive group M/N and defining scalar multiplication by $r \cdot (x+N) = rx + N$.

Definition: Sum of Modules

For $N_1, N_2 \subseteq M$ submodules, $N_1 + N_2$ is the smallest submodule of M containing N_1 and N_2 (i.e. the module generated by N_1 and N_2).

Isomorphism Theorems

Let M be a module and $A, B, N \subseteq M$ be subomdules.

First Isomorphism Theorem

Let also $A \subseteq B$, then

$$(M/A)/(B/A) \simeq M/B$$

Proof

Define $\phi: M/A \to M/B$ as $\phi(x+A) = x+B$.

Then, define $\overline{\phi}: (M/A)/(B/A) \to M/B$ as $\overline{\phi}(y+B/A) = \phi(y)$.

The inverse $\psi: M/B \to (M/A)/(B/A)$ is defined by $\psi(x+B) = (x+A) + B/A$.

Second Isomorphism Theorem

$$(A+B)/B \simeq A/(A \cap B)$$

Proof

Define $\phi: A/(A \cap B) \to (A+B)/B$ by $\phi(x+A \cap B) = x+B$.

Define $\psi: (A+B)/B \to A/(A\cap B)$ by $\psi(x+y+B) = x+A\cap B$. Say x+y=x'+y'+b for $b\in B$. Then

$$\underbrace{x - x'}_{\in A} = \underbrace{y - y' - b}_{\in B}$$

and

$$x' + A \cap B = x' + (x - x') + A \cap B = x + A \cap B$$

Third Isomorphism Theorem

If $\phi M \to N$ is an *R*-module homomorphism, then $M/\ker(\phi) \simeq \operatorname{im}(\phi)$.

Proof

Define $\overline{\phi}: M/\ker(\phi) \to \operatorname{im}(\phi)$ by $\overline{\phi}(x + \ker(\phi)) = \phi(x)$.

This is surjective by construction.

For injectivity, if $0 = \overline{\phi}(x + \ker(\phi)) = \phi(x)$, then $x \in \ker(\phi)$.

Fourth Isomorphism Theorem

If $N \subseteq M$ is an R-submodule, then the map $A \supseteq N \mapsto A/N$

 $\{R$ -submodules of M containing $N\} \simeq \{R$ -submodules of $M/N\}$

is a bijection which preserves sum and intersection.

· Compare

{submodules of M contained in N} = {submodules of N}

IMAGE HERE

Generators, Direct Sums and Free Modules

Definition: Finitely Generated Submodule

If $N_1, \ldots, N_k \subseteq M$ is a finite collection of submodules, then $M_1 + \cdots + M_k$ is the smallest submodule containing M_1, \ldots, M_k . Typically elements are $x_1 + \cdots + x_k$ with $x_i \in N_i$.

If $\{x_1, ..., x_k\} = S \subseteq M$ is a finite set, the submodule generated by S is

$$Rx_1 + \cdots + Rx_k$$

Definition: Finitely Generated Module

A module M is finitely generated if it is the submodule generated by some finite set $S \subseteq M$.

Example 1

R = M for any ring R (also cyclic; take $S = \{1\}$)

Example 2

Any finite dimensional vector space.

Example 3

$$\mathbb{R}^{n}$$
 for $n = 1, 2, 3, ...$

Example 4

 $\mathbb{Z}[i] = M$ over $\mathbb{Z} = R$. Then $S = \{1, i\}$.

Counter-example 1

Let $M = C(\mathbb{R})$ be continuous functions $\mathbb{R} \to \mathbb{R}$, and $R = \mathbb{R}$.

Counter-example 2

Any infinite dimensional vector space.

Definition: Cyclic Module

A module M is cyclic if it the submodule generated by some one element set S.

Theorem: Chinese Remainder Theorem

When can we find a unique integer *x* satisfying

$$x \equiv a \pmod{m}$$

 $x \equiv b \pmod{n}$

January 22, 2024

Definition: External Direct Product

The external direct product $M_1 \times \cdots \times M_k$ of a collection of R-modules is the Cartesian product with \cdot and + defined componentwise.

Proposition

Let $M_1, ..., M_k \subseteq M$ be submodules. Then the following are equivalent:

- 1. The map $M_1 \times \cdots \times M_k \to M_1 + \cdots + M_k$ defined as $(x_1, \dots, x_k) \mapsto x_1 + \cdots + x_k$ is an isomorphism.
- 2. $M_{i_0} \cap \sum_{i \neq i} M_i = \{0\}.$
- 3. Every element of $M_1 + \cdots + M_k$ can be uniquely written as $x_1 + \cdots + x_k$ with $x_i \in M_i$.

Proof 1 Implies 2

Say that for some i_0 we have $x_0 \in M_{i_0} \cap \left(\sum_{i \neq j} M_j\right)$. Write $x_0 = \sum_{j \neq i_0} x_j$ with $x_j \in M_j$. Consider $(x_1, x_2, ..., x_{i_0-1}, -x_{i_0}, x_{i_0+1}, ..., x_k)$, maps to $\sum x_j - x_0 = 0$, so $x_j = x_i = 0$ in M.

Proof 2 Implies 3

Say $x_1 + \cdots + x_k = x_1' + \cdots + x_k'$ with $x_i, x_i' \in M_i$. Rearrange

$$x_1 - x_1' = \underbrace{(x_2' - x_2) + \dots + (x_k' - x_k)}_{\in \sum_{j \neq i} M_j}$$

So $x_1 - x_1' = 0$ and the first component is equal. Repeating the argument on all indicies completes the proof.

Proof 3 Implies 1

Definition: Internal Direct Product

If the equivalent conditions hold, we say $M_1 + \cdots + M_k$ is the internal direct product of M_1, \ldots, M_k . Notation: $M_1 \times \cdots \times M_k$ or $M_1 \oplus \cdots \oplus M_k$.

Chinese Remainder Theorem

For $a, b, m, n \in \mathbb{Z}$, if gcd(n, m) = 1, then there exists a solution $x \in \mathbb{Z}$ to

$$x \equiv a \pmod{m}$$

 $x \equiv b \pmod{n}$

which is unique \pmod{mn} .

Consider $\mathbb{Z}/nm \to \mathbb{Z}/m \times \mathbb{Z}/n$ defined by $x \pmod{mn} \mapsto (x \pmod{m}, x \pmod{n})$.

Thus, the Chinese Remainder Theorem implies that the map is an isomorphism.

Can we realize \mathbb{Z}/mn as the internal direct product of a submodule of size n and a submodule of size m?

Definition: Basis of a Module

Suppose that $X \subseteq M$ is a subset of an R-module M. We say that X is a basis for M if and only if

1. *X* is a generating set of *M*.

2. The elements of X are linearly independent in the sense that for all but finiately many r(x) = 0,

$$\sum_{x \in X} r(x)x = 0 \implies r(x) = 0, \ \forall x$$

Definition: Free Module

We say M is free if there exists a basis.

Example

R any ring and $M = \mathbb{R}^3$.

Non-example

 $R = \mathbb{Z}$ and $M = \mathbb{Z}/3$.

M does not admit a basis.

Example?

R any ring and $M = \{0\}$ admits the basis $X = \emptyset$.

Definition: Universal Mapping Property of Free Modules

Let X be a set.

We say that an R-module F(X) and a set map $\phi_{can}: X \to F(X)$ satisfies the universal property of the free R-module on X if for all set maps $X \to M$ into an R-module M, there exists a unique R-homomorphism.

Exsitence

When $X = \{1, 2, ..., n\}$, define $F(R) = R^n$ and $\phi_{can} : X \to R^n$ as

$$\phi_{can}(1) = (1, 0, ..., 0)$$

$$\phi_{can}(2) = (0, 1, ..., 0)$$

$$\vdots$$

$$\phi_{can}(n) = (0, 0, ..., 1)$$

Why does this satisfy the universal mapping property? Let $\phi: X \to M$ be given. We want $\tilde{\phi}: F(X) \to M$ such that

$$\phi = \tilde{\phi} \circ \phi_{\text{can}}$$

$$r_1 \phi(1) = \tilde{\phi}(r_1, 0, \dots, 0)$$

$$r_2 \phi(2) = \tilde{\phi}(0, r_2, \dots, 0)$$

$$\vdots$$

$$r_n \phi(n) = \tilde{\phi}(0, 0, \dots, r_n)$$

So define $\tilde{\phi}(r_1,...,r_n) = r_1\phi(1) + \cdots + r_n\phi(n)$

Uniqueness

If $\phi_{can}: X \to F(X)$ and $\phi'_{can}: X \to F'(X)$ satisfy the universal mapping property, then there exists a unique isomorphism $F(X) \stackrel{\sim}{\to} F'(X)$ such that

Definition: Tensor Product

Given two modules, M and N, we want a new module $M \otimes N$ that plays the roll of multiplication. Compare with \oplus and addition.

January 24, 2024

Recall: Free Module

Given a set X, a set map $\phi_{can}: X \to F(X)$ into an R-module F(X) is a free module on X if we can always fill in the following dotted arrow uniquely:

For $X = \{1, 2, ..., n\}$, take $F(X) = \mathbb{R}^n$ and

$$\phi_{can}(1) = (1,0,...,0)$$

$$\phi_{can}(2) = (0,1,...,0)$$

$$\vdots$$

$$\phi_{can}(n) = (0,0,...,1)$$

Definition: Universal Property of Free Module

The universal property says

$$\operatorname{Hom}_{\operatorname{\mathsf{set}}}(X,M) = \operatorname{Hom}_R(F(X),M)$$

or a homomorphism out of F(X) is uniquely determined by what it does to the standard basis.

Definition: Torsion

Let R be an integral domain, e.g. \mathbb{Z} , and M be an R-module. Then $x \in M$ is torsion if $r \cdot x = 0$ for $r \neq 0$.

Definition: Torsion Set

The set of torsion elements $Tor(M) \subseteq M$ is a submodule.

Definition: Torsion-Free Quotient

The torsion-free quotient of M is M/Tor(M).

The torsion-free quotient is an example of a tensor product $M \underset{\mathbb{Z}}{\otimes} \mathbb{Q}$.

Definition: Universal Property of Tensor Product

A bilinear map $\phi_{can}M \times N \to T$ is a tensor product of M and N if we can always uniquely fill in the dotted line

Said differently,

$$Bi_R(M, N; P) = Hom_R(T, P)$$

Example

$$\det(e_1, e_2) \in \mathsf{Bi}_{\mathbb{R}}(\mathbb{R}^2, \mathbb{R}^2; \mathbb{R}) = \mathrm{Hom}_{\mathbb{R}}(T, R) \ni \tilde{\phi}$$

Where $\tilde{\phi}$ is defined below.

How to construct T for $R = \mathbb{R}$ and $M = N = \mathbb{R}^2$?

If $\phi: M \times N \to P$ is bilinear, then

$$\phi(xe_1 + ye_2, x'e_1 + y'e_2) = x\phi(e_1, x'e_1 + y'e_2) + y\phi(e_2, x'e_1 + y'e_2)$$

$$= xx'\phi(e_1, e_1) + xy'\phi(e_1, e_2) + x'y\phi(e_2, e_1) + yy'\phi(e_2, e_2)$$

Define T to be a free \mathbb{R} -vector space with the basis $e_1 \otimes e_1$, $e_1 \otimes e_2$, $e_2 \otimes e_1$ and $e_2 \otimes e_2$.

Define $\phi_{can}: M \times N \to T$ as

$$\phi_{\mathsf{can}}(xe_1 + ye_2, x'e_1 + y'e_2) = xx'(e_1 \otimes e_1) + xy'(e_1 \otimes e_2) + x'y(e_2 \otimes e_1) + yy'(e_2 \otimes e_2)$$
$$= (xe_1 + ye_2) \otimes (x'e_1 + y'e_2)$$

So now we may construct

$$\tilde{\phi} = \begin{cases} e_1 \otimes e_1 = & 0 \\ e_1 \otimes e_2 = & 1 \\ e_2 \otimes e_1 = -1 \\ e_2 \otimes e_2 = & 0 \end{cases}$$

such that

$$\tilde{\phi}(A(e_1 \otimes e_1) + B(e_1 \otimes e_2) + C(e_2 \otimes e_1) + D(e_2 \otimes e_2)) = B - C$$

Tensor Product

What can we prove about the tensor product without constructing it?

- 1. *T* is unique up to isomorphism.
- 2. Write $v \otimes w \in T$ for $\phi_{can}(v, w)$. The elements $v \otimes w$ generate $M \otimes N$.

Proof of 1

Say $\phi_{\operatorname{can}} M \times N \to T$ and $\phi'_{\operatorname{can}} M \times N \to T'$ satisfy the universal property. Then there exists a unique homomorphism $\phi: T \to T'$ satisfying

Similarly, there exists a unique $\phi': T' \to T$ satisfying the inverted diagram. How can we show that

$$T \xrightarrow{\phi} T' \xrightarrow{\phi'} T \equiv T \xrightarrow{\mathsf{id}} T$$

Construct

January 29, 2024

$$\begin{array}{c|c} M\times N & \xrightarrow{\phi_{\operatorname{can}}} M\otimes_R N \\ & & \\ \text{bilinear} & & \\ T & & \\ \end{array}$$

Theorem:

If $M \otimes_R N$ and $N \otimes_R M$ exist, then $M \otimes_R N \xrightarrow{\sim} N \otimes_R M$.

Proof

Write $x \otimes y$ for some $\phi_{can}(x, y)$.

 $\phi(x, y) = y \otimes x$ since ϕ is bilinear

Then there exists a well-defined homomorphism $\overline{\phi}: M \otimes_R N \to N \otimes_R M$, $\overline{\phi}(x \otimes y) = y \otimes x$.

Swap the roles of M and N to construct the inverse map.

Theorem: Existence of the Tensor Product

 $M \otimes_R N$ exists.

Idea of Proof

The module should contain elements $x \otimes y$ and satisfies the relations $(x + x') \otimes y = (x \otimes y) + (x' \otimes y)$ and $(rx) \otimes y = (x \otimes y) + (x' \otimes y)$ $r \cdot (x \otimes y)$.

Let *F* be the free *R*-module on the set (x, y) with $x \in M$ and $y \in N$.

Write $(x, y) \in F$ for "obvious" element.

Let G be the submodule of F generated by

$$-(x + x', y) + (x, y) + (x', y)$$

$$-(rx, y) + r \cdot (x, y)$$

$$-(x, y + y') + (x, y) + (x, y')$$

$$-(x, ry) + r \cdot (x, y)$$

Set T = F/G.

Define $\phi_{can}: M \times N \to T$ as $\phi_{can}(x, y)$ being the image of (x, y) mod G.

Then ϕ_{can} is bilinear by construction.

 $Bi(M, N; T) \cong Hom(M \otimes_R N; T).$

By the universal property of free modules, there exists $F \xrightarrow{\tilde{\phi}} y$ such that $\tilde{\phi}(\underbrace{(x,y)}) = \phi(x,y)$. To show $\tilde{\phi}$ induces a map $\overline{\phi}: T \to y$, we need to show $\tilde{\phi}(G) = 0$, i.e. $\tilde{\phi}(-(x+x',y)+(x,y)+(x',y)) = 0, \ldots$ Equivalently, $\phi(x+x',y) = -\phi(x+x',y) + \phi(x,y) + \phi(x',y) = 0, \ldots$

Last equation holds by construction.

 $\tilde{\phi}$ makes diagrams commute construction.

Uniqueness

There is at most one $\overline{\phi}$ making the diagram commute because

$$\phi(x,y) = \overline{\phi}(\phi_{\mathsf{can}}(x,y))$$

and $\tau_{can}(x, y)$ generates F. Therefore $\phi_{can}(x, y)$ generates F/G = T.

Remark

Free module on a set $S = M \times N$.

Then $(x, y) = \phi_{can}(x, y)$.

Example 1

For
$$R = \mathbb{Z}$$
, $M = N = \mathbb{Z}/2 \implies F = \mathbb{R}^4$

$$M \otimes N = \{(0,0), (0,1), (1,0), (1,1)\}$$

and

$$(0,0)$$
" = " $(1,0,0,0)$ in F
 $(0,1)$ " = " $(0,1,0,0)$ in F

$$(0+1) \otimes 1 = 0 \otimes 1 + 1 \otimes 1.$$

Compare with $(0,0,0,1) \neq (0,1,0,0) + (0,0,0,1)$ in F .

Application: Extension of Scalars

Say $R \xrightarrow{i} S$ is an inclusion of rings. If M is an S-module, write

$$\operatorname{Res}_{R/S}(M) = M$$

but think of it as an R-module.

Examples

1.
$$\mathbb{R} \xrightarrow{i} \mathbb{C}$$

2.
$$\mathbb{Z} \xrightarrow{i} \mathbb{Q}$$

3.
$$\mathbb{Q} \xrightarrow{i} \mathbb{R}$$

The extension of scalars is $S \otimes_R M$ where M is an R-module. Make this into an S-module by setting $S \cdot (S' \otimes x) = ss' \otimes x$ and extending by linearity.

Examples

1.
$$\mathbb{Z}/p \otimes_{\mathbb{Z}} \mathbb{Q} = 0$$

In $\mathbb{Z}/p \otimes_{\mathbb{Z}} \mathbb{Q}$, we have

$$(x \pmod{p}) \otimes \frac{m}{n} = (x \pmod{p}) \otimes \frac{m}{n} \cdot \frac{p}{p}$$
$$= (px \pmod{p}) \otimes \frac{m}{n} \cdot \frac{1}{p}$$
$$= (0 \pmod{p}) \otimes \frac{m}{pn}$$
$$= 0$$

2.
$$\mathbb{R}^n \otimes_{\mathbb{R}} \mathbb{C} = \mathbb{C}^n$$

3.
$$\mathbb{Z}[x] \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}[x]$$