Neural Networks

Diego Useche - dh.useche@uniandes.edu.co

Metodos Computacionales I

Physics Department, Universidad de los Andes, Bogotá

Applications: Image Processing with CNNs

Figure 1: Sample MRI Images

(b) Benign

S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M. K. Khan, "Medical image analysis using convolutional neural networks: a review," Journal of Medical Systems, vol. 42, no. 11, p. 226, 2018 Oct 8.

Applications: Natural Language Processing

Origins: Perceptron

THE PERCEPTRON: A PROBABILISTIC MODEL FOR INFORMATION STORAGE AND ORGANIZATION IN THE BRAIN 1

F. ROSENBLATT

Gradient Descent Algorithm

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$

(for
$$j = 1$$
 and $j = 0$)

A. Amini, A. Soleimany, S. Karaman, and D. Rus, "Spatial Uncertainty Sampling for End-to-End control," in Neural Information Processing Systems (NIPS); Bayesian Deep Learning Workshop, 2017.

LEARNING INTERNAL REPRESENTATIONS BY ERROR PROPAGATION

Backpropagation

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams

September 1985

Not surprisingly, the contribution of unit u_j to the error is simply proportional to δ_{gj} . Moreover, since we

$$o_{pj} = \sum w_{ji} i_{pj}, \tag{5}$$

from which we conclude that

have linear units.

$$\frac{\partial o_{pj}}{\partial w_{ii}} = i_{pi}.$$

Thus, substituting back into Equation 3, we see that

$$-\frac{\partial E_p}{\partial w_H} = \delta_{pj} i_l \tag{6}$$

FIGURE 3. Observed XOR network. The connection weights are written on the arrows and the biases are written as desired. Now, combining this with the observation that in the circles. Note a positive bias means that the unit is on unless turned off.

$$\frac{\partial E}{\partial w_{\mu}} = \sum_{p} \frac{\partial E_{p}}{\partial w_{\mu}}$$

Multilayer Perceptrons and Dense NNs.

-Witsil, A.J.; Johnson, J.B. Volcano video data characterized and classified using computer vision and machine learning algorithms. Geosci. Front. 2020,11, 1789–1803

Convolutional NNs

Convolutional Networks for Images, Speech, and

Time-Series

Figure 1: Convolutional Neural Network for image processing, e.g., handwriting recognition

Recurrent Neural Networks for text Processing

More Recent Deep Learning Proposals

Generative Adversarial Networks (GANs)

Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio[†]

https://www.youtube.com/watch?v=YOqGaMMwf0E&ab_channel=PopcornEntertainment

Transformers

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Figure 1: The Transformer - model architecture.

Tensor Networks

Matrix Product State / Tensor Train

Tree Tensor Network / Hierarchical Tucker

Ising Model

Stoudenmire E, and Schwab DJ. Supervised Learning with Tensor Networks. Advances in Neural Information Processing Systems (2016). CurranAssociates, Inc. 4799–807

Circuit-centric quantum classifiers

Quantum Neural Networks

Maria Schuld, 1, 2, 3 Alex Bocharov, 3 Krysta Svore, 3 and Nathan Wiebe 3

FIG. 9. Comparison of the decision boundary for the circuitcentric quantum classifier (QC) and a support vector machine with polynomial kernel (SVMpoly). The 2-dimensional data

References

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408. doi:10.1037/h0042519

https://interactivechaos.com/es/manual/tutorial-de-deep-learning/la-neurona-de-frank-rosenblatt

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986) Learning representations by back-propagating errors. *Nature*, 323, 533--536.

A. Amini, A. Soleimany, S. Karaman, and D. Rus, "Spatial Uncertainty Sampling for End-to-End control," in Neural Information Processing Systems (NIPS); Bayesian Deep Learning Workshop, 2017.

https://www.analyticsvidhya.com/blog/2020/10/how-does-the-gradient-descent-algorithm-work-in-machine-learning/

Witsil, A.J.; Johnson, J.B. Volcano video data characterized and classified using computer vision and machine learning algorithms. Geosci. Front. 2020,11, 1789–1803

LeCun, Y. and Bengio, Y., 1995. Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10), p.1995.

Stoudenmire E, and Schwab DJ. Supervised Learning with Tensor Networks. Advances in Neural Information Processing Systems (2016). CurranAssociates, Inc. 4799–807

References

https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/

https://medium.com/analytics-vidhya/recurrent-neural-network-and-its-variants-de75f9ee063

J. Feng, X. Feng, J. Chen, et al., "Generative adversarial networks based on collaborative learning and attention mechanism for hyperspectral image classification," Remote Sensing, vol.12, no.7, pp.1149, 2020, doi: 10.3390/rs12071149

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020,63, 139–144.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems, pages 5998–6008, 2017.

http://www.bdhammel.com/ising-model/

https://tensornetwork.org/

Maria Schuld, Alex Bocharov, Krysta M. Svore, and Nathan Wiebe. Circuit-centric quantum classifiers. Phys. Rev. A, 101:032308, Mar 2020

References

S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M. K. Khan, "Medical image analysis using convolutional neural networks: a review," Journal of Medical Systems, vol. 42, no. 11, p. 226, 2018 Oct 8.

Gnanaraj, F.F., Vanitha, & Venmathi (2012). DETECTION AND CLASSIFICATION OF MEDICAL IMAGES USING HYBRID CLASSIFICATION TECHNIQUE WITH APPLICATION TO BRAIN MRI IMAGES.

https://devopedia.org/natural-language-processing