Linear Algebra II - Homework 5

1. In \mathbb{C}^2 apply Gram-Schmidt method to the set $\{\binom{2}{2-i}, \binom{1}{1-i}\}$ to obtain an unitary basis.

2. Find an orthonormal/unitary basis to diagonalize the following matrices.

$$(1) \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix} \qquad (2) \begin{pmatrix} 10 & -2-2i \\ -2+2i & 8 \end{pmatrix} \qquad (3) \begin{pmatrix} 5 & 5 & 2 \\ 5 & 5 & 2 \\ 2 & 2 & 8 \end{pmatrix} \qquad (4) \begin{pmatrix} 4 & -1 & -i \\ -1 & 4 & i \\ i & -i & 4 \end{pmatrix}$$

3. Let T_1 and T_2 be two linear transformation on the complex inner product space V. Suppose $\langle \vec{v}, T_1 \vec{w} \rangle = \langle T_2 \vec{v}, \vec{w} \rangle$ for all $\vec{v}, \vec{w} \in V$. Show that we always have $\langle T_1 \vec{v}, \vec{w} \rangle = \langle \vec{v}, T_2 \vec{w} \rangle$ for all $\vec{v}, \vec{w} \in V$.

4. Let V be the set of real continuous function on [0,1] with the inner product defined by

$$\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x)dx.$$

Show that $\left\{\sqrt{2}\cos(2\pi x)\bigg|n\in\mathbb{N}\right\}\cup\left\{\sqrt{2}\sin(2\pi x)\bigg|n\in\mathbb{N}\right\}$ is an orthonormal set.

5. In the same setting as (4) apply Gram-Schmidt method to the set of functions $\{1, x, x^2\}$ to obtain an orthogonal set.

6. Find a 2×2 complex symmetric matrix which is not diagonalizable.

7. Find all bases α of \mathbb{R}^2 such that the inner product induced by α is equal to the standard inner product.

8. Give an example that A is a real symmetric matrix, but PAP^{-1} is not symmetric for some invertiable matrix P.