算法分析与设计第二次作业

石发强_ZY1806707

- 1. 第一题
 - o 1.1. 相关的变量与状态转移方程、递推关系
 - o 1.2. 详细的计算步骤
 - 1.2.1. k=4
 - 1.2.2. k=3
 - 1.2.3. k=2
 - 1.2.4. k=1
 - 1.2.5. 决策路径回溯
 - 1.3. 代码实现
 - 1.3.1. 源代码
 - 1.3.2. 代码运行结果截图
 - 1.3.3. 附件
- 2. 第二题
 - o 2.1. 递推关系式
 - o 2.2. 伪代码
 - o 2.3. 程序说明
 - 2.3.1. 源代码
 - 2.3.2. 运行结果
 - o 2.4. 时间复杂度
 - o 2.5. 附件

1. 第一题

1.1. 相关的变量与状态转移方程、递推关系

- $n_k = \{2, 3, 2, 4\}, k = 1, 2, 3, 4,$ 表示第k个月的需求量,为题目所给信息
- x_k , 转态变量,表示第K个月的月初库存量,则有约束条件

$$\begin{cases} x_1 = x_5 = 0 \\ 0 \le x_k \le \sum_{i=k}^4 n_i \end{cases}$$

• u_k , 决策变量,表示每个月的计划生产量,有约束条件

$$\max\{0, n_k - x_k\} \le u_k \le \min\{6, \sum_{i=k}^4 n_i - x_k\}$$

即每个月的产量下限是0和 $n_k - x_k$ 中的较大值,至少要满足当月的需求,在库存足够的情况下可以不生产;而产量上限是6和 $\sum_{k=1}^4 n_k - x_k$ 的较小值,也就是说既不可能超过实际的最大产能,也不能超过所有的需求总和。

- 由状态变量和决策变量可以确定状态转移方程为 $x_{k+1} = u_k + x_k n_k$,即下月初的库存量应该是本月初的库存与本月的生产量之和减去本月的需求量。
- 则第k个月的生产成本为

$$v_k = \{ 0.5 * (x_k - n_k), u_k = 0 \\ 3 + u_k + 0.5 * (u_k + x_k - n_k), u_k \neq 0 \}$$

• 最后我们可以用 $f_k(x_k)$ 表示第k个月初库存为 x_k 时到第4月结束这段时间的最优成本,则

$$f_k(x_k) = min(v_k + f_{k+1}(x_{k+1})) = \begin{cases} min(0.5 * (x_k - n_k) + f_{k+1}(x_{k+1})), u_k = 0 \\ min(3 + u_k + 0.5 * (u_k + x_k - n_k) + f_{k+1}(x_{k+1})), u_k \neq 0 \end{cases}$$

这样总的最优成本即为 $f_1(x_1) = f_1(0)$

1.2. 详细的计算步骤

1.2.1. k=4

此时有约束条件 $0 \le x_4 \le 4$, $max(0, 4 - x_4) \le u_4 \le min(6, 4 - x_4)$ 且 $n_4 = 4$, 则

x_4	u_4	x_5	v_5	$f_5(x_5)$	$v_4 + f_5(x_5)$	决策路径
0	4	0	7	0	7	$f_4(0)$
1	3	0	6	0	6	$f_4(1)$
2	2	0	5	0	5	$f_4(2)$
3	1	0	4	0	4	$f_4(3)$
4	0	0	0	0	0	$f_4(4)$

此时对于状态 x_4 的每个取值,都有唯一确定的决策变量 u_4 使得 $f_4(x_4)$ 最优。

1.2.2. k=3

此时有约束条件 $0 \le x_3 \le 6$, $max(0, 2-x_3) \le u_3 \le min(6, 6-x_3)$ 且 $n_3 = 2$,则

x_3 u_3 x_4 v_3 $f_4(x_4)$ $v_3 + f_4(x_4)$ 决策路径
--

น�•	û ǿ			3/10					
	<i>x</i> ₃	u_3	<i>x</i> ₄	<i>v</i> ₃	$f_4(x_4)$	$v_3 + f_4(x_4)$	决策路径		
	0	2	0	5	7	12			
		3	1	6.5	6	12.5			
		4	2	8	5	13			
		5	3	9.5	4	13.5			
		6	4	11	0	11	$f_3(0)$		
	1	1	0	4	7	11			
		2	1	5.5	6	11.5			
		3	2	7	5	12			
		4	3	8.5	4	12.5			
		5	4	10	0	10	$f_3(1)$		
	2	0	0	0	7	7	$f_3(2)$		
		1	1	4.5	6	10.5			
		2	2	6	5	11			
		3	3	7.5	4	11.5			
		4	4	9	0	9			
	3	0	1	0.5	6	6.5	$f_3(3)$		
		1	2	5	5	10			
		2	3	6.5	4	10.5			
		3	4	8	0	8			
	4	0	2	1	5	6	$f_3(4)$		
		1	3	5.5	4	9.5			
		2	4	7	0	7			
	5	0	3	1.5	4	5.5	$f_3(5)$		
		1	4	6	0	6			
	6	0	4	3	0	3	$f_3(6)$		

1.2.3. k=2

此时有约束条件 $0 \le x_2 \le 9$, $max(0, 3-x_2) \le u_2 \le min(6, 9-x_2)$ 且 $n_2 = 3$,则 2018-12-18

∲ ǿ					4/10			
x_2	u_2	<i>x</i> ₃	v_2	$f_3(x_3)$	$v_2 + f_3(x_3)$	决策路径		
0	3	0	6	11	17			
	4	1	7.5	10	17.5			
	5	2	9	7	16	$f_2(0)$		
	6	3	10.5	6.5	17			
1	2	0	5	11	16			
	3	1	6.5	10	16.5			
	4	2	8	7	15	$f_2(1)$		
	5	3	9.5	6.5	16			
	6	4	11	6	17			
2	1	0	4	11	15			
	2	1	5.5	10	15.5			
	3	2	7	7	14	$f_2(2)$		
	4	3	8.5	6.5	15			
	5	4	10	6	16			
	6	5	11.5	5.5	17			
3	0	0	0	11	11	$f_2(3)$		
	1	1	4.5	10	14.5			
	2	2	6	7	13			
	3	3	7.5	6.5	14			
	4	4	9	6	15			
	5	5	10.5	5.5	16			
	6	6	12	3	15			
4	0	1	0.5	10	10.5	$f_2(4)$		
	1	2	5	7	12			
	2	3	6.5	6.5	13			
	3	4	8	6	14			
	4	5	9.5	5.5	15			

น�∙	û		5/10				
	x_2	u_2	<i>x</i> ₃	v_2	$f_3(x_3)$	$v_2 + f_3(x_3)$	决策路径
		5	6	11	3	14	
	5	0	2	1	7	8	$f_2(5)$
		1	3	5.5	6.5	12	
		2	4	7	6	13	
		3	5	8.5	5.5	14	
		4	6	10	3	13	
	6	0	3	1.5	6.5	8	$f_2(6)$
		1	4	6	6	12	
		2	5	7.5	5.5	13	
		3	6	9	3	12	
	7	0	4	2	6	8	$f_2(7)$
		1	5	6.5	5.5	12	
		2	6	8	3	11	
	8	0	5	2.5	5.5	8	$f_2(8)$
		1	6	7	3	10	

1.2.4. k=1

9

0

此时有约束条件 $x_1 = 0$, $max(0,2) \le u_1 \le min(6,11)$ 且 $n_1 = 2$, 则

6

3

3

x_1	u_1	x_2	v_1	$f_2(x_2)$	$v_1 + f_2(x_2)$	决策路径
0	2	0	5	16	21	
	3	1	6.5	15	21.5	
	4	2	8	14	22	
	5	3	9.5	11	20.5	$f_1(0)$
	6	4	11	10.5	21.5	

1.2.5. 决策路径回溯

 $f_2(9)$

6/10

根据以上计算回溯红色标记的决策路径,可以看到按照给定数据4个月总的最优成本为 $f_1(0) = 20.5$ (千元),具体路径如下

月份k	产量 u_k	月初库存量 x_k	当月需求量 n_k	毎月成本v _k
1	5	0	2	9.5
2	0	3	3	0
3	6	0	2	11
4	0	4	4	0

1.3. 代码实现

1.3.1. 源代码

```
#include <iostream>
using namespace std;
#define size_t int
int main(int argc, char const *argv[])
    int a[5] = {0, 2, 3, 2, 4}; // 表示第0到第4个月的需求分别为0,2,3,2,4
    double f[5][7] = {0}; //表示f_k(x_k)的花费值
    for (size_t i = 0; i < 5; i++)</pre>
        /* code */
        for (size_t j = 0; j < 7; j++)</pre>
        {
            /* code */
            f[i][j] = INT_MAX;
        }
    f[5][0] = 0;
    for (size_t k = 4; k >= 1; k--) // 看表示月份从4月到1月
        for (size_t s = 0; s <= 6; s++)</pre>
            int tmp = 0;
            for (size_t j = k; j <= 4; j++)</pre>
                tmp += a[j];
            if (s > tmp)
                continue;
            double min_value = INT_MAX;
            int u = -1;
            for (size_t r = 0; r <= 6; r++)</pre>
```

น**��**ǿ 7/10

```
int w = 3 + r;
                 if (r == 0)
                     W = 0;
                 if (s + r - a[k] >= 0 \&\& s + r - a[k] <= 6)
                     if (\min_{value} > f[k + 1][s + r - a[k]] + w + 0.5 * s)
                     {
                         min value = f[k + 1][s + r - a[k]] + w + 0.5 * s;
                         u = r;
                     }
                 }
            }
            f[k][s] = min_value;
        }
    cout << "min_cost:" << f[1][0] << endl;</pre>
    return 0;
}
```

1.3.2. 代码运行结果截图

```
collect2.exe: error: ld returned 1 exit status
PS C:\Users\qianlicaody\Desktop\研究生课程\算法分析与设计\assignment1> g++ .\1.cpp -○ 1.exe
PS C:\Users\qianlicaody\Desktop\研究生课程\算法分析与设计\assignment1> .\1.exe
min_cost:20.5
PS C:\Users\qianlicaody\Desktop\研究生课程\算法分析与设计\assignment1>
```

1.3.3. 附件

- 1.cpp
- 1.exe
- 1.xlsx

2. 第二题

题目为动态规划方法求一个给定的旅行商问题(TSP),给定的具体数据如下表所示

distance	v(1)	v(2)	v(3)	v(4)	v(5)	v(6)
v(1)	0	10	20	30	40	50
v(2)	12	0	18	30	25	21
v(3)	23	19	0	5	10	15
v(4)	34	32	4	0	8	16
v(5)	45	27	11	10	0	18

น�๋∢	û		8/10				
	distance	v(1)	v(2)	v(3)	v(4)	v(5)	v(6)
	v(6)	56	22	16	20	12	0

2.1. 递推关系式

设从顶点s出发,用 $f_{i,V}$ 表示从顶点i经过且只经过集合V中的各个顶点一次,最后回到出发点s的最短路径,那么对顶点集合V分两种情况讨论:

- 当V为空集的时候, $f_{i,V}$ 即表示从顶点i直接回到出发点s的路径,即距离 $d_{i,s}$
- 当V非空的时候,则需要在从V中的每一个顶点回到s路径中选择最短的一条路径,成为 一个子问题

综上可以得到如下所示的递推关系式

$$f_{i,V} = \begin{cases} d_{i,s}, V = \emptyset \\ \min_{\forall k \in V} (d_{i,k} + f_{i,V-\{k\}}), V \neq \emptyset \end{cases}$$

2.2. 伪代码

2.3. 程序说明

2.3.1. 源代码

```
#include <iostream>
#include <memory.h>
#include <climits>
#include <algorithm>

using namespace std;
```

9/10

```
#define size_t int
int tsp(int n, int **d)
{
    int **f = new int *[n];
    //这里用1<<n表示2^(n-1)
    int count = 1 << n;</pre>
    for (size_t i = 0; i < n; i++)</pre>
         f[i] = new int[count];
    for (size_t i = 0; i < n; i++)</pre>
         for (size_t j = 0; j < count; j++)</pre>
             f[i][j] = INT_MAX;;
    f[0][0] = 0;
    for (size_t s = 0; s < count; s++)</pre>
         for (size_t i = 0; i < n; i++)</pre>
         {
             if (!(s & (1 << i) == 0))
             {
                 for (size_t j = 0; j < n; j++)</pre>
                      if (!((i == j) || ((j != 0) && (s & (1 << j)) == 0)))</pre>
                          f[i][s] = min(f[i][s], f[j][s ^ (1 << i)] + d[j][i]);
                 }
             }
         }
    }
    return f[0][count - 1];
}
int main()
{
    input data
    6
    0
         10
                 20
                                            50
                          30
                                   40
    12
        0
                 18
                          30
                                   25
                                            21
    23
        19
                          5
                                            15
                 0
                                   10
    34
        32
                 4
                          0
                                   8
                                            16
    45
        27
                 11
                          10
                                            18
    56
        22
                 16
                          20
                                   12
                                            0
    */
    int n; // number of cities
    cin >> n;
    int **d = new int *[n];
    for (size_t i = 0; i < n; i++)</pre>
    {
         d[i] = new int[n];
         for (size_t j = 0; j < n; j++)</pre>
             cin >> d[i][j];
    }
    cout << "Answer=" << tsp(n, d) << endl;</pre>
}
```

10/10

2.3.2. 运行结果

```
PS C:\Users\qianlicaody\Desktop\研究生课程\算法分析与设计\assignment1> g++ .\2.cpp -○ 2.exe PS C:\Users\qianlicaody\Desktop\研究生课程\算法分析与设计\assignment1> .\2.exe
                                               50
0
         10
                   20
                            30
                                     40
                  18
                            30
                                     25
                                               21
12
         0
23
         19
                  0
                                     10
                                               15
                            0
                  11
                            10
45
                                     0
                                               18
         22
                            20
                                     12
56
                   16
                                               0
Answer=80
PS C:\Users\qianlicaody\Desktop\研究生课程\算法分析与设计\assignment1> □
```

2.4. 时间复杂度

城市数量,即顶点集合的规模为n,则观察伪代码中的描述有:

- 各种可能的顶点子集有 2^n 中可能,即第一层for循环
- 而后对于每种可能的顶点子集都要寻找其最优路径,规模为O(n)
- 而对所有城市的遍历也是O(n)规模

因此总的时间复杂度为 $O(n^2 * 2^n)$

2.5. 附件

- 2.cpp
- 2.exe