

Objetivo:

• Consolidar los conocimientos adquiridos en clase de los sistemas expertos basados en casos utilizando Neo4J.

Enunciado:

- Diseñe y desarrolle un algoritmo Knn en Neo4j para:
 - Fila A 0: Usemos el ejemplo de conjunto de datos de Kaggle.com. Elegír el conjunto de datos del automóvil para este ejemplo y permite predecir el tipo de carro o automóvil, para ello el siguiente link de datos https://github.com/yfujieda/tech-cookbook/blob/master/python/knn-example2/data/car_dataset.csv [1]
- 1) Primero vamos a cargar los datos de tipo csv al Neo4j:

2) Hacemos un match(n) return n para ver los nodos generados en Neo4j Nodos

Diseño del algoritmo Eucladiana

Datos de Entrenamiento y Prueba

Dividimos el conjunto de datos en dos subconjuntos, donde el 70% de los nodos se marcarán como datos de entrenamiento y el 30% restante como datos de prueba. Hay un total de 206 nodos en nuestro gráfico. Total Nodos del 70% es 143 Marcaremos 143 nodos como subconjunto de entrenamiento y el resto como prueba.

Marcamos datos de entrenamiento 70%

MATCH (c:Carros) WITH c LIMIT 143 SET c:Training;

Marcamos datos de prueba 30%

MATCH (c:Carros) WITH c SKIP 143 SET c:Test;

Ahora creamos el grafo para hacer comprobar la similitud de los carros con respecto al precio y la marca.

nodeProjection

1

relationshipProjection

```
{
    "Carros": {
    "properties": {
    "price": {
    "property": "price",
    "defaultValue": null
        }
     },
    "label": "Carros"
    }
}
```

```
{
   "__ALL__": {
   "orientation": "NATURAL",
   "aggregation": "DEFAULT",
   "type": "*",
   "properties": {
     }
   }
}
```

Ahora podemos ver la similitud que hay entre los carros.

\$ CA	LL gds.beta.knn.stream('k1Local:	idadd', {topK: 2, randomSeed: 42,	nodeWeigh… ☆ 🖺
	Marca1	Modelo	Similitud
1	"porsche"	"porsche 127"	0.012195121951219513
	"porsche"	"porsche 129"	0.012195121951219513
	"jaguar"	"porsche 128"	0.017857142857142856
	"jaguar"	"porsche 129"	0.017857142857142856
	"chevrolet"	"toyota 159"	0.1111111111111111
	"mitsubishi"	"nissan 102"	0.125
1 C / ₄ 2 3 4 5 5 5 7	ALL gds.graph.create('k1Localidadd', { Carros : { label: 'Carros', properties: 'price	e'	
	} }, '*'		

Marca1	Modelo	Similitud
"bmw"	"mercedes-benz 75"	0.0002447381302006853
"mercedes-benz"	"bmw 17"	0.0002447381302006853
"mercedes-benz"	"porsche 129"	0.0002542588354945334
"mercedes-benz"	"mercedes-benz 70"	0.00038095238095238096
"mercedes-benz"	"bmw 16"	0.00038684719535783365
"mercedes-benz"	"bmw 16"	0.0003979307600477517

```
CALL gds.beta.knn.stream('k1Localidadd', {topK: 2,sampleRate: 1 , randomSeed: -1, nodeWeightProperty: 'price'})
YIELD node1, node2, similarity
RETURN gds.util.asNode(node1).modelo AS Modelo, gds.util.asNode(node2).modelo AS Modelo2, similarity AS Similitud
ORDER BY Similitud ASCENDING, Modelo, Modelo2
```

	Marca1	Modelo	Similitud
8	"mercedes-benz"	"bmw 17"	0.0002447381302006853
9	"mercedes-benz"	"porsche 129"	0.0002542588354945334
10	"mercedes-benz"	"mercedes-benz 70"	0.00038095238095238096
11	"mercedes-benz"	"bmw 16"	0.00038684719535783365


```
CALL gds.beta.knn.stream('k1Localidadd', {topK: 5,sampleRate: 1 , randomSeed: -1, nodeWeightProperty: 'horsepower'})
YIELD node1, node2, similarity
RETURN gds.util.asNode(node1).marca AS Modelo, gds.util.asNode(node2).marca AS Modelo2, similarity AS Similitud
ORDER BY Similitud ASCENDING, Modelo, Modelo2
```

j\$ CA	LL gds.beta.knn.stream('k1Localio	dadd', {topK: 5,sampleRate: 1 , r	andomSeed… ☆ 🖺 😃 🕸
	Modelo	Modelo2	Similitud
5	"porsche"	"porsche"	0.012195121951219513
6	"porsche"	"porsche"	0.012195121951219513
7	"porsche"	"porsche"	0.012195121951219513
8	"jaguar"	"nissan"	0.015873015873015872