ECC HW1

2021年10月4日 下午 09:42

/00

2.4 Construct the prime field GF(11) with modulo-11 addition and multiplication. Find all the primitive elements, and determine the orders of other elements.

The remainder of the power of each elements is summarized as follows:

Power

	1 0000										
		J	2	ક	4	2	Ь	Ŋ	8	7	10
القرام المستحد	0	Q			•						
	1	\bigcirc								_	
	2	2	4	8	r	10	9	Π	3	6	
	3	3	9	5	4	\mathcal{Q}					
	4	4	5	9	3						
	\ \	\$	3	4	9	\bigcirc					
	þ	þ	3	i	9	10	5	8	4	2	(1)
	IJ	1	E	2	3	10	4	Ь	9	&	(1)
	8	8	9	ط	4	10	3	2	5	η	(D)
	٩	9	4	3	5						
	10	10	(I)								

Therefore, the order of each elements are

1: 1 3: 5 5: 5 7: 10 9: 5

2: 10 4: 5 6: 10 8: 10 10: 1

and the primitive elements are 2, 6,7,8

2.7 Let λ be the characteristic of a Galois field GF(q). Let 1 be the unit element of GF(q). Show that the sums

1,
$$\sum_{i=1}^{2} 1$$
, $\sum_{i=1}^{3} 1$, ..., $\sum_{i=1}^{\lambda-1} 1$, $\sum_{i=1}^{\lambda} 1 = 0$

form a subfield of GF(q).

We define the group 1, 2, ..., 21 as I To prove that I forms a subfield of GF(&), we will prove DI is a group under addition of GF(&) DI is a group under multiplication of GF(B)

1) I is a group under addition of GF(g)11 + 51 = 5 = 0 . Sil 1 is the inverse of 1 under addition operation Also, since all elements are originally in 6F(8) The assotiative law is satisfy Therefore, I forms a group under addition operation in G-180 2) I is a group under multiplication of 6F(8) : > 15 prime - '. V 15Kx, (Lx)=1 There exist a.b s.t. al+b>=1 $\Rightarrow 1-\lambda(b+\frac{a-amod\lambda}{2}l)+l(amod\lambda)$ $\frac{1}{2}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{2}\left(\frac{1}{2}\right)$ = 1- 2 (pt 2- 2 l) $= \frac{1}{K^{-1}} \left[-\left(\frac{2}{2} \right) \left(\frac{1}{K^{-1}} \right) \right]$ Therefore, the multiplication merse & 511 12 <u>2</u> / Also, since all elements are originally in Gt (q) they all satisfy the associative law => I-15 a group under multiplication in GF(96) **2.10** Show that $X^5 + X^3 + 1$ is irreducible over GF(2).

To show it is preducible, we need to show that $x^{5}+x^{2}+1$ can't be divide by all phynomials under degree $L^{\frac{5}{2}}L^{\frac{1}{2}}2$.

These polynomials are α , $\alpha+1$

2.11 Let f(X) be a polynomial of degree n over GF(2). The reciprocal of f(X) is defined as

$$f^*(X) = X^n f\left(\frac{1}{X}\right).$$

a. Prove that $f^*(X)$ is irreducible over GF(2) if and only if f(X) is irreducible over GF(2).

b. Prove that $f^*(X)$ is primitive if and only if f(X) is primitive.

"> The reverse side can be proved in the Same voncept. & b. This is equivalent to prove that f(X) is primitive if PX(X) is primitive. ">" D(X) 3ml primitive = = = 14 < 2"-1 s.t. f(X) g(x)= xk+1 > P(+) 2(+) = X-K+1 > (x x) (\frac{1}{4}) = Xn f(\frac{1}{4}) & (\frac{1}{4}) & > 1x(X) xx-n d(x/) = xx+1 sisting for 27 (X) of E The inverse cide can be prost in the same way

2.13 Construct a table for $GF(2^3)$ based on the primitive polynomial $p(X) = 1 + X + X^3$. Display the power, polynomial, and vector representations of each element. Determine the order of each element.

 $GF(2^3)$ has $2^3 = 3$ elements

Power Polynomial Vector O(000) O(000

2.19 Let α be a primitive element in $GF(2^4)$. Use Table 2.8 to solve the following simultaneous equations for X, Y, and Z:

$$X + \alpha^5 Y + Z = \alpha^7.$$

$$X + \alpha Y + \alpha^7 Z = \alpha^9.$$

$$\alpha^2 X + Y + \alpha^6 Z = \alpha.$$

$$\begin{cases} X + \alpha^{5}Y + Z = \alpha^{7} & 0 \\ X + \alpha^{7}Y + A^{7}Z = \alpha^{9} & 0 \\ X + \alpha^{7}Y + A^{7}Z = \alpha^{9} & 0 \\ X + \alpha^{5}Y + (\alpha^{7}X + 1) = \alpha^{9} + \alpha^{7} & 0 + \alpha^{7}X = \alpha^{7}X$$

Substitute into D $X + d^{19} + d^{19} = d^{7}$ $X = X + d^{12} + 1 + d + d^{2} + 1 + d + d^{3} = d^{12}$ $X = d^{12}$, $Y = d^{12}$, $Y = d^{12}$, $Z = d^{10}$