Exact formulas for partial sums of the Möbius function expressed by partial sums of weighted Liouville functions

Maxie Dion Schmidt

 $maxieds@gmail.com\\mschmidt34@gatech.edu$

Georgia Institute of Technology School of Mathematics

Thursday 27th January, 2022

Abstract

The Mertens function, $M(x) := \sum_{n \le x} \mu(n)$, is defined as the summatory function of the classical Möbius function for $x \ge 1$. The Dirichlet inverse function $g(n) := (\omega + 1)^{-1}(n)$ is defined in terms of the shifted strongly additive function $\omega(n)$ that counts the number of distinct prime factors of n without multiplicity. Discrete convolutions of the partial sums

$$G(x) \coloneqq \sum_{n \le x} g(n) = \sum_{n \le x} \lambda(n) |g(n)|,$$

with the classical prime counting function $\pi(x)$ determine new exact formulas for M(x). In particular, for all $x \ge 1$ we have that

$$M(x) = G(x) + \sum_{p \le x} G\left(\left\lfloor \frac{x}{p} \right\rfloor\right),$$

The new exact formulas we prove for M(x) in terms of the partial sums G(x) motivates our study of the sequence of unsigned summands $|g(n)| = \lambda(n)g(n)$. We prove the following exact formula expressing g(n) in terms of the function $C_{\Omega}(n)$ whose Dirichlet generating function is given by $(1 - P(s))^{-1}$ for Re(s) > 1 where $P(s) := \sum_{p} p^{-s}$ is the prime zeta function:

$$g(n) = \lambda(n) \times \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) C_{\Omega}(d)$$
, for all $n \ge 1$.

A special case of the Selberg-Delange method applied to the function $\widehat{G}(z) := \frac{(1+P(2)z)^{-1}\zeta(2)^{-z}}{\Gamma(1+z)}$ defined for any $0 \le |z| \le P(2)^{-1}$ shows that for all sufficiently large x we have uniformly for $1 \le k \le \frac{3}{2}\log\log x$ that

$$\sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega}(n) = \frac{A_0 \sqrt{2\pi}x}{\log x} \times \widehat{G}\left(\frac{k-1}{\log\log x}\right) \frac{(\log\log x)^{k-\frac{1}{2}}}{(k-1)!} \left(1 + O\left(\frac{1}{\log\log x}\right)\right),$$

where $A_0 > 0$ is an absolute constant. The uniform asymptotics for the restricted partial sums of $C_{\Omega}(n)$ allow us to determine precise statistics for the average orders of $C_{\Omega}(n)$ and |g(n)| and predict formulas for higher-order moments of these functions.

Keywords and Phrases: Möbius function; Mertens function; Dirichlet inverse; Liouville lambda function; prime omega function; prime counting function; Dirichlet generating function; prime zeta function; Erdős-Kac theorem.

Math Subject Classifications (2010): 11N37; 11A25; 11N60; 11N64; and 11-04.

Table of Contents

1	Inti	roduction	3
2	An	application of the Selberg-Delange method	4
3	Pro 3.1 3.2	$C_{\Omega}(n)$ Uniform asymptotics for partial sums	6 7 10
4	Pro 4.1 4.2 4.3	Signedness	11 11 12 13
5	Cor	njectures on limiting distributions for the unsigned sequences	14
6	Pro 6.1 6.2	Formulas relating $M(x)$ to the summatory function $G(x)$	15 15
		primorial subsequence	18
7	Cor	nclusions	19
A	ckno	wledgments	20
R	efere	ences	20
$\mathbf{A}_{\mathbf{j}}$	ppen	ndices on supplementary material	
\mathbf{A}	Glo	essary of notation and conventions	21
В	The	e distributions of $\omega(n)$ and $\Omega(n)$	23
\mathbf{C}	Par	tial sums expressed in terms of the incomplete gamma function	24
D	Inv	ersion theorems for partial sums of Dirichlet convolutions	26
\mathbf{E}	Tab	oles of computations involving $g(n)$ and its partial sums	29

1 Introduction

The Mertens function is the summatory function of $\mu(n)$ defined by the partial sums [17, A008683; A002321]

$$M(x) = \sum_{n \le x} \mu(n)$$
, for $x \ge 1$.

The Mertens function is related to the partial sums of the Liouville lambda function, denoted by $L(x) = \sum_{n \le x} \lambda(n)$, via the relation [9, 11] [17, A008836; A002819]

$$L(x) = \sum_{d \le \sqrt{x}} M\left(\left\lfloor \frac{x}{d^2} \right\rfloor\right), \text{ for } x \ge 1.$$

We fix the notation for the Dirichlet inverse function [17, A341444]

$$q(n) := (\omega + 1)^{-1}(n), \text{ for } n \ge 1.$$
 (1.1)

We use the notation |g(n)| to denote the absoute value of g(n). An exact expression for g(n) is given by (see Lemma 4.3 and Corollary 4.4)

$$g(n) = \lambda(n) \times \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) C_{\Omega}(d), n \ge 1, \tag{1.2}$$

where the sequence $\lambda(n)C_{\Omega}(n)$ has the Dirichlet generating function (DGF) $(1 + P(s))^{-1}$ and $C_{\Omega}(n)$ has the DGF $(1 - P(s))^{-1}$ for Re(s) > 1 (see Proposition 4.2). The function $C_{\Omega}(n)$ was considered in [7] with an exact formula given by [10, cf. §3]

$$C_{\Omega}(n) = \begin{cases} 1, & \text{if } n = 1; \\ (\Omega(n))! \times \prod_{p^{\alpha} \mid |n} \frac{1}{\alpha!}, & \text{if } n \ge 2. \end{cases}$$
 (1.3)

The function $C_{\Omega}(n)$ that is identified as a key auxiliary sequence in the explicit formula from (1.2) is considered under alternate notation by Fröberg (circa 1968) in his work on the series expansions of the prime zeta function, $P(s) := \sum_{p} p^{-s}$ for Re(s) > 1. The connection of the function $C_{\Omega}(n)$ to M(x) is unique to our work to establish properties of this sequence.

We define the partial sums G(x) for integers $x \ge 1$ as follows [17, A341472]:

$$G(x) := \sum_{n \le x} g(n) = \sum_{n \le x} \lambda(n) |g(n)|.$$
 (1.4)

Theorem 1.1. For all $x \ge 1$

$$M(x) = \sum_{1 \le k \le x} g(k) \left(\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) + 1 \right), \tag{1.5a}$$

$$M(x) = G(x) + \sum_{k=1}^{\frac{x}{2}} G(k) \left(\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) - \pi \left(\left\lfloor \frac{x}{k+1} \right\rfloor \right) \right), \tag{1.5b}$$

$$M(x) = G(x) + \sum_{p \le x} G\left(\left\lfloor \frac{x}{p} \right\rfloor\right). \tag{1.5c}$$

The focus of the article is on studying statistics of the unsigned functions $C_{\Omega}(n)$ and |g(n)| and their partial sums. The Mertens function has exact expressions by discrete convolutions of the classical prime counting function $\pi(x)$ and the signed partial sums of g(n). These new formulas for M(x) provide a window from

which we can view classically difficult problems about asymptotics for this function partially in terms of the properties of the auxiliary unsigned functions and their distributions. Preliminary numerical computations of these functions and their partial sums suggests the intuition that these primitives will be easier objects to work with and hence bound in limiting cases as the subject of future work to extend the results in this article. Since we prove that $sgn(g(n)) = \lambda(n)$ for all $n \ge 1$ in Proposition 4.2, the partial sums defined by G(x) are precisely related to the properties of |g(n)| and asymptotics for L(x). Stating tight bounds on the distribution of L(x) is a problem that is equally as difficult as understanding the properties of M(x) well at large x or along infinite subsequences.

Let the function

$$\widehat{G}(z) := \frac{\zeta(2)^{-z}}{\Gamma(1+z)(1+P(2)z)}, \text{ for } 0 \le |z| < P(2)^{-1} \approx 2.21118.$$

We use the results proved in the application of the Selberg-Delange method in Theorem 2.3 and its consequence in Theorem 3.3 to obtain the next corollary for an absolute constant $A_0 > 0$.

Theorem 1.2. For all sufficiently large x uniformly for $1 \le k \le \frac{3}{2} \log \log x$

$$\sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega}(n) = \frac{A_0 \sqrt{2\pi}x}{\log x} \times \widehat{G}\left(\frac{k-1}{\log\log x}\right) \frac{(\log\log x)^{k-\frac{1}{2}}}{(k-1)!} \left(1 + O\left(\frac{1}{\log\log x}\right)\right).$$

We use Theorem 1.2 with an adaptation of the form of Rankin's method from [12, Thm. 7.20] to prove the following theorem for the average order of $C_{\Omega}(n)$:

Theorem 1.3. There is an absolute constant $B_0 > 0$ such that

$$\frac{1}{n} \times \sum_{k \le n} C_{\Omega}(k) = B_0 \sqrt{\log \log n} \left(1 + O\left(\frac{1}{\log \log n}\right) \right), \text{ as } n \to \infty.$$

Corollary 1.4. $As n \rightarrow \infty$

$$\frac{1}{n} \times \sum_{k \le n} |g(k)| = \frac{6B_0(\log n)\sqrt{\log \log n}}{\pi^2} \left(1 + O\left(\frac{1}{\log \log n}\right)\right).$$

Conjecture. There are explicit functions $\mu_{\Omega}(x)$ and $\sigma_{\Omega}(x)$ and a limiting probability measure ϕ_{Ω} on \mathbb{R} with associated cumulative density function given by Φ_{Ω} so that for any $y \in (-\infty, +\infty)$

$$\frac{1}{x} \times \# \left\{ 3 \le n \le x : \frac{|g(n)| - \frac{6}{\pi^2 n} \times \sum_{k \le n} |g(k)| - \mu_{\Omega}(x)}{\sigma_{\Omega}(x)} \le y \right\} = \Phi_{\Omega}\left(\frac{\pi^2 y}{6}\right) + o(1), \quad as \quad x \to \infty.$$

The article is organized into sections that partition our new results by function for $C_{\Omega}(n)$, g(n) and |g(n)|, and then finally the proofs of the new exact formulas for M(x) stated in Theorem 1.1. The appendix sections provide a glossary of notation, statements of relevant known results in the literature, and short proofs of new formulae and lemmas that can be separated from the primary topics in the body of the article.

2 An application of the Selberg-Delange method

Definition 2.1. Let the bivariate DGF $\widehat{F}(s,z)$ be defined for $\operatorname{Re}(s) > 1$ and $|z| < |P(s)|^{-1}$ by

$$\widehat{F}(s,z) \coloneqq \frac{1}{1 + P(s)z} \times \prod_{p} \left(1 - \frac{1}{p^s}\right)^z.$$

Let $\widehat{G}(z) \coloneqq \widehat{F}(2,z) \times \Gamma(1+z)^{-1}$ for any $0 \le |z| < P(2)^{-1}$.

Definition 2.2. Let the partial sums, $\widehat{A}_z(x)$, be defined for any $x \ge 1$ by

$$\widehat{A}_z(x) \coloneqq \sum_{n < x} (-1)^{\omega(n)} C_{\Omega}(n) z^{\Omega(n)}.$$

The function $C_{\Omega}(n)$ defined in equation (1.3) of the introduction is discussed in depth in Section 3.

Theorem 2.3. For all sufficiently large $x \ge 2$ and $|z| < P(2)^{-1}$

$$\widehat{A}_z(x) = \frac{x\widehat{F}(2,z)}{\Gamma(z)} (\log x)^{z-1} + O_z \left(x(\log x)^{\operatorname{Re}(z)-2} \right).$$

Proof. It follows from (1.3) that we can generate exponentially scaled forms of the function $C_{\Omega}(n)$ by a product identity of the following form:

$$\sum_{n\geq 1} \frac{C_{\Omega}(n)}{(\Omega(n))!} \cdot \frac{(-1)^{\omega(n)} z^{\Omega(n)}}{n^s} = \prod_{p} \left(1 + \sum_{r\geq 1} \frac{z^{\Omega(p^r)}}{r! p^{rs}} \right)^{-1} = \exp\left(-zP(s)\right), \text{ for } \operatorname{Re}(s) > 1 \text{ and } \operatorname{Re}(P(s)z) > -1.$$

This Euler product type expansion is similar in construction to the parameterized bivariate DGFs defined in [12, §7.4] [18, cf. §II.6.1]. By computing a termwise Laplace transform applied to the right-hand-side of the previous equation, we obtain that

$$\sum_{n\geq 1} \frac{C_{\Omega}(n)(-1)^{\omega(n)}z^{\Omega(n)}}{n^s} = \int_0^{\infty} e^{-t} \exp\left(-tzP(s)\right) dt = \frac{1}{1+P(s)z}, \text{ for } \operatorname{Re}(s) > 1 \text{ and } \operatorname{Re}(P(s)z) > -1.$$

It follows from the Euler product representation of $\zeta(s)$, which is convergent for any Re(s) > 1, that

$$\widehat{F}(s,z)\zeta(s)^z = \sum_{n \geq 1} \frac{(-1)^{\omega(n)} C_{\Omega}(n) z^{\Omega(n)}}{n^s}, \text{ for } \text{Re}(s) > 1 \text{ and } |z| < |P(s)|^{-1}.$$

The DGF $\widehat{F}(s,z)$ is an analytic function of s for all Re(s) > 1 whenever the parameter $|z| < |P(s)|^{-1}$. Indeed, if the sequence $\{b_z(n)\}_{n\geq 1}$ indexes the coefficients in the DGF expansion of $\widehat{F}(s,z)\zeta(s)^z$, then the series

$$\left| \sum_{n>1} \frac{b_z(n)(\log n)^{2R+1}}{n^s} \right| < +\infty.$$

Moreover, the series in the last equation is uniformly bounded for all $\text{Re}(s) \ge 2$ and $|z| \le R < |P(s)|^{-1}$. For fixed 0 < |z| < 2, let the sequence $\{d_z(n)\}_{n\ge 1}$ be generated as the coefficients of the DGF

$$\zeta(s)^z = \sum_{n\geq 1} \frac{d_z(n)}{n^s}$$
, for Re(s) > 1.

The summatory function of $d_z(n)$ is defined by $D_z(x) := \sum_{n \le x} d_z(n)$. The theorem proved by contour integration in [12, Thm. 7.17; §7.4] shows that for any 0 < |z| < 2 and all integers $x \ge 2$

$$D_z(x) = \frac{x(\log x)^{z-1}}{\Gamma(z)} + O_z\left(x(\log x)^{\operatorname{Re}(z)-2}\right).$$

Let $b_z(n) \coloneqq (-1)^{\omega(n)} C_{\Omega}(n) z^{\Omega(n)}$, set the convolution $\hat{a}_z(n) \coloneqq \sum_{d \mid n} b_z(d) d_z\left(\frac{n}{d}\right)$, and take its partial sums to be $\widehat{A}_z(x) \coloneqq \sum_{n \le x} \hat{a}_z(n)$. Then we have that

$$\widehat{A}_z(x) = \sum_{m \le \frac{x}{2}} b_z(m) D_z\left(\frac{x}{m}\right) + \sum_{\frac{x}{2} < m \le x} b_z(m)$$

$$= \frac{x}{\Gamma(z)} \times \sum_{m \le \frac{x}{2}} \frac{b_z(m)}{m} \log\left(\frac{x}{m}\right)^{z-1} + O\left(\sum_{m \le x} \frac{x|b_z(m)|}{m} \times \log\left(\frac{2x}{m}\right)^{\operatorname{Re}(z)-2}\right). \tag{2.1}$$

We can sum the coefficients $\frac{b_z(m)}{m}$ for integers $m \le u$ when u is taken sufficiently large as follows:

$$\sum_{m \le u} \frac{b_z(m)}{m^2} \times m = (\widehat{F}(2, z) + O_z(u^{-2})) u - \int_1^u (\widehat{F}(2, z) + O_z(t^{-2})) dt = \widehat{F}(2, z) + O_z(u^{-1}).$$

Suppose that $0 < |z| \le R < P(2)^{-1}$. For large x, the error term in (2.1) satisfies

$$\begin{split} \sum_{m \leq x} \frac{x |b_z(m)|}{m} \log \left(\frac{2x}{m}\right)^{\text{Re}(z)-2} & \ll x (\log x)^{\text{Re}(z)-2} \times \sum_{m \leq \sqrt{x}} \frac{|b_z(m)|}{m} \\ & + x (\log x)^{-(R+2)} \times \sum_{m > \sqrt{x}} \frac{|b_z(m)|}{m} (\log m)^{2R}, \\ & = O_z \left(x (\log x)^{\text{Re}(z)-2}\right), \end{split}$$

whenever $0 < |z| \le R$. When $m \le \sqrt{x}$ we have that

$$\log\left(\frac{x}{m}\right)^{z-1} = (\log x)^{z-1} + O\left((\log m)(\log x)^{\operatorname{Re}(z)-2}\right).$$

A related upper bound is obtained for the left-hand-side of the previous equation when $\sqrt{x} < m < x$ and 0 < |z| < R. The combined sum over the interval $m \le \frac{x}{2}$ yields the following bounds when $0 < |z| \le R$:

$$\sum_{m \le \frac{x}{2}} b_{z}(m) D_{z} \left(\frac{x}{m} \right) = \frac{x}{\Gamma(z)} (\log x)^{z-1} \times \sum_{m \le \frac{x}{2}} \frac{b_{z}(m)}{m} + O_{R} \left(x (\log x)^{\operatorname{Re}(z)-2} \times \sum_{m \le \sqrt{x}} \frac{|b_{z}(m)| \log m}{m} + x (\log x)^{R-1} \times \sum_{m > \sqrt{x}} \frac{|b_{z}(m)|}{m} \right) \\
= \frac{x \widehat{F}(2, z)}{\Gamma(z)} (\log x)^{z-1} + O_{R} \left(x (\log x)^{\operatorname{Re}(z)-2} \times \sum_{m \ge 1} \frac{b_{z}(m) (\log m)^{2R+1}}{m^{2}} \right) \\
= \frac{x \widehat{F}(2, z)}{\Gamma(z)} (\log x)^{z-1} + O_{R} \left(x (\log x)^{\operatorname{Re}(z)-2} \right). \qquad \Box$$

Remark 2.4. The formula for the partial sums of the coefficients of the DGF expansion of $\widehat{F}(s,z)$ we proved in Theorem 2.3 is derived by applying asymptotics for the partial sums of the coefficients of the DGF $\zeta(s)^z$, denoted by $D_z(x)$ for $x \ge 1$ and 0 < |z| < 2. The latter asymptotics are proved in [12, §7.4] using a Hankel contour method. The strategy behind the proof of the theorem is an extension of the Selberg-Delange convolution method from [18, §II.6.1]. Our choice of the z-dependent function $\widehat{F}(s,z)\zeta(s)^z$ is motivated by the exact formula for $C_{\Omega}(n)$ expanded by (1.3). We have applied an extension of Tenenbaum's Selberg-Delange method proofs to extract an asymptotic formula for the coefficients of $\widehat{F}(s,z)\zeta(s)^z$.

3 Properties of the function $C_{\Omega}(n)$

Definition 3.1. We define the following bivariate sequence for integers $n \ge 1$ and $k \ge 0$:

$$C_k(n) := \begin{cases} \varepsilon(n), & \text{if } k = 0; \\ \sum_{d|n} \omega(d) C_{k-1} \left(\frac{n}{d}\right), & \text{if } k \ge 1. \end{cases}$$
(3.1)

Using the more standardized definitions in [2, §2], we can alternately identify the k-fold convolution of ω with itself in the following notation: $C_0(n) \equiv \omega^{0*}(n)$ and $C_k(n) \equiv \omega^{k*}(n)$ for integers $k \geq 1$ and $n \geq 1$. The special case of (3.1) where $k \coloneqq \Omega(n)$ occurs frequently in the next sections of the article. To avoid cumbersome notation when referring to this common function variant, we suppress the duplicate index n by writing $C_{\Omega}(n) := C_{\Omega(n)}(n)$.

By recursively expanding the definition of $C_k(n)$ at any fixed $n \ge 2$, we see that we can form a chain of at most $\Omega(n)$ iterated (or nested) divisor sums by unfolding the definition of (3.1) inductively. By the same argument, we see that at fixed n, the function $C_k(n)$ is non-zero only possibly for $1 \le k \le \Omega(n)$ when $n \ge 2$. A sequence of signed semi-diagonals of the functions $C_k(n)$ begins as follows [17, A008480]:

$$\{\lambda(n)C_{\Omega}(n)\}_{n\geq 1} = \{1,-1,-1,1,-1,2,-1,-1,1,2,-1,-3,-1,2,2,1,-1,-3,-1,-3,2,2,-1,4,1,2,\ldots\}.$$

We see by (1.3) that $C_{\Omega}(n) \leq (\Omega(n))!$ for all $n \geq 1$ with equality precisely at the squarefree integers so that $(\Omega(n))! = (\omega(n))!$ whenever $\mu^2(n) = 1$.

3.1 Uniform asymptotics for partial sums

Definition 3.2. For integers $x \ge 3$ and $k \ge 1$, two variants of the restricted partial sums of the function $C_{\Omega}(n)$ are defined as follows:

$$\widehat{C}_{k,\omega}(x) \coloneqq \sum_{\substack{n \le x \\ \Omega(n) = k}} (-1)^{\omega(n)} C_{\Omega}(n),$$

$$\widehat{C}_{k}(x) \coloneqq \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega}(n).$$

The arguments given in the next proof is new while mimicking as closely as possible the spirit of the proofs we cite inline from the references [12, 18].

Theorem 3.3. As $x \to \infty$, uniformly for $1 \le k \le 2 \log \log x$

$$\widehat{C}_{k,\omega}(x) = -\widehat{G}\left(\frac{k-1}{\log\log x}\right) \frac{x}{\log x} \cdot \frac{(\log\log x)^{k-1}}{(k-1)!} \left(1 + O\left(\frac{k}{(\log\log x)^2}\right)\right).$$

Proof. When k = 1, we have that $\Omega(n) = \omega(n)$ for all $n \le x$ such that $\Omega(n) = k$. The positive integers n that satisfy this requirement are precisely the primes $p \le x$. The formula is satisfied as

$$\sum_{p \le x} (-1)^{\omega(p)} C_{\Omega}(p) = -\sum_{p \le x} 1 = -\frac{x}{\log x} \left(1 + O\left(\frac{1}{\log x}\right) \right).$$

For $2 \le k \le 2 \log \log x$, we will apply the error estimate from Theorem 2.3 with $r := \frac{k-1}{\log \log x}$ to

$$\widehat{C}_{k,\omega}(x) = \frac{(-1)^{k+1}}{2\pi i} \times \int_{|v|=r} \frac{\widehat{A}_{-v}(x)}{v^{k+1}} dv.$$

The error in this formula contributes terms that are bounded by

$$\left| x(\log x)^{-(\operatorname{Re}(v)+2)} v^{-(k+1)} \right| \ll \left| x(\log x)^{-(r+2)} r^{-(k+1)} \right| \ll \frac{x}{(\log x)^{2-\frac{k-1}{\log\log x}}} \cdot \frac{(\log\log x)^k}{(k-1)^k} \\
\ll \frac{x}{(\log x)^2} \cdot \frac{(\log\log x)^{k+1}}{(k-1)^{\frac{1}{2}} (k-1)!} \ll \frac{x}{\log x} \cdot \frac{k(\log\log x)^{k-5}}{(k-1)!}, \text{ as } x \to \infty.$$

We next find the main term for the coefficients of the following contour integral when $r \in [0, z_{\text{max}}] \subseteq [0, P(2)^{-1})$:

$$\widehat{C}_{k,\omega}(x) \sim \frac{(-1)^{k+1}x}{2\pi \imath (\log x)} \times \int_{|v|=r} \frac{(\log x)^{-v} \zeta(2)^v}{\Gamma(1-v)v^k (1-P(2)v)} dv.$$
(3.2)

The main term of $\widehat{C}_{k,\omega}(x)$ is then given by $-\frac{x}{\log x} \times I_k(r,x)$, where we define

$$I_{k}(r,x) = \frac{1}{2\pi i} \times \int_{|v|=r} \frac{\widehat{G}(v)(\log x)^{v}}{v^{k}} dv$$

=: $I_{1,k}(r,x) + I_{2,k}(r,x)$.

With $r = \frac{k-1}{\log \log x}$, the first of the component integrals is defined to be

$$I_{1,k}(r,x) := \frac{\widehat{G}(r)}{2\pi i} \times \int_{|v|=r} \frac{(\log x)^v}{v^k} dv = \widehat{G}(r) \times \frac{(\log \log x)^{k-1}}{(k-1)!}.$$

The second integral, $I_{2,k}(r,x)$, corresponds to an error term in the approximation. This component function is defined by

$$I_{2,k}(r,x) \coloneqq \frac{1}{2\pi i} \times \int_{|v|=r} \left(\widehat{G}(v) - \widehat{G}(r)\right) \frac{(\log x)^v}{v^k} dv.$$

Integrating by parts shows that [12, cf. Thm. 7.19; §7.4]

$$\frac{(r-v)}{2\pi i} \times \int_{|v|=r} (\log x)^v v^{-k} dv = 0,$$

so that integrating by parts once again we have

$$I_{2,k}(r,x) := \frac{1}{2\pi i} \times \int_{|v|=r} \left(\widehat{G}(v) - \widehat{G}(r) - \widehat{G}'(r)(v-r) \right) (\log x)^v v^{-k} dv.$$

We find that

$$\left|\widehat{G}(v) - \widehat{G}(r) - \widehat{G}'(r)(v - r)\right| = \left|\int_{r}^{v} (v - w)\widehat{G}''(w)dw\right| \ll |v - r|^{2}.$$

With the parameterization $v = re^{2\pi i\theta}$ for $\theta \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ (again selecting $r := \frac{k-1}{\log\log x}$), we obtain

$$|I_{2,k}(r,x)| \ll r^{3-k} \times \int_{-\frac{1}{2}}^{\frac{1}{2}} (\sin \pi \theta)^2 e^{(k-1)\cos(2\pi\theta)} d\theta.$$

Since $|\sin x| \le |x|$ for all |x| < 1 and $\cos(2\pi\theta) \le 1 - 8\theta^2$ if $-\frac{1}{2} \le \theta \le \frac{1}{2}$, the next bounds hold for $1 \le k \le 2\log\log x$ when $r = \frac{k-1}{\log\log x}$.

$$|I_{2,k}(r,x)| \ll r^{3-k}e^{k-1} \times \int_0^\infty \theta^2 e^{-8(k-1)\theta^2} d\theta$$

$$\ll \frac{r^{3-k}e^{k-1}}{(k-1)^{\frac{3}{2}}} = \frac{(\log\log x)^{k-3}e^{k-1}}{(k-1)^{k-\frac{3}{2}}} \ll \frac{k(\log\log x)^{k-3}}{(k-1)!}.$$

Finally, whenever $1 \le k \le 2 \log \log x$

$$1 = \widehat{G}(0) \ge \widehat{G}\left(\frac{k-1}{\log\log x}\right) = \frac{1}{\Gamma\left(1 + \frac{k-1}{\log\log x}\right)} \times \frac{\zeta(2)^{\frac{1-k}{\log\log x}}}{\left(1 + \frac{P(2)(k-1)}{\log\log x}\right)} \ge \widehat{G}(2) \approx 0.097027.$$

In particular, the function $\widehat{G}\left(\frac{k-1}{\log\log x}\right) \gg 1$ for all $1 \le k \le 2\log\log x$.

Proof of Theorem 1.2. Suppose that $\hat{h}(t)$ and $\sum_{n \leq t} \ell(n)$ are piecewise smooth and differentiable functions of t on \mathbb{R}^+ . The next integral formulas result by Abel summation and integration by parts.

$$\sum_{n \le x} \ell(n)\hat{h}(n) = \left(\sum_{n \le x} \ell(n)\right)\hat{h}(x) - \int_{1}^{x} \left(\sum_{n \le t} \ell(n)\right)\hat{h}'(t)dt \tag{3.3a}$$

$$\sim \int_{1}^{x} \frac{d}{dt} \left[\sum_{n \le t} \ell(n) \right] \hat{h}(t) dt \tag{3.3b}$$

Since $1 \le k \le \frac{3}{2} \log \log x$, we have that

$$\widehat{C}_{k,\omega}(x) = \sum_{\substack{n \leq x \\ \Omega(n) = k}} (-1)^{\omega(n)} C_{\Omega}(n) = \sum_{n \leq x} (-1)^{\omega(n)} \left[\omega(n) \leq \frac{3}{2} \log \log x \right]_{\delta} \times C_{\Omega}(n) \left[\Omega(n) = k \right]_{\delta}.$$

By the proof of Lemma C.5, we have that as $t \to \infty$

$$L_*(t) := \sum_{\substack{n \le t \\ \omega(n) \le \frac{3}{2} \log \log t}} (-1)^{\omega(n)} = \frac{(-1)^{\lfloor \log \log t \rfloor} t}{A_0 \sqrt{2\pi \log \log t}} \left(1 + O\left(\frac{1}{\sqrt{\log \log t}}\right) \right). \tag{3.4}$$

Except for t within a subset of $(0, \infty)$ of measure zero on which $L_*(t)$ may change sign, the main term of the derivative of this summatory function is approximated by

$$L'_*(t) \sim \frac{(-1)^{\lfloor \log \log t \rfloor}}{A_0 \sqrt{2\pi \log \log t}}$$
, a.e. for $t > e$.

We apply the formula from (3.3b) to deduce that whenever $1 \le k \le \frac{3}{2} \log \log x$ as $x \to \infty$

$$\widehat{C}_{k,\omega}(x) \sim \sum_{j=1}^{\log\log x - 1} \frac{2(-1)^{j+1}}{A_0\sqrt{2\pi}} \times \int_{e^{e^j}}^{e^{e^{j+1}}} \frac{C_{\Omega}(t) \left[\Omega(t) = k\right]_{\delta}}{\sqrt{\log\log t}} dt$$

$$\sim -\int_{1}^{\frac{\log\log x}{2}} \int_{e^{e^{2s-1}}}^{e^{e^{2s}}} \frac{2C_{\Omega}(t) \left[\Omega(t) = k\right]_{\delta}}{A_0\sqrt{2\pi} \log\log t} dt ds + \frac{1}{A_0\sqrt{2\pi}} \times \int_{e^e}^{x} \frac{C_{\Omega}(t) \left[\Omega(t) = k\right]_{\delta}}{\sqrt{\log\log t}} dt.$$

For large x, $(\log \log t)^{-\frac{1}{2}}$ is continuous and monotone decreasing for t on $\left[x^{e^{-1}}, x\right]$ with

$$\frac{1}{\sqrt{\log\log x}} - \frac{1}{\sqrt{\log\log\left(x^{e^{-1}}\right)}} = O\left(\frac{1}{(\log x)\sqrt{\log\log x}}\right),$$

Then we have

$$-A_0\sqrt{2\pi}x(\log x)\sqrt{\log\log x}\times\widehat{C}'_{k,\omega}(x) = \left(\widehat{C}_k(x)-\widehat{C}_k\left(x^{e^{-1}}\right)\right)(1+o(1))-x(\log x)\widehat{C}'_k(x). \tag{3.5}$$

For $1 \le k < \frac{3}{2} \log \log x$, we expect the integers $n \le x$ such that $\omega(n) = \Omega(n) = k$ to satisfy

$$\widehat{C}_k(x) \gg \widehat{\pi}_k(x) \approx \frac{x}{\log x} \times \frac{(\log \log x)^{k-1}}{(k-1)!}.$$

The argument used to justify the last equation is that for $k \ge 2$

$$|\widehat{C}_k(x)| \gg \sum_{n \le x} [\Omega(n) = k]_{\delta}.$$

We conclude that $\widehat{C}_k(x^{e^{-1}}) = o(\widehat{C}_k(x))$ at all sufficiently large x.

The solution to (3.5) is of the form

$$\widehat{C}_k(x) = -A_0 \sqrt{2\pi} (\log x) \times \left(\int_3^x \frac{\sqrt{\log \log t}}{\log t} \times \widehat{C}'_{k,\omega}(t) dt \right) (1 + o(1)) + O(\log x).$$

When we integrate by parts and apply Theorem 3.3, we find that

$$\widehat{C}_{k}(x) = -A_{0}\sqrt{2\pi}\sqrt{\log\log x} \times \widehat{C}_{k,\omega}(x) + O\left(x \times \int_{3}^{x} \frac{\sqrt{\log\log t} \times \widehat{C}_{k,\omega}(t)}{t^{2}(\log t)^{2}} dt\right)$$

$$= -A_{0}\sqrt{2\pi}\sqrt{\log\log x} \times \widehat{C}_{k,\omega}(x) + O\left(\frac{x}{2^{k}(k-1)!} \times \Gamma\left(k + \frac{1}{2}, 2\log\log x\right)\right).$$

If $1 \le k \le \frac{3}{2} \log \log x$ such that $\lambda > 1$ in Proposition C.2, the proposition and Theorem 3.3 imply the conclusion.

3.2 Average order

Proof of Theorem 1.3. By Theorem 1.2 and Proposition C.2 when $\lambda = \frac{2}{3}$, we have that

$$\sum_{k=1}^{\frac{3}{2}\log\log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega}(n) \approx \sum_{k=1}^{\frac{3}{2}\log\log x} \frac{x(\log\log x)^{k - \frac{1}{2}}}{(\log x)(k - 1)!} \left(1 + O\left(\frac{1}{\log\log x}\right)\right)$$

$$= \frac{x\sqrt{\log\log x} \times \Gamma\left(\frac{3}{2}\log\log x, \log\log x\right)}{\Gamma\left(\frac{3}{2}\log\log x\right)} \left(1 + O\left(\frac{1}{\log\log x}\right)\right)$$

$$= x\sqrt{\log\log x} \left(1 + O\left(\frac{1}{\log\log x}\right)\right).$$

For $0 \le z \le 2$, the function $\widehat{G}(z)$ is monotone in z with $\widehat{G}(0) = 1$ and $\widehat{G}(2) \approx 0.303964$. There is an absolute constant $B_0 > 0$ such that

$$\frac{1}{x} \times \sum_{k=1}^{\frac{3}{2} \log \log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega}(n) = B_0 \sqrt{\log \log x} \left(1 + O\left(\frac{1}{\log \log x}\right) \right).$$

We claim that

$$\frac{1}{x} \times \sum_{n \le x} C_{\Omega}(n) = \frac{1}{x} \times \sum_{k \ge 1} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega}(n)$$

$$= \frac{1}{x} \times \sum_{k=1}^{\frac{3}{2} \log \log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega}(n)(1 + o(1)), \text{ as } x \to \infty.$$

To prove the claim it suffices to show that

$$\frac{1}{x} \times \sum_{\substack{n \le x \\ \Omega(n) \ge \frac{3}{2} \log \log x}} C_{\Omega}(n) = o\left(\sqrt{\log \log x}\right), \text{ as } x \to \infty.$$
(3.6)

We argue as in the proof of Theorem 1.2 by applying Theorem 2.3 and Lemma C.5 that whenever $0 < |z| < P(2)^{-1}$ with x sufficiently large

$$\sum_{n \le x} C_{\Omega}(n) z^{\Omega(n)} \ll_z \frac{\widehat{F}(2, z) x \sqrt{\log \log x}}{\Gamma(z)} (\log x)^{z-1}. \tag{3.7}$$

For large x and fixed $0 < r < P(2)^{-1}$, we define

$$\widehat{B}(x,r) \coloneqq \sum_{\substack{n \le x \\ \Omega(n) \ge r \log \log x}} C_{\Omega}(n).$$

We adapt the proof from the reference [12, cf. Thm. 7.20; §7.4] by applying (3.7) when $1 \le r < P(2)^{-1}$. Since $r\widehat{F}(2,r) = \frac{r\zeta(2)^{-r}}{1+P(2)r} \ll 1$ and since $\frac{1}{\Gamma(1+r)} \gg 1$ for $r \in [1, P(2)^{-1})$, we find that

$$x\sqrt{\log\log x}(\log x)^{r-1} \gg \sum_{\substack{n \le x \\ \Omega(n) \ge r \log\log x}} C_{\Omega}(n)r^{\Omega(n)} \gg \sum_{\substack{n \le x \\ \Omega(n) \ge r \log\log x}} C_{\Omega}(n)r^{r\log\log x}.$$

For $r := \frac{3}{2}$ we have

$$\widehat{B}(x,r) \ll x(\log x)^{r-1-r\log r} \sqrt{\log\log x} = O\left(\frac{x\sqrt{\log\log x}}{(\log x)^{0.108198}}\right). \tag{3.8}$$

We evaluate the sums

$$\frac{1}{x} \times \sum_{k \ge \frac{3}{2} \log \log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega}(n) \ll \frac{1}{x} \times \widehat{B}\left(x, \frac{3}{2}\right) = O\left(\frac{\sqrt{\log \log x}}{(\log x)^{0.108198}}\right), \text{ as } x \to \infty.$$

The last equation implies that (3.6) holds.

4 Properties of the function g(n)

Let $\chi_{\mathbb{P}}(n)$ denote the characteristic function of the primes, let $\varepsilon(n) = \delta_{n,1}$ be the multiplicative identity with respect to Dirichlet convolution, and denote by $\omega(n)$ the strongly additive function that counts the number of distinct prime factors of n (without multiplicity). We can see using elementary methods that

$$\chi_{\mathbb{P}} + \varepsilon = (\omega + 1) * \mu. \tag{4.1}$$

Namely, since $\mu * 1 = \varepsilon$ and

$$\omega(n) = \sum_{p|n} 1 = \sum_{d|n} \chi_{\mathbb{P}}(d), \text{ for } n \ge 1,$$

the result in (4.1) follows by Möbius inversion.

Definition 4.1. For integers $n \ge 1$, we define the Dirichlet inverse function

$$g(n) = (\omega + 1)^{-1}(n)$$
, for $n \ge 1$.

The function |g(n)| denotes the unsigned inverse function.

4.1 Signedness

Proposition 4.2. The sign of the function g(n) is $\lambda(n)$ for all $n \ge 1$.

Proof. The series $D_f(s) := \sum_{n\geq 1} f(n) n^{-s}$ defines the Dirichlet generating function (DGF) of any arithmetic function f which is convergent for all $s \in \mathbb{C}$ satisfying $\text{Re}(s) > \sigma_f$ where σ_f is the abscissa of convergence of the series. Recall that $D_1(s) = \zeta(s)$, $D_{\mu}(s) = \zeta(s)^{-1}$ and $D_{\omega}(s) = P(s)\zeta(s)$ for Re(s) > 1. By (4.1) and the fact that whenever $f(1) \neq 0$, the DGF of $f^{-1}(n)$ is $D_f(s)^{-1}$, we have that

$$D_{(\omega+1)^{-1}}(s) = \frac{1}{\zeta(s)(1+P(s))}, \text{ for } Re(s) > 1.$$
(4.2)

It follows that $(\omega+1)^{-1}(n)=(h^{-1}*\mu)(n)$ for $h:=\chi_{\mathbb{P}}+\varepsilon$. We first show that $\operatorname{sgn}(h^{-1})=\lambda$. This observation then implies that $\operatorname{sgn}(h^{-1}*\mu)=\lambda$.

We recover exactly that $[7, cf. \S 2]$

$$h^{-1}(n) = \begin{cases} 1, & n = 1; \\ \lambda(n)(\Omega(n))! \times \prod_{p^{\alpha}||n} \frac{1}{\alpha!}, & n \ge 2. \end{cases}$$

In particular, by expanding the DGF of h^{-1} formally in powers of P(s) (where |P(s)| < 1 whenever $\text{Re}(s) \ge 2$) we count that

$$\frac{1}{1+P(s)} = \sum_{n\geq 1} \frac{h^{-1}(n)}{n^s} = \sum_{k\geq 0} (-1)^k P(s)^k,
= 1 + \sum_{\substack{n\geq 2\\ n=p_1^{\alpha_1} p_2^{\alpha_2} \times \dots \times p_k^{\alpha_k}}} \frac{(-1)^{\alpha_1 + \alpha_2 + \dots + \alpha_k}}{n^s} \times \binom{\alpha_1 + \alpha_2 + \dots + \alpha_k}{\alpha_1, \alpha_2, \dots, \alpha_k},
= 1 + \sum_{\substack{n\geq 2\\ n=p_1^{\alpha_1} p_2^{\alpha_2} \times \dots \times p_k^{\alpha_k}}} \frac{\lambda(n)}{n^s} \times \binom{\Omega(n)}{\alpha_1, \alpha_2, \dots, \alpha_k}.$$

Since λ is completely multiplicative we have that $\lambda\left(\frac{n}{d}\right)\lambda(d) = \lambda(n)$ for all divisors d|n when $n \ge 1$. We also know that $\mu(n) = \lambda(n)$ whenever n is squarefree so that

$$g(n) = (h^{-1} * \mu)(n) = \lambda(n) \times \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) |h^{-1}(n)|, \text{ for } n \ge 1.$$

4.2 Precise relations to $C_{\Omega}(n)$

Lemma 4.3. For all $n \ge 1$

$$g(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega}(d).$$

Proof. We first expand the recurrence relation for the Dirichlet inverse when $g(1) = g(1)^{-1} = 1$ as

$$g(n) = -\sum_{\substack{d|n\\d>1}} (\omega(d) + 1)g\left(\frac{n}{d}\right) \quad \Longrightarrow \quad (g*1)(n) = -(\omega*g)(n). \tag{4.3}$$

We argue that for $1 \le m \le \Omega(n)$, we can inductively expand the implication on the right-hand-side of (4.3) in the form of $(g * 1)(n) = F_m(n)$ where $F_m(n) := (-1)^m (C_m(-) * g)(n)$ so that

$$F_{m}(n) = -\begin{cases} (\omega * g)(n), & m = 1; \\ \sum\limits_{\substack{d \mid n \\ d > 1}} F_{m-1}(d) \times \sum\limits_{\substack{r \mid \frac{n}{d} \\ r > 1}} \omega(r) g\left(\frac{n}{dr}\right), & 2 \le m \le \Omega(n); \\ 0, & \text{otherwise.} \end{cases}$$

When $m := \Omega(n)$, i.e., with the expansions in the previous equation taken to a maximal depth, we obtain the relation

$$(g*1)(n) = (-1)^{\Omega(n)} C_{\Omega}(n) = \lambda(n) C_{\Omega}(n). \tag{4.4}$$

The stated formula for g(n) follows from (4.4) by Möbius inversion.

Corollary 4.4. For all $n \ge 1$

$$|g(n)| = \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) C_{\Omega}(d). \tag{4.5}$$

Proof. The result follows by applying Lemma 4.3, Proposition 4.2 and the complete multiplicativity of $\lambda(n)$. Since $\mu(n)$ is non-zero only at squarefree integers and since at any squarefree $d \ge 1$ we have $\mu(d) = (-1)^{\omega(d)} = \lambda(d)$, we have

$$|g(n)| = \lambda(n) \times \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega}(d)$$
$$= \lambda(n^{2}) \times \sum_{d|n} \mu^{2}\left(\frac{n}{d}\right) C_{\Omega}(d).$$

The leading term $\lambda(n^2) = 1$ for all $n \ge 1$ since the number of distinct prime factors (counting multiplicity) of any square integer is even.

Remark 4.5. We have the following remarks on consequences of Corollary 4.4:

• Whenever $n \ge 1$ is squarefree

$$|g(n)| = \sum_{d|n} C_{\Omega}(d). \tag{4.6a}$$

Since all divisors of a squarefree integer are squarefree, for all squarefree integers $n \ge 1$, we have that

$$|g(n)| = \sum_{m=0}^{\omega(n)} {\omega(n) \choose m} \times m!. \tag{4.6b}$$

- For $n \geq 2$, let the function $\mathcal{E}[n] \vdash (\alpha_1, \alpha_2, \dots, \alpha_r)$ denote the unordered partition of exponents for which $n = p_1^{\alpha_1} \times \dots \times p_r^{\alpha_r}$ is the factorization of n into powers of distinct primes. For any $n_1, n_2 \geq 2$, whenever $\mathcal{E}[n_1] = \mathcal{E}[n_2]$ we have that $C_{\Omega}(n_1) = C_{\Omega}(n_2)$ and $g(n_1) = g(n_2)$. This property of both the unsigned functions is special and is a somewhat unusual observation. We find that the regularity with respect to the repetition of distinct values of each sequence inherited from this property is sufficient to arrive at the statement of the existence of the limiting distributions for each function we conjecture in Section 5.
- The formula in (4.5) shows that the DGF of the unsigned inverse function |g(n)| is given by the meromorphic function $\frac{1}{\zeta(2s)(1-P(s))}$ for all $s \in \mathbb{C}$ with Re(s) > 1. This DGF has a known pole to the right of the line at Re(s) = 1 which occurs for the unique real $\sigma \equiv \sigma_1 \approx 1.39943$ such that $P(\sigma) = 1$ on $(1, +\infty)$.

4.3 Average order

Proof of Corollary 1.4. As $|z| \to \infty$, the imaginary error function, erfi(z), has the following asymptotic series expansion [16, §7.12]:

$$\operatorname{erfi}(z) := \frac{2}{\sqrt{\pi i}} \times \int_0^{iz} e^{t^2} dt = \frac{e^{z^2}}{\sqrt{\pi}} \left(\frac{1}{z} + \frac{1}{2z^3} + \frac{3}{4z^5} + \frac{15}{8z^7} + O\left(\frac{1}{z^9}\right) \right). \tag{4.7}$$

We use the formula from Theorem 1.3 to sum the average order of $C_{\Omega}(n)$. The proposition and error terms obtained from (4.7) imply that as $t \to \infty$

$$\int \frac{\sum_{n \le t} C_{\Omega}(n)}{t^2} dt = B_0(\log t) \sqrt{\log \log t} - \frac{B_0 \sqrt{\pi}}{2} \operatorname{erfi}\left(\sqrt{\log \log t}\right) + O\left(\frac{\log t}{\log \log t}\right)$$

$$= B_0(\log t)\sqrt{\log\log t}\left(1 + O\left(\frac{1}{\log\log t}\right)\right). \tag{4.8}$$

A classical formula for the number of squarefree integers $n \le x$ shows that [8, §18.6] [17, A013928]

$$Q(x) = \sum_{n \le x} \mu^2(n) = \frac{6x}{\pi^2} + O\left(\sqrt{x}\right), \text{ as } x \to \infty.$$

Therefore, summing over the formula from (4.5), we find that

$$\frac{1}{n} \times \sum_{k \le n} |g(k)| = \frac{1}{n} \times \sum_{d \le n} C_{\Omega}(d) Q\left(\left\lfloor \frac{n}{d} \right\rfloor\right)$$

$$\sim \sum_{d \le n} C_{\Omega}(d) \left(\frac{6}{d \cdot \pi^{2}} + O\left(\frac{1}{\sqrt{dn}}\right)\right)$$

$$= \frac{6}{\pi^{2}} \left(\frac{1}{n} \times \sum_{k \le n} C_{\Omega}(k) + \sum_{d < n} \sum_{k \le d} \frac{C_{\Omega}(k)}{d^{2}}\right) + O(1).$$

The latter inner sum forms the main term approximated using (4.8) as $t \to \infty$.

5 Conjectures on limiting distributions for the unsigned sequences

Conjecture 5.1. There are explicit functions $\mu_{\Omega}(x)$ and $\sigma_{\Omega}(x)$ and a limiting probability measure on \mathbb{R} with cumulative density function Φ_{Ω} such that for any real z

$$\frac{1}{x} \times \# \left\{ 2 \le n \le x : \frac{C_{\Omega}(n) - \mu_{\Omega}(x)}{\sigma_{\Omega}(x)} \le z \right\} = \Phi_{\Omega}(z) + o(1), \text{ as } x \to \infty$$

Corollary 5.2. Suppose that Conjecture 5.1 is true and that the functions $\mu_{\Omega}(x)$, $\sigma_{\Omega}(x)$ and $\Phi_{\Omega}(z)$ are defined as in the conjecture. For any $y \in (-\infty, +\infty)$

$$\frac{1}{x} \times \# \left\{ 3 \le n \le x : \frac{|g(n)| - \frac{6}{\pi^2 n} \times \sum_{k \le n} |g(k)| - \mu_{\Omega}(x)}{\sigma_{\Omega}(x)} \le y \right\} = \Phi_{\Omega}\left(\frac{\pi^2 y}{6}\right) + o(1), \text{ as } x \to \infty.$$

Proof. We claim that

$$|g(n)| - \frac{6}{\pi^2 n} \times \sum_{k \le n} |g(k)| \sim \frac{6}{\pi^2} C_{\Omega}(n), \text{ as } n \to \infty.$$

From the proof of Corollary 1.4 we obtain that

$$\frac{1}{x} \times \sum_{n \le x} |g(n)| = \frac{6}{\pi^2} \left(\frac{1}{x} \times \sum_{n \le x} C_{\Omega}(n) + \sum_{d < x} \sum_{k < d} \frac{C_{\Omega}(k)}{d^2} \right) + O(1).$$

Let the backwards difference operator with respect to x be defined for $x \ge 2$ and any arithmetic function f by $\Delta_x[f] := f(x) - f(x-1)$. We see that for large n

$$|g(n)| = \Delta_n \left[\sum_{k \le n} g(k) \right] \sim \frac{6}{\pi^2} \times \Delta_n \left[\sum_{d \le n} C_{\Omega}(d) \frac{n}{d} \right]$$

$$= \frac{6}{\pi^2} \left(C_{\Omega}(n) + \sum_{d < n} C_{\Omega}(d) \frac{n}{d} - \sum_{d < n} C_{\Omega}(d) \frac{(n-1)}{d} \right)$$

$$\sim \frac{6}{\pi^2} \left(C_{\Omega}(n) + \frac{1}{n-1} \times \sum_{k < n} |g(k)| \right), \text{ as } n \to \infty.$$

By Corollary 1.4, the result follows as a re-normalization of Conjecture 5.1.

Figure 5.1: Histograms representing the CDF of the distribution of $\sigma^{-1}\left(|g(n)| - \frac{6}{\pi^2 n} \times \sum_{k \le n} |g(k)| - \frac{6\mu}{\pi^2}\right)$ for $n \le x$ where $\mu = \mu(x) = \sqrt{\log\log\log x}$ and $\sigma = \sigma(x) = \sqrt{(\log x)(\log\log\log x)}$. The dashed line shows the approximate fit by the CDF of an inverse Gaussian distribution with mean α and scale parameter λ .

Rigorous proofs of the conjectures in this section are outside of the scope of this manuscript. Figure 5.1 is illustrative of an apparent limiting distribution that results by composing the respective first and second moments of the function $C_{\Omega}(n)$ with $\log x$ at large x (cf. [10]). We have arrived at the central second moment of $C_{\Omega}(n)$ by applying Abel summation to Theorem 1.3 in the form of

$$\frac{1}{n} \times \left(\sum_{k \le n} C_{\Omega}(k)^2 - \left(\sum_{k \le n} C_{\Omega}(k) \right)^2 \right) = \frac{2}{n} \times \sum_{1 \le j < k \le n} C_{\Omega}(j) C_{\Omega}(k),$$
$$= B_0^2 n(\log \log n) (1 + o(1)), \text{ as } n \to \infty.$$

6 Proofs of the new exact formulas for M(x)

6.1 Formulas relating M(x) to the summatory function G(x)

Definition 6.1. The summatory function of q(n) is defined for all $x \ge 1$ by the partial sums

$$G(x) := \sum_{n \le x} g(n) = \sum_{n \le x} \lambda(n)|g(n)|. \tag{6.1a}$$

Let the unsigned partial sums be defined for $x \ge 1$ by

$$|G|(x) := \sum_{n \le x} |g(n)|.$$
 (6.1b)

A key consequence of Theorem D.2 (proved in the appendix) in the special cases where $h(n) := \mu(n)$ for all $n \ge 1$ is stated as the next corollary.

(a) Numerically bounded envelopes for the local extremum of M(x) expressed in terms of the partial sums of the unsigned inverse function.

(b) A comparison of M(x) and a scaled form of G(x) where the absolute constant $C_2 := \zeta(2)$. A shift in x of the latter plot is compared to the values of M(x). The function $Q(x) := \sum_{n \le x} \mu^2(n)$ counts the number of squarefree integers $n \le x$ for any $x \ge 1$.

Figure 6.1: Discrete plots displaying comparisons of the growth of M(x) to the new auxiliary partial sums for $x \le 5000$.

Corollary 6.2 (Applications of Möbius inversion). Suppose that r is an arithmetic function such that $r(1) \neq 0$. Let the summatory function $\widetilde{R}(x) := \sum_{n \leq x} (r * \mu)(n)$. The Mertens function is expressed by the

(a) Comparisons of a logarithmically scaled form of G(x) and envelopes that bound its local extremum given by sign-weighted components that contribute to these partial sums. Namely, we define $G(x) := G_+(x) - G_-(x)$ where the functions $G_+(x) > 0$ and $G_-(x) > 0$ for all $x \ge 1$ so that these signed component functions denote the unsigned contributions of only those summands |g(n)| over $n \le x$ such that $\lambda(n) = \pm 1$, respectively.

(b) Comparisions of bounded envelopes for the local extremum of the logarithmically scaled values of G(x) to the absolute values of the partial sums of the scaled unsigned inverse function.

Figure 6.2: Discrete plots displaying comparisons of the scaled growth of G(x) for $x \le 4500$.

partial sums

$$M(x) = \sum_{k=1}^{x} \left(\sum_{j=\lfloor \frac{x}{k+1} \rfloor + 1}^{\lfloor \frac{x}{k} \rfloor} r^{-1}(j) \right) \widetilde{R}(k), \text{ for } x \ge 1.$$

Based on the convolution identity in (4.1), we prove the formulas in Theorem 1.1 as special cases of Corollary 6.2.

Proof of (1.5a) and (1.5b) in Theorem 1.1. By applying Theorem D.2 to equation (4.1) we have that

$$M(x) = \sum_{k=1}^{x} g(k) \left(\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) + 1 \right)$$

$$= G(x) + \sum_{k=1}^{\frac{x}{2}} g(k) \pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right)$$

$$= G(x) + G\left(\left\lfloor \frac{x}{2} \right\rfloor \right) + \sum_{k=1}^{\frac{x}{2} - 1} G(k) \left(\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) - \pi \left(\left\lfloor \frac{x}{k + 1} \right\rfloor \right) \right).$$

The upper bound on the sum is truncated to $k \in [1, \frac{x}{2}]$ in the second equation above because $\pi(1) = 0$. The third formula above follows directly by summation by parts.

Proof of (1.5c) in Theorem 1.1. Lemma 4.3 shows that

$$G(x) = \sum_{d \le x} \lambda(d) C_{\Omega}(d) M\left(\left\lfloor \frac{x}{d} \right\rfloor\right).$$

The identity in (4.1) implies

$$\lambda(d)C_{\Omega}(d) = (g * 1)(d) = (\chi_{\mathbb{P}} + \varepsilon)^{-1}(d).$$

We recover the stated result by classical inversion of summatory functions.

Bounds on the partial sums over the unsigned inverse function in (6.1b) suggests local information about G(x) through its connection to |G|(x). The plots shown in Figure 6.1 and Figure 6.2 compare the values of M(x) and G(x) with scaled forms of related auxilliary partial sums. A natural question to ask in light of the numerical intuition from Figure 6.1(a) is whether the following is true:

$$\limsup_{x \to \infty} |G|(x)x^{-\frac{3}{2}} > 0.$$

A partial resolution to the question is given by the DGF of the unsigned inverse function |g(n)| from Remark 4.5 which suggests that there are infinitely many positive integers x for which $|G|(x) \ge x^{1.39943}$ [12, cf. Thm. 1.3; §1.2].

6.2 Example: Expected local cancellation of G(x) in the new formulas for M(x) along an infinite primorial subsequence

Definition 6.3. Suppose that p_n denotes the n^{th} prime for $n \ge 1$ [17, $\underline{A000040}$]. Let $\mathcal{P}_{\#}$ denote the set of primorial integers given by [17, $\underline{A002110}$]

$$\mathcal{P}_{\#} = \{n\#\}_{n\geq 1} = \left\{\prod_{k=1}^{n} p_k : n \geq 1\right\}.$$

Proposition 6.4. As $m \to \infty$ each of the following holds:

$$-G((4m+1)\#) \times (4m+1)!,\tag{A}$$

$$G\left(\frac{(4m+1)\#}{p_k}\right) \times (4m)!, \text{ for any } 1 \le k \le 4m+1.$$
(B)

Proof. We have by (4.6b) that for all squarefree integers $n \ge 1$

$$|g(n)| = \sum_{j=0}^{\omega(n)} {\omega(n) \choose j} \times j! = (\omega(n))! \times \sum_{j=0}^{\omega(n)} \frac{1}{j!}$$

$$= (\omega(n))! \times \left(e + O\left(\frac{1}{(\omega(n) + 1)!}\right)\right).$$

Let m be a large positive integer. We obtain main terms of the form

$$\sum_{\substack{n \le (4m+1)\#\\ \omega(n) = \Omega(n)}} \lambda(n)|g(n)| = \sum_{0 \le k \le 4m+1} {4m+1 \choose k} (-1)^k k! \left(e + O\left(\frac{1}{(k+1)!}\right) \right)$$

$$= -(4m+1)! + O\left(\frac{1}{4m+1}\right).$$
(6.2)

The formula for $C_{\Omega}(n)$ stated in (1.3) then implies the result in (A). Namely, this follows since the contributions from the summands of the inner summation on the right-hand-side of (6.2) off of the squarefree integers are at most a bounded multiple of $(-1)^k k!$ when $\Omega(n) = k$. We can similarly derive that for any $1 \le k \le 4m + 1$

$$G\left(\frac{(4m+1)\#}{p_k}\right) \asymp \sum_{0 \le k \le 4m} {4m \choose k} (-1)^k k! \left(e + O\left(\frac{1}{(k+1)!}\right)\right) = (4m)! + O\left(\frac{1}{4m+1}\right).$$

Remark 6.5. We expect that there is usually (almost always) a large amount cancellation between the successive values of the summatory function in (1.5c). Proposition 6.4 demonstrates the phenomenon well along the infinite subsequence of the primorials $\{(4m+1)\#\}_{m\geq 1}$. The Riemann hypothesis (RH) is equivalent to showing that

$$M(x) = O\left(x^{\frac{1}{2} + \epsilon}\right)$$
, for all $0 < \epsilon < \frac{1}{2}$. (6.3)

The RH requires that the sums of the leading constants with opposing signs on the asymptotic bounds for the functions from the lemma match. In particular, we have that [4, 5]

$$n# \sim e^{\vartheta(p_n)} \approx n^n (\log n)^n e^{-n(1+o(1))}$$
, as $n \to \infty$.

The observation on the necessary cancellation in (1.5c) then follows from the fact that if we obtain a contrary result

$$\frac{M((4m+1)\#)}{\sqrt{(4m+1)\#}} \gg [(4m+1)\#]^{\delta_0}, \text{ as } m \to \infty,$$

for some fixed $\delta_0 > 0$ (in violation to (6.3) above). Assuming the RH, the error terms on the sums we obtained in the proof of Proposition 6.4 actually show that the values of the Mertens function are bounded along this subsequence:

$$M((4m+1)\#) = O(1)$$
, as $m \to \infty$.

7 Conclusions

We have identified a sequence, $\{g(n)\}_{n\geq 1}$, that is the Dirichlet inverse of the shifted strongly additive function $\omega(n)$. We showed that there is a natural (factorization symmetric) combinatorial interpretation to the distribution of distinct values of |g(n)| for $n \leq x$. The sign of g(n) is given by $\lambda(n)$ for all $n \geq 1$. This leads to a new exact relations of the summatory function G(x) to M(x) and the classical partial sums L(x). In the process of studying the unsigned sequences, we have formalized a probabilistic perspective from which to express our intuition about features of the distribution of G(x) via the properties of its $\lambda(n)$ -sign-weighted summands. The new results proved within this article are significant in providing a new window through which we can view bounding M(x) through asymptotics of the auxiliary unsigned sequences and their partial sums. The computational data generated in Table E of the appendix section is numerically suggestive that the distribution of G(x) is easier to work with than a direct treatment of M(x) or L(x).

We expect that the methods behind the proofs we provide with respect to the Mertens function case can be generalized to identify associated strongly additive functions with the same role of $\omega(n)$ in this article. In particular, we expect that such extensions exist in connection with the signed Dirichlet inverse of any arithmetic f > 0 and its partial sums. The link between factorization symmetry and resulting sequences to express the partial sums of signed Dirichlet inverse functions are also computationally useful in more efficiently computing all of the first $x \ge 3$ values of the partial sums of f.

Acknowledgments

We thank the following mathematicians for offering significant discussion, feedback and correspondence over the many drafts of this manuscript: Gergő Nemes, Jeffrey Lagarias, Robert Vaughan, Steven J. Miller, Paul Pollack and Bruce Reznick. The work on the article was supported in part by funding made available within the School of Mathematics at the Georgia Institute of Technology in 2020 and 2021. Without this combined support the article would not have been possible.

References

- [1] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1976.
- [2] P. T. Bateman and H. G. Diamond. Analytic Number Theory. World Scientific Publishing, 2004.
- [3] P. Billingsley. On the central limit theorem for the prime divisor function. *Amer. Math. Monthly*, 76(2):132–139, 1969.
- [4] P. Dusart. The k^{th} prime is greater than $k(\log k + \log \log k 1)$ for $k \ge 2$. Math. Comp., 68(225):411-415, 1999.
- [5] P. Dusart. Estimates of some functions over primes without R.H, 2010.
- [6] P. Erdős and M. Kac. The Gaussian errors in the theory of additive arithmetic functions. *American Journal of Mathematics*, 62(1):738–742, 1940.
- [7] C. E. Fröberg. On the prime zeta function. BIT Numerical Mathematics, 8:87–202, 1968.
- [8] G. H. Hardy and E. M. Wright, editors. An Introduction to the Theory of Numbers. Oxford University Press, 2008 (Sixth Edition).
- [9] P. Humphries. The distribution of weighted sums of the Liouville function and Pólya's conjecture. J. Number Theory, 133:545–582, 2013.
- [10] H. Hwang and S. Janson. A central limit theorem for random ordered factorizations of integers. *Electron. J. Probab.*, 16(12):347–361, 2011.
- [11] R. S. Lehman. On Liouville's function. Math. Comput., 14:311–320, 1960.
- [12] H. L. Montgomery and R. C. Vaughan. *Multiplicative Number Theory: I. Classical Theory*. Cambridge, 2006.
- [13] G. Nemes. The resurgence properties of the incomplete gamma function II. Stud. Appl. Math., 135(1):86–116, 2015.
- [14] G. Nemes. The resurgence properties of the incomplete gamma function I. Anal. Appl. (Singap.), 14(5):631–677, 2016.

- [15] G. Nemes and A. B. Olde Daalhuis. Asymptotic expansions for the incomplete gamma function in the transition regions. *Math. Comp.*, 88(318):1805–1827, 2019.
- [16] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. *NIST Handbook of Mathematical Functions*. Cambridge University Press, 2010.
- [17] N. J. A. Sloane. The Online Encyclopedia of Integer Sequences, 2021. http://oeis.org.
- [18] G. Tenenbaum. Introduction to Analytic and Probabilistic Number Theory. American Mathematical Society, third edition, 2015.
- [19] J. van de Lune and R. E. Dressler. Some theorems concerning the number theoretic function $\omega(n)$. J. Reine Angew. Math., 1975(277):117–119, 1975.

A Glossary of notation and conventions

Symbols	Definition
≫,≪,≍,∼	For functions A, B , the notation $A \ll B$ implies that $A = O(B)$. Similarly, for $B \ge 0$ the notation $A \gg B$ implies that $B = O(A)$. When we have that $A, B \ge 0$, $A \ll B$ and $B \ll A$, we write $A \times B$. Two arithmetic functions $A(x), B(x)$ satisfy the relation $A \sim B$ if $\lim_{x \to \infty} \frac{A(x)}{B(x)} = 1$.
$\chi_{\mathbb{P}}(n), P(s)$	The indicator function of the primes equals one if and only if $n \in \mathbb{Z}^+$ is prime and is defined to be zero-valued otherwise. For any $s \in \mathbb{C}$ such that $\text{Re}(s) > 1$, we define the prime zeta function to be the Dirichlet generating function (DGF) defined by $P(s) = \sum_{n \geq 1} \frac{\chi_{\mathbb{P}}(n)}{n^s}$. The function $P(s)$ has an
	analytic continuation to the half-plane $\operatorname{Re}(s) > 0$ with the exception of $s = 1$ through the formula $P(s) = \sum_{k \geq 1} \frac{\mu(k)}{k} \log \zeta(ks)$. The DGF $P(s)$ poles
	at the reciprocal of each positive integer and a natural boundary at the line $Re(s) = 0$.
$C_k(n), C_\Omega(n)$	The first sequence is defined recursively for integers $n \ge 1$ and $k \ge 0$ as follows: $C_k(n) \coloneqq \begin{cases} \delta_{n,1}, & \text{if } k = 0; \\ \sum\limits_{d n} \omega(d) C_{k-1}\left(\frac{n}{d}\right), & \text{if } k \ge 1. \end{cases}$
	It represents the multiple (k-fold) convolution of the function $\omega(n)$ with itself. The function $C_{\Omega}(n) := C_{\Omega(n)}(n)$ has the DGF $(1 - P(s))^{-1}$ for $\text{Re}(s) > 1$.
$[q^n]F(q)$	The coefficient of q^n in the power series expansion of $F(q)$ about zero when $F(q)$ is treated as the ordinary generating function (OGF) of a sequence, $\{f_n\}_{n\geq 0}$. Namely, for integers $n\geq 0$ we define $[q^n]F(q)=f_n$ whenever $F(q):=\sum_{n\geq 0}f_nq^n$.
arepsilon(n)	The multiplicative identity with respect to Dirichlet convolution, $\varepsilon(n) := \delta_{n,1}$, defined such that for any arithmetic function f we have that $f * \varepsilon = \varepsilon * f = f$ where the operation * denotes Dirichlet convolution.
f * g	The Dirichlet convolution of any two arithmetic functions f and g at n is defined to be the divisor sum $(f * g)(n) := \sum_{d n} f(d)g\left(\frac{n}{d}\right)$ for $n \ge 1$.

Symbols	Definition
$f^{-1}(n)$	The Dirichlet inverse f^{-1} of an arithmetic function f exists if and only if $f(1) \neq 0$. The Dirichlet inverse of any f such that $f(1) \neq 0$ is defined recursively by $f^{-1}(n) = -\frac{1}{f(1)} \times \sum_{\substack{d \mid n \\ d > 1}} f(d) f^{-1}\left(\frac{n}{d}\right)$ for $n \geq 2$ with $f^{-1}(1) = 0$
	$f(1)^{-1}$. When it exists, this inverse function is unique and satisfies $f^{-1} * f = f * f^{-1} = \varepsilon$.
$\Gamma(a,z)$	The incomplete gamma function is defined as $\Gamma(a,z) := \int_z^\infty t^{a-1} e^{-t} dt$ by continuation for $a \in \mathbb{R}$ and $ \arg(z) < \pi$. type
$\mathcal{G}(z), \widetilde{\mathcal{G}}(z); \widehat{F}(s,z), \widehat{\mathcal{G}}(z)$	The functions $\mathcal{G}(z)$ and $\widetilde{\mathcal{G}}(z)$ are defined for $0 \le z \le R < 2$ on page 23 of Appendix B. The related constructions used to motivate the definitions of $\widehat{F}(s,z)$ and $\widehat{\mathcal{G}}(z)$ are defined by the infinite products given on pages 5 and 7 of Section 3.1, respectively.
g(n), G(x), G (x)	The Dirichlet inverse function, $g(n) = (\omega + 1)^{-1}(n)$, has the summatory function $G(x) := \sum_{n \le x} g(n)$ for $x \ge 1$. We define the partial sums of the
	unsigned inverse function to be $ G (x) := \sum_{n \le x} g(n) $ for $x \ge 1$.
$[n=k]_{\delta},[{\tt cond}]_{\delta}$	The symbol $[n = k]_{\delta}$ is a synonym for $\delta_{n,k}$ which is one if and only if $n = k$, and is zero otherwise. For Boolean-valued conditions, cond, the symbol $[\text{cond}]_{\delta}$ evaluates to one precisely when cond is true or to zero otherwise.
$\lambda(n), L(x)$	The Liouville lambda function is the completely multiplicative function defined by $\lambda(n) := (-1)^{\Omega(n)}$. Its summatory function is defined by the partial sums $L(x) := \sum_{n \le x} \lambda(n)$ for $x \ge 1$.
$\mu(n), M(x)$	The Möbius function defined such that $\mu^2(n)$ is the indicator function of the squarefree integers $n \ge 1$ where $\mu(n) = (-1)^{\omega(n)}$ whenever n is squarefree. The Mertens function is the summatory function defined for all integers $x \ge 1$ by the partial sums $M(x) := \sum_{n \le x} \mu(n)$.
$\omega(n),\!\Omega(n)$	We define the strongly additive function $\omega(n) := \sum_{i=1}^{n} 1$ and the completely
	additive function $\Omega(n) := \sum_{p^{\alpha} n} \alpha$. This means that if the prime factorization
	of any $n \ge 2$ is given by $n := p_1^{\alpha_1} \times \cdots \times p_r^{\alpha_r}$ with $p_i \ne p_j$ for all $i \ne j$, then $\omega(n) = r$ and $\Omega(n) = \alpha_1 + \cdots + \alpha_r$. We set $\omega(1) = \Omega(1) = 0$ by convention.
$\pi_k(x), \widehat{\pi}_k(x)$	For integers $k \geq 1$, the function $\pi_k(x)$ denotes the number of $2 \leq n \leq x$ with exactly k distinct prime factors: $\pi_k(x) := \#\{2 \leq n \leq x : \omega(n) = k\}$. Similarly, the function $\widehat{\pi}_k(x) := \#\{2 \leq n \leq x : \Omega(n) = k\}$ for $x \geq 2$ and fixed $k \geq 1$.
Q(x)	For $x \ge 1$, we define $Q(x)$ to be the summatory function indicating the number of squarefree integers $n \le x$.
W(x)	For $x, y \in [0, +\infty)$, we write that $x = W(y)$ if and only if $xe^x = y$. This function denotes the principal branch of the multi-valued Lambert W function taken over the non-negative reals.
$\zeta(s)$	The Riemann zeta function is defined by $\zeta(s) := \sum_{n \ge 1} n^{-s}$ when $\text{Re}(s) > 1$,
	and by analytic continuation to any $s \in \mathbb{C}$ with the exception of a simple

pole at s=1 of residue one.

B The distributions of $\omega(n)$ and $\Omega(n)$

The next theorems reproduced from [12, §7.4] bound the frequency of the number of $\omega(n)$ and $\Omega(n)$ over $n \le x$ such that $\omega(n)$, $\Omega(n) < \log \log x$ and $\omega(n)$, $\Omega(n) > \log \log x$. Since $\frac{1}{n} \times \sum_{k \le n} \omega(k) = \log \log n + B_1 + o(1)$ and $\frac{1}{n} \times \sum_{k \le n} \Omega(k) = \log \log n + B_2 + o(1)$ for $B_1 \approx 0.261497$ and $B_2 \approx 1.03465$ absolute constants in each case [8, §22.10], there is a distinctive tendency of these strongly additive arithmetic functions towards their respective average orders (cf. [6, 3] [12, §7.4]).

Theorem B.1. For $x \ge 2$ and r > 0, let

$$A(x,r) := \# \{ n \le x : \Omega(n) \le r \log \log x \},$$

 $B(x,r) := \# \{ n \le x : \Omega(n) \ge r \log \log x \}.$

If $0 < r \le 1$, then

$$A(x,r) \ll x(\log x)^{r-1-r\log r}, \ as \ x \to \infty.$$

If $1 \le r \le R < 2$, then

$$B(x,r) \ll_R x(\log x)^{r-1-r\log r}$$
, as $x \to \infty$.

Theorem B.2. For integers $k \ge 1$ and $x \ge 2$

$$\widehat{\pi}_k(x) \coloneqq \#\{2 \le n \le x : \Omega(n) = k\}.$$

For 0 < R < 2, we have uniformly for $1 \le k \le R \log \log x$

$$\widehat{\pi}_k(x) = \frac{x}{\log x} \times \mathcal{G}\left(\frac{k-1}{\log\log x}\right) \frac{(\log\log x)^{k-1}}{(k-1)!} \left(1 + O_R\left(\frac{k}{(\log\log x)^2}\right)\right),$$

where

$$\mathcal{G}(z) \coloneqq \frac{1}{\Gamma(1+z)} \times \prod_{p} \left(1 - \frac{z}{p}\right)^{-1} \left(1 - \frac{1}{p}\right)^{z}, \text{ for } 0 \le |z| < R.$$

Remark B.3. We can extend the work in [12] on the distribution of $\Omega(n)$ to obtain corresponding analogous results for the distribution of $\omega(n)$. For 0 < R < 2 and as $x \to \infty$

$$\pi_k(x) = \frac{x}{\log x} \times \widetilde{\mathcal{G}}\left(\frac{k-1}{\log\log x}\right) \frac{(\log\log x)^{k-1}}{(k-1)!} \left(1 + O_R\left(\frac{k}{(\log\log x)^2}\right)\right),\tag{B.1}$$

uniformly for $1 \le k \le R \log \log x$. The factors of the function $\widetilde{\mathcal{G}}(z)$ are defined by $\widetilde{\mathcal{G}}(z) := \widetilde{F}(1,z) \times \Gamma(1+z)^{-1}$ where

$$\widetilde{F}(s,z) := \prod_{p} \left(1 + \frac{z}{p^s - 1} \right) \left(1 - \frac{1}{p^s} \right)^z$$
, for $\text{Re}(s) > \frac{1}{2}$ and $|z| \le R < 2$.

Let the functions

$$C(x,r) := \#\{n \le x : \omega(n) \le r \log \log x\},\$$

 $D(x,r) := \#\{n \le x : \omega(n) \ge r \log \log x\}.$

The following upper bounds hold as $x \to \infty$:

$$C(x,r) \ll x(\log x)^{r-1-r\log r}$$
, uniformly for $0 < r \le 1$,
 $D(x,r) \ll_R x(\log x)^{r-1-r\log r}$, uniformly for $1 \le r \le R < 2$.

C Partial sums expressed in terms of the incomplete gamma function

We appreciate the correspondence with Gergő Nemes from the Alfréd Rényi Institute of Mathematics and his careful notes on the limiting asymptotics for the sums identified in this section. We have adapted the communication of his proofs to establish the next few lemmas based on [13, 14, 15].

Facts C.1 (The incomplete gamma function). The (upper) incomplete gamma function is defined by [16, §8.4]

 $\Gamma(a,z) = \int_{z}^{\infty} t^{a-1} e^{-t} dt$, for $a \in \mathbb{R}$ and $|\arg z| < \pi$.

The function $\Gamma(a, z)$ can be continued to an analytic function of z on the universal covering of $\mathbb{C}\setminus\{0\}$. For $a \in \mathbb{Z}^+$, the function $\Gamma(a, z)$ is an entire function of z. The following properties of $\Gamma(a, z)$ hold [16, §8.4; §8.11(i)]:

$$\Gamma(a,z) = (a-1)!e^{-z} \times \sum_{k=0}^{a-1} \frac{z^k}{k!}, \text{ for } a \in \mathbb{Z}^+ \text{ and } z \in \mathbb{C},$$
(C.1a)

$$\Gamma(a,z) \sim z^{a-1}e^{-z}$$
, for fixed $a \in \mathbb{C}$ and $z > 0$ as $z \to +\infty$. (C.1b)

For z > 0, as $z \to +\infty$ we have that [13]

$$\Gamma(z,z) = \sqrt{\frac{\pi}{2}} z^{z-\frac{1}{2}} e^{-z} + O(z^{z-1} e^{-z}),$$
 (C.1c)

If $z, a \to \infty$ with $z = \lambda a$ for some $\lambda > 1$ such that $(\lambda - 1)^{-1} = o(\sqrt{|a|})$, then [13]

$$\Gamma(a,z) \sim z^a e^{-z} \times \sum_{n>0} \frac{(-a)^n b_n(\lambda)}{(z-a)^{2n+1}}.$$
 (C.1d)

The sequence $b_n(\lambda)$ satisfies $b_0(\lambda) = 1$ and the recurrence relation

$$b_n(\lambda) = \lambda(1-\lambda)b'_{n-1}(\lambda) + \lambda(2n-1)b_{n-1}(\lambda), \text{ for } n \ge 1.$$

Proposition C.2. Let a, z, λ be positive real parameters such that $z = \lambda a$. If $\lambda \in (0,1)$, then as $z \to \infty$

$$\Gamma(a,z) = \Gamma(a) + O_{\lambda} \left(z^{a-1}e^{-z}\right).$$

If $\lambda > 1$, then as $z \to \infty$

$$\Gamma(a,z) = \frac{z^{a-1}e^{-z}}{1-\lambda^{-1}} + O_{\lambda}(z^{a-2}e^{-z}).$$

If $\lambda > 0.567142 > W(1)$, then as $z \to \infty$

$$\Gamma(a, ze^{\pm \pi i}) = -e^{\pm \pi i a} \frac{z^{a-1} e^z}{1 + \lambda^{-1}} + O_{\lambda} (z^{a-2} e^z).$$

The first two estimates are only useful when λ is bounded away from the transition point at one. We cannot write the last expansion above as $\Gamma(a, -z)$ directly unless $a \in \mathbb{Z}^+$ as the incomplete gamma function has a branch point at the origin with respect to its second variable. This function becomes a single-valued analytic function of its second input by continuation on the universal covering of $\mathbb{C} \setminus \{0\}$.

Proof. The first asymptotic estimate follows directly from the following asymptotic series expansion that holds as $z \to +\infty$ [15, Eq. (2.1)]:

$$\Gamma(a,z) \sim \Gamma(a) + z^a e^{-z} \times \sum_{k>0} \frac{(-a)^k b_k(\lambda)}{(z-a)^{2k+1}}.$$

Using the notation from (C.1d) and [14]

$$\Gamma(a,z) = \frac{z^{a-1}e^{-z}}{1-\lambda^{-1}} + z^a e^{-z} R_1(a,\lambda).$$

From the bounds in $[14, \S 3.1]$, we have

$$|z^a e^{-z} R_1(a,\lambda)| \le z^a e^{-z} \times \frac{a \cdot b_1(\lambda)}{(z-a)^3} = \frac{z^{a-2} e^{-z}}{(1-\lambda^{-1})^3}$$

The main and error terms in the previous equation can also be seen by applying the asymptotic series in (C.1d) directly.

The proof of the third equation above follows from the asymptotics [13, Eq. (1.1)]

$$\Gamma(-a,z) \sim z^{-a} e^{-z} \times \sum_{n \ge 0} \frac{a^n b_n(-\lambda)}{(z+a)^{2n+1}},$$

by setting $(a, z) \mapsto (ae^{\pm\pi i}, ze^{\pm\pi i})$ so that $\lambda = \frac{z}{a} > W(1)$. The restriction on the range of λ over which the third formula holds is made to ensure that the formula from the reference is valid at negative real a.

Lemma C.3. As $x \to +\infty$

$$\frac{x}{\log x} \times \left| \sum_{1 \le k \le |\log \log x|} \frac{(-1)^k (\log \log x)^{k-1}}{(k-1)!} \right| = \frac{x}{2\sqrt{2\pi \log \log x}} + O\left(\frac{x}{(\log \log x)^{\frac{3}{2}}}\right).$$

Proof. We have for $n \ge 1$ and any t > 0 by (C.1a) that

$$\sum_{1 \le k \le n} \frac{(-1)^k t^{k-1}}{(k-1)!} = -e^{-t} \times \frac{\Gamma(n, -t)}{(n-1)!}.$$

Suppose that $t = n + \xi$ with $\xi = O(1)$. By the third formula in Proposition C.2 with the parameters $(a, z, \lambda) \mapsto (n, t, 1 + \frac{\xi}{n})$, we deduce that as $n, t \to +\infty$.

$$\Gamma(n, -t) = (-1)^{n+1} \times \frac{t^n e^t}{t+n} + O\left(\frac{nt^n e^t}{(t+n)^3}\right) = (-1)^{n+1} \times \frac{t^n e^t}{2n} + O\left(\frac{t^{n-1} e^t}{n}\right). \tag{C.2}$$

Accordingly, we see that

$$\sum_{1 \le k \le n} \frac{(-1)^k t^{k-1}}{(k-1)!} = (-1)^n \times \frac{t^n}{2n!} + O\left(\frac{t^{n-1}}{n!}\right).$$

By the variant of Stirling's formula in [16, cf. Eq. (5.11.8)], we have

$$n! = \Gamma(1 + t - \xi) = \sqrt{2\pi}t^{t - \xi + \frac{1}{2}}e^{-t}\left(1 + O\left(t^{-1}\right)\right) = \sqrt{2\pi}t^{n + \frac{1}{2}}e^{-t}\left(1 + O\left(t^{-1}\right)\right).$$

Hence, as $n \to +\infty$ with $t := n + \xi$ and $\xi = O(1)$, we obtain that

$$\sum_{k=1}^{n} \frac{(-1)^k t^{k-1}}{(k-1)!} = (-1)^n \times \frac{e^t}{2\sqrt{2\pi t}} + O\left(e^t t^{-\frac{3}{2}}\right).$$

The conclusion follows by taking $n := |\log \log x|$ and $t := \log \log x$.

Definition C.4. For $x \ge 1$, let the summatory function (cf. [19])

$$L_{\omega}(x) \coloneqq \sum_{n \le x} (-1)^{\omega(n)}.$$

Lemma C.5. As $x \to \infty$, there is an absolute constant $A_0 > 0$ such that

$$L_{\omega}(x) = \frac{(-1)^{\lfloor \log \log x \rfloor} x}{A_0 \sqrt{2\pi \log \log x}} + O\left(\frac{x}{\log \log x}\right).$$

Proof. An adaptation of the proof of Lemma C.3 provides that for any $a \in (1, 1.76321) \subset (1, W(1)^{-1})$ the next partial sums satisfy

$$\widehat{S}_{a}(x) := \frac{x}{\log x} \times \left| \sum_{k=1}^{\lfloor a \log \log x \rfloor} \frac{(-1)^{k} (\log \log x)^{k-1}}{(k-1)!} \right|$$

$$= \frac{\sqrt{ax}}{\sqrt{2\pi} (a+1) a^{\{a \log \log x\}}} \times \frac{(\log x)^{a-1-a \log a}}{\sqrt{\log \log x}} \left(1 + O\left(\frac{1}{\log \log x}\right) \right). \tag{C.3}$$

Here, we take $\{x\} = x - \lfloor x \rfloor \in [0,1)$ to be the fractional part of x. Suppose that we take $a := \frac{3}{2}$ so that $a-1-a\log a \approx -0.108198$. We expand as

$$L_{\omega}(x) = \sum_{k \le \log \log x} 2(-1)^k \pi_k(x) + O\left(\widehat{S}_{\frac{3}{2}}(x) + \#\left\{n \le x : \omega(n) \ge \frac{3}{2} \log \log x\right\}\right).$$

The justification for the above error term including $\widehat{S}_{\frac{3}{2}}(x)$ is that for $0 \le z \le \frac{3}{2}$ we can show that $\widetilde{\mathcal{G}}(z)$ is bounded. We apply the uniform asymptotics for $\pi_k(x)$ that hold as $x \to \infty$ when $1 \le k \le R \log \log x$ for $1 \le R < 2$ from Remark B.3 to evaluate the sums that provide the main term of the expansion in the previous equation. We have that $\widetilde{G}(0) = 1$ and that for any 0 < |z| < 1 the function $\widetilde{G}(z)$ is positive, monotone in z and has an absolutely convergent series expansion in z about zero. For integers $m \ge 1$, we see by induction that

$$\sum_{k \le \log \log x} \frac{(-1)^k (k-1)^m (\log \log x)^{k-1-m}}{(k-1)!} = \sum_{k \le \log \log x} \frac{(-1)^{k+m} (\log \log x)^{k-1}}{(k-1)!} \left(1 + O\left(\frac{1}{\log \log x}\right)\right).$$

We then argue by Lemma C.3 and (C.3) that for all sufficiently large x there is a limiting absolute constant $A_0 > 0$ such that

$$L_{\omega}(x) = \frac{(-1)^{\lfloor \log \log x \rfloor} x}{A_0 \sqrt{2\pi \log \log x}} + O\left(E_{\omega}(x) + \frac{x}{(\log x)^{0.108198} \sqrt{\log \log x}} + \#\left\{n \le x : \omega(x) \ge \frac{3}{2} \log \log x\right\}\right). \quad (C.4)$$

The error term in (C.4) is bounded as follows when $x \to \infty$ using Stirling's formula, (C.1a) and (C.1c):

$$E_{\omega}(x) \ll \frac{x}{\log x} \times \sum_{1 \le k \le \log \log x} \frac{(\log \log x)^{k-2}}{(k-1)!}$$
$$= \frac{x\Gamma(\log \log x, \log \log x)}{\Gamma(\log \log x + 1)} = \frac{x}{2 \log \log x} \left(1 + O\left(\frac{1}{\sqrt{\log \log x}}\right)\right).$$

Finally, by an application of the results in Remark B.3

$$\#\left\{n \le x : \omega(x) \ge \frac{3}{2}\log\log x\right\} \ll \frac{x}{(\log x)^{0.108198}}.$$

D Inversion theorems for partial sums of Dirichlet convolutions

We give a proof of the inversion type results in Theorem D.2 below by matrix methods. Related results on summations of Dirichlet convolutions and their inversion appear in [1, §2.14; §3.10; §3.12; cf. §4.9, p. 95].

Definition D.1. For any $x \ge 1$, let the partial sums of the Dirichlet convolution r * h be defined by

$$S_{r*h}(x) \coloneqq \sum_{n \le x} \sum_{d|n} r(d) h\left(\frac{n}{d}\right).$$

Theorem D.2. Let $r, h : \mathbb{Z}^+ \to \mathbb{C}$ be any arithmetic functions such that $r(1) \neq 0$. Suppose that $R(x) := \sum_{n \leq x} r(n)$ and $H(x) := \sum_{n \leq x} h(n)$ denote the summatory functions of r and h, respectively, and that $R^{-1}(x) := \sum_{n \leq x} r^{-1}(n)$ denotes the summatory function of the Dirichlet inverse of r for any $x \geq 1$. We have that the following exact expressions hold for all integers $x \geq 1$:

$$S_{r*h}(x) = \sum_{d=1}^{x} r(d)H\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$
$$S_{r*h}(x) = \sum_{k=1}^{x} H(k)\left(R\left(\left\lfloor \frac{x}{k} \right\rfloor\right) - R\left(\left\lfloor \frac{x}{k+1} \right\rfloor\right)\right).$$

Moreover, for any $x \ge 1$ we have

$$H(x) = \sum_{j=1}^{x} S_{r*h}(j) \left(R^{-1} \left(\left\lfloor \frac{x}{j} \right\rfloor \right) - R^{-1} \left(\left\lfloor \frac{x}{j+1} \right\rfloor \right) \right)$$
$$= \sum_{k=1}^{x} r^{-1}(k) S_{r*h}(x).$$

Proof of Theorem D.2. Let h, r be arithmetic functions such that $r(1) \neq 0$. The following formulas hold for all $x \geq 1$:

$$S_{r*h}(x) := \sum_{n=1}^{x} \sum_{d|n} r(n)h\left(\frac{n}{d}\right) = \sum_{d=1}^{x} r(d)H\left(\left\lfloor \frac{x}{d}\right\rfloor\right)$$
$$= \sum_{i=1}^{x} \left(R\left(\left\lfloor \frac{x}{i}\right\rfloor\right) - R\left(\left\lfloor \frac{x}{i+1}\right\rfloor\right)\right)H(i). \tag{D.1}$$

The first formula on the right-hand-side above is well known from the references. The second formula is justified directly using summation by parts as [16, §2.10(ii)]

$$S_{r*h}(x) = \sum_{d=1}^{x} h(d) R\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$
$$= \sum_{i \le x} \left(\sum_{j \le i} h(j)\right) \times \left(R\left(\left\lfloor \frac{x}{i} \right\rfloor\right) - R\left(\left\lfloor \frac{x}{i+1} \right\rfloor\right)\right).$$

We form the invertible matrix of coefficients, denoted by \hat{R} below, associated with the linear system defining H(j) for all $1 \le j \le x$ in (D.1) by setting

$$r_{x,j} \coloneqq R\left(\left\lfloor \frac{x}{j} \right\rfloor\right) - R\left(\left\lfloor \frac{x}{j+1} \right\rfloor\right) \equiv R_{x,j} - R_{x,j+1},$$

with

$$R_{x,j} := R\left(\left\lfloor \frac{x}{j} \right\rfloor\right), \text{ for } 1 \le j \le x.$$

Since $r_{x,x} = R(1) = r(1) \neq 0$ for all $x \geq 1$ and $r_{x,j} = 0$ for all j > x, the matrix we have defined in this problem is lower triangular with a non-zero constant on its diagonals, and so is invertible. If we let $\hat{R} := (R_{x,j})$, then the next matrix is expressed by applying an invertible shift operation as

$$(r_{x,j}) = \hat{R}(I - U^T).$$

The square matrix U of sufficiently large finite dimensions $N \times N$ for $N \geq x$ has $(i,j)^{th}$ entries for all $1 \leq i,j \leq N$ that are defined by $(U)_{i,j} = \delta_{i+1,j}$ so that

$$\left[\left(I-U^T\right)^{-1}\right]_{i,j}=\left[j\leq i\right]_{\delta}.$$

We observe that

$$\left\lfloor \frac{x}{j} \right\rfloor - \left\lfloor \frac{x-1}{j} \right\rfloor = \begin{cases} 1, & \text{if } j | x; \\ 0, & \text{otherwise.} \end{cases}$$

The previous equation implies that

$$R\left(\left\lfloor \frac{x}{j}\right\rfloor\right) - R\left(\left\lfloor \frac{x-1}{j}\right\rfloor\right) = \begin{cases} r\left(\frac{x}{j}\right), & \text{if } j|x; \\ 0, & \text{otherwise.} \end{cases}$$
(D.2)

We use the property in (D.2) to shift the matrix \hat{R} , and then invert the result to obtain a matrix involving the Dirichlet inverse of r as follows:

$$\left(\left(I - U^T\right)\hat{R}\right)^{-1} = \left(r\left(\frac{x}{j}\right)[j|x]_{\delta}\right)^{-1} = \left(r^{-1}\left(\frac{x}{j}\right)[j|x]_{\delta}\right).$$

Our target matrix in the inversion problem is defined by

$$(r_{x,j}) = (I - U^T) \left(r \left(\frac{x}{j} \right) [j|x]_{\delta} \right) (I - U^T)^{-1}.$$

We can express its inverse by a similarity transformation conjugated by shift operators in the form of

$$(r_{x,j})^{-1} = \left(I - U^T\right)^{-1} \left(r^{-1} \left(\frac{x}{j}\right) [j|x]_{\delta}\right) \left(I - U^T\right)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} r^{-1}(k)\right) \left(I - U^T\right)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} r^{-1}(k) - \sum_{k=1}^{\left\lfloor \frac{x}{j+1} \right\rfloor} r^{-1}(k)\right).$$

The summatory function H(x) is given exactly for any integers $x \ge 1$ by a vector product with the inverse matrix from the previous equation in the form of

$$H(x) = \sum_{k=1}^{x} \left(\sum_{j=\left\lfloor \frac{x}{k+1} \right\rfloor + 1}^{\left\lfloor \frac{x}{k} \right\rfloor} r^{-1}(j) \right) \times S_{r*h}(k).$$

We can prove a second inversion formula providing the coefficients of the summatory function $R^{-1}(j)$ for $1 \le j \le x$ from the last equation by adapting our argument to prove (D.1) above. This leads to the alternate identity expressing H(x) given by

$$H(x) = \sum_{k=1}^{x} r^{-1}(k) \times S_{r*h}\left(\left\lfloor \frac{x}{k} \right\rfloor\right).$$

E Tables of computations involving g(n) and its partial sums

n	Primes	Sqfree	PPower	g(n)	$\lambda(n)g(n)$ – $\widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega}(d)}{ g(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	G(n)	$G_{+}(n)$	$G_{-}(n)$	G (n)
1	1^1	Y	N	1	0	1.0000000	1.00000	0	1	1	0	1
2	2^1	Y	Y	-2	0	1.0000000	0.500000	0.500000	-1	1	-2	3
3	3^1	Y	Y	-2	0	1.0000000	0.333333	0.666667	-3	1	-4	5
4	2^2	N	\mathbf{Y}	2	0	1.5000000	0.500000	0.500000	-1	3	-4	7
5	5^1	Y	Y	-2	0	1.0000000	0.400000	0.600000	-3	3	-6	9
6	$2^{1}3^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	2	8	-6	14
7	7^1	Y	Y	-2	0	1.0000000	0.428571	0.571429	0	8	-8	16
8	2^{3}	N	Y	-2	0	2.0000000	0.375000	0.625000	-2	8	-10	18
9	3^2	N	Y	2	0	1.5000000	0.444444	0.555556	0	10	-10	20
10	$2^{1}5^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	5	15	-10	25
11	11^{1}	Y	Y	-2	0	1.0000000	0.454545	0.545455	3	15	-12	27
12	$2^{2}3^{1}$	N	N	-7	2	1.2857143	0.416667	0.583333	-4	15	-19	34
13	13^{1}	Y	Y	-2	0	1.0000000	0.384615	0.615385	-6	15	-21	36
14	$2^{1}7^{1}$	Y	N	5	0	1.0000000	0.428571	0.571429	-1	20	-21	41
15	$3^{1}5^{1}$	Y	N	5	0	1.0000000	0.466667	0.533333	4	25	-21	46
16	2^4	N	Y	2	0	2.5000000	0.500000	0.500000	6	27	-21	48
17	17^{1}	Y	Y	-2	0	1.0000000	0.470588	0.529412	4	27	-23	50
18	$2^{1}3^{2}$	N	N	-7	2	1.2857143	0.444444	0.555556	-3	27	-30	57
19	19^{1}	Y	Y	-2	0	1.0000000	0.421053	0.578947	-5	27	-32	59
20	$2^{2}5^{1}$	N	N	-7	2	1.2857143	0.400000	0.600000	-12	27	-39	66
21	$3^{1}7^{1}$	Y	N	5	0	1.0000000	0.428571	0.571429	-7	32	-39	71
22	$2^{1}11^{1}$	Y	N	5	0	1.0000000	0.454545	0.545455	-2	37	-39	76
23	23^{1}	Y	Y	-2	0	1.0000000	0.434783	0.565217	-4	37	-41	78
24	$2^{3}3^{1}$	N	N	9	4	1.5555556	0.458333	0.541667	5	46	-41	87
25	5^2	N	Y	2	0	1.5000000	0.480000	0.520000	7	48	-41	89
26	$2^{1}13^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	12	53	-41	94
27	3^3	N	Y	-2	0	2.0000000	0.481481	0.518519	10	53	-43	96
28	$2^{2}7^{1}$	N	N	-7	2	1.2857143	0.464286	0.535714	3	53	-50	103
29	29^{1}	Y	Y	-2	0	1.0000000	0.448276	0.551724	1	53	-52	105
30	$2^{1}3^{1}5^{1}$	Y	N	-16	0	1.0000000	0.433333	0.566667	-15	53	-68	121
31	31^{1}	Y	Y	-2	0	1.0000000	0.419355	0.580645	-17	53	-70	123
32	2^{5}	N	Y	-2	0	3.0000000	0.406250	0.593750	-19	53	-72	125
33	$3^{1}11^{1}$	Y	N	5	0	1.0000000	0.424242	0.575758	-14	58	-72	130
34	$2^{1}17^{1}$	Y	N	5	0	1.0000000	0.441176	0.558824	-9	63	-72	135
35	$5^{1}7^{1}$	Y	N	5	0	1.0000000	0.457143	0.542857	-4	68	-72	140
36	$2^{2}3^{2}$	N	N	14	9	1.3571429	0.472222	0.527778	10	82	-72	154
37	37^{1}	Y	Y	-2	0	1.0000000	0.459459	0.540541	8	82	-74	156
38	$2^{1}19^{1}$	Y	N	5	0	1.0000000	0.473684	0.526316	13	87	-74	161
39	$3^{1}13^{1}$	Y	N	5	0	1.0000000	0.487179	0.512821	18	92	-74	166
40	$2^{3}5^{1}$	N	N	9	4	1.5555556	0.500000	0.500000	27	101	-74	175
41	41^1	Y	Y	-2	0	1.0000000	0.487805	0.512195	25	101	-76	177
42	$2^{1}3^{1}7^{1}$	Y	N	-16	0	1.0000000	0.476190	0.523810	9	101	-92	193
43	43^{1}	Y	Y	-2	0	1.0000000	0.465116	0.534884	7	101	-94	195
44	2^211^1	N	N	-7	2	1.2857143	0.454545	0.545455	0	101	-101	202
45	$3^{2}5^{1}$	N	N	-7	2	1.2857143	0.444444	0.555556	-7	101	-108	209
46	$2^{1}23^{1}$	Y	N	5	0	1.0000000	0.456522	0.543478	-2	106	-108	214
47	47^{1}	Y	Y	-2	0	1.0000000	0.446809	0.553191	-4	106	-110	216
48	2^43^1	N	N	-11	6	1.8181818	0.437500	0.562500	-15	106	-121	227

Table E: Computations involving $g(n) \equiv (\omega + 1)^{-1}(n)$ and G(x) for $1 \le n \le 500$.

- ▶ The column labeled Primes provides the prime factorization of each n so that the values of $\omega(n)$ and $\Omega(n)$ are easily extracted. The columns labeled Sqfree and PPower, respectively, list inclusion of n in the sets of squarefree integers and the prime powers.
- The next three columns provide the explicit values of the inverse function g(n) and compare its explicit value with other estimates. We define the function f₁(n) := ∑_{k=0}^{ω(n)} (^{ω(n)}_k) × k!.
 The last columns indicate properties of the summatory function of g(n). The notation for the (approximate)
- The last columns indicate properties of the summatory function of g(n). The notation for the (approximate) densities of the sign weight of g(n) is defined as L_±(x) := 1/n × # {n ≤ x : λ(n) = ±1}. The last three columns then show the sign weighted components to the signed summatory function, G(x) := ∑_{n≤x} g(n), decomposed into its respective positive and negative magnitude sum contributions: G(x) = G₊(x) + G₋(x) where G₊(x) > 0 and G₋(x) < 0 for all x ≥ 1. That is, the component functions G_±(x) displayed in these second to last two columns of the table correspond to the summatory function G(x) with summands that are positive and negative, respectively. The final column of the table provides the partial sums of the absolute value of the unsigned inverse sequence, |G|(n) := ∑_{k≤n} |g(k)|.

n	Primes	Sqfree	PPower	g(n)	$\lambda(n)g(n) - \widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega}(d)}{ g(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	G(n)	$G_{+}(n)$	$G_{-}(n)$	G (n)
49	7^{2}	N	Y	2	0	1.5000000	0.448980	0.551020	-13	108	-121	229
50	$2^{1}5^{2}$	N	N	-7	2	1.2857143	0.440000	0.560000	-20	108	-128	236
51	$3^{1}17^{1}$	Y	N	5	0	1.0000000	0.450980	0.549020	-15	113	-128	241
52	$2^{2}13^{1}$	N	N	-7	2	1.2857143	0.442308	0.557692	-22	113	-135	248
53	53 ¹	Y	Y	-2	0	1.0000000	0.433962	0.566038	-24	113	-137	250
54	$2^{1}3^{3}$	N	N	9	4	1.555556	0.444444	0.555556	-15	122	-137	259
55	$5^{1}11^{1}$ $2^{3}7^{1}$	Y	N	5	0	1.0000000	0.454545	0.545455	-10	127	-137	264
56	$3^{1}19^{1}$	N Y	N N	9 5	4 0	1.5555556	0.464286 0.473684	0.535714 0.526316	-1	136	-137	273
57 58	$2^{1}29^{1}$	Y	N	5	0	1.0000000 1.0000000	0.473084	0.526516 0.517241	9	141 146	-137 -137	$\frac{278}{283}$
59	59 ¹	Y	Y	-2	0	1.0000000	0.474576	0.525424	7	146	-139	285
60	$2^{2}3^{1}5^{1}$	N	N	30	14	1.1666667	0.483333	0.516667	37	176	-139	315
61	61^{1}	Y	Y	-2	0	1.0000000	0.475410	0.524590	35	176	-141	317
62	$2^{1}31^{1}$	Y	N	5	0	1.0000000	0.483871	0.516129	40	181	-141	322
63	3^27^1	N	N	-7	2	1.2857143	0.476190	0.523810	33	181	-148	329
64	2^{6}	N	Y	2	0	3.5000000	0.484375	0.515625	35	183	-148	331
65	$5^{1}13^{1}$	Y	N	5	0	1.0000000	0.492308	0.507692	40	188	-148	336
66	$2^{1}3^{1}11^{1}$	Y	N	-16	0	1.0000000	0.484848	0.515152	24	188	-164	352
67	67^1 2^217^1	Y	Y	-2	0	1.0000000	0.477612	0.522388 0.529412	22	188	-166	354
68 69	$3^{1}23^{1}$	N Y	N N	-7 5	2	1.2857143 1.0000000	0.470588 0.478261	0.529412 0.521739	15 20	188 193	-173 -173	361 366
70	$2^{1}5^{1}7^{1}$	Y	N	-16	0	1.0000000	0.473201	0.521739	4	193	-173 -189	382
71	71 ¹	Y	Y	-10	0	1.0000000	0.464789	0.535211	2	193	-191	384
72	$2^{3}3^{2}$	N	N	-23	18	1.4782609	0.458333	0.541667	-21	193	-214	407
73	73^{1}	Y	Y	-2	0	1.0000000	0.452055	0.547945	-23	193	-216	409
74	$2^{1}37^{1}$	Y	N	5	0	1.0000000	0.459459	0.540541	-18	198	-216	414
75	$3^{1}5^{2}$	N	N	-7	2	1.2857143	0.453333	0.546667	-25	198	-223	421
76	$2^{2}19^{1}$	N	N	-7	2	1.2857143	0.447368	0.552632	-32	198	-230	428
77	$7^{1}11^{1}$	Y	N	5	0	1.0000000	0.454545	0.545455	-27	203	-230	433
78	$2^{1}3^{1}13^{1}$	Y	N	-16	0	1.0000000	0.448718	0.551282	-43	203	-246	449
79	79^{1} $2^{4}5^{1}$	Y	Y	-2	0	1.0000000	0.443038	0.556962	-45	203	-248	451
80 81	3^{4}	N N	N Y	-11 2	6 0	1.8181818 2.5000000	0.437500 0.444444	0.562500 0.555556	-56 -54	$\frac{203}{205}$	-259 -259	462 464
82	$2^{1}41^{1}$	Y	N	5	0	1.0000000	0.44444	0.535550	-34 -49	210	-259 -259	469
83	831	Y	Y	-2	0	1.0000000	0.445783	0.554217	-51	210	-261	471
84	$2^{2}3^{1}7^{1}$	N	N	30	14	1.1666667	0.452381	0.547619	-21	240	-261	501
85	$5^{1}17^{1}$	Y	N	5	0	1.0000000	0.458824	0.541176	-16	245	-261	506
86	$2^{1}43^{1}$	Y	N	5	0	1.0000000	0.465116	0.534884	-11	250	-261	511
87	$3^{1}29^{1}$	Y	N	5	0	1.0000000	0.471264	0.528736	-6	255	-261	516
88	$2^{3}11^{1}$	N	N	9	4	1.5555556	0.477273	0.522727	3	264	-261	525
89	89 ¹	Y	Y	-2	0	1.0000000	0.471910	0.528090	1	264	-263	527
90	$2^{1}3^{2}5^{1}$ $7^{1}13^{1}$	N	N	30	14	1.1666667	0.477778	0.522222	31	294	-263	557
91 92	$2^{2}23^{1}$	Y N	N N	5	0 2	1.0000000	0.483516	0.516484 0.521739	36	299	-263	562
93	$3^{1}31^{1}$	Y	N N	-7 5	0	1.2857143 1.0000000	0.478261 0.483871	0.521739	29 34	299 304	-270 -270	$\frac{569}{574}$
94	$2^{1}47^{1}$	Y	N	5	0	1.0000000	0.489362	0.510129	39	304	-270 -270	579
95	$5^{1}19^{1}$	Y	N	5	0	1.0000000	0.494737	0.505263	44	314	-270	584
96	$2^{5}3^{1}$	N	N	13	8	2.0769231	0.500000	0.500000	57	327	-270	597
97	97^{1}	Y	Y	-2	0	1.0000000	0.494845	0.505155	55	327	-272	599
98	$2^{1}7^{2}$	N	N	-7	2	1.2857143	0.489796	0.510204	48	327	-279	606
99	$3^{2}11^{1}$	N	N	-7	2	1.2857143	0.484848	0.515152	41	327	-286	613
100	$2^{2}5^{2}$	N	N	14	9	1.3571429	0.490000	0.510000	55	341	-286	627
101	101 ¹	Y	Y	-2	0	1.0000000	0.485149	0.514851	53	341	-288	629
102	$2^{1}3^{1}17^{1}$ 103^{1}	Y	N	-16	0	1.0000000	0.480392	0.519608	37	341	-304	645
103 104	103^{1} $2^{3}13^{1}$	Y	Y	-2	0	1.0000000	0.475728	0.524272 0.519231	35	341	-306	647 656
104	$3^{1}5^{1}7^{1}$	N Y	N N	9 -16	4 0	1.5555556 1.0000000	0.480769 0.476190	0.519231 0.523810	44 28	$\frac{350}{350}$	-306 -322	$656 \\ 672$
105	$2^{1}53^{1}$	Y	N	5	0	1.0000000	0.476190	0.523810	33	355	-322 -322	677
107	107^{1}	Y	Y	-2	0	1.0000000	0.476636	0.523364	31	355	-324	679
108	$2^{2}3^{3}$	N	N	-23	18	1.4782609	0.472222	0.527778	8	355	-347	702
109	109 ¹	Y	Y	-2	0	1.0000000	0.467890	0.532110	6	355	-349	704
110	$2^15^111^1$	Y	N	-16	0	1.0000000	0.463636	0.536364	-10	355	-365	720
111	$3^{1}37^{1}$	Y	N	5	0	1.0000000	0.468468	0.531532	-5	360	-365	725
112	2^47^1	N	N	-11	6	1.8181818	0.464286	0.535714	-16	360	-376	736
113	113 ¹	Y	Y	-2	0	1.0000000	0.460177	0.539823	-18	360	-378	738
114	$2^{1}3^{1}19^{1}$	Y	N	-16	0	1.0000000	0.456140	0.543860	-34	360	-394	754
115	$5^{1}23^{1}$ $2^{2}29^{1}$	Y	N	5	0	1.0000000	0.460870	0.539130	-29	365	-394	759 766
116	$3^{2}13^{1}$	N N	N	-7 7	2	1.2857143	0.456897	0.543103	-36	365 365	-401	766 772
117 118	$2^{1}59^{1}$	Y	N N	-7 5	2	1.2857143 1.0000000	0.452991 0.457627	0.547009 0.542373	-43 -38	$\frac{365}{370}$	-408 -408	773 778
119	$7^{1}17^{1}$	Y	N	5	0	1.0000000	0.462185	0.542373	-33	375	-408 -408	783
120	$2^{3}3^{1}5^{1}$	N	N	-48	32	1.3333333	0.462183	0.537813	-81	375	-456	831
121	11^{2}	N	Y	2	0	1.5000000	0.462810	0.537190	-79	377	-456	833
122	$2^{1}61^{1}$	Y	N	5	0	1.0000000	0.467213	0.532787	-74	382	-456	838
123	3^141^1	Y	N	5	0	1.0000000	0.471545	0.528455	-69	387	-456	843
124	2^231^1	N	N	-7	2	1.2857143	0.467742	0.532258	-76	387	-463	850
1									-			

n	Primes	Sqfree	PPower	g(n)	$\lambda(n)g(n) - \widehat{f}_1(n)$	$\sum_{d n} C_{\Omega}(d)$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	G(n)	$G_{+}(n)$	$G_{-}(n)$	G (n)
$\frac{n}{125}$	5 ³	N	Y	-2	$\frac{\lambda(n)g(n) - j_1(n)}{0}$	g(n) 2.0000000	0.464000	0.536000	-78	387	-465	852
126	$2^{1}3^{2}7^{1}$	N	N	30	14	1.1666667	0.468254	0.531746	-48	417	-465	882
127	127^{1}	Y	Y	-2	0	1.0000000	0.464567	0.535433	-50	417	-467	884
128	27	N	Y	-2	0	4.0000000	0.460938	0.539062	-52	417	-469	886
129	$3^{1}43^{1}$	Y	N	5	0	1.0000000	0.465116	0.534884	-47	422	-469	891
130	$2^15^113^1$	Y	N	-16	0	1.0000000	0.461538	0.538462	-63	422	-485	907
131	131 ¹	Y	Y	-2	0	1.0000000	0.458015	0.541985	-65	422	-487	909
132	$2^23^111^1$	N	N	30	14	1.1666667	0.462121	0.537879	-35	452	-487	939
133	$7^{1}19^{1}$	Y	N	5	0	1.0000000	0.466165	0.533835	-30	457	-487	944
134	$2^{1}67^{1}$ $3^{3}5^{1}$	Y	N	5	0	1.0000000	0.470149	0.529851	-25	462	-487	949
135	$2^{3}17^{1}$	N N	N	9	4	1.5555556	0.474074	0.525926	-16	471	-487	958
136 137	137^{1}	Y	N Y	-2	4	1.5555556 1.0000000	0.477941 0.474453	0.522059 0.525547	-7 -9	480 480	-487 -489	967 969
138	$2^{1}3^{1}23^{1}$	Y	N	-16	0	1.0000000	0.474433	0.528986	-25	480	-409 -505	985
139	139^{1}	Y	Y	-2	0	1.0000000	0.467626	0.532374	-27	480	-507	987
140	$2^{2}5^{1}7^{1}$	N	N	30	14	1.1666667	0.471429	0.528571	3	510	-507	1017
141	$3^{1}47^{1}$	Y	N	5	0	1.0000000	0.475177	0.524823	8	515	-507	1022
142	$2^{1}71^{1}$	Y	N	5	0	1.0000000	0.478873	0.521127	13	520	-507	1027
143	$11^{1}13^{1}$	Y	N	5	0	1.0000000	0.482517	0.517483	18	525	-507	1032
144	$2^4 3^2$	N	N	34	29	1.6176471	0.486111	0.513889	52	559	-507	1066
145	$5^{1}29^{1}$	Y	N	5	0	1.0000000	0.489655	0.510345	57	564	-507	1071
146	$2^{1}73^{1}$	Y	N	5	0	1.0000000	0.493151	0.506849	62	569	-507	1076
147	$3^{1}7^{2}$	N	N	-7	2	1.2857143	0.489796	0.510204	55	569	-514	1083
148	$2^{2}37^{1}$	N	N	-7	2	1.2857143	0.486486	0.513514	48	569	-521	1090
149	149^1 $2^13^15^2$	Y N	Y N	-2 30	0 14	1.0000000	0.483221 0.486667	0.516779	46	569 500	-523	1092
150 151	151 ¹	Y	N Y	-2	0	1.1666667 1.0000000	0.486667	0.513333 0.516556	76 74	599 599	-523 -525	1122 1124
152	$2^{3}19^{1}$	N	N	9	4	1.5555556	0.485444	0.513158	83	608	-525	1133
153	$3^{2}17^{1}$	N	N	-7	2	1.2857143	0.483660	0.516340	76	608	-532	1140
154	$2^{1}7^{1}11^{1}$	Y	N	-16	0	1.0000000	0.480519	0.519481	60	608	-548	1156
155	$5^{1}31^{1}$	Y	N	5	0	1.0000000	0.483871	0.516129	65	613	-548	1161
156	$2^23^113^1$	N	N	30	14	1.1666667	0.487179	0.512821	95	643	-548	1191
157	157^{1}	Y	Y	-2	0	1.0000000	0.484076	0.515924	93	643	-550	1193
158	$2^{1}79^{1}$	Y	N	5	0	1.0000000	0.487342	0.512658	98	648	-550	1198
159	$3^{1}53^{1}$	Y	N	5	0	1.0000000	0.490566	0.509434	103	653	-550	1203
160	$2^{5}5^{1}$	N	N	13	8	2.0769231	0.493750	0.506250	116	666	-550	1216
161	$7^{1}23^{1}$	Y	N	5	0	1.0000000	0.496894	0.503106	121	671	-550	1221
162 163	$2^{1}3^{4}$ 163^{1}	N Y	N Y	-11 -2	6 0	1.8181818	0.493827	0.506173	110 108	671	-561	1232 1234
164	$2^{2}41^{1}$	N	N N	-2 -7	2	1.0000000 1.2857143	0.490798 0.487805	0.509202 0.512195	108	671 671	-563 -570	1234
165	$3^{1}5^{1}11^{1}$	Y	N	-16	0	1.0000000	0.484848	0.515152	85	671	-586	1257
166	$2^{1}83^{1}$	Y	N	5	0	1.0000000	0.487952	0.512048	90	676	-586	1262
167	167^{1}	Y	Y	-2	0	1.0000000	0.485030	0.514970	88	676	-588	1264
168	$2^3 3^1 7^1$	N	N	-48	32	1.3333333	0.482143	0.517857	40	676	-636	1312
169	13^{2}	N	Y	2	0	1.5000000	0.485207	0.514793	42	678	-636	1314
170	$2^{1}5^{1}17^{1}$	Y	N	-16	0	1.0000000	0.482353	0.517647	26	678	-652	1330
171	3^219^1	N	N	-7	2	1.2857143	0.479532	0.520468	19	678	-659	1337
172	$2^{2}43^{1}$	N	N	-7	2	1.2857143	0.476744	0.523256	12	678	-666	1344
173	173 ¹	Y	Y	-2	0	1.0000000	0.473988	0.526012	10	678	-668	1346
174	$2^{1}3^{1}29^{1}$ $5^{2}7^{1}$	Y	N	-16	0	1.0000000	0.471264	0.528736	-6	678	-684	1362
175 176	$2^{4}11^{1}$	N N	N N	-7	2	1.2857143 1.8181818	0.468571 0.465909	0.531429 0.534091	-13	678	-691 -702	1369 1380
176	$3^{1}59^{1}$	Y	N N	-11 5	6 0	1.8181818	0.465909	0.534091 0.531073	-24 -19	678 683	-702 -702	1380
178	$2^{1}89^{1}$	Y	N	5	0	1.0000000	0.471910	0.528090	-14	688	-702 -702	1390
179	179^{1}	Y	Y	-2	0	1.0000000	0.469274	0.530726	-16	688	-704	1392
180	$2^23^25^1$	N	N	-74	58	1.2162162	0.466667	0.533333	-90	688	-778	1466
181	181^{1}	Y	Y	-2	0	1.0000000	0.464088	0.535912	-92	688	-780	1468
182	$2^{1}7^{1}13^{1}$	Y	N	-16	0	1.0000000	0.461538	0.538462	-108	688	-796	1484
183	$3^{1}61^{1}$	Y	N	5	0	1.0000000	0.464481	0.535519	-103	693	-796	1489
184	$2^{3}23^{1}$	N	N	9	4	1.5555556	0.467391	0.532609	-94	702	-796	1498
185	$5^{1}37^{1}$	Y	N	5	0	1.0000000	0.470270	0.529730	-89	707	-796	1503
186	$2^{1}3^{1}31^{1}$	Y	N	-16	0	1.0000000	0.467742	0.532258	-105	707	-812	1519
187	$11^{1}17^{1}$ $2^{2}47^{1}$	Y	N	5	0	1.0000000	0.470588	0.529412	-100	712	-812	1524
188 189	$3^{3}7^{1}$	N N	N N	-7 9	$\frac{2}{4}$	1.2857143 1.5555556	0.468085 0.470899	0.531915	-107 -98	712	-819 -819	1531
189	$2^{1}5^{1}19^{1}$	Y Y	N N	-16	0	1.0000000	0.470899	0.529101 0.531579	-98 -114	721 721	-819 -835	1540 1556
191	191 ¹	Y	Y	-2	0	1.0000000	0.465969	0.534031	-114	721	-837	1558
192	$2^{6}3^{1}$	N	N	-15	10	2.3333333	0.463542	0.536458	-131	721	-852	1573
193	193 ¹	Y	Y	-2	0	1.0000000	0.461140	0.538860	-133	721	-854	1575
194	$2^{1}97^{1}$	Y	N	5	0	1.0000000	0.463918	0.536082	-128	726	-854	1580
195	$3^15^113^1$	Y	N	-16	0	1.0000000	0.461538	0.538462	-144	726	-870	1596
196	$2^{2}7^{2}$	N	N	14	9	1.3571429	0.464286	0.535714	-130	740	-870	1610
197	197^{1}	Y	Y	-2	0	1.0000000	0.461929	0.538071	-132	740	-872	1612
198	$2^{1}3^{2}11^{1}$	N	N	30	14	1.1666667	0.464646	0.535354	-102	770	-872	1642
199	199^{1}	Y	Y	-2	0	1.0000000	0.462312	0.537688	-104	770	-874	1644
200	$2^{3}5^{2}$	N	N	-23	18	1.4782609	0.460000	0.540000	-127	770	-897	1667

n	Primes	Sqfree	PPower	g(n)	$\lambda(n)g(n) - \widehat{f}_1(n)$	$\sum_{d n} C_{\Omega}(d)$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	G(n)	$G_{+}(n)$	$G_{-}(n)$	G (n)
201	3 ¹ 67 ¹	Y	N	5	0	g(n) 1.0000000	0.462687	0.537313	-122	775	-897	1672
202	$2^{1}101^{1}$	Y	N	5	0	1.0000000	0.465347	0.534653	-117	780	-897	1677
203	$7^{1}29^{1}$	Y	N	5	0	1.0000000	0.467980	0.532020	-112	785	-897	1682
204	$2^23^117^1$	N	N	30	14	1.1666667	0.470588	0.529412	-82	815	-897	1712
205	$5^{1}41^{1}$	Y	N	5	0	1.0000000	0.473171	0.526829	-77	820	-897	1717
206	$2^{1}103^{1}$	Y	N	5	0	1.0000000	0.475728	0.524272	-72	825	-897	1722
207	$3^{2}23^{1}$	N	N	-7	2	1.2857143	0.473430	0.526570	-79	825	-904	1729
208	$2^4 13^1$ $11^1 19^1$	N	N	-11	6	1.8181818	0.471154	0.528846	-90	825	-915	1740
209 210	$2^{1}3^{1}5^{1}7^{1}$	Y Y	N N	5 65	0	1.0000000 1.0000000	0.473684 0.476190	0.526316 0.523810	-85 -20	830 895	-915 -915	1745 1810
211	$2 \ 3 \ 3 \ 7$ 211^{1}	Y	Y	-2	0	1.0000000	0.473130	0.526066	-20 -22	895	-917	1812
212	$2^{2}53^{1}$	N	N	-7	2	1.2857143	0.471698	0.528302	-29	895	-924	1819
213	$3^{1}71^{1}$	Y	N	5	0	1.0000000	0.474178	0.525822	-24	900	-924	1824
214	2^1107^1	Y	N	5	0	1.0000000	0.476636	0.523364	-19	905	-924	1829
215	$5^{1}43^{1}$	Y	N	5	0	1.0000000	0.479070	0.520930	-14	910	-924	1834
216	$2^{3}3^{3}$	N	N	46	41	1.5000000	0.481481	0.518519	32	956	-924	1880
217	$7^{1}31^{1}$	Y	N	5	0	1.0000000	0.483871	0.516129	37	961	-924	1885
218	$2^{1}109^{1}$	Y	N	5	0	1.0000000	0.486239	0.513761	42	966	-924	1890
219	$3^{1}73^{1}$ $2^{2}5^{1}11^{1}$	Y	N	5	0	1.0000000	0.488584	0.511416	47	971	-924	1895
220 221	$13^{1}17^{1}$	N Y	N N	30 5	14 0	1.1666667 1.0000000	0.490909 0.493213	0.509091 0.506787	77 82	1001 1006	-924 -924	1925 1930
222	$2^{1}3^{1}37^{1}$	Y	N	-16	0	1.0000000	0.490991	0.509009	66	1006	-940	1946
223	223 ¹	Y	Y	-2	0	1.0000000	0.488789	0.511211	64	1006	-942	1948
224	$2^{5}7^{1}$	N	N	13	8	2.0769231	0.491071	0.508929	77	1019	-942	1961
225	$3^{2}5^{2}$	N	N	14	9	1.3571429	0.493333	0.506667	91	1033	-942	1975
226	$2^{1}113^{1}$	Y	N	5	0	1.0000000	0.495575	0.504425	96	1038	-942	1980
227	227^{1}	Y	Y	-2	0	1.0000000	0.493392	0.506608	94	1038	-944	1982
228	$2^23^119^1$	N	N	30	14	1.1666667	0.495614	0.504386	124	1068	-944	2012
229	2291	Y	Y	-2	0	1.0000000	0.493450	0.506550	122	1068	-946	2014
230	$2^{1}5^{1}23^{1}$ $3^{1}7^{1}11^{1}$	Y Y	N	-16	0	1.0000000	0.491304 0.489177	0.508696	106	1068	-962 -978	2030
231 232	$2^{3}29^{1}$	N N	N N	-16 9	0 4	1.0000000 1.555556	0.489177	0.510823 0.508621	90 99	1068 1077	-978 -978	2046 2055
233	233 ¹	Y	Y	-2	0	1.0000000	0.489270	0.510730	97	1077	-980	2057
234	$2^{1}3^{2}13^{1}$	N	N	30	14	1.1666667	0.491453	0.508547	127	1107	-980	2087
235	5^147^1	Y	N	5	0	1.0000000	0.493617	0.506383	132	1112	-980	2092
236	2^259^1	N	N	-7	2	1.2857143	0.491525	0.508475	125	1112	-987	2099
237	3^179^1	Y	N	5	0	1.0000000	0.493671	0.506329	130	1117	-987	2104
238	$2^{1}7^{1}17^{1}$	Y	N	-16	0	1.0000000	0.491597	0.508403	114	1117	-1003	2120
239	239^{1}	Y	Y	-2	0	1.0000000	0.489540	0.510460	112	1117	-1005	2122
240	$2^{4}3^{1}5^{1}$ 241^{1}	N	N	70	54	1.5000000	0.491667	0.508333	182	1187	-1005	2192
241 242	2^{41} $2^{1}11^{2}$	Y N	Y N	-2 -7	$0 \\ 2$	1.0000000 1.2857143	0.489627 0.487603	0.510373 0.512397	180 173	$\frac{1187}{1187}$	-1007 -1014	2194 2201
242	$\frac{2}{3^5}$	N N	Y	-1 -2	0	3.0000000	0.487503	0.512397	173	1187	-1014 -1016	2201
244	$2^{2}61^{1}$	N	N	-7	2	1.2857143	0.483607	0.516393	164	1187	-1023	2210
245	$5^{1}7^{2}$	N	N	-7	2	1.2857143	0.481633	0.518367	157	1187	-1030	2217
246	$2^{1}3^{1}41^{1}$	Y	N	-16	0	1.0000000	0.479675	0.520325	141	1187	-1046	2233
247	$13^{1}19^{1}$	Y	N	5	0	1.0000000	0.481781	0.518219	146	1192	-1046	2238
248	$2^{3}31^{1}$	N	N	9	4	1.5555556	0.483871	0.516129	155	1201	-1046	2247
249	$3^{1}83^{1}$	Y	N	5	0	1.0000000	0.485944	0.514056	160	1206	-1046	2252
250	$2^{1}5^{3}$	N	N	9	4	1.555556	0.488000	0.512000	169	1215	-1046	2261
251	251^{1} $2^{2}3^{2}7^{1}$	Y	Y	-2	0	1.0000000	0.486056	0.513944	167	1215	-1048	2263
252 253	$11^{1}23^{1}$	N Y	N N	-74	58 0	1.2162162 1.0000000	0.484127	0.515873	93	1215	-1122 -1122	2337 2342
253	$2^{1}127^{1}$	Y	N	5 5	0	1.0000000	0.486166 0.488189	0.513834 0.511811	98 103	1220 1225	-1122 -1122	2342
254	$3^{1}5^{1}17^{1}$	Y	N	-16	0	1.0000000	0.486275	0.511811	87	1225 1225	-1122 -1138	2363
256	28	N	Y	2	0	4.5000000	0.488281	0.511719	89	1227	-1138	2365
257	257^{1}	Y	Y	-2	0	1.0000000	0.486381	0.513619	87	1227	-1140	2367
258	$2^1 3^1 43^1$	Y	N	-16	0	1.0000000	0.484496	0.515504	71	1227	-1156	2383
259	$7^{1}37^{1}$	Y	N	5	0	1.0000000	0.486486	0.513514	76	1232	-1156	2388
260	$2^{2}5^{1}13^{1}$	N	N	30	14	1.1666667	0.488462	0.511538	106	1262	-1156	2418
261	$3^{2}29^{1}$	N	N	-7	2	1.2857143	0.486590	0.513410	99	1262	-1163	2425
262	$2^{1}131^{1}$	Y	N	5	0	1.0000000	0.488550	0.511450	104	1267	-1163	2430
263	263^{1} $2^{3}3^{1}11^{1}$	Y	Y	-2	0	1.0000000	0.486692	0.513308	102	1267	-1165	2432
264	$2^{5}3^{1}11^{1}$ $5^{1}53^{1}$	N Y	N N	-48 5	32	1.3333333	0.484848	0.515152	54 50	1267	-1213 -1213	2480
265 266	$2^{1}7^{1}19^{1}$	Y	N N	5 -16	0	1.0000000 1.0000000	0.486792 0.484962	0.513208 0.515038	59 43	1272 1272	-1213 -1229	2485 2501
267	$3^{1}89^{1}$	Y	N	5	0	1.0000000	0.484902	0.513038	48	1277	-1229 -1229	2506
268	$2^{2}67^{1}$	N	N	-7	2	1.2857143	0.485075	0.514925	41	1277	-1236	2513
269	269^{1}	Y	Y	-2	0	1.0000000	0.483271	0.516729	39	1277	-1238	2515
270	$2^{1}3^{3}5^{1}$	N	N	-48	32	1.3333333	0.481481	0.518519	-9	1277	-1286	2563
271	271^{1}	Y	Y	-2	0	1.0000000	0.479705	0.520295	-11	1277	-1288	2565
272	2^417^1	N	N	-11	6	1.8181818	0.477941	0.522059	-22	1277	-1299	2576
273	$3^{1}7^{1}13^{1}$	Y	N	-16	0	1.0000000	0.476190	0.523810	-38	1277	-1315	2592
274	$2^{1}137^{1}$ $5^{2}11^{1}$	Y	N	5	0	1.0000000	0.478102	0.521898	-33	1282	-1315	2597
275 276	$2^{2}3^{1}23^{1}$	N N	N N	-7 30	$\frac{2}{14}$	1.2857143 1.1666667	0.476364 0.478261	0.523636 0.521739	-40 -10	1282 1312	-1322 -1322	$\frac{2604}{2634}$
277	$2 \ 3 \ 23$ 277^{1}	Y	Y	-2	0	1.0000007	0.476534	0.521739	-10 -12	1312	-1322 -1324	2636
1	211	1 *			0	1.0000000	0.110004	0.020400	1	1012	1024	2000

n	Primes	Sqfree	PPower	g(n)	$\lambda(n)g(n)-\widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega}(d)}{ g(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	G(n)	$G_+(n)$	$G_{-}(n)$	G (n)
278	$2^{1}139^{1}$	Y	N	5	0	1.0000000	0.478417	0.521583	-7	1317	-1324	2641
279	3^231^1	N	N	-7	2	1.2857143	0.476703	0.523297	-14	1317	-1331	2648
280	$2^35^17^1$	N	N	-48	32	1.3333333	0.475000	0.525000	-62	1317	-1379	2696
281	281^{1}	Y	Y	-2	0	1.0000000	0.473310	0.526690	-64	1317	-1381	2698
282	$2^{1}3^{1}47^{1}$	Y	N	-16	0	1.0000000	0.471631	0.528369	-80	1317	-1397	2714
283	283 ¹	Y	Y	-2	0	1.0000000	0.469965	0.530035	-82	1317	-1399	2716
284	$2^{2}71^{1}$	N	N	-7	2	1.2857143	0.468310	0.531690	-89	1317	-1406	2723
285	$3^{1}5^{1}19^{1}$	Y	N	-16	0	1.0000000	0.466667	0.533333	-105	1317	-1422	2739
286	$2^{1}11^{1}13^{1}$	Y	N	-16	0	1.0000000	0.465035	0.534965	-121	1317	-1438	2755
287	$7^{1}41^{1}$ $2^{5}3^{2}$	Y	N	5	0	1.0000000	0.466899	0.533101	-116	1322	-1438	2760
288	17^{2}	N	N Y	-47	42	1.7659574	0.465278	0.534722	-163	1322	-1485	2807
289 290	$2^{1}5^{1}29^{1}$	N Y	Y N	2	0	1.5000000	0.467128	0.532872 0.534483	-161	1324	-1485	2809
290	$3^{1}97^{1}$	Y	N	-16 5	0	1.0000000 1.0000000	0.465517 0.467354	0.532646	-177 -172	1324 1329	-1501 -1501	2825 2830
292	$2^{2}73^{1}$	N	N	-7	2	1.2857143	0.465753	0.534247	-172	1329	-1501	2837
293	293 ¹	Y	Y	-2	0	1.0000000	0.464164	0.535836	-181	1329	-1510	2839
294	$2^{1}3^{1}7^{2}$	N	N	30	14	1.1666667	0.465986	0.534014	-151	1359	-1510	2869
295	$5^{1}59^{1}$	Y	N	5	0	1.0000000	0.467797	0.532203	-146	1364	-1510	2874
296	$2^{3}37^{1}$	N	N	9	4	1.5555556	0.469595	0.530405	-137	1373	-1510	2883
297	$3^{3}11^{1}$	N	N	9	4	1.5555556	0.471380	0.528620	-128	1382	-1510	2892
298	$2^{1}149^{1}$	Y	N	5	0	1.0000000	0.473154	0.526846	-123	1387	-1510	2897
299	$13^{1}23^{1}$	Y	N	5	0	1.0000000	0.474916	0.525084	-118	1392	-1510	2902
300	$2^23^15^2$	N	N	-74	58	1.2162162	0.473333	0.526667	-192	1392	-1584	2976
301	$7^{1}43^{1}$	Y	N	5	0	1.0000000	0.475083	0.524917	-187	1397	-1584	2981
302	$2^{1}151^{1}$	Y	N	5	0	1.0000000	0.476821	0.523179	-182	1402	-1584	2986
303	$3^{1}101^{1}$	Y	N	5	0	1.0000000	0.478548	0.521452	-177	1407	-1584	2991
304	2^419^1	N	N	-11	6	1.8181818	0.476974	0.523026	-188	1407	-1595	3002
305	5 ¹ 61 ¹	Y	N	5	0	1.0000000	0.478689	0.521311	-183	1412	-1595	3007
306	$2^{1}3^{2}17^{1}$	N	N	30	14	1.1666667	0.480392	0.519608	-153	1442	-1595	3037
307	307^{1}	Y	Y	-2	0	1.0000000	0.478827	0.521173	-155	1442	-1597	3039
308	$2^{2}7^{1}11^{1}$	N	N	30	14	1.1666667	0.480519	0.519481	-125	1472	-1597	3069
309	$3^{1}103^{1}$ $2^{1}5^{1}31^{1}$	Y	N	5	0	1.0000000	0.482201	0.517799	-120	1477	-1597	3074
310 311	311 ¹	Y Y	N Y	-16 -2	0 0	1.0000000	0.480645 0.479100	0.519355 0.520900	-136	1477	-1613	3090 3092
312	$2^{3}3^{1}13^{1}$	N	N	-2 -48	32	1.0000000 1.3333333	0.479100	0.520900 0.522436	-138 -186	$1477 \\ 1477$	-1615 -1663	3140
313	313^{1}	Y	Y	-2	0	1.0000000	0.477304	0.523962	-188	1477	-1665	3140
314	$2^{1}157^{1}$	Y	N	5	0	1.0000000	0.47707	0.522293	-183	1482	-1665	3142
315	$3^{2}5^{1}7^{1}$	N	N	30	14	1.1666667	0.477767	0.520635	-153	1512	-1665	3177
316	$2^{2}79^{1}$	N	N	-7	2	1.2857143	0.477848	0.522152	-160	1512	-1672	3184
317	317^{1}	Y	Y	-2	0	1.0000000	0.476341	0.523659	-162	1512	-1674	3186
318	$2^{1}3^{1}53^{1}$	Y	N	-16	0	1.0000000	0.474843	0.525157	-178	1512	-1690	3202
319	$11^{1}29^{1}$	Y	N	5	0	1.0000000	0.476489	0.523511	-173	1517	-1690	3207
320	$2^{6}5^{1}$	N	N	-15	10	2.3333333	0.475000	0.525000	-188	1517	-1705	3222
321	3^1107^1	Y	N	5	0	1.0000000	0.476636	0.523364	-183	1522	-1705	3227
322	$2^{1}7^{1}23^{1}$	Y	N	-16	0	1.0000000	0.475155	0.524845	-199	1522	-1721	3243
323	$17^{1}19^{1}$	Y	N	5	0	1.0000000	0.476780	0.523220	-194	1527	-1721	3248
324	$2^{2}3^{4}$	N	N	34	29	1.6176471	0.478395	0.521605	-160	1561	-1721	3282
325	5^213^1	N	N	-7	2	1.2857143	0.476923	0.523077	-167	1561	-1728	3289
326	$2^{1}163^{1}$	Y	N	5	0	1.0000000	0.478528	0.521472	-162	1566	-1728	3294
327	$3^{1}109^{1}$	Y	N	5	0	1.0000000	0.480122	0.519878	-157	1571	-1728	3299
328	$2^{3}41^{1}$	N	N	9	4	1.5555556	0.481707	0.518293	-148	1580	-1728	3308
329	$7^{1}47^{1}$	Y	N	5	0	1.0000000	0.483283	0.516717	-143	1585	-1728	3313
330	$2^{1}3^{1}5^{1}11^{1}$	Y	N	65	0	1.0000000	0.484848	0.515152	-78	1650	-1728	3378
331	331^{1} $2^{2}83^{1}$	Y	Y	-2 7	0	1.0000000	0.483384	0.516616	-80	1650	-1730	3380
332 333	$3^{2}37^{1}$	N N	N N	-7 -7	$\frac{2}{2}$	1.2857143 1.2857143	0.481928 0.480480	0.518072 0.519520	-87 -94	1650	-1737	3387 3394
334	$2^{1}167^{1}$	Y	N N	5	0	1.0000000	0.480480	0.519520 0.517964	-94 -89	$1650 \\ 1655$	-1744	3394
335	$5^{1}67^{1}$	Y	N	5	0	1.0000000	0.482030	0.517964	-89 -84	1660	-1744 -1744	3404
336	$2^{4}3^{1}7^{1}$	N	N	70	54	1.5000000	0.485119	0.514481	-14	1730	-1744	3474
337	337^{1}	Y	Y	-2	0	1.0000000	0.483119	0.514881 0.516320	-14 -16	1730	-1744 -1746	3474
338	$2^{1}13^{2}$	N	N	-2 -7	2	1.2857143	0.483080	0.516320 0.517751	-16 -23	1730	-1746 -1753	3483
339	$3^{1}113^{1}$	Y	N	5	0	1.0000000	0.482249	0.516224	-23 -18	1735	-1753	3488
340	$2^{2}5^{1}17^{1}$	N	N	30	14	1.1666667	0.485294	0.514706	12	1765	-1753	3518
341	11 ¹ 31 ¹	Y	N	5	0	1.0000000	0.486804	0.513196	17	1770	-1753	3523
342	$2^{1}3^{2}19^{1}$	N	N	30	14	1.1666667	0.488304	0.511696	47	1800	-1753	3553
343	7^{3}	N	Y	-2	0	2.0000000	0.486880	0.513120	45	1800	-1755	3555
344	$2^{3}43^{1}$	N	N	9	4	1.5555556	0.488372	0.511628	54	1809	-1755	3564
345	$3^15^123^1$	Y	N	-16	0	1.0000000	0.486957	0.513043	38	1809	-1771	3580
346	2^1173^1	Y	N	5	0	1.0000000	0.488439	0.511561	43	1814	-1771	3585
347	347^{1}	Y	Y	-2	0	1.0000000	0.487032	0.512968	41	1814	-1773	3587
348	$2^23^129^1$	N	N	30	14	1.1666667	0.488506	0.511494	71	1844	-1773	3617
0.40	349^{1}	Y	Y	-2	0	1.0000000	0.487106	0.512894	69	1844	-1775	3619
349	$2^{1}5^{2}7^{1}$											

		I		l		$\sum_{d n} C_{\Omega}(d)$			l			
n	Primes	Sqfree	PPower	g(n)	$\lambda(n)g(n) - \widehat{f}_1(n)$	g(n)	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	G(n)	$G_{+}(n)$	$G_{-}(n)$	G (n)
351 352	$3^{3}13^{1}$ $2^{5}11^{1}$	N N	N N	9 13	4 8	1.5555556 2.0769231	0.490028 0.491477	0.509972 0.508523	108 121	1883 1896	-1775 -1775	$3658 \\ 3671$
353	353 ¹	Y	Y	-2	0	1.0000000	0.491477	0.508323	119	1896	-1773 -1777	3673
354	$2^{1}3^{1}59^{1}$	Y	N	-16	0	1.0000000	0.488701	0.511299	103	1896	-1793	3689
355	5^171^1	Y	N	5	0	1.0000000	0.490141	0.509859	108	1901	-1793	3694
356	$2^{2}89^{1}$	N	N	-7	2	1.2857143	0.488764	0.511236	101	1901	-1800	3701
357	$3^{1}7^{1}17^{1}$	Y	N	-16	0	1.0000000	0.487395	0.512605	85	1901	-1816	3717
358	$2^{1}179^{1}$ 359^{1}	Y Y	N Y	5 -2	0 0	1.0000000 1.0000000	0.488827	0.511173 0.512535	90	1906	-1816	3722 3724
359 360	$2^{3}3^{2}5^{1}$	N N	N	145	129	1.3034483	0.487465 0.488889	0.512555	88 233	1906 2051	-1818 -1818	3869
361	19^{2}	N	Y	2	0	1.5000000	0.490305	0.509695	235	2053	-1818	3871
362	2^1181^1	Y	N	5	0	1.0000000	0.491713	0.508287	240	2058	-1818	3876
363	$3^{1}11^{2}$	N	N	-7	2	1.2857143	0.490358	0.509642	233	2058	-1825	3883
364	$2^{2}7^{1}13^{1}$	N	N	30	14	1.1666667	0.491758	0.508242	263	2088	-1825	3913
365	$5^{1}73^{1}$ $2^{1}3^{1}61^{1}$	Y	N N	5	0	1.0000000	0.493151	0.506849	268 252	2093	-1825	3918
366 367	$\frac{2}{367}^{1}$	Y	Y	-16 -2	0	1.0000000 1.0000000	0.491803 0.490463	0.508197 0.509537	252	2093 2093	-1841 -1843	3934 3936
368	2^423^1	N	N	-11	6	1.8181818	0.489130	0.510870	239	2093	-1854	3947
369	3^241^1	N	N	-7	2	1.2857143	0.487805	0.512195	232	2093	-1861	3954
370	$2^{1}5^{1}37^{1}$	Y	N	-16	0	1.0000000	0.486486	0.513514	216	2093	-1877	3970
371	$7^{1}53^{1}$	Y	N	5	0	1.0000000	0.487871	0.512129	221	2098	-1877	3975
372	$2^{2}3^{1}31^{1}$ 373^{1}	N Y	N Y	30 -2	14	1.1666667 1.0000000	0.489247	0.510753	251	2128	-1877	4005
373 374	373^{1} $2^{1}11^{1}17^{1}$	Y	Y N	-2 -16	0	1.0000000	0.487936 0.486631	0.512064 0.513369	249 233	2128 2128	-1879 -1895	4007 4023
375	$3^{1}5^{3}$	N N	N	9	4	1.5555556	0.488000	0.513309	233	2128	-1895 -1895	4023
376	$2^{3}47^{1}$	N	N	9	4	1.5555556	0.489362	0.510638	251	2146	-1895	4041
377	$13^{1}29^{1}$	Y	N	5	0	1.0000000	0.490716	0.509284	256	2151	-1895	4046
378	$2^{1}3^{3}7^{1}$	N	N	-48	32	1.3333333	0.489418	0.510582	208	2151	-1943	4094
379	379^{1}	Y	Y	-2	0	1.0000000	0.488127	0.511873	206	2151	-1945	4096
380 381	$2^{2}5^{1}19^{1}$ $3^{1}127^{1}$	N Y	N N	30 5	14 0	1.1666667 1.0000000	0.489474 0.490814	0.510526 0.509186	236 241	2181 2186	-1945 -1945	4126 4131
382	$2^{1}191^{1}$	Y	N	5	0	1.0000000	0.490814	0.507853	241	2191	-1945 -1945	4136
383	383 ¹	Y	Y	-2	0	1.0000000	0.490862	0.509138	244	2191	-1947	4138
384	$2^{7}3^{1}$	N	N	17	12	2.5882353	0.492188	0.507812	261	2208	-1947	4155
385	$5^{1}7^{1}11^{1}$	Y	N	-16	0	1.0000000	0.490909	0.509091	245	2208	-1963	4171
386	$2^{1}193^{1}$	Y	N	5	0	1.0000000	0.492228	0.507772	250	2213	-1963	4176
387	$3^{2}43^{1}$ $2^{2}97^{1}$	N N	N N	-7 -7	$\frac{2}{2}$	1.2857143	0.490956	0.509044	243 236	2213	-1970	4183
388 389	389 ¹	Y	Y	-1 -2	0	1.2857143 1.0000000	0.489691 0.488432	0.510309 0.511568	234	$\frac{2213}{2213}$	-1977 -1979	4190 4192
390	$2^{1}3^{1}5^{1}13^{1}$	Y	N	65	0	1.0000000	0.489744	0.510256	299	2278	-1979	4257
391	$17^{1}23^{1}$	Y	N	5	0	1.0000000	0.491049	0.508951	304	2283	-1979	4262
392	$2^{3}7^{2}$	N	N	-23	18	1.4782609	0.489796	0.510204	281	2283	-2002	4285
393	$3^{1}131^{1}$	Y	N	5	0	1.0000000	0.491094	0.508906	286	2288	-2002	4290
394	$2^{1}197^{1}$ $5^{1}79^{1}$	Y Y	N	5	0	1.0000000	0.492386	0.507614 0.506329	291	2293	-2002	4295
395 396	$2^{2}3^{2}11^{1}$	N N	N N	5 -74	0 58	1.00000000 1.2162162	0.493671 0.492424	0.506329	296 222	2298 2298	-2002 -2076	4300 4374
397	397^{1}	Y	Y	-2	0	1.0000000	0.491184	0.508816	220	2298	-2078	4376
398	2^1199^1	Y	N	5	0	1.0000000	0.492462	0.507538	225	2303	-2078	4381
399	$3^{1}7^{1}19^{1}$	Y	N	-16	0	1.0000000	0.491228	0.508772	209	2303	-2094	4397
400	$2^{4}5^{2}$	N	N	34	29	1.6176471	0.492500	0.507500	243	2337	-2094	4431
401	401^{1} $2^{1}3^{1}67^{1}$	Y	Y	-2	0	1.0000000	0.491272	0.508728	241	2337	-2096	4433
402 403	$2^{1}3^{1}67^{1}$ $13^{1}31^{1}$	Y Y	N N	-16 5	0	1.0000000 1.0000000	0.490050 0.491315	0.509950 0.508685	225 230	2337 2342	-2112 -2112	4449 4454
403	$2^{2}101^{1}$	N N	N	-7	2	1.2857143	0.491313	0.509901	230	2342	-2112 -2119	4461
405	3^45^1	N	N	-11	6	1.8181818	0.488889	0.511111	212	2342	-2130	4472
406	$2^{1}7^{1}29^{1}$	Y	N	-16	0	1.0000000	0.487685	0.512315	196	2342	-2146	4488
407	$11^{1}37^{1}$	Y	N	5	0	1.0000000	0.488943	0.511057	201	2347	-2146	4493
408	$2^3 3^1 17^1$ 409^1	N	N	-48	32	1.3333333	0.487745	0.512255	153	2347	-2194	4541
409 410	409^{1} $2^{1}5^{1}41^{1}$	Y Y	Y N	-2 -16	0	1.0000000 1.0000000	0.486553 0.485366	0.513447 0.514634	151 135	2347 2347	-2196 -2212	4543 4559
410	$3^{1}137^{1}$	Y	N N	-16 5	0	1.0000000	0.485366	0.514634 0.513382	140	2347	-2212 -2212	4559 4564
412	$2^{2}103^{1}$	N	N	-7	2	1.2857143	0.485437	0.514563	133	2352	-2219	4571
413	$7^{1}59^{1}$	Y	N	5	0	1.0000000	0.486683	0.513317	138	2357	-2219	4576
414	$2^{1}3^{2}23^{1}$	N	N	30	14	1.1666667	0.487923	0.512077	168	2387	-2219	4606
415	5 ¹ 83 ¹	Y	N	5	0	1.0000000	0.489157	0.510843	173	2392	-2219	4611
416	$2^{5}13^{1}$ $3^{1}139^{1}$	N Y	N N	13	8	2.0769231	0.490385	0.509615	186	2405	-2219	4624
417 418	$3^{1}139^{1}$ $2^{1}11^{1}19^{1}$	Y	N N	5 -16	0	1.0000000 1.0000000	0.491607 0.490431	0.508393 0.509569	191 175	2410 2410	-2219 -2235	4629 4645
419	419^{1}	Y	Y	-2	0	1.0000000	0.489260	0.510740	173	2410	-2237	4647
420	$2^23^15^17^1$	N	N	-155	90	1.1032258	0.488095	0.511905	18	2410	-2392	4802
421	421^{1}	Y	Y	-2	0	1.0000000	0.486936	0.513064	16	2410	-2394	4804
422	$2^{1}211^{1}$	Y	N	5	0	1.0000000	0.488152	0.511848	21	2415	-2394	4809
423	$3^{2}47^{1}$	N	N	-7	2	1.2857143	0.486998	0.513002	14	2415	-2401	4816
424 425	2^353^1 5^217^1	N N	N N	9	$rac{4}{2}$	1.5555556	0.488208 0.487059	0.511792 0.512941	23 16	2424 2424	-2401 -2408	4825 4832
425	5 11°	l IN	1N	-7	Z	1.2857143	0.487059	0.512941	10	∠4∠4	-2408	4832

n	Primes	Sqfree	PPower	g(n)	$\lambda(n)g(n)$ -	$\widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega}(d)}{ g(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	G(n)	$G_{+}(n)$	$G_{-}(n)$	G (n)
426	$2^{1}3^{1}71^{1}$	Y	N	-16	0		1.0000000	0.485915	0.514085	0	2424	-2424	4848
427	$7^{1}61^{1}$ $2^{2}107^{1}$	Y	N	5_	0		1.0000000	0.487119	0.512881	5	2429	-2424	4853
428 429	$3^{1}11^{1}13^{1}$	N Y	N N	-7 -16	2		1.2857143 1.0000000	0.485981 0.484848	0.514019 0.515152	-2 -18	2429 2429	-2431 -2447	4860 4876
430	$2^{1}5^{1}43^{1}$	Y	N	-16	0		1.0000000	0.483721	0.515152 0.516279	-34	2429	-2447	4892
431	4311	Y	Y	-2	0		1.0000000	0.482599	0.517401	-36	2429	-2465	4894
432	$2^4 3^3$	N	N	-80	75		1.5625000	0.481481	0.518519	-116	2429	-2545	4974
433	4331	Y	Y	-2	0		1.0000000	0.480370	0.519630	-118	2429	-2547	4976
434	$2^{1}7^{1}31^{1}$ $3^{1}5^{1}29^{1}$	Y	N	-16	0		1.0000000 1.0000000	0.479263	0.520737 0.521839	-134	2429	-2563	4992
435 436	$2^{2}109^{1}$	N Y	N N	-16 -7	0 2		1.2857143	0.478161 0.477064	0.521839 0.522936	-150 -157	2429 2429	-2579 -2586	5008 5015
437	$19^{1}23^{1}$	Y	N	5	0		1.0000000	0.478261	0.521739	-152	2434	-2586	5020
438	$2^{1}3^{1}73^{1}$	Y	N	-16	0		1.0000000	0.477169	0.522831	-168	2434	-2602	5036
439	439^{1}	Y	Y	-2	0		1.0000000	0.476082	0.523918	-170	2434	-2604	5038
440	$2^{3}5^{1}11^{1}$ $3^{2}7^{2}$	N	N	-48	32		1.3333333	0.475000	0.525000	-218	2434	-2652	5086
441 442	$3^{2}7^{2}$ $2^{1}13^{1}17^{1}$	N Y	N N	14 -16	9		1.3571429 1.0000000	0.476190 0.475113	0.523810 0.524887	-204 -220	2448 2448	-2652 -2668	5100 5116
443	443 ¹	Y	Y	-2	0		1.0000000	0.474041	0.525959	-222	2448	-2670	5118
444	$2^23^137^1$	N	N	30	14		1.1666667	0.475225	0.524775	-192	2478	-2670	5148
445	$5^{1}89^{1}$	Y	N	5	0		1.0000000	0.476404	0.523596	-187	2483	-2670	5153
446	$2^{1}223^{1}$	Y	N	5	0		1.0000000	0.477578	0.522422	-182	2488	-2670	5158
447 448	$3^{1}149^{1}$ $2^{6}7^{1}$	Y N	N N	5 -15	0 10		1.0000000 2.3333333	0.478747 0.477679	0.521253 0.522321	-177 -192	2493 2493	-2670 -2685	5163 5178
448	449^{1}	Y	Y	-15 -2	0		1.0000000	0.477679	0.522321 0.523385	-192 -194	2493	-2685 -2687	5178
450	$2^{1}3^{2}5^{2}$	N	N	-74	58		1.2162162	0.475556	0.524444	-268	2493	-2761	5254
451	$11^{1}41^{1}$	Y	N	5	0		1.0000000	0.476718	0.523282	-263	2498	-2761	5259
452	$2^{2}113^{1}$	N	N	-7	2		1.2857143	0.475664	0.524336	-270	2498	-2768	5266
453	$3^{1}151^{1}$ $2^{1}227^{1}$	Y	N	5	0		1.0000000	0.476821	0.523179	-265	2503	-2768	5271
454 455	$5^{1}7^{1}13^{1}$	Y	N N	5 -16	0		1.0000000 1.0000000	0.477974 0.476923	0.522026 0.523077	-260 -276	2508 2508	-2768 -2784	5276 5292
456	$2^{3}3^{1}19^{1}$	N	N	-48	32		1.3333333	0.475877	0.524123	-324	2508	-2832	5340
457	457^{1}	Y	Y	-2	0		1.0000000	0.474836	0.525164	-326	2508	-2834	5342
458	$2^{1}229^{1}$	Y	N	5	0		1.0000000	0.475983	0.524017	-321	2513	-2834	5347
459	$3^{3}17^{1}$ $2^{2}5^{1}23^{1}$	N	N	9	4		1.5555556	0.477124	0.522876	-312	2522	-2834	5356
460 461	461^{1}	N Y	N Y	30 -2	14 0		1.1666667 1.0000000	0.478261 0.477223	0.521739 0.522777	-282 -284	2552 2552	-2834 -2836	5386 5388
462	$2^{1}3^{1}7^{1}11^{1}$	Y	N	65	0		1.0000000	0.477223	0.521645	-219	2617	-2836	5453
463	463^{1}	Y	Y	-2	0		1.0000000	0.477322	0.522678	-221	2617	-2838	5455
464	2^429^1	N	N	-11	6		1.8181818	0.476293	0.523707	-232	2617	-2849	5466
465	$3^{1}5^{1}31^{1}$	Y	N	-16	0		1.0000000	0.475269	0.524731	-248	2617	-2865	5482
466 467	$2^{1}233^{1}$ 467^{1}	Y Y	N Y	5 -2	0		1.0000000 1.0000000	0.476395 0.475375	0.523605 0.524625	-243 -245	2622 2622	-2865 -2867	5487 5489
468	$2^{2}3^{2}13^{1}$	N	N	-74	58		1.2162162	0.474359	0.525641	-319	2622	-2941	5563
469	$7^{1}67^{1}$	Y	N	5	0		1.0000000	0.475480	0.524520	-314	2627	-2941	5568
470	$2^{1}5^{1}47^{1}$	Y	N	-16	0		1.0000000	0.474468	0.525532	-330	2627	-2957	5584
471	$3^{1}157^{1}$	Y	N	5	0		1.0000000	0.475584	0.524416	-325	2632	-2957	5589
472 473	2^359^1 11^143^1	N Y	N N	9 5	4		1.5555556 1.0000000	0.476695 0.477801	0.523305 0.522199	-316 -311	2641 2646	-2957 -2957	5598 5603
474	$2^{1}3^{1}79^{1}$	Y	N	-16	0		1.0000000	0.477801	0.523207	-311	2646	-2973	5619
475	$5^{2}19^{1}$	N	N	-7	2		1.2857143	0.475789	0.524211	-334	2646	-2980	5626
476	$2^{2}7^{1}17^{1}$	N	N	30	14		1.1666667	0.476891	0.523109	-304	2676	-2980	5656
477	$3^{2}53^{1}$	N	N	-7	2		1.2857143	0.475891	0.524109	-311	2676	-2987	5663
478	$2^{1}239^{1}$ 479^{1}	Y Y	N Y	5 -2	0		1.0000000	0.476987 0.475992	0.523013	-306 -308	2681	-2987 -2989	5668 5670
479 480	$2^{5}3^{1}5^{1}$	N Y	Y N	-2 -96	80		1.0000000 1.6666667	0.475992	0.524008 0.525000	-308 -404	2681 2681	-2989 -3085	5670 5766
481	$13^{1}37^{1}$	Y	N	5	0		1.0000007	0.476091	0.523909	-399	2686	-3085	5771
482	2^1241^1	Y	N	5	0		1.0000000	0.477178	0.522822	-394	2691	-3085	5776
483	$3^{1}7^{1}23^{1}$	Y	N	-16	0		1.0000000	0.476190	0.523810	-410	2691	-3101	5792
484	$2^{2}11^{2}$ $5^{1}97^{1}$	N	N	14	9		1.3571429	0.477273	0.522727	-396	2705	-3101	5806
485 486	$\frac{5^{1}97^{1}}{2^{1}3^{5}}$	Y N	N N	5 13	0 8		1.0000000 2.0769231	0.478351 0.479424	0.521649 0.520576	-391 -378	2710 2723	-3101 -3101	5811 5824
487	487^{1}	Y	Y	-2	0		1.0000000	0.479424	0.520576 0.521561	-380	2723	-3101 -3103	5824 5826
488	2^361^1	N	N	9	4		1.5555556	0.479508	0.520492	-371	2732	-3103	5835
489	$3^{1}163^{1}$	Y	N	5	0		1.0000000	0.480573	0.519427	-366	2737	-3103	5840
490	$2^{1}5^{1}7^{2}$	N	N	30	14		1.1666667	0.481633	0.518367	-336	2767	-3103	5870
491 492	491^{1} $2^{2}3^{1}41^{1}$	Y N	Y N	-2 30	0 14		1.0000000 1.1666667	0.480652 0.481707	0.519348 0.518293	-338 -308	2767 2797	-3105 -3105	5872 5902
492	$17^{1}29^{1}$	Y	N N	30 5	0		1.166667	0.481707	0.518293 0.517241	-308 -303	2802	-3105 -3105	5902 5907
494	$2^{1}13^{1}19^{1}$	Y	N	-16	0		1.0000000	0.481781	0.518219	-319	2802	-3121	5923
495	$3^25^111^1$	N	N	30	14		1.1666667	0.482828	0.517172	-289	2832	-3121	5953
496	$2^{4}31^{1}$	N	N	-11	6		1.8181818	0.481855	0.518145	-300	2832	-3132	5964
497	$7^{1}71^{1}$ $2^{1}3^{1}83^{1}$	Y	N	5	0		1.0000000	0.482897	0.517103	-295	2837	-3132	5969
498 499	$2^{1}3^{1}83^{1}$ 499^{1}	Y	N Y	-16 -2	0		1.0000000 1.0000000	0.481928 0.480962	0.518072 0.519038	-311 -313	2837 2837	-3148 -3150	5985 5987
500	$2^{2}5^{3}$	N	N	-23	18		1.4782609	0.480902	0.520000	-336	2837	-3173	6010
		1						i					