Wahlinformationssystem

Abschlusspräsentation

Elitestudiengang Software Engineering - Felix Rinderer, Tom Papke - 7.2.2022

Technologie-Stack

Demo

Einlesen der Daten

- COPY table FROM STDIN
- SET session_replication_role = 'replica' 10x schneller (danke Torben & Marius (section))
- insgesamt 18 Tables, 213 Columns

Berechnung der Sitzverteilung

- iteratives Divisorverfahren
 - zum Teil ausgelagert in PLPGSQL Funktion
- parallele Berechnung der Sitzverteilung für beide Wahlen mit 4
 Fallunterscheidungen bzgl. des Wahljahres
- 29 CTEs und 450 LOC
- Laufzeit: ~85ms, (davon 5ms planning time), Kosten: 100.000
- trotzdem: Ergebnis wird materialisiert und beim Einfügen von Einzelstimmen über Trigger aktualisiert

Besonderheiten

- Anfragen liegen als Views (oder parametrisierten PLPGSQL functions) vor
- REST-Schnittstelle führt nur SELECT * FROM view WHERE ... aus und konvertiert zu JSON
- laufende CI/CD (gitlab CI + heroku) mit automatisierten Tests:
 - Anzahl (Erst-/Zweit-/Ungültige) Stimmen
 - Sitzverteilung
 - o gewählte Mitglieder des Bundestags
 - Überhangmandate

Leistungsfähigkeit

- Benchmarking über locust
- Maßnahmen zur Leistungssteigerung:
 - subqueries eliminieren
 - window functions
 - connection pooling
 - skalierter WSGI Server (#Worker = 2 * #Cores)

Leistungsfähigkeit

- n=100 und t=1s
 - ~180 Requests per Second (RPS)
 - o durchschnittliche Antwortzeit: 14 ms
- n=100 und t=0.1s ~500 RPS
 - ~500 RPS
 - o keine Failures
 - o durchschnittliche Antwortzeit: 149 ms
- Ergebnisse ohne Materialisierung ähnlich

Ausprobieren unter

https://datenbanken-ws22-frontend.herokuapp.com/