PHYS 122 HW 2

1 Equilibrium of a Square

Four charges are placed at the vertices of a diagonal square with side of length a and a fifth charge is placed at the center. The corner charges each have the same charge q; the central charge is Q.

a

What is the total electrostatic force on the central charge?

✓ Answer ∨

 $\vec{0}$ as it cancels out.

b

What is the total electrostatic force on the charge at the vertex A (top)? Your answer may depend on q, Q, $4\pi\epsilon_0$, a and the unit vectors \hat{i} and \hat{j} .

✓ Answer

$$F_{Elr}=\sqrt{2}rac{1}{4\pi\epsilon_0}rac{q}{a^2}\hat{j}$$
 via symmetry, trig, and additivity

$$F_{Eb}=rac{1}{4\pi\epsilon_0}rac{q}{2a^2}\hat{j} \ F_{Ec}=rac{1}{4\pi\epsilon_0}rac{2Q}{a^2}\hat{j}$$

$$F_{Ec} = rac{1}{4\pi\epsilon_0} rac{2Q}{a^2} \hat{j}$$

$$F_e=rac{1}{4\pi\epsilon_0}rac{(\sqrt{2}+0.5)q+2Q}{a^2}\hat{j}$$

C

Write down the total force on each of the other three corner charges also. [Hint: Use your result of part (b) and symmetry to write down the answer. No calculation is needed].

✓ Answer

Let
$$F_e=rac{1}{4\pi\epsilon_0}rac{(\sqrt{2}+0.5)q+2Q}{a^2}$$

$$F_{et} = F_e \hat{j}$$

```
egin{aligned} F_{eb} &= -F_e \hat{j} \ F_{el} &= -F_e \hat{i} \ F_{er} &= F_e \hat{i} \ F_{ec} &= 0 \end{aligned}
```

d

What value should the central charge ${\it Q}$ have in order that the forces on all five charges are exactly zero?

```
egin{aligned} \checkmark AnswerF_e = rac{1}{4\pi\epsilon_0}rac{(\sqrt{2}+0.5)q+2Q}{a^2}\ F_e = 0 \iff (\sqrt{2}+0.5)q+2Q = 0\ Q = -rac{2\sqrt{2}+1}{4}q \end{aligned}
```

2 Field of a semi-circular arc

A semi-circular arc in the +y half of radius R has a charge per unit length λ . We wish to compute the electric field \vec{E} at P, the center of the arc.

a

What is the total charge of the arc?

```
\checkmark Answer l=\pi R c=\lambda l c=\pi R\lambda
```

b

In what direction does \vec{E} point? Explain briefly.

It will either point \hat{j} or $-\hat{j}$ depending on the sign of λ as it is horizontally symmetric, meaning there will be no horizontal force at point P

C

Consider the infinitesimal segment of arc located at an angle θ from the x-axis. $d\theta$ is the angle subtended by this segment at P as shown in figure 3.

Ī

What is the charge of this segment?

✓ Answer

The charge will be $R\lambda d\theta$

ii

What is the distance of this segment from P?

✓ Answer

R

iii

Write down the displacement vector \vec{r} from the segment to P. Give your answer in terms of R, θ , \hat{i} and \hat{j} .

```
\checkmark Answer-R(\hat{i}\cos	heta+\hat{j}\sin	heta)
```

iv

Using Coulomb's law write down the electric field $d\vec{E}$ at P that is produced by the infinitesimal arc segment.

✓ Answer

$$-R(\hat{i}\cos heta+\hat{j}\sin heta)rac{1}{4\pi\epsilon_0}rac{R\lambda d heta}{R^2} \ -(\hat{i}\cos heta+\hat{j}\sin heta)rac{1}{4\pi\epsilon_0}\lambda d heta$$

d

By integration of the result of part (c) determine \vec{E}_x , the x-component of the total electric field at P.

```
\checkmark Answer
 \int_{0}^{\pi} -(\hat{i}\cos\theta) \frac{1}{4\pi\epsilon_{0}} \lambda d\theta 
 = 0
```

e

By integration of the result of part (c) determine \vec{E}_y , the y-component of the total electric field at P.

```
\checkmark Answer \int\limits_0^\pi -(\hat{j}\sin\theta) \frac{1}{4\pi\epsilon_0} \lambda d\theta = \frac{-\lambda}{2\pi\epsilon_0}
```

3 Field of a charged strip

An infinite strip of width 2a lies in the yz plane symmetrically about the z-axis. The strip has a uniform surface charge density σ and we are interested in the electric field at the point P, x units on the x_+ -axis. To calculate the field we will mentally subdivide the strip into narrow strips of infinitesimal width dy.

a

In what direction do you expect the field at P to point? Briefly explain your reasoning.

Either in the $+\hat{i}$ direction or the $-\hat{i}$ direction depending on the sign of σ

b

What is the charge per unit length of the infinitely long narrow strip?

```
\checkmark Answer \sigma dy
```

C

What is the electric field at P due to the narrow strip? [Hint: The narrow strip may be regarded as a line of charge. Use the result for the field of a line of charge derived in class].

```
Answer
\frac{x\sigma}{4\pi\epsilon_0} \int_{y=-a}^{a} \int_{z=-\infty}^{\infty} \frac{dz \, dy}{(x^2+y^2+z^2)^{3/2}}
\frac{x\sigma}{2\pi\epsilon_0} \int_{y=-a}^{a} \frac{dy}{x^2+y^2}
\frac{\sigma}{\pi\epsilon_0} \arctan\left(\frac{a}{x}\right)
```

d

Integrate your result of part (c) to obtain the total electric field at point P.

```
\checkmark Answer \frac{\sigma}{\pi\epsilon_0}\arctan\left(\frac{a}{x}\right)
```

e

What electric field do you expect at P in the limit that a >> x? Does your answer in part (d) reduce to the expected result? [Hint: $\tan -1 \xi \approx \pi/2$ for $\xi \gg 1$].

```
✓ Answer
```

$$\lim_{a \to \infty} \frac{\sigma}{\pi \epsilon_0} \arctan\left(\frac{a}{x}\right)$$
$$= \frac{\sigma}{2\epsilon_0}$$

This makes sense as it would approach an infinite sheet.

f

What electric field do you expect at P in the limit that a << x? Does your answer in part (d) reduce to the expected result? [Hint: $\tan -1 \ \xi \approx \xi$ for $\xi \ll 1$].

✓ Answer

$$\lim_{x \to \infty} \frac{\sigma}{\pi \epsilon_0} \arctan\left(\frac{a}{x}\right)$$
= 0

This makes sense as the sheet would approach relatively 0 width w.r.t. the point.

5 Electric Field Lines

a

Draw the electric field lines assuming positive/negative charge of a charged infinite cylinder. Remember to indicate the direction of the field lines.

Ī

The cylinder is positively charged

Answer

The cylinder is negatively charged

b

Draw field lines for the following particle configurations to visualise it's electric field:

A pair of positively charged particles

ii

An oppositely charged pair of particles

C

The nutty professor: A professor draws the pictures shown that he claims are the field lines for an electrostatic field. Explain what is wrong with each drawing.

✓ Answer

The first image has field lines crossing, which is not possible.

The second image has a loop, which is also not possible for electric fields.

6 Spherical shell

A spherical thick shell of inner radius a and outer radius b is uniformly charged with a volume charge density ρ .

a

What is the total charge of the shell, Q_{tot} ? Give your answer in terms of a, b and ρ .

\checkmark Answer $rac{4\pi ho}{3}(b^3-a^3)$

b

Based on symmetry in what direction do you expect the electric field to point outside the shell?

✓ Answer

Directly away from the center of the shell

C

Use Gauss's law to determine the magnitude of the electric field outside the shell at a distance r from the center of the shell (i.e. for r>b). Give your answer in terms of Q_{tot} , r and ϵ_0 .

 \checkmark Answer $ec{E}=rac{Q_{tot}}{4\pi\epsilon_0 r^2}\hat{r}$

d

Use Gauss's law to determine the magnitude of the electric field inside the shell at a distance r from the center of the shell (i.e. for r < a). Give your answer in terms of ρ , a, b, r and ϵ_0 .

√ Answer	
$ec{E}=ec{0}$	

Use Gauss's law to determine the magnitude of the electric field within the shell at a distance r from the center of the shell (i.e. for a < r < b). Give your answer in terms of ρ , a, b, r and ϵ_0

✓ Answer

$$egin{aligned} Q_{tot} &= rac{4\pi
ho}{3}(r^3 - a^3) \ ec{E} &= rac{
ho(r^3 - a^3)}{3\epsilon_0 r^2} \hat{r} \end{aligned}$$