

Department of Foundation Year

Logic (Application of Logic)

Symbolic

```
If A = 0 and B = 0 then Y = 0

If A = 0 and B = 1 then Y = 0

If A = 1 and B = 0 then Y = 0

If A = 1 and B = 1 then Y = 1
```

Logic function	Logic symbol	Truth table	Boolean expression	Logic function	Logic symbol	Truth table	Boolean expression
Buffer	A — Y	A Y 0 0 1 1	Y = A	2-input OR gate	A	A B Y 0 0 0 0 1 1 1 0 1 1 1 1	Y = A + B
Inverter (NOT gate)	A — Y	A Y 0 1 1 0	Y = Ā	2-input NOR gate	А	A B Y 0 0 1 0 1 0 1 0 0 1 1 0	Y = A + B
2-input AND gate	A	A B Y 0 0 0 0 1 0 1 0 0 1 1 1	Y = A•B	2-input EX-OR gate	A	A B Y 0 0 0 0 1 1 1 0 1 1 1 0	Y = A⊕B
2-input NAND gate	А	A B Y 0 0 1 0 1 1 1 0 1 1 1 0	Y = Ā◆B	2-input EX-NOR gate	A	A B Y 0 0 1 0 1 0 1 0 0 1 1 1	Y = Ā⊕B

Notice point and the way to write statements in logic gate

Notice point and the way to write statements in logic gate

Draw the truth table of statements below

1.
$$p \lor q \Leftrightarrow q \lor p$$

$$p \land q \Leftrightarrow q \land p \qquad Commutative$$
2. $p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$

$$p \land (q \land r) \Leftrightarrow (p \land q) \land r$$
 Associative

$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$
 Distributive

$$3.(\overline{p\vee q}) \Leftrightarrow \overline{p}\wedge \overline{q}$$

$$(\overline{p \wedge q}) \Leftrightarrow \overline{p} \vee \overline{q}$$
 De Morgan

$$4. p \Rightarrow q \Leftrightarrow \overline{q} \Rightarrow \overline{p}$$
 Contrapositive

$$5. p \Rightarrow q \Leftrightarrow \overline{p} \lor q$$
 Implicative