

Esquemas assimétricos

- Cifra
- Assinatura digital

Revisão

- Esquemas simétricos
 - Cifra e autenticidade
- Esquemas assimétricos
 - Cifra e assinatura digital

	Simétrico	Assimétrico
Confidencialidade	Cifra simétrica	Cifra assimétrica
Autenticidade	MAC	Assinatura Digital

Esquemas Assimétricos

- Esquemas simétricos
 - A mesma chave é utilizada na cifra e na decifra
 - A mesma chave é utilizada na geração da marca e na verificação da marca
- Esquemas assimétricos
 - Esquemas de cifra qual a operação privada?
 - "Todos podem cifrar, apenas o receptor autorizado pode decifrar"
 - Esquemas de autenticação qual a operação privada?
 - "Todos podem verificar, apenas o emissor autorizado pode assinar (gerar a marca)"
- Utilização
 - Transporte seguro de chaves simétricas
 - Assinatura digital

Crifra assimétrica – visão geral

Esquema de cifra assimétrica

- Esquema de cifra assimétrica algoritmos (G,E,D)
 - G função (probabilística) de geração de pares de chaves
 G: → KeyPairs , onde KeyPairs ⊆ PublicKeys × PrivateKeys
 - E função (probabilística) de cifra
 E: PublicKeys →PlainTexts → CipherTexts
 - D função (determinística) de decifra
 - **D**: PrivateKeys → CipherTexts → PlainTexts

Notas

- Propriedade da correcção
 - \forall m \in M, \forall (k_e,k_d) \in **KeyPairs**: D(k_d)(E(k_e)(m)) = m
- Propriedades de segurança
 - É computacionalmente infazível obter \mathbf{m} a partir de \mathbf{c} , sem o conhecimento de $\mathbf{k}_{\mathbf{d}}$
- Esquema assimétrico
 - utilização de chaves diferentes para os algoritmos E e D
- O espaço de mensagens, denotado por PlainTexts, é definido por todas as sequências de bits com dimensão menor do que o limite definido pelo esquema
- O espaço de criptogramas, denotado por CipherTexts, é definido como um sub-conjunto das sequências de bits com dimensão menor do que o limite definido pelo esquema
- Não garante integridade

Notas (2)

- Custo computacional significativamente maior do que os esquemas simétricos (maior do que duas ordens de grandeza)
- Limitações na dimensão da informação cifrada
 - Note-se que a entrada de E é PlainTexts e não {0,1}*
- Utilização em esquemas híbridos
 - Esquema assimétrico usado para cifrar uma chave simétrica transporte de chaves
 - Esquema simétrico usado para cifrar a informação

Princípios da primitiva RSA

- Sejam P e Q dois primos distintos e N = PQ
 - Dimensões típicas: $2^{1023} \le N \le 2^{4095}$
- Sejam E e D tal que ED mod (P-1)(Q-1) = 1
- Par de chaves
 - Chave pública: (E, N)
 - Chave privada: (D, N)
- Operação pública (utilizada na cifra)
 - C = M^E mod N
- Operação privada (utilizada na decifra)
 - M = C^D mod N
- A factorização de números primos é o problema que suporta a primitiva RSA

Esquema híbrido

 Devido ao seu elevado custo computacional, a cifra assimétrica é na prática usada para proteger chaves simétricas

Cifra assimétrica: arquitectura interna

Resumo da cifra assimétrica

- A arquitectura típica dos algoritmos de cifra e decifra dos esquemas de cifra assimétrica é constituída por:
 - Primitiva de cifra assimétrica ex. RSA
 - Método de formatação ou padding ex. PKCS#1 v1.5, OAEP
- · A mesma primitiva pode ser usada com vários tipos de formatação
- A função da formatação é
 - Adequar a entrada do algoritmo (PlainTexts) à entrada da primitiva
 - Evitar casos especiais
 - Introduzir informação aleatória
- As chaves são usadas apenas pela primitiva
 - Exemplo: chaves da primitiva RSA podem ser usada nos esquemas RSA+PKCS#1 v1.5 ou RSA+OAEP

Assinatura digital

- Cada interveniente tem 1 par de chaves por cada identidade digital
- Processo de assinatura usa chave privada
 - Ex: Só "Bob" pode assinar
- Processo de verificação usa chave pública
 - Ex: todos podem verificar
- Par de chaves usadas durante um largo período de tempo
- Chave pública difundida através de certificados digitais

Assinatura digital – visão geral

Esquema de assinatura digital

- Esquema de assinatura digital algoritmos (G,S,V)
 - G função (probabilística) de geração de pares de chaves
 G: → KeyPairs , onde KeyPairs ⊆ PublicKeys × PrivateKeys
 - S função (probabilística) de assinatura
 S: PrivateKeys → {0,1}* → Signatures
 - V função (determinística) de verificação
 V: PublicKeys → (Signatures × {0,1}*) → {true,false}

Notas

- Propriedade da correcção
 - $\forall m \in \{0,1\}^*, \forall \in (k_s,k_v) \in \mathbf{KeyPairs} : V(k_v)(S(k_s)(m),m) = \mathsf{true}$
- Propriedades de segurança
 - Sem o conhecimento de \mathbf{k}_{s} é computacionalmente infazível
 - falsificação selectiva dado m, encontrar s tal que
 V(k_v)(s, m) = true
 - falsificação existencial encontrar o par (m,s) tal que
 V(k_v)(s,m) = true

note-se que **k**_v é conhecido

- Assinatura **s** (pertencente ao conjunto **Signatures**) tem tipicamente dimensão fixa
 - Ex.: 160, 1024, 2048 bits
- Custo computacional significativamente maior do que os esquemas simétricos

Notas (2)

- Assimétrico
 - utilização de chaves diferentes para os algoritmos S e V
- Mensagem m é uma sequência de bytes de dimensão variável
- assinar ≠ decifrar; verificar ≠ cifrar

Assinatura digital: arquitectura interna

Assinatura digital: arquitectura interna

- A arquitectura típica dos algoritmos de assinatura e verificação dos esquemas de assinatura digital é constituída por:
 - Primitiva de assinatura/verificação assimétrica ex. RSA
 - Método de formatação ou padding ex. PKCS#1 v1.5, PSS
 - Função de hash
- A mesma primitiva pode ser usada com vários tipos de formatação e funções de hash
- As chaves são usadas apenas pela primitiva
 - Exemplo: chaves da primitiva RSA podem ser usada nos esquemas RSA+PKCS#1 v1.5 ou RSA+PSS

