

FHO Fachhochschule Ostschweiz

Digitales Multimeter DMM

Software

Autor : Christoph Capiaghi, MSc

NTB Interstaatliche Hochschule für Technik

Buchs Werdenbergstrasse 4 9471 Buchs / Schweiz christoph.capiaghi@ntb.ch

Projekt : 10707 Version : 1.10

Erstellt am : 12. Dezember 2017 Letzte Änderung : 14. Dezember 2017

Genehmigt : -

Zusammenfassung

Dieses Dokument beschreibt die Software des EuR I Projekts.

Dokument Versionsverwaltung

Version	Autor	QS	Datum	Status	Änderungen
1.0	C. Capiaghi	-	13. Dez. 2017	Freigabe	Erste Freigabe
1.1	C. Capiaghi	-	14. Dez. 2017		UART Einstellungen hinzugefügt

Original Dokument abgelegt in:

Inhaltsverzeichnis

1	Hin	weise zum Dokument	
	1.1	Software	5
2	Ins	tallation	6
	2.1	Arduino IDE	6
	2.2	Bootloader	6
	2.3	Fuse Bits	8
3	Ver	wendung	9
	3.1	STM_STATE_STARTUP	9
	3.2	STM_STATE_CONFIGURATION	9
	3.3	STM_STATE_VOLTAGE_MEASUREMENT	10
	3.4	STM_STATE_VOLTAGE_OSCILLOSCOPE	10
	3.5	STM_STATE_VOLTAGE_UART	11
	3.6	STM_STATE_CURRENT_MEASUREMENT	11
	3.7	STM_STATE_LED_TEST	11
	3.8	STM_STATE_POWER_TEST	12
	3.9	STM_STATE_NTC_TEST	12
	3.10	STM_STATE_DIY	
4	Ver	·besserungen	13
		~	

Verzeichnis der Bilder

Bild 2-1 Programmieradapter auswählen	. 7
Bild 2-2 Bootloader programmieren (Flash)	. 7
Bild 2-3 Einstellungen Fuse Bits ATmega32u4	. 8
Verzeichnis der Tabellen	
Tabelle 1-1: Beschreibung DUT, Software	. 5
Tabelle 1-2: Einstellungen UART	. 5
Tabelle 2-1: Einstellungen Fuse Bits, Zusammenfassung	. 8
Tabelle 3-1: Konfiguration Multimeter	9

1 Hinweise zum Dokument

Dieses Dokument beschreibt die Software zum EuR I Projekt Digitales Multimeter. Die Software hat zum Zweck, das Testen zu vereinfachen und die Stärken und Schwächen des Multimeters aufzuzeigen. Um eine einfache Anpassung zu gestatten, verwendet die Software Arduino Bibliotheken. Es ist ausdrücklich erwünscht, dass diese Software den eigenen Bedürfnissen angepasst wird. Aber: **Das Anpassen der Software ist kein Bestandteil des EuR-I Projekts**. Das vorliegende Beispiel soll einen Denkanstoss geben.

1.1 Software

Die verwendete Software ist in **Tabelle 1-1** beschrieben.

Tabelle 1-1: Beschreibung DUT, Software

Objekt	Beschreibung
Bezeichnung	Testprogramm.ino
Revision	V2.0, svn 268
Seriennummer	-

Die Einstellungen der UART Schnittstelle sind in der Tabelle 1-2 beschrieben

Tabelle 1-2: Einstellungen UART

Parameter	Wert	
Speed (baud)	115200 bps	
Data bits	8 bits	
Stop bits	1	
Parity	None	
Flow Control	None	

2 Installation

Zuerst muss auf das Board mit JTAG ein Bootloader geladen werden. Die Studenten bringen dafür das Board zu einem Betreuer. Falls ein JTAG Programmiergerät vorhanden ist (z.B. JTAG ICE mkII), kann der Bootloader selbständig auf das Board geladen werden. Dazu muss der Bootloader auf Kapitel 2.2 verwendet werden. Ebenfalls müssen die Fuse Bits korrekt gesetzt werden. Siehe dazu Kapitel 2.3.

2.1 Arduino IDE

Ihr findet im svn unter 10707_NTB_EuR1_Projekt\Studenten die komplette Arduino Umgebung und die dazugehörige Software. Schritte:

- 1. Entpacke die Dateien arduino-1.x.y
- 2. Starte das Programm *arduino-1.x.y* \ *arduino-1.x.y* \ *arduino.exe*
- 3. Öffne das Testsoftware.ino file: File → Open
- 4. Wähle $Tools \rightarrow Board \rightarrow PASE$ aus
- 5. Schliesse das PASE Board an den PC an
- 6. Wähle den korrekten Com Port aus: $Tools \rightarrow Port$

- 7. Programmiere das Board mit dem Pfeil Symbol
- 8. Ignoriere die SD Karten Warnungen
- 9. Das Board ist mit dem neuen Programm programmiert

2.2 Bootloader

Der Bootloader ist ebenfalls im svn unter 10707_NTB_EuR1_Projekt\Studenten abgelegt und heisst Caterina-promicro8.hex. Für die Programmierung wird das Programm Atmel Studio 7.0 verwendet. Der Bootloader wird von einem Betreuer programmiert und muss nur einmal programmiert werden. Danach kann die Arduino DIE verwendet werden.

Vorgehen:

 Unter Tools → Device Programming den richtigen Programmieradapter (Tool) und richtiges Interface auswählen

Bild 2-1 Programmieradapter auswählen

2. Zum Unterpunkt Memories wechseln und korrekten Bootloader unter Flash auswählen

Bild 2-2 Bootloader programmieren (Flash)

- 3. Program klicken
- 4. Eventuell Programmierung mit Verify prüfen
- 5. Fuse Bits kontrollieren / setzten (siehe Kapitel 2.3)

2.3 Fuse Bits

Die Einstellungen für die Fuse Bits sind im Bild 2-3 dargestellt.

Bild 2-3 Einstellungen Fuse Bits ATmega32u4

In der Tabelle 2-1 sind die Einstellungen zusammengefasst.

Tabelle 2-1: Einstellungen Fuse Bits, Zusammenfassung

Fuse Register	Value	
EXTENDED	0xFE	
HIGH	0x90	
LOW	0xFF	

3 Verwendung

Das Hauptprogramm ist als State-Maschine aufgebaut. Nachfolgend sind die verschiedenen Zustände dokumentiert.

Achtung: Alle Kabel müssen von COM, A und V Port vor dem Start des DMM entfernt werden. Ansonsten kalibriert sich das Messgerät falsch.

3.1 STM_STATE_STARTUP

Der Startup beinhaltet:

- Die gespeicherten Werte werden aus dem EEPROM geladen
- Messung der Offsetspannung für die Strom- und Spannungsmessung
- Begrüssung über UART und Display

Der State wechselt automatisch zum Nächsten.

3.2 STM_STATE_CONFIGURATION

Hier kann das Multimeter konfiguriert werden. Die Tabelle 3-1 listet die Konfiguration der Reihe nach auf. Ohne diese Werte wird die Spannung bzw. der Strom falsch berechnet. Die Daten werden im EEPROM abgespeichert. Bei Starten des DMM werden die Werte aus dem EEPROM abgerufen.

Tabelle 3-1: Konfiguration Multimeter

Beschreibung	Wert
Enter damping Du,high (float)	
Enter damping Du,low (float)	
Enter D Vaule Poti High (uint8_t)	0 255
Enter D Vaule Poti Low (uint8_t)	0 255
Enter Gi (float)	
Enter Shunt Value in Ohm (float)	0.05 nominal

Begriffserklärung: High bedeutet hohe Eingangsspannung (grosser Eingangsspannungsbereich).

- Spannungsmessung
 - o Du,high: Dämpfung $(\frac{1}{G})$ bei hoher Eingangsspannung (50 V)

$$G_{U,high} = \frac{R_{eq2,high}}{R_{700} + R_{eq2,high}} = \cdots \rightarrow D_{U,high} = \frac{1}{G_{U,high}}$$

o Du,low: Dämpfung bei kleiner Eingangsspannung

$$G_{U,low} = \frac{R_{eq2,low}}{R_{700} + R_{eq2,low}} = \cdots \rightarrow D_{U,low} = \frac{1}{G_{U,low}}$$

o D Value Poti High: Potentiometer Parameter bei hoher Eingangsspannung

$$D_{high} = rac{R_{high} \cdot 256}{R_{AW}}$$
 , $R_{AW} = 100 \ \mathrm{k}\Omega$

- o D Value Poti Low: Potentiometer Parameter bei kleiner Eingangsspannung
- Strommessung
 - O Gi: Betrag der Verstärkung von der Strommessung $|G_I| = \left| -\frac{R_{204}}{R_{202}} \right|$
 - O Shunt Value: Widerstandswert des Shunts (nominal 50 m Ω)

Taster:

Links: Vorhergehendes Menü Enter: Startet Konfiguration

Rechts: Nächstes Menü

3.3 STM_STATE_VOLTAGE_MEASUREMENT

Misst die Spannung und zeigt diese auf dem Display an.

Taster:

Links: Vorhergehendes Menü

Enter: Wechselt Verstärkungsfaktor (high und low)

Rechts: Nächstes Menü

3.4 STM_STATE_VOLTAGE_OSCILLOSCOPE

Misst die Spannung (ADC Wert) und zeigt diesen auf dem Display als Waveform auf.

Taster:

Links: Vorhergehendes Menü

Enter: Wechselt Verstärkungsfaktor (high und low)

Rechts: Nächstes Menü

3.5 STM_STATE_VOLTAGE_UART

Misst die Spannung (ADC Wert und Umrechnung) und gibt diese im csv-Format auf der UART-Schnittstelle aus. Aufbau:

Sample, ADC Wert, Berechneter Wert

Taster:

Links: Vorhergehendes Menü

Enter: Wechselt Verstärkungsfaktor (high und low)

Rechts: Nächstes Menü

3.6 STM_STATE_CURRENT_MEASUREMENT

Misst den Strom und zeigt diesen auf dem Display an.

Taster:

Links: Vorhergehendes Menü Enter: Wechselt Darstellung

Rechts: Nächstes Menü

3.7 STM_STATE_LED_TEST

Prüft die Funktion der RGB LEDs und der LEDs.

Taster:

Links: Vorhergehendes Menü

Enter: Startet LED Test Rechts: Nächstes Menü

3.8 STM_STATE_POWER_TEST

Maximaler Stromverbrauch:

- Alle RGB LEDs auf Weiss
- Alle LEDs ein
- Bildschirm mit weissen Hintergrund

Taster:

Links: Vorhergehendes Menü

Enter: Startet Power Test Rechts: Nächstes Menü

3.9 STM_STATE_NTC_TEST

Liest den ADC Wert der Temperaturmessung aus.

Taster:

Links: Vorhergehendes Menü

Enter: Misst ADC Wert von der Temperaturmessung

Rechts: Nächstes Menü

3.10 STM_STATE_DIY

Beispiel State, für den eigenen Schaltungsteil.

Taster:

Links: Vorhergehendes Menü

Enter: Nicht implementiert

Rechts: Nächstes Menü

4 Verbesserungen

Folgende Funktionen sind noch nicht optimal ausgelegt:

- Effiziente Berechnung Spannung / Strom aus ADC Werten
 - o Fix-Punkt? Optimierungen
- Effizientere Darstellung auf dem Display
- Achsenbeschriftungen Display
- NTC: Zurzeit nur ADC Wert
- Nur Spannung- und Strommessung. Andere Messungen möglich?
- Automatische Bereichsumschaltung (z.B. wenn ADC-Wert eine Schwelle überschreitet)
- Logging Funktion (Achtung: Speicher knapp)
- Speicheroptimierung