Analízis 2

Tételbizonyítások vizsgára

A jegyzetet Bauer Bence készítette Dr. Weisz Ferenc előadása alapján.

1. Korlátos zárt intervallumon értelmezett függvény korlátos is.

Tétel: Ha $f:[a,b]\to\mathbb{R}$ folytonos, akkor f korlátos.

Bizonyítás: f korlátos, ha $\exists K > 0$, $\forall x \in [a, b]$: $|f(x)| \leq K$

Indirekt: Tegyük fel, hogy ez nem igaz, azaz

$$\Rightarrow \forall K > 0, \exists x \in [a, b] : |f(x)| > K.$$
 Legyen a $K = n. \Rightarrow \forall n \in \mathbb{N}, \exists x_n \in [a, b] : |f(x_n)| > n$

$$\Rightarrow x_n \in [a,b] \Rightarrow (x_n)$$
 korlátos \Rightarrow Bolzano - Weierstrass tétel miatt

 $\exists (x_{n_k})$ konvergens részsorozat $\Rightarrow \lim(x_{n_k}) =: \alpha$. Ekkor $\alpha \in [a, b]$

hiszen, ha $\alpha \notin [a, b]$, akkor $\exists \varepsilon > 0 : [a, b] \cap K_{\varepsilon}(\alpha) = \emptyset$

 $\Rightarrow \exists k_0, \forall k \geq k_0 : x_{n_k} \in K_{\varepsilon}(\alpha)$, viszont ez ellentmondás.

$$x_{n_k} \in [a, b] \Rightarrow \alpha \in [a, b] \Rightarrow f \in C(\alpha)$$

Alkalmazzuk az átviteli elvet, $\lim(x_{n_k}) = \alpha \Rightarrow \lim f(x_{n_k}) = f(\alpha) \Rightarrow (f(x_{n_k}))$ konvergens.

 $\Rightarrow (f(x_{n_k}))$ korlátos. És így ellentmondásra juttotunk, hiszen:

$$|f(x_{n_k})| > n_k \Rightarrow (f(x_{n_k}))$$
 nem korlátos.

2. Weierstrass-tétel

Tétel: Ha $f:[a,b]\to\mathbb{R}$ folytonos, akkor f-nek létezik abszolút maximuma és minimuma is.

Bizonyítás: Ha $f:[a,b] \to \mathbb{R}$ folytonos, akkor korlátos

$$\Rightarrow M := \sup\{f(x), \text{ha } x \in [a, b]\}, m := \inf\{f(x), \text{ha } x \in [a, b]\}, M, m \in \mathbb{R}$$

$$\Rightarrow \forall n \geq 1$$
-re, $\exists x \in [a,b]: M - \frac{1}{n} < f(x) \leq M$

$$\Rightarrow \lim f(x_n) = M \Rightarrow (x_n)$$
 korlátos.

$$\Rightarrow \exists (x_{n_k}) \text{ konvergens részsorozat} \Rightarrow \lim x_{n_k} = \alpha, \alpha \in [a, b] \Rightarrow \text{átviteli elv}, f \in C(\alpha)$$

$$\Rightarrow \lim f(x_{n_k}) = f(\alpha).$$

De!
$$\lim f(x_n) = M \Rightarrow \lim f(x_{n_k}) = M \Rightarrow M = f(\alpha)$$

m -re hasonló.

3. Bolzano-tétel

Tétel: Tfh. $f:[a,b]\to\mathbb{R}$ folytonos. Ha $f(a)\cdot f(b)<0$ akkor $\exists x\in[a,b]:f(x)=0$

Bizonyítás: Legyen $[x_0, y_0] = [a, b]$ és tfh. f(a) < 0 és f(b) > 0

Legyen $z_0 := \frac{x_0 + y_0}{2}$, ekkor 3 eset lehetséges:

1.
$$f(z_0) = 0$$

2.
$$f(z_0) < 0$$
, ekkor legyen $[x_1, y_1] := [z_0, y_0]$

3.
$$f(z_0) > 0$$
, ekkor legyen $[x_1, y_1] := [x_0, z_0]$

Ezt az eljárást folytatva véges sok lépésben kapunk ξ -t amelyre $f(\xi) = 0$, ha nem akkor kapunk egy $([x_n, y_n])$ intervallum sorozatot, amelyre a következők igazak:

1.
$$[x_{n+1}, y_{n+1}] \subset [x_n, y_n]$$

2.
$$f(x_n) < 0$$
, $f(y_n) > 0$

3.
$$y_n - x_n = \frac{y_0 - x_0}{2^n}$$

A Cantor-tétel miatt

$$\exists \xi \in \bigcap_{n=0}^{+\infty} [x_n, y_n] \text{ Mivel } y_n - x_n = \frac{y_0 - x_0}{2^n} \to 0 \quad (n \to \infty) \text{ ,ez\'ert } \exists ! \, \xi \in \bigcap_{n=0}^{+\infty} [x_n, y_n]$$

Továbbá
$$0 \le \xi - x_n \le y_n - x_n \to 0 \Rightarrow \lim(x_n) = \xi$$
, és $y_n - \xi \le y_n - x_n \to 0 \Rightarrow \lim(y_n) = \xi$

Tudjuk, hogy $f(x_n) < 0$ és $\lim(x_n) = \xi$ és $f \in C(\xi)$, ezért az átviteli elv miatt

$$\lim f(x_n) = f(\xi) \Rightarrow f(\xi) \le 0$$

Hasonlóan $f(y_n) > 0$, $\lim(y_n) = \xi \Rightarrow \lim f(y_n) = f(\xi)$

itt: $f(y_n) > 0$ ezért $f(\xi) \ge 0 \Rightarrow f(\xi) = 0$

4. Heine-tétel

Tétel: Ha $f:[a,b]\to\mathbb{R}$ folytonos, akkor f egyenletesen folytonos.

Bizonyítás: (Indirekt) Tfh. f nem egyenletesen folytonos.

$$\Rightarrow \exists \varepsilon > 0, \forall \delta > 0, \exists x, y \in [a, b] : |x - y| < \delta : |f(x) - f(y)| \ge \varepsilon$$

Legyen
$$\delta = \frac{1}{n}$$
 $n \in \mathbb{N}_+ \Rightarrow \exists \varepsilon > 0, \forall n \in \mathbb{N}_+ : \exists x_n, y_n \in [a, b] : |x_n - y_n| < \frac{1}{n} : |f(x_n) - f(y_n)| \ge \varepsilon$

Tekintsük az $(x_n): \mathbb{N} \to [a, b]$ sorozatot $\Rightarrow (x_n)$ korlátos.

Bolzano-Weierstrass kiv. tétel miatt $\exists (x_{n_k})$ konvergens részsorozat, azaz:

$$\lim(x_{n_k}) =: \alpha, \quad \alpha \in [a, b]$$

De!
$$|y_{n_k} - \alpha| \le |y_{n_k} - x_{n_k}| + |x_{n_k} - \alpha| < \frac{1}{n_k} + |x_{n_k} - \alpha| \to 0$$
 azaz $\lim(y_{n_k}) = \alpha$

 $f \in C(\alpha)$ átviteli elv miatt

$$\lim(f(x_{n_k})) = f(\alpha) \text{ \'es } \lim(f(y_{n_k})) = f(\alpha) \Rightarrow \lim(f(x_{n_k}) - f(y_{n_k})) = 0$$

viszont ez ellentmondás, azzal, hogy $|f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon$

5. Az inverzfüggvény folytonossága

Tétel: Ha $f:[a,b]\to\mathbb{R}$ folytonos és injektív, akkor f^{-1} is folytonos.

Bizonyítás: 1. lépés: $f^{-1} \exists$ Indirekt.

Tfh. f^{-1} nem folytonos. $\Rightarrow \exists y_0 \in R_f, f^{-1} \notin C(y_0) \Rightarrow \text{ átviteli elv.}$

$$\exists y_n \in R_f, \lim(y_n) = y_0 \colon \lim(f^{-1}(y_n)) \neq f^{-1}(y_0)$$

Legyen
$$x_n = f^{-1}(y_n), n \in \mathbb{N} \Rightarrow \lim(x_n) \neq x_0 \Rightarrow \exists \delta > 0 \colon \{n : |x_n - x_0| \geq \delta\}$$
 végtelen.

Legyen n_k indexsorozat, hogy: $|x_{n_k} - x_0| \ge \delta$

 $(x_{n_k}): \mathbb{N} \to [a, b] \Rightarrow (x_{n_k})$ korlátos. $\Rightarrow \exists$ konvergens részsorozat.

$$(x_{n_k})': \lim (x_{n_k})':=\alpha \quad \mathbf{De!} \quad |(x_{n_k})'-x_0| \geq \delta \Rightarrow |\alpha-x_0| \geq \delta \Rightarrow \alpha \neq x_0$$

2. lépés: $f \in C(\alpha)$ $\alpha \in [a, b]$

átviteli elv
$$\Rightarrow \lim_{(y_{n_k})'} \underbrace{f(x_{n_k})'}_{(y_{n_k})'} = f(\alpha) \Rightarrow \lim_{(y_{n_k})'} \underbrace{f(\alpha)}_{(y_{n_k})'}$$

De! $\lim (y_{n_k})' = y_0 = f(x_0) \Rightarrow f(\alpha) = f(x_0)$ f injektív. $\Rightarrow \alpha = x_0$ Ez ellentmondás.

6. Folytonos invertálható függvény jellemzése a monotonitással.

Tétel: $f:[a,b]\to\mathbb{R}$ folytonos és injektív $\Rightarrow f$ szig. mon.

Bizonyítás: Ha f(a) < f(b), ekkor f szig. mon. nő

1. Igazoljuk, hogy $f(a) = min\{f(x) : x \in [a, b]\}$ és $f(b) = max\{f(x) : x \in [a, b]\}$

Csak az elsőt. Indirekten, Tfh:

f(a) > minf (< nem lehet) Weierstrass-tétel $\Rightarrow \exists \alpha \in [a, b] : f(\alpha) = minf \quad \alpha \neq a, b$

Tekintsük az $f: [\alpha, b] \to \mathbb{R}$ függvényt. A Bolzano-tétel miatt $c = f(a) \in (f(\alpha), f(b))$ -hoz is

 $\exists \xi \in [\alpha, b] : f(a) = f(\xi)$ f injektív $\Rightarrow a = \xi$ Ellentmondás.

2. Igazoljuk, ha $x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \quad (x_1, x_2 \in [a, b])$

Indirekt, Tfh: $f(x_1) > f(x_2)$

Ekkor $f(x_1) \in (f(x_2), f(b))$ Tekintsük az $f : [x_2, b] \to \mathbb{R}$ függvényt.

 $c = f(x_1)$ -hez is $\exists \xi \in (x_2, b) : f(x_1) = f(\xi)$ f injektív $\Rightarrow x_1 = \xi$ Ellentmondás.

7. Differenciálható függvények összege, szorzata, hányadosa.

Tétel: Legyen $f, g \in \mathbb{R} \to \mathbb{R}, a \in int(\mathcal{D}_f \cap \mathcal{D}_g), \quad f, g \in \mathcal{D}(a)$ Ekkor:

i,
$$f + g \in \mathcal{D}(a)$$
 és $(f + g)'(a) = f'(a) + g'(a)$

ii,
$$f \cdot g \in \mathcal{D}(a)$$
 és $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$

iii, Ha
$$g(a) \neq 0$$
, akkor $\frac{f}{g} \in \mathcal{D}(a)$ és $(\frac{f}{g})'(a) = \frac{(f'(a) \cdot g(a) - f(a) \cdot g'(a))}{g^2(a)}$

Bizonyítás:

i,
$$a \in int(\mathcal{D}_f \cap \mathcal{D}_q) = int\mathcal{D}_{f+q}$$

$$\lim_{x \to a} \frac{(f+g)(x) - (f+g)(a)}{x - a} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} + \lim_{x \to a} \frac{g(x) - g(a)}{x - a} = f'(a) + g'(a)$$

$$\Rightarrow (f+g)'(a) = f'(a) + g'(a)$$

ii,
$$\lim_{x \to a} \frac{(f \cdot g)(x) - (f \cdot g)(a)}{x - a} = \lim_{x \to a} \frac{f(x) \cdot g(x) - f(a) \cdot g(a)}{x - a} =$$

$$= \lim_{x \to a} \frac{f(x) \cdot g(x) - g(x) \cdot f(a) + g(x) \cdot f(a) - f(a) \cdot g(a)}{x - a} =$$

$$= \lim_{x \to a} g(x) \cdot \underbrace{\frac{f(x) - f(a)}{x - a}}_{\to f'(a)} + \lim_{x \to a} f(a) \cdot \underbrace{\frac{g(x) - g(a)}{x - a}}_{\to g'(a)} \longrightarrow f'(a) \cdot g(a) + f(a) \cdot g'(a) \quad (x \to a)$$

$$\Rightarrow (f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$$

iii, Először igazoljuk, hogy
$$(\frac{1}{g})'(a) = -\frac{g'(a)}{g^2(a)}$$

$$\lim_{x \to a} \frac{\frac{1}{g}(x) - \frac{1}{g}(a)}{x - a} = \lim_{x \to a} \frac{\frac{1}{g(x)} - \frac{1}{g(a)}}{x - a} = \lim_{x \to a} \frac{g(a) - g(x)}{g(x) \cdot g(a) \cdot (x - a)} = \lim_{x \to a} \frac{1}{g(x)} - \frac{1}{g(a)} = \lim_{x \to a} \frac{1}{g(x)} - \frac{1}{g(x)} = \lim_{x \to a} \frac{1}{g(x)} = \lim_{x \to a} \frac{1}{g(x)} - \frac{1}{g(x)} = \lim_{x \to a} \frac{1}{g(x)} = \lim_{x \to a} \frac{1}{g(x)} - \frac{1}{g(x)} = \lim_{x \to a} \frac{1}{g(x)} - \frac{1}{g(x)} = \lim_{x \to a} \frac{1}{g(x)} - \frac{1}{g(x)} = \lim_{x \to a} \frac{1}{g(x)} = \lim_{x \to$$

$$= \lim_{x \to a} \underbrace{\left(-\frac{1}{g(x) \cdot g(a)} \right)}_{\rightarrow \frac{-1}{g^2(a)}} \cdot \underbrace{\left(\frac{g(x) - g(a)}{x - a} \right)}_{\rightarrow g'(a)} \longrightarrow -\frac{g'(a)}{g^2(a)} \quad (x \to a)$$

$$\Rightarrow (\frac{f}{g})'(a) = (f \cdot \frac{1}{g})'(a) = f'(a) \cdot \frac{1}{g(a)} + f(a) \cdot (\frac{1}{g})'(a) = \frac{f'(a)}{g(a)} - \frac{f(a) \cdot g'(a)}{g^2(a)} = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)}$$

8. Differenciálható függvények kompozíciója.

Tétel:
$$f,g \in \mathbb{R} \to \mathbb{R}, R_g \subset D_f, g \in \mathcal{D}(a), f \in \mathcal{D}(g(a)), \text{ ekkor}$$

$$f \circ g \in \mathcal{D}(a) \text{ és } (f \circ g)'(a) = f'(g(a)) \cdot g'(a)$$

$$\underline{\text{Bizonyítás:}} \quad g \in \mathcal{D}(a) \Rightarrow a \in int\mathcal{D}_g \Rightarrow int\mathcal{D}_{f \circ g}$$

$$g \in \mathcal{D}(a) \Rightarrow \exists \varepsilon_1 \in \mathbb{R} \to \mathbb{R}, \lim_a \varepsilon_1 = 0 \text{ és } g(x) - g(a) = g'(a)(x - a) + \varepsilon_1(x)(x - a) \quad (x \in D_f)$$

$$f \in \mathcal{D}(g(a)) \Rightarrow \exists \varepsilon_2 \in \mathbb{R} \to \mathbb{R}, \lim_{g(a)} \varepsilon_2 = 0 \text{ és } f(y) - f(g(a)) = f'(g(a)) \cdot (y - g(a)) + \varepsilon_2(y) \cdot (y - g(a))$$

$$\text{Legyen } y = g(x)$$

$$f(g(x)) - f(g(a)) = f'(g(a)) \cdot (g(x) - g(a)) + \varepsilon_2(g(x)) \cdot (g(x) - g(a)) =$$

$$= f'(g(a)) \cdot (g'(a)(x - a) + \varepsilon_1(x)(x - a)) + \varepsilon_2(g(x)) \cdot (g'(a)(x - a) + \varepsilon_1(x)(x - a)) =$$

$$= f'(g(a)) \cdot g'(a) \cdot (x - a) + (x - a) \cdot \underbrace{(f'(g(a)) \cdot \varepsilon_1(x) + \varepsilon_2(g(x)) \cdot g'(a) + \varepsilon_1(x) \cdot \varepsilon_2(g(x)))}_{\varepsilon(x)}$$

$$\varepsilon_1 \to 0, \quad (x \to a)$$

$$g(x) \to g(a)$$

$$\Rightarrow \lim_{x \to a} \varepsilon_2(g(x)) = \lim_{g(a)} \varepsilon_2 = 0 \Rightarrow \lim_a \varepsilon = 0$$

$$\Rightarrow (f \circ g)'(a) = f'(g(a)) \cdot g'(a) \quad \blacksquare$$

9. Az inverz függvény deriváltja.

Tétel: Legyen $f:(a,b)\to\mathbb{R}$, szig. mon. növő és folytonos függvény.

Ha $\xi \in (a, b), f \in \mathcal{D}(\xi)$ és $f'(\xi) \neq 0$, akkor

$$(f^{-1}) \in \mathcal{D}(\eta)$$
 és $(f^{-1})'(\eta) = \frac{1}{f'(\xi)}$, ahol $\eta = f(\xi)$

Bizonyítás: $f:(a,b)\to\mathbb{R}$ folytonos $\Rightarrow R_f$ intervallum.

f szig. mon. növő $\Rightarrow R_f$ nyílt intervallum $\Rightarrow \eta \in intR_f$ $f^{-1}: R_f \to D_f$

$$\lim_{y \to \eta} \frac{f^{-1}(y) - f^{-1}(\eta)}{y - \eta} = \lim_{x \to \xi} \frac{x - \xi}{f(x) - f(\xi)} = \lim_{x \to \xi} \frac{1}{\frac{f(x) - f(\xi)}{x - \xi}} \longrightarrow \frac{1}{f'(\xi)} \quad (x \to \xi)$$

Legyen $f(x) = y \Leftrightarrow x = f^{-1}(y)$ $\xi = f^{-1}(\eta)$

Ui. $x \to \xi$, mert $y \to \eta$: $f:(a,b) \to \mathbb{R}$ folytonos és injektív $\Rightarrow f^{-1}$ folytonos $\Rightarrow f^{-1}(y) \to f^{-1}(\eta)$ $\Rightarrow x \to \xi$

$$(f^{-1})'(\eta) = \lim_{y \to \eta} \frac{f^{-1}(y) - f^{-1}(\eta)}{y - \eta} = \lim_{x \to \xi} \frac{1}{\frac{f(x) - f(\xi)}{x - \xi}} = \frac{1}{f'(\xi)} \quad \blacksquare$$

10. Hatványsor összegfüggvényének deriváltja

Tétel: Legyen $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsor konvergenciasugara R>0 és legyen

$$f(x) := \sum_{\substack{n=0 \ \infty}}^{\infty} \alpha_n (x-a)^n$$
 $x \in K_R(a)$. Ekkor $f \in \mathcal{D}(x_0)$ $\forall x_0 \in K_R(a)$ és

$$f'(x_0) = \sum_{n=1}^{\infty} n \cdot \alpha_n \cdot (x_0 - a)^{n-1}$$
, ahol $x_0 \in K_R(a)$

1. lépés: Igazoljuk, hogy $\sum n \cdot \alpha_n \cdot r^n$ abszolút konvergens $\forall 0 < r < R$

Legyen 0 < r < r' < R és x = a + r'

x-ben konvergens a hatványsor $\Rightarrow \sum_{n=0}^{\infty} \alpha_n(r')^n$ konvergens $\Rightarrow \lim_{n \to +\infty} \alpha_n(r')^n = 0 \Rightarrow (\alpha_n(r')^n)$ korlátos

$$\Rightarrow \exists M > 0 : |\alpha_n(r')^n| \le M \Rightarrow |\alpha_n| \le \frac{M}{(r')^n} \Rightarrow \sum_{n=0} |n \cdot \alpha_n \cdot r^n| \le M \cdot \sum_{n=0} n \cdot (\frac{r}{r'})^n$$

ez konvergens, hiszen a gyökkritérium miatt
$$\sqrt[n]{n \cdot (\frac{r}{r'})^n} = \sqrt[n]{n} \cdot (\frac{r}{r'}) \to (\frac{r}{r'}) < 1 \Rightarrow \sum_{n=0}^{n=0} n \cdot \alpha_n \cdot r^n \text{ abszolút konvergens}$$

$$\Rightarrow \sum_{n=1} n \cdot \alpha_n \cdot r^{n-1} \text{ is abszolút konvergens} \Rightarrow \forall \varepsilon > 0, \exists N : \sum_{n=N+1}^{\infty} |n \cdot \alpha_n \cdot r^{n-1}| < \frac{\varepsilon}{2}$$

2. lépés:

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| = \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=0}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=0}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=0}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=0}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=0}^{\infty} n \cdot \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} n \cdot \alpha_n (x_0 - a)^n - \sum_{n=0}^{$$

$$\leq \underbrace{\left| \sum_{n=1}^{N} \frac{\alpha_{n}(x-a)^{n} - \alpha_{n}(x_{0}-a)^{n}}{x - x_{0}} - \sum_{n=1}^{N} n \cdot \alpha_{n}(x_{0}-a)^{n-1} \right|}_{(I)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n}}{x - x_{0}} \right|}_{(II)} + \underbrace{\left| \sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n}}{x$$

$$+ \underbrace{\left| \sum_{n=N+1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right|}_{(III)} = (I) + (II) + (III)$$

Tfh. $|x_0 - a| < r < R$

Mivel
$$x \to x_0$$
 ezért feltehető, hogy $|x - a| < r \Rightarrow (III) \le \sum_{n=N+1}^{\infty} n \cdot |\alpha_n| \cdot r^{n-1} < \frac{\varepsilon}{2}$

$$(II) \le \sum_{n=N+1}^{\infty} |\alpha_n| \left| \frac{((x-a) - (x_0 - a))((x-a)^{n-1} + (x-a)^{n-2}(x_0 - a) + \dots + (x_0 - a)^{n-1})}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a))((x-a)^{n-1} + (x_0 - a)^{n-2}(x_0 - a) + \dots + (x_0 - a)^{n-1})}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a))((x-a)^{n-1} + (x_0 - a)^{n-2}(x_0 - a) + \dots + (x_0 - a)^{n-1})}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a))((x-a)^{n-1} + (x_0 - a)^{n-2}(x_0 - a) + \dots + (x_0 - a)^{n-1})}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a))((x-a)^{n-1} + (x_0 - a)^{n-2}(x_0 - a) + \dots + (x_0 - a)^{n-1})}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x-a) - (x_0 - a)}{x - x_0} \right| = \frac{1$$

$$= \sum_{n=N+1}^{\infty} |\alpha_n| |(x-a)^{n-1} + (x-a)^{n-2} (x_0-a) + \dots + (x_0-a)^{n-1}| = \sum_{n=N+1}^{\infty} |\alpha_n| \cdot n \cdot r^{n-1} < \frac{\varepsilon}{2}$$

$$(I) \le \sum_{n=1}^{N} |\alpha_n| \underbrace{\frac{(x-a)^n - (x_0 - a)^n}{x - x_0} - n \cdot (x_0 - a)^{n-1}}_{\to 0, \text{ ha } x \to x_0}$$

$$g(x) = (x-a)^n \Rightarrow$$
 a tört határértéke $g'(x_0) = n \cdot (x_0-a)^{n-1} \quad (x \to x_0)$

$$\Rightarrow \exists \delta > 0, (I) < \varepsilon, \text{ ha } |x - x_0| < \delta$$

$$\Rightarrow \left| \frac{f(x) - f(x_0)}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| < \varepsilon + \varepsilon = 2\varepsilon \quad (\text{ ha } |x - x_0| < \delta)$$

$$\Rightarrow \lim \left| \frac{f(x) - f(x_0)}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| = 0$$

$$f \in \mathcal{D}(x_0)$$
 és $f'(x_0) = \sum_{n=1}^{\infty} n \cdot \alpha_n \cdot (x_0 - a)^{n-1}$

11. A differenciálszámítás középértéktételei (Rolle-, Cauchy-, Lagrange-tétel).

1. Rolle-tétel

Tétel: Tfh. $f \in C[a,b]$ és $f \in \mathcal{D}(a,b)$

Ha f(a) = f(b), ekkor $\exists \xi \in (a, b) : f'(\xi) = 0$

Bizonyítás: $f \in C[a, b] \Rightarrow$ Weierstrass-tétel miatt

$$\Rightarrow \exists \alpha \in [a,b]: f(\alpha) = \min_{[a,b]} f =: m \text{ \'es } \exists \beta \in [a,b]: f(\beta) = \max_{[a,b]} f =: M$$

1. lépés: Tfh. $m=M\Rightarrow f=m\quad ([a,b]$ -n), a függvény konstans $\Rightarrow f'=0\quad [a,b]$ -n

2. lépés: $m \neq M$ és $m \neq f(a) = f(b) \Rightarrow m = f(\alpha) \Rightarrow \alpha \neq a, b \Rightarrow \alpha \in (a, b)$

 $\Rightarrow \alpha$ -ban lokális minimum van. $\Rightarrow f'(\alpha) = 0$

3. lépés: Tfh. $m \neq M$ és m = f(a) = f(b)

 $\Rightarrow M \neq f(a) = f(b) \Rightarrow \beta \neq a, b \Rightarrow \beta \in (a, b) \Rightarrow \beta$ -ban lokális maximum van $\Rightarrow f'(\beta) = 0$

2. Cauchy-tétel

Tétel: Tfh. $f, g \in C[a, b], f, g \in \mathcal{D}(a, b)$ és $g'(x) \neq 0$ $(x \in (a, b))$

Ekkor: $\exists \xi \in (a,b) : \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$

Bizonyítás: $g(b) \neq g(a)$, hiszen különben $\exists \xi \in (a,b) : g'(\xi) = 0$

Válasszuk meg λ -t úgy, hogy az $F:=f-\lambda g$ függvényre alkalmazhassuk a Rolle-tételt

$$F \in C[a,b], F \in \mathcal{D}(a,b), F(a) = F(b) \Leftrightarrow f(a) - \lambda g(a) = f(b) - \lambda g(b) \Leftrightarrow \lambda = \frac{f(b) - f(a)}{g(b) - g(a)}$$

 $\Rightarrow \text{Rolle-t\'etel miatt } \exists \xi \in (a,b): F'(\xi) = 0 \Leftrightarrow F'(\xi) = f'(\xi) - \lambda g'(\xi) = 0 \Leftrightarrow \lambda = \frac{f'(\xi)}{g'(\xi)} \quad \blacksquare$

3. Lagrange-tétel

Tétel: Tfh. $f \in C[a,b], f \in \mathcal{D}(a,b)$

Ekkor $\exists \xi \in (a,b) : \frac{f(b)-f(a)}{b-a} = f'(\xi)$

Bizonyítás: Legyen $g(x) = x \Rightarrow g'(x) = 1 \neq 0$ Így alkalmazható rá a Cauchy-tétel

12. A monotonitásra vonatkozó szükséges, és szükséges és elégséges feltételek.

12.1. Szükséges Feltétel

Tétel: Tfh. $f \in \mathcal{D}(a, b)$ Ekkor:

 $\mathbf{i},\,f'\geq 0\quad (a,b)\text{-n} \Rightarrow f$ monoton nő(a,b)-n

ii, $f' \leq 0$ (a,b)-n $\Rightarrow f$ monoton fogy (a,b)-n

iii, f' > 0 (a, b)-n $\Rightarrow f$ szigorú monoton nő (a, b)-n

iv, f' < 0 (a, b)-n $\Rightarrow f$ szigorú monoton fogy (a, b)-n

Bizonyítás:

i, Legyen $[x_1,x_2]\subset (a,b)$ A Lagrange tétel miatt $\exists \xi\in (x_1,x_2)$:

 $f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) \ge 0 \Rightarrow f$ monoton nő.

ii, Ugyanígy

iii, A Lagrange tétel után $\Rightarrow \exists \xi \in (x_1, x_2)$:

 $f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) > 0 \Rightarrow f$ szigorú monoton nő

iv, Ugyanígy.

12.2. Szükséges és elégséges feltétel

Tétel: Tfh. $f \in \mathcal{D}(a, b)$ Ekkor:

i, $f' \ge 0$ (a, b)-n $\Leftrightarrow f$ monoton nő (a, b)-n

ii, $f' \leq 0$ (a, b)-n $\Leftrightarrow f$ monoton fogy (a, b)-n

iii, $f' \ge 0$ (a,b)-n, de $\nexists(c,d) \subset (a,b): f' = 0$ (c,d)-n $\Leftrightarrow f$ szigorú monoton nő (a,b)-n

iv, $f' \le 0$ (a,b)-n, de $\nexists(c,d) \subset (a,b)$: f' = 0 (c,d)-n $\Leftrightarrow f$ szigorú monoton fogy (a,b)-n

Bizonyítás: i, " \Rightarrow " \checkmark " " \Leftarrow " Tfh. f monoton nő és legyen $\xi \in (a,b)$ tetszőleges

$$\frac{f(x) - f(\xi)}{x - \xi} = \begin{cases} \ge 0 & \text{, ha } x \ge \xi \\ \ge 0 & \text{, ha } x < \xi \end{cases}$$

$$\Rightarrow \exists f'(\xi) = \lim_{x \to \xi} \frac{f(x) - f(\xi)}{x - \xi}$$

ii, Hasonló

iii, " \Rightarrow " $f' \ge 0 \Rightarrow f$ szigorú monoton nő

Indirekten Tfh. f nem szigorú monoton

$$\Rightarrow \exists c, d: f(c) = f(d) \Rightarrow f = f(c) \quad (c, d)$$
-n $\Rightarrow f' = 0 \quad (c, d)$ -n, ez ellentmondás

 $\Rightarrow f$ szigorú monoton nő.

" \Leftarrow " f szigorú monoton nő $\Rightarrow f$ monoton nő. $\Rightarrow f' \geq 0$ Indirekten:

Tfh. $\exists (c,d) \subset (a,b): f'=0 \quad (c,d)$ -n $\Rightarrow f$ konstans (c,d)-n $\Rightarrow f$ nem szigorú monoton nő

És így ellentmondásra jutottunk $\Rightarrow \nexists(c,d): f'=0 \quad (c,d)$ -n

iv, Hasonló

13. L'Hospital-szabályok

13.1. L'Hospital szabály $\frac{0}{0}$ alakra

Tétel: Tfh. i,
$$f, g \in \mathcal{D}(a, b)$$
, $(-\infty \le a < b < \infty)$

ii,
$$g'(x) \neq 0$$
, $x \in (a, b)$

iii,
$$\lim_{a \to 0} f = \lim_{a \to 0} g = 0$$

iv,
$$\exists \lim_{a \to 0} \frac{f'}{g'}$$
 és $\lim_{a \to 0} \frac{f'}{g'} = A \in \overline{\mathbb{R}}$

Ekkor:
$$\exists \lim_{a+0} \frac{f}{g}$$
 és $\lim_{a+0} \frac{f}{g} = \lim_{a+0} \frac{f'}{g'}$

Bizonyítás: i, Tfh. $a \neq -\infty$

Tudjuk:
$$\lim_{a\to 0} \frac{f'}{g'} = A \Rightarrow \forall \varepsilon > 0, \exists x_0 \in (a,b), \forall \xi \in (a,x_0) : \frac{f'(\xi)}{g'(\xi)} \in K_{\varepsilon}(A)$$

Legyen
$$f(a)=g(a)=0$$
 és legyen $x\in(a,x_0)$ tetszőleges, ekkor $f,g\in C[a,x]$ és $f,g\in\mathcal{D}(a,x)$

$$\Rightarrow$$
a Cauchy-középértéktétel miatt: $\exists \xi \in (a,x): \frac{f(x)-f(a)}{g(x)-g(a)} = \frac{f'(\xi)}{g'(\xi)} \in K_{\varepsilon}(A)$

$$\Rightarrow \forall \varepsilon > 0, \exists x_0 \in (a, b), \forall x \in (a, x_0) : \frac{f(x)}{g(x)} \in K_{\varepsilon}(A) \Rightarrow \lim_{a \to 0} \frac{f}{g} = A$$

ii, Tfh.
$$a = -\infty$$
 Visszavezetjük i,-re

Legyen
$$F(y) := f(b+1-\frac{1}{y}), y \in (0,1)$$
 és

$$G(y) := g(b+1-\frac{1}{y}), \quad y \in (0,1)$$

$$y < 1 \Rightarrow b + 1 - \frac{1}{y} < b \Rightarrow f$$
és g értelmezve van a $(b + 1 - \frac{1}{y})$ pontban.

$$\lim_{0 \to 0} F = \lim_{y \to 0+0} f(b+1 - \frac{1}{y}) = \lim_{-\infty} f = 0$$

$$\lim_{0+0} G = \lim_{-\infty} g = 0 \quad \text{ Ha } \exists \lim_{0+0} \frac{F}{G}, \text{ ekkor }$$

$$\lim_{0+0}\frac{F}{G}=\lim_{y\to 0+0}\frac{f}{g}(b+1-\frac{1}{y})=\lim_{-\infty}\frac{f}{g}$$

$$F'(y) = f'(b+1-\frac{1}{y}) \cdot \frac{1}{y^2}$$

$$G'(y) = g'(b+1-\frac{1}{y}) \cdot \frac{1}{y^2} \neq 0 \qquad y \in (0,1)$$

$$\lim_{0+0} \frac{F'}{G'} = \lim_{-\infty} \frac{f'}{g'}$$
 Alkalmazható i, F és G -re

$$\Rightarrow \lim_{0+0} \frac{F}{G} = \lim_{0+0} \frac{F'}{G'} \quad \Rightarrow \quad \lim_{-\infty} \frac{f}{g} = \lim_{0+0} \frac{F}{G} \text{ \'es } \lim_{-\infty} \frac{f'}{g'} = \lim_{0+0} \frac{F'}{G'} \quad \blacksquare$$

13.2. L'Hospital szabály $\frac{\infty}{\infty}$ alakra

Tétel: Tfh. i,
$$f, g \in \mathcal{D}(a, b)$$
, $(-\infty \le a < b < \infty)$

ii,
$$g'(x) \neq 0$$
, $x \in (a, b)$

iii,
$$\lim_{a\to 0} f = \lim_{a\to 0} g = \infty$$

iv,
$$\exists \lim_{a \to 0} \frac{f'}{g'}$$
 és $\lim_{a \to 0} \frac{f'}{g'} = A \in \overline{\mathbb{R}}$

Ekkor:
$$\exists \lim_{a \to 0} \frac{f}{g}$$
 és $\lim_{a \to 0} \frac{f}{g} = \lim_{a \to 0} \frac{f'}{g'}$

Bizonyítás: i, Tfh. $a \neq -\infty, A \in \mathbb{R}$

Tudjuk:
$$\lim_{a\to 0} \frac{f'}{g'} = A \Rightarrow \forall \varepsilon > 0, \exists x_0 \in (a,b), \forall \xi \in (a,x_0) : \frac{f'(\xi)}{g'(\xi)} \in K_{\varepsilon}(A)$$

Legyen $x \in (a, x_0)$ és alkalmazzuk a Cauchy középérték-tételt az $[x, x_0]$ intervallumra

$$\Rightarrow \exists \xi \in (x, x_0) : \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\xi)}{g'(\xi)}$$

Felthető, hogy f > 0 (a, x_0) -n, hiszen $\lim_{a} f = \infty$

Hasonlóan g > 0 (a, x_0) -n.

$$\frac{f(x)}{g(x)} \cdot \frac{1 - \frac{f(x_0)}{f(x)}}{1 - \frac{g(x_0)}{g(x)}} = \frac{f'(\xi)}{g'(\xi)} \Rightarrow \frac{f(x)}{g(x)} = \frac{f'(\xi)}{g'(\xi)} \cdot \underbrace{\frac{1 - \frac{g(x_0)}{g(x)}}{1 - \frac{f(x_0)}{f(x)}}}_{T(x)} = \frac{f'(\xi)}{g'(\xi)} \cdot T(x) = \frac{f'(\xi)}{g'(\xi)} \cdot (T(x) - 1) + \frac{f'(\xi)}{g'(\xi)}$$

$$\lim_{a \to 0} T = 1 \Rightarrow \lim_{a \to 0} (T - 1) = 0$$

$$\frac{f'(\xi)}{g'(\xi)} \in K_{\varepsilon}(A) \quad \Rightarrow \quad A - \varepsilon < \frac{f'(\xi)}{g'(\xi)} < A + \varepsilon \quad \Rightarrow \quad \frac{f'(\xi)}{g'(\xi)} \text{ korlátos}.$$

$$\Rightarrow \lim_{a \to 0} \frac{f'(\xi)}{g'(\xi)} \cdot (T(x) - 1) = 0 \Rightarrow \forall \varepsilon > 0, \exists x_1 \in (a, x_0), \forall x \in (a, x_1) : \left| \frac{f'(\xi)}{g'(\xi)} \cdot (T(x) - 1) \right| < \varepsilon$$

$$\frac{f(x)}{g(x)} - A = \frac{f'(\xi)}{g'(\xi)} \cdot (T(x) - 1) + \frac{f'(\xi)}{g'(\xi)} - A$$

$$\Rightarrow \left| \frac{f(x)}{g(x)} - A \right| \leq \underbrace{\left| \frac{f'(\xi)}{g'(\xi)} \cdot (T(x) - 1) \right|}_{\leq \varepsilon} + \underbrace{\left| \frac{f'(\xi)}{g'(\xi)} - A \right|}_{\leq \varepsilon} < 2\varepsilon$$

$$\Rightarrow \forall \varepsilon > 0, \exists x_1 \in (a, x_0), \forall x \in (a, x_1) : \left| \frac{f(x)}{g(x)} - A \right| < 2\varepsilon \Rightarrow \lim_{a \to 0} \frac{f}{g} = A$$

ii, $a \neq -\infty, A = \infty$ Láttuk:

$$\frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)} \cdot T(x)$$

$$\lim_{a \to 0} T = 1 \Rightarrow \exists x_1 \in (a, x_0), \forall x \in (a, x_1) : T(x) > \frac{1}{2}$$

$$\frac{f'(x)}{g'(x)} \in K_{\varepsilon}(\infty) \Rightarrow \frac{f'(x)}{g'(x)} > \frac{1}{\varepsilon} \Rightarrow \frac{f(x)}{g(x)} > \frac{1}{2\varepsilon}$$

$$\forall \varepsilon > 0, \exists x_1 \in (a, x_0), \forall x \in (a, x_1) : \frac{f(x)}{g(x)} > \frac{1}{2\varepsilon} \quad \Rightarrow \quad \lim_{a \to 0} \frac{f}{g} = \infty = A$$

iii,
$$a \neq -\infty, A = -\infty$$
 Hasonló ii,-hez

iv, $a=-\infty$ Visszavezetjük az előzőre mint az előző tétel i
i, részében. \blacksquare

14. Taylor-formula a Lagrange-féle maradéktaggal.

Tétel: Ha
$$f \in \mathcal{D}^{(n+1)}(K(a))$$
, akkor

$$\forall x \in K(a), \exists \xi \in (a, x) \cup (x, a) : f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - a)^{n+1}$$

Bizonyítás: Legyen
$$F(x) := f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

$$F(a) = f(a) - f(a) = 0$$

$$F'(x) = f'(x) - \sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!} \cdot k \cdot (x-a)^{k-1}$$

$$\Rightarrow F'(a) = f'(a) - f'(a) = 0$$

$$F''(x) = f''(x) - \sum_{k=2}^{n} \frac{f^{(k)}(a)}{k!} \cdot k \cdot (k-1)(x-a)^{k-2}$$

$$F''(a) = f''(a) - f''(a) = 0 \quad \Rightarrow \quad F^{(n)}(a) = 0, \quad F^{(n+1)}(x) = f^{(n+1)}(x)$$

Legyen
$$G(x) = (x - a)^{(n+1)} \Rightarrow G(a) = 0$$

$$G'(x) = (n+1)(x-a)^n \Rightarrow G'(a) = 0, ..., G''(a) = 0$$

$$\Rightarrow G^{(n)}(a) = 0, \quad G^{(n+1)}(a) = (n+1)!$$

Alkalmazzuk a Cauchy középértéktételt: \exists ilyen $\xi_1, \xi_2...\xi_{n+1}$

$$\frac{f(x) - \sum\limits_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}}{(x-a)^{(n+1)}} = \frac{F(x)}{G(x)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F'(\xi_{1})}{G'(\xi_{1})} = \frac{F'(\xi_{1}) - F'(a)}{G'(\xi_{1}) - G'(a)} = \frac{F''(\xi_{2})}{G''(\xi_{2})} = \dots = \frac{F^{(n)}(\xi_{n})}{G^{(n)}(\xi_{n})} = \frac{F^{(n)}(\xi_{n}) - F^{(n)}(a)}{G^{(n)}(\xi_{n}) - G^{(n)}(a)} = \frac{F^{(n+1)}(\xi_{n+1})}{G^{(n+1)}(\xi_{n+1})} = \frac{f^{(n+1)}(\xi_{n+1})}{(n+1)!}$$

Legyen $\xi = \xi_{n+1}$

14.1. Egy elégséges feltétel arra, hogy egy függvény Taylor-sora előállítsa a függvényt.

Tétel: Tfh.
$$f \in \mathcal{D}^{\infty}(K(a))$$
 és $\sup\{\left|f^{(n)}(x)\right| \quad n \in \mathbb{N}, x \in K(a)\} = M$ és $M < \infty$

Ekkor:
$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k \quad (x \in K(a))$$

Bizonyítás:
$$\exists \xi \in (a,x): \left| f - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} \right| = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot (x-a)^{n+1} \right| \le$$

$$\leq M \cdot \frac{|x-a|^{n+1}}{(n+1)!} \to 0 \quad (n \to \infty) \quad \Rightarrow \quad f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k \quad \blacksquare$$

15. A konvexitásra és az inflexiós pontra vonatkozó szükséges és elégséges feltételek többször differenciálható függvények esetében.

15.1. Konvexitásra

Tétel: $f:(a,b)\to \mathbb{R}$

i, Ha $f \in \mathcal{D}(a,b)$, akkor

a, f konvex $\Leftrightarrow f' \nearrow (a,b)$ -n

b, f szigorúan konvex $\Leftrightarrow f' \uparrow (a, b)$ -n

ii, Ha $f \in \mathcal{D}^2(a,b)$, akkor

 $\mathbf{a}, f \text{ konvex} \Leftrightarrow f'' \geq 0 \quad (a, b)$ -n

b, f szigorúan konvex $\Leftarrow f'' > 0$ (a, b)-n

Bizonyítás: Elég i,-t bizonyítani

 \mathbf{a} , " \Rightarrow " Tfh. f konvex

Legyen $x_1 < x_2$ tetszőleges és $x_1 < y_1 < y_2 < x_2$

$$\frac{f(y_1) - f(x_1)}{y_1 - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(y_2) - f(x_2)}{y_2 - x_2}$$

$$\frac{f(y_1) - f(x_1)}{y_1 - x_1} \leq \frac{f(x_2) - f(x_1)}{x_2 - x_1} \leq \frac{f(y_2) - f(x_2)}{y_2 - x_2}$$

$$\lim_{y_1 \to x_1 + 0} \frac{f(y_1) - f(x_1)}{y_1 - x_1} = f'(x_1) \quad \text{és} \quad \lim_{y_2 \to x_2 - 0} \frac{f(y_2) - f(x_2)}{y_2 - x_2} = f'(x_2) \Rightarrow f'(x_1) \leq f'(x_2) \Rightarrow f' \nearrow$$

" \Leftarrow " Tfh. $f' \nearrow \text{Elég}$:

$$\forall x_1, x_2 \in (a, b), x_1 < x_2, x \in (x_1, x_2) : f(x) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot (x - x_1) + f(x_1)$$

Azaz
$$r(x) := f(x) - \left(\frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot (x - x_1) + f(x_1)\right) \le 0 \implies r(x_1) = 0, \quad r(x_2) = 0$$

 \Rightarrow Rolle középértéktétel miatt: $\exists \xi \in (x_1, x_2) : r'(\xi) = 0$

$$r'(x) = f'(x) - \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$\Rightarrow r' \leq 0 \quad (x_1, \xi)$$
-n $\Rightarrow r \searrow \quad (x_1, \xi)$ -n és

$$r' \ge 0 \quad (\xi, x_2)$$
-n $\Rightarrow r \nearrow \quad (\xi, x_2)$ -n

$$\Rightarrow r \leq 0 \quad (x_1, x_2)$$
-n

b, Hasonló

15.2. Inflexiós pontra

Tétel: $f:(a,b)\to\mathbb{R}, x_0\in(a,b)$

i, Ha f kétszer folytonosan deriválható és x_0 inflexiós pont, ekkor $f''(x_0) = 0$

ii, Ha f háromszor folytonosan deriválható és $f''(x_0) = 0$ és $f'''(x_0) \neq 0$, ekkor x_0 inflexiós pont.

Bizonyítás: i, Indirekten Tfh. $f''(x_0) \neq 0$, pl: $f''(x_0) > 0$

f'' folytonos $\Rightarrow \exists K(x_0): f'' > 0$ $K(x_0)$ -n

Taylor formula

$$n = 1 : \exists \xi : \underbrace{f(x) - (f(x_0) + f'(x_0)(x - x_0))}_{l(x)} = \underbrace{\frac{f''(\xi)}{2!}(x - x_0)^2}_{>0}$$

 $\Rightarrow l$ nem vált előjelet $\Rightarrow x_0$ nem inflexiós pont.

ii, Tfh. $f'''(x_0) > 0 \Rightarrow \exists K(x_0) : f''' > 0 \quad K(x_0)$ -n

Taylor formula n=2:

$$\exists \xi : l(x) = f(x) - (f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2) = \underbrace{\frac{f'''(\xi)}{3!}}_{>0} \cdot (x - x_0)^3 \quad x \in K(x_0)$$

A jobb oldal szigorúan előjelet vált \Rightarrow x_0 inflexiós pont.

16. A primitív függvény létezésére vonatkozó szükséges feltétel.

Tétel: Ha I intervallum, és $f: I \to \mathbb{R}$ függvénynek \exists primitív függvénye, akkor f Darboux tulajdonságú, azaz $\forall a, b \in I, a < b, \forall c \in (f(a), f(b)), \exists \xi \in (a, b) : f(\xi) = c$

Bizonyítás: Tfh. f(a) < f(b), legyen $f_1 = f - c$, f_1 -nek is \exists primitív függvénye, mégpedig

$$F_1(x) = F(x) - cx$$
, ahol F az f primitív függvénye, hiszen $F_1'(x) = F'(x) - c = f(x) - c = f_1(x)$

Ekkor:
$$F_1'(a) = f_1(a) = f(a) - c < 0$$

$$F_1'(b) = f_1(b) = f(b) - c > 0$$

$$\Rightarrow F_1'(a) = \lim_{x \to a+0} \frac{F_1(x) - F_1(a)}{x - a} = f_1(a) < 0 \quad \Rightarrow \quad \exists \delta > 0, \forall x \in (a, a + \delta) : \frac{F_1(x) - F_1(a)}{x - a} < 0$$

itt
$$x - a > 0 \Rightarrow \exists \delta > 0, \forall x \in (a, a + \delta) : F_1(x) < F_1(a)$$

$$F_1'(b) = \lim_{x \to b-0} \frac{F_1(x) - F_1(b)}{x - b} = f_1(b) > 0 \quad \Rightarrow \quad \exists \delta > 0, \forall x \in (b - \delta, b) : \frac{F_1(x) - F_1(b)}{x - b} > 0$$

$$x - b < 0 \Rightarrow \exists \delta > 0, \forall x \in (b - \delta, b) : F_1(x) < F_1(b) \Rightarrow F_1 \in \mathcal{D}(I) \Rightarrow F_1 \in C[a, b]$$

A Weierstrass-tétel miatt F_1 -nek \exists abszolút minimuma, azaz $\exists \xi \in [a,b]: F_1(\xi) = \min_{[a,b]} F_1$

$$\xi \neq a, \xi \neq b \Rightarrow \xi \in (a,b) \Rightarrow \xi$$
-ben lokális minimum $\Rightarrow F_1'(\xi) = 0 \Rightarrow f_1(\xi) = f(\xi) - c = 0$

17. Az integrálhatóság jellemzése az oszcillációs összegekkel.

Tétel: $f \in R[a,b] \Leftrightarrow \forall \varepsilon > 0, \exists \tau \in F[a,b] : \Omega(f,\tau) < \varepsilon$

Bizonyítás: "
$$\Leftarrow$$
" Tfh. ε -hoz $\exists \tau : \Omega(f, \tau) < \varepsilon$

$$I^*f - I_*f < \varepsilon$$
, ε tetszőleges

$$\Rightarrow I^*f = I_*f$$

"
$$\Rightarrow$$
" Tfh. $f \in R[a,b] \Rightarrow \forall \varepsilon > 0, \exists \tau_1 \in F[a,b] : If -\frac{\varepsilon}{2} < s(f,\tau_1) \leq If$

Hasonlóan:
$$\exists \tau_2 \in F[a,b] : If \leq S(f,\tau_2) < If + \frac{\varepsilon}{2}$$

Legyen $\tau = \tau_1 \cup \tau_2 \Rightarrow$

$$If - \frac{\varepsilon}{2} < s(f, \tau_1) \le \underline{s(f, \tau)} \le If \le \underline{S(f, \tau)} \le S(f, \tau_2) < If + \frac{\varepsilon}{2}$$

$$\Rightarrow S(f,\tau) - s(f,\tau) < \varepsilon \quad \blacksquare$$

18. Az integrálhatóság jellemzése alsó és felső közelítő összegek határértékével

Tétel:

$$f \in R[a,b]$$
 és $\int_a^b f = I \Leftrightarrow \exists \tau_n : \lim s(f,\tau_n) = \lim S(f,\tau_n) = I$

 $\underline{\mathbf{Bizony\acute{tt\acute{a}s:}}} \qquad \text{"\Rightarrow" Tfh. } f \in R[a,b] \Rightarrow \forall \varepsilon > 0, \exists \tau \in F[a,b]: If -\tfrac{\varepsilon}{2} < s(f,\tau) \leq S(f,\tau) < If +\tfrac{\varepsilon}{2} < s(f,\tau) \leq S(f,\tau) < If +\tfrac{\varepsilon}{2} < s(f,\tau) \leq S(f,\tau) < If +\tfrac{\varepsilon}{2} < s(f,\tau) < If +\tfrac{\varepsilon}$

Legyen $\frac{\varepsilon}{2} = \frac{1}{n}, \quad \tau = \tau_n$

$$\underbrace{I - \frac{1}{n}}_{I} \leq \underbrace{s(f, \tau_n)}_{I} \leq \underbrace{S(f, \tau_n)}_{I} < \underbrace{I + \frac{1}{n}}_{I}$$

"
$$\Leftarrow$$
" Tfh. $\lim s(f, \tau_n) = \lim S(f, \tau_n) = I \Rightarrow I_*f = I^*f = I$

19. Műveletek integrálható függvényekkel

Tétel: Tfh. $f, g \in R[a, b]$ Ekkor:

i,
$$f+g\in R[a,b]$$
 és $\int\limits_a^b f+g=\int\limits_a^b f+\int\limits_a^b g$

ii,
$$\lambda \cdot f \in R[a,b]$$
 és $\int_a^b \lambda f = \lambda \cdot \int_a^b f \quad \lambda \in \mathbb{R}$

iii,
$$f \cdot g \in R[a, b]$$

iv, Ha
$$|g(x)| \geq m > 0 \quad \forall x \in [a,b],$$
akkor $\frac{f}{g} \in R[a,b]$

Bizonyítás: Legyen
$$\tau = \{x_0, x_1, ..., x_n\} \in F[a, b],$$

$$F_i := \sup_{[x_{i-1},x_i]} f, \quad f_i := \inf_{[x_{i-1},x_i]} f \quad G_i := \sup_{[x_{i-1},x_i]} g \quad g_i := \inf_{[x_{i-1},x_i]} g$$

$$i, f_i + g_i \le f(x) + g(x) \le F_i + G_i, x \in [x_{i-1}, x_i]$$

$$\Rightarrow f_i + g_i \le \inf_{[x_{i-1}, x_i]} (f + g) \le \sup_{[x_{i-1}, x_i]} (f + g) \le F_i + G_i \qquad / \cdot (x_i - x_{i-1})$$

$$\Rightarrow s(f,\tau) + s(g,\tau) \le s(f+g,\tau) \le S(f+g,\tau) \le S(f,\tau) + S(g,\tau)$$

Legyen $\tau_1, \tau_2 \in F[a, b]$ tetszőleges és $\tau = \tau_1 \cup \tau_2$

$$\Rightarrow s(f,\tau_1) + s(g,\tau_2) \le s(f,\tau) + s(g,\tau) \le s(f+g,\tau) \le I_*(f+g) \le I^*(f+g) \le S(f+g,\tau) \le$$

$$\leq S(f,\tau) + S(g,\tau) \leq S(f,\tau_1) + S(g,\tau_2) \quad / \cdot \sup_{\tau_1} \inf_{\tau_1} \sup_{\tau_2} \inf_{\tau_2}$$

$$\Rightarrow I_*(f) + I_*(g) \le I_*(f+g) \le I^*(f+g) \le I^*(f) + I^*(g)$$
, Mivel $I_*(f) = I^*(f)$ (ugyanez g-re)

$$\Rightarrow I_*(f+g) = I^*(f+g) \text{ és } \int_a^b f + g = \int_a^b f + \int_a^b g$$

ii, Tfh.
$$\lambda \ge 0 \Rightarrow s(\lambda f, \tau) = \lambda \cdot s(f, \tau)$$
 $(\inf_{[x_{i-1}, x_i]} \lambda f = \lambda \cdot \inf_{[x_{i-1}, x_i]} f)$

$$\Rightarrow I_*(\lambda f) = \lambda \cdot I_*(f)$$
 Hasonlóan: $S(\lambda f, \tau) = \lambda \cdot S(f, \tau) \Rightarrow I^*(\lambda f) = \lambda \cdot I^*(f)$

$$\Rightarrow I_*(\lambda f) = I^*(\lambda f) \text{ és } \int_a^b \lambda f = \lambda \cdot \int_a^b f$$

Tfh. $\lambda < 0$

$$s(\lambda f,\tau) = \lambda \cdot S(f,\tau) \Rightarrow I_*(\lambda f) = \lambda \cdot I^*(f) \quad \text{\'es} \quad S(\lambda f,\tau) = \lambda \cdot s(f,\tau) \Rightarrow I^*(\lambda f) = \lambda \cdot I_*(f)$$

$$\Rightarrow I_*(\lambda f) = I^*(\lambda f) \text{ és } \int_a^b \lambda f = \lambda \cdot \int_a^b f$$

iii, Oszcillációs összeggel: Tfh. $f,g \geq 0 \quad [a,b]$ -n

$$f_i \cdot g_i \le f(x) \cdot g(x) \le F_i \cdot G_i \quad x \in [x_{i-1}, x_i]$$

$$\Rightarrow f_i \cdot g_i \le \inf_{[x_{i-1}, x_i]} (f \cdot g) \le \sup_{[x_{i-1}, x_i]} (f \cdot g) \le F_i \cdot G_i$$

$$\Omega(f \cdot g, \tau) = \sum_{i=1}^{n} \left(\sup_{[x_{i-1}, x_i]} (f \cdot g) - \inf_{[x_{i-1}, x_i]} (f \cdot g) \right) \cdot (x_i - x_{i-1}) \le \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F$$

$$= \sum_{i=1}^{n} (F_i \cdot G_i - F_i \cdot g_i + F_i \cdot g_i - f_i \cdot g_i) \cdot (x_i - x_{i-1}) =$$

$$= \sum_{i=1}^{n} F_i(G_i - g_i) \cdot (x_i - x_{i-1}) + \sum_{i=1}^{n} g_i(F_i - f_i) \cdot (x_i - x_{i-1})$$

$$f \in R[a,b] \Rightarrow f \text{ korlátos} \Rightarrow F_i \leq M \text{ és } g_i \leq M \quad \forall i=1,...,n$$

$$\Rightarrow \Omega(f\cdot g,\tau) \leq M\cdot \Omega(g,\tau) + M\cdot \Omega(f,\tau)$$

$$\Rightarrow \forall \varepsilon > 0, \exists \tau_1 : \Omega(g, \tau_1) < \varepsilon \quad \text{és} \quad \forall \varepsilon > 0, \exists \tau_2 : \Omega(f, \tau_2) < \varepsilon$$

Legyen
$$\tau = \tau_1 \cup \tau_2 \Rightarrow \Omega(g,\tau) \leq \Omega(g,\tau_1) < \varepsilon$$
 Hasonlóan: $\Omega(f,\tau) \leq \Omega(f,\tau_2) < \varepsilon$

$$\Rightarrow \Omega(f \cdot g, \tau) < 2\varepsilon M \Rightarrow f \cdot g \in R[a, b]$$

Ha
$$f$$
 és g tetszőleges, akkor legyen $m_f := \inf_{[a,b]} f, \quad m_g := \inf_{[a,b]} g \Rightarrow \underbrace{f - m_f}_{\in R[a,b]} \geq 0, \quad \underbrace{g - m_g}_{\in R[a,b]} \geq 0$

$$\Rightarrow \underbrace{(f-m_f)(g-m_g)}_{\in R[a,b]} = f \cdot g \underbrace{-g \cdot m_f - f \cdot m_g + m_f \cdot m_g}_{\in R[a,b]} \Rightarrow f \cdot g \in R[a,b]$$

iv, Elég: $\frac{1}{q} \in R[a, b]$

$$\frac{1}{g(x)} - \frac{1}{g(y)} = \frac{g(y) - g(x)}{g(x) \cdot g(y)} \le \frac{|g(y) - g(x)|}{|g(x) \cdot g(y)|} \le \frac{G_i - g_i}{m^2} \Rightarrow \sup_{[x_{i-1}, x_i]} \frac{1}{g} - \inf_{[x_{i-1}, x_i]} \frac{1}{g} \le \frac{G_i - g_i}{m^2}$$

$$\Rightarrow \Omega(\frac{1}{g}, \tau) = \sum_{i=1}^{n} \left(\sup_{[x_{i-1}, x_i]} \frac{1}{g} - \inf_{[x_{i-1}, x_i]} \frac{1}{g} \right) \cdot (x_i - x_{i-1}) \le \frac{1}{m^2} \Omega(g, \tau)$$

$$\forall \varepsilon > 0, \exists \tau, \Omega(g,\tau) < \varepsilon \Rightarrow \Omega(\frac{1}{g},\tau) \leq \frac{\varepsilon}{m^2}$$

20. Folytonos függvény integrálható

Tétel: Ha $f \in C[a, b]$, ekkor $f \in R[a, b]$

Bizonyítás: Ha $f \in C[a, b] \Rightarrow$ Heine tétel miatt f egyenletesen folytonos, azaz

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x, y \in [a, b], |x - y| < \delta : |f(x) - f(y)| < \varepsilon$$

Legyen $\tau \in F[a, b]$ olyan, hogy $|\tau| < \delta$

$$\Omega(f,\tau) = \sum_{i=1}^{n} \left(\sup_{[x_{i-1},x_i]} f - \inf_{[x_{i-1},x_i]} f\right)(x_i - x_{i-1}) = \sum_{i=1}^{n} \sup_{\underline{x,y \in [x_{i-1},x_i]}} |f(x) - f(y)| \cdot (x_i - x_{i-1}) \le \varepsilon \cdot (b - a)$$

$$\Rightarrow f \in R[a,b]$$

21. Monoton függvény integrálható

Tétel: $f:[a,b] \to \mathbb{R}$ monoton, ekkor $f \in R[a,b]$

Bizonyítás: Tfh. $f \nearrow$

$$\Omega(f,\tau) = \sum_{i=1}^{n} \left(\sup_{[x_{i-1},x_i]} f - \inf_{[x_{i-1},x_i]} f \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(f(x_i) - f(x_{i-1}) \right) \cdot (x_i - x_{i-1})$$

Tfh.
$$|\tau| < \delta \Rightarrow \Omega(f,\tau) \le \delta \cdot \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = \delta \cdot (f(b) - f(a)) < \varepsilon$$

Ha a
$$\delta < \frac{\varepsilon}{f(b) - f(a)} \Rightarrow f \in R[a, b]$$

22. Newton-Leibniz-tétel

Tétel: Ha $f \in R[a,b]$ és f-nek $\exists F$ primitív függvénye, akkor: $\int_a^b f = F(b) - F(a)$ **Bizonyítás:** Legyen $\tau = \{a = x_0 < x_1 < \dots < x_n = b\} \in F[a,b]$ $\Rightarrow F(b) - F(a) = F(x_n) - F(x_0) = F(x_n) - F(x_{n-1}) + F(x_{n-1}) - F(x_{n-2}) + \dots + F(x_1) - F(x_0) = \sum_{i=1}^n (F(x_i) - F(x_{i-1}))$ Alkalmazzuk a Lagrange középértéktételt az $[x_{i-1}, x_i]$ intervallumon $\exists \xi_i \in [x_{i-1}, x_i] : F(x_i) - F(x_{i-1}) = F'(\xi_i)(x_i - x_{i-1}) = f(\xi_i)(x_i - x_{i-1})$ $\Rightarrow s(f, \tau) \leq F(b) - F(a) = \sum_{i=1}^n (f(\xi_i) \cdot (x_i - x_{i-1})) \leq S(f, \tau)$ /sup a bal oldalon és inf a jobb oldalon $\Rightarrow I_* f \leq F(b) - F(a) \leq I^* f$ Mivel $I_* f = I^* f = \int_a^b f \Rightarrow F(b) - F(a) = \int_a^b f$

23. A differenciál- és integrálszámítás alaptétele

Tétel: Legyen $f \in R[a,b], x_0 \in [a,b], F(x) = \int_{x_0}^x f$ $(x \in [a,b]),$ ekkor:

 $i, F \in C[a, b]$

ii, Ha $f\in C(d),$ akkor $F\in D(d)$ és $F'(d)=f(d)\quad (d\in [a,b])$

Bizonyítás: i, $f \in R[a,b] \Rightarrow f \text{ korlátos} \Rightarrow \exists M : |f| \leq M$

$$|F(x_2) - F(x_1)| = \left| \int_{x_0}^{x_2} f - \int_{x_0}^{x_1} f \right| = \left| \int_{x_1}^{x_2} f \right| \le \left| \int_{x_1}^{x_2} |f| \right| \le M \cdot |x_2 - x_1| \Rightarrow x_2 \to x_1 \Rightarrow F(x_2) \to F(x_1)$$

 $\Rightarrow F \in C(x_1)$ x_1 tetszőleges

ii, Igazolni kell, hogy
$$f(d) = F'(d) = \lim_{h \to 0} \frac{F(d+h) - F(d)}{h}$$
, azaz $\lim_{h \to 0} \left| \frac{F(d+h) - F(d)}{h} - f(d) \right| = 0$

$$\left|\frac{F(d+h)-F(d)}{h}-f(d)\right| = \left|\frac{1}{h} \cdot \int_{d}^{d+h} f(t)dt - f(d)\right| = \left|\frac{1}{h} \cdot \int_{d}^{d+h} f(t) - f(d)dt\right| \le \frac{1}{h} \cdot \int_{d}^{d+h} |f(t)-f(d)|dt$$

$$f \in C(d) \Rightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall t \in [a, b], |t - d| < \delta : |f(t) - f(d)| < \varepsilon$$

Legyen
$$|h| < \delta \Rightarrow |t - d| \le |h| < \delta \Rightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall |h| < \delta : \left| \frac{F(d + h) - F(d)}{h} - f(d) \right| < \varepsilon$$

$$\Rightarrow \lim_{h \to 0} \left| \frac{F(d+h) - F(d)}{h} - f(d) \right| = 0 \quad \blacksquare$$