Machine Learning 2

Due: 23:59, September 30, 2019

Homework 4

Instructors: Adeel Pervez, Pim de Haan, Noud de Kroon, David Zhang

Email: a.a.pervez@uva.nl, pim.de.haan@uva.nl, a.a.w.m.dekroon@uva.nl, w.d.zhang@uva.nl

Problem 1. (0.5 + 0.5 + 0.5 + 2.5 = 4 pts)

Figure 1: Markov chain of latent variables.

Given the Bayesian network in Figure 1, $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ and $\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$:

- 1. Write down the factorized joint probability distribution $p(\mathbf{Z}, \mathbf{X})$.
- 2. Draw the corresponding factor graph.
- 3. Write down the point probability distribution using the factors introduced in 2.
- 4. Given \mathbf{X} , we want to infer z_n such that

$$p(z_n|\mathbf{X}) = \frac{p(\mathbf{X}|z_n)p(z_n)}{p(\mathbf{X})}$$

$$= \frac{\alpha(z_n)\beta(z_n)}{p(\mathbf{X})}.$$
(1)

$$= \frac{\alpha(z_n)\beta(z_n)}{p(\mathbf{X})}.$$
 (2)

Using the conditional independencies of the graph in Figure 1, derive $\alpha(z_n)$ and $\beta(z_n)$ so that they are recursive definitions of themselves, i.e. $\alpha(z_n)$ is calculated from $\alpha(z_{n-1})$ and $\beta(z_n)$ is calculated from $\beta(z_{n+1})$. Indicate where you use independencies inferred from the graphical model.

Problem 2. $(1.5 \text{ pts} + 1 \star \text{pts})$

Figure 2: Chain of nodes model

Homework 4

1. Apply the sum-product algorithm (as in Bishop's section 8.4.4) to the chain of nodes model in Figure 2 and show that the results of message passing algorithm (as in Bishop's section 8.4.1) are recovered as a special case, that is

$$p(x_n) = \frac{1}{Z} \mu_{\alpha}(x_n) \mu_{\beta}(x_n)$$

$$\mu_{\alpha}(x_n) = \sum_{x_n - 1} \psi_{n-1,n}(x_{n-1}, x_n) \mu_{\alpha}(x_{n-1})$$

$$\mu_{\beta}(x_n) = \sum_{x_n + 1} \psi_{n+1,n}(x_{n+1}, x_n) \mu_{\beta}(x_{n+1})$$

where $\psi_{i,i+1}(x_i,x_{i+1})$ is a potential function defined over clique $\{x_i,x_{i+1}\}$.

2. \star Establish a relation of your results $\alpha(z_n)$ and $\beta(z_n)$ in 1.4 with the results of the sum-product algorithm $\mu_{\alpha}(x_n)$ and $\mu_{\beta}(x_n)$.

Problem 3. (1.5 pts) Consider the inference problem of evaluating $p(\mathbf{x}_n|\mathbf{x}_N)$ for the graph shown in Figure 2, for all nodes $n \in \{1, ..., N-1\}$. Show that the message passing algorithm can be used to solve this efficiently, and discuss which messages are modified and in what way.

Problem 4. (2 pts) Show that the marginal distribution for the variables \mathbf{x}_s in a factor $f_s(\mathbf{x}_s)$ in a tree-structured factor graph, after running the sum-product message passing algorithm, can be written as

$$p(\mathbf{x}_s) = f_s(\mathbf{x}_s) \prod_{i \in \text{ne}(f_s)} \mu_{x_i \to f_s(x_i)}$$

where $ne(f_s)$ denotes the set of variable nodes that are neighbors of the factor node f_s