

DLThon_RS7(CV)

Pascal VOC challenge

문제 정의

PASCAL VOC

일상 사진 2913장으로 이루어진 데이터셋. 일상에서 발견할 수 있는 오브젝트 20가지에 대하여 세그멘테이션 마스크를 정답 데이터로 제공.

목차

- 1 수행 과정
- 2 수행 내용
- 3 수행결과
- 4 최종회고

Part 1 수행과정

수행 과정 > 실험 계획 수립

학습 데이터

- 원본 데이터
- 증강 데이터
 - 좌우반전
 - 확대
 - 밝기/채도

학습 모델

- FCN
- DeepLab
- R-CNN
- Panoptic

총 10 가지 실험

···을 계획하였으나 FCN, R-CNN 구현 실패

총 6가지 실험

수행 과정 > 역할 분담

강다은

- 데이터전처리&증강
- Unet 구현&실험
- CAM시각화

조혜원

- FON구현
- Panoptic 구현&실험
- CAM시각화

김찬중

- R-CNN구현
- DeepLab구현&실험

수행 과정 > 진행 순서

수행 과정 > 진행 순서

Part 2

수행 내용 > 데이터 전처리 & 증강 (강다은)


```
def do_vectorize(ds_target):
    return [np.vectorize(SEGMENT_TO_CLASS.get)(img) for img in ds_target]

def get_img_from_bytes(img_bytes, is_input=True):
    pil_img = Image.open(io.BytesIO(img_bytes))
    tf_img = img_to_array(pil_img)

if is_input == True: # (for input data)
    tf_img = tf_img / 255.
    return tf_img.astype("float32")

else: # is_input == False: (for target data)
    tf_img = np.array(tf.image.rgb_to_grayscale(tf_img))
    return tf_img.astype("uint8")
```

데이터셋 로드

- 이미지 데이터가 bytes 형태로 저장되어 있으므로 PIL 이미지 및 np.array 형태로 변환
- 마스크 이미지 또한 RGB 형태로 저장되어 있으므로 (0,19) 범위의 정수 값을 갖는 grayscale로 변환

수행 내용 > 데이터 전처리 & 증강 (강다은)

데이터 증강

- ImageDataGenerator 또는 albumentations를 사용하고 싶었으나, 원본 & 정답 데이터 쌍을 동일하 게 변형하는 방법을 찾지 못함
- 데이터를 shuffle 하지 않고, 동일한 순서에 해당하는 원본 & 정답 데이터에 동일한 변환을 수행함으로 써 수동으로 증강
- 원본 & 정답 데이터에 좌우반전, 확대 적용
- 정답 마스크에는 색상값이 중요한 의미를 가지므로, 밝기 및 채도 변환은 원본 이미지에만 적용

수행 내용 > 데이터 전처리 & 증강 (강다은)

데이터 전처리

- 원본 입력 이미지 (0,1) 범위의 부동소수로 정규화
- 원본 & 정답 모두 256*256 크기로 변환

수행 내용 > 모델 구성 > U-net (강다은)

- 기존 퀘스트에서 구현한 코 드를 재활용했으므로 특별한 어려움은 없었음
- 학습 시 loss = sparse categorical crossentropy 를 적용하 기 위해 마지막 레이어의 activation 제거
- Gradient CAM 이미지 생 성을 위해 마지막 레이어에 name =

"unet_last_layer" 추가

up_sampling2d (UpSampling2D)	(None,	32, 32,	1024)	0	conv2d_9[0][0]
concatenate (Concatenate)	(None,	32, 32,	1536)	0	up_sampling2d[0][0] conv2d_7[0][0]
conv2d_10 (Conv2D)	(None,	32, 32,	512)	7078400	concatenate[0][0]
conv2d_11 (Conv2D)	(None,	32, 32,	512)	2359808	conv2d_10[0][0]
up_sampling2d_1 (UpSampling2D)	(None,	64, 64,	512)	0	conv2d_11[0][0]
concatenate_1 (Concatenate)	(None,	64, 64,	768)	0	up_sampling2d_1[0][0] conv2d_5[0][0]
conv2d_12 (Conv2D)	(None,	64, 64,	256)	1769728	concatenate_1[0][0]
conv2d_13 (Conv2D)	(None,	64, 64,	256)	590080	conv2d_12[0][0]
up_sampling2d_2 (UpSampling2D)	(None,	128, 128	3, 256	0	conv2d_13[0][0]
concatenate_2 (Concatenate)	(None,	128, 128	3, 384	0	up_sampling2d_2[0][0] conv2d_3[0][0]
conv2d_14 (Conv2D)	(None,	128, 128	3, 128	442496	concatenate_2[0][0]
conv2d_15 (Conv2D)	(None,	128, 128	3, 128	147584	conv2d_14[0][0]
up_sampling2d_3 (UpSampling2D)	(None,	256, 256	5, 128	0	conv2d_15[0][0]
concatenate_3 (Concatenate)	(None, 2	256, 256	5, 192	0	up_sampling2d_3[0][0] conv2d_1[0][0]
conv2d_16 (Conv2D)	(None,	256, 256	6, 64)	110656	concatenate_3[0][0]
conv2d_17 (Conv2D)	(None,	256, 256	6, 64)	36928	conv2d_16[0][0]
unet_last_layer (Conv2D)	(None, 2	256, 256	5, 20)	1300	conv2d_17[0][0]
Total params: 31,380,180 Trainable params: 31,380,180 Non-trainable params: 0	_				

수행 내용 > 모델 구성 > FCN (조혜원)

Connection failed

A connection to the notebook server could not be established. The notebook will continue trying to reconnect. Check your network connection or notebook server configuration.

- FCN-32, FCN-16,
 FCN-8 등을 구현한 후,
 tf.keras.layers.Conv2D
 Transpose layer를 추가
 하고 cropping을 하여
 upsampling을 구성
- 모델 학습 시 수시로
 kernel dead 현상이 발생
 하고, 어쩌다 성공하더라도
 유의미한 segmentation을
 수행하지 못하는 것을 확인
 → 시간 관계상 일단 포기

OK

х

수행 내용 > 모델 구성 > DeepLab (김찬중)

- DeepLabV3+ 버전 구현
- 사전 훈련된 ResNet50을
 backbone으로 사용
- 학습 시 loss = sparse categorical crossentropy 를 적용하기 위해 마지막 레이어의 activation 제거
- Gradient CAM 이미지 생성을 위해 마지막 레이어에 name =
 "deeplab_last_layer"
 추가

conv2d_41 (Conv2D)	(None,	16,	16,	256)	327680	concatenate_8[0][0]
batch_normalization_5 (BatchNor	(None,	16,	16,	256)	1024	conv2d_41[0][0]
conv2d_42 (Conv2D)	(None,	64,	64,	48)	3072	conv2_block3_2_relu[0][0]
tf.nn.relu_5 (TFOpLambda) [0]	(None,	16,	16,	256)	0	batch_normalization_5[0]
batch_normalization_6 (BatchNor	(None,	64,	64,	48)	192	conv2d_42[0][0]
up_sampling2d_9 (UpSampling2D)	(None,	64,	64,	256)	0	tf.nn.relu_5[0][0]
tf.nn.relu_6 (TFOpLambda) [0]	(None,	64,	64,	48)	0	batch_normalization_6[0]
concatenate_9 (Concatenate)	(None,	64,	64,	304)	0	up_sampling2d_9[0][0] tf.nn.relu_6[0][0]
conv2d_43 (Conv2D)	(None,	64,	64,	256)	700416	concatenate_9[0][0]
batch_normalization_7 (BatchNor	(None,	64,	64,	256)	1024	conv2d_43[0][0]
tf.nn.relu_7 (TFOpLambda) [0]	(None,	64,	64,	256)	0	batch_normalization_7[0]
conv2d_44 (Conv2D)	(None,	64,	64,	256)	589824	tf.nn.relu_7[0][0]
batch_normalization_8 (BatchNor	(None,	64,	64,	256)	1024	conv2d_44[0][0]
tf.nn.relu_8 (TFOpLambda) [0]	(None,	64,	64,	256)	0	batch_normalization_8[0]
up_sampling2d_10 (UpSampling2D)	(None,	256	, 250	6, 256	0	tf.nn.relu_8[0][0]
deeplab_last_layer (Conv2D)	(None,		•			up_sampling2d_10[0][0]
======================================						

수행 내용 > 모델 구성 > R-CNN (김찬중)

Mask R-CNN = Faster R-CNN with FCN on Rols

- segmentation에 효과적이라고 알려진 Faster R-CNN
 과 FCN을 결합한 MASK R-CNN을 구현 시도
- 모델 구조가 복잡하여 직접 구현에 실패
- FAIR에서 제공하는
 Detectron 모델을 설치하는
 방법을 시도 → Detectron
 설치에 실패하여 일단 포기

수행 내용 > 모델 구성 > Panoptic (조혜원)

Figure 1: For a given (a) image, we show *ground truth* for: (b) semantic segmentation (per-pixel class labels), (c) instance segmentation (per-object mask and class label), and (d) the proposed *panoptic segmentation* task (per-pixel class+instance labels). The PS task: (1) encompasses both stuff and thing classes, (2) uses a simple but general format, and (3) introduces a uniform evaluation metric for all classes. Panoptic segmentation generalizes both semantic and instance segmentation and we expect the unified task will present novel challenges and enable innovative new methods.

- semantic & instance 모두 수행 가능한 모델
- instance의 경우
 instance 개수를 지정해야
 하는데 PASCAL VOC에 곧
 바로 적용하기 어렵다고 판
 단하여 semantic 선택
- 마지막 레이어의 activation 제거
- 마지막 레이어에 name = "deeplab_last_layer"추가

concatenate_12 (Concatenate)	(None,	128,	128,	256	0	<pre>conv2d_transpose[0][0] activation_3[0][0]</pre>
conv2d_60 (Conv2D)	(None,	128,	128,	128	295040	concatenate_12[0][0]
batch_normalization_24 (BatchNo	(None,	128,	128,	128	512	conv2d_60[0][0]
activation_6 (Activation) [0]	(None,	128,	128,	128	0	batch_normalization_24[0]
conv2d_61 (Conv2D)	(None,	128,	128,	128	147584	activation_6[0][0]
batch_normalization_25 (BatchNo	(None,	128,	128,	128	512	conv2d_61[0][0]
activation_7 (Activation) [0]	(None,	128,	128,	128	0	batch_normalization_25[0]
conv2d_transpose_1 (Conv2DTrans	(None,	256,	256,	64)	32832	activation_7[0][0]
concatenate_13 (Concatenate)	(None,	256,	256,	128	0	conv2d_transpose_1[0][0] activation_1[0][0]
conv2d_62 (Conv2D)	(None,	256,	256,	64)	73792	concatenate_13[0][0]
batch_normalization_26 (BatchNo	(None,	256,	256,	64)	256	conv2d_62[0][0]
activation_8 (Activation) [0]	(None,	256,	256,	64)	Ø	batch_normalization_26[0]
conv2d_63 (Conv2D)	(None,	256,	256,	64)	36928	activation_8[0][0]
batch_normalization_27 (BatchNo	(None,	256,	256,	64)	256	conv2d_63[0][0]
activation_9 (Activation) [0]	(None,	256,	256,	64)	0	batch_normalization_27[0]
panoptic_last_layer (Conv2D)	(None,	256,	256,	20)	1300	activation_9[0][0]
Total params: 1,869,204 Trainable params: 1,866,644 Non-trainable params: 2,560						

input_5: InputLayer conv2d_54: Conv2D batch_normalization_18-BatchNormalization_activation. Activation. Activation conv2d_55-Conv2D batch_normalization_19-BatchNormalization_stat conv2d_56: Conv2D batch_normalization_20: BatchNormalization activation_2: Activation conv2d_57: Conv2D batch_normalization_21: BatchNormalization activation_3: Activation max_pooling2d_9: MaxPooling2D batch_normalization_22: BatchNormalization
activation_4: Activation
conv2d_59: Conv2D batch_normalization_23: BatchNormalization
activation_5: Activation conv2d_transpose: Conv2DTranspose
concatenate_12: Concatenate
conv2d_60: Conv2D batch_normalization_24: BatchNormalization activation_6: Activation

conv2d_61: Conv2D batch_normalization_25: BatchNormalization
activation_7: Activation conv2d_transpose_1: Conv2DTranspose concatenate_13: Concatenate comv2d_62: Conv2D batch normalization 26 BatchNormalization

activation 8 Activation

coss'2d_63 Coss'2D

batch_normalization_77 BatchNormalization

activation 9 Activation

panophic_last_layer: Coss'2D

수행 내용 > 손실함수 & 평가지표


```
def dice_coefficient(target, prediction, smooth=1):
    intersection = tf.reduce sum(target * prediction)
   union = tf.reduce_sum(target) + tf.reduce_sum(prediction)
    dice = (2. * intersection + smooth) / (union + smooth)
    return dice
def pixel accuracy(target, prediction):
   # 정수로 변화하여 비교
   y_{true} = tf.cast(y_{true} * 255, tf.int32)
   y_pred = tf.cast(tf.round(y_pred * 255), tf.int32)
   # 정확하게 예측된 픽셀의 개수 계산
    correct pixels = tf.reduce sum(tf.cast(tf.equal(y true, y pred), tf.float32))
   # 전체 픽셀의 개수 계산
   total pixels = tf.reduce sum(tf.ones like(y true, dtype=tf.float32))
   # 픽셀 정확도 계산
   accuracy = correct pixels / total pixels
    return accuracy.numpy()
def iou_score(target, prediction):
    target = tf.convert_to_tensor(target, dtype=tf.float32)
    prediction = tf.convert_to_tensor(prediction, dtype=tf.float32)
   intersection = tf.reduce_sum(tf.cast(tf.logical_and(tf.cast(target, tf.bool), tf.cast(pr
    union = tf.reduce_sum(tf.cast(tf.logical_or(tf.cast(target, tf.bool), tf.cast(prediction))
   iou_score = tf.math.divide_no_nan(intersection, union)
    return iou_score
```

- 노드에서 학습한대로 dice coefficient, pixel accuracy, iou를 사용하고자 함
- pixel accuracy는 데이터 타입 불일치 문제로 작동 오류 → 시간 관계상 일단 포기
- dice coefficient, iou는 모델
 학습 시 epoch에 따른 수치 변화
 가 전혀 없었기 때문에 무의미하거
 나 구현에 실패했다고 판단 → 시
 간 관계상 일단 포기
- 임시 metrics로 accuracy 사용

수행 내용 > W&B

lucky-sweep-5	aiffel_dlthon_test	① Crashed
vital-sweep-4	aiffel_dlthon_test	① Crashed
desert-sweep-3	aiffel_dlthon_test	① Crashed
electric-sweep-2	aiffel_dlthon_test	① Crashed
silvery-sweep-1	aiffel_dlthon_test	① Crashed
azure-jazz-4	quest- RS7_course_09_dlthon_cv_aiffel_ques	⊗ Failed
light-meadow-3	quest- RS7_course_09_dlthon_cv_aiffel_ques	⊙ Finished

- W&B를 사용해보려고 했으나 수시로 failed, crashed 등의 오류 발생
 → 가끔 성공하는 사례도 있었으나 반복적인 실험을 관리하기에는 어렵다고 판단
- 시간 제약으로 인해 사용법을 배웠다는 데에 의의를 두고 과감히 포기
 - → LMS 상에서 모델을 학습하고 history를 시각화 하는 방식으로 실험 진행

수행 내용 > CAM (강다은, 조혜원)


```
def get cam img from model(model, activation layer, ds test):
    def get cam img(test img):
       # convert test image into Tensorflow
       img tensor = tf.convert to tensor(test img, dtype=tf.float32)
       # get cam model
       cam_model = tf.keras.models.Model([model.inputs], [model.get_layer(activation_layer)
       with tf.GradientTape() as tape:
           conv output. pred = cam model(tf.expand dims(img_tensor, 0))
           class_idx = tf.argmax(pred[0], axis=-1) # get the index of the predicted class
           one hot = tf.one hot(class idx, depth=20) # convert class index into one-hot en
           loss = tf.reduce_sum(one_hot * pred[0])
          output - conv_output[v] # 원이는 tayer의 output을 얻습니다.
           grad val = tape.gradient(loss, conv output)[0] # 예측값에 따른 Layer의 gradient를 얻습
       # generate CAM image
       weights = np.mean(grad_val, axis=(0, 1))
       cam img = np.dot(conv output.numpy(), weights)
       cam img = (cam img - np.min(cam img)) / (np.max(cam img) - np.min(cam img)) # normal
       # convert CAM image into 3-RGB-chennel
       cam_img_3ch = np.stack([cam_img]*3, axis=-1).astype(np.float32)
       cam img 3ch = np.squeeze(cam img 3ch)
       # blend cam image with original test image
       result img = cv2.addWeighted(test img, 0.5, cam img 3ch, 0.5, 0.0)
       return result_img
    return [get cam img(img) for img in ds test]
```

- 노드에서 배운 gradient CAM 코드를 재활용
- 기존 코드는 이미지 분류를 위한 것으로,
 segmentation을 수행하기 위하여 일부 코드를 수정함
- Pascal VOC 이미지 데이 터와 호환되도록 데이터 형 상(shape)을 통일하는 코 드를 추가함

Part 3

수행결과

수행 결과 > U-net 학습 결과 (500 samples & 300 epochs)

- Training metrics는 꾸준히 변화하나, validation metrics는 거의 변화가 없음
- 증강 데이터의 경우 원본 데이터에 비해 training metrics의 변화 폭이 안정적임

수행 결과 > U-net 실험 결과 (500 samples & 300 epochs)

수행 결과 > DeepLab 학습 결과 (500 samples & 300 epochs)

>>> DeepLab model training evaluation (augmented data) :

- Validation loss가 측정 불가(NaN)
- Training metrics는 꾸준히 변화하나, validation metrics는 거의 변화가 없음
- 증강 데이터의 경우 원본 데이터에 비해 training metrics의 변화 폭이 안정적임

수행 결과 > DeepLab 실험 결과 (500 samples & 300 epochs)

수행 결과 > Panoptic 학습 결과 (500 samples & 300 epochs)

- Training metrics는 급격하게 변화하는 데 비해, validation metrics는 변화폭이 크지 않음
- 증강 데이터의 경우 원본 데이터에 비해 변화 폭이 큼 / epochs가 거듭될수록 성능이 꾸준히 악화됨

수행 결과 > Panoptic 실험 결과 (500 samples & 300 epochs)

수행 결과 > Panoptic 실험 결과 (500 samples & 100 epochs)

Part 4

최종 회고 > 모델 성능 비교

U-net (강다음)

- 사물의 윤곽선에 대한 세그멘 테이션을 수행하는 것으로 보 인다
- EPOCHS=300으로 수행하였는데, 원만한 세그멘테이션을 위하서는 방대한 학습량이 필요할 것 것으로 추정

DeepLab (김찬중)

- EPOCHS=300으로 학습하였 는데도 불구하고, 세그멘테이 션을 아예 수행하지 않는 것으 로 추정
- 모델 깊이에 비해 learning rate가 낮은 것이 원인이 아닌 지 추정

Panoptic (조혜원)

- 사물의 윤곽선에 대한 세그멘 테이션을 수행하는 것으로 보 인다
- U-net에 비하면 epoch 당 학습 소요 시간도 짧고, 동일한 epoch에 대해서는 훨씬 더 선명한 segmentation을 수행하고 있다

최종회고 > 실험의의

배운점

- 어떤 모델을 실험할지 계획을 수립하는 단계에서, 다양한 모델 및 방법론에 대해 조사하는 계기가 되었다
- 원핫인코딩 마스크와 정수형 마스크의 차이를 다시금 깨닫고, 마스크 종류에 따른 activation 및 loss 함수의 사용법도 익혔다
- 조원들과 역할을 분담하여 개별로 작업을 수행하는 과정과 함께 협동하여 작업을 수행하는 과정 간의 균형을 잡으며 원만한 팀플을 진행하였다
- 주어진 시간 내에서 페이스 조절을 통해 (비록 실험 결과는 좋지 않았지만) 제출물을 완성할 수 있었다

최종회고 > 실험한계

아쉬운 점

- 커널/메모리 문제로 자유로운 모델 학습 실험이 불가능하였다
- 시간 관계상 코드를 직접 구현하기 보다는 원리나 구조를 이해하지 못한 채 외부 코드를 적극 참고하였다
- 실험 계획은 원대하게 세웠으나. 시간 관계상 구현 도중 오류가 생기는 것은 과감히 포기해버렸다
- 특히 metrics는 dice coefficient, pixel accuracy, IOU 모두 보기하고 accuracy만 적용하여 모델 학습을 진행하였는데, 과연 적합한 metrics였는지 결과물이 썩 만족스럽지 못한 것은 metrics 때문이 아닌지 의문이 든다

최종회고 > 실험한계

의문점

• DeepLab 모델의 경우 segmentation 결과를 아예 확인할 수 없었기에 CAM 이미지가 검은 이미지였을 것으로 추정. 다만,특히 (원본 이미지 + CAM 이미지)를 5:5로 합성했기에, 이론상으로는 (원본 이미지 + 검은 이미지) = (어두운 원본 이미지) 가 도출되어야 하는데, 온전히 검은 이미지가 합성되어 출력되었다

최종 회고 > 실험 한계

의문점

• DeepLab 모델의 경우 segmentation 결과를 아예 확인할 수 없었는데, 다른 데이터셋(instace level human parsing)을 이용하여 실험을 수행할 경우 유의미한 결과를 확인할 수 있었다

