

ESCUELA DE CIENCIAS EXACTAS

DEPARTAMENTO DE MATEMÁTICA

LCC - LF - LM - PF - PM

ÁLGEBRA Y GEOMETRÍA ANALÍTICA II - Año 2023

PRÁCTICA 6: GEOMETRÍA ANALÍTICA DEL ESPACIO.

- 1. Sea r la recta que pasa por los puntos $P_0(1,1,1)$ y $P_1(-3,-1,-2)$
 - a) Determinar las ecuaciones paramétricas de r.
 - b) Calcular la distancia del origen de coordenadas a r.
 - c) Determinar si r interseca a los planos coordenados, y en caso que lo haga, en qué puntos.
- 2. Sea π el plano determinado por los puntos P(1,-1,0), Q(4,0,1) y R(0,1,0).
 - a) Determinar las ecuaciones paramétricas de π .
 - b) Determinar z_1 sabiendo que $S(10, -5, z_1) \in \pi$.
 - c) Determinar las ecuaciones de una recta perpendicular a π por el origen de coordenadas y determinar el punto en que esta recta interseca a π .
- 3. Sea P_0 un punto de coordenadas $P_0(x_0, y_0, z_0)$ y seam

$$\begin{cases} x = x_0 + \alpha u_1 + \beta v_1 \\ y = y_0 + \alpha u_2 + \beta v_2 \\ z = z_0 + \alpha u_3 + \beta v_3 \end{cases} \quad \alpha, \beta \in \mathbb{R}$$

las ecuaciones paramétricas de un plano π que contiene a P_0 . Supongamos que S es el punto de π que se obtiene a partir de los parámetros α_1 , β_1 . Demostrar que el punto T simétrico de S en π respecto de P_0 es el punto que se obtiene a partir de los parámetros $-\alpha_1$, $-\beta_1$.

- 4. Dada la familia de planos de ecuación $\alpha x + 2\alpha y + 10z 2 = 0$, $\alpha \in \mathbb{R}$, encontrar en cada caso cuál de ellos verifica:
 - a) es paralelo al plano de ecuación x + 2y + 8z 7 = 0;
 - b) es paralelo al plano de ecuación -x + y 3z + 1 = 0;
 - c) es perpendicular al plano -5x + y 3z + 2 = 0;
 - d) forma con el plano 4y + 3z 9 = 0 un ángulo cuyo coseno vale 14/15.
- 5. a) Hallar la ecuación del plano que contiene a los puntos $P_1(1, -2, 2)$ y $P_2(-3, 1, -2)$ y es perpendicular al plano de ecuación 2x + y z + 6 = 0.
 - b) Hallar un punto P_3 tal que el problema análogo al planteado en el item anterior con P_1 y P_3 tenga infinitas soluciones.
- 6. Hallar la intersección de los siguientes tres planos:

$$(\pi_1) 2x + 4y + 2z = 3$$
, $(\pi_2) 3x + 3y - z = 0$ $(\pi_3) 3x - 6y - 5z = 8$.

7. Demostrar que la ecuación del plano que determinan los tres puntos no alineados $P_1(x_1, y_1, z_1)$, $P_2(x_2, y_2, z_2)$ y $P_3(x_3, y_3, z_3)$ resulta de plantear:

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$

Determinar utilizando este método el plano que contiene a los puntos $P_1(3,2,-5)$, $P_2(0,1,-1)$ y $P_3(2,5,-1)$.

- 8. Hallar en cada caso la la ecuación de un plano que verifique las condiciones pedidas:
 - a) su punto más cercano al origen es P(1, -2, 1);
 - b) determina con los ejes coordenados segmentos de longitudes 2, 3 y 1 respectivamente;
 - c) es paralelo al de ecuación 2x + 3y 6z 14 = 0 y que dista 5 unidades del origen.
- 9. Si dos planos son paralelos, la distancia entre ellos es la distancia de un punto cualquiera de uno de ellos al otro plano. Demostrar que los planos de ecuaciones π_1) 6x + 2y 3z 63 = 0 y π_2) $-3x y + \frac{3}{2}z + 25 = 0$ son paralelos y encontrar la distancia entre ellos.
- 10. Determinar la distancia del punto $P_0(-1,1,-2)$ al plano determinado por los puntos A(1,-1,1), B(4,-5,-2) y C(-2,1,3).
- 11. Hallar las ecuaciones paramétricas y simétricas de la recta r determinada por los puntos A(3, 8, -4) y B(-2, 5, 1). Determinar la ecuación de dos planos que se intersequen en r.
- 12. Hallar las ecuaciones paramétricas de cada una de las siguientes rectas:

i)
$$\begin{cases} 6x + 2y - z = 8 \\ 14x + y = 24 \end{cases}$$
 ii)
$$\begin{cases} 3x - 5y + 2z = 4 \\ 4x + 2y - 3z = 2 \end{cases}$$

- 13. En cada caso hallar las ecuaciones de la recta que pasa por el punto P(2,-1,3) y verifica la condición pedida:
 - a) es paralela al eje y;
 - b) es perpendicular al plano de ecuación 3x 6y 5z = 8;
 - c) es paralela a la recta de ecuación $\frac{x-2}{4} = \frac{y+1}{-2} = \frac{z-1}{3};$
 - d) es perpendicular al plano de ecuación y=0;
 - e) es perpendicular a los vectores $\overline{u} = (3, -1, -2)$ y $\overline{v} = (4, 2, -4)$;
 - f)es paralela a la recta de ecuación $\left\{ \begin{array}{l} 3x-5y+2z=4\\ 4x+2y-3z=2 \end{array} \right.$
- 14. Determinar α y β para que la recta

r)
$$\begin{cases} 2x + y - z - 6 = 0 \\ \alpha x + y + 3z + \beta = 0 \end{cases}$$

esté contendia en el plano xz.

- 15. Dados los vértices de un triángulo A(1, -2, 4), B(3, 1, -3) y C(5, 1, -7) hallar las ecuaciones de la recta que contiene a la altura trazada desde el vértice B.
- 16. Sean r_1 y r_2 dos rectas en el espacio con direcciones \overline{u}_1 y \overline{u}_2 y sean $P_0 \in r_1$ y $P_1 \in r_2$.
 - a) Demostrar que si r_1 y r_2 son paralelas, entonces

$$d(r_1, r_2) = \frac{|\overline{u}_1 \wedge \overline{P_0 P_1}|}{|\overline{u}_1|}$$

b) Si r_1 y r_2 son alabeadas, la distancia entre r_1 y r_2 es la distancia entre los puntos de intersección de r_1 y r_2 con una recta perpendicular a ambas. Demostrar que

$$d(r_1, r_2) = \frac{|[\overline{u}_1, \overline{u}_2, \overrightarrow{P_0P_1}]|}{|\overline{u}_1 \wedge \overline{u}_2|}.$$

17. Determinar si las rectas

$$r_1$$
) $\begin{cases} x = 2 + 2t \\ y = -1 - t \\ z = 3 + 3t \end{cases}$, $t \in \mathbb{R}$, r_2) $\begin{cases} x = 1 - 3r \\ y = 2r \\ z = 2 + 4r \end{cases}$, $r \in \mathbb{R}$

son coplanares. Calcular la distancia entre r_1 y r_2

18. Demostrar que las rectas r_1 y r_2 de ecuaciones

$$r_1$$
) $\frac{x+4}{3} = y - 1 = \frac{z}{2}$, r_2) $\begin{cases} 2x - z - 8 = 0 \\ 2y - z - 9 = 0 \end{cases}$

son alabeadas y determinar la ecuación de un plano r_1 que contenga a r_2 .

- 19. Determinar en cada item las ecuaciones de una recta perpendicular a r_1 y r_2 que interseque a ambas y calcular $d(r_1, r_2)$.
 - a) r_1 está determinada por M(2,1,3) y N(1,2,1);

b)
$$r_1$$
) $\frac{x+3}{-4} = \frac{y-6}{3} = \frac{z}{2}$, r_2) $\begin{cases} x+5y-z+9=0\\ x+3y+z-5=0 \end{cases}$

20. Hallar la ecuación de la recta que contiene al punto A(1,2,3) y que además se interseca con las rectas

$$r_1$$
) $\frac{x}{2} = y - 6 = \frac{z+3}{-4}$ y r_2) $\frac{x-12}{13} = y - 3 = \frac{z+3}{-4}$.

21. Determinar la distancia del punto P(3,2,1) a la recta

r)
$$\begin{cases} 3x - 4y + 9 = 0 \\ 7x - y - 12z + 16 = 0 \end{cases}$$

- 22. Determinar los puntos de la recta $\begin{cases} x+y-z=2\\ -x-y+3z=0 \end{cases}$ que se encuentran a 5 unidades del plano 2x-2y+3z=0.
- 23. Hallar las ecuaciones de la recta r_1 que contiene al punto M(3, -2, -4), es paralela al plano π) 3x 2y 3z = 7 y se interseca con la recta r_2) $\frac{x-2}{3} = \frac{y+4}{-2} = \frac{z-1}{2}$. Determinar el ángulo entre r_1 y r_2 .
- 24. Determinar las ecuaciones de la superficie esférica indicada en cada caso:
 - a) Tiene centro P(1,2,-4) y radio 3.
 - b) Tiene centro en P(1,1,1) y pasa contiene al punto Q(1,3,-5).
 - c) Tiene centro en P(3,6,-4) y es tangente al plano de ecuación 2x-2y-z-10=0.
 - d) La circunferencia de ecuación $\left\{\begin{array}{l} (x-1)^2+(y+3)^2=2\\ z=3 \end{array}\right.$ es un círculo máximo de la esfera.
 - e) \overline{PQ} es un diámetro, con P(-1, 2, -3), Q(2, 3, -1).
 - f) Está inscripta en el cilindro de ecuación $(x-4)^2 + (y-5)^2 = 9$ y su centro está en el plano 3x + 8y 8z = 4.
 - g) Pasa por los puntos de coordenadas (7,9,1), (-2,-3,2), (1,5,5), (-6,2,5).
- 25. Dada la esfera \mathcal{E} de ecuación $(x-1)^2 + (y+2)^2 + (z-2)^2 = 4$:
 - a) determinar las ecuciones del plano tangente a \mathcal{E} en en punto Q(1,0,2);
 - b) determinar las ecuaciones de la circunferencia que se obtiene de intersecar \mathcal{E} con el plano z=1.

3

- 26. Hallar el vértice y el foco de la parábola que resulta al intersectar el paraboloide hiperbólico de ecuación $\frac{z^2}{4} \frac{x^2}{9} = \frac{y}{3}$ con el plano de ecuación x = 1.
- 27. En cada uno de los siguientes items, identificar qué superficie en el espacio está determinada por las ecuaciones dadas y esbozar su gráfica.
 - a) $x^2 + y^2 = 1$;
 - b) $3z^2 = 0$
 - c) $4x^2 + 9z^2 = 36$.
- 28. Determinar qué superficie determina cada una de las ecuaciones siguientes y esbozar su gráfica:

a)
$$x^2 + 2y^2 - 6z = 0$$
;

$$b) \ 4x^2 + 12y^2 + 36z^2 = 36;$$

c)
$$9x^2 - 4z^2 = 36$$

d)
$$\frac{x^2}{9} - \frac{y^2}{9} - \frac{z^2}{9} = 1;$$

$$e)\ \, \frac{x^2}{9} + \frac{y^2}{16} - \frac{z^2}{4} = 1;$$

$$f) \ \frac{x^2}{9} + \frac{y^2}{9} - \frac{z^2}{9} = 0;$$

$$(y^2 + z^2) = 4$$

h)
$$x^2 - 4y^2 = 8z$$
.

i)
$$x^2 + y^2 + z^2 - 6x + 4y - 3z = 15$$
.

$$(x+1)^2 + (y-3)^2 = 0.$$

$$k) \ \frac{x^2}{25} + \frac{y^2}{16} + \frac{z^2}{9} = 0.$$

$$l) \ 3x^2 + 8y^2 - 4z^2 - 24 = 0.$$

$$m) y^2 + z = 2$$

$$n) 9x^2 + 4y^2 + 36z^2 - 18x + 16y - 11 = 0.$$

$$\tilde{n}$$
) $x^2 - 4y^2 + 2z^2 - 6x - 8y + 8z + 9 = 0$.

o)
$$x^2 - 4y^2 + 2z^2 - 6x - 8y + 8z + 9 = 0$$
.

$$p) \ \frac{(x-2)^2}{36} + \frac{(z-1)^2}{25} = 4y.$$

q)
$$\frac{(z-2)^2}{36} - \frac{(y-2)^2}{25} - x = 0.$$

- 29. Hallar la ecuación del lugar geométrico de los puntos del espacio cuya diferencia a los puntos fijos de coordenadas (-4,3,1) (4,3,1) es igual a 6. Determinar qué tipo de superficie es.
- 30. Hallar la ecuación del lugar geométrico de los puntos del espacio cuya distancia al punto de coordenadas (2, -1, 3) es igual al doble de su distancia al eje x. Determinar qué tipo de superficie es.
- 31. Identificar y esbozar las gráficas de las curvas en \mathbb{R}^3 dadas por los sistemas de ecuaciones siguientes:

a)
$$\begin{cases} x + 2y - z = 3 \\ 2x - y + 2z = -1 \end{cases}$$

$$b) \begin{cases} x^2 + y^2 + z^2 = 9 \\ z = 2 \end{cases}$$

$$c) \begin{cases} y^2 = 4z \\ x = 3 \end{cases}$$

$$d) \begin{cases} 9x^2 + 4y^2 = 36 \\ z = 5 \end{cases}$$

- 32. Hallar las ecuaciones cartesianas de las siguientes curvas:
 - a) Una circunferencia de centro $P_0(1,1,1)$ y radio 5 en el plano de ecuación x + 2y 3z = 0.
 - b) Una elipse de vértices V_1 , V_2 , V_3 y V_4 , donde V_1 y V_2 están sobre el eje focal, con $d(V_1, V_2) = 3$, $d(V_3, V_4) = 2$, centro C = (1, 2, 3), eje focal paralelo al eje z y contenida en un plano paralelo al plano uz.
 - c) La intersección de una esfera centrada en el origen de radio 2 y el paraboloide de ecuación $z = x^2 + y^2$. Mostrar que se trata de una circunferencia y hallar su centro y su radio.
- 33. Encontrar las ecuaciones paramétricas de las curvas del ejercicio anterior.

34. En cada caso, hallar las coordenadas de los puntos de intersección de la curva γ dada con la superficie S dada.

a)
$$\gamma) \left\{ \begin{array}{l} x = 2\cos\theta \\ y = 2\sin\theta \\ z = 2\sin\theta \end{array} \right., \theta \in \mathbb{R}, S)x^2 - y^2 + z^2 = 4. \qquad \gamma) \left\{ \begin{array}{l} x = t \\ y = t^2 \\ z = t^3 \end{array} \right., \ t \in \mathbb{R}, \quad S)x^2 + 2y - z = 2.$$

35. Esbozar las gráficas de las curvas del espacio dadas por las siguientes ecuaciones paramétricas. Cuando sea posible describirlas como intersección de dos superficies.

$$a) \begin{cases} x = 1 + t \\ y = 3 - t \\ z = 8 + 2t \end{cases} \qquad t \in [0, 25]$$

$$b) \begin{cases} x = 3 \cos t \\ y = 4 \sin t \\ z = 5 \end{cases} \qquad t \in [0, 2\pi]$$

$$c) \begin{cases} x = 2 \cos t \\ y = 1 + \sinh t \\ z = 2 \cosh t \end{cases}$$

$$c) \begin{cases} x = 2 \cos t \\ y = 1 + \sinh t \\ z = 2 \cosh t \end{cases}$$

$$f) \begin{cases} x = \cos 3t \\ y = \sin 3t \\ z = t \end{cases}$$