Лекции ИУ7. Методы Вычислений. Семестр 2

Власов П. А.*

18 февраля 2016 г.

Содержание

L	Оді	номери	ная оптимизация	2
	1.1	Основ	вные понятия одномерной оптимизации	2
		1.1.1	Минимум функции	2
		1.1.2	Унимодальные функции	2
		1.1.3	Выпуклые функции	3
		1.1.4	Липшицевы функции	4
	1.2	Метод	цы одномерной оптимизации	5
		1.2.1	Классический метод	5
		1.2.2	Методы перебора и поразрядного поиска	7
		1.2.3	Методы исключения отрезков	9

Основные понятия

Типовая задача оптимизации имеет следующий вид

$$\begin{cases} f\left(x\right) \to min \\ x \in G \end{cases} \tag{1}$$

Замечание:

- 1. Если требуется задачу максимизации, то обычно вместо функции f(x) рассматривают функцию g(x) = -f(x) и решают задачу минимизации для G.
- 2. В прошлом семестре мы рассматривали задачу (1) для:
 - (a) случая, когда G конечно или счетно
 - (b) случая, когда f линейна, а G выпуклый многоугольник в пространстве \mathbb{R}^n . (B этом случае задачу (1) называют задачей исследования операций)
- 3. В этом семестре будем рассматривать задачу (1) для
 - (a) произвольной (не обязательно скалярной) функции f и
 - (b) для произвольного множества $G \subseteq \mathbb{R}^n$.

Используется следующая терминология:

^{*}Законспектировано Абакумкиным А. В.

Φ ункция f	Mножество G	Название задачи
$f:G o \mathbb{R}$	$[a;b] \subset \mathbb{R}$	Задача одномерной оптимизации
$f:G\to\mathbb{R}$	$G = \mathbb{R}^n, n \geqslant 2$	Задача многомерной безусловной оптимизации
$f:G\to\mathbb{R}$	$G \subset \mathbb{R}^n, n \geqslant 2$	Задача многомерной условной оптимизации
$f:G\to\mathbb{R}^m, m\geqslant 2$	$G \subseteq \mathbb{R}^n$	Задача многокритериальной оптимизации

1. Одномерная оптимизация

$$\begin{cases} f(x) \to \min \\ x \in [a; b] \end{cases} \tag{2}$$

1.1. Основные понятия одномерной оптимизации

1.1.1. Минимум функции

Пусть $f: G \to \mathbb{R}^n, G \subseteq \mathbb{R}$

Определение: Точка $x^* \in G$ называется точкой глобального минимума функции f на множестве $\forall x \in G \mid f(x^*) \leqslant f(x)$.

При этом число f^* называется $\mathit{минимум}$ (глобальным) функции f на G и обозначается $f^* = \min_{x \in G} f(x)$.

Замечание: Обозначим множество всех точек глобальных минимумов f на G, как

$$G^* = \left\{ x^* \in G : f\left(x^*\right) = \min_{x \in G} f\left(x\right) \right\}$$

<u>Определение:</u> Точка $\tilde{x} \in G$ называется *точкой локального минимума* функции на множестве G,

$$\exists \varepsilon > 0 \quad \forall x \in u_{\varepsilon}(\tilde{x}) \cap G \quad f(\tilde{x}) \leqslant f(x),$$

где $u_{\varepsilon}\left(\tilde{x}\right)=\left\{ x:\left|\tilde{x}-x\right|<\varepsilon\right\} .$

Замечание:

- 1. Точка глобального минимума является точкой локального минимума. Обратное неверное.
- 2. Задача (2) имеет решение тогда и только тогда, когда $G^* \neq 0$
- 3. Согласно теореме Вейерштрасса, всякая функция, непрерывная на замкнутом ограниченном множестве, достигает на этом множестве своих inf и sup (которые являются в этом случае минимум и максимумом этой функции на этом множестве).

Таким образом задача (2) всегда имеет решение в случае непрерывной функции f.

1.1.2. Унимодальные функции

Пусть $f:[a;b] \to \mathbb{R}$

Определение: f называется yнимодальной на отрезке [a;b], если $\exists a_1,b_1 \in \mathbb{R}$:

- 1. $a \leqslant a_1 \leqslant b_1 \leqslant b$
- 2. Если $a < a_1$, то f монотонно убывает на $[a; a_1]$
- 3. Если $b_1 < b$, то f монотонно возрастает на $[b_1; b]$.
- 4. $\forall \tilde{x} \in [a_1; b_1]$ $f(\tilde{x}) = \min_{x \in G} f(x)$

Свойства унимодальных функций

 $1^{\rm o}$ Каждая точка локального минимума унимодальной функции является одновременно точкой её глобального минимума.

2º Если f унимодально на [a;b], то f унимодально и на любом отрезке $[a_1,b_1]\subset [a;b]$.

3° Пусть:

- 1. f унимодальна на отрезке [a;b]
- 2. $a \le x_1 < x_2 \le b$
- 3. x^* точка минимума функции f.

Тогда

- 1. Если $f(x_1) \leqslant f(x_2)$, то $x^* \in [a; x_2]$
- 2. Если $f(x_1) > f(x_2)$, то $x^* \in [x_1; b]$

1.1.3. Выпуклые функции

Пусть $f:[a;b] \to \mathbb{R}$

Определение: Функция f называется выпуклой, если

$$\forall \forall x_1, x_2 \in [a; b] \quad \forall \alpha \in [0; 1]$$

$$f(\alpha x_1 + (1 - \alpha) x_2) \le \alpha f(x_1) + (1 - \alpha) f(x_2) \tag{3}$$

Замечание:

1. Неравенство (3) означает, что для любой хорды графика функции f(x), которая соединяет точки $(x_1, f(x_1))$ и $(x_2, f(x_2))$, график функции f(x) на отрезке, соединяющий x_1 и x_2 , лежит не выше этой хорды.

2. В классическом математическом анализе такие функции называются выпуклыми вниз. Функции, которые в классическом математическом анализе являются выпуклыми вверх, мы не будем считать выпуклыми (так как они не удовлетворяют нашему определению). Эта «дискриминация» связана с тем, что в дальнейшем будем рассматривать только задачу минимизации.

3

Свойства выпуклых функций

Через $C^{(k)}\left[a;b\right]$ будем обозначать функции, которые непрерывны на отрезке $\left[a;b\right]$ и имеют на $\left[a;b\right]$ непрерывные производные до порядка k включительно.

1° Пусть
$$f \in C^{(1)}[a;b]$$

Тогда f выпукла тогда и только тогда, когда $f'\left(x\right)$ не убывает на $\left[a;b\right]$

 $\mathbf{2}^{\mathbf{o}}$ Пусть $f \in C^{(2)}[a;b]$, тогда f выпукла на $[a;b] \Leftrightarrow f''(x) \geqslant 0, \quad x \in [a;b]$

3° Пусть $f \in C^{(3)}[a;b]$, тогда f выпукла $\Leftrightarrow \forall x_0 \in [a;b]$ касательная к графику функции f(x) в точке x_0 лежит не выше графика f(x).

4^o Пусть

1.
$$f \in C^{(1)}[a;b]$$

$$2. \ f$$
 выпукла на $[a;b]$

3.
$$f'(x^*) = 0$$
, $x^* \in [a; b]$

Тогда x^* — точка глобального минимума $f(x), x \in [a;b]$.

$$\mathbf{5}^{\mathbf{o}} \ C[a;b] = C^{0}[a;b]$$

Пусть

1.
$$f \in C[a;b]$$

$$2. \, f$$
 выпукло на $[a;b]$

Тогда f унимодальна на [a;b]

Замечание:

- 1. Многие методы минимизации разработанны для унимодальных функций. При этом эти методы хорошо сходятся, если f выпукла.
- 2. На практике проверку выпуклости целевой функции осуществляют не с помощью использования определения, а с использованием свойств 1-3 или физических соображений.

1.1.4. Липшицевы функции

Пусть $f:[a;b] \to \mathbb{R}$

<u>Определение:</u> Говорят, что f удовлетворяет на отрезке [a;b] удовлетворяет условию Липшица (является липшицевой), если

$$\exists L \geqslant 0 \quad \forall \forall x_1, x_2 \in [a; b]$$

$$|f(x_1) - f(x_2)| \leqslant L \cdot |x_1 - x_2|$$

При этом L называется константой Липшица для f на [a;b].

Замечание: Для дифференцируемой на [a;b] функции условие Липшица означает, что для любой точки $\tilde{x} \in [a;b]$ угловой коэффициент касательной к графику f(x) в этой точке по абсолютной величине не превосходит L.

$$\forall \tilde{x} \quad |\operatorname{tg}\alpha\left(\tilde{x}\right)| \leqslant L$$

Свойства липшицевых функции

 ${f 1}^{f o}$ Если f удовлетворяет условию Липшеца с констанотой L, то f удовлетворяет условию и с любой константой $L_1>L.$

 ${f 2}^{f o}$ Если f липшицева на [a;b], то f является липшицевой и на любом отрезке $[a_1,b_1]\subseteq [a,b]$.

3° Если $f \in C^{(1)}[a;b]$, то

- 1. f липшицева на [a;b]
- 2. константа Липшица для f на [a;b] может быть выбрана

$$L = \max_{x \in [a,b]} |f'(x)|.$$

4° Пусть

- 1. $x_0 < x_1 < \dots < x_n$
- 2. f является липшицевой на $[x_{i-1}, x_i]$ с константой L_i , $i = \overline{1; n}$.

Тогда f является липшицвой на $[x_0; x_n]$ с константой

$$L = \max_{i=\overline{1;n}} L_i.$$

 5° Если f липшицева на [a;b], то она непрерывна на [a;b].

Пример:

- 1. $f(x) = \sin x$ является липшицевой на любом отрезке [a;b], так как она непрерывно дифференцируема на [a;b]
- 2. $f(x) = \sqrt{x}$ не является липшицевой на [0;a], a>0. Если бы f была липшицевой, то угловые коэффициенты касательных к графику были бы ограничены некоторой константой. Для \sqrt{x} на [0;a] это не так.

1.2. Методы одномерной оптимизации

1.2.1. Классический метод

$$\begin{cases} f(x) \to \min \\ x \in [a; b] \end{cases}$$

Из курса математического анализа известно:

- 1. Если
 - (a) f(x) дифференцируемая в точке x^* ,
 - (b) f(x) имеет локальный экстремум в точке x^* ,

то
$$f'(x) = 0$$

- 2. Если
 - (a) f(x) дифференцируемая в окрестности x^* ,
 - (b) $f'(x^*) = 0$,

то

- (a) Если f(x)при переходе через x^* меняет знак с «—» на «+», то x^* точка локального минимума
- (b) Если f(x)при переходе через x^* меняет знак с «+» на «-», то x^* точка локального
- 3. Если
 - (a) f(x) n раз дифференцируемая в точке x^* ,
 - (b) $f'(x) = f^{(n-1)}(x^*) = 0$,
 - (c) $f^{(n)}(x^*) \neq 0$,

то

- (a) если n нечетно, то f(x) не имеет локального экстремума в точке x^* ,
- (b) если n четно, а $f^{(n)}(x^*) > 0$, то x^* точка локального минимума,
- (c) если n четно и $f^{(n)}\left(x^{*}\right)<0$, то x^{*} точка локального максимума.

Классический метод

1. Вычисляем $f'(x), x \in (a; b)$, решаем уравнение

$$f'(x) = 0 (4)$$

Пусть x_1, \ldots, x_n — его решения

- 2. Для каждой точки x_k , $k = \overline{1,n}$ проверяем условие 2 или 3 и отбираем точки $\tilde{x}_1, \dots, \tilde{x}_p$, которые отвечают условию локального минимума.
- 3. Полагаем

$$f^* = \min \left\{ f\left(\tilde{x}_1\right), \dots f\left(\tilde{x}_p\right), f\left(a\right), f\left(b\right) \right\}$$

Замечание: На практике для применения этого метода затруднительно по следующим причинам

- 1. Для практически интересных(?) функций аналитическое решение (4) часто затруднительно
- 2. Функция может быть известна из наблюдений, что ведет к тому, что невозможно получить аналитическое представление для f'(x)
- 3. Проверка достижимости условий затруднительна

Эти трудности привели к появлению численных методов.

Их делят

- 1. Прямые методы
 - методы перебора и поразрядного поиска
 - методы исключения отрезков
 - метод парабол

2. Методы использующие производные целевой функции

- метод бисекций
- метод хорд и Ньютона

1 и 2 используются для унимодальных функций

3. Для минимизации многомодальных функций:

- метод перебора
- метод ломаных

<u>Замечание:</u> *Прямыми* называются методы, которы используют только значения целевой функции и не используют значения её производных.

1.2.2. Методы перебора и поразрядного поиска

Всегда предполагаем, что функция является унимодальной

I метод перебора

- 1. Разобьем [a,b] системой точек $x_i=a+i\Delta,\,i=\overline{0,n},$ где $\Delta=\frac{b-a}{n}$
- 2. Затем вычислим $f(x_i)$, где $i = \overline{0,n}$
- 3. Выбираем точки $x_m, m \in \{0, \dots, n\}$ так, чтобы $f(x_m) = \min_{i=\overline{0,n}} f(x_i)$. Положим $x^* = x_m, f^* = f(x_m)$

Замечание:

1. Погрешность нахождения x^* с использованием этого метода

$$\varepsilon_n \leqslant \frac{b-a}{n}$$

2. Если принять $n\gg 1$, то $\frac{1}{n}\approx \frac{1}{n+1}$ поэтому точность $\varepsilon(N)$, которую обеспечивает этот метод для N кратного вычисления(?) целевой функции

$$\varepsilon(N) \approx \frac{b-a}{N}$$

II метод поразрядного поиска

Этот метод является усовершенствованием метода перебора с целью уменьшения количества значений целевой функции f, которое необходимо найти для достижения заданной точности.

Замечание:

1. Если в методе перебора $f\left(x_{i+1}\right)\geqslant f\left(x_{i}\right)$, то $x^{*}\in\left[a,x_{i+1}\right]$ и следовательно $f\left(x_{i+2}\right),f\left(x_{i+3}\right),\ldots$ можно не вычислять.

Пример:

2. Целесообразно сперва найти приближенное (грубо) значение x^* , а затем уточнить это значение, используя более точный шаг.

7

Пусть ε — требуемая точность нахождения x^* (глобальный минимум). При реализации, обычно, сперва фиксируют $\Delta > \varepsilon$, вычисляют $f_i = f\left(x_i\right)$, $x_i = a + i\Delta$, до тех пор,пока не будет выполнено условие $f_{i+1} \geqslant f_i$.

При выполнении этого условия шаг Δ уменьшается (как правило в четыре раза, а процесс поиска запускается в обратную сторону).

Пусть ε — искомая точность.

Метод поразрядного поиска

1.2.3. Методы исключения отрезков

Один из подходов к построению основан на использовании следующих свойств. Если $x_1 < x_2,$ то

1. Если $f(x_1) \leqslant f(x_2)$, то $x^* \in [a, x_2]$

2. Если $f(x_1) > f(x_2)$, то $x^* \in [x_1, b]$

При построении соответствующих методов выбираем две произвольные точки x_1, x_2 :

$$a < x_1 < x_2 < b$$

Далее проверяем условия 1-2 и по результатам этой проверки отбрасываем часть отрезка [a,b].

Вычисления продолжаются до тех пор, пока длина текущего отрезка не станет меньше ε .

Пробные точки x_1, x_2 выбирают обычно симметричными от середины отрезка. Это делается для того, чтобы отношение длины нового отрезка к длине предыдущего не зависело от того, кака часть (правая или левая) отбрасывается.

Способ выбора пробных точек x_1 и x_2 определяет конкретный метод поиска минимума.

I Метод дихотомии

Выбираем достаточно малое $\delta > 0$ и положим $x_1 = \frac{a+b}{2} - \frac{\delta}{2}, x_2 = \frac{a+b}{2} + \frac{\delta}{2}$.

В этом случае отношение длины нового отрезка к длине предыдущего:

$$\tau = \frac{b - x_1}{b - a} = \frac{x_1 - a}{b - a} \approx \frac{1}{2}$$

Вычисления прекращаются, когда для очередного отрезка его длина

$$b - a < 2\varepsilon \tag{5}$$

Использование ослабленного неравенства (5) связано с тем, что в алгоритме принимается $x^* = \frac{a+b}{2}$

Замечание:

1. О выборе δ :

- (a) Чем меньше δ , тем метод лучше сходится
- (b) При слишком малых значениях δ значения $f(x_1) \approx f(x_2)$, если эти значения содержат ошибки измерений или вычислений, то возможно выполнение «не того» неравенства.

2. Число n итераций метода дихотомии необходимых для достижения заданной точности ε , определяется условием

 $n \geqslant \log_2 \frac{b - a - \delta}{2\varepsilon - \delta}$