- Identify CPU scheduling algorithms that would be most suitable for this scenario and calculate the average waiting time and average turnaround time.
- Calculate average waiting time and average turnaround time for shortest job first scheduling algorithm.

(OR)

b. Consider the following snapshot of a system: Total maximum instances of A=3, B=4, C=12 and D=12.

Process		Alloc	ation	1	Max.					
	A	В	C	D	A	В	С	D		
P_0	0	0	1	2	0	0	1	2		
\mathbf{P}_1	1	0	0	0	1	7	5	0		
P_2	1	3	5	4	2	3	5	6		
P_3	0	6	3	2	0	6	5	2		
P ₄	0	0	1	4	0	6	5	6		

Available											
A	В	С	D								
1	5	2	0								

	Answer the following questions using Banker's algorithm.				
	(i) Determine the need matrix for the above system.	2	4	2	1
	(ii) Is the system in a safe state? If yes, mention the sequence.	8	3	2	2
8. a.i.	Consider processes P1 (401 kB), P2 (321 kB), P3 (117 kB), P4(211kB), P5(121kB) arrives in order. Illustrate first-fit, best-fit and worst-fit process placement algorithms with given memory partitions 200 kB, 100kB, 300 kB, 600 kB, 400 kB.	6	3	3	3
ii.	Write a short note on programmer convenient memory management technique.	4	2	3	3
	(OR)				
b.	Explain about paging in operating systems.	10	3	3	3
29. a.	Consider the following page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 3, 2. Determine the page faults in FIFO, LRU and optimal page replacement algorithm with frame size as 3.	10	4	4	4
	(OR)				
b.	With the neat diagram, elaborate the page table and inverted page table.	10	3	4	4
30. a.	Explain various file organization methods with an example.	10	2	5 .	5
	(OR)				
Ъ.	Consider the following sequence of disk track requests 27, 129, 110, 186, 147, 41, 10, 64, 120. Assume that the disk head is initially positioned at 100 and moving in the direction of decreasing track number. Calculate the total disk arm movements for LIFO, SSTF, SCAN, C-SCAN disk scheduling.	10	4	5	5

k requests 27, 129, 110, 186, 147, is initially positioned at 100 and amber. Calculate the total disk arm	4	5	5	7. Which statement is false about semaphore operations? (A) When a process is in critical (B) Counting semaphore values are section the other process loops restricted indefinite	
I disk scheduling.				(C) Binary semaphore values range (D) Avoids critical section problems between 0 and 1 in a concurrent system such as	

Reg. No.								
-						_		

B.Tech. DEGREE EXAMINATION, MAY 2022

Fourth Semester

18CSC205J – OPERATING SYSTEMS

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note (i))	ove	rt - A should be answered in OMR or to hall invigilator at the end of 40 th or t - B should be answered in answer	,						
Tim	e: 2	½ Hc	ours -			Max.	Ma	rks:	75	
			PART – A (25 × 1 Answer ALL (Marks	BL	СО	РО	
	1.	Ten	mination of the process terminates			1	2	1	1	
			First thread of the process		First two threads of the process					
			All threads within the process	(D)	No thread within the process					
	2.	A _	is an active entity	where	eas is said to be as	1	2	1	1	
		(A)	Process, program	(B)	Program, process					
		(C)	Processor, process		Program, processor					
	3.		system call is used after the with a new program.	a fork	() to replace the process memory	1	1	1	1	
		(A)	wait ()	(B)	exec()					
		(C)	Sleep()		7.7					
	4.	sam	ple.text from memory. Identify the		ne execution it needs, to read a file nt state of P.	1	2	1	1	
		` ′	idle	(B)	sleep					
		(C)	run	(D)	Blocked					
	5.		tify the two functions which are us		message passing system.	1	1	1	1	
			send(msg), delete(msg)	(B)	send(msg), write(msg)					
		(C)	send(msg), receive(msg)	(D)	write(msg), delete(msg)					
	6.	Peter	rson's solution for process syncess.	chroni	zation is restricted to	1	1	2	2	
		(A)	1	(B)	2					
		(C)	3	• •	Multiple processes					
	7.	Whi	ch statement is false about semaph	ore op	perations?	1	2	2	2	
				(B)	Counting semaphore values are restricted					
		(C)	Binary semaphore values range between 0 and 1	(D)	Avoids critical section problems in a concurrent system such as multitasking operating system					

		is a segment and observe nat function on shared data structi		ch of the following can summarize	1	1	2	2
	(A) N	Monitor	(B)	Semaphore				
	(C) C	Aonitor Critical section	(D)	Mutex locks				
9.	The tir	me from arrival of interrupt to s	tart c	of routine that services interrupt is	1	1	2	2
		nterrupt latency	(B)	Scheduler				
	` '	Dispatch latency	. ,	Hardware latency				
10.	A syste	em is in safe state only if there ex	ists a		1	2	2	2
	(A) S	Safe allocation Safe sequence	(B)	Safe resource				
	(C) S	Safe sequence	(D)	Safe deallocation				
11	Operat	ing system maintains the page tal	hle fo	ut	1	2	3	3
11.		each process						
	(C) e	each instruction	(D)	each address				
	(0)		(2)					
12.	Memo	ry binding instruction generates		for known memory location	1	1	3	3
	and ge	enerate for unknow	vn m	emory location during the compile				
	time.							
	(A) I	Physical address, virtual address	(B)	Absolute code, delocatable code				
	(C) I	Base address, limit address	(D)	Absolute code, binary code				
						•		2
13.		statement is true about static par			1	2	3	3
				Partitions are allocated to the				
				process as they arrive				
				Memory contains a set of holes of				
	(only one process		various sizes				
1.4		. 1 1	.: a	anna tima	1	1	3	3
14.	(4)	aids in having lesser effec	(D)	Translation look aside buffer				
	(A) 1	Memory compaction Static partitioning	(D)	Dynamic partitioning				
	(C) ;	Static partitioning	(D)	Dynamic partitioning				
15	A pro	cess may have few longer CPU b	urete	if it is in	1	1	3	3
15.		I/O bound		CPU bound				
	` '	Critical section	. ,	Mutex lock				
	(0)	2	(-)					
16.	System	n libraries are used by variou	s pro	ocesses where each processes are	1	2	4	4
		ed to shared object into a	•					
	- A	Physical address space	(B)	Virtual address space				
		Memory address space	(D)	Contiguous address space				
17.				ch are altered by either process are	1	2	4	4
	copie	d while the pages	are	shared between parent and child				
	proce							
	. ,	Altered	` '	Modified				
	(C)	Unaltered	(D)	Unmodified				
10	A 3300	r'a entire program is looked in th	ie nh	ysical memory even though it is not	1	2	4	4
10.		ed during program execution time						
		Pure demand paging	(B)					
		Not demand paging		Virtual paging				
	(0)	Tion domining habing	(2)	F0				

19.	Duri	ng page fault, th	e tables which	are referr	ed ar	e kept in		1	1	4	4	
		Page table				namic table						
	(C)	Process control	block	(D)	Der	nand table						
			00			1 1		1	2	4	4	
20.		tio on which the	effective mem				n		2	7	7	
	` /	Miss ratio		(B)								
	(C)	Both hit and m	iss ratio	(D)	Bit	ratio						
21	The	free space list in	dick can be uti	lized by				1	1	5	5	
21.		Frames	uisk can be an	(B)	Pan	-00						
	` '			(D)	_							
	(C)	Bitmap		(D)	AII	ays						
22.	-ru	vxr - xr mea	ning of this con	nmand fo	or ow	ner is		1	2	5	5	
		Owner has exe					read, write and					
	()		1			cute permiss						
	(C)	Owner has read	d permission or	nly (D)			ead and execute					
	(0)		- P	-5 (-)		mission						
					•					_	_	
23.	The	methods how	LRU page re	placemen	it po	olicy can be	e implemented in	1	1	5	5	
		ware are										
	(A)	Counters		` /		M and Regi	ster					
	(C)	Stack and cour	nter	(D)	Reg	gisters						
24	Coar	uantial aggans m	othodo oro used	lin				1	1	5	5	
24.	_	uential access me			Die	tributed file	cristem					
	. /	Remote file sy		` /		oe drives	System					
	(C)	Networked file	systems	(D)	Tap	de unives						
25.	Whi	ich algorithm i	is similar to	SCAN s	ched	luling techr	niques where that	11	2	5	5	
		orithm prevents t										
	_	SSTF				SCAN						
	(C)	Look		(D)	C-I	Look						
		77	ADT D (5	10 - 50 N	/ aul	>						
		r	$ART - B (5 \times 1)$			(S)		Marks	BL	со	PO	
			Answer AL	L Questio	ons			11221160				
26. a.i.	Au	ser reads one rec	ord from file in	n 25µs, e	xecu	tes 100 instr	uctions in 1 µs and	2	4	1	1	
		te one record to f										
								5	4	1	,	
ii.	Det	ermine the reaso	ns for terminat	ing the pr	oces	S.		3	4	1	1	
ii	Wh	at is nine? What	are the four is	sues mus	t he	considered v	while implementing	3	2	1	1	
11.	pipe		are the roar is	Duot IIIub		0011010101011	Amire wildrenners 8					
	p.p.											
				R)								
b.	Wit	h the neat sketch	n, classify the st	tates of pa	roces	s in operatir	ng system.	10	4	1	1	
27 0	p In c	bue etation fix	a naccendere D	1 P2 P3	Ρ4	P5 want to	book a ticket. The	10	4	2	2	
Z1. a.							get a book from 5 th					
							ners to complete a					
			•				passengers to stand					
							as given to all the					
		sengers.	mgor time, a	unio qua	ull	OI SIIIS W	as Brieff to all the					
	pas	songors.	Passenger ID	Arrival t	ime	Burst time						
			P1	0		5						
			P2	1		2						
			P3	2		4						
			P4	3		7						
			P5	4		3						

Page 3 of 4