1. Useful Lemmas

Let G be (k+1)-edge-critical for some $k \ge \Delta(G) + 1$. Call $v \in V(G)$ special if every fan rooted at v has at most 3 vertices (including v).

Lemma 0. Let G be (k+1)-edge-critical for some $k \geq \Delta(G) + 1$. Let ϕ be a k-edge-coloring of $G - v_0 v_1$. Suppose α is missing at v_0 and β is missing at v_1 . Let $P = v_1 v_2 ... v_r$ be an $\alpha - \beta$ path with edges $e_i = v_i v_{i+1}$ for $1 \leq i \leq r-1$. If v_i is special for all odd i, then for any τ that is missing at v_0 there are edges $f_i = v_i v_{i+1}$ for $1 \leq i \leq r-1$ such that $f_i = e_i$ for i even and $\phi(f_i) = \tau$ for i odd.

Proof. Suppose not and choose a counterexample minimizing r. Then, by minimality of r, we must have $\phi(v_{r-1}v_r)=\alpha$ and we have $f_i=v_iv_{i+1}$ for $1\leq i\leq r-2$ such that $f_i=e_i$ for i even and $\phi(f_i)=\tau$ for i odd. Swap α and β on e_i for $1\leq i\leq r-3$ and then color v_0v_1 (call this edge e_0) with α and uncolor e_{r-2} . Let ϕ' be the resulting coloring. Since $k\geq \Delta(G)+1$, there is another color missing at v_{r-2} besides α , let γ be such a color. Now v_{r-1} is special since r-1 is odd (since P starts and ends with α), so there is an edge $e=v_{r-1}v_r$ with $\phi'(e)=\gamma$. Now swap τ and α on e_i for $0\leq i\leq r-3$ to get a new coloring ϕ^* . Then γ and τ are both missing at v_{r-2} in ϕ^* . Since v_{r-1} is special, the fan with v_{r-2}, v_{r-1}, v_r and e implies that there is an edge $f_{r-1}=v_{r-1}v_r$ with $\phi^*(f_{r-1})=\tau$. Now swap α and τ back on e_i for $0\leq i\leq r-3$ and then shift the $\alpha-\beta$ coloring one to the right to get back to ϕ . We have all the desired f_i , a contradiction.

Lemma 1. Let T be a maximal Tashkinov tree with respect to a k-edge-coloring ϕ of G-xy. If every $v \in V(T)$ is special, then for all α missing at x and β missing at y, the $\alpha - \beta$ path P from y to x has V(P) = V(T).

Proof. We show that P is a maximal Tashkinov tree, then we must have V(P) = V(T). Say $P = v_0 v_1 \dots v_r$ where $v_0 = y$ and v_r is the vertex right before x. Suppose P is not maximal. Then there is some color δ missing on P (say at v_i) and an edge colored δ leaving P (say from v_j). We have a 2-colored cycle, so by symmetry we may assume that i < j. Using Lemma 0, we can walk from i to j showing that every other edge on the path has a parallel edge colored δ . When we get to v_j , this means the δ edge ends in P, a contradiction. \square

A defective color for a Tashkinov tree T in a critical graph G is a color used on more than one edge from V(T) to V(G) - V(T).

Lemma 2. Let T be a maximum size Tashkinov tree with respect to a k-edge-coloring ϕ of $G - v_0v_1$ in G. If every $v \in V(T)$ is special, then V(T) has no defective colors.

Proof. Use Lemma 1 to get an $\alpha - \beta$ path $P = v_0v_1 \dots v_r$ with V(P) = V(T). Suppose the maximum size Tashkinov tree P has a defective color δ with respect to ϕ . Let τ be missing at v_2 . Consider a maximal $\tau - \delta$ path Q. Since V(P) is elementary, δ is not missing at any vertex of P and τ is not missing at any other vertex of P besides v_2 . In particular Q ends outside V(T). Now Q could leave V(T) and re-enter and bounce around inside a bunch (in fact Q must contain every δ -colored edge leaving V(T), but we don't need that), but Q ends outside V(T), so there is a last vertex $w \in V(Q) \cap V(P)$ (this is what the Stiebitz book calls an "exit vertex"), say Q ends at $z \in V(G) - V(T)$. Let $\pi \notin \{\alpha, \beta\}$ be a color missing at w.

Since T is maximum size, no edge colored τ or π leaves V(T). So, we can swap τ and π on every edge in G - V(T) without changing the fact that T is a maximum size Tashkinov tree. Now swap δ and π on wQz (since π is missing at w, the $\delta - \pi$ path does end at w). Now δ is missing at w, but δ was defective in ϕ , so there are still edges colored δ leaving V(T), adding such an edge gets a larger Tashkinov tree, a contradiction.

Theorem 3. If every $v \in V(G)$ is special, then $\chi'(G) \leq \max \{ \lceil \chi'_f(G) \rceil, \Delta(G) + 1 \}$.

Proof. Immediate by Lemma 2 since strongly closed Tashkinov tree implies elementary. This is implied by Theorem 1.4 (p. 8-9) of [Stiebitz].

2. The easy bound

Let G be a multigraph. The claw-degree of $x \in V(G)$ is

$$d_{\text{claw}}(x) := \max_{\substack{S \subseteq N(x) \\ |S| = 3}} \frac{1}{4} \left(d(x) + \sum_{v \in S} d(v) \right).$$

The claw-degree of G is

$$d_{\text{claw}}(G) := \max_{x \in V(G)} d_{\text{claw}}(x).$$

Theorem 4. If G is a multigraph, then

$$\chi'(G) \le \max \left\{ \left\lceil \chi'_f(G) \right\rceil, \Delta(G) + 1, \left\lceil \frac{4}{3} d_{claw}(G) \right\rceil \right\}.$$

Proof. Suppose not and choose a counterexample G minimizing ||G||. Then G is edge-critical with $\chi'(G) = \left\lceil \frac{4}{3} d_{\text{claw}}(G) \right\rceil + 1$. By Theorem 3 there is a non-special $x \in V(G)$. Let $k = \left\lceil \frac{4}{3} d_{\text{claw}}(G) \right\rceil$. Let $xy_1 \in E(G)$ and ϕ a k-edge-coloring of $G - xy_1$ such that there is a fan F of length 3 rooted at x with leaves y_1, y_2, y_3 . Since V(F) is elementary,

$$2 + k - d(x) + \sum_{i \in [3]} k - d(y_i) \le k,$$

and hence

$$d_{\text{claw}}(x) \ge \frac{1}{4} \left(d(x) + \sum_{i \in [3]} d(y_i) \right) \ge \frac{3k+2}{4}.$$

Hence, the contradiction

$$\left\lceil \frac{4}{3} d_{\text{claw}}(G) \right\rceil = k \le \frac{4}{3} d_{\text{claw}}(G) - \frac{2}{3}.$$

3. A STRONGER BOUND

For
$$q \in \mathbb{N}$$
, put $G_q := \{v \in V(G) : d(v) \ge q\}$. Put
$$d_q(G) := \max_{x \in G_q} d_{\text{claw}}(x).$$

Theorem 5. If G is a multigraph and $q \in \mathbb{N}$, then

$$\chi'(G) \le \max \left\{ \left\lceil \chi'_f(G) \right\rceil, \Delta(G) + 1, \left\lceil \frac{4}{3} d_q(G) \right\rceil, \left\lceil \frac{4}{3} q \right\rceil, q + \frac{1}{2} \mu(G) \right\}.$$

To prove Theorem 5, we need to analyze Tashkinov trees that have up to three non-special vertices.

Lemma 6. Let T be a maximum size Tashkinov tree with respect to a k-edge-coloring ϕ of $G - v_0v_1$ in G. If all but at most one $v \in V(T)$ is special, then V(T) has no defective colors.

Proof. One special vertex can't block the parallel edge making machine since we can just go the other way around the cycle. \Box

Lemma 7. Let T be a maximum size Tashkinov tree with respect to a k-edge-coloring ϕ of $G - v_0v_1$ in G. If all but at most two $v \in V(T)$ is special, then either V(T) has no defective colors or there are non-special vertices $x_1, x_2 \in V(T)$ such that $\mu(G) \geq 2k - d(x_1) - d(x_2)$.

Proof. If T has one or fewer non-special vertices, we are done. So suppose T has two. Choose α missing at v_0 and β missing at v_1 so that the length of the $\alpha - \beta$ path $P = v_1 v_2 \cdots v_r v_0$ from v_1 to v_0 is maximized. It will suffice to show that P is a maximal Tashkinov tree. If not, then here must be non-special vertices v_i, v_j , where i < j. Without loss of generality, suppose there is τ missing at v_0 and a τ -colored edge leaving P from v_a . Then, by Lemma 0, i is odd, j is even and $i \le a \le j$.

Suppose j-i > 1. Since there a no non-special vertices between v_i and v_j , using Lemma 0 on the path $v_i \cdots v_j$ we see that there are edges on that path that must have parallel edges of all colors missing at v_i as well as all colors missing at v_j . Since these color sets are disjoint, we have $\mu(G) \geq 2k - d(v_i) - d(v_j)$.

So, j = i + 1. By symmetry, we may assume a = i. Consider the $\tau - \beta$ path starting at v_i . If this path never returns to P, then the $\tau - \beta$ cycle contains only one non-special vertex on it (since it doesn't contain v_j) and so we can win as in Lemma 6. So, the $\tau - \beta$ path does return to P. It must enter along a τ -edge (since P is an $\alpha - \beta$ path). But we just showed that τ edges can only leave at v_i or v_j . So, the $\tau - \beta$ path re-enters P at v_j . But then we replaced a single edge $v_i v_j$ with a path of length at least three, so the $\tau - \beta$ path is longer than the $\alpha - \beta$ path, contradicting our maximality condition on P.

Lemma 8. Let T be a maximum size Tashkinov tree with respect to a k-edge-coloring ϕ of $G - v_0 v_1$ in G. If all but at most three $v \in V(T)$ is special, then either V(T) has no defective colors or there are non-special vertices $x_1, x_2 \in V(T)$ such that $\mu(G) \geq 2k - d(x_1) - d(x_2)$.

Proof. Similar to the previous, we don't even need to take a maximal path though. Say we get special vertices v_i, v_b, v_j with i < b < j. By looking at parities, it becomes evident that there is no way to avoid getting $\mu(G) \geq 2k - d(v_i) - d(v_j)$ or $\mu(G) \geq 2k - d(v_i) - d(v_j)$ or $\mu(G) \geq 2k - d(v_i) - d(v_j)$

The above should all be unified, like pull out a lemma dealing with the parities and when we are guaranteed $\mu(G) \geq 2k - d(v_i) - d(v_i)$.

Lemma 9. Let T be a maximum size Tashkinov tree with respect to a k-edge-coloring ϕ of $G - v_0v_1$ in G. If all but at most four $v \in V(T)$ is special, then

- \bullet V(T) has no defective colors; or
- there are non-special vertices $x_1, x_2 \in V(T)$ such that $\mu(G) \geq 2k d(x_1) d(x_2)$; or
- there are non-special vertices $x_1, x_2, x_3, x_4 \in V(T)$ and hence $\sum_{i \in [4]} d(x_i) \geq 3k + 2$

Proof. Immediate from Lemma 8. i think we can get a bit better than 3k + 2 because there is another vertex in T since |T| is odd.

Proof of Theorem 5. Let G be a minimal counterexample. Then G is edge-critical. Let T be a maximum size Tashkinov tree. We are good if T has one or fewer non-special vertices. Let x be a non-special vertex in T. As in the proof of Theorem 4, we get $d_{\text{claw}}(x) \geq \frac{3k+2}{4}$. Hence if any vertex in G_q is non-special we are done as in Theorem 4. Hence every non-special vertex x has $d(x) \leq q-1$. If T has four or more non-special vertices, then $4(q-1) \geq 3k+2$ by the third bullet of Lemma 9. But then $k > \left\lceil \frac{4}{3}q \right\rceil - 1 \geq k+1$, a contradiction. Hence T has two or three non-special vertices. By Lemma 9, we have $\mu(G) \geq 2k-2(q-1)$ which gives $q \geq k+1-\frac{1}{2}\mu(G)$. Hence $k > q+\frac{1}{2}\mu(G)-1 \geq k$, a contradiction.