

Data Mining Theory

DM-03: Supplement for Independence Test

Summary of Various Tests(3)

- 6. 2x2 cross tabulation \rightarrow Is there significant association between 2 axes?
 - Fisher's exact test
 - Accurate than χ^2 for small frequency and highly skewed
 - odds, p_val = ss.fisher_exact(DataFrame)
- 7. General cross tabulation→ Is there significant association between 2 axes?
 - χ^2 test (Independence Test)
 - Each frequency should be 5 or more
 - chi2, p_val, dof, expected = ss. chi2_contingency(DataFrame)
- 8. Observed frequency (x_obs) and theoretical frequency (x_exp) → Are they significantly different?
 - χ^2 test (Test of Goodness of fit)
 - Each frequency should be 5 or more
 - chi2, p_val = ss. chisquare(x_obs, $f_{exp}=x_{exp}$)

If testing the categories to be

equally likely, f_exp= can be omitted

cross tabulation

dm-03-assign1

- shop_sales.csv in dm-04 contains sample data of some stores of an enterprise, including prefecture (Prefs), store type (franchised / directly managed), sales of a product (before a campaign (Sales1) and after a campaign (Sales2). Create a notebook to conduct the following tests, and submit the results and ipynb / html files. In all cases, the significance level is 5%.
- 1. Regarding all data, could we conclude that sales are increased comparing Sales2 after the campaign with Sale1 before the campaign.
- 2. Could we conclude that sales in Sales2 between Tokyo and Saitama are significantly different.
- 3. Create a cross tabulation with prefectures and store types, and determine if there is an association between prefectures and store types (using chi-squared test)
- 4. (Adv) May we conclude that the ratio of the number of stores in each prefecture is consistent to the ratio of population of each prefecture (M stands for 1 million, Tokyo:14.0M, Saitama:7.3M, Chiba:6.3M, Kanagawa:9.2M)?


```
ct = pd.crosstab(df['Pref'], df['Type'])
display(ct)

Type direct franchise

Pref

Chiba 13 15

Kanagawa 28 30

Saitama 24 25

Tokyo 34 31
```

chi2, p, dof, expected = ss.chi2_contingency(ct) print(chi2, p, dof, expected)						
0.95022194467	727902 3 [[13.86 14.14]					
Type Pref	direct	franchise				
Chiba	13.86	14.14				
Kanagawa	28.71	29.29				
Saitama	24.255	24.745				
Tokyo	32.175	32.825				
	expected) 0.950221944672 Type Pref Chiba Kanagawa Saitama	Type direct Chiba 13.86 Kanagawa 28.71 Saitama 24.255	O.9502219446727902 3 [[13.86 14] Type			

Expected table if "Pref" column and "Type" column are independent

How to obtain "expected"

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.con tingency.expected freq.html#scipy.stats.contingency.expected freq

ct = pd.crosstab(df['Pref']
display(ct)

If the Type column is independent of the Prep column, then the distribution should be proportional to the total number of direct/franchise, regardless of the value of the Prep.

12 06 11 11

Type direct franchise

Pref

proportionally divided (99:101)

13	15
28	30
24	25
34	31
	28

28	\rightarrow 13.86, 14.14
58	\rightarrow 28.71, 29.29
49	\rightarrow 24.255, 24.745
65	\rightarrow 32.175, 32.825

	Type Pref	direct	franchis e
	Chiba	13.86	14.14
	Kanagawa	28.71	29.29
	Saitama	24.255	24.745
	Tokyo	32.175	32.825

99 101

suppl. on expected frequency: computing elements by assuming rows & columns are independent

Prefs & Types are independent \rightarrow P(Pref \cap Type)=P(Pref)P(Type)

✓ e.g. P(Chiba \cap direct)=P(Chiba)P(direct) P(Chiba), P(direct) can be computed by the marginal totals of the row & col,

P(Chiba) = 28/200, P(direct) = 99/200Since the element is frequency(not probability), the all total count is multiplied; $(28/200)*(99/200)*200=28*99/200=\underline{13.86}$

Generally, (i,j)-element is $\frac{T_i}{N} \times \frac{T_j}{N} \times N = \frac{T_i T_j}{N}$ with T_i :i-th row's total, T_j :j-th

column's total, N: all count
http://sphweb.bumc.bu.edu/otlt/MPH-

Modules/BS/BS704_HypothesisTesting-ChiSquare print.html

Туре	direct	franchise	All
Pref			
Chiba	13.860	14.140	28
Kanagawa	28.710	29.290	58
Saitama	24.255	24.745	49
Tokyo	32.175	32.825	65
All	99	101	200

chi2, p_val, dof, expected = ss. chi2_contingency(DataFrame)

- If the Pref and Type columns are independent, it is known that the chi2 statistic, which can be calculated from the deviation from the actual cross-tabulations (4 rows and 2 columns) and the expected table, follows a chi-square distribution of (4-1) * (2-1) = 3 degrees of freedom
 - χ^2 statistics: For each cell in the table, calculate the square of the difference between the value of expected table and that of the actual cross-tabulation divided by the value of actual cross-tabulation, and then add them together for all cells in the table.

As with the t (Welch) test, if the χ^2 statistics is largrer than the critical value (red line) at the 5% level of significance in the χ^2 distribution, we reject H0 (Prep and Type columns are independent) and accept H1 (Prep and Type columns are related).