

Дискретная матемаика

Лекция 2

Множества и отношения

Мультимножества

Мультимножество – это коллекция элементов, в которую каждый элемент может входить больше одного раза.

$$\{a,a,b,c,c,c\}$$
 — мультимножество, состоящее из элементов множества $\{a,b,c\}$; $\{a,b,b,b,c,c\}$ — другое мультимножество.

Из одного элемента можно построить бесконечно много мультимножеств:

$$\{1\}, \{1, 1\}, \{1, 1, 1\}, \dots$$

$$(a,b)$$
 будем называть **парой**, если $\forall a,b,c,d:[(a,b)=(c,d)] \leftrightarrow [a=c \land b=d].$

$$(a,b) = (b,a) \leftrightarrow a = b$$

Hafop (кортеж) длины n:

$$(a_1, a_2, a_3, ..., a_n) = ((...((a_1, a_2), a_3), ...), a_n).$$

Иными словами, *набором* можно называть коллекцию элементов, расположенных в некотором *порядке*.

Набор vs Множество

- 1. Порядок элементов в наборе важен: $(1,2,3) \neq (2,3,1)$, но $\{1,2,3\} = \{2,3,1\}$.
- 2. Один и тот же элемент может входить в набор несколько раз.

$$(1,2,1) \neq (2,1,1), \text{ HO } \{1,2,1\} = \{2,1,1\} = \{1,2\}$$

Прямое (декартово) произведение двух множеств A и B – это множество всех пар (a,b), где $a \in A, b \in B$.

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

 $\forall A : A \times \emptyset = \emptyset \times A = \emptyset$

Декартово произведение n множеств A_1, A_2, \ldots, A_n :

$$A_1 \times A_2 \times \dots \times A_n = \{(x_1, x_2, \dots, x_n) : x_1 \in A_1, x_2 \in A_2, \dots, x_n \in A_n\}.$$

 $A \times A = A^2 -$ декартов квадрат множества A.

 $A \times A \times A = A^3 -$ декартов куб множества A.

 $u m.\partial.$

Рене Декарт (1596–1650) – французский философ, математик, механик, физик и физиолог, создатель аналитической геометрии и современной алгебраической символики.

Автор метода радикального сомнения в философии, механицизма в физике, предтеча рефлексологии.

Его именем названа разработанная им прямоугольная система координат.

Примеры

•
$$A = \{a, b, c\}, B = \{0, 1\},\$$

$$A \times B = \{(a, 0), (a, 1), (b, 0), (b, 1), (c, 0), (c, 1)\};$$

$$A^{2} = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\};$$

$$B^{3} = \{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)\}.$$

•
$$A = \{1, 2, ..., 31\}$$
, $B = \{$ январь, февраль, ..., декабрь $\}$

 $A \times B$ — множество дат типа «10 сентября»

Бинарные отношения

Пусть A и B – множества. Бинарным отношением между A и B называется любое подмножество $R \subseteq A \times B$.

Если $R \subseteq A^2$, говорят, что R — отношение *на множестве* A.

- отношение как множество: $(a, b) \in R$
- отношение как высказывание (предикат):

aRb – «a находится в отношении R с b»

- A: множество людей,
 B: множество стран,
 отношение R между A и B:
 x R y означает, что x бывал в стране y.
- A: множество служащих некоторой компании, отношение R на A: x R y означает, что x начальник y.
- A: множество аккаунтов социальной сети, отношение R на A: x R y означает, что x и y подписаны друг на друга.

Ещё примеры

• равенство является отношением на любом множестве A

$$id_A = \{(x, x) : x \in A\}$$

 $x = y \Leftrightarrow (x, y) \in id_A$

• < является отношением на \mathbb{N} (а также на \mathbb{Z} , \mathbb{Q} и \mathbb{R}). Число 2 находится в отношении < с числом 5, но 5 не находится в этом отношении с 2.

Пусть L – множество всех прямых на плоскости.

- отношение \parallel на L: $l_1 \parallel l_2 \Leftrightarrow l_1$ параллельна l_2 ;
- отношение \times на $L: l_1 \times l_2 \Leftrightarrow l_1$ пересекается с l_2 .

И ещё примеры

Если A — множество, то

- можно задать отношение \in между A и 2^A ;
- \subseteq есть отношение на 2^A .

Отношение *делимости* на \mathbb{Z} определяется следующим образом:

x делит y, если $\exists k \in \mathbb{Z}$: $x \cdot k = y$.

Это отношение обозначается так: $x \mid y \ u \pi u \ y \ \vdots \ x$.

Табличное представление

Отношение между конечными множествами можно представить матрицей (прямоугольной таблицей).

Пусть R – отношение между множествами $A = \{a_1, a_2, ..., a_k\}$ и $B = \{b_1, b_2, ..., b_n\}$.

Тогда матрица $M=\left(m_{i,j}\right)$ этого отношения имеет размер $k\times n$.

$$m_{i,j} = egin{cases} 1, ext{если}\left(a_i, b_j
ight) \in R \ 0, ext{если}\left(a_i, b_j
ight)
otin R \end{cases}$$

Пример

$$B = \{ \bigcirc, \bigcirc, \bigcirc \}.$$

Рассмотрим следующее отношение $R \subseteq A \times B$:

 $x R y \leftrightarrow$ цвет y встречается в x.

Для удобства, обозначим объекты и цвета буквами:

$$A = \{c, T, o, a\},\ B = \{\kappa, \varkappa, 3\}.$$

тогда отношение R можно задать так:

$$R = \{(c, \kappa), (c, \varkappa), (c, \varkappa), (\tau, \kappa), (\tau, \varkappa), (o, \varkappa), (a, \varkappa)\}$$

или так:

		К	Ж	3
M =	c	1	1	1
	T	1	1	0
	О	0	0	1
	a	1	0	1

Ещё пример:

матрица отношения делимости на множестве $A = \{1, 2, 3, 4, 6, 8\}$:

		1	2	3	4	6	8
	1	1	1	1	1	1	1
	2	0	1	0	1	1	1
M =	3	0	0	1	0	1	0
	4	0	0	0	1	0	1
	6	0	0	0	0	1	0
	8	0	0	0	0	0	1

Графическое представление

Граф отношения дает визуальное представление отношения. Он строится следующим образом.

Пусть R — отношение между множествами A и B. Элементы множества $A \cup B$ представляются кружками или другими фигурами. Эти фигуры называются вершинами графа. Если xRy, то рисуем стрелку от x к y:

Эти стрелки называются рёбрами графа.

Пример:

граф отношения делимости на множестве $A = \{1, 2, 3, 4, 6, 8\}$:

Операции над отношениями

1. Так как отношение есть множество (пар), то любые операции над множествами можно применять к отношениям.

$$A = \{a, b, c\}$$

$$B = \{0,1\}$$

$$R_1 = \{(a,0), (a,1), (b,1), (c,1)\}\$$
 $R_2 = \{(a,0), (b,0), (c,1)\}\$

$$R_2 = \{(a,0), (b,0), (c,1)\}$$

$$R_1 \cup R_2 = \{(a,0), (a,1), (b,0), (b,1), (c,1)\}$$

$$R_1 \cap R_2 = \{(a,0), (c,1)\}$$

$$A = \{a, b, c\}$$

$$R_1 = \{(a, a), (b, a), (b, b), (b, c)\}$$

$$R_2 = \{(a, a), (a, b), (b, c), (c, a)\}$$

$$R_1 \cup R_2 = \{(a, a), (a, b), (b, a), (b, b), (b, c), (c, a)\}$$

 $R_1 \cap R_2 = \{(a, a), (b, c)\}$

$$A = \{a, b, c\}$$

$$B = \{0,1,2\}$$

$$R = \{(a,0), (a,1), (b,0), (b,2), (c,1), (c,2)\}$$

$$\overline{R} = \{(a, 2), (b, 1), (c, 0)\}$$

R

 \overline{R}

$$A = \{a, b, c, d\}$$

$$R = \{(a, a), (a, b), (b, b), (b, d), (c, b), (d, a), (d, b), (d, c)\}$$

$$\overline{R} = \{(a,c), (a,d), (b,a), (b,c), (c,a), (c,c), (c,d), (d,d)\}$$

2. Пусть $R \subseteq A \times B$.

Обратное отношение $R^{-1} \subseteq B \times A$ определяется следующим образом:

$$R^{-1} = \{(x, y) \colon (y, x) \in R\}.$$

Если R – отношение на A, то R^{-1} – тоже отношение на A:

3. Пусть $R \subseteq A \times B$, $Q \subseteq B \times C$. *Композиция* $Q \circ R \subseteq A \times C$ определяется следующим образом:

$$Q \circ R = \{(x, z) : \exists y \in B \ (x, y) \in R \land (y, z) \in Q\}.$$

Свойства отношений на одном множестве

Пусть R — отношение на множестве A.

1. R рефлексивно, если $\forall x$: xRx.

В графе рефлексивного отношения у каждой вершины имеется *петпя*:

$$=, \leq, i, j, \subseteq$$

1.1. Отношение R антирефлексивно (иррефлексивно), если $\forall x$: $x\cancel{R}x$.

В графе антирефлексивного отношения ни у одной вершины нет *петли*:

$$\neq$$
, <, \perp , \subsetneq

2. Отношение *R симметрично*,

если $\forall x, y: xRy \rightarrow yRx$

В графе симметричного отношения может быть так:

или так:

(x) (y) или так:

А так: (*x*)

√у) быть *не может*.

$$=$$
, \neq , \parallel , \perp

3. Отношение R антисимметрично,

если $\forall x, y: xRy \land yRx \rightarrow x = y.$

Иначе говоря, если xRy и $x \neq y$, то $y\cancel{R}x$.

В графе асимметричного отношения может быть так:

или так: x . A так: x у быть не может.

$$=$$
, \neq , \leq , \in , \mid , \subseteq , \subsetneq

4. Отношение R *mpанзитивно*, если $\forall x, y, z \colon xRy \land yRz \rightarrow xRz$.

В графе транзитивного отношения:

если есть два ребра, составляющие цепочку,

то есть и третье ребро

$$=$$
, \neq , $<$, \leq , \parallel , \vdots , \mid , \subseteq , \subsetneq