

Facial Expression Recognition

> Cloud Computing & Big-Data <

TEAM 30

Team members: Zhang Jialun Zhao Chao Zhu Zhenhao Shi Yukang

Introduction

- Background
- Objective
- Functions

Approach

- Cognitive computing model
- Development tools
- Overall design

Implementation Conclusions

- Architecture
- Web application
- Use cases

- Model shortcomings
- Model Improvement
- Our growth

Introduction

- Use camera to take a photo or upload a picture
- The picture are transmitted to the IBM Watson service including the face detect and expression recognition
- This model with the algorithms of deep learning and machine learning is trained by the datasets of KDEF
- Use Node.js to implement the interactions between front-end and back-end interactions
- An Emoji and other animation will be rendered based on the different expression detected

Image acquisition

Upload a image from user or take a photo in real time

Use API of face recognition from IBM Watson

Emotion presentation

Read the person's expression and show an related Emoji

Gender identification

Recognize the person's gender

Age prediction

Estimate an accurate range of the person's age

Cognitive computing model

The basement we used to build this model

- CLOUD & BIG DATA & API
- ARTIFICIAL INTELLIGENCE
- COGNITION COMPUTING
- PEOPLE & TASK

Development tools

Approach

STAGE ONE STAGE TWO STAGE THREE STAGE FOUR

Send a photo

Use camera to gain the image of one person/ Upload the image of one person from user.

Face detect

Detect whether a face is included in the photo, if so cut the part of face and transmit it to the next part.

Facial expression recognition

Recognize the face's expression and output the result.

Match a emoji

Match a emoji with the same expression to the face detected according to the result.

Architecture

2018/7/30

Web application

HOMEPAGE

UPLOAD A PICTURE

RESULT ANALYSIS

03 Implementation

Example two

Model shortcomings

IBM Service

The cloud service maybe interrupted sometimes

Datasets

Dataset is not big enough

Accuracy

The trained model's accuracy is not very high

Limitation

Use cases are limited

Conclusion

We can train with larger datasets to get more accurate results

Bigger datasets

Improve front-end and back-end interactions for more stable services

Stable service

We can share our emoji to social platform to accomplish more functions

More functions

Learned more about cloud computing

Learned more knowledge in programming

Learned how to work as a team

TEAM 30