

Mechanics of Materials II: Thin-Walled Pressure Vessels and Torsion

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 13 Learning Outcome

Calculate the Polar Moment of Inertia for circular cross-sections

$$T = \int_{A} dT = \frac{\tau_{MAX}}{r} \int_{A} \rho^{2} dA$$

 $J \equiv Polar Moment of Inertia$

$$\int_{A} \int \rho^{2} dA$$

Elastic Torsion Formula

$$\tau = \frac{T \, \rho}{J}$$

Polar Moment of Inertia, J

$$J \equiv Polar Moment of Inertia$$

$$dA = 2\pi \,\rho \,d\rho$$

$$J = \int_0^r \rho^2 \, 2\pi \, \rho \, d\rho = 2\pi \int_0^r \, \rho^3 \, d\rho = \frac{\pi \, r^4}{2}$$

Polar Moment of Inertia, J

$$J \equiv Polar Moment of Inertia$$

$$J = \int_{A} \rho^{2} dA$$

Solid Circular Cross Section

$$J = \frac{\pi r^4}{2} = \frac{\pi \left(\frac{D}{2}\right)^4}{2} = \frac{\pi D^4}{32}$$

Hollow Circular Cross Section

$$J = \frac{\pi}{2} \left(r_{outside}^4 - r_{inside}^4 \right) = \frac{\pi}{32} \left(D_{outside}^4 - D_{inside}^4 \right)$$