Relational Algebra

Intro >> Lecture's Map

Learning Maps

Sequence	Title		
1	Introduction to databases		
2	Relational Databases		
3	Relational Algebra		
4	Structured Query Language – Part 1		
5	Structured Query Language – Part 2		
6	Constraints and Triggers		
7	Entity Relationship Model		
8	Functional Dependency		
9	Normalization		
10	Storage - Indexing		
11	Query Processing		
12	Transaction Management – Part 1		
13	Transaction Management – Part 2		

Intro > Overview

☐ A: Voice and PPT Overview☐ B: Text-based Overview☐ C: Video and PPT Overview

Opening Message	→ In this lesson, we will study relational algebra Relational algebra, firstly created by Edgar F. Codd, is a family of algebras with a well-founded semantics used for modelling the data stored in relational databases. The main application of relational algebra is providing a theoretical foundation for relational databases, particularly query languages for such databases
Lesson topic	 Introduction to relational algrebra Set operators Relational operators: Projection, Selection, Rename, Join Common extensions
Learning Goals	Upon completion of this lesson, students will be able to: 1. Understand relational algebra operators 2. Write relational algebraic expressions

Intro > Keywords

Keyword	Description	
Relational data model	s data representation format as a table of values, each row in the able represents a collection of related data values.	
Set	is collection of Object	
Operator	Is a special token that represent computations such as union, minus , selection, join, etc	
Expression	Is a expression built up from operators and operands.	

Database Schema

```
student(student_id, first_name, last_name, dob, gender, address, note, clazz_id)
clazz(clazz_id, name, lecturer_id, monitor_id)
subject(subject_id, name, credit, percentage_final_exam)
enrollment(student_id, subject_id, semester, midterm_score, final_score)
lecturer(lecturer_id, first_name, last_name, dob, gender, address, email)
teaching(subject_id, lecturer_id)
grade(code, from_score, to_score)
```

Database

student

student_id	first_name	last_name	dob	 clazz_id
20160001	Ngọc An	Bùi	3/18/1987	
20160002	Anh	Hoàng	5/20/1987	 20162101
20160003	Thu Hồng	Trần	6/6/1987	 20162101
20160004	Minh Anh	Nguyễn	5/20/1987	 20162101
20170001	Nhật Ánh	Nguyễn	5/15/1988	 20172201

subject

subject_id	name	credit	percentage_ final_exam
IT1110	Tin học đại cương	4	60
IT3080	Mạng máy tính	3	70
IT3090	Cơ sở dữ liệu	3	70
IT4857	Thị giác máy tính	3	60
IT4866	Học máy	2	70

clazz

clazz_id	name	lecturer_id	monitor_id
20162101	CNTT1.01-K61	02001	20160003
20162102	CNTT1.02-K61		
20172201	CNTT2.01-K62	02002	20170001
20172202	CNTT2.02-K62		

enrollment

student_id	subject_id	semester	midterm_ score	final_ score
20160001	IT1110	20171	9	8.5
20160001	IT3080	20172	8	
20160001	IT3090	20172	6	9
20160001	IT4857	20172	7.5	9
20160001	IT4866	20172	7	9
20160002	IT3080	20172	9	
20160003	IT1110	20171	7	6
20160004	IT1110	20171	6	5

Lesson > Topic 1: Introduction to relational algebra

- Relational algebra providing a theoretical foundation for relational databases, particularly query languages for relational databases
- Relational algebra expression is composed of one or several relational algebraic operators
 - Operator: represent computations
 - Input: one or two relation
 - · Output: a relation
 - Unary operator (one input) vs. binary operator (two inputs)

- Union
- Intersection
- Difference
- Cartesian product

 Union: combining the tuples from two input union-compat ible relations (having the same set of attributes)

result

Intersection: Keeping only common tuples from 2 input underscompatible relation

clazz_id	name	lecturer_id	monitor_id
20162102	CNTT1.02-K61		
20172201	CNTT2.01-K62	02002	20170001
20172202	CNTT2 02-K62		

clazz

clazz_id	name	lecturer_id	monitor_id
20162101	CNTT1.02-K61		
20172201	CNTT2.01-K62	02002	20170001

 Difference: containing tuples occurred in the first relation but not in the second

clazz

clazz_id	name	lecturer_id	monitor_id
20162101	CNTT1.01-K61	02001	20160003
20162102	CNTT1.02-K61		
20172201	CNTT2.01-K62	02002	20170001
20172202	CNTT2.02-K62		

result

clazz_id	name	lecturer_id	monitor_id
20162101	CNTT1.01-K61	02001	20160003
20172201	CNTT2.01-K62	02002	20170001

Cartesian Product: the concatenation of every tuple of one relation with every tuple of the other relation.

•

- Selection
- Projection
- Rename
- Join
- Division

• Selection: choose from R each tuple where the condition holds. $\sigma_{< condition>}(R)$

R2
R3

clazz

clazz_id	name	lecturer_id	monitor_id
20162101	CNTT1.01-K61	02001	20160003
20162102	CNTT1.02-K61		
20172201	CNTT2.01-K62	02002	20170001
20172202	CNTT2.02-K62		

result

clazz_id	name	lecturer_id	monitor_id
20162101	CNTT1.01-K61	02001	20160003
20172201	CNTT2.01-K62	02002	20170001

Projection: Choose some attributes

Rename: result is identical to R except that the b attribute in all tuples is renamed to an a attribute

$$\rho_{a|b}(R)$$

clazz

clazz_id	name	lecturer_id	monitor_id
20162101	CNTT1.01-K61	02001	20160003
20162102	CNTT1.02-K61		
20172201	CNTT2.01-K62	02002	20170001
20172202	CNTT2.02-K62		

Pname of class | name(clazz)

clazz	1		
clazz_id	Name of class	lecturer_id	monitor_id
20162101	CNTT1.01-K61	02001	20160003
20162102	CNTT1.02-K61		
20172201	CNTT2.01-K62	02002	20170001
20172202	CNTT2 02-K62		

Join: Combine attributes from 2 tables

$$R_1 \triangleright \triangleleft_{< join_condition} R_2$$

a	r	r	X
b	r	r	X

Student Clazz

student

student_id	first_name	last_name	clazz_id
20160001	Ngọc An	Bùi	
20160002	Anh	Hoàng	20162101
20160003	Thu Hồng	Trần	20162101
20160004	Minh Anh	Nguyễn	20162101
20170001	Nhật Ánh	Nguyễn	20172201

result

Si	tudent_id	first_name	last_name	name
20	0160002	Anh	Hoàng	CNTT1.01-K61
20	0160003	Thu Hồng	Trần	CNTT1.01-K61
20	0160004	Minh Anh	Nguyễn	CNTT1.01-K61
20	0170001	Nhật Ánh	Nguyễn	CNTT2.01-K62

clazz

clazz_id	name	lecturer_id	monitor_id
20162101	CNTT1.01-K61	02001	20160003
20162102	CNTT1.02-K61		
20172201	CNTT2.01-K62	02002	20170001
20172202	CNTT2.02-K62		

 Division: divides a dividend relation R1 or degree m+n by a divisor relation R2 of degree n, and produces a qu otient relation of degree m.

a	X
а	у
а	Z
b	X
С	у

List student_id who enroll in all subjects

enrollment

student_id	subject_id	semester	midterm_ score	final_ score
20160001	IT1110	20171	9	8.5
20160001	IT3080	20172	8	
20160001	IT3090	20172	6	9
20160001	IT4857	20172	7.5	9
20160001	IT4866	20172	7	9
20160002	IT3080	20172	9	
20160003	IT1110	20171	7	6
20160004	IT1110	20171	6	5

subject

subject_id	name	credit	percentage_ final_exam
IT1110	Tin học đại cương	4	60
IT3080	Mạng máy tính	3	70
IT3090	Cơ sở dữ liệu	3	70
IT4857	Thị giác máy tính	3	60
IT4866	Học máy	2	70

List student_id who enroll in all subjects

enrollment

	student_id	subject_id	semester	midterm_ score	final_ score
/	20160001	IT1110	20171	9	8.5
	20160001	IT3080	20172	8	
	20160001	IT3090	20172	6	9
\	20160001	IT4857	20172	7.5	9
	20160001	IT4866	20172	7	9
	20160002	IT3080	20172	9	
	20160003	IT1110	20171	7	6
	20160004	IT1110	20171	6	5

subject

subject_id	name	credit	percentage_ final_exam
IT1110	Tin học đại cương	4	60
IT3080	Mạng máy tính	3	70
IT3090	Cơ sở dữ liệu	3	70
IT4857	Thị giác máy tính	3	60
IT4866	Học máy	2	70

 Π student_id, subject_id (enrollement)

 $\Pi_{\text{Subject_id}}$ (subject)

List student_id who enroll in all subjects

 $(\Pi_{\text{student_id, subject_id}} (\text{enrollement})): (\Pi_{\text{subject_id}} (\text{subject}))$

- Natural join
- Outer join
- Aggregation

Natural join: Special join operation with equal join condition on their common attributes, noted *

student	student								
student_id	first_name	last_name	dob		clazz_id				
20160001	Ngọc An	Bùi	3/18/1987		/	\			
20160002	Anh	Hoàng	5/20/1987		20162101				
20160003	Thu Hồng	Trần	6/6/1987		20162101				
20160004	Minh Anh	Nguyễn	5/20/1987		20162101	T			
20170001	Nhật Ánh	Nguyễn	5/15/1988		20172201				

	CIGZZ			
	clazz_id	name	lecturer_id	monitor_id
	20162101	CNTT1.01-K61	02001	20160003
	20162102	CNTT1.02-K61		
١	20172201	CNTT2.01-K62	02002	20170001
1	20172202	CNTT2.02-K62		

results

student_id	first_name	last_name	dob	clazz_id	Name	lecturer_id	Monitor_id
20160002	Anh	Hoàng	5/20/1987	 20162101	CNTT1.01-K61	02001	20160003
20160003	Thu Hồng	Trần	6/6/1987	 20162101	CNTT1.01-K61	02001	20160003
20160004	Minh Anh	Nguyễn	5/20/1987	 20162101	CNTT1.01-K61	02001	20160003
20170001	Nhật Ánh	Nguyễn	5/15/1988	 20172201	CNTT2.01-K62	02002	20170001

- Outer join
 - Outer join left

a	r	X
b	r	X
С	V	null

Outer join right

а	r	X
b	r	X
null	S	У
null	t	Ζ

Example of left-outer join: List all students and class information if any

student	student									
student_id	first_name	last_name	dob		clazz_id					
20160001	Ngọc An	Bùi	3/18/1987							
20160002	Anh	Hoàng	5/20/1987		20162101					
20160003	Thu Hồng	Trần	6/6/1987		20162101					
20160004	Minh Anh	Nguyễn	5/20/1987		20162101					
20170001	Nhật Ánh	Nguyễn	5/15/1988		20172201					

clazz_id	name	lecturer_id	monitor_id
20162101	CNTT1.01-K61	02001	20160003
20162102	CNTT1.02-K61		
20172201	CNTT2.01-K62	02002	20170001
20172202	CNTT2.02-K62		

results

student_id	first_name	last_name	dob	 clazz_id	Name	lecturer_id	Monitor_id	
20160001	Ngọc An	Bùi	3/18/1987					
20160002	Anh	Hoàng	5/20/1987	 20162101	CNTT1.01-K61	02001	20160003	
20160003	Thu Hồng	Trần	6/6/1987	 20162101	CNTT1.01-K61	02001	20160003	
20160004	Minh Anh	Nguyễn	5/20/1987	 20162101	CNTT1.01-K61	02001	20160003	
20170001	Nhật Ánh	Nguyễn	5/15/1988	 20172201	CNTT2.01-K62	02002	20170001	

clazz

Aggregation

$$G_1$$
, G_2 , ... G_n G_1 G_2 G_1 G_2 G_3 G_4 G_5 G_6 G_1 G_1 G_2 G_3 G_4 G_5 G_6 G_7 G_8 G_9 G_9

 $G_1,\,G_2,\,\dots\,G_n$ is a list of attributes on which to group $F_1(A_1),\,F_2(A_2),\dots F_n(A_n)$ is a list of aggregation function on a ttribute A_1,A_2 , ... A_n

Example of Aggregation

 $G_{\text{student id}}$ G count(subject_id) (enrollment)

enrollment

student_id	subject_id	semester	midterm_ score	final_ score
20160001	IT1110	20171	9	8.5
20160001	IT3080	20172	8	
20160001	IT3090	20172	6	9
20160001	IT4857	20172	7.5	9
20160001	IT4866	20172	7	9
20160002	IT3080	20172	9	
20160003	IT1110	20171	7	6
20160004	IT1110	20171	6	5

results

student_id	count(subject_id)
20160001	5
20160002	1
20160003	1
20160004	1

Example of Aggregation

 ${\cal G}$ count(student_id) (${f student}$)

student

student_id	first_name	last_name	dob	clazz_id
20160001	Ngọc An	Bùi	3/18/1987	
20160002	Anh	Hoàng	5/20/1987	 20162101
20160003	Thu Hồng	Trần	6/6/1987	 20162101
20160004	Minh Anh	Nguyễn	5/20/1987	 20162101
20170001	Nhật Ánh	Nguyễn	5/15/1988	 20172201

value not a relation

5

Remarks

- Relational algebra
 - operators
 - expressions
- Set operators
- Relational algebraic operators
- · Common extension: not standard

Quiz

No	Question (Multiple Choice)	Answer (1,2,3,4)	Commentary
1	Unary operator has 2 input relations A. True B. False	В	
2	The result of a selection is A. A relation B. A value	A	
3	The result of an aggregation can be A. A relation B. A value C. Both	С	
4	The result of an algebraic expression can be A. A relation B. A value C. Both	С	

Outro > Summary

No	Topic	Summary
1	Introduction to relationa I algrebra	- Procedural langue
2	Set operators	- Union, intersection, difference,
3	Relational operators:	- Projection, Selection, Rename, Join
4	Common extensions	Natural join, Outer join, Aggregation

You've just have an overview of databases

Next lesson:

Structured Query Language

- 1. History
- 2. Syntax