(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-44893

(43)公開日 平成8年(1996)2月16日

(51) Int.Cl.8		識別記号	庁内整理番号	F I			技術表示箇所
G06T	11/80						
G06F	17/50						
G 0 6 T	7/00						
			9365-5H	G06F 15/62		320 M	
			9191-5H	15/ 60		380 K	
			審査請求	未請求 請求項の数5	OL	(全 26 頁)	最終頁に続く

(21)出願番号

特願平6-179275

(22)出願日

平成6年(1994)7月29日

(71)出顧人 000005267

プラザー工業株式会社

愛知県名古屋市瑞穂区苗代町15番1号

(72)発明者 池戸 辰裕

愛知県名古屋市瑞穂区苗代町15番1号 ブ

ラザー工業株式会社内

(74)代理人 弁理士 足立 勉

(54) 【発明の名称】 モンタージュ作成装置

(57)【要約】

【目的】 モンタージュ作成用の各パーツの縦横比等を 種々に変更できるようにしてモンタージュ画像の表現の 可能性を広げるに当り、操作に熟練を必要としないこ と。

【構成】 モンタージュ作成用のデータとして、髪、目、鼻、口等の顔の各パーツ毎に複数個のパターンがあり、各パーツ別にパーツフレームが定められている。また、各パーツがモンタージュ画像として占めるべき領域及び位置関係を定めた「顔の基準スタイル」のデータも「標準」、「太め」、「細め」、「子供」の4種類与えられている。この基準スタイルのデータにより、各パーツのパーツフレームが納まるべき占有領域および位置関係が定まる。

,

【特許請求の範囲】

【請求項1】 髪、目、鼻、口等の顔の各パーツ毎に複数個のパターンを記憶する記憶手段と、

1.

画面上での各パーツの占有領域を定める占有領域決定手 段と、

前記記憶手段から所望のパーツの所望のパターンを選択 する選択手段と、

該選択されたパーツのパターンが当該パーツの占有領域 に所定の状態で収まる様に、該パターンの表示サイズを 決定する表示サイズ決定手段と、

該決定された表示サイズにて、当該パーツに対して定められている占有領域内にパターンを表示するパターン表示手段とを備えるモンタージュ作成装置。

【請求項2】 請求項1記載のモンタージュ作成装置に おいて、前記占有領域決定手段は、顔のタイプに応じ て、各パーツ同士の占有領域のバランスを予め定める顔 タイプ別占有領域規定手段を備えることを特徴とするモ ンタージュ作成装置。

【請求項3】 請求項1又は請求項2記載のモンタージュ作成装置において、さらに、画面上でのパーツの占有領域の位置を調整する占有領域位置調整手段を備えることを特徴とするモンタージュ作成装置。

【請求項4】 請求項1~請求項3のいずれか記載のモンタージュ作成装置において、さらに、画面上でのパーツの占有領域の大きさを調整する占有領域大きさ調整手段を備えることを特徴とするモンタージュ作成装置。

【請求項5】 請求項1~請求項4のいずれか記載のモンタージュ作成装置において、

前記記憶手段には、各パーツのパターンをアウトライン データとして記憶しておき、前記表示サイズ決定手段 は、選択されたパーツのパターンを、アウトラインデー タの状態で占有領域に所定の状態で収まる様に表示サイ ズを決定する様に構成することを特徴とするモンタージ ュ作成装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、モンタージュ作成装置 に関するものである。

[0002]

【従来の技術】従来、実開昭57-156952号公報、特開平4-338877号公報、特開平6-68220号公報等に記載の様に、髪型, 眉毛, 目, 鼻, 耳, 口, …等の人の顔の中のパーツのパターンをそれぞれ複数個ずつメモリに記憶しておき、これらのパーツのパターンから所望のものを選択してディスプレイに表示し、人の似顔を作成するようにしたモンタージュ作成装置が知られている。

【0003】これら従来のモンタージュ作成装置では、個々のパーツのパターンを選択すると、ディスプレイ上で予め割り当てられた高さ位置にそれらがそのまま表示 50

される様になっていたり(以下、位置固定方式という)、個々のパーツのパターンを選択してからカーソルなどにより配置をしていくもの(以下、福笑い方式という)などがあった。

[0004]

【発明が解決しようとする課題】位置固定方式で様々な 顔を表現するには、例えば、同じ形の目であっても高さ 方向や幅方向のバランスを変えたものを多数用意してお く必要があり、結局、表現できる顔の種類が限られたも のとならざるを得なかった。

【0005】一方、福笑い方式では、目と鼻の高さのバランスや、眉毛と目の高さのバランスなどを考えながらカーソルによるパーツの移動をしなければならず、きわめて面倒で、熟練を要するという問題があった。また、いずれの方式であっても、例えば、子供の顔と大人の顔で基本的に同じ形の顔型や目などを使用したくても、これらを子供用、大人用で別々に容易する必要があり、このことからも、表現できる顔の種類が限られたものとなっていた。

【0006】ところで、特開平6-68220号公報記載の技術では、例えば、目を縦横に伸長することで目の縦横比を修正して一つのパターンを種々に表現することを可能にしている。しかし、こうしたパターンの伸長は伸長用の4つのキーをカーソル移動と同様に操作しなければならないため、福笑い方式と同様の面倒があった。また、伸ばし過ぎなどを生じ易く、操作には熟練を要するという問題がある。

【0007】そこで、本発明は、パーツをバランスよく 配置したり、同じパターンの縦横比などを種々に変更し 30 て使用できるようにして、モンタージュ画像の表現の可 能性を広げるに当り、操作に熟練を必要としないモンタ ージュ作成装置の提供を目的とする。

[0008]

【課題を解決するための手段、作用及び効果】本発明のモンタージュ作成装置は、髪、目、鼻、口等の顔の各パーツ毎に複数個のパターンを記憶する記憶手段と、画面上での各パーツの占有領域を定める占有領域決定手段と、前記記憶手段から所望のパーツの所望のパターンを選択する選択手段と、該選択されたパーツのパターンが35パーツの占有領域に所定の状態で収まる様に、該パターンの表示サイズを決定する表示サイズ決定手段と、該決定された表示サイズにて、当該パーツに対して定められている占有領域内にパターンを表示するパターン表示手段とを備える。

【0009】このモンタージュ作成装置によれば、占有 領域決定手段にて画面上での各パーツの占有領域を定め ておくことにより、選択手段にて髪、目、鼻、口等の顔 の各パーツのパターンを選択すると、表示サイズ決定手 段が、各パーツのパターンについてそれぞれが占有領域 に所定の状態で収まるための表示サイズを決定する。そ

して、パターン表示手段は、この表示サイズに基づい て、各パーツのパターンを画面上に表示する。こうして モンタージュ画像が作成される。

【0010】従って、占有領域を決定するとき、例え ば、矩形の占有領域であるならその縦横比を変えること で一つのパターンを種々の形態に表示させることができ る。よって、パターンの記憶量を増やすことなく、バリ エーションに富んだモンタージュ画像を作成することが 可能になる。

【0011】また、占有領域として決定するので、例え ば矩形の占有領域なら、その縦横比の決定にそれほどの 熟練は必要なく、また、占有領域を定めることによって 一義的にパターンの表示形態が決定できるので、特開平 6-68220号公報記載の技術の様な面倒な操作をす る必要もない。

【0012】ここで、このモンタージュ作成装置におい て、前記占有領域決定手段は、顔のタイプに応じて、各 パーツ同士の占有領域のバランスを予め定める顔タイプ 別占有領域規定手段を備えることが望ましい。この様に 構成すれば、顔タイプを選ぶだけで、例えば、大人の顔 を直ちに子供の顔に変更することができる。即ち、大人 の顔タイプを最初に選択しておいて各パーツのパターン を選択すると、これらパターンがそれぞれの占有領域に 所定の状態で収まる様に表示サイズを決定されて大人の 顔が表示されるが、そのまま子供の顔タイプに切り換え ると、新たにパターンを選び直さなくても各パターンを 子供の顔タイプ用の占有領域に当てはめる様に表示が変 更され、直ちに子供の顔に変更するといった態様でモン タージュ画像を作成することができる様になる。

【0013】従って、大人の顔からその人の子供の頃の 顔を予想するなど、興味深いモンタージュ画像を作成す ることもできるようになり、その用途が一層広がり、利 用者の多様な要望に応えることが可能になる。なお、こ れらのモンタージュ作成装置において、さらに、画面上 でのパーツの占有領域の位置を調整する占有領域位置調 整手段を備えたり、あるいは、さらに、画面上でのパー ツの占有領域の大きさを調整する占有領域大きさ調整手 段を備えると一層よい。

【0014】この様に構成することで、例えば、目の高 さや間隔を変えたり、同じタイプの目を大きな目、小さ な目として表現するなど、表現の自由度が一層増大す る。そして、縦にも横にも伸ばしたり縮めたりする様な 操作も、占有領域を変更するという一つの操作で行うこ とができ、特開平6-68220号公報記載の技術に比 べて非常に操作性がよい。

【0015】こうした占有領域に当てはめるパターン は、ビットマップ形式で表現されていても構わないが、 より望ましくは、前記記憶手段には、各パーツのパター ンをアウトラインデータとして記憶しておき、前記表示

ウトラインデータの状態で占有領域に所定の状態で収ま る様に表示サイズを決定する様に構成するとよい。アウ トラインデータであれば、縦横比などが変わったとして も、最終的に画面上に表示されたときにビットのギザギ ザが目だってしまったりすることがなく、美しく見える

からである。 [0016]

ンストールしたものである。

【実施例】以下、本発明を具体化した一実施例としての モンタージュ作成装置について図面を参照しつつ説明す 10 る。実施例のモンタージュ作成装置1は、図1に示すよ うに、キーボード3、マウス5及びディスプレイ7が接 続されたパーソナルコンピュータ9に、モンタージュ作 成用のアプリケーションプログラム及び各種データをイ

【0017】本実施例のシステムはVGA表示可能なも のであり、最大640×480ドットの解像度で画像を 表示することができる。アプリケーションプログラム は、マイクロソフト社製のWINDOWS(登録商標、 以下同じ)上で動作するものであり、アウトラインデー タに基づき Bスプライン曲線による画像を表示する機能 を有する。

【0018】データとしては、髪、目、鼻、口等の顔の 各パーツ毎に複数個のパターンが与えられる。各パター ンは、アウトラインデータとして与えられている。図2 は、左目のアウトラインデータの一例である。各アウト ラインデータは、図示の様に、枠(以下、「パーツフレ ーム」という) P F eyeL内の座標点によるラスタライズ データで規定されている。このラスタライズデータは、 Bスプライン曲線描画用に定められており、大きな〇で 示されているのがBスプライン曲線描画用の基準点を、 小さな○で示されているのが同じく補助点を意味する。 【0019】パーツフレームPF eyeLは、髪、目、鼻、 口等の顔の各パーツ別に(幅)×(高さ)が定められて いる。例えば、パーツフレームは、髪なら1000×1 000ドット、顔の輪郭なら1000×1000ドッ ト、…といった具合いである。なお、目、耳について は、右目、左目、右耳、左耳としてそれぞれ左右対象の データを同じパターン番号を付して与えておく。これに よって、後述の左右運動モードでは、右目のパターン番 40 号を指定するだけで左目も同時に同じパターン番号のも のを選択可能になっている。

【0020】また、これらパターンのデータとは別に、 各パーツがモンタージュ画像として占めるべき領域及び 位置関係を定めた「顔の基準スタイル」のデータも与え られる。実施例では、「顔の基準スタイル」として、 「標準」、「太め」、「細め」、「子供」の4種類のデ ータを与えている。

【0021】例えば、「子供」という基準スタイルで は、図3に示すように各パーツの占めるべき領域及び位 サイズ決定手段は、選択されたパーツのパターンを、ア 50 置関係が定められている。具体的には、モンタージュ画

像の全体表示領域を座標 $(0, 0) \sim (400, 400)$ の (400×400) の (400×400) が $(400 \times$

のバランスを統計的に分析するなどして定めることができる。

[0022]

【表 1 】

基準スタイル=子供

/	ーツ	座標					
記号	名称	左上角	右下角				
PAh	爱型	(10, 15)	(389, 399)				
PAf	顔の輪郭	(80, 67)	(319, 399)				
PAfh	前髮	(.75, 61)	(325, 222)				
PAeb	眉毛	(94, 150)	(305, 204)				
P A eyeR	右目	(100, 198)	(187, 247)				
P A eyeL	左目	(212, 198)	(299, 247)				
PAearR	右耳	(46, 206)	(100, 333)				
PAearL	左耳	(299, 206)	(353, 333)				
PAn	鼻	(157, 215)	(242, 290)				
PAm		(141, 295)	(258, 343)				

【0023】この「子供」に対するパーツ占有領域PAh, PAf等は、各パターンデータのパーツフレームが収まるべき領域を意味している。例えば、図2の右目のパーツフレームPFeyeLは、上表のPAeyeLに収まる様に、その縦横それぞれに拡大・縮小されて画面上に表示される。

【0024】「標準」は大人の標準的な顔での各パーツのパランス分析の結果に基づいて各占有領域を定めたものであり、「太め」や「細め」についても、「太り気味の大人」、「痩せ気味の大人」の顔における各パーツのパランス分析の結果に基づいて占有領域を定めてある。従って、例えば、「子供」の場合には、右目の占有領域が(100,198)~(187,247)であったが、「標準」では、右目の占有領域はこれよりも狭くなる。これは、大人の方が顔全体に対して目の占める面積が小さくなるからである。従って、全く同じの右目のパターンであっても、基準スタイルが「子供」の場合には大きく、「標準」では小さく表示されるようになる。

【0025】この基準スタイルの違いによる表示結果を、図4に示す。図示の様に「(A)標準」、「(B)太め」、「(C)細め」の三者で比べると、「眉毛」、「目」、「鼻」、「口」、「耳」といったパーツの占有領域の面積自体は変わりないものの、その位置が微妙にずれており、特に、「目」、「耳」の間隔が変わっていることが分かる。また、「髪型」、「前髪」及び「顔の輪郭」については占有領域の幅が変わり、それぞれの基準スタイルで表現されるように標準、太め、細めと顔全体のイメージが微妙に変化することが分かる。また、

「(A) 標準」と「(D) 子供」とを比較すると、各パーツとして同じパターンが選択されているにも拘らず、

占有領域の違いによって大人の雰囲気と子供の雰囲気と が表現されていることが分かる。

【0026】この様に、各パーツの占有領域にパーツフレームを当てはめる様にして各パターンを表示すると、全く同じパターンが選ばれていても、それぞれ微妙にイメージの異なる顔を表現することができるのである。この場合、特に、実施例では、各パターンにアウトラインデータを用いているので、サイズの異なる占有領域に当てはめても、ギザギザができたりしない。なお、最終的には、このアウトラインデータを占有領域に当てはめて得られる画像に基づいてビットマップデータを作成し、このビットマップデータをフレームバッファにセットして、サンプル表示欄21又は描画領域10に貼り付けるようにしてモンタージュの描画をしている。

【0027】一方、インストールされたアプリケーションプログラムが起動されると、図5に示すように、ディスプレイ7上に、描画領域画面10の他に、サンプル表示欄21、スタイル選択表示欄22、パーツ選択表示欄23、パターン値表示欄24、左右運動指示欄25、OK欄26、キャンセル欄27及び初期設定欄28からなる操作領域画面20を表示するようになっている。

【0028】描画領域画面10の中には、デフォルトで
128×128ドットの範囲の描画領域が設定されてい
る。これは、本実施例の装置で作成したモンタージュ画
像を、テープライター(24mm幅の粘着テープに文字
等を印字して、ファイルなどタイトル作成などに使用する印字装置の商品名、以下同じ)に出力することを想定
した画像の大きさである。より幅の狭いテープを使用し
たり、出力装置をレーザプリンタとしてA4サイズの用
50 紙に出力するといった場合には、上記描画領域を拡大・

縮小することもできるようになっている。

【0029】サンプル表示欄21とは、出来上りの顔を確認するための欄であって、180×180ドットの描画領域を確保されている。スタイル選択表示欄22とは、顔の基準スタイルの選択結果を表示する欄である。実施例では、既述の通り、顔の基準スタイルを「標準」、「太め」、「細め」、「子供」の中から選択できるようになっている。図では、顔の基準スタイルとして「子供」が選択されている。従って、顔全体が子供として「子供」が選択されている。従って、顔全体が子はされていイメージになるようにモンタージュ画像が作成されることになる。また、マウス5を動かしてこの欄22になったなる。また、マウス5を動かしてこの欄22に対タンを押すと(以下、この操作を右クリックと呼ぶ)、順方向に「標準」→「太め」→「細め」→「子供」→「標準」→…と、マウス5に設けられた左側のボタンを

「標準」→…と、マウス 5 に設けられた左側のボタンを押すと(以下、この操作を左クリックと呼ぶ)、逆方向に「子供」→「細め」→「太め」→「標準」→「子供」→…と、スタイル選択状態を変更することができるように構成されている。なお、Sift=+-3Sと共に右カーソルキー3Rを操作すればマウス 5の右クリックと同様に順方向にスタイル選択状態を変更し、Sift=+-3Sと共に左カーソルキー3Lを操作すればマウス 5の左クリックと同様に逆方向にスタイル選択状態を変更することができる様にもなっている。

【0030】パーツ選択表示欄23とは、髪、目、鼻、口等の顔の各パーツの中で、現在選択対象となっているパーツを表示する欄である。図では、パーツとして「顔の輪郭」が選択されている。従って、「顔の輪郭」を変更することが可能な状態になっている。この欄23についても、マウスカーソルを合わせて右クリックすると、「髪形」→「顔の輪郭」→「眉毛」→「目」→…と順方向に、左クリックするとこれとは逆方向に選択対象パーツを変更することができるようにも構成されている。キー入力では、上下カーソルキー3U、3Dを操作するとことができるようになっている。

【0031】パターン値表示欄24とは、現在選択対象となっているパーツの複数のパターンの中で、実際に選択されているパターンの番号に相当する値を数値とスクロールバーで表示する欄である。図では、顔の輪郭のパターンとして1番から37番まで37個あるパターンの中から23番のパターンが選択されていることを示している。この欄24については、マウスカーソルを合わせてマウス5の左側のクリックボタンを押したまま左右にドラッグするとスクロールバーが左右に動いてパターン番号を変更し、所望のパターン番号のところでリリースするとパターンの選択を変更することができるように構成されている。なお、キー入力では、右カーソルキー3Rを操作すれば順送りに選択番号を変更することができ、左カーソルキー3Lを操作すれば逆送りに選択番号 50

を変更することができるようになっている。

【0032】左右連動指示欄25とは、目や耳の様に左右で対になるパーツについて、パターン及び配置を左右対象とする「左右連動モード」でモンタージュ画像を作成するか、あるいはパターン及び配置を左右非対象とする「左右非連動モード」でモンタージュ画像を作成するかの指示をするための欄である。この欄25をチェック状態(図示の状態)にすることにより、「左右連動モード」が選択される。マウスカーソルをこの欄25に合わせて左または右クリックすることにより、「左右連動モード」と「左右非連動モード」とを切り換えることができるようになっている。キー入力としては、連動キー3Xを押下することによりサイクリックにモードが切り替わるようになっている。

8

【0033】OK欄26及びキャンセル欄27は、「OK」及び「キャンセル」の指示を入力するためのスイッチである。また、初期設定欄28は、初期設定モードを起動するためのスイッチである。いずれもこれらの欄26~28にマウスカーソルを合わせて左または右クリックすることによりスイッチとして機能する。キー入力によるときは、OKキー3Y又はキャンセルキー3Zを操作する。

【0034】次に、アプリケーションプログラムの内容について説明する。アプリケーションプログラムは、図6,図7に示す様なメインルーチンを基本とするプログラムである。メインルーチンは、まず最初に、前回のモンタージュデータの取得・設定を実行する(S5)。これは、一種のリジューム機能でもあり、常にゼロの状態からモンタージュ作成をするよりは、前回のモンタージュ作成結果を参考にして作業を始める方が使い易い場合が多いからである。なお、前回のモンタージュデータは、メインルーチンの最後に示したモンタージュデータは、メインルーチンの最後に示したモンタージュータりに内蔵又は外付けされた記憶装置(バックアップメモリやハードディスクなど)に登録されている。

【0035】こうして前回のモンタージュデータをパックアップメモリやハードディスクから読み出し、RAMのワークエリアに設定したら、このデータに基づいてモンタージュ画像を描画する(S10)。前回のモンタージュデータに基づく描画は、図5に示した様に、ディスプレイ7のサンプル表示欄21に対してなされる。なお、以下の処理において、S90で「OK」が入力されるまでのモンタージュ描画も、サンプル表示欄21に対してなされる。

【0036】こうして前回作成のモンタージュ画像を描画し終えると、いよいよ、モンタージュ作成処理が開始する。モンタージュの作成に当たっては、マウス及びキーボードからの入力を取り込み(S15)、初期設定変更処理(S20:YES, S25)、スタイル選択処理(S30:YES, S35)、パーツ選択処理(S4

0:YES, S45)、パーツサイズ変更処理(S50:YES, S55)、左右連動モード設定処理(S60:YES, S65)、パターン選択処理(S70:YES, S65)、パーツ移動処理(S80:YES, S85)、モンタージュ決定処理(S90:YES, S95)、出力用画像描画処理(S100)、拡大・縮小処理(S110:NO, S120)、出力用データ登録処理(S110:YES, S130)の内のいずれかを実行する。なお、モンタージュ決定処理に抜けるまでは、

「初期設定変更処理」~「パーツ移動処理」を繰り返し 実行でき、これらの処理が実行される毎に、モンタージュ描画処理(S10)が繰り返され、最新のモンタージュ画像がサンプル表示欄21に表示される様に構成されている。また、モンタージュ決定処理後の「出力用画像描画処理」では、描画領域画面10の方に対してモンタージュ描画が実行される。

【0037】次に、各処理の詳細を説明する。モンタージュ描画処理は、図8,図9に示す様に構成されている。この処理では、まず最初に、画面上で画像を更新すべき領域を得る(A10)。「画像を更新すべき領域」は、例えば、前回のモンタージュデータを最初に描画するときならばサンプル表示欄21の全領域となり、目のパターンを変更する場合ならば目の領域となり、目を移動する場合なら移動前の目の位置と移動後の目の位置の両方の領域となる。

【0038】次に、モンタージュ全体の占有領域を得る(A20)。モンタージュ全体の占有領域とは、サンプル表示欄21の全体の領域であり、本実施例では180×180ドットとなる。なお、ディスプレイ7に解像度がより高いもの(例えば800×600ドットのSVGA対応のものなど)を使用する場合には、もっと大きな占有領域が得られる。

【0039】次に、更新領域に合わせてビットマップデータ作成領域を取得・初期化する(A30)。「前回モンタージュデータ」を描画する場合には、ビットマップ作成領域として 180×180 ドットが取得・初期化される。一方、「1800ドットとしたときの目の占有領域に相当する部分だけの「ビットマップデータ作成領域」が取得され、初期化される。

【0040】次に、描画対象パーツとして、最も背面側に位置すべきパーツである髪型をセットする(A40)。次に、セットされている描画対象パーツのオリジナルの占有領域を、A10で取得された全体領域に対するサイズに拡大・縮小する(A50)。実施例では、400×400ドットを全体領域として各パーツの占有領域が定められているので、具体的には、0.45倍に縮小される。例えば、基準スタイル=「子供」のパーツ=「髪型」のオリジナル占有領域PAhは(10,15)~(389,399)であるが、これが(4.5,6.

75) \sim (175.05,179.55) に縮小されることになる。また、右目の場合にはオリジナル占有領域 PAeyeRが (100,198) \sim (187,247) から (45,89.1) \sim (84.15,111.15) に縮小されることになる。

10

【0041】次に、A50によって縮小した占有領域が 更新領域と重複する部分を有するか否かを判断する(A60)。「前回モンタージュデータ」に基づく描画の場合なら、全てのパーツの占有領域が更新領域と重複することになり、常に「YES」と判断される。しかし、

「目」のパターンだけを変更するためにモンタージュ描画処理が行われているときなら、例えば「耳」についての占有領域が更新領域と重なることはないので「NO」と判断される場合も出て来る。

【0042】「YES」と判断されると、描画対象パーツについて選択されているパターン番号に基づいてアウトラインデータを読み出し、ワークエリアにセットする(A70)。そして、A50によって縮小された占有領域にパーツフレームを当てはめる様に、アウトラインデクタを構成する各基準点及び補助点の座標を変換する(A80)。

【0043】次に、描画対象パーツが顔の輪郭又は耳であるか否かを判断する(A90)。「YES」と判断されたなら、A80で座標変換されたアウトラインデータに基づいて背景抜き用のデータを作成する(A100)。次に、A80で得たアウトラインデータ及びA100で得た背景抜き用データに基づいてA30で初期化した「ビットマップデータ作成領域」にビットマップデータを形成する(A110)。

30 【0044】そして、描画対象パーツをより前面側のパーツに変更し、残りパーツがなくなるまでA50以下の処理を繰り返す(A120, A130)。なお、A60で「NO」と判断された場合にはA70~A110はパスされ、A90で「NO」と判断された場合にはA100はパスされる。

【0045】こうして全てのパーツについてビットマップデータ化が完了したら、「ビットマップデータ作成領域」に作成された最終的なビットマップデータをモンタージュ描画用のフレームバッファに転送する(A14 00)。これによって、サンプル表示欄21にモンタージュ画像が描画される。

【0046】この間の処理をより明瞭にするため、顔全体を描画する場合のビットマップ作成領域におけるビットマップデータ化の進行状況を図10に示す。図示の様に、まず髪型が描画され(A)、次に耳が描画され(B)、顔の輪郭が描画され(C)、前髪が描画され(D)、眉毛が描画され(E)、目が描画され(F)、

鼻が描画され(G)、口が描画されて(H)、「ビットマップデータ作成領域」にモンタージュ画像が完成す

50 る。この「ビットマップデータ作成領域」の最終的なビ

ットマップデータ (H) がサンプル表示欄 2 1 に貼付け られるようにしてモンタージュ画像が描画される。従っ て、顔はサンプル表示欄に一瞬にして表示され、アウト ラインデータを用いながらも「いらいら」を感じさせる ことがない。

【0047】また、口のパターンを変更した場合の「ビ ットマップデータ作成領域」におけるビットマップデー タ化の進行状況を図11に示す。図示の様に、まず髪型 が描画され (A)、顔の輪郭が描画され (B)、口が描 画されて(C)、「ビットマップデータ作成領域」に更 新部分のモンタージュ画像が完成する。このビットマッ プデータがサンプル表示欄 2 1 の口の表示領域に貼付け られるようにしてモンタージュ画像が描画される。口の 場合には、前髪、耳、目、鼻などは更新領域にかからな いのでビットマップ化の対象とならない。

【0048】次に、初期設定変更処理について説明す る。初期設定変更処理は、図12,図13に示すように 構成されている。まず、図14に示すような初期設定画 面30を表示する(B10)。初期設定画面30は、参 考例設定欄31、髪型設定欄32、顔の輪郭設定欄3 3、眉毛設定欄34、目設定欄35、〇K欄36、キャ ンセル欄37及びスタイル選択表示欄38からなる。

【0049】参考例設定欄31とは、「女性アイド ル」、「OL」、「おかあさん」、「サラリーマン」、 「男子学生」、「女子学生」、…といった多数のキャラ クターの中からキャラクターを選択し、選択結果を表示 するため欄である。キャラクターの選択は、マウスカー ソルを参考例設定欄31に合わせて右クリックするか、 数字キー3 NMで1, 2, 3, …とキャラクタ番号を数 字入力することによって実行する。また、マウス5の左 側のボタンを短時間に2回押すこと(以下、この操作を 左ダブルクリックと呼ぶ。)によってキャラクター覧表 39を表示させ、その中から選択するやり方も用意され ている (図15)。

【0050】この参考例設定欄31で特定のキャラクタ ーを選択すると、各キャラクターに対して髪型、顔の輪 郭、眉毛、目のそれぞれに対する属性が自動的に選択さ れる様になっている。実施例では、髪型の属性として 「ショート」、「セミロング」、「ロング」の3種類を 定めており、髪型の各パターンのそれぞれは、これら3 種類のいずれかの属性に関連付けられて番号付けされて いる。具体的には、1番~n番が「ショート」に相当す る髪型のパターンであり、続くn+1番 $\sim k$ (> n) 番 が「セミロング」に相当する髪型のパターンであり、続 くk+1番~1(>k)番が「ロング」に相当する髪型 のパターンであるといった具合いに属性に応じて番号付 けをしている。顔の輪郭についてはその属性として「丸 顔」、「四角」、「(ホーム) ベース型」の3種類を、 眉毛についてはその属性として「太い」、「細い」の2 種類を、目についてはその属性として「大きい」、「小 50 設定画面30を消去(B140)すると共に、本ルーチ

さい」、「細い」の3種類を定めている。

【0051】髪型設定欄32、顔の輪郭設定欄33、眉 毛設定欄34及び目設定欄35は、それぞれに直接マウ スカーソルを合わせて右クリックすることにより、参考 例として選ばれたキャラクタとは無関係にそれぞれの属 性を変更することができるようにもなっている。ただ し、これらの設定欄32~35で属性を設定した後で再 び参考例設定欄31のキャラクタを変更すると、当該キ ャラクタに対してデフォルトとして設定されている各属 10 性の方が優先して再設定されてしまう。即ち、これら設 定欄32~35は、参考例としてのキャラクタ設定後 に、各パーツの属性を微調整するのに用いるものなので ある。なお、各設定欄32~35についてキー操作で属 性を設定する場合には、上下カーソルキー3 U、3 Dで 選択・表示欄を指定し、左右カーソルキー3L,3Rで 属性を選択することができるようになっている。

12

【0052】OK欄36及びキャンセル欄37は、「O K」及び「キャンセル」の指示を入力するためのスイッ チである。また、スタイル選択表示欄38は、操作領域 20 画面20におけるスタイル選択表示欄22と同じ機能の 欄であり、初期設定変更処理においても顔の基準スタイ ルを選択することができるように構成されているのであ

示した後で、マウス及びキーボードからの入力を取り込 み(B20)、参考例設定処理(B30:YES, B3 5) 、髪型の属性変更処理 (B40:YES, B4 5)、顔の輪郭の属性変更処理 (B50:YES, B5 5) 、眉毛の属性変更処理 (B60:YES, B6 5)、目の属性変更処理 (B70:YES, B75)の 内のいずれかを実行する。これらの処理は、キャンセル

【0053】この様に構成される初期設定画面30を表

が指示されて本ルーチンを抜けるか (B80:YE S)、OKが指示されて初期設定決定処理へ抜けるまで (B90:YES→B100)、繰り返し実行すること ができる。

【0054】B100の初期設定決定処理では、髪型, 顔の輪郭、眉毛、目について設定された属性に基づい て、各パーツから優先して選択すべきパターンの番号を 決定し、実際にこれらのパターンを選択する。そして、 既述のモンタージュ描画処理と全く同様に構成されるモ ンタージュ描画処理 (B110) を実行する。これによ って、サンプル表示欄21には、初期設定を変更したこ とに基づき、新たなモンタージュ画像が描画される。

【0055】この初期設定の変更によるモンタージュ画 像の描画がなされたら、これでOKか否かを確認する (B120)。キャンセルが指示されたら、初期設定に 基づく次候補の髪型、顔の輪郭、眉毛、目の組み合せを 選択し直し(B130)、再びモンタージュ描画(B1 10)を実行する。そして、OKが指示されたら、初期

ンを抜ける。

【0056】ここでB100以下の処理内容についての 理解を深めるため、かかる処理を設けた理由を具体例を 上げつつ説明する。例えば、参考例設定処理においてキ ャラクタとして「女性アイドル」が選択されたとする。 ところで、「女性アイドル」といっても色々なアイドル があり、例えば歌手の「中森 A」もいれば、女優の 「薬師丸 H」もいる。そして、モンタージュを作成し ようとしている人物が、「中森 A」に似ているのであ れば、「中森 A」を初期設定としてそこから各パーツ の微調整をしていけばよいが、「薬師丸 H」の方に似 ているというのであれば、「薬師丸 H」からスタート したい。本実施例において初期設定を可能にしているの は、こうした要望に応えるためなのであるが、「中森 A」、「薬師丸 H」、さらには「菊池 M」、…とキ ヤラクタを多数選択できるようにしたのでは、参考例の 設定に当たって選択枝が増えすぎて操作性を悪化させ

【0057】そこで、こうした要望にも応えつつ、操作性も悪化させないことを考慮して、B100で初期設定の属性を決定した上で、さらに、当該初期設定の条件を満足する次候補、次々候補、次々々候補、…と表示を変更して上記要望に応えることができるようにしたのである。この結果、操作者は、例えば、「女性アイドル」を設定することで、第1候補=「中森 A」、次候補=「薬師丸 H」、次々候補=「菊池 M」、…と予め準備されている人物の似顔をスタート条件として容易に選択できるようになるのである。なお、キャンセル欄37を左クリックするか、Siftキー3Sと共にキャンセ

【0058】次に、スタイル選択処理(S35)について説明する。スタイルの選択は、上述の様に初期設定変更処理の中でも実行できるが、ここでいうスタイル選択処理(S35)は、図5の様な操作領域画面20においてスタイルを選択する処理である。この処理は、図16に示すように構成され、マウス及びキーボードからの入力を取り込み(C10)、スタイルを選択し(C20)、OKが指示されたところでスタイルを決定する(C30, C40)。

ルキー3 Zを押下すると、B130では次候補ではなく

一つ前の候補を選択し直す様にも構成してある。

【0059】次に、パーツ選択処理(S45)について説明する。この処理は、図17~図19に示すように構成される。まず、パーツ選択処理が開始されると、図17に示すように、パーツの選択をキー入力で行うのかマウスで行うのかを判断し(D10)、キー入力の場合には既述の通り、上下カーソルキー3U、3Dの指示に従ってパーツを選択する(D20)。一方、マウス入力の場合には、ダブルクリック(マウス5のボタンを短時間に2回押すこと。)であったかシングルクリック(マウス5のボタンを1回押すこと。)であったかを判断し

(D30)、シングルクリックの場合にはシングルクリック処理(D100)へ、ダブルクリックの場合にはダ

ブルクリック処理(D200)へ移行する。

【0060】シングルクリック処理では、図18に示すように、まずマウスカーソルのクリックポイント (クリック時のマウスカーソルの位置のこと。以下同様。)のディスプレイ上の座標データを取り込む (D110)。そして、モンタージュ描画処理におけるA20と同様に、モンタージュ全体の占有領域、即ちサンプル表示欄21の全体の領域を得る(D120)。

【0061】次に、選択対象パーツとして、顔の最も前面側に相当するパーツを設定する(D130)。なお、眼鏡がパーツとして使用される場合には、眼鏡よりも目の方を前面側としてセットする。次に、D130でセットされた選択対象パーツのオリジナルの占有領域を、D120で取得された全体領域に対するサイズに縮小したときの座標データを算出する(D140)。このD140の処理は、モンタージュ描画処理のA50と同じ内容の処理である。

【0062】次に、D140で縮小された選択対象パー ツの占有領域をサンプル表示欄21に表示したときのデ ィスプレイ上の座標データを算出する(D150)。そ して、このD150で得られた座標データとD110で 取り込んだマウスクリックポイントの座標データが重な っているか否かを判断する(D160)。重なっていな いと判断された場合には、現在セットされているパーツ の背面側に位置するパーツがあるか否かを判断し (D1 70)、ある場合には選択対象パーツを背面側に位置す るパーツにセットし直してD140へと戻る(D18 0)。こうして、D160で「YES」と判定されるパ 30 ーツが現れるまでD140以下の処理を繰り返す (D1 80)。一方、D160で「YES」と判断された場合 には、その選択対象パーツ名を操作領域画面20のパー ツ選択表示欄23に表示し、当該パーツについてパター ン選択が可能な状態をセットする (D190)。 【0063】これに対し、ダブルクリック処理では、図

19に示すように、まず上記D110~D180と同じ 内容の処理を実行する(D210~D290)。そし て、D290の次に、ダブルクリック処理の特徴とし 40 て、例えば、図20に示すようなパターン一覧表40を 操作領域画面20に重ねて表示する(D300)。この 図は、前髪がパーツとして選択された場合の一覧表であ

【0064】次に、パーツサイズ変更処理(S55)について説明する。この処理は、図21に示すように構成されている。まず、マウスの操作を読み込み、移動すべきパーツとして何が指定されているかを特定する(E10)。この特定は、上記D110~D180と同様にマウスのクリックポイントとパーツの占有領域の重複関係を把握することによりなされる。こうして移動すべきパ

ーツが特定できたら、当該移動対象パーツについてのオリジナルの占有領域を取得する(E20)。子供の左目が指定されているのなら、オリジナルの占有領域としては、表1のPAeyeL=(212, 198)~(299, 247)の矩形領域が取得されることになる。

【0065】次に、図22(A)に示すようなパーツサイズ変更処理メニュー50を表示する(E30)。このとき、現在の占有領域とオリジナルの占有領域とを比較し、現在の状態をチェックし(E40)、メニュー50中の現在の状態にチェック記号をマークする(E50)。図22(A)は、オリジナルの占有領域よりもやや大きい状態の目へと既にサイズが変更されている状態を例示している。

【0066】次に、マウス及びキーの操作状態から、メニュー50中でどの状態が選択されかつ確定されたかを判断し($E60\sim E100$)、それぞれのサイズへと占有領域を変更する($E110\sim E150$)。具体的には、占有領域を、「標準」ではオリジナル占有領域の矩形に戻し(E110)、「やや大」ではオリジナル占有領域を縦横1.2倍した矩形に拡大し(E120)、

「やや小」ではオリジナル占有領域を縦横の0.8倍の矩形に縮小し(E130)、「縦長」ではオリジナル占有領域の縦を1.2倍すると共に横を0.9倍した矩形にし(E140)、「横長」ではオリジナル占有領域の縦を0.9倍すると共に横を1.2倍した矩形にする(E150)。

【0067】こうして占有領域が変更されたら、現在の占有領域の面積中心と変更された占有領域の面積中心とを一致させた状態で占有領域を更新する(E160)。そして、パーツサイズ変更処理メニュー50を閉じる(E180)。なお、「標準」等のいずれかの状態が確定される前にキャンセル操作がなされたときは、占有領域の更新を行うことなくメニュー50を閉じる(E170=YES)。

【0068】こうしてパーツサイズ変更処理が実行されると、メインルーチン(図6)に示した様に、モンタージュ描画処理(S10)が実行される。図22(B)は、サイズ変更対象のパーツとして左目が選択され、元々は両目が「やや大」であったところを左目だけ「やや小」へと変更した状態の描画例を示している。

【0069】次に、左右連動モード設定処理(S65)について説明する。この処理は、図23に示すように構成されている。まず、モード変更が指示されたか否かを判断する(F10)。F10は、左右連動モード表示欄がマウスによりクリックされるか、左右連動キー3Xが押下される毎に「YES」となり、続いて、前回のモードが連動であったか否かが判断される(F20)。前回が「連動」であったなら「非連動」へとモードを変更し(F30)、左右連動指示欄25のチェックマークを消す(F40)。一方、前回が「非連動」であったなら

「連動」へとモードを変更し (F50)、左右運動指示欄 25にチェックマークを付ける (F60)。このチェックマークの付加 (F60) または消去 (F40) に連動して、RAMにその旨を示すデータが記憶される。

16

【0070】次に、パターン選択処理(S75)について説明する。この処理は、図24に示すように構成されている。まず、パターン選択の対象パーツが左右の

「目」又は「耳」であるか否かを判断する(G10)。「YES」と判断された場合には、さらに、RAMに記 10 憶されているデータに基づいて左右連動モードが設定されているか否かを判断する(G20:YES)。そして、左右連動モードが設定されているならば、対のパーツについても強制的にパターン選択対象パーツに設定する(G30)。即ち、連動モードがオンとなっているさらには、例えば「右目」がパターンの選択対象パーツときには、例えば「右目」がパターンの選択対象パーツときには、例えば「右目」がパターンの選択対象パーツとして設定されているならば「左目」も強制的に選択対象パーツに設定してしまい、以下の処理をするのである。一方、左右非運動モードが設定されていたり(G20:NO)、「目」、「耳」以外のパーツが選択されている(G10:NO)ならば、選択されたパーツに対してG40以下の処理をする。

【0071】続く処理では、まず、パターンの選択をキー入力で行うのかマウスで行うのかを判断し(G40)、キー入力の場合には既述の通り、左右カーソルキー3L、3Rの指示に従ってパターンを選択する(G50)。一方、マウス入力の場合には、本処理の前提となるパーツ選択がダブルクリックによりなされたのかシングルクリックによりなされたのか判断し(G60)、シングルクリックの場合にはシングルクリック時の処理(G100)へ、ダブルクリックの場合にはダブルクリ

【0072】シングルクリック時の処理では、図25に示す様に、まず、パターン選択のためのマウスカーソルがパターン値表示欄24の方へ移動しているか否かを確認する(G110)。パターン値表示欄24の方へ移動しているときには、マウスのクリック・ドラッグ操作に応じてスクロールバーを移動させ(G120)、リリース操作時にスクロールバーを停止させると共にパターン値を確定する(G130)。

ック時の処理 (G200) へ移行する。

40 【0073】一方、マウスカーソルがパターン値表示欄24の方へ移動していないときには、マウスが右クリック又は左クリックされたか否かを判断し(G140)、右クリックならばパターン値をインクリメントし(G150)、左クリックならパターン値をデクリメントする(G160)。なお、G150、G160では、これらインクリメント又はデクリメントに合わせてパターン値表示欄24のスライダーの位置を更新する。ここで、インクリメントによってパターン値が最大値までいったときには、次の右クリックで最小値に移行し、そこから再50 びインクリメントしていく。デクリメントについても同

様になっている。こうやってG130、G150又はG 160でパターン値が定まる毎にこのルーチンを抜け、 S10のモンタージュ描画処理が実行されて現在選択中 のパターンがサンプル画面に描画し直される。

【0074】ダブルクリック時の処理では、図26に示 す様に、まず、マウスカーソルがパターン一覧表40の 外でクリックされたか否かを判断する(G210)。パ ターン一覧表40の外でクリックされた場合には一覧表 40を消して本処理を抜ける(G260)。

【0075】一方、マウスカーソルがパターン一覧表4 0の中でクリックされた場合には、そのクリックポイン トがパターン上であるか、スクロールバー上であるか、 OK又はキャンセルスイッチ上であるか否かを判断する (G220, G230, G240, G250)。パター ン上であるときには、当該パターンのパターン値を選択 候補とする(G225)。スクロールバー上であるとき には、一覧表の内容をスクロールする(G235)。O Kスイッチ上であるときには、候補として選択されてい るパターン値を採用し、パターン値及び表示欄24のス ライダー位置の更新を実行し(G245)、一覧表を消 去(G260)して本ルーチンを抜ける。キャンセルス イッチ上あるときには、パターン値の更新は行わずに、 そのまま一覧表を消去(G260)して本ルーチンを抜 ける。

【0076】このように、パターンの選択処理では、左 右対のパーツに関して、連動モードと非連動モードとを 取り得るので、次の様な効果がある。例えば、図27

(A) に示すように両目を大きく見開いた女の子供の顔 が作成されていたとき、非連動モードを設定し、左目の パターンを目を閉じた状態のものに変更すると、同図

(B) に示すようにウインクをした顔にすることができ る。一方、図示(A)の状態から、連動モードの方を設 定しておいて左目を閉じた状態のものに変更すると、同 図(C)のように両目を閉じた女の子になる。(B)の 顔と(C)の顔は、いずれも左目のパターンとして同じ 目を閉じた状態のものを選んだだけであるが、左右運動 モードと非連動モードとの違いにより、全く違った表情 にすることができるのである。そして、この全く違った 表情の顔にするのに、閉じた状態の目のパターンがあれ ば足り、記憶しておくべきパターンの量を増やしたりす ることがない。

【0077】ここで、非連動モードだけにしておいても パターンの量を増やさずにウインクしている顔を作成す ることができるのであるが、図示 (A) の表情から

(C) の表情へと変更する場合には操作量が多くなって しまう。これに対し、本実施例によれば、連動モードへ の切り替えが可能であるので、そのような操作量の増加 を招くことなく、図示 (A) の表情から (C) の表情へ と簡単に変更することができる。

運動モードとを切り替え可能とすることで、パターンの 記憶量を増やすことなく多くの表情の顔を作成可能にす

18

ると共に、左右の目、耳をを統一させつつ表情を変更す る場合の操作量の増大をも招くことがないのである。

【0079】また、パーツ選択処理及びパターン選択処 理において、マウスのクリック操作によってサンプル画 面上から直接パーツを指定してパターン選択をできるよ うにしたので、オペレータは目線を動かすことなくパタ ーンを変更すべきパーツを指定していくことができる。 10 シングルクリック時の処理では、そのまま目線を動かす ことなくマウスのクリックを繰り返すだけでパターンが 変更表示されるので、オペレータが頭の中で描いている イメージが崩されることがなく操作性が向上する。

【0080】一方、ダブルクリックによってパターンー 覧表40を表示できる様にも構成したので、各パターン の微妙な違いを直接見比べてパターン選びをすることが でき、これはこれで非常に操作性を向上させる場合もあ る。例えば、イメージがある程度固まっているのだが、 さらに、表情の微妙な差をも出したいといったときなど 20 に有効である。

【0081】次に、パーツ移動処理(S85)について 説明する。この処理は、図28に示すように構成されて いる。パーツ移動処理では、移動対象パーツが何である かによって制限を設けているので、まずは、移動対象パ ーツが何であるかを把握する(H10)。このH10の 処理は、パーツ選択処理においていずれのパーツが選択 されているのかを把握するのと同様になされる。

【0082】こうして把握された移動対象パーツが「髪 型」又は「顔の輪郭」であるときには (H20: YE 30 S)、そのまま本ルーチンを抜ける。移動対象パーツが 「眉毛」、「鼻」、「口」又は「前髪」であるときには (H30:YES)、マウスのドラッグ操作量を取り込 み (H32)、水平方向へのドラッグ操作量は強制的に Oとみなし(H34)、垂直方向へのドラッグ操作量に ついては顔の輪郭の外へ出ているか否かを判断し (H3 6)、外へ出ているときには0とみなしてそのまま本ル ーチンを抜け、外へ出ていないときだけ垂直方向移動量 を算定する(H38)。

【0083】移動対象パーツが左右の「目」又は「耳」 であるときには(H40:YES)、まず、左右運動モ ードが設定されているか否かを判断する (H 4 2)。左 右連動モードがオフ、即ち、左右非連動モードが設定さ れているなら、マウスカーソルの垂直・水平方向へのド ラッグ操作量を当該パーツの移動量として算定する (H 44).

【0084】一方、左右連動モードがオン(設定)な ら、対のパーツを左右対称位置への移動対象パーツとし て設定する(H50)。即ち、連動モードがオンとなっ ているときには、例えば「右目」が移動対象パーツとし 【0078】このように、実施例では、運動モードと非 50 て設定されているならば「左目」も強制的に移動対象パ ーツに設定すると共に、左右対称位置へと移動させる様に構成されているのである。続く処理では、左右両方のパーツの移動量を算定する(H52)。具体的には、マウスカーソルの垂直・水平方向へのドラッグ操作量そのままの値をオペレータが指定した方のパーツの移動量として算定すると共に、水平方向操作量を符号反転した値をH50で強制的に移動対象パーツに指定した方のパーツ移動量として算定する。

【0085】この様に、パーツ移動処理では、パーツの 種類に応じて移動できる範囲を制限している。この結 果、熟練度の低いオペレータがパーツ移動の最中に不用 意にマウスをドラッグしてしまった様な場合にも配置が 目茶目茶に崩れてしまうということがない。

【0086】具体例で説明すると、図29(A)に示す当初の顔から、同図(C)の様に鼻の位置をもう少し上方へ移動させたいといった場合に、オペレータが同図(B)に矢印 a で示すように斜めにマウスをドラッグしても鼻の占有領域 P A n は矢印 b の様に上方へしか移動しないのである。この結果、オペレータは安心して鼻を移動させることができ、熟練者でなくてもスムーズな配 20 置変更ができるのである。

【0087】また、このパーツ移動の処理においても、 目及び耳については左右連動モードと非連動モードとを 切り替えることができるようにしたので、次の様な効果 がある。連動モードの効果について具体例を示すと、図 30(A)の顔を同図(C)の様に目の間隔の狭い顔に 変更する場合に、同図(B)に示すように、片目を移動 させるというたった一つの操作でよく、非常に簡単とな る。しかも、左右対象位置に配置されるので、その位置 も正確である。

【0088】一方、非連動モードを取り得ることの効果は、図31の具体例が分かり易い。この例は、同図(C)の様に片方の耳だけを出した顔を作成するとき、右耳だけを顔の後ろに隠れる様に移動させればよく、簡単に片耳だけを出した顔にすることができる。この場合、ウインクしている表情を作成するときと同じく、パターン記憶量を増やさずに多くの表情を作成できるという記憶量削減効果もあることはもちろんである。

【0089】次にモンタージュ決定処理(S95)~出力用データ登録処理(S130)について説明する。モンタージュ決定処理(S95)は、上述の様にして、前回モンタージュデータあるいはそれを初期設定の変更によって変更したものを出発点として、スタイルの選択、パターンの選択、パーツの移動、パーツサイズの変更になったときに操作領域画面20のOK欄26をクリックするかOKキー3Yを押下することによって実行される。このモンタージュ決定処理では、その時点で選択されている各パーツのパターン値及び各パーツの占有領域のサイズと配置を記憶装置にストアする。これが、

次回実行時にメインルーチンのS5により前回モンター ジュデータとして取得・設定されることになる。

【0090】出力用画像描画処理(S100)では、図 32に示すように、モンタージュ描画処理 (S10) と 同様の処理であり、まず最初に、描画領域のデフォルト 値(実施例では128×128ドット)を読み込み(J 10)、当該描画領域に相当するビットマップデータ作 成領域を取得・初期化する(J20)。以下、描画領域 とモンタージュ画像のオリジナル領域 (400×400 10 ドット) との比を求めると共に(J30)、髪型、耳、 顔の輪郭、…と、背面側から順番にパーツをセットし (J 4 0) 、 J 3 0 で算出した比率に応じてサイズを拡 大・縮小しつつアウトラインデータのビットマップデー タ化を行う(J 5 0)。そして、全部のパーツのビット マップデータ化が終わったら(J60)、最終的な顔全 体のビットマップデータを描画用のフレームバッファに 転送し描画領域画面10の方へ描画する(J70)。こ れによって、ディスプレイの下半分に取られている描画 領域画面10にまずはテープライター出力用のドット粗 さでモンタージュ画像が描画される。

【0091】拡大・縮小処理(S120)は、描画領域画面10のモンタージュ画像を相似形で拡大・縮小するものである。その詳細は、図33に示すように、まず、マウスの右クリック又は右カーソルキー3Rの押下による拡大の指示がなされたか否かを判断し(K10)、なければ、左クリック又は左カーソルキー3Lの押下による縮小の指示がなされたか否かを判断し(K20)、これもなければ処理を抜ける。K10で「YES」と判断されたら、現在の描画領域に対して、縦横所定ドットを30加えて描画領域を拡大し(K30)、処理を抜ける。K20が「YES」のときには、現在の描画領域から、縦横所定ドットを減じて描画領域を縮小し(K40)、処理を抜ける。

【0092】こうして描画領域が拡大・縮小された後に 上述の出力用画像描画処理(S100)が実行され、描 画領域画面10には拡大・縮小後の画像が描画される。 こうしてオペレータの意図する出力媒体に適する大きさ にモンタージュ画像が拡大・縮小できたら、後はOKを 入力すれば、出力用データ登録処理(S130)へ進 み、出力用のビットマップデータが記憶装置にストアさ れる。このビットマップデータをテープライターやレー ザプリンタといった出力装置に転送してやれば、粘着テ ープや紙にモンタージュ画像を出力することができる。 【0093】このように、本実施例によれば、最終的に 出力する媒体に合わせてモンタージュ画像を拡大・縮小 することができる。そして、この場合の拡大・縮小も、 アウトラインデータを拡大・縮小してからビットマップ データ化する手法を採用しているので、拡大によってド ットのギザギザが目立つということがなく、品質のよい 50 モンタージュ画像を得ることができる。

21 【0094】なお、最後に、この実施例に含まれている 技術的思想をいくつか例示する。

[例示1] パーツをバランスよく配置したり、同じパタ ーンの縦横比などを種々に変更して使用できるようにし て、モンタージュ画像の表現の可能性を広げるに当り、 操作に熟練を必要としないモンタージュ作成装置とし て、髪、目、鼻、口等の顔の各パーツ毎に複数個のパタ ーンを記憶する記憶手段と、画面上での各パーツの占有 領域を定める占有領域決定手段と、前記記憶手段から所 望のパーツの所望のパターンを選択する選択手段と、該 選択されたパーツのパターンが当該パーツの占有領域に 所定の状態で収まる様に、該パターンの表示サイズを決 定する表示サイズ決定手段と、該決定された表示サイズ にて、当該パーツに対して定められている占有領域内に パターンを表示するパターン表示手段とを備えるものが 含まれている。

【0095】このモンタージュ作成装置によれば、占有 領域決定手段にて画面上での各パーツの占有領域を定め ておくことにより、選択手段にて髪, 目, 鼻, 口等の顔 の各パーツのパターンを選択すると、表示サイズ決定手 段が、各パーツのパターンについてそれぞれが占有領域 に所定の状態で収まるための表示サイズを決定する。そ して、パターン表示手段は、この表示サイズに基づい て、各パーツのパターンを画面上に表示する。こうして モンタージュ画像が作成される。

【0096】従って、占有領域を決定するとき、例え ば、矩形の占有領域であるならその縦横比を変えること で一つのパターンを種々の形態に表示させることができ る。よって、パターンの記憶量を増やすことなく、バリ エーションに富んだモンタージュ画像を作成することが 可能になる。

【0097】また、占有領域として決定するので、例え ば矩形の占有領域なら、その縦横比の決定にそれほどの 熟練は必要なく、また、占有領域を定めることによって 一義的にパターンの表示形態が決定できるので、特開平 6-68220号公報記載の技術の様な面倒な操作をす る必要もない。

【0098】ここで、このモンタージュ作成装置におい て、前記占有領域決定手段は、顔のタイプに応じて、各 パーツ同士の占有領域のバランスを予め定める顔タイプ 別占有領域規定手段を備えることが望ましい。この様に 構成すれば、顔タイプを選ぶだけで、例えば、大人の顔 を直ちに子供の顔に変更することができる。即ち、大人 の顔タイプを最初に選択しておいて各パーツのパターン を選択すると、これらパターンがそれぞれの占有領域に 所定の状態で収まる様に表示サイズを決定されて大人の 顔が表示されるが、そのまま子供の顔タイプに切り換え ると、新たにパターンを選び直さなくても各パターンを 子供の顔タイプ用の占有領域に当てはめる様に表示が変

タージュ画像を作成することができる様になる。

【0099】従って、大人の顔からその人の子供の頃の 顔を予想するなど、興味深いモンタージュ画像を作成す ることもできるようになり、その用途が一層広がり、利 用者の多様な要望に応えることが可能になる。なお、こ れらのモンタージュ作成装置において、さらに、画面上 でのパーツの占有領域の位置を調整する占有領域位置調 整手段を備えたり、あるいは、さらに、画面上でのパー ツの占有領域の大きさを調整する占有領域大きさ調整手 10 段を備えると一層よい。

【0100】この様に構成することで、例えば、目の高 さや間隔を変えたり、同じタイプの目を大きな目、小さ な目として表現するなど、表現の自由度が一層増大す る。そして、縦にも横にも伸ばしたり縮めたりする様な 操作も、占有領域を変更するという一つの操作で行うこ とができ、特開平6-68220号公報記載の技術に比 べて非常に操作性がよい。

【0101】こうした占有領域に当てはめるパターン は、ビットマップ形式で表現されていても構わないが、 より望ましくは、前記記憶手段には、各パーツのパター 20 ンをアウトラインデータとして記憶しておき、前記表示 サイズ決定手段は、選択されたパーツのパターンを、ア ウトラインデータの状態で占有領域に所定の状態で収ま る様に表示サイズを決定する様に構成するとよい。アウ トラインデータであれば、縦横比などが変わったとして も、最終的に画面上に表示されたときにビットのギザギ ザが目だってしまったりすることがなく、美しく見える からである。

【0102】実施例からは、以上の技術思想を把握可能 30 である。

[例示2] 拡大・縮小時にも表示品質を損なうことがな く、結果としてパーツパターンの容量を少なくしても多 様な顔を表現し得るモンタージュ作成装置として、髪、 目、鼻、口等の顔の各パーツ毎に、アウトラインデータ で表された複数個のパターンを記憶する記憶手段と、該 記憶手段から所望のパーツの所望のパターンを選択する 選択手段と、該選択されたパターンのアウトラインデー タに基づいて、画面上にモンタージュ画像を表示するモ ンタージュ画像表示手段とを備えるものが含まれてい 40 る。

【0103】このモンタージュ作成装置によれば、パタ ーンのアウトラインデータに基づいて画面上にモンター ジュ画像を表示するので、この画像全体を拡大してもド ットのエッジが目立つことがない。また、反対に縮小し ても細部が潰れ難い。このモンタージュ作成装置におい て、さらに、前記選択されたパーツのパターンを、アウ トラインデータの状態で拡大・縮小する拡大・縮小手段 を備えるようにするとよい。この場合、例えば、あるパ ーツだけを拡大したとしても、その表示におけるドット 更され、直ちに子供の顔に変更するといった態様でモン *50* のエッジは標準倍率で表示されている他のパーツのそれ

と変わりがなく、画像全体でのドットのエッジの目立ち 具合いは一定となる。

【0104】なお、これらのモンタージュ作成装置にお いて、前記モンタージュ画像表示手段が、前記選択され たパーツのパターンのアウトラインデータを、一旦、ビ ットマップ表現による画像表示用情報に変換するビット マップ化手段と、該ビットマップ表現による画像表示用 情報に基づいてモンタージュ画像を表示するビットマッ プ表示手段とを備えると一層よい。

【0105】例えば、アウトラインデータのままで画面 上に表示しようとすると、CADなどで経験する様に、 線が順番に引かれる様にして表示がなされるため、特 に、拡大や縮小、移動等の表示を変更する操作をしたと き、最初から線を引き直す様に表示がなされ、見るもの にイライラ感を与える。これに対し、上述の様に構成す れば、画面上に表示するときにはビットマップ表現にな っているので、線の引き直しはなく、画面が一気に切り 替わる様に表示の変更がなされる。従って、見る者にイ ライラ感を与えない効果がある。

【0106】この場合、前記ビットマップ化手段は、パ 20 ターンの変更,拡大,縮小又は移動等、表示を変更する 操作がなされたとき、画像全体の中で、当該変更等の前 後で画像を変更すべき範囲を抽出する画像変更範囲抽出 手段と、該抽出された範囲に関してだけ、前記変更等の ビットマップ表現による画像表示用情報を形成する部分 的ビットマップ化手段とを備え、前記ビットマップ表示 手段は、前記部分的ビットマップ化手段により形成され た部分的な画像表示用情報に基づいて、前記抽出された 範囲のモンタージュ画像の表示を変更する部分的表示変 更手段を備えることとしておくと一層よくなる。

【0107】目のパターンだけを変更したり、移動した りする場合に、口や鼻など目と重ならない部分について までビットマップ化をやり直さなくてよく、表示の切り 替えのための処理時間が短くて済む様になる。実施例か らは、以上の技術思想を把握可能である。

【0108】 [例示3] 顔の中でのパーツ同士のバラン スや位置が崩れ過ぎることのないモンタージュ作成装置 として、髪、目、鼻、口等の顔の各パーツ毎に複数個の パターンを記憶する記憶手段と、該記憶手段から所望の パーツの所望のパターンを選択する選択手段と、該選択 されたパターンに基づいて画面上にモンタージュ画像を 表示するモンタージュ画像表示手段と、該モンタージュ 画像表示手段によって画面上に表示されているパーツの 表示されるべき位置を変更する表示位置変更手段とを備 えるモンタージュ作成装置において、前記表示位置変更 手段は、パーツの種類に応じた位置変更の自由度を定め る位置変更自由度決定手段をもを備えることを特徴とす るものが含まれている。

【0109】このモンタージュ作成装置によれば、髪,

に基づいて画面上にモンタージュ画像を表示した後で、 個々のパーツの表示されるべき位置を変更することがで きる。この表示位置の変更の際には、位置変更自由度決 定手段が作動し、パーツの種類に応じた位置変更の自由 度の範囲内でだけ位置の変更を可能としている。換言す れば、当該自由度を越える位置変更は制限している。

24

【0110】この位置変更自由度決定手段としては、具 体的には、目、耳など左右で対となるパーツについて、 対の内の片方のパーツの位置を変更するともう一方のパ 10 一ツを左右対象となる位置へ移動させる様に自由度を制 限する様にすることができる。これによって、右目と左 目の高さのバランスが崩れたり、右目だけが中央に寄っ てしまうなどといったことをなくすことができる。

【0111】また、他の具体例としては、前記位置変更 自由度決定手段は、鼻、口など顔の中心線上に配置され るべきパーツについては、上下方向にだけしか位置を変 更できない様に自由度を制限しておくことができる。こ れにより、鼻が左右にずれてしまったり、口が左右にず れてしまうなどといったことが起こらない。

【0112】さらに、前記位置変更自由度決定手段は、 顔の輪郭,髪など顔のベースとなるべきパーツについて は位置を変更できない様に自由度を制限することとして もよい。この場合には、髪や顔の輪郭といった基本とな るパーツが誤って移動していまわない。

【0113】あるいは、前記位置変更自由度決定手段 は、目、鼻、口など顔の内部に収まるべきパーツについ ては、顔の輪郭外へは位置を変更できない様に自由度を 制限しておくこともできる。この場合には、操作者が誤 って目などを大きく移動させようとしても、顔の外には 30 み出すことがない。

【0114】この様に、本発明によれば、顔を構成する パーツに応じて、その移動の自由度が制限されているた め、操作者が不用意に移動を指示しても、大幅に位置関 係が崩れてしまうことがなく、修正も容易である。よっ て、熟練者でなくても、顔の中でのパーツの配置を最適 な範囲内で自由に変更できるようになり、操作が簡単と

【0115】実施例からは、以上の技術思想を把握可能 である。

[例示4] メモリの容量を増やさなくてもウインクなど の表現ができ、しかも、対のパーツの移動や変更を面倒 にすることのないモンタージュ作成装置として、髪, 目,鼻,口等の顔の各パーツ毎に複数個のパターンを記 億する記憶手段と、該記憶手段から所望のパーツの所望 のパターンを選択する選択手段と、該選択されたパター ンに基づいて画面上にモンタージュ画像を表示するモン タージュ画像表示手段とを備えるモンタージュ作成装置 において、前記選択手段は、目、耳など左右で対となる パーツについて、対の片方だけを独立して選択する独立 目,鼻,口等の顔の各パーツについて選択したパターン 50 選択モードと、対の両方を同時に選択する同時選択モー

(14)

25 ドとを切換可能に構成されることを特徴とするものが含まれている。

【0116】このモンタージュ作成装置によれば、独立選択モードに切り換えることにより、選択手段が片目、 片耳などと対の片方だけのパターンを選択できるので、 ウインクしている状態を表現したりするのにウインク状態の両目パターンを備えておかなくてよい。一方、同時 選択モードに切り換えれば、左右の目、耳などを同時に 選択でき、通常のパーツ選択時においては、従来同様に 1回の選択操作で対のパーツを同時に選択でき、面倒がない。

【0117】また、本発明における他のモンタージュ作成装置は、髪、目、鼻、口等の顔の各パーツ毎に複数種類のパターンを記憶する記憶手段と、該記憶手段から所望のパーツの所望のパターンを選択する選択手段と、該選択されたパターンに基づいて画面上にモンタージュ画像を表示するモンタージュ画像表示手段と、該モンタージュ画像表示手段によって画面上に表示されているパーツの表示されるべき位置を変更する表示位置変更手段とを備えるモンタージュ作成装置において、前記表示位置変更手段は、目、耳など左右で対となるパーツについて、対の片方だけを独立して移動させる独立移動モードと、対の両方を同時に移動させる同時移動モードとを切換可能に構成されることを特徴とする。

【0118】このモンタージュ作成装置によれば、独立移動モードに切り換えることにより、片目だけを中央に寄せたり、左右の耳の出方を変えたりといった豊かな表現を可能にし、しかも、そのために記憶量を増加させなくてよい。一方、同時移動モードに切り換えれば、左右の目、耳などの高さを同時に変えたり、左右対象を保ちながら目の間隔を変更したりすることができ、通常のパーツ移動時において面倒がない。

【0119】実施例からは、以上の技術思想を把握可能である。

[例示 5] 初期画像を固定的にせず、ある程度以上のバ リエーションの中から初期画像を選択し得る様にしたモ ンタージュ作成装置として、髪, 目, 鼻, 口等の顔の各 パーツ毎の複数個のパターンを、モンタージュ表現上の 特徴情報と関連付けて記憶する記憶手段と、該記憶手段 から各パーツのパターンを選択する際に優先して選択す べきパターンを含むモンタージュ表現上の特徴情報を設 定する優先条件設定手段と、該優先条件設定手段の設定 内容に基づいて、少なくとも一部のパーツについての第 1 候補のパターンを選択し、該選択したパターンによる モンタージュ画像を初期画像として画面上に表示する初 期画像表示手段とを備えるモンタージュ作成装置におい て、初期画像の変更を指示する初期画像変更指示手段 と、該初期画像変更指示手段により初期画像の変更が指 示されたとき、前記優先条件設定手段の設定条件を満足 する次候補としてのパターンを前記少なくとも一部のパ ーツについて選択し直し、画面上の初期画像を、該選択 し直したパターンによる次候補のモンタージュ画像に変 更する初期画像変更手段とを備えることを特徴とするも のが含まれている。

【0120】このモンタージュ作成装置によれば、優先条件設定手段によりあるタイプの顔の特徴情報を設定すると、初期画像表示手段が、この設定内容に基づいて、少なくとも一部のパーツについての第1候補のパターを選択し、初期画像としての顔を表示する。このとき、初期画像のイメージが違う様なら、初期画像変更指示する。すると、初期画像変更手段が、優先条件設定手段の設定条件を満足するとで、初期画像を条件設立とも一部のパーツについて選択し直し、次候補による初期画像を表示させたのいて選択し直し、次候補による初期画像を表示させたのによりしてイメージに最も近い初期画像を表示させた後で、個々のパーツの変更に移行することになる。この結果、初期画像をある程度柔軟に選ぶことができるようになる。

【0121】ここで、このモンタージュ作成装置において、前記初期画像変更指示手段を直前に表示していた初期画像へと戻ることをも指示可能に構成し、該直前の表示への戻りが指示されたとき、直前のモンタージュ画像へと戻す初期画像戻し手段をも備えると一層よい。

【0122】イメージに最も近い画像か否かは相対的なものであるから、次候補だけでなく前候補へも直ちに戻れる様にすることで、一層操作性が向上する。この様に、本発明のモンタージュ作成装置によれば、単に各パーツについて優先して選択するための特徴情報を設定するだけでなく、初期画像自体をある程度柔軟に選ぶことができるので、単にパターンの優先順位だけを決めるに留まる特開平4-338877号公報記載の技術と比較したとき、モンタージュ作成のスタート条件をより自分のイメージに近いとことに簡単に持っていくことができ、操作性が著しく向上し、熟練者でなくても早く目的のモンタージュ画像に到達することができるようになる

【0123】 実施例からは、以上の技術思想を把握可能である。

40 [例示6] オペレータのイメージを分断することなくパターンを選択することができるモンタージュ作成装置として、髪、目、鼻、口等の顔の各パーツ毎の複数個のパターンを記憶する記憶手段と、該記憶手段から所望のパーツの所望のパターンを選択する選択手段と、該選択されたパターンに基づいて画面上にモンタージュ画像を表示するモンタージュ画像表示手段とを備えるモンタージュ作成装置において、前記選択手段は、前記モンタージュ画像を表示している画面上の任意の点を指定する任意点指定手段と、該任意点指定手段により指定された点と50 モンタージュ画像を構成する各パーツの表示位置との対

応関係に基づいて、当該指定された点に対応するパーツを判別するパーツ判別手段と、該パーツ判別手段により判別されたパーツについて、前記記憶手段からパターンの選択を開始可能な状態とする選択開始化手段とを備えたことを特徴とするものが含まれている。

【0124】このモンタージュ作成装置によれば、任意 点指定手段によって画面上の任意の点を指定すると、指 定された点とモンタージュ画像を構成する各パーツの表示位置との対応関係に基づいて、パーツ判別手段が当該 指定された点に対応するパーツを判別する。そして、選 択開始化手段は、このパーツ判別の結果に基づいて、当 該パーツについて記憶手段からパターンの選択を開始可能な状態とする。

【0125】従って、オペレータは、画面から視線を移 さなくてもパターンを変更すべきパーツを指定すること ができ、イメージを分断することなく最適なパターンを 選択していくことができる。さらに、パターンを選択す る際に相対的な比較が容易なモンタージュ作成装置とし て、上記モンタージュ作成装置において、前記選択開始 化手段は、パターンの選択を開始可能とされたパーツの 20 パターンを画像として一覧表示する一覧表示手段と、該 一覧表示手段により表示された画像上の任意の点を指定 する第2の任意点指定手段と、該第2の任意点指定手段 により指定された点と一覧表示された各パターンの表示 位置との対応関係に基づいて、当該指定された点に対応 するパターンを判別するパターン判別手段と、該パター ン判別手段により判別されたパターンに基づいて、モン タージュ画像の表示を変更するパターン変更手段とを備 えることを特徴とするものが含まれている。

【0126】このモンタージュ作成装置によれば、画面上の任意の点の指定によってパターン選択を開始可能となったパーツについて、それに属するパターンを画像として一覧表示する。そして、この画像上の任意の点を指定することにより、指定された点と一覧表示された各パターンの表示位置との対応関係に基づいて、当該指定された点に対応するパターンを判別し、モンタージュ画像の表示を変更する。

【0127】これにより、オペレータは、パターン同士を画像として比較しながら最適なものを選び出すことができるようになり、より好みに近いパターンを容易に選択することができるようになる。これらもまた、実施例から把握可能な技術思想である。

[例示 7] 実施例からは、少なくとも、これら例示 1~例示 6 の技術思想が把握可能であるが、さらに、一実施例としてまとめあけられていることから明かな様に、これら例示 1~例示 6 の技術思想がさらに任意に 2 以上組み合わされた技術思想もまた、すべて含まれていることももろんである。

【0128】以上、本発明の一実施例について説明した 【図24】 が、本発明はこの実施例に限定されることがなく、例え 50 一トである。

ば、パーツの占有領域やパーツフレームを矩形ではなく 円形などで表してもよいし、その他、種々なる態様にて 実施することができる。

【図面の簡単な説明】

【図1】 実施例のモンタージュ装置の全体構成図である。

【図2】 実施例でのアウトラインデータの一例を示す 説明図である。

【図3】 実施例での顔の基準スタイルの一例を示す説 10 明図である。

【図4】 実施例での各基準スタイルでのイメージの変化を示す説明図である。

【図5】 実施例でのアプリケーションプログラムを起動したときの初期画面の一例を示す説明図である。

【図6】 実施例でのメインルーチンのフローチャートである。

【図7】 実施例でのメインルーチンのフローチャート である。

【図8】 実施例でのモンタージュ描画処理のフローチ 0 ャートである。

【図9】 実施例でのモンタージュ描画処理のフローチャートである。

【図10】 実施例での顔全体のビットマップデータ化の進行状況を示す説明図である。

【図11】 実施例での目の部分だけのビットマップデータ化の進行状況を示す説明図である。

【図12】 実施例での初期設定変更処理のフローチャートである。

【図13】 実施例での初期設定変更処理のフローチャ 80 ートである。

【図14】 実施例での初期設定画面の説明図である。

【図15】 実施例での初期設定画面の説明図である。

【図16】 実施例でのスタイル選択処理のフローチャートである。

【図17】 実施例でのパーツ選択処理のフローチャートである。

【図18】 実施例でのパーツ選択処理のフローチャートである。

【図19】 実施例でのパーツ選択処理のフローチャー 10 トである。

【図20】 実施例でのパーツ選択処理中の画面の説明図である。

【図21】 実施例でのパーツサイズ変更処理のフローチャートである。

【図22】 実施例でのパーツサイズ変更処理中の画面の説明図である。

【図23】 実施例での左右運動モード設定処理のフローチャートである。

【図24】 実施例でのパターン選択処理のフローチャ

(16)

【図25】 実施例でのパターン選択処理中のシングルクリック時の処理のフローチャートである。

【図26】 実施例でのパターン選択処理中のダブルク リック時の処理のフローチャートである。

【図27】 実施例でのパターン選択処理中の画面の説明図である。

【図28】 実施例でのパーツ移動処理のフローチャートである。

【図29】 実施例でのパーツ移動処理中の画面の説明 図である。

【図30】 実施例でのパーツ移動処理中の画面の説明図である。

【図31】 実施例でのパーツ移動処理中の画面の説明図である。

【図32】 実施例での出力用画像描画処理のフローチャートである。

【図33】 実施例での拡大・縮小処理のフローチャートである。

【符号の説明】

1・・・モンタージュ作成装置、3・・・キーボード、 3 L・・・左カーソルキー、3 NM・・・数字キー、3 R···右カーソルキー、3S···Siftキー、3 U・・・上カーソルキー、3D・・・下カーソルキー、 3 X・・・左右連動キー、3 Y・・・OKキー、3 Z・ ・・キャンセルキー、5・・・マウス、7・・・ディス プレイ、9・・・パーソナルコンピュータ、10・・・ 描画領域画面、20・・・操作領域画面、21・・・サ ンプル表示欄、22・・・スタイル選択表示欄、23・ ・・パーツ選択表示欄、24・・・パターン値表示欄、 25・・・左右連動指示欄、26・・・〇K欄、27・ ・・キャンセル欄、28・・・初期設定欄、30・・・ 初期設定画面、31・・・参考例設定欄、32・・・髪 型設定欄、33・・・顔の輪郭設定欄、34・・・眉毛 設定欄、35・・・目設定欄、36・・・〇K欄、37 ・・・キャンセル欄、38・・・スタイル選択表示欄、 40・・・パターン一覧表、PAh, PAf, ···・・ パーツ占有領域、 P F eyeL・・・パーツフレーム。

【図1】

【図3】

【図11】

[図2]

【図4】

(C) **組**め

(B) 太め

(D) 子供

【図5】

【図10】

【図12】

【図15】

(リターン)

【図21】

αρο Ji_{ng} i grie

[図22]

Č

【図23】

【図24】

【図26】

[図31]

[図27]

【図28】

【図32】

フロントページの続き

(51) Int. Cl. ⁶

識別記号 庁内整理番号 FI

技術表示箇所

G O 6 T 3/40

	G06F	15/62	465	K
		15/66	3.55	E
•		15/70	455	В

9061-5H