1	MICHAEL A. JACOBS (CA SBN 111664)	
2	MJacobs@mofo.com ARTURO J. GONZÁLEZ (CA SBN 121490)	
3	AGonzalez@mofo.com ERIC A. TATE (CA SBN 178719)	
4	ETate@mofo.com MORRISON & FOERSTER LLP	
5	425 Market Street San Francisco, California 94105-2482	
6	Telephone: 415.268.7000 Facsimile: 415.268.7522	
7 8	Attorneys for Defendants UBER TECHNOLOGIES, INC., OTTOMOTTO LLC, and OTTO TRUCKING LLC	
9	KAREN L. DUNN (<i>Pro Hac Vice</i>)	
10	kdunn@bsfllp.com HAMISH P.M. HUME (<i>Pro Hac Vice</i>)	
11	hhume@bsfllp.com BOIES SCHILLER FLEXNER LLP	
12	1401 New York Avenue, N.W. Washington DC 20005	
13	Telephone: 202.237.2727 Facsimile: 202.237.6131	
14 15	Attorneys for Defendants UBER TECHNOLOGIES, INC. and OTTOMOTTO LLC	
16	UNITED STATES DIS	STRICT COURT
17	NORTHERN DISTRICT	OF CALIFORNIA
18	SAN FRANCISCO	O DIVISION
19	WAYMO LLC,	Case No. 3:17-cv-00939-WHA
20	Plaintiff,	DECLARATION OF SCOTT BOEHMKE IN SUPPORT OF
21	v.	DEFENDANTS' OPPOSITION TO PLAINTIFF WAYMO LLC'S
22	UBER TECHNOLOGIES, INC., OTTOMOTTO LLC; OTTO TRUCKING LLC,	MOTION FOR PRELIMINARY INJUNCTION
23	Defendants.	Date: May 3, 2017
24	Detendants.	Time: 7:30 a.m. Ctrm: 8, 19th Floor
25		Judge: The Honorable William Alsup
26		Trial Date: October 2, 2017
27	REDACTED VERSION OF DOCUMEN	T SUBMITTED UNDER SEAL
28	1	

Boehmke Decl. ISO Defendants' Opposition to Plaintiff's Motion for Preliminary Injunction Case No. 3:17-cv-00939-WHA pa-1780495

- 1. I am an engineering manager within the Advanced Technologies Group at Uber Technologies, Inc. ("Uber"), where I am responsible for hardware development and application in Uber's self-driving vehicle project. I understand that Waymo has filed a lawsuit against Uber, Ottomotto LLC ("Otto") and Otto Trucking LLC in the U.S. District Court for the Northern District of California. I submit this declaration in support of Defendants' Opposition to Waymo LLC's ("Waymo") Motion for Preliminary Injunction. I have personal knowledge of the facts set forth in this declaration and, if called to testify as a witness, could and would do so competently.
- 2. I have never worked for Google or Waymo. I joined Uber in February 2015 as a senior engineer in Uber's newly created Advanced Technologies Center ("ATC") in Pittsburgh, Pennsylvania, to research and develop autonomous vehicle technologies. After Uber acquired Otto in August 2016, I, along with the rest of the ATC team, became a member of Uber's newly formed Advanced Technologies Group. Since joining Uber in February 2015, I have been responsible for hardware development and application in Uber's self-driving vehicle project. Prior to joining Uber, I worked for eight years as a project engineer at Carnegie Mellon University (CMU), where I specialized in robotics. I worked on control, power, and communications electronics, as well as design and configuration of light detecting and ranging (LiDAR) and RADAR sensors during my tenure at CMU.
- 3. I have never knowingly taken or received any confidential Google or Waymo documents or information for use at Uber. I have never knowingly used any confidential Google or Waymo documents or information in my work for Uber. I was never directed by anyone at Uber to use any confidential Google or Waymo documents or information for the design or development of Uber's LiDAR and self-driving vehicle technology. I have never seen any evidence of any confidential Google or Waymo files being used during my work at Uber.

Development of LiDAR Technologies at Uber Prior to the Otto Acquisition

4. I became involved in Uber's application of LiDAR technology in early March 2015. During that time, I traveled to California to meet with three leading companies in the LiDAR space—Velodyne Acoustics ("Velodyne"), Quanergy Systems ("Quanergy"), and Tyto

1	application claiming priority to this provisional application. Attached hereto as Exhibits J-P are	
2	true and correct copies of my provisional application documents (Exhibits M-P) and non-	
3	provisional application documents (Exhibits J-L).	
4	7. During that time, I was also considering a potential in-house LiDAR solution	
5	using a 1550nm fiber laser, with "[p]olygonal mirrors for fast horizontal scan" and	
6	. See Exhibit B at page 26.	
7	8. The October 15, 2015 version of my LADAR Design Notebook also includes my	
8	analysis of LiDAR sensors that Velodyne and Quanergy could potentially provide to Uber. See	
9	Exhibit B at pages 9-11, 13-16, 19. For example, page 10, reproduced below, shows the laser	
10	distribution of the diodes in the	
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		

1	
2	9. In March 2016, Uber entered into a contract with under which
3	agreed to develop for Uber
4	based on custom beam patterns and parameters that we provided to
5	Uber would assemble into its custom designed mount, which stacked them to
6	provide (hereinafter referred to as the "dual stack"). From November 2015
7	through March 2016, I worked on developing the custom beam patterns and parameters necessary
8	for Uber's automotive use, taking into account the technical constraints of
9	Attached hereto as Exhibit D is a true and correct copy of a request for quotation (RFQ)
10	that Uber provided to on December 7, 2015 for a LiDAR sensor capable of providing
11	Uber's requested field of view requirements. Attached hereto as Exhibit E is a true and correct
12	copy of excerpts of the preliminary specifications that Uber provided to
13	15, 2015. Attached hereto as Exhibit F is a true and correct copy of the final specifications Uber
14	provided to according to Uber's
15	custom beam pattern and parameters.
16	10. In creating these documents (Exhibits D, E, and F), I calculated the custom beam
17	patterns and parameters based on the requirements of the car (e.g., the beams must pass over the
18	hood of the car), the standard specifications of public roads (e.g., the maximum grades for public
19	roads), and the resolution needed for obstacle detection while self-driving at various speeds.
20	These custom beam patterns create
21	
22	
23	. As the beams of light travel farther distances, the
24	angular difference between the beams of light translate into increased vertical gaps.
25	
26	
27	
28	

to permit the use of a simple transmit lens. I was also considering the use of separate transmit and receive lenses for the optical transmit and receive paths, which I had understood to be the state-of-the-art at the time. This was memorialized in the December 7, 2015 version of my LADAR Design Notebook (Exhibit C), which has a last modified date of January 2016. Slide 51, reproduced below, illustrates this:

BOEHMKE DECL. ISO DEFENDANTS' OPPOSITION TO PLAINTIFF'S MOTION FOR PRELIMINARY INJUNCTION Case No. 3:17-cv-00939-WHA pa-1780495

13. Attached hereto as Exhibit G is a true and correct copy of my analysis of using		
multiple lasers on each transmit board, entitled "2016-02-17-OurVersion," which was last		
modified on February 17, 2016. At the time, I was exploring how to position and orient the lasers		
behind one transmit lens on as few boards as possible to simplify alignment and calibration. I		
envisioned to enable the use of		
a simple lens design.		
Interactions with Otto		
14. In May 2016, Uber was considering several different LiDAR options. Attached		
hereto as Exhibit H is a true and correct copy of "LIDAR Thoughts," which summarizes three		
options Uber was considering for LiDAR sensors, as of May 2016. Plan A was to use		
with Uber's custom beam pattern and parameters to form the		
previously described dual stack.		
See Exhibit H at pages 5-7. Plan B was to use a potential		
in-house diode-based LiDAR sensor that would be simpler to fabricate and would have improved		
specifications over . Slide 10 discloses improvements		
on		
. See Exhibit H at pages 8-12. These improvements		
incorporate concepts from my earlier work in late 2015 discussed above. Plan C was to use a		
fiber laser design based on Uber's discussions with Otto in late April and May 2016, which		
included discussions about the possibility of using eight fiber lasers to scan wide areas. See		
Exhibit H at pages 13-17. For example, slides 14 and 15 show an early proposal of using eight		
fiber lasers that were potentially split in four, six, or eight, to allow for 32, 48, and 64 beams		
respectively. These three options were not exhaustive, and Uber was considering other options as		
well.		
15. Before Uber acquired Otto in August 2016, I was working with		

1 we remain 2 constrained as to how much data we have collected using these LiDAR sensors. 3 Involvement in the Fuji Design 16. In October 2016, Eric Meyhofer and I met with James Haslim and concluded that 4 5 the fiber laser LiDAR design that James and his team were working on (i.e., Plan C) was 6 undesirable for use in Uber's vehicles because of the complexity of that design, as well as its 7 heavy weight and bulky size. We decided that James and his team should pivot and instead focus 8 on developing what we dubbed the "Fuji" design, an in-house diode-based LiDAR sensor based 9 on the design that I was previously considering in late 2015, well before the acquisition of Otto. 10 The Fuji design was intended as an alternative to By October 2016, 11 12 13 14 Because we would not be able to further 15 our self-driving project without additional LiDAR sensors, 16 17 we proceeded with alternatives, including the aforementioned Fuji design. 18 17. In early November 2016, I visited James Haslim and his team in Uber's San 19 Francisco office to review the work that they had undertaken since pivoting to the Fuji Design. This work included 20 21 for the Fuji design. It was during that review that I suggested to 22 James's team to use an inductor-less design for the laser diode driving circuit because it is simpler 23 than an inductor-based design and avoids undesirable electrical noise into the system. 18. 24 The position and orientation of the diodes on the transmit boards in Fuji is based 25 on custom beam spacing and angles I developed using parameters and calculations Exhibit I is a true and 26 27 correct copy of the custom beam spacing and angles summary I developed and provided to James 28 Haslim's team on November 4, 2016. This summary calculates the beam spacing and angles for

given obstacle parameters. The summary provided beam spacing and angles for a 64 channel LiDAR on a vehicle optimized for traveling at 30 mph, 35 mph, 40 mph, and 45 mph. 1 understand that James and his team used the data in this summary to generate the initial optical cavity designs and transmit PCB designs for the Fuji design. I declare under penalty of perjury under the laws of the United States that the foregoing is true and correct. Executed this 7th day of April, 2017, in Pittsburgh, Pennsylvania. Scott Boehmke