Programming Paradigms

Lecture 5

Slides are from Prof. Chin Wei-Ngan from NUS

Lambda Calculus

```
local P in local Y in local Z in
   Z=1
   proc {P X} Y=X end
   {P Z}
end end end
```

We shall reason that x, y and z will be bound to 1

Initial execution state

Statement

Empty environment

Semantic statement

Semantic stack

Empty store

Simple Example: local

- Create new store variables
- Extend the environment

```
([(Z=1 proc {P X} Y=X end {P Z}, {P \rightarrow p, Y \rightarrow y, Z \rightarrow Z)], {p, y, Z})
```

```
([(Z=1 proc {P X} Y=X end \{P Z\}, \{P \rightarrow p, Y \rightarrow y, Z \rightarrow z\})], \{p, y, z\})
```

Split sequential composition

```
([(Z=1, {P \rightarrow p, Y \rightarrow y, Z \rightarrow Z}), (proc {P X} Y=X end {P Z}, {P \rightarrow p, Y \rightarrow y, Z \rightarrow Z})], {p, y, Z})
```

Split sequential composition

```
([(proc {P X} Y=X end \{P Z\}, \{P \to p, Y \to y, Z \to z\})], \{p, y, z=1\})
```

Variable-value assignment

```
([(proc {P X} Y=X end, {P\rightarrow p, Y\rightarrow y, Z\rightarrow z}), ({P Z}, {P\rightarrow p, Y\rightarrow y, Z\rightarrow z})], {p, y, z=1})
```

Split sequential composition

```
([(proc {P X} Y=X end, {P\rightarrow p, Y\rightarrow y, Z\rightarrow z}),
({P Z}, {P\rightarrow p, Y\rightarrow y, Z\rightarrow z})],
{p, y, z=1})
```

- Procedure definition
 - external reference
 - formal argument
- Contextual environment {y→y}
- Write procedure value to store

```
([({P Z}, {P \rightarrow p, Y \rightarrow y, Z \rightarrow z})], {p = (proc {$ X} Y=X end, {Y <math>\rightarrow y}), Z=1})
```

- Procedure call: use p
- Note: p is a value like any other variable. It is the semantic statement (proc {\$ X} Y=X end, {Y→y})
- Environment
 - □ start from $\{Y \rightarrow y\}$
 - adjoin $\{X \rightarrow z\}$

- Variable-variable assignment
 - Variable for Y is
 - Variable for x is

```
([],
{ p = (proc {$ X} Y=X end, {Y→ y}),
    y=1, Z=1})
```

- Voila!
- The semantic stack is in the run-time state terminated, since the stack is empty

Lambda Calculus:

A Simplest Universal Programming Language

Lambda Calculus

- Untyped Lambda Calculus
- Evaluation Strategy
- Techniques encoding, extensions, recursion
- Operational Semantics
- Explicit Typing
- Type Rules and Type Assumption
- Progress, Preservation, Erasure

Introduction to Lambda Calculus:

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf http://www.cs.chalmers.se/Cs/Research/Logic/TypesSS05/Extra/geuvers.pdf

Untyped Lambda Calculus

- Extremely simple programming language which captures core aspects of computation and yet allows programs to be treated as mathematical objects.
- Focused on functions and applications.
- Invented by Alonzo (1936,1941), used in programming (Lisp) by John McCarthy (1959).

Functions without Names

Usually functions are given a name (e.g. in language C):

```
int plusone(int x) { return x+1; }
...plusone(5)...
```

However, function names can also be dropped:

```
(int (int x) { return x+1;}) (5)
```

Notation used in untyped lambda calculus:

$$(\lambda x. x+1) (5)$$

Syntax

In purest form (no constraints, no built-in operations), the lambda calculus has the following syntax.

t ::=	terms
X	variable
$\lambda x \cdot t$	abstraction
t t	application

This is simplest universal programming language!

Conventions

- Parentheses are used to avoid ambiguities.
 e.g. x y z can be either (x y) z or x (y z)
- Two conventions for avoiding too many parentheses:
 - Applications associates to the left e.g. x y z stands for (x y) z
 - Bodies of lambdas extend as far as possible.
 e.g. λ x. λ y. x y x stands for λ x. (λ y. ((x y) x)).
- Nested lambdas may be collapsed together.
 e.g. λ x. λ y. x y x can be written as λ x y. x y x

Scope

- An occurrence of variable x is said to be bound when it occurs in the body t of an abstraction λ x . t
- An occurrence of x is free if it appears in a position where it is not bound by an enclosing abstraction of x.

```
• Examples: x y
\lambda y. x y
\lambda x. x (identity function)
(\lambda x. x x) (\lambda x. x x) (non-stop loop)
(\lambda x. x) y
(\lambda x. x) x
```

Alpha Renaming

 Lambda expressions are equivalent up to bound variable renaming.

e.g.
$$\lambda x. x =_{\alpha} \lambda y. y$$

 $\lambda y. x y =_{\alpha} \lambda z. x z$

But NOT:

$$\lambda y. x y =_{\alpha} \lambda y. z y$$

• Alpha renaming rule:

$$\lambda \times E =_{\alpha} \lambda \times E =_{\alpha} \lambda \times E = (x \mapsto z) \times E$$
 (z is not free in E)

Beta Reduction

 An application whose LHS is an abstraction, evaluates to the body of the abstraction with parameter substitution.

e.g.
$$(\lambda x. x y) z \rightarrow_{\beta} z y$$

 $(\lambda x. y) z \rightarrow_{\beta} y$
 $(\lambda x. x x) (\lambda x. x x) \rightarrow_{\beta} (\lambda x. x x) (\lambda x. x x)$

Beta reduction rule (operational semantics):

$$(\;\lambda\;x\;.\;t_1\;)\;t_2 \qquad \qquad \rightarrow_{\beta} \quad [x \mapsto t_2]\;t_1$$

Expression of form ($\lambda x \cdot t_1$) t_2 is called a *redex* (reducible expression).

Evaluation Strategies

- A term may have many redexes. Evaluation strategies can be used to limit the number of ways in which a term can be reduced.
- An evaluation strategy is *deterministic*, if it allows reduction with at most one redex, for any term.
- Examples:
 - normal order
 - call by name
 - call by value, etc

Normal Order Reduction

- Deterministic strategy which chooses the *leftmost*, outermost redex, until no more redexes.
- Example Reduction:

```
\frac{\text{id } (\text{id } (\lambda z. \text{ id } z))}{\rightarrow \underline{\text{id } (\lambda z. \text{ id } z))}}

\rightarrow \lambda z.\underline{\text{id } z}

\rightarrow \lambda z.z

\rightarrow \lambda z.z
```

Call by Name Reduction

- Chooses the *leftmost*, *outermost* redex, but *never* reduces inside abstractions.
- Example:

```
\frac{\text{id } (\text{id } (\lambda z. \text{ id } z))}{\rightarrow \underline{\text{id } (\lambda z. \text{ id } z))}}

\rightarrow \lambda z. \text{id } z
```

Call by Value Reduction

- Chooses the *leftmost*, *innermost* redex whose RHS is a value; and never reduces inside abstractions.
- Example:

```
id (id (\lambda z. id z))

\rightarrow id (\lambda z. id z)

\rightarrow \lambda z. id z

\not\rightarrow
```

Strict vs Non-Strict Languages

- Strict languages always evaluate all arguments to function before entering call. They employ call-by-value evaluation (e.g. C, Java, ML).
- Non-strict languages will enter function call and only
 evaluate the arguments as they are required. Call-by-name
 (e.g. Algol-60) and call-by-need (e.g. Haskell) are possible
 evaluation strategies, with the latter avoiding the reevaluation of arguments.
- In the case of call-by-name, the evaluation of argument occurs with each parameter access.

Formal Treatment of Lambda Calculus

 Let V be a countable set of variable names. The set of terms is the smallest set T such that:

1.
$$x \in T$$
 for every $x \in V$

2. if
$$t_1 \in T$$
 and $x \in V$, then $\lambda x. t_1 \in T$

3. if
$$t_1 \in T$$
 and $t_2 \in T$, then $t_1 t_2 \in T$

Recall syntax of lambda calculus:

$$\begin{array}{ccc} t ::= & & terms \\ x & variable \\ \lambda x.t & abstraction \\ t t & application \end{array}$$

Free Variables

• The set of free variables of a term t is defined as:

$$FV(x) = \{x\}$$

$$FV(\lambda x.t) = FV(t) \setminus \{x\}$$

$$FV(t_1 t_2) = FV(t_1) \cup FV(t_2)$$

Substitution

 Works when free variables are replaced by term that does not clash:

$$[x \mapsto \lambda z. zw] (\lambda y.x) = (\lambda y. \lambda x. zw)$$

However, problem if there is name capture/clash:

$$[x \mapsto \lambda z. z w] (\lambda x.x) \neq (\lambda x. \lambda z. z w)$$

$$[x \mapsto \lambda z. zw] (\lambda w.x) \neq (\lambda w. \lambda z. zw)$$

Formal Defn of Substitution

$$[x \mapsto s] x = s \quad \text{if } y = x$$

$$[x \mapsto s] y = y \quad \text{if } y \neq x$$

$$[x \mapsto s] (t_1 t_2) = ([x \mapsto s] t_1) ([x \mapsto s] t_2)$$

$$[x \mapsto s] (\lambda y.t) = \lambda y.t \quad \text{if } y = x$$

$$[x \mapsto s] (\lambda y.t) = \lambda y. [x \mapsto s] t \quad \text{if } y \neq x \land y \notin FV(s)$$

$$[x \mapsto s] (\lambda y.t) = [x \mapsto s] (\lambda z. [y \mapsto z] t)$$

$$if y \neq x \land y \in FV(s) \land \text{fresh } z$$

Syntax of Lambda Calculus

Term:

t ::= terms

x variable

λ x.t abstraction

t t application

Value:

t ::= terms

λ x.t abstraction value

Oz Abstract Syntax Tree

Distfix notation

$$\begin{array}{cccc} t ::= & & & & terms \\ & x & & variable \\ & \lambda \, x \, . \, t & & abstraction \\ & t \, t & & application \end{array}$$

Oz notation

$$\begin{array}{ccc} & & & & & \text{terms} \\ & x & & & \text{variable} \\ & & & \text{lam}(x < T >) & & \text{abstraction} \\ & & & & \text{app}(< T > < T >) & & \text{application} \\ & & & & \text{let}(x \# < T > < T >) & & \text{let binding} \end{array}$$

Why Oz AST?

- Need to program in Oz!
- Unambiguous

Call-by-Value Semantics

$$\frac{t_2 \rightarrow t'_2}{v_1 t_2 \rightarrow v_1 t'_2}$$
 (E-App2)

$$(\lambda x.t) v \rightarrow [x \mapsto v] t$$
 (E-AppAbs)

Getting Stuck

 Evaluation can get stuck. (Note that only values are λabstraction)

$$e.g.$$
 $(x y)$

 In extended lambda calculus, evaluation can also get stuck due to the absence of certain primitive rules.

 $(\lambda x. \operatorname{succ} x) \operatorname{true} \to \operatorname{succ} \operatorname{true} \to$

Programming Techniques in λ-Calculus

- Multiple arguments.
- Church Booleans.
- Pairs.
- Church Numerals.
- Enrich Calculus.
- Recursion.

Multiple Arguments

- Pass multiple arguments one by one using lambda abstraction as intermediate results. The process is also known as *currying*.
- Example:

$$f = \lambda(x,y).s$$
 $f = \lambda x. (\lambda y. s)$

Application:

f(v,w) (f v) w

requires pairs as primitve types

requires higher order feature

Church Booleans

Church's encodings for true/false type with a conditional:

```
true = \lambda t. \lambda f. t
false = \lambda t. \lambda f. f
if = \lambda l. \lambda m. \lambda n. 1 m n
```

Example:

```
if true v w

= (\lambda 1. \lambda m. \lambda n. 1 m n) true v w

\rightarrow true v w

= (\lambda t. \lambda f. t) v w

\rightarrow v
```

Boolean and operation can be defined as:

```
and = \lambda a. \lambda b. if a b false
= \lambda a. \lambda b. (\lambda l. \lambda m. \lambda n. 1 m n) a b false
= \lambda a. \lambda b. a b false
```

Pairs

 Define the functions pair to construct a pair of values, fst to get the first component and snd to get the second component of a given pair as follows:

```
pair = \lambda f. \lambda s. \lambda b. b f s
fst = \lambda p. p true
snd = \lambda p. p false
```

Example:

```
snd (pair c d)

= (\lambda p. p \text{ false}) ((\lambda f. \lambda s. \lambda b. b f s) c d)

\rightarrow (\lambda p. p \text{ false}) (\lambda b. b c d)

\rightarrow (\lambda b. b c d) \text{ false}

\rightarrow \text{ false c d}

\rightarrow d
```

Church Numerals

Numbers can be encoded by:

```
c_0 = \lambda s. \lambda z. z
c_1 = \lambda s. \lambda z. s z
c_2 = \lambda s. \lambda z. s (s z)
c_3 = \lambda s. \lambda z. s (s (s z))
```

Church Numerals

Successor function can be defined as:

```
succ = \lambda n. \lambda s. \lambda z. s (n s z)
```

Example:

```
succ c_1
= (\lambda n. \lambda s. \lambda z. s (n s z)) (\lambda s. \lambda z. s z)
\rightarrow \lambda s. \lambda z. s ((\lambda s. \lambda z. s z) s z)
\rightarrow \lambda s. \lambda z. s (s z)

succ c_2
= \lambda n. \lambda s. \lambda z. s (n s z) (\lambda s. \lambda z. s (s z))
\rightarrow \lambda s. \lambda z. s ((\lambda s. \lambda z. s (s z)) s z)
\rightarrow \lambda s. \lambda z. s (s (s z))
```

Church Numerals

Other Arithmetic Operations:

```
plus = \lambda m. \lambda n. \lambda s. \lambda z. m s (n s z)
times = \lambda m. \lambda n. m (plus n) c<sub>0</sub>
iszero = \lambda m. m (\lambda x. false) true
```

Exercise: Try out the following.

```
plus c_1 x
times c_0 x
times x c_1
iszero c_0
iszero c_2
```

Enriching the Calculus

We can add constants and built-in primitives to enrich λcalculus. For example, we can add boolean and arithmetic
constants and primitives (e.g. true, false, if, zero, succ, iszero,
pred) into an enriched language we call λNB:

Example:

 λ x. succ (succ x) $\in \lambda NB$

 λ x. true $\in \lambda NB$

Recursion

Some terms go into a loop and do not have normal form.
 Example:

$$\begin{array}{ll} (\lambda \; x. \; x \; x) \; (\lambda \; x. \; x \; x) \\ \rightarrow & (\lambda \; x. \; x \; x) \; (\lambda \; x. \; x \; x) \\ \rightarrow & \dots \end{array}$$

However, others have an interesting property
 fix = λ f. (λ x. f (λ y. x x y)) (λ x. f (λ y. x x y))
 which returns a fix-point for a given functional.

Given
$$x = h x$$

= fix h x is fix-point of h

That is: fix $h \to h$ (fix h) $\to h$ (h (fix h)) $\to ...$

Example - Factorial

We can define factorial as:

```
fact = \lambda n. if (n<=1) then 1 else times n (fact (pred n))
= (\lambda h. \lambda n. if (n<=1) then 1 else times n (h (pred n))) fact
= fix (\lambda h. \lambda n. if (n<=1) then 1 else times n (h (pred n)))
```

Example - Factorial

Recall:

```
fact = fix (\lambda h. \lambda n. if (n \le 1) then 1 else times n (h (pred n)))
```

• Let $g = (\lambda h. \lambda n. if (n \le 1) then 1 else times n (h (pred n)))$

Example reduction:

```
fact 3 = fix g 3

= g (fix g) 3

= times 3 ((fix g) (pred 3))

= times 3 (g (fix g) 2)

= times 3 (times 2 ((fix g) (pred 2)))

= times 3 (times 2 (g (fix g) 1))

= times 3 (times 2 1)

= 6
```

Alternative using Let Binding

Enriched lambda calculus with explicit recursion

scope of x is both exp1 and exp2

Example : let (fact # λ n. n. if (n<=1) then 1 else times n (fact (pred n)) in (fact 5)

Boolean-Enriched Lambda Calculus

Term:

t ::= terms

x variable

λ x.t abstraction

t t application

true constant true

false constant false

if t then t else t conditional

Value:

v ::= value

λ x.t abstraction value

true true value

false false value

Key Ideas

Exact typing impossible.

if <long and tricky expr> then true else $(\lambda x.x)$

 Need to introduce function type, but need argument and result types.

if true then (λ x.true) else (λ x.x)

Simple Types

 The set of simple types over the type Bool is generated by the following grammar:

•
$$T := types$$

Bool type of booleans

 $T \to T$ type of functions

→ is right-associative:

$$T_1 \rightarrow T_2 \rightarrow T_3$$
 denotes $T_1 \rightarrow (T_2 \rightarrow T_3)$

Implicit or Explicit Typing

- Languages in which the programmer declares all types are called explicitly typed. Languages where a typechecker infers (almost) all types is called implicitly typed.
- Explicitly-typed languages places onus on programmer but are usually better documented. Also, compile-time analysis is simplified.

Explicitly Typed Lambda Calculus

• t ::= terms

...

 $\lambda x : T.t$

abstraction

...

• v ::= value

 $\lambda x : T.t$ abstraction value

. . .

• T ::= types

Bool type of booleans

 $T \rightarrow T$ type of functions

Examples

true

λ x:Bool. x

 $(\lambda x:Bool.x)$ true

if false then (λ x:Bool . True) else (λ x:Bool . x)

Erasure

The erasure of a simply typed term t is defined as:

```
erase(x) = x

erase(\lambda x : T.t) = \lambda x. erase(t)

erase(t_1 t_2) = erase(t_1) erase(t_2)
```

A term m in the untyped lambda calculus is said to be
 typable in λ_→ (simply typed λ-calculus) if there are some
 simply typed term t, type T and context Γ such that:

```
erase(t)=m \land \Gamma \vdash t : T
```

Typing Rule for Functions

• First attempt:

$$\frac{t_2: T_2}{\lambda x: T_1. t_2: T_1 \rightarrow T_2}$$

But t₂:T₂ can assume that x has type T₁

Need for Type Assumptions

Typing relation becomes ternary

$$\frac{\mathbf{x}: \mathbf{T}_1 \vdash \mathbf{t}_2 : \mathbf{T}_2}{\lambda \ \mathbf{x}: \mathbf{T}_1.\mathbf{t}_2 : \mathbf{T}_1 \to \mathbf{T}_2}$$

For nested functions, we may need several assumptions.

Typing Context

- A typing context is a finite map from variables to their types.
- Examples:

x : Bool

 $x : Bool, y : Bool \rightarrow Bool, z : (Bool \rightarrow Bool) \rightarrow Bool$

Type Rule for Abstraction

Shall use Γ to denote typing context.

$$\frac{\Gamma, \mathbf{x}: \mathbf{T}_1 \vdash \mathbf{t}_2 : \mathbf{T}_2}{\Gamma \vdash \lambda \mathbf{x}: \mathbf{T}_1.\mathbf{t}_2 : \mathbf{T}_1 \to \mathbf{T}_2}$$
 (T-Abs)

Other Type Rules

Variable

$$\frac{x:T \in \Gamma}{\Gamma \vdash x:T}$$
 (T-Var)

Application

$$\frac{ \Gamma \vdash t_1 : T_1 \to T_2 \quad \Gamma \vdash t_2 : T_1 }{\Gamma \vdash t_1 t_2 : T_2} \quad (T-App)$$

Boolean Terms.

Typing Rules

True : Bool (T-true) False : Bool (T-false) 0 : Nat (T-Zero)

$$\frac{t_1:Bool \quad t_2:T \quad t_3:T}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3:T} \quad (T-If)$$

Example of Typing Derivation

Canonical Forms

If v is a value of type Bool, then v is either true or false.

• If v is a value of type $T_1 \rightarrow T_2$, then $v=\lambda x:T_1$. t_2 where $t:T_2$

Progress

Suppose t is a closed well-typed term (that is $\{\} \vdash t : T$ for some T).

Then either t is a value or else there is some t' such that $t \rightarrow t'$.

Preservation of Types (under Substitution)

If $\Gamma, x: S \vdash t: T \text{ and } \Gamma \vdash s: S$

then $\Gamma \vdash [x \mapsto s]t : T$

Preservation of Types (under reduction)

If $\Gamma \vdash t : T$ and $t \rightarrow t'$

then $\Gamma \vdash t' : T$

Motivation for Typing

- Evaluation of a term either results in a *value* or *gets* stuck!
- Typing can prove that an expression cannot get stuck.
- Typing is *static* and can be checked at compile-time.

Normal Form

A term t is a *normal form* if there is no t' such that $t \rightarrow t'$.

The multi-step evaluation relation \rightarrow^* is the reflexive, transitive closure of one-step relation.

```
\begin{array}{ccc} \operatorname{pred} \left(\operatorname{succ}(\operatorname{pred} 0)\right) & & & & \\ \rightarrow & & & & \\ \operatorname{pred} \left(\operatorname{succ}(\operatorname{pred} 0)\right) \\ \rightarrow & & & \\ \rightarrow & & \\ 0 & & \\ \end{array}
```

Stuckness

Evaluation may fail to reach a value:

```
succ (if true then false else true)

→
succ (false)

→
```

A term is *stuck* if it is a normal form but not a value.

Stuckness is a way to characterize runtime errors.

Safety = Progress + Preservation

 Progress: A well-typed term is not stuck. Either it is a value, or it can take a step according to the evaluation rules.

Suppose t is a well-typed term (that is t:T for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$

Safety = Progress + Preservation

• Preservation: If a well-typed term takes a step of evaluation, then the resulting term is also well-typed.

If $t:T \wedge t \to t'$ then t':T.