Posible solución para obtener el ancho del pico en la base

Contenido

Posible solución para obtener el ancho del pico en la base	1
Ecuación del Ancho del pico en la base Wb :	2
Conteo de placas, para obtener N :	2
Ecuación de Van Deemter para obtener H :	2
Relación entre los datos que tenemos y los datos exigidos en la fórmula:	5
Documentación interesante y fuentes:	5

Ecuación del Ancho del pico en la base Wb:

$$N = 16 \cdot \left(rac{t_R}{W_{base}}
ight)^2$$

Despejamos Wbase:

$$W_{ ext{base}} = rac{4 \cdot TR}{\sqrt{N}}$$

Conteo de placas, para obtener N:

$$H=rac{L}{N}$$

Despejamos la N:

$$N=rac{L}{H}$$

Ecuación de Van Deemter para obtener H:

$$HETP = A + rac{B}{u} + (C_s + C_m) \cdot u$$

- HETP (H) = una medida del poder de resolución de la columna [m].
- A = parámetro Eddy-diffusion, relacionado con la canalización a través de un embalaje no-ideal [m].

- B = coeficiente de difusión de las partículas de engranaje en la dirección longitudinal, resultando en dispersión $[m^2 s^{-1}]$.
- C = Resistencia al coeficiente de transferencia masiva del análisis entre fase móvil y estacionaria [s].
- u velocidad [m s⁻¹].

Dispersión Eddy A:

- λ es forma de partículas (con respecto al embalaje).
- d₀ es diámetro de partículas.

Difusión longitudinal B:

$$B=2\gamma D_m$$

- y es una constante.
- D_m es el coeficiente de difusión de la fase móvil.

Coeficiente de difusión Dm:

Ley de Stokes-Einstein

$$D_m = rac{k_B T}{6\pi \eta r}$$

- kB es la constante de Boltzmann (1.38 x 10⁻²³ J/K).
- T es la temperatura absoluta (en kelvins).
- η es la viscosidad del disolvente.
- r es el radio de la partícula.

Transferencia de masa C:

$$rac{\omega (d_p ext{ or } d_c)^2}{D_m}$$

- γ , ω , γ R son constantes.
- d_p es diámetro de partículas.
- d_c es el diámetro capilar.
- D_m es el coeficiente de difusión de la fase móvil.

Velocidad Lineal **u**:

$$u = \sqrt{\frac{B}{C}}$$

Opción 2:

$$u=rac{ ext{Flujo}}{A_c}$$

- Flujo es el caudal volumétrico (en m³/s).
- Ac es el área transversal de la columna o el conducto (en m²).

Área Transversal de la columna Ac:

$$A_c=rac{\pi d_c^2}{4}$$

• dc es el diámetro de la columna o conducto (en metros).

Relación entre los datos que tenemos y los datos exigidos en la fórmula:

- λ es forma de partículas (con respecto al embalaje): Se puede considerar que la molécula es esférica λ=1.
- d_p es diámetro de partículas = column.particle.size
- γ , ω , γ R son constantes = ?
- d_c es el diámetro capilar = Se puede sacar de column.name

Documentación interesante y fuentes:

Agilent's Automated Source Cleaning System For GC/MS

<u>Liquid Chromatography Fundamentals - Theory</u>

Ecuación de Van Deemter _ AcademiaLab

https://es.wikipedia.org/wiki/Coeficiente_de_difusi%C3%B3n

https://estudyando.com/coeficiente-de-difusion-definicion-ecuacion-y-unidades/

https://es.wikipedia.org/wiki/Relaci%C3%B3n_de_Einstein-Stokes

https://cao.chem.ufl.edu/wp-content/uploads/sites/22/2015/01/Lecture12-20152.pdf

https://cruzfierro.com/formularios/difusividad.pdf