Chapitre 2- Divisibilité dans Z

Terminales - Maths Expertes

1 Divisibilité

L'arithmétique a pour objet l'étude des nombres entiers.

Ces entiers peuvent être naturels ($\mathbb{N} = \{0, 1, 2, 3, \ldots\}$) ou relatifs ($\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$)

Définition 1.1.

On considère deux entiers relatifs a et b avec b non nul. On dit que b **divise** a que l'on note b|a s'il existe un entier relatif k tel que $a = k \times b$. on dit également que b est un diviseur de a et que a est un multiple de b.

Exemple:

- 1. $6 = 2 \times 3$ donc 2 et 3 sont des diviseurs de 6. Les diviseurs dans \mathbb{N} sont 1,2,3,6.
- 2. $-52 = (-4) \times 13$ donc -4,4,-13 et 13 sont des diviseurs de -52. Les diviseurs de -52 dans \mathbb{Z} sont : -52,-26,-13,-4,-2,-1,1,2,4,13,26,52.

Propriété 1.1.

Conséquences directes

- 1. 0 est multiple de tout entier $a \operatorname{car} 0 = a \times 0$.
- 2. 1 et -1 divisent tout entier a car $a = a \times 1$ et $a = -a \times (-1)$.
- 3. Si a est un multiple de b et si $a \neq 0$ alors $|a| \geqslant |b|$.

Propriété 1.2.

- 1. Soient a et b non nuls, si a divise b et si b divise a alors a = b ou a = -b
- 2. Si c divise b et b divise a alors c divise a.
- 3. Si c divise a et b alors pour tout entiers relatifs u et v; c divise ua + bv.

Méthode: Utiliser la divisibilité pour résoudre un problème

Comme un entier ne possède qu'un nombre restreint de diviseurs, on cherchera à factoriser et à reconnaître les diviseurs pour résoudre une équation ou un problème de divisibilité.

Exemple:

Déterminer tous les couples d'entiers naturels (x; y) tels que $x^2 - 2xy = 15$.

On factorise par x: $x^2 - 2xy = 15 \Leftrightarrow x(x - 2y) = 15$.

On détermine les diviseurs positifs de 15 : $D_{15} = \{1, 3, 5, 15\}$.

Puisque x > 0 et y > 0, on a x > x - 2y. On obtient les décompositions suivantes :

$$\begin{cases} x = 15 \\ x - 2y = 1 \end{cases} \quad \text{ou} \quad \begin{cases} x = 5 \\ x - 2y = 3 \end{cases} \quad \Leftrightarrow \quad \begin{cases} x = 15 \\ y = \frac{x - 1}{2} = 7 \end{cases} \quad \text{ou} \quad \begin{cases} x = 5 \\ y = \frac{x - 3}{2} = 1 \end{cases}$$

Les couples solutions sont donc : (15; 7) et (5; 1).

Exemple:

Déterminer tous les entiers relatifs n tels que (n-3) divise (n+5).

On a (n-3) divise (n+5),

On a n-3 divise n-3

donc n-3 divise toute combinaison linéaire de n+5 et n-3 autrement dit n-3 divise n+5-(n-3)=8 Donc (n-3) est un diviseur de 8.

Les diviseurs relatifs de 8 sont : $D_8 = \{-8; -4; -2; -1; 1; 2; 4; 8\}$.

On a donc le tableau suivant correspondant aux valeurs possibles de n:

n-3	-8	-4	-2	-1	1	2	4	8
n	-5	-1	1	2	4	5	7	11

On vérifie que (n-3) divise bien (n+5) pour toutes ces valeurs de n.

2 La division euclidienne

Théorème 2.1.

Soit a un entier relatif et b un entier naturel non nul.

On appelle **division euclidienne** de a par b, l'opération qui, au couple (a ; b), associe l'unique couple (q ; r) tel que :

$$a = bq + r$$
 avec $0 \le r < b$.

a s'appelle le dividende, b le diviseur, q le quotient et r le reste.

Exemple:

- 1. La division euclidienne de 114 par 8 correspond à : $114 = 8 \times 14 + 2$. Ainsi q = 14 et r = 2.
- 2. Pour avoir un reste positif dans la division euclidienne de -114 par 8, on écrit : -2 = 6 8. On obtient alors : $-114 = 8 \times (-14) - 2 = 8 \times (-14) - 8 + 6 = 8 \times (-15) + 6$.

Ainsi q = -15 et r = 6.

Remarques

- Le reste est toujours un entier naturel inférieur au diviseur. Par conséquent, dans la division par 7, par exemple, il existe 7 restes possibles : 0, 1, 2, 3, 4, 5, 6.
- On peut schématiser la division euclidienne comme on pose une division : $\begin{pmatrix} a & b \\ r & q \end{pmatrix}$

Ainsi, en reprenant l'exemple de la division de 114 par 8, on a : $\begin{array}{c|c} 114 & 8 \\ \hline 2 & 14 \end{array}$

Méthode: Utiliser la définition de la division euclidienne

Trouver tous les entiers dont le quotient dans la division euclidienne par 5 donne un quotient égal à 3 fois le reste.

Soit a un entier qui vérifie la condition de l'énoncé. On divise a par 5, on a alors : a = 5q + r avec $0 \le r < 5$.

Comme q = 3r, on a : a = 15r + r = 16r avec $0 \le r < 5$.

On trouve toutes les valeurs de a en faisant varier r de 0 à 4 compris, on a alors l'ensemble solution : $S = \{0 ; 16 ; 32 ; 48 ; 64\}.$

Exemple:

Lorsqu'on divise a par b, le reste est 8 et lorsqu'on divise 2a par b, le reste est 5. Déterminer le diviseur b. Ecrivons chacune des deux divisions euclidiennes, en notant q et q' les quotients respectifs :

$$\begin{cases} a = bq + 8 & \text{avec} \quad b > 8 \\ 2a = bq' + 5 & \text{avec} \quad b > 5 \end{cases}$$

En multipliant la première division par 2 et en égalisant avec la deuxième, on obtient :

$$2bq + 16 = bq' + 5$$
 avec $b > 8$
 $b(2q - q') = -11$
 $b(q' - 2q) = 11$

b est donc un multiple positif non nul de 11, supérieur à 8, donc : b = 11.

3 Congruence

3.1 Entiers congrus à n

Définition 3.1.

Soit n un entier naturel $(n \ge 2)$, a et b deux entiers relatifs.

On dit que deux entiers a et b sont **congrus modulo** n si, et seulement si, a et b ont le même reste dans la division euclidienne par n. On note alors :

$$a \equiv b \mod n \quad \text{ou} \quad a \equiv b \ (n) \quad \text{ou} \quad a \equiv b \ [n].$$

Exemple:

- 1. $57 \equiv 15$ (7) car : $57 = 7 \times 8 + 1$ et $15 = 7 \times 2 + 1$ $41 \equiv -4$ (9) car : $41 = 9 \times 4 + 5$ et $-4 = 9 \times (-1) + 5$
- 2. Un nombre est congru à son reste modulo n dans la division euclidienne par n. $2\,008 \equiv 8\,(10)$ car $2\,008 = 10 \times 200 + 8$; $17 \equiv 1\,(4)$; $75 \equiv 3\,(9)$.
- 3. Si $x \equiv 0$ (2), alors x est pair. Si $x \equiv 1$ (2), x est impair.

Propriété 3.1. $-a \equiv 0 \ (n) \Leftrightarrow a \text{ est un multiple de } n \text{ ou } n \text{ est un diviseur de } a.$

- La congruence est une relation d'équivalence, c'est-à-dire, pour tous entiers a, b, c, on a :
 - 1. $a \equiv a \ (n) \ (réflexivité)$
 - 2. Si $a \equiv b$ (n), alors $b \equiv a$ (n) (symétrie)
 - 3. Si $a \equiv b$ (n) et si $b \equiv c$ (n), alors $a \equiv c$ (n) (transitivité)

Théorème 3.1.

Soit n un entier naturel $(n \ge 2)$, a et b deux entiers relatifs.

$$a \equiv b \ (n) \quad \Leftrightarrow \quad a - b \equiv 0 \ (n)$$

Démonstration. Comme il s'agit d'une équivalence, il faut démontrer la propriété dans les deux sens.

— Dans le sens direct : On sait que $a \equiv b$ (n). Il existe donc des entiers q, q' et r tels que :

$$a = nq + r$$
 et $b = nq' + r$ avec $0 \le r < n$.

On obtient : a - b = n(q - q').a - b est alors un multiple de n, et son reste dans la division par n est nul, d'où : $a - b \equiv 0$ (n).

— $R\'{e}ciproquement$: On sait que $a-b\equiv 0$ (n). Il existe k tel que : a-b=kn (1).

Si l'on effectue la division de a par n, on a : a = nq + r avec $0 \le r < n$ (2).

De (1) et (2), on obtient :

$$nq + r - b = kn$$
$$-b = kn - nq - r$$
$$b = (q - k)n + r$$

a et b ont le même reste dans la division par n, donc : $a \equiv b$ (n).

CQFD

3.2 Compatibilité de la congruence avec l'addition et la multiplication

Théorème 3.2.

Soit n un entier naturel $(n \ge 2)$ et a, b, c, d des entiers relatifs vérifiant :

$$a \equiv b \ (n)$$
 et $c \equiv d \ (n)$.

La relation de congruence est compatible :

- 1. avec l'addition : $a + c \equiv b + d(n)$
- 2. avec la multiplication : $ac \equiv bd$ (n)
- 3. avec les puissances : pour tout entier naturel k, $a^k \equiv b^k$ (n)

Démonstration. 1. Compatibilité avec l'addition

On sait que : $a \equiv b$ (n) et $c \equiv d$ (n), donc (a - b) et (c - d) sont des multiples de n.

Il existe donc deux entiers relatifs k et k' tels que : a - b = kn et c - d = k'n.

En additionnant ces deux égalités, on obtient :

$$a - b + c - d = kn + k'n \iff (a + c) - (b + d) = (k + k')n$$

Donc (a+c)-(b-d) est un multiple de n, d'où : $a+c \equiv b+d$ (n).

2. Compatibilité avec la multiplication

On sait que : $a \equiv b$ (n) et $c \equiv d$ (n), donc, il existe deux entiers relatifs k et k' tels que : a = b + kn et c = d + k'n.

En multipliant ces deux égalités, on obtient :

$$ac = (b + kn)(d + k'n)$$

$$ac = bd + k'bn + kdn + kk'n^{2}$$

$$ac = bd + (k'b + kd + kk'n)n$$

$$ac - bd = (k'b + kd + kk'n)n$$

Donc (ac - bd) est un multiple de n, d'où : $ac \equiv bd$ (n).

CQFD

Méthodes: Déterminer les restes dans la division euclidienne par 7 des nombres:

 1.50^{100}

2. 100

 $3. 100^3$

- 4. $50^{100} + 100^{100}$
- 1. On a $50 \equiv 1$ (7) car $50 = 7 \times 7 + 1$. D'après la compatibilité avec les puissances, on a : $50^{100} \equiv 1^{100} \equiv 1$ (7). Le reste est 1.
- 2. $100 = 50 \times 2$, comme $50 \equiv 1$ (7), d'après la compatibilité avec la multiplication, on a : $100 \equiv 2$ (7). Le reste est 2.
- 3. Comme $100 \equiv 2$ (7), d'après la compatibilité avec les puissances, on a : $100^3 \equiv 2^3 \equiv 8 \equiv 1$ (7). Le reste est 1.
- 4. $100^{100} = 100^{3 \times 33 + 1} = (100^3)^{33} \times 100$, donc d'après la compatibilité avec les puissances et la multiplication, on a : $100^{100} \equiv 1^{33} \times 2 \equiv 2$ (7). D'après la compatibilité avec l'addition, on a alors : $50^{100} + 100^{100} \equiv 1 + 2 \equiv 3$ (7). Le reste est 3.

Remarque La notion de congruence prend ici tout son intérêt. Par exemple, bien que l'on ne puisse calculer $50^{100} + 100^{100}$, on peut connaître son reste dans la division par 7 de façon simple et rapide.

Méthode: Montrer que : $\forall n \in \mathbb{N}, 3^{n+3} - 4^{4n+2}$ est divisible par 11.

On a : $3^{n+3} = 3^n \times 3^3 = 27 \times 3^n$.

Or $27 \equiv 5$ (11), donc d'après la compatibilité avec la multiplication, on a :

$$\forall n \in \mathbb{N}, \quad 3^{n+3} \equiv 5 \times 3^n \tag{11}$$

On a: $4^{4n+2} = (4^4)^n \times 4^2$, or $4^2 \equiv 5$ (11) donc $4^4 \equiv 5^2 \equiv 3$ (11), donc:

$$\forall n \in \mathbb{N}, \quad 4^{4n+2} \equiv 3^n \times 5 \tag{11}$$

On en déduit donc que :

$$3^{n+3} - 4^{4n+2} \equiv 0 \ (11)$$

La proposition est donc vérifiée pour tout entier naturel n.

Méthode : tableau de congruence

Un tableau de congruence est un tableau permettant de présenter des résultats de manière exhaustive en se référant aux restes possibles dans une division euclidienne.

- 1. Déterminer suivant les valeurs de l'entier relatif n, le reste de la division de n^2 par 7.
- 2. En déduire alors les solutions de l'équation $x^2 \equiv 2$ (7).

1. On détermine les restes suivant une méthode exhaustive, c'est-à-dire on détermine les restes de n^2 à partir de chaque reste possible de la division de n par 7.

On peut construire un tableau de congruence pour présenter les résultats :

Reste de la division de n par 7	0	1	2	3	4	5	6
Reste de la division de n^2 par 7	0	1	4			4	1

Par exemple si $n \equiv 3$ (7), alors $n^2 \equiv 9 \equiv 2$ (7).

Les restes possibles de n^2 par 7 sont donc : 0, 1, 2 et 4.

2. Pour résoudre $x^2 \equiv 2$ (7), on recherche dans le tableau les valeurs de n pour lesquelles on obtient un reste de 2 quand n est au carré. Il est obtenu pour les restes 3 et 4 dans la division de n par 7. Les solutions de l'équation sont donc : $x \equiv 3$ (7) et $x \equiv 4$ (7).

Définition 3.2.

Soient a un entier relatif et m un entier naturel non nul. On dit que a est inversible modulo m, s'il existe un entier b tel que $a \times b \equiv 1$ (m)

Exemple:

 $8 \times 2 \equiv 1$ (3) donc 2 est l'inverse de 8 modulo 3

Exemple:

Calculer le reste de la division euclidienne de 12345²⁰⁰⁰ par 7.

Méthode:

On calcule $12345 \equiv 4$ (7) Etablissons la table de congruence de 4^n (7)

Reste de la division de n par 7	0	1	2	3	4	5	6
Reste de la division de 4^n par 7	1	4	2	1	4	2	1

On voit dans le tableau que $4^3 \equiv 1$ (7). Décomposons $2000 = 3 \times 666 + 2$ Donc $12345^{2000} \equiv 4^{2000}$ (7) $\equiv 4^{3 \times 666 + 2} \equiv (4^3)^{666} \times 4^2$ (7) $\equiv 1^{666} \times 16$ (7) $\equiv 2$ (7) Le reste de la division euclidienne de 12345^{2000} par 7 est 2.