WageCAN

Analyzing Wages in Canada

Nikolay Shlepov | MS DS Student | CU Boulder Project Progress Presentation, April 2024

Problem Context

- Wages are a key indicator of economic health, labor stability, and inequality
- COVID-19, inflation, and technological changes have reshaped labor markets
- Lack of structured, longitudinal, predictive wage studies in Canada
- Critical for policymakers, businesses, educators, and job seekers

Project Summary

- Analyzed wages in Canada (2016–2024)
- Examined national, provincial, and regional disparities
- Identified main wage drivers
- Combined descriptive, unsupervised, and supervised methods
- Tested the stability of wage structures from 2016 to 2024

Key Findings

- TEER level (Training, Education, Experience, Responsibilities) is the strongest predictor of wages
- Occupational category (BOC) has secondary influence
- Provincial effects are modest
- Regional outliers exist but are not dominant drivers
- Wage structures remained stable from 2016 to 2024

Methodology Overview

- Collected and unified Canadian wage datasets (2016, 2020, 2024)
- Mapped NOC 2016 codes to NOC 2021 codes
- Engineered features: TEER, Broad Category, Major Group
- Conducted Descriptive Analysis, Clustering and Predictive Modeling
- Evaluated correlation, clustering coherence, and model accuracy

Data Source and Preprocessing

- **Source -** Government of Canada wage reports (open.canada.ca)
- Standardized column names and formats
- Mapped occupations from NOC 2016 to NOC 2021
- Cleaned occupation titles and province names
- Filtered outdated entries and handled missing data
- Created unified dataset (11,448 records) ready for analysis

EDA - National-Level Insights

• **TEER** is the strongest predictor of wages

Broad Occupational Category (BOC) shows secondary

but noticeable impact

Consistent wage stratification:

- TEER $0-1 \rightarrow Highest wages$
- TEER $4-5 \rightarrow$ Lowest wages
- Stable patterns across 2016,
 2020, and 2024 datasets

Provincial and Regional Analysis

- Provinces have minor impact on wages compared to TEER
- Alberta, BC, and Ontario show slightly higher median wages
- Regional outliers identified in some economic zones
- Regional effects are not significant overall

Median Wage Distribution by Province (2016, 2020, 2024)

Pattern Detection via Clustering

K-Means and Hierarchical Clustering on occupational wage data

Clusters based on TEER level and median wages (2016–

2024)

High TEER and skill level →
consistently higher wages

Wage structures are stable across provinces

PCA confirms strong structure (first PC >95% variance)

Supervised ML Wage Prediction

Built models using:

TEER, BOC, Province, Embedded Titles

Models:

Linear Regression, Random Forest, Gradient Boosting

• Key Insight:

- Simple models (TEER + BOC) perform nearly as well as complex ones
- Embedded titles add little predictive power and risk overfitting

Wage Stability Modelling

Goal:

Predict 2024 wages using 2016 and 2020 data only

Models:

Linear Regression, Random Forest, Gradient Boosting

• Results:

- High accuracy $(R^2 > 0.90)$
- Low RMSE across all models

Conclusion:

Wage growth patterns are highly stable and predictable, even through global disruptions

Evaluation - Correlation and Clustering

- Strong negative TEER-wage correlation:
 - Pearson –0.75, Spearman –0.77
- Moderate negative BOC-wage correlation:
 - Pearson -0.34, Spearman -0.31
- Clustering validated:
 - Clear TEER-wage clusters
 - PCA >95% variance explained
 - Highest-paid clusters showed higher dispersion

Evaluation – Model Performance

- Compared models using
 - o R² (explained variance) and RMSE (prediction error)
 - 5-fold-cross-validation to assess generalization

• Results:

- TEER is the strongest predictor of wages
- Adding BOC and Province gives only minor gains
- Embeddings caused clear overfitting (negative R²)

Challenges & Solutions

NOC 2016 → NOC 2021 mapping:

Resolved with concordance tables + LLM assisted refinement

Missing Values:

Imputed using national medians or removed

Data integrity:

Maintained across merged datasets

Pipeline design:

Modular pipeline built for efficient EDA and modelling

Potential Next Steps

- Expand longitudinal modelling to future datasets (2026, 2028)
- Communicate findings to Statistics Canada and stakeholders
- Explore advanced modelling (e.g., neural networks with TensorFlow, PyTorch)
- Monitor for structural shifts in labor markets over time

Biases and Limitations

- Data Structure Bias: Dataset differences across years
- Mapping Uncertainty: Potential manual errors during NOC transitions
- Selection Bias: Excluded low-data territories
- Overfitting Risk: Complex models showed optimism bias
- External Factors: Future wage shifts (e.g., policy, technology) may break historical trends

Conclusion

- TEER level remains the strongest predictor of wages
- Wage structures were stable and predictable from 2016– 2024
- Provincial and regional effects are minor compared to training and education
- GitHub Repository:

https://github.com/nickshlepov/WageCAN Project

Analyzing Wages in Canada