统计学笔记

Ruijun Shi^1

2021年11月21日

 $^{1}\mathrm{GitHub}: \mathrm{https://github.com/RuijunShi}$

摘要

简单的统计学笔记,主要是在天文学,特别是引力波和pulsar timing中遇到的统计学,现在没写多少内容。缓慢更新中[1]。同时这也是我第一次用latex编写书籍,学习过程艰难啊。有错误请大家指出! latex资料参考https://github.com/Ali-loner

Contents

1	数学和物理基础 4							
	1.1	线性变换	4					
		1.1.1 线性相关	4					
		1.1.2 特征值与特征向量	4					
		1.1.3 线性代数几何意义	4					
	1.2	误差分析	5					
	1.3	特殊函数	5					
	1.4	偏微分方程	5					
	1.5	玻尔兹曼分布	5					
${f 2}$	数理	·····································	6					
	2.1	概率	6					
	2.2	单变量分布和多变量分布	7					
	2.3	随机变量的数学特征	7					
		2.3.1 数学期望与方差	7					
		2.3.2 矩和协方差矩阵	8					
		2.3.3 多元正态分布及协方差矩阵的直观理解	9					
	2.4	常见分布及其期望方差	9					
		2.4.1 离散型分布	9					
		2.4.2 连续型分布	10					
	2.5		11					
	2.6	误差传递	11					
	2.7	~-···	11					
	2.8		11					
3	贝叶		12					
	3.1		 12					
	3.2		12					
		3.2.1 二项分布估计						

	3.3	贝叶斯多参数模型	15
		3.3.1 多参数模型处理	15
		3.3.2 无信息先验的正态分布	16
		3.3.3 共轭先验分布	17
	3.4	层次化贝叶斯模型	18
		3.4.1 参数化先验分布	18
		3.4.2 二项分布的分层贝叶斯模型	19
		3.4.3 正态分布的分层贝叶斯模型	20
	3.5	贝叶斯回归	23
	3.6	贝叶斯模型选择	23
	3.7	费舍尔信息矩阵Fisher Information	23
4	随机	${f lightarrow}$	24
	4.1	随机过程及其统计描述	24
	4.2	平稳随机过程	24
	4.3	马尔科夫链	24
5	MC	CMC	25
•	5.1		- 5
	-		 25
			- ° 26
	5.2		27
		5.2.1 随机采样和接受-拒绝采样	27
		5.2.2 数学期望和蒙特卡罗积分	28
	5.3	MCMC原理	29
		5.3.1 MCMC原理	29
		5.3.2 MCMC算法	30
	5.4	Metropolis-Hastings采样	30
		5.4.1 M-H采样原理	30
		5.4.2 M-H采样算法	32
	5.5	吉布斯采样	32
		5.5.1 满条件分布	32
		5.5.2 Gibbs采样原理	32
		5.5.3 Gibbs采样算法	33
	5.6	Nested采样	34
	5.7	数值贝叶斯方法	34
6	高斯	T <mark>随机过程</mark>	35
	6.1	高斯随机过程及其统计描述:	35
	6.2	核密度估计:	35
	6.3	高斯混合模型	35

	6.4	高斯学习	35						
7	统计	·····································							
	7.1	奇异值分解及主成分分析	36						
	7.2	退火算法	36						
	7.3	遗传算法	36						
	7.4	支持向量机	36						
	7.5	聚类算法	36						
	7.6	简单的神经网络	36						

数学和物理基础

未完待续。。。图片测试 SVD分解 1.1

图 1.1: tSVD分解

1.1 线性变换

- 1.1.1 线性相关
- 1.1.2 特征值与特征向量
- 1.1.3 线性代数几何意义

正交矩阵

- 1.2 误差分析
- 1.3 特殊函数
- 1.4 偏微分方程
- 1.5 玻尔兹曼分布

数理统计基础

2.1 概率

- 1. 概率的定义(略)概率满足: 非负性,规范性,可列可加性
- 2. 概率的性质:

重点: 逆事件概率; 加法公式; 有限可加性

3. 条件概率:

$$P(A|B) = \frac{P(AB)}{P(B)} \tag{2.1}$$

4. 乘法定理:

$$P(AB) = P(A|B)P(A) \tag{2.2}$$

5. 全概率公式:

$$P(A) = P(A \mid B_1) P(B_1) + P(A \mid B_2) P(B_2) + \dots + P(A \mid B_n) P(B_n)$$
(2.3)

6. 独立性:满足

$$P(AB) = P(A)P(B) \tag{2.4a}$$

$$P(B|A) = P(B) \tag{2.4b}$$

(2.4c)

2.2 单变量分布和多变量分布

- 1. 随机变量的概念(略)
- 2. 分布函数的概念(略)和性质:不减函数; $0 \le F(x) \le 1$; F(x+0) = F(x)
- 3. 概率密度函数

$$F(x) = \int_{-\infty}^{x} f(t)dt$$
 (2.5)

性质 2.1 概率分布的性质

$$f(x) \le 0 \tag{2.6a}$$

$$\int_{-\infty}^{\infty} f(x)dx = 1 \tag{2.6b}$$

$$P\{x_1 < X < x_2\} = \int_{x_1}^{x_2} f(x)dx \tag{2.6c}$$

$$F'(x) = f(x) \tag{2.6d}$$

2.3 随机变量的数学特征

2.3.1 数学期望与方差

定义 2.1 数学期望

积分:

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
 (2.7)

为连续性随机变量的数学期望, 离散状态下为:

$$E(X) = \sum_{k=1}^{\infty} x_k p_k \tag{2.8}$$

性质 2.2 方差的性质

- 设C为常数,则有E(C) = C
- 设C为常数,X为随机变量,则有

$$E(CX) = CE(X)$$

• 设X,Y两个随机变量,则有:

$$E(X + Y) = E(X) + E(Y)$$

• 设X,Y是两个相互独立的随机变量,则有:

$$E(XY) = E(X) + E(Y)$$

定义 2.2 方差

设X是一个随机变量,若 $E\{[X-E(X)]^2\}$ 存在,则称为 $E\{[X-E(X)]^2\}$ 为随机变量X的方差,记为D(X)或者Var(X)

根据定义,我们把方差写为:

$$D(X) = \int_{-\infty}^{\infty} [x - E(x)]^2 f(x) dx$$
 (2.9)

随机变量的方差可以写为:

$$D(X) = E(X^{2}) - [E(X)]^{2}$$
(2.10)

性质 2.3 方差的性质

- 设C为常数: D(C)=0
- 设 C 为常数, X 为随机变量, 有:

$$D(CX) = C^2 D(X), \qquad D(X+C) = D(X)$$

• $\partial X, Y$ 为两个随机变量,有:

$$D(X + Y) = D(X) + D(Y) + 2E\{(X - E(X))(Y - E(Y))\}\$$

若X,Y相互独立,则有:

$$D(X + Y) = D(X) + D(Y)$$

• D(X) = 0的充要条件是X以概率为1取常数E(X),即:

$$P\{X = E(X)\} = 1$$

2.3.2 矩和协方差矩阵

定义 2.3 协方差 随机变量 $E\{(X-E(X))(Y-E(Y))\}$ 称为变量X,Y的协方差,记为Cov(X,Y):

$$Cov(X,Y) = E\{[X - E(X)][Y - E(Y)]\}$$
(2.11)

协方差是变量误差的一种描述。若随机变量X,Y完全独立则有Cov(X,Y)=0

定义 2.4 相关系数

$$\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$
(2.12)

当二维随机变量的二阶中心矩存在:

$$c_{11} = E\{[X_1 - E(X_1)]^2\}$$

$$c_{12} = E\{[X_1 - E(X_1)][X_2 - E(X_2)]\}$$

$$c_{21} = E\{[X_2 - E(X_2)][X_1 - E(X_1)]\}$$

$$c_{22} = E\{[X_2 - E(X_2)]^2\}$$
(2.13)

则矩阵

$$\begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

称为协方差矩阵。若有n维随机变量,则矩阵:

$$\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix}$$
(2.14)

该矩阵是一个对称矩阵。

2.3.3 多元正态分布及协方差矩阵的直观理解

协方差矩阵描述随机变量的总体误差,而方差是协方差的一种特殊形式。协方差可以用多元正态 分布直观理解其意义。

2.4 常见分布及其期望方差

2.4.1 离散型分布

1. (0-1)分布:

$$P(X = k) = p^{k}(1-p)^{1-k}, 0
(2.15)$$

2. 二项分布:

$$P(X = k) = \binom{n}{k} p^{k} (1 - p)^{n - k}$$
 (2.16)

3. 泊松分布:

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0, 1, 2, \dots$$
 (2.17)

2.4.2 连续型分布

4. Beta分布:

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$
(2.18)

其中: $0 \le x \le 1$, $\alpha > 0$, $\beta > 0$, $\Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} dt$

5. 均匀分布:

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$
 (2.19)

6. 指数分布:

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} & x > 0\\ 0 & \text{otherwise} \end{cases}$$
 (2.20)

7. 正态分布:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (2.21)

f(x)关于 μ 对称; $f(\mu) = max(f(x)) = \frac{1}{\sqrt{2\pi}\sigma}$ 。

8. Gamma分布:

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$
 (2.22)

其中: x > 0, $\alpha > 0$, $\beta > 0$

9. Inv-Gamma分布:

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-(\alpha+1)} e^{-\frac{\beta}{x}}$$
 (2.23)

其中: x > 0, $\alpha > 0$, $\beta > 0$

10. χ^2 分布:

$$f_k(x) = \frac{1}{2^{\frac{k}{2}} \Gamma\left(\frac{k}{2}\right)} x^{\frac{k}{2} - 1} e^{-\frac{x}{2}}$$
(2.24)

等价 $\alpha = k/2, \beta = 1/2$ 的Gamma分布

11. Inv- χ^2 分布:

$$f(x) = \frac{2^{-\frac{k}{2}}}{\Gamma(\frac{k}{2})} x^{-(\frac{k}{2}+1)} e^{-\frac{1}{2x}}$$
 (2.25)

等价 $\alpha = k/2, \beta = 1/2$ 的Inv-Gamma分布

12. Scaled Inv- χ^2 分布:

$$f(x) = \frac{\frac{k}{2} - \frac{k}{2} s^k}{\Gamma(\frac{k}{2})} x^{-(\frac{k}{2} + 1)} e^{-\frac{ks^2}{2x}}$$
(2.26)

等价 $\alpha = k/2, \beta = ks^2/2$ 的Inv-Gamma分布。

- 2.5 大数定律与数理统计
- 2.6 误差传递
- 2.7 参数估计
- 2.8 假设检验

贝叶斯统计

3.1 贝叶斯定理

1. 贝叶斯公式

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n} P(A|B_i)P(B_j)} = \frac{P(A|B_i)P(B_i)}{P(A)}$$
(3.1)

先验: P(B)

似然: P(A|B)

后验: P(B|A)

证据(归一化): P(A)

2. 贝叶斯公式含义: 通过数据推算模型参数的概率。即:

$$P(\text{Model}(\theta)|\text{Data}) = P(\text{Data}|\text{Model}(\theta))P(\theta)$$
(3.2)

3. 贝叶斯统计的优势:将这个某种程度上是主观性的信息明确表达在先验概率中,而不是隐藏在没有明确指出的假设中;让数据说话,减少主观性的先验概率。

3.2 贝叶斯单参数估计

3.2.1 二项分布估计

- 1. 无信息先验
- 似然:

$$p(y|\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}$$
(3.3)

- 先验: 均匀分布
- 后验:

$$p(\theta|y) \propto \theta^y (1-\theta)^{n-y} \sim Beta(y+1, n-y+1)$$
(3.4)

• 预测:

$$Pr(\widetilde{y} = 1|y) = \int_0^1 Pr(\widetilde{y} = 1|\theta, y) = \int_0^1 \theta p(\theta|y) d\theta = E(\theta|y)$$
(3.5)

- 1. 有信息先验
- 先验: $p(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$
- 似然:

$$p(y|\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}$$
(3.6)

• 后验:

$$p(\theta|y) \propto \theta^{y+\alpha-1} (1-\theta)^{n-y+\beta-1} \sim Beta(\alpha+y, \beta+n-y)$$

- 后验期望: $E(\theta|y) = \frac{\alpha+y}{\alpha+\beta+n}$
- 先验期望: $E(y) = \frac{\alpha}{\alpha + \beta}$

 $\stackrel{\boldsymbol{u}}{=} n \to \infty \colon E(\theta|y) \to y/n$

数据很大的时候可以用正态分布近似后验分布

3.2.2 正态分布参数估计

- 1. 已知方差求均值
- 似然:

$$p(y|\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(y-\theta)^2\right] \sim N(\theta,\sigma^2)$$
 (3.7)

• 先验:

$$p(\theta) \propto \exp\left(-\frac{1}{2\tau_0^2}(\theta - \mu_0)^2\right) \sim N(\mu_0, \tau_0^2)$$
 (3.8)

后验:

$$p(\theta|y) \propto \exp\left(-\frac{1}{2\tau_1^2}(\theta - \mu_1)^2\right) \sim N(\mu_1, \tau_1)$$
 (3.9)

其中:

$$\mu_1 = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{1}{\sigma^2} y}{\frac{1}{\tau_0^2} + \frac{1}{\sigma^2}}$$

$$\frac{1}{\tau_1^2} = \frac{1}{\tau_0^2} + \frac{1}{\sigma^2}$$

精度: 方差的倒数

• 预测:

$$p(\widetilde{y}|y) = \int p(\widetilde{y}|\theta)p(\theta|y)d\theta$$

$$\propto \int \exp\left(-\frac{(\widetilde{y}-\theta)^2}{2\sigma^2}\right) \exp\left(-\frac{(\theta-\mu_1)^2}{2\tau_1^2}\right)d\theta$$

$$E(\widetilde{y}|\theta) = \theta$$

$$D(\widetilde{y}|\theta) = \sigma^2 + \tau_1^2$$
(3.10)

• 多个相互独立数据:

$$p(\theta \mid y) \propto p(\theta)p(y \mid \theta)$$

$$= p(\theta) \prod_{i=1}^{n} p(y_i \mid \theta)$$

$$\propto \exp\left(-\frac{1}{2\tau_0^2} (\theta - \mu_0)^2\right) \prod_{i=1}^{n} \exp\left(-\frac{1}{2\sigma^2} (y_i - \theta)^2\right)$$

$$\propto \exp\left(-\frac{1}{2} \left[\frac{1}{\tau_0^2} (\theta - \mu_0)^2 + \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \theta)^2\right]\right)$$
(3.11)

可得:

$$p(\theta|y_1,\dots,y_n) = p(\theta|\bar{y}) = N(\theta|\mu_n,\tau_n^2)$$

其中:

$$\mu_n = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{n}{\sigma^2} \bar{y}}{\frac{1}{\tau_0^2} + \frac{n}{\sigma^2}}$$

$$\frac{1}{\tau_n^2} = \frac{1}{\tau_0^2} + \frac{n}{\sigma^2}$$

若 $n \to +\infty$, τ_0 不变,则: $\theta|y \sim N(\bar{y}, \sigma^2/n)$

若 $au o +\infty$,n 不变,则: $\theta|y \sim N(\bar{y}, \sigma^2/n)$

1. 已知均值求方差

由于有n个服从 $\sim N(\theta, \sigma^2)$ 的分布,因此:

• 似然:

$$p(y|\sigma^2) \propto \sigma^{-n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \theta)^2\right) = (\sigma^2)^{-n/2} e^{-\frac{n}{2\sigma^2}v}$$
 (3.12)

其中:

$$v = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta)^2$$

- 共轭先验: $p(\sigma^2) \propto (\sigma^2)^{-\alpha+1} e^{\beta/\sigma^2} \sim \text{Inv} \chi^2(v_0,\sigma_0^2)$
- 后验:

$$p(\sigma^{2}|y) \propto p(\sigma^{2})p(y|\sigma^{2})$$

$$\propto \left(\frac{\sigma_{0}^{2}}{\sigma^{2}}\right)^{v_{0}/2+1} \exp\left(-\frac{v_{0}\sigma_{0}^{2}}{2\sigma^{2}}\right) \cdot (\sigma^{2})^{-n/2} \exp\left(-\frac{n}{2}\frac{v}{\sigma^{2}}\right)$$

$$\propto (\sigma^{2})^{-((n+v_{0})/2+1)} \exp\left(-\frac{1}{2\sigma^{2}}(v_{0}\sigma_{0}^{2}+nv)\right)$$

$$\sim Inv - \chi^{2}(v_{0}+n, \frac{v_{0}\sigma_{0}^{2}+nv}{v_{0}+n})$$
(3.13)

3.3 贝叶斯多参数模型

3.3.1 多参数模型处理

1. 置之不理

2. 边缘化

$$p(\theta_1|y) = \int p(\theta_1, \theta_2|y) d\theta_2 \tag{3.14}$$

用贝叶斯公式展开:

$$p(\theta_1, \theta_2|y) \propto p(y|\theta_1, \theta_2)p(\theta_1, \theta_2)$$

将 θ_2 边缘化积分,得到 θ_1 的后验分布。

3. 平均化

$$p(\theta_1|y) = \int p(\theta_1|\theta_2, y) p(\theta_2|y) d\theta_2$$

3.3.2 无信息先验的正态分布

• 先验:

$$p(\mu, \ln \sigma^2) \sim U(\mu, \ln \sigma^2) \tag{3.15}$$

或者先验写为:

$$p(\mu, \sigma^2) \sim \frac{1}{\sigma^2}$$

• 似然 (**有**n**次观测**):

$$p(y|\mu, \sigma^2) = \sigma^{-n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2\right)$$

• 联合后验:

$$p(\mu, \sigma^2 | y) \propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2}[(n-1)s^2 + n(\bar{y} - \mu)^2]\right)$$

其中:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

• 边缘后验 $p(\sigma^2|y)$:

$$p(\sigma^{2}|y) \propto \int p(\mu, \sigma^{2}|y) d\mu$$

$$\propto (\sigma^{2})^{-\frac{n+1}{2}} \exp\left(-\frac{(n-1)s^{2}}{2\sigma^{2}}\right)$$

$$\sim Inv - \chi^{2}(n-1, s^{2})$$
(3.16)

• 边缘后验 $p(\mu|y)$:

$$p(\mu|y) = \int_0^\infty p(\mu, \sigma^2|y) d\sigma^2$$

$$\propto \left[1 + \frac{n(\mu - \bar{y})^2}{(n - 1)s^2} \right]$$

$$\sim t_{n-1}(\bar{y}, s^2/n)$$

• 预测后验分布

$$p(\widetilde{y}|y) = \iint p(\widetilde{y}|\mu, \sigma^2, y) p(\mu, \sigma^2|y) d\mu d\sigma^2$$

3.3.3 共轭先验分布

• 先验分布:

$$\mu | \sigma^2 \sim N(\mu_0, \sigma^2/\kappa_0)$$

$$\sigma^2 \sim Inv - \chi^2(\nu_0, \sigma_0^2)$$

• 联合先验分布

$$p(\mu, \sigma^2) = p(\mu | \sigma^2) p(\sigma^2)$$
$$\propto N - Inv - \chi^2(\mu_0, \sigma_0^2 / \kappa_0 ; \nu_0, \sigma_0^2)$$

• 似然分布

$$p(y|\mu, \sigma^2) = \sigma^{-n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2\right)$$

• 联合后验分布

$$p(\mu, \sigma^{2} \mid y) \propto \sigma^{-1}(\sigma^{2})^{(\nu_{0}/2+1)} e^{-\frac{1}{2\sigma^{2}} \left[\nu_{0}\sigma_{0}^{2} + \kappa_{0}(\mu - \mu_{0})^{2}\right]} (\sigma^{2})^{-n/2} e^{-\frac{1}{2\sigma^{2}} \left[(n-1)s^{2} + n(\bar{y} - \mu)^{2}\right]}$$

$$\propto N - Inv - \chi^{2}(\mu_{n}, \sigma_{n}^{2} / \kappa_{n}; \nu_{n}, \sigma_{n}^{2})$$
(3.17)

其中参数为:

$$\mu_{n} = \frac{\kappa_{0}}{\kappa_{0} + n} \mu_{0} + \frac{n}{\kappa_{0} + n} \bar{y}$$

$$\kappa_{n} = \kappa_{0} + n$$

$$\nu_{n} = \nu_{0} + n$$

$$\nu_{n} \sigma_{n}^{2} = \nu_{0} \sigma_{0}^{2} + (n - 1)s^{2} + \frac{\kappa_{0}n}{\kappa_{0} + n} (\bar{y} - \mu_{0})^{2}$$
(3.18)

• 条件后验分布 $p(\mu|\sigma^2,y)$

$$(\mu \mid \sigma^2, y) \sim N\left(\mu_n \frac{\sigma^2}{\kappa_n}\right)$$

• 方差边缘后验分布 $p(\sigma^2|y)$

$$(\sigma^2 \mid y) \sim \text{Inv} - \chi^2 (\nu_n, \sigma_n^2)$$

• 均值边缘后验分布 $p(\mu|y)$

$$p(\mu \mid y) \propto \left[1 + \frac{\kappa_n \left(\mu - \mu_n \right)^2}{\nu_n \sigma_n^2} \right]^{-(\nu_n + 1)/2}$$
$$= t_{\nu_n} \left(\mu \mid mu_n, \sigma_n^2 / \kappa_n \right)$$
(3.19)

3.4 层次化贝叶斯模型

3.4.1 参数化先验分布

1. 先验分布[2]

先验分布是由某个未知参数的分布 ϕ 给出:

$$p(\theta|\phi) = \prod_{j=1}^{J} p(\theta_j|\phi) \quad \theta = (\theta_1, \theta_2, \cdots)$$

边缘化:

$$p(\theta) = \int \left(\prod_{j=1}^{J} p(\theta_j | \phi) \right) p(\phi) d\phi$$

- 2. 联合先验分布 $p(\phi, \theta) = p(\theta|\phi)p(\phi)$
- 3. 超先验分布: $p(\phi)$
- 4. 后验分布
 - 联合后验: $p(\phi, \theta|y) = p(y|\theta)p(\theta|\phi)p(\phi)$
 - 条件后验: $p(\theta|\phi,y)$
 - 边缘后验: $p(\phi|y)$

$$p(\phi|y) = \frac{p(\theta, \phi|y)}{p(\theta|\phi, y)}$$

5. 层次化贝叶斯完整表述

$$p(\phi, \theta|y) \propto p(y|\phi, \theta)p(\phi, \theta)$$

$$= p(y|\theta)p(\phi, \theta)$$

$$= p(y|\theta)p(\theta|\phi)p(\phi)$$
(3.20)

- 1. 层次化贝叶斯计算步骤
- 写出联合后验分布 $p(\theta, \phi|y)$: 即超先验分布,总体分布和似然分布的乘积
- 确定条件后验分布 $p(\theta|\phi,y)$:

$$p(\theta|\phi,y) = \prod_{j=1}^{J} p(\theta_j|\phi,y)$$

边缘化给出φ的贝叶斯估计

3.4.2 二项分布的分层贝叶斯模型

- 1. y_i 先验(组内模型) $y_j \sim Bin(n_j, \theta_j)$
- 2. θ_j 先验 (组间模型): $\theta_j \sim Beta(\alpha, \beta)$
- 3. 联合先验: $p(\alpha, \beta, \theta) = p(\alpha, \beta)p(\theta|\alpha, \beta)$
- 4. 似然: $p(y|\theta,\alpha,\beta)$

5. 联合后验: $p(\theta, \alpha, \beta|y)$

$$p(\theta, \alpha, \beta | y) \propto p(\alpha, \beta) p(\theta | \alpha, \beta) p(y | \theta, \alpha, \beta)$$

$$= p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha - 1} (1 - \theta_j)^{\beta - 1} \prod_{j=1}^{J} \theta_j^{y_j} (1 - \theta_j)^{n_j - y_j}$$
(3.21)

6. 条件后验: $p(\theta|\alpha,\beta,y)$: 单参数模型给定的后验

$$p(\theta \mid \alpha, \beta, y) = \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta + n_j)}{\Gamma(\alpha + y_j) \Gamma(\beta + n_j - y_j)} \theta_j^{\alpha + y_j - 1} (1 - \theta_j)^{\beta + n_j - y_j - 1}$$

$$\sim \prod_{j=1}^{J} Beta(\alpha + y_j, \beta + n_j - y_j)$$
(3.22)

7. 边缘后验: $p(\alpha, \beta|y)$

$$p(\alpha, \beta \mid y) = \frac{p(\theta, \alpha, \beta \mid y)}{p(\theta \mid \alpha, \beta, y)}$$

$$\propto \frac{p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha-1} (1 - \theta_j)^{\beta-1} \prod_{j=1}^{J} \theta_j^{y_j} (1 - \theta_j)^{n_j - y_j}}{\prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta+n_j)}{\Gamma(\alpha+y_j)\Gamma(\beta+n_j - y_j)} \theta_j^{\alpha+y_j - 1} (1 - \theta_j)^{\beta+n_j - y_j - 1}}$$

$$= p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta)\Gamma(\alpha+y_j)\Gamma(\beta+n_j - y_j)}{\Gamma(\alpha)\Gamma(\beta)\Gamma(\alpha+\beta+n_j)}$$
(3.23)

3.4.3 正态分布的分层贝叶斯模型

1. 数据结构

假设J个独立试验,每个实验都由 θ_j 给出其参数估计,估计 n_j 个i.i.d正态分布的数据点 y_{ij} ,每个点方差为 σ^2 :

$$y_{ij}|\theta_i \sim N\left(\theta_i, \sigma^2\right) \quad i = 1, \dots, n_i \quad j = 1, \dots, J$$

样本均值(充分统计量):

$$\bar{y}_{\cdot j} = \frac{1}{n_j} \sum_{i=1}^{n_j} y_{ij}$$

样本均值的分布

$$\bar{y}_{\cdot i} \sim N(\theta_i, \sigma_i^2)$$

样本方差:

$$\sigma_j^2 = \frac{\sigma^2}{n_j}$$

样本的均值是从 θ 中估计,样本方差是从 σ 中估计。

相当于 θ 的似然分布:

$$\bar{y}_{\cdot j}|\theta \sim N(\theta_j, \sigma_j^2)$$

由于 σ 是已知的,下面所有的分布都是在 σ 已知情况下成立。

1. 层次化模型: 无信息先验

 θ 是从参数(μ , τ)中抽取:

$$p\left(\theta_{1},\ldots,\theta_{J}\mid\mu, au^{2}
ight)=\prod_{j=1}^{J}p\left(\theta_{j}\mid\mu, au^{2}
ight)$$

边缘化:

$$p(\theta_1, \dots, \theta_J) = \iint \prod_{j=1}^{J} \left[p(\theta_j \mid \mu, \tau^2) \right] p(\mu, \tau^2) d\mu d\tau$$

• 先验和似然

组内抽样: $\bar{y}_{\cdot j} \sim N(\theta_j, \sigma_i^2)$

 θ 的先验(组内模型): $\theta|\mu,\tau \sim N(\mu,\tau^2)$

 μ 的先验: $p(\mu,\tau) = p(\mu|\tau)p(\tau) \propto p(\tau)$

 θ_i 似然分布: $p(y|\theta) \sim (\bar{y}_{ij}|\theta) \sim N(\theta_i, \sigma_i^2)$

• 联合后验: $p(\theta, \phi|y)$

$$p(\theta, \mu, \tau | y) \propto p(\mu, \tau) p(\theta | \mu, \tau) p(y | \theta)$$

$$\propto p(\mu, \tau) \prod_{j=1}^{J} p(\theta_j | \mu, \tau^2) \prod_{j=1}^{J} p(\bar{y}_{\cdot j} | \theta_j, \sigma_j^2)$$
(3.24)

其中: $\bar{y}_{\cdot j} \sim N(\theta_j, \sigma_i^2)$

可以忽略只依赖 y 和 σ_j 的参数,因为其已知。

• θ 条件后验: $p(\theta_j \mid \mu, \tau, y_{\cdot,j})$

$$\theta_j \mid \mu, \tau, y_{\cdot,j} \sim N\left(\hat{\theta}_j, V_j\right)$$

其中:

$$\hat{\theta}_{j} = \frac{\frac{1}{\sigma_{j}^{2}} \bar{y}_{\cdot j} + \frac{1}{\tau^{2}} \mu}{\frac{1}{\sigma_{j}^{2}} + \frac{1}{\tau^{2}}}$$

$$V_j = \frac{1}{\frac{1}{\sigma_j^2} + \frac{1}{\tau^2}}$$

• 超参数边缘后验: $p(\mu, \tau \mid y)$

$$p(\mu, \tau \mid y) \propto p(\mu, \tau)p(y \mid \mu, \tau)$$

对于正态分布:

$$\bar{y}_{\cdot j} \sim N(\mu, \tau^2 + \sigma^2)$$

因此:

$$p(\mu, \tau \mid y) \propto p(\mu, \tau) \prod_{j=1}^{J} p(\bar{y}_{.j} \mid \mu, \tau^2 + \sigma_j^2)$$
 (3.25)

$$\bar{y}_{\cdot j} \mid \mu, (\tau^2 + \sigma_j^2) \sim N\left(\mu, \tau^2 + \sigma_j^2\right)$$
(3.26)

• 给定 τ 下 μ 的边缘后验分布: $p(\mu \mid \tau, y)$ 从单参数模型中得出的结论

$$\mu \mid \tau, y \sim N\left(\hat{\mu}, V_{\mu}\right) \tag{3.27}$$

$$\hat{\mu} = \frac{\sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2} \bar{y}_{\cdot j}}{\sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2}}$$

$$V_{\mu}^{-1} = \sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2}$$

τ的后验: p(τ | y)

$$p(\tau \mid y) = \frac{p(\mu, \tau \mid y)}{p(\mu \mid \tau, y)}$$

$$\propto \frac{p(\tau) \prod_{j=1}^{J} N(\bar{y}_{\cdot j} \mid \mu, \sigma_{j}^{2} + \tau^{2})}{N(\mu \mid \hat{\mu}, V_{\mu})}$$

$$\propto p(\tau) V_{\mu}^{1/2} \prod_{j=1}^{J} (\sigma_{j}^{2} + \tau^{2})^{-1/2} \exp\left(-\frac{(\bar{y}_{\cdot j} - \hat{\mu})^{2}}{2(\sigma_{j}^{2} + \tau^{2})}\right)$$
(3.28)

- 从后往前采样,即先算出 τ 的后验,然后依次采样算出 μ 的后验,超参数联合后验, θ 的条件后验, 联合后验等。
- 3.5 贝叶斯回归
- 3.6 贝叶斯模型选择
- 3.7 费舍尔信息矩阵Fisher Information

随机过程

- 4.1 随机过程及其统计描述
- 4.2 平稳随机过程
- 4.3 马尔科夫链

MCMC

5.1 蒙特卡罗法 Monte Carlo Method

5.1.1 随机采样和接受-拒绝采样

蒙特卡罗法是通过概率模型的随机抽样进行随机抽样的方法。假设概率分布已知,通过概率分布得到随机样本,并通过得到的随机样本得到概率分布的随机性质,因此蒙特卡洛方法的核心是随机抽样。接下来我们介绍**接受-拒绝采样**。

已知概率密度分布为f(x),但是这个概率密度分布复杂,各个变量并不独立,无法直接采样或者积分,因此可以通过蒙特卡罗方法进行抽样,得到样本X,得到其随机分布。我们在这介绍**接受-拒绝采样**。我们需要一个辅助的**建议分布**,记为q(x)。这个建议分布可以产生我们的候选样本,但建议分布要满足:

$$c * q(x) \ge f(x)$$

之后我们对样本按照建议分布q(x)进行抽样,得到样本 x^* ,同时对均匀分布U(0,1)进行抽样,得到u。之后计算 $\frac{f(x)}{c*q(x)}$ (这个值一定在0~1之间,对应图1的绿色部分比例),若

$$u \le \frac{f(x^*)}{c * q(x^*)} \tag{1.1}$$

则x*接受作为样本,否则拒绝。

怎么理解这个过程呢?简单来说就是我们先对建议分布q(x)的概率密度进行采样,因为这个比我们的f(x)更容易采样。假如这个分布很复杂,维度很高,直接算的话浪费计算资源,因此要先用一个简单的建议分布q(x)进行采样,得到建议的采样,但是这建议分布的采样终究不是我们需要的采样,所以我们需要在利用均匀分布U(0,1),由我们算出来的 $f(x^*)/cq(x^*)$ 进行接受或者拒绝。在图1中,按照

绿色比例进行接受。如果在第 x_i^* 个抽样刚好落在中间红色区域比较大的点,那么拒绝的概率就高,反之绿色部分的比例更大,则我们接受的概率就越高。

听到这是不是有点迷糊了?别着急!我们看看图1,在是不是x*处红色部分占比越大,与目标分布 f(x) 相差就越远了?所以我们在这里就必须剔除一些点了,不然远离我们的真实分布了!这时候可能会有其他疑问了,那在图1两端概率很小时候岂不是都接受率很高?是的,但是那两端概率很低呀!因为我们在使用建议分布抽样的时候概率那里的点已经是很少了,所以我们不用拒绝很多样本点也就和目标分布类似了。所以这时候就要用到一个均匀分布U(0,1),在该点上随机生成一个u,然后按照(1.1)则接受,否则拒绝。

所以假设我们抽了n个样本,对样本进行拒绝,就是要生成和判断n次u的取值,也就是对每个样本点进行计算和判断是否拒绝,完成一次拒绝-接受采样。

接受-拒绝采样的缺点也是有的,主要是接受率比较低,抽样效率低。

5.1.2 数学期望和蒙特卡罗积分

如果我们要算目标函数为f(x),其概率密度为p(x),我们记函数f(x)关于密度函数p(x)的数学期望为 $E_{p(x)}[f(x)]$ 。我们按照密度函数f(x)独立抽取n个样本 $x_1, x_2 \cdots, x_n$,之后计算样本的均值:

$$\hat{f}_n = \frac{1}{n} \sum_{i=1}^n f(x_i)$$

作为f(x)的近似值。根据大数定理,当样本容量增大,样本均值以概率1收敛于数学期望。因此我们可以用上述方法得到我们的数学期望。

$$E_{p(x)}[f(x)] \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

而在 化上数学期望的积分形式为:

$$E(x) = \int_{\mathcal{X}} f(x)p(x)dx$$

如果我们的目标积分为:

$$h(x) = f(x)q(x)$$

我们可以写为:

$$\int_{\mathcal{X}} h(x)dx = \int_{\mathcal{X}} f(x)q(x)dx = E_{p(x)}[f(x)]$$

对于复杂的函数,可以给定一个概率密度函数p(x),只要取

$$f(x) = \frac{h(x)}{p(x)}$$

就可以用p(x)进行抽样算出积分:

$$\int_{\mathcal{X}} h(x)dx = E_{p(x)}[f(x)] \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

因此我们可以先用p(x)抽样。然后再进行积分。

5.2 蒙特卡罗法 Monte Carlo Method

5.2.1 随机采样和接受-拒绝采样

蒙特卡罗法是通过概率模型的随机抽样进行随机抽样的方法。假设概率分布已知,通过概率分布得到随机样本,并通过得到的随机样本得到概率分布的随机性质,因此蒙特卡洛方法的核心是随机抽样。接下来我们介绍接受-拒绝采样。

已知概率密度分布为f(x),但是这个概率密度分布复杂,各个变量并不独立,无法直接采样或者积分,因此可以通过蒙特卡罗方法进行抽样,得到样本X,得到其随机分布。我们在这介绍**接受-拒绝采样**。我们需要一个辅助的**建议分布**,记为q(x)。这个建议分布可以产生我们的候选样本,但建议分布要满足:

$$c * q(x) \ge f(x)$$

之后我们对样本按照建议分布q(x)进行抽样,得到样本 x^* ,同时对均匀分布U(0,1)进行抽样,得到u。之后计算 $\frac{f(x)}{c*q(x)}$ (这个值一定在0~1之间,对应图1的绿色部分比例),若

$$u \le \frac{f(x^*)}{c * g(x^*)} \tag{1.1}$$

则x*接受作为样本,否则拒绝。

怎么理解这个过程呢?简单来说就是我们先对建议分布q(x)的概率密度进行采样,因为这个比我们的f(x)更容易采样。假如这个分布很复杂,维度很高,直接算的话浪费计算资源,因此要先用一个简单的建议分布q(x)进行采样,得到建议的采样,但是这建议分布的采样终究不是我们需要的采样,所

以我们需要在利用均匀分布U(0,1),由我们算出来的 $f(x^*)/cq(x^*)$ 进行接受或者拒绝。在图1中,按照绿色比例进行接受。如果在第 x_i^* 个抽样刚好落在中间红色区域比较大的点,那么拒绝的概率就高,反之绿色部分的比例更大,则我们接受的概率就越高。

听到这是不是有点迷糊了?别着急!我们看看图1,在是不是x*处红色部分占比越大,与目标分布f(x)相差就越远了?所以我们在这里就必须剔除一些点了,不然远离我们的真实分布了!这时候可能会有其他疑问了,那在图1两端概率很小时候岂不是都接受率很高?是的,但是那两端概率很低呀!因为我们在使用建议分布抽样的时候概率那里的点已经是很少了,所以我们不用拒绝很多样本点也就和目标分布类似了。所以这时候就要用到一个均匀分布U(0,1),在该点上随机生成一个u,然后按照(1.1)则接受,否则拒绝。

所以假设我们抽了n个样本,对样本进行拒绝,就是要生成和判断n次u的取值,也就是对每个样本点进行计算和判断是否拒绝,完成一次拒绝-接受采样。

接受-拒绝采样的缺点也是有的,主要是接受率比较低,抽样效率低。

5.2.2 数学期望和蒙特卡罗积分

如果我们要算目标函数为f(x),其概率密度为p(x),我们记函数f(x)关于密度函数p(x)的数学期望为 $E_{p(x)}[f(x)]$ 。我们按照密度函数f(x)独立抽取n个样本 $x_1, x_2 \cdots, x_n$,之后计算样本的均值:

$$\hat{f}_n = \frac{1}{n} \sum_{i=1}^n f(x_i)$$

作为f(x)的近似值。根据大数定理,当样本容量增大,样本均值以概率1收敛于数学期望。因此我们可以用上述方法得到我们的数学期望。

$$E_{p(x)}[f(x)] \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

而在X上数学期望的积分形式为:

$$E(x) = \int_{\mathcal{X}} f(x)p(x)dx$$

如果我们的目标积分为:

$$h(x) = f(x)q(x)$$

我们可以写为:

$$\int_{\mathcal{X}} h(x)dx = \int_{\mathcal{X}} f(x)q(x)dx = E_{p(x)}[f(x)]$$

对于复杂的函数,可以给定一个概率密度函数p(x),只要取

$$f(x) = \frac{h(x)}{p(x)}$$

就可以用p(x)进行抽样算出积分:

$$\int_{\mathcal{X}} h(x)dx = E_{p(x)}[f(x)] \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

因此我们可以先用p(x)抽样。然后再进行积分。

5.3 MCMC原理

5.3.1 MCMC原理

我们简单介绍了蒙特卡罗方法和马尔可夫链,接下来我们介绍马尔可夫链蒙特卡罗方法(简称MCMC方法)。MCMC方法适用于随机变量多元的、密度函数是非标准形式的、随机变量不相互独立的情况。

假设多元随机变量 $x=[x_1,x_2,x_3,\cdots]$,满足 $x\in\mathcal{X}$ 且其概率密度为p(x),f(x)是定义在 $x\in\mathcal{X}$ 上的函数,我们的目标是获得概率分布p(x)的抽样以及f(x)的数学期望 $E_{p(x)}[f(x)]$ 。在随机变量x的状态空间 \mathcal{S} 上满意遍历定理(上一章2.2马尔科夫链性质)的马尔可夫链 $X=\{X_0,X_1,\cdots,X_t,\cdots\}$,当这个马尔可夫链平稳时的分布就是其抽样的目标分布p(x)。

怎么通俗地解释这个原理呢? 首先构造一个马尔可夫链,在状态空间 \mathcal{S} 上进行随机游走。根据遍历原理,总有一个时刻m之后,这个马尔可夫链近于平稳分布,也就是在期望附近游走。假设我们随机游走了n步,取我们平稳分布之后的样本集合 $\{x_{m+1},x_{m+2},x_{m+3},\cdots,x_n\}$,就是我们目标抽样分布的结果。

这里又要唠叨一句,平稳分布只是各个状态的期望。我们用天气由于预报的例子来说,假设当天气平稳分布的时候,其平稳分布为 $[0.7\ 0.3]^T$,我们之后观测天气的结果符合我们这个平稳分布,也就是说我们接下来100天中有70天是晴天,30天是雨天。当然这只是一个简单的假设模型罢了!

所以当到达平稳之后样本集合为 $\{x_{m+1}, x_{m+2}, x_{m+3}, \cdots, x_n\}$ 就是我们目标分布的结果。在时刻m之前的时期我们称为**燃烧期(burn-in)**。

更晕的还在后边,我们怎么构造这样一个马尔可夫链?这里我们需要一个转移核(连续)或者转移矩阵(离散)。如何构造这转移核/矩阵,构成一个可逆的马尔可夫链,使得遍历定理成立是很关键

的。如果该马尔可夫链成立,由于遍历定理成立,因此初始值的选取最终会收敛到同一平稳分布;燃烧期之前的样本都要丢弃,因为燃烧期之前的样本都不是服从样本的分布。当然目前MCMC收敛的判断是经验性的。

MCMC方法比拒绝-接受采样更容易实现,虽然丢弃了燃烧器之前的样本,但其效率仍然比拒绝-接受采样的效率高。目前常用的MCMC 方法主要是Metropolis-Hasting算法(M-H算法)和吉布斯抽样。

5.3.2 MCMC算法

根据上面的介绍,MCMC方法可以是以下的步骤:

- 1. 在随机变量x的状态空间S上构造一个满足遍历定理的马尔可夫链,使得其平稳分布为p(x);
- 2. 在状态空间某一点 x_0 出发,构造随机游走,产生样本 $x_0, x_1, x_2, \cdots, x_t, \cdots$;
- 3. 应用遍历定理,确定燃烧期m,求得函数f(x)的均值

$$\hat{E}f = \frac{1}{n-m} \sum_{i=m+1}^{n} f(x_i)$$

在这其中有几个问题:

- 1. 如何定义马尔可夫链
- 2. 如何确定收敛步骤
- 3. 如何确定迭代步数确保精度

5.4 Metropolis-Hastings采样

5.4.1 M-H采样原理

上一章我们讲了MCMC抽样的一些问题,这一章我们介绍MCMC的一种代表算法。这一小节我们介绍M-H采样的原理。

我们需要构造一条马尔可夫链;要构造一个转移核,使得平稳分布就是我们要的抽样分布。参考 第二章2.2节的细致平衡:

$$p_{ji}\pi_j = p_{ij}\pi_i$$

当然要构造这个细致平衡条件很难。假设**目标分布**为 $\pi(x)$,转移核为q(i,j),通常我们只能得到这样的结果:

$$\pi(i)q(i,j) \neq \pi(j)q(j,i)$$

因此我们要构造一个分布能使得其分布是细致平衡。

假设我们通过建议分布q(i,j)中随机抽取一个**候选状态** x_j **(后面简写为**j**)**,我们可以在两端乘以一个 $\alpha(i,j)$ 使得其变为平稳分布,即:

$$\pi(i)q(i,j)\alpha(i,j) = \pi(j)q(j,i)\alpha(j,i)$$

在这里 $\alpha(i,j)$ 为**接受分布**。建议分布q(i,j)是马尔可夫链转移核,且该马尔可夫链是不可约的,同时这个分布是容易采样的。那这个接受分布怎么构建呢?

我们对 $\pi(i)q(i,j)\alpha(i,j) = \pi(j)q(j,i)\alpha(j,i)$ 移项:

$$\alpha(i,j) = \frac{\pi(j)(j,i)}{\pi(i)q(i,j)}\alpha(j,i)$$

实际上我们需要把两边的接受分布扩大到1,这样接受率才会达到最大。如果 $\alpha(j,i)=1$,有:

$$\alpha(i,j) = \frac{\pi(j)q(j,i)}{\pi(i)q(i,j)}$$

相反的,如果上式 $\alpha(i,j) > 1$,我们令 $\alpha(i,j) = 1$:

$$1 = \frac{\pi(j)q(j,i)}{\pi(i)q(i,j)}\alpha(j,i)$$

即我们取 $\alpha(i,j)=1$ 。这时候接受分布 α 扩大到最大。因此得到接受分布:

$$\alpha(i,j) = \min\left\{1, \frac{\pi(j)q(j,i)}{\pi(i)q(i,j)}\right\}$$

这时候的接受率最高,且容易证明这个转移核 $q(i,j)\alpha(i,j)$ 是平稳分布的。之后我们从区间(0f1)中均匀采样,得到一个随机数u,按照以下判断:

$$x_t = \begin{cases} x_j, & u \le \alpha(i, j) \\ x_i, & u > \alpha(i, j) \end{cases}$$

决定其是否接受下一步。

图 5.3:

怎么理解这个接受分布呢?前面提到,当我们从状态i以概率p(i,j)转移到状态j的时候,不一定是平稳的,而加入 α 之后就可以得到一个新的平稳的马尔可夫链。而我们是否要转移到下一步就是要考虑这个接受分布了。我们定性的解释这个问题。假设我们的建议分布q(i,j)=q(j,i),我们的接受分布 $\alpha=\min\{1,\frac{\pi_i}{\pi_i}\}$,如果 α 太小,说明我们下一步抽取的j所对应的概率是远小于我们上一步抽取的概率i,所以要舍弃;而如果是1的话说明抽取的j很符合我们的目标分布 π ,因此可以更好地接近我们要抽样的分布。这个判断步骤类似于本文开头的拒绝-接受采样。 α 类似于接受-拒绝采样的 $\frac{f(x)}{c*q(x)}$ 。综上,其实这个转移核是要根据我们的抽样i,j共同确定的。

5.4.2 M-H采样算法

常见的采样有ptmcmc[3]

5.5 吉布斯采样

5.5.1 满条件分布

MCMC要抽样的函数一般都是多变量的联合概率分布 $p(x) = p(x_1, x_2, \cdots, x_k)$,其中 $x = (x_1, x_2, \cdots, x_k)^T$ 是k维变量。若条件概率分布: $p(x_I|x_{-I})$ 中出现了所有的变量k,其中:

$$x_I = \{x_i, i \in I\}, \ x_{-I} = \{x_i, i \notin I\} \qquad I \subset K = \{1, 2, \dots, k\}$$

那么称这个分布为满条件分布。

5.5.2 Gibbs采样原理

当然M-H采样有接受分布的存在,因此效率还是不够高。Gibbs采样可以避免这个问题。吉布斯采样的基本原理是从满条件概率分布出发,从满条件概率分布中抽样,得到一个样本序列。基本原理是:吉布斯抽样过程是在一个马尔可夫链上随机游走,平稳分布就是目标联合分布。接下来我们介绍Gibbs采样的细节。

我们考虑二维情况:假设有一个二维分布p(x,y),我们发现:

$$p(x_1, y_1)p(y_2|x_1) = p(x_1)p(y_1|x_1)p(y_2|x_1)p(x_1, y_2)p(y_1|x_1) = p(x_1)p(y_2|x_1)p(y_1|x_1)$$

整理得:

$$p(x_1, y_1)p(y_2|x_1) = p(x_1, y_2)p(y_1|x_1)$$

图 5.4:

假设点A为 (x_1,y_1) ,点B为 (x_1,y_2) ,我们可以改写为:

$$p(A)p(y_2|x_1) = p(B)p(y_1|x_1)$$

也就是说当点A转移到点B的时候服从上述的马尔可夫链。而上式的条件概率就是我们的转移矩阵或者转移核。也就是说对维度y的满条件分布即为上述马尔可夫链的转移核或者转移矩阵。如果把二维扩展到n维,即可以得到n维的吉布斯抽样。假设建议分布是当前变量 $x_j,\ j=1,2,\cdots,k$ (也就是抽取第j维变量)的满条件分布: $q(x',x)=p(x'_j|x_{-j})$,这里的x指的是当前的抽样,x'指的是下一步的抽样。扩展到维的情多维:

$$p(x_j', x_{-j})p(x_j'|x_{-j}) = p(x_j, x_{-j})p(x_j|x_{-j})$$

这时候的接受率 $\alpha=1$ 。因此吉布斯采样可以认识是M-H采样的一种特殊情况。这个建议分布就是我们的目标分布的满条件分布。(这里和上一章的符号有所变化,不过内容是一样的,只是为了方便表达。)下面证明如何得到接受率 $\alpha=1$:

根据M-H采样的接受分布公式,有:

$$q(x, x') = p(x_i'|x_{-i})$$

代入接受分布:

$$\alpha(x, x') = \min\left\{1, \frac{p(x')q(x', x)}{p(x)q(x, x')}\right\}$$

因为我们是抽取当前变量i, 因此有:

$$\alpha(x, x') = \min\left\{1, \frac{p(x')q(x', x)}{p(x)q(x, x')}\right\}$$

$$= \min\left\{1, \frac{p(x'_j, x_{-j})p(x'_j|x_{-j})}{p(x_j, x_{-j})p(x_j|x_{-j})}\right\} = 1$$
(5.1)

之后抽取k维,循环n次,抛去燃烧期m,得到我们的抽样,计算均值。

5.5.3 Gibbs采样算法

- 5.6 Nested采样
- 5.7 数值贝叶斯方法

高斯随机过程

- 6.1 高斯随机过程及其统计描述
- 6.2 核密度估计
- 6.3 高斯混合模型
- 6.4 高斯学习

统计算法

- 7.1 奇异值分解及主成分分析
- 7.2 退火算法
- 7.3 遗传算法
- 7.4 支持向量机
- 7.5 聚类算法
- 7.6 简单的神经网络

参考文献

- [1] Piotr Jaranowski and Andrzej Królak. *Analysis of gravitational-wave data*. Number 29 in Cambridge monographs on particle physics, nuclear physics and cosmology. Cambridge University Press, Cambridge; New York, 2009.
- [2] Andrew Gelman, John B Carlin, Hal Steven Stern, David B Dunson, Aki Vehtari, and Donald B Rubin. *Bayesian data analysis*. 2014. OCLC: 1063654237.
- [3] Justin Ellis and Rutger van Haasteren. jellis18/ptmcmcsampler: Official release, October 2017.