Fall 2015 Notes – Atiyah and McDonald, Munkres, Lucier

Carlos Salinas

September 3, 2015

Contents

C	ontents	1
	Commutative Algebra: Atiyah and McDonald 1.1 Rings and Ideals	2
2	Topology: Munkres	5

1 Commutative Algebra: Atiyah and McDonald

1.1 Rings and Ideals

Rings and ring homomorphisms

A ring A is a set with two binary operations (addition and multiplication) such that

- (1) A is an abelian group with respect to addition (so that A has a zero element, denoted by 0, and every $x \in A$ has an (additive) inverse, -x).
- (2) Multiplication is associative ((xy)z = x(yz)) and distributive over addition ((x(x+z) = xy + xz, (y+z)x = yx + zx)). We shall consider only rigs which are *commutative*:
- (3) xy = yx for all $x, y \in A$, and have an *identity element* (denoted by 1):
- (4) $\exists 1 \in A$ such that x1 = 1x = x for all $x \in A$. The identity element is then unique.

A ring homomorphism is a mapping f of a ring A into a ring B such that

- (i) f(x+y) = f(x) + f(y) (so that f is a homomorphism of abelian groups, and therefore also f(x-y) = f(x) f(y), f(-x) = -f(x), f(0) = 0),
- (ii) f(xy) = f(x)f(y),
- (iii) f(1) = 1.

In other words, f respects addition, multiplication and the identity element.

A subset S of a ring A is a subring of A if S is closed under addition and multiplication and contains the identity element of A. The identity mapping of S into A is then a ring homomorphism. If $f: A \to B$, $g: B \to C$ are ring homomorphisms so is their composition $g \circ f: A \to C$.

Ideals. Quotient rings

An *ideal* \mathfrak{a} of a ring A is a subset of A which is an additive subgroup and is such that $A\mathfrak{a} \subset \mathfrak{a}$ (i.e., $x \in A$ and $y \in \mathfrak{a}$). The quotient group A/\mathfrak{a} inherits a uniquely defined multiplication from A which makes it into a ring, called the *quotient ring* (or residue-class ring) A/\mathfrak{a} . The elements of A/\mathfrak{a} are the cosets of \mathfrak{a} in A, and the mapping $\varphi \colon A \to A/\mathfrak{a}$ which maps each $x \in A$ to its coset $x + \mathfrak{a}$ is a surjective ring homomorphism.

Proposition 1.1.1. There is a 1-to-1 order-preserving correspondence between the ideals \mathfrak{b} of A which contains \mathfrak{a} , and the ideals $\bar{\mathfrak{b}}$ of A/\mathfrak{a} , given by $\mathfrak{b} = \varphi^{-1}(\bar{\mathfrak{b}})$.

If $f: A \to B$ is any ring homomorphism, the *kernel* of $f(=f^{-1}(0))$ is an ideal \mathfrak{a} of A, and the *image* of f(=(f(A))) is a subring C of B; and f induces a ring isomorphism $A/\mathfrak{a} \cong C$.

We shall sometimes use the notation $x \equiv y \pmod{\mathfrak{a}}$; this means that $x - y \in \mathfrak{a}$.

Zero-divisors. Nilpotent elements. Units

A zero-divisor in a ring A is an element x which "divides 0", i.e., for which there exists $y \neq 0$ in A such that xy = 0. A ring with no zero-divisors $\neq 0$ (and in which $1 \neq 0$) is called an *integral domain*. For example, **Z** and $k[x_1, ..., x_n]$ (k a field, x_i indeterminates) are integral domains.

An element $x \in A$ is *nilpotent* if $x^n = 0$ for some n > 0. A nilpotent element is a zero-divisor (unless $A \neq 0$), but not conversely (in general).

A unit in A is an element x which "divides 1", i.e., an element x such that xy = 1 for some $y \in A$. The element y is then uniquely determined by x, and is written x^{-1} . The units in A form a (multiplicative) abelian group.

The multiples ax of an element $x \in A$ from a *principal* ideal, denoted by (x) or Ax. x is a unit $\iff (x) = A$. The zero ideal (0) is usually denoted by (x).

A field is a ring A in which $1 \neq 0$ and every nonzero element is a unit. Every field is an integral domain (but not conversely: **Z** is not a field).

Proposition 1.1.2. Let A be a ring $\neq 0$. Then the following are equivalent:

- (i) A is a field;
- (ii) the only ideals in A are 0 and (1);
- (iii) every homomorphism of A into a nonzero ring B is injective.
- *Proof.* (i) \Longrightarrow (ii). Let $\mathfrak{a} \neq 0$ be an ideal in A. Then \mathfrak{a} contains a nonzero element x, x is a unit, hence $\mathfrak{a} \supset (x) = A$, hence $\mathfrak{a} = A$.
- (ii) \implies (iii). Let $\varphi \colon A \to B$ be a ring homomorphism. Then $\ker \varphi$ is an ideal \neq (1) in A, hence $\ker \varphi = 0$, hence φ is injective.
- (iii) \implies (i). Let x be an element of A which is not a unit. Then $(x) \neq (1)$, hence B = A/(x) is not the zero ring. Let $\varphi \colon A \to B$ be the natural homomorphism of A onto B, with kernel (x). By hypothesis, φ is injective, hence x = 0.

Prime ideals and maximal ideals

An ideal \mathfrak{p} in A is prime if $\mathfrak{p} \neq (1)$ and if $xy \in \mathfrak{p} \implies x \in \mathfrak{p}$ or $y \in \mathfrak{p}$.

An ideal \mathfrak{m} in A is maximal if $\mathfrak{m} \neq (1)$ and if there is no ideal \mathfrak{a} such that $\mathfrak{a} \subsetneq \mathfrak{a} \subsetneq A$. Equivalently

 \mathfrak{p} is prime $\iff A/\mathfrak{p}$ is an integral domain;

 \mathfrak{m} is maximal $\iff A/\mathfrak{m}$ is a field.

Hence a maximal ideal is prime (but not conversely, in general). The zero ideal is prime $\iff A$ is an integral domain.

If $f: A \to B$ is a ring homomorphism and \mathfrak{q} is a prime ideal in B, then $f^{-1}(\mathfrak{q})$ is a prime ideal in A, for $A/f^{-1}(\mathfrak{q})$ is isomorphic to a subring of B/\mathfrak{q} and hence has a no zero-divisor $\neq 0$. But if \mathfrak{n} is a maximal ideal of B is not necessarily true that $f^{-1}(\mathfrak{n})$ is maximal in A; all we can say for sure is that it is prime. (Example: $A = \mathbf{Z}$, $B = \mathbf{Q}$, $\mathfrak{n} = 0$.)

Theorem 1.1.3. Every ring $A \neq 0$ has at least one maximal ideal.

Proof. This is a standard application of Zorn's lemma. Let Σ be the set of all ideals \neq (1) in A. Order Σ by inclusion. Σ is not empty, since $0 \in \Sigma$. To apply Zorn's lemma we must show that every chain in Σ has an upper bound in Σ ; let then (\mathfrak{a}_{α}) be a chain of ideals in Σ , so that for each pair of indices α, β we have either $\mathfrak{a}_{\alpha} \subset \mathfrak{a}_{\beta}$ or $\mathfrak{a}_{\beta} \subset \mathfrak{a}_{\alpha}$. Let $\mathfrak{a} = \bigcup_{\alpha} \mathfrak{a}_{\alpha}$. Then \mathfrak{a} is an ideal and $1 \notin \mathfrak{a}$. Hence $\mathfrak{a} \in \Sigma$, and \mathfrak{a} is an upper bound of the chain. Hence by Zorn's lemma Σ has a maximal element.

Corollary 1.1.4. If $\mathfrak{a} \neq (1)$ is an ideal of A, there exists a maximal ideal of A containing \mathfrak{a} .

Proof. Apply (1.3) to A/\mathfrak{a} bearing in mind (1.1). Alternatively, modify the proof of (1.3).

Corollary 1.1.5. Every nonunit of of A is contained in a maximal ideal.

- **Remarks**. (1) If A is Noetherian we can avoid the use f Zorn's lemma: the set of all ideals \neq (1) has a maximal element.
- (2) There exists rings with exactly one maximal ideal, for example fields. A ring A with exactly one maximal ideal \mathfrak{m} is called a *local ring*. The field $k = A/\mathfrak{m}$ is called the *residue field* of A.
- **Proposition 1.1.6.** (i) Let A be a ring and $\mathfrak{m} \neq (1)$ be an ideal of A such that every $x \in A \mathfrak{m}$ is a unit in A. Then A is a local ring and \mathfrak{m} its maximal ideal.
- (ii) Let A be a ring and \mathfrak{m} a maximal ideal of A, such that every element of $1 + \mathfrak{m}$ (i.e., every 1 + x, where $x \in \mathfrak{m}$) is a unit in A. Then A is a local ring.

Proof.

2 Topology: Munkres