

INSTITUTE OF INFORMATION TECHNOLOGY JAHANGIRNAGAR UNIVERSITY

Number of Assignment: 01

Submission Date : 14/07/2021

Course Tittle : Discrete Mathematics

Course Code : ICT – 1207

Submitted To

Dr. M. Mesbahuddin Sarker

Professor

IIT - JU

Submitted By

Md. Shakil Hossain

Class Roll – 2023

Exam Roll - 192340

IIT - JU

Answer to the question no-0.1

(a) If R is reflexive.

Then, for every n.

Since nRn,

we have nSn.

: S is reflexive. [Proved]

6 Given that

nsy > nRy and yRn

⇒ nRy n yRn

⇒yRn nnRy

⇒ ysn

: S is symmetric

(C) Suppose R is transtive.

Then,

nsy 1 ysz > (nRy 1 yRn) 1 (yRz 1 zRy)

> (nRy 1 yRz) 1 (zRy 1 yRz)

> nRz 1 zRn

> nSE

- .. If R is transitive, s is transitive. [Proved]
- (d) If R is antisymmetric

 Then, $nsy \wedge ysn \Rightarrow nRy \wedge yRn$ $\Rightarrow n = y$

In the same way. S is antisymmetric.
[Proved]

- (e) By a, b, and c we can say s is an equivalance relation.

 [Proved]
- (f) By a, b, and d
 we can say s is an Pantial Order [Proved]

Answer to the question no- 02

Given that we said

For any n,

nRn nor nRn is false

So. nSn is also false.

.. s is inneflenive [Proved]

6 Given that

nsy > nry non yrn

> yrn non nry

> ysn

...nsy > ysn

.: s is symmetric.

(c) Let R be the subset nelation as before.

Then, {1} s {1,2} and {1,2} s {2} can happen.

But {1} s {2} is false.

: If R is transitive. S is not necessarily transitive. [Proved]

Answer to the question no-03

1. Using Prim's algorithm

Firstly we choose edge a which has the lowest weight 1.

0

Then, we add the adjacent edge with howest weight b, weight 1.

Then we add i,

Then add n.

then add K.

Then add c,

Then add e,

The cost =
$$1+1+2+2+2+3+6$$

= 17

Order = $a \rightarrow b \rightarrow i \rightarrow n \rightarrow K \rightarrow c \rightarrow e$.

2. Using Knuskal's Algorithm

The edge with weights are sonted here.

Edge	Weight
· a	1
b	1
i	2
K	2_
ຠ	2
c	3
d	3
f	3 4
j	4
2	5
е	6
h	6
m	7

Order = $a \rightarrow b \rightarrow i \rightarrow n \rightarrow k \rightarrow c \rightarrow e$.

THE END