DEFINITION	Definition
Increasing Sequence of Sets	Decreasing Sequence of Sets
Advanced Probability	Advanced Probability
Theorem	DEFINITION
De Morgan Laws	Fields and σ -Fields
Advanced Probability	Advanced Probability
DEFINITION	DEFINITION
Measurable Space and Measurable Sets	σ -field generated by ${\cal A}$
Advanced Probability	Advanced Probability
Theorem	DEFINITION
Existence of $\sigma(A)$	Extended Reals
Advanced Probability	Advanced Probability
DEFINITION	DEFINITION
Rules of Arithmetic in $ar{\mathbb{R}}$	Measures
Advanced Probability	Advanced Probability

Let A_1, A_2, \ldots be subsets of Ω . If $A_1 \supset A_2 \supset \ldots$ and
$\bigcap_{n=1}^{\infty} = A$, A_n is said to form a decreasing sequence
of sets with limit A.

Let $A_1, A_2,...$ be subsets of Ω . If $A_1 \subset A_2 \subset ...$ and $\bigcup_{n=1}^{\infty} = A$, A_n is said to form an increasing sequence of sets with limit A.

Let Ω be a set. A collection $\mathcal F$ of subsets of Ω is called a field if it is closed under complementation and finite union:

- $\Omega \in \mathcal{F}$
- for each $A \in \mathcal{F}$, $A^C \in \mathcal{F}$,
- for all $A_1, A_2 \in \mathcal{F}, A_1 \cup A_2 \in \mathcal{F}$

From this, it follows that \mathcal{F} is closed under finite intersection:

$$\bigcap_{i=1}^{n} A_i = \left(\bigcup_{i=1}^{n} A_i^c\right)^c \in \mathcal{F}$$

A field is called a σ -field if it also satisfies the condition that for every sequence $\{A_k\}_{k=1}^{\infty} \in \mathcal{F}$, we have that $\bigcup_{k=1}^{\infty} A_k \in \mathcal{F}$

Let A_1, A_2, \ldots be subsets of Ω . We have

$$(\cup_n A_n)^c = \cap_n A_n^c$$

and

$$\left(\cap_n A_n\right)^c = \cup_n A_n^c$$

Let \mathcal{A} be a collection of subsets of Ω . We denote with $\sigma(\mathcal{A})$ the smallest σ -field containing \mathcal{A} , which is called the σ -field generated by \mathcal{A} .

A set Ω together with σ -algebra \mathcal{F} is called a measurable space. The elements of \mathcal{F} are called measurable sets.

The extended real numbers are $\mathbb{\bar{R}} = \mathbb{R} \cup \{-\infty, \infty\}$. The positive extended realls are $\mathbb{\bar{R}}^+ = (0, \infty]$ and the nonnegative extended reals are $\mathbb{\bar{R}}^{+0} = [0, \infty]$. The proof has three main steps:

- Define all σ -fields containing \mathcal{A} as $\mathcal{F}_i, i \in \mathcal{I}$, where \mathcal{I} is some index set. Note that one such σ -field always exists since $\mathcal{A} \subset 2^{\Omega}$.
- Show that the intersection of all \mathcal{F}_i is again a σ -field
- Finally, show that $\cap_{i \in \mathcal{I}} \mathcal{F}_i$ is moreover the smallest σ -field possible.

Let (Ω, \mathcal{F}) be a measurable space. Let $\mu : \mathcal{F} \to \mathbb{R}^{+0}$ satisfy:

- $\mu(\emptyset) = 0$
- For any sequence of mutually disjoint sets $\{A_n\}_{n=1}^{\infty}$ of \mathcal{F} (i.e. $A_i \cap A_j = \emptyset$ for $i \neq j$), we have

$$\mu\left(\cup A_{n=1}^{\infty}\right) = \sum_{n=1}^{\infty} \mu\left(A_n\right)$$

We call $(\Omega, \mathcal{F}, \mu)$ a measure space. If $\mu(\Omega) = 1$, it is a probability space and we usually write P instead of μ .

Let $c \in \mathbb{R}$.

- $c + \infty = \infty$ and $c \infty = -\infty$
- $\infty + \infty = \infty$ and $-\infty \infty = -\infty$ (however, $\infty \infty$ is NOT defined!)
- $0 \cdot \infty = 0$ and $\frac{c}{\infty} = \frac{c}{-\infty} = 0$ (however, $\frac{\infty}{\infty}$ is not defined
- $c \times \infty = \infty$ if c > 0 and $c \times \infty = -\infty$ if c < 0.

DEFINITION	DEFINITION
Probability Measure	Finite and σ -finite Measures
Advanced Probability	Advanced Probability
Theorem	Theorem
Countable Subadditivity of Measure	Further Properties of Measure
Advanced Probability	Advanced Probability
DEFINITION	DEFINITION
Counting Measure	Lebesgue Measure on $\mathbb R$
Advanced Probability	Advanced Probability
DEFINITION	DEFINITION
Monotone Sequences of Sets	$\liminf A_n$ and $\limsup A_n$
Advanced Probability	Advanced Probability
DEFINITION	THEOREM
Measurable Function	Properties of Measurable Functions
Advanced Probability	Advanced Probability

A measure μ is finite if for all $A \in \mathcal{F}$, we have $\mu(A) < \infty$. It is called σ -finite if there exists a sequence $\{A_n\}_{n=1}^{\infty}$ such that $\mu(A_n) < \infty \forall n \text{ and } \cup_{n=1}^{\infty} A_n = \Omega$. Observe that a finite measure is always σ -finite, but the reverse is not true: Take for example the counting measure and let \mathcal{F} be the σ -field generated by the natural numbers. Then clearly $\mu(\Omega) = \mu(\mathbb{N}) = \infty$, so the measure is not finite. However, it is σ -finite since we can define $A_n = \{n\}$ with $\mu(A_n) = 1$ and $\cup_{n=1}^{\infty} A_n = \mathbb{N}$.	A measure P which satisfies $P(\Omega) = 1$ is called a probability measure. Then, the measure space (Ω, \mathcal{F}, P) is called a probability space, and the sets of \mathcal{F} are called events.
 Linearity: If μ₁, μ₂, are measures on (Ω, F), then μ = ∑_j a_jμ_j is also a measure on (Ω, F). If μ(A_n) = 0 for all A_n, then μ(∪_{n=1}[∞]) = 0. If μ(A_n) = 1 for all A_n, then μ(∩_{n=1}[∞]A_n) = 1. 	For an arbitrary sequence $\{A_n\}_{n=1}^{\infty}$, we have $\mu\left(\bigcup_{n=1}^{\infty}A_n\right) \leq \sum_{i=1}^{n}\mu\left(A_n\right).$ Proof. Let $B_n = A_n - (\bigcup_{i < n}A_i)$. Then $\{B_n\}$ forms a disjoint sequence of sets which satisfies $\bigcup_{n=1}^{\infty}B_n = \bigcup_{n=1}^{\infty}A_n$. We thus have $\mu\left(\bigcup_{n=1}^{\infty}A_n\right) = \mu\left(\bigcup_{n=1}^{\infty}B_n\right) = \sum_{i=1}^{n}\mu\left(B_n\right)$. Since $\mu\left(B_n\right) \leq \mu\left(A_n\right) \forall n$, the result follows.
For the measurable space $(\mathbb{R}, \mathcal{B})$, the Lebesgue measure of any interval on the real line is the length of the interval: $\mu\left(a,b\right]=b-a.$ In two- and three-dimensional space, the Lebesgue measure conincides with area and volume, respectively. It is commonly denoted as λ .	For an arbitrary Ω , let $\mathcal{F}=2^{\Omega}$. For each finite subset A of Ω , we define $\mu\left(A\right)= A $ that is the measure of the set equals the number of elements in A . For all infinite subsets, we have $\mu\left(A\right)=\infty$. The measure with these properties is called the counting measure on Ω .

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. For any sequence $\{A_n\}_{n=1}^{\infty}$, we

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_k$$

$$\limsup_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_k.$$

An element ω is in $\limsup A_n$ only if it is in infinitely many of the A_n . Similarly, ω is in $\liminf A_n$ if it is in A_n eventually, and thus $\liminf A_n$ is sometimes called "all but finitely often"

For a measure space $(\Omega, \mathcal{F}, \mu)$, a sequence $\{A_n\}_{n=1}^{\infty}$ of elements in \mathcal{F} is called monotone increasing if $A_n \subseteq A_{n+1} \forall n$. If on the other hand $A_n \supseteq A_{n+1}$, it is a monotinically decreasing sequence of sets.

Let (Ω, \mathcal{F}) , (S, \mathcal{A}) and (T, \mathcal{B}) be measurable spaces.

- If $f: \Omega \mapsto \overline{\mathbb{R}}$ and c is some constant, then cf is measurable.
- if $f: \Omega \mapsto S$ and $g: S \mapsto T$, then the composition $g \circ f = g(f) : \Omega \mapsto T$ is measurable.
- \bullet If f and f are measurable real-valued functions, so are f + g and fg.

Let (Ω, \mathcal{F}) and (S, \mathcal{A}) be measurable spaces. Then a function f which maps from Ω to S is called \mathcal{F}/\mathcal{A} measurable if $f^{-1}(A) \in \mathcal{F} \ \forall A \in \mathcal{A}$, where the inverse image or pre-iamge $f^{-1}(A)$ is defined as $f^{-1}(A) = \{\omega \in \Omega : f(\omega) \in A\}$. For sake of brevity, we might just say that f is measurable in this case.

Тнеопем	Definition
Properties of Sequence of Measurable Functions	Simple Function
Advanced Probability	Advanced Probability
DEFINITION	Lemma
Canonical Representation of Simple Function	Monotone Approximation of Nonnegative Functions
Advanced Probability	Advanced Probability
DEFINITION	DEFINITION
Splitting Measurable Functions	Integral of Simple Functions
Advanced Probability	Advanced Probability
Proposition	DEFINITION
Integral for two functions $f \leq g$	Integrable Function
Advanced Probability	Advanced Probability
DEFINITION	DEFINITION
Integral for General Nonnegative Functions	Integral of General Measurable Functions
Advanced Probability	Advanced Probability

A measurable function that takes at most finitely many values is called a simple function.	Let f_n be a sequence of measurable functions which satisfies $f_n: \Omega \mapsto \mathbb{R}$ for all n . Then the following are measurable: • $\limsup_n f_n$ and $\liminf_n f_n$ • $\{\omega : \lim_{n \to \infty} f_n (\omega) \text{ exists}\}$ • $f = \begin{cases} \lim_{n \to \infty} f_n & \text{where the limit exists} \\ 0 & \text{elsewhere} \end{cases}$
Let f be a nonnegative measurable extended real-valued function from Ω . Then there exists a sequence $\{f_n\}_{n=1}^{\infty}$ of nonnegative finite simple functions such that $f_n \leq f$ for all n and $\lim_{n\to\infty} f_n(\omega) = f(\omega) \forall \omega$.	Let f be a simple function whose distinct values are a_1, \ldots, a_n and let $A_i = \{\omega : f(\omega) = a_i\}$. Then $f = \sum_{i=1}^n a_i \mathbb{I}_{A_i}$ is called the canonical representation of f .
Let $f: \Omega \to \mathbb{R}^{+0}$ be a simple function with canonical representation $f(\omega) = \sum_{i=1}^{n} \mathbb{I}_{A_i}(\omega)$. The integral of f with respect to μ is defined to be $\sum_{i=1}^{n} a_i \mu(A_i)$. The integral is denoted variously as $\int f d\mu$, $\int f(\omega) \mu(d\omega)$ or $\int f(\omega) d\mu(\omega)$.	Let f be a real-valued function. The positive part f^+ of f is defined as $f^+(\omega) = \max\{f(\omega), 0\}$. The negative part f^- of f is $f^-(\omega) = -\min\{f(\omega), 0\}$. We have $f = f^+ - f^-$ and $ f = f^+ + f^-$.
We say that f is integrable with respect to μ if $\int f d\mu$ is finite.	If $f \leq g$ and both are nonnegative and simple, then $\int f d\mu \leq \int g d\mu.$
Let f be measurable. If either f^+ or f^- is integrable with respect to μ , we define the integral of f with respect to μ to be $\int f^+ d\mu - \int f^- d\mu,$ otherwise the integral does not exist.	For nonnegative measurable f , we define the integral of f with respect to μ by $\int f d\mu = \sup_{\text{nonnegative finite simple } g \leq f} \int g d\mu$

DEFINITION	Definition
Indicator Funtion / Characteristic Function	Integration over a set
Advanced Probability	Advanced Probability
Proposition	DEFINITION
Monotonicity of Integral	Almost sure / almost everywhere
Advanced Probability	Advanced Probability
Theorem	Theorem
Additivity	Change of Variable
Advanced Probability	Advanced Probability
Theorem	DEFINITION
Relationship to Riemann Integral	Expectation and Variance of Random Variables
Advanced Probability	Advanced Probability
Theorem	Theorem
Fatou's Lemma	Monotone convergence theorem
Advanced Probability	Advanced Probability

If $A \in \mathcal{F}$, we define $\int_A f d\mu = \int \mathbb{I}_A f d\mu.$
Suppose that some statement about holds for all $\omega \in A^C$, where $\mu(A) = 0$ that the statement holds almost every as $a.e.$ $[\mu]$. If P is a probability, the everywhere is often replaced by all denoted $a.s.$ $[P]$.

For (Ω, \mathcal{F}) , we define the indicator or characteristic function $I_A: \Omega \mapsto \{0,1\}$ for a set $A \subseteq \Omega$ as

$$\mathbb{I}_{A}(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{cases}$$

elements of Ω 0. Then we say ywhere, denotes then almost lmost surely,

If $f \leq g$ and both integrals are defined, then $\int f d\mu \leq \int g d\mu$.

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let (S, \mathcal{A}) be a measurable space. Let $f: \Omega \mapsto S$ be a measurable function. Let ν be the measure induced on (S, \mathcal{A}) by f from μ . Let $g: S \mapsto \mathbb{R}$ be A/\mathcal{B}^1 measurable. Then

$$\int g d\nu = \int g(f) d\mu,$$

if either integral exists.

$$\int \left(f+g\right) d\mu =\int f d\mu +\int g d\mu ,$$

whenever at least two of them are finite.

If P is a probability and X is a random variable, then $\int XdP$ is called the mean of X, expected value of X, or expectation of X, and denoted by $\mathbb{E}(X)$. If $\mathbb{E} = \mu$ is finite, then the variance of X is $\operatorname{Var}(X) = \mathbb{E}\left[\left(X - \mu\right)^{2}\right]$

Let f be a continuous function on a closed bounded interval [a, b]. Let μ be Lebesgue measure. Then the Riemann integral $\int_a^b f(x)dx$ equals $\int_{[a,b]} fd\mu$.

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of measurable nonnegative functions, and let f be a measurable function such that $f_n \leq f$ and $\lim_{n\to\infty} f_n = f$. Then

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$$

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of nonnegative measurable functions. Then

$$\int \liminf_{n} f_n d\mu \le \liminf_{n} \int f_n d\mu.$$

Theorem	LEMMA
Linearity of Integral	Change of Variables
Advanced Probability	Advanced Probability
Corollary	Theorem
Law of the unconsious statistician	Density Functions
Advanced Probability	Advanced Probability
Theorem	Proposition
Dominated convergence theorem	Proposition 18
Advanced Probability	Advanced Probability
Definition	Тнеопем
Uniform Integrability	Properties of Integrals
Advanced Probability	Advanced Probability
Corollary	Theorem
Corollary 22	Theorem 23
Advanced Probability	Advanced Probability

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and (S, \mathcal{A}) be a measurable space. Let $f: \Omega \mapsto S$ be a measurable funciton. Let ν be the measure induced on (S, \mathcal{A}) by f from μ . Let $g: S \mapsto \mathbb{R}$ be $\mathcal{A}/\mathcal{B}^1$ measurable. Then $\int g d\nu = \int g(f) d\mu,$ if either integral exists.	If $\int f d\mu$ and $\int g d\mu$ are defined and they are not both infinite and of opposite signs, then $\int \left[f+g\right] d\mu = \int f d\mu + \int g d\mu.$
Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and let $f: \Omega \mapsto \overline{\mathbb{R}}^{+0}$ be measurable. Then $\nu(A) = \int_A f d\mu$ is a measure on (Ω, \mathcal{F}) . The function f is called the density of ν with respect to μ . Integrals with respect to ν can be computed as $\int g d\nu = \int f g d\mu$, if either exists.	If $X: \Omega \mapsto S$ is a random quantity with distribution μ_X and if $f: S \mapsto \mathbb{R}$ is measurable, then $\mathbb{E}\left[f\left(X\right)\right] = \int f d\mu_X.$
Let $\{f_n\}_{n=1}^{\infty}$, $\{g_n\}_{n=1}^{\infty}$ be sequences of measurable functions such that $ f_n \leq g_n$, a.e. $[\mu]$. Let f and g be measurable functions such that $\lim_{n\to\infty} f_m = f$ and $\lim_{n\to\infty} g_n = n$, a.e. $[\mu]$. Suppose that $\lim_{n\to\infty} \int g d\mu < \infty$. Then, $\lim_{n\to\infty} \int f_n d\mu = \int f d\mu$.	Let $\{n_n\}_{n=1}^{\infty}$ be a sequence of measurable functions, and let f and g be measurabe functions such that $f_n \to f$ a.e. $[\mu]$, $ f_n \le g$ a.e. $[\mu]$ and $\int g d\mu < \infty$. Then $\lim_{n \to \infty} \int f_n d\mu = \int f d\mu.$
 Let (Ω, F, μ) be a measure space. Let f and g be measurable extended real-valued functions. If f is nonnegative and μ ({ω: f (ω) > 0}), then ∫ fdμ > 0. If f and g are integrable and if ∫_A fdμ = ∫_A gdμ for all A ∈ F, then f = g a.e. [μ]. If μ is σ-finite and if ∫_A fdμ = ∫_A gdμ for all A ∈ F, then f = g a.e. [μ]. Let Π be a π-system that generates F. Suppose that Ω is a finite or countable union of elements of Π. If f and g are integrable and if ∫_A fdμ = ∫_A gdμ for all A ∈ Π, then f = g a.e [μ]. 	A sequence of integrable functions $\{f_n\}_{n=1}^{\infty}$ is uniformly integrable (with respect to μ) if $\lim_{c\to\infty}\sup_n\int_{\{\omega: f_n(\omega) >c\}} f_n d\mu=0.$
Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Then μ is σ -finite if and only if there exists a strictly positive integrable function.	If μ is σ -finite and ν is related to μ as in Theorem 10, then the density of ν with respect to μ is unique, a.e. $[\mu]$.