1. Let m and n be the dimensions of the image.

Set block size B = 4.

2. **For** i from 0 to M step B:

For j from 0 to N step B:

block= image[i:i+B, j:j+B]

$$Avg = \frac{\sum block[i][j]}{B \times B}$$

If block[i][j] <= avg,</pre>

append 1 to binaryArr

Else

3.

append 0 to binaryArr

End For

4. For each pair of consecutive elements in binaryArr:

Compute xorArr[k] = binaryArr[i][j] ⊕ binaryArr[i][j+1]

End For

5. For each index k in xorArr:

Compute $xorArr1[k] = xorArr[k] \oplus secret_bit_stream[idx]$

End For

6. M[k] = xorArr1[k]

For each pair of consecutive elements in xorArr1:

$$S[k]=M[k+1]$$

$$S[k+1] = M[k]$$

End For

7. **For** each pair of consecutive pixels in the block:

$$d = |block[k]-block[k+1]|, v = block[k]+block[k+1]/2$$

$$d \ dash = 2 \times d + suffledArr[idx]$$

$$stego_block[k], stego_block[k+1] = v \pm d_dash / 2$$

End For

8. Create the stego image with the modified 4x4 stego_block:

1. For i from 0 to M step B:

For i from 0 to N step B:

Extract the 4x4 stego block:

stego_block = stego_image[i:i+B, j:j+B]

2. For each pair of consecutive pixels in the block

$$d_{ash} = |block[k] - block[k+1]|$$

 $d = d \, dash/2$

 $v = stego_block[k]+stego_block[k+1] / 2$

extracted_bit=d_dash%2

Append extracted bit to the list extracted bits

End For

3. Unshuffle Extracted Bits:

For each pair of consecutive elements in extracted_bits: suffledArr[k], suffledArr[k+1] = suffledArr[k+1], suffledArr[k]

End For

4. Calculate Average for Original Block:

$$Avg = \frac{\sum block[i][j]}{B \times B}$$

5. For each pixel in the restored org block:

If org block[i][j]
$$\leftarrow$$
 avg

append 1 to binaryArr new

Else

append 0 to binaryArr_new

End For

6. For each pair of consecutive elements in binaryArr new:

Calculate XOR and verify with suffledArr new.

End For

7. Recreate the cover image with the restored org block:

image[i:i+B,j:j+B]=org_block