Teoría de la Medida e Integración 2023

Ejercicios en Grupos

01.marzo.2023

Para cada una de las siguientes funciones $\mu: \mathcal{A} \to \mathbb{R}$, determinar si μ es una medida en el espacio indicado. (En caso afirmativo, probarlo. En caso contrario, argumentar por qué no es medida).

1. Sea X conjunto no vacío, \mathcal{A} una σ -álgebra en X, y sea $\mathbf{x} \in X$ un punto (fijo). Definimos $\mu_{\mathbf{x}} : \mathcal{A} \to \mathbb{R}$ como

$$\mu_{\mathbf{x}}(A) = \begin{cases} 0, & \mathbf{x} \notin A; \\ 1, & \mathbf{x} \in A. \end{cases}$$

2. Sea X conjunto no vacío, \mathcal{A} una σ -álgebra en X, y sea $B \subset X$ un subconjunto (fijo). Definimos $\mu_B : \mathcal{A} \to \mathbb{R}$ como

$$\mu_B(A) = \begin{cases} 0, & A \cap B = \emptyset; \\ 1, & A \cap B \neq \emptyset. \end{cases}$$

3. Sea X conjunto no vacío, \mathcal{A} una σ -álgebra en X, y sean $\mathbf{x}, \mathbf{y} \in X$ dos puntos (fijos), con $\mathbf{x} \neq \mathbf{y}$. Definimos $\mu : \mathcal{A} \to \mathbb{R}$ por

$$\mu(A) = \begin{cases} 0, & \mathbf{x}, \mathbf{y} \notin A; \\ 5, & \mathbf{x} \in A, \mathbf{y} \notin A; \\ 7, & \mathbf{x} \notin A, \mathbf{y} \in A; \\ 12, & \mathbf{x}, \mathbf{y} \in A. \end{cases}$$

4. Sea $X=\mathbb{R}$, $\mathcal{A}=\mathcal{B}(\mathbb{R})$. Definimos μ sobre los intervalos semi-abiertos \mathcal{J} de \mathbb{R} como

$$\mu([a,b)) = b - a.$$

5. Sea $X=\mathbb{R},\ \mathcal{A}=\mathcal{B}(\mathbb{R}),\ \mathrm{y}\ \mathrm{sea}\ f:\mathbb{R}\to\mathbb{R}$ una función monótona no-decreciente. Definimos μ_f sobre los intervalos semi-abiertos \mathcal{J} de \mathbb{R} como

$$\mu_f([a,b)) = f(b) - f(a).$$

6. Sea $X=\mathbb{R},\ \mathcal{A}=\mathcal{B}(\mathbb{R}),\ \mathrm{y}\ \mathrm{sea}\ f:\mathbb{R}\to\mathbb{R}$ una función continua, con la propiedad $\int_{\mathbb{R}}f(t)\,dt=K<\infty.$ Definimos μ_f sobre

los intervalos semi-abiertos
$$\mathcal J$$
 de $\mathbb R$ como
$$\mu_f\bigl([a,b)\bigr)=\int_a^b f(t)\,dt.$$

7. Sea $X=\mathbb{Z}^+$, $\mathcal{A}=\mathcal{P}(\mathbb{Z}^+)$, y sea $0<\alpha<1$. Definimos μ_α sobre los conjuntos unitarios $\{k\}$ como

$$\mu_{\alpha}(k) = \alpha (1 - \alpha)^{k-1}.$$

8. Sea $X = [0, \infty)$, $\mathcal{A} = \mathcal{B}([0, \infty))$. Definimos μ sobre los conjuntos los intervalos de la forma [0, x), $x \ge 0$, mediante

$$\mu([0,x)) = 1 - e^{-x}.$$

9. Sea $S=\mathbb{Z}^+$, $X=S imes\{0,1\}$, y $\mathcal{A}=\mathcal{P}(X)$. Definimos $\mu:\mathcal{A}\to\mathbb{R}$ por

$$\mu(A) = \sum_{(n,t)\in A} 2^{-n}.$$

10. Sea $S = \mathbb{Z}^+$, $X = S \times \{0,1\}$, y $\mathcal{A} = \mathcal{P}(X)$. Para cada $A \in \mathcal{A}$, sea $\pi_1(A) = \{n : (n,t) \in A\}$ la proyección en la primera componente. Definimos $\mu : \mathcal{A} \to \mathbb{R}$ por

$$\mu(A) = \sum_{n \in \pi_1(A)} 2^{-n}.$$