Arquitectura de Computadoras Original 2013, Eduardo Sánchez

Objetivos

- Desarrollar código a base de componentes simples en lenguaje VHDL, que describan pequeños circuitos secuenciales y combinacionales vistos en el teórico y el práctico.
- Utilizar la herramienta GHDL para analizar y "compilar" el código VHDL.
- Desarrollar código VHDL (testbench) que testee el código del circuito.
- Mediante el uso de *gtkwave*, analizar las formas de onda y testear el resultado.
- Aprender a reutilizar código VHDL mediante componentes.

Tarea

La tarea a desarrollar en este laboratorio, consta de la implementación del microprocesador MIPS con *Pipeline*, en su versión más simple, es decir, sin control de *hazards*. Deberán reutilizar la mayoría del código a partir de su versión *single cycle* vista en los prácticos 1 y 2. Se pide que modifiquen el diseño del módulo *datapath* del diseño original de tal modo que se implementen las etapas *fetch*, *decode*, *execute*, *memory* y *writeback*.

Recomendaciones:

Se recomienda <u>fuertemente</u> que realicen pequeñas modificaciones (incrementalmente) al diseño del módulo *datapath*. No deberían agregar código sino redistribuir los componentes que ya están realizando en el *datapath*. Para lograrlo, se recomienda que se dividan las etapas en nuevas entidades según los siguientes diagramas:

Arquitectura de Computadoras Original 2013, Eduardo Sánchez

<u>Antes</u> de agregar *Pipeline*, prueben si el diseño de los módulos funciona correctamente(es decir, conectarlos mediante señales sin pasar por "clock"). Una vez que estén seguros que el diseño se comporta como la versión original, agregarle la división en etapas en el componente "datapath" según el diagrama:

Recuerden que deben agregar las señales de control al pipeline:

Arquitectura de Computadoras Original 2013, Eduardo Sánchez

Código ejemplo

La versión con *pipeline* a entregar, debe ser capaz de correr (al menos) el siguiente programa. Un *software* simple para ejercitar *pipeline* en MIPS, que inicializa los registros \$t0 a \$t7 y luego coloca su valor en memoria RAM (en las direcciones 0x00 a 0x07).

Dirección	Instrucción de	Código para
	MIPS	imem
0x00	addi \$t0, \$0, 0	20080000
0x01	addi \$t1, \$0, 1	20090001
0x02	addi \$t2, \$0, 2	200a0002
0x03	addi \$t3, \$0, 3	200b0003
0x04	addi \$t4, \$0, 4	200c0004
0x05	addi \$t5, \$0, 5	200d0005
0x06	addi \$t6, \$0, 6	200e0006
0x07	addi \$t7, \$0, 7	200f0007
0x08	sw \$t0, 0(\$0)	ac080000
0x09	sw \$t1, 4(\$0)	ac090004
0x0A	sw \$t2, 8(\$0)	ac0a0008
0x0B	sw \$t3, 12(\$0)	ac0b000c
0x0C	sw \$t4, 16(\$0)	ac0c0010
0x0D	sw \$t5, 20(\$0)	ac0d0014
0x0E	sw \$t6, 24(\$0)	ac0e0018
0x0F	sw \$t7, 28(\$0)	ac0f001c

En su *testbench* debe colocar la señal *reset* -> 1 por dos ciclos; correr el programa anterior por al menos 17 ciclos, y luego colocar la señal *dump* -> 1 por tres ciclos, para obtener el archivo con el *dump* de la memoria. Verificar en el archivo de salida que el contenido de las siete primeras posiciones de la memoria contiene su índice (es decir, el contenido de la posición 0 es 0; el contenido de la posición 1 es 1, y así sucesivamente hasta la posición 7).

Elaboración

GHDL es solo una herramienta de simulación muy simple pero existen otras herramientas más complejas que le permiten realizar análisis de tiempos más específicos y rigurosos. Suponga que puede utilizar esas herramientas que le permiten observar que el retardo del *datapath* sin encausar es de *280ns*, mientras que el retardo de la etapa *fetch* es de *50ns*, el de la etapa *decode* es de *70ns*, el de la etapa *execute* es de *50ns*, el de la etapa *memory* es de *90ns*, el de la etapa *writeback* es de *20ns* y que el retardo de los registros entre etapas es de *10ns*. ¿Cuál es el tiempo del ciclo de cauce? ¿Cuál es la ganancia de velocidad con respecto al micro no encauzado?

Arquitectura de Computadoras Original 2013, Eduardo Sánchez

Requisitos del código a entregar

- Las entregas serán a través del mail: arq.famaf@gmail.com. Deberán crear un archivo comprimido (tar, zip, rar, etc.) explicitando el numero de laboratorio y sus integrantes (ApellidoNombre): ej: "lab1_FraireJuan_SanchezEduardo.tar.gz"
- Se deben utilizar los mismos nombres de los componentes de alto nivel pedidos.
- Junto con el código, se deberá entregar un pequeño informe en el cual se explique la
 estructuración del código (entidades de mayor nivel), decisiones de diseño tomadas (si
 las hubiere), dificultades con las que se encontraron y cómo las resolvieron,
 testbenchs, etc.
- El formato de dicho informe queda a elección de ustedes, siempre y cuando sea un formato libre.
- El trabajo es grupal (Max. 3 personas). Todos los integrantes del grupo deberán ser capaces de explicar el código presentado en la fecha de entrega.
- No está permitido compartir código entre grupos.

Entrega de Laboratorio: 4 de Octubre.