2022 年普通高等学校招生全国统一考试

文科数学

注意事项:

- 1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
- 2. 回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号框涂黑.如 需改动,用橡皮擦干净后,再选涂其它答案标号框,回答非选择题时,将答案写在答题卡上. 写在本试卷上无效.
- 3. 考试结束后,将本试卷和答题卡一并交回.
- 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.
- 1. $\# \cap M = \{2,4,6,8,10\}, N = \{x | -1 < x < 6\}, \ \emptyset M \cap N = ($
- A $\{2,4\}$

- B. $\{2,4,6\}$ C. $\{2,4,6,8\}$ D. $\{2,4,6,8,10\}$
- 2. 设(1+2i)a+b=2i, 其中a,b为实数,则()
- A. a = 1, b = -1 B. a = 1, b = 1 C. a = -1, b = 1 D. a = -1, b = -1

- 3. 已知向量 $\vec{a} = (2,1), \vec{b} = (-2,4), \quad 则 \begin{vmatrix} \vec{r} & \vec{r} \\ a \vec{b} \end{vmatrix}$ ()

C. 4

- 4. 分别统计了甲、乙两位同学 16 周的各周课外体育运动时长(单位: h),得如下茎叶图:

甲		Z
6 1	5.	
8530	6.	3
7532	7.	4 6
6421	8.	12256666
4 2	9.	0238
	10.	1

则下列结论中错误的是()

- A. 甲同学周课外体育运动时长的样本中位数为 7.4
- B. 乙同学周课外体育运动时长的样本平均数大于 8
- C. 甲同学周课外体育运动时长大于 8 的概率的估计值大于 0.4
- D. 乙同学周课外体育运动时长大于 8 的概率的估计值大于 0.6

5. 若
$$x$$
, y 满足约束条件
$$\begin{cases} x+y + 2x, \\ x+2y - 4, \\ y + 0, \end{cases}$$
 的最大值是 ()

A. -2

B. 4

C. 8

D. 12

6. 设 F 为抛物线 $C: y^2 = 4x$ 的焦点,点 A 在 C 上,点 B(3,0) ,若 $\left|AF\right| = \left|BF\right|$,则 $\left|AB\right| = ($

A. 2

- B. $2\sqrt{2}$
- C. 3

D. $3\sqrt{2}$

7. 执行下边的程序框图,输出的n= ()

A. 3

B. 4

C. 5

D. 6

8. 如图是下列四个函数中的某个函数在区间[-3,3]的大致图像,则该函数是()

- A. $y = \frac{-x^3 + 3x}{x^2 + 1}$ B. $y = \frac{x^3 x}{x^2 + 1}$ C. $y = \frac{2x \cos x}{x^2 + 1}$ D. $y = \frac{2 \sin x}{x^2 + 1}$

9. 在正方体 $ABCD - A_1B_1C_1D_1$ 中, E, F 分别为 AB, BC 的中点, 则 ()

A. 平面 $B_1EF \perp$ 平面 BDD_1

B. 平面 $B_1EF \perp$ 平面 A_1BD

C. 平面 $B_1EF //$ 平面 A_1AC

- D. 平面 B₁EF / / 平面 A₁C₁D
- 10. 已知等比数列 $\{a_n\}$ 的前 3 项和为 168, $a_2 a_5 = 42$,则 $a_6 = ($
- A. 14

B. 12

- D. 3
- 11. 函数 $f(x) = \cos x + (x+1)\sin x + 1$ 在区间 $[0,2\pi]$ 的最小值、最大值分别为(
- A. $-\frac{\pi}{2}, \frac{\pi}{2}$

- B. $-\frac{3\pi}{2}, \frac{\pi}{2}$ C. $-\frac{\pi}{2}, \frac{\pi}{2} + 2$ D. $-\frac{3\pi}{2}, \frac{\pi}{2} + 2$
- 12. 已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积 最大时, 其高为(

- B. $\frac{1}{2}$
- C. $\frac{\sqrt{3}}{2}$
- D. $\frac{\sqrt{2}}{2}$

- 二、填空题: 本题共 4 小题,每小题 5 分,共 20 分.
- 13. 记 S_n 为等差数列 $\{a_n\}$ 的前n项和. 若 $2S_3 = 3S_2 + 6$,则公差d = 1.
- 14. 从甲、乙等 5 名同学中随机选 3 名参加社区服务工作,则甲、乙都入选的概率为
- 15. 过四点(0,0),(4,0),(-1,1),(4,2)中的三点的一个圆的方程为
- 16. 若 $f(x) = \ln \left| a + \frac{1}{1-x} \right| + b$ 是奇函数,则 $a = _____$, $b = ______$.
- 三、解答题: 共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每 个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
- 17. 记 $\triangle ABC$ 的内角 A, B, C的对边分别为 a, b, c, 已知 $\sin C \sin (A-B) = \sin B \sin (C-A)$.
- (1) 若 A = 2B, 求 C;
- (2) 证明: $2a^2 = b^2 + c^2$
- 18. 如图,四面体 ABCD中, $AD \perp CD$, AD = CD, $\angle ADB = \angle BDC$, E 为 AC 的中点.

- (1) 证明: 平面 BED \(\pi\) 平面 ACD;
- (2) 设 AB = BD = 2, $\angle ACB = 60^\circ$, 点 $F \in BD$ 上,当 $\triangle AFC$ 的面积最小时,求三棱锥 F ABC 的体积.
- 19. 某地经过多年的环境治理,已将荒山改造成了绿水青山. 为估计一林区某种树木的总材积量,随机选取了 10 棵这种树木,测量每棵树的根部横截面积(单位: m^2)和材积量(单位: m^3),得到如下数据:

样本号 i	1	2	3	4	5	6	7	8	9	10	总和
根部横截面积 <i>x</i> _i	0.04	0.06	0.04	0.0	0.08	0.05	0.05	0.07	0.07	0.06	0.6
材积量 y_i	0.25	0.40	0.22	0.5	0.51	0.34	0.36	0.46	0.42	0.40	3.9

并计算得
$$\sum_{i=1}^{10} x_i^2 = 0.038$$
, $\sum_{i=1}^{10} y_i^2 = 1.6158$, $\sum_{i=1}^{10} x_i y_i = 0.2474$.

- (1) 估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
- (2) 求该林区这种树木的根部横截面积与材积量的样本相关系数 (精确到 0.01);
- (3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m².已 知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.

附: 相关系数
$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}, \sqrt{1.896} \approx 1.377$$
.

- 20. 已知函数 $f(x) = ax \frac{1}{x} (a+1) \ln x$.
- (1) 当a = 0时,求f(x)的最大值;
- (2) 若 f(x) 恰有一个零点,求 a 的取值范围.
- 21. 已知椭圆 E 的中心为坐标原点,对称轴为 x 轴、y 轴,且过 A(0,-2) , $B\left(\frac{3}{2},-1\right)$ 两点.
- (1) 求 E 的方程;
- (2) 设过点 P(1,-2) 的直线交 E + M, N 两点,过 M 且平行 + x 轴的直线与线段 + AB 交 + 点 + B 次 + 点 + B 次

 $\overrightarrow{MT} = \overrightarrow{TH}$. 证明: 直线 HN 过定点.

(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.

[选修 4-4: 坐标系与参数方程]

22. 在直角坐标系 xOy 中,曲线 C 的参数方程为 $\begin{cases} x=\sqrt{3}\cos 2t\\ y=2\sin t \end{cases}$, (t 为参数),以坐标原点为极点,x 轴正

半轴为极轴建立极坐标系,已知直线 l 的极坐标方程为 $\rho \sin \left(\theta + \frac{\pi}{3}\right) + m = 0$.

- (1) 写出 l 的直角坐标方程;
- (2) 若 l与 C有公共点,求m的取值范围.

[选修 4—5: 不等式选讲]

- 23. 已知 a, b, c 都是正数,且 $a^{\frac{3}{2}} + b^{\frac{3}{2}} + c^{\frac{3}{2}} = 1$,证明:
- (1) $abc \leq \frac{1}{9}$;

(2)
$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \le \frac{1}{2\sqrt{abc}}$$
;