Autor: Jakub Półtoraczyk

Indeks: 252895

Grupa: E05-36g (środa 17:05-18:45)

Data wykonania: 01.12.20

Spis wybranych parametrów:

Nazwa parametru	Zbiornik nr 1	Zbiornik nr 2
Powierzchnia dna	100 [m²]	100 [m ²]
Szerokość przepływu	2 [m²]	2 [m²]
Maksymalna wysokość wody	0,6906 [m]	0,3781 [m]
Współczynnik liniowości	16,000	14,5455

Ponadto:

a). maksymalna wartość wpływu wody fwe1max = 5 [m³]

b). stała wartość wpływu wody fwe2 = 10% z fwe1max

c). punkty pracy (wpływy wody fwe1) = {0% z fwe1max, 50 % z fwe1max, 90 % z fwe1max}

d). skok na danym wpływie (du1 lub du2) = 10% z fwe1max

Schematy blokowe z Simulinka:

a). schemat dla dokładnego modelu kaskady:

b). schemat dla zlinearyzowanego modelu kaskady (bloczki całkujące):

c). schemat dla równań stanu kaskady:

d). schemat dla transmitancji kaskady:

Wykresy:

a). poziom wody w zbiorniku nr 1 w różnych punktach pracy dla skoku na fwe1– model dokładny i zlinearyzowany (bloczki całkujące):

b). poziom wody w zbiorniku nr 2 w różnych punktach pracy dla skoku na fwe1– model dokładny i zlinearyzowany (bloczki całkujące):

c). poziom wody w zbiorniku nr 1 w różnych punktach pracy dla skoku na fwe1– model zlinearyzowany (bloczki całkujące), równania stanu oraz transmitancje:

d). poziom wody w zbiorniku nr 2 w różnych punktach pracy dla skoku na fwe1 – model zlinearyzowany (bloczki całkujące), równania stanu oraz transmitancje:

e). przyrost wody w zbiorniku nr 1 w różnych punktach pracy dla skoku na fwe1 – model dokładny i zlinearyzowany (bloczki całkujące):

f). przyrost wody w zbiorniku nr 2 w różnych punktach pracy dla skoku na fwe1 – model dokładny i zlinearyzowany (bloczki całkujące):

g). poziom wody w zbiorniku nr 1 w danym punkcie pracy dla skoku na fwe2 – model zlinearyzowany (bloczki całkujące), równania stanu oraz transmitancje:

h). poziom wody w zbiorniku nr 2 w danym punkcie pracy dla skoku na fwe2 – model zlinearyzowany (bloczki całkujące), równania stanu oraz transmitancje:

Obliczenia parametrów dla modelu zlinearyzowanego:

a). maksymalna wysokość wody w zbiorniku nr 1:

```
h1max = (fwe1max)^2/(2*g*(Aw1)^2) + h2max;
```

b). maksymalna wysokość wody w zbiorniku nr 2:

```
h2max = ((fwe1max + fwe2)^2)/(2*g*(Aw2)^2);
```

c). współczynnik liniowości dla zbiornika nr 1:

```
a1 = Aw1*sqrt(2*g*(h1max-h2max))/(h1max-h2max);
```

d). współczynnik liniowości dla zbiornika nr 2:

```
a2 = Aw2*sqrt(2*g*h2max)/h2max;
```

Wnioski:

- 1). Zmiana poziomu wody w dziedzinie czasu w zbiornikach nr 1 oraz nr 2 dla różnych punktów pracy (niezależnie czy skok podawany jest na fwe1 czy na fwe2) jest taka sama dla modelu zlinearyzowanego (bloczki całkujące), równań stanu oraz transmitancji kaskady wykresy {c,d,g,h}.
- 2). Przyrost wody w zbiornikach nr 1 oraz nr 2 w dziedzinie czasu dla modelu zlinearyzowanego (bloczki całkujące) jest identyczny niezależnie od punktu pracy, natomiast model dokładny charakteryzuje się zróżnicowaniem w przyroście wody w odpowiednich zbiornikach w dziedzinie czasu dla różnych punktów pracy– wykresy {e,f}.
- 3). Reakcje na odpowiedni skok modelu dokładnego i zlinearyzowanego (bloczki całkujące) kaskady są różne: największe podobieństwo można zaobserwować dla punktów pracy wybranych blisko maksymalnej i minimalnej wartości przepływu fwe1max wykresy {a,b}.