Drell-Yan $Z' \rightarrow \tau \tau$

Carlos Avila¹, **Diego Barbosa**¹, John Cumalat², Brenda Fabela Enriquez⁴, Andrés Flórez¹, Jorge Fraga¹, Alfredo Gurrola⁴, Teruki Kamon⁵ Jose Ruiz³, Amal Sarkar, Nicolas Schonbeck², Savanna Starko⁴

Universidad de Los Andes¹ (CO) University of Colorado Boulder² Universidad de Antioquia³ (CO) Vanderbilt University⁴ Texas A&M University⁵

Exotica Workshop 2020

October 28, 2020

Signal samples

In this analysis we consider $Z' \to \tau_{\mu} \tau_{h}$, $Z' \to \tau_{e} \tau_{h}$ and $Z' \to \tau_{h} \tau_{h}$

The relevant parameters for the MC signal samples are:

- Masses: 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000, 3500, 4000 GeV.
- Couplings to light and heavy fermions (g_I = g_h): 0.1, 0.5, 1.0, 6.0,16.
- Coupling to vector bosons: suppressed.
- All the signal samples have been recently produced.

Signal Region Selection Criteria for $Z' o au_\ell au_h$

The selection criteria for $Z' \to \tau_\ell \tau_h$ are listed below:

Trigger $(\tau_{\mu}\tau_{h})$	HLT_lsoMu24 (2016), HLT	_lsoMu27 (2017,2018)
Trigger $(\tau_e \tau_h)$	HLT_Ele27_WPTight_Gsf (2016), HLT_Ele35_WF	۲
$\ell=\mu$ or e	$N(\ell)$	= 1	
	ID	Tight	
	$p_T(\mu/e)$	(35/55) GeV	
	$ \eta(\ell) $	< 2.1	
	Relative Isolation (μ)	< 0.15	Ç
Tau	$N(\tau_h)$	= 1	
	$p_T(\tau_h)$	> 20 GeV	
	$ \eta(\tau_h) $	< 2.1	
	DeepTauID Isolation*	Tight	
	Prongs	1 or 3 hp	
$\ell - \tau$ pair	$Q(\ell)Q(au)$	< 0 (OS)	
	$\cos \Delta \phi(\ell, au_h)$	< -0.98	-
b-jets**	N(b-jets)	= 0	(
leading ℓ	$\cos \Delta \phi(p_T^{\text{lead-}\ell}, E_T^{\text{miss}})$	< -0.95	
· ·	$m_T(p_T^{\text{lead-}\ell}, E_T^{\text{miss}})$	> 150 GeV	
Dijet veto	N(jet [†] pairs) passing VBF [‡]	=0 Or	th

Orthogonal to the VBF Z' analysis

^{*} TauIDAlgorithm: Tau_idDeepTau2017v2p1

^{**}b-jet: $p_T >$ 30, $|\eta| <$ 2.4 GeV with CSV medium (2016), DeepCSV tight (2017), DeepF tight (2018)

[†] Jets: $p_T > 30$, $|\eta| < 5$ GeV with Loose ID (2016), Tight ID (2017,2018)

 $^{^{\}ddagger}$ VBF events: $|\eta(jj)| < 3.8, m(jj) > 300 \, \mathrm{GeV}$

$t ar{t}$ Control Regions for $Z' o au_{\mu} au_{h}$ and $Z' o au_{e} au_{h}$

- To obtain the $t\bar{t}$ CR we require $N(b\text{-jets}) \ge 1$.
- The $t\bar{t}$ distributions for $\tau_{\mu}\tau_{h}$ (left) and $\tau_{e}\tau_{h}$ (center and right) have the scale factor applied.

<u>Drell-Yan Control Regions for $Z' \to \tau_e \tau_h$ and $Z' \to \tau_\mu \tau_h$ </u>

To obtain the Drell-Yan CR for the $\tau_l \tau_h$ channels we require the following cuts:

$$m_T(p_T^{\text{lead-}\ell}, E_T^{ ext{miss}}) < 150 \, \text{GeV}$$

 $70 < m_{rec}(\ell, au_h, \Delta p_T) < 110 \, \text{GeV}$

Process	Events (2016)
W+jets	626.4 ± 123.0
Drell-Yan	2388.3 ± 59.3
ttbar	5.7 ± 1.5
SingleTop	1.3 ± 0.5
Diboson	10.0 ± 1.3
Total Back.	3031.7 ± 136.6
Data	2892
Purity	79%
Scale Factor	0.94 ± 0.07

Process	Events (2017)
W+jets	846.1±180.8
Drell-Yan	3526.1 ± 100.0
tīt	16.5 ± 1.0
SingleTop	3.2 ± 0.8
Diboson	21.5 ± 2.2
TotalBack.	4413.5±206.7
Data	4077
Purity	80%
Scale Factor	0.90 ± 0.07

- 70 75 80 0	$m_{rec}(\mu, \tau, \Delta p_T)$ [GeV]	
Process	Events (2017)	
W+jets	846.1±180.8	
Drell-Yan	3526.1 ± 100.0	
tīt	16.5 ± 1.0	
SingleTop	3.2 ± 0.8	
Diboson	21.5 ± 2.2	
TotalBack.	4413.5±206.7	
Data	4077	
Purity	80%	
Scale Factor	0.90 ± 0.07	

ts (2018)
6±240.1
6 ± 147.8
0±1.5
3±1.2
2±1.5
2±281.9
5600
34%
±0.06

• For 2017 and 2018 for the $\tau_e \tau_h$ channel we cannot obtain a DY CR since $p_T(e) > 55$ GeV.

QCD Estimation Strategy for $Z' o au_{\mu} au_{h}$ and $Z' o au_{e} au_{h}$

We estimate QCD in a data-driven way for the $\tau_l \tau_h$ channels using the ABCD method.

$$N_{SR}^{QCD} = R_{OS/LS} \cdot (N_B^{\text{Data}} - N_B^{\text{non-QCD MC}})_{LS}$$

where

$$R_{OS/LS} = \frac{(N_C^{\text{Data}} - N_C^{\text{non-QCD MC}})_{OS}}{(N_D^{\text{Data}} - N_D^{\text{non-QCD MC}})_{LS}}$$

W+jets Control Region for $Z' o au_{\mu} au_{h}$

Using the following kinematic cuts a control region for W+Jets has been obtained:

$$m_T(p_T^{\mathrm{lead-}\ell}, E_T^{\mathit{miss}}) <$$
 150 GeV $m_{rec}(\mu, au_h, \Delta p_T) <$ 250 GeV au anti-Isolation

$N_{SR}^{W+Jets} = SF$	· N _{SR}
------------------------	-------------------

Signal Region Selection Criteria for $Z' \to \tau_h \tau_h$

Tau $N(\tau_h, \tau_h)$ ≥ 1	
$N(\tau_h)$ = 2	
$p_T(\tau_h)$ > 70 G	ieV
$ \eta(\tau_h) $ < 2.1	
DeepTauID Isolation* Tight	
Prongs 1 or 2 o	r 3 hp
$Q(\tau_1)Q(\tau_2)$ < 0 (OS	S)
b-jets** $N(b$ -jets) = 0	
Topological $\cos \Delta \phi(\tau_1, \tau_2)$ < -0.9	95
Selections $ \cos \Delta \phi(p_T^{\text{lead-}\tau}, E_T^{\text{miss}}) > 0.90$	
E _T ^{miss} > 30 G	ieV

Drell-Yan control region cuts:

Baseline Cuts	Value
$N(\tau)$	=2
$m(\tau, \tau)$	[0, 100] GeV
E _T ^{miss}	< 30 GeV

Reconstructed invariant mass for 2016.

Reconstructed invariant mass for 2018.

 $\mathsf{DY}\, Z' \,\to\, \tau\,\tau$

QCD Data-Driven Estimation Strategy for $Z' o au_h au_h$

We estimate QCD in a data-driven way for the $\tau_h \tau_h$ channel using the ABCD method.

$$N_{SR}^{QCD} = R_{OS/LS} \cdot (N_B^{\text{Data}} - N_B^{\text{non-QCD MC}})_{LS}$$

The transfer factor $(R_{OS/LS})$ from LS to OS CRs is defined as

$$R_{OS/LS} = \frac{(N_B^{\text{Data}} - N_B^{\text{non-QCD MC}})_{OS}}{(N_D^{\text{Data}} - N_D^{\text{non-QCD MC}})_{LS}}$$

QCD data-driven estimation done for the three years

Summary

- We have optimized our selection criteria for best signal significance.
- We have implemented the DeepTau ID algorithm as requested.
- \bullet The background estimation for all channels is 90% completed.
- The work on the three different channels has been documented in the analysis note AN-20-134 (AN-20-134 link here) and it has been sent to the conveners.
- We have a dedicated Twiki page for the analysis. (Twiki link here)
- All the signal samples were produced.
- We expect to converge with the analysis before Moriond 2021.

Backup Slides

Appendix A: Data and MC samples

DATA SAMPLES

Muon: /SingleMuon/Run*_*Nano25Oct2019*/NANOAOD

*2016(B to H), *2017(B to F), *2018(A to D)

Electron: /SingleElectron/Run*_*Nano25Oct2019*/NANOAOD

*2016(B to H), *2017(B to F)

Tau: /Tau/Run*_*Nano25Oct2019*/NANOAOD

*2016(B to H), *2017(B to F), *2018(A to D)

MC SAMPLES (Nano25Oct2019 for 2016, 2017 & 2018)

Drell-Yan DY+Jets HT-Binned (MG aMCatNLO MLM)

W+Jets W+Jets HT-Binned (MG aMCatNLO MLM)

tt TT Semi-leptonic, Di-leptonic and Hadronic (PowhegV2 & Pythia8)

Single top Single top (top/antitop 4f/5f inclusiveDecays) (PowhegV2 & MadSpin)

Diboson WZ, ZZ, WW (Pythia8)

Appendix C: Deep Tau ID Efficiencies

Figure: 2016 Deep Tau ID Efficiencies for Z+Jets

Figure: 2017 Deep Tau ID Efficiencies for Z+Jets

Figure: 2018 Deep Tau ID Efficiencies for Z+Jets

- We compare here the Deep Tau ID Efficiencies for the three years in question (2016, 2017, and 2018) as a function of $p_T(\tau_h^{reco})$ for the various isolations used in this analysis (ranging from VVLoose to VVTight).
- These plots demonstrate a significant improvement in the tracking system after the pixel upgrade for years 2017 and 2018. This could partly explain why QCD is the dominant background in 2016 whereas DY+Jets is the dominant background in more recent years for this channel: particularly at low p_T, there is improved Tau ID Efficiency for 2017 and 2018, which could lead to fewer QCD events than in 2016.

QCD for $Z' o au_{\mu} au_{h}$ and $Z' o au_{e} au_{h}$ - Transfer Factors

CR	Events	Background	QCD Purity
В	392	17.7 ± 6.4	95%
С	352	37.6 ± 27.8	89%
D	211	48.6 ± 34.8	78%

 \bullet The transfer factor obtained for the $\tau_{\mu}\tau_{h}$ is

$$R_{OS/LS} = \frac{N_{C,OS}^{QCD}}{N_{D,LS}^{QCD}} = 1.44 \pm 0.19$$

CR	Events	Background	QCD Purity
В	1357	662.3 ± 105.0	51%
С	3684	2191.2 ± 184.5	41%
D	2143	724±116.1	62%

ullet The transfer factor obtained for the $au_e au_h$ is

$$R_{OS/LS} = \frac{N_{C,OS}^{OCD}}{N_{D,LS}^{OCD}} = 1.10 \pm 0.18$$