K 11/3

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ

1 Свободные колебания

- Все к.с. имеют ПУР
- При вывед. из ПУР $\Longrightarrow F_{pes}$ к ПУР
- ПУР вследствие инертности
- $F_{mp} \longrightarrow 0$

~	физ.	величины:	$x \mid$	постоян
			F	величині
			a	

$$T$$
 - период u - частота $f(колеб. \, системы)
 X_{\scriptscriptstyle M}$ - амплитуда u_0 - цикличная частота $f(E_0)$

(2) Гармонические колебания

$$x'' \sim -x$$
 (по опред.) $x = X_{\scriptscriptstyle \mathcal{M}} \cdot \cos(\omega_0 t + arphi_0)$

 $(\omega_0 t + \varphi_0)$ - фаза - величина, стоящая под знаком соѕ или sin уравнения гармонич. колебания, и показывающая, какая доля периода прошла от начала колебания

$$\omega_0 T = 2\pi \Rightarrow \omega_0 = rac{2\pi}{T} = 2\pi
u$$

③ Скорость и ускорение при колебательном движении

$$egin{aligned} x &= X_{_{M}} \cdot \cos \omega_{0} t \ v &= x' = -X_{_{M}} \cdot \omega_{0} \cdot \sin \omega_{0} t = \omega_{0} \cdot X_{_{M}} \cdot \cos(\omega_{0} t + rac{\pi}{2}) \ a &= v' = -X_{_{M}} \cdot \omega_{0} \cdot \omega_{0} \cdot \cos \omega_{0} t = \omega_{0}^{2} \cdot X_{_{M}} \cdot \cos(\omega_{0} t + \pi) \end{aligned} egin{aligned} a &= -\omega_{0}^{2} x \ x, v, a \end{aligned}$$

примечание

• ПУР — Положение Устойчивого Равновесия

4) Груз на пружине

$$egin{align} mec{a} &= ec{F}_y + mec{g} + ec{N} \ x : ma &= F_y \ a &= rac{F_y}{m} = rac{-kx}{m} = -rac{k}{m}x \ a &\sim -x \ rac{k}{m} &= \omega_0^2 = rac{4\pi^2}{T^2} \Rightarrow oxedownote{T} = 2\pi\sqrt{rac{m}{k}} \ \end{aligned}$$

(5) Математический маятник

$$egin{aligned} m(ec{a}_{ au} + ec{a}_{u}) &= mec{g} + ec{Q} \ x : m_{t}a_{ au} &= m_{t}g\sinlpha \ a_{ au} &= grac{|x|}{l} = -rac{g}{l}x \ \downarrow & \downarrow \ (lpha
ightarrow 0 \Rightarrow x \perp l) & (ec{a} \uparrow \downarrow ec{x}) \ a \sim -x \ rac{g}{l} &= \omega_{0}^{2} = rac{4\pi^{2}}{T^{2}} \Rightarrow \boxed{T = 2\pi\sqrt{rac{l}{g}}} \end{aligned}$$

6 Превращение энергии при колебаниях

$$E_p
ightarrow E_k
ightarrow E_p
ightarrow \cdots$$
 $egin{array}{c} m v_{_M}^2 & k X_{_M}^2 \ \hline 2 & 2 & \end{array}$

7 Вынужденные колебания

- Разрушение мостов
- Вибрация фундаментов, станков, самолет. крыльев
- Частотомер (+)

примечание

 $x_{\scriptscriptstyle\mathcal{M}}$

• ------