

# **FEBio Binary Database Specification**

version 1.0 (beta)

Last updated: September 14, 2011

#### **Contact address**

Musculoskeletal Research Laboratories, University of Utah 72 S. Central Campus Drive, Room 2646 Salt Lake City, Utah

#### Website

MRL: <a href="http://mrl.sci.utah.edu">http://mrl.sci.utah.edu</a>

FEBio: http://mrl.sci.utah.edu/software/febio

#### **Forum**

http://mrl.sci.utah.edu/forums/

Development of the FEBio project is supported in part by a grant from the U.S. National Institutes of Health.



# **Table of Contents**

| 1 | Int | troduction                  | 3  |
|---|-----|-----------------------------|----|
| 2 |     | ock structure               |    |
| _ | 2.1 | Overview                    |    |
|   | 2.2 | Parsing the FEBio plot file |    |
| 3 |     | oot Section                 |    |
| 4 |     | eader Section               |    |
| 5 |     | ctionary Section            |    |
| 6 |     | aterials Section            |    |
| 7 |     | cometry Section             |    |
|   | 7.1 | Node Section                |    |
|   | 7.2 | Domain Section.             | 8  |
|   | 7.3 | Surface Section             |    |
| 8 | Sta | ate Section                 |    |
|   | 8.1 | State Header                | 10 |
|   | 8.2 | State Data Section          |    |
| 9 | AF  | PPENDIX: Tag Reference      |    |

### 1 Introduction

This document describes the structure of the FEBio binary database (that is, the FEBio plot file format), which stores the results of an FEBio analysis. The FEBio binary database format is both self-describing and extendible. A user can understand the contents of the file by simply parsing the block structure of the file. The file format is made extendible by providing an abstract layer between the data and the file system. This layer defines the file structure as a hierarchy of data blocks, where each block is identified by a unique number. The result is that each file is now structured similarly as a file folder. Each block can be viewed as a file in the folder and each branch in the hierarchy as a sub-folder.

The database consists of five parts: the *header* contains some general info that may be useful for parsing the rest of the file; the *dictionary* presents a textual description for each data field in the file. This can be used to identify the contents of each data field; the *materials* section defines the different materials that are used in the mode; the *geometry* section defines the geometry of the model; and finally, the *state* sections contain the actual data or results for the field variables.

The following sections describe the details of the database format. In the next section, the block-structure of the file is explained. The sections thereafter describe the different parts of the database.

## 2 Block structure

#### 2.1 Overview

The FEBio binary database uses an abstract layer to communicate with the file system. This achieves two goals. The first is that the content of a file becomes independent of the file system that wrote the file. Big endian systems can read files created with small endian systems and vice versa. The second goal is that the data is now stored in a hierarchical structure which is easy to search and modify. This means that future additions and changes can be made fairly easily without losing backward compatibility. In addition, the self-describing feature of the format even allows for some forward compatibility.

As mentioned above, the file is structured as a hierarchy of blocks. Each block consists of three fields: a DWORD<sup>1</sup> identifier, followed by a DWORD containing the size of the chunk in bytes (including the two first DWORD's) and then the actual data.

<sup>&</sup>lt;sup>1</sup> a DWORD is a "double word" meaning an unsigned integer of 4 bytes.

| ID tag | size tag | data/child blocks |
|--------|----------|-------------------|
| DWORD  | DWORD    |                   |

Each block in the plot file consists of three fields: a DWORD with an identifier, a DWORD containing the size of the block and finally the data of the block, which can be child blocks.

This data may be either numeric data (such as the data of a field variable) or child blocks. If the block has children, it is referred to as a *branch*. If the block only contains numeric data, it is referred to as a *leaf*.

## 2.2 Parsing the FEBio plot file

Although the FEBio plot file in essence is a hierarchy of blocks as described above, there are a few more caveats that are important for parsing the FEBio file. The first DWORD of the file is a tag that identifies the FEBio plot file.

| Tag   | ID         | description          |
|-------|------------|----------------------|
| FEBIO | 0x00464542 | FEBio identifier tag |

Parsers should read this number and use it to identify whether the file is indeed a proper FEBio plot file. If the value differs, then that means that the file is either not a valid plot file, or that the endianess of the system that wrote the file is different than that of the system that is reading the file. In the latter case, a byte swap will be necessary when reading data from the file.

After the FEBio tag, the contents of the file follows, organized in the hierarchical block structure mentioned above. At the highest level, the plot file has a single *root* block, followed b a series of *state* blocks.

| Tag   | <i>ID</i>  | description                                          |
|-------|------------|------------------------------------------------------|
| ROOT  | 0x01000000 | root block of FEBio plot file                        |
| STATE | 0x02000000 | state block containing results of a single time step |

After the *root* block, the *state* blocks follow. There will be one *state* block for each time step in the FEBio plot file. Note that these blocks are not child blocks of the *root* block. In the following figure, the high level structure of the FEBio plot file is depicted for a file that has two *state* blocks.



Example structure for a plot file containing a root section and two data sections. Each section is composed of three fields. A DWORD containing the section ID, followed by a DWORD containing the size of the section block and finally the actual data (which may be child blocks).

As explained above, the first DWORD will be the FEBio identifier. Then, three blocks follow. The first block in the file will always be the ROOT block, which will contain the header, dictionary, materials and geometry definitions. The final two blocks are *state* blocks which will contain the actual results. Each block has three fields. The first field is a DWORD, identifying the section. For the first block, this will be ROOT and for the other blocks this will be STATE. The next DWORD is the size of the entire block (including the ID and SIZE fields). Finally, the actual data will follow which for the ROOT and STATE blocks will contain child blocks.

## 3 Root Section

The ROOT section is the first block in the file. This block contains the *header*, *dictionary*, *materials* and *geometry* sections as child blocks.

| Tag        | ID         | description                     |
|------------|------------|---------------------------------|
| HEADER     | 0x01010000 | contains the header section     |
| DICTIONARY | 0x01020000 | contains the dictionary section |
| MATERIAL   | 0x01030000 | contains the material section   |
| GEOMETRY   | 0x01040000 | contains the geometry section   |

These sections will be detailed below.

## 4 Header Section

The first section of the *root* block is the *header* section. It stores the following data:

| Tag     | ID         | description                | size  |
|---------|------------|----------------------------|-------|
| VERSION | 0x01010000 | version of the file format | DWORD |
| NODES   | 0x01010001 | number of nodes in model   | DWORD |

Currently, the VERSION will always be 0x0001. The NODES field contains the number of nodes in the finite element mesh.

## 5 Dictionary Section

When running a FEBio analysis, FEBio will store the values of certain user-selected variables (e.g. stress, temperature, fluid pressure, etc.) to the plot file. In order for a parser to know which variables were written, it needs to read the *dictionary* section. This section stores a list of variables, including their names, which are stored in the plot file. Specifically, three attributes are stored for each data variable: a name that provides a description of the data, the data type (scalar, vector, tensor) and the storage format. In addition, the variables are grouped by category. Data variables can be defined for materials, node sets, domains (element sets) and surfaces. In addition, global variables (which are not associated with any part of the model) can also be defined. Each of these categories has their own sub-section in the *dictionary*.

| Tag           | ID         | description                              |
|---------------|------------|------------------------------------------|
| GLOBAL_DATA   | 0x01021000 | lists global data in model               |
| MATERIAL_DATA | 0x01022000 | lists data associated with each material |
| NODESET_DATA  | 0x01023000 | lists data associated with the node sets |
| DOMAIN_DATA   | 0x01024000 | lists data associated with domains       |
| SURFACE_DATA  | 0x01025000 | lists data associated with surfaces      |

Note that all of these sections are optional. For example if a model does not define material data, that section will not be part of the plot file.

Each of these sub-sections defines a list of dictionary items defined by the following tag.

| Tag             | ID         | description                  |
|-----------------|------------|------------------------------|
| DICTIONARY_ITEM | 0x01020001 | beginning of dictionary item |

Each dictionary item contains three fields.

| Tag         | ID         | description                 | size   |
|-------------|------------|-----------------------------|--------|
| ITEM_TYPE   | 0x01020002 | type of data                | DWORD  |
| ITEM_FORMAT | 0x01020003 | storage format of data      | DWORD  |
| ITEM_NAME   | 0x01020004 | textual description of data | CHAR64 |

| The type of | the data | can be | any of the | following | values. |
|-------------|----------|--------|------------|-----------|---------|
|             |          |        |            |           |         |

| ITEM_TYPE | VALUE | description                                           |
|-----------|-------|-------------------------------------------------------|
| FLOAT     | 0     | single precision (s.p.) floating point                |
| VEC3F     | 1     | 3D vector of s.p. floats                              |
| MAT3FS    | 2     | symmetric 2 <sup>nd</sup> order tensor of s.p. floats |

As explained below, data will be stored for different *regions* of the mesh, where a region can be a *node set*, a *surface* or a *domain* (element set). A *region* is composed of *items* where an item is a single shape in the region. For node sets, an item will refer to a node, for surfaces this will be a facet and for domains an item will refer to an element. The storage format defines how many values are written for each region and how the values relate to the geometry of the region or items. The following values are currently defined.

| ITEM_FMT VALUE |   | description                           |
|----------------|---|---------------------------------------|
| NODE           | 0 | one value for each node of the region |
| ITEM           | 1 | one value for each item               |
| MULT           | 2 | one value for each node for each item |

The easiest format to understand is the *ITEM* format which simply stores one value for each item of the region. The *MULT* format defines a value for each node of each item. For example, for a surface of quads, the data will contain four values for each facet, one for each of the four nodes. The *NODE* format stores a single value for each *node* of the *region*. Each type of region (node set, surface or domain) implicitly also defines a set of nodes, namely all the nodes that are part of that region. With the *NODE* format, the user defines a single value for each of the nodes in this implicit node set. This will be explained in more detail below in the state section.

Note that the storage formats are only important for surfaces and domains. For other categories, all format are essentially equivalent, and can safely be ignored.

## 6 Materials Section

The Materials section lists the materials defined in the plot file. For each material, a MATERIAL section is written.

| Tag      | ID         | description                   |
|----------|------------|-------------------------------|
| MATERIAL | 0x01030001 | beginning of material section |

Then, for each material the following fields are written.

| Tag      | ID         | description      | size   |
|----------|------------|------------------|--------|
| MAT_ID   | 0x01030002 | ID of material   | DWORD  |
| MAT_NAME | 0x01030003 | Name of material | CHAR64 |

The *ID* is a unique number that will be used in the domain definitions to refer to this material. The *NAME* is a textual description that can be used by the post-processor to present the material to the user.

## 7 Geometry Section

The *Geometry* section defines the geometry of the model and its decomposition into separate regions. A region can be a *node set*, a *surface* (i.e. facet set) or a *domain* (element set). The geometry section is defined by three sub-sections.

| Tag             | ID         | description                  |
|-----------------|------------|------------------------------|
| NODE_SECTION    | 0x01041000 | beginning of node section    |
| DOMAIN_SECTION  | 0x01042000 | beginning of domain section  |
| SURFACE_SECTION | 0x01043000 | beginning of surface section |

#### 7.1 Node Section

Currently, the node section has one data field, namely the NODE\_COORDS field.

| Tag         | ID         | description       | size      |
|-------------|------------|-------------------|-----------|
| NODE_COORDS | 0x01041001 | nodal coordinates | 3*N*FLOAT |

This data field stores the nodal coordinates for all the nodes in the mesh. The size of the field is defined by 3\*N\*FLOAT where N is the number of nodes in the mesh (as defined in the header section) and FLOAT is the size of a single precision floating point number (4 bytes). The order of the data is,

| v 1         | 1   | - 1 | <sub>v2</sub>            | 112 | <sub>7</sub> 2 |       | νN              | <b>λ</b> /         | -λ/   |
|-------------|-----|-----|--------------------------|-----|----------------|-------|-----------------|--------------------|-------|
| $\lambda I$ | y 1 | ζ,1 | $\mathcal{X}\mathcal{L}$ | yZ  | 2,2            | • • • | $\mathcal{X}IV$ | <i>y1</i> <b>v</b> | Z,1 V |

Here, x[i] is the x-coordinate of node i and similarly for y and z.

#### 7.2 Domain Section

The Domain section lists all domains (i.e. element sets) in the mesh. Each domain is identified by a DOMAIN section.

| Tag    | ID         | description                   |
|--------|------------|-------------------------------|
| DOMAIN | 0x01042100 | beginning of a domain section |

Each domain is defined by two sub-sections, a domain header and an element list.

| Tag           | <i>ID</i>  | description                  |
|---------------|------------|------------------------------|
| DOMAIN_HEADER | 0x01042101 | beginning of domain header   |
| ELEMENT_LIST  | 0x01042102 | list of element connectivity |

The *domain header* contains the following data fields.

| Tag       | ID         | description        | size  |
|-----------|------------|--------------------|-------|
| ELEM_TYPE | 0x01042102 | element type       | DWORD |
| MAT_ID    | 0x01042103 | material ID        | DWORD |
| ELEMENTS  | 0x01042104 | number of elements | DWORD |

The *ELEM\_TYPE* defines the type of elements stored in the domain. It can have one of the following values.

| ELEM_TYPE | VALUE | description                        |
|-----------|-------|------------------------------------|
| HEX8      | 0     | 8-node hexahedron solid element    |
| PENTA6    | 1     | 6-node pentahedron solid element   |
| TET4      | 2     | 4-node tetrahedron solid element   |
| QUAD4     | 3     | 4-node quadrilateral shell element |
| TRI3      | 4     | 3-node triangular shell element    |
| TRUSS2    | 5     | 2-node linear truss element        |

The *MAT\_ID* correspond to the ID of one of the materials defined in the *Materials* section.

The *ELEMENTS* field is the number of elements in the domain.

After the domain header the element list follows. For each element it defines an ELEMENT data field.

| Tag     | ID         | description        | size         |
|---------|------------|--------------------|--------------|
| ELEMENT | 0x01042201 | element data field | DWORD*(NE+1) |

If NE is the number of nodes per element, then this data field stores NE+1 DWORDS. The first DWORD is the element ID, a unique number that identifies the element. The following NE DWORD's define the element connectivity.

#### 7.3 Surface Section

The *surface* section defines the surfaces of the mesh for which data is stored in the plot file. Each surface begins with a SURFACE section.

| Tag     | ID         | description                    |
|---------|------------|--------------------------------|
| SURFACE | 0x01043100 | beginning of a surface section |

The surface section follows a similar structure as the domain section, namely a *surface header* followed by a *facet list*.

| Tag            | ID         | description                 |
|----------------|------------|-----------------------------|
| SURFACE_HEADER | 0x01043101 | beginning of surface header |
| FACET_LIST     | 0x01043200 | facet connectivity list     |

The surface header contains the following data fields.

| Tag        | ID         | description      | size  |
|------------|------------|------------------|-------|
| SURFACE_ID | 0x01043102 | surface ID       | DWORD |
| FACETS     | 0x01043103 | Number of facets | DWORD |

The SURFACE\_ID is a unique identifier and FACETS is the number of facets in the surface.

The FACET\_LIST follows the header and contains a FACET data field for each facet in the surface.

| Tag   | ID         | description      | size    |
|-------|------------|------------------|---------|
| FACET | 0x01043201 | facet data field | DWORD*5 |

The first DWORD is a unique identifier (which currently should be ignored), following by four numbers defining the facet connectivity. For triangular facets, the third node should be repeated.

## 8 State Section

The *state* section is where all the actual data is stored. FEBio will store one *state* section for each time step in the analysis. Each state defines two sub-sections, namely the *state header* and the *state data*.

| Tag          | ID         | description          |
|--------------|------------|----------------------|
| STATE_HEADER | 0x02010000 | state header section |
| STATE_DATA   | 0x02020000 | state data section   |

#### 8.1 State Header

The STATE\_HEADER contains the following data field.

| Tag        | ID         | description         | size  |
|------------|------------|---------------------|-------|
| STATE_TIME | 0x02010002 | time stamp of state | FLOAT |

#### 8.2 State Data Section

The STATE\_DATA section stores the data for this state. It is composed of several subsections where each section corresponds to a data category as defined in the dictionary. The following sub-sections can thus be defined.

| Tag           | ID         | description                  |
|---------------|------------|------------------------------|
| GLOBAL_DATA   | 0x02020100 | define global data section   |
| MATERIAL_DATA | 0x02020200 | define material data section |
| NODE_DATA     | 0x02020300 | define nodal data section    |
| DOMAIN_DATA   | 0x02020400 | define domain data section   |
| SURFACE_DATA  | 0x02020500 | define surface data section  |

## Note that FEBio currently doesn't write global data and material data sections.

Each of these sub-sections follows a similar structure. For each of the variables defined in the dictionary corresponding to the data category, a STATE\_DATA section is defined.

| Tag        | ID         | description            |
|------------|------------|------------------------|
| STATE_DATA | 0x02020001 | defines a data section |

Each state data section has two fields.

| Tag       | ID         | description  | size  |
|-----------|------------|--------------|-------|
| REGION_ID | 0x02020002 | ID of region | DWORD |
| DATA      | 0x02020003 | actual data  | ?     |

The REGION\_ID refers to the ID of the region for which this data variable is defined.

It is important to note that for node sets, a value of zero for the REGION\_ID refers to the "master" node set which is the set containing all the nodes in the model. This node set is defined implicitly and will not be part of the list of node sets.

The DATA field contains the actual data. The size of this field is variable and is determined by the data type and storage format as defined in the dictionary as well as the number of items in the corresponding region. For example, for a domain that has NE elements, the size of the DATA field, using a type of FLOAT and a storage format of FMT\_ITEM will be NE\*FLOAT.

When a surface or domain stores its data in the FMT\_NODE format, then the parser needs to figure out how many nodes are implicitly defined by the region and what the node order is. An implicit nodeset can be constructed by simple enumeration: each item of the region lists the nodes its visits and no nodes can be visited more than once. So for example, consider the surface of three faces shown in the figure below.



Example illustrating enumeration algorithm that defines the node ordering for the implicit node set defined by a surface.

Each facet has four nodes. The first four nodes of the implicit node set are simply the four nodes of the first element. The second element skips its first node, since it is already visited, add its second node (which becomes node 5) and its third (node 6) and skips its fourth node. Similarly, the third element adds its second (node 7) and third (node 8) and skips its third and fourth. Thus, this surface defines an implicit node set containing 6 nodes in the order as shown in the figure. Consequently, if this surface stores its data in FMT\_NODE format, then the corresponding data section will contain six values, one for each of the nodes in the implicit node set.

## 9 APPENDIX: Tag Reference

The following table lists all the tags in the FEBio plot file format with their numerical ID and description.

- A size of 0 (zero) implies that the section contains only child sections.
- A size of ? implies the size is variable and needs to be calculated based on other information in the file.

| Tag             | ID         | description                      | size         |
|-----------------|------------|----------------------------------|--------------|
| ROOT            | 0x01000000 | root section                     | 0            |
| HEADER          | 0x01010000 | header section                   | 0            |
| VERSION         | 0x01010001 | version of file format           | DWORD        |
| NODES           | 0x01010002 | number of nodes in mesh          | DWORD        |
| DICTIONARY      | 0x01020000 | dictionary section               | 0            |
| DICT_ITEM       | 0x01020001 | dictionary item                  | 0            |
| ITEM_TYPE       | 0x01020002 | type of data variable            | DWORD        |
| ITEM_FORMAT     | 0x01020003 | storage format of data variable  | DWORD        |
| ITEM_NAME       | 0x01020004 | name of variable                 | CHAR64       |
| GLOBAL_VAR      | 0x01021000 | global data dictionary section   | 0            |
| MATERIAL_VAR    | 0x01022000 | material data dictionary section | 0            |
| NODESET_VAR     | 0x01023000 | node set data dictionary section | 0            |
| DOMAIN_VAR      | 0x01024000 | domain data dictionary section   | 0            |
| SURFACE_VAR     | 0x01025000 | surface data dictionary section  | 0            |
| MATERIALS       | 0x01030000 | materials section                | 0            |
| MATERIAL        | 0x01030001 | material definition section      | 0            |
| MATERIAL_ID     | 0x01030002 | material ID                      | DWORD        |
| MATERIAL_NAME   | 0x01030003 | material name                    | CHAR64       |
| GEOMETRY        | 0x01040000 | geometry section                 | 0            |
| NODE_SECTION    | 0x01041000 | node section                     | 0            |
| NODE_COORDS     | 0x01041001 | nodal coordinates                | 3*N*FLOAT    |
| DOMAIN_SECTION  | 0x01042000 | domain section                   | 0            |
| DOMAIN          | 0x01042100 | domain definition                | 0            |
| DOMAIN_HEADER   | 0x01042101 | domain header                    | 0            |
| ELEM_TYPE       | 0x01042102 | element type                     | DWORD        |
| MAT_ID          | 0x01042103 | material ID                      | DWORD        |
| ELEMENTS        | 0x01042104 | number of elements in domain     | DWORD        |
| ELEMENT_LIST    | 0x01042200 | element list                     | 0            |
| ELEMENT         | 0x01042201 | element definition               | DWORD*(NE+1) |
| SURFACE_SECTION | 0x01043000 | surface section                  | 0            |
| SURFACE         | 0x01043100 | surface definition               | 0            |
| SURFACE_HEADER  | 0x01043101 | surface header                   | 0            |
| SURFACE_ID      | 0x01043102 | surface ID                       | DWORD        |
| FACES           | 0x01043103 | number of faces                  | DWORD        |
| FACE_LIST       | 0x01043200 | face list                        | 0            |
| FACE            | 0x01043201 | face definition                  | 5*DWORD      |
| STATE_SECTION   | 0x02000000 | state section                    | 0            |
| STATE_HEADER    | 0x02010000 | state header                     | 0            |
| TIME            | 0x02010002 | time stamp of state              | FLOAT        |
| STATE_DATA      | 0x02020000 | state data section               | 0            |
| STATE_VAR       | 0x02020001 | state variable                   | 0            |

| VARIABLE_ID   | 0x02020002 | ID of variable        | DWORD |
|---------------|------------|-----------------------|-------|
| VARIABLE_DATA | 0x02020003 | variable data section | ?     |
| GLOBAL_DATA   | 0x02020100 | global data section   | 0     |
| MATERIAL_DATA | 0x02020200 | material data section | 0     |
| NODE_DATA     | 0x02020300 | nodal data section    | 0     |
| DOMAIN_DATA   | 0x02020400 | domain data section   | 0     |
| SURFACE_DATA  | 0x02020500 | surface data section  | 0     |