MICHAEL ZUZAK

Assistant Professor, Department of Computer Engineering Rochester Institute of Technology

mjzeec@rit.edu \diamond mzuzak.github.io \diamond (585) 475-2312

ACADEMIC APPOINTMENTS

Assistant Professor, Department of Computer Engineering

August 2022 - Present

Rochester Institute of Technology

· Research Interests: Hardware Security, Digital VLSI/CAD, Computer Architecture

EDUCATION

Ph.D., Electrical Engineering

August 2017 - August 2022

University of Maryland, College Park

- · ARCS/MWC Named Graduate Scholar, Future Faculty Fellow
- · Advisor: Prof. Ankur Srivastava
- Thesis: Designing Effective Logic Obfuscation: Exploring Beyond Gate-Level Boundaries

M.S., Electrical Engineering

August 2014 - May 2016

University of Maryland, College Park

- · Advisor: Prof. Donald Yeung
- Thesis: Exploiting Multigrain Parallelism on Heterogeneous Processors

B.S., Electrical Engineering (Cum Laude)

August 2010 - May 2014

University of Maryland, College Park

· University of Maryland Honors College, University Honors Citation

RESEARCH EXPERIENCE

University of Maryland, College Park

August 2017 - August 2022

Graduate Research Assistant with Prof. Ankur Srivastava

· Research Area: Hardware Security - Protecting integrated circuits from hardware trojans, piracy, and reverse engineering

Naval Research Laboratory, Surface Electronic Warfare Systems Branch

August 2015 - June 2018

Electronics Engineer (Full-Time)

- · Research Area: Digital Signal Processing Wide-band, high-speed digital signal processing for digital RF memories
- Primary contributor of digital design and digital signal processing capabilities for currently fielded urgent operational needs (UON) system for U.S. Navy

University of Maryland, College Park

August 2014 - May 2016

Graduate Researcher with Prof. Donald Yeung

· Research Area: Computer Architecture - Novel execution models for heterogeneous systems

PROJECT SPONSORS AND GRANTS

Total as PI: \$180,705

- [G1] NSF: "CRII: SaTC: Design Space Modeling for Logic Obfuscation to Enable System-Wide Security during IC Manufacture and Test," PI, 03/15/2023 03/14/2025
- [G2] KEEN: "Improving Student Understanding of Non-Ideal Transistors"

PUBLICATIONS

Journals:

- [J5] M. Zuzak, Y. Liu, and A. Srivastava, "Evaluating the Security of Logic-Locked Probabilistic Circuits," in IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems (TCAD), 2021
- [J4] Y. Liu, M. Zuzak, Y. Xie, A. Chakraborty, A. Srivastava, "Robust and Attack Resilient Logic Locking with a High Application-Level Impact," in ACM Journal on Emerging Technologies in Computing Systems (JETC), 2021

- [J3] **M. Zuzak**, Y. Liu, and A. Srivastava, "Trace Logic Locking: Improving the Parametric Space of Logic Locking," in IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems (TCAD), 2020
- [J2] A. Chakraborty, N. Jayasankaran, Y. Liu, J. Rajendran, O. Sinanoglu, A. Srivastava, Y. Xie, M. Yasin, and M. Zuzak, "Keynote: A Disquisition on Logic Locking," in IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems (TCAD), 2019
- [J1] D. Gerzhoy, X. Sun, M. Zuzak, and D. Yeung, "Exploiting Nested MIMD-SIMD Parallelism on Heterogeneous Microprocessors," in ACM Transactions on Architecture and Code Optimization (TACO), 2019

Conferences:

- [C16] H. Xu, D. Liu, C. Merkel, and **M. Zuzak**, "Exploiting Logic Locking for a Neural Trojan Attack on Machine Learning Accelerators," in Proceedings of the Great Lakes Symposium on VLSI (GLSVLSI), 2023
- [C15] D. Xing, M. Zuzak, and A. Srivastava, "Low Overhead System-Level Obfuscation through Hardware Resource Sharing," in Proceedings of the International Symposium on Quality Electronic Design (ISQED), 2023
- [C14] I. McDaniel, M. Zuzak, and A. Srivastava, "A Linear-Time Structural Attack on SAT-Hard Instances in Logic Obfuscation," in Proceedings of the International Conference on Computer Design (ICCD), 2022
- [C13] M. Zuzak, Y. Liu, I. McDaniel, and A. Srivastava, "A Combined Logical and Physical Attack on Logic Obfuscation," in Proceedings of the ACM/IEEE International Conference on Computer-Aided Design (ICCAD), 2022
- [C12] I. McDaniel, **M. Zuzak**, and A. Srivastava, "A Black-Box Sensitization Attack on SAT-Hard Instances in Logic Obfuscation," in Proceedings of the IEEE International Conference on Computer Design (ICCD), 2022
- [C11] Y. Liu, M. Zuzak, D. Xing, I. McDaniel, P. Mittu, O. Ozbay, A. Akib, and A. Srivastava, "A Survey on Side-Channel-based Reverse Engineering Attacks on Deep Neural Networks," in Proceedings of the IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2022
- [C10] M. Zuzak, Y. Liu, and A. Srivastava, "A Resource Binding Approach to Logic Obfuscation," in Proceedings of the Design Automation Conference (DAC), 2021 (Best Paper Candidate)
- [C9] B. Tan, S. Garg, R. Karri, Y. Liu, M. Zuzak, ..., W. Savage, "Independent Verification and Validation of Security-Aware EDA Tools and IP," in Proceedings of the Design Automation Conference (DAC), 2021
- [C8] M. Zuzak and A. Srivastava, "ObfusGEM: Enhancing Processor Design Obfuscation Through Security-Aware On-Chip Memory and Data Path Design," in Proceedings of the International Symposium on Memory Systems (MEMSYS), 2020
- [C7] A. Mondal, M. Zuzak, and A. Srivastava, "StatSAT: A Boolean Satisfiability Attack on Logic Locking for Probabilistic Circuits," in Proceedings of the Design Automation Conference (DAC), 2020
- [C6] Y. Liu, M. Zuzak and A. Srivastava, "Strong Anti-SAT: Secure and Effective Logic Locking," in Proceedings of the International Symposium on Quality Electronic Design (ISQED), 2020
- [C5] Y. Liu, A. Mondal, A. Chakraborty, M. Zuzak, N. Jacobson, D. Xing, and A. Srivastava, "A Survey on Neural Trojans," in Proceedings of the International Symposium on Quality Electronic Design (ISQED), 2020
- [C4] M. Zuzak, M. Fitelson, S. Montano, and A. Srivastava, "Provable Detection and Location of Hardware Trojans with Linear Hybrid Cellular Automata," in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (GOMACTECH), 2020
- [C3] M. Zuzak and A. Srivastava, "Memory Locking: An Automated Approach to Processor Design Obfuscation," in Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2019
- [C2] Z. Yang, M. Zuzak, and A. Srivastava, "HMCTherm: A Cycle-accurate HMC Simulator Integrated with Detailed Power and Thermal Simulation," in Proceedings of the International Symposium on Memory Systems (MEMSYS), 2018
- [C1] M. Zuzak and D. Yeung, "Exploiting Multi-Loop Parallelism on Heterogeneous Microprocessors," in Proceedings of the International Workshop on Programmability and Architectures for Heterogeneous Multicores (MULTIPROG), 2017 (Awarded Best Paper)

Book Chapters:

[B1] Y. Liu, A. Mondal, A. Chakraborty, **M. Zuzak**, N. Jacobson, D. Xing, and A. Srivastava, "Neural Trojans," in Encyclopedia of Cryptography, Security and Privacy, 2021

Technical Reports:

- [T4] Z. Cheng, H. Choi, J. Liang, S. Feng, G. Tao, D. Liu, **M. Zuzak**, and X. Zhang, "Fusion is Not Enough: Single-Modal Attacks to Compromise Fusion Models in Autonomous Driving," in ArXiv preprint arXiv:2304.14614, 2023
- [T3] M. Zuzak, "Designing Effective Logic Obfuscation: Exploring Beyond Gate-Level Boundaries" (Ph.D. Thesis)

- [T2] B. Tan, R. Karri, N. Limaye, A. Sengupta, ..., M. Zuzak, A. Srivastava, et al., "Benchmarking at the Frontier of Hardware Security: Lessons from Logic Locking," in arXiv preprint arXiv:2006.06806, 2021
- [T1] M. Zuzak, "Exploiting Nested Parallelism on Heterogeneous Processors" (M.S. Thesis)

INVITED TALKS/POSTER PRESENTATIONS

- [P8] M. Zuzak, "Designing Obfuscated ICs for System-Wide Security during IC Manufacture and Test," Great Lakes Security Day (GLSD), 2023
- [P7] M. Zuzak, "Hardware: The Foundation of Security," at Electrical and Computer Engineering Research Seminar, Rochester Institute of Technology (RIT), 2022
- [P6] M. Zuzak, "New Horizons in Hardware Security," at Rochester Institute of Technology (RIT), 2021
- [P5] M. Zuzak, "Designing Obfuscated Systems for Enhanced Hardware-Oriented Security," at SIGDA Design Automation Conference (DAC) PhD Forum, 2021
- [P4] M. Zuzak, "Securing Hardware in a Globalized Supply-Chain," at ARCS Scholar Reception, 2020
- [P3] M. Zuzak, "Building Functional ICs with Approximate Keys," at CSAW'19 Logic Locking Conquest Finals, 2019
- [P2] M. Zuzak, "Achieving Hardware Security: Design and Fabrication of Secure Integrated Circuits," at ARCS Scholar Reception, 2019
- [P1] M. Zuzak and A. Srivastava, "Memory Locking: An Automated Approach to Processor Design Obfuscation," in Design Automation Conference (DAC), 2019

OPEN-SOURCE SOFTWARE

CLAP Attack- A Combined Logical and Physical Attack on Logic Obfuscation

• The CLAP attack is an open-source attack on logic obfuscation utilizing both logical and physical leakage to reverseengineer the key of an obfuscated circuit. The physical portion of the CLAP attack logically guides an electro-optical probe to extract key leakage through electro-optical frequency mapping (EOFM). The logical portion of the CLAP attack relies on the open-source SAT attack toolkit by Subramanyan et al.

ObfusGEM - A Cycle-Accurate Processor Design Obfuscation Simulator

ObfusGEM is a simulation framework for the evaluation of processor design obfuscation. It implements an error injection
framework inspired by the architectural error resilience community to close-the-loop between gate-level obfuscation and
its application-level impact. We provide a library of existing hardware security techniques and configurations along with
ObfusGEM to enable the design and evaluation of hardware security configurations for specific architectures or devices.

StatSAT - A Statistical Boolean Satisfiablity Attack on Logic Locking

• StatSAT is an open-source SAT-based attack against probabilistic circuits that have been secured by logic locking.

HMCTherm - A Cycle-Accurate Simulator for the Hybrid Memory Cube with Built-In Thermal Analysis

• HMCTherm is a comprehensive simulation framework for a Stacked-Memory-on-CPU architecture. Given the architectural description of a multi-core CPU using hybrid memory cubes (HMC), HMCTherm can simulate the 3D thermal profile (both transient and static) of the HMCs for an arbitrary computing workload.

TEACHING

CMPE361: Introduction to Hardware Security

Fall 2023

Instructor

Rochester Institute of Technology

· Course proposed, developed, and introduced by Prof. Michael Zuzak.

CMPE630/530: Digital Integrated Circuit Design

Spring 2023

Instructor

Rochester Institute of Technology

Instructor Effectiveness: 4.86/5.00
Course Effectiveness: 4.67/5.00

ENEE640: Digital CMOS VLSI Design

Spring 2021

Co-Instructor with Prof. Ankur Srivastava

University of Maryland, College Park

ENEE359F: Advanced Verilog Design

Graduate Teaching Assistant

Spring 2015 University of Maryland, College Park

ENEE359F: Advanced Verilog Design

Fall 2014

Graduate Teaching Assistant

University of Maryland, College Park

· Awarded Department of Electrical and Computer Engineering Distinguished Teaching Assistant Award

STUDENT ADVISING

Ph.D. Students:

· Robi Paul	Summer 2023 - Present
 James Liang (Co-Advised with Prof. Dongfang Liu) 	Spring 2023 - Present

M.S. Students (Thesis):

· Long Lam	Summer 2023 - Present
Sydale John Ayi (NSF LSAMP Scholar)	Spring 2023 - Present
· Aaron Schulte	Spring 2023 - Present
· Jacob Thomas	Spring 2023 - Present
Thomas Wojtal	Fall 2022 - Present
· Aubrey Tarmu	Fall 2022 - Present
Katsuaki Nakano (Co-Advised with Prof. Minoru Nakazawa)	Fall 2022 - Present

M.S. Students (Project):

•	Yuyang Wang	Fall 2022 - Present
	Ryan Blow	Fall 2022 - Present

PROFESSIONAL SERVICE

Chair/Co-Chair:

· Co-Chair for 2023 ACM Student Research Competition at ICCAD (SRC@ICCAD'23)

Technical Program Committee Member:

- · 2023 Great Lakes Symposium on VLSI (GLSVLSI)
- 2023 IEEE International System-on-Chip Conference (SOCC)
- 2023 Workshop on Attacks and Solutions in Hardware Security (ASHES)

Special Session Organizer:

"Machine Learning and Hardware Security: A Winning Combo!," at the Great Lakes Symposium on VLSI (GLSVLSI) –
 Organizers: A. Rezaei, M. Zuzak, K. Shamsi, and P. Beerel

Session Chair/Co-Chair:

· 2023 Great Lakes Symposium on VLSI (GLSVLSI)

Journal Reviewer:

- IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems (TCAD)
- ACM Journal on Emerging Technologies in Computing Systems (JETC)
- · Springer Journal of Cryptographic Engineering (JCEN)
- · Springer Analog Integrated Circuits and Signal Processing

Conference Sub-Reviewer:

- · 2021 IEEE/ACM International Symposium on Microarchitecture (MICRO)
- · 2021 IEEE/ACM Design Automation Conference (DAC)
- 2020 IEEE International Symposium on Circuits and Systems (ISCAS)

Judge:

· 2022 ACM Student Research Competition at ICCAD (SRC@ICCAD'22)

HONORS AND AWARDS

- · KEEN New Faculty Mini-Fellowship 2023
- · Best Paper Candidate at the Design Automation Conference (DAC) 2021
- · Future Faculty Fellow for the Clark School of Engineering at the University of Maryland, College Park
- · Department of Electrical and Computer Engineering Distinguished Teaching Assistant Award
- ARCS/MWC Named Graduate Scholar (2019-2021)
- · Edison Memorial Graduate Fellowship, Naval Research Laboratory
- · Clark School of Engineering Distinguished Graduate Fellowship
- · CSAW 2019 Logic Locking Conquest Finalist
- · Best Paper at MULTIPROG-2017
- · On the Spot Award, Naval Research Laboratory
- · Northrop Grumman Master's Fellowship
- · NSF Student Travel Grant for ISVLSI 2019
- · University of Maryland Dean's Scholarship
- · Association of Old Crows' (AOC) Scholarship