Linear regression

Mauricio A. Álvarez

Machine Learning and Adaptive Intelligence The University of Sheffield

Contents

Review of vector/matrix notation and linear algebra

A regression mode

Linear regression

Gradient descent

Stochastic Gradient Descent

Regularisation

Scalar and vectors

- □ A scalar is just a numeric value like 0.9 or −18.7.
- Scalars are usually denoted as lower case letters like x or a.
- A **vector** is an ordered list of scalar values. Sometimes we refer to these scalar values of the vector as <u>attributes</u> or <u>entries</u> of the vector.
- Vectors are usually denoted by bold lowercase letters like x or y.

Vectors

A vector can appear sometimes written as a row vector, e.g.

$$\mathbf{x} = [x_1, x_2, x_3, x_4, x_5]$$

Or as a column vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

In this module, ALL vectors will be column vectors by default. So, when you see a vector, e.g. **x**, **y**, **z** always think this vector has a column-wise shape.

Matrices

- A matrix is a rectangular array of scalars arranged in rows and columns.
- Matrices are usually denoted by bold uppercase letters, e.g. X or Y.
- The following matrix has three rows and two columns

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \end{bmatrix}$$

The entries in the matrix above are of the form x_{ij} , where the first subindex i indicates the row of the element and the second subindex j indicates the column.

Matrix transpose

Let X be a matrix with elements x_{ij}.

The <u>transpose</u> of a matrix **X** is a new matrix X^T with elements x_{ij} .

$$\mathbf{X} = \begin{bmatrix} 4.1 & -5.6 \\ -2.6 & 7.9 \\ 3.5 & 1.8 \end{bmatrix}, \quad \mathbf{X}^{\top} = \begin{bmatrix} 4.1 & -2.6 & 3.5 \\ -5.6 & 7.9 & 1.8 \end{bmatrix}$$

Matrix multiplication

- Let **A** be a matrix with entries a_{ik} of dimensions $p \times q$.
- Let **B** be a matrix with entries b_{kj} of dimensions $t \times s$.
- $lue{}$ Matrix multiplication of the form **AB** is only possible if q = t.
- □ If this is the case, the matrix $\mathbf{C} = \mathbf{AB}$ has dimensions $p \times s$ with entries

$$c_{ij} = \sum_{k} a_{ik} b_{kj}.$$

Transpose of a product

- Let **w** be a vector of dimensions $d \times 1$. Let **X** be a matrix with dimensions $n \times d$.
- \Box The transpose of the product **Xw**, $(Xw)^{\top}$ is

$$(\mathbf{X}\mathbf{w})^{\top} = \mathbf{w}^{\top}\mathbf{X}^{\top}.$$

For to prove those? (Linear algebra)

We can apply this result to a product of several matrices

$$\begin{aligned} (\textbf{ABCD})^\top &= ((\textbf{AB})(\textbf{CD}))^\top \\ &= (\textbf{CD})^\top (\textbf{AB})^\top \\ &= \textbf{D}^\top \textbf{C}^\top \textbf{B}^\top \textbf{A}^\top. \end{aligned}$$

From a scalar operation to a vector operation

 It is usually desirable to transform a scalar operation into a vector operation.

When coding scalar operations, we require making use of loops, which can be expensive.

In contrast, vector operations are handled efficiently by low-level routines already included in modules like numpy.

Example

Write the following scalar operation into a vector/matrix form

$$\sum_{i=1}^{n} (y_i - \sum_{j=1}^{d} x_{ij} w_j)^2.$$

$$\sum_{i=1}^{n} (y_i - \sum_{j=1}^{$$

Answer (I)

The sum above can be written as

$$\sum_{i=1}^{n} (y_i - \sum_{j=1}^{d} x_{ij} w_j)^2 = (y_1 - \sum_{j=1}^{d} x_{1j} w_j)(y_1 - \sum_{j=1}^{d} x_{1j} w_j) + \cdots + (y_n - \sum_{j=1}^{d} x_{nj} w_j)(y_n - \sum_{j=1}^{d} x_{nj} w_j).$$

Let us define a vector **v** of dimensions $n \times 1$ with entries given as

$$(y_i - \sum_{i=1}^d x_{ij} w_j).$$

Answer (II)

The product of vectors $\mathbf{v}^{\top}\mathbf{v}$ gives the same result than the required sum,

$$\mathbf{v}^{\top}\mathbf{v} = \left[(y_1 - \sum_{j=1}^{d} x_{1j} w_j) \quad \cdots \quad (y_n - \sum_{j=1}^{d} x_{nj} w_j) \right] \begin{bmatrix} (y_1 - \sum_{j=1}^{d} x_{1j} w_j) \\ \vdots \\ (y_n - \sum_{j=1}^{d} x_{nj} w_j) \end{bmatrix}$$

$$= \sum_{i=1}^{n} (y_i - \sum_{j=1}^{d} x_{ij} w_j)^2.$$

How do we express the elements in v with vectors and matrices?

Answer (III)

- □ For a fixed i, x_{i1} , ..., x_{id} can be grouped into a vector \mathbf{x}_{i}^{\top} .
- □ The internal sums in the entries of **v** can then be written as

$$\sum_{j=1}^{d} x_{ij} w_j = \mathbf{x}_i^{\top} \mathbf{w} = \begin{bmatrix} x_{i1} & x_{i2} & \cdots & x_{id} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$$

We can now write v as

$$\mathbf{v} = \begin{bmatrix} y_1 - \mathbf{x}_1^\top \mathbf{w} \\ \vdots \\ y_n - \mathbf{x}_n^\top \mathbf{w} \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} \mathbf{x}_1^\top \mathbf{w} \\ \vdots \\ \mathbf{x}_n^\top \mathbf{w} \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} \mathbf{x}_1^\top \\ \vdots \\ \mathbf{x}_n^\top \end{bmatrix} \mathbf{w}$$

- \square We can group the scalars y_1, \ldots, y_n into a vector \mathbf{y} .
- We can group the row vectors $\mathbf{x}_1^{\top}, \dots, \mathbf{x}_n^{\top}$ into a matrix \mathbf{X} .

Answer (IV)

Finally

$$\sum_{i=1}^{n} (y_i - \sum_{i=1}^{d} x_{ij} w_j)^2 = \mathbf{v}^{\top} \mathbf{v} = (\mathbf{y} - \mathbf{X} \mathbf{w})^{\top} (\mathbf{y} - \mathbf{X} \mathbf{w}).$$

Two common types of products

- **Inner product**. The inner product between two vectors results in a scalar.
- Let **x** and **y** be vectors of dimension $m \times 1$. The inner product is given as

the list hottenwise the vow
$$\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{m} x_i y_i$$
, where \mathbf{y} is seemly determine the colomn. The $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{m} x_i y_i$, where \mathbf{y} is seemly determine the colomn.

- **Outer product**. The outer product between two vectors results in a matrix.
- Let **x** be a vector of dimension $m \times 1$ and **y** a vector of dimension $p \times 1$. The outer product is given as

$$\mathbf{x}\mathbf{y}^{\top} = \begin{bmatrix} x_1y_1 & \cdots & x_1y_p \\ x_2y_1 & \cdots & x_2y_p \\ \vdots & \vdots & \vdots \\ x_my_1 & \cdots & x_my_p \end{bmatrix}$$

$$= m \times p$$

$$= m \times p$$

$$= 15/63$$

Differentiating a function in a vector/matrix form (I)

- □ We will see cases in which a function $f(\mathbf{w})$ depends on some parameters grouped in a vector \mathbf{w} .
- \Box We would like to find the vector of parameters **w** that maximise $f(\mathbf{w})$.
- For example, suppose $f(\mathbf{w})$ is defined as $f(\mathbf{w}) = \sum_{i=1}^{d} w_i x_i.$ $w \times x$ $w \times x$

- We can group the scalars $x_1, ..., x_d$ into **x**. Likewise for **w**.
- \square According to what we saw before, we can write $f(\mathbf{w})$ as $f(\mathbf{w}) = \mathbf{x}^{\top}\mathbf{w}$.

Differentiating a function in a vector/matrix form (II)

lacktriangledown For a fixed \mathbf{x} , we are interested in computing the gradient of $f(\mathbf{w})$ with respect to \mathbf{w}

$$\frac{df(\mathbf{w})}{d\mathbf{w}} = \begin{bmatrix} \frac{\partial f(\mathbf{w})}{\partial w_1} \\ \vdots \\ \frac{\partial f(\mathbf{w})}{\partial w_d} \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} = \mathbf{x}.$$

Some useful identities when differentiating with respect to a vector

$$(x) = \begin{bmatrix} x_1, x_2, \cdots x_N \end{bmatrix}^T$$

$$w^T x = w_1 x_1 + w_2 x_2 + w_3 x_2 + \cdots + w_d x_d$$

$$(w^T x) dw = x_1 + x_2 + \cdots + x_d = x_d$$

$$w^T w = w_1 x_1 + \cdots + w_d \cdot dw_d$$

$$y = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d = x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots + x_d$$

$$w^T w = x_1 x_2 + \cdots +$$

Identity matrix and the inverse of a matrix

 $\sqrt{\Delta}$ The identity matrix of size N is a square matrix with ones on the main diagonal and zeros elsewhere, e.g.,

$$\mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The inverse matrix of a matrix **A** of dimensions $d \times d$, denoted as A^{-1} , satisfies

$$AA^{-1} = A^{-1}A = I_d$$

Contents

Review of vector/matrix notation and linear algebra

A regression model

Linear regression

Gradient descent

Stochastic Gradient Descent

Regularisation

Olympic 100m Data

Dataset

Model

We will use a linear model $f(x, \mathbf{w})$ to predict y, where y is the time in seconds and x the year of the competition.

1-dimension Gradient

The linear model is given as

$$f(x, \mathbf{w}) = w_0 + w_1 x,$$
where w_0 is the intercept and w_1 is the slope.

We use with refer both to w_0 and w_1

We use w to refer both to w_0 and w_1 .

Data and model

Contents

Review of vector/matrix notation and linear algebra

A regression model

Linear regression

Gradient descent

Stochastic Gradient Descent

Regularisation

Linear model - a lind-up model to lengthen the old data to make it will to assumptions

A simple model for regression consists in using a linear combination of the attributes to predict the output

Very like the formula to calculate the frectations Value finisher
$$f(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_D x_D, \rightarrow (x)$$

where w_0, w_1, \cdots, w_D are the parameters of the regression model.

- The term w_0 is the bias term or intercept, e.g. $f(\mathbf{0}, \mathbf{w}) = w_0$.
- The expression above can be written in a vectorial form $f(\mathbf{x}, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{x}.$ $f(\mathbf{x}, \mathbf{w}) = \mathbf{y}^{\top} \mathbf{x}.$ $f(\mathbf{x}, \mathbf{w}) = \mathbf{y}^{\top} \mathbf{x}.$

where we have defined $\mathbf{w} = [w_0, w_1, \cdots, w_D]^{\top}$ and $\mathbf{x} = [1, x_1, \cdots, x_D]^{\top}$.

Notice that $x_0 = 1$. $y_0 \cdot W_0 \rightarrow intercept$

Parenthesis: Gaussian pdf

probability density function ussian ndf has the form continous

The Gaussian pdf has the form

$$p(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y-\mu)^2}{2\sigma^2}\right\}.$$

P(Y= y): the Probability of Event y, hagner

- A Gaussian pdf requires two parameters μ and σ^2 , the mean and the variance of the RV Y.
- We denote the Gaussian pdf as $p(y|\mu, \sigma^2) = \mathcal{N}(y|\mu, \sigma^2)$ or $\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$.

$$P(y|n,\sigma') = \mathcal{N}(y|n,\sigma')$$

$$\sigma = y \sim \mathcal{N}(n,\sigma') \vee$$

o) voximue of u

Parenthesis: Gaussian pdf

The mean of the three Gaussians is $\mu = 2$ and the variances are $\sigma^2 = 0.5$ (solid), and $\sigma^2 = 2$ (dashed). difference between po and p f the more want is. 0.5 0.4 0.3 0.2 0.1 0.0 des cutes to how much degree each fample is different from the mean value (vasione

Gaussian regression model (I) build sometions

We use a Gaussian regression model to relate the inputs and outputs

$$y = f(\mathbf{x}, \mathbf{w}) + \epsilon,$$
 $f(\mathbf{x}, \mathbf{w})_z \omega,$
 $\int_{\mathbf{x}} d\mathbf{x} d\mathbf{$

where $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$.

- It assumes that each output y_i that we observe can be explained as the prediction of an underlying model, $f(\mathbf{x}_i, \mathbf{w})$ plus a noise term ϵ_i .
- For a fixed **x** and a fixed **w**, $f(\mathbf{x}, \mathbf{w})$ is a constant, then

$$\frac{y_1 \cdot y_2}{y} = \frac{y_2 \cdot y_3}{\cos x} + \frac{y_2 \cdot y_3}{\cos x} = \frac{y_2 \cdot y_3}{\cos x}$$
 constant

where $\hat{\epsilon}$ is a continuous RV.

What is the pdf for y? (we are adding a constant to a Gaussian RV) Expression $E\{y\} = E\{\text{constant} + \epsilon\} = \text{constant}$ $E\{y\} = E\{\text{constant} + \epsilon\} = \text{constant}$ $E\{y\} = \text{var}\{\text{constant}\} + \text{var}\{\epsilon\} = \sigma^2.$

Gaussian regression model (II) about the
$$x : \frac{pream}{pression}$$
 on Expected Value $y \sim \mathcal{N}(constant, \sigma^2)$, $z : for discust case (Finish)$ where we said constant was $f(\mathbf{x}, \mathbf{w})$, this is, $z(x) = \sum_{x \in \mathcal{P}_{2}} p_{x}$

$$y \sim \mathcal{N}(f(\mathbf{x}, \mathbf{w}), \sigma^2)$$
. V beside Case where $\mathcal{B} = \mathcal{B}$. M: expectation value when $\mathcal{B} = \mathcal{B}$. $\mathcal{B} = \mathcal{B}$

Because we assumed that **x** and **w** are given, we can also write

$$p(y|\mathbf{x}, \mathbf{w}, \sigma^2) = \mathcal{N}(y|f(\mathbf{x}, \mathbf{w}), \sigma^2).$$

- If we knew the value for \mathbf{w} , once we have a new \mathbf{x}_* , we can predict the output as $f(\mathbf{x}_*, \mathbf{w})$.
- σ^2 tells us the noise variance.

Gaussian regression model (III)

How do we estimate **w**? (I)

We start with a training dataset $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$.

We assume that the random variables
$$Y_1, \dots, Y_N$$
 are independent,
$$p(y_1/n, y_1/x_1, \dots, y_N|\mathbf{x}_1, \dots, \mathbf{x}_N) = p(y_1|\mathbf{x}_1) \dots p(y_N|\mathbf{x}_N) = \prod_{n=1}^N p(y_n|\mathbf{x}_n).$$

$$p(y_1/n) = \prod_{n=1}^N p(y_n|\mathbf{x}_n).$$

Why to tuse this could from as to a Mormal Installation. We also assume that the RVs
$$Y_1, \cdots, Y_N$$
 follow an identical distribution, Gaussian in this case
$$p(y_n|\mathbf{x}_n, \mathbf{w}, \sigma^2) = \mathcal{N}(y_n|f(\mathbf{x}_n, \mathbf{w}), \sigma^2) = \mathcal{N}(y_n|\mathbf{w}^\top\mathbf{x}_n, \sigma^2).$$

M: The Epne Value

Both assumptions go by the name of the *iid* assumption, *independent* and identically distributed.

How do we estimate w? (II) P(2/x, w, or): Then hom to get

Putting both assumptions together, we get
$$p(\mathbf{y}|\mathbf{X},\mathbf{w},\sigma^2) = \prod_{n=1}^{N} p(y_n|\mathbf{x}_n,\mathbf{w},\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(y_n|\mathbf{w}^\top\mathbf{x}_n,\sigma^2),$$
 where $\mathbf{y} = [y_1,\cdots,y_N]^\top \in \mathbb{R}^{N\times 1}$ and $\mathbf{X} = [\mathbf{x}_1,\cdots,\mathbf{x}_N]^\top \in \mathbb{R}^{N\times (D+1)}.$ The expression above can then be written as
$$p(\mathbf{y}|\mathbf{X},\mathbf{w},\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(y_n|\mathbf{w}^\top\mathbf{x}_n,\sigma^2),$$
 where $p(\mathbf{y}|\mathbf{X},\mathbf{w},\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(y_n|\mathbf{w}^\top\mathbf{x}_n,\sigma^2),$ where $p(\mathbf{y}|\mathbf{X},\mathbf{w},\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(y_n|\mathbf{w}^\top\mathbf{x}_n,\sigma^2),$ where $p(\mathbf{y}|\mathbf{X},\mathbf{w},\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(y_n|\mathbf{w}^\top\mathbf{x}_n,\sigma^2),$

$$\mathbf{y}(\mathbf{x}, \mathbf{w}, \sigma^{-}) = \prod_{N} \sigma^{-1}$$

$$= \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y_n - \mathbf{w}^{\top} \mathbf{x}_n)^2}{2\sigma^2}\right\}.$$

$$\frac{1}{\left(2\pi\sigma^{2}\right)^{\frac{N}{2}}} \exp\left\{-\frac{1}{2\sigma^{2}}\sum_{n=1}^{N}(y_{n}-\mathbf{w}^{\top}\mathbf{x}_{n})^{2}\right\}.$$

How do we estimate w? (III)

When we look at a Gaussian pdf, like

$$p(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y-\mu)^2}{2\sigma^2}\right\},\,$$

we assume that both μ and σ^2 are given. In this case, the pdf follows all the properties we reviewed before.

The same is true for

$$p(\mathbf{y}|\mathbf{X},\mathbf{w},\sigma^2) = \prod_{n=1}^{N} p(y_n|\mathbf{x}_n,\mathbf{w},\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(y_n|\mathbf{w}^{\top}\mathbf{x}_n,\sigma^2).$$
 Similar to a

- Given $\underline{\mathbf{w}}^{\top}\mathbf{x}_n$ and σ^2 , then each $p(y_n|\mathbf{x}_n,\mathbf{w},\sigma^2)$ is a pdf.
- A different approach would be to say: I have some data for $\{y_n\}_{n=1}^N$ and $\{\mathbf{x}_n\}_{n=1}^N$ but
 - "I don't know what is \mathbf{w}^{\top} (therefore I don't know what is $\mathbf{w}^{\top}\mathbf{x}_n$)"
 - "I don't know what is σ^2 ".

How do we estimate **w**? (IV)

- With y_n and \mathbf{x}_n given but with unknown values for \mathbf{w} and σ^2 , each $p(y_n|\mathbf{x}_n,\mathbf{w},\sigma^2)$ is not a pdf anymore.
- In that case, the function

$$p(\mathbf{y}|\mathbf{X},\mathbf{w},\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(y_n|\mathbf{w}^{\top}\mathbf{x}_n,\sigma^2), \qquad o \leq P \leq 1$$
Probability

receives the name of a likelihood function.

We can think of a likelihood function as a function of the parameters ${\bf w}$ and σ^2 ,

$$g(\mathbf{w}, \sigma^2) = p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \sigma^2),$$

- And subsequently, we can use *multivariate calculus* to find the values of \mathbf{w} , σ^2 that maximise $g(\mathbf{w}, \sigma^2)$.
- In statistic is known as the *maximum-likelihood* (ML) criterion to estimate parameters.

How do we estimate w? (V)

Given \mathbf{y} , \mathbf{X} , we use the ML criterion to find the parameters \mathbf{w} and σ^2 that maximise

$$p(\mathbf{y}|\mathbf{X},\mathbf{w},\sigma^2) = \frac{1}{\left(2\pi\sigma^2\right)^{\frac{N}{2}}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (y_n - \mathbf{w}^\top \mathbf{x}_n)^2\right\}.$$

In practice, we prefer to maximise the log of the likelihood $p(\mathbf{y}|\mathbf{X},\mathbf{w},\sigma^2)$,

$$\begin{aligned} LL(\mathbf{w}, \sigma^2) &= \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \sigma^2) \\ &= -\frac{N}{2} \log (2\pi) - \frac{N}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (y_n - \mathbf{w}^\top \mathbf{x}_n)^2. \end{aligned}$$

□ Consistency of the ML criterion If data was really generated according to the probability we specified, the correct parameters will be recovered in the limit as $N \to \infty$.

Connection with the sum of squared errors

□ If we multiply $LL(\mathbf{w}, \sigma^2)$ by minus one, we get

$$E(\mathbf{w}, \sigma^2) = -\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \sigma^2) \propto \sum_{n=1}^{N} (y_n - \mathbf{w}^{\top} \mathbf{x}_n)^2.$$

- The ML criterion for this model has a close connection with the sum-of-squared errors used in non-probabilistic formulations of linear regression.
- Maximising the log-likelihood function is equivalent to <u>minimising</u> the sum-of-squares errors.
- Notice that the log is a monotonic function, meaning that if we find \mathbf{w} , σ^2 that maximise $g(\mathbf{w}, \sigma^2)$, those will also maximise $\log(g(\mathbf{w}, \sigma^2))$.

Normal equation (I)

- Let us find an estimate for w.
- From what we saw before,

$$LL(\mathbf{w}, \sigma^2) = -\frac{N}{2} \log (2\pi) - \frac{N}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (y_n - \mathbf{w}^\top \mathbf{x}_n)^2.$$

 Using what we reviewed in the section on vector/matrix notation, it can be shown that this expression can be written in a vectorial form as

$$LL(\mathbf{w}, \sigma^2) = -\frac{N}{2} \log{(2\pi)} - \frac{N}{2} \log{\sigma^2} - \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\mathbf{w})^{\top} (\mathbf{y} - \mathbf{X}\mathbf{w})$$

□ Let us focus on the term $(\mathbf{y} - \mathbf{X}\mathbf{w})^{\top}(\mathbf{y} - \mathbf{X}\mathbf{w})$,

$$(\mathbf{y} - \mathbf{X} \mathbf{w})^\top (\mathbf{y} - \mathbf{X} \mathbf{w}) = \mathbf{y}^\top \mathbf{y} - \mathbf{w}^\top \mathbf{X}^\top \mathbf{y} - \mathbf{y}^\top \mathbf{X} \mathbf{w} + \mathbf{w}^\top \mathbf{X}^\top \mathbf{X} \mathbf{w}$$

Normal equation (II)

- We can find the **w** that maximises $LL(\mathbf{w}, \sigma^2)$ by taking the gradient $\frac{dLL(\mathbf{w}, \sigma^2)}{d\mathbf{w}}$, equating to zero and solving for **w**.
- Taking the gradient of each term in $LL(\mathbf{w}, \sigma^2)$ wrt \mathbf{w} , we get

$$\begin{split} \frac{d}{d\mathbf{w}} \left[-\frac{N}{2} \log \left(2\pi \right) \right] &= 0, \quad \frac{d}{d\mathbf{w}} \left[-\frac{N}{2} \log \sigma^2 \right] = 0, \quad \frac{d}{d\mathbf{w}} \left[-\frac{1}{2\sigma^2} \mathbf{y}^\top \mathbf{y} \right] = 0, \\ \frac{d}{d\mathbf{w}} \left[\frac{1}{2\sigma^2} \mathbf{w}^\top \mathbf{X}^\top \mathbf{y} \right] &= \frac{1}{2\sigma^2} \mathbf{X}^\top \mathbf{y}, \\ \frac{d}{d\mathbf{w}} \left[\frac{1}{2\sigma^2} \mathbf{y}^\top \mathbf{X} \mathbf{w} \right] &= \frac{1}{2\sigma^2} \mathbf{X}^\top \mathbf{y} \\ \frac{d}{d\mathbf{w}} \left[-\frac{1}{2\sigma^2} \mathbf{w}^\top \mathbf{X}^\top \mathbf{X} \mathbf{w} \right] &= -\frac{1}{2\sigma^2} 2\mathbf{X}^\top \mathbf{X} \mathbf{w} \end{split}$$

Normal equation (III)

Putting these terms together, we get

$$\begin{aligned} \frac{d}{d\mathbf{w}} LL(\mathbf{w}, \sigma^2) &= \frac{1}{2\sigma^2} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2\sigma^2} \mathbf{X}^{\top} \mathbf{y} - \frac{1}{2\sigma^2} 2 \mathbf{X}^{\top} \mathbf{X} \mathbf{w} \\ &= \frac{1}{\sigma^2} \mathbf{X}^{\top} \mathbf{y} - \frac{1}{\sigma^2} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} \end{aligned}$$

Now, equating to zero and solving for w, we get

$$\begin{split} \frac{1}{\sigma^2} \mathbf{X}^\top \mathbf{y} - \frac{1}{\sigma^2} \mathbf{X}^\top \mathbf{X} \mathbf{w} &= \mathbf{0} \\ \mathbf{X}^\top \mathbf{X} \mathbf{w} &= \mathbf{X}^\top \mathbf{y} \\ \mathbf{w}_* &= \left(\mathbf{X}^\top \mathbf{X} \right)^{-1} \mathbf{X}^\top \mathbf{y}. \end{split}$$

- \Box The expression for \mathbf{w}_* is known as the *normal equation*.
- □ The solution for \mathbf{w}^* exists if we can compute $(\mathbf{X}^\top \mathbf{X})^{-1}$.
- The inverse can be computed as long as **X**[⊤]**X** is non-singular (e.g. determinant different from zero, or has full-rank).

Solving for σ_*^2

Following a similar procedure, it can be shown that the ML solution for σ_*^2 is given as

$$\sigma_*^2 = \frac{1}{N} (\mathbf{y} - \mathbf{X} \mathbf{w}_*)^{\top} (\mathbf{y} - \mathbf{X} \mathbf{w}_*).$$

Basis functions

- The model that is linear in x only allows linear relationships between x and y.
- We can extend the model to describe non-linear relationships between the inputs and the output by using basis functions, non-linear mappings from inputs to outputs.
- \Box However, we keep the linear relationship of y wrt \mathbf{w} for tractability.
- □ The predictive model follows as $f(\mathbf{x}, \mathbf{w})$

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{M} w_i \phi_i(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}),$$

where $\phi_i(\mathbf{x})$ are basis functions and we have M+1 parameters for the vector \mathbf{w} and $\phi(\mathbf{x}) = [1, \phi_1(\mathbf{x}), \cdots, \phi_M(\mathbf{x})]^{\top}$.

Examples of basis functions

Polynomial: $\phi_i(x) = x^i$.

Exponential: $\phi_i(x) = \exp\left\{-\frac{(x-\mu_i)^2}{2s^2}\right\}$

Sigmoidal: $\phi_i(x) = \sigma(\frac{x-\mu_i}{s}), \ \sigma(a) = 1/(1 + \exp(-a)).$

Transforming the input using the basis functions

- As an example, let us use polynomial basis functions to predict *y*, the time in seconds in the 100 mt Olympics competition.
- □ For each *x* (year of the competition), we now compute the vector of polynomial basis functions

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \\ \vdots \\ x^M \end{bmatrix}$$

We have converted the unidimensional input feature x into a higher dimensional feature representation $\phi(x) \in \mathbb{R}^{M+1}$.

Normal equations with a design matrix

 \Box Given **X**, we first compute a new design matrix Φ ,

$$\boldsymbol{\Phi} = \begin{bmatrix} \boldsymbol{\phi}(\mathbf{x}_1)^\top \\ \boldsymbol{\phi}(\mathbf{x}_2)^\top \\ \vdots \\ \boldsymbol{\phi}(\mathbf{x}_N)^\top \end{bmatrix} = \begin{bmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_M(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_M(\mathbf{x}_2) \\ \vdots & & & & \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_M(\mathbf{x}_N) \end{bmatrix}$$

We now can use (\mathbf{y}, Φ) and write the Gaussian linear regression problem

$$p(\mathbf{y}|\mathbf{X},\mathbf{w},\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(y_n|\mathbf{w}^{\top}\phi_n,\sigma^2),$$

where $\phi_n = \phi(\mathbf{x}_n)$.

Using the ML criterion, we arrive to the following normal equation

$$\mathbf{w}_* = \left(\mathbf{\Phi}^{ op}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{ op}\mathbf{y}.$$

Olympic 100-mt data with M = 5

- \Box For solving the normal equation, we need to invert $\mathbf{X}^{\top}\mathbf{X}$.
- This inversion has a computational complexity between $\mathcal{O}((D+1)^{2.4})$ to $\mathcal{O}((D+1)^3)$ (depending on the implementation).
- The normal equation is linear regarding the number of instances in the training data, O(N).
- It can handle a large training set as long as it fits in memory.
- Alternatively, we can use iterative optimisation in cases with a large number of features and too many instances to fit in memory.

Contents

Review of vector/matrix notation and linear algebra

A regression mode

Linear regression

Gradient descent

Stochastic Gradient Descent

Regularisation

General problem

- □ We are given a function $h(\mathbf{w})$, where $\mathbf{w} \in \mathbb{R}^p$.
- \Box Aim: to find a value for **w** that minimises $h(\mathbf{w})$.
- Use an iterative procedure

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \eta \mathbf{d}_k,$$

where \mathbf{d}_k is known as the search direction and it is such that

$$h(\mathbf{w}_{k+1}) < h(\mathbf{w}_k).$$

□ The parameter η is known as the **step size** or **learning rate**.

Gradient descent

Also known as steepest descent.

□ It assumes that $\mathbf{d}_k = -\mathbf{g}_k$, where $\mathbf{g}_k = \mathbf{g}(\mathbf{w}_k)$.

It can be written like

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \eta \mathbf{g}_k.$$

Perhaps, the simplest algorithm for unconstrained optimisation.

Step size

- The main issue in gradient descent is how to set the step size.
- If it is too small, convergence will be very slow. If it is too large, the method can fail to converge at all.

Figure: The function to optimise is $h(w_1, w_2) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2$. The minimum is at (1, 1). In (a) $\eta = 0.1$. In (b) $\eta = 0.6$.

Alternatives to choose the step size η

Line search methods (there are different alternatives).

 Line search methods may use search directions other than the steepest descent direction.

Conjugate gradient (method of choice for quadratic objectives $g(\mathbf{w}) = \mathbf{w}^{\top} \mathbf{A} \mathbf{w}$).

Use a Newton search direction.

Gradient descent for linear regression (I)

 \Box For simplicity, let us assume that the objective function $h(\mathbf{w})$ corresponds to the mean squared error

$$E(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (y_n - \mathbf{w}^{\top} \mathbf{x}_n)^2.$$

- \Box We could also minimise the negative $LL(\mathbf{w})$ instead.
- We write the update equation as

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \eta \frac{d}{d\mathbf{w}} E(\mathbf{w}) \bigg|_{\mathbf{w} = \mathbf{w}_k}.$$

Gradient descent for linear regression (II)

Computing the gradient for $E(\mathbf{w})$, we get

$$\frac{d}{d\mathbf{w}}E(\mathbf{w}) = \frac{2}{N} \sum_{n=1}^{N} (\mathbf{w}^{\top} \mathbf{x}_{n} - y_{n}) \mathbf{x}_{n} = \frac{2}{N} \mathbf{X}^{\top} (\mathbf{X} \mathbf{w} - \mathbf{y}).$$

The update equation follows as

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \eta \frac{2}{N} \mathbf{X}^{\top} (\mathbf{X} \mathbf{w}_k - \mathbf{y}).$$

- The computation of the gradient involves using the whole dataset (X, y) at every step.
- For this reason, this algorithm is known as batch gradient descent.

Gradient descent and feature scaling

Always normalise the features if using gradient descent.

Gradient descent converges faster if all features have a similar scale.

If the attributes are in very different scales, it may take a long time to converge.

Contents

Review of vector/matrix notation and linear algebra

A regression model

Linear regression

Gradient descent

Stochastic Gradient Descent

Regularisation

Online learning and large datasets

- Traiditionally in machine learning, the gradient \mathbf{g}_k is computed using the whole dataset $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N$.
- There are settings, though, where only a subset of the data can be used.
- **Online learning**: the instances (\mathbf{x}_n, y_n) appear one at a time.
- **Large datasets**: computing the exact value for \mathbf{g}_k would be expensive, if not impossible.

Stochastic gradient descent (I)

In stochastic gradient descent (SGD), the gradient \mathbf{g}_k is computed using a subset of the instances available.

The word stochastic refers to the fact that the value for \mathbf{g}_k will depend on the subset of the instances chosen for computation.

Stochastic gradient descent (II)

 In the stochastic setting, a better estimate can be found if the gradient is computed using

$$\mathbf{g}_{k} = \frac{1}{|S|} \sum_{i \in S} \mathbf{g}_{k,i},$$

where $S \in \mathcal{D}$, |S| is the cardinality of S, and $\mathbf{g}_{k,i}$ is the gradient at iteration k computed using the instance (\mathbf{x}_i, y_i) .

□ This setting is called *mini-batch gradient descent*.

Step size in SGD

- $lue{}$ Choosing the value of η is particularly important in SGD since there is no easy way to compute it.
- Usually the value of η will depend on the iteration k, η_k .
- It should follow the Robbins-Monro conditions

$$\sum_{k=1}^{\infty} \eta_k = \infty, \quad \sum_{k=1}^{\infty} \eta_k^2 < \infty.$$

□ Various formulas for η_k can be used

$$\eta_k = \frac{1}{k}, \quad \eta_k = \frac{1}{(\tau_0 + k)^\kappa},$$

where τ_0 slows down early interations and $\kappa \in (0.5, 1]$.

Contents

Review of vector/matrix notation and linear algebra

A regression model

Linear regression

Gradient descent

Stochastic Gradient Descent

Regularisation

What is regularisation?

- It refers to a technique used for preventing overfitting in a predictive model.
- It consists in adding a term (a regulariser) to the objective function that encourages simpler solutions.
- □ With regularisation, the objective function for linear regression would be

$$h(\mathbf{w}) = E(\mathbf{w}) + \lambda R(\mathbf{w}),$$

where $R(\mathbf{w})$ is the regularisation term and λ the regularisation parameter.

- □ In the expression for $h(\mathbf{w})$, we can use the negative $LL(\mathbf{w})$ instead of $E(\mathbf{w})$.

Different types of regularisation

The objective function for linear regression would be

$$h(\mathbf{w}) = E(\mathbf{w}) + \lambda R(\mathbf{w}),$$

where $R(\mathbf{w})$ follows as

$$R(\mathbf{w}) = \alpha \|\mathbf{w}\|_1 + (1 - \alpha) \frac{1}{2} \|\mathbf{w}\|_2^2,$$

where
$$\|\mathbf{w}\|_1 = \sum_{m=1}^{p} |w_m|$$
, and $\|\mathbf{w}\|_2^2 = \sum_{m=1}^{p} w_m^2$.

lawso relularisation

- □ If $\alpha = 1$, we get ℓ_1 regularisation.
- □ If $\alpha = 0$, we get ℓ_2 regularisation. Rich regression
- If $0 < \alpha < 1$, we get the elastic net regularisation.

Ridge regression or ℓ_2 regularisation

□ In ridge regression, $\alpha = 0$,

$$h(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (y_n - \mathbf{w}^{\top} \mathbf{x}_n)^2 + \frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w},$$

 $lue{}$ It can be shown that an optimal solution for $lue{}$ is given as

$$\mathbf{w}_* = \left(\mathbf{X}^{\top}\mathbf{X} + \frac{\lambda N}{2}\mathbf{I}\right)^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

Notice that we can also use iterative procedure for optimising $h(\mathbf{w})$ either through <u>batch gradient decent</u>, <u>SGD</u> or <u>mini-batch SGD</u>.