期末讲座一:解析几何、微分学与级数

王衡字 赵思铭 何山 张誉翔 薛冰 2025 年 6 月 21 日

第一部分 解析几何

例 1. 若曲线 y = f(x) 是由 $\begin{cases} x = t + \cos t \\ e^y + ty + \sin t = 1 \end{cases}$ 确定,则此曲线在 t = 0 对应点处的切线方程为______.

例 2. 直线
$$\begin{cases} \frac{x-1}{1} = \frac{z+2}{2}, \\ y = 0 \end{cases}$$
 (B) $\left(\frac{4}{5}, 0, -\frac{12}{5}\right)$ (C) $(2,0,0)$ (D) $\left(\frac{3}{2}, 0, 0\right)$

例 3. 曲面
$$x^2 + \cos(xy) + yz + x = 0$$
 在点 $(0,1,-1)$ 处的切平面方程为 () (A) $x - y + z = -2$ (B) $x + y + z = 0$ (C) $x - 2y + z = -3$ (D) $x - y - z = 0$

例 4. 曲面
$$z = x^2 + 2y^2 + \frac{3}{4}$$
 上垂直于直线
$$\begin{cases} 2x - y = 0 \\ y + 2z = 1 \end{cases}$$
 的切平面方程是______.

第二部分 微分学

例 5. 设函数 f(t) 有二阶连续导数, $r = \sqrt{x^2 + y^2}$, $g(x,y) = f\left(\frac{1}{r}\right)$,求 $\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$.

例 6. 设连续函数
$$z = f(x,y)$$
 满足 $\lim_{x \to 0 \atop y \to 1} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y-1)^2}} = 0$,则 $dz\Big|_{(0,1)} =$ ______.

例 7. 如果函数 f(x,y) 在点 (0,0) 处连续,那么下列命题正确的是 (

- (A) 若极限 $\lim_{\substack{x \to 0 \ x \to 0}} \frac{f(x,y)}{|x| + |y|}$ 存在,则 f(x,y) 在点 (0,0) 处可微.
- (B) 若极限 $\lim_{x\to 0\atop y\to 0} \frac{f(x,y)}{x^2+y^2}$ 存在,则 f(x,y) 在点 (0,0) 处可微.
- (C) 若 f(x,y) 在点 (0,0) 处可微,则极限 $\lim_{\substack{x\to 0 \ y\to o}} \frac{f(x,y)}{|x|+|y|}$ 存在.
- (D) 若 f(x,y) 在点 (0,0) 处可微,则极限 $\lim_{x\to 0\atop x\to 0} \frac{f(x,y)}{x^2+y^2}$ 存在.

例 8. 考虑二元函数 f(x,y) 的下面四条性质:

- (1) f(x,y) 在点 (x_0,y_0) 处连续;
- (2) f(x,y) 在点 (x_0,y_0) 处的两个偏导数连续;
- (3) f(x,y) 在点 (x_0,y_0) 处可微;
- (4) f(x,y) 在点 (x_0,y_0) 处的两个偏导数存在.

若用 " $P \Rightarrow Q$ "表示可由性质 P 推出性质 Q,则有 (

- $(A) (2) \Rightarrow (3) \Rightarrow (1)$
- (B) $(3) \Rightarrow (2) \Rightarrow (1)$
- $(C) (3) \Rightarrow (4) \Rightarrow (1)$

例 9. 已知
$$u(x,y,z)=xy^2z^3$$
, $n=(2,2,-1)$,则 $\frac{\partial u}{\partial n}\Big|_{(1,3,1)}=$ _______.

例 10. 设
$$f(x,y) = \begin{cases} \frac{x^2y}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
, 则 $f(x,y)$ 在点 $(0,0)$ 处 $(0,0)$ 处 $(0,0)$ 连续但偏导数不存在 (B) 不连续但偏导数存在

(A) 连续但偏导数不存在

(C) 连续且偏导数存在但不可微

(D) 可微

第三部分

例 11. 判断.

(1) 设级数 $\sum a_n$ 和 $\sum b_n$ 均收敛 (发散), 讨论下列级数的敛散性.

$$\sum (a_n \pm b_n) \qquad \sum a_n b_n \qquad \sum \frac{a_n}{b_n} (b_n \neq 0)$$

对于 $\sum a_n$ 和 $\sum b_n$ 是正项级数讨论同样问题.

- (2) 对于级数 $\sum \max\{a_n, b_n\}$, $\sum \min\{a_n, b_n\}$, 继续 (1) 中讨论.
- (3) 由 $\sum (a_n + a_{n+1})$ 收敛, 能否得到 $\sum a_n$ 收敛?

例 12. 讨论下列级数的敛散性.

$$(1) \sum_{n=1}^{\infty} \frac{1}{3^{\ln n}}$$

(3)
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$$

$$(2) \sum_{n=1}^{\infty} \frac{1}{3^{\sqrt{n}}}$$

$$(4) \sum_{n=1}^{\infty} \left[\frac{1}{n} - \ln\left(1 + \frac{1}{n}\right) \right]$$

(5)
$$\sum_{n=1}^{\infty} \left(e - \left(1 + \frac{1}{n} \right)^n \right)$$

$$(7) \sum_{n=1}^{\infty} \sin\left(\pi\sqrt{n^2 + a^2}\right)$$

(6)
$$\sum_{n=1}^{\infty} \frac{(-1)^n 2^{\frac{1}{n}}}{\sqrt{n}}$$

(8)
$$\sum_{n=1}^{\infty} (-a)^n \frac{n!}{n^n}$$

例 13. 求下列幂级数的收敛域和和函数.

(1)
$$\sum_{n=2}^{\infty} (-1)^n \frac{x^{n+1}}{n^2 - 1}$$

(2)
$$\sum_{n=1}^{\infty} \frac{2n+1}{2^{n+1}} x^{2n}$$

(3)
$$\sum_{n=0}^{\infty} \frac{n+2}{(n+1)!} (x-1)^n$$

例 14. 将下列函数在指定点展开成幂级数.

1.
$$\frac{1}{x+3}$$
, $x=2$

2.
$$\ln \frac{1}{3+2x+x^2}$$
, $x=-1$

3.
$$\frac{x-1}{x+1}$$
, $x=1$

4.
$$\sin x$$
, $x = \frac{\pi}{6}$

例 15.

- 1. 设 f(x) 是周期为 2π 的周期函数,并且它在 $(-\pi,\pi]$ 上的表达式为 $f(x) = \begin{cases} (x+2)^2, & -\pi < x \leq 0, \\ \cos x, & 0 < x \leq \pi, \end{cases}$ 则它的傅里叶级数在 $x = 2\pi$ 处收敛于_____.
- 2. 已知周期函数 f(x) 的周期为 2π ,在 $(-\pi,\pi]$ 上, $f(x) = \begin{cases} 0, -\pi < x \leq 0, \\ x, 0 < x \leq \pi, \end{cases}$,其傅里叶级数为 $\frac{a_0}{2}$ + $\sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$,则其中系数 $b_2 = \underline{\qquad}$.
- 3. 设 f(x) 是以 2π 为周期的周期函数,且 $f(x) = \begin{cases} \cos x, 0 \leqslant |x| < \frac{\pi}{2}, \\ \sin x, \frac{\pi}{2} \leqslant |x| \leqslant \pi, \end{cases}$,则它的傅里叶级数在 $x = \frac{3\pi}{2}$ 处收敛于

例 16. 求下列级数和.

(1)
$$\sum_{n=1}^{\infty} \arctan \frac{2}{n^2}$$

(2)
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1}$$

(3)
$$\sum_{n=1}^{\infty} \frac{n-2}{2^n}$$

例 17. 设数列 $\{a_n\}_{n=1}^{\infty}$ 满足: $a_1=2$, $a_{n+1}=\frac{1}{2}\left(a_n+\frac{1}{a_n}\right)$, 证明:

1.
$$\{a_n\}$$
 收敛;

2.
$$\sum_{n=1}^{\infty} \left(\frac{a_n}{a_{n+1}} - 1 \right)$$
 收敛.

例 18. 设数列 $\{a_n\}$ 的每一项都满足条件 $0 < a_n < \frac{\pi}{2}$, 证明:

$$\sum a_n^2$$
收敛 $\iff \prod_{n=1}^{\infty} \cos a_n$ 收敛

例 19. 设函数 f 在 $[1,+\infty)$ 单调递增且有极限 $f(+\infty)=A$,证明:

1.
$$\sum_{n=1}^{\infty} [f(n+1) - f(n)]$$
 收敛, 并求其和.

2. 若
$$f$$
 在 $(1, +\infty)$ 二阶连续可微且 $f''(x) < 0$,则 $\sum_{n=1}^{\infty} f'(n)$ 收敛.

例 20. 证明:

1. 若 f 是 $[1,+\infty)$ 上非负单减函数,则存在极限

$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} f(k) - \int_{1}^{n} f(x) \, \mathrm{d}x \right) = A, \qquad 0 \leqslant A \leqslant f(1).$$

2.
$$\lim_{x \to +\infty} \sum_{n=1}^{\infty} \frac{x}{x^2 + n^2} = \frac{\pi}{2}.$$