Експериментальний тур 10 клас

Завдання 1

Обладнання:

Групове: монета 5 коп. масою 4,30 г.

Індивідуальне:

- джерело струму (батарейки);
- мініатюрний електродвигун зі шківом і припаяними провідниками;
- дві лінійки з однакового матеріалу.

Завдання. Визначте максимальний обертовий момент цього двигуна.

Варіант розв'язання

Теоретичні відомості.

Обертання шківа припиняється, коли гальмівний момент зовнішніх сил збільшується до значення максимального обертового моменту двигуна M. У якості зовнішньої гальмівної сили можна використати силу тертя $F_{\text{тер}}$ між шківом двигуна та лінійкою. Тоді $M = \frac{F_{\text{тер}}D}{2}$ (тут через D позначено діаметр шківа). Щоб визначити силу тертя, потрібні значення коефіцієнта тертя μ та силу нормального тиску N. Тоді $M = \frac{\mu ND}{2}$. Для визначення μ застосуємо заклинювання шківа між двома лінійками за певного кута 2α між ними (див. рисунок).

Умова заклинювання має вигляд $tg\alpha = \mu$ або $\mu = \frac{D}{2I}$.

Спостерігатимемо припинення обертання двигуна внаслідок тертя шківа об горизонтальну лінійку, яка спирається на нього (горизонтальність лінійки забезпечимо, притримуючи її кінець). Тоді силу нормального тиску визначимо з правила моментів: $Na = mg \cdot \frac{L}{2}$. Тут a – плече сили реакції опори, m і L – відповідно маса та довжина лінійки. Масу ж лінійки визначимо, застосовуючи саму лінійку як важіль, а монету 5 коп. як тягарець відомої маси.

Отже, для остаточного визначення обертового моменту отримуємо формулу

$$M = mg \cdot \frac{D^2L}{8al}.$$

Результати вимірювань

Для вимірювання значень *m*, *a*, *l* було проведено серії експериментів та оцінено похибки вимірювань з урахуванням випадкових похибок.

$$m=14,4\pm0,3 \text{ (r)},$$

 $D=3,0\pm0,1 \text{ (cM)},$
 $L=51,0\pm0,1 \text{ (cM)},$
 $a=7\pm2 \text{ (cM)},$
 $I=8,0\pm0,2 \text{ (cM)}.$

Звідси отримуємо

$$M = (1.4 \pm 0.6) \cdot 10^{-3} \text{H} \cdot \text{M}.$$

Отримані результати дозволяють зробити припущення, що внутрішній опір батарейки може суттєво змінитися протягом серії експериментів.

Завдання 2

Паперовий динамометр.

Обладнання:

Групове:

- ножиці;
- котушка ниток;
- пластилін;
- скотч.

Індивідуальне:

- штатив лабораторний шкільний;
- лінійка;
- мідний дріт довжиною 10–15 см і діаметром 0,65 мм;
- тонкий мідний дріт для вказівника 5 см;
- лист паперу;
- міліметрівка.

Завдання.

Виготовити паперовий динамометр як показано на рисунку.

Виготовити вантажки, нарізавши товстий дріт на частини.

Представити план проведення дослідження.

У звіті вкажіть, як ви виготовили динамометр, вантажки.

- 2. Проаналізуйте отримані результати та оберіть динамометр, який дозволяє зважити всі отримані вантажки з найбільшою точністю. Проградуюйте його.
- 3. Представте графіки отриманих результатів.
- 4. Проведіть контрольне зважування тіла, яке запропонує черговий вчитель.
- 5. Опишіть, чим визначаються лінійна та нелінійна ділянки залежності «розтягнення» паперового динамометра від навантаження, що прикладається.
- 6. Вкажіть основні зовнішні фактори та особливості виготовлення динамометра, які впливають на «стабільність» та чутливість його роботи. Оцініть їх вплив.

Довідка: $\rho = 8900 \text{ кг/м}^3$.

Розв'язок

- 1. Вирізаємо п'ять смужок паперу однакової довжини 29,5 см (вздовж аркушу), але різної ширини, див. табл.
- 2. Відповідно до завдання складаємо динамометр.
- 3. За допомогою нитки підвішуємо динамометр за місце склейки.
- 4. Бачимо, що видовження найтоншого динамометра найбільше, незважаючи на найменшу масу.
- 5. Для кожного динамометра у кожному вимінюванні ми визначаємо довжину діагоналі без навантаження та зміщення вказівника динамометру під навантаженням.
- 6. Виготовляємо вантажки, розрізавши дріт на, наприклад, чотири рівні частини.

7. Робимо вказані вимірювання для всіх динамометрів під однаковим навантаженням.

8. Заносимо отримані данні у таблицю, наприклад:

			' '	<i>r</i> 1		
	No	1	2	3	4	5
	h (MM)	27	19	11	6	3
m	d (mm)	110	120	126	129	125
	$\Delta x (MM)$	6	8	8	12	20
m/2	d (MM)	110	121	126	127	125
	$\Delta x (MM)$	3	4	5	7	13
m/4	d (мм)	103	123	125	126	126
	$\Delta x (MM)$	3	3	2	5	8

^{9.} Оцінили похибку у 2 мм.

Висновки:

Жорсткість виготовлених динамометрів в межах навантаження можна вважать сталою величиною, деформація обернена.

Якщо не витрачати час на виготовлення 5-ти динамометрів, а обмежитись двоматрьома, то вистачить часу на виконання п'яти вимірювань, за якими можна побудувати графічну залежність. За допомогою графіка можна отримати коефіцієнт жорсткості і оцінити його залежність від товщини смужки.

В розв'язках треба проаналізувати виникнення пружної та непружної залежності при навантаженні динамометра.

Проаналізувати наявність та довжину лінійної та нелінійної ділянок залежності видовження динамометру від навантаження.

^{10.} Провести зважування запропонованого еталону та навести отримане значення.