Тема I: Векторная алгебра

3. Смешанное умножение векторов Координаты точки

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2024/2025 учебный год

Всё смешалось в доме Облонских

Мы ввели два произведения векторов — скалярное и векторное. Конечно, смешивать их ни в коем случае нельзя! Именно этим мы и займемся в сегодняшней лекции: мы смешаем скалярное и векторное произведения и посмотрим, что из этого выйдет.

Определение

Смешанным произведением векторов \vec{a} , \vec{b} и \vec{c} называется число, равное скалярному произведению векторного произведения векторов \vec{a} и \vec{b} на вектор \vec{c} . Смешанное произведение векторов \vec{a} , \vec{b} , \vec{c} обозначается $\vec{a}\vec{b}\vec{c}$. Таким образом, $\vec{a}\vec{b}\vec{c}:=(\vec{a}\times\vec{b})\vec{c}$.

• Как и в случае скалярного произведения, результатом смешанного произведения является число.

Критерий компланарности векторов

Критерий компланарности векторов

Вектора $ec{a}$, $ec{b}$ и $ec{c}$ компланарны тогда и только тогда, когда их смешанное произведение равно нулю.

Доказательство. Необходимость. Предположим, что вектора \vec{a} , \vec{b} и \vec{c} компланарны. Если $\vec{a} \parallel \vec{b}$, то $\vec{a} \times \vec{b} = \vec{0}$, и потому $\vec{a} \vec{b} \vec{c} = (\vec{a} \times \vec{b}) \vec{c} = 0$. Пусть теперь $\vec{a} \not\parallel \vec{b}$. Отложим вектора \vec{a} , \vec{b} и \vec{c} от одной точки. Тогда они будут лежать в некоторой плоскости. Вектор $\vec{a} \times \vec{b}$ ортогонален этой плоскости, а значит, и вектору \vec{c} . Следовательно, $\vec{a} \vec{b} \vec{c} = (\vec{a} \times \vec{b}) \vec{c} = 0$.

Достаточность. Если $\vec{a} \parallel \vec{b}$, то компланарность векторов \vec{a}, \vec{b} и \vec{c} очевидна. Пусть теперь $\vec{a} \not \parallel \vec{b}$. Будем считать, что вектора $\vec{a}, \vec{b}, \vec{c}$ отложены от одной и той же точки. Пусть $\vec{a} \vec{b} \vec{c} = 0$. Это означает, что $(\vec{a} \times \vec{b}) \vec{c} = 0$. Следовательно, вектор $\vec{a} \times \vec{b}$ ортогонален вектору \vec{c} . Но вектор $\vec{a} \times \vec{b}$ ортогонален плоскости σ , образованной векторами \vec{a} и \vec{b} . Поскольку \vec{c} ортогонален этому вектору, то он лежит в σ . А это означает, что вектора \vec{a}, \vec{b} и \vec{c} компланарны.

Геометрический смысл смешанного произведения

Теорема (геометрический смысл смешанного произведения)

Объем параллелепипеда, построенного на трех некомпланарных векторах, равен модулю их смешанного произведения.

Доказательство. Пусть \vec{a} , \vec{b} и \vec{c} — три некомпланарных вектора. Предположим сначала, что тройка $(\vec{a}, \vec{b}, \vec{c})$ правая. Дальнейшие рассуждения иллюстрирует рисунок на следующем слайде.

Геометрический смысл смешанного произведения (2)

Вычисление объема параллелепипеда, случай правой тройки Отложим вектора \vec{a} , \vec{b} и \vec{c} от некоторой точки O. Пусть точка C такова, что $\overrightarrow{OC} = \vec{c}$, а D — проекция точки C на плоскость векторов \vec{a} и \vec{b} , которую мы обозначим через σ . Угол между вектором \vec{c} и плоскостью σ обозначим через α , а угол между векторами $\vec{a} \times \vec{b}$ и \vec{c} — через β . Учитывая, что $\alpha + \beta = \frac{\pi}{2}$ и потому $\sin \alpha = \cos \beta$, и используя геометрический смысл векторного произведения, имеем

$$\begin{split} V &= S_{\text{och}} \cdot h = |\vec{a} \times \vec{b}| \cdot |CD| = |\vec{a} \times \vec{b}| \cdot |\vec{c}| \cdot \sin \alpha = \\ &= |\vec{a} \times \vec{b}| \cdot |\vec{c}| \cdot \cos \beta = (\vec{a} \times \vec{b}) \vec{c} = \vec{a} \vec{b} \vec{c}. \end{split}$$

Геометрический смысл смешанного произведения (3)

Пусть теперь тройка $(\vec{a},\vec{b},\vec{c})$ левая. Тогда $\alpha=\beta-\frac{\pi}{2}$ (см. рисунок), откуда $\sin\alpha=-\cos\beta$.

Имеем

$$\begin{split} V &= S_{\text{\tiny OCH}} \cdot h = | \, \vec{a} \times \vec{b} \, | \cdot |CD| = | \, \vec{a} \times \vec{b} \, | \cdot | \, \vec{c} \, | \cdot \sin \alpha = \\ &= -| \, \vec{a} \times \vec{b} \, | \cdot | \, \vec{c} \, | \cdot \cos \beta = -(\, \vec{a} \times \vec{b} \,) \vec{c} = - \vec{a} \vec{b} \vec{c}. \end{split}$$

Геометрический смысл смешанного произведения (4)

Поскольку объем параллелепипеда — положительное число, получаем, что $\vec{a}\vec{b}\vec{c}=V>0$, если тройка $(\vec{a},\vec{b},\vec{c})$ правая, и $\vec{a}\vec{b}\vec{c}=-V<0$, если тройка $(\vec{a},\vec{b},\vec{c})$ левая. В любом случае $V=|\vec{a}\vec{b}\vec{c}|$.

Из доказательства теоремы вытекает важное следствие:

Замечание об ориентации тройки векторов

Тройка векторов является правой тогда и только тогда, когда смешанное произведение этих векторов больше нуля, и левой тогда и только тогда, когда оно меньше нуля.

Именно поэтому правая тройка векторов называется положительно ориентированной, а левая – отрицательно ориентированной.

Свойства смешанного умножения

Свойства смешанного умножения

Если $\vec{a}, \vec{b}, \vec{c}$ и \vec{d} – произвольные вектора, а t – произвольное число, то:

- 1) $\vec{a}\vec{b}\vec{c} = \vec{b}\vec{c}\vec{a} = \vec{c}\vec{a}\vec{b} = -\vec{a}\vec{c}\vec{b} = -\vec{c}\vec{b}\vec{a} = -\vec{b}\vec{a}\vec{c};$
- 2) $(t\vec{a})\vec{b}\vec{c} = \vec{a}(t\vec{b})\vec{c} = \vec{a}\vec{b}(t\vec{c}) = t(\vec{a}\vec{b}\vec{c});$
- 3) $(\vec{a} + \vec{b})\vec{c}\vec{d} = \vec{a}\vec{c}\vec{d} + \vec{b}\vec{c}\vec{d}$ (дистрибутивность относительно сложения векторов по первому аргументу);
- 4) $\vec{a}(\vec{b}+\vec{c})\vec{d}=\vec{a}\vec{b}\vec{d}+\vec{a}\vec{c}\vec{d}$ (дистрибутивность относительно сложения векторов по второму аргументу);
- 5) $\vec{a}\vec{b}(\vec{c}+\vec{d}) = \vec{a}\vec{b}\vec{c} + \vec{a}\vec{b}\vec{d}$ (дистрибутивность относительно сложения векторов по третьему аргументу).

Доказательство свойства 1) смешанного умножения

Доказательство свойства 1). Упорядоченные тройки $(\vec{a}, \vec{b}, \vec{c})$ и $(\vec{b}, \vec{c}, \vec{a})$ имеют одну и ту же ориентацию и определяют один и тот же параллелепипед. В силу теоремы о геометрическом смысле смешанного произведения смешанные произведения $\vec{a}\vec{b}\vec{c}$ и $\vec{b}\vec{c}\vec{a}$ либо оба равны объему этого параллелепипеда, взятому со знаком плюс, либо оба равны объему этого параллелепипеда, взятому со знаком минус, и потому $\vec{a}\vec{b}\vec{c}=\vec{b}\vec{c}\vec{a}$. Упорядоченные тройки $(\vec{a},\vec{b},\vec{c})$ и $(\vec{b},\vec{a},\vec{c})$ имеют разную ориентацию и определяют один и тот же параллелепипед. Поэтому одно из смешанных

и определяют один и тот же параллелепипед. Поэтому одно из смешанных произведений $\vec{a}\vec{b}\vec{c}$ и $\vec{b}\vec{a}\vec{c}$ равно объему этого параллелепипеда, взятому со знаком плюс, а другое — объему того же параллелепипеда, взятому со знаком минус. Отсюда $\vec{a}\vec{b}\vec{c}=-\vec{b}\vec{a}\vec{c}$.

Остальные равенства из свойства 1) доказываются аналогично.

Заметим, что из равенства $\vec{a}\vec{b}\vec{c}=\vec{b}\vec{c}\vec{a}$ вытекает своего рода «ассоциативность»:

$$(\vec{a} \times \vec{b})\vec{c} = \vec{a}(\vec{b} \times \vec{c}).$$

Действительно, левая часть по определению равна $\vec{a}\vec{b}\vec{c}$, а так как скалярное произведение коммутативно, правая часть есть $(\vec{b}\times\vec{c})\vec{a}=\vec{b}\vec{c}\vec{a}$. Итак, в выражении $\vec{a}\vec{b}\vec{c}$ на самом деле не важно, какие из векторов перемножаются векторно, а какие скалярно. Это оправдывает симметрию в обозначении для смешанного произведения.

Доказательство свойства 2) смешанного умножения

Доказательство свойства 2). Используя свойства скалярного умножения, имеем

$$\vec{a}\vec{b}(t\vec{c}\,) = (\,\vec{a}\times\vec{b}\,)(t\vec{c}\,) = t\big((\,\vec{a}\times\vec{b}\,)\vec{c}\,\big) = t\cdot\vec{a}\vec{b}\vec{c}.$$

Таким образом, $\vec{a}\vec{b}(t\vec{c})=t\cdot\vec{a}\vec{b}\vec{c}$. Используя это равенство и свойство 1) смешанного умножения, имеем

$$(t\vec{a}\,)\vec{b}\vec{c} = \vec{b}\vec{c}(t\vec{a}\,) = t\cdot\vec{b}\vec{c}\vec{a} = t\cdot\vec{a}\vec{b}\vec{c}.$$

Таким образом, $(t\vec{a})\vec{b}\vec{c}=t\cdot\vec{a}\vec{b}\vec{c}$. Равенство $\vec{a}(t\vec{b})\vec{c}=t\cdot\vec{a}\vec{b}\vec{c}$ проверяется аналогично предыдущему.

Доказательство свойств 3)-5) смешанного умножения

Используя свойства скалярного умножения, имеем

$$\vec{a}\vec{b}(\vec{c}+\vec{d}) = (\vec{a}\times\vec{b})(\vec{c}+\vec{d}) = (\vec{a}\times\vec{b})\vec{c} + (\vec{a}\times\vec{b})\vec{d} = \vec{a}\vec{b}\vec{c} + \vec{a}\vec{b}\vec{d}.$$

Свойство 5) доказано.

Используя свойства 1) и 5) смешанного умножения, имеем

$$(\vec{a} + \vec{b})\vec{c}\vec{d} = \vec{c}\vec{d}(\vec{a} + \vec{b}) = \vec{c}\vec{d}\vec{a} + \vec{c}\vec{d}\vec{b} = \vec{a}\vec{c}\vec{d} + \vec{b}\vec{c}\vec{d}.$$

Свойство 3) доказано. Свойство 4) доказывается аналогично.

Скаляры можно выносить за знак векторного произведения – доказательство

Свойство из заголовка слайда было сформулировано на прошлой лекции, но не было там доказано. Оно состоит в том, что если \vec{a} и \vec{b} – произвольные вектора, а t – произвольное число, то $(t\vec{a}) \times \vec{b} = \vec{a} \times (t\vec{b}) = t(\vec{a} \times \vec{b})$.

Пусть \vec{x} – произвольный вектор. Используя свойство 2) смешанного умножения и свойства скалярного умножения, имеем

$$\left((t\vec{a}\,)\times\vec{b}\,\right)\vec{x} = (t\vec{a}\,)\vec{b}\vec{x} = t\cdot\vec{a}\vec{b}\vec{x} = t\cdot\left((\,\vec{a}\times\vec{b}\,)\vec{x}\,\right) = \left(t(\,\vec{a}\times\vec{b}\,)\right)\vec{x}.$$

Таким образом, $((t\vec{a}) \times \vec{b})\vec{x} = (t(\vec{a} \times \vec{b}))\vec{x}$ для всякого вектора \vec{x} . В силу ослабленного закона сокращения для скалярного умножения имеем $(t\vec{a}) \times \vec{b} = t(\vec{a} \times \vec{b})$. Аналогично проверяется, что $\vec{a} \times (t\vec{b}) = t(\vec{a} \times \vec{b})$. Итак, скаляры можно выносить за знак векторного произведения.

Векторное произведение дистрибутивно относительно сложения – доказательство

Как и в предыдущем случае, свойство из заголовка слайда было сформулировано на прошлой лекции, но не было там доказано. Оно состоит в том, что если \vec{a}, \vec{b} и \vec{c} – произвольные вектора, то $(\vec{a}+\vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$.

Пусть \vec{x} – произвольный вектор. Используя свойство 3) смешанного умножения и свойства скалярного умножения, имеем

$$\begin{split} & \big((\,\vec{a} + \vec{b}\,) \times \vec{c} \,\big) \vec{x} = (\,\vec{a} + \vec{b}\,) \vec{c} \vec{x} = \vec{a} \vec{c} \vec{x} + \vec{b} \vec{c} \vec{x} = \\ & = (\,\vec{a} \times \vec{c}\,) \vec{x} + (\,\vec{b} \times \vec{c}\,) \vec{x} = (\,\vec{a} \times \vec{c} + \vec{b} \times \vec{c}\,) \vec{x}. \end{split}$$

Таким образом, $((\vec{a}+\vec{b})\times\vec{c})\vec{x}=(\vec{a}\times\vec{c}+\vec{b}\times\vec{c})\vec{x}$ для всякого вектора \vec{x} . Используя ослабленный закон сокращения для скалярного умножения, имеем $(\vec{a}+\vec{b})\times\vec{c}=\vec{a}\times\vec{c}+\vec{b}\times\vec{c}$. Итак, векторное произведение дистрибутивно относительно сложения.

Здесь проверена дистрибутивность по первому аргументу. Мы отмечали, что дистрибутивность по второму аргументу следует из дистрибутивности по первому аргументу и антикоммутативности. Легко понять, что можно и дистрибутивность по второму аргументу доказывать с помощью того же приема, не задействуя антикоммутативность.

Новое доказательство антикоммутативности векторного произведения

Пользуясь дистрибутивностью векторного произведения относительно сложения, можно дать поучительное чисто алгебраическое свойство антикоммутативности векторного произведения.

Пусть \vec{a} и \vec{b} — произвольные вектора. По определению векторного произведения векторный квадрат любого вектора равен $\vec{0}$, откуда

$$(\vec{a} + \vec{b}) \times (\vec{a} + \vec{b}) = \vec{0}.$$

Раскрыв скобки, получим

$$\vec{a} \times \vec{a} + \vec{a} \times \vec{b} + \vec{b} \times \vec{a} + \vec{b} \times \vec{b} = \vec{0}.$$

Но первое и последнее слагаемое равны $\vec{0}$, откуда $\vec{a} \times \vec{b} + \vec{b} \times \vec{a} = \vec{0}$, т.е. $\vec{b} \times \vec{a} = -\vec{a} \times \vec{b}$.

Вычисление смешанного произведения в координатах (в произвольном базисе)

Пусть $(\vec{b}_1,\vec{b}_2,\vec{b}_3)$ — базис пространства, а $(x_1,x_2,x_3),\ (y_1,y_2,y_3)$ и (z_1,z_2,z_3) — координаты векторов $\vec{x},\ \vec{y}$ и \vec{z} соответственно в этом базисе. Из критерия компланарности векторов вытекает, что смешанное произведение трех векторов, два из которых равны, равно нулю. Используя этот факт и свойства смешанного умножения, получаем

$$\begin{split} \vec{x}\vec{y}\vec{z} &= (x_1\vec{b}_1 + x_2\vec{b}_2 + x_3\vec{b}_3)(y_1\vec{b}_1 + y_2\vec{b}_2 + y_3\vec{b}_3)(z_1\vec{b}_1 + z_2\vec{b}_2 + z_3\vec{b}_3) = \\ &= (x_1y_2z_3) \cdot \vec{b}_1\vec{b}_2\vec{b}_3 + (x_1y_3z_2) \cdot \vec{b}_1\vec{b}_3\vec{b}_2 + (x_2y_1z_3) \cdot \vec{b}_2\vec{b}_1\vec{b}_3 + \\ &+ (x_2y_3z_1) \cdot \vec{b}_2\vec{b}_3\vec{b}_1 + (x_3y_1z_2) \cdot \vec{b}_3\vec{b}_1\vec{b}_2 + (x_3y_2z_1) \cdot \vec{b}_3\vec{b}_2\vec{b}_1. \end{split}$$

Используя свойство 1) смешанного умножения, последнее выражение можно переписать в виде

$$(x_1y_2z_3+x_2y_3z_1+x_3y_1z_2-x_1y_3z_2-x_2y_1z_3-x_3y_2z_1)\cdot \vec{b}_1\vec{b}_2\vec{b}_3.$$

Выражение, стоящее в скобках, есть не что иное, как определитель 3-го порядка, в котором по строкам записаны координаты векторов \vec{x} , \vec{y} и \vec{z} . Следовательно,

$$\vec{x}\vec{y}\vec{z} = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} \cdot \vec{b}_1 \vec{b}_2 \vec{b}_3.$$

Критерий компланарности векторов на языке координат

В качестве следствия получаем

Замечание о координатах компланарных векторов

Пусть (x_1,x_2,x_3) , $(y_1,\,y_2,\,y_3)$ и (z_1,z_2,z_3) — координаты векторов $\vec{x},\,\vec{y}$ и \vec{z} соответственно в некотором базисе $(\vec{b}_1,\vec{b}_2,\vec{b}_3)$. Вектора $\vec{x},\,\vec{y}$ и \vec{z} компланарны тогда и только тогда, когда

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = 0.$$

Доказательство. Из определения базиса и критерия компланарности

векторов вытекает, что
$$\vec{b}_1\vec{b}_2\vec{b}_3 \neq 0$$
. Формула $\vec{x}\vec{y}\vec{z} = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} \cdot \vec{b}_1\vec{b}_2\vec{b}_3$

влечет, что
$$\vec{x}\vec{y}\vec{z}=0$$
 тогда и только тогда, когда $\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}=0$. Остается

сослаться на критерий компланарности.

Вычисление смешанного произведения в координатах (в правом ортонормированном базисе)

Если базис $(\vec{b}_1,\vec{b}_2,\vec{b}_3)$ – правый ортонормированный, то $\vec{b}_1 imes \vec{b}_2 = \vec{b}_3$, и потому

$$\vec{b}_1 \vec{b}_2 \vec{b}_3 = (\vec{b}_1 \times \vec{b}_2) \vec{b}_3 = \vec{b}_3 \vec{b}_3 = |\vec{b}_3|^2 = 1.$$

Поэтому в данном случае формула $\vec{x}\vec{y}\vec{z} = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} \cdot \vec{b}_1\vec{b}_2\vec{b}_3$ принимает

совсем простой вид:

$$\vec{x}\vec{y}\vec{z} = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}.$$

Приложения смешанного произведения

Пусть (x_1,x_2,x_3) , (y_1,y_2,y_3) и (z_1,z_2,z_3) – координаты векторов \vec{x} , \vec{y} и \vec{z} соответственно в некотором правом ортонормированном базисе. Используя смешанное произведение, можно

1) вычислить объем V параллелепипеда, построенного на \vec{x} , \vec{y} и \vec{z} :

$$V = \mathsf{abs} \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix};$$

2) определить ориентацию тройки векторов $(\vec{x}, \vec{y}, \vec{z})$: тройка $(\vec{x}, \vec{y}, \vec{z})$ положительно (отрицательно) ориентирована тогда и только тогда,

когда
$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} > 0$$
 (соответственно $\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} < 0$).

Заключаем, что геометрический смысл определителя 3-го порядка — *ориентированный объем* параллелепипеда.

Понятие системы координат

В школьном курсе сначала вводятся координаты точки, а затем с их помощью определяются координаты вектора. У нас координаты вектора появились в первой лекции; теперь на их основе определим координаты точки.

Определения

Системой координат в пространстве [на плоскости] называется совокупность базиса пространства [соответственно базиса плоскости] и точки [принадлежащей этой плоскости]. Точка называется началом *координат*. Систему координат, состоящую из базиса $(\vec{b}_1, \vec{b}_2, \vec{b}_3)$ и начала координат O, будем обозначать через $(O; \vec{b}_1, \vec{b}_2, \vec{b}_3)$; в случае плоскости используется обозначение $(O; \vec{b}_1, \vec{b}_2)$. Прямые, проходящие через точку Oпараллельно одному из базисных векторов, называются осями координат. Прямую, проходящую через точку O параллельно вектору \vec{b}_1 , называют осью абсцисс, прямую, проходящую через точку O параллельно вектору \vec{b}_2 , – *осью ординат*, а прямую, проходящую через точку O параллельно вектору b_3 , – осью аппликат. Плоскости, проходящие через точку O и две из трех осей координат, называются координатными плоскостями.

Определение

Зафиксируем в пространстве некоторую систему координат $(O; \vec{b}_1, \vec{b}_2, \vec{b}_3)$. Вектор \overrightarrow{OM} называется *радиус-вектором* точки M. *Координатами точки* M в системе координат $(O; \vec{b}_1, \vec{b}_2, \vec{b}_3)$ называются координаты ее радиус-вектора в базисе $(\vec{b}_1, \vec{b}_2, \vec{b}_3)$. То, что точка M в некоторой системе координат имеет координаты (a_1, a_2, a_3) , обозначают так: $M(a_1, a_2, a_3)$. Координаты точки на плоскости определяются аналогично координатам точки в пространстве.

Пусть точки A и B имеют координаты (a_1,a_2,a_3) и (b_1,b_2,b_3) соответственно. Учитывая, что $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$, а координаты точек A и B совпадают с координатами векторов \overrightarrow{OA} и \overrightarrow{OB} соответственно, получаем, что

$$\overrightarrow{AB} = (b_1 - a_1, b_2 - a_2, b_3 - a_3).$$

Иными словами,

• чтобы найти координаты вектора, надо из координат его конца вычесть координаты его начала.

Прямоугольная декартова система координат

Определение

Система координат в пространстве $(O; \vec{b}_1, \vec{b}_2, \vec{b}_3)$ называется прямоугольной декартовой, если базис $(\vec{b}_1, \vec{b}_2, \vec{b}_3)$ – правый ортонормированный. Система координат на плоскости $(O; \vec{b}_1, \vec{b}_2)$ называется прямоугольной декартовой, если базис (\vec{b}_1, \vec{b}_2) – ортонормированный.

 Именно в прямоугольной декартовой системе координат многие формулы и уравнения принимают наиболее простой и удобный для применения вид.

В прямоугольной декартовой системе координат оси абсцисс, ординат и аппликат принято обозначать через Ox, Oy и Oz соответственно. В этом случае в понятном смысле используются также обозначения Oxy, Oxz и Oyz для координатных плоскостей, а вся система координат обозначается через Oxyz (в случае пространства) или Oxy (в случае плоскости).

Расстояние между точками

Пусть точки A и B в прямоугольной декартовой системе координат имеют координаты (a_1,a_2,a_3) и (b_1,b_2,b_3) соответственно. Учитывая формулу для координат вектора из данного параграфа и формулу для длины вектора из §2, получаем, что расстояние между точками A и B вычисляется по формуле

$$|AB| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + (b_3 - a_3)^2}.$$

Деление отрезка в данном отношении: определение и примеры

Определение

Пусть даны различные точки A и B и число t. Будем говорить, что точка C делит отрезок AB в отношении t, если

$$\overrightarrow{AC} = t \cdot \overrightarrow{CB}.$$

Например, если C — середина отрезка AB, то она делит его в отношении 1 (так как в этом случае $\overrightarrow{AC}=1\cdot\overrightarrow{CB}$), точка A делит его в отношении 0 (так как $\overrightarrow{AA}=\overrightarrow{0}=0\cdot\overrightarrow{AB}$), а точка B не делит его ни в каком отношении (так как $\overrightarrow{BB}=\overrightarrow{0}$ и не существует такого числа t, что $\overrightarrow{AB}=t\cdot\overrightarrow{BB}$). На рисунке точка C_1 делит отрезок AB в отношении $\frac{1}{2}$, а точка C_2 — в отношении -4.

Деление отрезка в данном отношении

 Как видно из последнего примера, точка, делящая отрезок в некотором отношении, не обязана принадлежать этому отрезку.

Деление отрезка в данном отношении: формулы

 $\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{0}$ в противоречии с тем, что точки A и B различны. Пусть $t\neq -1$. Предположим, что точка C, делящая отрезок AB в отношении t, существует. Выведем формулы для нахождения ее координат, если известны координаты $A(a_1,a_2,a_3)$ и $B(b_1,b_2,b_3)$ и число t. Обозначим координаты точки C через (c_1,c_2,c_3) . Расписывая равенство $\overrightarrow{AC}=t\cdot\overrightarrow{CB}$ в координатах, имеем

$$\begin{cases} c_1 - a_1 = t(b_1 - c_1), \\ c_2 - a_2 = t(b_2 - c_2), \\ c_3 - a_3 = t(b_3 - c_3). \end{cases}$$

Отсюда получаем, что

$$\begin{cases}
c_1 = \frac{a_1 + tb_1}{1 + t}, \\
c_2 = \frac{a_2 + tb_2}{1 + t}, \\
c_3 = \frac{a_3 + tb_3}{1 + t}.
\end{cases} (*)$$

Это – формулы деления отрезка в отношении t.

Деление отрезка в данном отношении: расположение точки C

Равенства (*) показывают, что если точка C существует, то она единственна. Прямой подстановкой проверяется, что точка C, координаты которой задаются равенствами (*), удовлетворяет равенству $\overrightarrow{AC} = t \cdot \overrightarrow{CB}$. Вывод: точка C, делящая отрезок AB в отношении t, существует тогда и только тогда, когда $t \neq -1$, причем при выполнении этого условия она единственна.

Посмотрим, где эта точка может располагаться. В силу равенства $\overrightarrow{AC} = t \cdot \overrightarrow{CB}$ направленные отрезки \overrightarrow{AC} и \overrightarrow{CB} коллинеарны. Это означает, что точка C должна лежать на прямой AB. Как отмечалось выше, она не может совпадать с точкой B. Пусть теперь C — произвольная точка прямой AB, отличная от B. Тогда вектора \overrightarrow{AC} и \overrightarrow{CB} коллинеарны и $\overrightarrow{CB} \neq \overrightarrow{0}$. В силу критерия коллинеарности векторов существует такое число t, что выполнено равенство $\overrightarrow{AC} = t \cdot \overrightarrow{CB}$. Итак,

• точка C делит отрезок AB в некотором отношении тогда и только тогда, когда она принадлежит прямой AB и отлична от точки B. При этом, если C принадлежит отрезку AB, то $\overrightarrow{AC} \uparrow \uparrow \overrightarrow{CB}$, и потому $t \geqslant 0$, а в противном случае $\overrightarrow{AC} \uparrow \downarrow \overrightarrow{CB}$, и потому t < 0.

Координаты середины отрезка

Отметим один важный частный случай. Пусть C – середина отрезка AB. Как уже отмечалось, середина отрезка делит его в отношении 1. Подставляя t=1 в формулы

$$\begin{cases}
c_1 = \frac{a_1 + tb_1}{1 + t}, \\
c_2 = \frac{a_2 + tb_2}{1 + t}, \\
c_3 = \frac{a_3 + tb_3}{1 + t},
\end{cases} (*)$$

получаем координаты точки C:

$$\left(\frac{a_1+b_1}{2},\frac{a_2+b_2}{2},\frac{a_3+b_3}{2}\right).$$

Иными словами,

 координаты середины отрезка суть полусуммы соответствующих координат его начала и конца.