

Description

The VSM15N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =100V,I_D =15A

$$\begin{split} R_{DS(ON)} &< 90 m\Omega \ @ \ V_{GS} = 10V \quad (Typ:75 m\Omega) \\ R_{DS(ON)} &< 100 m\Omega \ @ \ V_{GS} = 4.5V \quad (Typ:80 m\Omega) \end{split}$$

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits

Schematic Diagram

Package Marking and Ordering Information

Device Marking		Device	Device Package	Reel Size	Tape width	Quantity
VSM15N	110-T2	VSM15N10	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	100	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	15	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	10.6	Α	
Pulsed Drain Current	I _{DM}	60	А	
Maximum Power Dissipation	P _D	50	W	
Single pulse avalanche energy (Note 5)	E _{AS}	16	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{eJC}	3	°C/W	
---	------------------	---	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•	•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	110	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	$V_{GS}=\pm20V, V_{DS}=0V$	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.6	2.5	V
Durin Course On Otata Desistance		V _{GS} =10V, I _D =10A	-	75	90	- mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =10A	-	80	100	
Forward Transconductance	g _{FS}	V _{DS} =5V,I _D =10A	-	10	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss}		-	830	-	PF
Output Capacitance	Coss	V_{DS} =50 V , V_{GS} =0 V ,	-	44.2	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	30.1	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	15	-	nS
Turn-on Rise Time	t _r	V_{DD} =50 V , R_L =6. 4Ω	-	5	-	nS
Turn-Off Delay Time	t _{d(off)}	$V_{GS}\text{=}10V,R_{G}\text{=}3\Omega$	-	25	-	nS
Turn-Off Fall Time	t _f		-	7	-	nS
Total Gate Charge	Qg	V 50VI 10A	-	22.3		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=50V,I_{D}=10A,$ $V_{GS}=10V$	-	2.87	-	nC
Gate-Drain Charge	Q _{gd}	VGS-1UV	-	6.14	-	nC
Drain-Source Diode Characteristics	· ·		•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =15A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	15	Α

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance