HW8 Astrodynumics | Longo extern senior old

Given a space claft's orientation:

as (30, 40, 10) Jegreer:

$$T_{\frac{1}{2}} = \begin{bmatrix} c\theta & -s\theta & 0 \\ s\theta & c\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$T_{y} = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & \Omega & \cos \theta \end{pmatrix}$$

$$T_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & C\theta & -S\theta \\ 0 & S\theta & C\theta \end{pmatrix}$$

$$\begin{cases}
C(30^{\circ}) - S(30^{\circ}) & 0 \\
S(30^{\circ}) - S(30^{\circ}) & 0 \\
0 & 0 & 1
\end{cases}
\begin{cases}
Cos(40^{\circ}) & 0 & Sin(40^{\circ}) \\
0 & 1 & 0 \\
-Sin(40^{\circ}) & 0 & Car(40^{\circ})
\end{cases}
\begin{cases}
1 & 0 & 0 \\
0 & c(10^{\circ}) - S(10^{\circ}) \\
0 & S(10^{\circ}) & c(10^{\circ})
\end{cases}$$

$$\frac{1}{e} = \frac{48.4519^{\circ}}{2 \sin(4)} = \frac{1}{\cos(4)} = \frac{1}{\cos$$

$$\frac{1}{6} = \begin{bmatrix}
0.0221 \\
-0.8537 \\
-0.5203
\end{bmatrix}$$

C) Using the formula for Euler to queterion.

Q1 =
$$e_1 \sin \left(\frac{4}{2} \right) = 0.0221 \sin \left(\frac{48.4519^{\circ}}{2} \right) = 0.0091$$

Q2 = $e_2 \sin \left(\frac{4}{2} \right) = -0.8527 \sin \left(\frac{48.4519^{\circ}}{2} \right) = -0.3503$

Q3 = $e_3 \sin \left(\frac{4}{2} \right) = -0.5203 \sin \left(\frac{48.4519^{\circ}}{2} \right) = -0.2135$

Q4 = $e_3 \sin \left(\frac{4}{2} \right) = -0.5203 \sin \left(\frac{48.4519^{\circ}}{2} \right) = -0.2135$

$$\frac{4}{9} \frac{\text{Chech}}{10040} : \frac{1}{10040} = \frac{1}{10040} =$$

0) given any olar velocity of frame
$$\beta$$
,
$$B = \begin{cases}
0.1 \\
0.2
\end{cases}$$

$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}$$

$$\begin{vmatrix}
\dot{\beta} & \vdots & \dot{\beta} & \vdots \\
\dot{\beta} & \vdots & \ddots & \vdots \\
\dot{\beta}$$

$$\begin{pmatrix}
1 \\
\overline{2}
\end{pmatrix}
\begin{pmatrix}
0.9119 & -0.0091 & 0.3503 & 0.2135 \\
0.0091 & 0.9119 & 0.2135 & -0.3503 \\
-0.3503 & -0.2135 & 0.9119 & -0.0011 \\
-0.2135 & 0.3503 & 0.0091 & 0.9119
\end{pmatrix}
\begin{pmatrix}
0 \\
0.1 \\
0.2 \\
0
\end{pmatrix}$$

HUS Astrodynumics | Domo Pertited section 0101

need in red/sec, so do conversion

$$\vec{W} = \begin{bmatrix} 10 \\ 0 \\ 30 \end{bmatrix} \cdot \frac{\pi}{180} = \begin{bmatrix} 0.174533 \\ 0 \\ 0.523591 \end{bmatrix}$$

·now find Bt.:

. now find kinetic engy:

Cotational Winter energy i

$$T = \frac{1}{2} I_{11} w_{1}^{2} + \frac{1}{2} I_{22} w_{2}^{2} + \frac{1}{2} I_{33} w_{3}^{2}$$

$$= \frac{1}{2} (10) (0.1745)^{2} + \frac{1}{2} (20) (0)^{2} + \frac{1}{2} (30) (0.5236)^{2}$$

b) in Torque-free motion,
$$\vec{L} = 0$$
! so our £0 M's

$$\begin{array}{c}
\underline{\sigma rc}: \\
T_{||} \dot{v}_{1} = -(T_{33} - T_{22}) v_{2} v_{3} \\
T_{22} \dot{v}_{2} = -(T_{||} - T_{33}) v_{3} v_{1} \\
T_{33} \dot{v}_{3} = -(T_{22} - T_{||}) v_{1} v_{2}
\end{array}$$

PLOTS:

Polhode plot of the initial ω vector, h, and KE

Table of Contents

Q1

a

given the 3-2-1 euler rotation of a body:

```
theta1= 30;
theta2 = 40;
theta3 = 10;
Tz = [cosd(theta1), -sind(theta1), 0; sind(theta1), cosd(theta1), 0; 0,0,1];
Ty = [cosd(theta2), 0, sind(theta2); 0, 1, 0; -sind(theta2), 0, cosd(theta2)];
Tx = [1,0,0; 0, cosd(theta3), -sind(theta3); 0, sind(theta3), cosd(theta3)];
R_full = Tz*Ty*Tx
```

b

Get the principle rotation angle

```
phi = acosd(.5*(R_full(1,1)+R_full(2,2)+R_full(3,3)-1));

% Get the principle axis
e_vec = 1/(2*sind(phi)) * [R_full(2,3)-R_full(3,2);R_full(3,1)-R_full(1,3);R_full(1,2)-R_full(2,1)]
```

C

Now, find the quaternion values:

```
q1 = e_vec(1)*sind(phi/2)
q2 = e_vec(2)*sind(phi/2)
q3 = e_vec(3)*sind(phi/2)
q4 = cosd(phi/2)
1.00001)
    fprintf("Quaternions check out!\n\n");
end
d
get the quaternion velocity
w_{vec} = [0;0.1;0.2;0];
B_{vec} = [q4;q1;q2;q3];
B_{TRANSFORMATION} = [B_{vec}(1), -B_{vec}(2), -B_{vec}(3) -B_{vec}(4);
                    B_{vec}(2), B_{vec}(1), -B_{vec}(4), B_{vec}(3);
                    B_{vec(3)}, B_{vec(4)}, B_{vec(1)}, -B_{vec(2)};
                    B_{\text{vec}}(4), -B_{\text{vec}}(3), B_{\text{vec}}(2), B_{\text{vec}}(1)];
B_dot_vec = (1/2)*B_TRANSFORMATION*w_vec
R full =
    0.6634
             -0.3957
                        0.6350
    0.3830
             0.9087
                        0.1661
   -0.6428
              0.1330
                        0.7544
e\_vec =
    0.0221
   -0.8537
   -0.5203
q1 =
    0.0091
q2 =
   -0.3503
q3 =
   -0.2135
q4 =
```

```
0.9119

Quaternions check out!

B_dot_vec =

0.0346
0.0669
0.0805
0.0184
```

Q2

Considering a torque-free rigid body:

```
I = [10, 0, 0; 0; 0, 20, 0; 0, 0, 30];
```

a

given the angular velocity vector, find angular momentum at that point and kinetic energy

```
w_vec_deg = [10;0;30];
w_vec = w_vec_deg * (pi/180);

h_vec = [I(1,1)*w_vec(1); I(2,2)*w_vec(2); I(3,3)*w_vec(3);]
h_vec_norm = norm(h_vec);
KE = .5*I(1,1)*(w_vec(1))^2 + .5*I(2,2)*(w_vec(2))^2 + .5*I(3,3)*(w_vec(3))^2
```

b

use the ODE propagator to find the angular velocity over time

```
%--- ODE func values---%
tall_er_ant = (10^-13); % Tolerance
step_size = 1; % step size
max_time = 100; % max time (0->max_time)
t = [0:step_size:max_time]; % timestep

% ODE options
ODE_options = odeset("RelTol", tall_er_ant, "AbsTol", tall_er_ant);

[T1, Y1] = ode45(@myodefun, t, w_vec, ODE_options, I);
hold on
plot(T1, Y1(:,1), DisplayName="\omega_x")
plot(T1, Y1(:,2), DisplayName="\omega_y")
plot(T1, Y1(:,3), DisplayName="\omega_z")
title("Plot of angular velocity of a torqe-free rigid body")
```

```
xlabel("Time (seconds)")
ylabel("Angular Velocity (rads/sec)")
legend
grid on
C
KE_{vec_C} = .5*I(1,1).*(Y1(:,1)).^2 + .5*I(2,2).*(Y1(:,2)).^2
 + .5*I(3,3).*(Y1(:,3)).^2;
for i=1:1:length(T1)
    h norm C(i) = \text{norm}([I(1,1).*Y1(i,1);I(2,2).*Y1(i,2);I(3,3).*Y1(i,3);]);
    h_{vec\_array}(i,1:3) = [I(1,1).*Y1(i,1);I(2,2).*Y1(i,2);I(3,3).*Y1(i,3)];
end
figure
tiledlayout(1,2)
nexttile
plot(T1, KE vec C);
title("Plot of Kinetic Energy deviations over time (zoomed in)")
xlabel("Time (seconds)")
ylabel("Kinetic Energy (Joules)")
nexttile
plot(T1, KE vec C);
title("Plot of Kinetic Energy deviations over time (equal axis)")
xlabel("Time (seconds)")
ylabel("Kinetic Energy (Joules)")
axis equal
figure
tiledlayout(1,2)
nexttile
plot(T1, h_norm_C);
title("Plot of Angular Momentum over time (zoomed in)")
xlabel("Time (seconds)")
ylabel("Angular Momentum (kg-m^2/s")
nexttile
plot(T1, h_norm_C);
title("Plot of Angular Momentum over time (equal axis)")
xlabel("Time (seconds)")
ylabel("Angular Momentum (kg-m^2/s")
axis equal
% I believe my code is working because my Kinetic Energy and my Angular
% momentum magnitude is constant! This is inline with what is expected when
% assuming a torque-free rigid body, that the angular momentum and energy
% should remain constant as it spins (because there are no external forces
% acting on it, it shouldn't lose energy or momentum!)
d
% Create the sphere:
% Get our h squared value
```

```
h_{squared} = I(1,1)^2*w_{vec}(1)^2 + I(2,2)^2*w_{vec}(2)^2 + I(3,3)^2*w_{vec}(3)^2;
x = sqrt(h squared); % since h squared = r^2, sqrt(h squared) = r, our radius!
y = sqrt(h_squared);
z = sqrt(h squared);
[theta,phi] = ndgrid(linspace(0,pi),linspace(0,2*pi));
X = x*sin(theta).*cos(phi);
Y = y*sin(theta).*sin(phi);
Z = z*cos(theta);
% Next, create the ellipsoid!
a = sqrt((2*I(1,1)*KE)); % implement the equation from the lecture
b = sqrt((2*I(2,2)*KE)); % since b^2 = (2*I(2,2)*KE, b = sqrt((2*I(2,2)*KE)); % sin
c = sqrt((2*I(3,3)*KE)); % do the same for c^2, a^2 as above for b^2
[theta,phi] = ndgrid(linspace(0,pi),linspace(0,2*pi));
A = a*sin(theta).*cos(phi);
B = b*sin(theta).*sin(phi);
C = c*cos(theta);
% Finally, plot the sucker!
figure
hold on
surf(X,Y,Z, FaceColor="cyan", EdgeColor="blue", DisplayName="Angular Momentum
  Sphere");
surf(A,B,C, FaceColor="cyan", EdgeColor="blue", DisplayName="Kinetic Energy
 Ellipsoid")
title("Polhode plot of the initial \omega vector, h, and KE ")
scatter3(h_vec_array(:,1), h_vec_array(:,2),
 h_vec_array(:,3), "red", "filled", DisplayName="Plot of time-varying angular
 moment")
legend
axis equal
e
w \text{ vec deg2} = [1;15;0];
w_{vec2} = w_{vec_{deg2}*(pi/180)};
[T2, Y2] = ode45(@myodefun, t, w_vec2, ODE_options, I);
figure
hold on
plot(T2, Y2(:,1), DisplayName="\omega_x")
plot(T2, Y2(:,2), DisplayName="\omega_y")
plot(T2, Y2(:,3), DisplayName="\omega_z")
title("Plot of angular velocity of a torqe-free rigid body (part f)")
xlabel("Time (seconds)")
ylabel("Angular Velocity (rads/sec)")
legend
grid on
```

f

Pretty much copy/paste from c and d Get kinetic Energy

```
KE2 = .5*I(1,1)*(w_vec2(1))^2 + .5*I(2,2)*(w_vec2(2))^2
 + .5*I(3,3)*(w vec2(3))^2;
% Get Angular momentum
for i=1:1:length(T2)
    h_{\text{vec\_array2}}(i,1:3) = [I(1,1).*Y2(i,1);I(2,2).*Y2(i,2);I(3,3).*Y2(i,3)];
end
% Get our h squared value
h_{squared2} = I(1,1)^2*w_{vec2}(1)^2 + I(2,2)^2*w_{vec2}(2)^2 +
I(3,3)^2*w_vec2(3)^2;
x = sqrt(h_squared2); % since h_squared = r^2, sqrt(h_squared) = r, our
radius!
y = sqrt(h_squared2);
z = sqrt(h squared2);
[theta,phi] = ndgrid(linspace(0,pi),linspace(0,2*pi));
X = x*sin(theta).*cos(phi);
Y = y*sin(theta).*sin(phi);
Z = z*cos(theta);
% Next, create the ellipsoid!
a = sqrt((2*I(1,1)*KE2)); % implement the equation from the lecture
b = sqrt((2*I(2,2)*KE2)); % since b^2 = (2*I(2,2)*KE, b = sqrt((2*I(2,2)*KE)))
c = sqrt((2*I(3,3)*KE2)); % do the same for c^2, a^2 as above for b^2
[theta,phi] = ndgrid(linspace(0,pi),linspace(0,2*pi));
A = a*sin(theta).*cos(phi);
B = b*sin(theta).*sin(phi);
C = c*cos(theta);
% Finally, plot the sucker!
figure
hold on
surf(X,Y,Z, FaceColor="cyan", EdgeColor="blue", DisplayName="Angular Momentum
Sphere");
surf(A,B,C, FaceColor="cyan", EdgeColor="blue", DisplayName="Kinetic Energy
Ellipsoid")
title("Polhode plot of the \omega vector from part f), h, and KE ")
scatter3(h_vec_array2(:,1), h_vec_array2(:,2),
h_vec_array2(:,3), "red", "filled", DisplayName="Plot of time-varying angular
moment")
legend
axis equal
% I think the plots from b and d look different because our angular
% velocity is about a completely different axis. from the first half of the
% HW, our angular velocity was about x and z, but now we are rotation about
% x any y, meaning our motion will be completely different. Also, our
% angular velocities are quite different, since our rotation about x is
% much smaller than the first half of the problem (1 << 15, compared to 10
% and 30 from the first half).
```


Plot of Kinetic Energy deviations overliting (kinetine Einergy deviations over time (equ 4.2646438770138 4.2646438770136 100 4.2646438770134 Kinetic Energy (Joules) Kinetic Energy (Joules) 50 4.2646438770132 4.264643877013 0 4.2646438770128 -50 4.2646438770126 4.2646438770124 -100 4.2646438770122 50 0 0 100 50 100 Time (seconds) Time (seconds)

Published with MATLAB® R2022b