Project Report CS 412 - Introduction to Machine Learning

Machine Learning Tasks on Brazilian E-Commerce Dataset

Summary:

Dataset:

The dataset that we used for our machine learning tasks is Brazilian E-commerce public dataset by Olist[1]. Olist is an online store in Brazil using which merchants are able to sell their products and ship them directly to the customers using Olist's logistic partners.

The dataset has transactional details of 990,000 orders placed through the website. The dataset has details about customers, sellers, products, order delivery, order payments and reviews of the products by the customers in Portuguese. There are 9 csv files in total, each representing a specific table. The data schema is shown as below:

Regression:

Task: Predict sales price for a product category in a particular state in a given month.

Pre-processing:

To perform the regression task, we needed overall sales price of previous transaction records based on product category for each state filtered by the month. To get the data in the required format, we had to combine the records from multiple tables. Below is the list of tables from which data was extracted for specific attributes as part of the pre-processing step:

- Orders order id, customer id and order purchase time
- Products product id and product category
- Customer customer id and customer state
- Order Items order id, product id and price
- Product Category Translation product category in english

Groupby is done using year, month, state, product category on price and label encoding is done on the columns state and product category.

Data Visualization:

To find out states with the highest sales -

To find out top product categories :

Models used for the machine learning task:

- Decision Tree
- AdaBoost with Decision Tree
- Random Forest

Approach:

- 30-Fold cross-validation was performed to tune the hyperparameters of the different classifiers.
- The preprocessed dataset was divided into 80% training set and 20% test set.
- The hyperparameters of the classifiers were tuned based on their performance on the validation set.
- The classifiers were again trained using the entire 80 % training set with the best hyperparameters found.

Evaluation metrics and hyperparameters used (Hyperparameter tuning):

Results of	the	train	data	for	Decision	Tree	Regressor
------------	-----	-------	------	-----	----------	------	-----------

Maximum depth	Mean Absolute Error	Root Mean Squared Error	R2 Score	<u>-</u>
5 10 15 20	1092.1505880055329 750.9615215363106 632.8068940119049 631.5873044208989	2387.452384331795 1585.1622207098558 1410.1097557562869 1415.1079686093794	0.2471057019604561 0.6375643616474612 0.712912764000986 0.7098189790235698	

Results of the train data for AdaBoost Regressor with Decision Tree

Learning rate	Mean Absolute Error	Root Mean Squared Error	R2 Score
0.001	551.1588153027816 551.2618506065185	1257.2213610796541 1246.0219846700834	0.770629513182874 0.7733823891465103
0.1	555.2040367156006 588.2326780061336	1282.6121940563507 1304.1987414921098	0.7415096411057142 0.7440626737476563

Results of the train data for Random Forest Regressor

'	Mean Absolute Error	Root Mean Squared Error	R2 Score
25	583.5497669844525	1301.3779597660023	0.7572830780351757
50	578.9325566017578	1292.5144573768569	0.7598764699725129
75	575.4414755753714	1288.1483537969848	0.7620529594995923
100	576.047737988877	1287.4969971975797	0.7628303625361482

Resulting performances of the 3 classifiers :

Results of the test data					
Model	Mean Absolute Error	Root Mean Squared Error	R2 Score		
AdaBoost Regressor with Decision Tree Decision Tree Regressor Random Forest Regressor		1367.984558910878 1533.9859702253607 1339.5212003084177	0.810747067547194 0.762029566301638 0.818540625342986		

Challenges faced:

- Data was skewed. Very high sales in some states and very low in the others.
- The variance in sales was very high ranging from \$4 to \$40000 leading to higher values while evaluating the mean squared error metric.
- Hence, metrics mean absolute error and R2 (for evaluating variance) were also used for evaluation.