

Relazione

di

Metodi Numerici per la Grafica

Di Federico Schipani

A.A. 2017-2018

Indice

	La Base delle B-Spline
	1.1 Esempi di basi
	1.2 Proprietà della base delle B-Spline
	Curve B-Spline
	2.1 Proprietà delle curve B-Spline
	2.2 Curve Chiuse
3	Superfici di Bézier
	3.1 Proprietà delle superfici di Bézier

1 La Base delle B-Spline

Dato un vettore esteso dei nodi

$$\mathbf{t} = \left\{ \underbrace{t_0, \dots, t_{k-2}}_{k-1}, \underbrace{t_{k-1}, \dots, t_{n+1}}_{\tau_0, \tau_1, \dots, \tau_L}, \underbrace{t_{n+2}, \dots, t_{n+k}}_{k-1} \right\}$$

con

$$\mathbf{t_0} \le t_1 \le \dots t_{k+1} < t_k \dots < t_{n+1} \le t_{n+2} \le \dots \le t_{n+k}$$

possiamo definire la base delle B-Spline su nodi semplici tramite la relazione ricorrente di Cox - Boor.

Definizione 1. Le B-Spline di ordine 1, oppure grado 0 sono definite come:

$$N_{i,1}(t) = \begin{cases} 1, & se \ t \in [t_i, t_{i+1}]i = 0, \dots, n+k-1 \\ 0, & altrimenti \end{cases}$$

Altrimenti le B-Spline di ordine $r \leq k$ sono definite ricorsivamente, per r > 1, come:

$$N_{i,r}(t) = \omega_{i,r}(t)N_{i,r-1}(t) + [1 - \omega_{i+1,r}(t)]N_{i+1,r-1}$$

dove

$$\omega_{i,r}(t) = \begin{cases} \frac{t-t_i}{t_{i+r-1}-t_i}, & se \ t < t_{i+r-1} \\ 0, & altrimenti \end{cases}$$

Le B-Spline possono anche essere definite su una partizione nodale la cui molteplicità m_i di un generico nodo τ_i è più alta di 1, quindi su nodi multipli. In questo caso il vettore esteso dei nodi diventa:

$$\mathbf{t} = \left\{ \underbrace{t_0, \dots, t_{k-2}}_{k-1}, \underbrace{t_{k-1}, \dots, t_{n+1}}_{\tau_0, \tau_1, \dots, \tau_{1}, \dots, \tau_{L}}, \underbrace{t_{n+2}, \dots, t_{n+k}}_{k-1} \right\}$$

con τ_i ripetuto a seconda della sua molteplicità m_i con $i=1,\ldots,L-1$ in \mathbf{t} , e

$$\mathbf{t_0} \le t_1 \le \dots t_{k+1} \le t_k \dots \le t_{n+1} \le t_{n+2} \le \dots \le t_{n+k}$$

La definizione della base delle B-Spline di Cox - De Boor non cambia, ma bisogna stare attenti in quanto $\omega_{i,r}(t)$ può diventare nullo per qualche valore r a causa dei nodi multipli. In Codice 1 sono mostrate le due funzioni che calcolano le basi di Cox - De Boor, realizzate senza l'utilizzo delle funzioni del Curve Fitting Toolbox.

Codice 1: Calcolo delle basi di Cox De Booi

```
1 function [omega] = calc_omega (i, r, t_star, t)
2     if t(i) == t(i+r-1)
3         omega = 0;
4         return;
5     elseif t_star <= t(i+r-1)
6         omega = (t_star-t(i)) / (t(i+r-1)-t(i));
7         return;
8     else
9         omega = 0;
10         return;
11     end</pre>
```

```
12 end
13
14 function [y] = de_boor_basis (i, r, t, t_star, k)
       if r == 1
15
           if (t_star >= t(i) && t_star < t(i+1)) || ...</pre>
16
               ((t_star >= t(i) && t_star <= t(i+1) && ...
17
           t_star == t(end) && i == length(t)-k))
18
19
               y = 1;
20
               return;
21
22
           else
23
               y = 0;
               return;
24
25
           end
26
           omega1 = calc_omega(i, r, t_star, t);
27
           omega2 = (1 - calc_omega(i+1, r, t_star, t));
           db1 = de_boor_basis(i, r-1, t, t_star, k);
29
           db2 = de_boor_basis(i+1, r-1, t, t_star, k);
30
           y = omega1 * db1 + omega2 * db2;
32
           return;
33
       end
34 end
```

La funzione calc_omega di Codice 1 è di facile comprensione. Dati in input l'indice i, l'ordine r, il punto in cui si vuole calcolare la spline t_star ed il vettore esteso dei nodi $\mathbf t$ si occupa di calcolare i valori $\omega_{i,r}(t)$. Il controllo iniziale $\mathbf t = \mathbf t + r - 1$ serve a gestire il caso di nodi multipli. In questa particolare condizione possiamo trovarci a gestire casi in cui il denominatore di $\frac{t-t_i}{t_{i+1}-r-t_i}$ è uguale a 0; quindi $\omega_{i,r}(t)$ dev'essere posto a 0. La seconda funzione in Codice 1 è de_boor_basis che effettua il calcolo delle basi delle B-Spline. La condizione booleana a riga 16, 17 e 18 serve a verificare che, nel caso in cui l'ordine della spline sia 1, ci si trovi all'interno dell'intervallo $[t_i, t_{i+1})$. Bisogna però fare attenzione al caso in cui il punto $t = t_star$ di $N_{i,k}(t)$ si trovi nell'ultimo intervallo. Questo ha reso necessario introdurre un ulteriore controllo per fare in modo che venga preso in considerazione anche l'ultimo valore dell'ultimo intervallo.

1.1 Esempi di basi

L'esempio più immediato di base è quello dove il vettore esteso dei nodi è uniforme, in questo caso abbiamo preso $\mathbf{t} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]$ e k = 5, otterremo quindi 5 funzioni di base visualizzate in Figura 1.

Cambiando il vettore esteso dei nodi ${\bf t}$ otteniamo basi per le B-Spline con regolarità diversa. In Figura 2 viene mostrato cosa succede tenendo fissato il numero di nodi e l'ordine e aumentato la molteplicità del nodo 4.

Un caso particolare della base delle B-Spline sono i polinomi di Bernstein. Questi ultimi si ottengono quando, dato $[a,b]=[\tau_0,\tau_L]$, la partizione nodale estesa è formata solamente da a ripetuto k volte e b ripetuto altrettante k volte. In Figura 3 è mostrato un esempio di base ottenuta con i polinomi di Bernstein di grado 5.

1.2 Proprietà della base delle B-Spline

La base delle B-Spline gode di diverse proprietà:

- 1. Supporto locale: $N_{i,r}(t) = 0$ se $t \notin [t_i, t_{i+r}]$
- 2. Non negatività: $N_{i,r}(t) \geq 0 \ \forall \ t \in \mathbb{R}$

Figura 1: Base con $\mathbf{t} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]$ e k = 5

3. Partizione dell'unità: $\sum_{i=0}^{n+k-r} = 1 \ \forall \ t \in [t_{r-1}, t_{n+1+k-r}] \ \text{con} \ r = 1 \dots k$

Supporto locale Questa proprietà ci dice che la spline $N_{i,r}(t)$ è diversa da zero solamente nell'intervallo di nodi che va da t_i a t_{i+r} . Prendiamo ad esempio le B-Spline di ordine k=4 e con $\mathbf{t}=[0,0,0,1,1,2,3,3,3]$. Le splines saranno le seguenti:

- $N_{1,4}(t) \neq 0 \ t \in [t_1 = 0, t_5 = 1]$
- $N_{2,4}(t) \neq 0 \ t \in [t_2 = 0, t_6 = 2]$
- $N_{3,4}(t) \neq 0 \ t \in [t_3 = 0, t_7 = 3]$
- $N_{4,4}(t) \neq 0 \ t \in [t_4 = 1, t_8 = 3]$
- $N_{5,4}(t) \neq 0 \ t \in [t_5 = 1, t_9 = 3]$

Facendo un plot di questa base possiamo vedere come la proprietà di supporto locale sia verificata, in particolare in Figura 4 sono mostrate tutte le splines della base, mentre in Figura 5 è mostrato un dettaglio della $N_{1,4}(t)$ per t = [0.85, 1.15].

Non negatività In questo caso la proprietà è facilmente verificabile sfruttando uno qualunque dei plot mostrati in precedenza, ad esempio possiamo vedere che in Figura 4 nessuna delle $N_{i,r}(t)$ è negativa.

Partizione dell'unità BONA

Figura 2: Base con nodi multipli di ordine 6

2 Curve B-Spline

A partire dalla base delle B-Spline è possibile realizzare delle curve. Dati n+1 punti di controllo la curva è definita come

$$\mathbf{X}(t) := \sum_{i=0}^{n} \mathbf{d_i} N_{i,k}(t)$$

2.1 Proprietà delle curve B-Spline

Le curve B-Spline godono di diverse proprietà:

- 1. Invarianza per trasformazioni affini: la proprietà della base delle B-Spline di essere una partizione dell'unità garantisce che le curve B-Spline siano invarianti per trasformazioni affini, questo vuol dire che applicare la trasformazione affine sulla curva, o sui punti di controllo è indifferente in quanto il risultato non cambia.
- 2. Località: un segmento di curva è influenzato solamente da k punti di controllo.
- 3. Strong Convex Hull: ogni punto sulla curva appartiene all'inviluppo convesso di k punti di controllo consecutivi, con k ordine delle funzioni spline.
- 4. Variation Diminishing: il numero di intersezioni tra una retta e la curva è minore o uguale al numero di intersezioni tra la stessa retta ed il poligono di controllo.

Invarianza per trasformazioni affini In Codice 2 è presente il codice con cui è stata applicata una trasformazione prima ai punti di controllo e poi alla curva. Come si può vedere dal Codice 2 la trasformazione applicata è stata una rotazione di 180 gradi ed uno spostamento di 1 su entrambi gli assi. Per generare la base con cui poi è stata disegnata la curva è stata usata

Figura 3: Base di Bernstein di ordine 5

la funzione spcol del Curve Fitting Toolbox. Un modo Naïve con cui ci si può accertare della veridicità di questa proprietà è guardando il Codice 2 e la Figura 10; nel codice sono presenti tre chiamate a funzione plot: la prima per la curva originale, la seconda per la curva sulla quale è stata applicata la trasformazione e la terza per la curva disegnata a partire dai punti di controllo sui quali è stata applicata la trasformazione. Si può però osservare che nella Figura 10 sono presenti due curve, ciò vuol dire che due curve si sono sovrapposte.

Codice 2: Applicazone trasformazione affine

```
_{1} k = 4;
2 knots = [0 0 0 0 1 1 2 3 4 5 5 5 5];
3 tau = knots(k):0.001:knots(end-k+1);
4 c = spcol(knots, k, tau);
5 [x_p, y_p] = ginput(length(knots)-k);
6 curve_x = zeros(size(c,1),1);
7 curve_y = zeros(size(c,1),1);
s plot(x_p, y_p, 'o-', 'linewidth', 2); hold on;
9 for i = 1:length(x_p) %o y_p
      curve_x = curve_x + (x_p(i) * c(:, i));
10
      curve_y = curve_y + (y_p(i) * c(:, i));
12 end
13 plot(curve_x, curve_y, 'linewidth', 4); hold on;
14 %trasformazione affine sulla curva
15 theta = pi;
16 A = [cos(theta) -sin(theta); sin(theta) cos(theta)];
17 new_curve = A*[curve_x curve_y]'+1;
18 plot(new_curve(1,:), new_curve(2,:), 'linewidth', 4);
19 %trasformazione affine
20 %sposto i PDC
21 new_points = A*[x_p y_p]'+1;
22 curve_x = zeros(size(c,1),1);
23 curve_y = zeros(size(c,1),1);
```


Figura 4: Supporto locale

Località Per una curva B-Spline $\mathbf{X}(t^*)$ con $t^* \in [t_r, t_{r+1}]$ è determinata da k punti di controllo d_{r-k+1}, \ldots, d_r .

Codice 3: Proprietà di località

Figura 5: Dettaglio della prima splines $N_{1,4}(t)$ per t = [0.85, 1.15]

```
15 plot(curve_x, curve_y, 'linewidth', 4); hold on;
_{16} for times = 1:2
17
       r = 9;
       for i = r-k+1:r
x_p(i) = x_p(i)+0.1;
18
19
            y_p(i) = y_p(i) + 0.1;
20
        end
21
        curve_x = zeros(size(c,1),1);
        curve_y = zeros(size(c,1),1);
plot(x_p(r-k:r+1), y_p(r-k:r+1), 'd-', 'linewidth', 2, 'markersize', 10);
23
24
            hold on;
        for i = 1:length(x_p) %o y_p
    curve_x = curve_x + (x_p(i) * c(:, i));
25
26
             curve_y = curve_y + (y_p(i) * c(:, i));
27
        end
28
        plot(curve_x, curve_y, 'linewidth', 4); hold on;
29
30 end
```

2.2 Curve Chiuse

3 Superfici di Bézier

3.1 Proprietà delle superfici di Bézier

Figura 6: Partizione dell'unità con nodi uniformi

Figura 7: Partizione dell'unità nella base di Bernstein

Figura 8: Partizione dell'unità con partizione nodale $\mathit{clamped}$

Figura 9: Trasformazione affine su spline

Figura 10: Proprietà di località