Variable and parameter overview

1.1 c:G:LA

variable	unit	range	description	
L	GtC	$0 \le L \le C^*$	terrestrial carbon stock	
Α	GtC	$0 \leqslant A \leqslant C^*$	atmospheric carbon stock	
M	GtC	$0 \le M \le C^*$	maritime carbon stock	
T	GtC	$0 \leq T$	global mean temperature	
parameter	unit	range	description	
<i>C</i> *	GtC	> 0	total global carbon stock	
Σ	km ²	> 0	available earth surface area	
$\overline{a_0}$	a^{-1}	≥ 0	respiration baseline coefficient	
a_T	a^{-1} GtC $^{-1}$	≥ 0	respiration sensitivity to temperature	
l_0	$\mathrm{km}\mathrm{a}^{-1}\mathrm{GtC}^{-1/2}$	≥ 0	photosynthesis baseline coefficient	
l_T	$\mathrm{km}\mathrm{a}^{-1}\mathrm{GtC}^{-3/2}$	≥ 0	photosynthesis sensitivity to temperature	
m	1	> 0	solubility coefficient	
δ	a^{-1}	> 0	diffusion rate	

Table 1: Overview of the variables and free parameters of the c:G:LA model which describes the essential dynamics of the natural sub-system of the earth via the carbon cycle.

1.2 c:G:LAP

variable	unit	range	description	
P	Н	0 ≤ P	human population	
K	\$	0 ≤ <i>K</i>	physical capital stock	
B	GtC a ⁻¹	0 ≤ B	biomass extraction flow	
W	\$ H ⁻¹ a ⁻¹	$0 \leq W$	wellbeing	
parameter	unit	range	description	
P	a^{-1}	> 0	fertility rate maximum	
W_p	$$a^{-1} H^{-1}$	> 0	fertility saturation wellbeing	
q_0	$$a^{-2}H^{-1}$	≥0	mortality baseline coefficient	
$q_{\scriptscriptstyle T}$	\$a ⁻² H ⁻¹ GtC ⁻¹	≥ 0	mortality sensitivity to temperature	
$q_{\scriptscriptstyle P}$	${\rm km}^2{\rm a}^{-1}{\rm H}^{-1}$	≥ 0	population carrying capacity	
b	$GtC^{3/4}a^{-1}H^{-3/4}$	≥ 0	biomass offtake rate	
У	\$GtC ⁻¹	≥0	wellbeing sensitivity to consumption	
w_L	$m^2 GtC^{-1} a^{-1} H^{-1}$	≥ 0	wellbeing sensitivity to land carbon	

Table 2: Overview of the additional variables and free parameters of the co-evolutionary c:G:LAP model which describes a hunter-gatherer scenario of global scale.

1.2.1 Reduction to two dimensions (c:G:LP)

It is noteworthy that the dimension of the three-dimensional c:G:LAP model can be reduced if we assume the diffusion of carbon between atmosphere and oceans to be very fast so that A and M are always in equilibrium. The schematic overview for this case is shown in Figure $\ref{eq:condition}$. Making use of equation $\ref{eq:condition}$ the following holds:

$$M = mA$$
 \Rightarrow $A = (C^* - L)/(1 + m)$ (1)

As A is now a derived variable only L and P are left as dynamic variables and one has again a two-dimensional sub-model which will be abbreviated c:G:LP. The resulting ordinary differential equations

J. Nitzbon

are:

$$\dot{L} = L \left(\left(l_0 - l_T \frac{C^* - L}{1 + m} \right) \sqrt{\frac{C^* - L}{\Sigma (1 + m)}} - \left(a_0 + a_T \frac{C^* - L}{1 + m} \right) \right) - b L^{1/4} P^{3/4} \tag{2}$$

$$\dot{P} = P \left(\frac{2pWW_p}{W^2 + W_p^2} - \frac{q_0 + q_T \frac{C^* - L}{1 + m}}{W} - \frac{q_p P}{\Sigma} \right)$$
 (3)

This model is relatively similar to the model of Brander and Taylor [?] and allows for phase plane analysis and analytical results considering nullclines and stabilities.

2 Parameter overview

The following table 3 gives an overview on all parameters introduced so far and their best estimates from available data.

parameter	unit	dimensional value	non-dim. value
Σ	km ²	$1.5 \cdot 10^{8}$	1
<i>C</i> *	GtC	4500	1
m	1	1.5	1.5
δ	a^{-1}	0.01	1
a_0	a^{-1}	0.023	2.3
a_T	a^{-1} GtC $^{-1}$	$2.11 \cdot 10^{-5}$	9.5
$l_{\rm o}$	$\mathrm{km}\mathrm{a}^{-1}\mathrm{GtC}^{-1/2}$	20.1	11.0
l_T	$\mathrm{km}\mathrm{a}^{-1}\mathrm{GtC}^{-3/2}$	$3.25 \cdot 10^{-3}$	8.0
p	a^{-1}	0.04	4
W_p	$a^{-1} H^{-1}$	2000	1
q_0	$a^{-2} H^{-1}$	20	1
q_T	$a^{-2} H^{-1} Gt C^{-1}$	0	0
q_P	${\rm km}^2{\rm a}^{-1}{\rm H}^{-1}$	0	0
b	$GtC^{3/4}a^{-1}H^{-3/4}$	$6.2 \cdot 10^{-8}$	0.36
y	\$GtC ⁻¹	varied	
w_L	$m^2 GtC^{-1} a^{-1} H^{-1}$	varied	

Table 3: Overview on the estimated parameter values. Dimensional parameters can be converted to non-dimensional values using the formulas given in sections ?? and ??. These values serve as default if not stated otherwise.

J. Nitzbon