CS1020E Tutorial + Lab 07

Mark NG

a0116298@u.nus.edu http://mollymr305.github.io

October 14, 2016

Tutorial Solutions

"Tutorial 7 - Recursion"

Write a recursive function gcd(int a, int b), which prints how Euclid's algorithm is used to derive the greatest common divisor of two integers a and b.

Write a recursive function gcd(int a, int b), which prints how Euclid's algorithm is used to derive the greatest common divisor of two integers a and b.

* https://en.wikipedia.org/wiki/Euclidean_algorithm

Write a recursive function gcd(int a, int b), which prints how Euclid's algorithm is used to derive the greatest common divisor of two integers a and b.

$$a = q_0 b + r_0$$

Write a recursive function gcd(int a, int b), which prints how Euclid's algorithm is used to derive the greatest common divisor of two integers a and b.

$$a = q_0b + r_0$$
$$b = q_1r_0 + r_1$$

Write a recursive function gcd(int a, int b), which prints how Euclid's algorithm is used to derive the greatest common divisor of two integers a and b.

$$a = q_0 b + r_0$$

 $b = q_1 r_0 + r_1$
 $r_0 = q_2 r_1 + r_2$

Write a recursive function gcd(int a, int b), which prints how Euclid's algorithm is used to derive the greatest common divisor of two integers a and b.

$$a = q_0b + r_0$$

$$b = q_1r_0 + r_1$$

$$r_0 = q_2r_1 + r_2$$

$$r_1 = q_3r_2 + r_3$$

Write a recursive function gcd(int a, int b), which prints how Euclid's algorithm is used to derive the greatest common divisor of two integers a and b.

$$a = q_0 b + r_0$$

 $b = q_1 r_0 + r_1$
 $r_0 = q_2 r_1 + r_2$
 $r_1 = q_3 r_2 + r_3$
:

The Solution.

- 2D integer array
- Each element is either 0 (white), 1 (light gray), 2 (dark gray).

1	1	1	1	2	2	2	1
1	1	1	0	0	0	0	2
2	1	0	0	0	0	2	2
1	0	0	0	0	0	2	2
2	0	0	2	2	2	1	1
2	0	0	2	2	0	0	0
1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	2

	1	1	1	1	2	2	2	1
	1	1	1	2	2	2	2	2
	2	1	2	2	2	2	2	2
	1	2	2	2	2	2	2	2
	2	2	2	2	2	2	1	1
7	2	2	2	2	2	0	0	0
	1	1	1	0	0	0	0	0
	0	0	0	0	0	0	0	2

Solution (Part 1)

```
void fill(int** arr, int nRows, int nCols,
          int currRow, int currCol,
          int newColo. int firstColo) {
    if (currRow < 0 || currRow >= nRows
        | currCol < 0 | currCol >= nCols
        || firstColo != arr[currRow][currCol])
        return;
    arr[currRow][currCol] = newColo;
    fill(arr, nRows, nCols, currRow-1, currCol,
         newColo.firstColo):
    fill(arr.nRows.nCols.currRow+1.currCol.
         newColo, firstColo);
    fill (arr, nRows, nCols, currRow, currCol-1,
         newColo, firstColo);
    fill (arr, nRows, nCols, currRow, currCol+1,
         newColo.firstColo):
}
```

Solution (Part 2)

End of Tutorial Discussion

Note: Detailed solutions (i.e. the file T7_ans.pdf) will be released soon at

http://www.comp.nus.edu.sg/~stevenha/cs1020e.html

Some notes...

• **Important**: you must only use Queue and Stack for the first and second problem respectively.

- Important: you must only use Queue and Stack for the first and second problem respectively.
- First one should be easy. You should be able to complete it with only one queue.

- Important: you must only use Queue and Stack for the first and second problem respectively.
- First one should be easy. You should be able to complete it with only one queue.
- Second one is a bit tricky.

- Important: you must only use Queue and Stack for the first and second problem respectively.
- First one should be easy. You should be able to complete it with only one queue.
- Second one is a bit tricky. But you can also complete it similary, with one stack.

Let's take a short break!

Classical examples you should be aware of:

• Fibonacci.

- Fibonacci.
- Factorial.

- Fibonacci.
- Factorial.
- Binomial Coefficients.

- Fibonacci.
- Factorial.
- Binomial Coefficients. Hint: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

Classical examples you should be aware of:

- Fibonacci.
- Factorial.
- Binomial Coefficients. Hint: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

Remark: Recursion is not the only way of computing these values. It is also not the best method.

Kattis Problem

https://open.kattis.com/problems/minimumscalar

Any Questions?

See you next week!