

Laboratorio de Microprocesadores - 86.07

Interrupción Externa

Profesor:			Ing. Guillermo Campiglio								
Cuatrimestre/Año:			1°/2020								
Turno de las clases prácticas		Miercoles 19 hs									
Jefe de trabajos prácticos:			Pedro Ignacio Martos								
Docente guía:			Pedro Martos, Fabricio Baglivo, Fernando Pucci								
Autores		Seguimiento del proyecto									
Nombre	Apellido	Padrón									
Leonel	Mendoza	101153									

Observaciones:

Coloc	quio
Nota final	
Firma profesor	

Firma J.T.P

Fecha de aprobación

1. Objetivo

El objetivo de este trabajo es usar rutinas de interrupciones, mediante una interrupción externa por INTO, configurar correctamente el comportamiento de interrupción, y comparar las implementaciones con resistencias de pull-up o pull-down.

2. Descripción

Como indica el esquema, hay un pulsador conectado a la INT0 (INTERRUPCION 0), de forma que al accionar el pulsador se produce una interrupción y 2 LEDs conectados al PORTB(0/1). LED0 y LED1.

Se pide hacer un programa que prenda y apague LEDs siguiendo estas consignas:

- El programa principal va a ser responsable de encender el LED0
- Se detectará el accionar del pulsador por flanco, la rutina de interrupción debe hacer:
 - apagar el LED0
 - hacer parpadear al LED1 5 veces a una frecuencia aproximada de 1Hz
 - prender el LED0 antes de salir de la interrupción

Resumiendo: cuando resetee el micro penderá el LED0, cada vez que oprima el pulsador apagará el LED0, parpadeará el LED1 5 veces y prenderá el LED0.

El circuito armado está configurado con un resistencia de pull-down, que modificaría para poner una resistencia de pull-up?

3. Diagrama en bloques

4. Esquemático

Figura 1: Esquemático con R pull-down

Figura 2: Esquemático con R pull-up

5. Listado de componentes

- Microcontrolador *ATmega328p* y programador USBasp (Arduino UNO) [AR\$ 950]
- 2x LED [AR\$ 20]
- \blacksquare 2x Resistencia (220 $\Omega)$ [AR\$ 8]
- Resistencia (1 $k\Omega$) [AR\$ 4]
- Pulsador [AR\$ 15]

6. Diagrama de Flujo

7. Código de programa

```
.include "m328pdef.inc"
; * * * * * * * * *
   START MACROS
; * * * * * * * *
.MACRO SET_SP ; [auxGPR]
    LDI @0, low (RAMEND)
    OUT SPL, @0
    LDI @0, high (RAMEND)
    OUT SPH, @0
.ENDM
.MACRO SET_X ; [LABEL to data memory]
    LDI XL, low (@0)
    LDI XH, high (@0)
. \\ E\!N\!D\!M
.MACRO SET_Y ; [LABEL to data memory]
    LDI YL, low (@0)
    LDI YH, high (@0)
.ENDM
.MACRO SET_Z ; [LABEL to prog memory]
    LDI ZL, low(@0 \ll 1)
    LDI ZH, high (@0 << 1)
.ENDM
.MACRO D10ms; [reg_cycle], [reg_aux1], [reg_aux2]
                                                                 9.98 \, \mathrm{ms}
delay:
    clr @2
loop1:
    ldi @1,207
loop2:
    DEC @1
                     ; cuento 256 veces con @1
    BRNE loop2
    DEC @2
                     ; cuento 256 veces el conteo de @1 (256*256)
    BRNE loop1
    DEC @0
                     ; cuento "@0" veces el conteo de @2 (@0*256*256)
    BRNE delay
.ENDM
; * * * * * * *
   END MACROS
; * * * * * * * * *
.DEF aux = R16
.DEF delay_cycle = R17
```

DEC

SBI

BRNE

RETI

aux

 $loop_leds$

PORTB, PB0


```
. CSEG
                     ; En esta direccion escribo la instruccion JMP conf
    .ORG 0X0000
    JMP conf
    .ORG INT0addr
                     ; Direccion donde escribir el JMP a las rutinas de interrupcion
    JMP isr_int0
    .ORG INT_VECTORS_SIZE
                             ; Direccion donde escribir el codigo
conf:
    SET_SP
            aux
   LDI
            aux, (0 < PD2 | | 0 < PD3)
   OUT
            DDRD, aux
   LDI
            aux, (1 < PD2 | | 1 < PD3)
                                       ; En caso de usar R de pull-up/down descomentar
            PORTD, aux
   OUT
   LDI
            aux, (1 << PB0 | 1 << PB1); Configuracion de puertos para leds
   OUT
            DDRB, aux
   LDI
            aux, (1 \ll PB0 \mid \mid 0 \ll PB1); Inicializo led_0 on y led_1 off
   OUT
            PORTB, aux
    ; Configuro interrupciones
   LDI
            aux, (1 \ll ISC01 | | 0 \ll ISC00)
    STS
            EICRA, aux
   LDI
            aux, (1 \ll INT0)
            EIMSK, aux
   OUT
    SEI
            ; Habilito Interrupciones
main:
   NOP
   RJMP main
isr_int0:
                             ; Apago primer LED
    CBI
            PORTB, PB0
                             ; 5 ciclos de 1 Hz
    LDI
            aux, 5
loop_leds:
    SBI
            PORTB, PB1
    LDI
            delay_cycle, 50
                                     ; Uso 50 ciclos de delay 10ms (.5 Hz en alto)
    D10ms delay_cycle, R18, R19
            PORTB, PB1
    CBI
                                     ; Uso 50 ciclos de delay 10ms (.5 Hz en bajo)
    LDI
            delay_cycle, 50
   D10ms delay_cycle, R18, R19
```

; Cuando termino prendo el primer LED nuevamente

8. Resultados

Se logró ejecutar la rutina de interrupción por flanco, el único inconveniente es que de vez en cuando se ejecute 2 veces la interrupción (LED parpadea 10 veces), se supone que esto se debe a ruidos del pulsador al no tener ningún sistema de filtrado de ruidos (como un Schmitt Trigger) y esto ejecuta la rutina 2 veces.

9. Conclusiones

Mediante el manejo de interrupciones externas, se logro configurar e implementar correctamente la rutina de interrupción deseada por medio de INTO con flanco descendente, configurando los registros EICRA y EIMSK para cambiar las condiciones de detección de interrupción, y uso de pines como interruptores externos respectivamente.