## Universidade do Vale do Itajaí

Computer Engineering
Basic Electronics

# First Lab Assignment for Basic Electronics

Student: Lucas Mateus Gonçalves

Teacher Advisor: Walter Antonio Gontijo

## Universidade do Vale do Itajaí

Computer Engineering
Basic Electronics

# First Lab Assignment for Basic Electronics

First Lab Assignment for Basic Electronics presented for the class of the Twenty Fourth of September, 2021.

Student: Lucas Mateus Gonçalves

Teacher Advisor: Walter Antonio Gontijo

September 2021

### Conteúdo

| 1 |     | jectives                                                 | 1 |
|---|-----|----------------------------------------------------------|---|
|   |     | 1                                                        |   |
|   | 1.2 | 2                                                        | 1 |
|   | _   | 3                                                        |   |
|   | 1.4 | 4                                                        | 3 |
|   | 1.5 | 5                                                        | 4 |
|   | 1.6 | 6                                                        | 4 |
|   | 1.7 | 7                                                        | 5 |
|   |     | 1.7.1 With the $470\mu F$ capacitor is added in parallel | 6 |
|   | 1.8 | 8                                                        | 6 |

### 1 Objectives

#### 1.1 1

Data expected to be gathered in lab.

#### 1.2 2

Data expected to be gathered in lab.

#### 1.3 3

The following plot used the 1N4148 silicon diode.







1.4 4

The following circuit was analysed.



Simulated values through  $LTSpice\ XVII.$ 

|    | V      | mA     |
|----|--------|--------|
| R1 | 3.4054 | 17.027 |
| R2 | 1.5945 | 7.9729 |
| R3 | 0.9054 | 9.0542 |
| D1 | 0.6891 | 9.0542 |

Simulated values through  $Falstad\ Circuit\ Simulator.$ 

|    | V     | mA    |
|----|-------|-------|
| R1 | 3.389 | 16.94 |
| R2 | 1.611 | 08.05 |
| R3 | 0.889 | 08.89 |
| D1 | 0.722 | 08.89 |

Calculated with a simplified diode model.

Calculated voltage and current through diode through real model.

$$V_t$$
 2.5V  $R_t$  100 $\Omega$ 

$$R_t = 100\Omega + 100\Omega = 200\Omega$$

$$I_d = \frac{5V}{200\Omega} = 0.025$$

$$V_d = V_f = 2.5V$$

$$Calculated = 0.8188A$$

#### 1.5 5

Data expected to be gathered in lab.

#### 1.6 6

Calculate peak voltage from given RMS.

$$V_{rms} = 220V$$
 
$$V_{peak} = V_{rms} \times \sqrt{2} = 311.13V$$

Calculate peak voltage in secondary of the transformer with the given ratio.

$$Ratio = 55: 3 = \frac{3}{55} = 0.054$$
  
 $V_{AC_{out}} = 311.13 \times 0.054 = 16.97V$ 

Calculate the voltage and current through the load at peak DC and average using the simplified model.

$$V_{DC_{peak}} = 16.97 - 0.7 = 16.27V$$

$$I_{peak} = \frac{16.27}{1000} = 0.01627A$$

$$V_{DC_{avg}} = \frac{V_p}{\pi} = \frac{16.27}{\pi} = 5.18V$$

$$I_{avg} = \frac{5.18}{1000} = 0.00518A$$

Comparison between simulation and calculated peak values. Simulation made with Falstad Circuit Simulator.

#### 1.7 7

Calculate peak voltage from given RMS.

$$V_{rms} = 220V$$

$$V_{peak} = V_{rms} \times \sqrt{2} = 311.13V$$

Calculate peak voltage in secondary of the transformer with the given ratio.

$$Ratio = 55:3:3 = \frac{6}{55} = 0.109$$

$$V_{AC_{out}} = 311.13 \times 0.109 = 33.91V$$

Peak voltage through load will be as follows.

$$V_{DC_{peak}} = \frac{33.91 - 0.7}{2} = 16.60V$$

The average current will be as follows.

$$V_{DC_{avg}} = \frac{16.60}{\pi} = 5.28V$$

Comparison between simulation and calculated peak values. Simulation made with  $Falstad\ Circuit\ Simulator.$ 

#### 1.7.1 With the $470\mu F$ capacitor is added in parallel



Circuit with the capacitor.

The DC voltage should remain steady at 16.60V at the load with the following ripple voltage.

$$V_r = \frac{V_{peak}}{fRC} = \frac{16.60}{60Hz \times 2 \times 1000\Omega \times 0.00047F} = 0.294V$$

As such the voltage with ripple will be as follows.

$$V_{DC} = V_{peak} - \frac{V_r}{2} = 16.45V$$

#### 1.8 8

Neither simulator has the 1N4733A zener diode, the only diode with close specifications has a zener range of 5.63V.

$$V_{z_{simulated}} = 5.63V$$
$$V_{z_{1N4733A}} = 5.1V$$

By the simulation, on a voltage sweep the diode should start to conduct and thus regulate the voltage at the  $1k\Omega$  load at 5.63V, only allowing a current of 5.63mA to the load.

The simulator measures a voltage of -5.627V and a current of -14.25mA on the diode at a supply of 10V.

The simulator measures a voltage of -5.64V and a current of -23.27mA on the diode at a supply of 12V.