Contrast Pattern-Based Classification for Bot Detection on Twitter

MD ASADUZZAMAN SARKER ANIK

ID: 23166031 GROUP: 12

Introduction

- Bots[1]
- Bots on twitter[2]
- Bot classifier
- Pattern extraction

Related Work

- Feature extraction
 - Tweet content
 - Tweet sentiment
 - Account information
 - Account usage
 - Social network structure
- Decorate by Lee et al[3] 0.88
- Naive Bayes classifier by Wang [4] and Ahmed and Abulaish [5] F1 > 0.90
- Random forest by Chu et al[6] and Yang et al. [7] 96% and F1 -0.9
- DNA fingerprint by Cresci et al. [8] f1 0.97

Methodology

- Creating a new feature model
 - Tweet content
 - Sentiment analysis
 - Association with other twitter accounts
- Inducing decision trees
- Selecting optimal contrast patterns
- Classifying query objects

Dataset

- 51,457 tweets
- 31,654 by Human
- 19,804 by bot

Result

- AUC of o.90
- MCC of o.91

Contrast Patterns

Class	ID	Items	Supp
Bot	CP ₁	$[tweet_source = "TweetAdderv4"]$	0.66
	CP_2	$[user_friends_count > 1054.50] \land [user_favourites_count \leq 2.50]$	0.62
	CP ₃	$[tweet_num_mentions \leq 0.50] \land [user_friends_count > 1054.50] \land [user_favourites_count \leq 2.50]$	0.60
	CP_4	$[user_favourites_count \leq 10.50 \land [tweet_year \leq 2014] \land [user_friends_count \in [1054.50, 2089.50]]$	0.59
	CP ₅	$[user_H16_TweetDist > 6.50] \land [tweet_year \leq 2014] \land [tweet_retweet_count \leq 0.50] \land [user_favourites_count \leq 4.50] \land [user_H04_TweetDist \leq 10.50] \land [tweet_day > 1.50]$	0.50
Human	CP ₆	$[tweet_year > 2014]$	0.56
	CP ₇	$[user_followers_count > 12.50] \land [user_geo_enabled = "1"] \land [user_favourites_count > 380.50] \land [user_screen_name ! = "_iHATEMOON"] \land [user_statuses_count > 571.50]$	0.48
	CP ₈	$[user_geo_enabled = "1"] \land [user_favourites_count > 380.50] \land [user_profile_text_color ! = "F70A0A"] \land [user_profile_sidebar_border_color ! = "CC3366"]$	0.48
	CP ₉	$[user_geo_enabled = "1"] \land [user_time_zone! = "EasternTime(US\&Canada)"] \land [user_favourites_count > 170.50]$	0.37
	CP ₁₀	$[tweet_num_mentions > 0.50] \land [user_descrip_sa_score_tag = "NONE"] \land [tweet_month \leq 5] \land [user_H05_TweetDistt \leq 1] \land [user_favourites_count > 208]$	0.26

Limitations

- Updated bots
- Language barrier
- No a general bot detector model

Future work

- Generate more high quality patterns
- Update for other social media
 - Instagram
 - Facebook
 - Google Plus

Reference

- 1. M. Debashi and P. Vickers, "Sonification of network traffic for detecting and learning about botnet behavior," IEEE Access, vol. 6, pp. 33826–33839, 2018.
- 2. O. Varol, E. Ferrara, C. A. Davis, F. Menczer, and A. Flammini. (2017). "Online human-bot interactions: Detection, estimation, and characteriza- tion." [Online]. Available: https://arxiv.org/abs/1703.03107
- 3. K. Lee, J. Caverlee, and S. Webb, "Uncovering social spammers: Social honeypots+ machine learning," in Proc. 33rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., 2010, pp. 435–442
- 4. A. H. Wang, "Detecting spam bots in online social networking sites: A machine learning approach," in IFIP Annu. Conf. Data Appl. Secur. Privacy. Berlin, Germany: Springer, 2010, pp. 335–342.
- 5. F. Ahmed and M. Abulaish, "A generic statistical approach for spam detection in online social networks," Comput. Commun., vol. 36, nos. 10–11, pp. 1120–1129, 2013.
- 6. Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia, "Detecting automation of twitter accounts: Are You a Human, Bot, or Cyborg?" IEEE Trans. Dependable Secure Computing, vol. 9, no. 6, pp. 811–824, Nov. 2012.
- 7. [37] Z. Gilani, E. Kochmar, and J. Crowcroft, "Classification of twitter accounts into automated agents and human users," in Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining, Jul. 2017, pp. 489–496.
- 8. S. Cresci, R. Di Pietro, M. Petrocchi, A. Spognardi, and M. Tesconi, "Dna-inspired online behavioral modeling and its application to spambot detection," IEEE Intell. Syst., vol. 31, no. 5, pp. 58–64, Sep./Oct. 2016.