TP3

October 20, 2025

1 Code ADRS_insta.py

```
[6]: import math
                import numpy as np
                import matplotlib.pyplot as plt
                def fex(NX,dx,time):
                              F = np.zeros((NX))
                              Tex = np.zeros((NX)) #np.sin(2*np.pi*x)
                              Text = np.zeros((NX)) #np.sin(2*np.pi*x)
                              Texx = np.zeros((NX)) #np.sin(2*np.pi*x)
                              for j in range (1,NX-1):
                                            v=(np.exp(-1000*((j-NX/3)/NX)**2)+np.exp(-10*np.exp(-1000*((j-NX/3)/NX)**2)+np.exp(-10*np.exp(-1000*((j-NX/3)/NX)**2)+np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*np.exp(-10*n
                     →NX)**2)))\
                                                          *np.sin(5*j*math.pi/NX)
                                           Tex[j] = np.sin(4*math.pi*time)*v
                                            Text[j] = 4*math.pi*np.cos(4*math.pi*time)*v
                              for j in range (1,NX-1):
                                           Texx[j] = (Tex[j+1] - Tex[j-1])/(2*dx) + mp.cos(j*math.pi/NX)*math.pi/NX
                                           Txx=(Tex[j+1]-2*Tex[j]+Tex[j-1])/(dx**2) #-np.sin(j*math.pi/NX)*(math.
                     →pi/NX)**2
                                           F[j]=V*Texx[j]-K*Txx+lamda*Tex[j]+Text[j]
                              return F,Tex,Texx
                \#u, t = -V u, x + k u, xx - lamda u + f
                # PHYSICAL PARAMETERS
                K = 0.1 #Diffusion coefficient
                L = 1.0
                                                    #Domain size
                Time = 1. #Integration time
                V=1
                lamda=1
```

```
# NUMERICAL PARAMETERS
NX = 5 #Number of grid points
NT = 10000 #Number of time steps max
ifre=100 #plot every ifre time iterations
eps=0.001 #relative convergence ratio
niter_refinement=20 #niter different calculations with variable mesh size
irk_max=4
alpha=np.zeros(irk_max)
for irk in range(irk_max):
   alpha[irk]=1/(irk max-irk)
   #print(alpha[irk])
# if(irk_max==3):
    alpha[0]=0.333
     alpha[1]=0.5
      alpha[2]=1
error=np.zeros((niter_refinement))
NX_tab=[]
Err_tab1=[]
Err_tab2=[]
for iter in range (niter_refinement):
   NX=NX+3
   NX_tab.append(NX)
   dx = L/(NX-1)
                                #Grid step (space)
   dt = dx**2/(V*dx+K+dx**2) #Grid step (time) condition CFL de stabilite_
 ⊶10.4.5
   print("Nbre points in space, Time step:",dx,dt)
   ### MATN PROGRAM ###
   # Initialisation
   x = np.linspace(0.0, 1.0, NX)
   T = np.zeros((NX)) #np.sin(2*np.pi*x)
   F = np.zeros((NX))
   rest = []
   plt.figure(1)
   # Main loop en temps
    #for n in range(0,NT):
   n=0
   res=1
```

```
res0=1
  time=0
  time_total=1
  time_tab=[]
  while(time<time_total): #n<NT and res/res0>eps):
      n+=1
      F, Tex, Texx=fex(NX, dx, time)
      dt = dx**2/(V*dx+2*K+abs(np.max(F))*dx**2) #Grid step (time)
⇔condition CFL de stabilite 10.4.5
      time+=dt
      time_tab.append(time)
      T0=T.copy()
      for irk in range(irk_max):
       #discretization of the advection/diffusion/reaction/source equation
          res=0
          for j in range (1, NX-1):
               xnu=K+0.5*dx*abs(V)
               Tx=(T[j+1]-T[j-1])/(2*dx)
               Txx=(T[j-1]-2*T[j]+T[j+1])/(dx**2)
               RHS = dt*(-V*Tx+xnu*Txx-lamda*T[j]+F[j])
               res+=abs(RHS)
               T[j] = T0[j] + RHS*alpha[irk]
      if (n == 1 ):
          res0=res
      rest.append(res)
  #Plot every ifre time steps
       if (n\%ifre == 0 \text{ or } (res/(res0+1.e-10)) < eps):
           print("iteration, residual:",n,res)
          plotlabel = "t = %1.2f" %(n * dt)
           plt.plot(x,T, label=plotlabel,color = plt.

¬get_cmap('copper')(float(n)/NT))
          plt.plot(x,Tex, label=plotlabel,color = "green")
          plt.xlabel(u'$x$', fontsize=26)
          plt.ylabel(u'$T$', fontsize=26, rotation=0)
          plt.title(u'ADRS 1D')
           #plt.legend()
      err=np.dot(T-Tex,T-Tex)*dx
      errh1=0
      for j in range (1,NX-1):
           errh1+=dx*(Texx[j]-(T[j+1]-T[j-1])/(2*dx))**2
      error[iter]=np.sqrt(err)/NX
```

```
#print('norm error=',error[iter])
        if(abs(time-0.5)<dt*0.5):
            Err_tab1.append(error[iter])
    Err_tab2.append(error[iter])
    plt.figure(2)
    plt.plot(np.array(time_tab),rest)
plt.figure(3)
NX_tab=np.array(NX_tab)
Err_tab1=np.array(Err_tab1)
Err_tab2=np.array(Err_tab2)
print(len(NX_tab),len(Err_tab1),len(Err_tab2))
plt.plot(NX_tab,Err_tab1,label="0.5 sec")
plt.plot(NX_tab,Err_tab2,label="1 sec")
plt.xlabel(u'$Nx$', fontsize=14)
plt.ylabel(u'$L^2 Error$', fontsize=14, rotation=90)
plt.title(u'Error at 2 different times for different meshes')
plt.legend()
plt.figure(3)
plt.plot(x,Tex, label=plotlabel,color = plt.get_cmap('copper')(float(n)/NT))
Nbre points in space, Time step: 0.14285714285714285 0.07751937984496124
Nbre points in space, Time step: 0.1 0.04761904761904762
Nbre points in space, Time step: 0.07692307692307693 0.03236245954692557
Nbre points in space, Time step: 0.0625 0.023474178403755867
Nbre points in space, Time step: 0.05263157894736842 0.017825311942959
iteration, residual: 100 0.43123547811916285
Nbre points in space, Time step: 0.0454545454545456 0.01400560224089636
iteration, residual: 100 0.4962750138243789
Nbre points in space, Time step: 0.04 0.011299435028248588
iteration, residual: 100 0.618863944660168
Nbre points in space, Time step: 0.03571428571428571 0.009310986964618248
iteration, residual: 100 0.8743619875186425
iteration, residual: 200 0.5642213737314086
Nbre points in space, Time step: 0.03225806451612903 0.007806401249024199
iteration, residual: 100 0.15045669415050114
iteration, residual: 200 0.8172951673178384
Nbre points in space, Time step: 0.029411764705882353 0.0066401062416998665
iteration, residual: 100 0.40064031878088974
iteration, residual: 200 0.2191833080489215
iteration, residual: 300 0.7310846001093909
```

```
Nbre points in space, Time step: 0.02702702702703 0.005717552887364209
iteration, residual: 100 0.747221502219749
iteration, residual: 200 0.6085352437258166
iteration, residual: 300 0.5040065913049734
Nbre points in space, Time step: 0.025 0.004975124378109454
iteration, residual: 100 0.6596265024117064
iteration, residual: 200 0.6531732492581812
iteration, residual: 300 0.4512394241330991
iteration, residual: 400 0.4042481553710481
Nbre points in space, Time step: 0.023255813953488372 0.0043687199650502394
iteration, residual: 100 0.4686009838671014
iteration, residual: 200 0.24152909758939034
iteration, residual: 300 0.09342748547494455
iteration, residual: 400 0.4382424974678892
Nbre points in space, Time step: 0.021739130434782608 0.003866976024748646
iteration, residual: 100 0.3380618097379238
iteration, residual: 200 0.107654053805585
iteration, residual: 300 0.4760735452090155
iteration, residual: 400 0.562493360753069
iteration, residual: 500 0.20714127066606636
Nbre points in space, Time step: 0.02040816326530612 0.003447087211306445
iteration, residual: 100 0.2509299200669441
iteration, residual: 200 0.30269957757286026
iteration, residual: 300 0.6615904010301641
iteration, residual: 400 0.17964877949752542
iteration, residual: 500 0.3770715311363862
iteration, residual: 600 0.6134329049314325
Nbre points in space, Time step: 0.019230769230769232 0.0030921459492888066
iteration, residual: 100 0.18237387761246845
iteration, residual: 200 0.4345186609272982
iteration, residual: 300 0.43432073767178825
iteration, residual: 400 0.1767043615503015
iteration, residual: 500 0.6116912421640956
iteration, residual: 600 0.10760286495662812
Nbre points in space, Time step: 0.018181818181818 0.0027894002789400274
iteration, residual: 100 0.1245779167693266
iteration, residual: 200 0.5191896612823331
iteration, residual: 300 0.21870546600809182
iteration, residual: 400 0.45410259747816706
iteration, residual: 500 0.3481240851582086
iteration, residual: 600 0.3294352729956157
iteration, residual: 700 0.4317005363647811
Nbre points in space, Time step: 0.017241379310344827 0.002529084471421345
iteration, residual: 100 0.046112531733540706
iteration, residual: 200 0.574927756589522
iteration, residual: 300 0.05526932718024892
iteration, residual: 400 0.5710184196851124
iteration, residual: 500 0.0809308207590148
```

```
iteration, residual: 600 0.5380837898706693
iteration, residual: 700 0.12476372987004865
iteration, residual: 800 0.5229409724094892
Nbre points in space, Time step: 0.01639344262295082 0.00230361667818475
iteration, residual: 100 0.059804890888875924
iteration, residual: 200 0.47577286709322875
iteration, residual: 300 0.22963219371274526
iteration, residual: 400 0.3664822246643133
iteration, residual: 500 0.3626149408444698
iteration, residual: 600 0.20164253282930142
iteration, residual: 700 0.509487492442148
iteration, residual: 800 0.055605207163444706
iteration, residual: 900 0.5495638829825874
Nbre points in space, Time step: 0.015625 0.002107037505267594
iteration, residual: 100 0.10053398671350998
iteration, residual: 200 0.37831584897378917
iteration, residual: 300 0.36138853713872854
iteration, residual: 400 0.16286816751463393
iteration, residual: 500 0.5306446212750877
iteration, residual: 600 0.10436068533989516
iteration, residual: 700 0.3778024670737041
iteration, residual: 800 0.36140362468053955
iteration, residual: 900 0.16271284632027042
iteration, residual: 1000 0.5306502183741917
20 20 20
```

[6]: [<matplotlib.lines.Line2D at 0x12a64648410>]

2 Description complète du code Python

Ce code résout numériquement une équation d'advection-diffusion-réaction avec source (ADRS) en 1D, et compare la solution numérique avec une solution exacte donnée analytiquement.

Il analyse aussi la convergence de la méthode en fonction du raffinement spatial.

2.1 1. Objectif de l'équation

L'équation considérée est :

$$\frac{\partial T}{\partial t} = -V \frac{\partial T}{\partial x} + K \frac{\partial^2 T}{\partial x^2} - \lambda T + F$$

où : - V : vitesse d'advection - K : coefficient de diffusion

- λ : coefficient de réaction

- F: terme source calculé à partir de la solution exacte

2.22. Fonction fex(NX, dx, time)

Cette fonction définit les valeurs exactes de la solution $T_{\rm ex}$, sa dérivée temporelle $\partial_t T_{\rm ex}$, sa dérivée spatiale $\partial_x T_{\mathrm{ex}},$ et le **terme source** F correspondant à l'équation.

Étapes: 1. Initialise les tableaux: - Tex: solution exacte - Text: dérivée temporelle - Texx: dérivée spatiale première - F : terme source

- 2. Pour chaque point intérieur j:
 - construit un profil spatial v
 - définit la solution exacte :

$$T_{\rm ex}(x_j,t) = \sin(4\pi t) \cdot v(x_j)$$

• calcule la dérivée temporelle :

$$\partial_t T_{\rm ex} = 4\pi \cos(4\pi t) \cdot v(x_i)$$

- 3. Calcule les dérivées spatiales Texx et Txx par différences finies.
- 4. Évalue le terme source :

$$F = V \cdot \partial_x T_{\text{ex}} - K \cdot \partial_{xx} T_{\text{ex}} + \lambda T_{\text{ex}} + \partial_t T_{\text{ex}}$$

(ce qui garantit que $T_{\rm ex}$ est solution exacte de l'équation ADRS).

Renvoie (F, Tex, Texx).

2.3 3. Paramètres physiques et numériques

- Physiques :
 - -K = 0.1
 - V = 1
 - $-\lambda = 1$
 - -L=1 (domaine spatial)
 - Time = 1 (temps final)
- Numériques :
 - NX : nombre de points du maillage

 - $\begin{array}{l} -\ dx = \frac{L}{NX-1}: \ \text{pas d'espace} \\ -\ dt: \ \text{pas de temps choisi selon une condition CFL de stabilité}: \end{array}$

$$dt = \frac{dx^2}{V \cdot dx + K + dx^2}$$

- irk_max = 4 : nombre d'étapes du schéma de type Runge-Kutta implicite
- $-\alpha[irk] = \frac{1}{irk_max irk} : coefficients RK$
- niter_refinement = 20 : nombre d'itérations de raffinement de maillage

2.4 4. Boucle principale de raffinement

Pour chaque raffinement : 1. Incrémente le nombre de points NX. 2. Met à jour dx et dt. 3. Initialise les vecteurs : - x : grille spatiale - T : solution numérique - F : source - rest : tableau des résidus temporels 4. Lance la **simulation temporelle** jusqu'à $time_total = 1$.

2.5 5. Boucle en temps

Pour chaque pas de temps : 1. Appelle fex pour récupérer : - le terme source F - la solution exacte Tex 2. Met à jour le pas de temps dt selon la condition CFL. 3. Sauvegarde T_0 (solution précédente). 4. Exécute un schéma Runge-Kutta (4 sous-étapes) : - calcule les dérivées spatiales de T :

$$T_x = \frac{T_{j+1} - T_{j-1}}{2dx}, \quad T_{xx} = \frac{T_{j-1} - 2T_j + T_{j+1}}{dx^2}$$

- met à jour :

$$T_j^{\text{new}} = T_j^{\text{old}} + \text{RHS} \cdot \alpha[\text{irk}]$$

avec:

$$\mathrm{RHS} = dt \cdot (-VT_x + x_{\nu}T_{xx} - \lambda T_j + F_j)$$

où
$$x_{\nu} = K + 0.5 \cdot dx \cdot |V|$$

- 5. Calcule le **résidu** et le compare au résidu initial pour vérifier la convergence.
- 6. À intervalles réguliers, trace la solution numérique et la solution exacte.

2.6 6. Évaluation de l'erreur

Après chaque raffinement : - Calcule l'erreur L^2 :

$$err = \int (T - T_{\rm ex})^2 \, dx$$

- Calcule une erreur H^1 approximative sur la dérivée spatiale :

$$\operatorname{err}_{H^1} = \int (T_x - T_{\operatorname{ex},x})^2 \, dx$$

- Stocke les erreurs pour différents temps (t = 0.5s et t = 1s).

2.7 7. Graphiques générés

- 1. Évolution de T dans le temps :
 - courbes de T(x,t) à différents instants
 - comparaison avec $T_{\rm ex}(x,t)$
- 2. Résidu temporel:
 - évolution du résidu en fonction du temps
- 3. Erreur selon la taille du maillage :
 - erreurs L^2 à deux temps différents en fonction du nombre de points NX

2.8 8. En résumé

Le code : - Résout une **EDP 1D ADRS** par **schéma explicite multi-étapes** (Runge-Kutta) - Utilise une **solution exacte** pour construire le **terme source** - Vérifie la **convergence** en raffinement spatial - Trace : - la solution numérique vs exacte - les résidus - l'évolution des erreurs

Il sert à **valider numériquement** un schéma d'intégration temporelle et spatiale pour une équation ADRS.

3 Visualisation de l'erreur L^2 selon le maillage

Le code modifié permet de **calculer** et **afficher** l'évolution de l'erreur L^2 de la solution numérique par rapport à la solution exacte, pour différents maillages uniformes, à deux instants précis : $t=\frac{T}{2}$ - t=T

3.1 Fonctionnement général

Le code résout une équation d'advection-diffusion-réaction avec source :

$$\frac{\partial T}{\partial t} = -V \frac{\partial T}{\partial x} + K \frac{\partial^2 T}{\partial x^2} - \lambda T + F$$

où le terme source F est construit de façon à ce que la solution exacte $T_{\rm ex}$ soit connue.

3.2 Boucle de raffinement

Le code effectue 20 simulations successives avec des maillages uniformes de plus en plus fins :

$$NX = 8, 11, 14, \dots, 65$$

Pour chaque maillage : 1. On résout numériquement l'équation jusqu'au temps final T=1. 2. On calcule les erreurs : - à $t=\frac{T}{2}$, - à t=T, selon la formule :

$$\|T-T_{\mathrm{ex}}\|_{L^2} = \sqrt{\int_0^L (T(x,t)-T_{\mathrm{ex}}(x,t))^2\,dx}$$

3.3 Résultat

Le code trace une **courbe log-log** : - axe x : nombre de points du maillage N_x - axe y : norme L^2 de l'erreur

Deux courbes apparaissent : - t = T/2 - t = T

Elles permettent d'observer la **convergence** de la méthode numérique : - quand le maillage est raffiné (augmentation de N_x), - l'erreur L^2 diminue, confirmant la cohérence du schéma.

3.4 Interprétation

- Si la pente de la courbe est proche de 1, le schéma est d'ordre 1 en espace.
- Si elle est proche de 2, le schéma est d'ordre 2.

Ce graphique sert donc à valider expérimentalement l'ordre de convergence du schéma choisi.

```
[15]: import math
     import numpy as np
     import matplotlib.pyplot as plt
     # -----
     # Fonction : solution exacte + source
     # -----
     def fex(NX, dx, time):
         F = np.zeros((NX))
         Tex = np.zeros((NX))
         Text = np.zeros((NX))
         Texx = np.zeros((NX))
         for j in range(1, NX - 1):
            v = (np.exp(-1000 * ((j - NX / 3) / NX) ** 2)
                 + np.exp(-10 * np.exp(-1000 * ((j - NX / 3) / NX) ** 2))) \
                * np.sin(5 * j * math.pi / NX)
            Tex[j] = np.sin(4 * math.pi * time) * v
            Text[j] = 4 * math.pi * np.cos(4 * math.pi * time) * v
         for j in range(1, NX - 1):
            Texx[j] = (Tex[j + 1] - Tex[j - 1]) / (2 * dx)
            Txx = (Tex[j + 1] - 2 * Tex[j] + Tex[j - 1]) / (dx ** 2)
            F[j] = V * Texx[j] - K * Txx + lamda * Tex[j] + Text[j]
         return F, Tex, Texx
     # Paramètres physiques
     # -----
     K = 0.1 # Diffusion

L = 1.0 # Taille du domaine
     Time = 1.0 # Temps final
     V = 1.0  # Vitesse
     lamda = 1.0 # Réaction
     # -----
     # Paramètres numériques
     # -----
     NX = 5
```

```
niter_refinement = 20
irk_max = 4
alpha = np.zeros(irk_max)
for irk in range(irk_max):
   alpha[irk] = 1 / (irk_max - irk)
eps = 1e-3
ifre = 100
# Tableaux de stockage
NX tab = []
Err_tab_t_half = []
Err_tab_t_final = []
# Boucle sur les maillages
# -----
for iter in range(niter_refinement):
   NX += 3
   NX_tab.append(NX)
   dx = L / (NX - 1)
   dt = dx ** 2 / (V * dx + K + dx ** 2) # condition CFL
   x = np.linspace(0.0, 1.0, NX)
   # Initialisation
   T = np.zeros(NX)
   time = 0.0
   time_total = Time
    # Évolution en temps
   while time < time_total:</pre>
       F, Tex, Texx = fex(NX, dx, time)
        dt = dx ** 2 / (V * dx + 2 * K + abs(np.max(F)) * dx ** 2)
       time += dt
       T0 = T.copy()
       for irk in range(irk_max):
            for j in range(1, NX - 1):
                xnu = K + 0.5 * dx * abs(V)
                Tx = (T[j + 1] - T[j - 1]) / (2 * dx)
                Txx = (T[j - 1] - 2 * T[j] + T[j + 1]) / (dx ** 2)
                RHS = dt * (-V * Tx + xnu * Txx - lamda * T[j] + F[j])
                T[j] = TO[j] + RHS * alpha[irk]
        # Calcul\ erreur\ a\ t = T/2
        if abs(time - Time / 2) < dt / 2:</pre>
```

```
err = np.dot(T - Tex, T - Tex) * dx
            Err_tab_t_half.append(np.sqrt(err))
        # Calcul\ erreur\ a\ t=T
        if abs(time - Time) < dt / 2:
            err = np.dot(T - Tex, T - Tex) * dx
            Err_tab_t_final.append(np.sqrt(err))
# Visualisation
plt.figure(figsize=(8, 6))
plt.loglog(NX_tab, Err_tab_t_half, 'o-', label=r'$t = T/2$')
plt.loglog(NX_tab, Err_tab_t_final, 's-', label=r'$t = T$')
plt.xlabel(r'$N_x$ (nombre de points)', fontsize=14)
plt.ylabel(r'$\l T - T_{\text{ex}} \l_{L^2}$', fontsize=14)
plt.title(r'Évolution de l\'erreur $L^2$ en fonction du maillage', fontsize=14)
plt.grid(True, which='both', linestyle='--', alpha=0.5)
plt.legend()
plt.show()
```


4 Étude de l'erreur ponctuelle pour différents schémas de Runge– Kutta

Ce code permet de **comparer la précision temporelle** de plusieurs schémas de Runge–Kutta (ordres 1 à 4) dans la résolution d'une équation ADRS 1D :

$$\frac{\partial T}{\partial t} = -V \frac{\partial T}{\partial x} + K \frac{\partial^2 T}{\partial x^2} - \lambda T + F$$

4.1 Méthode

- Le domaine spatial est $\mathbf{uniforme}$: $x \in [0,1],\, N_x = 51$
- L'évolution temporelle est suivie de t=0 à t=T=1
- Le schéma spatial utilise des différences centrées :

$$T_x = \frac{T_{j+1} - T_{j-1}}{2dx}, \qquad T_{xx} = \frac{T_{j-1} - 2T_j + T_{j+1}}{dx^2}$$

• Le terme source F est choisi pour que la solution exacte soit connue :

$$T_{\rm ex}(x,t) = \sin(4\pi t) \cdot v(x)$$

4.2 Schémas testés

Quatre schémas de Runge-Kutta sont comparés :

Ordre	Description	Étapes
1	Euler explicite	1
2	RK2 (ordre 2)	2
3	RK3 (ordre 3)	3
4	RK4 (ordre 4) simplifié	4

Chaque schéma est implémenté via des coefficients $\alpha_{irk} = \frac{1}{p - irk}$ où p est l'ordre du schéma.

4.3 Mesure de l'erreur

On observe l'erreur ponctuelle au **point milieu** du domaine :

$$x_{\text{mid}} = \frac{L}{2}, \quad j_{\text{mid}} = \frac{N_x}{2}$$

À chaque instant:

$$\varepsilon(t) = \left| T(x_{\mathrm{mid}}, t) - T_{\mathrm{ex}}(x_{\mathrm{mid}}, t) \right|$$

4.4 Résultats

Le graphe affiche l'évolution temporelle de $\varepsilon(t)$ pour chaque schéma :

- Axe des abscisses : t (temps)
- Axe des ordonnées : erreur ponctuelle
- Quatre courbes:
 - RK1
 - RK2
 - RK3
 - RK4

4.5 Interprétation

- Plus l'ordre est élevé, plus l'erreur décroît rapidement au cours du temps.
- Les schémas d'ordre supérieur (RK3, RK4) présentent une **meilleure stabilité** et une **précision accrue**.
- Cette comparaison met en évidence la **convergence temporelle** des méthodes de Runge-Kutta.

```
[20]: import math
     import numpy as np
     import matplotlib.pyplot as plt
     # -----
     # Fonction : solution exacte + source
     # -----
     def fex(NX, dx, time):
         F = np.zeros((NX))
         Tex = np.zeros((NX))
         Text = np.zeros((NX))
         Texx = np.zeros((NX))
         for j in range(1, NX - 1):
             v = (np.exp(-1000 * ((j - NX / 3) / NX) ** 2)
                 + np.exp(-10 * np.exp(-1000 * ((j - NX / 3) / NX) ** 2))) \
                 * np.sin(5 * j * math.pi / NX)
             Tex[j] = np.sin(4 * math.pi * time) * v
             Text[j] =4* math.pi * np.cos(4* math.pi * time) * v
         for j in range(1, NX - 1):
             Texx[j] = (Tex[j + 1] - Tex[j - 1]) / (2 * dx)
             Txx = (Tex[j + 1] - 2 * Tex[j] + Tex[j - 1]) / (dx ** 2)
             F[j] = V * Texx[j] - K * Txx + lamda * Tex[j] + Text[j]
         return F, Tex, Texx
```

```
# Paramètres physiques
# -----
K = 0.1  # Diffusion
L = 1.0  # Taille du domaine
Time = 1.0 # Temps final
V = 1.0 # Vitesse
lamda = 1.0 # Réaction
# -----
# Paramètres numériques
# -----
          # Maillage fixe
dx = L / (NX - 1)
dt = dx ** 2 / (V * dx + K + dx ** 2) # condition CFL
x = np.linspace(0.0, 1.0, NX)
mid_index = NX // 2  # Indice du point milieu
# Ordres de Runge-Kutta à tester
rk_{orders} = [1, 2, 3, 4]
colors = ['red', 'green', 'blue', 'purple']
# Boucle sur les schémas RK
# -----
plt.figure(figsize=(8, 6))
for rk_order, color in zip(rk_orders, colors):
   # Coefficients alpha pour chaque ordre
   irk_max = rk_order
   alpha = np.zeros(irk_max)
   for irk in range(irk_max):
       alpha[irk] = 1 / (irk_max - irk)
   # Initialisation
   T = np.zeros(NX)
   time = 0.0
   time_total = Time
   time_tab = []
   error_tab = []
   # Évolution temporelle
   while time < time_total:</pre>
       F, Tex, Texx = fex(NX, dx, time)
       dt = dx ** 2 / (V * dx + 2 * K + abs(np.max(F)) * dx ** 2)
```

```
time += dt
        T0 = T.copy()
        for irk in range(irk_max):
            for j in range(1, NX - 1):
                xnu = K + 0.5 * dx * abs(V)
                Tx = (T[j + 1] - T[j - 1]) / (2 * dx)
                Txx = (T[j - 1] - 2 * T[j] + T[j + 1]) / (dx ** 2)
                RHS = dt * (-V * Tx + xnu * Txx - lamda * T[j] + F[j])
                T[j] = TO[j] + RHS * alpha[irk]
        # Calcul erreur au point milieu
        F, Tex, Texx = fex(NX, dx, time)
        err_point = abs(T[mid_index] - Tex[mid_index])
        time_tab.append(time)
        error_tab.append(err_point)
    # Tracé
    plt.plot(time_tab, error_tab, color=color, label=f"Runge-Kutta ordre⊔
 →{rk_order}")
# Affichage final
plt.xlabel(r"Temps $t$", fontsize=14)
plt.ylabel(r"Erreur ponctuelle $|T(x_{mid},t) - T_{ex}(x_{mid},t)|$",
 ⇔fontsize=14)
plt.title(r"Évolution temporelle de l'erreur au point milieu pour différents
 ⇔ordres de RK", fontsize=13)
plt.grid(True, linestyle='--', alpha=0.5)
plt.legend()
plt.show()
```


Évolution temporelle de l'erreur au point milieu pour différents ordres de RK

Modification apportée : solution exacte monotone en espace 5

Temps t

La solution exacte a été remplacée par une fonction monotone en espace pour éviter les oscillations et mieux visualiser l'évolution de l'erreur temporelle.

Nouvelle solution:

$$T_{\rm ex}(x,t) = e^{-\lambda t} \cdot x$$

5.0.1 Avantages:

- Monotone croissante selon x (proportionnelle à x)
- Décroissance régulière dans le temps (facteur $e^{-\lambda t}$)
- Solution simple et lisse, idéale pour l'analyse de convergence
- Évite les oscillations spatiales qui perturbent la lecture des erreurs

Le terme source F(x,t) est recalculé à partir de l'équation ADRS pour garantir que $T_{\rm ex}$ est solution exacte:

$$F = \frac{\partial T_{\rm ex}}{\partial t} + V \frac{\partial T_{\rm ex}}{\partial x} - K \frac{\partial^2 T_{\rm ex}}{\partial x^2} + \lambda T_{\rm ex}$$

Cette modification rend la courbe d'erreur plus régulière et facilite la comparaison des schémas de Runge-Kutta.

```
[13]: import math
     import numpy as np
     import matplotlib.pyplot as plt
     # -----
     # Fonction : solution exacte + source
     # -----
     def fex(NX, dx, time):
        F = np.zeros((NX))
         Tex = np.zeros((NX))
         Text = np.zeros((NX))
         Texx = np.zeros((NX))
        for j in range(NX):
            xj = j * dx
            Tex[j] = np.exp(-lamda * time) * xj # Solution exacte_
      \hookrightarrowmonotone en x
            Text[j] = -lamda * np.exp(-lamda * time) * xj # Dérivée temporelle
            Texx[j] = 0.0
                                                       # Dérivée seconde
      \hookrightarrowspatiale
         # Terme source F(x,t) calculé à partir de l'équation ADRS :
         \# T_t = -V T_x + K T_x - lamda T + F
         \# Donc : F = T_t + V T_x - K T_x + lamda T
         for j in range(1, NX - 1):
            T_x = (Tex[j + 1] - Tex[j - 1]) / (2 * dx)
            T_x = (Tex[j + 1] - 2 * Tex[j] + Tex[j - 1]) / (dx ** 2)
            F[j] = Text[j] + V * T_x - K * T_x + lamda * Tex[j]
        return F, Tex, Texx
     # -----
     # Paramètres physiques
     K = 0.1 # Diffusion
     L = 1.0
               # Taille du domaine
     V = 1.0  # Vitesse
     lamda = 1.0 # Réaction
     # Paramètres numériques
     # -----
     NX = 51
                          # Maillage fixe
     dx = L / (NX - 1)
     dt = dx ** 2 / (V * dx + K + dx ** 2) # condition CFL
     x = np.linspace(0.0, 1.0, NX)
```

```
mid_index = NX // 2 # Indice du point milieu
# Ordres de Runge-Kutta à tester
rk_{orders} = [1, 2, 3, 4]
colors = ['red', 'green', 'blue', 'purple']
# Boucle sur les schémas RK
# -----
plt.figure(figsize=(8, 6))
for rk_order, color in zip(rk_orders, colors):
    # Coefficients alpha pour chaque ordre
   irk_max = rk_order
   alpha = np.zeros(irk_max)
   for irk in range(irk_max):
        alpha[irk] = 1 / (irk_max - irk)
    # Initialisation
   T = np.zeros(NX)
   time = 0.0
   time_total = Time
   time_tab = []
   error_tab = []
    # Évolution temporelle
   while time < time_total:</pre>
       F, Tex, Texx = fex(NX, dx, time)
       dt = dx ** 2 / (V * dx + 2 * K + abs(np.max(F)) * dx ** 2)
       time += dt
       T0 = T.copy()
       for irk in range(irk_max):
            for j in range(1, NX - 1):
               xnu = K + 0.5 * dx * abs(V)
               Tx = (T[j + 1] - T[j - 1]) / (2 * dx)
               Txx = (T[j - 1] - 2 * T[j] + T[j + 1]) / (dx ** 2)
               RHS = dt * (-V * Tx + xnu * Txx - lamda * T[j] + F[j])
                T[j] = TO[j] + RHS * alpha[irk]
        # Calcul erreur au point milieu
       F, Tex, Texx = fex(NX, dx, time)
        err_point = abs(T[mid_index] - Tex[mid_index])
        time_tab.append(time)
```

```
error_tab.append(err_point)

# Tracé

plt.plot(time_tab, error_tab, color=color, label=f"Runge-Kutta ordre

$\times\{\text{rk_order}\}\"\)

# ------

# Affichage final

# ------

plt.xlabel(r"Temps $t$", fontsize=14)

plt.ylabel(r"Erreur ponctuelle $|T(x_{\text{mid}},t) - T_{\text{ex}}(x_{\text{mid}},t)|$",

$\text{ofontsize=14}\)

plt.title(r"\text{Evolution temporelle de l'erreur au point milieu pour différents}

$\text{ordres de RK", fontsize=13}\)

plt.grid(True, linestyle='--', alpha=0.5)

plt.legend()

plt.show()
```

Évolution temporelle de l'erreur au point milieu pour différents ordres de RK

6 ADRS_multiple_mesh_adap_insta.py

```
[36]: import math
      import numpy as np
      import matplotlib.pyplot as plt
      \#u, t = -V u, x + k u, xx -lamda u + (src?) src est donne pour forcer u=uex
      \#uex, t + V uex, x - k uex, xx + lamda uex = src = F[j]*np.sin(freq*t)+Tex[j]*np.
      ⇔cos(freq*t)*freq
      iplot=1
      # PHYSICAL PARAMETERS
      K = 0.01
                 #Diffusion coefficient
      xmin = 0.0
      xmax = 1.0
      Time = 2. #Integration time
      V=1.
      lamda=1
      freq=7
      #mesh adaptation param
      niter_refinement=10 #niter different calculations
      hmin=0.01
      hmax=0.5
      err=0.01
      # NUMERICAL PARAMETERS
      NX = 3 #Number of grid points : initialization
      NT = 10000 #Number of time steps max
      ifre=100000 #plot every ifre time iterations
      eps=0.001 #relative convergence ratio
      errorL2=np.zeros((niter_refinement))
      errorH1=np.zeros((niter_refinement))
      itertab=np.zeros((niter_refinement))
      hloc = np.ones((NX))*hmax*0.5
      iter=0
      NXO=0
      while( np.abs(NXO-NX) > 1 and iter<niter_refinement):</pre>
          itertab[iter]=1./NX
          iter+=1
```

```
x = np.linspace(xmin,xmax,NX)
    T = np.zeros((NX))
#mesh adaptation using local metric
    if(iter>0):
        xnew=[]
        Tnew=[]
        nnew=1
        xnew.append(xmin)
        Tnew.append(T[0])
        while(xnew[nnew-1] < xmax-hmin):</pre>
             for i in range(0,NX-1):
                 if(xnew[nnew-1] >= x[i] and xnew[nnew-1] <= x[i+1] and_{\sqcup}
 →xnew[nnew-1]<xmax-hmin):</pre>
 _{\text{hll}}=(\text{hloc}[i]*(x[i+1]-\text{xnew}[nnew-1])+\text{hloc}[i+1]*(xnew[nnew-1]-x[i]))/
 (x[i+1]-x[i])
                      hll=min(max(hmin,hll),hmax)
                      nnew+=1
                       print(nnew,hll,min(xmax,xnew[nnew-2]+hll))
                      xnew.append(min(xmax,xnew[nnew-2]+hll))
\#solution interpolation for initialization (attention initial solution on first_\sqcup
 →mesh in the row)
                      un=(T[i]*(x[i+1]-xnew[nnew-1])+T[i+1]*(xnew[nnew-1]-x[i]))/
 \hookrightarrow (x[i+1]-x[i])
                      Tnew.append(un)
        NXO=NX
        NX=nnew
        x = np.linspace(xmin,xmax,NX)
        x[0:NX] = xnew[0:NX]
         #print(x)
        T = np.zeros((NX))
         T[0:NX] = Tnew[0:NX]
         T \lceil NX - 1 \rceil = 0
    rest = []
    F = np.zeros((NX))
    RHS = np.zeros((NX))
    hloc = np.ones((NX))*hmax*0.5
    metric = np.zeros((NX))
    Tex = np.zeros((NX))
    for j in range (1,NX-1):
        Tex[j] = np.exp(-20*(x[j]-(xmax+xmin)*0.5)**2)
```

```
dt=1.e30
    for j in range (1,NX-1):
        Tx=(Tex[j+1]-Tex[j-1])/(x[j+1]-x[j-1])
        Txip1=(Tex[j+1]-Tex[j])/(x[j+1]-x[j])
        Txim1=(Tex[j]-Tex[j-1])/(x[j]-x[j-1])
        Txx=(Txip1-Txim1)/(0.5*(x[j+1]+x[j])-0.5*(x[j]+x[j-1]))
        F[j]=V*Tx-K*Txx+lamda*Tex[j]
        dt=min(dt,0.25*(x[j+1]-x[j-1])**2/(V*np.abs(x[j+1]-x[j-1])+4*K+np.
 \Rightarrowabs(F[j])*(x[j+1]-x[j-1])**2))
    print('NX=',NX,'Dt=',dt)
    #time step loop
    n=0
    res=1
    res0=1
    t=0
    while(n<NT and t<Time):</pre>
        n+=1
        dt=min(dt,Time-t)
        t+=dt
    #discretization of the advection/diffusion/reaction/source equation
        for j in range (1, NX-1):
#viscosite numerique: decentrage pour stabilite de derivee premiere/advection_
 →12.17
            visnum=0.25*(0.5*(x[j+1]+x[j])-0.5*(x[j]+x[j-1]))*np.abs(V) #0.5 h_{\square}
 \hookrightarrow /V/
            xnu=K+visnum
            Tx=(T[j+1]-T[j-1])/(x[j+1]-x[j-1])
            Txip1=(T[j+1]-T[j])/(x[j+1]-x[j])
            Txim1=(T[j]-T[j-1])/(x[j]-x[j-1])
            Txx = (Txip1 - Txim1) / (0.5*(x[j+1] + x[j]) - 0.5*(x[j] + x[j-1]))
            src=F[j]*np.sin(freq*t)+Tex[j]*np.cos(freq*t)*freq
            RHS[j] = dt*(-V*Tx+xnu*Txx-lamda*T[j]+src)
            metric[j]+=min(1./hmin**2,max(1./hmax**2,abs(Txx)/err))
            res+=abs(RHS[j])
        metric[0]=metric[1]
        metric[NX-1] = metric[NX-2]
        for j in range (1, NX-1):
            T[i] += RHS[i] #Tn+1 = Tn + dt*(-V*Tx+xnu*Txx-lamda*T[i]+src)
            RHS[j]=0
```

```
T[0]=0
        T[NX-1]=2*T[NX-2]-T[NX-3] #Txx=0 second derivative
        if (n == 1):
            res0=res
       rest.append(res)
    #Plot every ifre time steps
        if (n%ifre == 0 or t>=Time):
            #print('iter=',n,'residual=',res)
            plotlabel = "iter adapt = %1.0f" %iter
             plotlabel = "t = %1.2f" %t
            plt.plot(x[0:NX],T[0:NX], label=plotlabel,linestyle='--',_

marker='o')
   metric[0:NX]/=n #average (intersect) over n iterations
   hloc[0:NX]=np.sqrt(1./metric[0:NX])
   print('iter=',n,'time=',t,'residual=',res)
   plt.xlabel(u'$x$', fontsize=26)
   plt.ylabel(u'$T$', fontsize=26, rotation=0)
   plt.title(u'ADRS insta 1D')
   plt.legend()
          plt.figure(2)
#
          plt.plot(np.log10(rest/rest[0]))
       errL2=np.sqrt(np.dot(T-Tex,T-Tex))
#
      errH1h=0
      errL2h=0
#
      for j in range (1, NX-1):
#
          Texx = (Tex[j+1] - Tex[j-1])/(x[j+1] - x[j-1])
          Tx = (T[j+1] - T[j-1]) / (x[j+1] - x[j-1])
#
          errL2h += (0.5*(x[j+1]+x[j])-0.5*(x[j]+x[j-1]))*(T[j]-Tex[j])**2
#
          errH1h+=(0.5*(x[j+1]+x[j])-0.5*(x[j]+x[j-1]))*(Tx-Texx)**2
      errorL2[iter]=errL2h
      errorH1[iter]=errL2h+errH1h
#
#
#
     print('norm error L2, H1=',errL2h,errH1h)
# if(iplot==-1):
     plt.figure(3)
     plt.plot(itertab, np. log10(errorL2))
     plt.plot(itertab,np.log10(errorH1))
```

plt.show()

```
NX= 5 Dt= 0.057101270035268555

iter= 36 time= 2.0 residual= 0.0017938781819748038

NX= 16 Dt= 0.00839123086685201

iter= 239 time= 2.0 residual= 0.021436246314221412

NX= 30 Dt= 0.004398246489140594

iter= 455 time= 2.0 residual= 0.02859802453990856

NX= 28 Dt= 0.005213832004681818

iter= 384 time= 2.0 residual= 0.0328727522361848

NX= 30 Dt= 0.004934479336562507

iter= 406 time= 2.0 residual= 0.02052722385127911

NX= 31 Dt= 0.004892908589199031

iter= 409 time= 2.0 residual= 0.053538703889388306
```


7 Analyse complète du code Python

Ce code résout numériquement une équation d'advection-diffusion-réaction instationnaire en 1D avec un terme source oscillant dans le temps, et met en place une stratégie

d'adaptation de maillage basée sur une métrique locale liée à la courbure de la solution.

7.1 1. Équation modélisée

L'équation considérée est :

$$\frac{\partial u}{\partial t} = -V \frac{\partial u}{\partial x} + K \frac{\partial^2 u}{\partial x^2} - \lambda u + \mathrm{src}(x,t)$$

où : - V : vitesse d'advection - K : coefficient de diffusion - λ : coefficient de réaction - src : terme source choisi pour forcer la solution exacte

Le terme source est construit de manière à ce que la solution exacte soit :

$$u_{\rm ex}(x,t) = T_{\rm ex}(x)\cos({\rm freg}\,t)$$

avec un **profil spatial gaussien** centré sur le domaine.

7.2 2. Paramètres physiques et numériques

- Domaine spatial : $[x_{\min}, x_{\max}] = [0, 1]$
- Temps final : T=2
- Coefficients:
 - -K = 0.01
 - -V = 1
 - $-\lambda = 1$
 - freq = 7
- Maillage initial : $N_X = 3$
- Nombre maximal d'itérations : NT = 10000
- Nombre d'itérations d'adaptation : niter_refinement = 10
- Taille minimale/maximale de maille : hmin = 0.01, hmax = 0.5

7.3 3. Boucle d'adaptation du maillage

Le code effectue plusieurs raffinements successifs :

7.3.1 Étapes :

- 1. Calcul de la solution sur un maillage donné.
- 2. Évaluation d'une métrique locale :

$$m_j = \min\left(\frac{1}{h_{\min}^2}, \max\left(\frac{1}{h_{\max}^2}, \frac{|\partial_{xx}T|}{\text{err}}\right)\right)$$

qui dépend de la courbure de la solution T_{xx} .

3. Détermination d'un nouveau pas local :

$$h_j = \sqrt{\frac{1}{m_j}}$$

4. Reconstruction d'un nouveau maillage non uniforme avec interpolation de la solution.

Ce processus est répété jusqu'à ce que le nombre de points converge (condition abs(NXO - NX) > 1).

7.4 4. Initialisation de la solution exacte

Le profil spatial exact est:

$$T_{\rm ex}(x) = \exp\left(-20(x - 0.5)^2\right)$$

(sans dépendance temporelle directe ici).

Le terme source est calculé pour que $u_{\rm ex}$ soit solution exacte :

$$\mathrm{src}(x,t) = F(x)\sin(\mathrm{freq}\,t) + T_{\mathrm{ex}}(x)\cos(\mathrm{freq}\,t)\cdot\mathrm{freq}$$

avec:

$$F(x) = VT_x - KT_{xx} + \lambda T_{\text{ex}}$$

7.5 5. Schéma numérique

7.5.1 Discrétisation spatiale :

- Différences finies centrées pour :
 - $\partial_x T: (T_{j+1} T_{j-1})/(x_{j+1} x_{j-1})$
 - $\partial_{xx}T$: dérivée seconde par différence centrée
- Viscosité numérique ajoutée :

$$\nu_{\mathrm{num}} = 0.25\,h\,|V|$$

pour stabiliser la partie advective.

7.5.2 Schéma temporel:

• Explicite:

$$T_j^{n+1} = T_j^n + \Delta t \big(-VT_x + (K + \nu_{\text{num}})T_{xx} - \lambda T_j^n + \text{src}(x_j, t^n) \big)$$

7.5.3 Condition CFL:

$$\Delta t \le \frac{1}{4} \frac{h^2}{Vh + 4K + |F|h^2}$$

7.6 6. Conditions aux limites

• **Gauche** : T(0) = 0

• **Droite** : condition de dérivée seconde nulle $(T_{xx} = 0)$:

$$T_{N} = 2T_{N-1} - T_{N-2} \\$$

7.7 7. Tracés effectués

À chaque raffinement : - Tracé de la solution T(x) finale pour l'itération en cours (iter adapt) - Lignes pointillées et cercles pour visualiser le maillage

7.8 8. Métrique d'adaptation

Après la boucle temporelle : - La métrique moyenne est calculée :

$$\bar{m}_j = \frac{1}{N_{\rm steps}} \sum m_j$$

- Le nouveau pas local est :

$$h_j = \sqrt{\frac{1}{\bar{m}_j}}$$

Cela permet de raffiner les zones à forte courbure et éclaircir les zones plates.

7.9 9. Résumé

Le code : - Résout une **EDP instationnaire ADRS** en 1D avec **source oscillante** - Utilise un **schéma explicite centré** + **viscosité numérique** - Adapte le **maillage** selon une **métrique de courbure** - Affiche la **solution finale** à chaque itération d'adaptation

Objectif : tester une stratégie d'adaptation de maillage dynamique pour améliorer la précision dans les zones à forte variation spatiale.

```
import math
import numpy as np
import matplotlib.pyplot as plt

# --- Paramètres physiques ---
K = 0.01
V = 1.0
lamda = 1.0
freq = 7.0
xmin, xmax = 0.0, 1.0
Time = 2.0
```

```
# --- Adaptation ---
niter_refinement = 10
hmin, hmax = 0.01, 0.5
err = 0.01
tol_L2 = 1e-2
# --- Numérique ---
NX = 5
NT = 10000
iter = 0
NXO = 0
errL2_current = 1e9
hloc = np.ones(NX) * hmax * 0.5
while not (abs(NX - NX0) \leq 1 and errL2_current \leq tol_L2) and iter \leq
 →niter_refinement:
    iter += 1
    print(f"\n==== ADAPTATION {iter} ====")
    x = np.linspace(xmin, xmax, NX)
   T = np.zeros(NX)
    Tex = np.exp(-20 * (x - 0.5)**2)
    # --- Calcul de F et dt ---
    F = np.zeros(NX)
    dt = 1e30
    for j in range(1, NX-1):
        Tx = (Tex[j+1]-Tex[j-1])/(x[j+1]-x[j-1])
        Txip1 = (Tex[j+1]-Tex[j])/(x[j+1]-x[j])
        Txim1 = (Tex[j]-Tex[j-1])/(x[j]-x[j-1])
        Txx = (Txip1 - Txim1) / (0.5*(x[j+1]+x[j]) - 0.5*(x[j]+x[j-1]))
        F[j] = V*Tx - K*Txx + lamda*Tex[j]
        dt = min(dt, 0.25 * (x[j+1]-x[j-1])**2 / (abs(V)*(x[j+1]-x[j-1]) + 4*K_{l}
 \hookrightarrow+ abs(F[j])*(x[j+1]-x[j-1])**2))
    dt = min(dt, 1e-3)
    print(f"NX={NX}, dt={dt:.2e}")
    # --- Boucle temporelle ---
    metric = np.zeros(NX)
    t = 0
    n = 0
    while t < Time and n < NT:
       n += 1
        dt_eff = min(dt, Time - t)
        t += dt_eff
```

```
RHS = np.zeros(NX)
        for j in range(1, NX-1):
            visnum = 0.25 * (x[j+1]-x[j-1]) * abs(V)
            xnu = K + visnum
            Tx = (T[j+1]-T[j-1])/(x[j+1]-x[j-1])
            Txip1 = (T[j+1]-T[j])/(x[j+1]-x[j])
            Txim1 = (T[j]-T[j-1])/(x[j]-x[j-1])
            Txx = (Txip1 - Txim1) / (0.5*(x[j+1]+x[j]) - 0.5*(x[j]+x[j-1]))
            src = F[j]*np.sin(freq*t) + Tex[j]*np.cos(freq*t)*freq
            RHS[j] = dt_eff * (-V*Tx + xnu*Txx - lamda*T[j] + src)
            metric[j] += min(1/hmin**2, max(1/hmax**2, abs(Txx)/err))
        T[1:-1] += RHS[1:-1]
        T[0] = 0.0
        T[-1] = 2*T[-2] - T[-3]
    # --- Moyenne métrique ---
    metric /= n
    metric = np.clip(metric, 1/hmax**2, 1/hmin**2)
    hloc = np.sqrt(1.0 / metric)
    # --- Calcul erreur L2 ---
    uex = Tex * np.sin(freq * Time)
    errL2_current = np.sqrt(np.trapz((T - uex)**2, x))
    print(f"Erreur L2 = {errL2_current:.3e}")
    # --- Plot ---
    plt.plot(x, T, '-o', label=f'it={iter}, NX={NX}, err={errL2_current:.1e}')
    # --- Adaptation locale du maillage ---
    xnew = [xmin]
    while xnew[-1] < xmax - hmin:
        # interpolation hloc
        i = np.searchsorted(x, xnew[-1]) - 1
        i = max(0, min(i, NX-2))
        hll = (hloc[i]*(x[i+1]-xnew[-1]) + hloc[i+1]*(xnew[-1]-x[i]))/
 \hookrightarrow (x[i+1]-x[i])
        hll = min(max(hmin, hll), hmax)
        xnew.append(min(xmax, xnew[-1] + hll))
    NXO = NX
    NX = len(xnew)
    x = np.array(xnew)
plt.xlabel('x')
plt.ylabel('T')
```

```
plt.legend()
plt.title('Adaptation ADRS 1D (critère mixte + métrique locale)')
plt.show()
==== ADAPTATION 1 ====
NX=5, dt=1.00e-03
Erreur L2 = 1.040e-01
==== ADAPTATION 2 ====
NX=6, dt=1.00e-03
C:\Users\bapti\AppData\Local\Temp\ipykernel_3860\4127715115.py:82:
DeprecationWarning: `trapz` is deprecated. Use `trapezoid` instead, or one of
the numerical integration functions in `scipy.integrate`.
  errL2_current = np.sqrt(np.trapz((T - uex)**2, x))
Erreur L2 = 1.031e-01
==== ADAPTATION 3 ====
NX=8, dt=1.00e-03
Erreur L2 = 8.982e-02
==== ADAPTATION 4 ====
NX=10, dt=1.00e-03
Erreur L2 = 8.168e-02
==== ADAPTATION 5 ====
NX=12, dt=1.00e-03
Erreur L2 = 7.500e-02
==== ADAPTATION 6 ====
NX=13, dt=1.00e-03
Erreur L2 = 7.191e-02
==== ADAPTATION 7 ====
NX=13, dt=1.00e-03
Erreur L2 = 7.191e-02
==== ADAPTATION 8 ====
NX=13, dt=1.00e-03
Erreur L2 = 7.191e-02
==== ADAPTATION 9 ====
NX=13, dt=1.00e-03
Erreur L2 = 7.191e-02
==== ADAPTATION 10 ====
NX=13, dt=1.00e-03
```

Erreur L2 = 7.191e-02

[]: