Intro to Analysis Homework 4

Zachary Meyner

1. Given that (a_n) is a Cauchy sequence, use the definition (as an Epsilon argument) to show that (a_n^2) is also a Cauchy sequence. Then provide an example to show that the converse is not true.

Proof. Since (a_n) is Cauchy iit is also bounded. So $\exists M \in \mathbb{R} \text{ s.t. } |a_n| \leq M$. Let $\varepsilon > 0$ be given. Since (a_n) is Cauchy $\exists H \in \mathbb{R} \text{ s.t. } \forall n, m \geq H |a_n - a_m| < \frac{\varepsilon}{2M}$. Then $\forall n, m \geq H$

$$|a_n^2 - a_m^2| = |a_n - a_m||a_n + a_m|$$

$$\leq \frac{\varepsilon}{2M}|a_n + a_m|$$

$$\leq \frac{\varepsilon}{2M}(|a_n| + |a_m|)$$

$$= \frac{\varepsilon}{2M}(M + M)$$

$$= \frac{\varepsilon}{2M}(2M)$$

$$= \varepsilon$$

The counterexample to the converse is if $(a_n) = (-1)^n = \{-1, 1, -1, \dots\}$ is not Cauchy, but $(a_n^2) = (-1)^2 = \{1, 1, \dots\}$. So (a_n^2) is Cauchy, but (a_n) is not.

2. Given that (a_n) and (b_n) are Cuachy sequences, use the definition (as an Epsilon argument) to show that (a_nb_n) is also a Cauchy sequence.

Proof. Let $\varepsilon > 0$ be given. Because (a_n) is Cauchy $|a_n| \leq A$. Since (a_n) is Cauchy $\exists H_a \in \mathbb{R} \text{ s.t. } \forall n, m \geq H_a$.

$$|a_n - a_m| < \frac{\varepsilon}{2B}$$

Because (b_n) is Cauchy $|b_n| \leq B$. Since (b_n) is Cauchy $\exists H_b \in \mathbb{R}$ s.t. $\forall n, m \geq H_b$ $|b_n - b_m| < \frac{\varepsilon}{2A}$

Consider $H = \max(H_a, H_b)$, then $\forall n, m \in \mathbb{R}$

$$|a_n b_n - a_m b_m| = |a_n b_n - a_n b_m + a_n b_m - a_m b_m|$$

$$\leq |a_n b_n - a_n b_m| + |a_n b_m - a_m b_m|$$
 (Triangle Inequality)
$$= |a_n||b_n - b_m| + |b_m||a_n - a_m|$$

$$\leq A|b_n - b_m| + B|a_n - a_m|$$

$$< A(\frac{\varepsilon}{2A}) + B(\frac{\varepsilon}{2B})$$

$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

3. Given that (a_n) nad (b_n) are Cauchy sequences, use the definition (an Epsilon argument) to show that $(6a_n - 2b_n)$ is also a Cauchy sequence.

Proof. Let $\varepsilon > 0$ be given. Since (a_n) is Cauchy $\exists H_a \in \mathbb{R}$ s.t. $\forall n, m \geq H_a$ $|a_n - a_m| < \frac{\varepsilon}{12}$ Since (b_n) is Cauchy $\exists H_b \in \mathbb{R}$ s.t.

 $|b_n - b_m| < \frac{\varepsilon}{4}$

Consider $H = \max(H_a, H_b)$, then $\forall n, m \geq H$

$$|(6a_n - 2b_n) - (6a_m - 2b_n)| = |6a_n - 6a_m - 2b_n + 2b_m|$$

$$\leq |6a_n - 6a_m| + |-2b_n + 2b + m| \quad \text{(Triangle Inequality)}$$

$$= 6|a_n - a_m| + 2|b_n - b_m|$$

$$< 6\frac{\varepsilon}{12} + 2\frac{\varepsilon}{4}$$

$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$