1 Basic Definitions and Examples

- 1.1 Genera
- 1.2 Riemann-Roch
- 1.3 Riemann-Hurwitz

2 Hyperelliptic Curves

Definition 2.0.1. A curve C is hyperelliptic if there exists a degree two map $f: C \to \mathbb{P}^1$.

Lemma 2.0.2. A curve C is hyperelliptic iff Ω_C^1 is not very ample.

Proof. (DO THIS)

Proposition 2.0.3. Plane curves with g > 1 cannot be hyperelliptic.

Proof. Let $\iota: C \hookrightarrow \mathbb{P}^2$ be a plane curve. Then $\Omega^1_C = \iota^* \mathcal{O}_{\mathbb{P}^2}(d-3)$ where d is the degree of C. Since g > 1 we must have d > 3 and thus $\mathcal{O}_{\mathbb{P}^2}(d-3)$ is very ample defining the Veronese embedding $v: \mathbb{P}^2 \to \mathbb{P}^N$ s.t. $\mathcal{O}_{\mathbb{P}^2}(d-3) = v^* \mathcal{O}_{\mathbb{P}^N}(1)$. Then $v \circ \iota: C \to \mathbb{P}^N$ is an embedding such that $(v \circ \iota)^* \mathcal{O}_{\mathbb{P}^N}(1) = \Omega^1_C$. Thus Ω^1_C is very ample so C cannot be hyperelliptic.

Lemma 2.0.4. Let C have a \mathfrak{g}_2^1 then C is either hyperelliptic or rational.

Proof. Let D be a \mathfrak{g}_2^1 then |D| defines a rational map $C \longrightarrow \mathbb{P}^1$ of degree two. Suppose P were a basepoint of |D| then dim |D - P| = 1 which implies that C is rational because there is a rational degree one map $C \longrightarrow \mathbb{P}^1$.

Proposition 2.0.5. Any genus 2 curve is hyperelliptic.

Proof. Consider the canonical divisor K_X which has deg $K_X = 2g - 2 = 2$ and dim $|K_X| = g - 1 = 1$ and thus gives a \mathfrak{g}_2^1 .

3 Tangent Space

Definition 3.0.1. Let X be a scheme and $x \in X$ a point. Then we define:

- (a) the geometric tangent space $T_x X = \operatorname{Spec}\left(\operatorname{Sym}_{\kappa(x)}(\mathfrak{m}_x/\mathfrak{m}_x^2)\right)$
- (b) the projectiveized tangent space $\mathbb{P}(T_x X) = \operatorname{Proj}\left(\operatorname{Sym}_{\kappa(x)}(\mathfrak{m}_x/\mathfrak{m}_x^2)\right)$
- (c) the geometric tangent cone $C_x X = \operatorname{Spec}\left(\operatorname{\mathbf{gr}}_{\mathfrak{m}_x}(\mathcal{O}_{X,x})\right)$ where,

$$\mathbf{gr}_{\mathfrak{m}_x}\left(\mathcal{O}_{X,x}
ight) = igoplus_{n=0}^{\infty} \mathfrak{m}_x^n/\mathfrak{m}_x^{n+1}$$

(d) the projectiveized tangent cone $\mathbb{P}(C_x X) = \operatorname{Proj}(\mathbf{gr}_{\mathfrak{m}_x}(\mathcal{O}_{X,x}))$.

Remark. In particular, blowing up X at the sheaf of ideals \mathscr{I}_x (defined as the subsheaf of \mathcal{O}_X where evaluation in $\kappa(x)$ gives zero) gives the following,

$$\widetilde{X} = \mathbf{Proj}_X \left(\bigoplus_{n=0}^{\infty} \mathscr{I}_x^n \right)$$

Choose an affine open neighborhood $x \in \operatorname{Spec}(A) = U \subset X$ then we see $\mathscr{I}_x|_U = \widetilde{\mathfrak{p}} \subset A$ is the prime corresponding to $x \in \operatorname{Spec}(A)$ and $\mathfrak{m}_x = \mathfrak{p}A_{\mathfrak{p}}$. Therefore, restricting $\pi : \widetilde{X} \to X$ over U gives,

$$\operatorname{Proj}\left(\bigoplus_{n=0}^{\infty} \mathfrak{p}^n\right) \to \operatorname{Spec}\left(A\right)$$

and,

$$\mathrm{Bl}_{\mathfrak{p}}(A) = \bigoplus_{n=0}^{\infty} \mathfrak{p}^n$$

is the blowup algebra which is a graded A-algebra. Consider the fiber over x,

$$\operatorname{Proj}\left(\operatorname{Bl}_{\mathfrak{p}}\left(A\right)/\mathfrak{p}\operatorname{Bl}_{\mathfrak{p}}\left(A\right)\right) \to \operatorname{Spec}\left(\kappa(x)\right)$$

where we see,

$$\mathrm{Bl}_{\mathfrak{p}}\left(A\right)/\mathfrak{p}\mathrm{Bl}_{\mathfrak{p}}\left(A\right) = \bigoplus_{n=0}^{\infty} \mathfrak{p}^{n} = \mathbf{gr}_{\mathfrak{p}}\left(A\right)$$

and therefore $\tilde{X}_x \to \operatorname{Spec}(\kappa(x))$ is $\operatorname{Proj}(\operatorname{\mathbf{gr}}_{\mathfrak{p}}(A)) \to \operatorname{Spec}(\kappa(x))$. In particular, the tangent cone is the fiber over x in the blowup.

Remark. The exact same construction shows that given a ring A and ideal $I \subset A$ the blowup $\operatorname{Proj}(\operatorname{Bl}_I(A)) \to \operatorname{Spec}(A)$ where,

$$\mathrm{Bl}_{I}(A) = \bigoplus_{n=0}^{\infty} I^{n}$$

is the blowup algebra, has fiber over the closed subscheme V(I) equal to,

$$\operatorname{Proj}\left(\operatorname{\mathbf{gr}}_{I}(A)\right) \to \operatorname{Spec}\left(A/I\right)$$

which is the projectized tangent cone of I.

Remark. We can generalize this further. For a sheaf of ideals $\mathscr{I} \subset \mathcal{O}_X$ we can form the blowup,

$$\tilde{X} = \mathbf{Proj}_X \left(\bigoplus_{n=0}^{\infty} \mathscr{I}^n \right) \to X$$

Restricting to the closed subscheme $Z = V(\mathscr{I}) \subset X$ we find,

$$\mathbf{Proj}_{Z}\left(igoplus_{n=0}^{\infty}\mathscr{I}^{n}/\mathscr{I}^{n+1}
ight)
ightarrow Z$$

but notice that the graded algebra,

$$(\mathcal{O}_X/\mathscr{I}) \otimes_{\mathcal{O}_X} \bigoplus_{n=0}^{\infty} \mathscr{I}^n = \bigoplus_{n=0}^{\infty} \mathscr{I}^n/\mathscr{I}^{n+1} = \bigoplus_{n=0}^{\infty} (\mathscr{I}/\mathscr{I}^2)^{\otimes n}/K = \operatorname{Sym}_{\mathcal{O}_Z} (\mathscr{I}/\mathscr{I}^2)$$

and $\mathcal{C}_{Z/X} = \mathscr{I}/\mathscr{I}^2$ is the conormal bundle (sheaf) so we find a pullback diagram,

$$\mathbb{P}(\mathcal{C}_{Z/X}) \longrightarrow \tilde{X} \\
\downarrow^{\pi} \\
Z \longrightarrow X$$

and thus $\tilde{X} \to X$ is a projective bundle over Z and an isomorphism over $X \setminus Z$. We call $\mathbb{P}(\mathcal{C}_{Z/X})$ the projectiveized tangent cone of Z.

Proposition 3.0.2. In general $C_xX \hookrightarrow T_xX$ and this is an isomorphism if $x \in X$ is a regular point.

Proof. There is a surjective canonical map,

$$\operatorname{Sym}_{\kappa(x)}(\mathfrak{m}_x/\mathfrak{m}_x^2) \to \operatorname{\mathbf{gr}}_{\mathfrak{m}_x}(\mathcal{O}_{X,x})$$

giving a closed embedding,

$$C_rX \hookrightarrow T_rX$$

When $\mathcal{O}_{X,x}$ is regular then $\mathbf{gr}_{\mathfrak{m}_x}(\mathcal{O}_{X,x}) \cong \kappa(x)[x_1,\ldots,x_r]$ where $x_1,\ldots,x_r \in \mathfrak{m}_x$ are a basis of $\mathfrak{m}_x/\mathfrak{m}_x^2$ as a $\kappa(x)$ -vectorspace. Therefore, $\operatorname{Sym}_{\kappa(x)}(\mathfrak{m}_x/\mathfrak{m}_x^2) \xrightarrow{\sim} \mathbf{gr}_{\mathfrak{m}_x}(\mathcal{O}_{X,x})$ as graded rings and thus $C_xX \to T_xX$ is an isomorphism.

Remark. Because the map is a graded map, the same holds projectivized $\mathbb{P}(C_xX) \hookrightarrow \mathbb{P}(T_xX)$.

(THIS IS WRONG BC COHEN ISOMORPHISM IS NOT CANONICAL) (MAKES SENSE BECAUSE ITS SUPPOSED TO BE LIKE NORMAL COORDINATES WHICH FOR MANIFOLDS REQUIRES A METRIC SAD)

Proposition 3.0.3. Let X be finite type over k and $x \in X$ be a closed point. There are canonical maps,

$$\widehat{T_xX} \leftarrow \operatorname{Spec}\left(\widehat{\mathcal{O}_{X,x}}\right) \to \operatorname{Spec}\left(\mathcal{O}_{X,x}\right) \to X$$

such that $\widehat{T_xX} \leftarrow \operatorname{Spec}\left(\widehat{\mathcal{O}_{X,x}}\right)$ is an isomorphism exactly when $x \in X$ is regular.

Proof. The canonical map,

$$A = \operatorname{Sym}_{\kappa(x)}(\mathfrak{m}_x/\mathfrak{m}_x^2) \to \operatorname{\mathbf{gr}}_{\mathfrak{m}_x}(\mathcal{O}_{X,x})$$

is an isomorphism exactly when $x \in X$ is a regular point. By the Cohen structure theorem $\widehat{\mathcal{O}_{X,x}} = \kappa(x)[[x_1,\ldots,x_r]]/I$ where $x_1,\ldots,x_r \in \mathfrak{m}_x$ are a basis of $\mathfrak{m}_x/\mathfrak{m}_x^2$. Furthermore, I=(0) exactly when $x \in X$ is regular. Therefore, consider the map,

$$\widehat{A} \to \widehat{\mathcal{O}_{X,x}}$$

defined on finite levels by,

$$A/\mathfrak{m}^n = \bigoplus_{k \le n} \operatorname{Sym}^k \left(\mathfrak{m}_x/\mathfrak{m}_x^2\right) \to \bigoplus_{k \le n} \mathfrak{m}$$

Taking spectra,

$$T_x X \leftarrow \operatorname{Spec}\left(\widehat{\mathcal{O}_{X,x}}\right)$$

and we see this is an isomorphism when $\mathcal{O}_{X,x}$ is regular.

4 Formal Schemes

Definition 4.0.1. Let A be a ring and $I \subset A$ an ideal. Then the completion of A along I is,

$$\hat{A} = \varprojlim_{n} A/I^{n}$$

Furthermore, for any A-module M we can complete M along I to get,

$$\hat{M} = \varprojlim_{n} M/I^{n}M = \varprojlim_{n} (M \otimes_{A} A/I^{n}) = M \otimes_{A} \hat{A}$$

Proposition 4.0.2. Let A be a ring and $I \subset A$ an ideal and M an A-module. Then \hat{M} satisfies the following universal property. Any map $\varphi : M \to N$ to a complete A-module N factors uniquely as $M \to \hat{M} \xrightarrow{\tilde{\varphi}} N$.

Proof. The kernel of $M \to N/I^nN$ contains I^nM and thus factors as $M \to M/I^nM \to N/I^nN$. Taking inverse limits gives $M \to \hat{M} \to N$. Uniqueness follows from the fact that a map $\hat{M} \to M$ is determined completely by $\hat{M} \to M/I^nM \to N/I^nN$.

Lemma 4.0.3. Let A be a ring and $I \subset A$ an ideal. Then the units of \hat{A} are exactly those elements which map to units under $\hat{A} \to A/I$.

Proof. Suppose that $u \in \hat{A}$ is a unit. Then clearly its image under $\hat{A} \to A/I$ is a unit. Conversely, suppose that $u \mapsto u_1 \in A/I$ is a unit. Then there exists $v_1 \in A/I$ s.t. $u_1v_1 = 1$ so lifting v_1 we get $u_2\tilde{v}_1 = 1 + r$ for $r \in I$ so we can take $ru_2\tilde{v}_1 = r + r^2 = r$ and thus $u_2(\tilde{v}_1 - r\tilde{v}_1) = 1$. Write $v_2 = \tilde{v}_1 - r\tilde{v}_1$ and we lift to see $u_3\tilde{v}_2 = 1 + r'$ for $r' \in I^2$ etc giving by induction an element $v \in \hat{A}$ such that uv = 1 in each A/I^n and thus in \hat{A} .

Lemma 4.0.4. Let $\mathfrak{m} \subset A$ be a maximal ideal. Then $\hat{A} = \widehat{A_{\mathfrak{m}}}$ is local.

Proof. Consider,

$$\widehat{A}_{\mathfrak{m}} = \varprojlim_{n} (A_{\mathfrak{m}}/\mathfrak{m}^{n}A_{\mathfrak{m}}) = \varprojlim_{n} (A/\mathfrak{m}^{n})_{\mathfrak{m}}$$

However, since A/\mathfrak{m}^n is local with maximal ideal \mathfrak{m} we see that $(A/\mathfrak{m}^n)_{\mathfrak{m}} = A/\mathfrak{m}^n$ and thus,

$$\widehat{A}_{\mathfrak{m}} = \varprojlim_{n} (A/\mathfrak{m}^{n})_{\mathfrak{m}} = \varprojlim_{n} A/\mathfrak{m}^{n} = \widehat{A}$$

Remark. Localization does not, in general, behave nicely with completion. For example, let $A = \mathbb{Z}_p[x]$ and $\mathfrak{p} = (x)$. Then $\hat{A}_{\mathfrak{p}} = \mathbb{Q}_p[x]_{(x)} = \mathbb{Q}_p[[x]]$. However, $\hat{A} = \mathbb{Z}_p[[x]]$ and $\hat{A}_{\hat{\mathfrak{p}}} = \mathbb{Z}_p[[x]]_{(x)}$ which is a proper subring of $\mathbb{Q}_p[[x]]$ because it does not contain $1 + p^{-1}x + p^{-2}x^2 + \cdots$ and is this, in particular, not complete.

Lemma 4.0.5. Suppose that (A, \mathfrak{m}) is a local ring. Then $\operatorname{Spec}(\hat{A}) \to \operatorname{Spec}(A)$ is a homeomorphism.

(THIS IS TOTALLY FALSE IMPLIES A IS UNABRANCH AT LEAST)

Proof. The units in \hat{A} are everything except the preimage of zero under $\hat{A} \to A/\mathfrak{m} = \kappa$. Therefore $\hat{\mathfrak{m}} = \mathfrak{m}\hat{A}$ is the unique maximal ideal of \hat{A} making A local. I claim that $\mathfrak{p} \mapsto \mathfrak{p}\hat{A}$ is an inverse to $\operatorname{Spec}(\hat{A}) \to \operatorname{Spec}(A)$. (DO THIS!!)

Example 4.0.6. Consider $X = \operatorname{Spec}(k[x,y]/(y^2 - x^2(x-1))) \subset \mathbb{A}^2_k$. Take p = (x,y). We know X is connected and thus $\mathcal{O}_{X,p} = A_{\mathfrak{p}}$ has a unique minimal prime. However,

$$\widehat{\mathcal{O}_{X,p}} = \widehat{A} = k[[x,y]]/(y^2 - x^2(x+1)) \cong k[[x,y]]/(x^2 - y^2) = k[[x,y]]/((y-x)(x+y)) \cong k[[u]] \times k[[v]]$$
 which has two minimal primes (branches).

5 Multiplicity of a Point

5.1 Hilbert-Samuel Polynomial

Definition 5.1.1. Let $(A, \mathfrak{m}, \kappa)$ be a noetherian local ring and M a finite A-module. Then define the Hilbert function,

$$\chi_M(n) = \operatorname{length}_A(M/\mathfrak{m}^n M)$$

Remark. We abreviate length_A $(M) = \ell_A(M)$. We recall the following facts from dimension theory.

Proposition 5.1.2. There is a numerical polynomial $P_M \in \mathbb{Q}[x]$ of degree $d = \dim M$ such that,

$$P_M(n) = \chi_M(n)$$

for all $n \gg 0$.

$$Mat$$
, Theorem 13.4.

Proposition 5.1.3. Given an exact sequence of finite A-modules,

$$0 \longrightarrow N \longrightarrow M \longrightarrow K \longrightarrow 0$$

then,

$$d(M) = \max\{d(N), d(K)\}\$$

and $P_M - P_N - P_K$ is a polynomial of degree strictly less than d(N).

Proof. Consider the exact sequences,

$$0 \longrightarrow (\mathfrak{m}^n M + N)/\mathfrak{m}^n M \longrightarrow M/\mathfrak{m}^n M \longrightarrow K/\mathfrak{m}^n K \longrightarrow 0$$

$$0 \longrightarrow (\mathfrak{m}^n M \cap N)/\mathfrak{m}^n N \longrightarrow N/\mathfrak{m}^n N \longrightarrow (\mathfrak{m}^n M + N)/\mathfrak{m}^n M \longrightarrow 0$$

Therefore,

$$\chi_M(n) = \chi_K(n) + \ell((\mathfrak{m}^n M + N)/\mathfrak{m}^n M) = \chi_K(n) + \chi_N(n) - \ell((\mathfrak{m}^n M \cap N)/\mathfrak{m}^n N)$$

Furthermore, by Artin-Rees,

$$\mathfrak{m}^n M \cap N = \mathfrak{m}^{n-c}(\mathfrak{m}^c M \cap N) \subset \mathfrak{m}^{n-c} N$$

for fixed c and $n \geq c$. Therefore,

$$\ell((\mathfrak{m}^n M \cap N)/\mathfrak{m}^n N) \le \ell(\mathfrak{m}^{n-c} N/\mathfrak{m}^n N) = \chi_N(n) - \chi_N(n-c)$$

which is a polynomial φ of degree strictly less than d(N). Furthermore, for $n \gg 0$ we have,

$$P_M(n) = P_N(n) + P_K(n) - \varphi(n)$$

and since φ has degree strictly smaller d(N) we see that,

$$d(M) = \max\{d(N), d(K)\}\$$

Definition 5.1.4. Let $a_d x^d$ be the leading term of P_M then the multiplicity of M is $e(M) = d! a_d$. Notice that,

$$e(M) = d! \lim_{n \to \infty} \frac{\chi_M(n)}{n^d}$$

We call e(A) the multiplicity of the ring A. Furthermore, since,

$$\chi_M(n+1) - \chi_M(n) = \dim_{\kappa} (\mathfrak{m}^n M/\mathfrak{m}^{n+1} M)$$

therefore if d > 0

$$e(M) = (d-1)! \lim_{n \to \infty} \frac{\dim_{\kappa} (\mathfrak{m}^n M / \mathfrak{m}^{n+1} M)}{n^{d-1}}$$

Remark. If d = 1 then we find the following formula,

$$e(M) = \lim_{n \to \infty} \dim_{\kappa} (\mathfrak{m}^n M / \mathfrak{m}^{n+1} M)$$

and in particular,

$$e(A) = \lim_{n \to \infty} \dim_{\kappa} \left(\mathfrak{m}^n / \mathfrak{m}^{n+1} \right)$$

Definition 5.1.5. Let X be a locally noetherian scheme and $x \in X$ a point. Then the multiplicity $m(x) = m(\mathcal{O}_{X,x})$ is defined as the multiplicity of the local ring $\mathcal{O}_{X,x}$,

$$m(x) = d! \lim_{n \to \infty} \frac{\ell_{\mathcal{O}_{X,x}}(\mathcal{O}_{X,x}/\mathfrak{m}_x^n)}{n^d}$$

where $d = \dim \mathcal{O}_{X,x} = \operatorname{codim} \left(\overline{\{x\}}, X \right)$.

5.2 Schemes of Dimension One

Proposition 5.2.1. Let X be a connected noetherian T_0 space with dim X=1. Then X is equidimensional and for each $x \in X$ setting $Z_x = \overline{\{x\}}$ exactly one of the two equivalenes holds,

- (a) $\operatorname{codim}(Z_x, X) = 0 \iff \dim Z_x = 1 \iff Z_x \text{ is maximal} \iff x \text{ is not closed}$
- (b) $\operatorname{codim}(Z_x, X) = 1 \iff \dim Z_x = 0 \iff Z_x \text{ is not maximal} \iff x \text{ is closed}$

Proof. Let $Z_1, \ldots, Z_n \subset X$ be the irreducible components of X. I claim that each irreducible component Z_i intersects some other irreducible component Z_j unless n = 1. Otherwise,

$$Z_i \cap \bigcup_{j \neq i} Z_j = \emptyset$$

but both sets are closed (critically using that the union is finite) and,

$$Z_i \cup \bigcup_{j \neq i} Z_j = X$$

which by the connectedness of X implies that one set is empty so n = 1. The case n = 1 is clear so suppose that n > 1. If $Z_i = \{x\}$ for a closed point $x \in X$ then there is some $Z_j \neq Z_i$ with $Z_i \cap Z_j \neq \emptyset$ and thus $x \in Z_j$ so $Z_i \subset Z_j$ so $Z_i = Z_j$ giving a contradiction. Then dim $Z_i = 0$ or dim $Z_i = 1$. However, if dim $Z_i = 0$ then $Z_i = \{x\}$ since X is T_0 for a closed point $x \in X$ (since Z_i is closed). We showed this cannot happen so dim $Z_i = 1$ proving that X is equidimensional.

Clearly, exacly one of $\operatorname{codim}(Z_x, X) = 0$ or $\operatorname{codim}(Z_x, X) = 1$ holds so we need to show the equivalences. We know $\operatorname{codim}(Z_x, X) = 0$ if and only if Z_x is an irreducible component (i.e. maximal). We showed that every irreducible component has dimension 1 so $\operatorname{dim} Z_x = 1$ iff Z_x is maximal and $\operatorname{dim} Z_x = 0$ iff Z_x is not maximal. If $\operatorname{codim}(Z_x, X) = 1$ then because,

$$\dim X \ge \operatorname{codim}(Z_x, X) + \dim Z_x$$

we see dim $Z_x = 0$. Conversely, if dim $Z_x = 0$ we have seen that Z_x is not maximal and thus codim $(Z_x, X) \neq 0$ by the above equivalences so codim $(Z_x, X) = 1$. If x is closed then $Z_x = \{x\}$ and we showed that Z_x is not maximal. Conversely, if Z_x is not maximal then dim $Z_x = 0$ so x is closed. Finally, if Z_x is maximal then dim $Z_x = 1$ so x is not closed and conversely if x is not closed then dim $Z_x \neq 0$ by the previous equivalence so dim $Z_x = 1$ so Z_x is maximal.

Corollary 5.2.2. Let X be a connected noetherian scheme with dim X = 1. Then for each closed point $x \in X$ we have dim $\mathcal{O}_{X,x} = \operatorname{codim}(Z_x, X) = 1$ so the multiplicitly is,

$$m(x) = \lim_{n \to \infty} \dim_{\kappa(x)} (\mathfrak{m}_x^n / \mathfrak{m}_x^{n+1})$$

and for each non-closed point $\xi \in X$ or equivalently the generic point of an irreducible component, $\dim \mathcal{O}_{X,\xi} = \operatorname{codim}(Z_x, X) = 0$ and $\mathcal{O}_{X,\xi}$ is noetherian so $\mathcal{O}_{X,\xi}$ is Artin local meaning $\mathfrak{m}_{\xi}^n = 0$ for some n so the multiplicity satisfies,

$$m(\xi) = \ell_{\mathcal{O}_{X,\xi}}(\mathcal{O}_{X,\xi})$$

5.3 Normalization

(DO THIS FOR NOT INTEGRAL SCHEMES!!)

Proposition 5.3.1. Let X be a noetherian integral scheme with dim X = 1 such that the normalization $\nu : \widetilde{X} \to X$ is a finite morphism. Then for each $x \in X$,

$$m(x) = \deg_x \nu = \dim_{\kappa(x)} \widetilde{X}_x$$

Proof. The generic point is clear since $m(\xi) = 1$ because A is reduced and ν is birational. Let $x \in X$ be a closed point and $A = \mathcal{O}_{X,x}$ then $\dim A = 1$. Let $K = \operatorname{Frac}(A)$ then $\widetilde{A} \subset K$ is the normalization. Consider the exact sequence of A-modules,

$$0 \longrightarrow A \longrightarrow \widetilde{A} \longrightarrow Q \longrightarrow 0$$

Tensoring by K we see that $Q \otimes_A K = 0$. If Q = 0 we are immediately see that $P_A = P_{\widetilde{A}}$ as A-modules since $A = \widetilde{A}$. Otherwise, since $A \to \widetilde{A}$ is finite, Q is a finite A-module and thus $\operatorname{Supp}_A(Q)$ is closed and does not contain the generic point so $\dim \operatorname{Supp}_A(Q) = 0$. Indeed $B = A/\operatorname{Ann}_A(Q)$ is an Artinian ring and Q is a finite B-module and hence Artinian so $\ell_B(Q)$ is finite. Therefore, by Prop. 5.1.3, P_A and $P_{\widetilde{A}}$ have the same leading coefficient proving that,

$$m(x) = \lim_{n \to \infty} \frac{\ell_A(A/\mathfrak{m}^n)}{n} = \lim_{n \to \infty} \frac{\ell_A(\widetilde{A}/\mathfrak{m}^n \widetilde{A})}{n}$$

Let $\mathfrak{m}_1, \ldots, \mathfrak{m}_r$ be the maximal ideals of \widetilde{A} over \mathfrak{m} and $B_i = \widetilde{A}_{\mathfrak{m}_i}$ then (Tag 02M0),

$$\ell_A(\widetilde{A}/\mathfrak{m}^n\widetilde{A}) = \sum_{i=1}^r \ell_{B_i}(B_i/\mathfrak{m}^nB_i) \cdot [\kappa(\mathfrak{m}_i) : \kappa(\mathfrak{m})]$$

However, B_i is a normal noetherian domain with dim $B_i = 1$ and therefore a DVR. Let $\varpi_i \in \mathfrak{m}_i$ be a uniformizer and $\mathfrak{m}B_i = (\varpi_i^{e_i})$ for some integer e_i (if $\varpi = 0$ set $e_i = 1$) since B_i is a PID. Therefore, $\mathfrak{m}^n = \mathfrak{m}_i^{ne_i}$. In any DVR R with a uniformizer $\varpi \in R$ we have,

$$\ell_R(R/(\varpi^n)) = n$$

This is from the filtration,

$$(\varpi^n) \subset (\varpi^{n-1}) \subset \cdots \subset (\varpi) \subset R$$

and from the quotients we find,

$$\ell_R(R/(\varpi^n)) = \sum_{k=1}^n \ell_R((\varpi^k)/(\varpi^{k+1})) = n$$

because $(\varpi^k)/(\varpi^{k+1})$ is a one-dimensional κ -module. Therefore,

$$\ell_{B_i}(B_i/\mathfrak{m}^n) = ne_i$$

so we find,

$$m(x) = \lim_{n \to \infty} \frac{\ell_A(\widetilde{A}/\mathfrak{m}^n)}{n} = \sum_{i=1}^r \lim_{n \to \infty} \frac{ne_i[\kappa(\mathfrak{m}_i) : \kappa(\mathfrak{m})]}{n} = \sum_{i=1}^r e_i[\kappa(\mathfrak{m}_i) : \kappa(\mathfrak{m})]$$
$$= \sum_{i=1}^r \operatorname{length}_{B_i}(B_i/\mathfrak{m}) \left[\kappa(\mathfrak{m}_i) : \kappa(\mathfrak{m})\right] = \operatorname{rank}_x(f_*\mathcal{O}_{\widetilde{X}}) = \dim_{\kappa(x)} \widetilde{X}_x = \deg_x \nu$$

Proposition 5.3.2. Let $\widetilde{X} \to X$ be the normalization map as above. Then for nonzero $f \in \mathcal{O}_{X,x}$,

$$\operatorname{ord}_{x}(f) = \ell_{\mathcal{O}_{X,x}}(\mathcal{O}_{X,x}/(f)) = \sum_{x' \in \nu^{-1}(x)} \operatorname{ord}_{x'}(f)[\kappa(x_{i}) : \kappa(x)]$$

Proof. Let $A = \mathcal{O}_{X,x}$ and \widetilde{A} the normalization. Then $A \to \widetilde{A}$ is finite. Consider the submodules,

$$\begin{array}{ccc}
A & \longrightarrow & \widetilde{A} \\
\uparrow & & \uparrow \\
fA & \longrightarrow & f\widetilde{A}
\end{array}$$

8

where the maps are injective because A is a domain and $f \neq 0$. Furthermore, is an isomorphism of A-modules because $(f) \cong A$ is a flat A-module (easy to check directly). Therefore, from the diagram,

$$\ell_A(\widetilde{A}/f\widetilde{A}) = \ell_A(\widetilde{A}/fA) - \ell_A(f\widetilde{A}/fA) = \ell_A(\widetilde{A}/fA) - \ell_A(\widetilde{A}/A) = \ell_A(A/fA)$$

Finally, let $\mathfrak{m}_1, \ldots, \mathfrak{m}_r$ be the maximal ideals of \widetilde{A} over \mathfrak{m} and $B_i = \widetilde{A}_{\mathfrak{m}_i}$ then by Tag 02M0,

$$\ell_A(\widetilde{A}/f\widetilde{A}) = \sum_{\mathfrak{m}_i} \ell_{B_i}(B_i/fB_i)[\kappa(\mathfrak{m}_i) : \kappa(\mathfrak{m})] = \sum_{x' \in \nu^{-1}(x)} \operatorname{ord}_{x'}(f)[\kappa(x') : \kappa(x)]$$

Proposition 5.3.3. GENUS FORMULA

Proof. Consider $\nu: \widetilde{X} \to X$. Since the normalization is dominant there is an exact sequence,

$$0 \longrightarrow \mathcal{O}_X \longrightarrow f_*\mathcal{O}_{\widetilde{Y}} \longrightarrow \mathscr{C} \longrightarrow 0$$

Note that $f: S \to C$ induces an isomorphism $H^0(C, \mathcal{O}_C) \xrightarrow{\sim} H^0(S, \mathcal{O}_S)$ since it is a map of fields with the same (finite) dimension over k. Then the long exact sequence of cohomology gives,

$$0 \longrightarrow H^0(C, \mathcal{O}_C) \xrightarrow{\sim} H^0(S, \mathcal{O}_S) \longrightarrow H^0(X, \mathscr{C}) \longrightarrow H^1(C, \mathcal{O}_C) \xrightarrow{\sim} H^1(S, \mathcal{O}_S) \longrightarrow H^1(S, \mathscr{C}) == 0$$

I claim that $H^1(S,\mathscr{C}) = 0$. Since f is birational, \mathscr{C} is supported in codimension one. Thus, the map $H^1(C,\mathcal{O}_C) \to H^1(S,\mathcal{O}_S)$ is surjective but $g_a(C) = g_a(S)$ so these vectorspaces have the same dimension so $H^1(C,\mathcal{O}_C) \xrightarrow{\sim} H^1(S,\mathcal{O}_S)$ is an isomorphism. Thus, from the exact sequence we have $H^0(X,\mathscr{C}) = 0$. However, Supp $_{\mathcal{O}_C}(\mathscr{C})$ is a closed (\mathscr{C} is coherent) dimension zero subset i.e. finitely many discrete closed points. However, a sheaf supported on a discrete set of points is zero iff it has no global sections. Therefore, $\mathscr{C} = 0$ so $\mathcal{O}_C \xrightarrow{\sim} f_*\mathcal{O}_S$. In particular $\mathcal{O}_C(V) \xrightarrow{\sim} \mathcal{O}_S(U)$ is an isomorphism which implies that the map of affine schemes $f|_U : U \to V$ is an isomorphism. Since the affine opens V cover C we see that $f: S \to C$ is an isomorphism. In particular, C is smooth. \square

6 Ramification

Definition 6.0.1. Given a map of schemes $f: X \to Y$ over S we get an exact sequence,

$$f^*\Omega_{Y/S} \longrightarrow \Omega_{X/S} \longrightarrow \Omega_{X/Y} \longrightarrow 0$$

We say that f is ramified at $x \in X$ if $(\Omega_{X/Y})_x \neq 0$ which is equivalent to the map $f_x : (\Omega_{Y/S})_{f(x)} \to (\Omega_{X/S})_x$ not being surjective. Furthermore define,

- (a) The support of $\Omega_{X/Y}$ is called the ramification locus
- (b) $f(\operatorname{Supp}_{\mathcal{O}_X}(\Omega_{X/Y}))$ is the branch locus
- (c) if $\Omega_{X/Y} = 0$ then f is formally unramified
- (d) f is unramified if f is formally unramified and locally of finite type
- (e) f is G-unramified if f is formally unramified and locally of finite presentation

Lemma 6.0.2. Let $f: X \to Y$ be locally of finite type. Then the following are equivalent,

- (a) the morphism $f: X \to Y$ is unramified at $x \in X$
- (b) the stalk map $f_x^\#: \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ induces a finite seperable extension $\kappa(f(x))/\kappa(x)$ and $f_x^\#(\mathfrak{m}_{f(x)})\mathcal{O}_{X,x} = \mathfrak{m}_x$

$$Proof.$$
 (DO THIS PROOF)

(DEFINE RAMIFICATION INDEX)

Remark. A ring map $\phi: A \to B$ corresponds to morphism of affine schemes,

$$\hat{\phi}: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$$

which is ramified at $\mathfrak{q} \subset B$ iff $(\Omega_{B/A})_{\mathfrak{q}} \neq 0$ or equivalently if $\mathfrak{q} \in \operatorname{Supp}_{B}(\Omega_{B/A})$.

In particular if ϕ is finite then $\Omega_{B/A}$ is a finitely generated B-module so,

$$\operatorname{Supp}_{B}\left(\Omega_{B/A}\right) = V(\operatorname{Ann}_{B}\left(\Omega_{B/A}\right))$$

and thus \mathfrak{q} is ramified iff $\mathfrak{q} \supset \operatorname{Ann}_B(\Omega_{B/A})$. This motivates the following definition.

Definition 6.0.3. Let $\phi: A \to B$ be finite. Then define the different $\delta_{B/A} = \operatorname{Ann}_B(\Omega_{B/A})$.

Remark. The important fact about the different is that it classifies ramification in the sense that ϕ is ramified at \mathfrak{q} (or we say \mathfrak{q} ramifies) iff $\delta_{B/A} \subset \mathfrak{q}$.

Corollary 6.0.4. Let $\phi: A \to B$ be a finite map with B a Dedekind domain. Then only finitely many points ramify.

6.1 Ramification For Curves

Definition 6.1.1. We say a scheme X is *normal* if each point $x \in X$ that $\mathcal{O}_{X,x}$ is normal i.e. an integrally closed local domain.

Lemma 6.1.2. Any normal local ring of dimension one is a DVR.

Definition 6.1.3. If X is a normal curve then each $\mathcal{O}_{X,x}$ is a DVR so we may choose a uniformizer π_x . For a morphism of normal curves $f: X \to Y$. Since $\mathfrak{m}_x = (\pi_x)$ clearly the ramification index is the power e such that $f_x^\#(\pi_{f(x)}) = u\pi_x^e$ for some $u \in \mathcal{O}_{X,x}^{\times}$.

6.2 Ramification for Dedekind Domains

Proof. Since B is Dedekind domain there is a finite unique factorization of $\delta_{B/A}$ into prime ideals. These are the only primes lying about $\delta_{B/A}$ and thus exactly the set of primes which ramify of which there are finitely many.

Proposition 6.2.1. Let $\phi: A \to B$ be a finite inclusion of Dedekind domains with finite residue fields. Then \mathfrak{q} ramifies iff the prime $\mathfrak{p} = \phi^{-1}(\mathfrak{q})$ extends to the ideal $\mathfrak{p}B$ with factorization,

$$\phi(\mathfrak{p})B = \prod_{i=1}^n \mathfrak{q}_i^{e_i}$$

with \mathfrak{q}_i distinct, $\mathfrak{q}_0 = \mathfrak{q}$, and $e_i > 1$.

Proof. At a point $\mathfrak{p} \subset A$ the residue field $\kappa(\mathfrak{p}) = A/\mathfrak{p}$ is a finite field which is perfect so $\kappa(\mathfrak{q})/\kappa(\hat{\phi}(\mathfrak{q}))$ is automatically finite separable. Thus $\mathfrak{q} \subset B$ is unramified iff,

$$\phi(\phi^{-1}(\mathfrak{q})A_{\mathfrak{p}})B_{\mathfrak{q}} = \mathfrak{q}B_{\mathfrak{q}}$$

Since $B_{\mathfrak{q}}$ is also Dedekind, by unique factorization of ideals this is equivalent to $e_0 = 1$ since localizing the above factorization gives,

$$\phi(\mathfrak{p})B_{\mathfrak{q}} = (\phi(\mathfrak{p})B)_{\mathfrak{q}} = \prod_{i=1}^{n} \mathfrak{q}_{i}^{e_{i}}B_{\mathfrak{q}} = \mathfrak{q}_{0}^{e_{0}}B_{\mathfrak{q}} = \mathfrak{q}^{e_{0}}B_{\mathfrak{q}}$$

Proposition 6.2.2. DIFFERENT IN TERMS OF TRACE

Lemma 6.2.3. If B = A[t]/(f(t)) then,

$$\Omega_{B/A} = (B \cdot dt)/(f'(t) \cdot dt)$$
$$\delta_{B/A} = (f'(t)) \subset B$$

Proof. $\Omega_{B/A}$ is generated by dx for $x \in B$. For any $g(t) \in A[t]/(f(t))$ then by the Leibniz relation, dg(t) = g'(t)dt. Thus, $\Omega_{B/A}$ is generated over B by dt. Furthermore, f(t) = 0 so f'(t)dt = 0. This is the only relation. Furthermore,

$$\delta_{B/A} = \operatorname{Ann}_B \left(\Omega_{B/A} \right) = (f'(t))$$

by the following lemma.

Lemma 6.2.4. Let A be a ring and B an A-algebra with structure map $\phi : A \to B$ then $\operatorname{Ann}_A(B) = \ker \phi$.

Proof. An element $a \in \text{Ann}_A(B)$ iff $\phi(a)b = 0$ for all $b \in B$. In particular,

$$a \in \operatorname{Ann}_{A}(B) \iff \phi(a) \cdot 1_{B} = 0 \iff \phi(a) = 0 \iff a \in \ker \phi$$

Corollary 6.2.5. If K/\mathbb{Q} is a number field with $\mathcal{O}_K = \mathbb{Z}[\alpha]$ and let α have minimal polynomial $f \in \mathbb{Z}[X]$. Then a prime $\mathfrak{p} \subset \mathcal{O}_K$ ramifies iff $f'(\alpha) \in \mathfrak{p}$.

Proof. We have $\mathcal{O}_K = \mathbb{Z}[\alpha]/(f(\alpha))$ so $\delta_{\mathcal{O}_K/\mathbb{Z}} = (f'(\alpha)) \subset \mathbb{Z}[\alpha]/(f(\alpha))$. Then we know that \mathfrak{p} ramifies iff $\mathfrak{p} \supset \delta_{\mathcal{O}_K/\mathbb{Z}}$.

6.3 The Discriminant of an Extension

Definition 6.3.1. Let $\phi: A \to B$ be a finite map of Dedekind domains with finite residue fields. Then we define the ideal norm as the homomorphism $\mathcal{N}_{B/A}: \mathscr{I}_B \to \mathscr{I}_A$ of the ideal groups which on the prime ideals which generate \mathscr{I}_B acts via,

$$\mathcal{N}_{B/A}(\mathfrak{q})=\mathfrak{p}^{[B/\mathfrak{q}:A/\mathfrak{p}]}$$

where $\mathfrak{p} = \phi^{-1}(\mathfrak{q})$.

Definition 6.3.2. Then we define the relative discriminant $\Delta_{B/A} = \mathcal{N}_{B/A}(\delta_{B/A}) \subset A$.

Proposition 6.3.3. Primes $\mathfrak{p} \subset A$ ramify iff $\mathfrak{p} \supset \Delta_{B/A}$.

Proof. We write,

$$\mathfrak{p}B = \prod_{i=1}^n \mathfrak{q}_i^{e_i}$$

 \mathfrak{p} ramifies exactly when some $e_i > 1$ in which case we know $\mathfrak{q}_i \supset \delta_{B/A}$ and thus,

$$\mathfrak{p} \supset \mathfrak{p}^{[B/\mathfrak{q}:A/\mathfrak{p}]} \supset \mathcal{N}_{B/A}(\delta_{B/A}) = \Delta_{B/A}$$

Conversely, suppose that \mathfrak{p} does not ramify then we must have $e_i = 1$ for all i. Then $\mathfrak{q}_i \not\supset \delta_{B/A}$ so by unique factorization, no primes dividing $\delta_{B/A}$ lie above \mathfrak{p} which implies that, $\Delta_{B/A} = \mathcal{N}_{B/A}(\delta_{B/A})$ does not contain \mathfrak{p} in its factorization. Thus, by the uniqueness of factorization,

$$\mathfrak{p} \not\supset \Delta_{B/A}$$

7 Maps between Curves

7.1 Maps of a Proper Curve are Finite

Theorem 7.1.1. Let C be a proper curve over k and X is separated of finite type over k. Then any nonconstant map $f: C \to X$ over k is finite.

Proof. Since $C \to \operatorname{Spec}(k)$ is proper and $X \to \operatorname{Spec}(k)$ is separated then by Tag 01W6 the map $f: C \to X$ is proper. The fibres of closed points $x \in X$ are proper closed subschemes $C_x \hookrightarrow C$ (since if $C_x = C$ then $f: C \to X$ would be the constant map at $x \in X$) and thus finite since proper closed subsets of a curve are finite. Now I claim that if the fibres $f^{-1}(x)$ are finite at closed points $x \in X$ then all fibres are finite. Assuming this, $f: C \to X$ is proper with finite fibres and thus is finite by Tag 02OG.

To show the claim consider,

$$E = \{ x \in X \mid \dim C_x = 0 \}$$

Since C is Noetherian, $\dim C_x = 0$ iff C_x is finite (suffices to check for affine schemes since quasicomact and dimension zero Noetherian rings are exactly Artinian rings which have finite spectrum). Then E is locally constructible by Tag 05F9 and contains all the closed points of X. Since X is finite type over k then X is Jacobinson which implies that E is dense in every closed set. Then for any point $\xi \in X$ then $Z = \overline{\{\xi\}}$ is closed and irreducible with generic point ξ and thus $E \cap Z$ is dense in Z. Then by Tag 005K we have $\xi \in E$ so E = X proving that all fibres are finite. Remark. The only facts about C that I used were that $C \to \operatorname{Spec}(k)$ is proper and that C is irreducible of dimension one. The second two properties are needed for the following to hold.

Lemma 7.1.2. If X is an irreducible Noetherian scheme of dimension one then every nontrivial closed subset of X is finite.

Proof. Since X is quasi-compact it suffices to show this property for affine schemes $X = \operatorname{Spec}(A)$ with $\dim A = 1$ and prime nilradical. Any nontrivial closed subset is of the form V(I) for some proper radical ideal $I \subset X$ with $I \supseteq \operatorname{nilrad}(A)$. Then $\operatorname{ht}(I) = 1$ since any prime above I must properly contain nilrad (A) and thus have height at least one but $\dim A = 1$. Then,

$$\operatorname{ht}(I) + \dim A/I \leq \dim A$$

so dim A/I = 0. Since A is Noetherian so is A/I but dim A/I = 0 and thus A/I is Artianian. Therefore Spec (A/I) is finite proving the proposition.

Remark. Since $C \to \operatorname{Spec}(k)$ is proper it is finite type over k and thus C is Noetherian.

Remark. The condition that C be proper is necessary. Consider the map $\mathbb{G}_m^k \coprod \mathbb{A}_k^1 \to \mathbb{A}_k^1$ via $k[x] \to k[x, x^{-1}]$ and the identity. This is clearly surjective and finitely generated since on rings it is,

$$k[x] \to k[x, x^{-1}] \times k[x]$$

Furthermore, this map is quasi-finite since the fibers have at most two points. To see this, consider, $y = (x - a) \in \text{Spec}(k[x])$ then $\kappa(y) = k[x]/(x - a)$ and the fibre is,

$$X_{y} = \operatorname{Spec}\left((k[xx^{-1}] \times k[x]) \otimes_{k[x]} k[x]/(x-a)\right)$$

$$= \operatorname{Spec}\left(k[x, x^{-1}]/(x-a) \times k[x]/(x-a)\right)$$

$$= \operatorname{Spec}\left(k[x, x^{-1}/(x-a)] \coprod \operatorname{Spec}\left(k[x]/(x-a)\right)\right)$$

$$= \begin{cases} \operatorname{Spec}(k) & a = 0 \\ \operatorname{Spec}(k) \coprod \operatorname{Spec}(k) & a \neq 0 \end{cases}$$

However, this map is not closed since $\mathbb{G}_m^k \subset \mathbb{G}_m^k \coprod \mathbb{A}_k^1$ is closed but its image is $\mathbb{A}_k^1 \setminus \{0\}$ which is not closed. Thus the map cannot be finite. In particular,

$$k[x, x^{-1}] = \bigoplus_{n>0} x^{-n} k[x]$$

so $k[x, x^{-1}]$ is not a finitely-generated k[x]-module.

7.2 Maps of Normal Curves Are Flat

Lemma 7.2.1. Let X be an integral scheme with generic point $\xi \in X$ and $\mathscr{F} \to \mathscr{G}$ a map of \mathcal{O}_X -modules,

- (a) if $\mathscr F$ is locally free then $\mathscr F\to\mathscr G$ is injective iff $\mathscr F_\xi\to\mathscr G_\xi$ is injective
- (b) if \mathscr{F} is invertible then $\mathscr{F} \to \mathscr{G}$ is injective iff $\mathscr{F}_{\xi} \to \mathscr{G}_{\xi}$ is nonzero.

Proof. Since $\xi \in U$ for each nonempty open we have a diagram,

therefore it suffices to show the map $\mathscr{F}(U) \to \mathscr{F}_{\xi}$ is injective since then injectivity of $\mathscr{F}_{\xi} \to \mathscr{G}_{\xi}$ will imply injectivity of $\mathscr{F}(U) \to \mathscr{G}(U)$ for each U. Choose an affine open cover $U_i = \operatorname{Spec}(A_i)$ trivializing \mathscr{F} . $\mathscr{F}|_{U_i \cap U} \cong \mathcal{O}_X^{\oplus n}|_{U_i \cap U}$ but X is integral so the restriction $\mathscr{F}(U_i \cap U) \to \mathscr{F}_{\xi}$ is simply $A_i^n \to \operatorname{Frac}(A)^n$ which is injective since A_i is a domain. Thus if $s \in \mathscr{F}(U)$ maps to zero in \mathscr{F}_{ξ} then $s|_{U_i \cap U} = 0$ so s = 0 since U_i form a cover.

The second follows from the first since we need only to show that $\mathscr{F}_{\xi} \to \mathscr{G}_{\xi}$ is injective. However, \mathscr{F}_{ξ} is a rank-one free module over the field $K(X) = \mathcal{O}_{X,\xi}$. Thus every nonzero map $\mathscr{F}_{\xi} \to \mathscr{G}_{\xi}$ is injective.

Lemma 7.2.2. Let $f: X \to Y$ be a conconstant map of curves. Then f is dominant.

Proof. Let $\xi \in X$ be the generic point and consider $f(\xi) \in Y$. Suppose that $f(\xi)$ is a closed point. Then $f(X) = f(\overline{\{\xi\}}) \subset \overline{f(\xi)} = f(\xi)$ so f is constant. Therefore, we must have $f(\xi)$ a nonclosed point. But dim Y = 1 and irreducible so any point is either closed or the generic point of the unique irreducible component. Therefore, $f(\xi) = \eta$ the generic point so f is dominant.

Proposition 7.2.3. Let X and Y be curves over k with Y normal. Then any nonconstant map $f: X \to Y$ is flat.

Proof. We need to check that $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is flat. Since Y is a normal curve $\mathcal{O}_{Y,y}$ is a Noetherian domain (Y is integral finite type over k) integrally closed (Y is normal) and dimension at most one (dim Y = 1) therefore $\mathcal{O}_{Y,y}$ is a local Dedekind domain or a field so $\mathcal{O}_{Y,y}$ is a DVR or a field. Then by Tag 0539, $\mathcal{O}_{X,x}$ is a flat $\mathcal{O}_{Y,f(x)}$ -module iff it is torsion-free. However, $\mathcal{O}_{X,x}$ is a domain so it is a torsion-free $\mathcal{O}_{Y,f(x)}$ -module iff $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is injective.

Since f is dominant $f(\xi) = \eta$ (the generic points). Then $\mathcal{O}_{Y,\eta} \to \mathcal{O}_{X,\xi}$ is a map of fields which is automatically injective so $\mathcal{O}_Y \to f_*\mathcal{O}_X$ is injective because Y is integral proving that $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is injective.

Remark. Morphisms of varieties are automatically finitely presented since curves are finite type over k so morphisms between them are locally finite type but Y is Noetherian so a locally finite type map is finitely presented. Furthermore, X is Noetherian so morphisms from it are automatrically quasi-compact and quasi-separated.

Proposition 7.2.4. Nonconstant maps of curves $f: X \to Y$ with Y normal are smooth iff unramified iff étale iff $\Omega_{X/Y} = 0$.

Proof. Maps of curves are automatically finitely presented. Furthermore, nonconstant maps of curves with Y normal are flat. Furthermore, we have seen that nonconstant maps of curves are quasi-finite so dim $X_{f(x)} = 0$. Therefore, f is smooth iff $\Omega_{X/Y} = 0$ iff unramified but étale is smooth an unramified so we see smooth iff étale.

Lemma 7.2.5. Let $X \to Y$ be a nonconstant map of curves with K(X)/K(Y) separable and Y smooth. Then there is an exact sequence,

$$0 \longrightarrow f^*\Omega_Y \longrightarrow \Omega_X \longrightarrow \Omega_{X/Y} \longrightarrow 0$$

Therefore, f is étale iff $f^*\Omega_Y \to \Omega_X$ is an isomorphism.

Proof. K(X)/K(Y) is an extension of fields of transcendence degree one over k so it must be algebraic. Furthermore, both are finitely-generated field extensions of k so the algebraic extension K(X)/K(Y) is finite. Then $(\Omega_{X/Y})_{\xi} = \Omega_{K(X)/K(Y)}$ which is zero iff K(X)/K(Y) is separable. Thus, the standard exact sequence gives $(f^*\Omega_Y) \to (\Omega_X)_{\xi}$ because $(\Omega_{X/Y})_{\xi} = 0$. Furthermore, $f^*\Omega_Y$ is a line bundle since Y is smooth so we conclude that $f^*\Omega_Y \to \Omega_X$ is an injection since it is nonzero on the generic fiber (Lemma 7.2.1).

8 Finite Maps

Definition 8.0.1. A morphism $f: X \to Y$ of schemes if *finite* if it is affine and for every affine open $V \subset Y$ then $U = f^{-1}(V)$ is affine and the ring map associated to $U \to V$ is finite.

Proposition 8.0.2. Closed immersions are finite.

Proof. The map
$$A \to A/I$$
 is finite.

Proposition 8.0.3. Finite maps are preserved under base change.

Proposition 8.0.4. Finite maps are closed and thus universally closed.

Proposition 8.0.5. The following are equivalent for a map of schemes $f: X \to Y$

- (a) f is finite
- (b) f is affine and proper.

Proof. They are affine and thus separated, finite and thus finite type, and universally closed. \Box

Proposition 8.0.6. Let $f: X \to Y$ be finite and $y \in Y$. Then the fiber is affine, zero dimensional, has finitely many points, and explicitly,

$$X_y = \operatorname{Spec}\left((f_*\mathcal{O}_X)_y \otimes_{\mathcal{O}_{Y,y}} \kappa(y)\right)$$

Furthermore,

$$\operatorname{rank}_y\left(f_*\mathcal{O}_X\right) = \sum_{x \in f^{-1}(y)} \operatorname{length}_{\mathcal{O}_{X,x}}\left(\mathcal{O}_{X,x}/\mathfrak{m}_y\mathcal{O}_{X,x}\right) \cdot \left[\kappa(x) : \kappa(y)\right]$$

Proof. Let $f: X \to Y$ be finite then locally we have affine opens $V = \operatorname{Spec}(B) \subset Y$ and $U = f^{-1}(V) = \operatorname{Spec}(A)$ and the map $B \to A$ is finite. Then $(f_*\mathcal{O}_X)|_V = \widetilde{A}$ as a B-module. Choose a point $y \in Y$ corresponding to a prime $\mathfrak{p} \in \operatorname{Spec}(B)$. Consider the fiber $X_y = X \times_Y \operatorname{Spec}(\kappa(y))$. Because $U = f^{-1}(V)$ is affine, the fiber $X_y \subset \operatorname{Spec}(A)$ and thus,

$$X_y = \operatorname{Spec}\left(A\right) \times_{\operatorname{Spec}(B)} \operatorname{Spec}\left(\kappa(y)\right) = \operatorname{Spec}\left(A \otimes_B \kappa(y)\right) = \operatorname{Spec}\left((A/\mathfrak{p}A)_{\mathfrak{p}}\right)$$

where $\kappa(y) = (B/\mathfrak{p}B)_{\mathfrak{p}}$. So set $R = A \otimes_B \kappa(y) = (A/\mathfrak{p}A)_{\mathfrak{p}}$ then,

$$R = A \otimes_B (B/\mathfrak{p}B)_{\mathfrak{p}} = A \otimes_B B_{\mathfrak{p}} \otimes_{B_{\mathfrak{p}}} B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}} = A_{\mathfrak{p}} \otimes_{B_{\mathfrak{p}}} \kappa(y) = (f_*\mathcal{O}_X)_y \otimes_{\mathcal{O}_{Y,y}} \kappa(y)$$

Since A is a finite B-module, R is a finite $\kappa(\mathfrak{p})$ -module so R is an artinian ring. Thus $X_y = \operatorname{Spec}(R)$ has finitely many points and $\dim X_y = 0$. Furthermore,

$$\operatorname{rank}_{y}\left(f_{*}\mathcal{O}_{X}\right) = \dim_{\kappa(y)}\left(\left(f_{*}\mathcal{O}_{X}\right)_{y} \otimes_{\mathcal{O}_{Y,y}} \kappa(y)\right)$$

and by our results on artinian k-algebras,

$$\dim_{\kappa(y)} R = \sum_{\mathfrak{m}_i \in \operatorname{Spec}(R)} \operatorname{length}_{R_{\mathfrak{m}_i}} (R_{\mathfrak{m}_i}) \cdot \dim_{\kappa(y)} (R/\mathfrak{m}_i)$$

However, the prime (maximal) ideals $\mathfrak{p}_x \in \operatorname{Spec}(R)$ correspond to points $x \in f^{-1}(y)$ furthermore,

$$R_{\mathfrak{m}_x} = (A_{\mathfrak{p}_x}/\mathfrak{p}A_{\mathfrak{p}_x}) = \mathcal{O}_{X,x}/\mathfrak{m}_y\mathcal{O}_{X,x}$$

since $\mathfrak{p}A_{\mathfrak{p}_x} = \mathfrak{p}B_{\mathfrak{p}}A_{\mathfrak{p}_x} = \mathfrak{m}_y A_{\mathfrak{p}_x} = \mathfrak{m}_y \mathcal{O}_{X,x}$. Furthermore, since $\mathcal{O}_{X,x} \twoheadrightarrow \mathcal{O}_{X,x}/\mathfrak{m}_y \mathcal{O}_{X,x}$ is a surjection viewing $R_{\mathfrak{p}_x} = \mathcal{O}_{X,x}/\mathfrak{m}_y \mathcal{O}_{X,x}$ as a $\mathcal{O}_{X,x}$ -module gives,

$$\operatorname{length}_{R_{\mathfrak{p}_x}}(R_{\mathfrak{p}_x}) = \operatorname{length}_{\mathcal{O}_{X,x}}(\mathcal{O}_{X,x}/\mathfrak{m}_y\mathcal{O}_{X,x})$$

Finally, $R/\mathfrak{p}_x = \mathcal{O}_{X,x}/\mathfrak{m}_x = \kappa(x)$ and thus we find,

$$\operatorname{rank}_y\left(f_*\mathcal{O}_X\right) = \sum_{x \in f^{-1}(y)} \operatorname{length}_{\mathcal{O}_{X,x}}\left(\mathcal{O}_{X,x}/\mathfrak{m}_y\mathcal{O}_{X,x}\right) \cdot \left[\kappa(x) : \kappa(y)\right]$$

Lemma 8.0.7. Let $A \hookrightarrow B$ be a finite inclusion of domains. Then $\operatorname{Frac}(B) = A^{-1}B$ and is a finite extension of $\operatorname{Frac}(A)$.

Proof. Since $A \to B$ is finite the map $\operatorname{Frac}(A) \to A^{-1}B$ is finite. However, $A^{-1}B$ is a domain finite dimensional over the field $\operatorname{Frac}(A)$ and thus $A^{-1}B$ is a field. However, $A^{-1}B \subset \operatorname{Frac}(B)$ so $\operatorname{Frac}(B) = A^{-1}B$.

Proposition 8.0.8. Let $f: X \to Y$ be a finite dominant map of integral schemes with generic points $\xi \in X$ and $\eta \in Y$. Then we have,

$$\deg f = \operatorname{rank}_{\eta}(f_*\mathcal{O}_X)$$

Proof. The map $\mathcal{O}_{Y,\eta} \to (f_*\mathcal{O}_X)_{\eta}$ is an injective finite map of domains because f is dominant. Therefore,

$$\operatorname{rank}_{\eta}(f_*\mathcal{O}_X) = \dim_{\kappa(\eta)} \left((f_*\mathcal{O}_X) \otimes_{\mathcal{O}_{Y,\eta}} \kappa(\eta) \right) = \dim_{K(Y)} K(Y)^{-1} (f_*\mathcal{O}_X)_{\eta}$$

However, the map $(f_*\mathcal{O}_X)_{\eta} \to \mathcal{O}_{X,\xi}$ is taking the fraction field $K(X) = \mathcal{O}_{X,\xi} = \operatorname{Frac}((f_*\mathcal{O}_X)_{\eta})$ so by the previous lemma,

$$\operatorname{rank}_{\eta}(f_*\mathcal{O}_X) = \dim_{K(Y)} K(X) = [K(X) : K(Y)] = \deg f$$

8.1 Finite Locally Free Morphisms

Definition 8.1.1. A morphism $f: X \to Y$ is *finite locally free* if f is affine and $f_*\mathcal{O}_X$ is a finite locally free as a \mathcal{O}_Y -module.

Proposition 8.1.2. A morphism $f: X \to Y$ is finite locally free iff f is finite, flat, and locally of finite presentation.

Proof. It suffices to show that if $A \to B$ is finite then B is locally free iff it is flat and finitely presented as an A-module. We know that finite locally free implies flat and locally finitely presented¹ (thus finitely presented). Conversely if B is flat and finitely presented² then it is projective (see Tag 00NX) and hence locally free.

Proposition 8.1.3. Let $f: X \to Y$ be a finite flat dominant map of integral schemes. Then for any $y \in Y$ we have,

$$\sum_{x \in f^{-1}(y)} \operatorname{length}_{\mathcal{O}_{X,x}} \left(\mathcal{O}_{X,x} / \mathfrak{m}_y \mathcal{O}_{X,x} \right) \cdot \left[\kappa(x) : \kappa(y) \right] = \operatorname{deg} f$$

we call $e_x = \text{length}_{\mathcal{O}_{X,x}}(\mathcal{O}_{X,x}/\mathfrak{m}_y\mathcal{O}_{X,x})$ the ramification degree and then,

$$\sum_{x \in f^{-1}(y)} e_x \cdot [\kappa(x) : \kappa(y)] = \deg f$$

Proof. Since $f_*\mathcal{O}_X$ is finite locally free and Y is connected, the sheaf $f_*\mathcal{O}_X$ has constant rank and thus rank_y $(f_*\mathcal{O}_X) = \operatorname{rank}_{\eta}(f_*\mathcal{O}_X)$. Using our previous results proves the claim.

8.2 Ramification

9 Interesting Flasque Resolutions on Curves

9.1 Godement Resolution

For any abelian sheaf \mathscr{F} on a space X we can consider it Godement resolution. Abstractly, take the continuous map $f: X_{\text{dis}} \to X$ from X given the discrete topology. Then the first stage of the Godement resolution is,

$$\mathscr{F} \to f_* f^* \mathscr{F}$$

Furthermore, since $f^*\mathscr{F}$ is an abelian sheaf on a discrete space it is flasque and f_* preserves flasqueness so $f_*f^*\mathscr{F}$ is flasque. Continuing gives a cosimplicial sheaf $\mathcal{G}^p(\mathscr{F})=(f_*f^*)^p\mathscr{F}$ on X with coface maps given by the natural transformation id $\to f_*f^*$ and codegeneracy maps given by contracting between pairs $(f_*f^*)(f_*f^*)$ via the natural transformation $f^*f_* \to \mathrm{id}$. The associated complex is then a flasque resolution of \mathscr{F} .

Remark. The above construction also works in the category of \mathcal{O}_X -modules on a ringed space by pulling back to $(X_{\text{dis}}, \mathcal{O}_{X_{\text{dis}}})$ where $\mathcal{O}_{X_{\text{dis}}} = f^{-1}\mathcal{O}_X$.

 $^{^{1}}$ it is finitely presented as an A-algebra because it is finitely presented as an A-module

²There is a subtlety there, B is finitely presented as an A-algebra not a priori as an A-module. However, B is a finite A-module so by Tag 0564 B is a finitely presented A-module since $A \to B$ is a finitely presented ring map and B is trivially a finitely presented B-module.

Lemma 9.1.1. Let \mathscr{F} be a sheaf on a discrete space X. Then \mathscr{F} is flasque and the canonical map,

$$\mathscr{F} \to \prod_{x \in X} (\iota_x)_* (\mathscr{F}_x)$$

is an isomorphism.

Proof. Let $U \subset X$ be open (any set since X is discrete) then since points are open the set of points $x \in U$ forms an open cover. Then by the sheaf property,

$$\mathscr{F}(U) \to \prod_{x \in U} \mathscr{F}(x)$$

is an isomorphims. Furthermore, clearly $\mathscr{F}(x) = \mathscr{F}_x$ since x is the inital object in the poset of open neighborhoods of x. Furthermore, the restriction map $\mathscr{F}(U) \to \mathscr{F}(V)$ is surjective because for any section $s \in \mathscr{F}(V)$ we may extend to a global section by setting $f_x = s_x$ for $x \in V$ and $f_x = 0$ for $x \notin V$. clearly $f_x = s_x$ on V so by the sheaf property $f|_V = s$. Then restricting $f|_U$ shows that $\mathscr{F}(U) \to \mathscr{F}(V)$ is surjective.

Thus, we can alternatively describe the Godement operation as follows. We can consider,

$$X_{\text{dis}} = \coprod_{x \in X} x$$

Then,

$$f^*X = \prod_{x \in X} \mathscr{F}_x$$

and $f: X_{\text{dis}} \to X$ is the bundled collection of the inclusions $\iota_x: x \to X$ giving,

$$f_*f^*\mathscr{F} = \prod_{x \in X} (\iota_x)_*(\mathscr{F}_x)$$

reproducing the result on a discrete space.

9.2 Subsheaves of Godement

Now consider the diagram,

$$\bigoplus_{x \in X} (\iota_x)_*(\mathscr{F}_x) \longrightarrow \prod_{x \in X} (\iota_x)_*(\mathscr{F}_x)$$

We ask when the inclusion $\mathscr{F} \to \mathcal{G}^1(\mathscr{F})$ factors through the canonical map,

$$\bigoplus_{x \in X} (\iota_x)_*(\mathscr{F}_x) \to \prod_{x \in X} (\iota_x)_*(\mathscr{F}_x)$$

and when this sheaf or its image subsheaf is flasque.

First, note that direct sums commute with colimits (because they are colimts themselves) and thus denoting,

$$H(\mathscr{F}) = \bigoplus_{x \in X} (\iota_x)_* (\mathscr{F}_x)$$

we have the stalks,

$$\begin{split} H(\mathscr{F})_x &= \varinjlim_{x \in U} H(\mathscr{F})(U) = \bigoplus_{y \in X} \varinjlim_{x \in U} \begin{cases} \mathscr{F}_y & y \in U \\ 0 & y \notin U \end{cases} \\ &= \bigoplus_{y \in X} \begin{cases} \mathscr{F}_y & x \in \overline{\{y\}} \\ 0 & x \notin \overline{\{y\}} \end{cases} \\ &= \bigoplus_{y \leadsto x} \mathscr{F}_y \end{split}$$

Therefore, if \mathscr{F} is supported only on closed points of X we have,

$$H(\mathscr{F})_x = \mathscr{F}_x$$

However, in general there is not a sheaf map $\mathscr{F} \to H(\mathscr{F})$.

Suppose that \mathscr{F} has finitely supported sections meaning that for any $s \in \mathscr{F}(U)$ its support,

$$\mathrm{Supp}\,(s) = \{x \in X \mid s_x \neq 0\}$$

is finite. Then we get an injection,

$$\mathscr{F} \hookrightarrow \bigoplus_{x \in X} (\iota_x)_* (\mathscr{F}_x)$$

by mapping for each s,

$$s \in \mathscr{F} \hookrightarrow \prod_{x \in \operatorname{Supp}(s)} (\iota_x)_*(\mathscr{F}_x) = \bigoplus_{x \in \operatorname{Supp}(s)} (\iota_x)_*(\mathscr{F}_x) \subset \bigoplus_{x \in X} (\iota_x)_*(\mathscr{F}_x)$$

Furthermore, notice that if \mathscr{F} is only supported at closed points then,

$$H(\mathscr{F})_x = \bigoplus_{y \leadsto x} \mathscr{F}_y = \mathscr{F}_x$$

since $\mathscr{F}_y = 0$ for any generalization of x. Therefore, in this case the map $\mathscr{F} \to H(\mathscr{F})_x$ defined by virtue of sections having finite support is an isomorphism. Thus if \mathscr{F} is a abelian sheaf whose sections have finite support which is supported on the closed points then,

$$\mathscr{F} = \bigoplus_{x \in X} (\iota_x)_* (\mathscr{F}_x)$$

9.3 The Case for Curves

Let X be a curve (separated integral Noetherian scheme of dimension one) with generic point $\xi \in X$. Then I claim any torsion sheaf \mathscr{F} satisfies,

$$\mathscr{F} = \bigoplus_{x \in X} (\iota_x)_* (\mathscr{F}_x)$$

By the previous discussion, it suffices to show that \mathscr{F} is supported at closed points any every section has finite support. The only nonclosed point is ξ and we assumed that $\mathscr{F}_{\xi} = 0$. Furthermore, consider $s \in \mathscr{F}(U)$. We know s_{ξ} so there is some open V such that $\xi \in V \subset U$ on which $s|_{U} = 0$. Therefore Supp $(\xi) \subset V^{C}$. I claim that $V^{C} \subset X$ is finite. Since X is quasi-compact, we can choose

an affine open cover $U_i = \operatorname{Spec}(A_i)$ and $V^C \cap U_i = V(I_i)$ for some ideal $I_i \subset A_i$. It suffices to show that $V(I_i)$ is finite. Note that $\dim A_i \leq 1$ and X is irreducible so $\operatorname{codim}(V^C, X) \geq 1$ and therefore $\dim V^C = 0$ because,

$$\dim X \ge \operatorname{codim}\left(V^C, X\right) + \dim V^C$$

This shows that dim $A_i/I_i = 0$ and it is Noetherian so A_i/I_i is Artinian and thus $V(I_i) = \operatorname{Spec}(A_i/I_i)$ is finite.

Therefore, each section has finite support so we have demonstrated the equality,

$$\mathscr{F} = \bigoplus_{x \in X} (\iota_x)_* (\mathscr{F}_x)$$

for any torsion sheaf $(\mathscr{F}_{\xi} = 0)$.

9.4 Resolutions on Curves

Consider the exact sequence,

$$0 \longrightarrow \mathcal{O}_X \longrightarrow \mathscr{K}_X \longrightarrow \mathscr{K}_X/\mathcal{O}_X \longrightarrow 0$$

Notice that $(\mathcal{K}_X/\mathcal{O}_X)_{\xi} = K(X)/\mathcal{O}_{X,\xi} = 0$ so $\mathcal{K}_X/\mathcal{O}_X$ is torsion. Therefore, we get a sequence,

$$0 \longrightarrow \mathcal{O}_X \longrightarrow \mathscr{K}_X \longrightarrow \bigoplus_{x \in X} (\iota_x)_*(K(X)/\mathcal{O}_{X,x}) \longrightarrow 0$$

Since X is integral \mathscr{K}_X is constant (since all opens are connected it is truely constant) and thus we get a flasque resolution of \mathcal{O}_X . Then the long exact sequence gives,

$$0 \longrightarrow H^0(X, \mathcal{O}_X) \longrightarrow K(X) \longrightarrow \bigoplus_{x \in X} K(X)/\mathcal{O}_{X,x} \longrightarrow H^1(X, \mathcal{O}_X) \longrightarrow 0$$

and $H^i(X, \mathcal{O}_X) = 0$ for i > 1. Furthermore, for any flat sheaf \mathscr{F} , we can tensor the above exact sequence to get,

$$0 \longrightarrow \mathscr{F} \longrightarrow \mathscr{F} \otimes_{\mathcal{O}_X} \mathscr{K}_X \longrightarrow \bigoplus_{x \in X} (\iota_x)_* (\mathscr{F}_{\xi}/\mathscr{F}_x) \longrightarrow 0$$

Where $(\iota_x)_*(K(X)) \otimes_{\mathcal{O}_X} \mathscr{F} =$

Lemma 9.4.1. Let X be an irreducible scheme with generic point $\xi \in X$ and \mathscr{F} an abelian sheaf on X. Then the natural map,

$$\mathscr{F} \otimes_{\mathcal{O}_X} \mathscr{K}_X \to (\iota_{\mathcal{E}})_*(\mathscr{F}_{\mathcal{E}})$$

is an isomorphism.

Proof. Locally, on affine opens

10 Appendix

10.1 Curves and Genera

Lemma 10.1.1. Let X be a integral scheme proper over k then $K = H^0(X, \mathcal{O}_X)$ is a finite field extension of k and for any coherent \mathcal{O}_X -module \mathscr{F} , the cohomology $H^p(X, \mathscr{F})$ is a finite-dimensional $H^0(X, \mathcal{O}_X)$ -module.

Proof. Since \mathcal{O}_X is coherent, and X is proper over k so $K = H^0(X, \mathcal{O}_X)$ is a finite k-module. However, since X is integral $H^0(X, \mathcal{O}_X)$ is a domain but a finite k-algebra domain is a field and we see K/k is a finite extension of fields. Furthermore, the $\mathcal{O}_X(X)$ -module structure on $H^p(X, \mathscr{F})$ gives it a K-module structure. Since X is proper over k then $H^p(X, \mathscr{F})$ is a finite k-module and thus finite as a K-module.

Remark. Unfortunately, when k is not algebraically closed then we may not have $H^0(X, \mathcal{O}_X) = k$ even for smooth projective varieties. Therefore, some caution must be taken in defining numerical invariants of the curve such as genus. However, by [?, Tag 0BUG], whenever X is proper geometrically integral then indeed $H^0(X, \mathcal{O}_X) = k$. Furthermore, for proper X if $H^0(X, \mathcal{O}_X) \neq k$ then X cannot be geometrically connected by [?, Tag 0FD1].

Definition 10.1.2. Let C be a smooth proper curve over k with $H^0(C, \mathcal{O}_C) = K$. Then we define $g(C) := \dim_K H^0(X, \Omega_{C/k})$. If C is any curve over k then there is a unique smooth proper curve S over k which is k-birational to C. Then we define g(C) := g(S).

Remark. By definition, the genus of a curve is clearly a birational invariant since there is a unique smooth complete curve in every birational equivalence class of curves.

Remark. There is a slight subtlety in this definition in the case of a non-perfect base field. It it always true that we can find a proper regular curve C in each birational equivalence class however when k is non-perfect the curve C may not be smooth. However, under a finite purely separable extension K/k, we can ensure that C_K admits a smooth proper model. Then we define $g(C) := g(C_K)$ in the case that C_K is a curve. The only thing that can go wrong is when C is not geometrically irreducible since then C_K will not be integral.

Definition 10.1.3. The arithmetic genus $g_a(C)$ of a proper curve C over k with $H^0(C, \mathcal{O}_C) = K$ is,

$$g_a(C) := \dim_K H^1(X, \mathcal{O}_C)$$

By Serre duality, if C is smooth then $H^0(C,\Omega_C) = H^1(C,\mathcal{O}_X)^{\vee}$ meaning that $g_a(C) = g(C)$.

Remark. The arithmetic genus depends on the projective compactification and singularities meaning it will not be a birational invariant unlike the (geometric) genus.

Example 10.1.4. Let $k = \mathbb{F}_p(t)$ for an odd prime p = 2k + 1 and consider the curve,

$$C = \operatorname{Spec}\left(k[x, y]/(y^2 - x^p - t)\right)$$

which is regular but not smooth at $P = (y, x^p - t)$. Consider the purely inseperable extension $K = \mathbb{F}(t^{1/p})$. Then $C_K = \operatorname{Spec}\left(K[x,y]/(y^2 - (x - t^{1/p})^p)\right) \cong \operatorname{Spec}\left(K[x,y]/(y^2 - x^p)\right)$. Taking the normalization of C_K gives $\mathbb{A}^1_K \to C_K$ via $t \mapsto (t^p, t^2)$. This is birational since the following ring map is an isomorphism,

$$(K[x,y]/(y^2-x^p))_x \to K[t]_t$$

sending $x \mapsto t^2$ and $y \mapsto t^p$ which has an inverse $t \mapsto y/x^k$ since $x \mapsto t^2 \mapsto y^2/x^{2k} = x$ and $y \mapsto t^p \mapsto y^p/x^{kp} = y(y^{2k}/x^{pk}) = y$ and $t \mapsto y/x^k \mapsto t^{p-2k} = t$.

Therefore, $C_K \stackrel{\sim}{\longrightarrow} \mathbb{P}^1_K$ so $g(C) = g(C_K) = 0$. However, consider the projective closure,

$$\overline{C} = \operatorname{Proj}\left(k[X, Y, Z]/(Y^2Z^{p-2} - X^p - tZ^p)\right)$$

then $\overline{C} \hookrightarrow \mathbb{P}^2_k$ is a Cartier divisor (since \mathbb{P}^2_k is locally factorial) so we find that $H^0(\overline{C}, \mathcal{O}_{\overline{C}}) = k$ and $\dim_k H^1(\overline{C}, \mathcal{O}_{\overline{C}}) = \frac{1}{2}(p-1)(p-2) = k(2k-1)$ since its sheaf of ideals is $\mathcal{O}_{\mathbb{P}^2_k}(-p)$. Then p=3 we expect this to be an elliptic curve and we do see $g_a(\overline{C}) = 1$. However, $g(\overline{C}) = 0$ and correspondingly C is not smooth due to the positive characteristic phenomenon.

Lemma 10.1.5. Suppose that $f: X \to Y$ is a finite birational morphism of n-dimensional irreducible Noetherian schemes. Then $H^n(Y, \mathcal{O}_Y) \twoheadrightarrow H^n(X, \mathcal{O}_X)$ is surjective.

Proof. The map f must restrict on some open subset $U \subset X$ to an isomorphism $f|_U : U \to V$. Thus, the sheaf map $f^\# : \mathcal{O}_Y \to f_*\mathcal{O}_X$ restricts on V to an isomorphism $\mathcal{O}_Y|_V \xrightarrow{\sim} (f_*\mathcal{O}_X)|_V$. We factor this map into two exact sequences,

$$0 \longrightarrow \mathscr{K} \longrightarrow \mathscr{O}_{Y} \longrightarrow \mathscr{I} \longrightarrow 0$$

$$0 \longrightarrow \mathscr{I} \longrightarrow f_* \mathcal{O}_X \longrightarrow \mathscr{C} \longrightarrow 0$$

with $\mathscr{K} = \ker(\mathcal{O}_Y \to f_*\mathcal{O}_X)$ and $\mathscr{C} = \operatorname{coker}(\mathcal{O}_Y \to f_*\mathcal{O}_X)$ and $\mathscr{I} = \operatorname{Im}(\mathcal{O}_Y \to f_*\mathcal{O}_X)$. Taking cohomology and using that it vanishes in degree above n we get,

$$H^{n-1}(Y, \mathscr{I}) \longrightarrow H^n(Y, \mathscr{K}) \longrightarrow H^n(Y, \mathcal{O}_Y) \longrightarrow H^n(Y, \mathscr{I}) \longrightarrow 0$$

$$H^{n-1}(Y,\mathscr{C}) \longrightarrow H^n(Y,\mathscr{I}) \longrightarrow H^n(X,\mathcal{O}_X) \longrightarrow H^n(X,\mathscr{C}) \longrightarrow 0$$

where we have used that $f: X \to Y$ is affine to conclude that $H^p(Y, f_*\mathscr{F}) = H^p(Y, \mathscr{F})$ for any quasi-coherent \mathcal{O}_X -module \mathscr{F} . Furthermore, $\mathscr{C}|_V = 0$ so $\operatorname{Supp}_{\mathcal{O}_Y}(\mathscr{C}) \subset X \setminus V$ but \mathscr{C} is coherent so the support is closed. Since V is dense open, \mathscr{C} is supported in positive codimension so $H^n(Y,\mathscr{C}) = 0$ (since $H^n(S,\mathscr{C})$ vanishes due to dimension on the closed subscheme $S = \operatorname{Supp}_{\mathcal{O}_X}(\mathscr{C})$ on which \mathscr{C} is supported). Thus we have,

$$H^n(Y, \mathcal{O}_Y) \twoheadrightarrow H^n(Y, \mathscr{I}) \twoheadrightarrow H^n(Y, \mathscr{I}) \twoheadrightarrow H^n(X, \mathcal{O}_X)$$

proving the proposition.

Corollary 10.1.6. Let S and C be proper curves over k where S is smooth which are birationally equivalent and $H^0(S, \mathcal{O}_S) \cong H^0(C, \mathcal{O}_C)$. Then the genera satisfy,

- (a) $g_a(C) \geq g_a(S)$
- (b) q(C) = q(S)
- (c) $g(C) \leq g_a(C)$ with equality if and only if C is smooth.

Proof. Given a birational map $S \xrightarrow{\sim} C$ we can extend it to a birational morphism $S \to C$ since S is regular. The morphism $S \to C$ is automatically finite since it is a non-constant map of proper curves. Then the previous lemma implies that $g_a(S) \leq g_a(C)$. (b). follows from the definition of g(C). The third follows from the fact that $g(S) = g_a(S)$ because of Serre duality,

$$H^1(S, \mathcal{O}_S) \cong H^0(S, \Omega_{S/k})^{\vee}$$

using that S is smooth. Then we see that $g(C) = g(S) = g_a(S) \leq g_a(C)$ proving the inequality part of (c). Finally, if C is smooth we see by Serre duality that $g(C) = g_a(C)$. Conversely, suppose that $g(C) = g_a(C)$ then $g_a(C) = g(C) = g(S) = g_a(S)$ and consider the map $f: S \to C$ which is finite birational map of integral schemes over k. In particular, f is affine so for each $g \in C$ we may choose an affine open $g \in V \subset C$ whose preimage $g \in C$ is also affine. On sheaves, this gives a map of domains $\mathcal{O}_C(V) \to \mathcal{O}_S(U)$ which localizes to an isomorphism on the fraction fields. However, the localization map of a domain is injective so $\mathcal{O}_C(V) \to \mathcal{O}_S(U)$ is an injection. This shows that $\mathcal{O}_C \to f_*\mathcal{O}_S$ is an injection of sheaves which we extend to an exact sequence,

$$0 \longrightarrow \mathcal{O}_C \longrightarrow f_*\mathcal{O}_S \longrightarrow \mathscr{C} \longrightarrow 0$$

Note that $f: S \to C$ induces an isomorphism $H^0(C, \mathcal{O}_C) \xrightarrow{\sim} H^0(S, \mathcal{O}_S)$ since it is a map of fields with the same (finite) dimension over k. Then the long exact sequence of cohomology gives,

$$0 \longrightarrow H^0(C, \mathcal{O}_C) \xrightarrow{\sim} H^0(S, \mathcal{O}_S) \longrightarrow H^0(X, \mathscr{C}) \longrightarrow H^1(C, \mathcal{O}_C) \xrightarrow{\sim} H^1(S, \mathcal{O}_S) \longrightarrow H^1(S, \mathscr{C}) == 0$$

I claim that $H^1(S,\mathscr{C}) = 0$. Since f is birational, \mathscr{C} is supported in codimension one. Thus, the map $H^1(C,\mathcal{O}_C) \to H^1(S,\mathcal{O}_S)$ is surjective but $g_a(C) = g_a(S)$ so these vectorspaces have the same dimension so $H^1(C,\mathcal{O}_C) \xrightarrow{\sim} H^1(S,\mathcal{O}_S)$ is an isomorphism. Thus, from the exact sequence we have $H^0(X,\mathscr{C}) = 0$. However, Supp $_{\mathcal{O}_C}(\mathscr{C})$ is a closed (\mathscr{C} is coherent) dimension zero subset i.e. finitely many discrete closed points. However, a sheaf supported on a discrete set of points is zero iff it has no global sections. Therefore, $\mathscr{C} = 0$ so $\mathcal{O}_C \xrightarrow{\sim} f_*\mathcal{O}_S$. In particular $\mathcal{O}_C(V) \xrightarrow{\sim} \mathcal{O}_S(U)$ is an isomorphism which implies that the map of affine schemes $f|_U : U \to V$ is an isomorphism. Since the affine opens V cover C we see that $f: S \to C$ is an isomorphism. In particular, C is smooth. \square

10.2 The Locus on Which Morphisms Agree

Lemma 10.2.1. Let $(R, \mathfrak{m}, \kappa)$ be a local ring. Then for schemes X there is a natural bijection,

$$\operatorname{Hom}_{\mathbf{Sch}}\left(\operatorname{Spec}\left(R\right),X\right)\cong\left\{ x\in X \text{ and local map } \mathcal{O}_{X,x}\to R\right\}$$

Proof. Given $\operatorname{Spec}(R) \to X$ we automatically get $\mathfrak{m} \to x$ and $\mathcal{O}_{X,x} \to R_{\mathfrak{m}} = R$. Now, note that taking any affine open neighborhood $x \in \operatorname{Spec}(A) \subset X$ and then $A \to A_{\mathfrak{p}} = \mathcal{O}_{X,x}$ to give $\operatorname{Spec}(\mathcal{O}_{X,x}) \to \operatorname{Spec}(A) \to X$. Clearly, this map sends $\mathfrak{m}_x \mapsto x$ and at \mathfrak{m}_x has stalk map id: $\mathcal{O}_{X,x} \to \mathcal{O}_{X,x}$ since it is the localization at \mathfrak{p} of $A \to A_{\mathfrak{p}}$.

Thus we get an inverse as follows. Given a point $x \in X$ and a local map $\phi : \mathcal{O}_{X,x} \to R$ then take,

$$\operatorname{Spec}(R) \to \operatorname{Spec}(\mathcal{O}_{X,x}) \to X$$

This is inverse since $\mathfrak{m} \mapsto \mathfrak{m}_x$ (because $\mathcal{O}_{X,x} \to \mathfrak{m}_x$ is local) and $\mathfrak{m}_x \mapsto x$ and the stalk at \mathfrak{m} gives $\mathcal{O}_{X,x} \xrightarrow{\mathrm{id}} \mathcal{O}_{X,x} \xrightarrow{\phi} R$.

Finally, I claim that any $f: \operatorname{Spec}(R) \to X$ factors through $\operatorname{Spec}(R) \to \operatorname{Spec}(\mathcal{O}_{X,x}) \to X$ and thus is reconstructed from $x \in X$ and $\mathcal{O}_{X,x} \to R$. Choose an affine open neighborhood $x \in \operatorname{Spec}(A) \subset X$ then consider $f^{-1}(\operatorname{Spec}(A))$ which is open in $\operatorname{Spec}(R)$ and contains the unique closed point $\mathfrak{m} \in \operatorname{Spec}(R)$ so there is some $f \in R$ s.t. $\mathfrak{m} \in D(f) \subset f^{-1}(\operatorname{Spec}(A))$ so $f \notin \mathfrak{m}$ so $f \in R^{\times}$ and thus $D(f) = \operatorname{Spec}(R)$. Therefore, we get a map $\operatorname{Spec}(R) \to \operatorname{Spec}(A)$ and thus $\phi : A \to R$ where $\phi^{-1}(\mathfrak{m}) = \mathfrak{p} = x$ so $A \setminus \mathfrak{p}$ is mapped inside R^{\times} so this map factors through $A \to A_{\mathfrak{p}} \to R$ giving the desired factorization $\operatorname{Spec}(R) \to \operatorname{Spec}(\mathcal{O}_{X,x}) \to \operatorname{Spec}(A) \to X$.

Definition 10.2.2. The locus Z on which two maps $f, g: X \to Y$ over S agree is given as the pullback,

$$\begin{array}{ccc}
Z & \longrightarrow & Y \\
\downarrow & & \downarrow \\
X & \stackrel{F}{\longrightarrow} & Y \times_{S} Y
\end{array}$$

with F = (f, g). This is the equalizer of $f, g : X \to Y$. Furthermore $Z \to X$ is an immersion since it is the base change of $\Delta_{Y/S}$ which is an immersion.

Lemma 10.2.3. Topologically, the locus on which S-morphisms $f, g: X \to Y$ agree is,

$$Z = \{x \in X \mid f(x) = g(x) \text{ and } f_x = g_x : \kappa(f(x)) \to \kappa(x)\}$$

Proof. On some S-subscheme $G \subset X$, the maps $f|_G = g|_G$ agree iff there exists $G \to Y$ such that,

$$G \xrightarrow{Y} \qquad \downarrow \Delta \\ X \xrightarrow{F} Y \times_S Y$$

commutes. In particular, for any point $x \in X$ consider ι : Spec $(\kappa(x)) \to X$ then $f \circ \iota = g \circ \iota$ iff f(x) = g(x) and $f_x = g_x : \kappa(f(x)) \to \kappa(x)$. Consider a point $z \in Z$ and Spec $(\kappa(z)) \to Z$, such a point is equivalent to giving a diagram,

However, $\iota: Z \to X$ is an immersion so $\iota_x: \kappa(\iota(x)) \xrightarrow{\sim} \kappa(x)$ is an isomorphism. Therefore, points Spec $(\kappa(z)) \to Z$, are exactly points of X for which a lift Spec $(\kappa(x)) \to Y$ exists i.e. points such that f and g agree in the required way.

Lemma 10.2.4. If $f: X \to Y$ is an immersion then $f_x: \mathcal{O}_{Y,f(x)} \twoheadrightarrow \mathcal{O}_{X,x}$ is surjective for each $x \in X$ and $f_x: \kappa(f(x)) \xrightarrow{\sim} \kappa(x)$ is an isomorphism.

Proof. For closed immersions, $f^{\#}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ is surjective by definition. Thus we get a surjection $f_{x}: \mathcal{O}_{Y,y} \to (f_{*}\mathcal{O}_{X})_{f(x)}$. Furthermore, topologically, $f: X \to Y$ is a homomorphism onto its image so for any open $U \subset X$ there exists an open $V \subset Y$ s.t. $U = f^{-1}(V)$ showing that,

$$(f_*\mathcal{O}_X)_{f(x)} = \varinjlim_{f(x) \in V} \mathcal{O}_X(f^{-1}(V)) = \varinjlim_{x \in U} \mathcal{O}_X(U) = \mathcal{O}_{X,x}$$

Furthermore, for an open immersion, $f^{\flat}: f^{-1}\mathcal{O}_Y \to f_*\mathcal{O}_X$ is an isomorphism so $\mathcal{O}_{Y,y} \to \mathcal{O}_{X,x}$ is an isomorphism. Thus the composition, $f_x: \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is surjective. Furthermore, f_x is local we get $f_x: \kappa(f(x)) \to \kappa(x)$ which is a surjection of fields and thus an isomorphism.

Lemma 10.2.5. If $Y \to S$ is separated then the locus on which $f, g: X \to Y$ over S agree is closed.

Proof. Since $X \to S$ is separated, $\Delta_{Y/S} : Y \to Y \times_S Y$ is a closed immersion. So $Z \to X$ is the base change of a closed immersion and thus a closed immersion.

Lemma 10.2.6. Let X be a reduced and Y be a separated scheme over S and $f, g: X \to Y$ be morphism over S. If $f \circ j = g \circ j$ agree on a dense subscheme $j: G \hookrightarrow X$ then f = g.

Proof. Consider $F = (f, g) : X \to Y \times_S Y$. Since $\Delta : Y \to Y \times_S Y$ is a closed immersion (by separateness). Then $F^{-1}(\Delta)$ is the locus on which f = g which is closed because $\Delta : Y \to Y \times_S Y$ is a closed immersion. Since $f|_G = g|_G$ we get a diagram,

Since $\iota: Z \hookrightarrow X$ is a closed immersion with dense image, $Z \hookrightarrow X$ is surjective. By the following, $\iota: Z \to X$ is an isomorphism. Thus, $F = F \circ \iota \circ \iota^{-1} = \Delta_Y \circ \tilde{F} \circ \iota^{-1}$. By the universal property of maps $X \to Y \times_S Y$ this implies that $f = g = \tilde{F} \circ \iota^{-1}$.

Lemma 10.2.7. Let X be a scheme and consider an exact sequence of quasi-coherent \mathcal{O}_X -modules,

$$0 \longrightarrow \mathscr{I} \longrightarrow \mathscr{O}_X \longrightarrow A \longrightarrow 0$$

and \mathcal{A} is a sheaf of \mathcal{O}_X -algebra. Suppose that $\mathscr{F}_x \neq 0$ for each $x \in X$. Then $\mathscr{I} \hookrightarrow \mathcal{N}$ where \mathcal{N} is the sheaf of nilpotent.

Proof. Take an affine open $U = \operatorname{Spec}(R) \subset X$ such that $\mathcal{A}|_U = \widetilde{A}$. Then we have an surjection of rings $R \twoheadrightarrow A$ giving R/I = A for $I = \ker(R \to A)$. Now, for each $\mathfrak{p} \in \operatorname{Spec}(R)$ we know $R_{\mathfrak{p}} = \mathcal{O}_{X,\mathfrak{p}} \neq 0$. However, if $\mathfrak{p} \not\supset I$ then $(R/I)_{\mathfrak{p}} = A_{\mathfrak{p}} = 0$ so we must have $\mathfrak{p} \supset I$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ i.e. $I \subset \operatorname{nilrad}(R)$. Therefore, $\mathscr{I}|_U \hookrightarrow \mathcal{N}|_U$ for any affine open $U \subset X$ showing that \mathscr{I} is comprised of nilpotents.

Corollary 10.2.8. If X is reduced and $\iota: Z \hookrightarrow X$ is a surjective closed immersion then $\iota: Z \xrightarrow{\sim} X$ is an isomorphism.

Proof. Since $\iota: Z \hookrightarrow X$ is a homeomorphism onto its image X it suffices to show that the map of sheaves $\iota^{\#}: \mathcal{O}_{X} \to \iota_{*}\mathcal{O}_{Z}$ is an isomorphism. Since $\iota: Z \to X$ is a closed immersion $\iota^{\#}: \mathcal{O}_{X} \twoheadrightarrow \iota_{*}\mathcal{O}_{Z}$ is a surjection and \mathcal{O}_{Z} is a quasi-coherent sheaf of \mathcal{O}_{X} -algebras giving an exact sequence,

$$0 \longrightarrow \mathscr{I} \longrightarrow \mathscr{O}_X \longrightarrow \iota_* \mathscr{O}_Z \longrightarrow 0$$

Furthermore,

$$\operatorname{Supp}_{\mathcal{O}_X}(\iota_*\mathcal{O}_Z) = \operatorname{Im}(\iota) = X$$

since $(\iota_*\mathcal{O}_Z)_x = \mathcal{O}_{Z,x}$ when $x \in \text{Im}(\iota)$ (and zero elsewhere). by the above, $\mathscr{I} \hookrightarrow \mathcal{N} = 0$ since X is reduced to $\iota^\# : \mathcal{O}_X \to \iota_*\mathcal{O}_Z$ is an isomorphism.

Lemma 10.2.9. A rational S-map $f: X \longrightarrow Y$ with X reduced and $Y \to S$ separated is equivalent to a morphism $f: \text{Dom}(f) \to Y$.

Proof. For any (U, f_U) and (V, f_V) representing f there must be a dense (in X) open $W \subset U \cap V$ on which $f_U|_W = f_V|_W$ and thus $f_U|_{U \cap V} = f_V|_{U \cap V}$ since $f_U, f_V : U \cap V \to Y$ are morphisms from reduced to irreducible schemes. Now Dom (f) has an open cover (U_i, f_i) for which $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ so these morphisms glue to give $f : \text{Dom } (f) \to Y$ (Hom_S (-, Y) is a sheaf on the Zariski site). \square

10.3 Extending Rational Maps

Lemma 10.3.1. Regular local rings of dimension 1 exactly correspond to DVRs.

Proof. Any DVR R has a uniformizer $\varpi \in R$ then $\dim R = 1$ and $\mathfrak{m}/\mathfrak{m}^2 = (\varpi)/(\varpi^2) = \varpi \kappa$ which also has $\dim_{\kappa}(\mathfrak{m}/\mathfrak{m}^2) = 1$ so R is regular. Conversely, if R is a regular local ring of dimension $\dim R = 1$ then, by regularity, R is a normal Noetherian domain so by $\dim R = 1$ then R is Dedekind but also local and thus is a DVR.

Proposition 10.3.2. Let X be a Noetherian S-scheme and $Z \subset X$ a closed irreducible codimension 1 generically nonsingular subset (with generic point $\eta \in Z$ such that $\mathcal{O}_{X,\eta}$ is regular). Let $f: X \dashrightarrow Y$ be a rational map with Y proper over S. Then $Z \cap \mathrm{Dom}(f)$ is a dense open of Z.

Proof. Choose some representative (U, f_U) for $f: X \longrightarrow Y$. Note that $\mathcal{O}_{X,\eta}$ is a regular dimension one (see Lemma 10.4.3) ring and thus a DVR. Consider the generic point $\xi \in X$ of X then, by localizing, we get an inclusion of the generic point $\operatorname{Spec}(\mathcal{O}_{X,\xi}) \to \operatorname{Spec}(\mathcal{O}_{X,\eta}) \to X$ and $\mathcal{O}_{X,\xi} = K(X) = \operatorname{Frac}(\mathcal{O}_{X,\eta})$. Furthermore, the inclusion of the generic point gives $\operatorname{Spec}(K(X)) \to U \xrightarrow{f_U} Y$ and thus we get a diagram,

$$\operatorname{Spec}(K(X)) \xrightarrow{\ell} Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec}(\mathcal{O}_{X,\eta}) \longrightarrow \operatorname{Spec}(k)$$

and a lift Spec $(\mathcal{O}_{X,\eta}) \to Y$ by the valuative criterion for properness applied to $Y \to \operatorname{Spec}(k)$ since $\mathcal{O}_{X,\eta}$ is a DVR. Choose an affine open Spec $(R) \subset Y$ containing the image of Spec $(\mathcal{O}_{X,\eta}) \to Y$ (i.e. choose a neighborhood of the image of η which automatically contains $f(\xi)$ since the map factors Spec $(\mathcal{O}_{X,\eta}) \to \operatorname{Spec}(\mathcal{O}_{Y,f(\eta)}) \to \operatorname{Spec}(R) \to Y$) and let $\eta \in V = \operatorname{Spec}(A) \subset X$ be an affine open neighborhood of ξ mapping into Spec (R). By Lemma 10.4.7, since $\mathcal{O}_{X,\eta}$ is a domain, we may shrink V so that A is a domain. Since X is irreducible $U \cap V$ is a dense open. Note that if $\eta \in U$ then $\eta \in \operatorname{Dom}(f)$ and thus $Z \cap \operatorname{Dom}(f)$ is a nonempty open of the irreducible space Z

and therefore a dense open so we are done. Otherwise, let $\mathfrak{p} \in \operatorname{Spec}(A)$ correspond to $\eta \in Z$ then $A_{\mathfrak{p}} = \mathcal{O}_{X,\eta}$ is a DVR. Take some principal affine open $D(f) \subset U \cap V$ for $f \in A$ so $f \in \mathfrak{p}$ since $\mathfrak{p} \notin D(f) \subset U \cap V$. Since $A_{\mathfrak{p}}$ is a DVR we may choose a uniformizer $\varpi \in \mathfrak{p}$ so the map $A \to \mathfrak{p}$ via $1 \mapsto \varpi$ is as isomorphism when localized at \mathfrak{p} . Since A is Noetherian both are f.g. A-modules so there must be some $s \in A \setminus \mathfrak{p}$ such that $A_s \to \mathfrak{p}_s$ is an isomorphism. Replacing A by A_s we may assume $\mathfrak{p} = (\varpi) \subset A$ is principal. Since $f \in \mathfrak{p}$ we can write $f = t\varpi^k$ for some $a \in A \setminus \mathfrak{p}$ (see Lemma 10.4.1). Then consider $V = \operatorname{Spec}(A_t)$. Since $t \notin \mathfrak{p}$ then $\eta \in V$ and since $f = t\varpi^k$ we have $D(f) \subset D(t) = V$. Now we get the following diagram,

I claim the square is a pushout in the category of affine schemes because maps $R \to A_{\mathfrak{p}}$ and $R \to A_f$ which agree under the inclusion to Frac (A) gives a map $R \to A_{\mathfrak{p}} \cap A_f \subset \operatorname{Frac}(A)$. However, consider,

$$x \in A_{\mathfrak{p}} \cap A_t \implies x = \frac{u\varpi^r}{s} = \frac{a}{f^n}$$

for $u, s, t \in A \setminus \mathfrak{p}$ and $a \in A$. Thus we get,

$$ut^n \varpi^{r+nk} = sa$$

so $a \in \mathfrak{p}^{r+nk} \setminus \mathfrak{p}^{r+nk+1}$ ($s \notin \mathfrak{p}$ which is prime) and thus $a = u'\varpi^{r+nk}$ for $u' \in A \setminus \mathfrak{p}$. Therefore,

$$x = \frac{u'\varpi^{r+nk}}{t^n\varpi^{nk}} = \frac{u'\varpi^r}{t^n} \in A_t$$

Thus, $A_{\mathfrak{p}} \cap A_f \subset A_t$ so we get a map $R \to A_t$. Therefore we get a map $f_{\tilde{V}} : \tilde{V} \to Y$ such that $(f|_{\tilde{V}})|_{D(f)} = (f_U)|_{D(f)}$ showing that $\eta \in \tilde{V} \subset \mathrm{Dom}\,(f)$ so $Z \cap \mathrm{Dom}\,(f)$ is a dense open of Z.

Proposition 10.3.3. Let $C \to S$ be a proper regular Noetherian scheme with dim C = 1 and $f: C \longrightarrow Y$ a rational S-map with $Y \to S$ proper. Then f extends uniquely to a morphism $f: C \to Y$.

Proof. For any point $x \notin \text{Dom}(f)$ let $Z = \overline{\{x\}} \subset D$ for $D = C \setminus \text{Dom}(f)$. Since Dom(f) is a dense open, by lemma 10.4.2, we have $\operatorname{codim}(Z,C) \geq \operatorname{codim}(D,C) \geq 1$ but $\dim C = 1$ so $\operatorname{codim}(Z,C) = 1$. Furthermore, since C is regular $\mathcal{O}_{C,x}$ is regular and thus, by the previous proposition, $Z \cap \text{Dom}(f)$ is a dense open and in particular $x \in \text{Dom}(f)$ meaning that Dom(f) = C so we get a morphism $C \to Y$. This is unique because C is reduced (it is regular) and Y is separated (it is proper over S) so morphisms $C \to Y$ are uniquely determined on a dense open which any representative for $f: C \longrightarrow Y$ is defined on.

Corollary 10.3.4. Rational maps between normal proper curves are morphisms.

Corollary 10.3.5. Birational maps between normal proper curves are isomorphisms.

Proof. Let $f: C_1 \longrightarrow C_2$ and $g: C_2 \longrightarrow C_1$ be birational inverses of smooth proper curves. Then we know that these extend to morphisms $f: C_1 \to C_2$ and $g: C_2 \to C_1$. Furthermore, the maps $g \circ f: C_1 \to C_1$ must extend the identity on some dense open. However, since curves are separated and reduced there is a unique extension of this map so $g \circ f = \mathrm{id}_{C_1}$ and likewise $f \circ g = \mathrm{id}_{C_2}$. \square

Theorem 10.3.6. If k is perfect then there exists a unique normal curve in each birational equivalence class of curves.

Proof. It suffices to show existence. Given a curve X, we consider the projective closure $X \hookrightarrow \overline{X}$ which is birational and $\overline{X} \to \operatorname{Spec}(k)$ is proper. Then take the normalization $\overline{X}^{\nu} \to \overline{X}$ which remains proper over $\operatorname{Spec}(k)$ and is birational. Then \overline{X}^{ν} is regular and thus smooth over k since k is perfect and $\overline{X}^{\nu} \to X$ is birational.

10.4 Lemmas

Lemma 10.4.1. Let A be a Noetherian domain and $\mathfrak{p} = (\varpi)$ a principal prime. Then any $f \in \mathfrak{p}$ can be written as $f = t\varpi^k$ for $f \in A \setminus \mathfrak{p}$.

Proof. From Krull intersection,

$$\bigcap_{n>0}^{\infty} \mathfrak{p}^n = (0)$$

so there is some n such that $f \in \mathfrak{p}^n \setminus \mathfrak{p}^{n+1}$. Thus $f = t\varpi^n$ for some $f \in A$ but if $t \in \mathfrak{p}$ then $f \in \mathfrak{p}^{n+1}$ so the result follows.

Lemma 10.4.2. Consider a closed subset $Y \subset X$ and an open $U \subset X$ with $U \cap Z \neq \emptyset$. Then $\operatorname{codim}(Y,X) = \operatorname{codim}(Y \cap U,U)$.

Proof. Consider a chain of irreducible $Z_i \supseteq Z_{i+1}$ with $Z_0 \subset Y$. I claim that $Z_i \mapsto Z_i \cap U$ and $Z_i \mapsto \overline{Z_i}$ are inverse functions giving a bijection between closed irreducible chains in X with final terms contained in Y and closed irreducible chains in U with final term contained in $Y \cap U$. Note, if $Z_i \subset Y \cap U$ then $\overline{Z_i} \subset Y$ since Y is closed in X.

First, $\overline{Z_i \cap U} \subset Z_i$ and is closed in X. Then $\overline{Z_i \cap U} \cup U^C \supset Z_i$ so because Z_i is irreducible $\overline{Z_i \cap U} = Z_i$ since by assumption $Z_i \not\subset U^C$. Conversely, if $Z_i \subset U$ is a closed irreducible subset then $\overline{Z_i}$ is closed and irreducible in X and $Z_i \subset \overline{Z_i} \cap U$ but $Z_i = C \cap U$ for closed $C \subset X$ so $Z_i \subset C$ and thus $\overline{Z_i} \subset C$ so $\overline{Z_i} \cap U \subset C \cap U = Z_i$ meaning $Z_i = \overline{Z_i} \cap U$. Thus we have shown these operations are inverse to each other.

Finally, if $Z_i \cap U - Z_{i+1} \cap U$ then $\overline{Z_i \cap U} = \overline{Z_i \cap U}$ so $Z_i = Z_{i+1}$ so the chain does not degenerate. Likewise, if $\overline{Z_i} = \overline{Z_{i+1}}$ then $\overline{Z_i} \cap U = \overline{Z_{i+1}} \cap U$ so $Z_i = Z_{i+1}$. Therefore, we get a length-preserving bijection between the chains defining codim (Y, X) and codim $(Y \cap U, U)$.

Lemma 10.4.3. Let $Z \subset X$ be a closed irreducible subset with generic point $\eta \in Z$. Then $\operatorname{codim}(Z,X) = \dim \mathcal{O}_{X,\eta}$.

Proof. Take affine open neighborhood $\eta \in U = \operatorname{Spec}(A) \subset X$. Then for $\mathfrak{p} \in \operatorname{Spec}(A)$ corresponding to η we get $A_{\mathfrak{p}} = \mathcal{O}_{X,\eta}$. However, $\operatorname{codim}(Z,X) = \operatorname{codim}(Z \cap U,U)$ and $Z \cap U = \{\overline{\mathfrak{p}}\} = V(\mathfrak{p})$. Therefore,

$$\operatorname{codim}(Z,X) = \operatorname{codim}(Z \cap U, U) = \operatorname{ht}(\mathfrak{p}) = \dim A_{\mathfrak{p}} = \dim \mathcal{O}_{X,\eta}$$

Lemma 10.4.4. Let X be a Noetherian scheme then the nonreduced locus,

$$Z = \{x \in X \mid \operatorname{nilrad}(\mathcal{O}_{X,x}) \neq 0\}$$

is closed.

Proof. The subsheaf $\mathcal{N} \subset \mathcal{O}_X$ is coherent since X is Noetherian. Thus $Z = \operatorname{Supp}_{\mathcal{O}_X}(\mathcal{N})$ is closed and $\mathcal{N}_x = \operatorname{nilrad}(\mathcal{O}_X x)$. Locally, on $U = \operatorname{Spec}(A)$ we have $\mathcal{N}|_U = \operatorname{nilrad}(A)$ and $\operatorname{nilrad}(A)$ is a f.g. A-module since A is Noetherian so,

$$\operatorname{Supp}_{\mathcal{O}_X}(\mathcal{N}) \cap U = \operatorname{Supp}_A(\operatorname{nilrad}(A)) = V(\operatorname{Ann}_A(\operatorname{nilrad}(A)))$$

is closed in Spec (A).

Lemma 10.4.5. Let X be a Noetherian scheme then X has finitely many irreducible components.

Proof. First let $X = \operatorname{Spec}(A)$ for a Noetherian ring A. Then the irreducible components of A correspond to minimal primes $\mathfrak{p} \in \operatorname{Spec}(A)$. Then $\dim A_{\mathfrak{p}} = 0$ and $A_{\mathfrak{p}}$ is Noetherian so $A_{\mathfrak{p}}$ is Artinian. $A_{\mathfrak{p}}$ must have some associated prime so $\operatorname{Ass}_{A_{\mathfrak{p}}}(A_{\mathfrak{p}}) = \{\mathfrak{p}A_{\mathfrak{p}}\}$. By [?, Tag 05BZ], then $\operatorname{Ass}_A(A) \cap \operatorname{Spec}(A_{\mathfrak{p}}) = \operatorname{Ass}_{A_{\mathfrak{p}}}(A_{\mathfrak{p}}) = \{\mathfrak{p}\}$ so every minimal prime is an associated prime. However, for A Noetherian then A admits a finite composition series so there are finitely many associated primes.

Now let X be a Noetherian scheme. For any affine open $U \subset X$ we have shown that U has finitely many irreducible components. However, since X is quasi-compact there is a finite cover of affine opens and thus X must have finitely many irreducible components.

Lemma 10.4.6. Let X be a Noetherian scheme and Y is the complement of some dense open U. Then $\operatorname{codim}(Y,X) \geq 1$.

Proof. It suffices to show that Y does not contain any irreducible component since then any irreducible contained in Y cannot be maximal. Since X is Noetherian, it has finitely many irreducible components Z_i . Then if $Z_j \subset Y$ for some i we would have $Z_i \cap U = \emptyset$ but then,

$$U = \bigcup_{i \neq j} Z_i$$

which is closed so $\overline{U} \subsetneq X$ contradicting our assumption that U is dense.

Lemma 10.4.7. Let X be a Noetherian scheme and $x \in X$ such that $\mathcal{O}_{X,x}$ is a domain. Then there is an affine open neighborhood $x \in U \subset X$ with $U = \operatorname{Spec}(A)$ and A is a domain.

Proof. Take any affine open neighborhood $x \in U \subset X$ with $U = \operatorname{Spec}(A)$ and $\mathfrak{p} \in \operatorname{Spec}(A)$ corresponding to x. Then $A_{\mathfrak{p}} = \mathcal{O}_{X,x}$ is a domain. Since X is Noetherian then A is Noetherian so it has finitely many minimal primes \mathfrak{p}_i (corresponding to the generic points of irreducible components of U) with $\mathfrak{p}_0 \subset \mathfrak{p}$. Since $A_{\mathfrak{p}}$ is a domain, it has a unique minimal prime and thus \mathfrak{p}_0 is the only minimal prime contained in \mathfrak{p} (geometrically $A_{\mathfrak{p}}$ being a domain corresponds to the fact that \mathfrak{p} is the generic point of a generically reduced irreducible subset which lies in only one irreducible component)

Now for any $i \neq 0$ take $f_i \in \mathfrak{p} \setminus \mathfrak{p}_0$. This is always possible else $\mathfrak{p} \subset \mathfrak{p}_0$ contradicting the minimality of \mathfrak{p}_0 . If $f \notin \mathfrak{q}$ then $\mathfrak{q} \not\supset \mathfrak{p}_i$ for any $i \neq 0$ so $\mathfrak{q} \supset \mathfrak{p}_0$ since it must lie above some minimal prime. Thus

nilrad $(A_f) = \mathfrak{p}_0 A_f$ is prime and $f \notin \mathfrak{p}$ since else $\mathfrak{p} \supset \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_n$ which is impossible since $\mathfrak{p} \not\supset \mathfrak{p}_i$ for any i. Now we know that nilrad $(A_{\mathfrak{p}}) = 0$ and A_f is Noetherian so nilrad $(A_{\mathfrak{p}})$ is finitely generated. Thus, there is some $g \notin \mathfrak{p}$ such that nilrad $(A_{fg}) = (\text{nilrad } (A_f))_g = 0$. Thus A_{fg} is a domain since nilrad $(A_{fg}) = (0)$ and is prime and $\mathfrak{p} \in A_{fg}$ because $fg \notin \mathfrak{p}$. Therefore, $x \in \text{Spec } (A_{fg}) \subset U$ is an affine open satisfying the requirements.

Remark. This does not imply that X is integral if $\mathcal{O}_{X,x}$ is a domain for each $x \in X$ (which is false, consider Spec $(k \times k)$) because it only shows there is an integral cover of X not that $\mathcal{O}_X(U)$ is a domain for each U.

Example 10.4.8. Let $X = \operatorname{Spec}(k[x,y]/(xy,y^2))$. Then for the bad point $\mathfrak{p} = (x,y)$ we have nilrad $(\mathcal{O}_{X,\mathfrak{p}}) = (y)$. Away from the bad point, say $\mathfrak{p} = (x-1,y)$ we have, $\mathcal{O}_{X,\mathfrak{p}} = \operatorname{Spec}(k[x]_{(x-1)})$ so nilrad $(\mathcal{O}_{X,\mathfrak{p}}) = (0)$. Furthermore, at the generic point $\mathfrak{p} = (y)$, we have, $\mathcal{O}_{X,\mathfrak{p}} = \operatorname{Spec}(k(x))$ so nilrad $(\mathcal{O}_{X,\mathfrak{p}}) = (0)$.

Example 10.4.9. Consider $X = \operatorname{Spec}(k[x,y,z]/(yz))$ which is the union of the x-y and x-z planes. Consider the generic point of the z-axis $\mathfrak{p} = (x,y)$ then $\mathcal{O}_{X,\mathfrak{p}} = \operatorname{Spec}(k[x,z]_{(x)})$ is a domain since the z-axis only lies in one irreducible component. However, at the generic point of the x-axis, $\mathfrak{p} = (y,z)$ we get $\mathcal{O}_{X,\mathfrak{p}} = \operatorname{Spec}(k[x,y,z]/(yz))_{(y,z)}$ has zero divisors yz = 0 so is not a domain since the x-axis lives in two irreducible components.

10.5 Reflexive Sheaves (WIP)

Definition 10.5.1. Recall the dual of a \mathcal{O}_X module \mathscr{F} is the sheaf $\mathscr{F}^{\vee} = \mathscr{H}em_{\mathcal{O}_X}(\mathscr{F}, \mathcal{O}_X)$. We say that a coherent \mathcal{O}_X -module \mathscr{F} is reflexive if the natural map $\mathscr{F} \to \mathscr{F}^{\vee\vee}$ is an isomorphism.

Lemma 10.5.2. Let X be an integral locally Noetherian scheme and \mathscr{F},\mathscr{G} be coherent \mathcal{O}_{X} -modules. If \mathscr{G} is reflexive then $\mathscr{H}_{\mathcal{O}_{X}}(\mathscr{F},\mathscr{G})$ is reflexive.

Proof. See [?, Tag
$$0AY4$$
].

In particular, since \mathcal{O}_X is clearly reflexive, this lemma shows that for any coherent \mathcal{O}_X -module then \mathscr{F}^{\vee} is a reflexive coherent sheaf. We say the map $\mathscr{F} \to \mathscr{F}^{\vee\vee}$ gives the reflexive hull $\mathscr{F}^{\vee\vee}$ of \mathscr{F} .

Definition 10.5.3. Let \mathcal{R} be the full subcategory $\mathfrak{Coh}(\mathcal{O}_X)$ of coherent reflexive \mathcal{O}_X -modules. \mathcal{R} is an additive category and in fact has all kernels and cokernels defined by taking reflexive hulls of the sheaf kernel and cokernel. Furthermore, \mathcal{R} inherits a monoidal structure from the tensor product defined using the reflexive hull as follows,

$$\mathscr{F} \otimes_{\mathcal{R}} \mathscr{G} = (\mathscr{F} \otimes_{\mathcal{O}_X} \mathscr{G})^{\vee\vee}$$

Finally, we define $\operatorname{RPic}(X)$ to be group of constant rank one reflexives induced by the monoidal structure on \mathcal{R} . Explicitly, $\operatorname{RPic}(X)$ is the group of isomorphism classes of constant rank one reflexive coherent \mathcal{O}_X -modules with multiplication $(\mathscr{F},\mathscr{G}) \mapsto (\mathscr{F} \otimes_{\mathcal{O}_X} \mathscr{G})^{\vee\vee}$ and inverse $\mathscr{F} \mapsto \mathscr{F}^{\vee}$.

The importance of reflexive sheaves derives from their correspondence to Weil divisors. Here we let X be a normal integral separated Noetherian scheme.

Proposition 10.5.4. If D is a Weil divisor then $\mathcal{O}_X(D)$ is reflexive of constant rank one.

Proof. (CITE OR DO). \Box **Theorem 10.5.5.** Let X be a normal integral separated Noetherian scheme. There is an isomorphism of groups $\operatorname{Cl}(X) \xrightarrow{\sim} \operatorname{RPic}(X)$ defined by $D \mapsto \mathcal{O}_X(D)$. \Box *Proof.* (DO OR CITE)

We summarize the important results as follows.

Theorem 10.5.6. Let X be a Noetherian normal integral scheme. Then for any Weil divisors D, E,

- (a) $\mathcal{O}_X(D+E) = (\mathcal{O}_X(D) \otimes_{\mathcal{O}_X} \mathcal{O}_X(E))^{\vee\vee}$
- (b) $\mathcal{O}_X(-D) = \mathcal{O}_X(D)^{\vee}$
- (c) $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_X(D), \mathcal{O}_X(E)) = \mathcal{O}_X(E-D)$
- (d) if E is Cartier then $\mathcal{O}_X(D+E) = \mathcal{O}_X(D) \otimes_{\mathcal{O}_X} \mathcal{O}_X(E)$

Proof. (DO OR CITE)

Finally, we have a result which controls when the dualizing sheaf can be expressed in terms of a divisor.

Proposition 10.5.7. Let X be a projective variety over k. Then,

- (a) if X is normal then its dualizing sheaf ω_X is reflexive of rank 1 and thus X admits a canonical divisor K_X s.t. $\omega_X = \mathcal{O}_X(K_X)$
- (b) if X is Gorenstein then ω_X is an invertible module so K_X is Cartier.

Proof. (FIND CITATION OR DO). □