مدارهای الکتریکی و الکترونیکی فصل دوم: قوانین ولتار و جریان

استاد درس: محمود ممتاز پور ceit.aut.ac.ir/~momtazpour

فهرست مطالب

- □ قوانین ولتاژ و جریان
- □ مدارهای سری و موازی
 - □ تقسیم ولتاژ و جریان

گره، شاخه، مسیر، حلقه، مش

- □ این دو مدار معادلند
- در این مثال، 3 گره و 5 شاخه وجود دارد.
- □ یک مسیر، ترتیبی از گرهها و شاخههای متصلکننده آنها است.
 - □ یک حلقه، یک مسیر مدور و بسته است.
- □ یک مش، یک حلقه ساده است که از وسط آن شاخهای رد نشده است.

قانون جریان کرشهف

□ KCL: جمع جبری جریانهایی که وارد یک گره می شوند صفر است.

$$i_A + i_B + (-i_C) + (-i_D) = 0$$

شکلهای دیگر قانون KCL

□ جمع جریانهای ورودی صفر است.

$$i_A + i_B + (-i_C) + (-i_D) = 0$$

ے جمع جریان ہای خروجی صفر است. $(-i_A) + (-i_B) + i_C + i_D = 0$

مثالی از کاربرد KCL

اگر جریان منبع ولتار 3 آمپر باشد، جریان مقاومت R_3 را بیابید.

قانون ولتار كرشهف

KVL: جمع جبری اختلاف ولتاژها در یک حلقه صفر است.

$$v_1 + (-v_2) + v_3 = 0$$

شکلهای دیگر قانون KVL

- ردر جهت حرکت عقربه ساعت از بیش ولتاثر صفر است (در جهت حرکت عقربه ساعت از $v_1 + (-v_2) + v_3 = 0$ (B
 - □ جمع کاهش ولتاژ صفر است (در جهت حرکت عقربه ساعت از B)

مثالی از کاربرد KVL

ولتار v_x و v_{R2} و ابيابيد v_x

اعمال KCL ، KVL و قانون اهم

مثال: جریان i_{χ} و ولتار v_{χ} را بیابید.

اعمال KCL ، KVL و قانون اهم

مثال 2: جریان i_{x} و ولتاثر v_{x} را بیابید.

اتصال سرى

□ المانهایی که در یک مسیر قرار دارند و یک جریان یکسان از همه آنها میگذرد، اصطلاحاً به صورت سری به همدیگر متصلاند.

اتصال موازى

المانهایی که دو سر آنها به همدیگر متصل است و اختلاف ولتاژ یکسانی بین دو سر آنها وجود دارد، اصطلاحاً به صورت موازی به همدیگر متصلاند.

مثال: مدار با یک حلقه

□ توان جذب شده توسط هر المان را بيابيد.

مثال: مدار با یک جفت گره

ولتاژv و جریانهای i_1 و جریانهای v

مثال2: مدار با یک جفت گره

ولتار u و توان تولید شده توسط منبع مستقل را بیابید.

تركيب منابع ولتار سرى

□ منابع ولتاژ که به صورت سری متصلاند را میتوان با هم ترکیب کرد.

تركيب منابع جريان موازى

□ منابع جریان که به صورت موازی متصلاند را میتوان با هم ترکیب کرد.

مدارهای غیرممکن

□ از آنجایی که مدلهای ما ایدهآل هستند، وجود مدارهای زیر غیرممکن و رفتار آنها غیرقابل توضیح است.

□ منابع ولتاژ موازی (a) و منابع جریان سری (c) مدارهای غیر ممکن هستند.

مقاومتهای سری

□ با استفاده از KVL، مىتوان نشان داد (در خانه انجام دهيد):

$$R_{eq} = R_1 + R_2 + ... + RN$$

مثال: سادهسازی مدار

ے جریان i و توان تولیدی منبع 80 ولت را به ست آورید.

مقاومتهای موازی

□ با استفاده از KCL، میتوان نشان داد (در خانه انجام دهید):

$$\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

محاسبه مقاومت معادل دو مقاومت موازی

- □ یک راه ساده برای محاسبه مقدار دو مقاومت موازی:
 - □ ضرب مقاومتها تقسیم بر جمع مقاومتها

$$R_{\text{eq}} = R_1 || R_2$$

$$= \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

$$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$$

تقسيم ولتاز

□ ولتاژ اعمالی بر روی مقاومتهای سری به صورت زیر بین آنها تقسیم می شود.

$$v_1 = \frac{R_1}{R_1 + R_2} v$$

$$v_2 = \frac{R_2}{R_1 + R_2} v$$

تقسيم ولتاز

مثال: ولتار v_{χ} را بیابید.

تقسيم جريان

□ جریان اعمالی به مقاومتهای موازی به صورت زیر بین آنها تقسیم میشود.

$$i_1 = i \frac{R_2}{R_1 + R_2}$$

$$i_2 = i \frac{R_1}{R_1 + R_2}$$

تقسيم جريان

مثال: جریان $i_3(t)$ را بیابید \square

خلاصه مطالب

- 🗖 مطالبی که در این اسلاید فراگرفتید:
- □ قوانین KVL و KCL و نحوه استفاده از آنها در تحلیل مدار
 - □ منابع سری و موازی و ترکیب منابع
- □ مقاومتهای سری و موازی و نحوه محاسبه مقاومت معادل
- □ قوانین تقسیم ولتاژ و جریان بین مقاومتهای سری و موازی

تمرین کلاسی

را به شرط $g_m=322m$ بیابید. $Q_m=322m$

