Erasure vs Percolation thresholds for topological codes

Nicolas Delfosse (IQIM+UCR \rightarrow IBM Watson), Michael Woolls (UCR), & Leonid P. Pryadko (UCR)

Supported by NSF and ARO

Motivation: map Ising model ↔ ML decoding

★ Maximum likelihood decoding threshold

- Independent X/Z noise, $p_X = p_Z = p$.
- CSS code \mathcal{Q} [[n, k, d]] with n-column generator matrices: $PQ^T = 0 \mod 2$.
- Number of encoded qubits $k = n \operatorname{rank}_2 P \operatorname{rank}_2 Q$.
- Z-codeword c: $Pc^T = 0 \mod 2$; c linearly independent from rows of Q.
- Degenerate errors: $e \simeq e' = e + \alpha Q$. Identical effect on the code. Given e, let $Z_0(e)$ be the total probability of an equivalent error.

• Each codeword c defines degeneracy sector (total 2^k)

- Let $Z_{\text{tot}}(e) \equiv \sum_c Z_0(e+c)$ be the probability of the same syndrome as e.
- \bullet Given p, average maximum likelihood (ML) decoding success probability

$$\mathbb{P}_p = \left\langle \frac{Z_0(e)}{Z_{\text{tot}}(e)} \right\rangle_e, \quad Z_{\text{tot}}(e) = \sum_c Z_0(e+c).$$

- $Z_0(e)$: partition function of a random-bond Ising model, at $e^{-2\beta} = \frac{P}{1-p}$
- Temperatures β^{-1} away from Nishimori line: suboptimal decoding.
- Consider a code sequence Q_t , $t \in \mathbb{N}$.
- ML decoding threshold p_c for code sequence: $\limsup \mathbb{P}_p(\mathcal{Q}_t) = 1$, $p < p_c$.

Phase diagram of the square-lattice random-bond Ising model, where p is the probability of a flipped bond. Black line denotes the numerical boundary $T_c(p)$ of the ferromagnetic phase, p_{\min} , $T_{
m BP}$, and "dual $T_{
m BP}$ " are various analytical bounds for the phase transition.

★ Approach of Kovalev and LPP [QIC 15, 825 ('15)]

For Ising models associated with a sequence of codes, define

- "decodable phase" via $\left\langle \frac{Z_0(e)}{Z_{\mathrm{tot}}(e)} \right\rangle_{\gamma} \to 1$ at $t \to \infty$.
- Free energy increment: $\beta \Delta F_c \equiv \langle \ln Z_0(e) \rangle_e \langle \ln Z_0(e+c) \rangle_e$.
- Defect tension $\lambda_c \equiv d_c^{-1} \Delta F_c$, where $d_c \equiv \min \operatorname{wgt}(c + \alpha Q)$ is the min weight.

It is easy to check that:

- In the decodable phase $\Delta F_c \to \infty$, $\forall c \not\simeq 0$.
- ullet if k is finite and code distance $d=\min_c d_c$ diverges with n, or for a finite-Rcode family with power-law distance scaling: $[\lambda_c > 0, \forall c \neq 0] \Rightarrow \text{decodable}$
- ullet In the decodable phase for a code family with rate R: average defect tension satisfies $\bar{\lambda} \equiv \langle \lambda_c \rangle_{c \neq 0} \geq \beta^{-1} R \ln 2$.
- We thus expect: $\begin{cases} \text{for } R = 0, \ T_{\text{dec}}(p) \geq T_c^{(\text{tension})}(p), \\ \text{for } R > 0, \ T_{\text{dec}}(p) \leq T_c^{(\text{tension})}(p). \end{cases}$

Here $T_c^{(\text{tension})}(p)$ is the critical temperature for non-zero defect tension $\lambda_c > 0$.

Question: What is the general relation between the decodable and the conventionally defined ferromagnetic phase?

- Under what conditions they coincide?
- Under what conditions they differ?
- In particular, for finite-rate codes.

Important examples: hyperbolic surface codes. E.g., codes from $\{5,5\}$ hyperbolic tilings: [[30,8,3]], [[40, 10, 4]], [[80, 18, 5]], [[150, 32, 6]], [[900, 182, 8]], . . .

- Highly-symmetric, finite rate family
- Logarithmic distance scaling

Erasures in surface codes ↔ edge percolation

★ Erasure threshold for a sequence of codes

- ullet Independent erasure errors with probability p on a CSS code $\mathcal Q$.
- Block Error Rate (BLER): $H_p(\mathcal{Q}) \equiv \mathbb{P}_p$ (a codeword of \mathcal{Q} is fully covered)
- Consider a sequence of CSS codes Q_t , $t \in \mathbb{N}$.
- Erasure threshold p_E : guarantees that $\limsup H_p(\mathcal{Q}_t) = 0$ at $p < p_E$.
- ullet Same configurations as in edge percolation on graph ${\cal G}$

toric code $\left[\left[98,2,7\right]\right]$

Only blue covered by erasures.

\bigstar Edge percolation on an infinite graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$

- p_c : formation of an infinite cluster. Order parameter $\theta_i = \mathbb{P}_p(|\mathcal{C}_i| = \infty)$, $i \in \mathcal{V}$.
- p_T : divergence of the cluster susceptibility $\chi_i \equiv \mathbb{E}_p(|\mathcal{C}_i|)$. Transitive: $p_T = p_c$.
- p_u : uniqueness transition (infinite cluster unique for $p > p_u$).
- An expander graph $\mathcal G$ has non-zero Cheeger constant $h_{\mathcal G} = \min_{|\mathcal W| \le |\mathcal V|/2} \frac{|\partial \mathcal W|}{|\mathcal W|}$.
- Transitive expander: $p_c < p_u$. Transitive amenable $(h_{\mathcal{G}} = 0)$ graph: $p_c = p_u$.
- Connectivity (corr. function) $\tau_{ij} \equiv \mathbb{P}_p(i \in \mathcal{C}_j)$. For $p > p_u$, $\tau_{ij} \geq \theta_i \theta_j$.

★ Linker cluster expansion

For a graph \mathcal{G} , consider the quantity $K_i(h,p;\mathcal{G}) = \sum_v e^{hv} v^{-1} f_v^{(i)}(p)$, where $f_v^{(i)}(p) = \sum_{e,b} N_{v,e,b}^{(i)} p^e (1-p)^b$ is the probability that the vertex i is in a cluster with v vertices, and $N_{v,e,b}^{(i)}$ is the number of containing-i clusters with v vertices, eedges, and b boundary edges (incident on one of the vertices in the cluster). $K_i(0,p)=\mathbb{E}_p\left(|\mathcal{C}_i|^{-1}\right)$ is the expected inverse size of a cluster connected to $i\in\mathcal{V}$. $K_i(h,p)$ is an analog of the free energy for percolation:

Statement 1. $\partial_h K_i(h,p)|_{h=0} = 1 - \theta_i(p)$, $\partial_h^2 K_i(h,p)|_{h=0} = \chi_i(p)$.

Statement 2. On a transitive graph, at $p < p_c$, the cluster probabilities $f_v(p)$ decay exponentially with $v \Rightarrow K_i(0,p)$ is analytic for $p < p_c$.

Statement 3. Consider a pair of mutually dual locally planar graphs, $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{P})$ and $\mathcal{G}(\tilde{\mathcal{V}} = \mathcal{P}, \mathcal{E}, \tilde{\mathcal{P}} = \mathcal{V})$. Expected number of homologies covered on \mathcal{G} at p is $\mathbb{E}_p(\# \operatorname{hom}(\mathcal{G})) = 1 - |\mathcal{V}| + p|\mathcal{E}| + \sum K_i(0, p; \mathcal{G}) - \sum K_j(0, 1 - p; \tilde{\mathcal{G}}).$

* Results

Consider a sequence of locally planar transitive graphs \mathcal{G}_t , locally convergent to a transitive graph \mathcal{G} (balls of increasing radius r_t in \mathcal{G}_t and \mathcal{G} are isomorphic).

Theorem 1. (a) Generally, $p_E \leq p_c$. (b) The inequality is saturated if distances scale as a power of block length, $d \ge An^{\alpha}$, A > 0 and $\alpha > 0$.

Proof outline. (a) Assume $p_E > p_c$, and choose p in between. For such a p, only homologically trivial clusters are covered at large t. These can be mapped 1:1 to those at \mathcal{G} . Any finite cluster on \mathcal{G} will be encountered at large enough t, and these are all likely to appear, thus $\theta(p) = 0$. Contradiction. (b) Use exponential decay of $f_v(p)$ for $p < p_c$, and a bound on $N_{v.e.b}$.

Theorem 2. When distance scales logarithmically with block length, $d \ge B \log n$, B > 0, $p_E > 0$.

Conjecture 3. When distance scales logarithmically with block length, $d \leq B' \log n$, B' > 0, $p_E < p_c$. With sublogarithmic distance, $p_E = 0$.

Example 1. Consider rectangular toric code with dimensions $t \times L_t$.

- Infinite graph limit = square lattice; percolation threshold $p_c = 1/2$.
- For $L_t = 2^{t \ln t}$, $p_E = 0$. $\mathbb{P}_{\text{vert}} \ge 1 (1 p^t)^{L_t}$ • For $L_t = m^t$, $p_E \le 1/m$. $\ge 1 - e^{-p^t L_t} \to 1$, $\forall p > 0$.

For a sequence of locally planar transitive graphs \mathcal{G}_t , locally convergent to a transitive graph \mathcal{G} , introduce the homological order parameter, η_{p} , the expected fraction of homologies asymptotically covered by erasures (the corresponding limit exists). Define the corresponding critical probability p_H , s.t. $\eta_p = 0$ at $p < p_H$, and $\eta_p > 0$ at $p > p_H$. Clearly, $p_H \ge p_E$; $p_H = p_E$ for sequences with bounded k. **Theorem 4** (Delfosse and Zemor, 2010). Generally, for a sequence with

unbounded distance and finite rate, $p_H \geq p_c$. **Theorem 5.** For a sequence of hyperbolic surface codes converging to $\{\ell, m\}$ tilings of the infinite hyperbolic plane, $1/\ell+1/m<1$, $p_H=p_c$.

Proof outline. From Statement 3, $\frac{2R}{\ell}\eta_p=K(0,p;\mathcal{G})-K(0,1-p;\widetilde{\mathcal{G}})+\frac{2}{\ell}p-1.$ Use analyticity of K(0,p) for $p < p_c$ and $p > 1/(h_G + 1)$.