COGNOMS:															
NOM:								D	NI:					_	

IMPORTANTE leer atentamente antes de empezar el examen: Escriba los apellidos, el nombre y el DNI/NIE antes de empezar el examen. Escriba un solo carácter por recuadro, en mayusculas y lo más claramente posible. Es importante que no haya tachones ni borrones y que cada carácter quede enmarcado dentro de su recuadro sin llegar a tocar los bordes. Use un único cuadro en blanco para separar los apellidos y nombres compuestos si es el caso. No escriba fuera de los recuadros, todo lo que haya fuera de ellos es ignorado. La identificación del alumno se realiza de forma automática, no seguir correctamente estas instrucciones puede comportar no tener nota.

Problema 1. (2,5 puntos)

Dado el siguiente código escrito en C y compilado para x86 linux 32 bits:

```
typedef struct {
   char c;
   short s[4];
   char c2;
   int i2;
} sx;
int examen(sx *p1, sx s1, short sh) {
   int i;
   char ch;
   short aux;
   int *x;
   ...
}
```

a) **Dibuja** como quedaría almacenada la estructura **sx**, indicando claramente los desplazamientos respecto del inicio y el tamaño de todos los campos

b)	Dibuja el bloque de activación de la rutina examen, indicando claramente los desplazamientos respecto a %ebp y el tamaño de todos los campos.
	el talliallo de todos los campos.
c)	Traduce a ensamblador x86 la sentencia return(*x + s1.i2); suponiendo que esta dentro la función examen:
()	Traduce a crisarionador xoo la sertencia recarite x 1 31.12), suportiendo que esta dentro la funcion examen.
L_	
d)	Traduce a ensamblador x86 la sentencia (*p1).s[2] = aux; suponiendo que esta dentro la función examen:
1	

COGNOMS:															
NOM:								D	NI:					<u>L</u>	

Problema 2. (3,5 puntos)

Se dispone de un computador C con una memoria RAM de 64 MB (que corresponde al espacio físico direccionable). El procesador genera direcciones lógicas de 32 bits y está conectado a una memoria caché de datos de primer nivel L1D con política de escritura copy back-write allocate. La memoria cache L1D tiene un tamaño de 3 KB, es 3-asociativa y el tamaño de línea es de 64 bytes. El sistema dispone también de un TLB de 4 entradas, completamente asociativo y con política de reemplazo LRU. Se accede simultáneamente a TLB y cache. El tamaño de página del sistema operativo es de 4KB.

4KB	·
a)	Un proceso P del sistema lanza un acceso de lectura que se mapea en la dirección física 0x2345678. Este acceso produce un acierto de lectura en L1D. Indica claramente cuántos bits tiene cada uno de los campos tag, conjunto y byte con que se accede a la cache, y escribe EN HEXADECIMAL el tag, el conjunto y el byte dentro de la línea al que se accederá en memoria cache L1D.
b)	Calcula el tamaño en MEGABYTES de la tabla de páginas del proceso P, teniendo en cuenta que cada entrada de la tabla, además de los bits necesarios para codificar la página física, tiene un bit de presencia y un bit de página modificada.

El proceso P contiene el siguiente código escrito en ensamblador del x86:

```
movl $0, %ebx
  movl $0, %esi

for:
  cmpl $256*1024, %esi
  jge end

(a) movl 0x2000(%ebx, %esi, 4), %eax
(b) movb %bh, 0x2000(%ebx, %esi, 4)
(c) addl %eax, 0x3000(%ebx, %esi, 4)
(d) movw %ax, 0x5000(%ebx, %esi, 4)
  addl $1, %esi
  jmp for
end:
```

) Calcul	a la tasa d e	e fallos de l	la cache pa	ra el fragm	nento de có	digo anter	ior suponie	ndo que in	icialmente	está vac
. Dava a				- /-+:	ام ما ما	:d:		do lo		
) Para ca en cad	ada uno de la una de la	e ios acceso as siguiente	es iteracion	is (etiqueta ies del bucl	is a, b, c, d) le.	, indica a d	que pagina	de la mem	oria virtua	i se acce
teración	0	1*256	2*256	3*256	4*256	5*256	6*256	7*256	8*256	9*25
a		1 250	2 250	3 230	4 250	3.5290	0 250	7 230	8.230	9.23
b										
С										
d										
Calcul	a el númer	n de fallos	de TI R en	el fragmen	to de códig	70				
Carcan	<u>a er manner</u>	o de lanos	uc 125 cm	er magnifen	ito de codig	,0.				

COGNOMS:																										Ī	
NOM:															D	NI:										L	
Problema Tenemos u memoria p y hemos o memoria (i frecuencia a) Calcul	n pro rincip bteni ncluy de 2 (al. En do lo e tant GHz. I	dor (este s sig to los Para	uier s acc	ces ites eso plific	adoi date s a d car e	r hei os: f lato: el pr	mos tiem s cor oble	eje po no ma	cuta de é los a sup	do u ejec cces ond	una a ució sos a rem	aplic n 18 a inst os q	ació s, ruc ue t	on A 2x10 cion codo	(qu 0 ⁹ i es). s lo	e us nstr Sab	arer ucci em	mos one os a	a lo s ej den	larg ecu nás d	go d tada que	e to as, 3 Pmp	do e 8x10	l pro	ble ces	ema) sos a
Con un sim a memoria b) Calcul	tarda	ın un	ciclo	. En	el P	idea	al he	mos	s ob	teni	doι	ın C	PI (C	Plid	eal)	de	3 cio	clos	/inst	ruc	ción	١.					
Para mejor denominar 2 ciclos, es de 17 ciclos	emos decir	proc que	esad en ca	or P	2a). de a	Para ciert	a po to te	der i enen	mar nos	nten una	er la per	frec naliz	cuen ació	cia (de 2	GH	z, lo	s ac	cesc	s a	la ca	iche	2-a	soci	ativa	ta	rdan
c) Calcul	a el t	iemp	o de	ejeo	cució	ón d	e la	aplio	caci	ón A	i en	el p	roce	sad	or P.	2a											

Calcula el CPI del procesador Ppv (CPIppv).

Para reducir la penalización de accesos a la cache, uno de los ingenieros ha sugerido el uso de un predictor de vía. El predictor sugerido tendría una tasa de aciertos en la predicción de vía del 80% y tendría un impacto negligible tanto en área como en la frecuencia y consumo del procesador. Al procesador con cache 2-asociativa y predictor de vía lo denominaremos procesador Ppv. En caso de que el predictor acierte la vía no hay penalización respecto el procesador ideal. Si hay fallo de predictor pero acierto de cache se incurre en un ciclo de penalización (tal como ocurría con la cache 2-asociativa) ya que se necesita un ciclo adicional para acceder a la otra vía. Finalmente, si es fallo de predictor y también de cache, la penalización es de 17 ciclos (también la misma que la cache 2-asociativa).

ta ya	ueremos saber la potencia media debida a conmutación de la jerarquía de memoria del procesador P. Ignoraremos por anto la potencia disipada por fugas así como la potencia de conmutación del procesador, y también la del predictor que a hemos comentado que tiene un impacto despreciable. Sabemos que cada vez que se accede una vía de la cache etiquetas + datos) se consumen 5 nJ (nanojoules) y cada vez que hay un fallo de cache se consumen 30 nJ adicionales.
е	 Calcula la energía (de conmutación) consumida por la jerarquía de memoria del procesador Ppv al ejecutar la aplicación A
f	Calcula la potencia media (de conmutación) consumida por la jerarquía de memoria del procesador Ppv al ejecutar la aplicación A