Assignment 1

221300079 Juntong Wang

June 17, 2024

1 Question 1

1.1 (1)

Timo is a cow.

1.2(2)

Fido is not a dog.

1.3 (3)

Owing a cow is not enough to recognize a Person as a LivestockOwner.

1.4 (4)

0.(Zero)

2 Question 2

2.1 (1)

I will translate it into SHOIQ form:(this form is from wiki)

- (1) ML is an AI course taught by ZZH, a professor working at NJU inclusions: $\{ML\} \sqsubseteq AIcourse \sqcap (\exists teach^-.\{ZZH\}), \{ZZH\} \sqsubseteq Professor \sqcap (\exists workAt.\{NJU\})$
- (2) NJU is a university whose members are a school or a department inclusions: $\{NJU\} \sqsubseteq University \sqcap (\forall hasMember.(School \sqcup Department))$
- (3) NJU has at least 30,000 students inclusions: {NJU} \sqsubseteq (\geq 30000has. Student)

- (4) All members of AI School are undergraduates, graduates, or teachers inclusions:($\exists memberOf.\{AISchool\}$) $\sqsubseteq (Undergraduate \sqcup Graduate \sqcup Teacher)$
- (5) The domain of the relation "citizenOf" consists of countries inclusions: $(\exists citizenOf. \{\top\}) \sqsubset (Country)$

2.2(2)

Sentence 1:All members of AI School are undergraduates, graduates, or teachers

 $\forall x (member Of(x, AIS chool) \rightarrow Under graduate(x) \lor Graduate(x) \lor Teacher(X)) \\ \textbf{Sentence 2:The domain of the relation "citizenOf" consists of countries}$

 $\forall x (\exists y citizen Of(x, y) \rightarrow Country(x))$

3 Question 3

All the answer is follow the question:

• There is an ontology that has only finite models.

Disprove.

Here is a way to create infinite models. Firstly we assume we have an model: $I = \{\Delta^I, I^I\}$ And then we assume that: $\{a\} \subseteq \Delta^I$, then we create a new element called: $\{a'\}$, so we could have a new model: $I' = \{\Delta^{I'}, I'\}$, and then we get: $\Delta^{I'} = (\Delta^I/a) \cup \{a'\}$

So if we create the new model in this form, we could create infinite models.

• Every ontology has either no model or infinite many models.

Prove:

If the ontology has no model, it must in this way: $\top \sqsubseteq \bot$, and from question 2.1 we could get that the number of models is infinite. So it has proved.

• A satisfiable class must always have a non-empty interpretation.

Prove:

From definition 2.14, the satisfiability said that: C is satisfiable with respect to τ iff $C^I \neq \emptyset$ for some model I of τ , the satisfiable model must have an interpretation, so proved.

• An unsatisfiable class may have a non-empty interpretation in some models.

Disprove:

If the unsatisfiable class have a non-empty interpretation in some models, from definition 2.14, this is also satisfy the definition of satisfiable class, so it's contradictory.

• An unsatisfiable class will be a subclass of any other class.

Prove:

From question 2.4 we get that the unsatisfiable class is an empty set. So an emptyset is always the subclass of any other class.

4 Question 4

All the answer is follow the questions:

- 1. $\exists r.(A \sqcup B): \{d, f\}$
- 2. $\exists s. \exists s. \neg A: \{d, e\}$
- 3. $\neg A \sqcap \neg B : \{f, h, i\}$
- 4. $\forall r.(A \sqcup B): \{d, f, g, h, i\}$
- 5. $\leq 1s. \top : \{e, f, g, h, i\}$

5 Question 5

5.1 (1)

All the answer is follow the questions:

- $(Q \sqcap \geq 2r.P)^{\mathcal{I}}:\emptyset$
- $(\forall r.Q)^{\mathcal{I}}:\{b,c,d,e\}$
- $(\neg \exists r.Q)^{\mathcal{I}}: \{b, c, e\}$
- $(\forall r. \top \sqcap \exists r^-. P)^{\mathcal{I}} : \{b, d, e\}$
- $(\exists r^-.\bot)^{\mathcal{I}}:\emptyset$

5.2(2)

All the answer is follow the questions:

- $\mathcal{I} \models A \equiv \exists r.B$:True
- $\mathcal{I} \models A \cap B \sqsubseteq \top$:True
- $\mathcal{I} \models \exists r. A \sqsubseteq A \sqcap B$:True
- $\mathcal{I} \models \top \sqsubseteq B$:False
- $\mathcal{I} \models B \sqsubseteq \exists r.A$:False

6 Question 6

All the answer is follow the questions:

• if $C \sqsubseteq D$ holds, then $\exists r.C \sqsubseteq \exists r.D$ holds. For this question the proof as follow: $(\exists r.C)^I = \{d \in \Delta^I | \exists e \in \Delta^I : (d,e) \in r^I \text{ and } e \in C^I\}$ $\sqsubseteq \{d \in \Delta^I | \exists e \in \Delta^I : (d,e) \in r^I \text{ and } e \in C^I\} \sqcup \{d \in \Delta^I | \exists e \in \Delta^I : (d,e) \in r^I \text{ and } e \in D^I/C^I\}$ $= \{d \in \Delta^I | \exists e \in \Delta^I : (d,e) \in r^I \text{ and } e \in D^I\}$

 $= (\exists r.D)^I$

• $\exists r.C$ is equivalent to $\leq 1r.\top$.

Disprove as follow:

If we have model like: $r^I = \{(a,b)\}, \ C^I = \{a\}, \ \Delta^I = \{a,b\}$ So we get $(\exists r.C)^I$ is empty, but the $\leq 1r.\top$ is $\{a,b\}$ So $\exists r.C$ is not equivalent to $\leq 1r.\top$

• $\leq 0r. \top$ is equivalent to $\forall r. \bot$.

For this question the proof as follow:

$$\begin{split} &(\leq 0r.\top)^I = \{d \in \Delta^I | \{e \in \Delta^I : (d,e) \in r^I and \ e \in T\} \leq 0\} \\ &= \{d \in \Delta^I | \{e \in \Delta^I : (d,e) \in r^I and \ e \in T\} = \emptyset\} \\ &= \{d \in \Delta^I | \{e \in \Delta^I : (d,e) \in r^I\} = \emptyset\} \\ &= \{d \in \Delta^I | there \ is \ no \ relation \ (d,e) \in r^I\} \end{split}$$

$$\begin{array}{l} (\forall r.\bot)^I = \{d \in \Delta^I | for \ all \ e \in \Delta : (d,e) \in r^I \rightarrow e \in \bot\} \\ = \{d \in \Delta^I | for \ all \ e \in \Delta : (d,e) \in r^I \rightarrow e \in \emptyset\} \\ = \{d \in \Delta^I | there \ is \ no \ relation \ (d,e) \in r^I\} \end{array}$$

• $\forall r.(A \sqcup B)$ is equivalent to $(\forall r.A) \sqcup (\forall r.B)$.

Disprove as follow:

If we have model: $\Delta^I = \{a, b, c\}, A^I = \{a\}, B^I = \{b\}, r^I = \{(c, a), (c, b)\}$ As the interpretation of $(\forall r.(A \sqcup B))^I$ goes: $\{d \in \Delta^I | for \ all \ e \in \Delta : (d, e) \in r^I \to e \in (A \cup B)\} = \{a, b, c\}$ But if we get the interpretation of $(\forall r.A)^I \sqcup (\forall r.B)^I$ we get the answer goes: $\{a, b\}$ So $\forall r.(A \sqcup B)$ is not equivalent to $(\forall r.A) \sqcup (\forall r.B)$

• $\exists r.(A \sqcup B)$ is equivalent to $(\exists r.A) \sqcup (\exists r.B)$.

For this question the proof as follow:

Firstly:we prove $\exists r.(A \sqcup B) \sqsubseteq (\exists r.A) \sqcup (\exists r.B)$

As the interpretation goes: $\exists r.(A \sqcup B) = \{d \in \Delta^I | there \ is \ e \in \Delta^I : (d,e) \in r^I \ and \ e \in (A \cup B)\}$

 $\subseteq \{d \in \Delta^I | there \ is \ e \in \Delta^I : \ (d,e) \in r^I \ and \ e \in A\} \cup \{d \in \Delta^I | there \ is \ e \in \Delta^I : \ (d,e) \in r^I \ and \ e \in B\}$

```
= \{d \in \Delta^I | there \ is \ e \in \Delta^I : \ (d,e) \in r^I \ and \ e \in Aor \in B\}
```

Secondly:we prove: $(\exists r.A) \sqcup (\exists r.B) \sqsubseteq \exists r.(A \sqcup B)$ As the interpretation goes: $\{d \in \Delta^I | there \ is \ e \in \Delta^I : \ (d,e) \in r^I \ and \ e \in A\} \cup \{d \in \Delta^I | there \ is \ e \in \Delta^I : \ (d,e) \in r^I \ and \ e \in B\}$ $\subseteq \{d \in \Delta^I | there \ is \ e \in \Delta^I : \ (d,e) \in r^I \ and \ e \in Aor \in B\}$

So this question has proved.

7 Question 7

Here is the proof:

We assume a model as follow: $\Delta^I = \{a, b, c\}, Person^I = \{a, b, c\}, Parent^I = \{a, b\}, Mother^I = \{a\}, and relationship: hasChild^I = \{(a, c), (b, c)\}.$

Firstly we could get that: $(\exists \mathsf{hasChild.Person})^I$ equals to $\{a,b\}$, and $Person^I$ also equals to $\{a,b\}$, so we get: Parent $\sqsubseteq \exists \mathsf{hasChild.Person}$

Secondly we get that: $Mother^{I} = \{a\}$,so Mother \sqsubseteq Parent.

At this time, we have proved $\mathcal{I} \models \mathcal{T}$.

Then, $Parent^I = \{a, b\}$ which is definitely not belongs to $Mother^I = \{a\}$.

So we have proved $\mathcal{I} \not\models \mathsf{Parent} \sqsubseteq \mathsf{Mother}$.

8 Question 8

Let \mathcal{T} be an \mathcal{ALC} TBox, which is a finite set of concept inclusions. Let X and Y be complex \mathcal{ALC} concepts (note that a complex concept can also be an atomic concept). Show that:

• $X \sqsubseteq_{\mathcal{T}} Y$ if and only if $X \sqcap \neg Y$ is not satisfiable with respect to \mathcal{T} .

Prove:

 \Rightarrow : If $X \sqsubseteq_{\mathcal{T}} Y$, so $X^I \subseteq Y^I$, so $X^I \cap \neg Y^I$ is *emptyset*, so there is no model, so is not satisfiable with respect to \mathcal{T}

 $\Leftarrow:$ If $X \sqcap \neg Y$, so $X^I \cap \neg Y^I$ is *emptyset* is satisfiable, so $X^I \subseteq Y^I$, so $X \sqsubseteq_{\mathcal{T}} Y$.

• X is satisfiable with respect to \mathcal{T} if and only if $X \not\sqsubseteq \bot$.

Prove

 \Rightarrow : If X is satisfiable with respect to \mathcal{T} , from definition 2.14 we get $X^I \neq \emptyset$, so $X \not\sqsubseteq \bot$.

 \Leftarrow : If $X \not\sqsubseteq \bot$, this means there exists an interpretation or model to satisfy X, so from definition X is satisfiable with respect to τ

- 9 Question 9
- 10 Question 10