TABLE OF CONTENTS

	Pag
LIST OF ABBREVIATIONS	v
LIST OF FIGURES	vi
LIST OF TABLES	vii
ABSTRACT	viii
CHAPTER 1 INTRODUCTION	1
1.1 IMPORTANCE OF XG IN FIELD OF FOOTBALL	1
1.1.1 CHALLENGES	1
1.1.2 FOCUS	2
1.1.3 SOCIAL IMPACT	2
1.2SCOPE	2
CHAPTER 2 PROBLEM DEFINITION	3
2.1 PROBLEM	3
2.2 SOLUTION	3
CHAPTER 3 LITERATURE SURVEY	4
CHAPTER 4 PROJECT DESCRIPTION	5
CHAPTER 5 REQUIREMENTS	6
CHAPTER 6 METHODOLOGY	
6.1 DATA DESCRIPTION	7
6.2 PRE-PROCESSING THE DATA	7
6.3 MODEL TRAINING	9
CHAPTER 7 EXPERIMENTATION	10
CHAPTER 8 TESTING AND RESULTS	12
CHAPTER 9 CONCLUSION	
REFERENCES	

LIST OF ABBREVIATIONS

AutoML	R tool used to run the forester model
xG	Expected Goal
GUI	Graphical User Interface
ML	Machine Learning
AI	Artificial Intelligence
XAI	Explainable Artificial Intelligence
XGBOOST	Extreme Gradient Boosting
LightGBM	Light Gradient Boosting
CatBoost	Categorical Boosting
ranger	Specialized Random Forest model
SVG	Scalable Vector Graph

LIST OF FIGURES

Fig. No.	Description of the figure	Page No.
6.1.	Flowchart of Forester model	9
7.1.	Forester function definition	11
8.1.	The distribution of angle to goal and distance to goal of shots regarding goal status in the last seven seasons of top-five European football leagues	13
8.2.(a)	Screenshots of the web app	14
8.2.(b)	Screenshots of the web app	14

LIST OF TABLES

Table No.	Description of the Table	Page No.
6.1.	List of features used to train our model	7-8
7.1.	Summary statistics of shots and goals	10
8.1.	Performance of trained xG models	12

ABSTRACT

The expected goal provides a more representative measure of the team and player performance which also suits the low-scoring nature of football instead of the score in modern football. The score of a match involves randomness and often may not represent the performance of the teams and players, therefore it has been popular to use alternative statistics in recent years such as shots on target, ball possessions, and drills. To measure the probability of a shot being a goal by the expected goal, several features are used to train an expected goal model which is based on the event and tracking football data. Finding public datasets with the desired features is a scarcity. Using scraping techniques and requests to find data that can be used to fit into our model. Investigate the type of data used and pre-process the data filtering out the own goals which create an outlier in the model. This report presents a Web app of expected goals model made from collecting 315,430 shots from different leagues around the world. We Test and Analyze our model based on an AutoML tool, Forester which is mainly used for tree-based classifications. Our Random Forest model which gave us an accuracy of 0.939 has been integrated into an interactive web app using TensorFlow Js and Shiny Js. xG model can be used in prediction of future goals and for fantasy football.