DEVOIR MAISON 1

Exercice 1 – On considère les matrices suivantes :

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}, \qquad L = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \qquad P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{et} \quad Q = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

- 1. Calculer PQ et QP.
- 2. Vérifier que QAP = L.
- 3. (a) Montrer que pour tout entier naturel n, on a $QA^nP = L^n$.
 - (b) Soit J = L I. Calculer J^2 puis J^3 .
 - (c) En utilisant la formule du binôme de Newton, montrer que pour tout entier $n \geqslant 2$, on a

$$L^{n} = I + nJ + \frac{n(n-1)}{2}J^{2}.$$

- (d) En déduire, pour $n \ge 2$, les neufs coefficients de L^n . Vérifier que votre résultat reste vrai lorsque n = 0 et n = 1.
- (e) Déduire des questions précédentes que pour tout $n \in \mathbb{N}$, on a

$$A^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 2n(n-1) & 1 & 2n \\ 2n & 0 & 1 \end{pmatrix}.$$

4. On considère les trois suites $(u_n)_{n\geqslant 1}$, $(v_n)_{n\geqslant 1}$ et $(w_n)_{n\geqslant 1}$ définies par $u_1=1$, $v_1=0$ et $w_1=2$ et pour tout entier naturel $n\geqslant 1$,

$$u_{n+1} = u_n$$
, $v_{n+1} = v_n + 2w_n$ et $w_{n+1} = 2u_n + w_n$.

- (a) Que pouvez-vous dire de la suite $(u_n)_{n\geqslant 1}$? Donner u_n pour tout entier $n\geqslant 1$.
- (b) Pour tout entier $n \ge 1$, on pose $X_n = \begin{pmatrix} 1 \\ \nu_n \\ w_n \end{pmatrix}$. Montrer que $X_{n+1} = AX_n$.
- (c) Établir pour tout entier $n \ge 1$ que $X_n = A^{n-1}X_1$.
- (d) Déduire des questions précédentes que pour tout entier $n \ge 1$, on a

$$v_n = 2n(n-1)$$
 et $w_n = 2n$.

Exercice 2 – On considère les fonctions f et g définies sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}_+^*, \quad f(x) = 2x + \frac{3\ln(x)}{x^2} \quad \text{ et } \quad g(x) = 2x^3 - 6\ln(x) + 3.$$

On note C_f la courbe représentative de f.

- 1. Étude du signe de g(x).
 - (a) Calculer g'(x) lorsque $x \in \mathbb{R}_+^*$.

- (b) Vérifier que l'équation g'(x) = 0 admet une unique solution p à préciser et construire le tableau de variation de g.
- (c) Calculer g(p) puis donner le signe de g(x) lorsque $x \in \mathbb{R}_{+}^{*}$.

2. Étude asymptotique de f.

- (a) Déterminer la limite de f(x) quand $x \to 0^+$ et quand $x \to +\infty$.
- (b) Montrer que la droite \mathcal{D} d'équation y = 2x est asymptote oblique de \mathcal{C}_f quand $x \to +\infty$ et préciser la position de cette asymptote par rapport à \mathcal{C}_f .

3. Représentation graphique de f.

(a) Démontrer que

$$\forall x \in \mathbb{R}_+^*, \quad f'(x) = \frac{g(x)}{x^3}.$$

- (b) Dresser le tableau de variation de f sur \mathbb{R}_+^* en indiquant dans celui-ci les limites de f en 0^+ et en $+\infty$.
- (c) Tracer sur un même dessin le graphe de C_f ainsi que celui de son asymptote \mathcal{D} .

Exercice 3 -

- On note E(X) et V(X) respectivement, l'espérance et la variance d'une variable aléatoire X et Cov(X,Y) la covariance de deux variables aléatoires X et Y.
- On donnera tous les résultats sous forme fractionnaire.

On dispose de deux urnes \mathcal{U}_1 et \mathcal{U}_2 . L'urne \mathcal{U}_1 contient 3 boules rouges et 2 boules vertes tandis que l'urne \mathcal{U}_2 contient 1 boule rouge et 4 boules vertes. On choisit une des deux urnes au hasard (c'est-à-dire que chacune des deux urnes a la même probabilité d'être choisie) puis on tire dans l'urne choisie une boule que l'on remet ensuite dans la même urne.

- Si la boule tirée est rouge, on effectue un second tirage d'une boule dans l'urne \mathcal{U}_1 .
- Si la boule tirée est verte, on effectue un second tirage d'une boule dans l'urne \mathcal{U}_2 .

Soient X_1 et X_2 les variables aléatoires définies par

 $X_1 = \begin{cases} 1 & \text{si la première boule tirée est rouge,} \\ 0 & \text{si la première boule tirée est verte.} \end{cases} \quad \text{et} \quad X_2 = \begin{cases} 1 & \text{si la deuxième boule tirée est rouge,} \\ 0 & \text{si la deuxième boule tirée est verte.} \end{cases}$

On note $Z = X_1 + X_2$.

- 1. (a) Montrer que $P(X_1 = 1) = \frac{2}{5}$. Quelle est la loi de la variable aléatoire X_1 ?
 - (b) Donner les valeurs de $E(X_1)$ et $V(X_1)$.
- 2. (a) Montrer que $P([X_2 = 0] \cap [Z = 0]) = \frac{12}{25}$.
 - (b) Donner sous forme de tableau, la loi du couple (X_2, Z) .
- 3. (a) Déterminer la loi de X_2 ainsi que $E(X_2)$ et $V(X_2)$.
 - (b) Les variables aléatoires X_1 et X_2 sont-elles indépendantes?
 - (c) Déterminer la loi de Z.
 - (d) Calculer E(Z). Montrer que $V(Z) = \frac{414}{625}$
- 4. On considère l'évènement "la première boule tirée est verte". Calculer la probabilité que cette boule verte provienne d'un tirage dans l'urne \mathcal{U}_1 .
- 5. On se propose dans cette question de calculer V(Z) par une autre méthode.
 - (a) Calculer $E(X_2Z)$.
 - (b) Montrer que $Cov(X_2, Z) = \frac{204}{625}$.
 - (c) En déduire la valeur de $Cov(X_1, X_2)$.
 - (d) Utiliser le résultat précédent pour calculer V(Z).