

TRABALHO DE OTIMIZAÇÃO

Alberto Francisco Kummer Neto

INF05010 - Otimização Combinatória — Outubro, 2019

- 1. Requisitos do trabalho
- 2. Problemas propostos
 - PFSP (Permutational Flowshop Scheduling Problem)
 - PMSP (Parallel Machines Scheduling Problem)
 - TSP-DL (Traveling Salesman Problem with Draft Limits)
- 3. Organização dos grupos
- Chamada

Desenvolvimento

- Leitura dos arquivo de instâncias
- Modelagem com GLPK/MathProg
- Implementação da heurística
- Testes com o modelo e heurística
- Escrita do relatório

Entrega

• Relatório + código fonte

Apresentação

• ± 20 minutos para cada grupo

Propostas de problema para 2019/2

- Mirrored Traveling Tournment Problem (mTTP)
- 2. Maximally Diverse Grouping Problem (MDGP)
- Home Health Care Routing and Scheduling Problem (HHCRSP)

Organizar a agenda de um campeonato esportivo

- Conjunto de n equipes (e n cidades-sede)
- Dois turnos
- Confronto completo por turno
- (n-1) rodadas por turno
- Turnos são espelhados

Objetivo: Minimizar os custos de deslocamento das equipes entre as cidades-sede.

Mais informações: veja no Github.

Campeonato brasileiro "adaptado"

- SPO (São Paulo)
- FLA (Rio de Janeiro)
- CRU (Belo Horizonte)
- GRE (Porto Alegre)

Primeiro turno					Segundo turno			
Equipe	R1	R2	R3		Equipe	R1	R2	R3
SPO	-GRE	CRU	-FLA		SPO	GRE	-CRU	FLA
FLA	CRU	GRE	SPO		FLA	-CRU	-GRE	-SPO
CRU	-FLA	-SPO	GRE		CRU	FLA	SPO	-GRE
GRE	-SPO	-FLA	-CRU		GRE	SPO	FLA	CRU

Minimize
$$\sum_{(ik)\in E} (d_{ik}y_{ik} + h_{ik}w_{ik}) + \sum_{i=1}^{m} g_i (s_i + e_i)$$
 (1)

Sujeito a:

$$\sum_{i=1}^{P} (x_{ij} + x_{i+1,j}) = 1 \qquad \forall i \in \{1, 3, 5, \dots, m-1\}$$
 (2)

$$x_{ij} + x_{kj} \leqslant 1 \qquad \forall (i,k) \in E, j \in \{1,\dots,p\}$$
 (3)

$$x_{ij} + x_{kj} - y_{ik} \le 1$$
 $\forall (i,k) \in E, j \in \{1, \dots, p-1\}$ (4)

$$x_{i,1} + x_{i+1,1} - s_i = 0$$
 $\forall i \in \{1, 3, 5, \dots, m-1\}$ (5)

$$x_{i,p} + x_{i+1,p} - e_i = 0$$
 $\forall i \in \{1, 3, 5, \dots, m-1\}$ (6)

PROBLEMAS PROPOSTOS MIRRORED TRAVELING TOURNMENT PROBLEM MODELAGEM COM PI

$$x_{i,1} + x_{kp} - w_{kj} \leqslant 1 \qquad \forall (i,k) \in E, i \in \{1,\dots,m\},$$
$$j = \text{espelha rodada de } i$$
 (7)

$$x_{aj} + x_{b,j+1} + x_{c,j+2} + x_{f,j+3} \leqslant 3$$

$$\forall j \in \{1, \dots, p-3\}$$
 rodadas $a, b, c \in f$ violam as restrições de consecutividade (8)

$$x_{ij} \in \{0, 1\}$$
 $\forall i \in \{1, \dots, m\}, j \in \{1, \dots, p\}$ (9)

$$y_{ik}, w_{ik} \in \{0, 1\} \qquad \forall (i, k) \in E$$
 (10)

$$s_i, e_i \in \{0, 1\}$$
 $\forall i \in \{1, \dots, m\}$ (11)

Formar grupos de diversidade máxima

- Conjunto de indivíduos
- Conjunto de grupos
- Tamanho mínimo e máximo dos grupos
- Diversidade definida por valor numérico

Objetivo: Preencher os grupos, maximizando a diversidade total da solução.

Mais informações: veja no Github.

Diversidade por gosto musical

- Rock: Sam, Melvin, Thais
- Funk: Izak, Kamila, Pamella
- K-Pop: Carol, Viviane, Wesley

Solução pouco diversa

G1: Sam, Thais, Izak, Kamila, Pamella (2)

G2: Melvin, Carol, Viviane, Wesley (2)

Solução mais diversa

G1: Sam, Pamella, Carol, Wesley (3)

G2: Melvin, Thais, Izak, Kamila,

Viviane (3)

Maximize
$$\sum_{g=1}^{m} \sum_{i \in V} \sum_{j \in V \setminus \{i\}} d_{ij} y_{ijg}$$
 (12)

Sujeito a:

$$\sum_{g=1}^{m} x_{ig} = 1 \qquad \forall i \in V$$
 (13)

$$\sum_{i=1}^{n} x_{ig} \geqslant a_g \qquad \forall g \in \{1, \dots, m\}$$
 (14)

$$\sum x_{ig} \leqslant b_g \qquad \forall g \in \{1, \dots, m\}$$
 (15)

$$x_{ig} + x_{jg} - 1 \leqslant y_{ijg} \qquad \forall g \in \{1, \dots, m\}, i \in V, j \in V \setminus \{i\}$$
 (16)

 $y_{ijq} \in \{0,1\}$

$$\sum_{i \in V \setminus \{j\}} y_{ijg} \geqslant (a_g - 1)x_{jg} \qquad \forall j \in V, g \in \{1, \dots, m\}$$

$$\sum_{i \in V \setminus \{j\}} y_{ijg} \leqslant (b_g - 1)x_{jg} \qquad \forall j \in V, g \in \{1, \dots, m\}$$

$$x_{ig} \in \{0, 1\} \qquad \forall j \in V, g \in \{1, \dots, m\}$$

$$(18)$$

 $\forall i \in V, j \in V \setminus \{i\},\$

 $q \in \{1, ..., m\}$

(20)

Atribuir médicos ao atendimento domiciliar

- Conjunto de pacientes
- Conjunto de especialidades médicas
- Conjunto de veículos
- Tempos de serviço dos pacientes
- Faixa de horário para atendimentos (início hard)
- Distâncias entre todos os pontos
- Ignorar as restrições de sincronização (31) e (32)

Objetivo: Elaborar a rota mais curta de cada veículo, atendendo a todos os pacientes e minimizando os atrasos de atendimento.

Mais informações: veja no Github.

Especialidades

V1: Fisio, Nutri ; V2: Oftalmo, Dermato

• P1: Oftalmo; P2: Fisio, Nutri; P3: Fisio

Faixas de horário

P1: 08:20–10:30

P2: 10:15–11:10

P3: 14:15–15:15

Veículo	Origem	H. Part.	Dest	H. Chegada	H. saída	Atraso
V1	Gar	08:00	P3	08:25	09:40	0
V1	P3	09:40	P2	10:10	11:21	11 mins.
V1	P2	11:21	Gar	11:41	_	_
V2	Gar	13:40	P1	14:15	14:45	0
V2	P1	14:45	Gar	15:18	_	_

Função objetivo ponderada

Minimize
$$\lambda_1 D + \lambda_2 T + \lambda_3 T^{\text{max}}$$
 (21)

Sujeito a:

$$D = \sum_{v \in \mathcal{V}} \sum_{i \in \mathcal{C}^0} \sum_{j \in \mathcal{C}^0} \sum_{s \in \mathcal{S}} d_{ij} x_{ijvs}$$
(22)

$$T = \sum_{i \in \mathcal{C}} \sum_{s \in \mathcal{S}} z_{is} \tag{23}$$

$$T^{\max} \geqslant z_{is}$$
 $\forall i \in \mathcal{C}, s \in \mathcal{S}$ (24)

$$\sum_{v=0}^{\infty} \sum_{s=0}^{\infty} \sum_{s=0}^{\infty} \sum_{s=0}^{\infty} x_{i0vs} \qquad \forall v \in \mathcal{V}$$
 (25)

$$\sum \sum_{i} \sum_{j \in \mathcal{I}} x_{jivs} = \sum_{i} \sum_{j \in \mathcal{I}} x_{ijvs} \qquad \forall i \in \mathcal{C}, v \in \mathcal{V}$$
 (26)

$$\sum_{v \in \mathcal{V}} \sum_{j \in \mathcal{C}^0} \mathbf{a}_{vs} x_{jivs} = \mathbf{r}_{is} \qquad \forall i \in \mathcal{C}, s \in \mathcal{S}$$
 (27)

$$t_{ivs_1} + \mathbf{p}_{is_1} + \mathbf{d}_{ij} \leqslant t_{jvs_2} + \mathbf{M} \left(1 - x_{ijvs_2} \right) \qquad \begin{cases} \forall i \in \mathcal{C}^0, j \in \mathcal{C}, \\ v \in \mathcal{V}, s_1, s_2 \in \mathcal{S} \end{cases}$$
 (28)

$$t_{ivs} \geqslant e_i$$
 $\forall i \in \mathcal{C}, v \in \mathcal{V}, s \in \mathcal{S}$ (29)

$$t_{ivs} \leqslant l_i + z_{is}$$
 $\forall i \in \mathcal{C}, v \in \mathcal{V}, s \in \mathcal{S}$ (30)

 $\forall i \in \mathcal{C}^0, v \in \mathcal{V}, s \in \mathcal{S}$

HEALTH CARE ROUTING AND SCHEDULING PROBLEM MODELAGEM COM PIM

$$t_{iv_{2}s_{2}} - t_{iv_{1}s_{1}} \geqslant \delta_{i}^{\min} - M \left(2 - \sum_{j \in \mathcal{C}^{0}} x_{jiv_{1}s_{1}} - \sum_{j \in \mathcal{C}^{0}} x_{jiv_{2}s_{2}} \right) \quad \forall i \in \mathcal{C}^{d}, v_{1}, v_{2} \in \mathcal{V}, \\ s_{1}, s_{2} \in \mathcal{S} : s_{1} < s_{2}$$
(31)

$$t_{iv_{2}s_{2}} - t_{iv_{1}s_{1}} \leqslant \delta_{i}^{\max} - M \left(2 - \sum_{j \in \mathcal{C}^{0}} x_{jiv_{1}s_{1}} - \sum_{j \in \mathcal{C}^{0}} x_{jiv_{2}s_{2}} \right) \quad \forall i \in \mathcal{C}^{d}, v_{1}, v_{2} \in \mathcal{V}, \\ s_{1}, s_{2} \in \mathcal{S} : s_{1} < s_{2}$$
(32)

$$x_{ijvs} \in \{0, \mathbf{a}_{vs} \mathbf{r}_{js}\} \qquad \forall i \in \mathcal{C}^{0}, v \in \mathcal{V}, s \in \mathcal{S}$$

$$t_{ivs}, z_{is} \geqslant 0 \qquad \forall i \in \mathcal{C}^{0}, v \in \mathcal{V}, s \in \mathcal{S}$$

$$(33)$$

$$D, T, T^{\max} \geqslant 0 \tag{35}$$

Organização dos grupos