# Ops 102: Intro to Computer Operations

Class 02

# **Ops 102 Overview**

### **Ops 102 Overview**

- What is a computer?
- Build a computer
- Startup sequence and BIOS
- Windows OS
- Devices, Drivers, and Software in Windows
- Security Controls
- Network Fundamentals
- Virtualization of Ubuntu Linux
- Command Line Interface

# Agenda

- 1. Review of previous class
  - Share your learning
- 2. Build a computer
  - USB Security
  - Bootable Windows 10 flash drive
  - Lab Assignment
  - Interfaces
  - Hardware components
- 3. Open Lab Time
  - Get all caught up!

# Agenda

- 1. Review of previous class
  - Share your learning
- 2. Build a computer
  - USB Security
  - Bootable Windows 10 flash drive
  - Lab Assignment
  - Interfaces
  - Hardware components
- 3. Open Lab Time
  - Get all caught up!

# Review

What did you learn?

# Review - What is a Computer?

- 1. What is a Computer?
  - Binary & Data
  - Circuits & Logic
  - Lab assignment
- 2. Inside a Computer
  - Disassembly
  - Lab assignment

# Agenda

- 1. Review of previous class
  - Share your learning

#### 2. Build a computer

- USB Security
- Bootable Windows 10 flash drive
- Lab Assignment
- Interfaces
- Hardware components
- 3. Open Lab Time
  - Get all caught up!

#### **USB Security**

- USB interface
  - Common peripherals
  - Can be "locked" by security software
  - Threat vector for malware, data exfiltration





### Warmup: Bootable USB

Take note!

# Activity: Bootable Windows 10 USB

- Create a Windows 10 bootable USB
  - Download <u>Windows Media</u>
    Creation Tool
  - Plug in a new USB and run Tool
  - Select Installation Media USB





# **Build a Computer**

Take note!

#### **Build a Computer**

- Why might we assemble a desktop computer?
  - Enthusiast PC
  - Component swap or upgrade
  - Enterprise with desktops on-site
  - Value Components more affordable
- What types of desktop computers are there?
  - Gaming
  - CAD Workstation
  - Office
  - Thinclient

#### **Memory**

- How do computers store data?
  - Volatile memory
    - CMOS
    - Random access memory (RAM)
    - Cache memory
  - Non-volatile memory
    - HDD, SSD
    - Read only memory (ROM)
    - Optical
    - Magnetic (Floppy, Tapes)









#### **Hard Drives**

- Platter drive (HDD)
  - Older, slower
  - Cheapter (gap is closing)
- Solid state drive (SSD)
  - Much faster than HDD
- M.2 drive
  - Slightly faster than SSD (often not appreciable difference)
  - Most expensive





#### Interfaces

- Why do computers have various interfaces?
  - Transfer data
- Types
  - User interface
  - Software interface
  - Hardware interface
- In our case we are studying hardware interface.





#### **USB**, Video Interfaces

- USB interfaces common for
  - Power charging
  - Data transfer



#### HDMI

#### DisplayPort

Home Theater Systems





#### **Digital Video Interface**







Source: The Computer Guy Blog



Source: L-COM What is a USB Cable



#### **Analog VS Digital**





- Both Analog and Digital signals use electricity to transmit information
- **Analog Signal**: Information translated into electric pulses of different amplitudes. Examples: VGA interface, old stereo receivers
- **Digital Signal**: Information is in binary format (0 and 1) and there are only two amplitudes. Examples: HDMI, modern stereo decks





#### **Data, Power Interfaces**

- Data interfaces
  - Serial ATA (SATA)
- Power interfaces
  - Serial ATA (SATA) power
  - Molex
- Power supply unit (PSU)
  - Convert Alternating Current (AC)
    to usable Direct Current (DC)
  - Newer units are modular
  - Motherboard, component power





Source: Wikimedia Commons





Source: Wikimedia Commons



#### **Build a Computer - Steps**

- Setup a PC case and power supply
- Install the CPU and heatsink + fan to motherboard
- Install memory components (RAM, SSD/HDD)
- Install all other components (GPU, Cooling, Sound Card, etc.)
- Attach power cabling from PSU to component
- Attach data cabling



## Demo - Build a PC

# Agenda

- 1. Review of previous class
  - Share your learning
- 2. Build a computer
  - USB Security
  - Bootable Windows 10 flash drive
  - Lab Assignment
  - Interfaces
  - Hardware components
- 3. Open Lab Time
  - Get all caught up!

# Lab

Wrap up your submissions!