9.9.2003 14:30-16:00 Uhr

Diplomvorprüfung

Mathematik für Physik 3

- 1. Aufgabe. Sei $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, $f(x,y) = 2x^3 3y^2 6xy$.
 - 1. Man berechne $\mathbf{grad} f(x,y)$ für alle $(x,y) \in \mathbb{R}^2$.
 - 2. Man zeige, dass (0,0)und (-1,1) genau die stationären Punkte von f sind.
 - 3. Für jeden der beiden stationären Punkte von f entscheide man jeweils, ob eine lokale Maximalstelle, eine lokale Minimalstelle oder ein Sattelpunkt vorliegt.

[12 Punkte]

2. Aufgabe. Sei $f:[0,\pi] \longrightarrow \mathbb{R}$, $f(t)=2\sin t$. Man berechne die Länge des Graphen von $f(graph(f)\subset\mathbb{R}^2)$, wenn \mathbb{R}^2 mit der Norm $\|\cdot\|_1$ versehen wird.

[8 Punkte]

Bitte wenden

3. Aufgabe. Für $D := \{(t, y) \in \mathbb{R}^2 : 1 - ty > 0\}$ und $f : D \longrightarrow \mathbb{R}$,

$$f\left(t,y\right) = \frac{y}{1 - ty}$$

sei die Differentialgleichung

$$y' = f(t, y) \qquad (\star)$$

gegeben. Die nebenstehende Skizze der Menge D darf ohne Beweis verwendet werden.

- 1. Man berechne $\partial_y f(t,y)$.
- 2. Warum ist $f: D \longrightarrow \mathbb{R}$ bezüglich y lokal Lipschitz-stetig?
- 3. Man zeige, dass f bezüglich y in $]-\infty,0] \times [0,\infty[$ Lipschitz-stetig mit Lipschitz-Konstante L=1 ist.
- 4. Man bestimme das maximale Lösungsintervall J und die Lösung $\varphi: J \longrightarrow \mathbb{R}$ der durch (\star) und y(0) = 0 gegebenen Anfangswertaufgabe.
- 5. Warum gibt es zu der durch (\star) und y(0) = a mit a > 0 gegebenen Anfangswertaufgabe ein maximales Lösungsintervall I und eine Lösung $\psi : I \longrightarrow \mathbb{R}$?
 - (a) Warum gilt $\psi(t) > 0$ für alle $t \in I$?
 - (b) Warum ist ψ auf I streng monoton steigend?
 - (c) Warum gilt $0 < \psi(t) \le a$ für alle $t \in I \cap]-\infty, 0]$?
 - (d) Man zeige $I =]-\infty, c[$ mit c > 0 und

$$\lim_{t \to c, t < c} t\psi(t) = 1.$$

 $\it Hinweis:$ Was sagt die Theorie über den Graphen der Lösungsfunktion $\psi?$

[24 Punkte]

Hinweis: Für das Bestehen der Prüfung sind 17 der 44 erreichbaren Punkte erforderlich. Ab 37 Punkten wird mit Note 1,0 bewertet.