Ecole Supérieure de la statistique et de l'analyse de l'information de Tunis

Pré-Examen pratique du logiciel Statistique SAS

Enseignant: Wajdi Ben Saad

Niveau : 1^{ère} Année | | Année : 2015-2016 Durée de l'épreuve : 45 minutes

Partie A:

1. En utilisant des macro variables, préparer les variables suivantes :

Lib_name = c:/ Tab_1 = Exam_Data

Tab_2 = Exam_Data_Formatted

- 2. Créer une librairie SAS ayant comme nom 'Exam' qui prend l'emplacement stocké dans la variable Lib_name.
- Insérer les données ci-dessous dans une table qui prend le nom de la variable Tab_1 et qui sera enregistrée dans la librairie 'Exam'.
- 4. La variable Country doit être convertie en majuscule, la variable Population utilisera l'informat 'Comma.'

Country	Population	Language	GDP
tunisia	11,118,000	Ar	\$46995
nigeria	184,264,000	Eg	\$568508
morroco	33,680,000	Ar	\$107005
algeria	39 ,903,000	Ar	\$214063
southAfrica	54,957,000	Eg	\$352817

5. Dans une nouvelle table qui prendra le nom stocké dans la variable *Tab_2*, changer la variable *Language* avec les formats suivants :

$$Ar = Arabic, Fr = French et Eg = English.$$

Partie B:

- 6. En utilisant *Proc Means*, calculer la moyenne et l'écart-type de la variable GDP.
- 7. Stocker ces 2 valeurs dans deux macro variables : 'm' pour la moyenne et 'stan_div' pour l'écart-type.
- 8. A l'aide d'une nouvelle étape Data, créer une table nommée '**Normal_dist'** qui sera enregistrée dans la librairie '**Exam'** et qui aura la table '**Exam_Data_Formatted**' comme source.
- Dans la table 'Normal_dist', créer une colonne appelée 'normal_curve' qui contiendra les valeurs de la fonction de répartition de la loi normale relative à la variable 'GDP'.

(Indication : utiliser la fonction ci-dessous. La constante π doit être remplacée par la valeur **3.14** dans l'équation, la fonction exponentiel de SAS peut être utilisée : $e^{x} = \exp(x)$).

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

10. Finalement, utiliser Proc Print pour afficher la table finale 'normal_curve' (voir table ci-dessous).

Obs	Country	Population	Language	GDP	normal_curve
1	TUNISIA	11,118,0	Arabic	46995	.000001148
2	NIGERIA	18,264,0	English	568508	.000000633
3	MORROCO	33,680,0	Arabic	107005	.000001471
4	ALGERIA	39,903,0	Arabic	214063	.000001868
5	SOUTHAFRICA	54,957,0	English	352817	.000001722