FCT/Unesp – Presidente Prudente Departamento de Matemática e Computação

Visualização de Informação: Introdução e Aplicações em Análise de Dados

Prof. Danilo Medeiros Eler danilo.eler@unesp.br

Sumário

- O que é Visualização?
- Porque Estudar Visualização?
- Exemplos Introdutórios de Aplicação em Análise de Dados

- Do dicionário Michaelis (Moderno Dicionário da Língua Portuguesa, Editora Melhoramentos, 1998, São Paulo):
 - Visualizar
 - Tornar visual ou visível
 - Ver uma imagem mental; figurar mentalmente
 - Visualização
 - Transformação de conceitos abstratos em imagens reais ou mentalmente visíveis
 - Conversão de números ou dados para um formato gráfico, que pode ser facilmente entendido

- Visualização não está relacionada ao computador
- Ben Shneiderman (1999)
 - O propósito da visualização é o insight, não as imagens
 - Principais objetivos desse insight
 - Realizar descobertas
 - Verificação de hipóteses
 - Tomada de decisões
 - Explicação de questões concretas

- A Visualização está relacionada com a cognição do ser humano
- Visualizar é algo que fazemos naturalmente
- O sistema visual humano é:
 - O sentido com maior capacidade de captação de informações por unidade de tempo
 - Rápido e paralelo
 - Treinado para reconhecer padrões

Onde está a estrela?

Despesas de casa

5	Contas	AGO	SET	OUT	NOV	DEZ	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	JAN
6	Condomínio (05)	179,61	183,81	201,21	219,73	238,10	168,90	160,10	148,00	170,35	152,55	157,70	162,25	171,25	155,85	148,90	150,35	132,20	148,32
7	Luz (10)	14,58	23,50	30,24	35,94	27,30	24,19	15,89	21,60	23,84	27,13	24,19	26,09	21,25	29,55	28,68	15,38	49,77	26,44
8	Conta Telefone (07)	51,40	38,35	149,00	143,95	164,10	126,68	25,49	148,88	174,76	132,51	56,90	254,52	185,74	114,42	171,74	98,16	183,39	114,57
9	Aluguel Telefone (27)	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00	40,00
10	Aluguel Apart. (01)	267,08	267,08	267,08	232,08	232,08	217,08	225,00	243,55	267,08	267,08	319,00	267,08	267,08	267,08	265,00	265,00	267,08	267,08
11	Faxina	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40	52,40
12	Multicanal (10)													59,90	59,90	59,90	57,90	59,90	59,90
13	Total	605,07	605,14	739,93	724,10	753,98	629,25	518,88	654,43	728,43	671,67	650,19	802,34	797,62	719,20	766,62	679,19	784,74	708,71

Despesas de Casa

Evolução das Despesas

Pessoa1	Pai-P1	Mãe-P1	Pessoa2	Pai-P2	Mãe-P2
Maria	João	Ana	Marcelo	João	Ana
Marcelo	João	Ana	Luísa	João	Ana
Luísa	João	Ana	Maria	João	Ana
lan	Júlia	Flávio	Fábio	Júlia	Flávio
Fábio	Júlia	Flávio	Bruno	Júlia	Flávio
Bruno	Júlia	Flávio	lan	Júlia	Flávio
Lia	Luísa	lan	Nicolau	Luísa	lan

Qual o nome dos avós de Lia?

Exemplo - Árvore Genealógica

- Qual é o estado com maior renda?
- Há alguma relação entre a renda e a escolaridade?
- Existem outliers (discrepantes, exceções)?

		Load Snap	Minnesota	30.4%	1438
State	College Degree %	Per Capita Income	Mississippi	19.9%	964
Alabama.	20.6%	11486	Missouri	22.3%	1298
Alaska	30.3%	17610	Montana	25.4%	1121
Arizona Arizona	27.1%	13461	Nebraska.	26.0%	1245
			Nevada	21.5%	1521
Arkansas	17.0%	10520	New Hampshire	32.4%	1595
California	31.3%	16409	New Jersey	30.1%	1871
Colorado	33.9%	14821	New Mexico	25.5%	1124
Connecticut	33.8%	20189	New York	29.6%	1650
Delaware	27.9%	15854	North Carolina	24.2%	1288
District of Columbia	36.4%	18881	North Dakota	28.1%	1105
Florida.	24.9%	14698	Ohio	22.3%	1346
Georgia	24.3%	13631	Oklahoma	22.8%	1189
Hawaii	31.2%	15770	Oregon	27.5%	1341
			Pennsylvania	23.2%	1406
ldaho	25.2%	11457	Rhode Island	27.5%	1498
Illinois	26.8%	15201	South Carolina South Dakota	23.0%	1189 1066
Indiana.	20.9%	13149	Tennessee	20.1%	1225
lowa.	24.5%	12422	Texas	25.5%	1290
Kansas	26.5%	13300	Utah	30.0%	1102
Kentucky	17.7%	11153	Vermont	31.5%	1352
Louisiana	19.4%	10635	▶ Virginia	30.0%	1571
Maine	25.7%	12957	Washington	30.9%	1492
Maryland	31.7%	17730	West Virginia	16.1%	1052
Massachusetts	34.5%	17224	Wisconsin	24.9%	1327
Michigan	24.1%	14154	Wyoming	25.7%	1231

- É a representação de um domínio utilizando gráficos, imagens, animações, interações para apresentar dados, estruturas e o comportamento de um conjunto de dados
- Técnicas são utilizadas para compreender os dados e extrair conhecimento

Telea (2015) Williams et al. (1995)

- Ward et al (2010) definem Visualização como a comunicação da informação utilizando representações gráficas
 - Imagens podem ser utilizadas como mecanismos de comunicação
 - Uma única imagem pode conter muita informação e pode ser processada mais rapidamente quando comparada com uma página com palavras ou números

Visualização no dia-a-dia

Imagem contendo a intensidade de fluxo de calor no

Brasil

http://1.bp.blogspot.com/-RXLzm9dsX6w/Ufem_gobJal/AAAAAAAAAAHog/5-aqGi-4zCU/s1600/geot%C3%A9rmico.jpg

Visualização no dia-a-dia

 Mapas de calor indicando o posicionamento de jogadores em campo

História da Visualização

- Em 1663, foi utilizada a visualização para evidenciar o local da origem do surto de cólera em Londres
 - Foi observado a quantidade de mortos perto da bomba d'água

História da Visualização

 Florence Nightingale, enfermeira britânica, apresentou mensalmente as mortes no exército

Abril/1854 – Março 1855

- Morte por doenças
- Morte ferimentos em batalha
- Outros tipos de morte

O propósito da visualização é obter 'insight' por meio de representações gráficas interativas, considerando vários aspectos relacionados a algum processo no qual estamos interessados

Adaptado de (Robert Spence, 2007)

 Nessa figura os dados são apresentados em uma escala uniforme em ambos os eixos

- Nessas figuras a escala foi alternada
 - Agrupamentos são criados na direção da escala

 Nessa figura são utilizados os valores originais dos dados, ou seja, os valores de mínimo e máximo dos eixos X e Y

- A visualização pode ser utilizada para distorcer a verdade
 - Pode ser utilizada com esse propósito

Same Data, Different Y-Axis

- Podemos usar diferentes maneiras de representar os dados
 - Podem impactar o resultado obtido na tomada de decisões

- Podemos usar diferentes maneiras de representar os dados
 - Podem impactar o resultado obtido na tomada de decisões

 Pipeline de visualização utilizado pela maioria dos sistemas

Exemplos de Aplicação em Análise de Dados

Processo de descoberta de conhecimento

[Fayyad, Piatetsky-Shapiro, and Smyth 1996]

- Muito pode ser realizado com estatísticas, mineração de dados, aprendizado de máquina, entre outras técnicas
- A Visualização possibilita explorar questões que não são diretamente efetuadas
 - Auxilia na formulação de novas questões
 - Distribuições, correlações e tendências são melhor compreendidas quando visualizadas

 Quarteto de Anscombe: Quatro conjuntos de dados que aparentam ser idênticos quando descritos por certas técnicas de estatística descritiva (como média, variância, correlação, regressão linear, entre outras)

- Por exemplo, a visualização pode apoiar
 - Exploração inicial do conjunto de dados
 - Entendimento das relações de similaridade entre instâncias
 - Entendimento do comportamento dos atributos
 - Intepretação dos modelos de aprendizagem de máquina

Dados estruturados

Identificador	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	74,6	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

Não Estruturados

Texto, Imagem, Som, Vídeo

- Conjunto de dados Iris
 - Contém 150 amostras de flores (iris) de três espécies: setosa, versicolor, e virginica
 - Coletadas por <u>Anderson (1935)</u>
 - inclui 50 observações de cada espécie, sendo registrados 4 atributos para cada observação: sepal length, sepal width, petal length, petal width (em cm)
 - Três espécies = três classes

Iris setosa

Iris versicolor

Iris virginica

■ 150 flores – 4 atributos – 3 classes

Instância	Comp Sépala	Larg Sépala	Comp Pétala	Larg Pétala	Classe				
FLOR 0	5.1	3.5	1.4	0.2	1				
FLOR 1	4.4	3	1.3	0.2	1				
FLOR 2	6.5	2.8	4.6	1.5	2				
FLOR 3	6.4	2.9	4.3	1.3	2				
FLOR 4	6.8	2.8	4.8	1.4	2				
FLOR 5	5.5	2.4	3.8	1.1	2				
FLOR 6	6.4	3.2	5.3	2.3	3				
FLOR 7	6.3	2.7	4.9	1.8	3				
•									
FLOR 145	5.5	2.4	3.7	1	2				
FLOR 146	5.5	2.6	4.4	1.2	2				
FLOR 147	5.8	2.6	4	1.2	2				
FLOR 148	5.7	2.8	4.1	1.3	2				
FLOR 149	7.7	3.8	6.7	2.2	3				

Gráfico de Dispersão (Scatter Plot)

Visualização de Conjuntos de Dados

Matriz de Gráfico de Dispersão (Scatter Plot Matrix)

Projeção Multidimensional

 Uma maneira de visualizar as relações de similaridade de um conjunto de dados é reduzir sua dimensionalidade

Projeção Multidimensional

- Exploração inicial do conjunto de dados
- Entendimento das relações de similaridade entre instâncias

Iris setosa

	sepal length	sepal width	petal length	petal width
100	5.1	3.5	1.4	0.2
	4.9	3	1.4	0.2
	•••	•••		
	5.9	3	5.1	1.8

Iris versicolor

Iris virginica

sepal	sepal	petal	petal
length	width	length	width
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
5.9	3	5.1	1.8

sepal	sepal	petal	petal
length	width	length	width
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
5.9	3	5.1	1.8

sepal	sepal	petal	petal
length	width	length	width
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
5.9	3	5.1	1.8

sepal length	sepal width	petal length	petal width
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
5.9	3	5.1	1.8

sepal	sepal	petal	petal
length	width	length	width
5.1	3.5	1.4	0.2

- versicolor
- setosa

Projeção e Coordenadas Paralelas

- Coordenação entre diferentes técnicas de visualização
- Entendimento do comportamento dos atributos

Projeção e Coordenadas Paralelas

- Coordenação entre diferentes técnicas de visualização
- Entendimento do comportamento dos atributos

Projeção e Coordenadas Paralelas

- Coordenação entre diferentes técnicas de visualização
- Entendimento do comportamento dos atributos

- Análise de algoritmos de agrupamento
 - Ex. k-means

- Análise de algoritmos de agrupamento
 - Ex. k-means

k=2

- Análise de algoritmos de agrupamento
 - Ex. k-means

k=3

- Análise de algoritmos de agrupamento
 - Ex. k-means

k=5

- Análise de algoritmos de agrupamento
 - Ex. k-means e DBSCAN

$$eps = 1$$

 $minPts = 5$

- Análise de algoritmos de classificação
 - □ Ex. k-NN

- Análise de algoritmos de classificação
 - Ex. k-NN

- Análise de algoritmos de classificação
 - Ex. k-NN

- Análise de algoritmos de classificação
 - Ex. k-NN

Amostragem

 Comparação de diferentes técnicas de amostragem (seleção de representativos)

Conclusões

- A visualização colabora com a exploração de conjuntos de dados
- É preciso estudar os principais conceitos e as técnicas para saber aplica-las
- É uma ferramenta útil para tarefas de análise de dados e de aprendizagem de máquina
- A visualização tem sido empregada em Explainable Artificial Intelligence (XAI)

Contato

- Página
 - https://daniloeler.github.io/
- Email
 - danilo.eler@unesp.br

Introdução à Visualização

https://daniloeler.github.io/

Introdução à Visualização

Universidade Estadual Paulista Júlio de Mesquita Filho (Unesp)

Faculdade de Ciências e Tecnologia de Presidente Prudente (FCT/Unesp)

Departamento de Matemática e Computação (DMC)

Programa de Pós-Graduação em Ciência da Computação (PPGCC/Unesp)

Visualização de Informação -- Turma 2020 Prof. Dr. Danilo Medeiros Eler

Aulas

- Introdução à Visualização
 - a. Parte 1 Visão Geral (video)
 - b. Parte 1 Visão Geral slides de aula (pdf)
 - c. Parte 2 Processo de Visualização (video)
 - d. Parte 2 Processo de Visualização slides de aula (pdf)
- 2. Fundamentos Sobre Dados
 - a. Parte 1 Tipos de Dados (video)
 - b. Parte 1 Tipos de Dados slides de aula (pdf)
 - c. Parte 2 Estrutura dentro e entre instâncias (video)
 - d. Parte 2 Estrutura dentro e entre instâncias slides de aula (pdf)
 - e. Parte 3 Processamento dos dados (video)
 - f. Parte 3 Processamento dos dados slides de aula (pdf)
 - g. Parte 3 Processamento dos dados exemplos com python (html)
- 3. Fundamentos de Visualização
 - a. Parte 1 Variáveis Visuais (video)
 - b. Parte 1 Variáveis Visuais slides de aula (pdf)
 - c. Parte 2 Taxonomia (video)
 - d. Parte 2 Taxonomia slides de aula (pdf)
- 4. Técnicas de Visualização para Dados Multivariados
 - a. Parte 1 Técnicas Orientadas a Pixel e Técnicas Iconográficas (video)
 - b. Parte 1 Técnicas Orientadas a Pixel e Técnicas Iconográficas slides de aula (pdf)
 - c. Parte 2 Técnicas Baseadas em Grafos e Técnicas Hierárquicas (video)
 - d. Parte 2 Técnicas Baseadas em Grafos e Técnicas Hierárquicas slides de aula (pdf)
 - e. Parte 3 Técnicas de Projeção Geométrica (video)
 - f. Parte 3 Técnicas de Projeção Geométrica slides de aula (pdf)
- 5. Visualização de Dados Não Estruturados
 - a. Parte 1 Coleções de Documentos (video)
 - b. Parte 1 Coleções de Documentos slides de aula (pdf)
 - c. Parte 2 Coleções de Imagens (video)
 - d. Parte 2 Coleções de Imagens slides de aula (pdf)
- 6. Conceitos de Interação
 - a. Conceitos de Interação (video)
 - b. Conceitos de Interação slides de aula (pdf)

- Ward, M., Grinstein, G. G., Keim, D. Interactive data visualization foundations, techniques, and applications. Natick, Mass., A K Peters, 2010.
- Robert Spence. Information Visualization:
 Design for Interaction. 2nd Edition. Pearson:
 Prentice Hall, 2007
- Alexandru C Telea. Data visualization: principles and practice. Boca Raton: CRC Press, 2015.

- Peter Lyman and Hal R. Varian, How Much Information, 2003; ww2.sims.berkeley.edu/research/projects/howmuch-info/
- Michael Friendly's web site
 - http://www.datavis.ca/
- TAN. Text mining: The state of the art and challenges. 1999. Disponível em: citeseer.ist.psu.edu/tan99text.html (acessado em 2006.08.10)

- Fayyad, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth. "The Kdd Process for Extracting Useful Knowledge from Volumes of Data." Commun. ACM 39 (11). New York, NY, USA: ACM: 27–34, 1996
- J. G. Williams, K. M. Sochats, and E. Morse. "Visualization." Annual Review of Information Science and Technology (ARIST) 30, 161–207, 1995
- Jennifer Tanaka. Drowning in Data,
 Newsweek,4/28/1998, p. 85

 W. E. Marcilio-Jr, Danilo M. Eler. SADIRE: a context-preserving sampling technique for dimensionality reduction visualizations. Journal of Visualization 23 (6), 999-1013, 2020

