第七节 单侧置信区间

- 一、问题的引入
- 二、基本概念
- 三、典型例题
- 四、小结

问题的引入

在以上各节的讨论中,对于未知参数 θ ,我们给 出两个统计量 θ , θ ,得到 θ 的双侧置信区间(θ , θ).

但在某些实际问题中,例如,对于设备、元 件的寿命来说, 平均寿命长是我们希望的, 我们 关心的是平均寿命 θ 的"下限";与之相反,在 考虑产品的废品率 p时, 我们常关心参数 p的 "上限",这就引出了单侧置信区间的概念.

二、基本概念

1. 单侧置信区间的定义

对于给定值 α (0 < α < 1), 若由样本 X_1 , X_2 , ..., X_n 确定的统计量 $\underline{\theta} = \underline{\theta}(X_1, X_2, ..., X_n)$, 对于任意 $\theta \in \Theta$ 满足

$$P\{\theta > \underline{\theta}\} \ge 1 - \alpha,$$

则称随机区间 ($\underline{\theta}$, + ∞) 是 θ 的置信水平为 $1-\alpha$ 的单侧置信区间, $\underline{\theta}$ 称为 θ 的置信水平为 $1-\alpha$ 的单侧置信下限.

又如果统计量 $\overline{\theta} = \overline{\theta}(X_1, X_2, \dots, X_n)$,对于任 意 $\theta \in \Theta$ 满足 $P\{\theta < \overline{\theta}\} \ge 1 - \alpha$,

则称随机区间 $(-\infty, \overline{\theta})$ 是 θ 的置信水平为 $1-\alpha$ 的单侧置信区间, $\overline{\theta}$ 称为 θ 的置信水平为 $1-\alpha$ 的单侧置信上限.

2. 正态总体均值与方差的单侧置信区间

设正态总体 X 的均值是 μ ,方差是 σ^2 (均为未知),

$$X_1, X_2, \dots, X_n$$
 是一个样本,由 $\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$,

有
$$P\left\{\frac{\overline{X}-\mu}{S/\sqrt{n}} < t_{\alpha}(n-1)\right\} = 1-\alpha,$$

$$\mathbb{P}\left\{\mu > \overline{X} - \frac{S}{\sqrt{n}}t_{\alpha}(n-1)\right\} = 1 - \alpha,$$

于是得μ的一个置信水平为1-α的单侧置信区间

$$\left(\overline{X}-\frac{S}{\sqrt{n}}t_{\alpha}(n-1),+\infty\right),$$

 μ 的置信水平为 $1-\alpha$ 的置信下限 $\underline{\mu} = \overline{X} - \frac{S}{\sqrt{n}} t_{\alpha} (n-1)$.

又根据
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
,

有
$$P\left\{\frac{(n-1)S^2}{\sigma^2} > \chi_{1-\alpha}^2(n-1)\right\} = 1-\alpha,$$

$$\mathbb{P}\left\{\sigma^{2} < \frac{(n-1)S^{2}}{\chi_{1-\alpha}^{2}(n-1)}\right\} = 1-\alpha,$$

于是得 σ^2 的一个置信水平为 $1-\alpha$ 的单侧置信区间

$$\left(0, \frac{(n-1)S^2}{\chi_{1-\alpha}^2(n-1)}\right),$$

 σ^2 的置信水平为 $1-\alpha$ 的单侧置信上限

$$\overline{\sigma^2} = \frac{(n-1)S^2}{\chi^2_{1-\alpha}(n-1)}.$$

三、典型例题

例1 设从一批灯泡中,随机地取5只作寿命试验,测得寿命(以小时计)为 1050, 1100, 1120, 1250, 1280,设灯泡寿命服从正态分布,求灯泡寿命平均值的置信水平为 0.95 的单侧置信下限.

解
$$1-\alpha=0.95$$
, $n=5$, $\bar{x}=1160$, $s^2=9950$,

$$t_{\alpha}(n-1) = t_{0.05}(4) = 2.1318,$$

μ的置信水平为 0.95 的置信下限

$$\underline{\mu} = \overline{x} - \frac{s}{\sqrt{n}}t_{\alpha}(n-1) = 1065.$$

例2 设总体 X 在[0, θ]上服从均匀分布,其中 θ ($\theta > 0$) 未知,(X_1, X_2, \dots, X_n) 是来自总体 X 的样本,给定 α ,求 θ 的置信水平为 $1-\alpha$ 的置信下限和置信上限.

解
$$\Leftrightarrow X_h = \max\{X_1, X_2, \dots, X_n\},$$

对于给定的 α , 找 $0 < \underline{\theta} \le 1$, 使 $P\left\{\theta > \frac{X_h}{\underline{\theta}}\right\} = 1 - \alpha$,

即
$$1-\alpha=\int_0^{\theta}nz^{n-1}dz=\underline{\theta}^n$$
,于是 $\underline{\theta}=\sqrt[n]{1-\alpha}$,

所以
$$P\left\{\frac{X_h}{\sqrt[n]{1-\alpha}} < \theta\right\} = 1-\alpha$$
,

 θ 的置信水平为 $1-\alpha$ 的置信下限 $\theta = \frac{X_h}{\sqrt[n]{1-\alpha}}$.

对于给定的 α , 找 $0 < \overline{\theta} < 1$, 使 $P\left\{\theta < \frac{X_h}{\overline{\theta}}\right\} = 1 - \alpha$,

即
$$1-\alpha=\int_{\overline{\theta}}^{1}nz^{n-1}dz=1-\overline{\theta}^{n}$$
, 于是 $\overline{\theta}=\sqrt[n]{\alpha}$,

所以
$$P\left\{\theta < \frac{X_h}{\sqrt[n]{\alpha}}\right\} = 1-\alpha$$
,

 θ 的置信水平为 $1-\alpha$ 的置信上限 $\overline{\theta} = \frac{X_h}{\sqrt[n]{\alpha}}$.

四、小结

正态总体均值 μ 的置信水平为 $1-\alpha$ 的单侧置信区间

$$\left(-\infty, \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha}(n-1)\right), \qquad \left(\overline{X} - \frac{S}{\sqrt{n}} t_{\alpha}(n-1)\right), + \infty \right),$$
 单侧置信上限 μ

正态总体方差 σ^2 的置信水平为 $1-\alpha$ 的单侧置信区间

$$\begin{pmatrix} 0, & (n-1)S^2 \\ \chi_{1-\alpha}^2 & (n-1) \end{pmatrix}$$
.
单侧置信上限 σ^2

