Integration by Parts Trigonometric Integrals Part 1

Dr. Ronald Koh ronald.koh@digipen.edu (Teams preferred over email)

AY 23/24 Trimester 1

Table of contents

- Recap/Revision
 - Last week's material
 - The Product Rule
- Integration by parts
 - Indefinite integrals
 - Choosing u
 - Definite integrals
- Trigonometric Integrals Part 1
 - Powers of sine and cosine

Integration by substitution

 Integration by substitution deals with the antiderivative of functions that have the form

$$f'(g(x))g'(x)$$
.

- We learned how to recognize integrands that have the above form.
- For indefinite integrals; with u = g(x) as the substitution,

$$\int f'(g(x))g'(x)\,dx = \int f'(u)\,du = f(g(x)) + C.$$

• For definite integrals; with u = g(x) as the substitution and FTC2,

$$\int_{a}^{b} f'(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f'(u) du = f(g(b)) - f(g(a)).$$

Ronald Koh Joon Wei Week 2 Lecture 3/25

Recap of the Product Rule

Lemma

When u and v are differentiable functions, then uv is also differentiable and

$$(uv)'(x) = u'(x)v(x) + u(x)v'(x),$$

or if the variable is already known, in a more succinct expression,

$$(uv)' = u'v + uv'.$$

Like in integration by substitution, we integrate this expression, but with a **slight modification**; we rearrange this expression to get

$$uv' = (uv)' - u'v.$$

'Reversing' the Product Rule

Integrating both sides of the following equation

$$uv' = (uv)' - u'v,$$

we get

$$\int uv' = uv - \int u'v.$$

Usually, the above formula is written as

$$\int u\,dv=uv-\int v\,du.$$

This is known as **integration by parts**.

Integration by parts formula

When integrating a product of functions uv', we can apply the **integration by parts** formula:

$$\int u\,dv=uv-\int v\,du.$$

Note: There is a significant overlap between integration by substitution and by parts, because integrands that look like f'(g(x))g'(x) are also a product of functions u and dv.

Generally, integration by substitution is easier and less tedious to evaluate compared to integration by parts.

Heuristic/Tip: We only apply integration by parts if the integrand is a product of functions u and dv **BUT** does not have the form f'(g(x))g'(x).

Ronald Koh Joon Wei Week 2 Lecture 6/25

Evaluate $\int x \sin x \, dx$.

Since we don't yet know how to choose u and dv, let's just try

$$u = \sin x$$
 and $dv = x$. Then $du = \cos x$ and $v = \frac{x^2}{2}$.

Therefore

$$\int x \sin x \, dx =$$

We have seen that in the previous choice of u and dv, we end up with an integral which is more difficult to integrate. So let's reverse the choices of u and dv:

$$u = x$$
 and $dv = \sin x$. Then $du = 1$ and $v = -\cos x$.

Now,

$$\int x \sin x \, dx =$$

Choosing u: LIATE prioritization tool

Example 1 strongly suggests that there is a way to choose u and dv so that subsequent applications of the 'by parts' formula will result in integrals that are easier to evaluate.

The **LIATE** prioritization tool below allows you to choose u based on the **difficulty of integration** (1 for most difficult, 5 for easiest):

1 Logarithmic functions, e.g. ln x.

Ronald Koh Joon Wei

- 2 Inverse trigonometric functions, e.g. $\sin^{-1} x$, $\tan^{-1} x$.
- **3** Algebraic functions, e.g. x^2 , 2x, x^{-1} , etc.
- **1** Trigonometric functions, e.g. $\sin x$, $\sec^2 x$, $\cos x$, etc.
- **5** Exponential functions, e.g. e^x , e^{2x} , etc.

In Example 1, x is ranked 3, and $\sin x$ is ranked 4, so we choose u = x, and $dv = \sin x$.

Week 2 Lecture

9/25

Evaluate $\int te^t dt$.

Evaluate $\int \ln x \, dx$.

Evaluate the following integrals.

13 / 25

Week 2 Lecture Ronald Koh Joon Wei

Integration by parts for definite integrals

The integration by parts formula for definite integrals can be obtained by applying the FTC2 to the formula for indefinite integrals:

Theorem

If u' and v' are continuous on [a, b], then

$$\int_{a}^{b} u(x)v'(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} v(x)u'(x) dx.$$

Evaluate
$$\int_0^{\pi} x \cos x \, dx$$
.

Ronald Koh Joon Wei Week 2 Lecture 15 / 25

Evaluate
$$\int_1^4 \frac{\ln x}{x^3} dx$$
.

Evaluate the following integrals.

$$\int_{1}^{2} x \ln x \, dx$$

Evaluate $\int \sin^2 x \cos^3 x \, dx$.

Week 2 Lecture Ronald Koh Joon Wei 19 / 25

Evaluate
$$\int \sin^3 x \cos^2 x \, dx$$
.

Ronald Koh Joon Wei Week 2 Lecture 20 / 25

Evaluate $\int \sin^2 x \, dx$.

Week 2 Lecture Ronald Koh Joon Wei 21 / 25

Method for integrating powers of sine and cosine (1)

Method for integrating $\int \sin^m x \cos^n x \, dx$:

• If n is odd, then n = 2k + 1 for some integer k. Then

$$\int \sin^m x \cos^n x \, dx = \int \sin^m x (\cos^2 x)^k \cos x \, dx$$
$$= \int \sin^m x (1 - \sin^2 x)^k \cos x \, dx$$

Then apply substitution $u = \sin x$. See Example 5.

Method for integrating powers of sine and cosine (2)

• If m is odd, then m = 2k + 1 for some integer k. Then

$$\int \sin^m x \cos^n x \, dx = \int (\sin^2 x)^k \cos^n x \sin x \, dx$$
$$= \int (1 - \cos^2 x)^k \cos^n x \sin x \, dx$$

Then apply substitution $u = \cos x$. See Example 6.

• If **both** *m* **and** *n* **are even**, we can use the double angle formulae (will be provided in assessments, see Example 8):

$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$
 and $\cos^2 x = \frac{1 + \cos(2x)}{2}$.

◆ロト ◆団ト ◆豆ト ◆豆ト □ りゅつ

23 / 25

Evaluate the following integrals.

$$\int \sin^5 x \cos^4 x \, dx$$