Note del corso di Geometria 1

Gabriel Antonio Videtta

27 marzo 2023

Titolo della lezione

SI
aVuno spazio vettoriale su $\mathbb K$ e si
a $\phi:V\times V\to \mathbb K$ un suo prodotto scalare.

Definizione. Due vettori $\underline{v}, \underline{w}$ si dicono **ortogonali** se e solo se $\varphi(\underline{v}, \underline{w}) = 0$.

Definizione. Preso un sottospazio $W \subseteq V$, si definisce lo spazio:

$$W^{\perp} = \{ \underline{v} \in V \mid \varphi(\underline{v}, \underline{w}) = 0, \forall \underline{w} \in W \},$$

detto sottospazio perpendicolare a W.

Nota. Tale notazione è valida anche per sottinsiemi generici di V, perdendo tuttavia la proprietà di sottospazio di V.

Osservazione. Valgono le seguenti osservazioni.

- $\blacktriangleright \ S \subseteq T \implies S^{\perp} \supseteq T^{\perp}.$
- ▶ $S^{\perp} = (\operatorname{Span}(S))^{\perp}$ (infatti, da sopra, vale l'inclusione $S^{\perp} \supseteq (\operatorname{Span}(S))^{\perp}$; l'inclusione vale anche al contrario, dacché ogni vettore ortogonale a S è ortogonale ad ogni combinazione lineare degli elementi di S, per la bilinearità di φ).

Teorema. (formula della dimensione dello spazio ortogonale) Sia $W \subseteq V$ un sottospazio di V. Allora vale la seguente identità:

$$\dim W^{\perp} = \dim V - \dim W + \dim(W \cap V^{\perp}),$$

da cui, se φ è non degenere,

$$\dim W^{\perp} = \dim V - \dim W.$$

Dimostrazione. Sia φ non degenere. Si osserva che $\underline{w} \in W^{\perp}$ è tale che $\alpha_{\varphi}(\underline{v})(\underline{w}) = 0 \ \forall \underline{v} \in V$, e quindi che $\alpha_{\varphi}(\underline{v}) \in \operatorname{Ann}(W)$, che ha dimensione dim $V - \dim W$.

Nel caso generale, si consideri l'applicazione $g=i^{\top}\circ\alpha_{\varphi}\circ i$, dove $i:W\to V$ è tale che $i(\underline{w})=\underline{w}$. Si osserva allora che $W^{\top}=\mathrm{Ker}(g)$.

Proposizione. $V=W\oplus W^\perp\iff W\cap W^\perp=\{\underline{0}\}\iff \varphi|_W$ è non degenere.

Dimostrazione.