Seguridad y Alta Disponibilidad

UNIDAD 1. PRINCIPIOS DE SEGURIDAD Y ALTA DISPONIBILIDAD

Objetivos

- Analizar la problemática general de la seguridad informática.
- Conocer los principios sobre los que se sustenta.
- Conocer el significado de alta disponibilidad.
- Identificar las principales vulnerabilidades, ataques y medidas de seguridad a adoptar sobre los sistemas.
- Diferenciar la seguridad física y lógica, y la pasiva de la activa

Contenidos

- 1. Introducción a la Seguridad Informática
- Fiabilidad, Confidencialidad, Integridad y Disponibilidad
- Elementos vulnerables en el sistema informático: Hardware, Software y Datos.
- 4. Amenazas
 - 4.1. Amenazas provocadas por las personas
 - 4.2. Amenazas físicas y lógicas
 - 4.3. Técnicas de ataque
- 5. Protección
 - 5.1. Auditoría de seguridad de sistemas de información
 - 5.2. Medidas de seguridad

1

INTRODUCCIÓN A LA SEGURIDAD INFORMÁTICA

Introducción a la Seguridad Informática (1)

Hoy en día, un sistema informático totalmente seguro es imposible. La conectividad global extiende el campo de posibles amenazas.

Seguridad informática:

Asegurar que los recursos del sistema de información sean utilizados de la manera que se decidió y que el acceso y modificación a la información sólo sea posible a las personas que se encuentren acreditadas y dentro de los límites de su autorización.

Introducción a la Seguridad Informática (2)

- Principales objetivos de la seguridad informática:
 - Detectar los posibles problemas y amenazas.
 - Garantizar la adecuada utilización de los recursos y de las aplicaciones de los sistemas.

- ✓ Limitar las pérdidas y conseguir una adecuada recuperación en caso de un incidente.
- ✓ Cumplir con el marco legal y con los requisitos impuestos a nivel organizativo.

2

FIABILIDAD, CONFIDENCIALIDAD, INTEGRIDAD Y DISPONIBILIDAD

Fiabilidad

- La **seguridad absoluta** no es posible.
- ➤ Seguridad informática: técnicas para obtener altos niveles de seguridad → FIABILIDAD
- Fiabilidad: probabilidad de que un sistema se comporte tal y como se espera de él.
- Pasamos a hablar de tener sistemas fiables en lugar de sistemas seguros

Fiabilidad

"El único sistema que es totalmente seguro es aquel que se encuentra apagado y desconectado, guardado en una caja fuerte de titanio que está enterrada en cemento, rodeada de gas nervioso y de un grupo de guardias fuertemente armados.

Aún así, no apostaría mi vida en ello "

Eugene H. Spafford

Confidencialidad, Integridad y Disponibilidad

Un sistema seguro (o fiable) consiste en garantizar

CIDAN

Confidencialidad
Integridad
Disponibilidad

+

Autenticación No repudio

Confidencialidad

Confidencialidad

- Propiedad de la información por la que se garantiza que está accesible únicamente a personal autorizado.
- Para un usuario que no tiene permiso para acceder a la información, ésta debe ser ininteligible. Sólo los individuos autorizados deben tener acceso a los recursos que se intercambian.

- Ejemplos:
 - EFS (Encrypted File System).
 - Cifrado asimétrico/simétrico en comunicaciones.

Confidencialidad

EFS (Encrypted File System).

Cifrado de archivos en Windows para particiones NTFS.

Confidencialidad

Cifrado asimétrico/simétrico en comunicaciones

Integridad

Propiedad que busca mantener los datos libres de modificaciones no autorizadas.

Asegura que los datos del sistema no han sido alterados ni cancelados por personas o entidades no autorizadas y que el contenido de los mensajes recibidos es el correcto.

- Ejemplos:
 - SFC (Windows)
 - Rootkit hunter (Linux)
 - Firma digital y funciones resumen para comunicaciones.

Integridad

SFC (System File Checker).

Utilidad de los sistemas Windows que comprueba la integridad de los archivos de sistema y reemplaza los que están corruptos o dañados por versiones correctas, si es posible.

Integridad

Rootkit Hunter

Herramienta GNU/Linux que, además de realizar la comprobación de integridad de los archivos de sistema (es decir, verificar que no han sido modificados), examina los permisos de los ejecutables del sistema y busca *rootkits* conocidos rastreando ficheros ocultos.

Instalación: \$ sudo aptitude install rkhunter

Ejecución: \$ sudo rkhunter -checkall

Función resumen

Disponibilidad

- Característica o condición de la información de encontrarse a disposición de quien debe acceder a ella.
- la información Permitirá esté que disponible cuando lo requieran las personas o entidades autorizadas

Ejemplos:

- <u>www.securityfocus.com</u>. Informes sobre vulnerabilidades en aplicaciones y SO.
- www.nessus.org. Detecta vulnerabilidades tanto para Windows como GNU/Linux.
- MBSA (Microsoft Baseline Security Analyzer). Detecta los errores más comunes de configuración de seguridad y actualizaciones de seguridad que falten para sistemas Windows.
- NMAP ("Mapeador de redes"). Herramienta de código abierto para efectuar rastreo de puertos. Se usa para evaluar la seguridad de sistemas informáticos y descubrir servicios o servidores en una red informática. www.insecure.org/nmap.

Disponibilidad

> Alta Disponibilidad (High Availability)

Capacidad de que aplicaciones y datos se encuentren operativos para los usuarios autorizados en todo momento y sin interrupciones.

Sistemas "24x7x365"

Mantener los sistemas funcionando 24 horas al día, 7 días a la semana y 365 días al año a salvo de interrupciones (previstas o imprevistas)

El mayor nivel acepta 5 minutos de inactividad al año → disponibilidad de 5 nueves: 99'999%

Ejemplo de Alta Disponibilidad: CPD

Confidencialidad, Integridad y Disponibilidad

Tienen que existir los tres aspectos para que haya seguridad

Autenticación

- Confirmación de la identidad de un usuario, aportando algún modo que permita probar que es quien dice ser.
- El sistema debe ser capaz de verificar que un usuario identificado que accede a un sistema o que genera una determinada información, es quien dice ser.

Solo cuando un usuario o entidad ha sido autenticado, podrá tener autorización de acceso.

Se puede exigir autenticación en la entidad origen de la información, en la de destino o en ambas.

Ejemplo: Usuario o login + contraseña o password

No Repudio

Estrechamente relacionado con la autenticación, permite probar la participación de las partes en una comunicación.

Existen dos posibilidades:

- No repudio en el origen: el emisor no puede negar el envío.
 La prueba la crea el propio emisor y la recibe el destinatario.
- No repudio en el destino: el receptor no puede negar que recibió el mensaje. La prueba la crea el receptor y la recibe el emisor.

CIDAN

Los distintos servicios de seguridad dependen jerárquicamente unos de otros. Es imprescindible que exista el nivel inferior para se pueda aplicar el siguiente.

3

ELEMENTOS VULNERABLES EN EL SISTEMA INFORMÁTICO: HARDWARE, SOFTWARE Y DATOS

Elementos vulnerables

Seguridad = problema integral

Los problemas de seguridad no pueden tratarse aisladamente.

Seguridad de todo el sistema = seguridad de su punto más débil.

- Elementos a proteger:
 - Software
 - Hardware
 - Datos ← Principal: es el más amenazado y el más difícil de recuperar

Elementos vulnerables

Distintos niveles de profundidad relativos a la seguridad informática:

LEGALES:

Ley Orgánica de Protección de Datos (LOPD)

ORGANIZATIVAS:

Políticas de seguridad de usuarios, niveles de acceso, contraseñas, normas, procedimientos...

FÍSICAS:

Ubicación de los equipos, suministro eléctrico, etc...

COMUNICACIONES:

Protocolos y medios de transmisión seguros, etc...

4 AMENAZAS

Amenazas provocadas por personas

- Propio personal de una organización
- Hackers
 - White | Grey | Black Hat
 - Cracker
 - Newbie
 - Wannaber
 - Phreaker
 - Script kiddie o Lammer
 - Luser (looser + user)

Pirata informático, ciberdelincuente o delincuente informático.

Amenazas físicas y medioambientales

- Afectan a las instalaciones y/o el HW contenido en ellas. Suponen el primer nivel de seguridad a proteger para garantizar la disponibilidad de los sistemas.
 - ✓ Robos, sabotajes, destrucción de sistemas.
 - Cortes, subidas y bajadas bruscas de suministros eléctricos
 - Condiciones atmosféricas adversas. Humedad relativa excesiva o temperaturas extremas.
 - Catástrofes (naturales o artificiales): terremotos, inundaciones, incendios, humo o atentados de baja magnitud, etc.
 - ✓ Interferencias electromagnéticas que afecten al normal comportamiento de circuitos y comunicaciones.

Amenazas lógicas

- Software o código que de una forma u otra pueden afectar o dañar a nuestros sistemas.
 - Creados de forma intencionada (malware) o por error (bugs o agujeros).
 - Herramientas de seguridad.
 - Falsos programas de seguridad (rogueware)
 - Puertas traseras (backdoors)
 - Virus
 - Gusano (worm)
 - Troyanos
 - Programas conejo o bacterias
 - Canales cubiertos

Técnicas de ataque

- Los tipos de amenazas pueden clasificarse en función de la técnica que empleen para realizar el ataque:
 - Malware
 - Ingeniería social
 - Scam
 - Spam
 - Sniffing
 - Spoofing
 - Pharming
 - Phishing
 - Password cracking
 - Botnet
 - Denegación de servicio o Denial of Service (DoS)

PROTECIÓN

Análisis de amenazas y riesgos potenciales para posteriormente adoptar medidas de seguridad.

- Los objetivos de una auditoría de seguridad en los S.I. son:
 - ✓ Revisar la seguridad de los entornos y sistemas.
 - ✓ Verificar el cumplimiento de la normativa y legislación vigentes.
 - ✓ Elaborar un informe independiente

Normativa:

COBIT

Objetivos de Control de las Tecnologías de la Información y relacionadas.

- ISO 27002

Código Internacional de buenas prácticas de seguridad de la información.

- ISO 27001

Sistemas de Gestión de Seguridad de la Información (*SGSI*). Requisitos.

Portal de ISO 27001 en español: www.iso27000.es

Fases:

¿Por qué son necesarias las auditorías?

Acciones como el constante cambio en las configuraciones, la instalación de parches, actualización del SW y la adquisición de nuevo HW hacen necesario que los sistemas estén continuamente verificados mediante auditoría.

Ejemplos prácticos:

- Auditoría wireless.
- Auditoría de acceso a sistemas operativos.
- Auditoría de acceso a datos y aplicaciones seguras.
- Auditoría de versiones inseguras de aplicaciones y sistema operativo.

Medidas de seguridad

Según el recurso a proteger:

- Seguridad física:
 - Trata de proteger el HW (robos, catástrofes naturales o artificiales...)
 - <u>Medidas</u>: ubicación correcta, medidas preventivas contra incendios o inundaciones, control de acceso físico.
- Seguridad lógica:
 - Protege el SW (SO + aplicaciones + información o datos del usuario)
 - Medidas: copias de seguridad, contraseñas, permisos de usuario, cifrado de datos y comunicaciones, SW antimalware, actualizaciones, filtrado de conexiones.
- Según el momento en que se ponen en marcha las medidas:
 - Seguridad activa: acciones previas a un ataque (medidas preventivas). Son todas las medidas de seguridad lógicas.
 - Seguridad pasiva: acciones posteriores a un ataque o incidente (medidas correctivas).
 Son todas las medidas de seguridad física y las copias de seguridad que permiten minimizar el efecto de un incidente.

Mantenerse siempre informado y al día es la primera y mejor recomendación en materia de seguridad informática