578

SECTION 8.8 EXERCISES

Getting Started

- If the interval [4, 18] is partitioned into n = 28 subintervals of equal length, what is Δx ?
- Explain geometrically how the Midpoint Rule is used to approximate a definite integral.
- Explain geometrically how the Trapezoid Rule is used to approximate a definite integral.
- If the Midpoint Rule is used on the interval [-1, 11] with n = 3subintervals, at what x-coordinates is the integrand evaluated?
- **5–8.** Compute the following estimates of $\int_0^8 f(x) dx$ using the graph in the figure.

- 5. M(4)
- **6.** T(4)
- 7. S(4)
- 8. S(8)
- If the Trapezoid Rule is used on the interval [-1, 9] with n = 5subintervals, at what x-coordinates is the integrand evaluated?
- Suppose two Trapezoidal Rule approximations of $\int_a^b f(x) dx$ are 10. T(2) = 6 and T(4) = 5.1. Find the Simpson's Rule approximation S(4).
- 11–14. Compute the absolute and relative errors in using c to approxi-
 - **11.** $x = \pi$; c = 3.14
- **12.** $x = \sqrt{2}$; c = 1.414
- **13.** x = e; c = 2.72
- **14.** x = e; c = 2.718

Practice Exercises

- 15–18. Midpoint Rule approximations Find the indicated Midpoint Rule approximations to the following integrals.
 - **15.** $\int_{2}^{10} 2x^2 dx$ using n = 1, 2, and 4 subintervals
 - **16.** $\int_{1}^{9} x^{3} dx$ using n = 1, 2, and 4 subintervals
 - 17. $\int_{0}^{1} \sin \pi x \, dx$ using n = 6 subintervals
 - **18.** $\int_{0}^{1} e^{-x} dx \text{ using } n = 8 \text{ subintervals}$
- 19-22. Trapezoid Rule approximations Find the indicated Trapezoid Rule approximations to the following integrals.
 - **19.** $\int_{2}^{10} 2x^2 dx$ using n = 2, 4, and 8 subintervals
 - **20.** $\int_{1}^{9} x^{3} dx$ using n = 2, 4, and 8 subintervals
 - 21. $\int_{0}^{1} \sin \pi x \, dx \text{ using } n = 6 \text{ subintervals}$

- 22. $\int_{0}^{1} e^{-x} dx \text{ using } n = 8 \text{ subintervals}$
- **23–26. Simpson's Rule approximations** Find the indicated Simpson's Rule approximations to the following integrals.
 - 23. $\int_{0}^{\pi} \sqrt{\sin x} \, dx$ using n = 4 and n = 6 subintervals
 - **24.** $\int_{a}^{8} \sqrt{x} \, dx \text{ using } n = 4 \text{ and } n = 8 \text{ subintervals}$
 - 25. $\int_{-2}^{3} e^{-x^2} dx \text{ using } n = 10 \text{ subintervals}$
 - **26.** $\int_{2}^{4} \cos \sqrt{x} \, dx \text{ using } n = 8 \text{ subintervals}$
- 27. Midpoint Rule, Trapezoid Rule, and relative error Find the Midpoint and Trapezoid Rule approximations to $\int_0^1 \sin \pi x \, dx$ using n = 25 subintervals. Compute the relative error of each approximation.
- Pears, 128. Midpoint Rule, Trapezoid Rule, and relative error Find the Midpoint and Trapezoid Rule approximations to $\int_0^1 e^{-x} dx$ using n = 50 subintervals. Compute the relative error of each approximation.
 - 29-34. Comparing the Midpoint and Trapezoid Rules Apply the Midpoint and Trapezoid Rules to the following integrals. Make a table similar to Table 8.5 showing the approximations and errors for n = 4, 8, 16, and 32. The exact values of the integrals are given for computing the error.

29.
$$\int_{1}^{5} (3x^2 - 2x) \, dx = 100$$

29.
$$\int_{1}^{5} (3x^2 - 2x) dx = 100$$
 30. $\int_{-2}^{6} \left(\frac{x^3}{16} - x\right) dx = 4$

31.
$$\int_0^{\pi/4} 3 \sin 2x \, dx = \frac{3}{2}$$
 32. $\int_1^e \ln x \, dx = 1$

32.
$$\int_{1}^{e} \ln x \, dx =$$

33.
$$\int_{0}^{\pi} \sin x \cos 3x \, dx = 0$$

33.
$$\int_0^{\pi} \sin x \cos 3x \, dx = 0$$
 34.
$$\int_0^8 e^{-2x} \, dx = \frac{1 - e^{-16}}{2}$$

35–36. River flow rates The following figure shows the discharge rate r(t) of the Snoqualmie River near Carnation, Washington, starting on a February day when the air temperature was rising. The variable t is the number of hours after midnight, r(t) is given in millions of cubic feet per hour, and $\int_0^{24} r(t) dt$ equals the total amount of water that flows by the town of Carnation over a 24-hour period. Estimate $\int_0^{24} r(t) dt$ using the Trapezoidal Rule and Simpson's Rule with the following values of n.

35.
$$n = 4$$

36.
$$n = 6$$