Devoir à la maison n° 16

À rendre le 29 mars

Soient E un \mathbb{R} -espace vectoriel et f un endomorphisme de E. On fait deux hypothèses :

- f n'est pas une homothétie de E;
- $\bullet \ f^2 = 5f 6\mathrm{Id}_E.$
- 1) Montrer que f est un automorphisme de E et exprimer f^{-1} en fonction de Id_E et f.
- 2) On note \mathscr{A} le sous-espace vectoriel $\operatorname{Vect}(\operatorname{Id}_E, f)$ de $\mathscr{L}(E)$.
 - a) Montrer que (Id_E , f) est une base de \mathscr{A} .
 - **b)** Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $f^n \in \mathcal{A}$.
- 3) Soit λ et μ deux réels, tels que $\mu \neq 0$. Montrer que $\lambda \operatorname{Id}_E + \mu f$ est un projecteur de E si et seulement si (λ, μ) est l'un des couples suivants : (-2, 1) ou (3, -1).

On pose $p = f - 2\operatorname{Id}_E$ et $q = -f + 3\operatorname{Id}_E$. On vient de voir que p et q sont deux projecteurs de E, de sorte que $p^2 = p$ et $q^2 = q$.

- **4)** a) Calculer p + q, $p \circ q$ et $q \circ p$.
 - b) En déduire que $\operatorname{Ker} p = \operatorname{Im} q$, que $\operatorname{Ker} q = \operatorname{Im} p$, puis que $\operatorname{Ker} p$ et $\operatorname{Ker} q$ sont supplémentaires dans E.
- 5) a) Montrer que (p,q) est une base de \mathscr{A} et déterminer les coordonnées de Id_E et f dans cette base.
 - **b)** Déterminer, au moyen de la formule du binôme de Newton, les coordonnées de f^n dans la base (p,q) pour tout $n \in \mathbb{N}$.
 - c) En déduire enfin les coordonnées de f^n dans la base (Id_E, f) pour tout $n \in \mathbb{N}$.

— FIN —