答

F 三次多项式在Q上的分裂域K · 说f(x)=x3+ax2+bx+ceQ(x)作变量代换 $y=x+\frac{a}{3}$, 得 $f(x)=y^3+Py+2$, 因此, 考虑 $f(x) = x^3 + px + 2$ 在Q上的分裂域,设f(x) = 0有三个 根以,从2,从3 \in C 有见 \in Q(从,从2,从3)=K \in C $\hat{z} = (\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2) = \det\left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \frac{1}{\lambda_3}\right) = \det(A)$ $S^2 = \det(AA^T) = \det\left(\frac{3}{0} + \frac{1}{2\lambda_1^2} + \frac{1}$ δ^2 是于的判别式, 刻划是否有重根. $\delta^2 \in \mathbb{Q}$ Case-1 fa)在Q(x)中形分,则以1,从2,从6Q或以6Q, $\alpha, \alpha, \beta \in \mathcal{G}(x) \in \mathcal{Q}(x)$ 的共轭根, $\mathcal{G}(x)$ 满足 $\mathcal{G}(x) = (x-\alpha)\mathcal{G}(x)$ $g(x) \in Q(x)$ 不可约,则 $K = Q(x_2)$ [K:Q] = 2. Case-2. f(x) EQ(x) 不可约.则以,从,从,从是见且至常识别 ind = dz, Ind = -2d, didz + didz + dzdz - P = di-2di = 2di =p3-局理-302=p3-30. 考虑fx, 若fx,在K中有 重根,则(f(x),f(x)) + 1.由f(x)不可约⇒f(x) |f(x)

> ■為■ ・ 由 扫描全能王 扫描创建

 $Q \subseteq Q(\alpha_i) \subseteq K$, $[Q(\alpha_i):Q]=3$. $K = Q(\alpha_1) \Leftrightarrow \alpha_2, \alpha_3 \in Q(\alpha_1) \Leftrightarrow \alpha_2 - \alpha_3 \in Q(\alpha_1) (因为$ $S = (\lambda_3 - \lambda_2)(\lambda_1 - \lambda_2)(\lambda_1 - \lambda_3) = (\lambda_3 - \lambda_2) \left| \lambda_1^2 - (\lambda_2 + \lambda_3) \lambda_1 + \lambda_2 \lambda_3 \right|$ $= (\alpha_3 - \alpha_2) \left[\alpha_1^2 + \alpha_1^2 + (-2) \cdot \frac{1}{\alpha_1} \right]$ $\Rightarrow \lambda_3 - \lambda_2 = \frac{\lambda_1 \delta}{2\lambda_1^3 - 9} \quad (5 \neq 0 \Rightarrow 2\lambda_1^3 - 9 \neq 0).$ 若S∈Q(a),则S∈Q,因为若SĖQ,Q⊆Q(S)⊆Q(a) $S^2 \in Q \Rightarrow [Q(S):Q]=2$ 2 | 3=[Q(以):Q] 矛盾! 若S&Q(di),则S&Q,QCQ(S)CK >[K:Q]有因子

2,同理 $Q \subseteq Q(\alpha) \subseteq K \Rightarrow 3[[k:Q]]$ 因此 $6[[k:Q], 但是习题 || 展示 [k:Q] \le 3! = 6$ 即 $[k:Q] = 6 \quad K = Q(\alpha, S)$