CS 511, Fall 2024, Lecture Slides 17 Syntax of Predicate Logic (aka First-Order Logic)

Assaf Kfoury

1 October 2024

from English reasoning to formal reasoning:

for all x, if x is a bird then x has wings

for all x, if x has wings then x can fly

Coco is a bird

Coco has wings

Coco's mother can fly

from English reasoning to formal reasoning:

for all x, if x is a bird then x has wings	$\forall x \ (B(x) \ \to \ W(x))$
for all x , if x has wings then x can fly	$\forall x \ (W(x) \ \to \ F(x))$
Coco is a bird	$B(\mathbf{C})$
Coco has wings	$W(\mathbf{C})$
Coco's mother can fly	$F(m(\mathbf{C}))$

from English reasoning to formal reasoning:

for all x, if x is a bird then x has wings	$\forall x \ (B(x) \ \to \ W(x))$
for all x , if x has wings then x can fly	$\forall x (W(x) \to F(x))$
Coco is a bird	$B(\mathbf{C})$
Coco has wings	$W(\mathbf{C})$
Coco's mother can fly	$F(m(\mathbf{C}))$
it is not the case that for all $x \dots$	$\neg(\forall x (B(x) \to W(x)))$
there exists an x such that	$\exists x \ (B(x) \ \land \ \neg W(x))$

 $\forall x (D(x)) \setminus W(x)$

WFF's of predicate logic

vocabulary (a.k.a. similarity type, a.k.a. signature):

terms:

well-formed formulas:

WFF's of predicate logic

- vocabulary (a.k.a. similarity type, a.k.a. signature):
 - $_{\otimes}$ set \mathcal{P} of **predicate** symbols, each of arity $n \geqslant 0$
 - \otimes set \mathcal{F} of **function** symbols, each of arity $n \geqslant 1$
 - \otimes set $\mathcal C$ of **constant** symbols, (a.k.a. functions of arity = 0)
- terms:
 - \otimes a variable x is a term
 - \otimes a constant $c \in \mathcal{C}$ is a term
 - \otimes if t_1,\ldots,t_n are terms and $f\in\mathcal{F}$ is n-ary, $f(t_1,\ldots,t_n)$ is a term
 - ▶ as a BNF definition: $t ::= x \mid c \mid f(t, ..., t)$
- well-formed formulas:

$$\varphi ::= P(t_1, \ldots, t_n) | (t_1 \approx t_2) | (\neg \varphi) | (\varphi \wedge \varphi) | (\varphi \vee \varphi) | (\varphi \rightarrow \varphi) | (\forall x \varphi) | (\exists x \varphi)$$

WFF's of predicate logic

- vocabulary (a.k.a. similarity type, a.k.a. signature):
 - \otimes set \mathcal{P} of **predicate** symbols, each of arity $n \geqslant 0$
 - \otimes set \mathcal{F} of **function** symbols, each of arity $n \geqslant 1$
 - \otimes set $\mathcal C$ of **constant** symbols, (a.k.a. functions of arity = 0)
- terms:
 - \otimes a variable x is a term
 - \otimes a constant $c \in \mathcal{C}$ is a term
 - $_{\otimes}$ if t_1,\ldots,t_n are terms and $f\in\mathcal{F}$ is n-ary, $f(t_1,\ldots,t_n)$ is a term
 - ▶ as a BNF definition: $t ::= x \mid c \mid f(t,...,t)$
- well-formed formulas:

$$\varphi ::= P(t_1, \ldots, t_n) | (t_1 \approx t_2) | (\neg \varphi) | (\varphi \wedge \varphi) | (\varphi \vee \varphi) | (\varphi \rightarrow \varphi) | (\forall x \varphi) | (\exists x \varphi)$$

are all WFF's of propositional logic WFF's of predicate logic?

free and bound variables

- lacktriangle a variable x may occur free or bound in a WFF φ
- ▶ if x is bound in φ , then there are ≥ 0 bound occurrences of x and ≥ 1 binding occurrences of x in φ
- ▶ a **binding** occurrence of x is of the form " $\forall x$ " or " $\exists x$ "
- ▶ if a binding occurrence of x occurs as $(\mathbf{Q}x \varphi)$ where $\mathbf{Q} \in \{\forall, \exists\}$, then φ is the **scope** of the binding occurrence
- ightharpoonup scopes of two binding occurrences " $\mathbf{Q}x$ " and " $\mathbf{Q}'x'$ " may be

disjoint:
$$\cdots$$
 ($\mathbf{Q}x \cdots \cdots$) \cdots ($\mathbf{Q}'x' \cdots \cdots$) \cdots or nested: \cdots ($\mathbf{Q}x \cdots (\mathbf{Q}'x' \cdots \cdots) \cdots$) \cdots

but cannot overlap

the set of free variables in terms t and WFF's φ :

$$\mathsf{FV}(t) = \begin{cases} \varnothing & \text{if } t = c \\ \{x\} & \text{if } t = x \\ \mathsf{FV}(t_1) \cup \dots \cup \mathsf{FV}(t_n) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

$$\mathsf{FV}(\varphi) = \begin{cases} \mathsf{FV}(t_1) \cup \mathsf{FV}(t_n) & \text{if } \varphi = P(t_1, \dots, t_n) \\ \mathsf{FV}(t_1) \cup \mathsf{FV}(t_2) & \text{if } \varphi = (t_1 \approx t_2) \\ \mathsf{FV}(\varphi') & \text{if } \varphi = \neg \varphi' \\ \mathsf{FV}(\varphi_1) \cup \mathsf{FV}(\varphi_2) & \text{if } \varphi = (\varphi_1 \star \varphi_2), \star \in \{\land, \lor, \rightarrow\} \\ \mathsf{FV}(\varphi') - \{x\} & \text{if } \varphi = (\mathbf{Q}x \ \varphi') \ \text{and} \ \mathbf{Q} \in \{\forall, \exists\} \end{cases}$$

• the set of **free variables** in terms t and WFF's φ :

$$\mathsf{FV}(t) = \begin{cases} \varnothing & \text{if } t = c \\ \{x\} & \text{if } t = x \\ \mathsf{FV}(t_1) \cup \cdots \cup \mathsf{FV}(t_n) & \text{if } t = f(t_1, \ldots, t_n) \end{cases}$$

$$\mathsf{FV}(t_1) \cup \mathsf{FV}(t_2) & \text{if } \varphi = P(t_1, \ldots, t_n) \\ \mathsf{FV}(t_1) \cup \mathsf{FV}(t_2) & \text{if } \varphi = (t_1 \approx t_2) \\ \mathsf{FV}(\varphi') & \text{if } \varphi = \neg \varphi' \\ \mathsf{FV}(\varphi_1) \cup \mathsf{FV}(\varphi_2) & \text{if } \varphi = (\varphi_1 \star \varphi_2), \star \in \{\land, \lor, \to\} \\ \mathsf{FV}(\varphi') - \{x\} & \text{if } \varphi = (\mathbf{Q}x \ \varphi') \ \mathsf{and} \ \mathbf{Q} \in \{\forall, \exists\} \end{cases}$$

■ assumption: every variable x has ≤ 1 binding occurrence in any WFF (is this realistic?)

this assumption is not essential, but without it, a variable may occur both free and bound in the same WFF.

- $ightharpoonup \varphi$ is closed iff $FV(\varphi) = \varnothing$
- how to satisfy the following assumption: every variable x has ≤ 1 binding occurrence in any WFF?
- ightharpoonup consider a WFF φ (not satisfying the assumption), say:

$$\varphi = \cdots \left(\mathbf{Q}_1 x \left(\cdots x \cdots \right) \right) \cdots \left(\mathbf{Q}_2 x \left(\cdots x \cdots \right) \right) \cdots$$

where $\textbf{Q}_1,\textbf{Q}_2 \in \{\forall,\exists\}$

 \blacktriangleright is φ equivalent to:

$$\varphi' = \cdots \left(\mathbf{Q}_1 \, x \, (\cdots \, x \, \cdots) \right) \, \cdots \, \left(\mathbf{Q}_2 \, x' \, (\cdots \, x' \, \cdots) \, \cdots \right) \, ??$$

 \triangleright yes, φ and φ' are equivalent

Exercise: define the algorithm to transform φ into φ'

renaming binding occurrences " $\mathbf{Q}_1 x$ " and " $\mathbf{Q}_2 x$ " in **disjoint** scopes

renaming binding occurrences " $\mathbf{Q}_1 x$ " and " $\mathbf{Q}_2 x$ " in **nested** scopes

substitution examples in $\varphi = (\forall x \ (P(x) \land Q(x,y))) \rightarrow (\neg P(x) \lor Q(x,y))$

substitute f(c) for y in φ : $\varphi[f(c)/y]$ (also written $\varphi[y:=f(c)]$)

substitution examples in $\varphi = (\forall x \ (P(x) \land Q(x,y))) \rightarrow (\neg P(x) \lor Q(x,y))$

substitute f(c) for x in φ : $\varphi[f(c)/x]$

substitution examples in $\varphi = (\forall x \ (P(x) \land Q(x,y))) \rightarrow (\neg P(x) \lor Q(x,y))$

substitute f(x) for y in φ : $\varphi[f(x)/y]$

formal definition of substitution

p given: term t, WFF φ , variable x, term u

$$t[u/x] = \begin{cases} c & \text{if } t = c \\ u & \text{if } t = x \\ y & \text{if } t = y \text{ and } y \neq x \\ f(t_1[u/x], \dots, t_n[u/x]) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

$$\varphi[u/x] = \begin{cases} P(t_1[u/x], \dots, t_n[u/x]) & \text{if } \varphi = P(t_1, \dots, t_n) \\ (t_1[u/x] \approx t_2[u/x]) & \text{if } \varphi = (t_2 \approx t_2) \\ \neg(\varphi'[u/x]) & \text{if } \varphi = \neg \varphi' \\ \varphi_1[u/x] \star \varphi_2[u/x] & \text{if } \varphi = \varphi_1 \star \varphi_2 \text{ and } \\ \star \in \{\land, \lor, \to\} \\ \mathbf{Q}y \ (\varphi'[u/x]) & \text{if } \varphi = \mathbf{Q}y \ \varphi', \\ \mathbf{Q} \in \{\forall, \exists\}, x \neq y, \text{ and } \\ u \text{ is } \mathbf{substitutable} \text{ for } x \text{ in } \varphi \\ \mathbf{Q}y \ \varphi' & \text{if } \varphi = \mathbf{Q}y \ \varphi', \\ \mathbf{Q} \in \{\forall, \exists\}, x = y \end{cases}$$

