

本讲内容:

- 一、逻辑代数(布尔代数、开关代数)
- 二、几种常用的数制
- 三、二进制算术运算
- 四、二进制代码

1 1 1

第一讲 概 述

一、逻辑代数(布尔代数、开关代数)

逻辑: 事物因果关系的规律

逻辑函数:逻辑自变量和逻辑结果的关系

$$Z = f(A, B, C \cdots)$$

逻辑变量取值: 0、1 分别代表两种对立的状态

一种状态	高电平	真	是	有	• • •	1	0
另一状态	低电平	假	非	无	•••	0	1

二、几种常用的数制

数制的相关概念

- 数制:多位数码每一位的构成以及从低位到高位的进位规则称为进位计数制,简称数制。
- 基数:进位制的基数,就是在该进位制中可能用到的数码个数。
- 位权(位的权数):在某一进位制的数中,每一位的大小都对应着该位上的数码乘上一个固定的数, 这个固定的数就是这一位的权数。权数是一个幂。

二、几种常用的数制

1. 十进制(Decimal)

数码: 0~9; 位权: 10ⁱ

基数是10。用字母D表示

运算规律:逢十进一,即:9+1=10。

十进制数的权展开式: $D = \sum k_i \times 10^i$

通用权展开式: $D = \sum k_i \times N^i$

 $(12345)_{10} = 1 \times 10^4 + 2 \times 10^3 + 3 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$

 $(143.75)_{10} = 1 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0} + 7 \times 10^{-1} + 5 \times 10^{-2}$

2. 二进制 (Binary)

数码为: 0、1; 位权: 2ⁱ

基数是2。用字母B表示

运算规律:逢二进一,即:1+1=10。

二进制数的权展开式: $D=\sum k_i \times 2^i$

$$(1011)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

3. 八进制(Octal)

数码为: $0\sim7$; 位权: 8^{i}

基数是8。用字母0表示

运算规律: 逢八进一, 即:7+1=10。

八进制数的权展开式: $D = \sum k_i \times 8^i$

$$(37.41)_8 = 3 \times 8^1 + 7 \times 8^0 + 4 \times 8^{-1} + 1 \times 8^{-2}$$

4. 十六进制 (Hexadecimal) -- 逢十六进一

数码为: 0~9、A~F; 位权: 16ⁱ

基数是16。用字母H来表示

运算规律:逢十六进一,即:F+1=10。

十六进制数的权展开式: $D = \sum k_i \times 16^i$

几种进制数之间的对应关系

	1	1	
十进制数 D	二进制数 B	八进制数 O	十六进制数 H
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	\mathbf{A}
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	\mathbf{E}
15	1111	17	F

5. 几种常用进制数之间的转换

(1) 二-十转换: 将二进制数按位权展开后相加

$$(101.11)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$$

= $4 + 1 + 0.5 + 0.25 = (5.75)_{10}$

(2) 十-二转换:

整数的转换--连除法

$$(26)_{10} = (11010)_2$$

除 得 作 从 到 数 数 数 位 位 后 位

小数的转换--连乘法

$$(0.8125)_{10} = (0.1101)_{2}$$

若小数在连乘多次后 不为0,一般按照精确度 要求(如小数点后保留n位)得到n个对应位的系 数即可。

$$\frac{\times 2}{1.6250}$$

$$\times$$
 2

乘基数 取整数 作系数 从高位 到低位

快速转换法: 拆分法

$$(26)_{10} = 16 + 8 + 2 = 2^4 + 2^3 + 2^1 = (11010)_2$$

$$(\begin{array}{ccccc} 010 & 101 & 111 \\ \downarrow & \downarrow & \downarrow \\ 2 & 5 & 7 \end{array})_2 = (\begin{array}{ccccc} 257 \\ \rangle_8 \\ \end{array}$$

$$(010\ 011\ 100\ 001.\ 000\ 110)_2 = (2341.\ 06)_8$$

(4) 八-二转换:每位8进制数转换为相应3位二进制数

$$(31.47)_8 = (011\ 001\ 100\ 111)_2$$

$$(375.64)_8 = (011 111 101.110 100)_2$$

(5) 二-十六转换:

每4位二进制数相当一位16进制数

$$(26)_{10} = (0001 \ 1010)_2 = (1A)_{16}$$

$$(0001\ 1011\ 0110.0010)_2 = (1B6.2)_{16}$$

(6) 十六-二转换:

每位16进制数换为相应的4位二进制数

$$(8FA.C6)_{16} = (1000 1111 1010.1100 0110)_2$$

$$(ED8.2F)_{16} = (1110 1101 1000.0010 1111)_2$$

三、二进制算术运算

1. 二进制算术运算的特点

二进制算术运算和十进制算术运算规则基本相同,区 别是"**逢二进**一"。

加法运算

1001

+0101

1 1 1 0

减法运算

1001

<u>- 0 1 0 1</u>

0100

乘法运算

$$\begin{array}{r}
1001 \\
\times 0101 \\
1001 \\
0001 \\
0000 \\
0101101$$

除法运算

2. 反码、补码和补码运算

原码

最高位作为符号位,正数为0,负数为1,其余位位为数值位,表示数值的大小。

反码

正数的反码与其原码相同;负数的反码 是对其原码数值位逐位取反,符号位不变。

补码

正数的补码和它的原码相同;负数的补码需先将其原码数值位逐位求反,然后加1.

例1 写出带符号位二进制数00011010 (+26)、10011010 (-26)、00101101 (+45)、10101101的反码和补码。

解:

原码	反码	补码		
00011010	00011010	00011010		
10011010	11100101	11100110		
00101101	00101101	00101101		
10101101	11010010	11010011		

例2 用二进制补码运算求出13+10、13-10、 -13+10、-13-10。

二进制加、减、乘、除都可以用加法运算来实现。

编码: 用二进制数表示文字、符号等信息的过程。

二进制代码:编码后的二进制数。

十进制代码:

用二进制代码表示十个数字符号 0~9 这十个状态,又称为 BCD 码 (Binary Coded Decimal)

几种常见的BCD代码:

8421码 2421码 5211码 余 3 码 余 3 循环码

其他代码: ISO 码, ASCII码(美国信息交换标准代码)

十进	几种常见的 BCD 代码						
制数	8421 码	余3码	2421(A)码	5211 码	余3循环码		
0	0000	0011	0000	0000	0010		
1	0001	0100	0001	0001	0110		
2	0010	0101	0010	0100	0111		
3	0011	0110	0011	0101	0101		
4	0100	0111	0100	0111	0100		
5	0101	1000	1011	1000	1100		
6	0110	1001	1100	1001	1101		
7	0111	1010	1101	1100	1111		
8	1000	1011	1110	1101	1110		
9	1001	1100	1111	1111	1010		
权	8421		2 4 2 1	5211			

逻辑代数基础

ASCII码表

b7b6b5 b4b3b2b1	000	001	010	011	100	101	110	111
0000	NUL	DLE	SPACE	0	@	P		P
0001	SOH	DC1	1	1	A	Q	A	Q
0010	STX	DC2	12	2	В	R	В	R
0011	ETX	DC3	#	3	C	S	C	S
0100	EOT	DC4	S	4	D	T	D	T
0101	ENO	NAK	%	5	E	U	E	U
0110	ACK	SYN	&	6	F	V	F	V
0111	BEL	ETB		7	G	W	G	W
1000	BS	CAN	(8	Н	X	Н	X
1001	HT	EM)	9	I	Y	I	Y
1010	LF	SUB	*	i.	J	Z	J	Z
1011	VT	ESC	+	•	K	[K	{
1100	FF	FS	19	<	L	1	L	1
1101	CR	GS	+:	=	M	}	M]
1110	so	RS		>	N	↑	N	~
1111	SI	US	/	?	0	<	0	DEL