# **Computational and Numerical Methods Lab - 2**

```
Abhimanyu Karia - 202201435
Devarshi Patel - 202201447
```

# **Bisection Method**

Algorithm of bisection method:

- 1. Select 2 initial points a,b such that f(a)\*f(b)<0.
- 2. c=(a+b)/2, that is the midpoint of a and b.
- 3. if f(c) < e for some suitable number e, then we will stop the iteration and output c. In our case e=0.00001.
- 4. else, if f(a)\*f(c)<0, we will change value of b to equal c.
- 5. else, if f(b)\*f(c)<0, we will change value of a to equal c. Continue to iterate till we do not get the output.

```
In [ ]: import math as mt
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
In [ ]: err = 0.0001
```

# Q - 1

```
In [ ]: def maxiter(a0,b0,err):
            return mt.ceil(np.log2((b0-a0)/err) - 1)
        def fun(x):
            return x**6 - x - 1
        def bisection_get_roots(a,b,err):
            n = maxiter(a,b,err)
            roots = []
            data = []
            error = []
            x_range = np.arange(-5,5+err,err)
            for i in range(n):
                x = (a+b)/2
                roots.append(x)
                fa = fun(a)
                fb = fun(b)
                fx = fun(x)
                temp = [i+1,a,b,x,b-x,fx]
                data.append(temp)
```

```
error.append(b-x)
    if fa*fx == 0 or fb*fx == 0:
        break
    elif fa*fx < 0 :</pre>
        b = x
    else:
        a = x
df = pd.DataFrame(data,columns=['Iteration','an','bn','c','b-c','f(c)'])
print('root is :',roots[-1])
roots = np.array(roots)
iter = np.arange(1,n+1,1)
plt.figure(1)
plt.plot(x_range,fun(x_range))
plt.title("Graph of function")
plt.xlabel('x')
plt.ylabel('f(x)')
plt.grid(True)
plt.show()
plt.figure(2)
plt.plot(iter,error,label = 'Root = ' + str(roots[-1]))
plt.title("Convergence towards root over iterations")
plt.xlabel('Iteration Number')
plt.legend()
plt.ylabel('Error')
plt.grid(True)
plt.show()
return df
```

$$x^6 - x - 1$$

```
In [ ]: df = bisection_get_roots(0,2,err)
df
```

root is : 1.1346435546875





| Out[ ]: |    | Iteration | an       | bn       | c        | b-c      | f(c)      |
|---------|----|-----------|----------|----------|----------|----------|-----------|
|         | 0  | 1         | 0.000000 | 2.000000 | 1.000000 | 1.000000 | -1.000000 |
|         | 1  | 2         | 1.000000 | 2.000000 | 1.500000 | 0.500000 | 8.890625  |
|         | 2  | 3         | 1.000000 | 1.500000 | 1.250000 | 0.250000 | 1.564697  |
|         | 3  | 4         | 1.000000 | 1.250000 | 1.125000 | 0.125000 | -0.097713 |
|         | 4  | 5         | 1.125000 | 1.250000 | 1.187500 | 0.062500 | 0.616653  |
|         | 5  | 6         | 1.125000 | 1.187500 | 1.156250 | 0.031250 | 0.233269  |
|         | 6  | 7         | 1.125000 | 1.156250 | 1.140625 | 0.015625 | 0.061578  |
|         | 7  | 8         | 1.125000 | 1.140625 | 1.132812 | 0.007812 | -0.019576 |
|         | 8  | 9         | 1.132812 | 1.140625 | 1.136719 | 0.003906 | 0.020619  |
|         | 9  | 10        | 1.132812 | 1.136719 | 1.134766 | 0.001953 | 0.000427  |
|         | 10 | 11        | 1.132812 | 1.134766 | 1.133789 | 0.000977 | -0.009598 |
|         | 11 | 12        | 1.133789 | 1.134766 | 1.134277 | 0.000488 | -0.004591 |
|         | 12 | 13        | 1.134277 | 1.134766 | 1.134521 | 0.000244 | -0.002084 |
|         | 13 | 14        | 1.134521 | 1.134766 | 1.134644 | 0.000122 | -0.000829 |

In [ ]: df = bisection\_get\_roots(-2,0,err)
 df

root is : -0.7781982421875





| Out[ ]: |    | Iteration | an        | bn        | c         | b-c      | f(c)      |
|---------|----|-----------|-----------|-----------|-----------|----------|-----------|
|         | 0  | 1         | -2.000000 | 0.000000  | -1.000000 | 1.000000 | 1.000000  |
|         | 1  | 2         | -1.000000 | 0.000000  | -0.500000 | 0.500000 | -0.484375 |
|         | 2  | 3         | -1.000000 | -0.500000 | -0.750000 | 0.250000 | -0.072021 |
|         | 3  | 4         | -1.000000 | -0.750000 | -0.875000 | 0.125000 | 0.323795  |
|         | 4  | 5         | -0.875000 | -0.750000 | -0.812500 | 0.062500 | 0.100200  |
|         | 5  | 6         | -0.812500 | -0.750000 | -0.781250 | 0.031250 | 0.008624  |
|         | 6  | 7         | -0.781250 | -0.750000 | -0.765625 | 0.015625 | -0.032958 |
|         | 7  | 8         | -0.781250 | -0.765625 | -0.773438 | 0.007812 | -0.012495 |
|         | 8  | 9         | -0.781250 | -0.773438 | -0.777344 | 0.003906 | -0.002019 |
|         | 9  | 10        | -0.781250 | -0.777344 | -0.779297 | 0.001953 | 0.003281  |
|         | 10 | 11        | -0.779297 | -0.777344 | -0.778320 | 0.000977 | 0.000626  |
|         | 11 | 12        | -0.778320 | -0.777344 | -0.777832 | 0.000488 | -0.000698 |
|         | 12 | 13        | -0.778320 | -0.777832 | -0.778076 | 0.000244 | -0.000036 |
|         | 13 | 14        | -0.778320 | -0.778076 | -0.778198 | 0.000122 | 0.000295  |

#### Results:

- 1. The root of function for the initial points 0 and 2 is 1.1346435546875
- 2. The root of function for the initial points -2 and 0 is -0.7781982421875

$$x^3 - x^2 - x - 1$$

```
In [ ]: def fun(x):
    return x**3 - x**2 - x - 1
    df = bisection_get_roots(1,2,err)
    df
```

root is: 1.8392333984375







| Out[ ]: |    | Iteration | an       | bn       | С        | b-c      | f(c)      |
|---------|----|-----------|----------|----------|----------|----------|-----------|
|         | 0  | 1         | 1.000000 | 2.000000 | 1.500000 | 0.500000 | -1.375000 |
|         | 1  | 2         | 1.500000 | 2.000000 | 1.750000 | 0.250000 | -0.453125 |
|         | 2  | 3         | 1.750000 | 2.000000 | 1.875000 | 0.125000 | 0.201172  |
|         | 3  | 4         | 1.750000 | 1.875000 | 1.812500 | 0.062500 | -0.143311 |
|         | 4  | 5         | 1.812500 | 1.875000 | 1.843750 | 0.031250 | 0.024506  |
|         | 5  | 6         | 1.812500 | 1.843750 | 1.828125 | 0.015625 | -0.060497 |
|         | 6  | 7         | 1.828125 | 1.843750 | 1.835938 | 0.007812 | -0.018271 |
|         | 7  | 8         | 1.835938 | 1.843750 | 1.839844 | 0.003906 | 0.003048  |
|         | 8  | 9         | 1.835938 | 1.839844 | 1.837891 | 0.001953 | -0.007629 |
|         | 9  | 10        | 1.837891 | 1.839844 | 1.838867 | 0.000977 | -0.002294 |
|         | 10 | 11        | 1.838867 | 1.839844 | 1.839355 | 0.000488 | 0.000376  |
|         | 11 | 12        | 1.838867 | 1.839355 | 1.839111 | 0.000244 | -0.000960 |
|         | 12 | 13        | 1.839111 | 1.839355 | 1.839233 | 0.000122 | -0.000292 |

#### Result:

- 1. The root of the function is 1.1346435546875 for the initial points 1 and 2.
- 2. We can see the decrease in error with every iteration which shows convergence towards the root.

```
In [ ]: def fun(x):
    return 1 + 0.3*np.cos(x) - x
df = bisection_get_roots(0,2,err)
df
```

root is: 1.1285400390625

# Graph of function





| Out[ ]: |    | Iteration | an       | bn       | с        | b-c      | f(c)      |
|---------|----|-----------|----------|----------|----------|----------|-----------|
|         | 0  | 1         | 0.000000 | 2.000000 | 1.000000 | 1.000000 | 0.162091  |
|         | 1  | 2         | 1.000000 | 2.000000 | 1.500000 | 0.500000 | -0.478779 |
|         | 2  | 3         | 1.000000 | 1.500000 | 1.250000 | 0.250000 | -0.155403 |
|         | 3  | 4         | 1.000000 | 1.250000 | 1.125000 | 0.125000 | 0.004353  |
|         | 4  | 5         | 1.125000 | 1.250000 | 1.187500 | 0.062500 | -0.075306 |
|         | 5  | 6         | 1.125000 | 1.187500 | 1.156250 | 0.031250 | -0.035418 |
|         | 6  | 7         | 1.125000 | 1.156250 | 1.140625 | 0.015625 | -0.015517 |
|         | 7  | 8         | 1.125000 | 1.140625 | 1.132812 | 0.007812 | -0.005578 |
|         | 8  | 9         | 1.125000 | 1.132812 | 1.128906 | 0.003906 | -0.000612 |
|         | 9  | 10        | 1.125000 | 1.128906 | 1.126953 | 0.001953 | 0.001871  |
|         | 10 | 11        | 1.126953 | 1.128906 | 1.127930 | 0.000977 | 0.000630  |
|         | 11 | 12        | 1.127930 | 1.128906 | 1.128418 | 0.000488 | 0.000009  |
|         | 12 | 13        | 1.128418 | 1.128906 | 1.128662 | 0.000244 | -0.000301 |
|         | 13 | 14        | 1.128418 | 1.128662 | 1.128540 | 0.000122 | -0.000146 |

#### Result:

1. The root of the function is 1.1285400390625 for the initial points 0 and 2.

$$cos(x) = sin(x) + 1/2$$

```
In [ ]: def fun(x):
    return 0.5 + np.sin(x) - np.cos(x)

df = bisection_get_roots(-1,2,err)

df
```

root is: 0.42401123046875





| Out[ ]: |    | Iteration | an        | bn       | С         | b-c      | f(c)      |
|---------|----|-----------|-----------|----------|-----------|----------|-----------|
|         | 0  | 1         | -1.000000 | 2.000000 | 0.500000  | 1.500000 | 0.101843  |
|         | 1  | 2         | -1.000000 | 0.500000 | -0.250000 | 0.750000 | -0.716316 |
|         | 2  | 3         | -0.250000 | 0.500000 | 0.125000  | 0.375000 | -0.367523 |
|         | 3  | 4         | 0.125000  | 0.500000 | 0.312500  | 0.187500 | -0.144129 |
|         | 4  | 5         | 0.312500  | 0.500000 | 0.406250  | 0.093750 | -0.023442 |
|         | 5  | 6         | 0.406250  | 0.500000 | 0.453125  | 0.046875 | 0.038694  |
|         | 6  | 7         | 0.406250  | 0.453125 | 0.429688  | 0.023438 | 0.007491  |
|         | 7  | 8         | 0.406250  | 0.429688 | 0.417969  | 0.011719 | -0.008010 |
|         | 8  | 9         | 0.417969  | 0.429688 | 0.423828  | 0.005859 | -0.000268 |
|         | 9  | 10        | 0.423828  | 0.429688 | 0.426758  | 0.002930 | 0.003609  |
|         | 10 | 11        | 0.423828  | 0.426758 | 0.425293  | 0.001465 | 0.001670  |
|         | 11 | 12        | 0.423828  | 0.425293 | 0.424561  | 0.000732 | 0.000701  |
|         | 12 | 13        | 0.423828  | 0.424561 | 0.424194  | 0.000366 | 0.000216  |
|         | 13 | 14        | 0.423828  | 0.424194 | 0.424011  | 0.000183 | -0.000026 |

#### Result:

1. The root of the function is 0.42401123046875 for the initial points -1 and 2.

$$e^{-x} - x$$

```
In [ ]: def fun(x):
    return np.exp(-x) - x

df = bisection_get_roots(0,2,err)
    df
```

root is: 0.5672607421875





| Out[]: |    | Iteration | an       | bn       | с        | b-c      | f(c)      |
|--------|----|-----------|----------|----------|----------|----------|-----------|
|        | 0  | 1         | 0.000000 | 2.000000 | 1.000000 | 1.000000 | -0.632121 |
|        | 1  | 2         | 0.000000 | 1.000000 | 0.500000 | 0.500000 | 0.106531  |
|        | 2  | 3         | 0.500000 | 1.000000 | 0.750000 | 0.250000 | -0.277633 |
|        | 3  | 4         | 0.500000 | 0.750000 | 0.625000 | 0.125000 | -0.089739 |
|        | 4  | 5         | 0.500000 | 0.625000 | 0.562500 | 0.062500 | 0.007283  |
|        | 5  | 6         | 0.562500 | 0.625000 | 0.593750 | 0.031250 | -0.041498 |
|        | 6  | 7         | 0.562500 | 0.593750 | 0.578125 | 0.015625 | -0.017176 |
|        | 7  | 8         | 0.562500 | 0.578125 | 0.570312 | 0.007812 | -0.004964 |
|        | 8  | 9         | 0.562500 | 0.570312 | 0.566406 | 0.003906 | 0.001155  |
|        | 9  | 10        | 0.566406 | 0.570312 | 0.568359 | 0.001953 | -0.001905 |
|        | 10 | 11        | 0.566406 | 0.568359 | 0.567383 | 0.000977 | -0.000375 |
|        | 11 | 12        | 0.566406 | 0.567383 | 0.566895 | 0.000488 | 0.000390  |
|        | 12 | 13        | 0.566895 | 0.567383 | 0.567139 | 0.000244 | 0.000007  |
|        | 13 | 14        | 0.567139 | 0.567383 | 0.567261 | 0.000122 | -0.000184 |

#### Result:

1. The root of the function is 0.5672607421875 for the initial points 0 and 2.

$$e^{-x} = sin(x)$$

```
In [ ]: def fun(x):
    return np.exp(-x) - np.sin(x)
df = bisection_get_roots(0,2,err)
df
```

root is: 0.5885009765625



Х



| Out[ ]: |    | Iteration | an       | bn       | С        | b-c      | f(c)      |
|---------|----|-----------|----------|----------|----------|----------|-----------|
|         | 0  | 1         | 0.000000 | 2.000000 | 1.000000 | 1.000000 | -0.473592 |
|         | 1  | 2         | 0.000000 | 1.000000 | 0.500000 | 0.500000 | 0.127105  |
|         | 2  | 3         | 0.500000 | 1.000000 | 0.750000 | 0.250000 | -0.209272 |
|         | 3  | 4         | 0.500000 | 0.750000 | 0.625000 | 0.125000 | -0.049836 |
|         | 4  | 5         | 0.500000 | 0.625000 | 0.562500 | 0.062500 | 0.036480  |
|         | 5  | 6         | 0.562500 | 0.625000 | 0.593750 | 0.031250 | -0.007221 |
|         | 6  | 7         | 0.562500 | 0.593750 | 0.578125 | 0.015625 | 0.014495  |
|         | 7  | 8         | 0.578125 | 0.593750 | 0.585938 | 0.007812 | 0.003603  |
|         | 8  | 9         | 0.585938 | 0.593750 | 0.589844 | 0.003906 | -0.001817 |
|         | 9  | 10        | 0.585938 | 0.589844 | 0.587891 | 0.001953 | 0.000891  |
|         | 10 | 11        | 0.587891 | 0.589844 | 0.588867 | 0.000977 | -0.000464 |
|         | 11 | 12        | 0.587891 | 0.588867 | 0.588379 | 0.000488 | 0.000213  |
|         | 12 | 13        | 0.588379 | 0.588867 | 0.588623 | 0.000244 | -0.000125 |
|         | 13 | 14        | 0.588379 | 0.588623 | 0.588501 | 0.000122 | 0.000044  |

#### Result:

1. The root of the function is 0.5885009765625 for the initial points 0 and 2.

$$x^3 - 2 * x - 2$$

```
In [ ]: def fun(x):
    return x**3 - 2*x - 2
df = bisection_get_roots(0,2,err)
df
```

root is: 1.7694091796875







| Out[ ]: |    | Iteration | an       | bn       | c        | b-c      | f(c)      |
|---------|----|-----------|----------|----------|----------|----------|-----------|
|         | 0  | 1         | 0.000000 | 2.000000 | 1.000000 | 1.000000 | -3.000000 |
|         | 1  | 2         | 1.000000 | 2.000000 | 1.500000 | 0.500000 | -1.625000 |
|         | 2  | 3         | 1.500000 | 2.000000 | 1.750000 | 0.250000 | -0.140625 |
|         | 3  | 4         | 1.750000 | 2.000000 | 1.875000 | 0.125000 | 0.841797  |
|         | 4  | 5         | 1.750000 | 1.875000 | 1.812500 | 0.062500 | 0.329346  |
|         | 5  | 6         | 1.750000 | 1.812500 | 1.781250 | 0.031250 | 0.089142  |
|         | 6  | 7         | 1.750000 | 1.781250 | 1.765625 | 0.015625 | -0.027035 |
|         | 7  | 8         | 1.765625 | 1.781250 | 1.773438 | 0.007812 | 0.030729  |
|         | 8  | 9         | 1.765625 | 1.773438 | 1.769531 | 0.003906 | 0.001766  |
|         | 9  | 10        | 1.765625 | 1.769531 | 1.767578 | 0.001953 | -0.012655 |
|         | 10 | 11        | 1.767578 | 1.769531 | 1.768555 | 0.000977 | -0.005449 |
|         | 11 | 12        | 1.768555 | 1.769531 | 1.769043 | 0.000488 | -0.001843 |
|         | 12 | 13        | 1.769043 | 1.769531 | 1.769287 | 0.000244 | -0.000039 |
|         | 13 | 14        | 1.769287 | 1.769531 | 1.769409 | 0.000122 | 0.000864  |

#### Result:

1. The root of the function is 1.7694091796875 for the initial points 0 and 2.

$$x^4-x-1$$

```
In [ ]: def fun(x):
    return x**4 - x - 1

df = bisection_get_roots(0,2,err)
df
```

root is: 1.2208251953125





| Out[ ]: |    | Iteration | an       | bn       | c        | b-c      | f(c)      |
|---------|----|-----------|----------|----------|----------|----------|-----------|
|         | 0  | 1         | 0.000000 | 2.000000 | 1.000000 | 1.000000 | -1.000000 |
|         | 1  | 2         | 1.000000 | 2.000000 | 1.500000 | 0.500000 | 2.562500  |
|         | 2  | 3         | 1.000000 | 1.500000 | 1.250000 | 0.250000 | 0.191406  |
|         | 3  | 4         | 1.000000 | 1.250000 | 1.125000 | 0.125000 | -0.523193 |
|         | 4  | 5         | 1.125000 | 1.250000 | 1.187500 | 0.062500 | -0.198959 |
|         | 5  | 6         | 1.187500 | 1.250000 | 1.218750 | 0.031250 | -0.012481 |
|         | 6  | 7         | 1.218750 | 1.250000 | 1.234375 | 0.015625 | 0.087231  |
|         | 7  | 8         | 1.218750 | 1.234375 | 1.226562 | 0.007812 | 0.036824  |
|         | 8  | 9         | 1.218750 | 1.226562 | 1.222656 | 0.003906 | 0.012035  |
|         | 9  | 10        | 1.218750 | 1.222656 | 1.220703 | 0.001953 | -0.000257 |
|         | 10 | 11        | 1.220703 | 1.222656 | 1.221680 | 0.000977 | 0.005880  |
|         | 11 | 12        | 1.220703 | 1.221680 | 1.221191 | 0.000488 | 0.002809  |
|         | 12 | 13        | 1.220703 | 1.221191 | 1.220947 | 0.000244 | 0.001276  |
|         | 13 | 14        | 1.220703 | 1.220947 | 1.220825 | 0.000122 | 0.000509  |

#### Result:

1. The root of the function is 1.2208251953125 for the initial points 0 and 2.

$$x = tan(x)$$

```
In []: x = np.arange(-5,5+err,err)
y = np.tan(x)
y[:-1][np.diff(y) < 0] = np.nan
plt.plot(x,x,label = 'y = x')
plt.plot(x,y,label = 'y = tan(x)')
plt.xlabel('x')
plt.ylabel('y')
plt.ylim(-8,8)
plt.title('Graph of y = x and y = tan(x)')
plt.legend()
plt.grid(True)
plt.plot()</pre>
```

#### Out[]: []

# Graph of y = x and y = tan(x)8 6 4 2 0 -2 -6 y = xy = tan(x)-8 -2 2 -40 Х

```
In [ ]:
    def bisection_get_roots(a,b,err):
        n = maxiter(a,b,err)
        roots = []
        x_range = np.arange(-5,5+err,err)
        for i in range(n):
            x = (a+b)/2
            roots.append(x)
            fa = fun(a)
            fb = fun(b)
            fx = fun(x)
```

```
if fa*fx == 0 or fb*fx == 0:
    return roots
elif fa*fx < 0 :
    b = x
else:
    a = x
return roots</pre>
```

```
In [ ]: def fun(x):
    return np.tan(x) - x
print('root greater than pi/2 =',bisection_get_roots(2,4.5,err)[-1])
```

root greater than pi/2 = 4.493438720703125

```
In [ ]: r1 = bisection_get_roots(100,102.2,err)[-1]
    r2 = bisection_get_roots(98,98.96,err)[-1]
    r = 0
    if(r1 - 100 < 100 - r2):
        r = r1
    else:
        r = r2
    print('root nearest to 100 is',r)</pre>
```

root nearest to 100 is 98.9500390625

# **Machine Epsilon**

- 1. Information about machine epsilon: Machine epsilon is defined to be the smallest floating-point value, e, that satisfies the equation, 1+e!=1.
- 2. Algorithm for finding machine epsilon: Start with e=1. Divide e by 2 and check if 1+e==1. If not, keep on repeating the process till you get 1+e==1. This value e is or machine epsilon.

# Q - 1

Machine Epsilon is : 2.220446049250313e-16

Result: The value of machine epsilon from the above method comes out to be 2.220446049250313e-16.

# Q - 2

```
EPS = EPS / 2
print("Machine Epsilon for n =",n,"is :" ,prev_EPS)

MachineEpsilonN(5,0.5)
```

Machine Epsilon for n = 5 is : 8.881784197001252e-16

Results: In this question we have generalised the value of n. In earlier question we had assumed n=1 and solved for epsilon. In this question we have taken n=5. The value of machine epsilon in this case is 8.881784197001252e-16. This shows that machine epsilon changes with different values of n. Also another observation is that value of epsilon increases with increase in n (can be noticed by changing values of n).