

1. Introduction

Le problème de la représentation des données

ullet La mémoire d'un ordinateur est composé de bits pouvant prendre uniquement les valeurs 0 et de 1

Le problème de la représentation des données

- La mémoire d'un ordinateur est composé de bits pouvant prendre uniquement les valeurs 0 et de 1
- Le regroupement de 8 bits s'appelle un octet (byte en anglais) c'est l'unité minimal de mémoire :

$$1 \text{ octet } = \underbrace{ \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & & \\ &$$

Le problème de la représentation des données

- ullet La mémoire d'un ordinateur est composé de bits pouvant prendre uniquement les valeurs 0 et de 1
- Le regroupement de 8 bits s'appelle un octet (byte en anglais) c'est l'unité minimal de mémoire :

$$1 \text{ octet } = \underbrace{ \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ &$$

• Toutes les données doivent donc être représenté en utilisant des octets.

1. Introduction

Le problème de la représentation des données

- ullet La mémoire d'un ordinateur est composé de bits pouvant prendre uniquement les valeurs 0 et de 1
- Le regroupement de 8 bits s'appelle un octet (byte en anglais) c'est l'unité minimal de mémoire :

$$1 \text{ octet } = \underbrace{ \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$$

- Toutes les données doivent donc être représenté en utilisant des octets.
- On s'intéresse ici à la représentation des entiers positifs et négatifs, des caractères et des flottants.

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire en utilisant 10 chiffres (0,1,2,3,4,5,6,7,8 et 9), chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire en utilisant 10 chiffres (0,1,2,3,4,5,6,7,8 et 9), chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{1815}^{10}$:

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire en utilisant 10 chiffres (0,1,2,3,4,5,6,7,8 et 9), chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{1815}^{10}$:

1 8 1 5

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire les entiers postifs en utilisant 10 chiffres, chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{1815}^{10}$:

$$\begin{array}{c|ccccc} 10^3 & 10^2 & 10^1 & 10^0 \\ \hline 1 & 8 & 1 & 5 \\ \end{array}$$

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire les entiers postifs en utilisant 10 chiffres, chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{1815}^{10}$:

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire les entiers postifs en utilisant 10 chiffres, chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{1815}^{10}$:

 De la même façon, on pourrait utiliser simplement 2 chiffres et multiplier chaque chiffre par une puissance de 2 suivant son emplacement dans le nombre.

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire les entiers postifs en utilisant 10 chiffres, chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{1815}^{10}$:

 De la même façon, on pourrait utiliser simplement 2 chiffres et multiplier chaque chiffre par une puissance de 2 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{11100010111}^2$:

1 1 1 0 0 0 1 0 1 1

De la base 10 à la base 2

 Nous sommes habitués à écrire les entiers postifs en utilisant 10 chiffres, chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour 1815:

 De la même façon, on pourrait utiliser simplement 2 chiffres et multiplier chaque chiffre par une puissance de 2 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{11100010111}^2$:

			2^7								
1	1	1	0	0	0	1	0	1	1	1	

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire les entiers postifs en utilisant 10 chiffres, chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour 1815:

 De la même façon, on pourrait utiliser simplement 2 chiffres et multiplier chaque chiffre par une puissance de 2 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{11100010111}^2$:

2^{10}	2^9	28	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^{0}
1	1	1	0	0	0	1	0	1	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										

2. Entiers positifs

De la base 10 à la base 2

 Nous sommes habitués à écrire les entiers postifs en utilisant 10 chiffres, chaque chiffre étant multiplié par une puissance de 10 suivant son emplacement dans le nombre.

Par exemple, pour 1815:

 De la même façon, on pourrait utiliser simplement 2 chiffres et multiplier chaque chiffre par une puissance de 2 suivant son emplacement dans le nombre.

Par exemple, pour $\overline{11100010111}^2$:

2^{10}	2^9	2^8	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^{0}
1	1	1	0	0	0	1	0	1	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										

=1815

2. Entiers positifs

Ce sont des cas particuliers (avec b=10 et b=2), du théorème suivant :

Décomposition en base b

Tout entier $n \in \mathbb{N}$ peut s'écrire sous la forme :

$$n = \sum_{k=0}^{p} a_k b^k$$

avec $p \ge 0$ et $a_k \in [0; b-1]$. De plus, cette écriture est unique si $a_p \ne 0$ et s'appelle *décomposition en base b de n* et on la note $n = \overline{a_p \dots a_1 a_0}^b$

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

• 10001011²

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- 10001011²
- 1101001011²

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- 10001011²
- 1101001011²
- $\overline{421}^5$

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- 10001011²
- 1101001011²
- $\overline{421}^5$
- \bullet $\overline{3EA}^{16}$

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- 10001011²
- 1101001011²
- $\overline{421}^5$
- $3EA^{16}$

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- $\bullet \ \overline{10001011}^2 = \overline{139}^{10}$
- 1101001011²
- $\overline{421}^5$
- \bullet $\overline{3EA}^{16}$

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- \bullet $\overline{10001011}^2 = \overline{139}^{10}$
- \bullet $\overline{1101001011}^2 = \overline{843}^{10}$
- $\overline{421}^5$
- \bullet $\overline{3EA}^{16}$

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- \bullet $\overline{10001011}^2 = \overline{139}^{10}$
- \bullet $\overline{1101001011}^2 = \overline{843}^{10}$
- $\overline{421}^5 = \overline{111}^{10}$
- \bullet $\overline{3EA}^{16}$

2. Entiers positifs

Exemples

Ecrire en base 10 les nombres ci-dessous

- \bullet $\overline{10001011}^2 = \overline{139}^{10}$
- \bullet $\overline{1101001011}^2 = \overline{843}^{10}$
- $\overline{421}^5 = \overline{111}^{10}$
- $\bullet \ \overline{3EA}^{16} = \overline{1002}^{10}$

2. Entiers positifs

Limitations mémoire et dépassement de capacité

 \bullet Le nombre de bits représentant un entier est limité, le plus grand nombre représentable sur n bits est :

$$\overline{1\dots 1}^2 = 2^{n-1} + \dots + 1 = 2^n - 1$$

2. Entiers positifs

Limitations mémoire et dépassement de capacité

ullet Le nombre de bits représentant un entier est limité, le plus grand nombre représentable sur n bits est :

$$\frac{1}{1\dots 1}^2 = 2^{n-1} + \dots + 1 = 2^n - 1$$

- En C, les valeurs maximales représentables suivant le type d'entier positif utilisé sont donc :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur

2. Entiers positifs

Limitations mémoire et dépassement de capacité

ullet Le nombre de bits représentant un entier est limité, le plus grand nombre représentable sur n bits est :

$$\frac{1}{1\dots 1}^2 = 2^{n-1} + \dots + 1 = 2^n - 1$$

- En C, les valeurs maximales représentables suivant le type d'entier positif utilisé sont donc :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t : $2^8 1 = 255$

En cas de dépassement de capacité (overflow ou underflow), le résultat obtenu est calculé modulo la plus grande valeur maximale plus 1.

2. Entiers positifs

Limitations mémoire et dépassement de capacité

ullet Le nombre de bits représentant un entier est limité, le plus grand nombre représentable sur n bits est :

$$\frac{1}{1\dots 1}^2 = 2^{n-1} + \dots + 1 = 2^n - 1$$

- En C, les valeurs maximales représentables suivant le type d'entier positif utilisé sont donc :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t : $2^8 1 = 255$
 - uint32_t : $2^{32} 1 = 4294967295$ (\geq 4 milliards)

En cas de dépassement de capacité (overflow ou underflow), le résultat obtenu est calculé modulo la plus grande valeur maximale plus 1.

Par exemple, Les dépassement de capacité sur un <u>uint8_t</u> sont calculés modulo 256.

2. Entiers positifs

Limitations mémoire et dépassement de capacité

ullet Le nombre de bits représentant un entier est limité, le plus grand nombre représentable sur n bits est :

$$\overline{1\dots 1}^2 = 2^{n-1} + \dots + 1 = 2^n - 1$$

- En C, les valeurs maximales représentables suivant le type d'entier positif utilisé sont donc :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t : $2^8 1 = 255$
 - uint32_t : $2^{32} 1 = 4294967295$ (> 4 milliards)
 - uint64_t : $2^{64} 1 = 18\,446\,744\,073\,709\,551\,615$ (\geq 18 milliards de milliards)

En cas de dépassement de capacité (*overflow* ou *underflow*), le résultat obtenu est calculé modulo la plus grande valeur maximale plus 1.

Par exemple, Les dépassement de capacité sur un uint8_t sont calculés modulo 256.

• En OCaml, il n'y a pas nativement de type entier non signé.

2. Entiers positifs

Exemple

```
#include <stdio.h>
    #include <stdint.h>
    int main()
        uint8_t n1 = 240;
        uint32_t n2 = 0;
        n1 = n1 + 20;
        n2 = n2 - 1;
        printf("valeur de n1 = \frac{u}{n}, n1);
10
        printf("valeur de n2 = \frac{u}{n}, n2);
11
12
```

Quel est l'affichage produit par le programme ci-dessus? Expliquer.

2. Entiers positifs

Correction

```
#include <stdio.h>
    #include <stdint.h>
    int main()
        uint8_t n1 = 240; // 8 bits donc valeur maximale 255
        uint32_t n2 = 0; // valeur minimale 0 (non signé)
        n1 = n1 + 20; // overflow : 260
        n2 = n2 - 1; // underflow : -1
        printf("valeur de n1 = %u\n",n1); // 4 (car 260 = 4 modulo 256)
10
        printf("valeur de n2 = %u\n",n2); // 4294967295 (car -1 =
11
        4294967295 modulo 4294967296)
12
```


3. Représentation des entiers négatifs

Complément à deux

• La stratégie qui consiste à prendre un bit de signe et à représenter la valeur absolue de l'entier sur les autres présente deux difficultés : 0 est représenté deux fois et surtout l'addition binaire bit à bit ne fonctionne pas.

3. Représentation des entiers négatifs

Complément à deux

- La stratégie qui consiste à prendre un bit de signe et à représenter la valeur absolue de l'entier sur les autres présente deux difficultés : 0 est représenté deux fois et surtout l'addition binaire bit à bit ne fonctionne pas.
- La méthode utilisée est celle du complément à 2, sur n bits, on compte négativement le bit de poids 2^{n-1} et positivement les autres.

3. Représentation des entiers négatifs

Complément à deux

- La stratégie qui consiste à prendre un bit de signe et à représenter la valeur absolue de l'entier sur les autres présente deux difficultés : 0 est représenté deux fois et surtout l'addition binaire bit à bit ne fonctionne pas.
- La méthode utilisée est celle du complément à 2, sur n bits, on compte négativement le bit de poids 2^{n-1} et positivement les autres.

Par exemple, sur 8 bits :

• De façon générale, sur n bits, la valeur en complément à deux de la suite bits $(b_{p-1}\dots b_0)$ est :

$$-b^{p-1} + \sum_{k=0}^{n-2} b_k 2^k$$

3. Représentation des entiers négatifs

Conséquences de la représentation en complément à 2

• Les difficultés de la stratégie du *un bit de signe* sont levées.

3. Représentation des entiers négatifs

Conséquences de la représentation en complément à 2

- Les difficultés de la stratégie du un bit de signe sont levées.
- Le plus petit petit représentable sur n bits est alors -2^{n-1} et le plus grand $2^{n-1}-1$

3. Représentation des entiers négatifs

- Les difficultés de la stratégie du un bit de signe sont levées.
- Le plus petit petit représentable sur n bits est alors -2^{n-1} et le plus grand $2^{n-1}-1$
- En C, les valeurs extrêmes représentables sont :

3. Représentation des entiers négatifs

- Les difficultés de la stratégie du un bit de signe sont levées.
- En C, les valeurs extrêmes représentables sont :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur

3. Représentation des entiers négatifs

- Les difficultés de la stratégie du un bit de signe sont levées.
- En C, les valeurs extrêmes représentables sont :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t : $[-2^7; 2^7 1] = [-128; 127]$

3. Représentation des entiers négatifs

- Les difficultés de la stratégie du un bit de signe sont levées.
- En C, les valeurs extrêmes représentables sont :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t : $[-2^7; 2^7 1] = [-128; 127]$
 - uint32_t : $[-2^{31}; 2^{31} 1]$

3. Représentation des entiers négatifs

- Les difficultés de la stratégie du un bit de signe sont levées.
- Le plus petit petit représentable sur n bits est alors -2^{n-1} et le plus grand $2^{n-1}-1$
- En C, les valeurs extrêmes représentables sont :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t: $[-2^7; 2^7 1] = [-128; 127]$
 - uint32_t : $[-2^{31}; 2^{31} 1]$
 - uint64_t : $[-2^{63}; 2^{63} 1]$

3. Représentation des entiers négatifs

- Les difficultés de la stratégie du un bit de signe sont levées.
- En C, les valeurs extrêmes représentables sont :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t : $[-2^7; 2^7 1] = [-128; 127]$
 - uint32_t : $[-2^{31}; 2^{31} 1]$
 - uint64_t : $[-2^{63}; 2^{63} 1]$
 - Un dépassement de capacité est un comportement indéfini.

3. Représentation des entiers négatifs

Conséquences de la représentation en complément à 2

- Les difficultés de la stratégie du un bit de signe sont levées.
- En C, les valeurs extrêmes représentables sont :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t : $[-2^7; 2^7 1] = [-128; 127]$
 - uint32_t : $[-2^{31}; 2^{31} 1]$
 - uint64_t : $[-2^{63}; 2^{63} 1]$

Un dépassement de capacité est un comportement indéfini.

• En OCaml, les entiers sont codés sur 64 bits mais un bit est réservé par le langage, l'intervalle représentable est donc $[-2^{62}; 2^{62} - 1]$.

3. Représentation des entiers négatifs

Conséquences de la représentation en complément à 2

- Les difficultés de la stratégie du un bit de signe sont levées.
- Le plus petit petit représentable sur n bits est alors -2^{n-1} et le plus grand $2^{n-1}-1$
- En C, les valeurs extrêmes représentables sont :
 - uint : au min 16 bits, usuellement 32 bits, dépendant du compilateur
 - uint8_t: $[-2^7; 2^7 1] = [-128; 127]$
 - uint32_t : $[-2^{31}; 2^{31} 1]$
 - uint64_t: $[-2^{63}; 2^{63} 1]$

Un dépassement de capacité est un comportement indéfini.

• En OCaml, les entiers sont codés sur 64 bits mais un bit est réservé par le langage, l'intervalle représentable est donc $[-2^{62}; 2^{62}-1]$. Les dépassements de capacité sont calculés modulo 2^{63} puis ramené dans l'intervalle précédent.

4. Nombre en virgule flottante

🖲 Ecriture scientifique

Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

4. Nombre en virgule flottante

Ecriture scientifique

Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

$$\pm a \times 10^n$$

οù

4. Nombre en virgule flottante

🤊 Ecriture scientifique

Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

$$\pm a \times 10^n$$

οù

• où a, appelée mantisse est un nombre décimal n'ayant qu'un seul chiffre non nul à gauche de la virgule,

4. Nombre en virgule flottante

Seriture scientifique

Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

$$\pm a \times 10^n$$

οù

- ullet où a, appelée mantisse est un nombre décimal n'ayant qu'un seul chiffre non nul à gauche de la virgule,
- n appelée exposant un nombre relatif.

4. Nombre en virgule flottante

Ecriture scientifique

Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

$$\pm a \times 10^n$$

οù

- ullet où a, appelée mantisse est un nombre décimal n'ayant qu'un seul chiffre non nul à gauche de la virgule,
- n appelée exposant un nombre relatif.

Exemples

4. Nombre en virgule flottante

Seriture scientifique

Ecrire un nombre en notation scientifique c'est l'écrire sous la forme

$$\pm a \times 10^n$$

οù

- ullet où a, appelée mantisse est un nombre décimal n'ayant qu'un seul chiffre non nul à gauche de la virgule,
- n appelée exposant un nombre relatif.

- \bullet 0,0000054 = 5,4 × 10⁻⁶