

Catalog Number 26-2002

User Instruction Manual

TRS-80 EDITOR/ASSEMBLER OPERATION AND REFERENCE MANUAL

TABLE OF CONTENTS

Page
Introduction
Notation Conventions
Editor/Assembler
Loading2
Commands2
Assemble (A)
Basic (B)
Delete (D)
Edit (E)
Find (F)
Hardcopy (H)
Insert (I)
Load (L)
Number (N)
Print (P)
Replace (R)
Type (T)
Scroll and Tab
Write (W)
Cassette Tapes
Sample Use
Assembly Language
Syntax8
Expressions
Status Flags
Pseudo-ops
Assembler Commands
Z80 Instruction Set
Index to Instructions
8 Bit Load Group
16 Bit Load Group
Exchange, Block Transfer and Search Group
8 Bit Arithmetic and Logical Group
General Purpose Arithmetic and CPU Control Group
16 Bit Arithmetic Group
Rotate and Shift Group
Bit Set, Reset and Test Group
Jump Group80
Call and Return Group
Input and Output Group

Introduction

The TRS-80 Editor/Assembler is a RAM-resident text editor and assembler for a 16K RAM TRS-80 microcomputer system. The Editor/Assembler was designed to provide the ease of use required by the novice, while providing capabilities powerful enough for the expert. LEVEL II BASIC is capable of directly loading the Editor/Assembler cassette tape. LEVEL I BASIC must read-in the Editor/Assembler using the SYSTEM tape (included).

The text editing features of the Editor/Assembler facilitate the manipulation of alphanumeric text files. The most common use of the editing capability is in the creation and maintenance of assembly language source programs.

The assembler portion of the Editor/Assembler facilitates the translation of symbolic language source programs into machine executable code. This object code may then be executed with the SYSTEM tape for LEVEL I BASIC or directly with the SYSTEM command under LEVEL II BASIC. Previous knowledge of machine language and the hexidecimal number system is assumed throughout this manual.

The Assemble command (A) supports the assembler language specifications set forth in the Zilog Z80-Assembly Language Program Manual, 3.0 D.S., REL.2.1, FEB 1977, with the following exceptions.

Macros are not supported.

Operand expressions may only contain the + and -, & (logical AND), and \langle (shift) operators, and are evaluated on a strictly left to right basis. Parentheses are not allowed!

Conditional assembly commands, where a programmer may control which portions of the source code are assembled, are not supported.

Constants may only be decimal (D), hexidecimal (H), or octal (O). See section under operands.

The only Assembler commands supported are *LIST OFF and *LIST ON.

A label can contain only alphanumeric characters. (Use of the - and ? is not supported.) A label can be up to 6 characters long. The first character must be alphabetic. The other characters must be alphanumeric.

NOTATION CONVENTIONS

[] Square brackets enclose optional information:

P[line1[:line2]]

The :line2 is optional, and the P need not be followed by anything at all since all options following P are enclosed in brackets. The brackets are never actually typed.

. The ellipses represent repetition of a

previous item:

A[[b filename] [/switch[/switch]...]]

The /switch may be repeated several times.

CAPITALS Capital letters must be as shown for input,

and will be as shown in examples of output.

lowercase The user must substitute in his own values

(eg: inc, filename, line)

underscore Underscored information is output printed

by the Editor/Assembler unless specified otherwise. This distinguishes user input from computer output but is never actually

typed by the user.

A lowercase B with slash specifies a manda-

tory blank(space).

line Any decimal number from Ø to 65529

line1:line2 Numbers specify two different line num-

bers (line #1 is usually less than line #2)

• A period may be used in place of any line

number. It represents a pointer to the current line of source code being assem-

bled, printed, or edited.

A pound sign may be used in place of any

line number. It represents the first (lowest line number) source code line in the text

buffer.

* An asterisk may be used in place of any

line number. It represents the last (highest line number) source code line in the text

buffer.

inc A number representing an increment

between successive line numbers.

filename A character string specifying the name of a

cassette file. See section on Cassette Tapes.

Editor/Assembler

In brief the Editor/Assembler is designed for a user to type in source assembler code. This source code is assembled and the resulting object code may be recorded onto tape. The Editor/Assembler may also read-in, record, and edit other source code files stored on tape. Of course, the source files manipulated by the Editor/Assembler need not be assembly programs only. The files may be any text information created by the Editor/Assembler. BASIC program tapes may NOT be edited by the Editor/Assembler.

The limit to the size of an assembly language program is the amount of RAM memory in the user's computer system. The Editor/Assembler maintains a "text buffer." This buffer starts at the end of the Editor/Assembler program and continues to the end of memory. This usually leaves around 7K of memory for the text buffer which will contain the source file

LOADING

LEVEL II BASIC

Since the Editor/Assembler is a machine language program, it may only be loaded using the SYSTEM command. Place the Editor/Assembler tape into the cassette recorder and depress PLAY. The volume should be set to 5 or 6 (this is a 500 baud tape).

Type SYSTEM and then press ENTER. The computer will respond by typing:

*?

Now type EDTASM, the filename of the Editor/Assembler, and the tape will be read into memory. Once loading is completed, type a / (slash) and press ENTER, the monitor screen is cleared and the message:

TRS-80 EDITOR/ASSEMBLER 1.2

*

is printed. The asterisk is the Editor/Assembler prompt symbol. This is its way of requesting a command. Depressing the BREAK key will always return you to an asterisk except when reading a tape, writing a tape, or editing a line. The BREAK key may be used to abort an assembly or a print-out in progress.

LEVEL I BASIC

Since the Editor/Assembler is recorded on tape at 500 baud, LEVEL I BASIC CAN NOT DIRECTLY read-in the tape. You must first load the SYSTEM tape provided. This program can then read-in the 500 baud Editor/Assembler tape.

Load the SYSTEM tape into the cassette recorder. Set volume to 8 or 9 (this is a $25\emptyset$ baud tape). Type CLOAD and BASIC I will read-in the SYSTEM tape. The program will start as soon as loading is finished.

The computer will type:

*

Now load your cassette with the Editor/Assembler tape. Set volume to 5-6 (this is a 500 baud tape). Type EDTASM and press ENTER. The Editor/Assembler will be read-in. When the reading is complete, another * will be typed. Now type a slash (/) and then the number 18058. Press ENTER to execute the Editor/Assembler. The number 18058 is the entry address of the Editor/Assembler.

TRS-80 EDITOR/ASSEMBLER 1.2

You may now use the Editor/Assembler as described under the section on Assembly Language.

The BREAK key works the same way as described in the third paragraph of this section.

COMMANDS

The TRS-80 Editor/Assembler can perform the following commands. These commands may be typed after the prompt symbol ** where applicable. The asterisk indicates the "command level" of the Editor/Assembler. The following list contains all command level instructions recognized by the Editor/Assembler with a brief description of each.

A	Assemble source currently in text buffer
В	Return to BASIC in ROM
D	Delete specified line(s)
Е	Edit a specified command; almost exactly like LEVEL II BASIC's EDIT command
F	Find a specified string of characters in the text buffer
Н	Same as P command except that output goes to lineprinter
I	Insert source line(s) at a specified line with a specified increment
L	Load a source file from cassette tape into text buffer
N	Renumber source lines in the text buffer
P	Print specified range of source code currently in the text buffer
R	Replace lines currently in text buffer. Like the Insert command only lines are overwritten
T	Same as H only no line numbers are printed — text only.
↑or↓	Scroll up or down. Will print the next or previous source line
\rightarrow	Horizontal tab
W	Write current text buffer onto tape

Assemble (A)

form: * A[[\beta filename] [/switch[/switch]...]]

switch may be any of the following four options

NL No listing written to screen. Errors and bad source lines are still typed.

NO No object code. Inhibits recording of an object code tape.

*

NS	No symbol table is to be printed
LP	Send listing, errors, and symbol table to the TRS-80 LINEPRINTER
WE	Cause assembly to wait when an error occurs. Depressing any key will continue assembly until another error is found. Depressing the "C" key will cause assembly to continue without stopping for errors. Pressing BREAK returns to command level at any time.

The contents of the edit buffer are assembled. The object code is written to cassette tape under the specified filename (if no filename is specified the filename is automatically set to NONAME.) An assembly error is usually written to the monitor screen immediately before the line the error occurred on.

After the assembly is completed the total number of errors is printed. Finally, the symbol table is printed. The computer then types:

READY CASSETTE

Prepare your object tape for recording and press ENTER. If you don't want the object code, simply press BREAK and an asterisk (command level) will be returned to you. This is the default procedure which may be altered with the proper switches.

Examples:	
<u>*</u> A	Assemble with filename of NONAME; list on screen
*A\$IKKY	Same as above; object file is IKKY
*A/NS	Assemble with filename of NONAME, no symbol table
*A/NS/LP	Same as above yet all output is to line- printer
*AØQ/NL	Assemble with filename Q; no listing \emptyset is a mandatory blank
Basic (B)	
form: <u>*</u> B	
Typing a B and	then ENTER will return you to a MEMORY on condition in LEVEL II BASIC or a READY

Typing a B and then ENTER will return you to a MEMORY SIZE (power up) condition in LEVEL II BASIC or a READY state in LEVEL I BASIC.

Example:

*B

MEMORY SIZE?

Delete (D)

form: *D[line1[:line2]]

Deletes the line or lines specified from the text buffer.

Excomo	<u>م1</u> م	
Exam:	DIE	: 5

<u>*</u> D1ØØ:5ØØ	Deletes lines 100 through 500 (inclusive) from the text buffer
<u>*</u> D#:*	Deletes entire text buffer. Clears text buffer
<u>*</u> D.	Deletes line currently pointed to by period (.).
<u>*</u> D1Ø5	Deletes the single line 1Ø5

Edit (E)

form: *E[line]

Allows user to edit/modify source lines just like the EDIT command in LEVEL II BASIC. The only difference is that the Delete command does not enclose deleted information in exclamation points(!).

Examples:

<u>*</u> E.	Edits current line pointed to by period (.).
<u>*</u> E211	Edit line 211

Sub-commands for Edit are A,C,D,E,H,I,K,L,Q,S,X.

Edit Subcommands

A	Restart edit
nC	Change n characters
nD	Delete n characters
Е	End editing and enter changes
Н	Delete remainder of line and insert string. The H command should not be used to delete an entire line of text. There must always be at least one character on a line, or future use of that line will cause problems.
I	Insert string
nKx	Kill all characters up to the nth occurrence of X
L	Print the rest of the line and go back to starting position
Q	Quit and ignore all editing
nSx	Search for the nth occurrence of X
X	Move to the end of the line and insert
Backspace	Move edit pointer back one space
$(SHIFT) (\uparrow)$	Escape from any edit mode subcommand
ENTER	ENTER the line in its present (edited) form

The user should experiment with these or refer to the LEVEL II BASIC Manual.

Find (F)

form: *F[string]

where string is a sequence of 16 characters or less

The edit buffer is searched starting at .+1 for the first occurrence of the specified string. If no string is specified, the search is the same as that of the last F command in which a string was specified. If the search string is found the line containing it is printed and period (.) is updated to the printed line. If the string is not found STRING NOT FOUND is printed and period (.) remains unchanged. P# is often used to move period (.) to the beginning of the buffer prior to a search.

Example:

*P#

<u>00100</u> ORG 7000H *****F3C00

Ø01ØØ VIDEO ORG 3CØØΗ

*F

ØØ211 LD HL,3CØØH

*

Hardcopy (H)

form: *H[line1[:line2]]

Prints a line or group of lines onto the TRS-80 LINEPRINT-ER. Period (.) is updated to point to the last line printed. This command is exactly like the P command.

Example:

H#: Sends all lines in the text buffer to printer

*H1 $\emptyset\emptyset$: 5 $\emptyset\emptyset$ Sends lines 1 $\emptyset\emptyset$ through 5 $\emptyset\emptyset$ to printer

*H. Send current line pointed to by period (.)

to the lineprinter.

*H Prints 15 lines starting with the current

line to the printer. Not very useful for line-

printer use.

Insert (I)

form: * I line [,inc]

The I command is used to insert lines of text into the edit buffer. All lines of source are usually entered with the I command. After the I command is issued, line numbers are generated and lines of text are inserted into the edit buffer until one of the following conditions occurs:

a BREAK is typed (usually way to exit)

the edit buffer is full

The line number of the next line to be inserted would be greater than or equal to the next exit line in the buffer. The NO ROOM BETWEEN LINES message is typed.

The line number of the next line to be inserted would be greater than 65529.

If inc is not specified it is assumed to be the last specified value. Period (.) is updated to point to the last line inserted. See section, Sample Use of the I command.

Note: Source lines may be up to 128 characters long. This size line is usually not needed. It is recommended that you use lines of approximately 60 characters each (printout and listings will be neater).

Load (L)

form: *L[bfilename]

The tape is searched for the file specified by filename. If the specified file is found, its contents are added to the current contents of the edit buffer. Note that this may result in improperly sequenced line numbers which must be corrected by use of the N command for proper operation. If the user does not wish to add to the current text buffer, then the buffer must be cleared by the D#:* command.

If filename is not given, the next file on the tape is loaded.

When reading, the familiar asterisks will flash in the upper right corner of the screen. The L command can only read source files created by the Editor/Assembler.

Example:

*L Loads next source file

*L\bMYPROG Searches for and loads source file named

MYPROG. b is a mandatory blank

Number (N)

form: *N[line[,inc]]

The N command is used to renumber the lines in the edit buffer. The first line in the buffer is assigned the number specified or the default $\emptyset\emptyset1\emptyset\emptyset$ if line is not specified. The remaining lines in the buffer are renumbered according to the increment (inc) or the previous inc in an N,R, or I command if inc was not specified. Period (.) points to the same line it did before the N command was used, but the number of this line may be changed.

Examples:

*N Renumbers from 100 with previous incre-

ment

*N5 Renumbers from 5 with previous increment

*N10,5 Renumber from 10 in steps of 5

Print (P)

form: *P[line1[:line2]]

Prints a line or group of lines on the monitor screen. Period (.) is updated to point to the last line printed.

Example:

P#: Prints all lines in the text buffer

*P100:500 Prints lines 100 through 500 inclusive

*P. Prints current line pointed to by period (.)

*P Prints 15 lines starting with the current

line. Repeated use of P allows printout of source without lines being scrolled off

the screen

Replace (R)

form: *R[line[,inc]]

The R command only replaces one line and goes into insert mode. If line exists, it is deleted then inserted. If line doesn't exist it is inserted as with the I command. If inc is not specified, the last inc specified by an I, R or N command is used. Period (.) is always updated to the current line.

Example:

*R. Replace current line

*R100,10 Start replacing lines beginning at line 100 and incrementing with 10.

*R100 Start replacing at line 100 using last

specified increments.

Type (T)

form: *T[line1[:line2]]

Prints a line or group of lines onto the TRS-80 LINE PRINTER. Period (.) is updated to point to the last line printed. This command is much like the H command, only no line numbers are printed. Only the source text is printed.

Example:

*T#: * Sends all lines in the text buffer to

printer

*T100:500

Sends text for lines 100 through 500 to

printer

*T.

Sends current line pointed to by period

(.) to the lineprinter.

Scroll and Tab

The Editor/Assembler recognizes the following special characters:

Scroll up

The \(^\) command prints the line preceding the current line and updates period (.) to the printed line. (If the current line is the first line in the edit buffer, it is printed and period (.) remains unchanged.)

Scroll down

The \downarrow command prints the line following the current line and updates period (.) to point to the printed line. (If the current line is the last line in the buffer, it is printed and period (.) remains unchanged.)

Note: Both ↑ and ↓ must be the first character of the command line or they will be ignored.

Tab

Typing \rightarrow tabs right to the next 8 character field. Calling the first position of a source line 1 (line number not counted), the tabs are at positions 9,17,25,33,41,49,51 and continue on in increments of 8 up to 255. Tabs should <u>always</u> be used instead of spaces to conserve text buffer space. A tab (\emptyset 9 hex) only takes up one byte.

Delete character

Backarrow (←) will delete the last character typed. If the last character was a tab, the cursor jumps backwards to the next non-blank character.

(Shift ←) Delete Line

A (Shift \leftarrow) will delete <u>all</u> of the line currently being entered. This is true for both source lines and commands.

(Shift @) Pause

At any time during an Assembly or printout a (Shift @) may be typed to halt the computer. Pressing ENTER will continue the process. The (Shift @) will not be accepted while a line is being printed or assembled; only between lines. A pause received while assembling will not be recognized

TEXT DEFM 'TRS-80 MICROCOMPUTER'

while bytes of the text string are being assembled. Another pause must be typed after this line is finished being assembled.

Write (W)

form: *W[\$filename]

The contents of the edit buffer are written onto a cassette file under the name filename. If filename is not specified no file name is used. Period (.) is always left unchanged.

Example:

<u>*</u>W

Records text buffer to tape with no file-

name

<u>*</u>₩øDEMO

Records text buffer to tape with a file-

name of DEMO. b is a mandatory blank.

Cassette Tapes

All cassette tapes created by the Editor/Assembler are written at 500 baud. The cassette tape containing the Editor/Assembler is also at 500 baud. Whenever reading a 500 baud tape the VOLUME LEVEL MUST BE BETWEEN 5 AND 6.

The SYSTEM tape, included with the Editor/Assembler, allows LEVEL I BASIC to read-in the 500 baud Editor/Assembler tape. First read-in the 250 baud SYSTEM tape (with volume at 8 to 9), and then load in the Editor/Assembler (at volume 5 to 6) as specified in section on Loading.

LEVEL II BASIC may directly read-in the 500 baud Editor/Assembler tape.

Execution of object code programs stored on tapes is performed with the SYSTEM command in LEVEL II BASIC. LEVEL I BASIC must again use the SYSTEM tape to read-in

TRS-80 EDITOR/ASSEMBLER 1.2

and then execute object code from a 500 baud tape. Examples of creating object code and then executing it are given in section on Sample Use.

Filenames

Cassette filenames must begin with an alphabetic character. The remaining characters must be alphanumeric. The length may not exceed 6 characters. Filenames need not be specified for the A or W commands and in the event that a name is not specified, the file is assigned the NONAME filename. If a filename is not specified when using the L command, the first file encountered on the tape is loaded into memory.

Sample Use

The following is a sample session using the Editor/Assembler to write a program. Comments to the reader are enclosed in [] and are not part of the program.

Note: Labels are not preceded by blanks.

*	Ι	1	Ø	Ø		1	Ø
---	---	---	---	---	--	---	---

<u>ØØ1ØØ</u>	[→]	ORG	5ØØØH	[→IS A TAB]
<u>ØØ11Ø</u>	VIDEO	EQU	3СØØН	•
<u>ØØ12Ø</u>		LD	HL,VIDEO	;SOURCE ADDRESS
<u>ØØ13Ø</u>		LD	DE, VIDEO+1	;DEST. ADDRESS
00140		LD	BC,3FFH	;BYTE COUNT
<u>ØØ15Ø</u>		LD	(HL),ØBHF	;GRAPHICS BYTE
<u>ØØ16Ø</u>		LDIR		;WHITE OUT SCREEN
<u>ØØ17Ø</u>	;DELAY	LOOP TO K	KEEP WHITE OUT	SCREEN ON
00180		LD	B,5	
<u>ØØ19Ø</u>	LP1	LD	HL,ØFFFFH	; VALUE TO DECREMENT
<u> </u>	LP2	DEC	HL	
<u>ØØ21Ø</u>		LD	А,Н	
<u>ØØ22Ø</u>		OR	L	; HL = Ø?
<u>Ø</u> Ø23Ø		JP	NZ,LP2	; IF NO DEC AGAIN
<u>ØØ24Ø</u>		DJNZ	LP1	;DEC. BB
ØØ25Ø		JP	ØН	;RETURN TO BASIC
00260		END		
<u> </u> ØØ27Ø	[BREAK]			

* A XXX [Assemble] [All the following is computer output]

5000		00100		ORG	5ØØØH	
3CØØ		ØØ11Ø	VIDEO	EQU	ЗСØØН	
5000	21ØØ3C	ØØ12Ø		LD	HL,VIDEO	;SOURCE ADDRESS
5003	11Ø13C	ØØ13Ø		LD	DE,VIDEO+1	;DEST. ADDRESS
5006	Ø1FFØ3	ØØ14Ø		LD	BC,3FFH	;BYTE COUNT
5009	36BF	ØØ15Ø		LD	(HL),ØBFH	GRAPHICS BYTE
5ØØB	EDBØ	ØØ16Ø		LDIR		;WHITE OUT SCREEN
		ØØ17Ø	;DELAY	LOOP TO	KEEP WHITE OU	JT SCREEN ON
5ØØD	Ø6Ø5	ØØ18Ø		LD	B,5	
5ØØF	21FFFF	ØØ19Ø	LP1	LD	HL,ØFFFFH	; VALUE TO DECREMENT
5Ø12	2B	ØØ2ØØ	LP2	DEC	HL	
5Ø13	7C	ØØ21Ø		LD	А,Н	
5Ø14	B5	ØØ22Ø		OR	L	;HL=Ø?
5Ø15	C2125Ø	ØØ23Ø		JP	NZ,LP2	; IF NO DEC AGAIN
5Ø18	1ØF5	ØØ24Ø		DJNZ	LP1	;DEC.BB
5Ø1A	СЗØØØØ	ØØ25Ø		JP	ØН	;RETURN TO BASIC
ØØØØ		ØØ26Ø		END		
00000	TOTAL EF	RRORS				

LP2 5012

LP1 5ØØF

VIDEO 3CØ0

READY CASSETTE

[Load tape; set to RECORD]

[ENTER]

[Press ENTER to record object code]

Now you can save the information in the text buffer (YOUR SOURCE PROGRAM) onto another tape.

*W MYPROG

The tape file MYPROG may be read in by the Editor/ Assembler's L command.

Any assembler errors are printed immediately before the line the error occurred in.

Execution in LEVEL I BASIC

First load the SYSTEM tape (included with your Edi-Assembler). Put the SYSTEM tape into your cassette. volume is between 8 and 9. Type CLOAD, to load in ta SYSTEM tape. The program will execute as soon as load is completed and will type:

Now enter the filename of your object tape, which was created by the Editor/Assembler. Note that you must

use the filename NONAME if a filename was not specified. With the example program type XXX, the filename of the object tape.

At this point put the object tape XXX into the cassette recorder and press PLAY. The volume must be at 5 to 6 (this is a 500 baud tape). Asterisks will flash in the upper right screen corner. Once loading is complete the computer will type * again. Now you must enter the starting address of the machine code program. The starting address (ORG) was 5000H which is a decimal 20480. Now type this decimal number preceded with a slash (/). The command looks like this:

* /2Ø48Ø

Press ENTER, of course, and the machine code program will execute. The sample program will white-out the video screen with solid graphics characters. This will stay on the screen for about 5 seconds. The program will then return to a READY condition in BASIC.

Executing in LEVEL II BASIC

Execution is much simpler in LEVEL II BASIC. The object tape is again loaded at 5 to 6 volume (as are all 500 baud tapes). The typing is as follows; comments are in brackets []:

READY

> SYSTEM

*? XXX [read in object tape]

*? /20480

The program will now execute and then return to a power up condition (ENTER MEMORY SIZE?).

Multiple Modules

You may load several machine language programs into memory, one after the other. The ORG addresses of these instructions must be such that each object program does not conflict with other modules. If you have the following files:

XXX 7000 to 70FF hexidecimal YYY 7100 to 71FF hexidecimal ZZZ 7200 to 72FF hexidecimal

You may then enter the three programs as follows:

*? XXX

*? YYY

*? ZZZ

*? /28672 [jump to XXX program]

ASSEMBLY LANGUAGE

Syntax

The basic format of an assembly command is:

[LABEL] OPCODE [OPERAND(S)] [COMMENT]

Examples:

ORG 7ØØØH VIDEO EQU 3CØØH

LD DE, VIDEO+1 ; DESTINATION

LABELS

A label is a symbolic name of a line code. Labels are always optional. A label is a string of characters no greater than 6 characters. The first character must be a letter. A label may not contain the \$ character. \$ is reserved for the value of the reference counter of the current instruction. All labels must start in column 1 of the source line.

The following labels are reserved for referring to registers only and may not be used for other purposes: A,B,C,D,E,H,L,I,R,IX,IY,SP,PC,AF,BC,DE, and HL.

The following 8-labels are reserved for branching conditions and may not be used for other purposes (these conditions apply to status flags):

FLAG	CONDITION SET	CONDITION NOT SET
Carry	C	NC
Zero	Z	NZ
Sign	M(minus)	P(plus)
Parity	PE(even)	PO(odd)
Example:	JP NZ, LOOP	

If the zero flag is clear (not set), the above instruction jumps to the instruction specified by LOOP.

OPCODES

The opcodes for the TRS-80 Editor/Assembly exactly correspond to those in the Z-80-Assembly Language Programming Manual, 3.0 D.S., REL. 2.1, FEB 1977. See section Index to Instruction Set for the instruction in question.

OPERANDS

Operands are always one or two values separated by commas. Some instructions require no operands at all.

Examples:

LD HL, 3COOH

XOR

Α

LD

(HL), 2ØH

A value in parentheses () specifies indirect addressing when used with registers, or "contents of" otherwise.

Constants may end in any of the following letters:

H – hexidecimal

D - decimal

O - octal

A constant not followed by one of these letters is assumed to be a decimal. A constant must begin with a digit. Thus FFH is illegal, while ØFFH is legal.

Expressions using the +, -, &, operations are described in section, Expressions.

COMMENTS

All comments must begin with a semicolon (;). If a source line starts with a semicolon in column 1 of the line, the entire line is a comment.

Expressions

A value of an operand may be an expression consisting of +,-,-,-, or \langle symbols. These operations are executed in a strictly left to right order. No parentheses are allowed. All four operators are binary. Both + and - have unary uses also.

Addition (+)

The plus will add two constants and/or symbolic values. When used as a unary operator, it simply echoes the value.

Example:

ØØ1E	CON3Ø	EQU	3∅
ØØ1Ø	CON16	EQU	1 Ø H
ØØØ3	CON3	EQU	3
3CØØ	VIDEO	EQU	3С∅∅Н
3CØ3	A 1	EQU	VIDEO + CON3
ØØ2E	A 2	EQU	CON3Ø + CON16
3CØØ	A3	EQU	+ VIDEO

Subtraction (-)

The minus operator will subtract two constants and/or symbolic values. Unary minus produces a 2's complement.

Examples:

3BFD	A 1	EQU	VIDEO-CON3
ØØØE	A2	EQU	CON3Ø-CON16
C4ØØ	A3	EQU	-VIDEO

Logical AND (&)

The logical AND operator logically adds two constants and/or symbolic values.

Examples:

3CØØ	A 1	EQU	3CØØH & FFH
φφφφ	A 2	EQU	Ø & 15
Ø ØØØ	A 3	EQU	ØAAAAH & 5555H

Shift (()

The shift operator can be used to shift a value left or right. The form is:

VALUE (AMOUNT

If AMOUNT is positive, VALUE is shifted left. If AMOUNT is negative, VALUE is shifted right.

Examples:

CØØØ	A 1	EQU	3CØØH ⟨ 4
Ø3CØ	A 2	EQU	3 C ∅∅H 〈 -4
BBFF	A3	EQU	3CBBH ⟨ 8 + 255
Ø3CØ	A4	EQU	15 + 3CØØH 〈 −4

Z80 STATUS INDICATORS (FLAGS)

The flag register (F and F') supplies information to the user regarding the status of the Z80 at any given time. The bit positions for each flag are shown below:

7	6	5	4	3	2	1	Ø
S	Z	X	Н	X	P/V	N	С

WHERE:

C = CARRY FLAG

N = ADD/SUBTRACT FLAG

P/V = PARITY/OVERFLOW FLAG

H = HALF-CARRY FLAG

Z = ZERO FLAG

S = SIGN FLAG

X = NOT USED

Each of the two Z-80 Flag Registers contains 6 bits of status information which are set or reset by CPU operations. (Bits 3 and 5 are not used.) Four of these bits are testable (C,P/V, Z and S) for use with conditional jump, call or return instructions. Two flags are not testable (H,N) and are used for BCD arithmetic.

CARRY FLAG (C)

The carry bit is set or reset depending on the operation being performed. For 'ADD' instructions that generate a carry and 'SUBTRACT' instructions that generate no borrow, the Carry Flag will be set. The Carry Flag is reset by an ADD that does not generate a carry and a 'SUBTRACT' that generates a borrow. This saved carry facilitates software routines for extended precision arithmetic. Also, the 'DAA' instruction will set the Carry Flag if the conditions for making the decimal adjustment are met.

For instructions RLA, RRA, RLS and RRS, the carry bit is used as a link between the LSB and MSB for any register or memory location. During instructions RLCA, RLC s and SLA s, the carry contains the last value shifted out of bit 7 of any register or memory location. During instructions RRCA, RRC s, SRA s and SRL s the carry contains the last value shifted out of bit \emptyset of any register or memory location.

For the logical instructions AND s, OR s and XOR s, the carry will be reset.

The Carry Flag can also be set (SCF) and complemented (CCF).

ADD/SUBTRACT FLAG (N)

This flag is used by the decimal adjust accumulator instruction (DAA) to distinguish between 'ADD' and 'SUBTRACT' instructions. For all 'ADD' instructions, N will be set to a '\$\psi\$'. For all 'SUBTRACT' instructions, N will be set to a "1".

PARITY/OVERFLOW FLAG

This flag is set to a particular state depending on the operation being performed.

For arithmetic operations, this flag indicates an overflow condition when the result in the Accumulator is greater than the maximum possible number (+127) or is less than the minimum possible number (-128). This overflow condition can be determined by examining the sign bits of the operands.

For addition, operands with different signs will never cause overflow. When adding operands with like signs and the result has a different sign, the overflow flag is set. For example:

+120	=	Ø111	1 Ø ØØ	ADDEND
+1Ø5	=	Ø11Ø	1001	. AUGEND
+225		111Ø	ØØØ1	(-95) SUM

The two numbers added together has resulted in a number that exceeds +127 and the two positive operands has resulted in a negative number (-95) which is incorrect. The overflow flag is therefore set.

For subtraction, overflow can occur for operands of unlike signs. Operands of like sign will never cause overflow. For example:

+127	Ø111	1111	MINUEND
(-) -64	11ØØ	øøøø	SUBTRAHEND
+191	1011	1111	DIFFERENCE

The minuend sign has changed from a positive to a negative, giving an incorrect difference. Overflow is therefore set.

Another method for predicting an overflow is to observe the carry into and out of the sign bit. If there is a carry in and no carry out, or if there is no carry in and a carry out, then overflow has occurred.

This flag is also used with logical operations and rotate instructions to indicate the parity of the result. The number of '1' bits in a byte are counted. If the total is odd, 'ODD' parity $(P=\emptyset)$ is flagged. If the total is even, 'EVEN' parity is flagged (P=1).

During search instructions (CPI,CPIR,CPD,CPDR) and block transfer instructions (LDI,LDIR,LDD,LDDR) the P/V flag monitors the state of the byte count register (BC). When decrementing, the byte counter results in a zero value, the flag is reset to \emptyset , otherwise the flag is a Logic 1.

During LD A,I and LD A,R instructions, the P/V flag will be set with the contents of the interrupt enable flip-flop (IFF2) for storage or testing.

When inputting a byte from an I/O device, IN r,(C), the flag will be adjusted to indicate the parity of the data.

THE HALF CARRY FLAG (H)

The Half Carry Flag (H) will be set or reset depending on the carry and borrow status between bits 3 and 4 of an 8-bit arithmetic operation. This flag is used by the decimal adjust accumulator instruction (DAA) to correct the result of a packed BCD add or subtract operation. The H flag will be set (1) or reset (\emptyset) according to the following table:

Н	ADD	SUBTRACT
1	There is a carry from Bit 3 to Bit 4	There is no borrow from bit 4
Ø	There is no carry from Bit 3 to Bit 4	There is a borrow from Bit 4

THE ZERO FLAG (Z)

The Zero Flag (Z) is set or reset if the result generated by the execution of certain instructions is a zero.

For 8-bit arithmetic and logical operations, the Z flag will be set to a '1' if the resulting byte in the Accumulator is zero. If the byte is not zero, the Z flag is reset to ' ϕ '.

For compare (search) instructions, the Z flag will be set to a '1' if a comparison is found between the value in the Accumulator and the memory location pointed to by the contents of the register pair HL.

When testing a bit in a register or memory location, the Z flag will contain the complemented state of the indicated bit (see Bit b,s).

When inputting or outputting a byte between a memory location and an I/O device (INI;IND;OUTI and OUTD), if the result of B-1 is zero, the Z flag is set, otherwise it is reset. Also for byte inputs from I/O devices using IN r,(C), the Z Flag is set to indicate a zero byte input.

THE SIGN FLAG (S)

The Sign Flag (S) stores the state of the most significant bit of the Accumulator (Bit 7). When the Z80 performs arithmetic operations on signed numbers, binary two's complement notation is used to represent and process numeric information. A positive number is identified by a ' \emptyset ' in bit 7. A negative number is identified by a '1'. The binary equivalent of the magnitude of a positive number is stored in bits \emptyset to 6 for a total range of from \emptyset to 127. A negative number is represented by the two's complement of the equivalent positive number. The total range for negative numbers is from -1 to -128.

When inputting a byte from a I/O device to a register, IN $r_{*}(C)$, the S flag will indicate either positive (S= \emptyset) or negative (S=1) data.

PSEUDO-OPS

ORG nn

There are nine pseudo-op (assembler directives) which the assembler will recognize. These assembler directives, although written much like processor instructions, are commands to the assembler instead of the processor. They direct the assembler to perform specific tasks during the assembly process but have no meaning to the Z80 processor. These assembler pseudo-ops are:

Sets address reference counter to the

	value iiii.
EQU nn	Sets value of a label to nn in the program: can occur only once for any label.
DEFL nn	Sets value of a label to nn and can be repeated in the program with different values for the same label.
END	Signifies the end of the source program so that any following statements are ignored. If no END statement is found, a warning is produced. The END statement can spec-

ify a start address i.e. END LABEL, END 6000H. This address is used by the system program if no start address is given with the slash (/).

DEFB n Defines the contents of a byte at the current reference counter to be n.

DEFB 's' Defines the content of one byte of memory to be the ASCII representation of

character s.

DEFW nn Defines the contents of a two-byte word to be nn. The least significant byte is located

at the current reference counter while the most significant byte is located at the

reference counter plus one.

DEFS nn Reserves nn bytes of memory starting at

the current value of the reference counter.

DEFM 's' Defines the content of n bytes of memory

to be the ASCII representation of string s, where n is the length of s and must be in

the range $\emptyset \langle =n \langle = 63.$

Assembler Commands

The TRS-80 Editor/Assembler supports only two assembler commands. Each command must start in column one of a source line, and must start with an asterisk (*). The assembler commands are:

*LIST OFF Causes the assembler listing to be

suspended, starting with the next line. Errors and bad source lines will still be

printed.

*LIST ON Causes assembler listing to resume, starting

with this line.

Z80 INDEX TO INSTRUCTION SET

NOTE: Execution time (E.T.) for each instruction is given in microseconds for an assumed 4 MHZ clock. Total machine cycles (M) are indicated with total clock periods (T States). Also indicated are the number of T States for each M cycle. For example:

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

indicates that the instruction consists of 2 machine cycles. The first cycle contains 4 clock periods (T States). The second cycle contains 3 clock periods for a total of 7 clock periods or T States. The instruction will execute in 1.75 microseconds.

Register format is shown for each instruction with the most significant bit to the left and the least significant bit to the right.

INSTRUCTION SET TABLE OF CONTENTS	Page
–8 BIT LOAD GROUP	. 13
-16 BIT LOAD GROUP	. 24
-EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP	34
-8 BIT ARITHMETIC AND LOGICAL GROUP	43
-GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS	56
-16 BIT ARITHMETIC GROUP	63
-ROTATE AND SHIFT GROUP	69
-BIT SET, RESET AND TEST GROUP	81
-JUMP GROUP	· ·86
-CALL AND RETURN GROUP	92
-INPUT AND OUTPUT GROUP	98
INDEY	

OPERAND NOTATION

The following notation is used in the assembly language:

- r specifies any one of the following registers: A,B,C,D, E,H,L.
- 2) (HL) specifies the contents of memory at the location addressed by the contents of the register pair HL.
- n specifies a one-byte expression in the range (Ø to 255) nn specifies a two-byte expression in the range (Ø to 65535)
- 4) d specifies a one-byte expression in the range (-128, 127).
- 5) (nn) specifies the contents of memory at the location addressed by the two-byte expression nn.
- 6) b specifies an expression in the range $(\emptyset,7)$.
- 7) e specifies a one-byte expression in the range (-126, 129).
- 8) cc specifies the state of the Flags for conditional JR and JP instructions.
- qq specifies any one of the register pairs BC, DE, HL or AF.
- 10) ss specifies any one of the following register pairs: BC, DE, HL, SP.
- 11) pp specifies any one of the following register pairs: BC,DE,IX,SP.
- 12) rr specifies any one of the following register pairs: BC,DE,IY,SP.
- 13) s specifies any of r,n,(HL),(IX+d),(IY+d).
- 14) dd specifies any one of the following register pairs: BC,DE,HL,SP.
- 15) m specifies any of r,(HL),(1X+d),(IY+d).

8 BIT LOAD GROUP

LD r, r'

Operation: $r \leftarrow r'$

Format:

Opcode	Operands
LD	r,r'
0 1 - r	

Description:

The contents of any register r' are loaded into any other register r. Note: r,r' identifies any of the registers A, B, C, D, E, H, or L, assembled as follows in the object code:

Register r,r'111 = В ØØØ C ØØ1 D Ø1Ø E Ø11 Η 1 Ø Ø L 101

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.0

Condition Bits Affected: None

Example:

If the H register contains the number 8AH, and the E register contains $1 \text{ } \emptyset \text{H}$, the instruction

LD H, E

would result in both registers containing 10H.

LD r, n

Operation: $r \leftarrow n$

Format:

Opcode	Operands
LD	r, n
0 0 r	1 1 0

Description:

The eight-bit integer n is loaded into any register r, where r identifies register A, B, C, D, E, H or L, assembled as follows in the object code:

Register	<u>r</u>	
A	=	111
В	=	ØØØ
C		ØØ1
D	=	Ø1Ø
E	=	Ø11
Н	=	1 Ø Ø
		101

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

After the execution of

LD E, A5H

the contents of register E will be A5H.

LD r, (HL)

Operation: $r \leftarrow (HL)$

Format:

Opcode	Operands
LD	r, (HL)
0 1 - r	1 1 0

Description:

The eight-bit contents of memory location (HL) are loaded into register r, where r identifies register A, B, C, D, E, H or L, assembled as follows in the object code:

Register		<u>r</u> _
Α	=	111
·B	=	ØØØ
C	=	ØØ1
D	=	Ø1Ø
E	=	Ø11
Н	=	1ØØ

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

If register pair HL contains the number 75A1H, and memory address 75A1H contains the byte 58H, the execution of

will result in 58H in register C.

LD r, (IX+d)

Operation: r←(IX+d)

Format:

Opcode	Operands	
LD	r, (IX+d)	
1 1 0	1 1 1 0 1	DD
0 1	$-r \longrightarrow 1 1 0$	
	-d	

Description:

The operand (IX+d) (the contents of the Index Register IX summed with a displacement integer d) is loaded into register r, where r identifies register A, B, C, D, E, H or L, assembled as follows in the object code:

Register			<u>r_</u>
	A	=	111
	В	=	ØØØ
	C	=	ØØ1
	D	=	Ø1Ø
	E	=	Ø11
	Η	=	1 Ø Ø
	T.	=	101

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 25AFH, the instruction

will cause the calculation of the sum 25AFH + 19H, which points to memory location 25C8H. If this address contains byte 39H, the instruction will result in register B also containing 39H.

LD r, (IY+d)

Operation: $r \leftarrow (1Y+d)$

Format:

Opc	<u>ode</u>				Ope	rands	3	
LD			r, (IY+d)					_
1	1	1	1	1	1	0	1	FD
0	1-		- r -		- 1	1	n	
-	T		- d -				-	

Description:

The operand (IY+d) (the contents of the Index Register IY summed with a displacement integer d) is loaded into register r, where r identifies register A, B, C, D, E, H or L, assembled as follows in the object code:

Register			<u>r</u>
	Α	==	111
	В	=	ØØØ
	C	=	ØØ1
	D	=	Ø1Ø
	E	==	Ø11
	H	=	1 Ø Ø
	L	=	1Ø1

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IY contains the number 25AFH, the instruction

LD B, (IY+19H)

will cause the calculation of the sum 25AFH + 19H, which points to memory location 25C8H. If this address contains byte 39H, the instruction will result in register B also containing 39H.

LD (HL), r

Operation: $(HL) \leftarrow r$

Format:

Opco	<u>ode</u>				Operands	
LD					(HL), r	
0	1	1	1	0	- 	-

Description:

The contents of register r are loaded into the memory location specified by the contents of the HL register pair. The symbol r identifies register A, B, C, D, E, H or L, assembled as follows in the object code:

Register		<u>r_</u>
Α	=	111
В	=	ØØØ
C	=	ØØ1
D	=	Ø1Ø
Е	=	Ø11
Н	=	100
L	=	1Ø1

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

If the contents of register pair HL specifies memory location 2146H, and the B register contains the byte 29H, after the execution of

LD (HL), B

memory address 2146H will also contain 29H.

LD(IX+d), r

Operation: (IX+d) ←r

Format:

<u>Opcode</u>				Opei	ands	1	
LD				(IX+	d), r		
1 1	0	1	1	1	0	1	DD
			Marina				1 I
0 1	1	1	0	_	- r-		
	1 1	- h -					

Description:

The contents of register r are loaded into the memory address specified by the contents of Index Register IX summed with d, a two's complement displacement integer. The symbol r identifies register A, B, C, D, E, H or L, assembled as follows in the object code:

Regis		<u>r</u> _	
	A	=	111
	В	=	ØØØ
	C	===	ØØ1
	D	=	Ø1Ø
	\mathbf{E}	=	Ø11
	H	=	1 Ø Ø
	L	=	1Ø1

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the C register contains the byte 1CH, and the Index Register IX contains 3100H, then the instruction

will perform the sum 3100H + 6H and will load 1CH into memory location 3106H.

LD (IY+d), r

Operation: $(IY+d) \leftarrow r$

Format:

Opcode		Operands						
LD		(IY+d), r						
1 1	1	1	1 1 0 1	FD				
0 1	1	1	0 - r -					
		- d -						

Description:

The contents of register r are loaded into the memory address specified by the sum of the contents of the Index Register IY and d, a two's complement displacement integer. The symbol r is specified according to the following table.

Regist	er		r
	Α	=	111
	В	=	ØØØ
	C	=	ØØ1
	D	=	Ø1Ø
	E	=	Ø11
	Η	=	100
	L	=	1Ø1

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the C register contains the byte 48H, and the Index Register IY contains 2A11H, then the instruction

will perform the sum 2A11H + 4H, and will load 48H into memory location 2A15.

LD (HL), n

 $\underline{Operation:} \quad (HL) \leftarrow n$

Format:

Opcode	Operand
LD	(HL),n
0 0 1 1	0 1 1 0 36
n -	

Description:

Integer n is loaded into the memory address specified by the contents of the HL register pair.

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the HL register pair contains 4444H, the instruction

LD (HL), 28H

will result in the memory location 4444H containing the byte 28H.

LD(IX+d), n

Operation: $(IX+d) \leftarrow n$

Format:

Opcode	Operands					
LD	(IX+d), n					
1 1 0	1 1 1 0 1 DD					
0 0 1	1 0 1 1 0 36					
	d					
	n					

Description:

The n operand is loaded into the memory address specified by the sum of the contents of the Index Register IX and the two's complement displacement operand d.

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 219AH the instruction

LD (IX+5H), 5AH

would result in the byte 5AH in the memory address 219FH.

LD (IY+d), n

Operation: $(IY+d) \leftarrow n$

Format:

Description:

Integer n is loaded into the memory location specified by the contents of the Index Register summed with a displacement integer d.

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IY contains the number A94 ϕ H, the instruction

LD (IY+1ØH), 97H

would result in byte 97 in memory location A95ØH.

LD A, (BC)

Operation: $A \leftarrow (BC)$

Format:

<u>Opcode</u>					Operand _S					
LD				A, (BC)						
0	0	0	0	1	0	1	0	OA		

Description:

The contents of the memory location specified by the contents of the BC register pair are loaded into the Accumulator.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

If the BC register pair contains the number 4747H, and memory address 4747H contains the byte 12H, then the instruction

LD A, (BC)

will result in byte 12H in register A.

LD A, (DE)

Operation: $A \leftarrow (DE)$

Format:

<u>Opcode</u>	<u>o</u>	Operands					
LD	A	A, (DE)					
0 0 0	1 1	0 1	Ú	1A			

Description:

The contents of the memory location specified by the register pair DE are loaded into the Accumulator.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

If the DE register pair contains the number $3\emptyset A2H$ and memory address $3\emptyset A2H$ contains the byte 22H, then the instruction

LD A, (DE)

will result in byte 22H in register A.

LD A, (nn)

Operation: $A \leftarrow (nn)$

Format:

Opcode Operands							
LD				A, (r	nn)		
0 0	1	1	1	0	1	0	ЗА
		- n -		I		-	
-		- n -				<u> </u>	

Description:

The contents of the memory location specified by the operands nn are loaded into the Accumulator. The first n operand is the low order byte of a two-byte memory address.

M CYCLES: 4 T STATES: 13(4,3,3,3) 4 MHZ E.T.: 3.25

Condition Bits Affected: None

Example:

If the contents of nn is number 8832H, and the content of memory address 8832H is byte \$\psi 4\$H, after the instruction

LD A, (nn)

byte Ø4H will be in the Accumulator.

LD (BC), A

Operations: $(BC) \leftarrow A$

Format:

<u>Opcode</u>		<u>Operands</u>					
LD		(BC),A					
0 0	0	n.	0	0	1	0	02

Description:

The contents of the Accumulator are loaded into the memory location specified by the contents of the register pair BC.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

If the Accumulator contains 7AH and the BC register pair contains 1212H the instruction

LD (BC),A

will result in 7AH being in memory location 1212H.

LD (DE), A

Operation: $(DE) \leftarrow A$

Format:

<u>Opcode</u>	Operands	
LD	(DE),A	
0 0 0	1 0 0 1 0	12

Description:

The contents of the Accumulator are loaded into the memory location specified by the DE register pair.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

If the contents of register pair DE are 1128H, and the Accumulator contains byte AØH, the instruction

LD (DE),A

will result in AØH being in memory location 1128H.

LD (nn), A

Operation: $(nn) \leftarrow A$

Format:

Description:

The contents of the Accumulator are loaded into the memory address specified by the operands nn. The first n operand in the assembled object code above is the low order byte of nn.

M CYCLES: 4 T STATES: 13(4,3,3,3) 4 MHZ E.T.: 3.25

Condition Bits Affected: None

Example:

If the contents of the Accumulator are byte D7H, after the execution of

LD (3141H),A

D7H will be in memory location 3141H.

LDA, I

Operation: A ← I

Format:

<u>Opcode</u>	Operands	
LD	A, I	
1 1	1 0 1 1 0 1	ED
0 1	0 1 0 1 1 1	57

Description:

The contents of the Interrupt Vector Register I are loaded into the Accumulator.

M CYCLES: 2 T STATES: 9(4,5) 4 MHZ E.T.: 2.25

Condition Bits Affected:

S: Set if I-Reg. is negative; reset otherwise Z: Set if I-Reg. is zero; reset otherwise

H: Reset

P/V: Contains contents of IFF2

N: Reset

C: Not affected

Example:

If the Interrupt Vector Register contains the byte 4AH, after the execution of

LD A, I

the accumulator will also contain 4AH.

LD A, R

Operation: $A \leftarrow R$

Format:

Opco	Opcode Operands							
LD A,R								
1	1	1	0	1	1	0	1	ED
0	1	0	1	1	1	1	1	5F

Description:

The contents of Memory Refresh Register R are loaded into the Accumulator.

M CYCLES: 2 T STATES: 9(4,5) 4 MHZ E.T.: 2.25

Condition Bits Affected:

S: Set if R-Reg. is negative; reset otherwise Z: Set if R-Reg. is zero; reset otherwise

H: Reset

P/V: Contains contents of IFF2

N: Reset C: Not affected

Example:

If the Memory Refresh Register contains the byte 4AH, after the execution of

LD A,R

the Accumulator will also contain 4AH.

LDI, A

Operation: I ← A

Format:

Opco	<u>ode</u>		Operands					
LD					I,A			
1	1	1	0	1	1	0	1	ED
0	1	0	0	0	1	1	1	47

Description:

The contents of the Accumulator are loaded into the Interrupt Control Vector Register, I.

M CYCLES: 2 T STATES: 9(4,5) 4 MHZ E.T.: 2.25

Condition Bits Affected: None

Example:

If the Accumulator contains the number 81H, after the instruction

LD I,A

the Interrupt Vector Register will also contain 81H.

LD R, A

 $\underline{Operation} \colon \mathsf{R} \leftarrow \mathsf{A}$

Format:

Opc	o <u>de</u>							
LD					R,A	,		
1	1	1	0	1	1	0	1	ED
0	1	0	0	1	1	1	1	4F

Description:

The contents of the Accumulator are loaded into the Memory Refresh register $\boldsymbol{R}.$

M CYCLES: 2

T STATES: 9(4,5)

4 MHZ E.T.: 2.25

Condition Bits Affected: None

Example:

If the Accumulator contains the number B4H, after the instruction

LD R,A

the Memory Refresh Register will also contain B4H.

16 BIT LOAD GROUP

LD dd, nn

 $\underline{Operation} \colon \ dd \leftarrow nn$

Format:

Opco	<u>ode</u>		9	Operands				
LD			Ċ	dd, nn				
0	0	d	d	0	0	0	1	
	1 1		- n	т		1		
			- n		1			
-		ا ا	- n -				-	

Description:

The two-byte integer nn is loaded into the dd register pair, where dd defines the BC, DE, HL, or SP register pairs, assembled as follows in the object code:

<u>Pair</u>	<u>dd</u>
BC	ØØ
DE	Ø1
HL	1Ø
SP	11

The first n operand in the assembled object code is the low order byte.

M CYCLES: 3 T STATES: 10(4,33) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

After the execution of

LD HL, 5000H

the contents of the HL register pair will be 5000H.

LD IX, nn

Operation: IX ← nn

Format:

<u>Opcode</u>					Oper	ands	<u> </u>	
LD					IX,nı	n		_
1	1	0	1	1	1	0	1	DD
								i
0	0	1	0	0	0	0	1	21
								! 1
-		-	<u></u> n				->	
	L							l 1
-	' '		- n -				-	
L				L	لبسببا	-		j

Description:

Integer nn is loaded into the Index Register IX. The first n operand in the assembled object code above is the low order byte.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

Example:

After the instruction

LD IX,45A2H

the Index Register will contain integer 45A2H.

LD IY, nn

Operation: IY ← nn

Format:

Description:

Integer nn is loaded into the Index Register IY. The first n operand in the assembled object code above is the low order byte.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

Example:

After the instruction:

LD IY,7733H

the Index Register IY will contain the integer 7733H.

LD HL, (nn)

Operation: $H \leftarrow (nn+1), L \leftarrow (nn)$

Format:

Opcode			Oper	ands	!	
LD			HL,	(nn)		
0 0 1	0	1	0	1	0	2A
						!
	- n ·	L				
	n		1	1		
	- -					

Description:

The contents of memory address nn are loaded into the low order portion of register pair HL (register L), and the contents of the next highest memory address nn+1 are loaded into the high order portion of HL (register H). The first n operand in the assembled object code above is the low order byte of nn.

M CYCLES: 5 T STATES: 16(4,3,3,3,3) 4 MHZ E.T.: 4.00

Condition Bits Affected: None

Example:

If address 4545H contains 37H and address 4546H contains $\mathbf{A}1H$ after the instruction

LD HL, (4545H)

the HL register pair will contain A137H.

LD dd, (nn)

Operation: $dd_H \leftarrow (nn+1), dd_L \leftarrow (nn)$

Format:

Opcode Operands	
LD dd,(nn)	
1 1 1 0 1 1 0 1	ED
0'1'd'd'1'0'1'1	
	

Description:

The contents of address nn are loaded into the low order portion of register pair dd, and the contents of the next highest memory address nn+1 are loaded into the high order portion of dd. Register pair dd defines BC, DE, HL, or SP register pairs, assembled as follows in the object code:

<u>Pair</u>	<u>dd</u>
BC	ØØ
DE	Ø1
HL	1Ø
SP	11

The first n operand in the assembled object code above is the low order byte of (nn).

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If Address $213\emptyset H$ contains 65H and address 2131M contains 78H after the instruction

LD BC, (213ØH)

the BC register pair will contain 7865H.

LD IX, (nn)

Operation: $IX_H \leftarrow (nn+1), IX_L \leftarrow (nn)$

Format:

<u>Opcode</u>	ode Operands						
LD				IX,(nn)		
1 1	0	1	1	1	0	1	DD
		<u> </u>	L	L	L		ļ
0 0	1	0	1	0	1	0	2A
			·	,	,		•
4		- - n	'	<u>'</u>		-	
					,		1
4		- n	- L	- 		-	

Description:

The contents of the address nn are loaded into the low order portion of Index Register IX, and the contents of the next highest memory address nn+1 are loaded into the high order portion of IX. The first n operand in the assembled object code above is the low order byte of nn.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains DAH, after the instruction

LD IX, (6666H)

the Index Register IX will contain DA92H.

LD IY, (nn)

Operation: $IY_H \leftarrow (nn+1), IY_L \leftarrow (nn)$

Format:

Description:

The contents of address nn are loaded into the low order portion of Index Register IY, and the contents of the next highest memory address nn+1 are loaded into the high order portion of IY. The first n operand in the assembled object code above is the low order byte of nn.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains DAH, after the instruction

LD IY, (6666H)

the Index Register IY will contain DA92H.

LD (nn), HL

Operation: $(nn+1) \leftarrow H$, $(nn) \leftarrow L$

Format:

Description:

The contents of the low order portion of register pair HL (register L) are loaded into memory address nn, and the contents of the high order portion of HL (register H) are loaded into the next highest memory address nn+1. The first n operand in the assembled object code above is the low order byte of nn.

M.CYCLES: 5 T STATES: 16(4,3,3,3,3) 4 MHZ E.T.: 4.00

Condition Bits Affected: None

Example:

If the content of register pair HL is 483AH, after the instruction

LD (B229H),HL

address B229H) will contain 3AH, and address B22AH will contain 48H.

LD (nn), dd

Operation: $(nn+1) \leftarrow dd_H$, $(nn) \leftarrow dd_L$

Format:

Opco	de				Opeı	ands	<u> </u>		
LD					(nn)	,dd		_	
1	1	1	0	1	1	0	1		ΕD
								: I	
0	1	d	d	0	0	1	1		
			– n L						
			- n -						

Description:

The low order byte of register pair dd is loaded into memory address nn; the upper byte is loaded into memory address nn+1. Register pair dd defines either BC, DE, HL, or SP, assembled as follows in the object code:

<u>Pair</u>	<u>dd</u>
BC	ØØ
DE	Ø1
HL	1 Ø
SP	11

The first n operand in the assembled object code is the low order byte of a two byte memory address.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If register pair BC contains the number 4644H, the instruction

LD (1000H),BC

will result in 44H in memory location 1000H, and 46H in memory location 1001H.

LD (nn), IX

Operation: $(nn+1) \leftarrow IX_H$, $(nn) \leftarrow IX_L$

Format:

<u>Opcode</u>				<u>Operands</u>				
LD			((nn),	IX			
1 1	0	1	1	1	()	1	DD	
<u></u>					لــــا			
0 0	1	0	0	0	1	0	22	
							1	
-	· · ·	. n -				-		
							i I	
		- n -				-		
0 0		0 . n -	0	0	1	0	22	

Description:

The low order byte in Index Register IX is loaded into memory address nn; the upper order byte is loaded into the next highest address nn+1. The first n operand in the assembled object code above is the low order byte of nn.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If the Index Register IX contains 5A3\$H, after the instruction

LD (4392H), IX

memory location 4392H will contain number 3ØH and location 4393H will contain 5AH.

LD (nn), IY

 $\underline{Operation} \colon \ (nn+1) \leftarrow IY_{\mbox{\scriptsize H}}, \, (nn) \leftarrow IY_{\mbox{\scriptsize L}}$

Format:

Opcode Operands							
LD			((nn),	,IY		
1 1	1	1	1	1	0	1	FD
0 0	1	0	0	0	1	0	22
-		- n -				-	•
-		- n -				-	

Description:

The low order byte in Index Register IY is loaded into memory address nn; the upper order byte is loaded into memory location nn+1. The first n operand in the assembled object code above is the low order byte of nn.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If the Index Register IY contains 4174H after the instruction

LD 8838H, IY

memory location 8838H will contain number 74H and memory location 8839H will contain 41H.

LD SP, HL

 $\underline{Operation} \colon \ SP \leftarrow HL$

Format:

Opco	<u>ode</u>				<u>Operands</u>					
LD					SP,HL					
1	1	1	1	1	0	0	1	F9		

Description:

The contents of the register pair HL are loaded into the Stack Pointer SP.

M CYCLES: 1 T STATES: 6 4 MHZ E.T.: $1.5\emptyset$

Condition Bits Affected: None

Example:

If the register pair HL contains 442EH, after the instruction

LD SP,HL

the Stack Pointer will also contain 442EH.

LD SP, IX

 $\underline{Operation} \colon \ SP \leftarrow IX$

Format:

Opc	ode				Operands					
LD					SP,IX					
1	1	0	1	1	1	0	1	DD		
1	1	1	1	1	0	0	1	F9		

Description:

The two byte contents of Index Register IX are loaded into the Stack Pointer SP.

M CYCLES: 2 T STATES: 10(4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register IX are 98DAH, after the instruction

LD SP, IX

the contents of the Stack Pointer will also be 98DAH.

LD SP, IY

<u>Operation</u>: $SP \leftarrow IY$

Format:

<u>Opcode</u>					Operands					
LD					SP,IY					
1	1	1	1	1	1	0	1	FD		
1	1	1	1	1	0	0	1	F9		

Description:

The two byte contents of Index Register IY are loaded into the Stack Pointer SP.

M CYCLES: 2

T STATES: 10(4,6)

4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If Index Register IY contains the integer A227H, after the instruction

LD SP, IY

the Stack Pointer will also contain A227H.

PUSH qq

Operation: $(SP-2) \leftarrow qq_L, (SP-1) \leftarrow qq_H$

Format:

Opcode			Operands				
PUSH				qq			
1 1	q	q	0	1	0	1	

Description:

The contents of the register pair qq are pushed into the external memory LIFO (last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit address of the current "top" of the Stack. This instruction first decrements the SP and loads the high order byte of register pair qq into the memory address now specified by the SP; then decrements the SP again and loads the low order byte of qq into the memory location corresponding to this new address in the SP. The operand qq means register pair BC, DE, HL, or AF, assembled as follows in the object code:

<u>Pair</u>	qq
BC	ØØ
DE	Ø1
HL	1Ø
AF	11

M CYCLES: 3 T STATES: 11(5,3,3) 4 MHZ E.T.: 2,75

Condition Bits Affected: None

Example:

If the AF register pair contains 2233H and the Stack Pointer contains 1007H, after the instruction

PUSH AF

memory address 1006H will contain 22H, memory address 1005H will contain 33H, and the Stack Pointer will contain 1005H.

PUSH IX

<u>Operation</u>: $(SP-2) \leftarrow IX_L$, $(SP-1) \leftarrow IX_H$

Format:

Opc	<u>ode</u>	Operands								
PUS	Н				IX					
1	1	0	1	1	1	0	1	DD		
1	1	1	່ງ ເ	0	1	0	1	E5		

Description:

The contents of the Index Register IX are pushed into the external memory LIFO (last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit address of the current "top" of the Stack. This instruction first decrements the SP and loads the high order byte of IX into the memory address now specified by the SP; then decrements the SP again and loads the low order byte into the memory location corresponding to this new address in the SP.

M CYCLES: 3 T STATES: 15(4,5,3,3) 4 MHZ E.T.: 3.75

Condition Bits Affected: None

Example:

If the Index Register IX contains 2233H and the Stack Pointer contains 1007H, after the instruction

PUSH IX

memory address 1006H will contain 22H, memory address 1005H will contain 33H, and the Stack Pointer will contain 1005H.

PUSHIY

Operation: $(SP-2) \leftarrow IY_L$, $(SP-1) \leftarrow IY_H$

Format:

Opc	ode	<u>Operands</u>							
PUS	SH				IY				
1	1		1	1	1	0	1	FD	
1	1	1	0	0	T 1	[0	1	E5	

Description:

The contents of the Index Register IY are pushed into the external memory LIFO (last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit address of the current "top" of the Stack. This instruction first decrements the SP and loads the high order byte of IY into the memory address now specified by the SP; then decrements the SP again and loads the low order byte into the memory location corresponding to this new address in the SP.

M CYCLES: 4 T STATES: 15(4,5,3,3) 4 MHZ E.T.: 3.75

Condition Bits Affected: None

Example:

If the Index Register IY contains 2233H and the Stack Pointer contains 1007H, after the instruction

PUSH IY

memory address 1006H will contain 22H, memory address 1005H will contain 33H, and the Stack Pointer will contain 1005H.

POP qq

<u>Operation</u>: $qq_H \leftarrow (SP+1), qq_L \leftarrow (SP)$

Format:

Opcode	<u>-</u>	Operands					
POP				qq			
1 1	q	q	0	0	0	1	_

Description:

The top two bytes of the external memory LIFO (last-in, first-out) Stack are popped into register pair qq. The Stack Pointer (SP) register pair holds the 16-bit address of the current "top" of the Stack. This instruction first loads into the low order portion of qq, the byte at the memory location corresponding to the contents of SP; then SP is incremented and the contents of the corresponding adjacent memory location are loaded into the high order portion of qq and the SP is now incremented again. The operand qq defines register pair BC, DE, HL, or AF, assembled as follows in the object code:

<u>Pair</u>	<u>r</u> _
BC	ØØ
DE	Ø1
HL	10
AF	11

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and location 1001H contains 33H, the instruction

POP HL

will result in register pair HL containing 3355H, and the Stack Pointer containing 1002H.

POP IX

Operation: $IX_H \leftarrow (SP+1), IX_L \leftarrow (SP)$

Format:

Ope	code	<u>Operands</u>						
PO	P				IX			
1	1	<u>'</u> 0	1	1	1	0	1	DD
1	1	1	0	0	0	0	1	E1

Description:

The top two bytes of the external memory LIFO (last-in, first-out) Stack are popped into Index Register IX. The Stack Pointer (SP) register pair holds the 16-bit address of the current "top" of the Stack. This instruction first loads into the low order portion of IX the byte at the memory location corresponding to the contents of SP; then SP is incremented and the contents of the corresponding adjacent memory location are loaded into the high order portion of IX. The SP is now incremented again.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and location 1001H contains 33H, the instruction

POP IX

will result in the Index Register IX containing 3355H, and the Stack Pointer containing 1002H.

POP IY

Operation: $IY_H \leftarrow (SP+1), IY_L \leftarrow (SP)$

Format:

Opcode	Operands						
POP				ΙΥ			
1 1	1	1	1	1	0	1	FD
1 1	1	0	0	n	0	1	E1

Description:

The top two bytes of the external memory LIFO (last-in, first-out) Stack are popped into Index Register IY. The Stack Pointer (SP) register pair holds the 16-bit address of the current "top" of the Stack. This instruction first loads into the low order portion of IY the byte at the memory location corresponding to the contents of SP; then SP is incremented and the contents of the corresponding adjacent memory location are loaded into the high order portion of IY. The SP is now incremented again.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and location 1001H contains 33H, the instruction

POP IY

will result in Index Register IY containing 3355H, and the Stack Pointer containing 100H.

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

EX DE, HL

 $\underline{Operation}\colon\;\mathsf{DE} \leftrightarrow \mathsf{HL}$

Format:

Ope	code				<u>Oper</u>	ands	1	
EX					DE,F	IL		
1	1	1	0	1	0	1	1	EB

Description:

The two-byte contents of register pairs DE and HL are exchanged.

M CYCLES: 1

T STATES: 4

4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

If the content of register pair DE is the number 2822H, and the content of the register pair HL is number 499 AH, after the instruction

EX DE, HL

the content of register pair DE will be 499AH and the content of register pair HL will be 2822H.

EX AF, AF'

Operation: AF ↔ AF'

Format:

Opco	<u>ode</u>				Oper	ands	-	
EX					AF,A	ΑF'		
0	0	0	0	1	0	0	0	08

Description:

The two-byte contents of the register pairs AF and AF' are exchanged. (Note: register pair AF' consists of registers A' and F'.)

M CYCLES: 1

T STATES: 4

4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

If the content of register pair AF is number 9900H, and the content of register pair AF' is number 5944H, after the instruction

EX AF, AF'

the contents of AF will be 5944H, and the contents of AF will be 9900H.

EXX

Operation: (BC) \leftrightarrow (BC'), (DE) \leftrightarrow (DE'), (HL) \leftrightarrow (HL')

Format:

(Opco	<u>de</u>				<u> Oper</u>	ands		
]	EXX								
	1	1	0	1	1	0	0	1	D9

Description:

Each two-byte value in register pairs BC, DE, and HL is exchanged with the two-byte value in BC', DE', and HL', respectively.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

1f the contents of register pairs BC, DE, and HL are the numbers 445AH, 3DA2H, and 8859H, respectively, and the contents of register pairs BC', DE', and HL' are \$\phi 988H\$, 93\$\$\phi\$\$\phi\$H, and \$\phi\$\$\phi\$E7H, respectively, after the instruction

EXX

the contents of the register pairs will be as follows: BC: \$\phi988H; DE: 93\$\phi\$H; HL: \$\phi\$E7H; BC': 445AH; DE': 3DA2H; and HL': 8859H.

EX (SP), HL

Operation: $H \leftrightarrow (SP+1), L \leftrightarrow (SP)$

Format:

Ğ	Opco	ode				Oper	ands	}	
]	EX					(SP)	,HL		
	1	1	1	0	0	0	1	1	E3

Description:

The low order byte contained in register pair HL is exchanged with the contents of the memory address specified by the contents of register pair SP (Stack Pointer), and the high order byte of HL is exchanged with the next highest memory address (SP+1).

M CYCLES: 5 T STATES: 19(4,3,4,3,5) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the HL register pair contains 7012H, the SP register pair contains 8856H, the memory location 8856H contains the byte 11H, and the memory location 8857H contains the byte 22H, then the instruction

EX (SP), HL

will result in the HL register pair containing number 2211H, memory location 8856H containing the byte 12H, the memory location 8857H containing the byte $7\emptyset$ H and the Stack Pointer containing 8856H.

EX (SP), IX

Operation: $IX_H \leftrightarrow (SP+1)$, $IX_L \leftrightarrow (SP)$

Format:

•	Opco	de				Operands					
EX				(SP),IX							
	1 1 0			1	1	DD					
	1	1	1	0	0	0	1	1	E3		

Description:

The low order byte in Index Register IX is exchanged with the contents of the memory address specified by the contents of register pair SP (Stack Pointer), and the high order byte of IX is exchanged with the next highest memory address (SP+1).

M CYCLES: 6 T STATES: 23(4,4,3,4,3,5) 4 MHZ E.T.: 5.75

Condition Bits Affected: None

Example:

If the Index Register IX contains 3988H, the SP register pair contains $\emptyset 1 \emptyset \emptyset H$, the memory location $\emptyset 1 \emptyset \emptyset H$ contains the byte $9\emptyset H$, and memory location $\emptyset 1 \emptyset 1 H$ contains byte 48H, then the instruction

EX (SP), IX

will result in the IX register pair containing number 489 MH, memory location 0100 HH containing 88H, memory location 0100 HH containing 39H and the Stack Pointer containing 0100 HH.

EX (SP), IY

Operation: IYH ↔ (SP+1), IYL ↔ (SP)

Format:

Opcode	Operands	Operands					
EX	(SP),IY	(SP),IY					
1 1 1	1 1 1 0 1	FD					
1 1 1	0 0 0 1 1	E3					

Description:

The low order byte in Index Register IY is exchanged with the contents of the memory address specified by the contents of register pair SP (Stack Pointer), and the high order byte of IY is exchanged with the next highest memory address (SP+1).

M CYCLES: 6 T STATES: 23(4,4,3,4,3,5) 4 MHZ E.T.: 5.75

Condition Bits Affected: None

Example:

If the Index Register IY contains 3988H, the SP register pair contains $\emptyset 1\emptyset\emptyset$ H, the memory location $\emptyset 1\emptyset\emptyset$ H contains the byte 9 \emptyset H, and memory location $\emptyset 1\emptyset$ 1H contains byte 48H, then the instruction

EX (SP), IY

will result in the IY register pair containing number $4890\,\mathrm{H}$, memory location $0100\,\mathrm{H}$ containing 88H, memory location $0101\,\mathrm{H}$ containing 39H, and the Stack Pointer containing $0100\,\mathrm{H}$.

LDI

Operation:

$$(DE) \leftarrow (HL)$$
, $DE \leftarrow DE+1$, $HL \leftarrow HL+1$, $BC \leftarrow BC-1$

Format:

Opco	<u>de</u>			•	Oper	ands		
LDI								
1	1	1	0	1	1	0	1	ED
1	0	1	0	0	0	0	0	AO

Description:

A byte of data is transferred from the memory location addressed by the contents of the HL register pair to the memory location addressed by the contents of the DE register pair. Then both these register pairs are incremented and the BC (Byte Counter) register pair is decremented.

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Set if BC $-1\neq\emptyset$; reset otherwise

N: Reset

C: Not affected

Example:

If the HL register pair contains 1111H, memory location 1111H contains the byte 88H, the DE register pair contains 2222H, the memory location 2222H contains byte 66H, and the BC register pair contains 7H, then the instruction

LDI

will result in the following contents in register pairs and memory addresses:

HL : 1112H (1111H) : 88H DE : 2223H (2222H) : 88H BC : 6H

LDIR

Operation:

 $(DE) \leftarrow (HL)$, $DE \leftarrow DE+1$, $HL \leftarrow HL+1$, $BC \leftarrow BC-1$

Format:

Description:

This two byte instruction transfers a byte of data from the memory location addressed by the contents of the HL register pair to the memory location addressed by the DE register pair. Then both these register pairs are incremented and the BC (Byte Counter) register pair is decremented. If decrementing causes the BC to go to zero, the instruction is terminated. If BC is not zero the program counter is decremented by 2 and the instruction is repeated. Note that if BC is set to zero prior to instruction execution, the instruction will loop through 64K bytes. Also, interrupts will be recognized after each data transfer.

For BC#Ø:

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZ E.T.: 5.25

For BC=0:

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Reset

N: Reset

C: Not affected

Example:

If the HL register pair contains 1111H, the DE register pair contains 2222H, the BC register pair contains $\emptyset\emptyset\emptyset$ 3H, and memory locations have these contents:

(1111H): 88H (2222H): 66H (1112H): 36H (2223H): 59H (1113H): A5H (2224H): C5H

then after the execution of

LDIR

the contents of register pairs and memory locations will be:

HL: 1114H DE: 2225H BC: ØØØØH

(1111H): 88H (2222H): 88H (1112H): 36H (2223H): 36H (1113H): A5H (2224H): A5H

LDD

Operation:

 $\overline{(DE)} \leftarrow (HL)$, DE \leftarrow DE-1, HL \leftarrow HL-1, BC \leftarrow BC-1

Format:

<u>Opcode</u>	<u>Operands</u>	
LDD		
1 1	1 0 1 1 0 1	ΕD
1 0	1 0 1 0 0 0	A8

Description:

This two byte instruction transfers a byte of data from the memory location addressed by the contents of the HL register pair to the memory location addressed by the contents of the DE register pair. Then both of these register pairs including the BC (Byte Counter) register pair are decremented.

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Set if BC $-1\neq\emptyset$; reset otherwise

N: Reset

C: Not affected

Example:

If the HL register pair contains 1111H, memory location 1111H contains the byte 88H, the DE register pair contains 2222H, memory location 2222H contains byte 66H, and the BC register pair contains 7H, then the instruction

LDD

will result in the following contents in register pairs and memory addresses:

HL : 111ØH (1111H) : 88H DE : 2221H (2222H) : 88H BC : 6H

LDDR

Operation:

 $(DE) \leftarrow (HL)$, $DE \leftarrow DE-1$, $HL \leftarrow HL-1$, $BC \leftarrow BC-1$

Format:

Opc	ode				Operands					
LDI	OR									
1	1	1	0	1	1	0	1	ED		
1	0	1	1	1	0	0	0	В8		

Description:

This two byte instruction transfers a byte of data from the memory location addressed by the contents of the HL register pair to the memory location addressed by the contents of the DE register pair. Then both of these registers as well as the BC (Byte Counter) are decremented. If decrementing causes the BC to go to zero, the instruction is terminated. If BC is not zero, the program counter is decremented by 2 and the instruction is repeated. Note that if BC is set to zero prior to instruction execution, the instruction will loop through 64K bytes. Also, interrupts will be recognized after each data transfer.

For BC≠Ø:

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZ E.T.: 5.25

For BC#Ø:

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Reset

N: Reset

C: Not affected

Example:

If the HL register pair contains 1114H, the DE register pair contains 2225H, the BC register pair contains 0003H, and memory locations have these contents:

(1114H) : A5H (2225H) : C5H (1113H) : 36H (2224H) : 59H (1112H) : 88H (2223H) : 66H

then after the execution of

LDDR

the contents of register pairs and memory locations will be:

HL : 1111H DE : 2222H BC : ØØØØH

(1114H) : A5H (2225H) : A5H (1113H) : 36H (2224H) : 36H (1112H) : 88H (2223H) : 88H

CPI

Operation: A - (HL), $HL \leftarrow HL+1$, $BC \leftarrow BC-1$

Format:

(Opco	ode							
(CPI								
Control of the Contro	1	1	1	0	1	1	0	1	ED
									•
	1	0	1	0	0	0	0	1	A1

Description:

The contents of the memory location addressed by the HL register pair is compared with the contents of the Accumulator. In case of a true compare, a condition bit is set. Then HL is incremented and the Byte Counter (register pair BC) is decremented.

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if A=(HL); reset otherwise

H: Set if no borrow from Bit 4; reset otherwise

P/V: Set if BC $-1\neq\emptyset$; reset otherwise

N: Set

C: Not affected

Example:

If the HL register pair contains 1111H, memory location 1111H contains 3BH, the Accumulator contains 3BH, and the Byte Counter contains $\emptyset\emptyset\emptyset$ 1H, then after the execution of

CPI

the Byte Counter will contain $\emptyset\emptyset\emptyset\emptysetH$, the HL register pair will contain 1112H, the Z flag in the F register will be set, and the P/V flag in the F register will be reset. There will be no effect on the contents of the Accumulator or address 1111H.

CPIR

Operation: A - (HL), $HL \leftarrow HL+1$, $BC \leftarrow BC-1$

Format:

Opcode Operands	Operands					
CPIR						
1 1 1 0 1 1 0 1	ED					
1 0 1 1 0 0 0 1	В1					

Description:

The contents of the memory location addressed by the HL register pair is compared with the contents of the Accumulator. In case of a true compare, a condition bit is set. The HL is incremented and the Byte Counter (register pair BC) is decremented. If decrementing causes the BC to go to zero or if A=(HL), the instruction is terminated. If BC is not zero and A‡(HL), the program counter is decremented by 2 and the instruction is repeated. Note that if BC is set to zero before the execution, the instruction will loop through 64K bytes, if no match is found. Also, interrupts will be recognized after each data comparison.

For BC $\neq \emptyset$ and A \neq (HL):

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZ E.T.: 5.25

For BC=Ø or A=(HL):

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if A=(HL); reset otherwise

H: Set if no borrow from Bit 4; reset otherwise

P/V: Set if BC $-1\neq\emptyset$; reset otherwise

N: Set

C: Not affected

Example:

If the HL register pair contains 1111H, the Accumulator contains F3H, the Byte Counter contains $\emptyset\emptyset\emptyset$ 7H, and memory locations have these contents:

(1111H) : 52H (1112H) : ØØH (1113H) : F3H

then after the execution of

CPIR

the contents of register pair HL will be 1114H, the contents of the Byte Counter will be \$\phi\phi\phi4H\$, the P/V flag in the F register will be set and the Z flag in the F register will be set.

CPD

Operation: A - (HL), $HL \leftarrow HL-1$, $BC \leftarrow BC-1$

Format:

Opco	ode		<u>Operands</u>						
CPD									
1	1	1	0	1	1	0	1	ED	
1	0	1	0	1	0	0	1	A9	

Description:

The contents of the memory location addressed by the HL register pair is compared with the contents of the Accumulator. In case of a true compare, a condition bit is set. The HL and the Byte Counter (register pair BC) are decremented.

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if A=(HL); reset otherwise

H: Set if no borrow from Bit 4; reset otherwise

P/V: Set if BC $-1\neq 0$; reset otherwise

N: Set

C: Not affected

Example:

If the HL register pair contains 1111H, memory location 1111H contains 3BH, the Accumulator contains 3BH, and the Byte Counter contains $\emptyset\emptyset\emptyset1H$, then after the execution of

CPD

the Byte Counter will contain $\emptyset\emptyset\emptyset\emptysetH$, the HL register pair will contain 111 \emptyset H, the Z flag in the F register will be set, and the P/V flag in the F register will be reset. There will be no effect on the contents of the Accumulator or address 1111H.

CPDR

Operation: A - (HL), $HL \leftarrow HL-1$, $BC \leftarrow BC-1$

Format:

(Opcode					<u>Operands</u>					
(CPD	R									
Dozost Marculotta Actor	1			0	1	1	0	1	ED		
	1	0	1	1	1	0	0	1	В9		

Description:

The contents of the memory location addressed by the HL register pair is compared with the contents of the Accumulator. In case of a true compare, a condition bit is set. The HL and BC (Byte Counter) register pairs are decremented. If decrementing causes the BC to go to zero or if A=(HL), the instruction is terminated. If BC is not zero and $A\neq(HL)$, the program counter is decremented by 2 and the instruction is repeated. Note that if BC is set to zero prior to instruction execution, the instruction will loop through 64K bytes, if no match is found. Also, interrupts will be recognized after each data comparison.

For BC $\neq \emptyset$ and A \neq (HL):

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZ E.T.: 5.25

For BC= \emptyset or A=(HL):

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if A=(HL); reset otherwise

H: Set if no borrow from Bit 4; reset otherwise

P/V: Set if BC $-1\neq\emptyset$; reset otherwise

N: Se

C: Not affected

Example:

If the HL register pair contains 1118H, the Accumulator contains F3H, the Byte Counter contains $\emptyset\emptyset\emptyset$ 7H, and memory locations have these contents:

(1118H) : 52H (1117H) : ØØH (1116H) : F3H

then after the execution of

CPDR

the contents of register pair HL will be 1115H, the contents of the Byte Counter will be 0004H, the P/V flag in the F register will be set, and the Z flag in the F register will be set.

8 BIT ARITHMETIC AND LOGICAL GROUP

ADD A, r

Operation: $A \leftarrow A + r$

Format:

Opco	ode		Operand s				
ADI)			A,r			
1	0	0	0	0 ← r →			

Description:

The contents of register r are added to the contents of the Accumulator, and the result is stored in the Accumulator. The symbol r identifies the registers A,B,C,D,E,H or L assembled as follows in the object code:

Register	<u>r</u> _			
A	111			
В	ØØØ			
C	ØØ1			
D	Ø1Ø			
Ē	Ø11			
H	1 Ø Ø			
I.	101			

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are 44H, and the contents of register C are 11H, after the execution of

ADD A,C

the contents of the Accumulator will be 55H.

ADD A, n

Operation: $A \leftarrow A + n$

Format:

Description:

The integer n is added to the contents of the Accumulator and the results are stored in the Accumulator.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are 23H, after the execution of

ADD A,33H

the contents of the Accumulator will be 56H.

ADD A, (HL)

Operation: $A \leftarrow A + (HL)$

Format:

Opc	9	Oper							
ADD					A,(HL)				
1	0	0	0	0	1	1	0	86	

Description:

The byte at the memory address specified by the contents of the HL register pair is added to the contents of the Accumulator and the result is stored in the Accumulator.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are AØH, and the content of the register pair HL is 2323H, and memory location 2323H contains byte Ø8H, after the execution of

ADD A, (HL)

the Accumulator will contain A8H.

ADD A, (IX+d)

Operation: $A \leftarrow A + (IX+d)$

Format:

Opc	<u>ode</u>				Ope	rands	3	
ADI)				A,(I	X+d)		
1	1	0	1	1	1	0	1	DD
1	0	0	0	0	1	1	0	86
			d -		r	I	_	

Description:

The contents of the Index Register (register pair IX) is added to a displacement d to point to an address in memory. The contents of this address is then added to the contents of the Accumulator and the result is stored in the Accumulator.

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise

Example:

If the Accumulator contents are 11H, the Index Register IX contains 1000H, and if the content of memory location 100H is 22H, after the execution of

ADD A, (IX+5H)

the contents of the Accumulator will be 33H.

ADD A, (IY+d)

Operation: $A \leftarrow A+(IY+d)$

Format:

<u>Opcode</u>			Operands					
ADD					A,(I	Y+d)	
1	1	1	1	1	1	0	1	FD
1	0	0	0	0	1	1	0	86
4		1	d -	1	ı	T	-	

Description:

The contents of the Index Register (register pair IY) is added to the displacement d to point to an address in memory. The contents of this address is then added to the contents of the Accumulator and the result is stored in the Accumulator.

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise

Example:

If the Accumulator contents are 11H, the Index Register pair IY contains 1000H, and if the content of memory location 1005H is 22H, after the execution of

ADD A, (IY+5H)

the contents of the Accumulator will be 33H.

ADC A, s

Operation: $A \leftarrow A + s + CY$

Format:

<u>Opcode</u>	Operands	
ADC	A,s	

The s operand is any of r,n,(HL),(IX+d) or (IY+d) as defined for the analogous ADD instruction. These various possible opcode-operand combinations are assembled as follows in the object code:

*r identifies registers B,C,D,E,H,L or A assembled as follows in the object code field above:

Register r

В	ØØØ
Č	ØØ1
D	Ø1Ø
E	Ø11
H	100
L	1Ø1
Δ	111

Description:

The s operand, along with the Carry Flag ("C" in the F register) is added to the contents of the Accumulator, and the result is stored in the Accumulator.

INSTRUCTION	M CYCLES	T STATES	4 MHZ E.T.	
ADC A,r	1	4	1.00	
ADC A,n	2	7(4,3)	1.75	
ADC A,(HL)	2	7(4,3)	1.75	
ADC A(IX+d)	5	19(4,4,3,5,3)	4.75	
ADC A,(IY+d)	5	19(4,4,3,5,3)	4.75	

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise

Example:

If the Accumulator contains 16H, the Carry Flag is set, the HL register pair contains 6666H, and address 6666H contains 10H, after the execution of

ADC A, (HL)

the Accumulator will contain 27H.

SUB s

Operation: $A \leftarrow A - s$

Format:

Opcode	Operand	
SUB	S	

The s operand is any of r,n,(HL),(IX+d) or (IY+d) as defined for the analogous ADD instruction. These various possible opcode-operand combinations are assembled as follows in the object code:

*r identifies registers B,C,D,E,H,L or A assembled as follows in the object code field above:

Register	<u>r_</u>
В	ØØØ
C	ØØ1
D	Ø1Ø
E	Ø1 1
H	1ØØ
L	1Ø1
A	111

Description:

The s operand is subtracted from the contents of the Accumulator, and the result is stored in the Accumulator.

INSTRUCTION	M CYCLES	T STATES	4 MHZ E.T.
SUB r	1	4	1.00
SUB n	2	7(4,3)	1.75
SUB (HL)	- 2	7(4,3)	1.75
SUB (IX+d)	5	19(4,4,3,5,3)	4.75
SUB (IY+d)	5	19(4,4,3,5,3)	4.75

Condition Bits Affected:

- S: Set if result is negative; reset otherwise
- Z: Set if result is zero; reset otherwise
- H: Set if no borrow from Bit 4; reset otherwise
- P/V: Set if overflow; reset otherwise
 - N: Set
 - C: Set if borrow; reset otherwise

Example:

If the Accumulator contains 29H and register D contains 11H, after the execution of

SUB D

the Accumulator will contain 18H.

SBC A, s

Operation: $A \leftarrow A - s - CY$

Format:

<u>Opcode</u>	Operands
SBC	A,s

The s operand is any of r,n,(HL),(IX+d) or (IY+d) as defined for the analogous ADD instructions. These various possible opcode-operand combinations are assembled as follows in the object code:

 * r identifies registers B,C,D,E,H,L or A assembled as follows in the object code field above:

Register	<u>r</u> _
В	φφφ
C	ØØ1
D	Ø1Ø
E	Ø11
Н	1ØØ
L	1Ø1
A	111

Description

The s operand, along with the Carry Flag ("C" in the F register) is subtracted from the contents of the Accumulator, and the result is stored in the Accumulator.

INSTRUCTION	M CYCLES	T STATES	4 MHZ E.T.
SBC A,r	1	4	1. Ø Ø
SBC A,n	2	7(4,3)	1.75
SBC A,(HL)	2	7(4,3)	1.75
SBC A,(IX+d)	5	19(4,4,3,5,3)	4.75
SBC A,(IY+d)	5	19(4,4,3,5,3)	4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if no borrow from Bit 4; reset otherwise

P/V: Set if overflow; reset otherwise

N: Set

C: Set if borrow; reset otherwise

Example:

If the Accumulator contains 16H, the Carry Flag is set, the HL register pair contains 3433H, and address 3433H contains \emptyset 5H, after the execution of

the Accumulator will contain 10H.

AND s

Operation: $A \leftarrow A \land s$

Format:

Opcode	Operands
AND	S

The s operand is any of r,n,(HL),(IX+d) or (IY+d), as defined for the analogous ADD instructions. These various possible opcode-operand combinations are assembled as follows in the object code:

*r identifies register B,C,D,E,H,L or A assembled as follows in the object code field above:

Register	<u>r</u>
В	ØØØ
C	ØØ1
D	Ø1Ø
E	Ø11
H	100
L	1Ø1
Α	111

Description:

A logical AND operation, Bit by Bit, is performed between the byte specified by the s operand and the byte contained in the Accumulator; the result is stored in the Accumulator.

INSTRUCTION	M CYCLES	T STATES	4 MHZ E.T.
AND r	1	4	1. Ø Ø
AND n	2	7(4,3)	1.75
AND (HL)	2	7(4,3)	1.75
AND (IX+d)	5	19(4,4,3,5,3)	4.75
AND (IX+d)	5	19(4,4,3,5,3)	4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set

P/V: Set if parity even; reset otherwise

N: Reset

C: Reset

Example:

If the B register contains 7BH (\emptyset 1111 \emptyset 11) and the Accumulator contains C3H ($110\emptyset\emptyset\emptyset$ 11) after the execution of

AND B

the Accumulator will contain 43H (\emptyset 1 \emptyset 0 \emptyset 011).

OR s

Operation: $A \leftarrow A V s$

Format:

Opcode	Operands	
OR	S	

The s operand is any of r,n,(HL),(IX+d) or (IY+d), as defined for the analogous ADD instructions. These various possible opcode-operand combinations are assembled as follows in the object code:

^{*}r identifies register B,C,D,E,H,L or A assembled as follows in the object code field above:

Register	<u>r</u> _
В	ØØØ
C	ØØ1
D	Ø1Ø
E	Ø11
Н	1ØØ
L	1Ø1
Α	111

Description:

A logical OR operation, Bit by Bit, is performed between the byte specified by the s operand and the byte contained in the Accumulator; the result is stored in the Accumulator.

INSTRUCTION	M CYCLES	T STATES	4 MHZ E.T.
OR r	1	4	1. Ø Ø
OR n	2 .	7(4,3)	1.75
OR (HL)	2	7(4,3)	1.75
OR (IX+d)	5	19(4,4,3,5,3)	4.75
OR (IY+d)	5	19(4,4,3,5,3)	4.75

Condition Bits Affected:

Reset

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set

P/V: Set if parity even; reset otherwise N: Reset

Example:

C:

If the H register contains 48H (\emptyset 1 \emptyset 0 \emptyset 1 \emptyset 0 \emptyset 0) and the Accumulator contains 12H (\emptyset 0 \emptyset 1 \emptyset 01 \emptyset 0) after the execution of

OR H

the Accumulator will contain $5AH (\emptyset 1\emptyset 11\emptyset 1\emptyset)$.

XOR s

Operation: $A \leftarrow A \oplus s$

Format:

Opcode	Operands	
XOR	S	

The s operand is any of r,n, (HL),(IX+d) or (IY+d), as defined for the analogous ADD instructions. These various possible opcode-operand combinations are assembled as follows in the object code:

*r identifies registers B,C,D,E,H,L or A assembled as follows in the object code field above:

Register	<u>r</u> _
В	ØØØ
C	ØØ1
D	Ø1Ø
E	Ø11
H	1ØØ
L	1Ø1
A	111

Description:

A logical exclusive-OR operation, bit by bit, is performed between the byte specified by the s operand and the byte contained in the Accumulator; the result is stored in the Accumulator.

INSTRUCTION	M CYCLES	T STATES	4 MHZ E.T.
XOR r	1	4	1.00
XOR n	2	7(4,3)	1.75
XOR (HL)	2	7(4,3)	1.75
XOR (IX+d)	5	19(4,4,3,5,3)	4.75
XOR (IY+d)	5	19(4,4,3,5,3)	4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set

P/V: Set if parity even; reset otherwise

N: Reset C: Reset

Example:

If the Accumulator contains 96H (10010110), after the execution of

XOR 5DH (Note: 5DH = 01011101)

the Accumulator will contain CBH (11001011).

CP s

Operation: A - s

Format:

Opcode	Operands	
CP	S	

The s operand is any of r,n,(HL),(IX+d) or (IY+d), as defined for the analogous ADD instructions. These various possible opcode-operand combinations are assembled as follows in the object code:

*r identifies registers B,C,D,E,H,L or A assembled as follows in the object code field above:

<u>r</u> _
ØØØ
ØØ1
Ø1Ø
Ø11
1 Ø Ø
1Ø1
111

Description:

The contents of the s operand are compared with the contents of the Accumulator. If there is a true compare, a flag is set.

INSTRUCTION	M CYCLES	T STATES	4 MHZ E.T.
CP r	1	4	1. Ø Ø
CP n	2	7(4,3)	1.75
CP (HL)	2	7(4,3)	1.75
CP (IX+d)	5	19(4,4,3,5,3)	4.75
CP (IY+d)	5	19(4,4,3,5,3)	4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if no borrow from Bit 4; reset otherwise

P/V: Set if overflow; reset otherwise

N: Set

C: Set if borrow; reset otherwise

Example:

If the Accumulator contains 63H, the HL register pair contains 6000H and memory location 6000H contains 60H, the instruction

CP (HL)

will result in the P/V flag in the F register being reset.

INC r

Operation: $r \leftarrow r + 1$

Format:

Opcode	ode Operands		
INC	r		
0 0 - r	1	0	0

Description:

Register r is incremented. r identifies any of the registers A,B, C,D,E,H or L, assembled as follows in the object code.

Register	<u>r</u>
Α	111
В	ØØØ
C	ØØ1
D	Ø1Ø
E	Ø11
H	100
L	1Ø1

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

- S: Set if result is negative; reset otherwise
- Z: Set if result is zero; reset otherwise
- H: Set if carry from Bit 3; reset otherwise
- P/V: Set if r was 7FH before operation; reset otherwise
 - N: Reset
 - C: Not affected

Example:

If the contents of register D are 28H, after the execution of

INC D

the contents of register D will be 29H.

INC (HL)

Operation: $(HL) \leftarrow (HL)+1$

Format:

Opcode						Ope	rands	<u>S_</u>	
INC						(HL)			
	0	0	1	1	0	1	0	0	34

Description:

The byte contained in the address specified by the contents of the HL register pair is incremented.

M CYCLES: 3 T STATES: 11(4,4,3) 4 MHZ E.T.: 2.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if (HL) was 7FH before operation; reset

otherwise

N: Reset

C: Not Affected

Example:

If the contents of the HL register pair are 3434H, and the contents of address 3434H are 82H, after the execution of

INC (HL)

memory location 3434H will contain 83H.

INC (IX+d)

Operation: $(IX+d) \leftarrow (IX+d)+1$

Format:

Opc	Opcode					Operands			
INC	INC (IX+d)								
1	1	0	1	1	1	0	1	סס	
0	0	1	1	0	1	0	0	34	
	1	T	-d-	T			- -		

Description:

The contents of the Index Register IX (register pair IX) are added to a two's complement displacement integer d to point to an address in memory. The contents of this address are then incremented.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if (IX+d) was 7FH before operation; reset

otherwise

N: Reset

C: Not affected

Example:

If the contents of the Index Register pair IX are $2\emptyset 2\emptyset H$, and the memory location $2\emptyset 3\emptyset H$ contains byte 34H, after the execution of

INC (IX+1ØH)

the contents of memory location 2030H will be 35H.

INC (IY+d)

Operation: $(IY+d) \leftarrow (IY+d)+1$

Format:

Opcode	Operands						
INC				(IY+	-d)		
1 1	1	1	1	1	0	1	FD
0 0	1	1	0	1	0	0	34
	1	- d -	1			->	

Description:

The contents of the Index Register IY (register pair IY) are added to a two's complement displacement integer d to point to an address in memory. The contents of this address are then incremented.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if (IY+d) was 7FH before operation; reset

otherwise

N: Reset

C: Not Affected

Example:

If the contents of the Index Register pair IY are 2020H, and the memory location 2030H contain byte 34H, after the execution of

INC (IY+1ØH)

the contents of memory location 2030H will be 35H.

DEC_m

Operation: m ← m-l

Format:

Opcode	Operands
DEC	m

The m operand is any of r, (HL),(IX+d) or (IY+d), as defined for the analogous INC instructions. These various possible opcode-operand combinations are assembled as follows in the object code:

*r identifies register B,C,D,E,H,L or A assembled as follows in the object code field above:

Register	<u>r</u>
В	ØØØ
C	ØØ1
D	Ø1Ø
E	Ø11
Н	1 Ø Ø
L	1 Ø 1
A	111

Description:

The byte specified by the m operand is decremented.

INSTRUCTION	M CYCLES	T STATES	4 MHZ E.T.
DEC r	1	4	1. Ø Ø
DEC (HL)	3	11(4,4,3)	2.75
DEC (IX+d)	6	23 (4,4,3,5,4,3)	5.75
DEC (IY+d)	6	23(4,4,3,5,4,3)	5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if no borrow from Bit 4; reset otherwise

P/V: Set if m was 80H before operation; reset other-

wise N: Set

C: Not affected

Example:

If the D register contains byte 2AH, after the execution of

DEC D

register D will contain 29H.

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

DAA

Operation:

Format:

Opcode

DAA

Description:

This instruction conditionally adjusts the Accumulator for BCD addition and subtraction operations. For addition (ADD, ADC, INC) or subtraction (SUB, SBC,DEC,NEG), the following table indicates operation performed:

OPERA- TION	C BE- FORE DAA	HEX VALUE IN UPPER DIGIT (bit 7-4)	BE	HEX VALUE IN LOWER DIGIT (bit 3-0)	ADD-	C AFT- ER DAA
	Ø	Ø –9	Ø	Ø -9	ØØ	Ø
	Ø	Ø8	Ø	A-F	Ø6	Ø
	Ø	Ø -9	1	Ø −3	Ø6	Ø
ADD	Ø	A-F	Ø	Ø –9	6Ø	1
ADC	Ø	9-F	Ø	A-F	66	1
INC	Ø	A-F	1	Ø −3	66	1
	1	\emptyset -2	Ø	Ø -9	6Ø	1
	1	\emptyset -2	Ø	A-F	66	1
	1	Ø-3	1	Ø-3	66	1
SUB	Ø	Ø –9	Ø	Ø -9	ØØ	Ø
SBC	Ø	Ø -8	1	6-F	FA	Ø
DEC	1	7-F	Ø	Ø -9	ΑØ	1
NEG	1	6-F	1	6-F	9 A	1

M CYCLES: 1

T STATES: 4

4 MHZ E.T.: 1.00

27

Condition Bits Affected:

S: Set if most significant bit of Acc, is 1 after operation; reset otherwise

Z: Set if Acc. is zero after operation; reset otherwise

H: See instruction

P/V: Set if Acc. is even parity after operation; reset

otherwise

N: Not affected C: See instruction

Example:

If an addition operation is performed between 15 (BCD) and 27 (BCD), simple decimal arithmetic gives this result:

15 +27 42

But when the binary representations are added in the Accumulator according to standard binary arithmetic,

 $\begin{array}{ccc}
\phi \phi \phi 1 & \phi 1 \phi 1 \\
+\phi \phi 1 \phi & \phi 1 1 1 \\
\phi \phi 1 1 & 1 1 \phi \phi = 3C
\end{array}$

the sum is ambiguous. The DAA instruction adjusts this result so that the correct BCD representation is obtained:

 $\begin{array}{ccc}
\phi 011 & 1100 \\
+\phi 000 & 0110 \\
0100 & 0010 = 42
\end{array}$

CPL

 $\underline{Operation} \colon \ \mathsf{A} \leftarrow \overline{\mathsf{A}}$

Format:

Opcode

CPL

0	0	1	0	1	1	1	1	2F
سا	لــــــــــــــــــــــــــــــــــــــ				لـــــا	لـــــا		

Description:

Contents of the Accumulator (register A) are inverted (1's complement).

M CYCLES: 1

T STATES: 4

4 MHZ E.T.: 1.00

Condition Bits Affected:

'S: Not affected

Z: Not affected

H: Set

P/V: Not affected

N: Set

C: Not affected

Example:

If the contents of the Accumulator are 10110100, after the execution of

CPL

the Accumulator contents will be \$1\$\$\phi\$\$ 1\$\$\$11.

NEG

<u>Operation</u>: $A \leftarrow o-A$

Format:

Opcode

NEG

Description:

Contents of the Accumulator are negated (two's complement). This is the same as subtracting the contents of the Accumulator from zero. Note that $8\emptyset H$ is left unchanged.

M CYCLES: 2

T STATES: 8(4,4)

4 MHZ E.T.: 2.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if no borrow from Bit 4; reset otherwise

P/V: Set if Acc. was 8\$\phi\$H before operation; reset otherwise

NI. C.4

N: Set

C: Set if Acc. was not $\emptyset\emptyset$ H before operation; reset otherwise

Example:

If the contents of the Accumulator are

		T		í
1 0 0 1 1	0	0	0	

after the execution of

NEG

the Accumulator contents will be

1									
ł	n	1	1	0	1	0	0	0	ı
ł	U	-	-	•	_	•			

CCF

 $\underline{Operation}\colon\ CY\leftarrow\overline{CY}$

Format:

Opcode

CCF

Description:

The C flag in the F register is inverted.

M CYCLES: 1

T STATES: 4

4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected Z: Not affected

H: Previous carry will be copied

P/V: Not affected

N: Reset

C: Set if CY was Ø before operation; reset

otherwise

SCF

Operation: CY ← 1

Format:

Opcode

SCF

Description:

The C flag in the F register is set.

M CYCLES: 1 T STATES: 4

4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Set

NOP

Operation:

Format:

Opcode

NOP

Description:

CPU performs no operation during this machine cycle.

M CYCLES: 1

T STATES: 4

4 MHZ E.T.: 1.00

Condition Bits Affected: None

HALT

Operation:

Format:

Opcode

HALT

Description:

The HALT instruction suspends CPU operation until a subsequent interrupt or reset is received. While in the halt state, the processor will execute NOP's to maintain memory refresh logic.

M CYCLES: 1

T STATES: 4

4 MHZ E.T.: 1.00

76

Condition Bits Affected: None

D

Operation: $IFF \leftarrow \emptyset$

Format:

<u>Opcode</u>

DI

Description:

DI disables the maskable interrupt by resetting the interrupt enable flip-flops(IFF1 and IFF2). Note that this instruction disables the maskable interrupt during its execution.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

When the CPU executes the instruction

DI

the maskable interrupt is disabled until it is subsequently re-enabled by an EI instruction. The CPU will not respond to an Interrupt Request (INT) signal.

<u>Operation</u>: IFF \leftarrow 1

Format:

Opcode

EI

Description:

EI enables the maskable interrupt by setting the interrupt enable flip-flops(IFF1 and IFF2). Note that this instruction disables the maskable interrupt during its execution.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

When the CPU executes instruction

ΕI

the maskable interrupt is enabled. The CPU will now respond to an Interrupt Request (INT) signal.

IM 0

Operation: ----

Format:

Opcode					<u>Operands</u>			
IM					Ø			
1	1	1	0	1	1	0	1	ED
0	1	0	0	0	1	1	0	46

Description:

The IM \emptyset instruction sets interrupt mode \emptyset .In this mode the interrupting device can insert any instruction on the data bus and allow the CPU to execute it.

M CYCLES: 2

T STATES: 8(4,4)

4 MHZ E.T.: 2.00

Condition Bits Affected: None

IM 1

Operation: -

Format:

Opcode Operand	<u>s</u>
IM 1	
1 1 1 0 1 1 0	1 ED
0 1 0 1 0 1 1	0 56

Description:

The IM instruction sets interrupt mode 1. In this mode the processor will respond to an interrupt by executing a restart to location $\emptyset\emptyset38H$.

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

IM 2

Operation:

Format:

Description:

The IM 2 instruction sets interrupt mode 2. This mode allows an indirect call to any location in memory. With this mode the CPU forms a 16-bit memory address. The upper eight bits are the contents of the Interrupt Vector Register I and the lower eight bits are supplied by the interrupting device.

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

16 BIT ARITHMETIC GROUP

ADD HL, ss

Operation: HL ← HL+ss

Format:

Opco	<u>ode</u>	<u>de</u> <u>Operands</u>			3		
ADD)				HL,s	S	
0	0	S	S	1	0	0	1

Description:

The contents of register pair ss (any of register pairs BC,DE, HL or SP) are added to the contents of register pair HL and the result is stored in HL. Operand ss is specified as follows in the assembled object code.

Register	
Pair	SS
BC	ØØ
DE	Ø1
HL	10
SP	11

M CYCLES: 3 T STATES: 11(4,4,3) 4 MHZ E.T.: 2.75

Condition Bits Affected:

S: Not affected Z: Not affected

H: Set if carry out of Bit 11; reset otherwise

P/V: Not affected N: Reset

C: Set if carry from Bit 15; reset otherwise

Example:

1f register pair HL contains the integer 4242H and register pair DE contains 1111H, after the execution of

ADD HL, DE

the HL register pair will contain 5353H.

ADC HL, ss

Operation: HL ← HL+ss+CY

Format:

<u>Opcode</u>	<u>Operands</u>
ADC	HL,ss
1 1 1 0 1	. 1 0 1 ED
	
0 1 s s 1	. 0 1 0

Description:

The contents of register pair ss (any of register pairs BC,DE, HL or SP) are added with the Carry Flag (C flag in the F register) to the contents of register pair HL, and the result is stored in HL. Operand ss is specified as follows in the assembled object code.

Register	
<u>Pair</u>	<u>ss</u>
BC	ØØ
DE	Ø1
HL	10
SP	11
•	

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry out of Bit 11; reset otherwise

P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 15; reset otherwise

Example:

If the register pair BC contains 2222H, register pair HL contains 5437H and the Carry Flag is set, after the execution of

ADC HL, BC

the contents of HL will be 765AH.

SBC HL, ss

Operation: HL ← HL-ss-CY

Format:

Opcode	Operands
SBC	HL,ss
1 1 1 0	1 1 0 1 ED
0 1 s s	0 0 1 0

Description:

The contents of the register pair ss (any of register pairs BC,DE,HL or SP) and the Carry Flag (C flag in the F register) are subtracted from the contents of register pair HL and the result is stored in HL. Operand ss is specified as follows in the assembled object code.

Register	
<u>Pair</u>	SS
BC	ØØ
DE	ØØ
HL	1Ø
SP	11

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if no borrow from Bit 12; reset otherwise

P/V: Set if overflow; reset otherwise

N: Set

C: Set if borrow; reset otherwise

Example:

If the contents of the HL register pair are 9999H, the contents of register pair DE are 1111H, and the Carry Flag is set, after the execution of

SBC HL, DE

the contents of HL will be 8887H.

ADD IX, pp

Operation: IX ← IX + pp

Format:

Opcode Operand	<u>ls</u>	
ADD IX,pp		
1 1 0 1 1 1 0	1	DD
0 0 p p 1 0 0	1	

Description:

The contents of register pair pp (any of register pairs BC,DE, IX or SP) are added to the contents of the Index Register IX, and the results are stored in IX. Operand pp is specified as follows in the assembled object code.

pp
ØØ
Ø1
10
11

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Set if carry out of Bit 11; reset otherwise

P/V: Not affected

N: Reset

C: Set if carry from Bit 15; reset otherwise

Example:

If the contents of Index Register IX are 333H and the contents of register pair BC are 5555H, after the execution of

ADD IX, BC

the contents of IX will be 8888H.

ADD IY, rr

Operation: IY ← IY+rr

Format:

Opcode Operands	
ADD IY,rr	
1 1 1 1 1 0 1	FD
0 0 r r 1 0 0 1	

Description:

The contents of register pair rr (any of register pairs BC,DE, IY or SP) are added to the contents of Index Register IY, and the result is stored in IY. Operand rr is specified as follows in the assembled object code.

Register	
Pair	<u>rr</u>
BC	ØØ
DE	Ø1
IY	1Ø
SP	11

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Set if carry out of Bit 11; reset otherwise

P/V: Not affected

N: Reset

C: Set if carry from Bit 15; reset otherwise

Example:

If the contents of Index Register IY are 333H and the contents of register pair BC are 555H, after the execution of

ADD IY, BC

the contents of IY will be 8888H.

INC ss

Operation: $ss \leftarrow ss + 1$

Format:

Opcodes				Oper	ands	
INC				SS		
0 0	S	S	0	0	1	1

Description:

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are incremented. Operand ss is specified as follows in the assembled object code.

Register						
Pair	SS					
BC	ØØ					
DE	Ø1					
HL	1Ø					
SP	11					

M CYCLES: 1 T STATES: 6

4 MHZ E.T. 1.50

Condition Bits Affected: None

Example:

If the register pair contains 1000H, after the execution of

INC HL

HL will contain 1001H.

INC IX

Operation: $IX \leftarrow IX + 1$

Format:

Opcode	Oper	Operands			
INC IX					
1 1 0	1 1 1	0 1	DD		
0 0 1	0 0 0	1 1	23		

Description:

The contents of the Index Register IX are incremented.

M CYCLES: 2 T STATES: 10(4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the Index Register IX contains the integer $33\phi\phi H$ after the execution of

INC IX

the contents of Index Register IX will be 3301H.

INC IY

Operation: $|Y \leftarrow |Y + 1|$

Format:

Opc	Opcode Operands							
INC					IY			
1	1	1	1	1	1	0	1 1	FD
0	0	1	0	0	0	1	1	23

Description:

The contents of the Index Register IY are incremented.

M CYCLES: 2 T STATES: 10(4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register are 2977H, after the execution of

INC IY

the contents of Index Register IY will be 2978H.

DEC ss

Operation: $ss \leftarrow ss - 1$

Format:

Opcode		Operand s				
DEC			S	s		
0 0	S	S	1	0	1	1

Description:

The contents of register pair ss (any of the register pairs BC,DE,HL or SP) are decremented. Operand ss is specified as follows in the assembled object code.

Pair	SS
BC	ØØ
DE	Ø1
HL	1Ø
SP	11

M CYCLES: 1

T STATES: 6

4 MHZ E.T.: 1.50

Condition Bits Affected: None

Example:

If register pair HL contains 1001H, after the execution of

DEC HL

the contents of HL will be 1000H.

DEC IX

Operation: $IX \leftarrow IX - 1$

Format:

<u>Opcode</u>	Operands					
DEC	IX					
1 1 0 1 1	1 0 1 DD					
0 0 1 0 1	0 1 1 2B					

Description:

The contents of Index Register IX are decremented.

M CYCLES: 2 T STATES: 10(4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of Index Register IX are 2006H, after the execution of

DEC IX

the contents of Index Register IX will be 2005H.

DEC IY

Operation: $IY \leftarrow IY - 1$

Format:

<u>Opcode</u>		
DEC	IY	
1 1 1	1 1 1 0 1	FD
0 0 1	0 1 0 1 1	2B

Description:

The contents of the Index Register IY are decremented.

M CYCLES: 2 T STATES: 10 (4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register IY are 7649H, after the execution of

DEC IY

the contents of Index Register IY will be 7648H.

ROTATE AND SHIFT GROUP

Description:

The contents of the Accumulator (register A) are rotated left: the content of bit \emptyset is moved to the bit 1; the previous content of bit 1 is moved to bit 2; this pattern is continued throughout the register. The content of bit 7 is copied into the Carry Flag (C flag in register F) and also into bit \emptyset . (Bit \emptyset is the least significant bit.)

M CYCLES: 1

T STATES: 4

4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected Z: Not affected H: Reset

P/V: Not affected

N: Reset

C: Data from Bit 7 of Acc.

Example:

If the contents of the Accumulator are

after the execution of

RLCA

the contents of the Accumulator and Carry Flag will be

C 7 6 5 4 3 2 1 0

RLA

Operation:

Format:

Opcode

Operands

RLA

17

Description:

The contents of the Accumulator (register A) are rotated left: the content of bit \emptyset is copied into bit 1; the previous content of bit 1 is copied into bit 2; this pattern is continued throughout the register. The content of bit 7 is copied into the Carry Flag (C flag in register F) and the previous content of the Carry Flag is copied into bit \emptyset . Bit \emptyset is the least significant bit.

M CYCLES: 1

T STATES: 4

4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Data from Bit 7 of Acc.

Example:

If the contents of the Accumulator and the Carry Flag are

С	7	6	5	4	3	2	1	0
	0	1	1	1	0	1	1	0

after the execution of

RLA

the contents of the Accumulator and the Carry Flag will be

0	1	1	1	0	1	1	0	1	-
				_				-	ı

RRCA

Operation:

Format:

Opcode

Operands

RRCA

Description:

The contents of the Accumulator (register A) is rotated right: the content of bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this pattern is continued throughout the register. The content of bit \emptyset is copied into bit 7 and also into the Carry Flag (C flag in register F.) Bit \emptyset is the least significant bit.

M CYCLES: 1

T STATES: 4

4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Data from Bit Ø of Acc.

Example:

If the contents of the Accumulator are

7 6 5 4 3 2 1 0

After the execution of

RRCA

the contents of the Accumulator and the Carry Flag will be

7 6 5 4 3 2 1 0 C

RRA

Operation:

Format:

Opcode

Operands

RRA

Description:

The contents of the Accumulator (register A) are rotated right: the content of bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this pattern is continued throughout the register. The content of bit \emptyset is copied into the Carry Flag (C flag in register F) and the previous content of the Carry Flag is copied into bit 7. Bit \emptyset is the least significant bit.

M CYCLES: 1

T STATES: 4

4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Data from Bit Ø of Acc.

Example:

If the contents of the Accumulator and the Carry Flag are

7	6	5 •	4	3	2	1	0	С
1	1	1	0	0	0	0	1	0

after the execution of

RRA

the contents of the Accumulator and the Carry Flag will be

7 6 5 4 3 2 1 0 0

***************************************	0	1	1	1	0	0	0	0	1	

RLC r

Format:

Opcode

Operands

Description:

The eight-bit contents of register r are rotated left: the content of bit \emptyset is copied into bit 1; the previous content of bit 1 is copied into bit 2; this pattern is continued throughout the register. The content of bit 7 is copied into the Carry Flag (C flag in register F) and also into bit \emptyset . Operand r is specified as follows in the assembled object code:

<u>r</u> _
ØØØ
ØØ1
Ø1Ø
Ø11
1ØØ
1Ø1
111

Note: Bit Ø is the least significant bit.

M CYCLES: 2

T STATES: 8(4,4)

4 MHZ E.T.: 2.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register

Example:

If the contents of register r are

7	6	5	4	3	2	1	0
1	0	0	0	1	0	0	0

after the execution of

RLC r

the contents of register r and the Carry Flag will be

RLC (HL)

Operation:

Format:

Opcode Operands

Description:

The contents of the memory address specified by the contents of register pair HL are rotated left: the content of bit \emptyset is copied into bit 1; the previous content of bit 1 is copied into bit 2; this pattern is continued throughout the byte. The content of bit 7 is copied into the Carry Flag (C flag in register F) and also into bit \emptyset . Bit \emptyset is the least significant bit.

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register

Example:

If the contents of the HL register pair are 2828H, and the contents of memory location 2828H are

 7
 6
 5
 4
 3
 2
 1
 0

 1
 0
 0
 0
 1
 0
 0
 0

after the execution of

RLC (HL)

the contents of memory locations 2828H and the Carry Flag will be

C 7 6 5 4 3 2 1 0

Description:

The contents of the memory address specified by the sum of the contents of the Index Register IX and a two's complement displacement integer d, are rotated left: the contents of bit \emptyset is copied into bit 1; the previous content of bit 1 is copied into bit 2; this pattern is continued throughout the byte. The content of bit 7 is copied into the Carry Flag (C flag in register F) and also into bit \emptyset . Bit \emptyset is the least significant bit.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75

Condition Bits Affected:

- S: Set if result is negative; reset otherwise
- Z: Set if result is zero; reset otherwise
- H: Reset
- P/V: Set if parity even; reset otherwise
 - N: Rese
 - C: Data from Bit 7 of source register

Example:

If the contents of the Index Register IX are 1000H, and the contents of memory location 1022H are

	7	6	5	4	3	2	1	0
-	1	0	0	0	1	0	0	0

after the execution of

RLC (IX+2H)

the contents of memory location 1002H and the Carry Flag will be

RLC (IY+d)

Operation:

Format:

Opcode

Operands

RLC	,				(IY+	-d)		
1	1	1	1	1	1	0	1	FD
			1	<u> </u>				

96

Description:

The contents of the memory address specified by the sum of the contents of the Index Register IY and a two's complement displacement integer d are rotated left: the content of bit \emptyset is copied into bit 1; the previous content of bit 1 is copied into bit 2; this process is continued throughout the byte. The content of bit 7 is copied into the Carry Flag (C flag in register F) and also into bit \emptyset . Bit \emptyset is the least significant bit.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75

Condition Bits Affected:

- S: Set if result is negative; reset otherwise
- Z: Set if result is zero; reset otherwise
- H: Reset
- P/V: Set if parity even; reset otherwise
 - N: Reset
 - C: Data from Bit 7 of source register

Example:

If the contents of the Index Register IY are 1000H, and the contents of memory location 1002H are

7	6	5	4	3	2	1	0
1	0	0	0	1	0	0	0

after the execution of

RLC (IY+2H)

the contents of memory location 1002H and the Carry Flag will be

C 7 6 5 4 3 2 1 0

The m operand is any of r,(HL),(IX+d) or (IY+d), as defined for the analogous RLC instructions. These various possible opcode-operand combinations are specified as follows in the assembled object code:

m

*r identifies register B,C,D,E,H,L or A specified as follows in the assembled object code above:

Register	<u>r</u> _
В	ØØØ
C	ØØ1
D	Ø1Ø

E	Ø11
H	Ø11
L	1 Ø 1
A	111

Description:

The contents of the m operand are rotated left: the content of bit Ø is copied into bit 1; the previous content of bit 1 is copied into bit 2; this pattern is continued throughout the byte. The content of bit 7 is copied into the Carry Flag (C flag in register F) and the previous content of the Carry Flag is copied into bit \emptyset (Bit \emptyset is the least significant bit.)

INSTRUCTION	M CYCLES	T STATES	4 MHZ E.T.
RL r	2	8(4,4)	2. Ø Ø
RL (HL)	4	15(4,4,4,3)	3.75
RL (IX+d)	6	23(4,4,3,5,4,3)	5.75
RL (IY+d)	6	23(4,4,3,5,4,3)	5.75

Condition Bits Affected:

S:	Set if result is negative; reset otherwise
Z :	Set if result is zero; reset otherwise
H:	Reset
P/V:	Set if parity even; reset otherwise
N:	Reset
C:	Data from Bit 7 of source register

Example:

If the contents of register D and the Carry Flag are

С	7	6	5	4	3	2	1	0
0	1	0	0	0	1	1	1	1

after the execution of

RL D

the contents of register D and the Carry Flag will be

7 0 0 0 0 1 1 1 0

PRC m Operation: Format: Opcode Operands

RRC

The m operand is any of r,(HL), (IX+d) or (IY+d), as defined for the analogous RLC instructions. These various possible opcode-operand combinations are specified as follows in the assembled object code:

m

^{*}r identifies register B,C,D,E,H,L or A specified as follows in the assembled object code above:

Register	<u>r</u> _
В	ØØØ
C	ØØ1
D	Ø1Ø
E	Ø11
H	1 Ø Ø
L	1 Ø 1
A	111

Description:

The contents of operand m are rotated right: the content of bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this pattern is continued throughout the byte. The content of bit \emptyset is copied into the Carry Flag (C flag in the F register) and also into bit 7. Bit \emptyset is the least significant bit.

INSTRUCTION	M CYCLES	T STATES	4 MHZ E.T.
RRC r	2	8(4,4)	2. Ø Ø
RRC (HL)	4	15(4,4,4,3)	3.75
RRC (IX+d)	6	23(4,4,3,5,4,3)	5.75
RRC (IY+d)	6	23(4,4,3,5,4,3)	5.75

Condition Bits Affected:

- S: Set if result is negative; reset otherwise
- Z: Set if result is zero; reset otherwise
- H: Reset
- P/V: Set if parity even; reset otherwise
 - N: Reset
 - C: Data from Bit \emptyset of source register

Example:

If the contents of register A are

- /	O	-)	4	٠	3	2	•	T	•	,
	 	_			1		T			T	

after the execution of

RRC A

the contents of register A and the Carry Flag will be

/	Ö)	4	3	ha	T	U	U	
			_	_				1 .	

RRm

The m operand is any of r, (HL), (IX+d), or (IY+d), as defined for the analogous RLC instructions. These various possible opcode-operand combinations are specified as follows in the assembled object code:

^{*}r identifies registers B,C,D,E,H,L or A specified as follows in the assembled object code above:

Register	<u>r</u> _
В	ØØØ
C	ØØ1
D	Ø1Ø
E	Ø11
Н	100
L	1Ø1
\mathbf{A}	111

Description:

The contents of operand m are rotated right: the contents of bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this pattern is continued throughout the byte. The content of bit \emptyset is copied into the Carry Flag (C flag in register F) and the previous content of the Carry Flag is copied into bit 7. Bit \emptyset is the least significant bit.

INSTRUCTION	M CYCLES	T STATES	4 MHZ E.T.
RR r	2	8(4,4)	2.00
RR (HL)	4	15(4,4,4,3)	3.75
RR (IX+d)	6	23(4,4,3,5,4,3)	5.75
RR (IY+d)	6	23(4,4,3,5,4,3)	5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Data from Bit Ø of source register

Example:

If the contents of the HL register pair are 4343H, and the contents of memory location 4343H and the Carry Flag are

/	6	5	4	3	2	1	0	С
1	1	0	1	1	1	0	1	0

after the execution of

RR (HL)

the contents of location 4343H and the Carry Flag will be

7 6 5 4 3 2 1 0 C

0	1	1	0	1	1	1	0		1	
---	---	---	---	---	---	---	---	--	---	--

SLA m

Operation:

The m operand is any of r, (HL), (IX+d) or (IY+d), as defined for the analogous RLC instructions. These various possible opcode-operand combinations are specified as follows in the assembled object code:

*r identifies registers B,C,D,E,H,L or A specified as follows in the assembled object code field above:

Register	<u>r</u> _
В	ØØØ ØØ1
D	Ø1Ø

E	Ø11
H	1 Ø Ø
L	1Ø1
A	111

Description:

An arithmetic shift left is performed on the contents of operand m: bit \emptyset is reset, the previous content of bit \emptyset is copied into bit 1, the previous content of bit 1 is copied into bit 2; this pattern is continued throughout; the content of bit 7 is copied into the Carry Flag (C flag in register F). Bit \emptyset is the least significant bit.

INSTRUCTION	M CYCLES	T STATES	4 MHZ E.T.
SLA r	2	8(4,4)	2.00
SLA (HL)	4	15(4,4,4,3)	3.75
SLA (IX+d)	6	23(4,4,3,5,4,3)	5.75
SLA (IY+d)	6	23(4,4,3,5,4,3)	5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Data from Bit 7

Example:

If the contents of register L are

7	6	5	4	3	2	1	0
1	0	1	1	0	0	0	1

after the execution of

SLA L

the contents of register L and the Carry Flag will be

 C
 7
 6
 5
 4
 3
 2
 1
 0

 1
 0
 1
 1
 0
 0
 0
 1
 0

SRA m

Operation:

Opcode

Operands

SRA

m

The m operand is any of r, (HL), (1X+d) or (IY+d), as defined for the analogous RLC instructions. These various possible opcode-operand combinations are specified as follows in the assembled object code:

SRA r	1	1	0	0	1	0	1	1	СВ
	0	0	1	0	1		- r -	->	
SRA(HL)	1	1	0	0	1	0	1	1	СВ
	0	0	1	0	1	1	1	0	2E
SRA (IX+d)	1	1	0	1	1	1	0	1	DD
	1	1	0	0	1	0	1	1	СВ
				- d -					
	0	0	1	0	1	1	1	0	2E
SRA(IY+d)	1	1	1	1	1	1	0	1	FD
	1	1	0	0	1	0	1	1	СВ
				- d -		ا 1		→	
	0	0 1	1	0	1	1	1	0	2E

^{*}r means register B,C,D,E,H,L or A specified as follows in the assembled object code field above:

Register	<u>r</u> _
B C D	ØØØ ØØ1 Ø1Ø

E	Ø11
H	1 Ø Ø
L	1Ø1
Α	111

An arithmetic shift right is performed on the contents of operand m: the content of bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this pattern is continued throughout the byte. The content of bit \emptyset is copied into the Carry Flag (C flag in register F), and the previous content of bit 7 is unchanged. Bit \emptyset is the least significant bit.

INSTRUCTION	M CYCLES	T STATES	4 MHZ E.T.
SRA r	2	8(4,4)	2.00
SRA (HL)	4	15(4,4,4,3)	3.75
SRA (IX+d)	6	23(4,4,3,5,4,3)	5.75
SRA (IY+d)	6	23(4,4,3,5,4,3)	5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Data from Bit Ø of source register

Example:

If the contents of the Index Register IX are 1000H, and the contents of memory location 1003H are

1

1	0	1	1	1	0	0	0

after the execution of

SRA (IX+3H)

the contents of memory location 1003H and the Carry Flag will be

7 6 5 4 3 2 1 0 C

1 1 0 1 1 1 0 0 0

SRL m

SRL m

The operand m is any of r, (HL), (IX+d) or (IY+d), as defined for the analogous RLC instructions. These various possible opcode-operand combinations are specified as follows in the assembled object code:

*r identifies registers B,C,D,E,H,L or A specified as follows in the assembled object code fields above:

Register	<u>r</u>
В	ØØØ
C	ØØ1
D	Ø1Ø

E	Ø11
H	1ØØ
L	1Ø1
Α	111

Description:

The contents of operand m are shifted right: the content of bit 7 is copied into bit 6; the content of bit 6 is copied into bit 5; this pattern is continued throughout the byte. The content of bit Ø is copied into the Carry Flag, and bit 7 is reset. Bit Ø is the least significant bit.

INSTRUCTION	M CYCLES	T STATES	4 MHZ E.T.
III III III III III III III III III II			
SRL r	2	8(4,4)	2.00
SRL (HL)	4	15(4,4,4,3)	3.75
SRL (IX+d)	6	23(4,4,3,5,4,3)	5.75
SRL (IY+d)	6	23(4,4,3,5,4,3)	5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwiseZ: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Data from Bit Ø of source register

Example:

If the contents of register B are

/	б	5	4	3	4	1	U	
1	0	0	0	1	1	1	1	

after the execution of

SRL B

the contents of register B and the Carry Flag will be

7	6	5	4	3	2	1	0	С
0	1	0	0	0	1	1	1	1

Format:

Opcode Operands

Description:

The contents of the low order four bits (bits 3,2,1 and \emptyset) of the memory location (HL) are copied into the high order four bits (7,6,5 and 4) of that same memory location; the previous contents of those high order four bits are copied into the low order four bits of the Accumulator (register A), and the previous contents of the low order four bits of the Accumulator are copied into the low order four bits of memory location (HL). The contents of the high order bits of the Accumulator are unaffected. Note: (HL) means the memory location specified by the contents of the HL register pair.

M CYCLES: 5 T STATES: 18(4,4,3,4,3) 4 MHZ E.T.: $4.5\emptyset$

Condition Bits Affected:

- S: Set if Acc. is negative after operation; reset
- Z: Set if Acc. is zero after operation; reset otherwise
- H: Reset
- P/V: Set if parity of Acc. is even after operation; reset otherwise
 - N: Reset
 - C: Not affected

Example:

If the contents of the HL register pair are 5000H, and the contents of the Accumulator and memory location 5000H are

•2 Accumulator

(5000H)

after the execution of

RLD

the contents of the Accumulator and memory location 5000 will be

Operation:

Format:

Operands

RRD

Opcode

Description:

The contents of the low order four bits (bits 3,2,1 and \emptyset) of memory location (HL) are copied into the low order four bits of the Accumulator (register A); the previous contents of the low order four bits of the Accumulator are copied into the high order four bits (7,6,5 and 4) of location (HL); and the previous contents of the high order four bits of (HL) are copied into the low order four bits of (HL). The contents of the high order bits of the Accumulator are unaffected. Note: (HL) means the memory location specified by the contents of the HL register pair.

M CYCLES: 5 T STATES: 18(4,4,3,4,3) 4 MHZ E.T.: 4.50

Condition Bits Affected:

- S: Set if Acc. is negative after operation; reset otherwise
- Z: Set if Acc, is zero after operation; reset otherwise
- H: Reset
- P/V: Set if parity of Acc. is even after operation; reset
 - otherwise
 - N: Reset
 - C: Not affected

Example:

If the contents of the HL register pair are 5000H, and the contents of the Accumulator and memory location 5000 H are

7 6 5 2 4 3 1 0

1 0 0 0 0 1 0 0 Accumulator

7 3 0 6 5 4 2 1

0 0 1 0 0 0 0 0 (5000H) after the execution of

0

RRD

the contents of the Accumulator and memory location 5000H will be

0

7 6 5 3 2 0 1 1 0 0 0 0 0 0 0 Accumulator 7 6 5 4 3 2 1 0 0 0

0

1

0

(5000H)

BIT SET, RESET AND TEST GROUP

BIT b, r

 $\underline{\text{Operation}} \colon \mathsf{Z} \leftarrow \overline{\mathsf{r}_{\mathsf{b}}}$

Format:

Opcode	Operands
BIT	b,r
1 1 0 0 1	0 1 1 CB
0 1 b	- r

Description:

After the execution of this instruction, the Z flag in the F register will contain the complement of the indicated bit within the indicated register. Operands b and r are specified as follows in the assembled object code:

Bit Tested	<u>b</u>	Register	<u>r</u> _
Ø	ØØØ	В	ØØØ
1	ØØ1	C	ØØ1
2	Ø1Ø	D	Ø1Ø
3 .	Ø11	E	Ø11
4	1 Ø Ø	H	1 Ø Ø
5	1Ø1	L	1Ø1
6	11Ø	A	111
7	111		

M CYCLES: 2

T STATES: 8(4,4)

4 MHZ E.T.: 2.00

Condition Bits Affected:

S: Unknown

Z: Set if specified Bit is \emptyset ; reset otherwise

H: Set

P/V: Unknown

N: Reset

C: Not affected

Example:

If bit 2 in register B contains Ø, after the execution of

BIT 2,B

the Z flag in the F register will contain 1, and bit 2 in register B will remain \emptyset . Bit \emptyset in register B is the least significant bit.

BIT b, (HL)

Operation: $Z \leftarrow \overline{(HL)}_b$

Format:

Opcode Operands	
BIT b,(HL)	
1 1 0 0 1 0 1 1	СВ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Description:

After the execution of this instruction, the Z flag in the F register will contain the complement of the indicated bit within the contents of the HL register pair. Operand b is specified as follows in the assembled object code:

Bit Tested	<u>b</u>
Ø	ØØØ
ĺ	ØØ1
2	Ø1Ø
3	Ø11
4	1ØØ
5	1Ø1
6	11Ø
7	111

M CYCLES: 3 T STATES: 12(4,4,4) 4 MHZ E.T.: 3.00

Condition Bits Affected:

S: Unknown

Z: Set if specified Bit is 0; reset otherwise

H: Set

P/V: Unknown

H: Reset

C: Not affected

Example:

If the HL register pair contains 4444H, and bit 4 in the memory location 444H contains 1, after the execution of

BIT 4, (HL)

the Z flag in the F register will contain \emptyset , and bit 4 in memory location 444H will still contain 1. (Bit \emptyset in memory location 444H is the least significant bit.)

BIT b, (IX+d)

Operation: $Z \leftarrow \overline{(IX+d)}_b$

Format:

0	pc	<u>ode</u>				Ope	rand	<u>s</u>	
B	IT					b,(I)	(+d)		
	1	1	0	1	1	1	n	1	DD
_		·				·			
	1	1	0	0	1	0	1	1	СВ
			,			,		·	1
١.	-		'	<u></u> d-				-	
L		L	<u> </u>	L	<u> </u>	L	L		
)	1		-b-		- 1	1	0	

Description:

After the execution of this instruction, the Z flag in the F register will contain the complement of the indicated bit within the contents of the memory location pointed to by the sum of the contents register pair IX (Index Register IX) and the two's complement displacement integer d. Operand b is specified as follows in the assembled object code.

Bit Tested	<u>b</u>
Ø	φφφ
1	ØØ1
2	Ø1Ø
3	Ø11
4	1ØØ
5	1Ø1
6	11Ø
7	111

M CYCLES: 5 T STATES: 20(4,4,3,5,4) 4 MHZ E.T.: 5.00

Condition Bits Affected:

S: Unknown

Z: Set if specified Bit is \emptyset ; reset otherwise

H. Set

P/V: Unknown N: Reset

C: Not affected

Example:

If the contents of Index Register IX are 2000H, and bit 6 in memory location 2004H contains 1, after the execution of BIT 6. (IX+4H)

the Z flag in the F register will contain \emptyset , and bit 6 in memory location $2\emptyset\emptyset4H$ will still contain 1. (Bit \emptyset in memory location $2\emptyset\emptyset4H$ is the least significant bit.)

BIT b, (IY+d)

Operation: $Z \leftarrow \overline{(IY+d)}_b$

Format:

Opco	ode	Operands						
BIT					b,(IY	(+d)		
1	1	1	1	1	1	0	1	FD
L	<u> </u>	L	L	<u> </u>			L	
1	1	0	0	1	0	1	1	СВ
L	L	<u> </u>	<u> </u>		<u> </u>		L	
-	1	T	_ d_	1	<u> </u>	I		
L	<u></u>	L	<u> </u>	<u> </u>		<u></u>	L	
0	1.	1	b_		1	1	0	
	11		L	L	L	1		

Description:

After the execution of this instruction, the Z flag in the F register will contain the complement of the indicated bit within the contents of the memory location pointed to by the sum of the contents of register pair IY (Index Register IY) and the two's complement displacement integer d. Operand b is specified as follows in the assembled object code:

Bit Tested	<u>b</u>
Ø	ØØØ
1	ØØ1
2	Ø1Ø
3	Ø11
4	1 Ø Ø
5	1Ø1
6	110
7	111

M CYCLES: 5 T STATES: 20(4,4,3,5,4) 4 MHZ E.T.: 5.00

Condition Bits Affected:

S: Unknown

Z: Set if specified Bit is \emptyset ; reset otherwise

H: Set

P/V: Unknown

N: Reset

C: Not affected

Example:

If the contents of Index Register are 2000H, and bit 6 in memory location 2004H contains 1, after the execution of

BIT 6, (IY+4H)

the Z flag in the F register still contain \emptyset , and bit 6 in memory location $2\emptyset\emptyset4H$ will still contain 1. (Bit \emptyset in memory location $2\emptyset\emptyset4H$ is the least significant bit.)

SET b, r

Operation: $r_b \leftarrow 1$

Format:

Opcode	<u>Operands</u>
SET	b,r
1 1 0 0 1	0 1 1 CB
1 1 + b →	

Description:

Bit b (any bit, 7 through \emptyset) in register r (any of register B,C,D,E,H,L or A) is set. Operands b and r are specified as follows in the assembled object code:

<u>Bit</u>	<u>b</u>	Registe	er r
Ø	ØØØ	В	øøø
ĺ	ØØ1	C	ØØ1
2	Ø1Ø	D	Ø1Ø
3	Ø11	E	Ø11
4	100	Н	1 ØØ
5	1Ø1	L	1Ø1
6	11Ø	Α	111
7	111		

M CYCLES: 2

T STATES: 8(4,4)

4 MHZ E.T.: 2.00

Condition Bits Affected: None

Example:

After the execution of

SET 4,A

bit 4 in register A will be set. (Bit \emptyset is the least significant bit.)

SET b, (HL)

Operation: $(HL)_b \leftarrow 1$

Format:

Opc	<u>ode</u>		Operands					
SET					b,(H	L)		
1	1	10	0	1	0	1	1	СВ
1	1	T	- b -	, ,	- 1	1	0	

Description:

Bit b (any bit, 7 through \emptyset) in the memory location addressed by the contents of register pair HL is set. Operand b is specified as follows in the assembled object code:

Bit <u>Tested</u>	<u>b</u>
Ø	ØØØ
1	ØØ1
2	Ø1Ø
3	Ø11
4	1 Ø Ø
5	1 Ø 1
6	11Ø
7	111

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected: None

Example:

If the contents of the HL register pair are $3\emptyset\emptyset\emptyset H$, after the execution of

bit 4 in memory location $3\emptyset\emptyset\emptyset$ H will be 1. (Bit \emptyset in memory location $3\emptyset\emptyset\emptyset$ H is the least significant bit.)

SET b, (IX+d)

Operation: $(IX+d)_b \leftarrow 1$

Format:

Opco	<u>ode</u>	Operands						
SET					b,(I	X+d)	•	
1	1	0	1	1	1	0	1	DD
		т —	Т	Τ		1	r	l
1	1	0	0	1	0	1	1	СВ
						,	1	!
-			- d					
·		·		·		·		•
1	1 .	 	b –	· >	- 1	1	0	

Description:

Bit b (any bit, 7 through \emptyset) in the memory location addressed by the sum of the contents of the IX register pair (Index Register IX) and the two's complement integer d is set. Operand b is specified as follows in the assembled object code:

Bit Tested	<u>b</u>
Ø	ØØØ
1	ØØ1
2	Ø1Ø
3	Ø11
4	1 Ø Ø
5	1 Ø 1
6	11Ø
7	111

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75

Condition Bits Affected: None

Example:

If the contents of Index Register are 2000H, after the execution of

SET \emptyset , (IX+3H)

bit \emptyset in memory location $2\emptyset\emptyset3H$ will be 1. (Bit \emptyset in memory location $2\emptyset\emptyset3H$ is the least significant bit.)

SET b, (IY+d)

Operation: $(IY+d)_b \leftarrow 1$

Format:

Opco	ode	<u>Operands</u>						
SET				1	b,(IY	′+d)		
1	1	1	1	1	1	0	1	FD
1	1	0	0	1	0	1	1	СВ
-	1		- d-	r .		1		
1	1 -		_b_	T	-1	1	0	

Description:

Bit b (any bit, 7 through \emptyset) in the memory location addressed by the sum of the contents of the IY register pair (Index Register IY) and the two's complement displacement d is set. Operand b is specified as follows in the assembled object code:

Tested	<u>b</u>
Ø	ØØØ
1	ØØ1
2	Ø1Ø
3	Ø11
4	1ØØ
5	1Ø1
6	11Ø
7	111

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75

Condition Bits Affected: None

Example:

If the contents of Index Register IY are 2000H, after the execution of

SET Ø, (IY+3H)

bit \emptyset in memory location $2\emptyset\emptyset3H$ will be 1. (Bit \emptyset in memory location $2\emptyset\emptyset3H$ is the least significant bit.)

RES b, m

 $\underline{Operation}\colon\ s_b \leftarrow \emptyset$

Format:

<u>Opcode</u>	Operands
RES	b,m

Operand b is any bit (7 through \emptyset) of the contents of the m operand, (any of r, (HL), (1X+d) or (1Y+d) as defined for the analogous SET instructions. These various possible opcode-operand combinations are assembled as follows in the object code:

RES b,r	1	1	0	0	1	0	1	1	СВ
	1	0		_ b -			-r-	 	
RES b,(HL)	1	1	<u>'</u> 0	0	1	0	1	1	СВ
	1	0 -	T	<u>-</u> b-		1	1	0	
RES b,(IX+d)	1		0	T 1	1	1 1	0	1	DD
	1	1	0	0	1	0	1	1	СВ
	bears, and								•
				 d -	T	T	T		
		0 -		- d b		T 1	1	0	
RES b,(1Y+d)		0 -		-d- -b- 1		1 1 1	1 1 0	0	FD
RES b,(1Y+d)		 T		<u> </u>		1	, T		FD CB
RES b,(1Y+d)			1		T		0	1	

Bit	•		
Reset	<u>b</u>	Register	<u>r</u>
Ø	ØØØ	В	φφφ
1	ØØ1	C	ØØ1
2	Ø1Ø	D	Ø1Ø
3	Ø11	E	Ø11
4	1ØØ	Н	100
5	1Ø1	L	1Ø1
6	11Ø	Α	111
7	111		

Description:

Bit b in operand m is reset.

INSTRUCTION	M CYCLES	T STATES	4 MHZ E.T.
RES r	4	8(4,4)	2.00
RES (HL)	4	15(4,4,4,3)	3.75
RES (IX+d)	6	23(4,4,3,5,4,3)	5.75
RES (1Y+d)	6	23(4,4,3,5,4,3)	5.75

Condition Bits Affected: None

Example:

After the execution of

RES 6,D

bit 6 in register D will be reset. (Bit \emptyset in register D is the least significant bit.)

JUMP GROUP

JP nn

<u>Operation:</u> PC ← nn

Format:

Note: The first operand in this assembled object code is the low order byte of a 2-byte address.

Description:

Operand nn is loaded into register pair PC (Program Counter) and points to the address of the next program instruction to be executed.

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

JP cc, nn

Operation: IF cc TRUE, PC ← nn

Format:

Operands
cc, nn
_cc → 0 1 0
_n

Note: The first n operand in this assembled object code is the low order byte of a 2-byte memory address.

Description:

If condition cc is true, the instruction loads operand nn into register pair PC (Program Counter), and the program continues with the instruction beginning at address nn. If condition cc is false, the Program Counter is incremented as usual, and the program continues with the next sequential instruction. Condition cc is programmed as one of eight status which corresponds to condition bits in the Flag Register (register F). These eight status are defined in the table below which also specifies the corresponding cc bit fields in the assembled object code.

cc	CONDITION	RELEVANT FLAG
ØØØ	NZ non zero	Z
ØØ1	Z zero	Z
Ø1Ø	NC no carry	C
Ø11	C carry	C
1 ØØ	PO parity odd	P/V
1Ø1	PE parity even	P/V
11Ø	P sign positive	S
111	M sign negative	S

M CYCLES: 3 T STATES: $1\emptyset(4,3,3)$ 4 MHZ E.T.: $2.5\emptyset$

Condition Bits Affected: None

Example:

If the Carry Flag (C flag in the F register) is set and the contents of address 152 \emptyset are \emptyset 3H, after the execution of

JP C,152ØH

the Program Counter will contain $152\emptyset H$, and on the next machine cycle the CPU will fetch from address $152\emptyset H$ the byte $\emptyset 3H$.

Operation: PC ← PC + e

Format:

Description:

This instruction provides for unconditional branching to other segments of a program. The value of the displacement e is added to the Program Counter (PC) and the next instruction is fetched from the location designated by the new contents of the PC. This jump is measured from the address of the instruction opcode and has a range of -126 to +129 bytes. The assembler automatically adjusts for the twice incremented PC.

T STATES: 12(4,3,5) 4 MHZ E.T.: 3.00 M CYCLES: 3

Condition Bits Affected: None

Example:

To jump forward 5 locations from address 480, the following assembly language statement is used:

JR \$+5

The resulting object code and final PC value is shown below:

Location	Instruction
48Ø	18
481	Ø3
482	ANA ANAMONINA MAY
483	
484	Amendment
485	←PC after jump

JR C, e

Operation: If $C = \emptyset$, continue If C = 1, $PC \leftarrow PC + e$

Format:

Opcode	Operands
JR	C,e
0 0 1 1 1	0 0 0 38
e-2	——— —

Description:

This instruction provides for conditional branching to other segments of a program depending on the results of a test on the Carry Flag. If the flag is equal to a '1', the value of the displacement e is added to the Program Counter (PC) and the next instruction is fetched from the location designated by the new contents of the PC. The jump is measured from the address of the instruction opcode and has a range of -126 to +129 bytes. The assembler automatically adjusts for the twice incremented PC.

If the flag is equal to a 'Ø', the next instruction to be executed is taken from the location following this instruction.

If condition is met:

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.:3.00

If condition is not met:

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

The Carry Flag is set and it is required to jump back 4 locations from 48\,\text{0}\). The assembly language statement is:

JR C.\$-4

The resulting object code and final PC value is shown below:

Location	Instruction
47C	← PC after jump
47D	-
47E	
47F	
48Ø	38
481	FA (2's complement-6)

JR NC, e

Operation: If C = 1, continue

If $C = \emptyset$, $PC \leftarrow PC + e$

Format:

<u>Opcode</u>	<u>Operands</u>
JR	NC,e
0 0 1 1 0	0 0 0 30
e-2-	

Description:

This instruction provides for conditional branching to other segments of a program depending on the results of a test on the Carry Flag. If the flag is equal to ' \emptyset ', the value of the displacement e is added to the Program Counter (PC) and the next instruction is fetched from the location designated by the new contents of the PC. The jump is measured from the address of the instruction opcode and has a range of -126 to +129 byte. The assembler automatically adjusts for the twice incremented PC.

If the flag is equal to a '1', the next instruction to be executed is taken from the location following this instruction.

If the condition is met:

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.: 3.00

If the condition is not met:

M CYCLES: 7 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

The Carry Flag is reset and it is required to repeat the jump instruction. The assembly language statement is:

JR NC.\$

The resulting object code and PC after the jump are shown below:

Location	Instruction
48Ø	3Ø ← PC after jump
481	ØØ

JR Z, e

Operation: If $Z = \emptyset$, continue If Z = 1, $PC \leftarrow PC + e$

Format:

JR Z,e 0 0 1 0 1 0 0 0 28	<u>Opcode</u>	<u>Operands</u>
0 0 1 0 1 0 0 0 28	JR	Z,e
	0 0 1 0 1	
- C - C - C - C - C - C - C - C - C - C	e-2	

Description:

This instruction provides for conditional branching to other segments of a program depending on the results of a test on the Zero Flag. If the flag is equal to a '1', the value of the displacement e is added to the Program Counter (PC) and the next instruction is fetched from the location designated by the new contents of the PC. The jump is measured from the address of the instruction opcode and has a range of -126 to +129 bytes. The assembler automatically adjusts for the twice incremented PC.

If the Zero Flag is equal to a '\$\phi\$', the next instruction to be executed is taken from the location following this instruction.

If the condition is met:

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.: 3.00

If the condition is not met:

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

The Zero Flag is set and it is required to jump forward 5 locations from address $3\phi\phi$. The following assembly language statement is used:

JR Z, \$+5

The resulting object code and final PC value is shown below:

Location	Instruction
3ØØ	28
3Ø1	Ø 3
3 Ø 2	
3Ø3	AND
3Ø4	Balance Company
3Ø5	← PC after jump

JR NZ, e

Operation: If Z = 1, continue If $Z = \emptyset$, $PC \leftarrow PC + e$

Format:

Opcode	Operands
JR	NZ,e
0 0 1 0 0	0 0 0 20
e-2	

Description:

This instruction provides for conditional branching to other segments of a program depending on the results of a test on the Zero Flag. If the flag is equal to a '0', the value of the displacement e is added to the Program Counter (PC) and the next instruction is fetched from the location designated by the new contents of the PC. The jump is measured from the address of the instruction opcode and has a range of -126 to +129 bytes. The assembler automatically adjusts for the twice incremented PC.

If the Zero Flag is equal to a '1', the next instruction to be executed is taken from the location following this instruction.

If the condition is met:

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.: 3.00

If the condition is not met:

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

The Zero Flag is reset and it is required to jump back 4 locations from $48\emptyset$. The assembly language statement is:

JR NZ, \$-4

The resulting object code and final PC value is shown below:

Location	Instruction
47C	← PC after jump
47D	MARKET POPULATION
47E	
47F	
480	2Ø
481	FA (2' complement-6)

JP (HL)

Operation: PC ← HL

Format:

Opcode	<u>Operands</u>
JP	(HL)
1 1 1 0 1	0 0 1 E9

Description:

The Program Counter (register pair PC) is loaded with the contents of the HL register pair. The next instruction is fetched from the location designated by the new contents of the PC.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H and the contents of the HL register pair are 4800H, after the execution of

JP (HL)

the contents of the Program Counter will be 4800H.

JP (IX)

<u>Operation</u>: PC ← IX

Format:

<u>Opcode</u>	Operands
JP	(IX)
1 1 0 1 1	1 0 1 DD
1 1 1 0 1	0 0 1 E9

Description:

The Program Counter (register pair PC) is loaded with the contents of the IX Register Pair (Index Register IX). The next instruction is fetched from the location designated by the new contents of the PC.

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H, and the contents of the IX Register Pair are 4800H, after the execution of

JP (IX)

the contents of the Program Counter will be 4800H.

JP (IY)

<u>Operation</u>: PC ← IY

Format:

Opc	ode				<u>Ope</u>	rand	<u>s</u>	
JP					(IY))		
1	1	1	1	1	1	0	1	FD
1	1	1	0	1	0	0	1	E9

Description:

The Program Counter (register pair PC) is loaded with the contents of the IY register pair (Index Register IY). The next instruction is fetched from the location designated by the new contents of the PC.

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H and the contents of the IY Register Pair are 4800H, after the execution of

JP (IY)

the contents of the Program Counter will be 4800H.

DJNZ, e

Operation: ----

Format:

Opcode	Operands
DJNZ	e
0 0 0 1 0	0 0 0 10
e-2	

Description:

The instruction is similar to the conditional jump instructions except that a register value is used to determine branching. The B register is decremented and if a non zero value remains, the value of the displacement e is added to the Program Counter (PC). The next instruction is fetched from the location designated by the new contents of the PC. The jump is measured from the address of the instruction opcode and has a range of -126 to +129 bytes. The assembler automatically adjusts for the twice incremented PC.

If the result of decrementing leaves B with a zero value, the next instruction to be executed is taken from the location following this instruction.

If B#Ø:

M CYCLES: 3 T STATES: 13(5,3,5) 4 MHZ E.T.: 3.25

If B=0:

M CYCLES: 2 T STATES: 8(5,3) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

Example:

A typical software routine is used to demonstrate the use of the DJNZ instruction. This routine moves a line from an input buffer (INBUF) to an output buffer (OUTBUF). It moves the bytes until it finds a CR, or until it has moved 80 bytes, whichever occurs first.

	LD LD LD	B,8Ø HL,Inbuf DE,Outbuf	;Set up counter ;Set up pointers
LOOP:	LD	A,(HL)	Get next byte from
	LD	(DE),A	Store in output buffer
	CP	ØØН	;Is it a CR?
	JR	Z.DONE	:Yes finished

INC HL
INC DE
DJNZ LOOP

;Increment pointers

;Loop back if 80 ;bytes have not ;been moved

DONE:

CALL AND RETURN GROUP

CALL nn

Operation: $(SP-1) \leftarrow PC_H$, $(SP-2) \leftarrow PC_L$, $PC \leftarrow nn$

Format:

Note: The first of the two n operands in the assembled object code above is the least significant byte of a two-byte memory address.

Description:

After pushing the current contents of the Program Counter (PC) onto the top of the external memory stack, the operands nn are loaded into PC to point to the address in memory where the first opcode of a subroutine is to be fetched. (At the end of the subroutine, a RETurn instruction can be used to return to the original program flow by popping the top of the stack back into PC.) The push is accomplished by first decrementing the current contents of the Stack Pointer (register pair SP), loading the high-order byte of the PC contents into the memory address now pointed to by the SP; then decrementing SP again, and loading the low-order byte of the PC contents into the top of stack. Note: Because this is a 3-byte instruction, the Program Counter will have been incremented by 3 before the push is executed.

M CYCLES: 5 T STATES: 17(4,3,4,3,3) 4 MHZ E.T.: 4.25

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1A47H, the contents of the Stack Pointer are $3\phi\phi$ 2H, and memory locations have the contents:

Location	Contents	
1A47H	CDH	
1A48H	35H	
1A49H	21H	

then if an instruction fetch sequence begins, the three-byte instruction CD3521H will be fetched to the CPU for execution. The mnemonic equivalent of this is

CALL 2135H

After the execution of this instruction, the contents of memory address 3001H will be 1AH, the contents of address 3000H will be 4AH, the contents of the Stack Pointer will be 3000H, and the contents of the Program Counter will be 2135H, pointing to the address of the first opcode of the subroutine now to be executed.

CALL cc, nn

Operation: IF cc TRUE: $(SP-1) \leftarrow PC_H$ $(SP-2) \leftarrow PC_{1}, PC \leftarrow nn$

Format:

Note: The first of the two n operands in the assembled object code above is the least significant byte of the two-byte memory address.

Description:

If condition cc is true, this instruction pushes the current contents of the Program Counter (PC) onto the top of the external memory stack, then loads the operands nn into PC to point to the address in memory where the first opcode of a subroutine is to be fetched. (At the end of the subroutine, a RETurn instruction can be used to return to the original program flow by popping the top of the stack back into PC.) If condition cc is false, the Program Counter is incremented as usual, and the program continues with the next sequential instruction. The stack push is accomplished by first decrementing the current contents of the Stack Pointer (SP), loading the high-order byte of the PC contents into the memory address now pointed to by SP; then decrementing SP again, and loading the low-order byte of the PC contents into the top of the stack. Note: Because this is a 3-byte instruction, the Program Counter will have been incremented by 3 before the push is executed. Condition cc is programmed as one of eight status which corresponds to condition bits in the Flag Register (register F). Those eight status are defined in the table below, which also specifies the corresponding cc bit fields in the assembled object code:

cc	Condition	Relevant Flag
ØØØ	NZ non zero	Z
ØØ1	Z zero	Z
Ø1Ø	NC non carry	C
Ø11	C carry	C
1ØØ	PO parity odd	P/V
1Ø1	PE parity even	P/V
11Ø	P sign positive	S
111	M sign negative	S

If cc is true:

M CYCLES: 5 T STATES: 17(4,3,4,3,3) 4 MHZ E.T.: 4.25

If cc is false:

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2:50

Condition Bits Affected: None

Example:

If the C Flag in the F register is reset, the contents of the Program Counter are 1A47H, the contents of the Stack Pointer are 3002H, and memory locations have the contents:

Location	<u>Contents</u>	
1A47H	D4H	
1A48H	35H	
1 A 49H	21H	

then if an instruction fetch sequence begins, the three-byte instruction D43521H will be fetched to the CPU for execution. The mnemonic equivalent of this is

CALL NC, 2135H

After the execution of this instruction, the contents of memory address 3001H will be 1AH, the contents of address 3000H will be 4AH, the contents of the Stack Pointer will be 3000H, and the contents of the Program Counter will be 2135H, pointing to the address of the first opcode of the subroutine now to be executed.

RET

 $\underline{Operation:} \ PC_{L} \leftarrow (SP), PC_{H} \leftarrow (SP+1)$

Format:

Opcode

RET

Description:

Control is returned to the original program flow by popping the previous contents of the Program Counter (PC) off the top of the external memory stack, where they were pushed by the CALL instruction. This is accomplished by first loading the low-order byte of the PC with the contents of the memory address pointed to by the Stack Pointer (SP), then incrementing the SP and loading the high-order byte of the PC with the contents of the memory address now pointed to by the SP. (The SP is now incremented a second time.) On the following machine cycle the CPU will fetch the next program opcode from the location in memory now pointed to by the PC.

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 3535H, the contents of the Stack Pointer are 2000H, the contents of memory location 2000H are B5H, and the contents of memory location 2001H are 18H, then after the execution of

RET

the contents of the Stack Pointer will be 2002H and the contents of the Program Counter will be 18B5H, pointing to the address of the next program opcode to be fetched.

RET cc

Operation: IF cc TRUE: $PC_L \leftarrow (SP)$, $PC_H \leftarrow (SP+I)$

Format:

Opcode	Operand
RET	cc
1 1 c c	0 0 0

Description:

If condition cc is true, control is returned to the original program flow by popping the previous contents of the Program Counter (PC) off the top of the external memory stack, where they were pushed by the CALL instruction. This is accomplished by first loading the low-order byte of the PC with the contents of the memory address pointed to by the Stack Pointer (SP), then incrementing the SP, and loading the high-order byte of the PC with the contents of the memory address now pointed to by the SP. (The SP is now incremented a second time.) On the following machine cycle the CPU will fetch the next program opcode from the location in memory now pointed to by the PC. If condition cc is false, the PC is simply incremented as usual, and the program continues with the next sequential instruction. Condition cc is programmed as one of eight status which correspond to condition bits in the Flag Register (register F). These eight status are defined in the table below, which also specifies the corresponding cc bit fields in the assembled object code.

<u>cc</u> _	Condition	Relevant Flag
ØØØ	NZ non zero	Z
ØØ1	Z zero	Z
Ø1Ø	NC non carry	C
Ø11	C carry	C
1 Ø Ø	PO parity odd	P/V
1 Ø 1	PE parity even	P/V
11Ø	P sign positive	S
111	M sign negative	S

If cc is true:

M CYCLES: 3 T STATES: 11(5,3,3) 4 MHZ E.T.: 2.75

If cc is false:

M CYCLES: 1 T STATES: 5 4 MHZ E.T.; 1.25

Condition Bits Affected: None

Example:

If the S flag in the F register is set, the contents of the Program Counter are 3535H, the contents of the Stack Pointer are $2\emptyset\emptyset\emptyset$ H, the contents of memory location $2\emptyset\emptyset\emptyset$ H are B5H, and the contents of memory location $2\emptyset\emptyset$ 1H are 18H, then after the execution of

RET M

the contents of the Stack Pointer will be 2002H and the contents of the Program Counter will be 18B5H, pointing to the address of the next program opcode to be fetched.

RETI

Operation: Return from interrupt

Format:

<u>Opcode</u>

Description:

This instruction is used at the end of an interrupt service routine to:

- 1. Restore the contents of the Program Counter (PC) (analogous to the RET instruction).
- 2. To signal an I/O device that the interrupt routine has been completed. The RETI instruction facilitates the nesting of interrupts allowing higher priority devices to suspend service of lower priority service routines. This instruction also resets the IFF1 and IFF2 flip flops.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

Example:

Given: Two interrupting devices, A and B connected in a daisy chain configuration with A having a higher priority than B.

B generates an interrupt and is acknowledged. (The interrupt enable out, IEO, of B goes low, blocking any lower priority devices from interrupting while B is being serviced). Then A generates an interrupt, suspending service of B. (The IEO of A goes 'low' indicating that a higher priority device is being serviced.) The A routine is completed and a RETI is issued resetting the IEO of A, allowing the B routine to continue. A second RETI is issued on completion of the B routine and the IEO of B is reset (high) allowing lower priority devices interrupt access.

RETN

Operation: Return from non maskable interrupt

Format:

Opcode

Description:

Used at the end of a service routine for a non maskable interrupt, this instruction executes an unconditional return which functions identical to the RET instruction. That is, the previously stored contents of the Program Counter (PC) are popped off the top of the external memory stack; the low-order byte of PC is loaded with the contents of the memory location pointed to by the Stack Pointer (SP), SP is incremented, the high-order byte of PC is loaded with the contents of the memory location now pointed to by SP, and SP is incremented again. Control is now returned to the original program flow: on the following machine cycle the CPU will fetch the next opcode from the location in memory now pointed to by the PC. Also the state of IFF2 is copied back into IFF1 to the state it had prior to the acceptance of the NMI.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

Example:

If the contents of the Stack Pointer are 1000H and the contents of the Program Counter are 1A45H when a non maskable interrupt (NMI) signal is received, the CPU will ignore the next instruction and will instead restart to memory address 0066H. That is, the current Program Counter contents of 1A45H will be pushed onto the external stack address of OFFFH and OFFEH, high order-byte first, and 0066H will be loaded onto the Program Counter. That address begins an interrupt service routine which ends with RETN instruction. Upon the execution of RETN, the former Program Counter contents are popped off the external memory stack, low-order first, resulting in a Stack Pointer contents again of 1000H. The program flow continues where it left off with an opcode fetch to address 1A45H.

RST p

Operation:

$$(SP-1) \leftarrow PC_H$$
, $(SP-2) \leftarrow PC_L$, $PC_H \leftarrow O$, $PC_L \leftarrow P$

Format:

Description:

The current Program Counter (PC) contents are pushed onto the external memory stack, and the page zero memory location given by operand p is loaded into the PC. Program execution then begins with the opcode in the address now pointed to by PC. The push is performed by first decrementing the contents of the Stack Pointer (SP), loading the high-order byte of PC into the memory address now pointed to by SP, decrementing SP again, and loading the low-order byte of PC into the address now pointed to by SP. The ReSTart instruction allows for a jump to one of eight addresses as shown in the table below. The operand p is assembled into the object code using the corresponding T state. Note: Since all addresses are in page zero of memory, the high order byte of PC is loaded with $\emptyset\emptyset$ H. The number selected from the "p" column of the table is loaded into the low-order byte of PC.

<u>P</u>	<u>t</u>
ØØН	ØØØ
Ø8H	ØØ1
1ØH	Ø1Ø
18H	Ø11
2ØH	100
28H	1Ø1
3ØH	11Ø
38H	111

M CYCLES: 3 T STATES: 11(5,3,3) 4 MHZ E.T.: 2.75

Example:

If the contents of the Program Counter are 15B3H, after the execution of

RST 18H (Object code 11 Ø1111)

the PC will contain $\emptyset\emptyset$ 18H, as the address of the next opcode to be fetched.

INPUT AND OUTPUT GROUP

IN A, (n)

 $\underline{Operation} : A \leftarrow (n)$

Format:

Description:

The operand n is placed on the bottom half ($A\emptyset$ through A7) of the address bus to select the I/O device at one of 256 possible ports. The contents of the Accumulator also appear on the top half (A8 through A15) of the address bus at this time. Then one byte from the selected port is placed on the data bus and written into the Accumulator (register A) in the CPU.

M CYCLES: 3 T STATES: 11(4,3,4) 4 MHZ E.T.: 2.75

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H and the byte 7BH is available at the peripheral device mapped to I/O port address 01H, then after the execution of

IN A, (Ø1H)

the Accumulator will contain 7BH.

IN r, (C)

 $\underline{Operation:} \quad r \leftarrow (C)$

Format:

Description:

The contents of register C are placed on the bottom half (AØ through A7) of the address bus to select the I/O device at one of 256 possible ports. The contents of Register B are placed on the top half (A8 through A15) of the address bus at this time. Then one byte from the selected port is placed on the data bus and written into register r in the CPU. Register r identifies any of the CPU registers shown in the following table, which also shows the corresponding 3-bit "r" field for each. The flags will be affected, checking the input data.

Reg.	<u>r</u>
В	ØØØ
C	ØØ1
D	Ø1Ø
E	Ø11
H	1ØØ
L	1Ø1
A	111

M CYCLES: 3 T STATES: 12(4,4,4) 4 MHZ E.T.: 3.00

Condition Bits Affected:

S: Set if input data is negative; reset otherwise

Z: Set if input data is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Not affected

Example:

If the contents of register C are $\emptyset 7H$, the contents of register B are $1\emptyset H$, and the byte 7BH is available at the peripheral device mapped to I/O port address $\emptyset 7H$, then after the execution of

IN D, (C)

register D will contain 7BH

INI

Operation: $(HL) \leftarrow (C)$, $B \leftarrow B-1$, $HL \leftarrow HL + 1$

Format:

Opcode

Description:

The contents of register C are placed on the bottom half (AØ through A7) of the address bus to select the I/O device at one of 256 possible ports. Register B may be used as a byte counter, and its contents are placed on the top half (A8 through A15) of the address bus at this time. Then one byte from the selected port is placed on the data bus and written to the CPU. The contents of the HL register pair are then placed on the address bus and the input byte is written into the corresponding location of memory. Finally the byte counter is decremented and register pair HL is incremented.

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set if $B-1=\emptyset$; reset otherwise

H: Unknown

P/V: Unknown

N: Set

C: Not affected

Example:

If the contents of register C are \emptyset 7H, the contents of register B are $1\emptyset$ H, the contents of the HL register pair are $1\emptyset$ 0 \emptyset H, and the byte 7BH is available at the peripheral device mapped to I/O port address \emptyset 7H, then after the execution of

INI

memory location 1000H will contain 7BH, the HL register pair will contain 1001H, and register B will contain 0FH.

INIR

Operation: $(HL) \leftarrow (C)$, $B \leftarrow B-1$, $HL \leftarrow HL + 1$

Format:

Opcode

INIR

Description:

The contents of register C are placed on the bottom half (AØ through A7) of the address bus to select the I/O device at one of 256 possible ports. Register B is used as a byte counter, and its contents are placed on the top half (A8 through A15) of the address bus at this time. Then one byte from the selected port is placed on the data bus and written to the CPU. The contents of the HL register pair are placed on the address bus and the input byte is written into the corresponding location of memory. Then register pair HL is incremented, the byte counter is decremented. If decrementing causes B to go to zero, the instruction is terminated. If B is not zero, the PC is decremented by two and the instruction repeated. Note that if B is set to zero prior to instruction execution, 256 bytes of data will be input. Also interrupts will be recognized after each data transfer.

If B#Ø:

M CYCLES: 5 T STATES: 21(4,5,3,4,5) 4 MHZ E.T.: 5.25

If B=Ø:

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown

P/V: Unknown

N: Set

C: Not affected

Example:

If the contents of register C are $\emptyset 7H$, the contents of register B are $\emptyset 3H$, the contents of the HL register pair are $1\emptyset \emptyset \emptyset H$, and the following sequence of bytes are available at the peripheral device mapped to I/O port of address $\emptyset 7H$:

51H A9H Ø3H then after the execution of

INIR

the HL register pair will contain 1003H, register B will contain zero, and memory locations will have contents as follows:

Location	Contents
1000H	51H
1001H	A9H
1002H	Ø3H

IND

Operation: $(HL) \leftarrow (C)$, $B \leftarrow B-1$, $HL \leftarrow HL-1$

Format:

Opcode

Description:

The contents of register C are placed on the bottom half (AØ through A7) of the address bus to select the I/O device at one of 256 possible ports. Register B may be used as a byte counter, and its contents are placed on the top half (A8 through A15) of the address bus at this time. Then one byte from the selected port is placed on the data bus and written to the CPU. The contents of the HL register pair are placed on the address bus and the input byte is written into the corresponding location of memory. Finally the byte counter and register pair HL are decremented.

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set if $B-1=\emptyset$; reset otherwise

H: Unknown

P/V: Unknown

N: Set

C: Not affected

Example:

If the contents of register C are \emptyset 7H, the contents of register B are $1\emptyset$ H, the contents of the HL register pair are $1\emptyset$ 0 \emptyset H, and the byte 7BH is available at the peripheral device mapped to I/O port address \emptyset 7H, then after the execution of

IND

memory location 1000H will contain 7BH, the HL register pair will contain 0FFFH, and register B will contain 0FH.

INDR

Operation: $(HL) \leftarrow (C)$, $B \leftarrow B-1$, $HL \leftarrow HL-1$

Format:

Opcode

INDR

Description:

The contents of register C are placed on the bottom half (AØ through A7) of the address bus to select the I/O device at one of 256 possible ports. Register B is used as a byte counter, and its contents are placed on the top half (A8 through A15) of the address bus at this time. Then one byte from the selected port is placed on the data bus and written to the CPU. The contents of the HL register pair are placed on the address bus and the input byte is written into the corresponding location of memory. Then HL and the byte counter are decremented. If decrementing causes B to go to zero, the instruction is terminated. If B is not zero, the PC is decremented by two and the instruction repeated. Note that if B is set to zero prior to instruction execution, 256 bytes of data will be input. Also interrupts will be recognized after each data transfer.

If B#Ø:

M CYCLES: 5 T STATES: 21(4,5,3,4,5) 4 MHZ E.T.: 5.25

If B=0:

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown P/V: Unknown

N: Set

C: Not affected

Example:

If the contents of register C are $\emptyset 7H$, the contents of register B are $\emptyset 3H$, the contents of the HL register pair are $1\emptyset\emptyset\emptyset H$, and the following sequence of bytes are available at the peripheral device mapped to I/O port address $\emptyset 7H$:

51H A9H

Ø3H

then after the execution of

INDR

the HL register pair will contain ØFFDH, register B will contain zero, and memory locations will have contents as follows:

Location	Contents
ØFFEH ØFFFH	Ø3Н А 9Н
1000H	51H

OUT (n), A

Operation: $(n) \leftarrow A$

Format:

Description:

The operand n is placed on the bottom half (A \emptyset through A7) of the address bus to select the I/O device at one of 256 possible ports. The contents of the Accumulator (register A) also appear on the top half (A8 through A15) of the address bus at this time. Then the byte contained in the Accumulator is placed on the data bus and written into the selected peripheral device.

M CYCLES: 3 T STATES: 11(4,3,4) 4 MHZ E.T.: 2.75

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H, then after the execution of

OUT Ø1H,A

the byte 23H will have been written to the peripheral device mapped to I/O port address \$01H.

OUT (D), r

Operation: (C) \leftarrow r

Format:

Opcode	<u>Operands</u>
OUT	(C),r
1 1 1 0 1	1 0 1 ED
0 1 - r	0 0 1

Description:

The contents of register C are placed on the bottom half (AØ through A7) of the address bus to select the I/O device at one of 256 possible ports. The contents of Register B are placed on the top half (A8 through A15) of the address bus at this time. Then the byte contained in register r is placed on the data bus and written into the selected peripheral device. Register r identifies any of the CPU registers shown in the following table, which also shows the corresponding 3-bit "r" field for each which appears in the assembled object code:

Register	<u>r</u>
В	ØØØ
C	ØØ1
D	Ø1Ø
E	Ø11
H	1 Ø Ø
L	1Ø1
A	111

M CYCLES: 3 T STATES: 12(4,4,4) 4 MHZ E.T.: 3.00

Condition Bits Affected: None

Example:

If the contents of register C are \$\psi 1H\$ and the contents of register D are 5AH, after the execution of

OUT (C),D

the byte 5AH will have been written to the peripheral device mapped to I/O port address Ø1H.

OUT

Operation: (C) \leftarrow (HL), B \leftarrow B-1, HL \leftarrow HL + 1

Format:

Opcode

OUTI

Description:

The contents of the HL register pair are placed on the address bus to select a location in memory. The byte contained in this memory location is temporarily stored in the CPU. Then, after the byte counter (B) is decremented, the contents of register C are placed on the bottom half (A \emptyset through A7) of the address bus to select the 1/O device at one of 256 possible ports. Register B may be used as a byte counter, and its decremented value is placed on the top half (A8 through A15) of the address bus. The byte to be output is placed on the data bus and written into selected peripheral device. Finally the register pair HL is incremented.

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set if $B-1=\emptyset$; reset otherwise

H: Unknown

P/V: Unknown

N: Set

C: Not affected

Example:

If the contents of register C are $\emptyset 7H$, the contents of register B are $1\emptyset H$, the contents of the HL register pair are $1\emptyset \emptyset \emptyset H$, and the contents of memory address $1\emptyset \emptyset \emptyset H$ are 59H, then after the execution of

OUTI

register B will contain ØFH, the HL register pair will contain 1001H, and the byte 59H will have been written to the peripheral device mapped to 1/O port address Ø7H.

OTIR

Operation: (C) \leftarrow (HL), B \leftarrow B-1, HL \leftarrow HL + 1

Format:

Opcode

OTIR

Description:

The contents of the HL register pair are placed on the address bus to select a location in memory. The byte contained in this memory location is temporarily stored in the CPU. Then, after the byte counter (B) is decremented, the contents of register C are placed on the bottom half (AØ through A7) of the address bus to select the I/O device at one of 256 possible ports. Register B may be used as a byte counter, and its decremented value is placed on the top half A8 through A15) of the address bus at this time. Next the byte to be output is placed on the data bus and written into the selected peripheral device. Then register pair HL is incremented. If the decremented B register is not zero, the Program Counter (PC) is decremented by 2 and the instruction is repeated. If B has gone to zero, the instruction is terminated. Note that if B is set to zero prior to instruction execution, the instruction will output 256 bytes of data. Also, interrupts will be recognized after each data transfer.

If B#Ø:

M CYCLES: 5 T STATES: 21(4,5,3,4,5) 4 MHZ E.T.: 5.25

If B=Ø:

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MYZ E.T.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown

P/V: Unknown

N: Set

C: Not affected

Example:

If the contents of register C are \emptyset 7H, the contents of register B are \emptyset 3H, the contents of the HL register pair are $1\emptyset\emptyset\emptyset$ H, and memory locations have the following contents:

Location_	Contents
1 Ø ØØH	51H
1ØØ1H	A9H
1002H	Ø3H

then after the execution of

OTIR

the HL register pair will contain 1003H, register B will contain zero, and a group of bytes will have been written to the peripheral device mapped to I/O port address 07H in the following sequence:

51H A9H Ø3H

OUTD

Operation: (C) \leftarrow (HL), B \leftarrow B-1, HL \leftarrow HL-1

Format:

Opcode

Description:

The contents of the HL register pair are placed on the address bus to select a location in memory. The byte contained in this memory location is temporarily stored in the CPU. Then, after the byte counter (B) is decremented, the contents of register C are placed on the bottom half (AØ through A7) of the address bus to select the I/O device at one of 256 possible ports. Register B may be used as a byte counter, and its decremented value is placed on the top half (A8 through A15) of the address bus at this time. Next the byte to be output is placed on the data bus and written into the selected peripheral device. Finally the register pair HL is incremented.

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set if $B-1=\emptyset$; reset otherwise

H: Unknown

P/V: Unknown

N: Set

C: Not affected

Example:

If the contents of register C are $\emptyset 7H$, the contents of register B are $1\emptyset H$, the contents of the HL register pair are $1\emptyset \emptyset \emptyset H$, and the contents of memory location $1\emptyset \emptyset \emptyset H$ are 59H, after the execution of

OUTD

register B will contain \emptyset FH, the HL register pair will contain \emptyset FFFH, and the byte 59H will have been written to the peripheral device mapped to I/O port address \emptyset 7H.

OTDR

Operation: (C) \leftarrow (HL), B \leftarrow B-1, HL \leftarrow HL-1

Format:

Opcode

Description:

The contents of the HL register pair are placed on the address bus to select a location in memory. The byte contained in this memory location is temporarily stored in the CPU. Then, after the byte counter (B) is decremented, the contents of register C are placed on the bottom half (A \emptyset through A7) of the address bus to select the I/O device at one of 256 possible ports. Register B may be used as a byte counter, and its decremented value is placed on the top half (A8 through A15) of the address bus at this time. Next the byte to be output is placed on the data bus and written into the selected peripheral device. Then register pair HL is decremented and if the decremented B register is not zero, the Program Counter (PC) is decremented by 2 and the instruction is repeated. If B has gone to zero, the instruction is terminated. Note that if B is set to zero prior to instruction execution, the instruction will output 256 byte of data. Also, interrupts will be recognized after each data transfer.

If B#0:

M CYCLES: 5 T STATES: 21(4,5,3,4,5) 4 MHZ E.T.: 5.25

If B=0:

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown

P/V: Unknown

N: Set

C Not affected

Example:

If the contents of register C are \emptyset 7H, the contents of register B are \emptyset 3H, the contents of the HL register pair are $1\emptyset\emptyset\emptyset$ H, and memory locations have the following contents:

Location	Contents
ØFFEH	51H
ØFFFH	A9H
1ØØØH	Ø3Н [—]

then after the execution of

OTDR

the HL register pair will contain ØFFDH, register B will contain zero, and a group of bytes will have been written to the peripheral device mapped to I/O port address Ø7H in the following sequence:

Ø3H A9H 51H

Z-80 Hardware Configuration

This section gives information about the actual Z80 chip.

Z-80 CPU ARCHITECTURE

A block diagram of the internal architecture of the Z-80 CPU is shown in Figure 1. The diagram shows all of the major elements in the CPU and it should be referred to throughout the following description.

Z-80 CPU BLOCK DIAGRAM FIGURE 1

CPU REGISTERS

The Z-80 CPU contains 208 bits of R/W memory that are accessible to the programmer. Figure 2 illustrates how this memory is configured into eighteen 8-bit registers and four 16-bit registers. All Z-80 registers are implemented using static RAM. The registers include two sets of six general purpose registers that may be used individually as 8-bit registers or in pairs as 16-bit registers. There are also two sets of accumulator and flag resistors.

Special Purpose Registers

- 1. Program Counter (PC). The program counter holds the 16-bit address of the current instruction being fetched from memory. The PC is automatically incremented after its contents have been transferred to the address lines. When a program jump occurs the new value is automatically placed in the PC, overriding the incrementer.
- 2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current top of a stack located anywhere in external system RAM memory. The external stack memory is organized as a last-in first-out (LIFO) file.

Data can be pushed onto the stack from specific CPU registers or popped off of the stack into specific CPU registers through the execution of PUSH and POP instructions. The data popped from the stack is always the last data pushed onto it. The stack allows simple implementation of multiple level interrupts, unlimited subroutine nesting and simplification of many types of data manipulation.

MAIN R	EG SET	ALTERNA	TE REG SET	
ACCUMULATOR A	FLAGS F	ACCUMULATOR A'	FLAGS F'	
В	С	B.	C'	1)
D	E	D'	E'	GENERAL PURPOSE REGISTERS
н	L	H'	Ľ	i i i i i i i i i i i i i i i i i i i
	INTERRUPT VECTOR I INDEX REGIST INDEX REGIST STACK POINTE	ER IY	SPECIAL PURPOSE REGISTERS	

Z-80 CPU REGISTER CONFIGURATION FIGURE 2

- 3. Two Index Register (IX & IY). The two independent index registers hold a 16-bit base address that is used in indexed addressing modes. In this mode, an index register is used as a base to point to a region in memory from which data is to be stored or retrieved. An additional byte is included in indexed instructions to specify a displacement from this base. This displacement is specified as a two's complement signed integer. This mode of addressing greatly simplifies many types of programs, especially where tables of data are used.
- 4. Interrupt Page Address Register (I). The Z-80 CPU can be operated in a mode where an indirect call to any memory location can be achieved in response to an interrupt. The I Register is used for this purpose to store the high order 8-bits of the indirect address while the interrupting device provides the lower 8-bits of the address. This feature allows interrupt routines to be dynamically located anywhere in memory with absolute minimal access time to the routine.
- 5. Memory Refresh Register (R). The Z-80 CPU contains a memory refresh counter to enable dynamic memories to be used with the same ease as static memories. Seven bits of this 8 bit register are automatically incremented after each instruction fetch. The eighth bit will remain as programmed as the result of an LD R, A instruction. The data in the refresh counter is sent out on the lower portion of the address bus along with a refresh control signal while

the CPU is decoding and executing the fetched instruction. This mode of refresh is totally transparent to the programmer and does not slow down the CPU operation. The programmer can load the R register for testing purposes, but this register is normally not used by the programmer. During refresh, the contents of the I register are placed on the upper 8 bits of the address bus.

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and associated 8-bit flag registers. The accumulator holds the results of 8-bit arithmetic or logical operations while the flag register indicates specific conditions for 8 or 16-bit operations, such as indicating whether or not the result of an operation is equal to zero. The programmer selects the accumulator and flag pair that he wishes to work with a single exchange instruction so that he may easily work with either pair.

General Purpose Registers

There are two matched sets of general purpose registers, each set containing six 8-bit registers that may be used individually as 8-bit registers or as 16-bit register pairs by the programmer. One set is called BC, DE and HL while the complementary set is called BC', DE and HL'. At any one time the programmer can select either set of registers to work with through a single exchange command for the entire set. In systems where fast interrupt response is required, one set of general purpose registers and an accumulator/flag register may be reserved for handling this very fast routine. Only a simple exchange command need be executed to go between the routines. This greatly reduces interrupt service time by eliminating the requirement for saving and retrieving register contents in the external stack during interrupt or subroutine processing. These general purpose registers are used for a wide range of applications by the programmer. They also simplify programming, especially in ROM based systems where little external read/write memory is available.

ARITHMETIC & LOGIC UNIT (ALU)

The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU. Internally the ALU communicates with the registers and the external data bus on the internal data bus. The type of functions performed by the ALU include:

Add

Left or right shifts or rotates (arithmetic

and logical)

Subtract

Increment

Logical AND

Decrement

Logical OR

Set bit

Logical Exclu-

Reset bit

sive OR Compare

Test bit

INSTRUCTION REGISTER AND CPU CONTROL

As each instruction is fetched from memory, it is placed in

the instruction register and decoded. The control sections performs this function and then generates and supplies all of the control signals necessary to read or write data from or to the registers, control the ALU and provide all required external control signals.

Z-80 CPU PIN DESCRIPTION

The Z-80 CPU is packaged in an industry standard 40 pin Dual In-Line Package. The I/O pins are shown in Figure 3 and the function of each is described below.

Z-80 PIN CONFIGURATION FIGURE 3

A_Ø-A₁₅ (Address Bus)

Tri-state output, active high. A_0 - A_{15} constitute a 16-bit address bus. The address bus provides the address for memory (up to 64K bytes) data exchanges and for I/O device data exchanges. I/O addressing uses the 8 lower address bits to allow the user to directly select up to 256 input or 256 output ports. A_0 is the least significant address bit. During refresh time, the lower 7 bits contain a valid refresh address.

D_Ø-D₇ (Data Bus) Tri-state input/output, active high. D_0 - D_7 constitute an 8-bit bidirectional data bus. The data bus is used for data exchanges with memory and I/O devices.

 \overline{M}_1 (Machine Cycle one)

Output, active low. $\overline{M_1}$ indicates that the current machine cycle is the OP code fetch cycle of an instruction execution. Note that during execution of 2-byte op-codes, $\overline{M_1}$ is generated as each op-code byte is fetched. These two byte op-codes always begin with CBH, DDH, EDH or FDH. $\overline{M_1}$ also occurs with \overline{IORQ} to indicate an interrupt acknowledge cycle.

MREO (Memory Request) Tri-state output, active low. The memory request signal indicates that the address bus holds a valid address for a memory read or memory write operation.

IORO (Input/ Output Request) Tri-state output, active low. The IORQ signal indicates that the lower half of the address bus holds a valid I/O address for a I/O read or write operation. An IORQ signal is also generated with an M1 signal when an interrupt is being acknowledged to indicate that an interrupt response vector can be placed on the data bus. Interrupt Acknowledge operations occur during M₁ time while I/O operations never occur during M₁ time.

RD (Memory Read) Tri-state output, active low. RD indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.

WR

Tri-state output, active low. WR indicates (Memory Write) that the CPU data bus holds valid data to be stored in the addressed memory or I/O

RFSH (Refresh)

Output, active low. RFSH indicates that the lower 7 bits of the address bus contain a refresh address for dynamic memories and the current MREQ signal should be used to do a refresh read to all dynamic memories.

HALT (Halt state) Output, active low. HALT indicates that the CPU has executed a HALT software instruction and is awaiting either a non maskable or a maskable interrupt (with the mask enabled) before operation can resume. While halted, the CPU executes NOP's to maintain memory refresh activity.

WAIT (Wait)

Input, active low. WAIT indicates to the Z-80 CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter wait states for as long as this signal is active. This signal allows memory or I/O devices of any speed to be synchronized to the CPU.

INT (Interrupt Request)

Input, active low. The Interrupt Request signal is generated by I/O devices. A request will be honored at the end of the current instruction if the internal software controlled interrupt enable flip-flop (IFF) is enabled and if the BUSRQ signal is not active. When the CPU accepts the interrupt, an acknowledge signal (IORQ) during M₁ time) is sent out at the beginning of the next instruction cycle.

 $\overline{\text{NMI}}$ (Non Maskable Interrupt) Input, negative edge triggered. The non maskable interrupt request line has a higher priority than INT and is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop. NMI automatically forces the Z-80 CPU to restart to location \$\psi 066_H. The program counter is automatically saved in the external stack so that the user can return to the program that was interrupted. Note that continuous WAIT cycles can prevent the current instruction from ending, and that a BUSRQ will override a NMI.

RESET

Input, active low. RESET forces the program counter to zero and initializes the CPU. The CPU initialization includes:

- 1) Disable the interrupt enable flip-flop
- 2) Set Register I = $\emptyset \emptyset_H$
- 3) Set Register R = $\emptyset \emptyset_H$
- 4) Set Interrupt Mode Ø

During reset time, the address bus and data bus go to a high impedance state and all control output signals go to the inactive state.

BUSRO (Bus Request) Input, active low. The bus request signal is used to request the CPU address bus, data bus and tri-state output control signals to go to a high impedance state so that other devices can control these buses. When BUSRQ is activated, the CPU will set these buses to a high impedance state as soon as the current CPU machine cycle is terminated.

BUSAK (Bus Acknowledge) Output, active low. Bus acknowledge is used to indicate to the requesting device that the CPU address bus, data bus and tristate control bus signals have been set to their high impedance state and the external device can now control these signals.

Φ

Single phase TTL level clock which requires only a 330 ohm pull-up resistor to +5 volts to meet all clock requirements.

Z-80 CPU INSTRUCTION SET

The Z-80 CPU can execute 158 different instruction types including all 78 of the 8080A CPU. The instructions can be broken down into the following major groups:

- Load and Exchange
- Block Transfer and Search
- Arithmetic and Logical
- Rotate and Shift
- Bit Manipulation (set, reset, test)
- Jump, Call and Return
- Input/Output
- Basic CPU Control

INTRODUCTION TO INSTRUCTION TYPES

The load instructions move data internally between CPU registers or between CPU registers and external memory. All of these instructions must specify a source location from which the data is to be moved and a destination location. The source location is not altered by a load instruction. Examples of load group instructions include moves between any of the general purpose registers such as move the data to Register B from Register C. This group also includes load immediate to any CPU register or to any external memory location. Other types of load instructions allow transfer between CPU registers and memory locations. The exchange instructions can trade the contents of two registers.

A unique set of block transfer instructions is provided in the Z-80. With a single instruction a block of memory of any size can be moved to any other location in memory. This set of block moves is extremely valuable when large strings of data must be processed. The Z-80 block search instructions are also valuable for this type of processing. With a single instruction, a block of external memory of any desired length can be searched for any 8-bit character. Once the character is found or the end of the block is reached, the instruction automatically terminates. Both the block transfer and the block search instructions can be interrupted during their execution so as to not occupy the CPU for long periods of time.

The arithmetic and logical instructions operate on data stored in the accumulator and other general purpose CPU registers or external memory locations. The results of the operations are placed in the accumulator and the appropriate flags are set according to the result of the operation. An example of an arithmetic operation is adding the accumulator to the contents of an external memory location. The results of the addition are placed in the accumulator. This group also includes 16-bit addition and subtraction between 16-bit CPU registers.

The rotate and shift group allows any register or any memory location to be rotated right or left with or without carry either arithmetic or logical. Also, a digit in the accumulator can be rotated right or left with two digits in any memory location.

The bit manipulation instructions allow any bit in the accumulator, any general purpose register or any external memory location to be set, reset or tested with a single instruction. For example, the most significant bit of register H can be reset. This group is especially useful in control applications and for controlling software flags in general purpose programming.

The jump, call and return instructions are used to transfer between various locations in the user's program. This group uses several different techniques for obtaining the new program counter address from specific external memory locations. A unique type of call is the restart instruction. This instruction actually contains the new address as a part of the 8-bit OP code. This is possible since only 8 separate addresses located in page zero of the external memory may be specified. Program jumps may also be achieved by loading register HL, IX or IY directly into the PC, thus allowing the jump address to be a complex function of the routine being executed.

The input/output group of instructions in the Z-80 allow for a wide range of transfers between external memory locations or the general purpose CPU registers, and the external I/O devices. In each case, the port number is provided on the lower 8 bits of the address bus during any I/O transaction. One instruction allows this port number to be specified by the second byte of the instruction while other Z-80 instructions allow it to be specified as the content of the C register. One major advantage of using the C register as a pointer to the I/O device is that it allows different I/O ports to share common software driver routines. This is not possible when the address is part of the OP code if the routines are stored in ROM. Another feature of these input instructions is that they set the flag register automatically so that additional operations are not required to determine the state of the input data (for example its parity). The Z-80 CPU includes single instructions that can move blocks of data (up to 256 bytes) automatically to or from any I/O port directly to any memory location. In conjunction with the dual set of general purpose registers, these instructions provide for fast I/O block transfer rates. The value of this I/O instruction set is demonstrated by the fact that the Z-80 CPU can provide all required floppy disk formatting (i.e., the CPU provides the preamble, address, data and enables the CRC codes) on double density floppy disk drives on an interrupt driven

Finally, the basic CPU control instructions allow various options and modes. This group includes instructions such as setting or resetting the interrupt enable flip flop or setting the mode of interrupt response.

ADDRESSING MODES

Most of the Z-80 instructions operate on data stored in internal CPU registers, external memory or in the I/O ports. Addressing refers to how the address of this data is generated in each instruction. This section gives a brief summary of the types of addressing used in the Z-80 while subsequent sections detail the type of addressing available for each instruction group.

Immediate. In this mode of addressing the byte following the OP code in memory contains the actual operand.

Examples of this type of instruction would be to load the accumulator with a constant, where the constant is the byte immediately following the OP code.

Immediate Extended. This mode is merely an extension of immediate addressing in that the two bytes following the OP codes are the operand.

Examples of this type of instruction would be to load the HL register pair (16-bit register) with 16 bits (2 bytes) of data.

Modified Page Zero Addressing. The Z-80 has a special single byte CALL instruction to any of 8 locations in page zero of memory. This instruction (which is referred to as a restart) sets the PC to an effective address in page zero. The value of this instruction is that it allows a single byte to specify a complete 16-bit address where commonly called subroutines are located, thus saving memory space.

Relative Addressing. Relative addressing uses one byte of data following the OP code to specify a displacement from the existing program to which a program jump can occur. This displacement is a signed two's complement number that is added to the address of the OP code of the following instruction.

The value of relative addressing is that it allows jumps to nearby locations while only requiring two bytes of memory space. For most programs, relative jumps are by far the most prevalent type of jump due to the proximity of related program segments. Thus, these instructions can significantly reduce memory space requirements. The signed displacement can range between +127 and -128 from A + 2. This allows for a total displacement of +129 to -126 from the jump relative OP code address. Another major advantage is that it allows for relocatable code.

Extended Addressing. Extended Addressing provides for two bytes (16 bits) of address to be included in the instruction. This data can be an address to which a program can jump or it can be an address where an operand is located.

Extended addressing is required for a program to jump from any location in memory to any other location, or load and store data in any memory location.

When extended addressing is used to specify the source or destination address of an operand, the notation (nn) will be used to indicate the content of memory at nn, where nn is the 16-bit address specified in the instruction. This means that the two bytes of address nn are used as a pointer to a memory location. The use of the parentheses always means that the value enclosed within them is used as a pointer to a memory location. For example, (1200) refers to the contents of memory at location 1200.

Indexed Addressing. In this type of addressing, the byte of data following the OP code contains a displacement which is added to one of the two index registers (the OP code specifies which index register is used) to form a pointer to memory. The contents of the index register are not altered by this operation.

An example of an indexed instruction would be to load the contents of the memory location (Index Register + Displacement) into the accumulator. The displacement is a signed two's complement number. Indexed addressing greatly simplifies programs using tables of data since the index register can point to the start of any table. Two index registers are provided since very often operations require two or more tables. Indexed addressing also allows for relocatable code.

The two index registers in the Z-80 are referred to as IX and IY. To indicate indexed addressing the notation:

$$(IX+d)$$
 or $(IY+d)$

is used. Here d is the displacement specified after the OP code. The parentheses indicate that this value is used as a pointer to external memory.

Register Addressing. Many of the Z-80 OP codes contain bits of information that specify which CPU register is to be used for an operation. An example of register addressing would be to load the data in register B into register C.

Implied Addressing. Implied addressing refers to operations where the OP code automatically implies one or more CPU registers as containing the operands. An example is this set of arithmetic operations where the accumulator is always implied to be the destination of the results.

Register Indirect Addressing. This type of addressing specifies a 16-bit CPU register pair (such as HL) to be used as a pointer to any location in memory. This type of instruction is very powerful and it is used in a wide range of applications.

An example of this type of instruction would be to load the accumulator with the data in the memory location pointed to by the HL register contents. Indexed addressing is actually a form of register indirect addressing except that a displacement is added with indexed addressing. Register indirect addressing allows for very powerful but simple to implement memory accesses. The block move and search commands in the Z-80 are extensions of this type of addressing where automatic register incrementing, decrementing and comparing has been added. The notation for indicating register indirect addressing is to put parentheses around the name of the register that is to be used as the pointer. For example, the symbol

(HL)

specifies that the contents of the HL register are to be used as a pointer to a memory location. Often register indirect addressing is used to specify 16-bit operands. In this case, the register contents point to the low order portion of the operand while the register contents are automatically incremented to obtain the upper portion of the operand.

Bit Addressing. The Z-80 contains a large number of bit set, reset and test instructions. These instructions allow any memory location or CPU register to be specified for a bit operation through one of three previous addressing modes (register, register indirect and indexed) while three bits in the OP code specify which of the eight bits is to be manipulated.

ADDRESSING MODE COMBINATIONS

Many instructions include more than one operand (such as arithmetic instructions or loads). In these cases, two types of addressing may be employed. For example, load can use immediate addressing to specify the source and register indirect or indexed addressing to specify the destination.

CPU TIMING

The Z-80 CPU executes instructions by stepping through a very precise set of a few basic operations. These include:

Memory read or write I/O device read or write Interrupt acknowledge

All instructions are merely a series of these basic operations. Each of these basic operations can take from three to six clock periods to complete or they can be lengthened to synchronize the CPU to the speed of external devices. The basic clock periods are referred to as T cycles and the basic operations are referred to as M (for machine) cycles. Figure 4 illustrates how a typical instruction will be merely a series of specific M and T cycles. Notice that this instruction consists of three machine cycles (M1, M2 and M3). The first machine cycle of any instruction is a fetch cycle which is four, five or six T cycles long (unless lengthened by the wait signal which will be fully described in the next section). The fetch cycle (M1) is used to fetch the OP code of the next instruction to be executed. Subsequent machine cycles move data between the CPU and memory or I/O devices and they may have anywhere from three to five T cycles (again they may be lengthened by wait states to synchronize the external devices to the CPU). The following paragraphs describe the timing which occurs within any of the basic machine cycles. In section 10, the exact timing for each instruction is specified.

BASIC CPU TIMING EXAMPLE FIGURE 4

NUMERIC LIST OF INSTRUCTION SET

O7/09/76 10:20:50 OPCODE LISTING LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMEN	
0001 018405 2 LD BC,NN 0066 48 73 LD C,B 0004 02 3 LD (BC),A 0067 49 74 LD C,C 0005 03 4 INC BC 0068 4A 75 LD C,D 0006 04 5 INC B 0069 4B 76 LD C,E 0007 05 6 DEC B 006A 4C 77 LD C,H 0008 0620 7 LD B,N 006B 4D 78 LD C,L 000A 07 8 RLCA 006C 4E 79 LD C,(HL) 000B 08 9 EX AF,AF' 006D 4F 80 LD C,A 000C 09 10 ADD HL,BC 006F 51 82 LD D,C 000E 0B 12 DEC BC 0070 52 83 LD D,C 000F 0C 13 INC C 0071 <t< td=""><td>T</td></t<>	T
0001 018405 2 LD BC,NN 0066 48 73 LD C,B 0004 02 3 LD (BC),A 0067 49 74 LD C,C 0005 03 4 INC BC 0068 4A 75 LD C,D 0006 04 5 INC B 0069 4B 76 LD C,E 0007 05 6 DEC B 006A 4C 77 LD C,H 0008 0620 7 LD B,N 006B 4D 78 LD C,L 000A 07 8 RLCA 006C 4E 79 LD C,(HL) 000B 08 9 EX AF,AF' 006D 4F 80 LD C,A 000C 09 10 ADD HL,BC 006F 51 82 LD D,C 000E 0B 12 DEC BC 0070 52 83 LD D,C 000F 0C 13 INC C 0071 <t< td=""><td></td></t<>	
0004 02 3 LD (BC),A 0067 49 74 LD C,C 0005 03 4 INC BC 0068 4A 75 LD C,D 0006 04 5 INC B 0069 4B 76 LD C,E 0007 05 6 DEC B 006A 4C 77 LD C,H 0008 0620 7 LD B,N 006B 4D 78 LD C,L 000A 07 8 RLCA 006C 4E 79 LD C,HL) 000B 08 9 EX AF,AF' 006D 4F 80 LD C,A 000C 09 10 ADD HL,BC 006E 50 81 LD D,B 000E 0B 12 DEC BC 006F 51 82 LD D,C 000F 0C 13 INC C 0071 53 84 LD D,D 0010 OD 14 DEC B 0073 55 <td></td>	
0005 03 4 INC BC 0068 4A 75 LD C,D 0006 04 5 INC B 0069 4B 76 LD C,E 0007 05 6 DEC B 006A 4C 77 LD C,H 0008 0620 7 LD B,N 006B 4D 78 LD C,L 000A 07 8 RLCA 006C 4E 79 LD C,(HL) 000B 08 9 EX AF,AF' 006D 4F 80 LD C,A 000C 09 10 ADD HL,BC 006E 50 81 LD D,B 000D 0A 11 LD A,(BC) 006F 51 82 LD D,C 000E 0B 12 DEC BC 0070 52 83 LD D,D 001D 0C 13 INC C 0071 53 84 LD D,E 0011 0E20 15 LD C,N 0073	
0006 04 5 INC B 0069 4B 76 LD C,E 0007 05 6 DEC B 006A 4C 77 LD C,H 0008 0620 7 LD B,N 006B 4D 78 LD C,H 000A 07 8 RLCA 006C 4E 79 LD C,(HL) 000B 08 9 EX AF,AF' 006D 4F 80 LD C,A 000C 09 10 ADD HL,BC 006E 50 81 LD D,B 000D 0A 11 LD A,(BC) 006F 51 82 LD D,C 000E 0B 12 DEC BC 0070 52 83 LD D,D 001D 0C 13 INC C 0071 53 84 LD D,E 0011 0E20 15 LD C,N 0072 54 85 LD D,H 0013 0F 16 RRCA 0074 5	
0008 0620 7 LD B,N 006B 4D 78 LD C,L 000A 07 8 RLCA 006C 4E 79 LD C,(HL) 000B 08 9 EX AF,AF' 006D 4F 80 LD C,A 000C 09 10 ADD HL,BC 006E 50 81 LD D,B 000D 0A 11 LD A,(BC) 006F 51 82 LD D,C 000E 0B 12 DEC BC 0070 52 83 LD D,D 001F 0C 13 INC C 0071 53 84 LD D,E 0010 OD 14 DEC C 0072 54 85 LD D,H 0011 0E20 15 LD C,N 0073 55 86 LD D,L 0013 0F 16 RRCA 0074 56 87 LD D,HL) 0014 102E 17 DJNZ DIS 0075	
000A 07 8 RLCA 006C 4E 79 LD C,(HL) 000B 08 9 EX AF,AF' 006D 4F 80 LD C,A 000C 09 10 ADD HL,BC 006E 50 81 LD D,B 000D 0A 11 LD A,(BC) 006F 51 82 LD D,C 000E 0B 12 DEC BC 0070 52 83 LD D,D 000F 0C 13 INC C 0071 53 84 LD D,E 0010 OD 14 DEC C 0072 54 85 LD D,H 0011 0E20 15 LD C,N 0073 55 86 LD D,L 0013 0F 16 RRCA 0074 56 87 LD D,(HL) 0014 102E 17 DJNZ DIS 0075 57 88 LD D,A 0016 118405 18 LD DE,NN 0076 <td></td>	
000B 08 9 EX AF,AF' 006D 4F 80 LD C,A 000C 09 10 ADD HL,BC 006E 50 81 LD D,B 000D 0A 11 LD A,(BC) 006F 51 82 LD D,C 000E 0B 12 DEC BC 0070 52 83 LD D,D 000F 0C 13 INC C 0071 53 84 LD D,E 0010 OD 14 DEC C 0072 54 85 LD D,H 0011 0E20 15 LD C,N 0073 55 86 LD D,L 0013 0F 16 RRCA 0074 56 87 LD D,(HL) 0014 102E 17 DJNZ DIS 0075 57 88 LD D,A 0016 118405 18 LD DE,NN 0076 58 89 LD E,B 0019 12 19 LD (DE),A 0077<	
000C 09 10 ADD HL,BC 006E 50 81 LD D,B 000D 0A 11 LD A,(BC) 006F 51 82 LD D,C 000E 0B 12 DEC BC 0070 52 83 LD D,D 000F 0C 13 INC C 0071 53 84 LD D,E 0010 OD 14 DEC C 0072 54 85 LD D,H 0011 0E20 15 LD C,N 0073 55 86 LD D,L 0013 0F 16 RRCA 0074 56 87 LD D,(HL) 0014 102E 17 DJNZ DIS 0075 57 88 LD D,A 0016 118405 18 LD DE,NN 0076 58 89 LD E,B 0019 12 19 LD (DE),A 0077 59 90 LD E,C 0018 14 21 INC DE 0078 <td></td>	
000D 0A 11 LD A,(BC) 006F 51 82 LD D,C 000E 0B 12 DEC BC 0070 52 83 LD D,D 000F 0C 13 INC C 0071 53 84 LD D,E 0010 OD 14 DEC C 0072 54 85 LD D,H 0011 0E20 15 LD C,N 0073 55 86 LD D,L 0013 0F 16 RRCA 0074 56 87 LD D,(HL) 0014 102E 17 DJNZ DIS 0075 57 88 LD D,A 0016 118405 18 LD DE,NN 0076 58 89 LD E,B 0019 12 19 LD (DE),A 0077 59 90 LD E,C 001A 13 20 INC DE 0078 5A 91 LD E,D 001B 14 21 INC D 0079	
000E 0B 12 DEC BC 0070 52 83 LD D,D 000F 0C 13 INC C 0071 53 84 LD D,E 0010 OD 14 DEC C 0072 54 85 LD D,H 0011 0E20 15 LD C,N 0073 55 86 LD D,L 0013 0F 16 RRCA 0074 56 87 LD D,(HL) 0014 102E 17 DJNZ DIS 0075 57 88 LD D,A 0016 118405 18 LD DE,NN 0076 58 89 LD E,B 0019 12 19 LD (DE),A 0077 59 90 LD E,C 001A 13 20 INC DE 0078 5A 91 LD E,D 001B 14 21 INC D 0079 5B 92 LD E,E 001C 15 22 DEC D 007A	
000F 0C 13 INC C 0071 53 84 LD D,E 0010 OD 14 DEC C 0072 54 85 LD D,H 0011 0E20 15 LD C,N 0073 55 86 LD D,L 0013 0F 16 RRCA 0074 56 87 LD D,(HL) 0014 102E 17 DJNZ DIS 0075 57 88 LD D,A 0016 118405 18 LD DE,NN 0076 58 89 LD E,B 0019 12 19 LD (DE),A 0077 59 90 LD E,C 001A 13 20 INC DE 0078 5A 91 LD E,D 001B 14 21 INC D 0079 5B 92 LD E,E 001C 15 22 DEC D 007A 5C 93 LD E,H	
0010 OD 14 DEC C 0072 54 85 LD D,H 0011 0E20 15 LD C,N 0073 55 86 LD D,L 0013 0F 16 RRCA 0074 56 87 LD D,(HL) 0014 102E 17 DJNZ DIS 0075 57 88 LD D,A 0016 118405 18 LD DE,NN 0076 58 89 LD E,B 0019 12 19 LD (DE),A 0077 59 90 LD E,C 001A 13 20 INC DE 0078 5A 91 LD E,D 001B 14 21 INC D 0079 5B 92 LD E,E 001C 15 22 DEC D 007A 5C 93 LD E,H	
0011 0E20 15 LD C,N 0073 55 86 LD D,L 0013 0F 16 RRCA 0074 56 87 LD D,(HL) 0014 102E 17 DJNZ DIS 0075 57 88 LD D,A 0016 118405 18 LD DE,NN 0076 58 89 LD E,B 0019 12 19 LD (DE),A 0077 59 90 LD E,C 001A 13 20 INC DE 0078 5A 91 LD E,D 001B 14 21 INC D 0079 5B 92 LD E,E 001C 15 22 DEC D 007A 5C 93 LD E,H	
0013 0F 16 RRCA 0074 56 87 LD D,(HL) 0014 102E 17 DJNZ DIS 0075 57 88 LD D,A 0016 118405 18 LD DE,NN 0076 58 89 LD E,B 0019 12 19 LD (DE),A 0077 59 90 LD E,C 001A 13 20 INC DE 0078 5A 91 LD E,D 001B 14 21 INC D 0079 5B 92 LD E,E 001C 15 22 DEC D 007A 5C 93 LD E,H	
0014 102E 17 DJNZ DIS 0075 57 88 LD D,A 0016 118405 18 LD DE,NN 0076 58 89 LD E,B 0019 12 19 LD (DE),A 0077 59 90 LD E,C 001A 13 20 INC DE 0078 5A 91 LD E,D 001B 14 21 INC D 0079 5B 92 LD E,E 001C 15 22 DEC D 007A 5C 93 LD E,H	
0019 12 19 LD (DE),A 0077 59 90 LD E,C 001A 13 20 INC DE 0078 5A 91 LD E,C 001B 14 21 INC D 0079 5B 92 LD E,E 001C 15 22 DEC D 007A 5C 93 LD E,H	
001A 13 20 INC DE 0078 5A 91 LD E,D 001B 14 21 INC D 0079 5B 92 LD E,E 001C 15 22 DEC D 007A 5C 93 LD E,H	
001B 14 21 INC D 0079 5B 92 LD E,E 001C 15 22 DEC D 007A 5C 93 LD E,H	
001C 15 22 DEC D 007A 5C 93 LD E.H	
00170 1 (00	
001D 1620 23 LD D,N 007B 5D 94 LD E,L 001F 17 24 RLA 007C 5E 95 LD E,(HL)	
0020 182E 25 JR DIS 007D 5F 96 LD E,A	
0022 19 26 ADD HL,DE 007E 60 97 LD H.B	
0023 1A 27 LD A,(DE) 007F 61 98 LD H,C	
0024 1B 28 DEC DE 0080 62 99 LD H,D	
0025 1C 29 INCE 0081 63 100 LD H,E	
0026 ID 30 DEC E 0082 64 101 LD H,H	
0027 1E20 31 LD E,N 0083 65 102 LD H,L 0029 1F 32 RRA 0084 66 103 LD H (HL)	
DD 11,(11D)	
DD 11,11	
002C 218405 34 LD HL,NN 0086 68 105 LD L,B 002F 228405 35 LD (NN),HL 0087 69 106 LD L,C	
0032 23 36 INC HL 0088 6A 107 LD L.D	
0033 24 37 INC H 0089 6B 108 LD L,E	
0034 25 38 DEC H 008A 6C 109 LD L,H	
0035 2620 39 LD H,N 008B 6D 110 LD L,L	
0037 27 40 DAA 008C 6E 111 LD L,(HL)	
0038 282E 41 JR Z,DIS 008D 6F 112 LD L,A	
003A 29 42 ADD HL,HL 008E 70 113 LD (HL),B	
003B 2A8405 43 LD HL,(NN) 008F 71 114 LD (HL),C 003E 2B 44 DEC HL 0090 72 115 LD (HL),D	
003F 2C 45 1NC L 0091 73 116 LD (HL),E 0040 2D 46 DEC L 0092 74 117 LD (HL),H	
0041 2E20 47 LD L,N 0093 75 118 LD (HL),L	
0043 2F 48 CPL 0094 76 119 HALT	
0044 302E 49 JR NC,DIS 0095 77 120 LD (HL),A	
0046 318405 50 LD SP,NN 0096 78 121 LD A,B	
0049 328405 51 LD (NN),A 0097 79 122 LD A,C	
004C 33 52 INC SP 0098 7A 123 LD A,D	
004D 34 53 INC (HL) 0099 7B 124 LD A,E	
004E 35 54 DEC (HL) 009A 7C 125 LD A,H 004F 3620 55 LD (HL).N 009B 7D 126 LD A I	
0051 27	
0052 200E	
0052 382E 57 JR C,DIS 009D 7F 128 LD A,A 0054 39 58 ADD HL,SP 009E 80 129 ADD A,B	
0055 3A8405 59 LD A,(NN) 009F 81 130 ADD A,C	
0058 3B 60 DEC SP 00A0 82 131 ADD A.D	
0059 3C 61 INC A 00A1 83 132 ADD A,E	
005A 3D 62 DEC A 00A2 84 133 ADD A,H	
005B 3E20 63 LD A,N 00A3 85 134 ADD A,L	
005D 3F 64 CCF 00A4 86 135 ADD A,(HL) 005E 40 65 LD B,B 00A5 87 136 ADD A	
0000 A1	
10 CO 10	
0060 42 67 LD B,D 00A7 89 138 ADC A,C 0061 43 68 LD B,E 00A8 8A 139 ADC A,D	
0062 44 69 LD B,H,NN 00A9 8B 140 ADC A,E	
0063 45 70 LD B,L 00AA 8C 141 ADC A,H	
0064 46 71 LD B,(HL) 00AB 8D 142 ADC A,L	

07/00/76	10:20:50		OPCODE LIST	NG	2.00 01 00/10//0		
LOC	OBJ CODE	STMT SOURCE	E STATEMENT	LOC	OBJ CODE	STMT SOURCE	E STATEMENT
						210	a
00AC	8E	143	ADC A,(HL)	010B	DA8405	218	JP C,NN
00AD	8F	144	ADC A,A	010E	DB20	219	1N A,N
00AE	90	145	SUB B SUB C	0110	DC8405	220	CALL C,NN
00AF	91	146 147	SUB D	0113	DE20	221	SBC A,N
00B0	92	147	SUB E	0115	DF	222	RST 18H
00B1	93	148	SUB H	0116	E0	223	RET PO
00B2	94 95	150	SUB L	0117	E1	224 225	POP HL JP PO,NN
00B3 00B4	95 96	151	SUB (HL)	0118	E28405	226	EX (SP),HL
00B4 00B5	96 97	152	SUB A	011B 011C	E3 E48405	227	CALL PO,NN
00B5	98	153	SBC A,B	011C 011F	E5	228	PUSH HL
00B6 00B7	98 99	154	SBC A,C	0116	E620	229	AND N
00B7 00B8	99 9 A	155	SBC A,C	0120	E620 E7	230	RST 20H
00B8	9B	156	SBC A.E	0122	E8	231	RET PE
00BA	9C	157	SBC A,H	0123	E9	232	JP (HL)
00BA 00BB	9D	158	SBC A,L	0125	EA8405	233	JP PE,NN
00BC	9E	159	SBC A,(HL)	0128	EB	234	EX DE,HL
00BD	9F	160	SBC A,A	0128	EC8405	235	CALL PE,NN
00BE	A0	161	AND B	012C	EE20	226	XOR N
00BF	A1	162	ANDC	012E	EF	237	RST 28H
00C0	A1 A2	163	AND D	012E	F0	238	RET P
00C0 00C1	A3	164	AND E	0130	F1	239	POP AF
00C1	A4	165	AND H	0131	F28405	240	JP P,NN
00C2 00C3	A5	166	AND L	0134	F3	241	DI
00C3	A6	167	AND (HL)	0135	F48405	242	CALL P,NN
00C4	A7	168	AND A	0138	F5	243	PUSH AF
00C6	A8	169	XOR B	0139	F620	244	OR N
00C7	A9	170	XOR C	013B	F7	245	RST 30H
00C8	AA	171	XOR D	013C	F8	246	RET M
00C9	AB	172	XOR E	013D	F9	247	LD SP,HL
00CA	AC	173	XOR H	013E	FA8405	248	JP M,NN
00CB	AD	174	XOR L	0141	FB	249	EI
00CC	AE	175	XOR (HL)	0142	FC8405	250	CALL M,NN
00CD	AF	176	XOR A	0145	FE20	251	CP N
00CE	B0	177	OR B	0147	FF	252	RST 38H
00CF	B1	178	OR C	0148	CB00	253	RLC B
00D0	B2	179	OR D	014A	CB01	254	RLC C
00D1	В3	180	OR E	014C	CB02	255	RLC D
0002	B4	181	OR H	014E	CB03	256	RLC E
00D3	B5	182	OR L	0150	CB04	257	RLC H
00D4	В6	183	OR (HL)	0152	CB05	258	RLC L
00D5	B7	184	OR A	0154	CB06	259	RLC (HL)
00D6	B8	185	CP B	0156	CB07	260	RLC A
00D7	В9	186	CP C	0158	CB08	261	RRC B
00D8	BA	187	CP D	015A	CB09	262	RRC C
00D9	BB	188	CP E	015C	CB0A	263	RRC D
00DA	BC	189	CP H	015E	CB0B	264	RRC E
00DB	BD	190	CP L	0160	CB0C	265	RRC H
00DC	BE	191	CP (HL)	0162	CB0D	266	RRC L
00DD	BF	192	CP A	0164	CB0E	267	RRC (HL)
00DE	C0	193	RET NZ	0166	CB0F	268	RRC A
00DF	C1	194	POP BC	0168	CB10	269	RL B
00E0	C28405	195	JP NZ, NN	016A	CB11	270	RL C
00E3	C38405	196	JP NN	016C	CB12	271	RL D
00E6	C48405	197	CALL NZ,NN	016E	CB13	272	RLE
00E9	C5	198	PUSH BC	0170	CB14	273	RL H
00EA	C620	199	ADD A,N	0172	CB15	274	RL L
00EC	C7	200	RST 0	0174	CB16	275	RL (HL)
00ED	C8	201	RET Z	0176	CB17	276	RL A
00EE	C9	202	RET	0178	CB18	277	RR B RR C
00EF	CA8405	203	JP Z,NN	017A	CB19	278	
00F2	CC8405	204	CALL Z,NN	017C	CB1A	279	RR D RR E
00F5	CD8405	205	CALL NN ADC A,N	017E	CB1B	280	RR H
00F8	CE20	206	RST 8	$0180 \\ 0182$	CB1C CB1D	281 282	RR L
00FA	CF	207	RET NC	0182	CB1E	282	RR (HL)
00FB	D0	208 209	POP DE	0184	CB1F	283 284	RR A
00FC	D1		JP NC,NN			285	SLA B
00FD	D28405	210 211	OUT N,A	0188	CB20	286	SLA B SLA C
0100	D320 D48405	211 212	CALLNC,NN	018A 018C	CB21 CB22	286 287	SLA C SLA D
0102	D48405 D5	212	PUSH DE	018C 018E	CB23	288	SLA E
0105 0106	D620	213	SUB N	018E 0190	CB23 CB24	289	SLA E SLA 11
0108	D620 D7	215	RST 10H	0190	CB25	290	SLA II SLA L
0108	D8	216	RET C	0192	CB25 CB26	290 291	SLA (HL)
0109 010A	D8	217	EXX	0194	CB26 CB27	292	SLA (IIL)
010/1				0170	CDZI	لمنه مر منا	5-111

07/00/7	(10.20.50		Z-80 CROSS ASSEMBLER OPCODE LIST		1.06 of 06/18/76	•	
LOC	6 10:20:50 OBJ CODE	STMT SOURCE		LOC	OBJ CODE	STMT SOU	RCE STATEMENT
		293	SRA B	0230	CB7C	369	BIT 7,H
0198	CB28	293 294	SRA C	0232	CB7D	370	BIT 7,L
019A 019C	CB29 CB2A	295	SRA D	0234	CB7E	371	BIT 7,(HL)
019E	CB2B	296	SRA E	0236	CB7F	372	BIT 7,A
01A0	CB2C	297	SRA H	0238	CB80	373	RES 0,B
01A2	CB2D	298	SRA L	023A	CB81	374	RES 0,C
01A4	CB2E	299	SRA (HL)	023C	CB82	375	RES 0,D
01A6	CB2F	300	SRA A	023E	CB83	376	RES 0,E
$01\mathrm{A8}$	CB38	301	SRL B	0240	CB84	377	RES 0,H
01 AA	CB39	302	SRL C	0242 0244	CB85 CB86	378 379	RES 0,L RES 0,(HL)
01AC	CB3A	303	SRL D SRL E	0244	CB87	380	RES 0,(HL)
01AE	CB3B	304 305	SRL H	0248	CB88	381	RES 1,B
01B0 01B2	CB3C CB3D	306	SRL II SRL L	024A	CB89	382	RES 1,C
01B2 01B4	CB3E	307	SRL (HL)	024C	CB8A	383	RES 1,D
01B6	CB3F	308	SRL A	024E	CB8B	384	RES 1,E
01B8	CB40	309	BIT 0,B	0250	CB8C	385	RES 1,H
01BA	CB41	310	BIT 0,C	0252	CB8D	386	RES 1,L
01BC	CB42	311	BIT 0,D	0254	CB8E	387	RES 1,(HL)
01 B E	CB43	312	BIT 0,E	0256	CB8F	388	RES 1,A
01C0	CB44	313	BIT 0,H BIT 0,L	0258	CB90 CB91	389 390	RES 2,B RES 2,C
01C2	CB45 CB46	314 315	BIT 0,(HL)	025 A 025 C	CB91 CB92	390	RES 2,C RES 2,D
01C4 01C6	CB47	316	BIT 0,(IL)	025E	CB92 CB93	392	RES 2,E
01C8	CB48	317	BIT 1.B	0260	CB94	393	RES 2,H
01CA	CB49	318	BIT 1,C	0262	CB95	394	RES 2,L
01CC	CB4A	319	BIT 1,D	0264	CB96	395	RES 2,(HL)
01CE	CB4B	320	BIT 1,E	0266	CB97	396	RES 2,A
$01\mathrm{D}0$	CB4C	321	BIT 1,H	0268	CB98	397	RES 3,B
01D2	CB4D	322	BIT 1,L	026A	CB99	398	RES 3,C
01D4	CB4E	323	BIT 1,(HL)	026C	CB9 A	399 400	RES 3,D RES 3,E
01D6	CB4F	324	BIT 1,A BIT 2,B	026E 0270	CB9B CB9C	400 401	RES 3,E RES 3,H
01D8	CB50	325	BIT 2,C	0270	CB9D	402	RES 3,II
01DA	CB51 CB52	326 327	BIT 2,D	0272	CB9E	403	RES 3,(HL)
01DC 01DE	CB52 CB53	328	BIT 2,E	0276	CB9F	404	RES 3,A
01E0	CB54	329	BIT 2,H	0278	CBA0	405	RES 4,B
01E3	CB55	330	BIT 2,L	027A	CBA1	406	RES 4,C
01E4	CB56	331	BIT 2,(HL)	027C	CBA2	407	RES 4,D
01E6	CB57	332	BIT 2,A	027E	CBA3	408	RES 4,E
01E8	CB58	333	BIT 3,B	0280	CBA4	409	RES 4,H
01EA	CB59	334	BIT 3,C	0282	CBA5	410	RES 4,L
01EC	CB5A	335	BIT 3,D BIT 3,E	0284 0286	CBA6 CBA7	411 412	RES 4,(HL) RES 4,A
01EE	CB5B	336	BIT 3,E BIT 3,H	0288	CBA8	413	RES 5,B
01F0	CB5C	337 338	BIT 3,II	028A	CBA9	414	RES 5,C
01F2 01F4	CB5D CB5E	339	BIT 3,(HL)	028C	CBAA	415	RES 5,D
01F4 01F6	CB5F	340	BIT 3,A	028E	CBAB	416	RES 5,E
01F8	CB60	341	BIT 4,B	0290	CBAC	417	RES 5,H
01FA	CB61	342	BIT 4,C	0292	CBAD	418	RES 5,L
01FC	CB62	343	BIT 4,D	0294	CBAE	419	RES 5,(HL)
01FE	CB63	344	BIT 4,E	0296	CBAF	420	RES 5,A
0200	CB64	345	BIT 4,H BIT 4,L	0298	CBB0	421 422	RES 6,B RES 6,C
0202	CB65	346 347	BIT 4,(HL)	029A 029C	CBB1 CBB2	422	RES 6,D
0204 0206	CB66 CB67	348	BIT 4,A	029E	CBB2 CBB3	424	RES 6,E
0208	CB68	349	BIT 5,B	02A0	CBB4	425	RES 6,H
020A	CB69	350	BIT 5,C	02A2	CBB5	426	RES 6,L
020C	CB6A	351	BIT 5,D	02A4	CBB6	427	RES 6,(HL)
020E	CB6B	352	BIT 5,E	02A6	CBB7	428	RES 6,A
0210	CB6C	353	BIT 5,H	02A8	CBB8	429	RES 7,B
0212	CB6D	354	BIT 5,L	02AA	CBB9	430	RES 7,C
0214	CB6E	355	BIT 5,(HL)	02AC	CBBA	431	RES 7,D
0216	CB6F	356	BIT 5,A BIT 6,B	02AE	CBBB	432 433	RES 7,E
0218	CB70	357 358	BIT 6,C	$0280 \\ 0282$	CBBC CBBD	433	RES 7,H RES 7,L
021A 021C	CB71 CB72	358 359	BIT 6,D	0284	CBBE	435	RES 7,(HL)
021C 021E	CB72 CB73	360	BIT 6,E	0286	CBBF	436	RES 7,A
021E 0220	CB74	361	BIT 6,H	0288	CBC0	437	SET 0,B
0222	CB75	362	BIT 6,L	02BA	CBC1	438	SET 0,C
0224	CB76	363	BIT 6,(HL)	02BC	CBC2	439	SET 0,D
0226	CB77	364	BIT 6,A	02BE	CBC3	440	SET 0,E
0228	CB78	365	BIT 7,B	02C0	CBC4	441	SET O,H
022A	CB79	366	BIT 7,C	02C2	CBC5	442	SET O.(HI)
022C	CB7A	367	BIT 7,D BIT 7,E	02C4 02C6	CBC6 CBC7	443 444	SET 0,(HL) SET 0,A
022E	СВ7В	368	DII 1,10	0200	CDC/	T 1 f	DDI O,A

0=1001=			Z-80 CROSS ASSEMBLER		N 1.00 OF 00/10/	70	
	6 10:20:50	CTAT COURC	OPCODE LIST E STATEMENT	LOC	OBJ CODE	STMT SOURC	E STATEMENT
LOC	OBJ CODE	SIMI SOURC	ESTATEMENT	ı			
02C8	CBC8	445	SET 1,B	036F	DD7105	520	LD (IX+IND),C
02CA	CBC9	446	SET 1,C	0372	DD7205	521	LD (IX+IND),D
02CC	CBCA	447	SET 1,D	0375	DD7305	522	LD (IX+IND),E
02CE	CBCB	448	SET 1,E	03,78	DD7405	523	LD (IX+IND),H
02D0	CBCC	449	SET 1,H	037B	DD7505	524	LD (IX+IND),L
02D2	CBCD	450	SET 1,L	037E	DD7705	525	LD (IX+IND),A
02D4	CBCE	451	SET 1,(HL)	0381	DD7E05	526	LD A,(IX+IND)
02D6	CBCF	452	SET 1,A	0384	DD8605	527	ADD A,(IX+IND)
02D8	CBD0	453	SET 2,B	0387	DD8E05	528	ADC A,(IX+IND)
02DA	CBD1	454	SET 2,C	038A	DD9605	529 530	SUB (IX+IND) SBC A,(IX+IND)
02DC	CBD2	455	SET 2,D	038D	DD9E05		, · · · · · · · · · · · · · · · · · · ·
02DE	CBD3	456	SET 2,E	0390 0393	DDA605 DDAE05	531 532	AND (IX+IND) XOR (IX+IND)
02E0	CBD4	457	SET 2,H	0393	DDB605	533	OR (IX+IND)
02E2	CBD5	458	SET 2,L	0399	DDB603 DDBE05	534	CP (IX+IND)
02E4	CBD6	459	SET 2,(HL) SET 2,A	039C	DDBE03	535	POP IX
02E6	CBD7	460	SET 3,B	039E	DDE1	536 .	EX (SP),IX
02E8	CBD8	461	SET 3,B SET 3,C	03A0	DDE5	537	PUSH IX
02EA	CBD9	462 463	SET 3,D	03A2	DDE9	538	JP (IX)
02EC 02EE	CBDA CBDB	464	SET 3,E	03A4	DDF9	539	LD SP,IX
02EE 02F0	CBDC	465	SET 3,H	03A6	DDCB0506	540	RLC (IX+IND)
02F0 02F2	CBDD	466	SET 3.L	03AA	DDCB050E	541	RRC (IX+IND)
02F4	CBDE	467	SET 3,(HL)	03AE	DDCB0516	542	RL (IX+IND)
02F6	CBDF	468	SET 3,A	03B2	DDCB051E	543	RR (IX+IND)
02F8	CBE0	469	SFT 4,B	03B6	DDCB0526	544	SLA (IX+IND)
02FA	CBE1	470	SET 4,C	03BA	DDCB052E	545	SRA (IX+IND)
02FC	CBE2	471	SET 4,D	03BE	DDCB053E	546	SRL (IX+IND)
02FE	CBE3	472	SET 4,E	03C2	DDCB0546	547	BIT 0 ,(IX+IND)
0300	CBE4	473	SET 4,H	03C6	DDCB054E	548	BIT $1,(IX+IND)$
0302	CBE5	474	SET 4,L	03CA	DDCB0556	549	BIT 2,(IX+IND)
0304	CBE6	475	SET 4,(HL)	03CE	DDCB055E	550	BIT 3,(IX+IND)
0306	CBE7	476	SET 4,A	03D2	DDCB0566	551	BIT 4,(IX+IND)
0308	CBE8	477	SET 5,B	03D6	DDCB056E	552	BIT 5,(IX+IND)
030A	CBE9	478	SET 5,C	03DA	DDCB0576	553	BIT 6,(IX+IND)
030C	CBEA	479	SET 5,D SET 5,E	03DE	DDCB057E	554	BIT 7,(IX+IND)
030E	CBEB	480	SET 5,E SET 5,H	03E2	DDCB0586	555	RES 0,(IX+IND)
0310	CBEC	481 482	SFT 5,L	03E6	DDCB058E	556	RES 1,(IX+IND) RES 2,(IX+IND)
0312 0314	CBED CBEF	483	SET 5,(HL)	03EA	DDCB0596	557 558	RES 3,(IX+IND)
0314	CBEF	484	SET 5,A	03EE 03F2	DDCB059E DDCB05A6	559	RES 4,(IX+IND)
0318	CBEF CBF0	485	SET 6,B	03F2 03F6	DDCB05A6 DDCB05AE	560	RES 5,(IX+IND)
031A	CBF1	486	SET 6,C	03FA	DDCB05B6	561	RES 6,(IX+IND)
031C	CBF2	487	SET 6,D	03FE	DDCB05B6	562	RES 7,(IX+IND)
031E	CBF3	488	SET 6,E	0402	DDCB05C6	563	SET 0,(IX+IND)
0320	CBF4	489	SET 6,H	0406	DDCB05CE	564	SET 1,(IX+IND)
0322	CBF5	490	SET 6,L	040A	DDCB05D6	565	SET 2,(IX+IND)
0324	CBF6	491	SET 6,(HL)	040E	DDCB05DE	566	SET 3,(IX+IND)
0326	CBF7	492	SFT 6,A	0412	DDCB05E6	567	SET 4,(IX+IND)
0328	CBF8	493	SFT 7,B	0416	DDCB05EE	568	SET 5,(IX+IND)
032A	CBF9	494	SET 7,C	041A	DDCB05F6	569	SET 6,(IX+IND)
032C	CBFA	495	SET 7,D	041E	DDCB05FE	570	SET 7,(IX+IND)
032E	CBFB	496	SET 7,E	0422	ED40	571	IN B,(C)
0330	CBFC	497	SET 7,H	0424	ED41	572	OUT (C),B
0332	CBFD	498	SET 7,L SET 7,(HL)	0426	ED42	573	SBC HL,BC
0334	CBFE	499	SET 7.A	0428	ED438405	574	LD (NN),BC
0336	CBFF .	500 501	ADD IX,BC	042C	ED44	575	NEG
0338	DD09 DD19	502	ADD IX,BE ADD IX,DE	042E	ED45	576 577	RETN IM 0
033A	DD19 DD218405	503	LD IX,NN	0430	ED46	578	LD I,A
033C 0340	DD218405 DD228405	504	LD (NN),IX	0432 0434	ED47 ED48	579	IN C,(C)
0344	DD228403 DD23	505	INC IX	0434	ED48 ED49	580	OUT (C),C
0344	DD29	506	ADD IX,IX	0438	ED49 ED4A	581	ADC HL,BC
0348	DD2A8405	507	LD IX,(NN)	043A	ED4B8405	582	LD BC,(NN)
034C	DD2B	508	DEC IX	043E	ED4D	583	RETI
034E	DD3405	509	INC (IX+IND)	0440	ED50	584	IN D,(C)
0351	DD3505	510	DEC (IX+IND)	0442	ED51	585	OUT (C),D
0354	DD360520	511	LD (IX+IND),N	0444	ED52	586	SBC HL,DE
0358	DD39	512	ADD IX,SP	0446	ED538405	587	LD (NN),DE
035A	DD4605	513	LD B,(IX+IND)	044A	ED56	588	IM I
035D	DD4E05	514	LD C,(IX+IND)	044C	ED57	589	LD A,I
0360	DD5605	515	LD D,(IX+IND)	044E	ED58	590	IN E,(C)
0363	DD5E05	516	LD E,(IX+IND)	0450	ED59	591	OUT (C),E
0366	DD6605	517	LD H,(IX+IND) LD L,(IX+IND)	0452 0454	ED5A ED5B8405	592 593	ADC HL,DE LD DE,(NN)
0369	DD6E05	518 519	LD L,(IX+IND) LD (IX+IND),B	0454	ED5E ED5E	593 594	IM 2
036C	DD7005	317	LD (IV, IIID)'n	U~30,	EDJE	374	and M

					1.00 OF 00/18/7	· ·	
07/09/76 LOC	10:20:50 OBJ CODE	STMT SOURCE	OPCODE LISTIN E STATEMENT	NG LOC	OBJ CODE	STMT SOURCE	STATEMENT
045A	ED60	595	IN H,(C)	0520	FDCB053E	670	SRL (IY+IND)
045C	ED61	596	OUT (C),H	0524	FDCB0546	671	BIT 0,(IY+IND)
045E	ED62	597	SBC HL,HI	0528	FDCB054E	672	BIT 1,(IY+IND)
0460	ED67	598	RRD	052C	FDCB0556	673	BIT 2,(IY+IND)
0462	ED68	599	IN L,(C)	0530	FDCB055E	674 675	BIT 3,(IY+IND) BIT 4,(IY+IND)
0464	ED69	600	OUT (C),L ADC HL,HL	0534 0538	FDCB0566 FDCB056E	676	BIT 5,(IY+IND)
0466	ED6A	601 602	RLD	053C	FDCB0576	677	BIT 6,(IY+IND)
0468 046A	ED6F ED72	603	SBC HL,SP	0540	FDCB057E	678	BIT 7,(IY+IND)
046A 046C	ED72 ED738405	604	LD (NN),SP	0544	FDCB0586	679	RES 0,(IY+IND)
0470	ED78	605	IN A,(C)	0548	FDCB058E	680	RES 1,(IY+IND)
0472	ED79	606	OUT (C),A	054C	FDCB0596	681	RES 2,(IY+IND)
0474	ED7A	607	ADC HL,SP	0550	FDCB059E	682	RES 3,(IY+IND)
0476	ED7B8405	608	LD SP, (NN)	0554	FDCB05A6	683	RES 4,(IY+IND)
047A	EDA0	609	LDI	0558	FDCB05AE	684	RES 5,(IY+IND)
047C	EDA1	610	CPI	055C	FDCB05B6	685 686	RES 6,(IY+IND) RES 7,(IY+IND)
047E	EDA2	611	INI	0560 0564	FDCB05BE FDCB05C6	687	SET 0,(IY+IND)
0480	EDA3 EDA8	612 613	OUTI LDD	0568	FDCB05CE	688	SET 1,(IY+IND)
0482 0484	EDA6	614	CPD	056C	FDCB05D6	689	SET 2,(IY+IND)
0486	EDAA	615	IND	0570	FDCB05DE	690	SET 3,(IY+IND)
0488	EDAB	616	OUTD	0574	FDCB05E6	691	SET 4,(IY+IND)
048A	EDB0	617	LDIR	0578	FDCB05EE	692	SET 5,(IY+IND)
048C	EDB1	618	CPIR	057C	FDCB05F6	693	SET 6,(IY+IND)
048E	EDB2	619	INIR	0580	FDCB05FE	694	SET 7,(IY+IND)
0490	EDB3	620	OTIR	0584		695 NN	DEFS 2
0492	EDB8	621 622	LDDR CPDR			696 IND 697 M	EQU 5 EQU 10H
0494 0496	EDB9 EDBA	623	INDR			698 N	EQU 20H
0498	EDBB	624	OTDR			699 DIS	EQU 30H
049A	FD09	625	ADD IY,BC			700	END
049C	FD19	626	ADD IY,DE				
049E	FD218405	627	LD IY,NN				
04A2	FD228405	628	LD (NN),IY				
04A6	FD23	629	INC IY				
04A8	FD29	630	ADD IY,IY				
04AA	FD2A8405	631 632	LD IY,(NN) DEC IY				
04AE 04B0	FD2B FD3405	633	INC (IY+IND)				
04B0 04B3	FD3505	634	DEC (IY+IND)				
04B6	FD360520	635	LD (IY+IND),N				
04BA	FD39	636	ADD IY,SP				
04BC	FD4605	637	LD B,(IY+IND)				
04BF	FD4E05	638	LD C,(IY+IND)				
04C2	FD5605	639	LD D,(IY+IND)				
04C5	FD5E05	640	LD E,(IY+IND) LD H,(IY+IND)				
04C8 04CB	FD6605 FD6E05	641 642	LD L,(IY+IND)				
04CE	FD7005	643	LD (IY+IND),B				
04D1	FD7105	644	LD (IY+IND),C				
04D4	FD7205	645	LD(IY+IND),D				
04D7	FD7305	646	LD (1Y+IND),E				
04DA	FD7405	647	LD (IY+IND),H				
04DD	FD7505	648	LD (IY+IND),L				
04E0	FD7705	649	LD (IY+IND),A LD A,(IY+IND)				
04E3 04E6	FD7E05 FD8605	650 651	ADD A,(IY+IND)				
04E8	FD8E05	652	ADC A,(IY+IND)				
04EC	FD9605	653	SUB-(IY+IND)				
04EF	FD9E05	654	SBC A,(IY+IND)				
04F2	FDA605	655	AND (IY+IND)	*			
04F5	FDAE05	656	XOR (IY+IND)				
04F8	FDB605	657	OR (IY+IND)				
04FB	FDBE05	658 659	CP (IY+IND) POP IY				
04FE 0500	FDE1 FDE3	660	EX (SP),IY				
0500	FDE5 FDE5	661	PUSH IY				
0504	FDE9	662	JP (IY)				
0506	FDF9	663	LD SP,IY				
0508	FDCB0506	664	RLC (IY+IND)				
050C	FDCB050E	665	RRC (IY+IND)				
0510	FDCB0516	666	RL (IY+IND)				
0514	FDCB051E FDCB0526	667 668	RR (IY+IND) SLA (IY+IND)				
0518 051C	FDCB052E	669	SRA (IY+IND)				
0310	I DODOUZE	007					

Z80-CPU REGISTER CONFIGURATION

HEXADECIMAL CDLUMNS								
6	5	4	3	2	1			
HEX = DEC	HEX = DEC	HEX = DEC	HEX = DEC	HEX=DEC	HEX= DEC			
0 0	0 0	0 0	0 0	0 0	0 0			
1 1.048.576	1 65,536	1 4,096	1 256	1 16	1 1			
2 2,097,152	2 131,072	2 8,192	2 512	2 32	2 2			
3 3.145.728	3 196,608	3 12,288	3 768	3 48	3 3			
4 4.194.304	4 262,144	4 16,384	4 1,024	4 64	4 4			
5 5.242.880	5 327,680	5 20,480	5 1,280	5 80	5 5			
6 6.291.456	6 393,216	6 24,576	6 1,536	6 96	6 6			
7 7 340 032	7 458,752	7 28,672	7 1,792	7 112	7 7			
8 8.388.608	8 524,288	8 32,768	8 2,048	8 128	8 8			
9 9.437.184	9 589,824	9 36,864	9 2,304	9 144	9 9			
A 10,485,760	A 655,360	A 40,960	A 2,560	A 160	A 10			
В 11.534.336	B 720,896	B 45,056	B 2,816	B 176	B 11			
C 12 582 912	C 786,432	C 49,152	C 3,072	C 192	C 12			
D 13,631,488	D 851,968	D 53,248	D 3,328	D 208	D 13			
E 14 680 064	E 917 504	E 57,344	E 3,584	E 224	E 14			
F 15,728,640	F 983 040	F 61,440	F 3,840	F 240	F 15			
0123 4567		0123 4567		0123 4567				
B)	/TE	В,	YTE	ВУ	BYTE			

	ASCII CHARACTER SET (7-BIT CODE)										
	MSD	0	1	2	3	4	5	6	7		
LSD		000	001	010	011	100	101	110	111		
0	0000	NUL	DLE	SP	0	@	Р		р		
1	0001	SQH	DC1	!	1	Α	Q	а	q		
2	0010	STX	DC2	"	2	В	R	ь	r		
3	0011	ETX	DC3	#	3	С	S	С	s		
4	0100	EDT	DC4	\$	4	D	Т	ď	t		
5	0101	ENG	NAK	%	5	Ε	U	e	u		
6	0110	ACK	SYN	84	6	F	V	f.	٧		
7	0111	BEL	ETB	•	7	G	W	9	w		
8	1000	BS	CAN	(8 -	н	×	h	x		
9	1001	нт	EM)	9	1	Y		У		
Α	1010	LF	SUB	٠	±.	j	Z	J	Z		
В	1011	VT	ESC	+		К	1	k			
С	1100	FF	FS	,		L		1	1		
D	1101	CŔ	GS	-	=	M]	m			
Ε	1110	so	RS			N.	1	n	~		
F	1111	SI	vs	/	2			0	DEL		

OWERS OF 2) -		POV
2 ⁿ	n		
256 512 1 024 2 048 4 096 8 192 16 384 32 768 65 536 131 072 262 144 524 288 1 048 576 2 097 152 4 194 304 8 388 608 16 777 216	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	20 = 160 24 = 161 28 = 162 212 = 163 216 = 164 220 = 165 224 = 166 228 = 167 232 = 168 236 = 169 240 = 1610 244 = 1611 248 = 1612 252 = 1613 256 = 1614 260 = 1615	
		5	5

16 ⁿ	n
1	0
16	1
256	2
4 096	3
65 536	4
1 048 576	5
16 777 216	6
268 435 456	7
4 294 967 296	8
68 719 476 736	9
1 099 511 627 776	10
17 592 186 044 416	11
281 474 976 710 656	12
4 503 599 627 370 496	13
72 057 594 037 927 936	14
1 152 921 504 606 846 976	15

ALPHABETIC LIST OF INSTRUCTION SET

2-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76 07/09/76 10:22:47 OPCODE LISTING									
LOC	OBJ CODE	STMT SO	OURCE STATEM		LOC	OBJ CODE	STMT SO	URCE STATEMI	ENT
0000	8E	1	ADC	A, (HL)	0088	CB50	74	BIT	2, B
0001	DD8E05	2	ADC	A, (IX+IND)	008A	CB51	75	BIT	2, C
0004	FD8E05	3	ADC	A, (IY+IND)	008C	CB52	76	BIT	2, D
0007	8F	4	ADC	A, A	008E	CB53	77	BIT	2, E
8000	88	5	ADC	A, B	0090	CB54	78	BIT	2, H
0009	89	6	ADC	A, C	0092	CB55	79	BIT	2, L
000A 000B	8A	7 8	ADC ADC	A, D A, E	0094 0096	CB5E DDCB055E	80 81	BIT BIT	3, (HL) 3, (IX+IND)
000E	8B 8C	9	ADC	A, E A, H	009A	FDCB055E	82	BIT	3, (IY+IND)
000D	8D	10	ADC	A, L	009E	CB5F	83	BIT	3, A
000E	CE20	11	ADC	A, N	00A0	CB58	84	BIT	3, B
0010	ED4A	12	ADC	HL, BC	00A2	CB59	85	BIT	3, C
0012	ED5A	13	ADC	HL, DE	00A4	CB5A	86	BIT	3, D
0014	ED6A	14	ADC	HL, HL	00A6	CB5B	87	BIT	3, E
0016	ED7A	15	ADC	HL, SP	00A8	CB5C	88	BIT	3, H
0018	86	16	ADD	A, (HL)	00AA	CB5D	89	BIT	3, L
0019	DD8605	17 18	ADD ADD	A, (IX+IND) A, (IY+IND)	00AC	CB66	90	BIT	4, (HL)
001C 001F	FD8605 87	19	ADD	A, (11+1ND) A, A	00AE	DDCB0566	91	BIT	4, (IX+IND)
0011	80	20	ADD	A, B	00B2 00B6	FDCB0566 CB67	92 93	BIT BIT	4, (IY+IND) 4, A
0020	81	21	ADD	A, C	00B8	CB60	93 94	BIT	4, A 4, B
0022	82	22	ADD	A, D	00B8	CB61	95	BIT	4, C
0023	83	23	ADD	A, E	00BC	CB62	96	BIT	4, D
0024	84	24	ADD	A, H	00BE	CB63	97	BIT	4, E
0025	85	25	ADD	A, L	00C0	CB64	98	BIT	4, H
0026	C620	26	ADD	A, N	00C2	CB65	99	BIT	4, L
0028	09	27	ADD	HL, BC	00C4	CB6E	100	BIT	5, (HL)
0029	19	28	ADD	HL, DE	00C6	DDCB056E	101	BIT	5, (IX+IND)
002A	29	29	ADD	HL, HL HL, SP	00CA	FDCB056E	102	BIT	5, (IY+IND)
002B	39	30 31	ADD ADD	IX, BC	00CE	CB6F	103	BIT	5, A 5, B
002C 002E	DD09 DD19	32	ADD	IX, DE	00D0 00D2	CB68 CB69	104 105	BIT BIT	5, B 5, C
002E	DD19 DD29	33	ADD	IX, IX	00D2 00D4	CB6A	105	BIT	5, D
0030	DD29	34	ADD	IX, SP	00D4	CB6B	107	BIT	5, E
0034	FD09	35	ADD	IY, BC	00D8	CB6C	108	BIT	5, H
0036	FD19	36	ADD	IY, DE	00DA	CB6D	109	BIT	5, L
0038	FD29	37	ADD	IY, IY	00DC	CB76	110	BIT	6, (HL)
003A	FD39	38	ADD	IY, SP	00DE	DDCB0576	111	BIT	6, (IX+IND)
003C	A6	39	AND	(HL)	00E2	FDCB0576	112	BIT	6, (IY+IND)
003D	DDA605	40	AND	(IX+IND)	00E6	CB77	113	BIT	6, A
0040	FDA605	41	AND	(IY+IND)	00E8	CB70	114	BIT	6, B
0043	A7	42 43	AND AND	A B	00EA 00EC	CB71 CB72	115 116	BIT BIT	6, C 6, D
0044 0045	A0 A1	44	AND	Č	00EC	CB72 CB73	117	BIT	6, E
0046	A2	45	AND	D	00F0	CB74	118	BIT	6, H
0047	A3	46	AND	Ē	00F2	CB75	119	BIT	6, L
0048	A4	47	AND	H	00F4	CB7E	120	BIT	7, (HL)
0049	A5	48	AND	L	00F6	DDCB057E	121	BIT	7, (IX+IND)
004A	E620	49	AND	N	00FA	FDCB057E	122	BIT	7, (IY+IND)
004C	CB46	50	* BIT	O, (HL) O, (IX+IND)	00FE	CB7F	123	BIT	7, A
004E	DDCB0546 FDBC0546	51 52	BIT BIT	0, (IX+IND) 0, (IY+IND)	0100	CB78	124	BIT	7, B
0052 0056	CB47	53	BIT	0, (11111 <i>D</i>)	0102 0104	CB79 CB7A	125 126	BIT BIT	7, C 7, D
0058	CB40	54	BIT	O, B	0104	CB7B	127	BIT	7, E 7, E
005A	CB41	55	BIT	0, C	0108	CB7C	128	BIT	7, H
005C	CB42	56	BIT	O, D	010A	CB7D	129	BIT	7, L
005E	CB43	57	BIT	O, E	010C	DC8405	130	CALL	C, NN
0060	CB44	58	BIT	O, H	010F	FC8405	131	CALL	M, NN
0062	CB45	59	BIT	0, L	0112	D48405	132	CALL	NC, NN
0064	CB4E	60	BIT	1, (HL)	0115	CD8405	133	CALL	NN
0066	DDCB054E FDCB054E	61 62	BIT BIT	1, (IX+IND) 1, (IY+IND)	0118	C48405	134	CALL	NZ, NN
006A 006E	CB4F	63	BIT	1, (11 · 11 · 11 · 12)	011B	F48405	135 136	CALL CALL	P, NN
0070	CB48	64	BIT	1, B	011E 0121	EC8405 E48405	137	CALL	PE, NN PO, NN
0070	CB49	65	BIT	î, Ĉ	0124	CC8405	138	CALL	Z, NN
0074	CB4A	66	BIT	1, D	0127	3F	139	CCF	2, 1414
0076	CB4B	67	BIT	1, E	0128	BE	140	CP	(HL)
0078	CB4C	68	BIT	1, H	0129	DDBE05	141	CP	(IX+IND)
007A	CB4D	69	BIT	1, L	012C	FDBE05	142	CP	(IY+IND)
007C	CB56	70	BIT	2, (HL)	012F	BF	143	CP	A
007E	DDCB0556	71	BIT	2, (IX+IND)	0130	B8	144	CP CP	В
0082	FDCB0556	72 72	BIT	2, (IY+IND)	0131	B9	145	CP CP	C
0086	CB57	73	BIT	2, A	0132	BA	146	CP	D

07/09/76 10:22:47 OPCODE LISTING									
07/09/76	10:22:47 OBJ CODE	STMT SOURCE	STATEME		LOC	OBJ CODE	STMT SOURCE	ESTATEME	NT
LOC				1					
0133	BB	147	CP	E	01AD	F28405	222	JP	P, NN
0134	BC	148	CP	H	01B0	EA8405	223	JP	PE, NN
0135	BD	149	CP	L	01B3	E28405	224	JP	PO, NN
0136	FE20	150	CP	N	01B6	CA8405	225	JP	Z, NN
0138	EDA9	151	CPD		01B9	382E	226 227	JR JR	C, DIS DI S
013A	EDB9	152	CPDR		01BB	182E	228	JR JR	NC, DIS
013C	EDA1	153	CPI		01BD	302E	228 229	JR	NZ, DIS
013E	EDB1	154	CPIR		01BF	202E	230	JR JR	Z, DIS
0140	2F	155	CPL		01C1	282E	231	LD	(BC), A
0141	27	156	DAA	(III.)	01 . C3 01C4	02 12	232	LD	(DE), A
0142	35	157	DEC	(HL)		77	232	LD	(HL), A
0143	DD3505	158	DEC	(IX+IND)	01C5	70	234	LD	
0146	FD3505	159	DEC	(IY+IND)	01C6 01C7	70 71	235	LD	(HL), B (HL), C
0149	3D	160	DEC	A	01C7 01C8	72	236	LD	(HL), D
014A	05	161	DEC	B	01C8	73	237	LD	(HL), E
014B	0B	162	DEC	BC	01C9 01CA	73 74	238	LD	(HL), H
014C	0D	163	DEC	C		75	239	LD	(HL), H (HL), L
014D	15	164	DEC	D	01CB		240	LD	
014E	1B	165	DEC	DE	01CC	3620 DD7705			(HL), N
014F	1D	166	DEC	E	01CE	DD7705	241	LD	(IX+IND), A
0150	25	167	DEC	H	01D1	DD7005	242	LD	(IX+IND), B
0151	2B	168	DEC	HL	01D4	DD7105	243	LD	(IX+IND), C
	DD2B	169	DEC	IX	01D7	DD7205	244	LD	(IX+IND), D
0154	FD2B	170	DEC	IY	01DA	DD7305	245	LD	(IX+IND), E
0156	2D	171	DEC	L	01 DD	DD7405	246	LD	(IX+IND), H
0157	3B	172	DEC	SP	01E0	DD7505	247	LD	(IX+IND), L
0158	F3	173	DI		01E3	DD360520	248	LD	(IX+IND), N
0159	102E	174	DJNZ	DIS	01E7	FD7705	249	LD	(IY+IND), A
015B	FB	1/5	EI		01EA	FD7005	250	LD	(IY+IND), B
015C	E3	176	$\mathbf{E}\mathbf{X}$	(SP), HL	01ED	FD7105	251	LD	(IY+IND), C
015D	DDE3	177	$\mathbf{E}\mathbf{X}$	(SP), IX	01F0	FD7205	252	LD	(IY+IND), D
015F	FDE3	178	$\mathbf{E}\mathbf{X}$	(SP), IY	01F3	FD7305	253	LD	(IY+IND), E
	08	179	$\mathbf{E}\mathbf{X}$	AF, AF'	01F6	FD7405	254	LD	(IY+IND), H
0162	EB	180	$\mathbf{E}\mathbf{X}$	DE, HL	01F9	FD7505	255	LD	(IY+IND), L
0163	D9	181	EXX	·	01FC	FD360520	256	LD	(IY+IND), N
0164	76	182	HALT		0200	328405	257	LD	(NN), A
	ED46	183	IM	0	0203	ED438405	258	LD	(NN), BC
0167	ED56	184	IM	1	0207	ED538405	259	LD	(NN), DE
	ED5E	185	IM	2	020B	228405	260	LD	(NN), HL
016B	ED78	186	IN	A, (C)	020E	DD228405	261	LD	(NN), IX
	DB20	187	IN	A, N	0212	FD228405	262	LD	(NN), IY
	ED40	188	IN	B, (C)	0216	ED738405	263	LD	(NN), SP
	ED48	189	IN	C, (C)	021A	0 A	264	LD	A, (BC)
	ED50	190	IN	D, (C)	021B	1A	265	LD	A, (DE)
0175	ED58	191	IN	E, (C)	021C	7E	266	LD	A, (HL)
0177	ED60	192	IN	H, (C)	021D	DD7E05	267	LD	A, (IX+IND)
0179	ED68	193	IN	L, (C)	0220	FD7E05	268	LD	A, (IY+IND)
017B	34	194	INC	(HL)	0223	3A8405	269	LD	A, (NN)
	DD3405	195	INC	(IX+IND)	0226	7F	270	LD	A, A
	FD3405	196	INC	(IY+IND)	0227	78	271	LD	A, B
0182	3C	197	INC	A	0228	79 79	272	LD	A, C
0183	04	198	INC	В	0229	7A	273	LD	A, D
0184	03	199	INC	BC	022A	7B	274	LD	A, E
0185	0C	200	INC	C	022B	7C	275	LD	A, H
0186	14	201	INC	D	022C	ED57	276	LD	A, I
0187	13	202	INC	DE	022E	7D	277	LD	A, L
0188	1C	203	INC	E	022F	3E20	278	LD	A, N
0189	24	204	INC	H	0231	46	279	LD	B, (HL)
018A	23	205	INC	HL	0232	DD4605	280	LD	B, (IX+IND)
018B	DD23	206	INC	IX	0235	FD4605	281	LD	B, (IY+IND)
	FD23	207	INC	IY	0238	47	282	LD	B, A
018D	2C	208	INC	L	0239	40	283	LD	В, В
018F		208	INC	SP	023A	41	284	LD	B, C
0190	33		IND	21	023A 023B	42	285	LD	B, C B, D
0191	EDAA	210			023B 023C	43	286	LD	B, E
0193	EDBA	211	INDR		023C 023D	44	287	LD	B, H, NN
	EDA2	212	INI		023D 023E	44	288	LD	B. L
0197	EDB2	213	INIR						
	E9	214	JP	(HL)	023F	0620 EDARSA05	289	LD	B, N
	DDE9	215	JP	(IX)	0241	ED4B8405	290	LD	BC, (NN)
	FDE9	216	JP	(IY)	0245	018405	291	LD	BC, NN
	DA8405	217	JP	C, NN	0248	4E	292	LD	C, (HL)
	FA8405	218	JP	M, NN	0249	DD4E05	293	LD	C, (IX+IND)
	D28405	219	JP	NC, NN	024C	FD4E05	294	LD	C, (IY+IND)
	C38405	220	JP	NN	024F	4F	295	LD	C, A
01AA	C28405	221	JP	NZ, NN	0250	48	296	LD	С, В

07/09/76 10:22:47 OPCODE.LISTING									
LOC	OBJ CODE	STMT SOUR	CE STATEM		LOC	OBJ CODE	STMT SOUR	CE STATEM	ENT
0251	49	297	LD	C, C	02D8	B2	373	OR	D
0252	4A	298	LD	C, D	02D9	B3	374	OR	Ē
0253	4B	299	LD	C, E	02DA	B4	375	OR	Н
0254	4C	300	LD	C, H	02DB	B5	376	OR	L
0255	4D	301	LD	C, L	02DC	F620	377	OR	N
0256	0E20	302	LD	C, N	02DE	EDBB	378	OTDR	
0258	56	303 304	LD LD	D, (HL) D, (IX+IND)	02E0	EDB3	379	OTIR	(C) A
0259 025C	DD5605 FD5605	304 305	LD LD	D, (IX+IND) D, (IY+IND)	02E2 02F4	ED79 ED41	380 381	OUT OUT	(C),A (C),B
025E	57	306	LD	D, A	02F4 02E6	ED41 ED49	382	OUT	(C),E (C),C
0260	50	307	LD	D, B	02E8	ED51	383	OUT	(C),D
0261	51	308	LD	D, C	02EA	ED59	384	OUT	(C),E
0262	52	309	LD	D, D	02EC	ED61	385	OUT	(C),H
0263	53	310	LD	D, E	02EF	ED69	386	OUT	(C),L
0264	54	311	LD	D, H	02F0	D320	387	OUT	N,A
0265	55	312 313	LD LD	D, L D, N	02F2 02F4	EDAB EDA3	388 389	OUTD OUTI	
0266 0268	1620 ED5B8405	314	LD	DE, (NN)	02F4 02F6	F1	390	POP	AF
026C	118405	315	LD	DE, NN	02F7	C1	391	POP	BC
026F	5E	316	LD	F, (HL)	02F8	D1	392	POP	DE
0270	DD5E05	317	ĻD	E, (IX+IND)	02F9	E1	393	POP	HL
0273	FD5E05	318	LD	E, (IY+IND)	02FA	DDE1	394	POP	IX
0276	5F	319	LD	E, A	02FC	FDE1	395	POP	IY
0277	58	320	LD	E, B	02FE	F5	396	PUSH	AF
0278	59	321	LD	E, C	02FF	C5	397	PUSH	BC
0279	5 A	322 323	LD LD	E, D E, E	0300	D5 F5	398 399	PUSH	DE
027A 027B	5B 5C	323 324	LD	E, E E, H	0301 0302	DDE5	400	PUSH PUSH	HL IX
027B 027C	5D	325	LD	E, L	0302	FDE5	401	PUSH	IY
027D	1E20	326	LD	E, N	0306	CB86	402	RES	0.(HL)
027F	66	327	LD	H, (HL)	0308	DDCB0586	403	RES	0,(IX+IND)
0280	DD6605	328	LD	H, (IX+IND)	030C	FDCB0586	404	RES	0,(IY+IND)
0283	FD6605	329	LD	H, (IY+IND)	0310	CB87	405	RES	0,A
0286	67	330	LD	H, A	0312	CB80	406	RES	0,B
0287	60	331	LD	H, B	0314	CB81	407	RES	0,C
0288 0289	61 62	332 333	LD LD	Н, С Н, D	0316	CB82 CB83	408 409	RES	0,D
0289 028A	63	334	LD	н, Б н, Е	0318 031A	CB84	410	RFS RES	0,E 0,H
028B	64	335	LD	Н, Н	031A 031C	CB85	411	RES	0,11 0,L
028C	65	336	LD	H, L	031E	CB8E	412	RES	1,(HL)
028D	2620	337	LD	H, N	0320	DDCB058E	413	RES	1,(IX+IND)
028F	2A8405	338	LD	HL, (NN)	0324	FDCB058E	414	RES	1,(IY+IND)
0292	218405	339	LD	HL, NN	0328	CB8F	415	RFS	1,A
0295	ED47	340	LD	I, A	032A	CB88	416	RES	1,B
0297	DD2A8405	341	LD	IX, (NN)	032C	CB89	417	RES	1,C
029B 029F	DD218405 FD2A8405	342 343	LD LD	IX, NN IY, (NN)	032E 0330	CB8A CB8B	418 419	RFS RFS	1,D 1,E
029F 02A3	FD2A8405 FD218405	344	LD	IY, NN	0330	CB8C	420	RES	I,E I,H
02A7	6E	345	LD	L, (HL)	0334	CB8D	421	RES	1,L
02A8	DD6E05	346	LD	L,(IX+IND)	0336	CB96	422	RES	2,(HL)
02AB	FD6E05	347	LD	L,(IY+IND)	0338	DDCB0596	423	RES	2,(IX+IND)
02AE	6F	348	LD	L,A	033C	FDCB0596	424	RFS	2,(IY+IND)
02AF	68	349	LD	L,B	0340	CB97	425	RES	2,A
02B0	69	350 351	LD LD	L,C L,D	0342 0344	CB90 CB91	426 427	RES RES	2,B 2,C
02B1 02B2	6A 6B	352	LD	L,E	0344	CB91 CB92	428	RFS	2,C 2,D
02B2 02B3	6C	353	LD	L,H	0348	CB93	429	RES	2,E
02B4	6D	354	LD	L,L	034A	CB94	430	RES	2,H
02B5	2E20	355	LD	L,N	034C	CB95	431	RES	2,L
02B7	FD7B8405	356	LD	SP,(NN)	034E	CB9E	432	RES	3,(HL)
02BB	F9	357	LD	SP,HL	0350	DDCB059F	433	RES	3,(IX+IND)
02BC	DDF9	358	LD	SP,IX	0354	FDCB059E	434	RFS	3,(IY+IND)
02BE	FDF9	359 360	LD LD	SP,IY SP,NN	0358	CB9F	435	RES	3,A
02C0 02C3	318405 EDA8	361	LDD	21,1414	035A 035C	CB98 CB99	436 437	RES RES	3,B 3,C
02C5	EDB8	362	LDDR		035E	CB9A	438	RES	3,D
02C7	EDA0	363	LDI		0360	CB9B	439	RES	3,E
02C9	EDB0	364	LDIR		0362	CB9C	440	RES	3,H
02CB	FD44	365	NEG		0364	CB9D	441	RFS	3,L
02CD	00	366	NOP		0366	CBA6	442	RES	4,(HL)
02CE	B6	367	OR	(HL)	0368	DDCB05A6	443	RFS	4,(IX+IND)
02CF	DDB605	368	OR	(IX+IND)	036C	FDCB05A6	444 445	RFS	4,(IY+IND)
02D2	FDB605	369 370	OR OR	(IY+IND) A	0370 0372	CBA7 CBA0	445 446	RES RES	4,A 4,B
02D5 02D6	B7 B0	370 371	OR OR	B B	0374	CBA1	447	RES	4,B 4,C
02D6 02D7	B1	372	OR	Č	0376	CBA2	448	RES	4,D
المول	~*								•

Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76 07/09/76 10:22:47 OPCODE LISTING									
07/09/76	10:22:47 OBJ CODE	STMT SOURCE	CTATEME		LOC	OBJ CODE	STMT SOURCE	STATEME	NT
LOC			RES	4,E	041B	CB1C	524	RR	Н
0378	CBA3	449 450	RES RES	4,E 4,H	041B 041D	CB1D	525	RR	Ĺ
037A 037C	CBA4 CBA5	451	RES	4,L	041F	1F	526	RRA	_
037E	CBAE	452	RES	5,(HL)	0420	CB0E	527	RRC	(HL)
0372	DDCB05AE	453	RES	5,(IX+IND)	0422	DDCB050E	528	RRC	(IX+IND)
0384	FDCB05AE	454	RES	5,(IY+IND)	0426	FDCB050E	529	RRC	(IY+IND)
0388	CBAF	455	RES	5,A	042A	CB0F	530	RRC	A
038A	CBA8	456	RES	5,B	042C	CB08	531	RRC	В
038C	CBA9	457	RES	5,C	042E	CB09	532	RRC	C
038E	CBAA	458	RES	5,D	0430	CB0A CB0B	533 534	RRC RRC	D E
0390	CBAB	459	RES	5,E	0432 0434	CB0C	535	RRC	H
0392	CBAC	460 461	RES RES	5,H 5,L	0436	CB0D	536	RRC	L
0394 0396	CBAD CBB6	462	RES	6,(HL)	0438	0F	537	RRCA	
0398	DDCB05B6	463	RES	6,(IX+IND)	0439	ED67	538	RRD	
039C	FDCB05B6	464	RES	6,(IY+IND)	043B	C7	539	RST	0
03A0	CBB7	465	RES	6,A	043C	D7	540	RST	10H
03A2	CBB0	466	RES	6,B	043D	DF	541	RST	18H
03A4	CBB1	467	RES	6,C	043E 043F	E7 EF	542 543	RST RST	20H 28H
03A6	CBB2	468	RES	6,D	0436	F7	544	RST	30H
03A8	CBB3	469 470	RES RES	6,E 6,H	0441	FF	545	RST	38H
03AA 03AC	CBB4 CBB5	470	RES	6,L	0442	CF	546	RST	8
03AE	CBBE	472	RES	7,(HL)	0443	9Ē	547	SBC	A,(HL)
03B0	DDCB05BE	473	RES	7,(IX+IND)	0444	DD9E05	548	SBC	A,(IX+IND)
03B4	FDCB05BE	474	RES	7,(IY+IND)	0447	FD9E05	549	SBC	A,(IY+IND)
03B8	CBBF	475	RES	7,A	044A	9F	550	SBC	A,A
03BA	CBB8	476	RES	7,B	044B	98	551 552	SBC SBC	A,B A,C
03BC	CBB9	477	RES	7,C	044C 044D	99 9 A	553	SBC	A,C A,D
03BE	CBBA *	478 479	RES RES	7,D 7,E	044D 044E	9B	554	SBC	A,E
03C0 03C2	CBBB CBBC	480	RES	7,E 7,H	044F	9C	555	SBC	A,H
03C2 03C4	CBBD	481	RES	7,L	0450	9D	556	SBC	A,L
03C4 03C6	C9	482	RET	. ,—	0451	DE 20	557	SBC	A,N
03C7	D8	483	RET	C	0453	ED42	558	SBC	HL,BC
03C8	F8	484	RET	M	0455	ED52	559	SBC	HL,DE
03C9	D0	485	RET	NC	0457	ED62	560	SBC	HL,HL
03CA	C0	486	RET	NZ	0459 045B	ED72 37	561 562	SBC SCF	HL,SP
03CB	F0	487	RET RET	P PE	045B 045C	CBC6	563	SET	0,(HL)
03CC	E8 E0	488 489	RET	PO	045E	DDCB05C6	564	SET	0,(IX+IND)
03CD 03CE	C8	490	RET	Z	0462	FDCB05C6	565	SET	0,(IY+IND)
03CF	ED4D	491	RETI	_	0466	CBC7	566	SET	0,A
03D1	ED45	492	RETN		0468	CBC0	567	SET	0,B
03D3	CB16	493	RL	(HL)	046A	CBC1	568	SET	0,C
0 3 D5	DDCB0516	494	RL	(IX+IND)	046C	CBC2	569	SET	0,D
03D9	FDCB0516	495	RL	(IY+IND)	046E	CBC3	570 571	SET	0,E
03DD	CB17	496	RL	A	0470 0472	CBC4 CBC5	571 572	SET SET	0,H 0,L
03DF	CB10 CB11	497 498	RL RL	B C	0474	CBCE	573	SET	1,(HL)
03E1 03E3	CB11	499	RL	D	0476	DDCB05CE	574	SET	1,(IX+IND)
03E5	C813	500	RL	Ē	047A	FDCB05CE	575	SET	1,(IY+IND)
03E7	CB14	501	RL	Н	047E	CBCF	576	SET	1,A
03E9	CB15	502	RL	L	0480	CBC8	577	SET	1,B
03EB	17	503	RLA	(***	0482	CBC9	578 579	SET SET	1,C 1,D
03EC	CB06	504	RLC	(HL)	0484 0486	CBCA CBCB	580	SET	1,E
03EE	DDCB0506	505 506	RLC RLC	(IX+IND) (IY+IND)	0488	CBCC	581	SET	1,E 1,H
03F2	FDCB0506 CB07	507	RLC	(11+1ND) A	048A	CBCD	582	SET	1,L
03F6 03F8	CB07	508	RLC	B	048C	CBD6	583	SET	2,(HL)
03FA	CB01	509	RLC	Č	048E	DDCB05D6	584	SET	2,(IX+IND)
03FC	CB02	510	RLC	D	0492	FDCB05D6	585	SET	2,(IY+IND)
03FE	CB03	511	RLC	E	0496	CBD7	586	SET	2,A
0400	CB04	512	RLC	H	0498 049 A	CBD0 CBD1	587 588	SET SET	2,B 2,C
0402	CB05	513	RLC	L	049A 049C	CBD1 CBD2	589	SET	2,D
0404	07 ED6E	514 515	RLCA RLD		049E	CBD2 CBD3	590	SET	2,E
0405 0407	ED6F CB1E	516	RR	(HL)	04A0	CBD3	591	SET	2,H
0407	DDCB051E	517	RR	(IX+IND)	04A2	CBD5	592	SET	2,L
040D	FDCB051E	518	RR	(IY+IND)	04A4	CBD8	593	SET	3,B
0411	CB1F	519	RR	A	04A6	CBDE	594	SET	3,(HL)
0413	CB18	520	RR	B	04A8	DDCB05DE	595	SET	3,(IX+IND)
0415	CB19	521	RR	C	04AC 04B0	FDCB05DE CBDF	596 597	SET SET	3,(IY+IND) 3,A
0417	CB1A	522	RR	D E	04B0 04B2	CBDF CBD9	598	SET	3,A 3,C
0419	CB1B	523	RR	ь	0.172	5557	220		

07/00/7	07/09/76 10:22:47 OPCODE LISTING								
LOC	OBJ CODE	STMT SO	OURCE STATEM		LOC	OBJ CODE	STMT SOUR	CE STATEM	IENT
04B4	CBDA	599	SET	3,D	0568	FD9605	675	SUB	(IY+IND)
04B6	CBDB	600	SET	3,E	056B	97	676	SUB	A
04B8	CBDC	601	SET	3,H	056C	90	677	SUB	В
04BA	CBDD	602	SET	3,L	056D	91	678	SUB	C
04BC	CBE6	603	SET	4,(HL)	056E	92	679	SUB	D
04BE	DDCB05E6	604	SET	4,(IX+IND)	056F	93	680	SUB	\mathbf{E}
04C2	FDCB05E6	605	SET	4,(IY+IND)	0570	94	681	SUB	H
04C6	CBE7	606	SET	4,A	0571	95 DC20	682	SUB	L
04C8	CBE0	607	SET	4,B	0572 0574	D620 AE	683 684	SUB XOR	N (HL)
04CA 04CC	CBE1 CBE2	608 609	SET SET	4,C 4,D	0575	DDAE05	685	XOR	(IX+IND)
04CE	CBE3	610	SET	4,E	0578	FDAE05	686	XOR	(IY+IND)
04D0	CBE4	611	SET	4,H	057B	AF	687	XOR	A
04D2	CBE5	612	SET	4,L	057C	A8	688	XOR	В
04D4	CBEE	613	SET	5,(HL)	057D	A9	689	XOR	C
04D6	DDCB05EE	614	SET	5,(IX+IND)	057E	AA	690	XOR	D
04DA	FDCB05EE	615	SET	5,(IY+IND)	057F	AB	691 692	XOR	E H
04DE	CBEF	616	SET	5,A	0580 0581	AC AD	693	XOR XOR	L L
04E0 04E2	CBE8 CBE9	617 618	SET SET	5,B 5,C	0582	EE20	694	XOR	N
04E2 04E4	CBEA	619	SET	5,D	0584	2220	695 NN	DEFS	2
04E6	CBEB	620	SET	5,E			696 IND	EQU	5
04E8	CBEC	621	SET	5,H			697 M	EQU	10H
04EA	CBED	622	SET	5,L			698 N	EQU	20H
04EC	CBF6	623	SET	6,(HL)			699 DIS	EQU	30H
04EE	DDCB05F6	624	SET	6,(IX+IND)			700	END	
04F2	FDCB05F6	625	SET	6,(IY+IND)					
04F6 04F8	CBF7 CBF0	626 627	SET SET	6,A 6,B					
04FA	CBF0 CBF1	628	SET	6,C					
04FC	CBF2	629	SET	6,D				*	
04FE	CBF3	630	SET	6,E					
0500	CBF4	631	SET	6,H					
0502	CBF5	632	SET	6,L					
0504	CBFE	633	SET	7,(HL)					
0506	DDCB05FE FDCB05FE	634 635	SET SET	7,(IX+IND) 7,(IY+IND)	1				
050A 050E	CBFF	636	SET	7,(11+1ND) 7,A					
0510	CBF8	637	SET	7,B	-				
0512	CBF9	638	SET	7,C					
0514	CBFA	639	SET	7,D					
0516	CBFB	640	SET	7,E					
0518	CBFC	641	SET	7,H			~		
051A	CBFD	642	SET	7,L					
051C 051E	CB26 DDCB0526	643 644	SLA SLA	(HL) (IX+IND)					
0522	FDCB0526	645	SLA	(IX+IND)					
0526	CB27	646	SLA	A	İ				
0528	CB20	647	SLA	В					
052A	CB21	648	SLA	C					
052C	CB22	649	SLA	D					
052E	CB23	650	SLA	E					
0530	CB24	651 652	SLA SLA	H T					
0532 0534	CB25 CB2E	652 653	SRA SRA	L (HL)					
0534	DDCB052E	654	SRA	(IX+IND)					
053A	FDCB052E	655	SRA	(IY+IND)					
053E	CB2F	656	SRA	A					
0540	CB28	657	SRA	В					
0542	CB29	658	SRA	C					
0544	CB2A	659	SRA	D					
0546 0548	CB2B CB2C	660 661	SRA SRA	E H					
054A	CB2D	662	SRA	L					
054C	CB3E	663	SRL	(HL)					
054E	DDCB053E	664	SRL	(IX+IND)					
0552	FDCB053E	665	SRL	(IY+IND)					
0556	CB3F	666	SRL	A					
0558	CB38	667 668	SRL SRL	B C					
055A 055C	CB39 CB3A	669	SRL	D					
055E	CB3B	670	SRL	E					
0560	CB3C	671	SRL	Н					
0562	CB3D	672	SRL	L					
0564	96	673	SUB	(HL)					
0565	DD9605	674	SUB	(IX+IND)					

Error Messages

The TRS-80 Assembler/Editor recognizes two types of errors:

- 1) Command errors The error message is printed and control is transferred to command level.
- 2) Assembler errors These three types of errors may occur while executing an Assemble command.
 - Terminal Assembly is terminated and control is returned to command level.
 - b) Fatal The line containing the error is not further processed and no object code is generated for that line. Assembly proceeds with next source line.
 - c) Warning The error message is printed and assembly of the line containing the warning continues. The resulting object code may not be what the programmer intended.

Following is a list of all errors and an explanation of each.

COMMAND ERRORS

1) BAD PARAMETER(S)

Causes -

Increment specified as zero.

I1ØØ,Ø

Parameter(s) not properly separated or terminated.

P 1000,2000

(comma should be colon)

P10:20L

(garbage at end of command)

riv.zvL (garbage at end of comman

Specified line number or increment is greater than 65529. E66000

Line specification is not a number or one of the special characters #, ., or *

P @:200

Second line number of range is less than first line number of range.

P 200:100

Specified cassette filename:

- i) is longer than 6 characters
- ii) does not begin with an alphabetic character
- iii) contains characters which are not alphanumeric

W 1 TEST

L TESTFILE

An unsupported assembly switch was specified or the slashes were misplaced or omitted.

A/NO/NL

A NO

A ZZ

An attempt was made to load a cassette which was not written by the Editor or for some other reason cannot be properly read.

BUFFER FULL

There is no room in the edit buffer for adding text.

ILLEGAL COMMAND

The first character of the command line does not specify a valid Editor/Assembler command.

*Z1ØØØ:12ØØ

LINE NUMBER TOO LARGE

Causes

Renumbering (using the N command with the specified starting line number and increment would cause line(s) to be assigned numbers greater than 65529. The renumbering is not performed.

N60000,1000 (if there are more than 6 lines of text in the edit buffer)

The next line number to be generated by Insert or Replace would exceed 65529.

* I 64000,1600

64000 HELLO

LINE NUMBER TOO LARGE

*

(next number would be 65600)

NO ROOM BETWEEN LINES

The next line number to be generated by Insert or Replace would be greater than or equal to the line number of the next line of text in the edit buffer. The increment must be decreased or the lines in the buffer renumbered.

*P 100:115

ØØ1ØØ HEY

ØØ114 YOU

*I 112,2

ØØ112 TEST

NO ROOM BETWEEN LINES

*

(next number would be 114 which already exists)

NO SUCH LINE

A line specified by a command does not exist.

*P1ØØ:115

ØØ1ØØ HEY

ØØ114 YOU

*E112

NO SUCH LINE

(there is no line 112)

NO TEXT IN BUFFER

A command requiring text in the buffer was issued when the edit buffer was empty.

The commands Load, Insert, Basic, and System can be executed when the buffer is empty. All other commands require at least one line of text to be in the buffer.

D#: *P (empty the buffer)

NO TEXT IN BUFFER

STRING NOT FOUND

The string being searched for by the Find command could not be found between the current line and the end of the buffer.

TERMINAL ERRORS

1) SYMBOL TABLE OVERFLOW

There is not enough memory for the assembler's symbol table.

FATAL ERRORS

BAD LABEL

The character string found in the label field of the source statement

- a) begins with a non alphabetic character
- b) is no longer than 6 characters
- c) contains characters which are not alphanumeric

EXPRESSION ERROR

The operand field contains an ill-formed expression.

ILLEGAL ADDRESSING MODE

The operand field does not specify an addressing mode which is illegal with the specified opcode.

ILLEGAL OPCODE

The character string found in the opcode field of the source statement is not a recognized instruction mnemonic or assembler pseudo-op.

MISSING INFORMATION

Information vital to the correct assembly of the source line was not provided. The opcode is missing or the operands are not completely specified.

WARNINGS

BRANCH OUT OF RANGE

The destination (D) of a relative jump instruction (JR, DJNZ) is not within the range (LC-128 \triangle D \triangle (LC 127) where LC is the address assigned to the first byte of the jump instruction. The instruction is assembled as a branch to itself by forcing the offset to hex FE.

FIELD OVERFLOW

A number or expression result specified in the operand field is too large for the specified instruction operand. The result is truncated to the largest allowable number of bits. For example, BIT 9, A would cause such an error.

MULTIPLY DEFINED SYMBOL

The operand field contains a reference to the symbol which has been multiply defined. The first definition of the symbol is used to assemble the line.

MULTIPLE DEFINITION

The source line is attempting to illegally redefine a symbol. The original definition of the symbol is retained. Symbols may only be redefined by the DEFL pseudo-op and only if they were originally defined by DEFL.

NO END STATEMENT

The program end statement is missing.

UNDEFINED SYMBOL

The operand field contains a reference to a symbol which has not been defined. A value of zero is used for the undefined symbol.

LEVEL I BASIC Addresses

CURSOR LOCATION 4068H

Contains a 3C00H to 3FFFH which is the current cursor position on screen.

KEYBOARD SCAN

WAIT **CALL** 0B40H

;SCAN

JR

DE

ΙY

Z,WAIT

;Z=1 IF KB CLEAR

(A-register contains input byte, Input byte is displayed at current cursor).

DISPLAY BYTE AT CURSOR **PUSH PUSH** ;MUST SAVE DE & IY

LD

A,20H

;BYTE TO DISPLAY

RST

10H

;DISPLAY BYTE

POP

IY

;RESTORE

POP

CALL

DE

DE & IY

TURN ON

CASSETTE

0FE9H

(On board cassette is turned on via remote plug)

SAVE MEMORY TO CASSETTE

CALL 0FE9H HL,7000H LD DE,7100H LD 0F4BH **CALL**

:TURN ON CASSETTE **START ADDRESS** :LAST+1 ADDRESS

;SAVE IT

(Cassette is turned off)

LOAD MEMORY FROM CASSETTE **CALL**

0EF4H

;TURN ON & READ

(On return HL = last + 1 address

Z = 0 if checksum error Z = 1 if checksum OK)

(Cassette is turned off)

RETURN TO

LEVEL I BASIC

Press JP

JP

RESET

:POWER UP

01C9H

;RE-ENTRY

(Re-entry gives a READY)

RETURN TO TBUG (UNDER LEVEL I BASIC)

Set a Breakpoint to next opcode address.

JP 40B1H

;RE-ENTER TBUG

LEVEL II BASIC Addresses

CURSOR LOCATION 4020H

(Contains 3C00H to 3FFF which is the current cursor position on screen)

TURN ON CURSOR CHARACTER		PUSH PUSH LD CALL POP POP	DE IY A,0EH 33H IY DE	;MUST SAVE ; DE & IY ;0EH IS CURSOR BYTE ;DISPLAY ROUTINE ;RESTORE ; DE & IY
KEYBOARD SCAN	AGN	PUSH PUSH CALL OR JR POP	DE IY 2BH A Z,AGN IY DE	;MUST SAVE ; DE & IY ;SCAN ROUTINE ;A=0 IF KB CLEAR ;BRANCH IF NO BYTE ;RESTORE ; DE & IY
		ains byte when loossplayed on screen		
DISPLAY BYTE AT CURSOR	(2) 2 =	PUSH PUSH LD CALL POP POP	DE IY A,20H 33H IY DE	;MUST SAVE ; DE & IY ;BYTE TO DISPLAY ;DISPLAY ;RESTORE ; DE & IY
	;A-REGISTER S	SPECIFIES CASS		
DEFINE DRIVE		LD CALL	A,0 0212H	;ON BOARD CASSETTE ;DEFINE DRIVE
WRITE LEADER AND SYNC BYTE		CALL	0287Н	
TURN OFF CASSETTE		CALL	01F8H	
SAVE MEMORY TO CASSETTE	(USER must CA automatic.)	LD CALL CALL LD CALL LLL 264H often en	A,0 0212H 0287H A,20H 0264H nough to keep up v	;ON BOARD CASSETTE ;DEFINE DRIVE ;WRITE LEADER ;BYTE TO RECORD ;OUTPUT BYTE with 500 baud. Timing is ;CASSETTE OFF
				,
LOOK FOR LEADER AND SYNC BYTE		CALL	0296Н	
LOAD MEMORY FROM CASSETTE				;DEFINE DRIVE ;FIND SYNC BYTE ;READ ONE BYTE vith 500 baud. User must do ead.) The user must turn off

RETURN TO LEVEL II BASIC Press RESET JP 0 JP 1A19H

;LIKE POWER UP ;RE-ENTRY

(RE-ENTRY gives a READY ⟩)

RETURN TO TBUG (UNDER LEVEL II BASIC)

Set a Breakpoint to next opcode address.

43A0H

;RE-ENTER TBUG

LEVEL II BASIC MEMORY MAP

ADDRESS

DECIMAL	HEXIDECIMAL	*
0	0000	
		LEVEL II BASIC ROM
12288	3000	
		RESERVED
14302 14303 14304 14305 14308 14312 14316	37DE 37DF 37E0 37E1 37E4 37E8 37EC 3800	COMMUNICATION STATUS ADDRESS COMMUNICATION DATA ADDRESS INTERRUPT LATCH ADDRESS DISK DRIVE SELECT LATCH ADDRESS CASSETTE SELECT LATCH ADDRESS LINE PRINTER ADDRESS FLOPPY DISK CONTROLLER ADDRESS TRS-80 KEYBOARD
		MEMORY
15360	3000 -	TRS-80 CRT
1.000	2000	VIDEO MEMORY
16383 16384	3FFF - 4000 -	
		LEVEL II BASIC FIXED RAM
16402	4012	VECTORS (RST'S 1 THROUGH 7)
16405	4015 -	KEYBOARD DEVICE CONTROL BLOCK
		DCB + 0 = DCB TYPE + 1 = DRIVER ADDRESS + 2 = DRIVER ADDRESS + 3 = Ø + 4 = Ø + 5 = Ø + 6 = 'K' + 7 = 'I'
16413	401D -	VIDEO DISPLAY CONTROL BLOCK DCB + 0 = DCB TYPE + 1 = DRIVER ADDRESS (LSB) + 2 = DRIVER ADDRESS (MSB) + 3 = CURSOR POS N (LSB) + 4 = CURSOR POS N (MSB) + 5 = CURSOR CHARACTER + 6 = 'D'
16421	4025	+ 7 = '0' LINE PRINTER CONTROL BLOCK
		DCB + 0 = DCB TYPE + 1 = DRIVER ADDRESS (LSB) + 2 = DRIVER ADDRESS (MSB) + 3 = LINES/PAGE + 4 = LINE COUNTER + 5 = Ø + 6 = 'P' + 7 = 'R'

16429	402D	DECEDIED
16463	404F	RESERVED FDC INTERRUPT VECTOR
16464 16466	4050 4052	COMMUNICATIONS INTERRUPT VECTOR
16468	4054	RESERVED
16476 16478	405C 405E	25 MSEC HEARTBEAT INTERRUPT
16512	4080	RESERVED .
		LEVEL II BASIC FREE RAM
×		RESERVED
16870	41E6	I/O BUFFER
17127	42E7	ALWAYS ZERO
17128 17129	42E8 42E9	ALWATS ZERO
		↓ PROGRAM TEXT
		SIMPLE VARIABLES
		↓ ARRAYS
		↓ STRING VARIABLE NAMES AND OVERHEAD
		FREE MEMORY
		↑ STACK
		↑ STRING SPACE
		SPACE RESERVED FOR MACHINE LANGUAGE ROUTINES MIXED WITH BASIC – IF MEMORY SIZE SET
20479 (4K)	4FFF (4K)	
32767 (16K)	7FFF (16K)	END OF ACTUAL MEMORY
		-

Editor/Assembler Command List

Assemble *A [[\psifilename] [/switch[/switch] ...]]

Basic *B

Delete <u>*D [line1[:line2]]</u>

EDIT <u>*</u>E [line]

Find *F [string]

Insert <u>*I line[,inc]</u>

Hardcopy *H [line1[:line2]]

Load <u>*</u>L [bfilename]

Number *N [line[,inc]]

Print *P [line1[:line2]]

Replace * R [line[,inc]]

Type <u>*</u>T[line1[:line2]]

Write *W[\psi filename]

Important Information for Cassette Users

Using Your Cassette Deck

Many factors affect the performance of a cassette system. The most significant one is volume. Too low a volume may cause some of the information to be missed. Too high a volume may cause distortion and result in the transfer of background noise as valid information.

Three different cassette models have been supplied with the TRS-80 system — the CTR-40, CTR-41 and CTR-80. Each model has its own loading characteristics. The table below gives suggested volume ranges for each of the CTR models.

Notice that volume ranges for LEVEL I and LEVEL II are different. This is because the LEVEL II data transfer rate is faster (500 baud vs. 250 baud). Also, notice that pre-recorded Radio Shack programs need a slightly **higher** volume setting than that required by your own CSAVEd tapes. The prerecorded tapes are produced with high-speed audio equipment at a slightly lower level than the CSAVE process provides.

RECORDER	USER-GENERATE	D TAPES	PRE-RECORDED RADIO S	HACK TAPES
MODEL	LEVELI	LEVELII	LEVELI	LEVEL II
CTR-40	YELLOW LINE	RED LINE	YELLOW LINE	RED LINE
CTR-41	6-8	4-6	6½ — 8½	5—7
CTR-80	4½ — 6½	3-5	5½ — 7½	2½ — 5

Recommended Volume Settings for RADIO SHACK Cassette Decks

(With CTR-40 and CTR-80, to increase volume, turn the control to the left. With CTR-41, turn control to the right.)

When information is being loaded from the cassette tape, two asterisks will appear on the screen. The one on the right will flash on or off each time a new line of program is read in. If the asterisks do not appear, or the one on the right does not flash, then the volume setting is probably too low. If the asterisks appear but one is not flashing, try increasing the volume setting. Use the reset button to stop the cassette and return control to you if loading problems occur. (Asterisks do not blink when loading data from cassette.)

Radio Shack programs are recorded at least twice on each tape (usually once on each side). You should do the same when you record programs on tape. This will give you a back-up if one does not load properly or if it becomes damaged.

Important Note: The CTR-41 requires that you keep the supplied "dummy plug" in the MIC jack at all times. However, the CTR-40 and the CTR-80 should never be used with the "dummy plug."

LEVEL I

Sometimes you will get an error message during an attempted CLOAD. This means that some information was lost or garbled. Adjust the volume level slightly and try again.

LEVEL II

In case of an error message, proceed as above. In LEVEL II, there is also a rare case in which the program has not loaded correctly even though no error is generated. So, after CLOADing a program, be sure to LIST it. If some data was garbled, then at some point in the listing, the display will be filled with meaningless words and characters. Adjust the volume and try again.

Hints and Tips

Computer tapes should be stored in a relatively dust-free area (a cassette case is recommended) and protected from high temperatures. Magnetic and electrical fields may alter recorded information, so avoid them (i.e. household appliances, power sources such as transformers and television sets, etc.).

The cassette deck supplied with TRS-80 is very compatible with the system and will perform its duties with great success. To keep the cassette deck in top condition and thus minimize your problems, you should periodically perform some routine maintenance on it. Dirty heads can cause as much as a 50% loss in volume. Also, heads become magnetized with use and may cause distortion. We recommend that you clean the head, capstan and pinch roller after every four hours of operation. Heads on new recorders should always be cleaned before use.

Note: Cassette cleaning and demagnetizing accessories are available from your local Radio Shack store.

All Radio Shack computer programs are distributed on an "AS IS" basis without warranty.

Radio Shack shall have no liability or responsibility to customer or any other person or entity with respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by computer equipment or programs sold by Radio Shack, including but not limited to any interruption of service, loss of business or anticipatory profits or consequential damages resulting from the use or operation of such computer or computer programs.

NOTE: Good data processing procedure dictates that the user test the program, run and test sample sets of data, and run the system in parallel with the system previously in use for a period of time adequate to insure that results of operation of the computer or program are satisfactory.

Refer to User's Manual for warranties. Failure to adhere to procedures set forth in User's Manual may result in the loss of warranties.

U.S.A.: FORT WORTH, TEXAS 76102 CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U K

280-316 VICTORIA ROAO PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEONESBURY
RYDALMERE N S W 2116 5140 NANINNE WEST MIDLANDS WS10 7JN