$$v_{1,2,3} = v/2 \omega_{1,2,3}^2, \quad v_{\text{rp}_{1,2,3}} = k_{1,2,3} \omega_{1,2,3} / \alpha^2 (1 + \omega_{1,2,3}^2).$$

Из (6) видно, что взаимодействуют лишь нечетные моды по поперечному индексу, что характерно для волновода с плоскими границами (такая же ситуация выявилась в [5]). Напомним, что $\omega_{1,\,2}$ — волны на ветви с индексом n, а ω_3 — волна с поперечным индексом m (высшая частота). Матричные коэффициенты для других случаев, удовлетворяющих условиям (5), как показывают вычисления, равны нулю. Это обстоятельство обусловлено спецификой поляризации, отмеченной выше.

Порог параметрической неустойчивости по отношению к волнам низших частот

$$\left| a_3^0 \right| > v (2\pi n + 1)/8\alpha = a_{\Pi} \tag{14}$$

при условии $\omega_3^2\gg\omega_{1,2}^2\gg v^2$ ($\omega_i/c\sim k_i$). Оценим пороговое поле для полупроводниковой плазмы InSb с параметрами: концентрация носителей $\sim 10^{15}$ см $^{-3}$, $m_e\sim 0.01$ m (m_e — масса электрона в плазме), температура — 77 K, $v\sim 10^{12}$ с $^{-1}$; тогда при $\omega_3\sim 2\cdot 10^{14}$ с $^{-1}$ (длина волны 0,6 мкм) пороговое поле ~ 1 мкB/cм (здесь считается $n=1,\ m=3,\ d\sim 1$ см).

ЛИТЕРАТУРА

1. Вайнштейн Л. А. Электромагнитные волны. — М.: Сов. радио, 1957.
2. Кондратенко А. Н. Плазменные волноводы. — М.: Атомиздат, 1976.
3. Дворяковский В. П., Петрухин Н. С., Файнштейн С. М. — Изв. АН СССР. Сер. Физика атмосферы и океана, 1978, 14, с. 21.
4. Дворяковский В. П., Петрухин Н. С., Файштейн С. М. — Физика плазми 1979.

мы, 1979, 5, с. 79.

5. Дворяковский В. П., Файнштейн С. М. — Изв. вузов — Радиофизика,

1981, 13, № 5, с. 533. 6. Баранчук Н. С., Қармелюк М. А., Левитский С. М., Филоненко Е. Г. — ЖТФ, 1975, 45, с. 751.

Горьковский политехнический институт

Поступила в редакцию 5 января 1981 г.

УДК 621.378

ИССЛЕДОВАНИЯ СДВИГОВ МИКРОВОЛНОВЫХ ЛИНИЙ ДАВЛЕНИЕМ ГАЗОВ

С. П. Белов, В. П. Казаков, А. Ф. Крупнов, А. А. Мельников, В. А. Скворцов

Сдвиги молекулярных линий давлением газов несут информацию о межмолекулярных взаимодействиях и должны учитываться в прецизионной спектроскопии. Вместе с тем экспериментальные данные о сдвигах пока немногочисленны, что делает особенно важным в настоящее время накопление, по возможности однородных, данных.

В настоящей работе описываются экспериментальные исследования сдвигов молекулярных линий давлением газов ряда молекул, выполненные авторами в последнее время, уточняются обнаруженные ранее некоторые закономерности сдвигов. Экспериментальные исследования, как и ранее, проводились с помощью спектрометра РАД в субмиллиметровом диапазоне длин волн. Образец экспериментальной зависимости частоты перехода $a(1, 0) \leftarrow \dot{s}(0, 0)$ ¹⁴NH₃ в состоянии $v_4 = 1$ от давления аммиака приведен на рис. 1. Результаты исследований

(вместе с данными других авторов) представлены в табл. 1—3 соответственно для самосдвига линий $J=1 \leftarrow 0$ симметричных волчков (табл. 1), сдвига частот вращательных линий различных молекул давлением постороннего газа, молекулы которого являются симметричными волчками

^{*} При $|a_3| \gg |a_\pi|$ инкремент параметрической неустойчивости имеет вид $\Gamma \sim (4/\pi) (2\pi n + 1)^{-1} \left(\omega_0^4 d/\omega^3 c \right) |a_3^0|.$

(табл. 2), и сдвига частоты линии $J=1 \leftarrow 0$ молекулы PH_3 давлением инертных газов и газов, состоящих из неполярных молекул (табл. 3). В таблицах Δv_c — параметр сдвига (сдвиг на единицу давления), v — частота исследуемого перехода, μ — дипольный момент и M — молекулярный вес.

Таблица 1

Самосдвиг давлением частоты перехода $J=1\leftarrow 0$ в молекулах типа симметричного волчка

Tulia cummerpulitoro bon ma								
Молекула	Состоя-	<i>J</i> =1<-0 ν, <i>ΓΓυ</i> ,	μ, <u>Д</u> еб	Δ _{ν_c,} МГц/Тор	М, а. е. м.	<i>r</i> , 10 ²⁷ ед. CGSE	r', 10 ²⁷ ед. CGSE	Литера- тура
14NH ₃ 14NH ₃ 14NH ₃ 15NH ₃ PH ₃ PH ₃ CH ₃ 35Cl AsH ₃ AsH ₃ CH ₃ 79Br CH ₃ 127I	$v_4=1$ $v_4=1$ $v_2=1$ $v_2=$	645,74 577,33 466,25* 430,04* 266,96 256,27 26,59 224,90** 224,94*** 224,97**** 19,14 15,00	1,459 1,459 1,25 1,25 1,25 0,57 0,57 0,57 0,57 0,22 0,22 0,22 1,80 1,65	+5,85(15) +5,75(25) +3,75(25) +3,2 +3,15 +0,56 +0,56 +1 +0,15(2) +0,15(2) +0,15(2) +0,15(2) +0,70	17 17 17 18 34 34 34 50 78 78 78 94 142	3,19 3,51 3,3 3,52 4,84 4,84 5,04 7,88 10,3 10,3 10,3 10,3	0,77 0,94 0,88 0,83 0,83 0,83 0,86 1,11 1,17 1,17 1,17 1,06 1,08	[2] [2] [3] [4] [3] [5] [11] [11] [11] [6] [6]

* $J = 0 \leftarrow 1$,

Таблица 2

Сдвиг частот вращательных переходов молекул (1) давлением постороннего газа (2)

					1			
	Молеку- ла (1)	μ ₁ , Деб	Переход	у, ГГц	Молеку- ла (2)	_{Ļ2} , Деб	Δ _ν ς, ΜΓ <i>ц</i> Τορ	r', 10 ²⁷ ед.CGSE
	CH ₃ Cl CH ₃ Cl H ₂ ¹⁸ O H ₂ ¹⁷ O H ₂ ¹⁶ O	1,892 1,892 1,84 1,84 1,84	$J = 1 \leftarrow 0$ $J = 1 \leftarrow 0$ $1_{10} \leftarrow 1_{01}$ $1_{10} \leftarrow 1_{01}$ $1_{10} \leftarrow 1_{01}$	26,59 26,59 547,7 552,0 556,9	$\begin{array}{c} \text{CH}_3\text{F} \\ \text{CH}_3\text{I} \\ \text{NH}_3 \\ \text{NH}_3 \\ \text{NH}_3 \end{array}$	1,79 1,647 1,468 1,468 1,468	$\begin{array}{c} +1,14[7] \\ +0,79[7] \\ +6,0 \\ +6,3 \\ +6,0 \end{array}$	1,49 0,83 0,71 0,75 0,72

 $r' = \Delta v_{\rm c}/v\mu_1 \ \mu_2 \ M_{
m прив}^{1/2},$ где $M_{
m прив} = 2 M_1 \ M_2 (M_1 + M_2)^{-1}.$

Таблица 3

Параметр сдвига частоты перехода $J=1\leftarrow 0$ молекулы PH_3 давлением инертных газов и неполярных молекул

Партнеры по соударению	Δν _ε , ΜΓ <i>ц/</i> Τορ	Партнеры по соударению	Δνε, ΜΓμ/Τορ	
PH ₃ -He PH ₃ -Ne PH ₃ -Ar PH ₃ -Xe	$\begin{array}{c} +0,039(20) \ [^{12}] \\ +0,045(20) \ [^{12}] \\ +0,109(30) \ [^{12}] \\ +0,142(50) \ [^{12}] \end{array}$	PH ₃ -H ₂ PH ₃ -N ₂ PH ₃ -CO ₂ ¹⁸	+0,040 (50) +0,090 (50) +0,140 (50)	

Из представленных данных можно сделать некоторые выводы: 1) Для переходов $J=1\leftarrow 0$ симметричных волчков (табл. 1) на большом числе линий подтверждается обнаруженная ранее $[^1]$ зависимость

$$\Delta v_{\rm c} = r(M)v\mu^2,\tag{1}$$

где коэффициент r(M) теперь можно аппроксимировать как $r(M) = r'(M)^{1/2}$, причем величина r' остается постоянной для приведенных в табл. 1 молекул с точностью $\pm 16\%.$

2) Измеренные в $[^8]$ сдвиги переходов между близкими парами инверсионных уровней аммиака также согласуются с (1) для ряда J=K с тем же значением r'; инверсионные же уровни с K=0 в состоянии $v_4=1$, матричный элемент перехода между которыми равен нулю, взаимно не сдвигаются (см. табл. 1).

3) Сдвиги линий $J=1\leftarrow0$ симметричных волчков и линий, соответствующих переходам между парами близких уровней полярных молекул, давлением постороннего газа, молекулы которого принадлежат к типу симметричных поликов.

газа, молекулы которого принадлежат к типу симметричных волчков, удовлетворительно описываются сходной зависимостью

$$\Delta v_{\rm c} = r \, \nu \mu_1 \, \mu_2, \tag{2}$$

где $r=r'[2M_1\,M_2/(M_1+M_2)]^{1/2}$, а значение r' оказывается тем же (см. табл. 2). 4) Знак сдвига совпадает со знаком штарковского смещения уровней [9]. Величи-4) онак сдвига совпадает со знаком штарковского смещения уровней г. Беличина сдвига зависит от схемы расположения уровней и матричных элементов перехода, а также вида возмущающего газа и не зависит, по-видимому, от колебательного состояния или изотопного состава молекулы (если существенно не меняется схема уровней). 5) Сдвиг линии $J=1 \leftarrow 0$ PH_3 давлением инертных газов и неполярных молекул

имеет тот же знак, что и знак самосдвига, но меньшую величину.

Полученные экспериментальные данные подтверждают результаты как предшествующих опытов, так и развиваемого в $[^{10},\,^{11}]$ упрощенного подхода к интерпретации сдвига молекулярных линий давлением через штарковское возмущение энергетических состояний молекул.

ЛИТЕРАТУРА

- Крупнов А. Ф., Белов С. П. Изв. вузов Радиофизика, 1979, 22, № 7, Tours, 1979, Abstracts of papers, paper Z2. c. 901; Кгирпоч А. F. VI Colloquium on High Resolution Molecular Spectroscopy,
- 2. Karyakin E. N., Krupnov A. F., Papousek D., Shchurin Ju. M., Urban S.—J. Mol. Spectr., 1977, 66, р. 171.
 3. Андреев Б. А., Белов С. П., Буренин А. В. и др.—Оптика и спектроскопия, 1978, 44, с. 620.
 4. Pickett Dr., private communication.
 5. Luijendijk S. C.—J. Phys. B: Atom. Molec. Phys., 1977, 10, р. 1741.
 6. Wensink W. A., Dijkerman H. A.—J. Phys. B: Atom. Molec. Phys., 1977, 10, L663.

Мас Gillivray W. R. — J. Phys. B: Atom. Molec. Phys., 1976, 9, c. 2511.
 Виffa G., Martinelli M., Tarrini O., Umeton C. — J. Phys. B: Atom. Molec. Phys., 1979, 12, № 2, р. 743.
 Крупнов А. Ф. — Изв. вузов — Радиофизика, 1979, 22, № 2, с. 247.
 Крупнов А. Ф., Скворцов В. А. Изв. вузов — Радиофизика, 1980, 23, № 3,

- c. 374.
- Казаков В. П., Крупнов А. Ф., Мельников А. А. Изв. вузов Радиофизика, 1980, 23, № 9, с. 1126.
 Казаков В. П., Крупнов А. Ф., Мельников А. А., Скворцов В. А. Изв. вузов Радиофизика, 1980, 23, № 7, с. 796.

Институт прикладной физики AH CCCP

Поступила в редакцию 23 января 1981 г.

УДК 621.385.623

применение метода усреднения при анализе флуктуационных ЯВЛЕНИЙ В АВТОГЕНЕРАТОРАХ

К. Д. Овчинников

При анализе флуктуационных явлений в одноконтурных автогенераторах возникает необходимость в решении нелинейных дифференциальных уравнений следующего вида (см., например, [1-3]):

$$\frac{da}{dt} = -\frac{\varepsilon}{\omega_0} f_1(a, \psi) \sin \psi - \frac{\varepsilon}{\omega_0} f_2(a, \psi) \sin (\psi) \mu(t),$$

$$\frac{d\varphi}{dt} = -\frac{\varepsilon}{a\omega_0} f_1(a, \psi) \cos \psi - \frac{\varepsilon}{a\omega_0} f_2(a, \psi) \cos (\psi) \mu(t),$$
(1)

 ϵ де ϵ — малый положительный параметр, ω_0 — собственная частота колебательной системы, a и ϕ — амплитуда и фаза колебаний, $\psi = \omega_0 t + \phi$, t — текущее время,