Oarnical Mechanics (Phys 601) - November 29, 2011

* Dufing oscillator:

with
$$H_0(p,q) = \frac{p^2}{2m} + \frac{1}{2}m\omega_0^2 q^2$$
 (unperturbed)

and
$$V(p,q) = \frac{1}{4} m q^4$$
 (perturbation)

$$H(J,\varphi) = E_{o}(J) + \varepsilon V(J,\varphi)$$

$$H(J,\varphi) = E_{o}(J) + \varepsilon V(J,\varphi)$$
with $E_{o}(J) = \omega_{o}J$
and $V(J,\varphi) = \frac{J^{2}}{m\omega_{o}^{2}}\sin^{4}\varphi$
 $q = \sqrt{\frac{2J}{m\omega_{o}}}\sin\varphi$
riggles

and
$$V(J, \varphi) = \frac{J^2}{m\omega_o^2} \sin^4 \varphi$$
 | $m\omega_o$ | $miggles$ | $migg$

average:
$$(\dot{\varphi}) = \omega_0 + \varepsilon \frac{3a^2}{8\omega_0}$$
 \rightarrow frequency shift

Add damping term:

Add periodic forcing term:

* Linear system: 2:0

$$A\left[\left(\omega_{0}^{2}-\omega^{2}\right)\cos\left(\omega t-\varphi\right)-2\delta\omega\omega_{0}\sin\left(\omega t-\varphi\right)\right]=\int_{0}^{\infty}\cos\omega t$$

$$G[A[(\omega_0^2 - \omega^2)\cos\varphi + 2\delta\omega\omega_0\sin\varphi]\cos\omega t = f\cos\omega t$$

$$\int A \left[(\omega_0^2 - \omega^2) \sin \varphi - 2 \delta \omega \omega_0 \cos \varphi \right] \sin \omega t = 0$$

$$\int \sin \varphi = \frac{2 \delta \omega \omega_o}{\omega_o^2 - \omega^2} \cos \varphi$$

$$\int_{0}^{\infty} \sin \varphi = \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \cos \varphi$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin^{2}\varphi$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \cos \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \sin \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \sin \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \sin \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \sin \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \sin \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \sin \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \sin \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \sin \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \sin \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \sin \varphi \sin \varphi = \int_{0}^{\infty} \frac{2 \delta$$

$$A^{2} \left[\left(\omega_{0}^{2} - \omega^{2} \right)^{2} \cos^{2} \varphi + 4 \delta^{2} \omega^{2} \omega_{0}^{2} \left(1 - \cos^{2} \varphi \right) + 2 \left(4 \delta^{2} \omega^{2} \omega_{0}^{2} \right) \cos^{2} \varphi \right] = \int^{2}$$

$$\Rightarrow A^{2}\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4\delta^{2}\omega^{2}\omega_{0}^{2}\right]=1^{2}$$

$$(a) \quad \begin{cases} \tan \varphi = \frac{2 \delta \omega \omega_{o}}{\omega_{o}^{2} - \omega^{2}} \end{cases} \qquad (a) \quad \begin{cases} \Delta = \frac{1}{\omega_{o}^{2} - \omega^{2}} \\ (\omega_{o}^{2} - \omega^{2}) + 4 \delta^{2} \omega_{o}^{2} \omega^{2} \end{cases} \qquad (b) \quad \begin{cases} \Delta = \frac{1}{\omega_{o}^{2} - \omega^{2}} \\ (\omega_{o}^{2} - \omega^{2}) + 4 \delta^{2} \omega_{o}^{2} \omega^{2} \end{cases} \end{cases}$$

* Non-linear system: $\varepsilon \neq 0$, and for definiteness $\varepsilon > 0$

Consider small forwig term f -> additional term lased on skeady-skete solution for $\varepsilon = 0$

$$= \frac{1}{4} \left(3 \cos(\omega t - \varphi) + \cos 3(\omega t - \varphi) \right)$$

cos at term gets additional = 2 & A3 contribution

$$\Rightarrow \left(\left[\left(\omega_0^2 - \omega^2\right) + \frac{3}{4}\varepsilon A^2\right]^2 + 4\delta^2\omega^2\omega_0^2\right)A^2 = \int_0^2 \left[\left(\omega_0^2 - \omega^2\right) + \frac{3}{4}\varepsilon A^2\right]^2 + 4\delta^2\omega^2\omega_0^2\right)A^2 = \int_0^2 \left[\left(\omega_0^2 - \omega^2\right) + \frac{3}{4}\varepsilon A^2\right]^2 + 4\delta^2\omega^2\omega_0^2\right)A^2 = \int_0^2 \left[\left(\omega_0^2 - \omega^2\right) + \frac{3}{4}\varepsilon A^2\right]^2 + 4\delta^2\omega^2\omega_0^2\right)A^2 = \int_0^2 \left[\left(\omega_0^2 - \omega^2\right) + \frac{3}{4}\varepsilon A^2\right]^2 + 4\delta^2\omega^2\omega_0^2\right]A^2 = \int_0^2 \left[\left(\omega_0^2 - \omega^2\right) + \frac{3}{4}\varepsilon A^2\right]^2 + 4\delta^2\omega^2\omega_0^2\right]A^2 = \int_0^2 \left[\left(\omega_0^2 - \omega^2\right) + \frac{3}{4}\varepsilon A^2\right]^2 + 4\delta^2\omega^2\omega_0^2\right]A^2 = \int_0^2 \left[\left(\omega_0^2 - \omega^2\right) + \frac{3}{4}\varepsilon A^2\right]^2 + 4\delta^2\omega^2\omega_0^2\right]A^2 = \int_0^2 \left[\left(\omega_0^2 - \omega^2\right) + \frac{3}{4}\varepsilon A^2\right]^2 + 4\delta^2\omega^2\omega_0^2\right]A^2 = \int_0^2 \left[\left(\omega_0^2 - \omega^2\right) + \frac{3}{4}\varepsilon A^2\right]^2 + 4\delta^2\omega^2\omega_0^2\right]A^2 = \int_0^2 \left[\left(\omega_0^2 - \omega^2\right) + \left(\omega_0^2 - \omega^2\right) + \left($$

3nd order equation in A2 - 1 or 3 real roots

If
$$f = 0 \rightarrow A^2 = A_0^2 = \frac{4}{3E} (\omega^2 - \omega_0^2)$$

Small
$$f \neq 0 \rightarrow A^2 = A_0^2 \pm \widetilde{A}$$

with $\widetilde{A} = f \left[\frac{4}{3\xi} (\omega^2 - \omega_0^2) \right]^{-1/2}$

A $\xi = 0$

hypheresis effects

* Connection of Duffing oscillator to pendulum: pendulum: $\ddot{\varphi} + \frac{1}{2} \sin \varphi = 0$ $\ddot{\varphi} + \omega_0^2 \sin \varphi = 0$ $\ddot{\varphi} + \frac{b}{m} \dot{\varphi} + \omega_o^2 \sin \varphi = 0$ $\ddot{\varphi} + 2\beta \dot{\varphi} + \omega_o^2 \sin \varphi = 0$ $\int_0^{\infty} \frac{b}{2m} dx$ driven damped pendulum: $\ddot{\varphi} + 2\beta \dot{\varphi} + \omega_0^2 \sin \varphi = \frac{F}{m\ell} \cos \omega t$ $\ddot{\varphi} + 2\beta \dot{\varphi} + \omega_0^2 \sin \varphi = \gamma \omega_0^2 \cos \omega t$ $\ddot{\varphi} + 2\beta \dot{\varphi} + \omega_0^2 \sin \varphi = \gamma \omega_0^2 \cos \omega t$ y: dimensionlers, comparison of magnitude of driving force and weight ∫ γ < 1 : small driving force → y small (χ>1: large driving force -> y large Expansion in φ : sui $\varphi \simeq \varphi - \frac{1}{6} \varphi^3$

 $\ddot{\phi} + 2\beta \dot{\phi} + \omega_0^2 \phi - \frac{1}{6} \omega_0^2 \phi^3 = \gamma \omega_0^2 \cos \omega t$

* Requirements for chaos: Chaos in Hamilbonian systems of n dimensions: H(q1,...,qm,p1,...,pm,t) 9,,..., 9n, p,,..., pn treaked as independent coordinates $\frac{3}{2}$; i (N note: if no cyclic coordinates - N = 2n if k cyclic coordinates - N = 2n - k < 2n $= \begin{cases} \frac{1}{5} = \frac{1}{5}, (\frac{5}{5}, ..., \frac{5}{5}N) \end{cases}$ system of N first-order differential equations $\frac{1}{5}N = \frac{1}{5}N(\frac{5}{5}, ..., \frac{5}{5}N)$ If system is dissipative $(\frac{\partial H}{\partial t} \neq 0)$: chaos if system is mon-linear and N>3 If system is comervative $(\frac{\partial H}{\partial t} = 0)$: chaos if system is mon-linear and N > 4 Simple pendulum: $\hat{p} = \frac{pq}{me^2} = \bar{p}_p$ $\Rightarrow N = 2$ \Rightarrow no chaon $\frac{1}{p_{\varphi}} = -\omega_{0}^{2} \sin \varphi$ $\frac{1}{p_{\varphi}} = -2\beta \bar{p}_{\varphi} - \omega_{o}^{2} \sin \omega$ Danped pendulum:] i = pp

Driven danged pendulum:

$$\frac{1}{\sqrt{16}} = \frac{1}{\sqrt{16}} =$$

Double pendulum (conservative, no driving)

$$(\varphi_1, \varphi_2, \varphi_2, \varphi_2) \Rightarrow N = 4 \Rightarrow \text{chaos}$$

* Driven damped pendulum. $\ddot{\varphi} + 2\beta \dot{\varphi} + \omega_0^2 \left(\varphi - \frac{1}{6} \varphi^3 \right) = \gamma \omega_0^2 \cos \omega t$ $G \circ \varphi(t) \simeq A \circ (\omega t - \delta)$ for small mon-linear term small values of φ $\varphi(t) \simeq A \cos(\omega t - \delta) + B \cos 3(\omega t - \delta)$ for larger values of $\varphi(t) = \text{sum of all harmonics } n\omega$ -> demos of period-doubling in driven damped pendulum) simple pendulum with $\varphi(0) \simeq \pi$ 2) damped pendulum

3) driven damped pendulum with $\omega = 1.5 \omega_0$ $\beta = \omega_0$ $\gamma = 1.060 \implies period 1 in units of <math>\tau = \frac{2\pi}{\omega}$ 4) y = 1.073 - period 2 5) z = 1.077 - period 3 period-doubling to period 4, 6, 8, ... 6) y: 1.5 - chaotic motion

Bifurcation points:
$$\chi_m = \text{threshold where period changes}$$
 $\chi_1 = 1.0663 : 1 \rightarrow 2$
 $\chi_2 = 1.0793 : 2 \rightarrow 4$
 $\chi_3 = 1.0821 : 4 \rightarrow 8$
 $\chi_4 = 1.0827 : 8 \rightarrow 16$

Universality: many different systems have similar sets of lifurcation points

 $\chi_m = \chi_m = \chi$

Plot $\varphi(t)$, $\varphi(t+\tau)$, $\varphi(t+2\tau)$,... for skeady-skake

*	Lyapunor exponent:
	Sensitivity b initial conditions: $\Delta y(t) = y_2(t) - y_1(t)$
	•
	* For small oscillations (linear): $\Delta \varphi(t) = Ce^{-\beta t} \cos(\omega t - \delta)$
	exponential
	ln Dp(+) : ln C - Bt + ln cos(wt-5) decreases with time
	decreases with time
	ln / Dy (+) / \
	ancelore with resistance due to
	In cos(wt - 8)
	envelope with variations due to $t = \frac{1}{1000} \left(\frac{1}{1000} + \frac{1}{1000} \right) $
	* For larger oscillations, larger y (x> z, but x < ze)
	lu Dy(F)
	la Do(F) decays eventually
	can increase initially
	* For y > yc: 1 h Dp(+)
	- V V V V
	· · · · · · · · · · · · · · · · · · ·

* Poincaré sections

$$\begin{cases}
\dot{\varphi} = \bar{p}_{\varphi} \\
\dot{\bar{p}}_{\varphi} = -2\beta \bar{p}_{\varphi} - \omega_{o}^{2} \sin \varphi + \gamma \omega_{o}^{2} \cos \psi \\
\dot{\varphi} = \bar{p}_{\varphi} = \omega
\end{cases}$$

=> section for 4 = 0 => fixed phase of driving term

