1. It is not in (e), it is in all the others.

2.
$$\bullet$$
 $AB = \{xy, xyx\}$

•
$$BA = \{xy, xxy\}$$

•
$$B^3 = \{\lambda, x, xx, xxx\}$$

•
$$B^+ = \{\lambda, x, xx, xxx, \ldots\} = \{x^n : n \in \mathbb{N}_0\}$$

•
$$A^* = \{\lambda, xy, xyxy, xyxyxy, \ldots\} = \{(xy)^n : n \in \mathbb{N}_0\}$$

3. Given that $A^2=A$ it is straightforward to show that $A^n=A,\ n\geq 1,$ using induction. Hence $A^+=A.$

Next we need to show that $\lambda \in A$. When $A \neq \emptyset$,

(a) if
$$|A| = 1$$
, then $A^2 = A$ implies

$$xx = x \Rightarrow ||xx|| = 2||x|| = ||x|| \Rightarrow ||x|| = 0 \Rightarrow x = \lambda$$

(b) if
$$|A| > 1$$
: let x be a minimum length string in A. Now $A^2 = A$ implies

$$x \in A^2 \Rightarrow x = yz$$
 $y, z \in A \Rightarrow ||x|| = ||y|| + ||z||$

If $||x|| \neq 0$, the above implies that one of y or z has length less than x, which is a contradiction. Hence $||x|| = 0 \Rightarrow x = \lambda$.

In either case, $\lambda \in A$. And so $A^* = A$.

- 4. $G = (\{S, 0, 1\}, \{0, 1\}, S, \{S \to 0S1, S \to 0, S \to 1\}).$ 0001111 = $0(0[0\{1\}1]1)1 \in A$. 00001111 $\notin A$ since every element of A must have an odd number of bits.
- 5. (a) Base Step: $\lambda \in A$. Recursive Step: $x \in A \Rightarrow 1x, x1, 0x0, 00x, x00 \in A$. $G = (\{S, 0, 1\}, \{0, 1\}, S, \{S \rightarrow S1, S \rightarrow 1S, S \rightarrow 0S0, S \rightarrow 00S, S \rightarrow S00, S \rightarrow \lambda\})$.
 - (b) Base Step: $0 \in A$. Recursive Step: $x \in A \Rightarrow 1x, x1 \in A$. $G = (\{S, 0, 1\}, \{0, 1\}, S, \{S \rightarrow S1, S \rightarrow 1S, S \rightarrow 0\})$.
 - (c) Base Step: $\lambda \in A$. Recursive Step: $x \in A \Rightarrow 0x, x1 \in A$. $G = (\{S, 0, 1\}, \{0, 1\}, S, \{S \rightarrow S1, S \rightarrow 0S, S \rightarrow \lambda\})$.

6.

Grammar	Type
(a)	2
(b)	3
(c)	0
(d)	2
(e)	2
(f)	0
(g)	3
(h)	0
(i)	2
(j)	2