Introduction to Machine Learning

Probability
I Foundations of Murphy book

Mingchen Gao

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA mgao8@buffalo.edu Slides Adapted from Varun Chandola

Outline

Introduction to Probability

Random Variables

Bayes Rule
More About Conditional Independence

Continuous Random Variables

Different Types of Distributions

Handling Multivariate Distributions

Transformations of Random Variables

Information Theory - Introduction

What is Probability? [3, 1]

- ▶ Probability that a coin will land heads is 50%¹
- What does this mean?

Mingchen Gao CSE 4/574 3 / 36

 $^{^1}$ Dr. Persi Diaconis showed that a coin is 51% likely to land facing the same way up as it is started.

FREQUENTISTS

Frequentist Interpretation

- ▶ Number of times an event will be observed in *n trials*
- What if the event can only occur once?
 - My winning the next month's powerball.
 - ▶ Polar ice caps melting by year 2050.

Bayesian Interpretation

- Uncertainty of the event
- ▶ Use for making decisions
 - What is the probability of an email is spam?

What is a Random Variable (X)?

- X random variable (X if multivariate)
- \triangleright x a specific value taken by the random variable ((x if multivariate))
- lacktriangle Can take any value from ${\mathcal X}$
- **Discrete Random Variable** \mathcal{X} is finite/countably finite
- **Continuous Random Variable** \mathcal{X} is infinite
- ightharpoonup P(X = x) or P(x) is the probability of X taking value x
- p(x) is either the probability mass function (discrete) or probability density function (continuous) for the random variable X at x

Examples

Discrete Examples

- 1. Coin toss ($\mathcal{X} = \{heads, tails\}$)
- 2. Six sided dice $(\mathcal{X} = \{1, 2, 3, 4, 5, 6\})$

Continuous Example: Gaussian distribution

Basic Rules - Quick Review

- For two events A and B:
 - Union of two events

$$P(A \vee B) = P(A) + P(B) - P(A \wedge B)$$

- Joint Probability
 - ▶ product rule $P(A, B) = P(A \land B) = P(A|B)P(B)$
 - sum rule
 Given P(A, B) what is P(A)?
 Sum P(A, B) over all values for B

$$P(A) = \sum_{b} P(A, B) = \sum_{b} P(A|B = b)P(B = b)$$

Basic Rules - Quick Review

- ► Chain Rule of Probability
 - ▶ Given *D* random variables, $\{X_1, X_2, ..., X_D\}$

$$P(X_{1:D}) = P(X_1)P(X_2|X_1)P(X_3|X_1,X_2)\dots P(X_D|X_{1:D-1})$$

- Conditional Probability
 - $P(A|B) = \frac{P(A,B)}{P(B)}$

Bayes Rule or Bayes Theorem

▶ Computing P(X = x | Y = y):

Bayes Theorem

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

$$= \frac{P(X = x)P(Y = y | X = x)}{\sum_{x'} P(X = x')P(Y = y | X = x')}$$

Example

- Medical Diagnosis
- ▶ Random event 1: A *test* is positive or negative (X)
- ▶ Random event 2: A person has cancer (Y) yes or no
- What we know:
 - 1. Test has accuracy of 80%
 - 2. Number of times the test is positive when the person has cancer

$$P(X = 1|Y = 1) = 0.8$$

3. Prior probability of having cancer is 0.4%

$$P(Y = 1) = 0.004$$

CSE 4/574

Question?

If I test positive, does it mean that I have 80% rate of cancer?

Base Rate Fallacy

- ▶ Ignored the prior information
- ▶ What we need is:

$$P(Y = 1|X = 1) = ?$$

- More information:
 - ▶ False positive (alarm) rate for the test
 - P(X = 1|Y = 0) = 0.1

$$P(Y=1|X=1) = \frac{P(X=1|Y=1)P(Y=1)}{P(X=1|Y=1)P(Y=1) + P(X=1|Y=0)P(Y=0)}$$

13 / 36

CSE 4/574

Classification Using Bayes Rules

▶ Given input example **X**, Y is the random variable denoting the true class, we want to find the true class

$$P(Y = c|\mathbf{X})$$

- Assuming the class-conditional probability P(X|Y=c) and class prior P(Y = c) are known
- Applying Bayes Rule

$$P(Y = c|\mathbf{X}) = \frac{P(Y = c)P(\mathbf{X}|Y = c)}{\sum_{c} P(Y = c'))P(\mathbf{X}|Y = c')}$$

Independence

- One random variable does not depend on another
- $A \perp B \iff P(A, B) = P(A)P(B)$
- ▶ Joint written as a product of marginals
- **▶** Conditional Independence

$$A \perp B|C \iff P(A, B|C) = P(A|C)P(B|C)$$

A is conditionally independent of B given C

More About Conditional Independence

- Alice and Bob live in the same town but far away from each other
- Alice drives to work and Bob takes the bus
- Event A Alice comes late to work
- ▶ Event B Bob comes late to work
- ▶ Event C A snow storm has hit the town
- P(A|C) Probability that Alice comes late to work given there is a snowstorm

More About Conditional Independence

- Alice and Bob live in the same town but far away from each other
- Alice drives to work and Bob takes the bus
- Event A Alice comes late to work
- Event B Bob comes late to work
- ▶ Event C A snow storm has hit the town
- P(A|C) Probability that Alice comes late to work given there is a snowstorm
- ▶ Now if I also know that Bob has come late to work, will it change the probability that Alice comes late to work?

More About Conditional Independence

- Alice and Bob live in the same town but far away from each other
- Alice drives to work and Bob takes the bus
- Event A Alice comes late to work
- Event B Bob comes late to work
- ▶ Event C A snow storm has hit the town
- P(A|C) Probability that Alice comes late to work given there is a snowstorm
- Now if I also know that Bob has come late to work, will it change the probability that Alice comes late to work?
- ▶ What if I do not observe *C*? Will *B* have any impact on probability of *A* happening?

Continuous Random Variables

- ▶ *X* is continuous
- ► Can take any value
- ▶ How does one define probability?

Continuous Random Variables

- X is continuous
- Can take any value
- ▶ How does one define probability?

- ▶ Probability that *X* lies in an interval [a, b]?
 - $P(a < X \le b) = P(x \le b) P(x \le a)$
 - ▶ $F(q) = P(x \le q)$ is the cumulative distribution function
 - ► $P(a < X \le b) = F(b) F(a)$

Probability Density

Probability Density Function

$$p(x) = \frac{\partial}{\partial x} F(x)$$

$$P(a < X \le b) = \int_a^b p(x) dx$$

▶ Can p(x) be greater than 1?

Expectation

Expected value of a random variable

$$\mathbb{E}[X]$$

- ▶ What is most likely to happen in terms of *X*?
- For discrete variables

$$\mathbb{E}[X] \triangleq \sum_{x \in \mathcal{X}} x P(X = x)$$

For continuous variables

$$\mathbb{E}[X] \triangleq \int_{\mathcal{X}} x p(x) dx$$

▶ Mean of *X* (*µ*)

Expectation of Functions of Random Variable

- Let g(X) be a function of X
- ▶ If *X* is discrete:

$$\mathbb{E}[g(X)] \triangleq \sum_{x \in \mathcal{X}} g(x) P(X = x)$$

If X is continuous:

$$\mathbb{E}[g(X)] \triangleq \int_{\mathcal{X}} g(x)p(x)dx$$

Properties

- $ightharpoonup \mathbb{E}[c] = c, c$ constant
- $\blacktriangleright \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- $\blacktriangleright \ \mathbb{E}[aX] = a\mathbb{E}[X]$

CSE 4/574

▶ Jensen's inequality: If $\varphi(X)$ is convex,

$$\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)]$$

20 / 36

Mingchen Gao

Variance

► Spread of the distribution

$$var[X] \triangleq \mathbb{E}((X - \mu)^2)$$

= $\mathbb{E}(X^2) - \mu^2$

▶ Covariance $Cov[X, Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

What is a Probability Distribution?

Discrete

- ▶ Binomial, Bernoulli
- Multinomial, Multinolli
- Poisson
- Empirical

Continuous

- Gaussian (Normal)
- Degenerate pdf
- Laplace
- Gamma
- Beta
- Pareto

Binomial Distribution

- \rightarrow X = Number of heads observed in n coin tosses
- ▶ Parameters: n, θ
- $\rightarrow X \sim Bin(n, \theta)$
- Probability mass function (pmf)

$$Bin(k|n,\theta) \triangleq \binom{n}{k} \theta^k (1-\theta)^{n-k}$$

Bernoulli Distribution

- ▶ Binomial distribution with n = 1
- ▶ Only one parameter (θ)

23 / 36

Mingchen Gao

Multinomial Distribution

- Simulates tossing a K sided dice n times
- ▶ Random vector $\mathbf{x} = (x_1, x_2, \dots, x_K)$
- ▶ Parameters: $n, \theta \leftarrow \Re^K$, θ_j probability that j^{th} side shows up
- $ightharpoonup x \sim Mu(n, \theta)$

$$Mu(\mathbf{x}|n, \boldsymbol{\theta}) \triangleq \binom{n}{x_1, x_2, \dots, x_K} \prod_{j=1}^K \theta_j^{x_j}$$

Multinoulli Distribution

- ▶ Multinomial distribution with n = 1
- x is a vector of 0s and 1s with only one bit set to 1, called one-hot vector
- ▶ Only one parameter (θ)

Gaussian (Normal) Distribution

$$\mathcal{N}(x|\mu,\sigma^2) \triangleq \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

- Parameters:
 - 1. $\mu = \mathbb{E}[X]$ 2. $\sigma^2 = var[X] = \mathbb{E}[(X - \mu)^2]$
- ▶ $X \sim \mathcal{N}(0,1) \Leftarrow X$ is a standard normal random variable
- ► Cumulative distribution function:

$$\Phi(x; \mu, \sigma^2) \triangleq \int_{-\infty}^{x} \mathcal{N}(z|\mu, \sigma^2) dz$$

Joint Probability Distributions

- ► Multiple *related* random variables
- ▶ $p(x_1, x_2, ..., x_D)$ for D > 1 variables $(X_1, X_2, ..., X_D)$
- ▶ Discrete random variables: multi-dimensional array of size $O(K^D)$
- Continuous random variables: certain functional form

Covariance

- ▶ How does X vary with respect to Y
- For linear relationship:

$$cov[X,Y] \triangleq \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Covariance and Correlation

x is a d-dimensional random vector

$$cov[\mathbf{X}] \triangleq \mathbb{E}[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])^{\top}]$$

$$= \begin{pmatrix} var[X_1] & cov[X_1, X_2] & \cdots & cov[X_1, X_d] \\ cov[X_2, X_1] & var[X_2] & \cdots & cov[X_2, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ cov[X_d, X_1] & cov[X_d, X_2] & \cdots & var[X_d] \end{pmatrix}$$

► Normalized covariance ⇒ Correlation

Correlation

▶ Pearson Correlation Coefficient

$$corr[X, Y] \triangleq \frac{cov[X, Y]}{\sqrt{var[X]var[Y]}}$$

- ▶ What is corr[X, X]?
- ▶ $-1 \le corr[X, Y] \le 1$
- ▶ When is corr[X, Y] = 1?

Correlation

▶ Pearson Correlation Coefficient

$$corr[X, Y] \triangleq \frac{cov[X, Y]}{\sqrt{var[X]var[Y]}}$$

- ▶ What is corr[X, X]?
- ▶ $-1 \le corr[X, Y] \le 1$
- ▶ When is corr[X, Y] = 1?
 - Y = aX + b

Multivariate Gaussian Distribution

▶ Most widely used joint probability distribution

$$\mathcal{N}(\mathbf{X}|\mu, \mathbf{\Sigma}) \triangleq \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} exp \left[-\frac{1}{2} (\mathbf{x} - \mu)^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu) \right]$$

Linear Transformations of Random Variables

- ▶ What is the distribution of $f(\mathbf{X})$ ($\mathbf{X} \sim p()$)?
 - Linear transformation:

$$Y = \mathbf{a}^{\mathsf{T}}\mathbf{X} + b$$

- \triangleright $\mathbb{E}[Y] = a^{\top} \mu + b$
- $\triangleright var[Y] = \mathbf{a}^{\top} \mathbf{\Sigma} \mathbf{a}$

$$Y = AX + b$$

- \triangleright $\mathbb{E}[Y] = \mathbf{A}\mu + \mathbf{b}$
- $ightharpoonup cov(Y) = \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\top}$

- ► The Matrix Cookbook [2]
- ▶ http://orion.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
- Available on Piazza

General Transformations

- ▶ f() is **not linear**
- ► Example: *X* discrete

$$Y = f(X) = \begin{cases} 1 & \text{if } X \text{ is even} \\ 0 & \text{if } X \text{ is odd} \end{cases}$$

Monte Carlo Approximation

- Generate N samples from distribution for X
- ▶ For each sample, $x_i, i \in [1, N]$, compute $f(x_i)$
- ▶ Use empirical distribution as *approximate* true distribution

Approximate Expectation

$$\mathbb{E}[f(X)] = \int f(x)p(x)dx \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

Introduction to Information Theory

Quantifying uncertainty of a random variable

Entropy

▶ $\mathbb{H}(X)$ or $\mathbb{H}(p)$

$$\mathbb{H}(X) \triangleq -\sum_{k=1}^{K} p(X=k) \log_2 p(X=k)$$

- ▶ Variable with maximum entropy: Uniform distribution
- Lowest entropy: Zero

Comparing Two Distributions

 Kullback-Leibler Divergence (or KL Divergence or relative entropy): Measuring the dissimilarity of two probability distributions

$$\mathbb{KL}(p||q) \triangleq \sum_{k=1}^{K} p(k) \log \frac{p_k}{q_k}$$

$$= \sum_{k} p(k) \log p(k) - \sum_{k} p(k) \log q(k)$$

$$= -\mathbb{H}(p) + \mathbb{H}(p, q)$$

- $ightharpoonup \mathbb{H}(p,q)$ is the *cross-entropy*
- ► KL-divergence is asymmetric
- ▶ Important fact: $\mathbb{H}(p,q) \ge \mathbb{H}(p)$

Mutual Information

- ▶ What does learning about one variable X tell us about another, Y?
 - Correlation?

Mutual Information

$$\mathbb{I}(X;Y) = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

- $\mathbb{I}(X;Y) = \mathbb{I}(Y;X)$
- ▶ $\mathbb{I}(X;Y) \ge 0$, equality iff $X \perp Y$

References

E. Jaynes and G. Bretthorst.

Probability Theory: The Logic of Science. Cambridge University Press Cambridge:, 2003.

K. B. Petersen and M. S. Pedersen.

The matrix cookbook, nov 2012. Version 20121115.

L. Wasserman.

All of Statistics: A Concise Course in Statistical Inference (Springer Texts in Statistics).

Springer, Oct. 2004.