RLC Circuit Exercises

The due date for this homework is Sun 14 Apr 2013 8:00 PM EDT.

Question 1

Checking units of expressions is an important way of achieving correct answers for impedances. The "secret" is to note that R, Ls and $\frac{1}{Cs}$ all have units of ohms (Ω) . What are the units of $RLCs^2$?

- $_{ extstyle e$
- ohms
- dimensionless

Question 2

Is this expression correct: $LCs^2 + R$?

- Yes
- No

Question 3

Can the following answer be correct?

$$Z=rac{R_1R_2Cs+R_3}{LCs^2+RCs+1}$$

- Yes
- No

Question 4

The following two questions concern this circuit.

What is the impedance of the circuit the voltage source "sees"?

Express your answer in terms of $s=j2\pi f$. Use R1, R1, L, C for the element values, R_1 , R_2 , L and C . For example, if

$$Z=\left.rac{R_1LCs^2+R_1R_2Cs+2R_2}{LCs^2+R_1Cs}
ight|_{s=j2\pi f}$$
 is your answer, type

 $(R1*L*C*s^2+R1*R2*C*s+2*R2) / (L*C*s^2+R1*C*s)$. Because the expression is complicated, check units!

Preview

Question 5

Find the transfer function between the complex amplitude $V_{
m in}$ of the source and the output current's complex amplitude $I_{
m out}$.

Express your answer in terms of $s=j2\pi f$. For example, if

$$rac{I_{
m out}}{V_{
m in}}=rac{LCs^2+R_1Cs}{R_1LCs^2+R_1R_2Cs+2R_2}igg|_{s=j2\pi f}$$
 is your answer, type

 $(\texttt{L*C*s^2+R1*C*s}) \ / \ (\texttt{R1*L*C*s^2+R1*R2*C*s+2*R2}) \ . \ \textbf{Because the}$

expression is complicated, check units!

Preview

Question 6

What is the transfer function $\frac{V}{I_{\rm in}}$?

Express your answer in terms of $s=j2\pi f$. Represent the element values R, L_1 , L_2 and C by R, L1, L2 and C respectively.

Preview

Question 7

What is the transfer function $\frac{I}{I_{\rm in}}$?

Express your answer in terms of $s=j2\pi f$.

Preview

Question 8

The following two questions concern this circuit.

Find the transfer function between the source and the indicated voltage.

Express your answer in terms of $s=j2\pi f$.

Preview

Question 9

When the source is $v_{
m in}(t)=10\sin\Bigl(rac{t}{2}\Bigr)$, what is the output voltage v(t)?

Express your answer as a sinusoid: if $4\sin(2\pi t+\pi/4)$ is your answer, enter it as $4*\sin(2*pi*t+pi/4)$.

Preview

In accordance with the Honor Code, I certify that my answers here are my own work. Submit Answers

Save Answers