2.1	In non-central heavy ion collisions there is initial spatial aniso-	
	tropy that the resultant collective pressure gradients evolve into	
	anisotropy in momentum space. Hydrodynamics aims to quan-	
	titatively model this process to gain information on the medium	
	and its properties. Figure adapted from [105]	16
2.2	(a) v_2 scaled to the initial spacial eccentricity, ϵ , as a function	
	of the charge particle density per unit transverse area. low- p_T	
	flow at previous colliders fell far short of the hydrodnamic limit,	
	which is reached for the first time at RHIC. Figure adapted from	
	[107]. (b) Early azimuthal asymmetry, $v_2(p_T)$, predictions from	
	[106] compared to Rhic data [108] as adapted from [77]	17
2.3	HBT parameters [109, 110] compared to various hydrodynam-	
	ics calculations [111–113]; none describe the data well. Figure	
	adapted from [77]	18
2.4	Recent calculations including hadronic rescattering [116] that	
	show the influence of the initial conditions (IC) on the output.	
	For diffuse, Glauber-like IC ideal hydrodynamics slightly un-	
	derpredicts data whereas sharper CGC-like IC require viscous	
	effects to follow the experimental trend	19
2.5	An illustration of $A+B\to h+X$ in a heavy ion collision. We	
	assume factorization still holds such that the main alteration	
	to $p+p$ collisions, Eq. (2.2), is the addition of a theoretically	
	calculable $P(\epsilon)$ encapsulating the in-medium energy loss	27