

Department of Information Science & Engineering

Assignment I - ODD Semester 2023 - 24

Course Title : Automata Theory and Computability

Course Code: 21CS53

Sem / Section: V 'A' & 'B' Faculty: Dr. R Pakkala

Max. Marks: 50

Date of Announcement: 16/02/2024 Date of Submission: 24/02/2024

Note:

- Answer All the Five Questions
- The Assignment document must contain
 - ❖ Cover page with Name, USN, Course Title, Course Code and Faculty Details
 - **Step by Step Approach to design DFSM**
 - **Programming Code**
 - **❖** Screenshots of Execution with different test cases
- Student can write a program in any language (C/C++/Java/Python/C#/PHP)

Q. No.	Questions	Marks	Blooms Level	CO No.
1	Illustrate the design in step by step approach and write a program to simulate			
	deterministic finite state machine (DFSM) for accepting the language $L = \{a^nb^m \mid n \mod 1\}$	10	CL3	CO1
	$2=0$, m ≥ 1 }. Analyze the output with different test cases.			
2.	Illustrate the design in step by step approach and write a program to simulate a DFSM			
	which accept the language $L = \{w \mid w \in \{a, b\}^* \text{ and Na (w) mod } 3 = \text{Nb (w) mod } 3\}.$	10	CL3	CO1
	Analyze the output with different test cases.			
3	Illustrate the design in step by step approach and write a program to simulate a DFSM			
	which accept strings that start and end with same character. Analyze the output with	10	CL3	CO1
	different test cases.			
4	Illustrate the design in step by step approach and write a program to simulate a DFSM			
	which accept Binary strings that starts or ends with "01". Analyze the output with	10	CL3	CO1
	different test cases.			
5	Illustrate the design in step by step approach and write a program to simulate a DFSM			
	which accept the language having all 'a' before all 'b'. Analyze the output with	10	CL3	CO1
	different test cases.			

Cognitive Levels of Bloom's Taxonomy

No.	CL1	CL2	CL3	CL4	CL5	CL6
Level	Remember	Understand	Apply	Analyze	Evaluate	Create

Course Outcomes

CO1	Make use of central concepts of automata theory to solve the finite automata for different formal languages and identify the equivalence between different models of finite automata.	CL3
CO2	uild the regular expression for a given formal language and identify the equivalence between finite atomata and regular expressions. Also, explore the properties of regular languages.	
CO3	Construct the context-free grammar and pushdown automata for the different formal languages and also, identify the equivalence between pushdown automata and context-free grammar.	CL3
CO4	Show the properties of context-free languages by simplifying the context-free grammar and build the turing machine for the given formal language.	CL3
CO5	Outline the concepts of turing machine variants and identify the decidability and intractability of computational problems.	CL3

Assessment Method							
Sl. No.	Assessment Component	Marks Allotted					
1.	Step by Step Approach	3					
2.	Program written in any Language	4					
3.	Output Analysis with Different Test Cases	3					