### The Arithmetic of Even-Odd Trees

#### **Paul Tarau**

Department of Computer Science and Engineering University of North Texas

SYNASC'2015

- research supported by NSF grant 1423324 -



#### Overview

- we describe a tree-based arithmetic system that applies recursively a run-length compression mechanism
- we perform arithmetic computations symbolically as tree transformations
- tractability of computations is only limited by the tree-representation size rather than the bitsize of their operands
- we describe tree-based arithmetic algorithms that are
  - within constant factors from their traditional counterparts for their average case behavior
  - Super-exponentially faster on some "interesting" giant numbers
- ⇒ we make tractable important computations that are impossible with traditional number representations

#### Related work

- ullet a tree-based number system occurs in the proof of Goodstein's theorem (1947) , where replacement of finite numbers on a tree's branches by the ordinal  $\omega$  allows him to prove that a "hailstone sequence" visiting arbitrarily large numbers eventually turns around and terminates
- notations vs. computations
  - notations for very large numbers have been invented in the past ex: Knuth's up-arrow
  - in contrast to our tree-based natural numbers, such notations are not closed under successor, addition and multiplication
- this paper is describes a simpler and more elegant tree-based arithmetic system than our previous work
- most likely the final version of a series of papers on unconventional arithmetic

# Can we give up the "egalitarian" view of numbers?

- moving from unary arithmetic to a binary system results in an exponential speed-up
- this speed-up applies fairly to all numbers independently of their completely random or highly regular structure
- from information theory: we cannot improve on the *average* complexity of binary arithmetic operations by changing the representation
- can we do accelerate computations further if we give up this *egalitarian* view?
- can we treat better some classes of numbers, to favor interesting computations with them, without more than constant time prejudice to the others?

## Arithmetic operations on top of an "elitist" number system

- we introduce an "elitist" number system that answers these questions positively!
- numbers with a "regular structure" (recursively made of large alternating blocks of 0s and 1s) receive preferential treatment (up to super-exponential acceleration)
- the average performance of our arithmetic operations remains within constant factor of their binary equivalents
- our numbers will be represented as ordered rooted trees obtained by recursively applying a form of run-length compression
- our algorithms are presented as purely functional specifications, in a literate programming style
- we use a small subset of Haskell as an executable mathematical notation

# Binary arithmetic as function composition

- natural numbers larger than 1 can be seen as represented by iterated applications of the functions o(x) = 2x and i(x) = 2x + 1 starting from 1
- each  $n \in \mathbb{N} \{0,1\}$  can be seen as a unique composition of these functions applied to 1
- 2 = o(1), 3 = i(1), 4 = o(o(1)), 5 = i(o(1)) etc.
- applying o adds a 0 as the lowest digit of a binary number
- applying i adds an 1 as lowest digit
- also: i(x) = o(x) + 1

## Arithmetic with the iterated functions $o^n$ and $i^n$

• simple arithmetic identities can be used to express "one block of  $o^n$  or  $i^n$  operations at a time" algorithms for various arithmetic operations

$$o^n(k) = 2^n k \tag{1}$$

$$i^{n}(k) = 2^{n}(k+1) - 1$$
 (2)

In particular

$$o^n(1) = 2^n \tag{3}$$

$$i^{n}(1) = 2^{n+1} - 1 (4)$$

• one can directly relate  $o^k$  and  $i^k$ :

$$i^{n}(k) = o^{n}(k+1) - 1.$$
 (5)



# Even-Odd trees as a data type

#### **Definition**

The Even-Odd Tree data type Pos is defined by the Haskell declaration:

```
	ext{data Pos} = 	ext{One} \mid 	ext{Even Pos} \mid 	ext{Pos} \mid 	ext{Odd Pos} \mid 	ext{Pos} \mid 	ext{deriving} \quad 	ext{(Eq. Show, Read)}
```

corresponding to the recursive data type equation  $\mathbb{T}=1+\mathbb{T}\times\mathbb{T}^*+\mathbb{T}\times\mathbb{T}^*.$ 

- the term One (empty leaf) corresponds to 1
- the term Even x xs counts the number x of o applications followed by an alternation of similar counts of i and o applications xs
- the term 0dd x xs counts the number x of i applications followed by an *alternation* of similar counts of o and i applications xs
- we proceed recursively until reaching the empty leaf corresponding to 1

# The bijection $p': Pos \rightarrow \mathbb{N}^+ = \mathbb{N} - \{0\}$

$$p'(t) = \begin{cases} 1 & \text{if } t = 0 \text{ne,} \\ 2^{p'(x)} & \text{if } t = \text{Even x [],} \\ p'(u)2^{p'(x)} & \text{if } t = \text{Even x (y:xs) and } u = 0 \text{dd y xs,} \\ 2^{p'(x)+1} - 1 & \text{if } t = 0 \text{dd x [],} \\ (p'(u)+1)2^{p'(x)} - 1 & \text{if } t = 0 \text{dd x (y:xs) and } u = \text{Even y xs.} \end{cases}$$
(6)

## Examples

- this bijection ensures that Even-Odd Trees provide a canonical representation of natural numbers
- the equality relation on type Pos can be derived by structural induction

- Example 1:
  - Even (Even One []) [One, One]  $\rightarrow$   $((2^1+1)2^1-1)2^{2^1}2^{2^{16}}-1 \rightarrow 20$
- Example 2:
  - Odd (Odd (Odd One [])[])[])[]
  - $\bullet \ \to 2^{2^{2^{2^{1+1}}-1+1}-1+1}-1$
  - $\bullet \to 2^{2^{16}} 1$

## From a binary number to a list of counters

To implement the inverse  $p: \mathbb{N}^+ \to Pos$  of the function p' we first split the binary representation of a number as a list of alternating 0 and 1 counters.

Each counter k corresponds to a block of applications of either  $o^k$  or  $i^k$ .

```
to_counters :: Integer -> (Integer, [Integer])
to_counters k = (b,f b k) where
  parity x = x 'mod' 2
  b = parity k

f _ 1 = []
  f b k | k>1 = x:f (1-b) y where (x,y) = split_on b k

split_on b z | z>1 && parity z == b = (1+x,y) where
  (x,y) = split_on b ((z-b) 'div' 2)
split_on b z = (0,z)
```

# The inverse bijection $p: \mathbb{N}^+ \to Pos$

The function p maps the empty list of counters to 1, a non-empty list of counters derived from an even (respectively odd) number to a term of the form Even x xs (respectively 0dd x xs).

```
p :: Integer -> Pos
p k | k>0 = g b ys where
  (b,ks) = to_counters k
  ys = map p ks
  g 1 [] = One
  g 0 (x:xs) = Even x xs
  g 1 (x:xs) = Odd x xs
```

The first 4 positive numbers represented as Even-Odd Trees:

- One
- Even One []
- Odd One []
- Even (Even One []) []

## The DAG representation of the largest known prime number

- a more compact representation is obtained by folding together shared nodes in one or more Even-Odd Trees.
- integers labeling the edges are used to indicate their order.



Figure: the Mersenne prime  $2^{57885161} - 1$ 

### The successor s

```
s :: Pos -> Pos
s One = Even One []
s (Even One []) = Odd One []
s (Even One (x:xs)) = Odd (s x) xs
s (Even z xs) = Odd One (s' z : xs)
s (Odd z []) = Even (s z) []
s (Odd z [One]) = Even z [One]
s (Odd z (One:y:ys)) = Even z (s y:ys)
s (Odd z (x:xs)) = Even z (One:s' x:xs)
```

# The predecessor s'

```
s' :: Pos -> Pos
s' (Even One []) = One
s' (Even z []) = Odd (s' z) []
s' (Even z [One]) = Odd z [One]
s' (Even z (One:x:xs)) = Odd z (s x:xs)
s' (Even z (x:xs)) = Odd z (one:s' x:xs)
s' (Odd One []) = Even One []
s' (Odd One (x:xs)) = Even (s x) xs
s' (Odd z xs) = Even One (s' z:xs)
```

#### s and s' are inverses

### Proposition

Denote  $Pos^+ = Pos - \{One\}$  The functions  $s : Pos \rightarrow Pos^+$  and  $s' : Pos^+ \rightarrow Pos$  are inverses.

#### Proof.

It follows by structural induction after observing that patterns for Even in s correspond one by one to patterns for Odd in s' and vice versa.

More generally, it can be proved by structural induction that Peano's axioms hold and, as a result, < Pos, One, s > is a Peano algebra.

# The $log^*$ worst case complexity of s and s'

### Proposition

The worst case time complexity of the s and s' operations on n is given by the iterated logarithm  $O(\log_2^*(n))$ .

#### Proof.

Note that calls to s,s' in s or s' happen on terms at most logarithmic in the bitsize of their operands. The recurrence relation counting the worst case number of calls to s or s' is:  $T(n) = T(\log_2(n)) + O(1)$ , which solves to  $T(n) = O(\log_2^*(n))$ .

# The constant average complexity of s and s'

### Proposition

The functions s and s' work in constant time, on the average.

#### Proof.

Observe that the average size of a contiguous block of 0s or 1s in a number of bitsize n is asymptotically 2 as  $\sum_{k=0}^{n} \frac{1}{2^k} = 2 - \frac{1}{2^n} < 2$ .

While the same average case complexity applies to successor and predecessor operations on ordinary binary numbers, their worst case complexity is  $O(\log_2(n))$  rather than the asymptotically much smaller  $O(\log_2^*(n))$ .

# Other $O(log^*)$ worst case and O(1) average operations

Doubling a number db and reversing the db operation (hf) reduce to successor/predecessor operations on logarithmically smaller arguments.

```
db :: Pos -> Pos
db One = Even One []
db (Even x xs) = Even (s x) xs
db (Odd x xs) = Even One (x:xs)

hf :: Pos -> Pos
hf (Even One []) = One
hf (Even One (x:xs)) = Odd x xs
hf (Even x xs) = Even (s' x) xs
```

At most one call to s, s' are made in each function.

## Constant time operations

based on equation (3) the operation exp2 (computing an exponent of 2) simply inserts x as the first argument of an Even term.

```
exp2 :: Pos \rightarrow Pos

exp2 x = Even x []
```

Its left-inverse log2 extracts the argument x from an Even term.

```
log2 :: Pos -> Pos
log2 (Even x []) = x
```

### Proposition

The worst case and average time complexity of exp2, log2 is O(1).

#### Addition and subtraction

- a (fairly long) chain of mutually recursive functions defines addition and subtraction.
- we want to take advantage of large contiguous blocks of o<sup>n</sup> and i<sup>m</sup> applications
- we will rely on equations like (1) and (2) governing applications and "un-applications" of such blocks
- leftshiftBy, rightshiftBy
- detaching and fusing blocks of similar digits: split, fuse
- addition and subtraction: add, sub
- comparison operation: cmp
- bitsize



#### Bitsize and tree-size

```
bitsize :: Pos -> Pos
bitsize One = One
bitsize (Even x xs) = s (foldr add x xs)
bitsize (Odd x xs) = s (foldr add x xs)

treesize :: Pos -> Pos
treesize One = One
treesize (Even x xs) = foldr add x (map treesize xs)
treesize (Odd x xs) = foldr add x (map treesize xs)
```

### Proposition

For all terms  $t \in Pos$ , treesize  $t \leq bitsize t$ .

# Other operations working one $o^k$ or $i^k$ block at a time

- $\bigcirc$   $log_2$
- log<sub>2</sub>\*
- general multiplication: mul

# A gcd working one $o^k$ or $i^k$ block at a time

```
gcdiv _ One = One
gcdiv One _ = One
gcdiv a b = f px py where
   (px,x,x') = split a
   (py,y,y') = split b
   f 0 0 = g (cmp x y)
   f 0 1 = gcdiv x' b
   f 1 0 = gcdiv a y'
   f 1 1 = h (cmp a b)
   g LT = fuse (0,x,gcdiv x' (fuse (0,sub v x,v')))
   g EQ = fuse (0,x,gcdiv x' y')
   g GT = fuse (0, y, gcdiv y' (fuse (0, sub x y, x')))
  h LT = gcdiv a (sub b a)
  h EQ = a
  h GT = gcdiv b (sub a b)
```

## Easy extension to signed integers

• the data type Z:

```
data Z = Zero \mid Plus Pos \mid Minus Pos
```

 the bijection from trees of type Z to bitstring-represented integers is implemented by the function z':

```
z' :: Z -> Integer
z' Zero = 0
z' (Plus x) = p' x
z' (Minus x) = - (p' x)
```

its inverse is implemented by the function z:

```
z :: Integer -> Z
z 0 = Zero
z k | k>0 = Plus (p k)
z k | k<0 = Minus (p (-k))</pre>
```

## Efficient cons and decons operations

```
cons :: (Pos,Pos)->Pos
cons (One,One) = Even One []
cons (Even x xs, One) = Odd (hf (Even x xs) ) []
cons (Odd x xs,One) = Even (hf (s (Odd x xs))) []
cons (x, Even y ys) = Odd x (y:ys)
cons (x,0dd y ys) = Even x (y:ys)
decons :: Pos->(Pos,Pos)
decons (Even x []) = (s' (db x),One)
decons (Even x (y:ys)) = (x,0dd y ys)
decons (Odd x []) = (db x, One)
decons (Odd x (y:ys)) = (x, Even y ys)
```

- cons and decons are constant time on the average
- and  $O(log^*(bitsize))$  in the worst case

## An application: compact encodings of sequences and sets

- to/from lists: by iterating decons and cons
- lists to/from sets: with prefix sums and pairwise differences
- compact representation of sparse sets
- also, compact representation of complements of sparse sets:

```
*EvenOdd> p' (treesize (from_set (map p ([1,3,5]++[6..220]))))
218
*EvenOdd> p' (bitsize (from_set (map p ([1,3,5]++[6..220]))))
221
```

#### **Proposition**

These encodings/decodings of lists and sets as Even-Odd Trees are size-proportionate i.e., their representation sizes are within constant factors.

### Conclusions and future work

- the arithmetic of Even-Odd Trees provides an alternative to bitstring-based binary numbers that favors numbers with comparatively large contiguous blocks of similar binary digits
- while random numbers with high Kolmogorov complexity do not exhibit this property, applications involving sparse/dense or otherwise regular data frequently do
- besides arithmetic operations favoring such numbers, Even-Odd Trees provide bijective size-proportionate encodings of lists and sets
- future work:
  - parallelization of our algorithms as well as design of some non-recursive alternatives
  - encodings and operations on sparse matrices, graphs, and data structures like quadtrees and octrees
- the paper is a literate program, our Haskell code is at http://www.cse.unt.edu/~tarau/research/2015/EvenOdd.hs