Design and Analysis of Algorithms

Lecture 5-6

Instructor: Dr. G P Gupta

Designing algorithms

- · incremental approach
 - Insertion sort
- · divide-and-conquer approach

L1.2

Divide-and-conquer approach

- break the problem into several subproblems that are similar to the original problem but smaller in size,
- · solve the subproblems recursively, and then
- combine these solutions to create a solution to the original problem.

L1.3

Divide-and-conquer approach

- · Divide:
 - the problem into a number of subproblems that are smaller instances of the same problem.
- Conquer
 - the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
- · Combine:
 - the solutions to the subproblems into the solution for the original problem.

11/

Analyzing divide-and-conquer algorithms

- When an algorithm contains a recursive call to itself,
 - we can often describe its running time by a recurrence equation or recurrence,
 - which describes the overall running time on a problem of size *n* in terms of the running time on smaller inputs.
- A recurrence for the running time of a divide-and-conquer algorithm falls out from the three steps of the basic paradigm.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c, \\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$

L1.5

Merge sort algorithm cont..

- · follows the divide-and-conquer paradigm
- · Divide:
 - Divide the n-element sequence to be sorted into two subsequences of n/2 elements each.
- · Conquer:
 - Sort the two subsequences recursively using merge sort.
- · Combine:
 - Merge the two sorted subsequences to produce the sorted answer.

Merge sort algorithm cont..

Merge sort algorithm cont..

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

L1.8

Merge sort algorithm cont..

```
MERGE(A, p, q, r)

1 n_1 = q - p + 1

2 n_2 = r - q

3 let L[1...n_1 + 1] and R[1...n_2 + 1] be new arrays

4 for i = 1 to n_1

5 L[i] = A[p + i - 1]

6 for j = 1 to n_2

7 R[j] = A[q + j]

8 L[n_1 + 1] = \infty

9 R[n_2 + 1] = \infty

10 i = 1

11 j = 1

12 for k = p to r

13 if L[i] \le R[j]

14 A[k] = L[i]

15 i = i + 1

16 else A[k] = R[j]

17 j = j + 1
```

Example 3:Merge sort

MERGE-SORT A[1 ... n]1. If n = 1, done.

2. Recursively sort $A[1..\lceil n/2\rceil]$ and $A[\lceil n/2\rceil+1..n]$.

3. "Merge" the 2 sorted lists.

Key subroutine: MERGE

L1.10

Merging two sorted arrays

```
20 12
13 11
7 9
2 1
```

Merging two sorted arrays

L1.11

20 12

1.13

Merging two sorted arrays

1114

Merging two sorted arrays

1.15

Merging two sorted arrays

1116

Merging two sorted arrays

117

Merging two sorted arrays


```
Analyzing merge sort

T(n) \\ \Theta(1) \\ 2T(n/2) \\ \Theta(n)
1. If n = 1, done.
2. Recursively sort A[1 ... \lceil n/2 \rceil] and A[\lceil n/2 \rceil + 1 ... n].
3. "Merge" the 2 sorted lists

Sloppiness: Should be T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor), but it turns out not to matter asymptotically.
```

Analyzing merge sort cont..

• Divide:

•divide step just computes the middle of the subarray, which takes constant time. Thus, $D(n){=}\;\Theta(1)$

• Conquer:

 \bullet recursively solve two subproblems, each of size n/2, which contributes 2T(n/2) to the running time.

• Combine

• uses MERGE procedure on an n-element subarray takes $\Theta(n)$ time , and so $C(n)=\Theta(n)$.

L1.25

Recurrence for merge sort

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$$

1.26

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

L1.27

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. T(n)

1128

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

1.1.29

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. $cn \qquad cn \qquad cn$ $cn/2 \qquad cn/2 \qquad cn$ $h = \lg n \qquad cn/4 \qquad cn/4 \qquad cn/4 \qquad cn/4 \qquad cn$ $\vdots \qquad \vdots \qquad \vdots$ $\Theta(1) \qquad \text{#leaves} = n \qquad \Theta(n)$ $\text{Total} = \Theta(n \lg n)$

Conclusions

- $\Theta(n \lg n)$ grows more slowly than $\Theta(n^2)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for n > 30 or so.