btal /	No. of	f Questions: 10] [Total No. of Printed Pa	ges:3
		Roll No	*****
		EX-403(N)	
B. E.	(For	urth Semester) EXAMINATION, June,	2010
		(New Scheme)	
	0	Electrical & Electronics Engg. Branch)	
		TAL ELECTRONICS LOGIC DESIGN - I	
		[EX-403(N)]	
		Time: Three Hours	
		Maximum Marks : 100	
		Minimum Pass Marks : 35	
Note:	Atte	empt any <i>five</i> questions. All questions carry ks.	equal
1. (a)	(i)	Differentiate between Binary and BCD co	de. 4
	(ii)	Convert 010110 in binary to gray.	2
	(iii)		
(b)	(i)	Using K map \rightarrow F = Σ (0, 1, 2, 6, 8, 9, 10).	3
	(ii)	•	
		Explain.	3
	(iii)	Explain parity generators and parity check	ers. 4
		Or	,
2. (a)	Prov	Prove that:	
	(i)	x + x = x	,
		$x \cdot x = x$	
		x + 1 = 1	
	(14)	$x \cdot 0 = 0$	

	 (v) Convert to POS form F (x, y, z) = Σ (1, 3, 7). (vi) Implement F = xy + xy + yz using OR and NO gates only. 	2 T 2
	Using tabulation method, simplify the Boolea function $F = \Sigma (0, 1, 2, 8, 10, 11, 14, 15)$.	Π
3. (a) (b)		0
	Or	,
4. (a)	decoder/demultiplexer and a 2 × 4 decoder. Use block diagram construction.	3
Z1 5	(ii) Explain a 2 bit magnitude comparator. 5	
(b)	 A combinational circuit is defined by means of equation: F₁(x, y) = Σ (0, 3), F₂(x, y) = Σ (1, 2, 3) Implement it using decoder and external NAND gates. 	
(ii) Obtain NAND implementation of: 4 $F = (A + \overline{B} + D) (\overline{A} + B + D) (C + D) (\overline{C} + \overline{D})$ Assume inputs are available in complemented and uncomplemented form.	
· cl	Explain JK flip-flop. Obtain its truth table, haracteristic equation and excitation table. What is	
(b) D	Define the following and explain:	
(i) . (ii	State diagram	

State assignment

6. Design a clocked sequential circuit for the state diagram in figure. Use JK flip-flop.

7. (a) Obtain a MOD-5 ripple counter using JK flip-flop. Also give the waveforms at the output of each flip-flop.

10 10

(b) Explain Johnson counter, RGPVONLINE.COM

Or

8. (a) Design a synchronous counter that counts in strict binary sequence 1, 3, 5, 7 using T flip-flops.

(b) Explain D flip-flop. What is the difference between a D latch and a D flip-flop?

9. (a) Explain R/2R digital to analog converter.

(b) What is PAL? Explain. Name some PAL devices. 10

Or

10. (a) Obtain a combinational circuit implementation with ROM of the equations:

$$F_1(A_1, A_0) = \Sigma(1, 2, 3)$$

 $F_2(A_1, A_0) = \Sigma(0, 2)$

(b) Explain successive approximation analog to digital converter.