

November 5, 2018

Pierre Guilmin Elsa Bernard

Different classes

IMPACT dataset

coding + splicing (194,211 mutations = 36%)

Different classes

IMPACT dataset

coding + splicing (194,211 mutations = 36%) AUTO_OK & MANUAL_OK

UNLIKELY

somatic 96%

non-somatic 4%

Different classes

coding + splicing (194,211 mutations = 36%) AUTO_OK & MANUAL_OK

confidence_class

UNLIKELY

somatic 96%

OncoKB

driver 33%

bassenger 63%

non-somatic 4%

non-somatic 4%

somatic 96%

non-somatic 4%

driver 33%

> passenger 63%

non-somatic 4%

driver 33%

passenger 63%

non-somatic 4%

Main metrics used

ROC AUC

area under the ROC curve

average precision

area under the precisionrecall curve Probability distribution

probability predicted by the classifier for each class

Algorithm comparison

100 patients

Table of ≈ 1000 coding mutations to check one by one

IMPACT team

1000/1000 mutations to check one by one

IMPACT annotator

144/1000 mutations to check one by one

NGS (x II)

- tumor & normal depth, vaf and count
- tumor +/- strand count
- sample_coverage

NGS (x I I)

- tumor & normal depth, vaf and count
- tumor +/- strand count
- sample_coverage

genome (x 3)

- Chromosome
- Hugo Symbol
- Variant Class

NGS (x II)

- tumor & normal depth, vaf and count
- tumor +/- strand count
- sample_coverage

genome (x 3)

- Chromosome
- Hugo Symbol
- Variant Class

somatic driver (x 4)

- COSMIC count
- is a hotspot, is a 3d hotspot
- OncoKB oncogenic

NGS (x II)

- tumor & normal depth, vaf and count
- tumor +/- strand count
- sample_coverage

genome (x 3)

- Chromosome
- Hugo Symbol
- Variant Class

somatic driver (x 4)

- COSMIC count
- is a hotspot, is a 3d hotspot
- OncoKB oncogenic

$AF (\times 12)$

- in dbSNP
- gnomAD total AF and AF by population (AFR, AMR, ASJ, ...)

NGS (x II)

- tumor & normal depth, vaf and count
- tumor +/- strand count
- sample_coverage

genome (x 3)

- Chromosome
- Hugo Symbol
- Variant Class

somatic driver (x 4)

- COSMIC count
- is a hotspot, is a 3d hotspot
- OncoKB oncogenic

- in dbSNP
- gnomAD total AF and AF by population (AFR, AMR, ASJ, ...)

freq
$$(x \mid I)$$

frequency in normals

NGS (x II)

- tumor & normal depth, vaf and count
- tumor +/- strand count
- sample_coverage

genome (x 3)

- Chromosome
- Hugo Symbol
- Variant Class

somatic driver (x 4)

- COSMIC count
- is a hotspot, is a 3d hotspot
- OncoKB oncogenic

AF(x 12)

- in dbSNP
- gnomAD total AF and AF by population (AFR, AMR, ASJ, ...)

freq $(x \mid I)$

• frequency in normals

Consequence (x 6)

- gene type
- mutation consequence (stopgain, frameshift, ...)
- VEP_IMPACT, VEP_CLIN_SIG
- SIFT and PolyPhen class

AF(x 12)

- in dbSNP
- gnomAD total AF and AF by population (AFR, AMR, ASI, ...)

NGS (x II)

- tumor & normal depth, vaf and count
- tumor positive and negative count
- sample_coverage

freq $(x \mid I)$

• frequency in normals

genome (x 3)

- Chromosome
- Hugo Symbol
- Variant Class

Consequence (x 6)

- gene type
- Mutation consequence (stopgain, frameshift, ...)
- VEP_IMPACT, VEP_CLIN_SIG
- SIFT and PolyPhen class

somatic driver (x 4)

- COSMIC count
- is a hotspot, is a 3d hotspot
- OncoKB oncogenic

Individual features importance

Random Forest (1000 trees)

Individual features importance

Random Forest (1000 trees)

Gradient Boosting (1000 trees)

0.20

0.25

0.05

somatic 96%

non-somatic 4%

somatic 50%

non-somatic 50%

4%

within the model

non-somatic 4%

somatic 96%

non-somatic 4%

within the model

So the dataset used to train the model is only 8% of the whole dataset (7,199 real and 7,199 artefact mutations)

Removing the unmatched samples

Removing the unmatched samples

Removing the unmatched samples

Without the unmatched artefacts (and missing rows): 4,477 artefacts (instead of 7,199)

. . .

. . .

