

UNIVERSITY OF CHITTAGONG

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Program: **B.Sc.** (Engineering) Session: 2022–2023 4th Semester

Lab_task_03

Course Title: DataBase Systems Lab Course Code: CSE-414

Submitted To

Dr. Rudra Pratap Deb Nath Associate Professor Department of Computer Science & Engineering University of Chittagong

Submitted By

Subha Shesgin ID: 23701036 Department of Computer Science & Engineering

Date of Submission: 31 May, 2025

Contents	
CHAPTER 8	2
CHAPTER 9	9
CHAPTER 10	14
CHAPTER 18	17

Introduction to Oracle9i: SQL (SQL Practice Exercises)

CHAPTER 8 Manipulating Data

Practice 8

1. Insert data into the MY_EMPLOYEE table..
Run the statement in the lab8_1.sql script to build the MY_EMPLOYEE table to be used for the lab.

Answer: Query:

```
CREATE TABLE my_employee (
id NUMBER(4) CONSTRAINT my_employee_id_nn NOT NULL,
last_name VARCHAR2(25),
first_name VARCHAR2(25),
userid VARCHAR2(8),
salary NUMBER(9,2)
);
```

2. Describe the structure of the MY_EMPLOYEE table to identify the column names.

Answer:

```
DESCRIBE my_employee
```

```
Name Null? Type

ID NOT NULL NUMBER(4)

LAST_NAME VARCHAR2(25)

FIRST_NAME VARCHAR2(25)

USERID VARCHAR2(8)

SALARY NUMBER(9,2)
```

3. Add the first row of data to the MY_EMPLOYEE table from the following sample data. Do not list the columns in the INSERT clause.

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	895
2	Dancs	Betty	bdancs	860
3	Biri	Ben	bbiri	1100
4	Newman	Chad	cnewman	750
5	Ropeburn	Audrey	aropebur	1550

Answer:

Query:

```
INSERT into MY_EMPLOYEE
VALUES (1 ,'Patel', 'ralph', 'rpatel',895);
```

4. Populate the MY_EMPLOYEE table with the second row of sample data from the preceding list. This time, list the columns explicitly in the INSERT clause.

Answer:

Query:

```
INSERT into MY_EMPLOYEE(ID, LAST_NAME, FIRST_NAME, USERID, SALARY)
VALUES (2,'Dancs', 'betty', 'bdncs', 860);
```

5. Confirm your addition to the table.

Answer:

```
SELECT *
from MY_EMPLOYEE;
```

1 1 Patel ralph rpatel 895 2 2 Dancs betty bdncs 860		ID	LAST_NAME	FIRST_NAME	USERID	SALARY
2 2 Dancs betty bdncs 860	1	1	Patel	ralph	rpatel	895
	2	2	Dancs	betty	bdncs	860

6. Write an INSERT statement in a text file named loademp.sql to load rows into the MY_EMPLOYEE table. Concatenate the first letter of the first name and the first seven characters of the last name to produce the user ID.

Answer:

Query:

```
INSERT INTO MY_EMPLOYEE
VALUES (3, 'Biri', 'Ben', LOWER(SUBSTR('Ben', 1, 1) || SUBSTR('Biri', 1, 7)), 1100);
INSERT INTO MY_EMPLOYEE
VALUES (4, 'Newman', 'Chad', LOWER(SUBSTR('Chad', 1, 1) || SUBSTR('Newman', 1, 7)), 750);
```

7. Populate the table with the next two rows of sample data by running the INSERT statement in the script that you created.

Answer:

Query:

```
INSERT INTO MY_EMPLOYEE
VALUES (3, 'Biri', 'Ben', LOWER(SUBSTR('Ben', 1, 1) || SUBSTR('Biri', 1, 7)), 1100);
INSERT INTO MY_EMPLOYEE
VALUES (4, 'Newman', 'Chad', LOWER(SUBSTR('Chad', 1, 1) || SUBSTR('Newman', 1, 7)), 750);
```

8. Confirm your additions to the table.

Answer:

```
SELECT *
from MY_EMPLOYEE;
```

	ID		LAST_NAME	FIRST_NAME	USERID	SALARY
1		1	Patel	ralph	rpatel	1000
2		2	Dancs	betty	bdncs	1000
3		3	Biri	Ben	bbiri	1100
4		4	Newman	Chad	cnewman	750

9. Make the data additions permanent.

Answer:

Query:

```
1 COMMIT;
```

Update and delete data in the MY_EMPLOYEE table.

10. Change the last name of employee 3 to Drexler

Answer:

Query:

```
update MY_EMPLOYEE
set LAST_NAME = 'Drexler'
WHERE id = 3;
```

11. Change the salary to 1000 for all employees with a salary less than 900.

Answer:

Query:

```
update MY_EMPLOYEE
set salary = 1000
where salary < 900;</pre>
```

12. Verify your changes to the table.

Answer:

```
SELECT *
from MY_EMPLOYEE;
```

	ID		LAST_NAME	FIRST_NAME	USERID	SALARY
1		1	Patel	ralph	rpatel	1000
2		2	Dancs	betty	bdncs	1000
3		3	Drexler	Ben	bbiri	1100
4		4	Newman	Chad	cnewman	1000

13. Delete Betty Dancs from the MY_EMPLOYEE table.

Answer:

Query:

```
DELETE FROM MY_EMPLOYEE

WHERE LAST_NAME = 'Dancs' AND FIRST_NAME = 'betty';
```

14. Confirm your changes to the table.

Answer:

Query:

```
SELECT *

from MY_EMPLOYEE;
```

	ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	1	Patel	ralph	rpatel	1000
2	3	Drexler	Ben	bbiri	1100
3	4	Newman	Chad	cnewman	1000

15. Commit all pending changes.

Answer:

Query:

```
commit;
```

Control data transaction to the MY_EMPLOYEE table.

16. Populate the table with the last row of sample data by modifying the statements in the script that you created in step 6. Run the statements in the script.

Answer:

```
INSERT INTO MY_EMPLOYEE

VALUES (5, 'Ropeburn', 'Audrey', LOWER(SUBSTR('Audrey', 1, 1) ||

SUBSTR('Ropeburn', 1, 7)), 1550);
```

17. Confirm your addition to the table.

Answer:

Query:

```
SELECT *
from MY_EMPLOYEE
order by id asc;
```

1 1 Patel 2 3 Drexler	ralph Ben	rpatel bbiri	1000 1100
	Ben	bbiri	1100
3 4 Newman	Chad	cnewman	1000
4 5 Ropeburn	Audrey	aropebur	1550

18. Mark an intermediate point in the processing of the transaction.

Answer:

Query:

```
SAVEPOINT step_18;
```

19. Empty the entire table.

Answer:

Query:

```
delete from MY_EMPLOYEE;
```

20. Confirm your addition to the table.

Answer:

```
SELECT *
from MY_EMPLOYEE;
```

ID	LAST_NAME	FIRST_NAME	USERID	SALARY	
No items to display	_	FIRST_NAME	USERID	SALAR	

21. Discard the most recent DELETE operation without discarding the earlier IN-SERT operation.

Answer:

Query:

```
ROLLBACK to step_18;
```

22. Confirm that the new row is still intact.

Answer:

Query:

```
SELECT *
from MY_EMPLOYEE
order by id asc;
```

2 3 Drexler Ben bbiri 1100 3 4 Newman Chad cnewman 1000		ID	LAST_NAME	FIRST_NAME	USERID	SALARY
3 4 Newman Chad cnewman 1000	1	1	Patel	ralph	rpatel	1000
	2	3	Drexler	Ben	bbiri	1100
	3	4	Newman	Chad	cnewman	1000
4 5 Ropeburn Audrey aropebur 1550	4	5	Ropeburn	Audrey	aropebur	1550

23. Make the data addition permanent.

Answer:

```
commit;
```

CHAPTER 9 Creating and Managing Tables

Practice 9

1. Create the DEPT table based on the following table instance chart. Place the syntax in a script called lab9_1.sql, then execute the statement in the script to create the table. Confirm that the table is created.

Column Name	ID	NAME	
Key Type			
Nulls/Unique			
FK Table			
FK Column			
Data type	NUMBER	VARCHAR2	
Length	7	25	

Answer:

Query:

```
CREATE TABLE dept (
id NUMBER(7),
name VARCHAR2(25)
);
describe dept;
```

```
Name Null? Type

ID NUMBER(7)

NAME VARCHAR2(25)
```

2. Populate the DEPT table with data from the DEPARTMENTS table. Include only columns that you need.

Answer:

```
insert into dept
select department_id , department_name
from hr.DEPARTMENTS;
```

3. Create the EMP table based on the following table instance chart. Place the syntax in a script called lab9_3.sql, and then execute the statement in the script to create the table. Confirm that the table is created.

Answer:

Query:

```
CREATE TABLE EMP (
id NUMBER(7),
last_name VARCHAR2(25),
first_name varchar(25),
dept_id number(7)
);

describe EMP;
```

```
Name Null? Type

ID NUMBER(7)

LAST_NAME VARCHAR2(25)

FIRST_NAME VARCHAR2(25)

DEPT_ID NUMBER(7)
```

4. Modify the EMP table to allow for longer employee last names. Confirm your modification

Answer:

```
ALTER table EMP
MODIFY (last_name VARCHAR2(50));

DESCRIBE emp;
```

```
Name Null? Type

ID NUMBER(7)

LAST_NAME VARCHAR2(50)

FIRST_NAME VARCHAR2(25)

DEPT_ID NUMBER(7)
```

5. Confirm that both the DEPT and EMP tables are stored in the data dictionary. (Hint: USER_TABLES)

Answer:

Query:

```
SELECT table_name
FROM user_tables
WHERE table_name IN ('DEPT', 'EMP');
```


6. Create the EMPLOYEES2 table based on the structure of the EMPLOYEES table. Include only the EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY, and DEPARTMENT_ID columns. Name the columns in your new table ID, FIRST_NAME, LAST_NAME, SALARY, and DEPT_ID, respectively.

Answer:

Query:

```
create table EMPLOYEES2 as
select employee_id id, first_name, last_name, salary,
    department_id dept_id
from hr.EMPLOYEES;
```

7. Drop the EMP table.

Answer:

Query:

```
drop table emp;
```

8. Rename the EMPLOYEES2 table as EMP.

Answer:

```
rename EMPLOYEES2 to EMP;
```

9. Add a comment to the DEPT and EMP table definitions describing the tables. Confirm your additions in the data dictionary.

Answer:

Query:

```
COMMENT ON TABLE emp IS 'employees information';

COMMENT ON TABLE dept IS 'department info';

select *
from user_tab_comments
where table_name ='DEPT' or table_name = 'EMP';
```

	TABLE_NAME	TABLE_TYPE	COMMENTS	ORIGIN_CON_ID
1	DEPT	TABLE	department info	3
2	EMP	TABLE	employees information	3

10. Drop the FIRST_NAME column from the EMP table. Confirm your modification by checking the description of the table.

Answer:

```
alter table emp
drop COLUMN first_name;

DESCRIBE emp;
```

```
Name Null? Type

ID NUMBER(6)

LAST_NAME NOT NULL VARCHAR2(25)

SALARY NUMBER(8,2)

DEPT_ID NUMBER(4)
```

11. In the EMP table, mark the DEPT_ID column in the EMP table as UNUSED. Confirm your modification by checking the description of the table.

Answer:

Query:

```
alter table emp
set UNUSED (dept_id);

DESCRIBE emp;
```

```
Name Null? Type

ID NUMBER(6)

LAST_NAME NOT NULL VARCHAR2(25)

SALARY NUMBER(8,2)
```

12. Drop all the UNUSED columns from the EMP table. Confirm your modification by checking the description of the table.

Answer:

```
alter table emp
drop UNUSED COLUMNS;

DESCRIBE emp;
```

```
Name Null? Type

ID NUMBER(6)

LAST_NAME NOT NULL VARCHAR2(25)

SALARY NUMBER(8,2)
```

CHAPTER10 Including Constraints

Practice 10

Add a table-level PRIMARY KEY constraint to the EMP table on the ID column.
 The constraint should be named at creation. Name the constraint my_emp_id_pk.
 Hint: The constraint is enabled as soon as the ALTER TABLE command executes successfully

Answer:

Query:

```
alter table EMP
add constraint my_emp_id_pk primary key (id);
```

Create a PRIMARY KEY constraint to the DEPT table using the ID column. The
constraint should be named at creation. Name the constraint my_deptid_pk.
Hint: The constraint is enabled as soon as the ALTER TABLE command executes successfully.

Answer:

Query:

```
alter table dept
add constraint my_deptid_pk primary key(id);
```

3. Add a column DEPT_ID to the EMP table. Add a foreign key reference on the EMP table that ensures that the employee is not assigned to a nonexistent department. Name the constraint my_emp_dept_id_fk..

Answer:

```
alter table emp
add (dept_id NUMBER(7));

alter table emp
add constraint my_emp_dept_id_fk
FOREIGN key (dept_id) REFERENCES dept(id);
```

4. Confirm that the constraints were added by querying the USER_CONSTRAINTS view. Note the types and names of the constraints. Save your statement text in a file called lab10_4.sql.

Answer:

Query:

```
SELECT constraint_name, constraint_type AS "C"
FROM user_constraints
WHERE table_name IN ('EMP', 'DEPT');
```

	CONSTRAINT_NAME	c
1	SYS_C002229366	С
2	MY_EMP_ID_PK	Р
3	MY_DEPTID_PK	Р
4	MY_EMP_DEPT_ID_FK	R

5. Display the object names and types from the USER_OBJECTS data dictionary view for the EMP and DEPT tables. Notice that the new tables and a new index were created.

Answer:

```
select object_name,object_type
from USER_OBJECTS
where OBJECT_NAME like 'EMP%'
or OBJECT_NAME like 'DEPT%';
```

	OBJECT_NAME	OBJECT_TYPE
1	DEPT	TABLE
2	EMP	TABLE

6. Modify the EMP table. Add a COMMISSION column of NUMBER data type, precision 2, scale 2. Add a constraint to the commission column that ensures that a commission value is greater than zero.

Answer:

```
alter table EMP
add commission NUMBER(2,2)
CONSTRAINT my_emp_com_ck check (commission >= 0);
```

CHAPTER18 Advanced Subqueries

Practice 18

1. Write a query to display the last name, department number, and salary of any employee whose department number and salary both match the department number and salary of any employee who earns a commission.

Answer:

Query:

	LAST_NAME	DEPARTMENT_ID	SALARY
1	Singh	80	14000
2	Partners	80	13500
3	Errazuriz	80	12000
4	Cambrault	80	11000
5	Abel	80	11000
6	Zlotkey	80	10500
7	Vishney	80	10500
8	Tucker	80	10000
9	King	80	10000

2. Display the last name, department name, and salary of any employee whose salary and commission match the salary and commission of any employee located in location ID 1700.

Answer:

Query:

```
select last_name, department_name, salary
from hr.employees e , hr.DEPARTMENTS d
where e.DEPARTMENT_ID = d.DEPARTMENT_ID
and (salary ,nvl(COMMISSION_PCT ,0)) in
(select salary , nvl(COMMISSION_PCT,0)
from hr.employees e,hr.DEPARTMENTS d
where e.department_id = d.department_id
and d.location_id = 1700);
```

	LAST_NAME	DEPARTMENT_NAME	SALARY
1	King	Executive	24000
2	Yang	Executive	17000
3	Garcia	Executive	17000
4	Gruenberg	Finance	12008
5	Higgins	Accounting	12008
6	James	IT	9000

3. Create a query to display the last name, hire date, and salary for all employees who have the same salary and commission as Kochhar. **Note:** Do not display Kochhar in the result set.

Answer:

LAST_NAME	HIRE_DATE	SALARY	
No items to display.			

4. Create a query to display the employees who earn a salary that is higher than the salary of all of the sales managers (JOB_ID = 'SA_MAN'). Sort the results on salary from highest to lowest.

Answer:

Query:

```
select last_name , job_id, salary
from hr.employees
where salary > ALL
(select SALARY
from hr.EMPLOYEES
where job_id = 'SA_MAN')
order by salary desc;
```

	LAST_NAME	JOB_ID	SALARY
1	King	AD_PRES	24000
2	Garcia	AD_VP	17000
3	Yang	AD_VP	17000

5. Display the details of the employee ID, last name, and department ID of those employees who live in cities whose name begins with T.

Answer:

```
select employee_id , last_name , department_id
from hr.EMPLOYEES
where DEPARTMENT_ID in (select DEPARTMENT_ID
from hr.DEPARTMENTS
where location_id in
(SELECT LOCATION_ID
from hr.LOCATIONS
where city like 'T%'));
```

1 201 Martinez 20
2 202 Davis 20

6. Write a query to find all employees who earn more than the average salary in their departments. Display last name, salary, department ID, and the average salary for the department. Sort by average salary. Use aliases for the columns retrieved by the query as shown in the sample output.

Answer:

	ENAME	SALARY	DEPTNO	DEPT_AVG
1	Bull	4100	50	75.5555555555
2	Bell	4000	50	75.5555555555
3	Everett	3900	50	75.5555555555
4	Dilly	3600	50	75.5555555555
5	Chung	3800	50	75.5555555555
6	Weiss	8000	50	75.5555555555
7	Sarchand	4200	50	75.5555555555

- 7. Find all employees who are not supervisors.
 - a. First do this using the NOT EXISTS operator.

Answer:

Query:

```
SELECT e.last_name
FROM hr.employees e
WHERE NOT EXISTS (
SELECT 'X'
FROM hr.employees m
WHERE m.manager_id = e.employee_id
);
```

	LAST_NAME
1	Abel
2	Ande
3	Atkinson
4	Baida
5	Banda
6	Bates
7	Bell

b. Can this be done by using the NOT IN operator? How, or why not?.

Answer:

```
SELECT e.last_name
FROM hr.employees e
WHERE e.employee_id NOT IN (
SELECT a.manager_id
FROM hr.employees a
WHERE a.manager_id IS NOT NULL
);
```


8. Write a query to display the last names of the employees who earn less than the average salary in their departments..

Answer:

```
select last_name
from hr.employees e
where e.salary <(select avg(a.salary)
from hr.employees a
where a.DEPARTMENT_ID = e.DEPARTMENT_ID );</pre>
```


9. Write a query to display the last names of the employees who have one or more coworkers in their departments with later hire dates but higher salaries.

Answer:

Query:

```
select last_name
from hr.employees e
where exists (select 'X'
from hr.employees a
where a.DEPARTMENT_ID = e.DEPARTMENT_ID
and a.hire_date > e.HIRE_DATE
and a.SALARY > e.SALARY );
```


10. Write a query to display the employee ID, last names, and department names of all employees.

Note: Use a scalar subquery to retrieve the department name in the SELECT statement..

Answer:

	EMPLOYEE_ID	LAST_NAME	DEPARTMENT
1	205	Higgins	Accounting
2	206	Gietz	Accounting
3	200	Whalen	Administration
4	100	King	Executive
5	101	Yang	Executive
6	102	Garcia	Executive
7	109	Faviet	Finance

11. Write a query to display the department names of those departments whose total salary cost is above one eighth (1/8) of the total salary cost of the whole company. Use the WITH clause to write this query. Name the query SUMMARY.

Answer:

```
with
summary as (
select department_name , sum(salary) as dept_total
from hr.employees e, hr.DEPARTMENTS d
where e.department_id = d.department_id
group by department_name)
select department_name , dept_total
from summary
where dept_total > (
select sum(dept_total) * 1/8
from summary)
ORDER by dept_total desc;
```

