2018-2019-2 学期《大学物理 1》考前押题卷

信息科学与工程学院 梁宇龙

—,	选择题						
1.质点做半径为R的变速圆周运动时,加速度大小为(v表示任一时刻质点的速率)()							
	$A.\frac{dv}{dt}$	$B.\frac{v^2}{R}$	$C. \frac{dv}{dt} + \frac{v^2}{R}$	$D.\sqrt{\left(\frac{dv}{dt}\right)+\left(\frac{v^2}{R}\right)}$			
2.某质点的运动方程为 $x=3t^2-5t^3+6$ (SI),则质点作:()							
	A.匀加速直线运动,加速度沿x轴正方向						
	B.匀加速直线运动,加速度沿x轴负方向						
	C.变加速直线运动,加速度沿x轴正方向						
	D.变加速直线运动	,加速度沿x轴负	方向				
3.以	下说法正确的是:	()					
	A.作用在定轴转动	刚体上合力矩越力	、刚体转动的角加	n速度越大			
	B.作用在定轴转动	刚体上合力矩越大	、刚体转动的角边	速度越大			
	C.作用在定轴转动	刚体上力越大,图]体转动的角加速度	 達越大			
	D. 作用在定轴转运	加刚体上合力矩为	零,刚体转动的角	速度为零.			
4.角动量守恒定律应用条件是: ()							
	A.合外力与非保守内力做功和为零						
	B.系统合外力为零						
	C.合外力矩为零						
	D.合外力矩做功为	零					
5.竖直悬挂的弹簧振子,若振子的总能量为 $\frac{1}{2}kA^2$,则系统势能的零点在()							
	A.任意位置	B.弹簧原长处	C.平衡位置处	D.最大位移处			

6.在驻波中,两个相邻波节之间各质点的振动] ()				
A.振幅相同,相位相同	B.振幅不同,相位相同				
C.振幅相同,相位不同	D.振幅不同,相位不同				
7.波长为礼的平行单色光垂直入射在折射率为抗	n ₂ 的薄膜上,经上下两个表面反射的两束光发				
生干涉。若薄膜厚度为e,而且 $n_1 < n_2 > n_3$,	则两束光在相遇点的相位差为()				
A. $4\pi n_2 e/\lambda$ B. $(4\pi n_2 e/\lambda) + \pi$	C. $(2\pi n_2 e/\lambda) + \pi$ D. $2\pi n_2 e/\lambda$				
8.在双缝干涉实验中,缝是水平的。若双缝所	在的平板稍微向上平移,其他条件不变,则屏				
上的干涉条纹()					
A.向上平移,且间距改变	B.向下平移,且间距不变				
C.不移动,但间距改变	D.向上平移,且间距不变				
9.一衍射光栅对某一特定波长的垂直入射光在	屏上只能出现0级和1级主极大,欲使屏上出现				
更高级次的衍射主极大,应该()					
A.换一个光栅常数较小的光栅	B.换一个光栅常数较大的光栅				
C.将光栅向靠近屏幕的方向移动	D.将光栅向远离屏幕的方向移动				
10.用单色光垂直照射在观察牛顿环的装置上	,当平凸透镜垂直向上缓慢平移而远离平面玻				
璃时,可以观察到这些环状干涉条纹()					
A.向中心收缩 B.向右平移	C.向外扩张 D.静止不动				
二、填空题					
1.水平放置的弹簧,其一端固定在地球表面上	某一点,另一端系以物体,物体在光滑的水平				
面上沿弹簧长度方向运动,则相对于地球上观	测者而言,物体的动量(填:				
守恒或不守恒);选物体和弹簧为系统,则系统	的机械能(填:守恒或不守恒)				
2.一质量为m的匀质杆,长为l,绕通过其中心	的铅直轴转动,其转动惯量为				

- 3.传播速度为100m/s, 频率为50Hz的平面简谐波, 在波线上相距为0.5m的两点之间的相位差为
- 4.波长为 λ 的单色光垂直入射到单缝上,若第二级暗纹中心对应的衍射角为 $\theta=30^{o}$,则单缝对应宽度为
- 5.已知迈克尔逊干涉仪中使用波长为λ的单色光,在干涉仪的可动反射镜移动距离d的过程中,干涉条纹将移动 条。
- 三、简算题
- 1.质量为m的质点沿ox轴运动,合力与速度平方成正比,比例常数为k,方向与速度方向反向,已知t = 0, $v_x=v_{x_0}$,x=0,求 $v_x(t)$
- 2.已知合力 $F_x=2$ t(SI) 作用在质量m=10kg的质点上,质点的初速度 $v_{x_0}=0$,试求: (1) 在开始 2s 内此力的冲量; (2) t=2s 时刻质点的速度 v_x
- 3. 自然光投射到叠在一起的两块偏振片上,则两偏振片的偏振化方向夹角为多大才能使透射光强为入射光强的 $\frac{1}{3}$?
- 4.有一个用余弦函数表示的简谐振动,若其速度v与时间t的 关系曲线如图所示,则振动的初相位为多少?($V_m = \omega A$)

四、如图,一根轻绳跨过一定滑轮(滑轮视为圆盘),绳的两段分别悬挂有质量为 m_1 和 m_2 的物体, $m_1 < m_2$,滑轮质量为m,半径为R,所受的摩擦阻力矩为 τ_r ,绳与滑轮无相对滑动。试求:物体的加速度与滑轮的角加速度。

五、一平面简谐波,沿X轴负方向传播,t=1s时的波形图如图所示,波速 $\mu=2$ m/s ,求:

(1) 该波的波函数。(2) 画出t = 2s时刻的波形曲线。

六、波长 λ = 600nm 的单色光垂直入射在一光栅上,第 2 级、第 3 级光谱线分别出现在衍射角 ϕ 2、 ϕ 3满足下式的方向上,即 $\sin \varphi_2$ = 0.20, $\sin \varphi_3$ = 0.30,第 4 级缺级,试问:

(1) 光栅常数等于多少? (2) 光栅上狭缝宽度有多大? (3) 在屏上可能出现的全部光谱线的级数。

参考答案:

选择题: DDACC BBDBA

填空题: 1.不守恒; 守恒; $2.\frac{ml^2}{12}$ $3.\frac{\pi}{2}$ 4.4 λ 5. $\frac{\lambda}{2}$

简算题: $1.v = \frac{mv_0}{m + v_0 kt}$ 2. l = 4 $V_x = 0.4$

3. 35.26° 4. $\frac{7}{2}$

 $\square, \qquad a = \frac{(m_2 - m_1)gR - \tau_r}{R(m_1 + m_2 + \frac{1}{2}m)} \qquad \beta = \frac{(m_2 - m_1)gR - \tau_r}{R^2(m_1 + m_2 + \frac{1}{2}m)}$

五、 解: (1) 振幅 A=4m ...(1 分); 圆频率 ω=π.....(2 分)。 初相位 φ=π/2(2 分) y=4cos [π (t+x/2)+π/2] (SI)...(2 分)

(2) $\triangle x = \mu (t_2 - t_1) = 2 m$, t = 2s 时刻的波形曲线如图所示 +

.....(3分)+

六、解:(1) 光栅方程为: $d \sin \varphi_k = k \lambda$ ……(1分) ω

$$d = \frac{2\lambda}{\sin \varphi_2} = \frac{2 \, \widehat{\otimes} |600 - 10^{-9}|}{0.20} = 6.0 \, ? \, 10^{-6} \, (m) \qquad (2 \, \mathring{/}) \, \downarrow$$

(2) 由题意可知, ₽

$$\frac{d}{a} = 4 \times (2\pi)$$
 ; $a = \frac{d}{4} = 1.5? \ 10^{-6} (m) \dots (1\pi)$

(3) 根据光栅方程有 $k < \frac{d}{\lambda} = \frac{6.0'\ 10^{-6}}{600'\ 10^{-9}} = 10 \dots$ (1分) $_{\circ}$

所以,在屏上出现谱线的最大级数为9。..(1分) ₽

光谱缺级级数为4,8,12,则屏上出现全部谱线的级↓

数为 0 , ± 1 , ± 2 , ± 3 , ± 5 , ± 6 , ± 7 , ± 9 。.. (2分) \downarrow