Kombinatorika zadaci

Zadatak 1. Na stolu se nalazi komplet od $N \leq 100$ babuški, koje su obeležene brojevima od 1 do N (od najmanje ka najvećoj). Babuška obeležena brojem i se može staviti u babušku obeleženu brojem j ukoliko važi i < j. Perica se igrao sa babuškama, proizvoljno stavljajući jednu babušku u drugu. Na kraju su ostale vidljive samo neke babuške. Jovica sada mora da odgovori koliko mogućih kombinacija umetanja babuški postoji, tako da ostanu vidljive samo te babuške. Dve kombinacije su različite ako postoji bar jedna babuška koja nije stavljena u istu babušku u obe kombinacije.

U prvom redu ulaza nalaze se brojevi N i M, a u drugom se nalazi M brojeva, i oni predstavljaju redne brojeve babuski koje su ostale vidljive.

Rešenje. Prvo što pada na pamet je da prođemo kroz sve moguće kombinacije ubacivanja babuški koje ne trebaju da budu vidljive na kraju i da brojimo svaku kombinaciju. Međutim takvih kombinacija je previše te se program za dovoljno velike brojeve N i M nikad ne bi završio, jer je složenost programa eksponencijalna, tačnije $O(N^N)$.

Primetimo da za svaku babušku i koja ne treba da bude vidljiva na kraju možemo da nađemo skup koji sadži babuške u koje babuška i može da se stavi, to su babuške od datih M za koje važi $m_j > i$, označimo taj skup sa d_i . Za babuške koje na kraju treba da budu vidljive stavićemo $d_{m_j} = \{m_j\}$. Kako jedna kombinacija predstavlja odabir po jednog elementa iz svakog od skupova d_i , broj različitih kombinacija dobijamo množenjem kardinalnosti skupova, tj. $\prod_{i=1}^N |d_i| = |d_1| \cdot |d_2| \cdot \ldots \cdot |d_N|$. Složenost opisanog rešenja je O(N) ukoliko bismo na pametan način računali kardinalnosti skupova d_i , a to možemo tako što ćemo iskoristiti vezu između susednih članova niza niza d_i . Znamo da važi $|d_i| = |d_{i+1}|$, pod uslovom da nijedna od babuški i i i + 1 ne trebaju da budu vidljive na kraju.

Zadatak 2. Srećan broj je onaj broj koji u svom dekadnom zapisu sadrži samo cifre iz skupa $C = \{1,3,4,7,8\}$. Za date brojeve a i b ($1 \le a$, $b \le 10^{18}$), ispisati koliko ima srećnih brojeva u intervalu [a, b].

Rešenje. Krenućemo od jednostavnog rešenja, tj. da prođemo kroz sve brojeve iz intervala [a,b] te za svaki broj proverimo da li je srećan broj. Međutim vremenska složenost ovog rešenja je $O((b-a)*\log_{10}b)$, pa se program u najgorem slučaju nikad neće završiti. Nekad je lakše izračunati koliko brojeva ima neku osobinu ukoliko posmatramo interval [0,x]. U ovom slučaju ćemo iskoristiti pomenuti postupak te će nam rešenje biti f(b)-f(a-1), gde je f(X) funkcija koja izračunava koliko ima srećnih brojeva u intervalu [0,X]. Treba da vidimo kako efikasno da izračunamo f(X).

KOMBINATORIKA ZADACI 1

Neka je $X=x_1x_2x_3\dots x_k$, gde je k broj cifara, a x_i su cifre broja X. Uzmimo najveći broj iz skupa $C=\{1,3,4,7,8\}$ koji je manji ili jednak sa brojem x_1 , i neka je to j-ti po veličini broj iz skupa C, označimo ga sa c_j . Pokušajmo da prebrojimo srećne brojeve koji su manji od broja $c_jy_2y_3\dots y_k$, $y_i=1$ (najmanji k-tocifreni broj koji počinje cifrom c_j). Da bi neki broj bio manji od pomenutog, potrebno je da ima manje od k cifara ili ukoliko ima k cifara treba da počinje cifrom manjom od c_j . Posmatrajmo prvo slučaj kada broj ima tačno k cifara. Znamo da broj treba da počinje sa nekom cifrom iz skupa C manjom od c_j , a takvih cifara ima j-1, dok preostale cifre broja mogu da budu proizvoljne iz skupa C. Ukupan broj takvih brojeva je $(j-1)\cdot |C|^{k-1}$, gde je |C| kardinalnost skupa C, u ovom slučaju je |C|=5. Da bismo prebrojali i brojeve koji imaju manje od k cifara, dovoljno je da u skup C ubacimo i element C. Sada znamo da izračunamo koliko je srećnih brojeva manjih od broja $c_jy_2y_3\dots y_k, y_i=1$, međutim ostali su da se prebroje srećni brojevi iz interval C0, C1, C2, C3, C3, C4, C5, C5, C6, C6, C7, C8, C8, C8, C8, C9, C9,

Pređimo na sledeću cifru broja X i pronađimo najveći broj iz skupa C koji je manji ili jednak sa brojem x_2 , neka je to broj c_l . Sada nas zanima koliko postoji srećnih brojeva u intervalu $\begin{bmatrix} c_j y_2 y_3 \dots y_k, y_i = 1, c_j c_l y_3 \dots y_k, y_i = 1 \end{bmatrix}$. Veoma sličnom analizom dolazimo do zaključka da takvih brojeva ima $(l-1) \cdot |C|^{k-2}$, međutim ovde nije potrebno da ubacujemo broj 0 u skup C, zbog toga što oba broja koja ograničavaju interval imaju isti broj cifara.

Ukoliko bismo nastavili da primenjujemo postupak za cifre redom do k-te, prebrojali bismo srećne brojeve iz intervala [0,X]. Označimo sa id_i indeks najvećeg broja iz skupa C koji je manji ili jednak od broja x_i . Sada kada znamo brojeve id_i možemo da zapisemo da je $f(X) = (id_1+1) \cdot |C+1|^{k-1} + \sum_{i=2}^k id_i \cdot |C|^{k-i}$. Brojeve id_i možemo da izračunamo prolaći kroz skup C, tako da bi vremenska složenost opisnog rešenje bila $O(|C| \cdot \log_{10} X)$.

Zadatak 3. Za prirodan broj ćemo reći da je *lep* ukoliko je u njemu rastojanje između svake dve iste cifre bar 10. Rastojanje između dve cifre jednako je broju cifara između njih +1 (recimo, u broju 12342, rastojanje između cifara '2' je 3).

Imamo početni broj od n ($1 \le n \le 10^6$) cifara i želimo da od njega napravimo lep broj. U jednom potezu moguće je obrisati bilo koju cifru početnog broja i na njeno mesto upisati neku drugu cifru. Koliko je najmanje poteza potrebno da bi dobili lep broj?

Rešenje. Posmatrajmo interval od 10 uzastopnih cifara nekog lepog broja. Znamo da su sve cifre različite zbog uslova zadatka, kad bi neke dve cifre u tom intervalu bile iste njihovo rastojanje bi bilo manje od 10. Sada posmatrajmo interval od 11 uzastopnih cifara nekog lepog broja. Znamo da su prvih 10 cifara tog intervala međusobno različite i da su poslednjih 10 cifara međusobno različite. Ovo je jedino moguće ukoliko je 1. cifra jednaka 11. cifri. Iz poslednjeg tvrđenja možemo zaključiti da je rastojanje izmešu svake dve susedne iste cifre jednako 10. Zbog ovoga je lep broj određen uz pomoć prvih 10 cifara, gde se potom tih 10 cifara samo ponavljaju u istom redosledu. Primer lepog broja je 1234567890|1234567890|1234567. Kako je lep broj dužine n određen na osnovu prvih 10 cifara, i uzimajući u obzir da prva cifra ne može da bude 0, možemo izračunati da lepih brojeva dužine n ima ukupno $10! - 9! = 9! \cdot (10 - 1) = 9 \cdot 9! = 3,265,920$. Ovo je dovoljno mali broj da možemo da prođemo kroz sve lepe brojeve i da vidimo koji se najmanje razlikuje od datog broja.

KOMBINATORIKA ZADACI 2

Sada nam ostaje jos da vidimo kako efikasno da izračunamo razliku između lepog broja i datog broja, a da ne moramo svaki put da prolazimo kroz svih n cifara datog broja. Zgodno kod lepog broja je to što se iste cifre pojavljuju u razmaku od 10 pozicija, tj. ukoliko je neka cifra na pozicij p, ona je i na pozicijama $p+10,p+20,p+30,\dots$ Podelimo pozicije cifara u broju na 10 delova, u prvom skupu neka budu pozicije $\{1,1+10,1+20,1+30,\dots\}$. U i-tom skupu se nalaze pozicije $\{i,i+10,i+20,i+30,\dots\}$. Izračunajmo $cifre_{i,j}$ što znači koliko cifara j ima u i-tom skupu pozicija u datom broju, što možemo da izračunamo jednim prolazom kroz dati broj od n cifara.

Neka su prvih 10 cifara lepog broja koji trenutno posmatramo $c_1, c_2, c_3, ..., c_{10}$. Razliku između trenutno posmatranog lepog broja i datog broja od n cifara možemo izračunati tako što ćemo sa svaku cifru lepog broja izračunati na koliko se pozicija ona poklapa, a to možemo pročitati iz tabele $cifre_{i,c_i}$ i to oduzeti od ukupnog broja cifara u broju, tj. n. Dobijamo formulu za izračunavanje razlike između lepog broja i datog broja, prolaskom kroz samo prvih 10 cifara lepog broja, formula je $n-\sum_{i=1}^{10} cifre_{i,c_i}$.

KOMBINATORIKA ZADACI