# viUniEmbedRerank: A Unified Multimodal Embedding Architecture Through Early-Stage Semantic Fusion

Nguyen Anh Nguyen\* (EraX) & Gtel Mobile JSC (GMobile) – Vietnam

\*Corresponding Author: nguyen@hatto.com

#### Abstract

We introduce viUniEmbedRerank, a novel architecture that collapses the conventional multi-stage search pipeline into a single, unified multimodal embedding model. Our core innovation, Early-Stage Semantic Fusion, directly confronts the inherent limitations of "late-stage reasoning" prevalent in dual-encoder models. By enforcing token-level, cross-modal interaction before representation pooling, viUniEmbedRerank learns a deeply contextualized embedding space, moving beyond superficial modality tagging to achieve true semantic comprehension. This is supported by a synergistic framework of four key contributions: (1) A Tri-Bucket Loss System that orthogonally applies specialized mathematical objectives to distinct data typologies, resolving catastrophic gradient conflicts; (2) A Data-Driven Hierarchical Warmup Schedule that prioritizes linguistic foundation building, informed by a novel Balanced Intersection Point (BIP) algorithm; (3) Adaptive Norm Control, a Matryoshka-aware mechanism with learnable scaling that dynamically manages the gradient-expressiveness trade-off; and (4) A Defense-in-Depth Training Framework, featuring a Proactive Filtering Gradient Vaccine and Component-Wise Gradient Clipping, to ensure robust convergence. Trained on a meticulously curated 8.7-million-sample "Five Pillars" dataset, viUniEmbedRerank produces a single, calibrated vector capable of both high-throughput retrieval and high-fidelity reranking, offering a paradigm shift towards efficient, unified, and truly intelligent multimodal search.

### 1. Introduction: Deconstructing the Fragmented Search Paradigm

The predominant paradigm for large-scale multimodal search is architecturally and computationally fragmented. Production systems are almost universally bifurcated into: 1) A fast retrieval stage employing bi-encoders for approximate search, and 2) A slow reranking stage using expensive cross-encoders for precision. This dichotomy creates cascading inefficiencies: doubled infrastructure costs, compounded latencies, and a high risk of irrecoverable relevance loss. Emerging multi-vector approaches like ColPali (Faysse et al., 2024) further exacerbate this issue by generating multiple embeddings per document, creating a fundamental impedance mismatch with standard, single-vector database indices.

We posit that this fragmentation stems from a deeper architectural flaw: **late-stage reasoning**. Existing models compress each modality into information-poor summary vectors *before* any comparison occurs. This premature compression irreversibly destroys the fine-grained, token-level relationships required for complex multimodal understanding. A model asked "What color is the car on the left?" fails because the concepts of "color," "car," and "left" were collapsed into a single vector before their relationship could be established.

viUniEmbedRerank is engineered from first principles to dismantle this flawed paradigm. Our architecture: - Generates a **single**, **production-ready vector** per document, calibrated for both cosine-similarity retrieval

and score-based reranking. - Implements **early-stage reasoning**, forcing cross-modal token interaction *before* representational compression. - Learns a **unified semantic manifold** where Euclidean distance and cosine similarity are imbued with calibrated, real-world relevance, enabling true **cross-modal** (**text-to-image and image-to-text**) search.

### 2. The viUniEmbedRerank Architecture: Reasoning Before Representation

#### 2.1 The Semantic Fusion Breakthrough

The architectural "original sin" of dual-encoders is the premature pooling that separates representation from reasoning. viUniEmbedRerank inverts this paradigm. We introduce a **Semantic Fusion Layer**—a standard nn.TransformerEncoderLayer—that operates on concatenated token sequences, architecturally compelling a state of "symmetric cross-attention" where reasoning precedes representation.

# viUniEmbedRerank: Unified Multimodal Architecture



Mathematically, given token-level hidden states  $\mathbf{H}_A \in \mathbb{R}^{n_A \times d}$  and  $\mathbf{H}_B \in \mathbb{R}^{n_B \times d}$ , our fusion mechanism is:

$$\mathbf{H}_{fused} = \mathbf{TransformerEncoder}([\mathbf{H}_A; \mathbf{H}_B], \mathbf{M}_{pad})$$

The self-attention mechanism,  $\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{\operatorname{QK}^T}{\sqrt{d_k}})V$ , now operates on a combined key-value space where  $K,V \in \mathbb{R}^{(n_A+n_B)\times d}$ . This forces every token from  $H_A$  to compute an attention score with every token from  $H_B$ , and vice-versa, creating a deeply contextualized, pre-reasoned state.

### 2.2 Core Architectural Components

- Backbone: Qwen2-VL-2B-Instruct. The vision tower is frozen; the language model components are fully trainable.
- Fusion Layer: A standard nn. TransformerEncoderLayer acting as the "reasoning chamber."
- Attention Pooling (MultiHeadAttentionPooling): A multi-head attention layer with a learnable query vector,  $\mathbf{w}_{query} \in \mathbb{R}^d$ , that learns to distill the most salient information from the fused sequence.
- Enhanced Projection (EnhancedEmbeddingProjection): A final two-layer MLP that produces the embedding, incorporating our Adaptive Norm Control system.

### 3. The Physics of the Embedding Space: A Duality of Forces

A stable embedding space is a hard-won equilibrium between a **centripetal "pull" force** (attraction) and a **centrifugal "push" force** (repulsion). Our loss architecture is designed to precisely engineer this duality to prevent model cheating and representational collapse.

### 3.1 The "Pull" Force: Forging Semantic Links for Search & Reranking

• Absolute Alignment (InfoNCE): For cross-modal search, our ocr\_vqa\_loss uses InfoNCE as a powerful gravitational pull, crucial for forcing an image vector and its corresponding text vector to co-locate in the embedding space.

$$\mathcal{L}_{\text{pull-strong}} = -\log \frac{\exp(\sin(A_i, P_i)/\tau)}{\sum_{i} \exp(\sin(A_i, N_j)/\tau)}$$

• Calibrated Alignment (MSE): For reranking, the text\_pair\_loss uses an MSE component to ensure the final distance precisely reflects the ground-truth score s.

$$\mathcal{L}_{\text{pull-calibrated}} = ||\sigma(\sin(A,P)) - s||_2^2 \quad \text{where} \quad \sigma(x) = (x+1)/2$$

# 3.2 The "Push" Force: Preventing the Singularity (Collapse)

- Global Repulsion (The "Big Bang"): Our hard\_negative\_loss acts as a universe-expanding force. By applying  $\mathcal{L}_{\text{push-global}} = \mathbb{E}[1 + \cos(\mathbf{e}_A, \mathbf{e}_B)]$  to cross-domain pairs, it carves out vast "semantic oceans" between unrelated concepts.
- Targeted Defensive Repulsion (zero-push): This is our most advanced mechanism, a "smart" push force that only activates to penalize mistakes.

$$\mathcal{L}_{\text{push-defense}} = \lambda_{\text{push}} \cdot \mathbb{E}_{\text{neg}}[(\text{ReLU}(\text{sim}(A_i, N_i)))^2]$$

The ReLU ensures it only applies to negative pairs with erroneously high similarity. The quadratic term  $(\cdot)^2$  creates an exponentially larger penalty for more severe mistakes, acting as an aggressive, non-linear "immune response" against the symptoms of collapse.

### 4. Defense-in-Depth: A Framework for Stable Multimodal Training

Based on analysis of over 24 systematic failures, we engineered a multi-layered defensive framework.

### 4.1 Proactive Filtering GradientVaccine

Our Gradient Vaccine is a proactive data filter. Based on a logarithmic growth schedule,  $p_{vision}(t) = \min(1.0, p_0 \cdot r^t)$ , it stochastically determines if a batch can contain multimodal samples. With  $p_0 = 0.02, r = 1.0005$ , the model is guaranteed a "text-first" curriculum, building a robust linguistic foundation before full multimodal integration occurs around step 7,800.

### 4.2 Data-Driven Hierarchical Warmup (BIP Algorithm)

We introduce a novel Balanced Intersection Point (BIP) algorithm to scientifically determine the warmup duration for text-specific loss weights  $(\lambda_{\text{score}}, \lambda_{\text{rank}}, \lambda_{\text{push}})$  and temperature  $\tau$ . The text\_warmup\_steps ( $\approx 4,413$ ) is calculated to complete just as the GradientVaccine allows the flow of multimodal data to reach its natural distribution ratio in the dataset ( $\approx 39\%$ ). This is paired with a hierarchical learning rate structure that protects semantic anchors (lr\_embeddings = base\_lr / 10.0) while aggressively training new components (lr\_new\_layers = base\_lr \* 3.0).

### 4.3 Adaptive Norm Control & Component-Wise Clipping

We employ a two-pronged strategy to manage gradients: 1. Adaptive Norm Control: This differentiable mechanism allows the model to learn the optimal embedding norm. The projection head outputs an embedding  $e'_d$  for each Matryoshka dimension d via:

$$\mathbf{e}_d' = \underbrace{\text{F.normalize}(\mathbf{e}_d)}_{\text{Direction Only}} \cdot \underbrace{\sigma(\mathbf{s}_d)}_{\text{Learnable Magnitude}}$$

where  $s_d$  is a learnable nn.Parameter and  $\sigma(x) = \text{clamp}(x, 5.0, 20.0)$  is a soft guardrail. This decouples the learning of direction and magnitude. 2. Component-Wise Gradient Clipping: We apply different clipping thresholds to different parts of the model, acknowledging their varying stability. For instance, newly initialized layers like the fusion\_layer and embedding\_head receive a stricter clip value (e.g., 5.0) than the more stable, pretrained backbone layers (e.g., 1.0).

#### 5. The Five Pillars Dataset Architecture

Our 8.7M sample dataset enforces a "zero contamination" principle (no image is used across multiple task pillars) and is structured into five pillars to provide clean, non-conflicting learning signals.

| Pillar               | Samples        | Purpose                                  | Data Type Handled      |
|----------------------|----------------|------------------------------------------|------------------------|
| 1. Linguistic        | 4.2M text      | Build nuanced understanding (1:4.3       | contrastive_with_scor  |
| Foundation           | pairs          | binary/continuous ratio)                 |                        |
| 2. Semantic          | 1.1M hard text | Force understanding beyond keyword       | contrastive_with_score |
| Stress-Test          | pairs          | matching                                 |                        |
| 3. High-Fidelity     | 1.7M           | Develop precise visual-textual alignment | ocr, vqa_multi         |
| Grounding            | OCR/VQA        |                                          |                        |
| 4. Domain Insulation | 1.0M           | Create clear boundaries between          | cross_domain_negative  |
|                      | cross-domain   | semantic domains                         | _ •                    |

| Pillar        | Samples     | Purpose                             | Data Type Handled |
|---------------|-------------|-------------------------------------|-------------------|
| 5. Conceptual | 0.65M image | Learn abstract visual-to-linguistic | image_caption     |
| Bridging      | captions    | mappings                            |                   |

This distribution ensures a 61% text-only majority, supporting our "text-first" training philosophy.

# 6. Matryoshka Integration for Production Flexibility

viUniEmbedRerank natively supports Matryoshka Representation Learning (Kusupati et al., 2022). Loss is computed across all specified dimensions, weighted quadratically to prioritize higher-dimensional representations:

$$\mathcal{L}_{\text{total}} = \sum_{d \in D} w_d \cdot \mathcal{L}_d, \quad \text{where} \quad w_d = \frac{(d/d_{max})^2}{\sum_{k \in D} (k/d_{max})^2}$$

This, combined with our per-dimension Adaptive Norm Control, provides unparalleled production flexibility, enabling a dynamic trade-off between retrieval speed (using 512-d) and reranking accuracy (using 2048-d) from a single vector.

#### 7. Conclusion

viUniEmbedRerank represents a fundamental rethinking of multimodal search architectures. By rejecting late-stage reasoning in favor of early token-level fusion, implementing an orthogonal multi-objective loss system, and engineering a comprehensive defense-in-depth framework, we create a unified model that eliminates the retrieval-reranking pipeline dichotomy. The resulting system is not only capable of high-fidelity search across text and images but is also architected for robust, stable, and efficient production deployment. Full benchmarking results against SOTA models are forthcoming.

## 8. References

Faysse, M., et al. (2024). ColPali: Efficient Document Retrieval with Vision Language Models. arXiv:2407.01449. Kusupati, A., et al. (2022). Matryoshka Representation Learning. NeurIPS.

Li, J., et al. (2023). BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models. *ICML*.

Wang, L., et al. (2023). Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond. arXiv:2308.12966.