CMPE 185 Autonomous Mobile Robots

Perception: Learning Based Object Classification and Detection

Dr. Wencen Wu
Computer Engineering Department
San Jose State University

Computer Vision

• Enable robot vision to build environment maps and localize your mobile robot

Example: Waymo Experience – Sensor Fusion

Example: Autonomous Parking

Image Classification

- K classes
- Task: assign correct class label to the whole image

Digit classification (MNIST)

Object recognition (Caltech-101)

Classification v.s. Detection

Classification

Detection

Problem Formulation

- When performing object detection, we wish to obtain:
 - A **list of bounding boxes**, or the (x, y)-coordinates for each object in an image
 - The class label associated with each bounding box
 - The probability/confidence score associated with each bounding box and class

{ airplane, bird, motorbike, person, sofa }

Object Detection in Autonomous Driving

Evaluating a Detector

Test image (previously unseen)

First Detection

person' detector predictions

Second Detection

person' detector predictions

Third Detection

person' detector predictions

Compare to Ground Truth

'person' detector predictions

ground truth 'person' boxes

Sort by Confidence

Evaluation Metric

$$precision@t = \frac{\#true\ positives@t}{\#true\ positives@t + \#false\ positives@t} \qquad \frac{\checkmark}{\checkmark + \times}$$

$$recall@t = \frac{\#true\ positives@t}{\#ground\ truth\ objects}$$

Machine Learning Based Object Detection

Traditional Programming v.s. Machine Learning

Traditional Programming

Machine Learning

Why Machine Learning is Hard?

A brown trunk moving upwards and branching with leaves...?

Is this a tree?

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Supervised Learning: Classification

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function f(x) to predict y given x
 - y is categorical == classification

Supervised Learning: Classification

- x can be multi-dimensional
 - each dimension corresponds to an attribute:
 - o clump thickness
 - o color
 - o distance from optic nerve
 - 0 ...

- Cell type is the most telling feature, but it's risky to do a biopsy of the eye
 - ML can help determine when a feature is needed

Supervised Learning: Multiclass Classification

- Multiclass classification problems
 - Written digits \rightarrow 0, 1, ..., 9
 - Pictures → apple, orange, strawberry
 - Emails → spam, primary, social, promotion

Example Data from ImageNet

Machine Learning Example

Digit recognition

Each digit is a 16×16 image.

$$\mathbf{x} = (1, x_1, \dots, x_{256}) \leftarrow \text{input}$$
 $\mathbf{y} = \mathbf{b}$

The Key Players

- Pictures $= \text{input } \mathbf{x} \in R_{\bullet}^{\bullet} = X$
- Classes: cat, dog, desk, etc....,
 - output $y \in \{1, 2, ...\} = Y$
- True relationship between x and y
 - target function $f: X \rightarrow Y$
- Data
 - data set $D = (\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$
 - $y_n = f(\mathbf{x}_n)$
- learn
- X, Y, and D are given by the learning problem; the target f is fixed but unknown

We learn the function f from the data **D**

Learning

 Start with a set of candidate hypotheses H which you think are likely to represent f

$$H = \{h_1, h_2, ...,\}$$

H is called the hypothesis set or model

- Select a hypothesis h from H. The way we do this is called a learning algorithm
- Use h for new input. We hope $h \approx f$
- Again, X, Y, and D are given by the learning problem;
 the target f is fixed but unknown

We choose *H* and the learning algorithm

This is a very general setup (e.g. choose H to be all possible hypotheses)

Revisit: Digit Recognition Problem

Digit recognition

Each digit is a 16×16 image.

$$\mathbf{x} = (1, x_1, \dots, x_{256}) \leftarrow \text{input}$$

 $\mathbf{w} = (w_0, w_1, \dots, w_{256}) \leftarrow \text{linear model}$

Hypothesis:
$$h = g(\mathbf{w}^T \mathbf{x})$$

e.g.,:
$$h = sign(\mathbf{w}^T \mathbf{x})$$

Machine Learning Example

• Feature: an important property of the input that you think is useful for classification, e.g.,

Neural Network

How does a neural network work?

Input Activation function
$$\mathbf{x} = (x_1, x_2 ...,)^T$$
 $a_j = g(\mathbf{w}_j^T \mathbf{x})$

Activation function

$$a_j = g(\boldsymbol{w}_j^T \boldsymbol{x})$$

Example:

$$g(t) = \frac{1}{1 + e^{-t}}$$

Goal: learn w!

Neural Network for Object Classification

Car

Motorcycle

Truck

$$h_{\Theta}(\mathbf{x}) \in \mathbb{R}^K$$

We want

$$h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 when pedestrian

$$h_{\Theta}(\mathbf{x}) pprox \left[egin{array}{c} 0 \ 1 \ 0 \ 0 \end{array}
ight]$$
 when car

$$h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 0 \ 1 \ 0 \ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 0 \ 0 \ 1 \ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 0 \ 0 \ 0 \ 1 \end{bmatrix}$$
 when pedestrian when car when motorcycle when truck

$$h_{\Theta}(\mathbf{x}) pprox \left[egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array}
ight]$$

when truck

Neural Network for Object Classification

$$h_{\Theta}(\mathbf{x}) \in \mathbb{R}^K$$

• We want

$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 when pedestrian when car when motorcycle when truck

- Given $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\}$
- Must convert labels to 1-of-K representation
 - e.g., $y_i = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}^T$ when motorcycle, $y_i = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}^T$ when car

• Thank You!