Лекция 13. Непрерывность функции многих переменных.

Пусть функция f(x) задана на множестве $X \subset \mathbb{R}^n$, $a \in X$, a является предельной точкой множества X .

Определение 1 (формальное). Функция f(x) непрерывна в точке a, если $\lim f(x) = f(a).$

Определение 2 (Коши). Функция f(x) непрерывна в точке a, если для любого $\varepsilon > 0$ найдется число $\delta = \delta(\varepsilon) > 0$ такое, что для любой точки $x \in D_f$, для которой $\rho(x,a) < \delta$, выполнено: $|f(x) - f(a)| < \varepsilon$.

Определение 3 (Гейне). Функция f(x) непрерывна в точке a, если для любой аргументов $\left\{x^{m}\right\}$, $x^{m} \xrightarrow[m \to \infty]{} a$, соответствующая последовательности последовательность значений функции $f(x^m) \xrightarrow[m \to \infty]{} f(a)$.

Эквивалентность определений 1, 2 и 3 сразу следует из эквивалентности определений предела функции по Коши и по Гейне.

Пусть множество $X \subset \mathbb{R}^n$ таково, что любая его точка является для него предельной. **Определение 4.** Функция f(x), определенная на множестве X, называется непрерывной на этом множестве, если она непрерывна в каждой точке $x \in X$.

Обозначим $\Delta x_1 = x_1 - a_1$, ..., $\Delta x_n = x_n - a_n$ - приращения аргументов. Тогда $\Delta f(x) = f(x) - f(a) = f(a_1 + \Delta x_1, ..., a_n + \Delta x_n) - f(a_1, ..., a_n)$ - приращение функции f(x) в точке а.

Отметим, что функция f(x) непрерывна в точке a тогда и только тогда, когда $\lim_{x\to a} \Delta f(x) = 0$, что равносильно: $\lim_{\Delta x_1\to 0} \Delta f(x) = 0$.

Определение 5. Пусть $\Delta_k f(x) = f(a_1, ..., a_{k-1}, a_k + \Delta x_k, a_{k+1}, ..., a_n) - f(a_1, ..., a_n)$ частное приращение функции f(x) в точке a, соответствующее ли приращению Δx_k . Функция f(x) называется непрерывной в точке а по переменной x_k , если $\lim_{\Delta x_k \to 0} \Delta_k f(x) = 0.$

Замечание. Если функция непрерывна в некоторой точке, то она непрерывна в этой точке по каждой из переменных. Обратное, вообще говоря, неверно.

Примеры. 1) Пусть
$$f(x,y) = \begin{cases} \frac{(x+y)^2}{x^2+y^2}, & x^2+y^2 \neq 0 \\ 1, & x^2+y^2 = 0 \end{cases}$$
. Тогда $\lim_{\Delta x \to 0} f(0+\Delta x,0) - f(0,0) = \lim_{\Delta x \to 0} \left(\frac{(\Delta x)^2}{(\Delta x)^2} - 1 \right) = 0$. Значит, функция $f(x,y)$ непрерывна по x в точке $(0,0)$.

$$=\lim_{\Delta x \to 0} \left(\frac{(\Delta x)^2}{(\Delta x)^2} - 1 \right) = 0$$
. Значит, функция $f(x, y)$ непрерывна по x в точке $(0, 0)$.

Аналогично доказывается непрерывность по y в точке (0,0). Однако f(x,y) не является непрерывной в начале координат: пусть $x_m = \frac{1}{m}$, $y_m = -\frac{1}{m}$, тогда $f(x_m, y_m) \equiv 0$. Мы получили, что последовательность $\{(x_{\scriptscriptstyle m},y_{\scriptscriptstyle m})\}$ — \longrightarrow (0,0), но $\{f(x_{\scriptscriptstyle m},y_{\scriptscriptstyle m})\}$ не стремится при $m \to \infty$ к f(0,0) = 1, то есть функция f(x,y) не является непрерывной в точке (0,0)по совокупности аргументов (т.к. не выполняется определение Гейне).

совокупности аргументов (т.к. не выполняется определен 2) Рассмотрим функцию
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4+y^2}, & x^2+y^2 \neq 0, \\ 0, & x^2+y^2 = 0 \end{cases}$$

На любой прямой y = kx, $k \neq 0$, имеем:

На любой прямой
$$y=kx,\ k\neq 0$$
, имеем:
$$\lim_{(x,y)\to(0,0)}f(x,y)=\lim_{x\to 0}\frac{kx^3}{x^4+k^2x^2}=\lim_{x\to 0}\frac{kx}{x^2+k^2}=0=f(0,0)$$
 При этом на кривой $y=x^2$:

При этом на кривой
$$y=x^2$$
:
$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{x\to 0} \frac{x^4}{x^4+x^4} = \lim_{x\to 0} \frac{1}{2} = \frac{1}{2} \neq f(0,0)$$
 то есть функция разрывна в точке $(0,0)$

Теорема 1. Пусть функции f(x) и g(x) определены на множестве $X \subset \mathbb{R}^n$. Если f(x) и g(x) непрерывны в точке $a \in X$, то функции $(f(x) \pm g(x)), (f(x) \cdot g(x)), \frac{f(x)}{g(x)}$ (при $g(a) \neq 0$) непрерывны в точке a.

Доказательство теоремы 1 следует из определения непрерывности функции в точке и теоремы об арифметических операциях над функциями, имеющими предел.

Определение 6. Пусть $x_1 = \varphi_1(t_1, ..., t_k)$, ..., $x_n = \varphi_n(t_1, ..., t_k)$ - функции, заданные на множестве $T \subset \mathbb{R}^k$. Тогда любой точке $t \in T$ можно поставить в соответствие точку $x=(x_1,\ldots,x_n)=(\varphi_1(t),\ldots,\varphi_n(t))\in\mathbb{R}^n$. Пусть $X\subset\mathbb{R}^n$ - множество всех таких точек x. Если на множестве X задана функция $f(x):X\to\mathbb{R}$, то говорят, что на множестве T задана сложная функция $f(x_1(t_1,...,t_k),...,x_n(t_1,...,t_k)) = f(x(t)): T \to \mathbb{R}$.

Теорема 2 (непрерывность сложной функции). Пусть функции $x_1 = \varphi_1(t_1,...,t_k)$, ..., $x_n = \varphi_n(t_1, ..., t_k)$ непрерывны в точке $a = (a_1, ..., a_k) \in T$, а функция $f(x_1, ..., x_n)$ непрерывна в точке $b=(b_1,...,b_n)$, где $b_j=\varphi_j(a_1,...,a_k)$, j=1,...,n. Тогда сложная функция f(x(t)) непрерывна в точке a.

Доказательство. Пусть последовательность $\{t^m\} = \{(t_1^m, ..., t_k^m)\}$ точек множества Tсходится к точке $a = (a_1, ..., a_k) \in T$. Обозначим $x_j^m = \varphi_j(t_1^m, ..., t_k^m), j = 1, ..., n$; $\{x^m\} = \{(x_1^m, ..., x_n^m)\}$. Так как все функции $\varphi_i(t)$ непрерывны в точке a, то последовательность $\{x^m\}$ сходится к $b = (\varphi_1(a), ..., \varphi_n(a))$ (здесь мы пользуемся определением непрерывности функции по Гейне, а также тем фактом, последовательность точек пространства \mathbb{R}^n сходится тогда и только тогда, когда она сходится покоординатно). Поскольку функция $f(x_1,...,x_n)$, в свою очередь, непрерывна в точке $b = (b_1, ..., b_n)$, $b_i = \varphi_i(a_1, ..., a_k)$, то числовая последовательность $\{f(x^m)\}$ сходится к f(b). Мы получили, что для любой последовательности аргументов $\{t^m\} = \{(t_1^m, ..., t_k^m)\},$ сходящейся к точке a, соответствующая последовательность

значений функции $\{f(x(t^m))\}$ сходится к f(x(a)). Это означает, что сложная функция f(x(t)) непрерывна в точке a. Теорема доказана.

Теорема 3 (сохранение знака). Если функция f(x) определена в некоторой окрестности точки $a \in \mathbb{R}^n$, непрерывна в точке a и f(a) > 0 (< 0) то существует число $\delta > 0$ такое, что f(x) > 0 (< 0) для любой точки $x \in B_{\delta}(a)$.

Доказательство. Пусть f(a)>0 (случай противоположного знака рассматривается аналогично). Обозначим $\varepsilon=\frac{f(a)}{2}$. Тогда $\varepsilon>0$ и существует $\delta>0$ такое, что $|f(x)-f(a)|<\varepsilon$ для любого x, $\rho(a,x)<\delta$ (определение Коши непрерывности функции в точке). Раскрывая модуль, получим: $0<\frac{f(a)}{2}< f(x)<\frac{3f(a)}{2}$ для любого $x\in B_{\delta}(a)$. Теорема доказана.

Теорема 4 (прохождение через промежуточные значения). Пусть множество $X \subset \mathbb{R}^n$ линейно связно, и функция f(x) непрерывна в каждой точке множества X. Если точки $a,b \in X$, а число γ лежит между f(a) и f(b), то на любой непрерывной кривой, соединяющей точки a и b и принадлежащей множеству X, найдется точка c такая, что $f(c) = \gamma$.

Доказательство. Пусть кривая L задается уравнениями $x_1 = \varphi_1(t)$, ..., $x_n = \varphi_n(t)$, $\alpha \le t \le \beta$, все функции $\varphi_k(t)$ непрерывны на отрезке $[\alpha, \beta]$, причем L целиком принадлежит множеству X. Тогда на отрезке $[\alpha, \beta]$ задана функция $f(x_1(t), ..., x_n(t))$, которая является непрерывной на $[\alpha, \beta]$ по теореме о непрерывности сложной функции. Поскольку f(x(t)) является числовой функцией аргумента t, то (по теореме о прохождении непрерывной функции через любое промежуточное значение) для любого числа γ , лежащего между $f(x(\alpha))$ и $f(x(\beta))$, найдется точка $\xi \in [\alpha, \beta]$ такая, что $f(x(\xi)) = \gamma$. Пусть $c \in \mathbb{R}^n$ - точка с координатами $(\varphi_1(\xi), ..., \varphi_n(\xi))$. Тогда $c \in L$, $f(c) = \gamma$. Теорема доказана.

Теорема 5 (первая теорема Вейерштрасса). Если функция f(x) непрерывна на замкнутом ограниченном множестве $X \subset \mathbb{R}^n$, то она ограничена на этом множестве.

Доказательство. Пусть это не так. Тогда для любого натурального числа m найдется точка $x^m \in X$ такая, что $\left| f(x^m) \right| > m$. Последовательность $\{x^m\}$ ограничена (поскольку ограничено множество X), значит, из нее можно выделить сходящуюся подпоследовательность $\{x^{k_m}\}$ (теорема Больцано-Вейерштрасса). Пусть $x^{k_m} \xrightarrow[m \to \infty]{} x_0$. Так как множество X замкнуто, то оно содержит все свои предельные точки. Следовательно, $x_0 \in X$. Тогда функция f(x) непрерывна в точке x_0 и последовательность $\{f(x^{k_m})\}$ должна сходиться при $m \to \infty$ к числу $f(x_0)$. Но последовательность $\{f(x^{k_m})\}$ - бесконечно большая (так как $\left| f(x^{k_m}) \right| > k_m$ для любого m). Значит, наше предположение неверно, и функция f(x) ограничена на множестве X. Теорема доказана.

Определение 7. Точной верхней (нижней) гранью функции f(x) на множестве $X \subset \mathbb{R}^n$ называется действительное число M(m) такое, что

- 1) $f(x) \le M$ $(f(x) \ge m)$ для любого $x \in X$;
- 2) для любого числа $\varepsilon > 0$ найдется точка $x' \in X$ такая, что $f(x') > M \varepsilon$ $(f(x') < m + \varepsilon)$.

Теорема 6 (вторая теорема Вейерштрасса). Если функция f(x) непрерывна на замкнутом ограниченном множестве $X \subset \mathbb{R}^n$, то она достигает на этом множестве своих точной верхней и точной нижней граней.

Доказательство. Пусть $M=\sup_X f(x)$. Если f(x)< M для любого $x\in X$, то функция $F(x)=\frac{1}{M-f(x)}$ непрерывна на множестве X и F(x)>0 для любого $x\in X$. Значит, согласно первой теореме Вейерштрасса, существует число A>0 такое, что $F(x)\leq A$ при всех $x\in X$. Тогда $f(x)\leq M-\frac{1}{A}< M$ для любого $x\in X$. Мы пришли к противоречию с определением точной верхней грани. Значит, наше предположение неверно, и существует точка $x_0\in X$ такая, что $f(x_0)=M$. Случай точной нижней грани рассматривается аналогично. Теорема доказана.

Определение 8. Пусть множество $X \subset \mathbb{R}^n$ таково, что любая его точка является предельной. Функция f(x) равномерно непрерывна на множестве X, если для любого $\varepsilon > 0$ найдется число $\delta = \delta(\varepsilon) > 0$ такое, что для любых двух точек $x', x'' \in X$, $\rho(x',x'') < \delta$, выполнено: $|f(x') - f(x'')| < \varepsilon$.

Теорема 7 (теорема Кантора). Если функция f(x) непрерывна на замкнутом ограниченном множестве $X \subset \mathbb{R}^n$, то она равномерно непрерывна на этом множестве.

Доказательство. Пусть f(x) непрерывна, но не равномерно непрерывна на X . Тогда существует $\varepsilon>0$ такое, что для любого натурального числа m найдутся точки $x'_m, x''_m \in X$, для которых $\rho(x'_m, x''_m) < \frac{1}{m}$, но

(1)
$$|f(x'_m) - f(x''_m)| \ge \varepsilon.$$

Последовательность $\{x_m'\}$ ограничена, следовательно, из нее можно выделить сходящуюся подпоследовательность $\{x_{k_m}'\}$. Пусть $x_{k_m}' \xrightarrow[m \to \infty]{} x_0$. Так как множество X замкнуто, то $x_0 \in X$. Функция f(x) непрерывна в точке x_0 , значит, $f(x_{k_m}') \xrightarrow[m \to \infty]{} f(x_0)$

С другой стороны, так как $\rho(x'_{k_m}, x''_{k_m}) < \frac{1}{k_m}$, то последовательность $\{x''_{k_m}\}$ также сходится к точке x_0 при $m \to \infty$. Значит, $f(x''_{k_m}) \xrightarrow[m \to \infty]{} f(x_0)$. Тогда получаем, что $\left|f(x'_{k_m}) - f(x''_{k_m})\right| \xrightarrow[m \to \infty]{} 0$. Это противоречит неравенству (1). Следовательно, наше предположение неверно, и функция f(x) равномерно непрерывна на множестве X. Теорема доказана.