

Partial Sequence of the Crystal Protein Gene

AAGTCGATTTATATAAAGTATAAAGCTTAAAGCTTAAAGCTTAAACGGATACAAAACCTTAATGCATTGGTTAACATTGTAAAGTCTAA
 CCATGCCATAATGGCCAGAAGTAACTGAGTTGTTAACACCCCTGGCTAAAAATGTATTTAGTGAATTAGTGCACCTTGCCATTITTCATAGAT
 CAGTCATATGTTAAATTGTACTAATGAAAGAGTATTATATCATATAATGAAITGGTATCTTATAAAAAGAGATGGAGGTAACCTTATGGATAACATCC
 MetAspAsnAsnNPr
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000
 1100
 1200
 1300
 1400
 1500

GACATCAATGATTCATTCTTATAATTGTTAAAGTAACTCTGAACTGAGTATTAGGTGGAGAAAAGAATAGAAACTGGTTACACCCCATCGATATT
 DsialleAsnAGlyCysIleProTyRAsnCysLeuSerAsnProGluYaaIgluValIleGlyGlyGluArgIleGluThrGlyTyrThrProIleAspIle
 TCTGTGCGCTAACCCATTCTTGTAGTGAAATTGTCCTCCGGTCTCGGATTGCTTAGGACTAGTGTATAATAATGGGAAATTGGCTCCCTCTC
 SerIleSerLeuThrGlpheLeuSerGluPheValIleProGlyAlaGlyLeuValAspIleIleTrpGlyIlePheGlyProSer
 AAIGGGACCCATTCTCTGACAAAGCTTAAATTACCAAGAAATAGAAGAAATTCCGCTAGGAAACCCATTCTAGATTAGAGCGACTAAAGCAA
 ITrpAspAlaPheLeuValIleGluGlnLeuIleAsnGlnArgIleGluGluPheAlaArgAsnGlnAlaIleSerArgLeuGluGlyLeuSerAs
 TCTTATCAAAATTACCGCAAACTCTTGTAGAGCTGGAAACAGATCCACTAAATCCAGCATTAAGAGAGAGACATGGCTATTCAATTCACTACATGAA
 AluIleTyrGlnIleIleTyrAlaGluSerPheArgGluIleAlaAspProThrAsnProAlaLeuArgGluGluMwLargIleGlnPheAsnAspMetAsn
 AGTGGCCCTTACALCCGGTAACTCTCTTTCAGTYCAGTTCAGAAATTCAAGTTCCTCTTTATCAGTATAATGTTCAAGCTGCAGATTATCATTATCAGTT
 SerAlaLeuThrThrAlaIleProLeuPheAlaValGlnAlaIleTyrGlnValIleProLeuLeuSerValIleTyrValGlnAlaAlaAsnLeuHisLeuSerValIle
 TGAGAGATGTTTCAGTGTGTTGGACAAAGGTGGGATTGATGCCGCACTAGCAATAGTCGTTATAATGTTAACTAGGCTTATGGCAACTATACAGA
 euArgAspValSerValPheGlyGlnArgIleGlyPheAspAlaAlaThrSerAsnSerArgTyrAsnAspLeuThrArgLeuIleGlyAsnTyrThrAs
 TTATGCTGTGACCGCTGGTACAAATACCGGATAGAACCTGTATGGGACCCGATTCTAGACGATTGGTAAAGTTAAATCAATTAGAAGAGAAATTAACTA
 DTrpAlaIleValArgTrpIleTrpIleThrGlyIleGluArgValTrpGlyProAspSerArgAspTrpValArgTyrAsnGluIlePheArgArgGluIleThrLeu
 ACTGTATTACATATCCCTCTGTTCCGAAATTAGTACAGACATATCCAACTCGAACACTGTTCCCAATTAAACAGAAATTATCACAAAC
 ThrValLeuAspIleValAlaLeuPheProAsnTyrAspSerArgArgTyrProIleArgThrValSerGlnLeuThrArgGluIleTyrThrAsnProT
 TATTAGAAUATTGATGCTAGTTCTGAGGCTCAGGGCATAGAAAGAGTATTAGGAGTCACATTGATGGATATACTTAACTGATAACCAT
 aileuGluAsnProAspGlySerPheArgGlySerAlaGlnGlyIleGluArgSerIleArgSerSerHisLeuMetAspIleLeuAsnSerIleThrIle
 CTATACGGATGCCATACGGGTTATTAAATTGGTCAGGGCATAAATAATGGCTTCTCTGTCAGGGTTTCGGGCCAGAACTTCACTTTCCCTATAT
 DTrpThrAspAlaIleIleArgGlyIleTyrIleTrpSerGlyMwLargIleMetAlaIleSerProValGlyPhsSerGlyProGluIleThrPheProLeuTyr
 CGGAACTATGGGAAATGCCACTCACAACAAACCGTTCTGCTCAACTAGGTCAAGGGCGTGTATAAGAACATTATGCTTACACTTATAGAGACCTTTA
 GlyThrMetGlyAsnAlaIleAspProGlnGlnIleGlyValIleGlyGlnGlyIleTyrArgThrLeuSerSerThrLeuThrArgArgProPhsI
 ATATACGGGATAAAATCAACATCTCTCTTGTAGCCGACAGATTGCTTATGAAACCTCTCCAAATTGGCCATCCCTGTTACACACAAAC
 aileuGlyIleAsnAsnGlnGlnLeuSerValLeuAspGlyThrGluPheAlaIleGlyThrSerSerAsnLeuProSerAlaIleTyrArgIleSerGly

FIG. 1 - 1

BEST AVAILABLE COPY

AACGGTAGATTCCCGATCAAATACCGCCACAGATAAACACGTGCCACCTAGCCAAAGGATTAGTCATCCATTAAGCCATGTTCAATGTTCCGTC
 yTrpSerValAspGluLeuProGlnAlaAsnYalProProArgGlnGlyPheSerHisArgLeuSerHisValSerNleAspSerHs
 CGCTTTACTTAACTGACTCTAACTAAACAGCTCTAATGTCCTCTGGATACATCGTACTCTGAAATTAAATAATAATTGCATCGATAGTATT
 GluPheSerAsnSerValIleAspGluPheSerValIleAspGluPheAsnAsnIleIleIleIleIleAspSerIleIle
 CTCAAAATCCCTGCACTGAACGGAAACTTCTTTTATCGTTCTGAAATTCAAGCACCGCATTACTCGTGGGGACTTAGTTAGATTAATACTGCT
 hrgGlnIleProAlaValysGlyAsnProLeuPheAsnGlySerValIleSerGlyProGlyPheThrGlyGlyAspLeuValArgLeuAsnSerSerGly
 AAATAACATTCAGAAATCAGGCTATAATTGAGTTCCAAATTCACCTCCCATCCACATCTACACAGATATCCAGTTCTGCTACGGATGCTGTAACCCCG
 yAsnAsnIleGlnAsnArgGlyTyrIleIleAspGluPheProSerTherSerHsArgGlyArgValArgTyrAlaSerValThrPro
 ATTCACTCTAACGTTAACTGGGTAATTCTCCATTACACTACAGTACCCACCTACACGCTCATTAGATAATCTACAACTCAAGTCATTTCGTT
 IleAsnIleAsnYalAsnTrpGlyAsnSerSerIleAspSerAlaThrAlaIleSerLeuAspAsnLeuGlnSerSerAspPheGly
 ATTTTGAAAGTCCCATTGCTTTTACATCTCATTAGCTAAATAACTAGCTGGTTAGAAATTTTACTGGCAACTCACAGAGTCATAATAACAGATTGCAATT
 yPheGluSerAlaAsnIleAspPheThrSerSerIleAspGlyAsnIleIleAspGlyValIleAspArgPheGluPhe
 TATTCCAGTTACTGCCAACACTCGAGGCTGAATAATACTCGGAAAGAGGCCAGAACAGCCGCTGAATCGCCCTGTTACGCTCTACAAACCCAACTAGCCGCTAA
 IleProValIleAlaIleLeuGlyValGlyArgAlaGlnYalAsnIleLeuPheThrSerThrAsnGlnIleGlyLeuLys
 ACAAAATGTAACGCAATTATCATATGCAAGTGTCAATTAGTTACGTTATTTTCTGGATCAATTTCCTGGATCAUAGCCAGAAATTGTCAGGAAAC
 TrpAsnValThrAspTyrHsIleAspGlnValSerAsnLeuValThrIleAspPheCysLeuAspGluLysArgGluLeuSerIleIle
 TCAAACATGCCAACGGCACTCACTGATGAAACGCAATTACTGCCAACGATTCAAAAGACATTAAATAGGCAACCAAAACGCGGTGGGGCCGGAACTAC
 IleAsnHsIleAsnIleLeuSerAspGluArgAsnLeuLeuGlnAspSerAsnPhesAspIleAsnArgGlnProGluArgGlyTrpGlyGlySerTh
 ACCGATTACCATCAGGAGGGATGAGCTATTAAACAAATTACTGCAACTATCACGGTACCTTGTAGTACTGCTATCAAAACATATTGTCATAAA
 rGlyIleThrIleGlnGlyAspAspValAspGlyIleAsnTyrValIleLeuSerGlyThrAspGluCysTyrProThrIleLeuTyrglyAsn
 ATCCGATCAATCAAAATTAAACGCTTTACCGGTATCATTAAAGCGGTATATCCGAAAGATAGTCAGAGCTTAGAAATCTATAATTCCCTACAACTCA
 IleAspGluSerIleLeuIleIleAspThrArgTyrIleIleAspSerGlnAspLeuGluIleIleLeuArgIleTyrLeuIleArgIleAspAla
 AACATGAAACAGTAAATGTCAGCTTACGGGTTCCTATGCCCGCTTCAAGCTCAGTCCAGAACGTCAGGAAAGTGTGGACACCCCAATTCATGCCCGCA
 yHsIleGluIleAsnIleIleAspProGlyThrGlySerLeuTrpProLeuSerAlaGlnSerProIleIleAspGlyCysAlaAspProHs
 CCTGAAATGGCATTCCCTGACTTACGTTCTGCTTACGGATGGAGAAAGTGTGGCCCATCATTCCCATCATTTCTCCCTACACATTGATGATGATGACA
 IleLeuGluTrpAsnProAspIleIleAspCysSerCysAspAspIleIleIleIleIleIleIleIleIleIleIleIleIleIleIleIleIleIle
 GACTTAAATCACCACTTACGGTATCTGGTCATCTTAAGATAAACACGAAACATGGCCACCCAGACTACGGCAATCTAGAGTTCTCCAGCACAAACAT
 AspLeuAsnGluAspLeuGlyIleIleAspGlyIleIleAspGlyHsIleAsnIleAspGlyLeuGlyAsnIleIleAspPheLeuGluGluIleIleAsp
 TAGTACGGAGAAGCCCTAGCTCTGCTGAAGAACAGCCAGAACAAATGCAAGACAAACCTCAAAATTGCAATGCAAAACCAAAATATCGTTTATAAACACGG
 IleValGlyGluValLeuIleArgVallysArgAlaIle
 AACAAAGAACTCTGAGATGCTTATTGAAACTCTCAATATGATAATTACAACGGGATACGAATTATGCCATGATTCTACGCCAGATAAACCTCTCAT
 IlyGlySerValAspAlaLeuPheValAsnSerGlnIlyAspGlnLeuGlnAlaAspThrAsnIleIleHsIleAlaAspIleAspArgAspHs
 ACCATTCCGACAGCTT
 SerIleArgGluIleIle
 3116

FIG. 1 - 2

BEST AVAILABLE COPY

08/478153

Map of pTi15955 T-DNA

FIG. 2

BEST AVAILABLE COPY

08/478153

R = Eco R I
C = Cla I
H = Hind III
B = Bam H I

FIG. 3

BEST AVAILABLE COPY