

Uni.lu HPC School 2021

PS7: HPC Containers with Singularity

Uni.lu High Performance Computing (HPC) Team

<u>Dr. E. Kieffer</u>

University of Luxembourg (UL), Luxembourg

http://hpc.uni.lu

Latest versions available on Github:

UL HPC tutorials:

UL HPC School:

PS7 tutorial sources:

https://github.com/ULHPC/tutorials

hpc.uni.lu/education/hpcschool

ulhpc-tutorials.rtfd.io/en/latest/virtualization/singularity

Summary

- Introduction
- 2 HPC Containers

Main Objectives of this Session

- \hookrightarrow what they are and where they help
- → will focus on Singularity container system

The tutorial will show you...

- how to use Singularity containers on the UL HPC platform
 - → how to build containers from a definition file
 - → how to import pre-existing containers
 - → how to use applications embedded in containers
- containerized parallel applications execution
- Please go to readthedocs singularity

Summary

- Introduction
- 2 HPC Containers

A brief intro. to containers

- Application portability
 - → containers bundle together an entire runtime env. (OS to apps.)
 - ⇔ easy replication of environments
- Services isolation
 - \hookrightarrow separate microservices in different containers
- Do more with less
 - ← fast instantiation and tear-down
 - → little memory/CPU overhead
- OS-level virtualization light virtualization
 - → don't spin up a full virtual machine
- Close to native bare metal speed

6 / 11

Common container systems

• Docker https://www.docker.com

- → A new (2013-) take on containers (OpenVZ and LXC came before)
- → High uptake in Enterprise (microservices) & science (reproducibility)
- → In use everywhere (esp. DevOps), available on most Cloud infra.

Shifter

https://github.com/NERSC/shifter

- → Uses Docker functionality but makes it safe in shared HPC systems
- \hookrightarrow Image gateway used to convert Docker images before use

Singularity

https://github.com/sylabs/singularity

- → Containers for science, initially developed at LBNL
- → Not based on Docker, but can directly import/run Docker images
- → Also HPC oriented, diff. take to running MPI software than Shifter
- → Provides an Image Registry

https://github.com/singularityhub/sregistry

High level view of containers vs full virt.

General VM ea ESXi

General Container eg Docker

HPC Container Singularity

Singularity in a nutshell

Many changes in newest v3 Singularity but workflow still similar.

user endpoint: your workstation (admin. privileges required)
shared computational resource: UL HPC clusters

Tutorials

Now it's time to try ...

• Please go to readthedocs – singularity

Thank you for your attention...

Questions?

High Performance Computing @ Uni.lu

University of Luxembourg, Belval Campus Maison du Nombre, 4th floor 2, avenue de l'Université L-4365 Esch-sur-Alzette mail: hpc@uni.lu

1 Introduction
2 HPC Containers

Uni.lu HPC School 2021 Contributors

hpc.uni.lu

