

Representações Gráficas

- Gráficos "Vetoriais"
 - Representados por coleções de objetos geométricos:
 - Pontos
 - Retas
 - Curvas
 - Planos
 - Polígonos

- Gráficos "Matriciais"
 - Amostragem em grades retangulares
 - Tipicamente, imagens digitais:
 - Matrizes de "pixels"
 - Cada pixel representa uma cor
 - Dados volumétricos
 - Imagens médicas
 - Cada pixel representa densidade ou intensidade de algum campo

Representações Vetoriais

- Permitem uma série de operações (quase) sem perda de precisão:
 - Transformações lineares/afim.
 - Deformações.
- Por que "quase"? Estruturas de dados utilizam pontos e vetores cujas coordenadas são números reais.
 - É necessário usar aproximações:
 - Representação em ponto-flutuante.
 - Números racionais.
- Complexidade de processamento = O (nº vértices / vetores).
- Exibição:
 - Em dispositivos vetoriais:
 - Identificar características marcantes na imagem visando a sua representação vetorial.

:

Representações Matriciais

- Representação flexível e muito comum.
- Complexidade de processamento = O (nº de pixels).
- Muitas operações (rotação, escala, etc) implicam em perda de precisão (diversas reamostragens).
 - Técnicas para lidar com o problema:
 - Ex.: técnicas anti-serrilhado (anti-aliasing)
- Exibição:
 - Em dispositivos matriciais:
 - Requer amostragem, i.e., rasterização.
 - Rasterização é o processo de conversão de representações vetoriais para matriciais.
 - Transformar domínio contínuo em domínio discreto.

Dispositivos Gráficos

• Dispositivos Vetoriais:

- ◆ Princípio → A imagem é gerada através de segmentos de retas entre dois pontos.
- Ex: Terminais gráficos vetoriais (obsoletos), traçadores (plotters), dispositivos virtuais (como as linguagens de descrição de página HPGL / Postscript em que a rasterização é implícita.

• Dispositivos Matriciais:

- **Princípio** uma matriz de pontos contém a imagem.
- Ex: Praticamente sinônimo de dispositivo gráfico (impressoras, monitores, *displays*, etc).

5

Displays (Introdução)

Resolução espacial

- Tipicamente de 640x480 até 1600x1200.
- ◆ Tendência de aumento.

• Resolução no espaço de cor

- Monocromático (preto e branco)
 - Praticamente restrito a equipamentos de baixo custo.
- Tabela de cores
 - Cada pixel é representado por um número (tipicamente 8 bits de 0 a 255) que indexa uma tabela de cores (tipicamente RGB 24 bits).
 - Poucas (ex.: 256) cores simultâneas mas cada cor pode ser escolhida de um universo grande (ex.: 2^{24}).

• RGB

- Cor é expressa por quantidades discretas de vermelho (*red*), verde (*green*) e azul (*blue*).
- Tipicamente 24 bits (8 bits para cada componente).
- Problema da quantização de cores:
 - Display de 1024x1024 requer 3MBytes de Buffer (delega ao HD).
 - Usando 3 bytes por pixel \rightarrow Combinação de cores \rightarrow 28x 28x 28 = 16 milhões.
 - Olho humano é capaz de distinguir apenas 350.000 cores.
 - Minimizar o número de bits por cor pode representar vantagens no processamento.

TSP

Displays (Métricas)

• Resolução Espacial

- É o número máximo de pontos que podem ser visualizados sem sobreposição.
- É o número de pontos por cm que podem ser desenhados na horizontal e na vertical.
- ◆ Ex: Resolução 1600x1200 → 1600 pontos nas horizontais e 1200 nas verticais.

• Tamanho Físico do Monitor

- É dado em termos do comprimento da diagonal da tela.
- Ex: monitor de 15", 17", 19", etc.

• Razão de Aspecto (Aspect Ratio)

- Fornece a razão de pontos verticais para pontos horizontais (ou vice-versa) necessários para produzir linhas de mesmo comprimento, em ambas direções.
- Exemplo 1: Monitor com aspect ratio de 3/4.
 - Significa que linha vertical com 3 pontos tem mesmo comprimento que linha horizontal de 4 pontos.
- Exemplo 2: Monitor com resolução de 640x480 pixels, tendo 8" na horizontal (largura) e 6" na vertical (altura).
 - Horizontal \rightarrow 640/8 = 80pixels/pol Vertical \rightarrow 480/6 = 80 pixel/pol
 - Razão de Aspecto → 80/80 = 1
 - Portanto o monitor tem pixels quadrados, i.e., o mesmo tamanho nas direções horizontal e vertical
- Se razão for diferente de 1 a imagem deve ser corrigida para não ficar distorcida.

Displays (Varredura – Parte 1)

- São displays que ainda são utilizados na atualidade.
- Utilizam tubos CRT (Cathodic Ray Tube).
- O feixe de elétrons varre a linha em zigue-zague, i.e., da esquerda para a direita e de cima para baixo.
- Cada linha é constituída por um conjunto de pontos (pixels).

- Os displays podem ser coloridos ou monocromáticos.
- Displays coloridos:
 - Dispõe de três canhões que emitem três feixes de elétrons.

Displays (Varredura - Parte 3)

- Princípio de Geração de Cores (Displays Coloridos)
 - <u>Três canhões</u> que emitem três feixes de elétrons.
 - Os canhões são dispostos de tal forma que incidam sobre a tela em três pontos distintos, onde se encontram depositados <u>três tipos diferentes de</u> <u>fósforo</u> {vermelho (R), verde (G), e o azul (B)}.
 - Os três pontos de fósforo ficam bastante próximos entre si, de tal forma que o olho humano vê um só ponto colorido na tela.
 - Variando-se a aceleração de cada feixe, faz-se com que se varie a <u>intensidade</u> <u>luminosa</u> de cada ponto do fósforo, obtendo-se portanto os inúmeros tons de cores
 - <u>Uma máscara (g</u>rade de sombra) é colocada próximo à camada de fósforo para impedir que um canhão ative o fósforo de uma outra cor.
 - A disposição dos canhões e dos pontos de fósforo podem estar em duas configurações:
 - Triangular (Delta) → Tecnologia descontinuada em virtude da difícil construção da máscara.
 - Retangular → As diferentes cores de fósforo são arranjadas em retângulos formando linhas verticais:
 - Esta tecnologia aumentou muito a resolução dos terminais de varredura por ser mais simples a fabricação da máscara e a deposição do fósforo.

Displays (Varredura - Parte 6)

- Memória de Vídeo:
 - ◆ A memória de vídeo é responsável pela retenção dos dados referentes à imagem a ser mostrada no vídeo.
 - Esta retenção permite o refrescamento contínuo da tela, redesenhando a imagem.
 - Necessidade de refrescamento → a luz emitida pelo fósforo decai com o tempo.
 - Os dados desta imagem ficam armazenados nesta memória de vídeo que é constantemente lida pelo circuito controlador para regenerar a imagem no vídeo.
 - Para cada ponto da matriz de vídeo deve haver uma célula de memória onde se armazena a intensidade do feixe naquele ponto.
 - O tamanho (em bits) da célula fornece o número de cores que podem ser representadas simultaneamente na tela.
 - O conteúdo da célula de memória pode representar dois tipos de informação:
 - A intensidade dos três feixes no ponto.
 - Exemplo: Célula de 24 bits (8 bits por cada cor primária).
 - O endereço de uma tabela de cores.

 - O uso da tabela reduz o tamanho da célula de memória para se obter um número grande de cores, porque cada célula só terá o tamanho do endereço da tabela. Como exemplo, para uma configuração de 8 bits: cada pixel é mapeado em uma memória de vídeo com 8 bits por célula.
 - Cada célula contem o índice da tabela de cores, com 256 posições (28).
 - A tabela de cores mantém 8 bits para cada cor primária.

 » Total de cores: 28x 28x 28 = 16.777.216 cores possíveis.

Displays (Varredura – Parte 8)

- Ilustração da Cores Primárias:
 - Sistemas true color (ou full color) são aqueles com 24 bits/pixel no frame buffer, permitindo 256 intensidades diferentes para cada cor.

R	G	В	valor	cor
0	0	0	0	preto
0	0	1	1	azul
0	1	0	2	verde
0	1	1	3	ciano
1	0	0	4	vermelho
1	0	1	5	magenta
1	1	0	6	amarelo
1	1	1	7	branco

Tabela de cores para 3 bits.

15

TSP

Displays (Varredura - Parte 9)

- Controladora de Vídeo:
 - O <u>circuito controlador</u> de vídeo é responsável:
 - Pelo refrescamento da tela.
 - Pelo armazenamento das informações na memória de vídeo.
 - O <u>refrescamento da tela inclui</u> as seguintes atividades:
 - A leitura sequencial da memória de vídeo.
 - A conversão da informação digital para os sinais analógicos de tensão que alimentam os canhões do monitor, implicando em níveis de intensidade ou cor.
 - Modos de atualização ou refrescamento da tela:
 - <u>Sequencial ou Não Entrelaçado</u> → é mostrada toda a imagem no período de uma varredura vertical completa (40 a 100Hz).
 - Vantagem: uma imagem mais nítida.
 - Se for observado cintilação, basta-se então aumentar a frequência de varredura (Valor aceitável → em torno de 75Hz).
 - Entrelaçado → são mostradas as linhas ímpares alternadamente com as linhas pares:
 - Desvantagem: imagem menos nítida, causando cansaço visual.
 - Observados em monitores mais antigos.

	75.00	 -
 		 +
		 Н
		 4
11,100	-	 _

Displays (Vetoriais - Parte 1)

- Ao contrário dos displays de varredura (matriciais), o <u>canhão eletrônico</u> desloca-se ao longo das linhas que compõem o desenho (*randon scan dysplay*).
- O controle do movimento do canhão eletrônico é feito por uma unidade de processamento que armazena (em memória) uma <u>lista das</u> <u>coordenadas finais das linhas do desenho</u>.
- A lista é lida repetidamente pelo processador e as coordenadas são convertidas em sinais elétricos correspondentes à deflexão do feixe na tela.
- O movimento do canhão, entre as coordenadas iniciais e finais do vetor, risca a linha sobre o fósforo.
- Diferentemente dos displays de varredura, as linhas que compõem a imagem podem ser desenhadas e refrescadas pelo sistema em qualquer ordem.
- Taxa de refrescamento do sistema:
 - Depende do número de linhas a serem mostradas.
- Tecnologia exige alto custo (atualmente em desuso), tornando-se obsoleta em relação aos displays por varredura.

Displays (Vetoriais - Parte 2)

• Ilustração de Monitor Vetorial:

Displays (Cristal Líquido – Parte 1)

- Princípio de funcionamento:
 - Os monitores de cristal líquido <u>não possuem um canhão de</u> <u>elétrons</u>, o que lhes confere uma série de vantagens e algumas desvantagens.
 - Em substituição ao Tubo de Raios Catódicos, existe um sistema de células contendo um cristal líquido que, havendo a variação de tensão elétrica, sofre uma mudança de polarização.
 - Ao passar a corrente elétrica pelos cristais, uma cor é gerada. Mudando a orientação dos cristais (polarização), muda-se também a cor representada.
 - As células fazem o papel dos pixels nos monitores do tipo CRT, mas estas células não podem variar em suas dimensões.
 - Para controlar a luz, cristais podem ser rotacionados, isto é, sofrerão torção numa certa ordem (permite controlar o contraste).

TSP

Displays (Cristal Líquido - Parte 2)

- LCD de Matriz Ativa:
 - Cada célula de um monitor tipo LCD recebe variadas intensidades de corrente elétrica.
 - O fornecimento destas cargas é controlado por transistores.
 - Nos monitores de Matriz Passiva é menor o número utilizado destes semicondutores.
 - O efeito resultante tem como característica apresentar cores mais esmaecidas, menos vivas.
 - Nos monitores de Matriz Ativa emprega-se <u>um transistor para cada célula de cristal líquido</u>.
 - O efeito resultante é uma imagem com cores mais fortes.
- Desvantagens do LCD
 - Em comparação com os monitores do tipo CRT, os monitores LCD têm cores menos vivas, mesmo quando o sistema é de matriz ativa.
 - Depende do ângulo de visão.

Vantagens do LCD

- É um equipamento menor, pois não necessita de canhões.
- Consomem até cerca de 40% menos energia que o CRT.
- A tela é realmente plana.

Fonte de luz (LCD) 21

Displays (Cristal Líquido — Parte 3)

• Ilustração de Cristais no LCD:

Luz

Painéis Polarizadores

Luz

Painéis Polarizadores

Eletrodo

Cristal Líquido

Ligado

Desligado

Displays (Cristal Líquido – Parte 3)

• Ilustração de Cristais no LCD:

Quando uma célula é endereçada pelos eletrodos, os painéis polarizadores fazem com que os cristais mudem seu alinhamento, deixando a luz passar.

Quando uma célula está desativada, os cristais encontram-se completamente alinhados a um dos painéis de polarização, impedindo assim a passagem da luz.

23

TSP

Displays (Plasma – Parte 1)

- Matriz de pontos, com células de gás (Neon/Xeon).
- Resolução elevada, pois as células são menores.
- Tela extremamente fina, com matriz ativa.
- Tensão nos eletrodos entre 100 e 200 V.
- Duração do pulso em torno de 20 ns.

dielectric layer display electrode MgO layer rib phosphors address electrode address protective layer rest pure electrone

Vantagens

- ➤ Aspect Ratio elevado.
- Excelente reprodução de cores.
- Grande vida útil.
- Excelente campo de visão.

Desvantagens

- ➤ Apesar de finas, são bem pesadas.
- Não reproduz níveis profundos de preto.
- Extremamente frágil.
- Consumo elevado de potência.
- ➤ Alto custo.

Displays (Plasma - Parte 2)

• Funcionamento das células de Plasma

Quando uma célula é endereçada, o gás confinado em estado rarefeito sofre uma mudança de estado devido à sua fraca ionização, passando então ao estado de plasma.

Essa mudança emite luz Ultra violeta, que é captada pela cobertura de fósforo. O fósforo por sua vez reage como nos CRT's, emitindo luz.

25

Displays (LED)

• Princípio de funcionamento:

- São painéis LCD com <u>retro iluminação LED</u>, ou monitor LED, que usam o mesmo mecanismo básico de um LCD mas com iluminação LED.
- Ao invés de uma única luz branca que incide sobre toda a superfície da tela, encontra-se um painel com milhares de pequenas luzes coloridas e independentes que acendem e geram a imagem.
- A tecnologia LED permite uma incrível gama de cores, além do negro profundo e do branco puro, coisas não alcançadas pela tecnologia LCD.
- Além disso, a iluminação LED permite que seu consumo seja reduzido a 40%, pois somente as áreas necessárias da tela são acesas

TSP

Displays (OLED - Parte 1)

- Organic Light Emitting Diode.
- Desenvolvido pela Kodak em 1970.
- Tela ultra fina, com matriz ativa e passiva.
- Inovação em Displays pois permite telas flexíveis.
- Reproduz cores com 20% mais fidelidade que o LCD.

27

Displays (OLED - Parte 2)

OLED com Matriz Passiva: alguns transistores controlam a luminosidade, o brilho e o contraste de todas as células.

OLED com Matriz Ativa: Uma camada de transistores (TFT) é colocada sob as células, permitindo que cada uma destas tenha sua luminosidade, brilho e contraste controlados de forma independente.

Displays (OLED - Parte 5)

• Tipos de OLED: FOLED: OLED completamente flexível

Displays (OLED - Parte 6)

• Vantagens:

- Camadas orgânicas são mais flexíveis.
- OLED's brilham mais que LED's convencionais.
- Não precisa de uma fonte de luz como o LCD.
- Tamanho ilimitado.
- Campo de visão acima de 170°.

• Desvantagens:

- Vida útil limitada para a cor azul (< 1000 horas).
- Processo de produção ainda é caro.
- Extremamente frágil a água.

Processador (Acelerador) Gráfico

- Hardware especializado.
- Uso de paralelismo para atingir alto desempenho.
- Alivia a CPU do sistema de algumas tarefas, incluindo:
 - Transformações:
 - Rotação, translação, escala, etc.
 - Recorte (clipping):
 - Supressão de elementos fora da janela de visualização.
 - ◆ Projeção (3D →2D).
 - Mapeamento de texturas.
 - Rasterização.
 - Amostragem de curvas e superfícies paramétricas:
 - Geração de pontos a partir de formas polinomiais.
- Normalmente usa memória separada da do sistema:
 - Maior banda.