

METODI ED ALGORITMI DI OTTIMIZZAZIONE PER IL PROBLEM SOLVING

Docente: Aristide Mingozzi Adattamento: Edoardo Rosa

INDICE

1	\mathbf{Mo}	delli e formulazioni matematiche	1
	1.1	The Traveling Salesman Problem	2
		1.1.1 Formulazioni Matematiche del TSP	3
		1.1.2 Eliminazione subtours di Miller, Tucker, Zemlin (1960)	4
		1.1.3 Il Traveling salesman problem con time windows (TSPTW)	
	1.2	Project scheduling with resource constraints (PSR)	7
		1.2.1 Esempio di PSR	7
		1.2.2 Formulazione del PSR	8
	1.3	Fixed Charge Transportation Problem (FCTP)	Ć
		1.3.1 Descrizione del FCTP	Ć
		1.3.2 Formulazione del FCTP	Ć
	1.4	Assegnamento dei veicoli alle baie di carico	11
		1.4.1 Formulazione matematica F	11
	1.5	Lot Sizing Problem	13
		1.5.1 Lot sizing senza vincoli di capacità	13
2	Intr	roduzione alla programmazione lineare a numeri interi	17
	2.1	Arrotondamento ad una soluzione non-intera	18
	2.2	Unimodularità	21
	2.3	Metodo dei piani di taglio	23
		2.3.1 Piani di taglio	23
		2.3.2 Gomory cuts	24
	2.4	Metodi Branch and Bound	3(
		2.4.1 Tipi di Branching	32
		2.4.2 Bounds	33
		2.4.3 Eliminazione di alcuni vincoli	38
		2.4.4 Rilassamento Surrogato	38

2.5	Assegnamento Generalizzato
	2.5.1 Formulazione matematica
	2.5.2 Rilassamento lagrangiano
	2.5.3 Algoritmo Branch & Bound
Rila	ssamento Lagrangiano per il calcolo di lower bounds
3.1	Rilassamento Lagrangiano di P rispetto ai vincoli $Ax \geq b$
	3.1.1 Esempio
3.2	Validità e importanza di RL_u
	3.2.1 Esempio
3.3	TEOREMA: Dualità Lagrangiana debole
	3.3.1 Dimostrazione
3.4	Lagrangiano Duale
3.5	Duality Gap
	3.5.1 Esempio
3.6	TEOREMA: Dualità Lagrangiana Forte
	3.6.1 Dimostrazione
	3.6.2 Osservazioni
3.7	Caratterizzazione del Lagrangiano Duale
	3.7.1 Definizione
	3.7.2 TEOREMA
3.8	Lagrangiano Duale e Rilassamento Lineare
	3.8.1 TEOREMA
	3.8.2 Dimostrazione
	3.8.3 TEOREMA: $L(u)$ è concava
3.9	Subgradiente di $L(u)$
	3.9.1 Metodo del subgradiente
	3.9.2 Vincoli Misti
	3.9.3 Subgradiente per vincoli mist
3.10	Traveling Salesman Problem
	3.10.1 Costi Simmetrici
	3.10.2 Fomulazione Matematica (TSP Simmetrico)
	3.10.3 Calcolo di $L(\lambda^0)$ per $\lambda^0 = 0$
	3.10.4 Calcolo Penalità Lagrangiane
	3.10.5 Rilassamento 1-TREE
	3.10.6 Regola di branching TSP simmetrico

ELENCO DELLE FIGURE

1.1	Grafo orientato
1.2	Grafo H delle precedenze
1.3	Esempio della rete di flusso (modello di Wagner-Whitin)
1.4	
1.5	
2.3	* Problemi risolti

 ${\bf Copertina:\ http://commons.wikimedia.org/wiki/File:Minimum_spanning_tree.svg}$

ELENCO DELLE TABELLE

2.1	Tableau ottimo.	Soluzione continua! .	 	26
2.2	Tableau ottimo.		 	26

CAPITOLO 1

MODELLI E FORMULAZIONI MATEMATICHE

1.1 The Traveling Salesman Problem

Il Traveling Salesman Problem (TSP) è il problema più noto dell'ottimizzazione combinatoria. Siano date n città e i costi c_{ij} per andare dalla città i alla città j. Si vuole determinare un cammino che parte da una città (diciamo i_1), visitare una ed una sola volta tutte le rimanenti città e terminare nella città di partenza i_1 . Inoltre si vuole che il costo di tale cammino sia minimo.

Ha molteplici applicazioni pratiche e teoriche perche è la struttura di molti problemi pratici. Si è soliti modella il TSP come segue:

• è dato un grafo orientato (o non orientato) G = (N, A) dove N è un insieme di n vertici e A è un insieme di m archi.

Ad ogni arco $(i,j) \in A$ è associato un costo c_{ij} .

Un circuito hamiltoniano di G è un circuito che passa per ogni vertice una ed una sola volta

Il costo di un circuito hamiltoniano di G è pari alla somma dei costi degli archi che compongono il circuito;

• il problema del TSP è di trovare un grafo G, con una data matrice dei costi $[c_{ij}]$, un circuito hamiltoniano di costo minimo.

1.1.1 Formulazioni Matematiche del TSP

In letteratura esistono molteplici (e a volte fantasiose) formulazioni del TSP. Presentiamo le due formulazioni più note e su cui si basano i metodi esatti più efficienti.

1.1.1.1 TSP asimmetrico

I costi c_{ij} non verificano $c_{ij} = c_{ji} \ \forall \ i, j \ \text{con} \ i < j$.

Sia x_{ij} una variabile (0-1) associata ad ogni arco $(i,j) \in A$ dove $x_{ij} = 1$ se l'arco (i,j) è nella soluzione ottima e $x_{ij} = 0$ altrimenti.

$$Min \sum_{i \in N} \sum_{j \in N} c_{ij} x_{ij} \tag{1.1}$$

$$s.t. \sum_{i \in N} x_{ij} = 1, \quad \forall j \in N$$
 (1.2)

$$\sum_{j \in N} x_{ij} = 1, \ \forall i \in N$$
 (1.3)

$$\sum_{i \in S} \sum_{j \in N \setminus S} x_{ij} \ge 1, \ \forall S \subset N \tag{1.4}$$

$$x_{ij} \in \{0,1\} , \ \forall (i,j) \in A$$
 (1.5)

Il vincolo 1.4 impone che ogni soluzione ammissibile debba contenere almeno un arco (i, j) con $i \in S$ e $j \in N \setminus S$ per ogni sottoinsieme S di N. Un'alternativa al vincolo 1.4 è:

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1, \quad \forall S \subset N$$
 (1.4')

1.1.1.2 TSP simmetrico

Sia dato un grafo non-orientato G = (N, A) con $c_{ij} = c_{ji}$, $\forall i, j \in N$. Gli archi di A sono numerati da 1 a m. L'arco di indice l corrisponde a (α_l, β_l) con $\alpha_l < \beta_l$. A_i è il sottoinsieme degli indici degli archi che incidono sul vertice i:

$$A_i = \{l : l = 1, m \text{ s.t. } \alpha_l = i \text{ or } \beta_l = i\}$$

Per una dato $S \in N$ e $\bar{S} = N \setminus S$ indichiamo con (S, \bar{S}) il sottoinsieme degli indici degli archi per cui $\alpha_l \in S$ e $\beta_l \in \bar{S}$ oppure $\alpha_l \in \bar{S}$ e $\beta_l \in S$.

Ad ogni arco di incide l è associato un costo $d_l = c_{\alpha_l \beta_l}$ e $x_l \in \{0,1\}$ è una variabile che vale 1 se e solo se l'arco di indice l è nella soluzione ottima.

$$Min \sum_{l=1}^{\infty} d_l x_l \tag{1.6}$$

$$s.t. \sum_{l \in A_i} x_l = 2, \ \forall i \in N$$
 (1.7)

$$\sum_{l \in (S,\bar{S})} x_l \ge 1, \ \forall S \subset N \tag{1.8}$$

$$x_l \in \{0, 1\}, \ l = 1, \dots, m$$
 (1.9)

1.1.2 Eliminazione subtours di Miller, Tucker, Zemlin (1960)

Sia u_i una variabile intera il cui valore sappresenta la posizione che il vertice i occupa nel tour

Es. tour (1,4,5,3,2,1) per TSP con n=5 vertici, si ha $u_1=1,\ u_2=5,\ u_3=4,\ u_4=2,\ u_5=3$ Miller, Tucker e Zemlin propongono in alternativa a:

$$\sum_{i \in S} \sum_{j \in N \setminus S} x_{ij} \ge 1, \ \forall S \subset N$$
 (*)

hanno imposto i seguenti vincoli:

$$u_i - u_j + nx_{ij} \le n - 1, \quad i = 1, \dots, n, \quad j = 2, \dots, n$$
 (1.10)

Ogni tour hamiltoniano soddisfa questi vincoli e ogni subtour li viola.

Figura 1.1: Grafo orientato

$$u_{2} - u_{6} + n \cdot x_{2,6} \leq n - 1$$

$$u_{6} - u_{3} + n \cdot x_{6,3} \leq n - 1$$

$$u_{3} - u_{2} + n \cdot x_{3,2} \leq n - 1$$

$$\downarrow$$

$$3n \leq 3(n - 1)$$

1.1.3 Il Traveling salesman problem con time windows (TSPTW)

È una variante del TSP che ha molte applicazioni.

Sia dato un grafo orientato G = (V, A) di n + 1 vertici $(V = \{0, 1, ..., n\})$.

Ad ogni arco $(i, j) \in A$ sono associati

- un costo $c_{ij} \geq 0$
- un tempo di percorrenza $\theta_{ij} \geq 0$

Ad ogni vertice è associato un intervallo $[r_i, d_i]$ chiamato "time window" che rappresenta l'orario in cui il vertice i può essere vistato dal "salesman".

Ovvero il salesman può visitare i ad ogni tempo $t \in \mathbb{Z}^+$ con $r_i \leq t \leq d_i$.

Il problema consiste nel trovare una sequenza dei vertici di G che parte dal vertice 0 al tempo 0 e finisce al nodo 0 tale che sia il minimo il costo del circuito e il tempo di arrivo al nodo i sia nell'intervallo $[r_i, d_j], \forall i \in V$.

Si consideri la sequenza $(0, i, ..., i_{k-1}, i_k, ..., i_n, 0)$ e sia t_{i_k} il tempo di arrivo al vertice i_k , k = 0, 1, ..., n + 1.

I tempi di arrivo sono calcolati come:

$$t_0 = 0 \tag{1.11}$$

$$t_{i_k} = \max\{t_{i_{k-1}} + \theta_{i_{k-1}} \cdot i_k, \ r_{i_k}\}$$
(1.12)

1.1.3.1 Formulazione del TSPTW

Sia x_{ij} una variabile binaria intera che assume il valore 1 se il vertice i è visitato immediatamente prima di i e $x_{ij} = 0$ altrimenti.

$$Min \sum_{(i,j)\in A} c_{ik} x_{ij} \tag{1.13}$$

$$s.t. \quad \sum_{i \in A_j^-} x_{ij} = 1, \quad \forall j \in V$$
 (1.14)

$$\sum_{j \in A_i^+} x_{ij} = 1, \quad \forall i \in V \tag{1.15}$$

$$t_i + \theta_{ij} - t_j \le M(1 - x_{ij}, \ \forall (i, j) \in A, \ j \ne 0)$$
 (1.16)

$$t_i \le d_i, \ \forall i \in V \tag{1.17}$$

$$t_i \ge r_i, \ \forall i \in V \tag{1.18}$$

$$x_{ij} \in \{0,1\}, \ \forall \in A \tag{1.19}$$

$$t_i \in \mathbb{N}^+, \ \forall i \in V$$
 (1.20)

 ${\rm dove}$

$$A_i^+ = \{j \in V : (i, j) \in A\}$$

$$A_i^- = \{j \in V : (i, j) \in A\}$$

$$M \text{ un intero grande a piacere}$$

$$r_0 = d_0 = 0$$

1.2 Project scheduling with resource constraints (PSR)

È dato un insieme $\mathbb{X} = \{1, \dots, n\}$ di n jobs.

Sono disponibili m risorse dove ogni risorsa k ha una disponibilità b_k ad ogni istante del periodo di scheduling.

Ogni job i ha un tempo di processo d_i e la sua esecuzione, una volta iniziata, non può essere interrotta.

Il job i per essere eseguito richiede b_{ik} unità della risorsa k per ciascun intervallo di tempo in cui rimane in esecuzione.

È dato un grafo G = (X, H) di precedenze, dove ogni arco $(i, j) \in H$ impone che il job j può iniziare solo dopo che il job i è stato completato.

• Si vuole determinare il tempo di inizio di processo di ogni job in modo che siano soddisfatti i vincoli di precedenza, i vincoli sulle risorse e sia minima la durata complessiva del progetto

1.2.1 Esempio di PSR

Siano dati n = 11 jobs e m = 3 risorse con $b_1 = b_2 = b_3 = 4$ e un grafo H delle precedenze corrispondenti agli archi della figura 1.2.

Si osservi che i jobs 2 e 3 non possono essere eseguiti in parallelo poiché $r_{2,1}+r_{3,1}=5>b_1!$

Figura 1.2: Grafo H delle precedenze

Formulazione del PSR 1.2.2

Sia ξ_{it} una variabile binaria 0-1 che vale 1 se e solo se il job i viene messo in esecuzione al tempo

Sia T_{max} un upper bound sulla durata del progetto.

$$Min\sum_{t=1}^{T_{max}} t \,\xi_{nt} \tag{1.21}$$

$$s.t. \sum_{t=1}^{T_{max}} t \, \xi_{it} = 1, \quad i = 1, \dots, n$$
 (1.22)

$$\sum_{t=1}^{T_{max}} t \, \xi_{jt} - \sum_{t=1}^{T_{max}} t \, \xi_{it} \ge d_i, \quad \forall (i,j) \in H$$
 (1.23)

$$\sum_{i=1}^{n} r_{ik} \sum_{\tau=t-d_i+1}^{t} \xi_{i\tau} \le b_k, \quad t = 1, \dots, T_{max} \ e \ k = 1, \dots, m$$
 (1.24)

$$\xi_{it} \in \{0, 1\}, \quad i = 1, \dots, n \ e \ t = 1, \dots, T_{max}$$
 (1.25)

Si osservi che:

$$\sum_{\tau=t-d_i+1}^{t} \xi_{i\tau} = 1 \quad se \ il \ job \ i \quad in \ esecuzione \ al \ tempo \ t$$

1.2.2.1Esempio

Sia $d_i = 4$.

Se
$$\xi_{i3}=1$$
, allora i è in esecuzione nei tempi 3,4,5 e 6. Infatti avremo:
$$\sum_{\tau=t-d_i+1}^t \xi_{i\tau}=1 \text{ per } t=3,4,5,6 \text{ e } \sum_{\tau=t-d_i+1}^t \xi_{i\tau}=0 \text{ per } t<3 \text{ e } t>6$$

1.3 Fixed Charge Transportation Problem (FCTP)

Il Problema del Trasporto di Carico Fisso è una generalizzazione del classico Problema del Trasporto.

Si differenzia nel definire che il costo per la spedizione di una quantità non-zero di beni, da ogni origine alla sua destinazione, è composto da un costo proporzionale all'ammontare dei beni inviati più un costo fisso.

1.3.1 Descrizione del FCTP

Il FCTP è definito su un grafo completo e bipartito G = (S, T, A) dove S = 1, 2, ..., m è un insieme di m sorgenti e T = 1, 2, ..., n è un insieme di n destinazioni.

Per ogni sorgente $i \in S$ è disponibile è una quantità intera $a_i > 0$ di merce e per ogni destinazione $j \in T$ è necessaria una quantità intera $b_j > 0$ di merce dalle sorgenti.

L'insieme A degli archi è definito come: $A = \{(i,j) : i \in S, j \in T\}$; ogni arco $(i,j) \in A$ è associato ad un costo unitario c_{ij} per il trasporto di una unità della merce dalla sorgente i alla destinazione j più un costo fisso f_{ij} for usare l'arco (i,j).

Senza perdere di generalità si assume che:

$$\sum_{i \in S} a_i = \sum_{j \in T} b_j$$

1.3.2 Formulazione del FCTP

Sia x_{ij} una variabile rappresentante la quantità di merce trasportata dalla sorgente i alla destinazione j e y_{ij} una variabile (0-1) che vale 1 se e solo se $x_{ij} > 0$.

Sia $m_{ij} = mina_i, b_j, (i, j) \in A$.

Una semplice formulazione matematiche del FCTP è:

$$z(F0) = \min \sum_{i \in S} \sum_{j \in T} (c_{ij} x_{ij} + f_{ij} y_{ij})$$
(1.26)

$$s.t. \sum_{j \in T} x_{ij} = a_i, \quad i \in S$$

$$(1.27)$$

$$\sum_{i \in S} x_{ij} = b_j, \quad j \in T \tag{1.28}$$

$$x_{ij} \le m_{ij}y_{ij}, \quad (i,j) \in A \tag{1.29}$$

$$x_{ij} \ge 0, \qquad (i,j) \in A \tag{1.30}$$

$$y_{ij} \in \{0, 1\} \tag{1.31}$$

Si denota con LF0 il rilassamento lineare del problema F0 e con z(LF0) il costo della soluzione ottima. Notare che, per ogni soluzione ottima di LF0, le variabili $x_{ij} > 0$ corrispondono ad una soluzione base fattibile dei vincoli 1.27 e 1.28, e $y_{ij} = x_{ij}/m_{ij}$ con $(i, j) \in A$.

1.4 Assegnamento dei veicoli alle baie di carico

Sia dato un insieme N di veicoli che devono scaricare presso un deposito che ha un insieme L di linee di scarico.

Per ogni linea di scarico $j \in L$ è definito l'insieme degli istanti di tempo T_j in cui è operativa. Per ogni veicolo $i \in N$ sono noti:

- il sottoinsieme di linee $L_i \subseteq L$ compatibili con le operazioni di scarico richieste dal veicolo;
- iltempo di arrivo a_i del veicolo al deposito;
- la durata dello scarico d_{ij} sulla linea $j \in L_i$.

Si assume che lo scarico di un veicolo non possa essere interrotto, ovvero, se lo scarico del veicolo i sulla linea $j \in L_i$ inizia al tempo t, allora la linea j deve essere disponibile per tutti gli istanti di tempo $\tau = t, \ldots, t + d_{ij} - 1$ (ovvero $\tau \in T_j$ per ogni $\tau = t, \ldots, t + d_{ij} - 1$). Indichiamo con I_{ij} l'insieme degli istanti di tempo in cui può iniziare lo scarico del veicolo i sulla linea $j \in L_i$, ovvero per ogni $t \in I_{ij}$ si assume che la linea j disponibile per ogni istante $\tau = i, \ldots, d_{ij} - 1$.

Sia c_{ijt} è il costo per iniziare lo scarico del veicolo $i \in N$ sulla linea $j \in Li$ al tempo $t \in I_{ij}$. Il problema richiede che ogni veicolo sia assegnato ad una linea di scarico compatibile in modo che ogni scarico sia fatto senza interruzioni e sia minimo il costo dell'assegnamento.

1.4.1 Formulazione matematica F

Per ogni $i \in N$, $j \in L_i$ e $t \in I_{ij}$ poniamo $\delta_{ijt\tau} = 1$ per $\tau = t, \dots, t + d_{ij} - 1$ e $\delta_{ijt\tau} = 0$ per ogni $\tau \in T_j$ tale che $\tau < t$ oppure $\tau > t + d_{ij} - 1$.

Indichiamo con $N_j \subseteq N$ il sottoinsieme di veicoli che possono essere scaricati sulla linea j, ovvero $N_j = \{i \in N : j \in L_i\}.$

1.4.1.1 Variabili

 x_{ijt} è una variabile (0-1) che vale 1 se e solo se il veicolo $i \in N$ inizia lo scarico sulla linea $j \in L_i$ al tempo $t \in I_{ij}$.

 $s_{j\tau}$ è una variabile (0-1) che vale 1 se e solo se la linea j non viene utilizzata nell'istante di tempo τ .

La formulazione matematica F del problema è la seguente.

$$z(F) = \min \sum_{j \in L} \sum_{i \in N_j} \sum_{t \in I_{ij}} c_{ijt} + x_{ijt} + \sum_{j \in L} \sum_{\tau \in T_j} g_{j\tau} s_{j\tau}$$
 (1.32)

s.t.
$$\sum_{j \in L_i} \sum_{t \in I_{ij}} x_{ijt} = 1, \quad i \in N$$
 (1.33)

$$\sum_{i \in N_j} \sum_{t \in I_{ij}} \delta_{ijt\tau} x_{ijt} + s_{j\tau} = 1, \quad j \in L, \ \tau \in T_j$$

$$\tag{1.34}$$

$$x_{ijt} \in 0, 1, \qquad i \in N, \ j \in L_i, \ t \in I_{ij}$$
 (1.35)

$$x_{ijt} \in 0, 1,$$
 $i \in N, j \in L_i, t \in I_{ij}$ (1.35)
 $s_{j\tau} \in 0, 1,$ $j \in L, \tau \in T_j$ (1.36)

Il vincolo 1.33 impone che ad ogni veicolo venga assegnato una linea compatibile ed un tempo di scarico a sua volta compatibile sia con il veicolo stesso che con la linea a lui assegnata.

Il vincolo 1.34 impone che per ogni linea ed ogni istante di tempo compatibile con la linea vi sia in scarico al più un solo veicolo.

La formulazione F richiede $\hat{n} = |N| \times |L| \times \hat{I}$ variabili, dove $\hat{I} = max|I_{ij}| : i \in N, j \in L_i$ e al più $\hat{m} = |N| + |L| \times \hat{T}$ vincoli, dove $\hat{T} = max|T_i| : j \in L$.

Supponiamo di discretizzare il tempo a 5 minuti, che ogni linea sia disponibile al più 10 ore (i.e. $\hat{T}=120$) e che un veicolo quando arriva non possa aspettare più di 5 ore (i.e. $\hat{I}=60$). Avremo $\hat{n} = 200 \cdot 20 \cdot 60 = 240.000 \text{ e } \hat{m} = 200 + 20 \cdot 120 = 2600.$

1.5 Lot Sizing Problem

Il termine *Lot Sizing* indica il processo decisionale mediante il quale un'azienda definisce la politica ottima di investimenti, produzione e stoccaggio dei prodotti per soddisfare le richieste dei clienti nel rispetto dei vincoli di produzione e di magazzino.

Non esiste un unico modello di lot sizing che rappresenti in modo generale le varie realtà operative. Sistemi di produzione anche marginalmente diversi possono richiedere modelli aventi complessità computazionale molto diverse.

Non esiste in letteratura un modello generale che contenga come sottocasi tutti i problemi reali noti di lot sizing.

Per questi motivi non esistono software commerciali general pourpose.

Diverse aziende di consulenze nel settore della supply chain vendono software basati su modelli semplificati che non necessariamente producono soluzioni operative ma lasciano all'utente il compito di modificare manualmente la soluzione prodotta per tener conto delle specifiche complessità del problema reale.

I problemi reali sono varianti complesse delle seguenti tre classi di lot sizing problem di un singolo prodotto che sono risolvibili in tempo polinomiale:

- lot sizing senza vincoli di capacità produttiva;
- lot sizing con back logging senza vincoli di capacità;
- lot sizing con vincoli di capacità.

Molti problemi reali possono essere risolti rilassando in modo lagrangiano i vincoli reali per cui il problema lagrangiano risultante corrisponde ad uno dei tre problemi suddetti.

1.5.1 Lot sizing senza vincoli di capacità

Si consideri un'azienda che deve pianificare la propria produzione per un orizzonte temporale di T periodi (ad esempio, T mesi).

Per ciascun periodo t = 1, ..., T sono noti:

- d_t domanda complessiva dei clienti;
- A_t costo fisso di set up per attivare la produzione;
- p_t costo per produrre un'unità di prodotto;
- h_t costo per unità di prodotto presente nel magazzino alla fine del periodo t.

Per ciascun periodo t, deve essere deciso il numero di unità che devono essere prodotto al fine di soddisfare la domanda in ciascun periodo.

Si suppone che la quantità prodotto nel periodo t sia subito disponibile e che la quantità non

venduta alla fine di ogni mese viene depositata in magazzino. L'obiettivo è di minimizzare i costi complessivi di set up, produzione e stoccaggio.

1.5.1.1 Formulazione Matematica (modello di Wagner-Whitin)

Variabili decisonali associate a ciascun periodo t=1,...,T

 x_t quantità prodotta all'inizio del periodo t;

 I_t livello del magazzino alla fine del periodo t;

 $y_i \in (0,1): y_t = 1$ se nel periodo t vi è produzione, $y_t = 0$ altrimenti.

$$Min z = \sum_{t=1}^{T} (p_t x_t + h_t I_t + A_t y_t)$$
 (1.37)

$$x_t + I_{t-1} = I_t + d_t, \ t = 1, \dots, T$$
 (1.38)

$$x_t \le My_t, \ t = 1, \dots, \tag{1.39}$$

$$x_t, I_t \ge 0, t = 1, \dots, T$$
 (1.40)

$$y_t \in \{0, 1\}, \ t = 1, \dots, T$$
 (1.41)

dove
$$M = \sum_{t=1}^{T} d_t$$
 e, per semplicità, si suppone che $I_0 = 0$. (1.42)

1.5.1.2 Metodo di soluzione

Al modello si associa il grafo R=(N,A) senza vincoli di capacità sugli archi tale che ogni soluzione del problema corrisponde ad un flusso in R. Il grafo R si compone di 2T+1 nodi:

- \bullet nodo sorgente S da cui parte un flusso pari a $\sum_{t=1}^T d_t;$
- per ciascun periodo t una coppia di nodi U_t , V_t dove:

 U_t rappresenta il magazzino,

 V_t corrisponde alla domanda.

Per ciascun periodo t = 1, ..., T vi sono gli archi:

 (S, U_t) il cui flusso corrisponde alla produzione x_t ;

 (U_t, U_{t+1}) il cui flusso è pari al livello I_t del magazzino alla fine del periodo t;

 (U_t, V_t) il cui flusso deve essere pari alla domanda d_t .

Figura 1.3: Esempio della rete di flusso (modello di Wagner-Whitin)

1.5.1.3 Proprietà della soluzione ottima

Teorema. In una soluzione ottima non può mai avvenire che la domanda del periodo t venga soddisfatta sia dalla produzione che dal magazzino, ovvero:

$$I_{t-1} \cdot x_t = 0; \ t = 1, \dots, T$$

Figura 1.4

1.5.1.4 Algoritmo di soluzione (di complessità $O(T^2)$)

Si costruisca un grafo aciclico di T+1 vertici.

Si definiscano gli archi j,k) per $j=0,\ldots,T-1$ e $k=j+1,\ldots,T.$

L'arco (j, k) rappresenta la decisione di produrre all'inizio del periodo j + 1 quanto serve per soddisfare le domanda complessiva dei periodo j + 1, j + 2, ..., k.

Il costo M_{jk} dell'arco (j,k) è pari al costo per produrre nel periodo j+1 la quantità $\sum_{r=j+1}^{k} d_r$ più i costi di stoccaggio:

$$M_{jk} = A_{j+1} + p_{j+1} \sum_{r=j+1}^{k} d_r + \sum_{t=j+1}^{k-1} h_t (\sum_{r=t+1}^{k} d_r)$$

Figura 1.5

Ogni soluzione del modello di Wagner-Whitin corrisponde ad un cammino da 0 a t in questo grafo aciclico.

Il cammino di costo minimo fornisce la soluzione ottima.

CAPITOLO 2

INTRODUZIONE ALLA PROGRAMMAZIONE LINEARE A NUMERI INTERI

Si consideri il seguente problema.

$$Min cx$$
 (2.1)

$$Ax = b (2.2)$$

$$x \ge 0 \tag{2.3}$$

$$x intero$$
 (2.4)

Le variabili devono assumere valori interi:

Es:
$$x_i = Numero di uomini che devono essere assegnati al lavoro i.$$
 (2.5)

= Numero di automezzi che devono operare il trasporto lungo la "tratta i". (2.6)

(2.7)

2.1 Arrotondamento ad una soluzione non-intera

Si risolva il problema ignorando i vincoli [x:intero]. Le variabili che risultano non intere, nella soluzione ottima del problema continuo, vengano arrotondate al valore intero più vicino.

Es:
$$Min z = -2x_1 + 3x_2$$
 (2.8)

$$x_1 + x_2 \ge 3 \tag{2.9}$$

$$3x_1 + x_2 \le 6 \tag{2.10}$$

$$x_2 \le 5 \tag{2.11}$$

$$x_1, x_2 \ge 0 \ ed \ intere$$
 (2.12)

Figura 2.1: Soluzione continua: $z=\frac{3}{4}; x_1=\frac{3}{2}, x_2=\frac{3}{2}$ Soluzione intera: $z=4; x_1=1, x_2=2$

In questo esempio la soluzione arrotondata coincide con la soluzione ottima.

Es:
$$Min z = 8x_1 + 6x_2$$
 (2.13)

$$4x_1 + 3x_2 \ge 6 \tag{2.14}$$

$$x_1, x_2 \ge 0 \ ed \ intere$$
 (2.15)

Figura 2.2:

Soluzione continua: $z=12; x_1=1,5, x_2=0$ Soluzione arrotondata $z=8; x_1=1, x_2=0$ Soluzione intera: $z=10; x_1=0, x_2=2$

La soluzione arrotondata si discosta notevolmente dalla soluzione ottima.

Es:
$$Min z = 8x_1 + 6x_2$$
 (2.16)

$$4x_1 + 3x_2 \ge 6 \tag{2.17}$$

$$x_1, x_2 \ge 0 \ ed \ intere$$
 (2.18)

I quattro punti interi più vicini alla soluzione continua non sono ammissibili.

2.2 Unimodularità 21

2.2 Unimodularità

La matrice intera A di m righe ed n colonne è totalmente unimodulare se ogni sua sottomatrice quadrata B non singolare è unimodulare, ovvero $det(B) = \pm 1$.

Teorema. Se la matrice intera A è totalmente unimodulare allora tutti i punti estremi dell'insieme pd. convesso X=x: Ax=b, $x\geq 0$ sono interi per ogni vettore intero b.

Dimostrazione. Sia B una base ammissibile e x_b le variabili base: $Bx_B = b$. Per la regola di Cramer:

$$x_{b_i} = \frac{\det(B_i)}{\det(B)} \tag{2.19}$$

Dove B_i si ottiene da B sostituendo la i-esima colonna di B con b. È ovvio che $det(B_i)$ è un numero intero e quindi anche ciascun x_{B_i} è intero.

Teorema. Una matrice intera A i cui elemento sono 0, +1, -1 è totalmente unimodulare se:

- 1. In ogni colonna A compaiono al più due elementi non-nulli (cioè 1, -1);
- 2. L'insieme delle righe R può essere suddiviso in due insieme disgiunti R_1 e R_2 $(R_1 \cup R_2 = R)$ per cui:
 - (a) Se una colonna contiene due elementi non-nulli dello stesso segno allora la riga corrispondente ad uno dei due elementi appartiene a R_1 mentre la riga relativa all'altro elemento è in R_2 ;
 - (b) Se una colonna contiene due elementi di segno opposto entrambe le righe appartengono allo stesso insieme.

Esempi.

$$A = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 & -1 & 0 \end{bmatrix}$$
$$R = 1, 2, 3, 4$$
$$R_1 = 1, 2, 3, 4$$
$$R_2 = \emptyset$$
$$R = 1, 2, 3, 4, 5$$
$$R_1 = 1, 2, 3$$
$$R_2 = 4, 5$$

2.2 Unimodularità

La totale unimodularità della matrice A è **condizione sufficiente** affinchè la soluzione ottima x^* sia intera per

$$\begin{aligned} Min\ cx \\ Ax &= b\ (bintero) \\ x &\geq 0 \end{aligned}$$

La condizione non è **necessaria**.

Esempio:

dato il sistema di vincoli

$$6x_1 + x_2 = 7$$
$$2x_1 + x_2 = 3$$

L'unica soluzione è $(x_1=1,\ x_2=1)$ mentre la matrice

$$A = \begin{bmatrix} 6 & 1 \\ 2 & 1 \end{bmatrix}$$

non risulta essere totalmente unimodulare.

2.3 Metodo dei piani di taglio

Sia dato il problema

$$ILP \begin{cases} Min \ z_{ILP} = cx \\ Ax = b \\ x \ge 0 \ e \ intero \end{cases}$$

Supponiamo A,c,b interi.

Si consideri il problema rilassato che si ottiene da 'ILP' ignorando i vincoli di interezza. Indichiamo tale problema con \boldsymbol{LP} .

$$LP \begin{cases} z_{LP} = Min \ cx \\ ax = b \\ x \ge 0 \end{cases}$$

È noto che $z_{LP} \leq z_{ILP}$.

2.3.1 Piani di taglio

Si risolva LP; se la soluzione è intera tale soluzione è anche l'ottimo di ILP.

Altrimenti vengono aggiunti a LP vincoli, che non escludono soluzioni intere, fino a che la soluzione del problema LP risultante non risulti intera.

In (A) viene mostrata la regione ammissibile di LP ed il punto di ottimo.

In (B) viene mostrata la regione ammissibile di LP più un vincolo che rende non-ammissibile l'ottimo ottenuto in (A) ma che non esclude nessuno dei punti interi.

In (C) viene mostrato come l'aggiunta di un secondo vincolo rende la soluzione intera.

Nell'esempio sono sufficienti 2 vincoli per rendere la soluzione intera.

In generale bisogna aggiungere vincoli fino a che la soluzione non risulti intera o si scopra che il problema non ha soluzioni intere.

2.3.2 Gomory cuts

Si consideri il tableau ottimo relativo a LP:

	\mathbf{Z}	x_1			x_m	x_{m+1}	 x_j	 x_n	
	1	0			0				
x_1		1							\overline{b}_1
			1						
x_r				1		y_r^{m+1}	 y_r^j	 y_r^n	$ \bar{b}_r $
						·	·	•	
x_m					1				\bar{b}_m

Supponiamo la soluzione ottima non intera.

 $Sia \bar{b}_r non intero.$

L'equazione associata a x_r è:

$$x_r + \sum_{j=m+1}^n y_r^j x_j = \bar{b}_r \tag{2.20}$$

Poniamo:

$$y_r^j = I_r^j + F_r^j$$
, dove $I_r^j = \lfloor y_r^j \rfloor$, $(0 \le F_r^j < 1)$ (2.21)

Inoltre:

$$\bar{b}_r = I_r + F_r \text{ essendo } 0 \le F_r < 1 \tag{2.22}$$

Sostituendo, la 2.20 diviene:

$$x_r + \sum_{j=m+1}^n (I_r^j + F_r^j) x_j = (I_r + F_r)$$
(2.23)

o anche:

$$\underbrace{x_r + \sum_{j=m+1}^n I_r^j x_j - I_r}_{\text{intero per ogni x intero}} = \underbrace{F_r - \sum_{j=m+1}^n F_r^j x_j}_{< 1 \text{ per } x \ge 0}$$
(2.24)

Ne segue:

$$F_r - \sum_{j=m+1}^n F_r^j x_j \le 0 (2.25)$$

La soluzione corrente non soddisfa il vincolo 2.20 in quanto $x_j = 0$ j = m + 1, ..., n mentre $F_r > 0$ poiché \bar{b}_r si è supposto non intero.

Se il vincolo 2.20 viene aggiunto al problema LP allora la soluzione corrente risulterà non ammissibile.

Per determinare una nuova soluzione che soddisfi il vincolo 2.20 può essere impiegato il *Simplesso Duale* partendo dal tableau ottimo relativo alla soluzione corrente.

Al tableau va aggiunto il vincolo:

$$-\sum_{j=m+1}^{j} F_r^j x_j + s = -F_r \tag{2.26}$$

La nuova variabile slack s è una nuova variabile base.

Il nuovo tableau è non ammissibile per il Primale ma duale ammissibile.

Esempio.

$$Min - x_2$$

 $3x_1 + 2x_2 \le 6$
 $-3x_1 + 2x_2 \le 0$
 $x_1, x_2 \ge 0$
 $x_1, x_2 intere \ge 0$

Si noti che l'ottimo cade nel punto x = (1, 1).

	\mathbf{Z}	x_1	x_2	x_3	x_4	RHS
\mathbf{Z}	1	0	1	0	0	0
x_3	0	3	2	1	0	6
x_4	0	-3	2	0	1	0

	\mathbf{Z}	x_1	x_2	x_3	x_4	RHS
\mathbf{Z}	1	3/2	0	0	-1/2	0
x_3	0	6	0	1	-1	6
x_2	0	-3/2	1	0	1/2	0

		x_1	x_2	x_3	x_4	RHS
\mathbf{Z}	1	0	0	-1/4	-1/4	-3/2
x_1	0	1	0	1/6	-1/6	1
x_2	0	0	1	1/4	1/4	3/2

Tabella 2.1: Tableau ottimo. Soluzione continua!

Ricordando che il cut da aggiungere è:

$$-\sum_{j=m+1}^{n} F_r^j x_j + s = -F_r \tag{2.27}$$

Dalla riga di x_2 si ha la sequente equzione:

$$x_2 + \frac{1}{4}x_3 + \frac{1}{4}x_4 = \frac{3}{2} \tag{2.28}$$

da cui:

$$-\frac{1}{4}x_3 - \frac{1}{4}x_4 + s_1 = -\frac{1}{2} \tag{2.29}$$

Si osservi che per definizione di x_3 e x_4 si ha

$$x_3 = 6 - 3x_1 - 2x_2 \text{ ed } x_4 = 3x_1 - 2x_2$$
 (2.30)

Sostituendo in 2.29 si ottiene $x_2 \leq 1$:

Aggiungendo il cut al tableau ottimo precedente:

		_					RHS
\mathbf{Z}	1	0	0	-1/4	-1/4	0	-3/2
x_1	0	1	0	1/6	-1/6	0	1
x_2	0	0	1	1/4	1/4	0	$\frac{1}{3/2}$
s_1		0	0	-1/4	-1/4	1	1

Continuando con il simplesso duale:

					x_4	s_1	RHS
\mathbf{Z}	1	0	0	0	0	-1	-1
x_1	0	1	0	0	-1/3	2/3	2/3
x_2	0	0	1	0	0	1	1
s_1	0	0	0	1	0 -1/3 0 1	-4	2

Dalla riga di x_1 si ha i cut:

$$-\frac{2}{3}x_4 - \frac{2}{3}s_1 + s_2 = -\frac{2}{3} \tag{2.31}$$

Il nuovo tableau, quindi, diviene:

e ottimizzando con li simplesso duale: L'algoritmo converge in un numero finito di passi purché venga impiegata una appropiata regola lessicografica per la scelta del pivot.

		x_1	x_2	x_3	x_4	s_1	s_2	RHS
\mathbf{Z}	1	0	0	0	0	-1	0	-1
x_1	0	1	0	0	-1/3	2/3	0	2/3
x_2	0	0	1	0	0	1	0	1
s_1	0	0	0	1	1	-4	0	2
s_2	0	0	0	0	-2/3	-2/3	1	$ \begin{array}{c c} \hline 2/3 \\ 1 \\ 2 \\ 2/3 \end{array} $

		x_1	x_2	x_3	x_4	s_1	s_2	RHS
${f z}$	1	0	0	0	0	-1	-1/2	-1
x_1	0	1	0	0	0	-1	0	1
x_2	0	0	1	0	0	1	0	1
s_1	0	0	0	1	0	-5	3/2	2
s_2	0	0	0	0	1	1	$0 \\ 0 \\ 3/2 \\ -3/2$	1

Tabella 2.2: Tableau ottimo.

2.3.2.1 Come evitare un numero indefinito di righe e colonne

Qualora una variabile di slack s_i , associata all'i-esimo cut, entra in base, si elimina sia il cut sia la variabile s_i .

In questo modo il numero delle righe aggiunte (relative ai cuts) non supera n-m.

2.4 Metodi Branch and Bound

Sia P_0 un problema a cui corrisponde l'insieme S_0 di soluzioni ammissibili.

Ad esempio

$$P_{0} \begin{cases} Min & cx \\ Ax = b \\ x \ge 0 & eintero \end{cases}$$

$$S_{0} = \{x : Ax = b, x \ge 0 & intero\}$$

$$(2.32)$$

Principio base dei metodi Branch and Bound

Suddividre il problema P_0 nei sottoproblemi P_1, P_2, \ldots, P_k a cui corrispondono gli insiemi di soluzioni ammissibili S_1, S_2, \ldots, S_k . La suddivisione è tale per cui

$$S_1 \cup S_2 \cup \dots \cup S_k = S_0 \tag{2.33}$$

È evidente che:

$$\min_{x \in S_0} cx = MIN\{ \min_{x \in S_1} cx, \min_{x \in S_1} cx, \dots, \min_{x \in S_k} cx \}$$
 (2.34)

La risoluzione di ogni sottoproblema P_1, P_2, \dots, P_k può risultare molto più semplice della risoluzione di P_0 .

Possiamo rappresentare la suddivisione di P_0 in P_1, P_2, \ldots, P_k mediante un albero

Nel caso in cui la riduzione di uno o più sottoproblemi risulti difficile questi possono essere ulteriormente suddivisi.

Supponiamo che P_i risulti difficile, allora può essere suddiviso nei sottoproblemi $P_{i1}, P_{i2}, \ldots, P_{ik}$ a cui corrispondono gli insiemi di soluzioni ammissibili $S_{i1}, S_{i2}, \ldots, S_{ik}$ tali che $S_{i1} \cup S_{i2} \cup \ldots \cup S_{ik} = S_i$

Si ha il seguente albero

Risolvere P_0 equivale a risolvere $P_1, \ldots, P_{i-1}, (P_{i1}, P_{i2}, \ldots, P_{ir}), P_{i+1}, \ldots, P_k$

Il processo di suddivisione di un problema in un numero finito di sottoproblemi viene chiamato **BRANCHING**.

Una buona strategia di branching consiste nel suddividere P_i nei sottoproblemi $P_{i1}, P_{i2}, \ldots, P_{ir}$ in modo che, per ogni coppia $P_{i\alpha}, P_{i\beta}$ con $(\alpha \neq \beta)$, gli insiemi $S_{i\alpha}$ e $S_{i\beta}$ siano disgiunti.

$$S_{i\alpha} \cap S_{i\beta} = \emptyset$$

Se la condizione sopra è soddisfatta allora $\{S_i, \ldots, S_{ir}\}$ è una **PARTIZIONE** di S_i . Si noti che la condizione non è *necessaria* ma rende computazionalmente efficiente il processo di branching.

2.4.0.1 Esempi di Branching

Si consideri il problema P_i in n variabili dove la variabile x_j può assumere i valori 1, 2, 3, 4.

2.4.1 Tipi di Branching

Ogni sottoproblema che non può essere risolto può essere suddiviso in sottoproblemi più piccoli. Dato un insieme di sottoproblemi da suddividere quale sottoproblema suddividere per primo?

2.4.1.1 Dept-first search

In questo tipo di branching il sottoproblema che viene suddiviso per primo è l'ultimo generato. Ciò si ripete fino ad ottenere un sottoproblema che può essere risolto.

BACKTRACKING: quando un sottoproblema è risolto viene scelto il penultmo sottoproblema generato e su questo viene effettuato il branching.

2.4.1.2 Breadth-first search

Il branching procede da livello a livello, ovvero il problema P_0 è suddiviso in P_1, P_2, \ldots, P_k che sono i sottoproblemi a livello 1.

Ogni sottoproblema a livello 1 viene suddiviso in un numero di sottoproblemi che costituiscono il livello 2.

In generale quando viene esaminato un sottoproblema a livello K sono stati già esaminati tutti i sottoproblemi a livello K-1.

Figura 2.3: * Problemi risolti

2.4.2 Bounds

La ricerca della solutione ottima di P_0 è completa quando sono stati risolti tutti i sottoproblemi generati.

Questo processo può essere migliorato calcolando, per ogni sottoproblemi P_j un bound (Lower Bound se il problema è di minimizzazione).

Lower Bound: diremo che LB_i è un lower bound al sottoproblema P_i se

$$LB_i \le \min_{x \in S_i} \{cx\} \tag{2.35}$$

Upper Bound: diremo che UB_i è un upper bound al sottoproblema P_i se

$$UB_i \le \min_{x \in S_0} \{cx\} \tag{2.36}$$

È possible trascurare il sottoproblema P_i se $LB_i \geq UB$, infatti, poiché $LB_i \leq \underset{x \in S_i}{Min}\{cx\}$ si avrebbe $\underset{x \in S_i}{Min}\{cx\} \geq UB$ e quindi il sottoroblema P_i non contiene la soluzione ottima.

2.4.2.1 Calcolo del Lower Bound

Sia dato il problema

$$P_0 \begin{cases} Min & z = cx \\ Ax = b \\ & x \ge 0 \ e \ intero \end{cases}$$

Sia z^* il costo della soluzione ottima di P_0 .

I seguenti medoti producono validi Lower Bounds a P_0 .

Rilassamento continuo Si ignori il vincolo x intero; il problema risultante è risolvibile con la programmazione lineare.

Sia z_{LP}^* il costo di tale soluzione; si ha

$$z_{LP}^* \le z^* \tag{2.37}$$

- Se la soluzione del problema continuo è intera allora è anche la soluzione ottima intera e quindi $z_{LP}^* = z^*$;
- Se la soluzione è frazionaria allora può essere usato un metodo Branch & Bound per trovare la soluzione ottima intera.

Esempio.

Rilassamento continuo $x^* = (\frac{3}{2}, \frac{5}{2}), \ z_{LP}^* = cx^* = -4$

 P_0 è suddiviso in due sottoproblemi P_1 e P_2

- P_1 imponiamo che $x_1 \leq 1$
- P_2 imponiamo che $x_1 \ge 2$

Si usi una strategia Depth-First e quindi si esamini il problema P_2 .

Esame del sottoproblema P_2

Il lower bound si ottiene imponendo il vincolo $x_1 \geq 2$.

L'ottimo per P_2 è $z_{LP}^* = -3.5$ con componenti $x_1^* = 2$ e 1 < $x_2^* < 2$

Il problema P_2 vien suddiviso in P_3 e P_4 dove

- P_3 imponiamo $x_1 \ge 2$ e $\underline{x_2 \le 1}$
- P_4 imponiamo $x_1 \ge 2$ e $\underline{x_2} \ge 2$

Esame del sottoproblema P_3

L'ottimo di P_3 è $z_{LP}^* = -3.25$ con componenti $x_2^* = 1$ e $2 < x_1^* < 3$.

Il problema P_3 viene suddiviso in P_5 e P_6 dove

- P_5 imponiamo $x_1 \ge 2, x_2 \le 1$ e $\underline{x_1 \le 2}$
- P_6 imponiamo $x_1 \ge 2, x_2 \le 2$ e $\underline{x_1 \ge 3}$

Al nodo dell'albero, corrispondente al problema P_5 si è ottenuta la prima soluzione ammissibile di P_0 di costo -3. Quindi poniamo UB = 3.

Il backtracking conduce ad esaminare il problema P_1

La soluzione ottima di P_1 è $z_{LP}^*=-2.5$, quindi, $LB_1=-2.5$ e poiché $LB_1>UB$ il sottoproblema P_1 non può condurre ad alcuna soluzione migliore di quella trovata per P_5 .

Essendo stati esaminati tutti i nodi dell'albero l'algoritmo termina e $z^* = -3$ è la soluzione ottima.

2.4.3 Eliminazione di alcuni vincoli

Si consideri il problema

$$P_0 \begin{cases} Min & z = cx \\ Ax = b & m_1 \ vincoli \\ Dx = h & m_2 \ vincoli \\ x \ge 0 & intero \end{cases}$$

Si consideri il problema RP che deriva da P_0 eliminando i vincoli Ax = b

$$RP \begin{cases} Min \ z_{RP} = cx \\ Dx = b \\ x \ge 0 \ e \ intero \end{cases}$$

Sia z_{RP}^* il valore ottimo di RP; si ha

$$z_{RP}^* \le z^* \quad (z^* \text{ ottimo di } P_0) \tag{2.38}$$

L'estensione di questo metodo è il Rilassamento Lagrangiano mediante il quale è possibile tener conto dei vincoli rilassati nella funzione obiettivo.

2.4.4 Rilassamento Surrogato

Sia dato il problema

$$P_0 \begin{cases} Min & z = cx \\ \sum_{j=1}^{n} a_{ij}x_j \ge b_i & i = 1, \dots, m_1 \\ Dx = h & m_2 \ vincoli \\ x > 0 \ intero \end{cases}$$

Si consideri il probelma che si ottiene da P_0 sostituendo i primi m_1 vincoli $a^i x \geq b_i$ con una loro combinazione lineare

$$SP \begin{cases} Min \ z_{SP} = cx \\ \sum_{j=1}^{m_1} \pi_i \sum_{j=1}^n a_{ij}^j \ge \sum_{i=1}^{m_1} \pi_i b_i \ \pi_i \ge 0 \\ Dx = h \ m_2 \ vincoli \\ x \ge 0 \ intero \end{cases}$$

 z_{SP}^* , ottimo di SP, è un valido lower bound a P_0 .

$$P \begin{cases} z^* = Min \ cx \\ s.t. \ Ax \ge b \\ x \ge 0 \ intero \end{cases}$$

Rilassamento lineare

$$LP \left\{ \begin{array}{ll} z_{LP}^* = Min \ cx & = Max \ \omega b \\ s.t. \ Ax \geq b & \omega A \leq c \\ x \geq 0 \ intero & \omega \geq 0 \end{array} \right.$$

Sia ω^* la soluzione duale ottima.

$$SP \begin{cases} z_{SP}^* = Min \ cx \\ (\omega^* A)x \ge \omega^* b \\ x \ge 0 \ intero \end{cases}$$

Ottenuto tramite rilassamento surrogato.

Teorema. $z_{SP}^* \geq z_{LP}^*$ Poiché w^* è la soluzione ottima del duale di LP si ha

$$z_{LP}^* = \omega^* b \quad e \quad c - \omega^* A x^* \tag{2.39}$$

Sia x^* la soluzione ottima intera di SP; si ha:

$$(c - \omega^* A)x^* \ge 0$$
 ovvero $cx^* \ge \omega^* Ax^*$ (2.40)

ma anche (da SP):

$$\omega^* A x^* \ge \omega^* b \tag{2.41}$$

Da 2.40 e 2.41:

$$cx^* \ge \omega^* A x^* \ge \omega^* b = z_{LP}^* \tag{2.42}$$

ovvero

$$z_{SP}^* = cx^* \ge z_{LP}^* \tag{2.43}$$

2.5 Assegnamento Generalizzato

Allocazione ottimale di n oggetti in m contenitori in modo che ogni oggetto sia assegnato ad un solo contenitore e non sia superata la portata di ogni contenitore.

Indichiamo con:

 b_i : portata del contenitore $i, i = 1, \dots, m$

 a_{ij} : spazio del contenitore i occupato dall'oggetto j (se j viene assegnato a i)

 c_{ij} : costo per assegnare al contenitore i l'oggetto j

 x_{ij}

=1se l'oggetto viene assegnato al contenitore i

=0 altrimenti

2.5.1 Formulazione matematica

$$Min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
 (2.44)

$$\sum_{i=1}^{m} x_{ij}, \ j = 1, \dots, n \tag{2.45}$$

$$\sum_{j=1}^{n} a_{ij} x_{ij}, \ i = 1, \dots, m$$
(2.46)

$$x_{ij} \in \{0, 1\}, \ \forall i, j$$
 (2.47)

Dove:

2.45 ogni oggetto j deve essere assegnato ad un solo contenitore

2.46 il "peso" complessivo assegnato ad ogni contenitore i non deve superare la portata b_i

2.5.2 Rilassamento lagrangiano

2.5.2.1 (a) Rispetto ai vincoli 2.45

$$L(u) = Min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} - \sum_{j=1}^{n} u_j (\sum_{i=1}^{m} x_{ij} - 1) =$$
(2.48)

$$L(u) = Min \sum_{i=1}^{m} \left(\sum_{j=1}^{n} (c_{ij} - u_j)x_{ij}\right) + \sum_{j=1}^{n} u_j$$
(2.49)

$$s.t. \sum_{j=1}^{n} a_{ij} x_{ij} \le b_i, \ i = 1, \dots, m$$
 (2.50)

$$x_{ij} \in \{0, 1\} \tag{2.51}$$

L'ottimo L(u) si ottiene risolvendo m problemi di Knapsack per il contenitore i del tipo:

$$z_{i} = Min \sum_{j=1}^{n} (c_{ij} - u_{j})x_{ij}$$
$$\sum_{j=1}^{n} a_{ij}x_{ij} \leq b_{i}$$
$$x_{ij} \in \{0, 1\}$$

Per cui
$$L(u) = \sum_{i=1}^{m} z_i \sum_{j=1}^{n} u_j$$

Esempio.

m=2 contenitori; n=4 oggetti.

$$a_{ij} = \begin{bmatrix} 5 & 7 & 4 & 2 \\ 3 & 1 & 6 & 4 \end{bmatrix} c_{ij} = \begin{bmatrix} 3 & 3 & 4 & 9 \\ 2 & 6 & -9 & 3 \end{bmatrix}$$

$$b = (30, 12)$$

Poniamo $u^0 = 0$ e $z^* = 3$ (soluzione euristica iniziale)

$$L(u^{0}) = Min \sum_{i=1}^{m} \left(\sum_{i=1}^{n} (c_{ij} - u_{j}^{0}) x_{ij} + \sum_{i=1}^{n} u_{j}^{0} \right)$$
(2.52)

$$L(u^{0}) = : Min_{x} 3x_{11} + 3x_{12} + 4x_{13} + 9x_{14} + 2x_{21} + 6x_{22} - 9x_{23} + 3x_{24} + 0$$
 (2.53)

$$5x_{11} + 7x_{12} + 4x_{13} + 2x_{14} \le 30 (2.54)$$

$$3x_{21} + x_{22} + 6x_{23} + 4x_{24} \le 12 \tag{2.55}$$

$$x_{11}, \dots, x_{24} \in \{0, 1\}$$
 (2.56)

Si decompone in due problemi: $L(u^0) = z_1 + z_2 + 0$

$$1^{0} problema \begin{cases} z_{1} = Min \ 3x_{11} + 3x_{12} + 4x_{13} + 9x_{14} \\ 5x_{11} + 7x_{12} + 4x_{13} + 2x_{14} \le 30 \end{cases}$$

Soluzione ottima: $z_1 = 0$; $x_{11}^0 = x_{12}^0 = x_{13}^0 = x_{14}^0 = 0$

$$2^{0} problema \begin{cases} z_{1} = Min \ 2x_{21} + 6x_{22} - 9x_{23} + 3x_{24} \\ 3x_{21} + x_{22} + 6x_{23} + 4x_{24} \le 12 \end{cases}$$

Soluzione ottima: $z_2=-9;\ x_{21}^0=x_{22}^0=0,\ x_{23}^0=1,\ x_{24}^0=0$

Quindi
$$L(u^0) = z_1 + z_2 + 0 = 0 - 9 + 0 = -9$$

La soluzione di L(u*0) non soddisfa i vincoli 2.45; infatti:

$$x = (x_{11}, x_{12}, x_{13}, x_{14}, x_{21}, x_{22}, x_{23}, x_{24})$$

 $x^{0} = (0, 0, 0, 0, 0, 0, 1, 0)$

$$Vincoli \ 2.45 \begin{cases} x_{11} & + x_{21} & = 1 \ (j = 1) \\ x_{12} & + x_{22} & = 1 \ (j = 2) \\ x_{13} & + x_{23} & = 1 \ (j = 3) \\ x_{14} & + x_{24} & = 1 \ (j = 4) \end{cases}$$

Si noti che la soluzione di $L(u^0)$ viola i vincoli 2.45 per j=1,2,4 mentre soddisfa quello per j=3.

Aggiornamento delle penalità {u}

$$u^{k} = u^{k-1} \alpha_{k} \frac{(z^{*} - L(u^{k-1}))}{||Ax^{k-1} - b||^{2}} \cdot (Ax^{k-1} - b)$$
(2.57)

Poniamo k = 1 ed $\alpha_1 = 2$; si è già assunto $z^* = 3$

$$u_j^k = u_j^{k-1} - 2 \cdot \frac{(+3 - (-9))}{\sum_{j=1}^n (\sum_{i=1}^m x_{ij} - 1)^2} \cdot (\sum_{i=1}^m x_{ij} - 1)$$
 (2.58)

$$u_1^1 = u_1^0 - 2 \cdot \frac{12}{3} \cdot (-1) = 0 + 8 = 8 \tag{2.59}$$

$$u_2^1 = u_2^0 - 2 \cdot 4 \cdot (-1) = 0 + 8 = 8$$
 (2.60)

$$u_3^1 = u_3^0 - 2 \cdot 4 \cdot (0) = 0 + 0 = 0 \tag{2.61}$$

$$u_4^1 = u_4^0 - 2 \cdot 4 \cdot (-1) = 0 + 8 = 8 \tag{2.62}$$

Calcolo di L(u1)

$$L(u^{1}) = Min \sum_{i=1}^{m} \left(\sum_{j=1}^{n} (c_{ij} - u_{j}^{1}) x_{ij} \right) + \sum_{j=1}^{n} u_{j}^{1}$$
(2.63)

$$c_{ij} = \begin{bmatrix} 3 & 3 & 4 & 9 \\ 2 & 6 & -9 & 3 \end{bmatrix}$$
$$u^{1} = (8, 8, 0, 8)$$

Come fatto in precedenza $L(u^1) = z_1 + z_2 + 24$ dove:

$$1^{0} problema \begin{cases} z_{1} = Min \ 5x_{11} - 5x_{12} + 4x_{13} + x_{14} \\ 5x_{11} + 7x_{12} + 4x_{13} + 2x_{14} \le 30 \\ x_{11}, \dots, x_{14} \in \{0, 1\} \end{cases}$$

Soluzione ottima: $z_1 = -10$; $x_{11}^1 = x_{12}^1 = 1$; $x_{13}^1 = x_{14}^1 = 0$

$$2^{0} problema \begin{cases} z_{2} = Min - 6x_{21} - 2x_{22} - 9x_{23} - 5x_{24} \\ 3x_{21} + x_{22} + 6x_{23} + 4x_{24} \le 12 \\ x_{21}, \dots, x_{24} \in \{0, 1\} \end{cases}$$

Soluzione ottima: $z_2 = -17; \ x_{21}^1 = x_{22}^1 = x_{23}^1 = 1; \ x_{24}^1 = 0$

Quindi
$$L(u^1) = z_1 + z_2 + 24 = -10 - 17 + 24 = -3$$

I vincoli2.45sono violati dalla soluzione x1 di $L(u^1).$

$$x = (x_{11}, x_{12}, x_{13}, x_{14}, x_{21}, x_{22}, x_{23}, x_{24})$$

 $x^{1} = (1, 1, 0, 0, 1, 1, 1, 0)$

$$\begin{cases} x_{11} & +x_{21} & = 1 \\ x_{12} & +x_{22} & = 1 \\ x_{13} & +x_{23} & = 1 \\ x_{14} & +x_{24} & = 1 \end{cases}$$

Tutti i vincoli, eccetto il terzo, sono violati!

Aggiornamento delle penalità

Poniamo k=2 e manteniamo $\alpha_2=2$ in quanto $L(u^1)>L(u^0)$

$$u_j^k = u_j^{k-1} - \alpha_2 \cdot \frac{(z^* - L(u^{k-1}))}{\sum_{j=1}^n (\sum_{i=1}^m x_{ij} - 1)^2} \cdot (\sum_{i=1}^m x_{ij} - 1)$$
 (2.64)

$$u_1^2 = u_1^1 - 2 \cdot \frac{6}{3} \cdot (1) = 8 - 4 = 4 \tag{2.65}$$

$$u_2^2 = u_2^1 - 2 \cdot 2 \cdot (1) = 8 - 4 = 4 \tag{2.66}$$

$$u_3^2 = u_3^1 - 2 \cdot 2 \cdot (0) = 0 - 0 = 0 \tag{2.67}$$

$$u_4^2 = u_4^1 - 2 \cdot 2 \cdot (-1) = 8 + 4 = 12 \tag{2.68}$$

Calcolo di $L(u^2)$

$$L(u^{2}) = Min \sum_{i=1}^{m} \left(\sum_{j=1}^{n} (c_{ij} - u_{j}^{2}) x_{ij}\right) + \sum_{j=1}^{n} u_{2}^{1}$$
(2.69)

$$L(u^2) = z_1 + z_2 + 20 (2.70)$$

dove z_1 e z_2 sono i valori ottimi dei problemi sequenti

$$c_{ij} = \begin{bmatrix} 3 & 3 & 4 & 9 \\ 2 & 6 & -9 & 3 \end{bmatrix}$$
$$u^2 = (4, 4, 0, 12)$$

$$1^{0} problema \begin{cases} z_{1} = Min - x_{11} - x_{12} + 4x_{13} - 3x_{14} \\ 5x_{11} + 7x_{12} + 4x_{13} + 2x_{14} \le 30 \\ x_{11}, \dots, x_{14} \in \{0, 1\} \end{cases}$$

Soluzione ottima: $z_1 = -5; \ x_{11}^2 = x_{12}^2 = 1, \ x_{13}^2 = 0, \ x_{14}^2 = 1$

$$2^{0} problema \begin{cases} z_{2} = Min - 2x_{21} + 2x_{22} - 9x_{23} - 9x_{24} \\ 3x_{21} + x_{22} + 6x_{23} + 4x_{24} \le 12 \\ x_{21}, \dots, x_{24} \in \{0, 1\} \end{cases}$$

Soluzione ottima: $z_2 = -18$; $x_{21}^2 = x_{22}^2 = 0$, $x_{23}^2 = x_{24}^2 = 1$

Quindi
$$L(u^2) = z_1 + z_2 + 24 = -5 - 18 + 20 = -3$$

L'unico vincolo violato è $x_{14} + x_{24} = 1$; per cui

$$u_j^3 = u_j^2 - \alpha_3 \cdot \frac{(z^* - L(u^2))}{\sum_{j=1}^n (\sum_{i=1}^m x_{ij} - 1)^2} \cdot (\sum_{i=1}^m x_{ij} - 1)$$
 (2.71)

poniamo $\alpha_3 = \alpha_2/2 = 1$. Le nuove penalità sono:

$$u_1^3 = u_1^2 - 6 \cdot (0) = 4 \tag{2.72}$$

$$u_2^3 = u_2^2 - 6 \cdot (0) = 4 \tag{2.73}$$

$$u_3^3 = u_3^2 - 6 \cdot (0) = 0 (2.74)$$

$$u_4^3 = u_4^2 - 6 \cdot (1) = 6 \tag{2.75}$$

Calcolo di $L(u^3) = z_1 + z_2 + 14$ dove

$$1^{0} problema \begin{cases} z_{1} = Min - x_{11} - x_{12} + 4x_{13} + 3x_{14} \\ 5x_{11} + 7x_{12} + 4x_{13} + 2x_{14} \le 30 \\ x_{11}, \dots, x_{14} \in \{0, 1\} \end{cases}$$

Soluzione ottima: $z_1 = -2; \ x_{11}^3 = x_{12}^3 = 1, \ x_{13}^3 = x_{14}^3 = 0$

$$2^{0} problema \begin{cases} z_{2} = Min - 2x_{21} + 2x_{22} - 9x_{23} - 3x_{24} \\ 3x_{21} + x_{22} + 6x_{23} + 4x_{24} \le 12 \\ x_{21}, \dots, x_{24} \in \{0, 1\} \end{cases}$$

Soluzione ottima: $z_2 = -12$; $x_{21}^3 = x_{22}^3 = 0$, $x_{23}^3 = x_{24}^3 = 1$

Quindi $L(u^2) = -2 - 12 + 14 = 0.$

 \square Si noti che x^3 è ammissibile e quindi la soluzione è ottima.

2.5.2.2(b) Rispetto ai vincoli 2.46

$$L(u) = Min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} - \sum_{i=1}^{m} \lambda_i (\sum_{j=1}^{n} a_{ij} x_{ij} - b_i) =$$
(2.76)

$$L(u) = Min \sum_{j=1}^{n} \left(\sum_{i=1}^{m} (c_{ij} - \lambda_i a_{ij}) x_{ij} \right) + \sum_{i=1}^{m} \lambda_i b_i$$
 (2.77)

$$\sum_{i=1}^{m} x_{ij} = 1 \tag{2.78}$$

$$x_{ij} \in \{0, 1\} \tag{2.79}$$

L'ottimo si ottiene ponendo, per ogni j

$$x_{i*j} = 1$$
 per $c_{i*j} - \lambda_{i*j} a_{i*j} = M_i in\{c_{ij} - \lambda_i a_{ij}\}$ (2.80)

Ovvero, ogni oggetto j viene assegnato al contenitore i^* rispetto al quale j ha costo minimo.

Esempio (Problema precedente con
$$m = 2$$
, $n = 4$)
$$a_{ij} = \begin{bmatrix} 5 & 7 & 4 & 2 \\ 3 & 1 & 6 & 4 \end{bmatrix} c_{ij} = \begin{bmatrix} 3 & 3 & 4 & 9 \\ 2 & 6 & -9 & 3 \end{bmatrix}$$

b = (30, 12)

Poniamo $\lambda = (0,0)$ e assumiamo $z^* = 3$ (come in precedenza).

$$L(\lambda^{0}) = Min \sum_{j=1}^{n} \left(\sum_{i=1}^{m} (c_{ij} - \lambda_{i} a_{ij}) x_{ij} + \sum_{i=1}^{m} \lambda_{i} b_{i} \right)$$
 (2.81)

$$L(\lambda^0) = 3x_{11} + 3x_{12} + 4x_{13} + 9x_{14} + 2x_{21} + 6x_{22} - 9x_{23} + 3x_{24} + 0$$
 (2.82)

$$\begin{cases} x_{11} + x_{21} = 1 \\ x_{12} + x_{22} = 1 \\ x_{13} + x_{23} = 1 \\ x_{14} + x_{24} = 1 \end{cases}$$
 (2.83)

Poniamo $x_{i*j} = 1$ dove $c_{i*j} = M_i n\{c_{ij}\}; \ \forall j$

Dal 1º vincolo $x_{11} = 0, x_{21} = 1$

Dal 2° vincolo $x_{12} = 1, x_{22} = 0$

Dal 3° vincolo $x_{13} = 0, x_{23} = 1$

Dal 4° vincolo $x_{14} = 0, x_{24} = 1$

Quindi
$$L(\lambda^0) = -1$$

Soluzione ottenuta per $L(u^0)$

$$x = (x_{11}, x_{12}, x_{13}, x_{14}, x_{21}, x_{22}, x_{23}, x_{24})$$

 $x^{1} = (0, 1, 0, 0, 1, 0, 1, 1)$

$$5x_{11} + 7x_{12} + 4x_{13} + 2x_{14} \le 30$$
 soddisfatto

 $3x_{21} + x_{22} + 6x_{23} + 4x_{24} \le 12$ violato!

Ulteriori iterazioni possono migliorare il lower bound...

2.5.3 Algoritmo Branch & Bound

(Ad esempio)

Ad ogni livello j viene deciso in quale contenitore inserire l'oggetto j.

Da ogni nodo vengono generati m nodi.

CAPITOLO 3

RILASSAMENTO LAGRANGIANO PER IL CALCOLO DI LOWER BOUNDS

Si consideri il seguente problema P di programmazione a numeri interi:

$$P: \begin{cases} z(P) = Min \ cx \\ s.t. \ Ax \ge b \\ Bx \ge d \\ x \in \{0, 1\}^n \end{cases}$$

Il valore ottimo z(LP) del rilassamento lineare LP del problema P fornisce un valido lower bound, ovvero

$$z(LP) \le z(P) \tag{3.1}$$

LP si ottiene da P sostituendo $x \in \{0,1\}^n$ con $0 \le x \le 1$:

$$LP: \begin{cases} z(LP) = Min \ cx \\ s.t. \ Ax \ge b \\ Bx \ge d \\ 0 \le x \le 1 \end{cases}$$

In molti casi:

• è pribitivo risolvere *LP*: troppe variabili e/o vincoli;

 \bullet z(LP) è troppo distante da z(P)e quindi non utilizzabile in un algoritmo Branch and Bound.

3.1 Rilassamento Lagrangiano di P rispetto ai vincoli $Ax \geq b$

Viene così definito il problema RL_u che si ottiene da P rimuovendo i vincoli $Ax \geq b$ e sottraendo dalla funzione obiettivo il termine u(Ax - b) dove $u \geq 0$ è il vettore dei **Moltiplicatori** Lagrangiani.

$$RL_u: \begin{cases} L(u) = Min \ cx - u(Ax - b) \\ s.t. \ Bx \ge d \\ x \in \{0, 1\} \end{cases}$$

L(u) viene detta "Funzione Lagrangiana"

3.1.1 Esempio

$$P: \begin{cases} z(P) = Min \ 3x_1 + 7x_2 + 10x_3 \\ s.t. \ x_1 + 3x_2 + 5x_3 \ge 7 \\ x_1, x_2, x_3 \in \{0, 1\} \end{cases}$$

$$RL_u: \begin{cases} L(u) = Min \ x_1 + 7x_2 + 10x_3 - u(x_1 + 3x_2 + 5x_3 - 7) \\ s.t. \ x_1, x_2, x_3 \in \{0, 1\} \end{cases}$$

3.2 Validità e importanza di RL_u

Possiamo dimostrare che $L(u) \leq z(P), \ \forall u \geq 0$ e quindi $\max_{u \geq 0} [L(u)] \leq z(P)$. In certe condizioni la soluzione ottima di RL_u è anche la soluzione ottima di P.

3.2.1 Esempio

$$P: \begin{cases} z(P) = Min \ 2x_1 + 3x_2 + 4x_3 + 5x_4 \\ s.t. \ x_1 + x_3 \ge 1 \\ x_1 + x_4 \ge 1 \\ x_2 + x_3 + x_4 \ge 1 \\ \forall i \in \{0, 1\}, \ i = 1, \dots, 4 \end{cases}$$

La soluzione ottima è $x_1 = x_2 = 1$, $x_3 = x_4 = 0$ e z(P) = S.

Il rilassamento lagrangiano dei tre vincoli richiede tre moltiplicatori u_1, u_2, u_3 ; quindi

$$(RL_u) \quad L(u) = Min \ 2x_1 + 3x_2 + 4x_3 + 5x_4 - u_1(x_1 + x_3 - 1) \tag{3.2}$$

$$-u_2(x_1 + x_4 - 1) (3.3)$$

$$-u_3(x_2+x_3+x_4-1) (3.4)$$

$$s.t. \ x_i \in \{0,1\}, \ i = 1, \dots, 4$$
 (3.5)

ma anche

$$(RL_u) L(u) = Min (2 - u_1 - u_2)x_1 + (3 - u_3)x_2 + (4 - u_1 - u_3)x_3 + (5 - u_2 - u_3)x_4 + u_1 + u_2 + u_3$$
(3.6)

$$s.t. \ x_i \in \{0,1\}, \ i=1,\ldots,4$$
 (3.7)

Dato u, la soluzione ottima di RL_u e, conseguentemente, il valore di L(u) si ottiene ponendo

$$x_i = 0$$
 se il coefficiente di x_i è ≥ 0
 $x_i = 1$ se il coefficiente di x_i è < 0

Poniamo $u_1 = 1.5, u_2 = 1.6 \text{ e } u_3) = 2.2$

$$L(u) = Min - 1.1x_1 + 0.8x_2 + 0.3x_3 + 1.2x_4 + 1.5 + 1.6 + 2.2$$

La soluzione ottima è

$$x_1 = 1, \ x_2 = x_3 = x_4 = 0$$

quindi

$$L(u) = -1.1 + 1.5 + 1.6 + 2.2 = 5.3 - 1.1 = 4.2$$

Ponendo $u_1 = 1, u_2 = 1 e u_3 = 3$

$$L(u) = Min \ 0x_1 + 0x_2 + 0x_3 + x_4 + 1 + 1 + 3$$

Una soluzione ottima è

$$x_1 = 1 = x_2 = x_3 = x_4 = 0$$

di costo $L(u) = 0 + 0 + 0 + 0 + 1 + 1 + 3 = 5 \equiv z(P)$.

Si noti che esistono soluzioni ottime alternative tutte di costo L(u)=5 che si ottengono ponendo $x_1=1$ e/o $x_2=1$ e/o $x_3=1$ e $x_4=0$. Fra tali soluzioni esiste quella ottima! $x_1=x_2=1$ e $x_3=x_4=0$

3.3 TEOREMA: Dualità Lagrangiana debole

Il valore ottimo z(P) del problema

$$P: \begin{cases} z(P) = Min \ cx \\ s.t. \ Ax \ge b \\ Bx \ge d \\ x \in \{0, 1\} \end{cases}$$

è maggiore o uguale al valore ottimo L(u) del problema

$$RL_u: \begin{cases} L(u) = Min \ cx - u(Ax - b) \\ s.t. \ Bx \ge d \\ x \in \{0, 1\} \\ \forall u \ge 0 \end{cases}$$

3.3.1 Dimostrazione

Sia x^* la soluzione ottima di P. Si noti che x^* è anche una soluzione ammissibile per RL_u per ogni $u \geq 0$, ma non necessariamente l'ottimo di RL_u per un dato u. Si ha, quindi, che

$$cx^* - u(Ax^* - b) \ge L(u) \tag{3.8}$$

ma $u(Ax^*-b) \ge 0$ (poichè $u \ge 0$ e $Ax^* \ge b$ essendo per ipotesi x^* l'ottimo di P); quindi

$$cx^* \ge L(u) \text{ ovvero } z(P) \ge L(u)$$

3.4 Lagrangiano Duale

Dal teorema della dualità debole per cui $L(u) \leq z(P), \forall u \geq 0$, si ha che l'ottimo $z(D_L)$ del seguente problema:

$$D_L z(D_L) = \max_{u \ge 0} [L(u)]$$
 (3.10)

è un valido lower bound a z(P); ovvero $z(D_L) \leq z(P)$.

Il problema D_L è detto Lagrangiano Duale di P.

3.5 Duality Gap 55

3.5 Duality Gap

Nel caso in cui $z(D_L) < z(P)$ allora si dice che esiste un **duality gap** fra il problema P e il problema D_L .

Supponiamo che l'ottimo di D_L si ottenga risolvendo $L(\bar{u})$ per un dato $\bar{u} \geq 0$, ovvero, $z(D_L) = L(\bar{u})$.

Indichiamo con \bar{x} la soluzione ottima di $RL_{\bar{u}}$ ovvero:

$$z(D_L) = L(\bar{u}) = c\bar{x} - \bar{u}(A\bar{x} - b) \tag{3.11}$$

Si consideri il caso in cui \bar{x} è anche l'ottimo di P, ovvero, $z(P) = c\bar{x}$.

È evidente che $z(D_L) < z(P)$ se $\bar{u}(A\bar{x} - b) > 0$.

3.5.1 Esempio

$$P: \begin{cases} z(P) = Min \ 3x^{1} + 7x^{2} + 10x^{3} \\ s.t. \ x_{1} + 3x^{2} + 5x^{3} \ge 7 \end{cases}$$
$$L(u) = Min \ 3x_{1} + 7x^{2} + 10x^{3} - u(x_{1} + 3x^{2} + 5x^{3} - 7)$$
$$x_{1}, x_{2}, x_{3} \in \{0, 1\}$$

Per calcolare $z(D_L) \underset{u \geq 0}{Max} [L(u)]$ calcoliamo $L(u), u \geq 0$

$$\begin{array}{lll} u=0 & L(0)=0 & x=(0,0,0) \\ u=1 & L(1)=7 & x=(0,0,0) \\ u=2 & L(2)=14 & x=(0,0,0) \text{ oppure } x=(0,0,1) \\ u=\frac{7}{3} & L(\frac{7}{3})=\frac{44}{3} & x=(0,0,1) \text{ oppure } x=(0,1,1) \\ u=3 & L(3)=14 & x=(0,1,1) \text{ oppure } x=(1,1,1) \\ u>3 & L(u)=-2u+20 & x=(1,1,1) \end{array}$$

Quindi $z(D_L)=\frac{44}{3}$ mentre z(P)=17 e $x^*=(0,1,1)$ che corrisponde ad una delle soluzioni di $L(\frac{7}{3})=\frac{44}{3}$ ma esiste un gap di dualità.

3.6 TEOREMA: Dualità Lagrangiana Forte

Sia \bar{x} la soluzione ottima di L(u), per un dato $\bar{x} \geq 0$. Se \bar{x} , \bar{u} soddisfano le seguenti condizioni:

$$A\bar{x} \ge b \tag{3.12}$$

$$\bar{u}(A\bar{x} - b) = 0 \tag{3.13}$$

allora \bar{x} è la soluzione ottima di P ed inoltre $z(D_L) = L(\bar{u}) = z(P)$.

3.6.1 Dimostrazione

Dimostraimo che se \bar{x} , \bar{u} soddisfano le 3.12 e 3.13 allora \bar{x} è una soluzione ottima di P. Poichè \bar{x} soddisfa la 3.12 allora è soluzione ammissibile di P e quindi

$$c\bar{x} \ge z(P) \tag{3.14}$$

Per il teorema della dualità Lagrangiana debole si ha:

$$z(P) \ge L(u) = c\bar{x} - \underbrace{\bar{u}(A\bar{x} - b)}_{=0 \text{ per la } 3.13}$$
(3.15)

Quindi da 3.14 e 3.15 si ottiene

$$c\bar{x} \ge z(P) \ge c\bar{x} \text{ ovvero } z(P) = c\bar{x}.$$
 (3.16)

Dimostriamo che se \bar{x} e \bar{u} soddisfano le 3.12 e 3.13 allora $z(D_L) = L(\bar{u}) = z(P)$. Per come è definito il problema D_L si ha che:

$$z(D_L) \ge L(\bar{u})$$

$$z(P) \ge z(D_L) \tag{3.17}$$

Abbiamo dimostrato che se valgono 3.12 e 3.13 allora

$$z(P) = L(\bar{u}) = c\bar{x} \tag{3.18}$$

Quindi da 3.17 e 3.18 si ottiene

$$z(D_L) = z(P) (3.19)$$

3.6.2 Osservazioni

• Qual è il migliore sottoinsieme di vincoli da rilassare in modo Lagrangiano?

- Come risolvere D_L : ovvero come scegliere i valori numerici di u in modo da ottenere il miglior possibile lower bound.
- \bullet Che relazione esiste tra $z(D_L)$ e z(LP) il valore del Rilassamento Lineare di P?

3.7 Caratterizzazione del Lagrangiano Duale

Al fine di stabilire una relazione tra D_L ed il rilassamento lineare LP di P è utile riformulare D_L come un problema di programmazione lineare.

3.7.1 Definizione

Indichiamo $X = \{x : Bx \ge d, x \in (0,1)\}$ e con conv(X) l'invilupopo convesso di tutti i punti di X (ovvero, conv(X) è l'intersezione di tutti gli insieme convessi che contengono X).

Si osservi che l'ottimo del problema Lagrangiano:

$$RL_{u} \begin{cases} L(u) = Min \ cx - u(Ax - b) \\ s.t. \ Bx \ge d \\ x \in (0, 1) \end{cases}$$

corrisponde ad un punto estremo di conv(X)

3.7.2 TEOREMA

Il Lagrangiano Duale D_L corrisponde al seguente problema di programmazione lineare.

$$D_L \begin{cases} z(D_L) = Min \ cx \\ s.t. \ Ax \ge d \\ x \in conv(X) \end{cases}$$

dove $X = \{x : Bx \ge d, x \in (0,1)\}$ e conv(X) è l'inviluppo convesso di X.

3.7.2.1 Dimostrazione

Si ricordi che:

$$D_L \quad z(D_L) = \underset{u \ge 0}{Max} [L(u)]$$

e, per come è stato definite X, il problema RL_u diviene

$$RL_u$$
 $L(u) = \underset{x \in X}{Min} (cx - u(Ax - b))$

Quindi, il problema D_L può essere scritto come:

$$D_L z(D_L) = \underset{u \ge 0}{\operatorname{Max}} \underbrace{[\operatorname{Min}) (cx - u(Ax - b))]}_{L(u)}$$

o anche

$$D_L z(D_L) = \underset{u \ge 0}{Max} \left[\underset{x \in conv(X)}{Min} \left(cx - u(Ax - b) \right) \right]$$

poichè L(u) raggiunge l'ottimo in un punto estremo di conv(X).

Indichiamo con x^i , $i=1,\ldots,t$ i punti estremi di conv(X). Il problema D_L può essere scritto come:

$$D_L \quad z(D_L) = \underset{u \geq 0}{Max} \left[\underset{1 \leq i \geq t}{Min} \left(cx^i - u(Ax^i - b) \right) \right]$$

quest'ultimo problema può essere riformulato mediante la programmazione lineare come segue:

$$D_L \begin{cases} z(D_L) = Max \ v \\ s.t. \ v \le cx^i - u(Ax^i - b), \ i = 1, \dots, t \\ v \text{ qualsiasi} \\ u \ge 0 \end{cases}$$

Il duale di questo problema è il seguente

$$DD_L \begin{cases} z(D_L) = Min \sum_{i=1}^t \lambda_i(cx^i) \\ s.t. \sum_{i=1}^t \lambda_i = 1 \\ \sum_{i=1}^t \lambda_i(Ax^i - b) \ge 0 \\ \lambda_i \ge 0, \ i = 1, \dots, t \end{cases}$$

Si noti che $\sum_{i=1}^{t} \lambda_i(cx^i) = c(\sum_{i=1}^{t} \lambda_i x^i)$ ed inoltre $\sum_{i=1}^{t} = \lambda_i(Ax^i - b) = A(\sum_{i=1}^{t} \lambda_i x^i) - b(\sum_{i=1}^{t} \lambda_i)$. Quindi DD_L può essere riscritto come

$$z(D_L) = Min \ c(\sum_{i=1}^t \lambda_i x^i)$$
(3.20)

$$DD_{L} \begin{cases} z(D_{L}) = Min \ c(\sum_{i=1}^{t} \lambda_{i} x^{i}) & (3.20) \\ s.t. \sum_{i=1}^{t} \lambda_{i} = 1 & (3.21) \\ A(\sum_{i=1}^{t} \lambda_{i} x^{i}) \ge b(\sum_{i=1}^{t} \lambda_{i}) & (3.22) \\ \lambda_{i} > 0, \ i = 1, \dots, t & (3.23) \end{cases}$$

$$A(\sum_{i=1}^{t} \lambda_i x^i) \ge b(\sum_{i=1}^{t} \lambda_i) \tag{3.22}$$

$$\lambda_i \ge 0, \ i = 1, \dots, t \tag{3.23}$$

Si osservi che, per ognu t-pla $\lambda_i, \ldots, \lambda_t$ che soddisfa i vincoli 3.21 e 3.23, il punto $x = \sum_{i=1}^{c} \lambda_i x^i$ appartiene a conv(X). Quindi il problema DD_L può essere riscritto come

$$DD_L \begin{cases} z(D_L) = Min \ cx \\ s.t. \ Ax \ge b \\ x \in conv(X) \end{cases}$$
 (3.24)

3.8 Lagrangiano Duale e Rilassamento Lineare

3.8.1 TEOREMA

$$z(D_L) \ge z(LP) \tag{3.25}$$

3.8.2 Dimostrazione

Il rilassamento lineare LP è definito come

$$LP \begin{cases} z(LP) = Min \ cx \\ s.t. \ Ax \ge b \\ Bx \ge d \\ 0 \le x \le 1 \end{cases}$$
 (3.26)

Definiamo $\bar{X} = \{x : Bx \ge d, \ 0 \le x \le 1\}$, quindi

$$LP \begin{cases} z(LP) = Min \ cx \\ s.t. \ Ax \ge b \\ x \in \bar{X} \end{cases}$$
 (3.27)

Per come abbiamo definito \bar{X} è facile osservare che:

$$conv(X) \subseteq \bar{X}$$
 (3.28)

e poichè abbiamo dimostrato che

$$D_L \begin{cases} z(D_L) = Min \ cx \\ s.t. \ Ax \ge b \\ x \in conv(X) \end{cases}$$
 (3.29)

si ha che $z(D_L) \ge z(LP)$.

3.8.3 TEOREMA: L(u) è concava

La funzione lagrangiana L(u) è concava, ovvero $L(\lambda u^1 + (1 - \lambda)u^2) \ge \lambda L(u^1) + (1 - \lambda)L(u^2)$, $\lambda \in [0, 1]$

3.8.3.1 Dimostrazione

Siano $u^1, u^2 \ge 0$ e $u^0 = \lambda u^1 + (1 - \lambda)u^2$ con $\lambda in[0, 1]$. Indichiamo con x^0 la soluzione ottima di RL_{u^0} :

$$L(u^{0}) = cx^{0} - u^{0}(Ax^{0} - b)$$
(3.30)

 \boldsymbol{x}^0 è soluzione ammissibile di RL_{u^1} e RL_{u^2} quindi

$$L(u^{1}) \le cx^{0} - u^{1}(Ax^{0} - b) \tag{3.31}$$

$$L(u^2) \ge cx^0 - u^2(Ax^0 - b) \tag{3.32}$$

Moltiplicando la 3.31 per λ , la 3.32 e sommando:

$$\lambda L(u^{1}) + (1 - \lambda)L(u^{2}) \le cx^{0} - \underbrace{(\lambda u^{1} + (1 - \lambda)u^{2})}_{u^{0}}(Ax^{0} - b) = L(u^{0})$$
(3.33)

3.9 Subgradiente di L(u)

Un vettore è detto subgradiente di L(u) in \bar{u} se soddisfa

$$L(u) \ge L(\bar{u}) + y(u - \bar{u}) \tag{3.34}$$

Come calcolare y?

Sia \bar{x} tale che

$$L(\bar{u}) = c\bar{x} - \bar{u}(A\bar{x} - b) \tag{3.35}$$

Per ogni $u \geq 0$ si ha

$$L(u) \le c\bar{x} - u(A\bar{x} - b) \tag{3.36}$$

Sottraendo dalla 3.36 la 3.35 si ottiene

$$L(u) = L(\bar{u}) \ge -(A\bar{x} - b)(u - \bar{u}) \tag{3.37}$$

ma anche

$$L(u) \le L(\bar{u}) - (A\bar{x} - b)(u - \bar{u})$$
 (3.38)

ne segue che $y=-(A\bar x-b)$ è un subgradiente di L(u) in $\bar u$

3.9.1 Metodo del subgradiente

Metodo iterativo per risolvere il lagrangiano duale

$$D_L \left\{ z(D_L) = \underset{u \ge 0}{Max} [L(u)] \right.$$

Il metodo genera una sequenza finita di punti (u^1, u^2, \dots, u^k) e, quindi, calcola

$$z(D_L) = \max_{u \in \{u^1, u^2, \dots, u^k\}} [L(u)]$$

3.9.1.1 Generazione di u^r in funzione di u^{r-1}

Sia x^{r-1} tale che $L(u^{r-1}) = cx^{r-1} - u^{r-1}(Ax^{r-1} - b)$. Abbiamo dimostrato che

$$L(u^r) \le L(u^{r-1}) - (Ax^{r-1} - b)(u^r - u^{r-1}) \tag{3.39}$$

se vogliamo che $L(u^r)$ possa essere maggiore di $L(u^{r-1})$ è necessario che

$$-(Ax^{r-1} - b)(u^r - u^{r-1}) > 0 (3.40)$$

Si noti che una scelta di u^r che verifichi la suddetta condizione non è sufficiente per garantire che $L(u^r) > L(u^{r-1})$.

Come definire u^r affinchè 3.40 sia verificata?

Supponiamo che A abbia m righe e quindi $u = (u_1, ..., u_m)$ indicando con $a^i \ge b_i$ la i-esima disequazione di $Ax \ge b$; la condizione 3.40 può essere scritta come

$$-\sum_{i=1}^{m} (a_i^{r-1} - b_i)(u_i^r - u_i^{r-1}) > 0$$

Per soddisfare 3.9.1.1 è sufficiente determinare ogni u_i^r in modo che

$$-(a^{i}x^{r-1} - b_{i})(u_{i}^{r} - u_{i}^{r-1}) > 0, \ \forall i = 1, \dots, m$$
(3.41)

Da cui seguono i sequenti casi:

- $a^i x^{r-1}$: x^{r-1} viola il vincolo i-esimo definisci $u_i^r > u_i^{r-1}$
- $a^i x^{r-1} > b_i$: x^{r-1} soddisfa il vincolo i-esimo definisci $u^r_i < u^{r-1}_r$ ma imponi $u^r_i \ge 0$
- $a^i x^{r-1} = b_i$: x^{r-1} satura il vincolo i-esimo u_i^r qualsiasi (è buona norma $u_i^r = u_i^{r-1}$!)
- 1. Inizializza $u^1 = 0$ e poni r = 1 e $LB = -\infty$
- 2. Risolvi:

$$L(u^r) \begin{cases} Min \ cx - u^r (Ax - b) \\ s.t.; Bx \ge d \\ x \in (0, 1) \end{cases}$$

Sia x^r la soluzione ottima

Se $L(u^r) > LB$ allora poni $LB = L(u^r)$ e $u^* = u^r$

Se $Ax^r \ge b$ e $u^r(Ax^r - b) = 0$ allora x^r è soluzione ottima di P: STOP

3. Definisci i moltiplicatori di u^{r+1}

$$u_i^{r+1} = Max[0, u_i^r - \alpha \cdot \frac{z_{UB} - L(u^r)}{\sum_{i=1}^m \widetilde{y_i^2}} \cdot \widetilde{y_i}], \ \forall i$$

dove $\widetilde{y}_i = a^i x^r - b_i$ e α è una costante $(0 < \alpha \le 2)$. Poni $r \leftarrow r + 1$ e ritorna allo step 2.

- 4. Il metodo potrebbe non arrestarsi: è quindi necessario imporre un numero massimo di iterazioni.
- 5. È opportuno diminuire il valore di α ($\alpha \leftarrow \alpha/2$) se per δ iterazioni consecutive $L(u) \leq LB$
- 6. I valori di α e δ vanno determinati sperimentalmente: tipicamente $\alpha=2$ e $\delta=30$.

3.9.2 Vincoli Misti

$$z(P) \begin{cases} Min \ cx \\ A_1x \ge b_1 & m_1 \text{ righe e } u^1 \ge 0 \\ A_2x = b_2 & m_2 \text{ righe e } u^2 \in \mathbb{R}^{m_2} \\ A_3x \le b_3 & m_3 \text{ righe e } u^3 \le 0 \\ Bx \ge d \\ x \in \{0,1\}^m & u = (u^1, u^2, u^3) \end{cases}$$

$$L(u) \begin{cases} Min \ cx - u^1(A_1x - b_1) - u^2(A_2x - b_2) - u^3(A_3x - b_3) \\ s.t. \ Bx \ge d \\ x \in \{0,1\}^m \end{cases}$$

ma anche:

$$L(u) \begin{cases} Min \ (c - u^{1}A_{1} - u^{2}A_{2} - u^{3}A_{3})x + u^{1}b_{1} + u^{2}b_{2} + u^{3}b_{3} \\ s.t. \ Bx \ge d \\ x \in \{0, 1\} \end{cases}$$

3.9.3 Subgradiente per vincoli mist

Ad una generica iterazione.

Sia \bar{x} la soluzione ottima di L(u).

Calcola
$$y^1 = A_1 \bar{x} - b_1$$
, $y^2 = A_2 \bar{x} - b_2$, $y^3 = A_3 \bar{x} - b_3$.

Poni
$$y = (y^1, y^2, y^3)$$
 e $t = \alpha \frac{z_{UB} - L(u)}{\displaystyle \sum_{i=1}^{m} y_1^2}$
$$u_i^1 \leftarrow max[0, \ u_i^1 - ty_i^1], \ i = 1, \dots, m_1$$

$$u_i^2 \leftarrow u_i^2 - ty_i^2, \ i = 1, \dots, m_2$$

$$u_i^3 \leftarrow min[0, \ u_i^3 - ty_i^3], \ i = 1, \dots, m_3$$

3.10 Traveling Salesman Problem

3.10.1Costi Simmetrici

n vertici, m archi.

G = (N, A): grafo non-orientato.

 $N = \{1, \dots, n\}$ insieme dei vertici.

 $A = \{1, \ldots, m\}$ insieme degli archi.

Costi simmetrici: $c_{ij} = c_{ji} \ \forall \ ij$ Indichiamo con c_l il costo dell'arco $l \in A$.

Per ogni arco $l \in A$ siano (α_l, β_l) i due vertici terminali.

Inoltre sia $B_i \subset A$ l'insieme degli archi incidenti nel vertice $i \in N$.

3.10.1.1Esempio

n=8 vertici m=15 archi 04 arco 14 $\alpha_{14} = 1$, $\beta_{14} = 4$ $B_4 = \{10, 14, 15\}$ $B_3 = \{8, 9, 15, 13, 11\}$

3.10.2Fomulazione Matematica (TSP Simmetrico)

 $x_l = 1$, se l'arco l è nella soluzione ottima $x_l = 0$, altrimenti.

$$\begin{cases}
Min \ z = \sum_{l=1}^{m} c_{l} x_{l} \\
\sum_{l \in B_{i}} x_{l} = 2; \ i = 1, \dots, n \\
\sum_{l \in K_{t}} x_{l} \ge 1; \ \forall K_{t} = (S_{t}, \ N \setminus S_{t}) \quad S_{t} \subset N, \ S_{t} \ne \emptyset, \ |S_{t}| \ge 2 \\
x_{l} \in \{0, 1\}; \ l = 1, \dots, m
\end{cases} \tag{3.42}$$

$$\sum_{l \in B_i} x_l = 2; \ i = 1, \dots, n \tag{3.43}$$

$$\sum_{l \in K_t} x_l \ge 1; \ \forall K_t = (S_t, \ N \setminus S_t) \quad S_t \subset N, \ S_t \ne \emptyset, \ |S_t| \ge 2$$
 (3.44)

$$x_l \in \{0, 1\}; \ l = 1, \dots, m$$
 (3.45)

3.10.2.1 1º Rilassamento Lagrangiano (SST)

I vincoli 3.43 vengono portati nella fuzione obiettivo e sostituiti nella formulazione con il "surrogato" $\sum_{l=1}^{n} = (\sum_{l \in R_{l}} x_{l}) = 2n$.

$$L(\lambda) = \min \sum_{l=1}^{m} c_l x_l - \sum_{i=1}^{n} \lambda_i (\sum_{l \in B_i} x_l - 2)$$
 (3.46)

$$\sum_{l=1}^{m} x_l = n \tag{3.47}$$

$$\sum_{l \in K_t} x_l \ge 1; \quad \forall K_t = (S_t, \ N \setminus S_t) \quad S_t \subset N, \ S_t \ne \emptyset$$
(3.48)

$$x_l \in \{0, 1\} \ l = 1, \dots, m$$
 (3.49)

$$L(\lambda) = \min \sum_{l=1}^{m} c_l x_l - \sum_{i=1}^{n} \lambda_i (\sum_{l \in B_i} x_l - 2)$$

$$L(\lambda) = \min \sum_{l=1}^{m} c_l x_l + 2 \sum_{i=1}^{n} \lambda_i - \sum_{i=1}^{n} \sum_{l \in B_i} \lambda_i x_l$$

Si noti che l'arco l ha come vertici terminali α_l , β_l e quindi compare per $i = \alpha_l$ ed $i = \beta_l$.

$$\sum_{i=1}^{n} \sum_{l \in B_i} \lambda_i x_l = \sum_{l=1}^{m} (\lambda + \lambda) x_l$$

$$L(\lambda) = \min \sum_{l=1}^{m} \underbrace{(c_l - \lambda_{\alpha_l} - \lambda_{\beta_l})}_{c'_l} x_l + 2 \sum_{i=1}^{n} \lambda_i$$

$$\sum_{l=1}^{m} x_l = n$$

$$\sum_{l \in K_t} x_l \ge 1; \quad \forall K_t \equiv (S_t, N \setminus S_t) \quad S_t \subset N, S_t \ne \emptyset$$

$$x_l \in \{0, 1\}$$

La soluzione ottima si ottiene calcolando l'albero di costo minimo, usando i costi $(c_l - \lambda_{\alpha_l} - \lambda_{\beta_l})$, detto v(SST) tale costo si ha che

$$L(\lambda) = v(SST) + c'_{l_{min}} + 2\sum_{i=1}^{n} \lambda_i$$
 (3.50)

dove $c'_{l_{min}} = min\{(c_l - \lambda_{\alpha_l} - \lambda_{\beta_l}): l \notin SST\}$

3.10.3 Calcolo di $L(\lambda^0)$ per $\lambda^0=0$

L'albero di costo minimo è $SST=\{(3,4),(6,5),(1,2),(7,8),(7,6),(2,3),(3,6)\}$ mentre l'arco minimo è (5,8) e $c'_{l_{min}}=4$

$$L(\lambda^0) = v(SST) + c'_{l_{min}} = 17 + 4 = 21$$
(3.51)

3.10.4 Calcolo Penalità Lagrangiane

Poniamo $d_i = \sum_{l \in B_i} x_l$ per cui il vincolo

$$\sum_{l \in B_i} x_l = 2; \quad i = 1, \dots, n \tag{3.52}$$

diviene

$$d_i = 2; \quad i = 1, \dots, n \tag{3.53}$$

Nella soluzione prodotta per $\lambda^0=0$

$$d^{0} = (1, 2, 3, 1, 2, 3, 2, 2)$$

$$\lambda^{k} = \lambda^{k-1} - t_{k}(Ax^{k-1} - b)$$
(3.54)

$$t_k = \lambda_k \cdot \frac{(z^* - L(\lambda^{k-1}))}{||Ax^{k-1} - b||^2}$$

3.10.4.1 Prima iterazione: k = 1 e $\lambda^0 = 0$, $\alpha_1 = 2$

$$t_1 = 2 \cdot \frac{(25 - 21)}{\sum_i (d_i^0 - 2)^2} = 2 \cdot \frac{4}{4} = 2$$

$$\lambda_i^1 = 0 - 2(d_i^0 - 2) \quad i = 1, \dots, n$$

Quindi

$$\lambda_i^1 > 0$$
 se $d_i^0 < 2$
 $\lambda_i^1 = 0$ se $d_i^0 = 2$
 $\lambda_i^1 < 0$ se $d_i^0 > 2$
 $\lambda^1 = (+2, 0, -2, +2, 0, -2, 0, 0)$

3.10.4.2 Calcolo di $L(\lambda^1)$

Albero di costo minimo SST usando i costi $\{c_{ij}, \lambda_i - \lambda_j\}$

$$SST = (1, 2), (1, 4), (3, 4), (7, 8), (5, 6), (5, 8), (2, 7)$$

 $v(SST) = 16$

Nella soluzione prodotta per $\lambda^1=(2,0,-2,2,0,-2,0,0)$ si ha

$$d^1 = (3, 2, 2, 2, 2, 1, 2, 2)$$

3.10.4.3 Nuova iterazione per $k \leftarrow k+1$ ossia k=2

$$\lambda_i^2 = \lambda_i^1 - \alpha_2 \cdot \frac{(z^* - L(\lambda^1))}{\sum_i (d_i^1 - 2)^2} \cdot; \quad i = 1, \dots, n$$

dove $\alpha_2 = \alpha_1/2 = 1$

$$\lambda_i^2 = \lambda_i^1 - 1 \cdot \frac{5}{2} \cdot (d_i^1 - 2)$$

Quindi

$$\begin{split} \lambda_1^2 &= 2 - \frac{5}{2} - 1 = -\frac{1}{2} \\ \lambda_i^2 &= \lambda_i^1, \quad i = 2, 3, 4, 5 \\ \lambda_6^2 &= -2 - \frac{5}{2} \cdot (-1) = -2 + \frac{5}{2} = \frac{1}{2} \\ \lambda_7^2 &= \lambda_7^1, \ \lambda_8^2 = \lambda_8^1 \end{split}$$

$$\lambda_2=(-\frac{1}{2},0,-2,+2,0,\frac{1}{2},0,0)$$

3.10.4.4 Calcolo di $L(\lambda^2)$

Albero a costo minimo SST usando i costi $\{c_{ij} - \lambda_i - \lambda_j\}$

$$SST = \{(5,6), (3,4), (7,8), (1,2), (6,7), (1,4), (2,7)\}$$

$$v(SST) = 17$$

Arco a costo minimo $\not\in SST$ è (5,8) e $c'_{l_{min}}=4$

$$L(\lambda^2) = v(SST) + c_{l_{min}} + 2\sum_{i} \lambda_i = 17 + 4 + 0 = 21$$

Nella soluzione per $\lambda^2=(-\frac{1}{2},0,-1,+2,0,\frac{1}{2},0,0)$ si ha che

$$d^2 = (2, 2, 1, 2, 2, 2, 3, 2)$$

3.10.4.5 Nuova iterazione per $k=3,\ \alpha_3=\frac{1}{2}\ (\alpha_{3=\alpha_2/2})$

$$\lambda_i^3 = \lambda_i^2 - \alpha_3 \cdot \frac{(z^* - L(\lambda^2))}{\sum_i (d_i^2 - 2)^2} \cdot (d_i^2 - 2)$$
$$\lambda_i^3 = \lambda_i^2 - \frac{1}{2} \cdot \frac{4}{2} \cdot (d_i^2 - 2)$$

ovvero

Quindi

$$\begin{split} \lambda_3^3 &= -2 - 1 \cdot (-1) = -1 \\ \lambda_7^3 &= 0 - 1 \cdot 1 = -1 \\ \text{altrimenti} \ \lambda_i^3 &= \lambda_i^2, \quad \forall i \neq = 3, 7 \\ \lambda^3 &= (-\frac{1}{2}, 0, -1, +2, 0, \frac{1}{2}, -1, 0) \end{split}$$

3.10.4.6 Calcolo di $L(\lambda^3)$

$$SST = \{(3,4), (5,6), (1,2), (7,8), (1,4), (7,6), (3,6)\}$$

$$v(SST) = 17.5$$

Arco a costo minimo $\notin SST$ è (5,8) e $c'_{l_{min}} = 4$

$$L(\lambda^2) = v(SST) + c_{l_{min}} + 2\sum_{i} \lambda_i = 17.5 + 4 = 21.5$$

$$d^3 = (2, 1, 2, 2, 2, 3, 2, 2)$$

3.10.4.7 Nuova iterazione per $k=4,\ \alpha_4=rac{1}{4}$

$$\lambda_i^4 = \lambda_i^3 - \frac{1}{4} \cdot \frac{3.5}{2} (d_i^3 - 2)$$

per semplificare si usi:

$$\lambda_i^4 = \lambda_i^3 - \frac{1}{2} \cdot (d_i^3 - 2)$$

continuare per esercizio...

3.10.5 Rilassamento 1-TREE

Held and Karp

- Si rimuova dal grafo un vertice;
- Si calcolo lo shortest spanning tree (SST) sul grafo rimanente;
- Si aggiungano i due links di costo minimo che incidono sul vertice rimosso;
- Il lower bound è dato dalla somma del costo dello SST e dei costi dei due link aggiunti

3.10.6 Regola di branching TSP simmetrico

Al nodo K dell'albero decisionale: scegli un vertice i il cui grado sia maggiore a 2 è due links a e b che nello SST incidono su i e liberi.

Genera 3 nodi come segue

APPENDICE A

PROVA

76 A.1 Pippo

A.1 Pippo