IN THE CLAIMS:

- 1. (Currently Amended) Gradient tensor induction magnetic field measuring apparatus for measuring a gradient tensor induction magnetic signal of a transient magnetic field in a wellbore to be used to determine a conductivity gradient of an anisotropic earth formations penetrated by the wellbore, the apparatus comprising e, f and any or any combination of a)[[-d)]] -b), wherein:
 - a) at least one transmitter coil and a pair of closely located parallel tri-axial EM induction receivers, each formed by three mutually orthogonal receiver coils, separated by a small vector, Δr , wherein a distance between the two parallel tri-axial EM induction receivers is much smaller than a distance L between the transmitter and a center of the vector Δr , connecting the two receivers, wherein conditions are fulfilled that the gradients are measured of different components of the magnetic field induced in the earth formation;
 - b) at least one receiver coil and a pair of closely located parallel tri-axial EM induction transmitter coils, separated by a small vector, Δr , wherein a distance between the two parallel tri-axial EM induction transmitters is much smaller than a distance L between the receiver and a center of the vector Δr , connecting the two transmitters, wherein conditions are fulfilled, based on a reciprocity principal, that gradients are measured of different components of the magnetic field induced in the earth formation;
 - c) a tri-axial EM induction transmitter formed by three mutually orthogonal transmitter coils, and a pair of closely located tri-axial EM induction receivers, each formed by three mutually orthogonal receiver coils, separated by a small

{900505;}

vector, Δr , wherein a distance between the two tri-axial EM induction receivers is much smaller than a distance L between the tri-axial transmitter and a center of the Δr , wherein conditions are fulfilled that gradients are measured of different components of the induction tensor formed by the magnetic fields induced in the earth formation;

- a pair of closely located tri-axial EM induction transmitters, separated by a small vector, Δr, and a tri-axial EM induction receiver, wherein a distance between two tri-axial EM induction transmitters is much smaller than the distance L between the tri-axial receiver and the center of the vector Δr, wherein conditions are fulfilled, based on a reciprocity principal, gradients are measured of different components of the induction tensor formed by the magnetic fields induced in the earth formation; and
- e) means for receiving voltages induced in said receiver coils; and
- means for measuring a difference between the said voltages in the different pairs of the receivers, or due to the different pairs of the transmitters.
- 2. (Previously Presented) The apparatus as defined in claim 1 further comprising:
 - a) a tri-axial transmitter array and three pairs of receiver coils, measuring $\partial H_z^{\beta}/\partial x$, $\partial H_x^{\beta}/\partial z$, and $\partial H_y^{\beta}/\partial x$ ($\beta = x, y, z$) components;
 - b) a tri-axial transmitter array and three pairs of receiver coils, measuring $\partial H_z^{\beta}/\partial z$, $\partial H_x^{\beta}/\partial z$, and $\partial H_y^{\beta}/\partial z$ ($\beta = x, y, z$) components;
 - a tri-axial transmitter array and up to 27 pairs of receiver coils, measuring some or all components: of $\partial H_{\alpha}^{\beta}/\partial \gamma$ (α , β , $\gamma = x, y, z$);

3

- three mutually orthogonal transmitter coils, displaced along a z-axis and oriented in x-, y-, and z- directions, and three pairs of receiver coils, measuring $\partial H_z^{\beta}/\partial x$, $\partial H_x^{\beta}/\partial z$, and $\partial H_y^{\beta}/\partial x$ ($\beta = x, y, z$) components;
- three mutually orthogonal transmitter coils, displaced along z-axis and oriented in the x-, y-, and z- directions, and three pairs of receiver coils, measuring $\partial H_z^{\beta}/\partial z$, $\partial H_x^{\beta}/\partial z$, and $\partial H_y^{\beta}/\partial z$ ($\beta = x, y, z$) components;
- three mutually orthogonal transmitter coils, displaced along z-axis and oriented in the x-, y-, and z- directions, and up to 27 pairs of receiver coils, measuring some or all components of $\partial H_{\alpha}^{\beta}/\partial \gamma$ (α , β , γ = x, y, z).
- 3. (Previously Presented) A method for measuring conductivity of an anisotropic earth formations penetrated by a wellbore, the method comprising:
 - a) measuring a gradient of magnetic field between two closely positioned parallel receiver coils, wherein a harmonic (frequency domain) electromagnetic field is generated by at least one transmitter coil, and the receiver coils are separated by a small vector, $\Delta \mathbf{r}$, with a magnetic moment direction of the transmitter coil parallel or different from a magnetic moment direction of the receiver coils, wherein a distance between two parallel receiver coils being much smaller than a distance L between the transmitter and a center of the vector $\Delta \mathbf{r}$, connecting two receivers,

- and the receiver pair measures the gradient of the induction magnetic field;
- b) obtaining a plurality of measurements for different positions along the wellbore;
- c) obtaining from said plurality of measurements a horizontal and vertical conductivities of a medium, and a relative dip angle of the formation by inverting the gradient electromagnetic induction data using a model of a layered anisotropic formation and regularization methods of inverse problem solution.
- 4. (Previously Presented) The method of claim 3, further comprising generating a frequency domain current in the transmitter for at least several frequencies, and the receivers measure a signal at several frequencies, wherein multi-frequency gradient measurements are used for frequency gradient EM sounding of the medium at different distances from the wellbore to produce a volume image of anisotropic conductivity distribution around the borehole.
- 5. (Previously Presented) A method for measuring conductivity of an anisotropic earth formations penetrated by a wellbore, the method comprising:
 - a) measuring a gradient of a magnetic field at a receiver coil position, wherein a harmonic (frequency domain) or pulse (time domain) electromagnetic field is generated by two closely positioned parallel transmitter coils, separated by a small vector, $\Delta \mathbf{r}$, with a magnetic moment direction of the transmitters parallel or different from a magnetic moment direction of the receiver, wherein two transmitters generate successively a harmonic (frequency domain) primary EM

field which propagates through the anisotropic formation, surrounding the wellbore;

- b) obtaining a plurality of measurements for different positions along the wellbore;
- c) obtaining from said plurality of measurements a horizontal and vertical conductivities of a medium and a relative dip angle of the formation by inverting gradient electromagnetic induction data, using a model of layered anisotropic formation and regularization methods of an inverse problem solution.
- 6. (Previously Presented) The method of claim 5, further comprising generating a frequency domain current in the transmitter for at least several frequencies, and the receivers measure a signal at several frequencies, wherein multi-frequency gradient measurements are used for frequency gradient EM sounding of the medium at different distances from the wellbore to produce a volume image of an anisotropic conductivity distribution around the wellbore.
- 7. (Cancelled)
- 8. (Cancelled)
- 9. (Cancelled)
- 10. (Cancelled)