

Information Retrieval

Language Models

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br

The ranking problem

Ranking models recap

Boolean model

- Boolean query
- Set-based retrieval (no actual ranking)

Vector space models

- Query and documents as vectors
- Similarity-based ranking

Language modeling approach

Key intuition

- Users who try to think of a good query, think of words that are likely to appear in relevant documents
- A document is a good match to a query if it uses the same underlying *language* as the query

Statistical language model

A probability distribution over word sequences

- ∘ P("Today is Wednesday") ≈ 0.001
- ∘ P("Today Wednesday is") ≈ 0.00000000001
- ∘ P("The eigenvalue is positive") ≈ 0.00001

Can also be regarded as a probabilistic mechanism for "generating" text, thus also called a "generative" model

Types of language models

Full dependence model

$$P(w_1 ... w_k) = P(w_1)P(w_2|w_1) ... P(w_k|w_1 ... w_{k-1})$$

Infeasible in practice

- Expensive computation
- Weak estimates (data sparsity)

Types of language models

Tunable dependence via n-grams

- 3-gram ("trigram") $P(w_1 ... w_k) = P(w_1)P(w_2|w_1) ... P(w_k|w_{k-2}, w_{k-1})$
- ° 2-gram ("bigram") $P(w_1 ... w_k) = P(w_1)P(w_2|w_1) ... P(w_k|w_{k-1})$
- 1-gram ("unigram") $P(w_1 ... w_k) = P(w_1)P(w_2) ... P(w_k)$

Unigram language model

The simplest language model

STOP

A one-state probabilistic finite automaton

state emission probabilities

the	0.20	
a	0.10	P("
frog	0.01	,
toad	0.01	= 0
said	0.03	•
likes	0.02	= 0
that	0.04	

0.20

P("frog said that toad likes frog STOP")

 $= 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01 \cdot 0.02$

= 0.000000000048

Example text generation

Model θ_1

text 0.2 mining 0.1 association 0.01 clustering 0.02 ... food 0.00001 ...

Model θ_2

food 0.25
nutrition 0.1
healthy 0.05
diet 0.02
clustering 0.0001
...

Sampling

Food nutrition paper

Text

mining

paper

Evaluation of language models

Direct evaluation criterion

 Goodness of fit: data likelihood, perplexity, cross entropy, Kullback-Leibler divergence

Indirect evaluation criterion

 Task-dependent: we hope more "reasonable" LMs would achieve better task performance

Applications of language models

Language modeling offers a principled way to quantify the uncertainties associated with natural language

Speech recognition

 Given that we see "John" and "feels", how likely will we see "happy" as opposed to "habit" next?

Applications of language models

Language modeling offers a principled way to quantify the uncertainties associated with natural language

Text categorization

 Given that we see "baseball" three times and "game" once in an article, how likely is it about "sports"?

Applications of language models

Language modeling offers a principled way to quantify the uncertainties associated with natural language

Document ranking

 Given that a user is interested in sports news, how likely would he or she use "baseball" in a query?

Query likelihood model

$$f(q,d) \approx P(q,d)$$

= $P(q|d)P(d)$ Bayes' rule

Two core components

- $\circ P(q|d)$: query likelihood
- $\circ P(d)$: document prior

Computing P(d)

Uninformative (uniform) prior

- $\circ P(d) = 1/n$, for n documents in the corpus
- Informative prior
- Authoritativeness (e.g., PageRank)
- Accessibility (e.g., URL length)
- Readability (e.g., avg. sentence length)

Computing P(q|d)

Generative process

 $^{\circ}$ Intuitively, the probability that a user who likes document d (modeled by θ_d) will pose query q

Ranking via query likelihood

Ranking via query likelihood

text mining association clustering	0.2 0.1 0.01 0.02
food 	0.00001

Model θ_1

food 0.25
nutrition 0.1
healthy 0.05
diet 0.02
clustering 0.0001

Model θ_2

q = [data mining algorithms] $P(q|\theta_1)$ VS. $P(q|\theta_2)$

Computing P(q|d)

Under a unigram (term independence) assumption

$$P(q|\theta_d) = \prod_{t \in q} P(t|\theta_d)^{\text{tf}_{t,q}}$$

$$\propto \sum_{t \in q} \text{tf}_{t,q} \log P(t|\theta_d)$$

How to estimate $P(t|\theta_d)$?

Maximum likelihood estimation (MLE)

Simply count observed occurrences

$$P_{\text{MLE}}(t|\theta_d) = \frac{\text{tf}_{t,d}}{|d|}$$

Problems

- Observed terms will be scored too optimistically
- Unobserved terms will receive zero probability

Smoothing probabilities

Smooth probabilities in language models

- Discount the probability of seen words
- Give some probability mass to unseen words

The probability of a non-occurring term should be close to its probability of occurrence in the corpus \mathcal{C}

Smoothing probabilities

Smoothing probabilities

General form

$$P(t|\theta_d) = (1 - \alpha) P_{\text{MLE}}(t|\theta_d) + \alpha P_{\text{MLE}}(t|\theta_C)$$

Smoothing controlled through parameter α

 \circ Jelinek-Mercer: $\alpha = \lambda$, $0 < \lambda < 1$

Jelinek-Mercer smoothed model

$$f(q,d) \propto \prod_{t \in q} P(t|\theta_d)^{\mathrm{tf}_{t,q}}$$

$$= \prod_{t \in q} \left((1-\lambda) \frac{\mathrm{tf}_{t,d}}{|d|} + \lambda \frac{\mathrm{tf}_{t,C}}{|C|} \right)^{\mathrm{tf}_{t,q}}$$

Jelinek-Mercer example ($\lambda = 1/2$)

- q: [michael jackson]
- $\circ d_1$: Jackson was a gifted entertainer
- \circ d_2 : Michael Jackson anointed himself King of Pop

$$P(q|\theta_1) = \left[\frac{0/5 + 1/12}{2}\right] \times \left[\frac{1/5 + 2/12}{2}\right] \approx 0.008$$

$$P(q|\theta_2) = \left[\frac{1/7 + 1/12}{2}\right] \times \left[\frac{1/7 + 2/12}{2}\right] \approx 0.018$$

$$f(q,d) \propto \sum_{t \in q} \mathrm{tf}_{t,q} \log P(t|\theta_d)$$
 replace with JM formulation

$$= \sum_{t \in q} \operatorname{tf}_{t,q} \log \left((1 - \lambda) \frac{\operatorname{tf}_{t,d}}{|d|} + \lambda \frac{\operatorname{tf}_{t,C}}{|C|} \right)$$

run through terms in and not in d separately

$$= \sum_{\substack{t \in q \\ t \in d}} \operatorname{tf}_{t,q} \log \left((1 - \lambda) \frac{\operatorname{tf}_{t,d}}{|d|} + \lambda \frac{\operatorname{tf}_{t,C}}{|C|} \right)$$

= 0, based on summation indices

$$+ \sum_{\substack{t \in q \\ t \notin d}} \operatorname{tf}_{t,q} \log \left((1 - \lambda) \underbrace{\frac{\operatorname{tf}_{t,d}}{|d|}}_{= 0, \text{ based or}} + \lambda \frac{\operatorname{tf}_{t,C}}{|C|} \right)$$

$$f(q,d) \propto \sum_{t \in q} \operatorname{tf}_{t,q} \log \left((1-\lambda) \frac{\operatorname{tf}_{t,d}}{|d|} + \lambda \frac{\operatorname{tf}_{t,C}}{|C|} \right) + \sum_{t \in q} \operatorname{tf}_{t,q} \log \left(\lambda \frac{\operatorname{tf}_{t,C}}{|C|} \right)$$
all terms, minus those in d

$$= \sum_{\substack{t \in q \\ t \in d}} \operatorname{tf}_{t,q} \log \left((1 - \lambda) \frac{\operatorname{tf}_{t,d}}{|d|} + \lambda \frac{\operatorname{tf}_{t,C}}{|C|} \right)$$

$$+ \underbrace{\sum_{t \in q} \operatorname{tf}_{t,q} \log \left(\lambda \frac{\operatorname{tf}_{t,C}}{|\mathsf{C}|} \right)} - \sum_{t \in q} \operatorname{tf}_{t,q} \log \left(\lambda \frac{\operatorname{tf}_{t,C}}{|\mathsf{C}|} \right)$$

document-independent (doesn't affect ranking)

$$\begin{split} f(q,d) &\propto \sum_{t \in q} \mathsf{tf}_{t,q} \log \left((1-\lambda) \frac{\mathsf{tf}_{t,d}}{|d|} + \lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) - \sum_{t \in q} \mathsf{tf}_{t,q} \log \left(\lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) \\ &= \sum_{t \in q} \left(\mathsf{tf}_{t,q} \log \left((1-\lambda) \frac{\mathsf{tf}_{t,d}}{|d|} + \lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) - \mathsf{tf}_{t,q} \log \left(\lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,q} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,d}}{|d|} + \lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) - \log \left(\lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,q} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,d}}{|d|} + \lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) - \log \left(\lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,q} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,d}}{|d|} + \lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) - \log \left(\lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,q} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,d}}{|d|} + \lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) - \log \left(\lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,q} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,d}}{|d|} + \lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) - \log \left(\lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,q} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,d}}{|d|} + \lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) - \log \left(\lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,q} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,d}}{|d|} + \lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) - \log \left(\lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,c} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,d}}{|d|} + \lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) - \log \left(\lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,c} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,d}}{|d|} + \lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,c} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,d}}{|d|} + \lambda \frac{\mathsf{tf}_{t,c}}{|\mathsf{C}|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,c} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,d}}{|d|} + \lambda \frac{\mathsf{tf}_{t,c}}{|c|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,c} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,c}}{|d|} + \lambda \frac{\mathsf{tf}_{t,c}}{|c|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,c} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,c}}{|c|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,c} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,c}}{|c|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,c} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,c}}{|c|} \right) \right) \\ &= \sum_{t \in q} \mathsf{tf}_{t,c} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,c}}{|c|} \right) \right) \\ \\ &= \sum_{t \in q} \mathsf{tf}_{t,c} \left(\log \left((1-\lambda) \frac{\mathsf{tf}_{t,c}}{|c|} \right) \right)$$

$$\begin{split} f(q,d) &\propto \sum_{t \in q} \mathsf{tf}_{t,q} \, \log \left(\frac{(1-\lambda)\frac{\mathsf{tf}_{t,d}}{|d|} + \lambda\frac{\mathsf{tf}_{t,C}}{|C|}}{\lambda\frac{\mathsf{tf}_{t,C}}{|C|}} \right) \, \mathsf{split} \, \mathsf{fraction} \\ &= \sum_{t \in q} \mathsf{tf}_{t,q} \, \log \left(\frac{(1-\lambda)\frac{\mathsf{tf}_{t,d}}{|d|}}{\lambda\frac{\mathsf{tf}_{t,C}}{|C|}} + \frac{\lambda\frac{\mathsf{tf}_{t,C}}{|C|}}{\lambda\frac{\mathsf{tf}_{t,C}}{|C|}} \right) = 1 \\ &= \sum_{t \in q} \mathsf{tf}_{t,q} \, \log \left(\frac{(1-\lambda)\frac{\mathsf{tf}_{t,d}}{|d|}}{\lambda\frac{\mathsf{tf}_{t,C}}{|C|}} + 1 \right) \end{split}$$

$$f(q,d) \propto \sum_{t \in q} \operatorname{tf}_{t,q} \log \left(\frac{(1-\lambda)\frac{\operatorname{tf}_{t,d}}{|d|}}{\lambda \frac{\operatorname{tf}_{t,C}}{|C|}} + 1 \right)$$

$$f(q,d) \propto \sum_{t \in q} \mathsf{tf}_{t,q} \log \left(\frac{(1-\lambda)\frac{\mathsf{tf}_{t,d}}{|d|}}{\lambda \frac{\mathsf{tf}_{t,C}}{|C|}} + 1 \right)$$

- Proportional to term frequency: tf effect
- Inv. proportional to collection frequency: idf effect

How about document length?

General form

$$P(t|\theta_d) = (1 - \alpha) P_{\text{MLE}}(t|\theta_d) + \alpha P_{\text{MLE}}(t|\theta_C)$$

Smoothing controlled through parameter α

$$\circ$$
 Jelinek-Mercer: $\alpha = \lambda$, $0 < \lambda < 1$

• Dirichlet:
$$\alpha = \frac{\mu}{|d| + \mu} \qquad \begin{array}{c} |d| \to 0 : \alpha \to 1 \\ |d| \to \infty : \alpha \to 0 \end{array}$$

How effective are these?

Dirichlet smoothing works the best

- Particularly effective for keyword queries
- Length-adjusted smoothing
- Shorter documents get more smoothing
- Longer documents get less smoothing

Extended approaches

Document likelihood model

$$f(q,d) \approx P(q,d)$$

= $P(d|q)P(q)$ Bayes' rule
 $\propto P(d|\theta_q)$

Problem: queries are short

 \circ Poor estimation of $heta_q$

Solution: improve query model via feedback

Model comparison

Two steps

- \circ Build both $heta_q$ and $heta_d$
- Measure how much they diverge

Divergence-based ranking

$$\circ f(q,d) = -D(\theta_q || \theta_d)$$

Model comparison

Kullback-Leibler (KL) divergence

Asymmetric measure [0,∞]

$$f(q,d) = -D_{KL}(\theta_q || \theta_d)$$

$$= -\sum_{t} P(t || \theta_q) \log \frac{P(t || \theta_q)}{P(t || \theta_d)}$$

Summary

Principled ranking approach

Statistical foundations (better parameter setting)

Effectiveness through smoothing

Add key ranking components (idf, document length)

Flexible and extendable

Relevance feedback, priors, other tasks

References

<u>Introduction to Information Retrieval</u>, Ch. 12

Manning et al., 2008

Search Engines: Information Retrieval in Practice, Ch. 7

Croft et al., 2009

Statistical Language Models for Information Retrieval

Zhai, FnTIR 2008

References

A language modeling approach to information retrieval

Ponte and Croft, SIGIR 1998

A study of smoothing methods for language models applied to information retrieval

Zhai and Lafferty, SIGIR 2001

Coming next...

Experimental Methods

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br