1. พลังเวทย์ (Power)

แฮรี่ พอร์ต พบว่า IOT ที่มักถูกไหว้วานให้นำออกจากเขาวงกตนั้นมีความสามารถที่จะทำให้พลังเวทย์ เพิ่มขึ้นอย่างมหาศาล ระดับเท่าทวี ทั้งนี้ พลังเวทย์จะเพิ่มขึ้นอย่างมหาศาลเพียงใดจะขึ้นกับพลังเวทย์ตั้งต้น และระดับความสามารถของ IOT นั้น เช่น หากมีพลังเวทย์ตั้งต้นอยู่ที่ 2 และได้ IOT ที่มีความสามารถระดับ 10 พลังเวทย์ที่เพิ่มขึ้นจะมีมากถึง $2^{10}=1024$ หากมีพลังเวทย์ตั้งต้นอยู่ที่ 3 และได้ IOT ที่มีความสามารถ ระดับ 4 พลังเวทย์ที่เพิ่มขึ้นจะมีเท่ากับ $3^4=81$

งานของคุณ

ให้เขียนโปรแกรม<u>ที่มีประสิทธิภาพที่สุด</u>เพื่อหาว่า พลังเวทย์ที่เพิ่มขึ้นจากระดับความสามารถของ IOT มีค่า เท่าใด โดยถ้าค่าพลังเวทย์ที่เพิ่มขึ้นมีค่าไม่ถึง 1,000 ให้แสดงค่าพลังเวทย์ดังกล่าว แต่หากว่าค่าพลังเวทย์ที่ เพิ่มขึ้นสูงกว่าหรือเท่ากับ 1,000 ให้แสดงเฉพาะเศษที่เหลือจากการหารค่าพลังเวทย์ที่เพิ่มขึ้นนั้นด้วย 1,000

ข้อมูลนำเข้า

บรรทัดที่หนึ่ง เป็นจำนวนเต็มบวก n เมื่อ $1 \le n \le 1000$ บรรทัดที่หนึ่ง เป็นจำนวนเต็มบวก n เมื่อ $n \le 1000$ เมื่อ m_i แทนพลังเวทย์พื้นฐาน $n \le 1000$ n แทนระดับความสามารถของ IOT โดยที่ $n \le 1000$ และ n และ n และ n

ข้อมูลส่งออก

มี n บรรทัด

โดย บรรทัดที่ i แสดงเศษที่เหลือจากการหาร $\left(m_i\right)^{p_i}$ ด้วย 1,000 เมื่อ $1 \leq i \leq n$

ตัวอย่าง

<u>ข้อมูลนำเข้า</u>	<u>ข้อมูลส่งออก</u>
4	24
2 10	81
3 4	0
1000 1	1
111 200000000	

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล ต่อชุดทดสอบหนึ่งชุด	0.5 วินาที
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล ต่อชุดทดสอบหนึ่งชุด	16 MB
จำนวนชุดทดสอบ (โปรแกรมประมวลผลครั้งละชุดทดสอบ)	10
เงื่อนไขการรับโปรแกรม	โปรแกรมต้องประมวลผลข้อมูลตามตัวอย่างที่ให้มาได้

ข้อมูลคำสั่งเพิ่มเติม

ส่วนหัวของโปรแกรมเพื่อระบุชื่อโจทย์ สำหรับผู้เข้าแข่งขันที่เขียนโปรแกรมด้วยภาษา C

/3

TASK: power

LANG: C

AUTHOR: YourName YourLastName

CENTER: SUT

*/

ส่วนหัวของโปรแกรมเพื่อระบุชื่อโจทย์ สำหรับผู้เข้าแข่งขันที่เขียนโปรแกรมด้วยภาษา C++

/3

TASK: power

LANG: C++

AUTHOR: YourName YourLastName

CENTER: SUT

*/

2. สิ่งของในระบบอัจฉริยะ (Internet of Thing)

แฮรี่ พอร์ต พบว่าสิ่งของที่ได้รับมอบหมายจากคนรอบข้างให้ทำภารกิจนำออกมาจากเขาวงกตนั้น แท้จริง แล้วไม่ใช่ของธรรมดา แต่เป็นสิ่งของในระบบอัจฉริยะ (Internet of Thing) หรือมักจะเรียกง่าย ๆ ว่า IOT โดยแฮรี่ พอร์ตพบว่าหลาย ๆ ครั้ง IOT ที่นำออกจากเขาวงกตเพื่อมอบให้แก่ผู้ที่มอบหมายภารกิจนั้นมี ระดับความสามารถที่ต่างกัน เพื่อเป็นการตรวจสอบระดับความสามารถของ IOT จะต้องตรวจสอบจาก P-Code (Prime number Code) ซึ่งเป็นตัวเลขโดดจำนวน n ตัวที่ปรากฏอยู่บน IOT นั้น (ในที่นี้เลขโดด หมายถึงตัวเลขหลักเดียวได้แก่ 0,1,2,...,9) P-Code ที่แสดงระดับความสามารถของ IOT พิจารณาได้จาก การเรียงสับเปลี่ยน (Permutation) ของเลขโดดทั้ง n ตัวที่ปรากฏอยู่ใน P-Code นั้น ว่าสามารถเรียง สับเปลี่ยนจนเป็นจำนวนเฉพาะได้ทั้งหมดกี่จำนวน ดังนั้น แฮรี่ พอร์ต ต้องหาวิธีที่มีประสิทธิภาพเพื่อที่จะ ตรวจสอบระดับความสามารถของ IOT

ตัวอย่าง P-Code ซึ่งเป็นเลขโดดจำนวน 3 ตัว ได้แก่ "113" พบว่า IOT ที่มี P-Code ดังกล่าวมีระดับ ความสามารถ 3 เพราะว่าการเรียงสับเปลี่ยนของเลขโดดทั้ง 3 ตัว ทำให้ได้ 113, 131 และ 311 เป็นจำนวน เฉพาะทั้งหมด 3 จำนวน

สำหรับ P-Code ซึ่งประกอบด้วยเลข "0246" เป็น P-Code ของ IOT ที่ระดับความสามารถ 0 เพราะไม่ว่า จะเรียงสับเปลี่ยนเลขโดดทั้ง 4 ตัวอย่างไร ก็ไม่ปรากฏจำนวนเฉพาะ

งานของคุณ

ให้เขียนโปรแกรม<u>ที่มีประสิทธิภาพที่สุด</u>เพื่อตรวจสอบว่า P-Code แสดงระดับความสามารถใดของ IOT

ข้อมูลนำเข้า

บรรทัดที่หนึ่ง เป็นจำนวนเต็มบวก 2 ค่า ได้แก่ m และ n เมื่อ m แทนจำนวนของ P-Code ที่ต้องการ ตรวจสอบ โดยที่ $1 \le m \le 1024$ และ n แทนขนาดของ P-Code โดยที่ $2 \le n \le 5$ บรรทัดที่ 2 ถึง m+1 เป็นชุดตัวเลขความยาว n โดยแสดงถึง P-Code ลำดับที่ i ที่ต้องการให้ตรวจสอบ และ $1 \le i \le m$

ข้อมูลส่งออก

มี m บรรทัด

โดยบรรทัดที่ i แสดงระดับความสามารถของ IOT ที่มี P-Code ลำดับที่ i เมื่อ $1 \le i \le m$

ตัวอย่างที่ 1

<u>ข้อมูลนำเข้า</u>	<u>ข้อมูลส่งออก</u>
4 2	2
13	2
97	0
12	1
91	

ตัวอย่างที่ 2

<u>ข้อมูลนำเข้า</u>	<u>ข้อมูลส่งออก</u>
5 3	3
013	3
113	1
302	0
312	2
313	

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล ต่อชุดทดสอบหนึ่งชุด	1 วินาที
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล ต่อชุดทดสอบหนึ่งชุด	16 MB
จำนวนชุดทดสอบ (โปรแกรมประมวลผลครั้งละชุดทดสอบ)	10
เงื่อนไขการรับโปรแกรม	โปรแกรมต้องประมวลผลข้อมูลตามตัวอย่างที่ให้มาได้

ข้อมูลคำสั่งเพิ่มเติม

*/

```
ส่วนหัวของโปรแกรมเพื่อระบุชื่อโจทย์ สำหรับผู้เข้าแข่งขันที่เขียนโปรแกรมด้วยภาษา C
/*
TASK: iot
LANG: C
AUTHOR: YourName YourLastName
CENTER: SUT
```

ส่วนหัวของโปรแกรมเพื่อระบุชื่อโจทย์ สำหรับผู้เข้าแข่งขันที่เขียนโปรแกรมด้วยภาษา C++ /* TASK: iot LANG: C++ AUTHOR: YourName YourLastName CENTER: SUT

3. ตวงน้ำ (Water Measure)

ปัญหาตวงน้ำเป็นปัญหามาตรฐานสำหรับการหาวิธีที่มีประสิทธิภาพที่สุด ตัวอย่างเช่น มีน้ำอยู่ไม่จำกัดและมี ถังที่มีความจุ 3 ลิตร และ 5 ลิตร อยู่ ถ้าต้องการน้ำจำนวน 4 ลิตร เราพบว่าสามารถใช้วิธีต่อไปนี้ในการตวง น้ำได้จำนวนที่ต้องการ

วิธีที่ 1

ขั้นตอนที่ 1 เติมน้ำให้เต็มถังขนาด 3 ลิตร

ข**ั้นตอนที่ 2** เทน้ำจากถังขนาด 3 ลิตรทั้งหมด ไปยังถังขนาด 5 ลิตร

ขั้นตอนที่ 3 เติมน้ำให้เต็มถังขนาด 3 ลิตร

ขั้นตอนที่ 4 เทน้ำจากถังขนาด 3 ลิตร ไปยังถังขนาด 5 ลิตร พบว่ามีน้ำเหลือในถัง 3 ลิตร อยู่ 1 ลิตร

ขั้นตอนที่ 5 เทน้ำจากถังขนาด 5 ลิตรออกจนหมด

ขั้นตอนที่ 6 เทน้ำที่เหลือ 1 ลิตรจากถังขนาด 3 ลิตร ไปยังถัง 5 ลิตร

ขั้นตอนที่ 7 เติมน้ำให้เต็มถังขนาด 3 ลิตร

ขั้นตอนที่ 8 เทน้ำจากถังขนาด 3 ลิตรทั้งหมด ไปยังถังขนาด 5 ลิตร

พบว่าเมื่อผ่าน 8 ขั้นตอนนี้แล้ว ทำให้ได้น้ำจำนวน 4 ลิตรอยู่ในถังขนาด 5 ลิตร

วิธีที่ 2

ขั้นตอนที่ 1 เติมน้ำให้เต็มถังขนาด 5 ลิตร

ขั้นตอนที่ 2 เทน้ำจากถังขนาด 5 ลิตร ไปยังถังขนาด 3 ลิตร ดังนั้นมีน้ำเหลืออยู่ 2 ลิตรในถัง 5 ลิตร

ขั้นตอนที่ 3 เทน้ำจากถังขนาด 3 ลิตรออกจนหมด

ขั้นตอนที่ 4 เทน้ำจากถังขนาด 5 ลิตร ไปยังถังขนาด 3 ลิตร พบว่ามีน้ำเหลือในถัง 3 ลิตร อยู่ 2 ลิตร

ขั้นตอนที่ 5 เติมน้ำให้เต็มถังขนาด 5 ลิตร

ขั้นตอนที่ 6 เทน้ำจากถังขนาด 5 ลิตร ไปยังถัง 3 ลิตร จนถัง 3 ลิตรเต็ม

พบว่าเมื่อผ่าน 6 ขั้นตอนนี้แล้ว ทำให้ได้น้ำจำนวน 4 ลิตรอยู่ในถังขนาด 5 ลิตร

จากตัวอย่างแสดงว่าวิธีที่ 2 เป็นวิธีที่มีประสิทธิภาพดีกว่าวิธีแรก เพราะใช้ขั้นตอนในการเทน้ำเพียง 6 ครั้ง

หมายเหตุ

ในการถ่ายโอนน้ำแต่ละครั้ง เช่น การเติมน้ำเข้าไปให้เต็มถัง หรือ เทน้ำออกจากถัง นับเป็น 1 ขั้นตอน งานของคุณ

ให้เขียนโปรแกรมหาจำนวนขั้นตอน<u>ที่มีประสิทธิภาพที่สุด</u> ของการตวงน้ำด้วยถัง 2 ถังที่มีขนาดตามที่ กำหนด และได้น้ำจำนวนที่ต้องการอยู่ในถังใดถังหนึ่ง โดยให้ทำ 10 แบบ

ข้อมูลนำเข้า

มี 10 บรรทัด แต่ละบรรทัดเป็นจำนวนเต็ม 3 จำนวน ได้แก่ B_{1i}, B_{2i} และ V_i , $i=1,2,\ldots,10$

โดยที่ B_{i1} และ B_{i2} หมายถึง ความจุ (ลิตร) ของถังน้ำทั้งสอง ในการตวงแบบที่ i และ

 V_i เป็นปริมาณของน้ำ (ลิตร) ที่ต้องการ

กำหนดให้ $1 \leq B_{i1}, B_{i2} \leq 20$, $1 \leq V_i \leq \min\{B_{i1}, B_{i2}\}$

ข้อมูลส่งออก มีหนึ่งบรรทัด แสดงจำนวนขั้นตอนที่มีประสิทธิภาพที่สุดในการตวงน้ำครั้งที่ 1 จนถึงครั้งที่ 10 โดยให้แสดง แต่ละผลการคำนวณคั่นด้วยช่องว่าง "" ตามลำดับ

สำหรับในกรณีที่ไม่สามารถตวงได้ตามที่ต้องการให้แสดงผลด้วยเลข 0

ตัวอย่างที่ 1

<u>ข้อมูลนำเข้า</u>	<u>ข้อมูลส่งออก</u>
20 16 8	6 1 4 1 0 0 1 16 16 18
5 11 5	
17 13 9	
12 1 1	
20 15 7	
9 12 4	
988	
15 4 2	
19 5 3	
13 20 2	

ตัวอย่างที่ 2

<u>ข้อมูลนำเข้า</u>	<u>ข้อมูลส่งออก</u>
18 12 12	1 0 4 12 0 0 0 8 22 0
997	
18 13 8	
15 17 9	
16 20 6	
10 16 1	
20 10 9	
18 4 2	
17 15 12	
14 14 5	

ข้อกำหนด

0.4 0.4	ىر لى	
หัวข้อ	เงื่อนไข	
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)	
ข้อมูลส่งออก	Standard Output (จอภาพ)	
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล ต่อชุดทดสอบหนึ่งชุด	1 วินาที	
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล ต่อชุดทดสอบหนึ่งชุด	16 MB	
จำนวนชุดทดสอบ (โปรแกรมประมวลผลครั้งละชุดทดสอบ)	20	
เงื่อนไขการรับโปรแกรม	โปรแกรมต้องประมวลผลข้อมูลตามตัวอย่างที่ให้มาได้	

ข้อมูลคำสั่งเพิ่มเติม

ส่วนหัวของโปรแกรมเพื่อระบุชื่อโจทย์ สำหรับผู้เข้าแข่งขันที่เขียนโปรแกรมด้วยภาษา C

/

TASK: measure

LANG: C

AUTHOR: YourName YourLastName

CENTER: SUT

*/

ส่วนหัวของโปรแกรมเพื่อระบุชื่อโจทย์ สำหรับผู้เข้าแข่งขันที่เขียนโปรแกรมด้วยภาษา C++

/

TASK: measure LANG: C++

AUTHOR: YourName YourLastName

CENTER: SUT

*/