Misurazione della refrattività del'acqua

Alessandro Di Meglio Francesco Angelo Fabiano Antonacci

March 10, 2024

1 Scopo dell'esperienza

Lo scopo dell'esperienza è quello di misurare la refrattività dell'acqua mediante una lente cilindrica.

2 Cenni teorici

Data una lente la relazione tra f, ossia la distanza focale della lente, p ,la distanza tra il centro della lente e la sorgente luminosa, e ${\bf q}$, la distanza tra il centro della lente e l'immagine messa a fuoco, è la legge dei punti coniugati:

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q} \tag{1}$$

Ponendo $\frac{1}{p}=x$, $\frac{1}{q}=y$ e $\frac{1}{f}=c$ otteniamo la seguente relazione:

$$y = c - x \tag{2}$$

Data una lente di raggio r costituita da un mezzo con un indice di rifrazione n, l'equazione del costruttore di lenti ci dà una relazione con la distanza focale:

$$\frac{1}{f} = (n-1)\frac{2}{r}(1 - \frac{n-1}{n})\tag{3}$$

Da cui otteniamo l'equazione per stimare la refrattività η :

$$\eta = \frac{r}{2f - r} \tag{4}$$

3 Apparato strumentale

3.1 Materiale Utilizzato

Per l'esperienza sono stati utilizzati i seguenti strumenti:

• Schermo

- Smartphone
- Bottiglia cilindrica di vetro
- Nastro adesivo
- Filo

3.2 Misure di lunghezza

Per le misure di lunghezza è stato utilizzato un metro a nastro con risoluzione di 1 mm.

4 Descrizione delle misure

E' stata costruita la lente riempendo la bottiglia di acqua. Sono stati compiuti 4 giri di spago attorno alla bottiglia, si è presa la lunghezza dello spago che ha avvolto la bottiglia. E' stato fissato un metro a nastro su un banco per poter prendere le coordinate degli oggetti del banco ottico. E' stata posizionata la lente a una coordinata che è rimasta fissa per tutto l'esperimento. E' stata attivata la torcia dello smartphone. E' stato posizionato lo smartphone in successive posizioni; in ciascuna è stata presa la distanza tra il centro della lente e lo schermo nella configurazione in cui la luce proiettata su esso era a fuoco. E' stata dedicata particolare cura a tenere l'asse passante per la torcia e il centro della lente parallelo al metro a nastro.

4.1 Incertezze sulle misure di posizione

Si veda la sezione Cenni teorici per la notazione usata.

4.2 Incertezza su p

L'incertezza sulla distanza tra telefono e centro della bottiglia è stata assunta 1[mm] a causa della risoluzione del metro a nastro. E' stato verificato che l'effetto del possibile disallineamento (si veda: Descrizione delle misure) sulla misura di p influisce per meno di un decimo dell'incertezza dovuta alla risoluzione del metro a nastro. Per far ciò si è stimato che nel caso del p più piccolo $\sigma p \gg (\sqrt{p^2 + \delta^2} - p)$, dove per δ si è presa una stima per eccesso del possibile errore.

4.3 Incertezza su q

Per stimare l'incertezza su q è necessario tenere in considerazione il fatto che la cofigurazione in cui la lente è a fuoco avviene in un intorno di un punto. Prendendo ripetute volte le misure si è osservato che questo intervallo è ampio dai 6 ai 4 [mm] dipendentemente dalla posizione. Dunque, si stima come incertezza la somma in quadratura tra la deviazione standard della distribuzione uniforme

m	c[m]	f[m]
-0.99 ± 0.06	11.3 ± 0.2	0.089 ± 0.002

Table 1: Parametri ricavati dall'algoritmo di best-fit

su questo intervallo e la risolizione strumentale del metro a nastro. Come nel caso precedente è stato verificato che l'effetto del possibile disallineamento sulla misura di q influisce per meno di un decimo dell'incertezza dovuta all'incertezza stimata.

4.4 Correlazione tra l'incertezza di p e quella di q

Le due incertezze sono debolmente correlate:come si è osservato nelle due sezioni precedenti sia p che q sono soggette a un errore determinato dal disallineamento rispetto al metro a nastro. Tuttavia si è osservato che questo causa un errore trascurabile rispetto agli altri a cui è soggetta la misura.

4.5 Incertezza su r

L'incertezza sul raggio è l'incertezza sulla misura di 4 volte la circonferenza diviso 8π . E' ragionevole assumere che l'incertezza sulla misura della circonferenza sia la somma in quadratura dello spessore dei quattro giri e della risoluzione del metro a nastro. Pertanto $\sigma r = 0.1 [\text{mm}]$.

5 Analisi dei dati

5.1 Algoritmo di best fit

Per trovare la distanza focale è stato fatto un fit ai minimi quadrati per la relazione (5) e non per la relazione (2). Il parametro m ha il fine di scovare errori sistematici. Idealmente esso è m=-1.

$$y = mx + c \tag{5}$$

Le ipotesi per fare un fit ai minimi quadratici sono state verificate: le incertezze sulle x sono trascurabili, le incertezze sulle x e sulle y sono indipendenti. Per poter trascurare l'errore sulle x ($\sigma y \gg \left|\frac{\delta f}{\delta x}\right| \sigma x$), il fit è stato iterato più volte, utilizzando $\sigma y_{efficace} = \sqrt{\sigma y_{originaria}^2 + (\frac{\delta f}{\delta x} \sigma x)^2}$, con $\frac{\delta f}{\delta x}$ ottenuta dall'iterazione precedente.

Sull'indipendenza delle incertezze si è discusso nella sezione (4.4).

In Table 1 sono riportati i risultati dell'algoritmo di best-fit. In Figure 1 sono presenti i dati sperimentali, la previsione del modello coi parametri di best-fit e il grafico dei residui.

Figure 1: Sopra:Punti misurati e modello di (5) con i parametri dell'algoritmo di best-fit. Sotto: Grafico dei residui.

η	Contributo a $\sigma \eta$ di σr	Contributo a $\sigma \eta$ di σf
0.325 ± 0.004	0.0004	0.004

Table 2:

5.2 Test del X^2 e p-value

Il valore dei gradi di libertà è $\nu=6$: sono stati campionati 8 punti e sono stati 2 parametri nel modello (5). Il chi-quadro stimato è $X^2=4.6$. Il p-value corrispondente è p=0.1.

5.3 Errori sistematici

Dal grafico dei residui non è evidente la presenza di errori sistematici. Il valore stimato dall'algoritmo di best-fit per m è compatibile con il valore dell'equazione (2).

6 Conclusione

6.1 Misura di η

Utilizzando l'equazione (4) si ottiene η . In tabella (2) sono riportati i risultati. Se si volesse migliorare la stima di η , sarebbe necessario ridurre l'incertezza causata da σf : ossia sarebbe necessario aumentare sensibilmente il numero di dati raccolti, oppure migliorare l'apparato sperimentale.