ConveRT: Efficient and Accurate Conversational Representations from Transformers

Matt Henderson PolyAl

Polish Natural Language Processing Meetup

ConveRT: Efficient and accurate conversational representations from transformers M Henderson, I Casanueva, N Mrkšić, PH Su, I Vulić

A Repository of Conversational Datasets

M Henderson, P Budzianowski, I Casanueva, S Coope, D Gerz, G Kumar, N Mrkšić, G Spithourakis, PH Su, I Vulić, TH Wen

Efficient Intent Detection with Dual Sentence Encoders I Casanueva, T Temčinas, D Gerz, M Henderson, I Vulić

Span-ConveRT: Few-shot Span Extraction for Dialog with Pretrained Conversational Representations

S Coope, T Farghly, D Gerz, I Vulić, M Henderson

- Dialogue Systems group, Cambridge
- Automated voice agents for customer services, call centres
- Restaurant booking, internet troubleshooting, banking, ...

Creating Task-based Dialogue Systems

Convincing Application

solves a real problem

Meaningful Evaluation

can measure progress

Annotaated Data

is machinelearnable

how do we get a

baseline system?

intent classifiers slot-value recognisers response selection/generation

xskills xdomains xlanguages

reliance on annotated data?

how can we minimise

how can we scale better?

(skills, domains, languages...)

conversational response

by using large pre-trained

models that encapsulate

knowledge of

Pre-training in NLP

- recent trend to pre-train large models of language, then fine-tune BERT, ELMo, GPT etc.
- uses unlabelled text + unsupervised objective same idea as cbow, skip gram, skip thought etc.
- learns general representations of text, useful for downstream tasks

PolyAl Conversational Datasets

Reddit

3.7 billion comments from online discussions on many topics

727 million examples

OpenSubtitles

over 400 million lines of subtitles from movies and TV

316 million examples

AmazonQA

over 3.6 million product question-answer pairs

3.6 million examples

github.com/PolyAI-LDN/conversational-datasets

Public Conversational Datasets

		~ Turns	Annotations
Ī	DSTC 2&3	104	response, ASR, SLU
	MultiWoz	10 ⁵	response, NLU
	DSTC7 Reddit	106	response, entities
	DSTC7 Ubuntu	106	response
	PolyAl AmazonQA	106	product, response
	PolyAl OpenSubtitles	108	'response'
	PolyAl Reddit	10 ⁹	response

Next word prediction

apple

Masked word prediction

The launch of ■ 's second lunar mission has been ??? less than an hour before the scheduled blast- ■ , due to a ■ problem.

apple called halted celebrate passport

Any recommendations for short trips from Singapore?

It doesn't feel like July.
That type of music isn't really my cup of tea.

→ Bintan is just a quick ferry trip away. You have to try the vegetarian Haggis! I'd do a short trip to Paris.

. . .

- large conversational datasets

Language Modelling

- large text datasets

- large conversational datasets
- representations encode conversational cues

Language Modelling

- large text datasets
- representations encode word/phrase/sentence cues

- large conversational datasets
- representations encode conversational cues
- encodes full sentences

Language Modelling

- large text datasets
- representations encode word/phrase/sentence cues
- encodes words contextually

- large conversational datasets
- representations encode conversational cues
- encodes full sentences
- directly applicable to retrieval-based dialogue

Language Modelling

- large text datasets
- representations encode word/phrase/sentence cues
- encodes words contextually
- maybe applicable to generation/scoring

a lot of the power of neural techniques is finding good embeddings / encodings

- so learn encoder model on large conversational data
- then use various tricks and small models on the learned vector space for domain specific tasks

Dual Encoders for Response Selection

dual encoder dot product model

- gmail smart reply
- universal sentence encoder

trained to give a high score for the response found in the data, low score for random responses

final score of an input and response is a dot-product of two vectors

network encodes a batch of inputs to vectors:

 $\boldsymbol{X}_1 \quad \boldsymbol{X}_2 \quad \dots \quad \boldsymbol{X}_N$

and responses to vectors:

 y_1 y_2 ... y_N

x_1, y_1	$\boldsymbol{x}_1.\boldsymbol{y}_2$	$\boldsymbol{x}_1,\boldsymbol{y}_3$	$\boldsymbol{x}_1,\boldsymbol{y}_4$	$\boldsymbol{x}_1.\boldsymbol{y}_5$
$\boldsymbol{x}_2.\boldsymbol{y}_1$	$\boldsymbol{x}_2.\boldsymbol{y}_2$	$\boldsymbol{x}_2,\boldsymbol{y}_3$	$\boldsymbol{x}_2.\boldsymbol{y}_4$	$\boldsymbol{x}_2.\boldsymbol{y}_5$
$\boldsymbol{x}_3.\boldsymbol{y}_1$	$\boldsymbol{x}_3.\boldsymbol{y}_2$	x_3,y_3	$\boldsymbol{x}_3.\boldsymbol{y}_4$	$\boldsymbol{x}_3.\boldsymbol{y}_5$
$x_4.y_1$	$\boldsymbol{x}_4.\boldsymbol{y}_2$	$\boldsymbol{x}_4.\boldsymbol{y}_3$	$\boldsymbol{x}_4.\boldsymbol{y}_4$	$\boldsymbol{x}_4.\boldsymbol{y}_5$
$\boldsymbol{x}_{5}, \boldsymbol{y}_{1}$	$\boldsymbol{x}_{5}.\boldsymbol{y}_{2}$	$\boldsymbol{x}_{5},\boldsymbol{y}_{3}$	$\boldsymbol{x}_5.\boldsymbol{y}_4$	$\boldsymbol{x}_5.\boldsymbol{y}_5$

the N x N matrix of all scores is a fast matrix product.

large improvement in 1 of 100 ranking accuracy over binary classification.

x_1, y_1	$\boldsymbol{x}_1.\boldsymbol{y}_2$	$\boldsymbol{x}_1, \boldsymbol{y}_3$	$\boldsymbol{x}_1.\boldsymbol{y}_4$	$\boldsymbol{x}_1.\boldsymbol{y}_5$
$\boldsymbol{x}_2, \boldsymbol{y}_1$	$\boldsymbol{x}_2.\boldsymbol{y}_2$	$\boldsymbol{x}_2.\boldsymbol{y}_3$	$\boldsymbol{x}_2.\boldsymbol{y}_4$	$\boldsymbol{x}_2.\boldsymbol{y}_5$
$\boldsymbol{x}_3.\boldsymbol{y}_1$	$\boldsymbol{x}_3.\boldsymbol{y}_2$	x_3y_3	$\boldsymbol{x}_3.\boldsymbol{y}_4$	$\boldsymbol{x}_3.\boldsymbol{y}_5$
$\boldsymbol{x}_{4},\boldsymbol{y}_{1}$	$\boldsymbol{x}_4.\boldsymbol{y}_2$	$\boldsymbol{x}_4.\boldsymbol{y}_3$	$\boldsymbol{x}_4.\boldsymbol{y}_4$	$\boldsymbol{x}_4.\boldsymbol{y}_5$
$\boldsymbol{x}_{5}.\boldsymbol{y}_{1}$	$\boldsymbol{x}_{5}, \boldsymbol{y}_{2}$	$\boldsymbol{x}_{5},\boldsymbol{y}_{3}$	$\boldsymbol{x}_5.\boldsymbol{y}_4$	$\boldsymbol{x}_5.\boldsymbol{y}_5$

$$m{x}_i = f(ext{input } i)$$
 $m{y}_j = g(ext{response } j)$
 $m{S}_{ij} = m{x}_i \cdot m{y}_j$
 $P(ext{response } j \mid ext{input } i) \propto e^{Sij}$
 $-\log P(ext{example } i) = - m{S}_{ii} + \log \Sigma_j e^{Sij}$
"dot product loss"

Precomputation for dot product model

the representations of the candidates Y can be precomputed

approximate nearest neighbor search can speed up the top N search

at inference, a user query has N words, there are M responses with N_R words each

- dot product model

- O(N) to encode input to vector space

- O(log M) to find top scoring response with approximate search

at inference, a user query has N words, there are M responses with N_R words each

- dot product model
 - O(N) to encode input to vector space
 - $O(\log M)$ to find top scoring response with approximate search
- general sequence model (e.g. BERT next sentence scoring)
 - $O(M(N + N_p))$ to score all responses
 - O(M) to find top response

1-of-100 accuracy

how often the correct response is ranked top vs 99 random

ConveRT - Conversational Representations from Transformers

ConveRT - Conversational Representations from Transformers

	reddit 1-of-100 accuracy		
	TF-IDF	26.7%	
keyword-based	BM25	27.6%	
	ELMo	19.3%	
MAP dot product models	BERT	24.5%	
	USE	40.8%	
	USE_QA	46.3%	
	BERT dot-product model	55.0%	
PolyAl			
	ConveRT	68.2%	

ConveRT

resource-constrained optimization: pick the best model after training 18 hours on 12 GPUs

- fast ML engineering cycle, rapid progress
- we own the whole training pipeline
- training costs under \$100
- model runs fine on CPU
- final model is 40MB

reddit 1-ot-100 (progress over 3 weeks)

intent classification

Intent Classification

Recap - Intent Classification

Intent Evaluation

	BANKING77			CLINC150			HWU64		
Model	10	30	Full	10	30	Full	10	30	Full
BERT-FIXED	67.55	80.07	87.19	80.16	87.99	91.79	72.61	79.78	85.77
BERT-TUNED	83.42	90.03	93.66	91.93	95.49	96.93	84.86	88.27	92.10
USE	84.23	89.74	92.81	90.85	93.98	95.06	83.75	89.03	91.25
CONVERT	83.32	89.37	93.01	92.62	95.78	97.16	82.65	87.88	91.24
USE+ConveRT	85.19	90.57	93.36	93.26	96.13	97.16	85.83	90.16	92.62

Efficient Intent Detection with Dual Sentence Encoders I Casanueva, T Temčinas, D Gerz, M Henderson, I Vulić

value extraction

Value Extraction / Slot Filling

please book Harry's bar at 9 pm

INITIATE_BOOKING

2 people under the name Henderson

INFORM

do you do christmas bookings yet

CHRISTMAS_BOOKING S

Value Extraction Evaluation

Fraction	Span-ConveRT	V-CNN-CRF	Span-BERT		
1 (8198)	0.96	0.94	0.93		
1/2 (4099)	0.94	0.92	0.91		
1/4 (2049)	0.91	0.89	0.88		
1/8 (1024)	0.89	0.85	0.85		
1/16 (512)	0.81	0.74	0.77		
1/32 (256)	0.64	0.57	0.54		
1/64 (128)	0.58	0.37	0.42		
1/128 (64)	0.41	0.26	0.30		

Span-ConveRT: Few-shot Span Extraction for Dialog with Pretrained Conversational Representations S Coope, T Farghly, D Gerz, I Vulić, M Henderson

ConveRT

efficient task tailored to dialogue

smaller cheaper faster models

robust performance on downstream tasks

competitive NLU accuracy

powers conversational search

efficient search reduced dependency on strict ontology

Jolly Judge

Small and cosy place, with a nice selection of ales.

We were able to warm up at the log fire.

. . .