

ch8: Multi-layer Perceptrons

Artificial Neural Networks

Perceptron(P6)

• Basic modeling of the "Neuron".

• The output y is an activation of a linear weighted sum of the inputs $x = (x_0, ..., x_d)^T$ where x_0 is a special bias unit with x_0 =1 and $w = (w_0, ..., w_d)^T$ are called the connection weights or synaptic weights.

Perceptron用途 (P7)

• Regression: $y=wx+w_0$

• Classification: $y = sign(wx + w_0)$

• To implement a linear classifier, we need the threshold function:

to define the following decision rule:

$$\sigma(a) = \begin{cases} 1 & \text{if } a > 0 \\ -1 & \text{otherwise} \end{cases}$$

Choose
$$\begin{cases} C_1 & \text{if } \sigma(\mathbf{w}^T x) = 1 \\ C_2 & \text{otherwise} \end{cases}$$

Training a Perceptron (P8)

$$w_i = w_i + \eta(y - \hat{y})x_i$$

- Equivalent to rules:
 - If output is correct, do nothing
 - If output is high, lower weights on active inputs
 - If output is low, increase weights on active inputs

limitations and solutions(P11-14)

Limitation1: perceptron cannot learn data that are not linearly separable

• **But**, adding hidden layer(s) (internal presentation) allows to learn a mapping that is not constrained by linear separability.

Limitation2: thresholding functions are discrete and non-differentiable.

Continuous Thresholding(activation functions)(P14)

• Instead of using the threshold function to give a discrete output in {-1,1}, we may use the **sigmoid function**

$$\mathsf{sigmoid}(a) = \frac{1}{1 + \mathsf{exp}(-a)}$$

to give a continuous output in (0,1):

$$y = sigmoid(\mathbf{w}^T \mathbf{x})$$

- Sigmoid can be seen as a continuous, differentiable version of thresholding.
- The output may be interpreted as the posterior probability that the input x belongs to C_1 .
- other Activation Functions
- In general, we can apply many other continuous thresholding functions, called activation functions, to introduce nonlinearity in perceptrons.

Multi-layer Perceptrons

definition(P17)

• A multilayer perceptron (MLP) has a hidden layer between the input and output layers.

What an MLP does(P21-22)

train an MLP

Optimizing MLP using GD (P24-31)

Network Parameters: $\theta = \{w_0, w_1, ..., w_n\}$ 考数量很大

$$\theta^{0} \rightarrow \theta^{1} \rightarrow \theta^{2} \rightarrow \dots$$

$$\theta^{1} = \theta^{0} - \eta \nabla L(\theta^{0})$$

$$\theta^{2} = \theta^{1} - \eta \nabla L(\theta^{1})$$

$$\vdots$$

$$\nabla L(\theta)$$

$$\begin{bmatrix} \partial L(\theta) / \partial w_{1} \\ \partial L(\theta) / \partial w_{1} \end{bmatrix}$$

Gradient Descend for 2-Layer MLP

Algorithm

Gradient Descend for 2-Layer MLP

Initialize all v_{ih} and w_{hj} to rand(-0.01, 0.01)Repeat For all $(\boldsymbol{x}^t, r^t) \in \mathcal{X}$ in random order For $h = 1, \ldots, H$ $z_h \leftarrow \operatorname{sigmoid}(\boldsymbol{w}_h^T \boldsymbol{x}^t)$ For $i = 1, \ldots, K$ $y_i = \boldsymbol{v}_i^T \boldsymbol{z}$ For $i = 1, \dots, K$ $\Delta \boldsymbol{v}_i = \eta (r_i^t - y_i^t) \boldsymbol{z}$ For $h = 1, \ldots, H$ $\Delta \boldsymbol{w}_h = \eta(\sum_i (r_i^t - y_i^t) v_{ih}) z_h (1 - z_h) \boldsymbol{x}^t$ For $i = 1, \ldots, K$ $\boldsymbol{v}_i \leftarrow \boldsymbol{v}_i + \Delta \boldsymbol{v}_i$ For $h = 1, \ldots, H$ $\boldsymbol{w}_h \leftarrow \boldsymbol{w}_h + \Delta \boldsymbol{w}_h$ Until convergence

• **Problem:** Straightforward derivation of gradients in MLP is tedious, inflexible and often infeasible, due to the dependences between gradients(由于梯度之间的依赖性,在MLP中直接推导梯度是繁琐的、不灵活的,而且往往是不可行的)

Backpropagation

overview(P34)

Forward pass:

Compute $\partial a/\partial w$ for all parameters w

Backward pass:

Compute $\partial l/\partial a$ for all linearity outputs a.

• Forward pass(P35-36)

Compute $\partial a/\partial w$ for all parameters within each linearity unit.

• Backward Pass (P37-46)

Compute $\partial l/\partial a$ for all linearity outputs a.

- 两种情况:
 - 。 output layer:直接结束

Case 1. Output Layer -> 到輸出点

$$\frac{\partial l}{\partial a'} = \frac{\partial y_1}{\partial a'} \frac{\partial l}{\partial y_1} \qquad \frac{\partial l}{\partial a''} = \frac{\partial y_2}{\partial a''} \frac{\partial l}{\partial y_2}$$

Case 2. Not Output Layer: Dynamic Programming

Compute $\partial l/\partial a$ from the output layer.

Perspective from Error-Propagation(P52-56)

The update to each weight is the product of the error and the input (signal).

Algorithm(P57)

1. Forward propagation:

- apply the input vector to the network and evaluate the activations of all hidden and output units.

$$a_j = \sum_i w_{ji} z_i$$
 $z_j = \sigma(a_j)$

2. Backward propagation:

- evaluate the derivatives of the loss function with respect to the weights (errors).
- weights (errors).

 errors are propagated backwards through the network. $\delta_j^L = \frac{\partial l}{\partial a_i^L}$

3. Parameter update:

- the evaluated derivatives (errors) are then used to compute the adjustments to be made to the parameters.

$$w$$
 $ij^{=}w_{ij}^{}+\eta\delta_{j}\sigma_{j}^{}(a_{j})z_{i}^{}$ δ : 后续神经元的误差。 放大信号 σ : 第 i 个神经元的输出

BP Example(P58-77)