לוגיקה מתמטית

משה קמנסקי

2024 בנובמבר 19

מבוא 1

לוגיקה מתמטית הוא התחום במתמטיקה שחוקר בצורה מדויקת מושגים כמו "טענה" ו-"הוכחה". על מנת לספק מוטיבציה, נתבונן בשתי דוגמאות היסטוריות.

1.1 גאומטריית המישור

אוקלידס רצה לדעת את כל הדברים שנכונים עבור נקודות, קווים ומעגלים במישור¹. על-מנת להבין זאת, אוקלידס ניסה לנסח רשימה קצרה של הנחות יסוד שנכונותן "אינה מוטלת בספק", ולהוכיח מהן את כל יתר הטענות הנכונות. ארבעת הנחות היסוד הראשונות אכן פשוטות מאד: הראשונה, לדוגמא, אומרת שבין כל שתי נקודות קיים קו ישר אחד (את עבודתו של אוקלידס, "האלמנטים", ניתן לקרוא עד היום, גם באינטרנט: [3]). אוקלידס הצליח להוכיח את עשרים ושמונה הטענות הראשונות שלו בעזרת ארבע הנחות בסיס אלה². על מנת להוכיח טענות נוספות, ווא נזקק להנחת יסוד נוספת, שקולה לאקסיומת המקבילים: דרך נקודה הנמצאת מחוץ לישר נתון, עובר בדיוק ישר אחד מקביל לישר הנתון. הנחת יסוד זו פחות פשוטה ומובנת מאליה, ואוקלידס ניסה, אך לא הצליח, להוכיח אותה מארבע הנחות היסוד הראשונות.

השאלה איך להוכיח את אקסיומת המקבילים נותרה פתוחה מאות שנים, עד שהוכח שהאקסיומה בלתי תלויה: לא ניתן להוכיח (או להפריך) אותה מיתר הנחות היסוד. נשים לב, שטענה זו אינה טענה גאומטרית: היא אינה עוסקת בנקודות או קווים, אלא בטענות מתמטיות (מבחינה גאומטרית, אנחנו יודעים שאקסיומת המקבילים תקפה במישור). הטענה שייכת לתחום של לוגיקה מתמטית, בו הטענה שאקסיומת המקבילים בלתי תלויה באקסיומות האחרות, היא עצמה טענה מתמטית.

איך הוכחה הטענה? גאוס, לובאצ'בסקי ובוליאי (ובעקבותיהם מתמטיקאים אחרים) בנו *מודל* של ארבע האקסיומות הראשונות של אוקלידס, כלומר מבנה עם "קווים" ו-"נקודות", בו הקווים

^{[5]-}ניתן לקרוא את הסיפור הזה יותר בהרחבה ב 1

למעשה. כפי שנראה. הוא השתמש בהנחות נוספות 2

והנקודות מתנהגים כמו שמוכתב על ידי האקסיומות הראשונות, אולם בו אקסיומת המקבילים אינה מתקיימת. מודל זה בהכרח שונה מהמישור הרגיל, בו אקסיומת המקבילים תקפה, אבל הוא "שווה זכויות" לו: כל טענה שניתן להוכיח מארבע האקסיומות הראשונות, תקפה גם בו. למעשה, כל הוכחה מתוך אקסיומות אלה נותן טענה תקפה בכל המבנים המקיימים אותו.

מה לגבי הכיוון ההפוך? נניח שיש לנו טענה בגאומטריה שנכונה בכל המודלים שסופקו על-ידי גאוס וחבריו, וגם בכל מודל אחר של ארבע האקסיומות הראשונות. האם ניתן אז להוכיח טענה זו מתוך אותן אקסיומות? לכאורה, אפשר לדמיין שהטענה נכונה "במקרה" בכל המבנים הללו, בלי שניתן להוכיח אותה. אנחנו נראה שזה לא כך:

משפט א' (משפט השלמות, ??). כל טענה שנכונה בכל מבנה המקיים את האקסיומות של אוקלידס, ניתן להוכחה מאקסיומות אלה

בניסוח המשפט (שאינו מנוסח בצורה מדויקת בשלב זה) לא הקפדנו לציין על איזו קבוצת אקסיומות מדובר. למעשה, זה לא משנה: המשפט תקף לכל קבוצת אקסיומות, ולא רק לגאומטריה. כאמור, משפט השלמות אינו משפט בגאומטריה. מהם האובייקטים המתמטיים המופיעים במשפט הזה? על-מנת שנוכל אפילו לנסח את המשפט, עלינו לענות לפחות על השאלות הבאות:

"איך אפשר לראות טענות כאובייקטים מתמטיים? איך אפשר לראות טענות

"אאלה 2.1.1.2 מהי הוכחה של טענה אחת מטענות אחרות?

שאלה 1.1.3. מהי משמעות האמירה שטענה מסוימת נכונה בגאומטריית המישור? באופן יותר כללי, מתי נאמר שטענה היא נכונה? מה הקשר בין זה לבין הוכחות של הטענה?

?איך ניתן להוכיח שטענה מסוימת לא תלויה באחרות?

בהינתן שהאקסיומה בלתי תלויה, התוספת שלה כהנחת יסוד מוצדקת. אבל האם יש טענות נוספות שאינן תלויות במערכת האקסיומות החדשה? האם אפשר לרשום רשימת אקסיומות המאפינות את המישור לחלוטין? תשובה אפשרית אחת לשאלה האחרונה נתונה במשפט הבא:

משפט ב' (משפט לוונהיים-סקולם, ??). לכל קבוצה אינסופית A קיים מבנה המקיים את כל הטענות המתקיימות בגאומטריית המישור, שבו קבוצת הנקודות היא

שוב, גם משפט זה נכון למבנים כלליים, ולא רק לגאומטריה.

אריתמטיקה 1.2

ראינו לעיל שלא ניתן לאפיין לגמרי את גאומטריית המישור על ידי רשימה של אקסיומות. עדיין, אפשר לשאול האם לפחות אפשר להוכיח את כל מה שנכון בגאומטרייית המישור מתוך כל חמש האקסיומות של אוקלידס. מסתבר שלא, ולמעשה אפילו המשפט הראשון בספרו של אוקלידס דורש אקסיומות נוספות. אולם טארסקי, בתחילת המאה ה-20 (בעקבות עבודה של קליין, הילברט, ומתמטיקאים נוספים) הצליח להשלים את הרשימה: הוא נתן רשימה מפורשת של אקסיומות, והוכיח שמהן ניתן להוכיח את כל הטענות הגאומטריות הנכונות במישור.

תחום נוסף שבו עסקו היוונים הוא תורת המספרים. גם שם הניסיון הוא לגלות את כל הטענות הנכונות עבור המספרים הטבעיים. בניגוד לגאומטריה, הם לא ניסו לעבוד בשיטה האקסיומטית.

שאלה 1.2.1. האם ניתן לראות גם טענות על מספרים כאובייקטים מתמטיים?

מערכת אקסיומות עבור המספרים הטבעיים הוצעה על-ידי פיאנו. כמו בגאומטריה, גם כאן ניתן לשאול:

שאלה 1.2.2. האם אקסיומות פיאנו מוכיחות את כל הטענות הנכונות על מספרים טבעיים? אם לא. האם קיימת מערכת אחרת שעושה זאת?

אנחנו נראה:

משפט ג' (משפט אי השלמות, ??). ישנן טענות בתורת המספרים שנכונות בטבעיים, אך אינן ניתנות להוכחה מאקסיומות פיאנו

למעשה, המשפט אינו יחודי לאקסיומות פיאנו, ותקף לכל מערכת אקסיומות שניתנת לתיאור מפורש (במובן שנראה מאוחר יותר).

1.3 מבנים אחרים

שתי הדוגמאות האחרונות דנות בשני נושאים מרכזיים במתמטיקה: גאומטריה ותורת המספרים. אלה תחומים חשובים, אך אינם היחידים.

שאלה 1.3.1. באילו מבנים ותורות מתמטיות ניתן לעסוק בשיטות הנ"ל? אילו כלים קיימים על מנת לענות על שאלות מהסוג לעיל לתורות אחרות?

אנחנו נראה מספר שימושים מפתיעים של טענות בלוגיקה לתחומים אחרים במתמטיקה, ביניהם:

עצמו G אז אביע, אז סופי שלו סופי משפט גרף שכל תת-גרף שכל גרף אז אם G אם גרף טענה (טענה 2.3.6). אם אביע אז אביע

לי היא על היא ערכית, אז היא על $F:\mathbb{C}^n \to \mathbb{C}^n$ אם הייערכית, אז היא על היא על הייערכית, אז היא א

המשפט הבא הוא משפט קלאסי על פונקציות ממשיות, אולם אנחנו נראה הוכחה פשוטה שלו, בשפה קרובה (אך מדויקת לגמרי!) לניסוחים המקוריים של ניוטון ולייבניץ

אז $f(0) \leq 0 \leq f(1)$ משפט ו' (משפט ערך הביניים, ??). אם אם אם $f:[0,1] \to \mathbb{R}$ אם אם f(c) = 0 אז עבורו $c \in [0,1]$

הרשימות מבוססות בין היתר על הספרים [2, 6, 7]. הספר [4] מומלץ אף הוא.

2 תחשיב הפסוקים

בסעיף זה נעסוק בסוג פשוט במיוחד של לוגיקה: תחשיב הפסוקים. לוגיקה זו לא מניחה דבר על המבנה של טענות בסיסיות, ובמקום זה עונה על שאלות הנוגעות לבניה של טענה מורכבת מתוך טענות יותר פשוטות על-ידי פעולות לוגיות. בהתאם לשאלות שהותוו במבוא, נראה את התשובות המדויקות שלוגיקה זו נותנת לשאלות:

- ?. מהי טענה?
- 2. מהי המשמעות של האמירה "טענה זו נכונה"?
 - 3. מהי הוכחה?

לאחר שנגדיר את כל המושגים, נראה שניתן לענות על כל השאלות מהמבוא עבור לוגיקה זו, ונראה גם כמה שימושים.

אלגברות בוליאניות 2.1

כאמור, בשלב זה אנו מתייחסים אל כל טענה כאל קופסה שחורה. אם b ו-a וא a" ו-"לא a" ו-"לא a" ו-"לא a" ו-"לא מעוניינים אינטואיטיבית ניתן ליצור מהן את הטענות החדשות a" והא גבה לידי ביטוי. במילים אחרות, על קבוצת הטענות למצוא מבנה פורמלי בו האינטואיציה הזו באה לידי ביטוי. במילים אחרות, על קבוצת הטענות b בהן אנו מתעניינים מוגדרות פעולות a באול a ווגם") a באול ובשלב באנו מתעניינים בחוכן של הטענה, ולא בצורת כתיבתה, למשל, הטענות a וגם a" וגם a" וגם a" הן מבחינתינו אותה טענה. באופן דומה, ניתן להצדיק את התנאים האחרים בהגדרה הבאה:

הגדרה 2.1.1. אלגברה בוליאנית מורכבת מקבוצה B, איברים $0,1\in B$ ופעולות אלגברה בוליאנית $B\times B o B$: $\neg:B o B\to B$ וואנים: $B\times B\to B$ המקיימים את התנאים הבאים לכל $a,b,c\in B$

$$\langle a \lor b \rangle = \langle b \lor a \rangle$$
 , $\langle a \land b \rangle = \langle b \land a \rangle$ (חילופיות) .1

$$a \lor (\langle b \lor c \rangle) = (\langle a \lor b \rangle) \lor c$$
, $\langle a \land (\langle b \land c \rangle) \rangle = \langle (\langle a \land b \rangle) \land c \rangle$ (קיבוציות) .2

$$a \lor (\langle b \land c \rangle) = (\langle a \lor b \rangle) \land (\langle a \lor c \rangle)$$
 , $a \land (\langle b \lor c \rangle) = (\langle a \land b \rangle) \lor (\langle a \land c \rangle)$.3

$$\langle a \wedge 1 \rangle = a , \langle a \vee 0 \rangle = a .4$$

$$a \lor \neg a = 1$$
 , $a \land \neg a = 0$.5

נסמן ב-
$$\langle B, \wedge, \vee, \neg, 0, 1
angle$$
 את המבנה כולו

הערה 2.1.2. כתוצאה מחוקי הקיבוץ, אין צורך לרשום סוגריים כאשר מפעילים אותה פעולה ברצף, ואנחנו נרשום למשל $a \wedge b \wedge c$ במקום $a \wedge b \wedge c$. כמו-כן, נפעל לפי מוסכמה ש-מגם" (כלומר, נרשום למשל ל-"או", וכך נשמיט סוגריים נוספים (כלומר, נרשום ל $a \wedge b \wedge c$). בנוסף נשתמש לרוב בחילופיות בלי להזכיר זאת.

 $B = \{0, 1\}$, ישנה אלגברה בוליאנית יחידה בת שני איברים, 2.1.4אינטואיטיבית, זוהי האלגברה של ערכי האמת, כאשר 1 מסמל אמת, ו-0 שקר. נסמן אותה לרוב

ראשר $\mathcal{B} = \langle \mathcal{P}(X), \cap, \cup, \cdot^c, \emptyset, X \rangle$ המבנה כלשהי, המבנה X אם X הבוצה כלשהי היא קבוצת החזקה, ו- $A^c = X \setminus A$, הוא אלגברה בוליאנית. $\mathcal{P}(X) = \{A \mid A \subseteq X\}$ אנחנו נקרא לאלגברות כאלה אלגברות חזקה.

ניתן לזהות את שתי הדוגמאות הקודמות כמקרים פרטיים לזהות הדוגמאות הדוגמאות ניתן לזהות את שתי הדוגמאות הקודמות כמקרים פרטיים של הדוגמאות הדוגמאות הדוגמאות הקודמות כמקרים פרטיים של הדוגמאות הדוגמאות הדוגמאות הקודמות כמקרים פרטיים של הדוגמאות הדוגמאות הקודמות החוד הדוגמאות החודמות ריקה או קבוצה בת איבר אחד.

X איברי על איברי טענות על איברי B איברי לחשוב איברי הדוגמא האחרונה איברי נזהה כל טענה עם איברי X המקיימים את הטענה. תחת הפירוש הזה, הפעולות של עם האינטואיציה של "וגם", "או" ושלילה (כלומר, אם $C \subseteq X$ אם האינטואיציה של "וגם", "או" ושלילה (כלומר, אם אינטואיציה של טענה אח האיברים האיברים האיברים היא קבוצת או $C\cap D$ אז טענה מקיימים האיברים האיברים בוצת D-ו ,c("d וגם c" הטענה

דוגמא 2.1.6. אם X קבוצה כלשהי, תת-קבוצה קוסופית של X היא תת-קבוצה שהמשלימה שלה ביחס ל- (X^{-1}) סופיות או קו-סופיות הקבוצות של (X^{-1}) סופיות או קו-סופיות היא אלגברה בוליאנית (עם פעולות כמו קודם).

> X שהן של X שהן תתי-הקבוצות של X קבוצת הממשיים בין X ל-1, אז קבוצת אם X שהן Xאיחוד סופי של קטעים היא אלגברה בוליאנית (שוב, עם פעולות החיתוך והאיחוד). אנחנו נראה עוד דוגמאות רבות מהסוג הזה בהמשד.

> $\mathcal{B}=\langle B,\wedge,\vee,\neg,0,1
> angle$ אלגברה בוליאנית כלשהי, $\mathcal{B}=\langle B,\wedge,\vee,\neg,0,1
> angle$ גם הדואלית. שנקראת האלגברה הדואלית. גם הוא אלגברה הדואלית. $\mathcal{B}^* = \langle B, \vee, \wedge, \neg, 1, 0 \rangle$

> > התרגיל הבא כולל כמה עובדות שימושיות על אלגברות בוליאניות:

מתקיים: מתקיים. לכל אלגברה בוליאנית \mathcal{B} , ולכל אלגברה לכל 2.1.9.

$$\langle a \lor 1 \rangle = 1$$
 , $\langle a \land 0 \rangle = 0$.1

$$\langle a \wedge a \rangle = a$$
 .2

$$a=b$$
 אז $\langle a{\wedge}b \rangle = \langle a{\vee}b \rangle$ אז .3

$$b=\lnot a$$
 אז $\langle a \lor b \rangle =1$ ו- $\langle a \land b \rangle =0$ אז .4

$$\neg(\neg a) = a$$
 .5

$$\neg(\langle a \lor b \rangle) = \neg a \land \neg b .6$$

$$a \wedge (\langle a \vee b \rangle) = a$$
 .7

אלגברות חזקה

האלוררה הדואלים

הערה 2.1.10. בהנתן שוויון כלשהו בין שני ביטויים בוליאניים כמו בתרגיל, השוויון הדואלי הוא השוויון המתקבל מהמקורי על-ידי החלפת התפקידים של \land ו- \lor , והחלפת התפקידים של 1 ו-0. השוויון המתקבל מהמקורי על-ידי החלפת התפקידים של $\neg(\langle a \land b \rangle) = \neg a \lor \neg b$ הוא השוויון $\neg(\langle a \lor b \rangle) = \neg a \land \neg b$ השוויון המקורי נכון עבור איברים כלשהם של אלגברה אלגברה הדואלי נכון עבור אותן עליהם כאיברי האלגברה הדואלים \mathcal{B}^* . לכן, אם שוויון כלשהו נכון לכל האלגברות הבוליאניות, אז גם הדואלי שלו נכון עבורן. אנחנו נשתמש בזה באופן חופשי.

התרגיל הבא מציג דרך נוספת לחשוב על אלגברות בוליאניות, שלעתים מקלה על הוכחת תכונות כמו בתרגיל האחרוז.

 $a \wedge b = a$ אם a < b- ש $a, b \in \mathcal{B}$ אברים לכל שני איברים לוליאנית, ונגדיר בוליאנית, מאלגברה בוליאנית, ונגדיר לכל שני איברים

- .0 ומינימום ומינימום לקי על \mathcal{B} , עם מקסימום ומינימום וחינימום .1
- $\langle a \lor b \rangle$. הוכיחו שלכל שני איברים $a,b \in \mathcal{B}$, החסם העליון ביניהם ביחס ל- \geq קיים ושווה ל- $\langle a \lor b \rangle$ (נזכיר ש*חסם עליון* של קבוצה A בסדר חלקי הוא איבר והחסם הגדול או שווה לכל איבר ב-A, וקטן מכל איבר אחר שמקיים זאת. חסם עליון כזה, אם קיים, הוא יחיד)
 - - 4. פתרו שוב את תרגיל 2.1.9 בעזרת התרגיל הנוכחי

העתקה של אלגברות העתקה של אלגברות בוליאנית מאלגברה בוליאנית מאלגברה בוליאנית מאלגברה בוליאנית של אלגברות בוליאנית מאלגברה בוליאנית $\omega: B_1 \to B_2$ היא פונקציה $\omega: B_1 \to B_2$

$$\omega(\langle a \wedge b \rangle) = \omega(a) \wedge \omega(b)$$
 .1

 $\omega(\neg a) = \neg \omega(a) .2$

לכל (העתקה כזו נקראת גם הומומורפיזם של אלגברות בוליאניות) . $a,b\in B_1$ לכל העתקה כזו נקראת שיכון אם היא חד-חד-ערכית, ואיזומורפיזם אם היא הפיכה.

הומומורפיזם

איזומורפיזם

6

 $\omega(1) = \omega(\langle a \lor b \rangle) = \omega(a) \lor \omega(b)$ גם מקיימת גם (2.1.9, העתקה בגלל תרגיל 2.1.9, העתקה בזו מקיימת גם והסימון שלמרות לב שלמרות מתרגיל הסדר החלקי שומרת על הסדר שלמרות שומרת על הסדר. נשים לב שלמרות הסימון $\omega(0)=0$ \mathcal{B}_2 -ם ואלה שבצד ימין הן באד שמאל הן ב- \mathcal{B}_1 ואלה שבצד ימין הולות הזהה,

יותר ב- \mathcal{B} יש יותר בת איבר בת האלגברה אל העתקה יחידה אל העתקה ש ב- \mathcal{B} יש יותר 2.1.14 \mathcal{B} -מאיבר אחד, אין העתקה מהאלגברה בת איבר אחד ל

ל-2 נקראת העתקה העתקה העתקה לכל אלגברה בוליאנית. העתקה מאלגברה \mathcal{B} ל-2 נקראת כל.1.15 אינית. השמה. אלה העתקות שנתעניין בהן מאד בהמשך, שכן, כאמור, הן ממדלות את התהליך של בחירת השמה ערכי אמת לטענות.

השמה אלגברת של X של X איבר החזקה, כל איבר האלגברת היא אלגברת היא $\mathcal{B} = \mathcal{P}(X)$ אם 2.1.16. \mathcal{B} איברי על איברי אם הושבים עה 0-ו $x\in A$ אם $\omega_x(A)=1$ ידי: על איברי אם הנתונה על ידי: $\mathcal{B} o 2$ x בטענות על איברי X, אז היא ההשמה ש"בודקת" האם הטענה נכונה עבור ω_x

היא $A\mapsto A\cap C$ הוכיחו שהפונקציה, $C\subseteq X$ הוכיח יותר כללי, אם באופן יותר הרגיל מרגיל. $\mathcal{P}(C)$ -ל $\mathcal{P}(X)$ -הומורפיזם מ

דוגמא פונקציית הזהות אינה בת יותר מאיבר בוליאנית בוליאנית אלגברה אלגברה אלגברה אלגברה אותר מאיבר אחד, או \mathcal{B}^{*} הומומורפיזם מ- \mathcal{B} ל- \mathcal{B}^{*} (למה?) מאידך, פונקציית השלילה היא איזומורפיזם מ- \mathcal{B} ל-

0 < b < a של אלגברה המקיים $b \in \mathcal{B}$ איבר אטום אם הוא הוא הוא הוא אלגברה של אלגברה של איבר למשל, אם $\mathcal{B}=\mathcal{P}(A)$ אלגברת חזקה, האטומים הם בדיוק היחידונים.

 \mathcal{B} -שיח בוליאנית כופית אלגברה בוליאנית ש- \mathcal{B} אלגברה בוליאנית סופית מרגיל 2.1.19 אלגברות בוליאנית

- a < b יש אטום $b \neq 0$ איבר. 1
 - הוכיחו ש- \mathcal{B} איזומורפית לאלגברת חזקה 2
- 3. הוכיחו שאלגברה בוליאנית אינסופית אינה בהכרח איזומורפית לאלגברת חזקה

משפט סטון 2.1.20

מי שניסה לפתור את תרגיל 2.1.9, גילה אולי שזה יותר קשה ממה שזה נראה. מצד שני, כל הטענות שם קלות מאד להוכחה עבור המקרה בו $\mathcal{B} = \mathcal{P}(X)$ היא אלגברת החזקה של איזושהי קבוצה. בתרגיל האחרון ראינו שכל אלגברה בוליאנית סופית היא כזו, אבל זה לא נכון לאלגברות

עבור $t:\mathcal{B} \to \mathcal{P}(X)$ עבור שיכון $t:\mathcal{B} \to \mathcal{P}(X)$ עבור עכשיו שלגברה בוליאנית כלשהי, איזושהי הבא: נניח שהשוויון עבור ${\mathcal B}$ באופן את אחד השוויון אופשר להוכיח את אפשר להוכיח איזושהי אינו נכון עבור t-שיכון, בגלל את אוריי שנפעיל אחרי שיכון, שיכון, שהשוויון אינו נכון עבור איזשהם איברים $a,b\in\mathcal{B}$ אינו נכון עבור האיברים t(a) ו-t(b) ב- $\mathcal{P}(X)$. אבל כבר הוכחנו שהשוויון נכון לכל זוג איברים בכל אלגברה מהצורה הזו.

סוף

,1 הרצאה 4 בנוב

במילים אחרות, כל משוואה שנכונה לכל האיברים באלגברה ${\cal B}$ נכונה גם לכל האיברים באלגברה שמשוכנת בה (בהמשך תהיה לנו השפה לנסח את הטענה הזו באופן יותר מדויק ויותר כללי). הואיל ובדיקת שוויונים כאלה קלה מאד באלגברות חזקה, נשאלת השאלה: אילו אלגברות ניתנות לשיכון באלגברות חזקה?

משפט 2.1.21 (משפט הייצוג של סטון). לכל אלגברה בוליאנית \mathcal{B} קיימת קבוצה X ושיכון לבוצה $t:\mathcal{B} o \mathcal{P}(X)$

עבור עבור אשית ש- $\mathcal{P}(Y)$ יש על מנת להוכיח את את לזהות את לזהות את עלינו ראשית עלינו את המשפט, עלינו ראשית לזהות את איברי איזשהו Y האם אנחנו יכולים לשחזר את איברי איזשהו Y מתוך מבנה האלגברה של $\mathcal{P}(z)$ ראינו בדוגמא 2.1.16 שלכל איבר z ניתן להתאים השמה בz אשר נתונה על-ידי עלידי העתקה זו z כפי שנראה בהמשך, אז הערכית, משום שאם z או או z או או בחנו מחפשים רק שיכון). על, אבל זה פחות חשוב, כי אנחנו מחפשים רק שיכון).

אז תיארנו קבוצה X המכילה את במונחים של מבנה האלגברה הבוליאנית בלבד. בפרט, אז תיארנו קבוצה X המכילה את המכילה אז במונחר על ההנחה ש- $\mathcal{B}=\mathcal{P}(Y)\subseteq\mathcal{P}(X)$ כעת נוותר על ההנחה ש- \mathcal{B} אלגברת הזקה, ונשתמש באותו רעיון כדי להגדיר את X באופן כללי.

על-ידי: $t:\mathcal{B}\to\mathcal{P}(X)$ ונגדיר על $\mathcal{B},$ ונגדיר את קבוצת ההשמות ב-X את הוכחת משפט סטון. נסמן ב- $t:\mathcal{B}\to\mathcal{P}(X)$ אז לכל $t:\mathcal{B}\to\mathcal{P}(X)$ אז לכל $t:\mathcal{B}\to\mathcal{P}(X)$ אז לכל ב- $t:\mathcal{B}\to\mathcal{P}(X)$

$$t(b \land c) = \{\omega : \mathcal{B} \to \mathbf{2} \mid 1 = \omega(b \land c) = \omega(b) \land \omega(c)\} = \{\omega : \mathcal{B} \to \mathbf{2} \mid 1 = \omega(b)\} \cap \{\omega : \mathcal{B} \to \mathbf{2} \mid 1 = \omega(c)\} = t(b) \cap t(c)$$

ובאופן דומה לשלילה.

זה מראה ש-t העתקה של אלגברות בוליאניות. כדי להוכיח ש-t חד-חד-ערכית, עלינו להוכיח זה מראה ש-t העתקה של אלגברות בוליאניות. כך ש- $\omega:\mathcal{B}\to\mathbf{2}$ יש השמה בא, יש השמה שמסיים את ההוכחה.

 $\omega:\mathcal{B} o 2$ משפט 2.1.22. אם a ו-b שני איברים שונים באלגברה בוליאנית b, אז יש השמה ב $\omega(a)
eq \omega(b)$.

נשים לב שבפרט, המשפט אומר שלכל אלגברה בוליאנית לא טריוויאלית ${\mathcal B}$ יש השמה, עובדה לא ברורה בכלל.

אנחנו נוכיח את המשפט באמצעות תרגומו לכמה טענות שקולות. הראשונה היא רדוקציה למקרה פרטי:

b=0 בו הפרטי הפרטי מהמשפט נובע הפרטי בו 2.1.23

 $\omega(b)=1$ - על כך שאם פי השמה לפי אז יש השמה לפי להוכיח עלינו להוכיח אלינו לפי התרגיל האחרון, עלינו להוכיח אם לפי השמה לפשהי בהשמה כלשהי בהשמה לשהי איך נראית הקבוצה להוכיח איר. מסתבר שקבוצות כאלה מתוארות באופן הבא:

:אם: על-מסנן על-מסנן של: אלגברה של $\mathcal{F} \subset \mathcal{B}$ של אר. תת-קבוצה 2.1.24 הגדרה

- $.\langle a \wedge b \rangle \in \mathcal{F}$ גם $a,b \in \mathcal{F}$.1
- \mathcal{F} -לכל $a, \neg a$ -מייך מייך $a, \neg a$ אחד מ- $a \in \mathcal{B}$.2
 - $0 \not\in \mathcal{F}$.3

על-מסנן, אז \mathcal{F} על-מסנן, אז הוכיחו \mathcal{F} על-מסנן, אז

- לא ריק \mathcal{F} .1
- $b \in \mathcal{F}$ אז b > a-ו $a \in \mathcal{F}$ אם .2

 $\omega^{-1}(1)=\mathcal{F}$ על-מסנן אם ורק אם יש השמה על על-מסנן על-מסנן ש- $\mathcal{F}\subset\mathcal{B}$ על-מסנן הוכיחו ש- ω

לפי התרגיל האחרון, ניתן לתרגם את הבעיה שלנו לשאלה: האם לכל b>0 יש על-מסנן שמכיל אותו? כדי לענות על השאלה, מסתבר שכדאי לשאול שאלה קצת יותר כללית: אילו קבוצות של איברים של $\mathcal B$ מוכלות בעל-מסנן?

אם: מסנן אם: $\mathcal{F}\subseteq\mathcal{B}$ נקראת מסנן אם: .2.1.27 הגדרה

ניטבן

על-מסנו

- $\langle a \wedge b \rangle \in \mathcal{F}$ גם $a, b \in \mathcal{F}$.1
- $b \in \mathcal{F}$ גם $b \geq a$ ו. $a \in \mathcal{F}$ לכל.
 - לא ריקה \mathcal{F} .3
 - $0 \not\in \mathcal{F}$.4

היתרון במסננים (על פני על-מסננים) הוא שיש הרבה מסננים שמופיעים באופן טבעי ואפשר לתאר אותם במפורש, בעוד שזה לרוב בלתי אפשרי לתאר על-מסנן. נראה דוגמאות של מסננים בהמשך, אבל בינתיים נשים לב לעובדה הבאה:

 $b_1,\ldots,b_k\in\mathcal{F}_0$ כך שלכל כך מלגברה של אלגברה של תת-קבוצה של תת-קבוצה .2.1.28 מרגיל .2.1.28 מת-קבוצה של מסנן שמכיל את מסנן שמכיל את $b\neq 0$ אז יש מסנן שמכיל אותו.

אינטואיטיבית, אפשר לחשוב על מסנן כעל אוסף הטענות שאדם (רציונלי) יכול להאמין בהן. על-מסנן הוא אז אוסף הדעות של אדם שיש לו דעה על כל דבר. הקשר הפורמלי בין מסננים לעל-מסננים נתון בטענה הבאה.

- טענה $\mathcal{F} \subset \mathcal{B}$ שקולים על תת-קבוצה 2.1.29. מענה
 - על-מסנו \mathcal{F} .1

(כלומר, לא מוכל ממש במסנן אחר) מסנן מקסימלי ${\cal F}$.2

הוכחה. נניח ש- \mathcal{F} על-מסנן, ו- $a\in\mathcal{F}$. אז לכל $a\in\mathcal{F}$, בדיוק אחד מ-b ו- $a\in\mathcal{F}$. אם זה $a\in\mathcal{F}$. אם זה מ $-b\in\mathcal{F}$ גם $\mathcal{F}_1\supset\mathcal{F}$ מסנן שמרחיב אותו, בסתירה להגדרה. זה מראה ש- $\mathcal{F}_1\supset\mathcal{F}$ מסנן שמרחיב אותו, $a\in\mathcal{F}_1\supset\mathcal{F}$ מסנן ש $a\in\mathcal{F}_1\supset\mathcal{F}$ ניקח $a\in\mathcal{F}_1\supset\mathcal{F}$ ולכן $a\in\mathcal{F}_1\supset\mathcal{F}$ ההגדרה נותנת בסתירה להגדרה.

נניח עכשיו ש \mathcal{F} - מסנן מקסימלי. אם אינו על-מסנן, יש $a\in\mathcal{B}$ כך ש \mathcal{F} -. אם לכל .a., $\neg a\not\in\mathcal{F}$ איז עכשיו על-מסנן מקסימלי. או על-מסנן מסנן איז לפי תרגיל 2.1.28, יש מסנן שמכיל את \mathcal{F} ואת a, בסתירה למקסימליות של a כך שa מסנן. בסתירה לכך שa מסנן.

 $\langle b ee c
angle \in \mathcal{F}$ אם $b,c \in \mathcal{B}$ אם לכל אם ורק אם על-מסנן הוא על-מסנן הוא שמסנן. הוכיחו שמסנן $c \in \mathcal{F}$ או או $b \in \mathcal{F}$

הטענה האחרונה, בתוספת התרגיל שלפניה, מראים שהוכחת המשפט תסתיים אם נראה שכל מסנן מוכל במסנן מקסימלי. הכלי הסטנדרטי לעשות זאת נקרא *הלמה של צורן.* כדי לצטט אותה, נזכיר את ההגדרה הבאה.

תהי חלקית. קבוצה סדורה תהי (X, \prec) תהי 2.1.31 הגדרה

- ת. שרשרת ב-X הינה תת-קבוצה Y עליה הy עליה הסדר מלא, כלומר לכל x
 eq y, מתקיים שרשרת בy
 eq x אוx
 eq y
- חסומה מלעיל אם קיים y=x או $y\prec x$ כך ש- $x\in X$ החסומה מלעיל אם היא ב-X היא היא חסומה מלעיל ב- $x\in X$ הוא לכל לכל $y\in Y$

איבר מירבי

 $x \not\prec y$ מתקיים $y \in X$ לכל עבורו איבר $x \in X$ הוא איבר איבר מירבי ב-3

דוגמא 2.1.32. תהי S קבוצה, ו-X קבוצה של קבוצות המוכלות ב-S. אז X סדורה חלקית ביחס $y\in X$ אם $x\subset y$ אם אם להכלת קבוצות: $x\in Y$ אם $x\subset y$ אם אובר של אם להכלת המכילה את כל הקבוצות ב-X. איבר מירבי הוא איבר שלא מוכל בשום קבוצה אחרת ב-X.

לעיתים קרובות נעסוק בקבוצות X מסוג זה, עם התכונה שהאיחוד של כל שרשרת של קבוצות ב-X, גם הוא קבוצה ב-X. במקרה זה, האיחוד הוא חסם מלעיל של השרשרת, ולכן כל שרשרת חסומה מלעיל.

דוגמא 2.1.33. בתור מקרה פרטי של הדוגמא הקודמת, יהי S מרחב וקטורי (מעל שדה כלשהו), ותהי X קבוצת הקבוצות הבלתי תלויות לינארית ב-S. איחוד של שרשרת של קבוצות בלתי תלויות הוא קבוצה בלתי תלויה (שכן כל תלות לינארית היא בין מספר סופי של וקטורים, אשר שייכים לאחד האיברים בשרשרת). איבר מירבי ב-X, כלומר קבוצה בלתי תלויה מירבית, נקרא בסיס של S.

עובדה 2.1.34 (הלמה של צורן). תהי X קבוצה סדורה חלקית, בה כל שרשרת חסומה מלעיל. אז קיים ב-X איבר מירבי

תרגיל 2.1.35. הראו שמהלמה של צורן נובעת הגירסא היותר חזקה: עם אותן הנחות, לכל איבר קיים איבר מירבי הגדול ממנו

תרגיל 2.1.36. הקבוצה הריקה הינה קבוצה סדורה חלקית (באופן יחיד). למה היא אינה מהווה סתירה ללמה של צורן?

בגלל הלמה של צורן, משתלם לנסח תכונות של עצמים על-ידי תנאי מקסימליות. למשל: דוגמא 2.1.33. לפי דוגמא 2.1.33, לכל מרחב וקטורי יש בסיס

מסיבות דומות, הלמה של צורן מופיעה במקומות רבים במתמטיקה. אנחנו נשתמש בה כדי להראות את קיומם של על-מסננים, ובכך להחזיר את כל החובות שצברנו:

טענה 2.1.38. כל מסנן באלגברה בוליאנית מוכל בעל-מסנן

הוכחה. נתבונן בקבוצת כל המסננים, עם יחס ההכלה. לפי תרגיל 2.1.35, מספיק להראות: איחוד הוכחה. נתבונן בקבוצת כל המסננים, עם יחס ההכלה. עם איחוד C- שרשרת מסננים היא מסנן. נניח שרC- שרשרת כזו, עם איחוד $a,b\in\mathcal{F}_a$ הוכל בניח \mathcal{F}_a , כך ש \mathcal{F}_a , כך ש $a\in\mathcal{F}_a$ - הואיל ו- $a,b\in\mathcal{F}_b$ - מסנן. הוכחת התכונות האחרות דומה. בשני. אז $a,b\in\mathcal{F}_b$ - ולכן $a,b\in\mathcal{F}_b$ - ולכן $a,b\in\mathcal{F}_b$ - מסנן). הוכחת התכונות האחרות דומה.

נסכם את ההוכחה:

השמה השמה ב-0 ב-3 קיימת השמה השמה הוכחת משפט 2.1.22. לפי תרגיל 2.1.23, עלינו להראות שלכל b>0 ב-b>0 קיימת השמה האחרונה, מסנן . $\omega(b)=1$ - ב- $\omega:\mathcal{B}\to\mathbf{2}$. לפי תרגיל בעל-מסנן בעל-מסנן . $\omega(b)=1$ אם ורק אם $\omega(a)=1$ ידי בעל-מסנן בעל-מסנן . $\omega(b)=1$ גדיר בעל-מסנן $\omega:\mathcal{B}\to\mathbf{2}$. על-ידי $\omega:\mathcal{B}\to\mathbf{2}$. אז בעל-מסנן ולפי תרגיל בעל-מסנן .

סוף

,2 הרצאה 7 בנוב מודל

המסקנה הבאה היא כמעט טריוויאלית בהקשר הזה, אך בהקשר של הפירוש לפסוקים שיבוא המסקנה הבאה היא כמעט טריוויאלית בהקשר הזה, אך בהמשך היא אחת התוצאות המרכזיות. נגיד שהשמה $\omega:\mathcal{B}\to 2$ היא מודל של תת-קבוצה $\omega(b)=1$ אם $\omega(b)=1$ אם שהיא מספקת את מספקת את מחוד לכל של היא מחוד לכל של היא מחוד לכל של היא מחוד לכל מח

מסקנה 2.1.39 (משפט הקומפקטיות לאלגברות בוליאניות). אם \mathcal{B}_0 קבוצת איברים של אלגברה בוליאנית B_0 , אז ל- B_0 יש מודל בוליאנית B_0 , כך שלכל תת-קבוצה סופית $F \subset B_0$ יש מודל

תרגיל 2.1.40. הוכיחו את המסקנה

השמה ל-מוע ניתן להרחיב להשמה של \mathcal{B}_0 . הוכיחו שכל השמה ל- \mathcal{B}_0 ניתן להרחיב להשמה ל- \mathcal{B}_0

 $a o b = \lnot(a) \lor b$ נסמן $a,b \in \mathcal{B}$ ולכל בוליאנית, אלגברה אלגברה תהי \mathcal{B} אלגברה בוליאנית, ולכל

- $\omega(a \to b) = \omega(a) \to \omega(b)$ אז השמה, אז $\omega: \mathcal{B} \to 2$ אם הוכיחו .1
- $\omega:\mathcal{B}\to 2$ נניח ש- \mathcal{B} קבוצה עם איבר נתון $0\in\mathcal{B}$ ופעולה ש קבוצה ש- \mathcal{B} . נגיד ש-2. .2 השמה אם $\omega(0)=0$ ומתקיים השוויון מהסעיף הקודם. נניח שמתקיים התנאי הבא: לכל $\omega(0)=0$, אם לכל השמה שיש מבנה יחיד מתקיים $\omega(a)=0$, אז של אלגברה בוליאנית על $\omega(a)=0$, עבורו $\omega(a)=0$ מתקבל כמו בתחילת השאלה.

2.2 פסוקים ואלגברות חפשיות

הדיון שלנו על "טענות" היה, עד כה, קצת ערטילאי: הטענות הן איברים של אלגברה בוליאנית, הדוגמאות היו בעיקר אלגברות של קבוצות, וקשה לראות בקבוצות אלה טענות. יותר מזה, אלגברה הדוגמאות היו בעיקר אלגברות שקילות: הטענות $\langle b \wedge a \rangle$ ו- $\langle a \wedge b \rangle$ שוות, על-פי הגדרה, בעוד בוליאנית מייצגת טענות עד-כדי שקילות: הטענה "קר ויורד גשם" כשונה מ-"יורד גשם וקר".

בסעיף זה ניקח את הגישה השניה: נתחיל מקבוצה P של "טענות בסיסיות", ונבנה מהן, ברמה התחבירית, טענות חדשות. על-מנת להפריד בין טענות ברמה הטכנית והטענות בדיון עצמו, נקרא לאיברי P והטענות שנבנות ממהם "פסוקים".

P אנחנו שמכילה שמכילה היא כזו: אנחנו בונים אלגברה בוליאנית שמכילה את ברמה ברמה הטכנית, המשמעות של היא מדונו, ומרגע שקבענו אותם, ערך האמת של יתר אנחנו יכולים לקבוע את ערכי האמת של P כרצוננו, ומרגע שקבענו אותם, ערך האמת של ידי האיברים נקבע. במלים אחרות, האלגברה נתונה על-ידי ההגדרה הבאה:

האלגברה הבוליאנית החפשית $\mathcal{B}(P)$

הגדרה 2.2.1. לכל קבוצה P, האלגברה הבוליאנית החפשית על P היא אלגברה בוליאנית (P), המכילה את בעלת התכונה הבאה: אם $\mathcal B$ אלגברה בוליאנית כלשהי, לכל העתקה של קבוצות P המכילה את P יש הרחבה יחידה להעתקה של אלגברות בוליאניות $\mathcal B$ יש הרחבה יחידה להעתקה של אלגברות בוליאניות

מכתיבה את הערך של האיברים הבסיסיים ב-P, ומשם יש רק דרך אחת לחשב את כלומר, מערך של כל איבר אחר. המטרה העיקרית שלנו בסעיף זה היא להוכיח:

 $\mathcal{B}(P)$ משפט 2.2.2. לכל קבוצה P קיימת אלגברה בוליאנית הפשית משפט

 $\mathcal{B}(P)$ -ב בירבים של השמות את לשנות מובן ניתן כמובן הסבר: ניתן בירשת קצת הסברים בהידות במשפט דורשת לאלגברה אחרת, אבל היא תהיה זהה מכל בחינה מעשית לאלגברה (בהנחה שהיא קיימת), ולקבל אלגברה אחרת, אבל היא תהיה זהה מכל בחינה מעשית המקורית. באופן יותר מדויק:

על חפשיות של אלגברות הפשיות ו-($P \to Q$ אלגברות הפשיות על פונקציה בין פונקציה ל $t_0: P \to Q$ אלגברות אלה קבוצות אלה

- $p\in P$ לכל $t(p)=t_0(p)$ -ש כך כך ל $t:\mathcal{B}(P)\to\mathcal{B}(Q)$ לכל יחיד הומומורפיזם שיש הוכיחו. 1
- בכיוון פונקציה הפוכה ביחרו (רמז: ביחרו של חד-תרכית או על אם ורק אם לכוו (רמז: ביחרו חד-תרכית או ביחרו פונקציה הפוכה פרט. אחד). בפרט, אם $P\subseteq Q$, אז ניתן לזהות את נעשה אחד). בפרט, אם או ניתן לזהות את ניתן לזהות את נעשה אחת)
- הוכיזם איזומורפיזם אותה קבוצה P, אז קיים איזומורפיזם של אלגברות שאם \mathcal{B}_1 שתי אלגברות פשיות ל-3 שהצמצום שלו ל-P שהצמצום שלו ל-P שהצמצום שלו ל-P

שימו לב שכל הטענות נובעות ישירות מההגדרה של אלגברה חפשית, ולא מהבנייה שלה.

הנתן "נזכיר בומה מאד לרעיון של "מרחב לינארי שנוצר על-ידי קבוצה "ביר מכיר שבהנתן הערה 2.2.4. המצב דומה מאד לרעיון של "מרחב וקטורי k מעל k שמכיל את k, וש-P בסיס שלו.

מהגדרת הבסיס נובע שכל העתקה של קבוצות $P \to V$, כאשר V מרחב וקטורי כלשהו מהגדרת הבסיס נובע שכל העתקה לינארית לינארית $T: k\langle P\rangle \to V$ מעל K, ניתנת להרחבה יחידה להעתקה לינארית שלה ל-P. נקבעת בצורה "חפשית" ויחידה על-ידי הצמצום שלה ל-R

על-מנת להוכיח את חלק הקיום במשפט, אנחנו נבנה את קבוצת הפסוקים מעל P. לשם כך, נזכיר שמחרוזת (מעל קבוצה A) היא סדרה סופית של איברים מA (אנחנו מזהים את איברי A עם סדרות באורך A).

F מעל P היא הקבוצה הקטנה ביותר P, קבוצת הפסוקים $\mathcal{F}(P)$ מעל P היא הקבוצה הקטנה ביותר P של מחרוזות מעל הקבוצה $P \cup \{\langle,\rangle,\to,0\}$ המקיימת:

- $0 \in F$.1
- $P \subseteq F$.2
- $\langle x \rightarrow y \rangle \in F$ אז $x, y \in F$ אם .3

P נקרא פסוק מעל $\mathcal{F}(P)$ נקרא כל איבר כל

פסוק

כמובן שבהגדרה הזו אנו מניחים ש-P לא כוללת את הסימנים הנוספים ... בשלב כמובן שבהגדרה מניחים ש-P לא משחק תפקיד מיוחד, ואנחנו נסמן P0 לא משחק תפקיד מיוחד, ואנחנו נסמן

 $\langle p \rightarrow q \rangle$, $\langle p \rightarrow 0 \rangle$, $\langle p \rightarrow 0 \rangle$, $\langle p \rightarrow q \rangle$, מעל $\langle p \rightarrow q \rangle$, המחרוזות הבאות הך אם $\langle p \rightarrow q \rangle$, אם $\langle p \rightarrow q \rangle$, המחרוזות הבאות הן פסוקים מעל $\langle p \rightarrow q \rangle$, אם $\langle p \rightarrow q \rangle$, המחרוזות הבאות הן פסוקים מעל $\langle p \rightarrow q \rangle$, אם $\langle p \rightarrow q \rangle$, המחרוזות הבאות הן פסוקים מעל $\langle p \rightarrow q \rangle$, אם $\langle p \rightarrow q \rangle$, המחרוזות הבאות הן פסוקים מעל $\langle p \rightarrow q \rangle$, אם $\langle p \rightarrow q \rangle$, המחרוזות הבאות הן פסוקים מעל $\langle p \rightarrow q \rangle$, אם $\langle p \rightarrow q \rangle$, המחרוזות הבאות הן פסוקים מעל $\langle p \rightarrow q \rangle$, אם $\langle p \rightarrow q \rangle$, המחרוזות הבאות הן פסוקים מעל $\langle p \rightarrow q \rangle$, אם $\langle p \rightarrow q \rangle$, המחרוזות הבאות הן פסוקים מעל $\langle p \rightarrow q \rangle$, אם $\langle p \rightarrow q \rangle$, המחרוזות הבאות הן פסוקים מעל $\langle p \rightarrow q \rangle$, אם $\langle p \rightarrow q \rangle$, המחרוזות הבאות הן פסוקים מעל $\langle p \rightarrow q \rangle$, אם $\langle p \rightarrow q \rangle$, המחרוזות הבאות הן פסוקים מעל $\langle p \rightarrow q \rangle$, אם $\langle p$

לקבוצת הפסוקים אין מבנה טבעי של אלגברה בוליאנית, אך מלבד זאת, היא מקיימת את הדרישה:

 $t_0: P_0 o A$ קבוצות של העתקה אל לכל העתקה איל. אינית עם פעולה דו-מקומית פעולה דו-מקומית $t: \mathcal{F}(P) o A$ משפט 2.2.7. נניח של $t: \mathcal{F}(P) o A$

$$t(\langle x \rightarrow y \rangle) = t(x) * t(y)$$
 (2.1)

 $x, y \in \mathcal{F}(P)$ לכל

ההוכחה תדגים את הדרך הרגילה להשתמש בהגדרה, שהיא סוג של אינדוקציה: מסתכלים על קבוצת הפסוקים שמקיימת את התכונה שאנחנו רוצים, ומראים שהיא מכילה את וסגורה תחת הגרירה. נקודה מעניינת היא שאנחנו מוכיחים קודם את היחידות, ואז משתמשים בה כדי להוכיח את הקיום.

הוכחה. נתחיל מהיחידות. נניח ש $t_1,t_2:\mathcal{F}(P)\to A$ - שתיהן מקיימות את התנאים. נסמן הוכחה. נתחיל מהיחידות. נניח ש $X=\{x\in\mathcal{F}(P)\mid t_1(x)=t_2(x)\}$ אז $X=\{x\in\mathcal{F}(P)\mid t_1(x)=t_2(x)\}$ ל-נמו-כך, אם X

$$t_1(\langle x \rightarrow y \rangle) = t_1(x) * t_1(y) = t_2(x) * t_2(y) = t_2(\langle x \rightarrow y \rangle)$$

 $\mathcal{F}(P)$ עם של של בהגדרה את מקיימת את מקיימת לכן, לכן, לכן, גם כן גוב גע $\langle x{\to}y\rangle\in X$ כלומר, כלומר כלומר ו $t_1=t_2$ ו-ב $X=\mathcal{F}(P)$

להוכחת הקיום, נזדקק לגרסא חזקה יותר של היחידות, שמופיעה בתרגיל 2.2.8. במונחים של תרגיל זה, נתבונן בקבוצה

$$E = \{t : X \to A \mid X \le \mathcal{F}(P), t \mid_{X \cap P_0} = t_0 \mid_{X \cap P_0}, t \mid_{X \cap P_0} t \}$$
הומומורפיזם חלקי

אנחנו טוענים שלכל (P) קיים $t\in E$ קיים $t\in E$ קיים $t\in E$ קיים את אכן, נסמן את קבוצת האיברים המקיימים תנאי זה ב-t. נשים לב ש-t0, ולכן t1, ולכן t2. נניח ש-t3, אז t4, גער זה ב-t4, נשים לב ש-t5, גער אפי מפונים של t5, גער אפי ווים, ולכן לפי תרגיל t6, גער שפונקציה אווים, ולכן לפי תרגיל t7, גער שפונקציה אווים, ולכן לפי תרגיל t8, גערי (גערי ב-t1, גערי אינה מוגדרת שם).

אנו טוענים ש-t הומומורפיזם חלקי. המקרה היחיד שצריך לבדוק הוא האיבר החדש בעריך לפי תרגיל לפי תרגיל לפי תרגיל אבל לפי תרגיל לפי החדש געריך להראות הוא געריך להראות הוא $t(x_1 \rightarrow x_2) = t(x_1 \rightarrow x_2) = t(x_1) + t(x_2)$

התחום על tיחידה פונקציה קיימת לכ, 2.2.9, ולכן תנאי מקיים את מקיים בי הראינו הראינו הראינו את מקיים מקיימת את תנאי בפרט, א עצמה ה-E קבוצה סגורה הוא לכל קבוצה סגורה הוא בפרט, t עצמה שלה לכל קבוצה סגורה הוא המעוה

בהוכחה השתמשנו בשלוש הטענות הבאות, שהראשונה שבהן גם מסבירה את המינוח.

 $x,y\in\mathcal{F}(P)$ אם לכל $X\leq\mathcal{F}(P)$ אסטרה, $X\leq\mathcal{F}(P)$ היא סגורה, $X\subseteq\mathcal{F}(P)$ אם לכל X במת שתת-קבוצה $X\leq\mathcal{F}(P)$ אז גם X במת שתר X באם X באם X באם לכל X אז גם X אז גם X באם X באם X באם לכל אם לכל X באם לכל אם לכל

- 1. הוכיחו שחיתוך כלשהו של קבוצות סגורות הוא קבוצה סגורה
- שאם הלקיים כך הומומורפיזמים הלקיים כך שה גורה, ו-1, $t_1,t_2:X\to A$ סגורה, אז גורה, אז גורה, אז $t_1=t_2$ אז גור $t_1=t_2$ אז גור $t_1=t_2$ אז גורה,

התרגיל הבא הוא תרגיל כללי על פונקציות בין קבוצות.

התרגיל האחרון נקרא גם משפט הקריאה היחידה, משום שהוא אומר שיש דרך יחידה "לקרוא" . איבר של $\mathcal{F}(P)$, כלומר, להבין איך הוא נבנה מהפסוקים הבסיסיים.

 $I:\mathcal{F}(P) imes\mathcal{F}(P) o\mathcal{F}(P)$ משפט הקריאה היחידה). הוכיחו שהפונקציה (משפט הקריאה היחידה) מ P_0 - היא זרה שלה ושהתמונה ושהתמונה וד-חד-ערכית, היא וודרת לה $I(x,y) = \langle x \rightarrow y \rangle$ המוגדרת על-ידי

 $\mathcal{F}(P)$ בהגדרת בהגדרת בהגדרת בהגדרת בהגדרת בהגדרת בהגדרת בהגדרת אל היינו שהטענה לא הייתה לא (כלומר, מוותרים על הסוגריים)

 $:\mathcal{F}(P)$ נגדיר את הפעולות הבאות על

$$\neg: \mathcal{F}(P) \to \mathcal{F}(P) \qquad \qquad \neg(x) = \langle x \to 0 \rangle \tag{2.2}$$

$$\neg: \mathcal{F}(P) \to \mathcal{F}(P) \qquad \qquad \neg(x) = \langle x \to 0 \rangle \qquad (2.2)$$

$$\wedge: \mathcal{F}(P) \times \mathcal{F}(P) \to \mathcal{F}(P) \qquad \qquad \wedge(x, y) = \neg(\langle x \to \neg(y) \rangle) \qquad (2.3)$$

הסיבה, הסיבה $\neg(\neg(p)) \neq p$, למשל, למשל, ברה לאלגברה לאלגברה הפעולות את הופכות את הופכות את לאלגברה הפעולות הללו כמו בדוגמא הזו, היא שיש פסוקים שהם שונים כמחרוזות, אך זהים מבחינת המשמעות הלוגית שלהם. במילים אחרות, ישנו יחס שקילות על קבוצת הפסוקים, בו שני פסוקים הם שקולים אם יש להם אותה משמעות לוגית. ישנן לפחות שתי דרכים לתאר את השקילות הזו, אנחנו נראה אחת מהו עכשיו. ואת השניה מאוחר יותר.

 $x,y \in \mathcal{B}$ עבור כל $x \to y = \neg(x) \lor y$ נסמן, \mathcal{B} לכל אלגברה בוליאנית

הגדרה P קבוצה.

- ו- השמה על $\omega(0)=0$ היא פונקציה ב $\omega:\mathcal{F}(P) o 2$ היא פונקציה $\mathcal{F}(P)$ היא השמה על 1. $.\omega(\langle x \rightarrow y \rangle) = \omega(x) \rightarrow \omega(y)$
- מתקיים שקולים לוגית $\omega:\mathcal{F}(P) o 2$ מתקיים שקולים לוגית אם לכל השמה $x,y\in\mathcal{F}(P)$ מתקיים מולים לוגית .2 $.x \equiv y$:סימון: $\omega(x) = \omega(y)$
 - $\omega(x)=1$ המקיימת $\omega:\mathcal{F}(P) o\mathbf{2}$ הוא השמה $\Gamma\subseteq\mathcal{F}(P)$ המקיימת פסוקים. Γ את מספקת ש-ש. גע נאמר את גע את את את את אכל מספקת

טענה P מענה. 2.2.12. תהי

- $\mathcal{F}(P)$ שקילות לוגית היא יחס שקילות על 1.
- \wedge י משרות. $\wedge(x,y) \equiv \wedge(x',y')$ י ו $\neg(x) \equiv \neg(x')$ אז $y \equiv y'$ י לכן, $\neg(x) \equiv x'$ משרות. פעולות מוגדרות היטב על המנה $\mathcal{F}(P)/\equiv$ ממסומנות באותו סימון).
- מסמל $\mathcal{B}=\langle B,\wedge,\neg,0\rangle$ המבנה $\mathcal{B}=\langle B,\wedge,\neg,0\rangle$ הוא אלגברה בוליאנית עם הפעולות המושרות (כאשר את המחלקה של $\mathcal{F}(P)$, ויתר המבנה נקבע)
 - \mathcal{B} אינם שקולים, ולכן P_0 משוכנת ב- P_0

תרגיל 2.2.13. הוכיחו את הטענה

הוכחת משפט 2.2.12. נוכיח שהאלגברה $\mathcal B$ המופיעה בטענה 2.2.12 היא חפשית על P. נניח ש- הוכחת משפט 2.2.2. נוכיח שהאלגברה להרחבה אל אלגברה בוליאנית $\mathcal B$. עלינו להוכיח שהיא ניתנת להרחבה $\pi:\mathcal F(P)\to\mathcal B=\mathcal F(P)/\equiv$ את $\pi:\mathcal F(P)\to\mathcal B=\mathcal F(P)/\equiv$ של אלגברות בוליאניות. נסמן ב- π של אלגברות בוליאניות. נסמן ב- העתקת המנה.

 $. ilde{t}_i=t_i\circ\pi:\mathcal{F}(P) o\mathcal{B}'$ נסמן $.t_0$ את שתיהן מרחיבות $t_1,t_2:\mathcal{B} o\mathcal{B}'$ שתיה: נניח יחידות: נניח של שתיהן של שתיהן מרחיבות של שתיהן מקיימות על $. ilde{t}_i(\langle x o y\rangle)$ ועל $. ilde{t}_i$ ועל $. ilde{t}_i$ ושל שתיהן מקיימות של $. ilde{t}_i$ נובע מזה ש- $. ilde{t}_i$ לכל $. ilde{t}_i$ משפט $. ilde{t}_i$ בגלל ש $. ilde{t}_i$ לכל $. ildе{t}_i$ לכל $. ildе{t}_i$

ilde t(0)=0- ש קיום: לפי משפט 2.2.7, יש העתקה $\mathcal E:\mathcal F(P)\to\mathcal B'$ שמרחיבה את 2.2.7, כך ש-2.7, פיום: לפי לפי ilde t(x)= ilde t(x') אז $x\equiv x'$ אז ilde t(x)= ilde t(x). אז $ilde t(x)= ilde t(x)\to ilde t(x)$ משפט 2.1.22 יש השמה על $\omega:\mathcal B'\to \mathcal B'$ בסתירה לכך ש-2.1 $\omega:\mathcal B'\to \mathcal B'$ שנותנת ערכים שונים ל- $\omega:\mathcal B'$ בסתירה לכך ש- $\omega:\mathcal B'$

t-ש מבטיחה t מבטיחה של מבטיחה מוגדרת היטב על משרה משרה משרה משרה לפי הטענה הארונה, או משרה פונקציה מוגדרת t(0)=0-ש מרחיבה את מרחיבה את t(0)=0-ש מרחיבה את של אלגברות בוליאניות באמצעות t(0)=0-ש הבוליאנית ניתנות לאפיון באמצעות t(0)=0-שונה משרה הבוליאנית בוליאניות.

אפשר לסכם את הנקודה שאנחנו עומדים בה: בהנתן קבוצה P של "טענות בסיסיות", בנינו את הקבוצה $\mathcal{F}(P)$ של הטענות שניתן להרכיב מהן, ואת הקבוצה של "טענות עד כדי שקילות הקבוצה $\mathcal{F}(P)$ של הטענות שניתן להרכיב מהן, ולכן אנחנו יודעים עליה משהו). לקבוצה לוגית". לקבוצה $\mathcal{F}(P)$ יש מבנה של אלגברה בוליאנית (ולכן אנחנו יודעים עליה משהו). בצורה שלה בצורה אלגברי פשוט, אבל יש לה את היתרון שאפשר לרשום את האיברים שלה בצורה מפורשת, ולהוכיח עליהם טענות באינדוקציה (על בניית הפסוק). במילים אחרות $\mathcal{F}(P)$ את הצד הסמנטי.

סוף הרצאה 3, 11 בנוב

תרגיל 2.2.14 שורפית ש(P) איזומורפית לאלגברת חזקה אם ורק אם P סופית הרגיל 2.2.14 קבוצה, ו-P קבוצה, ויP קבוצה של תתי-קבוצות של P קבוצה של הרגיל 2.2.15. נניח שP קבוצה, ויP כתת-אלגברה של P (תרגיל 2.2.3).

- $\mathcal{B}(P_1)\cap\mathcal{B}(P_2)=\mathcal{B}(P_1\cap P_2)$ אז $P_1,P_2\in\mathcal{C}$ אם הוכיחו שאם .1
- אז $P_1,P_2\subseteq P_3$ כך שר $P_3\in\mathcal{C}$ יש $P_1,P_2\in\mathcal{C}$ ולכל $\mathcal{D}=P$ שאם $\mathcal{D}=P_3$ כ. בפרט, לכל $\mathcal{B}(P)=\bigcup_{P_0\subseteq P,|P_0|<\infty}\mathcal{B}(P_0)$ ישרט, לכל $\mathcal{B}(P)=\bigcup_{P_0\subseteq P,|P_0|<\infty}\mathcal{B}(P_0)$

2.3 שימושים של משפט הקומפקטיות

נזכיר שבמסקנה 2.1.39 הוכחנו את משפט הקומפקטיות לאלגברות בוליאניות. בשביל השימושים יהיה נזכיר שבמסקנה את התוצאה במונחים של קבוצת הפסוקים $\mathcal{F}(P)$.

מסקנה 2.3.1 (משפט הקומפקטיות לתחשיב הפסוקים). אם $F\subseteq \mathcal{F}(P)$ קבוצה של פסוקים, כך מסקנה 2.3.1 מסקנה הקומפקטיות לתחשיב הקומפקטיות לתחשיב היש מודל, אז ל-Fיש מודל

תרגיל 2.3.2. הסיקו את מסקנה 2.3.1 מתוך מסקנה 2.1.39

נראה עכשיו כמה שימושים של המסקנה האחרונה לבעיות מתחומים שונים. האסטרטגיה בכל השימושים דומה: אנחנו מתעניינים במחלקה מסוימת של אובייקטים. אנחנו מניחים את קיומם במקרה הסופי, ורוצים להראות שהם קיימים במקרה הכללי. מייצרים קבוצת פסוקים שמודל שלה מתאר (ומתואר על-ידי) אובייקטים מהסוג המעניין. אז בעיית הקיום של האובייקט הופכת לבעיית קיום מודל עבור אותה קבוצה. לפי משפט הקומפקטיות, הוכחת הקיום הזו נתונה על-ידי קיום במקרה הסופי, שאנחנו מניחים (או מוכיחים בנפרד).

טענה 2.3.3. כל סדר חלקי \times על קבוצה X ניתן להרחבה לסדר מלא

הוכחה. נוכיח ראשית למקרה ש-X סופית, באינדוקציה על גודלה. הטענה ברורה אם X ריקה. $Y=X\setminus\{x\}$ איבר מירבי ב-X. אז באינדוקציה X ניתן להרחבה לסדר מלא על X איבר מירבים סדר זה ל-X על ידי הכלל X לכל Y לכל Y מתקבל סדר מלא על וקל לראות שאם מרחיבים סדר זה ל-X על ידי הכלל X המרחיב את הסדר המקורי.

תהי עתה X קבוצה סדורה חלקית כלשהי, ונתבונן בקבוצת סדורה סדורה לבסיסיים עתהי

$$P_X = \{ p_{a,b} \mid a, b \in X \}$$

ובקבוצת הפסוקים Γ_X מעליה המורכבת מכל הפסוקים הבאים:

- $a \prec b$ לכל $p_{a,b}$ הפסוקים .1
 - $a \in X$ לכל $\neg p_{a,a}$.2
- $a,b,c \in X$ לכל $\langle p_{a,b} \wedge p_{b,c} \rangle \rightarrow p_{a,c}$.3
 - $a \neq b \in X$ לכל $\langle p_{a,b} \lor p_{b,a} \rangle$.4

נשים לב שהמידע של השמה המספקת את המספקת אק שקול למידע של סדר מלא על X המרחיב השים לב שהמידע של השמה השמה המספקת את את אם ורק אם ורק אם $a\prec b$ ידי: את את את לבן, על ידי שהיא ספיקה סופית.

תהי $\Gamma_0\subseteq\Gamma_X$ קבוצה סופית. אז היא מערבת מספר סופי של פסוקים בסיסיים, ולכן גם תת- תהי $\Gamma_0\subseteq\Gamma_X$ קבוצה סופית של איברי X. כלומר, כלומר, $\Gamma_0\subseteq\Gamma_{X_0}$ ומספיק שנוכיח שיש השמה המספקת את אד לפי האמור לעיל, השמה כזו נתונה על-ידי סדר מלא על X_0 המרחיב את על על סדר כזה קיים לפי המקרה הסופי

צביעת גרפים 2.3.4

הדוגמא הבאה קשורה לתורת הגרפים. xרף הוא יחס דו-מקומי, סימטרי ואי-רפלקסיבי E על xרוגמא הבאה קשורה לנלומר, E(a,a) גורר E(b,a) לכל E(b,a), ולכל Cרומר, Cרומר, Cרומר, Cרומר, Cרומר, בוצה הקודקוים, וואס בוצת הקודעות. אם Cרובוצה עוקר הקשתות. אם Cרואת קבוצת הקודעות הקודעות בוצת הקודעות הקשתות. אם Cרואת קבוצת הקודעות הקשתות.

הבוצת הקשתות

 $c(a) \neq c(b)$ אז E(a,b) כך שאם כך מגריף אם קודקודי הגרף) $c:V \to S$ אז עביע אם קיימת העתקה a מספר טבעי, אנו מזהים אותו עם הקבוצה $\{1\dots k-1\}$, ולכן המושג צביע מוגדר היטב. אם a מספר טבעי, אנו מזהים אותו עם הקבוצה ([8,1]) קובע שכל גרף מישורי סופי הוא a-צביע (גרף מישורי הוא $a,b) \in E$ למשל, משפט ארבעת הצבעים ([8,1]) קובע שכל גרף מישורי טופי הוא $a,b) \in E$ לכל $a,b) \in E$ לכל לכל $a,b) \in E$ אז $a,b \in E$ אז $a,b \in E$ ואם $a,b \in E$ ואם $a,b \in E$ אז $a,b \in E$ ואם $a,b \in E$ זרות). רות משט של הגרף $a,b \in E$ הוא הגרף ($a,b \in E$), כאשר $a,b \in E$ תת-גרף מלא (ממש) של הגרף ($a,b \in E$) הוא הגרף ($a,b \in E$), כאשר $a,b \in E$ תחשב ממש) של $a,b \in E$

תרגיל 2.3.5. לכל k טבעי, מצאו דוגמא לגרף שאינו k-צביע, אבל כל תת-גרף מלא ממש שלו הוא k-צביע

מענה 2.3.6. יהי G=(V,E) אם כל תת-גרף, א מספר טבעי. אז G הוא G=(V,E) יהי מענה ביע אם ורק אם כל תת-גרף מלא סופי שלו הוא G=(V,E)

 Γ_G ביוון אחד ברור. בכיוון השני, נתבונן בקבוצת כיוון אחד ברור. בכיוון

$$a \in V$$
 לכל $p_{1,a} \lor \cdots \lor p_{k,a}$.1

$$1 \le i, j \le k$$
-ו $a \in V$ עבור $\neg \langle p_{i,a} \land p_{j,a} \rangle$.2

$$.1 \le i \le k$$
-ו $(a,b) \in E$ לכל $\neg \langle p_{i,a} \land p_{i,b} \rangle$.3

אםם c(a)=i-1 אדי צבעים על ב-k ביעה חוקית לצביעה שקולה לצביעה שקולה המספקת המספקת אז השמה המספקת להראות ש Γ_G שקולה לכן מספיק להראות ש Γ_G ספיקה. ההמשך לכן מספיק להראות לעני ($\omega(p_{i,a})=1$

תרגיל 2.3.7. הראו שאם מחליפים את בקבוצה אינסופית בטענה האחרונה, הטענה אינה נכונה

משפט החתונה 2.3.8

נניח שנתונות קבוצות F ו-M של נשים וגברים, בהתאמה, ולכל אישה קבוצה סופית של גברים נניח שנתונות קבוצות F ו-M של נשים וגברים, בהיא מעוניינת בו (כך שלכל גבר מותאמת שהיא מעוניינת בהם. האם ניתן לשדך לכל אישה גבר שהיא מעוניינת בו (כך שלכל גבר מותאמת רק אישה אחת)? במלים אחרות, בהנתן יחס $R\subseteq F\times M$ כך שלכל $P\subseteq F$ הקבוצה פונקציה (שידוך) חח"ע $P:F\to M$ כך שר (נזכיר שלכל $P:F\to M$). התמונה של P:F על P:F היא הקבוצה פופית P:F של נשים מתקיים תנאי הכרחי הוא שלכל קבוצה סופית P:F של נשים מתקיים

$$|F_0| \le |R[F_0]| \tag{2.4}$$

משפט החתונה (משפט Hall) אומר שזה גם תנאי מספיק.

תרגיל 2.3.9. הוכיחו שאם התנאי (2.4) מתקיים לכל $F_0\subseteq F$ סופית, אז קיים פתרון לבעיה הנתונה על ידי R (הוכיחו ראשית את המקרה הסופי, ואז השתמשו במשפט הקומפקטיות למקרה הכללי.)

2.3.10 הלמה של קניג

מסלול בגרף x_1,\ldots,x_n מקדקוד a לקדקוד b הוא סדרה סופית של קדקודים a מקדקוד a מסלול בגרף מסלול בגרף a מקדקוד a לקדקוד a מקדקודים a מקדקודים a אונים בזוגות, כך ש-a מקדקודים a ולכל a ולכל a a ביותר ביניהם (אם קיים). a מענים שננים a מסלול הקצר ביותר ביניהם (אם קיים). a מסלול יחיד. a מסלול יחיד.

טענה 2.3.11 (הלמה של קניג). אם G הוא עץ אינסופי בו לכל קודקוד מספר סופי של שכנים, טענה ב-G מסלול אינסופי (כלומר סדרה x_i של קדקודים שונים בזוגות, לכל i טבעי, כך ש- $E(x_i,x_{i+1})$.

הוכחה. שוב, הרעיון הוא לבנות קבוצת פסוקים, שמודל שלהם נותן פתרון, כלומר מסלול אינסופי. נקבע קודקוד a_0 , ונסמן ב- S_k את קבוצת האיברים במרחק k מ- a_0 . באינדוקציה, כל סופית. נתבונן בקבוצת הפסוקים הבאה:

- k לכל $\bigvee_{a \in S_k} p_a$.1
- k לכל , $a \neq b \in S_k$ לכל $\neg \langle p_a \land p_b \rangle$.2
- a-ל a_0 ה היחיד המסלול על נמצא b אם $p_a \to p_b$.3

 a_0 -ב אותו קבוצה אוכיל אינסופי מידע כמו מסלול אינסופי המתחיל ב-מו

חרגיל 2.3.12. השלימו את ההוכחה

תרגיל 2.3.13. נניח ש- $P=\{p_1,\dots\}$ בת-מניה. השתמשו בלמה של קניג כדי להוכיח את משפט הקומפקטיות במקרה זה (רמז: הגדירו גרף בו הקודקודים הם השמות חלקיות)

סוף הרצאה 4, 14 בנוב'

מקורות

- [1] Kenneth Appel and Woflgang Haken. "The solution of the four-color-map problem." In: *Sci. Amer.* 237.4 ,(1977) pp. –108,121 .152 ISSN: .0036-8733
- [2] Herbert B. Enderton. *A mathematical introduction to logic.* 2nd ed. Harcourt/Academic Press, Burlington, MA, ,2001 pp. xii+317. ISBN: -0-12 .238452-0
- [3] Euclid. The Elements. Online version with Java illuserrations by David E. Joyce. URL: http://aleph0.clarku.edu/~djoyce/java/elements/elements.html.

- [4] Martin Hils and François Loeser. *A first journey through logic*. Student Mathematical Library .89 American Mathematical Society, Providence, RI, ,2019 pp. xi+185. ISBN: .978-1-4704-5272-8 DOI: 10.1090/stml/089.
- [5] Douglas R. Hofstadter. *Gödel, Escher, Bach: An Eternal Golden Braid.* New York, NY, USA: Basic Books, Inc., .1979 ISBN: .0465026850
- [6] Elliott Mendelson. *Introduction to mathematical logic.* 4th ed. Chapman & Hall, London, ,1997 pp. x+440. ISBN: .0-412-80830-7
- [7] Woflgang Rautenberg. *A concise introduction to mathematical logic.* 2nd ed. Universitext. With a foreword by Lev Beklemishev. Springer, New York, ,2006 pp. xviii+256. ISBN: .978-0387-30294-2
- [8] The Four color theorem. URL: https://en.wikipedia.org/wiki/Four_color_theorem.