

01 Introduction

Iteration vs recursion, Factorial, general rule

02 Time complexity

Factorial, power function, recurrent relation

03 Avoiding recursion

Tail recursion, iteration, stack, memorizing intermediate result

04 Examples

Tower of Hanoi, binary search, indirect recursion

Introduction of Recursion

Definition of Recursion

THE THE PROPERTY OF THE PERSON OF THE PARTY OF THE PARTY

- Recursion is a problem-solving process that breaks a problem into identical but smaller problems.
- Solves problem using itself
 - based on the general problem solving technique of breaking down a task into subtasks
 - Mathematical induction
- The proof consists of two steps:
 - The base case: prove that the statement holds for the first natural number n. Usually, n = 0 or n = 1, rarely, n = -1
 - The inductive step: prove that, if the statement holds for some natural number n, then the statement holds for n + 1.

Example: Factorial function

```
• n! = 1 \times 2 \times 3 \times \cdots \times n
```

• $n! = \begin{cases} 1, & \text{if } n = 0, 1 \\ n(n-1)! & \text{if } n > 1 \end{cases}$

Inductive step

Base case

Implementation
 public long factorial(int n){

if(n(0) {

System.err.println("Number should be positive");

System.exit(-1);

if(n(=1) return 1;

else return n * factorial(n-1);

n	n!
0	1
1	1
2	2
3	6
4	24
5	120
6	720
7	5040
8	40320
9	362880

Tracing a Recursive Method

```
public long factorial(int n){
    if(n<0) {
        System.err.println("Number should be positive");
        System.exit(-1);
    if(n<=1) return 1;</pre>
    else return n * factorial(n-1);
public long factorial(int n){
   if(n<0) {
        System.err.println("Number should be positive");
        System.exit(-1);
    if(n<=1) return 1;</pre>
    else return n * factorial(n-1);
public long factorial(int n){
   if(n<0) {
       System.err.println("Number should be positive");
       System.exit(-1);
   if(n<=1) return 1;</pre>
   else return n * factorial(n-1);
 public static void main(String[] args) {
     Factorial f = new Factorial();
      System.out.println(f.factorial(3));
```

Execution of factorial(3)

factorial(1):
n: 1
return point in main
factorial(2):
n: 2
return point in main

Stack of activation records

return point in main

factorial(3):

main

Stack overflow

```
RecursionStack.java 🖂
     package tsp;
     public class RecursionStack {
         public static void main(String[] args) {
             System.out.println(factorial(3));
  80
         public static int factorial(int n) {
             return n*factorial(n-1);
 10
 11
 12
 13
😑 Console 🖂
<terminated> RecursionStack [Java Application] C:\Program Files\Java\ddot dk1.8.0_14
Exception in thread "main" java.lang.StackOverflowError
        at tsp.RecursionStack.factorial(RecursionStack.java:9)
        at tsp.RecursionStack.factorial(RecursionStack.java:9)
        at tsp.RecursionStack.factorial(RecursionStack.java:9)
        at tsp.RecursionStack.factorial(RecursionStack.java:9)
        at tsp.RecursionStack.factorial(RecursionStack.java:9)
        at tsp.RecursionStack.factorial(RecursionStack.java:9)
        at tsp.RecursionStack.factorial(RecursionStack.java:9)
       at tsp.RecursionStack.factorial(RecursionStack.java:9)
```


Time complexity of Recursion

Time efficiency of factorial

Revised code

Recurrence relation of time function of factorial method.

$$t(n) = \begin{cases} 1, & \text{if } n = 1 \\ 1 + t(n-1) & \text{if } n > 1 \end{cases}$$

where t(n) is the time requirement of factorial(n)

Recurrence relation

Recurrence relation

$$t(n) = \begin{cases} 1, & \text{if } n = 1 \\ 1 + t(n-1) & \text{if } n > 1 \end{cases}$$

• If n=4

$$t(4) = 1 + t(3)$$

 $t(3) = 1 + t(2)$
 $t(2) = 1 + t(1)$
 $t(2) = 1 + 2 = 3$
 $t(3) = 1 + 2 = 3$
 $t(3) = 1 + 2 = 3$

Closed form

$$t(n) = 1 + t(n-1)$$
 for $n > 1 \rightarrow t(n) = 1 + n - 1 = n$ proof by induction:

if n=1: t(1) = 1 is the same to the result of the recurrence relation assume that if n=k, the close form is the correct, that is, t(n)=k, if n=k+1, t(n)=1+t(n-1)=1+k=n.

This means the this closed form satisfies the recurrence relation.

Time complexity of a factorial function is O(n)

Time efficiency of computing xⁿ

• Recursive definition of x^n

$$x^{n} = \begin{cases} (x^{\frac{n}{2}})^{2} & n \text{ is even and positive} \\ \frac{n-1}{x(x^{\frac{n}{2}})^{2}} & n \text{ is odd and positive} \\ x^{0} & n = 0 \end{cases}$$

• Recurrence relation of t(n) of x^n

$$t(n) \text{ of } x^n$$

$$t(n) = \begin{cases} t(n) = 1 + t(\frac{n}{2}) & n \ge 2 \\ 1 & n = 1 \\ 1 & n = 0 \end{cases}$$

- t(0)=0, t(1)=1, t(2)=2, t(4)=3, t(8)=4, t(16)=5
- Closed form

$$t(n) = 1 + \lfloor \log_2 n \rfloor$$

Time complexity: O(log n)

Avoiding Recursion

Fibonacci function

•
$$F_n = \begin{cases} 1, & n = 0 \\ 1, & n = 1 \\ F_{n-1} + F_{n-2}. & \text{otherwise} \end{cases}$$

n	Number of pairs after the end of the month
0	
1	
2	
3	
4	* * * *

How many does it call f() for 6

```
1 public class Fibonacci {
       public static void main(String[] args) {
            Fibonacci f = new Fibonacci();
            System.out.println("Recursive Fibonacci(6) is "+ f.recursive(6));
       public long recursive(int n) {
 6⊜
            if(n<0) {
                System.err.println("Number should be positive");
                System.exit(-1);
10
            if(n<2) return (long)1;</pre>
11
            return recursive(n-1)+recursive(n-2);
12
13
14 }
Problems @ Javadoc ☐ Declaration ☐ Console ☐
```


Time efficiency of Fibonacci function

Fibonacci number

$$F_{n} = \begin{cases} 1, & n = 0 \\ 1, & n = 1 \\ F_{n-1} + F_{n-2}. & \text{otherwise} \end{cases}$$

Recurrence relation of time requirement for calculating Fibonacci number

$$t(n) = \begin{cases} 1, & n = 0 \\ 1, & n = 1 \\ 1 + t(n-1) + t(n-2), & n \ge 2 \end{cases}$$

Proof of the time complexity of Fibonacci function

Growth function

$$t(n) = 1 + F_{n-1} + F_{n-2} = 1 + F_n > F_n$$

 $\therefore \Omega(F_n)$

Fibonacci number

$$F_n = \frac{(\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n}{\sqrt{5}} > \frac{(\frac{1+\sqrt{5}}{2})^n - 1}{\sqrt{5}}$$

Because,
$$\left| \frac{1 - \sqrt{5}}{2} \right| < 1$$

Therefore, $\Omega(F_n) = \Omega((\frac{1+\sqrt{5}}{2})^n) = \Omega(a^n)$, exponential algorithm

Solution1: tail recursion

- · Tail recursion: The last action performed by a recursive method is a recursive call.
- Tail recursion of a Fibonacci number

```
if(n<2) return (long)1;
return recursive(n-1)+recursive(n-2);</pre>
```

```
long prePreFibo = recursive(n-1);
long preFibo = recursive(n-2);
long currentFibo = preFibo+prePreFibo;
return currentFibo;
```

```
currentFibo = preFibo+prePreFibo;
prePreFibo = preFibo;
preFibo = currentFibo;
return tailRecursion(n-1, preFibo, prePreFibo);
```

```
public long tailRecursion(int n, long preFibo, long prePreFibo) {
    long currentFibo;
    if (n < 2) return n*preFibo;
    return tailRecursion(n-1, preFibo+prePreFibo, preFibo);
}</pre>
```

```
t(n) = \begin{cases} 1 & n = 1 \\ 1 + t(n-1) & n > 1 \end{cases}
```

Solution2: iteration

- 1. Study the function.
- 2. Convert all recursive calls into tail calls. (If you can't, stop. Try another method.)
- 3. Introduce a one-shot loop around the function body.
- 4. Convert tail calls into continue statements.
- 5. Tidy up.

Ref: http://blog.moertel.com/posts/2013-05-11-recursive-to-iterative.htm

Tail recursion

```
public long tailRecursion(int n, long preFibo, long prePreFibo) {
    long currentFibo;
    if (n < 2) return n*preFibo;
    currentFibo = preFibo+prePreFibo;
    prePreFibo = preFibo;
    preFibo = currentFibo;
    return tailRecursion(n-1, preFibo, prePreFibo);
}</pre>
```

iteration

```
public long iteration(int n) {
    long currentFibo=1;
    long preFibo=1,prePreFibo=1;
    for(int i=n; i > 1; i--) {
        currentFibo = preFibo+prePreFibo;
        prePreFibo = preFibo;
        preFibo = currentFibo;
    }
    return currentFibo;
}
```

Solution 3: using a stack

```
public long usingStack(int n) {
    ArrayDeque<Record> programStack = new ArrayDeque<>(100);
    programStack.push(new Record(n, 1, 1));
    long currentFibo = n;
    while(!programStack.isEmpty()) {
        Record topRecord = programStack.pop();
        currentFibo = topRecord.n;
        long preFibo = topRecord.pre;
        long prePreFibo = topRecord.prePre;
        if(currentFibo < 3)</pre>
            currentFibo =preFibo+prePreFibo;
        else
            programStack.push(new Record(currentFibo-1, preFibo+prePreFibo, preFibo));
    return currentFibo;
private class Record{
    private long n;
    private long pre, prePre;
    public Record(long n, long pre, long prePre) {
        this.n = n;
        this.pre = pre;
        this.prePre = prePre;
```

Solution 4: memorize the result

```
private long[] fibonacci;
private int num=2;
private static final int MAX=1010;
public Fibonacci() {
    fibonacci = new long[MAX];
    fibonacci[0]=fibonacci[1]=1;
public long memorize(int n) {
    if(n<num) return fibonacci[n];</pre>
    else if(n==num) {
        fibonacci[n]=fibonacci[n-1]+fibonacci[n-2];
        num++;
        return fibonacci[n];
    else return memorize(n-1)+memorize(n-2);
```

Comparison of time complexity

Other Examples

Tower of Hanoi

- Consists of
 - A board
 - Three vertical pegs
 - A progression of disks of increasing diameter
- Rule
 - Only one disk can be moved at a time.
 - No disk may be placed on top of a smaller disk.
 - Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack.
- Visualization

http://towersofhanoi.info/Animate.aspx

Example of tower of Hanoi

 Base case: one disk Just move from the source peg to the target peg

Example of tower of Hanoi

Solution of tower of Hanoi

- Base case: If the number of disks(n) is 1
 - Just move from the source to the target
- Induction step: n>1
 - Move n-1 disks from the source to another peg
 - Move the largest disk from the source to the target
 - Move n-1 disks from another peg to the target

Implementation

```
1 public class Hanoi {
       public static void main(String[] args) {
            Hanoi tower = new Hanoi();
            tower.hanoi(3, "A", "C", "B");
       /** solve the tower of Hanoi puzzle
         * @param num the number of disks
         * @param source The source peg. You should move all disks from the source peg to target peg
10
         * @param target The target peg. You should move all disks from the source peg to target peg
11
         * @param spare The spare peg. You can use this peg for storing an unnecessary disks
12
13∘
       public void hanoi(int num, String source, String target, String spare) {
14
           // base case
15
            if(num == 1)
16
                System.out.println("Move one disk from " + source + " to "+ target);
17
            else {
18
                hanoi(num-1, source, spare, target);
19
                System.out.println("Move one disk from " + source + " to "+ target);
20
                hanoi(num-1, spare, target, source);
21
22
23 }
                                                                                                     m × % | B.
🖺 Problems @ Javadoc 🚇 Declaration 📮 Console 🖾
<terminated> Hanoi [Java Application] C:₩Program Files₩Java₩jdk-14.0.2₩bin₩javaw.exe(2020. 10. 11. 오후 11:37:06 – 오후 11:37:06)
Move one disk from A to C
Move one disk from A to B
Move one disk from C to B
Move one disk from A to C
Move one disk from B to A
Move one disk from B to C
Move one disk from A to C
```

• n = 1 1 move • n = 2• 3 moves • n = 3• 7 moves move(n) =move(n-1)+1+move(n-1) = 2 move(n-1)+1 $= 2^{n} - 1$

Efficiency of the algorithm

• Proof by induction that $m(n)=2^n-1$

$$m(k + 1) = 2 \times m(k) + 1$$

= 2 \times (2^k - 1) + 1
= 2^{k+1} - 1

where m(k) is the number of moves for k disks

• This cannot be solved less than the exponential time.

Proof

Assume that there is less moves for n disks, we denote the move as M(n).

If
$$n = 1$$
, $M(1) = m(1)$.

Let's assume that M(n-1)=m(n-1). The largest disk is isolated on one peg and n-1 disks are on another. The only way to move the largest disk is just to move the source to the target.

$$M(n) \ge 2 M(n - 1) + 1 \ge 2 m(n - 1) + 1 = m(n)$$

Example: binary search

• Binary search uses a recursive method to search an array to find a specified value. The array must be a sorted array:

```
a[0] \le a[1] \le a[2] \le ... \le a[finalIndex]
```

- If the value is found, its index is returned.
- If the value is not found, -1 is returned.

https://www.cs.usfca.edu/~galles/visualization/Search.html

Solution

- Given an array A of n elements with values or records A_0 , A_1 , ..., A_{n-1} , sorted such that $A_0 \le A_1 \le ... \le A_{n-1}$, and target value X,
 - 1. Init: L=0, R=n-1
 - 2. if L $\$ R, return -1,
 - 3. M = (L+R)/2
 - 4. L=m+1 and call itself, if $A_m \langle X \rangle$
 - 5. R=m-1 and call itself, if $A_m \rangle X$
 - 6. if $A_m = T$, Return m,

Example: X=13

Implementation and time complexity

```
1 public class MyList {
2° public static void main(String[] args) {
3    int[] a = {1, 3, 5, 6, 7, 9, 11, 13, 17, 21};
4    System.out.println(binarySearch(13, a, 0, a.length-1));
5  }
6° public static int binarySearch(int x, int[] a, int l, int r) {
7    if(l>r) return -1;
8    int m=(l+r)/2;
9    if(a[m]<x) return binarySearch(x, a, m+1, r);
10    else if(a[m]>x) return binarySearch(x, a, l, m-1);
11    else return m;
12  }
13 }

**Problems **Javadoc **Declaration **Decnsole **Street**
**Cerminated> MyList [Java Application] C:\(\psi \)Program Files\(\psi \)Java\(\psi \)Hoin\(\psi \)javaw.exe (2020. 10. 12. \(\psi \)D 3:17:41 - \(\psi \)D 3:17
7
```

$$t(n) < \begin{cases} 1 & n = 0 \\ 1 + \left\lfloor t(\frac{n}{2}) \right\rfloor & n > 0 \end{cases}$$
$$\therefore O(\log n)$$

proof: https://www.geeksforgeeks.org/complexity-analysis-of-binary-search/

If the method cannot find the data, it is the worst case.

Example: Trigonometric function

- Indirect recursion
- when Method A calls a different method, this in turn calls the original calling Method A.
- Relation between trigonometric function
 - Sin(x)= $\begin{cases} x, \text{ for small } x \\ \sin(x/2)\cos(x/2) \end{cases}$ • Cos(x)= $\begin{cases} 1, \text{ for small } x \\ \cos(x/2)^2\sin(x/2)^2 \end{cases}$


```
* Calculating the sine function
 * @param x : degree
 * # @param num : the number of recursion
 * @return sin(x)
public double sin(double x, int num) {
    if(num==0) return x;
    else return 2*\sin(x/2, \text{num-1})*\cos(x/2, \text{num-1});
 * Calculating the cosine function
 * @param x : degree
 * # @param num : the number of recursion
 * @return cos(x)
public double cos(double x, int num) {
    if(num==0) return 1;
    else {
        double cos = cos(x/2, num-1);
        double sin = sin(x/2, num-1);
        return cos*cos-sin*sin;
```

