# Mo

# 福建省部分达标学校 2023~2024 学年第一学期期中质量监测

# 高三化学试卷

本试卷满分100分,考试用时75分钟。

#### 注意事项:

- 1. 答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
  - 3. 考试结束后,将本试卷和答题卡一并交回。
- 4. 可能用到的相对原子质量: H 1 C 12 N 14 O 16 Na 23 S 32 Cl 35. 5 Pb 207

### 第Ⅰ卷 选择题 (共40分)

本题包括 10 小题,每小题 4分,共 40分。每小题只有一个选项符合题意。

- 1. 化学与生活、生产密切相关,下列说法正确的是
  - A. 月饼因富含油脂而易被氧化,保存时常放入装有硅胶的透气袋中
  - B. 纤维素、油脂均属于天然有机高分子化合物
  - C. 通过核磁共振氢谱可检测出有机物中存在的化学键和官能团类型
  - D. 以 CO<sub>2</sub> 为原料合成聚碳酸酯可降解塑料有助于实现"碳中和"
- 2. 下列化学概念或化学用语叙述正确的是
  - A. BaSO4 属于弱电解质

- C. S<sub>2</sub> 和 S<sub>8</sub> 互为同素异形体
- D. HClO 的结构式为 H—Cl—O
- $3. N_A$  为阿伏加德罗常数的值,下列说法正确的是
  - A. 1 mol  $C_2H_6O$  中含有的碳氢键数目不一定为  $5N_A$
  - B. 0. 1 mol FeBr<sub>2</sub> 与 0. 1 mol Cl<sub>2</sub> 反应时生成的 Br<sub>2</sub> 分子数为 0. 1N<sub>A</sub>
  - C. 0. 1 mol·L<sup>-1</sup>MgCl<sub>2</sub>溶液中含有的 Cl<sup>-</sup>的总数为 0. 2N<sub>A</sub>
  - D. 22. 4 L NH<sub>3</sub> 发生反应 4NH<sub>3</sub>+3F<sub>2</sub> ——NF<sub>3</sub>+3NH<sub>4</sub>F,转移的电子数为 1. 5N<sub>A</sub>

- 4. 一种生产雌激素受体调节剂的中间体结构如图,下列说法正确的是
  - A. 苯环上的一氯代物有7种
  - B. 分子中所有碳原子有可能处于同一平面
  - C.1 mol 该物质最多能与 8 mol H<sub>2</sub> 反应
  - D. 该物质能发生取代、氧化、还原、加成反应
- 5. 下列反应的离子方程式正确的是
  - A. 溴与冷的 NaOH 溶液反应: Br<sub>2</sub>+OH<sup>-</sup>——Br<sup>-</sup>+BrO<sup>-</sup>+H<sup>+</sup>
  - B. 少量 Cl<sub>2</sub> 通人 Na<sub>2</sub>SO<sub>3</sub> 溶液中: SO<sub>3</sub><sup>2-</sup>+Cl<sub>2</sub>+H<sub>2</sub>O == 2H<sup>+</sup>+2Cl<sup>-</sup>+SO<sub>4</sub><sup>2-</sup>
  - C. 向血红色  $Fe(SCN)_3$  溶液中加入过量铁粉至溶液褪色:  $2Fe^{3+} + Fe = 3Fe^{2+}$
  - D. 向含氯化铁的氯化镁溶液中加入氧化镁:  $2Fe^{3+} + 3MgO + 3H_2O = 2Fe(OH)_3 + 3Mg^{2+}$
- 6. 下列操作或装置能达到实验目的的是



7. 某工厂采用如下工艺制备  $Cr(OH)_3$ ,已知焙烧后 Cr 元素以最高价铬酸根形式存在(已知:最高价铬酸根在酸性介质中以  $Cr_2O_7^{2-}$  形式存在,在碱性介质中以  $CrO_4^{2-}$  形式存在),下列说法正确的是



- A. "焙烧"中只有 Cr 元素被氧化
- B. 滤渣的主要成分为 Fe(OH)2
- C. 滤液①中 Cr 元素的主要存在形式为 Cr<sub>2</sub>O<sup>2-</sup>
- D. 淀粉水解液中的葡萄糖起还原作用
- 8. 部分含 Na 或含 Cu 物质的分类与相应化合价关系如图所示。下列推断不合理的是



- A.a可与硫单质反应生成f
- B. 能与 H<sub>2</sub>O 反应生成 e 的物质只有 b
- C. 新制的 d 悬浊液可用于检验葡萄糖中的醛基
- D. 在加热条件下,c 能将乙醇氧化为乙醛
- 9. 下列实验操作和现象及所得到的结论均正确的是

| 选项 | 实验操作和现象                                 | 结论           |
|----|-----------------------------------------|--------------|
| A  | 向溴水中加入苯,振荡后静置,水层颜色变浅                    | 溴与苯发生了加成反应   |
| В  | 将某气体通人酸性高锰酸钾溶液中,溶液紫红色褪去                 | 该气体具有还原性     |
| С  | 常温下将铁片分别插入稀硝酸和浓硝酸中,前者产生无色气体,后<br>者无明显现象 | 稀硝酸的氧化性比浓硝酸强 |
| D  | 向 20% 蔗糖溶液中加入少量稀硫酸,加热,再加入银氨溶液,未出现<br>银镜 | 蔗糖未水解        |

10. 化工原料氨基磺酸(H<sub>2</sub>NSO<sub>3</sub>H)是硫酸的羟基被氨基取代而形成的一种无机固体酸,是两性化合物,能与酸、碱反应生成盐,可通过下列流程制备。下列说法正确的是

- A. 液氨汽化时要吸收大量的热,可用作制冷剂
- B. H<sub>2</sub>NCOONH<sub>4</sub> 既属于酯类物质又属于酰胺类物质
- C. CO(NH<sub>2</sub>)<sub>2</sub> 属于铵盐,含氮量高,可作氮肥
- D. H<sub>2</sub>NSO<sub>3</sub> H 的熔点比 H<sub>2</sub>SO<sub>4</sub> 小

## 第 Ⅱ 卷 非选择题 (共 60 分)

| 11. (14分)化学工业为医药行业提供了强有力的物质支撑。请按要求回答下列问题:                           |       |
|---------------------------------------------------------------------|-------|
| (1)研究表明病毒可通过气溶胶传播,气溶胶中粒子的直径大小为                                      | _,可以用 |
| 来鉴别气溶胶。                                                             |       |
| $(2)$ 常温下 $,Na_{2}O_{2}$ 、乙醇、 $Cl_{2}$ 、 $NaClO$ 溶液都为常用的消毒剂,其中能导电的是 | ,属    |
| 于由解质的县                                                              |       |

- (3)熔喷布是一次性医用口罩的关键材料,由熔融态聚丙烯电喷形成的超细纤维经驻极静电处理制成。由丙烯制得聚丙烯的化学方程式是。
- (4)家用制氧机"氧立得"使用的是过碳酸钠( $2Na_2CO_3 \cdot 3H_2O_2$ ),该药品被称为固体双氧水,兼具碳酸钠和双氧水的双重性质,可以利用过氧化氢在二氧化锰的催化下分解产生氧气。

| ①写出过碳酸钠在二氧化锰催化下产生氧气的化学方程式: |  |
|----------------------------|--|
|                            |  |

| ②下列物质不会使过碳                                      | 酸钠失效的是(均                                   | 真标号)。                              |                       |
|-------------------------------------------------|--------------------------------------------|------------------------------------|-----------------------|
| A. HCl                                          | B. NaHCo                                   | $O_3$                              |                       |
| $C. MnO_2$                                      | $D. H_2S$                                  |                                    |                       |
| (5)消毒能力一般用单位质                                   | 量的消毒剂所得电子的数                                | 量来衡量,ClO2、NaClO                    | 等含氯消毒剂                |
| 进行反应时最终都转化                                      | 为 Cl-,则 ClO2与 NaClO                        | 的消毒能力之比为                           | (写出最简                 |
| 整数比)。                                           |                                            |                                    |                       |
| (6)医药行业中测温枪发挥                                   | 了极大的作用。在测温枪                                | 电池制备过程中会生成                         | $Li_2Ti_5O_{15}$ (Ti  |
| 为+4价),1 mol Li <sub>2</sub> Ti <sub>5</sub>     | O <sub>15</sub> 中过氧键的数目为                   | 0                                  |                       |
| 12.(15分)硫脲[CS(NH <sub>2</sub> ) <sub>2</sub> ]在 | :药物制备、金属矿物浮选                               | 等方面有广泛应用。实                         | 验室中先制备                |
| Ca(HS)2,再与CaCN2合成                               | [CS(NH <sub>2</sub> ) <sub>2</sub> ,实验装置(夹 | :持及加热装置略)如图所                       | 示。                    |
|                                                 |                                            |                                    |                       |
| 上<br>上<br>上<br>散                                |                                            | △ CaCN₂                            |                       |
| $N_2$ $K_1$ $K_2$                               | K                                          | → 浴液                               |                       |
|                                                 |                                            |                                    |                       |
|                                                 |                                            | 石灰乳<br>党拌器 CuSO <sub>4</sub>       |                       |
| FeS A                                           | B C                                        | D 溶液                               | E                     |
| 已知:CS(NH2)2易溶于水,                                | 易被氧化,受热(150 ℃左右                            | ī)时会发生异构化生成同                       | 分异构体 X。               |
| 实验步骤:                                           |                                            |                                    |                       |
| ①实验前先检查装置气密性                                    | E, 然后加入药品,打开 K                             | $_{2}$ 。反应结束后关闭 $\mathrm{K}_{2}$ , | 打开 K <sub>1</sub> ,通人 |
| $N_2$ 一段时间。                                     |                                            |                                    |                       |
| ②撤走搅拌器,打开 K3,水流                                 | 谷加热 D 中三颈烧瓶,在 8                            | 30℃时合成硫脲。                          |                       |
| ③将装置 D 中的混合物过滤                                  | 悲后,结晶得到粗产品。                                |                                    |                       |
| (1)仪器 M 的名称为                                    | ;B中的试剂为                                    | °                                  |                       |
| (2)步骤①中通人 N <sub>2</sub> 的目的                    | 的是                                         | °                                  |                       |
| (3)步骤②中控制温度在80                                  | ℃的原因是                                      | ;合成硫脲同                             | 时生成一种常                |
| 见的碱,D处合成硫脲的                                     | 化学方程式为                                     | o                                  |                       |
| (4)测定粗产品中硫脲的质                                   | 量分数:将 0.8 g 粗产品                            | 配成 500 mL 溶液。每次                    | て取 25.00 mL           |
| 用 0.1 mol • L <sup>-1</sup> 酸性高                 | 锰酸钾溶液滴定(生成 N2                              | 、SO <sub>4</sub> -等,杂质不参加反         | 应),平行滴定               |
| 三次,平均每次消耗酸                                      | 性高锰酸钾溶液 12.60                              | mL,则粗产品中硫脲的                        | 的质量分数为                |
| (保留三位有效                                         | (数字)。                                      |                                    |                       |
| (5)探究硫脲异构化的产物                                   | X:取适量硫脲,隔绝空气                               | 加热至 150 ℃,冷却,加力                    | k配成溶液;取               |
| 少量待测液于试管中,流                                     | 南人 FeCl <sub>3</sub> 溶液,溶液变红               | ;再取少量待测液于试管                        | f中,加入适量               |
| NaOH(aq),                                       | (填操作与现象)                                   | ),则 X 的化学式为                        | o                     |
|                                                 | 【高三化学 第4页(共6                               | 页)】                                | • 24 - 121C •         |

13. (14 分)铟(In)是一种稀有贵金属,广泛应用于航空航天、太阳能电池等高科技领域。从铜 烟灰酸浸渣(主要含 PbO、SiO<sub>2</sub>、FeAsO<sub>4</sub> •  $2H_2O$ 、 $In_2O_3$ )中提取铟和铅的工艺流程如下:



已知:①焙烧后金属元素均以硫酸盐的形式存在;②In(OH)。 性质与 Al(OH)。 类似。

- (1)FeAsO<sub>4</sub> 2H<sub>2</sub>O 中铁元素化合价为
- (2)"水浸"工艺中的浸渣除 As<sub>2</sub>O<sub>3</sub> 外,还含有 。若在实验室里分离出浸渣,需要 使用的硅酸盐仪器有玻璃棒、
- (3)"还原铁"工艺反应的离子方程式为
- (4)"萃取除铁"中,水相的 pH 对铟萃取率的影响如图所示。结果表明,pH>2.0 时,铟萃取 率开始明显下降,其原因是



- (5)由浸渣生成 PbO 粗品的化学方程式为
- (6)整个工艺流程中,可循环利用的溶液是
- 14. (17 分)布洛芬(F)是常用的解热镇痛药物,其一种合成工艺路线如下:



回答下列问题:

(1)A 的化学名称是

| $(2)B \longrightarrow C$ | 的反应类型为                                            |   |
|--------------------------|---------------------------------------------------|---|
| (1)1                     | $HJ/\mathcal{L}/M$ , $\mathcal{L}'=\mathcal{L}/J$ | 0 |

- (3)写出 D 中含氧官能团的名称: ,D 中手性碳原子数为。
- (4)写出 E 的结构简式: 。
- (5)分子结构修饰可提高药物的治疗效果,降低毒副作用,布洛芬可用《一CH<sub>2</sub>OH进行

成酯修饰,请写出该过程的化学方程式:\_\_\_\_。

- (6)符合下列条件的化合物 G 的同分异构体(不含立体异构)有 种。
  - ①比C少两个—CH2—
  - ②分子中除了苯环外没有其他环状结构
  - ③苯环上连有两个对位取代基
  - ④G能与 FeCl。溶液发生显色反应

等为原料,试根据所学知识经另一路线设计合成布洛芬



,用流程图表示(已知:R— $Br \xrightarrow{\bigcirc Mg \bigcirc CO_2} R$ —COOH,无机试剂、有

机溶剂任选)。

