MAT 739 - Teoria dos Conjuntos e Aplicações

Prof. Stavros Christodoulo - sala 118A - r.6273

Dia 12/3/97

Bibliografia

- K. Kunen Set Theory, An Introduction to Independence Proofs.
- T. Jech Set Theory.
- H. Enderton Elements of Set Theory.
- F. Miraglia Teoria dos Conjuntos: um mínimo.
- T. Jech & K. Hrbacek Introduction to Set Theory.

<u>Um paradoxo</u>: Seja $\{n \in \mathbb{N}: n \text{ \'e definido com menos de 40 palavras}\}$. Seja n_0 o menor número natural que não 'e definido com menos que 40 palavras. <u>MAS</u>, n_0 foi definido com menos de 40 palavras.

Para evitar os paradoxos provenientes do uso indevido da linguagem usual, vamos introduzir uma linguagem formal, chamada **linguagem de ZF**, para enunciar os fatos da Teoria dos Conjuntos nela.

Símbolos da linguagem ZF:

```
    ¬ (lê-se NÃO)
    ∧ (lê-se E)
    ∃
    ∈
    =
    v<sub>0</sub>, v<sub>1</sub>, ..., v<sub>n</sub>, ...
    (
    )
```

Os símbolos $v_0, v_1, \ldots, v_n, \ldots$ são chamados **variáveis** (e se supõe intuitivamente que representam conjuntos).

Toda seqüência finita destes símbolos se chama uma **expressão** (de ZF). Entre as expressões vamos definir as **fórmulas** de ZF.

- 1. Definição. A definição de fórmula será indutiva:
 - 1. se x e y são variáveis, então as expressões

$$x = y \ e \ x \in y$$

são fórmulas de ZF, chamadas de atômicas;

- 2. se φ é uma fórmula de ZF, então a expressão $\neg(\varphi)$ é um fórmula de ZF;
- 3. se φ e ψ são fórmulas de ZF, então a expressão $(\varphi) \wedge (\psi)$ é uma fórmula de ZF;
- 4. se φ é uma fórmula de ZF e x é uma variável, então $\exists x(\varphi)$ é uma fórmula;
- 5. uma expressão de ZF é uma fórmula se, e só se, pode ser obtida por uma aplicação finita de 1 a 4.

Observação

- 1. Os parênteses têm a função de evitar ambigüidade. Na prática podemos eliminar alguns deles se isto não causar ambigüidade.
- 2. Vamos introduzir mais alguns símbolos, como abreviação destes:
 - $x \neq y$ abrevia $\neg (x = y)$,
 - $x \notin y$ abrevia $\neg (x \in y)$,
 - $(\varphi) \vee (\psi)$ abrevia $\neg((\neg \varphi) \wedge (\neg \psi))$,
 - $(\varphi) \to (\psi)$ abrevia $(\neg \varphi) \lor \psi$,
 - $(\varphi) \leftrightarrow (\psi)$ abrevia $(\varphi \to \psi) \land (\psi \to \varphi)$,
 - $\forall x(\varphi)$ abrevia $\neg(\exists x(\neg\varphi))$,
 - $(\exists x \in y)\varphi$ abrevia $\exists x(x \in y \land \varphi)$,
 - $(\forall x \in y)\varphi$ abrevia $\forall x(x \in y \to \varphi)$.

Exemplo

- $\forall x \forall y (\forall t (t \in x \leftrightarrow t \in y) \to x = y),$
- $x \subseteq y$ abrevia $\forall t (t \in x \to t \in y)$,
- $x \subsetneq y$ abrevia $x \subseteq y \land x \neq y$,
- $x \not\subseteq y$ abrevia $\neg(x \subseteq y)$.

Subfórmula de uma fórmula φ : toda expressão "dentro" de φ , que por sua vez é uma fórmula.

Exemplo Seja φ a fórmula $\exists x \exists y (x \neq y \land ((x \in z) \land (y \in z)))$. Suas subfórmulas são:

- 1. x = y,
- $2. \ x \neq y,$
- $3. x \in z$
- $4. y \in z$
- 5. $x \in z \land y \in z$,
- 6. $x \neq y \land (x \in z \land y \in z)$,
- 7. $\exists y (x \neq y \land (x \in z \land y \in z)),$
- 8. $\exists x (\exists y (x \neq y \land (x \in z \land y \in z))).$

O alcance (em inglês scope) de uma quantificador (\exists ou \forall) numa fórmula é a subfórmula que começa com este quantificador. Por exemplo,

ou

$$(\overrightarrow{\forall x} (x \in y) \land (\overrightarrow{\exists z} (z \notin y)) \rightarrow (\overrightarrow{\exists y} (y \neq z)).$$

Uma ocorrência de uma variável x numa fórmula φ se diz **ligada** se está no alcance de algum quantificador $\forall x$ ou $\exists x$; caso contrário, diz-se **livre**.

Uma fórmula sem ocorrências de variáveis livres se chama uma **sentença** (de ZF).

Exemplo Tomemos a fórmula $\exists x \exists y (x \neq y \land x \in z \land y \in z)$. Trocando-se x por u e y por v, a fórmula obtida $(\exists u \exists v (u \neq v \land u \in z \land v \in z))$ é "logicamente" equivalente à original. Porém, trocando-se x por z, temos $\exists z \exists y (z \neq y \land z \in z \land y \in z)$ que é completamente diferente da original.

Intuitivamente, se uma variável x ocorre livre numa fórmula φ , então interpretamos isto como se φ fosse uma afirmação sobre x (i.e. uma propriedade de x); e a escrevemos $\varphi(x)$ para destacar o fato que x ocorre livre em φ . Com esta notação, a fórmula obtida substituindo-se todas as ocorrências livres de x por outra variável y será indicada por $\varphi(y)$.

Em geral $\varphi(y)$ "diz" de y o mesmo que $\varphi(x)$ diz de x, desde que y não ocorra na fórmula original. Normalmente procuramos fazer mudanças deste tipo (chamadas **mudanças legítimas**). Com estas observações, define-se a fórmula

$$\exists ! x \varphi(x)$$

como abreviação de

$$\exists x \forall y (\varphi(y) \leftrightarrow x = y),$$

ou equivalentemente $\exists x (\varphi(x) \land \forall y (y \neq x \rightarrow \neg \varphi(y))$. Lê-se $\exists ! x \varphi(x)$ como existe um único x tal que $\varphi(x)$.

Se x_1, \ldots, x_n são todas as variáveis que ocorrem livres em φ , então chamamos a sentença $\forall x_1 \ldots \forall x_n \varphi$ o **fecho universal** de φ .

A Teoria ZF

Os axiomas de ZF:

1. <u>Axioma da Extensionalidade</u>: Intuitivamente diz que dois conjuntos (quaisquer) que têm os mesmos elementos são iguais.

Em símbolos:

$$\forall x \forall y (\forall t (t \in x \leftrightarrow t \in y) \to x = y).$$

Dia 14/3/97

Os Axiomas

Uma lista dos axiomas (só os nomes):

- **0.**Existência de algum conjunto $\exists x(x=x)$
- **1.Extensionalidade** $\forall x \forall y (t \in x \leftrightarrow t \in y) \rightarrow x = y)$
- **2.Regularidade** $\forall x(\exists y(y \in x) \rightarrow \exists y(y \in x \land \neg \exists z(z \in x \land z \in y)))$
- **3.**Esquema de Separação $\forall z \exists y \forall x (x \in y \leftrightarrow x \in z \land \varphi)$
- **4.do Par** $\forall x \forall y \exists z (x \in z \land y \in z)$
- **5.da União** $\forall \mathcal{F} \exists A \forall Y \forall x (x \in Y \land Y \in \mathcal{F} \rightarrow x \in A)$
- **6.**Esquema de Sustituição $\forall x \in A \exists ! y \varphi(x, y) \to \exists Y (\forall x \in A) (\exists y \in Y) \varphi(x, y)$
- 7. Existência de conjunto infinito $\exists x (0 \in x \land \forall y \in x (y \cup \{y\} \in x))$
- **8.das Partes** $\forall x \exists y \forall z (z \subseteq x \rightarrow z \in y)$
- **9.da Escolha** $\forall A \exists R(R \text{ bem ordena } A)$

ZFC - A teoria com os axiomas de 0 a 9.

ZF - A teoria com os axiomas de 0 a 8.

ZFC⁻, **ZF**⁻ - ZFC, ou ZF, exceto o axioma 2.

ZFC - **P**, **ZF** - **P** - ZFC, ou ZF, exceto o axioma 8.

Vejamos agora os axiomas um por um.

- **0.**Existência de algum conjunto: $\exists x(x=x)$.
- **1.**Axioma da Extensionalidade: $\forall x \forall y (\forall t (t \in x \leftrightarrow t \in y) \rightarrow x = y)$.

Observação A recíproca, i.e., $x = y \to \forall t (t \in x \leftrightarrow t \in y)$ é um fato verdadeiro, devido às propriedades lógicas da igualdade. São elas:

- 1. x = x
- $2. \ x = y \to y = x$
- 3. $x = y \land y = z \rightarrow x = z$
- 4. $(x_1 = y_1 \land \ldots \land x_n = y_n) \rightarrow fx_1 \ldots x_n = fy_1 \ldots y_n$
- 5. $(x_1 = y_1 \land \ldots \land x_n = y_n) \rightarrow (px_1 \ldots x_n \leftrightarrow py_1 \ldots y_n)$

onde f é um símbolo de função n-ária e p é um símbolo de predicado n-ário.

3.Esquema de Separação (1908): Queremos garantir que dada uma propriedade P(x) existiria o conjunto de todos os x's tais que P(x), i.e., dada uma fórmula φ com x livre, gostaríamos que existisse um conjunto y tal que

$$\forall x (x \in y \leftrightarrow \varphi).$$

Mas isto não é possível, conforme a fórmula $x \notin x$ mostra (Paradoxo de Russel): pois, se existisse y tal que $\forall x (x \in y \leftrightarrow x \notin x)$, então, para x = y, teríamos $y \in y \leftrightarrow y \notin y$.

Em 1908, Zermelo propõe a seguinte variante para este princípio: dados um conjunto A e uma fórmula φ (com x livre) existiria um conjunto B de todos os $x \in A$ que satisfazem φ , i.e.,

$$\forall A \exists B \forall x (x \in B \leftrightarrow x \in A \land \varphi).$$

Como não podemos quantificar sobre fórmulas, i.e., escrever $\forall \varphi \forall A \dots$, na verdade temos um "esquema" de axiomas, que seria: para cada fórmula φ com x livre, a seguinte sentença é um axioma:

O fecho universal de
$$\forall A \exists B \forall x (x \in B \leftrightarrow x \in A \land \varphi),$$

onde B é uma variável que não ocorre em φ (para evitar "choques de notação").

Vamos rever o Paradoxo de Russel: pelo axioma, dado A, existe B tal que

$$\forall x (x \in B \leftrightarrow x \in A \land x \notin x).$$

Disto concluímos que $B \in B \leftrightarrow B \in A \land B \notin B$. $B \in B$ levaria a uma contradição. Portanto, $B \notin B$. Por sua vez, $B \in A$ levaria levaria à contradição $B \in B$. Logo $B \notin A$. Estas duas conclusões, $B \notin B$ e $B \notin A$, não levam à contradição.

2. Teorema.

$$\neg \exists x \forall y (y \in x),$$

i.e., não existe um conjunto que tenha todos os conjuntos por elementos, i.e., não existe "o conjunto universo".

Demonstração Pelo argumento anterior, vimos que dado um conjunto A, existe um conjunto B tal que $B \notin A$. Logo, A não pode ter todos os conjuntos por elementos.

Dados φ e A, existe B tal que $\forall x(x \in B \leftrightarrow x \in A \land \varphi)$. Pergunta: será que existe um único B?

Se C também satisfizesse $\forall x(x \in C \leftrightarrow x \in A \land \varphi)$, então $\forall x(x \in B \leftrightarrow x \in C)$ e pelo axioma de extensionalidade B = C.

Logo, dados φ e A, existe um único conjunto B tal que $\forall x(x \in B \leftrightarrow x \in A \land \varphi)$; por isso podemos introduzir uma notação para este único conjunto B, sem "modificar substancialmente" a expressividade da linguagem de ZF - i.e., toda fórmula escrita com os novos símbolos é equivalente dentro da teoria a uma fórmula na linguagem original. Denotamos por $\{x \in A : \varphi\}$ ou $\{x : x \in A \land \varphi\}$ o único conjunto B que satisfaz $\forall x(x \in B \leftrightarrow x \in A \land \varphi)$, i.e.,

$$\forall t(t \in \{x \in A : \varphi\} \leftrightarrow (t \in A \land \varphi(t))).$$

Exemplo Dado A, usando a fórmula $x \neq x$, obtemos o conjunto $B = \{x \in A : x \neq x\}$, i.e., $\forall x (x \in B \leftrightarrow x \in A \land x \neq x)$ e portanto $\forall x (x \in B \leftrightarrow x \neq x)$. Novamente, por extensionalidade, este B é único, e será denotado por \emptyset ou 0 e será chamado o **conjunto** vazio.

Observe que a fórmula $u = \emptyset$ (da linguagem expandida) é equivalente a $\forall t (t \notin u)$. Por exemplo, $\emptyset \in A$ seria equivalente a

$$\exists u(u = \emptyset \land u \in A),$$

e a

$$\exists u (\forall t (t \not\in u) \land u \in A).$$

4. Axioma do Par: Queremos um axioma que garanta que dados dois conjuntos exista o conjunto formado pelos dois.

Como dispomos do esquema de separação, é suficiente garantir a existência de algum que tem (pelo menos) estes dois elementos. Por isso o axioma será:

$$\forall x \forall y \exists z (x \in z \land y \in z).$$

Pelo axioma de separação, dados x e y, usando o z dado pelo axioma do par e a fórmula $\varphi(t): t = x \lor t = y$, teremos que existe B tal que

$$\forall t(t \in B \leftrightarrow t \in z \land \varphi(t)),$$

i.e.,

$$\forall t(t \in B \leftrightarrow (t \in z \land (t = x \lor t = y))).$$

Logo, $\forall t (t \in B \leftrightarrow (t = x \lor t = y)).$

Pela notação $\{\dots\}$, teríamos: $B=\{t\in z\colon t=x\vee t=y\}$. Ainda $B=\{t\colon t=x\vee t=y\}$ e se denota este conjunto por $\{x,y\}$.

No caso em que x = y, definimos $\{x\}$ como sendo o conjunto $\{x, x\}$.

Portanto, $\emptyset \notin \emptyset$, mas $\emptyset \in \{\emptyset\}$. Logo $\emptyset \neq \{\emptyset\}$. Assim $\{\emptyset\} \neq \{\{\emptyset\}\}$. Portanto, metalinguisticamente, conseguimos "infinitos" conjuntos, mas ainda não temos um conjunto "infinito".

Observe que $\{x,y\} = \{y,x\}$ pois $\forall t(t \in \{x,y\} \leftrightarrow t = x \lor t = y)$ e $\forall t(t \in \{y,x\} \leftrightarrow t = y \lor t = x)$.

5.<u>Axioma da União</u>: Queremos garantir que dado um conjunto \mathcal{F} exista o conjunto formado pela união de todos os elementos de \mathcal{F} , i.e., existe o conjunto de todos os elementos dos elementos de \mathcal{F} .

$$\forall \mathcal{F} \exists A \forall x \forall t ((x \in \mathcal{F} \land t \in x) \to t \in A).$$

Pelo axioma de separação podemos formar

$$\{t \in A : (\exists x \in \mathcal{F})t \in x\}$$

que, na realidade, será $\{t\colon (\exists x\in\mathcal{F})t\in x\}$; uma vez que todos os t's que satisfazem $(\exists x\in\mathcal{F})t\in x$ estão em A. Denotamos $\{t\colon (\exists x\in\mathcal{F})t\in x\}$ por $\bigcup \mathcal{F}$ (que se lê a **união** de \mathcal{F} ; e é a união de todos os elementos de \mathcal{F}).

$$\forall t(t \in \bigcup \mathcal{F} \leftrightarrow (\exists x \in \mathcal{F})t \in x).$$

Exemplo Dados x e y, podemos formar $\mathcal{F} = \{x, y\}$ (pelo axioma do par) e $\bigcup \mathcal{F}$ (pelo axioma da união). Teremos

$$\forall t(t \in \bigcup \mathcal{F} \leftrightarrow (\exists z \in \mathcal{F})t \in z).$$

Como $t \in \bigcup \mathcal{F} \leftrightarrow (\exists z \in \{x, y\}) t \in z$,

$$t \in \bigcup \mathcal{F} \leftrightarrow t \in x \lor t \in y.$$

Denotamos, então, este conjunto por $x \cup y$. Assim $\bigcup \{x, y\} = x \cup y$. Em particular, $\bigcup \{x\} = x \in \bigcup \emptyset = \emptyset$.

Como obter $\{x, y, z\}$? Basta tomar $\{x, y\} \cup \{z\}$.

Dia 19/3/97

Já vimos os axiomas:

- da extensionalidade
- esquema do axioma de substituição
- do par
- da união

Dado um conjunto A e uma fórmula $\varphi(x)$, vimos que existe um conjunto $B = \{x \in A : \varphi(x)\}$. Daí, $\emptyset = \{x : x \neq x\}$, $\{A, B\} = \{x : x = A \lor x = B\}$ e $\bigcup A = \{x : (\exists y \in A)x \in y\}$.

6.Esquema do axioma de substituição (replacement) (introduzido por Fraenkel em 1922): "Diz" que dado um conjunto A e uma fórmula $\varphi(x,y)$ tal que $(\forall x \in A) \exists ! y \varphi(x,y)$ - i.e., representaria uma função definida em A - deve existir algum conjunto Y que tenha todos os y's tais que $\varphi(x,y)$ para $x \in A$.

Formalmente: para toda fórmula $\varphi(x, y)$ a seguinte sentença será um dos axiomas de substituição:

O fecho universal de
$$(\forall x \in A) \exists ! y \varphi(x, y) \to \exists Y (\forall x \in A) (\exists y \in Y) \varphi(x, y),$$

onde Y é alguma variável que não ocorre livre em φ .

Pelo axioma de separação, podemos formar $B = \{y \in Y : (\exists x \in A)\varphi(x,y)\}$, onde Y é dado pelo axioma da substituição, e portanto este B também será

$$B = \{ y \colon (\exists x \in A) \varphi(x, y) \}.$$

Mais algumas construções de conjuntos:

1. Dados conjuntos A e B podemos formar os conjuntos: $\{x \in A : x \in B\}$ e $\{x \in A : x \notin B\}$ (usando o axioma de separação). O primeiro denota-se por $A \cap B$ e o segundo por $A \setminus B$, i.e.,

$$A\cap B=\{x\colon x\in A\wedge x\in B\}$$

 \mathbf{e}

$$A \setminus B = \{x \colon x \in A \land x \notin B\}.$$

2. Dado um conjunto não-vazio A, seja $a \in A$. Então existe o conjunto $\{x \in a : (\forall y \in A)x \in y\}$ (pelo axioma de separação) que será também igual a:

$$\{x\colon (\forall y\in A)x\in y\}.$$

Denota-se este conjunto por $\bigcap A$ (a intersecção de todos os elementos de A).

Por exemplo, $A = \{u, v\}$, então $\bigcap \{u, v\} = u \cap v$. Se $A = \{a_1, \dots, a_n, \dots\}$, então $\bigcap A = a_1 \cap \dots \cap a_n \cap \dots$ Em particular, $\bigcap \{x\} = x$.

O que é $\bigcap \emptyset$?

Teríamos que $x \in \bigcap \emptyset \leftrightarrow (\forall y \in \emptyset) x \in y$, i.e., $\forall y (y \in \emptyset \rightarrow x \in y)$. Portanto todo conjunto satisfaz esta fórmula.

Logo, $\bigcap \emptyset$ não se define (senão $\bigcap \emptyset = \{x \colon x = x\}$, que vimos que não existe).

Observe que dados $a \in b$, se $\{x, y\} = \{a, b\}$, então podemos concluir

$$(x = a \land y = b) \lor (x = b \land y = a).$$

Gostaríamos de alguma construção tal que, dados a e b, obtivéssemos algum conjunto $\langle a,b\rangle$ com a propriedade: se $\langle x,y\rangle=\langle a,b\rangle$, então x=a e y=b. **Exercício** [Exercício 2 da lista 1] Seja $\langle a,b\rangle\stackrel{def}{=}\{\{a\},\{a,b\}\}$. Mostre que

$$\langle a, b \rangle = \langle c, d \rangle \leftrightarrow a = c \land b = d.$$

O conjunto $\langle a, b \rangle$ chama-se o **par ordenado** a, b. a se diz a **primeira componente** de $\langle a, b \rangle$ e b se diz a **segunda componente** de $\langle a, b \rangle$.

Observação " $z = \langle x, y \rangle$ " é abreviação de $z = \{\{x\}, \{x, y\}\}\}$ que é abreviação de $\forall t (t \in z \leftrightarrow t = \{x\} \lor t = \{x, y\})$ que, por sua vez, é abreviação de $\forall t (t \in z \leftrightarrow \forall u (u \in t \leftrightarrow u = x) \lor \forall v (v \in t \leftrightarrow v = x \lor v = y))$.

Queremos garantir a existência de um conjunto feito por todos os pares ordenados $\langle x, y \rangle$ com $x \in A$ e $y \in B$, i.e., algum conjunto C tal que:

$$\forall z (z \in C \leftrightarrow (\exists x \in A)(\exists y \in B)z = \langle x, y \rangle).$$

Seja $y \in B$ (fixado), e considere a fórmula $\varphi(x,z)$ como sendo " $z = \langle x,y \rangle$ ". É claro que

$$(\forall x \in A) \exists ! z \varphi(x, z).$$

Logo, pelo axioma de substituição, existe $\operatorname{prod}(A,y) \stackrel{def}{=} \{z \colon (\exists x \in A)\varphi(x,z)\} = \{\langle x,y \rangle \colon x \in A\}.$

Para cada $y \in B$, obtivemos o conjunto $\operatorname{prod}(A,y)$. Se $\psi(y,w)$ é a fórmula " $w = \operatorname{prod}(A,y)$ ", é claro que $(\forall y \in B) \exists ! w \psi(y,w)$. Logo, pelo axioma de substituição, existe o conjunto

$$\operatorname{prod}'(A,B) = \{w \colon (\exists y \in B) w = \operatorname{prod}(A,y)\} = \{\operatorname{prod}(A,y) \colon y \in B\}.$$

Finalmente, pelo axioma da união, existe $C = \bigcup \operatorname{prod}'(A, B)$, e este satisfaz

$$\forall z(z \in C \leftrightarrow (\exists x \in A)(\exists y \in B)z = \langle x, y \rangle),$$

ou seja,

$$C = \{z \colon (\exists x \in A)(\exists y \in B)z = \langle x, y \rangle\} = \{\langle x, y \rangle \colon x \in A \land y \in B\}.$$

Notação Este conjunto C será chamada de **produto cartesiano de** A **por** B e será denotado por $A \times B$.

Observação Se F(X) indica uma operação sobre conjuntos (por exemplo, F(X) sendo $A \cap X$, onde A é um conjunto dado, como no exercício 3(i) da lista 1), então a notação $\{F(X)\colon X\in B\}$ indicaria o conjunto $\{t\colon (\exists X\in B)t=F(X)\}$ (se isto for de fato um conjunto). (Assim $\{A\cap X\colon X\in B\}=\{t\colon (\exists X\in B)t=A\cap X\}$.)

3. Definição. Um conjunto R se diz uma **relação** se, e só se, todos os seus elementos são pares ordenados, i.e.,

$$\forall z(z \in R \rightarrow z \ \'e \ par \ ordenado).$$

Dado um conjunto R, definimos:

- 1. o **domínio de** R como sendo o conjunto dom $R = \{x : \exists y \ \langle x, y \rangle \in R\},\$
- 2. a **imagem de** R como sendo o conjunto im $R = \{y : \exists x \ \langle x, y \rangle \in R\}, e,$
- 3. a **inversa de** R como sendo o conjunto $R^{-1} = \{\langle y, x \rangle : \langle x, y \rangle \in R\} = \{z : \exists x \exists y (\langle x, y \rangle \in R \land z = \langle y, x \rangle \}.$

Exercício [Exercício 7 da lista 1] Verifique que:

- (i) $R \in \text{uma relação} \leftrightarrow R \subseteq \text{dom } R \times \text{im } R$,
- (ii) R^{-1} é sempre uma relação; e R é um relação $\leftrightarrow (R^{-1})^{-1} = R$ (em geral, $(R^{-1})^{-1}$ é a maior "relação" contida em R).
- **4. Definição.** Um conjunto f é uma **função** se, e só se, f é uma relação **"unívoca"**, i.e., f é uma relação e $(\forall x)(\forall y)(\forall z)(\langle x,y\rangle \in f \land \langle x,z\rangle \in f \rightarrow y=z)$.

Notação
$$f \colon A \longrightarrow B$$
 abrevia
$$\begin{cases} f \text{ \'e uma função}, \\ \text{dom } f = A, \text{ e} \\ \text{im } f \subseteq B \end{cases}.$$

Dia 21/3/97

Quando R for uma relação, escreveremos, eventualmente, xRy para $\langle x,y\rangle\in R$.

Lembremos que f é uma função se, e só se, f é uma relação "unívoca", i.e., $\forall x \in \text{dom } f)(\exists ! y \in \text{im } f) \langle x, y \rangle \in f$, ou $\forall x \forall y \forall z (\langle x, y \rangle \in f \land \langle x, z \rangle \in f \rightarrow y = z)$.

Notação $(\forall x \in \text{dom } f)$ o único y tal que $\langle x, y \rangle \in f$ indica-se por f(x).

5. Definição. Seja $f \colon A \longrightarrow B$ uma função. Diremos que:

- 1. $f \notin \textbf{1-1}$ (injetora), quando $f^{-1} \notin uma\ função$, ou seja, quando $\forall x \forall y \forall z (\langle x, z \rangle \in f \land \langle y, z \rangle \in f \rightarrow x = y)$,
- 2. $f \in sobrejetora$, se, $e \circ so \circ se$, im f = B,
- 3. f é bijetora se f é injetora e sobrejetora.
- 4. f retrita a C será o conjunto $f \upharpoonright C \stackrel{def}{=} f \cap (C \times B) = \{\langle x, y \rangle \in f : x \in C\}$. $f''C = f[C] \stackrel{def}{=} \operatorname{im}(f \upharpoonright C) = \{f(x) : x \in C\}$.
- 6. Definição. O par ordenado $\langle A, R \rangle$ é uma ordem total ("estrita") (ou R ordena totalmente A) se, e só se, R é uma relação e:
 - 1. $(\forall x, y, z \in A)(xRy \land yRz \rightarrow xRz)$, (transitividade)
 - 2. $(\forall x, y \in A)(xRy \lor x = y \lor yRx)$, (tricotomia)
 - 3. $(\forall x \in A)(\neg(xRx))$. $(n\tilde{a}o\text{-reflexividade})$

Se $\langle A, R \rangle$ é uma ordem total e $B \subseteq A$, $\langle B, R \rangle$ também é uma ordem total. Se $x \in A$, definimos os **predecessores** de x como sendo

$$\operatorname{pred}(A, x, R) = \{ y \in A \colon yRx \}.$$

Observe que, como $\neg(xRx)$, então $x \notin \operatorname{pred}(A, x, R)$.

7. **Definição.** Se A e B são conjuntos, R e S são relações, dizemos que $\langle A, R \rangle$ é **isomorfo** a $\langle B, S \rangle$, e denotamos isto por $\langle A, R \rangle \simeq \langle B, S \rangle$, se, e só se, existe uma função $f \colon A \longrightarrow B$ bijetora e tal que $(\forall x, y \in A)(xRy \leftrightarrow f(x)Sf(y))$. f se diz um **isomorfismo** entre as estruturas $\langle A, R \rangle$ e $\langle B, S \rangle$.

Observação No caso em que $\langle A, R \rangle$ e $\langle B, S \rangle$ são ordens totais é suficiente mostrar que

$$(\forall x, y \in A)(xRy \to f(x)Sf(y)),$$

para que f seja um isomorfismo.

De fato, sejam $x, y \in A$ tais que f(x)Sf(y). Se $\neg(xRy)$, então x = y ou yRx. Se yRx, temos f(y)Sf(x) e, pela transitividade, f(x)Sf(x). Portanto, em ambos os casos, teríamos f(x)Sf(x).

- **8.** Definição. $\langle A, R \rangle$ é uma boa ordem se, e só se, $\langle A, R \rangle$ é uma ordem total tal que $\forall B(\emptyset \neq B \subseteq A \rightarrow B \text{ tem um "R-mínimo"}), \text{ onde } z \in A \text{ é um } R\text{-mínimo de } B \text{ se, e só se, } z \in B \text{ e } (\forall x \in B)(zRx \lor x = z), \text{ i.e., } (\forall x \in B)(x \neq z \rightarrow zRx).$
- <u>Fatos</u>: **1**. Seja $\langle A, R \rangle$ uma ordem total e sejam $v_1, v_2 \in A$, com $v_1 R v_2$; sejam $A_i = \text{pred}(A, v_i, R)$, para i=1,2. Então

$$A_1 = \operatorname{pred}(A, v_1, R) = \operatorname{pred}(A_2, v_1, R).$$

Demonstração Claramente pred $(A_2, v_1, R) \subseteq A_1$, pela transitividade. Se $y \in A_1$, então $y \in A$ e yRv_1 . Como v_1Rv_2 , segue que yRv_2 . Portanto, $y \in A_2$. Logo, $y \in A_2$ e yRv_1 , e, por isso, $y \in \text{pred}(A_2, v_1, R)$.

2. Se $\langle A, R \rangle$ e $\langle B, S \rangle$ são ordens totais, $f \colon A \longrightarrow B$ é um isomorfismo entre $\langle A, R \rangle$ e $\langle B, S \rangle$ e $x \in A$, então $f \upharpoonright \operatorname{pred}(A, x, R)$ é um isomorfismo entre $\operatorname{pred}(A, x, R)$ e $\operatorname{pred}(B, f(x), S)$.

Demonstração Para simplificar estas notações sejam $A' = \operatorname{pred}(A, x, R)$, y = f(x) e $B' = \operatorname{pred}(B, y, S)$.

É óbvio que $f \upharpoonright A'$ também "preserva a ordem" e é 1-1; o que falta é verificar que f[A'] = B'.

Seja $u \in A'$, i.e., uRx, então f(u)Sf(x), ou seja, f(u)Sy. Portanto $f(u) \in B'$. Seja $v \in B'$. Então $v \in B$ e vSy. Como f é sobrejetora em B, $(\exists u \in A)f(u) = v$ e portanto f(u)Sf(x), donde uRx.

3. (lema 6.1 do livro) Se $\langle A, R \rangle$ é uma boa ordem e $x \in A$, então $\langle A, R \rangle \not\simeq \langle \operatorname{pred}(A, x, R), R \rangle$. **Demonstração** Se existisse $f: A \longrightarrow A'$, onde $A' = \operatorname{pred}(A, x, R)$, isomorfismo; então $f(x) \neq x$, pois $x \not\in A'$. Portanto $B = \{y \in A: f(y) \neq y\}$ é não-vazio. Sejam z o R-mínimo de B e w = f(z). Se wRz, então $w \not\in B$ e f(w) = w = f(z). Como f é 1-1, w = z, mas $z \neq f(z)$.

Logo zRw. Como $w=f(z)\in A',\ z\in A'$, por transitividade. Assim existe $u\in A$ tal que f(u)=z. De zRf(z), segue que uRz e $u\in B$ (pois $f(u)=z\neq u$), contra a "minimalidade" de z.

4. (lema 6.2 do livro) Se $\langle A, R \rangle$ e $\langle B, S \rangle$ são boas ordens e f e g são isomorfismos entre elas, então f = g.

Demonstração Se não, o conjunto $D = \{y \in A : f(y) \neq g(y)\} \neq \emptyset$. Seja z o R-mínimo de D. Sem perda de generalidade, suponhamos f(z)Sg(z).

Seja $u \in A$ tal que g(u) = f(z). Como g(u)Sg(z), uRz. Portanto, $u \notin D$ e f(u) = g(u). Mas uRz implica que f(u)Sf(z). E chegamos a uma contradição.

- 5. (teorema 6.3 do livro) Sejam $\langle A,R\rangle$ e $\langle B,S\rangle$ boas ordens. Vale uma, e apenas uma, entre:
 - 1. $\langle A, R \rangle \simeq \langle B, S \rangle$,
 - 2. $(\exists y \in B) \langle A, R \rangle \simeq \langle \operatorname{pred}(B, y, S), S \rangle$,
 - 3. $(\exists x \in A) \langle \operatorname{pred}(A, x, R), R \rangle \simeq \langle B, S \rangle$.

Exercício 8 da lista 1

Uma estrutura para a linguagem de ZF é um par $\langle A, R \rangle$, onde A é um conjunto não-vazio e $R \subseteq A \times A$.

Dizemos que $\langle A, R \rangle$ satisfaz uma fórmula $\varphi(v_1, \ldots, v_n)$ com a substituição das variáveis v_1, \ldots, v_n , por elementos a_1, \ldots, a_n de A - e denotamos isto por $\langle A, R \rangle \models \varphi[a_1, \ldots, a_n]$ - se a "expressão" obtida substituindo cada $\forall x$ e $\exists x$ que ocorre em φ

por $\forall x \in A$ e $\exists x \in A$ e cada $x \in y$ que ocorre em φ por s(x)Rs(y), onde $s(x) = \begin{cases} a_i & \text{se } x = v_i \\ x & \text{se } x \notin \{v_1, \dots, v_n\} \end{cases}$, é "verdadeira" na estrutura $\langle A, R \rangle$.

Por exemplo, $\langle \mathbb{N}, E \rangle \models$ axioma da extensionalidade, i.e., $\langle \mathbb{N}, E \rangle \models \forall x \forall y (\forall t (x \in x \leftrightarrow x \in y) \rightarrow x = y)$, significa que

$$(\forall x \in \mathbb{N})(\forall y \in \mathbb{N}) \left[(\forall t \in \mathbb{N})(tEx \Leftrightarrow tEy) \Rightarrow x = y \right].$$

 $\langle \mathbb{N}, E \rangle \models \text{axioma do par se, e só se,}$

$$\langle \mathbb{N}, E \rangle \models (\forall x)(\forall y)(\exists z)(x \in z \land y \in z),$$

ou seja, se, e só se,

$$(\forall x \in \mathbb{N})(\forall y \in \mathbb{N})(\exists z \in \mathbb{N})(xEz \in xEz).$$

 $\langle \mathbb{N}, E \rangle \models$ axioma da união se, e só se,

$$\langle \mathbb{N}, E \rangle \models \forall \mathcal{F} \exists A \forall Y \forall x (Y \in \mathcal{F} \land x \in Y \rightarrow x \in A),$$

Portanto, devemos verificar se

$$(\forall \mathcal{F} \in \mathbb{N})(\exists A \in \mathbb{N})(\forall Y \in \mathbb{N})(\forall x \in \mathbb{N})[\text{se } yE\mathcal{F} \text{ e } xEY, \text{ então } xEA].$$

$$\langle \mathbb{N}, E \rangle \models \forall A \exists B \forall x (x \in B \leftrightarrow x \in A \land \varphi(x))$$
 significa que

$$(\forall A \in \mathbb{N})(\exists B \in \mathbb{N})(\forall x \in \mathbb{N}) [xEB \text{ se, e só se, } xEA \text{ e } \langle \mathbb{N}, E \rangle \models \varphi[x]].$$

Dia 2/4/97

- **9. Teorema (6.3).** Sejam $\langle A, R \rangle$ e $\langle B, S \rangle$ boas ordens. Vale uma, e apenas uma, entre:
 - (i) $\langle A, R \rangle \simeq \langle B, S \rangle$,
 - (ii) $(\exists y \in B) \langle A, R \rangle \simeq \langle \operatorname{pred}(B, y, S), S \rangle$,
- (iii) $(\exists x \in A) \langle \operatorname{pred}(A, x, R), R \rangle \simeq \langle B, S \rangle$.

Observação isomorfismo é uma relação de equivalência.

Suponha que valem (ii) e (iii) do teorema. Seja $f \colon A \to B', B' = \operatorname{pred}(B, y, S)$, o isomorfismo entre $\langle A, R \rangle$ e $\langle \operatorname{pred}(B, y, S), S \rangle$. Então $f \upharpoonright \operatorname{pred}(A, x, R)$ seria isomorfismo entre $\langle \operatorname{pred}(A, x, R), R \rangle$ e $\langle \operatorname{pred}(B', f(x), S), S \rangle$ que é igual, pelo Fato 1, a $\langle \operatorname{pred}(B, f(x), S), S \rangle$ e portanto $\langle B, S \rangle \simeq \langle \operatorname{pred}(B, f(x), S), S \rangle$ contra o lema 6.1. Que não valem (i) e (ii) ou (i) e (ii), fica como exercício.

Demonstração

Notação para $v \in A$ e $w \in B$, sejam $A_v = \operatorname{pred}(A, v, R)$ e $B_w = \operatorname{pred}(B, w, S)$. Seja

$$f = \{\langle v, w \rangle : v \in A \in w \in B \in \langle A_v, R \rangle \simeq \langle B_w, S \rangle \}.$$

Vamos provar que f é uma função que preserva a ordem e que dom f = A ou im f = B.

1)f é função: Como f é uma relação é suficiente mostrar que é unívoca.

Sejam $\langle v, w_1 \rangle$, $\langle v, w_2 \rangle \in f$. Sabemos que $\langle A_v, R \rangle \simeq \langle B_{w_i}, S \rangle$ para i = 1, 2, portanto $\langle B_{w_1}, S \rangle \simeq \langle B_{w_2}, S \rangle$. Se $w_1 \neq w_2$, então s.p.g. $w_1 S w_2$ e portanto $B_{w_1} = \operatorname{pred}(B_{w_2}, w_1, S)$ e teríamos $\langle \operatorname{pred}(B_{w_2}, w_1, S), S \rangle \simeq \langle B_{w_2}, S \rangle$ contra o lema 6.1.

2) \underline{f} preserva a ordem: Sejam $v_1, v_2 \in A$, $v_1 R v_2$ e sejam $w_i = f(v_i)$, i = 1, 2. Sejam $g_i : A_{v_i} \to B_{w_i}$ isomorfismos entre $\langle A_{v_i}, R \rangle$ e $\langle B_{w_i}, S \rangle$.

Pelo Fato 2, $g_2 \upharpoonright A_{v_1}$ é um isomorfismo entre $\langle A_{v_1}, R \rangle$ e $\langle \operatorname{pred}(B_{w_2}, g_2(v_1), S), S \rangle$. Logo $\langle B_{w_1}, S \rangle \simeq \langle \operatorname{pred}(B_{w_2}, g_2(v_1), S), S \rangle$ pois ambos são isomorfos a $\langle A_{v_1}, R \rangle$. Como em 1) $w_1 = g_2(v_1) \in B_{w_2}$ e portanto $g_2(v_1)Sw_2$. Logo w_1Sw_2 .

Logo f é um isomorfismo entre $\langle \operatorname{dom} f, R \rangle$ e $\langle \operatorname{im} f, S \rangle$. Suponhamos que $\langle \operatorname{dom} f, R \rangle \neq A$ i.e. $A \setminus \operatorname{dom} f \neq \emptyset$, logo existe $x = R\operatorname{-min}(A \setminus \operatorname{dom} f)$.

Afirmação: dom $f = \operatorname{pred}(A, x, R) \stackrel{\text{not.}}{=} A_x$.

 $\underline{A_x \subseteq \text{dom } f}$: Se $v \in A_x$ então $v \in A$ e vRx. Logo $v \in A$ e $v \notin A \setminus \text{dom } f$ portanto $v \in \text{dom } f$.

 $\underline{\operatorname{dom} f} \subseteq A_x$: Seja $v \in \operatorname{dom} f$. Se $\neg (vRx)$ então xRv (é claro que $x \neq v$). Como $v \in \operatorname{dom} f$, $\langle A_v, R \rangle \stackrel{g}{\simeq} \langle B_{f(v)}, S \rangle$; e como já vimos $g \upharpoonright \operatorname{pred}(A_v, x, R) = g \upharpoonright A_x$ seria um isomorfismo entre $\langle A_x, R \rangle$ e $\langle B_{g(x)}, S \rangle$ e portanto $x \in \operatorname{dom} f$, o que é um absurdo. Logo, vRx e portanto $v \in A_x$.

Analogamente, ou im f = B ou im $f = \operatorname{pred}(B, y, S) = B_y$, onde y = S-min $(B \setminus \inf f)$. Falta verificar que não pode ocorrer dom $f \neq A$ e im $f \neq B$. As outras três possibilidades correspondem a (i), (ii) e (iii) do teorema. Se acontecesse isso, então f seria um isomorfismo entre $\langle A_x, R \rangle$ e $\langle B_y, S \rangle$ e portanto $\langle x, y \rangle \in f$ e $x \in \operatorname{dom} f$ e $y \in \operatorname{im} f$, absurdo.

9. Axioma da Escolha: Diz que todo conjunto pode ser bem ordenado, i.e.,

$$\forall A \exists R(\langle A, R \rangle \text{ \'e uma boa ordem}).$$

10. Definição. Um conjunto A se diz transitivo sse todo elemento de A é subconjunto de A i.e.

$$\forall x (x \in A \to x \subseteq A) \text{ ou equivalentemente}, \\ (\forall x \in A)(\forall y \in x)y \in A.$$

i.e., todos os elementos de elementos de A também são elementos de A.

Observe que A é transitivo sse $\bigcup A \subseteq A$ (" $\leftrightarrow A \subseteq \mathcal{P}A$ ").

Exemplo São transitivos: \emptyset , $\{\emptyset\}$, $\{\emptyset, \{\emptyset\}\}$, $\{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}$, $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$; enquanto que $\{\emptyset, \{\{\emptyset\}\}\}\}$ não é transitivo pois $\{\emptyset\} \in \{\{\emptyset\}\}\} \in A$, mas $\{\emptyset\} \notin A$. Se $x = \{x\}$ (i.e. $x \in x$) então x seria transitivo.

11. Definição. Um conjunto A se diz um **ordinal** sse A é transitivo e bem ordenado $por \in (i.e., \langle A, \in_A \rangle$ é uma boa ordem onde $\in_A = \{\langle x, y \rangle : x \in A \land y \in A \land x \in y\}).$

 $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\}$ não é totalmente ordenado por \in logo não é bem ordenado e não é ordinal. Também, $x = \{x\}$ não é ordinal (pois não vale a não-reflexividade $\neg(x \in x)$).

Notação Se x é um ordinal e $y \in x$ escrevemos $\operatorname{pred}(x, y)$ ao invés de $\operatorname{pred}(x, y, \in)$ e $\langle A, R \rangle \simeq x$ ao invés de $\langle A, R \rangle \simeq \langle x, \in_x \rangle$.

12. Teorema (7.3).

- (i) Se $x \notin um \text{ ordinal } e y \in x, \text{ ent} \tilde{a} o y \notin ordinal } e \operatorname{pred}(x, y) = y.$
- (ii) Se x e y são ordinais e $x \simeq y$, então x = y.
- (iii) Se x e y são ordinais, então vale uma e apenas uma entre: $x \in y$, x = y e $y \in x$.
- (iv) Se x, y, z são ordinais e $x \in y$ e $y \in z$ então $x \in z$.
- (v) Se $C \neq \emptyset$ e todos o elementos de C são ordinais, então existe $b \in C$ tal que $(\forall x \in C)(b \in x \lor b = x)$, i.e., C tem $um \in minimo$.

Demonstração (i). Para mostrar que y é transitivo seja $u \in v \in y$. De x transitivo $v \in x$ e portanto $u \in x$. De $u \in v$ e $v \in y$ temos $u \in y$ pois \in é transitivo em x.

Como \in_y é uma restrição de \in_x ao conjunto $y \times y$ e \in_x é uma boa ordem sobre x, segue que \in_y é uma boa ordem sobre y. Logo y é ordinal.

 $\operatorname{pred}(x,y) \stackrel{\operatorname{def.}}{=} \{z \in x \colon z \in y\} \subseteq \{z \colon z \in y\} = y. \text{ Reciprocamente, se } z \in y \text{ então } z \in x \text{ (pois } x \text{ \'e transitivo e } y \in x \text{ e } z \in y) \text{ e portanto } z \in \operatorname{pred}(x,y) \text{ i.e. } y \subseteq \operatorname{pred}(x,y) \text{ portanto } y = \operatorname{pred}(x,y).$

(ii). Sejam x, y ordinais e $x \simeq y$. Suponhamos $x \neq y$. Então ou $x \setminus y \neq \emptyset$ ou $y \setminus x \neq \emptyset$, s.p.g. $x \setminus y \neq \emptyset$. Seja $z = \in \min(x \setminus y)$. Se $v \in z$ temos que $v \in x$ e $v \notin (x \setminus y)$ e portanto $v \in y$ i.e. $z \subseteq y$. Se z = y, então $x \simeq z = \operatorname{pred}(x, z)$ contra o lema 6.1 e portanto $z \subseteq y$ e $z \neq y$. Logo existe $w = \in \min(y \setminus z)$.

Como antes $w\subseteq z$. Vamos verificar que também $z\subseteq w$: Seja $v\in z$, como $z\subseteq y$, $v\in y$, e v e w são elementos de y. Por tricotomia, $v\in w$ ou v=w ou $w\in v$. Se v=w ou $w\in v$ então $w\in z$, contra $w\in y\setminus z$. Logo $v\in w$ e portanto $z\subseteq w$. Portanto $z=w\in y$ contra $z\in x\setminus y$.

- (iii). Pelo teorema 6.3 ou $x \simeq y$ ou $x \simeq \operatorname{pred}(y, w) = w$, $(w \in y)$, ou $\operatorname{pred}(x, v) \simeq y$ $(v \in x)$. No primeiro caso x = y. No segundo caso $x = w \in y$ portanto $x \in y$, e no terceiro caso v = y portanto $y \in x$.
- (v). Seja $y \in C$. Se $\neg(y = \in -\min(C))$, então existe $x \in C$ tal que $x \in y$ (por (iii)) i.e. $y \cap C \neq \emptyset$. Seja $z = \in -\min(y \cap C)$ $(0 \neq y \cap C \subseteq C)$. Seja $x \in C$, então $x \in z$ ou x = z ou $z \in x$. Se $x \in z$ então $x \in y$ (pois $z \in y$) e portanto $x \in y \cap C$ contra a minimalidade de z em $y \in C$.
- **13.** Corolário. $\neg \exists A \forall x (x \ \'e \ um \ ordinal \ \rightarrow x \in A)$.

Demonstração Se existisse tal A então existiria

$$OR = \{x : x \text{ \'e ordinal}\} = \{x \in A : x \text{ \'e ordinal}\}$$

e por (i) OR é transitivo e por (iii), (iv), (v) é bem ordenado por \in , logo OR seria um ordinal e portanto OR \in OR contra a não-reflexividade das relações de ordem.

Dia 4/4/97

14. Lema (7.5). Se A é um conjunto de ordinais e A é transitivo, então A é um ordinal.

Demonstração Como A é transitivo basta verificar que $\langle A, \in \rangle$ é uma boa ordem: os items (iii), (iv), (v) mostram que $\langle A, \in \rangle$ satisfaz a tricotomia, é tansitiva e todo subconjunto não vazio C de A tem mínimo.

15. Teorema (7.6). Seja $\langle A, R \rangle$ uma boa ordem. Então existe um único ordinal C tal que $\langle A, R \rangle \simeq C$.

Demonstração A unicidade segue do teorema 7.3(ii). Para existência, seja

$$B = \{a \in A : \exists x (x \text{ \'e ordinal} \land \langle \operatorname{pred}(A, a, R), R \rangle \simeq x)\}.$$

Notação $A_a = \operatorname{pred}(A, a, R)$, para $a \in A$.

Pelo teorema 7.3(ii), para cada $a \in B$, existe na realidade um único ordinal x tal que $\langle A_a, R \rangle \simeq x$. Vamos denotar por f(a) este único ordinal x.

Seja $C = \operatorname{im} f = \{f(a) : a \in B\}$. Vamos verificar que C é um ordinal, que f é isomorfismo entre $\langle B, R \rangle$ e C e que B = A.

Que C é um ordinal: Pelo lema 7.5 é suficiente verificar que C é transitivo. Sejam $x \in C$ e $y \in x$. De $x \in C$ segue que x = f(a) para algum $a \in B$. Como $a \in B$ e x = f(a) existe $g: A_a \to x$ isomorfismo entre $\langle A_a, R \rangle$ e x, portanto $g^{-1}: x \to A_a$ é isomorfismo entre $x \in \langle A_a, R \rangle$, e pelo Fato 2

$$g^{-1} \upharpoonright y = g^{-1} \upharpoonright \operatorname{pred}(x, y)$$

é isomorfismo entre $y \in \langle A_{g^{-1}(y)}, R \rangle$.

Seja $b=g^{-1}(y)$; temos então que $\langle A_b,R\rangle\simeq y$ portanto $b\in B$ e y=f(b) i.e. $y\in \mathrm{im}\, f=C$ e C é transitivo.

O axioma de separação garante a existência do conjunto

$$B = \{a \in A : \varphi(a, A, R)\}, \text{ onde } \varphi(a, A, R) : \exists x(x \text{ \'e ordinal} \land \langle \operatorname{pred}(A, a, R), R \rangle \simeq x).$$

A existência de

$$f = \{ z \in B \times C : \underbrace{(\exists a \in B) \exists x (x \text{ \'e ordinal} \land \langle A_a, R \rangle \simeq x \land z = \langle a, x \rangle)}_{\psi(z, B, R)} \}.$$

decorre do axioma de separação desde que tenhamos a existência de C. De

$$(\forall a \in B) \exists ! x (\underbrace{x \text{ \'e ordinal} \land \langle A_a, R \rangle \simeq x}).$$

temos, pelo axioma de substituição,

$$\exists X \forall a \in B \exists x \in X \varphi'(a, x, A, R)$$

e, por separação existe

$$C = \{x \in X : (\exists a \in B)\varphi'(a, x, A, R)\} = \{x : (\exists a \in B)\varphi'(a, x, A, R)\}.$$

Obviamente, f é sobrejetora; temos que verificar que preserva a ordem: Sejam $a_1, a_2 \in B$, a_1Ra_2 , e sejam $g_i \colon A_{a_i} \to f(a_i)$ os isomorfismos entre $\langle A_{a_i}, R \rangle$ e $f(a_i)$. $a_1 \in A_2$ portanto $g_2 \upharpoonright \operatorname{pred}(A_{a_2}, a_1, R) = g_2 \upharpoonright A_{a_1}$ é isomorfismo entre $\langle A_{a_1}, R \rangle$ e $g_2(a_1) = \operatorname{pred}(f(a_2), g_2(a_1))$.

Pela unicidade de $f(a_1)$, $g_2(a_1) = f(a_1)$. Mas $g_2(a_1) \in f(a_2)$ e portanto $f(a_1) \in f(a_2)$. Logo f é um isomorfismo entre $\langle B, R \rangle$ e C.

Se $B \neq A$, seja $b = R\text{-min}(A \setminus B)$. Então, como no teorema 6.3, B = pred(A, b, R) (verifique!) e portanto f é um isomorfismo entre $\langle A_b, R \rangle$ e C; e portanto afinal $b \in B$ contra $b \in A \setminus B$.

Notação Dada uma boa ordem $\langle A, R \rangle$, vamos designar por type(A, R) ao único ordinal C tal que $\langle A, R \rangle \simeq C$. type(A, R) se chama o **tipo de ordem** de $\langle A, R \rangle$; em alguns livros aparece com o.t.(A, R) e em português as vezes se usa t.o.(A, R).

Notação Vamos usar letras minúsculas gregas $\alpha, \beta, \gamma, \xi, \zeta$, etc. para designar os ordinais. Assim, fórmulas do tipo $\exists \alpha \dots$ significam $\exists \alpha (\alpha \in \mathbb{C})$ e também usaremos < ao invés de \in entre os ordinais, i.e.,

$$\forall \alpha \forall \beta (\alpha < \beta \overset{\text{def.}}{\leftrightarrow} \alpha \in \beta).$$

e também serão usadas notações como:

- $\alpha \leq \beta \stackrel{\text{def.}}{\Leftrightarrow} \alpha < \beta \text{ ou } \alpha = \beta \Leftrightarrow \alpha \in \beta \text{ ou } \alpha = \beta.$
- $\alpha > \beta \stackrel{\text{def.}}{\Leftrightarrow} \beta < \alpha$.
- $\alpha \geq \beta \stackrel{\text{def.}}{\Leftrightarrow} \alpha > \beta$ ou $\alpha = \beta \Leftrightarrow \beta \in \alpha$ ou $\alpha = \beta$.

16. Lema (7.9).

- (i) $\forall \alpha, \beta (\alpha \leq \beta \leftrightarrow \alpha \subseteq \beta)$.
- (ii) Se X é um conjunto de ordinais então $\bigcup X$ é o supremo de X e, para $X \neq 0$, $\bigcap X$ é o mínimo de X.

Demonstração (i). (\rightarrow): Seja $\alpha \leq \beta$ i.e. $\alpha \in \beta$ ou $\alpha = \beta$. Como β é transitivo e $\alpha \in \beta$ segue que $\alpha \subseteq \beta$. Logo em qualquer caso $\alpha \subseteq \beta$.

 (\leftarrow) : Sejam α, β ordinais tais que $\alpha \subseteq \beta$. Para provar que $\alpha \leq \beta$ (i.e. $\alpha \in \beta$ ou $\alpha = \beta$) é suficiente, por 7.3(iii), verificar que $\beta \notin \alpha$.

Se $\beta \in \alpha$ então $\beta \subseteq \alpha$, que junto com a hipótese implica $\alpha = \beta$ e portanto $\alpha \in \alpha$, absurdo.

(ii). $\bigcup X$ é um conjunto de ordinais (pois $x \in \bigcup X \Rightarrow \exists \alpha \in X$ tal que $x \in \alpha$ e portanto por 7.3(i) x é um ordinal) e pelo exercício 2(iii) da lista 2, $\bigcup X$ é transitivo. Logo $\bigcup X$ é um ordinal, digamos $\bigcup X = \sigma$.

Seja $\alpha \in X$, então $\alpha \subseteq \bigcup X = \sigma$ portanto por (i) $\alpha \le \sigma$. Seja β um majorante de X – i.e. $(\forall \alpha \in X) \alpha \le \beta$ – novamente por (i) $(\forall \alpha \in X) \alpha \subseteq \beta$ portanto $\bigcup \{\alpha \colon \alpha \in X\} \subseteq \beta$ i.e. $\sigma = \bigcup X \subseteq \beta$ e mais uma vez por (i) $\sigma \le \beta$ i.e. σ é o menor dos majorantes, i.e. $\sigma = \sup(X)$, i.e.

$$\sup(X) = \bigcup X.$$

Seja $0 \neq X$ um conjunto de ordinais. Por 7.3(v) existe $\mu = \min(X)$ i.e. $(\forall \alpha \in X)\mu \leq \alpha$ portanto, por (i), $(\forall \alpha \in X)\mu \subseteq \alpha$ e portanto $\mu \subseteq \bigcap \{\alpha \colon \alpha \in X\} = \bigcap X$. Mas $\mu \in X$, logo $\bigcap X \subseteq \mu$. De $\mu \subseteq \bigcap X$ e $\bigcap X \subseteq \mu$ segue $\bigcap X = \mu = \min(X)$.

Seja α um ordinal e seja α^+ o "sucessor imediato" de α nos ordinais (veja exercício 1(ii) lista 2) i.e. $\alpha \in \alpha^+$ e $\neg \exists \beta (\alpha \in \beta \in \beta^+)$. Quem seria α^+ ? $\alpha \in \alpha^+$ portanto $\alpha \subseteq \alpha^+$. $\alpha, \{\alpha\} \subseteq \alpha^+$ portanto $\beta = \alpha \cup \{\alpha\} \subseteq \alpha^+$. Então $\alpha < \alpha \cup \{\alpha\} \le \alpha^+$ i.e. $\alpha \in \beta \le \alpha^+$. Não poderia ser $\beta < \alpha^+$ pois $\alpha \in \beta \in \alpha^+$ não vale. Portanto $\alpha \in \beta = \alpha^+$.

17. Definição. $S(x) = x \cup \{x\}$.

<u>Fato</u>¹ Para todo α , $S(\alpha)$ é um ordinal e $S(\alpha)$ é o sucessor imediato de α nos ordinais, i.e.

$$\alpha < S(\alpha)$$
, e $\forall \beta (\beta < S(\alpha) \leftrightarrow \beta < \alpha \text{ ou } \beta = \alpha)$.

- **18.** Definição. Um ordinal α se diz um ordinal sucessor se $\alpha = S(\beta)$ para algum β ; e se diz um ordinal limite se $\alpha \neq 0$ e α não é ordinal sucessor.
- **19.** Definição. 0 = vazio, 1 = S(0), 2 = S(1), ...
 - $1 = 0 \cup \{0\} = \{0\}$
 - $2 = 1 \cup \{1\} = \{0, 1\} = \{0, \{0\}\}\$
 - $3 = 2 \cup \{2\} = \{0, 1, 2\}.$
- 20. Definição. Um ordinal α se diz um número natural se

$$\forall \beta \leq \alpha (\beta = 0 \lor \beta \ \textit{\'e um ordinal sucessor}).$$

Dia 9/4/97

Se α é um ordinal sucessor, i.e. $\alpha = S(\beta)$ para algum β , então dizemos que β é **antecessor** de α .

Exercício

- a) Se α é um ordinal successor, então $\sup(\alpha) = \bigcup \alpha = \beta$, onde β é o antecessor de α .
- b) Se α é um ordinal limite (ou 0), então $\sup(\alpha) = \bigcup \alpha = \alpha$.

 $^{^{1}}$ exercício 3(i) lista 2.

- c) Toda boa ordem é completa i.e. se $\langle A, R \rangle$ é boa ordem e todo $B \subseteq A, B \neq 0$ é limitado superiormente, então B tem sup.
- d) Seja $f: \lambda \to \mu$. Se f for não-decrescente i.e.

$$(\forall \alpha, \beta \in \lambda) (\alpha \leq \beta \rightarrow f(\alpha) \leq f(\beta))$$

e **contínua** i.e. $\forall \alpha \in \lambda$, α limite, $f(\alpha) = \sup \{f(\xi) : \xi < \alpha\}$, então para todo $X \subseteq \lambda$ tal que $\sup X < \lambda$,

$$f(\sup X) = \sup \{ f(\xi) : \xi \in X \} = \sup (f[X]).$$

e) Ache o número natural 3 da estrutura (\mathbb{N}, E) do exercício 8 da lista 1.

Propriedades dos números naturais.

- 0 é natural.
- Se n é natural então S(n) é natural.
- Se n é natural e $\alpha < n$ então α é natural.
- Se existe algum ordinal α maior que todos os naturais, então existe o menor entre estes ordinais digamos ω , e ω é ordinal limite, é o menor ordinal limite e

$$\forall \alpha \, (\alpha \in \omega \leftrightarrow \alpha \, \text{\'e n\'umero natural})$$

i.e. ω é o conjuntos de todos os naturais.

- As mesmas conclusões valem se assumimos que existe pelo menos um ordinal limite, e também o mesmo vale se assumimos que existe algum conjunto "indutivo" A i.e. A tal que
 - (i) $0 \in A$.
 - (ii) $(\forall x \in A)S(x) \in A$.

pois, é fácil de ver que se A é indutivo, então

$$\forall n \ (n \in n \text{ \'umero natural} \rightarrow n \in A)$$
.

De fato: Se existisse n natural tal que $n \notin A$, existiria $m = \min(S(n) \setminus A)$ ($\neq 0$ pois $n \in S(n) \setminus A$). Como $m \notin A$, $m \neq 0$, e portanto m = S(k) para algum k natural, k < m, portanto $k \in A$ e por (ii) $m = S(k) \in A$.

7. Axioma do Infinito: Diz que existe algum conjunto indutivo, i.e.

$$\exists A (0 \in A \land (\forall x \in A) S(x) \in A).$$

21. Definição. Seja

$$\omega = \{x \in A : x \notin n \text{\'umero natural}\} = \{x : x \notin n \text{\'atural}\}.$$

 ω é um ordinal limite e é o primeiro ordinal limite.

 ω com o 0 e a função σ : $\omega \to \omega$, $\sigma = \{\langle n, S(n) \rangle : n \in \omega \}$, satisfaz os **Postulados de Peano**:

- $0 \in \omega$.
- $(\forall n \in \omega) S(n) \in \omega$.
- $(\forall m, n \in \omega)(m \neq n \to S(m) \neq S(n))$. [segue de 2(v) da lista 2]
- Princípio da Indução Finita (P.I.F.):

$$(\forall X \subseteq \omega) \left[(0 \in X \land (\forall n \in X) \, S(n) \in X) \to X = \omega \right].$$

Demonstração do PIF: Se $X \neq \omega$, seja $m = \min(\omega \setminus X)$. $m \neq 0$ (pois $0 \in X$) portanto m = S(n) para algum n. Como n < m, $n \in X$ e portanto $m = S(n) \in X$.

Aritmética Ordinal

Sejam α e β dois ordinais, e seja R a seguinte relação sobre o conjunto

$$A = (\alpha \times \{0\}) \cup (\beta \times \{1\}),$$

 $R = \{ \langle \langle \xi, 0 \rangle, \langle \eta, 0 \rangle \rangle : \xi < \eta < \alpha \} \cup \{ \langle \langle \xi, 1 \rangle, \langle \eta, 1 \rangle \rangle : \xi < \eta < \beta \} \cup \{ \langle \langle \xi, 0 \rangle, \langle \eta, 1 \rangle \rangle : \xi < \alpha, \ \eta < \beta \} \,.$

 $\langle A, R \rangle$ é uma boa ordem e por isso existe o type(A, R) que é o único ordinal δ isomorfo a $\langle A, R \rangle$. **Definimos** $\alpha + \beta = \text{type}(A, R)$.

Notação Fixado α , para cada β sejam

$$A_{\beta} = \alpha \times \{0\} \cup \beta \times \{1\}$$

e R_{β} anteriormente definida e

$$f_{\beta} \colon A_{\beta} \to \alpha + \beta$$

o único isomorfismo entre $\langle A_{\beta}, R_{\beta} \rangle$ e $\alpha + \beta$.

Então para cada $\xi < \beta$

- $\operatorname{pred}(A_{\beta}, \langle \xi, 1 \rangle, R_{\beta}) = A_{\xi}.$
- $R_{\xi} = R_{\beta} \cap (A_{\xi} \times A_{\xi})$ i.e. " $R_{\xi} = R_{\beta} \upharpoonright A_{\xi}$ ".

 $f_{\beta} \upharpoonright A_{\xi} = f_{\beta} \upharpoonright \operatorname{pred}(A_{\beta}, \langle \xi, 1 \rangle, R_{\beta})$ é isomorfismo entre $\langle A_{\xi}, R_{\xi} \rangle$ e $f_{\beta}(\langle \xi, 1 \rangle)$ portanto $f_{\beta}(\langle \xi, 1 \rangle) = \alpha + \xi$ (pois $\langle A_{\xi}, R_{\xi} \rangle \simeq \alpha + \xi$) e $f_{\xi} = f_{\beta} \upharpoonright A_{\xi}$ e como $f_{\beta}(\langle \xi, 1 \rangle) \in \alpha + \beta$, segue que $\alpha + \xi < \alpha + \beta$.

Exercício Veja os exercícios 2 e 3 do primeiro capítulo do Kunen.

22. Lema (7.8).

(i)
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$
.

(ii)
$$\alpha + 0 = \alpha$$
.

(iii)
$$\alpha + 1 = S(\alpha)$$
.

(iv)
$$\alpha + S(\beta) = S(\alpha + \beta)$$
.

(v) Se β é um ordinal limite, então $\alpha + \beta = \sup \{\alpha + \xi \colon \xi < \beta\}$.

Demonstração (i).

$$\begin{array}{l} \alpha + (\beta + \gamma) \simeq \langle (\alpha \times \{0\}) \cup ((\beta + \gamma) \times \{1\}), R \rangle \simeq \\ \langle \alpha \times \{0\} \cup ((\beta \times \{1\}) \cup (\gamma \times \{2\})), R' \rangle \simeq \langle (\alpha \times \{0\} \cup (\beta \times \{1\})) \cup (\gamma \times \{2\}), R' \rangle \simeq \\ \langle (\alpha + \beta) \times \{0\} \cup \gamma \times \{1\}, R \rangle \simeq (\alpha + \beta) + \gamma. \end{array}$$

(iv).

$$\begin{array}{l} \alpha+S(\beta)\simeq\langle\alpha\times\{0\}\cup S(\beta)\times\{1\},R\rangle=\\ \langle\alpha\times\{0\}\cup(\beta\times\{1\}\cup\{\beta\}\times\{1\}),R\rangle=\langle(\alpha\times\{0\}\cup\beta\times\{1\})\cup\{\langle\beta,1\rangle\},R\rangle\simeq\\ \langle(\alpha+\beta)\times\{0\}\cup\{\langle0,1\rangle\},R'\rangle & (R'\text{ diz Que }\langle0,1\rangle\text{ \'e maior Que todo o resto.})\\ \simeq S(\alpha+\beta). \end{array}$$

(v).

$$\alpha + \beta = f_{\beta}[A_{\beta}] \stackrel{?}{=} f_{\beta} \left[\bigcup \left\{ A_{\xi} \colon \xi < \beta \right\} \right] = \bigcup \left\{ f_{\beta}[A_{\xi}] \colon \xi < \beta \right\} = \bigcup \left\{ \alpha + \xi \colon \xi < \beta \right\}.$$

Se β é um ordinal limite então

$$A_{\beta} = \bigcup \{ A_{\xi} \colon \xi < \beta \} .$$

Lembrando que $A_{\beta} = \alpha \times \{0\} \cup \beta \times \{1\}$, faltaria verificar que um elemento do tipo $\langle \eta, 1 \rangle \in A_{\beta}$ também está em $\bigcup \{A_{\xi} : \xi < \beta\}$.

 $\langle \eta, 1 \rangle \in A_{\beta} \Rightarrow \eta < \beta$, e como β é ordinal limite, $S(\eta) < \beta$ (pois certamente $S(\eta) \leq \beta$ e $S(\eta) \neq \beta$, senão β seria ordinal sucessor).

Logo $\eta \in S(\eta) = \xi < \beta$ e portanto $\langle \eta, 1 \rangle \in \xi \times \{1\} \subseteq A_{\xi}$ e portanto $\langle \eta, 1 \rangle \in \bigcup \{A_{\xi} : \xi < \beta\}.$

Exercício Observe que as propriedades (ii), (iv) e (v) caracterizam a adição, i.e. fixado α , se f for uma função tal que

(i)
$$f(0) = \alpha$$
,

(ii)
$$f(S(\beta)) = S(f(\beta)),$$

(iii) para β limite $f(\beta) = \sup \{ f(\xi) : \xi < \beta \},$

então $\forall \beta f(\beta) = \alpha + \beta$.

A adição não é comutativa $(1 + \omega \neq \omega + 1)$, preserva a ordem "pela direita" i.e. $\forall \alpha, \beta, \gamma (\beta < \gamma \rightarrow \alpha + \beta < \alpha + \gamma)$ mas não a preserva "estritamente pela esquerda" i.e. $\forall \alpha, \beta, \gamma (\alpha \leq \beta \rightarrow \alpha + \gamma \leq \beta + \gamma)$, mas não se pode garantir que se $\alpha < \beta$ então $\alpha + \gamma < \beta + \gamma$. Contra-exemplo: 0 < 1 mas $0 + \omega = 1 + \omega!$!

Multiplicação

 $\alpha \cdot \beta$: Sejam $M = \beta \times \alpha$ e L a relação **lexicográfica** sobre M i.e.

$$\langle \xi, \eta \rangle L \langle \xi', \eta' \rangle \stackrel{\text{def.}}{\Leftrightarrow} (\xi < \xi' \lor (\xi = \xi' \land \eta < \eta')).$$

 $\langle M, L \rangle$ é uma boa ordem; **definimos** $\alpha \cdot \beta = \operatorname{type}(M, L)$.

Exemplo $2 \cdot \omega = \omega$ e $\omega \cdot 2 = \omega + \omega \neq \omega$.

Exercício

$$\alpha + \sup X \stackrel{?}{=} \sup \left\{ \alpha + \xi \colon \xi \in X \right\}.$$

$$\sup X + \alpha \stackrel{?}{=} \sup \left\{ \xi + \alpha \colon \xi \in X \right\}.$$

Dia 11/4/97

Exercício Seja $\langle A, R \rangle$ uma boa ordem e sejam $x \in A$ e $B \subseteq A$. Mostre que:

- (i) type(pred(A, x, R), R) < type(A, R).
- (ii) $\beta = \text{type}(B, R) \le \text{type}(A, R) = \alpha$.

Mostre com algum exemplo que é possível $B \subsetneq A$ e $\beta = \alpha$.

Exercício Com A, x, R como antes, moste que não existe $f: A \to \operatorname{pred}(A, x, R)$ tal que f preserva a ordem entre as estruturas $\langle A, R \rangle$ e $\langle \operatorname{pred}(A, x, R), R \rangle$. Sug.: exercício 1(i) da lista 2.

Vimos $\alpha + \beta = \text{type}(\alpha \times \{0\} \cup \beta \times \{1\})$. Para todo α, β, γ :

- (i) $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$.
- (ii) $\alpha + 0 = \alpha$.
- (iii) $\alpha + 1 = S(\alpha)$.
- (iv) $\alpha + S(\beta) = S(\alpha + \beta)$.
- (v) Se β é um ordinal limite, então $\alpha + \beta = \sup \{\alpha + \xi \colon \xi < \beta\}$.

e as propriedades (ii), (iv) e (v) caracterizam a adição. Vimos também

$$\forall \alpha, \beta, \gamma (\beta < \gamma \rightarrow \alpha + \beta < \alpha + \gamma).$$

$$\forall \alpha, \beta, \gamma (\alpha \leq \beta \rightarrow \alpha + \gamma \leq \beta + \gamma)$$
; é possível² $\alpha < \beta$ e $\alpha + \gamma = \beta + \gamma$.

 $\alpha \leq \beta \to \exists ! \delta$ tal que $\alpha + \delta = \beta;$ nem sempre é possível achar δ tal que $\delta + \alpha = \beta$ (com $\alpha \leq \beta).^3$

$$\alpha + \sup X \stackrel{?}{=} \sup \{\alpha + \xi : \xi \in X\}.$$

$$\sup X + \alpha \stackrel{?}{=} \sup \left\{ \xi + \alpha \colon \xi \in X \right\}.$$

Produto de ordinais

$$\alpha \cdot \beta \stackrel{\text{def}}{=} \operatorname{type}(\beta \times \alpha, L)$$
 e $g_{\beta} \colon \beta \times \alpha \to \alpha \cdot \beta$ o isomorfismo.

Se
$$\xi < \beta$$
, então $\xi \times \alpha = \operatorname{pred}(\beta \times \alpha, \langle \xi, 0 \rangle, L)$ e $g_{\xi} = g_{\beta} \upharpoonright \xi \times \alpha$, portanto $\alpha \cdot \xi < \alpha \cdot \beta$.

No caso β limite, observe que

$$\beta \times \alpha = \bigcup \{\xi \times \alpha \colon \xi < \beta\}.$$

Propriedades do produto. Para todo α, β, γ :

- (i) $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$.
- (ii) $\alpha \cdot 0 = 0$.
- (iii) $\alpha \cdot 1 = 1$.
- (iv) $\alpha \cdot S(\beta) = \alpha \cdot \beta + \alpha$.
- (v) β limite $\Rightarrow \alpha \cdot \beta = \sup \{\alpha \cdot \xi : \xi < \beta\}$.
- (vi) $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$.

Demonstração (i).

$$\alpha \cdot (\beta \cdot \gamma) \simeq \langle (\beta \cdot \gamma) \times \alpha, L \rangle \simeq \langle (\gamma \times \beta) \times \alpha, L' \rangle \simeq \langle \gamma \times (\beta \times \alpha), L'' \rangle \simeq \langle \gamma \times (\alpha \cdot \beta), L \rangle \simeq (\alpha \cdot \beta) \cdot \gamma.$$

 $^{^{2}0 &}lt; 1 e 0 + \omega = 1 + \omega.$

 $^{^{3}\}omega < \omega + 1, \, \delta + \omega \neq \omega + 1.$

(iv).

$$\alpha \cdot S(\beta) \simeq \langle (\beta \cup \{\beta\}) \times \alpha, L \rangle = \langle (\beta \times \alpha) \cup ((\{\beta\} \times \alpha)), L \rangle \simeq \langle ((\alpha \cdot \beta) \times \{0\}) \cup (\alpha \times \{1\}), R \rangle \simeq \alpha \cdot \beta + \alpha.$$

(v).

$$\alpha \cdot \beta = g_{\beta}[\beta \times \alpha] = g_{\beta} \left[\bigcup \left\{ \xi \times \alpha \colon \xi < \beta \right\} \right] =$$

$$= \bigcup \left\{ g_{\beta}[\xi \times \alpha] \colon \xi < \beta \right\} = \bigcup \left\{ g_{\xi}[\xi \times \alpha] \colon \xi < \beta \right\} =$$

$$= \bigcup \left\{ \alpha \cdot \xi \colon \xi < \beta \right\} = \sup \left\{ \alpha \cdot \xi \colon \xi < \beta \right\}.$$

Em particular para $f(\beta) = \alpha \cdot \beta$ (para $\alpha \neq 0$ fixado) preserva a ordem e é contínua; deve valer então: $\alpha \cdot \sup X = \sup \{\alpha \cdot \xi \colon \xi \in X\}$. É possível que $(\sup X) \cdot \alpha \neq \sup \{\xi \cdot \alpha \colon \xi \in X\}$, tome, por exemplo, $X = \omega$ e $\alpha = \omega$.

(vi). Usando (ii), (iv) e (v): Dados α , β suponhamos que existe γ tal que $\alpha \cdot (\beta + \gamma) \neq \alpha \cdot \beta + \alpha \cdot \gamma$. Seja γ_0 o mínimo desses γ .

- $\gamma_0 \neq 0$, pois $\alpha \cdot (\beta + 0) = \alpha \cdot \beta = \alpha \cdot \beta + 0 = \alpha \cdot \beta + \alpha \cdot 0$.
- γ_0 não pode ser $S(\delta)$, pois se $\gamma_0 = S(\delta)$, então $\delta < \gamma_0$, donde $\alpha \cdot (\beta + \delta) = \alpha \cdot \beta + \alpha \cdot \delta$ e portanto $\alpha \cdot (\beta + \gamma_0) = \alpha \cdot (\beta + S(\delta)) = \alpha \cdot S(\beta + \delta) = (\alpha \cdot \beta + \alpha \cdot \delta) + \alpha = \alpha \cdot \beta + \alpha \cdot S(\delta) = \alpha \cdot \beta + \alpha \cdot \gamma_0$.
- γ_0 não pode ser limite, pois para γ_0 limite $\alpha \cdot (\beta + \gamma_0) = \alpha \cdot \sup \{\beta + \xi : \xi < \gamma_0\} = \sup \{\alpha \cdot (\beta + \xi) : \xi < \gamma_0\} = \sup \{\alpha \cdot \beta + \alpha \cdot \xi : \xi < \gamma_0\} = \alpha \cdot \beta + \sup \{\alpha \cdot \xi : \xi < \gamma_0\} = \alpha \cdot \beta + \alpha \cdot \gamma_0.$

Exercício Para $\alpha \neq 0$, $\beta < \gamma \rightarrow \alpha \cdot \beta < \alpha \cdot \gamma$ e $\beta \cdot \alpha \leq \gamma \cdot \alpha$.

Algoritmo de Euclides: $0 \neq \alpha \leq \beta \rightarrow \exists ! \delta, \rho$ tais que $\beta = \alpha \cdot \delta + \rho$ e $\rho < \alpha$.

Dado um conjunto A, para cada $n \in \omega$ existe o conjunto de todas as funções de n em A, que será denotado por nA ou A^n ; e existe o conjunto de todas as funções definidas em algum $n \in \omega$ com valores em A; que seria denotado por ${}^{<\omega}A$ ou $A^{<\omega} = \bigcup \{{}^nA \colon n \in \omega\}$: é o conjunto de todas as sequências finitas de A.

As vezes escrevemos $\langle x_i \colon i \in X \rangle$ para designar a função f de domínio I tal que f(i) = x.

$$\langle x_i \colon i \in I \rangle = f = \{ \langle i, x \rangle \colon i \in I \} .$$

Para dom f = n, dizemos que f é uma sequência finita de comprimento n.

- dom $f = \omega$: f é uma sequência.
- dom $f = \alpha$: f é uma sequência de comprimento α .

 $^{^41 &}lt; 2 \text{ mas } 1 \cdot \omega = 2 \cdot \omega.$

Se s e t são sequências de comprimento α e β , respectivamente, define-se a **concatenação** de s e t como sendo a sequencia $s^{-}t$ de comprimento $\alpha + \beta$, tal que

$$s^{\hat{}}t \upharpoonright \alpha = s$$

 $\forall \xi < \beta \ s^{\hat{}}t(\alpha + \xi) = t(\xi).$

Ponha $X=\{n\in\omega\colon\exists Y\forall s(s\in Y\leftrightarrow\varphi(s,n,A))\},$ onde $\varphi(s,n,A)\colon$ s é uma função de n em A.

- $0 \in X$, $Y = \{0\}$ serve $(0 \notin a \text{ única função de } 0 \text{ em } A)$.
- Suponha que $n \in X$, seja Y_n tal que $\forall s (s \in Y_n \leftrightarrow \varphi(s, n, A))$ e seja $Z = Y_n \times A$, então é verdade que $\forall z \in Z \exists ! s (z = \langle y, a \rangle \land s = y^{\wedge} \langle a \rangle)$.

Seja $\psi(z, s, Y_n, A)$: $(\exists y \in Y_n)(\exists a \in A)(z = \langle y, a \rangle \land s = y \land \langle a \rangle)$. Pelo axioma de substituição $\exists Y \forall z \in Z \exists s \in Y \ \psi(z, s, Y_n, A)$. Definimos

$$Y_{n+1} = \{ s \in Y : \psi(z, s, Y_n, A) \} = \{ s : \psi(z, s, Y_n, A) \}$$

e Y_{n+1} (que seria o conjunto de todas as funções de n+1 em A) satisfaz a fórmula

$$\forall s (s \in Y_{n+1} \leftrightarrow \varphi(s, n+1, A)),$$

portanto, pelo P.I.F., $X = \omega$.

Por extensionalidade $(\forall n \in \omega)(\exists ! Y)$ tal que $\varphi(s, n, A)$ e denotamos este único Y por ${}^{n}A$ ou A^{n} .

$$(\forall n \in \omega)(\exists!z) (z = {}^{n}A)$$

$$(\exists Y)(\forall n \in \omega)(\exists z \in Y) (z = {}^{n}A)$$

$$T = \{z \in Y : (\exists n \in \omega)z = {}^{n}A\} = \{{}^{n}A : n \in \omega\}$$

$$e^{<\omega}A = \bigcup T = \bigcup \{{}^{n}A : n \in \omega\}.$$

Classes

Exemplo $V = \{x : x = x\}$, $ON = \{x : x \text{ \'e ordinal}\}$.

$$y \in \{x : \varphi(x)\}\$$
equivale a $\varphi(y)$.

Notação em negrito indicaria classes.

23. Teorema. Se $0 \neq C$ e $C \subseteq ON$, então C tem mínimo.

Demonstração Como $\mathbf{C} \neq 0$, seja $\alpha \in \mathbf{C}$. Se α não é mínimo de \mathbf{C} toma-se o mínimo de $\alpha \cap \mathbf{C}$ (que é conjunto por separação) e este será o mínimo de \mathbf{C} .

Na realidade teríamos alguma fórmula $\psi(x, z_1, \ldots, z_n)$ (z_1, \ldots, z_n) parâmetros) e estamos considerando $\mathbf{C} = \{x \colon \psi(x, \vec{z})\}$ e o enunciado do teorema acima seria $\forall z_1 \ldots \forall z_n$

$$\exists x \psi(x, \vec{z}) \land \forall x \, (\psi(x, \vec{z}) \to x \text{ \'e um ordinal}) \to \exists x \psi(x, \vec{z}) \land \forall y \, (\psi(x, \vec{z}) \to x \leq y) \, .$$

Dia 18/4/97

Demonstrações por indução sobre boas ordens

Seja $\langle A, R \rangle$ uma boa ordem. Então

$$(\forall B \subseteq A)[(\forall x \in A)(\operatorname{pred}(A, x, R) \subseteq B \to x \in B) \to B = A].$$

Demonstração Se não, seja $z = R - \min(A \setminus B)$. Então $(\forall y \in A)(yRz \to y \in B)$, i.e. pred $(A, z, R) \subseteq B$, e, portanto, $z \in B$, uma contradição!

Por exemplo, no exercício 1 da lista 2, seja $f: A \longrightarrow A$ crescente. Definamos $B = \{x \in A : xRf(x) \lor x = f(x)\}$. Suponha pred $(A, x, R) \subseteq B$, para algum $x \in A$. Se tivéssemos f(x)Rx, então teríamos f(f(x))Rf(x), pois f preserva a ordem. Mas $f(x) \in \operatorname{pred}(A, x, R)$, e, daí, $f(x) \in B$. Sendo assim f(x)Rf(f(x)) ou f(x) = f(f(x)), e chegamos a um absurdo. Logo xRf(x) ou x = f(x), e $x \in B$.

No caso de um ordinal λ , teríamos:

$$(\forall C \subseteq \lambda)[(\forall \alpha < \lambda)(\alpha \subseteq C \to \alpha \in C) \to C = \lambda].$$

Como temos boa-ordem na classe dos ordinais, também vale:

$$(\forall \mathbf{C} \subseteq \mathbf{ON})[\forall \alpha (\alpha \subseteq \mathbf{C} \to \alpha \in \mathbf{C}) \to \mathbf{C} = \mathbf{ON}],$$

onde C seria a classe $\{\alpha \in \mathbf{ON} : \psi(\alpha)\}$. Rescrevendo em termos de ψ , temos:

$$\forall x(\psi(x) \to x \in \mathbf{ON}) \to [\forall \alpha((\forall \beta < \alpha)\psi(\beta) \to \psi(\alpha)) \to \forall \alpha\psi(\alpha)].$$

É comum nas demonstrações por "indução transfinita sobre os ordinais", fazer as seguintes três verificações:

- 1. $0 \in \mathbf{C}$,
- 2. se $\alpha \in \mathbb{C}$, então $S(\alpha) \in \mathbb{C}$, e,
- 3. se α é limite e $(\forall \beta < \alpha)\beta \in \mathbf{C}$, então $\alpha \in \mathbf{C}$.

Disto também resulta que C = ON.

Em termos de ψ , corresponde a verificar:

- 1. $\psi(0)$,
- 2. se $\psi(\alpha)$, então $\psi(S(\alpha))$, e,
- 3. se α é limite e $(\forall \beta < \alpha)\psi(\beta)$, então $\psi(\alpha)$.

Disto tembém resulta que $\forall \alpha \psi(\alpha)$.

Exemplo Fixado α se **G** satisfaz:

- 1. $\mathbf{G}(0) = \alpha$,
- 2. $\mathbf{G}(S(\alpha)) = S(\mathbf{G}(\alpha)), e,$
- 3. para β limite, $\mathbf{G}(\beta) = \sup \{ \mathbf{G}(\xi) : \xi < \beta \},$

então $\forall \beta \mathbf{G}(\beta) = \alpha + \beta$.

É só verificar que $\psi(\beta)$: $\mathbf{G}(\beta) = \alpha + \beta$ satisfaz as três condições acima:

- 1. $\psi(0)$ vale, pois $\mathbf{G}(0) = \alpha = \alpha + 0$,
- 2. Suponha que $\psi(\beta)$, i.e. $\mathbf{G}(\beta) = \alpha + \beta$. Daí

$$\mathbf{G}(S(\beta)) = S(\mathbf{G}(\beta)) = S(\alpha + \beta) = \alpha + S(\beta),$$

logo $\psi(S(\beta))$,

3. Seja β limite e suponhamos que $(\forall \xi < \beta)\psi(\xi)$, i.e. $(\forall \xi < \beta)\mathbf{G}(\xi) = \alpha + \xi$. Então $\mathbf{G}(\beta) = \sup \{\mathbf{G}(\xi) \colon \xi < \beta\} = \sup \{\alpha + \xi \colon \xi < \beta\} = \alpha + \beta$, e $\psi(\beta)$ vale.

Recursão Transfinita sobre os ordinais

24. Teorema. Se $\mathbf{F} \colon \mathbf{V} \longrightarrow \mathbf{V}$ (i.e. $\mathbf{F} = \{\langle x, y \rangle : \varphi(x, y)\}$, onde $\forall x \exists ! y \varphi(x, y)$), então existe uma única $\mathbf{G} \colon \mathbf{ON} \longrightarrow \mathbf{V}$ tal que

$$\forall \alpha [\mathbf{G}(\alpha) = \mathbf{F}(\mathbf{G} \upharpoonright \alpha)].$$

Ou seja,

$$\mathbf{G}(0) = \mathbf{F}(0)$$

$$\mathbf{G}(1) = \mathbf{F} (\mathbf{G} \upharpoonright 1) = \mathbf{F} (\{\langle 0, \mathbf{G}(0) \rangle\})$$

$$\mathbf{G}(2) = \mathbf{F} (\mathbf{G} \upharpoonright 2) = \mathbf{F} (\{\langle 0, \mathbf{G}(0) \rangle, \langle 1, \mathbf{G}(1) \rangle\})$$
:

Formalmente: dada uma $\varphi(x,y)$ tal que $\forall x \exists ! y \varphi(x,y)$, existe uma $\psi(v,w)$ tal que

$$\forall \alpha \exists ! w \psi(\alpha, w) \land \forall \alpha \exists x \exists y (`x = \psi \upharpoonright \alpha' \land \psi(\alpha, y) \land \varphi(x, y)),$$

onde ' $x = \psi \upharpoonright \alpha$ ' seria a fórmula:

$$x \notin \text{função } \wedge \text{dom } x = \alpha \wedge (\forall \beta) \psi(\beta, x(\beta)).$$

A unicidade seria "dita" através de: se $\psi'(v, w)$ é uma fórmula satisfazendo as condições acima, então

$$\forall \alpha \forall y (\psi(\alpha, y) \leftrightarrow \psi'(\alpha, y)).$$

Demonstração Seja δ (um ordinal), dizemos que g é uma δ -aproximação (de G) se:

$$g$$
 é uma função \wedge dom $g = \delta \wedge (\forall \alpha < \delta)g(\alpha) = \mathbf{F}(g \upharpoonright \alpha).$

Observe que 'g é uma δ -aproximação' é uma fórmula $\pi(g, \delta)$.

1. Vamos provar que se g é uma δ -aproximação e g' é uma δ' -aproximação, então $g \upharpoonright \delta \cap \delta' = g' \upharpoonright \delta \cap \delta'$; por indução sobre $\alpha < \delta \cap \delta'$, vamos verificar que $g(\alpha) = g'(\alpha)$. Vê-se que

$$q(0) = \mathbf{F}(q \upharpoonright 0) = \mathbf{F}(0) = \mathbf{F}(q' \upharpoonright 0) = q'(0).$$

Suponhamos que $\alpha < \delta \cap \delta'$ e que $(\forall \beta < \alpha)g(\beta) = g'(\beta)$; vamos verificar que $g(\alpha) = g'(\alpha)$. De fato.

$$g(\alpha) = \mathbf{F}(g \upharpoonright \alpha) = \mathbf{F}(g' \upharpoonright \alpha) = g'(\alpha).$$

- 2. Vamos provar, também por indução transfinita sobre δ , que para todo δ existe uma δ -aproximação.
 - 1. para $\delta = 0$, seja g = 0,
 - 2. seja $\delta = \gamma + 1$ e suponha que g é uma γ -aproximação. Seja $h = g \cup \{\langle \gamma, \mathbf{F}(g) \rangle\}$. Por construção h é uma função de domínio dom $g \cup \{\gamma\} = \gamma \cup \{\gamma\} = \gamma + 1 = \delta$. Ainda, se $\alpha < \gamma$,

$$h(\alpha) = g(\alpha) = \mathbf{F}(g \upharpoonright \alpha) = \mathbf{F}(h \upharpoonright \alpha),$$

se $\alpha < \delta$, $\alpha = \gamma$

$$h(\gamma) = \mathbf{F}(g) = \mathbf{F}(h \upharpoonright \gamma).$$

Portanto h é uma δ -aproximação.

3. Seja δ um ordinal limite e suponha que exista uma γ -aproximação, para todo $\gamma < \delta$. Pelo item 1, temos que, para cada $\gamma < \delta$, existe uma única γ -aproximação g_{γ} . Seja

$$g = \bigcup \{g_{\gamma} : \gamma < \delta\}.$$

Vimos pelo item 1, que a família de funções $\{g_{\gamma} \colon \gamma < \delta\}$ é uma família de **funções compatíveis**. (\mathcal{F} é uma família de funções compatíveis se $(\forall f, f' \in \mathcal{F})f \upharpoonright (\text{dom } f \cap \text{dom } f') = f' \upharpoonright (\text{dom } f \cap \text{dom } f')$.) Logo g é uma função. Ainda,

$$\operatorname{dom} g = \bigcup \{\operatorname{dom} g_{\gamma} \colon \gamma < \delta\} = \bigcup \{\gamma \colon \gamma < \delta\} = \delta.$$

Se $\alpha < \delta$, $\gamma = \alpha + 1 < \delta$ e $g_{\gamma}(\alpha) = \mathbf{F}(g_{\gamma} \upharpoonright \alpha)$. Como $g(\alpha) = g_{\gamma}(\alpha)$ e $g \upharpoonright \alpha = g_{\gamma} \upharpoonright \alpha$,

$$g(\alpha) = \mathbf{F}(g \upharpoonright \alpha).$$

Portanto g é uma δ -aproximação.

Provamos que $\forall \delta \exists ! g$ tal que g é uma δ -aproximação. Podemos definir \mathbf{G} como sendo a "função-classe" tal que $\mathbf{G}(\alpha) = g(\alpha)$, para alguma (e portanto para toda) δ -aproximação com $\alpha < \delta$.

Formalmente: $\mathbf{G}(\alpha) = y$ seria dada por uma fórmula $\psi(\alpha, y)$ tal que

$$\exists \delta \exists q (\alpha < \delta \land \pi(q, \delta) \land y = q(\alpha)).$$

<u>Unicidade de G</u>: Suponha que G' satisfaz:

$$\forall \alpha [\mathbf{G}'(\alpha) = \mathbf{F}(\mathbf{G}' \upharpoonright \alpha)].$$

Temos, por indução transfinita sobre α :

se
$$(\forall \beta < \alpha)[\mathbf{G}(\beta) = \mathbf{G}'(\beta)]$$
, então $\mathbf{G} \upharpoonright \alpha = \mathbf{G}' \upharpoonright \alpha$,

e, portanto,
$$\mathbf{G}(\alpha) = \mathbf{F}(\mathbf{G} \upharpoonright \alpha) = \mathbf{F}(\mathbf{G}' \upharpoonright \alpha) = \mathbf{G}'(\alpha)$$
.
Logo, $\forall \alpha (\mathbf{G}(\alpha) = \mathbf{G}'(\alpha))$.

Exemplo Vamos definir $\alpha + \beta$ por recursão em β :

$$\begin{cases} \alpha + 0 = \alpha, \\ \alpha + S(\beta) = S(\alpha + \beta), \text{ e} \\ \alpha + \beta = \sup \{\alpha + \xi : \xi < \beta\}, \text{ se } \beta \text{ \'e limite.} \end{cases}$$

Vamos exibir uma $\mathbf{F} \colon \mathbf{V} \longrightarrow \mathbf{V}$ tal que a \mathbf{G} obtida pelo teorema seja $\mathbf{G}(\beta) = \alpha + \beta$.

$$\mathbf{F}(x) = \begin{cases} 0 & \text{se } x \text{ não \'e uma função com dom } x \in \mathbf{ON}, \\ \alpha & \text{se } x = 0 \text{ (i.e. a função } x \text{ com domínio vazio)}, \\ S(x(\beta - 1)) & \text{se } x \text{ \'e uma função, dom } x = \beta \text{ \'e } \beta \text{ \'e um ordinal sucessor,} \\ \bigcup \left\{ x(\xi) \colon \xi < \beta \right\} & \text{se } x \text{ \'e uma função, dom } x = \beta \text{ \'e } \beta \text{ \'e um ordinal limite,} \end{cases}$$

onde

$$\beta - 1 = \begin{cases} \beta & \text{se } \beta = 0 \text{ ou } \beta \text{ \'e ordinal limite,} \\ \gamma & \text{se } \beta = \gamma + 1. \end{cases}$$

Ou seja, $\beta - 1 = \bigcup \beta$, para qualquer β .

Vamos verificar que **G** dada pelo teorema é tal que $\forall \alpha(\mathbf{G}(\beta) = \alpha + \beta)$.

- 1. $\mathbf{G}(0) = \mathbf{F}(0) = \alpha$,
- 2. Considerando $\beta = S(\gamma)$ e $x = \mathbf{G} \upharpoonright \beta$, temos

$$\mathbf{G}(S(\gamma)) = \mathbf{F}(\mathbf{G} \upharpoonright S(\gamma)) = S(x(\gamma)) = S(\mathbf{G}(\gamma)).$$

3. Se β é ordinal limite,

$$\mathbf{G}(\beta) = \mathbf{F}(\mathbf{G} \upharpoonright \beta) = \bigcup \{ \mathbf{G} \upharpoonright \beta(\xi) \colon \xi < \beta \} = \bigcup \{ \mathbf{G}(\xi) \colon \xi < \beta \}.$$

Portanto, $\mathbf{G}(\beta) = \alpha + \beta$, para todo β .

Dia 23/04/97

<u>Teorema da Recursão Transfinita</u>: Se $\mathbf{F} \colon \mathbf{V} \to \mathbf{V}$, então existe uma única $\mathbf{G} \colon \mathbf{ON} \to \mathbf{V}$ tal que para todo α , $\mathbf{G}(\alpha) = \mathbf{F}(\mathbf{G} \upharpoonright \alpha)$.

Variantes do T.R.T.:

- **1.** Se $a_0 \in V$ e $F_1, F_2: V \rightarrow V$, então existe uma única $G: ON \rightarrow V$ tal que
 - $\mathbf{G}(0) = a_0$,
 - $\forall \alpha [\mathbf{G}(\alpha+1) = \mathbf{F}_1(\mathbf{G}(\alpha))].$
 - para todo α limite, $\mathbf{G}(\alpha) = \mathbf{F}_2(\mathbf{G} \upharpoonright \alpha)$.

Demonstração Aplicar o Teorema da Recursão com $\mathbf{F} \colon \mathbf{V} \to \mathbf{V}$ tal que

$$\mathbf{F}(x) = \begin{cases} a_0 & \text{se } x = 0, \\ \mathbf{F}_1(x(\alpha)) & \text{se } x \text{ \'e uma funç\~ao } \wedge & \text{dom } x = \alpha + 1 \text{ (para algum } \alpha), \\ \mathbf{F}_2(x) & \text{se } x \text{ \'e uma funç\~ao } \wedge & \text{dom } x = \alpha \text{ \'e um ordinal limite,} \\ 0 & \text{nos outros casos.} \end{cases}$$

Exemplo Já vimos como definir $\alpha + \beta$, recursivamente em β (com α fixado). Vamos definir α^{β} por recursão transfinita em β (α fixado):

$$\begin{cases} \alpha^{0} = 1, \\ \alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha, \\ \beta \text{ limite, } \alpha^{\beta} = \sup \left\{ \alpha^{\xi} \colon \xi < \beta \right\}, \end{cases}$$

i.e., é uma aplicação da variante do Teorema da Recursão com $a_0=1$; $\mathbf{F}_1(x)=x\cdot\alpha$ e $\mathbf{F}_2(x)=\sup \operatorname{im} x$.

Exemplo $2^{\omega} = \sup \{2^n : n < \omega\} = \omega$. Quando $\alpha = \omega^{\alpha}$, α se diz um ε – **número**. Defina, recursivamente usando **1**

$$\begin{cases} \xi_0 = \omega, \\ \xi_{n+1} = \omega^{\xi_n}, \\ \varepsilon = \sup \{ \xi_n \colon n < \omega \}. \end{cases}$$

Então, $\omega^{\varepsilon} = \sup \{ \omega^{\xi} : \xi < \varepsilon \} = \sup \{ \omega^{\xi_n} : n < \omega \} = \sup \{ \xi_{n+1} : n < \omega \} = \varepsilon.$ **Exercício** Exercícios 4, 5 e 6 do primeiro capítulo do Kunen.

Uma outra variante do T.R.T. é:

2. Dados um ordinal δ e \mathbf{F} : $\mathbf{V} \rightarrow \mathbf{V}$ existe uma única função g com domínio δ tal que

$$(\forall \alpha < \delta) \left[g(\alpha) = \mathbf{F}(g \upharpoonright \alpha) \right].$$

Agora, g é de fato um conjunto!

Demonstração Pelo Teorema da Recursão existe $\mathbf{G} \colon \mathbf{ON} \to \mathbf{V}$ tal que $\mathbf{G}(\alpha) = \mathbf{F}(\mathbf{G} \upharpoonright \alpha)$. Então, pelo axioma de substituição

$$\exists Y \forall \alpha < \delta \exists y \in Y \psi(\alpha, y),$$

onde
$$\mathbf{G} = \{ \langle \alpha, y \rangle : \psi(\alpha, y) \}$$
. Como $\forall \alpha \exists ! y \psi(\alpha, y)$, e particular $\forall \alpha < \delta \exists ! y \psi(\alpha, y)$. Seja $B = \{ y \in Y : (\exists \alpha < \delta) \psi(\alpha, y) \}$ e seja $g = \{ \langle \alpha, y \rangle \in \delta \times B : \psi(\alpha, y) \}$.

Analogamente, dados δ , a_0 , \mathbf{F}_1 e \mathbf{F}_2 , existe uma única função $g:\delta\to\mathbf{V}$ tal que

$$\begin{cases} g(0) = a_0, \\ \forall (\alpha + 1) < \delta, \ g(\alpha + 1) = \mathbf{F}_1(g(\alpha)) \text{ e} \\ \forall \alpha < \delta, \ \alpha \text{ limite, } g(\alpha) = \mathbf{F}_2(g \upharpoonright \alpha). \end{cases}$$

Na realidade, não precisamos ter uma função $\mathbf{F} \colon \mathbf{V} \to \mathbf{V}$; é suficiente ter uma função $F \colon {}^{<\delta}A \to A$, para ter uma $g \colon \delta \to A$ tal que $(\forall \alpha < \delta)[g(\alpha) = F(g \upharpoonright \alpha)]$, onde ${}^{<\delta}A$ é o conjunto de todas as sequências de comprimento $< \delta$ de A.

Em compensação, para $\delta = \omega$ já vimos que ${}^{<\omega}A$ existe. Neste caso: dada $F: {}^{<\omega}A \to A$ existe uma única $g: \omega \to A$ tal que $\forall n < \omega[g(n) = F(g \upharpoonright n)]$.

Como casos particulares temos:

- 1. Dados $a_0 \in A$ e $F: A \to A$ existe uma única $g: \omega \to A$ tal que $g(0) = a_0$ e $\forall n < \omega[g(n+1) = F(g(n))].$
- 2. Dados $a_0 \in A$ e $F: \omega \times A \to A$ existe uma única $g: \omega \to A$ tal que $g(0) = a_0$ e $\forall n < \omega[g(n+1) = F(n,g(n))].$

Outras equivalências do axioma da escolha

 $\mathbf{Af_1}$. "Produto cartesiano de não-vazios é não-vazio" i.e. se H é uma função com domínio $I \neq 0$ tal que $\forall i \in I(H(i) \neq 0)$, então existe alguma função h com domínio I tal que $h(i) \in H(i)$ para todo $i \in I$.

Af₂. "Existência da Função-Escolha".

$$\forall A \left[0 \notin A \to \exists f \left((f : A \to \bigcup A) \land \forall x \in A (f(x) \in x) \right) \right].$$

Af₃. "Comparabilidade de Cardinais".

$$\forall A \forall B \exists f \; ((f \colon A \to B \land f \; \text{\'e} \; \text{1--1}) \lor (f \colon B \to A \land f \; \text{\'e} \; \text{1--1})) \; .$$

⁵a sua existência depende do axioma das partes.

Af₄. Dada uma relação R, existe uma função H tal que $H \subseteq R$ e dom H = dom R. (H "escolhe", para cada $x \in \text{dom } R$, um único y tal que $\langle x, y \rangle \in R$ e faz $\langle x, y \rangle \in H$.)

Af₅. Conjunto-escolha:

$$\forall A \left[(0 \notin A \land (\forall x \in A) \ (\forall y \in A) \ (x \neq y \rightarrow x \cap y = 0) \right] \rightarrow \exists C \forall x \in A \ (C \cap x \ \text{\'e unit\'ario}) \right].$$

Af₆. Função-escolha:

$$\forall A (\exists f : \mathcal{P}(A) \setminus \{0\} \to A) (\forall x \in \mathcal{P}(A) \setminus \{0\}) f(x) \in x.$$

$$Af_1$$
, Af_2 , Af_3 , Af_4 , Af_5 e Af_6 são equivalentes entre si.

Princípios Maximais

1. Lema de Zorn:

 $\mathbf{Z_0}$: Diz que se $\langle A, R \rangle$ é uma ordem parcial com $A \neq 0$ e tal que para todo $B \subseteq A$, se $\langle B, R \rangle$ for uma ordem total então B é limitado superiormente, então A tem elemento maximal.

$$\forall A \forall R \big[A \neq 0 \land \langle A, R \rangle \text{ o.p.} \land \forall B \subseteq A(\langle B, R \rangle \text{ o.t.} \rightarrow B \text{ limitado superiormente}) \rightarrow (\exists m \in A) \neg (\exists x \in A) mRx \big].$$

Notação Se $\langle A, R \rangle$ é uma ordem parcial e $B \subseteq A$ é tal que $\langle B, R \rangle$ é ordem total, dizemos que B é uma **cadeia** de A ou uma R-cadeia de A.

<u>Variantes do Lema de Zorn:</u>

 $\mathbf{Z_1}$: Como em $\mathbf{Z_0}$, com B admite supremo.

 $\mathbf{Z_2}$: Como em $\mathbf{Z_0}$, com B admite máximo.

 $\mathbf{Z_3}$: Se $\langle A, R \rangle$ é ordem parcial, com $A \neq 0$, então existe uma cadeia maximal, i.e.

$$\forall A \forall R \big[(A \neq 0 \land \langle A, R \rangle \text{ ordem parcial}) \rightarrow \\ \exists B \subseteq A (\langle B, R \rangle \text{ ordem total } \land \neg \exists C \subseteq A (\langle C, R \rangle \text{ ordem total } \land B \subsetneq C)) \big].$$

 $\mathbf{Z_1} \to \mathbf{Z_3}$: Seja $\langle A, R \rangle$ ordem parcial e seja $\mathcal{C} = \{B \subseteq A \colon \langle B, R \rangle \text{ \'e ordem total}\}.$ $\langle \mathcal{C}, \subseteq \rangle$ satisfaz as hipóteses de $\mathbf{Z_1}$: $\mathcal{C} \neq 0$, $\langle \mathcal{C}, \subseteq \rangle$ \'e ordem parcial.

Seja $\mathcal{B} \subseteq \mathcal{C}$ tal que $\langle \mathcal{B}, \subseteq \rangle$ seja ordem total e seja $\bigcup \mathcal{B} \in \mathcal{C}$, portanto, $\bigcup \mathcal{B}$ é supremo de \mathcal{B} . Logo, por $\mathbf{Z_1}$, \mathcal{C} admite um elemento maximal $M, M \in \mathcal{C}$: M é uma R-cadeia de A i.e. $\langle M, R \rangle$ é ordem total e é uma R-cadeia maximal, já que M é maximal em $\langle \mathcal{C}, \subseteq \rangle$.

 $\mathbf{Z_3} \to \mathbf{Z_0}$: Seja $\langle A, R \rangle$ satisfazendo as hipóteses de $\mathbf{Z_0}$. Por $\mathbf{Z_3}$, seja $M \subseteq A$, uma R-cadeia maximal e seja $m \in A$ um limitante superior de M. Se existisse $x \in A$ tal que mRx então $x \notin M$ e $M^* = M \cup \{x\}$ seria uma R-cadeia.

 $x \notin M$ senão m não seria limitante superior de M.

 M^* é R-cadeia: sejam $u, v \in M^*$. Então, se $u, v \in M$ então u e v são comparáveis; se $u \in M$ e v = x, então uRm ou u = m e mRx, portanto uRx, contra a maximalidade de M, portanto, $\neg \exists x \in A(mRx)$ i.e. m é R-maximal em A.

2. Outro princípio maximal é o Lema de Teichmuler–Tuckey. Dizemos que $\mathcal{F} \subseteq \mathcal{P}A$ é de **caráter finito** se

$$(\forall X \subseteq A) [X \in \mathcal{F} \leftrightarrow (\forall Y \subseteq X) (Y \text{ finito } \rightarrow Y \in \mathcal{F})].$$

Exemplo $\mathcal{F} = \{X \subseteq A : (\forall u \in X)(\forall v \in X)[u \neq v \rightarrow u \cap v = 0]\}.$

Se $\langle A, R \rangle$ é ordem parcial, então $\mathcal{F} = \{X \subseteq A \colon \langle X, R \rangle \text{ é ordem total}\}$ tem caráter finito então $(\forall X \in \mathcal{F})(\exists Y \in \mathcal{F})[X \subseteq Y \land Y \text{ é } \subseteq -\text{maximal de } \mathcal{F}].$

Dia 25/4/97

Princípios Maximais

Lema de Zorn (\mathbb{Z}_0): toda ordem parcial não vazia na qual toda cadeia é limitada superiormente, tem elemento maximal.

 $\mathbf{Z_1}$: toda ordem parcial não vazia na qual toda cadeia admite supremo, tem elemento maximal.

 $\mathbf{Z_3}$: toda ordem não vazia tem alguma cadeia maximal.

$$\mathbf{Z_0}
ightarrow \mathbf{Z_1} \checkmark$$

 $\mathbf{Z_1} \to \mathbf{Z_3}$ Seja $\langle A, R \rangle$ uma o.p. satisfazendo as condições de $\mathbf{Z_3}$. Usando os axioma das partes e da separação garantimos a existência de $\mathcal{C} = \{B \subseteq A \colon \langle B, R \rangle \text{ \'e o.t.}\}$. $\langle \mathcal{C}, \subseteq \rangle$ \'e o.p. não-vazia. Se $\mathcal{B} \subseteq \mathcal{C}$ \'e uma cadeia, vê-se facilmente que $\langle \bigcup \mathcal{B}, R \rangle$ \'e o.t. e $\bigcup \mathcal{B}$ \'e o supremo de \mathcal{B} . Por hipótese, \mathcal{C} tem elemento maximal.

 $\mathbf{Z_3} \to \mathbf{Z_0}$ Seja $\langle A, R \rangle$ uma ordem parcial não vazia satisfazendo as condições de $\mathbf{Z_0}$. Seja $M \subseteq A$ uma cadeia maximal. Por hipótese, M tem um limitante superior a. Se existisse $x \in A$ tal que aRx, teríamos mRx, para todo $m \in M$. Logo $M \cup \{x\}$ é uma cadeia de $\langle A, R \rangle$ e $M \subsetneq M \cup \{x\}$. Portanto a é um elemento maximal de $\langle A, R \rangle$.

Observe que na demonstração de $\mathbf{Z_1} \to \mathbf{Z_3}$, usamos $\mathbf{Z_1}$ para a ordem \subseteq ; chamemos de $\mathbf{Z_1^*}$ esta afirmação - i.e. $\mathbf{Z_1^*}$ seria

$$\forall A \left[\left(A \neq 0 \land (\forall B \subseteq A)(B \notin \subseteq \text{-cadeia} \rightarrow \bigcup B \in A) \right) \rightarrow (\exists m \in A) \neg (\exists x \in A)(m \subsetneq x) \right].$$
 Portanto,

$$\mathbf{Z_0} \rightarrow \mathbf{Z_1} \rightarrow \mathbf{Z_1^*} \rightarrow \mathbf{Z_3} \rightarrow \mathbf{Z_0}.$$

25. Definição. Seja $\mathcal{F} \subset \mathcal{P}A$. Dizemos que \mathcal{F} tem caráter finito (c.f.) se

$$(\forall X \subseteq A) (X \in \mathcal{F} \leftrightarrow (\forall Y \subseteq X) (Y \text{ \'e finito} \rightarrow Y \in \mathcal{F})).$$

26. Lema (Lema de Teich-Tuckey (T)). Se $\mathcal{F} \subseteq \mathcal{P}A$ tem c.f., então

$$(\forall X \in \mathcal{F})(\exists Y \in \mathcal{F}) (X \subseteq Y \land \neg (\exists Z \in \mathcal{F})Y \subsetneq Z).$$

 $\mathbf{T} \to \mathbf{Z_3}$ Dada $\langle A, R \rangle$ o.p. com $A \neq 0$, temos que

$$\mathcal{F} = \{B \subseteq A \colon \langle B, R \rangle \text{ \'e o.t.}\}$$

tem caráter finito.

Por T, dado X=0 (por exemplo), existe $Y \in \mathcal{F}$ tal que $Y \notin \subseteq$ -maximal em \mathcal{F} . Este $Y \notin$ uma cadeia maximal de $\langle A, R \rangle$ e \notin maximal entre as cadeias.

 $\mathbf{Z}_{1}^{*} \to \mathbf{T}$ Seja $\mathcal{F} \subseteq \mathcal{P}A$ com c.f. e $X \in \mathcal{F}$. Seja $\mathcal{C} = \{Y \in \mathcal{F} : X \subseteq Y\}$. Como $X \in \mathcal{C}$ temos que $\langle \mathcal{C}, \subseteq \rangle$ é o.p. não vazia. Se $\mathcal{B} \subseteq \mathcal{C}$ é uma \subseteq -cadeia, então $\bigcup \mathcal{B} \in \mathcal{C}$. De fato, seja $Z = \bigcup \mathcal{B}$. Temos que verificar que $Z \in \mathcal{F}$ e $X \subseteq Z$. Como todos os elementos de \mathcal{B} contêm X, Z também conterá. Seja $Y \subseteq Z$, finito. $Y = \{y_1, y_2, \dots, y_n\} \subseteq Z = \bigcup \mathcal{B}$; para cada i, de 1 a n, existe $B_i \in \mathcal{B}$, tal que $y_i \in B_i$. Como \mathcal{B} é \subseteq -cadeia e B_1, B_2, \dots, B_n é uma quantidade finita, existe $i_0 \in \{i_1, \dots, i_n\}$ tal que $B_i \subseteq B_{i_0}$, para todo i, i.e. $y_1, \dots, y_n \in B_{i_0}$. Portanto $Y \subseteq B_{i_0}$. Como $B_{i_0} \in \mathcal{F}$ e \mathcal{F} tem c.f., $Y \in \mathcal{F}$. Ou seja, toda parte finita de Z é elemento de \mathcal{F} , logo $Z \in \mathcal{F}$.

Logo, por \mathbf{Z}_{1}^{*} , existe $M \in \mathcal{C}$, elemento maximal. Como $M \in \mathcal{F}$ e $X \subseteq M$, M é elemento maximal entre os $Y \in \mathcal{F}$ tal que $X \subseteq Y$, i.e. vale \mathbf{T} .

 $\mathbf{Z_0}$, $\mathbf{Z_1}$, $\mathbf{Z_1^*}$, $\mathbf{Z_3}$ e T são equivalentes.

 $T \to Af_3$ Dados $A \in B$, seja

$$\mathcal{F} = \left\{ f \in \mathcal{P}(A \times B) : f \text{ \'e uma função 1-1} \wedge \operatorname{dom} f \subseteq A \wedge \operatorname{im} f \subseteq B \right\}.$$

 $\mathcal{F} \subseteq \mathcal{P}(A \times B)$ tem caráter finito. Seja $X \in \mathcal{P}(A \times B)$, temos que provar que

$$X \in \mathcal{F} \leftrightarrow (\forall Y \subseteq X)(Y \text{ \'e finito} \rightarrow Y \in \mathcal{F}).$$

Facilmente temos que toda parte finita de uma função de \mathcal{F} é uma função de \mathcal{F} . Agora suponha que toda parte finita de X é elemento de \mathcal{F} . Com certeza X é uma relação, pois $X \subseteq A \times B$, e, ainda, dom $X \subseteq A$ e im $X \subseteq B$. Falta mostrar que X é função injetora. Suponha $\langle x, y_1 \rangle$, $\langle x, y_2 \rangle \in X$. Então $Y = \{\langle x, y_1 \rangle, \langle x, y_2 \rangle\}$ é uma parte finita de X e $Y \in \mathcal{F}$, já que \mathcal{F} tem c.f.. Logo $y_1 = y_2$ e X é uma função. Agora suponha $\langle x_1, y \rangle$, $\langle x_2, y \rangle \in X$. Pelo mesmo motivo de antes $Y = \{\langle x_1, y \rangle, \langle x_2, y \rangle\} \in \mathcal{F}$. Logo $x_1 = x_2$ e X é uma função injetora.

Concluimos que \mathcal{F} tem c.f. e, por \mathbf{T} , existe $g \in \mathcal{F}$ maximal (começando com f = 0, por exemplo). Então dom g = A ou im g = B. Caso contrário, sejam $a \in A \setminus \text{dom } g$ e $b \in B \setminus \text{im } g$, e $g \cup \{\langle a, b \rangle\} \in \mathcal{F}$, um absurdo pela maximalidade de g.

Se dom g = A, então $g: A \longrightarrow B$ é 1-1. Se im g = B, então $g^{-1}: B \longrightarrow A$ é 1-1.

 $\mathbf{Z}_1^* \to \mathbf{Af_2}$ Dado A não vazio tal que $0 \not\in A$ seja

$$\mathcal{F} = \{ f \colon f \text{ \'e função} \land \operatorname{dom} f \subseteq A \land (\forall x \in \operatorname{dom} f) f(x) \in x \} \subseteq \mathcal{P}(A \times \bigcup A).$$

Se $\mathcal{B} \subseteq \mathcal{F}$ é uma \subseteq -cadeia, é fácil ver que $\bigcup \mathcal{B} \in \mathcal{F}$. Portanto existe $f \in \mathcal{F}$ maximal. Se dom $f \neq A$ seja $a \in A \setminus \text{dom } f$ e seja $u \in a$ (existe pois $a \neq 0$). Daí $f^* = f \cup \{\langle a, u \rangle\} \in \mathcal{F}$ e $f \subsetneq f^*$. Logo dom f = A.

 $\mathbf{Z}_{1}^{*} \to \mathbf{todo}$ espaço vetorial tem base Seja $\mathcal{C} = \{X \subseteq V : X \text{ \'e l.i.}\}$ e \mathcal{C} tem c.f.. Daí existe $X \in \mathcal{C}$ maximal. Se $\langle X \rangle \neq V$, seja $x \in X \setminus \langle X \rangle \neq V$. Daí, $Y = X \cup \{x\}$ é l.i. e $Y \in \mathcal{C}$. Mas $X \subsetneq Y$.

Cardinais

- 27. Definição. Seja A e B conjuntos; escreveremos que:
 - 1. $\mathbf{A} \preceq \mathbf{B}$ se existe f tal que f é uma função 1-1 de A em B,
 - 2. $\mathbf{A} \approx \mathbf{B}$ se existe $f: A \longrightarrow B$, 1-1 e sobre B,
 - 3. $\mathbf{A} \prec \mathbf{B} \ se \ A \preccurlyeq B \ e \ B \not\prec A$.

≈ é uma relação de equivalência e ≼ é uma relação transitiva.

28. Teorema (Schröder-Bernstein). Se $A \preceq B$ e $B \preceq A$, então $A \approx B$.

Demonstração Sejam $f: A \longrightarrow B$ e $g: B \longrightarrow A$ duas funções 1-1. Definamos $A_0 = A$, $B_0 = B$, $A_{n+1} = g[B_n]$ e $B_{n+1} = f[A_n]$. E, ainda,

$$A_{\infty} = \bigcap \{A_n \colon n < \omega\}$$

 \mathbf{e}

$$B_{\infty} = \bigcap \{B_n \colon n < \omega\} \,.$$

Por indução em $n < \omega$, prova-se que $B_{n+1} \subseteq B_n$ e $A_{n+1} \subseteq A_n$. Assim

$$B_k \setminus B_{k+1} \cap B_j \setminus B_{j+1} = 0,$$

sempre que $k \neq j$.

Seja $h \colon A \longrightarrow B$ definida por

$$h(x) = \begin{cases} f(x) & \text{se } x \in A_{\infty} \cup \bigcup \{A_{2n} \setminus A_{2n+1} \colon n < \omega\} \\ g^{-1}(x) & \text{caso contrário, i.e. se } x \in \bigcup \{A_{2n+1} \setminus A_{2n+2} \colon n < \omega\}. \end{cases}$$

Observe que se $x \in A_{2n+1} \setminus A_{2n+2} = g[B_{2n}] \setminus g[B_{2n+1}] = g[B_{2n} \setminus B_{2n+1}]$, então x = g(y), para um (único) $y \in B_{2n} \setminus B_{2n+1}$ e $h(x) = g^{-1}(x) = y$.

Consideremos $\mathcal{R}_1 = A_{\infty} \cup \bigcup \{A_{2n} \setminus A_{2n+1} : n < \omega\} \in \mathcal{R}_2 = \bigcup \{A_{2n+1} \setminus A_{2n+2} : n < \omega\}.$

 $\underline{h} \notin 1-1$: sejam $x_1, x_2 \in A$.

- 1. se $x_1, x_2 \in \mathcal{R}_i$, então $(h(x_1) = h(x_2) \to x_1 = x_2)$, pois $f \in g$ são injetoras.
- 2. se $x_1 \in \mathcal{R}_1$ e $x_2 \in \mathcal{R}_2$, temos que $h(x_2) = g^{-1}(x_2) \in B_{2n} \setminus B_{2n+1}$, para algum $n < \omega$. Caso $x_1 \in A_{\infty}$, então $h(x_1) = f(x_1) \in B_{\infty}$ e, com certeza, $h(x_1) \neq h(x_2)$. Caso $x_1 \in A_{2m} \setminus A_{2m+1}$, para algum $m < \omega$, temos que $h(x_1) \in B_{2m+1} \setminus B_{2m+2}$, logo $h(x_1) \neq h(x_2)$

<u>h</u> é sobrejetora: Seja $y \in B$. Se $y \in B_{2n} \setminus B_{2n+1}$, para algum $n < \omega$, então $y = g^{-1}(x) = \overline{h(x)}$, para $x = g(y) \in A_{2n+1} \setminus A_{2n+2}$. Se $y \in B_{\infty}$, então $y \in B_{n+1} = f[A_n]$, para todo $n < \omega$. Logo existe $x_n \in A_n$ tal que $y = f(x_n)$, para cada $n < \omega$. Como f é 1-1, $x_n = x \in A_{\infty}$, para todo $n < \omega$. E f(x) = y = h(x).

Dia 30/04/97

Notação $f: A \hookrightarrow B$ indica que $f \in 1$ -1 e $f: A \rightarrow B$ indica que $f \in A$ sobre B.

$$A \preceq B$$
 se $\exists f : A \hookrightarrow B$,
 $A \approx B$ se $\exists f : A \rightarrow B$ bijetora e
 $A \prec B$ se $A \preceq B$ e $B \not\prec A$.

Vimos que $A \preceq B$ e $B \preceq A \Rightarrow A \approx B$.

29. Definição. Dado A, se existe R tal que $\langle A, R \rangle$ é boa ordem, define-se |A| como o mínimo de $\{\alpha : \alpha \approx A\}$, |A| se chama a **cardinalidade** de A.

A cardinalidade só se define para conjuntos "bem ordenáveis". Assumindo \mathbf{AE} , todo conjunto é bem ordenável e portanto |A| se define para todo A. Observe que como $|A| \approx A$, o que a "operação" |A| faz é escolher um representante entre a \approx -classe de equivalência de A. Ainda, observe que $|A| = |B| \Leftrightarrow A \approx B$.

Mesmo sem o **AE**, $|\alpha|$ está definido para todo α e $|\alpha| \leq \alpha$.

Dizemos que um ordinal κ é um **cardinal** se $\kappa = |\kappa|$ ou, equivalentemente, $\forall \alpha (\alpha < \kappa \rightarrow \alpha \not\approx \kappa)$.

30. Lema (10.5). $|\alpha| \le \beta \le \alpha \to |\beta| = |\alpha|$.

Demonstração $|\alpha| \leq \beta \rightarrow |\alpha| \subseteq \beta$ portanto $|\alpha| \preccurlyeq \beta$, e $\alpha \approx |\alpha| \rightarrow \alpha \preccurlyeq \beta$. $\beta \leq \alpha \rightarrow \beta \preccurlyeq \alpha$, logo pelo teorema de Schröder-Bernstein $\alpha \approx \beta$ portanto $|\alpha| = |\beta|$.

- 31. Lema (10.6). Para todo $n \in \omega$
 - (i) $n \not\approx n + 1$.
 - (ii) $\forall \alpha [\alpha \approx n \rightarrow \alpha = n].$

Observação Se $A \approx B$ e $x \notin A$ e $y \notin B$, então $A \cup \{x\} \approx B \cup \{y\}$, e se $a \in A$ e $b \in B$, $A \setminus \{a\} \approx B \setminus \{b\}$.

Demonstração (i). Ponha $T = \{n \in \omega : n \not\approx n+1\}$. Então $0 \in T$ e se $n \in T$, então $n+1 \in T$ senão teríamos $h : n+1 \to n+2$ bijetora: $n+1 = n \cup \{n\} \approx n+1 \cup \{n+1\} = n+2$, donde $n = (n+1) \setminus \{n\} \approx (n+2) \setminus \{n+1\} = n+1$, contra $n \in T$.

(ii). Seja $\alpha \approx n$. Se $\alpha \neq n$ então $\alpha < n$ ou $n < \alpha$. No primeiro caso temos $\alpha + 1 \leq n$, logo $|n| = |\alpha| \leq \alpha < \alpha + 1 \leq n$ portanto, por 10.5, $|n| = |\alpha + 1|$. De $\alpha \approx n$, $\alpha + 1 \approx n + 1$ portanto $n \approx n + 1$. Absurdo.

No segundo caso $n+1 \le \alpha$, logo $|\alpha| = |n| \le n < n+1 \le \alpha$ portanto $|\alpha| = |n| = |n+1|$. Absurdo.

32. Corolário (10.7). ω é ordinal e $\forall n \in \omega (n \text{ é cardinal}).$

Demonstração $|\omega| \leq \omega$. Se $|\omega| < \omega$, então $|\omega| = n < \omega$ e $\omega \approx n$, portanto, $\omega = n \in \omega$. Absurdo. Logo $|\omega| = \omega$.

Se |n| = m < n então $m \approx n$ então m = n. Absurdo.

33. Definição.

- (i) A se diz **finito** se $\exists n < \omega(A \approx n)$.
- (ii) A se diz enumerável se $A \preceq \omega$.
- (iii) A se diz **infinito** se A não é finito.
- (iv) A se diz **não-enumerável** se A não é enumerável.
- **34.** Definição. Sejam κ e λ cardinais. Definimos

$$\kappa \oplus \lambda = |\kappa \times \{0\} \cup \lambda \times \{1\}| e,$$
 $\kappa \otimes \lambda = |\kappa \times \lambda|.$

Observe que $\kappa \oplus \lambda = \lambda \oplus \kappa = |\kappa + \lambda| = |\lambda + \kappa|$ e $\kappa \otimes \lambda = \lambda \otimes \kappa = |\kappa \cdot \lambda| = |\lambda \cdot \kappa|$.

Exemplo $\omega \oplus 1 = |1 + \omega| = |\omega| = \omega < \omega + 1$ e $\omega \otimes 2 = |2 \cdot \omega| = |\omega| = \omega < \omega \cdot 2$.

35. Teorema (10.10). $(\forall m, n \in \omega)[m \oplus n = m + n < \omega \land m \otimes n = m \cdot n < \omega].$

Demonstração Dado $m < \omega$, seja $T = \{n \in \omega : m+n < \omega\}$. Então $0 \in T$ e se $m+n < \omega$ então $m+(n+1) = (m+n)+1 < \omega$, portanto $n+1 \in T$ e $T = \omega$. $m \oplus n = |m+n|$ portanto $m \oplus n \approx m+n$ portanto $m \oplus n = m+n$ por 10.6(ii).

Analogamente, dado $m \in \omega$, $T = \{n \in \omega : m \cdot n < \omega\} = \omega$.

36. Lema (10.11). Se κ é um cardinal infinito, então κ é ordinal limite.

Demonstração Se $\kappa = \alpha + 1$, então de⁶ $1 + \alpha = \alpha$ segue que $\kappa = |\kappa| = |\alpha + 1| = |1 + \alpha| = |\alpha| \le \alpha < \kappa$, i.e. $\kappa < \kappa$. Absurdo.

37. Teorema. Se κ é cardinal infinito, então $\kappa \otimes \kappa = \kappa$.

⁶exercício 5 da lista 3.

Demonstração Por indução transfinita sobre κ (i.e. sobre os cardinais infinitos).

Seja κ um cardinal infinito e suponhamos que $\lambda \otimes \lambda = \lambda$ para todo $\lambda < \kappa$ infinito. Então para todo $\alpha < \kappa$ temos $|\alpha \times \alpha| = |\alpha| \otimes |\alpha| < \kappa$ pois se $\alpha < \omega$ então $|\alpha| \otimes |\alpha| < \omega \le \kappa$ por 10.10. Se $\omega \le \alpha$, então $|\alpha| \otimes |\alpha| = |\alpha| \le \alpha < \kappa$.

Seja \triangleleft definida em $\kappa \times \kappa$ por: para $\langle \alpha, \beta \rangle, \langle \gamma, \delta \rangle \in \kappa \times \kappa, \langle \alpha, \beta \rangle \triangleleft \langle \gamma, \delta \rangle$ se

$$\max(\alpha,\beta) < \max(\gamma,\delta) \text{ ou}$$
$$\max(\alpha,\beta) = \max(\gamma,\delta) \text{ e } \langle \alpha,\beta \rangle < \langle \gamma,\delta \rangle \text{ lexicograficamente.}$$

Observe que para todo $\langle \alpha, \beta \rangle \in \kappa \times \kappa$, pred $(\kappa \times \kappa, \langle \alpha, \beta \rangle, \triangleleft) \subseteq \mu \times \mu$, onde $\mu = \max(\alpha, \beta) + 1$, portanto

$$|\operatorname{pred}(\kappa \times \kappa, \langle \alpha, \beta \rangle, \triangleleft)| \le |\mu \times \mu| = |\mu| \otimes |\mu| < \kappa$$

pois de κ cardinal infinito temos que κ é ordinal limite, portanto, de $\max(\alpha, \beta) < \kappa$ temos $\mu < \kappa$.

Defina $\tau_{\langle \alpha, \beta \rangle} = \operatorname{type}(\operatorname{pred}(\kappa \times \kappa, \langle \alpha, \beta \rangle, \triangleleft), \triangleleft)$. Então $\tau_{\langle \alpha, \beta \rangle} < \kappa \operatorname{pois} \tau_{\langle \alpha, \beta \rangle} \approx \operatorname{pred}(\kappa \times \kappa, \langle \alpha, \beta \rangle, \triangleleft)$.

Portanto, pelo exercício 3 da lista 3, type $(\kappa \times \kappa, \triangleleft) = \sup \{ \tau_{\langle \alpha, \beta \rangle} + 1 : \langle \alpha, \beta \rangle \in \kappa \times \kappa \} \le \kappa$ e, portanto, $\kappa \otimes \kappa = |\kappa \times \kappa| \le \kappa$. Mas, $\kappa \le |\kappa \times \kappa|$ portanto $\kappa = |\kappa \times \kappa| = \kappa \otimes \kappa$.

- 38. Corolário. Para todos κ , λ cardinais infinitos
 - (i) $\kappa \otimes \lambda = \kappa \oplus \lambda = \max(\kappa, \lambda)$.
 - (ii) $| < \omega \kappa | = \kappa$.

Demonstração (i). Sem perda de generalidade, $\kappa = \max(\kappa, \lambda)$. $\kappa \leq \kappa \otimes \lambda \leq \kappa \otimes \kappa = \kappa$ e $\kappa \leq \kappa \oplus \lambda \leq \kappa \oplus \kappa = \kappa \otimes 2 \leq \kappa \otimes \kappa = \kappa$.

(ii). ${}^{<\omega}\kappa = \bigcup \{{}^{n}\kappa \colon n < \omega\}$. Para cada $1 \le n < \omega$ existe uma bijeção $f_n \colon {}^{n}\kappa \to \kappa$: $f_1 = \text{id}$, obtida a bijeção $f_n \colon {}^{n}\kappa \to \kappa$, sejam $j \colon \kappa \times \kappa \to \kappa$ e $\theta_n \colon {}^{n+1}\kappa \to {}^{n}\kappa \times \kappa$ bijeções e θ dada por $\theta_n(h) = \langle h \upharpoonright n, h(n) \rangle$.

$$\begin{array}{c}
n+1_{\kappa} \xrightarrow{\theta_{n}} n_{\kappa} \times \kappa \xrightarrow{\langle f_{n}, \mathrm{id} \rangle} \kappa \times \kappa \xrightarrow{j} \kappa \\
f_{n+1} = j \ \langle f_{n}, \mathrm{id} \rangle \ \theta_{n}.
\end{array}$$

Defina $f: \bigcup \{^n \kappa \colon n < \omega\} \to \omega \times \kappa$ por $f(h) = \langle \operatorname{dom} h, f_{\operatorname{dom} h}(h) \rangle$. Sejam $h_1 \neq h_2$: se $n_1 = \operatorname{dom} h_1 \neq n_2 = \operatorname{dom} h_2$ então $f(h_1) \neq f(h_2)$; se $n_1 = n_2 = n$ temos $\langle n, f_n(h_1) \rangle \neq \langle n, f_n(h_2) \rangle$ pois f_n é 1-1.

$$\text{Logo} < \omega_{\kappa} \preceq \omega \otimes \kappa = \kappa$$
. Como $\kappa \preceq < \omega_{\kappa} \text{ temos} < \omega_{\kappa} \approx \kappa$, i.e. $|< \omega_{\kappa}| = \kappa$.

⁷isto significa que assumindo que a propriedade vale para todo cardinal infinito $\lambda < \kappa$ provamos a propriedade para κ ; e com isto vale para todo κ .

Dia 7/5/97

8. Axioma das Partes: $\forall x \exists y \forall z (z \subseteq x \rightarrow z \in y)$.

39. Definição. $\mathcal{P}(x) = \{z \in y \colon z \subseteq x\}$, onde y é dado pelo axioma, ou seja, $\mathcal{P} = \{z \colon z \subseteq x\}$.

40. Teorema (Cantor). $\forall X(X \not\approx \mathcal{P}(X)), \ mais \ precisamente, \ X \prec \mathcal{P}(X), \ i.e. \ \mathcal{P}(X) \not\preccurlyeq X.$

Demonstração Se $\mathcal{P}(X) \preceq X$, então existiria $h: X \longrightarrow \mathcal{P}(X)$ sobrejetora. Mas, dada h, o conjunto $B = \{x \in X : x \notin h(x)\} \in \mathcal{P}(X)$ e não pertence a im h. De fato, seja $y \in X$,

$$\begin{cases} \text{se } y \in h(y), \text{ então } y \notin B \text{ e, portanto } h(y) \neq B, \text{ e} \\ \text{se } y \notin h(y), \text{ então } y \in B \text{ e, daí, } h(y) \neq B. \end{cases}$$

A Função de Hartog

Seja A um conjunto e sejam

$$W_A = \{ R \in \mathcal{P}(A \times A) : R \text{ \'e uma boa ordem sobre corpo } R \subseteq A \},$$

onde **corpo** $\mathbf{R} = \operatorname{dom} R \cup \operatorname{im} R$.

Ainda, definamos $H_A = \{ \text{type}(\text{corpo } R, R) : R \in W_A \} \subseteq \mathbf{ON}.$

Temos que W_A existe pelos axiomas das partes e da separação e que H_A existe pelos axiomas da substituição e da separação.

Fatos: 1. $\forall \alpha (\alpha \in H_A \leftrightarrow \alpha \preccurlyeq A)$, i.e. $H_A = \{\alpha : \alpha \preccurlyeq A\}$.

Demonstração (\rightarrow) Seja $\alpha \in H_A$. Logo $\alpha = \text{type}(B, R)$, onde $R \in W_A$ e $B = \text{corpo } R \subseteq A$. Logo existe $g: \alpha \longrightarrow B$, bijetora; como $B \subseteq A$, $g: \alpha \longrightarrow A$ é injetora.

 (\leftarrow) Se $\alpha \preccurlyeq A,$ existe $g \colon \alpha \longrightarrow A$ 1-1. Daí, g "induz" uma relação R, de boa-ordem, sobre im g.

$$xRy \leftrightarrow \exists \alpha \exists \beta \, (x = g(\alpha) \land y = g(\beta) \land \alpha < \beta)$$

e $\alpha \simeq \langle \operatorname{im} g, R \rangle$. Portanto, type $(\operatorname{im} g, R) = \alpha \in H_A$.

2. $\mathbf{H_A}$ é ordinal É suficiente mostrar que H_A é transitivo.

Sejam
$$\beta \in \alpha$$
 e $\alpha \in H_A$, então $\beta \subseteq \alpha \preceq A$. Logo $\beta \preceq A$.

3. $H_A \not \preccurlyeq A$.

De fato, se
$$H_A \preceq A$$
, então $H_A \in H_A$.

4. $\mathbf{H}_{\mathbf{A}}$ é cardinal (i.e. $\forall \beta (\beta < H_A \rightarrow \beta \not\approx H_A))$

Seja $\beta < H_A$ e suponhamos que $\beta \approx H_A$. Temos que $H_A \approx \beta \preccurlyeq A$, donde chegamos ao absurdo que $H_A \preccurlyeq A$.

5. Consequentemente, H_A é o menor cardinal κ tal que $\kappa \not\preccurlyeq A$.

Vamos usar H_A para mostrar que $\mathbf{Af_3} \to \mathbf{AE}$:

Lembremos que $\mathbf{Af_3}$ é a afirmação: $\forall A \forall B (A \preceq B \lor B \preceq A)$.

Dado A, seja $B=H_A$. Então $B\not\preccurlyeq A$, ou seja, $A\preccurlyeq H_A$, pela $\mathbf{Af_3}$. Daí, existe $g\colon A\longrightarrow H_A$ 1-1 e g induz uma boa ordem R sobre A:

$$(\forall x, y \in A) \left(xRy \stackrel{def}{\leftrightarrow} g(x) < g(y) \right).$$

Logo $\forall A \exists R(\langle A, R \rangle \text{ \'e boa ordem}).$

Aplicando esta construção para um ordinal α , obtemos um cardinal H_{α} , tal que $\alpha < H_{\alpha}$, e é o menor cardinal com esta propriedade.

Notação $\alpha^+ = H_\alpha = \min \{ \kappa \in \mathbf{CARD} : \alpha < \kappa \}.$

É claro que $\alpha^+ = |\alpha|^+$; e, em geral, se $\alpha \approx \beta$, $\alpha^+ = \beta^+$.

41. Lema. Se X é um conjunto de cardinais, então $\sigma = \sup X$ é uma cardinal.

Demonstração Seja $\alpha < \sigma$, então existe $\xi \in X$ tal que $\alpha < \xi$. Como X é um conjunto de cardinais, ξ é um cardinal e $\alpha \not\approx \xi$. A fortiori $\alpha \not\approx \sigma$.

42. Definição. Um cardinal κ se diz cardinal sucessor, se $\kappa = \alpha^+$, para algum α ; e κ se diz cardinal limite, se $\kappa \geq \omega$ e κ não é cardinal sucessor.

É fácil ver que, para $\kappa \geq \omega$:

 κ é cardinal limite \leftrightarrow para todo $\lambda < \kappa, \, \lambda^+ < \kappa \leftrightarrow \kappa = \sup \{\lambda \colon \lambda \text{ é cardinal } \wedge \lambda < \kappa \}$.

Constrói-se, por recursão transfinita sobre α , uma função ω_{α} (ou \aleph_{α}) dada por:

$$\begin{cases} \omega_0 = \omega \\ \omega_{\alpha+1} = (\omega_{\alpha})^+ \\ \omega_{\alpha} = \sup \{ \omega_{\beta} \colon \beta < \alpha \} \quad \text{se } \alpha \text{ limite.} \end{cases}$$

Pela lema acima, e por indução transfinita, sobre α , temos que $\forall \alpha (\omega_{\alpha} \text{ \'e um cardinal})$. Também, por indução transfinita sobre β , prova-se que $\forall \alpha (\alpha < \beta \rightarrow \omega_{\alpha} < \omega_{\beta})$.

- 1. $\beta = 0$
- 2. suponha verdadeira para β , então, para $\alpha < \beta + 1$, temos que $\alpha \leq \beta$ e, portanto,

$$\omega_{\alpha} \le \omega_{\beta} < (\omega_{\beta})^+ = \omega_{\beta+1}.$$

3. para β limite, temos que, se $\alpha < \beta$, $\alpha + 1 < \beta$. Logo, se $\alpha < \beta$,

$$\omega_{\alpha} < \omega_{\alpha+1} \le \omega_{\beta}$$
.

Observe que $\forall \alpha (\alpha \leq \omega_{\alpha})$, mas não se pode concluir que $\forall \alpha (\alpha < \omega_{\alpha})$.

Exemplo Seja

$$\begin{cases} \alpha_0 = \omega \\ \alpha_{n+1} = \omega_{\alpha_n} \\ \sigma = \sup \{\alpha_n : n < \omega \}. \end{cases}$$

Temos que $\sigma \leq \omega_{\sigma}$. Como σ é ordinal limite, $\omega_{\sigma} = \sup \{\omega_{\gamma} : \gamma < \sigma\}$. Se $\gamma < \sigma$, então $\gamma < \alpha_n$, para algum $n < \omega$; portanto $\omega_{\gamma} < \omega_{\alpha_n} = \alpha_{n+1} \leq \sigma$. Logo $\omega_{\sigma} \leq \sigma$.

43. Proposição. Se $f: \mathbf{ON} \longrightarrow \mathbf{ON}$ é crescente e contínua, então $\forall \alpha \exists \beta > \alpha(f(\beta) = \beta)$.

Demonstração Definamos

$$\begin{cases} \beta_0 = \alpha \\ \beta_{n+1} = f(\beta_n) \\ \beta = \sup \{ \beta_n \colon n < \omega \} . \end{cases}$$

44. Proposição. Se κ é cardinal infinito, então $\kappa = \omega_{\alpha}$, para algum α .

Demonstração Provemos por indução transfinita sobre o cardinal $\kappa \geq \omega$.

- 1. para $\kappa = \omega$, $\kappa = \omega_0$.
- 2. para κ sucessor, e suponha que vale para os anteriores, então $\kappa=\mu^+$ e $\mu=\omega_\alpha$, para algum α , logo $\kappa=\omega_{\alpha+1}$.
- 3. suponha que κ é cardinal limite e que vale para todos cardinais anteriores a ele.

Se $\mu < \kappa$, cardinal infinito, seja α_{μ} o (único!) ordinal tal que $\omega_{\alpha_{\mu}} = \mu$. Considere $X = \{\alpha_{\mu} \colon \mu < \kappa \land \mu \geq \omega\}$ e seja $\beta = \sup X$.

Seja $\gamma \in X$. Sendo assim, $\omega_{\gamma} < \kappa$. Como κ é cardinal limite, temos que $\omega_{\gamma+1} = (\omega_{\gamma})^+ < \kappa$. Daí $\gamma + 1 \in X$. Logo se $\delta < \beta$, temos que $\delta + 1 < \beta$, e assim β será ordinal limite.

Se $\gamma < \beta$, temos que $\gamma < \alpha_{\mu}$, para algum $\mu < \kappa$. Assim $\omega_{\gamma} < \omega_{\alpha_{\mu}} = \mu < \kappa$. Logo $\omega_{\beta} = \sup \{\omega_{\gamma} \colon \gamma < \beta\} \le \kappa$. Suponha $\mu < \kappa$ cardinal. Então $\mu = \omega_{\alpha_{\mu}}$ e $\alpha_{\mu} \in X$. Logo $\alpha_{\mu} < \beta$. Daí, $\mu = \omega_{\alpha_{\mu}} < \omega_{\beta}$. Portanto $\kappa \subseteq \omega_{\beta}$. Daí, $\kappa = \omega_{\beta}$.

Concluímos que

 $\forall \alpha \left[(\omega_{\alpha} \text{ \'e card.sucessor} \leftrightarrow \alpha \text{ \'e ord.sucessor}) \land (\omega_{\alpha} \text{ \'e card.limite} \leftrightarrow \alpha \text{ \'e ord.limite}) \right].$

Se $\alpha = \beta + 1$, $\omega_{\alpha} = (\omega_{\beta})^{+}$. Se α é limite e $\omega_{\alpha} = \kappa^{+}$, temos que $\kappa < \omega_{\alpha}$. Logo $\kappa < \omega_{\beta}$, para algum $\beta < \alpha$. Daí, $\omega_{\alpha} = \kappa^{+} < (\omega_{\beta})^{+} = \omega_{\beta+1} \leq \omega_{\alpha}$, e concluímos que $\omega_{\alpha} < \omega_{\alpha}$, um absurdo. Logo ω_{α} é cardinal limite.

45. Lema^{AE}. Se $f: A \longrightarrow B$ é sobrejetora, então $B \preceq A$.

Demonstração Seja R uma boa ordem em A e seja $g: B \longrightarrow A$ definida por

$$g(y) = R - \min f^{-1}(\{y\}).$$

Lembremos que $(\forall \in B) f^{-1}(\{y\}) \neq 0$ pois f é sobrejetora. Claramente, g é 1-1.

Existe $g: \mathcal{P}(\omega) \longrightarrow \omega_1$ sobrejetora, mas, sem o **AE** não se pode produzir $f: \omega_1 \longrightarrow \mathcal{P}(\omega)$ 1-1.

Existe $j: \omega \longrightarrow \omega \times \omega$ bijetora. Logo

$$\mathcal{P}(\omega) \xrightarrow{J} \mathcal{P}(\omega \times \omega) \xrightarrow{\Theta} \omega_{1}$$

$$R \mapsto \Theta(R) = \begin{cases} \text{type}(\text{corpo } R, R) & \text{se } R \text{ \'e boa-ordem,} \\ 0 & \text{caso contr\'ario,} \end{cases}$$

é uma função sobrejetora.

09/05/97

46. Lema^{AE} (10.21). Seja κ um cardinal infinito. Reunião de $\leq \kappa$ conjuntos de cardinalidade $\leq \kappa$ tem cardinalidade $\leq \kappa$ i.e. dados X_{α} para $\alpha < \kappa$ tais que $|X_{\alpha}| \leq \kappa$ para todo $\alpha < \kappa$, então $|\bigcup \{X_{\alpha} : \alpha < \kappa\} | \leq \kappa$.

Demonstração Para cada $\alpha < \kappa$ escolha $f_{\alpha} \colon X_{\alpha} \to \kappa$ injetora: seja R uma boa ordem sobre $A = \mathcal{P}(\bigcup \{X_{\alpha} \colon \alpha < \kappa\} \times \kappa)$. Tome

$$f_{\alpha} = R - \min \{ f \in A \colon f \text{ \'e uma função 1-1 de } X_{\alpha} \text{ em } \kappa \}.$$

Então, com estas f_{α} podemos definir uma

$$h: \bigcup \{X_{\alpha} : \alpha < \kappa\} \to \kappa \times \kappa$$

por $h(x) = \langle m_x, f_{m_x}(x) \rangle$, onde $m_x = \min \{ \alpha < \kappa \colon x \in X_{\alpha} \}$.

Seja $x, y \in \bigcup_{\alpha} X_{\alpha}, x \neq y$. Então $m_x \neq m_y$ ou $m_x = m_y$. Se $m_x \neq m_y$ então $h(x) \neq h(y)$. Se $m_x = m_y = m$ então $f_m(x) \neq f_m(y)$ pois f_m é 1-1 e, portanto, $h(x) \neq h(y)$.

Logo
$$\bigcup \{X_{\alpha} : \alpha < \kappa\} \preceq \kappa \times \kappa \approx \kappa$$
.

47. Corolário. Se $X \subseteq \kappa^+$ e $|X| < \kappa^+$ então $\sup X < \kappa^+$.

Demonstração $X = \{\gamma_{\xi} : \xi < |X| \le \kappa\}$, com $\gamma_{\xi} \in \kappa^{+}$ i.e. $|\gamma_{\xi}| \le \kappa$. Portanto, pelo lema, $|\sup X| \le \kappa$ logo $\sup X < \kappa^{+}$.

Observe que este corolário não valeria para κ no lugar de κ^+ . Por exemplo, tome $X = \{\omega_n : n < \omega\}$, então $X \subseteq \omega_\omega$ com $|X| = \omega < \omega_\omega$ e sup $X = \omega_\omega$.

Lévy provou que é consistente com ZF que $\mathcal{P}(\omega)$ e ω_1 sejam reuniões enumeráveis de enumeráveis.

48. Definição. f é uma função \mathbf{n} -ária $(n < \omega)$ sobre A se $f: A^n \to A$ no caso em que n > 0 e $f \in A$ no caso n = 0. f é uma função finitária sobre A se f é uma função n-ária para algum $n < \omega$.

Para uma função n-ária f sobre A, um subconjunto $B \subseteq A$ se diz **fechado** para f se $f[B^n] \subseteq B$ no caso n > 0 e $f \in B$ no caso n = 0.

Se \mathcal{F} é um conjunto de funções finitárias sobre A e $B \subseteq A$, o **fecho** de B por \mathcal{F} é o menor subconjunto $\hat{B} \subseteq A$ que é fechado para toda $f \in \mathcal{F}$.

49. Teorema^{AE}. Seja $B \subseteq A$, $|B| \le \kappa$ ($\kappa \ge \omega$), \mathcal{F} um conjunto de funções finitárias sobre A, com $|\mathcal{F}| \le \kappa$. Então $|\hat{B}| \le \kappa$, onde \hat{B} é o fecho de B por \mathcal{F} .

Demonstração Por recursão finita sejam

$$\begin{cases} B_0 = B \\ B_{n+1} = B_n \cup \bigcup \{f_*(B_n) \colon f \in \mathcal{F}\}, \end{cases}$$

onde para todo $X \subseteq A$

$$f_*(X) = \begin{cases} f[X^k] & \text{se } f \text{ \'e k-\'aria com $k > 0$} \\ f & \text{se } f \text{ \'e 0-\'aria.} \end{cases}$$

e seja

$$B_{\omega} = \bigcup \{B_n \colon n < \omega\} .$$

Por indução finita $|B_n| \leq \kappa$: $|B_0| = |B| \leq \kappa$. Supondo $|B_n| \leq \kappa$ então $|f_*(B_n)| \leq \kappa$ então $\bigcup \{f_*(B_n) : f \in \mathcal{F}\}$ é reunião de $|\mathcal{F}| \leq \kappa$ conjuntos de cardinalidade $\leq \kappa$, portanto por 10.21, $|\bigcup \{f_*(B_n) : f \in \mathcal{F}\}| \leq \kappa$; e $|B_{n+1}| \leq \kappa$ e também $|B_{\omega}| \leq \kappa$ pois é a união de $\omega \leq \kappa$ conjuntos de cardinalidade $\leq \kappa$.

 B_{ω} é fechado por \mathcal{F} .

Se $f \in \mathcal{F}$ é k-ária com k > 0 e $x_1, \ldots, x_k \in B_{\omega}$ então existem $n_1, \ldots, n_k < \omega$ tais que $x_i \in B_{n_i}$ $(i = 1, \ldots, k)$. Seja $n^* = \max\{n_1, \ldots, n_k\}$, então $x_1, \ldots, x_k \in B_{n^*}$ e $f(x_1, \ldots, x_k) \in f_*[B_{n^*}] = f_*(B_{n^*}) \subseteq B_{\omega}$.

Logo $\hat{B} \subseteq B_{\omega}$ e portanto $|\hat{B}| \le |B_{\omega}| \le \kappa$. Na realidade, $\hat{B} = B_{\omega}$ (provar por indução finita que para todo $n \in \omega$ tem-se $B_n \subseteq \hat{B}$).

50. Definição. Dados A e B denota-se por ^BA ou A^B o conjunto

$$\{f \in \mathcal{P}(B \times A) : f \notin função \ e \ \operatorname{dom} f = B \ e \ \operatorname{im} f \subseteq A\}$$

de todas as funções de B em A.

51. Definição^{AE}. Dados κ e λ cardinais define-se κ^{λ} como sendo $|{}^{\lambda}\kappa|$.

Já tinhamos definido a operação α^{β} para α e β ordinais. Em geral κ^{λ} como operação nos ordinais é diferente de κ^{λ} como operação nos cardinais. Por exemplo, $2^{\omega} = \omega$ nos ordinais e veremos que $2^{\omega} > \omega$ nos cardinais.

- 52. Lema.
 - 1. $\mathcal{P}(A) \approx {}^{A}2$.
 - 2. Se κ e λ são cardinais e $\lambda \geq \omega$ e $2 \leq \kappa \leq \lambda$, então ${}^{\lambda}\kappa \preccurlyeq {}^{\lambda}2 \approx \mathcal{P}(\lambda)$ e com \mathbf{AE} $2^{\lambda} = \kappa^{\lambda} = \lambda^{\lambda}$.

Demonstração (i). Defina $H: \mathcal{P}(A) \to {}^{A}2$ por $\forall X \subseteq A, H(X)$ é uma função de A sobre 2 tal que H(X)(a) = 0 se $a \in A \setminus X$ e H(X)(a) = 1 se $a \in X$. H é 1-1 e sobre. (ii). ${}^{\lambda}2 \preceq {}^{\lambda}\kappa \preceq {}^{\lambda}\lambda \preceq \mathcal{P}(\lambda \times \lambda) \approx \mathcal{P}(\lambda) \approx {}^{\lambda}2$.

Note que $2^{\aleph_0} = 2^{\omega} = |\mathcal{P}(\omega)| > |\omega|$ e em geral $\omega_{\alpha} < |\mathcal{P}(\omega_{\alpha})| = 2^{\omega_{\alpha}}$. Logo $\omega_{\alpha+1} \le 2^{\omega_{\alpha}}$. A **Hipótese do Contínuo (CH)** é a afirmação

$$2^{\omega_0} = \omega_1$$

e a Hipótese Generalizada do Contínuo (GCH) é a afirmação

$$\forall \alpha [2^{\omega_{\alpha}} = \omega_{\alpha+1}].$$

Sem AE, reescrevemos CH e GCH como

CH: $\mathcal{P}(\omega) \approx \omega_1$.

GCH: $\forall \kappa (\mathcal{P}(\kappa) \approx \kappa^+).$

Vamos mostrar que para $m,n<\omega,$ m^n (exponenciação ordinal) é igual a m^n (exponenciação cardinal) verificando que m^n nos cardinais satisfaz também $m^0=1$ e $m^{n+1}=m^n\cdot m$. Para cada $m<\omega,$ $m^0=|^0m|=|\{0\}|=1$ (0 é a única função de 0 em m). Temos uma função $\theta\colon (n+1)m\to (nm)\times m$ bijetora que associa a cada $h\in (n+1)m$ o par $\langle h\restriction n,h(n)\rangle\in (nm)\times m$. Portanto, $m^{n+1}=m^n\otimes m=m^n\cdot m$.

- 53. Lema^{AE}.
 - 1. $\kappa^{\lambda \oplus \mu} = \kappa^{\lambda} \otimes \kappa^{\mu}$.
 - 2. $(\kappa^{\lambda})^{\mu} = \kappa^{\lambda \otimes \mu}$.

Demonstração (i). Se $B \cap C = 0$, então

$$(B \cup C)_A \approx (B_A) \times (C_A)$$
$$h \in (B \cup C)_A \leadsto \langle h \upharpoonright B, h \upharpoonright C \rangle \in (B_A) \times (C_A).$$

(ii). Para todos A, B, C

$$C(^BA) \approx (^C \times ^B)_A$$

$$h \in ^C(^BA) \leadsto \theta(h) \colon C \times B \to A \text{ tal que } \theta(h)(\langle c, b \rangle) = h(c)(b).$$

Usando AE tomamos os cardinais e temos o lema.

54. Definição. $f: \alpha \to \beta$ se diz **cofinal** (em β) se $f[\alpha]$ é um conjunto não limitado superiormente em β .

Observação Se $\beta = \gamma + 1$, f é cofinal $\leftrightarrow \gamma \in \text{im } f$.

55. Definição. A cofinalidade de β é o menor α tal que existe $f: \alpha \to \beta$ cofinal.

Notação $cf(\beta)$ para a cofinalidade de β .

Observação Se $\beta = \gamma + 1$ então $cf(\beta) = 1$, portanto só interessará $cf(\beta)$ no caso em que β é limite. Observe que neste caso $cf(\beta)$ é limite.

56. Lema (10.31). Existe $f: cf(\beta) \to \beta$ cofinal e crescente.

Demonstração Existe $g: \operatorname{cf}(\beta) \to \beta$ que é cofinal. Vamos definir $f: \operatorname{cf}(\beta) \to \beta$ por recursão transfinita sobre $\xi < \operatorname{cf}(\beta)$:

$$f(\xi) = \max(g(\xi), \sup\{f(\eta) + 1 \colon \eta < \xi\})$$

para $\xi < \operatorname{cf}(\beta)$.

 $\sup \{f(\eta)+1\colon \eta<\xi\} <\beta \text{ senão } f\upharpoonright \xi\colon \xi\to\beta \text{ seria cofinal, contra } \xi<\mathrm{cf}(\beta).$ Portanto $f(\xi)$ está bem definida (uma vez conhecido $f\upharpoonright \xi$).

 $f(\xi) \ge g(\xi)$ e $\{g(\xi) : \xi < \operatorname{cf}(\beta)\}$ é ilimitado em β , portanto, $\{f(\xi) : \xi < \operatorname{cf}(\beta)\}$ também é ilimitado em β ; e se $\eta < \xi$, $f(\eta) < f(\xi)$ (pois $f(\eta) < f(\eta) + 1 \le \sup\{f(\eta) + 1 : \eta < \xi\} \le f(\xi)$).

Observação id: $\beta \to \beta$ é cofinal, portanto, $cf(\beta) \le \beta$.

Observação Existe uma bijeção $f: |\beta| \to \beta$, portanto f é cofinal, portanto $cf(\beta) \le |\beta|$.

Observação Se $X \subseteq \beta$ então type(X, <) (< é a ordem entre os ordinais, restrita a X) é o único ordinal isomorfo a $\langle X, < \rangle$. Dessa forma,

 $\operatorname{cf}(\beta) = \min \{ \alpha \colon \exists X \subseteq \beta(X \text{ n\tilde{a}} \circ \operatorname{\acute{e}} \operatorname{limitado} \operatorname{superiormente} \operatorname{em} \beta \wedge \operatorname{type}(X, <) = \alpha) \}$.

Então o lema acima pode ser visto tomando $X \subseteq \beta$ não limitado em β tal que type(X, <) = cf (β) . Então $f: cf(\beta) \to X$ o (único) isomorfismo, é a função desejada.

Dia 14/5/97

Cofinalidade

57. Lema (10.32). Se existe $f: \alpha \longrightarrow \beta$ cofinal e crescente e α é limite, então $cf(\alpha) = cf(\beta)$.

Demonstração Seja $g: \operatorname{cf}(\alpha) \longrightarrow \alpha$ cofinal; então $fg: \operatorname{cf}(\alpha) \longrightarrow \beta$ é cofinal (pois dado $\xi < \beta$, seja $\eta < \alpha$ tal que $\xi \leq f(\eta)$ e seja $\zeta < \operatorname{cf}(\alpha)$ tal que $\eta \leq g(\zeta)$; como f é crescente, $\xi \leq f(\eta) \leq f(g(\zeta)) = fg(\zeta)$). Portanto, $\operatorname{cf}(\beta) \leq \operatorname{cf}(\alpha)$.

Seja $g: \operatorname{cf}(\beta) \longrightarrow \beta$ cofinal. Vamos definir $h: \operatorname{cf}(\beta) \longrightarrow \alpha$ por

$$\xi < \operatorname{cf}(\beta) \mapsto h(\xi) = \min \{ \eta < \alpha \colon g(\xi) < f(\eta) \}.$$

<u>h é cofinal em α </u>: pois dado $\gamma < \alpha$; existe $\xi < \operatorname{cf}(\beta)$ tal que $f(\gamma) < g(\xi)$. Como $f(h(\xi)) > g(\xi)$, temos que $h(\xi) > \gamma$, já que f é crescente.

58. Corolário. $cf(cf(\beta)) = cf(\beta)$.

Demonstração Existe $f: \operatorname{cf}(\beta) \longrightarrow \beta$ cofinal e crescente, por 10.31. Logo $\operatorname{cf}(\operatorname{cf}(\beta)) = \operatorname{cf}(\beta)$ pelo lema anterior.

59. Definição. Um ordinal (limite) se diz **regular** se $cf(\beta) = \beta$.

Exemplo $f: \omega \longrightarrow \omega_{\omega}$ definida por $f(n) = \omega_n$ é cofinal. Portanto $\operatorname{cf}(\omega_{\omega}) \leq \omega$. Como $\operatorname{cf}(\omega_{\omega}) \nleq \omega$ temos que $\operatorname{cf}(\omega_{\omega}) = \omega$. Daí, ω_{ω} não é regular.

Se β é regular, então β é cardinal. De fato,

$$cf(\beta) \le |\beta| \le \beta = cf(\beta).$$

Um cardinal infinito que não é regular se diz **singular**. ω é regular.

60. Proposição^{AE}. $(\forall \kappa \geq \omega) \kappa^+$ é regular.

Demonstração Caso contrário, existiria $f: \operatorname{cf}(\kappa^+) \longrightarrow \kappa^+$ cofinal e $\operatorname{cf}(\kappa^+) < \kappa^+$. Cada $f(\xi)$, para $\xi < \operatorname{cf}(\kappa^+)$, é um elemento de κ^+ . Portanto, $|f(\xi)| \le \kappa$, $\forall \xi < \operatorname{cf}(\kappa^+)$. Sendo f cofinal,

$$\kappa^+ = \sup \operatorname{im} f = \bigcup_{\xi < \operatorname{cf}(\kappa^+)} f(\xi).$$

Daí κ^+ seria uma união de $\leq \kappa$ conjuntos de cardinalidade $\leq \kappa$. Pelo lema 10.21, $|\kappa^+| \leq \kappa$, e chegamos a uma contradição.

Observação Se $\lambda = \operatorname{cf}(\kappa) < \kappa$, então κ pode ser escrito como união de λ conjuntos de cardinalidade $< \kappa$. De fato, seja $f : \lambda \longrightarrow \kappa$ cofinal e crescente, e

$$\kappa = \bigcup \{ f(\xi) \colon \xi < \lambda \}.$$

Reciprocamente, se existe $\lambda < \kappa$ e existem $X_{\alpha} \subseteq \kappa, \forall \alpha < \lambda$, tais que $|X_{\alpha}| < \kappa$ e $\kappa = \bigcup_{\alpha < \lambda} X_{\alpha}$; então cf $(\kappa) < \kappa$. Portanto, κ é singular.

Demonstração Seja $\lambda < \kappa$ o menor cardinal tal que existem $X_{\alpha} \subseteq \kappa$ $(\forall \alpha < \lambda)$ tais que $|X_{\alpha}| < \kappa$ e $\kappa = \bigcup \{X_{\alpha} : \alpha < \lambda\}$.

Para todo $\xi < \lambda$ tome $\beta_{\xi} = \operatorname{type}(\{X_{\alpha} : \alpha < \xi\})$. Pela minimalidade de λ temos que $\beta_{\xi} < \kappa$. Vamos mostrar que $f : \lambda \to \kappa$ dada por $f(\xi) = \beta_{\xi}$ é cofinal: ponha $\beta = \sup \operatorname{im} f$. Observe que $g : \kappa \to \lambda \times \beta$ dada por $g(\zeta) = \langle \xi, \gamma \rangle$, onde $\xi = \min \{\alpha : \zeta \in X_{\alpha}\}$ e $\gamma = \operatorname{type} X_{\xi} \cap \zeta$, é injetora.

Logo $\kappa \leq |\lambda \times \beta| = \lambda \otimes |\beta|$ e como $\lambda < \kappa$ então $|\beta| \geq \kappa$, portanto, $\beta \geq \kappa$, ou seja, $\beta = \kappa$.

Provamos que: um cardinal $\kappa \geq \omega$ é singular se, e somente se, existem $\lambda < \kappa$ e $\langle X_{\alpha} : \alpha < \lambda \rangle$ tais que $(\forall \alpha < \lambda)(X_{\alpha} \subseteq \kappa \wedge |X_{\alpha}| < \kappa)$ e $\bigcup \{X_{\alpha} : \alpha < \lambda\} = \kappa$.

Sem o **AE** sabe-se que é possível que ω_1 seja uma reunião enumerável de enumeráveis, e, portanto, $\operatorname{cf}(\omega_1) \leq \omega$.

Sem o **AE** não se pode provar que existem cardinais de cofinalidade $> \omega$.

61. Lema. Para α limite, $cf(\omega_{\alpha}) = cf(\alpha)$.

Lembremos que ω_{α} é regular, para α sucessor.

Demonstração Seja $f: \alpha \longrightarrow \omega_{\alpha}$ a função "Aleph":

$$f(\xi) = \omega_{\xi}$$
, para $\xi < \alpha$.

Por 10.32, $cf(\alpha) = cf(\omega_{\alpha})$.

Pergunta: Como seria um cardinal limite κ no caso de ser regular? κ seria ω_{α} , para algum α limite.

$$cf(\alpha) = cf(\omega_{\alpha}) = \omega_{\alpha} \le \alpha \le \omega_{\alpha}.$$

 $\alpha = \omega_{\alpha} = \kappa$. Portanto, $\kappa = \omega_{\kappa}$. Mas esta condição não é suficiente, nós vimos um κ nessas condições mas κ não era regular,

$$\begin{cases} \kappa_0 = \omega_0 \\ \kappa_{n+1} = \omega_{\kappa_n} \\ \kappa = \sup \{ \kappa_n \colon n < \omega \} \ e \end{cases}$$

 $cf(\kappa) = \omega$.

62. Definição.

- Um cardinal κ se diz **fracamente inacessível** se κ é cardinal limite regular.
- Um cardinal κ se diz **fortemente inacessível** se $\kappa > \omega$, κ é regular e $(\forall \lambda < \kappa)2^{\lambda} < \kappa$.

Lembremos que κ é cardinal limite se, e só se, $(\forall \lambda < \kappa)\lambda^+ < \kappa$ (κ , λ cardinais). Se κ é cardinal infinito e $(\forall \lambda < \kappa)2^{\lambda} < \kappa$, então, em particular, $(\forall \lambda < \kappa)\lambda^+ \leq 2^{\lambda} < \kappa$, portanto κ é limite.

Por isso, se κ satisfaz $(\forall \lambda < \kappa) 2^{\lambda} < \kappa$, κ se diz **limite forte**.

Aritmética Cardinal

Sejam κ_i , para $i \in I$, cardinais, e sejam $A = \bigcup \{\{i\} \times \kappa_i : i \in I\}$ e $B = \prod \langle \kappa_i : i \in I \rangle = \{f : f \text{ \'e função } \wedge \text{dom } f = I \wedge (\forall i \in I) f(i) \in \kappa_i\}$. Usando **AE**, definimos

$$\sum_{i \in I} \kappa_i = |A| \quad \text{e} \quad \prod_{i \in I} \kappa_i = |B|.$$

63. Proposição. Se $(\forall i \in I)\kappa_i \geq 1$ e $|I| \geq \omega$, $ent\tilde{a}o$ $\sum_{i \in I} \kappa_i = |I| \otimes \sup \{\kappa_i \colon i \in I\}$.

Demonstração Sejam $|I|=\lambda, \sum_{i\in I}\kappa_i=\sigma$ e sup $\{\kappa_i\colon i\in I\}=\kappa$. Então

$$\lambda = \sum_{i \in I} 1 \le \sum_{i \in I} \kappa_i = \sigma.$$

Logo $\lambda \leq \sigma$. Ainda,

$$\sigma = \sum_{i \in I} \kappa_i \le \sum_{i \in I} \kappa = \lambda \otimes \kappa.$$

Portanto, $\sigma \leq \lambda \otimes \kappa$. Como $\kappa_i \leq \sigma$, para todo $i \in I$, temos que $\kappa \leq \sigma$. De $\lambda \geq \omega$, temos que

$$\sigma \le \lambda \otimes \kappa = \max \{\lambda, \kappa\} \le \sigma.$$

Exemplo $\sum_{n<\omega}\omega_n=\omega_\omega$.

64. Proposição. $((\forall i \in I)\theta_i < \kappa_i) \to \sum_{i \in I} \theta_i < \prod_{i \in I} \kappa_i$.

Demonstração Sejam $A = \bigcup \{\{i\} \times \theta_i : i \in I\} \in B = \prod \langle \kappa_i : i \in I \rangle$. Definamos $h : A \longrightarrow B$ por

$$\langle i, \xi \rangle \in A \mapsto h(\langle i, \xi \rangle)(j) = \begin{cases} 0 & j \neq i \\ \xi + 1 & j = i \end{cases}$$

<u>h é 1-1</u>: Sejam $\langle i_1, \xi_1 \rangle$ e $\langle i_2, \xi_2 \rangle$ dois elementos distintos de A.

• Se $i_1 = i_2 = i$, temos que

$$h(\langle i_1, \xi_1 \rangle)(i) = \xi_1 + 1 \neq \xi_2 + 1 = h(\langle i_2, \xi_2 \rangle)(i).$$

• Se $i_1 \neq i_2$,

$$h(\langle i_1, \xi_1 \rangle)(i_2) = 0 \neq \xi_2 + 1 = h(\langle i_2, \xi_2 \rangle)(i_2).$$

Daí h é 1-1 e $A \leq B$. Logo $|A| \leq |B|$.

Agora suponha dada $h: A \longrightarrow B$. Para cada $i \in I$, seja $f_i: \theta_i \longrightarrow \kappa_i$ definida por $f_i(\xi) = h(\langle i, \xi \rangle)(i)$, para todo $\xi < \theta_i$. Como $\theta_i < \kappa_i$, temos que

$$|\{f_i(\xi): \xi < \theta_i\}| \le \theta_i < \kappa_i.$$

Então $\kappa_i \setminus \{f_i(\xi) : \xi < \theta_i\} \neq 0$. Seja $g(i) = \min(\kappa_i \setminus \inf f_i)$. Isto define uma função g com domínio I e tal que $(\forall i \in I)g(i) \in \kappa_i$, i.e. $g \in B$. Vejamos que $g \notin \operatorname{im} h$. Seja $\langle i, \xi \rangle \in A$ e temos que $g(i) \notin \operatorname{im} f_i$ mas $h(\langle i, \xi \rangle)(i) = f_i(\xi) \in \operatorname{im} f_i$. Portanto $g \neq h(\langle i, \xi \rangle)$.

Logo
$$A \prec B \in |A| < |B|$$
.

65. Proposição^{AE} (König). Sejam κ, λ cardinais infinitos tais que $cf(\kappa) \leq \lambda \leq \kappa$. Então $\kappa < \kappa^{\lambda}$.

Demonstração Existe $\langle \theta_i : i \in \lambda \rangle$ com $\theta_i < \kappa$ e cofinal em κ .

Temos

$$\sum_{i \in \lambda} \theta_i = \lambda \otimes \sup \{ \theta_i \colon i \in I \} = \lambda \otimes \kappa = \kappa.$$

Ainda, pela proposição anterior,

$$\sum_{i \in \lambda} \theta_i < \prod_{i \in \lambda} \kappa = \kappa^{\lambda}.$$

Logo $\kappa < \kappa^{\lambda}$. Em particular, $\kappa < \kappa^{\mathrm{cf}(\kappa)}$.

66. Corolário. Para $\kappa \geq \omega$, $\kappa < cf(2^{\kappa})$.

Demonstração Seja $\theta = 2^{\kappa}$. Se cf $(\theta) \leq \kappa$, teríamos, pelo resultado anterior, que

$$2^{\kappa} = \theta < \theta^{\kappa} = (2^{\kappa})^{\kappa} = 2^{\kappa \otimes \kappa} = 2^{\kappa}.$$

Portanto, $\kappa < \mathrm{cf}(\theta) = \mathrm{cf}(2^{\kappa})$.

Dia 16/5/97

67. Proposição. Assumindo GCH (a hipótese generalizada do contínuo), se $\kappa \geq 2$, $\lambda \geq \omega$ então

$$\kappa^{\lambda} = \begin{cases} \kappa & se \ \lambda < \mathrm{cf}(\kappa) \\ \kappa^{+} & se \ \mathrm{cf}(\kappa) \leq \lambda < \kappa \\ \lambda^{+} & se \ \kappa \leq \lambda. \end{cases}$$

Demonstração Se $\kappa \leq \lambda$, então

$$2^{\lambda} \le \kappa^{\lambda} \le (2^{\kappa})^{\lambda} = 2^{\kappa \otimes \lambda} = 2^{\lambda}.$$

Portanto $\kappa^{\lambda} = 2^{\lambda} = \lambda^{+}$, por **GCH**.

Se cf(κ) $\leq \lambda < \kappa$, então, usando König,

$$\kappa < \kappa^{\lambda} \le \kappa^{\kappa} \le (2^{\kappa})^{\kappa} = 2^{\kappa} = \kappa^{+}.$$

Logo $\kappa^{\lambda} = \kappa^{+}$.

Se $\lambda < \operatorname{cf}(\kappa)$ e $f : \lambda \longrightarrow \kappa$ temos que sup im $f = \sigma < \kappa$, i.e. $f \in {}^{\lambda}\alpha$ para algum $\alpha < \kappa$. Portanto,

$$^{\lambda}\kappa = \bigcup \left\{ ^{\lambda}\alpha \colon \alpha < \kappa \right\}.$$

Logo $|{}^{\lambda}\alpha| = |\alpha|^{\lambda} \leq 2^{|\alpha| \otimes \lambda} \stackrel{\mathbf{GCH}}{=} \max(|\alpha|, \lambda)^+ \leq \kappa$. Daí,

$$\kappa^{\lambda} = \left| \bigcup \left\{ {}^{\lambda}\alpha \colon \alpha < \kappa \right\} \right| \le \sum_{\alpha < \kappa} |\alpha|^{\lambda} \le \sum_{\alpha < \kappa} \kappa = \kappa \otimes \kappa = \kappa.$$

Notação Seja X um conjunto infinito, com $|X| = \kappa$ e seja $\lambda \le \kappa$. Denotamos por:

- $[X]^{\lambda} = \{Y \subseteq X : |Y| = \lambda\}$
- $[X]^{<\lambda} = \{Y \subseteq X : |Y| < \lambda\}$
- $[X]^{\leq \lambda} = \{Y \subseteq X : |Y| \leq \lambda\}.$

O conjunto das partes finitas de X é o conjunto $[X]^{<\omega}$.

68. Proposição (exercício 14 do Kunen). $|[X]^{\lambda}| = |X|^{\lambda}$.

Demonstração Para cada $Y \in [X]^{\lambda}$ existe $h_Y \colon \lambda \longrightarrow Y$ bijetora, pois $|Y| = \lambda$. Definimos $H(Y) = h_Y$, para cada $Y \in [X]^{\lambda}$, onde h_Y é uma função de λ em X tal que im $h_Y = Y$. Se $Y_1, Y_2 \in [X]^{\lambda}$, são distintos, temos que

$$\operatorname{im} H(Y_1) = \operatorname{im} h_{Y_1} = Y_1 \neq Y_2 = \operatorname{im} h_{Y_2} = \operatorname{im} H(Y_2).$$

Sendo assim, H é uma função 1-1 de $[X]^{\lambda}$ em $^{\lambda}|X|$. E

$$|[X]^{\lambda}| \le |{}^{\lambda}X| = |X|^{\lambda}.$$

Seja $f \in {}^{\lambda}X$, então $f \subseteq \lambda \times X$ e $|f| = \lambda$. Portanto $f \in [\lambda \times X]^{\lambda} \approx [X]^{\lambda}$, pois $|\lambda \times X| = \lambda \otimes |X| = |X|$. Logo

$$^{\lambda}X \subset [\lambda \times X]^{\lambda} \approx [X]^{\lambda},$$

 $|X|^{\lambda} \le |X|^{\lambda}|$

69. Definição.

- $^{<\lambda}\kappa \stackrel{def}{=} \bigcup \{^{\alpha}\kappa : \alpha < \lambda\}.$
- $< \beta_A \stackrel{def}{=} \bigcup \{ {}^{\alpha}A : \alpha < \beta \}.$

•
$$\kappa^{<\lambda} \stackrel{def}{=} |{}^{<\lambda}\kappa| = |\bigcup \{{}^{\alpha}\kappa : \alpha < \lambda\}|$$

70. Lema.
$$|\bigcup \{X_i : i \in I\}| \le \sum_{i \in I} |X_i| = |\bigcup \{\{i\} \times X_i : i \in I\}|.$$

Demonstração No caso $I=\lambda$. Definamos uma função de $\bigcup \{X_i\colon i\in I\}$ em $\bigcup \{\{i\}\times X_i\colon i\in I\}$, por

$$x \mapsto \langle \alpha, x \rangle$$
, onde $\alpha = \min \{ \xi < \lambda \colon x \in X_{\xi} \}$.

É fácil ver que esta função é injetora.

Vejamos quanto é $\kappa^{<\lambda}$. Pelo lema anterior,

$$\kappa^{<\lambda} = \left| \bigcup \left\{ {}^{\alpha}\kappa \colon \alpha < \lambda \right\} \right| \le \sum_{\alpha \le \lambda} |{}^{\alpha}\kappa| = \sum_{\alpha \le \lambda} \kappa^{|\alpha|} = \lambda \otimes \sup \left\{ \kappa^{|\alpha|} \colon \alpha < \lambda \right\}.$$

• Se $\lambda = \mu^+$, então $\kappa^{|\alpha|} \le \kappa^{\mu}$, para todo $\alpha < \lambda$. Logo sup $\left\{ \kappa^{|\alpha|} \colon \alpha < \lambda \right\} = \kappa^{\mu}$. Ainda, $\lambda = \mu^+ < 2^{\mu} < \kappa^{\mu}$.

Logo $\kappa^{<\lambda} = \kappa^{\mu}$.

• Se λ é cardinal limite, temos

$$\lambda = \sup \{ \mu \colon \mu < \lambda \land \mu \text{ \'e cardinal} \} \leq \sup \{ \kappa^{\mu} \colon \mu < \lambda \land \mu \text{ \'e cardinal} \}.$$

Então

$$\lambda \otimes \sup \left\{ \kappa^{|\alpha|} \colon \alpha < \lambda \right\} = \sup \left\{ \kappa^{\mu} \colon \mu < \lambda \wedge \mu \text{ \'e cardinal} \right\}.$$

Como sup $\{\kappa^{\mu} \colon \mu < \lambda \wedge \mu \text{ \'e cardinal}\} \leq \kappa^{<\lambda}$, temos que

$$\kappa^{<\lambda} = \sup \{ \kappa^{\mu} \colon \mu < \lambda \wedge \mu \text{ \'e cardinal} \}.$$

A função do contínuo $\beth(\alpha)$ se define recursivamente por:

$$\begin{cases} \exists (0) = \omega_0 \\ \exists (\alpha + 1) = 2^{\exists (\alpha)} \\ \exists (\alpha) = \sup \left\{ 2^{\exists (\xi)} \colon \xi < \alpha \right\} \quad \text{se } \alpha \text{ \'e um ordinal limite.} \end{cases}$$

Um pouco mais de aritmética de Cardinais

Já vimos que $\sum \kappa_i = |I| \otimes \sup \{\kappa_i \colon i \in I\}.$

71. Proposição. $\prod \kappa_i^{\lambda} = (\prod \kappa_i)^{\lambda} e \prod \kappa^{\lambda_i} = \kappa^{\sum \lambda_i}$.

Demonstração As funções definidas abaixo são bijeções.

Definamos

$$H : \prod \langle {}^{\lambda} \kappa_i \colon i \in I \rangle \longrightarrow {}^{\lambda} \prod \langle \kappa_i \colon i \in I \rangle$$

por $f \in \prod \langle {}^{\lambda}\kappa_i : i \in I \rangle \mapsto H(f) \in {}^{\lambda}\prod \langle \kappa_i : i \in I \rangle$ onde $H(f)(\xi)$ é dada por $H(f)(\xi)(i) = f(i)(\xi)$.

Definamos

$$H \colon \prod \langle {}^{\lambda_i} \kappa \colon i \in I \rangle \longrightarrow \cup_{i \in \{i\} \times \lambda_i\}} \kappa$$

por $f \in \prod \langle \lambda_i \kappa : i \in I \rangle \mapsto H(f)(\langle i, \xi \rangle) = f(i)(\xi)$.

• Se $\{A_j\colon j\in J\}$ é uma partição de I,então

$$\sum_{i \in I} \kappa_i = \sum_{j \in J} \left(\sum_{i \in A_j} \kappa_i \right)$$
$$\prod_{i \in I} \kappa_i = \prod_{j \in J} \left(\prod_{i \in A_j} \kappa_i \right).$$

• Se $2 \leq \kappa_i \ (\forall i \in I)$, então $\sum_i \kappa_i \leq \prod_i \kappa_i$.

Demonstração Se $2 \le \kappa_i$ então $\prod_i 2 \le \prod_i \kappa_i$ portanto $2^{|I|} \le \prod_i \kappa_i$ logo $|I| \le \prod_i \kappa_i$. Defina

$$\bigcup \left\{ \{i\} \times \kappa_i \colon i \in I \right\} \to I \times \prod_{\langle i, \xi \rangle} \langle \kappa_i \colon i \in I \rangle$$

onde $f: I \to \bigcup \kappa_i$ é dada por

$$f(j) = \begin{cases} 0 & \text{se } j \neq i \\ \xi & \text{se } j = i. \end{cases}$$

Portanto, $\sum_{i} \kappa_{i} = \big| \bigcup \{\{i\} \times \kappa_{i} : i \in I\} \big| \leq |I| \otimes \prod_{i} \kappa_{i} = \prod_{i} \kappa_{i}.$

• Se
$$\kappa_i < \lambda_i \ (\forall i \in I)$$
, então $\sum_i \kappa_i < \prod_i \lambda_i$.

• Se $\lambda = \operatorname{cf}(\kappa) < \kappa$, i.e. κ é singular, então existe uma sequência κ_{α} para $\alpha < \lambda$ com $\kappa_{\alpha} < \kappa$ e tal que sup $\{\kappa_{\alpha} : \alpha < \lambda\} = \lambda \otimes \kappa = \kappa$. Mas então, $\sum_{\alpha < \lambda} \kappa_{\alpha} = \lambda \otimes \sup \{\kappa_{\alpha} : \alpha < \lambda\} = \lambda \otimes \kappa = \kappa$.

$$\kappa \ \acute{e} \ singular \Leftrightarrow existem \ \lambda < \kappa \ e \ \kappa_{\alpha} < \kappa \ (\forall \alpha < \kappa) \ tais \ que \ \kappa = \sum_{\alpha < \lambda} \kappa_{\alpha}.$$

- cf(2^{\lambda}) > \lambda. Em geral, cf(\kappa^\lambda) > \lambda (\forall \kappa \geq 2). Se n\tilde{a}o, cf(\kappa^\lambda) \leq \lambda e poder\tilde{a}mos escrever \kappa^\lambda = \sum_{\alpha < \lambda} \kappa_\alpha \con \kappa_\alpha < \kappa^\lambda. Seja \lambda_\alpha = \kappa^\lambda, ent\tilde{a}o \kappa_\alpha < \lambda_\alpha \text{ para todo } \alpha, portanto, \kappa^\lambda = \sum_{\alpha < \lambda} \kappa_\alpha < \sum_{\alpha < \lambda} \lambda_\alpha = \sum_{\alpha < \lambda} \kappa^\lambda = (\kappa^\lambda)^\lambda = \kappa^\lambda, \text{ um absurdo.}
- 72. Teorema (computação indutiva de κ^{λ}). $Sejam \ \kappa, \lambda \geq \omega$.
 - (i) Se $\kappa \leq \lambda$ então $\kappa^{\lambda} = 2^{\lambda}$.
 - (ii) Se existe $\mu < \kappa$ tal que $\kappa \le \mu^{\lambda}$ então $\kappa^{\lambda} = \mu^{\lambda}$.
- (iii) Se $\lambda < \kappa$ e $(\forall \mu < \kappa) \mu^{\lambda} < \kappa$, então
 - (a) se κ é regular ou $\lambda < cf(\kappa)$ então $\kappa^{\lambda} = \kappa$,
 - (b) se cf(κ) $\leq \lambda < \kappa$ então $\kappa^{\lambda} = \kappa^{cf(\kappa)}$.

Demonstração

- (i). $2^{\lambda} \le \kappa^{\lambda} \le (2^{\kappa})^{\lambda} = 2^{\kappa \otimes \lambda} = 2^{\lambda}$.
- (ii). $\mu^{\lambda} \le \kappa^{\lambda} \le (\mu^{\lambda})^{\lambda} = \mu^{\lambda \otimes \lambda} = \mu^{\lambda}$.
- (iii). Num dos casos usaremos a <u>Fórmula de Hausdorff</u>8:

$$\kappa, \lambda \ge \omega \implies (\kappa^+)^{\lambda} = \kappa^+ \otimes \kappa^{\lambda}.$$

- (a). Temos $\lambda < \kappa$ e $(\forall \mu < \kappa)\mu^{\lambda} < \kappa$ e vamos supor κ regular. Se $\kappa = \xi^{+}$, então $\kappa^{\lambda} = (\xi^{+})^{\lambda} = \xi^{+} \otimes \xi^{\lambda} = \xi^{+} = \kappa$, pois $\xi < \kappa$ e portanto $\xi^{\lambda} < \kappa = \xi^{+}$. Se κ for cardinal limite, $\kappa = \sup\{\mu \colon \mu < \kappa\} \leq \sup\{\mu^{\lambda} \colon \mu < \kappa\} \leq \kappa$, portanto, $\kappa = \sup\{\mu^{\lambda} \colon \mu < \kappa\}$. Estamos na situação em que ${}^{\lambda}\kappa = \bigcup\{{}^{\lambda}\alpha \colon \alpha < \kappa\}$, pois $\lambda < \operatorname{cf}(\kappa) = \kappa$, e portanto $k^{\lambda} = \bigcup\{{}^{\lambda}\alpha \colon \alpha < \kappa\} \mid \leq \sum_{\alpha < \kappa} |\alpha|^{\lambda} = \lambda \otimes \sup\{|\alpha|^{\lambda} \colon \alpha < \kappa\} = \lambda \otimes \kappa = \kappa$. Logo $\kappa^{\lambda} = \kappa$. O caso $\lambda < \operatorname{cf}(\kappa)$ é parecido: ${}^{\lambda}\kappa = \bigcup\{{}^{\lambda}\alpha \colon \alpha < \kappa\}$ (pois toda $f \colon \lambda \to \kappa$ é limitada) e $\kappa = \sup\{\mu^{\lambda} \colon \mu < \kappa\}$, portanto, $\kappa^{\lambda} = \kappa$.
 - (b). Temos $\kappa = \sup \{ \mu^{\lambda} : \mu < \kappa \}$. Vamos mostrar

$$\kappa^{\lambda} = \left(\sup\left\{\mu^{\lambda} \colon \mu < \kappa\right\}\right)^{\operatorname{cf}(\kappa)}.$$

Seja $2 \le \kappa_{\alpha} \le \kappa$, para $\alpha < \operatorname{cf}(\kappa)$, tal que $\sup \{\kappa_{\alpha} : \alpha < \operatorname{cf}(\kappa)\} = \kappa$, i.e. $\kappa = \sum_{\alpha < \operatorname{cf}(\kappa)} \kappa_{\alpha}$. Então

$$\kappa^{\lambda} = \left(\sum_{\alpha < \operatorname{cf}(\kappa)} \kappa_{\alpha}\right)^{\lambda} \leq \left(\prod_{\alpha < \operatorname{cf}(\kappa)} \kappa_{\alpha}\right)^{\lambda} = \prod_{\alpha < \operatorname{cf}(\kappa)} \kappa_{\alpha}^{\lambda} \leq \prod_{\alpha < \operatorname{cf}(\kappa)} \sup \left\{\mu^{\lambda} \colon \mu < \kappa\right\} = \left(\sup \left\{\mu^{\lambda} \colon \mu < \kappa\right\}\right)^{\operatorname{cf}(\kappa)} \leq \left(\kappa^{\lambda}\right)^{\operatorname{cf}(\kappa)} = \kappa^{\lambda},$$

portanto $\kappa^{\lambda} = (\sup \{\mu^{\lambda} : \mu < \kappa\})^{\operatorname{cf}(\kappa)}.$

• Se $1 \le \kappa_{\alpha}$, para $\alpha < \lambda \ge \omega$, é não-decrescente então $\prod_{\alpha < \lambda} \kappa_{\alpha} = (\sup \{\kappa_{\alpha} : \alpha < \lambda\})^{\lambda}$.

⁸exercício 5, lista 5.

Dia 21/5/97

SEMINARIO DO MAJOR

Dia 23/5/97

Alguns fatos importantes para os exercícios 5 e 6 do capítulo 1 do Kunen:

(a) As operações, definidas recursivamente nos ordinais, dadas abaixo (para α fixado)

$$F_{\alpha}(\beta) = \alpha + \beta$$
$$G_{\alpha}(\beta) = \alpha \cdot \beta$$
$$H_{\alpha}(\beta) = \alpha^{\beta}$$

são todas contínuas. Para todos α , $\alpha \geq 1$ e $\alpha \geq 2$, respectivamente F_{α} , G_{α} e H_{α} são crescentes. Funções crescentes e contínuas são ditas **normais**.

(b) Resultados de subtração e divisão de ordinais:

$$\forall \alpha, \beta (\alpha \ge \beta \to \exists! \delta (\beta + \delta = \alpha)),$$
$$\forall \alpha, \beta (\alpha \ge \beta > 0 \to \exists! \delta, \xi (\beta \cdot \delta + \xi = \alpha \land \xi < \beta)).$$

- (c) Para qualquer boa-ordem $\langle A, \langle \rangle$, se $F: A \to A$ é crescente, $\forall x \in A (x \leq F(x))$.
- (d) Para qualquer boa-ordem $\langle A, R \rangle$, não existe $F \colon \omega \to A$ tal que $F(n^+)RF(n)$ para todo $n \in \omega$.
- (e) Lema (Logaritmo). Sejam α, β ordinais, $\alpha \neq 0, \beta \geq 2$. Então existem únicos ordinais γ, δ, ρ (logaritmo, coeficiente e resto) tais que

$$\alpha = \beta^{\gamma} \cdot \delta + \rho, \ 0 < \delta < \beta, \ \rho < \beta^{\gamma}.$$

Demonstração Como $\beta \geq 2$ a β -exponenciação é normal. Afirmamos que existe o maior ordinal γ tal que $\beta^{\gamma} \leq \alpha$: note que a classe de ordinais

$$\{\zeta \colon \beta^{\zeta} \le \alpha\}$$

é, na realidade, um conjunto. Como, por (iii), $\alpha \leq \beta^{\alpha}$, para todo α temos que

$$\left\{\zeta \colon \beta^{\zeta} \le \alpha\right\} = \left\{\zeta \le \alpha \colon \beta^{\zeta} \le \alpha\right\}.$$

Mas, $\left\{\zeta\colon\beta^{\zeta}\leq\alpha\right\}$ é um conjunto de ordinais claramente transitivo. Então $\left\{\zeta\colon\beta^{\zeta}\leq\alpha\right\}=\mu$, um ordinal. Note que $\mu\neq0$, pois $0\in\mu$ ($\beta^0=1\leq\alpha$). $\underline{\mu}$ não é limite: suponha μ limite. Então $\beta^{\mu}=\sup\left\{\beta^{\zeta}\colon\zeta<\mu\right\}\leq\alpha$, donde $\mu\in\mu$, contradição. Portanto, $\mu=\gamma+1$ e $\gamma=\sup\mu$ é o maior ordinal tal que $\beta^{\gamma}\leq\alpha$, i.e.,

$$\beta^{\gamma} \le \alpha < \beta^{\gamma+1}$$
.

Aplicando a divisão a α e β^{γ} , existem únicos δ e ρ tais que

$$\alpha = \beta^{\gamma} \cdot \delta + \rho, \ \rho < \beta^{\gamma}.$$

 $0 < \delta < \beta$: note que, se $\delta = 0$, $\alpha < \beta^{\gamma}$ contra $\beta^{\gamma} \le \alpha < \beta^{\gamma+1}$. Portanto, $0 < \delta$.

Suponha agora que $\beta \leq \delta$. Então, $\beta^{\gamma+1} = \beta^{\gamma} \cdot \beta \leq \beta^{\gamma} \cdot \delta \leq \beta^{\gamma} \cdot \delta + \rho = \alpha$, contra $\beta^{\gamma} \leq \alpha < \beta^{\gamma+1}$. Portanto, $\delta < \beta$.

unicidade de γ, δ, ρ : suponha que $\alpha = \beta^{\gamma'} \cdot \delta' + \rho'$, $0 < \delta' < \beta, \rho' < \beta^{\gamma'}$. Se mostrarmos que necessariamente $\gamma = \gamma'$, então o algoritmo da divisão já nos garante que $\delta = \delta'$, $\rho = \rho'$. Basta ver que

$$\beta^{\gamma'} \leq \beta^{\gamma'} \cdot \delta'$$

$$\leq \beta^{\gamma'} \cdot \delta' + \rho'$$

$$= \alpha$$

$$< \beta^{\gamma'} \cdot \delta' + \beta^{\gamma'} = \beta^{\gamma'} \cdot (\delta' + 1)$$

$$\leq \beta^{\gamma'} \cdot \beta$$

$$= \beta^{\gamma'+1}.$$

Então γ' satisfaz

$$\beta^{\gamma'} \le \alpha < \beta^{\gamma'+1}$$

i.e., γ' é o maior ordinal satisfazendo $\beta^{\gamma'} \leq \alpha$. Portanto, $\gamma = \gamma'$, $\delta = \delta'$ e $\rho = \rho'$.

Ex. 5. Seja α um ordinal limite. São equivalentes:

- (i) $\forall \beta, \gamma < \alpha(\beta + \gamma < \alpha)$
- (ii) $\forall \beta < \alpha(\beta + \alpha = \alpha)$
- (iii) $\exists \delta(\alpha = \omega^{\delta}).$

Um α satisfazendo estas condições é dito indecomponível.

Demonstração $(i) \rightarrow (ii)$. Seja $\beta < \alpha$. Então existe um único δ tal que $\beta + \delta = \alpha$. De (i) temos $\alpha \leq \delta$. Note agora que $0 \leq \beta$ implica que $\delta \leq \beta + \delta = \alpha$, portanto, $\delta = \alpha$ e $\beta + \alpha = \alpha$.

- $(ii) \rightarrow (i)$. Imediato. Se $\beta, \gamma < \alpha$ então $\beta + \gamma < \beta + \alpha = \alpha$.
- $(i) \rightarrow (iii)$. Como $\alpha \neq 0, \ \omega \geq 2$, podemos usar o lema, donde existem únicos $\xi, \ \delta$ e ρ tais que

$$\alpha = \omega^{\xi} \cdot \delta + \rho, \ 0 < \delta < \omega, \ \rho < \omega^{\xi}.$$

Afirmamos que $\rho=0$. Caso contrário, de $0<\rho$ vem $\rho<\omega^{\xi}\leq\omega^{\xi}\cdot\delta<\omega^{\xi}\cdot\delta+\rho=\alpha$ e $\rho<\alpha,\,\omega^{\xi}\cdot\delta<\alpha$ e $\alpha=\omega^{\xi}\cdot\delta+\rho$ contradizem (i). Portanto, $\rho=0$. Afirmamos, agora, que $\delta=1$. Se $1<\delta$, então $\omega^{\xi}<\omega^{\xi}\cdot\delta=\alpha$ e $\omega^{\xi}\cdot(\delta-1)<\omega^{\xi}\cdot\delta=\alpha$ e

$$\underbrace{\omega^{\xi} \cdot (\delta - 1)}_{\leq \alpha} + \underbrace{\omega^{\xi}}_{\leq \alpha} = \omega^{\xi} \cdot \delta = \alpha,$$

contradizendo (i), portanto, $\delta = 1$ e $\alpha = \omega^{\xi}$.

 $(iii) \rightarrow (i)$. Sejam $\beta, \gamma < \alpha$. Se um deles for 0, não há o que provar. Supondo ambos diferentes de 0 tem-se

$$\beta = \omega^{\delta_1} \cdot n_1 + \xi_1, \ 0 < n_1 < \omega, \ \xi_1 < \omega^{\delta_1}$$
$$\gamma = \omega^{\delta_2} \cdot n_2 + \xi_2, \ 0 < n_2 < \omega, \ \xi_2 < \omega^{\delta_2}.$$

Note também que $\delta_1 < \delta$ (se $\delta \leq \delta_1$, $\alpha = \omega^{\delta} \leq \omega^{\delta_1} \leq \omega^{\delta_1} \cdot n_1 + \xi_1 = \beta$, contra $\beta < \alpha$) e analogamente para δ_2 ; assim

$$\delta' = \max\{\delta_1, \delta_2\} < \delta.$$

Assim,

$$\beta + \gamma = (\omega^{\delta_1} \cdot n_1 + \xi_1) + (\omega^{\delta_2} \cdot n_2 + \xi_2)$$

$$\leq (\omega^{\delta_1} \cdot n_1 + \omega^{\delta_1}) + (\omega^{\delta_2} \cdot n_2 + \omega^{\delta_2})$$

$$\leq \omega^{\delta'} \cdot (n_1 + 1 + n_2 + 1)$$

$$< \omega^{\delta'} \cdot \omega$$

$$= \omega^{\delta'+1} \leq \omega^{\delta} = \alpha.$$

Ex. 6 Forma Normal de Cantor (para uma base $\beta \geq 2$ qualquer). Sejam α, β ordinais, $\alpha \neq 0, \beta \geq 2$. Então existem únicos ordinais $1 \leq n < \omega, \alpha \geq k_1 > k_2 > \cdots > k_n$ e $0 < \gamma_i < \beta$ (i = 1, 2, ..., n) tais que

$$\alpha = \beta^{k_1} \cdot \gamma_1 + \dots + \beta^{k_n} \cdot \gamma_n.$$

Demonstração <u>Existência da representação</u>: aplicando a $\alpha \geq 0$ e $\beta \geq 2$ o lema do logaritmo obtemos

$$\alpha = \beta^{k_1} \cdot \gamma_1 + \rho_1, \ 0 < \gamma_1 < \beta \in \rho_1 < \beta^{k_1};$$

 $k_1 \leq \alpha$ pela escolha de k_1 (máximo elemento de $\{\rho \leq \alpha \colon \beta^{\rho} \leq \alpha\}$). Se $\rho_1 = 0$ então $\alpha = \beta^{k_1} \cdot \gamma_1$ e n = 1.

Caso contrário, aplicamos o lema novamente para ρ_1 e temos $\rho_1 = \beta^{k_2} \cdot \gamma_2 + \rho_2$, $0 < \gamma_2 < \beta$ e $\rho_2 < \beta^{k_2} \le \rho_1 < \beta^{k_1}$. Note que tem-se $\rho_2 < \rho_1$ e $k_2 < k_1$.

Se $\rho_2 = 0$, $\alpha = \beta^{k_1} \cdot \gamma_1 + \beta^{k_2} \cdot \gamma_2$ e n = 2. Se $\rho_2 \neq 0$, repita a operação, obtendo $0 < \gamma_3 < \beta$, $\rho_3 < \rho_2 < \rho_1$, etc. Observe que, por (d), $n\tilde{a}o$ pode existir uma sequência decrescente e infinita de ordinais, logo existe $n < \omega$ tal que $\rho_{n+1} = 0$. Assim, existirá $n < \omega$, k_i e γ_i , $i = 1, \ldots, n$, tais que

$$\alpha = \beta^{k_1} \cdot \gamma_1 + \dots + \beta^{k_n} \cdot \gamma_2.$$

Unicidade da representação: queremos mostrar que, para todo ordinal $\alpha \neq 0$, a representação acima é única.

Suponhamos por absurdo que não; tome então um ordinal $\alpha \neq 0$ que tenha duas representações, digamos

$$\beta^{k_1} \cdot \gamma_1 + \dots + \beta^{k_n} \cdot \gamma_n, \text{ e}$$

$$\beta^{k_1} \cdot \gamma'_1 + \dots + \beta^{k_n} \cdot \gamma'_n, \text{ onde}$$

$$\alpha \ge k_1 > k_2 > \dots > k_n \text{ e } 0 < \gamma_i, \gamma'_i < \beta \text{ } (i = 1, \dots, n).$$

(admitindo a possibilidade de alguns dos γ_i , γ'_i serem iguais a zero, podemos supor que a sequência dos expoentes é a mesma).

Afirmamos que $\gamma_1 = \gamma_1'$ e que, se $\gamma_i = \gamma_i'$ para $i = 1, \dots, k-1, 1 \le k-1 < n$ então $\gamma_k = \gamma_k'$. Suponhamos, s.p.g, que $\gamma_1 < \gamma_1'$. Então

$$\begin{split} \alpha &= \beta^{k_1} \cdot \gamma_1 + \beta^{k_2} \cdot \gamma_2 + \dots + \beta^{k_{n-1}} \cdot \gamma_{n-1} + \beta^{k_n} \cdot \gamma_n \\ &< \beta^{k_1} \cdot \gamma_1 + \dots + \beta^{k_n} \cdot \beta \\ &= \beta^{k_1} \cdot \gamma_1 + \dots + \beta^{k_{n-1}} \cdot \gamma_{n-1} + \beta^{k_n+1} \\ &\leq \beta^{k_1} \cdot \gamma_1 + \dots + \beta^{k_{n-1}} \cdot \gamma_{n-1} + \beta^{k_{n-1}} \\ &= \beta^{k_1} \cdot \gamma_1 + \dots + \beta^{k_{n-1}} \cdot (\gamma_{n-1} + 1) \\ &\leq \beta^{k_1} \cdot \gamma_1 + \dots + \beta^{k_{n-1}} \cdot \beta \\ &\leq \dots \\ &\leq \beta^{k_1} \cdot (\gamma_1 + 1) \\ &\leq \beta^{k_1} \cdot \gamma_1' \\ &\leq \beta^{k_1} \cdot \gamma_1' + \dots + \beta^{k_n} \cdot \gamma_n' \\ &= \alpha, \text{ contradição}. \end{split}$$

De modo inteiramente análogo, mostramos que se $\gamma_i = \gamma_i'$ para $i = 1, \dots, k-1$ então $\gamma_k = \gamma_k'$, portanto, a representação é única.

No caso em que $\beta=\omega,\,n=1,\,k_1=\alpha$ e $\gamma_1=1$ (i.e., $\alpha=\omega^\alpha$) dizemos que α é um ε -número.

Exercício Mostre que se κ é um cardinal não-enumerável $(\kappa > \omega)$, então κ é um ε -número e existem κ ε -números menores que κ ; em particular, o primeiro ε -número, chamado ε_0 , é enumerável.

Demonstração Usaremos o seguinte <u>fato</u>: Para um ordinal $\alpha \geq \omega$, $|\omega^{\alpha}| = |\alpha|$ (exponenciação ordinal).

De fato, por indução sobre $\alpha \geq \omega$; se $\alpha = \omega$ é imediato pois $\omega^{\omega} = \sup \{\omega^n : n < \omega\}$ e reunião enumerável de enumeráveis é enumerável. Agora, seja $\alpha \geq \omega$ tal que $|\omega^{\alpha}| = |\alpha|$. Vamos provar que $|\omega^{\alpha+1}| = |\alpha+1|$: temos

$$|\omega^{\alpha+1}| = |\omega^{\alpha} \cdot \alpha| = |\omega^{\alpha}| \otimes |\alpha| = |\alpha| \otimes |\alpha| = |\alpha| = |1+\alpha| = |\alpha+1|.$$

Se $\alpha > \omega$ é limite e $\forall \omega \leq \beta < \alpha(|\omega^{\beta}| = |\beta|)$ então $|\omega^{\alpha}| = |\alpha|$: a desigualdade $\alpha \leq \omega^{\alpha}$ já nos dá $|\alpha| = |\omega^{\alpha}|$. Por outro lado,

$$|\omega^{\alpha}| = \left| \sup \left\{ \omega^{\xi} \colon \xi < \alpha \right\} \right| = \left| \bigcup \left\{ \omega^{\xi} \colon \xi < \alpha \right\} \right|$$

e, por hipótese de indução, $|\omega^\xi|=|\xi|\leq |\alpha|$. Logo, pelo lema 10.21 temos $|\omega^\alpha|\leq \alpha$, portanto, $|\omega^\alpha|=|\alpha|$.

Logo, por indução transfinita, $|\omega^{\alpha}|=|\alpha|$ para todo $\alpha\geq\omega.$

Com isso, mostraremos que, se κ é um cardinal, $\kappa > \omega$, $\omega^{\kappa} = \kappa$. A desigualdade $\kappa \leq \omega^{\kappa}$ é imediata (por (c)). Por outro lado, κ é ordinal limite, então

$$\omega^{\kappa} = \sup \left\{ \omega^{\xi} \colon \xi < \kappa \right\}.$$

Agora, $\omega \leq \xi < \kappa$ implica que $|\omega^{\xi}| = |\xi| < \kappa$ donde $\omega^{\xi} < |\xi|^{+} \leq \kappa$. Logo $\omega^{\kappa} = \bigcup \{\omega^{\xi} : \xi < \kappa\} \leq \kappa$ e $\omega^{\kappa} = \kappa$.

Portanto, se κ é cardinal não-enumerável temos que $\omega^{\kappa} = \kappa$.

A hierarquia dos ε -números

Considere $\varepsilon_0 = \sup \{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots\}$. Note que ε_0 é enumerável. Temos,

$$\omega^{\varepsilon_0} = \omega^{\sup\{\omega,\omega^{\omega},\omega^{\omega^{\omega}},\dots\}} = \sup\{\omega^{\omega},\omega^{\omega^{\omega}},\dots\} = \varepsilon_0,$$

e ε_0 é um ε -número. Afirmamos que não existem ε -números menores que ε_0 .

De fato, se $\omega^{\alpha}=\alpha$, então $\alpha>1$ e $\omega<\omega^{\alpha}=\alpha$, logo $\alpha>\omega$ e $\omega^{\omega}<\omega^{\alpha}=\alpha$, logo $\alpha>\omega^{\omega}$ e ..., donde

$$\varepsilon_0 = \sup \{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots\} \leq \alpha.$$

Em geral, dado um ordinal α qualquer, existe um ε -número maior que α . Considere para α fixado a sequência definida recursivamente por

$$\begin{cases} \beta_0^{(\alpha)} = \alpha + 1 \\ \beta_{n+1}^{(\alpha)} = \omega^{\beta_n^{(\alpha)}} \\ \beta_{\omega}^{(\alpha)} = \sup \left\{ \beta_n^{(\alpha)} : n < \omega \right\}. \end{cases}$$

Seja $\varepsilon(\alpha) = \beta_{\omega}^{(\alpha)}$. Afirmamos que

- (i) $\varepsilon(\alpha)$ é ε -número,
- (ii) $\alpha < \varepsilon(\alpha)$, e $\varepsilon(\alpha)$ é o menor ε -número com essa propriedade.

Demonstração (i).

$$\omega^{\varepsilon(\alpha)} = \omega^{\sup\left\{\beta_n^{(\alpha)} : n < \omega\right\}}$$

$$= \sup\left\{\omega^{\beta_n^{(\alpha)}} : n < \omega\right\}$$

$$= \sup\left\{\beta_{n+1}^{(\alpha)} : n < \omega\right\}$$

$$= \varepsilon(\alpha).$$

(ii). $\alpha < \alpha + 1 \le \omega^{\alpha+1} = \omega^{\beta_0^{(\alpha)}} = \beta_1^{(\alpha)} \le \varepsilon(\alpha)$. Agora, seja $\mu < \omega^{\mu}$ um ε -número maior que α . Como $\alpha < \mu$ e μ é claramente um ordinal limite,

$$\alpha + 1 < \mu$$

donde $\omega^{\alpha+1} = \beta_0^{(\alpha)} < \omega^{\mu} = \mu$. Portanto, $\beta_0^{(\alpha)} < \mu$. Agora, $\beta_1^{(\alpha)} = \omega^{\beta_0^{(\alpha)}} < \omega^{\mu} = \mu$. Portanto, $\beta_1^{(\alpha)} < \mu$. Procedendo indutivamente, temos $\beta_n^{(\alpha)} < \mu$ para todo $n < \omega$, donde

$$\varepsilon(\alpha) = \beta_{\omega}^{(\alpha)} = \sup \{\beta_n^{(\alpha)} : n < \omega\} \le \mu.$$

Vamos agora definir uma operação $h : \mathbf{ON} \to \mathbf{ON}$ recursivamente pondo

$$\begin{cases} h(0) = \varepsilon(0) = \varepsilon_0 \\ h(\alpha + 1) = \varepsilon(h(\alpha)) \\ h(\alpha) = \sup \left\{ h(\beta) \colon \beta < \alpha \right\}, \text{ para } \alpha \text{ limite.} \end{cases}$$

Note que h é crescente e contínua. Afirmamos que $h(\alpha) = \varepsilon_{\alpha} = \alpha$ -ésimo ε -número. A prova é por indução em α .

Se $\alpha = 0$; $h(0) = \varepsilon_0$, que sabemos ser o primeiro ε -número.

Se α é sucessor; $\alpha = \beta + 1$ e β é tal que $h(\beta)$ é o β -ésimo ε -número maior que $h(\beta)$. Portanto, $h(\alpha)$ é o $(\beta + 1)$ -ésimo ε -número.

Se α é limite; seja α tal que $\forall \beta < \alpha(h(\beta) = \varepsilon_{\beta} = \beta$ -ésimo ε -número). Mostraremos que $h(\alpha)$ é ε -número e que é o menor ε -número maior que todos os $h(\beta)$ para $\beta < \alpha$. Que $h(\alpha)$ é ε -número:

$$\begin{split} \omega^{h(\alpha)} &= \omega^{\sup\{h(\beta) \colon \beta < \alpha\}} \\ &= \sup \left\{ \omega^{h(\beta)} \colon \beta < \alpha \right\} \\ &= \sup \left\{ h(\beta) \colon \beta < \alpha \right\} \text{ (por hipótese de indução)} \\ &= h(\alpha). \end{split}$$

Seja agora ξ um ε -número tal que $h(\beta) < \xi$ para todo $\beta < \alpha$. Então

$$h(\alpha) = \bigcup \{h(\beta) : \beta < \alpha\} \le \xi.$$

Logo todos os ε -números são dados pela operação h. (É claro que com técnicas análogas pode-se mostrar que, dado um ε -número ξ , $\xi = h(\alpha)$ para algum ordinal α .)

Observação h é o isomorfismo entre a classe (bem-ordenada) dos ε -números e a classe **ON**.

Afirmamos agora que se κ é um cardinal maior que ω , $H(\kappa) = \kappa$, o que justifica a existência de κ ε -números menores que κ .

Fato: Se $\alpha \geq \omega$, $|h(\alpha)| = \alpha$ (α ordinal).

Demonstração Por indução em $\alpha \geq \omega$. Usamos fortemente que $|\omega^{\alpha}| = |\alpha|$ (exponenciação ordinal) para $\alpha \geq \omega$.

 $\underline{\alpha} = \underline{\omega}$. $h(\omega) = \sup\{h(n) : n < \omega\}$. Note que $h(0) = \varepsilon_0$, claramente enumerável. Portanto, $|h(0)| = \omega$.

Se
$$m < \omega$$
, $h(m+1) = \varepsilon(h(m)) = \beta_{\omega}^{(h(m))}$, onde
$$\begin{cases} \beta_0^{(h(m))} = h(m) + 1\\ \beta_{n+1}^{(h(m))} = \omega^{\beta_n^{(h(m))}}\\ \beta_{\omega}^{(h(m))} = \sup \left\{ \beta_n^{(h(m))} : n < \omega \right\}. \end{cases}$$

Note que $|\beta_0^{(h(m))}| = |h(m) + 1| = |h(m)|$ e $|\beta_1^{(h(m))}| = |\omega^{\beta_0^{(h(m))}}| = |\beta_1^{(h(m))}| = |h(m)|$, e, por indução finita, claramente $|\beta_n^{(h(m))}| = |h(m)|$ para todo $n \in \omega$; disso vem, pelo lema 10.21,

$$|h(m+1)| = \left|\beta_{\omega}^{(h(m))}\right| = \left|\sup\left\{\beta_n^{(h(m))} \colon n < \omega\right\}\right| \le \omega,$$

já que $|h(0)| = \omega$ implica que

$$|h(1)| = |\sup \{\beta_n^{(h(0))} : n < \omega\}| \le \omega \ e \ |h(2)| = |\sup \{\beta_n^{(h(1))} : n < \omega\}| \le \omega$$

e por indução finita também $|h(m)| \leq \omega$, para todo $n < \omega$.

Segue agora que $|h(\omega)| = |\sup\{h(n) \colon n < \omega\}| \le \omega$. Como $\omega \le h(\omega)$ (da normalidade de h) temos que $|h(\omega)| = |\omega|$.

 $\underline{\alpha>\omega}$ e α sucessor. Šeja $\alpha=\gamma+1$ e suponha $|h(\gamma)|=|\gamma|.$ Então $\omega\leq\gamma,\,|\gamma|\leq|\alpha|$ e $h(\alpha)=h(\gamma+1)=\varepsilon(h(\gamma))=\beta_\omega^{(h(\gamma))},$ onde

$$\begin{cases} \beta_0^{(h(\gamma))} = h(\gamma) + 1\\ \beta_{n+1}^{(h(\gamma))} = \omega^{\beta_n^{(h(\gamma))}}\\ \beta_\omega^{(h(\gamma))} = \sup \left\{ \beta_n^{(h(\gamma))} \colon n < \omega \right\}. \end{cases}$$

Note que, por indução finita,

$$|\beta_n^{(h(\gamma))}| = |\gamma|, \quad \forall n \in \omega.$$

Segue que

$$|h(\alpha)| = |\beta_{\omega}^{(h(\alpha))}| = \left| \bigcup \left\{ \beta_n^{(h(\gamma))} \colon n < \omega \right\} \right| \le |\gamma| \le |\alpha|.$$

 $\underline{\alpha > \omega \text{ e } \alpha \text{ limite}}$. Seja α limite e tal que $\forall \beta < \alpha(|h(\beta)| = |\beta| \le |\alpha|)$. Segue imediatamente que $|h(\alpha)| = |\sup\{h(\beta) \colon \beta < \alpha\}| \le |\alpha|, \ \alpha \le h(\alpha) \text{ sempre, então } |h(\alpha)| = |\alpha|$.

Já podemos mostrar que $h(\kappa) = \kappa$ se κ é cardinal maior que ω . É imediato que $\kappa \leq h(\kappa)$. Como κ é cardinal infinito ele é ordinal limite; segue que

$$k(\kappa) = \sup \{h(\xi) \colon \xi < \kappa\}$$
.

Se $\omega \leq \xi < \kappa$, de $h(\xi) = \xi$ vem que $h(\xi) < |\xi|^+ \leq \kappa$. Logo $h(\kappa) = \sup\{h(\xi) \colon \xi < \kappa\} \leq \kappa$, portanto, $h(\kappa) = \kappa$, se κ é cardinal não-enumerável; assim, se $\kappa > \omega$, κ cardinal, κ é o κ -ésimo ε -número, existindo κ ε -números menores que ele.

Dia 28/5/97

Lista para seminários—(Ref.: cap. 2 do Kunen)

 $(\S 1)$

- (i) Teoremas 1.2 e 1.3 sobre almost-disjoint families.
- (ii) Teoremas 1.5 e 1.6 sobre quasi-disjoint families (o Lema dos Δ -sistemas).
- (iii) Uma aplicação dos Δ -sistemas à Topologia, a partir da definição 1.7 até o Teorema 1.9: Se paa todo $\tau \subseteq I$ finito, $\prod_{i \in \tau} X_i$ é c.c.c., então $\prod_{i \in I} X_i$ é c.c.c..

 $(\S 2)$

- (i) Exemplos 5 e 6 e o Lema 2.6, págs. 54-55 (MA(ω) é verdadeiro, MA(2^{ω}) é falso).
- (ii) Teorema 2.20 (subconuntos de primeira categoria de ℝ).
- (iii) Teorema 2.21 (subconjuntos de medida nula de \mathbb{R}).
- (iv) Teorema 2.22 (generalização de Baire) e o exercício 11: $\omega(\omega_1 + 1)$ é um compacto T_2 que é a união de ω_1 fechados no-where-dense.
- (v) Lema 2.23 e o Teorema 2.24 (MA(ω_1) implica que produto de c.c.c. é c.c.c.).

 $(\S 4)$

- (i) Exercício 28 (os argumentos de ida-e-volta de Cantor).
- (ii) Exercício 29 (caracterização da reta como ordem conexa, separável, sem primeiro nem último elementos).
- (§5) Árvores
 - (i) Fazer um "survey" sobre κ -árvores de Souslin e κ -árvores de Aronszajn (demostrar só o Lema 5.7).
- (§6) O filtro c.u.b
 - (i) Lema 6.13 e o exercício: $Se \ cf(\kappa) > \omega$, $e \ f: \kappa \to \kappa$ é crescente e contínua então o conjunto dos pontos fixos é c.u.b.
 - (ii) Exercício 42: Se, para ω_1 com a topologia da ordem, $f: \omega_1 \to \mathbb{R}$ é contínua então $(\exists \alpha < \omega_1)(\forall \beta < \omega_1)(\alpha \leq \beta \to f(\alpha) = f(\beta)).$

Kunen, cap. 1, exer. $16^{(CH)}$: $(\omega_n)^{\omega} = \omega_n \ para \ todo \ 1 \leq n < \omega$.

Por indução em n. Ponha $T=\{n\in\omega\colon (\omega_n)^\omega=\omega_n\}.$

$$\underline{1 \in T} \colon (\omega_1)^\omega \stackrel{\text{\tiny CH}}{=} (2^\omega)^\omega \stackrel{10.27}{=} 2^{\omega \otimes \omega} \stackrel{10.12}{=} 2^\omega = \omega_1.$$

Se
$$n \in T$$
, $(\omega_{n+1})^{\omega} \stackrel{?}{=} (\omega_n)^{\omega} \otimes \omega_{n+1} = \omega_n \otimes \omega_{n+1} \stackrel{10.13}{=} \omega_{n+1}$. portanto, pelo PIF, $T = \omega$.

<u>Fórmula de Hausdorff</u>: Sejam κ , λ cardinais infinitos, então $(\kappa^+)^{\lambda} = \kappa^{\lambda} \otimes \kappa^+$ (e, portanto, $(\omega_{n+1})^{\omega} = (\omega_n)^{\omega} \otimes \omega_{n+1}$).

Suponhamos $\kappa^+ \leq \lambda$. Pelo Teorema da computação indutiva $(\kappa^+)^{\lambda} = 2^{\lambda}$. Como $\kappa < \kappa^+ \leq \lambda$ temos $\kappa^{\lambda} = 2^{\lambda}$. Ainda, $\kappa^+ \leq \lambda < 2^{\lambda}$, então $\kappa^{\lambda} = 2^{\lambda} = \max(\kappa^{\lambda}, \kappa^+)$ e $(\kappa^+)^{\lambda} = \kappa^{\lambda} \otimes \kappa^+$.

Seja $\lambda < \kappa^+$, então $\kappa^\lambda \le (\kappa^+)^\lambda$ e $\kappa^+ \le (\kappa^+)^\lambda$, logo basta mostrar que $(\kappa^+)^\lambda \le \kappa^\lambda \otimes \kappa^+$: Como κ^+ é regular , cf $(\kappa^+) = \kappa^+$. De $\lambda < \kappa^+$ temos que cada função $f : \lambda \to \kappa^+$ é limitada, ie, existe $\sigma < \kappa^+$ tal qye $\xi < \lambda(f(\xi) < \sigma)$. Logo, $\lambda^{\kappa^+} = \bigcup_{\gamma < \kappa^+} \lambda^{\gamma}$ e

$$\left| \bigcup_{\gamma < \kappa^+} \lambda_{\gamma} \right| \le \sum_{\gamma < \kappa^+} \left| \lambda_{\gamma} \right|$$

e como para qualquer $\gamma < \kappa^+, |\gamma| \le \kappa$

$$(\kappa^+)^{\lambda} \le \sum_{\gamma < \kappa^+} |\lambda_{\gamma}| \le \sum_{\gamma < \kappa^+} = \kappa^{\lambda} \otimes \kappa^+.$$

Portanto, $(\kappa^+)^{\lambda} \leq \kappa^{\lambda} \otimes \kappa^+$.

Exer. 1, lista 4, (iv) e (v):

73. Teorema (Compacidade). Seja Σ um conjunto de sentenças de uma linguagem \mathcal{L} . Então Σ tem modelo sse $(\forall \Sigma' \subseteq \Sigma finito)\Sigma'$ tem modelo.

O Teorema da compacidade sai como corolário do Teorema de Completude de GÖdel: Σ tem modelo sse Σ é consistente. De fato, Σ' tem modelo implica que Σ' é consistente que iimplica que Σ é consistente pois as provas são finitas.

(iv). Por indução em n = |A|. Para $A = \emptyset$ nada a fazer. Suponha, como hipótese, que para todo A de cardinalidade n e para todo R ordem parcial em A existe R^* ordem total tal que $R \subseteq R^*$. Seja A de cardinalidade n+1 e R uma ordem parcial sobre A. Tome $a \in A$ e ponha $A' = A \setminus \{a\}$. Então |A'| = n e R é uma ordem parcial sobre A', logo existe R_0^* ordem total sobre A' tal que $R \subseteq R_0^*$.

Ponha $\{C_1 = \{x \in A : x \neq a \land (x, a) \notin R_0^* \land (a, x) \notin R_0^*\}$. E tome a ordem

$$R_1^* = R_0^* \sqcup \{(a, a_1)\} \cup \{(a, y) : (a, y) \in R_0^*\} \cup \{(x, a_1) : (x, a) \in R_0^*\} \cup \{(x, y) : (x, a_1) \in R_0^* \land (a_1, y) \in R_0^*\}.$$

- Por (i) R_1^* é ordem. Como A é finito "o processo pára", é fácil ver que R_k^* é ordem total sobre A.
- (v). Sejam A um conjunto e R uma ordemparcial sobre A quiasquer. Fixe A linguagem $\mathcal{L} = \{<\} \cup \{\underline{a}: a \in A\}$. Ponha
- $\Sigma = \{\underline{a} < \underline{b} \colon (a,b) \in R\} \cup \{\forall x (\neg (x < x))\} \cup \{\forall x \forall y \forall z (x < y \land y < z \to x < z)\} \cup \{\forall x \forall y (x < y \lor x + y \lor x \})$ Seja $\Sigma' \subseteq \Sigma$ finito e seja $I' = \{\underline{a} < \underline{b} \colon (a,b) \in R\} \cap \Sigma'$. Tome R' dada por $(a,b) \in R' \Leftrightarrow a < b \in I'.$

Tome $A' = \operatorname{corpo} R'$, então A' é finito. Como R é ordem parcial sobre A' e A' é finito, por (iv) existe R^* ordem total sobre A' tal que $R \subseteq R^*$. Interprete < por R^* . Então $\langle A', R^*, \{a \colon a \in A\} \rangle \models \Sigma'$.

Pelo Teorema da Compacidade existe $\mathcal{M} = \langle M, <^M, \{a^M : a \in A\} \rangle$. Defina, para todos $a, b \in A, R^*$ por

$$(a,b) \in R^* \Leftrightarrow \underline{a}^M <^M \underline{b}^M.$$

Afir: R^* é ordem total sobre A tal que $R \subseteq R^*$

1) $R \subseteq R^*$. Seja $(a,b) \in R \stackrel{\text{def. }\Sigma}{\Longleftrightarrow} (\underline{a} < \underline{b}) \in \Sigma$. Mas $\mathcal M$ é modelo de Σ , portanto,

$$\mathcal{M} \models \underline{a} < \underline{b} \overset{\text{def. Verd.}}{\Longleftrightarrow} \underline{a}^M <^M \underline{b}^M \overset{\text{def. } R^*}{\Longleftrightarrow} (a, b) \in R^*.$$

2) R^* é irreflexiva, i.e. $\forall a \in A((a,a) \notin R^*)$. Suponha $(a,a) \in R^*$. Então, pela definição de R^* ,

$$\underline{a}^M <^M \underline{a}^M \stackrel{\text{def.VERD.}}{\Longleftrightarrow} \mathcal{M} \models \forall x (\neg (x < x)).$$

3) R^* é transitivo. Suponha que $(a,b) \in R^*$ e $(b,c) \in R^*$. Portanto, segue de $(a,b) \in R^* \Leftrightarrow \underline{a}^M <^M \underline{b}^M$ e $(b,c) \in R^* \Leftrightarrow \underline{b}^M <^M \underline{c}^M$.

Dia 4/6/97

- **74.** Definição. Seja $\mathcal{F} \subseteq \mathcal{P}(\kappa)$, $(\kappa \geq \omega \ cardinal)$. Dizemos que \mathcal{F} é uma família **almost** disjoint (a.d.) se $\forall x \in \mathcal{F}(|x| = \kappa)$ e $\forall x, y \in \mathcal{F}(x \neq y \rightarrow |x \cap y| < \kappa)$.
- 75. Teorema (1.2). Seja $\kappa \geq \omega$ regular.
 - (i) Se $\mathcal{F} \subseteq \mathcal{P}(\kappa)$ é a.d. e $|\mathcal{F}| \leq \kappa$, então \mathcal{F} nã è maximal entre as famílias a.d..
- (ii) Existe uma família a.d. \mathcal{B} contida em $\mathcal{P}(\kappa)$ maximal com $|\mathcal{B}| \geq \kappa^+$.

Exemplo Em ω podemos construir famílias a.d. de cardinalidade 2^{ω} :

$$t' = 0, a'_1 a'_2 a'_3 \dots$$

$$t = 0, a_1 a_2 a_3 \dots$$

$$A_t = \{a_1, a_1 a_2, a_1 a_2 a_3, \dots\}$$

$$\mathcal{F} = \{A_t : t \in (0, 1)\}$$

$$|\mathcal{F}| = 2^{\omega}.$$

- 76. Teorema (1.3). Se $\kappa \geq \omega$ e $2^{<\kappa} = \kappa$ então existe uma família a.d. $\mathcal{F} \subseteq \mathcal{P}(\kappa)$ com $|\mathcal{F}| = 2^{\kappa}$.
- 77. **Definição.** \mathcal{F} se diz um Δ -sistema se existe r chamado raiz do sistema tal que $\forall x, y \in \mathcal{F}(x \neq y \rightarrow x \cap y = r)$.
- 78. Lema (Lema dos Δ -sistemas Šanin). $Se \ \kappa > \omega \ \acute{e} \ regular \ e \ |\mathcal{F}| = \kappa \ e \ \forall x \in \mathcal{F}(|x| < \omega), \ ent\~ao \ existe \ \mathcal{B} \subseteq \mathcal{F}, \ |\mathcal{B}| = \kappa, \ \mathcal{B} \ \Delta$ -sistema.

Exercício [Exercício 2 do capítulo 2 do Kunen] Ache uma família de cardinalidade ω_{ω} tal que todo elemento é finito e nenhuma subfamília de cardinalidade ω_{ω} forma um Δ -sistema.

Tome
$$\bigcup_{i < \omega} \{\{i, i \cdot \alpha\} : 1 < \alpha < \omega_{i-2}\}.$$

79. Teorema (1.6). Sejam $\kappa \geq \omega$ e $\theta > \kappa$ regular tal que $\forall \alpha < \theta(|^{<\kappa}\alpha| < \theta)$. Se \mathcal{F} é tal que $|\mathcal{F}| \geq \theta$ e $\forall x \in \mathcal{F}(|x| < \kappa)$ então existe $\mathcal{B} \subseteq \mathcal{F}$ com $|\mathcal{B}| = \theta$ e \mathcal{B} é um Δ -sistema.

O Axioma de Martin

80. Definição. Uma ordem parcial é um par $\langle \mathbb{P}, \leq \rangle$ com \mathbb{P} não-vazio e \leq uma relação reflexiva e transitiva. Se \leq for também antissimétrica dizemos que $\langle \mathbb{P}, \leq \rangle$ é uma ordem parcial propriamente dita.

Costuma-se dizer que p **estende** q no caso em que $p, q \in \mathbb{P}$ e $p \leq q$ e os elementos de \mathbb{P} chamam-se **condições**.

Dizemos que $C \subseteq \mathbb{P}$ é uam **cadeia** em \mathbb{P} se $\forall p, q \in \mathbb{P} (p \leq q \vee q \leq p)$.

Dizemos que $p, q \in \mathbb{P}$ são **compatíveis** se $\exists r \in \mathbb{P}(r \leq p \land r \leq q)$. Caso contrario são **incompatíveis** e denotamos isso por $p \perp q$. $A \subseteq \mathbb{P}$ se diz uma **anticadeia** em \mathbb{P} se $\forall p, q \in A(p \neq q \rightarrow p \perp q)$.

Dizemos que \mathbb{P} é $\mathbf{c.c.c.}$ se toda anticadeia de \mathbb{P} for enumerável.

 $D \subseteq \mathbb{P}$ se diz **denso** em \mathbb{P} se $(\forall p \in \mathbb{P})(\exists q \in D)q \leq p$.

 $G \subseteq \mathbb{P}$ se diz um **filtro** em \mathbb{P} se

- (i) $(\forall p, q \in G)(\exists r \in G)(r \le p \land r \le q)$.
- (ii) $(\forall p \in G)(\forall q \in \mathbb{P})(p \le q \to q \in G)$.

Seja $\kappa \geq \omega$ um cardinal. MA(κ) é a afirmação:

Seja $\langle \mathbb{P}, \leq \rangle$ uma ordem parcial não-vazia e c.c.c., e seja \mathcal{D} uma família de no máximo κ subconjuntos densos de \mathbb{P} . Então existe $G \subseteq \mathbb{P}$ filtro tal que $(\forall D \in \mathcal{D})G \cap D \neq 0$.

- **81. Lema.** (i) Se $\kappa < \kappa'$, então $MA(\kappa') \Rightarrow MA(\kappa)$.
 - (ii) $MA(\omega)$ é verdadeiro.
- (iii) $MA2^{\omega}$ é falso.

Notação MA é $\forall \kappa(\omega \leq \kappa < 2^{\omega} \to MA(\kappa)).$

Kunen, cap. 2, exer. 27: Seja $\mathcal{A} \subseteq \mathcal{P}(\omega)$. Vamos definir uma ordem parcial $\langle \mathbb{P}_{\mathcal{A}}, \leq \rangle$ por:

$$\{\langle s, F \rangle : s \subseteq \omega, \ |s| < \omega, \ F \subseteq \mathcal{A}, \ |F| < \omega\} = [\omega]^{<\omega} \times [\mathcal{A}]^{<\omega}.$$

Se $p = \langle s, F \rangle$ e $p' = \langle s', F' \rangle$ então

$$p' \le p \stackrel{\text{DEF}}{\Longleftrightarrow} s \subseteq s', \ F \subseteq F' \ e \ (\forall x \in F)(x \cap s' \subseteq s),$$

i.e. $(\bigcup F) \cap s' \subseteq s$.

 $p, p' \in \mathbb{P}_{\mathcal{A}}$ são compatíveis sse $(\forall x \in F)(x \cap s' \subseteq s)$ e $(\forall x \in F)(x \cap s' \subseteq s)$ e neste caso $p'' = \langle s \cup s', F \cup F' \rangle$ estende ambos: Se $r = \langle s^*, F^* \rangle$ estende a ambos então $s \cup s' \subseteq s^*$ e $F \cup F' \subseteq F^*$ e portanto $\forall x \in F(x \cap s^* \subseteq s)$, em particular, $\forall x \in F(x \cap s' \subseteq s)$. Para provar \Leftarrow verifique que p' estende p, p'.

Oberve que se s=s', então p e p' sempre são compatíveis e portanto se $p\perp p'$ então $s\neq s'$.

Seja $A \subseteq \mathbb{P}_{\mathcal{A}}$ uma anticadeia. Então $S_A = \{s : \exists F \langle s, F \rangle \in A\} \approx A$, pois se $(p_1 = \langle s_1, F_1 \rangle ep_2 = \langle s_2, F_2 \rangle) \in A$ e $p_1 \neq p_2$ então $s_1 \neq s_2$.

Os $s \in [\omega]^{<\omega}$ e $|[\omega]^{<\omega} = \omega$, portanto, $S_A \subseteq [\omega]^{\omega}$ também satisfaz $|S_A| \le \omega$ e portanto $|A| \le \omega$, i.e. \mathbb{P}_A é c.c.c.

Notação Seja $G \subseteq \mathbb{P}_{\mathcal{A}}$ um filtro em $\mathbb{P}_{\mathcal{A}}$. Vamos denotar por $f_G = \{s : \exists F(\langle s, F \rangle \in G)\}.$

82. Lema. Se $p = \langle S, F \rangle \in G$, então $(\forall x \in F)(x \cap d_G \subseteq s)$.

Demonstração Se $n \in x \cap d_G$ então $n \in x$ e $n \in s'$ para algum $p' = \langle s', F' \rangle \in G$. Como p e p' são compatíveis $x \cap s' \subseteq s$ e portanto $n \in x \cap s'$, $n \in s$.

83. Definição. Seja $x \in A$. Vamos denotar por

$$D_x = \{ p \in \mathbb{P}_A \colon p = \langle S, F \rangle \ com \ x \in F \}.$$

84. Lema. $(\forall x \in \mathcal{A})$ D_x é denso em $\mathbb{P}_{\mathcal{A}}$.

Demonstração Seja $p=\langle s,F\rangle\in\mathbb{P}_{\mathcal{A}}$. Então, $q=\langle s,F\cup\{x\}\rangle\in\mathbb{P}_{\mathcal{A}},\ q\leq p$ e $q\in D_x$.

85. Lema. Seja $G \subseteq \mathbb{P}_{\mathcal{A}}$ filtro $e \ x \in \mathcal{A}$. Se $G \cap D_x \neq 0$ então $|x \cap d_G| < \omega$.

Demonstração Seja $p = \langle S, F \rangle \in G \cap D_x$. Temos $x \in F$ (pois $p \in D_x$) e $x \cap d_G \subseteq s$ (pois G é filtro), portanto, $|x \cap d_G| \leq |s| < \omega$.

86. Teorema (2.15). Assuma MA(κ). Seja $\mathcal{A}, \mathcal{C} \subseteq \mathcal{P}(\omega)$ tais que $|A| = \kappa$, $|\mathcal{C}| = \kappa$ e $(\forall y \in \mathcal{C})(\forall F \in [A]^{<\omega})|y \setminus \bigcup F| = \omega$. Então existe $d \subseteq \omega$ tal que $(\forall x \in A)(|c \cap x| < \omega)$ e $(\forall y \in \mathcal{C})|d \cap y| = \omega$.

Para $y \in \mathcal{C}$, $n \in \omega$, seja

$$E_n^y = \{ p = \langle S, F \rangle \in \mathbb{P}_A \colon y \cap s \not\subseteq x \}.$$

 $(\forall y \in \mathcal{C})(\forall n \in \omega)E_n^y$ 'e denso em $\mathbb{P}_{\mathcal{A}}$: Seja $p = \langle s, F \rangle \in \mathbb{P}_{\mathcal{A}}$. Como $|s| < \omega$ e $|y \setminus \bigcup F| = \omega$, então existe $m \geq n$ tal que $m \in y \setminus \bigcup F$. Seja $q = \langle s \cup \{m\}, F \rangle \in \mathbb{P}_{\mathcal{A}}$

- $q \le p$. $x \in F \Rightarrow m \notin x \text{ (senão } m \in \bigcup F).$
- $q \in E_n^y$, pois $m \in (s \cup \{m\}) \cap y \in m \notin n$, portanto, $(s \cup \{m\}) \cap y \not\subseteq n$.

 $\mathcal{D} = \{D_x \colon x \in \mathcal{A}\} \cup \{E_n^y \colon y \in \mathcal{C}, \ n \in \omega\}.$ Assim, $|\mathcal{D}| = \kappa$; logo, por MA(κ), existe um filtro $G \subseteq \mathbb{P}_{\mathcal{A}}$ tal que $G \cap D \neq 0$ para todo $D \in \mathcal{D}$.

De $G \cap D_x \neq 0$, segue que $|d_G \cap x| < \omega$, portanto, $(\forall x \in \mathcal{A})|d_x \cap x| < \omega$.

De $G \cap E_n^y \neq 0$, segue que $s \cap y \not\subseteq n$ para algum $p = \langle s, F \rangle \in G$ e portanto $|d_G \cap y| = \omega$.

87. Corolário. $MA(\kappa) \Rightarrow se \ \mathcal{A} \subseteq \mathcal{P}(\omega) \ \acute{e} \ uma \ família \ a.d. \ com \ |\mathcal{A}| = \kappa, \ então \ \mathcal{A} \ \acute{e} \ maximal.$

Demonstração Seja $C = \omega$. Vamos verificar que $|\omega \setminus \bigcup F| = \omega$ para todo $F \in [A]^{<\omega}$. Seja $F = \{x_1, \ldots, x_n\} \subseteq A$ e seja $x^* \in A \setminus F$.

- $|x^* \cap x_i| < \omega, i = 1, \ldots, n.$
- $|x^* \cap (\bigcup F)| < \omega$.

 $x^* = (x^* \setminus \bigcup F) \cup (x^* \cap \bigcup F); \ |x^*| = \omega, \ |x^* \cap \bigcup F| < \omega \ \text{portanto} \ |x^* \setminus \bigcup F| = \omega.$ $x^* \setminus \bigcup F \subseteq \omega \setminus \bigcup F \ \text{portanto} \ |\omega \setminus \bigcup F| = \omega \ \text{e podemos aplicar o teorema para obter}$ $d \subseteq \omega \ \text{tal que} \ |d| = \omega \ \text{e} \ (\forall x \in \mathcal{A}) |d \cap x| < \omega.$

Dia 6/6/97

Relembrando

 $\mathrm{MA}(\kappa)$: Se $\langle \mathbb{P}, \leq \rangle$ é uma oredem parcial c.c.c. e \mathcal{D} é uma família de $\leq \kappa$ densos de \mathbb{P} , então existe filtro $G \subseteq \mathbb{P}$ tal que $G \cap D \neq 0$ para todo $D \in \mathcal{D}$.

 $\mathbf{MA} \colon \forall \kappa (\omega \leq \kappa < w^{\omega} \to \mathrm{MA}(\kappa)).$

 $\mathcal{A} \subseteq \mathcal{P}(\omega) \mapsto \mathbb{P}_{\mathcal{A}}.$

88. Teorema (2.15). $\operatorname{MA}(\kappa) \Rightarrow \operatorname{sejam} \mathcal{A}, \mathcal{C} \subseteq \mathcal{P}(\omega) \operatorname{com} |\mathcal{A}|, |\mathcal{C}| \leq \kappa \operatorname{e} \operatorname{tais} \operatorname{que} (\forall y \in \mathcal{C})(\forall F \in [\mathcal{A}]^{<\omega})|y \setminus \bigcup F| = \omega.$ Então existe $d \subseteq \omega$ tal que $(\forall x \in \mathcal{A})|d \cap x| < \omega$ e $(\forall y \in \mathcal{C})|d \cap y| = \omega.$

A partir disto, dada $\mathcal{A} \subseteq \mathcal{P}(\omega)$ a.d. com $|\mathcal{A}| = \kappa$, se $x_1, \ldots, x_n, y \in \mathcal{A}$ e $y \neq x_1, \ldots, x_n$ então $|y \setminus (x_1 \cup \cdots \cup x_n)| = \omega$ e portanto pode-se aplica 2.15 com \mathcal{A} e $\mathcal{C} = \omega$, para obter $d \subseteq \omega$ tal que $|d| = \omega$ e $(\forall x \in \mathcal{A})|d \cap x| \leq \omega$; o que mostra que $\mathcal{A}^* = \mathcal{A} \cup \{d\}$. é uma família a.d. que estende \mathcal{A} .

89. Lema (2.17). Seja $\mathcal{B} \subseteq \mathcal{P}(\omega)$ uma família a.d. com $|\mathcal{B}| = \kappa$ e seja $\mathcal{A} \subseteq \mathcal{B}$. MA $(\kappa) \Rightarrow existe d \subseteq \omega$ tal que $(\forall x \in \mathcal{A})|d \cap x| < \omega$ e $(\forall y \in \mathcal{B} \setminus \mathcal{A})|d \cap y| = \omega$.

Demonstração Aplique 2.15 com $\mathcal{C} = \mathcal{B} \setminus \mathcal{A}$. Seja $y \in \mathcal{B} \setminus \mathcal{A}$ e $F = \{x_1, \dots, x_n\} \subseteq \mathcal{A}$. Então $y \neq x_1, \dots, x_n$ e já vimos que $|y \setminus (x_1 \cup \dots \cup x_n)| = \omega$ i.e. $|y \setminus \bigcup F| = \omega$.

90. Corolário. $MA(\kappa) \Rightarrow 2^{\omega} = 2^{\kappa} \ (para \ \omega \leq \kappa < 2^{\omega}).$

Demonstração Sabemos que existe alguma $\mathcal{F} \subseteq \mathcal{P}(\omega)$ a.d. com $|\mathcal{F}| = 2^{\omega}$ e podemos escolher $\mathcal{B} \subseteq \mathcal{F}$ com $|\mathcal{B}| = \kappa$ (é claro que \mathcal{B} também é a.d.).

Seja $\varphi \colon \mathcal{P}(\omega) \to \mathcal{P}(\mathcal{B})$ definido por $\varphi(d) = \{x \in \mathcal{B} \colon |d \cap x| < \omega\} \subseteq \mathcal{B}$.

Dado $A \in \mathcal{P}(\mathcal{B})$, por 2.17, seja $d \subseteq \omega$ tal que $|d \cap x| < \omega$ para $x \in A$ e $|d \cap x| = \omega$ para $x \in \mathcal{B} \setminus A$.

Então $\varphi(d) = \mathcal{A}$, portanto, $\in \varphi = \mathcal{P}(\mathcal{B})$ i.e. φ é sobre \mathcal{B} . Logo $|\mathcal{P}(\omega)| \geq |\mathcal{P}(\mathcal{B})|$ i.e. $2^{\omega} \geq 2^{\kappa} \geq 2^{\omega}$ portanto $2^{\kappa} = 2^{\omega}$.

91. Corolário. MA $\Rightarrow 2^{\omega}$ é regular.

Demonstração Seja $\kappa < 2^{\omega}$, então por MA, $2^{\kappa} = 2^{\omega}$ e, por König, cf $(2^{\kappa}) > \kappa$. Logo cf $(2^{\omega}) = 2^{\omega}$.

- §3. São equivalentes
- (i) $MA(\kappa)$.
- (ii) MA(κ) "restrito" a ordem parciais com cardinalidade $\leq \kappa$.
- (iii) $MA(\kappa)$ "restrito" a ordem parciais que vieram de álgebras de Boole.
- (iv) Intersecção de κ abertos densos num compacto Hausdorff c.c.c. é não-vazia.

 $MA(\omega_1) \rightarrow produto qualquer de espaços topológicos c.c.c. é c.c.c..$

§4. O Problema de Souslin.

92. Definição. Uma reta de Souslin é uma ordem total $\langle X, < \rangle$ que é c.c.c.ña topologia da ordem (i.e. qualquer família de abertos 2-a-2 disjuntos é enumerável), mas não é separável (i.e. não contém denso enumerável).

A hipótese de Souslin (SH) é a afirmação: Não existe reta de Souslun. Sabe-se:

- MA + \neg CH \Rightarrow SH.
- Jensen provou que SH é consistente com ZF + GCH e que ⋄ ⇒ ¬SH, onde ⋄ é consistente com ZF + GCH.
- SH é idependente de ZFC + GCH.
- 93. Lema (4.3). Se X é uma reta de Souslin então $X \times X$ nào é c.c.c..

Demonstração Vamos construir por recursão transfinita sobre $\alpha < \omega_1, a_\alpha, b_\alpha, c_\alpha \in X$ tais que $\forall \alpha < \omega_1$

- (i) $a_{\alpha} < b_{\alpha} < c_{\alpha}$.
- (ii) $|a_{\alpha}, b_{\alpha}| \neq 0$ e $|b_{\alpha}, c_{\alpha}| \neq 0$.
- (iii) $]a_{\alpha}, c_{\alpha}[\cap \{b_{\xi} : \xi < \alpha\}] = 0.$

Seja $W=\{x\in X\colon x\text{ \'e ponto isolado}\}$. Se $x\in W,\ \{x\}$ \'e aberto e $\{\{x\}\colon x\in W\}$ seria família de abertos 2-a-2 disjuntos, potanto $|W|\leq\omega$.

Seja $\alpha < \omega_1$ e suponhamos $a_{\beta}, b_{\beta}, c_{\beta}$ obtidos para todo $\beta < \alpha$; $\alpha < \omega_1$ então $|\alpha| \leq \omega$ portanto $|\{b_{\xi} : \xi < \alpha\}| \leq \omega$ portanto $|W \cup \{b_{\xi} : \xi < \alpha\}| \leq \omega$ logo $W \cup \{b_{\xi} : \xi < \alpha\}$ não é denso em X i.e. $\overline{W \cup \{b_{\xi} : \xi < \alpha\}} \neq 0$. Como $Z = X \setminus \overline{W \cup \{b_{\xi} : \xi < \alpha\}}$ é aberto não-vazio, existe algum intervalo, $\neq 0$, $|a_{\alpha}, c_{\alpha}| \subseteq Z$.

Seja $x \in]a_{\alpha}, c_{\alpha}[$, então x não é isolado e portanto $]a_{\alpha}, c_{\alpha}[$ é infinito; e podemos escolher $b_{\alpha} \in]a_{\alpha}, c_{\alpha}[$ tal que $]a_{\alpha}, b_{\alpha}[\neq 0 \text{ e }]b_{\alpha}, c_{\alpha}[\neq 0.$

Sejam agora, para cada $\alpha < \omega_1, U_{\alpha} =]a_{\alpha}, b_{\alpha}[\times]b_{\alpha}, c_{\alpha}[$ aberto não-vazio de $X \times X$.

Seja $\xi < \alpha$, então $b_{\xi} \leq a_{\alpha}$ ou $c_{\alpha} \leq b_{\xi}$. No primeiro caso: $]a_{\xi}, b_{\xi}[\cap]a_{\alpha}, b_{\alpha}[=0$. Consequentemente $U_{\xi} \cap U_{\alpha} = 0$. No segundo caso: $]b_{\alpha}, c_{\alpha}[\cap]b_{\xi}, c_{\xi}[=0$ portanto $U_{\xi} \cap U_{\alpha} = 0$ e $\{U_{\alpha} : \alpha < \omega_{1}\}$ é uma família de ω_{1} abertos não-vazios 2-a-2 disjuntos.

94. Teorema. $MA(\omega_1) \Rightarrow \neg SH$.

Demonstração MA(ω_1) implicaria que $X \times X$ é c.c.c., se X é c.c.c.. Sabe-se que se $\langle X, < \rangle$ é uma ordem total tal que

- (i) não tem mínimo nem máximo,
- (ii) é conexa na topologia da ordem,

(iii) é separável na topologia da ordem,

então
$$\langle X, < \rangle \simeq \langle \mathbb{R}, < \rangle$$
.

Souslin perguntou em 1920 se (i), (ii) e

(i) X é c.c.c. na topologia da ordem,

também implicaria que $\langle X, < \rangle \simeq \langle \mathbb{R}, < \rangle$.

 $SH \Rightarrow$ "pergunta de Souslin tem resposta sim."

 $\neg SH \Rightarrow$ existe reta de Souslin Y; a partir de Y pode-se construir uma reta de Souslin X que satisfaz (i), (ii) Rightarrow pergunta de Souslin tem resposta não, portanto (SH) Rightarrow "a pergunta de Souslin original."

Seja $\langle X, \langle \rangle$ uma ordem total.

95. Definição. $\langle A, B \rangle$ é um corte de Dedekind de X se $A, B \subseteq X$, $0 \neq A$, $0 \neq B$, $A \cap B = 0$, $A \cup B = X$, $(\forall a \in A)(\forall b \in B)(a < b)$.

Dizemos que $l \in X$ é um **ponto limite** de um corte de Dedekind $\langle A, B \rangle$ se $l = \max A$ ou $l = \min B$.

 $\langle X, < \rangle$ se diz **densa** se $(\forall a, b \in X)(a < b \rightarrow]a, b \neq 0)$.

 $\langle X, < \rangle$ se diz **completa** se todo corte de Dedekind de X tem ponto limite.

Temos:

- (i) $\langle X, \langle \rangle$ é densa sse todo corte de Dedekind de X tem no máximo um ponto limite.
- (ii) $\langle X, < \rangle$ é completa sse todo subconjunto não-vazio e limitado superiormente de X tem supremo sse IDEM para ínfimo.
- (iii) $\langle X, < \rangle$ é conexa na topologia da ordem sse todo corte de Dedekind de X tem exatamente um ponto limite sse é completa e densa.
- **96.** Teorema (4.4). Se existe uma reta de Souslin Y então existe uma reta de Souslin X tal que
 - (i) X é densa,
 - (ii) nenhum aberto não-vazio de X é separável.

A construção de X a partir de Y: Seja \sim uma relação definida em $y \times Y$ por $x \sim y \Leftrightarrow$ o intervalo em x e y é separável. Ponha $X = Y / \sim = \{[x]_{\sim} : x \in Y\}$. Se $I, J \in X$, digamos $I = [x]_{\sim}$ e $J = [y]_{\sim}$, com I < J sse x < y nos dá uma relação de ordem nas classes.

No Kunen, cap. 2, exer. 30, se existe uma reta de Souslin enão existe uma reta de Souslin que satifaz (i) e (ii) da pergunta de Souslin: começando com uma reta de Souslin Y, pelo Teorema 4.4, seja X que satisfaz (i) e (ii) do Teorema. Joga-se fora o min e o max de X se existirem e toma-se o "completamneto de Dedekind" da reta obtida.

Dia 11/6/97

Árvores

97. Definição. Uma árvore é uma ordem parcial $\langle T, \leq \rangle$ tal que $(\forall x \in T)$ $\{y \in T : y < x\}$ é um conjunto bem-ordenado por \leq .

Seja T uma árvore. Para cada $x \in T$ definimos a **áltura** de $x \in T$ por

$$h(x,T) = type(\{y \in T : y \in x\}),$$

para cada ordinal α definímos o **nível** em T por

$$Lev_{\alpha}(T) = \{x \in T : h(x,T) = \alpha\},$$

definimos a **altura da árvore** T por

$$h(T) = \min \{ \alpha : Lev_{\alpha}(T) = 0 \} = \sup \{ h(x, T) + 1 : x \in T \}.$$

Ponha

$$\beta = \min \left\{ \alpha \colon \operatorname{Lev}_{\alpha}(T) = 0 \right\}$$
$$\gamma = \sup \left\{ h \right\} x, T) + 1 \colon x \in T \right\}.$$

Para todo $x \in T$ $h(x,T) < h(x,T) + 1 \le \gamma$, portanto, $x \notin \text{Lev}_{\gamma}(T)$ i.e. $\text{Lev}_{\gamma}(T) = 0$ logo $\beta \le \gamma$. Por outro lado, $(\forall x \in T)x \in \text{Lev}_{h(x,T)}(T) \ne 0$ portanto $h(x,T) < \beta$ portanto $h(x,T) + 1 \le \beta$ logo $\gamma = \sup\{h(x,T) + 1 : x \in T\} \le \beta$.

Dizemos que $T' \subseteq T$ é uma **subárvore** de T se $(\forall x \in T')(\forall y \in T)(y < x \to y \in T')$. Se T' é subárvore de T e $x \in T'$, então h(x, T') = h(x, T).

Exemplo

- T qualquer, $\leq = 0$, $(\forall x \in T) h(x, T) = 0$, h(T) = 1.
- $T = \delta$ com a ordem usual, $(\forall \alpha < \delta) h(\alpha, T) = \alpha e h(T) = \delta$.
- $T = {}^{<} \delta I = \bigcup \{ {}^{\alpha}I : \alpha < \delta \} \text{ com } s \le t \text{ sse } s \subseteq t.$ $s \in {}^{\alpha}I \leadsto \{ t \in {}^{<} \delta I : t < s \} \simeq \alpha$

$$t < s \Rightarrow t = s \upharpoonright \beta \text{ para algum } \beta < \alpha, \text{ portanto, } \mathbf{h}(s,T) = \alpha \text{ e } \mathbf{h}(T) = \delta.$$

Dizemos que T é uma **árvore** I-ária completa de altura δ , e no caso I=2 é conhecida como árvore binária completa.

Dizemos que $C \subseteq T$ é uma **cadeia** em T se $(\forall x, y \in C)(x \leq y \lor y \leq x)$. Dizemos que $A \subseteq T$ é uma **anticadeia** em T se $(\forall x, y \in A)(x \neq y \rightarrow (xnot \leq y \land y \nleq x))$.

Observação Considerando $\mathbb{P} = \langle T, \leq \rangle$, os conceitos de cadeia e anticadeia aqui definidos coincidem com os definidos por ocasião de MA(). HAveria algum problema com $x, y, \in T$ serem incomparáveis em $\langle T, \leq \rangle$ e não serem incompatíveis em $\langle \mathbb{P}, \leq_{\mathbb{P}} \rangle$. Mas isto não acontece pois se x, y são compatíveis em \mathbb{P} então existe $z \in T$ tal que $x \leq z$ e

 $y \le z$ e portanto estaria em $\{t \in T : t \le z\}$ que é bem ordena
o e seriam consequentemente comparáveis.

Uma árvore T se diz κ -árvore (κ -regular) se h $(T) = \kappa$ e $(\forall \alpha < \kappa) |\operatorname{Lev}_{\alpha}(T)| < \kappa$.

Uma árvore T se diz κ -árvore de Aronszajn se for uma κ -árvore na qual toda cadeia tem cardinalidade $< \kappa$.

Uma árvore T se diz κ -árvore de Souslin se $|T| = \kappa$ e toda cadeia e anticadeia tem cardinalidade $< \kappa$.

Não existe ω -árvore de Aronszajn.

Existe ω_1 -árvore de Aronszajn.

Existe ω_1 -árvore de Souslin sse existe uma reta de Souslin.

O filtro c.u.b.

Um **filtro** sobre A é uma família $\mathcal{F} \subseteq \mathcal{P}(A)$ tal que

- (i) $A \in \mathcal{F}, 0 \notin \mathcal{F}$.
- (ii) $(\forall X, Y \in \mathcal{F})X \cap Y \in \mathcal{F}$.
- (iii) $(\forall X \in \mathcal{F})(\forall Y \subseteq A)(X \subseteq Y \to Y \in \mathcal{F}).$

Um **ideal** sobre A é uma família $\mathcal{I} \subseteq \mathcal{P}(A)$ tal que

- (i) $A \notin \mathcal{I}$, $0 \in \mathcal{I}$.
- (ii) $(\forall X, Y \in \mathcal{I})X \cup Y \in \mathcal{I}$.
- (iii) $(\forall X \in \mathcal{F})(\forall Y \subseteq A)(Y \subseteq X \to Y \in \mathcal{F}).$

Notação $\mathcal{C} \subseteq \mathcal{P}(A) \leadsto \mathcal{C}^* = \{A \setminus X \colon X \in \mathcal{C}\}.$

Se $\mathcal F$ é um filtro sobre A então $\mathcal F^*$ é um ideal sobre A e vice-versa, e $\mathcal F^{**}=\mathcal F$ e $\mathcal I^{**}=\mathcal I$.

 $\mathcal{F} \subseteq \mathcal{P}(A)$ se diz um **ultrafiltro** sobre A sse \mathcal{F} 'e um filtro maximal sobre A sse \mathcal{F} é um filtro tal que $(\forall X \subseteq A)(X \in \mathcal{F} \vee A \setminus X \in \mathcal{F})$.

 $\mathcal{F} \subseteq \mathcal{P}(A)$ tem a propriedade da intersecção finita (p.i.f.) se $(\forall n \geq 1)X_1, \ldots X_n \in \mathcal{F} \Rightarrow X_1 \cap \cdots \cap X_n \neq 0$ e \mathcal{F} se diz fechada por intersecções finitas se $(\forall n \geq 1)X_1, \ldots X_n \in \mathcal{F} \Rightarrow X_1 \cap \cdots \cap X_n \in \mathcal{F}$.

(i) Se \mathcal{F} tem p.i.f., então

$$\hat{\mathcal{F}} = \left\{ \bigcap \mathcal{C} \colon 0 \neq \mathcal{C} \in [\mathcal{F}]^{<\omega} \right\}$$

é fechada por intersecções finitas e $0 \notin \hat{\mathcal{F}}$.

(ii) Se $\mathcal F$ é fechada por intersecções finitas e $0 \not\in \mathcal F$, então

$$\langle \mathcal{F} \rangle = \{ X \subseteq A \colon (\exists Y \in \mathcal{F}) Y \subseteq X \}.$$

Os dois itens acima, juntos, implicam que se ${\mathcal F}$ tem p.i.f. então

$$\langle \mathcal{F} \rangle = \{ X \subseteq A \colon (\exists 0 \neq \mathcal{C} \in [\mathcal{F}]^{<\omega}) bigcap \mathcal{C} \subseteq X \}$$

será o filtro gerado por \mathcal{F} . Reciprocamente, se existe filtro $\hat{\mathcal{F}} \supseteq \mathcal{F}$, então \mathcal{F} tem p.i.f.. **Exemplo** Seja A infinito,

$$\mathcal{F} = \{ X \subseteq A \colon |A \setminus X| < \omega \}$$

é um filtro (conhecido como filtro de Fréchet).

$$\mathcal{F}^* = \{ X \subseteq A \colon |X| < \omega \}$$

é um ideal sobre A. Observe que se \mathcal{U} é um ultrafiltro sobre A tal que $(\forall a \in A)$ $\{a\} \notin \mathcal{U}$, então $\mathcal{F} \subseteq \mathcal{U}$.

Um filtro \mathcal{F} sobre A se diz κ -completo se \mathcal{F} é fechado por intersecções de $< \kappa$ elementos, i.e. se $0 \neq \mathcal{C} \subseteq \mathcal{F}$ e $|\mathcal{C}| < \kappa$ então $\bigcup \mathcal{C} \in \mathcal{F}$. Em particular, todo filtro é ω -completo.

Seja μ um ordinal limite e seja $C \subseteq \mu$:

- dizemos que C é **fechado em** μ se para todo ordinal limite $\delta < \mu$, se $C \cap \delta$ é ilimitado em δ , então $\delta \in C$ equivale a C ser fechado na topologia da ordem de μ ,
- dizemos que C é **ilimitado em** μ se sup $C = \mu$,
- dizemos que C é **c.u.b. em** μ se C é fechado e ilimitado em μ .

Exemplo Seja $\mu > \omega$ e tome

$$\mathcal{L} = \{ \lambda < \mu \colon \lambda \text{ \'e ordinal limite} \}$$

$$\mathcal{L}\mathcal{L} = \{ \lambda < \mu \colon \lambda \text{ \'e "limite de limites"} \}.$$

Define-se o filtro C.u.b. de μ como sendo

C. u. b.
$$(\mu) = \{X \subseteq \mu \colon (\exists C \subseteq \mu)(C \in C.u.b. \text{ em } \mu \in C \subseteq X)\}$$
.

- 98. Lema. Seja μ tal que $cf(\mu) > \omega$.
 - (i) Se $\lambda < cf(\mu)$ (λ cardinal) e C_{α} são c.u.b. em μ para $\alpha < \lambda$ então $\bigcap \{C_{\alpha} : \alpha < \lambda\}$ é c.u.b. em μ .
 - (ii) C. u. b.(μ) é um filtro cf(μ)-completo.

Demonstração Ponha $C^* = \bigcap \{C_{\alpha} : \alpha < \lambda\}.$

Seja $\lambda < \mu$ limite e suponhamos que $C^* \cap \delta$ é ilimitado em δ . Então $C_{\alpha} \cap \delta$ é ilimitado em δ para todo $\alpha < \lambda$ e, portanto, $\delta \in C_{\alpha}$, logo $\delta \in C^*$ i.e. C^* é fecahdo em μ .

Dado $\xi < \mu$ e dado $\alpha < \lambda$, seja $f_{\alpha}(\xi) = \min \{ \eta \in C_{\alpha} : \xi < \eta \}$ (pois C_{α} é ilimitado em μ e seja $g(\xi) = \sup \{ f_{\alpha}(\xi) : \alpha < \lambda \} < \mu$ (pois $\lambda < \operatorname{cf}(\mu)$).

⁹analogamente para ideais.

Consideremos a sequencia

$$g^{0}(\xi) = \xi$$

$$g^{n+1}(\xi) = g(g^{n}(\xi)), \ n < \omega$$

$$g^{\omega}(\xi) = \sup \{g^{n}(\xi) : n < \omega\}.$$

 $g^{\omega}(\xi) < \mu$ pois $\omega < \mathrm{cf}(\mu)$ e $g^{\omega}(\xi)$ é ordinal limite pois é sup de uma sequencia crescente.

Mostrando que $C_{\alpha} \cap g^{\omega}(\xi)$ é ilimitado em $g^{\omega}(\xi)$ teremos que $g^{\omega}(\xi) \in C_{\alpha}$, pois C_{α} é fechado, e portanto $g^{\omega}(\xi) \in \bigcap C_{\alpha}$.

Seja $\beta < g^\omega(\xi)$ e seja $\beta^* = \max{\{\xi,\beta\}} < g^\omega(\xi).$ Então $\beta^* < g^n(\xi)$ para algum $n < \omega$ e

$$b^* < g^n(\xi) < f_{\alpha}(g^n(\xi)) \le g^{n+1}(\xi) < g^{\omega}(\xi)$$

i.e. $b^* < f_{\alpha}(g^n(\xi))$ e $f_{\alpha}(g^n(\xi)) \in C_{\alpha} \cap g^{\omega}(\xi)$ i.e. $C_{\alpha} \cap g^{\omega}(\xi)$ é ilimitado em $g^{\omega}(\xi)$ portanto $g^{\omega}(\xi) \in C_{\alpha}$ logo $g^{\omega}(\xi) \in C^*$.

 $S \subseteq \mu$ se diz **estacionário** se $S \cap C \neq 0$ para todo $C \subseteq \mu$ c.u.b. $(\leftrightarrow S \notin C$. u. b. $(\mu)^* \Leftrightarrow S \neq \mu \setminus X$ para todo $X \in C$. u. b. $(\mu) \Leftrightarrow S \not\subseteq \mu - C$ para todo C c.u.b. $\Leftrightarrow S \cap C \neq 0$.)

Exemplo Se cf(μ) < λ , λ regular, então $S = \{\alpha < \mu : cf(\kappa) = \lambda\}$ é estacionário em μ .

 $C = \{ \gamma_{\alpha} : \alpha \in \text{type } C \}$: "enumração canônica de $C (|C| \leq \text{cf}(\mu) > \lambda)$.

 $\lambda < \operatorname{type} C$ portanto existe $\gamma_{\lambda} \in C$

 $\operatorname{cf}(\gamma_{\lambda}) = \lambda$: type $C \to C$ isomorfismo

 $h(\lambda) = \gamma_{\lambda}$

 $h \upharpoonright \lambda \colon \lambda \to \gamma_{\lambda}$ é cofinal crescente em γ_{λ} portanto $\operatorname{cf}(\gamma_{\lambda}) = \operatorname{cf}(\lambda) = \lambda$; portanto, $\gamma_{\lambda} \in S$, $\gamma_{\lambda} \in C \operatorname{logo} S \cap C \neq 0$.

 $S_0=\{\alpha<\omega_2\colon \operatorname{cf}(\alpha)<\omega\}$ e $S_1=\{\alpha<\omega_2\colon \operatorname{cf}(\alpha)<\omega_1\}$ são estacionários em ω_2 e $S_0\cap S_1.$

Dia 13/6/97

Dizemos que $S \subseteq \mu$ é**estacionário em** μ se $S \cap C$ neq0 para todo C c.u.b. em μ .

Exemplo Se $\lambda < \operatorname{cf}(\mu)$, λ regular. $S_{\lambda} = \{\alpha < \lambda : \operatorname{cf}(\alpha) = \lambda\}$ é estacionário em μ .

Demonstração Seja C c.u.b. em μ ; $C = \{\gamma_{\xi} : \xi < \tau\}$, onde $\tau = \text{type}(C)^{10}$.

Afirmação: cf(γ_{λ}) = λ e, consequentemente, $\gamma_{\lambda} \in S_{\lambda} \cap C$. $\tau \simeq C$, portanto, $|\tau| = |C| \ge \frac{cf(\mu) > \lambda}{cf(\mu) > \lambda}$, portanto, $\lambda < \tau$ e está definido $\gamma_{\lambda} = h(\lambda)$. Vamos mostrar que $h \upharpoonright \lambda \colon \lambda \to \gamma_{\lambda}$ é cofinal¹¹.

Seja $\sigma = \sup \{ \gamma_{\xi} \colon \xi < \lambda \} = \sup \operatorname{im}(h \upharpoonright \lambda) \leq \gamma_{\lambda}$. Observe que $C \cap \sigma$ é ilimitado em σ – pois $\gamma_{\xi} \in C \cap \sigma$ – e como C é fechado, segue que $\sigma \in C$.

Como $\sigma \in C$ e $\sigma \leq \gamma_{\lambda}$, então $\sigma = \gamma_{\xi}$ para algum $\xi \leq \lambda$. Por sua vez, $\sigma > \gamma_{\xi}$, para todo $\xi < \lambda$, portanto $\sigma = \gamma_{\lambda} = \sup \operatorname{im}(h \upharpoonright \lambda)$ é cofinal em γ_{λ} .

$$\mu = \omega_2 \rightsquigarrow S_0 = \{ \alpha < \omega_2 \colon \operatorname{cf}(\alpha) = \omega_0 \}$$

$$S_1 = \{ \alpha < \omega_2 \colon \operatorname{cf}(\alpha) < \omega_1 \}$$

 $^{^{10}\}gamma_{\xi}$ seria a "enumeração" canônica de C, i.e., $h:\tau\to C$, h o isomorfismo de ordem entre C e o seu tipo de ordem, e $\gamma_{\xi}=h(\xi)$.

 $^{^{11}}$ se $\xi < \lambda$, $\gamma_{\xi} = h(\xi) < h(\lambda) = \gamma_{\lambda}$, i.e., $h \upharpoonright \lambda$ é de fato uma função em γ_{λ} .

 S_0 e S_1 são estacionários em ω_2 e $S_0 \cap S_1 = 0$.

Seja κ fracamente inacessível – i.e., K é rgular e cardinal limite – vimos que $\kappa = \omega_{\kappa}$, então seja $g \colon \kappa \to \kappa$ definida por $g(\alpha) = (\omega_{\alpha})^+$, para todo $\alpha < \kappa$. g é 1-1 e $g(\alpha)$ é um cardinal regular para todo $\alpha < \kappa$, portanto, $\{(\omega_{\alpha})^+ \colon \alpha < \kappa\} \simeq \kappa$, i.e., existem κ cardinais regulares menores que κ e por isso teremos κ estacionários – $S_{\lambda} = \{\alpha < \kappa \colon \operatorname{cf}(\alpha) \leq \lambda\}$, para todo $\lambda < \kappa$ regular – disjuntos.

No caso em que κ é um cardinal sucessor, Ulam provou que também existem κ estacionários em κ os quais são disjuntos; e mais genericamente, para κ regular, dado $S \subseteq \kappa$ estacionário em κ , S pode ser decompsto em κ subconjuntos estacionários de κ os quais são disjuntos.

99. Teorema^{MA κ}. Sejam M_{α} , para $\alpha < \kappa$, subconjuntos de \mathbb{R} , cada um de medida de Lebesgue nula. Então $\bigcup_{\alpha < \kappa} M_{\alpha}$ tem medida de Lebesgue nula.

Dizemos que $M\subseteq\mathbb{R}$ tem medida de Lebesgue nula se dado ε existe $U\subseteq\mathbb{R}$ aberto tal que $M\subseteq U$ e a medida de Lebesgue de U é no máximo ε .

Demonstração Fixemos $\varepsilon > 0$. $\mathbb{P} = \{P \subseteq \mathbb{R} : P \text{ \'e aberto e } \mu(P) < \varepsilon\}$, onde μ \'e a medida de Lebesgue. Defina a relação de ordem em \mathbb{P} por

$$p \le q \Leftrightarrow q \subseteq p$$

.

Vejamos que $\langle \mathbb{P}, \leq \rangle$ é c.c.c..

Seja \mathcal{C} o conjunto de todas as uniões finitas de elementos de \mathcal{B} , onde \mathcal{B} é o conjunto enumerável de todos intervalos abertos com extremos racionais, i.e., \mathcal{B} é uma base enumerável de \mathbb{R} (top. ususal). Então sempre que V é aberto (ou mesmo mensurável) e $\delta > 0$ existe um $C \in \mathcal{C}$ tal que $\mu(C \triangle V) < \delta$.

Suponha $A = \{p_{\alpha} : \alpha < \omega_1\} \subseteq \mathbb{P}$ anti-cadeia. Como $\mu(p_{\alpha}) < \varepsilon$, existe $\delta > 0$ fixo tal que $X = \{\alpha < \omega_1 : \mu(p_{\alpha}) \le \varepsilon - 3\delta\}$ é não-enumerável.

Para $\alpha \in X$ escolha $C \in \mathcal{C}$ tal que $\mu(p_{\alpha} \triangle C_{\alpha}) \leq \delta$. Se α, β são disjuntos em X então $p_{\alpha} \perp p_{\beta}$. Assim, $\mu(p_{\alpha} \cup p_{\beta}) \geq \varepsilon$; como $\mu(p_{\alpha} \cap p_{\beta}) \leq \varepsilon - 3\delta$ nós temos $\mu(p_{\alpha} \triangle p_{\beta}) \geq 3\delta$. Como $\mu(p_{\alpha} \triangle C_{\alpha}) \leq \delta$ e $\mu(p_{\beta} \triangle C_{\beta}) \leq \delta$ temos $\mu(C_{\alpha} \triangle C_{\beta}) \geq \delta$.

 $X \hookrightarrow \mathcal{C}$, portanto, calC não-enumerável.

Para $\alpha < \kappa$ seja $D_{\alpha} = \{p \colon M_{\alpha} \subseteq p\}$. D_{α} é denso em $\langle \mathbb{P}, \leq \rangle$. De fato, fixemos $q \in \mathbb{P}$; $\mu(q) < \varepsilon$, assim existe um aberto V com $M_{\alpha} \subseteq V$ e $\mu(V) < \varepsilon - \mu(q)$.

Então $p = q \cup V$ tem medida $\mu(p) < \varepsilon$, assim $p \in \mathbb{P}$ portanto p é uma extensão de q em D_{α} . Seja G um filtro tal que $G \cap D_{\alpha} \neq 0$. Então $M_{\alpha} \subseteq \bigcup G$. Logo $\bigcup_{\alpha < \kappa} M_a a \subseteq \bigcup G$. Falta mostrar que $\mu(\bigcup G) \leq \varepsilon$.

Se G é um filtro em $\langle \mathbb{P}, \leq \rangle$, $\bigcup G$ é aberto; e se $p, q \in G$ eles têm uma extensão comum $r \in G$ e como $r \leq p \vee q$, nós temos $p \vee q \in G$.

 $P_1, \ldots, P_n \in G$ então $\bigcup_{i=1}^n P_i$ está em G, portanto $\mu(\bigcup P_i) < \varepsilon$. Assim, por aditividade enumerável de μ , sempre que A é um subconjunto enumerável de G, $\mu(\bigcup A) \leq \varepsilon$.

Vamos mostrar que $\bigcup A = \bigcup G$ para algum $A \subseteq G$ enumerável. Tomemos $A = G \cap \mathcal{B}$, então $\mu(\bigcup G) \leq \varepsilon$.

. . .

100. Definição. Sejam $C_{\alpha} \subseteq \kappa$, para $\alpha < \kappa$. Define-se a intersecção diagonal

$$\triangle_{\alpha < \kappa} C_{\alpha} = \{ \gamma < \alpha \colon (\forall \alpha < \gamma) \gamma \in C_{\alpha} \} .$$

101. Teorema. Se $\kappa > \omega$ regular e C_{α} c.u.b. em κ para todo $\alpha < \kappa$ então $D = \triangle_{\alpha < \kappa} C_{\alpha}$ é c.u.b. em κ .

Demonstração Vamos provar primeiro que D é fechado. Seja $\delta < \kappa$ orinal limite tal que $D \cap \delta$ é ilimitado em δ . Seja $\alpha < \delta$; vamos mostrar que $C_{\alpha} \cap \delta$ é ilimitado em δ , daí teremos $\delta \in C_{\alpha}$ (pois C_{α} é fechado) e, portanto, $\delta \in D$.

Seja $\beta < \delta$. Como $\cap \delta$ é ilimitado, seja $\gamma \in D \cap \delta$ tal que $\beta^* < \gamma$, onde $\beta^* = \max\{\alpha, \beta\}$. De $\gamma \in D$ temos $\gamma \in C_{\xi}$, para todo $\xi < \gamma$, em particular $\alpha < \gamma$, portanto, $\gamma \in C_{\alpha}$.. Logo, $\gamma \in C_{\alpha} \cap \delta$ e portanto $C_{\alpha} \cap \delta$ é ilimitado em δ .

Agora, provaremos que D é ilimitado em κ . Dado $\xi < \kappa$, $\bigcap \{C_{\alpha} : \alpha < \xi\}$ é c.u.b. em κ , portanto, seja $g(\xi) = \min \Big\{ \eta \in \bigcap_{\alpha < \xi} C_{\alpha} : \xi < \eta \Big\}$. Então, $\xi < g(\xi) < \kappa$ e $g(\xi) \in \bigcap \{C_{\alpha} : \alpha < \xi\}$.

Definimos por recursão finita:

$$\begin{cases} g^0(\xi) = \xi \\ g^{n+1}(\xi) = g(g^n(\xi)), \ \forall n < \omega, \end{cases}$$

e seja $\delta = \sup \{g^n(\xi) : n < \omega\}$, portanto¹², δ é ordinal limite.

Sejam $\alpha, \beta < \delta$ e $\beta^* = \max{\{\alpha, \beta\}} (< \delta)$. Pela definição de δ existe $n < \omega$ tal que $\beta^* < g^n(\xi)$.

$$a \leq \beta^* < g^n(\xi) < g^{n+1}(\xi) \begin{cases} < \delta \\ \in \bigcap \{C_\gamma : \gamma < g^n(\xi)\}. \end{cases}$$

 $\alpha < g^n(\xi)$, portanto, $g^{n+1} \in C_{\alpha}$ e $g^{n+1}(\xi) < \delta$, portanto, $\beta < g^{n+1}(\xi) \in C_{\alpha \cap \delta}$, portanto, $\delta \in C_{\alpha}$, portanto, $\delta \in D$.

102. Teorema. $\kappa > \omega$ regular. $S \subseteq \kappa$ estacionário em κ , $f: S \to \kappa$ regressiva – i.e., $(\forall \gamma \in S) f(\gamma) < \gamma$. Então $(\exists \alpha < \kappa) f^{-1}(\{\alpha\})$ é estacionário em κ .

Demonstração Se não, para cada $\alpha < \kappa$, existe $C_{\alpha} \subseteq \kappa$ c.u.b. tal que $f^{1}(\{\alpha\}) \cap C_{\alpha} = 0$. Seja $D = \triangle_{\alpha < \kappa} C_{\alpha}$. D é c.u.b. em κ , portanto, $D \cap S \neq 0$.

Seja $\gamma \in D \cap S$ e seja $\alpha = f(\gamma) < \gamma$. Então $\gamma \in f^{-1}(\{\alpha\})$ e $\gamma \in D$, portanto, $\gamma \in C_{\xi}$ para todo $\xi < \gamma$, em particular γinC_{α} . Logo $\gamma \in f^{-1}(\{\alpha\}) \cap C_{\alpha}$ contra $f^{-1}(\{\alpha\}) \cap C_{\alpha} = 0$.

 $^{^{12}}g^n(\xi) < g(g^n(\xi)) \in \cap \{C_\alpha : \alpha < g^n(\xi)\}$