PROJECT SMART TRASH

จัดทำโดย

นางสาวกฤตินี	อรรถเวชกุล	1640900393
นายยศวัชร	เกียรติประการ	1640901201
นางสาวอรพรรณ	หนองเทา	1640902142
นางสาวกฤติญาณี	ครองสัตย์	1640902191

EL214 Basic Circuit and Electronics

Bangkok University
ปีการศึกษาที่ 2565

คำนำ

รายงานฉบับนี้เป็นส่วนนึงของชิ้นงาน Project ของรายวิชา EL214 การค้นคว้าและเขียน รายงานชิ้นนี้โดยมีวัตถุประสงค์เพื่อให้ผู้อ่านได้ทราบและเข้าใจถึงตัวงานที่พวกเราทำและนำมา นำเสนอ โดยคณะผู้จัดทำได้ทำการศึกษาข้อมูลจากการเรียนและข้อมูลอื่นๆเพิ่มเติมจากช่องทาง ออนไลน์ มาทำเป็นผลงานชิ้นนี้ขึ้น

คณะผู้จัดทำ

สารบัญ

	หน้า
บทที่ 1 ทฤษฎีที่เกี่ยวข้อง	1
1.1 Ultrasonic sensor	
1.2 Servo	
1.3 Node MCU	
1.4 Internet of Thing (IoT)	
บทที่ 2 การดำเนินและวิธีการสร้าง	5
2.1 อุปกรณ์ที่ใช้	
2.2 ขั้นตอนการทำ	
2.2.1 ส่วนที่ 1: ฝาเปิดอัตโนมัติ	
2.2.2 ส่วนที่ 2: ตรวจจับระยะที่กำหนด	
บทที่ 3 การทดลองและผลการทดลอง	8

บทที่ 1 แนวคิด ทฤษฎีที่เกี่ยวข้อง

โดยแนวคิดในการสร้าง Smart Trash ถังขยะที่ใช้ Ultrasonic sensor เช็คระยะเผื่อใช้ใน การสั่งงานให้ตัว Servo เปิดฝาถังโดยไร้การสัมผัสที่ตัวถัง และใช้ในการวัดระดับปริมาณของขยะ ในตัวถังโดยจะแจ้งเตือนเมื่อปริมาณขยะในถังเต็ม โดยที่จะใช้ Node mcu ในการทำงาน โดยมี รายละเอียดต่างๆดังนี้

- 1.1 Ultrasonic sensor
- 1.2 Servo motor 180 degree
- 1.3 Node MCU V2
- 1.4 Internet of Thing (IoT)

1.1 Ultrasonic Sensor

Ultrasonic sensor คือ อุปกรณ์สำหรับวัดระดับหรือระยะทางชนิดหนึ่งโดยใช้คลื่น
Ultrasonic ซึ่งอาศัยหลักการสะท้อนของคลื่นความถี่สูง Ultrasonic โดยอุปกรณ์จะปล่อยคลื่น
Ultrasonic ให้กระทบกับวัตถุ จากนั้นรอคลื่น Ultrasonic สะท้อนกับมาที่เซ็นเซอร์เพื่อ
คำนวณหาระยะทางที่วัดได้ นอกเหนือจาก Ultrasonic sensor แล้ว ยังมีเซ็นเซอร์ชนิดอื่นๆอีกที่
ใช้ในการวัดระยะได้แก่ Radar sensor, Hydrostatic sensor

ภาพที่ 1.1 Ultrasonic Sensor

- 1.1.1 จุดประสงค์ของ Ultrasonic sensor ในผลงานชิ้นนี้ถูกแบ่งออกเป็น 2 ลักษณะ การใช้งานหลัก ๆ คือ
- 1. ใช้เพื่อออกคำสั่งไปที่ Servo เพื่อใช้ในการเปิดถัง
- 2. ใช้เพื่อวัดระดับปริมาณขยะในถัง โดยที่ถ้าเต็มหรือถึงระดับที่กำหนดไว้จะแจ้งเตือนไปทางไลน์ ของ user โดยใช้ Node MCU

1.1.2 หลักการทำงานของ Ultrasonic sensor เซ็นเซอร์วัดระดับ (Level sensor) ประเภท Ultrasonic หรือ Ultrasonic sensor เป็นเซ็นเซอร์ที่ต้องอาศัยหลักการของการสะท้อน คลื่นความถี่ Ultrasonic ในการตรวจจับวัตถุต่าง ๆ Ultrasonic sensor นั้นจำเป็นต้องอาศัย ตัวกลางในการเดินทาง เช่น อากาศ แก๊ส หรือของเหลว จึงทำให้ Ultrasonic sensor สามารถใช้ งานตรวจจับวัตุได้หลากหลายชนิด ซึ่งวัตถุที่มีสถานะของเหลวโดยที่เป็นสารเคมีหรือมีความหนืดก็ สามารถใช้ Ultrasonic sensor ในการตรวจจับได้ และ Ultrasonic sensor มีความถี่ไปตั้งแต่ 20000Hz ขึ้นไปซึ่งเป็นความถี่ที่สูงเกินกว่ามนุษย์จะสามารถรับรู้ได้ โดยการคำนวณหาระยะของ คลื่น Ultrasonic จะเป็นไปตามสูตรการเคลื่อนที่แนวราบดังนี้

$$s = v \cdot \left(\frac{t}{2}\right)$$

โดยที่

S = 5 ะยะทาง (m)

v = ความเร็วเสียง (m/s)

t = เวลาในการเดินทางของคลื่น Ultrasonic ทั้งขาไป-ขากลับ (s)

1.1.3 ข้อจำกัด Ultrasonic Sensor ได้แก่

- 1. ไม่เหมาะกับวัตถุที่สามารถดูดซับเสียง หรือมีซึ่งจะทำให้การสะท้อนเกิดความผิดพลาด
- 2. การติดตั้งของ Ultrasonic Sensor ด้านบนอาจทำให้การใช้งานเกิดความผิดพลาด ถ้าหาก อากาศมีความชื้นสูง
- 3. ไม่สามารถใช้ในถังปิดหรือพื้นที่สุญญากาศได้
- 4. ใช้ในพื้นที่อุณหภูมิสูงมากไม่ได้
- 5. ไม่สามารถใช้ในพื้นที่หรือถังที่มีวัตถุที่ทำให้เกิดฝุ่นฟุ้งกระจายในถัง หรือสารเคมีบางชนิดที่มีการ ระเหยไอ เกิดโฟม หรือเกิดฟองได้

1.2 Servo motor 180 degree

Servo Motor เป็นอุปกรณ์ที่สามารถควบคุมเครื่องจักรกล หรือระบบการทำงานนั้นๆ ให้ เป็นไปตามความต้องการ เช่น ควบคุมความเร็ว (Speed) , ควบคุมแรงบิด (Torque) , ควบคุมแรง ตำแหน่ง (Position) โดยให้ผลลัพธ์ตามความต้องการที่มีความแม่นยำสูง

Servo motor 180 degree เป็นเซอร์โวมอเตอร์ที่นิยมใช้งานทั่วไป มีหลายรุ่น หลาย ขนาด และหลายราคา สามารถควบคุมให้หมุดได้ตามองศาที่ต้องการ โดยหมุนได้ 0 ถึง 180 องศา (ในบางรุ่นหมุนได้สุดที่ประมาณ 200 องศา)

ภาพที่ 1.2 Servo motor 180 degree

1.2.1 จุดประสงค์ของ Servo motor 180 degree ในผลงานชิ้นนี้ คือ เพื่อใช้เปิดฝาผังขยะ

1.2.2 หลักการทำงานของ Servo motor 180 degree เริ่มที่วงจรควบคุม เมื่อวงจร ควบคุมได้รับข้อมูลองศาที่ต้องการมาแล้ว วงจรควบคุมจะคำนวณว่ามอเตอร์จะต้องหมุนใน ทิศทางตามเข็มนาหิกา หรือทวนเข็มนาหิกา เพื่อให้ไปสู่องศาที่ต้องการได้ เมื่อมอเตอร์เริ่มหมุน ตัววอลุ่มที่ติดอยู่กับชุดเฟืองมอเตอร์จะตรวจสอบตำแหน่งที่มอเตอร์หมุนไป โดยหากวอลุ่มตรวจ พบว่าตำแหน่งที่มอเตอร์หมุนเริ่มใกล้กับองศาที่ผู้ใช้กำหนด วงจรส่วนควบคุมจะเริ่มสั่งให้มอเตอร์ หมุนช้าลงเพื่อให้หมุนเข้าใกล้องศาที่กำหนดได้มากที่สุด เมื่อมอเตอร์หมุนได้ตำแหน่งองศาที่ ถูกต้องแล้ว วงจรส่วนควบคุมจะตรวจสอบตำแหน่งของมอเตอร์เป็นระยะ ๆ โดยอ่านค่าจากวอลุ่ม หากตรวจพบว่าตำแหน่งผิดเพี้ยนไปจากค่าที่ตั้งไว้ (อันอาจเกิดจากผู้ใช้เอามือไปหมุนเล่น หรือ ภาระส่งผลให้ตำแหน่งเคลื่อน) วงจรควบคุมก็จะสั่งให้มอเตอร์หมุนกลับมาให้ได้ตำแหน่งเป็นระยะ ๆ

1.2.3 ข้อจำกัดของ Servo motor 180 degree

1.เนื่องจากมันเป็นเพื่องพลาสติกจึงทำให้ใช้งานหนักๆไม่ค่อยได้ 2.ร้อนง่าย

1.3 Node MCU V2

Node MCU คือ บอร์ดคล้าย Arduino ที่สามารถเชื่อมต่อกับ Wi-Fi ได้ สามารถเขียน โปรแกรมด้วย Arduino IDE ได้เช่นเดียวกับ Arduino

- 1.3.1 จุดประสงค์ของ Node MCU V2 ในผลงานชิ้นนี้ คือ เพื่อใช้งานแจ้งเตือนออนไลน์ ผ่านทางไลน์
- 1.3.2 หลักการทำงานของ Node MCU V2 เชื่อม Wi-Fi เพื่อสามารถทำให้ส่งสัญญาณ ไปยัง Line notify ได้เมื่อขยะถึงระดับที่กำหนด
 - 1.3.3 ข้อจำกัดของ Node MCU V2
- 1. เนื่องจากรับไฟแค่ 3V จึงทำให้จ่ายไฟไม่พอในวงจร จึงแก้ไขโดยการใช้ Node MCU 2 ตัว

1.4 Internet of Thing (IoT)

Internet of Things (IoT) คือ "อินเตอร์เน็ตในทุกสิ่ง" หมายถึง การที่อุปกรณ์ต่างๆ สิ่ง ต่างๆ ได้ถูกเชื่อมโยงทุกสิ่งทุกอย่างสู่โลกอินเตอร์เน็ต ทำให้มนุษย์สามารถสั่งการควบคุมการใช้ งานอุปกรณ์ต่างๆ ผ่านทางเครือข่ายอินเตอร์เน็ต เช่น การเปิด-ปิด อุปกรณ์เครื่องใช้ไฟฟ้า (การสั่ง การเปิดไฟฟ้าภายในบ้านด้วยการเชื่อมต่ออุปกรณ์ควบคุม เช่น มือถือ ผ่านทางอินเตอร์เน็ต) รถยนต์ โทรศัพท์มือถือ เครื่องมือสื่อสาร เครื่องมือทางการเกษตร อาคาร บ้านเรือน เครื่องใช้ใน ชีวิตประจำวันต่างๆ ผ่านเครือข่ายอินเตอร์เน็ต เป็นต้น

บทที่ 2 การดำเนินและวิธีการสร้าง

อปกรณ์ที่ใช้

	9		
1.	ถังขยะ	1	ถัง
2.	Ultrasonic Module HC-SR04	2	ตัว
3.	Servo	1	ตัว
4.	NodeMCU V2	2	ตัว
5.	Breadboard	1	อัน
6.	ตัวต้านทาน 220 Ω	1	ตัว
7.	สายไฟ ผู้-ผู้/เมีย-ผู้		
8.	ไม้ และ ลวด		

<u>ขั้นตอนการทำ</u>

ส่วนที่ 1: ฝาเปิดอัตโนมัติ

- 1. ติด Servo ไว้ในฝา โดยให้บานพับฝาสามารถเปิดได้
- 2. ติดหลอดไว้ที่บานพับฝา เพื่อใช้เป็นตัวต่อระหว่าง Servo
- 3. นำลวดติดกับไม้แล้ว นำไปติดที่ Servo
- 4. นำลวดไปสอดที่หลอด (รูป A)
- 5. นำ Ultrasonic ติดที่หน้าบานพับถังขยะ (รูป B)

รูป A การต่อ Servo กับ บานพับฝา

รูป B การติด Ultrasonic

6. การต่อวงจร ต่อได้ดังนี้

ส่วนที่ 2: ตรวจจับระยะที่กำหนด

1. การต่อวงจร ต่อได้ดังนี้

- 2. นำ Ultrasonic ติดไว้ใต้ฝาถังขยะ (รูป C)
- 3. นำ LED ติดที่หน้าบานพับถังขยะ (รูป D)

รูป C การติด Ultrasonic ที่ใต้ฝา

รูป D การติด LED

PROJECT SMART TRASH

https://drive.google.com/drive/folders/12dIEzcUnXGZnwUQAPJ3YI0_PIVICSaTx?usp=share_link

วิธีการใช้งาน Smart Trash

ส่วนที่ 1: ฝาเปิดอัตโนมัติ

กำหนดให้ Ultrasonic วัดระยะที่ 20 เซนติเมตรถึงจะส่งสัญญาณให้ Servo ทำงาน ส่วนที่ 2: ตรวจจับระยะที่กำหนด

มีการเชื่อมต่อ Wi-Fi และ กำหนดให้ Ultrasonic ใช้ตรวจจับระยะที่กำหนดโดยกำหนด ความลึกตั้งแต่ 5-35 เซนติเมตร เมื่อวัดจากตัว Ultrasonic 10 เซนติเมตร Line Notify จะส่ง ข้อความแจ้งเตือนให้ User มาเก็บขยะนอกจากนี้บนตัวถังขยะจะมีไฟ LED สีแดงแจ้งเตือน โดย กำหนดให้ระยะเวลาในการทำงานของไฟ LED คือ 10 นาที เมื่อครบ 10 นาทีแล้วถังขยะจะ กลับมาทำงานอีกครั้ง

บทที่ 3 การทดลองและผลการทดลอง

การทดลองการส่งสัญญาณแจ้งเตือนเมื่อระดับขยะอยู่ในระยะที่กำหนด คือ ระยะที่ 10 cm เริ่ม วัดจากตัว Ultrasonic

ระยะ(cm)	Line notify		LED	
4000(CIII)		ไม่ส่ง	ଜି ଜ	ไม่ติด
35				
30				
25				
20				
15				
10				
5				

ผลการทดลอง

ถังขยะสามารถทำการส่งสัญญาณแจ้งเตือนเมื่อระดับขยะอยู่ในระยะที่กำหนด คือ ระยะที่ 10 cm เริ่มวัดจากตัว Ultrasonic

LED ติด

ส่งการแจ้งเตือนผ่าน Line notify