Name		G#	
Group Member Nan	ne:		
Group Member Nan	ne:		
		e interpreting binary numbers ory, and play with some integer	as signed and unsigned, consider how operations.
		veryone will turn in what they' ne's name down so the GTAs do	ve got at the end of recitation on paper on't have to re-grade work.
member of the group comment at the top o This assignment is no possibly some common minor problems. And	needs to do the file so the file so the for a grade bents. A score of on	his. Be sure to put the names of at the GTAs don't have to look a out you will be given feedback i of 3 means everything looks gr	or file here on blackboard - each of the members of your group into a lat your group's code more than once. In the form of a 'score' (1-3) and reat. A score of two indicates some he major issues. If you get a 1, don't
	are two differ		ng bit-pattern. Remember, the only $2^{ m bitwidth-1}$. Fill in this chart.
bits(6 bits wide)	decima	al value (if bits are unsigned)	decimal value (if bits are signed)
00 0101			
10 1010			
		39	
		60	
			-12
			23

2. Binary addition

Add these 8-bit binary numbers. Each time, check (unsigned) and/or (signed) if overflow occurs when interpreted that way.

(44)	Did overflow occur?	((()	Did overflow occur?
(#1) 1001 0010 + 0111 0111	(unsigned) (signed)	(#4) 0100 0000 + 0010 0100	(unsigned) (signed)
(#2) 0110 0000 + 0111 1110	(unsigned) (signed)	(#5) 1100 1100 + 0011 1100	(unsigned) (signed)
(#3) 0110 0011 + 0011 1101	(unsigned) (signed)	(#6) 1111 1111 + 0111 1111	(unsigned) (signed)

3. Power of 2 Multiply with Shift

Use shifts and add/subtracts to represent below multiplications. Use **three** shifts or less.

	Shift and add/subtract		Shift and add/subtract
X*9		X*15	
X*21		X*33	
X*127		X*51	

4. Unsigned power of 2 Divide with Shift

Fill in the table below bit using 8bit <u>un</u>signed and shifts. (0b is a special mathematical notation we're using here to indicate binary values)

	In Bits	In Hex		In Bits	In Hex
0b01011100/2 ²			0b10011111/2 ³		
0x3C/2 ⁵			0xEF/24		
55/23			99/22		

5.Endianness

An address always refers to a single byte. When a value needs more than one byte to be represented, we always use the following (increasing-address) bytes, e.g. a 4-byte int at address 0x100 actually takes up bytes at addresses 0x100, 0x101, 0x102, and 0x103. There's a choice to be made: with these four spots, what order do we put those multiple bytes? (biggest/leftmost byte, or smallest/rightmost byte at the starting address?).

Here are four definitions and their addresses. Fill in memory for a big- and little-endian system.

Definition	Starting Address	Size (bytes)	Hex Value
<pre>int x = 0xBEEFCAFE;</pre>	0x100	4	BE EF CA FE
short $y = 0x1337$;	0x104	2	13 37
char $z = 0xd9$; // 'y'	0x106	1	D9
char[] s = "LOL";	0x108	4	4C 4F 4C 00

Big-Endian Memory:

0x10C
0x10B
0x10A
0x109
0x108
0x107
0x106
0x105
0x104
0x103
0x102
0x101
0x100

Little-Endian Memory:

0x10C
0x10B
0x10A
0x109
0x108
0x107
0x106
0x105
0x104
0x103
0x102
0x101
0x100

Now we can do this in reverse. Given the following memory, fill in the hex values in this chart.

VALUE	ADDRESS
0x56	0x112
0x34	0x111
0x12	0x110
0x00	0x10F
0x00	0x10E
0xFD	0x10D
0xBA	0x10C
0x59	0x10B
0x21	0x10A
0x13	0x109
0x58	0x108
0x23	0x107
0xA1	0x106
0x65	0x105
0x7C	0x104
0x98	0x103
0xF6	0x102
0x13	0x101
0x45	0x100

address	size	value (little-endian)	value (big-endian)
0x110	2	0x	0x
0x108	8	0x	0x
0x104	4	0x	0x
0x100	4	0x	0x