

Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica FEELT

CIRCUITOS TRIFÁSICOS EQUILIBRADOS - MEDIDA DE POTÊNCIA COM 2 WATTÍMETROS

Relatório da Disciplina de Experimental de Circuitos Elétricos II por

Lesly Viviane Montúfar Berrios 11811ETE001

Prof. Wellington Maycon Santos Bernardes Uberlândia, Outubro / 2019

Sumário

1	Obj	jetivos	2
2	Inti	rodução teórica	2
	2.1	Carga em conexão em estrela	3
	2.2	Carga em conexão em delta ou triângulo	4
	2.3	Medição de potência pelo método dos 2 wattímetros	4
3	\mathbf{Pre}	eparação	4
	3.1	Materiais e ferramentas	4
	3.2	Montagem	5
		3.2.1 Carga em estrela	5
		3.2.2 Carga em triângulo	6
4	Ana	álise sobre segurança	7
5	Cál	culos, análise dos resultados e questões	8
6	Sim	nulação computacional	10
	6.1	Carga em conexão estrela	10
	6.2	Carga em conexão delta	11
7	Cor	nclusões	11

1 Objetivos

Verificar experimentalmente os conceitos teóricos sobre os métodos utilizados para medir a potência ativa trifásica das cargas. Além disso, comparar os resultados com os valores obtidos utilizando uma análise teórica.

2 Introdução teórica

As primeiras linhas de transmissão de energia elétrica, que surgiram no final do século XIX, destinavam-se exclusivamente ao suprimento do sistema de iluminação, pequenos motores e sistema de tração (railway) e operavam em corrente contínua a baixa magnitude de tensão. A geração e transmissão usando os mesmos níveis de tensão das diferentes cargas restringiu a distância entre a planta de geração e os consumidores e a tensão da geração em corrente contínua não podia ser facilmente aumentada para a transmissão a grandes distâncias [1].

Para realizar uma transmissão de energia elétrica a grandes distâncias era necessário um nível elevado de magnitude de tensão, e essa tecnologia de conversão para corrente contínua não era viável naquela época. Por isso, foi necessária a mudança da transmissão de corrente continua para corrente alternada, devido principalmente aos seguintes motivos:

- O desenvolvimento e uso dos transformadores, permitindo a transmissão a grandes distâncias usando altos níveis de tensão, reduzindo as perdas elétricas dos sistemas e a queda de tensão.
- A elevação/redução da magnitude de tensão é realizado com uma alta eficiência e a baixo custo através dos transformadores.
- Surgimento de geradores e motores em corrente alternada, construtivamente mais simples, eficientes e baratos que as máquinas em corrente contínua

Assim, a corrente alternada seria a melhor alternativa para a transmissão de energia elétrica à grandes distâncias. Além disso, introduz-se o conceito de gerador trifásico, ilustrado pela Figura 1, no qual três bobinas defasadas em 120° elétricos no espaço geram um conjunto de três tensões de mesmo valor máximo, defasadas de 120 graus elétricos no tempo.

Um gerador trifásico aproveita melhor o espaço físico, resultando em um gerador de tamanho reduzido e mais barato, comparado com os geradores monofásicos de igual potência, ademais são superiores aos motores monofásicos em rendimento, tamanho, fator de potência e capacidade de sobrecarga. Um sistema monofásico

precisa de dois condutores; e um sistema trifásico (perfeitamente balanceado) precisa de três condutores, porém conduz três vezes mais potência. Na prática, devido a pequenos desequilíbrios inevitáveis, os sistemas trifásicos contam com um quarto condutor, o neutro.

É possivel conectar as bobinas de gerador trifásicos em configuração estrela ou delta, assim como a carga em *Conexão em estrela* (2.1) ou *Conexão em delta/triângulo* (2.2).

Figura 1: Geração de tensão alternada trifásica.

2.1 Carga em conexão em estrela

A carga na configuração estrela é caracterizada por ter uma tensão fase-neutro entre seus terminais e corrente de linha igual à corrente de fase $(I_L = I_F)$. Ainda é possível determinar a tensão fase-fase ou de linha pela relação descrita na Figura 2 [2].

Figura 2: Relação entre tensão de linha e fase numa carga em estrela.

2.2 Carga em conexão em delta ou triângulo

Já para a carga na configuração delta, ou triângulo, em seus terminais há uma tensão de linha igual a tensão de fase [2]. Nesse caso, a relação entre linha e fase ocorre para a corrente, conforme descrito na Figura 3.

Figura 3: Relação entre corrente de linha e fase numa carga em delta.

2.3 Medição de potência pelo método dos 2 wattímetros

3 Preparação

3.1 Materiais e ferramentas

- 1 **Fonte:** Alimentará todo o circuito. Possui frequência de 60Hz.
- 2 **Regulador de tensão (Varivolt):** Também chamado de autotransformador, permitirá obter o valor desejado de corrente a partir da regulagem correta da tensão fornecida pela fonte.
- 3 *Conectores:* Para as conexões no circuito foi utilizado majoritariamente cabos banana-banana.
- 4 **Medidor eletrônico KRON Mult K:** Possibilita encontrar a medição da potência real (P) vatímetro, reativa (Q) e aparente (S) do circuito. Ele também possui função de cofasímetro, instrumento elétrico que mede o fator de potência (fp, $cos\theta$) ou o ângulo da impedância θ do circuito, para um circuito com a impedância $Z = Z \angle \theta$.
- 5 Amperímetro analógico AC: Instrumento utilizado para acompanhar visualmente o aumento da corrente.

- 6 **Reatores de 160 mH:** Foram utilizados 3, para compor a carga do circuito trifásico. Sendo L=160mH e $R_L=3,8\Omega$.
- 7 **Resistores de** 50Ω : Foram utilizados 3, para compor a carga do circuito trifásico.

3.2 Montagem

3.2.1 Carga em estrela

Efetue a montagem indicada na Figura 1 abaixo, alimentando os pontos **a b c** n através de uma fonte alternada trifásica em seqüência de fases **abc** (ou **direta**), aplicando uma tensão entre linhas V_L igual a 100V, em frequência de 60 Hz. Os parâmetros da carga são: $R = 50\Omega$; $R_L = 3,8\Omega$; L = 160mH. Na Figura 4, V_L representa um voltímetro conectado para medir a tensão entre linhas; A_L representa um amperímetro conectado para medir a corrente de linha (igual a de fase); W_i representa um wattímetro analógico conectado para medir a potência ativa da carga. Os valores dos instrumentos devem ser anotados na Tabela 1.

Utilize os medidores digitais Kron para medida de corrente e tensão ($TL = 0048 - 3\phi$ sem Neutro). Além disso, compare os valores das potências entre Kron e os wattímetros analógicos. Atente-se a escala do wattímetro (corrente e tensão).

Figura 4: Ligação em estrela em sequência de fases abc.

Observa-se pelo desenho que não é possível obter a tensão e corrente de todas as fases de forma simultânea, sendo necessária a mudança dos medidores V_L e V_F para a obtenção dos demais valores. Para isso, utilizaremos o medidor trifásico eletrônico $Kron\ Mult$ -K (wattímetro), usando as entradas V_A , V_B , V_C , V_N para as medidas de tensão e I_A , I_B e I_C para as medidas de corrente, assim sendo, realizando as ligações

apropriadas. Como o Kron não mede a corrente de neutro, então é necessário um amperímetro analógico A_C entre n e n'.

 $W_1(W)$ $V_L(V)$ $I_L(A)$ $W_2(W)$ $P_F(W)$ $P_T(W)$ $Q_F(Var)$ $Q_T(Var)$ $S_F(VA)$ $S_T(VA)$ Fator de potência 99,46 0,501 16,15 25,01 29,60 0,543 5,00 50,00 51,44 75,43 90,96 $100,\!60$ 0,51418,09 24,5230,320,596 100.50 0,532 17,20 31,04 0,556 25,90

Tabela 1: Ligação em triângulo em seqüência de fases abc.

Lembre-se que $P=W_1+W_2$ e que $Q=\sqrt{3}\left(W_2-W_1\right)$ para a **sequência abc** da conexão acima.

Agora, troque duas fases na saída do *varivolt* para obter a **sequência cba** da conexão acima. Anote os valores na Tabela 2.

$V_L(V)$	$I_L(A)$	$W_1(W)$	$W_2(W)$	$P_F(W)$	$P_T(W)$	$Q_F(Var)$	$Q_T(Var)$	$S_F(VA)$	$S_T(VA)$	Fator de potência	
100,70	0,499			15,92		24,30		29,13		0,550	
100,50	0,540	50,00	50,00	5,00	17,17	51,42	26,50	75,30	31,68	91,42	0,544
100,90	0,523			18,33		24,50		30,61		0,599	

Tabela 2: Ligação em triângulo em seqüência de fases abc.

3.2.2 Carga em triângulo

Efetue a montagem indicada na Figura 5 abaixo, alimentando os pontos **a b c** através de uma fonte alternada trifásica em sequência de fases **abc** (ou direta), aplicando uma tensão entre linhas $V_L = 80V$ (para que a corrente de linha não ultrapasse os 2A), em frequência de 60 Hz. Os parâmetros da carga são: $R = 50\Omega$; $C = 45, 9\mu F$. Na Figura 5, V_L representa um voltímetro conectado para medir a tensão entre linhas; A_F representa um amperímetro conectado para medir a corrente de fase; A_L representa o amperímetro conectado para medir a corrente de linha; W_i representa um wattímetro analógico conectado para medir a potência ativa trifásica da carga. Os valores dos instrumentos devem ser anotados na Tabela 3.

Utilize os medidores digitais Kron para medida de corrente e tensão ($TL = 0048 - 3\phi$ sem Neutro). Além disso, compare os valores das potências entre Kron e os wattímetros analógicos. Atente-se a escala do wattímetro (corrente e tensão).

Figura 5: Ligação em estrela em sequência de fases abc.

Tabela 3: Ligação em triângulo em seqüência de fases abc.

$V_L(V)$	$I_L(A)$	$I_{A_F}(A)$	$W_1(W)$	$W_2(W)$	$P_F(W)$	$P_T(W)$	$Q_F(Var)$	$Q_T(Var)$	$S_F(VA)$	$S_T(VA)$	Fator de potência	
79,53	1,782				55,44		61,57		81,65		0,673	
80,36	1,777		0,5 132,50	132,50	25,00	54,24	164,68	62,50	185,39	81,76	245,23	0,660
80,59	1,787				55,00		61,32		81,82		0,667	

Lembre-se que $P=W_1+W_2$ e que $Q=\sqrt{3}\left(W_2-W_1\right)$ para a **sequência abc** da conexão acima.

Agora, troque duas fases na saída do *varivolt* para obter a **sequência cba** da conexão acima. Anote os valores na Tabela 4.

Tabela 4: Ligação em triângulo em seqüência de fases cba.

$V_L(V)$	$I_L(A)$	$I_{A_F}(A)$	$W_1(W)$	$W_2(W)$	$P_F(W)$	$P_T(W)$	$Q_F(Var)$	$Q_T(Var)$	$S_F(VA)$	$S_T(VA)$	Fator de potência			
80,18	1,789	0,5				55,28		62,28		82,93		0,665		
80,45	1,776		30,00	120,00	55,12	165,96	61,55	185,52	82,91	248,51	0,667			
80,60	1,791								55,56		61,69		82,67	

4 Análise sobre segurança

Os óculos de segurança são Equipamentos de Proteção Individual (EPIs) e são utilizados para a proteção da área ao redor dos olhos contra qualquer tipo de detrito estranho, que possa causar irritação ou ferimentos. Também protegem contra faíscas, respingos de produtos químicos, detritos, poeira, radiação e etc [4]. É importante a utilização desse equipamento durante os experimentos a fim de evitar qualquer dano, além de preparar o profissional para o manejo correto e seguro de qualquer equipamento. Além disso, foi de extrema importância a presença do professor ou técnico na verificação da montagem do circuito antes de energizá-lo. Assim, reduziuse riscos de curtos-circuitos ou sobrecarga na rede.

5 Cálculos, análise dos resultados e questões

1) Para os sistemas das Figuras 1 e 2, ao ser ligado, o que aconteceu com os wattímetros W_1 e W_2 quando a sequência de fases foi invertida? Algum deles marcou valor negativo? Explique. Encontre as potências usando as leituras.

Resposta. Quando a sequência de fases foi invertida, houve uma permuta entre as leituras dos wattímetros W_1 e W_2 , uma vez que o sistema é equilibrado, e, no caso deste experimento em especial, não foi marcado nenhum valor negativo. Daria negativo no caso em que o fator de potência $cos\theta < 0, 5$, conforme mostrado na Figura 6.

Figura 6: Curva das Relações de Potência no Método dos Dois Wattímetros.

Para o cálculo das potências utilizando-se as leituras dos wattímetros tem-se a teoria descrita na seção 2.3. Assim, para a sequência , $P_{3\phi} = W_1 + W_2 = 5,00 + 50,00 = 55W$ e $Q_{3\phi} = \sqrt{3} \; (W_1 - W_2) = \sqrt{3} \; (50 - 5) = 77,94VAr$ e como a potência aparente é dada por S = P + Qj, tem-se $S = 55 + 77,94 \cdot j \Rightarrow S_{3\phi} = 95,392\angle 54,79$ [VA]. O resultado visual teórico e experimental é visto na Figura 7. Note que o triângulo de potências é o mesmo para ambas as sequências, uma vez que a permuta das leitura nos wattímetros também permuta os valores a serem considerados como W_1 e W_2 (que agora será o wattímetro conectado a tensão V_{CB}).

Figura 7: Comparação das potências obtidas no caso estrela (a) teórico, (b) abc experimental, (c) cba experimental.

2) Encontre o valor das leituras dos wattímetros usando as expressões analíticas. **Resposta.** A leitura dos wattímetros dos wattímetros W_1 e W_2 analiticamente são descritas pelas Equações (1) e (2), conforme na Seção 2.3.

$$W_1 = V_L \times I_L \times \cos(\theta - 30^\circ) \tag{1}$$

$$W_2 = V_L \times I_L \times \cos(\theta + 30^\circ) \tag{2}$$

Assim, analiticamente tem-se os resultados da Tabela 5.

Tabela 5: Cálculo de W_1 e W_2 analiticamente.

		$V_L(V)$	$I_L(A)$	$cos\theta$	θ (°)	$cos(\theta - 30^{\circ})$	$cos(\theta + 30^{\circ})$	$W_1(W)$	$W_2(W)$
Estrela	ABC (V_{AB})	99,46	0,501	0,543	57,11	0,890	0,504	44,35	25,114
Estreia	CBA (V_{CB})	100,70	0,499	0,550	56,63	0,894	0,588	44,92	29,547
Delta	ABC	79,53	1,782	0,673	47,70	0,953	0,213	135,06	30,187
Delta	CBA	80,18	1,789	0,665	48.32	0,949	0,202	136,13	28,975

Não sei porque W_2 não bate com a teoria nem com o experimento.

- 3) Mostre através de um diagrama fasorial que de acordo com as polaridades das bobinas de corrente e de potencial a leitura do wattímetro analógico é positiva para um ângulo $|\theta_Z| < 60^\circ$. Mostre que a leitura será negativa se $|\theta_Z| > 60^\circ$.
 - Resposta.

Resposta.

4) Mostre através de um diagrama fasorial que se a polaridade de uma das bobinas não for seguida a leitura terá um sinal oposto ao correto.

6 Simulação computacional

6.1 Carga em conexão estrela

Figura 8: Circuito da carga em conexão estrela.

6.2 Carga em conexão delta

Figura 9: Circuito da carga em conexão delta.

7 Conclusões

Neste experimento investiga-se as acerca de circuitos trifásicos equilibrados e suas particularidades em configuração delta e estrela. A análise experimental permitiu confirmar relações teóricas como $V_L = V_F \cdot \sqrt{3}$ para uma carga em estrela e $I_L = \sqrt{3} \cdot I_F$ para uma carga em delta. Além de verificar que para ambas configurações as potências (real e reativa) são as mesmas, devido as às duas relações teóricas já mencionadas apresentarem certa simetria.

Outro ponto importante verificado neste experimento é a inexistência de corrente no neutro para um circuito equilibrado. Assim, não é correto conferir corrente de curto-circuito pela corrente no neutro, já que idelamente tem valor nulo. As principais causas para a existência de corrente no neutro são: circuito em desequilíbrio, ou seja, as cargas possuem distintos valores de impedância e a LKC indica que haverá corrente no neutro; mal contato numa das fases ou rompimento dos conectores, nesse caso aparece corrente no neutro que será a soma fasorial das correntes nas fases que restaram, logo de módulo I_F , pois estão defasadas de 120°.

Referências

- [1] P. H. O. Rezende, "Circuitos Polifásicos Equilibrados", 2018.
- [2] J. D. Irwin, "Análise de Circuitos Em Engenharia", Pearson, 4^a Ed., 2000.
- [3] R. L. Boylestad, "Introdução À Análise de Circuitos", Pearson, 10^a Ed., 2004.
- [4] SafetyTrabi, "Óculos de segurança: Saiba quando utilizar este EPI", SafetyTrab, 2019. Disponível em: https://www.safetytrab.com.br/blog/oculos-de-seguranca/. Acesso em: ago. 2019.