KinGUI

Zhenglei Gao

Outline

Introduction

The Package

Issues

xample Case:

Additional Notes

Technical Issues in KinGUI II

Zhenglei Gao

May 5, 2011

KinGUI

Zhenglei Ga

Outline

Introductio

The Package

Evample Case

Additional

- Introduction
- 2 The Package
- 3 Issues
- 4 Example Cases
- 6 Additional Notes

Problems to solve

KinGUI Ihenglei Gao

Introduction
The Package

Example Case

Figure: Illustration of a very simple a 2-compartment model with first order reactions

The Model:

$$y_{1j} = M_0 e^{-k_p t_i} + \epsilon_{1j}$$

$$y_{2j} = c M_0 k_p \frac{e^{-k_m t_i} - e^{-k_p t_i}}{k_p - k_m} + \epsilon_{2j}$$

where, M_0 is the initial concentration of Parent substance; k_p is the degradation rate of Parent; k_m is the degradation rate of Metabolite; c is the formation fraction from Parent to Metabolite; $j = 1, \dots, n$.

• Interested in the parameter($\theta = (k_p, k_m, c, M_0)$) in the simple case) estimations and the confidence intervals.

Backgrouds for the development of KinGUI II

KinGUI

Zhenglei Gao

Introduction

Introduction

The Packag

Issues

Example Case

Additional Notes

Technical Reasons

- MATLAB implementation is difficult to disseminate because it is fixed to an old version of the runtime environment.
- KINGUI suffers from various, serious bugs which need to be resolved
 - Negative formation rates when 3 or more metabolites are formed from one precursor.
 - Mixing up of formation rate values in some cases.

Scientific Reasons

- Confidence interval estimation methods implemented in KinGUI inherently assumes constant error variance across all species, which is neither realistic nor met by out data.
- MCMC methods are not implemented.

Available Tools

KinGUI

Zhenglei Ga

Outline

ntroductio

The Package

Example Cases

- 'optimx' and related other optimization packages.
- 'FME' and related packages for flexible model fitting.
- 'mkin'- does kinetic evaluations similar as KinGUI. The author Johannes Ranke is a collabrator of KinGUI II.
- 'deSolve'- ODE solver.

New Implementation

KinGUI

Zhenglei Ga

Outlin

Introductio

The Package

Example Cases

Additional Notes Two new optional methods

- Iteratively Reweighted Least Squares(IRLS)
- MCMC
- Codes developed specially for the GUI users.
 - Reduandant for normal R users
 - Gui version functions using different parameterizations with 0-1 constraints.

Available R optimization algorithms

KinGUI

Zhenglei Gao

Outlir

ntroduction

The Package

Issues

Example Case

- "Marq" of nlm.ls from 'nlm.ls'
- "Port" of nlminb
- "Newton" of nlm
- "Nelder-Mead", "BFGS", "CG","L-BFGS-B", "SANN" of optim
- "Pseudo" of 'pseudoOptim' from
- "spg"," Rcvmin"," R.." of 'optimx' from 'optimx'
- "bobyqa", "newuoa", "uobyqa" from 'minqa'
- "Better Nelder-Mead" of 'nmk' from 'dfoptim'
- * The bold ones are the ones I selected by instinction to try out.

Major Issues in KinGUI II

KinGUI

Zhenglei Ga

Outille

Introduction

The Package

Issues

ample Case

Additional

Major Technical Issues

- Missing global minimum
- Lower Efficiency
- ODE solver
- 'Unrealistic' user requirement, otherwise multiple starting values could be tried.
 - Random starting values
 - One (stable) solution for all problems

ODE solver

KinGUI

Zhenglei Gad

Introduction

The Package

Issues

xample Case

Additional Notes

'Isoda' vs. 'ode45'

- With the same tolerance lever, they can reach different solutions
- 'Isoda' is in general faster but sometimes stops doing integration while 'ode45' gives a solution in the same settings. Error message: Returning early. Results are accurate, as far as they go < - repeated convergence test failures on a step, but integration was successful-inaccurate Jacobian matrix?

Current Solution

- 'Isoda'as the default
- If integration not successful, try 'ode45'
- Otherwise, set model cost Inf to discard the current propose of parameter values.

Efficiency

KinGUI

Zhenglei Gao

Outline

ntroductior

The Package

Issues

ample Case

Additional Notes

Possible Reasons

- Single function evaluation time
 - Transformation of the parameters due to the box constraints.
 - More than one calculation in the modCost function.
- Number of function evaluations
- Current Solution: accept 'spg' as the default optimizer.
- Next Steps
 - Provide gradient for the objective function
 - Instead of calculating all the needed values using 'modCost', calculate the needed ones for corresponding optimization algorithms used.
 - Better algorithms?
 - Try ", ", and ".
 - Translating the matlab 'Isqnonlin'

Local vs. Global Minimum

KinGUI

Zhenglei Gao

Outline

ntroduction

The Package

Issues

ample Case

Additional Notes KinGui default optimization algorithm: trust-region-reflective

- With random starting values(far from the best fit ones) performs well
- relatively fast enough.
- R optimization can easily miss the minimum.
 'L-BFGS-B', 'spg' seems better in the complex cases but much worse in the simple cases. (very strange)
- Current Solutions
 - none! Manually it could be done by multiple starting values, trying different algorithm, but the GUI version requirement is simple and stable.

Other Issues

KinGUI

Zhenglei Ga

Outline

Introduction

The Package

Issues

Example Case

- Different algorithms reach different solutions.
 - Data is too scattered or we did not choose a sensible model to describe the data-generating process.

A Simple Case(Folder 'BCS1', bcs1.r)

KinGUI

Zhenglei Gao

Outlin

Introduction
The Package

Example Cases

Additional Notes 2-compartment model with one parent and one metabolite

- Problems:
 - 'bobyqa','spg' methods need much more function evaluations.
 - 'bobyqa','L-BFGS-B' and 'spg'does not find the minimum with the same starting values as in 'Marq'.
 - 'Marq' can get stuck in a local minimum in such a simple case!! (in BCS1.r, choose starting value k(parent)=0.0058)
 - without solving ODE, using 'gnls' in 'nlme' elapsed time is almost 0.
- Performance on my laptop(using IRLS, quiet=FAISE, with intermediate output):

Marq L-BFGS-B spg Port bobyqa elapsed 41.15 824.53 6793.51 173.83 160.48

A 6-compartment Model(Folder 'BCS2', bcs2.r)

KinGUI

Zhenglei Ga

Outline

ntroduction

The Package

Issue

Example Cases

Additional Notes

 Settings: with default start values same as in the Matlab code settings.

A 6-compartment Model(Folder 'BCS2', bcs2.r)

KinGUI

Zhenglei Ga

Outline

troduction

The Package

Example Cases

- With default start values same as in the Matlab code settings.
 - Levenberg-Marquardt: stuck in local minima.
 (Non-finite(or null) value for a parmeter specified in nls.lm)
 - L-BFGS-B: satisfactory result but very slow.
- R Files: Folder 'BCS2', ex2.r.

BCS3(Folder 'BCS3', ex3.r)

KinGUI

Zhenglei Gao

Outille

Introductio

The Package

Issue

Example Cases

Additional Notes

Settings: good starting values obtained from KinGUI

BCS3(Folder 'BCS3', ex3.r)

KinGUI

Zhenglei Gao

Outline

ntroduction

The Package

Example Cases

Additional Notes Single function evaluation time:

- user:0.4; system:0.0; elapsed:0.4
- Average(I set trace=3 in optimx): 0.4137,0.0004,0.4143.
- Reported by spg: xtimes=769.03/fns=5.8917
- Number of function evaluations(in one iteration, to be comparable to KinGUI):
 - spg: Reported by fns:129; Actual function calls: 2744; niter=101.
 - L-BFGS-B: NA because of line search in bad direction(needs finite value of fn which I set at 1e20)
 - Levenberg-Marquardt(faster than spg): niter=1; actuall function calls:49
- Problems
 - spg: hessian not invertable, cannot be used to obtain confidence intervals(some of the parameter estimations are on the boundaries.)

BCS4(Folder 'BCS4', ex4.r)

KinGUI

Zhenglei Ga

Outline

Introduction

The Package

lan...an

Example Cases

Additional Notes

Fig: Schematic Plot for BCS4 Model

Settings: good starting values obtained from KinGUI

BCS4(Folder 'BCS4', ex4.r)

KinGUI

Zhenglei Ga

Outline

Introduction

The Package

The Tackag

Issues

Example Cases

- Cannot estimate covariance from hessian even changing to L-M methods after the first iteration.
- Different algorithm gives different results.

BCS5

KinGU

Zhenglei Gao

Outille

ntroduction

The Package

lecues

Example Cases

Additional Notes • ...

Package

KinGUI

Zhenglei Ga

Outlin

ntroductio

The Package

Issues

Example Case

- Including two sets of functions with file names '*.r' and '*.gui.r'. R functions in '*.gui.r' are written for the GUI.
- The codes are far from clean.
- Help files(.Rd) will be provided later.
- ...

Line Search and Trust Region

KinGUI

Zhenglei Ga

Outline

The Package

ssues

Example Cases

- two global strategies that modify the normal locally convergent algorithm
- Line search choose the direction first, then the step length.
- Trust region choose the maximum step length first, then the direction.
 - Levenberg-Marquardt is the first trust-region method developed. Why it does not find the 'global minimum'as the other line search algorithms do?

Other Issues

KinGUI

Zhenglei Ga

Outline

Introduction

The Package

.

Example Cases

Additional Notes How to deal with 'ghost' compartment like in SLV

KinGUI

Zhenglei Gao

Outline

Introduction

The Package

Issues

Example Cases