МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний аерокосмічний університет ім. М.Є. Жуковського «Харківський авіаційний інститут» Кафедра систем управління літальними апаратами

ПОЗИЦІЙНІ СИСТЕМИ ЧИСЛЕННЯ

Пояснювальна записка до розрахунково-графічної роботи

з дисципліни «Алгоритмізація і програмування»

XAI.301.175.318.15 PΓP

Виконав студент г	p318
	(№ групи)
	Хобот А. В.
(Підпис, дата)	(П.І.Б.)
Перевірив к.т.н., д	оцент
(Науковий	ступінь, вчене звання)
	Гавриленко О. В.
(Підпис, дата)	(П.І.Б.)

ЗАВДАННЯ

Дослідити шляхом власних обчислень, розробити і реалізувати алгоритми роботи з числами в різних позиційних системах числення:

- 1) Перетворити десяткові числа <u>137 і 2192</u> в двійкову систему числення, описати покроково процес перетворень. Виконати перевірку, виконавши зворотне перетворення в десяткову систему.
- 2) Перетворити десяткові числа <u>137 та 2192</u> в шістнадцяткову систему числення, описати покроково процес перетворень. Виконати перевірку шляхом зворотного перетворення в десяткову і двійкову систему.
- 3) Розробити діаграму активності алгоритму перетворення числа з десяткової системи числення в <u>6-річну</u>(алфавіт: 0 1 2 3 4 F).
 *Реалізувати алгоритм у вигляді строкової функції DecTo_N_ (D) з вхідним цілочисельним параметром на мові C ++.
- 4) Для двох чисел <u>137 та 2192</u> провести операцію <u>множення</u> у двійковій системі числення. Виконати перевірку шляхом перетворення результатів в десяткову систему.
- 5) Зробити висновки.

Зміст

Вступ	3
1 Перетворення чисел в двійкову систему числення	4
1.1 Перетворення трирозрядного десяткового числа	4
1.2 Перетворення чотирирозрядного десяткового числа	4
1.3 Перевірка результатів	5
2 Перетворення чисел в шістнадцяткову систему числення	6
2.1 Перетворення трирозрядного десяткового числа	6
2.2 Перетворення чотирирозрядного десяткового числа	6
2.3 Перевірка результатів	6
3 Перетворення чисел в 6-річну систему числення	7
4 Двійкова арифметика	9
Висновки	10
Додаток А	11
Лолаток Б	13

Вступ

Система числення — це спосіб запису чисел за допомогою певного набору символів і правил. Основна характеристика кожної системи — це основа, яка визначає кількість доступних цифр.

Основні види систем числення:

- Десяткова система (основа 10) найпоширеніша в повсякденному житті. В ній використовуються десять цифр: від 0 до 9.
- Двійкова система (основа 2) ключова для цифрової електроніки та комп'ютерних систем. використовується лише дві цифри: 0 і 1.
- Вісімкова система (основа 8) менш поширена, однак іноді використовується в програмуванні, зокрема при роботі з деякими типами даних. У ній доступні цифри від 0 до 7.
- Шістнадцяткова система (основа 16) дуже зручна для представлення великих бінарних чисел у компактному вигляді. Містить цифри від 0 до 9 і літери А–F (що відповідають числам від 10 до 15).

Переведення чисел з однієї системи числення в іншу — це базовий інструмент для тих, хто працює з комп'ютерами, мікросхемами та програмуванням.

Двійкова арифметика — це виконання арифметичних операцій (додавання, віднімання, множення, ділення) над числами, записаними у двійковій системі числення.

```
Основні правила:
```

```
Додавання:
```

```
0 + 0 = 0
```

$$0 + 1 = 1$$

$$1 + 0 = 1$$

1 + 1 = 0 (переносимо 1 у наступний розряд)

Віднімання:

$$0 - 0 = 0$$

$$1 - 0 = 1$$

$$1 - 1 = 0$$

0 - 1 = 1 (позика з вищого розряду)

Множення:

$$0 * 0 = 0$$

$$0 * 1 = 0$$

$$1 * 0 = 0$$

$$1 * 1 = 1$$

Ділення:

$$0 / 1 = 0$$

 $1 / 1 = 1$

Двійкова арифметика лежить в основі роботи процесорів, мікроконтролерів та всіх цифрових пристроїв.

1 ПЕРЕТВОРЕННЯ ЧИСЕЛ В ДВІЙКОВУ СИСТЕМУ ЧИСЛЕННЯ

1.1 Перетворення трирозрядного десяткового числа

X	X/2	X % 2
137	68	1
68	34	0
34	17	0
17	8	1
8	4	0
4	2	0
2	1	0
1	0	1
	Результат	$137_{10} = 10001001_2$

Таблиця 1.1 – Перетворення десяткового числа у двійкове

1.2 Перетворення чотирирозрядного десяткового числа

X	X/2	X % 2
2192	1096	0
1096	548	0
548	274	0
274	137	0
137	68	1
68	34	0
34	17	0
17	8	1
8	4	0
4	2	0
2	1	0
1	0	1
	Результат	$2192_{10} = 100010001000_2$

Таблиця 1.2 – Перетворення десяткового числа у двійкове

1.3 Перевірка результатів

Перетворення в десяткову 2х чисел:

- A) $10001001_2 = 1*2^7 + 0*2^6 + 0*2^5 + 0*2^4 + 1*2^3 + 0*2^2 + 0*2^1 + 1*2^0 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137_{10}$;
- $5)11000100010_2 = 1*2^{11} + 0*2^{10} + 0*2^9 + 0*2^8 + 1*2^7 + 0*2^6 + 0*2^5 + 0*2^4 + 1*2^3 + 0*2^2 + 0*2^1 + 0*2^2 + 0*2^2 + 0*2^2 + 0*2^2 + 0*2^3 + 0*2^4 + 0*2^4 + 0*2^3 + 0*2^4 + 0*$

2 Перетворення чисел в шістнадцяткову систему числення

2.1 Перетворення трирозрядного десяткового числа

X	X/16	X % 16
137	8	9
8	0	8
	Результат	$137_{10} = 89_{16}$

Таблиця 2.1 – Перетворення десяткового числа у шістнадцяткове

2.2 Перетворення чотирирозрядного десяткового числа

X	X/16	X % 16
2192	137	0
137	8	9
8	0	8
	Результат	219210 = 89016

Таблиця 2.2 – Перетворення десяткового числа у шістнадцяткове

2.3 Перевірка результатів

Перетворення в десяткову 2х чисел:

 $A)9D_{16}\!\!=\!9*16^1\!\!+\!13*16^0\!\!=\!144\!\!+\!13\!\!=\!157_{10};$

 $Б)622_{16} = 6*16^2 + 2*16^1 + 2*16^0 = 1536 + 32 + 2 = 1570_{10};$

Перетворення в двійкову 2х чисел:

 $A) 9\text{-}1001; D\text{-}1101; 9D_{16} \!\!=\!\! 10011101_2;$

Б)6-0110; 2-0010; 2-0010; 622_{16} = 11000100010_2 ;

3 Перетворення чисел в 6-річну систему числення

3.1 Перетворення трирозрядного десяткового числа

X	X/6	X % 6
137	22	F
22	3	4
3	0	3
	Результат	$137_{10} = 34F_6$

Таблиця 3.1 – Перетворення десяткового числа у шістнадцяткове

3.2 Перетворення чотирирозрядного десяткового числа

X	X/6		X % 6
2192	365		2
365	60		F
60	10		0
10	1		4
1	0		1
		Результат	$2192_{10} = 140F2_6$

Таблиця 3.2 – Перетворення десяткового числа у шістнадцяткове

3.3 Перевірка результатів

Перетворення в десяткову 2х чисел:

A)
$$34F_6 = 3 \times 6^2 + 4 \times 6^1 + 5 \times 6^0 = 3 \times 36 + 4 \times 6 + 5 = 108 + 24 + 5 = 137_{10}$$

Б)
$$140F2_6 = 1 \times 6^4 + 4 \times 6^3 + 0 \times 6^2 + 5 \times 6^1 + 2 \times 6^0 = 1 \times 1296 + 4 \times 216 + 0 + 5 \times 6 + 2 = 1296 + 864 + 0 + 30 + 2 = 2192_{10}$$

Перетворення в двійкову 2х чисел:

A) $34F_6 = 1101000101_2$

```
3 \rightarrow 0011

4 \rightarrow 0100

F \rightarrow 0101

B) 140F2_6 = 10100000001010010_2

1 \rightarrow 0001

4 \rightarrow 0100

0 \rightarrow 0000

F \rightarrow 0101

2 \rightarrow 0010
```

```
Код на C++ представлено (дод.А, стор.10)
Діаграму активності представлено на рис. Б.1. (дод.Б, стор.11)
```

4 ДВІЙКОВА АРИФМЕТИКА

Покроковий опис множення чисел 137 та 2192 представлено в табл.4.1.

№ зсуву	Біт множника	Доданок (множник 137 зсунутий)	Коментар
0	0	000000000000000000000000000000000000000	Пропускаємо (×0)
1	0	000000000000000000000000000000000000000	Пропускаємо (×0)
2	0	000000000000000000000000000000000000000	Пропускаємо (×0)
3	0	000000000000000000000000000000000000000	Пропускаємо (×0)
4	1	0000000100010010000	Додаємо (137 << 4)
5	0	000000000000000000000	Пропускаємо
6	0	000000000000000000000	Пропускаємо
7	1	00001000100100000000	Додаємо (137 << 7)
8	0	000000000000000000000000000000000000000	Пропускаємо
9	0	000000000000000000000	Пропускаємо
10	1	100010010000000000000	Додаємо (137 << 10)
11	0	000000000000000000000	Пропускаємо

Таблиця 4.1 – Множення двійкових чисел

Операція	Значення
137 × 2192	30030410
У двійковій формі	100100100001100110012

```
1 \cdot 2^{20} = 1048576
\downarrow
= 1 \cdot 2^{18} + 0 \cdot 2^{17} + 0 \cdot 2^{16} + 1 \cdot 2^{15} + 0 \cdot 2^{14} + 0 \cdot 2^{13} + 1 \cdot 2^{12} + 0 \cdot 2^{11} +
0 \cdot 2^{10} + 0 \cdot 2^{9} + 1 \cdot 2^{8} + 1 \cdot 2^{7} + 0 \cdot 2^{6} + 0 \cdot 2^{5} + 1 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0}
= 1 \cdot 262144 + 0 + 0 + 1 \cdot 32768 + 0 + 0 + 1 \cdot 4096 + 0 +
0 + 0 + 1 \cdot 256 + 1 \cdot 128 + 0 + 0 + 1 \cdot 16 + 1 \cdot 8 + 0 + 0 + 1
= 262144 + 32768 + 4096 + 256 + 128 + 16 + 8 + 1
= 300304
```

Висновки

Було виконано перетворення чисел між різними позиційними системами числення: десятковою, двійковою, шістнадцятковою та 6-річною з нестандартним алфавітом. Операції включали пряме та зворотне перетворення чисел, а також виконання арифметичних операцій у двійковій системі (додавання та множення).

Також було розроблено покрокові таблиці та виконано перевірку правильності результатів шляхом зворотного переведення у десяткову систему. Реалізовані алгоритми ϵ універсальними і можуть бути адаптовані для будь-якої системи числення з основою від 2 до 36, з урахуванням відповідного алфавіту.

Додаток А

```
#include <iostream> // Підключення бібліотеки для вводу/виводу
#include <string>
                     // Для використання типу string
#include <windows.h> // Для SetConsoleOutputCP, щоб підтримувати
кирилицю в консолі
using namespace std;
// Функція перетворення десяткового числа у 6-річну систему
числення
string DecTo N 6(int D) {
   string alphabet = "01234F"; // Алфавіт 6-річної системи (F
замість 5)
   string res = "";
                               // Результуючий рядок
   if (D == 0)
       return "0";
   while (D > 0) {
                               // Цикл, поки число більше 0
       int rem = D % 6;
                               // Обчислення остачі
       res = alphabet[rem] + res; // Додавання символу зліва
       D /= 6;
                                // Поділ числа на 6
   }
                               // Повернення результату
   return res;
// Головна функція
int main() {
   SetConsoleOutputCP(1251); // Установка кодування Windows
для підтримки української мови в консолі
   while (true) {
                               // Нескінченний цикл для
багаторазового введення
       int number;
       cout << "Введіть додатне десяткове число (або 0 для
виходу): ";
       cin >> number;
                               // Ввід значення користувачем
       if (cin.fail()) { // Якщо ввід некоректний (не
число)
           cin.clear();
                                // Очистка флагу помилки
           cin.ignore(1000, '\n'); // Пропуск некоректного вводу
           cout << "Помилка: введено нечислове значення. Спробуйте
ще pas.\n" << endl;
           continue; // Повернення на початок циклу
       }
       if (number == 0) { // Вихід, якщо введено 0
           cout << "Завершення програми..." << endl;
           break:
```

```
if (number < 0) { // Якщо число від'ємне — повідомлення про помилку cout << "Будь ласка, введіть лише додатне число.\n" << endl; continue; } // Перетворення числа в 6-річну систему та вивід результату string result = DecTo_N_6(number); cout << "У 6-річній системі числення (з алфавітом 01234F): " << result << "\n" << endl; } return 0; // Завершення програми }
```


Рисунок Б.1. — Діаграма активності для завдання 4