КОНСТРУИРОВАНИЕ ИНТЕГРАЛА ИТО

Предварительные сведения

Определение №1 (Пространство функций интегрируемых по Ито)

Пространство интегрируемых по по случайной мере функций $\mathcal{V} = \mathcal{V}(S,T)$ вида $f(t,\omega):[0,\infty) \times \Omega \to \mathbb{R}$ удовлетворяют следующим свойствам:

- 1. Отображение $(t,\omega)\to f(t,\omega)$ является $\mathbb{B}\times\mathcal{F}$ измеримым, где \mathbb{B} Борелевская сигма алгебра на $[0,\infty)$ и $\mathcal{F}=\mathcal{F}_{\infty}$ сигма алгебра событий с единицей Ω
- 2. $f(t,\omega)$ является адаптированным отображением к фильтрации \mathcal{F}_t
- 3. $\mathbb{E}\left[\int_{S}^{T} f(t,\omega)^{2} dt\right] = \mathbb{E}\left[\left(\int_{S}^{T} f(t,\omega) B_{t}(\omega)\right)^{2}\right] < \infty$, то есть $\int_{S}^{T} f(t,\omega) B_{t}(\omega)$ является элементом Лебегова пространства \mathcal{L}^{2}

Сначала интеграл Ито определяется для класса элементарных функций, затем выполняется предельный переход, как это сделано в конструкции интеграла Лебега.

Определение №2 (Элементарная функция)

Функция $\phi \in \mathcal{V}(S,T)$ называется элементарной тогда и только тогда, когда ее можно представить в следующем виде:

$$\phi(t,\omega) = \sum_{j} e_{j}(\omega) I_{[t_{j},t_{j+1})}(t)$$

Где $e_{j}\left(\omega\right)$ является $\mathcal{F}_{t_{j}}$ - измеримой. И $\bigcup_{i}\left[t_{j},t_{j+1}\right]=\left[S,T\right)$

Определение №3 (Интеграл Ито для элементарной функции)

Интеграл Ито для элементарной функции $\phi\left(t,\omega\right)$ определяется как

$$\int_{S}^{T} \phi(t, \omega) dB_{t}(\omega) = \sum_{j} e_{j}(\omega) \left[B_{t_{j+1}}(\omega) - B_{t_{j}}(\omega) \right]$$

Лемма № 4 (Изометрия Ито)

Если $\phi(t,\omega)$ - ограничена и элементарна, тогда

$$\mathbb{E}\left[\left(\int_{S}^{T} \phi\left(t, \omega\right) dB_{t}\left(\omega\right)\right)^{2}\right] = \mathbb{E}\left[\int_{S}^{T} \phi\left(t, \omega\right)^{2} dt\right]$$

Доказательство:

- 1. Пусть $\phi(t,\omega)$ ограничена и элементарна.
- 2. Пусть $\Delta B_{t_j} = B_{t_{j+1}} B_{t_j}$ Рассмотрим $\mathbb{E}\left[e_i e_j \Delta B_i \Delta B_j\right] = \mathbb{E}\left[e_i e_j \left(B_{t_{i+1}} B_{t_i}\right) \left(B_{t_{j+1}} B_{t_j}\right)\right]$
 - (a) Поскольку инкременты Броуновского движения независимы и равны нулю, то i. $\mathbb{E}\left[e_{i}e_{j}\left(B_{t_{i+1}}-B_{t_{i}}\right)\left(B_{t_{i+1}}-B_{t_{i}}\right)\right]=e_{i}e_{j}\mathbb{E}\left[B_{t_{i+1}}-B_{t_{i}}\right]\mathbb{E}\left[B_{t_{i+1}}-B_{t_{i}}\right]=0$ при $j\neq i$

(b) При
$$j = i \mathbb{E}\left[e_i e_j \left(B_{t_{i+1}} - B_{t_i}\right) \left(B_{t_{j+1}} - B_{t_j}\right)\right] = e_i e_j \mathbb{E}\left[\left(B_{t_{j+1}} - B_{t_j}\right)^2\right] = e_i e_j \left(t_{j+1} - t_j\right)$$

(c) Отсюда следует, что
$$\mathbb{E}\left[e_ie_j\Delta B_i\Delta B_j\right]=\left\{\begin{array}{cc}0&j\neq i\\\mathbb{E}\left[e_j\right]^2(t_{j+1}-t_j)&j=i\end{array}\right.$$

- 3. Рассмотрим $\mathbb{E}\left[\left(\int_{S}^{T}\phi\left(t,\omega\right)dB_{t}\left(\omega\right)\right)^{2}\right]=\mathbb{E}\left[\left(\sum_{j}e_{j}\Delta B_{j}\right)^{2}\right]=\mathbb{E}\left[\sum_{j}\sum_{i}e_{j}e_{i}\Delta B_{i}\Delta B_{j}\right]$
 - (a) Поскольку $\int_{S}^{T} \phi(t,\omega) dB_{t}(\omega) = \sum_{j} e_{j}(\omega) \left[B_{t_{j+1}}(\omega) B_{t_{j}}(\omega) \right]$, то $\mathbb{E}\left[\left(\int_{S}^{T} \phi(t,\omega) dB_{t}(\omega) \right)^{2} \right] = \mathbb{E}\left[\left(\sum_{j} e_{j} \Delta B_{j} \right)^{2} \right] = \mathbb{E}\left[\sum_{j} \sum_{i} e_{j} e_{i} \Delta B_{i} \Delta B_{j} \right]$
 - (b) Поскольку $e_j(\omega)$ является \mathcal{F}_{t_j} измеримой, то применяя дважды следствие 9.9 (Shilling) получим, что $\mathbb{E}\left[\sum_i\sum_j e_ie_j\Delta B_i\Delta B_j\right] = \sum_i\sum_j\mathbb{E}\left[e_ie_j\Delta B_i\Delta B_j\right] = \sum_{i,j}\mathbb{E}\left[e_je_i\Delta B_i\Delta B_j\right]$
 - (c) Из (2) следует, что $\sum_{i,j}\mathbb{E}\left[e_je_i\Delta B_i\Delta B_j\right]=\sum_j\mathbb{E}\left[e_j\right]^2(t_{j+1}-t_j)$
 - (d) Снова используя следствие 9.9 (Shilling) $\sum_{j} \mathbb{E}\left[e_{j}\right]^{2} (t_{j+1} t_{j}) = \mathbb{E}\left[\sum_{j} e_{j}^{2} (t_{j+1} t_{j})\right] = \mathbb{E}\left[\int_{S}^{T} \phi\left(t,\omega\right)^{2} dt\right]$
- 4. Ч.Т.Д.

Непосредственное конструирование интеграла Ито

Шаг 1. Пусть $g \in \mathcal{V}$ ограничена и $g(\cdot, \omega)$ непрерывна почти всюду $\omega \in \Omega$. Тогда существует последовательность элементарных функций $\phi_n \in \mathcal{V}$ таких что при $n \to \infty$

$$\mathbb{E}\left[\int_{S}^{T} (g - \phi_n)^2 dt\right] \to 0$$

Доказательство:

- 1. Пусть $g \in \mathcal{V}$. Положим, что $\exists C > 0 : |g(t,\omega)| \le C \ \forall (t,\omega) \in [0,\infty) \times \Omega$. Положим, что $g(\cdot,\omega)$ непрерывна $\forall \omega \in \Omega$
- 2. Мы покажем, что $g\left(t,\omega\right)$ может быть аппроксимирована функцией $\phi_{n}\left(t,\omega\right)\in\mathcal{V}$:

$$\phi_{n}\left(t,\omega\right):=\sum_{j=\left\lceil nS\right\rceil }^{\left\lceil nT\right\rceil }g\left(\frac{j}{n},\omega\right)\mathbb{1}_{\left[\max\left(\frac{j}{n},S\right),\min\left(\frac{j+1}{n},T\right)\right)}\left(t\right)$$

- 3. Чтобы применить теорему о мажорируемой сходимости мы покажем, что $\lim_{n\to\infty}\int_S^T (g-\phi_n)^2\,dt=0$ и имеет интегрируемую мажоранту. Зафиксируем $\omega\in\Omega$
 - (a) $\lim_{n\to\infty} \int_S^T (g-\phi_n)^2 dt = \lim_{n\to\infty} \int_S^T \left(g(t) \sum_{j=[nS]}^{[nT]} g\left(\frac{j}{n},\omega\right) \mathbb{1}_{\left[\max\left(\frac{j}{n},S\right),\min\left(\frac{j+1}{n},T\right)\right)}(t)\right)^2 dt$ подставили определение в (2)
 - (b) $\lim_{n\to\infty} \int_S^T (g-\phi_n)^2 dt = \lim_{n\to\infty} \sum_{j=[nS]} \int_{max\left(\frac{j}{n},S\right)}^{min\left(\frac{j+1}{n},T\right)} \left(g\left(t\right) g\left(\frac{j}{n}\right)\right)^2 dt$ заменили интеграл на сумму интегралов на границах интервалов в (3.a)
 - (c) $\lim_{n\to\infty} \int_{S}^{T} (g-\phi_n)^2 dt \leq \lim_{n\to\infty} (T-S) \sup_{[nS]\leq j\leq [nT]} \sup_{t\in \left[\max\left(\frac{j}{n},S\right),\min\left(\frac{j+1}{n},T\right)\right)} \left|g\left(t\right)-g\left(\frac{j}{n}\right)\right|^2 = 0$ поскольку $g: [0,\infty)\times\Omega\to\mathbb{R}$ непрерывна
 - (d) Поэтому $\lim_{n\to\infty} \int_S^T (g-\phi_n)^2 dt \to 0$

- 4. Мы показали, что $\lim_{n \to \infty} \int_S^T \left(g \phi_n\right)^2 dt \to 0$ поточечно
- 5. Мы показали, что (T-S) $\sup_{[nS] \le j \le [nT]} \sup_{t \in [\max(\frac{j}{n},S),\min(\frac{j+1}{n},T))} \left| g\left(t\right) g\left(\frac{j}{n}\right) \right|^2$ константно ограничивает $\lim_{n \to \infty} \int_S^T \left(g \phi_n\right)^2 dt \ \forall n \in \mathbb{N}$
- 6. Тогда по теореме Лебега о мажорируемой сходимости мы можем поменять предел и интеграл местами:

$$\lim_{n \to \infty} \mathbb{E} \left[\int_{S}^{T} (g - \phi_n)^2 dt \right] = \mathbb{E} \left[\lim_{n \to \infty} \int_{S}^{T} (g - \phi_n)^2 dt \right] = 0$$

7. Ч.Т.Д.

Шаг 2.

Пусть $h \in \mathcal{V}$ - ограничена. Тогда существует последовательность ограниченных функций $g_n \in \mathcal{V}$ таких, что $g_n (\cdot, \omega)$ непрерывна $\forall \omega \in \Omega$ и $n \in \mathbb{N}$ и

$$\mathbb{E}\left[\int_{S}^{T} (h - g_n)^2 dt\right] \to 0$$

Доказательство:

- 1. Пусть $h \in \mathcal{V}$ ограничена. Это означает, что $|h| \leq M$
- 2. Рассмотрим последовательность $(g_n)_{n\in\mathbb{N}}\in\mathcal{V}$, такую что $\forall n\in\mathbb{N}\ g_n(t,\omega)=n\int_{t-\frac{1}{n}}^t h\left(s,\omega\right)ds$. Заметим, что $g_n\left(t,\omega\right)$ ограничена, поскольку $|g_n\left(t,\omega\right)|=\left|n\int_{t-\frac{1}{n}}^t h\left(s,\omega\right)ds\right|\leq \left|n\int_{t-\frac{1}{n}}^t Mds\right|=\left|nM\frac{1}{n}\right|=M$.
- 3. Покажем, что последовательность $(g_n)_{n\in\mathbb{N}}$ является непрерывной почти всюду:
 - (a) Рассмотрим $\left|g_{n}\left(t',\omega\right)-g_{n}\left(t,\omega\right)\right|=\left|n\int_{t'-\frac{1}{n}}^{t'}h\left(s,\omega\right)ds-n\int_{t-\frac{1}{n}}^{t}h\left(s,\omega\right)ds\right|$
 - (b) Используя неравенство $|a-b| \leq |a|+|b|$ получим, что $\left|n\int_{t'-\frac{1}{n}}^{t'}h\left(s,\omega\right)ds-n\int_{t-\frac{1}{n}}^{t}h\left(s,\omega\right)ds\right| \leq \left|n\int_{t'-\frac{1}{n}}^{t'}h\left(s,\omega\right)ds\right|+\left|n\int_{t-\frac{1}{n}}^{t}h\left(s,\omega\right)ds\right|=2M$
 - (c) Отсюда следует, что $(g_n)_{n\in\mathbb{N}}$ непрерывна на произвольном интервале $\left[t-\frac{1}{n},t\right]$ и поэтому непрерывна почти всюду
- 4. Поскольку (3.c), то $(g_n)_{n\in\mathbb{N}}$ интегрируема по Риману. Мы покажем, что $g_n\left(t,\omega\right)\to h\left(s,\omega\right)$ при $n\to\infty$
 - (a) Рассмотрим $\lim_{n\to\infty}g_{n}\left(t,\omega\right)=\lim_{n\to\infty}n\int_{t-\frac{1}{n}}^{t}h\left(s,\omega\right)ds=\lim_{n\to\infty}n\left(A\left(t\right)-A\left(t-\frac{1}{n}\right)\right).$
 - (b) Пусть $k=\frac{1}{n}$ В таком случае $\lim_{n\to\infty}g_n\left(t,\omega\right)=\lim_{k\to 0}\frac{A(t)-A\left(t-\frac{1}{n}\right)}{k}=h\left(s,\omega\right)$ из теоремы Ньютона Лейбница в точках в которых $g_n\left(t,\omega\right)$ непрерывна
 - (с) Ч.Т.Д.
- 5. Мы показали, что
 - (a) $g_n\left(t,\omega\right) \to h\left(s,\omega\right)$ сходится поточечно при $n\to\infty$

- (b) По условию $|g_n(t,\omega)|$ ограничена.
- (c) В таком случае по теореме Лебега о мажорируемой сходимости (аналогично задаче 12.1 Shilling) можно утверждать, что $\mathbb{E}\left[\int_S^T \left(h-g_n\right)^2 dt\right] \to 0$
- 6. Ч.Т.Д.

Шаг 3.

Пусть $f \in \mathcal{V}$. Тогда существует последовательность $(h_n)_{n \in \mathbb{N}} \subset \mathcal{V}$, такая что h_n - ограничена $\forall n \in \mathbb{N}$ и при $n \to \infty$

$$\mathbb{E}\left[\int_{S}^{T} (f - h_n) dt\right] \to 0$$

Доказательство:

- 1. Пусть $f \in \mathcal{V}$
- 2. Рассмотрим последовательность $(h_n)_{n\in\mathbb{N}}\subset\mathcal{V}$ вида:

$$h_n(t,\omega) := \begin{cases} -n & f(t,\omega) < -n \\ f(t,\omega) & -n < f(t,\omega) < n \\ n & n < f(t,\omega) \end{cases}$$

- 3. Заметим, что $h_n \to f$ поточечно при $n \to \infty$ и, следовательно, $\int_S^T h_n dt \to \int_S^T f dt$
- 4. $\int_{S}^{T} (f h_n)^2 dt \le \int_{S}^{T} (f + h_n)^2 dt \le 2 \int_{S}^{T} f^2 dt + 2 \int_{S}^{T} (h_n)^2 dt \le 4 \int_{S}^{T} f^2 dt$. Поскольку $\mathbb{E}\left[\int_{S}^{T} f^2 dt\right] < \infty$, то $4\mathbb{E}\left[\int_{S}^{T} f^2 dt\right] < \infty$
- 5. Тогда по теореме о Лебега о мажорируемой сходимости $\mathbb{E}\left[\int_{S}^{T}\left(f-h_{n}\right)dt\right]
 ightarrow0$
- 6. Ч.Т.Д.

Шаг 4.

Пусть $f \in \mathcal{V}(S,T)$. Тогда существует последовательность элементарных функций $(\phi_n)_{n \in \mathbb{N}} \subset \mathcal{V}(S,T)$, такая, что, при $n \to \infty$

$$\mathbb{E}\left[\int_{S}^{T} \left(f\left(t,\omega\right) - \phi_{n}\left(t,\omega\right)\right)^{2} dt\right] \to 0$$

Доказательство:

- 1. Пусть $f \in \mathcal{V}(S,T)$
- 2. Функция вида $\mathbb{E}\left[\int_S^T f\left(t,\omega\right)^2 dt\right]$ является $\mathcal{L}^2\left(\mathbb{P}\times\lambda\right)$ нормой. Выполним подстановку:

$$\mathbb{E}\left[\int_{S}^{T} (f - \phi_n)^2 dt\right] = \mathbb{E}\left[\int_{S}^{T} ([f - h_n] + [h_n - g_n] + [g_n - \phi_n])^2 dt\right]$$

3. Из неравенства Минковского следует, что:

$$\mathbb{E}\left[\int_{S}^{T} (f - \phi_n)^2 dt\right] \leq \mathbb{E}\left[\int_{S}^{T} (f - h_n)^2 dt\right] + \mathbb{E}\left[\int_{S}^{T} (h_n - g_n)^2 dt\right] + \mathbb{E}\left[\int_{S}^{T} (g_n - \phi_n)^2 dt\right]$$

4. Поскольку все три компоненты сходятся то мы можем подобрать такие h_n, g_n, ϕ_n $n \in \mathbb{N}$, что

$$\mathbb{E}\left[\int_{S}^{T} (f - \phi_n)^2 dt\right] \le \frac{1}{n}$$

5. Поэтому при $n \to \infty$ $\mathbb{E}\left[\int_S^T \left(f - \phi_n\right)^2 dt\right] \to 0$

Определение №5. (Интеграл Ито)

Пусть $f \in \mathcal{V}(S,T)$. Интеграл Ито определен как предел в где \mathcal{L}^2

$$\int_{S}^{T} f(t,\omega) dB_{t}(\omega) = \lim_{n \to \infty} \int_{S}^{T} \phi_{n}(t,\omega) dB_{t}(\omega)$$

Где $(\phi_n)_{n\in\mathbb{N}}\subset\mathbb{N}$ - последовательность функций, такая что при $n\to\infty$:

$$\mathbb{E}\left[\int_{S}^{T} (f - \phi_n)^2 dt\right] \to 0$$