CLAIMS:

- 1. A parametric encoder (100, 100') for encoding an audio or speech signal s into sinusoidal code data, comprising:
- a segmentation unit (110, 110') for segmenting said signal s into at least one segment x(n);
- a calculation unit (120, 120') for calculating said sinusoidal code data in the form of the
- phase and amplitude data of a given extension $\widehat{x}(n)$ from the segment x(n) such that the extension $\widehat{x}(n)$ approximates the segment x(n) as good as possible for a given criterion; characterised in that

the calculation unit (120, 120') is adapted to calculate the sinusoidal code data θ_k^i, d_j^i and e_j^i for the following extension \hat{x} :

10
$$\widehat{x} = \sum_{i=1}^{L} Ci = \sum_{j=0}^{L} \sum_{j=0}^{J-1} \left[d_{j}' f_{j}(n) \cos(\Theta'(n)) + e_{j}' f_{j}(n) \sin(\Theta'(n)) \right]$$

with

$$\Theta'(n) = \sum_{k=1}^{K-1} \theta_k^i n^k$$

wherein:

i, j, k : represent parameters;

15 n : represents a discrete time parameter;

Ci : represents the i'th component of the extension \hat{x} ;

 θ_k^i : represents the phase coefficient as one of said sinusoidal data

 f_j : represents the jth instance out of the set of J linearly

independent functions;

 $20 \quad \Theta^{i}$: is a phase; and

 d_i^i, e_i^i : represent the linearly involved amplitude values of the

components representing parts of said sinusoidal data.

2. The parametric encoder according to claim 1, characterised in that $f_j(n) = n^j$.

The state of the s

20

5

- 3. The parametric encoder according to claim 1, characterised in that the calculation unit (120) comprises:
- a frequency estimation unit (122) for determining a plurality of LxK phase coefficients θ_k^i with i=1-L and k=1-K for all components Ci of the extension \hat{x} (n) representing the received segment x(n);
- a pattern generating unit (124) for calculating a plurality of L phases $\Theta^{i}(n)$ with i=1-L from the phase coefficients θ_{k}^{i} according to:

$$\Theta'(n) = \sum_{k=1}^{K-1} \theta_k' n^k$$

and for generating a plurality of JxL pairs of patterns p_y^1, p_y^2 for the components Ci with i=1-L according to:

$$p_{ij}^1 = f_j(n) \cos(\Theta^i(n))$$
 and $p_{ij}^2 = f_j(n) \sin(\Theta^i(n))$

- for i = 1-L and j = 0-(J-1); and
- an amplitude estimation unit (126) for determining a plurality of JxL amplitudes d_j^i for the patterns p_{ij}^1 and a plurality of JxL amplitudes e_j^i for the patterns p_{ij}^2 of all components Ci of the extension \hat{x} ;
- wherein the sinusoidal data θ_k^i , d_j^i and e_j^i is at least approximately optimised for the criterion that the weighted squared error E between the segment x and its extension \hat{x} is minimised.
- 4. The parametric encoder according to claim 1, characterised by a multiplexer (130) for merging said sinusoidal code data into a data stream.
- 25 5. The parametric encoder according to claim 1, characterised in that the calculation unit (120') comprises:
 - a frequency estimation unit (122') for determining a plurality of K phase coefficients θ_k^i with k=1-K for the component Ci from an input value ϵ_{i-1} ; wherein for the first component C1 with i=1 the input value is set to $\epsilon_0 = x(n)$;

5

- a pattern generating unit (124') for calculating the phases Θ^{i} for the component Ci from said plurality of phase coefficients θ_{k}^{i} according to:

$$\Theta'(n) = \sum_{k=1}^K \theta_k' n^k$$

and for generating a plurality of 2xJ patterns p_y^1, p_y^2 with j=1-J for the component Ci with:

$$p_{ij}^1 = j(n) \cos(\Theta^i(n))$$
 and $p_{ij}^2 = fj(n)\cos(\Theta^i(n))$;

- an amplitude estimation unit (126') for determining a plurality of J amplitudes d_j^1 and of J amplitudes e_j' for said patterns of the component Ci from the received segment x(n) and from the received plurality of patterns p_y^1 , p_y^2 ;
- a synthesiser (128') for re-constructing the component Ci from said plurality of 2xJ patterns p_{ij}^1 , p_{ij}^2 and form the plurality of amplitudes d_{ij}^1 and e_{ij}^2 according to:

$$Ci = \sum_{j=0}^{J-1} \left[d_j^i f_j(n) \cos(\Theta^i(n)) + e_j^i f_j(n) \sin(\Theta^i(n)) \right]$$

- 15 and
 - a substraction unit (129') for substracting said component Ci form the input value ε_{i-1} in order to feed the resulting difference ε_i as new input value forward to the input of the frequency estimation unit (122') for calculating the sinusoidal code data representing the component Ci+1;
- wherein the sinusoidal data θ_k^i , d_j^i and e_j^i is optimised for the criterion that the weighted squared error E between the segment x and the extension \hat{x} is minimised.
 - 6. A parametric coding method for encoding an audio or speech signal s into sinusoidal code data, comprising the steps of:
- 25 segmenting the signal s into at least one segment x(n); and
 - calculating said sinusoidal code data in the form of phase and amplitude data of a given extension \hat{x} from the segment x(n) such that the extension \hat{x} approximates the segment x(n) as good as possible for a given criterion,

14 05.07.2001

characterised in that

- the extension \hat{x} is defined to:

$$\widehat{x} = \sum_{i=1}^{L} Ci = \sum_{i=1}^{L} \sum_{j=0}^{J-1} \left[d_{j}^{i} f_{j}(n) \cos(\Theta^{i}(n)) + e_{j}^{i} f_{j}(n) \sin(\Theta^{i}(n)) \right]$$

5 with

$$\Theta^{i}(n) = \sum_{k=1}^{K} \theta_{k}^{i} n^{k}$$

wherein:

represents a component Ci of the extension \hat{x} n);

j, k represent parameters;

represents a discrete time parameter;

 f_i represents the jth instance out of the set of J linearly

independent functions;

represents the phase coefficient as one of said sinusoidal data

 Θ^{i} $d_{j}^{i},\,e_{j}^{i}$ is a phase; and

represent the linearly involved amplitude values of the

components representing parts of said sinusoidal data.

- The method according to claim 6, characterised in that $f_i(n) = n^i$. 7.
- 20 8. The method according to claim 6, characterised in that the frequencies θ_1^i are defined by picking peak frequencies in the frequency domain of the extension \hat{x} .
 - 9. The method according to claim 6, characterised in that for fulfilling the criterion that the weighted squared error between the segment x and the extension \hat{x} is minimized the definition of the optimal amplitudes d'_{j} and e'_{j} comprises the steps of:
 - determining a plurality of LxK phase coefficients θ_k^i with i=1-L and k=1-K for all components Ci of the received segment x(n);
 - calculating a plurality of L phases $\Theta^{i}(n)$ with i=1-L from the phase coefficients θ_{k}^{i} according to:

25

$$\Theta'(n) = \sum_{k=1}^K \theta_k' n^k ;$$

- generating a plurality of JxL pairs of patterns p_y^1 , p_y^2 for the components Ci with i=1-L according to:
- 5 $p_{ij}^1 = f_j(n) \cos(\Theta^i(n))$ and $p_{ij}^2 = f_j(n)\sin(\Theta^i(n))$; and
 - determining a plurality of JxL amplitudes d_j^i and a plurality of JxL amplitudes e_j^i for all the pairs of patterns p_y^1 , p_y^2 of all components Ci of the extension \widehat{x} .
 - 10. The method according to claim 6, characterised in that for fulfilling the criterion that the weighted squared error between the segment x and the extension \hat{x} is minimized the definition of the amplitudes d_j^i and e_j^i comprises the steps of:
 - a) setting i= 1
 - b) $\varepsilon_{i-1} = \varepsilon_0 = x(n)$;
 - c) determining a plurality of K phase coefficients θ_k^i with k=1-K for the component Ci from an input value ε_{i-1} ;
 - d) calculating the phases Θ^i for the component Ci from said plurality of phase coefficients θ^i_k according to:

$$\Theta^{i}(n) = \sum_{k=1}^{K} \theta_{k}^{i} n^{k}$$

- e) generating a plurality of 2xJ patterns p_y^1 , p_y^2 with
- j=0-(J-1) for the component Ci with:

$$p_n^1 = f_j(n) \cos(\Theta^i(n))$$
 and $p_n^2 = f_j(n)\sin(\Theta^i(n))$;

- f) determining a plurality of J amplitudes d'_j and of J amplitudes e'_j for said patterns for the component Ci from the received segment x(n) and from the received plurality of patterns
- 25 $p_{ij}^1, p_{ij}^2;$
 - g) constructing the component Ci from said plurality of J pairs of patterns pij and from the plurality of amplitudes d'_j and e'_j according to:

Ci =
$$\sum_{j=0}^{J-1} [d'_j f_j(n) \cos(\Theta'(n)) + e'_j f_j(n) \sin(\Theta'(n))]$$

- h) substracting said component Ci from the input value $\epsilon_{i\text{-}1}$ in order to calculate a resulting difference ϵ_i ;
- 5 i) checking if $i \ge L$ wherein L represents a given number of components;
 - j) if i < L repeat the method steps by starting again from step c) with i = i+1; and
 - k) if $i \ge L$ the sinusoidal code data of all L components of the extension \widehat{x} have been calculated and thus the process has finished.
 - 11. A parametric decoder (400) for re-constructing an approximation \hat{s} of an audio or speech signal s from transmitted or restored code data, comprising:
 - a selecting unit (420) for selecting sinusoidal code data representing segments \hat{x} of the approximation \hat{s} from said received transmitted or restored code data;
 - a synthesiser (440) for re-constructing said segments \hat{x} from said received sinusoidal code data; and
 - a joining unit (460) for joining consecutive segments \hat{x} to form said approximation \hat{s} of the audio or speech signal s;

wherein the sinusoidal code data is a plurality of frequency and amplitude values for at least one component of said segment \hat{x} ;

- 20 characterised in that
 - the synthesiser is adapted to re-construct said segments \hat{x} from said sinusoidal code data according to the following formula:

$$\hat{x} = \sum_{i=1}^{L} Ci = \sum_{j=1}^{L} \sum_{i=0}^{J-1} \left[d_{j}^{i} f_{j}(n) \cos(\Theta^{i}(n)) + e_{j}^{i} f_{j}(n) \sin(\Theta^{i}(n)) \right]$$

with

$$\Theta'(n) = \sum_{k=1}^{K} \theta_k' n^k$$

wherein:

i : represents a component Ci of the extension \hat{x} (n);

j,k : represent parameters;

n : represents a discrete time parameter;

 f_{j} : represents the jth instance out of the set of J linearly

independent functions;

 $heta_{\scriptscriptstyle k}^{\scriptscriptstyle i}$

represents the phase coefficient value as one of said sinusoidal

data

 Θ^{i}

: is a phase; and

 d_i^i, e_i^i

represent the linearly involved amplitude values of the

components representing parts of said sinusoidal data.

- 12. Decoding method for reconstructing an approximation \hat{s} of an audio or speech signal s from transmitted or restored code data, comprising the steps of selecting sinusoidal code data representing segments \hat{x} of the approximation \hat{s} from said received transmitted or restored code data;
- re-constructing said segments \hat{x} from said received sinusoidal code data; and
- joining consecutive segments \widehat{x} together in order to form said approximation \widehat{s} of the audio or speech signal s;
- wherein the sinusoidal code data is a plurality of phase and amplitude values for at least one component of said segment \hat{x} ,

characterised in that

- in said re-construction step the segments \hat{x} are re-constructed from said sinusoidal code data according to the following formula:

20

$$\widehat{x} = \sum_{i=1}^{L} Ci = \sum_{i=1}^{L} \sum_{j=0}^{J-1} \left[d_{j}^{i} f_{j}(n) \cos(\Theta^{i}(n)) + e_{j}^{i} f_{j}(n) \sin(\Theta^{i}(n)) \right]$$

with

$$\Theta^{i}(n) = \sum_{k=1}^{K} \theta_{k}^{i} n^{k}$$

25

wherein:

i :

represents a component Ci of the extension \hat{x} (n);

j,k

represent parameters;

11

represents a discrete time parameter;

30 f_i

represents the jth instance out of the set of J linearly

independent functions;

18

05.07.2001

 θ_k^i

:

represents the phase coefficient as one of said sinusoidal data

 $\boldsymbol{\Theta}^{i}$

:

is a phase; and

 d_i^i, e_i^i

represent the linearly involved amplitude values of the

components representing parts of said sinusoidal data.

5

Data stream comprising sinusoidal code data representing segments \hat{x} of an approximation \hat{s} of an audio or speech signal, wherein the sinusoidal code data is a plurality of phase and amplitude values for at least one component of said segment \hat{x} , characterised in that the segment \hat{x} is defined to:

$$\widehat{x} = \sum_{i=1}^{L} Ci = \sum_{i=1}^{L} \sum_{j=0}^{J-1} \left[d_{j}^{i} f_{j}(n) \cos(\Theta^{i}(n)) + e_{j}^{i} f_{j}(n) \sin(\Theta^{i}(n)) \right]$$

with

$$\Theta^{i}(n) = \sum_{k=1}^{K} \theta_{k}^{i} n^{k}$$

wherein:

i :

represents a component Ci of the extension \hat{x} (n);

j,k

: represent parameters;

n

represents a discrete time parameter;

 $\mathbf{f}_{\mathbf{j}}$

represents the jth instance out of the set of J linearly

20

independent functions;

 $\theta_{\scriptscriptstyle k}^{\scriptscriptstyle i}$

represents the phase coefficient as one of said sinusoidal data

Θⁱ

: is a phase; and

 d_i^i, e_i^i

represent the linearly involved amplitude values of the

components representing parts of said sinusoidal data.

25

14.

Storage medium on which a data stream as claimed in claim 13 has been

stored.