SEMAINE DU 07/12 AU 11/12

1 Cours

Développements limités

Définitions et propriétés Définition du développement limité d'une fonction. Unicité du développement limité. Troncature. Une fonction est équivalente au monôme non nul de plus bas degré d'un DL (s'il existe). DL et parité : le DL en 0 d'une fonction paire (resp. impaire) ne comporte que des puissances paires (resp. impaires).

Intégration et dérivation des DL, formule de Taylor-Young

- Intégration : si f admet un $DL_n(a)$, alors toute primitive F de f admet un $DL_{n+1}(a)$ et le DL de F s'obtient en intégrant terme à terme celui de f.
- Taylor-Young : Si f est de classe \mathcal{C}^n sur un voisinage de a, alors f admet un $\mathrm{DL}_n(a)$ donné par la formule de Taylor-Young.
- On peut dériver un DL terme à terme si l'existence du DL de la dérivée est garantie a priori (par Taylor-Young par exemple).

Développements limités usuels $\frac{1}{1\pm x}$, e^x , $\ln(1+x)$, $(1+x)^{\alpha}$, $\sin x$, $\cos x$, $\arctan x$, $\sinh x$, $\cosh x$ en 0.

Calculs sur les DL Somme, produit, composition, inverse, quotient.

Application à l'étude de courbes Tangentes, asymptotes et positions locales relatives. Condition nécessaire/suffisante sur les coefficients d'un DL d'ordre 2 pour l'existence d'un extremum local.

2 Méthodes à maîtriser

- Mettre les développements limités sous forme normalisée pour calculer des produits de DL.
- N'additionner que des développements limités de même ordre.
- Déterminer les ordres auxquels il faut développer les différentes composantes d'une expression pour obtenir un DL d'ordre donné de cette expression.
- Se ramener en 0 par changement de variable.
- Justifier la continuité (ou la prolongeabilité par continuité) et la dérivabilité à l'aide de DL.
- Déterminer des tangentes et des asymptotes à l'aide de DL et placer localement la courbe par rapport à son asymptote ou sa tangente.

3 Questions de cours

Formule de Taylor-Young

Montrer par récurrence que si f est de classe \mathcal{C}^n au voisinage de a, alors

$$f(a+h) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} h^k + o(h^n)$$

DL de $x \mapsto \ln(1+x)$ en 0

Déterminer le développement limité de $x\mapsto \frac{1}{1-x}$ au voisinage de 0 à l'ordre $n\in\mathbb{N}$. En déduire celui de $x\mapsto \ln(1+x)$.

DL de arcsin en 0

On suppose connu le DL de $x \mapsto (1+x)^{\alpha}$ au voisinage de 0. Déterminer le DL de $x \mapsto \frac{1}{\sqrt{1-x^2}}$ au voisinage de 0 à l'ordre 2n et en déduire celui de arcsin à l'ordre 2n + 1. On exprimera les coefficients de ces DL à l'aide de coefficients binomiaux.

BCCP 56

On pose pour
$$x \in]1, +\infty[$$
, $H(x) = \int_{x}^{x^{2}} \frac{dt}{\ln t}$.

- 1. Montrer que H est de classe \mathcal{C}^1 sur]1, $+\infty$ [et calculer sa dérivée.
- 2. Montrer que la fonction u définie par $u(x) = \frac{1}{\ln(x)} \frac{1}{x-1}$ admet une limite finie en 1.
- 3. En utilisant cette fonction u, montrer que H admet une limite finie en 1^+ .