Signals & Systems

Spring 2019

https://sites.google.com/site/ntusands/

https://ceiba.ntu.edu.tw/1072EE2011_04

Yu-Chiang Frank Wang 王鈺強, Associate Professor Dept. Electrical Engineering, National Taiwan University

Revisit: Representation of Signals in terms of Basis Functions

Detailed Remarks:

• Will see more in Ch. 3 Fourier Series, etc.

- Determining the Fourier Series Coefficients
- In summary, we have:

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

Analysis Equation

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

Synthesis Equation

$$T = \frac{2\pi}{\omega_0}$$

- CT Fourier series pair: $x(t) \overset{FS}{\leftrightarrow} a_k$
- Fourier series coefficients or spectral coefficients of x(t): $\{a_k\}$

Linearity

x(t), y(t): periodic signals with period T

$$x(t) \stackrel{FS}{\longleftrightarrow} a_k \qquad x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

$$y(t) \stackrel{FS}{\longleftrightarrow} b_k \qquad y(t) = \sum_{m=-\infty}^{+\infty} b_m e^{jm\omega_0 t}$$

$$\Rightarrow z(t) = Ax(t) + By(t) \stackrel{FS}{\longleftrightarrow} c_k = Aa_k + Bb_k \qquad z(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_0 t}$$

• Time Shifting

x(t): periodic signal with period T

$$x(t) \stackrel{FS}{\longleftrightarrow} a_k \implies x(t - t_0) \stackrel{FS}{\longleftrightarrow} e^{-jk\omega_0 t_0} a_k$$

$$b_k = \frac{1}{T} \int_T x(t - t_0) e^{-jk\omega_0 t} dt$$

$$= \frac{1}{T} \int_T x(\tau) e^{-jk\omega_0 (\tau + t_0)} d\tau \qquad \text{let } 7 = \tau - t_0$$

$$= e^{-jk\omega_0 t_0} \left[\frac{1}{T} \int_T x(\tau) e^{-jk\omega_0 \tau} d\tau \right] \qquad \text{d} \tau - \text{d} \tau$$

$$= e^{-jk\omega_0 t_0} a_k$$

$$= e^{-jk\omega_0 t_0} a_k$$

Time Reversal

$$x(t) \stackrel{FS}{\longleftrightarrow} a_k \implies x(-t) \stackrel{FS}{\longleftrightarrow} a_{-k}$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

$$\Rightarrow x(-t) = \sum_{k=-\infty}^{+\infty} a_k e^{-jk\omega_0 t} = \sum_{m=-\infty}^{+\infty} a_{-m} e^{jm\omega_0 t} = \sum_{k=-\infty}^{\infty} a_{-k} e^{jk\omega_0 t}$$

If
$$x(t)$$
 is even, we have $x(-t) = x(t)$
 $\Rightarrow a_{-k} = a_k$, so a_k is even
If $x(t)$ is odd, we have $x(-t) = -x(t)$
 $\Rightarrow a_{-k} = -a_k$, so a_k is odd

Time Scaling

x(t) is periodic with period T and fundamental frequency ω_0 $\Rightarrow x(\alpha t)$ is periodic with period $\frac{T}{\alpha}$ and fundamental frequency $\alpha \omega_0$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

$$x(\alpha t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0(\alpha t)} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(\alpha\omega_0)t}$$

$$T = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0(\alpha t)} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(\alpha\omega_0)t}$$

$$z(t) \stackrel{FS}{\longleftrightarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_{k-l}$$

• Multiplication

If
$$x(t)$$
 and $y(t)$ are periodic signal with period T and
$$x(t) \stackrel{FS}{\longleftarrow} a_k \text{ and } y(t) \stackrel{FS}{\longleftarrow} b_k.$$

Then $z(t) = x(t)y(t)$ is also periodic with T , and
$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_{k-l}$$

Proof:

$$z(t) = x(t)y(t) = \sum_{m=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} a_l b_{k-l}$$

$$z(t) = x(t)y(t) = \sum_{m=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} a_l b_l e^{jm\omega_0 t} e^{jl\omega_0 t} = \sum_{m=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} a_m b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l \int_T \sum_{m=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} a_m b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l \int_T \sum_{m=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} a_m b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l \int_T \sum_{m=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} a_m b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l \int_T \sum_{m=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} a_m b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$z(t) \stackrel{FS}{\longleftarrow} c_k = \sum_{l=-\infty}^{+\infty} a_l b_l e^{j(m+l)\omega_0 t} e^{-jk\omega_0$$

Differentiation

If x(t) is a periodic signal with period T and

$$x(t) \stackrel{FS}{\longleftrightarrow} a_k$$

then

$$\frac{d}{dt}x(t) \longleftrightarrow jk\omega_0 a_k.$$

Proof:

$$\frac{d}{dt}x(t) = \frac{d}{dt} \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} \left(a_k jk\omega_0 e^{jk\omega_0 t} \right)$$

$$Q_{10}$$

Integration

If x(t) is a periodic signal with period T and

$$x(t) \stackrel{FS}{\longleftrightarrow} a_k$$

then

$$\int_{-\infty}^{t} x(\tau) d\tau \xleftarrow{FS} \frac{1}{jk\omega_0} a_k.$$
 Finite valued and periodic only if $a_0=0$

Proof:

Let
$$y(t) = \int_{-\infty}^{t} x(\tau)d\tau$$
. Then $\frac{d}{dt}y(t) = x(t)$.

We have $jk\omega_0 b_k = a_k$.

Therefore,
$$b_k = \frac{1}{jk\omega_0} a_k$$
.

Conjugation and Conjugate Symmetry

If
$$x(t) \stackrel{FS}{\longleftarrow} a_k,$$
 then
$$x(t)^* \stackrel{FS}{\longleftarrow} a_k^*.$$

- x(t) real $\Rightarrow x(t) = x(t)^* \Rightarrow a_{-k} = a_k^*$ If x(t) is real, then $\{a_k\}$ are conjugate symmetric.
- $x(t) = x(t)^*$ and $x(-t) = x(t) \Rightarrow a_{-k} = a_k$ and $a_{-k} = a_k^*$ $\Rightarrow a_k = a_k^*$ $x(t) \text{ is real and even } \Rightarrow \{a_k\} \text{ are real and even}$

•
$$x(t)$$
 is real and odd $\Rightarrow \{a_k\}$ are pure imaginary and odd $\Rightarrow \{a_k\}$ $\alpha_k = \alpha_{-k}$. $\alpha_k = \alpha_{-k}$

Parseval's Relation

The total average power in a periodic signal equals the sum of the average powers in all of its harmonic components

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} \quad \Rightarrow \quad \left| \frac{1}{T} \int_T |x(t)|^2 dt = \sum_{k=-\infty}^{+\infty} |a_k|^2 \right|$$

Proof:

If
$$x(t) \stackrel{\mathcal{F}S}{\longleftrightarrow} a_k$$
, then $x^*(t) \stackrel{\mathcal{F}S}{\longleftrightarrow} b_k = a^*_{-k}$

$$\Rightarrow x^*(t)x(t) \stackrel{\mathcal{F}S}{\longleftrightarrow} c_k = \sum_{m=-\infty}^{+\infty} a_m b_{k-m} = \sum_{m=-\infty}^{+\infty} a_m a^*_{m-k}$$
and $c_k = \frac{1}{T} \int_T x^*(t)x(t)dt = c_0 = \sum_{m=-\infty}^{+\infty} a_m a^*_m = \sum_{m=-\infty}^{+\infty} |a_m|^2$

TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

tal frequency $\omega_0 = 2\pi/T$ $\frac{t(2\pi/T)t}{x}(t)$ eriodic with period T/α)	a_k b_k $Aa_k + Bb_k$ $a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$ a_{k-M} a_{-k}^* a_{-k} a_k a_k
$t^{(2\pi/T)t}x(t)$ eriodic with period T/α)	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$ a_{k-M} a_{-k}^* a_{-k} a_k
$t^{(2\pi/T)t}x(t)$ eriodic with period T/α)	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$ a_{k-M} a_{-k}^* a_{-k} a_k
$\frac{t(2\pi/T)t}{x}(t)$ eriodic with period T/α)	$egin{aligned} a_{k-M} & & & & & & & & & & & & & & & & & & &$
eriodic with period T/α)	$egin{array}{l} a^*_{-k} & & & \\ a_{-k} & & & \\ a_k & & & \end{array}$
eriodic with period T/α)	a_{-k} a_k
eriodic with period T/α)	a_k
' au	Ta.b.
	1 GROK
	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
	$jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$
e valued and dic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a$
	$egin{cases} a_k &= a_{-k}^* \ \Re \mathscr{C}\{a_k\} &= \Re \mathscr{C}\{a_{-k}\} \ \Im m\{a_k\} &= -\Im m\{a_{-k}\} \ a_k &= a_{-k} \ orall a_k &= - otin a_k \end{cases}$
	a_k real and even
en	a_k purely imaginary and odd
1	$\Re e\{a_k\}$
1	$j\mathfrak{Gm}\{a_k\}$
1	

g(t) • Example 3.6 $\frac{1}{2}$ g(t)-22

Compared to x(t) in Example 3.5

$$g(t) = x(t-1)-1/2.$$
 $T = 4, T_1 = 1$

$$T = 4, T_1 = 1$$

• Revisit of Example 3.5: FS of periodic square wave

$$x(t) = \begin{cases} 1, & |\mathbf{t}| < T_1 \\ 0, & |\mathbf{T}_1| < |\mathbf{t}| < T/2 \end{cases} \dots \frac{1}{\mathbf{T}_1} dt = \frac{2T_1}{T} dt = \frac{2T_1}{T} dt = \frac{1}{T} \int_{-T_1}^{T_1} e^{-jk\omega_0 t} dt = -\frac{1}{jk\omega_0 T} e^{-jk\omega_0 t} dt = -\frac{1}{Jk\omega_0 T} e^{-jk\omega_0 T_1} dt = \frac{2}{k\omega_0 T} \left[\frac{e^{jk\omega_0 T_1} - e^{-jk\omega_0 T_1}}{2j} \right] dt = \frac{2\sin(k\omega_0 T_1)}{k\omega_0 T} = \frac{\sin(k\omega_0 T_1)}{k\omega_0 T} dt = \frac{\sin(k\omega_0 T_1)}{k\omega_0 T} dt = \frac{\sin(k\omega_0 T_1)}{m\omega_0 T} dt = \frac{\cos(k\omega_0 T_1)}{m\omega_0 T} dt = \frac{\sin(k\omega_0 T_1)}{m\omega_0 T} dt = \frac{\cos(k\omega_0 T_1)}{m\omega_0 T} dt =$$

• Example 3.6

From Example 3.5

$$a_0 = \frac{1}{2}$$
 $a_k = \frac{\sin(\pi k/2)}{k\pi}$ $\omega_0 = 2\pi/T = \pi/2$

The Fourier series of x(t-1)

$$b_k = a_k e^{-jk\pi/2}$$

$$c_k = \begin{cases} 0, & \text{for } k \neq 0 \\ -\frac{1}{2}, & \text{for } k = 0 \end{cases}$$

The Fourier series of x(t-1)-1/2

$$c_k = \begin{cases} 0, & \text{for } k \neq 0 \\ -\frac{1}{2}, & \text{for } k = 0 \end{cases}$$

The Fourier series of 1/2

$$d_{k} = \begin{cases} a_{k}e^{-jk\pi/2}, & for \ k \neq 0 \\ a_{0} - \frac{1}{2}, & for \ k = 0 \end{cases} \quad \Rightarrow \quad d_{k} = \begin{cases} \frac{\sin(\pi k/2)}{k\pi}e^{-jk\pi/2}, & for \ k \neq 0 \\ 0, & for \ k = 0 \end{cases}$$

$$d_k = \begin{cases} \frac{\sin(\pi k/2)}{k\pi} e^{-jk\pi/2}, & \text{for } k \neq 0 \\ 0, & \text{for } k = 0 \end{cases}$$

• Example 3.7

 e_0 can be determined by finding the area under one period of x(t) and dividing by the length of the period:

$$e_0 = \frac{1}{2}$$

This is the area under one period of x(t) divided by the length of the period.

• Example 3.8 Determine the FS impulse train

$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

$$x(t) \xleftarrow{FS} a_k$$

$$a_k = \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-jk2\pi t/T} dt = \frac{1}{T}$$

$$g(t) \stackrel{FS}{\longleftrightarrow} c_k$$

$$q(t) = \frac{d}{dt}g(t) \Rightarrow b_k = jk\omega_0 c_k$$

$$q(t) \stackrel{T_1}{\longleftarrow} b_k$$

$$q(t) = x(t + T_1) - x(t - T_1)$$

$$\Rightarrow b_k = e^{jk\omega_0 T_1} a_k - e^{-jk\omega_0 T_1} a_k$$

• Example 3.8 Determine the FS impulse train (cont'd)

$$\begin{split} b_k &= e^{jk\omega_0T_1}a_k - e^{-jk\omega_0T_1}a_k = \frac{1}{T}\bigg[e^{jk\omega_0T_1} - e^{-jk\omega_0T_1}\bigg] = \frac{2j\sin(k\omega_0T_1)}{T} \\ c_k &= \frac{1}{jk_0\omega_0}b_k = \begin{cases} \frac{2j\sin(k\omega_0T_1)}{jk\omega_0T} = \frac{\sin(k\omega_0T_1)}{k\pi}, & k \neq 0 \\ \frac{2T_1}{T}, & k = 0 \end{cases} \end{split}$$
 Obtained by computing the area under one period of the signal divided by the period.

We just showed an alternative way to obtain the FS of a periodic square wave (the first method was shown in Example 3.5).

- Example 3.9 Use the following 5 facts to determine the signal x(t).
- 1. x(t) is a real signal. $\alpha_k = \alpha_{-k}$
- 2. x(t) is periodic with period T = 4 and with FS coefficients a_k .
- 3. $a_k=0$ for |k|>1.
- 4. The signal with FS $b_k = e^{-j\pi k/2}a_{-k}$ odd.
- 5. $\frac{1}{4} \int_{4} |x(t)|^{2} dt = 1/2.$
- From Facts #2 and #3, we have...

$$\chi(t) = \alpha_0 + \alpha_1 e^{i\frac{\pi}{2}t} + \alpha_1 e^{-i\frac{\pi}{2}t}$$

- From Fact #1, we can conclude a_0 is real and $a_1 = Q_{-1}$.
- Thus, we have the signal as... $\chi(t) = Q + Q = \frac{1}{2}t + (Q = \frac{1}{2}) + (Q = \frac{1}{2})$

- Example 3.9 Use the following 5 facts to determine the signal x(t).
- x(t) is a real signal.
- x(t) is periodic with period T = 4 and with FS coefficients a_k .
- 4. The signal with FS $b_k = e^{-j\pi k/2}$ is odd. 5. $\frac{1}{4} \left| |x(t)|^2 dt 1/2 \right|$
- 5. $\frac{1}{4} \int_{-1}^{1} |x(t)|^2 dt = 1/2$.
- (a_{-k}) s the FS coefficient of x(-t) and with the time shifting property of FS. From Fact #4 we conclude that b_k correspond to the signal x(-(t-1)) and are odd.
- \triangleright Since x(t) is real, x(-t+1) must also be real. The FS of x(-t+1) must be pure imaginary and odd.
- ightharpoonup Thus, $b_0 = 0$ and $b_{-1} = -b_1$.
- From Fact #5 and Parseval's Theorem, we have $|b_{-1}|^2 + |b_1|^2 = 2|b_1|^2 = 1/2$.
- ► Since $b_0 = 0$, Fact #4 implies $a_0 = 0$. Likewise, $a_1 = e^{-j\pi/2}b_{-1} = -jb_{-1} = jb_1$.
- ightharpoonup If $b_1 = j/2$, then $a_1 = -1/2$ and $x(t) = -\cos(\pi t/2)$. If $b_1 = -j/2$, then $a_1 = 1/2$ and $x(t) = \cos(\pi t/2)$.

- Remember that the function z^n are the eigenfunctions of discrete-time LTI systems.
- Specifically, if $z=e^{jk\omega_0}$ and $z^n=e^{jk\omega_0n}$ then x[n] can be expressed as... $x[n]=\sum_k a_k e^{jk\omega_0n}=\sum_k a_k e^{jk\omega_2\pi/N)n}$ $\omega_0=2\pi/N$
- For DT periodic signals we have x[n] = x[n+N], then

$$x[n] = \sum_{k} a_{k} e^{jk\omega_{0}n} = \sum_{k} a_{k} e^{jk(2\pi/N)n}$$
since $e^{jk(2\pi/N)n} = e^{j(k+N)(2\pi/N)n} = e^{j(k+N)(2\pi/N)n} = e^{j(k+N)(2\pi/N)n}$

• Thus, k=<N> means k varies over a range of N successive integers. For example, $k=0,1,\ldots,N-1,$ or $k=3,4,\ldots,N+2.$

- Derivation of the FS coefficients.
- Method #1

$$x[0] = \sum_{k=< N>} a_k$$

$$x[1] = \sum_{k=< N>} a_k e^{jk\left(\frac{2\pi}{N}\right)}$$

$$x[2] = \sum_{k=< N>} a_k e^{jk2\left(\frac{2\pi}{N}\right)}$$

$$\vdots \qquad \bullet \qquad \bullet$$

$$x[N-1] = \sum_{k=< N>} a_k e^{jk(N-1)\left(\frac{2\pi}{N}\right)}$$
Also
$$\sum_{k=< N>} e^{jm\left(\frac{2\pi}{N}\right)^n} = \begin{cases} N, & m=0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$$

- Derivation of the FS coefficients.
- Method #2

$$x[n] = \sum_{k=< N>} a_k e^{jk \left(\frac{2\pi}{N}\right)n}$$

$$\sum_{n = < N >} x[n] e^{-jr \left(\frac{2\pi}{N}\right)n} = \sum_{n = < N >} \sum_{k = < N >} a_k e^{j(k-r)\left(\frac{2\pi}{N}\right)n} = \sum_{k = < N >} a_k \sum_{n = < N >} e^{j(k-r)\left(\frac{2\pi}{N}\right)n}$$

$$\frac{N-(N)}{N} = \begin{cases}
\frac{1-e^{j(k-r)\left(\frac{2\pi}{N}\right)N}}{1-e^{j(k-r)\left(\frac{2\pi}{N}\right)}} = 0, & k \neq r \\
\frac{1-e^{j(k-r)\left(\frac{2\pi}{N}\right)N}}{1-e^{j(k-r)\left(\frac{2\pi}{N}\right)}} = 0, & \text{otherwise}
\end{cases}$$

$$\Rightarrow \sum_{n=\langle N\rangle} x[n]e^{-jr\left(\frac{2\pi}{N}\right)n} \left[=a_r N\right]^{N},$$

$$\Rightarrow a_r = \frac{1}{N} \sum_{n = < N >} x[n] e^{-jr\left(\frac{2\pi}{N}\right)^n}$$

FS Representation of DT Periodic Signals

$$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk\omega_0 n}$$
 Synthesis equation
$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n}$$
 Analysis equation
$$a_k = a_{k+N}$$

$$\omega_0 = \frac{2\pi}{N}$$

$$x[n] \stackrel{FS}{\longleftrightarrow} a_k : \text{DT Fourier series pair}$$

$$\{a_k\} : \text{Fourier series coefficients}$$
 or spectral coefficients of $x[n]$

- The DT FS coefficients a_k are often referred to as the spectral coefficients of x[n] (and note that $a_k = a_{k+N}$).
- The DT FS is also called the Discrete Fourier Transform (DFT).

Revisit: Representation of Signals in terms of Basis Functions

Detailed Remarks:

• See more in Ch. 3 Fourier Series, etc.

• Example 3.10

$$x[n] = \sum_{k=< N>} a_k e^{jk(2\pi/N)n}$$

$$x[n] = \sin \omega_0 n$$
 $\omega_0 = 2\pi / N$

$$x[n] = \frac{1}{2j} e^{j(2\pi/N)n} - \frac{1}{2j} e^{-j(2\pi/N)n}$$

$$a_1 = \frac{1}{2j}, \quad a_{-1} = -\frac{1}{2j}$$

$$a_1 = \frac{1}{2i}$$
, $a_{-1} = -\frac{1}{2i}$ $a_k = 0$ for $k = 0, 2, 3, ..., N-2$

$$a_k = a_{k+N}$$

Example 3.11

$$x[n] = \sum_{k=< N>} a_k e^{jk(2\pi/N)n}$$

$$x[n] = 1 + \sin\left(\frac{2\pi}{N}\right)n + 3\cos\left(\frac{2\pi}{N}\right)n + \cos\left(\frac{4\pi}{N}n + \frac{\pi}{2}\right)$$

$$a_k = a_{k+N}$$

$$x[n] = 1 + \frac{1}{2j} \left[e^{j(2\pi/N)n} - e^{-j(2\pi/N)n} \right] + \frac{3}{2} \left[e^{j(2\pi/N)n} + e^{-j(2\pi/N)n} \right]$$

$$+\frac{1}{2}\left[e^{j(4\pi n/N(+\pi/2))}+e^{-j(4\pi n/N(+\pi/2))}\right].$$

$$x[n] = 1 + \left(\frac{3}{2} + \frac{1}{2j}\right) e^{j(2\pi/N)n} + \left(\frac{3}{2} - \frac{1}{2j}\right) e^{-j(2\pi/N)n} + \left(\frac{1}{2}e^{j\pi/2}\right) e^{j2(2\pi/N)n} + \left(\frac{1}{2}e^{-j\pi/2}\right) e^{-j2(2\pi/N)n}.$$

$$e^{j2(2\pi/N)n} + \left(\frac{1}{2}e^{j\pi/2}\right)e^{j2(2\pi/N)n} + \left(\frac{1}{2}e^{-j\pi/2}\right)e^{-j2(2\pi/N)n}$$

$$a_0 = 1,$$

$$a_1 = \frac{3}{2} + \frac{1}{2j} = \frac{3}{2} - \frac{1}{2}j,$$

$$a_{-1} = \frac{3}{2} - \frac{1}{2j} = \frac{3}{2} + \frac{1}{2}j,$$

$$a_2 = \frac{1}{2} j,$$

$$a_{-2} = -\frac{1}{2} j,$$

$$a_k = 0$$
 for $k = 3, 4, ..., N-3$

• Example 3.11 (cont'd)

$$x[n] = 1 + \left(\frac{3}{2} + \frac{1}{2j}\right)e^{j(2\pi/N)n} + \left(\frac{3}{2} - \frac{1}{2j}\right)e^{-j(2\pi/N)n} + \left(\frac{1}{2}e^{j\pi/2}\right)e^{j2(2\pi/N)n} + \left(\frac{1}{2}e^{-j\pi/2}\right)e^{-j2(2\pi/N)n}.$$

$$a_{0} = 1,$$

$$a_{1} = \frac{3}{2} + \frac{1}{2j} = \frac{3}{2} - \frac{1}{2}j,$$

$$a_{-1} = \frac{3}{2} - \frac{1}{2j} = \frac{3}{2} + \frac{1}{2}j,$$

$$a_{2} = \frac{1}{2}j,$$

$$a_{-2} = -\frac{1}{2}j,$$

$$a_{k} = 0 \quad \text{for } k = 3, 4, \dots, N-3$$

• Example 3.12

$$x[n] = 1 \text{ for } -N_1 \le n \le N_1,$$

 $x[n] = 0 \text{ for } N_1 + 1 \le n \le N - N_1 - 1$

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$

$$\cdots$$
 \prod_{-N_1} \prod_{0} \prod_{N_1} \prod_{N_1} \cdots \prod_{N_n} \prod_{N_n}

$$a_k = \frac{1}{N} \sum_{m=0}^{2N_1} e^{-jk(2\pi/N)(m-N_1)} = \frac{1}{N} e^{-jk(2\pi/N)N_1} \sum_{m=0}^{2N_1} e^{-jk(2\pi/N)m}.$$

$$a_{k} = \frac{1}{N} e^{jk(2\pi/N)N_{1}} \left(\frac{1 - e^{-jk2\pi(2N_{1}+1)N}}{1 - e^{-jk(2\pi/N)}} \right)$$

$$= \frac{1}{N} \frac{e^{-jk(2\pi/2N)} \left[e^{jk2\pi(N_{1}+1/2)/N} - e^{-jk2\pi(N_{1}+1/2)/N} \right]}{e^{-jk(2\pi/2N)} \left[e^{jk(2\pi/2N)} - e^{-jk(2\pi/2N)} \right]}$$

$$= \frac{1}{N} \frac{\sin[2\pi k(N_{1}+1/2)/N]}{\sin(\pi k/N)}, k \neq 0, \pm N, \pm 2N...$$

$$a_k = \frac{2N_1 + 1}{N}, \quad k = 0, \pm N, \pm 2N, \dots$$

Example 3.12 (cont'd)

 $2N_1 + 1 = 5$

$$N = 40$$

Partial Sum

$$N = 9, 2N_1 + 1 = 5$$

$$x[n] = \sum_{k=< N>} a_k e^{jk(\frac{2\pi}{N})n}$$

If N is odd

$$\hat{x}[n] = \sum_{k=-M}^{M} a_k e^{jk(\frac{2\pi}{N})n}$$

If N is even

$$\hat{x}[n] = \sum_{k=-M+1}^{M} a_k e^{jk(\frac{2\pi}{N})n}$$

Gibbs phenomenon does not exist for DT signals because DT signals are represented by a finite number of FS coefficients. For the same reason, there is no convergence issue with DTFS.

Linearity

If x[n] and y[n] are periodic signals with period N and

$$x[n] \stackrel{FS}{\longleftrightarrow} a_k$$

$$y[n] \stackrel{FS}{\longleftrightarrow} b_k$$

then

$$z[n] = Ax[n] + By[n] \stackrel{FS}{\longleftrightarrow} c_k = Aa_k + Bb_k$$

Time Shifting

$$x[n] \stackrel{FS}{\longleftrightarrow} a_k$$

$$\Rightarrow x[n-n_0] \stackrel{FS}{\longleftrightarrow} e^{-jk\omega_0 n_0} a_k$$

Multiplication

If x[n] and y[n] are periodic signals with period N, and

$$x[n] \stackrel{FS}{\longleftrightarrow} a_k \qquad x[n] = \sum_{l=< N>} a_l e^{jl\omega_0 n}$$
$$y[n] \stackrel{FS}{\longleftrightarrow} b_k \qquad y[n] = \sum_{m=< N>} b_m e^{jm\omega_0 n}$$

then x[n]y[n] are also periodic with N, and

$$x[n]y[n] \xleftarrow{FS} d_k = \sum_{l=\langle N \rangle} a_l b_{k-l}$$

$$\Rightarrow \text{ a periodic convolution}$$

First Difference

$$x[n] \stackrel{FS}{\longleftrightarrow} a_{k}$$

$$\Rightarrow x[n-n_{0}] \stackrel{FS}{\longleftrightarrow} e^{-jk\omega_{0}n_{0}} a_{k} = e^{-jk(\frac{2\pi}{N})n_{0}} a_{k}$$

$$\Rightarrow x[n-1] \stackrel{FS}{\longleftrightarrow} e^{-jk\omega_{0}} a_{k} = e^{-jk(\frac{2\pi}{N})} a_{k}$$

$$x[n] - x[n-1] \stackrel{FS}{\longleftrightarrow} (1 - e^{-jk(\frac{2\pi}{N})}) a_{k}$$

- Parseval's Relation for DT Periodic Signals
 - As shown in Problem 3.57:

$$\frac{1}{N} \sum_{n = \langle N \rangle} |x[n]|^2 = \sum_{k = \langle N \rangle} |a_k|^2$$

Parseval's relation
 The total average power in a periodic signal equals the sum of the average powers of its harmonic components
 (only N distinct harmonic components in DT)

Sect. 3.7 Properties of DT Fourier Series

• Proof
$$d_k = \sum_{l=} a_l b_{k-l}$$

$$d_k = \frac{1}{N} \sum_{n=} x[n] y[n] e^{-j(2\pi/N)kn}$$

Let
$$k = 0$$
, we have
$$\sum_{l = \langle N \rangle} a_l b_{-l} = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] y[n]$$

Let $y[n] = x^*[n]$, we have $\int_0^{\infty} dx = G_{-1}^*$

Substituting it to the above equaiton yields

$$\sum_{l=< N>} a_l a_l^* = \frac{1}{N} \sum_{n=< N>} x[n] x^*[n]$$

That is,
$$\sum_{l=< N>} |a_l|^2 = \frac{1}{N} \sum_{n=< N>} |x[n]|^2$$

$$x[n] \stackrel{FS}{\longleftrightarrow} a_k$$

$$y[n] \stackrel{FS}{\longleftrightarrow} b_k$$

$$x[n]y[n] \stackrel{FS}{\longleftrightarrow} d_k$$

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$ \left\{ \begin{array}{l} a_k \\ b_k \end{array} \right\} \text{Periodic with} $
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi/N)n}x[n]$ $x^*[n]$ $x[-n]$ $x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ (periodic with period mN)	$Aa_k + Bb_k$ $a_k e^{-jk(2\pi/N)n_0}$ a_{k-M} a_{-k}^* a_{-k} $\frac{1}{m}a_k$ (viewed as periodic) with period mN
Periodic Convolution	$\sum_{r=\langle N\rangle} x[r]y[n-r]$	Na_kb_k
Multiplication	x[n]y[n]	$\sum_{l=\langle N angle} a_l b_{k-l}$
First Difference	x[n] - x[n-1]	$(1-e^{-jk(2\pi/N)})a_k$
Running Sum	$\sum_{k=-\infty}^{n} x[k] $ (finite valued and periodic only) if $a_0 = 0$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$
Conjugate Symmetry for Real Signals	x[n] real	$egin{cases} a_k &= a_{-k}^* \ \Re e\{a_k\} &= \Re e\{a_{-k}\} \ rac{gm\{a_k\}}{= -gm\{a_{-k}\}} \ a_k &= a_{-k} \ rac{st a_k}{= - st a_{-k}} \end{cases}$
Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd
Even-Odd Decomposition of Real Signals	$\begin{cases} x_e[n] = \mathcal{E}v\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = \mathcal{O}d\{x[n]\} & [x[n] \text{ real}] \end{cases}$	$\Re e\{a_k\}$ $j orall m\{a_k\}$
Parseval's Relation for Periodic Signals		
$\frac{1}{N}\sum_{n=\langle N\rangle} x[n] ^2=\sum_{k=\langle N\rangle} a_k ^2$		

• Example 3.13

$$x[n] = x_1[n] + x_2[n]$$

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$

If
$$x[n] \xleftarrow{FS} a_k$$

$$x_1[n] \xleftarrow{FS} b_k$$

$$x_2[n] \xleftarrow{FS} c_k$$
then
$$a_k = b_k + c_k$$

• Example 3.13 (cont'd)

$$x[n] \stackrel{FS}{\longleftrightarrow} a_k \qquad x_1[n] \stackrel{FS}{\longleftrightarrow} b_k \qquad x_2[n] \stackrel{FS}{\longleftrightarrow} c_k$$

$$b_k = \begin{cases} \frac{1}{5} \frac{\sin(3\pi k/5)}{\sin(\pi k/5)}, & for \ k \neq 0, \pm 5, \pm 10, \dots \\ \frac{3}{5}, & for \ k = 0, \pm 5, \pm 10, \dots \end{cases}$$

$$c_0 = \frac{1}{5} \sum_{n=0}^{4} x_2[n] = 1.$$

$$c_k = \begin{cases} 0, & for \ k \neq 0, \pm 5, \pm 10, \dots \\ 1, & for \ k = 0, \pm 5, \pm 10, \dots \end{cases}$$

$$a_{k} = \begin{cases} b_{k} = \frac{1}{5} \frac{\sin(3\pi k / 5)}{\sin(\pi k / 5)}, & \text{for } k \neq 0, \pm 5, \pm 10, \dots \\ \frac{8}{5}, & \text{for } k = 0, \pm 5, \pm 10, \dots \end{cases}$$

• Example 3.14

Suppose that

1. x[n] is periodic with period N = 6.

2.
$$\sum_{n=0}^{5} x[n] = 2$$

3.
$$\sum_{n=2}^{7} (-1)^n x[n] = 1$$

4. x[n] has the minimum power per period among the set of signals satisfying the preceding three conditions.

From
$$\sum_{n=0}^{5} x[n] = 2$$
 $a_0 = 2/N = 1/3$

From
$$\sum_{n=2}^{7} (-1)^n x[n] = 1 \Leftrightarrow \sum_{n=2}^{7} (-1)^n x[n] = 1 \Leftrightarrow$$

$$P = \sum_{k=0}^{5} |a_k|^2 \qquad a_1 = a_2 = a_4 = a_5 = 0$$

• Example 3.14 (cont'd)

From
$$\sum_{n=0}^{5} x[n] = 2$$
 $a_0 = 2 / N = 1/3$

From
$$\sum_{n=2}^{7} (-1)^n x[n] = 1$$
 $a_3 = 1/N = 1/6$

To minimize the power

$$P = \sum_{k=0}^{5} |a_k|^2 \qquad a_1 = a_2 = a_4 = a_5 = 0$$

$$x[n] = a_0 + a_3 e^{j\pi n} = (1/3) + (1/6)(-1)^n$$

Sect. 3.8 FS and LTI Systems

• The response of an LTI system

$$H(s) = \int_{-\infty}^{+\infty} h(t)e^{-st}dt$$

$$H(z) = \sum_{k=-\infty}^{+\infty} h[k] z^{-k}$$

 \Rightarrow system function

• If $s = j\omega$ or $z = e^{j\omega}$:

$$H(j\omega) = \int_{-\infty}^{+\infty} h(t)e^{-j\omega t}dt$$

$$\Rightarrow \text{ frequency reponse}$$

$$H(e^{j\omega}) = \sum_{n=0}^{+\infty} h[n]e^{-j\omega n}$$

Sect. 3.8 FS and LTI Systems

In summary

- Filtering
 - Note the relationship between the input and output:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} \qquad \Rightarrow y(t) = \sum_{k=-\infty}^{+\infty} a_k \frac{H(jk\omega_0)e^{jk\omega_0 t}}{a_k H(jk\omega_0)e^{jk\omega_0 t}}$$

$$x[n] = \sum_{k=< N>} a_k e^{jk(\frac{2\pi}{N})n} \qquad \Rightarrow y[n] = \sum_{k=< N>} a_k H(j(\frac{2\pi}{N})k)e^{jk(\frac{2\pi}{N})n}$$

- Change the relative amplitudes of the frequency components in a signal indicates frequency-shape filtering.
- Or, significantly attenuate or eliminate some frequency components entirely indicates frequency-selective filtering.

- Filtering
 - Frequency-shaping filters (e.g., audio systems)

Z akejlowt

• Filtering

Frequency-shaping filters (e.g., differentiating filters)

• E.g., differentiating filters enhance edges in an image.

- Frequency-shaping filters
- Two-point average: a naïye DT

low-pass filter (LPF)

$$y[n] = \frac{1}{2}(x[n] + x[n-1])$$

$$\Rightarrow h[n] = \frac{1}{2}(\delta[n] + \delta[n-1])$$

$$\Rightarrow H(e^{j\omega}) = \frac{1}{2}[1 + e^{-j\omega}]$$

$$= \frac{1}{2}e^{-j(\frac{\omega}{2})}[e^{j(\frac{\omega}{2})} + e^{-j(\frac{\omega}{2})}]$$

$$= e^{-j(\frac{\omega}{2})}\cos(\frac{\omega}{2})$$

 $H(e^{j\omega})$ is periodic with period 2π y[n] = x[n] at $\omega = 0$ y[n] = 0 at $\omega = \pi$

- Frequency-selective filters
 - Select some frequency bands and reject others

 ω_{c2}

CT ideal lowpass filter

$$H(j\omega) = \begin{cases} 1, & |\omega| \le \omega_c \\ 0, & |\omega| > \omega_c \end{cases}$$

H(jw)

(b)

 ω_{c1}

 $-\omega_{c1}$

 $-\omega_{c2}$

CT ideal highpass filter

$$H(j\omega) = \begin{cases} 0, & |\omega| < \omega_c \\ 1, & |\omega| \ge \omega_c \end{cases}$$

CT ideal bandpass filter

$$H(j\omega) = \begin{cases} 1, & \omega_{c1} \le |\omega| \le \omega_{c2} \\ 0, & \text{otherwise} \end{cases}$$

- Frequency-selective filters
 - Select some frequency bands and reject others

A simple RC high pass filter (HPF) as frequency-selective filters

$$\Rightarrow RC \frac{d}{dt} v_r(t) + v_r(t) = RC \frac{d}{dt} v_s(t)$$

$$\Rightarrow RC \frac{d}{dt} \left[G(j\omega) e^{j\omega t} \right] + G(j\omega) e^{j\omega t} = RC \frac{d}{dt} e^{j\omega t}$$

$$\Rightarrow RCj\omega G(j\omega) e^{j\omega t} + G(j\omega) e^{j\omega t} = RCj\omega e^{j\omega t}$$

$$\Rightarrow G(j\omega) e^{j\omega t} = \frac{j\omega RC}{1 + j\omega RC} e^{j\omega t}$$

• A simple RC high pass filter (HPF) as frequency-selective filters

$$G(j\omega) = \frac{j\omega RC}{1 + j\omega RC}$$

Tradeoff between frequency shaping and response time

First-order recursive DT filters

$$y[n] - ay[n-1] = x[n]$$
If $x[n] = e^{j\omega n}$, then $y[n] = H(e^{j\omega})e^{j\omega n}$

$$H(e^{j\omega})$$
: the frequency reponse
$$\Rightarrow H(e^{j\omega})e^{j\omega n} - aH(e^{j\omega})e^{j\omega(n-1)} = e^{j\omega n}$$

$$\Rightarrow \left[1 - ae^{-j\omega}\right]H(e^{j\omega})e^{j\omega n} = e^{j\omega n}$$

$$\Rightarrow H(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}$$

• First-order recursive DT filters

$$H(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}$$

lowpass filter: 0 < a < 1

highpass filter: -1 < a < 0

• First-order recursive DT filters

$$y[n] = ay[n-1] + x[n]$$

Impulse reponse: $h[n] = a^n u[n]$

Step reponse: $s[n] = u[n] * h[n] = \frac{1 - a^{n+1}}{1 - a} u[n]$

|a| controls the speed of response

