```
E = 1:1:160; %这个是取 1,2,3.... 160KeV 的能量 G.base_material='lung' %选择base材料为 肺 lambda = 1.239842./E.*1e-9;

base_mat_file = strcat('./XOPDATA/', G.base_material, 'Data.mat'); load(base_mat_file);

base_beta = interp1(MatData(:, 1), MatData(:, 4), E*1000, 'cubic').*100.*lambda/(4.*pi);

% I=I0*e^(-miu×D) miu:不同能量下的线性衰减系数 D:厚度 miu=2.*pi./lambda.*base_beta|

specFile='spectrums/NuctechSpec160.mat' load(specFile);
E_bar = sum(Spec.*E)./sum(Spec); % mean energy, keV
```

采用 NuctechSpec160

E_bar=56.9464

计算得平均线性衰减系数 μ =11.0580

52	53	54	55	56	57	58	59	60	61	62
11.6354	11.5064	11.3844	11.2687	11.1598	11.0580	10.9602	10.8674	10.7783	10.6948	10.6

对 A11 来说:

D 总=0.0467m 考虑肺泡组织的占比大约一半 取 D=0.0280m

μ D=0.3096

对 A22 来说:

D 总=0.0467m 肺泡组织占比更大 取 D=0.0380m

μ D=0.4202

Phantom	A1	A2	
Vis	0. 6062	0. 6063	
Amp	2. 8927e+03	2. 8177e+03	
$-\ln \frac{amp_{sample}}{amp_{background}}$	0. 3378	0. 3640	
- In vis _{background}	0. 0069	0. 0067	

(A1)

A1 竖着 3.3053e+03 0.2044

Phantom	A11	A11_d (打乱)	A11_dd(上下翻转)	A11_ddd (左右翻转)	A22	A33
Vis	0. 2095	0. 2958	0. 2095	0. 2121	0. 1662	0. 2515
Amp	16. 3656	7. 3558e-04	16. 3656	16. 6249	4. 2863e-04	44. 8413
$-\ln \frac{amp_{sample}}{amp_{background}}$	5. 5125	15. 5226	5. 5125	5. 4968	16. 0626	4. 5046
- ln vis _{sample}	1. 0693	0. 7244	1.0693	1. 0571	1. 3009	0.8867

