Indian Institute of Technology Jodhpur MAL1010, Dec'21-Mar'22 Assignment Sheet 4

Q.1. Use Mean value theorem to prove that

$$|\sin x - \sin y| \le |x - y| \quad \forall \ x, y \in \mathbb{R}.$$

- Q.2. Let a > 0 and $f: [-a, a] \to \mathbb{R}$ be continuous. Suppose f'(x) exists and f'(x) < 1 for all $x \in (-a, a)$. If f(a) = a and f(-a) = -a, then show that f(x) = x for every $x \in (-a, a)$.
- Q.3. Cauchy Mean Value Theorem: Let f and g be continuous on [a, b] and differentiable on (a, b). Suppose that $g'(x) \neq 0$ for all $x \in (a,b)$. Then prove that there exists $c \in (a,b)$ such that

$$\frac{f(b) - f(a)}{g(b) - f(a)} = \frac{f'(c)}{g'(c)}.$$

- Q.4. Using Cauchy mean value theorem, show that $1 \frac{x^2}{2!} < \cos x$ for $x \neq 0$.
- Q.5. Let f be continuous on [a,b], a>0 and differentiable on (a,b). Prove that there exists $c \in (a,b)$ such that

$$\frac{bf(a) - af(b)}{b - a} = f(c) - cf'(c).$$

- Q.6. Use Taylor's Theorem with n=2 to approximate $(1+x)^{1/3}$, x>-1.
- Q.7. Using Taylor's theorem, for any $k \in \mathbb{N}$ and for all x > 0, show that

$$x - \frac{1}{2}x^2 + \dots + \frac{1}{2k}x^{2k} < \log(1+x) < x - \frac{1}{2}x^2 + \dots + \frac{1}{2k+1}x^{2k+1}.$$

- Q.8. Find the extreme values by first derivative test, for a given $f(x) = \frac{1}{x^4 2x^2 + 7}$, $x \in \mathbb{R}$.
- Q.9. Sketch the following curves after locating intervals of increase/decrease, intervals of concavity upward/downward, points of maxima/minima, points of inflection and asymptotes. (i) $f = x(6-2x)^2$ (ii) $f(x) = x^5 - 5x^4$ (iii) $f = x^{1/5}$ (iv) $f = x^{2/5}$ (v) $f = x^4$ (vi) $f = x^{1/3}$ (vii) $f(x) = \frac{x^2 - 3}{x - 2}$ (viii) $f(x) = \frac{x^3}{3x^2 + 1}$

1

(i)
$$f = x(6-2x)^2$$

(ii)
$$f(x) = x^5 - 5x^6$$

(iii)
$$f = x^{1/5}$$

(iv)
$$f = x^{2/5}$$

$$(\mathbf{v}) f = x^{\mathbf{r}}$$

i)
$$f = x^{1/3}$$

(vii)
$$f(x) = \frac{x^2 - 3}{x - 2}$$

(viii)
$$f(x) = \frac{x^3}{3x^2+1}$$

- Q.10. Give an example of $f:[0,1]\to\mathbb{R}$ such that f is
 - (i) strictly increasing and convex.
 - (ii) strictly increasing and concave.
 - (iii) strictly decreasing and convex.
 - (iv) strictly decreasing and concave.