Sets are unordered collections of things

- Many things can be described as sets of feature vectors:
- the set of objects in an image,
- the set of points in a point cloud,
- the set of nodes and edges in a graph,
- the set of people reading this poster.
- Predicting sets means object detection, molecule generation, etc.
- This paper is about doing this **vector-to-set** mapping properly.
- Compared to normal object detection methods:
- Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

- Sets are unordered, but MLP and RNN outputs are ordered.
- \rightarrow **Discontinuities** from responsibility problem.
- Let's look at a normal set auto-encoder:

The responsibility problem:

- (a) and (b) are the same set.
- \rightarrow (a) and (b) encode to the same vector.
- \rightarrow (a) and (b) have the same MLP output.
- (a) is turned into (b) by rotating 90°.
- \rightarrow Rotation starts and ends with the same set.
- → MLP outputs can't just follow the 90° rotation!
- → There must be a discontinuity between (c) and (d)! All the outputs have to jump 90° anti-clockwise.

Conclusion:

- Smooth change of set requires discontinuous change of MLP outputs.
- To predict **unordered sets**, we should use an **unordered model**.

To predict a set from a vector, use gradient descent to find a set that encodes to that vector.

Code and pre-trained models available at https://github.com/Cyanogenoid/dspn

The idea

- Similar set inputs encode to similar feature vectors.
- Different set inputs encode to different feature vectors.
- \rightarrow Minimise the difference between predicted and target set by minimising the difference between their feature vectors.

- Train (shared) encoder weights by minimising the set loss.
- Gradients of permutation-invariant functions are equivariant.
- \rightarrow All gradient updates $\partial MSE/\partial set$ don't rely on the order of the set.
- \rightarrow Our model is completely **unordered**, exactly what we wanted!

Bounding box set prediction

AP_{50}	AP_{90}	AP_{95}	AP_{98}	AP_{99}
99.3 _{±0.2}	94.0 _{±1.9}	57.9 _{±7.9}	0.7 _{±0.2}	0.0 ±0.0
99.4 _{±0.2}	$94.9{\scriptstyle \pm 2.0}$	$65.0{\scriptstyle \pm 10.3}$	2.4 ±0.0	0.0
99.8 _{±0.0}	98.7 _{±1.1}	$86.2_{\pm 7.2}$	24.3 _{±8.0}	1.4 ±0.9
99.8 _{±0.1}	$96.7{\scriptstyle \pm 2.4}$	75.5 _{±12.3}	17.4 _{±7.7}	0.9 _{±0.7}
	99.3±0.2 99.4±0.2 98.8±0.3 99.8 ±0.0	99.3±0.2 94.0±1.9 99.4±0.2 94.9±2.0 98.8±0.3 94.3±1.5 99.8±0.0 98.7±1.1	99.3±0.2 94.0±1.9 57.9±7.9 99.4±0.2 94.9±2.0 65.0±10.3 98.8±0.3 94.3±1.5 85.7±3.0 99.8±0.0 98.7±1.1 86.2±7.2	AP $_{50}$ AP $_{90}$ AP $_{95}$ AP $_{98}$ 99.3 $_{\pm 0.2}$ 94.0 $_{\pm 1.9}$ 57.9 $_{\pm 7.9}$ 0.7 $_{\pm 0.2}$ 99.4 $_{\pm 0.2}$ 94.9 $_{\pm 2.0}$ 65.0 $_{\pm 10.3}$ 2.4 $_{\pm 0.0}$ 98.8 $_{\pm 0.3}$ 94.3 $_{\pm 1.5}$ 85.7 $_{\pm 3.0}$ 34.5 $_{\pm 5.7}$ 99.8 $_{\pm 0.0}$ 98.7 $_{\pm 1.1}$ 86.2 $_{\pm 7.2}$ 24.3 $_{\pm 8.0}$ 99.8 $_{\pm 0.1}$ 96.7 $_{\pm 2.4}$ 75.5 $_{\pm 12.3}$ 17.4 $_{\pm 7.7}$

- Simply replace input encoder with ConvNet image encoder.
- Add MSE loss to set loss when training the encoder and ResNet weights.
- Forces minimisation of MSE to converge to something sensible.

Object detection

Object attribute prediction	AP_∞	AP_1	$AP_{0.5}$	$AP_{0.25}$	AP _{0.125}
MLP baseline	3.6 _{±0.5}	1.5 _{±0.4}	0.8 _{±0.3}	0.2 _{±0.1}	0. 0±0.0
RNN baseline	4.0 ±1.9	$\textbf{1.8}_{\pm 1.2}$	0.9 ±0.5	0.2 ±0.1	0.0
DSPN (train 10 steps, eval 10 steps)	$\textbf{72.8}_{\pm 2.3}$	59.2 _{±2.8}	39.0 _{±4.4}	12.4 _{±2.5}	1.3 ±0.4
DSPN (train 10 steps, eval 20 steps)	$84.0{\scriptstyle \pm 4.5}$	80.0 _{±4.9}	57.0 _{±12.1}	16.6 _{±9.0}	1.6 ±0.9
DSPN (train 10 steps, eval 30 steps)	85.2 _{±4.8}	81.1 _{±5.2}	47.4 ±17.6	10.8 _{±9.0}	$\text{0.6}_{\pm\text{0.7}}$

Input	Step 5	Step 10	Step 20	Target
	x, y, z = (-0.14, 1.16, 3.57)	x, y, z = (-2.33, -2.41, 0.73)	x, y, z = (-2.33, -2.42, 0.78)	x, y, z = (-2.42, -2.40, 0.70)
	large purple rubber sphere	large yellow metal cube	large yellow metal cube	large yellow metal cube
	x, y, z = (0.01, 0.12, 3.42)	x, y, z = (-1.20, 1.27, 0.67)	x, y, z = (-1.21, 1.20, 0.65)	x, y, z = (-1.18, 1.25, 0.70)
	large gray metal cube	large purple rubber sphere	large purple rubber sphere	large purple rubber sphere
	x, y, z = (0.67, 0.65, 3.38)	x, y, z = (-0.96, 2.54, 0.36)	x, y, z = (-0.96, 2.59, 0.36)	x, y, z = (-1.02, 2.61, 0.35)
	small purple metal cube	small gray rubber sphere	small gray rubber sphere	small gray rubber sphere
	x, y, z = (0.67, 1.14, 2.96)	x, y, z = (1.61, 1.57, 0.36)	x, y, z = (1.58, 1.62, 0.38)	x, y, z = (1.74, 1.53, 0.35)
	small purple rubber sphere	small <mark>yellow</mark> metal cube	small purple metal cube	small purple metal cube