Machine Learning

HW 5 - Probabilistic Models Winter 2025 Ali Ural

1. Consider the following set of training examples for an unknown target function: $(x_1, x_2) \to y$:

Y	x_1	x_2	Count
+	Т	Т	3
+	$\mid T \mid$	F	4
+	F	Т	4
+	F	F	1
-	Γ	Т	0
-	Γ	F	1
-	F	Т	3
-	F	F	5

- (a) Computer the posteriors for the observation x = [T, T] using:
 - i. Inference (5pts)

$$Count(X_1 = T, X_2 = T) = 3 + 0 = 3.$$

$$P(Y = + | X_1 = T, X_2 = T) = \frac{\text{Count}(Y = +, X_1 = T, X_2 = T)}{\text{Count}(X_1 = T, X_2 = T)} = \frac{3}{3} = 1$$

$$P(Y = -|X_1 = T, X_2 = T) = \frac{\text{Count}(Y = -, X_1 = T, X_2 = T)}{\text{Count}(X_1 = T, X_2 = T)} = \frac{0}{3} = 0$$

Results: P(Y = +|T,T) = 1, P(Y = -|T,T) = 0.

ii. Naive Bayes (5pts)

$$P(Y|X_1, X_2) \propto P(X_1|Y)P(X_2|Y)P(Y)$$

Priors:
$$P(Y = +) = \frac{12}{21} = \frac{4}{7} P(Y = -) = \frac{9}{21} = \frac{3}{7}$$

Class-conditional probabilities for $X_1=T,X_2=T$: For Y=+ (12 instances): $P(X_1=T|Y=+)=\frac{7}{12}$ $P(X_2=T|Y=+)=\frac{7}{12}$

For
$$Y = -$$
 (9 instances): $P(X_1 = T | Y = -) = \frac{1}{9} P(X_2 = T | Y = -) = \frac{3}{9} = \frac{1}{3}$

1

Unnormalized posteriors for
$$x=[T,T]$$
: $P(Y=+)P(X_1=T|Y=+)P(X_2=T|Y=+)=\left(\frac{4}{7}\right)\left(\frac{7}{12}\right)\left(\frac{7}{12}\right)=\frac{7}{36}$ $P(Y=-)P(X_1=T|Y=-)P(X_2=T|Y=-)=\left(\frac{3}{7}\right)\left(\frac{1}{9}\right)\left(\frac{1}{3}\right)=\frac{1}{63}$

Normalization constant α : $\alpha = \frac{7}{36} + \frac{1}{63} = \frac{49}{252} + \frac{4}{252} = \frac{53}{252}$

Normalized posteriors for
$$x=[T,T]$$
: $P(Y=+|X_1=T,X_2=T)=\frac{7/36}{53/252}=\frac{49}{53}$ $P(Y=-|X_1=T,X_2=T)=\frac{1/63}{53/252}=\frac{4}{53}$

Results: $P(Y = +|T,T) = \frac{49}{53} \approx 0.9245$, $P(Y = -|T,T) = \frac{4}{53} \approx 0.0755$.