

Redes de Flujo: Selección de proyectos

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Enunciado

Contamos con

P proyectos para seleccionar

Cada proyecto i

Cuanta con un retorno económico de p_i (número positivo o negativo)

Puede tener un subconjunto de problemas que son prerequisitos para su ejecución

Queremos

Seleccionar un subconjunto de proyectos que maximice la ganancia

Grafo de precedencia

Podemos

Representar las relaciones entre proyectos como un grafo G=(V,E)

Cada proyecto i

Es un nodo i ∈ V

Cada proyecto j prerequisto al proyecto i

Es un eje j-i ∈ E

Factibilidad de proyectos

Un subconjunto de proyectos A ⊆ P es factible

Si los prerequisitos de cada proyecto en A, también pertenecen a A

Ganancia

Dado un subconjunto de proyectos factibles A

Llamaremos Ganancia de A a la suma de los retornos de cada uno de proyectos que lo compone

$$Ganancia(A) = \sum_{i \in A} p_i$$

Para todo los proyectos con retorno positivos

Llamaremos tope ganancia a la suma de los retornos de esos proyectos

$$C = \sum_{i/p_i > 0} p_i$$

Construcción de red de flujos

Agregamos

Un nodo "s" como fuente y un nodo "t" como sumidero

Un nodo por cada proyecto

Por cada nodo i con $p_i > 0$

Agregar un eje s-i con capacidad pi

Por cada nodo i con p_i < 0

Agregar un eje i-t con capacidad -pi

Por cada relación j precede a i

Un eje i-j con capacidad C+1 (tope ganancia)

Ejemplo

Obtención del corte mínimo

Afirmamos que el corte mínimo s-t

Corresponde a la ganancia máxima obtenida

Si llamamos C(A',B') al corte mínimo

Los proyectos en A'-{s} corresponden a los proyectos a ejecutar para maximizar la ganancia

Análisis de la solución

Sea C(A',B') el corte mínimo

Si A son los proyectos en el corte mínimo, entonces

$$A' = A \cup \{s\}$$

$$B' = (P-A) \cup \{t\}$$

Si P cumple las restricciones de precedencia

El corte c(A',B') no tendrá ejes i-j que crucen de A' a B'

La capacidad de los ejes i-j es mayor al corte $c(\{s\},P \cup \{t\})$

Hay 3 posibles tipos de ejes entre A' y B'

Los que representan precedencias (subconjunto "E" en adelante)

Los que salen de s (proyectos con retorno positivo)

Los que entran a t (proyectos con retorno negativo)

Dijimos que los ejes "E"no están en el corte mínimo

No contribuyen en su capacidad

Los ejes que ingresan a "t"

Contribuyen en el corte

$$\sum_{i \in A/p_i < 0} -p_i$$

Los ejes que salen de "s"

$$\sum_{i \notin A/p_i > 0} p_i$$

Por lo tanto, podemos calcular

$$c(A',B') = \sum_{i \in A/p_i < 0} -p_i + \sum_{i \notin A/p_i > 0} p_i$$

Usando la formula $C = \sum_{i/p_i > 0} p_i$

Podemos reescribir la capacidad del corte como

$$c(A',B') = \sum_{i \in A/p_i < 0} -p_i + (C - \sum_{i \in A/p_i > 0} p_i)$$

Por lo tanto

$$c(A',B')=C-\sum_{i\in A}p_i$$

Como A es una selección factible

$$Ganancia(A) = \sum_{i \in A} p_i$$

El resultado anterior

$$c(A',B')=C-Ganancia(A)$$

Como C es contante

La resolución corte mínimo s-t maximiza la ganancia (c.q.d)

Presentación realizada en Mayo de 2020