

PATIENT HEALTH MONITORING USING IoT AND MACHINE LEARNING

A PROJECT REPORT

Submitted by

HEMA. M

JANANI. S

KARTHIKA. P

in partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

in

ELECTRONICS AND COMMUNICATION ENGINEERING

SSM INSTITUTE OF ENGINEERING AND TECHNOLOGY

DINDIGUL - 624 002

ANNA UNIVERSITY: CHENNAI 600 025

MAY 2024

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report "PATIENT HEALTH MONITORING USING IoT AND MACHINE LEARNING" is the bonafide work of "HEMA.M (922120106019), JANANI. S (922120106021), KARTHIKA. P (922120106030) who carried out the project work under my supervision.

SIGNATURE

Dr. S. KARTHGAI LAKSHMI,M.E., Ph.D.,

SUPERVISOR

HEAD OF THE DEPARTMENT

Dept. of Electronics and

Communication Engineering

SSM Institute of Engineering and

Technology,

SIGNATURE

SIGNATURE

SIGNATURE

SIGNATURE

SUPERVISOR

HEAD OF THE DEPARTMENT

Dept. of Electronics and

Communication Engineering

SSM Institute of Engineering and

Technology,

Dindigul - 624002

Submitted for the VIVA – VOCE Examination held on _____

INTERNAL EXAMINER

Dindigul - 624002

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

First and foremost, we would like to express our deep sense of gratitude to our most honorable Chairman and Management Trustees **Mr. K. Shanmugavel** for providing us with necessary facilities during the course of study. We feel immensely pleased to express our sincere thanks to our Principal **Dr. Senthil Kumaran Durairaj** for encouragement and support extended by them. We extend our solemn gratitude to **Dr. S. Karthigai Lakshmi**, Head of the Department, Electronics and Communication Engineering, for timely support to all our activities.

We sincerely thank our Project Coordinator **Dr.K.Rajesh**, **AP/ECE** who has been the sources of constant support and inspiration throughout our project work. We express our sincere thanks to our guide **Dr. S. Karthigai Lakshmi**, **Head of the Department** for her guidance throughout our project work. Also, we express our thanks to the faculty members of our department, non-teaching staff members and my dear friends for their moral support, help and encouragement towards the successful completion of the project. We are most indebted to our parents, with whose support, resulted in making our dreams of becoming successful graduates, a reality. We are quite confident that our project works stands testimony to the fact that hard work will bear enjoyable fruits not only to the individuals concerned but to the entire community, as a whole as we have witnessed many inventions of the scientists have made the lives of the brethren more comfortable.

ABSTRACT

In the dynamic landscape of healthcare, where precision and proactive management can dramatically alter outcomes, our project, "Patient Health Monitoring Using IoT and Machine Learning," plays a crucial role. Utilizing a combination of the Wokwi simulation platform and a Raspberry Pi WiFi module, this project orchestrated a sophisticated array of sensors—ranging from PIR and ultrasonic sensors to slide and rotary potentiometers, along with NTC temperature sensors—to meticulously collect real-time health data from patients. This data, updated every 30 seconds, is transmitted to the ThingSpeak cloud platform, ensuring seamless, continuous monitoring and analysis. The core of our innovation lies in leveraging powerful supervised learning algorithms such as Naive Bayes, Random Forest, SVM, Logistic Regression, and Decision Tree, implemented via Google Colab. These algorithms adeptly analyze data patterns to foresee potential health issues and inform actionable strategies for healthcare providers. Moreover, the insights derived from this analysis are elegantly presented on a user-friendly website hosted on Vercel, enhancing accessibility and transparency. Through this project, this project aim to underscore the transformative potential of integrating IoT and machine learning into healthcare, paving the way for more personalized, timely, and effective patient care.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
NO.		NO.
	ABSTRACT	iv
	LIST OF FIGURES	viii
	LIST OF ABBREVIATIONS	ix
	LIST OF TABLES	X
1	INTRODUCTION	1
	1.1 HEALTH MONITORING SYSTEM	1
	1.1.1 Revolutionizing Patient	1
	Care	
	1.1.2 Challenges in IoT Platform	2
	1.2 INTRODUCTION TO MACHINE	2
	LEARNING	
	1.2.1 Supervised Learning	3
	1.2.2 Algorithms in Supervised Learning	3
	1.2.3 Supervised vs Unsupervised Learning	3
	1.2.4 Workflow of Machine Learning	4
2	LITERATURE SURVEY	5
	2.1 SMART PATIENT HEALTH MONITORING	5
	SYSTEM USING IoT	
	2.2 DEVELOPMENT OF SMART	6
	HEALTHCARE MONITORING SYSTEM	Ü
	IN IoT ENVIRNOMENT	
	2.3 SMART HEALTH MONITORING SYSTEM	6
	USING IoT AND MACHINE LEARNING	

	2.4 IoT BASED HEALTHCARE MONITORING	7
	SYSTEM TOWARDS IMPROVING	
	QUALITY OF LIFE: A REVIEW	
	2.5 AN IoT BASED SMART PATIENT	8
	HEALTH MONITORING SYSTEM	
	2.6 IoT BASED HEALTH MONITORING	9
	SYSTEM	
	2.7 SMART HEALTHCARE MONITORING	9
	USING IoT	
	2.8 SMART REAL-TIME HEALTH	10
	MONITORING SYSTEM	
	2.9 IoT BASED HEALTHCARE SYSTEM FOR	11
	PATIENT MONITORING	
	2.10 DESIGN AND DEVELOPMENT OF ONLINE	12
	PATIENT RECORD MANAGEMENT SYSTEM	
	AUTOMATED PATIENT RECORD	
3	SYSTEM STUDY	13
	3.1 EXISTING SYSTEM	13
	3.2 EXISTING METHODOLOGY	14
	3.3 ANALYSIS FROM EXISTING SYSTEM	14
	3.2 BLOCK DIAGRAM OF PROPOSED	15
	SYSTEM	
4	SYSTEM REQUIREMENTS	16
	4.1 HARDWARE REQUIREMENTS	16
	(WOKWI SIMULATION)	
	4.2 SOFTWARE REQUIREMENTS	16
	4.3 COST-BASED FEASIBILITY ANALYSIS	16

IN SYSTEM DEVELOPMENT

	4.4 CIRCUIT DIAGRAM	18
	4.4.1 Wokwi Simulator	18
	4.4.2 Features	18
	4.4.3 Raspberry Pi	19
	4.4.4 Supported features	19
	4.4.5 Potentiometer	20
	4.4.6 Ultrasonic Sensor	21
	4.4.7 Slide Potentiometer	22
	4.5 RASPBERRY INTEGRATION AND ANALYSIS	22
	4.6 OUTPUT OF THE SIMULATOR	24
5	CLOUD PLATFORMS	25
	5.1 INTRODUCTION	25
	5.2 TRANSMISSION OF DATA TO CLOUD	25
	PLATFORM	
	5.3 THINGSPEAK	26
	5.3.1 Thingspeak in IoT	28
	5.4 INTEGRATION OF MACHINE LEARNING	32
	AND THINGSPEAK	
	5.5 COMMA SEPARATED VALUES (CSV)	33
	5.5.1 Exported CSV file from	34
	Thingspeak	
6	GOOGLE COLAB	35
	6.1 INITIALIZATION	35
	6.2 PREPROCESSING WITH DATASET	36
	6.2.1 Histogram	36
	6.3 SEABORN'S COUNTPLOT	38
	6.3.1 Seaborn's KDEplot Function	40

6.3.2 Seaborn's Heatmap Function	41
6.4 MACHINE LEARNING CLASSIFIERS	42
6.4.1Advantages of Machine learning	43
6.4.2 Disadvantages of Machine Learning	44
6.5 TYPES OF CLASSIFIERS	45
6.5.1 Naive Bayes Algorithm	45
6.5.2 Support Vector Machine	46
Classifier	
6.5.3 Decision Boundary for SVM	47
And Naive Bayes	
6.5.4 Classification Report and	48
Confusion Matrix	48
6.6 LOGISTIC REGRESSION	49
6.6.1 Output for Logistic	50
Regression	
6.6.2 Confusion Matrix	51
6.7 RANDOM TREE FOREST	51
6.7.1 Output of Random Forest	52
Accuracy	
6.8 DECISION TREE CLASSIFIER	53
6.8.1 Output of Decision Tree	54
Classifier	
6.9 ACCURACY SCORES OF DIFFERENT	55
CLASSIFIERS	
6.9.1 Comparison of Classifiers	55
6.10 PRECISION OF A PATIENT CONDITION	56
6.11 WEBSITE FOR THE PATIENT MONITORING	56
6.11.1 Connect Website with Thingspeak	56

	6.11.2 Website Advantages for Patient	57
7	FINAL RESULT	58
	7.1 ANALYSIS FROM THE PROCESSING	58
8	CONCLUSION	59
	8.1 FUTURE ENHANCEMENT	59
9	APPENDIX	60
	REFERENCE	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO
1.1	MACHINE LEARNING	4
	WORKFLOW	
3.1	PREDICTION OF HEART DISEASI	E 14
3.3	BLOCK DIAGRAM OF PATIENT	15
	MONITORING WITH IOT PLATFO	RM
4.1	SMART HEALTH MONITORING	18
	SYSTEM IN WOKWI SIMULATOR	
4.2	RASPBERRY PI	19
4.3	POTENTIOMETER	21
4.4	ULTRASONIC SENSOR	22
4.5	SLIDE POTENTIOMETER	22
4.6	OUTPUT OF THE VISUALISATION	J 24
	OF HEALTH MONITORING SYSTE	EM
5.1	THINGSPEAK PLATFORM	26
5.2	HEART RATE OF A PATIENT	30
5.3	TEMPERATURE OF A PATIENT	30
5.4	MOVEMENT OF PATIENT	31
	RECORD THROUGH PIR SENSOR	
5.5	WIDGET OF TEMPERATURE	31
5.6	WIDGET OF PATIENT MOVEMEN	T 31
5.7	WIDGETS OF RESPIRATORY RAT	E 32
5.8	HEART RATE OF A PATIENT	32
6.1	HISTOGRAM OF DISTANCE	37
6.2	HISTOGRAM OF TEMPERATURE	38
6.3	HISTOGRAM OF RESPIRATORY	38

6.4	SNS PLOT OF HEART RATE	39
6.5	SNS PLOT OF RESPIRATORY RATE	39
6.6	SNS PLOT OF TEMPERATURE	40
6.7	SNS KDEPLOT OF HEARTRATE,	41
	RESPIRARORY RATE AND	
	TEMPERATURE	
6.8	SNS CLASSIFIER	42
6.9	CLASSIFICATION REPORT OF SVM	49
	CLASSIFIER	
6.10	LOGISTIC REGRESSION CONFUSION	51
	MATRIX	
6.11	CONFUSION MATRIX OF RANDOM	53
	FOREST	
6.12	CONFUSION MATRIX OF DECISION	54
	TREE	
6.13	ACCURACY SCORES OF	55
	DIFFERENT CLASSIFIERS	
6.14	COMPARASION OF ALL CLASSIFIERS	55

LIST OF ABBREVIATIONS

S NO.	ABBREVIATIONS	DEFINITIONS
1	AI	Artificial Intelligence
2	ARM	Advanced RISC Machine
3	AWS	Amazon Web Services
4	CSS	Cascading Style Sheets
5	CSV	Comma Separated Values
6	EMR	Electronic Medical Records
7	FN	False Negative
8	FP	False Positive
9	GCP	Google Cloud Platform
10	GDB	GNU Debugger
11	GPU	Graphic Processing Unit
12	GSM	Global System Mobile
13	HTML	Hyper Text Markup Language
14	HTTP	Hyper Text Transfer Protocol
15	IFTT	If This Then That
16	ICU	Intensive Care Unit
17	IoT	Internet of Things
18	KDC	Kernel Density Estimate
19	KNN	K-Nearest Neighbor
20	LED	Light Emitting Diode
21	MATLAB	Matrix LABoratory
22	ML	Machine Learning
23	MQTT	Message Queuing Telemetry
		Transport

24	PDF	Probability Density Function
25	PIR	Passive Infrared Sensor
26	RESTful API	Representation State Transfer
		Application Programming Interface
27	RFID	Radio Frequency Identification
28	RISC-V	Reduced Instruction Set Computer
29	ROI	Return On Investment
30	SNS	Social Networking Sites
31	SPI	Serial Peripheral Interface
32	SVM	Support Vector Machine
33	SSID	Service Set IDentifier
34	TCP	Transmission Control Protocol
35	TPU	Thermoplastic Polyurethane
36	TP	True Positive
37	TN	True Negative
38	UART	Universal Asynchronous Receiver
		/Transmitter
39	UDP	User Datagram Protocol
40	UNO	United Nations Organization
41	VS	Visual Studio Code

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.	
£ 1	Exported CSV File from	34	
5.1	Thingspeak		
6.1	Accuracy value of Naive Bayes	47	
0.1	and SVM Algorithm		
6.2	Logistic Regression	50	
0.2	Classification Report	50	
6.7	Result of a Random Forest	50	
0.7	classifier	52	
6.8	Result of a Decision Tree	54	
0.0	Classifier	34	