

Desarrollo de Sistemas de Software Basados en Componentes y Servicios

Máster en Ingeniería Informática

Práctica 5

Consultas SPARQL

Autor:

Pablo Valenzuela Álvarez (pvalenzuela@correo.ugr.es)

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Granada, 10 de enero de 2025

${\rm \acute{I}ndice}$

1.	Can	nbios en la ontología	3
	1.1.	Clase Lector	3
	1.2.	Propiedades de objetos: compradoPor y haComprado	3
	1.3.	Propiedades de datos: tieneTitulo y tieneValoración	4
	1.4.	Ejemplos de uso	4
2.	Con	nsultas SPARQL	6
	2.1.	Consulta 1: Lectores que compraron un libro del género CienciaFiccion	6
	2.2.	Consulta 2: Títulos de libros del género NoFiccion	6
	2.3.	Consulta 3: Libros con valoración 4	7
	2.4.	Consulta 4: Libros comprados por cada lector	8
	2.5.	Consulta 5: Total de libros comprados	8
	2.6.	Consulta 6: Suma de los precios de libros comprados por cada lector $\dots \dots$	9
3.	Rep	positorio GitHub	10

Índice de figuras

1.	Detalles de la clase Lector	3
2.	Detalles de la propiedad de objeto compradoPor	3
3.	Detalles de la propiedad de datos tieneTitulo	4
4.	Detalles de la propiedad de datos tieneValoracion	4
5.	Propiedades asociadas a el lector Yvanka	4
6.	Propiedades asociadas al libro LaComunidadDelAnillo	5
7.	Resultados de la consulta 1	6
8.	Resultados de la consulta 2	6
9.	Resultados de la consulta 3	7
10.	Resultados de la consulta 4	8
11.	Resultados de la consulta 5	8
12.	Resultados de la consulta 6	9

1. Cambios en la ontología

Para el correcto funcionamiento de esta práctica, hemos tenido que realizar pequeños cambios sobre la ontología realizada en la anterior práctica.

1.1. Clase Lector

El primer añadido, ha sido la creación de una clase para albergar lectores a la que hemos llamado *Lector*. Como se puede ver en la figura 1, hemos agregado algunas instancias y disjunciones con las demás clases primarias de la ontología.

Figura 1: Detalles de la clase Lector.

1.2. Propiedades de objetos: compradoPor y haComprado

Acto seguido, se han añadido las propiedades de datos compradoPor y su inversa haComprado. Esta propiedad (como se ve en la figura 2) se aplica sobre el dominio Libro y su rango es Lector. Logicamente, su inversa haComprado, invierte dominio y rango.

Figura 2: Detalles de la propiedad de objeto compradoPor.

1.3. Propiedades de datos: tieneTitulo y tieneValoración

Por último, hemos añadido dos propiedades de datos: tiene Titulo y tiene Valoracion. Ambas se aplican sobre el dominio Libro y son usadas para dar un título al libro y dar una valoración numérica al libro (ver figuras 3 y 4).

Figura 3: Detalles de la propiedad de datos tieneTitulo.

Figura 4: Detalles de la propiedad de datos tieneValoracion.

1.4. Ejemplos de uso

Las figuras 5 y 6 muestran un ejemplo de uso de las propiedades antes mencionadas, y también, de su aserción automática por parte de Protégé.

Figura 5: Propiedades asociadas a el lector Yvanka.

Figura 6: Propiedades asociadas al libro LaComunidadDelAnillo.

2. Consultas SPARQL

2.1. Consulta 1: Lectores que compraron un libro del género CienciaFiccion

```
PREFIX ex: <http://www.bookstore.com/ontology/bookstore#>
SELECT ?lector ?titulo WHERE {
  ?libro ex:tieneGenero ex:CienciaFiccion .
  ?lector ex:haComprado ?libro .
  ?libro ex:tieneTitulo ?titulo .
}
```

Como podemos observar en la figura 7, esta consulta muestra los clientes que han comprado algún libro del género "ciencia ficción". Esto es útil si queremos ofrecer ofertas o descuentos a estos clientes ante la llegada de nuevos libros del mismo género.

Figura 7: Resultados de la consulta 1.

2.2. Consulta 2: Títulos de libros del género NoFiccion

```
PREFIX ex: <http://www.bookstore.com/ontology/bookstore#>
SELECT ?titulo WHERE {
    ?libro ex:tieneGenero ex:NoFiccion .
    ?libro ex:tieneTitulo ?titulo .
}
```

La figura 8 muestra todos los títulos de los libros del género "no ficción". Así podemos crear listas de los libros por género que haya disponibles en la librería.

Figura 8: Resultados de la consulta 2.

2.3. Consulta 3: Libros con valoración 4

```
PREFIX ex: <a href="http://www.bookstore.com/ontology/bookstore#">http://www.bookstore.com/ontology/bookstore#>
SELECT ?titulo ?valoracion WHERE {
    ?libro ex:tieneTitulo ?titulo .
    ?libro ex:tieneValoracion ?valoracion .
    ?libro ex:tieneValoracion 4 .
}
```

Como se observa en la figura 9, se listan los libros con valoración 4. Podemos usar este tipo de consultas para crear listas de libros con mejor valoración.

Figura 9: Resultados de la consulta 3.

2.4. Consulta 4: Libros comprados por cada lector

```
PREFIX ex: <http://www.bookstore.com/ontology/bookstore#>
SELECT ?lector (GROUP_CONCAT(?titulo; SEPARATOR=", ") AS ?librosComprados) WHERE {
  ?lector ex:haComprado ?libro .
  ?libro ex:tieneTitulo ?titulo .
}
GROUP BY ?lector
```

Esta consulta muestra una lista agrupada por lector de todos los libros que han comprado (ver figura 10). Podemos usar esta información para hacer ofertas especiales a los clientes que mas compran.

Figura 10: Resultados de la consulta 4.

2.5. Consulta 5: Total de libros comprados

```
PREFIX ex: <http://www.bookstore.com/ontology/bookstore#>
SELECT (COUNT(?libro) AS ?totalLibrosComprados) WHERE {
  ?lector ex:haComprado ?libro .
}
```

La figura 11 muestra el resultado de la consulta sobre mostrando la cantidad de libros que se han vendido.

Figura 11: Resultados de la consulta 5.

2.6. Consulta 6: Suma de los precios de libros comprados por cada lector

```
PREFIX ex: <a href="http://www.bookstore.com/ontology/bookstore#">http://www.bookstore.com/ontology/bookstore#>
SELECT ?lector (SUM(?precio) AS ?sumaPrecios) WHERE {
   ?lector ex:haComprado ?libro .
   ?libro ex:tienePrecio ?precio .
}
GROUP BY ?lector
```

Por último, la figura 12 muestra cuanto dinero ha gastado cada lector en la librería. Con la información de esta consulta podemos hacer algo similar a los expuesto en la consulta 4 (sección 2.4), y ofrecer descuentos a los que más han comprado.

Figura 12: Resultados de la consulta 6.

3. Repositorio GitHub

 $Acceso \ al \ repositorio \ en \ GitHub \ de \ la \ asignatura: \ \verb|https://github.com/Valenz23/DSS|$