Markov Chain: Recurrent and Transient States

- State s_i is recurrent if "starting from s_i " and from wherever you can go, there is a way of returning to s_i
- If s_i is not recurrent, called transient.

- Recurrence is a class property, i.e. if s_i communicates with s_j and s_i is recurrent, then s_i is recurrent.
- a collection of recurrent states communicating with each other form a recurrence class

Markov Chain: Recurrent and Transient States

For a state s_i , we define:

$$f_{ii} = P(X_n = s_i, \text{ for some } n \ge 1 \mid X_0 = s_i)$$

State
$$s_i$$
 is recurrent if $f_{ii} = 1$

State
$$s_i$$
 is recurrent if $f_{ii} = 1$ \rightarrow RW will visit s_i infinitely may time. State s_i is transient if $f_{ii} < 1$ \rightarrow RW will visit s_i infinitely may time.

Random Walk: Mean First Passage Time/ Hitting Time

 m_{ij} = Expected number of transitions (time) before a random walker first reaches state s_i , given that walker is currently in state s_i

Random Walk: Mean Recurrence Time

 $m_{ii}^* = \text{Expected number of transitions (time)}$ before a random walker re-visits state s_i , starting from s_i

$$\mathscr{M}_{ii}^* = 1 + \sum_{k=1, k \neq i}^n p_{ik} m_{ki}$$

Property:
$$\left\lfloor \frac{1}{m_{ii}^*} = \pi_i \right\rfloor$$
 (discuss the intuitive proof)

Compute: Mean First Passage and Mean Recurrence Time

Example:

$$m_{21} = 1 + \sum_{k=1}^{2} \phi_{2k} m_{k1} = 1 + \phi_{22} m_{21} = 1 + 0.4 m_{21}$$

 $k \neq 1$

$$\Rightarrow$$
 0.6 $m_{21} = 1 \Rightarrow m_{21} = \frac{10}{6} = \frac{5}{3}$.

$$m_{12} = 5$$
 $m_{11}^* = 1 + p_{12} m_{21} = 1 + 0.2 \times \frac{S}{3} = \frac{4}{3}$

Ergodic

- Positive Recurrence: If for a recurrent state s_i , m_{ii}^* is finite
- Ergodic: Positive recurrent, aperiodic states are called ergodic