Variables aleatorias discretas

Christian Limbert Paredes Aguilera

Definición de variable aleatoria

Una variable aleatoria es una aplicación que toma valores numéricos determinados por el resultado de un experimento aleatorio.

Tipos de variables aleatorias

Variables aleatorias discretas, continua y mixtas.

Función de probabilidad para varibales discretas

La función de probabilidad de una variable aleatoria discreta X es la que denotamos por

$$P_X(x) = P(X = x)$$

Dominio de una variable aleatoria discreta

$$D_X = \{ x \in \mathbb{R} \mid P_X(x) > 0 \}$$

en el caso discreto lo mas habitual es que

$$X(\Omega) = D_X$$

Propiedades de la función de probabilidad

Sea X una v.a. discreta $X: \Omega :\Rightarrow \mathbb{R}$ con dominio D_X . Su función de probabilidad P_X verifica las siguientes propiedades:

- $0 \le P_X(x) \le 1$ para todo $x \in \mathbb{R}$
- $\sum_{x \in D_X} P_X(x) = 1$

$$P_X(x) = \begin{cases} \frac{1}{8} & si \quad x = 0, 3 \\ \frac{3}{8} & si \quad x = 1, 2 \\ 0 & en \ otro \ caso \end{cases}$$

Efectivamente los valores de la función de distribución suman 1

$$\sum_{x=0}^{3} P_X(x) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1$$

Función de distribución de variables aleatorias

La función de distribución de probabilidad (acumulada) de la v.a. X ya sea discreta o continua $F_X(x)$ representa la probabilidad de que X toem un menor o igual que x es decir

$$F_X(x) = P(X \le x)$$

Sea X una v.a. y F_X su función de distribución

1.
$$P(X > x) = 1 - P(X \le x) = 1 - F_X(x)$$

Demostración.- Tenemos que el complementario de X mayor que x es $\overline{\{X>x\}}=\{X>x\}^c=\{X\leq x\}$. Además

$$P(X > x) = 1 - P(\overline{\{X > x\}}) = 1 - P(X \le x) = 1 - F_X(x)$$

2. Sea a y b tales que a < b,

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F_X(b) - F_X(a)$$

Demostración.- Por otro lado, que X se encuentre entre dos valores a y b es $\{a < X \le b\} = \{X \le b\} - \{X \le a\}$ ahora podemos hacer

$$\begin{array}{rcl} P(a < X \leq b) & = & P(\{X \leq \{-\{X \leq a\}) \\ & = & P(\{X \leq b\}) - P(\{X \leq a\}) \\ & = & F_X(b) - F_X(a) \end{array}$$

propiedadades de la función de distribución

Sea F_X la función de distribución de un v.a. X entonces:

- $0 \le F_X(x) \le 1$
- La función F_x es no decreciente.
- Si denotamos por $F_X(x_o^-) = \lim_{x \to x_o^-} F(x)$, entonces se cumple que

$$P(X < x_0) = F_X(x_0^-)$$
 y que $P(X = x_0) = F_X(x_0) - F_X(x_0^-)$

- Se cumple que $\lim_{x\to\infty} F_X(x) = 1$; $\lim_{x\to-\infty} F_X(x) = 0$
- ullet Toda función F verificando las propiedades anteriores es función de distribución de alguna v.a. X.
- $P(X > x) = 1 F_X(x)$
- Dado $a, b \in \mathbb{R}$ con a < b

$$P(a < X \le b) = F_X(b) - F_X(a)$$

Desigualdades estrictas

- $P(X = x) = F_X(x) F_X(x^-)$
- $P(a < X < b) = F_X(b^-) F_X(a)$
- $P(a \le X < b) = F_X(b^-) F_X(a^-)$
- $P(X < a) = F_X(a^-)$

Más propiedades de la función de distribución

• Si F_x es continua en x se tiene que P(X=x)=0 y por lo tanto $P(X\leq a)=P(X< a)+P(X=a)=P(X< a)$.

Demostración.- Si X es continua entonces,

$$P(X = x) = F(a) - F(a^{-}) = F(a) - F(a) = 0$$

por lo tanto

$$P(X < a) = P(X < a) + P(X = x) = P(X < a) + 0 = P(X < a)$$

• Sea X una v-a- discreta con dominio D_X y que tiene por función de probabilidad $P_X(x)$ entonces su función de distribución $F_X(x_0)$ es

$$F_X(x_0) = \sum_{x \le x_0} P_X(x)$$

donde $\sum_{x \leq x_0}$ indica que sumamos todos los $x \in D_X$ tales que $x \leq x_0$

Demostración.-

$$F_X(x_0) = P(X \le x_0) P\left(\bigcup_{x \le x_0; x \in D_X} \{x\}\right) = \sum_{x \le x_0} P(X = x) = \sum_{x \le x_0} P_X(x)$$

Valor esperado

$$E(X) = \sum_{x \in X(\Omega)} x P_X(x)$$

En ocasiones se le denomina media poblacional o simplemente media y muy frecuentemente se la denota por

$$\mu_X = E(X)$$
 o $\mu = E(X)$

Si $n \to \infty$ se tiene que $\lim_{n \to \infty} \frac{n_x}{x} = P_X(x)$ por lo tanto $E(X) = \lim_{x \to \infty} \sum_{x=1}^n x \frac{n_x}{n}$ Entonces el valor esperado en una v.a. discreta puede entenderse como el valor promedio que tomaría una v.a. en un número grande de repeticiones.

Esperanza de funciones de variables aleatorias discretas

Sea X una v.a. discreta con función de probabilidad P_X y de distribución F_X . Entonces el valor esperado de una función f(x) es:

$$E(g(x)) = \sum_{x} g(x) P_X(x)$$

Propiedades de los valores esperados

• E(k) = k para cualquier constante k.

Demostración.- Se tiene que

$$E(k) = \sum_{x=1}^{n} k \cdot P(X = k) = k \cdot P(X = k) + \dots + k \cdot P(X = k) = k \left[P(X = k) + \dots + P(X = k) \right] = k \cdot 1 = k$$

• Si $a \le X \le b$ entonces $a \le E(X) \le b$

Demostración.- Sea $E(a) \leq E(X) \leq E(b)$ entonces por la anterior propiedad se tiene que

$$a \le E(X) \le b$$

• SI X es una v.a. discreta que toma valores enteros no negativos entonces $E(X) = \sum_{x=0}^{\infty} (1 - F_X(x))$ Demostración.- Sea.

$$E(X) = \sum_{k=0}^{\infty} k \cdot P(X = k)$$

$$= P(X = 1)$$

$$+ P(X = 2) + P(X = 2)$$

$$+ P(X = 3) + P(X = 3) + P(X = 3)$$

$$+ P(X = 4) + P(X = 4) + P(X = 4) + P(X = 4)$$

Luego sumando por columnas se tiene,

$$\sum_{k=1}^{\infty} P(X=k) = P(X>0)$$

$$\sum_{k=2}^{\infty} P(X=k) = P(X>1)$$

$$\sum_{k=3}^{\infty} P(X=k) = P(X>2)$$

$$\sum_{k=3}^{\infty} kP(X=k) = \sum_{k=0}^{\infty} P(X>k)$$

$$E(X) = \sum_{k=0}^{\infty} 1 - F_X(x)$$

Propiedades de las series geométricas

 $\bullet\,$ Una progresión geométrica de razon r es una sucesión de la forma

$$r^0, r^1, r^2, \dots$$

• La serie geométrica es la suma de todos los valores de la progresión geométrica

$$\sum_{k=0}^{\infty} r^k$$

- Las sumas parciales desde el término n_0 al n de una progesión geométrica valen

$$\sum_{k=n_0}^{n} r^k = \frac{r^{r_0} - r^n r}{1 - r}$$

• Si |r| < 1 la serie geométrica es convergente y

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$$

• En el caso en que se comience en n_o se tiene que

$$\sum_{k=0}^{\infty} r^k = \frac{r^{n_0}}{1-r}$$

• Si |r| < 1 también son convergentes las derivadas, respecto de f, de la serie geométrica y convergen a la derivada correspondiente. Así teneos que

$$\left(\sum_{k=0}^{\infty} r^{k}\right)' = \sum_{k=1}^{\infty} k r^{k-1} \quad y \quad \left(\frac{1}{1-r}\right)' = \frac{1}{(1-r)^{2}}$$

$$\left(\sum_{k=0}^{\infty} r^k\right)'' = \sum_{k=2}^{\infty} k r^{k-2} \quad y \quad \left(\frac{1}{1-r}\right)'' = \frac{2}{(1-r)^3}$$

Por lo tanto,

$$E(X) = \sum_{x=0}^{\infty} x P(X = x)$$

$$= \sum_{x=0}^{\infty} x \left(\frac{1}{2}\right)^{x+1}$$

$$= \left(\frac{1}{2}\right)^2 \sum_{x=0}^{\infty} x \left(\frac{1}{2}\right)^{x-1}$$

$$= \left(\frac{1}{2}\right)^2 \frac{1}{(1 - \frac{1}{2})^2}$$

$$= 1$$

Luego calculamos su función de distrbución

$$F_X(x) = P(X \le x)$$

$$= \sum_{k=0}^x P(X = k)$$

$$= \sum_{k=0}^x \left(\frac{1}{2}\right)^{k+1}$$

$$= \frac{\frac{1}{2} - \frac{1}{2}^{x+1} \frac{1}{2}}{1 - \frac{1}{2}}$$

$$= 1 - \left(\frac{1}{2}\right)^{x+1}$$

Momentos de orden m

L Lamaremos momento de orden m
 respecto al punto C a

$$E[(X-C)^m] = \sum_{x \in X(\Omega)} (X-C)^m \cdot P(x)$$

- Cuando C=0 los momentos reciben el nombre de momentos respecto al origen.
- Cuando C = E(x) reciben el nombre de momentos centrales o respecto de la media. Luego la esperanza es el momento de orden 1 respecto al origen. Estos momentos son la versión poblacional.

Varianza y desviación típica

La varianza

Sea X una v.a. Llamaremos varianza de X a

$$Var(X) = E\left[(X - E(X))^2 \right]$$

Por lo tanto la varianza es el momento central de orden 2.

de forma frecuente se utiliza la notación

$$\sigma_X^2 = Var(X)$$

A la raíz cuadrada positiva de la varianza

$$\sigma_X = \sqrt{Var(X)}$$

se la denomina desviación típica o estándar de X.

Propiedades

- Si X es una v.a. discreta con función de probabilidad P_X su varianza es

$$\sigma_X^2 = Var(x) = E[(X - E(X))^2] = \sum_x [x - E(X)]^2 P_X(x)$$

• Sea X una v.a.

$$Var(X) = E(X^2) - [E(X)]^2 = \sum_{x} x^2 P_X(X) - [E(X)]^2$$

Demostración.-

$$Var(X) = \sum_{x} [x - E(X)]^{2} P_{X}(x)$$

$$= \sum_{x} [x^{2} - 2xE(X) + E(X)^{2}] P_{X}(x)$$

$$= \sum_{x} x^{2} P_{X}(x) - E(X) \sum_{x} 2x P_{X}(x) + E(X)^{2} \sum_{x} P_{X}(x)$$

$$= E(X^{2}) - 2E(X)E(X) + E(X)^{2}$$

$$= E(X^{2}) - E(X)^{2}$$

Propiedades de la varianza

• Var(X) > 0

Demostración.- La definición nos dice que la diferencia de la v.a. X y la esperanza del mismo está elevada al cuadrado y por tanto $Var(X) \ge 0$.

• $Var(cte) = E(cte^2) - E(cte)^2 = cte^2 - cte^2 = 0$

Demostración.- Dado que la varianza de una constante es la misma constante, entonces $cte^2 - cte^2$ y por tanto queda demostrada la proposición.

• El mínimo de $E\left[(X-C)^2\right]$ se calcanza cuando C=E(X) y es Var(X). Esta propiedad es una de las que hace útil a la varianza como medida de dispersión.

Demostración.- Sea

$$E[(X - C)^{2}] = \sum_{x} (x - C)^{2} P_{X}(x)$$

$$= \sum_{x} (x^{2} - 2xC + C^{2}) P_{X}(x)$$

$$= \sum_{x} x^{2} P_{X}(X) - 2 \sum_{x} xC P_{X}(x) + \sum_{x} C^{2} P_{X}(x)$$

$$= \sum_{x} x^{2} P_{X}(x) - 2CE(X) + C^{2}$$

Luego derivando e igualando a cero nos queda 2E(x) - 2C = 0 y por lo tanto C = E(X)

por último para minimizar necesitamos saber que la no convexidad va hacia arriba realizando su segunda derivada, de donde concluimos que efectivamente se está minimizando.

Transformaciones lineales de variables aleatorios

Un cambio de variable lineal o transformación lineal de una v.a. X es otra v.a. Y = a + bX donde $a, b \in \mathbb{R}$

Esperanza de una transformación lineal

Sea X una v.a. con $E(X) = \mu_X$ y $Var(X) = \sigma_X^2$ y $a, b \in \mathbb{R}$, entonces si Y = a + bX

• $E(Y) = E(a + bX) = a + b \cdot E(X) = a + b\mu_X$

Demostración.-

$$E(Y) = E(a+bX)$$

$$= \sum_{x} (a+b \cdot X) P_X(x)$$

$$= a \sum_{x} P_X(x) + b \sum_{x} x \cdot P_X(x)$$

$$= a+b \cdot E(X)$$

$$= a+b\mu_X$$

$$\bullet \ \ Var(Y)=Var(a+bX)=b^2Var(X)=b^2\sigma_X^2$$

Demostración.-

$$Var(Y) = Var(a + bX) = E[(a + bX)] - [E(a + bX)]^{2}$$

$$= E(a^{2} + 2abX + b^{2}X^{2}) - [a + bE(X)]^{2}$$

$$= a^{2} + 2abE(X) + b^{2}E(X^{2}) - a^{2} - 2abE(X) - b^{2}[E(X)]^{2}$$

$$= b^{2}E(X^{2}) - b^{2}[E(X)]^{2}$$

$$= b^{2}Var(X)$$

$$= b^{2} \cdot \sigma_{X}^{2}$$

•
$$\sigma_Y = \sqrt{Var(Y)}\sqrt{2^2Var(X)} = |b|\sigma_X$$

Demostración.- ya que $\sqrt{b^2}=|b|$ y en consecuencia del anterior ejercicio se tiene demostrada la proposición mencionada.