Lecture 6: Simple Conditional Branches

Today's Goals

- Understand the function of the Condition Code Register and how the bits are set.
- Use simple conditional branches to control the flow of programs.

Making Decisions

- We've learned unconditional branch (BRA) already.
- Conditional branches
 - Programs often need to decide which portion will be executed based on conditions.
- In microcontrollers, two steps are required to make decisions
 - 1. Evaluating a Boolean statement and generate a true or false result.
 - 2. Using a conditional branch that uses the Boolean result as a condition.
 - If the result is true, the branch changes the PC.
 - Otherwise the PC remains and continues on the next sequential instruction.

Condition Code Register (CCR)

- One byte register that stores the results of the Boolean statements used for branching.
- Once some of these bits have been set, the conditional branches are used to inspect them.
- How the CCR bits are set?
 - Arithmetic instructions (addition and subtraction) affect the N, Z, V, C and H bits.
 - Data transfer instructions affect N, Z, and C bits.
 - Branches don't affect any CCR bits.
 - The instruction set details the effect of each instruction on all of the CCR bits.

Symbol	Operation			
-	Unaffected			
1	Always "set" to 1			
0	Always "cleared" to 0			
↑ or Δ	Set or cleared based on result			

Simple Conditional Branches

- Simple conditional branches examine only one CCR bit.
- There are two instructions for each of the N, Z, V, and C bits

CCR Bit	Branch Taken if Bit is 1	Branch Taken if Bit is 0
N	BMI	BPL
Z	BEQ	BNE
V	BVS	BVC
С	BCS	ВСС

Example

LDAA #0

BEQ LABEL_M

do something

LABEL_M: do something else

Simple Conditional Branches Example

Code that executes a loop 3 times

```
($2000)
1: 86 03
        LDAA
                #03
2: 27 04
                $04
                      ($2002)
       BEQ
3: 80 01 SUBA
                      ($2004)
                #1
       BRA
                      ($2006)
4: 20 FA
                -6
                      ($2008)
5: 3F
         SWI
```

Simple Conditional Branches

Program Trace

1: 86 03	LDAA #03	(\$2000)
2: 27 04	BEQ \$04	(\$2002)
3: 80 01	SUBA #1	(\$2004)
4: 20 FA	BRA -6	(\$2006)
5: 3F	SWI	(\$2008)

Trace Line	Code Line	PC	A	N	Z	V	С
1	1	2002	03	0	0	0	-
2	2	2004	03	0	0	0	-
3	3	2006	02	0	0	0	0
4	4	2002	02	0	0	0	0
5	2	2004	02	0	0	0	0
6	3	2006	01	0	0	0	0
7	4	2002	01	0	0	0	0
8	2	2004	01	0	0	0	0
9	3	2006	00	0	1	0	0
10	4	2002	00	0	1	0	0
11	2	2008	00	0	1	0	0
12	5	_	_	-	_	-	_

Questions?

Wrap-up

What we've learned

- Bits in the Condition Code Register (CCR)
- Simple conditional branches:
 - BMI, BPL, BEQ, BNE, BVS, BVC, BCS, BCC

What to Come

Comparison branches