PROBABILITÉS ET STATISTIQUES

L'objet du problème est l'étude d'un algorithme stochastique de minimisation d'une fonction H sur un ensemble E^S où S est de cardinal fini n (En pratique n est très grand, par exemple en traitement d'images n π 10 6). Cet algorithme dépend d'une suite de paramètres réels positifs (T_k) .

Dans la première partie E=R et H est une forme quadratique définie positive ; elle est donc convexe et a un minimum unique. Les vecteurs aléatoires qui interviennent dans l'algorithme sont Gaussiens. L'algorithme converge pourvu que la suite (T_K) tende vers 0.

Dans la seconde partie E est fini et H quelconque. L'algorithme converge pourvu que la suite (T_χ) tende vers 0 en décroissant et en restant minorée par une suite $(\frac{\gamma}{k_R})$.

Mise à part cette problématique commune, les deux parties sont indépendantes et peuvent être abordées dans l'ordre qui conviendra le mieux à chaque candidat. Celui-ci pourra admettre le résultat de certaines questions pour traiter les suivantes à condition de l'indiquer clairement.

PREMIERE PARTIE

Toutes les variables aléatoires intervenant dans cette pattie sont définies sur un même espace probabilisé. On note 🗹 la tribu des parties probabilisables et E l'espérance mathématique, ou moyenne, ou intégrale par rapport à la probabilité.

q.1. Soit $S = \{1, 2, \ldots, n\}$ et soit $\{e_g\}_g \in S$ la base canonique de \mathbb{R}^n ; on note de la même lettre une application linéaire de \mathbb{R}^n dans \mathbb{R}^n et la matrice (n,n) qui la représente sur cette base, un vecteur de \mathbb{R}^n et la matrice colonne (n,1) qui le représente ; I_n désigne l'application identique de (\mathbb{R}^n) sur lui-même et (A_n) la matrice transposée de

Un vecteur aléatoire à valeurs dans Rⁿ et suivant une loi de Laplace-Gauss sera dit Gaussien. Il sera dit Gaussien strict si sa matrice des variances-covariances est régulière (pour abréger, on appellera celle-ci covariance et on la notera cov).

Soit $X = \sum_{g \in S} X_g$ e un vecteur Gaussien strict de de moyenne $E(X) = m = \sum_{g \in S} m_g$ e et de covariance cov $(X) = E((X-m)^{-1}(X-m)) = \Gamma$.

On note γ l'inverse de Γ , γ_{sk} les éléments de γ , f la densité de X par rapport à la mesure de Lebesgue de support Ω^n

Pour tout s de S, on note P_s l'application de Rⁿ dans qui à x associe x_s e_s : P_s x "x_s e_s ; et on pose :

ج ج

$$X_{(s)} = (I_n - P_s) \times X_{(s)} = (I_n - P_s) \times X$$

1.1. Déterminer la loi de $X_{(s)}$; on précisera : sa moyenne, sa covariance.

sa fonction caractéristique,

et sa densité notée g_s par rapport à la mesure de Lebesgue ayant pour support (I_n-P_s) (R^n) .

1.2. Montrer que l'on a, pour tout x de (\mathbb{R}^n) :

$$f(x) = g_s(x_{(s)}) h_s(x)$$

avec $h_s(x) = \sqrt{\frac{\gamma_{ss}}{2\pi}} \exp\left(-\frac{1}{2} t_{(x-m)} + Q_s + (x-m)\right)$ où $Q_s = \frac{1}{\gamma_{ss}}$

1.3. On dit qu'une fonction φ de R (respectivement \mathbb{R}^n) dans \mathbb{C} est à croissance lente s'il existe un k de R tel que

$$\lambda + \frac{|\varphi(\lambda)|}{(1+|\lambda|)^k}$$
 soit bornée sur \mathbb{R} (respectivement $\lambda + \frac{|\varphi(\lambda)|}{(1+||\lambda||)^k}$ bornée sur \mathbb{R}^n).

Tournez la page S.V.P.

A toute fonction φ de R dans Γ mesurable et à croissance lente, on associe la fonction Ψ_s de $(n-P_s)$ R^n dans Γ définie par :

$$\Psi_{g}(\alpha) = \int_{\Omega_{g}} \varphi(\lambda) \stackrel{h}{i}_{g}(\lambda e_{g} + \alpha) d\lambda$$
.

On note $\widehat{\mathcal{L}}_{(g)}$ la plus petite sous-tribu de \mathcal{F} rendant mesurable $\chi_{(g)}$. Montrer que l'espérance conditionnelle de $\varphi(\chi_g)$ par rapport à cette tribu : E (φ (χ_g) | $\mathcal{F}_{(g)}$) est définie et que γ_g ($\chi_{(g)}$) est un représentant de E (φ (χ_g) | $\widehat{\mathcal{F}}_{(g)}$).

,

2.1. Pour α fixé dans (I_n-P_s) \mathbb{R}^n , montrer que la fonction de \mathbb{R} dans \mathbb{R} :

$$\lambda \rightarrow h_s (\lambda e_s + \alpha)$$

est une densité de probabilité Gaussienne par rapport à la mesure de Lebesgue de support R.

Soit $Z_{\rm s}$ (lpha) une variable aléatoire réelle ayant cette densité.

2.2. Montrer que E ($Z_g(\alpha)$ e_g) = Q_g γ (m- α).

2.3. Montrer que cov $(z_s(\alpha) e_s) = 0_s$.

2.4. Déterminer la fonction caractéristique de ${f Z_g}(lpha)$.

Q.3. Pour tout k entier strictement positif, on note sk l'élément de

S tel que: sk = k (modulo n).

On considère une suite $(\Upsilon^k)_{k\geqslant 1}$ de vecteurs aléatoires à valeurs $\mathfrak{u}_{\mathbb{R}^n}$.

On note σ^k la plus petite sous-tribu de σ rendant mesurables $\gamma^1,\,\gamma^2,\,\ldots,\,\gamma^k$.

On pose $\alpha' = (I - P) Y^k$.

n suppose que

i) \boldsymbol{Y}^{\dagger} est Gaussien de moyenne $m+\mu^{\dagger}$, de covariance Λ^{\dagger} ;

ii) pour toute application φ mesurable et à croissance lente de \mathbb{R}^n dans \mathbb{C} ,

$$\int_{\mathbb{R}} \varphi(\lambda e_{s} + \alpha^{k}) b_{s} (\lambda e_{s} + \alpha^{k}) d\lambda$$

est un représentant de E (arphi ($m Y^{k+1}$) / $m \mathcal{G}^{k}$) .

3.1. u étant un vecteur de \mathbb{R}^n , exprimer E (exp (i $^L_u\,\gamma^{k+1})$ / \mathcal{F}^k) en fonction de γ^k .

3.2. En déduire que, pour tout k , γ^k est un vecteur gaussien à

Calculer $\mu^k = E (Y^k - m)$ et $E ((Y^k - m)^t (Y^k - m))$.

3.3. On pose, pour tout x de (Rn:

Montrer que $||\mu^k||_{\gamma}$ est une fonction décroissante de k.

3.4. Montrer que le produit :

 $(I_n-q_n^-\gamma)$... $(I_n-q_1^-\gamma)$ est une application linéaire strictement contractante pour $||\cdot||_{\gamma}$.

En déduire que lim E (Y^k) = m, puis que la suite $(Y^k)_{k\geqslant 1}$ converge en loi vers X .

3.5. Quelle est la loi de Y^k dans le cas particulier : $\mu^1 = 0 \ , \ \Lambda^1 = \Gamma \ ?$

 $\mathbb{Q},4,$ On se donne une suite $(T_k)_{k\geqslant 1}$ de réels strictement positifs telle que :

$$\lim_{k \to \infty} T_k = 0.$$

On reprend l'algorithme de la question 3 en y remplaçant la fonction

h par la fonction:

$$x \rightarrow h_k^1(x) = \sqrt{\frac{Y_s k_s^6}{T_k}} \exp \left(-\frac{1}{T_k} (x-m) + Q_{s_k} + (x-m)\right)$$

Tournez la page S.V.P.

et on suppose maintenant que, pour tout $\,k\geqslant 1\,$,

$$\int_{\mathbf{R}} \varphi \left(\lambda \, \mathbf{e}_{\mathbf{s}_{\mathbf{k}}} + \alpha^{\mathbf{k}} \right) \, \mathbf{h}_{\mathbf{k}}^{\mathbf{l}} \left(\lambda \, \mathbf{e}_{\mathbf{s}_{\mathbf{k}}} + \sigma^{\mathbf{k}} \right) \, \, d\lambda$$
 est un représentant de $\mathbb{E} \left(\varphi \left(\mathbf{Y}^{\mathbf{k+1}} \right) \, / \, \mathcal{F}_{\mathbf{k}} \right) \right)$.

Montrer que la suite $\binom{Y_k}{k \lambda_1}$ converge en probabilité vers m .

DEUXIEME PARTIE

Dans cette partie, Ω est un ensemble fini et toutes les probabilités sont définies sur $(\bigcap(\Omega),$

Etant données deux probabilités μ et ee ee ee on pose

$$|\{\mu-\nu\}| = Max |\mu(A)-\nu(A)|$$
;

rappelle que

$$| [\mu - \nu] | = \sum_{\omega \in \Omega} (\mu (\{\omega\}) - \nu (\{\omega\}))^{+}$$

$$= \frac{1}{2} \sum_{\omega \in \Omega} |\mu (\{\omega\}) - \nu (\{\omega\})|$$

où x = Max (x,0).

0.5. On appelle transition sur A une fonction P de Ax P(A)

dans [0,1] telle que, pour tout ω de Ω , la fonction A + P (ω , A) soit une probabilité; on note P ω cette probabilité.

. On pose alors
$$\Delta$$
 (P) = Max $||P_{\omega} - P_{\omega},||$.

Etant données ume probabilité μ et ume transition P , on note μ P la probabilité définie par

et on dit que µ est invariante par P si µ P = µ .

Etant données deux transitions P et $\mathfrak Q$, on note P $\mathfrak Q$ la transition

définie par :

PQ
$$(\omega,A) = \sum_{\omega' \in \Omega} P(\omega,\{\omega'\}) Q(\omega',A)$$
.

5.1. Montrer que, pour toute transition P, il existe une fonction non identiquement nulle, α , de Ω dans R telle que, pour tout ω

$$\alpha(\omega) \ = \ \sum_{\omega' \in \Omega} \alpha(\omega') \ P \ (\omega', \{\omega\}) \ .$$

Montrer que $|\alpha|$ satisfait la même équation et en déduire qu'il existe une probabilité μ invariante par P .

5.2. Montrer que quelles que soient les deux probabilités $\,\mu\,$ et $\,\nu\,$ et les deux transitions $\,P\,$ et $\,Q\,$, on a :

$$||\mu P - \nu P|| \leqslant ||\mu - \nu|| \Delta (P)$$
et $\Delta (PQ) \leqslant \Delta (P) \Delta (Q)$.

5.3. Montrer que:

$$\Delta$$
 (P) = 1 - min $\sum_{\omega_1,\omega'}$ min (P ($\omega_1^*\{\omega''\}$), P ($\omega',\{\omega''\}$)).

0.6. On considère une suite $(P^k)_k \in IN$ de transitions sur Ω et on définit la suite $(P^{k+1})_{k,k+1}$ par :

$$p^{k,k+1} = p^{k+1}$$
 et , pour $\ell \ge k+2$,
$$p^{k,k} = p^{k,k-1} p^{\ell}.$$

On dit que la suite $(P^k)_k \in \mathbb{N}$ est faiblement ergodique si, pour tout k de \mathbb{N}

$$\lim_{k \to \infty} \Delta (p^{k,k}) = 0.$$

On dit que la suite $(P^k)_{k\in IN}$ est fortement ergodique s'il existe une probabilité ν , telle que, pour toute probabilité μ et pour tout k dans IN , on ait :

$$\lim_{k \to \infty} ||\mu|^{p^{k}, k} - \nu|| = 0.$$

6.1. Montrer que $(P^k)_k \in D_N$ est faiblement ergodique si et seulement si, quelles que soient les deux probabilités μ et ν et l'entier k , on a

6.2. Soit, pour tout k dans D^k , ν_k une probabilité invariante par P^k . Montrer que, si $\left.\left.\left.\left.\left.\left|\right.\right|\right.\right|_{V_k+1}-\nu_k\right|\right|$ converge, et si $(P^k)_k\in\mathbb{C}_!$ est faiblement ergodique, alors $(P^k)_k\in\mathbb{D}_k$ est fortement ergodique.

Q.7. Dans cette question, Ω est l'ensemble des applications d'un ensemble S de cardinal fini n dans un ensemble fini $E:\Omega=E^S$; on note $(\omega_g)_g \in S$ un élément de Ω .

A toute fonction H de R dans R, et à tout réel strictement positif T, on associe la probabilité $\mu_{\rm H,T}$ définie par

$$L_{H,T}$$
 ({\pi}) = $C_{H,T}$ exp (- $\frac{H(\omega)}{T}$).

 $C_{H,T}$ = $\frac{1}{\omega \in \Omega}$ exp (- $\frac{H(\omega)}{T}$).

avec

Pour chaque s de S , on associe à tout ω de Ω sa restriction $\omega_{(g)}$ à S \setminus {s} (complémentaire de [s] dans S) :

$$\omega_{(s)} = (\omega_j)_{j \in S \setminus \{s\}}$$
.

et la fonction H définie sur E x $\mathbb{E}^{S\setminus\{s\}}$ par :

On associe à H_g la transition T sur A définie par :

$$\pi_{s}^{T} (\omega, \{\omega^{i}\}) = \begin{cases} C_{s,T} & \exp\left(-\frac{H_{s} (\omega_{s}^{i} \cdot \omega_{(s)}^{i})}{T}\right) \sin \omega_{(s)} = \omega_{(s)}^{i} \\ 0 & \sin \omega_{(s)} \neq \omega_{(s)}^{i} \end{cases}$$

où Ca,T ne dépend pas de ws .

Pour une énumération $\{s_1, s_2, \dots, s_n\}$ de S, on pose $p^T = T$

7.1. Montrer que $\mu_{H,T}$ est invariante par P^T .

7.2. On note Ω_o le sous-ensemble de Ω sur lequel H est minimum : $\omega_o \text{ appartient à } \Omega_o \text{ si et seulement si H } (\omega_o) \text{ min H } (\omega),$ $\omega \in \Omega$ Soit μ_o la probabilité uniforme sur Ω_o ; montrer que :

7.3. Montrer qu'il existe un nombre réel $\delta \geqslant 0$, ne dépendant que de H, tel que Δ (P^T) \leqslant 1 - exp $(-\frac{n\delta}{T})$.

7.4. En déduire l'existence d'un nombre $\gamma>0$ tel que, pour toute suite décroissante $(T_k)_k\in G_k$ de réels >0 satisfaisant $\lim_{k\to 0} T_k = 0 \text{ et , pour tout } k\geqslant 2, \ T_k\geqslant \frac{\gamma}{\ell n}_k,$ la suite $(P^k)_k\in G_k$ est fortement ergodique.

14