Index

1.0 : Understanding CIDR Notation	2
VPC CIDR calculations :	3
1. VPC CIDR Block: 10.0.0.0/16	3
2. Public Subnet 1: 10.0.1.0/24	3
3. Public Subnet 2: 10.0.2.0/24	3
4. Private Subnet: 10.0.3.0/24	4
Summary	4
2.0: Where did this come from 2 [^] ??	5
Explanation of the Expression	5
Why 2^?	5
Applying It:	6
3.0: Calculate a subnet that provides exactly 25 usable IP addresses :	7
Step 1: Determine the Total IPs Needed	7
Step 2: Calculate the Minimum Subnet Size	7
Step 3: Find the Closest Power of 2 Greater Than 30	7
Step 4: Determine the CIDR Notation	7
Summary	7
Example	8

1.0 : Understanding CIDR Notation

Before we begin, let's cover the basics of CIDR (Classless Inter-Domain Routing) notation. CIDR is a way to represent IP addresses and their associated routing information.

A CIDR block is represented as a.b.c.d/n, where:

- a.b.c.d is the IP address
- n is the number of bits (or "prefix length") that are fixed and used for routing

For example, 10.0.0.0/16 represents an IP address range from 10.0.0.0 to 10.0.255.255. The /16 means that the first 16 bits (or "prefix length") are fixed used for network portion, and the remaining bits are available for host addressing.

Network Portion:

Determined by the first n bits of the IP address.

Host Portion:

The remaining bits after the network portion.

VPC CIDR calculations:

1. VPC CIDR Block: 10.0.0.0/16

- Total IP Addresses:
 - The /16 CIDR block provides 2^(32-16) IP addresses.
 - o 2^16 = 65,536 IP addresses.
 - o This range is from 10.0.0.0 to 10.0.255.255.

2. Public Subnet 1: 10.0.1.0/24

- Total IP Addresses:
 - The /24 CIDR block provides 2^(32-24) IP addresses.
 - \circ 2^8 = 256 IP addresses.
 - This range is from 10.0.1.0 to 10.0.1.255.
- Usable IP Addresses:
 - o AWS reserves 5 IP addresses in each subnet for its own use:
 - Network address: 10.0.1.0
 - VPC router: 10.0.1.1
 - Reserved for AWS DNS: 10.0.1.2
 - Reserved for future use: 10.0.1.3
 - Broadcast address: 10.0.1.255
 - Usable IP addresses: 256 5 = 251 IP addresses.
- 3. Public Subnet 2: 10.0.2.0/24
 - Total IP Addresses:
 - The /24 CIDR block provides 2^8 = 256 IP addresses.
 - o This range is from 10.0.2.0 to 10.0.2.255.

Usable IP Addresses:

Usable IP addresses: 256 - 5 = 251 IP addresses.

4. Private Subnet: 10.0.3.0/24

- Total IP Addresses:
 - The /24 CIDR block provides 2^8 = 256 IP addresses.
 - This range is from 10.0.3.0 to 10.0.3.255.
- Usable IP Addresses:
 - Usable IP addresses: 256 5 = 251 IP addresses.

Summary

- **VPC**: 10.0.0.0/16 provides 65,536 IP addresses.
- Public Subnet 1: 10.0.1.0/24 provides 256 IP addresses, with 251 usable.
- Public Subnet 2: 10.0.2.0/24 provides 256 IP addresses, with 251 usable.
- Private Subnet: 10.0.3.0/24 provides 256 IP addresses, with 251 usable.

Each subnet has been allocated 256 IP addresses (/24), which is generally sufficient for small to medium-sized deployments. The usable IPs (251 per subnet) are those available for EC2 instances, load balancers, etc.

2.0: Where did this come from 2[^]??

Explanation of the Expression

1. IPv4 Addresses:

- An IPv4 address is 32 bits long, represented in dotted decimal format like 192.168.0.1.
- Each part of the IP address (e.g., 192) is 8 bits, so four parts make up the 32 bits.

2. CIDR Notation:

- o CIDR notation (like /16) indicates how many bits are used for the network portion of the IP address.
- The remaining bits are used for host addresses within that network.

3. Calculating the Number of IP Addresses:

- o If you have a /16 CIDR block, it means the first 16 bits are used for the network portion, and the remaining 16 bits are for host addresses.
- o The number of host addresses available is determined by the number of bits left for the hosts.

4. Formula:

To calculate the number of possible IP addresses for a given CIDR block, use the formula:

Number of IP addresses = $2^{(32 - \text{network bits})}$

For a /16 CIDR block:

Number of IP addresses = $2^{(32 - 16)} = 2^{16} = 65,536$

This means a /16 block can have 65,536 unique IP addresses.

Why 2^?

Binary System:

- o IP addresses are represented in binary (base 2), so each bit can be either 0 or 1.
- o If you have n bits, you can represent 2^n different combinations.

Applying It:

• /24 CIDR Block:

o For a /24 CIDR block, the calculation would be: 2^32-24=28=256 IP addresses

So, the 2^h in 2^h (32-16) refers to the binary nature of IP addresses and the total number of possible addresses that can be generated with the remaining bits after the network portion is specified.

3.0: Calculate a subnet that provides exactly 25 usable IP addresses:

Step 1: Determine the Total IPs Needed

• Total IPs Required: 25 usable IPs.

Step 2: Calculate the Minimum Subnet Size

- **Subnet Size Formula:** 2ⁿ, where n is the number of bits in the host portion.
- Subtract Reserved IPs: AWS reserves 5 IP addresses in each subnet, so you'll need at least 30 IP addresses in total to get 25 usable ones.
 - Minimum Total IPs: 25 + 5 = 30 IP addresses.

Step 3: Find the Closest Power of 2 Greater Than 30

- The closest power of 2 that is greater than 30 is **32**.
- Number of Bits for Host Portion: 2⁵=32 IP addresses.
 - So, 5 bits are required for the host portion.

Step 4: Determine the CIDR Notation

- An IPv4 address is 32 bits long.
- If 5 bits are used for the host portion, then 32–5=27 bits are used for the network portion.
- **CIDR Notation:** /27 provides 2^5 = 32 total IPs, with 25 usable.

Summary

- CIDR Block: /27
- **Total IP Addresses: 32**
- Usable IP Addresses: 25 (after accounting for AWS-reserved IPs).

Example

If your VPC CIDR block is 10.0.0.0/16:

- Subnet CIDR: 10.0.0.0/27
 - o IP Range: 10.0.0.0 to 10.0.0.31
 - o Usable IPs: 10.0.0.1 to 10.0.0.30 (after excluding the network address 10.0.0.0 and broadcast address 10.0.0.31).