Due Wednesday, November 3, 2021. Write all complex number and polynomials in standard form.

Definition 1. Recall that a polynomial is *monic* if its leading coefficient is 1.

Problem 1. Let z = 5 + 3i.

- (a) Compute $z + \overline{z}$.
- **(b)** Compute $z\overline{z}$.
- (c) Find a monic polynomial f such that f(z) = 0.

Problem 2. Solve the following quadratic equations. Write the solution set.

- (a) $x^2 + 9 = 0$ (extract the square root)
- **(b)** $x^2 + 8x + 16 = 0$ (its a perfect square)
- (c) $x^2 5x 15 = 0$ (factor)
- (d) $3x^2 = 7x 11$ (quadratic formula)

Definition 2. Let f and g be polynomials. We say that f divides g, and write $f \mid g$, if there exists a polynomial g such that g = fq.

If $f \mid g$, we may say that f is a factor of g, or that g is a multiple of f.

Proposition 1. (Factor Theorem)

Let g(x) be a polynomial and let $a \in \mathbb{C}$. Let f(x) = x - a. Then f is a factor of g if and only if g(a) = 0.

Problem 3. Write a monic polynomial f with real coefficients such that f(1) = 0 and f(i) = 0

Problem 4. Write a polynomial g with integer coefficients such that g(5) = 0 and $g\left(\frac{2}{3}\right) = 0$.

Problem 5. Let $f(x) = x^5 + 4x^3 - 8x + 3$.

(a) Find the remainder when f(x) is divided by 2.

(b) Find the remainder when f(x) is divided by -1.

(c) Find the remainder when f(x) is divided by x^2 .