Protocol Verification

A Brief Introduction to Model Checking and Temporal Logic

Andrés Goens (U. of Amsterdam) SPLV 2024 @ Strathclyde

Motivation

Motivation 2/60

Protocol Verification?

Motivation 3/60

Protocols

Examples of protocols

Distributed systems (e.g. paxos)

Motivation 4/60

Protocols

Examples of protocols

Distributed systems (e.g. paxos)

Hardware (e.g. cache coherence)

Motivation 4/60

Protocols

Examples of protocols

Distributed systems (e.g. paxos)

Hardware (e.g. cache coherence)

Cryptographic protocols (e.g. TLS)

Motivation 4/60

Verification

Examples of properties

Fairness

Motivation 5/60

Verification

Examples of properties

Fairness

Deadlock-freedom

Motivation 5/60

Verification

Examples of properties

Fairness

Deadlock-freedom

Safety

Motivation 5/60

Protocol Verification

What this course is about

Motivation 6/60

Protocol Verification

What this course is about

Motivation 6/60

Overview of the course

What you will (hopefully) know by the end

- Labeled transition systems (LTS)
- Modeling languages (promela)
- (Propositional) Linear Temporal Logic (LTL)
- Examples!

Motivation 7/60

Overview of the course

What you will (hopefully) know by the end

- Labeled transition systems (LTS)
- Modeling languages (promela)
- (Propositional) Linear Temporal Logic (LTL)
- Examples!

What you will *not* (necessarily) know by the end

- Other logics (e.g. CTL*, μ calculus)
- How model checking works internally (decision procedures)

Motivation 7/60

Modelling Protocols

Modelling Protocols 8/60

Labeled Transition Systems

Definition (Labeled Transition Systems)

A labeled transition system is a tuple of the form $(S, \operatorname{Act}, \to, S_0, \operatorname{AP}, L)$, where S is a set of states, $S_0 \subseteq S$ a subset of initial states, Act is a set (of actions), $\to \subseteq \operatorname{Act} \times S \times S$ is a (transition) relation, AP is a set (of atomic propositions) and $L: S \to \operatorname{Pow}(\operatorname{AP})$ is a (labeling) function.

Modelling Protocols 9/60

Example: Traffic Light

Modelling Protocols 10/60

Example: Traffic Light

Modelling Protocols 10/60

Example: Traffic Light

- ▶ $S = \{\text{red}, \text{green}, \text{yellow}\}, S_0 = \text{red}$
- Act = $\{*\}$
- $\rightarrow = \{(*, \mathsf{red}, \mathsf{green}), (*, \mathsf{green}, \mathsf{yellow}), (*, \mathsf{yellow}, \mathsf{red})\}$
- \triangleright AP = $L = \emptyset$.

Two Traffic Lights

Modelling Protocols 11/60

Two Traffic Lights

- Act = $\{\epsilon, \text{ button pressed}, \text{ no button pressed}\}$
- AP = {Pedestrians can go, Cars can go}
- L = cars: red, walk: green \mapsto {Pedestrians can go},...

Modelling Protocols 11/60

Interleaving

Two traffic lights ↔ One LTS

Modelling Protocols 12/60

Interleaving

Two traffic lights ↔ One LTS

Definition (Interleaving)

Let $TS_i = (S_i, \operatorname{Act}_i, \to_i, S_{0,i}, \operatorname{AP}_i, L_i), i = 1, 2$ be two transition systems. We define the transition system $TS_1 \parallel TS_2 := (S_1 \times S_2, \operatorname{Act}_1 \times \operatorname{Act}_2, \to, S_{0,1} \times S_{0,2}, \operatorname{AP}_1 \cup \operatorname{AP}_2, L_1 \times L_2)$, where $L_1 \times L_2 : S_1 \times S_2 \to \operatorname{Pow}(\operatorname{AP}_1 \cup \operatorname{AP}_2)$ is defined as $(L_1 \times L_2)(s_1, s_2) = L_1(s_1) \cup L_2(s_2)$ and \to is defined by

$$\frac{s_1 \to_1^{\alpha} s_1'}{(s_1, s_2) \to^{\alpha} (s_1', s_2)} \qquad \frac{s_2 \to_2^{\alpha} s_2'}{(s_1, s_2) \to^{\alpha} (s_1, s_2')} \ .$$

We call this construction the *interleaving* of TS_1 and TS_2 .

Modelling Protocols 12/60

Interleaving

Two traffic lights ↔ One LTS

Definition (Interleaving)

Let $TS_i = (S_i, \operatorname{Act}_i, \to_i, S_{0,i}, \operatorname{AP}_i, L_i), i = 1, 2$ be two transition systems. We define the transition system $TS_1 \parallel TS_2 := (S_1 \times S_2, \operatorname{Act}_1 \times \operatorname{Act}_2, \to, S_{0,1} \times S_{0,2}, \operatorname{AP}_1 \cup \operatorname{AP}_2, L_1 \times L_2)$, where $L_1 \times L_2 : S_1 \times S_2 \to \operatorname{Pow}(\operatorname{AP}_1 \cup \operatorname{AP}_2)$ is defined as $(L_1 \times L_2)(s_1, s_2) = L_1(s_1) \cup L_2(s_2)$ and \to is defined by

$$\frac{s_1 \to_1^{\alpha} s_1'}{(s_1, s_2) \to^{\alpha} (s_1', s_2)} \qquad \frac{s_2 \to_2^{\alpha} s_2'}{(s_1, s_2) \to^{\alpha} (s_1, s_2')} \ .$$

We call this construction the *interleaving* of TS_1 and TS_2 .

Note that this means the two TS are independent

Modelling Protocols 12/60

Example: Intearleaving

Modelling Protocols 13/60

Example: Intearleaving

Modelling Protocols 13/60

Parallel Composition

Definition (Handshake)

Let $TS_i = (S_i, \operatorname{Act}_i, \to_i, S_{0,i}, \operatorname{AP}_i, L_i), i = 1, 2$ be two transition systems and $H \subseteq \operatorname{Act}_1 \cap \operatorname{Act}_2$. We define the transition system $TS_1 \parallel_H TS_2 := (S_1 \times S_2, \operatorname{Act}_1 \times \operatorname{Act}_2, \to S_{0,1} \times S_{0,2}, \operatorname{AP}_1 \cup \operatorname{AP}_2, L_1 \times L_2)$, where \to is defined by:

$$\frac{s_1 \to_1^{\alpha} s_1' \quad \alpha \notin H}{(s_1, s_2) \to^{\alpha} (s_1', s_2)} \quad \frac{s_2 \to_1^{\alpha} s_2' \quad \alpha \notin H}{(s_1, s_2) \to^{\alpha} (s_1, s_2')}$$

$$\frac{s_1 \to_1^{\alpha} s_1' \quad s_1 \to_1^{\alpha} s_1' \quad \alpha \in H}{(s_1, s_2) \to^{\alpha} (s_1', s_2')}$$

We call this the parallel composition with handshake H. When $H = Act_1 \cap Act_2$, we omit H.

Two Traffic Lights, revisited

Modelling Protocols 15/60

Two Traffic Lights, revisited

Modelling Protocols 15/60

Concurrency: Message Passing

Modelling Protocols 16/60

Concurrency: Message Passing

Modelling Protocols 16/60

Concurrency: Message Passing

Assumption: atomicity of read-modify-writes here. Reasonable?

Modelling Protocols 16/60

MSI Cache Coherency Protocol

Modelling Protocols 17/60

MSI Cache Coherency Protocol

Source: Nagarajan, Vijay, et al. A primer on memory consistency and cache coherence. Springer Nature, 2020.

Modelling Protocols 17/60

State Graph

 $TS \neq Graphs$

Modelling Protocols 18/60

State Graph

- **▶** TS ≠ Graphs
- Visualization (graphs): very useful!

Modelling Protocols 18/60

State Graph

- ightharpoonup TS \neq Graphs
- Visualization (graphs): very useful!

Definition (Predecessors/Successors)

Let $TS = (S, \mathsf{Act}, \to, S_0, \mathsf{AP}, L)$ be a transition system. For $s \in S, \alpha \in \mathsf{Act}$, we define $\mathsf{Post}(s, \alpha) := \{s' \in S \mid s \to^\alpha s'\}, \mathsf{Post}(s) := \bigcup_{\alpha \in \mathsf{Act}} \mathsf{Post}(s, \alpha)$ as the successors of s, and similarly Pre for the predecessors.

Modelling Protocols 18/60

State Graph

- **TS** ≠ Graphs
- Visualization (graphs): very useful!

Definition (Predecessors/Successors)

Let $TS = (S, \mathsf{Act}, \to, S_0, \mathsf{AP}, L)$ be a transition system. For $s \in S, \alpha \in \mathsf{Act}$, we define $\mathsf{Post}(s, \alpha) := \{s' \in S \mid s \to^\alpha s'\}, \mathsf{Post}(s) := \bigcup_{\alpha \in \mathsf{Act}} \mathsf{Post}(s, \alpha)$ as the successors of s, and similarly Pre for the predecessors.

Definition (State Graph)

Let $TS = (S, \mathsf{Act}, \to, S_0, \mathsf{AP}, L)$ be a transition system. We call the directed graph G(TS) = (S, E) the state graph of TS, where $E = \{s, s' \in S \times S \mid s \in S, s' \in \mathsf{Post}(s)\}$

Path Fragments

Definition (Path fragments)

Let $TS = (S, \operatorname{Act}, \to, S_0, \operatorname{AP}, L)$ be a transition system. A sequence $\pi = \pi_0 \pi_1 \pi_2 \ldots \in (S)_{\mathbb{N}}$ is called a *path fragment* if $\pi_{i+1} \in \operatorname{Post}(\pi_i) \forall i \in \mathbb{N}$. It is called *finite* if it is a finite sequence $(\pi_i)_{i=0}^N$ instead.

For a path fragment π , we denote the *i*-th element by $\pi[i]$ and similarly the sub-sequence $(\pi_k)_{k=i}^j$ by $\pi[i..j]$

Modelling Protocols 19/60

Path Fragments

Definition (Path fragments)

Let $TS = (S, \operatorname{Act}, \to, S_0, \operatorname{AP}, L)$ be a transition system. A sequence $\pi = \pi_0 \pi_1 \pi_2 \ldots \in (S)_{\mathbb{N}}$ is called a *path fragment* if $\pi_{i+1} \in \operatorname{Post}(\pi_i) \forall i \in \mathbb{N}$. It is called *finite* if it is a finite sequence $(\pi_i)_{i=0}^N$ instead.

For a path fragment π , we denote the i-th element by $\pi[i]$ and similarly the sub-sequence $(\pi_k)_{k=i}^j$ by $\pi[i..j]$

 $Sequences\ of\ transitions = path\ framgents\ through\ the\ state\ graph$

Modelling Protocols 19/60

Paths

Definition (Initial path fragment)

A path fragment π is called *initial*, if it starts at an initial statei, i.e. $\pi_0 \in S_0$.

Modelling Protocols 20/60

Paths

Definition (Initial path fragment)

A path fragment π is called *initial*, if it starts at an initial statei, i.e. $\pi_0 \in S_0$.

Definition (Maximal path fragment)

A path fragment π is called a maximal, if it is not a proper prefix $\pi \subsetneq \pi'$ of another path fragment π' , i.e. it cannot be extended.

Modelling Protocols 20/60

Paths

Definition (Initial path fragment)

A path fragment π is called *initial*, if it starts at an initial statei, i.e. $\pi_0 \in S_0$.

Definition (Maximal path fragment)

A path fragment π is called a maximal, if it is not a proper prefix $\pi \subsetneq \pi'$ of another path fragment π' , i.e. it cannot be extended.

Definition (Path)

A path fragment π is called a *path* if it is initial and maximal.

Modelling Protocols 20/60

Example: Paths in Traffic Light

A Typical Traffic Light in the UK?

Modelling Protocols 21/60

Example: Paths in Traffic Light

A Typical Traffic Light in the UK?

Non-example

Modelling Protocols 21/60

Finite vs Infinite Paths

finite path fragments can be extended to infinite ones, but...

Modelling Protocols 22/60

Finite vs Infinite Paths

finite path fragments can be extended to infinite ones, but...

Modelling Protocols 22/60

Finite vs Infinite Paths

finite path fragments can be extended to infinite ones, but...

$$\mathsf{Post}(s) = \emptyset$$

End States

Modeling end states with infinite paths

Modelling Protocols 23/60

End States

Modeling end states with infinite paths

Assumption

For the rest of this course we assume no end states s with $Post(s) = \emptyset$.