Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u> <i>M 3102</i></u>	К работе допущен
Студент <u> Фадеев Артием Втилиции</u> ва	ИРабота выполнена
Преподаватель <u> Јерги Д.В.</u>	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.09

Masmuur Dogsteka

- 1. Цель работы:
 - Проверка основного закона динамики вращения.
 - Проверка зависимости момента инерции от положения масс относительно оси вращения.
- 2. Задачи, решаемые во время выполнения работы:
 - Изучение виртуальной установки.
 - Проведение измерений с различным количеством шайб и на разных рисках.
 - Вычисление соответствующих значений по приведенным формулам.
 - Построение графиков зависимости.
 - Вывод.
- 3. Объект исследования.
 - Маятник Обербека.
- 4. Метод экспериментального исследования.
 - Изучение виртуальной лабораторной установки, проведение измерений.
- 5. Рабочие формулы и исходные данные.

$$a = \frac{2h}{t^2}$$
, $\varepsilon = \frac{2a}{d}$, $M = \frac{md}{2}(g-a)$. $I\varepsilon = M - M_{\text{Tp}}$. $I = I_0 + 4m_{\text{yr}}R^2$, $R = l_1 + (n-1)l_0 + \frac{1}{2}b$.

Масса груза: $m = \{0,1; 0,3; 0,5; 0,7\}$ кг

Положение утяжелителей: $R = \{0,03; 0,07; 0,11; 0,15; 0,19; 0,23\}$ м

Диаметр ступицы: d = 0,046 м

Расстояние пройденное грузом: h = 0,7 м

6. Измерительные приборы:

Nº n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Хронометр		0,005 c

7. Схема установки:

Рис. 2. Стенд лаборатории механики (общий вид): I — основание; 2 — рукоятка сцепления крестовин; 3 — устройство принудительного трения; 4 — поперечина; 5 — груз крестовины; 6 — трубчатая направляющая; 7 — передняя крестовина; 8 — задняя крестовина; 9 — шайбы каретки; 10 — каретка; 11 — система передних стоек.

8. Результаты прямых измерений и их обработки:

			Положение ут	яжелителей, м		
Масса груза, кг	0,03	0,07	0,11	0,15	0,19	0,23
	7,13	9,04	11,73	14,76	17,98	21,28
	7,13	9,04	11,73	14,76	17,98	21,29
0,1	7,14	9,05	11,72	14,77	17,98	21,29
	7,133	9,043	11,727	14,763	17,980	21,287
	3,35	4,23	5,48	6,9	8,4	9,94
	3,35	4,24	5,49	6,9	8,4	9,95
0,3	3,35	4,23	5,48	6,9	8,4	9,95
	3,350	4,233	5,483	6,900	8,400	9,947
	2,52	3,18	4,12	5,18	6,3	7,46
	2,51	3,18	4,12	5,18	6,3	7,46
0,5	2,52	3,19	4,12	5,18	6,29	7,45
	2,517	3,183	4,120	5,180	6,297	7,457
	2,12	2,66	3,44	4,32	5,25	6,23
0.7	2,11	2,66	3,43	4,33	5,26	6,21
0,7	2,11	2,66	3,43	4,32	5,25	6,23
	2,113	2,660	3,433	4,323	5,253	6,223

На пересечении массы и положения утяжелителя показаны результаты времени, полученные в процессе 3 измерений и вычисленное по ним среднее значение.

9. Расчет результатов косвенных измерений.

		a = 2	h / t^2		
0,0275	0,0171	0,0102	0,0064	0,0043	0,0031
0,1247	0,0781	0,0466	0,0294	0,0198	0,0142
0,2210	0,1382	0,0825	0,0522	0,0353	0,0252
0,3135	0,1979	0,1188	0,0749	0,0507	0,0361
		ε = 2	2a / d		
1,1962	0,7443	0,4426	0,2793	0,1883	0,1343
5,4239	3,3965	2,0245	1,2785	0,8627	0,6152
9,6106	6,0067	3,5860	2,2685	1,5352	1,0947
13,6290	8,6027	5,1638	3,2566	2,2056	1,5716
		M = md('g - a) / 2		
0,0225	0,0225	0,0225	0,0225	0,0225	0,0225
0,0668	0,0671	0,0673	0,0674	0,0675	0,0675
0,1102	0,1111	0,1118	0,1121	0,1123	0,1124
0,1527	0,1546	0,1559	0,1566	0,1570	0,1572

	1/ - 1/	1 /-	
	N/ = N/	mp + lε	
1	Mmp	Mavg	εavg
0,0105	0,0099	0,0880	7,4649
0,0168	0,0100	0,0888	4,6876
0,0283	0,0101	0,0894	2,8042
0,0450	0,0099	0,0897	1,7707
0,0666	0,0100	0,0898	1,1980
0,0937	0,0099	0,0899	0,8540

I = I0 + 4mR^2				
4m	10	lavg	R^2avg	
1,60021	0,00897	0,04348	0,02157	

Значения Мтр, І, ІО, тгр получаем в результате применения МНК.

$$\overline{x} = \frac{1}{n} \sum x_i$$
; $\overline{y} = \frac{1}{n} \sum y_i$.

3. Найти коэффициенты прямой по следующим формулам:

$$b = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}; \qquad a = \overline{y} - b\overline{x}.$$

Где a, b - коэффициенты y = a + bx

10. Расчет погрешностей для прямых и косвенных измерений.

Погрешности для tcp1		
S <t></t>	0,00136	
t(a, n)	4,3	
Случайная	0,005852	
Инструм.	0,005	
Абсолютная	0,0036	
Относит.	0,05%	

Абсолютные погрешности ускорения, углового ускорения и момента силы натяжения нити рассчитываем вот так:

$$\Delta_z = \sqrt{\left(\frac{\partial f}{\partial a}\Delta_a\right)^2 + \left(\frac{\partial f}{\partial b}\Delta_b\right)^2 + \left(\frac{\partial f}{\partial c}\Delta_c\right)^2 + \dots},$$

где Δa , Δb , Δc - значения абсолютных погрешностей прямо измеряемых величин.

∆a = ∣	$df / dt * \Delta t = (2h)$	/t^2)' * ∆t = -4h∆	t / t^3
Δa	0,0000277736		
$\Delta \epsilon = df / dt $	* \Delta t = (4h / (d *	t^2))' * Δt = -8hΔ	\t / (d * t^3)
Δε	0,0012075490		
$\Delta M = df/dt $	* Δt = (md(g - 2h	/t^2)) / 2)' * ∆t =	2mdh∆t / t^3
ΔM	0,0000000913		

11. Графики

12. Вывод

В ходе выполнения лабораторной работы были проведены исследования с маятником Обербека. Мы убедились в том, что между моментом вращения и угловым ускорением линейная зависимость, где угловой коэффициент графика – момент инерции крестовины маятника, а также установили линейную зависимость момента инерции тела от квадрата расстояния утяжелителей до оси вращения, где угловой коэффициент графика – сумма масс четырех утяжелителей.