System Dynamics and Vibrations

Prof. Gustavo Alonso

Chapter 2: Concepts from vibrations

Exercises

School of General Engineering Beihang University (BUAA)

 A hoisting drum, carrying a steel wire rope, is mounted at the end of a cantilever beam as shown in the figure. Determine the equivalent spring constant of the system when the suspended length of the wire rope is 1. Assume that the net crosssectional diameter of the wire rope is *d* and the Young's modulus of the beam and the wire rope is E.

$$k_{b} = \frac{3EI}{b^{3}} = \frac{3E}{b^{3}} \left(\frac{1}{12}at^{3}\right) = \frac{Eat^{3}}{4b^{3}}$$

$$k_{r} = \frac{AE}{l} = \frac{\pi d^{2}E}{4l}$$

$$\frac{1}{k_{eq}} = \frac{1}{k_{b}} + \frac{1}{k_{r}} = \frac{Eat^{3}}{4b^{3}} + \frac{\pi d^{2}E}{4l}$$

$$k_{eq} = \frac{E}{4} \left(\frac{\pi at^{3}d^{2}}{\pi d^{2}b^{3} + lat^{3}}\right)$$

 The boom AB of the crane shown in the figure is a uniform steel bar of length 10 m and area of cross section 2500 mm². A weight W is suspended while the crane is stationary. The cable CDEBF is made of steel and has a crosssectional area of 100 mm² Neglecting the effect of the cable CDEB, find the equivalent spring constant of the system in the vertical direction.

$$l_{1}^{2} = 3^{2} + 10^{2} - 2 \cdot 3 \cdot 10 \cos 135^{\circ} \Rightarrow l_{1} = 12.3055 \text{m}$$

$$l_{1}^{2} + 3^{2} - 2l_{1} \cdot 3 \cos \theta = 10^{2} \Rightarrow \theta = 35.0736^{\circ}$$

$$V = \frac{1}{2} k_{1} \left[x \cos \left(90^{\circ} - \theta \right) \right]^{2} + \frac{1}{2} k_{2} \left[x \cos \left(90^{\circ} - 45^{\circ} \right) \right]^{2}$$

$$k_{1} = \frac{A_{1} E_{1}}{l_{1}} = 1.6822 \cdot 10^{6} \text{ N/m}$$

$$k_{2} = \frac{A_{2} E_{2}}{l_{2}} = 5.1750 \cdot 10^{7} \text{ N/m}$$

$$V_{eq} = \frac{1}{2} k_{eq} x^{2}$$

$$V = V_{eq} \Rightarrow k_{eq} = 26.4304 \cdot 10^{6} \text{ N/m}$$

$$l_{1}, k_{1}$$

$$W$$

$$l_{2} = 10 \text{ m}, k_{2}$$

$$W$$

• A hinged rigid bar of length I is connected by two springs of stiffnesses k_1 and k_2 and and is subjected to a force F as shown in the figure. Assuming that the angular displacement of the bar (θ) is small, find the equivalent spring constant of the system that relates the applied force F to the resulting displacement X.

$$k_1 x_1 + k_2 x_2 = F$$

$$x_1 = l_1 \theta$$

$$x_2 = l_2 \theta$$

$$x = l \theta$$

$$F = k_1 \left(\frac{x_1 l_1}{l}\right) + k_2 \left(\frac{x_2 l_2}{l}\right)$$

$$k_1 x_1 + k_2 \left(\frac{x_2 l_2}{l}\right)$$

$$F = k_1 \left(\frac{x_1 l_1}{l}\right) + k_2 \left(\frac{x_2 l_2}{l}\right)$$
$$F = k_{eq} x$$

$$\Rightarrow k_{eq} = k_1 \left(\frac{l_1}{l}\right)^2 + k_2 \left(\frac{l_2}{l}\right)^2$$

Another method:

Work done by F = Potential energy of springs

$$\frac{1}{2}Fx = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_2x_2^2$$

• Find the equivalent mass of the system shown in the figure, where the rigid link 1 is attached to the pulley and rotates with it.

 Assumption: small displacements: the equivalent mass can be determined using the equivalence of the kinetic energies of the two systems

Motion:

 Assumption: small displacements: the equivalent mass can be determined using the equivalence of the kinetic energies of the two systems

No slip

Rigid link 2 (mass m_2)

19

$$T = \frac{1}{2} m \dot{x}^2 + \frac{1}{2} J_p \dot{\theta}_p^2 + \frac{1}{2} J_1 \dot{\theta}_1^2 + \frac{1}{2} m_2 \dot{x}_2^2 + \frac{1}{2} J_c \dot{\theta}_c^2 + \frac{1}{2} m_c \dot{x}_2^2$$

$$J_c = \frac{1}{2} m_c r_c^2$$

$$J_1 = \frac{1}{3} m_1 l_1^2$$
Rigid link 1 (mass m_1).
Cylinder, mass m_2

 Assumption: small displacements: the equivalent mass can be determined using the equivalence of the kinetic energies of the two systems

$$T = \frac{1}{2} m_{eq} \dot{x}^2 \Rightarrow m_{eq} = m + \frac{J_p}{r_p^2} + \frac{1}{3} \frac{m_1 l_1^2}{r_p^2} + \frac{m_2 l_1^2}{r_p^2} + \frac{1}{2} \frac{m_c l_1^2}{r_p^2} + m_c \frac{l_1^2}{r_p^2}$$
Pulley, mass moment of inertia J_p
Rigid link 1 (mass m_1).

Rigid link 1 (mass m_1).

Rigid link 2 (mass m_2)

Rigid link 2 (mass m_2)

• Consider two parallel plates separated by a distance *h*, with a fluid of viscosity between the plates. Derive an expression for the damping constant when one plate moves with a velocity *v* relative to the other as shown in the figure.

 According to Newton s law of viscous flow, the shear stress developed in the fluid layer at a distance y from the fixed plate is given by:

$$\tau = \mu \frac{du}{dy}$$

$$F = \tau A = \frac{\mu A v}{h}$$

$$F = cv$$

$$C = \frac{\mu A}{h}$$