Bounded Poincaré operators for BGG complexes

Kaibo Hu

University of Oxford

Joint work with Andreas Čap (Vienna)

Seminar at Chinese Academy of Sciences November 14, 2022

1 Review: BGG construction

2 Bounded Poincaré operators

Review: BGG construction

2 Bounded Poincaré operators

Basic homological algebra

$$\cdots \longrightarrow V^{i-1} \xrightarrow{d^{i-1}} V^i \xrightarrow{d^i} V^{i+1} \longrightarrow \cdots$$

 V^i : vector spaces, d^i : linear (or nonlinear) operators

- complex: $d^i V^i \subset V^{i+1}$, $d^{i+1} \circ d^i = 0$, $\forall i$, (implies $\Re(d^{i-1}) \subset \Re(d^i)$)
- exact: $\mathcal{N}(d^i) = \mathcal{R}(d^{i-1})$,
- cohomology (when d is linear): $\mathcal{H}^i := \mathcal{N}(d^i)/\mathcal{R}(d^{i-1})$.

$$0 \longrightarrow \mathit{C}^{\infty}(\Omega) \xrightarrow{\mathsf{grad}} \mathit{C}^{\infty}(\Omega;\mathbb{R}^3) \xrightarrow{\mathsf{curl}} \mathit{C}^{\infty}(\Omega;\mathbb{R}^3) \xrightarrow{\mathsf{div}} \mathit{C}^{\infty}(\Omega) \longrightarrow 0.$$

Raviart-Thomas, Nédélec in numerical analysis, Whitney forms for topology. Finite element exterior calculus (FEEC): cohomological framework for studying numerical methods. (c.f., Arnold, Falk, Winther 2006, Arnold 2018)

A cohomological approach: elasticity complex

$$\mathbb{V} := \mathbb{R}^3 \text{ vectors, } \mathbb{S} := \mathbb{R}^{3\times3}_{\text{sym}} \text{ symmetric matrices}$$

$$\operatorname{def} u := 1/2(\nabla u + \nabla u^T), \quad (\operatorname{def} u)_{ij} = 1/2(\partial_i u_j + \partial_j u_i).$$

$$\operatorname{inc} g := \nabla \times g \times \nabla, \quad (\operatorname{inc} g)^{ij} = \epsilon^{ikl} \epsilon^{jst} \partial_k \partial_s g_{lt}.$$

$$\operatorname{div} v := \nabla \cdot v, \quad (\operatorname{div} v)_i = \partial^j u_{ij}.$$

$$g \text{ metric} \Rightarrow \operatorname{inc} g \text{ linearized Einstein tensor} (\cong \operatorname{Riem} \cong \operatorname{Ric} \text{ in 3D})$$

$$\operatorname{inc} \circ \operatorname{def} = 0 \colon \operatorname{Saint-Venant} \operatorname{compatibility}$$

$$\operatorname{div} \circ \operatorname{inc} = 0 \colon \operatorname{Bianchi} \operatorname{identity}$$

Bernstein-Gelfand-Gelfand (BGG) construction:

Eastwood 1999, Čap, Slovák, Souček 2001, Arnold, Falk, Winther 2006, Arnold, Hu 2021, Čap, Hu 2022.

Continuous level

$$0 \longrightarrow H^2 \xrightarrow{\partial_x^2} L^2 \longrightarrow 0.$$

$$0 \longrightarrow H^2 \xrightarrow{\partial_x} H^1 \longrightarrow 0$$

$$0 \longrightarrow H^1 \xrightarrow{\partial_x} L^2 \longrightarrow 0.$$

- two de-Rham complexes with different continuity,
- cohomology: $\mathcal{N}(\partial_x^2) \cong \mathcal{N}(\partial_x) \oplus \mathcal{N}(\partial_x)$, ∂_x^2 is onto.

Algebraic and analytic construction (Arnold, Hu 2021): derive elasticity from deRham

 $S^1u:=u^T-\operatorname{tr}(u)I.$

key: Sobolev complexes ($\forall s \in \mathbb{R}$), match indices, commuting diagrams, injectivity & surjective.

output: elasticity complex

$$0 \longrightarrow H^s \otimes \mathbb{V} \xrightarrow{\text{def}} H^{s-1} \otimes \mathbb{S} \xrightarrow{\text{curl}} H^{s-3} \otimes \mathbb{S} \xrightarrow{\text{div}} H^{s-4} \otimes \mathbb{V} \longrightarrow 0.$$

Theorem

The cohomology is isomorphic to the smooth de Rham cohomology:

$$\mathcal{N}(\mathscr{D}^i) = \mathcal{R}(\mathscr{D}^{i-1}) \oplus \mathscr{H}^i_{\infty}, \quad \mathscr{H}^i_{\infty} \simeq \mathcal{H}^i_{\mathrm{deRham}} \otimes (\mathbb{V} \times \mathbb{V})$$

Proof: Homological algebra + results for de Rham by Costabel & McIntosh.

Corollary: finite dimensional cohomology \Longrightarrow operators have closed range.

Consequences:

- analytic results (Poincaré inequality, Hodge decomposition, compactness etc.) e.g., Korn inequality $||u||_1 \le C||\det u||$, $u \perp \mathcal{N}(\det)$.
- explicit representatives of elasticity cohomology.

A general picture

- ullet input: (Z^{ullet}, D^{ullet}) , $(\tilde{Z}^{ullet}, \tilde{D}^{ullet})$, connecting maps $S^i: \tilde{Z}^i o Z^{i+1}$, satisfying
 - (anti-)commutativity: $S^{i+1}\tilde{D}^i = -D^{i+1}S^i$,
 - injectivity/surjectivity condition: S^i injective for $i \leq J$, surjective for $i \geq J$.

$$0 \longrightarrow Z^{0} \xrightarrow{D^{0}} Z^{1} \xrightarrow{D^{1}} \cdots \xrightarrow{D^{n-1}} Z^{n} \longrightarrow 0$$

$$0 \longrightarrow \tilde{Z}^{0} \xrightarrow{\tilde{D}^{0}} \tilde{Z}^{1} \xrightarrow{\tilde{D}^{1}} \cdots \xrightarrow{\tilde{D}^{n-1}} \tilde{Z}^{n} \longrightarrow 0$$

output:

$$\cdots \longrightarrow \operatorname{coker}(S^{J-2}) \xrightarrow{\bar{D}^{J-1}} \operatorname{coker}(S^{J-1}) \xrightarrow{\bar{D}^{J}} \\ \stackrel{(S^{J})^{-1}}{\longrightarrow} \mathcal{N}(S^{J+1}) \xrightarrow{\bar{D}^{J+1}} \mathcal{N}(S^{J+2}) \xrightarrow{\bar{D}^{J+2}} \cdots$$

conclusion:

$$\dim \mathscr{H}^i\left(\Upsilon^{\bullet},\mathscr{D}^{\bullet}\right) \leq \dim \mathscr{H}^i\left(Z^{\bullet},D^{\bullet}\right) + \dim \mathscr{H}^i\left(\tilde{Z}^{\bullet},\tilde{D}^{\bullet}\right), \quad \forall i = 0,1,\cdots,n$$

Equality holds if and only if S^i induces the zero maps on cohomology, i.e., $S^i \mathcal{N}(\tilde{D}^i) \subset \mathcal{R}(D^i)$.

Example: de Rham complexes

$$0 \longrightarrow H^{q} \otimes \operatorname{Alt}^{0,J-1} \xrightarrow{d} H^{q-1} \otimes \operatorname{Alt}^{1,J-1} \xrightarrow{d} \cdots \xrightarrow{d} H^{q-n} \otimes \operatorname{Alt}^{n,J-1} \longrightarrow 0$$

$$0 \longrightarrow H^{q-1} \otimes \operatorname{Alt}^{0,J} \xrightarrow{d} H^{q-2} \otimes \operatorname{Alt}^{1,J} \xrightarrow{d} \cdots \xrightarrow{d} H^{q-n-1} \otimes \operatorname{Alt}^{n,J} \longrightarrow 0$$
where $\operatorname{Alt}^{i,J} := \operatorname{Alt}^{i} \otimes \operatorname{Alt}^{J}$

$$s^{i,J} \mu(v_0, \cdots, v_i)(w_1, \cdots, w_{J-1}) := \sum_{l=0}^{i} (-1)^l \mu(v_0, \cdots, \widehat{v_l}, \cdots, v_i)(v^l, w_1, \cdots, w_{J-1}),$$

$$\forall v_0, \cdots, v_i, w_1, \cdots, w_{J-1} \in \mathbb{R}^n.$$

More 3D examples: (diagonal maps: bijective; superdiagonal: surjective; subdiagonal: injective.)

$$0 \longrightarrow H^{q-1} \otimes \mathbb{V} \xrightarrow{\operatorname{grad}} H^{q-1} \otimes \mathbb{V} \xrightarrow{\operatorname{curl}} H^{q-2} \otimes \mathbb{V} \xrightarrow{\operatorname{div}} H^{q-3} \otimes \mathbb{R} \longrightarrow 0$$

$$0 \longrightarrow H^{q-1} \otimes \mathbb{V} \xrightarrow{\operatorname{grad}} H^{q-2} \otimes \mathbb{M} \xrightarrow{\operatorname{curl}} H^{q-3} \otimes \mathbb{M} \xrightarrow{\operatorname{div}} H^{q-4} \otimes \mathbb{V} \longrightarrow 0$$

$$0 \longrightarrow H^{q-2} \otimes \mathbb{V} \xrightarrow{\operatorname{grad}} H^{q-3} \otimes \mathbb{M} \xrightarrow{\operatorname{curl}} H^{q-4} \otimes \mathbb{M} \xrightarrow{\operatorname{div}} H^{q-5} \otimes \mathbb{V} \longrightarrow 0$$

$$0 \longrightarrow H^{q-3} \otimes \mathbb{R} \xrightarrow{\operatorname{grad}} H^{q-4} \otimes \mathbb{V} \xrightarrow{\operatorname{curl}} H^{q-5} \otimes \mathbb{V} \xrightarrow{\operatorname{div}} H^{q-6} \otimes \mathbb{R} \longrightarrow 0.$$

Hessian complex:

$$0 \longrightarrow H^q \otimes \mathbb{R} \xrightarrow{\ \ \text{hess} \ \ } H^{q-2} \otimes \mathbb{S} \xrightarrow{\ \ \text{curl} \ \ } H^{q-3} \otimes \mathbb{T} \xrightarrow{\ \ \text{div} \ \ } H^{q-4} \otimes \mathbb{V} \longrightarrow 0.$$

biharmonic equations, plate theory, Einstein-Bianchi system of general relativity

More 3D examples: (diagonal maps: bijective; superdiagonal: surjective; subdiagonal: injective.)

$$0 \longrightarrow H^{q} \otimes \mathbb{R} \xrightarrow{\operatorname{grad}} H^{q-1} \otimes \mathbb{V} \xrightarrow{\operatorname{curl}} H^{q-2} \otimes \mathbb{V} \xrightarrow{\operatorname{div}} H^{q-3} \otimes \mathbb{R} \longrightarrow 0$$

$$0 \longrightarrow H^{q-1} \otimes \mathbb{V} \xrightarrow{\operatorname{grad}} H^{q-2} \otimes \mathbb{M} \xrightarrow{\operatorname{curl}} H^{q-3} \otimes \mathbb{M} \xrightarrow{\operatorname{div}} H^{q-4} \otimes \mathbb{V} \longrightarrow 0$$

$$0 \longrightarrow H^{q-2} \otimes \mathbb{V} \xrightarrow{\operatorname{grad}} H^{q-3} \otimes \mathbb{M} \xrightarrow{\operatorname{curl}} H^{q-4} \otimes \mathbb{M} \xrightarrow{\operatorname{div}} H^{q-5} \otimes \mathbb{V} \longrightarrow 0$$

$$0 \longrightarrow H^{q-3} \otimes \mathbb{R} \xrightarrow{\operatorname{grad}} H^{q-4} \otimes \mathbb{V} \xrightarrow{\operatorname{curl}} H^{q-5} \otimes \mathbb{V} \xrightarrow{\operatorname{div}} H^{q-6} \otimes \mathbb{R} \longrightarrow 0.$$

elasticity complex:

$$0 \longrightarrow H^{q-1} \otimes \mathbb{V} \xrightarrow{\mathsf{def}} H^{q-2} \otimes \mathbb{S} \xrightarrow{\mathsf{inc}} H^{q-4} \otimes \mathbb{S} \xrightarrow{\mathsf{div}} H^{q-5} \otimes \mathbb{V} \longrightarrow 0.$$

elasticity, defects, metric, curvature

More 3D examples: (diagonal maps: bijective; superdiagonal: surjective; subdiagonal: injective.)

$$0 \longrightarrow H^{q} \otimes \mathbb{R} \xrightarrow{\operatorname{grad}} H^{q-1} \otimes \mathbb{V} \xrightarrow{\operatorname{curl}} H^{q-2} \otimes \mathbb{V} \xrightarrow{\operatorname{div}} H^{q-3} \otimes \mathbb{R} \longrightarrow 0$$

$$0 \longrightarrow H^{q-1} \otimes \mathbb{V} \xrightarrow{\operatorname{grad}} H^{q-2} \otimes \mathbb{M} \xrightarrow{\operatorname{curl}} H^{q-3} \otimes \mathbb{M} \xrightarrow{\operatorname{div}} H^{q-4} \otimes \mathbb{V} \longrightarrow 0$$

$$0 \longrightarrow H^{q-2} \otimes \mathbb{V} \xrightarrow{\operatorname{grad}} H^{q-3} \otimes \mathbb{M} \xrightarrow{\operatorname{curl}} H^{q-4} \otimes \mathbb{M} \xrightarrow{\operatorname{div}} H^{q-5} \otimes \mathbb{V} \longrightarrow 0$$

$$0 \longrightarrow H^{q-3} \otimes \mathbb{R} \xrightarrow{\operatorname{grad}} H^{q-4} \otimes \mathbb{V} \xrightarrow{\operatorname{curl}} H^{q-5} \otimes \mathbb{V} \xrightarrow{\operatorname{div}} H^{q-6} \otimes \mathbb{R} \longrightarrow 0.$$

divdiv complex:

$$0 \longrightarrow H^{q-2} \otimes \mathbb{V} \xrightarrow{\text{dev grad}} H^{q-3} \otimes \mathbb{T} \xrightarrow{\text{sym curl}} H^{q-4} \otimes \mathbb{S} \xrightarrow{\text{div div}} H^{q-6} \otimes \mathbb{R} \longrightarrow 0.$$
 plate theory, elasticity

Review: BGG construction

2 Bounded Poincaré operators

Definition and motivation

Poincaré operators: $P^k: V^k \mapsto V^{k-1}$, satisfying null-homotopy property

$$d^{k-1}P^k + P^{k+1}d^k = I_{V^k},$$

Motivation 1: constructing exact sequences and finite elements

$$du = 0 \implies u = (dP + Pd)u = d(Pu).$$

e.g., local exactness of de-Rham complexes.

If V^{\bullet} is a complex with both d^{\bullet} and P^{\bullet} , then both $(V^{\bullet}, d^{\bullet})$ and $(V^{\bullet}, P^{\bullet})$ are exact.

$$\cdots \longmapsto V^{i-1} \stackrel{d^{i-1}}{\longleftarrow} V^i \stackrel{d^i}{\longleftarrow} V^{i+1} \longmapsto \cdots$$

Examples:

$$\cdots \longrightarrow \mathcal{P}_{r-(k-1)}\Lambda^{k-1} \xrightarrow{d^{k-1}} \mathcal{P}_{r-k}\Lambda^{k} \xrightarrow{d^{k}} \mathcal{P}_{r-(k+1)}\Lambda^{k+1} \longrightarrow \cdots,$$

$$\cdots \longrightarrow \mathcal{P}_r \Lambda^{k-1} + P^k \mathcal{P}_r \Lambda^k \xrightarrow{d^{k-1}} \mathcal{P}_r \Lambda^k + P^{k+1} \mathcal{P}_r \Lambda^{k+1} \xrightarrow{d^k} \mathcal{P}_r \Lambda^k + P^{k+1} \mathcal{P}_r \Lambda^{k+1} \longrightarrow$$

Motivation 2: p-robustness of finite element methods

bounded, polynomial-preserving Poincaré operators imply results that are uniform with the polynomial degree.

Motivation 3: well-posedness of Stokes problem

given $f \in L^2$, find $u \in [H_0^1]^n$ and $p \in L^2/\mathbb{R}$, such that

$$-\Delta u + \nabla p = f,$$
 div $u = 0.$

inf-sup condition: for any $q \in L^2/\mathbb{R}$, $\exists u = P(q) \in [H_0^1]^n$, s.t. div u = q, $||u||_1 \le C||q||$.

Motivation 4: analytic results, e.g., regular decomposition, compactness.

How to construct

Smooth de-Rham complex (see books on manifolds)

Let $F_t:\Omega\to\Omega, t\in[0,1]$ be a continuous family of operators indexed by t. If u is a k-form:

$$(\mathfrak{p}[F]u)_{x}(\xi_{2},\ldots,\xi_{k})=\int_{0}^{1}u_{F_{t}(x)}(\partial_{t}F_{t}(x),DF_{t}(x)\xi_{2},\cdots,DF_{t}(x)\xi_{k})\,dt.$$

Suppose that F_1 is identity and F_0 is constant x_0 , then we have $d\mathfrak{p} + \mathfrak{p}d = I$ for $k \ge 1$ and $\mathfrak{p}du(x) = u(x_0) - u(x_0)$ for k = 0.

Simplification

• 1D with base point x_0

$$\mathfrak{p}(u) := \int_{x_0}^x u(y) \, dy, \quad \partial \mathfrak{p}(u) = u, \ \mathfrak{p}(\partial v) = v(x) - v(x_0).$$

• 3D vector proxy (choose a curve $\gamma(t) = tx$ connecting 0 and x):

$$\mathfrak{p}^1 u = \int_0^1 u_{tx} \cdot x dt, \quad \mathfrak{p}^2 v = \int_0^1 t v_{tx} \wedge x dt, \quad \mathfrak{p}^3 w = \int_0^1 t^2 w_{tx} x dt.$$

Sobolev de-Rham complex: Costabel-McIntosh 2010

$$0 \longrightarrow H^q \Lambda^0 \stackrel{d^0}{\longrightarrow} H^{q-1} \Lambda^1 \stackrel{d^1}{\longrightarrow} \cdots \stackrel{d^{n-1}}{\longrightarrow} H^{q-n} \Lambda^n \longrightarrow 0,$$

where q is any real number.

- regularized Poincaré operators: averaging the base points in the smooth de-Rham version, mapping $H^q\Lambda^k$ to $H^{q+1}\Lambda^{k-1}$, polynomial-preserving
- ullet generalized Bogolvskiı operators: "dual" of Poincaré, , mapping $H_0^q \Lambda^k$ to $H_0^{q+1} \Lambda^{k-1}$

pseudo-differential operators of order -1, which implies boundedness between various spaces (Sobolev, Besov...)

General Lipschitz domain:

$$dP + Pd = I - L$$

where $L(u) \in C^{\infty}$ for any u. The smoothing operator L comes from partition of unity (into a union of star-shaped patches).

BGG complexes: overview

More details of the BGG machinery (explicit way of doing homological algebra) are needed.

$$\begin{array}{ccc} Y^{i} & \stackrel{p^{i+1}}{\longleftarrow} & Y^{i+1} \\ \downarrow & \downarrow & \downarrow & \downarrow \\ Y^{i} & \stackrel{p^{i+1}}{\longleftarrow} & Y^{i+1} \\ \downarrow & \stackrel{d^{i}}{\longleftarrow} & \downarrow & \downarrow \\ B^{i} & \downarrow & \stackrel{d^{i}}{\longleftarrow} & \downarrow & \downarrow \\ \uparrow^{i} & \stackrel{\cancel{\mathscr{D}}^{i+1}}{\longleftarrow} & \uparrow^{i+1} \\ & \uparrow^{i} & \stackrel{\cancel{\mathscr{D}}^{i+1}}{\longleftarrow} & \uparrow^{i+1} \end{array}$$

de-Rham complex \longrightarrow twisted de-Rham complex \longrightarrow BGG complex If we know Poincaré operators for the de-Rham complex (Costabel-McIntosh), then the rest is derived using commuting diagram.

F: isomorphism (bijective). For BGG complexes:

$$\mathscr{P} := B \circ F \circ P \circ F^{-1} \circ A.$$

If P^{\bullet} satisfies dP + Pd = I, then \mathscr{P}^{\bullet} satisfies $\mathscr{DP} + \mathscr{PD} = I$.

Physics interpretation

- twisted complexes: Timoshenko beam, Reissner-Mindlin plate, Cosserat elasticity
- ullet BGG complexes: Euler-Bernoulli beam, Kirchhoff-Love plate, standard elasticity $_{17/24}$

Recall the two-row BGG diagram

$$0 \longrightarrow Z^{0} \xrightarrow{d^{0}} Z^{1} \xrightarrow{d^{1}} \cdots \xrightarrow{d^{n-1}} Z^{n} \longrightarrow 0$$

$$0 \longrightarrow \tilde{Z}^{0} \xrightarrow{d^{0}} \tilde{Z}^{1} \xrightarrow{d^{1}} \cdots \xrightarrow{d^{n-1}} \tilde{Z}^{n} \longrightarrow 0$$

Define $Y^j := Z^j \times \tilde{Z}^j$ and define the twisted complex

$$\cdots \longrightarrow Y^{i-1} \stackrel{d_V^{i-1}}{\longrightarrow} Y^i \stackrel{d_V^i}{\longrightarrow} Y^{i+1} \longrightarrow \cdots,$$

where

$$d_V^k = \left(egin{array}{cc} d^k & -S^k \ 0 & d^k \end{array}
ight).$$

Observation: d(PS) - (PS)d = S, and thus $F \circ d = d_V \circ F$, where

$$F^k = \left(\begin{array}{cc} I & P^{k+1} \circ S^k \\ 0 & I \end{array}\right).$$

Define P_V by the commuting diagram: $P_V := B \circ P \circ A$. Then $d_V P_V + P_V d_V = I$.

1D example

BGG diagram

$$H^{q} \xrightarrow{\partial} H^{q-1}$$

$$H^{q-1} \xrightarrow{\partial} H^{q-2},$$

where $\partial:=\frac{d}{dx}$ with $P_{\sharp}:H^{q-1}\to H^q$ and $P_{\flat}:H^{q-2}\to H^{q-1}$.

We want to derive Poincaré operators for $H^q \stackrel{\partial^2}{\longrightarrow} H^{q-2}$.

$$\begin{pmatrix} H^{q} \\ H^{q-1} \end{pmatrix} \xrightarrow{\begin{pmatrix} \partial \\ & \partial \end{pmatrix}} \begin{pmatrix} H^{q-1} \\ H^{q-2} \end{pmatrix}$$

$$\downarrow^{F^{0}} \begin{pmatrix} \partial & -I \\ 0 & \partial \end{pmatrix} & \begin{pmatrix} H^{q-1} \\ H^{q-1} \end{pmatrix},$$

$$\begin{pmatrix} H^{q} \\ H^{q-1} \end{pmatrix} \xrightarrow{\begin{pmatrix} \partial & -I \\ 0 & \partial \end{pmatrix}} \begin{pmatrix} H^{q-1} \\ H^{q-2} \end{pmatrix},$$

where

$$F^0 := \left(egin{array}{ccc} I & P_\sharp \ 0 & I \end{array}
ight), \quad F^1 := \left(egin{array}{ccc} I & 0 \ 0 & I \end{array}
ight).$$
 $P_V := F^0 \circ P \circ (F^1)^{-1} = \left(egin{array}{ccc} I & P_\sharp \ 0 & I \end{array}
ight) \left(egin{array}{ccc} P_\sharp & 0 \ 0 & P_\star \end{array}
ight) \left(egin{array}{ccc} I & 0 \ 0 & I \end{array}
ight) = \left(egin{array}{ccc} P_\sharp & P_\sharp P_\flat \ 0 & P_\star \end{array}
ight).$

19 / 24

From twisted complex to BGG complex: $\mathcal{P} = BP_VA$, where

$$A = \begin{pmatrix} I & 0 \\ Td & P_{\mathcal{N}} \end{pmatrix}, \quad B = \begin{pmatrix} P_{\Upsilon} & 0 \\ P_{\Upsilon}dT & P_{\Upsilon} \end{pmatrix}$$

1D example continued

$$\begin{pmatrix} H^{q} \\ H^{q-1} \end{pmatrix} \xrightarrow{\begin{pmatrix} 0 & -I \\ & \partial \end{pmatrix}} \begin{pmatrix} H^{q-1} \\ H^{q-2} \end{pmatrix}$$

$$\downarrow^{B^{0}} \begin{pmatrix} 0 & 0 \\ \partial^{2} & 0 \end{pmatrix} \xrightarrow{\begin{pmatrix} 0 \\ \partial^{2} & 0 \end{pmatrix}} \begin{pmatrix} 0 \\ H^{q-2} \end{pmatrix},$$

$$B^{0} := \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}, \quad B^{1} := \begin{pmatrix} 0 & 0 \\ \partial & I \end{pmatrix},$$

and

$$A^0 := \begin{pmatrix} I & 0 \\ \partial & 0 \end{pmatrix}, \quad A^1 := \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}.$$

Then we obtain Poincaré operators:

$$\tilde{\mathscr{P}} = B^0 \circ P_V \circ A^1 = \left(\begin{array}{cc} I & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} P_{\sharp} & P_{\sharp} P_{\flat} \\ 0 & P_{\flat} \end{array}\right) \left(\begin{array}{cc} I & 0 \\ 0 & I \end{array}\right) = \left(\begin{array}{cc} P_{\sharp} & P_{\sharp} P_{\flat} \\ 0 & 0 \end{array}\right).$$

This readily gives the Poincaré operator $\mathscr{P}:=P_{\sharp}P_{\flat}$.

3D elasticity complex

$$\mathscr{P}^{1}(e) = \int_{0}^{x} e(y) dy - \int_{0}^{x} dy \wedge \int_{0}^{y} \nabla \times e(z) dz,$$

for smooth e. Generalization of Cesàro-Volterra formula, satisfying

$$\mathscr{P}^1\operatorname{def}(w)=w(x)-w(0)+\frac{1}{2}\int_0^xdy\wedge\nabla w(y).$$

For general Sobolev functions, $\mathscr{P}^1 = P(PS - SP)Td$ (all ingredients given in BGG diagram).

Compared to

 'A Cesàro-Volterra formula with little regularity', Ciarlet, Gratie, Mardare, 2010 JMPA,

the new formulas are explicit, polynomial-preserving, work for a broad class of functions, for the entire complex.

Complex property $P \circ P = 0$?

Let P^{\bullet} be Poincaré operators satisfying dP+Pd=I, but not necessarily $P\circ P=0$. We can generally modify P^{\bullet} to \tilde{P}^{\bullet} , defined by $\tilde{P}:=P-DP^2$. Then straightforward algebra implies $d\tilde{P}+\tilde{P}d=I$ and $\tilde{P}\circ\tilde{P}=0$.

Nontrivial cohomology?

Standard procedure: cover $\Omega=\cup_j\Omega_j$, partition of unity, $1=\sum_j\xi_j$ with ξ_j supported on Ω_j . Use dP+Pd=I on each Ω_j , leading to dP+Pd=I-L globally, where L is a smoothing operator.

Some applications

- for any $v \in L^2_0 \otimes \mathbb{V}$, $\exists \sigma = \mathscr{P}(v) \in H^1_0 \otimes \mathbb{S}$, s.t., div $\sigma = v$, and \mathscr{P} is polynomial-preserving. $\Longrightarrow p$ -robustness of finite element methods for elasticity (Aznaran, KH, Parker, in preparation)
- exactness of polynomial BGG complexes, e.g.,

$$\mathrm{RM} \longrightarrow \mathcal{P}_r \otimes \mathbb{V} \stackrel{\mathsf{def}}{\longrightarrow} \mathcal{P}_{r-1} \otimes \mathbb{S} \stackrel{\mathsf{inc}}{\longrightarrow} \mathcal{P}_{r-3} \otimes \mathbb{S} \stackrel{\mathsf{div}}{\longrightarrow} \mathcal{P}_{r-4} \otimes \mathbb{V} \longrightarrow 0.$$

• intrinsic elasticity and intrinsic defect model

$$\begin{cases} \operatorname{inc}(\mathbb{A}\operatorname{inc} E) = K, & \text{in } \Omega, \\ \operatorname{div} E = 0, & \text{in } \Omega, \\ E \cdot n = 0, & \text{on } \partial \Omega, \\ \Im_0(\mathbb{B}\operatorname{inc} E) = \Im_1(\mathbb{B}\operatorname{inc} E) = 0, & \text{on } \partial \Omega, \end{cases}$$

where \mathcal{T}_0 and \mathcal{T}_1 are boundary terms (Amstutz, Van Goethem 2019). Equivalent intrinsic formulation (with B = inc E):

$$\inf_{B\in H(\operatorname{div},\mathbb{S}),\operatorname{div}B=0}\frac{1}{2}(B,B)_{\mathbb{A}}-(K,\mathscr{P}B),$$

where \mathscr{P} is the Poincaré operator of degree 2 in the elasticity complex.

References:

- Complexes from complexes, Douglas Arnold, KH; Foundations of Computational Mathematics (2021). framework, analytic results from homological algebraic structures
- BGG sequences with weak regularity and applications, Andreas Čap, KH; arXiv:2203.01300 (2022) more general framework
- Poincaré path integrals for elasticity, Christiansen, KH, Sande, Journal de Mathématiques Pures et Appliquées, (2019) smooth elasticity complex in 3D
- Bounded Poincaré operators for BGG complexes, Andreas Čap, KH; in preparation (2022) main results