

Faculty of Sciences and Technology
Telecommunications & electronics Department

Computer Vision and its Applications

K. ABAINIA

Last update: 07/12/2020

Course objectives?

- ✓ Getting an overview on different computer vision applications
- ✓ Learning the basics of the image processing
- ✓ Enhance the programming skills

Background

Computer vision?

Forms of data

Sub-domains

Simulate the human visual system

Analyze, process and understand digital images

Input image => Model (geometry, physics, statistics and learning theory)

Background	Applications	Prerequisites	Conclusion
Dackground	Applications	Prerequisites	Conclusi

Many forms of data

- **≻Single** image
- **≻Video sequences**
- **≻Views from multiple cameras**
- >Multi-dimensional data from a medical scanner

Sub-domains of computer vision

- **√3D** reconstruction
- **✓**Event detection
- **✓ Video tracking**
- **✓** Object recognition
- **√3D** pose estimation
- **✓** Education
- **✓** Indexing
- **✓** Motion estimation
- **✓Image restoration**

Background	Applications	Prerequisites	Conclusion
\sim		_	

Object recognition (1)

Finding, identifying or verifying objects within an image/video

+ Can deal with objects of different sizes/scales, translated and rotated objects

- Obstructed objects

Object recognition (2)

Video tracking (1)

Locating a moving object over time human-computer interaction security and surveillance traffic control

- + Low light conditions and sudden changes in illumination
- Moving fast regarding the frame rate
- Object changes orientation over time
- Unstable and vibrating camera

Video tracking (2)

3D reconstruction (1)

Construct a 3D model from a single/multiple images

+ Construct a 3D model from a single image

- Number of views/images
- Lack of tiny details (inaccurate result)
- Scene with a lot of objects (static or dynamic)
- Camera calibration

3D reconstruction (2)

Event detection (1)

Predict a future action/anomalies from the current scene

Direct events

Composite events

- + Analyze the crowd behavior and identify the crowd abnormality
- Fails with background changes

Event detection (2)

Background

Applications

Prerequisites

Conclusion

3D pose estimation (1)

Obtain a posture of the human body from input images or

video sequences

- + Synthesize unseen (regarding the dataset) 3D human skeletons
- Many people in an outdoor environment

3D pose estimation (2)

Motion estimation (1)

Measure/estimate the movement of an object within a video

- + Video coding and simultaneous localization and mapping (robotics)
- High motion sequence

Motion estimation (2)

Applications

Image restoration (1)

Clean and transform a noisy and corrupted image into the original

- + Underwater image enhancement
- Prior knowledge about the environment

Image restoration (2)

Background

Applications

Prerequisites

Conclusion

Education

Maximize the students' academic output by offering a customized learning experience based on their strengths and weakenesses

- + Improving engagement level, conducting online exams, reducing instances of fraud
- Technology is not ready yet to be implemented, and requires studying/modeling different behaviors

Background	Applications	Prerequisites	Conclusion
Dacisgiound	E.E. STATE	1 i ci cyuisites	Conclusion

Indexing

Organize a set of images in order to facilitate the search later

- **♦** by meta-data (textual information)
- *****by graphical content

- + Can deal with different resolutions and images sub-regions
- Reach the human performance

Background	Applications	Prerequisites	Conclusion

Conclusion

Overview on computer vision

Different applications with achievements and limits

Pre-requisites of computer vision

