20019803_A1

Code ▼

Load data and dplyr

Hide

setwd("/Users/kelli/Desktop/Biol343/Assignment_1") decDat=read.csv("DecodonAsexualityData.csv") library(dplyr)

Check class, dimensions, head and tail for errors

Hide

class(decDat)

[1] "data.frame"

Hide

dim(decDat)

[1] 46 8

Hide

head(decDat)

PopType <fctr></fctr>	PopName <fctr></fctr>	LatN <dbl></dbl>	LongE <dbl></dbl>	OvaryWidthMM <dbl></dbl>	OvaryHeightMM <dbl></dbl>
1 A	MI M2	43.264	-84.884	3.62	3.48
2 A	MI M3	45.615	-84.689	3.61	3.59
3 A	MI M5	42.418	-84.013	2.98	2.68
4 A	MI M7	45.623	-84.705	3.48	4.08
5 A	MI M8	43.350	-85.935	3.43	2.94
6 A	MI M9	45.600	-84.709	3.87	3.11

o rows | 1-7 or o columns

Hide

tail(decDat)

1 of 3 2020-01-11, 3:58 p.m.

Pop <fctr< th=""><th>Type PopNamo > <fctr></fctr></th><th>e LatN <dbl></dbl></th><th>LongE <dbl></dbl></th><th>OvaryWidthMM <dbl></dbl></th><th>OvaryHeightMM <dbl></dbl></th></fctr<>	Type PopNamo > <fctr></fctr>	e LatN <dbl></dbl>	LongE <dbl></dbl>	OvaryWidthMM <dbl></dbl>	OvaryHeightMM <dbl></dbl>	
41 S	ON T14	43.966	-77.035	3.18	2.46	
42 S	ON T15	43.418	-80.262	3.16	2.67	
43 S	ON T16	44.902	-75.870	3.34	3.11	
44 S	ON T3	43.208	-80.650	3.35	2.83	
45 S	ON T7	42.049	-83.106	3.78	3.18	
46 S	ON T8	42.257	-81.859	3.30	2.88	
6 rows 1-7 of 8 columns						

Add the ovary area measure to the dataset

Hide

decDat\$OvaryAreaMM <- decDat\$OvaryWidthMM*decDat\$OvaryHeightMM

Calculate the minimum, maximum, mean, median and standard deviation of ovary area and flower number

Hide

decDat %>% filter(!is.na(FlowerNum)) %>% summarise(min_OA = min(OvaryAreaMM), min_
FN = min(FlowerNum), max_OA = max(OvaryAreaMM), max_FN = max(FlowerNum), avg_OA = mea
n(OvaryAreaMM), avg_FN = mean(FlowerNum), med_OA = median(OvaryAreaMM), med_FN = medi
an(FlowerNum), sd_OA = sd(OvaryAreaMM), sd_FN = sd(FlowerNum)
)

min_OA	min_FN	max_OA	max_FN	avg_OA	avg_FN	med_OA	med_FN <dbl></dbl>
<dbl></dbl>							
7.524	12.4	12.903	181.76	10.20399	58.0156	10.5625	47.68

1 row | 1-8 of 10 columns

Calculate the mean ovary area, flower number, and August temperature for sexual and asexual populations

Asexual data

Hide

decDat %>% filter(!is.na(FlowerNum)) %>% filter(PopType=="A") %>% summarise(meanOA_a
s = mean(OvaryAreaMM), meanFN_as = mean(FlowerNum), meanAT_as = mean(MeanTempC))

meanOA_as	meanFN_as	meanAT_as
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>

2 of 3 2020-01-11, 3:58 p.m.

meanOA_as <dbl></dbl>	meanFN_as <dbl></dbl>	meanAT_as <dbl></dbl>
10.31834	44.57467	19.72667
1 row		

Sexual data

Hide

meanOA_s <dbl></dbl>	meanFN_s <dbl></dbl>	meanAT_s <dbl></dbl>
10.03246	78.177	20.16
1 row		

Draw some conclusions with regards to the hypothesis you are testing. Is there a potentially confounding factor that a full analysis of these data should take into account?

Sexual populations produce 54% more flowers than asexual populations. Interestingly, the ovary area of the average asexually produced flower is ~3% larger than that of the average sexually produced flower. Considering the small sample size (n=25), this second difference is likely not statistically significant.

It is worth considering that local variables like altitude or even latitude based circadian rythm shifts could be playing a role in dictating flowering amount and potentially reproductive type determination.

3 of 3 2020-01-11, 3:58 p.m.