5

WHAT IS CLAIMED IS:

1. 3,4-Alkylenedioxythiophenes characterized in that they are substituted by a mesogenic group, and optionally via a bridging group

with the exception of the 3,4-alkylenedioxythiophene of the formula (i)

$$O-(CH_2)_{\overline{6}}-O$$

$$S$$
(i).

2. 3,4-Alkylenedioxythiophenes according to Claim 1, characterized in that they are compounds of the formula (I),

$$\begin{bmatrix}
 \downarrow \\
 \downarrow \\$$

15 where

A is a C₁-C₅-alkylene radical which is substituted at any point by a linker L and optionally bears further substituents,

- L is a methylene group,
- p is 0 or an integer from 1 to 6,
- 5 M is an n-functional mesogenic group,
 - n is an integer from 1 to 8 and
 - B is a bridging group of the formula (B)

(B)

.

q is 0 or 1,

where

15

10

- r, s are each 0 or 1, with the proviso that when r is 1, s is 0 and vice versa or both are optionally 0,
- t is 0 or 1,

20

25

sp is a spacer selected from the group consisting of substituted and unsubstituted linear or cyclic C₁-C₂₀-alkylene groups, C₅-C₂₀-arylene groups, C₂-C₂₀-heteroarylene groups in which from one to three heteroatoms selected from the group consisting of N, O and S can additionally be present in the heteroaromatic ring or ring system, C₆-C₂₀-aralkylene groups, C₂-C₂₀₀-oligoether and – polyether groups,

Q is O, S or NH.

3. 3,4-Alkylenedioxythiophenes according to Claim 2, characterized in that

M is an n-functional group of the formula (II-a) or (II-b),

$$\star - \left[-X^{\frac{1}{2}} \right]_{\mathbf{W}} \star$$

(II-a)

(II-b)

15

10

5

where

 X^1 , X^2 , X^3 are substituted or unsubstituted structures selected independently from the group consisting of

Z^1 , Z^2 are structures selected independently from the group consisting of

where

R^x and R^y

are each, independently of one another, H, substituted or unsubstituted C_1 - C_{22} -alkyl, C_1 - C_{22} -haloalkyl, C_1 - C_{22} -alkenyl, C_1 - C_{22} -alkoxy, C_1 - C_{22} -thioalkyl, C_1 - C_{22} -iminoalkyl, C_1 - C_{22} -alkoxycarbonyl, C_1 - C_{22} -alkoxycarbonyloxy, a radical of an aliphatic C_1 - C_{22} -alkanecarboxylic acid

5

or of acrylic acid, halogen, pseudohalogen, NO₂, a carboxyl group or a hydroxy group,

h is an integer from 1 to 10,

5

w is an integer from 1 to 5,

x, y, z are each, independently of one another, 0 or 1, and

n is 1 or 2, where

when n is 1, the group of the formula (II-a) or (II-b) bears a terminal group F at the linkage points denoted by *,

where

- F is H, substituted or unsubstituted C₁-C₂₂-alkyl, C₁-C₂₂-haloalkyl, C₁-C₂₂-alkenyl, C₁-C₂₂-alkoxy, C₁-C₂₂-thioalkyl, C₁-C₂₂-iminoalkyl, C₁-C₂₂-alkoxycarbonyl, C₁-C₂₂-alkoxycarbonyloxy, a radical of an aliphatic C₁-C₂₂-alkanecarboxylic acid or of acrylic acid, halogen, pseudohalogen, a nitro (NO₂) group, a carboxyl group, a sulphonic acid group or sulphonate group or a hydroxy group.
- 4. 3,4-Alkylenedioxythiophenes according to Claim 2, characterized in that
 - M is an n-functional group selected from the group consisting of the formulae (II-c-1) to (II-c-6),

5

n is an integer from 1 to 8,

where

when n is an integer below 8, is selected from the group consisting of the formulae (II-c-1) to (II-c-6) bearing a terminal group F on the remaining 8 - n linkage points denoted by *,

5 where

10

- is H, substituted or unsubstituted C₁-C₂₂-alkyl, C₁-C₂₂-haloalkyl, C₁-C₂₂-alkenyl, C₁-C₂₂-alkoxy, C₁-C₂₂-thioalkyl, C₁-C₂₂-iminoalkyl, C₁-C₂₂-alkoxycarbonyl, C₁-C₂₂-alkoxycarbonyloxy, a radical of an aliphatic C₁-C₂₂-alkanecarboxylic acid or of acrylic acid, halogen, pseudohalogen, a nitro (NO₂) group, a carboxyl group, a sulphonic acid group or sulphonate group or a hydroxy group.
- 3,4-Alkylenedioxythiophenes according to Claim 2, characterized in that
 M is a steroid radical or a derivative of a steroid radical.
- 6. 3,4-Alkylenedioxythiophenes according to Claim 5, characterized in that
- 20 M is a cholesteryl radical or a derivative of the cholesteryl radical of the formula (III-a),

- R is H, substituted or unsubstituted C₁-C₂₂-alkyl, C₁-C₂₂-haloalkyl, C₁-C₂₂-alkenyl, C₁-C₂₂-alkoxy, C₁-C₂₂-thioalkyl, C₁-C₂₂-iminoalkyl, C₁-C₂₂-alkoxycarbonyl, C₁-C₂₂-alkoxycarbonyloxy, a radical of an aliphatic C₁-C₂₂-alkanecarboxylic acid or of acrylic acid, halogen, pseudohalogen, a nitro (NO₂) group, a carboxyl group, a sulphonic acid group or sulphonate group or a hydroxy group.
- 7. 3,4-Alkylenedioxythiophenes or mixtures of 3,4-alkylenedioxythiophenes according to Claim 2, characterized in that they have a structure of the formulae (I-a) and/or (I-b),

15

5

where

B and M are as defined in Claim 2.

20

8. A process for preparing polythiophenes comprising polymerizing 3,4-alkylenedioxythiophenes or mixtures of 3,4-alkylenedioxythiophenes according to Claim 1.

9. Polythiophenes, characterized in that they comprise recurring units of the formula (IV),

where

10

A, L, p, M and B are as defined in Claim 2,

with the exception of polythiophenes consisting of recurring units of the formula (ii)

$$O-(CH_2)_6-O$$

$$(ii).$$

10. Polythiophenes according to Claim 9, characterized in that they comprise recurring units of the formulae (IV-a) and/or (IV-b),

5

10

M and B are as defined in Claim 2.

- 11. Polythiophenes according to Claim 9, characterized in that they are cationically and electrically conductive and contain bound anions as counterions to balance the positive charge.
- 12. Polythiophenes according to Claim 11, characterized in that the counterions are polyanions of polymeric carboxylic acids or polymeric sulphonic acids.
- 13. Polythiophenes according to Claim 9, characterized in that they are uncharged and semiconducting.
 - 14. Process for preparing polythiophenes according to Claim 9, comprising oxidatively polymerizing electrochemically compounds of the formula (I),

$$\begin{bmatrix}
\downarrow \\
\downarrow \\
\rho
\end{bmatrix}$$
(I)

5

A, L, p, M and B are as defined in Claim 2.

15. Process for preparing polythiophenes, comprising oxidatively polymerizing electrochemically compounds of the formula (I),

$$\begin{bmatrix} \downarrow \downarrow p \\ 0 \\ B \\ 0 \\ S \end{bmatrix}$$
(I)

10

where

A is a C₁-C₅-alkylene radical which is substituted at any point by a linker L and may bear further substituents,

- L is a methylene group,
- p
- is 0 or an integer from 1 to 6,

- n is an integer from 1 to 8 and
- B is a bridging group of the formula (B)

$$* \iint_{Q} Sp \int_{m} \int_{r} Q \int_{l} \int_{s} *$$

5

(B)

where

q is 0 or 1,

10

- r, s are each 0 or 1, with the proviso that when r is 1, s is 0 and vice versa or both may be 0,
- t is 0 or 1,

15

sp is a spacer selected from the group consisting of substituted and unsubstituted linear or cyclic C₁-C₂₀-alkylene groups, C₅-C₂₀-arylene groups, C₂-C₂₀-heteroarylene groups in which from one to three heteroatoms selected from among N, O and S can additionally be present in the heteroaromatic ring or ring system, C₆-C₂₀-aralkylene groups, C₂-C₂₀₀-oligoether and –polyether groups,

20

- m is 0 or 1,
- Q is O, S or NH, and

25

M is as defined in Claim 2.

16. Polythiophenes characterized in that they comprise recurring units of the formula (IV),

where

5

20

A, L, p and B are as defined in Claim 15 and

10 M is as defined in Claim 2,

obtainable by a process according to Claim 15.

- 17. A process for preparing electrical or electronic components, light-emitting components, for antistatic coating, in optoelectronics or in solar energy technology comprising incorporating polythiophenes according to Claim 9.
 - 18. A process for preparing electrical or electronic components, light-emitting components, for antistatic coating, in optoelectronics or in solar energy technology comprising incorporating polythiophenes according to Claim 16.
 - 19. A process for preparing conductive layers comprising incorporating the polythiophenes according to Claim 9.

20. A process for preparing conductive layers comprising incorporating the polythiophenes according to Claim 16.