

Relatório do Lab3 de CCI-22

Trabalho 03 - Sistemas Lineares - Parte 2

Aluno:

Bruno Costa Alves Freire

Turma:

T 21.4

Professor:

Luiz Gustavo Bizarro Mirisola

Data:

17/04/2018

Instituto Tecnológico de Aeronáutica – ITA Departamento de Computação

1. Análise (Parte 1)

Os sistemas descritos no roteiro do laboratório foram analisados com os critérios das linhas e Sassenfeld, e resolvidos pelos métodos de Gauss-Jacobi e Gauss-Seidel, tendo os resultados compilados na tabela 1:

Sistema	Gauss-Jacobi		Gauss-Seidel	
	Convergência	#Iterações	Convergência	#Iterações
(1)	Não (x)	100	Não (x)	100
(2)	Sim (v)	20	Sim (v)	6
(3)	Sim (x)	46	Sim (x)	11
(4)	Sim (x)	4	Não (x)	100
(5)	Não (x)	100	Sim (x)	9
(6)	Sim (v)	10	Sim (v)	6

Tabela 1: Análise dos Métodos Iterativos

O (x) ou (v) entre parênteses indica o resultado do critério das linhas (na coluna de convergência para Gauss-Jacobi) e de Sassenfeld (na coluna do Gauss-Seidel).

Observa-se que para alguns sistemas, apesar de não satisfazer os critérios, ainda houve convergência. Para o sistema (1), ambos os critérios não foram satisfeitos, e ambos os métodos divergiram. Para o sistema (2), ambos os critérios foram satisfeitos e houve convergência em ambos os métodos. Curiosamente, o sistema (2) é obtido a partir do (1) por meio de uma troca de linhas, e isso modifica totalmente o comportamento do sistema perante os métodos de solução. Isso ocorre pois o sistema (2) é diagonal dominante, o que o torna mais bem comportado perante métodos iterativos.

Para o sistema (6), ambos os critérios foram satisfeitos e houve convergência para ambos os métodos, evidenciando a suficiência dos critérios para a convergência. Contudo, o sistema (3) mostra que estes critérios não são condições necessárias, tendo sido reprovado em ambos e convergido nos dois métodos.

E os sistemas (4) e (5) mostram que um método pode convergir enquanto o outro diverge, quando os sistemas não satisfazem aos critérios de convergência. Sabemos, no entanto, que se um sistema satisfaz o critério das linhas, então ele satisfaz Sassenfeld, mas esse caso não foi explorado nos exemplos.

Observamos ainda que em todos os casos em que ambos os métodos iterativos convergiram, o de Gauss-Seidel sempre foi mais rápido. A rapidez de convergência desse método está associada ao parâmetro β , que quanto menor for, mais rápido será a convergência do método.

2. Análise (Parte 2)