Balanced Binary Search Trees - AVL Trees

"Symmetry is reallly important to preserve laziness."

- Danny Heap

H₂ Balance Factor

height(v)= the length of the longest path from v to a leaf ($height(empty\ tree)=-1)$

balance factor BF(v) = height(v. right) - height(v. left)

H2 AVL Trees

(Adelson-Velski-Landis Trees)

An AVL tree T is a BST where for every node $v \in T$, $-1 \le BF(v) \le 1$

Properties

- for n nodes, height is $\Theta(\log(n))$
 - $height(T) \le 1.44 \log_2(n+2)$
- can do inserts and maintain balance property in $\Theta(\log(n))$ time

H3 Operations

- search(T, x)
- insert(T, x)
 - insert x as a leaf where it should be $(\log(n)$ time)
 - go back up the tree and rebalance using rotations wherever necessary
 - if BF(v)>1 and $BF(v.right)\in\{0,1\}$ then

```
left_rotate(v)
```

- (mirror cases above if BF(v) < -1)
- delete(T, x)