Nome: Luís Felipe de Melo Costa Silva

Número USP: 9297961

Lista de Exercícios 2 - MAC0425

Exercício 1

Para construirmos nossa base de conhecimento, vamos nomear os fatos:

- a: "o time joga bem"
- b: "o time ganha o campeonato"
- c: "o técnico é culpado"
- d: "os torcedores estão contentes"

Nossa base de conhecimento será, portanto:

- R1: $a \Rightarrow b$
- R2: $\neg a \Rightarrow c$ R3: $b \Rightarrow d$ R4: $\neg d$

- 1. Usando regras de inferência:
 - Contraposição em **R3**:

R5: $\neg d \Rightarrow \neg b$

• Modus Ponens ($\mathbf{R4} + \mathbf{R5}$):

 $\mathbf{R6}$: $\neg b$

• Contraposição em **R1**:

R7: $\neg b \Rightarrow \neg a$

• Modus Ponens ($\mathbf{R6} + \mathbf{R7}$):

R.8: $\neg a$

• Modus Ponens ($\mathbf{R2} + \mathbf{R8}$):

R9: *c*

2. Usando as regras de resolução:

Para provarmos por resolução, precisamos transformar nossa base de conhecimento na Forma Normal Conjuntiva, portanto, teremos:

• R1:
$$\neg a \lor b$$

- R1: $\neg a \lor b$ R2: $a \lor c$ R3: $\neg b \lor d$ R4: $\neg d$

Temos que adicionar também $\mathbf{R5}$: $\neg c$ para fazermos a inferência baseada em resolução. Logo:

Exercício 8.13

- (1) $\forall s \text{ Cheiro}(s) \Rightarrow \exists r \text{ Adjacente}(r, s) \land \text{Em}(Wumpus, r)$ a)
 - (2) $\forall s \neg \text{Cheiro}(s) \Rightarrow \neg \exists r \text{ Adjacente}(r, s) \land \text{Em}(Wumpus, r)$

Para mostrar que as duas regras juntas equivalem a:

$$\forall s \text{ Cheiro}(s) \Leftrightarrow \exists r \text{ Adjacente}(r, s) \land \text{Em}(Wumpus, r),$$

vamos chamar:

- de A: $\forall s$ Cheiro(s);
- de B: $\exists r \text{ Adjacente}(r,s) \land \text{Em}(Wumpus,r)$

Logo, temos que provar que $A \Leftrightarrow B$. Podemos ver que em (1) temos $A \Rightarrow B$, e que em (2) temos $\neg A \Rightarrow \neg B$. De (2), por Modus Ponens, podemos escrever $B \Rightarrow A$. Com isso, temos as duas expressões que nos permitem provar o que queremos.

b) $\forall s \text{ Abismo}(s) \Rightarrow (\forall r \text{ Adjacente}(r, s) \Rightarrow \text{Ventilada}(r)). (1)$

Colocando "se não há abismo em s, então todas as localizações adjacentes a s não são ventiladas" na forma de **regra causal**, temos: $\forall s \neg \text{Abismo}(s) \Rightarrow (\forall r \neg \text{Abismo}(s))$ $Adjacente(r, s) \Rightarrow \neg Ventilada(r))$ (2).

Chamando:

- de A: $\forall s \text{ Abismo}(s)$;
- de B: $\forall r \text{ Adjacente}(r, s) \Rightarrow \text{Ventilada}(r)$,

temos que (1) é $A \Rightarrow B$ e (2) é $\neg A \Rightarrow \neg B$.

Fazendo uma tabela verdade (na página 4), podemos ver que as expressões não são equivalentes.

Um axioma que relaciona Adjacente(r, s) e Abismo(r) com o literal \neg Ventilada(s) pode ser escrito como:

$$\forall r, s \; (\text{Adjacente}(r, s) \land \neg \text{Abismo}(r)) \Rightarrow \neg \text{Ventilada}(s)$$

Exercício 2

Para escrever um axioma de estado sucessor, temos que partir da definição:

 $P \not e \ verdade \Leftrightarrow (uma \ ação \ tornou \ P \ verdade) \lor P \ j\'a \ era \ verdade \ e \ nenhuma \ ação \ tornou \ P \ falso)$

Logo, aqui teremos:

Table 1: Tabela do item b do exercício 8.13

A	$\mid B \mid$	$A \Rightarrow B$	$B \Rightarrow A$
F	F	V	V
F	V	V	F
V	F	F	V
V	V	V	V