

Nom: Pré	nom:					
EXERCICE 1 (6 POINTS) Soient f une fonction définie sur un intervalle I et $a,b\in I$ tels que $a\neq b$.						
1. Donner la formule permettant de calculer $ au_{f,a,b}$ le taux d'accroissement de f entre a et b .						
2. On suppose que $I = \mathbb{R}$ et pour tout $x \in \mathbb{R}$, $f(x) = 3x^2 - 2$.						
Calculer $\tau_{f,-1,1}$ et $\tau_{f,0,2}$.						

EXERCICE 2 (4 POINTS)

Soit $h \neq 0$. Donner la limite, si elle existe, des expressions suivantes quand h tend vers 0.

1	1	+	2	h

2.
$$h^3$$

3.
$$\frac{1}{h}$$

$$4. \ \frac{2h^2+h}{h}$$