

Airlines

Predicting Delays

W261 Section 1 Team 3

Tony Di Sera, Ammara Essa, Andy Hoopengardner, Lee Moore

Question Formation

0110 1001 Data 1010

Airlines Data ~32 million rows 2015-2019 US Commercial Flights

Weather Data ~620 million weather observations 2015-2019

Binary classification task predicting: "detrimention flight outcomes"

across all USA flights

Question Formation

Outcome Variable

E Baseline

Composite outcome:

- <u>Arrival</u> delays > 15 minutes

- Cancelled flights
- Diverted flights

Key metric: Recall

Secondary: F1-score

Crude prediction of "On time" for every flight:

- Accuracy = 80%
- Recall/Precision = 0%

Aspiration:

- Recall > 80%

1

Is the outcome variable balanced?

2

Are continuous variables highly correlated?

3

Are there seasonal and time-of-day trends?

Feature Engineering

Feature Engineering

Exclude features not available at prediction time

Exclude features that represent outcome

Graph features

Logistic Regression

One-hot encoding

Standardization

Exclude highly correlated features

Decision Trees

Feature Engineering

Missing Value treatment

column_name	count_missing	percent_missing
ORIGIN_SNOW_DEPTH_AVG	8339151	26.27
DEST_SNOW_DEPTH_AVG	8339052	26.27
ORIGIN_PRECIP_RATE_AVG	292709	0.92
DEST_PRECIP_RATE_AVG	292762	0.92
ORIGIN_SLP_AVG	289247	0.91
DEST_SLP_AVG	289340	0.91
ORIGIN_WND_ANGLE_AVG	140124	0.44
ORIGIN_WND_SPEED_AVG	139428	0.44
ORIGIN_CIG_AVG	139684	0.44
ORIGIN_VIS_AVG	139732	0.44
ORIGIN_DEW_AVG	140653	0.44
DEST_WND_ANGLE_AVG	140133	0.44
DEST_WND_SPEED_AVG	139435	0.44
DEST_CIG_AVG	139692	0.44
DEST_VIS_AVG	139740	0.44
DEST_DEW_AVG	140662	0.44
ORIGIN_TMP_AVG	135230	0.43
DEST_TMP_AVG	135236	0.43
DEST_LATITUDE	8899	0.03
DEST_LONGITUDE	8899	0.03
DEST_ELEV	8899	0.03
ORIGIN_LATITUDE	8895	0.03
ORIGIN_LONGITUDE	8895	0.03
ORIGIN_ELEV	8895	0.03
CRS_ELAPSED_TIME	164	0

Set null to 0

Skip

Feature Engineering - Observations

Algorithmic Exploration

Algorithmic Exploration

Logistic Regression

Decision Trees Random Forest Gradient Boosted Tree

- Gridsearch and crossfold validation (CV)
- Human-based gridsearch
- Regularization

- Tree Depth
- Trees in Forest
- Iterations for GBT

Algorithmic Exploration

Ensemble of LR Models

Algorithmic Selection and Tuning

Feature Importance

Logistic Regression

```
ORIGIN_AIRPORT_SEQ_ID -8.695
DEST_AIRPORT_SEQ_ID -5.775
MONTH 0.977
OP_UNIQUE_CARRIER -0.528
CRS_DEP_TIME 0.378
DAY_OF_WEEK 0.294
ORIGIN_TMP_AVG -0.226
DEST_TMP_AVG -0.211
ORIGIN_VIS_AVG -0.208
DEST_VIS_AVG -0.163
DAY_OF_MONTH -0.15
DEST_DEW_AVG 0.147
YEAR -0.132
DEST_WND_SPEED_AVG 0.108
ORIGIN_WND_SPEED_AVG 0.096
DEST_CIG_AVG -0.084
ORIGIN_PRECIP_RATE_AVG 0.08
DEST_PRECIP_RATE_AVG 0.08
ORIGIN_DEW_AVG 0.063
ORIGIN_CIG_AVG -0.058
ORIGIN_PAGERANK 0.051
DEST_PAGERANK 0.048
ORIGIN_SLP_AVG -0.042
ORIGIN_LATITUDE -0.023
DEST_LATITUDE -0.02
DEST_ELEV -0.019
ORIGIN_LONGITUDE 0.013
ORIGIN_WND_ANGLE_AVG 0.011
ORIGIN_SNOW_DEPTH_AVG 0.01
ORIGIN_ELEV -0.01
DEST_LONGITUDE -0.008
DEST_SLP_AVG 0.006
```

Decision Tree

```
CRS_DEP_TIME 0.385118

ORIGIN_PRECIP_RATE_AVG 0.202083

DEST_PRECIP_RATE_AVG 0.169954

ORIGIN_VIS_AVG 0.120796

MONTH 0.053717

ORIGIN_TMP_AVG 0.042534

OP_UNIQUE_CARRIER_ORDINAL 0.013869

DEST_CITY_MARKET_ID_ORDINAL 0.011929

DEST_SLP_AVG 0.000000

DEST_DEW_AVG 0.000000

DEST_TMP_AVG 0.000000

DEST_TMP_AVG 0.000000

DEST_VIS_AVG 0.000000

DEST_VIS_AVG 0.000000

DEST_CIG_AVG 0.000000

DEST_WND_SPEED_AVG 0.000000
```

Random Forest

```
CRS_DEP_TIME 0.131122
               ORIGIN_PRECIP_RATE_AVG 0.075088
       DEST_PRECIP_RATE_AVG 0.072282
              ORIGIN_VIS_AVG 0.064944
                DEST_VIS_AVG 0.039331
             ORIGIN_TMP_AVG 0.036018
  OP_UNIQUE_CARRIER_ORDINAL 0.033481
             ORIGIN_DEW_AVG 0.033119
               DEST_CIG_AVG 0.029953
              ORIGIN_CIG_AVG 0.027603
                     MONTH 0.023044
              DEST_DEW_AVG 0.019891
               DEST_TMP_AVG 0.018898
             DEST_LONGITUDE 0.018732
                  DEST_ELEV 0.018152
 DEST_CITY_MARKET_ID_ORDINAL 0.014794
ORIGIN_CITY_MARKET_ID_ORDINAL 0.014712
             ORIGIN_SLP_AVG 0.014660
            ORIGIN_LONGITUDE 0.014512
        DEST_WND_SPEED_AVG 0.013844
               DEST_ORDINAL 0.013546
       ORIGIN WND SPEED AVG 0.013451
             DEST_PAGERANK 0.012542
              ORIGIN_ORDINAL 0.012318
             ORIGIN_LATITUDE 0.011872
            ORIGIN_PAGERANK 0.011845
     DEST_STATE_FIPS_ORDINAL 0.011396
```

Gradient Boosted Tree

CRS DEP TIME 0.060714

CRS_DEP_TIME	0.060714
MONTH	0.060566
OP_UNIQUE_CARRIER_ORDINAL	0.054005
DAY_OF_MONTH	0.052442
YEAR	0.048418
CRS_ARR_TIME	0.033705
DISTANCE	0.032573
ORIGIN_TMP_AVG	0.031074
DAY_OF_WEEK	0.030797
ORIGIN_LONGITUDE	0.029018
CRS_ELAPSED_TIME	0.028746
DEST_LONGITUDE	0.026907
DEST_PRECIP_RATE_AVG	0.026134
DEST_TMP_AVG	0.024464
ORIGIN_LATITUDE	0.023904
DEST_LATITUDE	0.023163
DEST_DEW_AVG	0.023017
ORIGIN_PRECIP_RATE_AVG	0.022683
ORIGIN_DEW_AVG	0.022334
DEST_PAGERANK	0.020077
ORIGIN_WND_ANGLE_AVG	0.019946
ORIGIN_VIS_AVG	0.019845
DEST_VIS_AVG	0.019556
ORIGIN_CIG_AVG	0.019086
ORIGIN_SLP_AVG	0.018776
DEST_ORDINAL	0.018033
DEST_SLP_AVG	0.017831
ORIGIN_ORDINAL	0.017433

Results

ML Lib Logistic Regression Inputs

- Regularization via Elastic net
 - Convex combination of the L1 and the L2 regularization terms
 - LR Hyper parameters:
 - elasticNetParam (α)
 - regParam (λ)

$$lpha\left(\lambda\|\mathbf{w}\|_1
ight)+(1-lpha)\left(rac{\lambda}{2}\|\mathbf{w}\|_2^2
ight), lpha\in[0,1], \lambda\geq0$$

maxIter

Class Weighing (weightCol)

Identified by gridsearch and crossfold validation

1

Single Model (no Class Weights)

Single Model (with Class Weights)

Logistic Regression Models

3

Multi Model Strategy: Temporal Model (with Class Weights)

Logistic Regression Models - Results

Model	Number of models	Model Type	ClassWeighted	maxIter	reg parm	elastic net	Accuracy	precision	recall	f1
LR_Unweighted_DefaultParms	1	No temporal models	No	100	0	0	0.8009	0.5599	0.0580	0.1051
LR_Weighted_DefaultParms	1	No temporal models	Yes	100	0	0	0.6544	0.3181	0.6247	0.4216
LR_Weighted_OptimalParms	1	No temporal models	Yes	20	0.001	0.25	0.6434	0.3117	0.6363	0.4184
LR_Weighted_OptimalParms_MultiModel	12	Season + Time	Yes	20	0.001	0.25	0.6351	0.3111	0.6670	0.4243
Test_Data	12	Season + Time	Yes	20	0.001	0.25	0.6351	0.3105	0.6665	0.4236

Challenges & Limitations

Outcome not sufficiently customer focused

2 Complexity of weather dataset resulted in limited utilisation

Ensembled trees did not meet expectations

Proposed Improvements

1.

2.

Utilize Spark
Parallelize
Multi-Model

Real-time dynamic graph-based modelling approach

Thank you.

Any questions?