EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 7: EE223 Review

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Cascode Biasing

Cascode Current Mirror

- A cascode device can shield a current source, thereby reducing the voltage variations across it.
- But, how do we ensure that $V_{DS2} = V_{DS1}$?
- We can generate V_b such that $V_b V_{GS3} = V_{DS1} (=V_{GS1})$ with a stacked diode connected transistor

Cascode Current Mirror Compliance Voltage

(a) Regular cascode structure

Wide-Swing (High-Swing or Low-Voltage) Cascode

(b) Low-voltage (aka wide-swing) structure

Biasing High Swing Cascode Current Mirror

Another approach for cascode biasing → Will use this biasing scheme extensively

- M_A in Saturation
- M_B in Triode
- $(W/L)_A = (W/L)_3 = (W/L)_4$
- (W/L)_B with large L
- Example:
 - $(W/L)_{A,3,4} = 5/0.18$
 - $(W/L)_B = 5/5$
 - Adjust L of M_B in Simulation to get the Vds you want

If you make the current densities of M_{A_3} M_3 and M_4 are equal, V_{ds} of M_B will be copied over to V_{ds} of M_1 and M_2

OTA

Operational Transconductance Amplifiers (OTA)

Important Parameters

- Differential Gain
- Gain-Bandwidth Product
- Common-Mode Input Range
- Common-Mode Gain
- Common-Mode Rejection Ratio (CMRR)
- Power-Supply Rejection Ratio (PSRR)
- Slew Rate

OTA Gain and Bandwidth

$$A_{DM} = \frac{g_{m1}}{g_{o6} + g_{o2}}$$

The circuit will have 2 poles

 $\omega_{\scriptscriptstyle po}$ at the output node and $\omega_{\scriptscriptstyle pm}$ at the "mirror" node

$$\omega_{po} \approx \frac{g_{o6} + g_{o2}}{C_L}, \quad \omega_{pm} \approx \frac{g_{m5}}{C_M}$$

Assuming the poles are widely spaced and ω_{po} dominates $20\log_{10}|\mathbf{v_o/v_i}|$ $GBW = A_{DM}\omega_{3dB} = A_{DM}\omega_{po} = \left(\frac{g_{m1}}{g_{o6} + g_{o2}}\right)\left(\frac{g_{o6} + g_{o2}}{C_L}\right) = \frac{g_{m1}}{C_L}$ -20dB/dec

$$\omega_{p1} = \frac{g_{o6} + g_{o2}}{C_L} \qquad \frac{g_{m1}}{C_L} \qquad \omega_{p2} \qquad -40 dB/dec$$

Simple OTA Summary

Transconductance
$$G_m = g_{m1} = \sqrt{KP_n \frac{W}{L_1} I_{TAIL}}$$

Output Conductance
$$g_{out} = g_{o2} + g_{o6} = \frac{I_{TAIL}}{2} (\lambda_n + \lambda_p)$$

DC Gain
$$A_v = G_m R_{out} = \frac{g_{m1}}{g_{o2} + g_{o6}} = \frac{2\sqrt{\frac{KP_n}{I_{TAIL}}} \frac{W}{L_1}}{\lambda_n + \lambda_p}$$

Dominant Pole
$$\omega_{p1} = \frac{g_{o2} + g_{o6}}{C_L}$$

Non - Dominant Pole
$$\omega_{p2} = \frac{g_{m6}}{C_M} \approx \frac{g_{mg}}{2C_{gs6}}$$

Output Noise Current
$$i_{on}^2 = 2\left(\frac{8}{3}kT\right)\left(g_{m1} + g_{m6}\right)$$

Output Noise Current
$$i_{on}^2 = 2\left(\frac{8}{3}kT\right)\left(g_{m1} + g_{m6}\right)$$
Input Noise Voltage $v_{in}^2 = 2\left(\frac{8}{3}kT\right)\left(\frac{1}{g_{m1}}\right)\left(1 + \frac{g_{m6}}{g_{m1}}\right)$
Slew Rate $SR = \frac{I_{tail}}{C_L}$

$$GBW = \frac{G_m}{C_L} = \frac{\sqrt{KP_n \frac{W}{L_1} I_{TAIL}}}{C_L}$$

Slew Rate
$$SR = \frac{I_{tail}}{C_I}$$

Feedback

Simple Feedback System

$$\frac{Y}{X} = \frac{A}{1 + \beta A}$$

$$\approx \frac{1}{\beta} \left(1 - \frac{1}{\beta A} \right)$$

where we have assumed $\beta A \gg 1$

Bandwidth Modification of Feedback System

$$X(s) = \frac{A_0}{1 + \frac{s}{\omega_0}}$$

$$X(s) = \frac{A_0}{1 + \frac{s}{\omega_0}}$$

$$\frac{A_0}{1 + \beta A_0} \approx \frac{1}{\beta}$$

 ω_0

OPAMP

Performance Parameters

- Gain(Precision), Bandwidth(Speed): 3-dB, f_u
 Output Swing, Power dissipation
- Noise, Linearity, Supply Rejection, Offset
- Input CM Range, Input/Output Impedance
- Large-Signal behavior (e.g. Slew rate)

OPAMP Gain Requirement

The circuit has a nominal gain of 10. i.e., $1+R_1/R_2=10$. Determine the minimal value of A1 for a gain error 1%:

Solution:

$$\frac{V_{out}}{V_{in}} = \frac{A_1}{1 + \frac{R_2}{R_1 + R_2} A_1}$$

$$= \frac{R_1 + R_2}{R_2} \frac{A_1}{\frac{R_1 + R_2}{R_2} + A_1}$$

$$rac{V_{out}}{V_{in}}pprox \left(1+rac{R_1}{R_2}
ight)\left(1-rac{R_1+R_2}{R_2}rac{1}{A_1}
ight)$$
 Gain error $=rac{f 1}{meta A}$

OPAMP Speed Requirement

OPAMP open-loop transfer function

$$A(s) = A_0/(1 + s/\omega_0)$$

For a small step input, calculate the time required it to reach within 1% of its final value if $1+R_1/R_2=10$. What is the required unity-gain bandwidth of the amplifier for it to achieve 5ns settling time? Assume A_0 is very large.

OPAMP Speed Requirement

$$[V_{in} - \beta V_{out}]A(s) = V_{out}$$

$$\frac{V_{out}}{V_{in}}(s) = \frac{A(s)}{1 + \beta A(s)}$$

$$A(s) = \frac{A_0}{1 + \frac{S}{\omega_0}}$$

$$\frac{V_{out}}{V_{in}}(s) = \frac{A(s)}{1+\beta A(s)} = \frac{\frac{A_0}{1+\frac{S}{\omega_0}}}{1+\beta\left[\frac{A_0}{1+\frac{S}{\omega_0}}\right]} = \frac{A_0}{1+\frac{S}{\omega_0}+\beta A_0} = \frac{\frac{A_0}{[1+\beta A_0]}}{1+\frac{S}{[1+\beta A_0]\omega_0}} \approx \frac{1}{\beta} \frac{1}{1+\frac{S}{\beta A_0\omega_0}} = \frac{A_{dc}}{1+\tau S}$$
where $A_{dc} = \frac{1}{\beta}$, $\tau = \frac{1}{\omega_{-3dB,CL}} = \frac{1}{\beta A_0\omega_0} = \frac{1}{\beta \omega_u}$

$$V_{out}(s) = \frac{A_{dc}}{1+\tau S} V_{in}(s) = \frac{A_{dc}}{1+\tau S} \cdot \frac{a}{S} = a A_{dc} \left[\frac{1}{S} - \frac{\tau}{1+\tau S} \right] = a A_{dc} \left[\frac{1}{S} - \frac{1}{1+\frac{S}{\tau}} \right]$$

$$\rightarrow V_{out}(t) = aA_{dc}\left[1 - e^{\frac{-t}{\tau}}\right]u(t)$$

For 1% settling, $1 - e^{\frac{-t}{\tau}} = 0.99 \rightarrow t_{1\%} = \tau \ln 100 \approx 4.6\tau = 5 \text{ ns} \rightarrow \tau = 1.09 \text{ ns}$

$$\rightarrow \tau = \frac{1}{\beta \omega_u} = \frac{10}{\omega_u}$$
 $\rightarrow \omega_u = \frac{10}{1.09 \text{ ns}} = 9.21 \text{G rad/s} \rightarrow f_u = 1.47 \text{GHz}$

Folded Cascode Circuits

 "Folding" about the cascode node will increase input and output swing range

Folded Cascode OTA

Folded Cascode OPAMP

NMOS vs **PMOS** Input

- Greater mobility from NMOS input leads to higher gain
- PMOS input is less sensitive to flicker noise (wider WL)
- Usually input common-mode level dictates which input to use

Multi-Stage Amplifiers

- Single-stage amplifiers typically have to trade-off gain and swing range
- Multi-stage amplifiers allow for higher gain without sacrificing swing range
- The major challenge with multi-stage amplifiers is achieving adequate phase margin to insure stability in a feedback configuration

Stability

Negative Feedback and Phase Shift

- Feedback systems suffer from potential instability and they may oscillate.
- Closed-loop transfer function: $\frac{Y}{X}(s) = \frac{H(s)}{1 + \beta H(s)}$
- What happens if the denominator goes to infinity $|\beta H(j\omega_1)|=1$ "Barkhausen's criteria" $\angle \beta H(j\omega_1)=-180^\circ$
- Negative feedback itself provide 180 phase shift
- Loop transmission determines the stability issue

Bode Plots of Loop Gain

- Phase shift changes the negative feedback to positive
- Gain crossover when gain is unity
- Phase crossover when phase is –180 degrees
- PX must be behind GX, and GX is equal to unity-gain bandwidth in the open-loop system

One-Pole System – Unconditionally Stable

$$H(s) = A_0/(1 + s/\omega_0)$$

$$\frac{Y}{X}(s) = \frac{\frac{A_0}{1 + \beta A_0}}{1 + \frac{s}{\omega_0(1 + \beta A_0)}}$$

Multi-Pole System

- The system is stable if phase is less than -180 degrees at gain crossover
- If the feedback becomes weaker, the system is more stable

Phase Margin

How far should PX be from GX?

Phase Margin

Phase Margin(PM), defined as

$$PM = 180^{\circ} + \angle \beta H(\omega = \omega_1)$$

- A "well-behaved" closed-loop response will have a greater spacing between GX and PX
- The unity-gain bandwidth cannot exceed the second pole frequency
- For large-signal application, time-domain simulation of closed-loop system more relevant and useful than small-signal as computations

Phase Margin Comparison

How much phase margin is adequate?

PM = 45 degrees

$$\frac{Y}{X} = \frac{H(j\omega_1)}{1 + 1 \times \exp(-j135^\circ)}$$
$$= \frac{H(j\omega_1)}{0.29 - 0.71j} \approx \frac{1.3}{\beta}.$$

PM = 60 degrees

$$Y(j\omega_1)/X(j\omega_1) = 1/\beta_1$$

Step Response and Phase Margin

Consider the step response of second-order system which closely models the closed-loop gain of the op amp connected in unity gain.

A "good" step response is one that quickly reaches its final value.

Therefore, we see that phase margin should be at least 45° and preferably 60° or larger. (A rule of thumb for satisfactory stability is that there should be less than three rings.) Note that good stability is not necessarily the quickest rise time.

Basic Frequency Compensation

- Be "compensated", the circuit open-loop transfer function must be modified such that closed-loop circuit is stable
 - minimizing the overall phase shift
 - dropping the gain with frequency

Miller Compensation

- A larger C creating a dominating pole $R_{out1}^{-1}[C_E + (1 + A_{v2})C_C]^{-1}$
- Pole splitting

Two-Stage OPAMP with Miller Compensation

$$A(s) = \frac{A_0(1 + \frac{s}{\omega_z})}{(1 + \frac{s}{\omega_{p1}})(1 + \frac{s}{\omega_{p2}})}$$

$$A_{v1} = -g_{m1}(r_{ds2} \| dr_{ds4})$$

$$A_{v2} = -g_{m7}(r_{ds6} || r_{ds7})$$

$$R_1 = r_{ds4} \| r_{ds2}$$

$$C_1 = C_{db2} + C_{db4} + C_{gs7}$$

$$R_2 = r_{ds6} \parallel r_{ds7}$$

$$C_7 = C_{db7} + C_{db6} + C_{17}$$

$$A_{v}(s) = \frac{v_{out}}{v_{in}} = \frac{g_{m1}g_{m7}R_{1}R_{2}\left(1 - \frac{sC_{c}}{g_{m7}}\right)}{1 + sa + s^{2}b}$$

$$a = (C_2 + C_C)R_2 + (C_1 + C_C)R_1 + g_{m7}R_1R_2C_C$$

$$b = R_1R_2(C_1C_2 + C_1C_C + C_2C_C)$$

$$D(s) = \left(1 + \frac{s}{\omega_{p1}}\right) \left(1 + \frac{s}{\omega_{p2}}\right) \cong 1 + \frac{s}{\omega_{p1}} + \frac{s^2}{\omega_{p1}\omega_{p2}}$$

Two-Stage OPAMP with Miller Compensation

$$A(s) = \frac{A_0(1 + \frac{s}{\omega_z})}{(1 + \frac{s}{\omega_{p1}})(1 + \frac{s}{\omega_{p2}})}$$

$$\begin{split} A_{v1} &= -g_{m1}(r_{ds2} \parallel dr_{ds4}) \\ A_{v2} &= -g_{m7}(r_{ds6} \parallel r_{ds7}) \\ \omega_{p1} &\cong \frac{1}{R_1[C_1 + C_C(1 + g_{m7}R_2)] + R_2(C_2 + C_C)} \\ &\cong \frac{1}{R_1C_C(1 + g_{m7}R_2)} \\ &\cong \frac{1}{g_{m7}R_1R_2C_C} \\ \omega_{p2} &\cong \frac{g_{m7}C_C}{C_1C_2 + C_2C_C + C_1C_C} \\ &\cong \frac{g_{m7}}{C_1 + C_2} \\ \omega_z &= \frac{-g_{m7}}{C_C} \quad \leftarrow \text{RHP Zero due to } C_C \end{split}$$

GBW =
$$\omega_u = (A_{v1}A_{v2}) \left(\frac{1}{R_1A_{v2}C_c}\right)$$

= $\frac{A_{v1}}{R_1C_c} = \frac{g_{m1}R_1}{R_1C_c} = \frac{g_{m1}}{C_c}$

Two-Stage OPAMP with RC Compensation

2-stage opamp

$$A(s) = \frac{A_0(1+\frac{s}{\omega_z})}{(1+\frac{s}{\omega_{p1}})(1+\frac{s}{\omega_{p2}})}$$

$$\omega_z = \frac{-1}{C_c(\frac{1}{g_{m7}} - R_c)}$$

2-stage opamp with output stage

Choice of Rc

$$A(s) = \frac{A_0(1 + \frac{s}{\omega_z})}{(1 + \frac{s}{\omega_{p1}})(1 + \frac{s}{\omega_{p2}})}$$

$$\omega_z = \frac{-1}{C_c(\frac{1}{g_{m7}} - R_c)}$$

•
$$R_c = 0$$
 $\rightarrow \omega_z = \frac{-1}{c_c(\frac{1}{q_{m7}})} = \frac{-g_{m7}}{c_c}$ \rightarrow RHP Zero! Stability Issue

$$\bullet \ R_c = \frac{1}{g_{m7}} \quad \to \quad \omega_z = \infty$$

•
$$R_c > \frac{1}{g_{m7}}$$

$$\rightarrow \omega_z = \omega_{p2}$$

$$\frac{-1}{C_c(\frac{1}{q_{m7}}-R_c)}=\frac{g_{m7}}{C_1+C_2}$$

•
$$R_c \gg \frac{1}{g_{m7}}$$

Increasing
$$R_{\rm Z}$$
 s plane $R_c > rac{1}{g_{m7}}$

$$\frac{-1}{C_c(\frac{1}{g_{m7}}-R_c)} = \frac{g_{m7}}{C_1+C_2} \longrightarrow R_c = \frac{1}{g_{m7}} \left(1 + \frac{C_1+C_2}{C_c}\right)$$

$$\omega_z \approx \frac{1}{R_c C_c} = \alpha \omega_u = \alpha \frac{g_{m1}}{C_c}$$

Choosing $\alpha = 2$ is a good starting point.

Conclusion for Replacing Rz with Transistor

1.
$$\frac{(\frac{W}{L})_6}{(\frac{W}{L})_7} = \frac{(\frac{W}{L})_{11}}{(\frac{W}{L})_{13}}$$

2.
$$(\frac{W}{L})_{12} = (\frac{W}{L})_{13}$$

3.
$$(\frac{W}{L})_9 = 0.2 (\frac{W}{L})_7$$

Output Stages

Two-Stage OPAMP with SF Output Stage

2-stage opamp

2-stage opamp with output stage

Two-Stage OPAMP with Class AB Output Stage

Folded-Cascode OPAMP with Class AB Output Stage

Gain Boosting

Gain Boosting

- Increase the output impedance without adding more cascode devices.
- A transistor preceded by an ideal voltage amplifier exhibits an effective transconductance of g_m·A₁

$$|A_v| \approx g_{m1}[r_{O2} + (A_1 + 1)g_{m2}r_{O2}r_{O1} + r_{O1}]$$

 $\approx g_{m1}g_{m2}r_{O1}r_{O2}(A_1 + 1).$

Gain Boosting Circuit Implementation

• Simplest is a common-source stage

$$|V_{out}/V_{in}| \approx g_{m1}r_{O1}g_{m2}r_{O2}(g_{m3}r_{O3}+1)$$

Gain Boosting in Signal Path and Load

- Gain boosting can be utilized in the load current source
- To allow maximum swings, A2 employs NMOS-input

Gain Boosting Amp Choice

Good for Lower Common-Mode Input

Good for Higher Common-Mode Input

Fully Differential Amplifiers

Fully Differential Amplifier

• $V_{cm(in)}$ and $V_{cm(out)}$: $V_{DD} - I_{SS}R_D/2$

Common-Mode Basic Concepts

- In fully-differential op amps, the output CM level is usually not well defined.
 - Case 1: $I_{D3,4} < I_{SS}/2$, Vx,Vy decreases, I_{ss} triode;
 - Case 2: In reverse, Vx,Vy increases, M3,M4 triode.

Differential Pair Common-Mode Sensing

- $I_{CM} \propto V_{out1} + V_{out2}$ by small signal analysis
- Under Large swings situation, sensing is not valid due to large non-linearity.

Fully Differential Telescopic OTA with CMFB

Common-Mode Loop → **Two-Stage**

Switched-Capacitor CMFB

Noise

Resistor Thermal Noise

- Random motion of electrons in a conductor induces fluctuations in the voltage measured across it even though the average current is zero
- Thermal noise of a resistor R can be modeled by a series voltage source, with one-sided spectral density

$$S_v(f) = 4kTR, \quad f \ge 0$$

- Here, $k = 1.38 \times 10^{-23} \text{ J/K}$ is the Boltzmann constant
- $S_v(f)$ is expressed in V^2/Hz , we also write $\overline{V_n^2} = 4kTR$
- For a 50- Ω resistor at T = 300 K, thermal noise is 8.28 X $10^{-19} \ V^2/Hz$, or 0.91 nV/ \sqrt{Hz} 1kohm-> 4 nV/ \sqrt{Hz}
- $S_{\nu}(f)$ is flat up to 100 THz, and is "white" for our purposes

Noise generated by R, but depends on C

To get more insight, lets have a closer look on the operations!

Notice that:

When R increases thermal noise increases too but the corner frequency decreases, leading to a constant area under the curves!

• kT/C noise can only be decreased by increasing C (if T is fixed)

MOSFET Thermal Noise

- MOS transistors exhibit thermal noise with the most significant source being the noise generated in the channel
- For long-channel MOS devices operating in saturation, the channel noise can be modeled by a current source connected between the drain and source terminals with a spectral density $\overline{I_n^2} = 4kT\gamma g_m$
- The coefficient 'γ' (not the body effect coefficient) is derived to be 2/3 for long-channel transistors and is higher for submicron MOSFETs

MOSFET Thermal Noise

- Noise current of a MOS transistor decreases if the transconductance drops
- Noise measured at the output of the circuit does not depend on where the input terminal is because input is set to zero for noise calculation
- ullet The output resistance $r_{\rm O}$ does not produce noise because it is not a physical resistor

MOSFET Flicker Noise

- At the interface between the gate oxide and silicon substrate, many "dangling" bonds appear, giving rise to extra energy states
- Charge carriers moving at the interface are randomly trapped and later released by such energy states, introducing "flicker" noise in the drain current
- Other mechanisms in addition to trapping are believed to generate flicker noise

MOSFET Flicker Noise

- Average power of flicker noise cannot be predicted easily
- It varies depending on cleanness of oxide-silicon interface and from one CMOS technology to another
- Flicker noise is more easily modeled as a voltage source in series with the gate and in the saturation region, is roughly given by $\overline{V_n^2} = \frac{K}{C_{om}WL} \cdot \frac{1}{f}$

• K is a process-dependent constant on the order of $10^{-25} V^2 F$

MOSFET Flicker Noise

- The noise spectral density is inversely proportional to frequency
 - Trap and release phenomenon occurs at low frequencies more often
- Flicker noise is also called "1/f" noise
- To reduce 1/f noise, device area must be increased
- Generally, PMOS devices exhibit less 1/f noise than NMOS transistors
 - Holes are carried in a "buried" channel, at some distance from the oxide-silicon interface

Flicker Noise Corner Frequency

- At low frequencies, the flicker noise power approaches infinity
- Intersection point of thermal noise and flicker noise spectral densities is called "corner frequency" f_C

Representation of Noise in Circuits Example

- To find: Total output noise voltage of common-source stage [Fig. (a)]
- Follow noise analysis procedure described earlier
- Thermal and flicker noise of M1 and thermal noise of RD are modeled as current sources [Fig. (b)]

$$\overline{I_{n,th}^2} = 4kT\gamma g_m \qquad \overline{I_{n,1/f}^2} = Kg_m^2/(C_{ox}WLf) \qquad \overline{I_{n,RD}^2} = 4kT/R_D$$

Output noise voltage per unit bandwidth, added as power quantities is

$$\overline{V_{n,out}^2} = \left(4kT\gamma g_m + \frac{K}{C_{ox}WL} \cdot \frac{1}{f} \cdot g_m^2 + \frac{4kT}{R_D}\right)R_D^2$$

Input-Referred Noise

- Input-referred noise represents the effect of all noise sources in the circuit by a single source $\overline{V_{n,in}^2}$, at the input such that the output noise in Fig. (b) is equal to that in Fig. (a)
- If the voltage gain is A_{v} , then we must have

$$\overline{V_{n,out}^2} = A_v^2 \overline{V_{n,in}^2}$$

 The input-referred noise voltage in this simple case is simply the output noise divided by the gain squared.

Input-Referred Noise Example

For the simple CS stage, the input-referred noise voltage is given by

$$\begin{split} \overline{V_{n,in}^{2}} &= \frac{\overline{V_{n,out}^{2}}}{A_{v}^{2}} \\ &= \left(4kT\gamma g_{m} + \frac{K}{C_{ox}WL} \cdot \frac{1}{f} \cdot g_{m}^{2} + \frac{4kT}{R_{D}}\right) R_{D}^{2} \frac{1}{g_{m}^{2}R_{D}^{2}} \\ &= 4kT\frac{\gamma}{g_{m}} + \frac{K}{C_{ox}WL} \cdot \frac{1}{f} + \frac{4kT}{g_{m}^{2}R_{D}}. \end{split}$$

Common-Source Noise at the Output

$$\overline{I_{n,th}^2} = 4kT\gamma g_m$$

$$\overline{I_{n,1/f}^2} = Kg_m^2/(C_{ox}WLf)$$

$$\overline{I_{n,RD}^2} = 4kT/R_D$$

$$\overline{V_{n,out}^2} = \left(4kT\gamma g_m + \frac{K}{C_{ox}WL} \cdot \frac{1}{f} \cdot g_m^2 + \frac{4kT}{R_D}\right) R_D^2$$

Common-Source Input-Referred Noise

$$\begin{split} \overline{V_{n,in}^2} &= \frac{\overline{V_{n,out}^2}}{A_v^2} \\ &= \left(4kT\gamma g_m + \frac{K}{C_{ox}WL} \cdot \frac{1}{f} \cdot g_m^2 + \frac{4kT}{R_D}\right) R_D^2 \frac{1}{g_m^2 R_D^2} \\ &= 4kT\frac{\gamma}{g_m} + \frac{K}{C_{ox}WL} \cdot \frac{1}{f} + \frac{4kT}{g_m^2 R_D}. \end{split}$$

Cascode Stage

- M_2 contributes negligibly to noise at the output,
- Voltage gain from V_{n2} to the output is small if impedance at node X is large

Noise in Five-Transistor OTA

- The noise current of M_3 primarily circulates through the diodeconnected impedance $1/g_{m3}$, producing a voltage at the gate of M_{4} with spectral density $4kT\gamma/g_{m3}$
- This noise is multiplied by g_{m4}^2 as it emerges from the drain of M_{4} ; the noise current of M_{4} also flows directly through the output short-circuit, thus

$$\overline{I_{n,out}^2} = 4kT\gamma(2g_{m1,2} + 2g_{m3,4})$$

 $\overline{I_{n,out}^2}=4kT\gamma(2g_{m1,2}+2g_{m3,4})$ • Multiplying this noise by $R_{out}^2\approx (r_{O1,2}||r_{O3,4})^2$ and dividing the result by $A_v^2 = G_m^2 R_{out}^2$, the total input-referred noise is

$$\overline{V_{n,in}^2} = 8kT\gamma \left(\frac{1}{g_{m1,2}} + \frac{g_{m3,4}}{g_{m1,2}^2}\right)$$

Noise in Telescopic OPAMP

 At low frequency the cascode devices contribute negligible noise

$$\overline{V_n^2} = 4kT \left(2\frac{\gamma}{g_{m1,2}} + 2\frac{\gamma g_{m7,8}}{g_{m1,2}^2} \right) + 2\frac{K_N}{(WL)_{1,2}C_{ox}f} + 2\frac{K_P}{(WL)_{7,8}C_{ox}f} \frac{g_{m7,8}^2}{g_{m1,2}^2}$$

Noise in Folded-Cascode OPAMP

 At low frequency the cascode devices contribute negligible noise

$$\overline{V_{n,int}^2} = 8kT \left(\frac{\gamma}{g_{m1,2}} + \gamma \frac{g_{m7,8}}{g_{m1,2}^2} + \gamma \frac{g_{m9,10}}{g_{m1,2}^2} \right)$$

Noise in Two-Stage OPAMP

• The noise in the second stage contributes negligible noise

$$\overline{V_{n,tot}^2} = 8kT\gamma \frac{1}{g_{m1}^2} \left[g_{m1} + g_{m3} + \frac{g_{m5} + g_{m7}}{g_{m5}^2 (r_{O1} || r_{O3})^2} \right]$$

Switched-Capacitor Circuits

Basic Building Blocks of Switched-Capacitor Circuits

- OPAMP (OTA)
- Capacitor
- Switch
- Clock

Bottom Plate

(b)

- For continuous-time amplifier, $V_{out}/V_{in} = -R_2/R_1$
- Difficult to implement in CMOS technology
- Typically, open-loop output resistance of CMOS op-amps is maximized to maximize A_{ν}
- R₂ heavily drops open-loop gain, affecting precision

- R_F can be replaced by a switch
- S_2 is turned on to place op amp in unity gain feedback to force V_X equal to V_B , a suitable common-mode value
- When S₂ turns off, node X retains the voltage allowing amplification
- When S_2 is on, circuit does not amplify V_{in}

S2 status	Phase
On	Reset OTA or Sample input
Off	Amplify

 S_1 , S_2 on, S_3 off

Sampling Phase

 S_1 , S_2 off, S_3 on

Amplifying Phase

- Phase 1: Samples the input
- Phase 2: Amplify the signal
- During Phase 2, V_A changes from V_{in} to 0, therefore V_{out} must change from zero to $V_{in0}C_1/C_2$

- Switched-capacitor amplifiers operate in two phases:
 Sampling and Amplification
- Clock needed in addition to analog input V_{in}

MOSFET as Switches

- Sampling circuit consists of a switch and a capacitor [Fig. (a)]
- MOS transistor can function as switch [Fig. (b)] since it can be on while carrying zero current

MOSFET as Switches

- When switch is on [Fig. (a)], V_{out} follows V_{in}
- When switch is off [Fig. (b)], V_{out} remains constant
- Circuit "tracks" signal when CK is high and "freezes" instantaneous value of V_{in} across C_H when CK goes low

MOSFET as Switches

MOSFET as Switches: Speed Considerations

- Sampling speed is given by two factors: switch on-resistance and sampling capacitance
- For higher speed, large aspect ratio and small capacitance are needed
- On-resistance also depends on input level for both NMOS and PMOS

MOSFET as Switches: Speed Considerations

- To allow greater input swings, we can use "complementary" switches, requiring complementary clocks [Fig. (a)]
- Equivalent on-resistance shows following behavior [Fig. (b)], revealing much less variation

MOSFET as Switches: Precision Considerations

- Speed trades with precision
- Channel Charge Injection:
- For MOSFET to be on, a channel must exist at the oxidesilicon interface
- Assuming $V_{in} \approx V_{out}$, total charge in the inversion layer is

$$Q_{ch} = WLC_{ox}(V_{DD} - V_{in} - V_{TH})$$

• When switch turns off, Q_{ch} exits through the source and drain terminals ("channel charge injection")

MOSFET as Switches: Precision Considerations

- Clock Feedthrough:
- ullet MOS switch couples clock transitions through C_{GD} or C_{GS}
- Sampled output voltage has error due to this given by

$$\Delta V = V_{CK} \frac{WC_{ov}}{WC_{ov} + C_H}$$

- C_{ov} is the overlap capacitance per unit width
- Error △V is independent of input level, manifests as constant offset in the input/output characteristic

MOSFET as Switches: Precision Considerations

kT/C Noise:

- Resistor charging a capacitor gives a total RMS noise voltage of $\sqrt{kT/C}$.
- On resistance of switch introduces thermal noise at output which is stored on the capacitor when switch turns off
- RMS voltage of sampled noise is still approximately equal to $\sqrt{kT/C}$.

$$V_{\text{in}} \sim \begin{array}{c} R_{\text{on}} \\ W \\ \hline \end{array} \qquad \begin{array}{c} V_{\text{out}} \\ \hline \end{array} \qquad \begin{array}{c} V_{\text{in}} \sim \begin{array}{c} V_{\text{in}} + V_{\text{r}} \\ \hline \end{array} \qquad \begin{array}{c} C_{\text{H}} \end{array}$$

- For discrete-time applications, unity-gain amplifier [Fig. (a)]
 requires a sampling circuit [Fig. (b)]
- Accuracy limited by input-dependent charge injected by S₁ onto C_H

Sample

Precision Considerations:

Output in amplification mode

Flip Around Sample & Hold

$$V_{out} = \frac{V_0}{1 + \frac{1}{A_{v1}} \left(\frac{C_{in}}{C_H} + 1 \right)}$$
 Derive this using charge conservation
$$\approx V_0 \left[1 - \frac{1}{A_{v1}} \left(\frac{C_{in}}{C_H} + 1 \right) \right]$$

Charge conservation during Ø1 and Ø2

During \emptyset 1, total charge at node X is Q1 = $C_H(0-V_{in})$

During \emptyset 2, total charge at node X is Q2 = $C_{in}V_x + C_H(V_x-V_{out})$

Let
$$Q1 = Q2$$

$$-V_{in}C_{H} = C_{in}V_{x} + C_{H}(V_{x}-V_{out}) = (C_{in} + C_{H})V_{x} - C_{H}V_{out}$$

$$V_x(-A_{v1}) = V_{out}$$

$$-V_{in}C_{H} = (C_{in} + C_{H}) (-V_{out}/A_{v1}) - C_{H}V_{out}$$

$$V_{in}C_{H} = (C_{in} + C_{H}) (V_{out}/A_{v1}) + C_{H}V_{out}$$

$$V_{in}C_{H} = [(C_{in} + C_{H}) / A_{v1} + C_{H}] V_{out}$$

$$V_{in} = [(C_{in} + C_{H}) / (C_{H} A_{v1}) + 1] V_{out}$$

$$V_{out}/V_{in} = 1 / [(C_{in} + C_{H}) / (C_{H}A_{v1}) + 1] = 1 / [1 + 1/(\beta A_{v1})]$$

$$V_{out} \approx V_0 [1 - \frac{1}{\beta A_{v1}}]$$
 To reduce gain error, Increase βA_v

Differential Unity-Gain Sampler / Buffer

- Input-independent charge injected by S_2 can be cancelled by differential operation as shown
- Charge injected by S₂ and S₂ appears as common-mode disturbance at nodes X and Y
- Charge injection mismatch between S_2 and S_2 ' resolved by adding another switch S_{eq} that turns off slightly after S_2 and S_2 ', equalizing the charge at nodes X and Y

Non-Inverting Amplifier

Precision Considerations:

$$V_{out} = C_{1}(0 - V_{in})$$

$$Q_{2} = (C_{1} + C_{in})V_{x} + C_{2}(V_{x} - V_{out})$$

$$V_{x} = \frac{V_{out}}{-A}$$

$$Q_{1} = Q_{2}$$

$$C_{1}(0 - V_{in}) = (C_{1} + C_{in})V_{x} + C_{2}(V_{x} - V_{out}) = (C_{1} + C_{in})(\frac{V_{out}}{-A}) + C_{2}(\frac{V_{out}}{-A} - V_{out})$$

$$-C_{1}V_{in} = -C_{1}\frac{V_{out}}{A} - C_{in}\frac{V_{out}}{A} - C_{2}\frac{V_{out}}{A} - C_{2}V_{out}$$

$$C_{1}V_{in} = (\frac{C_{1} + C_{in} + C_{2}}{A} + C_{2})V_{out} = C_{2}(\frac{C_{1} + C_{in} + C_{2}}{C_{2}A} + 1)V_{out} = C_{2}(\frac{1}{\beta A} + 1)V_{out}$$

$$\frac{V_{out}}{V_{in}} = \frac{C_{1}}{C_{2}(\frac{1}{\beta A} + 1)} \approx \frac{C_{1}}{C_{2}}(1 - \frac{1}{\beta A})$$

Sample

Amplify

Connection of Capacitor

Capacitor

Unity-Gain Sampler

Need to minimize the capacitance at the summing node

Non-Inverting Amplifier

Speed Considerations:

$$\frac{V_{out}}{V_{in}}(s) \approx \frac{-C_{eq} \frac{C_1}{C_1 + C_{in}} (G_m - C_2 s) R_0}{R_0 (C_L C_{eq} + C_L C_2 + C_{eq} C_2) s + G_m R_0 C_2}$$

$$\tau_{amp} = \frac{C_L C_{eq} + C_L C_2 + C_{eq} C_2}{G_m C_2}$$

$$= \frac{C_1 + C_2 + C_{in}}{C_2} \cdot \frac{C_L + \frac{C_2 (C_{in} + C_1)}{C_2 + C_{in} + C_1}}{G_m}$$

$$= \frac{C_{L,eq}}{\beta G_m} = \frac{1}{\beta \omega_n}$$

C_{in} needs to be minimized to increase **B**

$$\beta = \frac{C_2}{C_2 + C_1 + C_{in}}$$

$$\omega_u = \frac{G_m}{C_{L,eq}}$$

Multiply-by-Two Circuit

 Topology shown in Fig. (a) provides a nominal gain of two while achieving higher speed and lower gain error

- Incorporates two equal capacitors $C_1 = C_2 = C$
- In sampling mode [Fig. (b)], node X is a virtual ground, allowing voltage across C_1 and C_2 to track V_{in}

Multiply-by-Two Circuit

- During transition to amplification mode [Fig. (c)], S_3 turns off first, placing C_1 around op-amp and left plate of C_2 is grounded
- At the moment S_3 turns off, total charge on C_1 and C_2 equals $2V_{in0}C$ and since voltage across C_2 approaches zero in amplification mode, final voltage across C_1 and hence output are approximately $2V_{in0}$

