Abstract Algebra Part 1

<u>Disclaimer</u>: Work in progress. Portions of these written materials are incomplete.

Group Theory

Group theory is the study of symmetry

- Group theory is the study of symmetry
- Symmetries are structure-preserving transformations

- Group theory is the study of symmetry
- Symmetries are structure-preserving transformations
- Group theory is historically important and still widely-studied and researched today

- Group theory is the study of symmetry
- Symmetries are structure-preserving transformations
- Group theory is historically important and still widely-studied and researched today
- Group theory underpins more advanced topics in abstract algebra

- In Physics: Noether's Theorem
 - Continuous symmetries explain why momentum, angular momentum, and energy are conserved quantities

- In Physics: Noether's Theorem
 - Continuous symmetries explain why momentum, angular momentum, and energy are conserved quantities
- In Chemistry: group theory helps understand the structure and stability of molecules
 - The symmetries of a molecule can be used to predict some of a molecule's properties

- In Physics: Noether's Theorem
 - Continuous symmetries explain why momentum, angular momentum, and energy are conserved quantities
- In Chemistry: group theory helps understand the structure and stability of molecules
 - The symmetries of a molecule can be used to predict some of a molecule's properties
- In Mathematics:
 - Abel-Ruffini Theorem: insolvability of polynomials of degree > 4

- In Physics: Noether's Theorem
 - Continuous symmetries explain why momentum, angular momentum, and energy are conserved quantities
- In Chemistry: group theory helps understand the structure and stability of molecules
 - The symmetries of a molecule can be used to predict some of a molecule's properties
- In Mathematics:
 - Abel-Ruffini Theorem: insolvability of polynomials of degree > 4
 - We often study complex objects by studying their symmetries, which are typically simpler and yield useful information

 Deep result linking algebra and theoretical physics, proven by Emmy Noether (1918)

- Deep result linking algebra and theoretical physics, proven by Emmy Noether (1918)
- Every continuous symmetry of a physical system has a corresponding conservation law

- Deep result linking algebra and theoretical physics, proven by Emmy Noether (1918)
- Every continuous symmetry of a physical system has a corresponding conservation law
- Applies to classical systems
 - For example, invariance in space ←→ conservation of momentum
 - Invariance in time ←→ conservation of energy

- Deep result linking algebra and theoretical physics, proven by Emmy Noether (1918)
- Every continuous symmetry of a physical system has a corresponding conservation law
- Applies to classical systems
 - \circ For example, invariance in space \longleftrightarrow conservation of momentum
 - Invariance in time ←→ conservation of energy
- Also applies to quantum mechanics
 - Conservation of particle properties such as charge

- Deep result linking algebra and theoretical physics, proven by Emmy Noether (1918)
- Every continuous symmetry of a physical system has a corresponding conservation law
- Applies to classical systems
 - \circ For example, invariance in space \longleftrightarrow conservation of momentum
 - Invariance in time ←→ conservation of energy
- Also applies to quantum mechanics
 - Conservation of particle properties such as charge
- Excellent videos on this topic <u>here</u>

Emmy Noether

- One of the most important mathematicians of the 20th century
 - Often described as the most important woman mathematician
- She also made foundational contributions to abstract algebra
 - In a time when women faced barriers attending universities (1920s)
- Crucial results including the pervasive <u>isomorphism</u> theorems
- Many key definitions created by or named after her

Cyclic Groups

Rotations of a square

Rotations of a square

Let's label the corners to keep track of the the order and orientation of the square

Rotations of a square

Rotations of a square

Technical term for this kind of symmetry: **plane isometry**

Rotations of a square

Same as 90 degrees twice

Rotations of a square

Same as 90 degrees thrice

Rotations of a square

Back to the original after four rotations! This is called the **identity** transformation

Applying the 90 rotation four times brings up back to the original

Algebraically:

Let's call the rotation \mathbf{r} . Then rotating four times brings us back to the original we say this symbolically by

$$r^4 = 1$$

- Each structure preserving transformation can be reversed
 - o Rotate 90 counterclockwise, rotate clockwise 90 to undo

- Each structure preserving transformation can be reversed
 - o Rotate 90 counterclockwise, rotate clockwise 90 to undo

- Each structure preserving transformation can be reversed
 - o Rotate 90 counterclockwise, rotate clockwise 90 to undo

Then we have that

$$r * r^{-1} = r^0 = 1 = r^{-1} * r$$

- Each structure preserving transformation can be reversed
 - o Rotate 90 counterclockwise, rotate clockwise 90 to undo

Also, a clockwise rotation of 90 is the same as a counterclockwise rotation of 270

$$r^{-1} = r^3$$

$$r^4 = 1$$

Symmetries of a Square: rotations

- So, the rotations of a square give us four transformations
- The identity 1, which is a rotation of O degrees (or any multiple of 360)
- The three rotations 90, 180, and 270 degrees
 - The inverse rotations are included here, since -90 == 270, -180 == 180

Symmetries of a Square: rotations

- So, the rotations of a square give us four transformations
- The identity 1, which is a rotation of O degrees (or any multiple of 360)
- The three rotations 90, 180, and 270 degrees
 - The inverse rotations are included here, since -90 == 270, -180 == 180

Algebraically, we write the rotation group as the set

$$\{1,r,r^2,r^3\}$$
 with $r^4=1$

It has four elements and is called the Cyclic group of order 4

Symmetries of a Square: rotations

- So, the rotations of a square give us four transformations
- The identity 1, which is a rotation of O degrees (or any multiple of 360)
- The three rotations 90, 180, and 270 degrees
 - The inverse rotations are included here, since -90 == 270, -180 == 180

Algebraically, we write the rotation group as the set

$$\{1,r,r^2,r^3\}$$
 with $r^4=1$

$$r^4 = 1$$

Defn: The **order** of a group is the number of elements

It has four elements and is called the Cyclic group of order 4

Cyclic groups: Rotations

. . .

Cyclic groups: Rotations

• •

$$r^3 = 1$$
 $r^4 = 1$ $r^5 = 1$ $r^6 = 1$

Cyclic groups: Rotations

The cyclic group of order n has n elements, generated by a rotation **r** with

$$r^{n} = 1$$

$$r^{3} = 1$$

$$r^4=1$$

$$r^5=1$$

$$r^{6} = 1$$

Cyclic groups of order 2 and 1

 Order 2: need an object with only one (non-identity) symmetry

Letter with one reflection

$$r^2 = 1$$

Cyclic groups of order 2 and 1

 Order 2: need an object with only one (non-identity) symmetry Order 1: need an object with only the identity symmetry

Letter with one reflection

 $r^{2} = 1$

Letter with no symmetric rotations or reflections

$$r = 1$$

- The **order of a group** is the number of elements
 - The cyclic group of order n has n elements

- The order of a group is the number of elements
 - The cyclic group of order n has n elements
- The order of an element is the smallest power which makes it the identity

• In the cyclic group of order 6 $r^6=1$

$$egin{aligned} |C_6| &= 6 \ |1| &= 1 \ |r| &= 6 = |r^{-1}| = |r^5| \ |r^2| &= 3 = |r^4| \ |r^3| &= 2 \end{aligned}$$

• In the cyclic group of order 6 $r^6=1$

$$egin{aligned} |C_6| &= 6 \ |1| &= 1 \ |r| &= 6 = |r^{-1}| = |r^5| \ |r^2| &= 3 = |r^4| \ |r^3| &= 2 \end{aligned}$$

- The order of an element is at most the order of the group
 - In fact, the order of an element is a divisor of the order of the group (Lagrange's theorem)

Cyclic groups: summary

• Groups C_n with the following structure

$$\{1, r, r^2, r^3, \dots, r^{n-1}\}$$

- All generated by the element r which represents a rotation of 360 / n degrees
- The generator r has order n

Dihedral Groups

Squares have reflections as well

Squares have reflections as well

Call the reflection **s**, then we have that $s^2=1$

 Just need one reflection – all others can be written in terms of r and s

$$r^k s = s r^{-k}$$

Full group of rotations and reflections for a square is then just

$$\{1,r,r^2,r^3,s,sr,sr^2,sr^3\}$$
 or $\{1,r,r^2,r^3,s,rs,r^2s,r^3s\}$ $r^ks=sr^{-k}$

 Just need one reflection – all others can be written in terms of r and s

$$r^k s = s r^{-k}$$

Full group of rotations and reflections for a square is then just

$$\{1,r,r^2,r^3,s,sr,sr^2,sr^3\}$$
 or $\{1,r,r^2,r^3,s,rs,r^2s,r^3s\}$ $r^ks=sr^{-k}$

Note that $rs = sr^{-1}$ which means that r and s do **not** typically commute

The **dihedral group** of a square is called D_4 and has 8 elements

It contains the four rotations and the four reflections

The **dihedral group** of a square is called D_4 and has 8 elements

• It contains the four rotations and the four reflections

More generally, the dihedral group D_n has 2n elements:

- n rotations
- n reflections

The **dihedral group** of a square is called D_4 and has 8 elements

• It contains the four rotations and the four reflections

More generally, the dihedral group D_n has 2n elements:

- n rotations
- n reflections

The group is generated by a rotation \mathbf{r} and a reflection \mathbf{s} , with the relations

$$egin{aligned} r^n &= 1 \ s^2 &= 1 \ rs &= sr^{-1} \end{aligned}$$

More example groups

Not a symmetry!

The group has four elements: **1**, **r**, **s**, **rs** with $r^2=1=s^2=(rs)^2$

The group has four elements: **1**, **r**, **s**, **rs** with $r^2=1=s^2=(rs)^2$

No element of order 4, so it's not the cyclic group of order 4!

The group has four elements: **1**, **r**, **s**, **rs** with $r^2=1=s^2=(rs)^2$

No element of order 4, so it's not the cyclic group of order 4!

It's called the **Klein four group**, and is one of the two groups of order 4

Roots of Unity

Solutions of the equation

$$x^n = 1$$

Solutions given by

$$x=e^{rac{2\pi i}{n}}$$

Roots of Unity

Solutions of the equation

$$x^{n} = 1$$

Solutions given by

$$x=e^{rac{2\pi i}{n}}$$

Same as cyclic group of order n!

Technical term: isomorphism

Circle Group: rotations of unit circle

- Rotate by any angle
- Angles add, modulo 360

$$r_{ heta}=e^{i heta}$$

$$r_{lpha} * r_{eta} = r_{lpha + eta}$$

Circle Group: rotations of unit circle

Rotate by any angle

$$r_{ heta}=e^{i heta}$$

Angles add, modulo 360

$$r_{lpha} * r_{eta} = r_{lpha + eta}$$

- This group is infinitely large!
 - Contains all n-th roots of unity and much more
 - So it has elements of all orders
 - Also has elements of infinite order
 - Such as a rotation by an irrational angle

Circle Group: rotations of unit circle

Rotate by any angle

$$r_{ heta}=e^{i heta}$$

• Angles add, modulo 360

$$r_{lpha} * r_{eta} = r_{lpha + eta}$$

- This group is infinitely large!
 - Contains all n-th roots of unity and much more
 - So it has elements of all orders
 - Also has elements of infinite order
 - Such as a rotation by an irrational angle
- No single generator of the entire group, so it's not a cyclic group

Groups: Closed collections of symmetries

- Identity group: just one element (cyclic of order 1)
- Single reflection: cyclic of order 2
- Rotations: Cyclic of order n
- All rotations and reflections of regular polygons: Dihedral groups
- Klein four group (symmetry group of rectangle)
- Circle group

Permutation Groups

Permutations: Symmetries of Sets

• Example: encryption substitution ciphers (e.g. <u>ROT13</u>)

- A permutation is a reversible transformation on the letters of an alphabet
- A given permutation "encrypts" the data. The inverse "decrypts" the data.

Cyclically shifting letters by 3 positions is known as the **Caesar cipher**

- Composing permutations
- Alphabet: {1, 2, 3}

- Composing permutations
- Alphabet: {1, 2, 3}

- Composing permutations
- Alphabet: {1, 2, 3}

Both order 2 (self-inverses)

- Composing permutations
- Alphabet: {1, 2, 3}

Both order 2 (self-inverses)

- Composing permutations
- Alphabet: {1, 2, 3}

- There are cyclic permutations that shift elements in a cycle
 - Such permutations have order n for a set of n elements

Order 4 permutation

- There are cyclic permutations that shift elements in a cycle
 - Such permutations have order n for a set of n elements

For a set of n elements, there are permutations of order n

Order 4 permutation

- There are cyclic permutations that shift elements in a cycle
 - Such permutations have order n for a set of n elements

For a set of n elements, there are permutations of order n

So the cyclic group of order n is contained in the group of permutations on a set of n elements

Order 4 permutation

- Among the first groups to be studied
- A set of size n has n! permutations
 - o invertible and closed under composition
- The group of permutations on n-elements is called the **Symmetric** $\operatorname{group} S_n$
- Foundational to finite group theory every finite order group can be represented as a subgroup of a permutation group (<u>Cayley's</u> <u>theorem</u>)

Lattice Groups

• Translations of a one-dimensional (infinite) lattice

• Translations of a one-dimensional (infinite) lattice

• Translations of a one-dimensional (infinite) lattice

- Translations of a one-dimensional (infinite) lattice
- Can shift by any integer k

- Translations of a one-dimensional (infinite) lattice
- Can shift by any integer k
- Inverse is shift by -k

- Translations of a one-dimensional (infinite) lattice
- Can shift by any integer k
- Inverse is shift by -k
- Shifts compose by addition
 - Shift by n then m is a shift by n+m

- Translations of a one-dimensional (infinite) lattice
- Can shift by any integer k
- Inverse is shift by -k
- Shifts compose by addition
 - O Shift by n then m is a shift by n+m
- So the symmetry group of translations is the same as the integers with addition

Abstract Algebra

What's abstract about abstract algebra?

 All the groups we've seen are invertible transformations of some object that form a closed collection under composition and inverses

What's abstract about abstract algebra?

- All the groups we've seen are invertible transformations of some object that form a closed collection under composition and inverses
- We can define a group abstractly as a set G with:
 - o an identity element 1
 - an associative binary operation: for each g, h in G, g * h in G
 - inverses for each element g in G that undo the action of g

Why associative?

What's abstract about abstract algebra?

- All the groups we've seen are invertible transformations of some object that form a closed collection under composition and inverses
- We can define a group abstractly as a set G with:
 - an identity element 1
 - an associative binary operation: for each g, h in G, g * h in G
 - o inverses for each element g in G that undo the action of g
- Group theory is the study of all abstract objects satisfying these axioms
 - Every group is the set of symmetries of some mathematical object (<u>Frucht's Theorem</u>)

What's next!

Homework: watch this 3B1B <u>video</u> (~20 mins)

 Next time we'll cover the structure of groups, subgroups, homomorphisms, and related topics

Exercises

Exercise Session Format

- Primarily driven by hands-on examples with calculations, some involving computers (planned for weeks 3 and 4)
- Brief "presentation" section to refresh memory of definitions, concepts, etc.
- Main objective is to illuminate understanding with concrete examples; not meant to be comprehensive in any way
- Exercises emphasize computations and conjectures; we are not doing proofs

Why do exercises?

- Interactivity is essential to learning mathematics
- Working through examples and exercises builds intuition
- Working through non-examples can highlight the essentials of a particular definition or theorem
- Possibly fictional quote attributed to Euclid: "There is no royal road to geometry."

How hard are the

- Carget audience Someone who has not taken abstract algebra before
 - Exercises are meant to be bite-sized, not time consuming
 - If you've taken an abstract algebra class in college before, the exercises will likely be very easy

Other Resources

Beyond these lectures and exercise sessions, you can keep learning algebra by...

- Finding a few colleagues interested in learning with you
- Asking the instructors some questions
- Take a college class
- Reading:
 - Gallian's <u>Contemporary Abstract Algebra</u>
 - Artin's <u>Algebra</u>
 - Dummit and Foote's <u>Abstract Algebra</u>
 - Herstein's <u>Abstract Algebra</u>

Agenda

- Review definition of a group
- Give examples and non-examples of groups
- Go in-depth and do calculations with certain groups:
 - Integers mod n
 - Dihedral group
 - Symmetric group (if we have time)

Definition of a group

A *group* is a set G together with a binary operation (the "group operation") *: $G \times G \rightarrow G$ which satisfies:

- Associativity: for all $g_{1'}$, $g_{2'}$, $g_{3} \in G$, $(g_{1} * g_{2}) * (g_{3}) = g_{1} * (g_{2} * g_{3})$
- Existence of identity: there exists an element e ∈ G such that for all g ∈ G, (e * g) = (g * e) = g.
- Existence of inverses: for every element $g \in G$, there exists an element $g^{-1} \in G$ such that $(g * g^{-1}) = (g^{-1} * g) = e$.

How do we "describe" a specific group?

The group definition is very abstract. What are examples of specific groups, and how do we describe them?

- As a familiar mathematical object
 - eg, integers, rationals, or reals under addition, certain subsets of matrices under matrix multiplication
- By explicitly writing out a multiplication table
- Other abstract ways, such as a "group presentation"

Example: $(\mathbb{Z}, +)$ - the integers under addition

 $(\mathbb{Z}, +)$ forms a group:

- addition is associative
- O is the identity
- The inverse of 1 is −1, and more generally the inverse of a is −a.

You can also see that the above logic extends to rationals (\mathbb{Q}), reals (\mathbb{R}), or complex numbers (\mathbb{G}) under addition.

(Recall: a *rational number* is a number in the form a/b, where a, b are integers, and b is not zero).

Non-example: $(\mathbb{Z}, *)$ - the integers under multiplication

In contrast, $(\mathbb{Z}, *)$ does not form a group. For example, most integers do not have multiplicative inverses which are also integers.

- (Q, *) is not a group either (why?)
- However, what about non-zero rationals under multiplication?
 - What is the identity?
 - Open by Does each element have an inverse?
 - What about non-zero reals or complex numbers?
- Notation: Q* = non-zero rationals

Non-example: odd integers under addition

Arbitrary subsets of groups are generally not groups either.

Example: odd integers under addition...

- + is associative, but
- odd integers aren't even *closed* under addition (that is, if x, y are odd, x+y is not always odd)
- there is no identity

Examples: even integers under addition

... but sometimes subsets are groups!

Example: even integers under addition

- + is associative, but
- O is even, hence the even integers have the identity
- if a and b are even, so is a + b
- if a is even, so is -a.

The even integers form an example of a subgroup of the integers.

(Homework: Can you describe all subsets of integers that are a group under +?)

Integers mod n

Motivation: Addition on a clock

Consider a standard 12-hour clock.

An event starts at 10AM. It takes 5 hours. What time does it end?

- 15 AM? No... there's no 15 AM.
- 3 PM!
- You calculated this by computing 10 + 5 12 = 3.

This is an example of *addition mod 12*, an addition system where all sums are less than 12.

Integers mod n: a definition

Consider the integers $\{0, 1, 2, ... n-1\}$, with the binary operation of "clock" addition or "remainder by n": if a + b >= n, "define" a + b to be a + b - n. This forms a group called the "integers mod n" and are denoted \mathbb{Z}_n .

- Example: Let n = 3. Then:
 - \circ 1 + 1 = 2,
 - \circ 2 + 1 = 0,
 - \circ 2 + 2 = 1.
- To distinguish between addition of ordinary integers vs. integers mod n, one notation is to write $[1]_3$ for 1 in \mathbb{Z}_3 .
- We write a ≡ b mod n to mean n divides (a-b).
- This is a group! (What is the identity? Convince yourself inverses exist.)

Exercises: Integers mod n under multiplication

Consider \mathbb{Z}_n but this time with multiplication instead of addition. This is not a group because O has no inverse. Suppose we remove O.

Exercise: Formulate a conjecture as to when $\mathbb{Z}_n - \{0\}$ under multiplication is a group. (Optional homework: prove your conjecture) (To see a pattern, work through some examples for small values of n, like n = 2, 3, 4, 5).

Exercise. For general n, can you describe the largest subset of \mathbb{Z}_n which forms a group under multiplication?

Example: $\{[1]_{\mathcal{A}}[3]_{\mathcal{A}}\}$ is a group under multiplication, and is the largest such group for n=4, because no other elements have multiplicative inverses mod 4.

Exercise: Primitive roots mod p

Let p = a prime number.

Exercise. For small values of p (p = 7, 11, ...), can you find a **generator** for \mathbb{Z}_p^* ? That is, can you find a single element $[x]_p$ of \mathbb{Z}_p^* such that every element of \mathbb{Z}_p^* can be written as $([x]_p)^k$ for some integer k?

Example: in \mathbb{Z}_3^* , $[2]_3$ is a generator: $([2]_3)^2 = [1]_3$. In \mathbb{Z}_5^* , $[2]_5$ is a generator, but $[4]_5$ is not.

A generator for \mathbb{Z}_{p}^{*} is called a **primitive root mod p**.

Exercise. For what value(s) of p are primitive roots unique?

Facts and open questions about primitive roots

Every \mathbb{Z}_p^* has a primitive root. (Homework:: how many are there?) This fact is fairly easy to prove (though we do not do it here).

What is the most efficient algorithm for finding a primitive root? This is an open question!

Suppose a is an integer, is not a square, and is not -1. Is a a primitive root mod p for infinitely many primes p? This is an open question! (Artin's conjecture) (Homework: why are the restrictions "not a square" and "not -1" required?)

Dihedral Groups: Symmetries of regular polygons

Example: plane symmetries of a regular triangle

Consider an equilateral triangle which lies in the plane. It has some symmetries:

(counterclockwise) Rotation by 120 degrees:

Reflection of a triangle

Reflection across the vertical axis:

Exercise: Let's explore the symmetries of a triangle

- How many symmetries of an equilateral triangle are there? Can you prove this? Draw diagrams like in the previous few slides for each symmetry.
- Convince yourself they form a group under composition (if g_1 , g_2 are symmetries, $g_1 * g_2$ is the symmetry obtained by applying g_2 and then g_1)
 - eg, rotation by 120 degrees * rotation by 120 degrees = rotation by 240 degrees
 - O What is the identity element?
 - O What are the inverse elements of each element?
 - Give names to each element. Can you write down a "multiplication table" for these elements? (If you get bored after filling in half the entries it's fine to stop early)

Some standard mathematical notation for symmetries of a regular polygon

The group of symmetries of an equilateral triangle is called the **dihedral group** with 6 elements, and is written D_3 (sometimes D_6).

- Rotation by 120 degrees is often named "r" (rotation)
- Reflection across some axis (say the vertical axis) is often named "s".

This is all naturally generalizable to regular n-gons, and their symmetry group is written D_x.

Exercise: Group operations in D₃

How are r, s related to each other? In particular:

- What happens when you multiply r by itself repeatedly? What about s?
- Convince yourself that rs ≠ sr. Does rs = srⁱ for some value of i? Draw diagrams illustrating how rs vs. sr act on a triangle that show this.

Check that every element of D_3 can be uniquely written in the form $s^i r^j$, where i = 0 or 1, i = 0, 1, or 2.

Say you multiply two elements of the above form together. (eg, (sr) * (sr²)) How can you convert this product to the form sⁱr^j?

Homework exercise

Verify that D_n is a group (at the least, try enumerating elements of symmetries of a square or regular hexagon and convincing yourself they satisfy group axioms).

What are the analogous equations to those on the previous slide for D_{2n} ? Can you find an explicit description of every element of D_{2n} as a product of various numbers of r, s?

\mathbb{Z}_n inside D_n

Suppose you multiply r by itself repeatedly. You end up with the subset $\{1, r, r^2, ..., r^{n-1}\}$ inside of D_n .

Also, note that:

- and if i + j > n, then rⁱ * r^j = r^{i+j-n}.

In other words: the exponents of r behave exactly like elements of $\mathbb{Z}_n!$

Symmetric Group: Permutations of a finite set

Permutations: Definition

Consider a finite set S, which we will just label with positive integers, like {1, 2, ..., n}. A permutation is a rearrangement of the integers in S.

Example: n = 3. The rearrangement $1 \rightarrow 2$, $2 \rightarrow 3$, $3 \rightarrow 1$ is a permutation, but the function $1 \rightarrow 2$, $2 \rightarrow 2$, $3 \rightarrow 3$ is not, because both 1, 2 go to 2.

More formally,

A **permutation** of S is a function p: $S \rightarrow S$ which is

- 1 to 1: if p(x) = p(y), then x = y. In other words, distinct elements map to distinct elements.
- surjective: for every y, there exists some x such that p(x) = y.

Group of Permutations

Suppose n is a fixed positive integer. The set of permutations of {1, 2, ..., n} is denoted S_n, and form a group under function composition. (Homework: check group axioms!)

Example: S_2 has two elements: the permutations p_1 , p_2 , where $p_1(1) = 1$, $p_1(2) = 2$, and $p_2(1) = 2$ and $p_2(2) = 1$. p_1 is the identity, and $p_2 \circ p_2 = p_1$.

The group S_n is called the **symmetric group** on n elements.

You can think of a permutation as a "symmetry" of {1, 2, ..., n}, in that a permutation keeps {1, 2, ..., n} invariant.

A connection with dihedral groups

Think back to D₃, the symmetries of an equilateral triangle.

If we label the vertices of the triangle with 1, 2, 3, then each element of D₃ can be thought of as a permutation of {1, 2, 3}, depending on how the symmetry rearranges the vertices. For example:

the element of D₃ represented by the diagram on the right can be thought of as the permutation swapping 2 and 3 (and keeping 1 fixed).

Exercises: D₃ vs. S₃

Exercise: Show that D_3 and S_3 are identical groups, in the sense that exists a bijection (1-1 and surjective, like a permutation) f: $D_3 \rightarrow S_3$ which preserves group structure, ie, $f(g^*h) = f(g) * f(h)$ for every pair of elements f, $g \in D_6$.

- What is f(id)?
- How are f(r) and $f(r^{-1})$ related? More generally, how are f(g) and $f(g^{-1})$ related, for an arbitrary g?
- Is this group-preserving map f unique?
- What if you try to do something similar with D_{4} and S_{4} ?

Appendix

An aside: Abelian groups

Notice that addition in \mathbb{Z}_n is commutative. If a group G has a commutative binary operation (that is, gh = hg for all g, h \in G), we call G an **abelian group**.

In contrast, notice that $D_{2n'}$ S_n (n > 2) are not abelian.

Permutations: Notation

In group theory, "cycle notation" is a common way of compactly writing down individual permutations. A **cycle** $(s_1 s_2 ... s_k)$ represents a permutation p which satisfies $p(s_i) = s_{i+1}$, $p(s_k) = p_1$. For integers j which are not present in the cycle, p(j) = j.

Examples:

- The identity map has no non-trivial cycles, so we write it as 1.
- The unique non-identity element of S₂ is (12).
- The elements of S₃ are 1, (12), (13), (23), (123), (132).
- Some permutations are products of cycles. For example, (1 2) (3 4) in S_4 or (1 3)(2 4).

Basic calculations with cycles

Cycle notation makes it easy to write down inverses: just reverse the order in each cycle.

Example: $(13254)^{-1} = (14523)$.

Products of cycles are a little harder to compute. Examples:

- (12)(13) = (132). To see this: (12)(13) 1 = (12) 3 = 3, (12)(13) 2 = (12) 2 = 1, (12)(13) 3 = (12) 1 = 2.
- (123)(24) = (1243).