This work is licensed under a Creative Commons Attribution 4.0 License License: https://creativecommons.ora/licenses/bv-nc-nd/4.0/

Boolean Algebra

George Boole (1815-1864) English mathematician and philosopher.

Defined on the set B = {0,1}

- Binary operators: AND, OR { , + }
- Unary operation: Complement (NOT) {'} Another symbol for the NOT operator: a

 $a \cdot b \in B$

 $a \cdot 1 = a$

 $a \cdot b = b \cdot a$

 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

a + l	o (O	Co	mple	emer	
b a	0	1		а	a' (a)
0	0	1		0	1
1	1	1		1	0

- Axioms (Laws):

4. Identity:

Digital Circuits

Under assumption $a, b \in B$

- $a + b \in B$ 1. Closure: 2. Commutative: a + b = b + a
- 3. Associative: a + (b + c) = (a + b) + c

 - a + 0 = a
- 5. Distributive: $a + (b \cdot c) = (a + b) \cdot (a + c)$ 6. Inverse:

 - $a + \overline{a} = 1$ $a \cdot \overline{a} = 0$
- Order of operations (operator precedence) from highest to lowest precedence: 1. Parenthesis, 2. NOT (Complementation) (Negation),

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

 $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

21

Digital Circuits

• The Duality principle:

To obtain the dual of a logic expression: Replace \cdot by +, + by \cdot , 0 by 1, and 1 by 0, but do not change the variables.

$$a + b + 0 \dots \Leftrightarrow a \cdot b \cdot 1 \dots$$

Example: The dual of the expression $a + a \cdot b$ is $a \cdot (a+b)$.

Principle: Duals of all proven theorems (equations) are also valid theorems.

If we know that an equation (theorem) is true, then the dual of this equation (theorem) is also true.

Note that in the previous slide, axioms were presented with their duals (in two columns).

Example:

Absorption theorem (given in the next slide):

If we can prove the theorem $a + a \cdot b = a$, then its dual $a \cdot (a+b) = a$ is also true.

General Duality Principle:

$$f(X1, X2, ..., Xn, 0, 1, +, \bullet) \Leftrightarrow f^{D}(X1, X2, ..., Xn, 1, 0, \bullet, +)$$

- Duality establishes relation between proofs of theorems.
- Duals are not equal.

Theorems:

These theorems are derived from the operations and axioms of Boolean algebra. They can be proven using the axioms.

1. Annihilator (or Dominance):

$$a + 1 = 1$$

$$a \cdot 0 = 0$$

2. Involution:

$$(a')' = a \text{ or } \overline{\overline{a}} = a$$

3. Idempotency:

4. Absorption:

$$a + a \cdot b = a$$

$$a \cdot (a+b) = a$$

5. De Morgan's Theorem: Augustus De Morgan, British mathematician and logician (1806 - 1871)

$$\overline{(a+b)} = \overline{a} \cdot \overline{b}$$

$$\overline{(a \cdot b)} = \overline{a} + \overline{b}$$

5. General form of De Morgan's Theorem:

$$f(X1, X2, ..., Xn, 0, 1, +, \bullet) = g(X1, X2, ..., Xn, 1, 0, \bullet, +)$$

It establishes a relation between binary operations (AND, OR): • and +

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

Digital Circuits

Proving the theorems:

a) Using Axioms

Example:

Theorem:

$$X \cdot Y + X \cdot \overline{Y} = X$$

Proof:

Distributive

$$X \cdot Y + X \cdot \overline{Y} = X \cdot (Y + \overline{Y})$$

Inverse (Complement) Identity

$$X \cdot Y + X \cdot \overline{Y} = X \cdot (Y + \overline{Y})$$

 $X \cdot (Y + \overline{Y}) = X \cdot (1)$
 $X \cdot (1) = X \checkmark$

Example:

Theorem:

$$X + X \cdot Y = X$$
 (Absorption)

Proof:

Identity $X + X \cdot Y$ $= X \cdot 1 + X \cdot Y$ Distributive $X \cdot 1 + X \cdot Y$ $= X \cdot (1 + Y)$ X • (1 + Y) $= X \cdot (1)$ Annihilator Identity X • (1) = X ✓

http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Proving the theorems: b) Using truth tables

Note that to denote the negation (NOT), we can also use the notation \overline{A} .

De Morgan:

$$\overline{(X + Y)} = \overline{X \bullet Y}$$

Χ	Υ	Χ	Υ	$\overline{(X + Y)}$	X • Y
0	0	1	1	1	1
1	0	0	1	ŏ	Ö
1	ĺ	Ó	0	0	0

$$(X \bullet Y) = X + Y$$

Χ	Υ	Χ	Y	(X • Y)	X + Y
0 0 1 1	0 1 0	1 1 0	1 0 1	1 1 1	1 1 1 0

Although truth tables may contain many rows, computer programs can fill in and compare these tables very quickly.

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

2.5

Digital Circuits

Minimizing logic expressions using axioms and theorems:

Minimizing a logic expression means:

- · finding the shortest expression
- with the fewest operations and variables
- · that generates the same output values as the original expression.

Example

$$Z(A,B,C) = A' \cdot B \cdot C + A \cdot B' \cdot C + A \cdot B \cdot C' + A \cdot B \cdot C$$

Original expression

$$= A'BC + ABC + AB'C + ABC' + ABC$$

$$= (A' + A) B C + A B' C + A B C' + A B C$$

$$= (1) B C + A B' C + A B C' + A B C$$

$$= BC + AB'C + ABC' + ABC + ABC$$

$$=$$
 BC + AB'C + ABC + ABC' + ABC

$$= BC + A(B' + B)C + ABC' + ABC$$

$$= BC + A(1)C + ABC' + ABC$$

$$=$$
 BC + AC + AB(C' + C)

$$= BC + AC + AB(1)$$

$$= BC + AC + AB$$

Minimized expression

Logic (Boolean) Expressions

A logic expression, is a finite combination of variables, constants, and operators that are well-formed according to the rules.

It is represented as E(X), where $X = (x_1, x_2, ..., x_n) \in B^n$ and each $x_i \in \{0,1\}$.

Bn is the set of vectors with n binary variables.

Examples:

$$E(x_1, x_2, x_3, x_4) = x_2 \overline{x_3} + x_1 x_4 + \overline{x_1} x_2$$

$$E(a, b, c) = a\overline{c} + ab$$

$$E(a, b, c, d) = (a + b + \overline{c})(\overline{a} + d)(b + \overline{d})$$

Literal:

In a Boolean expression, each separate occurrence of a variable, either in normal (uncomplemented) or inverse (complemented) form, is a **literal**.

For example, the expression $\mathrm{E}(a,b,c)=a\bar{c}+ab$ has three variables (a,b,c) and contains four literals $(a\bar{c}+ab)$. However, two of literals are identical (a appears twice).

If E_1 and E_2 are logic expressions, then $\overline{E_1}$, $\overline{E_2}$, $E_1 + E_2$, $E_1 \cdot E_2$, and all possible combinations are also logic expressions.

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

27

Digital Circuits

Normal forms of logic expressions:

Each logic expression can be written in two special forms.

1. Disjunctive normal form (DNF): $\Sigma\Pi$

Logic sum of logic products (SOP). OR of ANDs.

Example: $b\bar{c} + ad + \bar{a}b$

The OR operation is also called logical disjunction.

2. Conjunctive normal form (CNF): $\Pi\Sigma$

Logic product of logic sums (POS). AND of ORs.

Example: $(a + b + \bar{c})(a + d)(\bar{a} + b)$

The AND operation is also called logical conjunction.

Any logic expression can be written in CNF (POS form) and DNF (SOP form). Any expression in CNF can be converted to DNF, and vice versa ($\Sigma\Pi \leftrightarrow \Pi\Sigma$).

Value of a logic expression:

An expression, E(X), generates for each combination of the input vector $X=(x_1, ..., x_n)$, a value from the set of $B=\{0,1\}$.

These values constitute the truth table for the expression.

Example: $E(X) = x_1 x_2 + x_3$

Truth table for the expression

http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Combinations for which E(X) generates '1' (covers)

@ ⊕ ⊕

2011-2022 Feza BUZLUCA

2.9

Digital Circuits

Applying axioms and theorems to expressions

The axioms and theorems of Boolean algebra defined for binary values are also valid for expressions due to the closure property.

Remember: According to the closure property, the value generated by an expression E is a binary value, i.e., $E(X) \in B = \{0,1\}$

Examples:

$$E(a, b, c) = b\bar{c} + ad + \bar{a}b$$

Identity:

$$\mathsf{E}(\mathsf{X}) + \mathsf{0} = \mathsf{E}(\mathsf{X})$$

$$E(X) \cdot 1 = E(X)$$

$$E(a, b, c) + 0 = (b\bar{c} + ad + \bar{a}b) + 0 = b\bar{c} + ad + (\bar{a} + 0)(b + 0)$$
$$= b\bar{c} + ad + \bar{a}b = E(a, b, c)$$

$$E(a,b,c) \cdot 1 = (b\bar{c} + ad + \bar{a}b) \cdot 1 = b\bar{c} + ad + \bar{a}b = E(a,b,c)$$

Annihilator (or Dominance): E(X) + 1 = 1

$$F(X) + 1 = 1$$

$$E(X) \cdot 0 = 0$$

$$E(a, b, c) + 1 = (b\bar{c} + ad + \bar{a}b) + 1 = 1$$

$$E(a, b, c) \cdot 0 = (b\bar{c} + ad + \bar{a}b) \cdot 0 = 0$$

"Order Relation" between binary vectors:

To explain some properties of logic expressions, we can define and use the following two order relations "<" and "<":

- 1. An order relation "<" between elements of set B = $\{0,1\}$: 0 < 1
- Read as "O precedes 1" or "O is smaller than 1".
- 2. According to this, another order relation " \leq " between $X \in B^n$ vectors can be defined as follows:
- If each component of X1 precedes (is smaller than) the component of vector X2 in the corresponding position, then $X1 \leq X2$.

Example:

X1=1001 , X2 = 1101

 $X1 \leq X2$.

The order relation "\le " may not exist between all vectors.

Example: X1=0011 , X2 = 1001

There is no order relation between X1 and X2 (Neither X1 \leq X2 nor X2 \leq X1 is true).

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

2.11

Digital Circuits

Order relation between expressions:

 $\mathsf{E}(\mathsf{X}) \leq \mathsf{F}(\mathsf{X})$ denotes that values of E generated by combinations of input X are always smaller than (or equal to) all values of F generated by the same input combinations.

Example:

	•					
X_1	X_2	X_3	E(>	()	F(X)	
0	0	0	1	=	1	
0	0	1	0	=	0	
0	1	0	1	=	1	
0	1	1	0	<	1	
1	0	0	0	<	1	
1	0	1	0	=	0	
1	1	0	0	=	0	
1	1	1	1	=	1	

Set of all input combinations (X) Combinations for which F(X) generates '1 (combinations F(X) covers)

Combinations for which E(X) generates '1' (combinations E(X) covers)

For each input combination where E(X)generates "1", F(X) also generates "1".

This is a special case. The order relation ≤ may not exist between all expressions (see slide 2.15).

If $E(X) \leq F(X)$,

E(X) implies F(X), $E(X) \Rightarrow F(X)$,

F(X) covers E(X).

Using the order relation to show absorption properties of expressions

Remember: The theorems given for binary values on slide 2.3 are also valid for expressions due to the closure property.

Consequently, the absorption theorem given for binary values $(a + a \cdot b = a)$ and $a \cdot (a+b) = a$ is also valid for expressions because of the closure property.

However, the order relation \leq makes it easier to grasp absorption properties of expressions.

Since absorption is an important theorem that is used to simplify expressions, we will illustrate this theorem using the order relation \leq again.

We will consider two cases.

- Case A: Special case: $E(X) \le F(X)$ (as in the example on slide 2.12)
- Case B: General case: The order relation \leq does not exist between E(X) and F(X)

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

001

101

110

E 000 010

111

2.13

Digital Circuits

Using the order relation to show absorption properties of expressions (cont'd)

CASE A: Special case: $E(X) \le F(X)$

Absorptions:

1.
$$E(X) + F(X) = F(X)$$

2.
$$E(X) \bullet F(X) = E(X)$$

Example:

Consider the example given on slide 2.12.

Absorption properties (1 and 2) can be seen on the diagram on the right.

Expressions for the functions on slide 2.12:

$$E(x_1, x_2, x_3) = \overline{x_1} \cdot \overline{x_3} + x_1 \cdot x_2 \cdot x_3, \qquad F(x_1, x_2, x_3) = \overline{x_1} \cdot \overline{x_3} + \overline{x_2} \cdot \overline{x_3} + x_2 \cdot x_3$$

Absorptions:

1.
$$\mathsf{E}(\mathsf{X}) + \mathsf{F}(\mathsf{X}) = \overline{x_1} \cdot \overline{x_3} + x_1 \cdot x_2 \cdot x_3 + \overline{x_1} \cdot \overline{x_3} + \overline{x_2} \cdot \overline{x_3} + x_2 \cdot x_3$$
$$= \overline{x_1} \cdot \overline{x_3} + \overline{x_2} \cdot \overline{x_3} + x_2 \cdot x_3 = \mathsf{F}(\mathsf{X})$$

2.
$$\mathsf{E}(\mathsf{X}) \bullet \mathsf{F}(\mathsf{X}) = (\overline{x_1} \cdot \overline{x_3} + x_1 \cdot x_2 \cdot x_3) \cdot (\overline{x_1} \cdot \overline{x_3} + \overline{x_2} \cdot \overline{x_3} + x_2 \cdot x_3)$$
$$= \overline{x_1} \cdot \overline{x_3} + x_1 \cdot x_2 \cdot x_3 = \mathsf{E}(\mathsf{X})$$

Using the order relation to show absorption properties of expressions (cont'd)

Case B: General case: The order relation \leq does not exist between E(X) and F(X)

The following inequalities are always true for any E and F (as can be seen on the diagram on the left):

$$E \cdot F \le E \le E + F$$

 $E \cdot F \le F \le E + F$

Absorption properties of expressions follow directly from these inequalities (we can generalize the absorption theorems for Boolean variables and apply them to expressions due to the closure property):

Absorption Properties of expressions:

$$E + E \cdot F = E$$

$$E(E+F)=E$$

Proof: E(E+F) = EE+EF = E+EF = E(1+F) = E

$$E + \overline{E} \cdot F = E + F$$
 dual $E(\overline{E} + F) = E \cdot F$

$$E(\bar{E} + F) = E \cdot F$$

Proof: $E + \overline{E} \cdot F = (E + \overline{E})(E + F) = 1(E + F) = E + F$

These properties are used to minimize (simplify) logic expressions.

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

http://www.buzluca.info

2011-2022 Feza BUZLUCA

2.15

Example E(a,b,c,d) E·F = abo	= a	bc',	F(a	a,b,c,c	the E and F expressions given in this example.
abcd	E	F	E·F	E+F	$E \cdot F < E$ and $E \cdot F < F$.
0000	0	0	0	0	We can check the absorption properties:
0001	0	0 0	0	0	E·F + E = E _
0010	0	0	0 0	0	abc'd + abc' = abc' √
0011	0	0	0	0	and
0100	0		0		-
0110	0	0	0	0	EF+F=F,
0111	0	1	0	1	abc'd + bd = bd ✓
1000	0	0	0	0	Again, from the truth table, we observe
1001	0	0	0	0	E < E+F and F < E+F.
1010	0	0	0	0	We can check the absorption properties:
1011	0	0	0	0	
1100		0	0	1	$E \cdot (E + F) \stackrel{?}{=} E$ abc' (abc' + bd) $\stackrel{?}{=}$ abc' \checkmark We have thus shown the
1110	0	0	0	0	abc' (abc' + bd) = abc' \(\sqrt{We have thus shown the} \)
1111	0	1	0	ď	and absorption properties
					F· $(E + F) \stackrel{?}{=} F$ using a truth table instead of axioms.
http://akademi.			buzluc	a/	(a) (a) (a) (a) (a) (b) (b) (a) (b) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c

The Consensus Theorem (SOP Form)

Assume that E_1 and E_2 are two expressions that do not contain the literal x_1 .

We can create a new expression by multiplying one term by x_1 and the other one by the complement of x_1 $(\overline{x_1})$.

$$E = x_1 E_1 + \overline{x_1} E_2$$

Here, x_1 is called a **biform** variable because it appears both positively (as itself: x_1) and negatively (as complement: $\overline{x_1}$) in the expression.

Examples:

a)
$$x_1(x_2+\overline{x_3}) + \overline{x_1}(x_3+x_4)$$
,
b) $x_1x_2\overline{x_3} + \overline{x_1}x_4 + x_5$

- Given a pair of product terms that include a biform variable, the consensus term (SOP) is formed by multiplying (ANDing) the two original terms together, leaving out the selected variable and its complement.
- $\mathbf{E_1}\mathbf{E_2}$ is the consensus term of $x_1E_1 + \overline{x_1}E_2$ with respect to the variable x. Example: Consensus of $abc + \overline{a}cd$ (with respect to a) is bccd = bcd.

Theorem: The consensus term is redundant and can be eliminated.

$$x_1E_1 + \overline{x_1}E_2 + E_1E_2 = x_1E_1 + \overline{x_1}E_2$$

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

2.17

Digital Circuits

The Consensus Theorem (POS Form)

According to the duality principle, the consensus theorem is also valid for expressions written in product-of-sums (POS) form.

Assume that E_1 and E_2 are two expressions that do not contain the literal x_1 .

We can create a new expression by adding x_1 to one term and the complement of x_1 to the other one.

$$E = (\mathbf{x_1} + E_1)(\overline{\mathbf{x_1}} + E_2)$$

Here, x_1 is a **biform** variable.

Examples:

a)
$$(x_1 + x_2 + \overline{x_3})(\overline{x_1} + x_3 + x_4)$$
,

b)
$$(x_1 + x_2\overline{x_3})(\overline{x_1} + x_3 x_4)$$

- Given a pair of sums that include a biform variable, the consensus term (POS) is formed by adding (OR) two original terms together, leaving out the selected variable and its complement.
- $\mathbf{E_1}$ + $\mathbf{E_2}$ is the consensus term of $(x_1+E_1)(\overline{x_1}+E_2)$ with respect to the variable x. Example: Consensus of $(a+b+c)(\overline{a}+c+d)$ is: b+c+c+d=b+c+d.

Theorem: The consensus term is redundant and can be eliminated.

$$(x_1+E_1)(\overline{x_1}+E_2)(E_1+E_2) = (x_1+E_1)(\overline{x_1}+E_2)$$

```
Digital Circuits
                                         License: https://creativecommons.org/licenses/by-nc-nd/4.0/
Example: Minimization of a logic expression using the consensus theorem
 F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC'
                                                   Consensus (with respect to C)
               = A'B'C + A'BC + AB'C + ABC + ABC' + AB is added
               = A'B'C + A'BC + AB'C + ABC' + AB Absorption
               = A'B'C + A'BC + AB'C + AB
                                                    Consensus (with respect to B)
               = A'B'C + A'BC + A'C + AB'C + AB
                                                             is added
               = A'B'C + A'BC + A'C + AB'C + AB
                                                             Absorption
               = A'C + AB'C + AB
                                                    Consensus (with respect to B) is added
               = A'C + AB'C + AB + AC
                                                             Absorption
               = A'C + AB + AC
                                                    Consensus (with respect to A) is added
               = A'C + AB + AC + C
                                                    Absorption
http://akademi.itu.edu.tr/en/buzluca/
                                            @ ⊕ ⊕ ⊕
                                                                                   2.19
                                                          2011-2022 Feza BUZLUCA
http://www.buzluca.info
```


3. Incompletely specified functions:

A large digital system is usually consists of many sub-circuits.

Example

In the following example the output of logic circuit L1 drives the output of logic circuit L2.

- Let us assume that the output of L1 does not generate all possible combinations of values for A, B, and C.
- In particular, we will assume that there are no combinations of values for w, x, y, and z which cause A, B, and C to assume values of 001 and 110.
- In other words, L1 never generates the output combinations 001 and 110.
- Hence, when we design L2, it is not necessary to specify values of F for ABC = 001 or 110 because these combinations of values can never occur as inputs to 12

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

2 23

Digital Circuits

3. Incompletely specified functions (cont'd):

• For example, F might be specified by the following table:

Α	В	С	F
0	0	0	1
0	0	1	Х
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	Χ
1	1	1	1

- The X's in the table indicate that we do not care whether the value of 0 or 1 is assigned to F for the combinations ABC = 001 or 110.
- In this example, we do not care what the value of F is because these input combinations never occur anyway.
- The function F is then incompletely specified.
- The terms A'B'C and ABC' are referred to as "don't care" terms because we do not care whether they are present in the function or not.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

3. Incompletely specified functions (cont'd):

- When we realize the function, we must specify values for the don't cares.
- It is desirable to choose values which will help simplify the function.
- For the example in Slide 2.24:

o If we assign the value 0 to both X's, then F = A'B'C' + A'BC + ABC = A'B'C' + BC

Finding expression from truth table
See 2.37 canonical forms

- o If we assign 0 to the first X and 1 to the second, then F = A'B'C' + A'BC + ABC' + ABC = A'B'C' + BC + AB
- If we assign 1 to the first X and 0 to the second, then
 F = A'B'C' + A'B'C + A'BC + ABC = A'B' + BC

The third choice of values leads to the simplest solution.

- If we assign 1 to both X's, then
 F = A'B'C' + A'B'C + A'BC + ABC' + ABC = A'B' + BC + AB
- In Section 4, we will see the selection of undetermined (don't care) values and the simplification of incompletely specified functions in detail.
- Incompletely specified functions can arise in following cases:
 - · Certain combinations of inputs cannot occur.
 - All input combinations may occur, but the function output is used in such a
 way that we do not care whether it is 0 or 1 for certain input combinations.

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

http://www.buzluca.info

2011-2022 Feza BUZLUCA

2 25

3. Incompletely specified functions (cont'd):			.1	Ţ				11
Example: A function that increments BCD number	oers	•	[1 — [2 —		BCD		→ C)1)2
We will create a general function to increment numbers given in slide 1.9.	BCD) [:4 — :8 —	→ '	+1		→ C	_
This function will have 4 inputs and 4 outputs				L				
because BCD numbers are 4-bit patterns.	18	Ι4	I2	I1	08	04	02	01
	0	0	0	0	0	0	0	1
Since BCD numbers are represented using binary code words between 0000-1001,	0	0	0	1	0	0	1	0
	0	0	1	0	0	0	1	1
this function will never get combinations	0	0 1	1 0	1	0	1	0	0
between 1010-1111 as inputs.	0	1	0	1	_	1	1	1
Even if these values are applied to the	0	1	1	0	0	1	1	0
inputs of the function, we do not care	0	1	1	1	1	0	0	0
what the output values are.	1	0	0	0	1	Ö	0	1
1	1	Ö	Ö	1	ō	Ö	Ô	Ō
	1	0	1	0	X	X	X	X
For these input combinations the output values	1	0	1	1	X	X	X	X
	1	1	0	0	X	X	X	X
of the circuit (function) are not specified.	1	1	0	1	Х	Х	Χ	Х
An X or Φ represents a don't care.	1	1	1	0	Х	X	Χ	X
	1	1	1	1	Х	X	Χ	X

Representation of logic (Boolean) Functions

There are different ways of representing (expressing) the same logic function.

When designing logic circuits, we choose the most suitable representation.

Truth Table Representation:

We write the output values for all possible input combinations (variables) in a table.

We usually write the input columns so that they follow the order of binary

Input variables are encoded as binary numbers.

(See examples in 2.20-2.22)

Numbered (Indexed) Representation:

Input variables are encoded as binary numbers.

We assign a decimal number for each input combination based on its binary value.

To represent the function, we list the decimal number of each input combination for which the function generates "1" (or logic "0" or " Φ ").

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

2.27

Digital Circuits

Example: Indexed representation of a completely specified basic logic function:

Tr	ruth Tal	ole:	Numbered (Indexed) Re	epresentation:
	Input	Output	$y = f(x_1, x_2) = U_1(0,2)$	∪ denotes "ur
	X ₁ X ₂	у	7 7	∪1 denotes "s
0	0 0	1}		points".
1	0 1	0		points.
2	1 0	1		

U denotes "union" or "set of". U₁ denotes "set of 1-generating

The same function; only the order of the variables

The order of the variables (x_1, x_2) is important. It must be the same as in the truth table. Otherwise, the decimal numbers identifying the combinations will change.

 (x_2,x_1) is changed. Row Input Output $y = f(x_2, x_1) = \cup_1(0, 1)$ У Num. $X_2 X_1$ 0 0 0 0 1 1 1

We can represent the same function with "0"-generating combinations. $y = f(x_1, x_2) = \bigcup_{0} (1,3)$

$$y = f(x_1, x_2) = \bigcup_1(0, 2) = f(x_2, x_1) = \bigcup_1(0, 1) = f(x_1, x_2) = \bigcup_0(1, 3)$$

http://akademi.itu.edu.tr/en/buzluca/

1 0

1 1

0

0

2

Example: Representation of a completely specified general logic function:

We apply the numbered representation to all outputs.

Truth Table:

Numbered (Indexed) Representation:

Num.	X ₁	X ₂	у ₁	y ₂
0	0	0	1	1
1	0	1	0	1
2	1	0	1	0
3	1	1	0	0

$$y_1 = f(x_1, x_2) = O_1(0, 2)$$

$$y_2 = f(x_1, x_2) = O_1(0, 1)$$

Representation of the same function with "O"-generating combinations:

$$y_1 = f(x_1, x_2) = \bigcup_0 (1,3)$$

$$y_2 = f(x_1, x_2) = \bigcup_0 (2,3)$$

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

2.29

Digital Circuits

Example: Representation of an incompletely specified general logic function:

In this case, writing only 1-generating or only 0-generating input combinations is not sufficient.

We have to write at least two of the three different groups (1-generating, 0-generating, don't care).

Truth Table:

Numbered (Indexed) Representations:

$$y_1 = f(x_1, x_2) = \bigcup_1(0) + \bigcup_0(1,3)$$

or
$$y_1 = f(x_1, x_2) = \bigcup_1(0) + \bigcup_{\Phi}(2)$$

or
$$y_1 = f(x_1, x_2) = \bigcup_0 (1,3) + \bigcup_{\Phi} (2)$$

$$y_2 = f(x_1, x_2) = U_1(0) + U_0(2)$$

or
$$y_2 = f(x_1, x_2) = U_1(0) + U_{\Phi}(1,3)$$

or
$$y_2 = f(x_1, x_2) = \bigcup_0 (2) + \bigcup_{\Phi} (1,3)$$

Graphical Representation

The input variables (combinations) of a logic function are elements (vectors) of the set B^n . Example: $B^3=\{000, 001, ..., 111\}$

We can represent these variables as vertices of an n-dimensional hypercube.

Vertices that correspond to 1-generating combinations are colored (marked).

The number of inputs of the function determines how many dimensions the hypercube has.

n-bit input \rightarrow n-dimensional hypercube

Digital Circuits Example: \cap 11 01 F(A,B) 0 1 В 1 0 00 0 1 1 0 Example: В С F(A,B,C)0 0 0 0 0 0 0 1 0 0 0 1 0 1 n 0 n 0 1 1 0

As the number of variables (inputs) increases, drawing a Boolean cube becomes more difficult.

Therefore, Boolean cubes are not practical for representing Boolean functions with many inputs.

However, they make it easier to visualize some properties (especially, adjacent combinations) of the functions and to explain further topics.

We will use Karnaugh maps to simplify Boolean functions in the coming lectures.

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

Digital Circuits

Algebraic Representation (Expressions) and Canonical Forms

The word description of a real-world logic design problem can be translated into a truth table.

Example: Assume that input variable A represents the phrase "the car door is open" and B represents "the key is inserted",

then the truth table can specify the action \mathbf{Z} to be taken, where Z=1 means that the alarm sounds.

Nulli.	А	D		Truth tables of real-world logic design problems are more
0	0	0	0	complicated.
1	0	1	0	To handle a logic design problem and implement the solution
2	1	0	0	using logic gates, we need to obtain an algebraic expression
3	1	1	1	for the output function. $Z = f(A,B)$

Logic expressions of the Boolean functions can be obtained in canonical forms from their truth tables.

There are two types of canonical forms:

- 1st canonical form: SOP ($\Sigma\Pi$) form. Example: abc + ab'c Sum of products, each of which corresponds to a "1"-generating combination.
- 2nd canonical form: POS ($\Pi\Sigma$) form. Example: (a+b+c') (a+b'+c') Product of sums, each of which corresponds to a "O"-generating combination.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

1st Canonical Form: Sum of Products

- The 1st canonical form is the sum of special products called minterms.
- In the 1st canonical form, each product in the sum corresponds to a row in the truth table with the output "1".
- Minterm: For a Boolean function of n variables, a <u>product</u> of n literals in which <u>each</u> variable appears <u>exactly once</u> (in either true or complemented form, but not both) is called a <u>minterm</u>.

For example, a function with 3 variables (a, b, c) has 8 minterms:

a'b'c', a'b'c, a'bc', a'bc, ab'c', ab'c, abc', abc

 Each minterm that appears in the 1st canonical form covers only one row of the truth table with the output "1".

For example; the minterm $\ a'b'c'$ can generate "1" only for the input value $\ abc=000$.

For all other input combinations, the minterm a'b'c' generates "0".

• The 1st canonical form of a function is the sum of minterms.

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

2 37

Digital Circuits

1st Canonical Form (cont'd):

Finding minterms:

Truth Table \rightarrow Expression in SOP form

- To find minterms, we locate all rows in the truth table where the output is "1".
- To obtain the individual minterms, we substitute variables (for example, A, B, or C) for ones (of the inputs) and complements of variables (A', B', or C') for zeros in the truth table.

Example:

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info <u>@</u> ⊕®⊜

2011-2022 Feza BUZLUCA

2.38

The 1st canonical form of the complement of a function:

We can similarly obtain the 1st canonical form of the complement of a function by considering the "false" (0) rows.

Example:

Obtain the 1st canonical form of the complement of a function F from the previous example.

1st canonical form of \overline{F} :

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

2.39

Digital Circuits

Simplification of expressions in the 1st canonical form:

Canonical forms are usually not the simplest (optimal) algebraic expression of the function.

They can usually be simplified.

Minimization:

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'$$

$$= (A'B' + A'B + AB' + AB)C + ABC'$$

$$= ((A' + A)(B' + B))C + ABC'$$

$$= C + ABC'$$

$$= ABC' + C$$

$$= AB + C$$

- A Boolean function may have many possible logic expressions. They produce the same result given the same inputs.
- Since the minterms present in the 1st canonical form are in one-to-one correspondence with the 1's of the truth table, the 1st canonical (standard) form expression for a function is <u>unique</u>.
- A function can have only one expression in the 1st canonical form.

Indexing minterms:

We assign each minterm an index (number) based on the binary encoding of the variables.

This is a decimal number that represents the row number (Row numbers start at 0). For example, we assign the index 5 to the minterm ab'c (101) and designate it m5.

Inputs:

_A	В	C	Minterms
0	0	0	A'B'C' = m0
0	0	1	A'B'C = m1
0	1	0	A'BC' = m2
0	1	1	A'BC = m3
1	0	0	AB'C' = m4
1	0	1	AB'C = m5
1	1	0	ABC' = m6
1	1	1	ABC = m7

Minterms for three variables

Example:

Expression of function F in (2.38) in 1st canonical form:

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

2 41

Digital Circuits

2nd Canonical Form: Product of Sums

- The 2nd canonical form is the product of special sum terms called maxterms.
- In the 2nd canonical form, each of the sum terms (or factors) in the product corresponds to a row in the truth table with the output "O".
- Maxterm: For a Boolean function of n variables, a <u>sum</u> of n literals in which <u>each</u> variable appears <u>exactly once</u> (in either true or complemented form, but not both) is called a <u>maxterm</u>.
- For example, a function with 3 variables (a, b, c) has 8 maxterms:
 a+b+c, a+b+c', a+b'+c, a+b'+c', a'+b+c, a'+b+c', a'+b'+c, a'+b'+c'
- Each maxterm has a value of "0" for exactly one combination of values for the input variables and "1" for all other combinations.

For example; the maxterm a+b+c can generate "0" only for the input value abc=000.

For all other input combinations, the maxterm a+b+c generates "1".

The 2nd canonical form of a function is the product of maxterms.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Finding maxterms: 2nd Canonical Form (cont'd):

naxterms: Truth Table ightarrow Expression in POS form

- \bullet To find the maxterms, we locate all rows in the truth table where the output is "0".
- To obtain the individual maxterms, we substitute variables (for example, A, B, or C) for zeros (of the inputs) and complements of variables (A', B', or C') for ones in the truth table.

Example:

"False" (0-generating) combinations: 000 010 100 Product of maxterms: F(A,B,C) = (A+B+C)(A+B'+C)(A'+B+C)

Note that this function F has the same truth table as the function in slide 2.38. The expressions in 1st and 2nd canonical forms both correspond to the same truth table.

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

2.43

Digital Circuits

The 2nd canonical form of the complement of a function:

We can similarly obtain the 2nd canonical form of the complement of a function by considering the "true" (1) rows:

Example:

Obtain the 2nd canonical form of the complement of a function F from the previous example.

2nd canonical form of \overline{F} :

F'(A,B,C) = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')

http://akademi.itu.edu.tr/en/buzluca/http://www.buzluca.info

@ **(**) (9 (e)

2011-2022 Feza BUZLUCA

2.44

Simplification of expressions in the 2nd canonical form:

Canonical forms are usually not the simplest (optimal) algebraic expression of the function.

They can usually be simplified.

Minimization:

```
\begin{split} F(A,\,B,\,C) &= (A+B+C)\;(A+B'+C)\;(A'+B+C) \\ &= ((A+C)+(B\cdot B'))\;(A'+B+C) \\ &= (A+C)\;(A'+B+C) \\ &= (A+C)\;(A'+B+C)\;(B+C)\;\;\text{(consensus)} \\ &= (A+C)\;(B+C) \end{split}
```

- A Boolean function may have many possible logic expressions. They produce the same result given the same inputs.
- Since the maxterms present in the 2nd canonical form are in one-to-one correspondence with the 0's of the truth table, the 2nd canonical (standard) form expression for a function is <u>unique</u>.
- A function can have only one expression in the 2nd canonical form.

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

2 45

Digital Circuits

Indexing maxterms:

We assign each maxterm an index (number) based on the binary encoding of the variables. This is a decimal number that represents the row number (Row numbers start at 0).

For example, we assign the index 5 to the maxterm a'+b+c' (101) and designate it M5. Inputs:

Α	В	С	Maxterms	
0	0	0	A+B+C	MO
0	0	1	A+B+C'	M1
0	1	0	A+B'+C	M2
0	1	1	A+B'+C'	МЗ
1	0	0	A'+B+C	M4
1	0	1	A'+B+C'	M5
1	1	0	A'+B'+C	M6
1	1	1	A'+B'+C'	М7
			/	

Maxterms for 3 variables

Example:

Expression of function F in (2.43) in 2nd canonical form:

$$F(A, B, C) = \Pi M(0,2,4)$$
= M0 • M2 • M4
= (A + B + C) (A + B' + C) (A' + B + C)

 $F = \Pi_{A,B,C}(0,2,4)$ product of maxterms.

Conversions Between Canonical Forms

From 1st (sum of minterms) form to 2nd (product to maxterms) form: Replace the minterms with maxterms, and assign them numbers of minterms that don't appear in the 1st canonical form.

Example: $F(A,B,C) = \Sigma m(1,3,5,6,7) = \Pi M(0,2,4)$ $F(A,B,C) = m1 + m3 + m5 + m6 + m7 = M0 \cdot M2 \cdot M4$ $F(A,B,C) = \bar{A}\bar{B}C + \bar{A}BC + A\bar{B}C + AB\bar{C} + AB\bar{C} + ABC = (A+B+C)(A+\bar{B}+C)(\bar{A}+B+C)$

From 2nd (product to maxterms) form to 1st (sum of minterms) form: Replace the maxterms with minterms, and assign them numbers of maxterms that don't appear in the 2nd canonical form.

Example: $F(A,B,C) = \Pi M(0,2,4) = \Sigma m(1,3,5,6,7)$

- Finding the complement of the function in sum of minterms form: Select the minterms that don't appear in the 1st canonical form. Example: $F(A,B,C) = \Sigma m(1,3,5,6,7)$ $F'(A,B,C) = \Sigma m(0,2,4)$
- Finding the complement of the function in product of maxterms form: Select the maxterms that do not appear in the 2nd canonical form. $F(A,B,C) = \Pi M(0,2,4)$ $F'(A,B,C) = \Pi M(1,3,5,6,7)$ Example:

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA

2 47

Digital Circuits

Canonical Forms and the De Morgan's Theorem

Applying the De Morgan's theorem to the complement of the function in the 1st canonical form generates the expression in the 2nd canonical form.

Example:

Complement of the function in SOP form (Slide 2.39):

$$\bar{F} = \bar{A}\bar{B}\bar{C} + \bar{A}B\bar{C} + A\bar{B}\bar{C}$$

De Morgan

$$\bar{F} = \overline{ABC} + \overline{ABC} + A\overline{BC}$$

 $F = (A + B + C)(A + \overline{B} + C)(\overline{A} + B + C)$ 2nd canonical form is obtained (2.43).

Applying the De Morgan's theorem to the complement of the function in the 2nd canonical form generates the expression in the 1st canonical form.

Complement of the function in POS form (2.44):

$$\bar{F} = (A + B + \bar{C})(A + \bar{B} + \bar{C})(\bar{A} + B + \bar{C})(\bar{A} + \bar{B} + C)(\bar{A} + \bar{B} + \bar{C})$$

$$\overline{F} = \overline{(A+B+\bar{C})(A+\bar{B}+\bar{C})(\bar{A}+B+\bar{C})(\bar{A}+\bar{B}+C)(\bar{A}+\bar{B}+\bar{C})}$$

$$F = A\bar{B}C + ABC + ABC + ABC + ABC$$
 1st canonical form is obtained (2.38).