Complete Solutions to Lecture 2 Assignments

Minh Nguyen, Long Le, Giang Hoang, and Hung Ngo

Last update: 20:10, Wednesday 15th April, 2020

Caution: Personal use only.

Do not distribute, to save the fun solving the problems for next classes!

Contents

1	From Lecture Slides	-
2	Coding Exercises	13
3	Extra Practice	14

1 From Lecture Slides

P 2.1

We can turn the affine transformation $T_bx=Ax+b$ with $A\in\mathbb{R}^{n\times n}, x,b\in\mathbb{R}^n$ into a linear transformation using **augmented** matrix with $\bar{A}=\begin{bmatrix} A & b \\ 0 & \dots & 0 \\ 1 \end{bmatrix}$ and $\bar{x}=\begin{bmatrix} x \\ 1 \end{bmatrix}$. The last (seems redundant) line allows us to combine any number of affine transformations (e.g., a series of rotation, translation, then rotation) into one by multiplying the respective matrices. Verify this for yourself!

Summary

We first give a proof of equivalence between affine transformation series and products of augmented matrices. Then, some visualization examples for \mathbb{R}^2 affine transformation series are included.

Proof of equivalence between affine transformation series and product of augmented matrices

Let's say we have a series of affine transformations $(T_i)_{i=1}^t$ where

$$T_i x = A_i x + b_i$$
, $i = 1, \ldots, t$.

We will prove by induction that for n = 1, ..., t,

$$\bar{A}_n \dots \bar{A}_1 \bar{x} = \begin{bmatrix} T_n \circ \dots \circ T_1 x \\ 1 \end{bmatrix}$$
 (P(n))

To begin with, we note down the following matrix multiplication:

$$\bar{A}\bar{x} = \begin{bmatrix} A & b \\ --\mathbf{0} - 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} Ax + b \\ 1 \end{bmatrix}. \tag{1.1}$$

The base case P(1) follows directly from (1.1). Suppose P(n) is correct, we can write

$$A_{n+1}^{-}\bar{A}_{n}\dots\bar{A}_{1}\bar{x} = A_{n+1}^{-} \begin{bmatrix} T_{n} \circ \dots \circ T_{1}x \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} A_{n+1} & b_{n+1} \\ - \mathbf{0} - & 1 \end{bmatrix} \begin{bmatrix} T_{n} \circ \dots \circ T_{1}x \\ 1 \end{bmatrix}.$$

Using (1.1), we can deduce that

$$A_{n+1}^{-} \dots \bar{A}_{1}\bar{x} = \begin{bmatrix} A_{n+1}T_{n} \circ \dots \circ T_{1}x + b_{n+1} \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} T_{n+1} \circ T_{n} \circ \dots \circ T_{1}x \\ 1 \end{bmatrix},$$

which proves P(n+1). Therefore P(n) holds for $n=1,\ldots,t$ by induction.

Visualization

Minh Nguyen have created a Python package for visualizing affine transformations, called Avine. Some examples for affine transformation series can

be found at the linked GitHub repository.

Notes

1. v = [— 0 — 1] is the unique solution to

$$\begin{bmatrix} Ax + b \\ 1 \end{bmatrix} = \begin{bmatrix} A & b \\ --v --- \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}.$$

P 2.3

Prove that **matrix multiplication** $\mathcal{T}: \mathbb{R}^{n \times p} \to \mathbb{R}^{m \times p}$ with $\mathcal{T}C = D$, $\mathcal{T} = B_{m \times n}$ is a linear map. Given $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ to transform 2 by 2 images, i.e., $C_{2 \times 2} = A_{2 \times 2} B_{2 \times 2}$. Find matrix representation of this linear transformation in the standard bases. Note that the coordinate vectors of 2D images in standard basis is simply a reshaping (**flattening**, **vectorizing**).

Notation

We denote the rows of \mathcal{T} by

$$\mathcal{T} = egin{bmatrix} ldots & \mathcal{T}_1 & ldots \ & dots \ ldots & \mathcal{T}_m & ldots \end{pmatrix} \,.$$

Let C and C' be $\mathbb{R}^{n \times p}$ matrices. We denote their columns by

$$C = \begin{bmatrix} | & & | \\ C_1 & \dots & C_p \\ | & & | \end{bmatrix}, \quad C' = \begin{bmatrix} | & & | \\ C'_1 & \dots & C'_p \\ | & & | \end{bmatrix}.$$

Proving that T is linear

For scalars $a, b \in \mathbb{R}$,

$$\mathcal{T}(aC + bC') = \mathcal{T} \begin{bmatrix} | & | & | \\ aC_1 + bC'_1 & \dots & aC_p + bC'_p \\ | & | & | \end{bmatrix}$$

$$= \begin{bmatrix} a\mathcal{T}_1C_1 + b\mathcal{T}_1C'_1 & \dots & a\mathcal{T}_1C_p + b\mathcal{T}_1C'_p \\ \vdots & \ddots & \vdots \\ a\mathcal{T}_mC_1 + b\mathcal{T}_mC'_1 & \dots & a\mathcal{T}_mC_p + b\mathcal{T}_mC'_p \end{bmatrix}$$

$$= a\mathcal{T}C + b\mathcal{T}C'.$$

Therefore \mathcal{T} is linear.

Finding matrix representation of A

In this solution, $\operatorname{vec}(B)$ stands for the transformation which turns each **row** of matrix B into a column and stack them on top of one another (vectorization). Furthermore, the standard basis $(\mathbf{h}_i)_{i=1}^4$ of $\mathbb{R}^{2\times 2}$ is ordered as

$$\mathbf{h}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} , \quad \mathbf{h}_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} , \quad \mathbf{h}_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} , \quad \mathbf{h}_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} .$$

A matrix B is represented as vec(B) in standard basis $(\mathbf{h}_i)_{i=1}^4$. Note that $vec(\mathbf{h}_i) = \mathbf{e}_i$ the standard basis of \mathbb{R}^4 , e.g., $\mathbf{e}_1 = (1,0,0,0)^{\top}$.

Our task is to find the matrix A, representation of A in standard basis $(\mathbf{h}_i)_{i=1}^4$, such that

$$vec(AB) = A vec(B)$$
,

for image $B \in \mathbb{R}^{2\times 2}$. As a linear transformation from \mathbb{R}^4 to itself, matrix \mathcal{A} must be of size 4×4 . Note that $\mathcal{A}\mathbf{e}_i$ is i-th column of \mathcal{A} , and $\mathcal{A}\operatorname{vec}(\mathbf{h}_i) = \operatorname{vec}(A\mathbf{h}_i)$. Hence we can specify \mathcal{A} by

$$\begin{split} \mathcal{A} &= \left[\mathcal{A} \mathbf{e}_1 \; \mathcal{A} \mathbf{e}_2 \; \mathcal{A} \mathbf{e}_3 \; \mathcal{A} \mathbf{e}_4 \right] \\ &= \left[\mathcal{A} \operatorname{vec}(\mathbf{h}_1) \; \mathcal{A} \operatorname{vec}(\mathbf{h}_2) \; \mathcal{A} \operatorname{vec}(\mathbf{h}_3) \; \mathcal{A} \operatorname{vec}(\mathbf{h}_4) \right] \\ &= \left[\operatorname{vec}(\mathcal{A} \mathbf{h}_1) \; \operatorname{vec}(\mathcal{A} \mathbf{h}_2) \; \operatorname{vec}(\mathcal{A} \mathbf{h}_3) \; \operatorname{vec}(\mathcal{A} \mathbf{h}_4) \right], \end{split}$$

Hence

$$\mathcal{A} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Notes

1. Vectorization often refers to the stacking of **columns**. Here we changed it to the stacking of **rows** so that it is compatible to our ordering of the $\mathbb{R}^{2\times 2}$ standard basis. If one instead defines vectorization the other way and orders the said basis as

$$\mathbf{h}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{h}_2 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{h}_3 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{h}_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

matrix A is then

$$\mathcal{A} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

while all other arguments are still valid.

2. We assumed that $f: vec(B) \mapsto vec(AB)$ is a linear transformation. You can verify this for yourself.

P 2.4

Prove that for a linear map $f: \mathbb{R}^5 \to \mathbb{R}^5$, $\ker(f)$ is a subspace of \mathbb{R}^5 . If $f(x_1,...,x_5)=(x_1,....,x_4,0)$, then is f a linear function? Find the matrix of f, $\ker(f)$ and $\dim(\ker(f))$. Note that f is a projection.

Proving $\ker(f)$ is a subspace of \mathbb{R}^5

Since $\ker(f)$ is a subset of \mathbb{R}^5 , we only focus on the closure of addition and scalar multiplication.

For vectors $u, v \in \mathbb{R}^5$,

$$f(u+v) = f(u) + f(v) = \mathbf{0},$$

hence f is closed under addition.

For vector $u \in \mathbb{R}^5$ and scalar $a \in \mathbb{R}$,

$$f(au) = af(u) = \mathbf{0}$$
,

hence f is also closed under scalar multiplication.

Verifying if $f(x_1, \dots, x_5) = (x_1, \dots, x_4, 0)$ is a linear function

The specified function is linear: for vector $y=(y_1,\ldots,y_5)\in\mathbb{R}^5$ and scalar $a\in\mathbb{R}$,

$$f(ax_1 + y_1, \dots ax_5 + y_5) = (ax_1 + y_1, \dots ax_4 + y_4, 0 + y_5)$$
$$= a(x_1, \dots, x_5) + y.$$

The matrix of f is

$$X_f = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Finding ker(f) and dim(ker(f))

Due to the definition of f, $\ker(f)$ consists solely of vectors $v \in \mathbb{R}^5$ such that $x_1 = \dots = x_4 = 0$, i.e., $\ker(f) = \{(0,0,0,0,x_5) : x_5 \in \mathbb{R}\}$. This subspace has a basis $B = \{(0,\dots,0,1)\}$ and therefore is 1-dimensional.

P 2.5

Verify for yourself the effect of **coordinate scaling** Sx with scaling or **diagonal matrix** $S = \text{diag}(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^{n \times n}$.

Notation

Let the coordinates of x be (x_1, \ldots, x_n) . We also denote the result of Sx by vector $y = [y_1 \ldots y_n]^\top$ and the i^{th} row of matrix S by S_i .

Verifying the scaling effect

For each entry y_i of y,

$$y_i = S_i \cdot x$$

= $[0 \dots 0 \ \lambda_i \ 0 \dots 0] \cdot [0 \dots 0 \ x_i \ 0 \dots 0]^\top$
= $\lambda_i x_i$.

Therefore, the diagonal matrix S scales each coordinate x_i of x by λ_i .

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \xrightarrow{Sx} \begin{bmatrix} \lambda_1 x_1 \\ \lambda_2 x_2 \\ \vdots \\ \lambda_n x_n \end{bmatrix}$$

P 2.6

Re-derive block matrix multiplications using the general form

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}.$$
(6.1)

That is, how do you split into A_{ij} , B_{kl} in each case?

Applying block matrix multiplication to column view and row view

As for column view

$$Ax = \begin{bmatrix} | & & | \\ A_1 & \dots & A_n \\ | & & | \end{bmatrix} \begin{bmatrix} x_1 \\ \ddots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} | \\ A_1 \\ | \end{bmatrix} + \dots + x_n \begin{bmatrix} | \\ A_n \\ | \end{bmatrix},$$

the blocks of A are its columns while the blocks of x are its entries.

As for row view

$$x^{\top} A = [x_1 \dots x_n] \begin{bmatrix} ---- A_1 & --- \\ & \vdots \\ ---- A_n & --- \end{bmatrix}$$
$$= x_1[---- A_1 ---] + \dots + x_n[----- A_n ----],$$

the blocks of A are its rows while the blocks of x^{\top} are its entries.

Proof of block matrix multiplication rule

Notation

For a block matrix C, we denote the block(s) at position (i,j) by $C_{(i,j)}$. Within block $C_{(i,j)}$, the entry/entries at (k,l) is denoted by $C_{(i,j)(k,l)}$. Note that we can use slices for indexing, e.g. 1:n instead of i.

Main proof

Let's say we have block matrices $A \in \mathbb{R}^{M \times N}$ and $B \in \mathbb{R}^{N \times P}$ with block sizes of respectively $m \times n$ and $n \times p$. Now consider their product $C \in \mathbb{R}^{M \times P}$. Due to size alignment in matrix multiplication, C can be divided into blocks containing m rows and p columns. We now take a look into entry $C_{(i,j)(k,l)}$ of $C_{(i,j)}$:

$$\begin{split} C_{(i,j)(k,l)} &= \sum_{x=1}^{N} A_{(i-1)m+k,x} B_{x,(j-1)p+l} \\ &= \sum_{y=1}^{N/n} A_{(i-1)m+k,(y-1)n+1:yn} B_{(y-1)n+1:yn,(j-1)p+l} \\ &= \sum_{y=1}^{N/n} A_{(i,y)(k,1:n)} B_{(y,j)(1:n,l)} \;. \end{split}$$

While x represents individual rows/columns, y stands for block indices (column-wise in A and row-wise in B). The change of summation index therefore specifies that we are cutting row/column partitions into blocks.

As for $C_{(i,j)}$, plugging in the worked out formula for individual entries, we

get

$$\begin{split} C_{(i,j)} &= \begin{bmatrix} \sum_{y=1}^{N/n} A_{(i,y)(1,1:n)} B_{(y,j)(1:n,1)} & \dots & \sum_{y=1}^{N/n} A_{(i,y)(1,1:n)} B_{(y,j)(1:n,p)} \\ & \vdots & \ddots & \vdots \\ \sum_{y=1}^{N/n} A_{(i,y)(m,1:n)} B_{(y,j)(1:n,1)} & \dots & \sum_{y=1}^{N/n} A_{(i,y)(m,1:n)} B_{(y,j)(1:n,p)} \end{bmatrix} \\ &= \sum_{y=1}^{N/n} \begin{bmatrix} A_{(i,y)(1,1:n)} B_{(y,j)(1:n,1)} & \dots & A_{(i,y)(1,1:n)} B_{(y,j)(1:n,p)} \\ & \vdots & \ddots & \vdots \\ A_{(i,y)(m,1:n)} B_{(y,j)(1:n,1)} & \dots & A_{(i,y)(m,1:n)} B_{(y,j)(1:n,p)} \end{bmatrix} \\ &= \sum_{y=1}^{N/n} A_{(i,y)} B_{(y,j)} \,, \end{split}$$

hence the block matrix multiplication rule.

P 2.7

Write down the transformation matrices in homogeneous coordinates and visualize in 2D (**coding**) the sequence of 3 affine transformations: i) rotate in z axis an angle θ , ii) translate in (x,y)-plane an amount $(p_x,p_y,0)$, iii) then reflect about the origin, of a 2D object of your choice.

Transformation matrices

The transformation matrix for rotation around z-axis an angle θ is

$$T_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0\\ \sin(\theta) & \cos(\theta) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} . \tag{7.1}$$

The transformation matrix for translation in (x,y)-plane by a vector $(p_x,p_y,0)$ is

$$T_{(p_x,p_y,0)} = \begin{bmatrix} 1 & 0 & 0 & p_x \\ 0 & 1 & 0 & p_y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} . \tag{7.2}$$

```
import numpy as np
    from avine.Visualize import *
   def visualize_sequence(data, theta, p_x, p_y):
     2D-visualize a sequence of rotation around z-axis,
7
8
     translation by [p_x, p_y], and reflection through origin.
9
10
     Parameters:
11
      - data: array_like.
12
        - theta: float. Rotation angle in radian.
      - p_y: float. Translation vector in x direction.
13
15
16
17
        func_list = [(3, theta), (1, [p_x, p_y]), 6]
18
        ShowSeries(data, func_list)
```

Code 1: A function for visualizing transformation sequences in P 2.7

The transformation matrix for reflection through the origin is

$$T_r = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} . \tag{7.3}$$

Combining (7.1), (7.2), and (7.3), we get the transformation sequence matrix

$$T_r = T_r T_{(p_x, p_y, 0)} T_\theta = \begin{bmatrix} -\cos(\theta) & \sin(\theta) & 0 & -p_x \\ -\sin(\theta) & -\cos(\theta) & 0 & -p_y \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Visualization

In **code 1**, a function for visualizing the desired transformation sequence is included, using Avine.

P 2.8

In PCA: input image $X \stackrel{T}{\rightleftharpoons}$ Coordinate vector $\bar{z} = (1, w_1, \dots, w_n)^{\top}$ (no reduction). Then with dimensionality reduction: $\bar{z} \stackrel{A}{\to} z = (1, w_1, \dots, w_k)^{\top}$, i.e., keeping only first k+1 coordinates. Find matrix A of the coordinate transformation.

Because $A: \mathbb{V}^{n+1} \to \mathbb{V}^{k+1}$, A is $(k+1) \times (n+1)$.Use P2.5, we have A is diagonal matrix with the elements in the main diagonal are 1.

P 2.9

Prove that for any A: $\operatorname{rank}(A^{\top}A) = \operatorname{rank}(AA^{\top}) = \operatorname{rank}(A)$.

We first show that nullspaces $N(A^\top)=N(AA^\top)$. Take $x\in N(A^\top)$, we have $A^\top x=0$, then $AA^\top x=0$. So, $x\in N(AA^\top)$. Suppose $y\in N(AA^\top)$, $AA^\top y=0$. We then have $y^\top AA^\top y=0$, it means $||A^\top y||=0$ then $A^\top y=0$, $y\in N(A^\top)$.

Recall Rank Nullity Theorem for Matrices: $\forall A_{m \times n} : \operatorname{rank}(A) + \operatorname{nullity}(A) = n$ the dimension of input space, and similarly $\operatorname{rank}(A) + \operatorname{nullity}(A^\top) = m$. Thus, $\dim N(A^\top) = m - \operatorname{rank}(A^\top)$ and $\operatorname{rank}(AA^\top) = m - \dim(N(AA^\top))$. We conclude that $\operatorname{rank}(AA^\top) = \operatorname{rank}(A^\top)$.

We apply the same reasoning for $rank(A^{T}A) = rank(A) = rank(A^{T})$.

P 2.10

Show that for square & full rank matrices:

- $\bullet \ (ABC)^{-1} = C^{-1}B^{-1}A^{-1}$
- $(A^{-1})^T = (A^T)^{-1} =: A^{-T}$
- $(AB)(AB)^{-1} = I \Rightarrow B^{-1}A^{-1} = (AB)^{-1}$. Then consider AB = D.
- $((A)^{-1}A)^{\top} = I \Rightarrow (A^{\top})^{-1} = A^{(-1)^{\top}}.$

P 2.11

Prove again for yourself $\operatorname{rank}(A_{m \times n}) = \operatorname{rank}(A^{\top}) \leq \min(m, n)$.

From P2.9: $\operatorname{rank}(A^\top) = \operatorname{rank}(A^\top A) = \operatorname{rank}(AA^\top) = \operatorname{rank}(A)$. But $\operatorname{rank}(A^\top A) = \operatorname{rank}(B_{n\times n}) \leq n$ and $\operatorname{rank}(AA^\top) = \operatorname{rank}(C_{m\times m}) \leq m$. Hence QED. See also lecture slides.

2 Coding Exercises

C 2.1

Reproduce affine transformations in \mathbb{R}^2 and make animations by changing the parameters slowly.

Solution

See Minh Nguyen's Avine package on GitHub.

C 2.2-5

Students must continue working on these plotting assignments.

3 Extra Practice

E 2.1

Let $\beta = \{v_1, \dots, v_n\}$ be a basis of a vector space V, and $T: V \to W$ be a linear transformation from V to W. Is the following proposition true? Why? If the formula is wrong, correct it.

$$T(\sum_{i=1}^{n} a_i v_i) = T(v) \Leftrightarrow \sum_{i=1}^{n} a_i v_i = v.$$
(1.1)

Notation

Without loss of generality, the expression $\sum_{i=1}^{n} a_i v_i$ can be replaced with u, a vector of V.

Verifying the proposition

The proposition is not correct. Statement (1.1), which we can rewrite as

$$Tu = Tv \Leftrightarrow u = v,$$

essentially means T is *injective*. This is wrong: not all linear transformations are injective.

Correction for (1.1)

To fix the proposition, we may introduce more constraints. Here are some possible options:

• $\dim(V) = \dim(W)$ and T is surjective. This makes $\{Tv_i\}_{i=1}^n$ a basis of W. Let's say $v = \sum b_i v_i$. Then

$$Tu - Tv = \sum (a_i - b_i)Tv_i.$$

If Tu = Tv, we obtain

$$\mathbf{0}_W = \sum (a_i - b_i) T v_i,$$

and thus $a_i = b_i, \forall i$.

• $Null(T) = \{\mathbf{0}_W\}$. As T is linear,

$$Tu - Tv = T(u - v).$$

If Tu = Tv, we obtain

$$\mathbf{0}_W = T(u - v),$$

and thus $u - v = \mathbf{0}_V$.

We may also correct the formula without imposing any new constraint, although it will not be as meaningful:

$$T(\sum_{i=1}^{n} a_i v_i) = T(v) \Leftarrow \sum_{i=1}^{n} a_i v_i = v.$$
 (1.1')

E 2.2

Let V be a finite-dimensional vector space and $\alpha = \{v_1, \ldots, v_n\}$ be a basis of V. Let W be another vector space with some vectors $\beta = \{w_1, \ldots, w_n\}$. Prove that there exists exactly one linear transformation $T: V \to W$ such that

$$T(v_j) = w_j, \forall j. \tag{2.1}$$

Summary

This solution proceeds with first a proof of existence and then a proof of uniqueness.

Proof of existence

We can construct a function by specifying for each value in its domain a corresponding element of its codomain. Equation (2.1) already gave us such specification for vectors in α . To ensure linearity, for each $v=\sum a_iv_i\in V$, we must have

$$Tv = \sum a_i T(v_i) = \sum a_i w_i.$$
 (2.2)

The transformation defined by

$$Tv = \sum a_i w_i$$

is indeed linear; we can check by applying it to ax+by, where $x=\sum x_iv_i$ and $y=\sum y_iv_i$ are vectors in V:

$$T(ax + by) = T(\sum (ax_i + by_i)v_i)$$

$$= \sum (ax_i + by_i)w_i$$

$$= a\sum x_iw_i + b\sum y_iw_i$$

$$= aT(x) + bT(y).$$

As such, we have confirmed the existence of our desired transformation.

Proof of uniqueness

In (2.2), we argued that each linear transformation ${\cal T}$ in accordance with (2.1) must also satisfy

$$Tv = \sum a_i w_i .$$

Since the tuple $(a_i)_{i=1}^n$ is unique with respect to v, the value specified by $\sum a_i w_i$ is also unique. Hence there is exactly one such transformation.

E 2.4

Prove that the null space and the row space of a matrix are orthogonal, i.e. every vector in null space is orthogonal to every vector in row space (zero dot product).

(Moved to Assignment 3).

E 2.6

(Generalization of Fibonacci's rabbits - see page 62 of Tao's notes)

There are 3 characteristic parameters for each population of rabbits:

- fertility rate p_b : the average number of juvenile pairs given birth by an adult pair each year
- ullet child mortality rate p_c : the probability that a juvenile will not reach their second year
- ullet adult mortality rate p_a : the probability that an adult will not survive each year

Your first task is to find a function $f([A B]^{\top} \mid t, p_b, p_c, p_a)$ which outputs the total number of rabbit pairs after t years given the aforementioned parameters and an initial population of A juvenile pairs and B adult pairs (written with matrix notation).

Next, let the parameters be uniformly distributed random variables: $p_b \sim \mathcal{U}(b_l,b_u), \ p_c \sim \mathcal{U}(c_l,c_u), \ \text{and} \ p_a \sim \mathcal{U}(a_l,a_u).$ Find the linear upper and lower bound function sets $U = \{f_u : \mathbb{R}^{+2} \to \mathbb{R} \mid f_u(v) = [u_0 \ u_1]v \ \text{and} \ f(v \mid t=1) \leq f_u(v), \forall v\} \ \text{and} \ L = \{f_l : \mathbb{R}^{+2} \to \mathbb{R} \mid f_l(v) = [l_0 \ l_1]v \ \text{and} \ f_l(v) \leq f(v \mid t=1), \forall v\}.$

Assumptions:

- Number of rabbit pairs can be non-natural.
- A rabbit dies as soon as the other in its pair dies.

Notation

Let $g([A\ B]^{\top}\ |\ t)$ be the function which gives the number of juvenile and adult pairs in year t as an \mathbb{R}^2 vector. Then $f([A\ B]^{\top}) = [1\ 1]g([A\ B]^{\top})$.

Finding f

To know how a rabbit population changes after t years, we first examine how it changes annually, i.e., search for $f([A\ B]^{\top}\ |\ t=1)$.

We know that juvenile pairs can only grow into adulthood with a survival rate of p_c :

$$g\left(\begin{bmatrix} A\\0 \end{bmatrix} \mid t=1\right) = \begin{bmatrix} 0\\(1-p_c)A \end{bmatrix} = A \begin{bmatrix} 0\\1-p_c \end{bmatrix}. \tag{6.1}$$

Meanwhile, adult pairs can affect the direct future population in two aspects—giving birth to new pairs and staying alive:

$$g\left(\begin{bmatrix}0\\B\end{bmatrix}\mid t=1\right) = \begin{bmatrix}p_bB\\(1-p_a)B\end{bmatrix} = B\begin{bmatrix}p_b\\1-p_a\end{bmatrix}.$$
 (6.2)

Combining (6.1) and (6.2) gives us

$$g\left(\begin{bmatrix} A \\ B \end{bmatrix} \mid t = 1\right) = A \begin{bmatrix} 0 \\ 1 - p_c \end{bmatrix} + B \begin{bmatrix} p_b \\ 1 - p_a \end{bmatrix}$$
$$= \begin{bmatrix} 0 & p_b \\ 1 - p_c & 1 - p_a \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}.$$

The population vector at t = n is given by the n^{th} power of g's corresponding matrix. The remaining task is just to produce f from g:

$$\begin{split} f\left(\begin{bmatrix}A\\B\end{bmatrix}\mid t=n\right) &= [1\;1]g\left(\begin{bmatrix}A\\B\end{bmatrix}\mid t=n\right) \\ &= [1\;1]\begin{bmatrix}0&p_b\\1-p_c&1-p_a\end{bmatrix}^n\begin{bmatrix}A\\B\end{bmatrix}\;. \end{split}$$

Finding \boldsymbol{U} and \boldsymbol{L}

As for this second part, we solve for U and L by translating their properties into simpler inequalities. Let's start with

$$f(v \mid t = 1) \le f_u(v), \forall v$$
.

Utilizing the found formula of f and the given formula of f_u , we obtain an equivalent inequality:

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & p_b \\ 1 - p_c & 1 - p_a \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} \le \begin{bmatrix} u_0 & u_1 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}, \forall \begin{bmatrix} A \\ B \end{bmatrix}.$$

Moving everything to the right-hand side, we get

$$0 \leq \begin{bmatrix} u_0 - 1 + p_c \\ u_1 - 1 + p_a - p_b \end{bmatrix}^{\top} \begin{bmatrix} A \\ B \end{bmatrix}, \forall \begin{bmatrix} A \\ B \end{bmatrix}.$$

Substitution of respectively $[1\ 0]^{\top}$ and $[0\ 1]^{\top}$ for $[A\ B]^{\top}$ gives us two necessary conditions:

$$\begin{cases} 0 \le u_0 - 1 + p_c, \\ 0 \le u_1 - 1 + p_a - p_b. \end{cases}$$

As both ${\cal A}$ and ${\cal B}$ are non-negative, these conditions are also sufficient. We now rewrite them as

$$\begin{cases} 1 - p_c & \leq u_0, \\ 1 - p_a + p_b & \leq u_1. \end{cases}$$

From these inequalities, the set of possible parameter tuples for $f_u \in U$ is the Cartesian product

$$(\sup\{1-p_c\}, +\infty] \times (\sup\{1-p_a+p_b\}, +\infty].$$

As $p_b \sim \mathcal{U}(b_l, b_u)$, $p_c \sim \mathcal{U}(c_l, c_u)$, and $p_a \sim \mathcal{U}(a_l, a_u)$, this product is equal to

$$(1-c_l,+\infty]\times(1-a_l+b_u,+\infty].$$

Therefore $U = \{f_u : \mathbb{R}^{+2} \to \mathbb{R} \mid f_u(v) = [u_0 \ u_1]v$, where $(u_0, u_1) \in (1 - c_l, +\infty] \times (1 - a_l + b_u, +\infty] \}$.

Similarly, $L = \{f_l : \mathbb{R}^{+2} \to \mathbb{R} \mid f_u(v) = [l_0 \ l_1]v$, where $(l_0, l_1) \in [-\infty, 1 - c_u) \times [-\infty, 1 - a_u + b_l)\}$.