

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
19 August 2004 (19.08.2004)

PCT

(10) International Publication Number
WO 2004/070306 A1

(51) International Patent Classification⁷: **F41A 3/86**

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) International Application Number:
PCT/GR2004/000008

(22) International Filing Date: 6 February 2004 (06.02.2004)

(25) Filing Language: English

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

(30) Priority Data:
20030100056 6 February 2003 (06.02.2003) GR

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicant and
(72) Inventor: MANTAS, Dimitrios [GR/GR]; 37 Mikras Asias Street, GR-16 452 Argyroupoli Attiki (GR).

(74) Agent: MARIS, George, C.; 6 Navarinou Street, GR-106 80 Athens (GR).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

(54) Title: MAGNETOMECHANICAL SYSTEM FOR REDUCING THE RECOIL OF A GUN

(57) Abstract: This invention is referred to the creation of a magnetomechanical or mechanical system of the recoil's reduction and hence of the gun-barrel's rebound reduction during the shooting time. This system is composed from the successive recoil springs (5) and (2) in cooperation with the cylinder (1), from a magnet (M), which pulls, on the one hand, the gun's slide (K), and on the other hand, to the cylinder (1) a reverse this time retrogression of these two retrogressive components, and from the recoil spring (3), which because of its position and size, operates as an inertia mechanism of the recoil's quick execution and reduction.

BEST AVAILABLE COPY

WO 2004/070306 A1

MAGNETOMECHANICAL SYSTEM OF THE CAUSED RECOIL'S REDUCTION FROM A GUN'S BULLET FIRING.

5 The invention is referred to a magnetic-mechanic system of the recoil's power reduction, which is developed during the shooting time in a gun. The gun, as a mechanical system and as long a fired bullet crosses in it the distance from the gun-barrel's chamber till the gun-barrel's muzzle, functions as a system reaction like the motors reaction. But except from the gun's recoiled phenomenon because of the bullet's loading instantaneous firing in the chamber, the provoked explosion gives to the gun's frame an instantaneous dynamical energy, annihilating any inertia phenomenon, which was prevailing in the reference system between the gun and the user before the explosion.

10

15 In order to avoid the recoil phenomenon, the current technology of portable guns like the revolvers, automated pistols, submachine-guns and/or other heavy armor of which guns, the recoil systems bring in most cases an absorption spring, and in order to increase the gun - user reference system's inertia, they use different technical solutions, which nevertheless are restricted to small improvements in the present case, like:

- 20
1. Through the addition of a mercury bag to the gun's front section in order to cause vertical resultant, in order to increase the gun's inertia during the gun-barrel's rebound.
 2. Through the gas escape from the gun-barrel's upper section with momentum and direction reverse of the gun's rebound during the shooting time.

25 The invention, which will be described, is referred to the creation of an absorption - reduction magnetomechanical system of this axial force, which generates the recoil and which is based, one the one hand, on a magnet's (M) presence, which in cooperation with successive recoil springs of the same or different diameter, with spirals or metal cutting, the acceleration and the deceleration of the slide's retrogression in a gun, and on the other hand, through the mechanical only method, where one of the (successive) 30 springs (having the same axial or another axial arrangement level) and (in succession with the above-mentioned) participates in the movements' participation with time delay, since its edges do not adjoin from the beginning to reference points upon the gun, but after the firing of each bullet in it. The result of all this function is the biggest possible control of the gun's recoil.

35

Brief presentation of figures -1- and -2- of the suggestive solution.

In figure -1- the developmental force of recoil - retrogression absorption - reduction mechanism arrangement is presented and is consisted of the cylinder's (1) body of 40 which the spring (5) is positioned externally, which cylinder is divided in two chambers, (A) and (B) through one contraction (Y), in which chambers, on the one hand, the pin (4) is inserted, and on the other hand, the springs (2) and (3), which are secured, on the one hand, from the transversal cover (6), and on the other hand, from the washer - separator (7), which is embodied with the pin (4). The separator (7) is the one pin's (4) edge through which edge, the pin is grounded with the gun's fixed section and in extent with its handle. The left pin's expansion (4) with the indication (P) penetrates the transversal cover (6), comes to the slide area (K) and is formed on a magnet's (M) support base, which is secured with the component (E) and of which the magnetic lines, on the one hand, pull the slide and on the other hand the cylinder (1) 45 with a parallel course towards the exit of the gun's gun-barrel (R), while in figure -2-

50

the magnet (M) is supported on the base (9) because from the pin (4) the indication (P) is subtracted.

Figure -1- arrangement analysis.

5

The big exterior diameter of the cylinder's (1) body is coming through the spring (5) of which the one edge is based on the cylinder's wall (T), which is configured in a bigger diameter, and the other edge of it is based on the gun's slide (K). The pin (4) every now and then brings the separators (7) and (8), which designate, on the one hand, its axial course, and on the other hand, they operate as the recoil springs' points of reference.

10

The spring (2), entering the chamber (A) through the one edge, steps on the bulkhead's (Y) one surface and through the other edge to the pin's (4) separator (7).

15

During their installation, the springs (5) and (2) are under the minimum charge. The spring (3) is positioned in chamber (B) and is secured by the cover (6), but since it is lower than the chamber's height, during its initial positioning it isn't strained not even from the minimum initial charge, so the spring's (3) edges are in a distance, on the one hand, from the cover's (6) internal surface, and on the other hand, from the separator's (8) surface.

20

The system's operation during the bullet's firing time.

A time fraction before the firing, the springs (2) and (5) have the minimum charge in contrast with the spring (3), which is located in the chamber (B) under zero charge, since its edges do not osculate at any reference point, while the slide's (K) front views, on the one hand, towards the exit of the gun-barrel, and on the other hand, of the cylinder (1), are osculated with the magnet's (M) surface.

25

During the bullet's firing time, the deployed gases' pressure reaches the point, which is designated as critical for the magnet's pull over the slide only, where the slide (independent from the cylinder) places itself in motion with increased momentum, cuts the magnetic lines and starts to retrogress, pushing the spring (5), which acts over the cylinder (1). Nevertheless, on the one hand, the spring (2) because of bigger resistance, and on the other hand, because of the magnet's pulling force, do not permit the cylinder (1) to drift immediately to regression. So, the slide continues its regression until it bangs to the cylinder's point (S), which is configured in a bigger diameter.

30

35

On point (S), where the slide is met with the cylinder, any further spring's (5) compressing is interrupted, and as the bullet's gases continue to increase their pressure, they reach the point, where it is designated again as critical for the magnet's pull (this time) over the cylinder, where the slide's continuous regression sets also the cylinder (1) to regression, which diverges from the magnet. During this phase, the slide (K) after the spring (5) and the cylinder (1), regress as a uniform body, compressing the spring (2). Taking into account that the pin (4) is not moving towards any direction, and since the cylinder (1) increasingly regresses compressing also the spring (2), through the cover (6) increasingly minimizes the freedom degree the spring (3) has between the cover (6) and the separator (8). Until this time point, where the expansion takes place from the bullet's firing, which acts over the slide, only two springs take place as a retroaction system, since they are positioned successively, which means the (5) and the (2) operate as one. As long as the slide's regression continues with the decelerated movement therefore the cylinder's (1) also, and while the spring (2) almost approaches

40

45

50

- by the 3/5 of the completion of its compressing, then the spring (3) acquires reference points tangential, on the one hand, with the cover (6), and on the other hand, with the separator (8). The increasingly slide's and cylinder's decelerated movement meets the spring (3) in total inertia, hence this absorbs instantaneously the most of the rest of the slide's energy, before the spring manages to enter to the absolute procedure of compressing. The result is to have an on the spot interruption of any further slide's regression and since the gases' expansion has comes upon from the firing, the chamber -slide- system begins to move in opposite direction, which means forwardly with the maximum acceleration. This is caused of the spring's (3) inertia condition, which acts as percussive mechanism against the slide with momentum and direction opposite the slide's regression, minimizing the recoil tension and time. The instantaneous delay, which comes from the magnet's presence, causes the gases' maximum expansion and gives bigger initial speed to the bullet, with the consequence of its trajectory's increase. It has also positive influence to the slide's axial displacements, since its tempering time to the initial position is reduced. Except the magnet's (M) pre-mentioned support method where through the pin's (4) body expansion, which penetrates the cover (6) and enters the slide's area, another magnet's support method is through the use of different stand-by points in the fixed places (frame), where all the guns have. In this case, through a respective formed base for each type of a gun, like the base (9) of figure -2-, which is embodied either with the fixed gun-barrel (K) or with any other gun's fixed point on which the magnet (M) is positioned, which pulls the cylinder (1) and the slide. In this case, the pin (4) doesn't need to be extended till the magnet, as this is depicted in figure -2-.
- 25 The system can function also without a magnet with only a mechanical way, with the assumption that there will not be imparted increased force to the bullet, therefore any bigger trajectory.
 With the proper configuration of the invention's main attachments, like the cylinder's shape, the springs' force and the dimensions (while the spring (3) maintains the specifications of its freedom degree) and without the invention being expanded beyond its limits, the system will be possible to adapt itself to any gun type.

35

40

45

CLAIMS

1. A magnetomechanical system of the caused recoil's reduction from a gun's bullet firing, which consists from successive recoil springs in cooperation with one cylinder and with one mechanism, which brings a magnet, and is comprised from one spring (5) of which the one edge is osculated with the slide (K) and its other edge with the wall (T) in the transversal cylinder's (1) body exterior diameter, which cylinder, through a contraction (Y), is separated into two chambers, the (A) and the (B), where in (A), the spring (2) is positioned and through chamber (B) the pin (4) is passing through as it comes through chamber (A) also in the right edge of which pin, the separator (7) is embodied, which, on the one hand, holds the spring (2), and on the other hand, it consists a part of the fixed gun's frame, while intermediately of its length, the pin (4) brings the separator (8), which is interrupted from the diaphragm (Y), and from the fact that in chamber (B) the spring (3) is positioned with easiness, which is smaller in height from the chamber's (B) height, the entrance of which is secured from the transversal cover (6), through which the pin's (4) extension (P) is coming through on the edge of which the magnet (M) is embodied and is secured with the component (E), or through the use of one base (9), which is embodied on a fixed point of the gun (frame) or on other pre-existed support points under the gun-barrel, which are located on the gun's fixed parts and are destined for the support of various auxiliary components, and on which base (9) the magnet (M) is fixed without using the pin's (4) extension (P), and from the fact that the magnet's destination is to act unstoppable pull, on the one hand, to the slide (K), and on the other hand, to the cylinder (1) with momentum and direction towards the axis of their course towards the gun-barrel's exit and hence opposite towards their retrogression, and from the fact that during the bullet's firing time, the pressure of the developed gases reaches the point, where it is appointed as critical for the pulling ability the magnet (M) has, in order to hold the slide (K) and the chamber (1), causing to them the instantaneous expected delay before their departure (according to the upper priority degree), and from the fact that through the upper instantaneous delay through which the maximum expansion of gases is caused, bigger initial speed to the bullet is given, resulting to its trajectory increase, and from the fact that the spring (3) through its freedom degree on either side of its reference points in chamber (B), operates as an inertia system and acts as percussive mechanism of instantaneous absorption of the rest of the slide's (K) energy, decelerating any of its further retrogression as the most of the energy, which the slide was carrying, was absorbed from the progressive compression of the two previous springs (5) and (2), and from the fact that this mechanism's final form is capable to differ in its component's shape, to the force of its springs and to their number in order to be adapted to any different gun type.

2. A magnetomechanical system of the caused recoil's reduction from a gun's bullet firing, which consists of successive springs in cooperation with one cylinder and with one mechanism, which brings a magnet according to claim -1-, and is characterized from the fact that the removal of the pin's (4) and the magnet's (M) expansion (P) makes the system anymore a mechanical one, without the bullet's trajectory being increased, and from the fact that its mechanical compartments are formed properly, so that this mechanical system to be adaptable to any different gun type.

SUMMARY

A MAGNETOMECHANICAL SYSTEM OF THE CAUSED RECOIL'S REDUCTION FROM A GUN'S BULLET FIRING.

- 5 This invention is referred to the creation of a magnetomechanical or mechanical system of the recoil's reduction and hence of the gun-barrel's rebound reduction during the shooting time.
- This system is composed from the successive recoil springs (5) and (2) in cooperation with the drive cylinder (1), from a magnet (M), which pulls, on the one hand, the gun's slide (K), and on the other hand, to the cylinder (1) a reverse this time retrogression of these two retrogressive components, and from the recoil spring (3), which because of its position and size, operates as an inertia mechanism of the recoil's quick execution and reduction.
- 10

10/522271

FIG. 1

INTERNATIONAL SEARCH REPORT

International Application No
PCT/GR2004/000008

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 F41A3/86

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 F41A

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4 369 759 A (GERSTENBERGER FRIEDRICH ET AL) 25 January 1983 (1983-01-25) column 3, line 31 -column 4, line 9 column 9, line 49 -column 10, line 2 column 12, line 25 -column 13, line 44 figures 1,2,6,7 ---	1
A	US 2 818 783 A (KAFADAR AHMED D ET AL) 7 January 1958 (1958-01-07) claim 1 figure 1 ---	1
A	US 2002/178901 A1 (BERGSTROM JASON) 5 December 2002 (2002-12-05) paragraph '0125! figures 9A,9B ---	1
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

- "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

6 May 2004

Date of mailing of the International search report

14/05/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Lostetter, Y

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GR2004/000008

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 3 461 589 A (VIRONDA ITALO D) 19 August 1969 (1969-08-19) -----	
A	US 4 201 113 A (SEECAMP LUEDER) 6 May 1980 (1980-05-06) -----	
A	US 5 581 046 A (WELDLE HELMUT ET AL) 3 December 1996 (1996-12-03) -----	
A	US 1 877 839 A (FROMMER RUDOLF V) 20 September 1932 (1932-09-20) -----	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/GR2004/000008

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 4369759	A	25-01-1983	DE FI	2936883 A1 802809 A		02-04-1981 13-03-1981
US 2818783	A	07-01-1958	NONE			
US 2002178901	A1	05-12-2002	NONE			
US 3461589	A	19-08-1969	US	3492749 A		03-02-1970
US 4201113	A	06-05-1980	NONE			
US 5581046	A	03-12-1996	DE AT CA DE DE EP ES	4341131 C1 148552 T 2136594 A1 9320694 U1 59401713 D1 0656518 A1 2098852 T3		02-02-1995 15-02-1997 03-06-1995 02-02-1995 13-03-1997 07-06-1995 01-05-1997
US 1877839	A	20-09-1932	NONE			

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.