Part I Syllabus

Lecture	Date	Subject
1	11/08/2020	Introduction
		Network layer & physical resilience
2	18/08/2020	Data link layer – Flow control
		Data link layer – Error control
3	25/08/2020	Local area network – Introduction
4	01/09/2020	Local area network – MAC
		Local area network – Ethernet
5	08/09/2020	Local area network – WLAN
		Mobile Access Networks: From 1G to 5G
6	22/09/2020	Packet switch network – Network paradigm

Mingling Among a Cocktail party

CE3005/CZ3006 Computer Networks

Lecture 5 Local Area Network (LAN): Introduction

Contents

Local Area Network

- Definition and Taxonomy
- Protocol Architecture

LAN Topologies

- Bus, Tree, Ring and Star
- Choice of topology

Transmission Media

Medium Access Control

- Functions and Features
- Static Channel Allocation
- Dynamic Channel Allocation

Local Area Network (LAN)

WAN/MAN/LAN

LAN (Local Area Networks)

- LAN is a computer network that covers a small area (home, office, building, campus)
 - a few kilometers
- LANs have higher data rates (10Mbps to 40Gbps) as compared to WANs
- LANs (usually) do not involve leased lines; cabling and equipments belong to the LAN owner.
- LAN consists of
 - Shared transmission medium
 - now so valid today due to switched LANs
 - regulations for orderly access to the medium
 - set of hardware and software for the interfacing devices

LAN Taxonomy

LAN Protocol Architecture

- Corresponds to lower two layers of OSI model
 - But mostly LANs do not follow OSI model
- Current LANs are most likely to be based on Ethernet protocols developed by IEEE 802

committee

- IEEE 802 reference model
 - Logical link control (LLC)
 - Media access control (MAC)
 - Physical

IEEE 802 Layers - Physical

- Signal encoding/decoding
- Preamble generation/removal
 - for synchronization
- Bit transmission/reception
- Specification for topology and transmission medium
- WiFi vs. LiFi

IEEE 802 Layers - DLL

OSI layer 2 (Data Link) is divided into two in IEEE 802

- Logical Link Control (LLC) layer
- Medium Access Control (MAC) layer

LLC layer

- Interface to higher levels
- flow control
- Based on classical Data Link Control Protocols (so we have already covered it earlier)

MAC layer

- Prepare data for transmission
- Error detection
- Address recognition
- Govern access to transmission medium
 - Not found in traditional layer 2 data link control

IEEE 802 Protocols vs OSI Model

LAN in a Nutshell

	TLC	IEEE 802.2 Logical Link Control Protocol								
	MAC	802.3 CSMA /CD	802.4 Token Bus	802.5 Token Ring	802.6 DQDB	802.11 CSMA /CA	802.12 Round Robin	802.14 HFC		
Physical		Coax UTP STP Fiber	Coax Fiber	UTP STP Fiber	Fiber	Radio Infrared	UTP	Coax		
		B,T,S	B,T,S	R	DB		S, T	Τ ←		

Topologies (see next slide): Bus, Tree, Star, Ring, DualBus

LAN Topologies

LAN Topologies: Bus, Tree, Ring and Star

Bus and Tree

- Multipoint medium
- Transmission propagates throughout medium
- Heard by all stations
 - Need to identify target station
 - Each station has unique address
- Full duplex connection between station and tap
 - Allows for transmission and reception
- Need to regulate transmission
 - To avoid collisions
 - If two stations transmit at same time, signals overlap
 - To avoid continuous transmission from a single station.
 - Solution: Transmit Data in small blocks frames
- Terminator absorbs frames at end of medium

Ring Topology

- Repeaters are joined by point to point links in closed loop
 - Receive data on one link and retransmit on another
 - Links are unidirectional
 - Stations attach to repeaters
- Data Frames
 - Circulate past all stations
 - Destination recognizes address and copies frame
 - Frame circulates back to source where it is removed
- Medium access control determines when station can insert frame

Star Topology

- Each station connected directly to central node
 - using a full-duplex (bi-directional) link
- Central node can broadcast (hub)
 - Physical star, but logically like bus since broadcast
 - Only one station can transmit at a time; otherwise, collision occurs
- Central node can act as frame switch
 - retransmits only to destination
 - today's technology

Choice of Topology

- Reliability
- Expandability
- Performance
- Needs considering in context of:
 - Medium
 - Wiring layout
 - Access control

Transmission Medium

Medium Available (1)

Voice grade unshielded twisted pair (UTP)

- Cat 3/ Cheap
- Well understood
- Use existing telephone wiring in office building
- Low data rates

Shielded twisted pair (STP) and baseband coaxial

More expensive than UTP but higher data rates

Broadband cable

Still more expensive and higher data rate

Networking Cables

Unshilded twisted-pair cable

Shielded twisted-pair cable

Coaxial cable

http://www.computerhope.com

Media Available (2)

High performance UTP

- Cat 5 and above (5e and 6)
- High data rate for small number of devices
- Switched star topology for large installations

Optical fiber

- Electromagnetic isolation
- High capacity
- Small size
- High cost of components
- High skill needed to install and maintain

Fading channel

Media Access Control (MAC)

Media Access Control

- Assembly of data into frame with address and error detection fields
- Disassembly of frame
 - Address recognition
 - Error detection
- Govern access to transmission medium
 - Not found in traditional layer 2 data link control
- For the same LLC, several MAC options may be available

MAC Decision Making Options

Where?

- Central
 - Greater control
 - Simple access logic at station
 - Avoids problems of co-ordination
 - Single point of failure
 - Potential bottleneck
- Distributed

How?

- Synchronous (static) solutions
 - Specific capacity dedicated to connection
- Asynchronous (dynamic) solutions
 - In response to demand

Static Channel Allocation

TDM

- Each user is statically allocated one time slot
- if a particular user does not have anything to send, that period is wasted
- User may not utilize the whole channel for a time slot

FDM

- Channel is divided to carry different signals at different frequencies
- Efficient if there is a constant (one for each slot) amount of users with continous traffic

CDM

Dynamic Channel Allocation (1)

Round robin

- Each station has a turn to transmit
 - declines or transmits up to a certain data limit
 - overhead of passing the turn in either case
- Performs well if many stations have data to transmit for most of the time
 - otherwise passing the turn would cause inefficiency

Reservation

- It is used for stream traffic, where time on the medium is divided into slots, much as with TDM.
- Reservation can be made in centralized or distributed fashion.

Dynamic Channel Allocation (2)

Contention

- All stations contend to transmit
- No control to determine whose turn is it
- Stations send data by taking risk of collision (with others' packets)
 - however they understand collisions by listening to the channel, so that they can retransmit
- Several implementation methods: Aloha, CSMA, etc.
- In general, good for bursty traffic
 - Typical traffic types for most networks
- Efficient under light or moderate load
- Performance is bad under heavy load

Learning Objectives

Local Area Network

- Functions of each layer: physical, LLC and MAC
- 802 Protocol family

LAN Topologies

- Frame transmission over Bus, Tree, Ring and Star
- Transmission Media
- Medium Access Control
 - Pros and Cons of Static Channel Allocation
 - Comparison among Dynamic Channel Allocation

