Calcul Diferențial și Integral - Curs 9

Derivate de ordin superior. Optimizare.

EVA KASLIK, RALUCA MURESAN

Derivate parţiale de ordinul doi

Fle $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ o funcţie derivabilă parţial în raport cu fiecare variabilă $x_j,\ j=\overline{1,n}$ pe A.

Funcţia f este derivabilă parţial de două ori în a în raport cu fiecare variabilă dacă toate derivatele parţiale $\frac{\partial f_i}{\partial x_j}$ sunt derivabile parţial în $a \in A$ în raport cu fiecare variabilă x_k .

Notația pentru derivata parțială de ordinul doi a funcției f:

$$\frac{\partial}{\partial x_k} \left(\frac{\partial f_i}{\partial x_j} \right) (a) = \frac{\partial^2 f_i}{\partial x_k \partial x_j} (a)$$

Derivata Fréchet de ordinul doi

Funcția f este diferențiabilă de două ori în punctul $a \in A$ dacă derivatele parţiale $\frac{\partial f_i}{\partial x_i}$ sunt diferenţiabile în a.

Derivata Fréchet de ordinul doi a funcției f în punctul a este funcția $d_a^2 f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m$ dată de formula

$$d_a^2 f(u)(v) = \sum_{i=1}^m \left(\sum_{j=1}^n \sum_{k=1}^n \frac{\partial^2 f_i}{\partial x_j \partial x_k} (a) u_j v_k \right) e_i$$

unde $u, v \in \mathbb{R}^n$, $e_i = (0, ..., 0, 1, 0, ..., 0), i = <math>\overline{1, n}$.

Derivata Fréchet de ordinul doi a funcției f în a verifică relația

$$\lim_{u \to 0} \frac{\|d_{a+u}f(v) - d_af(v) - d_a^2f(u)(v)\|}{\|u\|} = 0 \quad , \ \forall v \in \mathbb{R}^n.$$

3/22

Derivate de ordinul doi pentru funcții de două variabile

Fie $f: \mathbb{R}^2 \to \mathbb{R}$.

Derivate partiale de ordinul doi:

$$\frac{\partial^2 f}{\partial x^2} = f_{xx} = (f_x)_x = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \qquad \frac{\partial^2 f}{\partial x \partial y} = f_{yx} = (f_y)_x = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

$$\frac{\partial^2 f}{\partial y \partial x} = f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \qquad \frac{\partial^2 f}{\partial y^2} = f_{yy} = (f_y)_y = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$$

Derivata Fréchet de ordinul doi în $a = (a_1, a_2) \in \mathbb{R}^2$:

funcţia $d_a^2 f: \mathbb{R}^2 imes \mathbb{R}^2 o \mathbb{R}$ dată de

$$d_a^2 f(u)(v) = f_{xx}(a_1, a_2)u_1v_1 + f_{xy}(a_1, a_2)u_1v_2 + f_{yx}(a_1, a_2)u_2v_1 + f_{yy}(a_1, a_2)u_2v_2$$

pentru orice $u = (u_1, u_2), \ v = (v_1, v_2) \in \mathbb{R}^2$.

EVA KASLIK, RALUCA MURESAN

Exemplu

Fie funcţia $f(x,y) = xe^{xy}$.

Derivatele parţiale de ordinul întâi sunt:

$$f_x = e^{xy} + xye^{xy} \qquad \text{si} \qquad f_y = x^2e^{xy}.$$

Derivatele parţiale de ordinul doi sunt:

$$f_{xx} = (f_x)_x = 2ye^{xy} + xy^2e^{xy}$$
 $f_{xy} = (f_x)_y = 2xe^{xy} + x^2ye^{xy}$
 $f_{yx} = (f_y)_x = 2xe^{xy} + x^2ye^{xy}$ $f_{yy} = (f_y)_y = x^3e^{xy}$

Derivata Fréchet de ordinul doi în punctul a=(1,0) este funcţia $d^2_{(1,0)}f:\mathbb{R}^2\times\mathbb{R}^2 o\mathbb{R}$ dată de:

$$d_{(1,0)}^2 f(u)(v) = f_{xx}(1,0)u_1v_1 + f_{xy}(1,0)u_1v_2 + f_{yx}(1,0)u_2v_1 + f_{yy}(1,0)u_2v_2$$

= $2(u_1v_2 + u_2v_1) + u_2v_2$

pentru orice $u = (u_1, u_2), \ v = (v_1, v_2) \in \mathbb{R}^2$.

Teoreme importante

Teoremă (Teorema derivatelor mixte a lui Schwarz)

Dacă funcția f este diferențiabilă de două ori în punctul a, atunci

$$\frac{\partial^2 f_i}{\partial x_j \partial x_k}(a) = \frac{\partial^2 f_i}{\partial x_k \partial x_j}(a) \quad , \ \forall i = \overline{1, m}, \ j, k = \overline{1, n}.$$

Teoremă (Criteriu pentru diferențiabilitate de ordinul doi)

Dacă derivatele parţiale de ordinul doi $\frac{\partial^2 f_i}{\partial x_j \partial x_k}$ există într-o vecinătate a punctului a şi sunt continue în a, atunci f este diferenţiabilă de două ori în a.

Derivate parţiale de ordin superior

Funcţia $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ este derivabilă parţial de k-ori în $a\in A$ în raport cu fiecare variabilă dacă

- \bullet f este de (k-1)-ori derivabilă parţial în raport cu fiecare variabilă într-o vecinătate deschisă a punctului a
- fiecare derivată parţială de ordinul (k-1) este derivabilă parţial în raport cu fiecare variabilă x_{j_k} în a.

Notație pentru derivata parțială de ordin k a funcției f în punctul a:

$$\frac{\partial^k f_i}{\partial x_{j_k} \partial x_{j_{k-1}} \cdots \partial x_{j_1}} (a) = \frac{\partial}{\partial x_{j_k}} \left(\frac{\partial^{k-1} f_i}{\partial x_{j_{k-1}} \cdots \partial x_{j_1}} \right) (a)$$

Diferenţiabilitate de ordin superior

Funcţia $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ este diferenţiabilă de k-ori în punctul a dacă derivatele sale parţiale de ordin (k-1) sunt diferenţiabile în a.

Derivata Fréchet de ordin k a funcției f în a este funcția $d_a^k f: \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}^m$ dată de

$$d_a^k f(u^1)(u^2) \cdots (u^k) = \sum_{i=1}^m \left(\sum_{j_1=1}^n \sum_{j_2=1}^n \cdots \sum_{j_k=1}^n \frac{\partial^k f_i}{\partial x_{j_k} \cdots \partial x_{j_1}} (a) \cdot u_{j_1}^1 u_{j_2}^2 \cdots u_{j_k}^k \right) e_i$$

Derivata Fréchet de ordin k a funcţiei f în a verifică relaţia:

$$\lim_{\|u\|\to 0} \frac{\|d_{a+u^k}^{k-1}f(u^1)(u^2)\cdots(u^{k-1})-d_a^{k-1}f(u^1)(u^2)\cdots(u^{k-1})-d_a^kf(u^1)(u^2)\cdots(u^k)\|}{\|u\|}=0$$

Rezultate importante

Teoremă (Teorema derivatelor mixte)

Dacă funcția f este diferențiabilă de k-ori în punctul a, atunci au loc următoarele relații:

$$\frac{\partial^k f_i}{\partial x_{j_1} \partial x_{j_2} \cdots \partial x_{j_k}}(a) = \frac{\partial^k f_i}{\partial x_{\sigma(j_1)} \partial x_{\sigma(j_2)} \cdots \partial x_{\sigma(j_k)}}(a)$$

Teoremă (Criteriu pentru diferențiabilitatea de ordin k)

Dacă derivatele parţiale de ordin k a funcţiei f există într-o vecinătate a punctului a şi sunt continue în a, atunci f este diferenţiabilă de k-ori în a.

Minime şi maxime

Punctul $a \in A$ este un punct de minim local al funcției $f: A \subset \mathbb{R}^n \to \mathbb{R}^1$ dacă există o vecinătate $V \subset A$ a lui a astfel încât $f(a) \leq f(x)$ pentru orice $x \in V$.

Punctul $a \in A$ este punct de minim global al funcției $f: A \subset \mathbb{R}^n \to \mathbb{R}^1$ dacă $f(a) \leq f(x)$ pentru orice $x \in A$.

Punctul $a \in A$ este un punct de maxim local al funcţiei $f: A \subset \mathbb{R}^n \to \mathbb{R}^1$ dacă există o vecinătate $V \subset A$ a lui a astfel încât $f(a) \geq f(x)$ pentru orice $x \in V$.

Punctul $a\in A$ este punct de maxim global al funcției $f:A\subset\mathbb{R}^n\to\mathbb{R}^1$ dacă $f(a)\geq f(x)$ pentru orice $x\in A$.

Minime şi maxime

Condiții pentru minime și maxime locale

Condiție necesară pentru extreme locale:

Dacă funcţia $f:A\subset\mathbb{R}^n\to\mathbb{R}^1$ are o valoare de minim sau maxim local în punctul $a\in A$ şi dacă toate derivatele parţiale ale funcţiei f există în punctul a, atunci

$$\nabla f(a) = 0,$$

adică a este un punct critic (punct staționar) al funcției f.

Condiții suficiente pentru extreme locale:

Presupunem că funcția $f:A\subset\mathbb{R}^n\to\mathbb{R}^1$ are derivate parțiale de ordinul doi continue pe mulțimea A și că a este un punct critic al funcției f.

- i) Dacă $d_a^2 f(h)(h) \geq 0$ pentru $h \in \mathbb{R}^n$ și $\det \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(a) \right) \neq 0$, atunci a este un punct de minim local al funcției f;
- ii) Dacă $d_a^2 f(h)(h) \leq 0$ pentru $h \in \mathbb{R}^n$ şi $\det \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(a) \right) \neq 0$, atunci a este un punct de maxim local al funcției f.

Testul derivatelor de ordinul doi pentru funcţii de două variabile

Fie $a=(a_1,a_2)\in A$ un punct critic al funcţiei $f:A\subset\mathbb{R}^2\to\mathbb{R}$. Considerăm matricea Hessiană:

$$H_{(a_1,a_2)}f = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(a_1,a_2) & \frac{\partial^2 f}{\partial x \partial y}(a_1,a_2) \\ \frac{\partial^2 f}{\partial y \partial x}(a_1,a_2) & \frac{\partial^2 f}{\partial y^2}(a_1,a_2) \end{pmatrix}$$

și minorii ei principali:

$$\Delta_1 = \frac{\partial^2 f}{\partial x^2}(a_1, a_2)$$
 şi $\Delta_2 = \det \left(H_{(a_1, a_2)} f \right)$

- dacă $\Delta_1 > 0$ şi $\Delta_2 > 0$ atunci $a = (a_1, a_2)$ este punct de minim local al lui f;
- dacă $\Delta_1 < 0$ şi $\Delta_2 > 0$ atunci $a = (a_1, a_2)$ este punct de maxim local al lui f;
- ullet dacă $\Delta_2 < 0$ atunci $a = (a_1, a_2)$ este un punct şa al funcției f;
- dacă $\Delta_2 = 0$ atunci testul este neconcludent.

Exemple

Exemplul 1.

$$f(x,y) = x^2 + y^2 - 2x - 6y + 14$$

Derivate parţiale:

$$f_x = 2x - 2 \qquad f_y = 2y - 6$$

 \implies punct critic: (1,3).

Matricea Hessiană în (1,3):

$$H_{(1,3)}f\!=\!\left(\begin{array}{cc} f_{xx}(1,3) & f_{xy}(1,3) \\ f_{yx}(1,3) & f_{yy}(1,3) \end{array}\right)\!=\!\left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right)$$

Valoarea minimă: f(1,3) = 4

Exemple

Exemplul 2.

$$f(x,y) = y^2 - x^2$$

Derivate parţiale:

$$f_x = -2x \qquad f_y = 2y$$

 \implies punct critic: (0,0).

Matricea Hessiană în (0,0):

$$H_{(0,0)}f\!=\!\left(\begin{array}{cc} f_{xx}(0,0) & f_{xy}(0,0) \\ f_{yx}(0,0) & f_{yy}(0,0) \end{array}\right)\!=\!\left(\begin{array}{cc} -2 & 0 \\ 0 & 2 \end{array}\right)$$

$$\Delta_2 = -4 < 0 \implies (0,0)$$
 este un punct şa.

Exemple

Exemplul 3.

$$f(x,y) = x^4 + y^4 - 4xy + 1$$

Derivate parțiale:

$$f_x = 4x^3 - 4y \qquad f_y = 4y^3 - 4x$$

 \implies puncte critice: (0,0), (1,1), (-1,-1).

Matricea Hessiană:

$$H_{(x,y)}f\!=\!\left(\begin{array}{cc}f_{xx}&f_{xy}\\f_{yx}&f_{yy}\end{array}\right)\!=\!\left(\begin{array}{cc}12x^2&-4\\-4&12y^2\end{array}\right)$$

$$\implies \Delta_1 = 12x^2 \text{ și } \Delta_2 = 144x^2y^2 - 16$$

- (0,0) este punct şa $(\Delta_2 = -16 < 0)$
- (1,1) şi (-1,-1) sunt puncte de minim local $(\Delta_1 = 12 > 0$ şi $\Delta_2 = 128 > 0)$

Multiplicatorii Lagrange şi optimizarea cu constrângeri

Fie o funcție $f:A\subset\mathbb{R}^n\to\mathbb{R}^1$, unde A este o mulțime deschisă și fie mulțimea $\Gamma\subset A$, definită prin:

$$\Gamma = \{x \in A : g_i(x) = 0, i = \overline{1, p}\}$$
 unde $g_i : A \to \mathbb{R}^1$ şi $p < n$

Ecuațiile $g_i(x) = 0$ se numesc constrângeri.

Dacă restricția funcției f la mulțimea Γ , adică $f|_{\Gamma}$, are un punct de extrem $a \in \Gamma$, atunci acesta se numește punct de extrem condiționat.

Metoda multiplicatorilor Lagrange:

Presupunem că funcțiile f și g_i , $i=\overline{1,p}$ au derivate parțiale continue într-o vecinătate a punctului de extrem condiționat $a\in\Gamma$ și vectorii gradient $\nabla g_i(a)$, $i=\overline{1,p}$ sunt vectori liniar independenți în \mathbb{R}^n .

Atunci există constantele $\lambda_1, \lambda_2, ..., \lambda_p$ astfel ca

$$\nabla f(a) = \sum_{i=1}^{p} \lambda_i \nabla g_i(a)$$

Caz special: două variabile și o constrângere

Dacă dorim să maximizăm (minimizăm) funcţia $f:A\subset\mathbb{R}^2\to\mathbb{R}^1$ în raport cu constrângerea g(x,y)=0, trebuie să rezolvăm sistemul de ecuaţii

$$\begin{cases} g(x,y) = 0\\ \frac{\partial f}{\partial x}(x,y) = \lambda \frac{\partial g}{\partial x}(x,y)\\ \frac{\partial f}{\partial y}(x,y) = \lambda \frac{\partial g}{\partial y}(x,y) \end{cases}$$

în raport cu variabilele x,y,λ . Punctele (x,y) pe care le găsim astfel sunt posibile puncte de extrem condiţionat ale funcţiei f în raport cu constrângerea g(x,y)=0.

Exemplu

Găsiţi valorile extreme ale funcţiei $f(x,y)=x^2+2y^2$ pe cercul $x^2+y^2=1$.

Exemplu

Găsiţi valorile extreme ale funcţiei $f(x,y)=x^2+2y^2$ pe cercul $x^2+y^2=1$.

constrângere:
$$g(x, y) = x^2 + y^2 - 1 = 0$$
.

Rezolvăm sistemul:

$$\begin{cases} g(x,y) = 0 \\ f_x = \lambda g_x \\ f_y = \lambda g_y \end{cases} \implies \begin{cases} x^2 + y^2 = 1 \\ 2x = \lambda \cdot 2x \\ 4y = \lambda \cdot 2y \end{cases}$$

- dacă x=0, atunci $y=\pm 1$;
- dacă $\lambda = 1$, atunci y = 0 și $x = \pm 1$.
- \implies posibile puncte de extrem: (1,0), (-1,0), (0,1) şi (0,-1).

Calculând f în fiecare din aceste puncte, obţinem valoarea minimă şi maximă a funcţiei pe cercul $x^2+y^2=1$:

$$f(\pm 1,0) = \underbrace{1}_{\min} \quad \mathrm{si} \quad f(0,\pm 1) = \underbrace{2}_{\max}.$$

Caz special: trei variabile și două constrângeri

Dacă dorim să maximizăm (minimizăm) funcţia $f:A\subset\mathbb{R}^3\to\mathbb{R}$ în raport cu constrângerile g(x,y,z)=0 şi h(x,y,z)=0, trebuie să rezolvăm următorul sistem:

$$\begin{cases} g(x,y,z) = 0\\ h(x,y,z) = 0\\ \frac{\partial f}{\partial x}(x,y,z) = \lambda_1 \frac{\partial g}{\partial x}(x,y,z) + \lambda_2 \frac{\partial h}{\partial x}(x,y,z)\\ \frac{\partial f}{\partial y}(x,y,z) = \lambda_1 \frac{\partial g}{\partial y}(x,y,z) + \lambda_2 \frac{\partial h}{\partial y}(x,y,z)\\ \frac{\partial f}{\partial z}(x,y,z) = \lambda_1 \frac{\partial g}{\partial z}(x,y,z) + \lambda_2 \frac{\partial h}{\partial z}(x,y,z) \end{cases}$$

în raport cu variabilele $x,y,z,\lambda_1,\lambda_2$. Punctele (x,y,z) găsite astfel sunt posibile puncte de extrem local ale funcţiei f în raport cu cele două constrângeri.

Caz special: trei variabile și două constrângeri

 ∇f este în planul determinat de ∇g şi ∇h :

Exerciţiu. Găsiţi aria maximă a unui triunghi dreptunghic de perimetru P fixat.