CCP 2003 MP, Maths 1

• Partie I

1. a) $e^{in\theta} = (\cos \theta + i \sin \theta)^n = \sum_{k=0}^n \binom{n}{k} (\cos \theta)^{n-k} (i \sin \theta)^k$ donc, en prenant la partie réelle :

$$\cos n\theta = \sum_{j=0}^{\lfloor n/2 \rfloor} \binom{n}{2j} (\cos \theta)^{n-2j} (i \sin \theta)^{2j} = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \binom{n}{2j} (\cos \theta)^{n-2j} (1 - \cos^2 \theta)^j.$$

Posons $T(x) = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \binom{n}{2j} x^{n-2j} (1-x^2)^j$. T est un polynôme à coefficients réels tel que $\cos n\theta = T(\cos \theta)$ pour tout $\theta \in \mathbb{R}$. De plus, dans la somme qui définit T, le terme d'indice j est un polynôme de degré n et de coefficient dominant $\binom{n}{2j}$; comme $\sum_{j=0}^{\lfloor n/2 \rfloor} \binom{n}{2j} > 0$, le degré de T est exactement n.

- b) Si T et U sont deux polynômes vérifiant (*), $(T-U)(\cos\theta)=0$ pour tout $\theta\in\mathbb{R}$, donc T-U possède une infinité de racines, donc T-U=0.
- 2. a) $\cos(n+2)\theta + \cos n\theta = 2\cos\theta\cos(n+1)\theta$, donc $T_{n+2}(\cos\theta) = 2\cos\theta\,T_{n+1}(\cos\theta) T_n(\cos\theta)$, donc pour tout $x\in[-1,1],\ T_{n+2}(x) = 2x\,T_{n+1}(x) T_n(x)$. Remarque : cette égalité est en fait valable pour tout réel x car deux polynômes qui coïncident en une infinité de points sont égaux.
 - b) $T_0(x) = 1$, $T_1(x) = x$ puis, avec le a), $T_2(x) = 2x^2 1$ et $T_3(x) = 4x^3 3x$.
 - c) Le a) et une récurrence évidente montrent que le coefficient dominant de T_n est 1 si n=0 et 2^{n-1} si $n \ge 1$.
- 3. a) On suppose ici $n \ge 1$. $T_n(\cos \theta_k) = \cos(n\theta_k) = \cos(k\pi + \pi/2) = 0$. Comme les θ_k appartiennent à $[0, \pi]$ et sont tous distincts, les $\cos \theta_k$ sont aussi tous distincts; T_n étant de degré n, les $\cos \theta_k$ sont les seules racines de T_n et sont des racines simples; compte tenu du 2.c), on en déduit la factorisation demandée de T_n .
 - b) $||T_n||_{\infty} = \sup_{x \in [-1, 1]} |T_n(x)| = \sup_{\theta \in \mathbb{R}} |T_n(\cos \theta)| = \sup_{\theta \in \mathbb{R}} |\cos n\theta| = 1.$

D'autre part, $T_n(c_k) = T_n\left(\cos\frac{k\pi}{n}\right) = \cos k\pi = (-1)^k$, d'où les deux autres propriétés demandées.

• Partie II

- 4. La fonction $t \longmapsto \frac{1}{\sqrt{1-t^2}}$ est intégrable sur]-1, 1[car elle est positive et $\int_a^b \frac{\mathrm{d}t}{\sqrt{1-t^2}} = \operatorname{Arcsin} b \operatorname{Arcsin} a \leqslant \pi$ pour tout $[a,b] \subset]-1, 1[$. $\left|\frac{h(t)}{\sqrt{1-t^2}}\right| \leqslant \frac{\|h\|_{\infty}}{\sqrt{1-t^2}}, \text{ donc } t \longmapsto \frac{h(t)}{\sqrt{1-t^2}} \text{ est aussi intégrable sur }]-1, 1[$.
- 5. a) Par positivité stricte de l'intégrale pour les fonctions continues, h est nulle sur]-1, 1[; par continuité en -1 et en 1, h est nulle sur [-1, 1].
 - b) L'application \langle , \rangle est bien définie sur $E \times E$ d'après 4., elle est bilinéaire par linéarité de l'intégrale et évidemment symétrique et positive ; plus précisément, elle est définie positive d'après a), c'est donc un produit scalaire sur E.
- 6. La définition de $\langle \, , \, \rangle$ et le changement de variable $\, t = \cos \theta \,$ donnent :

$$\langle T_n, T_m \rangle = \int_{-1}^1 \frac{T_n(t) T_m(t)}{\sqrt{1 - t^2}} dt = \int_0^\pi T_n(\cos \theta) T_m(\cos \theta) d\theta = \int_0^\pi \cos n\theta \cos m\theta d\theta.$$

D'où
$$\langle T_n, T_m \rangle = \frac{1}{2} \int_0^{\pi} \left(\cos(n+m)\theta + \cos(n-m)\theta \right) d\theta = \begin{cases} \pi & \text{si } m=n=0\\ \pi/2 & \text{si } m=n\geqslant 1\\ 0 & \text{si } m\neq n. \end{cases}$$

 $(T_k)_{0 \leq k \leq n}$ est donc une famille orthogonale de n+1 vecteurs non nuls de l'e.v. E_n , qui est de dimension n+1; c'est par conséquent une base orthogonale de E_n .

- 7. a) E_n est un sous-e.v. de dimension finie de l'espace préhilbertien $(E, \langle \, , \, \rangle)$ donc, par théorème, la distance de f à E_n est atteinte en un unique élément de E_n , à savoir le projeté orthogonal de f sur E_n .
 - b) La famille $\left(\frac{T_k}{\|T_k\|_2}\right)_{0 < k < n}$ est une base orthonormale de E_n donc, d'après le cours et les questions 6. et 7.a) :

$$t_n(f) = \sum_{k=0}^{n} \left\langle \frac{T_k}{\|T_k\|_2}, f \right\rangle \frac{T_k}{\|T_k\|_2} = \frac{1}{\pi} \left(\langle T_0, f \rangle T_0 + 2 \sum_{k=1}^{n} \langle T_k, f \rangle T_k \right).$$

- 8. $f = t_n(f) + (f t_n(f))$ et $t_n(f) \perp f t_n(f)$ donc $||f||_2^2 = ||t_n(f)||_2^2 + ||f t_n(f)||_2^2 = ||t_n(f)||_2^2 + d_2(f, E_n)^2$. Mais d'après 7.b) et l'expression de la norme en base orthonormale, $||t_n(f)||_2^2 = \sum_{k=0}^n \frac{\langle f, T_k \rangle^2}{||T_k||_2^2}$, d'où le résultat.
- 9. a) $\sum \frac{\langle f, T_k \rangle^2}{\|T_k\|_2^2}$ est une série à termes positifs dont les sommes partielles sont, selon 8., majorées par $\|f\|_2^2$; elle est donc convergente.
 - b) $||T_n||_2^2 = \frac{\pi}{2}$ pour $n \ge 1$, donc la série $\sum \langle f, T_n \rangle^2$ est aussi convergente, et en particulier son terme général tend vers 0; autrement dit, $\int_{-1}^1 \frac{f(t) T_n(t)}{\sqrt{1-t^2}} dt \xrightarrow[n \to +\infty]{} 0$.
- 10. a) $\|h\|_2^2 = \int_{-1}^1 \frac{h(t)^2}{\sqrt{1-t^2}} dt \le \|h\|_{\infty}^2 \int_{-1}^1 \frac{1}{\sqrt{1-t^2}} dt = \|h\|_{\infty}^2 \left[\operatorname{Arcsin} t \right]_{-1}^1 = \pi \|h\|_{\infty}^2$, d'où le résultat.
 - b) Soit $\varepsilon \in \mathbb{R}_+^*$. D'après le théorème de Weierstrass, il existe un polynôme p tel que $||f p||_{\infty} \le \varepsilon/\sqrt{\pi}$, d'où il résulte, d'après a), que $||f p||_2 \le \varepsilon$.

Fixons un tel p et notons N son degré. Pour $n \ge N$, p appartient à E_n , donc $||f - t_n(f)||_2 \le ||f - p||_2 \le \varepsilon$. Cela démontre, par retour à la définition, que la suite $(||f - t_n(f)||_2)$ converge vers 0, ou encore que la suite $(t_n(f))$ converge vers f pour la norme $||\cdot||_2$.

- 11. a) Il suffit de faire tendre n vers l'infini dans l'égalité du 8., puisque $d_2(f, E_n) = ||f t_n(f)||_2$.
 - b) Pour une telle fonction h, le a) donne $||h||_2 = 0$, c'est-à-dire h = 0.

• Partie III

- 12. a) Le polynôme nul appartient à K, donc K n'est pas vide.
 - K est l'image réciproque du fermé $]-\infty$, $||f||_{\infty}$ de \mathbb{R} par l'application continue $Q \longmapsto ||f-Q||_{\infty}$ de E_n dans \mathbb{R} , donc K est fermée.
 - Pour tout $Q \in K$, $||Q||_{\infty} \leq 2 ||f||_{\infty}$ par inégalité triangulaire, donc K est bornée.
 - b) E_n est de dimension finie, donc par théorème toute partie de E_n fermée et bornée est compacte.
- 13. a) $K \subset E_n$, donc $d_{\infty}(f, E_n) \leq d_{\infty}(f, K)$.
 - Pour $Q \in E_n \setminus K$, $||f Q||_{\infty} > ||f||_{\infty} \ge d_{\infty}(f, K)$. On a donc $||f Q||_{\infty} \ge d_{\infty}(f, K)$ pour tout $Q \in E_n$, et par suite $d_{\infty}(f, K) \le d_{\infty}(f, E_n)$.
 - b) L'application $Q \longmapsto \|f Q\|_{\infty}$ de K dans \mathbb{R} est continue ; comme K est compact et non vide, elle admet un minimum global. Soit P un élément de K en lequel ce minimum est atteint, on a :

$$||f - P||_{\infty} = \min_{Q \in K} ||f - Q||_{\infty} = \inf_{Q \in K} ||f - Q||_{\infty} = d_{\infty}(f, K) = d_{\infty}(f, E_n).$$

- 14. b) On a établi cette propriété en I.3.b) ; les points recherchés sont les $x_k = \cos \frac{(n+1-k)\pi}{n+1}$, avec $k \in [0, n+1]$.
- 15. a) $Q(x_i) P(x_i) = Q(x_i) f(x_i) + f(x_i) P(x_i) = Q(x_i) f(x_i) + ||f P||_{\infty} \ge ||f P||_{\infty} ||f Q||_{\infty} > 0$.
 - b) Les inégalités du a) et le théorème des valeurs intermédiaires montrent que le polynôme Q-P possède au moins n+1 racines ; comme son degré est au plus n, c'est le polynôme nul, donc Q=P. Cela contredit l'hypothèse initiale sur Q.

On a donc $||f - Q||_{\infty} \ge ||f - P||_{\infty}$ pour tout $Q \in E_n$; autrement dit P est un PMA d'ordre n de f.

- 16. D'abord, q_n appartient à E_n , puisque T_{n+1} est de degré n+1 et de coefficient dominant 2^n .
 - Ensuite, $f(x) q_n(x) = 2^{-n} T_{n+1}(x)$ donc, selon 14.b), $f q_n$ équioscille sur n+2 points.
 - D'après 15., q_n est un PMA d'ordre n de la fonction $f: x \longmapsto x^{n+1}$.
- 17. Soit P un tel polynôme ; gardons les notations du 16. et posons $r_n(x) = x^{n+1} P(x)$. $r_n \in E_n$ donc d'après 16., $||f q_n||_{\infty} \leq ||f r_n||_{\infty}$, ce qui se réécrit $2^{-n} ||T_{n+1}||_{\infty} \leq ||P||_{\infty}$.
- 18. a) Notons α le coefficient dominant de f et posons $P = f 2^{-n}\alpha T_{n+1}$. Par construction, P appartient à E_n ; de plus, $f P = 2^{-n}\alpha T_{n+1}$, qui équioscille sur n+2 points, donc P est un PMA d'ordre n de f.
 - b) L'application à f de la formule du a) fournit le PMA d'ordre $2 \ x \longmapsto 5x^3 + 2x 3 \frac{5}{4}(4x^3 3x) = \frac{23}{4}x 3$.