The electric field is measured all over the surface of a cylinder whose diameter is 8 cm and whose height is 20 cm, as shown in the diagram. At every location on the surface the electric field points in the same direction (+y). E_1 is found to be 534V/m; E_2 is 766V/m; E_3 is 1223V/m.

(a)	Which	of the	following	statements	are	true?	
-----	-------	--------	-----------	------------	-----	-------	--

- \square The angle between E_1 and $\hat{\mathbf{n}}$ is 90 degrees.
- $\hfill\Box$ The flux on the flat ends of the cylinder is 0.
- $\hfill \square$ Only the curved surface of the cylinder gives a nonzero contribution to the net electric flux.
- Not enough information is given to solve this problem.
- ightharpoonup The angle between E_2 and $\hat{\mathbf{n}}$ is 90 degrees.
- ☐ This is an impossible pattern of electric field.
- ✓ The net flux on this cylindrical surface is negative.

(b) What is the net electric flux on this surface? net electric flux = $\boxed{-3.46329}$ \checkmark \boxed{Vm} \checkmark

(c) How much charge is inside the surface? ε_0 = 8.85e-12 ${\rm C^2/N~m^2}.$

Part Tuo = Ptop + Ppottom F. · n. A. + E. · n. A. A, - IÈ, IA2 = -3.463 Vm Part Four

= -30.65 e-12 C

Simple applications

(a) The electric field has been measured to be vertically upward everywhere on the surface of a box 20 cm long, 4 cm high, and 3 cm deep, shown in the figure. All over the bottom of the box $E_1 = 1600 \text{ V/m}$, all over the sides $E_2 = 800 \text{ V/m}$, and all over the top $E_3 = 450 \text{ V/m}$.

What is the amount of charge enclosed by the box? Use the accurate value $\epsilon_0 = 8.85 \times 10^{-12} \ \text{C}^2/\text{N} \cdot \text{m}^2$.

(

(b) The electric field is horizontal and has the values indicated on the surface of a cylinder shown in the figure. $E_1 = 1400$ N/C, $E_2 = 1150$ N/C, and $E_3 = 900$ N/C.

What is the amount of charge enclosed by the cylinder? Use the accurate value $\varepsilon_0 = 8.85 \times 10^{-12} \ \text{C}^2/\text{N} \cdot \text{m}^2$.

С

(c) The electric field has been measured to be horizontal and to the right everywhere on the closed box shown in the figure. All over the left side of the box $E_1 = 120$ V/m, and all over the right, slanting, side of the box $E_2 = 250$ V/m. On the top the average field is $E_3 = 200$ V/m, on the front and back the average field is $E_4 = 200$ V/m, and on the bottom the average field is $E_5 = 240$ V/m.

How much charge is inside the box? Use the accurate value $\varepsilon_0 = 8.85 \times 10^{-12} \ \text{C}^2/\text{N} \cdot \text{m}^2$.

In the figure the magnetic field in a region is vertical and was measured to have the values shown on the surface of a cylinder. Which of the following are true?

🗹 The measurements are probably incorrect, since we have never yet found a magn	etic monopole.
---	----------------

[☐] The measurements imply that the box contains a bar magnet.

 $[\]hfill \Box$ The measurements imply that the box contains a current-carrying loop of wire.

[☐] The measurements imply that the box contains nothing at all.

f Z The magnetic flux over the closed box is nonzero, which violates Gauss's Law for magnetism.