Aufgabe 1 (Frühjahr 1980). Sei K ein Körper. Zeigen Sie: Jede Erweiterung von K vom Grad 2 ist normal über K.

 $L\ddot{o}sung$. Sei L/K eine Körpererweiterung vom Grad zwei, das heißt L ist ein K-Vektorraum von Dimension 2,

$$[L:K] = \dim_K(L) = 2.$$

Also ist $K \nsubseteq L$ und es gibt $\alpha \in L \setminus K$. Sei $m_{\alpha} \in K[X]$ das Minimalpolynom von α über K. Es ist

$$\deg(m_{\alpha}) > 1,$$

denn sonst wäre $\alpha \in K$. Außerdem ist

$$deg(m_{\alpha}) = [K(\alpha) : K] | [L : K] = 2.$$

Also

$$deg(m_{\alpha}) = 2$$

Es folgt $L = K(\alpha)$. Sei β die zweite Nullstelle von m_{α} , also haben wir in einem Oberkörper die Zerlegung

$$m_{\alpha} = (X - \alpha)(X - \beta) = X^2 - (\alpha + \beta)X + \alpha\beta \in K[X].$$

Insbesondere ist $\alpha + \beta \in K \subset K(\alpha)$ (und $\alpha\beta \in K$). Da $\alpha \in K(\alpha)$ ist auch $\beta \in K(\alpha)$. Wir haben gezeigt, daß L Zerfällungskörper des Polynoms $m_{\alpha} \in K[X]$ ist.

Aufgabe 2 (Herbst 2002). (a) Zerlegen Sie das Polynom $f := X^6 + 4X^4 + 4X^2 + 3 \in \mathbb{Q}[X]$ in irreduzible Faktoren.

(b) Bestimmen Sie den Zerfällungskörper Z von f über $\mathbb Q$ und $[Z:\mathbb Q]$.

 $L\ddot{o}sung.$ **Zu** (a): Wir sehen, daß X nur in gerader Potenz vorkommt und substituieren $Y\coloneqq X^2$:

$$g(Y) = Y^3 + 4Y^2 + 4Y + 3$$

mit $f(X) = g(X^2)$. Eine Nullstelle von g ist -3, also $(Y+3)|g \in \mathbb{Q}[Y]$ Polynomdivision liefert

$$q = (y+3)(Y^2 + Y + 1)$$

und $Y^2 + Y + 1$ ist irreduzibel über \mathbb{Q} (nach dem Reduktionskriterium modulo 2 und dem Satz von Gauß). Wir erhalten

$$f = (X^2 + 3)(X^4 + X^2 + 1).$$

Der erste Faktor ist irreduzibel (da es ein Eisensteinpolynom in $\mathbb{Z}[X]$ ist). Den zweiten Faktor schreiben wir als

$$X^4 + X^2 + 1 = X^4 + 2X^2 + -X^2 + 1 = (X^2 + 1)^2 - X^2 = ((X^2 + 1) + X)((X^2 + 1) - X) = (X^2 + X + 1)(X^2 - X + 1).$$

Beide dieser Faktoren sind irreduzibel über \mathbb{Z} (also auch über \mathbb{Q}), nach dem Reduktionskriterium modulo 2.

Insgesamt

$$f = X^6 + 4X^4 + 4X^2 + 3 = (X^2 + 3)(X^2 + X + 1)(X^2 - X + 1).$$

Zu (b):

- Nullstellen von $X^2 + 3$: $\alpha_{1,2} = \pm \sqrt{-3}$
- Nullstellen von $X^2 + X + 1$: $\alpha_{3,4} = \frac{-1 \pm \sqrt{-3}}{2}$
- Nullstellen von $X^2 X + 1$: $\alpha_{5,6} \frac{1 \pm \sqrt{-3}}{2}$

Behauptung: $\mathbb{Q}(\sqrt{-3})$ ist der Zerfällungskörper von f.

Natürlich ist $\mathbb{Q} \subset \mathbb{Q}(\sqrt{-3}) \subset \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_6)$. Man sieht leicht, daß alle α_i Linerarkombinationen von 1 und $\sqrt{-3}$ über \mathbb{Q} sind. Also $\alpha_i \in \mathbb{Q}(\sqrt{-3})$, und damit

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{-3}) = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_6)$$

und dies ist der Zerfällungskörper Z von f und es gilt $[Z:\mathbb{Q}]$ = 2.

Aufgabe 3 (Frühjahr 1984). Es sei K ein Körper der Charakteristik 0, $f \in K[X]$ ein normiertes irreduzibles Polynom und α, β Nullstellen von f in einem geeigneten Erweiterungskörper von K. Es sei $\gamma = \alpha - \beta \in K$. Zeigen Sie:

- (a) $f(X + \gamma)$ ist normiert und irreduzibel in K[X].
- (b) Für jede natürliche Zahl n gilt $f(X + n\gamma) = f$.
- (c) $\alpha = \beta$.

Lösung. Zu (a): Da $\gamma \in K$ definiert

$$\varphi: K[X] \to K[X], X \mapsto X - \gamma$$

einen Automorphismus mit inversem $\varphi^{-1}: K[X] \to K[X], X \mapsto X + \gamma$. Sei $f_1 := f(X + \gamma)$, dann ist $\varphi(f_1) = f$ und $\varphi^{-1}(f) = f_1$. Da f irreduzibel ist, ist auch f_1 irreduzibel (genauer: f ist genau dann irreduzibel, wenn f_1 irreduzibel ist). Ebenso ist f_1 normiert, da f normiert ist.

Zu (b): Sei $f_n := f(X + n\gamma)$. Da $\varphi^n(f_n) = f$ (und $\varphi^{-n}(f) = f_n$) ist auch f_n normiert und irreduzibel. Da f normiert und irreduzibel ist, und $f(\alpha) = f(\beta) = 0$ ist f das Minimalpolynom von α und β . Ebenso gilt

$$f_1(\beta) = f(\beta + \gamma) = f(\alpha) = 0.$$

Da f_1 normiert und irreduzibel ist, ist f_1 Minimalpolynom von β . Es folgt $f_1 = f$, und damit ist auch $f_1(\alpha) = 0$. Dies ist der Induktionsanfang.

Angenommen, wir wissen ebreits, daß $f = f_1 = \dots = f_n$. Dann ist

$$f_{n+1}(\beta) = f(\beta + (n+1)\gamma) = f(\alpha + n\gamma) = f_n(\alpha) = f(\alpha) = 0.$$

Da f_n normiert und irreduzibel ist, und $f_{n+1}(\beta) = 0$ ist f_{n+1} Minimalpolynom von β . Es folgt $f_{n+1} = f$.

Zu (c): Da $f_n(\alpha) = f_n(\beta) = 0$ für alle n, sind die Elemente $\alpha + n\gamma$ und $\beta + n\gamma$ Nullstellen von f. Da f nur endlich viele Nullstellen haben kann, gibt es $n_1 \neq n_2 \in \mathbb{N}_0$ mit

$$\alpha + n_1 \gamma = \alpha + n_2 \gamma.$$

Es folgt $0 = \gamma$, also $\alpha = \beta$ da K Charakteristik 0 hat.

Aufgabe 4 (Herbst 1991). K(z) sei eine einfache transzendente Erweiterung des Körpers K. Man beweise die beiden folgenden Aussagen:

- (a) $K(z^2)$ ist eine transzendente Erweiterung von K.
- (b) Es gibt unendlich viele Zwischenkörper zwischen K und K(z).

Lösung. **Zu** (a): Nach Voraussetzung ist z transzendent über K. Wir zeigen, daß z^n für $n \in \mathbb{N}$ transzendent über K ist. Angenommen z^n ist nicht transzendent über K dann gibt es ein Polynom $f \in K[X]$ mit $f(z^n) = 0$. Dann ist aber z Nullstelle des Polynoms $g(X) = f(X^n) \in K[X]$. Widerspruch zur Annahme, daß z transzendent über K ist.

Zu (b): Es ist klar, daß $K \subset K(z^n) \subset K(z)$. Wir wollen sehen, daß diese Zwischenkörper verschieden sind. Dazu berechnen wir den Grad der Körpererweiterungen $K(z^n) \subset K(z)$.

Natürlich ist z Nullstelle der Polynoms $X^n - z^n \in K(z^n)[X]$. Also teilt das Minimalpolynom von z über $K(z^n)$ dieses Polynom, und $[K(z):K(z^n)] \le n$. Da z transzendent über K ist, sind die $\{1, z, \ldots, z^{n-1}\}$ linear unabhängig über $K(z^n)$, deshalb $[K(z):K(z^n)] \ge n$, und damit

$$[K(z):K(z^n)] = n.$$

Also sind die $K(z^n)$ unterschiedliche Unterkörper von K(z) die K enthalten.