Banco de Dados

Módulo Básico

Introdução

Tópicos:

- Linguagens Formais: Álgebra e Cálculo relacional
- Linguagem Comercial: SQL
- Operadores (Teoria dos Conjuntos)
- Operações Específicas
- Representação de expressões por árvore

Modelagem Relacional/Manipulação

- Duas categorias de linguagens:
 - Formais
 - Álgebra e Cálculo Relacional
 - Comerciais
 - Baseadas nas linguagens formais
 - SQL (Structured Query Language)

Modelagem Relacional/Manipulação

- Características (Linguagens Formais) (1):
 - Orientadas a conjuntos
 - Linguagem de Base
 - Linguagens relacionais devem ter no mínimo um poder de expressão equivalente ao de uma linguagem formal
 - Fechamento
 - Resultados das consultas são relações

Modelagem Relacional/Manipulação

- Características (Linguagens Formais) (2):
 - Operadores para consulta e alteração de relações (conjuntos)
 - Linguagem Procedural
 - Uma expressão na álgebra define uma execução sequencial de operadores
 - A execução de cada operador produz uma relação

- Classificação dos Operadores:
 - Fundamentais
 - Unário: seleção e projeção
 - Binários: produto cartesiano, união e diferença
 - Derivados
 - Binários: intersecção, junção e divisão
 - Especiais
 - Renomeação (união) e atribuição
 - Operador de alteração (unário)

Características:

- Procedimental
- Possui o mesmo poder de expressão que o cálculo relacional
- Variantes da álgebra relacional são usadas internamente pelos SGBDs relacionais durante a otimização de consultas (SQL Tuning)
- SQL (Structured Query Language)
 - Originária do cálculo relacional
 - Interface padrão dos SGBDs relacionais

- Detalhes das Operações (1):
 - <u>Básicas</u>:
 - Oriundas da teoria de conjuntos: produto cartesiano, uni\(\tilde{a}\) e diferença
 - Específicas para relações: seleção, projeção e renomeação
 - Adicionais:
 - Provenientes da teoria de conjuntos: intersecção
 - Específicas para relações: divisão e junção

- Detalhes das Operações (2):
 - Observações:
 - As operações básicas são suficientes para exprimir as mesmas consultas que o cálculo relacional
 - As operações adicionais auxiliam a formular certas consultas que seriam complexas de exprimir usando apenas as operações básicas

- Operações oriundas da Teoria dos Conjuntos:
 - União
 - rUs
 - Diferença
 - \bullet r s
 - Produto Cartesiano
 - rxs
 - Intersecção
 - r \(\) s

União

- Retorna a união das tuplas de duas relações R₁ e R₂
- Eliminação automática de duplicatas
- Notação:
 - relação1 **U** relação2
- Exemplo:

R_1		
X	У	Z
1	1	1
1	2	2
2	2	3
3	1	1

x	У	Z
1	1	1
1	2	1
1	2	3

$R_1 \cup R$	2	
х	у	Z
1	1	1
1	2	1
1	2	2
1	2	3
2	2	3
3	1	1

Diferença

- Retorna as tuplas presentes em R_1 e ausentes em R_2
- Notação:
 - relação1 relação2

- Exemplo:

 R_1

X	у	Z
1	1	1
1	2	2
2	2	3
3	1	1

 R_2

х	у	Z
1	1	1
1	2	1
3	1	1

 $R_1 - R_2$

x	у	Z
1	2	2
2	2	3

Intersecção

- Retorna as tuplas comuns em R_1 e R_2
- Notação:
 - relação1 ∩ relação2

– Exemplo:

 R_1

X	у	Z
1	1	1
1	2	2
2	2	3
3	1	1

 R_2

X	у	Z
1	1	1
1	2	1
3	1	1

 $R_1 \cap R_2$

x	у	Z
1	1	1
3	1	1

- Exemplos:
 - Banco de Dados / Operações

DiscGR

Cod	End	Matr
inf1731	L520	15315
inf1732	L510	11239

1) Quais disciplinas estão sendo oferecidas na GR ou PG?

DiscPG

Cod	End	Matr
inf2324	L520	24217
inf1732	L510	11239

DiscGR U DiscPG

Cod	End	Matr
inf1731	L520	15315
inf1732	L510	11239
inf2324	L520	24217

- Exemplos:
 - Banco de Dados / Operações

DiscGR

Cod	End	Matr
inf1731	L520	15315
inf1732	L510	11239

2) Quais disciplinas estão sendo oferecidas apenas na GR?

DiscPG

Cod	End	Matr
inf2324	L520	24217
inf1732	L510	11239

DiscGR - DiscPG

Cod	End	Matr
inf1731	L520	15315

- Exemplos:
 - Banco de Dados / Operações

DiscGR

Cod	End	Matr
inf1731	L520	15315
inf1732	L510	11239

3) Quais disciplinas estão sendo oferecidas na GR e na PG?

DiscPG

Cod	End	Matr
inf2324	L520	24217
inf1732	L510	11239

DiscGR ∩ DiscPG

Cod	End	Matr
inf1732	L510	11239

Produto Cartesiano

- Retorna todas as combinações de tuplas de duas relações $R_1 \in R_2$
- Grau do Resultado
 - Grau (R_1) + Grau (R_2)
- Cardinalidade do Resultado
 - Cardinalidade (R₁) * Cardinalidade (R₂)
- <u>Notação</u>:
 - relação1 X relação2

Produto Cartesiano

- Exemplo:

К ₁		
X	у	Z
1	1	1
2	2	2
3	3	3

1\2	
W	у
1	1
2	2

$R_1 X R_2$				
X	R1.y	Z	w	R2.y
1	1	1	1	1
1	1	1	2	2
2	2	2	1	1
2	2	2	2	2
3	3	3	1	1
3	3	3	2	2

Exemplo:

Banco de Dados / Produto Cartesiano

DiscGR

Cod	End	Matr
inf1731	L520	15315
inf1732	L510	11239

Prof

Matr	Nome
15315	Pedro
11239	Manuel
24217	José

DiscGR X Prof

Cod	End	Matr	Matr	Nome
inf1731	L520	15315	15315	Pedro
inf1731	L520	15315	11239	Manuel
inf1731	L520	15315	24217	José
inf1732	L510	11239	15315	Pedro
inf1732	L510	11239	11239	Manuel
inf1732	L510	11239	24217	José

- Operações Específicas (1):
 - Operação:
 - Seleção
 - <u>Notação</u>:

 $\sigma_{P(r)}$

- <u>Descrição</u>:
 - Selecione as tuplas de "r" que satisfazem o predicado de seleção "P"

- Operações Específicas (2):
 - Operação:
 - Projeção
 - <u>Notação</u>:

$$\pi_{A_1},...,A_n(r)$$

- <u>Descrição</u>:
 - **Projeção** das **tuplas** de "r" na **lista** de **atributos** $A_1, ..., A_n$

- Operações Específicas (3):
 - Operação:
 - Renomeação
 - <u>Notação</u>:

$$\bigcap S[B_1, ..., B_k](e)$$

- <u>Descrição</u>:
 - Nomeia o resultado da expressão "e" como S[B₁, ..., B_k]

- Operações Específicas (4):
 - Operação:
 - Junção
 - <u>Notação</u>:

$$r |X|_{P} S$$

- <u>Descrição</u>:
 - Concatenação das tuplas de "r" e "s" que satisfazem o predicado de junção "P"

- Operações Específicas (5):
 - Operação:
 - Equijunção
 - <u>Notação</u>:

- <u>Descrição</u>:
 - Concatenação das tuplas de "r" e "s" que coincidem nos atributos em comum, eliminando os atributos em duplicata

Seleção

- Retorna tuplas que satisfazem um determinado predicado
- Resultado:
 - Subconjunto horizontal de uma relação
- <u>Notação</u>:

– Exemplo:

$$\sigma_{z >= 2}(R)$$

R

x	у	Z
1	1	1
2	2	2
2	2	3

resultado

X	у	Z
2	2	2
2	2	3

Seleção

- Exemplo:
 - Banco de Dados

DiscGR

Cod	End	Matr
inf1731	L520	15315
inf1732	L510	11239

1) Quais disciplinas de GR ocupam a sala L520?

Cod	End	Matr
inf1731	L520	15315

Projeção

- Retorna um ou mais atributos de interesse
- Eliminação automática de duplicatas
- Resultado:
 - Subconjunto vertical de uma relação
- <u>Notação</u>:

- Exemplo:

 $\pi_{x,y}(R)$

R

X	у	Z
1	1	1
2	2	2
2	2	3

resultado

X	у
1	1
2	2

Projeção

- Exemplo:
 - Banco de Dados

DiscGR

Cod	End	Matr
inf1731	L520	15315
inf1732	L510	11239

2) Quais salas são usadas por quais disciplinas de GR?

 $\pi_{\text{Cod, End}}(DiscGR)$

Cod	End
inf1731	L520
inf1732	L510

Consulta Simples

Consultas Simples versus Álgebra Relacional:

Projeção: SELECT codigo, endereco
FROM tb_disciplina;

T Codigo, Endereco (tb_disciplina)

tb_disciplina	Codigo	Endereco	Matricula	Nivel
	inf1731	L520	15315	GR
	inf1732	L510	11239	GR
	inf1732	L520	15315	GR
	inf2324	L520	24217	PG

Seleção:

SELECT *
FROM tb_disciplina
WHERE endereco = "L510";

$$\bigcap_{\text{Endereco} = L510} (tb_disciplina)$$

Renomeação

- Altera o nome de uma relação e / ou dos seus atributos
- Notação:

(nome_atributo1, ..., nome_atributoN) e/ou nome_relação (relação)

- <u>Exemplo (1)</u>:

R

X	у	Z
1	1	1
2	1	3

R.x	R.y	R.z	R1.x	R1.y	R1.z
1	1	1	1	1	1
1	1	1	2	1	3
2	1	3	1	1	1
2	1	3	2	1	3

Renomeação

- Altera o nome de uma relação e / ou dos seus atributos
- Notação:

- <u>Exemplo (2)</u>:

R

X	у	Z
1	1	1
2	1	3

$$\mathsf{p}_{\scriptscriptstyle (a,\,b,\,c)}(R)$$

a	b	С	
1	1	1	
2	1	3	

Projeção

- Exemplo:
 - Banco de Dados

DiscGR

Cod	End	Matr
inf1731	L520	15315
inf1732	L510	11239

3) Renomeie e₂, **resultado** de (2), para DS[Disciplina, Sala]

$$ho$$
 DS[Disciplina, Sala] (e_2)

Disc	Sala	
inf1731	L520	
inf1732	L510	

Junção

- Junção na qual θ é uma igualdade predefinida entre todos os atributos presentes em duas relações R_1 e R_2 (atributos de junção)
- Estes atributos só aparecem uma vez no resultado
- <u>Notação</u>:

relação1 |X| relação2

– <u>Derivação</u>:

$$R_{1} | X | R_{2} = \pi A_{1}, ..., A_{n}, B_{1}, ..., B_{m}, C_{1}, ..., C_{x} (R1\theta) | X R2)$$

$$\theta = \pi R1.C1 = R2.C1 \land ... \land R1.Cx = R2.Cx$$

atributos de junção

Junção

- Exemplos:

R_1		
x	у	Z
1	1	1
1	1	2
2	2	3

 $R_1 |X| R_2$

X	У	Z	W
1	1	1	3
1	1	2	3
2	2	3	2

Junção

- Exemplo:
 - Banco de Dados

DiscGR

Cod	End	Matr
inf1731	L520	15315
inf1732	L510	11239

Prof

Matr	Nome	
15315	Pedro	
11239	Manuel	
24217	José	

4) Quais professores lecionam na graduação?

DiscGR |X| DiscGR.Matr = Prof.Matr Prof

Cod	End	Matr	Matr	Nome
inf1731	L520	15315	15315	Pedro
inf1732	L510	11239	11239	Manuel

Equijunção

- Exemplo:
 - Banco de Dados

DiscGR

Cod	End	Matr
inf1731	L520	15315
inf1732	L510	11239

5) Quais professores lecionam na graduação?

Prof

Matr	Nome
15315	Pedro
11239	Manuel
24217	José

DiscGR |X| Prof

Cod	End	Matr	Nome
inf1731	L520	15315	Pedro
inf1732	L510	11239	Manuel

Junção

Exemplo:

Banco de Dados

6) Quais disciplinas da GR Pedro leciona?

DiscGR

Cod	End	Matr
inf1731	L520	15315
inf1732	L510	11239

Prof

Matr	Nome
15315	Pedro
11239	Manuel
24217	José

Consulta Simples

Consultas Simples versus Álgebra Relacional:

Disc

Codigo	Endereco	Matricula	Nivel
inf1731	L520	15315	GR
inf1732	L510	11239	GR
inf1732	L520	15315	GR
inf2324	L520	24217	PG

Junção:

SELECT * **FROM** Disc, Prof **WHERE** Disc.Matricula = Prof.Matricula;

Disc |X| Disc. Matricula = Prof. Matricula Prof

Prof

Matricula	Nome	Idade
15315	Pedro	46
11239	Manuel	33
24217	José	66

Codigo	Endereco	Matricula	Nivel	Matricula	Nome	Idade
inf1731	L520	15315	GR	15315	Pedro	46
inf1732	L510	11239	GR	11239	Manuel	33
inf1732	L520	15315	GR	15315	Pedro	46
inf2324	L520	24217	PG	24217	José	66

- Exemplos (Diversos)
 - Esquema Relacional do Banco de Dados
 - Disc [Cod, End, Matr, Nivel]
 - Prof [Matr, Nome, Idade]

Estado do Banco de Dados:

Disc	Cod	End	Matr	Nivel
	inf1731	L520	15315	GR
7.5	inf1732	L510	11239	GR
3	inf1732	L520	15315	GR
	inf2324	L520	24217	PG

Prof	Matr	Nome	Idade
	15315	Pedro	46
	11239	Manuel	33
	24217	José	66

Exemplos:

— Qual a matrícula dos professores que lecionam disciplinas na L520?

```
R1 ← selecione Disc onde End = L520;
R2 ← projete R1 em Matr;
```

– ou, equivalente:

```
R1 ← projete Disc em End, Matr;
R2 ← selecione R1 onde End = L520;
R3 ← projete R2 em Matr;
```

Exemplos:

— Qual a matrícula dos professores com mais de 45 anos que lecionam disciplinas na GR?

```
R1 ← junte Disc e Prof onde Disc.Matr = Prof.Matr;
R2 ← selecione R1 onde Nivel = GR e Idade > 45;
R3 ← projete R2 em Nome;
```

– ou, equivalente:

```
R1 ← selecione Disc onde Nivel = GR;

R2 ← selecione Prof onde Idade > 45;

R3 ← junte R1 e R2 onde R1.Matr = R2.Matr;

R4 ← projete R3 em Nome;
```

Exemplos:

— Qual a matrícula dos professores que lecionam a maioria das disciplinas da GR?

```
R1 

selecione Disc onde Nivel = GR;
```

R2 ← projete R1 em Cod;

R3

projete Disc em Cod, Matr;

 $R4 \leftarrow R3 \div R2$;

R4	Matr
	15315

R1	Cod	End	Matr	Nivel
	inf1731	L520	15315	GR
	inf1732	L510	11239	GR
	inf1732	L520	15315	GR

R2	Cod	
	inf1731	
	inf1732	

R3	Cod	Matr
	inf1731	15315
	inf1732	11239
	inf1732	15315
	inf2324	24217

Representação de Expressões por Árvores

```
R1 ← junte Disc e Prof

onde Disc.Matr = Prof.Matr;

R2 ← selecione R1

onde Nivel = GR e Idade > 45;

R3 ← projete R2 em Nome;
```


Representação de Expressões por Árvores

```
R1 ← selecione Disc

onde Nivel = GR;

R2 ← selecione Prof

onde Idade > 45;

R3 ← junte R1 e R2

onde R1.Matr = R2.Matr;

R4 ← projete R3 em Nome;
```


Cálculo Relacional

Expressão:

```
\{r/P(r)\}
```

- onde
 - r é uma variável varrendo tuplas
 - P(r) é uma fórmula cuja única variável livre é r

Cálculo Relacional

Exemplos:

— Qual a matrícula dos professores que lecionam disciplinas na L520?

```
\{t / (\exists S \in Disc) (t = s[Matr] \land s[End] = L520)\}
```

— Qual o nome dos professores com mais de 45 anos que lecionam disciplinas na GR?

```
\{ n / (\exists r \in Prof) (\exists S \in Disc) \}
\{ n / (\exists r \in Prof) (\exists S \in Disc) \}
\{ n / (\exists r \in Prof) (\exists S \in Disc) \}
\{ n / (\exists r \in Prof) (\exists S \in Disc) \}
\{ n / (\exists r \in Prof) (\exists S \in Disc) \}
\{ n / (\exists r \in Prof) (\exists S \in Disc) \}
\{ n / (\exists r \in Prof) (\exists S \in Disc) \}
```


EXERCÍCIOS

Exercício

- Questão 1:
 - Considere o esquema relacional abaixo:

Empregado (Cod_Emp, Nome, Salario, Cod_Gerente)

- Listar o nome do empregado, juntamente com o nome do seu respectivo gerente:
 - a) Expressão Algébrica
 - b) Instrução DQL

Exercício

- Questão 1:
 - Considere o esquema relacional abaixo:

Empregado (Cod_Emp, Nome, Salario, Cod_Gerente)

 $R2 \leftarrow \pi$ Empregado.nome, Gerente.nome(R1)

Exercício

- Questão 1:
 - Considere o esquema relacional abaixo:

```
Empregado (Cod_Emp, Nome, Salario, Cod_Gerente)
```

SELECT e.nome || 'trabalha para ' || g.nome

FROM empregado e

INNER JOIN empregado g ON(e.cod_gerente = g.cod_emp)

Referências

ELMASRI, R.; NAVATHE, S. B. Sistemas de Banco de Dados: Fundamentos e Aplicações. Pearson, 2018.

HARRINGTON, J. L. Projeto de Bancos de Dados Relacionais – Teoria e Prática. 1.ed. Campus, 2015.

SILBERSCHATZ, A.; KORTH, H. F.; SUDARSHAN, S. Sistema de Banco de Dados. Campus, 2006.

Aula 05 | Módulo Básico