No Silver Bullet: Extending SDN to the Data Plane

Anirudh Sivaraman, Keith Winstein, Suvinay Subramanian, and Hari Balakrishnan

MIT CSAIL & Wireless@MIT

http://web.mit.edu/anirudh/www/sdn-data-plane.html

The Data Plane is continuously evolving.

- ▶ Progression of queue-management/scheduling algorithms:
 - ▶ WFQ, SFQ, RED, BLUE, ECN, XCP, RCP, CoDel, pFabric
- ▶ Each scheme wins in its own evaluation.
- ► Tacit belief in knobless queue management/scheduling

Yet, there is no silver bullet.

- ▶ Different applications care about different things.
- ▶ Applications use different transport protocols.
- Diversity in network conditions.
- "One size fits all" is overly constraining.

Quantifying "No Silver Bullet": Network configurations

Network Configurations:

Network Con-	Description	
figuration		
CoDel+FCFS	CoDel running on a single shared first-come, first-	
	served queue.	
CoDel+FQ	A separate queue for each flow with an independent instance of CoDel running on each queue	
	Queues are serviced using fair queueing.	
Bufferbloat+FQ	A separate queue for each flow with a deep buffer	
	that doesn't drop any packets. Queues are ser-	
	viced using fair queueing.	

Quantifying "No Silver Bullet": Simulation Workloads

Workloads:

Workload	Description	Objective
Bulk	Long-running TCP flow.	Maximize average
		throughput.
Web	Switched TCP flow that	Minimize flow completion
	alternates between ON	time at the 99.9th per-
	and OFF periods.	centile.
Interactive	Long-running TCP flow	Maximize the ratio of
	representing a real-time in-	throughput and one-way
	teractive application.	delay, i.e., "power."

Bufferbloat+FQ

No single network configuration is the best.

Explaining cyclic preferences

- Dropping packets significantly degrades throughput.
 - ▶ Reason: Variable-rate links have an inherent delay-throughput tradeoff, unlike static links.
- ▶ FCFS is preferable to Fair Queuing in some cases.
 - Reason: When equally aggressive flows compete, they don't need protection from each other.
- ▶ Fair Queuing is required in some cases.
 - ▶ Reason: When competing flows are not equally aggressive, they need isolation from each other.

The Solution

Flexible Switch Data Planes

- ▶ No universal queue-management/scheduling scheme
- Application demands continue to evolve.
- ▶ Networks supporting these applications will evolve as well.
- ▶ The Data Plane should support newly developed schemes.

But, do so in a controlled manner.

- Provide interfaces to the head and tail of switch queues.
- ▶ Operators specify only queue-management/scheduling logic.
- ▶ Code size limits constrain program sophistication.
- ▶ Disallow access to packet payloads.

Re-architecting for data plane programmability.

- Hardware Primitives
 - ► Random number generators (RED, BLUE)
 - Binary tree of comparators (pFabric, SRPT)
 - EWMA estimators (AVQ, CSFQ)
- I/O interfaces
 - Drop/Mark head/tail of queue
 - ► Interrupts for enqueue/dequeue
 - Reading packet headers
- State variables
 - Per-flow (WFQ, DRR)
 - Per-src address (PF)
 - For fastest flows alone (AFD)
- Instruction Set
 - Expresses Control Flow
 - ▶ Implements new functionality unavailable in hardware

Example implementation: CoDel

Synthesis numbers on Xilinx Kintex-7:

Resource	Usage	Fraction of FPGA
Slice logic	1,256	1%
Slice logic dist.	1,975	2%
IO/GTX ports	27	2%
DSP slices	0	0%
Maximum speed	$12.9 \times 10^6 \text{ pkts/s}$	