Chern-Weil 理论读书报告

陈航

December 3, 2023

1 联络和曲率的定义

 ζ 是光滑流形 M 上的光滑 n 维复向量丛, τ 是 M 的切丛,定义 $\tau_{\mathbb{C}}^* = \mathrm{Hom}_{\mathbb{R}}(\tau,\mathbb{C})$ 为 M 复化对偶切丛. $\mathrm{C}^{\infty}(\tau_{\mathbb{C}}^* \otimes \zeta)$ 是两复向量丛做复张量积后的光滑截面的向量空间.

定义1 ←上的一个联络是一个 С—线性映射

$$\nabla: C^{\infty}(\zeta) \to C^{\infty}(\tau_{\mathbb{C}}^* \otimes \zeta)$$

且对 $s \in C^{\infty}(\zeta)$ 和 $f \in C^{\infty}(M, \mathbb{C})$ 满足 Leibniz 法则

$$\nabla(fs) = df \otimes s + f\nabla(s)$$

 $\nabla(s)$ 称为 s 的协变导数.

联络满足以下的基本性质:

- (1) 联络 ∇ 是一个局部算子,即若 $x \in M$, s 在 x 的一个邻域内为零,则 $\nabla(s)$ 在 s 的一个邻域内为零,即 $\nabla(s)$ 只和 s 在局部的取值有关.
- (2) 由上条性质,则可写出 ∇ 的局部公式. U 是 M 的一个开集,在其上 τ 有局部平凡化, s_1,\ldots,s_n 是 $\tau|_U$ 的一组基,则有唯一的表示 $\nabla(s_i) = \sum_j \omega_{ij} \otimes s_j$,其中 $[\omega_{ij}]$ 是任何 U 上复光滑 1—形式构成的 $n \times n$ 矩阵.
- (3) ∇_1 和 ∇_1 都是联络,则 $g\nabla_1 + (1-g)\nabla_2$ 是联络,即联络空间有凸性,其中 $g \in M$ 上的一个光滑函数.
- (4) 由上条性质,则可通过单位分解定理构造任何仿紧空间的联络,那么任何仿紧空间都存在联络.
- (5) 联络可做拉回. 若 $g:M'\to M$ 光滑映射, $\zeta'=g^*\zeta$. 在一个 τ 有局部平凡 化的开集 $U\subset M$ 上, ∇ 的局部公式为 $\nabla(s_i)=\sum_j\omega_{ij}\otimes s_j$. $U'\subset M'$ 满足 $g(U')\subset U$,则 $s_i'=g^*s_i$ 是 $\tau|_{U'}$ 的一组基, $\omega'_{ij}=g^*\omega_{ij}$ 是 U' 上的一形式,则 $g^*\nabla$ 定义为 $g^*\nabla(s_i)=\sum_j\omega'_{ij}\otimes s'_j$. 需要验证此定义是良定的,即不依赖于基 s_i 的选取,这是由于 Leibniz 法则条件中每一项都和拉回交换.

引理 1 取定 ∇ , 有唯一的 \mathbb{C} 线性映射

$$\widehat{\nabla}: C^{\infty}(\tau_{\mathbb{C}}^* \otimes \zeta) \to C^{\infty}(\wedge^2 \tau_{\mathbb{C}}^* \otimes \zeta)$$

且对 $s \in C^{\infty}(\zeta)$ 和 1-形式 θ 满足 Leibniz 法则

$$\widehat{\nabla}(\theta \otimes s) = d\theta \otimes s - \theta \wedge \nabla(s)$$

且 $\widehat{\nabla}$ 满足 $\widehat{\nabla}(f(\theta \otimes s)) = df \wedge (\theta \otimes s) - f\widehat{\nabla}(\theta \otimes s).$

唯一性和构造是显然的(由 Leibniz 公式, $\widehat{\nabla}(\theta_1 \otimes s_1 + \cdots + \theta_n \otimes s_n) = \sum (d\theta_i \otimes s_i - \theta_i \wedge \nabla(s_i))$),只需验证是良定的.

定义 2 复合 $K = K_{\nabla} = \widehat{\nabla} \circ \nabla$ 是函数线性的,则是向量丛 $\operatorname{Hom}(\zeta, \wedge^2 \tau_{\mathbb{C}}^* \zeta) = \operatorname{Hom}(\zeta, \zeta) \otimes \wedge^2 \tau_{\mathbb{C}}^*$ 的光滑截面,称为联络 ∇ 的曲率张量.

K 的局部公式为

$$K(s_i) = \widehat{\nabla}(\sum \omega_{ij} \otimes s_j) = \sum \Omega_{ij} \otimes s_j \tag{1}$$

其中 $\Omega_{ij} = d\omega_{ij} - \sum \omega_{ik} \wedge \omega_{kj}$. 若写作矩阵形式, $\Omega = [\Omega_{ij}], \omega = [\omega_{ij}], 则$

$$\Omega = d\omega - \omega \wedge \omega \tag{2}$$

2 不变多项式定义的示性类

定义 3 $M_n(\mathbb{C})$ 上的不变多项式,是一个多项式 $P: M_n(\mathbb{C}) \to \mathbb{C}$ 满足 P(XY) = P(YX),或等价的 $P(TXT^{-1}) = P(X)$

上述两条件等价是由于 P 是多项式和连续性.

由 Ω 的定义(1),若 P 是不变多项式,则 $P(\Omega)$ 和基选取无关,则可定义一个全局外形式 P(K). 若 P 是 r 次齐次多项式,则 $P(K) \in \mathbb{C}^{\infty}(\wedge^{2r}\tau_{\mathbb{C}}^{*})$,一般情况下,由多项式环上的分次结构, $P(K) \in \mathbb{C}^{\infty}(\wedge^{\oplus}\tau_{\mathbb{C}}^{*})$. 不变多项式的定义可以推广为幂级数 $P = P_0 + P_1 + P_2 \dots$,其中 P_r 是 r 次其次不变多项式. 且 P(K) 总是良好定义的,由于 $P_r(K) \in \mathbb{C}^{\infty}(\wedge^{2r}\tau_{\mathbb{C}}^{*})$,这是有限和.

引理 2P 是不变多项式或者幂级数,则外形式 P(K) 是闭的.

证明 $P(A) = P([A_{ij}])$,则定义 $P'(A) = [\delta P/\delta A_{ij}]$.则 P'(A) 与 A 交换,论证 如下.考虑 $P((I+tE_{ij})A) = P(A(I+tE_{ij}))$,对 t 求导得 $\sum_k A_{ik}(\delta P/\delta A_{jk}) = \sum_k (\delta P/\delta A_{kj})A_{kj}$,即 P'(A)A = AP'(A). Ω 是局部的曲率矩阵,则 $d(\Omega) = \sum (\delta P/\delta \Omega_{ij}) = \operatorname{Tr}(P'(\Omega)\Omega)$.由(2),可得 $d\Omega = \omega \wedge \Omega - \Omega \wedge \omega$.

$$d(\Omega) = \operatorname{Tr}(P'(\Omega)\Omega)$$

$$= \operatorname{Tr}(P'(\Omega)\Omega \wedge (\omega \wedge \Omega - \Omega \wedge \omega))$$

$$= \operatorname{Tr}(P'(\Omega)\Omega \wedge (\omega \wedge \Omega - \Omega \wedge \omega))$$

$$= \operatorname{Tr}((P'(\Omega)\Omega \wedge \omega) \wedge \Omega - \Omega \wedge (P'(\Omega)\Omega \wedge \omega)))$$

由于 Ω 中的元素是 2 阶微分算子,则上式为 0. 由于外形式 P(K) 是闭的,则定义了上同调类 $H^{\oplus}(M;\mathbb{C})=\oplus H^{i}(M;\mathbb{C})$ 中的一个类. 下面说明这个类和联络的选取无关.

推论 1 上同调类 $(P(K)) = (P(K_{\nabla}))$ 独立于 ∇ 的选取.

证明 如果 ∇_1 和 ∇_2 是两个 ζ 上的联络. 考虑 $M' = M \times \mathbb{R}$, $\pi : M' \to M$ 向第一个分量投影, $i_t : M \to m'$ 为 $m \mapsto (m,t)$. 定义 M' 上的联络 $\nabla = t\pi^*(\nabla_1) + (1-t)\pi^*(\nabla_2)$. 则 $\nabla_1 = i_1^*\nabla$, $\nabla_2 = i_0^*\nabla$, 则 $P(K_{\nabla_1}) = i_1^*P(K_{\nabla})$, $P(K_{\nabla_2}) = i_0^*P(K_{\nabla})$. 由于 i_0, i_1 同伦,则命题得证.

因此,P 定义了一个向量丛的上同调示性类,与联络选取无关。 若已知 $f: M \to M'$,在 M 上取定联络 ∇ ,拉回得到 M' 上的联络 ∇' ,则 $P(K_{\nabla'}) = f*P(K_{\nabla})$,满足上同调示性类的拉回条件。但已知所有复向量丛的示性类是 Chern 类的多项式,下面讨论不变多项式定义的示性类和 Chern 类的关系。

3 度量和 Chern 类

我们首先写出一些不变多项式的事实. A 是一个矩阵, 设 $\sigma_i(A)$ 是 A 的特征值的 i 次基本齐次多项式. 特征多项式 $\det(1+tA)=a+t\sigma_1(A)+\cdots+t^n\sigma_n(A)$. 则任何不变多项式可以写作 $\sigma_i(A)$ 的多项式. 而我们将在后续说明 σ_i 对应的示性类就是 Chern 类 c_i .

为进一步构造,我们需要引入度量和 Levi-Civita 联络的概念和事实,列举如下:

- 1. 若 ζ 是一个实向量丛,其上有一个欧式度量. 一个联络 ∇ 与度量相符,若对任意两截面 $s, s', d < s, s' > = < \nabla s, s' > + < s, \nabla s' > .$
- 2. U 是一个坐标领域. s_1, \ldots, s_n 是 ζ 在上面限制的一组正交截面基,则 ∇ 在其上的局部表示 $\nabla(s_i) = \sum \omega_{ij} \otimes s_j$ 满足 $[\omega_{ij}]$ 是反对称的.
- 3. 下面考虑对偶切丛 τ^* . 一个 τ^* 上的联络 ∇ 被称为对称的,如果复合 $C^{\infty}(\tau^*) \stackrel{\nabla}{\to} C^{\infty}(\tau^* \otimes \tau^*) \stackrel{\wedge}{\to} C^{\infty}(\wedge^2 \tau^*)$ 是微分算子 d. 这等价于对任意光滑函数 $f, \nabla(df) \in C^{\infty}(\tau^* \otimes \tau^*)$ 是对称张量. 特别地, 若 $\nabla(dx^k) = \sum \Gamma^k_{ij} dx^i \otimes dx^j$ 则 Christoffel 符号 Γ^k_{ij} 是 i,j 对称的.
- 4. 给定黎曼度量, τ^* 上有唯一和度量相符的对称联络,此联络被称为 Levi-Civita 联络.

以下对一个二位定向黎曼流形进行具体计算. 取定局部正交基截面 θ_1, θ_2 为 1 形式,设联络和曲率对应的矩阵为 $\begin{bmatrix} 0 & \omega_{12} \\ -\omega_{12} & 0 \end{bmatrix}$ 和 $\begin{bmatrix} 0 & \Omega_{12} \\ -\Omega_{12} & 0 \end{bmatrix}$,其中 $\Omega_{12} = d\omega_{12}$,且和正交基选取无关. 被称为定向去买的 Gauss-Bonnet2 形式. $\Omega_{12} = K(-d\theta_1 \wedge d\theta_2)$,K 为高斯曲率,与定向无关.

则可通过示性类证明以下著名定理,在证明过程中可以窥见之前由曲率构造的示性类和 Chern 类的关系.

定理 1 对于任何闭定向黎曼曲面,积分 $\int \int \Omega_1 2 = 2\pi e[M]$.

证明 任何定向带欧式度量的 2 维向量丛上有自然的复结构. s_1, s_2 是局部的与定向相符的有序正交截面,则定义自然复结构 $Js_1 = s_2$. 则一个联络 $\nabla s_1 = \omega_{12} \otimes s_2, \nabla s_2 = -\omega_{12} \otimes s_1$,可理解为复联络 $\nabla s_1 = i\omega_{12} \otimes s_1$,对应的局部矩阵为 $[i\omega_{12}]$ 和 $[i\Omega_{12}]$. ${\rm Tr}[i\Omega_{12}] = i\Omega_{12}$ 给出了不变多项式 σ_1 对应的上同调示形类,则总是 Chern 类 $c_1(\zeta) = e(\zeta)$ 的常数 a 倍. 对球面计算得, $a = 2\pi i$.

定理 2 ζ 是复向量丛,上面有联络 ∇ ,则上同调类 $(\sigma_r(K_{\nabla})) = (2\pi i)^r c_r(\zeta)$. 上述论证说明 $(\sigma_1(K_{\nabla})) = 2\pi i c_1(\zeta)$. 以下的证明主要用到 Chern 类满足的上同调示性类的公理性质. 定义不变多项式 \underline{c} 为 $\underline{c}(A) = \det(I + A/2\pi i)$. 下面说明 \underline{c} 定义的示性类满足 Whitney 求和公式. ζ_1,ζ_2 是两向量丛,上面有联络 ∇_1,∇_2 ,则显然 ζ_1,ζ_2 上可定义联络 ∇ 为 ∇_1,∇_2 的 Whitney 和,则对应的局部矩阵为 $\Omega = \operatorname{diag}(\Omega_1,\Omega)$. 则 $\underline{c}(\Omega) = \underline{c}(\Omega_1)\underline{c}(\Omega_2)$,即 $\underline{c}(K) = \underline{c}(K)\underline{c}(K)$. 由于对线丛 $\underline{c}(K) = c(\zeta)$,则由标准论证, $\underline{c}(K) = c(\zeta)$ 对一切向量丛成立.

推论 2 对任何实向量丛 ζ , $de\ Rham$ 上同调类 $\sigma_{2k}(K)$ 代表的上同调类是 $(2\pi)^{2k}P_k(\zeta)$. 且 $\sigma_{2k+1}(K)$ 为上边缘链.

推论 3 对任何实或复向量丛 ζ , 其上有平坦联络,则有理数系数的 Pontrjatan 或 Chern 类为 0.