Analysis Vorlesung

Stefan Heid, Christopher Jordan

7. Dezember 2014

Inhaltsverzeichnis

1 Mengen				
	1.1	Definition Mengen	6	
	1.2	Beispiele	6	
	1.3	Definition Mengenoperatoren	6	
	1.4	Satz (de Morgan'sche Regeln)	7	
	1.5	Prinzip der Vollständigen Induktion	7	
	1.6	Satz Summe der Zahlen bis n	7	
	1.7	Definition (Kartesisches Produkt)	8	
	1.8	Definition Mächtigkeit	8	
	1.9	Bemerkung	8	
	1.10	Definition Fakultät	8	
	1.11	Lemma	10	
	1.12	Geometrische Anordnung (Pascalsches Dreieck)	10	
	1.13	Satz: Anzahl von Teilmengen	10	
	1.14	Satz (Binomische Formel)	11	
	1.15	Definition: Anordnung	11	
	1.16	Satz: Anzahl von Anordnungen	12	
2			13	
	2.1	1	13	
	2.2	1	14	
	2.3	1	14	
	2.4		15	
	2.5	$\boldsymbol{\varepsilon}$	16	
	2.6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	16	
	2.7		16	
	2.8		17	
	2.9		18	
		1	18	
		e	19	
			19	
			19	
			20	
		e e	20	
			20	
			21	
			21	
	2.19	Definition Potentzrechnung	21	
_		10 " " 711	^^	
3	_		22 22	
	3.1	č	22	
	3.2	· · · · · · · · · · · · · · · · · · ·	22	
	3.3	· · · · · · · · · · · · · · · · · · ·	24	
	3.4		24	
	3.5		24	
	3.6		25 25	
	3.7		25 25	
	3.8		25	
	3.9		28	
			28	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	29	
	3 12	Satz	30	

Inhaltsverzeichnis

	3.13	3 Satz, die harmonische Reihe	30			
	3.14	4 Satz Rechenregeln für Reihen	31			
4		nvergenzsätze	32			
	4.1	Definition Monotone Folgen				
	4.2					
	4.3					
	4.4	3				
	4.5					
	4.6					
	4.7					
	4.8					
	4.9					
	4.10	0 Satz Verdichtungslemma von Cauchy	36			
	4.11	1 Satz	37			
	4.12	2 Definition Teilfolge	37			
	4.13	3 Bemerkung	37			
	4.14	4 Lemma	38			
	4.15	5 Satz Bolzano-Weierstraß	38			
		6 Definition Cauchyfolge				
		7 Satz Cauchykriterium				
		8 Satz (Cauchy-Kriterium für Reihen)				
		9 Definition Absolute Konvergenz				
		0 Satz				
		1 Definition Majorante				
		2 Satz (Majorantenkriterium)				
		3 Definition Umordnung von Reihen				
		4 Satz				
		5 Satz				
	4.26	6 Definition Produkt von Reihen				
	4.27	7 Satz	42			
	4.27		42			
E	4.27 4.28	7 Satz	42			
5	4.27 4.28 Abbi	7 Satz	42 43 44			
5	4.27 4.28 Abbi 5.1	7 Satz	42 43 44 44			
5	4.27 4.28 Abbi 5.1 5.2	7 Satz	42 			
5	4.27 4.28 Abbi 5.1 5.2 5.3	7 Satz	42 43 44 44 44 45			
5	4.27 4.28 Abbi 5.1 5.2 5.3 5.4	7 Satz 8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz	42 43 44 44 45 45 45			
5	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5	7 Satz 8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition	42 43 44 44 45 45 45			
5	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6	7 Satz	42 43 44 44 45 45 45 46			
5	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7	7 Satz	42 42 44 44 45 45 46 46 46			
5	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	7 Satz	42 42 44 44 45 45 46 47			
5	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	7 Satz 8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Definition Funktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition Definition	42 42 44 44 45 45 46 47			
5	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	7 Satz 8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Funktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition Definition Definition Definition Definition Definition	42 42 44 44 45 45 46 47 47 47			
5	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	7 Satz 8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Definition Funktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition Definition	42 42 44 44 45 45 46 47 47 47			
	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	7 Satz 8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Definition Funktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition Definition Definition Definition Definition Definition Definition Definition Definition Monotonie	42 43 44 44 45 45 46 47 47 48			
	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 Stet	7 Satz	42 43 44 44 45 45 46 47 47 48 48			
	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 Stet 6.1	7 Satz 8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Definition Funktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition Definition Definition 0 Definition Monotonie 1 Beispiel	42 44 44 45 45 46 47 47 47 48 50			
	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 Stet 6.1 6.2	7 Satz 8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Punktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition Definition Beispiel	42 44 44 45 45 46 47 47 47 48 50			
	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 Stet 6.1 6.2 6.3	7 Satz 8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Funktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition Definition Monotonie 1 Beispiel ctigkeit Definition Beispiel Satz	42 44 44 45 45 46 47 47 47 48 50 50 50			
	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 Stet 6.1 6.2 6.3 6.4	7 Satz 8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Funktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition Definition Monotonie 1 Beispiel ctigkeit Definition Beispiel Satz Satz (Folgenstetigkeit)	42 44 44 45 45 46 47 47 47 48 48 50 50 50 50			
	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 Stet 6.1 6.2 6.3 6.4 6.5	7 Satz 8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Funktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition Definition Beispiel ctigkeit Definition Beispiel Satz Satz (Folgenstetigkeit) Satz	42 44 44 45 45 46 47 47 47 48 48 50 50 50 51			
	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 Stet 6.1 6.2 6.3 6.4 6.5 6.6	7 Satz 8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Funktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition Definition Monotonie 1 Beispiel betigkeit Definition Beispiel Satz Satz (Folgenstetigkeit) Satz Korollar	42 43 44 44 45 45 46 47 47 47 48 50 50 50 50 50 50 50 50			
	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 Stet 6.1 6.2 6.3 6.4 6.5 6.6 6.7	7 Satz 8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Funktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition 0 Definition Monotonie 1 Beispiel cetigkeit Definition Beispiel Satz Satz (Folgenstetigkeit) Satz Korollar Satz Stetigkeit der Komposition	42 44 44 45 45 46 47 47 47 48 50 50 50 50 50 50 50 50 50 50 50 50 50			
5	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 Stet 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Funktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition Monotonie 1 Beispiel citigkeit Definition Beispiel Satz Satz (Folgenstetigkeit) Satz Korollar Satz Stetigkeit der Komposition Definition (Konvergenz bei Funktionen)	42 44 44 45 46 46 47 47 47 48 50 50 50 50 50 50 50 50 50 50 50 50 50			
	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 Stet 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Funktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition Monotonie 1 Beispiel citigkeit Definition Beispiel Satz Satz (Folgenstetigkeit) Satz Korollar Satz Stetigkeit der Komposition Definition (Konvergenz bei Funktionen) Definition (Konvergenz bei Funktionen) Definition Beschränktheit	42 44 44 45 46 46 47 47 47 48 50 50 50 50 50 50 50 50 50 50 50 50 50			
	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 Stet 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Definition Funktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition 0 Definition Monotonie 1 Beispiel ctigkeit Definition Beispiel Satz Satz (Folgenstetigkeit) Satz Satz (Folgenstetigkeit) Satz Korollar Satz Stetigkeit der Komposition Definition (Konvergenz bei Funktionen) Definition Beschränktheit 0 Definition uneigentliches Supremum	42 44 44 45 46 46 47 47 47 48 50 50 50 50 50 50 50 50 50 50 50 50 50			
	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 Stet 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Funktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition Monotonie 1 Beispiel citigkeit Definition Beispiel Satz Satz (Folgenstetigkeit) Satz Korollar Satz Stetigkeit der Komposition Definition (Konvergenz bei Funktionen) Definition (Konvergenz bei Funktionen) Definition Beschränktheit	42 44 44 45 46 46 47 47 47 48 50 50 50 50 50 50 50 50 50 50 50 50 50			
	4.27 4.28 Abbi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 Stet 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	8 Beispiel bildungen und Funktionen Definition Abbildung Definition In-/Sur-/Bijektivität Definition Komposition Satz Definition Definition Definition Funktion Definition (Rechnen mit Funktionen) Definition Polynomfunktion Definition 0 Definition Monotonie 1 Beispiel ctigkeit Definition Beispiel Satz Satz (Folgenstetigkeit) Satz Satz (Folgenstetigkeit) Satz Korollar Satz Stetigkeit der Komposition Definition (Konvergenz bei Funktionen) Definition Beschränktheit 0 Definition uneigentliches Supremum	42 44 44 45 46 47 47 48 48 50 50 50 50 50 50 50 50 50 50 50 50 50			

Inhaltsverxeichnis

	6.14	Satz Ergänzung Zwischenwertsatz
		Satz Umkehrfunktion
		Beispiel
		1
		Satz (Eigenschaften des Logarithmus)
		Lemma
	6.20	Definition
	6.21	Bemerkung
	6.22	Definition Logarithmusbasis
		Definition gleichmäßige Stetigkeit
		Satz
7	Kom	pplexe Zahlen und Trigonometrie 6
•	7.1	Definition Komplexe Zahlen
	7.2	Satz: C ist Körper
	7.3	Lemma
	7.4	Definition (Grenzwert)
	7.5	Satz
	7.6	Satz
	7.7	Definition
	7.8	Satz
	7.9	Satz konvergente Folge komplexer Zahlen ist Cauchy-Folge
	7.10	Satz
		Definition
		Satz
		Satz
		Satz
		Satz
		Satz Komplexe Exponentialreihe konvergiert absolut
		Definition komplexe Exponential funktion
	7.18	Satz
	7.19	Definition
	7.20	Satz
	7.21	Definition
	7.22	Satz
		Satz
		Satz
		Bemerkung
		Satz
		Lemma
		Lemma
		Lemma
	7.30	Satz
	7.31	Definition
	7.32	Satz
	7.33	Satz
	7.34	Satz
	7.35	Satz (Einheitswurzel)
		Satz
		Satz
	1.51	Saiz
8	Diffe	erenzialrechnung 8
•	8.1	Definition Differenzialrechnung
	8.2	Lemma
	8.3	Satz
	8.4	Satz (Zusammengesetzte Ableitungen)
	8.5	Satz Kettenregel
	8.6	Satz Quotientenregel
	8.7	Satz (Ableitung der Umkehrfunktion)
	8.8	Höhere Ableitungen

Inhaltsverxeichnis

	8.9	Formale Definition der höheren Ableitung
	8.10	Definition Lokale Extrema
	8.11	Satz (Mittelwertsatz)
	8.12	Satz von Rolle
	8.13	Satz (Mittelwertsatz der Differenzialrechnung)
	8.14	Folge
	8.15	Satz (Monotonie)
	8.16	Satz
	8.17	Satz 92
9	Integ	gration 94
	9.1	Definition der Treppenfunktion
	9.2	Lemma
	9.3	Definition des Riemannschen Integral
	9.4	Bemerkung
	9.5	Satz Eigenschaften des Integrals
	9.6	Satz
	9.7	Satz (Mittelwertsatz der Integralrechnung)
	9.8	Definition Mittelwertsatz
	9.9	Satz
	9.10	Definition Stammfunktion
	9.11	Satz 99
	9.12	Satz (Hauptsatz der Differenzial und Integralrechnung)
	9.13	Satz (Substitionsregel)
	9.14	Satz (Partielle Induktion)
		Definition Uneigentliche Integrale
	9.16	Definition
	9.17	Definition
	9.18	Satz (Integralkriterium für Reihen)
	9.19	Beispiel
10	Pote	enzreihen 107
	10.1	Definition Potenzreihen
	10.2	Defintion Konvergenzradius
	10.3	Definition

1 Mengen

1.1 Definition Mengen

- 1. Eine Menge ist eine Ansammlung verschiedener Objekte
- 2. Die Objekte in einer Menge heißen Elemente

Notation:

```
a \in M heißt a ist Element der Menge M
a \notin M heißt a ist kein Element der Menge M
```

3. Sei M eine Menge. Eine Menge U heißt Teilmenge von M, von der jedes Element von U auch Element von M ist

Notation:

```
U \subseteq M heißt U ist Teilmenge von M
U \not\subseteq M heißt U ist keine Teilmenge von M
```

1.2 Beispiele

1. Sei

M die Menge aller Studierenden in L1W die Menge aller weiblichen Studierenden in L1F die Menge aller Frauen

Dann gilt: $W \subseteq M$, $W \subseteq F$, $M \nsubseteq F$, $F \nsubseteq M$

2. Die Menge der natürlichen Zahlen $\mathbb{N} = \{1, 2, 3, 4...\}$ G sei die Menge der geraden natürlichen Zahlen

$$G := \{n \in \mathbb{N} \mid n \text{ ist gerade}\} = \{2m \mid m \in \mathbb{N}\} = \{2, 4, 6, 8...\}$$

Es gilt $G \subseteq \mathbb{N}$, $\mathbb{N} \subseteq G$

3. Die Menge der ganzen Zahlen

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \dots\}$$

4. Die Menge der rationalen Zahlen

$$\mathbb{Q} = \{a/b \mid a,b \in \mathbb{Z}, b \neq 0\}$$

5. Die Menge ohne Element heißt die leere Menge Symbol: $\emptyset = \{\}$

Bemerkung:

- 1. Für jede Menge M gilt $\setminus \subseteq M$
- 2. $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q}$

1.3 Definition Mengenoperatoren

Sei M eine Menge und $U, V \subseteq M$ Teilmengen

- 1. Die Vereinigung von U und V ist $U \cup V := \{x \in M \mid x \in U \text{ oder } x \in V\}$
- 2. Der Durchschnitt von U und V ist $U \cap V := \{x \in M \mid x \in U \text{ und } x \in V\}$ U und V heißen disjunkt, wenn $U \cap V = \emptyset$
- 3. Die Differenzmenge von U und V ist $U \setminus V := \{x \in U \mid x \in V\}$
- 4. Das Komplement von U ist $U^C = M \setminus U = \{x \in M \mid x \notin U\}$

Beispiel:

Sei
$$M = N$$

$$\{1,3\} \cup \{3,5\} = \{1,3,5\}$$

 $\{1,3\} \cap \{3,5\} = \{3\}$
 $\{1,3\} \cap \{2,4,7\} = \emptyset \leftarrow \text{disjunkt}$
 $\{1,2,3\} \setminus \{3,4,5\} = \{1,2\}$
 $\{1,3,5\}^C = \{2,4,6,7,8,...\}$

1.4 Satz (de Morgan'sche Regeln)

Sei M eine Menge, $U, V \subseteq M$ Teilmengen Dann:

1.
$$(U \cap V)^C = U^C \cup V^C$$

2.
$$(U \cup V)^C = U^C \cap V^C$$

Beweis:

- 1. Sei $x \in M$ Es gilt: $x \in (U \cap V)^C \Leftrightarrow x \notin U \cap V \Leftrightarrow x \notin U$ oder $x \notin V \Leftrightarrow x \in U^C$ oder $x \in V^C \Leftrightarrow x \in U^C \cup V^C$
- 2. Sei $x \in M$ Es gilt: $x \in (U \cup V)^C \Leftrightarrow x \notin U \cup V \Leftrightarrow x \notin U$ und $x \notin V \Leftrightarrow x \in U^C$ und $x \in V^C \Leftrightarrow x \in U^C \cap V^C$

1.5 Prinzip der Vollständigen Induktion

Für jedes $n \in \mathbb{N}$ sei eine Aussage A(n) gegeben Ziel: Beweisen, Dass A(n) für jedes $n \in \mathbb{N}$ mehr ist dafür reicht es zu zeigen

- 1. Induktionsanfang (IA): A(1) ist wahr
- 2. Induktionsschrit (IS): Wenn für ein $n \in \mathbb{N}$ A(n) wahr ist, dann ist auch A(n + 1) wahr

1.6 Satz Summe der Zahlen bis n

Für jede natürliche Zahl n gilt:

$$1 + 2 + 3 + 4 + 5 + \dots + n = \frac{n(n+1)}{2}$$

Probe:

Beweis des Satzes mit Induktion

Abkürzung:
$$S(n) := 1 + 2 + 3 + ... + n$$

Aussage A(n): $S(n) = \frac{n(n+1)}{2}$

1. Induktionsanfang (IA):
$$n = 1$$
 $S(1) = 1 = \frac{1 \cdot 2}{2}$

2. Induktionsschritt (IS): $n \rightarrow n + 1$

Annahme: A(n) gilt:

$$S(n) = \frac{n(n+1)}{2}$$

Zu zeigen: A(n+1) gilt:

$$S(n+1) = \frac{(n+1)\cdot(n+2)}{2}$$
$$S(n+1) = S(n) + n + 1 = \frac{n(n+1)}{2} + \frac{2(n+1)}{2} = \frac{(n+2)(n+1)}{2}$$

Das beendet den Beweis / quod erat demonstrandum / q.e.d.

Zur Vereinfachung der Notation:

Seien $a_1, a_2, a_3, ..., a_n$ Zahlen $n \in \mathbb{N}$

Setze:
$$\sum_{k=1}^{n} a_k := a_1 + a_2 + a_3 + \dots + a_n$$

Allgemeiner:

Sei
$$l, m \in \mathbb{N}, l \le m \le n$$

$$\sum_{k=l}^{m} a_k = a_l + a_{l+1} + \dots + a_m$$

Aussage des Satzes:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

1

1.7 Definition (Kartesisches Produkt)

Seien A, B Mengen. Das kartesische Produkt von A und B ist definiert als $A \times B := \{(a, b) \mid | a \in A, b \in B\}$ Die Elemente von $A \times B$ heißen geordnete Paare

Bsp.: $\{1,7\} \times \{2,3\} = \{(1,2),(1,3),(7,2),(7,3)\}$

Allgemeiner: Gegeben seien Mengen $A_1, ..., A_k$ mit $k \in \mathbb{N}$. Das kartesische Produkt von $A_1, ..., A_k$ ist $A_1 \times ... \times A_k = \{(a_1, ..., a_k) \mid a \in A, \text{für } i = 1, ..., k\}$

Elemente von $A_1 \times ... \times A_k$ heißen k-Tupel

Falls
$$A_1 = A_2 = \dots = A_k = A$$
, schreibe $\underbrace{A \times \dots \times A}_{k-mal} = A^k$

1.8 Definition Mächtigkeit

Eine Menge A ist endlich, wenn A nur endlich viele Elemente hat. Dann bezeichnet $\#A = \{|A|\}$ die Anzahl der Elemente von A und somit dessen Kardinalität oder Mächtigkeit. Wenn A nicht endlich ist, so schreibe: $\#A = \infty$ Bsp.: $\#\emptyset = 0, \#\mathbb{N} = \infty, \#\{1,3,5\} = 3$

1.9 Bemerkung

- 1. Sei A endliche Menge. $U, V \subseteq A$ disjunkte Teilmengen Dann $\#(U \cup V) = \#U + \#V$
- 2. Seien $A_1, ..., A_k$ endliche Mengen $k \in \mathbb{N}$ Dann: $\#(A_1 \times ... \times A_k) = (\#A_1)(\#A_2)...(\#A_k)$

1.10 Definition Fakultät

- 1. Für $n \in \mathbb{N}$ setze $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n = \prod_{k=1}^{n} k$ Setze 0! = 1
- 2. Für $k, n \in \mathbb{Z}$ mit $0 \le k \le n$ sei binonk := $\frac{n!}{k! \cdot (n-1)!}$ \Rightarrow Binomialkoeffizient $\frac{n \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6}{n! \mid 1 \mid 1 \mid 2 \mid 6 \mid 24 \mid 120 \mid 720}$

¹Kombinatorik (mathematisches Zählen)

Beispiel:

$$bino52 = \frac{5!}{2! \cdot (5-2)!} := \frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1} = \frac{20}{2} = 10$$
Bemerkung: $binon0 = \frac{n!}{0! \cdot (n-0)!} = 1 = binonn = \frac{n!}{n! \cdot (n-n)!}$

1

11

121

1331

Wiederholung

Sei M Menge.

Wenn M endlich: $\#M = Anzahl \ Elemente \in M$

Wenn M unendlich: $\#M = \infty$ Für $n \in \mathbb{N} := \{1, 2, 3, ...\}$

$$n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot n$$
 $0! = 1$

Binomialkoeffizient: Für $0 \le k \le n$

$$binonk = \frac{n!}{k! \cdot (n-k)!}$$

$$binon0 = \frac{n!}{0! \cdot (n-0)!} = binonn = \frac{n!}{n! \cdot (n-n)!} = 1$$

1.11 Lemma

Für 0 < k < n gilt:

$$binonk = binon - 1k - 1 + binon - 1k$$

Beweis:

$$binon - 1k - 1 + binon - 1k = \frac{(n-1)!}{(k-1)! \cdot (n-k)!} + \frac{(n-1)!}{(k-1)! \cdot (n-1-k)!} = \frac{k(n-1)! + (n-k) \cdot (n-1)!}{k! \cdot (n-k)!} = \frac{n(n-1)!}{k! \cdot (n-k)!}$$

1.12 Geometrische Anordnung (Pascalsches Dreieck)

bino00

bino10

bino11

bino20

bino21

bino22

bino30

bino31

bino32

bino33

Folge

 $binonk \in \mathbb{N}$ für alle $0 \le k \le n$

1.13 Satz: Anzahl von Teilmengen

Sei A endliche Menge. #A = n

Sei $k \in \mathbb{Z}$ mit $0 \le k \le n$

 $P_k(A) := \{U \subseteq A \mid \#U = k\}$ (Menge aller k-elementigen Teilmengen von A)

Dann gilt $\#P_k(A) =$

binonk

Beispiel:

$$A = \{1, 2, 3, 4\}$$
 $n = 4$ $k = 2$

2-elementige Teilmengen von A:
$$\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\} \rightarrow 6$$
 bino $42=6$

Beweis:

Vorüberlegung: Sei $k = 0 \lor k = n$

$$P_0(A) = 1 =$$

 $binon0 \# P_n(A) = 1 =$

binonn

Jetzt: Induktionsbeweis nach n

IA:

$$n = 0$$

$$n = 0 \text{ Dann } k = 0$$

IS:

$$n \rightarrow n + 1$$

Sei
$$\#A = n + 1 \Rightarrow 0 \le k \le (n + 1)$$
 Falls $k = 0 \lor k = n + 1$

Sei also:
$$o < k < n + 1$$

Wähle $a \in A$

Sei $B = A \setminus \{a\}$

Dann
$$A = B \cup \{a\}, \#B = n$$

Man kann die Wahl einer k-elementigen Teilmenge von A so strukturieren:

- 1. Entscheiden, ob $a \in U \lor a \notin U$
- 2. a) Wenn $a \notin U$: Wähle k Elemente aus B
 - b) Wenn $a \in U$: Wähle k 1 Elemente aus B

$$\Rightarrow \#P_k(A) = \#P_k(B) + \#P_{k-1}(B) \stackrel{IV}{=} binonk + binoe - 1 \stackrel{1.11}{=} binon + 1k$$

1.14 Satz (Binomische Formel)

Seien a, b Zahlen, $n \in \mathbb{N}$

$$Dann (a+b)^n = a^n +$$

$$binon \hat{1}a^{n-1}b +$$

$$binon2a^{n-2}b^2 + \ldots + b^n$$

Beispiel:

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$
$$(a+b)^2 = a^2 + 2ab + b^2$$

Beweis:

Schreibe
$$(a + b)^n = \underbrace{(a + b)(a + b)(a + b)(a + b)\dots(a + b)}_{n = a \text{ toron}}$$

<u>Ausmultiplizieren</u>

Halte Terme der Form $a^{n-k}b^k$ mit $0 \le k \le n$

Häufigkeit von $a^{n-k}b^k$ = Anzahl der Möglichkeiten aus n-Faktoren k mal b zu wählen.

Das ist

binonk (Satz 1.13)

Folgerung

Setze
$$a = b = 1$$
 $a^{n-k}b^k = 1$

$$(a+b)^n = 2^n =$$

binon0+

binon1 +

binon2 + ... +

binonn

Beispiel:

 $1 + 4 + 6 + 4 + 1 = 16 = 2^4$

1.15 Definition: Anordnung

Sei A endliche Menge

Eine Anordnung von *A* ist ein *n*-Tupel

 $(a_1, a_2, a_3, a_4, ..., a_n)$ mit $a \in A$ für alle i und $a_i \neq a_j$ wenn $i \neq j$

Beispiel:

Anordnung von $\{1, 2, 3\} = (1, 2, 3)(1, 3, 2)(2, 1, 3)(2, 3, 1)(3, 1, 2)(3, 2, 1) \rightarrow 6$

1.16 Satz: Anzahl von Anordnungen

Sei A endliche Menge, $\#A = n \ge 1$

Dann ist die Anzahl der Anordnungen von A gleich n!

Beweis:

Induktion nach n

IA:

$$n = 0$$
$$n=1$$

IS:

$$n \rightarrow n + 1$$

Sei
$$\#A = n + 1$$

Wahl einer Anordnung von A kann man so unterteilen:

- 1. Wähle 1 Element $a_1 \in A (n + 1 \text{ Möglichkeiten})$
- Wähle Anordnungen von A\{a₁}
 #(A\{a₁}) = n ⇒n! Möglichkeiten bei 2
 Insgesamt (n + 1) · n! = (n + 1)!

Bemerkung:

(Zusammenhang zwischen Anordnung und Teilmengen)

Sei A endliche Menge, #A = n, $0 \le k \le n$

Sei $(a_1, ..., a_n)$ Anordnung von A

$$\rightsquigarrow$$
 Teilmenge $U := \{a_1, ..., a_n\}$

Dann
$$U \subseteq A$$
, $\#U = k$ $U \in P_k(A)$

Jedes $U \in P_k(A)$ entsteht so, aber mehrfach:

$$k!$$
 · $(n-k)!$ - mal
Anordnungen von U Anordnungen von $A \setminus U$

Anordnungen von $A=n!=\#P_k(A)\cdot k!\,(n-k)!\Rightarrow \#P_k(A)=\frac{n!}{k!\cdot (n-k)!)}=binonk$

2 Die reellen Zahlen

Was sind die reellen Zahlen?

Präzise Konstruktion ist umfangreich, daher Axiomatischer Zugang Beschreibung der reellen Zahlen durch ihre Eigenschaften (Axiome):

- 1. Grundrechenarten → Körper
- 2. Ungleichungen → angeordneter Körper
- 3. Lückenlosigkeit → Vollständigkeit

Körper

2.1 Definition Körper

Ein Körper ist eine Menge K mit 2 Rechenoperationen: Addition (+) und Multiplikation (\cdot), so dass folgende 9 Eigenschaften erfüllt sind:

Addition

- 1. (a + b) + c = a + (b + c) für alle $a, b, c \in K$ (Assotiativgesetz)
- 2. a + b = b + a für alle $a, b \in K$ (Kommutativgesetz)
- 3. Es gibt ein $0 \in K$ so dass 0 + a = a
- 4. Für jedes $a \in K$ gibt es ein $b \in K$ mit a + b = 0

Bemerkung:

 $0 \in K$ ist eindeutig

Beweis:

Wenn $0' \in K$ mit 0' + a = a, dann 0 = 0' + 0 = 0 + 0' = 0'

Bemerkung:

Das b in 4. ist auch eindeutig.

Notation:

b = -a (Negatives von a)

Beweis:

Angenommen
$$b' + a = 0$$

 $b = b + 0 = b + (a + b') = (b + a) + b' = 0 + b' = b'$

Multiplikation

5.
$$a(b \cdot c) = (a \cdot b)c$$
 $\forall a, b, c \in K$

6.
$$a \cdot b = b \cdot a \quad \forall a, b \in K$$

- 7. Es gibt ein $1 \in K$ mit $1 \neq 0$, so dass $1 \cdot a = a$ $\forall a \in K$
- 8. Für alle $a \in K$, $a \neq 0$, gibt es ein $b \in K$ mit $a \cdot b = 1$

Bemerkung:

 $1 \in K$ ist eindeutig, b in 8. ist eindeutig Beziehung $b = a^{-1}$

Beweis:

Wie eben

9.
$$a(a+c) = a \cdot b + a \cdot c$$
 $\forall a, b, c \in K$ (Distributivgesetz)

Weitere Bezeichnungen:

$$a - b := a + (-b), \frac{a}{b} = a \cdot b^{-1}, \text{ wenn } b \neq 0$$

Bemerkung:

Die üblichen Rechenregeln folgen aus diesen Axiomen 1.-9.

Beispiel:

$$-(-a) = a$$
, $a(b - c) = a \cdot b - a \cdot c$, $a(-b) = -(a \cdot b)$

2.2 Beispiele bekannter Körper

Q ist ein Körper

ℤ ist kein Körper (8. nicht erfüllt)

2.3 Beispiel für einen Körper

$$\mathbb{F}_z = \{0, 1\}$$

Definitionen von + und ·

Übung Prüfe alle Körperaxiome

Bemerkung:

Sei K endlicher Körper

Dann gilt $\#K = p^r$ wobei p Primzahl, $r \in \mathbb{N}$

Für jede solche Zahl $q = p^r$ gibt es genau einen Körper

Wiederholung

Ein Körper K ist eine Menge mit + und \cdot , sodass gewisse Eigenschaften erfüllt sind:

Beispiel:

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a \in \mathbb{Z}, b \neq 0 \right\}$$

$$F_1 = \{0, 1\} \qquad 1 + 1 = 0$$

Notation:

Setze
$$a^n = \underbrace{a \cdot a \cdot a \cdot a \cdot a \cdot \dots \cdot a}_{n-Faktoren}$$

$$a^0 = 1$$

$$a^{-n} = (a^{-1})^n$$
 $equal weak weak weak a \in 0$

Daraus folgt a^n ist definiert, wenn $a \neq 0$ und $n \in \mathbb{Z}$

Regeln der Potenzgleichung:

$$a^{n+m} = a^n \cdot a^m$$
$$a^{n \cdot m} = (a^n)^m$$

Beweis:

Übung

2.4 Definition angeordneter Körper

Ein angeordneter Körper ist ein Körper K für dessen Elemente eine "Kleiner als Beziehung" < definiert ist, so dass folgende Eigenschaften erfüllt sind:

- 1. Für alle $a, b \in K$ gilt genau eine von drei Notationen: a < b oder a = b oder a > b
- 2. Für alle $a, b, c \in K$ gilt wenn a < b und b < c dann a < c (Transitivität)
- 3. Für alle $a, b, c \in K$ gilt wenn a < b dann a + c < b + c
- 4. für $a, b, c \in K$ gilt, wenn a < b und $c \neq 0$ dann $a \cdot c < b \cdot c$

Weitere Beziehungen:

a > b heißt b < a

- 1. Wenn a < 0 dann -a > 0: $a < 0 \Rightarrow a + (-a) > 0 + (-a) \Rightarrow 0 > -a$
- 2. Für jedes $a \in K$ gilt wenn $a \neq 0$, dann $a^2 > 0$

$$\begin{array}{rcl} a & > & 0 \\ (a) & a \cdot a & > & 0 \cdot a \\ & a^2 & > & 0 \end{array}$$

$$a < 0$$
(b) $-a > 0 \cdot a$

$$a^2 = (-a)^2 > 0$$

3. 1 > 0 denn $1 = 1^2$

Sei *K* ein Angeordneter Körper:

$$0 < 1 \Rightarrow 1 < 1 + 1 \Rightarrow 1 + 1 < 1 + 1 + 1$$
 etc.

$$0 < 1 < 1 + 1 < 1 + 1 + 1$$
 etc.

Für
$$n \in \mathbb{N}$$
 setze $\underline{n := 1 + 1 + 1 + \dots + 1}$
Dann $0 < 1 < 2 < 3 \dots$ in K

Folge Verschiedene natürliche Zahlen bleiben in *K* verschieden.

Fasse \mathbb{N} als Teilmenge von K auf.

Dann

$$\mathbb{Z} = \{a - b \mid a, b \in \mathbb{N}\} \subseteq K$$

$$\mathbb{Q} = \left\{\frac{a}{b} \mid a, b \in \mathbb{N}\right\} \subseteq K$$

Insbesondere ist *K* unendlich.

z.B. hat F_z keine Anordnung.

2.5 Definition Absolutbetrag

Sei K ein angeordneter Körper mit $a \in K$

Der Absolutbetrag von a ist definiert als

$$|a| = \begin{cases} a & \text{wenn} \quad a > 0 \\ -a & \text{wenn} \quad a < 0 \end{cases}$$

2.6 Satz (Dreiecksungleichung)

Sei K ein angeordneter Körper $a, b, c \in K$ Dann gilt:

- 1. a = 0 wenn |a| = 0
- 2. $-|a| \le a \le |a|$
- 3. Dreiecksungleichung: $|a + b| \le |a| + |b|$
- 4. untere Dreiecksunglebraceichung: $|a b| \ge |a| |b|$

Beweis:

- 1. klar.
- 2. wenn $a \ge 0$: $|a| \ge 0$ $\Rightarrow -|a| \le 0 \le a \le |a|$ wenn $a \le 0$: $-|a| \le a \le 0 \le |a|$
- 3. Es gilt: $-|a| \le a \le |a|$, $-|b| \le b \le |b|$ wenn $a + b \ge 0$ $|a + b| = a + b \le |a| + b \le |a| + |b|$ wenn a + b < 0 $|a + b| = -(a + b) = (-a) + (-b) \le |a| + |b|$
- 4. (a b) + b = a $\Rightarrow |a| = |(a - b) + b| \le |a - b| + b$ $|a - b| \le |a - b|$

2.7 Satz Bernoulli'sche Ungleichungen

Sei K ein angeordneter Körper $a, b \in K, a > -1$ und $n \in \mathbb{N}\{0, 1, 2, 3, 4, \dots\}$. Dann gilt:

$$(1+a)^n \ge 1 + n \cdot a$$

Beweis durch vollständige Induktion:

IA:

$$n = 0$$

$$n = 0$$
 $(1+a)^0 = 1 = 1 + 0 \cdot a$

IS:

$$n \rightarrow n + 1$$
 Annahme:

$$(1+a)^{n+1} = (1+a)(1+a)^n \ge (1+a)(1+n \cdot a)$$

weil
$$1 + a > 0$$

 $= 1 + a + n \cdot a + n \cdot a^2$
 $= 1 + (n+1) \cdot a + n \cdot a^2$
weil $a^2 \ge 0 \Rightarrow n \cdot a^2 \ge 0$

2.8 Definition Beschränktheit

Sei K ein angeordneter Körper, $M \subseteq K$ eine Teilmenge, $a \in K$.

- 1. $M \le a$ bedeutet: $x \le a$ für jedes $x \in M$
- 2. a heißt ",obere Schranke" von M, wenn $M \le a$. a heißt ",untere Schranke" wenn $M \geq a$
- 3. M heißt nach oben beschränkt wenn M eine obere Schranke hat. Analog: nach unten beschränkt wenn M eine untere Schranke hat.
- 4. a heißt Maximum von M, wenn $M \le a \text{ und } a \in M$. a = max(M)a heißt Minimum von M, wenn $M \ge a \text{ und } a \in M$. a = min(M)

Beweis:

Sei
$$a, b \in M$$

$$M \le a, M \le b$$

Dann
$$b \le a$$
 und $b \le a \Rightarrow a = b$

Beispiel:

$$K = \mathbb{Q}$$

1.
$$M = \mathbb{N}$$

Sei
$$a \in \mathbb{Q}$$

$$\Leftrightarrow a \leq n \text{ für alle } n \in N$$

$$\Leftrightarrow a \leq 1$$

Wenn N nach unten beschränkt 1 = min(N)

$$2. M = \left\{-\frac{1}{n} | n \in \mathbb{N}\right\} \qquad 0 \notin M$$

$$-1 = min(M) \Rightarrow M$$
 ist nach unten beschränkt.

$$M \le 0$$
 $\Rightarrow M$ ist nach oben beschränkt.

M hat kein Maximum.

Sei
$$a \in M$$
 dann $a = -\frac{1}{n}, n \in N, -\frac{1}{n+1} \in M$
 $n+1 > n \Rightarrow \frac{1}{n+1} < \frac{1}{n} \Rightarrow -\frac{1}{n+1} > -\frac{1}{n}$
 $M \nleq -\frac{1}{n} a$ ist keine obere Schranke.

3.
$$M = \left\{ -\frac{1}{n} \mid n \in \mathbb{N} \right\} \cup \{0\}$$

 $min(M) = -1$

$$max(M) = 0$$

4. $M = \emptyset$ hat weder ein min(M) noch ein max(M)

Jedes $a \in \mathbb{Q}$ erfüllt $a \leq M$ und $M \leq a$

2.9 Satz

- 1. Sei *K* ein angeordneter Körper. Wenn *M* endlich und nicht leer, dann hat *M* auch ein *max* und ein *min*
- 2. Wohlordnungsprinzip Jede nicht leere Teilmenge $M \in \mathbb{N}$ hat ein Minimum.

Beweis:

- 1. klar.
- 2. M ist nicht leer, wähle $n \in M$ $\{1, 2, 3, 4, 5, ...n\}$, endlich aber nicht leer. Dann $min(\{1, 2, 3, 4, 5, ...n\} \cap M) = min(M)$

2.10 Definition Infimum Supremum

Sei K ein angeordneter Körper und $M \subseteq K$, $a \in K$ a heißt kleinste obere Schranke von M oder Supremum.

- 1. $M \le a$ und
- 2. kein $b \in K$ mit b < a erfüllt $M \le b$

a ist größte untere Schranke oder Infimum vom M, wenn

- 1. $a \leq M$ und
- 2. Kein $b \in M$ mit a < b erfüllt $b \le M$

Notation:

$$a = sup(M)$$

 $a = inf(M)$

Bemerkung:

Wenn $a = max(M) \Rightarrow a = sup(M)$

Beweis:

Sei
$$a, b \in M$$
 und $a \nleq b$
 $\Rightarrow M \nleq b \Rightarrow a$ ist Supremum

Bemerkung:

Wenn ein Supremum existiert, ist es eindeutig.

Beweis:

$$a, b$$
 sind Supremum von M
 $M \le a, M \le b \Rightarrow a \le b$ und $b \le a \Rightarrow a = b$

Beispiel:

$$sup(\{-\frac{1}{n}\mid n\in\mathbb{N}\})$$

18.10.2012

Wiederholung

Angeordneter Körper:

Menge K mit +, \cdot , <

so dass gewisse Eigenschaften erfüllt sind

Beispiel:

Q sind ein angeordneter Körper

Sei K angeordneter Körper, $M \subseteq K$ Teilmenge $a \in K$ ist <u>obere Schranke</u> von M, wenn $M \le a$, d.h.: $x \le a \quad \forall x \in M$

$$a \in K$$
 ist kleinste obere Schranke, wenn
$$\left\{ \begin{array}{c} 1. \ M \le a \\ 2. \ \text{Wenn } b < a \text{, dann } \underline{\text{nicht }} M \le b \end{array} \right\}$$
Bezeichnung $a = \sup(M)$

Beispiel:

$$K = \mathbb{Q}$$
 $M = \left\{ -\frac{1}{n} \mid n \in \mathbb{N} \right\} = \left\{ -1, -\frac{1}{2}, -\frac{1}{3}, ? \right\}$

Behauptung

$$sup(M) = 0$$

Beweis:

1. Zeige:
$$M \le 0$$
, d.h.: $\frac{1}{n} < 0$ für alle $n \in \mathbb{N}$

2. Wenn
$$b = \mathbb{Q}$$
, $b < 0$, dann nicht $M \le b$

Schreibe $b = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$

b < 0 heißt m < 0, $m \le -1$

$$b = \frac{m}{n} \le \frac{-1}{n} \le \frac{-1}{n+1} \in M$$

$$\Rightarrow M \nleq b \text{ (nicht } M \leq b)$$

Vollständigkeit

2.11 Definition Vollständigkeit

Ein angeordneter Körper K heißt Dedekind-vollständig, wenn jede nach oben beschränkte Teilmenge von K eine kleinste obere Schranke hat (die Element K ist).

2.12 Satz (ℝ einziger vollständiger Körper)

Es gibt genau einen Dedekind-vollständigen, angeordneten Körper K Dieser heißt Körper der reellen Zahlen

Bezeichnung \mathbb{R}

(Beweis ausgelassen)

2.13 Satz (Unbeschränktheit von ℕ)

Die Teilmenge N von ℝ ist unbeschränkt

Beweis:

(verwende nur die Axiome)

Indirekter Beweis: Angenommen, N ist beschränkt

Vollständigkeit

 \mathbb{N} hat eine kleinste obere Schranke $a \in \mathbb{R}$

Es gilt $a - 1 < a \Rightarrow a - 1$ ist kleinste obere Schranke von \mathbb{N} $n \leq a$ $\forall n \in \mathbb{N}$

 $\Rightarrow n+1 \leq a$ $\forall n \in \mathbb{N}$

 $\Rightarrow n < a - 1$ $\forall n \in \mathbb{N} \text{ Widerspruch!}$

Also Annahme falsch, d.h. N ist unbeschränkt

beschränkt nach oben beschränkt und nach unten beschränkt

unbeschränkt nicht nach oben beschränkt oder nicht nach unten beschränkt

2.14 Folgerung (Prinzip des Archimedes)

Seien $x, y \in \mathbb{R}$, x > 0, Dann gibt es $n \in \mathbb{N}$ mit $n \cdot x > y$ **SKIZZE**

Beweis:

 $n \cdot x > y \Leftrightarrow n > \frac{y}{x}$ (weil x > 0)

 \mathbb{N} unbeschränkt und nicht nach oben beschränkt $\Rightarrow \frac{y}{x}$ ist keine obere Schranke von \mathbb{N} \Rightarrow es gibt $n \in \mathbb{N}$ mit $n > \frac{y}{x}$

2.15 Folgerung

Sei $x \in \mathbb{R}$, x > 0, dann gibt es $n \in \mathbb{N}$ mit $\frac{1}{n} < x$ **SKIZZE**

Beweis:

$$\frac{1}{n} < x \Leftrightarrow 1 < n \cdot x \Leftrightarrow \frac{1}{x} < n \text{ (weil } x \text{ positiv)}$$

 $\frac{1}{x}$ keine obere Schranke von $\mathbb{N} \Rightarrow$ es gibt $n \in \mathbb{N}$ mit $\frac{1}{x} < n$

2.16 Satz

Seien $x, y \in \mathbb{R}$ mit x < y

Dann gibt es $a \in \mathbb{Q}$ mit x < a < y, man sagt \mathbb{Q} liegen dicht in \mathbb{R} **SKIZZE**

Beweis:

$$y - x > 0$$
 Wähle $n \in \mathbb{N}$ mit $\frac{1}{n} < y - x$

Ansatz: $a = \frac{m}{n}$ mit $m \in \mathbb{Z}$

Sei $M := \{m \in \mathbb{Z} | x < \frac{m}{n}\} = \{m \in \mathbb{Z} | nx < m\}$

M ist nach unten beschränkt und nicht leer (wegen Archimedes)

M hat Minimum

Sei m = min(M)

$$m \in M \Rightarrow x < \frac{m}{n}$$

$$m-1 \notin M \Rightarrow x \geq \frac{m-1}{n}$$

$$m \in M \Rightarrow x < \frac{m}{n}$$

$$m-1 \notin M \Rightarrow x \ge \frac{m-1}{n}$$

$$y - \frac{m}{n} = y - x + x - \frac{m}{n} > \frac{1}{n} + x - \frac{m}{n} = x - \frac{m-1}{n} \ge 0$$

$$y > \frac{m}{n}$$

Wurzeln

2.17 Satz (Wurzel 2 nicht real)

Es gibt kein $a \in \mathbb{Q}$ mit $a^2 = 2$

Beweis:

Angenommen $a\frac{m}{n} \in \mathbb{Q}, \ a^2 = 2, \ m, n \in \mathbb{N}$ Kürze den Bruch $\Rightarrow \frac{m}{n}$ teilerfremd

$$a^2 = 2 \Rightarrow \frac{m^2}{n^2} = 2 \Rightarrow m^2 = 2n^2 \Rightarrow m^2 \text{ gerade } \Rightarrow m \text{ gerade } \Rightarrow m = 2q, \ q \in \mathbb{N}$$

$$(2q)^2 = 2n^2 \Rightarrow 4q^2 = 2n^2 \Rightarrow 2q^2 = n^2 \Rightarrow n^2 \text{ gerade } \Rightarrow n \text{ gerade}$$

Widerspruch zur Annahme m, n teilerfremd

SKIZZE WURZEL $2 \Rightarrow \sqrt{2}$ sollte existieren

Bemerkung:

Wenn $n \in \mathbb{N}$, keine Quadratzahl, dann gibt es kein $a \in \mathbb{Q}$ mit $a^2 = n$ (ähnlicher Beweis)

2.18 Satz

Sei $x \in \mathbb{R}, x \ge 0, n \in \mathbb{N}$ Dann gibt es <u>genau ein</u> $y \in \mathbb{R}, x \ge 0$ mit $y^n = x$ Bezeichnung: $x = \sqrt[n]{y}$

Beweis:

später

Ansatz $\sup\{a \in \mathbb{Q} \mid a^n \le x\} =: y$ (sup existiert weil \mathbb{R} Dedekind-vollständig)

2.19 Definition Potentzrechnung

Sei
$$x \in \mathbb{R}$$
, $x > 0$ $\frac{m}{n} \in \mathbb{Q}$ $n \in \mathbb{N}$, $m \in \mathbb{Z}$ $x^{\frac{m}{n}} = \sqrt[n]{x^m}$ $x^{\frac{1}{n}} = \sqrt[n]{x}$

Potenzrechnung

$$x^{(a+b)} = x^a \cdot x^b, \ x^{a \cdot b} = (x^a)^b$$

für $x \in \mathbb{R}$, x > 0, $a, b \in \mathbb{Q}$

Bemerkung:

Später wir definiert: x^a für $x \in \mathbb{R}$, x > 0, $a \in \mathbb{R}$

3 Folgen und Reihen reeller Zahlen

Grundbegriff der Analysis: Konvergenz

Beispiel:

Wenn $n \in \mathbb{N}$ immer größer wird, geht $\frac{1}{n}$ immer näher an Null. Sei $\mathbb{N}_0 = \{0, 1, 2, 3, 4...\}$

3.1 Definition Folge

Eine Folge reeller Zahlen ist eine Abbildung $\mathbb{N}_0 \to \mathbb{R}$ d.h. jeder natürliche Zahl $n \geq 0$ wird eine reelle Zahl a_n zugeordnet.

Notation:

$$(a_n)_{n \in \mathbb{N}_0}$$
 oder $(a_n)_{\mathbb{N} \ge 0}$ oder $(a_0, a_1, a_2, a_3, ...)$

Variante

Folgen, die bei $k \in \mathbb{Z}$ anfangen: $(a_n)_{n \geq 0} = (a_k, a_{k+1}, a_{k+2}, \ldots)$

Beispiel:

- 1. konstante Folge: $a_n = a, \ a \in \mathbb{R}$ fest: (a, a, a, a, a, a, ...)
- 2. $a_n = \frac{1}{n}$ für $n \ge 1$ $(a_n)_{n \ge 1} = (1, \frac{1}{2}, \frac{1}{3}, ...)$
- 3. $a_n = (-1)^n \quad n > 0$ $(1, -1, 1, -1, 1, -1, 1, -1, 1, -1, \dots)$
- 4. $\left(\frac{n}{n+1}\right)_{n\geq 0}n = \left(0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots\right)$

3.2 Definition Konvergenz

Sei $(a_n)_{n\geq 0}$ eine Folge reeller Zahlen

1. Eine Folge (a_n) konvergiert gegen $a \in \mathbb{R}$ wenn gilt: Für jedes $\epsilon > 0$ gibt es ein $N \in \mathbb{N}$, so dass $|a_n - a| < \epsilon$ für jedes $n \in \mathbb{N}$ mit $n \ge N$

Dann heißt a Grenzwert der Folge (a_n)

Notation:

$$\lim_{n\to\infty} a_n = a \text{ oder } a_n \to a \text{ für } n\to\infty$$

- 2. Die Folge (a_n) heißt Nullfolge, wenn $a_n \to 0$ für $n \to \infty$
- 3. Die Folge (a_n) ist divergent, wenn sie keinen Grenzwert hat.

Beispiel:

1.
$$a_n = \frac{1}{n}$$
 für $n \ge 1$

Behauptung

$$a_n \to a \text{ für } n \to \infty \text{ SKIZZE}$$

Beweis:

Sei
$$\epsilon > 0$$
 wähle $N = 0$ für $n \geq N$ gilt $|a_k - a| = 0 < \epsilon$

2.
$$a_n = (-1)^n = (1, -1, 1, -1, 1, -1, ...)$$
 SKIZZE

Behauptung

 (a_n) ist divergent.

Beweis:

Angenommen, $a \in \mathbb{R}$ ist Grenzwert der Folge. Wähle $\epsilon=1$. Es gibt $N \in \mathbb{N}$ mit $|a_n-a|<1$ für alle $n \geq N$ Wenn n gerade: $a_n=1$ |1-a|<1 Wenn n ungerade: $a_n=-1$ $|-1-a|<1 \Rightarrow |1+a|<1$ $2=|2|=|1-a+1+a|\leq |1-a|+|1+a|<2 \Rightarrow 2<2$ Widerspruch: Also ist (a_n) divergent

Wiederholung

Eine Folge $(a_n)_{n\in\mathbb{N}_0}$ reeller Zahlen konvergiert gegen $a\in\mathbb{R}$ wenn gilt: Für jedes $\epsilon>0$ gibt es ein $N\in\mathbb{N}$ so dass $|a_1\cdot a|<\epsilon$ für alle $n\geq\mathbb{N}$. Bezeichnung $a_n\to a$ für $n\to\infty$ oder $\lim_{n\to\infty}(a_n)=a$

Beispiel:

 $\frac{1}{n} \to 0$ für $n \to \infty$ $(-1)^n$ divergiert (a_n) ist divergent, wenn sie gegen kein $a \in \mathbb{R}$ konvergiert

Beispiel:

 $(1,0,\frac{1}{2},0,\frac{1}{3},0,\frac{1}{4},0,...)$ konvergiert gegen 0

3.3 Satz: (Eindeutigkeit der Grenzwerte)

Sei (a_n) Folge reeller Zahlen und $a,b\in\mathbb{R}$ mit $a_n\to a$ und $a_n\to b$ für $n\to\infty$. Dann ist a=b

Bemerkung:

Darum ist Bezeichnung $a = \lim_{n \to \infty} (a_n)$ sinnvoll

Beweis:

Angenommen $a \neq b$ Sei $\epsilon:=\frac{|a-b|}{2}$ SKIZZE Konvergenz: es gibt $N_1 \in \mathbb{N}$ mit $|a_n-a| < \epsilon, N_2 \in \mathbb{N}$ mit $|a_n-b| < \epsilon$ für $n \geq N_2$ Sei $n=\max(N_1,N_2)$ $|a-b|=|a-a_n+a_n-b| \leq |a-a_n|+|a_n-b| < \epsilon+\epsilon=|a-b|$ $\Rightarrow |a+b| < |a-b|$ Widerspruch $\Rightarrow \text{nicht } a \neq b, \text{ d.h. } a=b$

3.4 Definition Beschränktheit von Folgen

3.5 Satz

Jede konvergente Folge reeller Zahlen ist beschränkt.

Beweis:

 \Rightarrow Folge (a_n) ist beschränkt.

Angenommen $a_n \to a$ für $n \to \infty$ Wähle $\epsilon = 1$, Es gibt $N \in \mathbb{N}$ so dass $|a_n - a| < 1$ für $n \ge N$ Sei $C := \max\{|a_0|, |a_1|, \dots, |a_{n-1}|, |a|+1\}$ Dann $|a_n| \le C$ für $n \le N-1$ Für $n \ge N$ gilt: $|a_n| = |a_n - a + a| \le |a_n - a| + |a| < 1 + |a| \le C$ Somit $|a_n| \le C$ für alle $n - C \le a_n \le C$ für alle n

Bemerkung:

Nicht jede beschränkte Folge konvergiert. z.B. $((-1)^n)_{n \in \mathbb{N}_0}$ ist beschränkt, aber konvergiert nicht.

3.6 Definition Uneigentliche Konvergenz

Eine Folge reeller Zahlen (a_n) konvergiert uneigentlich gegen ∞ wenn gilt: Für jedes $C \in \mathbb{R}$ gibt es $N \in \mathbb{R}$ mit $a_m > C$ für alle $n \ge N$ SKIZZE

Bemerkung:

Alternative Terminologie:

"konvergiert uneigentlich"="divergiert bestimmt"

Beispiel:

1.
$$a_n = n$$
. $a_n \to \infty$

2. $a_n = (-1)^n$. (0, -1, 2, -3, 4, -5, ...) konvergiert <u>nicht</u> uneigentlich gegen ∞

Notation:

$$a_n \to \infty$$
 für $n \to \infty$ $\lim_{n \to \infty} (a_n) = \infty$

3.7 Satz (Potenzwachstum)

Sei $x \in \mathbb{R}$, betrachte Folge $(x^n)_n \ge 0$

1. wenn
$$|x| > 1$$
 dann ist (x^n) divergent

2. wenn
$$x > 1$$
 dann $x^n \to \infty$ für $n \to \infty$

3. wenn
$$|x| < 1$$
 dann ist $x^n \to 0$ für $n \to \infty$

Beweis:

2. Sei x > 1

Schreibe
$$x = 1 + a$$
. Dann $a > 0$ Gegeben $C \in \mathbb{R}$
 $\Rightarrow x^n = (1 + a)^n \ge 1 + n \cdot a$
Satz 2.9
Archimedes: $\exists N \in \mathbb{N} \text{ mit } N \cdot a > C$

1. Sei |x| > 1 Dann $|x^n| = |x|^n$, $|x| > 1 \Rightarrow |x^n|$ ist nicht beschränkt für $n \in \mathbb{N} \Rightarrow (x^n)$ divergiert

3. Sei
$$|x| < 1$$
 Wenn $x = 0 \Rightarrow x^n = 0$ für alle n

Sei
$$0 < |x| < 1$$

Dann
$$\frac{1}{|x|} > 1$$

Sei 0 < |x| < 1Dann $\frac{1}{|x|} > 1$ Gegeben sei $\epsilon > 0$

Setze
$$C = \frac{1}{2}$$

$$\Rightarrow$$
 es gibt $N \in \mathbb{N}$ mit $\frac{1}{|x|^n} > C$ für $n \ge N \Rightarrow |x|^n < \epsilon$ für $n \ge N$

3.8 Satz (Rechenregeln)

Seien $(a_n)_{n \in \mathbb{N}_0}$, $(b_n)_{n \in \mathbb{N}_0}$ zwei konvergente Folgen reeller Zahlen

Sei

$$a_n \to a \text{ für } n \to \infty$$

 $b_n \to b \text{ für } n \to \infty$

Dann gilt:

- 1. $(a_n + b_n) \to a + b$ für $n \to \infty$
- 2. $(a_n \cdot b_n) \to a \cdot b$ für $n \to \infty$
- 3. Angenommen $b \neq 0$ Dann ist $b_n \neq 0$ für fast alle $n \in \mathbb{N}$ und $\frac{1}{b_n} \to \frac{1}{b}$ für $n \to \infty$

Definition

"fast alle"="alle bis auf endlich viele".

Beweis:

1. Gegeben sei $\epsilon > 0$

Es gibt $N_1 \in \mathbb{N}$ mit $|a_n - a| < \frac{\epsilon}{2}$ für $n \ge N_1$ Es gibt $N_2 \in \mathbb{N}$ mit $|b_n - b| < \frac{\epsilon}{2}$ für $n \ge N_2$

Sei $N = max(N_1, N_2)$ für $n \ge N$ gilt:

$$|a_n+b_n-(a+b)|=|(a_n-a)+(b_n-b)|\leq |a_n-a|+|b_n-b|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon\Rightarrow 1)$$

2. (a_n) konvergiert \Rightarrow ist beschränkt.

Es gibt $C \in \mathbb{R}$ mit $|a_n| < C$ für alle $n \in \mathbb{N}_0$

ohne Einschränkungen sei C > |b|

Rechne:

$$|a_n \cdot b_n - a \cdot b| = |a_n \cdot b_n - a_n \cdot b + a_n \cdot b - a \cdot b| = |a_n(b_n - b) + b(a_n - a)| \ge |a_n| \cdot |b_n - b| + |b| \cdot |a_n - a|$$

Es gibt $N \in \mathbb{N}$ mit $\begin{vmatrix} |a_n - a| < \frac{1}{2C} \cdot \epsilon \\ |b_n - b| < \frac{1}{2C} \cdot \epsilon \end{vmatrix}$ für $n \ge N$

Für $n \ge N$ gilt:

$$|a_n \cdot b_n - a \cdot b| < |a_n| \frac{1}{2c} \epsilon + |b| \frac{1}{2c} \epsilon \le c \cdot \frac{1}{2c} \epsilon + c \cdot \frac{1}{2c} \epsilon = \epsilon \Rightarrow 2$$
) gilt

3. Sei $b \neq 0$

Wähle $\epsilon = \frac{1}{2}|b| > 0$ SKIZZE

Es gibt $N \in \mathbb{N}$ mit $|b_n - b| < \frac{1}{2}|b|$ für $n \ge N$

Dann gilt für $n \ge N$:

$$|b_n| = |b_n - b + b| = |b - b + b_n| = |b - (b - b_n)| \ge |b| - |b - b_n| > |b| - \frac{1}{2}|b| = \frac{1}{2}|b|$$

Insbesondere $|b_n| \neq 0$ für $n \geq N$

Rechne:

$$\left| \frac{1}{b} - \frac{1}{b_n} \right| = \left| \frac{b_n - b}{b \cdot b_n} \right| = \frac{1}{|b| \cdot |b_n|} \cdot |b_n - b| < \frac{2}{|b|^2} \cdot |b_n - b| \text{ für } n \ge N^1$$

Gegeben sei $\epsilon > 0$

Es gibt $N_1 \in \mathbb{N}$ mit $|b_n - b| < \frac{|b|^2}{2} \epsilon$ für $n \ge N_1 \Rightarrow$ für $n \ge max(N_1, N_2)$ gilt:

$$\left|\frac{1}{b_n} - \frac{1}{b} < \frac{2}{|b|^2} \cdot \frac{|b|^2}{2} \epsilon = \epsilon \Rightarrow 3\right)$$
 gilt

<u>Zusatz</u> Wenn $a_n \to a$ und $b_n \to b$ für $n \to \infty$ dann gilt:

- 4. Für $C \in \mathbb{R}$ ist $C \cdot a_n \to C \cdot a$ für $n \to \infty$
- 5. $(a_n b_n) \to a b$ für $n \to \infty$
- 6. Wenn $b \neq 0$ dann $\frac{a_n}{b_n} \rightarrow \frac{a}{b}$ für $n \rightarrow \infty$

Beweis:

¹NR:
$$|b_n| > \frac{1}{2}|b| \Rightarrow \frac{1}{|b_n|} < \frac{2}{|b_n|}$$

Wiederholung

Eine Folge reeller Zahlen (a_n) konvergiert uneigentlich gegen ∞ wenn gilt: Für jedes $C \in \mathbb{R}$ gibt es ein $n \in \mathbb{N}$ mit $a_n > C$ für jedes $n \in \mathbb{N}$

 (a_n) konvergiert uneigentlich gegen $-\infty$ wenn $(-a_n)$ gegen ∞ konvergiert.

Notation:

$$a_n \to \infty$$
 für $n \to \infty$
 $a_n \to -\infty$ für $n \to \infty$

Beispiel:

$$a_n = n^2 \to \infty$$

 $a_n = -n^2 \to -\infty$
 $a_n = (-1)^n \cdot n^2$
 $(0, -1, 4, -9)$ konvergiert weder gegen ∞ noch gegen $-\infty$

Rechenregeln

Angenommen (a_n) , (b_n) sind konvergente Folgen.

1.
$$(a_n + b_n) \rightarrow a + b$$

2.
$$(a_n \cdot b_n) \rightarrow ab$$

$$3. \ \frac{1}{b_n} \to \frac{1}{b}$$

4.
$$c \cdot a_n \rightarrow c \cdot a$$

$$5. \ a_n - b_n \to a - b$$

6.
$$\frac{a_n}{b_n} \to \frac{a}{b}$$

Beweis:

6. 3)
$$\Rightarrow \frac{1}{b_n} \to \frac{1}{b}$$

$$\frac{a_n}{b_n} = a_n \cdot \frac{1}{b}$$
2) $\Rightarrow a_n \cdot \frac{1}{b_n} \to a \cdot \frac{1}{b} = \frac{a}{b}$

Beispiel:

1. Versuch:

$$a_n = \frac{b_n}{c_n}$$

$$b_n = n^2 - n; c_n = 2n^2 + 1$$

$$(b_n) \text{ und } (c_n) \text{ sind divergend. Schlecht.}$$

2. Versuch:

$$\frac{n^2 - n}{2n^2 + 1} = \frac{n^2(1 - \frac{1}{n})}{n^2(2 + \frac{1}{n^2})} \quad \text{für } n \ge 1 = \frac{1 - \frac{1}{n}}{2 + \frac{1}{n^2}} = \frac{b_n}{c_n} \quad \text{mit } b_n := 1 - \frac{1}{n}, \ c_n = 2 + \frac{1}{n^2}$$

$$\frac{1}{n} \to 0 \qquad \text{für } n \to \infty$$

$$\Rightarrow 1 - \frac{1}{n} \to 1 - 0 = 1 \qquad \text{für } n \to \infty$$

$$\Rightarrow 2 + \frac{1}{n^2} \to 2 + 0 = 2 \qquad \text{für } n \to \infty$$

$$\Rightarrow a_n \to \frac{1}{2}$$
 für $n \to \infty$

3.9 Satz

Seien $a_n \to a$, $b_n \to b$ zwei konvergente Folgen reeller Zahlen. wenn $a_n \le b_n$ für unendlich viele $n \in \mathbb{N}$ dann ist $a \le b$.

Beweis:

Angenommen: a > b

Wähle
$$\epsilon := \frac{a-b}{2} > 0$$

Es gibt
$$N \in \mathbb{N}$$
 so dass: $\begin{vmatrix} |a_n - a| < \epsilon \\ |b_n - b| < \epsilon \end{vmatrix}$ für $n \ge N \Rightarrow a_n > a - \epsilon$

$$=a-\frac{a-b}{2}=\frac{a+b}{2}=b+\frac{a-b}{2}=b+\epsilon>b_n\Rightarrow a_n>b_n\qquad \text{ für }n\geq\mathbb{N}$$

Widerspruch zur Annahme.

 $a_n \le b_n$ für unendlich viele $n \in \mathbb{N}$

3.10 Definition Reihen

Sei $(a_n)_{n\geq 0}$ eine Folge reeller Zahlen. Bilde eine Folge:

$$s_0 = a_0$$

 $s_1 = a_0 + a_1$
 $s_2 = a_0 + a_1 + a_2$
 \vdots

$$s_n = a_0 + a_1 + a_n = \sum_{k=0}^{n} a_k$$

Die Folge $(s_n)_{n\geq 0}$ heißt Reihe mit den Gliedern a_n . s_n heißen die <u>Partialsummen</u> der Reihe. Bezeichnung:

$$\sum_{k=0}^{\infty} a_k \text{ oder } a_0 + a_1 + a_2 + a_3 + \dots$$

Wenn $s_n \to s \in \mathbb{R}$ für $n \to \infty$ dann schreiben wir:

$$\sum_{k=0}^{\infty} a_k = s$$

Summe der Reihe.

Achtung Symbol $\sum_{k=0}^{\infty} a_k$ hat <u>zwei</u> Bedeutungen:

- 1. die Folge (s_n) oder
- 2. deren Grenzwert

Beispiel:

1.

$$\sum_{k=1}^{\infty} 1 = 1 + 1 + 1 + \dots \text{ ist die Folge } (1, 2, 3, 4, \dots) = (n+1)_{n \in \mathbb{N}_0}$$

2.

$$\sum_{k=1}^{\infty} k = 0 + 1 + 2 + 3 + \dots \text{ ist die Folge } (1, 3, 6, 10, \dots) = \left(\frac{n(n-1)}{2}\right)_{n \in \mathbb{N}}$$

3.

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots \text{ ist die Folge } \left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}\right)$$

Vorüberlegung

$$\frac{1}{k(k+1)} = \frac{(k+1)-k}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

$$s_n := \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}$$

Teleskopsumme

$$\frac{1}{n+1} \to 0 \text{ für } n \to \infty$$
Summe der Reihe:

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1$$

Bemerkung:

Jede Folge kann man auch als Reihe Schreiben. (Differenzen bilden) z.B.: die Folge der Primzahlen:

ist die Reihe:

$$(2+1+2+4+2+4+2+...)$$

Goldbachsche Vermutung: in dieser Reihe kommt die Zahl 2 unendlich oft vor.

3.11 Satz (Die geometrische Reihe)

Sei $x \in \mathbb{R}$

a)
$$\sum_{k=0}^{\infty} x^k = 1 + x^1 + x^2 + x^3 + \dots = \frac{1}{1-x}$$
 wenn $|x| < 1$

b)
$$\sum_{k=0}^{\infty} x^k$$
 divergiert wenn $|x| \ge 1$

a wenn
$$|x| < 1$$

dann folgt $\sum k = 0 \infty a_k = \lim_{n \to \infty} (\frac{1}{1-x} - \frac{x}{1-x} \cdot x^n) = \frac{1}{1-x}$

b wenn
$$|x| > 1$$

dann (x^n) divergent $\Rightarrow (\frac{x}{1-x} \cdot x^n)$ divergent
denn $\frac{x}{1-x} \neq 0 \Rightarrow (\frac{?}{?})$

Beweis:

$$x = 1$$
 $\sum_{k=0}^{\infty} x^k = (1 + 1 + 1 + ...)$ divergiert, ok

Sei nun $x \neq 1$ Bekannt aus der Übung:

 $\sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 \dots + x^n = \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x} - \frac{x}{1 - x} \cdot x^n$

Potenzenwachstum

$$x^n \to 0$$
 für $n \to \infty$ wenn $|x| < 1$
 (x^n) divergiert, wenn $(|x| \ge 1 \text{ und } x \ne 1)$

3.12 Satz

Wenn die Reihe $\sum_{k=0}^{\infty} a_k$ konvergiert, dann ist $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge.

Beweis:

Gegeben sei $\epsilon > 0$

Sei
$$a = \sum_{k=0}^{\infty} a_k = \lim_{n \to \infty} (s_n)$$
 mit $s_n = a_0 + \ldots + a_n$

Es gibt
$$N$$
 in \mathbb{N} mit $|s_n - a| < \frac{\epsilon}{2}$ für $n \ge N$

$$|a_n| = |s_n - s_{n-1}|$$

$$= |s_n - a + a - s_{n-1}|$$

$$\leq |s_n - a| + |a - s_{n-1}| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
From $s \ge N + 1$

für
$$n \ge N + 1$$

 $\Rightarrow a_n \to 0$ für $n \to \infty$

3.13 Satz, die harmonische Reihe

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$$
 divergiert

Beweisidee

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \dots$$

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \dots$$

$$1 + \frac{1}{2} + \frac{2}{4} + \frac{4}{8} + \frac{8}{16} + \dots$$

$$1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots = \infty$$

Wiederholung

Sei (n_n) eine Folge reeller Zahlen.

Die Reihe mit den Gliedern a_n ist die Folge $s_n = a_0 + a_1 + ... + a_n)_{n \in \mathbb{N}}$

Bezeichnung:
$$\sum_{k=1}^{\infty} a_k$$

Wenn $S_n \to a$ für $n \to \infty$

Wenn
$$S_n \to a$$
 für $n \to \infty$

Schreibe:
$$\sum_{k=0}^{\infty} a_k = a$$

Beispiel: Geometrische Reihe

$$|x| = 1 \Rightarrow \sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$
 für $x = 0$ setzte $0^0 = 1$

Harmonische Reihe

$$\sum_{k=1}^{\infty} \frac{1}{k}$$
 Konvergiert nicht.

3.14 Satz Rechenregeln für Reihen

Seien $\sum_{k=0}^{\infty} a_k = a$ und $\sum_{k=0}^{\infty} b_k = b$ zwei konvergente Reihen. Dann:

1.
$$\sum_{k=0}^{\infty} (a_k + b_k) = a + b$$

2. Für
$$c \in \mathbb{R}$$
 ist $\sum_{k=0}^{\infty} c \cdot a_k = c \cdot a$

Beweis:

folgt aus 3.9.

Bemerkung:

Produkte von Reihen sind komplizierter.

<u>Korrektur</u> Primzahlen-Vermutung: es gibt ∞ viele Primzahlen p so dass p + 2 auch Prim ist. Goldbach-Vermutung: Jede gerade natürliche Zahl ist die Summe von zwei Primzahlen.

4 Konvergenzsätze

Erinnerung: \mathbb{R} ist Dedekind-vollständig. Das heißt, jede nicht-leere nach oben beschränkte Teilmenge $M \subset R$ hat eine kleinste obere Schranke $sup(M) \Rightarrow$ Existenz von Grenzwerten

4.1 Definition Monotone Folgen

```
Eine Folge (a_n)_{n\geq 0} heißt monoton wachsend, wenn an+1\geq a_n für alle n\in \mathbb{N}_0 monoton fallend, wenn a_{n+1}\leq a_n für alle n\in \mathbb{N}_0 streng monoton wachsend, wenn a_{n+1}>a_n für alle n\in \mathbb{N}_0 streng monoton fallend, wenn a_{n+1}< a_n für alle n\in \mathbb{N}_0
```

Beispiel:

```
a_n = n ist streng monoton wachsend a_n = \frac{1}{n} ist streng monoton fallend
```

4.2 Satz

- 1. Jede nach oben beschränkte monoton wachsende Folge $(a_n)_{n \in \mathbb{N}}$ ist konvergent BILD
- 2. Jede nach unten beschränkte monoton fallende Folge $(a_n)_{n \in \mathbb{N}}$ ist konvergent BILD

Beweis:

```
Sei (a_n) nach oben beschränkt, monoton wachsend
Setze a := sup(\{a_n | n \in \mathbb{N}\})
```

- 1. $a_n \le a$ für alle n
- 2. Für jedes $\epsilon > 0$ ist $a \epsilon$ <u>keine</u> obere Schranke, d.h. es gibt $N \in N$ so dass $a_N > a \epsilon$ Für $n \geq N$ gilt $a \epsilon < a_N \leq a_n \leq a$ weil (a_n) monoton wachsend $\Rightarrow a \epsilon < a_N \leq a_n \leq a \Rightarrow |a_n a| < \epsilon$ Somit $a_n \to a$ für $n \to \infty$ q.e.d. Monoton fallend: analog

Reihen mit nicht-negativen Gliedern

Bemerkung:

Sei
$$\sum_{k=0}^{\infty} a_k$$
 Reihe reeller Zahlen

Die Folge der Partialsummen ist monoton wachsend $\Leftrightarrow a_n \ge 0$ für $n \ge 1$

Vorlesung Nr. 7

29.10.2012

4.3 Satz

Eine Reihe $\sum_{k=0}^{\infty} a_k$ mit $a_k \ge 0$ für alle k konvergiert, genau dann, wenn sie beschränkt ist (Das heißt die Folge der Partialsummen ist beschränkt)

4.4 Definition Majorante

Sei
$$\sum_{k=0}^{\infty} a_k$$
 eine Reihe mit $a_n \ge 0$ für alle k

Eine Reihe $\sum_{k=0}^{\infty} b_k$ heißt <u>Majorante</u> von $\sum a_k$ wenn $a_k \le b_k$ für alle k

4.5 Satz Majorantenkriterium

Wenn eine Reihe mit nicht-negativen Gliedern eine konvergente Majorante hat, dann konvergiert sie.

Beweis:

Sei
$$0 \le a_k \le b_k$$
 für alle $k \ge 0$
Es gilt $a_0 + ... + a_n \le b_0 + ... + b_n$
 $\sum b$ konvergiert $\Rightarrow (b_0 + ... + b_n)_{n \ge 0}$ beschränkt
 $\Rightarrow ((a_0 + ... + a_n)_{n \ge 0})$ beschränkt $\Rightarrow \sum_{k=0}^{\infty} a_k$ konvergiert.

Beispiel: 4.6

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \left(1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots\right)$$

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = 1 + \sum_{k=1}^{\infty} \frac{1}{(k+1)^2}$$

$$\frac{1}{(k+1)^2} \le \frac{1}{k \cdot (k+1)}$$

$$\Rightarrow \sum_{k=1}^{\infty} \frac{1}{k \cdot (k+1)} \text{ ist Majorante von } \sum_{k=1}^{\infty} \frac{1}{k^2}$$

$$\sum_{k=1}^{\infty} \frac{1}{k \cdot (k+1)} \text{ konvergiert (bekannt)}$$

4.6 Satz Quotientenkriterium

Sei $C \in \mathbb{R}$, (a_n) eine Folge reeller Zahlen mit $a_n \ge 0$ für alle $n \text{ <u>und } a_{n+1} \le C \cdot a_n$ für fast alle $n \le C < 1$ </u>

Dann konvergiert die Reihe $\sum_{k=0}^{\infty} a_k$

Beweis:

Konvergenz ändert sich nicht, wenn endlich viele a_n geändert werden.

Also kann man annehmen, dass $a_{n+1} \le C \cdot a_n$ für alle n gilt.

Dann gilt
$$a_1 < C \cdot a_0$$

$$a_2 < C \cdot a_1 \le C \cdot C \cdot a_0 = C^2 \cdot a_0$$

$$a_3 < C \cdot a_2 \le C \cdot C \cdot a_1 = C^3 \cdot a_0$$

etc. $\Rightarrow a_n \le C^n \cdot a_0$

etc.
$$\Rightarrow a_n \leq C^n \cdot a_0$$

Somit ist $\sum_{k=0}^{\infty} C^k \cdot a_0$ konvergente Majorante von $\sum_{k=0}^{\infty} a_k$ (Geometrische Reihe)

4.7 Beispiel Die Exponentialreihe

$$exp(x) := \sum_{k=0}^{\infty} \frac{x^k}{k!} \text{ für } x \in \mathbb{R}, x \ge 0$$

Setze
$$a_k = \frac{x^k}{k!}$$

$$a_n + 1 = \frac{x^{n+1}}{(n+1)!} = \frac{x}{n+1} \cdot \frac{x^n}{n!} = \frac{x}{n+1} \cdot a_n \le \frac{1}{2}a_n$$

⇒ Quotientenregel ist erfüllt.

Reihe exp(x) konvergiert.

Bezeichnung:

$$exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \in \mathbb{R}$$

Bezeichnung

$$exp(1) = \sum_{k=0}^{\infty} \frac{1}{k!} = e$$
 (Eulerische Zahl)

4.8 Leibnitz-Kriterium

Sei $(a_n)_{n\in\mathbb{N}_0}$ eine monoton fallende Nullfolge¹ mit $a_n \ge 0$ für alle nDann konvergiert die alternierende Reihe

$$\sum_{k=0}^{\infty} (-1)^k \cdot a_k$$

Beispiel:

$$a_k = \frac{1}{k+1} \sum_{k=0}^{\infty} (-1)^k \cdot a_k = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} = log(2)$$

Beweis:

Sei
$$s_n = a_0 + ... + a_n$$

Behauptung:

$$S_{2n+1} \leq S_{2n+3} \leq S_{2n+2} \leq S_{2n}$$
 für jedes $n \in \mathbb{N}$

Rechne

$$\begin{split} S_{2n+2} - S_{2n} &= -a_{2n+1} + a_{2n+2} \leq 0 \Rightarrow (3) \\ S_{2n+3} - S_{2n+1} &= -a_{2n+3} \leq 0 \Rightarrow (2) \end{split}$$

$$S_{2n+3} - S_{2n+1} = -a_{2n+3} \le 0 \Rightarrow (2)$$

$$S_{2n+3}^{2n+3} - S_{2n+1}^{2n+1} = -a_{2n+2}^{2n+2} - a_{2n+3}^{2n+3} \le 0 \Rightarrow (1)$$

 $a_n \to 0$ für $n \to \infty$

Die Folge

$$b_n = S_{2n}$$

$$c_n = S_{2n+1}$$

sind beschränkt und monoton (fallend bzw. steigend)

 $\Rightarrow b_n$ und c_n konvergieren

Sei

$$b = \lim_{n \to \infty} b_n \qquad c = \lim_{n \to \infty} c_n$$
$$c - b = \lim_{n \to \infty} (c_n - b_n) = \lim_{n \to \infty} (a_{2n+1}) = 0$$

weil (a_n) Nullfolge

4.9 Behauptung

$$S_n \to b \text{ für } n \to \infty$$

Gegeben sei $\epsilon > 0$. Es gibt $N \in \mathbb{N}$ so dass für $n \leq N$:

$$|b_n - b| < \epsilon, |c_n - c| < \epsilon$$

Somit für $n \ge 2N + 1$

$$|S_n - b| < \epsilon \text{ also } S_n \to b$$

Wiederholung Konvergenzsätze

- Eine monoton wachsende und beschränkte Folge konvergiert zwangsläufig.
- Eine Reihe $\sum_{k=0}^{\infty} a_k$ mit $a_k \ge 0$ für alle k konvergiert \Leftrightarrow die Folge der Partialsummen $(S_n = \sum_{k=0}^n a_k)_{n \in \mathbb{N}}$ ist

Beispiel:

 $\sum_{k=0}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3}$... ist unbeschränkt

Beispiel:

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots$$

Leibnitz

Sei (a_n) monoton fallende Nullfolge. Dann konvergiert $\sum_{k=0}^{\infty} (-1)^k \cdot a_k$

Beispiel:

$$(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4})$$
 ... konvergiert.

4.10 Satz Verdichtungslemma von Cauchy

Sei (a_n) monoton fallende Nullfolge.

Die Reihe $\sum_{k=0}^{\infty} a_k$ konvergiert genau dann, wenn die verdichtete Reihe $\sum_{k=0}^{\infty} 2^k \cdot a_{2^k} = 1 \cdot a_1 + 2 \cdot a_2 + 4 \cdot a_4$... konvergiert.

Beispiel:

$$a_k = \frac{1}{k}$$
 $(k \ge 1)$
 $2^k \cdot a_{2^k} = 2^k \cdot \frac{1}{2^k} = 1$

Satz

$$\sum_{k=0}^{\infty} \frac{1}{k} \text{ konvergent} \Leftrightarrow \sum_{k=0}^{\infty} 1 \text{ konvergent (ist nicht der Fall.)}$$

Beweis:

Sei
$$b_n = \sum_{k=2^n}^{2^{n+1}-1} a_k$$

Für
$$2^n \le k \le 2^{n+1} - 1$$
 ist $a_{2^n} \ge a_k \ge a_{2^{n+1}-1} \ge a_{2^{n+1}} \Rightarrow 2^n \cdot a_{2^n} \ge b_n \ge 2^n \cdot a_{2^{n+1}}$
Wenn $\sum_{k\ge 0} 2^k \cdot a_2^k$ beschränkt $\Rightarrow \sum_{k\ge 0} b_k$ beschränkt $\Rightarrow \sum_{k\ge 0} a_k$ beschränkt

Hier immer beschränkt
$$\Leftrightarrow$$
konvergent Wenn $\sum_{k\geq 0} 2^k \cdot a_k$ beschränkt $\Rightarrow \sum_{k\geq 0} b_k$ beschränkt $\Rightarrow \sum_{k\geq 0} 2^k \cdot a_2^{k+1}$ beschränkt $\Leftrightarrow \sum_{k\geq 0} 2^{k+1} \cdot a_2^{k+1}$ beschränkt $\Leftrightarrow \sum_{k\geq 0} 2^k \cdot a_2^k$

beschränkt

Das zeigt den Satz.

Anwendung

Erinnerung

Für $x \ge 0$ und $a \in \mathbb{R}$ wird später $x^a \in R$ definiert Wenn $a = \frac{n}{m}$ mit $m \ge 1$ d.h. $a \in \mathbb{Q}$ dann $x^a = \sqrt[m]{x^n}$. Wenn x > 1 dann gilt: $x^{a} = \begin{cases} > 1 \text{ wenn } a > 0 \\ = 1 \text{ wenn } a = 0 \\ < 1 \text{ wenn } a < 0 \end{cases}$

4.11 Satz

Sei $a \in \mathbb{R}$. Die Reihe $\sum_{k=1}^{\infty} \frac{1}{k^a}$ konvergiert genau dann, wenn a > 1

Beweis:

Wenn $a \le 0$ dann $\frac{1}{k^a} \ge 1 \Rightarrow$ Reihe divergiert. Sei a > 0, sei $a_n = \frac{1}{n^a}$

Sei
$$a > 0$$
, sei $a_n = \frac{1}{n^a}$

 $n < n + 1 \Rightarrow n^a < (n + 1)^a \Rightarrow a_n > a_{n+1}$ Somit (a_n) monoton fallend.

 $\lim_{n \to \infty} n^a = \infty \Rightarrow \lim_{n \to \infty} \frac{1}{n^a} = 0 \Rightarrow \text{Verdichtungslemma ist anwendbar}.$

Bilde
$$2^n \cdot a_{2^n} = 2^n \cdot \frac{1}{(2^n)^a} = 2^n \cdot 2^{-n \cdot a} = 2^{n(1-a)} = (2^{1-a})^n = x^n$$

mit
$$x := 2^{1-a}$$

mit $x := 2^{1-a}$ Erhalte: $\sum_{k=1}^{\infty} \frac{1}{k^a}$ konvergiert $\Leftrightarrow \sum_{k=0}^{\infty} x^k$ konvergiert $\Leftrightarrow |x| < 1 \Leftrightarrow x < 1 \Leftrightarrow 2^{1-a} < 1$ $\Leftrightarrow 1 - a < 0 \Leftrightarrow a > 1$

Beziehung:
$$\sum_{k=1}^{\infty} \frac{1}{k^a} = \zeta(a) \text{ für } a > 1$$

Riemannsche Zetafunktion Spezielle Werte:

$$\zeta(2) = \sum_{k \geq 1} \tfrac{1}{k^2} = \tfrac{\pi^2}{6}$$

$$\zeta(4) = \sum_{k \ge 1} \frac{1}{k^4} = \frac{\pi^4}{90}$$

$$\zeta(6) = \sum_{k \ge 1} \frac{1}{k^6} = \frac{\pi^6}{945}$$

Frage: Für welche z ist $\zeta(z) = 0$?

<u>Teilfolgen</u>

4.12 Definition Teilfolge

Sei (a_n) eine Folge reeller Zahlen.

Eine Teilfolge von (a_n) ist eine Folge der Form $(a_{n_k})_{k\geq 0}$ wobei n_0, n_1, n_2, \dots streng monoton wachsende Folge in \mathbb{N}_0

Beispiel:

$$(a_n) = (1, x, x^2, x^3, x^4...)$$

 $(n_k) = (1, 4, 9, 16) \rightsquigarrow \text{Teilfolge}(x, x^4, x^9, x^{16}, ...)$

4.13 Bemerkung

Wenn $a_n \to a$ für alle $n \to \infty$ dann konvergiert jede Teilfolge von (a_n) gegen a (Präsenzübung Nr. 9)

Schlüsselsatz

4.14 Lemma

Jede Folge reeller Zahlen $(a_n)_{n\geq 0}$ hat eine monotone Teilfolge.

Beweis:

Wir nennen $n \in \mathbb{N}_0$ <u>extrem</u> wenn $a_n \ge a_m$ für alle $m \ge n$ Unterscheide zwei Fälle:

• Es gibt unendlich viele extreme $n \in \mathbb{N}$ Dies seien $n_0, < n_1, n_2...$ Dann $a_{n_0} \ge a_{n_1} \ge a_{n_2}...$ Weil n_0 extrem ... weil n_1 extrem. \rightarrow monoton fallende Teilfolge gefunden

• Es gibt nur endlich viele extreme n

```
Wähle n_0 \in \mathbb{N} s.d. gilt: m \ge n_0 \Rightarrow m nicht extrem.

n_0 nicht extrem \Rightarrow es gibt n_1 \ge n_0 mit a_{n_1} > a_{n_0} insbesondere n_1 > n_0

n_1 \Rightarrow n_2 \ge n_1 mit a_{n_2} > a_{n_1} insbesondere n_2 > n_1

n_2 \Rightarrow n_3 \ge n_2 mit a_{n_3} > a_{n_2} insbesondere n_3 > n_2

usw.

Erhalte n_0 < n_1 < n_3 < \dots mit a_{n_0} < a_{n_1} < a_{n_2} < \dots

\Rightarrow streng monoton wachsende Teilfolge gefunden.
```

4.15 Satz Bolzano-Weierstraß

Jede beschränkte Folge reeller Zahlen hat eine konvergernte Teilfolge.

Beweis:

Es gibt ein monotone Teilfolge (Lemma 4.14) Diese ist beschränkt ⇒konvergent.

4.16 Definition Cauchyfolge

Eine Folge reeller Zahlen $(a_n)_{n\geq 0}$ heißt Cauchyfolge wenn gilt: Für jedes $\epsilon>0$ gibt es ein $N\in\mathbb{N}$ sodass für $m,n\geq N$ gilt: $|a_n-a_m|<\epsilon$

4.17 Satz Cauchykriterium

Eine Folge reeller Zahlen (a_n) konvergiert genau dann, wenn sie eine Cauchyfolge ist.

Beweis:

```
"\(\Rightarrow\)" Sei a_n \to a für n \to \infty
Gegeben sei \epsilon > 0. Es gilt N \in \mathbb{N} so dass |a_n - a| < \frac{\epsilon}{2} für n \ge N
Für n, m \ge N gilt:
|a_n - a_m| = |a_n - a + a - a_m| \le |a_n - a| + |a - a_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon
\Rightarrow (a_n) \text{ ist eine Cauchyfolge}
"\(\Rightarrow\)" Sei (a_n) eine Cauchyfolge
```

Behauptung (a_n) ist beschränkt

Beweis:

Wähle $\epsilon=1$ Es gibt $N\in\mathbb{N}$ mit $|a_n-a_m|<1$ für $m,n\geq N$ Sei $C=\max\{|a_0|,|a_1|,|a_2|...|a_N|,|a_N|+1\}$ Dann $|a_n|\leq C$ für alle \mathbb{N} $(n\geq N\Rightarrow |a_n-a_N|<1\Rightarrow |a_n|<|a_N|+1)$ Also ist (a_n) beschränkt $\Rightarrow (a_n)$ hat eine monotone Teilfolge $(a_{n_k})_{k\geq 0}$ diese ist beschränkt \Rightarrow konvergent. Sei $\lim_{k\to\infty}(a_{n_k})$

Behauptung

 $a_n \to a$ für $n \to \infty$ Sei $\epsilon > 0$ gegeben. Es gibt $n \in \mathbb{N}$ so dass 1. $n, m \ge N \Rightarrow |a_n - a_m| < \frac{\epsilon}{2}$ 2. $k \ge N \Rightarrow |a_{n_k} - a| < \frac{\epsilon}{2}$ Sei $k \ge N$

Bemerkung:

Für jedes
$$k \in \mathbb{N}$$
 ist $n_k \ge k$
$$|a_k - a| = |a_{n_k} + a_{n_k} - a| \le |a_k - a_{n_k}| + |a_{n_k} - a| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 Also $a_k \to a$ für $n \to \infty$

Umformulierung für Reihen

4.18 Satz (Cauchy-Kriterium für Reihen)

Eine reelle Reihe $\sum_{k=0}^{\infty} a_k$ konvergiert genau dann, wenn gilt: Für jedes $\epsilon > 0$ gibt es ein $N \in \mathbb{N}$ so dass für alle $n, m \geq N, \ n \leq m$

$$\left|\sum_{k=n}^{m}\right| < \epsilon$$

Beweis: Partialsummen

$$s_n = \sum_{k=0}^{n} a_k$$

$$\sum_{k=n}^{m} = s_m - s_{n-1}$$
Damit ist 4.19 äquivalent zu 4.18

Wiederholung

Eine Folge reeller Zahlen (a_n) ist eine Cauchyfolge wenn gilt:

Für jedes $\epsilon > 0$ gibt es ein $n \in \mathbb{N}$ so dass für $m, n \ge \mathbb{N}$ gilt $|a_n - a_m| < \epsilon$

 (a_n) konvergiert \Leftrightarrow (a_n) ist Cauchyfolge

Für Reihen: $\sum_{k=0}^{\infty} a_k$ konvergiert \Leftrightarrow Für jedes $\epsilon > 0$ gibt es ein $N \in \mathbb{N}$ so dass für $m, n \ge \mathbb{N}$ mit $m \ge n$ ist $\left| \sum_{k=0}^{m} a_k \right| < \epsilon$

Absolute Konvergenz

4.19 Definition Absolute Konvergenz

Eine Reihe $\sum_{k=0}^{\infty} a_k$ mit $a_k \in \mathbb{R}$ heißt absolut konvergent wenn die Reihe $\sum_{k=0}^{\infty} |a_k|$ konvergiert

4.20 Satz

Jede absolut konvergente Reihe konvergiert

Beweis:

Verwende Cauchy-Kriterium für Reihen

Sei
$$\sum_{k=0}^{\infty} a_k$$
 absolut von konvergent.

$$\Rightarrow \text{Für jedes } \epsilon > 0 \text{ gibt es } N \in \mathbb{N} \text{ mit:}$$

$$\text{Für } n \ge m \ge N \text{ gilt } \sum_{k=m}^{n} |a_k| < \epsilon \Rightarrow \left| \sum_{k=m}^{n} a_k \right| \le \sum_{k=m}^{n} |a_k| < \epsilon \Rightarrow \sum_{k=m}^{n} a_k \text{ konvergiert}$$

Bemerkung:

Umkehrung gilt nicht.
$$\sum_{k=1}^{\infty} (-1)^k \frac{1}{k} = -1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

denn
$$\sum_{k=1}^{\infty} \left| (-1)^k \frac{1}{k} \right| = \sum_{k=1}^{\infty} \frac{1}{k}$$
 divergiert

4.21 Definition Majorante

Eine Reihe $\sum_{k=0}^{\infty} b_k$ heißt Majorante der Reihe $\sum_{k=0}^{\infty} a_k$, wenn $|a_k| \le b_k$ für alle k (schon gewesen wenn $a_k \ge 0$)

4.22 Satz (Majorantenkriterium)

Wenn eine Reihe eine konvergente Majorante hat, dann konvergiert sie absolut. Beweis von Satz 4.5

Umordnung von Reihen

4.23 Definition Umordnung von Reihen

Eine Umordnung einer Reihe $\sum_{k=0}^{\infty} a_k$ ist eine Reihe der Form $\sum_{k=0}^{\infty} a_{n_k}$ wobei $(n_0, n_1, n_2...)$ eine Folge natürlicher Zahlen ist, in der jedes $n \in \mathbb{N}_0$ genau einmal vorkommt.

4.24 Satz

Jede Umordnung einer <u>absolut</u> konvergenten Reihe ist wieder absolut konvergent und hat den gleichen Grenzwert. Im Gegensatz dazu gilt:

4.25 Satz

Sei $\sum_{k=0}^{\infty} a_k$ eine konvergente, nicht absolut konvergente, Reihe. Für jedes $c \in \mathbb{R} \cup \{-\infty, \infty\}$ hat $\sum a_k$ eine Umordnung, die gegen c konvergiert.

Beispiel:

Eine Reihe $\frac{1}{2} - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \frac{1}{4} - \frac{1}{4} + \frac{1}{5} - \frac{1}{5} + \dots$ konvergiert gegen 0. Konvergiert aber nicht absolut: Folge:

$$\left(\frac{1}{2}, 0, \frac{1}{3}, 0, \frac{1}{4}, 0, \dots \to 0\right)$$
 $\sum_{k=1}^{\infty} 2 \cdot \frac{1}{k} = \infty$

Produziere Umordnung, die gegen ∞ konvergiert:

$$\frac{1}{2} - \frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{\ge \frac{1}{4} + \frac{1}{4} = \frac{1}{2}} - \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{\ge \frac{1}{2}} - \underbrace{\frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{16}}_{\ge \frac{1}{2}} - \underbrace{\frac{1}{5} + \dots + \frac{1}{16}}_{\ge \frac{1}{2}} - \underbrace{\frac{1}{2}}_{\ge \frac{1}{2}} + \underbrace{\frac{1}{2} - \frac{1}{3}}_{\ge \frac{1}{2}} + \underbrace{\frac{1}{2} - \frac{1}{4}}_{\le \frac{1}{4}} + \underbrace{\frac{1}{2} - \frac{1}{5}}_{\le \frac{1}{10}} + \dots = \infty$$

Beweise von 4.24, 4.25 eventuell später.

Produkte von Reihen

Frage: was ist

$$\left(\sum_{k=0}^{\infty} a_k\right) \cdot \left(\sum_{k=0}^{\infty} b_k\right)?$$

4.26 Definition Produkt von Reihen

Das Cauchy-Produkt von zwei Reihen $\sum_{k=0}^{\infty}a_k$ und $\sum_{k=0}^{\infty}b_k$ ist eine Reihe $\sum_{k=0}^{\infty}c_k$ mit

$$c_n := \sum_{k=0}^{\infty} a_k \cdot b_{n-k} = a_0 \cdot b_n + a_1 \cdot b_{n-1} + a_2 \cdot b_{n-2} + \dots + a_n \cdot b_0$$

2-dimensionale Anordnung der $a_k \cdot b_l$ SKIZZE

4.27 Satz

Seien $\sum a_k$ und $\sum b_k$ konvergente Reihen, mindestens eine von ihnen absolut konvergent. Dann konvergiert ihr

Cauchy-Produkt
$$\sum_{k=0}^{\infty}c_k$$
. Wenn $\sum_{k=0}^{\infty}a_k=a$, $\sum_{k=0}^{\infty}b_k=b$ $\sum_{k=0}^{\infty}c_k=a\cdot b$

Beweis von 4.27:

Sei $\sum a_k$ absolut konvergent, $\sum b_k$ konvergent, so zeige $\sum c_k$ konvergent, $c_n := \sum_{k=0}^{\infty} a_k \cdot b_{n-k}$

Schreibe:
$$s_n = a_0 + \ldots + a_n$$

 $t_n = b_0 + \ldots + b_n$
 $u_n = c_0 + \ldots + c_n$
 $s_n \rightarrow a, t_n \rightarrow b$ (*)

Zeige
$$u_n \to a \cdot b$$

$$(*) \Rightarrow s_n \cdot b \to a \cdot b \text{ Zeige } s_n \cdot b - u_n \to 0$$

$$u_n = a_0 \cdot b_0 + (a_0 \cdot b_1 + a_1 \cdot b_0) + (a_0 \cdot b_2 + a_1 \cdot b_1 + a_2 \cdot b_0) + \dots + a_n \cdot b_0 = a_1 \cdot t_{n-1} + a_2 \cdot t_{n-2} + \dots + a_n \cdot t_0$$

$$s_n \cdot b = a_0 \cdot b + a_1 \cdot b + a_2 \cdot b + a_3 \cdot b + \dots + a_n \cdot b$$

$$s_n \cdot b - u = a_0 \cdot (b - t_n) + a_1 \cdot (b - t_{n-1}) + a_2 \cdot (b - t_{n-2}) + a_3 \cdot (b - t_{n-3}) + \dots + a_n \cdot (b - t_0) \xrightarrow{\circ} 0$$

Sei
$$C \in \mathbb{R}$$
 mit $|b| \le C$ und $|b - t_n| \le C$ für alle n

Sei
$$\sum_{k=0}^{\infty} |a_n| = a^*.$$

Gegeben sei $\epsilon > 0$. Wähle $N \in \mathbb{N}$ so dass $C \cdot (|a_N| + |a_{N+1}| + |a_{N+2}| + \dots) < \frac{\epsilon}{2}$ (geht weil $\sum |a_k|$ konvergiert) und $|b-t_n| < \frac{e}{2a^*}$ für alle $n \ge N$ (geht weil $b-t_n \to 0$ für alle $m \to \infty$)

Bemerkung:

Wenn $a^* = 0$ dann $a_n = 0$ für alle k. Dann alles klar. Für alle $n \ge 2N$ gilt:

$$|a_{0}(b-t_{n})+a_{1}(b-t_{n-1})+\ldots+a_{n}(b-t_{0})| \leq |a_{0}|\cdot|(b-t_{n})|+|a_{1}|\cdot|(b-t_{n-1})|+\ldots+|a_{n}|\cdot|(b-t_{0})|$$

$$\leq (|a_{0}|+|a_{1}|+|a_{2}|+\ldots|a_{N}|)\cdot\frac{\epsilon}{2a^{*}}+(|a_{N+1}|+|a_{N+2}|+|a_{N+3}|+\ldots|a_{n}|)\cdot C \leq a^{*}\cdot\frac{\epsilon}{2a^{*}}+\frac{\epsilon}{2}=\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$

$$\underset{wegen(2)}{\overset{\uparrow}{\underset{wegen(2)}{\longrightarrow}}}$$

Also gilt:
$$s_n - u \to 0$$
 für $n \to \infty$

Zusatz Wenn $\sum a_k$ und $\sum b_k$ beide absolut konvertieren, dann auch das Cauchy-Produkt $\sum c_k$

Beweis:

Sei
$$\sum a_k^*$$
 das Cauchy-Produkt von $\sum |a_k|$ und $\sum |b_k|$. Beide konvergieren $\Rightarrow \sum_n c_n^*$ konvergiert

$$\mathrm{d.h.}\ c_n^* = |a_0 \cdot b_n| + |a_1 \cdot b_{n-1}| + \ldots + |a_n \cdot b_0| \geq |a_0 \cdot b_n + a_1 \cdot b_{n-1} + \ldots + a_n \cdot b_0| = |c_n|$$

Also
$$\sum_{n} c_{n}^{*}$$
 ist konvergente Majorante von $\sum_{n} c_{n} \Rightarrow \sum_{n} c_{n}$ konvergent absolut

Beispiel:

Die Reihe
$$\sum_{k=0}^{\infty} a_k = 1 - + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}} - \dots$$
 konvergiert (Leibnitz) Das Cauchy-Produkt der Reihe von $\sum a_k$ und $\sum a_k$ konvergiert nicht.

4.28 Beispiel

Für jedes $x \in \mathbb{R}$ ist die Exponentialreihe $exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ absolut konvergent.

Es gilt $exp(x) \cdot exp(y) = exp(x+y)$ Funktionalgleichung der Exponentialfunktion.

Beweis:

Betrag von
$$\sum_{k=0}^{\infty} \left| \frac{x^k}{k!} \right| = \sum_{k=0}^{\infty} \frac{|x|^k}{k!} = exp(|x|)$$
 konvergiert (bekannt, Quotientenkriterium)

Berechne Cauchy-Produkt
$$exp(x) \cdot exp(y) = \sum_{k=0}^{\infty} c_k$$

$$\begin{split} c_k &= \frac{x^0}{0!} \cdot \frac{x^n}{n!} + \frac{x^1}{1!} \cdot \frac{y^{n-1}}{(n-1)!} + \ldots + \frac{x^n}{n!} \cdot \frac{y^0}{0!} = \frac{1}{n!} \cdot \left(\frac{n!}{0! \cdot n!} \cdot x^0 y^n + \frac{n!}{1! \cdot (n-1)!} \cdot x^1 y^{n-1} + \ldots + \frac{n!}{n! \cdot 0!} \cdot x^n y^0 + \right) \\ &= \frac{1}{n!} \sum_{k=0}^n \frac{n!}{k! \cdot (n-k)!} x^k y^{n-k} = \frac{1}{n!} \sum_{k=0}^n binonk x^k y^{n-k} \\ &= \frac{1}{n!} (x+y)^n \Rightarrow \sum_{k=0}^\infty c_k = exp(x+y) \end{split}$$

5 Abbildungen und Funktionen

5.1 Definition Abbildung

Seien A, B Mengen. Eine Abbildung von A nach B ist eine Vorschrift, die jedem Element von A ein Element von B zuordnet.

Notation:

$$f: A \to B, \ a \mapsto f(a) \ a \in A$$

A heißt Definitionsbereich von f B heißt Wertebereich von f

Beispiel:

- 1. Alle Personen in $L1 \mapsto \mathbb{N}$ $P \mapsto \text{Geburtsjahr von } P$
- 2. $f : \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$ $g : \mathbb{R} \to \mathbb{R}_{\geq 0} = \{x \in \mathbb{R} \mid x \geq 0\}, \ g(x) = x^2$ $h : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \ h(x) = x^2$

Bemerkung:

3. f, g, h sind verschieden Sei M Menge. Die Identität von M ist die Abbildung $id_M: M \to M, id_M(x) = x$

5.2 Definition In-/Sur-/Bijektivität

Eine Abbildung $f: A \rightarrow B$ heißt:

- 1. <u>injektiv</u> wenn gilt: Für alle $a, a' \in A$ mit f(a) = f(a') ist auch a = a'
- 2. <u>surjektiv</u> wenn gilt: Für jede $b \in B$ gibt es ein $a \in A$ mit f(a) = b
- 3. <u>bijektiv</u> wenn f injektiv und surjektiv ist

Bemerkung:

$$f \text{ ist} \left\{ \begin{array}{l} \text{injektiv} \\ \text{surjektiv} \\ \text{bijektiv} \end{array} \right\} \text{genau dann wenn für jedes } b \in B \left\{ \begin{array}{l} \text{h\"{o}}\text{chstens} \\ \text{mindestens} \\ \text{genau} \end{array} \right\} \text{ein } a \in A \text{ mit } f(a) = b$$

Beispiel:

f, g, h wie oben

- f nicht surjektiv: es gibt kein $a \in \mathbb{R}$ mit f(a) = -1 nicht injektiv: $f(-2) = 4 = f(2), 2 \neq -2$.
- **g** ist surjektiv, denn für jedes $b \in \mathbb{R}_{\geq 0}$ gilt $f(\sqrt{b}) = b$ also gibt es $b \in \mathbb{R}_a$ ist nicht injektiv (wie f)
- h surjektiv wie g. $\left(\sqrt{b} \ge 0\right)$ injektiv, denn: Wenn $a, a' \ge 0$ und $a^2 = (a')^2$ dann a = a' also h bijektiv.

5.3 Definition Komposition

Seien $f: A \to B$, $g: B \to C$ Abbildungen Die Komposition von f und g ist die Abbildung $g \circ f: A \to C$, $(g \circ f)(a) := g(f(a))$ Sprich \circ : "nach", "verkettet"

5.4 Satz

Eine Abbildung $f:A\to B$ ist bijektiv \Leftrightarrow es gibt eine Abbildung $g:B\to A$ mit $f\circ g=id_B$ (d.h. f(g(b))=b für alle $b\in B$ g(f(a))=a für alle $a\in A$)

Definition

Wenn $f: A \to B$ bijektiv ist, heißt die eindeutige Abbildung $g: B \to A$ wie oben die Umkehrabbildung (inverse Abbildung) von f Bezeichnung: $g = f^{-1}$.

Beweis:

```
Angenommen, g: B \to A gegeben mit f \circ g = id_B, g \circ f = id_A^{-1}

f surjektiv: Sei b \in B. b = f(g(b)) = f(a) mit a = g(b)

f injektiv: Sei a, a' mit f(a) = f(a') zeige a = a'

a = g(f(a)) = g(f(a')) = a'
```

Angenommen, f ist bijektiv, zeige g existiert.

Gegeben sei $b \in B$ f bijektiv \Rightarrow es gibt genau ein $a \in A$ mit f(a) = b Setze g(b) := a Das definiert Abbildung $g: B \to A$

Zeige $g \circ f = id$; $f \circ g = id$ $(f \circ g)(b) = f(g(b)) = f(a) = b$ wobei a wie eben

Zeige: $(g \circ f)(a)$ für alle $a \in A$ f injektiv: Reicht f(g(f)a)) = f(a)Das gilt weil $f \circ g = id_B$

Eindeutigkeit von g:

Angenommen,
$$g^*: B \to A$$
 erfüllt $g^* \circ f = id_A$, $f \circ g^* = id_B$
Dann gilt: $g = g \circ id_B = g \circ f \circ g^* = id_A \circ g^* = g^*$

Beispiel:

Bewiesen 5.12

- $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, f(x) = x^k$ bijektiv $(k \geq 1)$ Die Umkehrabbildung f^{-1} heißt k-te Wurzelabbildung $f^{-1}(x) = \sqrt[k]{x}$
- exp: $\mathbb{R} \to \mathbb{R}_{>0} \exp(x) = \sum_{k=0}^{\infty}$ (absolut konvergente Reihe) ist bijektiv. Die Umkehrabbildung heißt Logarithmus. bew. $log = exp()^{-1}\mathbb{R}_{>} \to \mathbb{R}_{a}$

Bild und Urbild

5.5 Definition

Sei $f: A \rightarrow B$ Abbildung

- 1. Für eine Teilmenge $X \subset A$ ist $f(x) := \{f(x) | x \in X\} \subseteq B$ das Bild von X unter f
- 2. Für eine Teilmenge $Y \subseteq B$ ist $f^{-1} := \{a \in A | f(a) \in Y\} \subseteq A$ das Urbild von Y unter f

Vorsicht nicht Urbild und Umkehrabbildung verwechseln.

 $^{^{1}}$ Dies gilt, weil g als Umkehrfunktion von f definiert ist.

Beispiel:

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$$
$$f(\{1, 2, -2\}) = \{1, 4\}$$
$$f^{-1}(\{1, -2, 4\}) = \{1, -1, 2, -2\} = f^{-1}(\{1, 4\})$$
$$f^{-1}(\{9\}) = \{3, -3\} \qquad f^{-1}(\{-5\}) = \emptyset$$

Funktionen

5.6 Definition Funktion

Sei $D\subseteq\mathbb{R}$ Teilmenge. Eine reelle Funktion auf D ist eine Abbildung $f:D\to\mathbb{R}$ Der $\underline{\operatorname{Graph}}$ von f ist die Menge $\Gamma_f=\{(x,f(x)\mid x\in D\}$ $\Gamma_f\subseteq D\times\mathbb{R}$

Bemerkung:

Oft ist D ein Intervall

seien $a, b \in \mathbb{R}$

$$[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$$
 (abgeschlossen)

$$(a, b] = \{x \in \mathbb{R} | a < x \le b\}$$
 (halboffen)

$$[a, b) = \{x \in \mathbb{R} | a \le x < b\}$$
 (halboffen)

$$(a, b) = \{x \in \mathbb{R} | a < x < b\} \text{ (offen)}$$

Uneigentliche Intervalle:

$$[a, \infty) = \{x \in \mathbb{R} | a \le x\} = \mathbb{R}_{\ge a}$$

$$(a, \infty) = \{x \in \mathbb{R} | a < x\} = \mathbb{R}_{>a}$$

$$(-\infty, a] = \{x \in \mathbb{R} | x \le a\} = \mathbb{R}_{\le a}$$

$$(-\infty, a) = \{x \in \mathbb{R} | x < a\} = \mathbb{R}_{

$$(-\infty, \infty) = \mathbb{R}$$$$

Beispiel: Funktionen

1.
$$f: [0,2] \to \mathbb{R}, f(x) = x^2, \Gamma_f \le [0,2]x\mathbb{R}$$

2. Betragsfunktionen: $|\cdot|: \mathbb{R} \to \mathbb{R}, x \mapsto |x|$ An dieser Stelle fehlen noch Graphen.

3.
$$g: \mathbb{R} \setminus \{0\} \to \mathbb{R}, g(x) = \frac{1}{x}$$
 Hier auch.

4.
$$exp: \mathbb{R} \to \mathbb{R}$$
.

5. [.]:
$$\mathbb{R} \to \mathbb{R}$$
 Gaußklammer $[x] := max\{n \in \mathbb{Z} | n \le x\}$

Beispiel:

$$[5] = 5$$

 $[5, 78] = 5$
 $[-1, 2] = -2$

6. Sei
$$h : \mathbb{R} \to \mathbb{R}$$
 definiert durch $h(x) = \begin{cases} 0 \text{ wenn } x \in \mathbb{Q} \\ 1 \text{ wenn } x \notin \mathbb{Q} \end{cases}$

$$h(\sqrt{2}) = 1, h(\frac{3}{7}) = 0$$

5.7 Definition (Rechnen mit Funktionen)

Sei $D \subseteq \mathbb{R}, \ f,g:D \to \mathbb{R}$ Funktionen auf D. Definiere

- $f + g : D \to \mathbb{R}$ durch (f + g)(x) := f(x) + g(x)
- $(f \cdot g)(x) := f(x) \cdot g(x)$
- Für $a \in \mathbb{R}$ setze $a \cdot f : D \to \mathbb{R}, (a \cdot f)(x) := a \cdot f(x)$
- Angenommen, $f(x) \neq 0$ für alle $x \in D$

$$\frac{1}{f}:\, D\to \mathbb{R}, \frac{1}{f}(x):=\frac{1}{f(x)}=f(x)^{-1}$$

<u>Vorsicht</u> nicht $\frac{1}{f}$ mit Umkehrbild oder Urbild verwechseln

5.8 Definition Polynomfunktion

• Eine Polinomfunktion ist eine Funktion der Form

$$f:\mathbb{R}\to\mathbb{R},\ f(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_0=\sum_{k=0}^na_kx^k$$
 wobei $a_0,\ldots,a_n\in\mathbb{R}$ fest

• Seien $f,g:\mathbb{R}\to\mathbb{R}$ Polynomfunktionen Sei $D=\{x\in\mathbb{R}\mid g(x)\geq 0\}\leadsto \frac{f}{g}:D\to,Rx\mapsto \frac{f(x)}{g(x)}$ Solche Funktionen heißen rationale Funktionen.

Beispiel:

$$f: \mathbb{R}\setminus\{0,1\} \to \mathbb{R}, \ f(x) = \frac{x^7 + 5x^2}{x(x-1)}$$

5.9 Definition

Seien $f:C\to\mathbb{R},g:D\to\mathbb{R}$ Funktionen, sodass $f(C)\subseteq D$ Eine Komposition von f und g ist $g\circ f:C\to\mathbb{R}$ $(g\circ f)(x)=g(f(x))$

Wiederholung

Eine Abbildung $f: x \to y$

- ist <u>injektiv</u> wenn gilt: für alle $a, b \in X$ mit f(a) = f(b) ist a = b
- ist <u>surjektiv</u> wenn für jedes $y \in Y$ ein $a \in X$ existiert mit f(a) = y

Sei $D \subseteq \mathbb{R}$ Teilmenge. Eine Funktion auf D ist eine Abbildung $f: D \to \mathbb{R}$

Monotone Funktionen

Bemerkung:

Eine Funktion $(a_n)_{n\geq 0}$ reeller Zahlen ist eine Abbildung $a:\mathbb{N}_0\to\mathbb{R}$ d.h. eine Funktion auf \mathbb{N}_0

5.10 Definition Monotonie

Sei $D \subseteq \mathbb{R}$. Eine Funktion $f : D \to \mathbb{R}$ heißt:

- 1. $\underline{\text{monoton wachsend}}$ wenn gilt: Für alle $a, b \in D$ mit a < b ist immer $f(a) \le f(b)$
- 2. streng monoton wachsend: $a < b \Rightarrow f(a) < f(b)$
- 3. monoton fallend: $a < b \Rightarrow f(a) \ge f(b)$
- 4. streng monoton fallend: $a < b \Rightarrow f(a) > f(b)$

Bemerkung:

Jede streng monotone Funktion f ist injektiv

Beweis:

Zeige: $a \neq b \Rightarrow f(a) \neq f(b)$

Wenn $a \neq b$ dann a < b oder b < a

Wenn f streng monoton wachsend: Folgt f(a) < f(b) oder f(b) < f(a) also $f(a) \neq f(b)$

Wenn f streng monoton fällt: es folgt f(a) > f(b) oder f(b) > f(a) also $f(a) \neq f(b)$

5.11 Beispiel

- 1. $f: \mathbb{R}_{\geq 0} \to \mathbb{R}, \ x \mapsto x^k =: f(x) \text{ mit } k \geq 1$ f ist streng monoton wachsend/steigend
- 2. $h: \mathbb{R} \to \mathbb{R}, h(x) = [x]$

h ist monoton wachsend, aber nicht streng monoton.

Monoton wachsend: $x < y \Rightarrow [x] < [y]$

$$x < y \Rightarrow [x] < [y]$$

z. B.:
$$1, 2 < 1, 3, [1, 2] = 1 = [1, 3]$$

3. Exponentialfunktion

$$exp: \mathbb{R} \to \mathbb{R}, \ exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

Ist streng monoton wachsend.

Beweis:

a)
$$exp(0) = 1 + \frac{0}{1!} + \frac{0}{2!} + \dots = 1$$

b) Sei
$$a > 0$$

 $exp(a) = 1 + \frac{a}{1!} + \frac{a}{2!} + ... > 1$

- c) Sei $a > 0exp(-a) \cdot exp(a) = exp(-a+a) = exp(0) = 1$ $\Rightarrow exp(-a) = \frac{1}{exp(a)} \Rightarrow 0 < exp(a) < 1$ Insbesondere: exp(b) > 0 für alle $b \in \mathbb{R}$
- d) Sei a > b

$$exp(a) = exp(a - b + b) = exp(a - b) \cdot exp(b) > exp(b) \Rightarrow exp \text{ streng monoton wachsend}$$

6 Stetigkeit

Idee Eine Funktion ohne Sprünge heißt stetig

6.1 Definition

Sei $D \subseteq \mathbb{R}$, $f : D \to \mathbb{R}$ eine Funktion

- 1. f heißt stetig in $x \in D$ wenn gilt: Für jedes $\epsilon > 0$ gibt es ein $\delta > 0$ so dass für jedes $y \in D$ mit $|x - y| < \delta$ gilt $|f(x) - f(y)| < \epsilon$
- 2. f heißt stetig wenn f in jedem $x \in D$ stetig ist

6.2 Beispiel

- 1. Die Funktion $id : \mathbb{R} \to \mathbb{R}, x \mapsto x$ ist stetig
- 2. Die Funktion $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ ist stetig.

Beweis:

Sei $x, y \in \mathbb{R}$ y = x + h.

$$f(y) - f(x) = (x + h)^2 - x^2 = x^2 + 2xh + h^2 - x^2 = 2xh + h^2$$

Wähle jedenfalls $\delta \le 1$. Wenn $|h| = |x - y| < \delta$ dann |h| < 1

$$|f(y) - f(x)| = |2xh + h^2| \le |2x| \cdot |h| + |h|^2 < |2x| \cdot |h| + |h| = (|2x| + 1) \cdot |h|$$

Gegeben sei $\epsilon > 0$

Wähle
$$\delta = min \left\{ 1, \frac{\epsilon}{|2x| + 1} \right\}$$

Wenn $|x - y| < \delta$ dann

$$|f(x) - f(y)| < (2|x| + 1) \cdot |h| < (2|x| + 1) \cdot \frac{\epsilon}{2|x| + 1} = \epsilon$$

Also f stetig in x

3.
$$g := \mathbb{R} \to \mathbb{R}$$
, $g(x) := \{x\}$
 g ist stetig an $x \Leftrightarrow x \notin \mathbb{Z}$

Beweis g nicht stetig an $x \in \mathbb{Z}$:

Zeige: es gibt ein
$$\epsilon > 0$$
 so dass kein $\delta > 0$ existiert mit: $|x - y| > \delta \Rightarrow |g(x) - g(y)| < \epsilon$ z.B. $\epsilon = 1$ Sei $\delta > 0$. $y = x - \frac{\delta}{2} \quad |x - y| = \frac{\delta}{2} < \delta$ aber $g(y) = \{x - \frac{\delta}{2}\} = x - 1$ (weil $x \in \mathbb{Z}$) $|g(x) - g(y)| = |x - (x - 1)| = 1 \not< \epsilon$

6.3 Satz

Die Exponentialfunktion $exp : \mathbb{R} \to \mathbb{R}$ ist stetig.

Beweis:

Verwende nur:

- Funktionalgleichung: $exp(x + y) = exp(x) \cdot exp(y)$
- exp ist streng monoton wachsend
- $\exp(0) = 1$

Behauptung

Für jedes $\epsilon > 0$ gibt es ein $n \in \mathbb{N}$ mit $exp(\frac{1}{n}) < 1 + \epsilon$ Angenommen, $exp(\frac{1}{n}) \ge 1 + \epsilon$

Dann
$$exp(1)$$

$$= \underbrace{\frac{1}{n} + \dots \frac{1}{n}}_{n}$$

$$= exp(\frac{1}{n}) + \dots + exp(\frac{1}{n}) = exp(\frac{1}{n})^{n}$$

$$\geq (1 + \epsilon)^{n} \geq 1 + n\epsilon$$
Republic

 $exp(1) \ge 1 + n\epsilon$ $n \le \frac{exp(1) - 1}{\epsilon}$

Das gilt nur für endliche viele $n \in \mathbb{N}$

<u>Zeige</u> exp ist stetig an 0. Gegeben sei $\epsilon > 0$, $OE?\epsilon < 1$ Wähle $n \in \mathbb{N}$ mit $exp(\frac{1}{n}) < 1 + \epsilon$

$$\Rightarrow exp(-\frac{1}{n}) = exp(\frac{1}{n})^{-1} < \frac{1}{1+\epsilon} = \frac{1-\epsilon}{(1+\epsilon)(1-\epsilon)} = \frac{1-\epsilon}{1-\epsilon^2} > 1-\epsilon$$

Sei
$$\delta \frac{1}{n}$$

Sei $y \in \mathbb{R}$, $|0 - y| < \delta = \frac{1}{n}$
 $|y| < \frac{1}{n}$ d.h.
 $-\frac{1}{n} < y < \frac{1}{n}$

exp streng monoton wachsend.

$$\Rightarrow 1 - \epsilon < exp(-\frac{1}{n}) < exp(y) < exp(\frac{1}{n}) < 1 + \epsilon$$

 $\Rightarrow |exp(y) - exp(0)| < \epsilon$ Also exp stetig in 0

Zeige exp ist eine stetig in $x \in \mathbb{R}$. Gegeben sei $\epsilon >$

Sei y = x + h, $|h| < \delta$ (δ noch zu wählen)

$$|exp(y) - exp(x)| = |exp(x+h) - exp(x)| = |exp(x) \cdot exp(h) - exp(x)| = exp(x) \cdot exp(h) - 1$$

 $|exp(y) - exp(x)| < \epsilon$

$$\Leftrightarrow exp(x) \cdot |exp(h) - 1| < \epsilon \Leftrightarrow exp(h) - 1 < \frac{\epsilon}{exp(x)} = \epsilon'$$

Weil exp stetig in 0 ist gibt es ein $\delta > 0$ mit $|h| < \delta \Rightarrow |exp(h) - 1| < \frac{\epsilon}{exp(x)}$ $\Rightarrow exp$ ist stetig in x

6.4 Satz (Folgenstetigkeit)

Sei $D \subseteq \mathbb{R}$, $x \in D$, $f : D \to \mathbb{R}$ Funktion f ist genau dann stetig in x wenn gilt:

• Für jede Folge $(x_n)_{n\geq 0}$ mit $x_n\in D,\ x_n\to x$ für $n\to\infty$ gilt auch $f(x_n)\to f(x)$ für $n\to\infty$

6.5 Satz

Sei $D \subseteq \mathbb{R}, \ f, g: D \to \mathbb{R}$ in $x \in D$ Dann gilt:

- $f + g : D \to \mathbb{R}$ stetig in x
- $f \cdot g : D \to \mathbb{R}$ stetig in x
- Wenn $g(x) \neq 0$ für alle $x' \in D$

Dann ist $\frac{1}{g}$: $D \to \mathbb{R}$ stetig in x.

Beweis mit Folgenstetigkeit:

Sei
$$x_n \to x$$
 für $n \to \infty$ mit $x_n \in D$

$$f, g \text{ stetig} \Rightarrow$$

$$f(x_n) \to f(x)$$

$$g(x_n) \to g(x)$$

Wenn also
$$f(x) \neq 0$$

 $f(x_n)^{-1} \rightarrow f(x)^{-1}$
 $\Rightarrow f + g, f) \cdot g, \frac{1}{f}$ stetig in x

Wiederholung

```
Sei D\subseteq\mathbb{R}, eine Funktion f:D\to\mathbb{R} ist stetig in x\in D wenn gilt: Für jedes \epsilon>0 gibt es ein \delta>0 so dass gilt: wenn y\in D mit |x-y|<\delta dann |f(x)-f(y)|<\epsilon
```

Beispiel:

```
exp: \mathbb{R} \to \mathbb{R} ist stetig (d.h. stetig an jedem x \in \mathbb{R})

[\cdot]: \mathbb{R} \to \mathbb{R} ist stetig an x \Leftrightarrow x \notin \mathbb{Z}

SKIZZE
```

Satz 6.4: Folgenstetigkeit

```
Eine Funktion f:D\to\mathbb{R} ist stetig in x\in D\Leftrightarrow Für jede Folge (x_n) mit x_n\in D für alle n und x_n\to x gilt auch f(x_n)\to f(x). (d.h. f erhält Konvergenz)
```

Beweis:

```
Angenommen f ist stetig in x, x_n \to x mit x_n \in D. Zeige f(x_n) \to f(x) Gegeben \epsilon > 0. Stetigkeit \Rightarrow es gibt \delta > 0 mit:

Wenn y \in D mit |x - y| < \delta dann |f(x) - f(y)| < \epsilon

Wähle N \in \mathbb{N} so dass gilt:

Für n \geq N ist |x - x_n| < \delta \Rightarrow |f(x) - f(x_n)| < \epsilon

Also gilt f(x_n) \to f(x)

"\Leftarrow"

Angenommen f ist nicht stetig.

Zeige: Es gibt eine Folge (x_n) mit x_n \in D und x_n \to x aber nicht f(x_n) \to f(x) für nicht stetig in x \Rightarrow es gibt ein \epsilon > 0 so dass für jedes \delta > 0 ein y \in D existiert mit |x - y| < \delta und |f(x) - f(y)| \geq \epsilon

Wähle für \delta = \frac{1}{n} ein x_n \in D mit |x_n - x| < \delta, |f(x_n) - f(x)| \geq \epsilon

Dann gilt x_n \to x aber nicht f(x_1) \to f(x)
```

Wiederholung

Satz 6.5

```
Wenn f, g: D \to \mathbb{R} stetig in x \in D dann auch f + g, f \cdot g und \frac{1}{g} (falls g(y) \neq 0 für alle y \in D)
Und a \cdot f für a \in \mathbb{R}
```

6.6 Korollar

Polynomfunktionen und rationale Funktionen sind stetig.

Beweis:

- 1. $id_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}$, $id_{\mathbb{R}}(x) = x$ ist stetig
- 2. 6.5 und Induktion \Rightarrow für $\mathbb{R} \to \mathbb{R}$, $f(x) = x^n$ stetig für jedes n $(x^n = x \cdot x^{n-1})$
- 3. 6.5 \Rightarrow Jede Funktion $f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_0, f: \mathbb{R} \to \mathbb{R}$ ist stetig
- 4. 6.5 \Rightarrow wenn $f, g : \mathbb{R} \to \mathbb{R}$ Polynomfunktionen, dann $\frac{f}{g} : D \to \mathbb{R}$ stetig, wobei $D = \{x \in \mathbb{R} | g(x) \neq 0\}$ (denn $\frac{f}{g} = f \cdot \frac{1}{g}$)

Vorlesung Nr. 12

19.11.2012

6.7 Satz Stetigkeit der Komposition

Sei $f:C\to\mathbb{R}$, $g:D\to\mathbb{R}$ Funktionen mit $f(C)\subseteq D$. Wenn f stetig in $x\in D$ und g stetig in f(x) dann ist: $g\circ f:C\to\mathbb{R}$ stetig in x.

Beweis mit Folgenstetigkeit:

Sei $x_n \to x$ mit $x_n \in C$ f stetig in $x \Rightarrow f(x_n) \to f(x)$ g stetig in $f(x) \Rightarrow g(f(x_n)) \to g(f(x))$ d.h. $(g \circ f)(x_n) \to (g \circ f)(x)$ also ist $g \circ f : C \to \mathbb{R}$ stetig in x

6.8 Definition (Konvergenz bei Funktionen)

Sei $D \subseteq \mathbb{R}$ und $f : D \to \mathbb{R}$ Funktion

1. Ein $a \in \mathbb{R} \cup \{-\infty, \infty\}$ heißt Berührpunkt von D wenn es eine Folge (x_n) mit $x_n \in D$ und $x_n \to a$ gibt

Bemerkung:

Jedes $a \in D$ ist Berührpunkt von D (wähle konstante Folge $x_n = a$)

2. Angenommen, *a* ist ein Berührpunkt von *D*

Schreibe $\lim_{x \to a} f(x) = y$ wenn gilt:

Für jede Folge (x_n) mit $x_n \to a$ und $x_n \in D$ gibt $f(x_n) \to y$

3. Angenommen, $a \neq \infty$ ist eine Berührpunkt von $D \cap (a, \infty)$ SKIZZE

Schreibe $\lim_{x \to a} f(x) = y$ wenn gilt:

Für jede Folge (x_n) mit $x_n \to a$ und $x_n \in D$ und $x_n > a$ gilt $f(x_n) \to y$

4. Angenommen, $a \neq -\infty$ ist eine Berührpunkt von $D \cap (-\infty, a)$ Schreibe $\lim_{x \neq a} f(x) = y$ wenn für jede Folge (x_n) mit $x_n \to a$ und $x_n \in D$ und $x_n < a$ gilt $f(x_n) \to y$

Beispiel:

$$D = \mathbb{R} \setminus \{0\} \ f : D \to \mathbb{R}, \ f(x) = \frac{|x|}{x} \text{ SKIZZE}$$

$$\underbrace{\text{Bemerke}}_{\text{Bemerke}} f(x) = \begin{cases} 1 & \text{wenn } x > 0 \\ -1 & \text{wenn } x < 0 \end{cases}$$

$$\lim_{x \nearrow a} f(x) = -1, \lim_{x \searrow a} f(x) = 1, \lim_{x \to 0} f(x) \text{ existiert nicht}$$

<u>Vorher</u> a = 0 ist Berührpunkt von D und $D \cap (0, \infty)$ und $D \cap (-\infty, 0)$, denn $\frac{1}{n} \to 0$ und $-\frac{1}{n} \to 0$

Sei $g : \mathbb{R} \to \mathbb{R}$, $g(x) = x^3$ $\infty, -\infty$ sind Berührpunkte von $D = \mathbb{R}$

$$\lim_{x \to \infty} g(x) = \infty$$

$$\lim_{x \to -\infty} g(x) = -\infty$$

Bemerkung:

Umformulierung von Satz 6.4 Eine Funktion $f: D \to \mathbb{R}$ ist stetig in $a \in D \Leftrightarrow \lim_{x \to a} f(x) = f(a)$

19.11.2012

Sätze über stetige Funktionen

6.9 Definition Beschränktheit

Eine Funktion $f:D\to\mathbb{R}$ heißt nach oben <u>beschränkt</u> wenn die Menge f(D) nach oben beschränkt ist, d.h. es gibt $C\in\mathbb{R}$ mit $f(x)\leq C$ für alle $x\in D$

f heißt nach unten beschränkt, wenn f(D) nach unten beschränkt

f heißt beschränkt, wenn f) nach oben und nach unten beschränkt

6.10 Definition uneigentliches Supremum

Sei $M \in \mathbb{R}$ eine nicht-leere Teilmenge. Wenn M nach oben unbeschränkt, schreibe $sup(M) = \infty$ (Sprich: uneigent-liches Supremum)

6.11 Satz

Sei $a, b \in \mathbb{R}$ mit $a \le b$ und $f : [a, b] \to \mathbb{R}$ eine stetige Funktion, dann ist f beschränkt und nimmt ihr Maximum und Minimum an, d.h. es gibt $x_{min}, x_{max} \in [a, b]$ mit: $f(x_{min}) \le f(x) \le f(x_{max})$ für jedes $x \in \mathbb{R}$

Beispiel:

```
1. f:(0,1) \to \mathbb{R}, f(x) = \frac{1}{x}

\lim_{x \to 0} f(x) = \infty

Somit f nicht nach oben beschränkt
```

2. $g(0, 1) \to \mathbb{R}$, g(x) = x g beschränkt. g((0, 1)) = (0, 1) $\sup\{g(x)|x \in (0, 1)\} = 1$ Aber g(x) < 1 für alle $x \in (0, 1)$, also nimmt g nicht ihr Maximum an.

Beweis von 6.11

```
Sei y:=\sup\{f(x)|x\in D\}\in\mathbb{R}\cup\{\infty\} Wähle eine Folge (x_n) mit x_n\in D und f(x_n)\to y für n\to\infty Bolzano-Weierstraß \Rightarrow Es gibt eine konvergente Teilfolge (x_{n_k})_{k\geq 0} von (x_n)_{k\geq 0} Sei x_{n_k}\to x für k\to\infty a\le x_n\le b für alle n\Rightarrow a\le x\le b,\ x\in D=[a,b] Und dann gilt f(x_{n_k})\to y für k\to\infty (Teilfolge einer Konvergenten Folge) f(x_{n_k})\to y für k\to\infty weil f stetig Also y=f(x) Insbesondere y\ne\infty also f beschränkt Für alle x'\in D gilt f(x')\le \sup\{f(D)\}=y=f(x) Setze x_{max}:=x. Dann f(x')\le f(x_{max}) für alle x'\in D Anfang findet man x_{min}
```

6.12 Satz (Zwischenwertsatz)

```
Sei a \le b und f: [a, b] \to \mathbb{R} stetig.
Wenn y \in \mathbb{R} zwischen f(a) und f(b) liegt, d.h. f(a) \le y \le f(b) oder f(a) \ge y \ge f(b)
Dann gibt es ein x \in [a, b] mit f(x) = y
GRAPH
```

¹Die Folge (x_n) ist beschränkt D = [a, b]

Wiederholung

Zwischenwertsatz

Sei $a \le b$, $f : [a, b] \to \mathbb{R}$ stetig

Sei $y \in \mathbb{R}$ zwischen f(a) und f(b) d.h. $f(a) \le y \le f(b)$ oder $f(a) \ge y \ge f(b)$

Dann gibt es ein $x \in [a, b]$ mit f(x) = y

SKIZZE

Beweis Intervallschachtelung:

Starte mit $[a_0, b_0] = [a, b]$

Definiere unendliche Kette von Intervallen

 $[a_0, b_0] \supseteq [a_1, b_1] \supseteq [a_2, b_2] \supseteq \dots$

So dass $[b_n - a_n] = 2^{-n}[b_0, a_0]$ und y zwischen $f(a_n)$ und $f(b_n)$ liegt.

Annahme: $f(a) \le y \le f(b)$ (Anderer Fall $f(a) \ge y \ge f(b)$ analog)

Angenommen, $[a_n, b_n]$ ist konstruiert so dass $[b_n - a_n] = 2^{-n}(b_0, a_0)$ und $f(a_n) \le y \le f(b_n)$

Betrachte $m := \frac{a_n + b_n}{2}$, Wenn $f(m) \ge y$ dann setze $[a_{n+1}, b_{n+1}] := [a_n, m]$

Wenn f(m) < y dann setze $[a_{n+1}, b_{n+1}] := [m, b_n]$

Dann gilt in beiden Fällen:

$$b_{n+1} - a_{n+1} = \frac{1}{2}(b_n - a_n) = 2^{-1} \cdot 2^{-n}(b_0 - a_0) = 2^{-n-1}(b_0 - a_0) \text{ und } f(a_{n+1}) \le y \le f(b_{n+1})$$

<u>Idee</u>

Folge von Intervallen $[a_n, b_n]$ "konvergent" gegen gesuchtes x.

Die Folge $(a_n)_{n\geq 0}$ ist monoton wachsend und beschränkt, (b ist obere Schranke) \Rightarrow

 (a_n) konvergiert, sei $x := \lim_{n \to \infty} a_n$

Die Folge $(b_n)_{n\geq 0}$ ist monoton fallen und beschränkt \Rightarrow konvergent nach 4.2

Sei $x' = \lim_{n \to \infty} b_n$

$$x' - x = \lim_{n \to \infty} (b_n - a_n)$$

$$x' - x = \lim_{n \to \infty} (b_n - a_n)$$

= $\lim_{n \to \infty} (2^{-n} \cdot (b_0 - a_0)) = 0$

also x = x' f(x) = ?

 $f \text{ stetig} \Rightarrow f(x) = \lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(b_n)$

Wegen $f(a_n) \le y \le f(b_n)$ für alle n gilt $f(x) = \lim_{n \to \infty} f(a_n) \le y \le \lim_{n \to \infty} f(b_n)$

 $\Rightarrow f(x) = y$

Bemerkung:

Weil
$$a \le a_n \le b$$
 gilt $a \le x \le b$ d.h. $x \in [a, b]$

Anwendung

6.13 Satz Sichere Nullstellen

Sei $n \in \mathbb{N}$ ungerade, $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = x^n + a_{n-1} \cdot x^{n-1} + \dots + a_0$$

Dann hat f eine Nullstelle, d.h. es gibt $x \in \mathbb{R}$ mit f(x) = 0

Beweis:

Für $x \neq 0$ betrachte

$$g(x) = \frac{1}{x^n} \cdot f(x) = 1 + \frac{a_{n-1}}{x} + \frac{a_{n-2}}{x^2} + \dots + \frac{a_0}{x^n}$$

Für $x \to \infty$ ist $g(x) \to 1$

Für
$$x \to -\infty$$
 ist $g(x) \to 1$

D.h. es gibt $a \in \mathbb{R}$ mit a > 0 und

$$x \ge a \Rightarrow g(x) > 0$$

$$x \ge -a \Rightarrow g(x) > 0$$

22.11.2012

Also
$$x \ge a \Rightarrow f(x) = x^n \cdot g(x) > 0$$

 $x \ge a \Rightarrow f(x) = x^n \cdot g(x) < 0$

$$x^n < 0 \qquad f(-a) < 0 < f(a)$$
Zwischenwertsatz \Rightarrow ergibt $x \in [-a, a]$ mit $f(x) = 0$

6.14 Satz Ergänzung Zwischenwertsatz

Sei $f: D \to \mathbb{R}$ stetig und $D \subseteq \mathbb{R}$ ein nicht-leeres Intervall. Dann ist $f(D) = \{f(x) | x \in D\}$ auch ein Intervall (d.h. hat keine Lücken.)

Bemerkung:

Hier sind auch uneigentliche Intervalle zugelassen. (z.B. $(0, \infty)$)

Beispiel:

$$f(x) = x^3 - x + 20 \text{ GRAPH}$$

Beispiel:

Bedingung "n ungerade" ist wesentlich, denn $f(x) = x^2 + 1$ hat keine Nullstelle

Beispiel:

$$f: (0,1) \to \mathbb{R}, \ f(x) = \frac{1}{x}$$
$$f(D) = (1, \infty)$$

GRAPH

Beispiel:

$$f: (-1,1) \to \mathbb{R}, \ f(x) = x^2$$

 $f(D) = [0,1)$

GRAPH

Beweis:

$$f: D \to \mathbb{R} \text{ stetig}$$
 Sei $a:=\inf\{f(D)\} \in \mathbb{R} \cup \{-\infty\}$ $a:=\inf\{f(D)\} \in \mathbb{R} \cup \{-\infty\}$ Angenommen $y \in \mathbb{R} \text{ mit } a < y < b \text{ d.h. } x \in (a,b)$ Es gibt $x_1, x_2 \in D$ mit $a < f(x_1) < y < f(x_2) < b$ Zwischenwertsatz \Rightarrow es gibt x zwischen x_1, x_2 $(\Rightarrow x \in D \text{ weil } D \text{ Intervall}) \text{ mit } f(x) = y$ Also $(a,b) \subseteq f(D)$ Dann ist $f(D)$ eines der Intervalle $(a,b), [a,b), (a,b], [a,b]$ nur wenn $a \neq -\infty, b \neq \infty$

6.15 Satz Umkehrfunktion

Sei D ein Intervall, $f: D \to \mathbb{R}$, stetig, streng monoton wachsend oder fallend. Sei D' = f(D) (Intervall nach 6.14) Dann ist die Abbildung $f: D \to D'$ bijektiv und die Umkehrabbildung $f^{-1}: D' \to D$ ist stetig und streng monoton wachsend, bzw. fallen.

Beweis:

Die Abbildung $f: D \to D'$ ist

- surjektiv nach Definition von D'
- streng monoton ⇒ injektiv
- also bijektiv. Somit existiert $f^{-1}: D' \to D$

Annahme

f streng monoton wachsend (fallend analog)

Behauptung:

 f^{-1} ist streng monoton wachsend, d.h. gegeben $x_1, x_2 \in D'$ mit $x_1 < x_2$ zeige:

$$f^{-1}(x_1) < f^{-1}(x_2)$$

Angenommen $f^{-1}(x_1) \ge f^{-1}(x_2) \Rightarrow f$ monoton wachsend $\Rightarrow x_1 = f(f^{-1}(x_1)) \ge f(f^{-1}(x_2)) = x_2 \Rightarrow$ Widerspruch also $f^{-1}(x_1) < f^{-1}(x_2) \Rightarrow f^{-1}$ streng monoton wachsend

Behauptung:

 f^{-1} ist stetig. Gegeben $x \in D$

Annahme x ist kein Randpunkt des Intervalls D'

Gegeben sei $\epsilon > 0$ Suche δ mit (Stetigkeitsdefinition)

 $y := f^{-1}(x) \in D$ ist kein Randpunkt (weil f, f^{-1} bijektiv und streng monoton.)

Wähle $\epsilon' \le \epsilon$ mit $\epsilon > 0$ sodass $[y - \epsilon', y + \epsilon'] \subseteq D'$

 $f(y - \epsilon') < f(y) = x \Leftarrow y - \epsilon' < y$

also $f(y - \epsilon') = x - \delta_1$ $\delta_1 > 0$

 $genausof(y + \epsilon') = x + \delta_2$ $\delta_2 > 0$

Sei $\delta = min(\delta_1, \delta_2)$

Behauptung:

Wenn $z \in D'$ mit $|z - x| < \delta$ dann $|f^{-1}(z) - f^{-1}(x)| < \epsilon$

Beweis:

$$x + \delta_1 \le x - \delta < z < x + \delta \le x + \delta - 2$$

 f^{-1} streng monoton wachsend \Rightarrow

$$\begin{split} f^{-1}(x) - \varepsilon' &= f^{-1}(x - \delta_1) < f^{-1}(z) < f^{-1}(x + \delta - 2) = y + \varepsilon' = f^{-1}(x) + \varepsilon' \\ \Rightarrow &|f^{-1}(z) - f^{-1}(x)| < \varepsilon' \le \varepsilon \Rightarrow \text{Behauptung} \end{split}$$

Somit f^{-1} stetig in x

Falls x Randpunkt: Betrachte $[x, x + \delta]$ bzw. $[x - \delta, x]$ wieder analog

2 Anwendungen

6.16 Beispiel

Sei k∈ \mathbb{N}

Die Abbildung $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0} f(x) = x^k$

Bekannt f ist stetig streng monoton wachsend.

$$\overline{f(0) = 0}, \qquad \lim_{x \to \infty} x^k = \infty$$

$$D:=[0,\infty)=\mathbb{R}_{>0}$$

$$f(D) = D' = [0, \infty)$$

 $6.15 \Rightarrow f$ hat stetige und streng monoton wachsende Umkehrfunktionen

$$f^{-1}:[0,\infty)\to[0,\infty)$$

Bezeichnung: $f^{-1}(x) = \sqrt[k]{x}$

Logarithmus und allgemeine Potenzen

6.17 Satz

Die Exponentialfunktion $exp:\mathbb{R}\to\mathbb{R}_{>0}=(0,\infty)$ ist stetig, streng monoton wachsend und $exp(\mathbb{R})=\mathbb{R}_{>0}$

Beweis:

Bekannt: exp stetig, streng monoton wachsend. Für x > 0 ist

$$exp(x) = 1 + x + \frac{x^2}{2} + \dots \ge 1 + x$$

also gilt

$$\lim_{x \to \infty} exp(x) = \infty$$

$$exp(-x) = \frac{1}{exp(x)} \Rightarrow \lim_{x \to -\infty} exp(x) = \lim_{x \to \infty} \frac{1}{exp(x)}$$

Somit $exp(\mathbb{R}) = (0, \infty)$

Folge mittels 6.15: $exp: \mathbb{R} \to \mathbb{R}_{>0}$ ist bijektiv und die Umkehrfunktion $exp^{-1}:=log: \mathbb{R}_{>0} \to \mathbb{R}$ ist stetig, streng monoton wachsend, bijektiv 2 konkret: $log(x)=y \Leftrightarrow x=exp(y)$ GRAPH

 $^{^{2}}exp^{-1} = log$ heißt Logarithmusfunktion

Wiederholung

Logarithmus und allgemeine Potenzen Die Funktion $exp: \mathbb{R} \to \mathbb{R}_{\geq 0}$ ist stetig, streng monoton wachsend, bijektiv. Die Umkehrfunktion heißt <u>Logarithmus</u>,

$$log = exp^{-1} : \mathbb{R}_{\geq 0} \to \mathbb{R}$$

explizit definiert durch $log(x) = y \Leftrightarrow x = exp(y)$

 $\Rightarrow_{\text{nach satz 6.5}} \log$ ist stetig, streng monoton wachsend, bijektiv.

6.18 Satz (Eigenschaften des Logarithmus)

- 1. log(1) = 0
- 2. $log(x \cdot y) = log(x) + log(y)$
- 3. $\lim_{x\to 0} log(x) = -\infty$
- 4. $\lim_{x \to \infty} log(x) = \infty$

Beweis:

Folgt aus Eigenschaften von exp, Details: Übung

Erinnerung

also a > 0, $n \in \mathbb{Z}$, $m \in \mathbb{N}$ ist $a^{\frac{n}{m}} := \sqrt[m]{a^n}$

6.19 Lemma

Es gibt $a^{\frac{n}{m}} = exp(\frac{n}{m} \cdot log(a))$

Beweis:

1. Sei $n \ge 0$:

$$exp(n \cdot log(a)) = exp(log(a) + log(a) + \dots + log(a)) = exp(log(a)) \cdot \dots \cdot exp(log(a))$$

2. Sei n < 0

$$exp(n \cdot log(a)) = exp(\underbrace{-n}_{-n>0} \cdot log(a)) = (a^{-1})^{-1} = a^n$$

3. Rechne:

$$exp(\frac{n}{m}log(a))^m = exp(m \cdot \frac{n}{m} \cdot log(a)) = exp(n \log(a)) = a^n$$

$$\sqrt[m]{\Rightarrow} exp(\frac{n}{m}log(a)) = \sqrt[m]{a^n} = a^{\frac{n}{m}}$$

6.20 Definition

Sei a > 0, $x \in \mathbb{R}$ setze $a^x := exp(x \cdot log(a))$

6.21 Bemerkung

Die Regeln der Potenzrechnung gelten:

$$a^{x+y} = a^x \cdot a^y, \qquad a^{x \cdot y} = (a^x)^y$$

Beweis:

$$a^{x+y} = exp((x+y) \cdot log(a)) = exp(x \cdot log(a)) \cdot exp(y \cdot log(a)) = a^x \cdot a^y$$
$$a^{x \cdot y} = {}^3exp(x \cdot y \cdot log(a)) = (a^x)^y = exp(y \cdot log(exp(x \cdot log(a)))) = exp(y \cdot x \cdot log(a))$$

Bemerkung:

Eulersche Zahl

$$e := {}^{4}exp(1) = 2,7...$$
 $e^{x} = exp(x \cdot log(e)) = exp(x)$

6.22 Definition Logarithmusbasis

Sei
$$a > 1$$
 $x \in \mathbb{R}$

$$log_a(x) = \frac{log(x)}{log(a)}$$

Bemerkung:

 $a \neq 0 \Rightarrow log(a) \neq 0$

Dann:

$$a^{log_{a}(x)} = exp\left(log_{a}\left(x\right) \cdot log\left(a\right)\right) = exp\left(\frac{log\left(x\right)}{log\left(a\right)} \cdot log(a)\right) = exp(log(x)) = x$$

Gleichmäßige Stetigkeit

Wiederholung

 $f: D \to \mathbb{R}$ stetig an $x \in D$ wenn gilt:

Für jedes $\epsilon > 0$ gilt $\delta > 0$ mit wenn $y \in D$ mit $|x - y| < \delta$ dann $|f(x) - f(y)| < \epsilon$ Hier hängt δ im allgemeinen von ϵ und x ab!

6.23 Definition gleichmäßige Stetigkeit

Eine Funktion $f:D\to\mathbb{R}$ heißt gleichmäßig stetig wenn gilt:

Für jedes $\varepsilon > 0$ gibt es ein $\delta > 0$ so dass für alle $x, y \in D$ mit $|x - y| < \delta$ gilt:

$$|f(x) - f(y)| < \varepsilon$$

Wesentlich

 δ hängt nur von ε , nicht von x ab.

Beispiel:

D = (0,1) $f: D \to \mathbb{R}, f(x) = \frac{1}{x}$

GRAPH f stetig, aber nicht gleichmäßig stetig

 $^{^{3}}log \circ exp = id$

 $^{^{4}}log(e) = 1$

Beweis:

Wähle $\varepsilon = 1$. Angenommen es gibt $\delta > 0$ mit $|x - y| < \delta \Rightarrow |f(x) - f(y)| < 1$ Wähle: $x = \frac{1}{n}$, $y = \frac{1}{n+1}$ so dass $\frac{1}{n \cdot (n+1)} < \delta$

$$|x - y| = \left| \frac{1}{n} - \frac{1}{n+1} \right| = \left| \frac{n+1-n}{n \cdot (n+1)} \right| = \frac{1}{n \cdot (n+1)}$$

Dann

$$|f(x) - f(y)| = |n - (n+1)| = 1$$

Das zeigt: δ existiert nicht.

6.24 Satz

Seien a < b reelle Zahlen

Jede stetige Funktion $f:[a,b] \to \mathbb{R}$ ist gleichmäßig stetig.

Beweis:

Angenommen, f ist nicht gleichmäßig stetig: Es gibt ein $\epsilon > 0$ sodass für jedes $\delta > 0$ zwei Zahlen $x, y \in D$ existieren, mit $|x - y| < \delta$ und $|f(x) - f(y)| \ge \epsilon$

$$|f(y)| \ge \epsilon$$
 (*)

Bolzano-Weierstraß \Rightarrow Es gibt eine Teilfolge $(x_{nk})_{k\geq 0}$, die konvergiert. Sei $x=\lim_{k\to\infty}(x_{nk})_{k\geq 0}\in [a,b]=D$ Dann

$$\begin{split} \lim_{k \to \infty} (y_{nk})_{k \ge 0} &= \lim_{k \to \infty} ((y_{nk})_{k \ge 0} - (x_{nk})_{k \ge 0}) = 0 + x = x \\ x_{nk})_{k \ge 0} \to x, \ y_{nk})_{k \ge 0} \to x \ f \ : k \to \infty \end{split}$$

f stetig

$$\Rightarrow f(x_{nk})_k \to f(x), f(y_{nk})_k \to f(x) f k \to \infty$$
$$\Rightarrow (f(x_{nk})_k) - f(y_{nk})_k) \to f(x) - f(x) = 0$$

Widerspruch zu (*) Also ist f gleichmäßig stetig.

7 Komplexe Zahlen und Trigonometrie

Der Körper \mathbb{C} der komplexen Zahlen Mangel von \mathbb{R} : Die Gleichung $x^2 = -1$ hat keine Lösung

7.1 Definition Komplexe Zahlen

Es sei $\mathbb{C} = \mathbb{R}^2 = \{(x, y) | x, y \in \mathbb{R}\}$ mit folgender Addition und Multiplikation:

$$(x, y) + (x', y') := (x + x', y + y')$$

$$(x, y) \cdot (x', y') := (x \cdot x' - y \cdot y', x \cdot y' + y \cdot x')$$

Addition gleich der Vektoraddition in \mathbb{R}^2 GRAPH

7.2 Satz: C ist Körper

 \mathbb{C} ist ein Körper mit Null (0,0) und Eins (1,0)

Beweis:

Überprüfe Körperaxiome exemplarisch

1. Assoziativgesetz der Multiplikation Gegeben (x, y), (x', y'), $(x'', y'') \in \mathbb{C}$

$$((x, y) \cdot (x', y')) \cdot (x'', y'') = (x \cdot x' - y \cdot y', x \cdot y' - x \cdot y' + y \cdot x')(x'', y'')$$

$$= (x \cdot x' \cdot x'' - y \cdot y' \cdot x'' - x \cdot y' \cdot y'' - y \cdot x' \cdot y'', x \cdot x' \cdot y'' - y \cdot y' \cdot y'' + x \cdot y' \cdot x'' + y \cdot x' \cdot x'')$$

$$(x, y)((x', y')(x'', y'')) = \dots \text{ erhalte gleiches Ergebnis}$$

2. Existenz vom Inversen:

Sei
$$z = (x, y) \in \mathbb{C}, x, y \in \mathbb{R}, z \neq 0$$

Zeige es gibt ein $z^{-1} \in \mathbb{C}$ mit $z \cdot z^{-1} = (1, 0)$

 $z \neq 0 \Rightarrow x \neq 0$ oder $y \neq 0 \Leftrightarrow x^2 + y^2 > 0$

$$w := \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

Rechne $z \cdot w = (x, y) \cdot \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right) = \left(\frac{x^2}{x^2 + y^2} - \frac{-y^2}{x^2 + y^2}, \frac{-yx}{x^2 + y^2} + \frac{yx}{x^2 + y^2}\right) = (1, 0)$ Also $w = z^{-1}$ Weitere Axiome ähnlich.

Definition: imaginäre Einheit

i := (0, 1) (imaginäre Einheit)

Dann ist

$$i^2 = (0,1) \cdot (0,1) = (-1,0) \Rightarrow i^2 + 1 = 0$$

Bemerkung:

Für $x, x' \in \mathbb{R}$ gilt:

$$(x,0) + (x',0) = (x + x',0)$$

$$(x,0)\cdot(x',0)=(x\cdot x',0)$$

26.11.2012

Die Abbildung $\mathbb{R} \to \mathbb{C}$, $x \mapsto (x,0)$ ist injektiv und verträglich mit +, \cdot

 \leadsto Fasse $\mathbb R$ mittels diese Abbildung als Teilmenge von $\mathbb C$ auf, einschließlich der Körperstruktur

Dann $i^2 = -1$.

Für $(x, y) \in \mathbb{C}$ gilt $(x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1) \cdot (y, 0) = x + i \cdot y$ Jede komplexe Zahl z hat eine eindeutige Darstellung $z = x + i \cdot y$ mit $x, y \in \mathbb{R}$.

<u>Idee</u>

 \mathbb{C} entsteht aus \mathbb{R} durch Hinzunahme einer Zahl i mit $i^2 = -1$ Interpretation der Multiplikation in \mathbb{C} :

$$(x+i\cdot y)(x'+i\cdot y')=(x\cdot x'+x\cdot i\cdot y'+i\cdot y\cdot x'+i\cdot y\cdot i\cdot y')=(x\cdot x'-y\cdot y')+i(x\cdot y'+y\cdot x')$$

Definition

Sei $z = x + iy \in \mathbb{C}$

Realteil: Re(z) := x

Imagnärteil: Im(z) := y

Komplex konjugierte Zahl $\overline{z} = x - iy$

Komplex konjugation = Spiegelung an der x-Achse.

<u>Definition</u> Der Betrag von $z = x + iy \in \mathbb{C}$ ist $|z| = \sqrt{x^2 + y^2}$ Abstand von 0 = (0, 0) zu z

Bemerkung:

1.
$$z \cdot \overline{z} = (x + i \cdot y)(x - i \cdot y) = x^2 + y^2 + i(-x \cdot y + y \cdot x) = x^2 + y^2 = |z|^2$$

2. Insbesondere gilt $z \cdot \overline{z} \in \mathbb{R}$ und $z \cdot \overline{z} \ge 0$

3.
$$|z| = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}}$$
 (sinnvoll wegen 2)

Wiederholung

$$\mathbb{C} = \mathbb{R}^2$$
 mit

$$(x, y) + (x', y') = (x + x', y + y')$$
$$(x, y) \cdot (x', y') = (x \cdot x' - y \cdot y', x \cdot y' + y \cdot x')$$
$$(x, y) = x + i \cdot y \qquad i = (0, 1) \qquad i^2 = (-1)$$

$$z = x + i \cdot y \in \mathbb{C} \Rightarrow Re(z) = x \quad Im(z) = y$$

$$\overline{z} = x - i \cdot y$$

$$z \cdot \overline{z} = (x + i \cdot y)(x - i \cdot y) = x^2 - (i \cdot y)^2 = x^2 - i^2 \cdot y^2 = x^2 \cdot y^2$$

Abstand von 0 nach z ist:

$$|z| = {}^{1}\sqrt{x^{2} + y^{2}} = \sqrt{z \cdot \overline{z}}$$

 $|2 + i| = \sqrt{2^{2} + 1^{2}} = \sqrt{5}$

Berechnung von z^{-1}

$$\frac{1}{z} = \frac{\overline{z}}{\overline{z} \cdot z}$$

$$\frac{1}{2+i} = \frac{2-i}{(2+i)(2-i)} = \frac{2-1}{5} = \frac{2}{5} = \frac{i}{5}$$

7.3 Lemma

Sei $z, w \in \mathbb{C}$ dann gilt:

1.
$$\overline{zw} = \overline{z} \cdot \overline{w}, \ \overline{z+w} = \overline{z} + \overline{w}$$

2.
$$z + \overline{z} = 2Re(z)$$
, $z - \overline{z} = 2i \cdot Im(z)$
 $Re(z) = \frac{z + \overline{z}}{z}$ $Im(z) = \frac{z - \overline{z}}{2i}$

Beweis:

2.

$$z = x + i \cdot y$$

$$z + \overline{z} = (x + i \cdot y) + (x - i \cdot y) = 2x = 2Re(z)$$

$$z - \overline{z} = (x + i \cdot y) - (x - i \cdot y) = 2iy = 2i \cdot Im(z)$$

1.

$$z = x + iy, \ w = a + ib$$

$$\overline{z + w} = \overline{x + iy + a + ib} = \overline{x + a + i(y + b)} = x + a - i(y + b) = (x - iy) + (a - ib) = \overline{z} + \overline{w}$$

$$\overline{zw} = \overline{(x + iy)(a + ib)} = \overline{(ax - by) + i(ay + bx)} = (ax - by) - i(ay + bx) = |x|$$

$$\overline{z} \cdot \overline{w} = \overline{(x + iy)} \cdot \overline{(a + ib)} = (x - iy) \cdot (a + ib) = ax - (-y)(-b) + i(a \cdot (-y) + (-b) \cdot x)$$

$$= ax - by - i(ay + bx) = |x|$$

¹Betrag von z

Bemerkung:

Aus 3) folgt:

$$z = x + iy \Rightarrow |z| \le |iy| = |x| + |y|$$

Erinnerung:

$$|z| \le |x|, |z| \le |y|$$
 (aus der NR)

Folgen und Reihen komplexer Zahlen

7.4 Definition (Grenzwert)

Sei $(c_n)_{n\geq 0}$ eine Folge komplexer Zahlen, $c\in\mathbb{C}$ Die Folge c_n konvergiert gegen c wenn gilt:

Für jedes $\epsilon > 0$ gibt es ein $N \in \mathbb{N}$, so dass für jedes $n \ge \mathbb{N}$ gilt $|c - c_n| < \epsilon$

Notation:

$$\lim_{n \to \infty} c_n = c \text{ oder } c_n \to c \text{ für } n \to \infty$$

7.5 Satz

Sei $z, w \in \mathbb{C}$

- 1. $|z| \ge 0$, und $|z| = 0 \Leftrightarrow z = 0$ (klar)
- 2. $|z \cdot w| = |z| \cdot |w|$, $|\overline{z}| = |z|$

3. $|z + w| \le |z| + |w|$ (Dreiecksungleichung)

Beweis:

2.
$$|z \cdot w| = \sqrt{zw \cdot \overline{zw}} = \sqrt{z \cdot w \cdot \overline{z} \cdot \overline{w}} = \sqrt{z \cdot \overline{z} \cdot w \cdot \overline{w}} = \sqrt{z \cdot \overline{z}} \sqrt{w \cdot \overline{w}} = |z| \cdot |w|$$
 beide reell ≥ 0 NR: $|\overline{z}| = \sqrt{x^2 + (-y)^2} = \sqrt{x^2 + y^2} = |z|$

3.

$$|z+w| = (z+w) \cdot (\overline{z+w}) = (z+w) \cdot (\overline{z+\overline{w}}) = z \cdot \overline{z} + z \cdot \overline{w} + w \cdot \overline{z} + w \cdot \overline{w} = {}^{2}z \cdot \overline{z} + \underbrace{z \cdot \overline{w} + z \cdot \overline{w}}_{2 \cdot Re(z \cdot \overline{w})} + w \cdot \overline{w}$$

$$= z \cdot \overline{z} + 2 \cdot Re(z \cdot \overline{w}) + w \cdot \overline{w} \le |z|^{2} + 2 \cdot |z| \cdot |w| + |w|^{2} = {}^{3}(|z| + |w|)^{2}$$

$$\sqrt{\Rightarrow} |z+w| = |z| + |w|$$

Bemerkung:

- 1. Es gilt $c_n \to c \Leftrightarrow \overline{c_n} \to \overline{c}$
- 2. Wenn $c_n \to c$ dann $|c_n| \to |c|$

29.11.2012

Beweis:

- 1. $|\overline{c_n} \overline{c}| = |\overline{c_n c}| = |c_n c| \Rightarrow \text{Behauptung}$
- 2. Übung

7.6 Satz

Sei
$$c_n = a_n + i \cdot b_n$$
, $c = a + ib$
Es gilt $c_n \to c \Leftrightarrow a_n \to a \text{ und } b_n \to b$

Beweis:

"⇒" Es gilt

$$|a_n - a| = |Re(c_n - c)| \le |c_n - c|$$

 $|b_n - b| = |Im(c_n - c)| \le |c_n - c|$

Also gilt: $|c_n - c| < \varepsilon \Rightarrow |a_n - a| < \varepsilon$ und $|b_n - b| < \varepsilon$, somit gilt " \Rightarrow "

" \Leftarrow " Verwende $|c_n - c| \le |a_n - a| + |b_n - b|(*)$

Gegeben $\epsilon > 0$

Es gibt $N \in \mathbb{N}$ so dass für jedes $n \ge N$:

$$|a_n - a| < \frac{\epsilon}{2}, |b_n - b| < \frac{\epsilon}{2}$$

Dann gilt für $n \ge N$:

$$|c_n-c|\leq \tfrac{\epsilon}{2}+\tfrac{\epsilon}{2}=\epsilon$$

7.7 Definition

Eine Folge komplexer Zahlen $(c_n)_{n\geq 0}$ heißt Cauchy-Folge, wenn für jedes $\varepsilon>0$ ein $N\in\mathbb{N}$ existiert, so dass gilt: Für alle $n,m\geq N$ gilt $|c_n-c_m|<\varepsilon$

7.8 Satz

Sei $c_n = a_n + ib_n$

 (c_n) ist Cauchy-Folge $\Leftrightarrow (a_n)$ und (b_n) sind Cauchy-Folgen

Beweis:

Genau wie Beweis von 7.6 verwende:

$$|a_n - a_m| \le |c_n - c_m|$$
$$|b_n - b_m| \le |c_n - c_m|$$

$$|c_n - c_m| \le |a_n - a_m| + |b_n - b_m|$$

7.9 Satz konvergente Folge komplexer Zahlen ist Cauchy-Folge

Eine Folge komplexer Zahlen (c_n) konvergiert \Leftrightarrow (c_n) ist Cauchy-Folge

Beweis:

Sei $c_n = a_n + ib_n$

 (c_n) konvergiert $\Leftrightarrow (a_n)$ und (b_n) konvergiert $\Leftrightarrow (a_n)$ und (b_n) sind Cauchy-Folgen $\Leftrightarrow (c_n)$ ist Cauchy-Folge

29.11.2012

7.10 Satz

Wenn $c_n \to c, c_n \to c'$ konvergente Folgen komplexer Zahlen sind, dann gilt:

- 1. $c_n + c_m \rightarrow c + c'$
- 2. $c_n \cdot c_m \rightarrow c \cdot c'$
- 3. Wenn $c \neq 0$ dann $c_n \neq 0$ für fast alle n und $\frac{1}{c_n} \rightarrow \frac{1}{c}$

Beweis:

Analog zum Fall reeller Folgen

7.11 Definition

Eine Reihe komplexer Zahlen

$$\sum_{n=0}^{\infty}c_n$$
heißt absolut konvergent, wenn die Reihe $\sum_{n=0}^{\infty}|c_n|$ konvergent ist

7.12 Satz

Eine Folge komplexer Zahlen (c_n) konvergiert \Leftrightarrow (c_n) ist Cauchy-Folge

Beweis:

Sei
$$c_n = a_n + i \cdot b_n$$

 (c_n) konvergiert $\underset{7.6}{\Leftrightarrow} (a_n \text{ und } (b_n) \text{ konvergieren } \Leftrightarrow (a_n) \text{ und } (b_n) \text{ sind Cauchy-Folgen} \underset{7.8}{\Leftrightarrow} (c_n) \text{ ist Cauchy-Folge}$

7.13 Satz

Sei $c_n \in \mathbb{C}$ für $n \in \mathbb{N}$

- 1. Majorantenkriterium: Wenn reelle Zahlen a_n existieren, so dass $|c_n| \le |a_n|$ und $\sum a_n$ konvergiert, dann konvergiert auch $\sum c_n$ absolut
- 2. Quotientenkriterium: Wenn eine reelle zahl $b \in \mathbb{R}$ existiert mit $0 \le b < 1$, so dass $|c_{n+1}| \le b \cdot |c_n|$ für fast alle $n \in \mathbb{N}$ Dann konvergiert $\sum_{n\geq 0} c_n$ absolut

7.14 Satz

Seien $\sum c_n$ und $\sum d_n$ zwei konvergente Reihen komplexer Zahlen, $\sum c_n = c$, $\sum d_n = d$ Wenn eine der Reihen absolut konvergiert, konvergiert auch das Cauchy-Produkt mit Grenzwert $c \cdot d$

7.15 Satz

Wenn die Reihe $\sum_{n=0}^{\infty} c_n$ absolut konvergent ist, dann ist die konvergent.

Beweis:

Sei
$$c_n = a_n + i \cdot b_n$$

$$|c_n| \ge |a_n| |c_n| \ge |b_n|$$

 $\sum |c_n|$ konvergent $\Rightarrow \sum |a|$, $\sum |b_n|$ konvergent. (Majorantenkriterium) d.h.: $\sum a_n$, $\sum |b_n|$ konvergiert absolut $\Rightarrow \sum a_n$, $\sum b_n$ konvergiert. $\stackrel{7.7}{\Rightarrow} \sum c_n$ konvergent

Zusatz

 $\overline{\text{Angenommen}} \sum c_n$ konvergiert absolut, dann:

$$\left| \sum_{n \ge 0} c_n \right| = \sum_{n \ge 0} c_n$$

(Dreiecksungleichung für ∞ viele Summanden)

Beweis:

Gewöhnliche Dreiecksungleichung ⇒

$$|c_0 + c_1 + \dots + c_n| \le |c_0| + |c_1 + \dots + c_n|$$

(Partialsummen)
$$\leq ... \leq |c_0| + |c_1| + ... + |c_n|(*)$$

Wenn $c = \sum c_n$, dann $c = \lim_{n \to \infty} (c_0 + c_1 + ... + c_n)$ (Definition des Grenzwertes einer Reihe)

$$\Rightarrow |c| = \lim_{n \to \infty} |c_0 + c_1 + \dots + c_n| = \left| \sum_{n=0}^{\infty} c_n \right| \le \lim_{n \to \infty} |c_0| + |c_1| + \dots + |c_n| = \sum_{n=0}^{\infty} |c_n|$$

Wiederholung

Eine Folge komplexer Zahlen $(c_n)n \geq 0$ konvergiert gegen $c \in \mathbb{C}$ wenn gilt:

Für jedes $\epsilon > 0$ gibt es ein $N \in \mathbb{N}$ so dass $n \ge N \Rightarrow |c_n - c| < \epsilon$

Eine Reihe $\sum_{n=0}^{\infty} c_n$ mit $c_n \in \mathbb{C}$ heißt <u>absolut</u> konvergent, wenn die reelle Reihe $\sum_{n=0}^{\infty} |c_n|$ konvergiert.

Absolute Konvergenz \Rightarrow Konvergenz Nach 7.15: Seien $\sum_{n\geq 0} c_n = c$ und $\sum_{n\geq 0} c'_n = c'$ konvergente komplexe Reihen, mindestens eine absolut konvergent. Dann konvergiert hier Cauchy-Produkt $\sum_{n\geq 0} d_n$ mit dem Grenzwert $c\cdot c'$

$$\frac{\text{Erinnerung}}{d_n = \sum_{n \ge 0} c_k \cdot c_{n-k}}$$

Beweis:

Wörtlich wie bei reellen Reihen.

Die komplexe Exponentialfunktion

7.16 Satz Komplexe Exponentialreihe konvergiert absolut

Für $z \in \mathbb{C}$ konvergiert die "Exponentialreihe"

$$\sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + \frac{z}{1} + \frac{z^2}{2} + \frac{z^3}{6} + \dots$$

absolut (Somit konvergiert sie)

Beweis:

$$\sum_{n=0}^{\infty} \left| \frac{z^n}{n!} \right| = \sum_{n=0}^{\infty} \frac{|z^n|}{n!} = exp(|z|)$$

Bekannt: exp(|z|) konvergiert

7.17 Definition komplexe Exponentialfunktion

Die komplexe Exponentialfunktion ist die Abbildung $exp: \mathbb{C} \to \mathbb{C}$ $exp(z) = \sum_{n=1}^{\infty} \frac{z^n}{n!}$

Eigenschaften

7.18 Satz

Seien $z, w \in \mathbb{C}$

- 1. exp(0) = 1 (klar)
- 2. exp(z + w) = exp(z) + exp(w)
- 3. $exp(z) \neq 0$, $exp(z)^{-1} = exp(-z)$
- 4. $exp(\overline{z}) = \overline{exp(z)}$ (Komplexe Konjugation)

5. Für $x \in \mathbb{R}$ ist |exp(ix)| = 1

Beweis:

- 2. Wie bei der reellen Exponentialfunktion: Die Reihe exp(z+w) ist das Cauchy-Produkt der Reihen exp(z) und exp(w), dann folgt (z) aus 7.15
- 3. $exp(z) \cdot exp(-z) = exp(z-z) = exp(0) = 1$
- 4. Sei $s_n = \sum_{k=0}^n \frac{z^k}{k!}$ somit nach Definition $exp(z) = \lim_{n \to \infty} s_n$

Sei
$$s'_n = \sum_{k=0}^n \frac{\overline{z}^k}{k!}$$
 somit $exp(\overline{z}) = \lim_{n \to \infty} s'_n$

Es gilt

$$s'_n = \overline{\sum_{k=0}^n \frac{z^k}{k!}} = \sum_{k=0}^n \overline{(\frac{z^k}{k!})} = \sum_{k=0}^n (\overline{\frac{z}{k!}}) = s'_n$$

Somit
$$\overline{exp(z)} = \lim_{n \to \infty} (\overline{s_n}) = \lim_{n \to \infty} s'_n = exp(\overline{z})$$

5.

$$|exp(ix)|^2 = exp(ix) \cdot \overline{exp(ix)} \underset{4}{=} exp(ix) \cdot exp(\overline{ix}) = exp(ix) \cdot exp(-ix) \underset{2}{=} exp(ix - ix) = exp(0) \underset{1}{=} 1$$

$$\Rightarrow |exp(ix)| = 1$$

Trigonometrische Funktionen

7.19 Definition

Sei $x \in \mathbb{R}$

$$sin(x) = Im(exp(i \cdot x))$$
 (Sinus)

$$cos(x) = Re(exp(i \cdot x))$$
 (Cosinus)

Bemerkung:

Für jede komplexe Zahl
$$z$$
 gilt $z = Re(z) + i \cdot Im(z)$
 $\Rightarrow exp(i \cdot x) = cos(x) + i \cdot sin(x)$ (Eulersche Formel)

7.20 Satz

2. cos(-x) = cos(x), sin(-x) = -sin(x)

- 3. $sin(x)^2 + cos(x)^2 = 1$
- 4. Additionstheoreme

$$sin(x + y) = sin(x) \cdot cos(y) + cos(x) \cdot sin(y)$$

$$cos(x + y) = cos(x) \cdot cos(y) - sin(x) \cdot sin(y)$$

Beweis:

1.
$$exp(0i) = 1 = 1 + 0i \Rightarrow cos(0) = 1$$
, $sin(0) = 0$

2.
$$exp(-ix) = exp(\overline{ix}) = \overline{exp(ix)} = cos(x) - i \cdot sin(x)$$

 $exp(-ix) = cos(-x) + i \cdot sin(-x) \Rightarrow cos(x) = cos(-x), sin(-x) = -sin(x)$

3.
$$sin(x)^2 + cos(x)^2 = |exp(ix)|^2 = 1$$

4.

$$exp(i(x+y)) = exp(i \cdot x) \cdot exp(i \cdot y)$$

$$\Rightarrow cos(x+y) + i \cdot sin(x+y) = (cos(x) + i \cdot sin(x))(cos(y) + i \cdot sin(y))$$

$$= cos(x) \cdot cos(y) - sin(x) \cdot sin(y) + i \cdot (sin(x) \cdot cos(y) + cos(x) \cdot sin(y))$$

Vergleich der Realteile / Imaginärteile ⇒ Behauptung 4

Bemerkung:

Die Gleichung

$$\cos(x)^2 + \sin(x)^2 = 1$$

impliziert $0 \le cos(x)^2 \le 1$, $0 \le sin(x)^2 \le 1$ somit $-1 \le cos(x) \le 1$, $-1 \le sin(x) \le 1$.

7.21 Definition

- 1. Eine Abbildung $f:\mathbb{C}\to\mathbb{C}$ heißt stetig in $z\in\mathbb{C}$ wenn gilt: Für jedes $\epsilon>0$ gibt es ein $\delta>0$ so dass für jedes $w\in\mathbb{C}$ mit $|z-w|<\delta$ ist $|f(z)-f(w)|<\epsilon$
- 2. $f: \mathbb{C} \to \mathbb{C}$ heißt stetig, wenn f in jedem $z \in \mathbb{C}$ stetig ist.

7.22 Satz

Eine Abbildung $f:\mathbb{C}\to\mathbb{C}$ ist stetig in $z\in\mathbb{C}\Leftrightarrow$ Für jede Folge komplexer Zahlen $(z_n)_{n\geq 0}$ mit $z_n\to z$ für $n\to\infty$ gilt auch $f(z_n)\to f(z)$ für $n\to\infty$

Beweis:

Wörtlich wie bei reeller Funktion (Satz 6.4)

7.23 Satz

Die komplexe Exponentialfunktion $exp : \mathbb{C} \to \mathbb{C}$ ist stetig

Beweis:

Verwende Folgenstetigkeit

1. Stetigkeit in z = 0 exp(0) = 1Sie $z \in \mathbb{C}$ (nahe 0)

$$|exp(z)-1| = \left|1+z+\frac{z^2}{2}+\frac{z^3}{6}+\ldots-1\right| = \left|\sum_{n=1}^{\infty}\frac{z^n}{n!}\right|_{unendliche Dreieck sungleichung 7.13} exp(|z|)-1$$

Wenn
$$z_n \to 0$$
 in $\mathbb C$ dann $|z_n| \to 0$ in $\mathbb R$ dann $exp(|z_n|) \to exp(0) = 1$ (weil $exp: \mathbb R \to \mathbb R$ steig) d.h. $exp(|z_n|) - 1 \to 0$ $\Rightarrow |exp(z_n) - 1| \to 0$ Somit exp stetig in $z = 0$

2. Sei $z \in \mathbb{C}$ beliebig, $z_n \to z$

$$\begin{split} \exp(z_n) - \exp(z) &= \exp(z_n - z + z) - \exp(z) = \exp(z_n - z) - \exp(z) - 1 \cdot \exp(z) = (\exp(z_n - z) - 1) \cdot \exp(z) \\ & \text{Es gilt: } z_n \to z \Leftrightarrow z_n - z \to 0 \\ & \overset{\Rightarrow}{\Rightarrow} \exp(z_n - z) \to 1 \\ & \Leftrightarrow \exp(z_n - z) - 1 \to 0 \\ & \overset{\Rightarrow}{\Rightarrow} (\exp(z_n - z) - 1) \cdot \exp(z) \to 0 \cdot \exp(z) = 0 \\ & \overset{\Rightarrow}{\Rightarrow} (\exp(z_n) - \exp(z) \to 0) \end{split}$$

$$d.h. exp(z_n) \rightarrow exp(z)$$

7.24 Satz

Die Funktionen $sin : \mathbb{R} \to \mathbb{R}$ und $cos : \mathbb{R} \to \mathbb{R}$ sind stetig.

Beweis:

Mittels Folgenstetigkeit. Sei $x_n \to x$ mit $x_n \in \mathbb{R}$, $x \in \mathbb{R}$ $\Rightarrow i \cdot x_n \to i \cdot x$ in \mathbb{C} $\Rightarrow exp(i \cdot x_n) \to exp(i \cdot x)$ d.h. $cos(x_n) + i \cdot sin(x_n) \to cos(x_n) + i \cdot sin(x_n)$ $\Leftrightarrow cos(x_n) \to cos(x)$ und $sin(x_n) \to sin(x)$ Somit sind sin und cos stetig in x also stetig.

Wiederholung

- Komplexe Exponential funktion: $exp: \mathbb{C} \to \mathbb{C}, z \mapsto exp(z) \sum_{n \geq 0} \frac{z^n}{n!}$ stetig, Funktional gleichung: $e^{z+w} = e^z \cdot e^w, z, w \in \mathbb{C}$ Additions theorem: $cos(x+y) = Re(e^{i(x+y)}) = Re(e^{i(x)} \cdot e^{i(y)}) = cos(x) \cdot cos(y) sin(x) \cdot sin(y)$
- Sinus, Cosinus: $sin, cos : \mathbb{R} \to \mathbb{R}$, $sin(x) := Im(e^{ix})$, $cos(x) := Re(e^{ix})$, $e^{ix} = cos(x) + i \cdot sin(x)$
- Weil $exp: \mathbb{C} \to \mathbb{C}$ stetig $\Rightarrow sin, cos: \mathbb{R} \to \mathbb{R}$ stetig

Problem: zu zeigen

sin und *sin* aus Vorlesung *cos* und *cos* aus Vorlesung

Potenzreihen von *sin* und *cos*: Für $x \in \mathbb{R}$ gilt:

$$cos(x) + i \cdot sin(x) = exp(i \cdot x) = \frac{1}{0!} + \frac{i \cdot x}{1!} + \frac{(i \cdot x)^2}{1!} + 2! + \frac{(i \cdot x)^3}{3!} + \dots$$
$$= (\frac{1}{0!} + \frac{(i \cdot x)^2}{2!} + \frac{(i \cdot x)^4}{4!}) + \frac{(i \cdot x)^6}{6!} + \dots) + i(\frac{(i \cdot x)}{1!} + \frac{(i \cdot x)^3}{3!}) + \frac{(i \cdot x)^5}{5!}) + \dots)$$

7.25 Bemerkung

Siehe Übung

$$cos(x) - cos(y) = 2sin...$$

7.26 Satz

Für $x \in R$ gilt:

$$cos(x) = \sum_{k \ge 0} \frac{(-1)^k}{(2k)!} \cdot x^{2k}, \ sin(x) = \sum_{k \ge 0} \frac{(-1)^k}{(2k+1)!} \cdot x^{2k+1}$$

Analytische Definition der Zahl π

7.27 Lemma

Für $0 < x \le 2$ gilt: $0 < x - \frac{x^3}{6} < sin(x) < x$.

Beweis:

Schreibe
$$sin(x) = \sum (-1)^n a_n \text{ mit } a_n \frac{x^{2n+1}}{(2n+1)!} > 0$$

Für $n \ge 1$ gilt:

$$\frac{a_{n+1}}{a_n} = \frac{x^{2(n+1)+1}}{(2(n+1)+1)!} \cdot \frac{(2n+1)!}{x^{2n+1}} = \frac{x^2}{(2n+3)\cdot (2n+2)} < 1$$

also: $a_1 > a_2 > a_3 > a_4 > \dots$

Damit:

$$x - sin(x) = (a_1 - a_2) + (a_3 - a_4) + (a_5 - a_6)... > 0$$
, d.h. $sin(x) < x$

$$sin(x) - (x - \frac{x^3}{6}) = (a_2 - a_3) + (a_4 - a_5) \dots > 0$$
, d.h. $sin(x) > x - \frac{x^3}{6}$

Schließlich gilt für $0 < x \le 2$:

$$0 < x - \frac{x^3}{6}$$
, denn $\frac{x^3}{6} = \frac{x \cdot x^2}{6} \le x \cdot \frac{4}{6} < x$

7.28 Lemma

es gilt cos(2) < 0 und cos(1) > 0

Beweis:

Es gilt $cos(2) = \sum (-1)^n \cdot b_n$, $b_n = \frac{2^{2n}}{(2n)!}$. Für $n \ge 1$ gilt:

$$\frac{b_{n+1}}{b_n} = \frac{2^2}{(2n+1)(2n+2)} < 1$$

Also $b_1 > b_2 > b_3 > b_4 > \dots$

$$cos(2) = b_0 - b_1 + b_2 - b_3 + b_4 - \dots$$

$$= b_0 - b_1 + b_2 \underbrace{-(b_3 + b_4)}_{<0} \underbrace{-(b_5 + b_6)}_{<0} \dots < b_0 - b_1 + b_2$$

Analog
$$\cos(1) > 1 - \frac{1}{2}$$

7.29 Lemma

Die Funktion $cos:[0,2] \to \mathbb{R}$ ist streng monoton fallend im Intervall

Beweis:

Sei
$$2 \ge x > x \ge 0$$
, dann gilt $cos(x) - cos(y) = -2 \cdot sin(\frac{x+y}{2}) \cdot sin(\frac{x-y}{2})$

Weil $\frac{x+y}{2}$, $\frac{x-y}{2} \in (0,2]$ gilt mit Lemma 7.27

Weil $\frac{x+y}{2}$, $\frac{x-y}{2} \in (0,2]$ gilt mit Lemma 7.27 cos(x) - cos(y) < 0, d.h. cos(x) < cos(y)

7.30 Satz

Die Funktion $cos: [0,2] \to \mathbb{R}$ hat genau eine Nullstelle x, und es gilt x > 1

Beweis:

- cos(1) > 0, cos(2) < 0, cos stetig $\Rightarrow_{Zwischenwertsatz} cos <u>hat</u> Nullstelle <math>x \in (1,2)$ (1 < x < 2)
- Da $cos: [0,2] \to \mathbb{R}$ streng monoton fallend, hat cos genau eine Nullstelle

7.31 Definition

Es sei $\pi \in \mathbb{R}$ die eindeutige Zahl, so dass $cos(\frac{\pi}{2})$ und $1 \le \frac{\pi}{2} \le 2$

Bemerkung:

 $2 \le \pi \le 4$, tatsächlich: $\pi = 3, 14159...$ (Kreiszahl) <u>es gilt</u> Es gilt:

x	0	$\frac{\pi}{2}$	π	$\frac{3 \cdot \pi}{2}$		
cos(x)	1	0	-1	0	1	
sin(x)	0	1	0	-1	0	

dazu:

1.
$$sin(x)^2 + cos(x)^2 = 1$$

 $sin(\frac{\pi}{2})^2 = 1$ also $sin(\frac{\pi}{2} = \pm 1 \text{ aber } sin(\frac{\pi}{2}) > 0$
d.h.:
 $e^{i\frac{\pi}{2}} = cos(\frac{\pi}{2}) + i \cdot sin(\frac{\pi}{2}) = i$

2.

$$e^{i \cdot \pi} = (e^{i \cdot \frac{\pi}{2}})^2 = i^2 = -1 = cos(\pi) + i \cdot sin(\pi)$$

3.

$$e^{i\frac{3\cdot\pi}{2}} = e^{i\pi} \cdot e^{i\frac{\pi}{2}} = -1 \cdot i = -i = \cos(\frac{3\pi}{2}) + i \cdot \sin(\frac{3\pi}{2})$$

4. ...

7.32 Satz

Für $x \in \mathbb{R}$ gilt:

1.
$$cos(2\pi + x) = cos(x)$$
, $sin(2\pi + x) = sin(x)$

2.
$$cos(\pi + x) = -cos(x)$$
, $sin(\pi + x) = -sin(x)$

3.
$$cos(\pi - x) = -cos(x)$$
, $sin(\pi - x) = sin(x)$

$$4. \cos(\frac{\pi}{2} - x) = \sin(x)$$

Beweis Additionstheoreme anwenden:

1.
$$cos(2\pi + x) = cos(2\pi) \cdot cos(x) - sin(2\pi) \cdot sin(x) = cos(x)$$

4.
$$cos(\frac{\pi}{2} - x) = cos(\frac{\pi}{2}) \cdot cos(-x) - sin(\frac{\pi}{2}) \cdot sin(-x) = sin(x)$$

$$= 0 = -sin(x)$$

Bemerkung:

cos, sin sind periodisch mit Periode 2π , sin, cos sind durch cos: $[0, \frac{\pi}{2}] \to \mathbb{R}$ eindeutig bestimmt.

Bemerkung:

cos(x), sin(x) kann für $x \in \{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\}$ explizit bestimmt werden

Beispiel:

$$cos(\frac{\pi}{3}) = \frac{1}{2}, \ sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$$

Beweis:

Sei
$$x = cos(\frac{\pi}{3}), y = sin(\frac{\pi}{3}), z = x + i \cdot y = e^{i\frac{\pi}{3}}$$

Dann gilt:

$$z^2 = e^{2 \cdot i \frac{\pi}{3}} = e^{i\pi \cdot -\frac{\pi}{3}} = -1 \cdot e^{i \frac{\pi}{3}} = -\bar{z}$$

Also
$$(x + iy)^2 = -x + iy$$
 d.h. $x^2 - y^2 = -x$, $2xy = y$ und $x^2 + y^2 = 1$

Auflösen liefert Beh.

Wiederholung

Definition

$$cos(x) + i \cdot sin(x) = exp(i \cdot x) = e^{i \cdot x}$$

 $cos[0,2] \rightarrow \mathbb{R}$: streng monoton fallend, cos(0) = 1, cos(1) > 0, cos(2) < 0

 \Rightarrow cos hat in [1,2] eine eindeutige Nullstelle.

<u>Definiere</u> $\pi \in \mathbb{R}$ sei die Zahl mit $1 \leq \frac{\pi}{2} \leq 2$, $cos(\frac{\pi}{2}) = 0$

Verschiebungsregeln (folgt aus Additionstheorem)

$$cos(2\pi + x) = cos(x)$$

$$cos(2\pi - x) = cos(x)$$

$$cos(\pi - x) = -cos(x)$$

7.33 Satz

Die Funktion $cos:[0,\pi]\to[0,1]$ ist stetig, streng monoton fallend, bijektiv

Beweis:

 $cos: [0,2] \to \mathbb{R}$ streng monoton fallend $\Rightarrow cos: [0,\frac{\pi}{2}] \to \mathbb{R}$ streng monoton fallend $cos(\pi - x) = -cos(x) \Rightarrow cos: [\frac{\pi}{2},\pi] \to \mathbb{R}$ streng monoton fallend SKIZZE $\Rightarrow cos: [0,\pi] \to \mathbb{R}$ streng monoton fallend cos(0) = 1, $cos[\pi] = -1 \Rightarrow cos: [0,\pi] \to [-1,1]$ surjektiv, somit bijektiv

<u>Folge</u> es gibt eine Umkehrfunktion: Arcuscosinus: $arccos = cos^{-1}$: $[-1, 1] \rightarrow [0, \pi]$ SKIZZE ARCCOS

$$cos(0) = 1 \quad arccos(1) = 0$$

$$cos\left(\frac{\pi}{2}\right) = 0 \quad arccos(0) = \frac{\pi}{2}$$

$$cos(\pi) = -1 \quad arccos(1) = \pi$$

Bemerkung:

Die Wahl des Intervalls $[0, \pi]$ ist willkürlich. Auch bijektiv:

$$cos: [\pi, 2\pi] \to [-1, 1], \ cos: [-\pi, 0] \to [-1, 1]$$

Bemerkung:

Sei $x \in \mathbb{R}$. Es gilt $cos(x) = 1 \Leftrightarrow x = 2\pi \cdot n \text{ mit } n \in \mathbb{Z}$ (Anschaulich: klar, Beweis: Übung)

10.12.2012

Polarzerlegung

7.34 Satz

Jede komplexe Zahl $z \in \mathbb{C}$ hat eine Darstellung $z = r \cdot e^{i\phi}$ mit $r \in \mathbb{R}$, $r \geq 0$, $\phi \in \mathbb{R}$. Es gilt r = |z|, Man kann ϕ so wählen, dass $\phi \in [0, 2\pi)$. Wenn $z \neq 0$, dann ist $\phi \in [0, 2\pi)$ eindeutig. Bezeichnung: $z = r \cdot e^{i\phi}$

Polarzerlegung von $z, \phi \in [0, 2\pi)$, Argument von z (wenn $z \neq 0$) SKIZZE

Beweis:

Wenn
$$z=0\Rightarrow |z|=|r|\cdot|e^{i\phi}|=r\cdot 1=r$$

Wenn $z=0$: $z=0\cdot e^{i\phi}$ für alle ϕ
Sei $z\neq 0$. $r:=|z|>0$
 $w:=\frac{z}{r}\in\mathbb{C}$. $|w|=\frac{|z|}{r}=\frac{r}{r}=1$
Suche ϕ mit $w=e^{i\phi}$. Sei $w=x+i\cdot y, x, y\in\mathbb{R}$
 $cos(\phi)=x, sin(\phi)=y$
Setze $\widetilde{\phi}:=arcos(x)$ und $\widetilde{y}=\sin(\widetilde{\phi})$
Dann $\widetilde{y}^2=sin(\widetilde{\phi})^2=1-cos(\widetilde{\phi})^2$
 $=1-x^2=y^2$, denn $x^2+y^2=|w|^2=1$
 2 Fälle:
 $\widetilde{y}=y$ oder $\widetilde{y}=-y$
Wenn $\widetilde{y}=y$ dann $\phi=\widetilde{\phi}$ Lösung: $e^{i\phi}=w$
Wenn $\widetilde{y}=y$ dann $\phi:=2\pi 2\pi-\widetilde{\phi}$
 $cos(\phi)=cos(\widetilde{\phi})=x$
 $sin(\phi)=sin(2\pi-\widetilde{\phi})=sin(\widetilde{phi})=-\widetilde{y}=y$
 $\Rightarrow e^{i\phi}=w\Rightarrow z=r\cdot w=r\cdot e^{i\phi}$

Das zeigt Eindeutigkeit der Polarzerlegung

Bemerkung:

(Multiplikation komplexer Zahlen in Polarzerlegung)

$$(r \cdot e^{i\phi}) \cdot (r \cdot e^{i\phi'}) = (r \cdot r') \cdot e^{i\phi + i\phi'} = (r \cdot r') \cdot e^{i(\phi + \phi')}$$

 $|\phi - \phi'| < 2\pi \Rightarrow \phi - \phi' < 0$

 $\label{eq:Multiplikation} \text{Multiplikation der Beträge} \\ \text{Addition der Argumente} \\ \text{SKIZZE}$

7.35 Satz (Einheitswurzel)

Sei $n \in \mathbb{N}$

Die Gleichung $z^n = 1, z \in \mathbb{C}$

Hat genau *n* Lösungen, nämlich $z = e^{2\pi \frac{k}{n}}$ mit $k \in \mathbb{Z}$, $0 \le k < n$

Beweis:

Wenn
$$z^n = 1$$
, dann $|z|^n = |1| = 1 \Rightarrow |z| = 1$
Sei $z = e^{i\phi}$ mit $0 \le \phi < 2\pi$ $z^n = 1 \Leftrightarrow (e^{i\phi})^n = 1 \Leftrightarrow e^{in\phi} = 1$
 $\Leftrightarrow n \cdot \phi = k \cdot 2\pi$ mit $k \in \mathbb{Z}$
 $\Leftrightarrow \phi = 2\pi k/n$ mit $k \in \mathbb{Z}$
 $\Leftrightarrow z = e^{2\pi i \frac{k}{n}}$ mit $k \in \mathbb{Z}$

Bedeutung

$$0 \le \phi < 2\pi \Leftrightarrow 0 \le 2\pi k/n < 2\pi \Leftrightarrow 0 \le k < n$$

$$\begin{cases} e^{0} = 1 \\ e^{2\pi i/6} = e^{\pi i/3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i \\ e^{2\pi i2/6} = e^{\pi i2/3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \\ e^{2\pi i3/6} = e^{\pi i} = -1 \\ e^{2\pi i4/6} = \dots = \dots \\ e^{2\pi i5/6} = \dots \end{cases}$$

Verhalten von exp(z) nahe Null

Erinnerung: $exp: \mathbb{C} \to \mathbb{C}$ stetig, dass heißt wenn $z \to 0$ dann $exp(z) \to exp(0) = 1$ Betrachte $\frac{exp(z)-1}{z}$ für $z \in \mathbb{C}$, $z \neq 0$

7.36 Satz

Es gilt $\lim_{z\to 0} \frac{exp(z)-1}{z}=1$ Das heißt: Wenn (z_n) Folge in $\mathbb C$ mit $z_n\neq 0, z_n\to 0$ dann gilt $\frac{exp(z)-1}{z}\to 1$

Beweis:

$$exp(z) = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$$
$$\frac{exp(z) - 1}{z} = \frac{\frac{z}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots}{z}$$
$$= \frac{1}{1!} + \frac{z}{2!} + \frac{z^2}{3!} + \frac{z^3}{4!} + \dots$$

Also
$$\left| \frac{exp(z)-1}{z} - 1 \right| = \left| \frac{z}{2!} + \frac{z^2}{3!} + \dots \right| \le \left| \frac{z}{2!} \right| + \left| \frac{z^2}{3!} \right| + \left| \frac{z^3}{4!} \right| + \dots$$

$$\le \frac{|z|}{1!} + \frac{|z|^2}{2!} + \frac{|z|^3}{3!} + \dots = exo(|z|) - 1$$
Wenn $z_n \to 0$ dann $|z_n| \to 0$

$$\Rightarrow (exp(|z|)) \to 0$$

$$\Rightarrow \frac{exp(z_n)-1}{z_n} \to 1$$

Bemerkung:

- 1. Beschränkung auf $z = x \in \mathbb{R} \iff \lim_{x \to 0} x \neq 0 \quad \frac{e^x 1}{x} = 1 \quad x \in \mathbb{R}$
- 2. Beschränkung auf

$$z = ix, \ x \in \mathbb{R} \implies \lim_{x \to 0} \frac{e^{i}x - 1}{ix} = 1$$

$$\lim_{x \to 0} \frac{\cos(x) + i \cdot \sin(x) - 1}{ix} = 1$$

$$\lim_{x \to 0} \left(\frac{\sin(x)}{x} - i \cdot \frac{\cos(x) - 1}{x}\right) = 1 + 0i \ (*)$$

$$(*) \underset{Realteil}{\Rightarrow} \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$(*) \underset{Imagin r teil}{\Rightarrow} \lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0$$

Geometrische Bedeutung von π ?

Frage

Was ist die Länge des Kreisbogens von 1 bis e^{ix} ? SKIZZE

- 1. Wie ist diese Länge definiert?
- 2. Berechnen

Zerteilung in kleine Strecken Wähle $n \in \mathbb{N}$ groß:

$$\begin{split} I_n &= |e^{ix/n} - 1| + |e^{2ix/n} - e^{ix/n}| + ... + |e^{ix} - e^{(n-1)ix/n}| \\ &= \sum_{k=0}^{n-1} \left| |e^{(k+1)ix/n} - e^{kix/n}| \right| \end{split}$$

7.37 Satz

Es gilt $\lim_{n\to\infty}l_n=|x|$ Interpretation der Länge des Bogens ist |x| SKIZZE bogenlänge

Beweis:

$$|e^{(k+1)ix/n} - e^{kix/n}| = |e^{kix/n}| \cdot |e^{ix/n} - 1| = |e^{ix/n} - 1|$$

$$(**) \text{ Satz 7.36: } \lim_{n \to \infty} \left| \frac{e^{ix/n} - 1}{ix/n} \right| = 1$$

$$\lim_{n \to \infty} l_n = \lim_{n \to \infty} n \cdot |e^{ix/n} - 1| = \frac{|e^{ix/n} - 1|}{\frac{1}{n}} = |x|$$

8 Differenzialrechnung

8.1 Definition Differenzialrechnung

Sei *I* ein Intervall:

Eine Funktion $f:I\to\mathbb{R}$ heißt $\underline{x_0\in I}$ differenzierbar, wenn der Grenzwert existiert

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

und $f'(x_0)$ heißt <u>Ableitung</u> von f in x_0

f heißt differnzierbar, wenn f in jedem $x_0 \in I$ differenzierbar ist.

Andere Bezeichnung

$$f'(x_0) = \frac{df}{dx}(x_0) = Df(x_0).$$

Geometrische Interpretation

Der Differenzialquotient

$$\frac{f(x) - f(x_0)}{(x - x_0)}$$

ist Steigung der Geraden durch die Punkte $(x, f(x)), (x_0, f(x_0))$ (Sekante)

 $f'(x_0)$ (wenn existiert) ist die Steigung der <u>Tangente</u> an Γ_f im Punkt $(x_0, f(x_0))$

Bemerkung:

Schreibe

$$x = x_0 + h$$

$$h = x - x_0$$

$$f'(x_0) := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Beispiel:

1. $f : \mathbb{R} \to \mathbb{R}$, f(x) = c konstante Funktion

$$f'(x_0) := \lim_{x \to x_0} \frac{c - c}{\underbrace{x - x_0}} = 0$$

2. $f : \mathbb{R} \to \mathbb{R}, f(x) = a \cdot x, a \in \mathbb{R}$

$$f'(x_0) := \lim_{x \to x_0} \frac{a \cdot x - a \cdot x_0}{x - x_0} = \lim_{x \to x_0} a = a \Rightarrow f$$
 differenzierbar

3. $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$

$$f'(x_0) := \lim_{h \to 0} \frac{(x_0 + h)^2 - x_0^2}{h} = \lim_{h \to 0} \frac{2x_0 h + h^2}{h} = \lim_{h \to 0} \frac{2x_0 + h}{h} = 2x_0 \Rightarrow f \text{ differenzierbar}$$

4. $f: \mathbb{R}\setminus\{0\} \to \mathbb{R}$, $f(x) = \frac{1}{x} \operatorname{Sei} x_0 \neq 0$

$$f'(x_0) := \lim_{x \to x_0} \frac{\frac{1}{x} + \frac{1}{x_0}}{x - x_0} = \lim_{x \to x_0} \frac{\frac{x_0 - x}{x \cdot x_0}}{x - x_0} = \lim_{x \to x_0} \frac{x_0 - x}{(x - x_0) \cdot x \cdot x_0} = \lim_{x \to x_0} \frac{-1}{x \cdot x_0} = -\frac{1}{x_0^2} \Rightarrow f \text{ differenzierbar},$$

$$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$$

5. $f: \mathbb{R} \to \mathbb{R}, f(x) = |x|$

$$x_0 = 0$$

$$f'(x_0) := \lim_{h \to 0} \frac{|h| - |0|}{h} = \frac{|h|}{h} \text{ existient nicht, denn } \begin{cases} 1 & h > 0 \\ -1 & h < 0 \end{cases}$$

 \Rightarrow f ist nicht in 0 differenzierbar.

6. $exp: \mathbb{R} \to \mathbb{R}$ bekannt aus Satz 7.36

Sei
$$x_0 \in \mathbb{R}$$
.

$$exp(x_0) = \lim_{h \to 0} \frac{exp(x_0+h) - exp(x_0)}{h}$$

$$exp(x_0) = \lim_{h \to 0} \frac{exp(x_0 + h) - exp(x_0)}{h}$$

$$\lim_{x \to 0} \frac{expx - 1}{x} = 1 = \frac{exp(x) - exp(0)}{x - 0}$$
 Das heißt: $exp'(0) = 1$. Insbesondere ist exp differenzierbar in 0

7. $sin : \mathbb{R} \setminus \{0\} \to \mathbb{R} \text{ Sei } x_0 \in \mathbb{R}$

$$\begin{split} \lim_{h \to 0} \frac{\sin(x_0 + h) - \sin(x_0)}{h} &= \frac{1}{h} (\sin(x_0) \cdot \cos(h) + \cos(x_0) \cdot \sin(h) - \sin(x_0)) \\ &= \frac{1}{h} \cdot \sin(x_0) \cdot (\cos(h) - 1) + \cos(x_0) \cdot \frac{\sin(h)}{h} \\ &= \sin(x_0) \cdot \underbrace{\frac{(\cos(h) - 1)}{h} + \cos(x_0)}_{\to 0 \text{ fr } h \to 0} + \cos(x_0) \cdot \underbrace{\frac{\sin(h)}{h}}_{\to 1 \text{ fr } h \to 0} \end{split} \tag{Korollar zu Satz 7.36}$$

Somit $sin'(x_0) = \lim_{h \to 0} \frac{sin(x_0 + h) - sin(x_0)}{h} = cos(x_0) \Rightarrow sin$ ist differenzierbar, sin' = cos.

8. $cos : \mathbb{R} \to \mathbb{R}$ analog... cos' = -sin

8.2 Lemma

Eine Funktion $f:I\to\mathbb{R}$ ist genau dann in x_0 differenzierbar, wenn eine andere Funktion $\phi:I\to\mathbb{R}$ existiert, sodass

- 1. $f(x) f(x_0) = \phi(x) \cdot (x x_0)$ für alle $x \in I$
- 2. ϕ ist stetig in x_0

Dann gilt $\phi(x_0) = f'(x_0)$

Beweis:

Definiere notwendig

$$\phi_0: I \setminus \{x_0\} \to \mathbb{R}, \ \phi(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

Folgenstetigkeit: ϕ_0 hat eine Fortsetzung $\phi: I \to \mathbb{R}$, die in x_0 stetig ist $\Leftrightarrow \lim_{x \to x_0} \phi_0(x)$ existiert, dann ist

$$\phi(x_0) = \lim_{x \to x_0} \phi_0(x) \Leftrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert, dann ist $\phi(x_0) = f'(x_0)$

8.3 Satz

Sei $fI \to \mathbb{R}eineFunktion$

- 1. f in x_0 differenzierbar $\Rightarrow f$ in x_0 stetig.
- 2. f differenzierbar $\Rightarrow f$ stetig.

Beweis:

- 1. Sei ϕ wie im Lemma $\Rightarrow f(x) = f(x_0) + \phi(x)(x x_0)$ ϕ stetig in $x_0 \Rightarrow f$ stetig in x_0
- 2. folg aus 1.)

Berechnung der Ableitung

8.4 Satz (Zusammengesetzte Ableitungen)

Seien $f, g: I \to \mathbb{R}$ differenzierbar in $x_0 \in I$, dann sind auch $f + g, a \cdot f, f \cdot g: I \to \mathbb{R}$ in x_0 differenzierbar. $(a \in R)$ und:

- 1. $(f+g)'(x_0) = f'(x_0) + g'(x_0)$
- 2. $(a \cdot f)'(x_0) = a \cdot f'(x_0)$
- 3. $(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$

Beweis:

Zeige 3), 1) und 2) analog.

$$\lim_{x \to x_0} \frac{f(x) \cdot g(x) - f(x_0) \cdot g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) \cdot g(x) - f(x_0) \cdot g(x_0)}{x - x_0} + \frac{f(x) \cdot g(x_0) - f(x_0) \cdot g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \left(\frac{f(x) \cdot g(x) - f(x_0) \cdot g(x_0)}{x - x_0} \right) + \lim_{x \to x_0} \left(\frac{f(x) \cdot g(x_0) - f(x_0) \cdot g(x_0)}{x - x_0} \right)$$

$$= f(x_0)g'(x_0) + f'(x_0)g(x_0)$$

Weil f stetig in x_0 und nach Definition der Ableitung.

Folge: Für $n \ge 1$ $(x^n)' = n \cdot x^{n-1}$

Beweis:

mit vollständiger Induktion:

IA:

$$n = 0
 (x^1) = 1 = 1 \cdot x^0$$

IS:

$$n \to n+1$$
$$(x^n+1) = n \cdot x^{n-1}$$

$$(x^{n+1})' = x' \cdot x^n + x \cdot (x^n)' = 1 + x^n + x \cdot n \cdot x^{n-1} = (n+1)x^n$$

8.5 Satz Kettenregel

Sei I,J Intervalle, $f:I\to\mathbb{R},\ g:J\to\mathbb{R}$ Funktionen mit $f(I)\subseteq J\leadsto g\circ f:I\to\mathbb{R}$ ist definiert

$$I \xrightarrow{f} J \xrightarrow{g} \mathbb{R}$$
$$x_0 \longmapsto f(x_0)$$

Wenn

f in x_0 differenzierbar und g in $f(x_0)$ differenzierbar,

dann ist $g \circ f$ in x_0 differenzierbar, und $(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$ Beweisidee

$$\frac{g(f(x)) - g(f(x_0))}{x - x_0} = \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \cdot \frac{f(x) - f(x_0)}{x - x_0}$$

Wiederholung

I Intervall

 $f:I\to\mathbb{R}$ ist in $x_0\in I$ differenzierbar wenn

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

 $f'(x_0)$ Ableitung von f an x_0

Beispiel:

 $n \ge 0$:

$$(x^n)' = n \cdot x^{n-1}$$

$$(\frac{1}{x})' = -\frac{1}{x^2}, \ exp' = exp, \ \text{d.h.} \ (e^x)' = e^x, \ cos' = -sin, \ sin' = cos$$

Produktregel

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

Kettenregel

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

Beispiel:

$$(e^{x^2})' = (exp(x^2))' = exp'(x^2) \cdot (x^2)' = 2x \cdot e^{(x^2)}$$
$$((cos(x))^2)' = f(cos(x))' = f'(cos(x)) \cdot cos'(x) = 2 \cdot cos(x) \cdot sin(x)$$

8.6 Satz Quotientenregel

Seien $f,g:I\to\mathbb{R}$ in x_0 differenzierbar, $g(x)\neq 0$ für alle $x\in I$. Dann ist $\frac{f}{g}:I\to\mathbb{R},\,\frac{f}{g}(x):=\frac{f(x)}{g(x)}$ differenzierbar in x_0

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{g(x_0)^2}$$

Beweis:

Fall f = 1:

Kettenregel: $\frac{1}{g} = \frac{1}{x} \cdot g$

Sei
$$h(x) = \frac{1}{x} \frac{1}{g}(x) = h(g(x))$$

 $(\frac{1}{g})'(x) = h'(g(x)) \cdot g'(x) = -\frac{1}{g(x^2)} \cdot g'(x) \approx Beh.$

Insbesondere: $(\frac{1}{g})' = -\frac{1}{g^2} \cdot g' = -\frac{g'}{g^2}$ Allgemeiner Fall: $\frac{f}{g} = f \cdot \frac{1}{g}$

Produktregel \Rightarrow $(\frac{f}{g})' = (f \cdot \frac{1}{g})' = f' \frac{1}{g} + f \cdot (\frac{1}{g})'$ = $\frac{f' \cdot g}{g^2} - f \cdot \frac{g'}{g^2} = \frac{f' \cdot g - f \cdot g'}{g^2}$

$$= \frac{f' \cdot g}{g^2} - f \cdot \frac{g'}{g^2} = \frac{f' \cdot g - f \cdot g'}{g^2}$$

Beispiel:

Sei
$$n < 0, f : \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ f(x) = x^n$$

Sei $m = -n > 0 \ f(x) = \frac{1}{x^m}$

$$f'(x) = -\frac{(x^m)'}{(x^n)'} = -m\frac{x^{m-1}}{x^{2m}} = -mx^{-m-1} = nx^{n-1}$$
$$-m - 1 = n - 1$$
$$-m = n$$

Folge

$$(x^n)' = nx^{n-1}$$
 gilt für alle $n \in \mathbb{Z}!$

$$(x^{-3})' = -3x^{-4}$$

8.7 Satz (Ableitung der Umkehrfunktion)

Sei $f: I \to \mathbb{R}$ stetig, streng monoton

Sei $J=f(I),\ g=f^{-1}:J\to I$ die Umkehrfunkion von f Angenommen, f ist $x_0\in I$ differenzierbar und $f'(x_0)\neq 0$

Dann ist g in $y_0 := f(x_0)$ differenzierbar und $g'(y_0) = \frac{1}{f'(x_0)}$

Beweis:

Sei $(y_n)_{n>1}$ Folge in J ist mit $y_n \to y_0$

$$g'(y_0) = \lim_{n \to \infty} \frac{g(y_n) - g(y_0)}{y_n - y_0}$$

(soll unabhängig von (y_n) sein) $y_n \to y_0 \ (n \to \infty)$ Sei $x_n = g(y_n) \to x_n \to x_0 \ (n \to \infty)$ da g stetig. $x_n = g(y_n) \Leftrightarrow f(x_n) = y_n$

$$\lim_{n \to \infty} \frac{g(y_n) - g(y_0)}{y_n - y_0} = \lim_{n \to \infty} \frac{x_n - x_0}{f(x_n) - f(x_0)} = \left(\lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0}\right)^{-1} = f'(x_0)^{-1}$$

Rechnung ok weil $f'(x_0) \neq 0$

<u>Folge</u> $log : \mathbb{R}_{>0} \to \mathbb{R}$ ist differenzierbar, $log'(x) = \frac{1}{x}$

Beweis:

$$log(x) = exp(x)^{-1}$$
 Umkehrfunktion $exp'(x) = exp(x) \neq 0$ für alle $x \Rightarrow 8.7$ anwendbar. Sei $y = exp(x)$, $x = log(y)$. $log'(y) = \frac{1}{exp'(x)} = \frac{1}{exp(x)} = \frac{1}{y}$ $log'(x) = \frac{1}{x}$

Anwendung

$$x = 1 log(1) = 0$$

 $log'(1) = \frac{1}{1} = 1$

$$\lim_{n \to \infty} \frac{\log\left(1 + \frac{1}{n}\right) - \log(1)}{\frac{1}{n}} = \log'(1) = 1 \Rightarrow 1 = \lim_{n \to \infty} \left(n \cdot \log\left(1 + \frac{1}{n}\right)\right)$$

exp anwenden $\Rightarrow_{exp \ stetig}$

$$exp(1) = \lim_{n \to \infty} exp\left(n \cdot log\left(1 + \frac{1}{n}\right)\right)$$
$$e = exp(1) = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$

8.8 Höhere Ableitungen

Idee: Wenn $f:I\to\mathbb{R}$ differenzierbar $\leadsto f':I\to\mathbb{R}$ Funktion Wenn f' differenzierbar $\leadsto (f')'=f''=\frac{d^2f}{dx^2}$ 2. Ableitung weiter: $f''=f^{(2)}$ $f^{(n+1)}=(f^{(n)})'$ wenn differenzierbar $f^{(n)}$: n-te Ableitung von f.

Beispiel:

$$(x^{5})^{(2)} = ((x^{5})')' = (5x^{4})' = 20x^{3}$$

$$cos'' = -sin' = -cos$$

$$sin'' = -cos' = -sin$$

8.9 Formale Definition der höheren Ableitung

Rekursive Definition:

Sei $n \ge 1$

Eine Funktion $f: I \to \mathbb{R}$ ist n+1 mal differenzierbar in $x_0 \in I$, wenn ein $\varepsilon > 0$ existiert, so dass f auf $(x_0 - \varepsilon, x_0 + \varepsilon)$ n-mal differenzierbar und $f^{(n)}: (x_0 - \varepsilon, x_0 + \varepsilon) \to \mathbb{R}$ in x_0 differenzierbar ist, dann setzte $f^{(n+1)}(x_0):=(f^{(n)})'(x_0)$

Lokale Extrema und Mittelwertsatz

8.10 Definition Lokale Extrema

Sei $f: I \to \mathbb{R}$ Funktion

 $f \text{ hat ein } \underline{\text{lokales Maximum}} \text{ in } x_0 \in I \text{ wenn gilt:} \begin{cases} \text{es gibt ein } \epsilon > 0 \text{ s.d.} \\ \text{Für alle } x \in I \text{ mit } |x - x_0| < \epsilon \\ \text{gilt } f(x) \leq f(x_0) \end{cases}$

Analog: Lokales Minimum.

Bemerkung:

Lokale Minima von f = lokale Maxima von -f

8.11 Satz (Mittelwertsatz)

Sei $I = (a, b), f : I \to \mathbb{R}$ Funktion

Wenn f in $x_0 \in (a, b)$ ein lokales Extremum hat, und wenn f in x_0 differenzierbar ist, dann ist $f'(x_0) = 0$ (Extremum = Maxium oder Minimum)

Beweis:

$$f'(x_0) = \lim_{x \searrow x_0} \underbrace{\frac{f(x) - f(x_0)}{x - x_0}}_{\ge 0} = \lim_{x \nearrow x_0} \underbrace{\frac{f(x) - f(x_0)}{x - x_0}}_{\le 0}$$

Angenommen f hat in x_0 lokales Minimum $\Rightarrow f(x) - f(x_0) \ge 0$ wenn $|x - x_0| < \varepsilon$, ε wie oben Somit $f'(x_0) \le 0$, $f'(x_0) \ge 0 \Rightarrow f'(x_0) = 0$

8.12 Satz von Rolle

Sei $a < b, f: [a,b] \to \mathbb{R}$ stetig auf (a,b) differenzierbar. Sei f(a) = f(b). Dann gibt es ein $x_0 \in (a,b)$ mit $f'(x_0) = 0$ GRAPH

Beweis:

Wenn f konstant, d.h. f(x) = f(a) für alle $x \in (a,b)$, dann f'(x) = 0 für alle $x \Rightarrow \text{Satz}$ stimmt. Sei f nicht konstant, gibt es $x_1 \in (a,b)$ mit $f(x_1) \neq f(a)$ Angenommen $f(x_1) > f(a)$ (sonst Betrag -f) sei $x_0 \in I$ mit $f(x_0) \ge f(x)$ für alle $x \in I$ $f(x_0) \ge f(x_1) > f(a) = f(b) \Rightarrow x_0 \neq a, \ x_0 \neq b$ f hat in x_0 ein lokales Maximum $\Rightarrow f'(x_0) = 0$

Wiederholung

Eine Funktion $f:I\to\mathbb{R}$ heißt differenzierbar in $x_0\in I$ wenn der Limes

$$f(x) = \lim_{x \to x_0} \frac{f(x) - f(x0)}{x - x_0}$$
 existiert

Ableitungsregeln: Produkt, Kettenregel, Umkehrfunktion \rightsquigarrow Kann "alle" Ableitungen ausrechnen 8.11 $f:I=(a,b)\to\mathbb{R}$ differenzierbar, f hat ein lokales extremum in $x_0\in(a,b)\Leftarrow f'(x)=0$

8.12 (Satz von Rolle)

Sei $f:[a,b] \to \mathbb{R}$ differenzierbar

f(a) = f(b) dann existiert $x_0 \in (a, b)$ mit f'(x) = 0

8.13 Satz (Mittelwertsatz der Differenzialrechnung)

Sei $f:[a,b]\to\mathbb{R}$ stetig, auf (a,b) differenzierbar, dann gibt es ein $x_0\in(a,b)$ mit:

$$f'(x_0) = \frac{f(b) - f(a)}{b - a} = \lambda$$

GRAPH

Beweis:

Sei $g:(a,b)\to\mathbb{R},\ g(x)=f(x)-\lambda\cdot x$

Rechne
$$g(a) - g(b) = f(a) - \lambda \cdot a - f(b) + \lambda \cdot b = f(a) - f(b) - \lambda(a - b) = f(a) - f(b) - \frac{f(b) - f(a)}{b - a}(a - b) = 0$$

Satz von Rolle auf g anwendbar \Rightarrow es gibt $x_0 \in (a, b), g'(x_0) = 0$

$$f(x) = g(x) + \lambda x \Rightarrow f'(x_0) = g'(x_0) + \lambda = \lambda$$

8.14 Folge

Sei $f: T \to \mathbb{R}$ diffbar, f'(x) = 0 für alle x dann ist f konstant.

Beweis:

Sei $x_1 < x_2$ in I

Es gilt
$$x_0$$
 mit $x_1 < x_0 < x_2$ mit $f(x_1) - f(x_2) = f(x_0) \cdot f(x_1 - x_2) = 0$

$$\Rightarrow f(x_1) = f(x_2) \Rightarrow f$$
 konstant.

Mittelwertsatz

8.15 Satz (Monotonie)

Sei $f:[a,b] \to \mathbb{R}$ stetig, diff'bar auf (a,b)

 $f'(x) \ge 0$ für alle $x \in (a, b) \Leftrightarrow f$ monoton wachsend

 $f'(x) \le 0$ für alle $x \in (a, b) \Leftrightarrow f$ monoton fallend

f'(x) > 0 für alle $x \in (a, b) \Rightarrow f$ streng monoton wachsend

f'(x) < 0 für alle $x \in (a, b) \Rightarrow f$ streng monoton fallend

Beweis:

Angenommen $f'(x) \ge 0$ für alle x

Gegeben sei $a < x_1 < x_2 < b$

Zeige

 $f(x_1) \le f(x_2)$

Mittelwertsatz: es gibt x_0 mit $x_1 < x_0 < x_2$ und $f(x_2) - f(x_1) = \underbrace{f'(x_0)}_{\geq 0} \underbrace{x_2 - x_1}_{>0} \Rightarrow f(x_2) \geq f(x_1)$, also monoton

wachsend.

Analog folgen alle "⇒" des Satzes.

Angenommen f monoton wachsend

Sei $x_0 \in (a, b)$

Zeige: $f'(x) \ge 0$ $f'(x_0) = \lim_{x \searrow x_0} \frac{f(x) - f(x_0)}{x - x_0}$ $x > x_0 \Rightarrow x - x_0 > 0$, $f(x) - f(x_0) \ge 0$

Analog: für monoton fallend $\Rightarrow f'(x) \leq 0$ für alle x

Beispiel:

1. $cos: [0, \pi] \to \mathbb{R}$ streng monoton fallend

cos' = -sin, -sin(x) < 0 für alle $x \in (0, \pi)$.

2. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3$

 $f'(x) \ge 0$ für alle x f'(0) = 0 trotzdem f streng monoton wachsend

8.16 Satz

Sei $f:(a,b)\to\mathbb{R}$ in x_0 zweimal differenzierbar mit $f'(x_0)=0$, dann gilt:

- 1. Wenn $f''(x_0) < 0$ dann hat f in x_0 ein lokales Maximum
- 2. Wenn $f''(x_0) > 0$ dann hat f in x_0 ein lokales Minimum

(Wenn $f''(x_0 = 0)$, dann keine Aussage)

Beweis:

Sei $f''(x_0) < 0$).

$$f''(x_0) = \lim_{x \to \infty} \frac{f'(x) - f'(x_0)}{x - x_0}$$

 \Rightarrow Es gibt ein $\varepsilon > 0$, so dass

$$|x - x_0| < \varepsilon \Rightarrow \frac{f'(x) - f'(x_0)}{x - x_0} < 0$$

d.h.

a
$$x_0 < x < x_0 + \epsilon \Rightarrow f'(x) - f'(x_0) < 0 \Rightarrow f'(x) < 0$$

b
$$x_0 - \epsilon < x < x_0 \Rightarrow f'(x) - f'(x_0) > 0 \Rightarrow f'(x) > 0$$

 $8.15 \Rightarrow f$ streng monoton fallend auf $[x_0, x_0 + \epsilon]$ wegen a) f streng monoton steigend auf $[x_0 - \epsilon, x_0]$ wegen b)

Beispiel:

$$f(x)x^3 - 3x f : \mathbb{R} \to \mathbb{R}$$

$$f'(x) = 3x^2 - 3$$

$$f'(x) = 3x^2 - 3$$

$$f''(x) = 6x$$

Nullstelle (NST) von f': $f'(x) = 0 \Leftrightarrow 3x^2 - 3 = 0 \Leftrightarrow x^2 = 1 \Leftrightarrow x \in \{1, -1\}$

Anwendung von f'' an NST von f': f(1) = 6

Regeln von de l' Hospital

Ziel: Berechnung eines Limes $\lim_{x\to a} \frac{f(x)}{g(x)}$ wenn $\lim_{x\to a} f(x) = 0 = \lim_{x\to a} g(x)$ oder $\lim_{x\to a} g(x) = \pm \infty$

8.17 Satz

Sei I = (a, b) mit $-\infty \le a < b \le \infty$

Seien $f, g: I \to \mathbb{R}$ differenzierbare Funktionen

Annahme

Der Limes

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = c \in \mathbb{R} \text{ existiert}$$

- 1. Wenn $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$, dann gilt $\lim_{x\to a} \frac{f(x)}{g(x)} = c$
- 2. Wenn $\lim_{x\to a} g(x) = \infty$ oder $-\infty$, dann $\lim_{x\to a} \frac{f(x)}{g(x)} = c$

Analog für $x \to b$ (ohne Beweis)

Beispiel:

1.
$$\lim_{x\to 0} \frac{\sin(x)}{x} = ?$$
 $\lim_{x\to 0} x = 0$, $\lim_{x\to 0} \frac{\sin(x)}{x} = 0$
 $x' = 1$, $\sin' = \cos$
 \Rightarrow Berechne
 $\lim_{x\to 0} \frac{\cos(x)}{1} = \cos(0) = 1$ existiert.
 $\lim_{x\to 0} \frac{\sin(x)}{1} = 1$

2.
$$\lim_{x\to\infty} \frac{\log(x)}{x}$$

 $\lim_{x\to\infty} x = \infty$
 $\log(x)' = \frac{1}{x}, x' = 1$
 \sim Berechne

$$\lim_{x \to \infty} \frac{\frac{1}{x}}{1} = \lim_{x \to \infty} \frac{1}{x} = 0$$

$$8.17 \Rightarrow \lim_{x \to \infty} \frac{log(x)}{x} = 0$$

3. Rationale Funktion

$$\lim_{x \to \infty} \frac{x^3 + x}{2x^2 + 5}$$

$$f(x) = x^3 + x, g(x) = 2x^2 + 5$$

$$\lim_{x \to \infty} g(x) = \infty$$

$$f'(x) = 2x + 1, g(x) = 4x$$

$$Rechne$$

$$\lim_{x \to \infty} \frac{2x + 1}{4x}$$

$$= \lim_{x \to \infty} \left(\frac{1}{2} + \frac{1}{4x}\right) = \frac{1}{2} \Rightarrow \lim_{x \to \infty} \frac{x^2 + x}{2x^2 + 5} = \frac{1}{2}$$

4.

$$\lim_{x \to 0} \left(\frac{1}{\sin(x)} - \frac{1}{x} \right)$$

$$\frac{1}{\sin(x)} - \frac{1}{x} = \frac{x - \sin(x)}{x \cdot \sin(x)} = \frac{f(x)}{g(x)}$$

$$f(x) = x - \sin(x), \ g(x) = x \cdot \sin(x)$$

$$\lim_{x \to 0} (x - \sin(x)) = 0 = \lim_{x \to 0} (x \cdot \sin(x))$$

$$f'(x) = 1 - \cos(x), \ g'(x) = \sin(x) + x \cdot \cos(x)$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{\sin(x) + x \cdot \cos(x)} = ?$$

$$\lim_{x \to 0} (1 - \cos(x)) = 0 = \lim_{x \to 0} \sin(x) + x \cdot \cos(x)$$

Wende 8.17 nochmal an

$$f''(x) = \sin(x), \ g''(x) = \cos(x) + \cos(x) - x.\sin(x)$$

$$\lim_{x \to 0} \frac{f''(x)}{g''(x)} = \lim_{x \to 0} \frac{\sin(x)}{2\cos(x) - x \cdot \sin(x)} = \frac{1}{2} \frac{0}{2} = 0$$

$$\Rightarrow \lim_{x \to 0} \frac{f'(x)}{g'(x) = 0} \Rightarrow \lim_{x \to 0} \frac{f(x)}{g(x) = 0}$$

 $[\]lim_{x \to 0} 2\cos(x) - x \cdot \sin(x) = 2$ $\lim_{x \to 0} \sin(x) = 0$

9 Integration

<u>Idee</u>

 $\int_a^b f(x)dx$ = Fläche zwischen Graphen von f und x-Achse Wenn allgemeiner $f:[a,b]\to\mathbb{R}$,

dann zählen Flächen unterhalb der x-Achse negativ

$$\int_{a}^{b} f(x)dx = F_1 - F_2 + F_3$$

Fragen

Formale Definition des Intervalls? Welche Funktionen sind interpretierbar? Eigenschaften, Berechnung des Integrals.

Treppenfunktion

9.1 Definition der Treppenfunktion

Sei $a, b \in \mathbb{R}$, a < b

1. Eine Funktion $f:[a,b] \to \mathbb{R}$ heißt Treppenfunktion, wenn es eine Unterteilung $a=x_0 < x_1 < x_2 < x_3 < \ldots < x_n = b$ gibt, so dass f auf (x_{i-1},x_i) konstant ist, dass heißt $f(x)=c_i$ für alle x mit $x_{i-1} < x < x_i$

2. In diesem Fall definiere

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} c_{i}(x_{i} - x_{i-1})$$

"Summe der Rechtecke"

Bemerkung:

Die Definition eines Integrals für die Treppenfunktion ist unabhängig von der Unterteilung

Beispiel:

(ohne formalen Beweis)

9.2 Lemma

Seien $f, g : [a, b] \to \mathbb{R}$ Treppenfuntionen Dann gilt:

1.
$$\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

2.
$$c \in \mathbb{R} \int_a^b c \cdot f(x) dx = c \cdot \int_a^b f(x) dx$$

3. Wenn $f \le g$, dass heißt $f(x) \le g(x) \ \forall x$, dann $\int_a^b f(x) dx \le \int_a^b g(x) dx$

(ohne formalen Beweiß)

Das Riemannsche Integral

<u>Idee</u> Sei $f : [a, b] \to \mathbb{R}$ beliebige Funktion.

Wenn $g \le f$ und g Treppenfunktion dann sollte $\int g(x)dx < \int f(x)dx$ Wenn $f \le h$ und f Treppenfunktion dann sollte $\int f(x)dx < \int h(x)dx$ Wenn $\int_a^b f(x)dx$ durch diese (∞ -vielen) Bedingungen festgelegt wird, nennen wir f integrierbar und $\int_a^b f(x)dx$ ist definiert.

9.3 Definition des Riemannschen Integral

Sei $f:[a,b] \to \mathbb{R}$ beschränkte Funktion Unterintegral:

$$sup\left\{ \int_a^b g(x)dx \mid g : [a,b] \text{ Treppen funktion mit } g \le f \right\} =: \int_a^b {}_*f(x)dx$$

Oberintegral:

$$\inf\left\{\int_a^b h(x)dx\mid h:[a,b] \text{ Treppenfunktion mit }f\leq h\right\}=:\int_a^b {}^*f(x)dx$$

(<u>Idee</u> Wenn $\int_a^b f(x)$ definiert, sollte $\int_a^b f(x) dx \le \int_a^b f(x) dx \le \int_a^b f(x) dx$

Definition

f heißt integrierbar, wenn $\int_a^b {}_*f(x)dx = \int_a^b {}^*f(x)dx$ Dann setzte $\int_a^b f(x)dx := \int_a^b {}_*f(x)dx$

10.01.2013

9.4 Bemerkung

 $f:[a,b]\to\mathbb{R}$ ist integrierbar \Leftrightarrow es gilt: Für jedes $\epsilon>0$ gibt es eine Treppenfunktion g,h mit $g\leq f\leq h$ mit $\int_a^b h(x)dx-\int_a^b g(x)dx<\epsilon$. Damit ist $\int_a^b f(x)$ auf ϵ festgelegt.

9.5 Satz Eigenschaften des Integrals

Seien $f, g: [a, b] \to \mathbb{R}$ integrierbar, dann sind auch f + g und $c \cdot f$ integrierbar und

1.
$$\int_a^b (f+g)(x)dx = \int_a^b f(x) + \int_a^b g(x)$$

2.
$$\int_a^b (c \cdot f)(x) dx = c \cdot \int_a^b f(x)$$

3. wenn
$$f \le g \operatorname{dann} \int f(x) dx \le \int g(x) dx$$

Beweis:

Notation:

$$I(f) = \int f(x)dx$$

Sei $\epsilon > 0$ gegeben.

Wähle Treppenfunktion f_1, f_2, g_1, g_2 mit $f_1 < f < f_2$ und $g_1 < g < g_2$

$$I(f_2) - I(f_1) < \epsilon, \, I(g_2) - I(g_1) < \epsilon$$

$$\Leftarrow f_1 + g_1 < f + g < f_2 + g_2$$

$$I(f_2 + g_2) - I(f_1 + g_1) = I(f_2) - I(f_1) + I(g_2) - I(g_1) < \epsilon + \epsilon = 2\epsilon$$

Das für jedes $\epsilon > 0$

$$|I(f+g)-I(f)-I(g)|\leq |I(f+g)-I(f_1+g_1)|+|I(f)-I(f_1)|+|I(f)-I(f_1)|=2\epsilon+\epsilon+\epsilon=4\epsilon$$

(Dreiecksungleichung)

$$\Rightarrow I(f+g)-I(f)-I(g)=0$$

Rest des Satzes analog.

9.6 Satz

Sei $f: [a, b] \to \mathbb{R}$ stetig, dann:

1. Für jedes $\varepsilon > 0$ gibt es eine Treppenfuntion $g: [a,b] \to \mathbb{R}$ mit $|f(x) - g(x)| < \varepsilon$ für alle $x \in [a,b]$

2. f ist integrierbar

Beweis:

Zeige 2) unter Annahme von 1).

Gegeben
$$\varepsilon > 0$$
. Setze $\varepsilon' = \frac{1}{2(b-a)}\varepsilon$

Wegen 1) gibt es eine Treppenfunktion $g:[a,b]\to\mathbb{R}$ mit $|f(x)-g(x)|<\varepsilon'$.

$$g_1(x) = g(x) - \varepsilon', \ g_2(x) = g(x) + \varepsilon' \Rightarrow g_1 \le f \le g_2$$

$$\int_{a}^{b} g_2(x)dx - \int_{a}^{b} g_1(x)dx = \int_{a}^{b} (g_2 - g_1)(x)dx = \int_{a}^{b} \underbrace{2\varepsilon'}_{konstante\ Funktion}(x)dx$$

$$=2\varepsilon'(b-a)=\frac{1}{(b-a)}\cdot\varepsilon\cdot2(b-a)=\varepsilon\underset{9.4}{\Rightarrow}f$$
integrierbar

Zeige

1. Gegeben sei $\epsilon > 0$

 $6.24 \Rightarrow f$ gleichmäßig aber stetig. d.h. es gibt $\delta > 0$ so dass gilt:

Wenn $|x - y| < \delta$ dann $|f(x) - f(y)| < \epsilon$

Wähle Unterteilung $a = x_0 < x_1 < x_2 < ... < x_n = b \text{ mit } x_i - x_{i-1} < \delta \text{ Sei } c := f(x_i)$

Definiere Treppenfunktion $g:[a,b] \to \mathbb{R}$

$$x_{i-1} < x < x_i \Rightarrow g(x) = c_i = f(x) \ (1 \le i \le n)$$

$$g(x_0) = f(x_0)$$
 dann $|f(x) - g(x)| < \varepsilon$ für alle x .

9.7 Satz (Mittelwertsatz der Integralrechnung)

Sei $f:[a,b] \to \mathbb{R}$ stetig (somit integrierbar)

Dann gibt es ein
$$x_0 \in [a, b]$$
 mit $\int_a^b f(x)dx = f(x_0)(b-a)$

GRAPH

Beweis:

Sei

$$m = \inf f(x) \mid x \in [a, b]$$

$$M = \sup f(x) \mid X \in [a, b]$$

 $6.11 \Rightarrow \underline{\text{Bekannt}} \text{ es gibt } x_1, x_2 \in [a, b] \text{ mit } f(x_1) = m, f(x_2) = M$

$$f(x_1) \le f(x_2) \text{ für alle } f(x) \le f(x_2) \Rightarrow f(x_1)(b-a) = \int_a^b f(x) \le \int_a^b dx \le_a^b f(x_2) dx = f(x_2)(b-a)$$

$$f(x_1) \le \frac{1}{b-a} \int_a^b f(x) dx \le f(x)$$

Zwischenwertsatz \Rightarrow es gibt auch $x_0 \in [a, b]$ mit $f(x_0) = y \Rightarrow f(x_0)(b - a) = \int_a^b f(x) dx$ (nachtrag)

9.8 Definition Mittelwertsatz

Sei $f : [a, b] \to \mathbb{R}$ integrierbar, a < b

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

Konsequenz

Sei $f: I \to \mathbb{R}$ stetig $a, b, c \in I$, dann

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

egal wie a, b, c liegen!

WEITERE Graphen

Wiederholung

- 1. Integration der Treppenfunktion (leicht)
- 2. $f:[a,b] \to \mathbb{R}$ beschränkt

$$\int_{a}^{b} {}_{*}f(x) = \sup \left\{ \int_{a}^{b} g(x)dx \mid g : [a, b] \to \mathbb{R} \text{ Treppenfunktion}, g \le f \right\}$$

$$\inf \left\{ \int_{a}^{b} h(x)dx \mid h : f \le h \right\} = \int_{a}^{b} {}_{*}f(x)$$

f integrierbar wenn $\int_a^b {}_*f(x)dx = \int_a^b {}^*f(x)dx$, dann $\int_a^b f(x)dx := \int_a^b {}_*f(x)dx$

- a) $f:[a,b] \to \mathbb{R}$ stetig \Rightarrow integrierbar
- b) Mittelwertsatz: Wenn $f:[a,b]\to\mathbb{R}$ stetig, dann gibt es ein $x_0\in[a,b]$ mit $\int_a^b f(x)dx=f(x_0)\cdot(b-a)$ (Grundlage aller Berechnungen)

Hauptsatz der Differential und Integralrechnung

9.9 Satz

Sei $I \subseteq \mathbb{R}$ Intervall, $f: I \to \mathbb{R}$ stetige Funktion, $a \in I$ feste Zahl.

Definiere:

$$F(x) := \int_{a}^{x} f(t)dt$$

(Erinnerung: Wenn x < a, dann $\int_{a}^{x} = -\int_{x}^{a}$)

Dann ist $F: I \to \mathbb{R}$ differenzierbar und F'(x) = f(x).

Beweis:

Sei $h \neq 0$

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \left(\int_{a}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt \right) = \frac{1}{h} \int_{a}^{x+h} f(t)dt$$

Mittelwertsatz \Rightarrow es gibt $x_h \in [x, x+h]$ (wenn h > 0) bzw. $x_h \in [x+h, x]$ (wenn h < 0), so dass

$$\int_{a}^{x+h} f(t)dt = f(x_n) \cdot h \Rightarrow (*) = \frac{f(x_n) \cdot h}{h} = f(x_n)$$
$$\Rightarrow F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} f(x_n) = f(x)$$

⇒ Behauptung

14.01.2013

9.10 Definition Stammfunktion

Sei $f:I\to\mathbb{R}$ Funktion. Eine Funktion $F:I\to\mathbb{R}$ heißt Stammfunktion von f wenn F differenzierbar und F' = f

Bemerkung:

 $9.9 \Rightarrow$ Jede stetige Funktion f hat eine Stammfunktion

9.11 Satz

Sei F Stammfunktion von f

Eine Funktion $G:I\to\mathbb{R}$ ist Stammfunktion von $f\Leftrightarrow F-G$ konstant, dass heißt G=F+c mit $c\in\mathbb{R}$

Beweis:

G differenzierbar mit $G' = f \Leftrightarrow G - F$ differenzierbar mit $(G - F)' = f - f = 0 \Leftrightarrow G - F$ konstant (bekannt)

9.12 Satz (Hauptsatz der Differenzial und Integralrechnung)

Sei $f:[a,b]\to\mathbb{R}$ stetig, $F:[a,b]\to\mathbb{R}$ Stammfunktion von f, dann

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = : F(x) \begin{vmatrix} b \\ a \end{vmatrix}$$

Beweis:

Sei $G(x) := \int_a^x f(t)dt$, $G : [a, b] \to \mathbb{R}$. $9.9 \Rightarrow G' = f \Rightarrow G - F = c$ konstant, $c \in \mathbb{R}$. G = F + c

$$\int_{a}^{b} f(x)dx = G(b) = G(b) - \underbrace{G(a)}_{=0} = F(b) + c - (F(a) + c) = F(b) - F(a)$$

Folge

Berechnung von Integralen ⇔ Finden von Stammfunktionen = Umkehrung des Ableitens

Notation:

"
$$\int f(x)dx = F(x)$$
"(*)

soll heißen: F ist Stammfunktion von f, dass heißt F' = f

Vorsicht: (*) ist keine echte Gleichung, bestimmt F(x) nur bis auf Addition einer Konstante

Beispiel:

Sei $s \in \mathbb{R} \setminus \{-1\} \int_{a}^{b} x^{s} dx$ Erlaubter Integrationsbereich:

1. $s \in \mathbb{N}$: a, b beliebig

2. $s \in \mathbb{Z}$: $s \le -2$: x = 0 ausschließen $x^s = \frac{1}{x^{-s}}$ entweder a, b < 0 oder a, b > 0

3.
$$s \in \mathbb{R} \setminus \mathbb{Z}$$

 $x^s := e^{s \cdot log(x)}$ nur definiert für $x > 0$ $a, b > 0$
Suche F mit $F' = x^s$
 $F = \frac{1}{s+1}x^{s+1} F' = (s+1)\frac{1}{s+1}x^2 = s^2$
 $s \neq -1 \Rightarrow s+1=0$
 $\Rightarrow \int_a^b x^s dx = \frac{1}{s+1}x^s \begin{vmatrix} b \\ a \end{vmatrix}$

Beispiel:

2.
$$\int e^x dx = e^x, \operatorname{denn}(e^x)' = e^x$$

3.
$$\int \sin(x)dx = -\cos(x)denn(-\cos(x))' = \sin(x)$$
$$\int \cos(x)dx = \sin(x)denn(\sin(x))' = \cos(x) \text{ (Unbestimmte Integrale)} \Rightarrow \int_{a}^{b} e^{x}dx = e^{x} \begin{vmatrix} b \\ a \end{vmatrix} = e^{b} - e^{a} \text{ etc.}$$

$$\int e^{cx} dx = \frac{1}{c} e^{cx} \qquad \frac{1}{c} (e^{cx})' = \frac{1}{c} \cdot c \cdot e^{cx} = e^{cx}$$

$$\int x^s dx, s \neq 1 \dots \text{ bekannt aus } 1)$$

4.
$$\int_{a}^{b} x^{-1} dx = \int_{a}^{b} \frac{1}{x} dx$$
Erlaubte Grenzen: $x \neq 0$ d.h. $a, b > 0$ oder $a, b < 0$

• Sei
$$a, b > 0$$
 . $log'(x) = \frac{1}{x}$ log : $\mathbb{R}_0 \to \mathbb{R}$
 $\Rightarrow \int_a^b \frac{1}{x} dx = log(x) \mid_a^b \text{ wenn } a, b > 0$

• Sei
$$a, b < 0$$
 Sei $g : \mathbb{R}_{<0} \to \mathbb{R}, g(x) = log(-x) = log(|x|)$
 $g'(x) = \frac{1}{-x} \cdot (-1) = \frac{1}{x}$
 $\int_a^b \frac{1}{x} = log(-x) \mid_a^b = log(|x|) \mid_a^b$

In beiden Fällen: $\int \frac{1}{x} dx = log(|x|)$ wenn $x \neq 0$

$$5. \int \frac{1}{1+x^2} dx = \arctan(x)$$

Beweis:

$$tan = \frac{sin}{cos} : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to \mathbb{R}$$
$$(tan(x))' = \frac{1}{cos(x)^2}$$

Wenn
$$y = tan(x)$$
 $arctan'(y) = \frac{1}{tan'(x)} = cos(x)^2 = \frac{1}{1+y^2}$

$$\cos(x)^{2} \stackrel{!}{=} \frac{1}{1 + \frac{\sin(x)^{2}}{\cos(x)^{2}}} = \frac{\cos(x)^{2}}{\cos(x)^{2} + \sin(x)^{2}} = \cos(x)^{2}$$

Grundprinzip:

Jede Ableitungsregel gibt eine Integrationsregel:

- Kettenregel → Substitutionsregel
- Produktregel → Partielle Integration

Substitutionsregeln

9.13 Satz (Substitionsregel)

Sei $f:I\to\mathbb{R}$ stetig, $\phi:[a,b]\to I$ differenzierbar, dann

$$\int_{a}^{b} f(\phi(t)) \cdot \phi'(t) dt = \int_{\phi(a)}^{\phi(b)} f(x) dx$$

Beweis:

Sei $F:I\to\mathbb{R}$ Stammfunktion von f, dass heißt F'=f

$$(F \cdot \phi)'(x) = F'(\phi(x)) \cdot \phi'(x) = f(\phi(x)) \cdot \phi'(x) \Rightarrow \int_{\phi(a)}^{\phi(b)} f(x)dx = F(x) \begin{vmatrix} \phi(b) \\ \phi(a) \end{vmatrix} = F(\phi(b) - F(\phi'(a)))$$

$$F(\phi(X))\mid_a^b=\int_a^b(F(\phi\circ F)'(x))dx=\int_a^bf(\phi(x))\cdot\phi'(x)dx$$

Beispiel:

1.
$$\int_{a}^{b} f(x+c)dx = \int_{a}^{b} \underbrace{f(\phi(t))}_{f}(t+c) \cdot \underbrace{\phi'(t)}_{=1} dt = \int_{a+c}^{b+c} f(x)dx$$
$$\phi(t) = t+c \qquad \phi'(t) = 1$$

2.
$$\int_a^b f(c \cdot x) = \int_a^b f(\phi(t)) \cdot \frac{\phi'(t)}{c} dt = \frac{1}{c} \cdot \int_a^b f(x) dx$$

3.
$$\int_{a}^{b} t : f(t^{2})dt = \frac{1}{2} \int_{a}^{b} \underbrace{\phi'(t)}_{2t} \cdot f(\phi(t)) = \frac{1}{2} \int_{a^{2}}^{b^{2}} f(x)dx \text{ z.B.} \int_{0}^{1} xe^{x^{2}} dx = \frac{1}{2} \int_{0^{2}}^{1^{2}} e^{x} dx$$
$$f(x) = e^{x} = \frac{1}{2}e^{2} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = \frac{e-1}{2} F(\phi(X)) \begin{vmatrix} b \\ a \end{vmatrix} = \int_{a}^{b} (F(\phi \circ F)'(x)) dx = \int_{a}^{b} f(\phi(x)) \cdot \phi'(x) dx$$

Beispiel:

1.
$$\int_{a}^{b} f(x+c)dx = \int_{a}^{b} \underbrace{f(\phi(t))(t+c) \cdot \phi'(t)}_{f} dt = \int_{a+c}^{b+c} f(x)dx$$
$$\phi(t) = t+c \qquad \phi'(t) = 1$$

2.
$$\int_{a}^{b} f(c \cdot x) dx = \int_{a}^{b} f(\phi(t)) \cdot \frac{\phi'(t)}{c} dt = \frac{1}{c} \cdot \int_{ca}^{cb} f(x) dx$$
$$c \in \mathbb{R}, \ c \neq 0 \qquad \phi(t) = ct \qquad \phi'(t) = c$$

3.
$$\int_{a}^{b} t f(t^{2}) dx = \int_{a}^{b} \underbrace{\phi'(t)}_{2t} f(\phi(t)) dt = \frac{1}{2} \int_{a^{2}}^{b^{2}} f(x) dx$$
$$\phi(t) = t^{2} \qquad \phi'(t) = 2t$$

zum Beispiel:

$$f(x) = e^x = \frac{1}{2}e^2 \begin{vmatrix} 1 \\ 0 \end{vmatrix} = \frac{e-1}{2}$$

 $^{^{2}\}phi(t) = t^{2}$ $\phi'(t) = 2t$

Wiederholung

<u>Hauptsatz</u> Wenn $F:[a,b]\to\mathbb{R}$ eine Stammfunktion der stetigen Funktion $f:[a,b]\to\mathbb{R}$ ist, (d.h. F'=f) dann $\int_a^b f(x)dx=f(x)|_a^b$ Substitutionsregel

$$F' = f \Rightarrow (F \circ \phi)' = (F' \circ \phi) \cdot \phi' = (f \circ) \cdot \phi$$

$$\int_a^b f(\phi(x)) \cdot \phi'(x) dx = F(\phi(b)) - F(\phi(a)) = \int_{\phi(a)}^{\phi(b)} f(x) dx$$

Beispiel:

4. Sei $f:[a,b] \to \mathbb{R}$ differenzierbar, $\phi(x) \neq 0$ für alle x.

$$\int_{a}^{b} \frac{\phi'(x)}{\phi(x)} = \int_{a}^{b} f(\phi(x)) \cdot \phi'(x) = \int_{\phi(a)}^{\phi(b)} \frac{1}{x} dx = log(|x|)|_{a}^{b}$$
$$= log(|\phi(b)|) - log(|\phi(a)|)$$

5. Fläche unterm Halbkreis GRAPH Halbkreis

$$(*) = \int_a^b \sqrt{1 - x^2} dx$$

$$x^2 + y^2 = 1$$
 (Pythagoras) $y = \sqrt{1 - x^2}$ Substituiere $x = sin(t) \sqrt{1 - sin(t)^2} = \sqrt{cos(t)} = cos(t)$ (Wenn $cos(t) \ge 0$, d.h. z.B. $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$) GRAPH $cos(x)$ Intervall -pi/2 -> pi/2 $\phi(t) = sin(t)$ $\phi'(t) = cos(t)$ $a = sin(u)$ $b = sin(v)$ $u := arcsin(a)$ $v := arcsin(b)$ $(*) = \int_{sin(u)}^{sin(v)} \sqrt{1 - x^2} dx$ $= \int_{v}^{v} \sqrt{1 - sin(t)^2} \cdot cos(t) dt$ $= \int cos(t)^2 dt$ \Rightarrow Siehe Übung

Partielle Induktion

Produktregel

$$(f \cdot g)' = f'g + fg'$$

9.14 Satz (Partielle Induktion)

Seien
$$f,g:[a,b]\to\mathbb{R}$$
 stetig, differenzierbar, dass heißt f',g' stetig
Dann gilt $\int_a^b f(x)g'(x)dx = f(x)g(x) \left| \begin{array}{c} b \\ a \end{array} - \int_a^b f'(x)\cdot g(x)dx \right|$

Beweis:

$$\int_{a}^{b} f'(x) \cdot g(x) + \int_{a}^{b} f(x) \cdot g'(x) \underset{Produktregel}{=} \int_{a}^{b} (f \cdot g)'(x) \underset{Hauptsatz}{=} f(x) \cdot g(x) \left| \begin{array}{c} b \\ a \end{array} \right. \Rightarrow \text{Behauptung}$$

Beispiel:

1.
$$\int_{a}^{b} log(x)dx = (*)$$
Sei $g(x) = x, g'(x) = 1, f(x) = log(x)$

$$(*) = \int_{a}^{b} log(x)g'(x)dx = log(x) \begin{vmatrix} b \\ a \end{vmatrix} - \underbrace{\int_{a}^{b} log(x) \cdot x \, dx}_{\int_{a}^{b} \frac{x}{x} dx = b - a = x} \begin{vmatrix} b \\ a \end{vmatrix}$$

$$= (log(x) - x) \begin{vmatrix} b \\ a \end{vmatrix} = x(log(x) - 1) \begin{vmatrix} b \\ a \end{vmatrix}$$

Probe

$$x(\log(x)-1)'=...=\log(x)$$

2.

$$\int_{a}^{b} \cos^{2}(x)dx = \int_{a}^{b} \cos(x) \cdot \sin'(x)dx = \cos(x) \cdot \sin(x) \begin{vmatrix} b \\ a \end{vmatrix} \int_{a}^{b} \cos'(x) \cdot \sin(x)dx$$

$$= \cos(x) \cdot \sin(x) \begin{vmatrix} b \\ a \end{vmatrix} + \int_{a}^{b} \frac{\sin(x) \cdot \sin(x)}{\sin^{2}(x) = 1 - \cos^{2}(x)}dx$$

$$= \cos(x) \cdot \sin(x) \begin{vmatrix} b \\ a \end{vmatrix} + x \begin{vmatrix} b \\ a \end{vmatrix} - \int_{a}^{b} \cos^{2}(x)dx$$

$$\Rightarrow 2 \int_{a}^{b} \cos^{2}(x)dx = (\cos(x)\sin(x) + x) \begin{vmatrix} b \\ a \end{vmatrix} \Rightarrow 2 \int_{a}^{b} \cos^{2}(x)dx = \frac{1}{2}(\dots)$$

3.
$$\int_{a}^{b} e^{x} \cos(x) dx = \int_{a}^{b} e^{x} \sin'(x) dx$$

$$= e^{x} \sin(x) \begin{vmatrix} b \\ a \end{vmatrix} - \int_{a}^{b} e^{x} \sin(x) dx$$

$$= e^{x} \sin(x) \begin{vmatrix} b \\ a \end{vmatrix} + \int_{a}^{b} e^{x} \cos'(x) dx$$

$$= e^{x} \sin(x) \begin{vmatrix} b \\ a \end{vmatrix} + e^{x} \cos(x) \begin{vmatrix} b \\ a \end{vmatrix} - \int_{a}^{b} e^{x} \cos(x) dx$$

$$\Rightarrow \int_{a}^{b} e^{x} \cos'(x) dx = \frac{1}{2} \left(e^{x} (\sin(x) + \cos(x)) \right) \begin{vmatrix} b \\ a \end{vmatrix}$$

Uneigentliche Intregrale

9.15 Definition Uneigentliche Integrale

Sei $f:[a,\infty)\to\mathbb{R}$ Funktion, die auf jedem Intervall [a,R] mit $a\leq R<\infty$ integrierbar ist. Setzte

$$\int_{a}^{\infty} f(x)dx := \lim_{R \to \infty} \int_{a}^{R} f(x)dx$$

(Wenn der Limes existiert), dann nennt man $\int_a^\infty f(x)dx$ konvergent Analog für $f:(-\infty,b]\to\mathbb{R}$

Beispiel:

1.

$$f(x) = \frac{1}{x^2}$$
 $\int_1^\infty \frac{1}{x^2} dx = ?$

Graph

$$\int_{1}^{R} \frac{1}{x^{2}} dx = -\frac{1}{x} \left| \begin{array}{c} R \\ 1 \end{array} \right| = \frac{1}{1} - \frac{1}{R} = 1 - \frac{1}{R}$$

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{R \to \infty} (1 - \frac{1}{R}) = 1$$

2.

$$f(x) = \frac{1}{x}m \qquad \int_{1}^{\infty} \frac{1}{x} dx$$

$$\int_{1}^{R} \frac{1}{x} dx = -log(x) \left| \begin{array}{c} R \\ 1 \end{array} \right| = log(R) - \underbrace{log(1)}_{=0} = 1$$

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{R \to \infty} log(R) \text{ existiert nicht}$$

(bzw. $\lim()=\infty$)

9.16 Definition

Sei $f:[a,b)\to\mathbb{R}$ eine Funktion, die auf einem Intervall [a,R] mit $a\le R\le b$ integrierbar ist. Setze $\int_a^b f(x)dx=\lim_{R\to b}\int_a^R f(x)dx$ (wenn der Grenzwert existiert.) Dann heißt $\int_a^b f(x)dx$ konvergent. Analog für $f:(a,b]\to\mathbb{R}$

Beispiel:

1.
$$\int_0^1 \frac{1}{x} dx = ?$$
GRAPH des Integrals
$$f(x) = \frac{1}{x}, f : (0, 1] \to \mathbb{R}$$

$$\int_0^1 \frac{1}{x} dx = \lim_{R \to 0} \int_a^b \frac{1}{x} dx = \lim_{R \to 0} \underbrace{\underbrace{log(1)}_{=0} - log(R)}_{=0}$$

Bemerkung:

für
$$\mathbb{R} \to 0$$
 ist $log(R) \to -\infty$
GRAPH $log(x) \Rightarrow \int_a^b \frac{1}{x} dx$ divergiert.

2.
$$\int_{0}^{1} \frac{1}{sqrtx} dx = \lim_{R \to 0} \int_{R}^{1} x^{-\frac{1}{2}} dx$$

$$= \lim_{R \to 0} \left(2x^{\frac{1}{2}} \middle| \begin{array}{c} b \\ R \end{array} \right) = \lim_{R \to 0} \left(2\sqrt{1} - 2\sqrt{R} \right) = 2$$

$$GRAPHEN = F_{1} + F_{2} = F_{3} + 1 = 2$$

9.17 Definition

Sei $-\infty \le a \le b \le \infty$, $f:(a,b) \to \mathbb{R}$ eine Funktion, die auf jedem Intervall [R,S] mit $a < R \le S < b$ integrierbar ist.

Wähle
$$c \in (a, b)$$
. Setzte $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$
Wenn beide Integrale konvergieren (Nach Definition 9.16, 9.15)

Bemerkung:

Unabhängig von c GRAPH

Beispiel:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

Uneigentliche Integrale

zum Beispiel:

$$\int_{a}^{\infty} f(x)dx := \lim_{b \to \infty} \int_{a}^{b} dx$$

(wenn der lim existiert)

Integrale mit Reihen

Beobachtung: eine Reihe $\sum_{k=0}^{\infty} a_k$ ist das unbestimmte Integral einer Treppenfunktion:

$$\sum_{k=0}^{\infty} a_k = \int_0^{\infty} f(x) dx$$

9.18 Satz (Integralkriterium für Reihen)

Sei $f:[1,\infty)\to\mathbb{R}$ monoton fallend mit $f(x)\geq 0$ für alle x. Für $n\geq 1$, sei

$$a_n = \sum_{k=1}^{n} f(k) - \int_{1}^{n+1} f(x)dx$$

Graph 1/x Treppenfunktion über dem graphen, fester abstand, schraffur treppenfunktion ohne graph

1. die Folge (a_n) konvergiert

2. die Reihe
$$\sum_{k=1}^{\infty} f(x)$$
 konvergiert $\Leftrightarrow \int_{1}^{\infty} f(x)dx$ konvergiert

Beweis:

f monoton: $k \le x \le k+1 \Rightarrow f(k) \ge f(x) \ge f(k+1) \Rightarrow$

$$f(k) = \int_{k}^{k+1} f(k)dx \ge \int_{k}^{k+1} f(x)dx \ge \int_{k}^{k+1} f(k+1)dx = f(k+1)$$

$$a_n = \sum_{k=1}^n \left(\underbrace{f(k) - \int_k^{k+1} f(x) dx}_{\geq 0} \right) \leq \sum_{k=1}^n (f(k) - f(k+1) dx)$$
$$= f(1) - f(2) + f(2) - f(3) + \dots - f(n+1) = f(1) - f(n+1) \leq f(1)$$

 \Rightarrow (a_n) monoton wachsend, beschränkt \Rightarrow konvergent \Rightarrow (1).

Sei $\gamma = \lim_{n \to \infty} a_n$

2. Angenommen
$$\int_0^\infty f(x)dx$$
 konvergent.
$$\sum_{k=1}^\infty f(k) = \lim_{n \to \infty} \sum_{k=1}^n f(k)$$
$$= \lim_{n \to \infty} \left(\underbrace{f(x) - \int_1^{n+1} f(x)dx}_{\gamma}\right) + \underbrace{\int_1 n + 1 f(x)dx}_{\text{konvergient}}$$

 \Rightarrow lim existiert (auch $\sum_{k\geq 1} f(x) = \gamma + \int_{1}^{\infty} f(x)dx$)

Richtung: \int konvergiert $\Rightarrow \sum$ konvergiert ähnlich

Beispiel:

$$f(x) = \frac{1}{x}$$

Folge

$$\sum_{k=1}^{\infty} \text{konvergiert} \Leftrightarrow \int_{1}^{\infty} \frac{1}{x} dx \text{ konvergiert (nicht der Fall)}$$

$$\left(\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \log(b) = \infty\right)$$

 $\underline{\mathrm{Bsp}}$ sei s > 1

$$\sum_{k=1}^{\infty} \frac{1}{k^s} \text{konvergiert} \Leftrightarrow \int_{1}^{\infty} \frac{1}{x^s} \text{konvergiert}$$

9.19 Beispiel

Berechnung der Reihe $1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}...=\sum_{k=1}^{\infty}(-1)^{k+1}\frac{1}{k}$ (konvergiert nach Leibniz) $\sum_{k=1}^{\inf ty}(-1)^{k+1}\frac{1}{k}=\lim_{n\to\infty}(-1)^{k+1}\frac{1}{k}$ = $\lim_{n\to\infty}(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2n})-2(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2n})$ Sei $cn=\sum_{k=1}^{n}\frac{1}{k}=^{3}\lim n\to\infty(c_{zn}-c_{n})$

$$(n = 2 \quad 1 - \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - 2 \cdot \frac{1}{2} - 2 \cdot \frac{1}{4})$$

Sei $a_n := \sum_{k=1}^n \frac{1}{k} - \int_1^{n+1} \frac{1}{x} dx = c_n - \int_1^{n+1} \frac{1}{x} dx \underset{Satz(1)}{\Rightarrow} \lim_{n \to \infty} (a_n) = \gamma$ existiert!

$$b_n := \int_1^{n+1} \frac{1}{x} dx$$

$$a_n = c_n - b_n \quad (c_n = a_n + b_n)$$

MISSING STUFF

 $^{^{3}}$ NR $2(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + ... \frac{1}{2n})$

10 Potenzreihen

10.1 Definition Potenzreihen

Eine Potenzreihe in der Variablen z ist eine Reihe der Form

$$P(z) = \sum_{k=0}^{\infty} a_k z 11k \quad \text{mit } a_k \in \mathbb{C}$$

(reelle Potenzreihe: $a_k \in \mathbb{R}$)

Beispiel:

Exponentialreihe

$$exp(z) = \sum_{k=0}^{\infty} \frac{1}{k!} z^k \quad a_k = \frac{1}{k!}$$

Lemma

Wenn $P(z_0)$ für ein $z_0 \in \mathbb{C}$ konvergiert, dann konvergiert P(z) für jedes $z \in \mathbb{C}$ mit $|z| < |z_0|$ absolut.

Beweis:

 $P(z_0)=\sum a_k z_0^k$ konvergiert \Rightarrow es gibt $C\in\mathbb{R}$ mit $|a_k z_0^k|\leq C$ für alle k Sei $|z|<|z_0|$, dass heißt $q=\frac{|z|}{|z_0|}<1$

$$|a_k z^k| = |a_k z_o^k \left(\frac{z}{z_0}\right)| = |a_k z_0^k| \cdot q^k \le C \cdot q^k$$

 \Rightarrow Die Reihe $P(z) = \sum_k a_k z^k$ hat eine Majorante $\sum_k C \cdot q^k$, letztere konvergiert (Geometrische Reihe) Majorantenkriterium $\Rightarrow P(z)$ konvergiert absolut

10.2 Defintion Konvergenzradius

Der Konvergenzradius von P(z) ist

$$R := \sup \left\{ r \in \mathbb{R}_{\geq 0} \mid P(r) \text{ konvergient} \right\} \in \mathbb{R}_{\geq 0} \cup \{\infty\}$$

Bemerkung:

ERROREOS STUCTURES

Beispiel:

- 1. exp(z) konvergiert absolut für jedes $z \in \mathbb{C}$ $R = \infty$
- 2. $\sum_{n=0}^{2} \infty 2^{w} z^{w} = 1 + 2z + 4z^{2} + ... = \sum_{n=0}^{\infty} (2z)^{n}$ geometrische Reihe. $|z| \geq \frac{1}{2} \Leftrightarrow |2z| \geq 1$: divergiert $|z| < \frac{1}{2} \Leftrightarrow |2z| < 1$: konvergiert

Also $R = \frac{1}{2}$

Beispiel:

$$P(z) = \sum_{n=0}^{\infty} \frac{1}{n+1} z^{w} = 1 + \frac{z}{2} + \frac{z^{2}}{3} + \frac{z^{3}}{4} + \dots$$

$$R = 1 \iff \left\{ \begin{array}{c} z = 1 : P(1) = 1 + \frac{1}{2} + \frac{1}{3} + \dots \text{ divergient} \\ z = -1 : P(1) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \log(2) \text{ konvergient} \end{array} \right\}$$

Folge

Methoden zur Berechnung des Konvergenzradius

10.3 Definition

Sei $(a_n)_{n\geq 0}$ reelle Folge. Bilde $b_m = \sup\{a_n, a_{m+1}, \ldots\} \in \mathbb{R} \cup \{\infty\}$ Dann: $b_0 \geq b_1 \geq b_2 \geq \ldots (b_n)$ monoton fallend $\Rightarrow \lim_{n \to \infty} (b_n) = : \lim_{n \to \infty} \sup\{a_n\} \in \mathbb{R} \cup \{\pm \infty\}$ existiert

Beispiel:

$$(a_n) = (1, -1, \frac{1}{2}, -1, \frac{1}{3}, -1, \frac{1}{4}, -1, \frac{1}{5}...)$$

$$(b_n) = (1, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{5}, \frac{1}{5}...)$$

$$\lim \sup(a_n) = \lim(b_n) = 0$$

$$(a_n) = (0, 1, 0, 2, 0, 3, 0, 4...)$$

$$(b_n) = (\infty, \infty, \infty, \infty, \infty, \infty, \infty, \infty, ...)$$

$$\lim \sup(a_n) = \infty$$

$$(a_n) = (0, -1, -2, -3, -4, ...)$$

$$(b_n) = (0, -1, -2, -3, -4, ...)$$

$$\lim \sup(a_n) = \lim(b_n) = -\infty$$

Bemerkung:

 $C = \limsup_{n \to \infty} (a_n)$ ist durch folgende Eigenschaft eindeutig bestimmt: Für jedes $\varepsilon > 0$ gibt es

- 1. unendlich viele $n \in \mathbb{N}$ mit $a_n \ge C \varepsilon$
- 2. unendlich viele $n \in \mathbb{N}$ mit $a_n > C + \varepsilon$

SKIZZE

(zumindest wenn $C \neq -\infty$) (ohne Beweis)

10.4 Satz

Der Konvergenzradius einer Potenzreihe $P(z) = \sum a_k z_0^k$ ist $R = \left(\limsup_{n \to \infty} \left(\sqrt[n]{|a_n|}\right)\right)^{-1} \in \mathbb{R}_{\geq 0} \cup \{\infty\}$ (Setze hier $0^{-1} = \infty, \infty^{-1} = 0$)