1 Definitions

Definition 1.0.1. An algebraic space is a functor $X: (\mathbf{Sch}_S)^{\mathrm{op}}_{\mathrm{fppf}} \to \mathrm{Set}$ such that,

- (a) F is a sheaf in the fppf topology
- (b) the diagonal $\Delta_{X/S}: X \to X \times_S X$ is representable by schemes
- (c) there is a scheme U and an étale surjection $U \rightarrow X$.

Definition 1.0.2. An algebraic stack is a category fibered in groupoids $\mathcal{X} \to (\mathbf{Sch}_S)_{\mathrm{fppf}}$ such that,

- (a) \mathcal{X} is a stack in the fppf topology
- (b) $\Delta_{\mathcal{X}/S}: \mathcal{X} \to \mathcal{X} \times_S \mathcal{X}$ is representable by algebraic spaces
- (c) there is an algebraic space U and an étale surjection $U \to \mathcal{X}$.

Remark. The map $U \to \mathcal{X}$ is only necessarily representable by algebraic spaces so to express the property of being an étale surjection consider any map from a scheme $T \to \mathcal{X}$ and an étale cover from a scheme $V \to U \times_{\mathcal{X}} T$ in the diagram,

This property is independent of the choice of étale cover $V \to U \times_{\mathcal{X}} T$ by étale descent for étale surjective morphisms.

Remark. Why do we only require that \mathcal{X} be smooth locally an algebraic space and its diagonal be representable by only algebraic spaces? The diagonal is closely related to the automorphism groups of objects \mathcal{X} parametrizes.

(PRODUCTS OF STACKS) (INERTIA) (STABILIZERS)

2 Presentations

Proposition 2.0.1. Let X be an algebraic space over S and $f: U \to X$ an étale surjection from a scheme U. Set $R = U \times_X U$ in the pullback diagram,

$$\begin{array}{ccc} R & \longrightarrow & U \\ \downarrow & & \downarrow \\ U & \longrightarrow & X \end{array}$$

then we have,

(a) $j:R\to U\times_S U$ is a monomorphism and $R(T)\subset U(T)\times U(T)$ is an equivalence relation for all $T\to S$

- (b) the projections $s, t: R \to U$ are étale
- (c) the diagram,

$$R \xrightarrow{s} U \longrightarrow X$$

is a coequalizer in $Sh((\mathbf{Sch}_S)_{fppf})$.

Proof. The first two are immediate

The last follows in any category of sheaves given that $U \to X$ is surjective.

(PRESENTATIONS OF STACKS)

3 Examples

(BG) (MG) (AG)

4 Infinitesimal Deformation Theory

Remark. First we recall how to apply infinitessimal deformation theory in the relative setting. In the basic case, we want to probe properties of a morphisms of schemes $f: X \to S$ near a finite type point $x: \operatorname{Spec}(k) \to S$. There is some affine open $\operatorname{Spec}(\Lambda) \subset X$ containing x. Then we need to consider Artinian local rings A and diagrams,

$$\operatorname{Spec}(k) \longrightarrow \operatorname{Spec}(A) \xrightarrow{f} \operatorname{Spec}(\Lambda) \hookrightarrow S$$

and consider the set of dashed arrows. This means our base category should be the category of local Artinian Λ -algebras with residue field k.

Definition 4.0.1. Let Λ be a Noetherian ring and $\Lambda \to k$ a finite ring map with k a field. Let \mathcal{C}_{Λ} be the category of,

- (a) (A, φ) where A is an Artinian local Λ -algebra and $\varphi : A/\mathfrak{m}_A \to k$ a Λ -algebra isomorphism
- (b) morphisms $f:(B,\psi)\to (A,\varphi)$ are local Λ -algebra maps such that $\varphi\circ (f\ \mathrm{mod}\ \mathfrak{m}_A)=\psi$

Remark. As in the absolute case (which corresponds to $\Lambda = k$) we can factor any extension $B \to A$ into small extensions $\varphi : B' \to A$ where ker φ is principal and annihilated by \mathfrak{m}_B .

Definition 4.0.2. Let Λ be a Noetherian ring and let $\Lambda \to k$ be a finite ring map where k is a field. Define the category $\widehat{\mathcal{C}}_{\Lambda}$ of,

- (a) pairs (R,φ) where R is a Noetherian complete local Λ -algebra and $\varphi:R/\mathfrak{m}_R\to k$ is a Λ -algebra isomorphism,
- (b) morphisms $f:(S,\psi)\to (R,\varphi)$ are local Λ -algebra map such that $\varphi\circ (f\ \mathrm{mod}\ \mathfrak{m}_S)=\psi.$

Remark. Then $\mathcal{C}_{\Lambda} \subset \widehat{\mathcal{C}}_{\Lambda}$ is naturally a full subcategory.

4.1 Deformation Functors

Definition 4.1.1. A predeformation functor is a functor $F: \mathcal{C}_{\Lambda} \to \operatorname{Set}$ such that $F(k) = \{*\}$.

Remark. The condition $F(k) = \{*\}$ corresponds to choosing a fixed base object for the deformations.

Definition 4.1.2. Given a predeformation functor $F: \mathcal{C}_{\Lambda} \to \operatorname{Set}$ we extend it to $\widehat{F}: \widehat{\mathcal{C}}_{\Lambda} \to \operatorname{Set}$ via,

$$\widehat{F}(R) = \varprojlim_{n} F(R/\mathfrak{m}_{R}^{n})$$

A functor F is pro-representable if \widehat{F} is representable.

Definition 4.1.3. Let $F: \mathcal{C}_{\Lambda} \to \text{Set}$ be a predeformation functor. A $hull^1$ for F is a pair (R, η) where $R \in \widehat{\mathcal{C}}_{\Lambda}$ and $\eta \in \widehat{F}(R)$ such that $h_R \to F$ is formally smooth and bijective on tangent spaces.

Remark. Let $k[\epsilon]$ be the ring $k[\epsilon]/(\epsilon^2)$ with the trivial Λ -algebra structure.

Definition 4.1.4. Let $F: \mathcal{C}_{\Lambda} \to \text{Set}$ be a predeformation functor. If $A' \to A$ and $A'' \to A$ are morphisms in \mathcal{C}_{Λ} there is a natural map,

$$(*)$$
 $F(A' \times_A A'') \rightarrow F(A') \times_{F(A)} F(A'')$

Then Schlessinger's conditions are as follows,

- (H1) if $A'' \rightarrow A$ is a small thickening then (*) is surjective
- (H2) if A = k and $A'' = k[\epsilon]$ then (*) is bijective
- (H3) $T_F = F(k[\epsilon])$ is finite-dimensional
- (H4) if A'' = A' and $A' \to A$ is a small thickening, then (*) is bijective.

Definition 4.1.5. A predeformation functor $F: \mathcal{C}_{\Lambda} \to \operatorname{Set}$ is a *deformation functor* if it satisfies (H1) and (H2).

Theorem 4.1.6 (Schlessinger). Let $F: \mathcal{C}_{\Lambda} \to \operatorname{Set}$ be a deformation functor. Then,

- (a) F admits a hull if and only if it satisfies (H3)
- (b) F is prorepresentable if and only if it satisfies (H3) and (H4).

Example 4.1.7. Let X be a scheme, the functor,

$$\operatorname{Def}_X:A\mapsto \{(X',\varphi)\mid X' \text{ flat } A\text{-scheme with } \varphi:X'\otimes_A k'\xrightarrow{\sim} X\}/\cong$$

is a deformation functor.

Example 4.1.8. Let $X = \operatorname{Spec}(k[x,y]/(xy))$ and $F = \operatorname{Def}_X$. If A is a finite type k-algebra and $P \to A$ is a presentation from a polynomial ring with kernel K then [H, Ex. 9.8] shows that,

¹Some authors use the terminology *miniversal* formal object. However, in the deformation category setting, a minimal versal object may not induce an isomorphism of the tangent space so we reserve the term *miniversal* for a minimal versal object see Tag 06T0.

$$\operatorname{Hom}_{A}\left(\Omega_{P/k}\otimes_{k}A,A\right)\longrightarrow \operatorname{Hom}_{A}\left(J/J^{2},A\right)\longrightarrow T_{\operatorname{Def}_{A}}\longrightarrow 0$$

arising from the conormal exact sequence,

$$J/J^2 \longrightarrow \Omega_{P/k} \otimes_P A \longrightarrow \Omega_{A/k} \longrightarrow 0$$

In our case, let P = k[x, y] and J = (xy). Then we have,

$$A\partial_x \oplus A\partial_y \longrightarrow A \longrightarrow T_{\mathrm{Def}_A} \longrightarrow 0$$

and therefore $T_{\mathrm{Def}_A}=A/(x,y)=k$. Thus Def_X satisfies (H1) - (H3) so it should have a hull. Indeed,

$$(k[[t]], \operatorname{Spf}(k[[t]][x, y]/(xy - t)))$$

is a hull (note the formal object is effective). Let's first understand why this hull is not a prorepresenting object. For any map, $\varphi: k[[t]] \to A$ the induced object,

$$\varphi_*(\mathrm{Spf}(k[[t]][x,y]/(xy-t))) = \mathrm{Spec}\left(A[x,y]/(xy-\varphi(t))\right)$$

is unchanged (in isomorphism class) if we replace φ buy $\varphi' = u\varphi$ for any unit $u \in A$ since then we can scale x or y to remove u. However, recall that a deformation X' is equipped with a distinguished isomorphism $\varphi: X' \otimes_A k \xrightarrow{\sim} X$ with which isomorphisms of deformations must be compatible. Therefore, $\varphi' = u\varphi$ and φ define the same deformation if $u \in A^{\times}$ is a unit and $u \equiv 1 \mod \mathfrak{m}_A$. Therefore, the map, $h_R \to \mathrm{Def}_X$ is not injective for general A but is injective for $A = k[\epsilon]$ (since $(1 + a\epsilon) \cdot \epsilon = \epsilon$ so multiplication by such a does nothing) as must be true for a hull.

However Def_X is not pro-representable since it does not satisfy (H4). Indeed, consider $A = k[\epsilon]/(\epsilon^3)$ and consider,

$$\operatorname{Def}_X(A \times_k A) \to \operatorname{Def}_X(A) \times \operatorname{Def}_X(A)$$

I claim this is not injective. Indeed, $t = \epsilon_1 + \epsilon_2$ and $t = \epsilon_1 + \epsilon_2 + \epsilon_1 \epsilon_2$ map to the same pair of deformations but I claim they are not related by such a unit. Write,

$$u = 1 + a\epsilon_1 + b\epsilon_2 + O(\epsilon^2)$$

then,

$$u(\epsilon_1 + \epsilon_2) = \epsilon_1 + \epsilon_2 + a\epsilon_1^2 + (a+b)\epsilon_1\epsilon_2 + b\epsilon_2^2 + O(\epsilon^3)$$

and we cannot have a = b = 0 but a + b = 1.

Remark. The above illustrates why it is necessary to define deformations of a scheme as equipped with a distinguished isomorphism $\varphi: X' \otimes_A l \xrightarrow{\sim} X$ otherwise Def_X will not be a deformation functor.

4.2 Deformation Categories

Definition 4.2.1. A predeformation category is a category cofibered in groupoids $\mathcal{F} \to \mathcal{C}_{\Lambda}$ such that $\mathcal{F}(k)$ is equivalent to the trivial category.

Remark. Let \mathcal{F} be a predeformation category and $x_0 \in \mathcal{F}(k)$. Then for any $x \in \mathcal{F}$ over A let $q: A \to k$ then there is a pushforward $x \to q_*x$ and $q_*x \in \mathcal{F}(k)$ so there is a unique isomorphism $q_*x \xrightarrow{\sim} x_0$ and hence there is a canonical morphism $x \to x_0$ in \mathcal{F} .

Remark. If $F: \mathcal{C}_{\Lambda} \to \operatorname{Set}$ is a predeformation functor then the associated cofibered set $\mathcal{F}_F \to \mathcal{C}_{\Lambda}$ is a predeformation category. Likewise, if $\mathcal{F} \to \mathcal{C}_{\Lambda}$ is a predeformation category then the functor of isomorphism classes $\overline{\mathcal{F}}: \mathcal{C}_{\Lambda} \to \operatorname{Set}$ is a predeformation functor.

Definition 4.2.2. Let $\mathcal{F} \to \mathcal{C}_{\Lambda}$ be a category cofibered in groupoids. The *category of formal objects* of $\widehat{\mathcal{F}}$ is the category of,

- (a) formal objects (R, ξ_n, f_n) consists of an object $R \in \widehat{\mathcal{C}}_{\Lambda}$, and objects $\xi_n \in \mathcal{F}(R/\mathfrak{m}_R^n)$ and morphisms $f_n : \xi_{n+1} \to \xi_n$ over the projection $R/\mathfrak{m}_R^{n+1} \to R/\mathfrak{m}_R^n$
- (b) morphisms $a:(R,\xi_n,f_n)\to(S,\eta_n,g_n)$ consists of a map $a_0:R\to S$ in $\widehat{\mathcal{C}}_{\Lambda}$ and a collection $a_n:\xi_n\to\eta_n$ of morphisms in \mathcal{F} lying over $R/\mathfrak{m}_R^n\to S/\mathfrak{m}_S^n$ such that the diagrams,

$$\xi_{n+1} \xrightarrow{f_n} \xi_n$$

$$\downarrow^{a_{n+1}} \quad \downarrow^{a_n}$$

$$\eta_{n+1} \xrightarrow{g_n} \eta_n$$

commute for each $n \in \mathbb{N}$.

Proposition 4.2.3. The formal objects forms a category cofibered in groupoids $\hat{p}: \hat{\mathcal{F}} \to \hat{\mathcal{C}}_{\Lambda}$.

Definition 4.2.4. Let $p: \mathcal{F} \to \mathcal{C}_{\Lambda}$ be a category cofibered in groupoids. We say that \mathcal{F} satisfies the *Rim-Schlessinger (RS) condition* if for all $A_1 \to A$ and $A_2 \to A$ in \mathcal{C}_{Λ} with $A_2 \twoheadrightarrow A$ surjective,

$$\mathcal{F}(A_1 \times_A A_2) \to \mathcal{F}(A_1) \times_{\mathcal{F}(A)} \mathcal{F}(A_2)$$

is an equivalence. A deformation category is a predeformation category \mathcal{F} satisfying (RS).

Lemma 4.2.5. The RS condition is equivalent to: for every diagram in \mathcal{F} ,

$$x_2$$
 X_2 $X_1 \longrightarrow X$ lying over $X_1 \longrightarrow A$

in \mathcal{C}_{Λ} with $A_2 \to A$ surjective, there exists a fiber product $x_1 \times_x x_2$ in \mathcal{F} such that the diagram,

Lemma 4.2.6. Let $F: \mathcal{C}_{\Lambda} \to \text{Set}$ be a predeformation functor then if the associated predeformation category \mathcal{F}_F satisfies (RS) then F satisfies (H1), (H2), and (H4).

Remark. IS IT ACTUALLY EQUIVALENT e.g. https://stacks.math.columbia.edu/tag/06J1

Lemma 4.2.7. If $\mathcal{X} \to S$ is an algebraic stack then for any $\operatorname{Spec}(k) \to S$ and $x_0 \in \mathcal{X}(k)$ the deformation category $\mathcal{F}_{\mathcal{X},k,x_0}$ satisfies (RS).

Remark. By Schlessinger's theorem, this is telling us that a deformation functor $F = D_{X,x_0}$ represented by some pointed algebraic space $x_0 \in X$ is pro-representable. So even though X does not have a canonical local ring it does have a formal local ring $\widehat{\mathcal{O}}_{X,x_0}$. We can calculate it from the formal local ring of any étale cover $U \to X$. This is well-defined because for two étale covers $U_1 \to X$ and $U_2 \to X$ we have $U_1 \times_X U_2$ is an étale cover of both and these maps identify the formal local rings.

4.3 Versality

Remark. A versal object is a universal object without the "uni" i.e. without the uniqueness.

Definition 4.3.1. A morphism $\varphi : \mathcal{F} \to \mathcal{G}$ of categories cofibered in groupoids over \mathcal{C}_{Λ} is *smooth* if for every extension $B \twoheadrightarrow A$ in \mathcal{C}_{Λ} the map,

$$\mathcal{F}(B) \to \mathcal{F}(A) \times_{\mathcal{G}(A)} \mathcal{F}(B)$$

is essentially surjective.

Remark. This is basically the formal lifting criterion for formal smoothness. Indeed, if these deformation categories are induced by the representable functors for a morphism of schemes $f: X \to Y$ then we get that,

$$X(B) \to X(A) \times_{Y(A)} Y(B)$$

is surjective which is equivalent to there existing a dashed arrow in each lifting diagram,

Lemma 4.3.2. Smoothness of $\varphi : \mathcal{F} \to \mathcal{G}$ is equivalent to the following explicit condition. For every surjection $B \twoheadrightarrow A$ in \mathcal{C}_{Λ} and $y \in \mathcal{G}(B)$ and $x \in \mathcal{F}(A)$ equipped with a map $y \to \varphi(x)$ over $B \twoheadrightarrow A$ there is $x' \in \mathcal{F}(B)$ and a morphism $x' \to x$ over $B \twoheadrightarrow A$ and a morphism $\varphi(x') \to y$ over id: $B \to V$ such that,

Definition 4.3.3. Let $R \in \widehat{\mathcal{C}}_{\Lambda}$. We say $\xi \in \widehat{\mathcal{F}}(R)$ is *versal* if the morphism $\xi : \underline{R}|_{\mathcal{C}_{\Lambda}} \to \mathcal{F}$ defined by ξ is smooth.

Remark. The morphism is defined as follows. For any $A \in \mathcal{C}_{\Lambda}$ and map $\varphi : R \to A$ it will factor as $\varphi_n : R/\mathfrak{m}^n \to A$ we send $(A, \varphi) \mapsto (\varphi_n)_* \xi_n$. The compatibility isomorphisms of the formal object ξ make this well-defined.

Remark. Let ξ be a formal object of \mathcal{F} . Versality of ξ is equivalent to: the existence of a dashed arrow for any diagram,

in $\widehat{\mathcal{F}}$ such that $y \to x$ lies over a surjective map $B \twoheadrightarrow A$ of Artinian rings.

Theorem 4.3.4 (Rim-Schlessinger). A deformation category \mathcal{F} with $T\mathcal{F} = \overline{\mathcal{F}}(k[\epsilon])$ is finite dimensional admits a versal formal object.

(DO SOME EXAMPLES!!!)

Definition 4.3.5. Given a category fibered in groupoids,

$$p: \mathcal{X} \to (\mathbf{Sch}_S)_{\mathrm{fppf}}$$

and

https://stacks.math.columbia.edu/tag/07T2 (DEF DEF CAT AND VERSAL)

Definition 4.3.6. Let S be a locally noetherian scheme and $p: \mathcal{X} \to (\mathbf{Sch}_S)_{\mathrm{fppf}}$ a category fibered in groupoits. We say \mathcal{X} satisfies *opennes of versality* if given a scheme U locally of finite type over S, an open $x \in \mathcal{X}(U)$, and a finite type point $u_0 \in Y$ such that x is versal at u_0 then there is exists an open neiborhood $u_0 \in U' \subset U$ such that x is versal at every finite type point of U'.

(EXAMPLES)

4.4 Effectivity

Definition 4.4.1. We say a formal object $\xi = (R, \xi_n, f_n) \in \widehat{\mathcal{F}}_{\mathcal{X}, k, x_0}$ is *effective* if it arises from some $\widetilde{\xi} \in \mathcal{X}(R)$.

Lemma 4.4.2. If \mathcal{X} is an algebraic stack then every formal object is effective.

Proof. First, if X is a scheme then for all local rings R factoring Spec $(k) \to X$ the map corresponds to Spec $(R) \to \text{Spec}(\mathcal{O}_{X,x}) \to X$ so if R is complete,

$$X(R) = \operatorname{Hom}_{\operatorname{loc}}(\mathcal{O}_{X,x}, R) = \varprojlim_{n} \operatorname{Hom}_{\operatorname{loc}}(\mathcal{O}_{X,x}, R/\mathfrak{m}_{R}^{n}) = \varprojlim_{n} X(R/\mathfrak{m}_{R}^{n})$$

Now in general, choose a smooth cover $\pi: U \to \mathcal{X}$ from a scheme. https://stacks.math.columbia.edu/tag/07X3

5 Artin's Axioms

Theorem 5.0.1 (Artin). Let S be a locally noetherian scheme and $p: \mathcal{X} \to (\mathbf{Sch}_S)_{\mathrm{fppf}}$ a category fibered in groupoids. Let R be a Noetherian complete local ring with redicue field k with $\mathrm{Spec}(R) \to S$ finite type and $x \in \mathcal{X}(R)$. Let $s \in S$ be the image of $\mathrm{Spec}(k) \to \mathrm{Spec}(R) \to S$. Assume that,

- (a) $\mathcal{O}_{S,s}$ is a G-ring
- (b) p is limit-preserving on objects.

Then for every $N \geq 1$ there exist,

- (a) a finite type S-algebra A
- (b) a maximal ideal $\mathfrak{m}_A \subset A$
- (c) an object $x_A \in \mathcal{X}(A)$
- (d) an S-isomorphism $R/\mathfrak{m}_R^N \xrightarrow{\sim} A/\mathfrak{m}_A^N$

- (e) an isomorphism $x|_{R/\mathfrak{m}_R^N} \xrightarrow{\sim} x_A|_{A/\mathfrak{m}_A^N}$ over the previous map
- (f) an isomorphism $\mathbf{gr}_{\mathfrak{m}_{R}}(R) \xrightarrow{\sim} \mathbf{gr}_{\mathfrak{m}_{A}}(A)$ of graded k-algebras.

Lemma 5.0.2. Let S be a locally noetherian scheme and $p: \mathcal{X} \to (\mathbf{Sch}_S)_{\mathrm{fppf}}$ a category fibered in groupoids. Let ξ be a formal object of \mathcal{X} with $x_0 = \xi_1$ lying over $\mathrm{Spec}(k) \to S$ with image $s \in S$ such that,

- (a) ξ is versal
- (b) ξ is effective
- (c) $\mathcal{O}_{S,s}$ is a G-ring
- (d) $p: \mathcal{X} \to (\mathbf{Sch}_S)_{\text{fppf}}$ is limit-preserving

then there exists a finite type morphism $U \to S$, a finite type point $u_0 \in U$ with residue field k and $x \in \mathcal{X}(U)$ such that $x : U \to \mathcal{X}$ is versal at u_0 and $x|_{Spec(\mathcal{O}_{U,u_0})}$ induces ξ .

Proof. Choose an object $x_R \in \mathcal{X}(R)$ whose completion is ξ . Apply Artin approximation with N=2 to obtain $A, \mathfrak{m}_A, x_A \in \mathcal{X}(A)$ approximating ξ . Let η be the formal object completing $x_A|_{\operatorname{Spec}(\hat{A})}$ (the completion of A at \mathfrak{m}_A). Then a lift for the diagram in $\widehat{\mathcal{F}}_{\mathcal{X},k,x_0}$,

exists because ξ is versal. Since the map $R \to \hat{A}$ induces an isomorphism on tangent spaces and by construction $\dim_k \mathfrak{m}_R^n/\mathfrak{m}_R^{n+1} = \dim_k \mathfrak{m}_A^n/\mathfrak{m}_A^{n+1}$ we conclude that $R \to \hat{A}$ is an isomorphism. Hence $\eta \cong \xi$ is versal so the map $x_A : \operatorname{Spec}(A) \to \mathcal{X}$ is versal at $\widehat{x_A}|_{\operatorname{Spec}(\hat{A})} = \eta$.

Theorem 5.0.3. Let S be a locally Noetherian base scheme and consider a category cofibered in groupoids,

$$p: \mathcal{X} \to (\mathbf{Sch}_S)_{\mathrm{fppf}}$$

For each finite type morphism $\operatorname{Spec}(k) \to S$ with k a field and $x_0 \in \mathcal{X}(\operatorname{Spec}(k))$ assume that,

- (a) \mathcal{X} is a stack for the étale topology
- (b) $\Delta_{\mathcal{X}/S}: \mathcal{X} \to \mathcal{X} \times_S \mathcal{X}$ is representable by algebraic spaces
- (c) \mathcal{X} is limit preserving (preserves filtered colimits)
- (d) \mathcal{X} satisfies the Rim-Schlessinger condition (RS)
- (e) $T\mathcal{F}_{\mathcal{X},k,x_0}$ and $Inf\mathcal{F}_{\mathcal{X},k,x_0}$ are finite dimensional for all k and all $x_0 \in \mathcal{F}(k)$
- (f) every formal object of \mathcal{X} is effective
- (g) \mathcal{X} satisfies opennes of versality
- (h) $\mathcal{O}_{S,s}$ is a G-ring for all finite type points $s \in S$

(i) a set theoretic condition

then \mathcal{X} is an algebraic stack.

Proof. It suffices to show that for each finite type $\operatorname{Spec}(k) \to S$ and $x_0 \in \mathcal{X}(k)$ there is a finite type morphism $U \to S$ and a smooth map $U \to \mathcal{X}$ such that there is a finite type point $u_0 : \operatorname{Spec}(k) \to U$ such that $x|_{u_0} \cong x_0$.

By Rim-Schelssinger $\mathcal{F}_{\mathcal{X},k,x_0}$ admits a versal formal object ξ which is then effective. Artin approximation allows us to approximate an effective formal object by a finite type object $U \to \mathcal{X}$ which is versal at $u_0 \in U$. By openness of versality, we can shrink U such that $U \to \mathcal{X}$ is versal at every finite type point.

Finally, prove that a representable morphism $f: \mathcal{X} \to \mathcal{Y}$ of limit preserving categories fibered in groupoids which is smooth on deformation categories is smooth (Tag 07XX. Indeed, for $T \to \mathcal{Y}$ the condition says that $f: \mathcal{X}_T \to T$ is a formally smooth map of algebraic spaces² and the limit-preserving condition gives finitely presented.

(WHERE NEED INF(X) bounded?) (EXAMPLES)

²There is a subtily here with changing fields that requires the full strength of (RS) where as proving that a versal object exists only requires (S1) and (S2) and finite-dimensionality of tangent spaces