

AD-A144 933 PREPARATION AND PROPERTIES OF SINGLE CRYSTALS OF
HYDROGEN BIS(PHTHALOCYAN. (U) NORTH CAROLINA UNIV AT
CHAPEL HILL DEPT OF CHEMISTRY B W SULLIVAN ET AL.
UNCLASSIFIED 15 AUG 84 TR-23 N00014-76-C-0816 F/G 7/2 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

AD-A144 933

FILE COPY

DTIC

SECURITY CLASSIFICATION OF THIS PAGE (If Not Enlisted)

(12)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 23	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Preparation and Properties of Single Crystals of Hydrogen Bis(Phthalocyaninato) Neodymium (III)		5. TYPE OF REPORT & PERIOD COVERED Technical Report, Interim
7. AUTHOR(s) Brian W. Sullivan, Raymond N. Dominey, Jeffrey H. Helms, Michael Schwartz, Leonard W. ter Haar, and William E. Hatfield		6. PERFORMING ORG. REPORT NUMBER N00014-76-C-0816
9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Chemistry 045A University of North Carolina Chapel Hill, North Carolina 27514		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Department of the Navy Arlington, Virginia 22217		12. REPORT DATE August 15, 1984
MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 8
		15. SECURITY CLASS. (of this report) Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
<p>DISTRIBUTION STATEMENT (of this Report)</p> <p>Approved for Public Release, Distribution Unlimited</p> <p>DTIC ELECTE S AUG 24 1984 D</p> <p>B</p> <p>DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)</p> <p>This document has been approved for public release and sale; its distribution is unlimited.</p>		
<p>16. SUPPLEMENTARY NOTES</p> <p>Prepared for publication in <u>Molecular Crystals and Liquid Crystals</u></p>		
<p>17. KEY WORDS (Continue on reverse side if necessary and identify by block number)</p> <p>phthalocyaninatoneodymium neodymium (III) phthalocyanine semiconductor magnetic properties</p>		
<p>18. ABSTRACT (Continue on reverse side if necessary and identify by block number)</p> <p>Single crystals of hydrogen bis(phthalocyaninatoneodymium (III)) have been synthesized by electrochemical means. The crystals are semiconductors and follow Curie-Weiss behavior.</p>		
<p>84 08 28 109</p>		

OFFICE OF NAVAL RESEARCH

Contract N00014-76-C-0816

Task No. NR 053-617

TECHNICAL REPORT NO. 23

PREPARATION AND PROPERTIES OF SINGLE CRYSTALS OF
HYDROGEN BIS(PHTHALOCYANINATO) NEODYMIUM(III)

By

Brian W. Sullivan, Raymond N. Dominey, Jeffrey H.
Helms, Michael Schwartz, Leonard W. ter Haar, and
William E. Hatfield

Prepared for publication
in
Molecular Crystals and Liquid Crystals

Reproduction in whole or in part is permitted for any
purpose of the United States Government.

This document has been approved for public release and
sale; its distribution is unlimited.

PREPARATION AND PROPERTIES OF SINGLE CRYSTALS OF
HYDROGEN BIS(PHTHALOCYANINATO) NEODYMIUM(III)

Brian W. Sullivan, Raymond N. Dominey, Jeffrey H. Helms, Michael Schwartz, Leonard W. ter Haar, and William E. Hatfield

Department of Chemistry, The University of North Carolina, Chapel Hill, North Carolina 27514

Abstract Single crystals of hydrogen bis(phthalocyaninato)neodymium(III) have been synthesized by electrochemical means. The crystals are semiconductors and follow Curie-Weiss behavior.

INTRODUCTION

Partially oxidized metallocycles yield low-dimensional conducting materials. For example, $\text{NiPcI}_{1.0}$ (Pc = phthalocyanine) crystallizes with the formation of stacked, planar NiPc units and exhibits metal-like conductivity parallel to the stacking direction.¹ Lanthanide elements form sandwich-type compounds with phthalocyanine.² Pressed pellet samples of hydrogen bis(phthalocyaninato)neodymium(III), $[\text{bis}(\text{Pc})\text{Nd(III)}]$, and $\text{bis}(\text{Pc})\text{Nd(III)}\text{I}_y$ ($y = 1.3$ and 1.8) exhibit semi-conductive behavior with room temperature conductivities of 4.5×10^{-3} , 6.4×10^{-2} and $0.8 \times 10^{-1} \Omega^{-1} \text{ cm}^{-1}$, respectively.³ It has been reported that single crystals of PcMPc_{ox} (M = lanthanide(III) and $\text{Pc}_{\text{ox}} = [\text{C}_{32}\text{H}_{16}\text{N}_8]^-$) can be obtained via electrochemical oxidation of the corresponding hydrogen bis(phthalocyaninato) M (III).⁴ In this paper, we report the electrochemical synthesis, electrical conductivity, and magnetic behavior of single crystals of $\text{bis}(\text{Pc})\text{Nd(III)}$.

EXPERIMENTAL

The synthesis and purification of $\text{bis}(\text{Pc})\text{Nd(III)}$ was adopted from previously described methods.⁵ The growth of single crystals was

B. W. Sullivan, et. al.

achieved by electrochemical means similar to that reported for the preparation of $\text{PcNdPc}_{\text{ox}}^4$. To 10 ml dimethylformamide and 0.1 ml hydrazine monohydrate was added 0.26 g bis(Pc)Nd(III). Upon filtration of the deep blue solution into an electrochemical cell fitted with a Pt wire (anode), graphite rod (auxillary electrode), and argon inlet and outlet tubes, a 0.150 V potential corresponding to an initial anodic current density equal to circa 0.5 mA cm^{-2} was applied. After 48 hours, dark blue PcNdPc crystals were collected at the Pt wire and were also filtered from solution.

Four probe contacts were used for these preliminary conductivity measurements. Gold wire (0.1 mm diameter) leads were connected at both ends of the crystals with silver paste. A DC current of approximately 10^{-5} A was used for the variable temperature data sets. Temperatures were measured with a silicon diode. Ohmic behavior was observed for all samples.

Magnetic susceptibility data between 77 and 300 K were collected under helium using a Faraday balance fitted with a Cahn 2000 electronic balance. Calibration was accomplished with $\text{Hg}[\text{Co}(\text{NCS})_4]$ and diamagnetic corrections, except for Nd(III), were made by using Pascal's constants. Temperatures were measured with a silicon diode.

RESULTS

Only the electrical conductivity along the long axis of each crystal, which presumably corresponds to the stacking direction of PcNdPc , was measured. The observed room temperature conductivities of three samples ranged from $0.008-0.04 \Omega^{-1} \text{ cm}^{-1}$ and variable temperature resistivity data indicated semi-conductive behavior. When $\ln \rho$ was plotted versus temperature, the low temperature (78-210 K) data were approximately linear and could be fit to the thermally activated transport model $\sigma = \sigma_0 \exp(-E/kT)$

HYDROGEN BIS(PHTHALOCYANINATO) NEODYMIUM(III)

where σ_0 is the infinite temperature conductivity, and Δ (0.031 eV per electron) is the energy of activation in this region. At temperatures greater than ~210 K, marked deviations from linearity occur. Most notably, between 210 and 260 K, a steep (~20 fold) rise in conductivity with increasing temperature was observed. Perhaps reminiscent of an exhaustive region of a semi-conductor, this peak was followed by a region (260-285°) in which conductivity significantly decreased with increasing temperature before the earlier temperature dependent behavior was resumed.

Magnetic susceptibility data for PcNdPc closely follows Curie-Weiss type behavior [$\chi = C/(T-\Theta)$]. Using a non-linear least squares fitting routine, C and Θ were calculated to be 1.64 and -4.93 K respectively. The magnetic moment of $3.61 \mu_B$ at 300 K is close to the value of $3.62 \mu_B$ expected for a Nd(III) species. The values of μ_{eff} showed only a minor dependence on temperature; at 80 K μ_{eff} is $3.52 \mu_B$.

DISCUSSION

Utilizing the synthetic scheme described above, Moskalev et. al.⁴ reported the isolation of crystalline $\text{PcNdPc}_{\text{ox}}$. The reaction was assumed to involve the removal of an electron from the π -orbital of one phthalocyanine ring. In our hands, however, crystals of HPcNdPc were obtained instead. While exhibiting very similar infrared absorbances (874, 1053, 1108, 1213, 1351, and 1438 cm^{-1}) and lattice parameters (tetragonal; $a = 13.85 \text{ \AA}$, $c = 6.62 \text{ \AA}$) to those reported for the oxidized complex, the magnetic susceptibility measurements ($\mu_{\text{eff}} = 3.61 \mu_B$) are consistent only with the presence of Nd(III); no further contribution from a $\text{Pc}_{\text{ox}}^{1-}$ species was observed.

Although single crystals of hydrogen bis(phthalocyaninato) Nd(III) display increased conductivities relative to pressed pellet samples, only semi-conductive behavior was observed.

B. W. Sullivan, et. al.

However, partial oxidation of these crystals is expected to increase the electrical conductivity and perhaps make it metallic. Pressed pellet samples of bis(Pc)Nd(III)I_y exhibit an 18-fold increase in conductivity on going from y = 0 to y = 1.8.³ Likewise, samples (y = 0) exposed to oxygen display conductivities greater than those kept under hydrogen.⁶ The effect of partial oxidation should be even more pronounced in single crystals where full advantage of the one-dimensional stacks can be taken. In this light, it may be noted that NiPcI_{1.0} is metallic only in crystalline form.¹ Reflective single crystals of iodinated bis(Pc)Nd(III) have been obtained and are currently being studied.

ACKNOWLEDGEMENT This work was supported in part by the Office of Naval Research.

REFERENCES

1. C.J. Schramm, R.P. Scaringe, D.R. Stojakovic, B.M. Hofmann, J.A. Ibers, T.J. Marks, J. Amer. Chem. Soc., 102, 6702 (1980).
2. K. Kasuga, M. Tsutsui, R.C. Petterson, K. Tatsumi, N. van Opdenbosch, G. Pepe, E.F. Meyer, Jr., J. Amer. Chem. Soc., 102, 4835 (1980).
3. L.W. ter Haar, W.E. Hatfield, M. Tsutsui, Molec. Cryst., 107, 181 (1983).
4. P.N. Moskalev, G.N. Shapkin, A.N. Darovskikh, Russ. J. Inorg. Chem., 24, 188 (1979).
5. I.S. Kirin, P.N. Moskalev, Y.U. Makashev, Russ. J. Inorg. Chem., 10, 1065 (1965).
6. M. Yamana, M. Tsutsui, J.S. Ham, J. Chem. Phys., 76, 2761 (1982).

n For	
A&I <input checked="" type="checkbox"/>	
ced <input type="checkbox"/>	
ation <input type="checkbox"/>	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

TECHNICAL REPORT DISTRIBUTION LIST, GEN

<u>No.</u> <u>Copies</u>	<u>No.</u> <u>Copies</u>		
Office of Naval Research Attn: Code 413 800 North Quincy Street Arlington, Virginia 22217	2	Naval Ocean Systems Center Attn: Mr. Joe McCartney San Diego, California 92152	1
ONR Pasadena Detachment Attn: Dr. R. J. Marcus 1030 East Green Street Pasadena, California 91106	1	Naval Weapons Center Attn: Dr. A. B. Amster, Chemistry Division China Lake, California 93555	1
Commander, Naval Air Systems Command Attn: Code 310C (H. Rosenwasser) Department of the Navy Washington, D.C. 20360	1	Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12	Dean William Tolles Naval Postgraduate School Monterey, California 93940	1
Dr. Fred Saalfeld Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375	1	Scientific Advisor Commandant of the Marine Corps (Code RD-1) Washington, D.C. 20380	1
U.S. Army Research Office Attn: CRD-AA-IP P. O. Box 12211 Research Triangle Park, N.C. 27709	1	Naval Ship Research and Development Center Attn: Dr. G. Bosmajian, Applied Chemistry Division Annapolis, Maryland 21401	1
Mr. Vincent Schaper DTNSRDC Code 2803 Annapolis, Maryland 21402	1	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1
Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1	Mr. A. M. Anzalone Administrative Librarian PLASTEC/ARRADCOM Bldg 3401 Dover, New Jersey 07801	1

TECHNICAL REPORT DISTRIBUTION LIST, 053

<u>No.</u>	<u>Copies</u>	<u>No.</u>	<u>Copies</u>
Dr. M. F. Hawthorne Department of Chemistry University of California Los Angeles, California 90024	1	Dr. T. Marks Department of Chemistry Northwestern University Evanston, Illinois 60201	1
Dr. D. B. Brown Department of Chemistry University of Vermont Burlington, Vermont 05401	1	Dr. J. Zuckerman Department of Chemistry University of Oklahoma Norman, Oklahoma 73019	1
Dr. D. Venezky Chemistry Division Naval Research Laboratory Code 6130 Washington, D.C. 20375	1	Professor O. T. Beachley Department of Chemistry State University of New York Buffalo, New York 14214	1
Dr. John E. Jensen Hughes Research Laboratory 3011 Malibu Canyon Road Malibu, California 90265		Professor K. M. Nicholas Department of Chemistry Boston College Chestnut Hill, Massachusetts 02167	1
Dr. A. Cowley Department of Chemistry University of Texas Austin, Texas 78712	1	Professor R. Neilson Department of Chemistry Texas Christian University Fort Worth, Texas 76129	1
Dr. W. Hatfield Department of Chemistry University of North Carolina Chapel Hill, North Carolina 27514	1	Professor M. Newcomb Texas A&M University Department of Chemistry College Station, Texas 77843	1
Dr. M. H. Chisholm Department of Chemistry Indiana University Bloomington, Indiana 47401	1	Professor Richard Eisenberg Department of Chemistry University of Rochester Rochester, New York 14627	1
		Professor R. D. Archer University of Massachusetts Chemistry Department Amherst, Massachusetts 01003	

END

FILMED