Modeling Uplift from Observational Time-Series in Continual Scenarios

Sanghyun Kim¹, Jungwon Choi¹, Namhee Kim², Jaesung Ryu³, Juho Lee¹ ¹Kim Jaechul Graduate School of Al, KAIST ²Department of Digital Analytics, Yonsei University ³AFI Inc.

Challenges in Causal Models

Causality in highdimensional spaces

A gap between research and practice

Uplift Modeling

Uplift modeling aims to identify a subgroup of individuals with high uplift scores (or Individual Treatment Effect, ITE).

Background

- · Data was collected from AFI Inc., a Backend-as-a-Service (BaaS) company specializing in mobile games.
- The company provides APIs for game developers to release apps without the need for backend servers.
- The goal was to build a model that targets only a subset of users with high gains from a push message.
- The data used for benchmark is CRUD log data, as the company does not collect user-specific information or have access to game's code or internal data.

Backend-TS Dataset

16.7 million lines of CRUD log data from 5,360 users in three mobile games

- Each data point consists of a triple (X, t, y).
- pseudo-control group: the control group data was sampled exactly one week prior to the push message.
- no push area: an -12~+6 hour window around which no other pushes must exist.

Proposed Tasks

	Different Time	Different Game	Fine- tuning
ID (in-domain)	×	X	X
TS (temporal shift)	/	×	X
OOD (out-of-domain) w/			/
OOD (out-of-domain) w/o	~	/	X

Baselines

We used Dragonnet (Shi, Blei, and Veitch, 2019) and Siamese network (Mouloud, Olivier, and Ghaith, 2020) with 11 TCN blocks and applied EWC for CL. Time/week information is embeded with sinosoidal functions, and API call type (discrete) is embedded with an embedding layer.

Experiments

Model	Ckpt	ID	TS	OOD w/	00D w/o
Dragon	VAL MAX	.091/.056	.006/.003 .112/.074	.118/.038 .372/.082	.037/.023 .123/.081
Siamese	VAL MAX	.145/.062	036/011 .249/.067	.154/.057 .207/.075	057/030 .036/.022
P (Y = 1)		11.9%	12.2%	5.9%	22.4%

The table shows QINIs (left) and AUUCs (right) of the best checkpoint on the holdout set (VAL) and among the entire training checkpoints (MAX) for each task.

- TS: The performance gap between VAL and MAX was significant, and VAL actually performed worse than random targeting. This empirically shows the existence of the temporal distribution changes.
- · OOD w/: Fine-tuning with the additional data using the CL algorithm has somewhat reduced the performance gap. We conjecture that the model became more robust since it further learns common mechanisms.
- OOD w/o: The performance dropped sharply without fine-tuning. We emphasize that the true causal model

should perform equally well and generalize to different games even without training, although they may potentially have a very different user base.

nannullna@kaist.ac.kr github.com/nannullna/ts4uplift

Download dataset