Securing a client

Matsuzaki 'maz' Yoshinobu <maz@iij.ad.jp>

Hardening a host

Hardening a host

- Differs per operating system
 - Windows: users can not be trusted to make security related decisions in almost all cases
 - OS X: make things work magically for users. Try to handle security issues in the background
 - Linux: varies by distribution:
 - Ubuntu: try like OS X to make things just work.
 - RedHat: include very useful tools but turned off by default
 - BSD: users will figure it out
- Changes with time

General consideration

- Define a personal usage profile and policy.
 - What hardware do you use?
 - What software tasks do you do on your computer?
 - Do the first two change when you travel?
 - What habits from the above two do you need to change to be more secure?
 - Decide if you really need VPN access to your network while travelling.

General practices

- Install only the services and software you actually need.
 - Uninstall or disable all software and services you do not use or need.
 - Periodically actively scan your machine for vulnerabilities.
 - Have as few user accounts on your systems as possible
- Protect your administrative account. Have a strong password, do not permit remote password based logins and do not log in as an administrator unless you need to do an administrative task.

Hardware

- Rule 1: all bets are off with physical access to your devices.
- Consider removing hardware you never use say bluetooth.
- Disable in BIOS or EFI or your operating system the hardware or features you can not remove physically.
 - wake on lan
 - Bluetooth discoverability
 - USB ports?
- BIOS passwords not that useful
- BIOS level encryp8on/locking of hard disks may not be portable

Anti virus

Malware

- The generic term for computer virus, worms, spyware and other malicious software
- Skilled attacker can make it, fun attacker can use it.
 - even there are malware build tools with GUI ⁽²⁾

Infection

- Attackers try to make your devices infected in many ways
 - Security holes, e-mail, web
 - USB memory, file servers

Causes

- Vulnerability
 - 0-day security holes
 - old security holes are still used to infect
- Auto-execution for removal media
 - USB memory, CD loading
- Users' careless open
 - infected files
 - sometimes happen to execute malwares

Detection

- Signature-based detection
 - blacklist of malwares
 - check a file with the signatures
 - update needed to detect newer malware
- Heuristics detection
 - behavior, characteristic code

When?

- Write operations take place
 - creating a new file, modifying an existing file
- New media is inserted
 - USB memory, CD
- Periodic or manually
 - scan all or important files

Where?

Hiding

- Attackers modify malwares
 - not to be detected by anti-virus detectors
 - they can check this locally

Trends in the Number of Malware Specimens Acquired (Total Number, Number of Unique Specimens)

Updating your signature DB is needed

Fake security software

- Do nothing, or is just a malware
 - also known as 'scareware'

Compromised system

- Any file on the system is already suspicious
 - You may be able to remove a malware
 - there could be another one that you can not detect

Wipe

- Don't use files in the compromised system
 - programs
 - documents
 - images
- Clean up the storages that was connected to the system
 - HDD
 - SSD
 - flash memory

How can we rescue information from suspicious data files

Convert it into another format

- png -> jpg, jpg -> png
- doc -> txt
- excel -> csv
- pdf -> png/jpg

Infected code can not survive such a drastic modification

Wipe to give away

- Data is still there even if it's formatted
 - experts can read the data by using special tools
 - an electric microscope can read more
 - leakage of secret data
- You need to make sure the data is erased
 - # dd if=/dev/urandom of=/dev/<disk> bs=16M

Recover

- 'clean install' from a scratch
 - format the disk, use a proper OS image
- Apply latest OS patches to be up-to-date
 - it could be vulnerable before patched
 - do update in a secure network
- Install needed applications
 - check upgrades, of course

Recover (cont.)

- Disable unnecessary services
 - The same as hardening procedure
- Check configurations
 - If any weakness
- Change all password on the system
 - Any password might be stolen

Replacing might be your choice

- Securing the compromised system as is
 - for further investigation
 - malware that stays in the memory only
- Just replace the compromised system
 - spare hardware

Backups

- Encryption
- Automation
- Generations

Encryption

- Assume theft and lost
- Your backups must have at minimum the same encryption level as the source data

Automation

- We are lazy!
 - Easy to forget

- Automated backup will help you
 - Most systems have scheduled backup

Generations

- You should have a 'good' version of backup there
 - if a system is compromised, malware might be also backup in the archive, you won't want to restore that though
 - if something goes wrong by change, you may restore the previous version
- Find a 'good' version from your archives

Off-site archives

- 2011 Tohoku earthquake and tsunami
 - flushed buildings, data centers
 - 4 local governments lost whole data on the family registration system
- They have off-site backups ©
 - took about 1 month to recover though
 - wanted to make sure nothing is missed