Mathematics for Computing (IT1030)

LECTURE 3.2 COMPUTER ARITHMETIC

INTRODUCTION

- Recap:
 - Binary numbers are a number system with base 2.
 - Information represented inside a computer takes binary values.
 - Previous lecture dealt with the conversions between different number systems.
- This lecture deals with basic mathematical operations (such as addition, subtraction, multiplication and division) for binary numbers.

06/02/2017

BINARY ADDITION

- Addition in the decimal number system.
 - Add values rightmost position (least significant).
 - If this addition is grater than 10, 1 is carried to the 2^{nd} position and added.
 - This process is carried for all the positions.
- Binary addition follows the same set of rules.
 - If the addition is greater that 2, 1 is carried to the 2^{nd} next position.

- Evaluate the following.
 - $101_2 + 101_2$
 - $00011010_2 + 00001100_2$
 - 10001 + 11101
 - 1110 + 1111
 - 101101 + 11001
 - 10111 + 110101
 - 1011001 + 111010
 - 11011 + 1001010
- Compare the above results by converting them to decimal numbers.

4

BINARY SUBTRACTION

- Similar to subtraction in the decimal number system.
- Inverse of addition.
- If the values cannot be subtracted, borrow from the next position.
- Subtraction table,
 - 0 0 = 0
 - 1 0 = 1
 - 1 1 = 0
 - 0 1 = 1 with a borrow of 1.

- Evaluate the following.
 - 10110 10010
 - 1011011 10010
 - 100010110 1111010
 - 1010110 101010
 - 101101 100111
 - 1000101 101100
 - 1110110 1010111
- Compare the above results by converting them to decimal numbers.

MULTIPLICATION 6 DIVISION

- Similar to multiplication and division in the decimal number system.
- Rules of binary multiplication,
 - $0 \times 0 = 0$
 - $0 \times 1 = 0$
 - $1 \times 0 = 0$
 - $1 \times 1 = 1$.
- Rules of binary division,
 - $0 \div 1 = 0$
 - $1 \div 1 = 1$.

- Evaluate the following.
 - 1100 × 1010
 - 1111 × 101
 - 0011 × 11
 - 1100110×1000
 - $1000 \div 10$
 - $1010 \div 11$
 - 1111 ÷ 111
- Compare the above results by converting them to decimal numbers.

SELF STUDYING

- How these values are represented in a computer.
- How much space each value takes when storing.
- What happens if a binary operation provides a result which exceeds the allocated space (Overflow)?
- What happens if an operation provides a result that is too small for the allocated space (Underflow)?
- How are negative numbers represented in a computer?

COMPLIMENTARY ARITHMETIC

- Complements are used in digital computers for simplifying,
 - the subtraction operation
 - the logical manipulation.
- Two types of compliments for each base *b* system.
 - *r's* compliment
 - (r-1)'s compliment
 - Example: For binary numbers, 2's complement and 1's complement.

06/02/2017

COMPLIMENTARY ARITHMETIC (CONT'D.)

• Given a number N in base r having n digits, (r-1)'s complement of N,

$$N' = (r^n - 1) - N$$

• Given a number N in base r having n digits, r's complement of N,

$$N' = r^n - N$$
 for $N \neq 0$; 0 otherwise

• Comparing (r-1)'s compliment, r's compliment can be obtained by adding 1 to the (r-1)'s compliment.

11

• Obtain 9's compliment and 10's compliment of 246700.

- Get the 1's and 2's compliments of the following binary numbers.
 - 1100011
 - 0001111
 - 1010100
 - 1111011

SUMMARY

- Students should be able to,
 - Perform basic binary operations (addition, subtraction, multiplication and division).
 - Explain overflow and underflow.
 - Explain how signs works in binary representations in a computer.
 - To perform complement operations (r's complement and (r-1)'s complement.

06/02/2017

END OF LECTURE 3.2

Next Lecture:-Differentiation