

Computer Graphics and Computer Vision

Demetri Terzopoulos

Distinguished Professor and Chancellor's Professor of Computer Science Director, UCLA Computer Graphics & Vision Laboratory

Graphics and Vision: A Unified View

- ◆ This major field is about Computers and Images
- ◆ Computer Graphics (CG)
 - lacktriangledown Computational models ightarrow images and videos
 - Forward mathematical problem
 - Synthesis
- ◆ Computer Vision (CV)
 - Images and videos → computational models
 - Inverse mathematical problem
 - Analysis

History of Computer Graphics and Computer Vision

- ◆ Two PhD thesis projects at MIT in the early 1960s
 - Ivan E. Sutherland, 1963
 - "Sketchpad, a man-machine graphical communication system"
 - Lawrence G. Roberts, 1963
 - "Machine perception of three-dimensional solids"
- ◆ CG and CV have developed as independent fields
- ◆ In recent years, CG and CV are synergizing
- Cross-fertilization with other fields:
 - Physics, biology, cognitive science, artificial intelligence, art,

What is an Image / Video?

- ◆Array of pixels (one or more numbers)
- ◆ A video is a time sequence of images
- ♦ How they are formed:
 - Objects in the world (static or dynamic)
 - Illumination (light sources)
 - Imaging device (eye, camera)

 We want to synthesize and analyze images and videos by computer

Why? Images and movies are everywhere!

- Entertainment: Motion pictures & Games
- Virtual worlds (especially for movies and games)
- Industrial design
- Scientific and medical visualization
- Human-computer interaction
- Fine arts
- Etc
- Robotics
- Automotive
- Visual Surveillance / Biometrics
- Industrial inspection
- Medical imaging
- · Remote sensing
- Image and video retrieval
- Etc
- For a deeper understanding of the physical world and living systems, including the human brain

Computer Graphics

- ◆ The art and science of creating imagery by computer
- ◆ Three main research themes
 - Modeling
 - · How do we model (mathematically represent) objects?
 - · How do we construct models of specific objects?
 - Animation
 - · How do we represent the motions of objects?
 - · How do we give animators control of this motion?
 - Rendering
 - · How do we simulate the real-world behavior of light?
 - · How do we simulate the formation of images?

Modeling

Primitives

- 3D points
- 3D lines and curves
- surfaces (BREPs): polygons, patches
- volumetric representations
- image-based representations

Attributes

- Color, texture maps
- Lighting properties

Geometric transformations

Rendering

Visibility

Simulating light propagation

- Reflection
- Asborption
- Scattering
- Emission
- Interference

Animation

Keyframe animation Motion capture

Procedural animation

- Physics-based animation
- Behavioral animation

Modeling ◆Representing objects geometrically on a computer Point clouds Polygon meshes Surface patches NURBS COMPUTER SCIENCE DEPARTMENT

Subsurface Scattering

 Translucency and varied levels of light penetration can be created using subsurface scattering effects (nVIDIA)

Animation • Motion capture PlaySt. PlaySt. COMPUTER SCIENCE DEPARTMENT

Markerless Motion Capture Max Plank Institute of Informatics, Germany Virtual camera One input view COMPUTER SCIENCE DEPARTMENT

Animation

◆ Example: "Geri's Game" - Pixar

Virtual Reality

◆ Artificial life and other natural phenomena

Discuss later...

Computer Vision

- ◆ Related fields
 - Image processing
 - Pattern recognition
 - Visual perception
- ◆ Image understanding
 - True IU seems to involve a great deal of human intelligence
 - Automated systems are still far from human performance
 - Some good solutions in constrained special cases
 - (e.g., inspection: IC manufacturing, circuit boards)

◆ Inverse problems are generally tougher to solve

WHAT DO YOU SEE?

COMPUTER SCIENCE DEPARTMENT

Vision Research Themes

- ◆ Edge and region extraction
- ◆ Image segmentation
- ◆ Visual reconstruction: From images to surfaces
- Shape from X
 - Contours
 - Shading
 - Stereo
 - Motion
- ◆ Object tracking
- Object recognition (including faces)
- ◆ Event and activity recognition

Interactive Image Analysis Using Snakes

Cartographic Modeling: Buildings and Roads Computer Science Department

Space Robotics: Mars Rover

Self-Driving Cars: Intelligent Transportation

◆ Professor Stefano Soatto

COMPUTER SCIENCE DEPARTMENT

Visual Servoing

Tom Drummond, Univ. of Cambridge

Performance-Based Animation

◆[Pighin, Szeliski, Salezin, 1999]

Performance-Based Animation

◆[Pighin, Szeliski, Salezin, 1999]

CS Faculty Conducting CG and CV Research

- Stanley Osher (CV Mathematics)
- ◆ Stefano Soatto (CV Computer Science)
- ◆ Demetri Terzopoulos (CG & CV Computer Science)
- Song-Chun Zhu (CV Statistics)

COMPUTER SCIENCE DEPARTMENT

Courses Offered

- ◆ CS 174A Introduction to Computer Graphics
- ◆ CS 174B Image-Based Modeling and Rendering
- ◆ CS 174C Computer Animation

Plus several graduate courses in graphics and vision:

- Artificial Life for Computer Graphics and Vision
- Machine Perception
- Deformable Models for Computer Vision
- Humanoid Character Simulation
- Etc.

Core Knowledge Needed to Specialize in Computer Graphics and Vision

- Mathematics
 - Especially geometry, linear algebra, applied math, numerical methods
- Programming and software development
 - Especially C/C++, OpenGL, Javascript
- Creativity and an appreciation of Art + Science + Engineering
- Core computer graphics subjects
 - Rendering synthesizing images from mathematical representations
 - Modeling geometry-based, physics-based, biology-based
 - Animation kinematics, dynamics, motion control
 - Interactive techniques human-computer interaction, GUIs, games, ...

Relevant Courses From Other Departments

- Mathematics
 - MS 33A Linear Algebra and Applications
 - MS 142 Analytic Mechanics
 - MS 149 Mathematics of Computer Graphics
 - MS 153 Numerical Methods for Partial Differential Equations
 - MS 157 Software Techniques for Scientific Computations
 - MS 270A Techniques of Scientific Computing
 - MS 272A Foundations of Continuum Mechanics
 - MS 2xx Graduate courses taught by Professor Joseph Teran
- ◆ Design | Media Arts
 - DMA 157 Game Design

Thank you!

