Reducciones de problemas. MT restringidas.

Comentario: Hacer mínimamente los ejercicios 1 al 5. Por otra parte, sólo algunos de los ejercicios posteriores revisten cierta dificultad, y muchas de las soluciones se basan en cosas vistas en clase, así que se sugiere recorrer todo el trabajo.

Ejercicio 1. Considerando la reducción de HP a L_U descripta en clase, responder:

- a. Explicar por qué la función identidad, es decir la función que a toda cadena le asigna la misma cadena, no es una reducción de HP a Lu.
- b. Explicar por qué las MT M´ generadas en los pares (<M´>,w) de L_U, o bien paran aceptando, o bien loopean.
- c. Explicar por qué la función utilizada para reducir HP a L_U también sirve para reducir HP^C a L_U ^C.
- d. Explicar por qué la función utilizada para reducir HP a L∪ no sirve para reducir L∪ a HP.
- e. Explicar por qué si el input v de la MT M_f que computa la función de reducción no tiene la forma (<M>,w), no es correcto que M_f genere, en lugar de la cadena 1, un par de la forma (<M_Σ*>, v), siendo M_{Σ*} una MT que acepta todas las cadenas.
- f. Explicar por qué la siguiente MT Mf no computa una reducción de HP a Lu: dado v,
 - Si v no tiene la forma (<M>,w), entonces M_f genera el output 1.
 - Si v tiene la forma (<M>,w), entonces M_f ejecuta M sobre w, y: si M acepta w entonces genera el output (<M>,w), y si M rechaza w entonces genera el output 1.

Ejercicio 2. Probar el caso (b) del teorema presentado en clase, que enuncia:

```
Caso (a): Si L_1 \alpha L_2 entonces L_2 \in R \longrightarrow L_1 \in R.
```

Caso (b): Si $L_1 \alpha L_2$ entonces $L_2 \in RE \rightarrow L_1 \in RE$.

Ayuda: basarse en la demostración del caso (a) desarrollada en clase.

Ejercicio 3. Considerando la reducción de L_U a L_{Σ*} descripta en clase, responder:

- a. Explicar por qué no sirve como función de reducción la función siguiente: a todo input le asigna como output el código <M_{Σ*}>.
- b. Explicar por qué la reducción descripta en clase no sirve para probar que L_{Σ*} ∉ RE.

Ejercicio 4. Probar formalmente que las funciones de reducción gozan de la propiedad transitiva. Ayuda: revisar la idea general comentada en clase; también basarse en la prueba que se haya desarrollado para el ejercicio 2, porque debería ser similar.

Ejercicio 5. Un autómata linealmente acotado (ALA) es una MT con una sola cinta con la restricción de que su cabezal sólo puede leer y escribir en las celdas en que se encuentra el input. Probar que el lenguaje aceptado por un ALA es recursivo. *Ayuda: ¿en cuántos pasos se puede detectar que el ALA entra en loop?*

Ejercicio 6. Construir un autómata finito que reconozca el lenguaje de las cadenas de {0, 1}*, es decir todas las cadenas de 0 y 1 de cualquier tamaño incluso la vacía, tales que a todo cero le siga un uno. Ayuda: En general conviene primero construir el diagrama de transición de estados, porque da una idea de cómo construir el autómata finito.

Ejercicio 7. Sea el lenguaje $D_{HP} = \{w_i \mid M_i \text{ para desde } w_i, \text{ según el orden canónico}\}$. Encontrar una reducción de D_{HP} a HP.

Ejercicio 8. Sea el lenguaje $L\emptyset = \{ \langle M \rangle \mid L(M) = \emptyset \}$. Responder:

- a. Encontrar una reducción de L_U^C a L_{\varnothing} . Ayuda: basarse en la idea de la reducción de L_U a L_{Σ^*} , es muy similar.
- b. Considerando la reducción desarrollada en (a), ¿qué se puede decir de L∅, a qué clase de la jerarquía de la computabilidad pertenece?

Ejercicio 9. Una fórmula booleana es satisfactible si una o más asignaciones de valores de verdad a sus variables la satisfacen (es decir, la hacen verdadera). Si todas las asignaciones la satisfacen la fórmula es una tautología (también se dice que es válida). Y si ninguna lo hace, la

FUNDAMENTOS DE TEORÍA DE LA COMPUTACIÓN. COMPUTABILIDAD.

Trabajo Práctico Nro 4 Año 2020. Licenciatura en Sistemas.

fórmula es una contradicción (también se dice que es insatisfactible). Por ejemplo, se cumple que la fórmula $(x \to y) \leftrightarrow (\neg y \to \neg x)$ es una tautología. Sean VAL, SAT y UNSAT, respectivamente, los lenguajes de las fórmulas booleanas válidas, satisfactibles e insatisfactibles:

- a) ¿Por qué la función identidad no es una reducción de VAL a SAT?
- b) Reducir VAL a UNSAT (en éste y en todos los ejercicios siguientes de reducciones de L_1 a L_2 , se debe describir la función de reducción f, probar que f es total computable, y probar que para todo $w \in \Sigma^*$: $w \in L_1 \longleftrightarrow f(w) \in L_2$).

Ejercicio 10. Probar mediante una reducción de problemas que $L = \{ <M > | \lambda \in L(M) \} \notin R$, siendo λ la cadena vacía. *Ayuda: Basarse en alguno de los modelos de reducción vistos en clase.*

Ejercicio 11. Probar mediante una reducción de problemas que $L = \{ <M > | L(M) = S, con S \in RE y S \neq \emptyset \} \notin R$. Ayuda: Basarse en alguno de los modelos de reducción vistos en clase.

Ejercicio 12. Construir una MT que genere todos los índices i tales que $(<M_i>, w_i) \in HP$, según el orden lexical canónico.