101 Printemps 2019

Algèbre

Contrôle continue

• Vous avez 90 minutes pour compléter l examen

Nom	
Prénom	
Nom étudiant à votre gauche	
Nom étudiant à votre droite	

Notes

Q1.	* Egalité Ensemble	/2
Q2.	* Fonction caractéristique	/2
Q3.	** Injection / Surjection	/2
Q4.	* Relation d'équivalence	/2
Q5.	* Relation d'ordre	/2
Q6.	** Vérification groupe	/2
Q7.	*** Automorphisme antérieur	/4
Q8.	** PGCD	/4
	Total	/20

Q1. [2 pts] * Egalité Ensemble

Soit E un ensemble. Soient A, B et C trois parties de E. Montrer (en utilisant une double inclusion) que:

$$(A\Delta B) \cap C = (A \cap C) \Delta (B \cap C). \tag{1}$$

Q2. [2 pts] * Fonction caractéristique

On cherche maintenant à prouver l'égalité de l'équation (1) en utilisant les fonctions caractéristiques:

$$\pi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

On accepte que si $\pi_A = \pi_B$, alors A = B.

- 1. Calculer, en fonction de π_A , π_B et π_C , la fonction caractéristique de $(A\Delta B) \cap C$.
- 2. Même question pour l'ensemble $(A \cap C)\Delta(B \cap C)$.
- 3. Endéduire le résultat de la question (Q1).

Q3. [2 pts] ** Injection / Surjection

Soit E un ensemble et $f:E\longrightarrow E$ une application tel que

$$f \circ f \circ f = f \tag{2}$$

- Montrer que si f est injective, alors aussi f est surjective.
- Inversement, si f est surjective, alors f est **injective**.

Q4. [2 pts] * Relation d'équivalence

On définit sur \mathbb{R}^2 la relation \mathcal{R} par:

$$(x_1, y_1) \mathcal{R} (x_2, y_2) \iff x_1 - 5y_2 = x_2 - 5y_1$$
 (3)

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Pour un point (a, b) dans le plan, Déterminer l'ensemble Cl((a, b)).

Q5. [2 pts] * Relation d'ordre

Pour deux points (x_1, y_1) , (x_2, y_2) dans le plan \mathbb{R}^2 , on définit la relation \mathcal{R} par:

$$\forall (x_1, y_1) \ \mathcal{R} \ (x_2, y_2) \iff x_1 \le x_2 \ \text{et} \ y_1 \le y_2 \tag{4}$$

- 1. Démontrer que \mathcal{R} est une relation d'ordre.
- 2. Pour un point $(a,b) \in \mathbb{R}^2$, représenter graphiquement l'ensemble des éléments supérieurs à (a,b) et ceux qui sont inférieurs.
- 3. Cette relation est elle totale?

Q6. [2 pts] ** Vérification groupe

Soit $G = \mathbb{R} \times \mathbb{R}^*$ et * la loi définie comme suit:

$$(x_1, y_1) * (x_2, y_2) = \left(x_2 y_1 + \frac{x_1}{y_2}, \ y_1 y_2\right)$$
 (5)

- 1. Vérifier que * est un loi interne dans G.
- 2. La loi * est-elle associative? Elle est commutative?
- 3. A-t-on un élément neutre dans (G, *)?
- 4. (G,*) est-il un groupe?

Q7. [4 pts] *** Automorphisme antérieur

Soit (G,.) un groupe. Pour chaque élément $a \in G$ on note la fonction τ_a définie comme suit:

$$\tau_a: \begin{array}{ccc} G & \longrightarrow & G \\ x & \longrightarrow & a^{-1}.x.a \end{array}$$
 (6)

- 1. Démontrer que $\forall a \in G$, τ_a est un morphisme de groupe.
- 2. Vérifier que $\forall a, b \in G$, $\tau_a \circ \tau_b = \tau_{a.b}$.
- 3. Montrer que $\forall a \in G \quad \tau_a$ est bijective. Déterminer sa fonction réciproque.
- 4. En déduire que l'ensemble de ces morphismes $\Theta = \{\tau_a, a \in G\}$ muni de la **composition** est un groupe.

Q8. [4 pts] ** PGCD

- (a) [2 pts] Soit $2x^4 + 2x^3 2x 2$ et $Q = -x^4 + 1$ deux polynômes dans $\mathbb{R}[X]$.
 - 1. Soit D = PGCD(P, Q), déterminer D en spécifiant les étapes de calcul.
- (b) [2 pts] On cherche deux polynômes U et V tel que

$$U(2x^4 + 2x^3 - 2x - 2) + V(-x^4 + 1) = \underbrace{x^3 - x}_{C}$$
(7)

- 1. Démontrer que C est un **multiple** de D.
- 2. Calculer U et V.