Public-key encryption Enc(PKB, m) Alice 1. KeyGen() → (PK, SK) 2. Enc(PK, m) + C Dec(SKB,C)=M 3. Dec (SK, C) -om Correctness: FPK, SK = KeyGen, Ym, C=Enc(PK, m) Dec(SK, C) = M Security: similar in spirit m IND-CPA

L Semantic Security KeyGen() → PKISK chooses a message at random Enc(PK, Mb) be# {0,13 of Adv,

Pr [cAdv wins (6=6)] ≤ 1/2 + negl

El Gamal Cryptosystem (1985)
Keygen () — generate \$ a large prime p (2048-bit) ~2 — g ∈ [21p-1]
- generate in a lange prima p (2010) - g & [21p-1]
- $g \in [21P^{-1}]$ - generate \$1 a secret Key $k \in [21P^{-2}]$ 5k
- PK=g mod p ;(g;p public)
Publish PK, Keep SK secret
Due to the DLP assumption, cannot guess "
Enc (RK, m). ME [13-1PT] Discrete Log Marketin
The state of the s
C = (g' mod p; m. PK mod p) (g.p.g. C., C.)
Dec(5K, C1; C2): C2 mod p=m
m. (g modp) modp modp modp correctness
Wifections

El-Gamad Encryption Scheme

Alice
$$\frac{A \text{lice}}{C + \frac{B}{B} + \frac{B}{B}} = \frac{B \cdot B - B}{B \cdot B}$$

$$\frac{B \cdot B \cdot B}{C \cdot B} = \frac{B \cdot B \cdot B}{B \cdot B} = \frac{B \cdot B}$$

$$\frac{C_2}{(C_1)^b} = \frac{g^{br.m}}{g^{rb}} = m$$

- We know discrete log is hard ... how to build encryption from it?
 - ... Embed message in exponent? ie. gm

This hides the message but isn't decryptable

- We want something like m.k where K is only known to Alice & Bob

This is just a OTP!

Idea: Use DH Key exch. to create a new K for every ciphertext

For each encryption:

- · K= gbr Alice can compute since she knows rægb
 - __ This is DH key exch. where gb is static
- C= (g', k·m) → Bob can compute K & decrypt since he knows g'& b

=> El-Gamad Encryption can be thought as a OTP where the key is randomly generated on each encryption via DH Key Exch.

On 1 d me	H ×
Padding vary message sites	
1000000	
plantered bits padding scheme works	
EVC: my long only the lines of	
Dec: remove padding of site < plantext bits	
m= 1010,000 Vsing this, you can encypt 0 with ElGamal	
remove padding	

•

What if I want to encrypt a very long Encrypt (PK, very long M):

generale \$ sym Key K (AES-CTR)

Enc (K, M); Encus (PK, K)

Decrypt (SK, (Ex; Cx)): Decrub (SK,C2) -> K

Decsym (K, C1) -> M

Digital signatures

M, sign (SKA, M) = Sig Alice integrity & authenticity in the asymmetric Setting

Syntax: Keygen() → SK, PK

Sign (SK, M) -> sig Verify (PK, m, sig) > 0/1.

Correctness: +m, SK, PK Verify (PK, m, Sign(SK, m)) = 1 Security: EU-CPA existential unfolgeable under CPA... (PK) Knows it Adv sign(SK,Mi) (Adv wins if M' + of Miz and Venfy (PK, M', sig) Pr[cAdv wins] Knegl

RSA Signature Keygen (): pick two random primes

p add 2 of 2048 bits (both 2 mod 3) n = pg = Pk = n $\phi(n) = \text{Euler's totient function}$ =#of integers ≥ 0 that are $\gcd(\cdot, n) = 1$ $\phi(n) = (p-1)(2-1)$ order of group modulo n $\forall a, a^{\phi(n)} \equiv 1 \mod n$ Conjude d s.t. $3d = 1 \mod \phi(n)$ [5K=d] ·]rst. $3d = r \cdot \phi(n) + 1$

Sign(SK, m) = hash (m) mod n Verify (PK, m, sig): sig mod n = H(m) mod Correctness: $(hash(m)^d)^3 mod n = hash(m) mod n$ = hash(m) mod n $= (hash(m)^d)^d hash(m)$ = hash(m) mod n = hash(m) mod n

Sign (SKIM) = md mo.dn Insecure scheme. How can you forge? Signature for 1 is 1 sign (SK, 1) = 1 d mod n= 1

 $0^d \mod N = 0$

Sign (SK10) =

Necessary assumption for security: No Adv can factor large numbers. Difficulty of factoring problem If Adv could factorn $n \rightarrow p_1 2 \rightarrow \phi(n) \rightarrow d = SK$

