Homework Assignment 5

Matthew Tiger

May 4, 2016

Problem 1. Use the method of stationary phase to find the leading behavior of the following integral as $x \to +\infty$:

$$I(x) = \int_0^1 e^{ixt^2} \cosh t^2 dt.$$

Solution. We begin by noting that the integral I(x) is a generalized Fourier integral which can be written as

$$I(x) = \int_0^1 f(t)e^{ix\psi(t)}dt$$

where $f(t) = \cosh t^2$ and $\psi(t) = t^2$. The leading asymptotic behavior of such integrals as $x \to +\infty$ may be found, in general, using integration by parts. However, this method may fail at *stationary points*, i.e. any point on the interval of definition such that $\psi'(t) = 0$. For the integral I(x) we note that t = 0 is a stationary point. Thus, we proceed by writing I(x) as follows:

$$I(x) = I_1(x) + I_2(x) = \int_0^\varepsilon f(t)e^{ix\psi(t)}dt + \int_\varepsilon^1 f(t)e^{ix\psi(t)}dt$$

for some $\varepsilon > 0$. Since $I_2(x)$ does not have any stationary points and the function $f(t) = \cosh t^2 \in L^1$ over the interval [0,1], i.e. we have that $\int_0^1 |f(t)| dt < +\infty$, integration by parts works on $I_2(x)$ and by the Riemann-Lebesgue lemma, $I_2(x) \to 0$ as $x \to +\infty$. Thus, as $x \to +\infty$,

$$I(x) \sim I_1(x) = \int_0^{\varepsilon} f(t)e^{ix\psi(t)}dt = \int_0^{\varepsilon} \cosh t^2 e^{ixt^2}dt.$$

We continue by replacing f(t) with $f(0) = \cosh 0 = 1$ and ε with ∞ , since these are the parts that contribute the most to the integral, introducing error terms that vanish as $x \to +\infty$ so that

$$I(x) \sim \int_0^\infty e^{ixt^2} dt$$

Making the substitution

$$t = e^{i\pi/4} \left[\frac{u}{x} \right]^{1/2}$$

yields that

$$\int_0^\infty e^{ixt^2} dt = e^{i\pi/4} \left[\frac{1}{x} \right]^{1/2} \frac{\Gamma(1/2)}{2} = \frac{e^{i\pi/4}}{2} \sqrt{\frac{\pi}{x}}.$$

Therefore, as $x \to +\infty$,

$$I(x) \sim \int_0^\infty e^{ixt^2} dt = \frac{e^{i\pi/4}}{2} \sqrt{\frac{\pi}{x}}.$$

Problem 2. Use second-order perturbation theory to find approximations to the roots of the following equation:

$$x^3 + \varepsilon x^2 - x = 0.$$

 \Box

Problem 3. Analyze in the limit $\varepsilon \to 0$ the roots of the polynomial

$$\varepsilon x^8 - \varepsilon^2 x^6 + x - 2 = 0.$$

 \square

Problem 4. Solve perturbatively

$$\begin{cases} y'' = (\sin x)y \\ y(0) = 1 \\ y'(0) = 1 \end{cases}$$

Is the resulting perturbation series uniformly valid for $0 \le x \le \infty$? Why? Solution.

Problem 5. Find leading-order uniform asymptotic approximations to the solution of the following equation in the limit $\varepsilon \to 0^+$:

$$\varepsilon y'' + (x^2 + 1)y' - x^3 y = 0$$

y(0) = 1, y(1) = 1.

 \square

Problem 6. Obtain a uniform approximation accurate to order ε^2 as $\varepsilon \to 0^+$ for the problem

$$\varepsilon y'' + (1+x)^2 y' + y = 0$$

y(0) = 1, y(1) = 1.

Solution. \Box

Problem 7. For what real values of the constant α does the singular perturbation problem

$$\varepsilon y''(x) + y'(x) - x^{\alpha} y(x) = 0$$

y(0) = 1, y(1) = 1.

have a solution with a boundary layer near x = 0 as $\varepsilon \to 0^+$?

Solution. \Box