COMP90042 Web search and text analysis

Workshop Review

xudong.han@unimelb.edu.au https://github.com/HanXudong/COMP90042 Workshops

Tips

Slides & recording

Workshops

```
from nltk.tokenize import word_tokenize

sentence = "Hello Aswathi How are you doing today"
sentence_token = word_tokenize(sentence)
sentence_token

['Hello', 'Aswathi', 'How', 'are', 'you', 'doing', 'today']
```

Tokenization

http://blog.xnextcon.com/?p=233

```
from nltk.stem.porter import PorterStemmer
stem = PorterStemmer()
word = "mulitplying"
stem.stem(word)
'mulitpli'
from nltk.stem.wordnet import WordNetLemmatizer
lem = WordNetLemmatizer()
word = "multiplying"
lem.lemmatize(word, "v")
```

'multiply'

Stemming and Lemmatisation

TDM & Inverted index

	two	tea	me	you
doc1	0.707	0.707	0	0
doc2	0	0.707	0.353	0.353
doc3	0	0	0.707	0.707

Query 1: Tea me

Query 2: Two

two 1: 0.707;

tea 1:0.707; 2: 0.707

me 2: 0.353; 3:0.707

you 2: 0.353; 3:0.707

TF*IDF & BM25

$$tf_{d,t} \times idf_t$$

$$idf_t = log \frac{N}{df_t}$$

 $t\!f_{d,t}$: term frequency of a document (count of a term t in a document d)

 idf_t : inverse document frequency

 df_t : document frequency (count of documents that contain the term t)

$$w_{t} = log \frac{N - df_{t} + 0.5}{df_{t} + 0.5} \times \frac{(K_{1} + 1)tf_{d,t}}{k_{1}((1 - b) + b\frac{L_{d}}{L_{avg}}) + tf_{d,t}} \times \frac{(k_{3} + 1)tf_{q,t}}{k_{3} + tf_{q,t}}$$

where $0 \le K_1 \le \infty$, $0 \le K_3 \le \infty$, and $0 \le b \le 1$

Posting List Compression

II. a	ids:	25	26	29		12345	12347
the	gaps:	25	1	3		1	2
houso	ids:	5213	5234	5454	5591	•••	
house	gaps:	5213	1	220	137	•••	
	ids:	251235	251239	251240			
aeronaut	gaps:	251235	4	1			

Gaps between ids or term frequencies?

Variable Byte Compression

Encoding

```
1: function ENCODE(x)
```

2: while
$$x >= 128 \text{ do}$$

3: WRITE(
$$x \mod 128$$
)

4:
$$x = x \div 128$$

6: WRITE(
$$x + 128$$
)

7: end function

Q: why do we use " ^ "?

Decoding

1: **function** DECODE(bytes)

2:
$$x = 0, s = 0$$

3:
$$y = READBYTE(bytes)$$

4: while
$$y < 128$$
 do

5:
$$x = x \land (y << s)$$

6:
$$s = s + 7$$

$$y = READBYTE(bytes)$$

8: end while

9:
$$x = x \land ((y - 128) << s)$$

10: return x

11: end function

WAND

Max

Top K retrieval

Overestimate

Query Q: The quick brown fox

with
$$k=2$$

Maximum Contribution for each query term

fox 7.1 5 7 8 13
$$S_{TF-IDF}(d,Q) = \sum_{t \in Q} t f_{d,t} \times log \frac{N}{df_t}$$

Query Expansion Evaluation

Query expansion increases query recall

How many selected items are relevant?

How many relevant items are selected?

static inverted index construction and incremental index construction.

▶ Figure 4.3 Merging in blocked sort-based indexing. Two blocks ("postings lists to be merged") are loaded from disk into memory, merged in memory ("merged postings lists") and written back to disk. We show terms instead of termIDs for better readability.

Why is a logarithmic index layout useful? What are the disadvantages of such an index structure?

what is a logarithmic index layout?
 Use a logarithmic number(logN) of indexes. At each level i, store index of size 2ⁱ × n

http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html

Query all logN indexes at the same time and merge results

what are the strengths and weaknesses of the methods above for evaluating IR systems?

$$Precision@k = \frac{\sum_{i=1}^{k} relevance_i}{k}$$

Precision@k

- Easy to evaluate and understand
- But no differentiation by rank for ranked document 1, 2, ..., k
- But no adjustment for the size of the relevant documents

Average precision

 $AP = \frac{\sum_{k=1}^{n} precision@k \times relevance_k}{\sum_{k=1}^{n} relevanc_k}$

- Differentiation by rank
- Adjustment for the size of the relevant documents
- But need to know the size of the relevant documents

Rank biased precision

$$RBP = (1 - p) \times \sum_{i=1}^{n} r_i \times p^{i-1}$$

- Differentiation by rank
- Adjustment for the size of the relevant documents
- But need to decide on the persistence probability p

N-gram Model

- how much wood would a wood chuck chuck if a wood chuck would chuck wood
- 2. a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood

$$P(w_i | w_{i-1}) = \frac{C(w_{i-1}w_i)}{C(w_{i-1})}$$

W_1,W_2	<s>a</s>	<s>wood</s>	chuck
Count(w_1,w_2)	1	0	0
Count(w_1)	2	2	9
P(w_2 w_1)	1/2	0	0

A: a wood could chuck;

$$P(w_1, w_2, \dots, w_m) = \prod_{i=1}^{n} P(w_i | w_{i-1})$$

• B: wood would a chuck;

Smoothing, back-off and interpolation

- Add-one smoothing
- Add-k smoothing
- The idea in a Backoff model is to build an Ngram model based on an (N-1) model
- https://en.wikipedia.org/wiki/Katz%27s_back-off_model
- Interpolation: instead of just backing off to the non-zero Ngram, it is possible to take into account all Ngrams.
- Estimate lambdas from held-out dataset.

• Meronym: Part of a whole

 Holonym: The whole to which parts belong

		entity		
		abstraction		
		communication		
		message		entity
entity	entity	statement	entity	abstraction
abstraction	abstraction	pleading	abstraction	measure
communication	psychological	charge	group	system of meas
message	cognition	accusation	collection	information meas

information

```
entity
                 entity
                 abstraction...
physical...
                 psychological...
                                    entity
process...
processing
                 cognition...
                                    abstraction...
                                   psychological...
data process... process...
operation
                 basic cog...
                                    event
computer op...
                                    act...
                 memory...
```

retrieval

information is more similar to the word retrieval or the word science

$$WuP_sim(c_1, c_2) = \frac{2 \times depth(LCS(c_1, c_2))}{depth(c_1) + depth(c_2)}$$

PMI

	cup	not (cup)	Total
world	55	225	280
not (world)	315	1405	1720
Total	370	1630	2000

$$PMI(x, y) = log_2 \frac{p(x, y)}{p(x)p(y)} = log_2 P(x, y) - log_2 p(x) - log_2 P(y)$$

A part of speech (abbreviated form: PoS or POS) is a category of words which have similar grammatical properties.

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg	eat
	conjunction						present	
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/	of, in, by	RBR	comparative	faster	WRB	wh-adverb	how, where
	subordin-conj			adverb				
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	66	left quote	" or "
LS	list item marker	1, 2, One	TO	"to"	to	,,	right quote	' or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), }, >
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	<i>IBM</i>	VBG	verb gerund	eating		sent-end punc	.!?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	: ;

recurrent neural network (RNN) language model feed-forward language model

NER & IOB

• IO V.S. IOB

Apple is looking at buying U.K. startup for \$1 billion

Apple	ORG
U.K.	GPE
\$1 billion	MONEY

What is Relation Extraction? How is it similar to NER, and how is it different?

 Relation Extraction attempts to find and list the relationships between important events or entities within a document.

Methods:

- Rule-based
- Supervised learning
- Semi-supervised
- Distant model
- Unsupervised

E.g. Morgan's father is Tony. Tony's wife is pepper.

QA system In a Relation Extraction sense:

- Offline, we process our document collection to generate a list of relations (our knowledge base)
- When we receive a (textual) query, we transform it into the same structural representation, with some known field(s) and some missing field(s)
- We examine our knowledge base for facts that match the known fields
- We rephrase the query as an answer with the missing field(s) filled in from the matching facts from the knowledge base

QA system In an Information Retrieval sense:

- Offline, we process our document collection into a suitable format for IR querying (e.g. inverted index)
- When we receive a (textual) query, we remove irrelevant terms, and (possibly) expand the query with related terms
- We select the best document(s) from the collection based on our querying model (e.g. TF-IDF with cosine similarity)
- We identify one or more snippets from the best document(s) that match the query terms, to form an answer

HMM

α	1:silver	2:wheels		3:turn
JJ:	0.24	0.0096	$JJ \rightarrow JJ$	A[JJ,JJ]B[JJ, turn]
		$JJ \rightarrow JJ$	0.0096	$\times 0.4 \times 0.1 = 0.000384$
			$NNS \rightarrow JJ$	A[NNS,JJ]B[JJ, turn]
			0.048	$\times 0.1 \times 0.1 = 0.00048$
			$VBP \rightarrow JJ$	A[VBP,JJ]B[JJ, turn]
			0.018	$\times 0.4 \times 0.1 = 0.00072$
NNS:	0.12	0.048	$JJ \rightarrow NNS$	A[JJ,NNS]B[NNS,turn]
		$JJ \rightarrow NNS$	0.0096	$\times 0.5 \times 0.3 = 0.00144$
			$NNS \rightarrow NNS$	A[NNS,NNS]B[NNS,turn]
			0.048	$\times 0.4 \times 0.3 = 0.00576$
			$VBP \rightarrow NNS$	A[VBP,NNS]B[NNS, turn]
			0.018	$\times 0.5 \times 0.3 = 0.0027$
VBP:	0.03	0.018	$JJ \rightarrow VBP$	A[JJ,VBP]B[VBP,turn]
		$NNS \rightarrow VBP$	0.0096	$\times 0.1 \times 0.6 = 0.000576$
			$NNS \rightarrow VBP$	A[NNS,VBP]B[VBP,turn]
			0.048	$\times 0.5 \times 0.6 = 0.0144$
			$VBP \rightarrow VBP$	A[VBP,VBP]B[VBP,turn]
			0.018	$\times 0.1 \times 0.6 = 0.00108$

Regular grammar & Regular language

- A language is a set of acceptable strings and a grammar is a generative description of a language.
- Regular language is a formal language that can be expressed using a regular expression.
- Regular grammar is a formal grammar defined by a set of production rules in the form of A -> xB, A - x and A-> E, where A and B are non-terminals, X is a terminal and E is the empty string.
- A language is regular if and only if it can be generated by a regular grammar.

CFG & CYK parsing

0 1 2 3

a	man	saw	John
[0,1]	[0,2]	[0,3]	[0,4]
	[1,2]	[1,3]	[1,4]
		[2,3]	[2,4]
			[3,4]

Chomsky Normal Form (CNF)

function CKY-PARSE(words, grammar) **returns** table

 $table[i,j] \leftarrow table[i,j] \cup A$

```
\begin{array}{l} \textbf{for } j \leftarrow \textbf{from 1 to Length}(words) \, \textbf{do} \\ \textbf{for all } \{A \mid A \rightarrow words[j] \in grammar\} \\ table[j-1,j] \leftarrow table[j-1,j] \cup A \\ \textbf{for } i \leftarrow \textbf{from } j-2 \, \textbf{downto} \, 0 \, \textbf{do} \\ \textbf{for } k \leftarrow i+1 \, \textbf{to } j-1 \, \textbf{do} \\ \textbf{for all } \{A \mid A \rightarrow BC \in grammar \, \textbf{and} \, B \in table[i,k] \, \textbf{and} \, C \in table[k,j]\} \end{array}
```

Figure 12.5 The CKY algorithm.

Dependency parsing

Buffer	Stack	Action
Yesterday, I shot an elephant in my pyjamas.		Shift
I shot an elephant in my pyjamas	Yesterday	Shift
shot an elephant in my pyjamas	Yesterday, I	Shift
an elephant in my pyjamas	Yesterday, I, shot	Arc-Left (I <- shot)
an elephant in my pyjamas	Yesterday, shot	Arc-Left (Yesterday <- shot)

Universal dependencies

```
nmod:tmod(shot-4, Yesterday-1)
nsubj(shot-4, I-3)
root(ROOT-0, shot-4)
det(elephant-6, an-5)
dobj(shot-4, elephant-6)
case(pyjamas-9, in-7)
nmod:poss(pyjamas-9, my-8)
nmod(shot-4, pyjamas-9)
```

- two types of transitions
 - shift = move word from buffer on to top of stack
 - arc = add arc (left/ right) between top two items on stack and remove dependent from stack

Anaphors

- Anaphor: linguistic expressions that refer back to earlier elements in the text
- Anaphors have a antecedent in the discourse, often but not always a noun phrase

Yesterday, Ted was late for work. It all started when his car wouldn't start.

- Pronouns are the most common anaphor
- But there are various others
 - Demonstratives (that problem)
 - Definites (the problem)

Machine Translation

Representation:

$$E = e_1 ... e_l = F = f_1 ... f_l = A = a_1 ... a_l = B_1 ... a_l = B_2 ... a_l = B_3 ... a_l = B_$$

And the program has been implemented Le programme a ete mis en application 2, 3, 4, 5, 6, 6, 6.

Figure from Brown, Della Pietra, Della Pietra, Mercer, 1993