Fourier Analysis

Assignment 1

20181004

Name :	 	
Student ID :		

- 1. Find a period of the given function
 - (a) $\cos x$
 - (b) $\cos \pi x$
 - (c) $\cos x + \cos 2x$
- 2. A π -periodic function $f(x) = \sin x$ ($0 \le x < \pi$) is described over an interval of length π . Compute the integral

 $\int_{-\pi/2}^{\pi/2} f(x) dx$

Hint: Theorem 1 of the Page 20.

- 3. (a) Find a formula that describes the function in Figure 1.
 - (b) Describe the set of points where f is continuous. Compute f(x+) and f(x-) at all points x where f is not continuous. Is the function piecewise continuous?

Figure 1 – For Exercise 3.

4. Prove that

 $\int_{-p}^{p} \cos \frac{m\pi x}{p} \cos \frac{n\pi x}{p} dx = 0 \quad \text{if } m \neq n, \ m,n = 0,1,2,\dots$ Hint : Trigonometric identity.

Reading Materials : Section 2.1 of the textbook.

Textbook : Partial Differential Equations with Fourier Series and Boundary Value Problems, Second Edition, Nakhlé H. Asmar