Universidad del Valle de Guatemala Departamento de Ingeniería Mecatrónica MT3005 - Robótica 1 MSc. Miguel Zea

Laboratorio 1

Repaso de álgebra lineal

Objetivos

- Aplicar destrezas básicas de álgebra lineal para resolver problemas simples que involucren matrices y vectores.
- Desarrollar destrezas básicas para la programación de scripts y funciones en MATLAB.

Procedimiento

En la práctica de esta semana usted empleará el entorno de computación numérica MATLAB para efectuar operaciones básicas de álgebra lineal y desarrollará funciones que automaticen la ejecución de secuencias de comandos. Para ello, realice lo siguiente:

- 1. Descargue de Canvas el archivo mt3005labl.zip y extraiga sus contenidos dentro de una carpeta en una ubicación de su preferencia. Cambie el folder actual de MATLAB para que coincida con esta carpeta y abra el script laboratoriol para editar.
- 2. Defina dentro del script las siguientes cantidades

$$\mathbf{v} = \begin{bmatrix} 4 \\ 5 \\ -1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 1 & 3 & 5 \end{bmatrix}^{\mathsf{T}}, \quad \mathbf{h} = \begin{bmatrix} h_x \\ h_y \\ h_z \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -1 & 2 & 0 & 1 \end{bmatrix}^{\mathsf{T}},$$
$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 & 3 \\ -5 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ -5 & 0 & 1 \\ 4 & 5 & 6 \\ 2 & -1 & -3 \end{bmatrix}.$$

- 3. Con lo definido en el inciso anterior, calcule dentro del script:
 - a) La matriz $\mathbf{C} = \begin{bmatrix} 1 & 3 & 5 \\ 3 & 9 & 15 \\ 5 & 15 & 25 \end{bmatrix}$ empleando únicamente el vector \mathbf{w} .
 - b) La expresión $p=h_x^2+2h_y^2+3h_z^2$ empleando únicamente el vector ${\bf h}$ y la matriz ${\bf A}.$
 - c) Una (aproximación de la) solución \mathbf{x} para la ecuación $\mathbf{B}\mathbf{x} = \mathbf{b}$.
- 4. Con base en la Figura 1 y en las cantidades definidas en el inciso 2., determine y calcule dentro del script:

Figura 1: Representación gráfica de los vectores y cantidades a determinar.

- a) El vector unitario $\hat{\mathbf{u}}$ que es perpendicular a tanto \mathbf{v} como \mathbf{w} .
- b) Los vectores $\mathbf{r}, \mathbf{s} \mathbf{y} \mathbf{t}$.
- c) Los ángulos (en radianes) α y β .
- d) El producto interno k entre $\mathbf{s} \vee \hat{\mathbf{u}}$.
- 5. Cree una función llamada trans_lineal que implemente la siguiente transformación lineal

$$\mathcal{T}\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \right\} = \begin{bmatrix} 2x - 3y + z \\ 5y - 2x \\ x - 10z \end{bmatrix}.$$

Su función debe tomar como argumentos los componentes x, y y z de un vector en \mathbb{R}^3 y retornar un vector en \mathbb{R}^3 que cumpla con la transformación. Evalúe la función para el vector (1,2,3) y almacene el resultado en la variable f.

- 6. Determine dentro del script, la matriz T asociada a la transformación lineal \mathcal{T} empleando la función que desarrolló en el inciso anterior.
- 7. Si el resultado de aplicar la transformación lineal a un vector \mathbf{q} produce el vector $\begin{bmatrix} -2 & 1 & 0 \end{bmatrix}^{\top}$, ¿Qué es el vector \mathbf{q} ? Incluya este cálculo dentro del script.

Para verificar si sus soluciones están correctas, corra la sentencia calificar ('laboratorio1') en la línea de comando (NOTA: debe haber corrido su script laboratorio1.m por lo menos una vez antes de intentar calificarlo). Cuando esté satisfecho con los resultados, presénteselos al profesor del laboratorio o al auxiliar. Recuerde que entregas tardías representan una penalización del 25 % por semana.