18CHNTST12

Himadri Mandal

November 1, 2021

§1 Solution

Solution. I claim the only solutions are $k = p^{1009} \cdot C_1 \ \forall$ prime $p \geq 3$ or $2^{1009} \cdot C_2$ with $C_2 \neq 1$

Construction: For the first solution: we can take $a = p^{1008}(p-1), k = p^{1009} \cdot C_1$. This works because

$$a + nk = p^{1008}((p-1) + npC_1)$$

where $(p-1) + npC_1$ is never a square, as p-1 is a NQR mod $p \ge 3$. For the second solution: we can take $a = C_2 - 1$ if $C_2 \ne 2$ and a = 3 if $C_2 = 2$. This

$$(C_2-1)+2nC_2$$
 and $(3+4n)$

can never be a square.

Necessity:

works as

Let $g = \gcd(a, b)$

$$a + nk = g(a' + nk') = C \cdot p_i^{1009 \cdot \alpha_i - 1} p_i^{2\alpha_j - 1}$$

Note that by dirichlet a' + nk' is a prime infinitely often, and is unbounded, this means $g = \beta \cdot p^{1009 \cdot \alpha_i - 1}$ with $\gcd(\beta, p) = 1$

Note that

$$a' + nk' \not\equiv 0 \pmod{p} \implies k' \equiv 0 \pmod{p}$$

Take k'' = k'/p. So we get $k = p^{1009\alpha_i}\beta k'' = p^{1009}F$ as $\beta k''p^{1009(\alpha_i-1)}$ can take any value.

To finish we would have to prove $k=2^{1009}$ doesn't work. We already have $a=2^{1008}\beta$

Claim 1.1 — $\exists n \text{ such that } 2^{1008}(\beta + 2n) \text{ is a square.}$

Proof. This is trivial, just take
$$n = \frac{d^2 - \beta}{2}$$
 with large enough odd d.

This finishes the proof.
$$\Box$$