7. Minimización de DFAs.

7.1 Un corolario del th. de Myhill-Nerode: existencia y unia dad salvo isomorfismo (renombramiento de lesta dos) del DFA minimal.

Teorema: Sea A = (Q, Z, S, q, F) un DFA, entones $\exists A'$ DFA minimal / T(A) = T(A').

demo.

Sea L=T(A), pn el th. de Myhill-Nerode, existe A/ / L=T(A'). Verenos que A'es el DFA minimal Surrado.

T(A) = T(A') Third T(A) = L = T(A')

A' es el DFA minima// T(A') =T(A)

Sea A"/ T(A) = T (A"), veremos que lA" 1 > 1A'1.

Sean Rm" las relaciones de equivalencia construidas seguns
Re' del th. de Myhill-Nerode e inducidas por A", A'

entonces trivalmente 1A"/> 1A"/ (apartado 6) >> c)).

A'es el vinio DFA minimal

Suyonsams que 3 A' DFA minimal / T (A") = T (A).

Entonces IA" = IAI. Veremos que se prede establecer un isomor).

ente ambs: 0"+ P 1>0'

9" >> Siq', x) / S"(q", x) = q"

1 Sien del. 5"(q,",x)=5"(q,",y)=9"(AD x Riy AD: 5 (q,',x)=5(q,',y)
adenas 5 3 x/ 5"(q,",x)=q", sino q" no accenile y A"no minimal.

7.2 Algoritmo de minimización de Huffman-Moore.

Definición: Sea $A = (Q, Z, S, q_0, F)$ un FA, y sean $q,q_1,q_2 \in Q/$ $/q_1 \neq q_2$. Entonces:

a) $x \in \mathbb{Z}^{+}$ distingue q_{1} de q_{2} 2ii:

i) $(q_{1}, x) \downarrow^{+} (q_{3}, w)$ ii) $(q_{2}, x) \downarrow^{+} (q_{4}, w)$ iii) $q_{3} x_{0} x_{0} q_{4} \in F$

b) $q_1 \ y \ q_2 \ \text{son} \ \frac{k - \text{indistinguilles}}{k - \text{indistinguilles}} \ \text{sii} \ \text{ind} \ \text{indistingue} \ \text{for } \text$

guille de qz.

 $NOTACION: q_1 = q_2$

d) $q \in Q$ re dice inaccerible 2ii $\forall x \in \mathbb{Z}^{+}/(q_{0}x) + (q_{0}x)$ e) A re dice in autoinata reducido 2ii:

i) $\forall q \in Q / q$ inaccerible

ii) $\forall q_{1},q_{2} \in Q / q_{1} \neq q_{2}$ $q_{1},q_{2} \in Q / q_{2} \text{ reaccerible}$

iii) I ge 0/9 chill

Lema: Sea $A = (Q, Z, S, q_0, F)$ un DFA, entonces dados $P, q \in Q$ es posible determinar si son indistingibles on un tiempo $O(kn^2)/|O|=n$

demo

(4)

(5)

(6)

Consideremen el algoritmo dado por el psendovolago signiente:

BEGIN

(1) FOR (PEF AND GEBIF) DO distinguible (P,q):=T;

(2) (P,q) ∈ (F x F OR (Q\F) x (Q\F)) DO

(3)IF $\exists a \in \Sigma / distinguisle (S(p,a), S(q,a)) = T | THEN$

BEGIN

Polistinguille (P.q):=T; que ête test no sea un Incle.

WHILE lista (P,q) DO BEGIN

distinguible (CAAR (lista (p,q)), CADAR (lista (p,q))) := T.

lista (p,q) := cor (lista (p,q));

ELSE /* Ninguis par (S(p,a), S(q,a)) es distinguille */

FOR EACH a E I DO

(7)IF $\delta(p, a) \neq \delta(q, a)$ THEN lidely lista (S(p,a), S(q,a)) := CONS((p,q), lista(S(p,a), S(q,a)))

END

Zema: Sea $A = (Q, \Sigma, S, q_0, F)$ un FA, entonce es ponble eliminar sus Estados inaccensles en un tiempo O(knz)/I = n. I = R

demo

Consideremos el algoritmo signiente:

(1) lista_estados_a_estudiar := (90);

(2) estado-accerisk (q0) := T,

(3) UNTIL lista-estados-a-estudiar DO BEGIN

q := CAR (lista-estado-a-estadiar);

lista_estados_a_estudiar:= CDR (lista_estados-a-estudiar);

(4) FOR EACH $P \in \mathbb{Q}$ | $\exists a \in \Sigma$, $\delta(q, a) = P$ DO etado-accesible $(P) \neq T$

lista-etados-a-etudiar: = cons(p, lista-etados-a-etudian);

etado-accemble (p) := T;

END

END

Teorema (de Huffman-Moure): Sea $A = (Q, Z, J, q_o, F)$ un DFA, entonos el DFA reducido construido a partir de los dos últimos lenas, es el DFA mínimo para T(A).

demo.

Sea A'= (Q', E, S', Eq. J, F') el DFA construido, esto es:

 $\begin{cases} Q' = \{ [q]/q \text{ es accemble a partir de } q_0 \} \\ F' = \{ [q]/q \in F \} \end{cases}$

donde 5'([9],a) := [5(9,a)]

5' Sien definida

Sean $p,q \in O/p = q$, veremos que S(p,a) = S(q,a), $\forall a \in \mathbb{Z}$, lo wal es trival por definición de \equiv .

Ales el DFA minimo / T(A1) = T(A)

Veremos que T(A')=T(A)

 $x \in \mathcal{T}(A'): \bigoplus \mathcal{S}([q_0], x) = [\mathcal{S}(q_0, x)] \in \mathcal{F} \bigoplus \mathcal{S}(q_0, x) \in \mathcal{F} \bigoplus \mathcal{X} \in \mathcal{T}(A)$

Veremo que 1011 = 1 RZ(A)

Dado que la relación $R_{L(A)}$ define el DFA minimal $\Rightarrow |Q'| \ge |R_{L(A)}|$ Su pongamos que $|Q'| > |R_{L(A)}| \Rightarrow \exists p,q \in Q, \exists x,y \in \mathbb{I}^{+} / S(q_{0}, x) = q$ $S(q_{0}, y) = p$ $S(q_{0}, y) = p$ $S(q_{0}, y) = p$

donde $[P] \neq [q] \Rightarrow : \exists w \in \mathbb{Z}^* / S(P, w) \not\equiv S(q, w) \Rightarrow S(q_0, x_w) \not\equiv S(q_0, y_w) \Rightarrow x_w R_{q_0} y_w$ $\times R_{l(A)} y \Rightarrow : \times w R_{l(A)} y_w$

Ahora para cada par de estados (p,q) no todaría marcados, consideramos $\forall \alpha \in \Sigma$, $t = \mathcal{S}(p,\alpha)$, $s = \mathcal{S}(q,\alpha)$

Si t, s ∈ 8 no etan aun marcados, entomos incluímos (p,q ∈ 9.

Si t, s ∈ 8 no etan aun marcados, entomos incluímos (p,q) en

la lista bista (t,s). Si en el Juturo, marcasemos (t,s), tembien

marcaniamos todos los pares de dicha hista.

Considéraremos abora uno a uno, los pares todará no marcados.

(a,b) (S(b,1), S(a,1)) = (c,f) marcado => (a,b) marcado

(a,d) $(\delta(a, \emptyset), \delta(d, \emptyset)) = (b,c)$?5 \Rightarrow (a,d) ?5

(a,e) $(S(a,\phi), S(e,\phi)) = (b,h)$ no marcado = b lista (b,h) = ((a,e))NOTA: (S(a,1), S(e,1)) = (f,f)

(a[f) $(\delta(a, p), \delta(f, p)) = (\delta, c)$ marcodo \Rightarrow (a, f) marcodo no hace Jatta $< (\delta(a, 1), \delta(f, 1)) = (f, g)$ no marcodo \Rightarrow lista (f, g) = ((a, f))

(a,g) $(\delta(a,g), \delta(g,g)) = (\delta,g)$ no morcado = δ lista $(\delta,g) = ((a,g))$

(d(a,1),d(g,1))=(f,e) 95 55 =D lista(f,e)= ((a,g))

(a,h) (J(a,0), J(h,0)) = (b,g) 3' 3' = b lista (J,g) = (a,g), (J,g)(J(a,1), J(h,1)) = (J,c) marcado = D(a,h) marcado

En esto nomento, mostra talla viene dada por:

X						
X	X					
X		X				
		X	and a grant of the same of the			
X		X				
		X	THE RESIDENCE PROPERTY OF THE			
X		X				
a	5	C	1	e	1	9

El proceso se continc chora con los retantes pares inexplorados, verenos en partiadar que:

$$(b,g) \quad (S(b,N),S(g,1)) = (c,e) \quad \text{marrado} \Rightarrow (b,g) \quad \text{marrado} \Rightarrow b \quad \text{fista}(b,g) \quad \text{marrada} \Rightarrow b \quad \text{fista}(b,g) \quad \text{marrada} \Rightarrow b \quad \text{fista}(b,g) \quad \text{marrado} \Rightarrow b \quad \text{fista}(b,g) \quad \text{f$$

Ol resultado final es el dado por:

6	X						gh	8,	$\alpha = e$	7				
C	X	K							b=h	}	cen la	gue.	el DFA	1
d	X	X	X						d = f)	cano'ni	o riene	dado p	ov:
е		X	X	X						-	[a,e] -			
f	X	X	X		X				7/	\$/	1			
9	X	X	X	X	X	X		/		N.			1	
4	X		X	X	X	X	X		[[6,4]		<i>y</i> 0	[9]		
	a	6	C	d	0	1	9					0) /	W7	
									4	Annual Calabria, and Calabria,	Ø	· ·	[d, 3)	

Ejemplo: Sea el DFA dado por el grafo de transiciones que signe:

vamos a reducirlo.

Primer Inscaremo la posse estado inaciendes

Fy G inacceribles, con la que mustro DFA re reduce pur el momento al grafo de transiciones:

Buscamo ahora los estados equivalentes, obteniendo:

Eto es, el DFA reducido viene dado por el grajo de transisiones:

