ELEKTRONIKA

Viera Stopjaková (<u>viera.stopjakova@stuba.sk</u>) Ústav elektroniky a fotoniky FEI STU

POLOVODIČOVÉ PRVKY

Prednáška

- Polovodičové diódy a tranzistory sú aktívne el. prvky
- Využívajú vlastnosti polovodičov a polovodičových pn priechodov

Elektronické materiály

- Z hľadiska vodivosti (resp. odporu) ich delíme na:
 - Vodiče
 - Merný odpor $\rho \approx 10^{-8} \Omega m$
 - Kovy slúžia na elektrické prepoje
 - Polykryštalický kremík hradlo MOS tranzistora
 - Polovodiče el. vodivosť sa mení v rozsahu viac ako 10 rádov
 - teplotou, osvetlením, tlakom...
 - dosahuje sa aj pridávaním nečistôt do polovodiča
 - Merný odpor $\rho \approx 10^{-6} \Omega m$
 - Si, SiGe, InP, GaN,....
 - Izolanty materiály slúžiace ako dielektrické vrstvy
 - Vysoký merný odpor: $\rho \approx 10^{10}$ až 10^{16} Ω m

Elektronické materiály

Vodivosť/Odpor rôznych materiálov

Periodická tabuľka prvkov

Perióda/ Skupina	II	III	IV	V	VI
2		B Bór	C ⁶ Uhlík	N Dusík	
3	Mg	Al	Si ¹⁴ _{28,09}	P	S
	Horčík	Hliník	Kremík	Fosfor	Síra
4	Zn	Ga	Ge	As	Se
	Zinok	Gallium	Germánium	Arzén	Selén
5	Cd	In	Sn	Sb	Te
	Kadmium	Indium	Cín	Antimón	Telúr
6	Hg Ortuť		Pb Olovo		

Kremík naj astejšie používaný polovodi

Energetický pásmový diagram

Zakázané pásmo - energia potrebná, aby sa elektrón dostal z **valen ného** do **vodivostného pásma**

Štruktúra kremíka

3D štruktúra

2D štruktúra

Elektróny sú viazané tzv. **kovalentnou väzbou**

Vlastný polovodič

- Čistý, t.j. intrinzický polovodič
 - Kremík medzi atómami existujú chemické väzby, ktoré viažu každý atóm na ďalšie štyri susedné atómy
 - Za chemické väzby sú zodpovedné valenčné elektróny
 - Táto väzba sa nazýva kovalentná (nasýtená)

- Dodaním energie sa uvoľnení elektrón z väzby vzniká voľný elektrón (voľne sa pohybujúci záporný bodový náboj)
- lonizovaný atóm v okolí neutrálnych atómov vytvára kladný bodový náboj - doplnený elektrónom zo susednej väzby
- Zdanlivý pohyb <u>kladného bodového náboja</u> sa nazýva voľná diera

Generácia a rekombinácia

- Vodivosť v čistom polovodiči je spôsobená voľnými nosičmi náboja
- Proces vzniku elektrónu a diery sa nazýva generácia
- Rekombinácia pri interakcii elektrónu s dierou sa obsadí voľná diera voľným elektrónom za súčasného vyžiarenia energie
 - Ak sa energia uvoľňuje vo forme <u>fotónu</u> dochádza k emisii svetla = <u>žiarivá rekombinácia</u>
- Základným typom generácie pri izbovej teplote je tepelná generácia (voľné elektróny a diery sú generované tepelnými kmitmi kryštalickej mriežky)

Podmienka elektrickej neutrality (vlastný polovodič)

V intrinzickom (vlastnom) polovodiči

Koncentrácia voľných elektrónov sa musí rovna koncentrácii voľných dier; ozna ujeme ju *n*_i a nazývame ju vlastnou alebo **intrinzickou koncentráciou**

 n_0 – rovnovážna koncentrácia **voľných elektrónov** p_0 – rovnovážna koncentrácia **voľných dier**

Vlastný polovodič

Otázka: Čo sa stane keď pripojíme napätie na čistý kremík? Bude tiecť prúd?

Odpoveď: Pri absolútnej nule **nie**, ale pri vyššej teplote **áno**

Koncentrácia voľných elektrónov v 1 cm³ čistého *Si* pri teplote 27°C:

5×10²² atómov Si/cm³

 $n_i = 10^{10}$ elektrónov/cm³

Prímesový polovodič

Otázka: Ako zvýšime koncentráciu voľných nosičov náboja?

Dopovanie - úmyselne zavádzanie prímesi do polovodi a

Prímesový polovodič

N - typ polovodiča = donorový

Prímesové atómy dodávajú elektrón, ktorý nie je viazaný vo väzbách s okolitými atómami

Boron
Aluminum
Gallium

Boron
acceptor impurity

P - typ polovodiča = akceptorový

Prímesové atómy majú iba 3 valenčné elektróny, ktoré sú viazané vo väzbách s okolitými atómam

Podmienka elektrickej neutrality (prímesový polovodič)

V termodynamickej rovnováhe (TDR) platí:

$$n + N_A^- = p + N_D^+$$

Sú et koncentrácie voľného a fixného kladného náboja sa rovná súčtu voľného a fixného záporného náboja

N_D* – koncentrácia **ionizovaných donorov**

N_A – koncentrácia ionizovaných akceptorov

n – koncetrácia voľných elektrónov

p – koncetrácia voľných dier

Podmienka elektrickej neutrality (prímesový polovodič)

Pre polovodič typu N platí:

Koncentrácia majoritných nosičov náboja

$$n = N_D$$

$$p = \frac{n_i^2}{N_D}$$

Koncentrácia minoritných nosičov náboja

Pre polovodič typu P platí:

Koncentrácia majoritných nosičov náboja

$$p = N_A$$

$$n = \frac{n_i^2}{N_A}$$

Koncentrácia minoritných nosičov náboja

Energetický pásmový diagram

a) intrinzický

b) donorový

c) akceptorový

Driftový prúd

Prúd spôsobený v polovodiči elektrickým poľom = driftový prúd

- 1. Nosi e náboja sa pohybujú rýchlos ou v metrov/s
- 2. Objem v.Wh predstavuje množstvo náboja, ktoré prejde plochou A za 1 sek.
- 3. Množstvo náboja za jednotku asu = **prúd**

 $e = 1.6 \times 10^{-19}C$

Driftový prúd

$$I = vA \cdot n \cdot q$$

$$E = \frac{U_B}{L}$$

$$I = \mu \frac{U_B}{L} A \cdot n \cdot q$$

- Hustota prúdu = prúd na jednotku plochy J = I/A [A/m²]
- Plocha A = Wh
- Celkový prúd (prúdová hustota) = súčet elektrónovej a dierovej zložky

$$J_{drif} = J_n + J_p = (\mu_n n + \mu_p p) E \cdot q$$

Difúzny prúd

Difúzny prúd je spôsobený pohybom nosičov náboja z miesta s vysokou koncentráciou smerom k miestam s nízkou koncentráciou.

Difúzna prúdová hustota je závislá od gradientu koncentrácie prímesí a difúzneho koeficientu elektrónov D_n , resp. dier D_p :

$$J_{dif} = \left(D_n \frac{dn}{dx} - D_p \frac{dp}{dx}\right) q$$

Celková prúdová hustota cez polovodi je daná sú tom difúzného a driftového prúdu.

PN priechod

- Základná štruktúra polovodičových prvkov
- PN priechod oblasť kde sa mení typ vodivosti polovodiča z P na N
- Rekombináciou v okolí rozhrania vzniká oblasť ochudobnená o voľné nosiče náboja

Oblasť priestorového náboja (OPN)

- v P type oblasť so záporným nábojom
- v N type oblasť s kladným nábojom

PN priechod

OPN vytvára elektrické pole ktoré, bráni ďalšiemu pohybu majoritných

nosičov náboja

Potrebujeme dodať energiu nosičom náboja na prekonanie potenciálovej bariéry, ktorú vytvára OPN

Pripojenie vonkajšieho elektrického napätia

Polarizácia PN priechodu

- Pripojením napätia na PN priechod dochádza k zmene rozloženia potenciálu v okolí PN priechodu
 - Polarita priloženého napätia môže spôsobiť tok elektrického prúdu

POLARIZÁCIA

- Priepustná na oblasť typu N je pripojený záporný a na oblasť typu P kladný pól napäťového zdroja
- Záverná kladné napätie na oblasť typu N a záporný pól na oblasť typu P

Záverne polarizovaný PN priechod

- Pri závernej polarizácii vonkajší napäťový zdroj zväčšuje rozdiel potenciálov na kontaktoch
 - o Potenciálová bariéra brániaca majoritným nosičom prechádzať cez rozhranie sa zvyšuje
- Prúd prechádzajúci PN priechodom v závernom smere je veľmi malý, rádovo pod μA a nazýva sa zvyškový prúd diódy I_S

Priepustne polarizovaný PN priechod

- Pri priepustnej polarizácii potenciálová bariéra sa znižuje
 - Voľné elektróny z oblasti N sú vháňané do oblasti P, kde sa <u>stávajú minoritnými</u> a difundujú do objemu polovodiča P (diery sú vtláčané z oblasti P do oblasti N)
- •Miera injekcie nosičov náboja je daná napätím zdroja U

V-A charakteristika PN priechodu

PN priechod – Shockleyho rovnica

 V-A charakteristiku ideálneho PN priechodu možno opísať exponenciálnou závislosťou, tzv. Shockleyho rovnicou

$$I_F = I_S \left(exp \left(\frac{qU_F}{nkT} \right) - 1 \right)$$

 I_s - je zvyškový prúd diódy v závernom smere

 U_F - je napätie na PN priechode

n - je idealizačný faktor *PN* priechodu (od 1 po 2)

k - Boltzmanova konštanta

T - absolútna teplota

Prúd *PN* priechodom v priepustnom smere **exponenciálne narastá** a v závernom smere sa blíži ku konštantnej hodnote zvyškového prúdu

- V závernom smere môže dôjsť k napäťovému prierazu
- Prudké zvýšenie prúdu v závernom smere po prekročení určitého prierazného napätia U_{BR}

Prierazné mechanizmy:

- Tepelný
- Zenerov
- Lavínový
- Tepelný prieraz spôsobený lokálnym prehriatím materiálu (veľká výkonová strata koncentrovaná do malého objemu)
 - o vzniká pri <u>nedostatočnom odvode</u> tepla
 - o je deštruktívny, dochádza k znehodnoteniu súčiastky

- Zenerov prieraz nastáva pri silnej závernej polarizácii strmého PN priechodu
 - o prierazné napätia sú nízke (0 ÷ 5,6 V)
 - o na rozhraní PN priechodu vzniká veľmi vysoké EP
 - V silnom EP sú valenčné elektróny vytrhávané z atómových väzieb a stávajú sa voľnými (vnútorný emisný jav)
 - Zvýšenie počtu voľných elektrónov v polovodiči spôsobuje prudký nárast elektrického prúdu
 - Jav tunelovania cez PN priechod (zakázané pásmo sa v EP zošikmuje)
 - Ak je EP dostatočne silné, pásmo sa zošikmí natoľko, že potenciálová bariéra zakázaného pásma sa stane veľmi úzkou -> nastáva tunelovanie

- Lavínový prieraz urýchľovanie voľných elektrónov v silnom EP
 - elektróny získajú kinetickú energiu dostatočnú na ionizáciu základných atómov polovodiča (vyrážajú ďalšie elektróny z väzieb a znásobujú počet)
 - o voľné elektróny sú ďalej urýchľované opäť vyrážajú viazané elektróny
 - Počet VNN rastie geometrickým radom (nastáva pri napätí > 5,6 V)

Zenerov aj **lavínový** prieraz sú nedeštruktívne a citlivé na zmeny teploty -> využitie v stabilizačných diódach

 V-A charakteristika stabilizačnej diódy s naznačenou teplotnou závislosťou pre jednotlivé typy nedeštruktívneho prierazu

Dióda (PN priechod)

 Aktívna elektronická súčiastka s jedným PN priechodom a s dvomi elektródami, ktorá má nelineárne usmerňujúce vlastnosti

- a) usmerňovacia dióda
- b) stabilizačná dióda
- c) kapacitná dióda
- d) Schottkyho dióda
- e) svetlo emitujúca dióda
- f) fotodióda

Rozdelenie diód podľa použitia

typ diódy	využívané vlastnosti
usmerňujúce	asymetrická V-A charakteristika
stabilizačné	napäťový prieraz v závernom smere
kapacitné	bariérová kapacita <i>PN</i> priechodu
fotodetekčné	optická generácia voľných elektrónov a dier
svetlo emitujúce	žiarivá rekombinácia voľných elektrónov a dier
mikrovlnné	mikrovlnné vlastnosti
spínacie	asymetrická V-A charakteristika
tunelové	záporný dynamický odpor

Rozdelenie diód podľa puzdrenia

Diódy s drôtovými vývodmi

SMD diódy

Rozdelenie diód podľa integrácie

Diskrétne diódy

Diódové polia

Automotive Headlamps

Usmerňovacia dióda

využíva sa asymetrická vodivosť PN na usmernenie striedavého prúdu

- Využívajú sa hlavne v napäťových zdrojoch
 - o usmerňovače
 - o násobiče napätia
 - o obmedzovače napätia

Ideálna vs. reálna usmerňovacia dióda

- Ideálna usmerňovacia dióda
 - V závernom smere nekonečne veľký odpor (netečie prúd)
 - V priepustnom smere má nulový odpor
- Reálna usmerňovacia dióda
 - \circ V závernom smere **veľký dynamický odpor** (rádovo desiatky M Ω)
 - \circ V priepustnom smere **malý dynamický odpor** (rádovo jednotky Ω)

Usmerňovacia dióda – aplikácia

Jednocestný usmerňovač – premena striedavého napätia na jednosmerné

Optoelektronické súčiastky

Vlnová dĺžka λ viditeľného žiarenia od cca 400 do 800 nm

Luminiscenčná (LED) dióda

- **LED** *Light Emitting Diode*
 - Účinnosť premeny elektrickej energie na svetelnú 25 až 30%
- Princíp činnosti rovnaký ako pri usmerňovacej dióde
 - O V priepustnom smere dochádza k injekcii nosičov náboja cez PN priechod
 - Po prekonaní určitej vzdialenosti dochádza k rekombinácii, čo spôsobuje uvoľňovanie energie vo forme fotónu
 - o Vlnová dĺžka emitujúceho žiarenia je daná rozdielom energií pred a po rekombinácii

$$\Delta W = W_2 - W_1 = \frac{hc}{\lambda}$$

 W_1 – energia pre rekombináciou

 W_2 – energia po rekombinácii

c - rýchlosť svetla

h - Planckova konštanta

A - vlnová dĺžka

Luminiscenčná (LED) dióda

Od vlnovej dĺžky závisí farba žiarenia vlnová dĺžka príslušnej farby

- Konštrukcia LED diódy prispôsobená tak, aby dochádzalo k čo najmenšej absorpcii emitovaného žiarenia v objeme polovodiča
- Rozdiel oproti usmerňovacím väčší úbytok napätia
 - o najnižší červená 1,5 V najvyšší modrá 3,6 V
 - o usmerňovacie majú 0,2 až 0,8 V

Luminiscenčná (LED) dióda

V-A charakteristika LED diód

Ultrafialová a infračervená LED dióda

Viacfarebné a farebné LED

Fotodióda

- Detekcia zmeny svetla a konverzia svetla na napätia/prúd
- Princíp činnosti vnútorný fotoelektrický jav
 - Po dopade fotón odovzdáva energiu valenčnému elektrónu generácia páru elektrón-diera
 - Voľný elektrón a diera vytvárajú v polovodiči napätie = fotovoltaický jav
 - Prúd cez diódu je <u>úmerný intenzite svetla</u>
- Energia, ktorú fotón odovzdá musí byt väčšia ako šírka zakázaného pásma

$$\frac{hc}{\lambda} > E_g$$

Fotodióda

V-A charakteristika fotodiódy

Fotodióda sa v III kvadrante používa na detekciu svetla

- I a III kvadrant: V-A charakteristika podobná s usmerňovacou diódou
- IV kvadrant: pracuje ako generátor napätia (záťažou tečie prúd)

Fotodióda sa v **IV kvadrante** používa ako generátor napätia = aplikácia v solárnych článkoch