Indian Institute Of Technology

Kharagpur, West Bengal, India

$\begin{array}{c} {\rm CS29002~SWITCHING~CIRCUITS} \\ {\rm LABORATORY} \end{array}$

LABORATORY REPORT 2

Student Name Roll Number

1. Aman Sharma 20CS30063

Deepsikha Behera 20CS10023
 Umika Agrawal 20CS30056

Group Number: 2

Submission Date: 03/02/2022

1 Problem Statement (BCD)

Develop circuits to convert from 4-bit binary to 2-digit BCD.

Solution

- The input in this is a 4-bit binary code and it needs to be converted to a 2 digit, i.e. 8 bit BCD code.
- As the range of a 4 bit binary code is from 0 to 15, the BCD output would be of the form $000B_4B_3B_2B_1B_0$
- In this solution, we'll determine the values of B₄, B₃, B₂, B₁ and B₀.

1. Truth Table

The input is a 4-bit binary code, so the input has 16 possible combinations. Hence, the output should have 8-bit, but because the first three bit will all be 0 for all combinations of inputs, the output can be treated as 5-bit BCD code(B_4 B_3 B_2 B_1 B_0). The conversion of binary code into BCD code as shown as follows:

Decimal	Binary code			BCD Code					
	Α	В	С	D	B ₄	Вз	B ₂	B ₁	B ₀
0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	1
2	0	0	1	0	0	0	0	1	0
3	0	0	1	1	0	0	0	1	1
4	0	1	0	0	0	0	1	0	0
5	0	1	0	1	0	0	1	0	1
6	0	1	1	0	0	0	1	1	0
7	0	1	1	1	0	0	1	1	1
8	1	0	0	0	0	1	0	0	0
9	1	0	0	1	0	1	0	0	1
10	1	0	1	0	1	0	0	0	0
11	1	0	1	1	1	0	0	0	1
12	1	1	0	0	1	0	0	1	0
13	1	1	0	1	1	0	0	1	1
14	1	1	1	0	1	0	1	0	0
15	1	1	1	1	1	0	1	0	1

2. Analysis

 \bullet B_0

As B_0 is the 1st bit of the ones digit, it would be the same as the first bit of the input.

$$B_0 = D$$

• B₁

From the truth table above, we can write the expression for B_1 as follows:

$$\begin{array}{l} B_1 = \overline{AB}C\overline{D} + \overline{AB}CD + \overline{AB}C\overline{D} + AB\overline{CD} + AB\overline{CD} \\ B_1 = \overline{AB}C(\overline{D} + D) + \overline{AB}C(\overline{D} + D) + AB\overline{C}(\overline{D} + D) \end{array}$$

As

$$\begin{aligned} & \overline{D} + D = 1 \\ B_1 &= \overline{AB}C + \overline{A}BC + AB\overline{C} \\ B_1 &= AB\overline{C} + \overline{A}C(\overline{B} + B) \end{aligned}$$

$$B_1 = AB\overline{C} + \overline{A}C$$

 \bullet B_2

From the truth table above, we can write the expression for Y as follows:

$$\begin{array}{c} B_2 = \overline{A}B\overline{C}\overline{D} + \overline{A}B\overline{C}D + \overline{A}BC\overline{D} + \overline{A}BCD + ABC\overline{D} + ABCD \\ B_2 = \overline{A}B\overline{C}(\overline{D} + D) + \overline{A}BC(\overline{D} + D) + ABC(\overline{D} + D) \end{array}$$

As

$$\overline{D} + D = 1$$

$$B_2 = \overline{A}B\overline{C} + \overline{A}BC + ABC$$

$$B_2 = \overline{A}B(\overline{C} + C) + ABC$$

$$B_2 = \overline{A}B + ABC$$

$$B_2 = B(\overline{A} + AC)$$

As

$$A+BC = (A+B)(A+C)$$

$$B_2 = B(\overline{A} + A)(\overline{A} + C)$$

$$B_2 = B(\overline{A} + C)$$

$$B_2 = \overline{A}B + CB$$

 \bullet B_3

From the truth table above, we can write the expression for X as follows:

$$B_3 = A\overline{BCD} + A\overline{BCD}$$

$$B_3 = A\overline{BC}(\overline{D} + D)$$

As

$$\overline{D} + D = 1$$

 $B_3 = A\overline{BC}$

• B₄

From the truth table above, we can write the expression for W as follows:

$$\begin{array}{l} B_4 = A\overline{B}C\overline{D} + A\overline{B}CD + AB\overline{C}\overline{D} + AB\overline{C}D + ABC\overline{D} + ABCD \\ B_4 = A\overline{B}C(\overline{D} + D) + AB\overline{C}(\overline{D} + D) + ABC(\overline{D} + D) \end{array}$$

As

$$\begin{aligned} \overline{D} + D &= 1 \\ B_4 &= A \overline{B} C + A B \overline{C} + A B C \\ B_4 &= A \overline{B} C + A B (\overline{C} + C) \\ B_4 &= A (\overline{B} C + B) \end{aligned}$$

As

$$A+BC = (A+B)(A+C)$$

$$B_4 = A(\overline{B} + B)(B + C)$$

$$B_4 = A(B+C)$$

$$B_4 = AB + AC$$

3. Circuit Diagram

2 Problem Statement (Gray)

Develop circuits to convert from 4-bit Gray to 4-bit binary and vice-versa.

1. Truth Table

Decimal		Binary	Gray Code					
numbers	B ₁	B ₂	B ₃	B ₄	G ₁	G ₂	G ₃	G ₄
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	0	1	0
4	0	1	0	0	0	1	1	0
5	0	1	0	1	0	1	1	1
6	0	1	1	0	0	1	0	1
7	0	1	1	1	0	1	0	0
8	1	0	0	0	1	1	0	0
9	1	0	0	1	1	1	0	1
10	1	0	1	0	1	1	1	1
11	1	0	1	1	1	1	1	0
12	1	1	0	0	1	0	1	0
13	1	1	0	1	1	0	1	1
14	1	1	1	0	1	0	0	1
15	1	1	1	1	1	0	0	0

2. Binary to Gray:

Theory:

- Gray code is made such that the consecutive numbers differ in just 1 bit.
- The last bit from the right (MSB) is always the same in gray as the binary code.

• The further bits(n^{th} bit) are obtained by the method that nth bit of gray is the XOR of n^{th} and $(n+1)^{th}$ bit of the binary code.

$$\begin{aligned} G_i &= B_i \text{ for } i \text{=} n \\ G_i &= B_i \text{ XOR } B_{i+1} \text{ for } i \in [0,n-1] \end{aligned}$$

Circuit Diagram:

3. Gray to Binary:

Theory:

- The MSB of the binary number is the same as the MSB of the gray code.
- The 2nd bit(from the left) of the binary number is the same as the 1st bit of the binary number if the 2nd bit of the Gray code is 0. Else, the 2nd bit is the opposite of the 1st bit of the binary number.
- \bullet The same follows for all the further bits of the binary number (B_i and G_i are the ith bits from the right)

$$\begin{aligned} B_i &= G_i \text{ for } i = n \\ B_i &= G_i \text{ XOR } B_{i+1} \text{ for } i \in [0, n-1] \end{aligned}$$

Circuit Diagram:

3 Problem Statement (Excess-3)

- Develop a half adder for handling two bits.
- Develop a full adder using half adders and any additional logic.
- Develop a ripple carry adder needed for this assignment using full adders.
- Develop circuits to convert from excess-3 to 4-bit binary and vice-versa.

Solution

• Half Adder

A half adder is a logical circuit which finds the sum of two binary digits, and outputs a Sum and a Carry value.

Truth Table

Inp	out	Output			
А	В	Sum	Carry		
0	0	0	0		
0	1	1	0		
1	0	1	0		
1	1	0	1		

Sum = A XOR BCarry = A AND B

Circuit Diagram

• Full Adder

A full adder is a logical circuit that finds the sum of three binary digits, and outputs a SUM and a Carry-out(C-OUT) value. The first two inputs are A and B, and the third input is C-IN.

Truth Table

	Input	Output			
А	В	C(Cin)	Sum	Carry(Cout)	
0	0	0	0	0	
1	0	0	1	0	
0	1	0	1	0	
0	0	1	1	0	
1	1	0	0	1	
1	0	1	0	1	
0	1	1	0	1	
1	1	1	1	1	

Logical Expression for SUM:

- $= \overline{AB}C-\overline{IN} + \overline{A}B\overline{C-\overline{IN}} + A\overline{B}C-\overline{IN}$
- $= C-IN(\overline{AB} + AB) + \overline{C-IN}(\overline{AB} + A\overline{B})$
- = C-IN XOR (A XOR B)

Logical Expression for C-OUT:

- $= \overline{A}BC-IN + A\overline{B}C-IN + AB\overline{C-IN} + ABC-IN$
- = AB + BC-IN + AC-IN

Circuit Diagram

• Ripple Carry Adder

A ripple carry adder is a logical circuit which finds the sum of two n-bit binary numbers. It is made by using n full adders. Each full adder acts as a single weighted column in a long binary addition.

The minimised expression for each output using k-map is:

•
$$S_0 = A_0 \oplus B_0 \oplus C_{in}$$

•
$$C_0 = A_0 \cdot B_0 \oplus B_0 \cdot C_{in} \oplus C_{in} \cdot A_0$$

•
$$S_1 = A_1 \oplus B_1 \oplus C_0$$

•
$$C_1 = A_1 \cdot B_1 \oplus B_1 \cdot C_0 \oplus C_0 \cdot A_1$$

•
$$S_2 = A_2 \oplus B_2 \oplus C_1$$

•
$$C_2 = A_2 \cdot B_2 \oplus B_2 \cdot C_1 \oplus C_1 \cdot A_2$$

•
$$S_3 = A_3 \oplus B_3 \oplus C_2$$

•
$$C_3 = A_3 \cdot B_3 \oplus B_3 \cdot C_2 \oplus C_2 \cdot A_3$$

However, using full adders we just provide the Carry out of the last adder to the next adder as Carry in. Thus, we get an n-bit adder using n full adders.

Circuit Diagram

• Binary to Excess-3 code

In Excess-3 code, each digit of the decimal number is represented by adding 3 to it.

To convert from binary code to excess-3 code:

- Convert Binary to decimal
- Add 3 to every digit
- Find binary representation of each digit
- We can also convert Binary to BCD first, and add 0011 to each digit in the BCD code.

Circuit Diagram

• Excess-3 to Binary code

- Convert Excess-3 to BCD(by subtracting 0011) from every digit.
- Convert the BCD code to Binary code.

Circuit Diagram

Conversion Table between EXCESS-3 code and binary

EXCESS-3 INPUT			BCD OUTPUT				
E3	E2	E1	E0	B3	B2	B1	B0
0	0	0	0	Χ	Х	Χ	Χ
0	0	0	1	Χ	Х	Х	Χ
0	0	1	0	Х	Х	Х	Х
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	1	0	0	0	1	1
0	1	1	1	0	1	0	0
1	0	0	0	0	1	0	1
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	1
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	1
1	1	0	1	Χ	Χ	Χ	Х
1	1	1	0	Х	Х	Χ	Х
1	1	1	1	χ	χ	χ	Х