-东南大学电工电子实验中心 实验报告

课程名称:	模拟电子电路实验
MK/1王、1月 //// •	

有源滤波器实验研究

实验名称:_	有源滤波器实验研究						
院 (系):	自动化	_专	业:	自动化			
姓 名:	邹滨阳	学	号:	08022305			
实验室:	金智楼电子技	元 术 4 室	₹ 10 5	_实验组别:	无		
同组人员:	无	实验	时间:	2024年5月	16 日		
评定成绩:		 审阅]教师:				

波形产生电路的设计

一、实验目的

- (1) 掌握 RC 有源滤波器的工作原理;
- (2) 掌握滤波器选择应用的基本原则;
- (3) 掌握滤波器基本参数的测量调试方法;
- (4) 熟悉 RC 有源滤波器的仿真设计方法。

二、实验原理(主要写用到的的理论知识点,不要长篇大论)

滤波器是一种对信号具有频率选择性的电路,其核心功能在于滤除不需要的频率信号,同时保留所需的频率信号。在众多技术领域,如自动控制、仪表测量和无线电通信等,滤波器扮演着至关重要的角色,它们不仅用于模拟信号处理,还涉及数据传输和干扰抑制等关键环节。

在模拟滤波器的设计中,主要分为无源和有源两种类型。有源滤波器,由集成运算放大器和 RC 等无源元件组成,因其高输入阻抗和低输出阻抗的特性,以及能够显著提升滤波器性能的优势,被广泛应用于各种电子系统中。滤波器根据其设计目的和特性,可以进一步细分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、带阻滤波器(BEF)和全通滤波器(APF)。这些滤波器的理想幅频特性通常以图形方式展示,尽管理想滤波特性在现实中难以完全实现,但通过精心设计,可以使实际特性尽可能地逼近理想状态。

滤波器的性能评估涉及多个关键技术指标。通带增益描述了滤波器在通频带内的电压放大倍数,理想情况下,通带内的幅频特性曲线应保持平坦,而阻带内的放大倍数趋近于零。截止频率是滤波器增益降至通带增益的 0.707 倍时对应的频率,它标志着通带与阻带之间的过渡。过渡带的宽度直接影响滤波器的选择性,过渡带越窄,滤波器的选择性越佳。纹波幅度则衡量了通带内幅频特性的波动情况。倍频程选择性反映了滤波器对带外频率成分的衰减能力,通常以 dB/倍频程表示,衰减越快,选择性越好。带宽和品质因数 Q 值也是衡量滤波器性能的重要参数,直接影响滤波器的性能表现。

特别地,二阶有源低通滤波器是一种典型的电路设计,它利用运放的输出端与电容形成的正反馈机制,实现了电压放大倍数的控制。该电路的特征频率由电路参数决定,并且通过特定的分析方法,可以得到电路的传递函数和放大倍数。品质因数 Q 值在此扮演着重要角色,它不仅是通带电压放大倍数与特征频率的比值,也决定了滤波器的滤波特性。为了避免自激振荡,选择合适的元器件参数至关重要。

高通滤波器与低通滤波器具有对偶性,通过简单的元件位置对调即可实现从低通到高通的转变。有源带通滤波器则通过串联低通和高通滤波器来实现,允许特定频率范围内的信号通过,而抑制其他频率的信号。带阻滤波器则通过并联低通和高通滤波器构成,其设计中引入了"双 T 形"选频网络和正反馈机制,以优化滤波特性。全通滤波器则专注于相位频率特性,其幅频特性平行于频率轴,幅度不变,但相位随频率变化,适用于相位校正和相位偏移的应用。

总体而言,滤波器的设计和应用是一个综合性的课题,涉及电路设计、频率特性分析和性能指标评估。通过精心的设计和调整,滤波器能够在各种电子系统中发挥关键作用,实现对信号的精确处理和控制。。

三、 预习思考:

四、仿真实验:

Auo = 1.56(3.86dB)

fo = 159Hz

Q = 0.69

幅频特性曲线:

fo = 160.599Hz 相频特性曲线:

相位差: 89.254°

五、 实验内容

电路实验: 完成预搭建:

(1) 滤波器	器参数的测量:									
滤波器特性测量表:										
f/Hz										
ui/V										
uo/V										
Au										
(-) A NO.	Santa a santa	Ab M HA								
	变化对滤波器性	能的影响:								
改变电容后										
f/Hz										
ui/V										
uo/V										
Au										
改变电阻后										
f/Hz										
ui/V										
uo/V										
Au										
(3)Q值改变对滤波性能的影响:										
f/Hz										

1. 实验总结

ui/V uo/V Au

2. 实验建议(欢迎大家提出宝贵意见)