WE CLAIM:

- 1. A nonpolymeric silsesquioxane in which at least one silicon atom is bound to at least one acid-cleavable substituent R^{CL} , wherein the silsesquioxane has a glass transition temperature T_g of greater than 50°C and R^{CL} is cleavable upon exposure to acid at a temperature below T_g .
- 2. The silsesquioxane of claim 1, wherein R^{CL} is cleavable upon exposure to acid at a temperature that is at least 5°C below T_{g} .
- 3. The silsesquioxane of claim 1, selected from: (a) a polyhedral silsesquioxane optionally having one to three open vertices; and (b) a macromer of two to four polyhedral silsesquioxanes that may be the same or different, with each polyhedral silsesquioxane optionally having one to three open vertices.
- 4. The silsesquioxane of claim 3, wherein the polyhedral silsesquioxane of (a) and the polyhedral silsesquioxanes of (b) have from 4 to 10 faces.
- 5. The silsesquioxane of claim 1, wherein each silicon atom of the silsesquioxane is covalently bound to a moiety selected from: hydrogen; R^{CL}; an acid-inert, polar substituent R^P; and an acid-inert, nonpolar substituent R^{NP}.
- 6. The silsesquioxane of claim 1, wherein the silsesquioxane is additionally substituted with at least one of R^P and R^{NP} .

- 7. The silsesquioxane of claim 6, substituted with R^P and optionally R^{NP} .
- 8. The silsesquioxane of claim 6, substituted with R^{NP} and optionally R^{P} .
- 9. The silsesquioxane of claim 1, wherein R^{CL} has the structure

(I)
$$-(L^{1})_{m}-(X)_{n}-[(L^{2})_{q}-R^{1}]_{r}$$

m, n, and q are independently zero or 1;

r is an integer of at least 1;

L¹ is selected from -O-SiR²R³-, C₁-C₁₂ alkylene, substituted C₁-C₁₂ alkylene, C₁-C₁₂ heteroalkylene, C₅-C₁₄ arylene, substituted C₅-C₁₄ arylene, C₅-C₁₄ arylene, substituted C₅-C₁₄ arylene, C₆-C₁₄ heteroarylene, Substituted C₆-C₁₄ aralkylene, substituted C₆-C₁₄ aralkylene, substituted C₆-C₁₄ aralkylene, C₆-C₁₄ heteroaralkylene, and substituted C₆-C₁₄ heteroaralkylene, wherein R² and R³ are hydrogen or C₁-C₁₂ hydrocarbyl, and further wherein when L¹ is optionally substituted and/or heteroatom-containing C₃-C₁₂ alkylene, L¹ may be linear, branched, or cyclic;

X is selected from C₃-C₃₀ alicyclic and substituted C₃-C₃₀ alicyclic;

 L^2 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, C_5 - C_{14} arylene, substituted C_5 - C_{14} arylene, substituted C_5 - C_{14} heteroarylene, substituted C_5 - C_{14} heteroarylene, substituted C_6 - C_{14} heteroaralkylene, and substituted C_6 - C_{14} heteroaralkylene, and further wherein when L^2 is

optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^2 may be linear, branched, or cyclic; and

R¹ is selected from acid-cleavable ester, oligomeric ester, ether, carbonate, acetal, ketal, and orthoester substituents.

10. The silsesquioxane of claim 9, wherein:

r is 1 or 2;

L¹ is selected from -O-SiR²R³- and C₁-C₁₂ alkylene;

R² and R³ are hydrogen or C₁-C₆ hydrocarbyl;

X is C_3 - C_{18} alicyclic;

 L^2 is selected from C_1 - C_{12} alkylene, hydroxyl-substituted C_1 - C_{12} alkylene, C_1 - C_{12} fluoroalkylene, and hydroxyl-substituted C_1 - C_{12} fluoroalkylene;

 R^1 is selected from -(CO)-O- R^4 , -[Q¹-(CO)-O-]_h- R^5 , -O- R^6 , and -O-(CO)-O- R^7 ;

h is an integer in the range of 2 to 8 inclusive;

 Q^1 is C_1 - C_{12} alkylene or C_1 - C_{12} fluoroalkylene;

 R^4 and R^6 are selected from (a) hydrocarbyl substituents with a tertiary carbon attachment point, (b) substituents having the structure -CR⁸R⁹-O-CR¹⁰R¹¹R¹², and (c) substituents having the structure -CR¹³(OR¹⁴)₂;

 R^5 , R^7 , and R^{14} are selected from C_4 - C_{12} hydrocarbyl, substituted C_4 - C_{12} hydrocarbyl, heteroatom-containing C_4 - C_{12} hydrocarbyl, and substituted heteroatom-containing C_4 - C_{12} hydrocarbyl; and

 R^8 , R^9 , R^{10} , R^{11} , R^{12} , and R^{13} are independently selected from hydrogen, C_4 - C_{12} hydrocarbyl, substituted C_4 - C_{12} hydrocarbyl, heteroatom-containing C_4 - C_{12} hydrocarbyl, and

substituted heteroatom-containing C_4 - C_{12} hydrocarbyl, and further wherein any two of R^8 , R^9 , R^{10} , R^{11} , and R^{12} may be linked to form a three- to eight-membered cyclic group.

11. The silsesquioxane of claim 10, wherein:

L¹ is selected from -O-SiR²R³- and C₁-C₆ alkylene;

R² and R³ are hydrogen or C₁-C₆ alkyl;

X is C₆-C₁₂ alicyclic; and

 L^2 is of the formula -CR¹⁵R¹⁶- wherein R¹⁵ is hydrogen, C₁-C₁₂ alkyl, or C₁-C₁₂ fluoroalkyl, and R¹⁶ is C₁-C₁₂ alkyl or C₁-C₁₂ fluoroalkyl.

12. The silsesquioxane of claim 11, wherein:

 R^{1} is of the formula -(CO)-O- R^{4} , wherein R^{4} is selected from cyclic and acyclic hydrocarbyl substituents with a tertiary carbon attachment point, such that when r is 1, then R^{CL} has the structure

(II)
$$-(L^1)_m - (X)_n - (CR^{15}R^{16})_q - (CO) - O - R^4.$$

13. The silsesquioxane of claim 11, wherein:

 R^{1} is of the formula -O-R⁶, wherein R⁶ is selected from cyclic and acyclic hydrocarbyl substituents with a tertiary carbon attachment point, such that when r is 1, then R^{CL} has the structure

(III)
$$-(L^{1})_{m}-(X)_{n}-(CR^{15}R^{16})_{q}-O-R^{6}.$$

- 14. The silsesquioxane of claim 12, wherein R⁴ is selected from t-butyl, adamantyl, norbornyl, isobornyl, 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclo-pentadienyl-cyclohexyl, 1-methylcyclohexyl, 1-methylcyclopentyl, tetrahydropyranyl (THP), tetrahydrofuranyl (THF), 1-ethoxyethyl, 1-methoxy-cyclohexyl, and 1-methoxypropyl.
- 15. The silsesquioxane of claim 13, wherein R⁶ is selected from t-butyl, adamantyl, norbornyl, isobornyl, 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclo-pentadienyl-cyclohexyl, 1-methylcyclohexyl, 1-methylcyclopentyl, tetrahydropyranyl (THP), tetrahydrofuranyl (THF), 1-ethoxyethyl, 1-methoxy-cyclohexyl, and 1-methoxypropyl.
 - 16. The silsesquioxane of claim 7, wherein R^P has the structure

(IV)
$$-(L^3)_{m1}-(Y)_{n1}-(L^4)_{n1}-R^{18}$$

m1, n1, and q1 are independently zero or 1;

 L^3 is selected from -O-SiR¹⁹R²⁰-, C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_5 - C_{14} arylene, substituted C_5 - C_{14} arylene, substituted C_5 - C_{14} heteroarylene, substituted C_5 - C_{14} heteroarylene, substituted C_6 - C_{14} aralkylene, substituted C_6 - C_{14} heteroaralkylene, and substituted C_6 - C_{14} heteroaralkylene, wherein R^{19} and

 R^{20} are hydrogen or C_1 - C_{12} hydrocarbyl, and further wherein when L^3 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^1 may be linear, branched, or cyclic;

Y is selected from C₃-C₃₀ alicyclic and substituted C₃-C₃₀ alicyclic;

 L^4 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, C_5 - C_{14} arylene, substituted C_5 - C_{14} arylene, C_5 - C_{14} heteroarylene, substituted C_5 - C_{14} heteroarylene, substituted C_6 - C_{14} heteroaralkylene, and substituted C_6 - C_{14} heteroaralkylene, and further wherein when L^4 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^4 may be linear, branched, or cyclic; and

R¹⁸ is an acid-inert polar organic group containing a heteroatom with a Pauling electronegativity greater than about 3.00.

17. The silsesquioxane of claim 16, wherein:

 L^3 is selected from -O-SiR 19 R 20 - and C_1 - C_{12} alkylene;

Y is C₃-C₁₈ alicyclic; and

 L^4 is selected from C_1 - C_{12} alkylene, hydroxyl-substituted C_1 - C_{12} alkylene, C_1 - C_{12} fluoroalkylene, and hydroxyl-substituted C_1 - C_{12} fluoroalkylene.

18. The silsesquioxane of claim 17, wherein:

L³ is selected from -O-SiR¹⁹R²⁰- and C₁-C₆ alkylene;

Y is C₆-C₁₂ alicyclic; and

 L^4 is of the formula -CR²¹CR²²- wherein R²¹ is hydrogen, C_1 - C_{12} alkyl, or C_1 - C_{12} fluoroalkyl, and R²² is C_1 - C_{12} alkyl or C_1 - C_{12} fluoroalkyl, such that R^P has the structure

(V)
$$-(L^3)_{m1}-(Y)_{n1}-(CR^{21}R^{22})_{q1}-R^{18}.$$

- 19. The silsesquioxane of claim 18, wherein the heteroatom within R¹⁸ is O or N.
- 20. The silsesquioxane of claim 19, wherein R¹⁸ is selected from hydroxyl, carboxyl, C₁-C₁₂ alkoxy, C₁-C₁₂ fluoroalkoxy, hydroxyl-substituted C₁-C₁₂ alkoxy, hydroxyl-substituted C₁-C₁₂ alkoxyalkyl, hydroxyl-substituted C₂-C₁₂ alkoxyalkyl, fluorinated C₂-C₁₂ alkoxyalkyl, hydroxyl-substituted C₂-C₁₂ alkoxyalkyl, hydroxyl-substituted C₁-C₁₂ alkyl, hydroxyl-substituted C₁-C₁₂ fluoroalkyl, carboxyl-substituted C₁-C₁₂ alkyl, carboxyl-substituted C₁-C₁₂ fluoroalkyl, C₂-C₁₂ acyl, fluorinated C₂-C₁₂ acyl, hydroxyl-substituted C₂-C₁₂ acyl, fluorinated C₂-C₁₂ acyl, C₂-C₁₂ acyloxy, fluorinated C₂-C₁₂ acyloxy, hydroxyl-substituted C₂-C₁₂ acyloxy, fluorinated hydroxyl-substituted C₂-C₁₂ acyloxy, hydroxyl-substituted C₂-C₁₂ acyloxy, fluorinated hydroxyl-substituted C₂-C₁₂ acyloxy, amino, mono- and di-(C₁-C₁₂ alkyl)-substituted amino, amido, mono- and di-(C₂-C₁₂ alkyl)amido, sulfonamido, N-heteroalicyclic, oxo-substituted N-heterocyclic, and, where the substituents permit, combinations of two or more of the foregoing.
 - 21. The silsesquioxane of claim 20, wherein R¹⁸ is hydroxyl.
 - 22. The silsesquioxane of claim 19, wherein n is 1.
 - 23. The silsesquioxane of claim 22, wherein q is zero.

- 24. The silsesquioxane of claim 8, wherein R^{NP} is C_1 - C_{18} hydrocarbyl or fluorinated C_1 - C_{18} hydrocarbyl.
- 25. A lithographic photoresist composition comprising a photoacid generator and a nonpolymeric silsesquioxane in which at least one silicon atom is bound to an acid-cleavable substituent R^{CL} , wherein the silsesquioxane has a glass transition temperature T_g of greater than 50°C and R^{CL} is cleavable upon exposure to acid at a temperature below T_g .
- 26. The composition of claim 25, wherein R^{CL} is cleavable upon exposure to acid at a temperature that is at least 5°C below T_{g} .
- 27. The composition of claim 25, selected from: (a) a polyhedral silsesquioxane optionally having one to three open vertices; and (b) a macromer of two to four polyhedral silsesquioxanes that may be the same or different, with each polyhedral silsesquioxane optionally having one to three open vertices.
- 28. The composition of claim 27, wherein the polyhedral silsesquioxane of (a) and the polyhedral silsesquioxanes of (b) have from 4 to 10 faces.
- 29. The composition of claim 25, wherein each silicon atom of the silsesquioxane is covalently bound to a moiety selected from: hydrogen; R^{CL}; an acid-inert, polar substituent R^P; and an acid-inert, nonpolar substituent R^{NP}.

- 30. The composition of claim 25, wherein the silsesquioxane is additionally substituted with at least one of R^P and R^{NP} .
 - 31. The composition of claim 30, substituted with R^P and optionally R^{NP}.
 - 32. The composition of claim 30, substituted with R^{NP} and optionally R^P.
 - 33. The composition of claim 25, wherein R^{CL} has the structure

(I)
$$-(L^{1})_{m}-(X)_{n}-[(L^{2})_{q}-R^{1}]_{r}$$

m, n, and q are independently zero or 1;

r is an integer of at least 1;

L¹ is selected from -O-SiR²R³-, C₁-C₁₂ alkylene, substituted C₁-C₁₂ alkylene, C₁-C₁₂ heteroalkylene, Substituted C₅-C₁₄ arylene, substituted C₅-C₁₄ arylene, C₅-C₁₄ heteroarylene, substituted C₅-C₁₄ heteroarylene, C₆-C₁₄ aralkylene, substituted C₆-C₁₄ aralkylene, substituted C₆-C₁₄ aralkylene, C₆-C₁₄ heteroaralkylene, and substituted C₆-C₁₄ heteroaralkylene, wherein R² and R³ are hydrogen or C₁-C₁₂ hydrocarbyl, and further wherein when L¹ is optionally substituted and/or heteroatom-containing C₃-C₁₂ alkylene, L¹ may be linear, branched, or cyclic;

X is selected from C₃-C₃₀ alicyclic and substituted C₃-C₃₀ alicyclic;

 L^2 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, C_5 - C_{14} arylene, substituted C_5 - C_{14} arylene, C_5 - C_{14}

heteroarylene, substituted C_5 - C_{14} heteroarylene, C_6 - C_{14} aralkylene, substituted C_6 - C_{14} aralkylene, and further wherein when L^2 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^2 may be linear, branched, or cyclic; and

R¹ is selected from acid-cleavable ester, oligomeric ester, ether, carbonate, acetal, ketal, and orthoester substituents.

34. The composition of claim 33, wherein:

r is 1 or 2;

L¹ is selected from -O-SiR²R³- and C₁-C₁₂ alkylene;

R² and R³ are hydrogen or C₁-C₆ hydrocarbyl;

X is C₃-C₁₈ alicyclic;

 L^2 is selected from C_1 - C_{12} alkylene, hydroxyl-substituted C_1 - C_{12} alkylene, C_1 - C_{12} fluoroalkylene, and hydroxyl-substituted C_1 - C_{12} fluoroalkylene; and

 R^1 is selected from -(CO)-O- R^4 , -[Q¹-(CO)-O-]_h- R^5 , -O- R^6 , and -O-(CO)-O- R^7 ;

h is an integer in the range of 2 to 8 inclusive,

 Q^1 is C_1 - C_{12} alkylene or C_1 - C_{12} fluoroalkylene,

R⁴ and R⁶ are selected from (a) hydrocarbyl substituents with a tertiary carbon attachment point, (b) substituents having the structure -CR⁸R⁹-O-CR¹⁰R¹¹R¹², and (c) substituents having the structure -CR¹³(OR¹⁴)₂;

 R^5 , R^7 , and R^{14} are selected from C_4 - C_{12} hydrocarbyl, substituted C_4 - C_{12} hydrocarbyl, heteroatom-containing C_4 - C_{12} hydrocarbyl, and substituted heteroatom-containing C_4 - C_{12} hydrocarbyl; and

 R^8 , R^9 , R^{10} , R^{11} , R^{12} , and R^{13} are independently selected from hydrogen, C_4 - C_{12} hydrocarbyl, substituted C_4 - C_{12} hydrocarbyl, heteroatom-containing C_4 - C_{12} hydrocarbyl, and substituted heteroatom-containing C_4 - C_{12} hydrocarbyl, and further wherein any two of R^8 , R^9 , R^{10} , R^{11} , and R^{12} may be linked to form a three- to eight-membered cyclic group.

35. The composition of claim 34, wherein:

L¹ is selected from -O-SiR²R³- and C₁-C₆ alkylene;

 R^2 and R^3 are hydrogen or C_1 - C_6 alkyl;

X is C₆-C₁₂ alicyclic; and

 L^2 is of the formula -CR¹⁵R¹⁶- wherein R¹⁵ is hydrogen, C₁-C₁₂ alkyl, or C₁-C₁₂ fluoroalkyl, and R¹⁶ is C₁-C₁₂ alkyl or C₁-C₁₂ fluoroalkyl.

36. The composition of claim 35, wherein R¹ is of the formula -(CO)-O-R⁴, wherein R⁴ is selected from cyclic and acyclic hydrocarbyl substituents with a tertiary carbon attachment point, such that when r is 1, then R^{CL} has the structure

(II)
$$-(L^1)_m - (X)_n - (CR^{15}R^{16})_q - (CO) - O - R^4.$$

37. The composition of claim 35, wherein R^1 is of the formula -O- R^6 , wherein R^6 is selected from cyclic and acyclic hydrocarbyl substituents with a tertiary carbon attachment point, such that when r is 1, then R^{CL} has the structure

(III)
$$-(L^1)_{m}-(X)_{n}-(CR^{15}R^{16})_{q}-O-R^6$$
.

- 38. The composition of claim 36, wherein R⁴ is selected from t-butyl, adamantyl, norbornyl, isobornyl, 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclo-pentadienyl-cyclohexyl, 1-methylcyclohexyl, 1-methylcyclopentyl, tetrahydropyranyl (THP), tetrahydrofuranyl (THF), 1-ethoxyethyl, 1-methoxy-cyclohexyl, and 1-methoxypropyl.
- 39. The composition of claim 36, wherein R⁶ is selected from t-butyl, adamantyl, norbornyl, isobornyl, 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclo-pentadienyl-cyclohexyl, 1-methylcyclohexyl, 1-methylcyclopentyl, tetrahydropyranyl (THP), tetrahydrofuranyl (THF), 1-ethoxyethyl, 1-methoxy-cyclohexyl, and 1-methoxypropyl.
 - 40. The composition of claim 31, wherein R^P has the structure

(IV)
$$-(L^3)_{m1}-(Y)_{n1}-(L^4)_{q1}-R^{18}$$

m1, n1, and q1 are independently zero or 1;

 L^3 is selected from -O-SiR¹⁹R²⁰-, C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_5 - C_{14} arylene, substituted C_5 - C_{14} arylene, substituted C_5 - C_{14} heteroarylene, substituted C_5 - C_{14} heteroarylene, substituted C_6 - C_{14} aralkylene, substituted C_6 - C_{14} aralkylene, C_6 - C_{14} heteroaralkylene, and substituted C_6 - C_{14} heteroaralkylene, wherein R^{19} and

 R^{20} are hydrogen or C_1 - C_{12} hydrocarbyl, and further wherein when L^3 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^1 may be linear, branched, or cyclic;

Y is selected from C₃-C₃₀ alicyclic and substituted C₃-C₃₀ alicyclic;

 L^4 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, C_5 - C_{14} arylene, substituted C_5 - C_{14} arylene, substituted C_5 - C_{14} heteroarylene, substituted C_6 - C_{14} aralkylene, substituted C_6 - C_{14} heteroaralkylene, and substituted C_6 - C_{14} heteroaralkylene, and further wherein when L^4 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^4 may be linear, branched, or cyclic; and

R¹⁸ is an acid-inert polar organic group containing a heteroatom with a Pauling electronegativity greater than about 3.00.

41. The composition of claim 40, wherein:

 L^3 is selected from -O-SiR¹⁹R²⁰- and C₁-C₁₂ alkylene;

Y is C₃-C₁₈ alicyclic; and

 L^4 is selected from C_1 - C_{12} alkylene, hydroxyl-substituted C_1 - C_{12} alkylene, C_1 - C_{12} fluoroalkylene, and hydroxyl-substituted C_1 - C_{12} fluoroalkylene.

42. The composition of claim 41, wherein:

L³ is selected from -O-SiR¹⁹R²⁰- and C₁-C₆ alkylene;

Y is C₆-C₁₂ alicyclic; and

 L^4 is of the formula -CR²¹CR²²- wherein R²¹ is hydrogen, C_1 - C_{12} alkyl, or C_1 - C_{12} fluoroalkyl, and R²² is C_1 - C_{12} alkyl or C_1 - C_{12} fluoroalkyl, such that R^P has the structure

(V)
$$-(L^3)_{m1}-(Y)_{n1}-(CR^{21}R^{22})_{q1}-R^{18}.$$

- 43. The composition of claim 42, wherein the heteroatom within R¹⁸ is O or N.
- 44. The composition of claim 43, wherein R¹⁸ is selected from hydroxyl, carboxyl, C₁-C₁₂ alkoxy, C₁-C₁₂ fluoroalkoxy, hydroxyl-substituted C₁-C₁₂ alkoxy, hydroxyl-substituted C₁-C₁₂ alkoxyalkyl, hydroxyl-substituted C₂-C₁₂ alkoxyalkyl, fluorinated C₂-C₁₂ alkoxyalkyl, hydroxyl-substituted C₂-C₁₂ alkoxyalkyl, hydroxyl-substituted C₁-C₁₂ alkyl, hydroxyl-substituted C₁-C₁₂ fluoroalkyl, carboxyl-substituted C₁-C₁₂ alkyl, carboxyl-substituted C₁-C₁₂ fluoroalkyl, C₂-C₁₂ acyl, fluorinated C₂-C₁₂ acyl, hydroxyl-substituted C₂-C₁₂ acyl, fluorinated C₂-C₁₂ acyl, C₂-C₁₂ acyloxy, fluorinated C₂-C₁₂ acyloxy, hydroxyl-substituted C₂-C₁₂ acyloxy, fluorinated hydroxyl-substituted C₂-C₁₂ acyloxy, amino, mono- and di-(C₁-C₁₂ alkyl)-substituted amino, amido, mono- and di-(C₂-C₁₂ alkyl)amido, sulfonamido, N-heteroalicyclic, oxo-substituted N-heterocyclic, and, where the substituents permit, combinations of two or more of the foregoing.
 - 45. The composition of claim 44, wherein R¹⁸ is hydroxyl.
 - 46. The composition of claim 43, wherein n is 1.
 - 47. The composition of claim 46, wherein q is zero.

- 48. The composition of claim 32, wherein R^{NP} is C_1 - C_{18} hydrocarbyl or fluorinated C_1 - C_{18} hydrocarbyl.
 - 49. The composition of claim 25, further comprising a dissolution modifying additive.
- 50. The composition of claim 49, wherein the dissolution modifying additive is a dissolution inhibitor.
- 51. The composition of claim 25, further comprising a polymer selected to provide transparency at a predetermined wavelength.
- 52. The composition of claim 51, wherein the polymer is selected from siliconcontaining polymers and fluorinated polymers.
 - 53. The composition of claim 25, further comprising a solvent.
- 54. The composition of claim 25, wherein the photoacid generator is an onium salt selected from sulfonium salts and iodonium salts.
 - 55. A process for patterning a substrate, comprising:
- (a) coating a substrate with a photoresist composition comprised of (i) a nonpolymeric silsesquioxane in which at least one silicon atom is bound to an acid-cleavable substituent R^{CL},

wherein the silsesquioxane has a glass transition temperature T_g of greater than 50°C, and (ii) a photoacid generator, thereby forming a film;

- (b) patternwise exposing the film to an imaging radiation source so as to form a latent, patterned image in the film;
 - (c) baking the exposed film at a post-exposure bake temperature below Tg; and
 - (d) developing the latent image with a developer to form a patterned substrate.
- 56. The process of claim 55, wherein the nonpolymeric silsesquioxane is selected from:

 (a) a polyhedral silsesquioxane optionally having one to three open vertices; and (b) a macromer of two to four polyhedral silsesquioxanes that may be the same or different, with each polyhedral silsesquioxane optionally having one to three open vertices.
- 57. The process of claim 55, wherein the post-exposure bake temperature is at least 5°C below T_g.
- 58. The process of claim 57, wherein the post-exposure bake temperature is at least 10° C below T_g .
- 59. The process of claim 55, further including, subsequent to (a) and prior to (b), baking the coated substrate at a post-application bake temperature in the range of about 90°C to about 150°C.

- 60. The process of claim 57, further including, subsequent to (a) and prior to (b), baking the coated substrate at a post-application bake temperature in the range of about 90°C to about 150°C.
- 61. The process of claim 58, further including, subsequent to (a) and prior to (b), baking the coated substrate at a post-application bake temperature in the range of about 80°C to about 120°C.
- 62. The process of claim 55, wherein the radiation is electron-beam, x-ray, ultraviolet, or extreme ultraviolet radiation.
 - 63. The process of claim 62, wherein the radiation is ultraviolet radiation.
- 64. The process of claim 63, wherein the ultraviolet radiation has a wavelength of 248 nm, 193 nm, 157 nm, or 13.4 nm.
- 65. The process of claim 64, wherein the ultraviolet radiation has a wavelength of 193 nm.
 - 66. The process of claim 55, further comprising etching the patterned substrate.
 - 67. The process of claim 66, wherein the etching comprises ion etching.

- 68. The process of claim 55, wherein the film is insoluble, and wherein the developer renders the film soluble where exposed to the imaging radiation source.
 - 69. The process of claim 68, further comprising removing the soluble film.
- 70. The process of claim 55, wherein the substrate comprises a silicon wafer, a photolithographic mask blank, or a printed circuit board.
- 71. The process of claim 55, wherein the substrate coated in (a) has a surface layer of an organic material, such that the patterned substrate is composed of a patterned bilayer resist having an underlayer of the organic material.
- 72. The process of claim 71, wherein the organic material is selected from diazonaphthoquinone/novolac, polyimides, polyesters, and polyacrylates.
 - 73. The patterned substrate prepared by the process of claim 55.
- 74. The silsesquioxane of claim 2, wherein R^{CL} is cleavable upon exposure to acid at a temperature that is at least 10°C below $T_{\rm g}$.
- 75. The composition of claim 25, wherein R^{CL} is cleavable upon exposure to acid at a temperature that is at least 10°C below $T_{\rm g}$.