DESAFÍO 1 - MATEMÁTICAS

Ervin Mauricio Lima Suxo 13 de abril de 2024

1. Medida

- Por espacio medible entendemos que un par ordenado (Ω, B) que consta de un conjunto Ω y un σ -álgebra B de subconjuntos de Ω . Un subconjunto A de Ω se llama medible si $A \in B$.
- Una medida μ en un espacio medible (Ω, B) es una función $\mu: B \to [0, \infty]$ que satisface:

$$\mu(\phi) = 0$$

$$\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$$

para cualquier sucesión $\{E_i\}$ de conjuntos medibles disjuntos, es decir $E_i \cap E_j = \emptyset, E_i \in B, i \neq j.$

- (Ω, B, μ) se llama espacio de medida.

Teorema 1. Las siguientes afirmaciones son equivalentes para un grupo G.

1.
$$P(G)=1$$

5.
$$C_G(a) = G$$
 para todo $a \in G$

3.
$$Z(G)=G$$

6.
$$G/G \cong G$$
.

Demostración. Si P(G)=1, entonces $|L(G)|=|G|^2$. Luego $L(G)=G^2$, y esto significa xy=yz para todo $x,y\in G$. Así G es un grupo abeliano. Es inmediato observar que el razonamiento inverso también es cierto, lo que prueba que 1 es equivalente a 2.

Según este resultado, para tener grados de conmutatividad diferentes de 1 debemos analizar grupos no abelianos.