Bakalářské zkoušky (příklady otázek)

podzim 2015

1 Rozděl a panuj

- 1. Jaká je základní myšlenka metody Rozděl a panuj?
- 2. Časová složitost algoritmů typu Rozděl a panuj se obvykle popisuje rekurentní rovnicí typu

$$T(n) = a \cdot T(n/b) + \Theta(n^c).$$

Jaký význam mají parametry a, b a c?

3. Vvřešte rekurentní rovnici

$$T(n) = 2 \cdot T(n/2) + \Theta(n)$$

s okrajovou podmínkou T(1) = 1. Pokud jste při řešení použili nějakou větu, uveďte její znění.

4. Uveďte příklad algoritmu, jehož složitost je touto rekurentní rovnicí popsána.

2 Tok v síti

- 1. Definujte síť a tok.
- 2. Formulujte v pseudokódu Fordův-Fulkersonův algoritmus pro hledání maximálního toku v síti.
- 3. Jakou má tento algoritmus časovou složitost:
 - (a) pro sítě s jednotkovými kapacitami,
 - (b) pro sítě s celočíselnými kapacitami,
 - (c) pro sítě s reálnými kapacitami?

3 Organizace paměti

Pro všechny body předpokládejte kontext nějakého běžného desktopového operačního systému.

- 1. Předpokládejte proces s jedním vláknem, který vznikl spuštěním aplikace napsané v C++, C#, nebo Javě. Paměť takového procesu bude jistě obsahovat nějaký kód i nějaká data. V této otázce jde o data na jaké hlavní části (lišící se způsobem alokace a dealokace dat) bude paměť procesu obsahující data rozčleněna?
 - Pro každou takovou část vysvětlete, jaká data se zde typicky nacházejí a kdy v ní dochází k alokaci a dealokaci dat. Ve vašem vysvětlení ilustrujte alokaci a dealokaci na fragmentu kódu v C++, C# nebo Javě.
- 2. Předpokládejte, že výše uvedenou aplikaci spustíme dvakrát, a tedy získáme dva různé současně spuštěné a běžící procesy X a Y (každý stále s jedním vláknem). Pokud pak obě vlákna provedou alokaci nějakého bloku paměti, je možné, aby alokovaný blok ležel v každém procesu na přesně stejné adrese A, tedy že proměnná typu pointer či reference v procesu X ukazující na alokovaný blok dat bude obsahovat přesně stejné číslo jako obdobná proměnná v procesu Y ? Pokud ne, vysvětlete proč. Pokud ano, vysvětlete, zda mohou být obecně na adrese A v procesu X jiná data než na adrese A v procesu Y.
- 3. Je možné, aby dva procesy spolu sdílely nějakou paměť? Tedy aby zápis dat do paměti v kontextu nějakého procesu okamžitě způsobil viditelnost těchto dat někde v paměti jiného procesu? Pokud ano, vysvětlete, jak by toho operační systém dosáhl. Pokud ne, vysvětlete proč.

4 Procesy a vlákna

Pro všechny body předpokládejte kontext nějakého běžného desktopového operačního systému.

- 1. Vysvětlete, co to je vlákno (thread). Co v procesu tvoří součást kontextu vlákna (tedy co má každé vlákno vlastní)? Co z procesu naopak součástí kontextu vlákna není (tedy co všechna vlákna sdílejí)?
- 2. Vysvětlete, co to je preemptivní přepínání vláken. V jakých situacích může v systému dojít k přeplánování vlákna na jiné?
- 3. Vysvětlete, co to přesně znamená, že vlákno přejde do pasivního čekání. Jak takové pasivní čekání probíhá? A jak probíhá ukončení pasivního čekání? Uveď te příklad funkce, jejíž volání může typicky vést k pasivnímu čekání.

5 Modelování dat

- 1. Navrhněte E–R model pro evidenci *Projektů a jejich* Řešitelů. Projekt je identifikovaný názvem a má striktní termín ukončení. Řešitel má jméno a příjmení (nemusí být unikátní) a specializaci. Na každém projektu se může podílet několik řešitelů a jeden řešitel může pracovat na více projektech.
- 2. Převeďte E–R model z předchozího bodu do relačního databázového modelu. V návrhu vyznačte datové typy jednotlivých sloupců tabulek.
- 3. Nad strukturou tabulek z předchozího bodu napište dotaz, který vypíše seznam projektů, na kterých pracuje alespoň jeden DB specialista.

6 Transakce

- 1. Definujte relaci konfliktové ekvivalence nad transakčními rozvrhy.
- 2. Jaký je vztah mezi konfliktovou uspořádatelností (conflict-serializability) rozvrhu a serializovatelností (serializability) ?
- 3. Uvažujte transakce T_1 : R(A) W(A) W(B) a T_2 : R(A) W(A) R(B) a rozvrh S: $R_1(A)$ $W_1(A)$ $R_2(A)$ $W_2(A)$ $R_2(B)$ $W_1(B)$ C_2 C_1 . Je rozvrh S konfliktově uspořádatelný (conflict–serializable)? Zdůvodněte a případně navrhněte minimální opravu (ve smyslu počtu přesouvaných operací) na konfliktově serializovatelný rozvrh.
- 4. Definujte zotavitelný (recoverable) rozvrh. Rozhodněte o opraveném rozvrhu z předchozího bodu, zda je, či není zotavitelný.

7 Ramseyova čísla (povinné téma vašeho zaměření)

- 1. Pro $k, \ell \in \mathbb{N}$ definujte Ramseyovo číslo $R(k, \ell)$.
- 2. Uveď te co nejlepší vám známý odhad Ramseyova čísla $R(k,\ell)$.
- 3. Určete Ramseyovo číslo R(3,4), případně uveďte co nejtěsnější horní a dolní odhad. Odpověď zdůvodněte.

8 Základy teorie informace (povinné téma vašeho zaměření)

Vysvětlete koncept entropie a vzájemné informace a uveďte příklady jejich užití v modelování úloh počítačového zpracování přirozeného jazyka.

9 Aranžmá nadrovin (povinné téma vašeho zaměření)

- 1. Definujte stěny aranžmá n nadrovin v R^d . Definujte buňky aranžmá n nadrovin v R^d .
- 2. Kolik buněk má aranžmá n nadrovin v obecné poloze v \mathbb{R}^d ? Odpověď nemusíte zdůvodňovat.
- 3. Kolik vrcholů a 1-dimenzionálních stěn má aranžmá n rovin v obecné poloze v \mathbb{R}^3 ? Odpověď zdůvodněte.
- 4. Kolik buněk má aranžmá 2n takových přímek v rovině, že žádné tři z nich se neprotínají v jednom bodě a každá z nich je rovnoběžná s právě jednou další přímkou (máme tedy n dvojic rovnoběžných přímek)? Odpověď zdůvodněte.

10 Objektově orientované programování

Pro vypracování otázky si zvolte jeden z jazyků C#, C++, Java. V odpovědi můžete vynechat nepodstatné syntaktické detaily, hodnotí se zejména použití vhodných nástrojů jazyka. Otázka se týká objektového modelu, očekává se tedy definice rozhraní tříd (hlavní metody a atributy), nikoliv implementace (těla metod).

Virtuální stroj pracuje s pojmenovanými proměnnými a se zásobníkem, má instrukce pro přemisťování hodnot mezi proměnnými a vrcholem zásobníku, aritmetické instrukce odpovídající operátorům v postfixové notaci a instrukce (podmíněných) skoků pro realizaci větvení a cyklů v pseudokódu. Příklad kódu reprezentujícího výraz "a = b < c? d - e : f":

- 0: PUSH b
 1: PUSH c
 2: JGE 7
 3: PUSH d
 4: PUSH e
- 5: SUB 6: JMP 8 7: PUSH f 8: POP a
 - 1. Navrhněte objektovou datovou strukturu pro reprezentaci pseudokódu virtuálního stroje. Datová struktura by měla umožňovat jednak provádění instrukcí, jednak výstup pseudokódu v textové podobě. Důraz je kladen na čistotu objektového návrhu a snadnou rozšiřitelnost množiny instrukcí, důležitá je i rychlost provádění instrukcí.
 - 2. Kde a jak budete reprezentovat stav stroje, tedy zásobník, hodnoty proměnných a ukazatel instrukcí?
 - 3. Princip řešení vysvětlete podrobněji na reprezentaci instrukcí "PUSH v" (uložení hodnoty proměnné v na zásobník) a "JGE x" (porovnání dvou hodnot na vrcholu zásobníku a podmíněný skok na adresu x).
 - 4. Jak minimalizovat opakující se kód při implementaci podobných instrukcí (například binárních operací)?

11 Šablony a generika

Dva základní způsoby implementace kontejnerových typů (dynamická pole, vyhledávací stromy, hashovací tabulky ...) v objektových jazycích jako Java, C# nebo C++ jsou s využitím polymorfismu a s využitím šablon či generik.

- 1. Ilustrujte oba způsoby implementace kontejnerových typů na návrhu rozhraní kontejneru reprezentujícího množinu objektů s uspořádáním. Zvolte si některý z jazyků Java, C# nebo C++, ve vaší implementaci stačí uvést veřejné rozhraní (třídy a metody) pro vkládání objektu a pro testování přítomnosti objektu.
- 2. Srovnejte výhody a nevýhody obou přístupů.
- 3. Co musí platit pro objekty, které budeme chtít vložit do kontejneru z prvního bodu (setříděná množina)?
- 4. Jak se požadavku z předchozí otázky docílí v kódu?

12 Protokoly TCP/IP (povinné téma vašeho zaměření)

- 1. Načrtněte lokální síť se třemi lokálními počítači a jednou bránou zodpovědnou za komunikaci s internetem pomocí NAT. Přidělte všem rozhraním konkrétní IPv4 adresy a u lokálních počítačů napište obsah jejich routovacích tabulek.
- 2. V jednotlivých krocích popište přenos jednoho IPv4 datagramu mezi dvěma lokálními počítači. Předpokládejte, že počítače před zahájením přenosu nemají žádné ARP informace.
- 3. V jednotlivých krocích popište odeslání jednoho IPv4 datagramu a přijetí jednoho IPv4 datagramu v rámci TCP spojení mezi lokálním počítačem a počítačem v internetu. Předpokládejte, že počítače mají všechny potřebné ARP informace, popisujte pouze akce lokálního počítače, brány a cílového počítače, nevěnujte se dalším počítačům na cestě. Detaily TCP protokolu popisujte pouze do té míry, do které je to nutné pro NAT.

13 Soubory mapované do paměti (povinné téma vašeho zaměření)

- 1. Při použití souborů mapovaných do paměti (memory-mapped files) existují omezení na adresu a délku mapovaného bloku. Popište a zdůvodněte je.
- 2. Kdy dochází při použití souborů mapovaných do paměti k přesunu dat z disku do paměti a kdy z paměti na disk?
- 3. Může proces měnit v paměti data mapovaného souboru? Pokud ne, proč? Pokud ano, zapíší se data do souboru? Kdy?
- 4. Navrhněte rozhraní, pomocí kterého může proces nastavit a zrušit mapování souboru (například analogii volání mmap a munmap).
- 5. Napište příklad alespoň jedné situace, ve které se mapování souborů do paměti typicky používá.

14 Grupa

- 1. Definujte izomorfismus dvou grup.
- 2. Uveďte příklad dvou konečných komutativních navzájem neizomorfních grup se stejným počtem prvků. Nezapomeňte ověřit, že uvedené grupy nejsou izomorfní.

15 Grupa

- 1. Definujte podgrupu grupy.
- 2. Rozhodněte, zda cyklická grupa \mathbb{Z}_6 obsahuje podgrupu izomorfní se \mathbb{Z}_2 , \mathbb{Z}_3 a \mathbb{Z}_4 . Pro každou z možností buď uveďte příslušnou podgrupu, nebo zdůvodnění, že daná podgrupa neexistuje.

16 Čísla

- 1. Definujte pojem "limita posloupnosti reálných čísel" (vlastní i nevlastní).
- 2. Posloupnost (a_n) je definovaná rekurentním předpisem

$$a_1 = 1$$
 $a_{n+1} = \sqrt{2a_n + 3}$.

Rozhodněte, zda posloupnost (a_n) má limitu a pokud ano, tak ji spočtěte.

17 Uspořádané množiny

- 1. Definujte vlastnosti, které musí mít binární relace, aby byla částečným uspořádáním.
- 2. Rozhodněte, zda relace R na množině celých čísel definovaná $R = \{(x, y) \in \mathbb{Z}^2 : |x| \le |y|\}$ je částečným uspořádáním.
- 3. V závislosti na $n \in \mathbb{N}$ určete velikost maximálního řetězce v částečném uspořádání množiny $\{1, 2, \dots, n\}$ pomocí relace dělitelnosti.

18 Determinant

- 1. Zformulujte Laplaceův rozvoj determinantu podle prvního řádku.
- 2. Lze použít tento rozvoj jako alternativní definici determinantu, popřípadě za jakých okolností?
- 3. Pro matici A platí $A^2 = A^3$. Jaký je determinant matice A?
- 4. Buď $A \in \mathbb{T}^{n \times (n-1)}$ pevná. Rozhodněte a zdůvodněte, zda zobrazení $v \in \mathbb{T}^n \mapsto \det(A \mid v)$ je lineární.

19 Regulární matice

- 1. Napište definici regulární reálné matice a uveď te souvislost regularity matice s jejím jádrem, determinantem a vlastními čísly.
- 2. Dokažte, že pozitivně definitní reálné matice jsou regulární.
- 3. Rozhodněte, zda pro regulární matici $A \in \mathbb{R}^{n \times n}$ je zobrazení $x \in \mathbb{R}^n \mapsto Ax + (1, \dots, 1)^T$ prosté a na \mathbb{R}^n . Zdůvodněte.

20 Metrické prostory

- 1. Definujte pojem "metrický prostor".
- 2. Označme $M=\{(x,x)\mid x\in\mathbb{R}\}$, tedy M je "úhlopříčná přímka" v prostoru \mathbb{R}^2 s L_∞ -metrikou. Rozhodněte, zda M je
 - (a) uzavřená,
 - (b) otevřená,
 - (c) kompaktní.

Zdůvodněte.

21 Grafy

- 1. Definujte pojem bipartitního grafu (ne nutně úplného).
- 2. Rozhodněte, pro která $n \in \mathbb{N}$ existuje bipartitní graf s n vrcholy, jehož doplněk je také bipartitní.
- 3. Pro které hodnoty $m,n\in\mathbb{N}$ je úplný bipartitní graf $K_{m,n}$ rovinný? Odpověď zdůvodněte.