Лабораторная работа №1

Установка и конфигурация операционной системы на виртуальную машину

Кувшинова Ксения Олеговна¹ 09.09.2022, Moscow

¹RUDN University, Moscow, Russian Federation

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Выполнение лабораторной работы

Установили на виртуальную машину операционную систему Linux (дистрибутив Rocky) со всеми неоходимыми параметрами.

Figure 1: OC Linux на виртуальной машине

Выполнение лабораторной работы

Запустили ВМ и установили следующие настройки:

Выполнение лабораторной работы

В меню Устройства виртуальной машины подключаем образ диска дополнений гостевой ОС, введим пароль пользователя root виртуальной ОС.

1. Версия ядра Linux (Linux version). Использовали команду dmesg | grep -i Linux. В результате получили, что версия ядра 5.14.0-70.1.1.el9_0.x86_6. (fig. 4)

Figure 4: Версия ядра Linux

2. Частота процессора (Detected Mhz processor). Использовали команду dmesg | grep -i Detected. В результате получили, что частота процессора 2399.996 MHz. (fig. 5)

```
[kokuvshinova@kokuvshinova ~]$ dmesg | grep -i Detected
[ 0.000000] Hypervisor detected: KVM
[ 0.000007] tsc: Detected 2399.996 MHz processor
[ 0.352933] hub 1-0:1.0: 12 ports detected
[ 1 166073] systemd[]]: Detected virtualization oracle
```

Figure 5: Частота процессора

 Модель процессора (СРИО). Использовали команду dmesg | grep -i СРИО. В результате получили, что модель процессора Intel(R) Core(TM) i5-9300H. (fig. 6)

```
[kokuvshinova@kokuvshinova ~]$ dmesg | grep -i CPU0
[ 0.166676] smpboot: CPU0: Intel(R) Core(TM) i5-9300H CPU @ 2.40GHz (family: 0x6, model: 0x9e, stepping: 0xa)
```

Figure 6: Модель процессора

4. Объем доступной оперативной памяти (Memory available). Использовали команду dmesg | grep -i Memory. В результате получили, что объем доступной оперативной памяти равен 260860K/2096696K (fig. 7)

```
kokuvshinova@kokuvshinova ~]$ dmesg | grep -i Memory
     0.001943] ACPI: Reserving FACP table memory at [mem 0x7fff00f0-0x7fff01e3]
0.001945] ACPI: Reserving DSDT table memory at [mem 0x7fff0470-0x7fff2794]
     0.001946] ACPI: Reserving FACS table memory at [mem 0x7fff0200-0x7fff023f]
     0.001946] ACPI: Reserving FACS table memory at [mem 0x7fff0200-0x7fff023f]
     0.001947] ACPI: Reserving APIC table memory at [mem 0x7fff0240-0x7fff0293]
     0.001948] ACPI: Reserving SSDT table memory at [mem 0x7fff02a0-0x7fff046b]
     0.002462] Early memory node ranges
     0.004281] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000
0fff1
     0.004284] PM: hibernation: Registered nosave memory: [mem 0x0009f000-0x0009
ffffl
     0.004285] PM: hibernation: Registered nosave memory: [mem 0x000a0000-0x000e
     0.004286] PM: hibernation: Registered nosave memory: [mem 0x000f0000-0x000f
     0.015934] Memory: 260860K/2096696K available (14345K kernel code, 5945K rwd
ata, 9052K rodata, 2548K init, 5460K bss, 143080K reserved, 0K cma-reserved)
```

Figure 7: Объем доступной оперативной памяти

5. Тип обнаруженного гипервизора (Hypervisor detected). Использовали команду dmesg | grep -i Hypervisor. В результате получили, что тип обнаруженного гипервизора - KVM. (fig. 8)

```
[kokuvshinova@kokuvshinova ~]$ dmesg | grep -i Hypervisor
[ 0.000000] Hypervisor detected: KVM
```

Figure 8: Тип обнаруженного гипервизора

6. Тип файловой системы корневого раздела. Использовали команду dmesg | grep -i filesystem. В результате получили, что тип файловой системы корневого раздела - XFS.(fig. 9)

```
[kokuvshinova@kokuvshinova ~]$ dmesg | grep -i filesystem
[ 4.383039] XFS (dm-0): Mounting V5 Filesystem
[ 9.866595] XFS (sdal): Mounting V5 Filesystem
[kokuvshinova@kokuvshinova ~]$
```

Figure 9: Тип файловой системы корневого раздела

Последовательность монтирования файловых систем.
 Использовали команду dmesg | grep -i mount. В результате получили следующий вывод: (fig. 10)

Figure 10: Последовательность монтирования файловых систем (dmesg)

Результат выполнения работы

В ходе выполнения работы мы приобрели практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Библиография

- 1. Кулябов Д. С., Королькова А. В., Геворкян М. Н. Установка и конфигурация операционной системы на виртуальную машину.
- 2. Справочник 70 основных команд Linux: полное описание с примерами (https://eternalhost.net/blog/sozdanie-saytov/osnovnye-komandy-linux)