MECHANICS 2

Ahmad Abu Zainab

 $\begin{tabular}{ll} Lebanese & University & Faculty & of & Engineering \\ \hline Website & \\ \end{tabular}$

ahmad.abuzainab@st.ul.edu.lb

Contents

Ι	Ki	inematics of Rigid Bodies		1
1	Mathematical Notions			1
	1.1	Vectors		1
	1.2	.2 Antisymmetric mapping		
	1.3	1.3 Torsors		2
		1.3.1	Central Axis of a Torsor	2
		1.3.2	Torsor with Scalar Invariant $= 0$	3

Kinematics of Rigid Bodies

PART

Ι

Section 1

Mathematical Notions

Subsection 1.1

Vectors

Definition 1

A double product between 3 vectors $\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}} \in \mathbb{R}^n$ is defined as

$$\vec{\mathbf{u}} \wedge (\vec{\mathbf{v}} \wedge \vec{\mathbf{w}}) = (\vec{\mathbf{u}} \cdot \vec{\mathbf{w}})\vec{\mathbf{v}} - (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})\vec{\mathbf{w}}.$$

Definition 2

The mixed product of 3 vectors $\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}} \in \mathbb{R}^n$ is defined as

$$\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \wedge \vec{\mathbf{w}}) = \det \begin{bmatrix} u_x \ v_x \ w_x \\ u_y \ v_y \ w_y \\ u_z \ v_z \ w_z \end{bmatrix}.$$

Subsection 1.2

Antisymmetric mapping

Definition 3

In Euclidean space \mathbb{R}^n a mapping $f:\mathbb{R}^n\to\mathbb{R}^n$ is symmetric if

$$\forall \vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathbb{R}^n : \vec{\mathbf{u}} \cdot f(\vec{\mathbf{v}}) = \vec{\mathbf{v}} \cdot f(\vec{\mathbf{u}}).$$

and antisymmetric if

$$\forall \vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathbb{R}^n : \vec{\mathbf{u}} \cdot f(\vec{\mathbf{v}}) = -\vec{\mathbf{v}} \cdot f(\vec{\mathbf{u}}).$$

Remark The (anti)symmetric mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ is linear

$$\forall \vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathbb{R}^n : f(\alpha \vec{\mathbf{u}} + \beta \vec{\mathbf{v}}) = (-)(\alpha f(\vec{\mathbf{u}}) + \beta f(\vec{\mathbf{v}})).$$

Theorem 1

The (anti)symmetric mapping $f: \mathbb{R}^n \to \mathbb{R}^n$, there exists a unique vector $R \in \mathbb{R}^n$ which is called the *characteristic* vector of f such that

$$\forall \vec{\mathbf{u}} \in \mathbb{R}^n \ f(\vec{\mathbf{u}}) = \vec{\mathbf{R}} \wedge \vec{\mathbf{u}}.$$

Subsection 1.3

Torsors

A torsor is a mathematical element used in mechanics to define certain forces.

A torsor consists of a resultant vector $\vec{\mathbf{R}}$ and a moment vector $\vec{\mathbf{M}}_O$ about a point O^1 , these elements are called *elements of reduction* of the torsor. We represent a torsor like so

 $\begin{array}{l} ^{1} \ \textit{to change the moment vector to be about a point A} \\ \vec{\mathbf{M}}_{A} = \vec{\mathbf{M}}_{O} + \vec{\mathbf{R}} \wedge \mathbf{A} \vec{\mathbf{B}} \\ \end{array}$

$$[T(A)] = \begin{bmatrix} \vec{\mathbf{R}} & \vec{\mathbf{M}}_O \end{bmatrix}.$$

Definition 4

The scalar invariant of a torsor [T], denoted $I_{[T]}$, is the scalar product of the torsor with the moment at a point A.²

$$I_{[\mathrm{T}]} = \vec{\mathbf{R}} \cdot \vec{\mathbf{M}}_A.$$

²the invariant is independent of the point the moment is chosen about

Consider 2 torsors $[T_1(A)] = \begin{bmatrix} \vec{\mathbf{R}}_1 & \vec{\mathbf{M}}_{1A} \end{bmatrix}$ and $[T_2(A)] = \begin{bmatrix} \vec{\mathbf{R}}_2 & \vec{\mathbf{M}}_{2A} \end{bmatrix}$. The properties of a torsor are:

- Equality: $[T_1(A)] = [T_2(A)] \Leftrightarrow \vec{\mathbf{R}}_1 = \vec{\mathbf{R}}_2 \text{ and } \vec{\mathbf{M}}_{1A} = \vec{\mathbf{M}}_{2A}$
- Automoment: $[T_1(A)] \cdot [T_1(A)] = 2I_{[T]}$
- Mutiplication by a scalar: $\forall \lambda \in \mathbb{R} : [T_1(A)] = \lambda[T_1(A)] \Leftrightarrow \vec{\mathbf{R}}_1 = \lambda \vec{\mathbf{R}}_2 \text{ and } \vec{\mathbf{M}}_{1A} = \lambda \vec{\mathbf{M}}_{1A}$
- Comoment: $^{3}[T_{1}(A)] \cdot [T_{2}(A)] = \vec{\mathbf{R}}_{1} \cdot \vec{\mathbf{M}}_{2A} + \vec{\mathbf{R}}_{2} + \vec{\mathbf{M}}_{1A}$

³independent of the point A

1.3.1 Central Axis of a Torsor

Definition 5

The central point A of a torsor is a point where the moment $\vec{\mathbf{M}}_A$ is collinear with the resultant $\vec{\mathbf{R}}$:

$$\vec{\mathbf{M}}_A \wedge \vec{\mathbf{R}} = 0.$$

and

$$\vec{\mathbf{M}}_A = k\vec{\mathbf{R}} \quad k \in \mathbb{R}.$$

Definition 6

The central axis (Δ) of a torsor is the straight line of the set of central points

$$\Delta = \left\{ A / \vec{\mathbf{M}}_A \wedge \vec{\mathbf{R}} = 0 \right\}.$$

The formula (parametric) for the central axis Δ is

$$(\Delta) = \frac{\vec{\mathbf{R}} \wedge \vec{\mathbf{M}}_O}{\|\vec{\mathbf{R}}\|^2} + t\vec{\mathbf{R}} \quad t \in \mathbb{R}.$$

Remark Let $A \in \Delta$,

- 1. If $\vec{\mathbf{M}}_A = 0$ or $\vec{\mathbf{M}}_A \wedge \vec{\mathbf{R}} = 0$ then Δ is a straight line passing through A with a direction vector $\vec{\mathbf{R}}$.
- 2. If $\vec{\mathbf{M}}_A \neq 0$ then Δ is a straight line passing through B and a direction vector $\vec{\mathbf{R}}$ such that $\vec{AB} = \frac{\vec{\mathbf{R}} \wedge \vec{\mathbf{M}}_A}{\|\vec{\mathbf{R}}\|^2}$

1.3.2 Torsor with Scalar Invariant = 0

If [T] is a torsor with $I_{[T]}=0$, then the torsor is $\begin{cases} \text{null} \\ \text{a slider} \\ \text{a couple} \end{cases}$

- Null: $\vec{\mathbf{R}} = \vec{\mathbf{M}}_A = 0$
- Slider: $I_{[T]} = 0$, $\vec{\mathbf{R}} \neq 0$, and $\forall C \in \Delta \vec{\mathbf{M}}_C = 0$
- Couple: $I_{[T]} = 0$, $\vec{\mathbf{R}} = 0$, and $\vec{\mathbf{M}}_A \neq 0$ A couple torsor is a uniform field $\vec{\mathbf{M}}_A = \vec{\mathbf{M}}_B$ and $\vec{\mathbf{Z}}\Delta$