Departamento de Matemática Matemática Intermedia 1 Primer Examen Parcial

CLAVE-107-1-M-1-00-2017

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA

CURSO: Matemática Intermedia 1

SEMESTRE: Primero

CÓDIGO DEL CURSO: 107

TIPO DE EXAMEN: Primer Examen Parcial

NOMBRE DEL AUXILIAR: Rodolfo Guzmán

FECHA: 19/07/2017

COORDINADOR: Inga. Vera Marroquín

TEMARIO "A"

Tema No. 1 (10 Puntos)

Utilizando el método de eliminación de Gauss, encuentre la solución del siguiente problema:

Un teatro tienen 400 asientos, repartidas en asientos de orquesta, principales y de balcón. Los asientos de la zona de orquesta cuestan Q50, los de la zona principal Q45 y los del balcón Q40. Si se venden todas las entradas, el ingreso del teatro es de Q 18,000. Si se vende la quinta parte de los salones de orquesta, la tercera parte de los salones principales y la mitad de los salones de balcón, el ingreso es de Q6,000. Encuentre los asientos de cada zona o muestre que la información es insuficiente o incorrecta ya que es inconsistente. Razone su respuesta

Tema No. 2 (10 Puntos)

- a) Sea **B** una matriz que se obtiene al intercambiar dos filas de la matriz **A**, luego de multiplicar una columna por un escalar k y sacarle la transpuesta, encuentre la relación entre el determinante de **A** y el determinante de **B**. (4 pts.)
- b) Encuentre el determinante. (indicando qué utilizó y todos los pasos seguidos):

$$\begin{vmatrix} 1 & 4 & 1 & 3 \\ 4 & 0 & 4 & 1 \\ 2 & 0 & 2 & 3 \\ -2 & 4 & -6 & 5 \end{vmatrix}$$
 (6 pts.)

Tema No. 3 (13 Puntos)

$$x - y = 4$$

Dado:

$$x - 2y = -3$$

- a) Encuentre la matriz inversa de la matriz de coeficientes de dos formas por:
 - i) $(A|I) \rightarrow (I|A^{-1})$
- ii) Por la Adjunta de A (por cofactores)
- (5 pts. c/u)
- b) Encuentre la solución del sistema **utilizando la matriz inversa encontrada.** (3 pts.)

Tema No. 4 (12 puntos)

Cada una de las siguientes matrices, son matrices aumentadas. Encuentre la solución del sistema que representan si tiene una solución única o infinitas (**exprese de forma matricial**), nombre las incógnitas como lo desee.

a)
$$\begin{pmatrix} 1 & -1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 & 3 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Tema No. 5 (9 puntos)

Determine los valores de K tal que el sistema de X & Y tenga: i) Sol. Única.

ii) Ninguna	iii) Infinitas soluciones.	Razone su resnuesta	x - ky = 0
ii) i viiiguiia.	my minitus soluciones.	Razone su respuesta.	kx - y = 0

Tema No. 6 (46 puntos)

a) Calcule la integral por los siguientes métodos: i) Integración por partes. ii) Sustitución trigonométrica.

$$\int \frac{2x^3}{\sqrt{x^2 + 4}} dx$$

(7 pts. c/u)

b) Calcule: (32 pts.)

i)
$$\int \frac{Sec^4 x}{Tan^6 x}$$

i)
$$\int \frac{Sec^4 x}{Tan^6 x}$$
 ii)
$$\int \frac{(x-1)^2}{\sqrt{8+2x-x^2}}$$
 iii)
$$\int cos^3 x \, dx$$
 iv)
$$\int e^{\sqrt{x}} \, dx$$

(8 pts. c/u)

SOLUCIÓN DEL EXAMEN

Tema 1: 10 puntos

Utilizando el método de eliminación de Gauss, encuentre la solución del siguiente problema: Un teatro tienen 400 asientos, repartidas en asientos de orquesta, principales y de balcón. Los asientos de la zona de orquesta cuestan Q50, los de la zona principal Q45 y los del balcón Q40. Si se venden todas las entradas, el ingreso del teatro es de Q 18,000. Si se vende la quinta parte de los salones de orquesta, la tercera parte de los salones principales y la mitad de los salones de balcón, el ingreso es de Q6,000. Encuentre los asientos de cada zona o muestre que la información es insuficiente o incorrecta ya que es inconsistente. Razone su respuesta

No.	Explicación	Operatoria			toria	
	Se formula un sistema de tres ecuaciones con los			x + y	+z=	400
1.	datos que nos da el problema, donde:	5	50x + 45y + 40z = 18000			= 18000
	a) equis es igual a la cantidad de asientos de	1	0x	+ 15 <i>y</i>	+20z	z = 6000
	orquesta en el teatro,					
	b) ye a la de principales y					
	c) zeta a la de balcón.					
	Se escribe la matriz aumentada del sistema de					
2.	ecuaciones.		1	1	1	400
			50	45	40	18000
			10	15	20	6000
	Se realizan dos operaciones de transformación:					
3.	1. Se sustituye la fila dos por la diferencia entre la		1	1	1	400
	fila dos anterior y cincuenta veces la fila uno.		0	-5	-10	-2000
	2. Se sustituye la fila tres por la diferencia entre la		0	5	10	2000
	fila tres anterior y diez veces la fila uno.					
	Se sustituye la fila dos por el producto escalar entre					
4.	la fila dos anterior y el inverso negativo de cinco		1	1	1	400
	para transformar su pivote en uno.		0	1	2	400
			0	5	10	2000
	Se sustituye la fila tres por la diferencia entre la fila					-
5.	tres anterior y cinco veces la fila dos.		1	1	1	400
			0	1	2	400
			0	0	0	0
						•

6.	Hemos transformado la matriz original en una matriz escalonada. $ \begin{pmatrix} 1 & 1 & 1 & 400 \\ 50 & 45 & 40 & 18000 \\ 10 & 15 & 20 & 6000 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 400 \\ 0 & 0 & 0 & 0 \end{pmatrix} $						
7.	Se escribe el sistema de ecuaciones asociado a la $x-z=0$ matriz escalonada obtenida. $y+2$ $z=400$ $0=0$						
8.	Debido a que el nuevo sistema posee tres variables, dos ecuaciones variables, una ecuación siempre verdadera. Se concluye que tiene infinitas soluciones.						
9.	Analizando el enunciado del problema se atribuye la causa a que la información es						
	insuficiente.						

R./ La información es insuficiente, porque el sistema tiene infinitas soluciones.

Tema 2: 10 puntos

a) Sea **B** una matriz que se obtiene al intercambiar dos filas de la matriz **A**, luego de multiplicar una columna por un escalar k y sacarle la transpuesta, encuentre la relación entre el determinante de **A** y el determinante de **B**.

No.	Explicación		C	perat	oria		
	Escribimos la matriz A en una forma general.			•			
1.	Ğ		a11	a12	a13]	a1m
			a21	a22	a23		a2m
			a31	a32	a33		a3m
			an1	an2	an3		anm
			L. <u></u> .		<u> </u>	:::1	
	Multiplicamos una de sus columnas por un escalara k.				<u> </u>		
2.	(Se decidió arbitrariamente utilizar la columna tres.)	ŗ	a11	a12	(k)a13		a1m
	(see designs arbitrariamente demizar la seranima eresi,)	ŀ	a21	a22	(k)a13	•••	a2m
		ŀ	a31	a32	(k)a23		a3m
		İ			•		
					(k)	•••	
		į	an1	an2	(k)an3		_anm
3.	Obtenemos la transpuesta de la matriz.				•		
٥.	Obtenemos la transpuesta de la matriz.	ļ	11		-21		
		 	11	a21	a31	•••	an1
		 	12	a22	a32	/1.\	an2
		(K)	a13 (k)a23	(k)a33	(k)	. (k)an3
		 - 				•••	
		a:	1m	a2m	a3m	L:.	anm
	Internal de la Cita de la matria					•	
4.	Intercambiamos dos filas de la matriz.	i				·	
	(Se decidió arbitrariamente utilizar las filas dos y tres.)	-	11	a21	a31		an1
	Este resultado es igual a la matriz B.			k)a23	` '	(k)	
	Liste resultado es igual a la matriz b.	a	12	a22	a32		an2
		<u> </u>					
		a	1m	a2m	a3m	L	anm
					n		
5.	El determinante de la matriz A es igual a la suma de los			141 —	\sum_{α}^{n}	V 0	
	productos entre los elementos de una de sus columnas o			A -	$\sum_{i=1} a_{i3}$	^ c _{i3}	3
	filas y sus respectivos cofactores. (Utilizaremos la columna				ι=1		
	tres para calcularlo.)				n		
6.	El determinante de la matriz B es igual a la suma de los			R =	$\sum h_{\bullet}$	X C	
	productos entre los elementos de una de sus columnas o			<u>ן ען</u>	$\sum_{i=1} b_{2j}$	~ c ₂	J
	filas y sus respectivos cofactores. (Utilizaremos la fila dos				J-1		

	para calcularlo.)	
7.	Se observa que los elementos de la fila dos de la matriz B	$b_{2j} = k(a_{i3})$
	son iguales al producto entre los elementos de la columna	
	dos de la matriz A y el escalar k.	
8.	Se observa que los cofactores de la fila dos de la matriz B	$c_{B_{2j}} = -c_{A_{i3}}$
	son iguales a los negativos de los cofactores de la matriz	,
	A.	
9.	Por tanto, el determinante de B es igual al negativo del producto entre el escalar k y el determinante de A.	$ B = \sum_{i=1}^{n} k(a_{i3}) \times (-c_{A_{i3}})$
		i=1 n
		$= -k \sum_{i=1}^{N} a_{i3} \times c_{i3}$
		= -k A

$$\mathsf{R./}\ |B| = -k|A|$$

b) Encuentre el determinante.

$$\begin{vmatrix} 1 & 4 & 1 & 3 \\ 4 & 0 & 4 & 1 \\ 2 & 0 & 2 & 3 \\ -2 & 4 & -6 & 5 \end{vmatrix}$$

No.	Explicación		Operatoria
1.	Se tiene la matriz.		1 4 1 3 4 0 4 1 2 0 2 3 -2 4 -6 5
2.	Se sustituye la fila cuatro por la difere cuatro y la fila uno, con el objetivo de ol que posea una columna con sólo un elercero.	1 4 1 3 4 0 4 1 2 0 2 3 -3 0 -7 2	
3.	Se selecciona la columna dos para calcula por el método de cofactores.	r el determinante	
4.	Se obtiene el menor del elemento uno coma dos.	4	$\begin{vmatrix} 1 \\ 3 \\ -2 \end{vmatrix} = 100 - 52 - 8 = 40$
5.	Se obtiene el cofactor del mismo elemento).	$(-1)^{(1+2)}(40) = -40$

Departamento de Matemática Matemática Intermedia 1 Primer Examen Parcial

6.	Se multiplica el cofactor calculado por el elemento	(-40)(4) = -160
	respectivo.	
6.	El resto de elementos de la columna son iguales a cero, así	0
	que su producto final será igual a cero.	
7.	El determinante de la matriz es igual a la suma de los	-160 + 0 + 0 + 0 = -160
	productos de los elementos de una columna y sus	
	cofactores respectivos.	

R./	Εl	determinante	de	la ma	atriz	es	-160 .
-----	----	--------------	----	-------	-------	----	---------------

Departamento de Matemática Matemática Intermedia 1 Primer Examen Parcial

Tema 3: 13 puntos

Dado:

$$x - y = 4$$
$$x - 2y = -3$$

c) Encuentre la matriz inversa de la matriz de coeficientes de dos formas:

i)
$$(A|I) \to (I|A^{-1})$$
.

No.	Explicación	Operatoria
1.	Se escribe la matriz de coeficientes al lado de una matriz identidad.	1 -1 1 0 1 -2 0 1
2.	Se sustituye la fila dos por la diferencia entre las dos filas.	1 -1 1 0 0 -1 -1 1
3.	Se sustituye la fila dos por el negativo de la misma.	1 -1 1 0 0 1 1 -1
4.	Se sustituye la fila uno por la suma entre las dos filas.	1 0 1 -1 0 1 1 -1
5.	Ésta es la matriz inversa de la matriz de coeficientes.	1 -1 1 -1

R./	
	1 -1 1 -1

ii) Por la adjunta de A (cofactores).

No.	Explicación	Operatoria
1.	Se calcula el determinante de A.	A = (1)(-2) - (1)(-1) = -1

2. 2.	Se calculan los cofactores de A.	$c_{11} = -2 c_{12} = -1 c_{21} = 1$
		$c_{12} = 1 c_{21} = 1 c_{22} = 1$
3.	Se escribe la matriz de cofactores.	$\begin{vmatrix} -2 & -1 \\ 1 & 1 \end{vmatrix}$
4.	Se multiplica la transpuesta de la matriz de cofactores por el determinante de A y se obtiene la matriz inversa de A.	$A^{-1} = \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix}$

$$R./$$

$$A^{-1} = \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix}$$

d) Encuentre la solución del sistema utilizando la inversa encontrada.

No.	Explicación	Operatoria
1.	Se multiplica la matriz inversa por el vector de términos constantes.	$\begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix} X \begin{pmatrix} 4 \\ -3 \end{pmatrix}$
2.	El resultado es la solución.	$\begin{pmatrix} 11 \\ 7 \end{pmatrix}$

R./
$$x = 11$$
 $y = 7$

Tema 4: 12 puntos

Cada una de las siguientes matrices, son matrices aumentadas. Encuentre la solución del sistema que representan si tiene una solución única o infinitas **(exprese de forma matricial),** nombre las incógnitas como lo desee.

a)
$$\begin{pmatrix} 1 & -1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 & 3 \end{pmatrix}$$

No.	Explicación	Operatoria
1.	Se escribe el sistema de ecuaciones.	1 x - 1 y + 0 z - 1 w = 1 0 x + 0 y + 1 z + 0 w = 3
2.	Se simplifica el sistema de ecuaciones.	$ \begin{aligned} x - y - w &= 1 \\ z &= 3 \end{aligned} $
3.	Se identifica que el sistema tiene infinitas soluciones, porque se tienen cuatro incógnitas y sólo dos ecuaciones.	
4.	El valor de zeta es tres.	z = 3
5.	Se asignan variables paramétricas a ye y a doble ve.	y = a $w = b$
6.	Se define equis en términos de las variables paramétricas.	x = 1 + a + b
7.	Se escribe la respuesta en forma matricial.	$ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 3 \\ 0 \end{pmatrix} + a \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} $

R./

Departamento de Matemática Matemática Intermedia 1 Primer Examen Parcial

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 3 \\ 0 \end{pmatrix} + a \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & 2 & | & 3 \\ 0 & 1 & | & 1 \\ 0 & 0 & | & 0 \end{pmatrix}$$

No.	Explicación	Operatoria
1.	Se escribe el sistema de ecuaciones.	1 x + 2 y = 3 0 x + 1 y = 1 0 x + 0 y = 0
2.	Se simplifica el sistema de ecuaciones.	x + 2y = 3 $y = 1$
3.	Se identifica que el sistema tiene una única solución.	
4.	El valor de ye es uno.	y = 1
5.	Se sustituye ye por su valor en la primera ecuación y se despeja equis.	x + 2(1) = 3 $x = 1$
6.	Se escribe la respuesta en forma matricial.	$ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} $

R./

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Departamento de Matemática Matemática Intermedia 1 Primer Examen Parcial

1 0 4 0 1 2 0 0 -1

No.	Explicación	Operatoria
1.	Se escribe el sistema de ecuaciones.	1 x + 0 y = 4 0 x + 1 y = 2 0 x + 0 y = -1
2.	Se simplifica el sistema de ecuaciones.	x = 4 $y = 2$ $0 = -1$
3.	Se identifica que el sistema no tiene solución, porque sin importar los valores de equis y ye la tercera ecuación siempre será falsa.	

R./

No tiene solución.

Departamento de Matemática Matemática Intermedia 1 Primer Examen Parcial

Tema 5: 9 puntos

Determine los valores de K tal que el sistema de X & Y tenga

- i) Solución única
- ii) Ninguna
- iii) Infinitas soluciones

$$x - ky = 0$$

kx	- y	=	0
	2		

No.	Explicación	Operatoria
1.	Se encuentra el determinante de la matriz por el método de cofactores.	$ A = 0$ $ A = \begin{vmatrix} 1 & -k \\ k & -1 \end{vmatrix} = -1 + k^2$
2.	Se resuelven las raíces para k.	$k^2 - 1 = 0$ $k = \pm 1$

R./

- I) Única solución para cualquier k ≠ ±1
- II) Es un sistema homogéneo, no es posible que no tenga solución en ningún k.
- III) Infinitas soluciones para $k = \pm 1$.

Departamento de Matemática Matemática Intermedia 1 Primer Examen Parcial

Tema 6: 46 puntos

- a) Calcule la integral por los siguientes métodos
 - I) integración por partes
 - II) sustitución trigonométrica

$$\int \frac{2x^3}{\sqrt{x^2 + 4}} dx$$

I) integración por partes

No.	Explicación	Operatoria
1.	Se aplica la integral por partes	$u = x^{2} dv = \frac{2xdx}{\sqrt{x^{2}+4}}$ $du = x v = 2\sqrt{x^{2}+4}$
2.		$2x^2\sqrt{x^2+4} - \int 2\sqrt{x^2+4} \ 2x dx$
3.	Se termina de integrar la función	$2x^2\sqrt{x^2+4}-2\frac{(x^2+4)^{3/2}}{^{3/2}}+C$
4.	Se simplifica la expresión.	$\frac{2}{3}\sqrt{x^2+4}(3x^2-2x^2-8)+c$
		=

$$\frac{2}{3}\sqrt{x^2+4}(x^2-8)+c$$

II) integral por sustitución trigonométrica

No.	Explicación	Operatoria
1.	Se aplica la regla del triangulo	$\tan \emptyset = \frac{x}{2}$
2.	Se sustituye x en términos de Ø	$x = 2 \tan \emptyset$ $dx = 2sec^2 \emptyset$
3.	Se aplica la sustitución	$\int \frac{2x^3}{\sqrt{x^2+4}} dx$
4.	Se simplifica la expresión reduciendo los términos semejantes.	$\int \frac{2(2\tan\emptyset)}{2\sec\emptyset} 2sec^2\emptyset$
5.	Se transcribe la ecuación para poder integrar la función	$16\int tan^2\emptyset \tan\emptyset \sec\emptyset d\emptyset$
6.	Se utiliza sustitución trigonométrica	$16\int (sec^2\emptyset - 1) \tan \emptyset \sec \emptyset d\emptyset$
7	Se resuelve la integral	$16\frac{\sec^3\emptyset}{3} - 16\sec\emptyset + c$

Departamento de Matemática Matemática Intermedia 1 Primer Examen Parcial

8	Se deja la función en términos de x	$\frac{16(x^2+4)^{3/2}}{3} - \frac{16}{2}(x^2+4)^{1/2} + C$
9	Se simplifica el resultado	$\frac{2}{3}(x^2+4)^{3/2} - 8(x^2+4)^{1/2} + c$ $\frac{2}{3}(x^2+4)^{1/2}(x^2+4-12) + c$

$$\frac{2}{3}(x^2+4)^{1/2}(x^2-8)+c$$

Departamento de Matemática Matemática Intermedia 1 Primer Examen Parcial

B)

Resolver:

$$\int \frac{Sec^4 x}{Tan^6 x} dx$$

No.	Explicación	Operatoria
1.	Transcribir la función.	$\int \frac{\sec^2 x \sec^2 x}{\tan^6 x} dx$
2.	Utilizar una sustitución trigonométrica	$\int \frac{(\tan^2 x + 1) \sec^2 x}{\tan^6 x} dx$
3.	Expandir la función a integrar	$\int \frac{\sec^2 x}{\tan^4 x} dx + \int \frac{\sec^2 x}{\tan^6 x} dx$
4.	Integrar la función.	$\frac{(\tan x)^{-3}}{-3} + \frac{(\tan x)^{-5}}{-5} + C$

R./
$$\frac{(\tan x)^{-3}}{-3} + \frac{(\tan x)^{-5}}{-5} + C$$

Departamento de Matemática Matemática Intermedia 1 Primer Examen Parcial

II)

$$\int \frac{(x-1)^2}{\sqrt{8+2x-x^2}}$$

1.	Se aplica la regla del triangulo	$sen \emptyset = \frac{x-1}{3}$
2.	Se sustituye x en términos de Ø y se deriva	$x = 1 + 3 sen \emptyset$ $dx = 3cos\emptyset d\emptyset$
3.	Se aplica la sustitución y se simplifica la expresión reduciendo los términos semejantes.	$\int \frac{(3sen\emptyset)^2 3cos\emptyset}{3cos\emptyset} d\emptyset$ $\int 9sen^2\emptyset d\emptyset$ $9\int sen^2\emptyset d\emptyset$
4.	Se hace sustitución trigonométrica	$9\int \frac{1-\cos 2\emptyset}{2} \ d\emptyset$
5	Se integra la función	

Departamento de Matemática Matemática Intermedia 1 Primer Examen Parcial

		$\frac{9}{2}\emptyset - \frac{9}{4} \operatorname{sen2}\emptyset + c$
6	Se encuentra Ø en terminos de x	$sen \emptyset = \frac{x-1}{3}$ $\emptyset = \sin^{-1} \frac{x-1}{3}$
7	Se sustituye en términos de Ø la integral solucionada	$\frac{9}{2}(\sin^{-1}\frac{x-1}{3}) - \frac{9}{2} \operatorname{sen} 2(\sin^{-1}\frac{x-1}{3}) + c$

R./
$$\frac{9}{2}(\sin^{-1}\frac{x-1}{3}) - \frac{9}{2} \operatorname{sen} 2(\sin^{-1}\frac{x-1}{3}) + c$$

Departamento de Matemática Matemática Intermedia 1 Primer Examen Parcial

$$\int \cos^3 x \ dx$$

No.	Explicación	Operación
1	Transcribir la función.	$\int \cos^2 x \cos x dx$
2	Utilizar sustitución trigonométrica.	$\int (1 - sen^2 x) \cos x dx$
3	Integrar la función	$sen x - \frac{sen^3x}{3} + c$
4	Sustituyendo datos	$a = \frac{5 \text{ m} * \text{Sen}(48^{\circ})}{\text{Sen}(100^{\circ})}$ $a = 3.77 \text{ m}$

R//
$$sen x - \frac{sen^3x}{3} + C$$

IV)
$$\int e^{\sqrt{x}} dx$$

No.	Explicación	Operación
1	Sustituir x por una constante.	$w = \sqrt{x}$ $x = w^2$
2	Derivar la sustitución.	$dx = 2w \ dw$
3	Sustituir las variables	$\int e^w 2w dw$
4	Se integra por partes	$u = 2w dv = e^{w}$ $du = 2 v = e^{w}$ $2we^{w} - 2 \int e^{w} dw =$ $2we^{w} - 2e^{w}$
5	Sustituir la función en términos de x	$2\sqrt{x}e^{\sqrt{x}}-2e^{\sqrt{x}}+c$

R//

$$2\sqrt{x}e^{\sqrt{x}} - 2e^{\sqrt{x}} + c$$