ANALYSE LEXICALE

ESI – École nationale Supérieure en Informatique

Analyse lexicale en bref I

- Lire le texte source d'entrée caractère par caractère
- Identifier les entités lexicales (motsclés, identificateurs, opérateurs, ...).
- Ces entités lexicales seront codifiées pour une utilisation ultérieure efficace.

Analyse lexicale en bref II

- Les caractères superflus (blancs, tabulations, commentaires) seront ignorés.
- En cas d'erreur, l'analyseur lexical devra situer l'erreur et donner un message significatif à l'utilisateur (e.g. "mot trop long").

Analyse lexicale en bref III

- L'outil formel sous-jacent à l'analyse lexicale est l'automate d'états finis déterministe (désigné par l'abréviation AFD)
- L'obtention directe de l'AFD peut être parfois une tâche ardue.

Analyse lexicale en bref IV

- L'outil formel sous-jacent à l'analyse lexicale est l'automate d'états finis déterministe (Abréviation AFD)
- L'obtention directe de l'AFD peut être parfois une tâche ardue.
- C'est pour cela que l'on donne souvent en premier lieu l'automate d'états finis non déterministe (désigné par AFN).

Analyse lexicale en bref V

- L'automate AFN est "facile" à obtenir et la transformation de l'AFN en AFD est automatique (par algorithme).
- Pour des spécifications lexicales nous pouvons avoir plusieurs AFD corrects.
- La minimisation du nombre d'états de l'AFD est une étape fortement recommandée.

Analyse lexicale en bref VI

- Les spécifications lexicales peuvent être décrites par des expressions régulières (ou expressions rationnelles).
- Les expressions régulières permettent de définir d'une manière concise et compacte un modèle de chaînes de caractères.

Analyse lexicale en bref VII

- Les expressions régulières sont par exemple utilisées par les générateurs d'analyseurs lexicaux comme l'outil LEX.
- Les expressions régulières doivent être transformées en automates d'états finis
- (le théorème de Kleene prouve qu'un langage est décrit par une expression régulière ssi il est reconnu par un AF).

Expressions Régulières Chaînes et langages

- Un alphabet (dénoté généralement par le symbole Σ) est un ensemble fini de symboles.
- Une chaîne est séquence finie de symboles (le terme mot est également utilisé pour désigner une chaîne)

Expressions Régulières Chaînes et langages

- La longueur d'une chaîne ω est notée $|\omega|$ est désigne le nombre de symbole de la chaîne ω .
- La chaîne vide est notée ε et est de longueur 0.

Expressions Régulières Concaténation

- Soient ϖ et ψ deux chaînes.
- La concaténation de ω et de ψ notée
 ω.ψ ou ωψ est formée des symboles de ω suivis des symboles de ψ.
 - abc.de = abcde
 - $\mathbf{\omega} = \mathbf{3} \cdot \mathbf{\omega} = \mathbf{\omega} \cdot \mathbf{s} = \mathbf{\omega}$
 - $\blacksquare \varpi^1 = \varpi \text{ et } \varpi^2 = \varpi \blacksquare \varpi$
 - ϖ^i : concaténation i fois de la chaîne ϖ

Expressions Régulières Langage

- On utilise le terme langage pour désigner un ensemble de chaînes formées à partir d'un alphabet.
- La concaténation de deux langages L et M notée L.M ou LM est définie comme suit : L.M = $\{\varpi\psi \mid \varpi \in L \text{ et } \psi \in M\}$.

Expressions Régulières Langage

- L'union de 2 langages L et M est définie par $L \cup M = \{\varpi | \varpi \in L \text{ ou } \varpi \in M\}$
- Les opérations de fermeture et de fermeture positive d'un langage L sont notées L* et L+ est sont définies comme suit :
- $L^* = L^i$
- L⁺ = L.Lⁱ

Expressions Régulières Définition de Kleene

- Une expression régulière sur un alphabet Σ est construite récursivement à partir de :
 - Une lettre de l'alphabet a désigne le langage {a}.
 - Epsilon: ε désigne le langage {ε}.

Expressions Régulières

Définition de Kleene (suite)

- Si M et N sont 2 expressions régulières décrivant les langages L_M et L_N alors :
- M.N : Concaténation, désigne le langage L_M . L_N
- M | N (ou M+N) : Alternative, désigne le langage $L_M \cup L_N$
- M* : Itération ou Fermeture de Kleene, désigne le langage L_M*

Expressions Régulières Remarques

- Si R est une expression régulière alors (R) désigne la même expression.
- Les parenthèses peuvent être utilisées pour définir des éléments composés d'une expression régulière (e.g. (a|b)*ab).

4

Expressions Régulières

Exemples

- a*= {aⁱ } i.e. l'ensemble des chaînes de zéro ou plusieurs a.
- L'expression régulière a+ (a.a*) désigne l'ensemble des chaînes de 0 ou plusieurs a.
- $(a|b)*= \{a,b\}^i$
- identificateur = {lettre}.({lettre} | {chiffre})*

Expressions Régulières Convention d'écriture

- L'opérateur de concaténation . est souvent omis dans l'écriture des expressions régulières.
- Le fait de faire suivre deux expressions sans séparateur signifie leur concaténation.

Automate d'états Finis Formalisme – Modèle de Moore

- Un automate fini M est un quintuple
 - $(Q, \Sigma, \delta, q_0, F)$ où :
- \blacksquare Σ est un alphabet;
- Q est un ensemble fini d'états;
- $\delta: Q \times \Sigma \to Q$ est la "fonction" de transition;
- q₀ est l'état initial;
- Fest un ensemble d'états finaux.

Automate d'états Finis Langage reconnu

Le langage L(M) reconnu par l'automate M est l'ensemble $\{ w \mid \delta (q_0, w) \in F \}$ des mots permettant d'atteindre un état final à partir de l'état initial de l'automate

Automate d'états Finis Déterministe AFD

- Un automate d'états finis est déterministe si :
 - Il n'existe pas de ε-transition
 - Pour chaque état e et un symbole d'entrée a, alors il existe au plus un arc étiqueté a sortant de l'état e.

Automate d'états Finis Déterministe AFD

Automate déterministe correspondant à l'expression régulière aab | bbb

- $\Sigma = \{a, b\}$
- $Q = \{q_0, q_1, q_2, q_3, F\}$
- $\delta = \{(q_0, a) \rightarrow q_1, (q_0, b) \rightarrow q_2, (q_1, a) \rightarrow q_3, (q_2, b) \rightarrow q_3, (q_3, b) \rightarrow F\}$
- État initial q_0 et un seul état final F.

Automate d'états Finis Déterministe AFD

- Il est facile de simuler un automate d'états finis déterministe par un programme simple.
- On désire analyser une chaîne d'entrée S terminée par un caractère spécial '#'.
- On dispose des fonctions suivantes :
 - Transiter (e, c): donne l'état de l'automate vers lequel il existe une transition depuis l'état e sur le caractère d'entrée c.
 - CarSuiv () : retourne le prochain caractère à analyser de la chaîne S.

Automate d'états Finis Déterministe Algorithme

```
• e := e_0;
c: = CarSuiv ;
■ Tant que (c \neq '\#' \text{ et e } \neq \emptyset)
• Faire e:= Transiter (e, c);
              c:= CarSuiv();
Fait;
Si e ∈ F Alors "Chaîne acceptée"
              Sinon "Chaîne refusée"

    Fsi
```


Automate d'états Finis Non Déterministe Définition

- Un automate d'états finis est non déterministe si :
 - Il peut exister des ε-transitions
 - Un symbole d'entrée a peut étiqueter plusieurs arcs sortants d'un même état e.

Automate d'états Finis Non Déterministe Remarques

- Les automates d'états finis non déterministes sont plus faciles à obtenir que les automates déterministes.
- Mais il est "difficile" de simuler un automate d'états finis non déterministe par un programme simple.

Représentation d'un automate

- La fonction δ de domaine fini $Q \times \Sigma$ peut être représentée par une matrice de dimension 2
- Les éléments sont les états (pour un automate déterministe) ou ensembles d'états (pour un automate nondéterministe) définissant δ.

Représentation d'un automate

- Représentation pleine (tableau de tableaux)
- ou creuse (tableau de listes) selon la situation.
- La première est bien sûr plus efficace en temps mais plus gourmande en espace

Représentation d'un automate

Exemple :

	а	b
$\{q_0\}$	{q ₁ }	{q2}
{q ₁ }	{q₃}	-
{q ₂ }	-	$\{q_2, q_4\}$
q ₃ }	{q ₄ }	{q₃}
{q ₄ }	-	-

Transformation d'un AFN en AFD Algorithme

- e₀: état initial de l'AFN;
- **T** : un ensemble d'états de l'AFN ;
- e : un état de l'AFN ;

- ε-fermeture(e): ensemble des états de l'AFN accessibles depuis l'état e de l'AFN par ε-transitions (état e inclus).
- ε-fermeture(T): ensemble des états de l'AFN accessibles depuis un état e appartenant à T par des ε-transitions (l'ensemble T inclus).
- Transiter (T, a): ensemble des états de l'AFN vers lesquels il existe une transition dans l'AFN sur le symbole a à partir d'un état e appartenant à T.

Transformation d'un AFN en AFD Algorithme

```
D-états : ensemble d'états de l'AFD à construire ;
D-Trans: la table de transition de l'AFD;
Initialement ε-fermeture(e₀) unique état de D-états et il est non marqué ;
<u>Tant que</u> ∃ un état non marqué T dans D-états
Faire
               marquer T;
               Pour chaque symbole d'entrée a
                        U:=\varepsilon-fermeture (Transiter (T, a));
               Faire
                        Si U ∉ D-états
                        Alors ajouter U à D-états et U est non marqué
                        FinSi;
                        D-Trans [T, a] := U;
               Fait;
Fait;
L'état initial de l'AFD est \varepsilon-fermeture(e0);
Un état f est un état final de l'AFD si \exists g \in f et g état final de l'AFN.
```


Transformation d'un AFN en AFD Exemple

Transformation d'un AFN en AFD Exemple

	а	b
{0, 1, 3}	{1, 4}	{2, 3}
{1, 4}	{1}	{2}
{2, 3}	{4}	{3}
{1}	{1}	{2}
{2}	-	ı
{4}	-	-
{3}	{4}	{3}

Minimisation du nombre d'états de l'AFD

- Le processus d'obtention de l'automate d'états finis déterministe AFD obtenu :
 - intuitivement ou
 - par algorithme de transformation AFN vers AFD ou
 - par algorithme de transformation Expression Régulière vers AFD)
- n'est pas forcément minimal en nombre d'états

Minimisation du nombre d'états de l'AFD

- Il existe plusieurs algorithmes permettant d'accomplir cette tâche.
- A titre non exhaustif les algorithmes de John Hopcroft et de Edward Moore.

Minimisation du nombre d'états de l'AFD Algorithme de Moore

- i) Construire une partition initiale ∏ des états de l'AFN avec 2 groupes; les états d'acceptation et les autres états;
- ii) Obtenir une nouvelle partition Π' par :

Pour chaque groupe G de ∏

Faire

- Partition de G en sous-groupes de telle sorte que deux états s et t soient dans le même groupe si et seulement si, pour tout symbole a,les états s et t ont des transitions sur a vers des états du même groupe de ∏;
- Remplacer G dans ∏' par tous les sous-groupes ainsi formés
 FinPour;
- iii) Si $\Pi' = \Pi$ Alors aller à iv) Sinon $\Pi = \Pi'$; aller à ii) FinSi;
- iv) L'état de départ de l'AFD est le représentant du groupe qui contient l'état de départ de l'AFN; les états d'acceptation de l'AFD sont les représentants des états finaux de l'AFN;
- V) Supprimer de l'AFD les états non accessibles.

■ Table de transition:

'		
	С	р
0	1	4
2	3	-
4	5	-
1	1	2
3	3	-
5	5	-

AFD minimal :

Transformation expression régulière en automate non déterministe

- Il existe plusieurs méthodes pour transformer une expression régulière an automate d'états finis non déterministe.
- A titre indicatif les méthodes de Ken Thompson et de Victor Glushkov.

- Procède d'une manière incrémentale et simple.
- Dans cette technique, on décompose l'expression régulière en composantes simples, on construit leur automate selon des règles spécifiques et on compose ensuite les automates obtenus pour atteindre l'automate final.

- Cette méthode a été utilisée pour l'implémentation de la commande grep (global | regular expression | print) du système Unix.
- Cette commande permet de chercher une chaine définie par une expression régulière dans un fichier.

Pour l'expression ε on construit l'automate suivant :

Pour l'expression a on construit l'automate suivant :

- iii. Si r1 et r2 sont deux ER:
 - Pour r1 | r2 on construit :

- Si r1 et r2 sont deux ER:
 - Pour r1 . r2 on construit :

Pour r*:

- L'automate obtenu a un seul état final.
- Il n'y a pas de transition entrante sur l'état initial.
- Il n'y a pas de transition sortante de l'état final.

 Construire l'AFN correspondant à l'expression régulière : (a|b)* b b*

Rendre l'automate déterministe :

Minimisation du nombre d'états :

- Le nombre d'états obtenu par la construction de Thompson est très grand.
- Avec la méthode de Glushkov, si n est le nombre de symboles de l'expression régulière alors le nombre d'états de l'AFN est égal à (n+1).
- Cet AFN ne contiendra pas de transitions vides.

. Arbre abstrait de l'ER :

 Les feuilles de l'arbre sont les symboles de l'expression régulière et les nœuds internes sont les opérateurs (alternative, concaténation et fermeture).

Exemple Arbre abstrait de l'ER (a|b)* b b*:

- Positions et Expression régulière :
 - Etiqueter les feuilles de l'arbre abstrait par des numéros de position incrémentaux (parcours en profondeur).

Positions et Expression régulière - Exemple :

- Positions et Expression régulière Exemple :
 l'ER précédente est notée :
 - $a_1|b_2$ * $b_3 b_4$ *
 - Les positions de cette expression régulière sont : {a₁, b₂, b₃, b₄}

iii. Fonctions *vide*, *prem_pos*, *dern_pos* et

suiv_pos

Nœud n	vide(n)
feuille étiquetée ε	true
feuille étiquetée avec la position i	false
n (1) (c2)	vide(c1) OR vide(c2)
n • c1 c2	vide(c1) AND vide(c2)
n (*)	true

Nœud n	prem_pos(n)	dern_pos(n)
feuille étiquetée ε	Ø	Ø
feuille étiquetée avec la position i	{i}	{i}
n () (2)	prem_pos(c1) ∪ prem_pos(c2)	dern_pos(c1) ∪ dern_pos(c2)
n • c1 c2	If vide(c1) then prem_pos(c1) ∪ prem_pos(c2) else prem_pos(c1)	If vide(c2) then dern_pos(c1) ∪ dern_pos(c2) else dern_pos(c2)
n * c1	prem_pos(c1)	dern_pos(c1)

iii. Exemple *prem_pos* (à gauche) , *dern_pos* (à droite) :

- La fonction suiv_pos décrit la position qui peut suivre une position donnée dans l'arbre abstrait. Deux règles de base :
- Si n est un nœud concaténation '•' avec comme fils gauche c1 et fils droit c2 et i est une position dans dern_pos(c1) alors toutes les positions dans prem_pos(c2) sont dans suiv_pos(i).
- Si n est un nœud fermeture '*' et i est une position dans dern-pos(n) alors toutes les positions de prem_pos(n) sont dans suiv_pos(i).

Exemple suiv_pos :

Noeud	Suiv_pos
a_1	{a ₁ ,b ₂ ,b ₃ }
b ₂	{a ₁ ,b ₂ ,b ₃ }
b ₃	{b ₄ }
b ₄	{b ₄ }

- iv. L'automate de Glushkov est défini par $A=(Q, \Sigma, \delta, \{i\}, F)$ où :
 - $Q = \{\text{positions de l'expression régulière}\} \cup \{i\}$
 - Σ est l'alphabet;
 - $\delta: Q \times \Sigma \to Q$ est la "fonction" de transition;
 - i est l'état initial (qu'on ajoute);
 - $F = dern-pos(racine-arbre) \cup \{i\} si vide(racine-arbre) = true$
 - F = dern-pos(racine-arbre) si vide(racine-arbre) = false.

- Si (α, β) sont des postions de l'expression régulière, la fonction de transition δ: $Q \times \Sigma \rightarrow Q$ est définie par :
- $\{i \xrightarrow{s(\alpha)} \alpha \mid \alpha \in prem-pos(racine-arbre)\}$ $\cup \{\alpha \xrightarrow{s(\beta)} \beta \mid \beta \in suiv-pos(a)\}$
- Où la fonction $s(\alpha)$ enlève l'indice à la position α

- L'AFN associé à l'expression régulière précédente aura 5 états :
 - les 4 positions {a₁, b₂, b₃, b₄} et l'état initial {i}.
 - L'ensemble des états finaux F={ b₃, b₄}.

Application :

Transformation automate déterministe en expression régulière

- Entrée: Un automate d'états finis déterministe (AFD) reconnaissant les mots du langage L
- Sortie: Une expression régulière R décrivant le langage L

Transformation automate déterministe en expression régulière

 Cette transformation non nécessaire à un compilateur peut être utile si on veut sauvegarder un AFD sous une forme compacte (ou compressée).

Transformation automate déterministe en expression régulière

- Plusieurs techniques permettent de remonter à l'expression régulière à partir d'un AFD.
- Quelques méthodes : la fermeture transitive, la méthode de suppression d'état et la méthode algébrique de Brzozowski.

Transformation automate déterministe en expression régulière Méthode de Brzozowski

- Cette méthode crée un système d'équations d'expressions régulières.
- Pour chaque état de l'AFD correspond une inconnue (expression régulière) dans le système.
- Une fois ce système résolu, l'expression régulière associée à l'état initial de l'AFD décrit le langage reconnu par l'AFD.

Transformation automate déterministe en expression régulière Méthode de Brzozowski

Génération du système d'équations :

Pour chaque état q_i de l'AFD est définie une équation :

$$R_i = \cup termes$$

- Les termes sont définis par les transitions sortantes de q_i.
- Pour une transition étiquetée a (a∈ Σ) de l'état q_i vers un état q_i est défini le terme a.R_i (a concaténé à R_i).
- Si q_i est un état final, ajouter le terme ε (mot vide) à l'équation de R_i.

Transformation automate déterministe en expression régulière Méthode de Brzozowski - Exemple

- Le système d'équations correspondant est donné ciaprès :
- $R_1 = b.R_1 \mid a.R_2$
- $R_2 = a.R_2 | b.R_2 | \epsilon$

Transformation automate déterministe en expression régulière Méthode de Brzozowski

Résolution du système d'équations :

- Le système d'équations est résolu par substitutions pour trouver R₁ qui est l'expression régulière décrivant le langage L.
- Un problème est posé quand une inconnue R_k apparait dans les parties gauche et droite d'une équation.

Transformation automate déterministe en expression régulière Méthode de Brzozowski – Théorème d'Arden

Etant donnée une équation de la forme :

$$R_k = A.R_k | B \text{ (où } \epsilon \notin A),$$

L'équation a pour solution :

$$R_k = A^*.B$$

Transformation automate déterministe en expression régulière Méthode de Brzozowski - Exemple

Résolution du système trouvé précédemment.

$$R_1 = b.R_1 \mid a.R_2$$

•
$$R_2 = a.R_2 | b.R_2 | \epsilon$$

 Nous commençons par R₂ en utilisant le théorème d'Arden :

•
$$R_2 = a.R_2 | b.R_2 | \epsilon$$

$$= (a|b).R2 | \epsilon$$

$$= (a|b)*. \epsilon$$

$$= (a|b)*$$

Transformation automate déterministe en expression régulière Méthode de Brzozowski - Exemple

 Substituons R₂ dans R₁ et reprenons le processus :

```
• R_1 = b.R_1 | a.R_2
• = b.R_1 | a.(a|b)*
• = b*.a.(a|b)*
```

Donc l'expression régulière b*.a.(a|b)* décrit le langage L reconnu par l'AFD précédent.

Contrôle par AFD vs. Contrôle par programme

- L'automate d'états finis déterministe est l'outil pratique pour effectuer des contrôles lexicaux à partir de spécifications données.
- Cependant, contrôler par AFD certaines spécifications est prohibitif du point de vue espace mémoire occupé par la table de transition de l'AFD.
- D'autre part, on ne peut contrôler par AFD certaines contraintes imposées sur les entités lexicales.
- D'où la nécessité de recourir à un compromis entre ce qui doit être contrôlé par AFD et ce qui doit être contrôlé par programme.

Contrôle par AFD vs. Contrôle par programme

Exemple:

- On veut reconnaître les entités d'un langage L formées des lettres, des chiffres et des tirets '-'. Un mot de L présente les caractéristiques suivantes :
 - il doit commencer obligatoirement par une lettre et ne doit pas finir par un tiret
 - il ne doit pas contenir 2 tirets consécutifs ni 2 chiffres consécutifs
 - le nombre de chiffres est inférieur strictement au nombre de lettres
 - la longueur d'un mot est comprise entre 2 et 50 caractères

Contrôle par AFD vs. Contrôle par programme

AFD pour les spécifications 1 et 2 :

Contrôle par AFD vs. Contrôle par programme

<u>Programme d'analyse :</u>

```
e=e_1; nbl=nbc=nbt=0; c:=CarSuiv;
Tant que (c \neq '\# ' \text{ et e } \neq \emptyset)
             switch (c)
Faire
             Lettre: nbl++;
             Chiffre: nbc++;
    endswitch;
    nbt++; e:= Transiter (e, c); c:= CarSuiv();
Fait;
Si (e \in \{e_2, e_3\}) et (2 \le nbt \le 50) et (nbc < nbl)
Alors "Chaîne acceptée"
Sinon " Chaîne refusée" Fsi
```

- Les mots-clés d'un langage de programmation sont des chaînes alphabétiques ayant une signification particulière.
- Ils identifient les structures des langages (instruction de répétition, instruction de test, ...).
- A titre d'exemple nous donnons quelques mots clés du langage C : if, else, while, do, switch, for.

- les mots-clés peuvent être contrôlés par un AFD.
- Dans l'exemple suivant, nous donnons un AFD qui permet l'identification des mots clés if, else et qui les différentie des identificateurs.

- Une autre approche consiste à ranger tous les mots clés dans une table des mots-clés et à reconnaître identificateurs et mots-clés par un même AFD.
- Les mots-clés sont reconnus en tant qu'identificateurs par l'AFD.
- A l'issue de cette étape, chaque chaîne est testée si elle appartient à la table des mots-clés afin de différentier les identificateurs des mots-clés.
- Le test d'appartenance peut être fait en s'aidant d'une fonction de hachage.

Fonctionnement d'un analyseur lexical

- Le noyau de l'analyseur est l'automate d'états finis déterministe associé dénoté tout au long de ce chapitre par AFD.
- L'analyseur lit le programme source caractère par caractère de gauche à droite (pour les langues latines).
- Ces caractères servent de symboles de transition à l'AFD. A partir de l'état initial de l'AFD, on transite sur les caractères d'entrée jusqu'à atteindre un état final et ne plus pouvoir transiter sur le caractère courant.

Fonctionnement d'un analyseur lexical

- L'état final atteint identifie l'entité lexicale reconnue.
 Une action est exécutée en adéquation avec l'entité reconnue.
- On réinitialise alors l'état courant de l'automate à l'état initial et on reprend le processus d'analyse sur le caractère courant jusqu'à atteindre la fin du fichier source.

Fonctionnement d'un analyseur lexical

- Les caractères composant une entité lexicale doivent être sauvegardés dans un vecteur au cours du processus d'analyse car l'AFD n'a pas de "mémoire".
- S'il n'existe pas de transition d'un état non final sur le caractère courant alors une erreur à été détectée. L'analyseur pointera la position de l'erreur et donnera un message d'erreur en fonction du contexte de l'analyse.

