Operativ Systemer 2

Lavet af: Vivek Misra

Repetition af OS

- Som vi kendte fra den sidste slide, så handlede Operativ Systemer om følgende:
 - At kunne danne en kommunikation eller forbindelse mellem Brugeren og Hardware.
 - Forbindelse er forbundet igennem CPU'en som er Operativ Systemets Hjerne.

• MÅL:

- Vi kan se, at målet med en Operativ System er, at kunne eksekvere brugerens programmer og derved gør computeren overskueligt at bruge.
- Det er også målet, at bruge computeren på en effektiv måde for brugeren.

Repetition af OS

- Bruger Perspektiv:
 - Computer OS:
 - Nemt at bruge
 - Hurtigt respons fra computeren.
 - · God udførelse.
 - Mobile OS:
 - Brugernemhed
 - Energi-Effektivitet ift. Lille enhed.
- Superuser Perspektiv:
 - Interprocess Communication: Det er der, hvor Klienten og Modtageren kommunikerer med hinanden indenfor et fælles maskine.
- System Perspektiv:
 - Allokerer Ressourcer på den rigtige måde ved at udnytte plads rigtigt i memory.
 - God Interface til Hardware.
 - Drivers og Firmware skal virke fint og effektivtet ift. Ressource Alokkering.

Repetition af OS

- Vi kan se, at Operativ Systemet sørger for, at den uddeler tid til en opgave.
- OS sørger for, at benytte Memory Ressourcer samt at man også har adgang til Storage som eksempelvis læsning/skrivning.
- Så har man selve strukturen af computersystemet, som vi egentligt kender fra Computersystems-Faget.

Memory Storage

Scheduling

Round Robin Princippet

- Hensigten med Round-Robin princippet er at kunne eksekvere processer gentagne gange, på baggrund af deres Kvantum.
 - Vi kan se, at vi henter Ready-Queue, som befinder sig inden i RAM. Derfra vælger vi en Proces, og tager den i Running-Queue i CPU'en. Det betyder bare, at vi udvælger en process og tager den med i CPU'en og derved eksekvere det.
 - Men når vi snakker om Round-Robin princippet, så bruger CPU'en noget som hedder Kvantum. Kvantum betyder, at hvis en proces kommer i Running-State og CPU'ens Kvantum er 2. Processen udført 2 gange og derved sat tilbage til Ready-State.
 - Vi kan se, at vi bruger Sekvenser til at udføre Processer.
 - CPU'en er ikke Non-Preemptive og det betyder at efter at have eksekveret 2 gange ved CPU'en, bliver CPU'en klar til en nyt proces.
 - Context Switching betyder, at man gemmer den kørende proces og bruger den ind. Når den gamle kommer igen, så starter den fra Kvantumsafslutning.

Round Robin Princippet

Process No:	Arrival Time	Bust Time	Completion Time	TAT	WT	RT
P1	0	5				
P2	1	4				
P3	2	2				
P4	4	1				

Round Robin Princippet

Det er vigtigt, at sige at processer der når 0, bliver ikke kørt videre. Hvorimod de andre som ikke har nået 0 ved Bust time, bliver kørt videre hvor de starter i Ready Queue og så over i Running Queue.

SLUT 2

Lavet af: Vivek Misra