CMSC 412: Social Network Analysis & Cybersecurity Risks

Fall 2016

Homework #4

Assigned: 11/28/2016

Due on: 12/07/2016

1. Consider the grid graph in the below figure. All nodes will be activated according to the Deterministic Linear Threshold model with the threshold function f(u) = 2. That is an inactive node at round i will be activated in the round i + 1 if and only if it is adjacent to at least 2 active nodes.

- a) Find the largest number of nodes that can be activated in the end by selecting only one node into the seed set (influence maximization in deterministic threshold with k=1).
- b) Find the largest number of nodes that can be activated in the end by selecting two nodes into the seed set (influence maximization in deterministic threshold with k=2).

2. Implement the greedy algorithm for the influence maximization under the independent cascade model. The input is a directed graph G=(V,E) in which each edge (u,v) exists with a probability $0 \le p_{uv} \le 1$, and a number $k \le |V|$. The output is a seed set of k vertices that can be selected to maximize the expected number influenced (activated) nodes in the end. The greedy algorithm selects in each step a node v that maximizes the gain $\Delta_S(v) = f(S + \{v\}) - f(S)$.

Input: The file "graph.txt" includes multiples lines in which the first line contains three integers n,m, and k that correspond to the number of nodes, the number of edges, and the size of the seed set, respectively. Each of the following m lines contain three numbers u,v, and p_{uv} separated by spaces, to denote an edge from u to v with a probability of existence p_{uv} . Nodes are numbered from 1 to n.

The output file "im.txt" contains exactly 2 lines in which the first line contains k vertices found by the greedy algorithm and the second line contains the expected number of influenced nodes in the end.

Sample input/output:

graph.txt	im.txt
442	14
1 2 0.5	2.9
1 3 0.4	
1 4 0.2	
4 1 0.1	

Your submission must include

- The source file(s)
- The sample input/output
- A README file that describes the compile and running instruction