In [3]: import pandas as pd

In [4]: data=pd.read_csv("/home/placement/Desktop/reddy/fiat500.csv")

In [5]: data.describe()

Out[5]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [6]: data.tail(10)#last 10 rows

Out[6]:		ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
	1528	1529	lounge	51	2861	126000	1	43.841980	10.51531	5500
	1529	1530	lounge	51	731	22551	1	38.122070	13.36112	9900
							_			

1528	1529	lounge	51	2861	126000	1	43.841980	10.51531	5500
1529	1530	lounge	51	731	22551	1	38.122070	13.36112	9900
1530	1531	lounge	51	670	29000	1	45.764648	8.99450	10800
1531	1532	sport	73	4505	127000	1	45.528511	9.59323	4750
1532	1533	pop	51	1917	52008	1	45.548000	11.54947	9900
1533	1534	sport	51	3712	115280	1	45.069679	7.70492	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.66687	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.41348	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.68227	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.56827	7900

In [7]: datal=data.drop(['ID','lat','lon'],axis=1)

In [8]: data1

Out[8]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

```
In [9]: data1['model']=data1['model'].map({'lounge':1,'pop':2,'sport':3})
```

In [10]: data1

\sim			 		
()	111	- 1	10	ш	
v	u	- 1	 LU	-	

	model	engine_power	age_in_days	km	previous_owners	price
0	1	51	882	25000	1	8900
1	2	51	1186	32500	1	8800
2	3	74	4658	142228	1	4200
3	1	51	2739	160000	1	6000
4	2	73	3074	106880	1	5700
				•••		
1533	3	51	3712	115280	1	5200
1534	1	74	3835	112000	1	4600
1535	2	51	2223	60457	1	7500
1536	1	51	2557	80750	1	5990
1537	2	51	1766	54276	1	7900

1538 rows × 6 columns

```
In [11]: data2=data1.loc[(data.model=='lounge')]
```

In [12]: data2

\sim		_ 1	 1	7
"	117	ГΙ		
v	u	_	 _	

	model	engine_power	age_in_days	km	previous_owners	price
0	1	51	882	25000	1	8900
3	1	51	2739	160000	1	6000
6	1	51	731	11600	1	10750
7	1	51	1521	49076	1	9190
11	1	51	366	17500	1	10990
1528	1	51	2861	126000	1	5500
1529	1	51	731	22551	1	9900
1530	1	51	670	29000	1	10800
1534	1	74	3835	112000	1	4600
1536	1	51	2557	80750	1	5990

1094 rows × 6 columns

```
In [13]: y=data2['price']
x=data2.drop('price',axis=1)
```

```
In [14]: y
Out[14]: 0
                   8900
         3
                   6000
                 10750
         6
                  9190
         7
         11
                 10990
                  . . .
         1528
                  5500
         1529
                  9900
         1530
                 10800
         1534
                  4600
         1536
                  5990
         Name: price, Length: 1094, dtype: int64
```

In [15]: x

Out[15]:

	model	engine_power	age_in_days	km	previous_owners
0	1	51	882	25000	1
3	1	51	2739	160000	1
6	1	51	731	11600	1
7	1	51	1521	49076	1
11	1	51	366	17500	1
1528	1	51	2861	126000	1
1529	1	51	731	22551	1
1530	1	51	670	29000	1
1534	1	74	3835	112000	1
1536	1	51	2557	80750	1

1094 rows × 5 columns

```
In [16]: from sklearn.model selection import train test split
          x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [17]: x_test.head(5)
Out[17]:
                model engine_power age_in_days
                                                 km previous owners
            676
                    1
                               51
                                          762
                                               18609
                                                                 1
            215
                    1
                               51
                                          701
                                               25000
                                                                 1
            146
                    1
                               51
                                         4018
                                              152900
                                                                 1
           1319
                    1
                               51
                                          731
                                               20025
                                                                 1
           1041
                    1
                               51
                                          640
                                               38231
                                                                 1
In [18]: x_train.shape
Out[18]: (732, 5)
In [19]: y_train.shape
Out[19]: (732,)
In [20]: x_train.head()
Out[20]:
                model engine_power age_in_days
                                                km previous_owners
            441
                    1
                               51
                                          762 36448
                                                                1
            701
                    1
                               51
                                          701 27100
                                         3197 51083
            695
                               51
                                                                1
                    1
                                                                1
           1415
                    1
                               51
                                              33000
            404
                    1
                               51
                                          456 14000
                                                                1
```

```
In [21]: y train.head()
Out[21]: 441
                    8980
          701
                   10300
          695
                    5880
          1415
                   10490
                    9499
          404
          Name: price, dtype: int64
In [22]: x_test.head()
Out[22]:
                model engine_power age_in_days
                                                km previous_owners
            676
                    1
                               51
                                         762
                                              18609
                                                                1
                                         701
                                              25000
            215
                    1
                               51
                                                                1
                               51
                                        4018
                                             152900
            146
                    1
                                                                1
                               51
                                              20025
           1319
                    1
                                         731
                                                                1
                               51
                                              38231
           1041
                    1
                                         640
                                                                1
In [23]: y_test.head()
Out[23]: 676
                   10250
          215
                    9790
          146
                    5500
          1319
                    9900
          1041
                    8900
          Name: price, dtype: int64
 In [ ]:
 In [ ]:
 In [ ]:
 In [ ]:
```

```
In [ ]:
 In [ ]:
In [33]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Ridge
         #ridge regression
         alpha = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3, 1e-2, 1, 5, 10, 20, 30]
          ridge = Ridge()
         parameters = {'alpha': alpha}
          ridge regressor = GridSearchCV(ridge, parameters)
          ridge regressor.fit(x train, y train)
Out[33]: GridSearchCV(estimator=Ridge(),
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                               5, 10, 20, 301})
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [25]: ridge_regressor.best_params_
Out[25]: {'alpha': 30}
In [26]: ridge=Ridge(alpha=30)
          ridge.fit(x train,y train)
         y pred ridge=ridge.predict(x test)
In [27]: from sklearn.metrics import mean squared error
         Ridge Error=mean squared error(y pred ridge, y test)
         Ridge Error
Out[27]: 519771.8129989742
```

```
In [28]: from sklearn.metrics import r2_score
    r2_score(y_test,y_pred_ridge)

Out[28]: 0.8373030813683995

In [29]: Results=pd.DataFrame(columns=['Actual','predicted'])
    Results['Actual']=y_test
    Results['predicted']=y_pred_ridge
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(10)
```

Out[29]:

	index	Actual	predicted	ID
0	676	10250	10045.347779	0
1	215	9790	9989.171535	1
2	146	5500	4769.099603	2
3	1319	9900	10048.683238	3
4	1041	8900	9813.944798	4
5	1425	9500	8678.143561	5
6	409	10450	10173.797921	6
7	617	9790	10180.627008	7
8	1526	9300	9107.315259	8
9	1010	4600	5625.007407	9

import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()

Out[30]: []


```
In [31]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.tail(50))
sns.lineplot(x='ID',y='predicted',data=Results.tail(50))
plt.plot()
```

Out[31]: []

In []: