MAPSI — cours 4 : Expectation-Maximization (EM)

Pierre-Henri Wuillemin – Christophe Gonzales

LIP6 / ISIR - Sorbonne Université, France

Plan du cours n°4

- Principes d'apprentissage avec données manquantes
- Quelques rappels de maths
- L'algorithme EM
- Pourquoi fonctionne-t-il?
- Mixtures de Gaussiennes et EM

Χ	Y	
а	?	
а		
а	?	
а	?	
а	C	
а	C	
а	C	
а	d	=
b	С	
b	С	
b	d	
b	d	
		•

Algorithme naïf:

Supprimer les enregistrements avec ?

X	Y
а	С
а	С
а	С
а	d
b	С
b	С
b	d
b	d

- Données complètes
- Apprentissage : cf. cours précédents
 - Problème :

Tableau gauche : P(X = a) = 2/3

Tableau droit : P(X = a) = 1/2

⇒ essayer de tenir compte de tous les enregistrements

Algorithme k-means:

• Remplacer les ? par leur valeur la plus probable

X	Y		X	Y
а	?		а	С
а	?		а	C
а	?		а	C
а	?		а	С
а	С		a a a a a a b b	C C C C C C
а	С	\implies	а	С
а	С		а	С
а	d		а	d
b	С		b	d c c
b	С		b	С
b b	? ? ? c c c d c d d		b b	d
b	d		b	d

•	Données	com	plètes
_	Domicoo	00111	piotoo

Apprentissage : cf. cours précédents

Problème :

Tableau gauche : P(Y = c|X = a) = 3/4 (sur les données observées)

Tableau droit : P(Y = c|X = a) = 7/8

 \implies essayer de tenir compte de toutes les valeurs possibles de Y

Algorithme naïf 2:

Remplacer les ? par toutes les valeurs possibles

Problèmes:

Tableau gauche : P(X = a) = 2/3

Tableau droit : P(X = a) = 3/4

Tableau gauche : P(Y = c|X = a) = 3/4

Tableau droit : P(Y = c | X = a) = 7/12

essayer de tenir compte des distributions des valeurs

Algorithme EM:

• Remplacer les ? par toutes les valeurs possibles

pondérées par leur probabilité d'apparition

а а а а а Cа а а b b b h d

X	Y	W	Γ
а	С	3/4	
а	d	1/4	
а	С	3/4	
а	d	1/4	
а	С	3/4	
а	d	1/4	
а	С	3/4	
а	d	1/4	
			_

X	Y	W
а	С	1
а	С	1
а	С	1
а	d	1
b	С	1
b	С	1
b	d	1
b	d	1

Apprentissage \Longrightarrow comptages \Longrightarrow sommer les poids $\Longrightarrow P(X=a) = \frac{8}{12} = \frac{2}{3}$ $\Longrightarrow P(Y=c|X=a) = \frac{6}{8} = \frac{3}{4}$ \Longrightarrow Tableau gauche = droit

- K-means : remplacer ? par la valeur la plus probable
- EM : Remplacer? par toutes les valeurs possibles pondérées par leur probabilité d'apparition
- \Longrightarrow On connaît la probabilité des valeurs de Y|X
- ⇒ On a un modèle probabiliste de ces valeurs

Or, c'est justement le modèle qu'on souhaite apprendre!

Idée clef de K-means et EM : algos itératifs

- se donner un modèle initial (pas trop mauvais)
- ② ce modèle ⇒ données complètes
- 3 apprendre nouveau modèle avec ces données
- 4 revenir en 2 avec nouveau modèle si \neq ancien modèle

Problèmes:

- 1 Y a-t-il convergence?
- 1 À convergence, est-ce que l'on a obtenu un bon modèle?

But du reste du cours 4 : répondre à ces questions pour EM

Typologies de données incomplètes

• \mathbf{x}^o : données observées, \mathbf{x}^h : données manquantes

• $\mathcal{M}_{ij} = P(r_i^j \in \mathbf{x}^h)$: position des données manquantes

Typologies de données incomplètes

Typologies

- Missing Completely at Random (MCAR) : $P(\mathcal{M}|\mathbf{x}) = P(\mathcal{M})$ Aucune relation entre le fait qu'une donnée soit manquante ou observée
- Missing at Random (MAR) : $P(\mathcal{M}|\mathbf{x}) = P(\mathcal{M}|\mathbf{x}^o)$ données manquantes en relation avec les données observées mais pas avec les autres données manquantes
- Not Missing At Random (NMAR) : $P(\mathcal{M}|\mathbf{x})$ données manquantes en relation avec *toutes* les données

Log-vraisemblance et données incomplètes

- Échantillon $\mathbf{x} = \{x_1, \dots, x_n\}$ de taille n
- données complètes : $\log L(\mathbf{x}, \Theta) = \sum_{i=1}^{n} \log P(x_i | \Theta)$
- \mathbf{x}^o : données observées, \mathbf{x}^h : données manquantes
- $\log L(\mathbf{x}^o, \Theta) = \log$ -vraisemblance des données observées

$$= \sum_{i=1}^{n} \log P(x_i^o|\Theta) = \sum_{i=1}^{n} \log \left(\sum_{\mathbf{x}_i^h \in \mathbf{x}^h} P(x_i^o, \mathbf{x}_i^h|\Theta) \right)$$

• Soit $Q_i(x_i^h)$ une loi de proba quelconque alors :

$$\log L(\mathbf{x}^o, \Theta) = \sum_{i=1}^n \log \left(\sum_{\mathbf{x}_i^h \in \mathbf{x}^h} \frac{Q_i(\mathbf{x}_i^h)}{Q_i(\mathbf{x}_i^h)} \frac{P(\mathbf{x}_i^o, \mathbf{x}_i^h | \Theta)}{Q_i(\mathbf{x}_i^h)} \right)$$

Rappel: fonctions convexes

Définition

 $f \text{ convexe} \Longleftrightarrow \forall \lambda \in [0, 1], \forall x_1, x_2:$

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2)$$

fonction concave

f concave \iff -f convexe

Généralisation : l'inégalité de Jensen

Inégalité de Jensen

- f convexe définie sur D
- $x_1, \ldots, x_n \in D$
- \bullet $\lambda_1, \ldots, \lambda_n \geq 0, \quad \sum_{i=1}^n \lambda_i = 1$

Alors:

$$f\left(\sum_{i=1}^n \lambda_i x_i\right) \leq \sum_{i=1}^n \lambda_i f(x_i)$$

Inégalité de Jensen

- f convexe
- X: variable aléatoire à n dimensions x_1, \ldots, x_n
- $\lambda_1, \ldots, \lambda_n \geq 0$, $\sum_{i=1}^n \lambda_i = 1 \Longrightarrow \mathsf{probabilité} \ P_{\lambda}$
- $f(\mathbb{E}_{P_{\lambda}}(X)) \leq \mathbb{E}_{P_{\lambda}}(f(X))$ où $\mathbb{E}_{P_{\lambda}} = \text{espérance}$

Démonstration de l'inégalité de Jensen

$$f\left(\sum_{i=1}^n \lambda_i x_i\right) \leq \sum_{i=1}^n \lambda_i f(x_i)$$

• par récurrence : si n = 1 : trivial, si n = 2 : convexité

$$\oint f\left(\sum_{i=1}^{n+1} \lambda_{i} x_{i}\right) = f\left(\lambda_{n+1} x_{n+1} + \sum_{i=1}^{n} \lambda_{i} x_{i}\right) \\
= f\left(\lambda_{n+1} x_{n+1} + (1 - \lambda_{n+1}) \sum_{i=1}^{n} \frac{\lambda_{i}}{1 - \lambda_{n+1}} x_{i}\right) \\
\leq \lambda_{n+1} f(x_{n+1}) + (1 - \lambda_{n+1}) f\left(\sum_{i=1}^{n} \frac{\lambda_{i}}{1 - \lambda_{n+1}} x_{i}\right) \\
\leq \lambda_{n+1} f(x_{n+1}) + (1 - \lambda_{n+1}) \sum_{i=1}^{n} \frac{\lambda_{i}}{1 - \lambda_{n+1}} f(x_{i}) \\
= \lambda_{n+1} f(x_{n+1}) + \sum_{i=1}^{n} \lambda_{i} f(x_{i}) = \sum_{i=1}^{n+1} \lambda_{i} f(x_{i})$$

Conséquences de l'inégalité de Jensen

Inégalité de Jensen pour le logarithme

Logarithme = fonction concave :

$$\log\left(\sum_{i=1}^n \lambda_i x_i\right) \ge \sum_{i=1}^n \lambda_i \log(x_i)$$

$$\mathbb{E}(\log(X)) = \log(\mathbb{E}(X)) \Longrightarrow X = \mathbb{E}(X) =$$
constante

Log-vraisemblance et données incomplètes

$$\log L(\mathbf{x}^o, \Theta) \geq \sum_{i=1}^n \sum_{\mathbf{x}_i^h \in \mathbf{x}^h} Q_i(\mathbf{x}_i^h) \log \left(\frac{P(\mathbf{x}_i^o, \mathbf{x}_i^h | \Theta)}{Q_i(\mathbf{x}_i^h)} \right)$$

Jensen \Longrightarrow égalité ssi $\frac{P(x_i^o, x_i^n | \Theta)}{Q_i(x^h)} = \text{constante}$

choisir
$$Q_i(x_i^h) \propto P(x_i^o, x_i^h|\Theta) \Longrightarrow Q_i(x_i^h) = P(x_i^h|x_i^o, \Theta)$$

Algorithme EM

Algorithme

- **1** choisir une valeur initiale $\Theta = \Theta^0$
- 2 Étape E (expectation) :

 - $\bullet \log L^{t+1}(\mathbf{x}^o, \Theta) = \sum_{i=1}^n \sum_{x_i^h \in \mathbf{x}^h} Q_i^{t+1}(x_i^h) \log \left(\frac{P(x_i^o, x_i^h | \Theta)}{Q_i^{t+1}(x_i^h)} \right)$
- Étape M (maximization):
 - \bullet $\Theta^{t+1} \leftarrow \operatorname{Argmax}_{\Theta} \log L^{t+1}(\mathbf{x}^o, \Theta)$
- Tant qu'on n'a pas convergé, revenir en 2

À convergence, $\Theta^{t+1} = \text{optimum local par max de vraisemblance}$

lacktriangle 2 variables aléatoires $A \in \{a, b\}$ et $C \in \{c, d\}$

$$P(A, C|\Theta) = \begin{bmatrix} \theta_{ac} & \theta_{ad} \\ \theta_{bc} & \theta_{bd} \end{bmatrix} \Longrightarrow \Theta = \{\theta_{ac}, \theta_{ad}, \theta_{bc}, \theta_{bd}\}$$

but: estimer ⊖ par EM

?
?
d
d
С

A toujours observé :

$$\Longrightarrow heta_{\it ac} + heta_{\it ad} = rac{3}{5}$$
 par max de vraisemblance $heta_{\it bc} + heta_{\it bd} = rac{2}{5}$ par max de vraisemblance

initialisation possible :

$$\Theta^0 = \{\theta_{ac}^0 = 0.3, \theta_{ad}^0 = 0.3, \theta_{bc}^0 = 0.2, \theta_{bd}^0 = 0.2\}$$

• Étape E (expectation) : $Q_i^1(x_i^h) \leftarrow P(x_i^h|x_i^o,\Theta^0) \quad \forall i \in \{1,2\}$

$$Q_1^1(C) = P(C|A=a,\Theta^0) = \frac{P(A=a,C|\Theta^0)}{\sum_{c} P(A=a,C|\Theta^0)} = [\frac{0.3}{0.6}, \frac{0.3}{0.6}] = [0.5, 0.5]$$

$$Q_2^1(C) = P(C|A = b, \Theta^0) = \frac{P(A=b,C|\Theta^0)}{\sum_{C} P(A=b,C|\Theta^0)} = \begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}, \begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix} = [0.5, 0.5]$$

$$\Theta^0 = \{\theta_{ac}^0 = 0.3, \theta_{ad}^0 = 0.3, \theta_{bc}^0 = 0.2, \theta_{bd}^0 = 0.2\}$$

$$Q_1^1(C) = [0.5, 0.5]$$
 $Q_2^1(C) = [0.5, 0.5]$ $P(x_i^h, x_i^o | \Theta^0) = \begin{bmatrix} 0.3 & 0.3 \\ 0.2 & 0.2 \end{bmatrix}$

$$\log L^{t+1}(\mathbf{x}^o, \Theta) = \sum_{i=1}^n \sum_{x_i^h \in \mathbf{x}^h} Q_i^{t+1}(x_i^h) \log \left(\frac{P(x_i^o, x_i^h | \Theta)}{Q_i^{t+1}(x_i^h)} \right)$$

			Α	В	Q_i^{t+1}	P/Q_i^{t+1}	$\log(P/Q_i^{t+1})$
A	В		а	С	0.5	$\theta_{ac}/0.5$	$\log \theta_{ac} - \log 0.5$
а	?		а	d	0.5	$\theta_{ad}/0.5$	$\log heta_{ad} - \log 0.5$
b	?		b	С	0.5	$\theta_{bc}/0.5$	$\log heta_{bc} - \log 0.5$
а	d		b	d	0.5	$\theta_{bd}/0.5$	$\log heta_{bd} - \log 0.5$
b	d		а	d	1	$ heta_{\sf ad}$	$\log heta_{ extsf{ad}}$
а	С		b	d	1	θ_{bd}	$\log heta_{bd}$
		•	а	С	1	$ heta_{ extsf{ac}}$	$\log heta_{ac}$

 \Longrightarrow revient à observer l'échantillon avec poids Q_i^{t+1}

Algorithme EM

$$\log L^{t+1}(\mathbf{x}^{o}, \Theta) = \sum_{i=1}^{n} \sum_{x_{i}^{h} \in \mathbf{x}^{h}} Q_{i}^{t+1}(x_{i}^{h}) \log \left(\frac{P(x_{i}^{o}, x_{i}^{h}|\Theta)}{Q_{i}^{t+1}(x_{i}^{h})} \right)$$

$$= \sum_{i=1}^{n} \sum_{x_{i}^{h} \in \mathbf{x}^{h}} Q_{i}^{t+1}(x_{i}^{h}) \left[\log(P(x_{i}^{o}, x_{i}^{h}|\Theta)) - \log(Q_{i}^{t+1}(x_{i}^{h})) \right]$$

$$\Longrightarrow \Theta^{t+1} = \operatorname{Argmax}_{\Theta} \log L^{t+1}(\mathbf{x}^{o}, \Theta)$$

$$= \operatorname{Argmax}_{\Theta} \sum_{i=1}^{n} \sum_{x_{i}^{h} \in \mathbf{x}^{h}} Q_{i}^{t+1}(x_{i}^{h}) \log(P(x_{i}^{o}, x_{i}^{h}|\Theta))$$

Principe de EM

Étape M \Longrightarrow maximum de vraisemblance avec un échantillon dont chaque enregistrement x_i a un poids Q_i^{t+1}

$$\Theta^1 = \operatorname{Argmax}_{\Theta} \sum_{i=1}^n \sum_{x_i^h \in \mathbf{x}^h} Q_i^{t+1}(x_i^h) \log \left(\frac{P(x_i^o, x_i^h | \Theta)}{Q_i^{t+1}(x_i^h)} \right)$$

Α	В	Q_i^{t+1}	$\log \theta$
а	С	0.5	$\log \theta_{ac}$
а	d	0.5	$\log heta_{ad}$
b	C	0.5	$\log \theta_{bc}$
b	d	0.5	$\log \theta_{bd}$
а	d	1	$\log \theta_{ad}$
b	d	1	$\log \theta_{bd}$
а	С	1	$\log heta_{ac}$

$$\Theta^1 = \operatorname{Argmax}_{\Theta}[0.5 + 1] \log \theta_{ac} + [0.5 + 1] \log \theta_{ad} + 0.5 \log \theta_{bc} + [0.5 + 1] \log \theta_{bd}$$
 Sous contrainte : $\theta_{ac} + \theta_{ad} + \theta_{bc} + \theta_{bd} = 1$

$$\Theta^1 = \{\theta^1_{ac} = \tfrac{3}{10}, \ \theta^1_{ad} = \tfrac{3}{10}, \ \theta^1_{bc} = \tfrac{1}{10}, \ \theta^1_{bd} = \tfrac{3}{10}\}$$

$$\Theta^1 = \{\theta^1_{ac} = \frac{3}{10}, \ \theta^1_{ad} = \frac{3}{10}, \ \theta^1_{bc} = \frac{1}{10}, \ \theta^1_{bd} = \frac{3}{10}\}$$

• Étape E (expectation) : $Q_i^2(x_i^h) \leftarrow P(x_i^h|x_i^o,\Theta^1) \quad \forall i \in \{1,2\}$

$$Q_1^2(C) = P(C|A=a,\Theta^1) = \frac{P(A=a,C|\Theta^1)}{\sum_C P(A=a,C|\Theta^1)} = [\frac{0.3}{0.6} \; , \; \frac{0.3}{0.6}] = [0.5 \; , \; 0.5]$$

$$Q_2^2(C) = P(C|A = b, \Theta^1) = \frac{P(A = b, C|\Theta^1)}{\sum_C P(A = b, C|\Theta^1)} = \begin{bmatrix} 0.1 \\ 0.4 \end{bmatrix}, \ \frac{0.3}{0.4} \end{bmatrix} = [0.25, \ 0.75]$$

$$\Theta^1 = \{\theta^1_{ac} = \frac{3}{10}, \ \theta^1_{ad} = \frac{3}{10}, \ \theta^1_{bc} = \frac{1}{10}, \ \theta^1_{bd} = \frac{3}{10}\}$$

$$Q_1^2(C) = [0.5, 0.5]$$
 $Q_2^2(C) = [0.25, 0.75]$ $P(x_i^h, x_i^o | \Theta^0) = \begin{bmatrix} 0.3 & 0.3 \\ 0.1 & 0.3 \end{bmatrix}$

$$\log L^{t+1}(\mathbf{x}^o, \Theta) = \sum_{i=1}^n \sum_{\mathbf{x}^h \in \mathbf{x}^h} Q_i^{t+1}(\mathbf{x}^h_i) \log \left(\frac{P(\mathbf{x}^o_i, \mathbf{x}^h_i | \Theta)}{Q_i^{t+1}(\mathbf{x}^h_i)} \right)$$

		Α	В	Q_i^{t+1}	P/Q_i^{t+1}	$\log(P/Q_i^{t+1})$
A	В	а	С	0.5	$\theta_{ac}/0.5$	$\log \theta_{ac} - \log 0.5$
а	?	а	d	0.5	$\theta_{ad}/0.5$	$\log \theta_{ad} - \log 0.5$
b	?	 b	С	0.25	$\theta_{bc}/0.25$	$\log \theta_{bc} - \log 0.25$
а	d	b	d	0.75	$\theta_{bd}/0.75$	$\log \theta_{bd} - \log 0.75$
b	d	а	d	1	$ heta_{\sf ad}$	$\log heta_{ extit{ad}}$
а	С	b	d	1	$ heta_{bd}$	$\log heta_{bd}$
		а	С	1	$ heta_{ extsf{ac}}$	$\log heta_{ac}$

$$\Theta^2 = \operatorname{Argmax}_{\Theta}[0.5 + 1] \log \theta_{ac} + [0.5 + 1] \log \theta_{ad} + 0.25 \log \theta_{bc} + [0.75 + 1] \log \theta_{bd}$$
Sous contrainte : $\theta_{ac} + \theta_{ad} + \theta_{bc} + \theta_{bd} = 1$

$$\bullet \ \Theta^2 = \{\theta_{ac}^2 = \tfrac{3}{10}, \ \theta_{ad}^2 = \tfrac{3}{10}, \ \theta_{bc}^2 = \tfrac{1}{20}, \ \theta_{bd}^2 = \tfrac{7}{20} \}$$

$$\Theta^3 = \{\theta^3_{ac} = \frac{3}{10}, \ \theta^3_{ad} = \frac{3}{10}, \ \theta^3_{bc} = \frac{1}{40}, \ \theta^2_{bd} = \frac{15}{40} \}$$

. . .

$$\theta_{ac} = \theta_{bc} = 0,3$$

• $\theta_{bc} + \theta_{bd} = 0$, 4 et θ_{bc} divisé par 2 à chaque étape.

$$\implies$$
 à convergence : $\Theta = \{\theta_{ac} = \frac{3}{10}, \ \theta_{ad} = \frac{3}{10}, \ \theta_{bc} = 0, \ \theta_{bd} = \frac{4}{10}\}$

Système de recommandation : le retour

$$\implies$$
 4 + 16 + 4 + 16 + 1 = 41 enregistrements pour calculer Θ^{t+1}

Convergence de EM: monotonie

Étape E :
$$\log L^{t+1}(\mathbf{x}^o, \Theta) = \sum_{i=1}^n \sum_{x_i^h \in \mathbf{x}^h} \mathbf{Q}_i^{t+1}(x_i^h) \log \left(\frac{P(x_i^o, x_i^h | \Theta)}{\mathbf{Q}_i^{t+1}(x_i^h)} \right)$$

$$\Longrightarrow \log L^{t+1}(\mathbf{x}^o, \Theta^{t+1}) \ge \log L^{t+1}(\mathbf{x}^o, \Theta^t)$$

Rappel : inégalité de Jensen

 \forall loi de proba $Q_i(x_i^h)$:

$$\log L(\mathbf{x}^o, \Theta^t) \geq \sum_{i=1}^n \sum_{x_i^h \in \mathbf{x}^h} Q_i(x_i^h) \log \left(\frac{P(x_i^o, x_i^h | \Theta^t)}{Q_i(x_i^h)} \right)$$

égalité
$$\iff Q_i(x_i^h) = P(x_i^h|x_i^o, \Theta^t) = Q_i^{t+1}(x_i^h)$$

$$\Longrightarrow \left\{ \begin{array}{l} \log L^{t+1}(\mathbf{x}^o, \Theta^t) = \log L(\mathbf{x}^o, \Theta^t) \geq \log L^t(\mathbf{x}^o, \Theta^t) \\ \log L(\mathbf{x}^o, \Theta^{t+1}) \geq \log L^{t+1}(\mathbf{x}^o, \Theta^{t+1}) \end{array} \right.$$

$$\implies L(\mathbf{x}^o, \Theta^{t+1}) \ge L^{t+1}(\mathbf{x}^o, \Theta^{t+1}) \ge L(\mathbf{x}^o, \Theta^t) \ge L^t(\mathbf{x}^o, \Theta^t)$$

Convergence de EM

$$L(\mathbf{x}^o, \Theta^{t+1}) \ge L^{t+1}(\mathbf{x}^o, \Theta^{t+1}) \ge L(\mathbf{x}^o, \Theta^t) \ge L^t(\mathbf{x}^o, \Theta^t)$$

Propriété de EM

EM converge vers un maximum local de la vraisemblance

si $\operatorname{Argmax}_{\Theta} L^{t+1}(\mathbf{x}^o, \Theta)$ estimé par descente de gradient, on peut perdre cette propriété!

Mixture de gaussiennes

$$p(\cdot) = 0.3 \times \mathcal{N}(0, 2^2) + 0.4 \times \mathcal{N}(4, 3^2) + 0.3 \times \mathcal{N}(-3, 1^2)$$

postulat :) prix de biens similaires dans un quartier \sim identiques

- $\implies \mathsf{prix} \; \mathsf{d\acute{e}pendent} \; \left\{ \begin{array}{l} \mathsf{des} \; \mathsf{caract\acute{e}ristiques} \; \mathsf{du} \; \mathsf{bien} \; (\mathsf{e.g.} \; \mathsf{nombre} \; \mathsf{de} \; \mathsf{pi\grave{e}ces}) \\ \mathsf{du} \; \mathsf{quartier} \end{array} \right.$
- ⇒ modélisation par une mixture de gaussiennes (ici 2 gaussiennes)

Modélisation du problème

- $\Theta = \{\mu_1, \mu_2, \sigma_1, \sigma_2, \pi_1, \pi_2\}$
- $p(x|\Theta) = \pi_1 \mathcal{N}(\mu_1, \sigma_1^2) + \pi_2 \mathcal{N}(\mu_2, \sigma_2^2)$

Apprentissage non supervisé

- échantillon $\mathbf{x} = \langle x_1, \dots, x_n \rangle$
- \bullet $x_i = prix \Longrightarrow$ on ne connaît pas la Gaussienne à laquelle le bien appartient

échantillon supposé complet (pas de données manquantes)

échantillon complet ⇒ estimation par max de vraisemblance

$$L(\mathbf{x},\Theta) = \prod_{i=1}^{n} p(x_i|\Theta) = \prod_{i=1}^{n} \sum_{k=1}^{2} \pi_k \frac{1}{\sqrt{2\pi}\sigma_k} \exp\left\{-\frac{1}{2} \left(\frac{x_i - \mu_k}{\sigma_k}\right)^2\right\}$$

$$\log L(\mathbf{x}, \Theta) = \sum_{i=1}^{n} \log \left[\sum_{k=1}^{2} \pi_{k} \frac{1}{\sqrt{2\pi}\sigma_{k}} \exp \left\{ -\frac{1}{2} \left(\frac{\mathbf{x}_{i} - \mu_{k}}{\sigma_{k}} \right)^{2} \right\} \right]$$

trop compliqué à maximiser analytiquement!

Solution: EM

- **1** x_i appartient à une classe $y_{k(i)}$ non observée $\sim \mathcal{N}(\mu_{k(i)}, \sigma_{k(i)})$
- 2 échantillon $\mathbf{x} = \langle (x_i, y_{k(i)}) \rangle$

Nouvelle modélisation du problème

$$p(X_i, Y_{k(i)}|\Theta) = p(X_i|Y_{k(i)}, \Theta)P(Y_{k(i)}|\Theta) = \begin{bmatrix} \mathcal{N}(\mu_1, \sigma_1^2) \pi_1 \\ \mathcal{N}(\mu_2, \sigma_2^2) \pi_2 \end{bmatrix}$$

 \implies pour x_i connu :

$$P(Y_{k(i)}|x_i,\Theta) = \frac{p(x_i,Y_{k(i)}|\Theta)}{p(x_i|\Theta)} \propto \begin{bmatrix} \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{1}{2}\left(\frac{x_i-\mu_1}{\sigma_2}\right)^2\right\} \times \pi_1 \\ \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{1}{2}\left(\frac{x_i-\mu_2}{\sigma_2}\right)^2\right\} \times \pi_2 \end{bmatrix}$$

- Initialisation d'EM : choisir une valeur $\Theta^0=\{\mu_1^0,\mu_2^0,\sigma_1^0,\sigma_2^0,\pi_1^0,\pi_2^0\}$
- Étape E : $Q_i^1(y_k) \leftarrow P(y_k|x_i, \Theta^0)$ pour k = 1, 2 $\implies Q_i^1(\cdot)$ très facile à calculer
- Étape M :

$$\underset{\Theta}{\operatorname{Argmax}} \log L^{t+1}(\mathbf{x}^{o}, \Theta) = \underset{\Theta}{\operatorname{Argmax}} \sum_{i=1}^{n} \sum_{k=1}^{2} Q_{i}^{t+1}(y_{k}) \log \left(\frac{p(x_{i}, y_{k}|\Theta)}{Q_{i}^{t+1}(y_{k})} \right)$$

Étape M:

$$\begin{split} \operatorname{Argmax}_{\Theta} \log L^{t+1}(\mathbf{x}^{o}, \Theta) \\ &= \operatorname{Argmax} \sum_{i=1}^{n} \sum_{k=1}^{2} Q_{i}^{t+1}(y_{k}) \log \left(\frac{p(x_{i}, y_{k} | \Theta)}{Q_{i}^{t+1}(y_{k})} \right) \\ &= \operatorname{Argmax} \sum_{i=1}^{n} Q_{i}^{t+1}(y_{1}) \log \left(\pi_{1} \frac{1}{\sqrt{2\pi\sigma_{1}^{2}}} exp \left\{ -\frac{1}{2} \left(\frac{x_{i} - \mu_{1}}{\sigma_{1}} \right)^{2} \right\} \right) + \\ Q_{i}^{t+1}(y_{2}) \log \left(\pi_{2} \frac{1}{\sqrt{2\pi\sigma_{2}^{2}}} exp \left\{ -\frac{1}{2} \left(\frac{x_{i} - \mu_{2}}{\sigma_{2}} \right)^{2} \right\} \right) \\ &= \operatorname{Argmax} \sum_{i=1}^{n} Q_{i}^{t+1}(y_{1}) \left[\log(\pi_{1}) - \frac{1}{2} \log(\sigma_{1}^{2}) - \frac{1}{2} \left(\frac{x_{i} - \mu_{1}}{\sigma_{1}} \right)^{2} \right] + \\ Q_{i}^{t+1}(y_{2}) \left[\log(\pi_{2}) - \frac{1}{2} \log(\sigma_{2}^{2}) - \frac{1}{2} \left(\frac{x_{i} - \mu_{2}}{\sigma_{2}} \right)^{2} \right] \end{split}$$

Argmax facile à calculer!

classification d'images

Signatures spectrales en teintes de gris

- neige $\sim \mathcal{N}(\mu_1, \sigma_1^2)$
- forêt $\sim \mathcal{N}(\mu_2, \sigma_2^2)$
- désert $\sim \mathcal{N}(\mu_3, \sigma_3^2)$
- mer $\sim \mathcal{N}(\mu_4, \sigma_4^2)$
- Y = observation en teinte de gris = pixels d'une image
- Z = classe paysage $\in \{1, 2, 3, 4\} \sim \text{distribution } (\pi_1, \pi_2, \pi_3, \pi_4)$

Paramètres du problème

- $\Theta = \{ (\mu_j, \sigma_j) \}_{j=1}^4 \cup \{ \pi_j \}_{j=1}^4$

classification d'images

Y : observations, Z : classes de paysage

• base de données incomplète ou Z non observé

 \implies estimation de Θ par EM (similaire aux prix fonciers)