Negative binomial regression

Mark Andrews Psychology Department, Nottingham Trent University

mark.andrews@ntu.ac.uk

The Poisson Distribution

- ightharpoonup The mean of a Poisson distribution is equal to its rate parameter λ.
- lts variance is also equal to λ .

As λ increases, so too does the variance.

Means and variances in a Poisson distribution:

- ► In a Poisson distribution, the variance of a sample should be approximately the same as the mean of a sample.
- Example 1:

```
x <- rpois(25, lambda = 5)
c(mean(x), var(x), var(x)/mean(x))</pre>
```

[1] 5.4400000 5.4233333 0.9969363

Example 2:

```
x <- rpois(25, lambda = 5)
c(mean(x), var(x), var(x)/mean(x))</pre>
```

```
## [1] 5.400000 6.416667 1.188272
```

Overdispersion

- ▶ If the variance of a sample is greater than would be expected according to a given theoretical model, then we say the data is *overdispersed*.
- ► In count data, if the variance of a sample is much greater than its mean, we say it is overdispersed.
- Using a Poisson distribution in this situation, this is an example of model mis-specification.
- ► It will also usually underestimate the standard errors in the Poisson model.

Overdispersion

▶ In the bioChemists data set, we have counts of the number of articles published by PhD students in the last three years (publications):

var(publications)/mean(publications)

[1] 2.191358

Overdispersion

► This leads standard errors to be *under*estimated if we use a Poisson model:

```
M <- glm(publications ~ 1, family=poisson)
summary(M)$coefficients</pre>
```

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.5264408 0.02540804 20.71945 2.312911e-95
```

Fixing overdispersion using a Quasi-poisson model

► A *quasi* Poisson model allows us to correct over-dispersion

```
M <- glm(publications ~ 1, family=quasipoisson)
summary(M)$coefficients</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5264408 0.03761239 13.99647 1.791686e-40
```

- ▶ It does so by calculating an overdispersion parameter (roughly, the ratio of the variance to the mean) and multiplying the standard error by its square root.
- ▶ In this example, the overdispersion parameter is 2.1913892 and so its square root is 1.4803341.
- Alternatively, a negative binomial regression is an alternative to Poisson regression that can be used with overdispersed count data.

- A negative binomial distribution is a distribution over non-negative integers.
- ► To understand the negative binomial distribution, we start with the binomial distribution:
- If, for example, we have a coin whose probability of coming up heads is θ , then the number of Heads in a sequence of n flips will follow a binomial distribution.
- ▶ In this example, an outcome of Heads can be termed a *success*.

► Here is a binomial distribution where n = 25 and $\theta = 0.75$.

- ► A *negative* binomial distribution gives the probability distribution over the number of *successes* (e.g. Heads) before r *failures* (e.g. r Tails).
- For example, here we have the number of Heads (*successes*) that occur before we observe r = 2 Tails (*failures*), when the probability of Heads is $\theta = 0.75$:

► Here, we have the number of Heads (*successes*) that occur before we observe r = 3 Tails (*failures*), when the probability of Heads is $\theta = 0.5$:

The probability mass function for the negative binomial distribution is:

$$P(x = k | r, \theta) = {r + k - 1 \choose k} \theta^{r} (1 - \theta)^{k}$$

or more generally

$$P(x = k|r, \theta) = \frac{\Gamma(r+k)}{\Gamma(r)k!} \theta^{r} (1-\theta)^{k},$$

where $\Gamma()$ is a Gamma function ($\Gamma(n) = (n-1)!$).

▶ In R, for any k, r, and θ , we can calculate $P(x = k|r, \theta)$ using dnbinom, e.g. $P(x = k = 2|r = 3, \theta = 0.75)$ is

```
dnbinom(2, 3, 0.75)
```

```
## [1] 0.1582031
```

▶ In the negative binomial distribution, the mean is

$$\mu = \frac{\theta}{1 - \theta} \times \mathbf{r},$$

and we can generally parameterize the distribution by $\boldsymbol{\mu}$ and $\boldsymbol{r}.$

Why use negative binomial distribution?

► A negative binomial distribution is equivalent as weighted sum of Poissons.

So it is appropriate to use when the data can be seen as arising from a mixture of Poisson distributions, each with different means.

Negative binomial regression

▶ In negative binomial regression, we have observed counts $y_1, y_2 ... y_n$, and some predictor variables $x_1, x_2 ... x_n$, and we assume that

$$y_i \sim NegBinomial(\mu_i, r)$$
,

where NegBinomial($\mu_i,r)$ is a negative binomial with mean μ_i and a dispersion parameter r, and then

$$\log(\mu_i) = \beta_0 + \beta x_i.$$