METODO DEL PUNTO FIJO

```
clc, clear;
format long g;
syms x;
```

INGRESAR EL X DE DATO INFERIOR:

```
Lim_inf = 0;
```

INGRESAR EL X DE DATO SUPERIOR:

```
Lim_sup = pi/2;
```

INGRESAR LA TOLERACIA:

```
Tol = 0.0001;
```

INGRESAR EL NUMERO DE ITERACIONES:

```
Num_it = 20;
```

INGRESAR LA ECUACÍON x=g(x):

```
f_x= cos(x);
```

```
% n=[1 2];
% a_n=[1 2];
% b n=[1 2];
% p_n=[1 2];
% f_n=[1 2];
n=[1 2];
x_0=[1 \ 2];
g_x=[1 \ 2];
error_=[0 2];
y=x;
fplot(f_x);
hold on;
fplot(y);
plot(Lim_inf,0,'x');
plot(Lim_sup,0,'x');
hold off;
grid on;
```

```
grid minor;
ax = gca;
ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';
```



```
f= @(x) eval(f_x);
i=1;
p_0=Lim_inf+(Lim_sup-Lim_inf)/2;
while(i<Num_it)</pre>
    p=f(p_0);
    n(i)=i;
    x_0(i) = p_0;
    g_x(i)=f(p_0);
    error_(i)= p-p_0;
    if((p_0==f(p_0)))
        disp(p);
        break;
    else
        p_0=p;
    end
    i=i+1;
end
tabla=[n' x_0' g_x' error_'];
```

```
NUM_IT=n';
x_=x_0';
g__x=g_x';
error__=error_';
Resultados = table(NUM_IT,x_,g__x,error__)
```

Resultados = 19×4 table

	NUM_IT	x_	gx	error
1	1	0.7853981633	0.7071067811	-0.078291382210
2	2	0.7071067811	0.7602445970	0.0531378158890
3	3	0.7602445970	0.7246674808	-0.035577116186
4	4	0.7246674808	0.7487198857	0.024052404900358
5	5	0.7487198857	0.7325608445	-0.016159041197
6	6	0.7325608445	0.7434642113	0.0109033667230
7	7	0.7434642113	0.7361282565	-0.007335954814
8	8	0.7361282565	0.7410736870	0.0049454305828
9	9	0.7410736870	0.7377441589	-0.003329528091
10	10	0.7377441589	0.7399877647	0.0022436058032
11	11	0.7399877647	0.7384768087	-0.001510956071
12	12	0.7384768087	0.7394947711	0.0010179624074
13	13	0.7394947711	0.7388091341	-0.000685636947
14	14	0.7388091341	0.7392710213	0.0004618871460
15	15	0.7392710213	0.7389599039	-0.000311117353
16	16	0.7389599039	0.7391694833	0.0002095793651
17	17	0.7391694833	0.7390283113	-0.000141172015
18	18	0.7390283113	0.7391234079	9.50966035909717e-05
19	19	0.7391234079	0.7390593503	-6.40575642971708e-05

xlswrite('RESULTADOS.xlsx',tabla)