RegDS23 / Course Assessment

/ 1st online quiz (until Mon May 15, 14:15 = 2:15 pm / 1 point): Some simple sums [graded May 21]

1st online quiz (until Mon May 15, 14:15 = 2:15 pm / 1 point): Some simple sums [graded May 21]

Started on	Saturday, 13 May 2023, 10:12 PM
State	Finished
Completed on	Saturday, 13 May 2023, 10:22 PM
Time taken	9 mins 40 secs
Grade	1.00 out of 1.00 (100%)

Question 1

Correct

Mark 0.60 out of 0.60

Flag question

Calculate the following sums:

a.
$$\sum_{j=1}^4 j^3 = \boxed{100}$$

b.
$$\sum_{i=4}^{8} (i+3) = 45$$
c. $\sum_{k=1}^{8} (k-4)^2 = 14$

c.
$$\sum_{k=1}^{3} (k-4)^2 = \boxed{14}$$

You should have obtained:

- a. 100
- b. 45
- c. 14

/ 2nd online quiz (until Friday, May 26 - 23:59 = 11:59 pm / 3.6 points): Simple Linear Regression [graded May 29]

2nd online quiz (until Friday, May 26 - 23:59 = 11:59 pm / 3.6 points): Simple Linear Regression [graded May 29]

Started on	Thursday, 25 May 2023, 10:36 PM
State	Finished
Completed on	Thursday, 25 May 2023, 10:45 PM
Time taken	8 mins 59 secs
Grade	3.60 out of 3.60 (100 %)

Question 1

Correct

Mark 1.80 out of 1.80

Flag question

Simple linear regression:

You are supposed to analyse a dataset in R/RStudio with two variables:

X explanatory variable

Y dependent variable

Your tasks (please do save all your R code to upload it with your solutions):

- Download the dataset Simple-32209.csv (click to download). Note, that this is an English .csv file.
- Estimate a simple linear regression to explain Y by X.
- · Draw a scatterplot and add the estimated regression line.
- Using R, determine the values for a. to f. (see below) and enter them in the provided fields.
- Your R code should run in R/RStudio without errors and calculate all required terms.
- Finally save your R code into an R script (or R Markdown file) and upload it, see below.

For the following entries: Do not round too much! If relevant, give numerical values with at least 4 decimal places.

a. Sample size
$$n=42$$

b. Estimated intercept = 0.1005218

c. Estimated slope = -1.4509552

d. Coefficient of determination = 0.401859

e. Residual sum of squares = 41.55212

f. For $x=0.9$ predict $\hat{y}=-1.205338$

This is the summary for your linear regression:

Call:

lm(formula = Y ~ X, data = Simple)

Residuals:

Min 1Q Median 3Q Max -2.51200 -0.67192 -0.04618 0.78923 1.91086

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1005 0.1573 0.639 0.526

X -1.4510 0.2799 -5.184 6.58e-06 ***
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.019 on 40 degrees of freedom Multiple R-squared: 0.4019, Adjusted R-squared: 0.3869 F-statistic: 26.87 on 1 and 40 DF, p-value: 6.576e-06

Your graph should look similar to:

You should have obtained the values:

a.
$$n = 42$$

b.
$$\hat{\beta}_0 = 0.1005$$

c.
$$\hat{\beta}_1 = -1.451$$

d.
$$R^2 = 0.4019$$

e.
$$RSS = 41.5521$$

f. For $oldsymbol{x}=$ 0.9 we predict $\hat{oldsymbol{y}}=$ -1.2053

3rd online quiz (until Monday, June 19 - 14:15 = 2:15 pm / 2.4 points): Summary of a LM [graded July 3]

Started on	Thursday, 15 June 2023, 2:57 PM
State	Finished
Completed on	Thursday, 15 June 2023, 3:11 PM
Time taken	14 mins 30 secs
Grade	2.40 out of 2.40 (100 %)

Question 1

Correct

Mark 1.20 out of 1.20

Flag question

Summary of a linear regession

A linear regression model was estimated using R and its summary output is:

```
Call:
```

```
lm(formula = Y \sim X + I(X^2) + I(X^3) + I(X^4), data = Data)
```

Residuals:

```
Min 1Q Median 3Q Max
-1.17116 -0.63542 -0.04809 0.49752 1.98267
```

Your tasks

- Based on this summary output, find answers to the questions a.-d. below.
- In addition, write into the field below how you obtained your solutions (explain briefly or give an R formula).

In addition, enter the values for a.-c. right here. (If relevant, give the numerical values with at least 4 decimal places.)

- a. What is the value of the sample size?
- b. How many of the coefficients (incl. intercept) are significantly different from zero at the level 5%?
- c. What is the predicted value of the regression function for X=2.5 ?
- d. Explain the value 4 in the last line of the summary. (How is it related to the data or the model?)

You should have obtained:

a. 48

b. 4

c. -119.5076

Question 2

Complete

Mark 1.20 out of 1.20

Flag question

Please give short explanations for your solutions to a.-d. here:

- a) Given, n-p-1 = 43, and p = 4. So, n = 43 + p + 1 = 43 + 4 + 1 = 48.
- b) From Pr(>|t|) column, we can see that 4 values are less than 0.05 or 5%.
- c) If X = 2.5, then $Y_{hat} = 2.1439 + (2.5 * -1.3938) + (7.4769 * (2.5^2)) + (-3.9092 * (2.5^3)) + (-2.6577 * (2.5^4)) = -119.5076$
- d) 4 or "p" represents the number of parameters estimated in the model. In other words, p is the number of coefficients without considering the intercept.

Comment:

all ok

🍱 4th online quiz (until Friday, July 7 - 23:59 = 11:59 pm / 5 points): Multiple Linear Regression [graded July 101

Started on	Thursday, 29 June 2023, 3:06 PM
State	Finished
Completed on	Thursday, 6 July 2023, 3:47 PM
Time taken	7 days
Grade	4.20 out of 5.00 (84 %)

Question 1

2.50

Correct Mark 2.50 out of

Flag question

Linear regression for Munich rent data:

You are asked to analyse a subset of the Munich rent data. The sample consists of appartments, which are characterized by:

netrent (net rent per month, in Euro), space (living space, in square metres), rooms (no. of rooms), year (year of construction),

kitchen (upscale kitchen: yes/no).

Your tasks (please do save all your R code to upload it with your solutions):

- · Download the dataset Rent-17807.csv (click to download).
- Estimate the four linear regression models m1 m4 described below.
- · Find (using R) the answers for a. e. and enter them below.
- Within your R code do also provide solutions to the additional questions f. h. (just add comments to your R code).
- . Finally, save your R code (into an .R or .Rmd file). Upload it together with the plot file you obtained in task h. (you find the upload area at the end of this page).

Models to estimate

Model m1: Explain netrent by space.

Model m2: Explain netrent by space and space^2.

Model m3: Explain netrent by rooms and year and space.

Model m4: Explain netrent by space and space^2 and year and kitchen.

The coefficient for rooms in model m3 is significant at 5%.

Additional questions f.-h.

- f. For models m1 and m2 do a scatterplot of the data and draw the estimated regression curves. Save the plot into a file (to upload it).
- g. Using model m4 what difference in net rent do you expect between an appartment with and without upscale kitchen?
- h. Compare the four models using F tests. Which F tests could be performed? What are the results? Mention for each F test the model you would decide for.

Questions a.-e.

Give the following answers right here. For b. and c. give the numerical values with at least 3 decimal places.

a. The sample size equals: b. Enter $\widehat{\sigma}$ for model m3: 183.8335 c. Using model m4, predict the net rent for an appartment of 60 square metres that was built in 1975 and has no upscale kitchen: 539.9545 d. Which of the four models has the smallest AIC value? Answer by entering m1, m2, m3 or m4: m3


```
These are the summary outputs for models m3 and m4:
Call:
lm(formula = netrent ~ rooms + year + space, data = Rent)
Residuals:
  Min 1Q Median 3Q Max
-536.15 -104.65 -43.39 119.17 850.19
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -4103.767 1453.219 -2.824 0.005780 **
         -142.249
                      38.551 -3.690 0.000374 ***
                      0.739 2.937 0.004163 **
             2.170
            11.662 1.427 8.174 1.29e-12 ***
space
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 183.8 on 95 degrees of freedom
Multiple R-squared: 0.5273, Adjusted R-squared: 0.5124
F-statistic: 35.33 on 3 and 95 DF, p-value: 2.002e-15
lm(formula = netrent \sim space + I(space^2) + year + kitchen, data = Rent)
Residuals:
   Min 1Q Median
                         3Q
-441.14 -108.50 5.18 108.88 767.66
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.765e+03 1.538e+03 -2.448 0.01620 *
            1.082e+01 3.652e+00 2.963 0.00386 **
I(space^2) -2.579e-02 2.145e-02 -1.202 0.23230
            1.898e+00 7.891e-01 2.405 0.01811 *
kitchenyes 1.895e+02 7.919e+01 2.394 0.01867 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 191.5 on 94 degrees of freedom
Multiple R-squared: 0.4925, Adjusted R-squared: 0.4709
F-statistic: 22.8 on 4 and 94 DF, p-value: 3.47e-13
The four AIC values are: 1337.161, 1338.366, 1319.245, 1328.29
You should have obtained:
   a. 99
   b. 183.834
   c. 539.954
```

e. false / false / true: The coefficient for rooms in model m3 is significant at 5%. / false

5th online quiz (until Wednesday, July 19 at 23:59 = 11:59 pm / 3 points): Summary of a GLM [graded July 21]

Started on	Saturday, 15 July 2023, 1:23 PM
State	Finished
Completed on	Saturday, 15 July 2023, 1:34 PM
Time taken	11 mins 28 secs
Grade	3.00 out of 3.00 (100 %)

Question 1

Correct Mark 1.75 out of 1.75

Flag question

```
Summary of a GLM
```

```
A generalized linear model {\tt m1} was estimated using R and its summary output is:
```

```
glm(formula = Y \sim X + I(X^2) + I(X^3) + I(X^4), family = binomial(link = "logit"),
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.0958 0.4094 2.677 0.00743 **
                     0.9396 -2.834 0.00459 **
            -2.6634
           -3.0258
                      2.6686 -1.134 0.25685
            4.1322 1.4754 2.801 0.00510 **
I(X^3)
            3.8514 3.0385 1.268 0.20496
I(X^4)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 142.91 on 112 degrees of freedom
Residual deviance: 131.91 on 108 degrees of freedom
AIC: 141.91
Number of Fisher Scoring iterations: 4
This model was also compared to a simpler model m_0 for the same data using the \chi^2 test performed by
anova(m0,m1,test="Chisq"):
Analysis of Deviance Table
Model 1: Y \sim X + I(X^2) + I(X^3)
Model 2: Y \sim X + I(X^2) + I(X^3) + I(X^4)
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
      109 133.56
      108 131.91 1 1.6502 0.1989
```

Your tasks

- Based on this summary output, find answers to the following questions (a.-e.).
- In addition, write into the field below how you obtained your solutions for a.-e. (describe briefly or give an R formula).

Give the numerical values for c. with 3 decimal places and for d. with at least 2 decimal places:

- a. What is value of the sample size?
- b. Using the summary of m1: How many of the coefficients (incl. intercept) are significantly different from zero at the level 1%
- c. Using the summary of ${\tt m1}$: Determine the predicted probability of Y=1 given X=0.9 .
- d. Using the summary of m1: What is the value of the log-likelihood for the estimated model?
- e. Considering the χ^2 test: Which model would you choose given a significance level of 1%? (Answer by entering mo or m1.)

You should have obtained:

- a. 113
- b. 3
- c. 0.857
- d. -65.96
- e. m0

Question 2

Complete

Mark 1.25 out of 1.25

Flag question

Please give short explanations for your solutions to a.-e. here:

- a) df = n-p-1 | here, p=4, and df = 108 | so, n = 113
- b) Based on these p-values, we can conclude that three coefficients (including the intercept) are significantly different from zero at the 1% significance level.

loglik # -65.955

e) In the output, the p-value for the chi-square test is given as "0.1989". Since this p-value is greater than the significance level of 1%, we fail to reject the null hypothesis and conclude that there is no significant difference between the two models.

Therefore, based on the chi-square test and the given significance level, we would choose the simpler model, m0, over the more complex model, m1.