

Algorithms and Data Structures

Sorting:

Simple Methods and a Lower Bound

Ulf Leser

Large-Scale Sorting

- Imagine you are the IT head of a telco-company
- You have 30.000.000 customers each performing ~100 telephone calls per months, each call creating 200 bytes
 - That's 30M*100*12*200=7.200.000.000.000 bytes per year
 - Imagine the data is in a file, one line per call
- At the end of the year, management wants list of all customers with aggregated revenue per day
 - That's ~30M*12*30 ~ 10.000.000.000 real numbers
- Problem: How can we compute these 10.000.000.000
 numbers?

Approach: Multiple Reads

- Assume we can keep 30M*30 ~ 1E9 numbers in memory
 - Solve the problem month-by-month
 - Read the call-file 12 times, each time computing aggregates for all customers and the days of one month
 - This will be slow

1st read

Meier, 10.1.2010 Müller, 18.4.2010 Meier, 1.2.2010 Meier, 18.1.2010 Schmidt, 14.1.2010 Schmidt, 6.4.2010 Müller, 27.2.2010 Müller, 9.4.2010 Schmidt, 1.3.2010 Schmitt, 9.2.2010 Schmitt, 30.3.2010 Schmitt, 3.1.2010

2nd read

Meier, 10.1.2010 Müller, 18.4.2010 Meier, 1.2.2010 Meier, 18.1.2010 Schmidt, 14.1.2010 Schmidt, 6.4.2010 Müller, 27.2.2010 Müller, 9.4.2010 Schmidt, 1.3.2010 Schmitt, 9.2.2010 Schmitt, 30.3.2010 Schmitt, 3.1.2010

3rd read

Meier, 10.1.2010
Müller, 18.4.2010
Meier, 1.2.2010
Meier, 18.1.2010
Schmidt, 14.1.2010
Schmidt, 6.4.2010
Müller, 27.2.2010
Müller, 9.4.2010
Schmidt, 1.3.2010
Schmitt, 9.2.2010
Schmitt, 30.3.2010
Schmitt, 31.2010

. . .

Meier, 10.1.2010
Müller, 18.4.2010
Meier, 1.2.2010
Meier, 18.1.2010
Schmidt, 14.1.2010
Schmidt, 6.4.2010
Müller, 27.2.2010
Müller, 9.4.2010
Schmidt, 1.3.2010
Schmitt, 9.2.2010
Schmitt, 30.3.2010
Schmitt, 3.1.2010

er Sen

Approach: Sorting

Alternative?

- Sort the file by customer and day
- Read sorted file once and compute aggregates on the fly
- Whenever a pair (day, customer) is finished (i.e., new ID values appear), sum can be written out and next day/customer starts
- This will be very fast
- Needs virtually no memory during counting
- But: Can we sort ~3 billion records using less than 12 reads?

Content of this Lecture

- Sorting
- Simple Methods
- Lower Bound

Sorting

Assumptions

- We have n values (integer) that should be sorted
- Values are stored in an array S (i.e., O(1) access to i'th element)
- Comparing two values costs O(1)
- We usually count # of comparisons; sometimes also # of swaps
- Values are not interpreted
 - We do not know what a "big" value is or how many percent of all values are probably smaller than a given value
- All we can do is comparing two values
- We seek a permutation π of the indexes of S such that
 ∀i,j≤n with π(i)<π(j) : S[π(i)] ≤ S[π(j)]

Variations

- External versus internal sorting
 - Internal sorting: S fits into main memory
 - External sorting: There are too many records to fit in memory
 - We only loot at internal sorting
- In-place or with additional memory dependent on n
 - In-place sorting only requires a constant (independent of n) amount of additional memory on top of S
 - We will look at both
- Pre-Sorting
 - Some algorithms can take advantage of an existing (incomplete, erroneous) order in the data, some not
 - We will not exploit pre-sorting

Applications

- Sorting is a ubiquitous task in computer science
 - [OW93] claims that 25% of all computing times is spent in sorting
- Second example: Information Retrieval
 - Imagine you want to build g*****++
 - Fundamental operation: In a very large set of documents, find those that contain a given set of keywords
 - Popular way of doing this: Build an inverted index

Inverted Index

ID	Text
1	Baseball is played during summer months.
2	Summer is the time for picnics here.
3	Months later we found out why.
4	Why is summer so hot here?

Term	Freq	Document ids	
baseball	1	[1]	
during	1	[1]	
found	1	[3]	
here	2	[2], [4]	
hot	1	[4]	
is	3	[1], [2], [4]	
months	2	[1], [3]	
summer	3	[1], [2], [4]	
the	1	[2]	
why	2	[3], [4]	

Source: http://docs.lucidworks.com

Answering a IR-style Query

- A query is a set of keywords
- Finding the answer
 - For each keyword k_i of the query, load list d_i of docs containing k_i
 from inverted index
 - Build intersection of all d_i
 - Docs in this list are your answer
- Imagine the query "the man eats a bread" on the Web
 - Doc-list for "the" and "a" will contain >10 billion documents
- How do we compute the intersection of two sets of 10 billion IDs?

Intersection of Two Sets

With non-sorted sets: O(m*n)

With sorted sets: O(n+m)

Content of this Lecture

- Sorting
- Simple Methods
 - Selection sort
 - Insertion sort
 - Bubble sort
- Lower Bound

Recall: Selection Sort

```
S: array_of_names;
n := |S|
for i = 1..n-1 do
    for j = i+1..n do
        if S[i]>S[j] then
        tmp := S[j];
        S[j] := S[i];
        S[i] := tmp;
    end if;
    end for;
end for;
```

- Analysis showed that selection sort is in O(n²)
- It is easy to see that selection sort also is in Ω(n²)
- How often do we swap values?
 - That depends a lot on the pre-sortedness of the array
 - But actually we can do a bit better

Selection Sort Improved

```
S: array of names;
n := |S|
for i = 1..n-1 do
  min pos := i;
  for j = i+1..n do
    if S[min pos]>S[j] then
      min_pos := j;
    end if;
   end for;
   tmp := S[i];
   S[i] := S[min pos];
   S[min_pos] := tmp;
end for;
```

- How often do we swap values?
 - Once for every position
 - Thus: O(n)

Analogy

- Let's assume you keep your cards sorted
- How to get this order?
 - Selection sort: Take up all cards at once and building sorted prefixes of increasing length
 - Insertion sort: Take up cards one by one and sort every new card into the sorted subset at your hand
 - Bubble sort: Take up all cards at once and swap neighbors until everything is fine

Insertion Sort

```
S: array_of_names;
n := |S|
for i = 2..n do
    j := i;
    key := S[j];
    while (S[j-1]>tkey) and (j>1) do
        S[j] := S[j-1];
        j := j-1;
    end while;
    S[j] := key;
end for;
```

- After each loop of i, the prefix S[1..i] of S is sorted
- While-loop runs backwards from current position (to be inserted) until values get too small (smaller than S[j])
- Example: 5 4 8 1 6
- One problem is the required movement of many values until correct place is found
 - Could be implemented much better with a double-linked list

Complexity (Worst Case)

```
S: array_of_names;
n := |S|
for i = 2..n do
    j := i;
    key := S[j];
    while (S[j-1]>tkey) and (j>1) do
        S[j] := S[j-1];
        j := j-1;
    end while;
    S[j] := key;
end for;
```

- Comparisons (worst-case)
 - Outer loop: n times
 - Inner-loop: n-i times
 - Thus, $O(n^2)$
- How many swaps?
 - (We move and don't swap, but both are in O(1))
 - In worst-case, every comparison incurs a move
 - Thus: $O(n^2)$
- We got worse?

Complexity (Best Case)

```
S: array_of_names;
n := |S|
for i = 2..n do
    j := i;
    key := S[j];
    while (S[j-1]>tkey) and (j>1) do
        S[j] := S[j-1];
        j := j-1;
    end while;
    S[j] := key;
end for;
```

- Assume the best case
 - Array is already sorted
- Comparisons
 - Outer loop: n times
 - Inner-loop: 1 time
 - Thus, O(n)
- Moves
 - None
 - (But key is assigned O(n) times)
- We might be better!

Bubble Sort

Source: HKI, Köln

- Go through array again and again
- Compare all direct neighbors
- Swap if in wrong order
- Repeat until first loop without swaps
- Intuitive algorithm
- About as good/bad as the others so far
 - Worst case O(n²) comparisons and O(n²) swaps
 - Best case O(n) comparisons and 0 moves / swaps

Content of this Lecture

- Sorting
- Simple Methods
- Lower Bound

Lower Bound

- We found three algorithms with WC-complexity O(n²)
- Maybe there is no better algorithm?
- Maybe the problem is $\Omega(n^2)$?
- Let's see if we can find a lower bound on the number of comparisons

Lemma

Lemma

To sort a list of n distinct values, every algorithm using only value comparisons will need at least $\Omega(n*log(n))$ comparisons

Proof structure

- We argue about all possible ways to find the right permutation π
- Observe that there are n! different permutations
- Each could be the right one (and there is only one right one)
- To decide which, we are only allowed to compare two values
- Every comparison splits the group of all permutations into two disjoint partitions
- How often do we need to compare such that every partition has size 1 – in the best of all worlds?

Decision Tree

 $S[i_1] < S[j_1]$?

Decision Tree

Decision Tree

Full Decision Tree

Optimal Set of Comparison

- We have no clue about which concrete series of comparisons is optimal for a given list
- This doesn't matter; we are looking for a lower bound
 - We may always assume to take the best choice
- Best choice means: Creating only 1-partitions with as few comparisons as possible
- Thus, we want to know the length of the longest path through the optimal decision tree
 - Even in the best of all worlds we may need to make this number of comparisons to find the correct permutation
- Other way round: The optimal tree is the one with the shortest longest path

Intuition

Good

Bad

Shortest Longest Path

- Definition
 The height of a binary tree is the length of its longest path.
- Theorem
 A binary tree with k leaves has at least height log(k).
- Proof
 - Every inner node has at most two children
 - To cover as many leaves as possible in the level above the leaves, we need ceil(k/2) nodes
 - In the second level, we need ceil(k/2/2) nodes, etc.
 - After log(k) levels, only one node remains (root)
 - Qed.

Putting it all together

- Our decision tree has n! leaves (all permutations)
- The height of a binary tree with n! leaves is at least log(n!)
- Thus, the longest path in the optimal tree has at least log(n!) comparisons
- Since $n! \ge (n/2)^{n/2}$: $\log(n!) \ge \log((n/2)^{n/2}) = n/2*\log(n/2)$
- This gives the overall lower bound Ω(n*log(n))
- qed.

Summary

	Comparisons worst case	Comparisons best case	Additional space	Moves worst/best
Selection Sort	O(n ²)	O(n ²)	O(1)	O(n)
Insertion Sort	O(n ²)	O(n)	O(1)	O(n ²) / O(n)
Bubble Sort	O(n ²)	O(n)	O(1)	O(n ²) / O(1)
Merge Sort	O(n*log(n))	O(n*log(n))	O(n)	O(n*log(n))