Team Jago Data Mining 2017 project

Sklearn, KNIME, H2O

Team members:

Crippa Mattia -- 10397252 Tran Khanh Huy Paolo -- 10401830 Pirovano Alberto Mario -- 10396610 Vetere Alessandro -- 10425802

Sklearn approach

Performance assessment:

- Stratified train test split with 67% train set and 33% test set
- To evaluate algorithms we used stratified 10 fold cross validation
- Stratification was necessary to face unbalanceness of classes

Preprocessing:

- Some variables had a too skewed distribution and to fix this we used the cubic root transformation to reshape them
- We used RobustScaler for normalizing and both OHE and scoring for categorical variables
- We applied KMeans to generate 4 clusters as additional columns

Sklearn approach: After cubic root

Sklearn approach: Visualize data using PCA

Sklearn approach: Models and Scores

Model	Threshold	F1 Cross Validation	F1 Test
Decision Tree	0.25	0.524 ± 0.024	0.525
Gaussian Naive Bayes	0.48	0.522 ± 0.016	0.528
<u>Random Forest</u>	0.24	0.545 ± 0.022	0.547
K Neighbors Classifier	0.24	0.531 ± 0.021	0.526
Multi Layer Perceptron	0.29	0.541 ± 0.022	0.542
Logistic Regression	0.25	0.525 ± 0.025	0.519
<u>XGBoost</u>	0.27	0.547 ± 0.023	0.547
Linear Discriminant Analysis	0.21	0.524 ± 0.026	0.516
Quadratic Discriminant Analysis	0.30	0.530 ± 0.022	0.524
Soft Voting Ensemble (RF, XGB, MLP)	0.24	0.548 ± 0.022	0.549

KNIME approach: Models

The models we tried were:

- Gradient Boosted
 Trees
- Naive Bayes
- Decision Trees with Gini Index
- Decision Trees with Gain Ratio
- Boosting learner with Naive Bayes and with Decision Trees
- Random Forest

Screenshot of the KNIME workflow

Deep learning approach: Autoencoders

- The training set is made of samples from the majority class.
- The training phase is done in an unsupervised way with the objective of minimizing the reconstruction MSE
- At inference phase we check the reconstruction MSE for each test sample We expect:
 - reconstructionMSE(test_sample) = 0 if "test_sample" belongs to majority class
 - reconstructionMSE(test_sample) > 0 if "test_sample" belongs to minority class

Practically we chose a reconstructionMSE_threshold of 0.065 for deciding how to classify data points and we achieved f1 = 0.47.

Deep learning approach: 2D hidden representation

We can see the test data points plotted in the 2 hidden dimensions of the 3rd hidden layer.

The color assigned to each point allow us to visualize the reconstruction MSE for each test point.

0.02