MAT 421: Introduction to Real Analysis I Pranvere 2012, Provim 2, Pergjigje

Stefan Kohl

1. A konvergjojne vargjet $\lim_{n\to\infty} f_n(x)$ me $f_n(x)$ si me poshte ne \mathbb{R} , dhe nese po, kemi vetem konvergjencen pikesore apo edhe konvergjencen uniforme?:

1.
$$f_n(x) = 0$$

5.
$$f_n(x) = x + n$$

5.
$$f_n(x) = x + n$$
 9. $f_n(x) = x + \frac{1}{n}$

2.
$$f_n(x) = 1$$

6.
$$f_n(x) = nx$$

2.
$$f_n(x) = 1$$
 6. $f_n(x) = nx$ 10. $f_n(x) = \frac{x}{n}$

3.
$$f_n(x) = x$$

7.
$$f_n(x) = x^2$$

3.
$$f_n(x) = x$$
 7. $f_n(x) = x^2$ 11. $f_n(x) = \frac{n}{x^2 + 1}$

4.
$$f_n(x) = n$$

8.
$$f_n(x) = x^2 + nx$$
 12. $f_n(x) = \frac{x^2}{n}$

12.
$$f_n(x) = \frac{x^2}{n}$$

(12 pike)

Pergjigja: Konvergjence uniforme: 1., 2., 3., 7. dhe 9.; konvergjence pikesore: 10. dhe 12.; nuk konvergjojne: 4., 5., 6., 8. dhe 11.

- 2. Vertetoni apo gjeni kundershembuj:
 - 1. Per cdo $c, x \in \mathbb{R}$ funksioni konstant $f_c(x) = c$ eshte i vazhdueshem ne
 - 2. Per cdo $c, x \in \mathbb{R}$ funksioni konstant $f_c(x) = c$ eshte i diferencueshem
 - 3. Cdo funksion $f: \mathbb{R} \to \mathbb{R}$ i cili eshte i vazhdueshem ne intervalin [0,1]eshte i vazhdueshem edhe ne intervalin [1, 2].
 - 4. Cdo funksion $f: \mathbb{R} \to \mathbb{R}$ i cili eshte i vazhdueshem ne cdo $x \in \mathbb{R}$ eshte i diferencueshem ne x = 0.
 - 5. Nese $f: \mathbb{R} \to \mathbb{R}$ eshte nje funksion i vazhdueshem te tille qe $\forall x \in \mathbb{Q} \ f(x) \in \mathbb{Q}$, ne kemi gjithmon $\forall x \in \mathbb{R} \setminus \mathbb{Q} \ f(x) \in \mathbb{R} \setminus \mathbb{Q}$.

- 6. Cdo funksion $f: \mathbb{R} \to \mathbb{R}$ te tille qe $f([0,1] \cup [2,3]) = [0,1]$ nuk eshte i vazhdueshem.
- 7. Cdo varg funksionesh (f_n) i cili konvergjon uniformisht ne intervalin $[0, 1 \epsilon]$ per cdo $\epsilon > 0$ konvergjon uniformisht edhe ne intervalin [0, 1].

(14 pike)

Pergjigja:

- 1. Vertetim: Le te jete $(x_n) \subset \mathbb{R}$ nje varg i cfaredoshem te tille qe $\lim_{n\to\infty} x_n = x$. Tani ne kemi $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} c = c = f(x)$, pra sipas perkufizimin funksioni f eshte i vazhdueshem ne x.
- 2. Vertetim: Le te jete $(x_n) \subset \mathbb{R} \setminus \{x\}$ nje varg i cfaredoshem te tille qe $\lim_{n\to\infty} x_n = x$. Atehere ne kemi $\lim_{n\to\infty} (f(x_n) f(x))/(x_n x) = \lim_{n\to\infty} (c-c)/(x_n x) = 0$, pra sipas perkufizimin funksioni f eshte i diferencueshem ne x.
- 3. Kundershembull: f(x) = x nese $x \neq 2$, dhe f(2) = 0.
- 4. Kundershembull: f(x) = |x|.
- 5. Kundershembull: f(x) = 0.
- 6. Kundershembull: f(x) = x nese x < 1, dhe f(x) = 1 nese $x \ge 1$.
- 7. Kundershembull: $f_n = x^n$.
- 3. Gjeni nje funksion $f: \mathbb{R} \to \mathbb{R}$ te vazhdueshme te tille qe f([0,1]) =]0,1[, apo tregoni qe nje funksion te tille nuk egziston. (4 pike)

Pergjigja: Nje funksion te tille nuk egziston. Vertetim: Le te jete f nje funksion i vazhdueshem te tille qe f([0,1]) =]0,1[. Zgjidhni nje varg $(x_n) \subset]0,1[$ te tille qe $\lim_{n\to\infty} x_n = 0$, dhe per cdo $n\in\mathbb{N}$ zgjidhni $y_n\in[0,1]$ te tille qe $f(y_n) = x_n$. Atehere ne kemi $\lim_{n\to\infty} f(y_n) = 0$. Sepse intervali [0,1] eshte i kufizuar, vargu (y_n) ka nje nenvarg (y_{n_i}) i cili konvergjon. Le te jete y limiti i tij. Sepse funksioni f eshte i vazhdueshem ne kemi f(y) = 0. Por intervali [0,1] eshte i mbyllur, pra $y\in[0,1]$, ne kundershtim me f([0,1]) = [0,1[. \square