Samuel Hinshelwood

Learn / Create / Eat / Worship

samhinsh@stanford.edu
M 708.439.4869
samhinshelwood.com
linkedin.com/in/samhinsh

Experience

Slack, iOS Engineer Intern Summer 2017

Apple, Mobile Systems QA Intern Summer 2016 Developed automated device triage system. Trained classifiers, prototyped device enclosures, wrote automation scripts, and built a web app for showcasing testing progress to the team.

Qualcomm, Engineering Intern Summer 2015 Developed diagnostic software features for Android devices, shipped to OEMs. Built threaded tool for stress-testing internal diagnostic server.

Education

Stanford University, Stanford, CA B.S. Computer Science, HCI, April 2018

Organizations

CODE2040, Fellow

CODE2040 is a nonprofit organization that creates pathways to educational, professional, and entrepreneurial success in technology for underrepresented minorities with a specific focus on Black and Latin@ folks.

Stanford SBSE, BYTES Program Founder Stanford Volunteer Service Org of the Year, 2016 BYTES is an Engineering-Service Projects Program within the Stanford Society of Black Scientists and Engineers. I taught technical workshops covering engineering fundamentals, and secured funding and mentorship to support student-designed projects.

Skills

iOS Dev: Swift

Backend: Python, C++, C, Java

Web: MEAN Stack

Misc: OpenCV, CAD, Sketch, CS6 Also Useful: Empathy, Teaching

Projects

Rise

iOS Swift app using Google Firebase and Core Data. Users contribute to local visual stories.

DoorMail

Voicemail device for doors, built on Raspberry Pi using Python, Watson Speech-To-Text API.

LineFollower

A cute little bot that simply follows a line. Built using Arduino, made for a music video!

Bucket Rover

A token-dispensing competitive bot built for Stanford's ME 210 mechatronics course.

Haptic Touch

Built a haptic finger using Leap.js. Won Stanford HackOverflow Hackathon 1st Place.

Mock WiiMote

An orientation-responsive "Wii" remote, built using Arduino and gyroscopic sensors.