Hierarchical Model for Antibody Kinetics: Revisions Based on Advisor Feedback

Kwan Ho Lee

UC Davis

2025-04-14

Overview

- Incorporates feedback from Dr. Morrison
- Aligns with Teunis et al. (2016, 2023) formulations
- Clarifies model parameter roles and their interpretation
- Assumes block-diagonal covariance structure across biomarkers

Full Model Structure

Two-phase within-host antibody kinetics:

$$\frac{dy}{dt} = \begin{cases} \mu_1 b(t), & t < t_1 \\ -\alpha y(t)^r, & t \geq t_1 \end{cases} \quad \text{with } \frac{db}{dt} = \mu_0 b(t) - cy(t)b(t)$$

Initial conditions: $y(0) = y_0$, $b(0) = b_0$

 $\mbox{Key transition:} \ t_1 \ \mbox{is the time when} \ b(t_1) = 0 \\$

 $\ \, \hbox{Derived quantity:} \,\, y_1=y(t_1)$

Definition of Model Quantities

Parameters used in the dynamic model:

- μ_0 : Pathogen growth rate
- μ_1 : Antibody production rate (driven by pathogen)
- c: Clearance rate how effectively antibodies eliminate pathogen
- α : Antibody decay rate (governs speed of waning)
- r: Shape of antibody decay (nonlinear power)
- y_0 : Initial antibody concentration at t=0
- b_0 : Initial pathogen concentration at t=0
- $y_1 = y(t_1)$: Peak antibody level computed at time of pathogen clearance

Note: Only the first 7 are estimated. y_1 is derived from the ODE solution.

Model Comparison: 2016 vs Our Formulation

Component	Teunis (2016)	Our Model
Pathogen ODE	$\mu_0 b(t) - c y(t)$	$\overline{\ \mu_0 b(t) - c y(t) b(t)}$
Antibody ODE (pre- t_1)	$\mu y(t)$	$\mu_1 b(t)$
Antibody ODE (post- t_1)	$-\alpha y(t)^r$	Same
Antibody growth type	Exponential	Pathogen-driven
Antibody rate name	μ	μ_1
t_1 formula	Uses μ	Uses μ_1

Note:

- ullet Antibody production depends on pathogen presence (b(t)), not constant exponential growth
- Pathogen clearance is proportional to both antibody and pathogen levels $\left(c\ y(t)\ b(t)\right)$

Hierarchical Priors - Subject-Level and Means

Subject-level parameters:

$$\theta_{ij} \sim \mathcal{N}(\boldsymbol{\mu}_j, \, \boldsymbol{\Sigma}_j), \quad \theta_{ij} = \begin{bmatrix} y_{0,ij} \\ b_{0,ij} \\ \boldsymbol{\mu}_{0,ij} \\ \boldsymbol{\mu}_{1,ij} \\ \boldsymbol{c}_{ij} \\ \boldsymbol{\alpha}_{ij} \\ \boldsymbol{r}_{ij} \end{bmatrix}$$

Hyperparameters – Means:

- ullet μ_{j} : population-level mean vector for biomarker j
- Prior on μ_j :

$$\boldsymbol{\mu}_j \sim \mathcal{N}(\boldsymbol{\mu}_{\mathrm{hyp},j},\, \boldsymbol{\Omega}_{\mathrm{hyp},j})$$

Clarifying Parameter Roles

Why the confusion about number of parameters?

• The dynamic model contains 8 named parameters:

$$\mu_0, \mu_1, c, \alpha, r, y_0, b_0, y_1$$

- But only 7 are estimated the 8th (y_1) is computed.
- Let's break this down carefully.

Classification of Parameters

Estimated Parameters (7 total):

• Core model parameters (5):

$$\mu_0, \ \mu_1, \ c, \ \alpha, \ r$$

Initial conditions (2):

$$y_0, b_0$$

Derived Quantity (not estimated):

 $\bullet \ y_1 :$ peak antibody level computed as $y(t_1)$

Time of Pathogen Clearance: t_1

Definition: t_1 is the time at which the pathogen is cleared, i.e., $b(t_1)=0$ Analytic expression (Teunis et al., 2016):

$$t_1 = \frac{1}{\mu_1 - \mu_0} \log \left(1 + \frac{\left(\mu_1 - \mu_0 \right) b_0}{c \, y_0} \right)$$

Key observations:

- \bullet t_1 depends on μ_0 , μ_1 , b_0 , y_0 , and c
- \bullet Used to determine $y_1=y(t_1)$ by solving the antibody ODE up to this point
- Not treated as an estimated parameter it is computed from model inputs

Why It's a Seven-Parameter Model

- Our model estimates 7 parameters:
 - 5 core biological parameters: $\mu_0, \ \mu_1, \ c, \ \alpha, \ r$
 - 2 initial conditions: y_0, b_0
- ullet But we often talk about an eighth quantity, y_1 , the highest level of antibody.
- So why isn't y_1 counted as a parameter?

Why y_1 Is Not Fit Directly

• y_1 is the antibody level at the time the pathogen is cleared:

$$y_1=y(t_1) \quad \text{where } b(t_1)=0$$

- It is not an "input" to the model we don't estimate it with MCMC.
- Instead, we calculate it from the model:
 - We estimate parameters like μ_1 , y_0 , b_0 ...
 - Then we solve the ODEs to find t_1 and compute $y(t_1)$
- ullet In other words: y_1 is a **derived output**, not a parameter being fit.

How y_1 Is Computed

• y_1 is computed by solving the coupled ODE system:

$$\frac{dy}{dt} = \mu_1 b(t), \quad \frac{db}{dt} = \mu_0 b(t) - cy(t)b(t)$$

- The solution is evaluated at $t = t_1$ (pathogen clearance point).
- Therefore:

$$y_1 = y(t_1; \ \mu_1, \ y_0, \ b_0, \ \mu_0, \ c)$$

Recap: What We Estimate

Seven model parameters:

- $\mu_0, \ \mu_1, \ c, \ \alpha, \ r$ (biological process)
- y_0 , b_0 (initial state)

Derived quantity:

ullet $y_1=y(t_1)$, not directly estimated

Hierarchical Bayesian Structure

Individual parameters:

$$\theta_{ij} = \begin{bmatrix} y_{0,ij} \\ b_{0,ij} \\ \mu_{0,ij} \\ \mu_{1,ij} \\ c_{ij} \\ \alpha_{ij} \\ r_{ij} \end{bmatrix} \sim \mathcal{N}(\mu_j, \Sigma_j)$$

Hyperparameters:

- μ_j : population-level means (per biomarker j)
- Σ_i : 7×7 covariance matrix over parameters

Subject-Level Parameters: θ_{ij}

$$\boldsymbol{\theta}_{ij} \sim \mathcal{N}(\boldsymbol{\mu}_j, \, \boldsymbol{\Sigma}_j), \quad \boldsymbol{\theta}_{ij} \in \mathbb{R}^7$$

Where:

$$\theta_{ij} = \begin{bmatrix} y_{0,ij} \\ b_{0,ij} \\ \mu_{0,ij} \\ \mu_{1,ij} \\ c_{ij} \\ \alpha_{ij} \\ r_{ij} \end{bmatrix}, \quad \Sigma_j \in \mathbb{R}^{7 \times 7}$$

Each subject i has a unique 7-parameter vector per biomarker j, capturing individual-level variation in dynamics.

Hyperparameters: Priors on Population Means

Population-level means:

$$\boldsymbol{\mu}_j \sim \mathcal{N}(\boldsymbol{\mu}_{\mathrm{hyp},j}, \boldsymbol{\Omega}_{\mathrm{hyp},j})$$

Interpretation:

- ullet μ_j : average parameter vector for biomarker j
- $\mu_{\text{hyp},j}$: prior guess (e.g., vector of zeros)
- \bullet $\Omega_{{
 m hyp},j}^{(1)}$: covariance matrix encoding uncertainty

Example:

$$\mu_{\mathrm{hyp},j} = 0, \quad \Omega_{\mathrm{hyp},j} = 100 \cdot I_7$$

Hyperparameters: Priors on Covariance

Covariance across parameters:

$$\Sigma_j^{-1} \sim \mathcal{W}(\Omega_j, \nu_j)$$

- Σ_i : variability/covariance in subject-level parameters
- Ω_i : prior scale matrix
- \bullet ν_i : degrees of freedom

Example:

$$\Omega_j = 0.1 \cdot I_7, \quad \nu_j = 8$$

Measurement Error and Precision Priors

Observed antibody levels:

$$\log(y_{\mathrm{obs},ij}) \sim \mathcal{N}(\log(y_{\mathrm{pred},ij}), \tau_j^{-1})$$

Precision prior:

$$\tau_j \sim \mathsf{Gamma}(a_j,b_j)$$

- τ_i : shared measurement precision for biomarker j
- Gamma prior allows flexible noise modeling

Matrix Algebra Computation

Let K = 7 (parameters), J biomarkers. Then:

$$\Theta_i = \begin{bmatrix} \theta_{i1} & \theta_{i2} & \cdots & \theta_{iJ} \end{bmatrix} \in \mathbb{R}^{K \times J}$$

Assume:

$$\mathrm{vec}(\Theta_i) \sim \mathcal{N}(\mathrm{vec}(M), \Sigma_K \otimes I_J)$$

Matrix Algebra - Simplified Structure

Setup:
$$\Theta_i \in \mathbb{R}^{7 \times J}$$

Model:

$$\mathrm{vec}(\Theta_i) \sim \mathcal{N}(\mathrm{vec}(M), \Sigma_K \otimes I_J)$$

- Σ_K : 7×7 covariance (same across biomarkers)
- ullet I_J : biomarkers assumed uncorrelated
- Block-diagonal covariance

Understanding $vec(\Theta_i)$

Each $\theta_{ij} \in \mathbb{R}^7$:

$$\theta_{ij} = \begin{bmatrix} y_0 \\ b_0 \\ \mu_0 \\ \mu_1 \\ c \\ \alpha \\ r \end{bmatrix}$$

Flattening:

$$\operatorname{vec}(\Theta_i) \in \mathbb{R}^{7J \times 1}$$

Understanding vec(M)

Let
$$M = [\mu_1 \, \mu_2 \, \cdots \, \mu_J] \in \mathbb{R}^{7 \times J}$$

Example for J=3:

$$M = \begin{bmatrix} \mu_{1,1} & \mu_{1,2} & \mu_{1,3} \\ \mu_{2,1} & \mu_{2,2} & \mu_{2,3} \\ \mu_{3,1} & \mu_{3,2} & \mu_{3,3} \\ \mu_{4,1} & \mu_{4,2} & \mu_{4,3} \\ \mu_{5,1} & \mu_{5,2} & \mu_{5,3} \\ \mu_{6,1} & \mu_{6,2} & \mu_{6,3} \\ \mu_{7,1} & \mu_{7,2} & \mu_{7,3} \end{bmatrix}$$

Covariance Structure: $\Sigma_K \otimes I_J$

$$\mathsf{Cov}(\mathsf{vec}(\Theta_i)) = \Sigma_K \otimes I_J$$

- \bullet Σ_K : parameter covariance matrix
- ullet I_J : biomarker-wise independence
- Kronecker product yields block-diagonal matrix

Example: Kronecker Product with K=2, J=3

Let:

$$\Sigma_K = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix}, \quad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Then:

$$\Sigma_K \otimes I_3 \in \mathbb{R}^{6 \times 6}$$

Expanded Matrix: $\Sigma_K \otimes I_3$

$$\Sigma_K \otimes I_3 = \begin{bmatrix} \sigma_{11} & 0 & 0 & \sigma_{12} & 0 & 0 \\ 0 & \sigma_{11} & 0 & 0 & \sigma_{12} & 0 \\ 0 & 0 & \sigma_{11} & 0 & 0 & \sigma_{12} \\ \sigma_{21} & 0 & 0 & \sigma_{22} & 0 & 0 \\ 0 & \sigma_{21} & 0 & 0 & \sigma_{22} & 0 \\ 0 & 0 & \sigma_{21} & 0 & 0 & \sigma_{22} \end{bmatrix}$$

Next Steps: Modeling Correlation Across Biomarkers

Current Limitation:

ullet Biomarkers assumed independent: I_J

Planned Extension:

• Use full covariance Σ_J :

$$\mathsf{Cov}(\mathsf{vec}(\Theta_i)) = \Sigma_K \otimes \Sigma_J$$

Extending to Correlated Biomarkers

Assume
$$K=3$$
, $J=3$

Define:

$$\Sigma_K = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}, \quad \Sigma_J = \begin{bmatrix} \tau_{11} & \tau_{12} & \tau_{13} \\ \tau_{21} & \tau_{22} & \tau_{23} \\ \tau_{31} & \tau_{32} & \tau_{33} \end{bmatrix}$$

Kronecker Product Structure: $\Sigma_K \otimes \Sigma_J$

$$\Sigma_K \otimes \Sigma_J = \begin{bmatrix} \sigma_{11} \Sigma_J & \sigma_{12} \Sigma_J & \sigma_{13} \Sigma_J \\ \sigma_{21} \Sigma_J & \sigma_{22} \Sigma_J & \sigma_{23} \Sigma_J \\ \sigma_{31} \Sigma_J & \sigma_{32} \Sigma_J & \sigma_{33} \Sigma_J \end{bmatrix}$$

Now biomarkers and parameters can be correlated.

Expanded Form: $\Sigma_K \otimes \Sigma_J$ (3x3)

The 9×9 matrix contains all combinations $\sigma_{ab} \tau_{cd}$

Not block-diagonal — includes cross-biomarker correlation

Practical To-Do List (for Chapter 2)

Model Implementation:

- \bullet Define full Σ_J and prior: $\Sigma_J^{-1} \sim \mathcal{W}(\Psi, \nu)$
- Implement $\Sigma_K \otimes \Sigma_J$ in JAGS

Simulation + Validation:

- Simulate individuals with correlated biomarkers
- Fit both block-diagonal and full-covariance models
- Compare fit: DIC, WAIC, predictive checks