Package 'svi'

August 3, 2023

Type Package

Title SVI Implied Volatility Surface
Version 0.2.1
Author Wolfgang Schadner
Maintainer Wolfgang Schadner < wolfgang.schadner@uni.li>
Description The package provides methods for fitting the Stochastic Volatility Inspired (SVI) equation to a slice of implied volatilities. Supported methods are the direct least-squares, vanishing wings, and quasi-explicit.
License GPL-2 GPL-3
Encoding UTF-8
LazyData true
Depends Matrix
R topics documented:
axel 1 durrleman 2 geom 3 rnd 4 sp500 5 svi 6 svifit 7 svipar 8
Index 10
axel Axel-Vogt Parameters
Description Loads the Axel-Vogt parameters, which are a typical example of arbitrage SVI surface. Usage axel()

2 durrleman

Details

The paramters are given as:

```
-0.041, 0.1331, 0.306, 0.3586, 0.4153
```

corresponding to (a, b, rho, m, sigma). When inspecting the Durrleman condition, one recognizes that this setting is not entirely positive.

Value

Loads the parameters par and shows the Durrleman/SVI plot.

Author(s)

Wolfgang Schadner

References

• • •

See Also

svi

Examples

```
## Not run
# axel()
```

durrleman

Durrleman Condition

Description

Calculates the the Durrleman condition of arbitrage.

Usage

```
durrleman(x, par, Gs=FALSE)
```

Arguments

Χ

Vector of option's log moneyness. Preferably defined as

$$x = log(\frac{strike\ price}{forward\ price})$$

par

Either the five SVI parameters (a, b, ρ, m, σ) or the conic coefficients z.

Gs

Returns additional values of $G_{1\pm}$ and G_2 , see Martini and Mingone (2022) for

details.

geom 3

Details

The Durrleman function g(x) should be positive across all x for an abritrage free volatility surface. If g(x) is positive, then the risk-neutral density q(x) is also positive. Let y be the implied variance for the moneyness x, then the durrleman function is defined as:

$$g(x) := (1 - \frac{xy'}{2y})^2 - \frac{y'^2}{4}(\frac{1}{y} + \frac{1}{4}) + \frac{y''}{2}$$

Alternatively, this might be expressed as:

$$g(x) = G_1(x) + \frac{1}{2\sigma}G_2(x)$$

(cp. Martini and Mingone (2022)).

Value

Returns the values g of the Durrleman function.

Author(s)

Wolfgang Schadner

References

Martini, C. and Mingone, A. (2022): No Arbitrage SVI, SIAM J. Financial Math., 13(1), pp. 227-261

See Also

svi

Examples

```
## Not run
# load("sp500")
# df <- opt$`tau = 7 days`
# x <- df$k
# y <- df$ivol^2
# fit <- svifit(x, y)
# plot(x, y)
# lines(x, fit$yhat)</pre>
```

geom

Geometric Properties

Description

Calculates the center and asymptotes of the SVI hyperbola.

Usage

geom(par)

4 rnd

Arguments

par

Either the five SVI parameters, or the six z coefficients defining the conic.

Details

Calculates the center and asymptotes of the SVI hyperbola.

Value

Returns the values of the Durrleman function.

Author(s)

Wolfgang Schadner

References

•••

See Also

svi

Examples

```
## Not run
# load("sp500")
# df <- opt$`tau = 7 days`
# x <- df$k
# y <- df$ivol^2
# fit <- svifit(x, y)
# plot(x, y)
# lines(x, fit$yhat)</pre>
```

rnd

Risk-Neutral Density

Description

Computes the risk-neutral density distribution for some SVI parameters par.

Usage

```
rnd(x, par)
```

Arguments

Values of forward log moneyness. I.e., log(strike/forward).

par Either the five SVI parameters, or the six z coefficients defining the conic.

Value

Returns the risk-neutral density distribution.

sp500

Author(s)

Wolfgang Schadner

References

•••

See Also

svi

Examples

```
## Not run
# axel()
# q <- rnd(x, par)
# plot(x, q)</pre>
```

sp500

Example options of the S&P 500

Description

This data set covers option data for the S&P 500 as observed on

Usage

```
data(sp500)
```

Format

A list of the options with different maturities and strikes.

Source

OptionMetrics.

References

...

6 svi

svi

Calculate SVI predicted values

Description

Calculates the y values as predicted by SVI for some given x and parameter set.

Usage

```
svi(x, par)
```

Arguments

x Values of forward log moneyness. I.e., log(strike/forward).

par Either the five SVI parameters, or the six z coefficients defining the conic.

Details

...

Value

Returns the predicted y values.

Note

...

Author(s)

Wolfgang Schadner

References

•••

See Also

svipar

Examples

```
## Not run
# load("sp500")
# df <- opt$`tau = 7 days`
# x <- df$k
# y <- df$ivol^2
# fit <- svifit(x, y)
# plot(x, y)
# lines(x, fit$yhat)</pre>
```

svifit 7

svifit Fitting SVI volatilities

Description

Fits the Stochastic Volatility Inspired (SVI) equation to an implied volatility surface of given maturity. The input variable x represents the log-moneyness (logarithm of strike over forward-price) and y the implied variance (implied volatility squared).

Usage

svifit(x, y, fit="direct", na.rm=TRUE, low_ecc=TRUE, W=NA, a=NA, init=c(0, 0.2))

Arguments

x Vector of option's log moneyness. Preferably defined as

$$x = log(\frac{strike\ price}{forward\ price})$$

y Vector of implied variances corresponding to x. That is, the squared implied

volatilities over x.

fit Fitting method to be used. Possible vbalues are:

• direct: direct least-squares

• direct_UC: direct unconstrained least-squares

• vanish: vanishing wings, i.e. flat extrapolation

• QE: quasi-explicit fit, i.e. iterative routine

na.rm Removing NA's

low_ecc Correction for the low eccentricity bias.

W (optional) Weighting vector for a weighted least-squares.

a (optional) For vanish fit: specify the y-level for the flat extrapolation.

init (optional) For QE fit: Starting values of m and σ .

Details

The method is implemented as described by Schadner (2023).

Value

Returns a list of the following:

yhat Fitted y values.

par The SVI parameters a, b, ρ, m, σ .

z The conic coefficients defining the hyperbola.

input The input data.

Author(s)

Wolfgang Schadner

8 svipar

References

Schadner, W. (2023): Direct Fit for SVI Implied Volatilities

See Also

svipar

Examples

```
## Not run
# library(svi)
# data(sp500)
# df <- sp500$`tau = 7 days`
# x <- df$k
# y <- df$ivol^2
# fit <- svifit(x, y)
# plot(x, y)
# lines(x, fit$yhat)
#
# # Risk-Neutral Density:
# q <- rnd(x, fit$par)
# plot(x, q)</pre>
```

svipar

Translating conic coefficients into SVI parameters, and vice versa

Description

This function transforms the 6 conic coefficients z into the 5 SVI paramters, or other way around.

Usage

svipar(par)

Arguments

par

Either the six conic coefficients z, or the 5 SVI paramters: $(ab\rho m\sigma)$.

Details

A conic is generally defined as:

$$0 = Dz$$

for the coefficients z and the design matrix D

$$D = (x^2 x y y^2 x y 1)$$

. There exists a direct mapping between z and the 5 SVI parameters, see Schadner 2023.

Value

Returns either the five SVI paramters:

$$par = (ab\rho m\sigma)$$

Or the z coefficients.

svipar 9

Note

...

Author(s)

Wolfgang Schadner

References

...

See Also

svipar

Examples

Not run # TBD

Index

```
* datasets
    sp500, 5
*\ svi, implied\ volatility
    axel, 1
    durrleman, 2
    geom, 3
    rnd, 4
    svi, 6
    svifit, 7
    svipar, 8
axel, 1
durrleman, 2
geom, 3
rnd, 4
sp500, 5
svi, 2-5, 6
svifit, 7
svipar, 6, 8, 8, 9
```