Exercice 1 : c'est du déjà vu...

1) Soient f une fonction continue sur un intervalle I et $a < b \in I$. Alors pour tout $y \in [f(a); f(b)]$ il existe $c \in [a; b]$ tel que f(c) = y.

Si f est une fonction polynômiale de degré impair n, de coefficient dominant a_n . On suppose $a_n > 0$; alors $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$.

Donc $\exists A \in \mathbb{R}$ tel que $\forall x \leq A, f(x) \leq -1$ et $\exists B \in \mathbb{R}$ tel que $\forall x \geq B, f(x) \geq 1$. Comme f est continue sur \mathbb{R} , on peut appliquer le théorème des valeurs intermédiaires à f sur [A; B], donc il existe $c \in [A; B]$ tel que f(x) = 0.

2) Soit f une fonction continue sur [a;b], dérivable sur]a;b[et telle que f(a)=f(b). Alors il existe $c\in]a;b[$ tel que f'(c)=0.

On suppose que f s'annule en a_1, \dots, a_k avec $k \geq 2$. D'après les hypothèses, pour $\ell \in \{1; \dots; k-1\}$, f est continue sur $[a_\ell; a_{\ell+1}]$, dérivable sur $]a_\ell; a_{\ell+1}[$ et $f(a_\ell) = f(a_{\ell+1}) = 0$. On applique le théorème de Rolle sur ces k-1 intervalles, donc il existe $b_1, \dots, b_{k-1} \in]a_1; a_2[, \dots,]a_{k-1}; a_k[$ respectivement tels que $f'(b_i) = 0$.

Exercice 2: on taffe dur...

- 1) Soit f une fonction continue sur [a;b] et dérivable sur [a;b]. Alors $\exists c \in]a;b[,f(b)-f(a)=(b-a)f'(c)$.
- 2) Soient $0 < x < y \in \mathbb{R}$. La fonction $f: x \mapsto \ln(x)$ est continue sur [x;y], dérivable sur]x;y[, donc, d'après le théorème des accroissements finis, $\exists c \in]x;y[$, f(y)-f(x)=(y-x)f'(c). D'où $\ln(y)-\ln(x)=\frac{y-x}{c}$. Or $x < c < y \Leftrightarrow \frac{1}{y} \leq \frac{1}{c} \leq \frac{1}{x}$. Donc $\frac{1}{y} \leq \frac{\ln(y)-\ln(x)}{y-x} \leq \frac{1}{x}$ (puisque y-x>0).
 - 3) Soit f une fonction de classe C^n sur [a; b] et telle que $f^{(n)}$ soit dérivable sur [a; b]. Alors

$$\left| f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} \right| \le \frac{(b-a)^{n+1}}{(n+1)!} \sup_{x \in]a;b[} |f^{(n+1)}(x)|.$$

4) La fonction $f: x \mapsto \cos(x)$ est de classe C^{∞} sur \mathbb{R} et on a $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f^{(n)}(x) = (-1)^p \cos(x)$ si n = 2p et $f^{(n)}(x) = (-1)^{p+1} \sin(x)$ si n = 2p + 1. Pour n = 2p + 1.

$$\left|\cos(x) - \sum_{k=0}^{5} \frac{f^{(k)}(0)}{k!} x^{k}\right| = \left|\cos(x) - \left(1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!}\right)\right| \le \frac{x^{6}}{6!} \sup_{t \in]0; x[} |\cos(t)| \le \frac{x^{6}}{6!}.$$

Exercice 3: "Dure limite"...

- 1) On sait que $\cos(x) = 1 \frac{x^2}{2} + \circ(x^2)$.
- 2) On a $\ln(\cos(x)) = \ln\left(1 \frac{x^2}{2} + o(x^2)\right)$ d'après le développement limité de $\cos(x)$; puis, par composition

avec le développement limité de $\ln(1+x)$, $\ln(\cos(x)) = -\frac{x^2}{2} + o(x^2)$.

(Imaginez que $X = -\frac{x^2}{2} + o(x^2)$ et on utilise $\ln(1+X) = X + o(X)$.)

3) D'après ce qui précède $\frac{1}{x^2} \ln(\cos(x)) = \frac{1}{x^2} \times \left(-\frac{x^2}{2} + \circ(x^2) \right) = -\frac{1}{2} + \circ(1).$

C'est-à-dire $\lim_{x\to 0} \frac{1}{x^2} \ln(\cos(x)) = -\frac{1}{2}$.