High-Dimensional Changepoint Detection via a Geometrically Inspired Mapping

Thomas Grundy, Rebecca Killick, and Gueorgui Mihaylov Presenter: JaeHoon Kim

December 2, 2024

Outline

- ► Introduction
- ► Methodologies
 - ► Geometric Mapping
 - ► Analyzing Mapped Time Series
 - ► GeomCP Algorithm
 - ► Non-Normal and Dependent Data

Problem Setting

▶ Suppose we observe time vectors $Y_1, ..., Y_n$ independently from p-dimensional Gaussian distributions with diagonal covariance:

$$Y_i \stackrel{\text{ind.}}{\sim} N_p(\mu_i, \sigma_i^2 I_p), \quad i = 1, \dots, n.$$

We define m change points $\tau_{1:m} = \{\tau_1, \dots, \tau_m\}$ with $0 = \tau_0 < \tau_1 < \dots < \tau_m < \tau_{m+1} = n$, such that:

$$(\mu_{\tau_k}, \sigma_{\tau_k}^2) = \dots = (\mu_{\tau_{k+1}-1}, \sigma_{\tau_{k+1}-1}^2),$$

 $(\mu_{\tau_k}, \sigma_{\tau_k}^2) \neq (\mu_{\tau_{k+1}}, \sigma_{\tau_{k+1}}^2), \quad k = 0, \dots, m.$

Geometric mapping

- ► We aim to detect changepoints in the mean and variance vectors utilizing geometric properties that capture these changes.
 - ▶ Mean changes can be detected by observing variations in distances.
 - ► Variance changes can be identified by tracking changes in angles.
- ▶ Using this mapping, we can transform a *p*-dimensional time series into a two-dimensional representation.
- ► A pre-specified reference vector is required to calculate distances and angles.

Geometric mapping

- ▶ We propose a data-driven reference vector as follows:
 - 1. Set the reference vector $y_0 = 1$.
 - 2. Translate all points based on this vector:

$$y'_{i,j} = y_{i,j} - \left(\min_{i} y_{i,j} - y_{0,j}\right), \quad i \in [1,\ldots,n], \quad j \in [1,\ldots,p].$$

- ► This approach has several desirable properties:
 - ▶ It bounds the angle measure between 0 and $\pi/4$.
 - It ensures that changes in individual series are reflected in the angle measure
 - ► It does not affect the distance measure.

Geometric mapping

- ► The distance and angle measures are defined using the standard scalar product.
- ► To compute the distance measure, d_i , we apply the mapping $\delta : \mathbb{R}^p \to \mathbb{R}_{>0}$:

$$d_i = \delta(\mathbf{y_i}) = \sqrt{\langle (\mathbf{y_i'} - \mathbf{1}), (\mathbf{y_i'} - \mathbf{1}) \rangle},$$

which is equivalent to $\|\mathbf{y}_{\mathbf{i}}' - \mathbf{1}_{p}\|_{2}$.

► To compute the angle measure, a_i , we use the mapping $\alpha : \mathbb{R}^p \to \left[0, \frac{\pi}{4}\right]$:

$$a_i = lpha(\mathbf{y_i}) = \cos^{-1}\left(rac{\langle \mathbf{y_i'}, \mathbf{1}
angle}{\sqrt{\langle \mathbf{y_i'}, \mathbf{y_i'}
angle}\sqrt{\langle \mathbf{1}, \mathbf{1}
angle}}
ight),$$

which represents the principal angle between y'_i and 1.

Analyzing Mapped Time Series

Theorem 2.3.1

Suppose we have independent random variables, $Y_i \sim N(\mu_i, \sigma_i^2)$. Let

$$X = \sqrt{\sum_{i=1}^{p} Y_i^2},$$

then as $p \to \infty$,

$$\frac{X - \sqrt{\sum_{i=1}^{p} (\mu_i^2 + \sigma_i^2)}}{\sqrt{\frac{2\sum_{i=1}^{p} (\mu_i \sigma_i)^2 + \sum_{i=1}^{p} \sigma_i^4 + 2\rho\sqrt{\sum_{i=1}^{p} \sum_{j=1}^{p} \mu_i^2 \sigma_i^2 \sigma_j^4}}{2\sum_{i=1}^{p} (\mu_i^2 + \sigma_i^2)}} \overset{\mathcal{D}}{\to} N(0, 1).$$

where ρ is an unknown correlation parameter.

Analyzing Mapped Time Series

- ► In the literature, it is commonly assumed that angles also follow a Normal distribution, as shown in Fearnhead et al. (2018).
- ► To detect changepoints in the mapped series, we use the PELT algorithm by Killick et al. (2012).
- ▶ When the Normal approximation holds for distance and angle measures, we use the Normal likelihood as the test statistic.
- ► If the Normal approximation is unsuitable, we recommend a non-parametric test statistic, such as the empirical distribution from Zou et al. (2014).

GeomCP Algorithm

Algorithm GeomCP

Require: $\mathbf{Y} \in \mathbb{R}^{n \times p}$, threshold ξ , *Univariate Cpt Method*.

Step 1: Centralize data by $y'_{i,j} = y_{i,j} - (\min_i y_{i,j} - 1)$.

Step 2: Perform distance mapping: $y_i \stackrel{\delta}{\to} d_i$, $\forall i$.

Step 3: Perform *Cpt Method* on *d* to recover changepoints, $\hat{\tau}^{(d)}$.

Step 4: Perform angle mapping: $y_i \stackrel{\alpha}{\rightarrow} a_i$, $\forall i$.

Step 5: Perform *Cpt Method* on a to recover changepoints, $\hat{\tau}^{(a)}$.

Step 6: $\forall k$, if min $\left|\hat{\tau}^{(a)} - \hat{\tau}_k^{(d)}\right| < \xi$, then remove $\hat{\tau}_k^{(d)}$ from $\hat{\tau}^{(d)}$.

return $\hat{\tau} = \operatorname{sort}(\hat{\tau}^{(a)}, \hat{\tau}^{(d)}).$

Non-Normal and Dependent Data

- ► We may allow for an arbitrary covariance matrix:
 - $ightharpoonup Y_{\text{pre}} \stackrel{\text{ind.}}{\sim} N_p(0, \Sigma)$
 - $ightharpoonup Y_{post} \stackrel{\text{ind.}}{\sim} N_p(0, \sigma \Sigma)$
- ► We still expect the angles between the time vectors and the reference vector to change, indicating changes in covariance.
- ► Alternatively, other inner products, such as the Mahalanobis Distance (Mahalanobis, 1936), could be considered in the distance and angle mappings.

Non-Normal and Dependent Data

- ► If the data originates from a non-Normal distribution, changes in the first and second moments would still likely appear in the distance and angle mappings.
- ► However, understanding the distribution of the mapped series becomes more challenging.
- ► Allowing for temporal dependence between time points introduces temporal dependence in the mapped series as well.
- ► Understanding how temporal dependence in the multivariate series transfers to the mapped series is non-trivial.

References I

- Fearnhead, P., Maidstone, R., and Letchford, A. (2018). Detecting changes in slope with an I0 penalty. *Journal of Computational and Graphical Statistics*, pages 1–11.
- Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal detection of changepoints with a linear computational cost. *Journal of the American Statistical Association*, 107(500):1590–1598.
- Mahalanobis, P. C. (1936). On the generalized distance in statistics. *National Institute of Science of India*.
- Zou, C., Yin, G., Feng, L., and Wang, Z. (2014). Nonparametric maximum likelihood approach to multiple change-point problems. *The Annals of Statistics*, 42(3):970–1002.