Ruicheng Wu Workshop 3 07/13/2017

1.
$$f_n = f_0 + f_1 x + f_2 x^2 + f_3 x^3 \dots + f_n x^n$$

$$-8x f_n = 0 - 8f_0 x - 8f_1 x^2 - 8f_2 x^3 - 8f_3 x^4 \dots - 8f_{n-1} x^n$$

$$-\sum_n 4^n x^n = -1 - 4x - 4^2 x^2 - 4^3 x^3 \dots - 4^n x^n$$
By adding them together:
$$(1 - 8x) f_n = -\sum_n 4^n x^n$$

$$f_n = \frac{1}{(1 - 4x) * (1 - 8x)} = \frac{c_1}{(1 - 4x)} + \frac{c_2}{(1 - 8x)}$$

$$J_n = \frac{1}{(1-4x)*(1-8x)} = \frac{1}{(1-4x)} + \frac{1}{(1-8x)}$$

 $c_1 + c_2 = 1, 8c_1 + 4c_2 = 0$, solve them $= \cite{c} c_1 = -1, c_2 = 2$

$$\frac{-1}{(1-4x)} + \frac{2}{(1-8x)}$$
$$\sum_{n} -1 * 4^{n} x^{n} + \sum_{n} 2 * 8^{n} x^{n} = \sum_{n} (-1 * 4^{n} + 2 * 8^{n}) * x^{n}$$

Thus $f_n = (-1 * 4^n + 2 * 8^n)$ $p(n) = c * 4^n$ $c*4^{n} = 7c*4^{n-1} + \frac{18}{4}*4^{n}$ $4^{n-1}*(-3c-18) = 0$. Thus c = -6. The particular solution is $(-6)*4^{n}$ We also find a solution to $g_n = c7^n$. The function should be $g_n = c7^n + (-6)*$

Now plug $g_0 = 1$, we get 1 = c - 6 = c = 7, thus the solution to the original function is

$$g_n = 7^{n+1} + (-6) * 4^n$$

3. Divide and Conquer: Assume the initial size is n, and any further size becomes $n/(2^n)$, since it is a divide and conquer algorithm, its size decrease by half.We have formula

$$f_n = (-1 * 4^n + 2 * 8^n)$$

according to 1. Since $N=2^n$

$$f_n = (-1 * N^2 + 2 * N^3)$$

, as N can be as large as infinity, discarding all these constant and leave the term with highest power, we conclude this algorithm has a complexity of N^3 .

Strassens Algorithm: According to $2 \cdot g_n = 7^{n+1} + (-6) * 4^n$ $g_n = 7 * 7^n + (-6) * N^2$, and also we observe that $7^n = (2^n)^{\log_2 7}$. Hence it is

$$g_n = 7 * N^{\log_2 7} + (-6) * N^2$$

.By discarding constants and choosing the highest power term, we get the complexity for this one ,which is N^{log_27} .