CHAPITRE 6

LES LIMITES DES FONCTIONS :

6.1 **Activités:**

6.1.1 Activité (Limite infinie en 0):

Soit f la fonction définie sur \mathbb{R}^* par : $f(x) = \frac{1}{x^2}$

- 0.001 0.1 1
- 2) Qu'en déduisez-vous pour les valeurs de f(x): Quand x prend des valeurs proches de 0 (c-à-d quand x tend vers 0).

Solution:

1)	х	-1	-0,1	-0,01	-0,001	0.001	0.1	1
1)	f(x)	1	100	10000	10^{6}	10^{6}	100	1

2) On remarque que lorsque x sa proche de 0: f(x) prend des grande valeurs : On dit que la limite lorsque x tend vers 0 de f(x) est $+\infty$: et on écrit : $\lim_{x\to 0} f(x) = +\infty$. C'est à dire : $\lim_{x\to 0} \frac{1}{x^2} = +\infty$.

et on écrit :
$$\lim_{x \to 0} f(x) = +\infty$$
. C'est à dire : $\lim_{x \to 0} \frac{1}{x^2} = +\infty$.

- **Remarque 6.1** On a aussi : $\lim_{x\to 0} \frac{1}{x^4} = +\infty$; $\lim_{x\to 0} \frac{1}{x^6} = +\infty$; $\lim_{x\to 0} \frac{1}{x^8} = +\infty$.
 - On général : si n est pair alors : $\lim_{x\to 0} \frac{1}{x^n} = +\infty$.

6.1.2 Activité (Limite finie en 0):

Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^2$

- 1) Recopier et compléter le tableau suivant : $\frac{x}{f(x)}$ -0, 1-0.01-0.0010.001 0.1 1
- 2) Qu'en remarquez-vous pour les valeurs de f(x): Quand x tend vers 0.

Solution:

- -0.01-0,001-0, 10,001 0, 11) 10^{-6} 0,01 0,0001 0,01
- 2) On remarque que lorsque x tend 0: f(x) tend vers 0: On a donc : $\lim_{x\to 0} f(x) = 0$. C'est à dire : $\lim_{x\to 0} x^2 = 0$.

Remarque 6.2

• On a aussi: $\lim_{x \to 0} x^3 = 0$; $\lim_{x \to 0} x^4 = 0$; $\lim_{x \to 0} x^5 = 0$

• On général : si $n \in \mathbb{N}$ alors : $\lim_{n \to \infty} x^n = 0$.

6.1.3 Activité (Limite infinie en $+\infty$ et en $-\infty$):

Soit f la fonction définie sur \mathbb{R} par : f(x) = x; $g(x) = x^2$ et $h(x) = x^3$

I)	1) Recopi	er et compléter le tableau suivant :
----	-----------	--------------------------------------

х	10	100	10 ³	10 ⁴	10 ⁵	108	10^{10}	 +∞
f(x)								
g(x)								
h(x)								

2) a) Qu'en remarquez-vous pour les valeurs de f(x): Quand x tend vers $+\infty$.

b) Qu'en remarquez-vous pour les valeurs de g(x): Quand x tend vers $+\infty$.

c) Qu'en remarquez-vous pour les valeurs de h(x): Quand x tend vers $+\infty$.

II) 1) Recopier et compléter le tableau suivant :

x	-10	-100	-10^{3}	-10^{4}	-10^{5}	-10^{8}	-10^{10}	 -∞
f(x)								
g(x)								
h(x)								

2) a) Qu'en remarquez-vous pour les valeurs de f(x): Quand x tend vers $-\infty$.

b) Qu'en remarquez-vous pour les valeurs de g(x): Quand x tend vers $-\infty$.

c) Qu'en remarquez-vous pour les valeurs de h(x): Quand x tend vers $-\infty$.

Solution:

			x	10	100	10^{3}	10^{4}	10^{5}	10^{8}	10^{10}	 +∞
I) 1	1)	La tablaau	f(x)				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			+8	
	1)	1) Le tableau :	g(x)	100	10 ⁴	10^{6}	108	10^{10}	10^{16}	10^{20}	 8
			h(x)	10^{3}	10^{6}	10^{9}	10^{12}	10^{15}	10^{24}	10^{30}	 +∞

2) a) Lorsque x tend vers $+\infty$: on a f(x) tend vers $+\infty$, on écrit : $\lim_{x \to +\infty} f(x) = +\infty$: c'est à dire : $\lim_{x \to +\infty} x = +\infty$

b) Lorsque x tend vers $+\infty$: on a g(x) tend vers $+\infty$, on écrit: $\lim_{x \to +\infty} g(x) = +\infty$: c'est à dire: $\lim_{x \to +\infty} x^2 = +\infty$

c) Lorsque x tend vers $+\infty$: on a h(x) tend vers $+\infty$, on écrit : $\lim_{x \to +\infty} h(x) = +\infty$: c'est à dire : $\lim_{x \to +\infty} x^3 = +\infty$

-100 -10^{3} -10^{4} -10^{5} -10^{8} -10^{10} -10 -10^{3} -10^{4} -10^{5} -10^{8} -10^{10} -100f(x)-10II) 1) Le tableau: 10^{10} 100 10^{4} 10^{6} 10^{8} 10^{16} 10^{20} g(x)+∞ -10^{9} $-10^{\overline{12}}$ -10^{24} -10^{30} -10^{15} -10^{3} -10^{6} h(x)

2) a) Lorsque x tend vers $-\infty$: on a f(x) tend vers $-\infty$, on écrit: $\lim_{x \to -\infty} f(x) = -\infty$: c'est à dire : $\lim_{x \to -\infty} x = -\infty$

b) Lorsque x tend vers $-\infty$: on a g(x) tend vers $+\infty$, on écrit : $\lim_{x \to -\infty} g(x) = +\infty$: c'est à dire : $\lim_{x \to -\infty} x^2 = +\infty$

c) Lorsque x tend vers $-\infty$: on a h(x) tend vers $-\infty$, on écrit: $\lim_{x \to \infty} h(x) = -\infty$: c'est à dire:

Proprieté 6.1

- $\lim_{x \to +\infty} x = +\infty$ et $\lim_{x \to +\infty} x^2 = +\infty$ et $\lim_{x \to +\infty} x^3 = +\infty$ et $\lim_{x \to +\infty} x^4 = +\infty$ On général : pour tous $n \in \mathbb{N}^*$: $\lim_{x \to +\infty} x^n = +\infty$
- $\lim_{x \to -\infty} x = -\infty$ et $\lim_{x \to -\infty} x^2 = +\infty$ et $\lim_{x \to -\infty} x^3 = -\infty$ et $\lim_{x \to -\infty} x^4 = +\infty$ On général : soit $n \in \mathbb{N}^*$: si n est pair alors : $\lim_{x \to -\infty} x^n = +\infty$ si *n* est impair alors : $\lim x^n = -\infty$

6.1.4 Limite finie d'une fonction en $+\infty$ et en $-\infty$

- **Proprieté 6.2** $\bullet \lim_{x \to +\infty} \frac{1}{x} = 0 \text{ et } \lim_{x \to +\infty} \frac{1}{x^2} = 0 \text{ et } \lim_{x \to +\infty} \frac{1}{x^3} = 0 \text{ et } \lim_{x \to +\infty} \frac{1}{x^4} = 0$ On général : pour tous $n \in \mathbb{N}^*$: $\lim_{x \to +\infty} \frac{1}{x^n} = 0$
 - $\lim_{x \to -\infty} \frac{1}{x} = 0$ et $\lim_{x \to -\infty} \frac{1}{x^2} = 0$ et $\lim_{x \to -\infty} \frac{1}{x^3} = 0$ et $\lim_{x \to -\infty} \frac{1}{x^4} = 0$ On général : soit $n \in \mathbb{N}^*$: $\lim_{x \to -\infty} \frac{1}{x^n} = 0$

6.2 Définitions et propriétés :

6.2.1 Limite finie d'une fonction en un point :

Définition 6.1

Soit $a \in \mathbb{R}$ et $l \in \mathbb{R}$ et soit f une fonction définie sur un intervalle de la forme : I =]a - r; a + r[où r > 0. ou sur un intervalle de la forme $(I =]a - r; a + r[-\{a\})$. Si f(x) tend vers l quand x tend vers a alors on note : $\lim_{x \to a} f(x) = l$ ou ($\lim_{x \to a} f(x) = l$)

Exemple 6.1

- $\lim_{x \to 0} f(x) = x + 1 = 3$, car si x tend vers 2 (par exemple : x = 1,99) on a : f(x) = 1,99 + 1 = 2,99 tend vers 3.
- $\lim_{x \to 2} f(x) = 2x + 1 = 7$, car si x tend vers 3 (par exemple : x = 2,9) on a : $f(x) = 2 \times 2, 9 + 1 = 6,8$ tend vers 7.

Exercice 48

Calculer les limites suivantes :

1)
$$\lim_{x \to 3} 2x + 5$$
; 2) $\lim_{x \to 2} 8x - 5$; 3) $\lim_{x \to 1} \frac{x + 3}{x + 1}$; 4) $\lim_{x \to 0} 2x + 5$; 5) $\lim_{x \to -1} 2x + 5$; 6) $\lim_{x \to 2} \sqrt{2x + 5}$.

Remarque 6.3

Limite infinie en un point	Limite infinie en ±∞	Limite finie en ±∞	Limite finie en un point
↓	↓	↓	\
$ \lim_{x \to a} f(x) = \pm \infty $	$ \lim_{x \to \pm \infty} f(x) = \pm \infty $	$ \lim_{x \to \pm \infty} f(x) = l $	$ \lim_{x \to a} f(x) = l $

6.2.2 La limite de la fonction : $x \mapsto x^n$ en 0

Proprieté 6.3

On $\hat{\mathbf{a}}: \lim_{x\to 0} x = 0$; $\lim_{x\to 0} x^2 = 0$; $\lim_{x\to 0} x^3 = 0$ En général : pour tous $n \in \mathbb{N}^*: \lim_{x\to 0} x^n = 0$

6.2.3 Quelques opérations sur les limites :

Remarque 6.4

(Un nombre strictement positif) $\times + \infty = +\infty$

(Un nombre strictement positif) $\times -\infty = -\infty$

(Un nombre strictement négatif) $\times + \infty = -\infty$

(Un nombre strictement négatif) $\times -\infty = +\infty$

Exercice : (Les limites de la forme : $\lim_{x \to +\infty} a \cdot x^n$):

Calculer les limites suivantes :

1). $\lim_{x \to +\infty} -2x^3$; 2). $\lim_{x \to -\infty} -4x^3$; 3). $\lim_{x \to -\infty} -3x^2$; 4). $\lim_{x \to +\infty} 5x^2$; 5). $\lim_{x \to -\infty} 2x^3$

Solution:

1) Calcul de la limite : $\lim_{x \to +\infty} -2x^3$. on a : $\lim_{x \to +\infty} x^3 = +\infty$ et -2 < 0 donc : $\lim_{x \to +\infty} -2x^3 = -\infty$.

2) Calcul de la limite : $\lim_{x \to -\infty} -4x^3$. on a : $\lim_{x \to -\infty} x^3 = -\infty$ et -4 < 0 donc : $\lim_{x \to -\infty} -4x^3 = +\infty$.

3) Calcul de la limite : $\lim_{x \to -\infty} -3x^2$. on a : $\lim_{x \to -\infty} x^2 = +\infty$ et -3 < 0 donc : $\lim_{x \to -\infty} -3x^2 = -\infty$.

4) Calcul de la limite : $\lim_{x \to +\infty} 5x^2$. on a : $\lim_{x \to +\infty} x^2 = +\infty$ et 5 > 0 donc : $\lim_{x \to +\infty} 5x^2 = +\infty$.

5) Calcul de la limite : $\lim_{x \to -\infty} 2x^3$. on a : $\lim_{x \to -\infty} x^3 = -\infty$ et 2 > 0 donc : $\lim_{x \to -\infty} 2x^3 = -\infty$.

6.2.4 Limite d'une fonction polynôme en un point - limite d'une fonction rationnelle en un point :

★ Rappelle : (Polynôme)

• La fonction polynôme de degré 2 c'est toute fonction de la forme : $P(x) = ax^2 + bx + c$ ($a \ne 0$). Exemples : $P(x) = 3x^2 - 4x + 1$; $P(x) = x^2 + 2x - 1$; $P(x) = x^2 + 1$;... donner les autres exemples ?...

• La fonction polynôme de degré 3 c'est toute fonction de la forme : $P(x) = ax^3 + bx^2 + cx + d \ (a \ne 0)$. Exemples : $P(x) = x^3 - 3x^2 - 4x + 1$; $P(x) = 5x^3 + x^2 + 2x - 1$; $P(x) = 2x^3 - 1$;.... donner les autres exemples ...

• La fonction polynôme de degré 5 c'est toute fonction de la forme : $P(x) = ax^5 + bx^4 + cx^3 + dx^2 + ex + f$ $(a \ne 0)$.

Exemple: $P(x) = 4x^5 - 4x + 1$; $P(x) = x^5 + 2x - 1$; $P(x) = x^5 + 8$;....donner des autres exemples ...

• La fonction polynôme de degré 1 c'est toute fonction de la forme : $P(x) = ax + b \ (a \neq 0)$. et s'appelle aussi la fonction affine.

Exemple: P(x) = 4x + 1; P(x) = 2x - 1; P(x) = x + 2;.... donner des autres exemples ...

Proprieté 6.4

Soient *P* et *Q* deux fonctions polynômes $x_0 \in \mathbb{R}$: on a :

- $\bullet \lim_{x \to x_0} P(x) = P(x_0).$
- Si $Q(x_0) \neq 0$ alors : $\lim_{x \to x_0} \frac{P(x)}{Q(x)} = \frac{P(x_0)}{Q(x_0)}$.

Exemples:

1) Soit *P* la fonction définie par :
$$P(x) = x^2 + x + 1$$
 on a : $\lim_{x \to 1} P(x) = P(1) = 1^2 + 1 + 1 = 3$ et $\lim_{x \to 2} P(x) = P(2) = 2^2 + 2 + 1 = 7$

2) Soit
$$f$$
 la fonction définie par : $f(x) = \frac{x+3}{x-1}$ on a : $(D_f = \mathbb{R} - \{1\})$

$$\lim_{x \to 2} f(x) = f(2) = \frac{2+3}{2-1} = 5 \quad (\text{car}: 2 \in D_f)$$

6.3 La limite à droite - la limite à gauche :

Activité (Activité 9 page 110)

Soit
$$f$$
 la fonction définie sur \mathbb{R}^* par : $f(x) = \frac{1}{x}$, $(\mathbb{R}^* = \mathbb{R} - \{0\} =] - \infty; 0[\cup]0; +\infty[)$

- 1) Construire la courbe de la fonction f dans un repère orthonormé $(O; \vec{i}; \vec{j})$
- 2) a) Recopier et compléter le tableau suivant :

	à gauche de 0							à droite de	: 0		
х	-0.01	-0.001	-0.0001	-0.00001	• • •	0		0.00001	0.0001	0.001	0.01
f(x)						X	• • •				

- b) Que remarquez-vous pour les valeurs de f(x): Quand x tend vers 0 et x > 0: (c'est à dire quand x tend vers 0 à droite).
- c) Que remarquez-vous pour les valeurs de f(x): Quand x tend vers 0 et x < 0: (c'est à dire quand x tend vers 0 à gauche).

Solution:

2) a) Le tableau:

X	-0.01	-0.001	-0.0001	-0.00001	 0	 0.00001	0.0001	0.001	0.01
f(x)	-100	-1000	-10000	-100000	 X	 100000	10000	1000	100

b) On remarque que f(x) prend des valeurs plus grands (c'est à dire : $f(x) \mapsto +\infty$) quand x vers 0 à droite.

On dit que limite de f(x) est : $+\infty$ quand x tend vers 0 à droite : on écrit :

$$\lim_{x \to 0^+} f(x) = +\infty \text{ ou } \lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty \quad \text{c'est à dire}: \quad \lim_{x \to 0^+} \frac{1}{x} = +\infty \text{ ou } \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty$$

c) On remarque que f(x) prend des valeurs négatives (c'est à dire : $f(x) \mapsto -\infty$) quand x vers 0 à

On dit que limite de f(x) est : $-\infty$ quand x tend vers 0 à gauche : on écrit :

$$\lim_{\substack{x\to 0^-\\x<0}} f(x) = -\infty \text{ ou } \lim_{\substack{x\to 0\\x<0}} f(x) = -\infty \quad \text{c'est à dire}: \quad \lim_{\substack{x\to 0^-\\x<0}} \frac{1}{x} = -\infty \text{ ou } \lim_{\substack{x\to 0\\x<0}} \frac{1}{x} = -\infty$$

Remarque 6.5

Soit $n \in \mathbb{N}^*$: On a déjà vu si : n est pair alors : $\lim_{x \to 0} \frac{1}{x^n} = +\infty$ donc :

• Si :
$$n$$
 est pair alors : $\lim_{x \to 0^+} \frac{1}{x^n} = +\infty$ et $\lim_{x \to 0^-} \frac{1}{x^n} = +\infty$

• Si :
$$n$$
 est pair alors : $\lim_{x \to 0^+} \frac{1}{x^n} = +\infty$ et $\lim_{x \to 0^-} \frac{1}{x^n} = +\infty$
• Si : n est impair alors : $\lim_{x \to 0^+} \frac{1}{x^n} = +\infty$ et $\lim_{x \to 0^-} \frac{1}{x^n} = -\infty$

Exemple 6.2 .
$$\lim_{x \to 0^+} \frac{1}{x^2} = +\infty$$
 et $\lim_{x \to 0^-} \frac{1}{x^2} = +\infty$ et $\lim_{x \to 0^+} \frac{1}{x^5} = +\infty$ et $\lim_{x \to 0^-} \frac{1}{x^5} = -\infty$

Exercice 49

Calculer les limites suivantes :

$$\lim_{x \to 0^{+}} \frac{1}{x^{4}} = \dots \qquad \text{et} \qquad \lim_{x \to 0^{-}} \frac{1}{x^{4}} = \dots \qquad \text{et} \qquad \lim_{x \to 0^{+}} \frac{1}{x^{3}} = \dots \qquad \text{et} \qquad \lim_{x \to 0^{-}} \frac{1}{x^{3}} = \dots$$

$$\lim_{x \to 0^{+}} \frac{-1}{x^{2}} = \dots \qquad \text{et} \qquad \lim_{x \to 0^{-}} \frac{-2}{x^{5}} = \dots$$

$$\lim_{x \to 0^{+}} \frac{1}{x^{2}} = \dots \qquad \text{et} \qquad \lim_{x \to 0^{-}} \frac{-2}{x^{5}} = \dots$$

Opérations sur les limites : 6.4

On admet toutes les opérations suivantes :

Limite d'une somme :

$\lim_{x\to a} f\left(x\right)$	l	l	l	+∞	$-\infty$	+∞
$\lim_{x\to a}g\left(x\right)$	l'	+∞	$-\infty$	+∞	$-\infty$	$-\infty$
$\lim_{x\to a} \left[f\left(x\right) + g\left(x\right) \right]$	l + l'	+∞	$-\infty$	+∞	-∞	F.I.

Remarque: « F.I. » signifie « Forme Indéterminée ». Ceci veut dire que l'on ne peut pas conclure directement à l'aide du tableau. Il faut étudier plus en détail la fonction pour « lever l'indétermination » et trouver la limite.

Limite d'un produit :

$\lim_{x\to a} f\left(x\right)$	l	l > 0	l > 0	l < 0	l < 0	+∞	+∞	$-\infty$	0	0
$\lim_{x\to a}g\left(x\right)$	l'	+∞	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	+∞	$-\infty$
$\lim_{x\to a} \left[f\left(x\right) \times g\left(x\right) \right]$	$l \times l'$	+∞	$-\infty$	$-\infty$	+∞	+∞	$-\infty$	+∞	F.I.	F.I.
			Il s'agit de la règle des signes							

Limite de l'inverse :

$\lim_{x\to a} f\left(x\right)$	l	+∞	$-\infty$	$ \begin{array}{c} 0\\ \text{et } f(x) > 0 \end{array} $	$ \begin{array}{c} 0\\ \text{et } f(x) < 0 \end{array} $
$\lim_{x \to a} \frac{1}{f(x)}$	$\frac{1}{l}$	0	0	+∞	$-\infty$

Limite d'un quotient :

$\lim_{x\to a} f\left(x\right)$	l	l	$l \neq 0$	+∞ ou -∞	+∞ ou −∞	+∞ ou -∞	0
$\lim_{x\to a}g\left(x\right)$	$l' \neq 0$	$+\infty$ ou $-\infty$	0	0	$l' \neq 0$	+∞ ou -∞	0
$\lim_{x \to a} \frac{f(x)}{g(x)}$	$\frac{l}{l'}$	0	+∞ ou −∞	+∞ ou -∞	+∞ ou −∞	F.I.	F.I.
			Il faut étu	idier le	règle des		

signe de qsignes

Remarque 6.6

- Ces opérations restent valables pour : $x \to a^+$ ou $x \to a^-$ ou $x \to +\infty$ ou $x \to -\infty$.
- Les formes indéterminées : " $\frac{0}{0}$ "; " $\frac{\infty}{\infty}$ "; " $(+\infty) + (-\infty)$ "; " $0 \times \infty$ ".

Exercice 50

Calculer les limites suivantes :

- 1) $\lim_{x \to +\infty} x + \frac{1}{x}$; 2) $\lim_{x \to -\infty} x^3 + \frac{1}{x}$; 3) $\lim_{x \to +\infty} x^2 + x$; 4) $\lim_{x \to +\infty} x^2 + \frac{1}{x}$; 5) $\lim_{x \to 0^+} 3x + \frac{7}{x}$; 6) $\lim_{x \to 3^+} \frac{1}{x 3}$; 7) $\lim_{x \to 2^-} \frac{-1}{x 2}$; 8) $\lim_{x \to 5^+} \frac{2}{x 5}$; 9) $\lim_{x \to +\infty} x^2 x$;
- 10) $\lim_{x \to -\infty} (x^2 + 1) \times \frac{1}{x}$; 11) $\lim_{x \to 1^+} \frac{2x + 1}{x 1}$; 12) $\lim_{x \to 2^-} \frac{2x + 1}{x 2}$; 13) $\lim_{x \to 1} \frac{x^2 1}{x 1}$

Limite d'une fonction polynôme et d'une fonction rationnelle en $+\infty$ et $-\infty$

Proprieté 6.5

Soient P et Q deux fonctions polynômes telles que : $P(x) = ax^n + bx^{n-1} + \cdots + \lambda$ avec $(a \neq 0)$ et $Q(x) = a'x^m + b'x^{m-1} + \cdots + \lambda'$ avec $(a' \neq 0)$ on a : $\lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} ax^n \quad \text{et} \quad \lim_{x \to -\infty} P(x) = \lim_{x \to -\infty} ax^n$

Exemple 6.3

$$\bullet \lim_{x \to +\infty} x^2 - 10x + 7 = \lim_{x \to +\infty} x^2 = +\infty$$

•
$$\lim_{x \to -\infty} 2x^3 + 10x^2 - 17x + 1 = \lim_{x \to -\infty} 2x^3 = -\infty$$
 (3 est impair et 2 > 0).

•
$$\lim_{x \to +\infty} -5x^3 + 10x + 1 = \lim_{x \to +\infty} -5x^3 = -\infty \text{ (car : } \lim_{x \to +\infty} x^3 = +\infty \text{ et } -5 < 0 \text{)}$$

La limite d'une fonction polynôme quand x tend vers $+\infty$ ou $-\infty$ est la limite de terme du plus grand degré.

 $\lim_{x \to +\infty} \frac{P(x)}{O(x)} = \lim_{x \to +\infty} \frac{ax^n}{a'x^m} \quad \text{et} \quad \lim_{x \to -\infty} \frac{P(x)}{O(x)} = \lim_{x \to -\infty} \frac{ax^n}{a'x^m}$ On a aussi:

Exemple 6.4 $\int_{x \to +\infty}^{5} \frac{5x^3 + 3x + 1}{x^2 - 10x + 3} = \lim_{x \to +\infty} \frac{5x^3}{x^2} \lim_{x \to +\infty} 5x = +\infty.$ (car 5 > 0 et $x \to +\infty$)

•
$$\lim_{x \to -\infty} \frac{-7x^3 + 10}{-x^2 - 8x + 1} = \lim_{x \to -\infty} \frac{-7x^3}{-x^2} \lim_{x \to -\infty} 7x = -\infty$$
. (car $7 > 0$ et $x \to -\infty$)

Techniques de calcul des limites —

Remarque 6.7

• Si P est une fonction polynôme et $a \in \mathbb{R}$ alors : $\lim_{x \to a} P(x) = P(a)$.

Exemple 6.5

Si:
$$P(x) = x^2 + x + 4$$
 alors: $\lim_{x \to 2} P(x) = P(2) = 2^2 + 2 + 4 = 10$.

• Si f est une fonction rationnelle et $a \in D_f$:

Exemple 6.6
Si:
$$f(x) = \frac{2x+1}{x+1}$$
 alors: $\lim_{x \to 3} f(x) = f(3) = \frac{2 \times 3 + 1}{3+1} = \frac{7}{4}$.

- Limite d'une fonction polynome et d'une fonction rationnelle en $+\infty$ et en $-\infty$
- $\text{Si P est une fonction polynôme de degr\'e 3 c'est \`a dire:} \quad P(x) = ax^3 + bx^2 + cx + d \; ; \; (a \neq 0) \; \text{car:} \\ \lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} ax^3 \quad \text{et} \quad \lim_{x \to -\infty} P(x) = \lim_{x \to -\infty} ax^3$

Exemple 6.7

Posons:
$$P(x) = -2x^3 + 5x^2 + 4x + 1$$
 alors:
$$\lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} -2x^3 = -\infty \text{ et } \lim_{x \to -\infty} P(x) = \lim_{x \to -\infty} -2x^3 = +\infty$$

 $\begin{array}{c} \rhd \ \ {\rm Si} : P \ \ {\rm est \ une \ polyn\^ome \ de \ degr\'e \ 2 \ c'est \ \grave{a} \ dire} : \\ \lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} ax^2 \quad {\rm et } \quad \lim_{x \to -\infty} P(x) = \lim_{x \to -\infty} ax^2 \\ \end{array}$

Exemple 6.8

Si:
$$P(x) = 3x^2 - 2x + 1$$
 alors:
$$\lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} 3x^2 = +\infty \text{ et } \lim_{x \to -\infty} P(x) = \lim_{x \to -\infty} 3x^2 = +\infty$$
 On aussi:

$$\lim_{x \to +\infty} ax + b = \lim_{x \to +\infty} ax = \begin{cases} +\infty; (a > 0) \\ -\infty; (a < 0) \end{cases} \text{ et : } \lim_{x \to -\infty} ax + b = \lim_{x \to -\infty} ax = \begin{cases} -\infty; (a > 0) \\ +\infty; (a < 0) \end{cases}$$

Proprieté 6.6

$$x \mapsto f(x) = \frac{ax+b}{cx+d}$$
 avec : $(a \neq 0)$ et $(c \neq 0)$).

$$\lim_{x \to +\infty} \frac{ax+b}{cx+d} = \frac{a}{c} \quad \text{et} \quad \lim_{x \to -\infty} \frac{ax+b}{cx+d} = \frac{a}{c}$$

Exemple 6.9
$$\lim_{x \to +\infty} \frac{2x+1}{3x+5} = \frac{2}{3} \text{ et } \lim_{x \to -\infty} \frac{2x+b}{x-1} = 2\lim_{x \to +\infty} \frac{3x-2}{x+1} = \dots? \text{ et } \lim_{x \to -\infty} \frac{x+1}{-x+2} = \dots? \text{ et } \lim_{x \to -\infty} \frac{-x+3}{2x} = \dots?$$

Proprieté 6.7

La limite de la fonction : $x \mapsto f(x) = \frac{a}{cx+d}$ avec $(c \neq 0)$).

$$\lim_{x \to +\infty} \frac{a}{cx+d} = 0 \quad \text{et} \quad \lim_{x \to -\infty} \frac{a}{cx+d} = 0$$

Exemple 6.10 $\frac{3}{1} = 0$ et $\lim_{x \to +\infty} \frac{4}{4x+1} = 0$ et $\lim_{x \to -\infty} \frac{8}{x+1} = 0$

Autres exemples : (en général)

•
$$\lim_{x \to +\infty} \frac{-3x^2 + 4x + 2}{-x + 2} = \lim_{x \to +\infty} \frac{-3x^2}{-x} = \lim_{x \to +\infty} 3x = +\infty.$$

•
$$\lim_{x \to -\infty} \frac{2x+1}{x^2+3} = \lim_{x \to -\infty} \frac{2x}{x^2} = \lim_{x \to -\infty} \frac{2}{x} = +\infty.$$

Proprieté 6.8

Soit $l \in \mathbb{R}$ avec : $(l \neq 0)$

• Si
$$l > 0$$
 alors : $\frac{l}{0^+} = +\infty$ et $\frac{l}{0^-} = -\infty$

• Si:
$$l < 0$$
 alors: $\frac{l}{0^+} = -\infty$ et $\frac{l}{0^-} = +\infty$

Exemple 6.11
1)
$$\lim_{\substack{x \to 3 \\ x \to 3}} \frac{1}{x - 3} = \frac{1}{0^+} = +\infty$$

2)
$$\lim_{\substack{x \to 3 \\ x \to 3}} \frac{1}{x - 3} = \frac{1}{0^-} = -\infty$$

3)
$$\lim_{\substack{x \to 2 \\ x \to 2}} \frac{-1}{x - 2} = \frac{-1}{0^+} = -\infty$$

4)
$$\lim_{\substack{x \to 2 \\ x \to 2}} \frac{-1}{x - 2} = \frac{-1}{0^-} = +\infty$$

5)
$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{2x - 1}{x - 1} = \frac{1}{0^{-}} = -\infty$$

6)
$$\lim_{\substack{x \to 1 \\ x \to 1}} \frac{2x - 1}{x - 1} = \frac{1}{0^+} = +\infty$$

7)
$$\lim_{\substack{x \to 1 \\ x \to 1}} \frac{3x - 1}{-x + 1} = \frac{2}{0^+} = +\infty$$

8)
$$\lim_{\substack{x \to 1 \\ x \to 1}} \frac{3x - 1}{-x + 1} = \frac{2}{0^-} = -\infty$$

Autres méthodes de calcul:

1) La forme indéterminée : " $\frac{0}{0}$ "

Par exemple calculons la limite : $\lim_{x\to 2} \frac{3x-6}{x-2}$ Si on substitue, on obtient $\frac{0}{0}$, donc on ne peut pas calculer cette limite directement. alors il faut factorisé par : x-2 : cette méthode est appelé la méthode de la factorisa-

$$\lim_{x \to 2} \frac{3x - 6}{x - 2} = \lim_{x \to 2} \frac{3(x - 2)}{x - 2} = 3$$

Autres exemples:

•
$$\lim_{x \to 1} \frac{5x - 5}{x - 1} = \lim_{x \to 1} \frac{5(x - 1)}{x - 1} = 5$$

•
$$\lim_{x \to 3} \frac{2x - 6}{x - 3} = \lim_{x \to 1} \frac{2(x - 3)}{x - 3} = 2.$$

•
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1} = \lim_{x \to 1} x + 1 = 2.$$