```
In [29]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean squared error, r2 score, mean absolute error
In [2]:
data = pd.read csv('D:\Code\Python\Dataset\income.csv')
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1500 entries, 0 to 1499
Data columns (total 5 columns):
 # Column Non-Null Count Dtype
    _____
               -----
0
   ID
               1500 non-null int64
1 Income 1500 non-null int64
2 Age 1500 non-null int64
3 Education 1500 non-null int64
4 Gender 1500 non-null int64
dtypes: int64(5)
memory usage: 58.7 KB
In [3]:
data.head()
Out[3]:
  ID Income Age Education Gender
0 1
        113
            69
                    12
                           1
1
  2
        91
            52
                    18
                           0
2 3
        121
            65
                     14
                           0
3
  4
        81
            58
                    12
                           0
        68
  5
            31
                     16
In [4]:
data.drop duplicates(inplace=True)
data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1500 entries, 0 to 1499
Data columns (total 5 columns):
 # Column Non-Null Count Dtype
   ----
               _____
    ID
 0
               1500 non-null
                               int64
1
               1500 non-null
    Income
                               int64
    Age
Age
2
               1500 non-null
                               int64
3
   Education 1500 non-null int64
4
   Gender 1500 non-null
                               int64
dtypes: int64(5)
memory usage: 70.3 KB
In [11]:
sns.pairplot(data[['Income', 'Age', 'Education', 'Gender']])
plt.show()
```

٦.

140 7

٦

In [14]:
sns.heatmap(data[['Income', 'Age', 'Education', 'Gender']].corr(), annot=True)
plt.show()


```
In [22]:
```

```
X = data['Age'].values.reshape(-1, 1)
y = data['Income']
```

In [23]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

In [24]:

```
model = LinearRegression()
model.fit(X_train, y_train)
```

Out[24]:

LinearRegression()

In [25]:

```
y_pred = model.predict(X_test)
```

In [26]:

```
pred_vs_actual = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred, 'Difference': y_te
st - y_pred})
pred_vs_actual.describe()
```

Out[26]:

	Actual	Predicted	Difference
count	300.000000	300.000000	300.000000
mean	76.076667	75.119477	0.957190
std	20.991417	15.437326	13.799281
min	16.000000	50.221960	-41.219389
25%	60.000000	62.217552	-8.210939
50%	75.000000	73.213511	2.287408
75%	91.250000	88.457908	9.782908
max	134.000000	102.202857	34.779509

In [27]:

```
plt.scatter(X_test, y_test, color='blue')
plt.plot(X_test, y_pred, color='red')
plt.xlabel('Age')
plt.ylabel('Income')
plt.show()
```


In [35]:

```
print('R2 score: %.2f' % r2_score(y_test, y_pred))
print('MAE\t: %.2f' % mean_absolute_error(y_test, y_pred))
print('MSE\t: %.2f' % mean_squared_error(y_test, y_pred))
print('RMSE\t: %.2f' % np.sqrt(mean_squared_error(y_test, y_pred)))
```

R2 score: 0.57 MAE : 11.08 MSE : 190.70 RMSE : 13.81