Lecture 5 Algorithm Performance Analysis

Answer:

200 tare of Agentium Ferromaneo / Matyere	
1. What does Big-O notation represent?	
A) The exact runtime of an algorithm	
B) The upper bound of an algorithm's growth rate	
C) The lower bound of an algorithm's growth rate	
D) The average runtime of an algorithm	
Answer:	
2. What does asymptotic analysis focus on?	
A) Exact runtime values for specific inputs	
B) Program behavior as input size becomes very large	
C) Measuring time using a stopwatch	
D) Hardware-specific performance metrics	
Answer:	
Allower.	
3. What is the average-case complexity of searching for a letter in a word using linear sea boolean hasLetter(String word, char letter);	ırch?
A) O(1)	
B) O(\log n)	
C) O(n)	
D) O(n \log n)	
Answer:	
, memen	
4. Which is true about an algorithm's average-case complexity?	
A) It must be equal to best-case complexity.	
B) It must be equal to worst-case complexity.	
C) It lies between best-case and worst-case complexities.	
D) It cannot be determined without more information.	
Answer:	
5. Which of the following complexities is the fastest for large input sizes?	
A) O(n^2)	
B) O(n \log n)	
C) O(n)	
D) O(\log n)	
Answer:	
6. If an algorithm has a runtime of $f(n) = 3n + 5$, what is its Big-O complexity?	
A) O(1)	
B) O(n)	
C) O(n^2)	
D) O(\log n)	

```
7. What is the best-case complexity of a linear search in an array?
A) O(1)
B) O(n)
C) O(\log n)
D) O(n^2)
Answer:
8. Which notation represents the exact bound of an algorithm's growth rate?
A) Big-O
B) Big-Omega (\Omega)
C) Big-Theta (Θ)
D) None of the above
Answer:
9. Given a function g(n) = 2^n + n^2 + 100, what is its Big-O complexity?
A) O(2<sup>n</sup>)
B) O(n^2)
C) O(n \log n)
D) O(1)
Answer:
10. Given a function g(n) = (n+100)^2 + 100n + 100000 n \log n, what is its Big-O complexity?
A) O(2<sup>n</sup>)
B) O(n^2)
C) O(n \log n)
D) O(1)
Answer:
11. For binary search on an array of sorted numbers, what is the worst-case time complexity?
A) O(1)
B) O(n)
C) O(\log n)
D) O(n^2)
Answer:
12. Describe the worst-case running time of the following code in Big-O notation in terms of the
variable n.
void f(int n) {
  int j = n;
  while (j > 2) {
      // O(1)
     j = j / 2;
 }
ANS:
```

```
13. What is the time complexity of function f1(n) and function f2(n), respectively?
void f1(n){
  for (int i = 0; i < n; i+=5) {
      // O(1)
 }
}
void f2(n){
  for (int i = 1; i < n; i*=5) {
      // O(1)
 }
}
A) O(\log n), O(\log n)
B) O(\log n), O(n)
C) O(n), O(\log n)
D) O(n), O(n)
Answer:
14. What is the time complexity of function f(n), which consists of two sequential loops?
void f(n){
  for (int i = 0; i < n; i++) {
      // O(1)
}
  for (int i = 1; i < n; i*=2) {
      // O(1)
 }
}
A) O(n \log n)
B) O(n^2)
C) O(\log n^2)
D) O(n)
Answer:
15. What is the time complexity of function f1(n) and function f2(n), respectively?
void f1(n){
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
      // O(1)
    }
 }
}
void f2(n){
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++) {
```

```
// O(1)
    }
 }
}
A) O(n \log n), O(n \log n)
B) O(n^2), O(n^2)
C) O(n \log n), O(n \log i)
D) O(n^2), O(n*i)
Answer:.
16. What is the time complexity of function f1(n) and function f2(n), respectively?
void f1(n){
  for (int i = 0; i < n; i++) {
    for (int j = 1; j < n; j *= 2) {
      // O(1)
    }
 }
}
void f2(n){
  for (int i = 0; i < n; i++) {
    for (int j = i; j \ge 1; j \ne 2) {
      // O(1)
    }
 }
}
A) O(n \log n), O(n \log n)
B) O(n^2), O(n^2)
C) O(n \log n), O(n \log i)
D) O(n^2), O(n*i)
Answer:
17. What is the time complexity of function f(int[] arr) w.r.t. input array size n in Big-O notation?
int f(int[] arr) {
  int range = 100;
  int start = arr.length / 2 - range / 2;
  int sum = 0;
  for (int i = start; i < start + range; i++) {
    sum += arr[i];
 }
  return sum;
}
A) O(1)
B) O(\log n)
C) O(n)
```

```
D) O(n \log n)
Answer:
18. Describe the worst-case running time of the following code in Big-O notation in terms of the
variable n.
void f (int n) {
  for(int i=0; i < n; i++) {
    for(int j=0; j < 10; j++) {
      for(int k=0; k < n; k++) {
        for(int m=0; m < 10; m++) {
          System.out.println("!");
}}}
}
Answer:
19. Describe the worst-case running time of the following code in Big-O notation in terms of the
variable n.
int f(int n) {
int sum = 73;
for(int i=0; i < n; i++) {
  for(int j=i; j >= 5; j--) {
  //Alternative 1: for(int j=i; j \ge 0; j--) {
  //Alternative 2: for(int j=0; j \le i; j++) {
  //Alternative 3: for(int j=0; j < 2i; j++) {
  //Alternative 4: for(int j=0; j < i2; j++) {
  //Alternative 5: for(int j=0; j < n2; j++) {
  //Alternative 6: for(int j=0; j < 1000000; j++) {
  sum--;
}}
return sum;
}
Answer:
```