



# 160V/140mA Switching Applications

## **Applications**

· Predrivers for 100W power amplifiers.

### **Features**

- · Adoption of FBET process.
- · Excellent linearity of hFE.
- · Small Cob.
- · Plastic-convered heat sink facilitating high-density mounting (TO-126ML package).

(): 2SA1477

## **Specifications**

## Absolute Maximum Ratings at Ta = 25°C

# **Package Dimensions**

unit:mm

2042B



| Parameter                    | Symbol           | Conditions | Ratings     | Unit |
|------------------------------|------------------|------------|-------------|------|
| Collector-to-Base Voltage    | V <sub>CBO</sub> |            | (–)180      | V    |
| Collector-to-Emitter Voltage | VCEO             |            | (–)160      | V    |
| Emitter-to-Base Voltage      | V <sub>EBO</sub> |            | (–)5        | V    |
| Collector Current            | IC               |            | (–)140      | mA   |
| Peak Collector Current       | I <sub>CP</sub>  |            | (–)200      | mA   |
| Collector Dissipation        | PC               |            | 1.3         | W    |
|                              |                  | Tc=25°C    | 10          | W    |
| Junction Temperature         | Tj               |            | 150         | °C   |
| Storage Temperature          | Tstg             |            | -55 to +150 | °C   |

### Electrical Characteristics at Ta = 25°C

| Parameter                               | Symbol                | Conditions                                       | Ratings |        |        | Unit |
|-----------------------------------------|-----------------------|--------------------------------------------------|---------|--------|--------|------|
|                                         |                       |                                                  | min     | typ    | max    | Unit |
| Collector Cutoff Current                | ICBO                  | V <sub>CB</sub> =(-)120V, I <sub>E</sub> =0      |         |        | (-)100 | nA   |
| Emitter Cutoff Current                  | I <sub>EBO</sub>      | V <sub>EB</sub> =(-)4V, I <sub>C</sub> =0        |         |        | (-)100 | nA   |
| DC Current Gain                         | hFE                   | V <sub>CE</sub> =(-)5V, I <sub>C</sub> =(-)10mA  | 100     |        | 400    |      |
| Gain-Bandwidth Product                  | fT                    | V <sub>CE</sub> =(-)10V, I <sub>C</sub> =(-)10mA |         | 150    |        | MHz  |
| Output Capacitance                      | C <sub>ob</sub>       | V <sub>CB</sub> =(-)10V, f=1MHz                  |         | (4.0)  |        | pF   |
|                                         |                       |                                                  |         | 3.0    |        | pF   |
| Collector-to-Emitter Saturation Voltage | VCE(sat)              | I <sub>C</sub> =(-)50mA, I <sub>B</sub> =(-)5mA  |         | (-140) | (-400) | mV   |
|                                         |                       |                                                  |         | 70     | 300    | mV   |
| Base-to-Emitter Saturation Voltage      | V <sub>BE(sat)</sub>  | I <sub>C</sub> =(-)50mA, I <sub>B</sub> =(-)5mA  |         |        | 1.2    | V    |
| Collector-to-Base Breakdown Voltage     | V(BR)CBO              | I <sub>C</sub> =(-)10μΑ, I <sub>E</sub> =0       | (-)180  |        |        | V    |
| Collector-to-Emitter Breakdown Voltage  | V <sub>(BR)</sub> CEO | I <sub>C</sub> =(−)1mA, R <sub>BE</sub> =∞       | (-)160  |        |        | V    |
| Emitter-to-Base Breakdown Votage        | V <sub>(BR)EBO</sub>  | I <sub>E</sub> =(-)10μA, I <sub>C</sub> =0       | (–)5    |        |        | V    |
| Rise Time                               | ton                   | See specified Test Circuit                       |         | 0.1    |        | μs   |
| Storage Time                            | t <sub>stg</sub>      | See specified Test Circuit                       |         | 0.5    |        | μs   |
| Fall Time                               | t <sub>f</sub>        | See specified Test Circuit                       |         | 0.1    |        | μs   |

<sup>\*:</sup> The 2SA1477/2SC3787 are classified by 10mA  $h_{\mbox{\scriptsize FE}}$  as follows :

100 R 200 140 S 280 200 T 400

## **Switching Time Test Circuit**



 $I_C = 10I_B1 = 10I_B2 = 10mA$ (For PNP, the polarity is reversed) Unit (resistance :  $\Omega$ , capacitance : F)





### 2SA1477/2SC3787







- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
  - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
  - ② Not impose any responsibilty for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of July, 1998. Specifications and information herein are subject to change without notice.