# ECH4905 ChemE Optimization HW 4

Andres Espinosa

April 14, 2025

### 1 Problem 1

Consider the following integer programming problem:

maximize 
$$1.2y_1 + y_2$$
  
subject to  $y_1 + y_2 \le 1$   
 $1.2y_1 + 0.5y_2 \le 1$   
 $y_1, y_2 \in \{0, 1\}$ 

### 1.1 Part a

Solve the first relaxed LP subproblem by hand using the simplex method and derive Gomory cuts based on the LP relaxation.

**Solution:** To tackle this problem we first relax the problem and then turn the problem above into the standard form so we can create a simplex tableau from it.

$$\begin{array}{ll} \text{maximize} & 1.2y_1+y_2\\ \text{subject to} & y_1+y_2+s_1=1\\ & 1.2y_1+0.5y_2+s_2=1\\ & y_1+s_3=1\\ & y_2+s_4=1\\ & y_1,y_2,s_1,s_2,s_3,s_4\geq 0 \end{array}$$

In matrix notation,

minimize 
$$\mathbf{c}^{\top}\mathbf{x}$$
  
subject to  $\mathbf{A}\mathbf{x} = \mathbf{b}$   
 $\mathbf{x} \succeq 0$ 

where

$$\mathbf{c} = \begin{bmatrix} -1.2 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1.2 & 0.5 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} y_1 \\ y_2 \\ s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix}$$

(with a flipped objective component)

The initial simplex tableau for the problem is as follows:

| Basic Var | $y_1$ | $y_2$ | $s_1$ | $s_2$ | $s_3$ | $s_4$ | RHS | $\alpha$ |
|-----------|-------|-------|-------|-------|-------|-------|-----|----------|
| $s_1$     | 1     | 1     | 1     | 0     | 0     | 0     | 1   |          |
| $s_2$     | 1.2   | 0.5   | 0     | 1     | 0     | 0     | 1   |          |
| $s_3$     | 1     | 0     | 0     | 0     | 1     | 0     | 1   |          |
| $s_4$     | 0     | 1     | 0     | 0     | 0     | 1     | 1   |          |
| obj       | -1.2  | -1    | 0     | 0     | 0     | 0     | _   | _        |

we can define the slack variables equal to the right hand side, and this is in turn a basic feasible solution, so we can jump into phase 2.

We select the  $y_1$  as the entering variable and calculate the alpha value for each basic variable

| Basic Var | $y_1$ | $y_2$ | $s_1$ | $s_2$ | $s_3$ | $s_4$ | RHS | $\alpha$       |
|-----------|-------|-------|-------|-------|-------|-------|-----|----------------|
| $s_1$     | 1     | 1     | 1     | 0     | 0     | 0     | 1   | $\frac{1}{1}$  |
| $s_2$     | 1.2   | 0.5   | 0     | 1     | 0     | 0     | 1   | $\frac{1}{12}$ |
| $s_3$     | 1     | 0     | 0     | 0     | 1     | 0     | 1   | $\frac{1}{1}$  |
| $s_4$     | 0     | 1     | 0     | 0     | 0     | 1     | 1   | $\frac{1}{0}$  |
| obj       | -1.2  | -1    | 0     | 0     | 0     | 0     | _   | _              |

We pivot this on the 1st column  $(y_1)$  and the 2nd row  $(s_2)$ 

| Basic Var        | $y_1$ | $y_2$           | $s_1$ | $s_2$          | $s_3$ | $s_4$ | RHS           | $\alpha$ |
|------------------|-------|-----------------|-------|----------------|-------|-------|---------------|----------|
| $\overline{s_1}$ | 0     | $\frac{7}{12}$  | 1     | $-\frac{5}{6}$ | 0     | 0     | $\frac{1}{6}$ |          |
| $y_1$            | 1     | $\frac{5}{12}$  | 0     | $\frac{5}{6}$  | 0     | 0     | $\frac{5}{6}$ |          |
| $s_3$            | 0     | $-\frac{5}{12}$ | 0     | $-\frac{5}{6}$ | 1     | 0     | $\frac{1}{6}$ |          |
| $s_4$            | 0     | 1               | 0     | 0              | 0     | 1     | ľ             |          |
| obj              | 0     | -0.5            | _     | _              | _     | _     | _             | _        |

With blands rule, we pick  $y_2$  and calculate the alpha value for each basic variable.

| Basic Var        | $y_1$ | $y_2$           | $s_1$ | $s_2$          | $s_3$ | $s_4$ | RHS           | $\alpha$       |
|------------------|-------|-----------------|-------|----------------|-------|-------|---------------|----------------|
| $\overline{s_1}$ | 0     | $\frac{7}{12}$  | 1     | $-\frac{5}{6}$ | 0     | 0     | $\frac{1}{6}$ | $\frac{2}{7}$  |
| $y_1$            | 1     | $\frac{5}{12}$  | 0     | $\frac{5}{6}$  | 0     | 0     | $\frac{5}{6}$ | $\frac{2}{1}$  |
| $s_3$            | 0     | $-\frac{5}{12}$ | 0     | $-\frac{5}{6}$ | 1     | 0     | $\frac{1}{6}$ | $-\frac{1}{5}$ |
| $s_4$            | 0     | 1               | 0     | 0              | 0     | 1     | ĺ             | $\frac{1}{1}$  |
| obj              | 0     | -0.5            | _     | _              | _     | _     | _             | _              |

We pivot on the 2nd column  $(y_2)$  and the 1st row  $(s_1)$ .

| Basic Var | $y_1$ | $y_2$ | $s_1$           | $s_2$               | $s_3$ | $s_4$ | RHS             | $\alpha$ |
|-----------|-------|-------|-----------------|---------------------|-------|-------|-----------------|----------|
| $y_2$     | 0     | 1     | $\frac{12}{7}$  | $-\frac{10}{7}$     | 0     | 0     | $\frac{2}{7}$   |          |
| $y_1$     | 1     | 0     | $-\frac{5}{7}$  | $\frac{60}{42}$     | 0     | 0     | $\frac{30}{42}$ |          |
| $s_3$     | 0     | 0     | $\frac{5}{7}$   | $-\frac{60}{42}$    | 1     | 0     | 12              |          |
| $s_4$     | 0     | 0     | $-\frac{12}{7}$ | $\frac{60}{42}^{2}$ | 0     | 1     | $\frac{30}{42}$ |          |
| obj       | 0     | 0     | 0.857           | 0.286               | 0     | 0     | 0               | -1.143   |

This is the optimal solution to the LP relaxed problem. Now we will derive Gomory cuts from this LP relaxed problem. Since each constraint has a non-integer solution, we can generate a Gomory cut on each constraint.

$$y_{2} + \operatorname{floor}(\frac{12}{7})s_{1} + \operatorname{floor}(\frac{-10}{7})s_{2} \leq \operatorname{floor}(\frac{2}{7})$$

$$y_{1} + \operatorname{floor}(\frac{-5}{7})s_{1} + \operatorname{floor}(\frac{10}{7})s_{2} \leq \operatorname{floor}(\frac{5}{7})$$

$$s_{3} + \operatorname{floor}(\frac{5}{7})s_{1} + \operatorname{floor}(\frac{-10}{7})s_{2} \leq \operatorname{floor}(\frac{2}{7})$$

$$s_{4} + \operatorname{floor}(\frac{-12}{7})s_{1} + \operatorname{floor}(\frac{10}{7})s_{2} \leq \operatorname{floor}(\frac{5}{7})$$

These turn into the cuts

$$y_2 + s_1 - 2s_2 \le 0$$

$$y_1 - s_1 + s_2 \le 0$$

$$s_3 - 2s_2 \le 0$$

$$s_4 - 2s_1 + s_2 \le 0$$

### 1.2 Part b

Solve the above problem with the branch and bound method by enumerating nodes in the tree and solving the LP subproblems using GAMS.

**Solution:** The initial LP relaxed problem is solved in 1.1, so we can start with the parent node. An important note for this question, I will be solving the LPs in my custom gatorpy LP solver so that I can use them as verification tests. The code used will be available in section 4.1

$$\begin{bmatrix} \frac{5}{7}, \frac{2}{7}, 0, 0, \frac{2}{7}, \frac{5}{7} \end{bmatrix}, z = \frac{8}{7}$$
maximize  $1.2y_1 + y_2$ 
subject to  $y_1 + y_2 + s_1 = 1$ ,
$$1.2y_1 + 0.5y_2 + s_2 = 1$$
,
$$y_1 + s_3 = 1$$
,
$$y_2 + s_4 = 1$$
,
$$y_1, y_2, s_1, s_2, s_3, s_4 \ge 0$$
.
$$UB = \frac{8}{7}, LB = -inf$$

Since all variables are fractional, we can pick the first one  $y_1$  to branch on



Via the branch and bound method, the optimal solution to the problem

$$\begin{array}{ll} \text{maximize} & 1.2y_1 + y_2 \\ \text{subject to} & y_1 + y_2 \leq 1 \\ & 1.2y_1 + 0.5y_2 \leq 1 \\ & y_1, y_2 \in \{0, 1\} \end{array}$$

is  $y_1 = 0, y_2 = 1, z = 1$ .

# 2 Problem 2

Consider the following superstructure for the separation of four chemical components using sharp distillation columns. The total cost of a distillation column is calculated as follows:



Figure 1: Problem 2 superstructure

$$cost_k = \alpha_k + \beta_k F_k + \gamma_{Hot} Q_k^{Hot} + \gamma_{Cold} Q_k^{Cold}$$

where:

- $\alpha_k$  represents a fixed capital cost,
- $\beta_k$  represents the variable investment cost,
- $\gamma_{\text{Hot/Cold}}$  is the cost of hot/cold utilities, and
- $Q_k^{\text{Hot}}/Q_k^{\text{Cold}}$  is the total demand of hot and cold utilities (assumed to be equal).

### Given:

- Initial feed: 1000 Kmol/h,
- Feed composition (mole fraction): A = 0.15, B = 0.3, C = 0.35, D = 0.2.

and the following data:

### 2.1 Part A: MILP Formulation

Formulate a Mixed-Integer Linear Programming (MILP) problem to find the optimal sequence of distillation columns. Identify at least 2 logicx based equations that can be formulated to tighten the problem formulation.

Solution: In order to solve this problem, I will first identify the variables and model the binary flow and decision logic. Then, I will attempt to solve the problem while ignoring the Hot/Cold variables since I am much less confident on implementing that than the other sections. After getting a solution working while ignoring the hot/cold components, I will then implement those  $\gamma$ , Q parameters into the problem.

|      |               | Inve                                   | Heat duty                                           |                                                              |  |
|------|---------------|----------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|--|
| k    | Separator     | $\alpha_k$ , fixed $(10^3 \text{/yr})$ | $\beta_k$ , variable (10 <sup>3</sup> \$hr/kmol yr) | coefficients, K <sub>k</sub> ,<br>(10 <sup>6</sup> kJ/kgmol) |  |
| 1    | A/BCD         | 145                                    | 0.42                                                | 0.028                                                        |  |
| 2    | AB/CD         | 52                                     | 0.12                                                | 0.042                                                        |  |
| 3    | ABC/D         | 76                                     | 0.25                                                | 0.054                                                        |  |
| 6    | A/BC          | 125                                    | 0.78                                                | 0.024                                                        |  |
| 7    | AB/C          | 44                                     | 0.11                                                | 0.039                                                        |  |
| 4    | B/CD          | 38                                     | 0.14                                                | 0.040                                                        |  |
| 5    | BC/D          | 66                                     | 0.21                                                | 0.047                                                        |  |
| 10   | A/B           | 112                                    | 0.39                                                | 0.022                                                        |  |
| 9    | B/C           | 37                                     | 0.08                                                | 0.036                                                        |  |
| 8    | C/D           | 58                                     | 0.19                                                | 0.044                                                        |  |
| Cost | of utilities: |                                        |                                                     |                                                              |  |

Cost of utilities:

Cooling water  $C_C = 1.3 (10^3 \$/10^6 \text{kJyr})$ Steam  $C_H = 34 (10^3 \$/10^6 \text{kJyr})$ 

Figure 2: Problem 2 Data

### 2.1.1 Binary logic

To solve this, I will start by creating a series of statements that must be true for this flow to work. I will be using the same y variables for each distillation column that can be seen in the superstructure diagram 1.

- One of  $y_1, y_2, y_3$  must be chosen.
- If  $y_1$  is chosen, then either  $y_4$  xor  $y_5$  must be chosen.
- If  $y_2$  is chosen, then both  $y_8$  and  $y_{10}$  must be chosen.
- If  $y_3$  is chosen, then either  $y_6$  xor  $y_7$  must be chosen.
- If  $y_4$  is chosen, then  $y_8$  must be chosen.
- If  $y_5$  is chosen, then  $y_9$  must be chosen.
- If  $y_6$  is chosen, then  $y_9$  must be chosen.
- If  $y_7$  is chosen, then  $y_{10}$  must be chosen.

I believe this to be a sufficient set of logic statements to model the problem of choosing a distillation problem. Getting rid of the implications:

- One of  $y_1, y_2, y_3$  must be chosen.
- $y_1 = 0$  or either  $y_4$  xor  $y_5$  must be chosen.
- $y_2 = 0$  or both  $y_8$  and  $y_{10}$  must be chosen.
- $y_3 = 0$  or either  $y_6$  xor  $y_7$  must be chosen.
- $y_4 = 0$  or  $y_8$  must be chosen.

- $y_5 = 0$  or  $y_9$  must be chosen.
- $y_6 = 0$  or  $y_9$  must be chosen.
- $y_7 = 0$  or  $y_{10}$  must be chosen.

We can then translate these second parts into different clauses

```
One of y_1, y_2, y_3 must be chosen.
                                                           y_1 + y_2 + y_3 = 1
Either y_4 xor y_5 must be chosen.
                                                                y_4 + y_5 = 1
                                                           y_8 = 1 \cap y_{10} = 1
both y_8 and y_{10} must be chosen.
Either y_6 xor y_7 must be chosen.
                                                                y_6 + y_7 = 1
               y_8 must be chosen.
                                                                      y_8 = 1
               y_9 must be chosen.
                                                                      y_9 = 1
               y_9 must be chosen.
                                                                      y_9 = 1
              y_{10} must be chosen.
                                                                     y_{10} = 1
```

which can in turn be converted to

$$y_1 + y_2 + y_3 = 1$$

$$y_1 = 0 \cup y_4 + y_5 = 1$$

$$y_2 = 0 \cup (y_8 = 1 \cap y_{10} = 1)$$

$$y_3 = 0 \cup y_6 + y_7 = 1$$

$$y_4 = 0 \cup y_8 = 1$$

$$y_5 = 0 \cup y_9 = 1$$

$$y_6 = 0 \cup y_9 = 1$$

$$y_7 = 0 \cup y_{10} = 1$$

We can subtract each variable on the left from 1 so we can add them together and distribute the and operation out for the third.

$$y_1 + y_2 + y_3 = 1$$

$$(1 - y_1 = 1) \cup (((y_4 = 1) \cup (y_5 = 1)) \cap ((1 - y_4 = 1) \cup (1 - y_5 = 1)))$$

$$((1 - y_2 = 1) \cup (y_8 = 1)) \cap ((1 - y_2 = 1) \cup (y_{10} = 1))$$

$$(1 - y_3 = 1) \cup (((y_6 = 1) \cup (y_7 = 1)) \cap ((1 - y_6 = 1) \cup (1 - y_7 = 1)))$$

$$1 - y_3 = 1 \cup y_6 + y_7 = 1$$

$$1 - y_4 = 1 \cup y_8 = 1$$

$$1 - y_5 = 1 \cup y_9 = 1$$

$$1 - y_6 = 1 \cup y_9 = 1$$

$$1 - y_7 = 1 \cup y_{10} = 1$$

We turn this into the equivalent equations

$$y_1 + y_2 + y_3 = 1$$

$$(1 - y_1 = 1) \cup ((y_4 = 1 \cup y_5 = 1))$$

$$(1 - y_1 = 1) \cup ((1 - y_4 = 1) \cup (1 - y_5 = 1))$$

$$1 - y_2 + y_8 \ge 1$$

$$1 - y_2 + y_{10} \ge 1$$

$$(1 - y_3 = 1) \cup (y_6 = 1 \cup y_7 = 1)$$

$$(1 - y_3 = 1) \cup ((1 - y_6 = 1) \cup (1 - y_7 = 1))$$

$$1 - y_4 + y_8 \ge 1$$

$$1 - y_5 + y_9 \ge 1$$

$$1 - y_6 + y_9 \ge 1$$

$$1 - y_7 + y_{10} \ge 1$$

Finally, we can bring them all into pure math below

$$y_1 + y_2 + y_3 = 1$$

$$1 - y_1 + y_4 + y_5 \ge 1$$

$$1 - y_1 + 1 - y_4 + 1 - y_5 \ge 1$$

$$1 - y_2 + y_8 \ge 1$$

$$1 - y_2 + y_{10} \ge 1$$

$$1 - y_3 + y_6 + y_7 \ge 1$$

$$1 - y_3 + 1 - y_6 + 1 - y_7 \ge 1$$

$$1 - y_4 + y_8 \ge 1$$

$$1 - y_5 + y_9 \ge 1$$

$$1 - y_6 + y_9 \ge 1$$

$$1 - y_7 + y_{10} \ge 1$$

Note: These equations are not completely sufficient on themselves, they require that each distillation column has a non-negative cost component. Otherwise, it could be possible for  $y_8$  and  $y_7$  to be chosen, but it isn't necessary since the optimization should only yield a solution where distillation columns are used if they are needed to.

# 2.2 Model w/o HotCold

After having solved the binary logic problems above, I will start by denoting the parameters for the model. This model is actually not too bad (unless I am missing the importance of the feed composition asides from flow removal).

Parameters: This problem has a feed composition parameter set  $f_A = 0.15$ ,  $f_B$ , 0.30,  $f_C = 0.35$ ,  $f_D = 0.2$ . (Important note: I am using x for the flow, so f is a parameter for feed composition). There is the input supply S = 1000. Fixed capital cost  $\alpha_k$  for each  $k \in [1, ..., 10]$  distillation column and variable cost  $\beta_k$ .

Variables: I am using the continuous variables  $x_i \in [1, ..., 13]$  to represent the flow from column to column. Below is a table that maps the variable index to each flow I am also using variables  $y_k$ ,  $k \in [1, ..., 10]$  to denote the binary choice of using distillation column k.

| Index | Flow Description                       |
|-------|----------------------------------------|
| 1     | Feed to Column 1                       |
| 2     | Feed to Column 2                       |
| 3     | Feed to Column 3                       |
| 4     | Output from Column 1 to Column 4       |
| 5     | Output from Column 1 to Column 5       |
| 6     | Output from Column 2 to Column 6       |
| 7     | Output from Column 2 to Column 7       |
| 8     | Output from Column 4 to Column 8       |
| 9     | Output from Column 5 to Column 9       |
| 10    | Output from Column 6 to Column 9       |
| 11    | Output from Column 7 to Column 10      |
| 12    | Output from Column 8 to Final Product  |
| 13    | Output from Column 10 to Final Product |

Table 1: Mapping of variable indices to flow descriptions.

Constraints: We can model our constraints as follows:

 $y_k$  See above for distillation constraints

e

# 2.3 Part B: Solve Using GAMS

Solve the problem using GAMS.

# 2.4 Part C: Integer Cut

Once the solution is found:

- Identify the active binary variables in the optimal solution.
- Formulate an integer cut to exclude this solution from the feasible space.
- Solve the problem again to find the next best solution.

# 3 Problem 3

Given are three candidate reactors for the reaction  $A \to B$ , where we would like to produce 10 kmol/h of B. Up to 15 kmol/hr of reactant A are available at a price of \$2/kmol. The data on the three reactors is as follows:

| Reactor | Conversion | Cost                          |
|---------|------------|-------------------------------|
| 1       | 0.8        | $8 + 1.5 \cdot \text{Feed}$   |
| 2       | 0.667      | 5.4 + Feed                    |
| 3       | 0.555      | $2.7 + 0.5 \cdot \text{Feed}$ |

Table 2: Reactor Data

### 3.1 Part A: Superstructure Design

Design a superstructure to represent this problem.

Solution: Not sure if I am oversimplifying this. This superstructure assumes that no A is recycled



Figure 3: Superstructure for the reaction  $A \to B$  with three reactors.

back into the reactor, and we only choose one reactor. This is generally a simple problem, we are effectively picking which reactor to use to minimize the cost.

### 3.2 Part B: MILP Formulation

Determine a MILP formulation.

**Solution:** In order to solve this MILP formulation, I will start thinking about this in a GAMS/modeling language way starting with parameters.

Parameters: We have parameters  $k_i$  as the  $A \to B$  conversion of reactor i. We also have cost components  $d_i$  as the constant cost of using reactor i and  $c_i$  as the multiplicative cost of feeding A through reactor i. Our demand parameter D for the amount of B we would like to produce and

our supply S that we have available. We can also have the price of using a kmol of A as p. Below are the numerical representations of the problem parameters:

$$k_1 = \frac{4}{5}, k_2 = \frac{2}{3}, k_3 = \frac{5}{9}$$
  
$$d_1 = 8, d_2 = 5.4, d_3 = 2.7; c_1 = 1.5, c_2 = 1, c_3 = 0.5$$
  
$$D = 10, S = 15, p = 2$$

Variables: Our variables for this problem are as follows: We have  $x_i$  as the amount of A delivered to the i-th reactor. In order to model our decision to pick a reactor, we have variables  $y_i$  which are booleans that signify if reactor i has been chosen.

Constraints: We can model our constraints as follows:

$$x_i \leq S, \quad \forall i \in [1,2,3]$$
 Supply Constraint 
$$\sum_{i=1}^3 k_i x_i \geq D$$
 Demand Constraint 
$$\sum_{i=1}^3 y_i = 1$$
 One Reactor Constraint 
$$x_i \leq Sy_i, \quad \forall i \in [1,2,3]$$
 Big-M One Reactor Flow Constraint 
$$x_i \geq 0, \quad \forall i \in [1,2,3]$$
 Non-negativity 
$$y_i \in \{0,1\} \quad \forall i \in [1,2,3]$$
 Binaries

We can also get rid of the supply constraint since the Big-M naturally handles that. The GAMS solution below drops the supply constraint. *Objective:* Our objective in this problem is to minimize the cost while still meeting the demand. We can bunch these costs into different components

$$p \sum_{i=1}^{3} x_i$$
 Supply component 
$$\sum_{i=1}^{3} d_i y_i$$
 Reactor constant component 
$$\sum_{i=1}^{3} c_i y_i$$
 Reactor processing component

# 3.3 Part C: Solve Using GAMS

Solve in GAMS.

**Solution:** The optimal solution was found to be  $x_1 = 12.5, y_1 = 1, z = 34.5$ , and the rest of the variables equal to 0. GAMS code available in section 4.2

### 4 Code

### 4.1 Problem 1 Code

```
# Parameters
A_{arr} = np.array([[1,1],[1.2,0.5]])
b_arr = np.array([1,1])
c_arr = np.array([1.2,1])
A = Parameter(A_arr)
b = Parameter(b_arr)
c = Parameter(c_arr)
# Variables
y = Variable(2)
# Problem
problem = Problem({
    'maximize': c.T @ y,
    'subject to': [
        A @ y \le b,
        y >= 0,
        y <= 1
    ]
})
# CVX Vars
y_cvx = cp.Variable(2)
# CVX Problem
objective = cp.Maximize(c_arr @ y_cvx)
constraints = [
    A_arr @ y_cvx <= b_arr,
    y_cvx >= 0,
    y_cvx <= 1
problem_cvx = cp.Problem(objective, constraints)
get_test_results(problem, problem_cvx, "HW5 Problem 1 initial LP relaxation")
# branch and bound arrays
I_y_1_arr = np.array([[1,0],[0,0]])
I_y_2_arr = np.array([[0,0],[0,1]])
I_y_1 = Parameter(I_y_1_arr)
I_y_2 = Parameter(I_y_2_arr)
# LEFT SPLIT
# Problem
problem = Problem({
    'maximize': c.T @ y,
    'subject to': [
        A @ y <= b,
        y >= 0,
        y <= 1,
```

```
I_y_1 @ y \le 0,
    ]
})
# CVX Vars
y_cvx = cp.Variable(2)
# CVX Problem
objective = cp.Maximize(c_arr @ y_cvx)
constraints = [
    A_arr @ y_cvx <= b_arr,
    y_cvx >= 0,
    y_cvx <= 1,
    I_y_1_arr @ y_cvx <= 0</pre>
problem_cvx = cp.Problem(objective, constraints)
get_test_results(problem, problem_cvx, "HW5 Problem 1 Branch and Bound Left Split y_1 <= 0")</pre>
# RIGHT SPLIT
# Problem
problem = Problem({
    'maximize': c.T @ y,
    'subject to': [
        A @ y <= b,
        y >= 0,
        y <= 1,
        I_y_1 @ y >= 1,
    ]
})
# CVX Vars
y_cvx = cp.Variable(2)
# CVX Problem
objective = cp.Maximize(c_arr @ y_cvx)
constraints = [
    A_arr @ y_cvx <= b_arr,
    y_cvx >= 0,
    y_cvx <= 1,
    I_y_1_arr @ y_cvx >= 1
problem_cvx = cp.Problem(objective, constraints)
get_test_results(problem, problem_cvx, "HW5 Problem 1 Branch and Bound Right Split y_1 >=1")
Test ID: HW5 Problem 1 initial LP relaxation
CVX: (np.float64(1.14), array([[0.71, 0.29]]), True)
GatORPy: (array(1.14285714), array([0.71428571, 0.28571429, 0.
                                                                        , 0.
                                                                                     , 0.285714
       0.71428571]), True)
```

```
Test passed: False
 Test ID: HW5 Problem 1 Branch and Bound Left Split y_1 <= 0
 CVX: (np.float64(1.0), array([[0., 1.]]), True)
 GatORPy: (array(1.), array([0., 1., 0., 0.5, 1., 0., 0., 0.]), True)
 Test passed: False
 Test ID: HW5 Problem 1 Branch and Bound Right Split y_1 >=1
 CVX: (None, None, False)
 GatORPy: (array(0.8), array([ 1. , -0.4, 0.4, 0. , 0. , 1.4, 0. , -1. ]), True)
 Test passed: False
4.2 Problem 3 Code
 GAMS 49.1.0 5c4d4ed6 Feb 15, 2025
                                         DAX-DAC arm 64bit/macOS - 04/14/25 18:53:07 Page
General Algebraic Modeling System
Compilation
  1 SETS
  2 i
               'set of reactors'
                                      /r1,r2,r3/
  3
  4;
  5 Parameters
                                   /r1 0.8, r2 0.666667, r3 0.555555/
  6 k(i)
            'conversion factors'
            'Reactor constant costs'/r1 8,r2 5.4,r3 2.7/
  7 d(i)
  8 c(i)
            'Reactor coeff costs'
                                   /r1 1.5,r2 1,r3 0.5/
  9;
 10 Scalars
 11 De 'Demand' /10/
 12 Su 'Supply' /15/
 13 pr 'Price' /2/
 14 ;
 15 Variables
 16 z
 17 ;
 18 Positive Variables
 19 x(i)
 20 ;
 21 Binary Variables
 22 y(i)
 23 ;
 24 Equations
 25
         demand_constraint
 26
         one_reactor_constraint
 27
         flow_constraints(i)
 28
         objective_eq
 29 ;
```

```
30 demand_constraint..
                               sum(i,k(i) * x(i)) = g = De;
 31 one_reactor_constraint.. sum(i,y(i)) =e= 1;
 32 flow_constraints(i)..
                              x(i) = 1 = Su*y(i);
 33 objective_eq..
                                z = e = sum(i,pr*x(i) + d(i) * y(i) + c(i) * y(i));
 34
 35 Model Superstructure / all /;
 36 solve Superstructure using MIP minimizing z;
COMPILATION TIME
                            0.000 SECONDS
                                              3 MB 49.1.0 5c4d4ed6 DAX-DAC
GAMS 49.1.0 5c4d4ed6 Feb 15, 2025
                                         DAX-DAC arm 64bit/macOS - 04/14/25 18:53:07 Page 2
General Algebraic Modeling System
Equation Listing SOLVE Superstructure Using MIP From line 36
---- demand_constraint =G=
demand_constraint.. 0.8*x(r1) + 0.666667*x(r2) + 0.555555*x(r3) = G = 10; (LHS = 0, INFES = 10)
---- one_reactor_constraint =E=
one_reactor_constraint.. y(r1) + y(r2) + y(r3) = E = 1; (LHS = 0, INFES = 1 ****)
---- flow_constraints =L=
flow_constraints(r1).. x(r1) - 15*y(r1) = L = 0; (LHS = 0)
flow_constraints(r2).. x(r2) - 15*y(r2) = L = 0; (LHS = 0)
flow_constraints(r3).. x(r3) - 15*y(r3) = L = 0; (LHS = 0)
---- objective_eq =E=
objective_eq.. z - 2*x(r1) - 2*x(r2) - 2*x(r3) - 9.5*y(r1) - 6.4*y(r2) - 3.2*y(r3) = E = 0; (L)
GAMS 49.1.0 5c4d4ed6 Feb 15, 2025
                                         DAX-DAC arm 64bit/macOS - 04/14/25 18:53:07 Page 3
General Algebraic Modeling
                                                  System
                SOLVE Superstructure Using MIP From line 36
Column Listing
---- z
z
               (.LO, .L, .UP, .M = -INF, 0, +INF, 0)
               objective_eq
       1
```

```
---- x
x(r1)
                (.LO, .L, .UP, .M = 0, 0, +INF, 0)
        0.8
                demand_constraint
                flow_constraints(r1)
        1
       -2
                objective_eq
x(r2)
                (.LO, .L, .UP, .M = 0, 0, +INF, 0)
                demand_constraint
        0.6667
                flow_constraints(r2)
       -2
                objective_eq
x(r3)
                (.LO, .L, .UP, .M = 0, 0, +INF, 0)
        0.5556 demand_constraint
                flow_constraints(r3)
        1
                objective_eq
       -2
---- y
y(r1)
                (.LO, .L, .UP, .M = 0, 0, 1, 0)
                one_reactor_constraint
        1
                flow_constraints(r1)
      -15
       -9.5
                objective_eq
y(r2)
                (.L0, .L, .UP, .M = 0, 0, 1, 0)
        1
                one_reactor_constraint
      -15
                flow_constraints(r2)
                objective_eq
       -6.4
y(r3)
                (.LO, .L, .UP, .M = 0, 0, 1, 0)
        1
                one_reactor_constraint
                flow_constraints(r3)
      -15
       -3.2
                objective_eq
Proven optimal solution
MIP Solution:
                        34.500000
                                      (0 iterations, 0 nodes)
Final Solve:
                                      (0 iterations)
                        34.500000
```

34.500000

Best possible:

Absolute gap: 0.000000 Relative gap: 0.000000

|                                                         |                       | LOWER    | LEVEL                      | UPPER                      | MARGINAL    |  |  |  |  |
|---------------------------------------------------------|-----------------------|----------|----------------------------|----------------------------|-------------|--|--|--|--|
|                                                         | demand_co~ one_react~ | 10.0000  | 10.0000                    | +INF<br>1.0000             | 2.5000      |  |  |  |  |
| EQU flow_constraints                                    |                       |          |                            |                            |             |  |  |  |  |
|                                                         | LOWER                 | LEVEL    | UPPER                      | MARGINAL                   |             |  |  |  |  |
| r1<br>r2<br>r3                                          | -INF<br>-INF<br>-INF  | -2.5000  |                            |                            |             |  |  |  |  |
|                                                         |                       | LOWER    | LEVEL                      | UPPER                      | MARGINAL    |  |  |  |  |
| EQU                                                     | objective~            |          |                            |                            | 1.0000      |  |  |  |  |
|                                                         |                       | LOWER    | LEVEL                      | UPPER                      | MARGINAL    |  |  |  |  |
| VAR                                                     | z                     | -INF     | 34.5000                    | +INF                       |             |  |  |  |  |
| VAR                                                     | X                     |          |                            |                            |             |  |  |  |  |
|                                                         | LOWER                 | LEVEL    | UPPER                      | MARGINAL                   |             |  |  |  |  |
| r1<br>r2<br>r3                                          |                       | 12.5000  | +INF<br>+INF<br>+INF       | 0.3333<br>0.6111           |             |  |  |  |  |
| VAR                                                     |                       |          |                            |                            |             |  |  |  |  |
|                                                         | LOWER                 | LEVEL    | UPPER                      | MARGINAL                   |             |  |  |  |  |
| r1<br>r2<br>r3                                          |                       | 1.0000   | 1.0000<br>1.0000<br>1.0000 | 9.5000<br>6.4000<br>3.2000 |             |  |  |  |  |
| **** REPORT SUMMARY:  O NONOPT O INFEASIBLE O UNBOUNDED |                       |          |                            |                            |             |  |  |  |  |
| EXECUTIO                                                | N TIME =              | 0.050 SE | ECONDS 4 M                 | MB 49.1.0 5c4d4            | ed6 DAX-DAC |  |  |  |  |

USER: GAMS Demo, for EULA and demo limitations see G250131/0001CB-GEN https://www.gams.com/latest/docs/UG%5FLicense.html DC0000

### \*\*\*\* FILE SUMMARY

Input /Users/andresespinosa/Documents/GAMS/Studio/workspace/hw5.gms Output /Users/andresespinosa/Documents/GAMS/Studio/workspace/hw5.lst