CSS 343: Data Structures, Algorithms, and Discrete Mathematics II

AVL tree

Version 1

Wooyoung Kim

Balanced tree

- Worst case complexity of an ordinary binary search tree?
 - O(n)
- Can we achieve O(log n)?
 - Remain balanced or nearly balanced while updating
- Balanced tree
 - AVL
 - **–** 2-3
 - B-tree
 - Etc

AVL

- AVL
 - Binary search tree AND
 - For each vertex in the tree, the height of the left and right subtrees differ by at most one
 - Named after two inventors, Adelson-Velsky and Landis

AVL

- AVL
 - Binary search tree AND
 - For each vertex in the tree, the height of the left and right subtrees differ by at most one

Height - review

- Height of a node: between node and its leaf (leaf node's height is 1)
- In assignment 2: getHeight
 - keep maximal values (longest path upwards)

- Key to AVL: keep it balanced when update is performed
- Starting from AVL, four possible insertion cases leading to non-AVL and rotations to fix:
 - Left-left: insertion in (the left child of the unbalanced vertex)'s the left subtree
 single rotation

Right-right: insertion in (the right child of the unbalanced vertex)'s right subtree - single rotation

Double rotations

- Left-right: insertion in (the left child of the unbalanced vertex)'s right subtree
 double rotation
- Right-left: insertion in (the right child of the unbalanced vertex)'s left subtree
 double rotation

Practice – which insertion type

- After insertion, find the lowest unbalanced vertex
- E.g., insert 5:

Practice – which insertion type

- After insertion, find the lowest unbalanced vertex
- E.g., insert 5:

Unbalanced vertex: 3

right-left type

Steps

Precondition: AVL tree

• Step 1: After an insertion, find the lowest unbalanced vertex

Step 2: Identify insertion type

Step 3: Make rotation accordingly

• Left-left: find the lowest unbalanced node - U

- What is the lowest unbalanced node in the right tree?
 - 20
 - Because its left subtree is two levels deeper than its right subtree

Make to AVL by single rotation

Make to AVL by single rotation

Single rotation (cont.)

Right-right: symmetric to left-left

Single rotation - exercise

Double rotation

Left-right

What is U? L? R?

• What is U? L? R?

First rotation

Second rotation

Double rotation

Right-left: Mirror of left-right

Double rotation

Right-left: Mirror of left-right (R)В

Double rotation - exercises

Right-left: Mirror of left-right(See lecture note)

AVL Tree- complexity

- The rotation routines are all O(1)
- Insertion takes O(log N), when N is the number of nodes, and log N is the height of the tree
- Insert: O(log N), requires rotation
- Search: O(log N)
- Remove: O(log N), requires rotation