# Liu ゼミノート

#### 概要

2021 年春セメスターに行なった [Liu] ゼミのノート.

### 実施日

• 5/15: 定義 2.1 - 注意 2.6

• 5/16: 補題 2.7 – 定義 2.10

● 5/21: 定義 2.8 – 定義 2.14

# 2 Ringed topological spaces

#### 2.1 Sheaves

定義 2.1. X を位相空間とする. X 上の (Pーベル群の) 前層 (presheaf)  $\mathcal F$  は次のデータからなる.

- -X の各開部分集合 U に対するアーベル群  $\mathcal{F}(U)$ , そして
- 部分開集合の各組  $V \subset U$  に対する群準同型 (制限写像)  $\rho_{UV} \colon \mathcal{F}(U) \to \mathcal{F}(V)$  で, 次の条件を満たすもの:
  - (1)  $\mathcal{F}(\varnothing) = 0$ ;
  - (2)  $\rho_{UU} = id;$
  - (3)  $W \subset V \subset U$   $\varphi \in U$ ,  $\varphi_{UW} = \varphi_{VW} \circ \varphi_{UV}$ .

元  $s \in \mathcal{F}(U)$  を  $\mathcal{F}$  の U 上の切断 (section) という.  $s|_V$  で  $\rho_{UV}(s) \in \mathcal{F}(V)$  を表し, s の V への制限 (restriction) とよぶ.

定義 2.2. 前層  $\mathcal{F}$  が次の条件をみたすとき, 層 であるという.

- (4) (一意性) U を X の開部分集合とし,  $s \in \mathcal{F}(U)$ ,  $\{U_i\}_i$  を開部分集合  $U_i$  による U の被覆とする. 全ての i に対し  $s|_{U_i}=0$  ならば, s=0 である.
- (5) (局所切断の貼り合わせ) (4) の記法を用いる.  $s_i \in \mathcal{F}(U_i)$ ,  $i \in I$  を切断で  $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$  をみたすものとする. このとき, 切断  $s \in \mathcal{F}(U)$  で  $s|_{U_i} = s_i$  をみたすものが存在する (この切断 s は (4) より一意である).

定義 2.2 は何を言っているのか. 次の射を考える.

$$\prod_{i \in I} \rho_{UU_i} \colon \mathcal{F}(U) \to \prod_{i \in I} \mathcal{F}(U_i); \quad s \mapsto (s|_{U_i})_{i \in I}.$$

- (4) は  $\prod_{i \in I} \rho_{UU_i}$  が単射である, と言っている.
- (4) について.  $\prod_{i \in I} \mathcal{F}(U_i)$  の部分群

$$M := \left\{ (s_i)_{i \in I} \in \prod_{i \in I} \mathcal{F}(U_i) \middle| \forall i, j \in I \ s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \right\}$$

を考える. (5) は  $\prod_{i \in I} \rho_{UU_i} : \mathcal{F}(U) \to M$  が全射であるということである.

つまり、(4)、(5) を合わせると、 $\prod_{i\in I} \rho_{UU_i}$  によって  $\mathcal{F}(U)$  と M が同形になるといっている.

定義 2.2 (5) の一意性の証明. 切断  $s,s' \in \mathcal{F}(U)$  が  $s|_{U_i}=s_i, \ s'|_{U_i}=s_i$  をみたすとする. このとき,

$$(s - s')|_{U_i} = \rho_{UU_i}(s - s')$$
  
=  $\rho_{UU_i}(s) - \rho_{UU_i}(s')$   
=  $s|_{U_i} - s'|_{U_i} = s_i - s_i = 0.$ 

したがって、定義 2.2 (4) より s - s' = 0. すなわち. s = s'.

同様にして、環上の層、固定した環の上の代数上の層等々を定義できる. F の部分層 F' も自然な概念である: F'(U) は F(U) の部分群であり、制限  $\rho'_{UV}$  は  $\rho_{UV}$  によって引き起こされる.

部分層の定義。 まず部分関手の定義を復習する。 $F,G:\mathcal{C}\to\mathcal{C}'$  を関手とし, $\varphi\colon F\to G$  を関手の射とする。 $\mathcal{C}$  の全ての対象 X に対し, $F(X)\subset G(X)$  であり  $\varphi(X)$  が包含  $F(X)\hookrightarrow G(X)$  となるとき,F を G の部分関手という.

 $G: \mathcal{C} \to \mathcal{C}'$  を関手とし、各対象  $X \in \mathcal{C}$  に対し部分対象  $F(X) \subset G(X)$  が与えられているとき、G の部分関手 F が定まるための条件は、 $\mathcal{C}$  の任意の射  $f: X \to Y$  に対し

 $G(f)(F(X)) \subset F(Y)$  となることである.

$$G(X) \xrightarrow{G(f)} G(Y)$$

$$\uparrow \qquad \qquad \uparrow$$

$$F(X) \xleftarrow{G(f)} G(Y).$$

同様の条件をみたす関手  $\mathcal{G} \subset \mathcal{F}$ : Open $_X^{\mathrm{op}} \to \mathsf{Ab}$  で,層の条件 (4),(5) をみたすものとして  $\mathcal{F}$  の部分層  $\mathcal{G}$  を定める.

例 2.3. X を位相空間とする. X の任意の開集合 U に対し,  $\mathcal{C}(U) = \mathrm{C}^0(U,\mathbb{R})$  を U から  $\mathbb{R}$  への連続関数の集合とする. 制限  $\rho_{UV}$  は普通の関数の制限である. このとき,  $\mathcal{C}$  は X の層である.  $\mathcal{F}(U) = \mathbb{R}^U$  を U 上の  $\mathbb{R}$  に値をとる関数の集合とすると, これは  $\mathcal{C}$  を部分 層としてもつ層  $\mathcal{F}$  を定める.

証明.  $\mathcal{C}(\varnothing)=0$  であるか: 空集合からの写像は包含  $i\colon\varnothing\to\mathbb{R}$  のみであるから,  $\mathcal{C}(\varnothing)=\{i\}\cong 0$  である.

 $\mathcal{C}$  が層になるための条件 (4), (5) をみたすことを示す.  $U = \bigcup_{i \in I} U_i$  とする. このとき,  $s \colon U \to \mathbb{R}; s(x) = (x \in U_i)$  を考える. 任意の  $x \in U$  に対し  $x \in U_i$  となる i が存在するので s(x) = 0 である. したがって,  $\mathcal{C}$  は (4) をみたす.

 $(s_i)_{i\in I},\ s_i|_{U_i\cap U_j}=s_j|_{U_i\cap U_j}\ (i,j\in I)$  とする.写像  $s\colon U\to\mathbb{R}$  を  $s(x)=s_i(x)\ (x\in U_i)$  で定めたい.いま, $x\in U$  について  $x\in U_i$  をとなる  $i\in I$  が存在することは保証されている.x が  $U_i$  の元であり,かつ  $U_j$  の元でもあるとする.このとき  $s_i(x)=s_j(x)$  が成り立つことを示す.

$$s_i(x) = s_i|_{U_i \cap U_j}(x), s_j(x) = s_j|_{U_j \cap U_i}(x).$$

したがって,  $s_i(x) = s_j(x)$  が成り立つので, s は well-defined であり (5) が成り立つ.

 $s\colon U\to\mathbb{R}$  が連続写像であることを示す.  $x\in U$  とし,  $\varepsilon>0$  を実数とする. いま x が  $U_i$  の点であるとすると,  $s_i$  は連続なので開近傍  $V_i\subset U_i$  が存在する. この  $V_i$  に対し,  $V_i\subset U$  である.  $x_0$  を  $V_i$  の点とすると,

$$|s(x) - s(x_0)| = |s_i(x) - s_i(x_0)| < \varepsilon$$

が成り立つ. したがって, s は連続である.

関手  $\mathcal{F}$  について.  $V \subset U$  を X の開集合とする.



 $f \in \mathcal{C}(U)$  を切断とする.  $\rho^{\mathcal{C}}_{UV}(f) = f|_{V}$  であり,  $f|_{V} \in \mathcal{C}(V)$  が成り立つ. よって,  $\mathcal{C}$  は  $\mathcal{F}$  の部分層である.

例 2.4. A を非自明なアーベル群とする. X を位相空間とする.  $A_X(U) = A$  とし, U と V が空でなければ  $\rho_{UV} = \mathrm{id}_A$  とする. これは X 上の前層を定める. 一般には,  $A_X$  は層にはならない. 例えば, X が空でない 2 つの開集合の非交和だとすると, 層の条件 (5) が成り立たない.

証明.  $X=U\sqcup V(U,V\neq\varnothing)$  とおき,  $a\neq b\in A$  とする.  $a|_{U\cap V}=b|_{U\cap V}$  であるが,  $U\cup V$  について,  $x\in A$  で,  $x|_U=a,x|_V=b$  をみたすものが存在し,  $x|_U=x$  となるが, これは  $a\neq b$  にムジュン. したがって,  $A_X$  は層の条件 (5) を満たさず, 層にはならない.

注意 **2.5.** U が X の開集合であるとき, X 上の任意の前層  $\mathcal{F}$  は自明な方法で, すなわち, U の任意の開部分集合 V に対し,  $\mathcal{F}|_U(V) = \mathcal{F}(V)$  とおくことで, U 上の前層  $\mathcal{F}|_U$  を引き起こす.  $\mathcal{F}$  の U への制限 (restriction) という.  $\mathcal{F}$  が層になるならば,  $\mathcal{F}|_U$  もそうなる.

コメント. X:top. sp.,  $V \subset U \subset X$ : open のとき,  $\mathcal{F}$ : Open $X^{\mathrm{op}} \to \mathsf{Ab}$  に対し  $\mathcal{F}|_U$ : Open $U^{\mathrm{op}} \to \mathsf{Ab}$ :  $V \mapsto \mathcal{F}(V)$  としてとるということ.

注意 2.6.  $\mathcal{B}$  を X の部分集合の基底とする (即ち,  $\mathcal{B}$  は X の開集合のなす集合であって, X の任意の開集合は  $\mathcal{B}$  に属する部分開集合の合併であり, 有限の共通部分について安定であるということである).  $\mathcal{B}$  前層と  $\mathcal{B}$  層を, 上の定義において「X の開集合 U」を「 $\mathcal{B}$  に属する開集合 U」で置き換えることで定められる. このとき任意の  $\mathcal{B}$  層  $\mathcal{F}_0$  は X 上の層  $\mathcal{F}$  に一意に (より正確には同型を除いて一意に, 定義 2.10 参照) 拡張される.

 $\mathcal{U}=\{U_i\}_i$  を X の開集合族とする.  $U=\cup_i U_i$  とし  $U_{ij}=U_i\cap U_j$  とする. X 上の任意

の前層  $\mathcal{F}$  に対し、アーベル群の複体  $C^{\bullet}(\mathcal{U},\mathcal{F})$ 

$$0 \to \mathcal{F}(Y) \xrightarrow{d_0} \prod_i \mathcal{F}(U_i) \xrightarrow{d_1} \prod_{i,j} \mathcal{F}(U_{ij})$$

で,  $d_0: s \mapsto (s|_{U_i})_i$  と  $d_1: (s_i)_i \mapsto (s_i|_{U_{ij}} - s_j|_{U_{ij}})_{i,j}$  で定まるものを得る.

補題 **2.7.** 上の記号のもとで、 $\mathcal{F}$  が層であることと、X の任意の開集合族  $\mathcal{U}$  に対し  $C^{\bullet}(\mathcal{U},\mathcal{F})$  が完全であることは同値である.

証明. *U* 

定義 2.8.  $\mathcal{F}$  を X 上の前層とし,  $x \in X$  とする.  $\mathcal{F}$  の x における茎 (stalk) とは, 群

$$\mathcal{F}_x = \lim_{U \in I_x} \mathcal{F}(U)$$

のことをいう.

 $I_x$  について、  $I_x \subset \mathsf{Open}X$  を x の開近傍全体の成す順序集合で,  $U,V \in I_x$  の順序を  $U < V \Longleftrightarrow U \supset V$  で定めたものとする  $(I_x$  を圏とみなしたとき,  $I_x$  は  $\mathsf{Open}X^\mathsf{op}$  の充満部分圏になっている).

補題 **2.9.**  $s_x = t_x$ 

定義 **2.10.**  $\alpha(U)$ 

例 2.11.  $\mathbb{C} \setminus \{0\}$ 

命題 2.12.  $\alpha_x$ 

系 2.13.  $\alpha$ :  $\mathcal{F} \to \mathcal{G}$ 

定義 2.14.  $\mathcal{F}^{\dagger}$ 

#### 参考文献

[Liu] Qing Liu, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Text in Mathematics, 6, 2010.