

From Genes to Proteins

Structure-function in DNA and proteins

Andras Solt (Department of Biochemistry) – as2114@cam.ac.uk

Lucy Colwell (Department of Chemistry) - ljc37@cam.ac.uk

Department of Biochemistry

Aims and Schedule

- 1) To understand basic principles in structural biology
- 2) To demonstrate a link between structure and function

Lectures:

Monday – 13/Feb/2017: Genes to Proteins

Friday – 17/Feb/2017: Principles of Structural Biochemistry

DNA in a 3D world

	Experiment	Conclusion
Late 19th century	Removal of the nucleus resulted in cell death, but removal of an equal volume of cytoplasm did not	The nucleus is key to cell survival
Late 19 th century	Removal and transplantation of a nucleus can change cells shape and function	Nucleus is linked to phenotype
Griffiths – 1929	Virulent strains of <i>Pneumococcus</i> were able to transform non-pathogenic <i>Pneumococcus</i> into a disease causing organism	"Some" material has been exchanged between the two cells that is able to change the phenotype of the cells
Avery and MacLeod – 1944	DNA extracted from virulent <i>Pneumococcus</i> . On transformation to non-virulent strains, it conferred pathogenicity. Transfomation not affected by proteases, but by Dnase	DNA is suggested as the transforming agent
Hershey and Chase – 1953	Infected <i>E. coli</i> with T2 phage. DNA: 32P labelled, coat protein: 35S labelled. Only 32P detected inside cells	DNA alone is responsible for cells phenotype, no proteins involved

Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid, - Francis Crick, James D. Watson, Nature, **171**, 1953

Building DNA

- Both DNA and RNA contain:
 - 1. Pentose sugars (5C)
 - 2. Organic bases
 - 3. Inorganic phosphate

Ribose (Forms ribonucleic acid – RNA)

Deoxyribose (Forms <u>deoxy</u>ribonucleic acid – DNA)

Bases

Nucleotides

Phosphate group

Base	Nucleoside	(Deoxy)ribonucleotide
Adenine	Adenosine	(Deoxy)adenosine 5'-mono/di/triphosphate
Guanine	Guanosine	(Deoxy)guanosine 5'-mono/di/triphosphate
Cytosine	Cytidine	(Deoxy)cytidine 5'-mono/di/triphosphate
Thymine	Thymidine	(Deoxy)thymidine 5'-mono/di/triphosphate
Uracil	Uridine	Uridine 5'-mono/di/triphosphate

Ribonucleoside Deoxyribonucleoside

Glycoside link

Regulatory nucleotides

 Nucleotides play other roles in a range of processes, including metabolism and cell signalling

Cyclic AMP (cAMP)

Second messenger GPCR→PKA Cyclic GMP (cGMP)

Second messenger

 $Photoreceptor {\rightarrow} phosphodiesterase$

→cGMP gated Na channel →hyperpolarisation

GPCRs and G-proteins

Whole system of signalling based on GTP/GDP exchange

Regulatory nucleotides

Nucleotides play other roles in a range of processes, including

metabolism and cell signalling

NH₂ HO-P=O HO-P=O ÓН

ppGpp

Bacterial alarmone,

Stringent response

Cyclic AMP (cAMP)

Second messenger GPCR→PKA Cyclic GMP (cGMP)

Second messenger

Photoreceptor—phosphodiesterase

→cGMP gated Na channel →hyperpolarisation

ppGpp

ppGpp in E. coli (PDB: 4JKR)...

...and in *Thermus thermophilus* (PDB: 1SMY). Which is right?

- 1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677725/
 - The Mechanism of *E. coli* RNA Polymerase Regulation by ppGpp Is Suggested by the Structure of Their Complex
 - Mol Cell. 2013 May 9; 50(3): 430-436.
- 2. https://www.ncbi.nlm.nih.gov/pubmed/15109491
 - **Structural Basis for Transcription Regulation by Alarmone ppGpp** Cell. 2004 Apr 30;117(3):299-310.

Nucleotide chains make oligonucleotides

DNA has 5'-3' directionality, always written:

5'-NNNNN-3'

Base pairing

- Purine pairs a Pyrimidine
 - A=T, G≡C
- Chargaff's rules
 - A+G = C+T

Bacteria A: 32% Adenine

Bacteria B: 17% Adenine

What's the proportion of C, G and T? One of these was isolated from a hot

spring. Which one?

Antiparallel DNA helix

• Two strands: 5'-3': 3'-5'

From sequence to 3D structure

1) Rotation of C1'-N-Glycoside bond

- Purines (A, G) can adopt both syn and antiorientation of the base
- Pyrimidines: =O in steric hindrance with ribose O

2) Sugar puckering

• C-2' endo or C-3' endo

3) Bond rotations in deoxyribose backbone

Rotations mainly about 7 bonds
 Only ribose ring constrained

Forms of the double helix

Alternative forms of DNA exist: some artificially, some naturally

Dehydrated form

A-DNA

turn

Rise/ bp

2.6 Å

	Base tilt to helix	20°
Lack of water	Glycosyl bond	Anti
Shallow minor groove Deeper major groove	Sugar pucker	C-3' endo

Watson-Crick form

B-DNA

	Sense	Right
•	Base/ turn	10.5
	Rise/ bp	3.4 Å
	Base tilt to helix	6°
	Glycosyl bond	Anti
	Sugar pucker	C-2' endo

Rare but observed

Z-DNA

Sense	Left
Base/ turn	12
Rise/ bp	3.7 Å
Base tilt to helix	7°
Glycosyl bond	Pyr:Anti Pur:Syn
Sugar pucker	Pyr: C-3' endo Pur: C-2' endo

Implications of DNA structure

Myc

Essential role in development and tumorogenesis.
Transcription factor

OmoMYC

Dominant negative variant. Tumour suppressor

doi: 10.1038/onc.2016.354

mutationsalt bridgehydrophobic IAhydrogen bond

disulfide bond

DNA can be modified

- DNA methylation
 - Enzymatic process
- N_6 methyl adenine C_5 methyl cytosine
- NHC H₃

 N 3 5

 O N N H
- N₄ methyl cytosine
- OOC STORY OH OH

- Adenine, Cytosine > Guanine, Thymine
- CH3 source: always S-adenosylmethionine
- Bacteria: Defence and Repair (Dam methylase in GATC)
- Eukaryotes: 5% methylcytidine CpG islands

Epigenetics

"Stably heritable phenotype resulting from changes in a chromosome without alterations in the DNA sequence"

Cold Spring Harbor, 2008

DNA organisation

Chromosome 22: stretched, linear DNA: 1.5 cm At metaphase: a mere 2 µm (10,000 compaction)

30 nm fibre

30 nm fibre (decondensed)

The chromatin (DNA+Histones)

- Chromatin unwound
- Linker DNA digested
- DNA dissociated with high salt
- 147 bp: enough to be wrapped 2x round
- Histone: hetero-octamer + H1

DNA organisation on multiple levels

DNA modification at the chromatin level

Summary

- DNA (genetic information) has transforming effect on cells/organisms
- DNA is constructed of nucleotides
- 2x 5'-3' antiparallel strands form double helix
- DNA is recognised by binding elements
- DNA can be modified, which has functional implication
- DNA is tightly packaged into chromosomes, with a further opportunity for epigenetic variation

Papers for next session

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938214/
 A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex
 Nucleic Acids Res. 2010 Sep; 38(16): 5569–5580
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677725/
 The Mechanism of E. coli RNA Polymerase Regulation by ppGpp Is Suggested by the Structure of Their Complex
 Mol Cell. 2013 May 9; 50(3): 430–436.
- 3. http://www.sciencedirect.com/science/article/pii/S0092867416317391 Structures of the Human HCN1 Hyperpolarization-Activated Channel Cell. 2017 Jan 12;168(1-2):111-120.e11.

