The group G is isomorphic to the group labelled by [720, 409] in the Small Groups library. Ordinary character table of $G \cong SL(2,9)$:

	1a	2a	3a	3b	4a	5a	5b	6a	6b	8a	8b	10a	10b
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	4	-4	1	-2	0	-1	-1	-1	2	0	0	1	1
χ_3	4	-4	-2	1	0	-1	-1	2	-1	0	0	1	1
χ_4	5	5	-1	2	1	0	0	-1	2	-1	-1	0	0
χ_5	5	5	2	-1	1	0	0	2	-1	-1	-1	0	0
χ_6	8	8	-1	-1	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^{} 4$	-1	-1	0	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^{} 4$
χ_7	8	-8	-1	-1	0	$-E(5) - E(5)^{} 4$	$-E(5)^2 - E(5)^3$	1	1	0	0	$E(5) + E(5)^{} 4$	$E(5)^2 + E(5)^3$
χ_8	8	-8	-1	-1	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^{} 4$	1	1	0	0	$E(5)^{} 2 + E(5)^{} 3$	$E(5) + E(5)^{} 4$
χ_9	8	8	-1	-1	0	$-E(5) - E(5)^{} 4$	$-E(5)^2 - E(5)^3$	-1	-1	0	0	$-E(5) - E(5)^{} 4$	
χ_{10}	9	9	0	0	1	-1	-1	0	0	1	1	-1	-1
χ_{11}	10	10	1	1	-2	0	0	1	1	0	0	0	0
χ_{12}	10	-10	1	1	0	0	0	-1	-1	$-E(8) + E(8)^3$	$E(8) - E(8)^{} 3$	0	0
		-10	1	1	0	0	0	-1	-1	$E(8) - E(8)^{} 3$	$-E(8) + E(8)^3$	0	0

Trivial source character table of $G \cong SL(2,9)$ at p = 5

$Normalisers N_i$		N_1										N_2	
$p-subgroups \ of \ G \ up \ to \ conjugacy \ in \ G$		P_1										P_2	
Representatives $n_j \in N_i$	1a	2a	3a	3b	4a	6a	6b	8a	8b	1a	2a	4a	4a
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}}$	10	10	1	1	2	1	1	2	2	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	-20	-1	-4	0	1	4	0	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	-20	-4	-1	0	4	1	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} $	5	5	2	-1	1	2	-1	-1	-1	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} $		5	-1	2	1	-1	2	-1	-1	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} $	25	25	-2	-2	1	-2	-2	1	1	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} $		10	1	1	-2	1	1	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} $	10	-10	1	1	0	-1	-1	$-E(8) + E(8)^3$	$E(8) - E(8)^{} 3$	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13}$		-10	1	1	0	-1	-1	$E(8) - E(8)^{} 3$	$-E(8) + E(8)^3$	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	1	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$		-16	-2	-2	0	2	2	0	0	1	-1	E(4)	-E(4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-16	-2	-2	0	2	2	0	0	1	-1	-E(4)	E(4)
		16	-2	-2	0	-2	-2	0	0	1	1	-1	-1

 $P_1 = Group([()]) \cong 1 \\ P_2 = Group([(1, 10, 79, 42, 58)(2, 20, 72, 43, 46)(3, 64, 68, 52, 39)(4, 18, 80, 41, 56)(5, 24, 70, 44, 48)(6, 9, 34, 17, 49)(7, 50, 66, 62, 31)(8, 19, 40, 23, 59)(11, 60, 67, 53, 37)(12, 32, 16, 51, 13)(14, 54, 65, 63, 33)(15, 21, 38, 22, 61)(25, 27, 45, 74, 69)(26, 36, 57, 73, 78)(28, 47, 76, 71, 29)(30, 35, 55, 75, 77)]) \cong C5$

 $N_1 = Group([(1,3,10,13,4,11,18,6)(2,7,20,15,5,14,24,8)(9,25,19,30,12,29,21,26)(16,31,50,34,17,33,54,32)(22,37,60,40,23,39,64,38)(27,45,70,48,28,47,72,46)(35,55,79,58,36,57,80,56)(41,63,69,66,42,62,71,65)(43,53,78,68,44,52,77,67)(49,73,61,76,51,75,59,74),(1,2,4,5)(3,9,11,12)(6,16,13,17)(7,19,14,21)(8,22,15,23)(10,27,18,28)(20,35,24,36)(25,41,29,42)(26,43,30,44)(31,49,33,51)(32,52,34,53)(37,59,39,61)(38,62,40,63)(45,69,47,71)(46,58,48,56)(50,64,54,60)(55,77,57,78)(65,68,66,67)(70,76,72,74)(73,80,75,79)]) \cong SL(2,9)$ $N_2 = Group([(1,10,79,42,58)(2,20,72,43,46)(3,64,68,52,39)(4,18,80,41,56)(5,24,70,44,48)(6,9,34,17,49)(7,50,66,62,31)(8,19,40,23,59)(11,60,67,53,37)(12,32,16,51,13)(14,54,65,63,33)(15,21,38,22,61)(25,27,45,74,69)(26,43,30,44)(31,49,33,51)(32,52,44,50)(35,54,76,74,12)(36,54,76,74,76,74,12)(36,54,76,74,76,74,12)(36,54,76,74$