

Iterative regularization for low complexity regularizers

Silvia Villa

MaLGa- Machine learning Genova Center DIMA, Università di Genova

Data Science Seminar Series
London School of Economics and Political Science

February, 21st, 2022

Outline

Regularization

Strongly convex regularization

Iterative (implicit) regularization

Convex regularization

Special cases

Experiments

Collaborators

Joint project with Lorenzo Rosasco

and: Guillaume Garrigos, Mathurin Massias, Cesare Molinari, Luca Calatroni, Cristian Vega, Simon Matet, Bang Cong Vu.

Underdetermined linear systems

Given:

- \triangleright \mathcal{X} , \mathcal{Y} Hilbert spaces
- $ightharpoonup A \colon \mathcal{X} \to \mathcal{Y}$ linear and bounded, $b \in R(A)$
- $ightharpoonup R: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ convex and lsc

Solve:

$$\min R(x) : Ax = b$$

Underdetermined linear systems

Given:

- $\triangleright \mathcal{X}, \mathcal{Y}$ Hilbert spaces
- $ightharpoonup A \colon \mathcal{X} \to \mathcal{Y}$ linear and bounded, $b \in R(A)$
- $ightharpoonup R: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ convex and lsc

Solve:

$$\min R(x) : Ax = b$$

If R is strongly convex then there exists a unique solution x^{\dagger} .

Inverse problems and learning — Choice of ${\it R}$

- $||x||^2$
- $||x||_1$
- ightharpoonup TV(x)
- $ightharpoonup ||x||_*$

Inverse problems and learning — Choice of ${\it R}$

- $||x||^2$
- $ightharpoonup ||x||_1$
- ightharpoonup TV(x)
- $ightharpoonup ||x||_*$

Convex and possibly nonsmooth

Inverse problems and learning — stability

Solve:

$$\min R(x) : Ax = b$$

knowing only b^{δ} such that $\|b-b^{\delta}\| \leq \delta$.

Outline

Regularization

Strongly convex regularization

Iterative (implicit) regularization

Convex regularization

Special cases

Experiments

Explicit regularization a.k.a Tikhonov regularization

Given
$$D \colon \mathcal{Y} \times \mathcal{Y} \to [0, +\infty[$$

minimize
$$D(Ax, b^{\delta}) + \lambda R(x)$$

Theorem

If:

- ► *R* is strongly convex
- ightharpoonup $Im(A^*) \cap \partial R(x^{\dagger}) \neq \varnothing$
- \blacktriangleright $x^{\delta,\lambda}$ is the unique solution of the regularized problem.

Then

$$||x^{\delta,\lambda} - x^{\dagger}|| \le C \left(\frac{\delta}{\sqrt{\lambda}} + \sqrt{\delta} + \sqrt{\lambda}\right)$$

Choosing $\lambda_{\delta} \sim \delta$:

$$||x^{\delta,\lambda_{\delta}} - x^{\dagger}|| \le C\sqrt{\delta}.$$

[Burger-Osher, Convergence rates of convex variational regularization, 2004], [Benning-Burger, Error estimates for general fidelities, 2011]

What about computations?

- ightharpoonup choose an interval $[\lambda_{\min}, \lambda_{\max}]$
- lacktriangle approximately solve the regularized problem for $\lambda \in [\lambda_{\min}, \lambda_{\max}]$
- ightharpoonup select the best λ according to a validation criterion

Outline

Regularization

Strongly convex regularization

Iterative (implicit) regularization

Convex regularization

Special cases

Experiments

Iterative regularization: an optimization point of view

1. Choose a convergent algorithm to solve

$$\min R(x) : Ax = b$$

Call the iterates $(x_k)_{k \in \mathbb{N}}$.

Iterative regularization: an optimization point of view

1. Choose a convergent algorithm to solve

$$\min R(x) : Ax = b$$

Call the iterates $(x_k)_{k \in \mathbb{N}}$.

2. Apply the same algorithm to

$$\min R(x) : Ax = b^{\delta}$$

Call the iterates $(x_k^{\delta})_{k \in \mathbb{N}}$.

Iterative regularization: an optimization point of view

1. Choose a convergent algorithm to solve

$$\min R(x) : Ax = b$$

Call the iterates $(x_k)_{k \in \mathbb{N}}$.

2. Apply the same algorithm to

$$\min R(x) : Ax = b^{\delta}$$

Call the iterates $(x_k^{\delta})_{k \in \mathbb{N}}$.

3. $||x_k^{\delta} - x^{\dagger}|| \le ||x_k^{\delta} - x_k|| + ||x_k - x^{\dagger}||$

The algorithm in the strongly convex case

$$\min_{Ax=b} R(x) \quad \longleftrightarrow \quad \min_{x \in \mathcal{X}} R(x) + \iota_{\{b\}}(Ax),$$

where $\iota_{\{b\}}(x)=0$ if x=b and $\iota_{\{b\}}(x)=+\infty$ otherwise.

The algorithm in the strongly convex case

$$\min_{Ax=b} R(x) \quad \longleftrightarrow \quad \min_{x \in \mathcal{X}} R(x) + \iota_{\{b\}}(Ax),$$

where $\iota_{\{b\}}(x)=0$ if x=b and $\iota_{\{b\}}(x)=+\infty$ otherwise.

Dual problem

$$\min_{v \in \mathcal{Y}} d(v), \quad d(v) = R^*(-A^*v) + \langle b, v \rangle.$$

 $\operatorname{Im}(A^*) \cap \partial R(x^\dagger) \neq \varnothing \implies d$ has a solution R strongly convex $\Rightarrow d$ is smooth

Let (v_k) be generated by an (accelerated) gradient method and

$$x_k = \nabla R^*(-\gamma A^* v_k).$$

▶ $R(x) = ||x||^2$, Landweber method (1950), see [Engl-Hanke-Neubauer, Regularization of inverse problems, 1996], accelerated version [Neubauer, 2017]

- ▶ $R(x) = ||x||^2$, Landweber method (1950), see [Engl-Hanke-Neubauer, Regularization of inverse problems, 1996], accelerated version [Neubauer, 2017]
- ► a.k.a. mirror descent [Nemirovski-Yudin 1983, Teboulle-Beck 2003, Gunasekar et al 2018] or linearized Bregman iteration [Osher et al. 2005, Burger-Resmerita-He, 2007...]

- ▶ $R(x) = ||x||^2$, Landweber method (1950), see [Engl-Hanke-Neubauer, Regularization of inverse problems, 1996], accelerated version [Neubauer, 2017]
- ► a.k.a. mirror descent [Nemirovski-Yudin 1983, Teboulle-Beck 2003, Gunasekar et al 2018] or linearized Bregman iteration [Osher et al. 2005, Burger-Resmerita-He, 2007...]
- Theorem[Matet-Rosasco-V.-Vu, 2017] If x_k^δ is generated by Gradient Descent on the noisy dual, then

$$\|x_k^{\delta} - x^{\dagger}\| \le \sqrt{k}\delta + \frac{1}{\sqrt{k}}, \qquad k_{\delta} \sim \delta^{-1} \implies \|x_{k_{\delta}}^{\delta} - x^{\dagger}\| \le \sqrt{\delta}$$

- ▶ $R(x) = ||x||^2$, Landweber method (1950), see [Engl-Hanke-Neubauer, Regularization of inverse problems, 1996], accelerated version [Neubauer, 2017]
- ► a.k.a. mirror descent [Nemirovski-Yudin 1983, Teboulle-Beck 2003, Gunasekar et al 2018] or linearized Bregman iteration [Osher et al. 2005, Burger-Resmerita-He, 2007...]
- ▶ Theorem[Matet-Rosasco-V.-Vu, 2017] If x_k^δ is generated by Gradient Descent on the noisy dual, then

$$\|x_k^{\delta} - x^{\dagger}\| \le \sqrt{k}\delta + \frac{1}{\sqrt{k}}, \qquad k_{\delta} \sim \delta^{-1} \implies \|x_{k_{\delta}}^{\delta} - x^{\dagger}\| \le \sqrt{\delta}$$

If x_k^δ is generated by Accelerated Gradient Descent on the noisy dual, then

$$||x_k^{\delta} - x^{\dagger}|| \le k\delta + \frac{1}{k}, \qquad k_{\delta} \sim \delta^{-1/2} \implies ||x_{k_{\delta}}^{\delta} - x^{\dagger}|| \le \sqrt{\delta}$$

- ▶ $R(x) = ||x||^2$, Landweber method (1950), see [Engl-Hanke-Neubauer, Regularization of inverse problems, 1996], accelerated version [Neubauer, 2017]
- ► a.k.a. mirror descent [Nemirovski-Yudin 1983, Teboulle-Beck 2003, Gunasekar et al 2018] or linearized Bregman iteration [Osher et al. 2005, Burger-Resmerita-He, 2007...]
- Theorem[Matet-Rosasco-V.-Vu, 2017] If x_k^δ is generated by Gradient Descent on the noisy dual, then

$$\|x_k^{\delta} - x^{\dagger}\| \le \sqrt{k}\delta + \frac{1}{\sqrt{k}}, \qquad k_{\delta} \sim \delta^{-1} \implies \|x_{k_{\delta}}^{\delta} - x^{\dagger}\| \le \sqrt{\delta}$$

If x_k^δ is generated by Accelerated Gradient Descent on the noisy dual, then

$$||x_k^{\delta} - x^{\dagger}|| \le k\delta + \frac{1}{k}, \qquad k_{\delta} \sim \delta^{-1/2} \implies ||x_{k_{\delta}}^{\delta} - x^{\dagger}|| \le \sqrt{\delta}$$

► ADMM, a.k.a. Bregman iteration [Bachmayr-Burger 2009, Burger et. al. 2007]

- ▶ $R(x) = ||x||^2$, Landweber method (1950), see [Engl-Hanke-Neubauer, Regularization of inverse problems, 1996], accelerated version [Neubauer, 2017]
- ► a.k.a. mirror descent [Nemirovski-Yudin 1983, Teboulle-Beck 2003, Gunasekar et al 2018] or linearized Bregman iteration [Osher et al. 2005, Burger-Resmerita-He, 2007...]
- Theorem[Matet-Rosasco-V.-Vu, 2017] If x_k^δ is generated by Gradient Descent on the noisy dual, then

$$\|x_k^{\delta} - x^{\dagger}\| \le \sqrt{k}\delta + \frac{1}{\sqrt{k}}, \qquad k_{\delta} \sim \delta^{-1} \implies \|x_{k_{\delta}}^{\delta} - x^{\dagger}\| \le \sqrt{\delta}$$

If x_k^δ is generated by Accelerated Gradient Descent on the noisy dual, then

$$||x_k^{\delta} - x^{\dagger}|| \le k\delta + \frac{1}{k}, \qquad k_{\delta} \sim \delta^{-1/2} \implies ||x_{k_{\delta}}^{\delta} - x^{\dagger}|| \le \sqrt{\delta}$$

- ► ADMM, a.k.a. Bregman iteration [Bachmayr-Burger 2009, Burger et. al. 2007]
- ► Also: nonlinear inverse problems [Kaltenbacher-Neubauer-Scherzer, Iterative Regularization for nonlinear inverse problems, 2008], learning [Yao-Rosasco-Caponnetto 2005, Rosasco-V. 2015]

Other discrepancies

$$\min_{\mathbf{R}(x)} R(x) \longrightarrow \frac{1}{\lambda} D(Ax, b) + R(x)$$

$$\text{s.t. } D(Ax, b) = 0$$

$$\uparrow \qquad \qquad \downarrow$$

$$\min_{v \in \mathcal{Y}} \underbrace{\langle v, b \rangle + R^*(-A^*v)}_{=d(v)} \longleftarrow \underbrace{\frac{1}{\lambda} D^*(\lambda v, y) + R^*(-A^*v)}_{=d_{\lambda}(v)}.$$

Other discrepancies

$$\min R(x) \longrightarrow \frac{1}{\lambda} D(Ax, b) + R(x)$$
s.t. $D(Ax, b) = 0$

$$\uparrow \qquad \qquad \downarrow$$

$$\min_{v \in \mathcal{Y}} \underbrace{\langle v, b \rangle + R^*(-A^*v)}_{=d(v)} \longleftarrow \underbrace{\frac{1}{\lambda} D^*(\lambda v, y) + R^*(-A^*v)}_{=d_{\lambda}(v)}.$$

A diagonal approach[Lemaire 80s-90s]

$$x_{k+1} = \mathsf{Algo}(x_k, \frac{\lambda_k}{\lambda_k}), \quad \text{with } \lambda_k \to 0.$$

- ightharpoonup Assumptions on D
- $ightharpoonup Im A^* \cap \partial R(x^{\dagger}) \neq \varnothing$
- \blacktriangleright $\lambda_k \to 0$ (at a suitable rate, depending on D)

If Algo = forward-backward on the noisy dual, then [Garrigos-Rosasco-V. 2017]

$$\|x_k^{\delta} - x^{\dagger}\| \le \frac{1}{\sqrt{k}} + k\delta, \qquad k_{\delta} \sim \delta^{-2/3} \implies \|x_{k_{\delta}}^{\delta} - x^{\dagger}\| \le \delta^{1/3}$$

If Algo = accelerated forward-backward on the noisy dual, then [Calatroni-Garrigos-Rosasco-V. 2021]

$$\|x_k^{\delta} - x^{\dagger}\| \le \frac{1}{k^2} + k^2 \delta^2, \qquad k_{\delta} \sim \delta^{-1/2} \implies \|x_{k_{\delta}}^{\delta} - x^{\dagger}\| \le \delta^{1/2}$$

- ightharpoonup Assumptions on D
- $ightharpoonup Im A^* \cap \partial R(x^{\dagger}) \neq \varnothing$
- $ightharpoonup \lambda_k o 0$ (at a suitable rate, depending on D)

If Algo = forward-backward on the noisy dual, then [Garrigos-Rosasco-V. 2017]

$$\|x_k^{\delta} - x^{\dagger}\| \le \frac{1}{\sqrt{k}} + k\delta, \qquad k_{\delta} \sim \delta^{-2/3} \implies \|x_{k_{\delta}}^{\delta} - x^{\dagger}\| \le \delta^{1/3}$$

If Algo = accelerated forward-backward on the noisy dual, then [Calatroni-Garrigos-Rosasco-V. 2021]

$$\|x_k^{\delta} - x^{\dagger}\| \le \frac{1}{k^2} + k^2 \delta^2, \qquad k_{\delta} \sim \delta^{-1/2} \implies \|x_{k_{\delta}}^{\delta} - x^{\dagger}\| \le \delta^{1/2}$$

See also [Benning-Burger, 2011].

Outline

Regularization

Strongly convex regularization

Iterative (implicit) regularization

Convex regularization

Special cases

Experiments

Convex regularizers

What if R is not strongly convex?

Convex regularizers

What if R is not strongly convex?

Steps:

- ► identify an algorithm
- derive convergence rates on suitable quantities (the solution is not unique in general)
- ▶ special case: ℓ^1 norm
- unfeasible case

Based on: [Massias, Molinari, Rosasco, V., Iterative regularization for low complexity regularizers, 2022]

Consider R = F + G, F L-smooth, and G convex

$$\min F(x) + G(x) + \iota_b(Ax)$$
 (P)

Consider R = F + G, F L-smooth, and G convex

$$\min F(x) + G(x) + \iota_b(Ax)$$
 (P)

Langrangian:

$$\mathcal{L}(x,y) = F(x) + G(x) + \langle y, Ax - b \rangle$$

Consider R = F + G, F L-smooth, and G convex

$$\min F(x) + G(x) + \iota_b(Ax) \qquad (P)$$

Langrangian:

$$\mathcal{L}(x,y) = F(x) + G(x) + \langle y, Ax - b \rangle$$

Assumption: There exists a saddle point of $\mathcal L$ (primal-dual solution) (x_*,y_*)

$$\forall (x,y)$$
 $\mathcal{L}(x_*,y) - \mathcal{L}(x,y_*) \leq 0$

Consider R = F + G, F L-smooth, and G convex

$$\min F(x) + G(x) + \iota_b(Ax) \qquad (P)$$

Langrangian:

$$\mathcal{L}(x,y) = F(x) + G(x) + \langle y, Ax - b \rangle$$

Assumption: There exists a saddle point of $\mathcal L$ (primal-dual solution) (x_*,y_*)

$$\forall (x,y)$$
 $\mathcal{L}(x_*,y) - \mathcal{L}(x,y_*) \leq 0$

$$(x_*,y_*)$$
 saddle point of $\mathcal{L} \implies \begin{cases} -A^*y_* \in \partial R(x_*) \\ Ax_* = b \end{cases}$, x_* is a solution of (P)

Condat-Vu algorithm

$$\begin{cases} \tilde{y}_k = 2y_k - y_{k-1} \\ x_{k+1} = \text{prox}_{\tau G}(x_k - \tau(\nabla F(x_k) + A^* \tilde{y}_k)) \\ y_{k+1} = y_k + \sigma(Ax_{k+1} - b) \end{cases}$$

Condat-Vu algorithm

$$\begin{cases} \tilde{y}_k = 2y_k - y_{k-1} \\ x_{k+1} = \text{prox}_{\tau G}(x_k - \tau(\nabla F(x_k) + A^* \tilde{y}_k)) \\ y_{k+1} = y_k + \sigma(Ax_{k+1} - b) \end{cases}$$

weak convergence of the iterates (x_k, y_k) to a primal-dual solution (if $\tau < (L + \sigma ||A||^2)^{-1}$)

Condat-Vu algorithm

$$\begin{cases} \tilde{y}_k = 2y_k - y_{k-1} \\ x_{k+1} = \text{prox}_{\tau G}(x_k - \tau(\nabla F(x_k) + A^* \tilde{y}_k)) \\ y_{k+1} = y_k + \sigma(Ax_{k+1} - b) \end{cases}$$

- weak convergence of the iterates (x_k, y_k) to a primal-dual solution (if $\tau \leq (L + \sigma ||A||^2)^{-1}$)
- preconditioning

Condat-Vu algorithm

$$\begin{cases} \tilde{y}_k = 2y_k - y_{k-1} \\ x_{k+1} = \text{prox}_{\tau G}(x_k - \tau(\nabla F(x_k) + A^* \tilde{y}_k)) \\ y_{k+1} = y_k + \sigma(Ax_{k+1} - b) \end{cases}$$

- weak convergence of the iterates (x_k, y_k) to a primal-dual solution (if $\tau \leq (L + \sigma ||A||^2)^{-1}$)
- preconditioning
- inexact computations of prox

Condat-Vu algorithm

$$\begin{cases} \tilde{y}_k = 2y_k - y_{k-1} \\ x_{k+1} = \text{prox}_{\tau G}(x_k - \tau(\nabla F(x_k) + A^* \tilde{y}_k)) \\ y_{k+1} = y_k + \sigma(Ax_{k+1} - b^{\delta}) \end{cases}$$

- weak convergence of the iterates (x_k, y_k) to a primal-dual solution (if $\tau \leq (L + \sigma ||A||^2)^{-1}$)
- preconditioning
- ▶ inexact computations of prox
- lacktriangle in our analysis: view b^δ as another source of errors

How to measure distance from optimality?

$$\mathcal{L}(x, y_*) - \mathcal{L}(x_*, y) = R(x) - R(x_*) + \langle y_*, Ax - b \rangle - \langle y_*, Ax_* - b \rangle$$

$$= R(x) - R(x_*) - \langle -A^* y_*, x - x_* \rangle$$

$$= D_R^{-A^* y_*}(x, x_*)$$

Bregman distance is not enough for ℓ^1

21

Optimality condition

Theorem

Ιf

- \blacktriangleright (x_*,y_*) is a saddle point of $\mathcal L$ and $(x,y)\in\mathcal X\times\mathcal Y$
- ightharpoonup Ax = b

Then (x, y_*) is a primal-dual solution

Regularization properties of the Condat-Vu algorithm

Theorem (Stability and early stopping)

Let (x_k^δ,y_k^δ) be the (averaged) sequence obtained with b^δ instead of b. Assume $\tau \leq \xi (\xi L + \sigma \|A\|^2)^{-1}$ for some $0 < \xi < 1$. Then

$$\mathcal{L}(x_k^{\delta}, y_*) - \mathcal{L}(x_*, y_k^{\delta}) \le \frac{1}{k} + \delta + \delta^2 k$$
$$\|Ax_k^{\delta} - b\|^2 \le \frac{1}{k} + \delta + \delta^2 k$$

Regularization properties of the Condat-Vu algorithm

Theorem (Stability and early stopping)

Let (x_k^δ,y_k^δ) be the (averaged) sequence obtained with b^δ instead of b. Assume $\tau \leq \xi (\xi L + \sigma \|A\|^2)^{-1}$ for some $0 < \xi < 1$. Then

$$\mathcal{L}(x_k^{\delta}, y_*) - \mathcal{L}(x_*, y_k^{\delta}) \le \frac{1}{k} + \delta + \delta^2 k$$

$$||Ax_k^{\delta} - b||^2 \le \frac{1}{k} + \delta + \delta^2 k$$

If $k \sim \delta^{-1}$, there exists c > 0 such that

$$\mathcal{L}(x_k^{\delta}, y_*) - \mathcal{L}(x_*, y_k^{\delta}) \le \delta$$
 $||Ax_k^{\delta} - b||^2 \le \delta(1 + \delta)$

23

Regularization properties of the Condat-Vu algorithm

Theorem (Stability and early stopping)

Let (x_k^δ,y_k^δ) be the (averaged) sequence obtained with b^δ instead of b. Assume $\tau \leq \xi (\xi L + \sigma \|A\|^2)^{-1}$ for some $0 < \xi < 1$. Then

$$\mathcal{L}(x_k^{\delta}, y_*) - \mathcal{L}(x_*, y_k^{\delta}) \le \frac{1}{k} + \delta + \delta^2 k$$

$$||Ax_k^{\delta} - b||^2 \le \frac{1}{k} + \delta + \delta^2 k$$

If $k \sim \delta^{-1}$, there exists c > 0 such that

$$\mathcal{L}(x_k^{\delta}, y_*) - \mathcal{L}(x_*, y_k^{\delta}) \le \delta \qquad ||Ax_k^{\delta} - b||^2 \le \delta(1 + \delta)$$

See also [Rasch-Chambolle, 2021]

Outline

Regularization

Strongly convex regularization

Iterative (implicit) regularization

Convex regularization

Special cases

Experiments

Theorem

Assume that Ax=b has an s-sparse solution x_{st} , and that the s-RIP holds. Then

$$\min \|x\|_1$$
 s.t. $Ax = b$

has a unique solution and

$$||x_k^{\delta} - x_*||^2 \le Q_s'(\frac{1}{k} + \delta + \delta^2 k) + Q_s(\frac{1}{k} + \delta + \delta^2 k)$$

Theorem

Assume that Ax=b has an s-sparse solution x_{st} , and that the s-RIP holds. Then

$$\min \|x\|_1$$
 s.t. $Ax = b$

has a unique solution and

$$||x_k^{\delta} - x_*||^2 \le Q_s'(\frac{1}{k} + \delta + \delta^2 k) + Q_s(\frac{1}{k} + \delta + \delta^2 k)$$

Based on [Grasmair-Scherzer-Haltmeier, Necessary and sufficient conditions for linear convergence of ℓ^1 regularization 2011]

Theorem

Assume that Ax=b has an s-sparse solution x_* , and that the s-RIP holds. Then

$$\min \|x\|_1$$
 s.t. $Ax = b$

has a unique solution and

$$||x_k^{\delta} - x_*||^2 \le Q_s'(\frac{1}{k} + \delta + \delta^2 k) + Q_s(\frac{1}{k} + \delta + \delta^2 k)$$

Based on [Grasmair-Scherzer-Haltmeier, Necessary and sufficient conditions for linear convergence of ℓ^1 regularization 2011] The constants in the bound depend on s (as for Tikhonov) and on $\|b^\delta\|$ (differently from Tikhonov).

Remark: The (averaged) Condat-Vu sequence (x_k, y_k) satisfies $||(x_k, y_k)|| \to +\infty$.

Remark: The (averaged) Condat-Vu sequence (x_k,y_k) satisfies $\|(x_k,y_k)\| \to +\infty$. Consider

$$(P')$$
 min $R(x)$ s. t. $A^*Ax = A^*b$ vs (P) min $R(x)$ s. t. $Ax = b$

Remark: The (averaged) Condat-Vu sequence (x_k,y_k) satisfies $\|(x_k,y_k)\| \to +\infty$. Consider

$$(P')$$
 min $R(x)$ s. t. $A^*Ax = A^*b$ vs (P) min $R(x)$ s. t. $Ax = b$

Always feasible if $\dim \mathcal{X}, \dim \mathcal{Y} < +\infty$.

Remark: The (averaged) Condat-Vu sequence (x_k,y_k) satisfies $\|(x_k,y_k)\| \to +\infty$. Consider

$$(P')$$
 min $R(x)$ s. t. $A^*Ax = A^*b$ vs (P) min $R(x)$ s. t. $Ax = b$

Always feasible if $\dim \mathcal{X}, \dim \mathcal{Y} < +\infty$. Assume that (P') has a primal-dual solution (x^*, y^*) .

Remark: The (averaged) Condat-Vu sequence (x_k,y_k) satisfies $\|(x_k,y_k)\| \to +\infty$. Consider

$$(P')$$
 min $R(x)$ s. t. $A^*Ax = A^*b$ vs (P) min $R(x)$ s. t. $Ax = b$

Always feasible if $\dim \mathcal{X}, \dim \mathcal{Y} < +\infty$. Assume that (P') has a primal-dual solution (x^*, y^*) .

Theorem

Consider the "original" averaged Condat-Vu algorithm for $\delta=0$. Then x_k weakly converges to some solution of (P'). If $\delta>0$ and $A^*Ax=A^*b^\delta$ has a solution, then

$$D^{-A^*Ay^*}(x_k^{\delta}, x^*) \le \frac{1}{k} + \delta + \delta^2 k$$

and

$$||A^*Ax_k^{\delta} - A^*b|| \le \frac{1}{k} + \delta + \delta^2 k + \delta^2$$

Outline

Regularization

Strongly convex regularization

Iterative (implicit) regularization

Convex regularization

Special cases

Experiments

Figure: Comparison of Tikhonov regularization and iterative regularization on rcv1 (LIBSVM package). Both methods reach similar lowest prediction errors (left:0.195, right: 0.21) while the iterative approach is much faster (2.5 s vs. 125 s).

Figure: Comparison of estimation and prediction performances of iterative and Tykhonov regularization for sparse recovery. Iterative regularization attains similar performances to explicit regularization, but in few iterations.

Figure: To maintain sparsity in the early iterates, it is important to set σ correctly. Our datadriven choice behaves well: the iterates sparsity increases steadily, and they reach the highest F1 score.

Matrix recovery

Figure: Semiconvergence of iterates for the low rank matrix completion problem, in dimension 200×200 (left) and 500×500 (right)

31

computational regularization (inverse problems)

- computational regularization (inverse problems)
- optimization viewpoint, based on:
 M. Massias, C. Molinari, L. Rosasco, S. Villa, Iterative regularization for convex regularizers, PMLR 130:1684-1692, 2021
 M. Massias, C. Molinari, L. Rosasco, S. Villa, Iterative regularization for low complexity regularizers, arxiv 2022

- computational regularization (inverse problems)
- optimization viewpoint, based on:
 M. Massias, C. Molinari, L. Rosasco, S. Villa, Iterative regularization for convex regularizers, PMLR 130:1684-1692, 2021
 M. Massias, C. Molinari, L. Rosasco, S. Villa, Iterative regularization for low complexity regularizers, arxiv 2022
- ► Code available here: https://lcsl.github.io/iterreg

- computational regularization (inverse problems)
- optimization viewpoint, based on:
 M. Massias, C. Molinari, L. Rosasco, S. Villa, Iterative regularization for convex regularizers, PMLR 130:1684-1692, 2021
 M. Massias, C. Molinari, L. Rosasco, S. Villa, Iterative regularization for low complexity regularizers, arxiv 2022
- Code available here: https://lcsl.github.io/iterreg
- finite vs infinite dimensional
- unfeasible case
- stochastic variants/ learning setting

