Detailed Markov Model

$$C0\frac{\alpha_{_{I}}(V)}{\overline{\beta_{_{I}}(V)}}C1\frac{\alpha_{_{2}}(V)}{\overline{\beta_{_{2}}(V)}}C2\frac{\alpha_{_{3}}(V)}{\overline{\beta_{_{3}}(V)}}C3\frac{\alpha_{_{4}}(V)}{\overline{\beta_{_{4}}(V)}}O^{k_{_{Ca}}(V)}C3\frac{Ca^{2+}}{\overline{\beta_{_{4}}(V)}}$$

Transition rates:

$$\alpha_i(V) = \alpha_{io} \exp(V/V_i)$$

$$\beta_i(V) = \beta_{io} \exp(V/V_i)$$

Transition probabilities:

$$\alpha_i \Delta t$$

$$\beta_i \Delta t$$

- 1. Sample for Unif
- Compare to probabilities to find out

Similarly: Multinomial Distribution

- Probability distribution of the outcomes from a multinomial experiment.
 - k possible outcomes each with a probability p_k
 - *n* trials
 - The probability each event E_i occurs n_i times given the probability for that outcome is p_i

$$P = \frac{n!}{n_1! n_2! ... n_k!} (p_1^{n_1} p_2^{n_2} ... p_k^{n_k})$$

- Distribution gives probability of getting a certain an outcome a certain number of times for all the trials
- Thus sampling gives the number per outcome

1. Sampling gives outcome

Calcium

$$VDCC_{open} \xrightarrow{k_{Ca}(V)} VDCC_{open} + Ca^{2+}$$

Calcium

calbindin bound

At the SNARE complex

