The Pumping Lemma

Lemma: (Pumping Lemma) If L is a regular language, then there exists a positive integer p (the pumping length) such that every string $s \in L$, $|s| \geq p$, can be partitioned into three pieces, s = xyz, such that the following conditions hold:

- |y| > 0,
- $|xy| \le p$, and
- for each $i \ge 0$, $xy^iz \in L$,

Strategy for showing that a language L is not regular

- 1. Assume that L is regular (with the aim of reaching a contradiction).
- 2. Choose a string $s \in L$, such that $|s| \ge p$ where p is the pumping length given by the pumping lemma.
 - The pumping lemma then says that s can be partitioned into three pieces s = xyz where |y| > 0 and $|xy| \le p$, such that $xy^iz \in L$ for all $i \ge 0$.
- 3. Show that for ALL POSSIBLE partitions of s = xyz satisfying |y| > 0 and $|xy| \le p$ there exists an i such that $xy^iz \notin L$.
 - If we succeed to show this, then we have a contradiction with the pumping lemma and our assumption that L is regular is wrong.

The standard example

 $L = \{a^n b^n \mid n \ge 0\}$ is not regular.

Proof:

- 1. Assume that L is regular (with the goal of reaching a contradiction).
- 2. Choose $s = a^p b^p$ where p is the pumping length given by the pumping lemma.
 - $s \in L$ and $|s| \ge p$, so the pumping lemma says that s can be partitioned into three pieces s = xyz where |y| > 0 and $|xy| \le p$, such that $xy^iz \in L$ for all $i \ge 0$.
- 3. $s = a^p b^p = xyz$ where |y| > 0 and $|xy| \le p$ implies that for all such partitions of s, y is a string of a's of length at least 1. Choose i = 2, xy^2z contains more a's than b's, thus, $xy^2z \notin L$.
 - m D This contradicts the pumping lemma, hence, our assumption that L is regular is wrong and consequently L is not regular.

Primes represented in unary

 $L = \{1^n \mid n \text{ is a prime number}\}$ is not regular.

Proof: Assume that L is regular. Let p be the pumping length for L given by the pumping lemma.

Choose $s=1^n$ where n is a prime and n>p+1. $s\in L$ and $|s|\geq p$, hence, s can be partitioned into xyz satisfying the conditions in the pumping lemma. $|xy|\leq p$ implies |z|>1. Since |z|>1 we have |xz|>1. Let i=|xz|, then $|xy^iz|=|xz|+|y||xz|=(1+|y|)|xz|$. Since both (1+|y|) and |xz| are at least 2, their product cannot be a prime. Thus, $|xy^iz|$ is not a prime. Contradiction, the assumption is wrong and L is not regular.

Pumping down

 $L = \{0^i 1^j \mid i > j\}$ is not regular.

Proof: Assume that L is regular. Let p be the pumping length for L given by the pumping lemma. Choose $s=0^{p+1}1^p$. $s\in L$ and $|s|\geq p$, hence, s can be partitioned into xyz, satisfying the conditions in the pumping lemma. The condition $|xy|\leq p$ implies that y consists only of 0's.

The pumping lemma says that $xy^iz \in L$ even if i = 0, $xy^0z = xz$ which gives $xz \in L$, and since |y| > 0 we know that xz contains fewer 0's than xyz = s. Since s only has one more 0 than 1's, we conclude that xz does not contain more 0's than 1's and $xz \notin L$.

Contradiction (between $xz \in L$ and $xz \notin L$), the assumption must be wrong and L is not regular.