Stochastik 1 Hausaufgaben Blatt 1

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: October 30, 2024)

Problem 1. Bei einer Sportveranstaltung wird ein Dopingtest durchgeführt. Falls eine Person gedopt ist, so fällt der Test zu 99% auch positiv aus. Hat eine Person nicht gedopt, zeigt der Test trotzdem mit 5% Wahrscheinlichkeit ein positives Ergebnis an. Aus Erfahrung sei bekannt, dass 20% der Teilnehmenden gedopt sind.

- (a) Bestimmen Sie die Wahrscheinlichkeit dafur, dass eine Dopingprobe positiv ausfällt.
- (b) Bestimmen Sie die Wahrscheinlichkeit dafur, dass der Test negativ ausfällt, obwohl die getestete Person gedopt ist.
- (c) Berechnen Sie die Wahrscheinlichkeit dafur, dass eine Person gedopt ist, deren Test negativ ausgefallen ist.
- *Proof.* (a) Da eine Person entweder gedopt or nicht gedopt ist, können wir die Wahrscheinlichkeit zerlegen

$$P(\text{positiv}) = P(\text{positiv}|\text{gedopt})P(\text{gedopt}) + P(\text{positiv}|\text{nicht gedopt})P(\text{nicht gedopt})$$

$$= 0.99 \cdot 0.2 + 0.05 \cdot 0.8$$

$$= 0.238$$

(b) Die Wahrscheinlichkeit ist

$$P(\text{negativ} \cap \text{gedopt}) = P(\text{negativ}) \cap P(\text{gedopt}).$$

Problem 2. Betrachten Sie die Menge $\Omega = \{1, 2, 3\}$ und die Abbildung $p: \Omega \to [0, 1]$ mit $p(\omega) = \omega/6$, für $\omega \in \Omega$

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

- (a) Geben Sie vier verschiedene σ -Algebren auf Ω an.
- (b) Geben Sie ein Beispiel an für σ -Algebren uber der Menge Ω , so dass

$$\mathcal{A} \sqcup \mathcal{B} := \{ A \cup B : A \in \mathcal{A} \text{ und } B \in \mathcal{B} \},$$

keine σ -Algebra ist.

- (c) Zeigen Sie, dass ein Wahrscheinlichkeitsmaß \mathbb{P} auf $(\Omega, \mathcal{P}(\Omega))$ existiert, so dass $\mathbb{P}(\{\omega\}) = p(\omega) = \omega/6$.
- (d) Bestimmen Sie die σ -Algebra, welche von $\mathcal{E} = \{A \in \mathcal{P}(\Omega) | \mathbb{P}(A) = 1/2\}$ erzeugt wird *Proof.* (a)

$$\{\varnothing, \Omega\}$$

$$\{\varnothing, \{1\}, \{2, 3\}, \Omega\}$$

$$\{\varnothing, \{1, 2\}, \{3\}, \Omega\}$$

$$\mathcal{P}(\Omega)$$

(b) Wir betrachten die zweite und dritte σ -Algebren:

$$\begin{split} \mathcal{A} &= \{\varnothing, \{1\}, \{2,3\}, \Omega\} \\ \mathcal{B} &= \{\varnothing, \{1,2\}, \{3\}, \Omega\} \\ \\ \mathcal{A} \sqcup \mathcal{B} &= \{\varnothing, \{1\}, \{2,3\}, \{1,2\}, \{3\}, \{1,3\}, \Omega\} \end{split}$$

was keine σ -Algebra ist, da $\Omega \setminus \{1,3\} = \{2\} \notin \mathcal{A} \sqcup \mathcal{B}$.

(c) Wir können die Funktion durch deren Wirkung auf jeder Teilmenge definieren:

$$\mathbb{P}(\varnothing) = 0$$

$$\mathbb{P}(\{\omega\}) = \omega/6$$

$$\mathbb{P}(\{1,2\}) = 1/2$$

$$\mathbb{P}(\{2,3\}) = 5/6$$

$$\mathbb{P}(\{1,3\}) = 2/3$$

$$\mathbb{P}(\Omega) = 1$$

Durch Betrachtung alle Permutationen kann man zeigen, dass \mathbb{P} σ -additiv ist. Daher ist \mathbb{P} ein Wahrscheinlichkeitsmaß.

(d) $\mathcal{E} = \{\{1,2\},\{3\}\}.$ Daher ist die von \mathcal{E} erzeugte $\sigma\text{-Algebra}$

$$\mathcal{A}_{\sigma}(\mathcal{E}) = \{\varnothing, \{1, 2\}, \{3\}, \Omega\}$$

Dies ist die kleinste σ -Algebra, die \mathcal{E} enthält, da eine σ -Algebra die Nullmenge und die gesamte Menge enthalten muss. Man darf die anderen 2 Mengen auch nicht weglassen, da die Mengen aus \mathcal{E} sind. Man verfiziere auch, dass Komplementen und Vereinigungen noch in $\mathcal{A}_{\sigma}(\mathcal{E})$ sind.