APLICATIVO PARA MONITORAMENTO DO SONO

Paulo Eduardo Manzone Maia Orientador: Prof. Dr. Wilson Massashiro Yonezawa

Sequência

- 1. INTRODUÇÃO
- 2. OBJETIVOS
- 3. SENSORES / FERRAMENTAS
- 4. REGULARIDADE / DISTÚRBIO
- 5. PROJETO / APLICAÇÃO
- 6. CALIBRAÇÃO
- 7. TELAS
- 8. DADOS / COMPARAÇÃO
- 9. RECOMENDADOR
- 10.TRABALHOS FUTUROS

INTRODUÇÃO

 7,6% da população usa remédio para dormir (IBGE, 2013) [1]

 Alterações físicas, ocupacionais, cognitivas e sociais do indivíduo, e compromete a qualidade de vida (Müller e Guimarães, 2007)[2]

 Aplicativos para saúde são viáveis pois smartphones vêm se popularizando e possuem diversos sensores

INTRODUÇÃO

Sono se apresenta em ciclos

 Movimentação tem relação direta com o ciclo do sono (Jansen et al., 2007)[3]

 Distúrbios têm relação com o ciclo do sono, ex: insônia (Nunes, 2002)[4]

OBJETIVOS

Aliar tecnologias para auxiliar o sono

Mobile - Híbrido (abrangência)

Captação e visualização de dados

OBJETIVOS

 Base para treinamento de algoritmos de Machine Learning

• Levar conteúdo educativo por meio de recomendação

SENSORES

 Sensor deveria captar estado do sono (indiretamente através da movimentação)

Acelerômetro e Giroscópio

 Optou-se pelo Acelerômetro por estar presente em mais celulares em relação ao Giroscópio

SENSORES

Esquema de funcionamento de acelerômetro:

FERRAMENTAS

• APLICATIVO: Flutter

• PERSISTÊNCIA DE DADOS: Firebase

RESTFUL API: Flask

• INFRAESTRUTURA: AWS

REGULARIDADE

"(...) probabilidade que dois pontos no tempo, separados por 24 horas, estejam no mesmo estado de sono-vigília (...)" (LUNSFORD-AVERY et al., 2018, tradução nossa)[7]."

$$-100 + \frac{200}{M(N-1)} \sum_{j=1}^{M} \sum_{i=1}^{N-1} \delta(S_{i,j}, S_{i+1,j})$$

DISTÚRBIO ALVO

 ICSD - INTERNATIONAL CLASSIFICATION OF SLEEP DISORDERS [5]

 DEVERIA SE CARACTERIZAR FACILMENTE PELOS DADOS DE MOVIMENTAÇÃO

INSÔNIAS

COMPONENTES DO PROJETO

FLASK - API de recomendação

FIREBASE - Banco de Dados

• APLICATIVO - Interface com sensores e com o usuário

SENSOR - Fonte dos dados

COMPONENTES DO PROJETO

MÓDULOS PRINCIPAIS DA APLICAÇÃO

• WEB - Interação com API e Banco de Dados

VISUALIZAÇÃO - Feedback visual para usuário

CALIBRAÇÃO - Amenizar diferenças de ambiente

 SENSOR - Responsável pela leitura e armazenamento dos dados do sensor

MÓDULOS DA APLICAÇÃO

CALIBRAÇÃO

 Percebeu-se muita diferença entre os dispositivos que testaram a aplicação

 Detectou-se a necessidade de se adaptar de alguma forma a forma de captação com o ambiente

Calibração da sensibilidade do sensor

CALIBRAÇÃO

CALIBRAÇÃO

REPRESENTAÇÃO DOS DADOS

COMPARANDO

COMPARANDO

[6] - Fonte: Retirado de FERNANDES, 2006

RECOMENDADOR

Sequência de verificações com base nos dados do usuário

API retorna diretamente texto recomendado

 Objetivo: Utilizar tempo de sono, regularidade e info's e algoritmo de ML

RECOMENDADOR

Treinamento do ML não foi satisfatório

 Problemas relacionados à diversidade dos dados obtidos inicialmente atrasaram o início da captação

Número de dados obtidos para treinamento foi pequeno

FUTURO DA APLICAÇÃO

 Utilização com base de usuários controlada (já com diagnóstico médico), para geração de dados para treinamento real

- Utilização de dados de mais sensores aos treinamentos
 - o Luminosidade, Batimentos Cardíacos e Microfone

Referências

- INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Pesquisa Nacional de Saúde (PNS). 2013.
- MÜLLER, M. R.; GUIMARÃES, S. S. Impacto dos transtornos do sono sobre o funcionamento diário e a qualidade de vida. Estudos de psicologia, Pontifícia Universidade Católica de Campinas, v. 24, n. 4, p. 519– 528, 2007.

Referências

- JANSEN, J. M. et al. Medicina da noite: da cronobiologia à prática clínica. [S.I.]: SciELO-Editora FIOCRUZ, 2007.
 103-120 p. ISBN 978-85-7541-336-4.
- NUNES, M. L. Distúrbios do sono. Jornal de Pediatria, v.
 78, n. 1, p. 63–72, 2002.
- SATEIA, M. J. International classification of sleep disorders. Chest, v. 146, n. 5, p. 1387-1394, 2014.
- FERNANDES, R. M. F. O sono normal. Medicina
 (Ribeirão Preto. Online), v. 39, n. 2, p. 157–168, 2006.

Referências

• LUNSFORD-AVERY, J. R. et al. Validation of the sleep regularity index in older adults and associations with cardiometabolic risk. Scientific reports, Nature Publishing Group, v. 8, n. 1, p. 14158, 2018.

