КОНСПЕКТ

Числени методи за диференциални уравнения

• Текстът, означен в <.....> се отнася за студентите, каращи практикум (задължителен през зимния или избираем през летния семестър).

І. Увод

1. Уводни сведения от ДИС

Дайте дефиниция за производна. Изяснете на интуитивно ниво какво описва производната. Какъв е геометричният ѝ смисъл? Обосновете трите формули за апроксимация на първа производна. Изведете грешката на апроксимация за всяка от тях. Изведете формула за линеаризация на дадена функция около дадена точка. Обяснете какъв е смисълът на линеаризацията. Приведете формула за развитие в ред на Тейлър с остатъчен член. Обяснете смисъла на това да развием дадена функция в ред на Тейлър.

2. Диференциални уравнения и задачи, които описват

Обяснете защо диференциалните уравнения са основен апарат на математическото моделиране. Обяснете защо обикновено е необходимо използването на числени методи за тяхното решаване. Формулирайте задачата на Коши за ОДУ от първи ред. Обяснете как ОДУ от по-висок ред и системи ОДУ могат да се запишат в този вид. Дайте дефиниция за решение на задачата на Коши. Обяснете в кои случаи е естествено ОДУ да се разглеждат като модел на даден реален процес.

II. Диференчни методи за ОДУ

1. Основни идеи на диференчните методи за решаване на ОДУ. Методи на Ойлер. ЛГА и сходимост. А-устойчивост и монотонност.

Да се опише общата идея на диференчните методи за решаване на ОДУ. Да се дефинира равномерна мрежа в интервала [a, b]. Да се изведат явният, неявният и подобреният методи на Ойлер. Да се въведе понятието ЛГА. Да се пресметне ЛГА на всеки от методите. Да се въведе понятието сходимост на числения метод. Да се изясни каква е връзката между ЛГА и сходимост. Да се въведат понятията А-устойчивост и монотонност. Да се изследват за А-устойчивост и монотонност методите на Ойлер.

2. Методи на Рунге-Кута

Да се мотивира и обясни на интуитивно ниво идеята на методите на PK. Да се изведат методите на PK от първи и втори ред. Какво можете да кажете за A-устойчивостта на методите на PK? Задача: за конкретен метод на PK да се изследва A-устойчивост и

Задача: по дадена таблица на Butcher да се приложи метод на PK за конкретна дадена задача на Kowu <u да се имплементира в Mathematica>.

3. Методи на Рунге-Кута с адаптивен избор на стъпката

Задача: По дадена разширена таблица на Butcher да се изведе метод на Рунге-Кута с адаптивен избор на стъпкта. «Да се формулира алгоритъм и да се имплементира в Mathematica».

4. Методи на Адамс

монотонност

Каква е идеята на многостъпковите методи? Да се формулира общият вид на k-стъпков метод на Aдамс-Башфорт/Адамс-Мултон. Какви особености има при реализирането на практика на даден многостъпков метод? Да се обясни как методите могат да се прилагат под формата на предикторно-коректорни методи.

Задача: Да се изведе конкретен метод на Адамс-Башфорт/Адамс-Мултон (за целта да се покаже как задачата на Коши се свежда до еквивалентна интегрална задача и да се мине през всички стъпки до получаване на числената схема). Да се направят няколко стъпки по метода за конкретна задача. «Да се реализира в системата Мathematica.»

- 5. Метод на Рунге за практическа оценка на грешката и реда на сходимост Да се изведе и опише методът на Рунге за практическа оценка на грешката/реда на сходимост.
- 6. Сравнение на методите за решаване на ОДУ

Какви са предимствата и недостатъците на всеки от явните методи? Какви са предимствата и недостатъците на явните и на неявните методи? Какви са предимствата и недостатъците на работата с равномерна мрежа и с адаптивен избор на стъпката?

III. Диференчни методи за ЧДУ

1. Увод в ЧДУ

Да се изведе уравнението на непрекъснатостта, като се изясни физическият смисъл на участващите в него величини и това, което то описва.

2. Явна диференчна схема за уравнението на дифузията/топлопроводността Да се формулира законът на Фик/Фурие и да обясни интуитивният му смисъл. Като се използва, да се изведе уравнението на дифузията/топлопроводността. Да се опише общата идея на диференчните методи за решаване на нестационарни ЧДУ.

Задача: За конкретна параболична задача да се построи устойчива (т.е. да се изведе условие за устойчивост) явна диференчна схема с

 ${\it Л} {\it \Gamma} {\it A}\ O(h^2+ au)$. Ако има ${\it \Gamma} {\it Y}$ на Нойман или Робин, то следва също да се апроксимира с грешка $O(h^2+ au)$. $<\!{\it Д}$ а се реализира в системата ${\it Mathematica.}>$

3. Чисто неявна схема за уравнението на дифузията/топлопроводността. Схема с тегло. Схема на Кранк-Никълсън.

Да се изведе общият вид на схемите с тегло. Да се формулира схемата на Кранк-Никълсън и да се изведе нейната ЛГА. Какви са предимствата и недостатъците на чисто неявната схема в сравнение с явната? Какви са предимствата и недостатъците на схемата на Кранк-Никълсън спрямо явната схема? А спрямо чисто неявната?

Задача: За конкретна параболична задача да се построи чисто неявна схема или схема на Кранк-Никълсън. Ако има ГУ на Нойман или Робин, те трябва да се апроксимират с втори ред на точност. Да се запише във векторно-матрична форма линейната алгебрична система, която трябва да се реши на всеки слой по времето. «Да се реализира в системата Мathematica.»

4. Устойчивост на диференчните методи за ЧДУ.

Да се формулират в общ операторен вид линейните диференциални задачи. Да се въведе понятието мрежова функция. Да се формулира в операторен вид диференчна апроксимация на диференциалната задача. Да се дефинира понятието устойчивост на диференчната схема в дадена норма. Да се покаже, че от така въведената дефиниция следва, че малки изменения във входните данни водят до малки изменения в резултата. Да се обосноват и въведат понятията устойчивост по начални данни, гранични условия, дясна страна.

- 5. Принцип за положителност на коефициентите. Принцип за максимума. \mathcal{A} а се въведе $\|\cdot\|_{h,\infty}$ -нормата. \mathcal{A} а се формулира принципът за положителност на коефициентите. \mathcal{A} а се докаже, че, ако принципът за положителност на коефициентите е в сила, то следва, че и принципът за максимума е в сила. \mathcal{A} а се обоснове, че от това следва устойчивост в $\|\cdot\|_{h,\infty}$ -норма.
- 6. Метод на хармониките (на фон Нойман) за изследване на устойчивост по начални данни в мрежова l_2 -норма

Да се дефинира $\|\cdot\|_{h,2}$ -норма. Да се обясни защо изискването за устойчивост в $\|\cdot\|_{h,2}$ -норма е по-слабо от изискването за устойчивост в $\|\cdot\|_{h,\infty}$ -норма.

Задача: Като се използва методът на хармониките да се изведе условие за устойчивост в мрежова l_2 -норма за дадена диференчна схема.

7. Теорема на Lax

Да се докаже в общия вид теоремата на Лакс.

8. Диференчни методи за хиперболични уравнения от първи ред (уравнение на преноса/адвекцията)

Да се обясни какви са проблемите при прилагането на схеми с първи ред на апроксимация за уравнението на преноса. Да се изведе схемата на Lax-Wendroff и да се изведе условие за устойчивост. Да се обясни какви са проблемите при схемите с втори ред на точност за уравнението на преноса.

Задача: Да се построи устойчива явна диференчна схема с първи ред на апроксимация за дадено хиперболично уравнение от първи ред. «Да се реализира в системата Mathematica. »

9. Диференчни методи за хиперболични уравнения от втори ред (уравнение на струната)

Задача: Да се построи устойчива диференчна схема за дадено хиперболично уравнение от втори ред с ЛГА $(h^2 + \tau^2)$. <Да се реализира в системата Mathematica.>

10. Диференчни методи за стационарни задачи

Задача: Да се построи диференчна схема за дадена гранична задача за ОДУ от втори ред с ЛГА $O(h^2)$. Да се приведе получената линейна алгебрична система във векторно-матрична форма. <Да се реализира в системата Mathematica.>

Задача: Да се построи устойчива диференчна схема за дадено уравнение на Поасон.

IV. Метод на крайните елементи

1. Пространство на по части полиномите

Да се дефинира пространството на непрекъснатите по части линейни полиноми. Да се въведе интерполационен базис в това пространство. Да се обясни какви са "хубавите" свойства на този базис.

2. Приближения в Хилбертови пространства

Да се въведе понятието Хилбертово пространство. Да се обясни какво е предимството на работата в Хилбертови пространства. Да се изведе линейната алгебрична система, чието решение дава L_2 -проекцията на дадена функция в пространството на по части линейните полиноми. Да се покаже как на практика се асемблира матрицата на масата

3. Идея на метода на крайните елементи

 \mathcal{A} а се построи метод на крайните елементи за задачата -u''=f с хомогенни условия на \mathcal{A} ирихле. \mathcal{A} а се обясни как се процедира при нехомогенни условия на \mathcal{A} ирихле и условия на Нойман. \mathcal{A} а се обясни какви са предимствата на MKE за 2D и 3D задачи със сложна геометрия пред диференчните методи.

гл. ас. д-р Тихомир Иванов