10/04/2024, 19:41 Problem - F - Codeforces

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP

PROBLEMS SUBMIT CODE MY SUBMISSIONS STATUS HACKS ROOM STANDINGS CUSTOM INVOCATION

F. Andrey's Tree

time limit per test: 4 seconds memory limit per test: 256 megabytes input: standard input output: standard output

Master Andrey loves trees † very much, so he has a tree consisting of n vertices.

But it's not that simple. Master Timofey decided to steal one vertex from the tree. If Timofey stole vertex v from the tree, then vertex v and all edges with one end at vertex v are removed from the tree, while the numbers of other vertices remain unchanged. To prevent Andrey from getting upset, Timofey decided to make the resulting graph a tree again. To do this, he can add edges between any vertices a and b, but when adding such an edge, he must pay |a-b| coins to the Master's Assistance Center.

Note that the resulting tree **does not contain** vertex v.

Timofey has not yet decided which vertex v he will remove from the tree, so he wants to know for each vertex $1 \le v \le n$, the minimum number of coins needed to be spent to make the graph a tree again after removing vertex v, as well as which edges need to be added.

[†]A tree is an undirected connected graph without cycles.

Input

Each test consists of multiple test cases. The first line contains a single integer t ($1 \le t \le 10^4$) — the number of test cases. The description of the test cases follows.

The first line of each test case contains a single integer n ($5 \le n \le 2 \cdot 10^5$) — the number of vertices in Andrey's tree.

The next n-1 lines contain a description of the tree's edges. The i-th of these lines contains two integers u_i and v_i ($1 \le u_i, v_i \le n$) — the numbers of vertices connected by the i-th edge.

It is guaranteed that the given edges form a tree.

It is guaranteed that the sum of *n* over all test cases does not exceed $2 \cdot 10^5$.

Output

For each test case, output the answer in the following format:

For each vertex v (in the order from 1 to n), in the first line output two integers w and m — the minimum number of coins that need to be spent to make the graph a tree again after removing vertex v, and the number of added edges.

Then output m lines, each containing two integers a and b ($1 \le a, b \le n, a \ne v, b \ne v, a \ne b$) — the ends of the added edge.

If there are multiple ways to add edges, you can output any solution with the minimum cost.

Example

Codeforces Round 932 (Div. 2)

Finished

→ Practice?

Want to solve the contest problems after the official contest ends? Just register for practice and you will be able to submit solutions.

Register for practice

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

→ Contest materials

- Announcement (en)
- Tutorial (en)

×

×

10/04/2024, 19:41 Problem - F - Codeforces

/2024, 19:41	Problem - F - Codeforces
2 1 1 5 1 4 1 3	
output	Сору
1 1 3 4	
0 0	
1 1 1 2	
2 1 3 5	
0 0	
0 0	
0 0	
1 1 1 2	
1 1 1 2	
1 1 1 2	
3 3 2 3 4 5 3 4	
0 0	
0 0	
0 0	
0 0	

Note

In the first test case:

Consider the removal of vertex 4:

The optimal solution would be to add an edge from vertex 5 to vertex 3. Then we will spend |5-3|=2 coins.

In the third test case:

Consider the removal of vertex 1:

10/04/2024, 19:41 Problem - F - Codeforces

The optimal solution would be:

- Add an edge from vertex 2 to vertex 3, spending |2 3| = 1 coin.
- Add an edge from vertex 3 to vertex 4, spending |3 4| = 1 coin.
- Add an edge from vertex 4 to vertex 5, spending |4-5|=1 coin.

Then we will spend a total of 1 + 1 + 1 = 3 coins.

Consider the removal of vertex 2:

No edges need to be added, as the graph will remain a tree after removing the vertex.

Codeforces (c) Copyright 2010-2024 Mike Mirzayanov The only programming contests Web 2.0 platform Server time: Apr/10/2024 19:32:16^{UTC+5.5} (i1). Desktop version, switch to mobile version. Privacy Policy

Supported by

