Vv285 Recitation Class 5 Basic Topology & Derivative

Yuxiang Chen

June 19, 2022

Outline

- 1 Equivalence of Norms on Finite Dimensional Spaces
- 2 Topology on sets
- The First Derivative
- 4 Reference

Equivalence of Norms - Exercise

Show directly that the following two norms are equivalent on \mathbb{R}^n :

$$\|(x_i)\|_2 = \sqrt{\sum_i x_i^2}$$

 $\|(x_i)\|_{\infty} = \max\{|x_i| : 1 \le i \le n\}$

Judge the Followings

¹Suppose X is a complete normed space and $S_1, S_2, ..., S_n$ is a finite collection of subsets of X. Judge T or F:

- ightharpoonup If S_i 's are open, then $\bigcup_i S_i$ is open.
- \rightarrow If S_i 's are open, then $\bigcap_i S_i$ is open.
- ightharpoonup If S_i 's are closed, then $\bigcup_i S_i$ is closed.
- \triangleright If S_i 's are closed, then $\bigcap_i S_i$ is closed.
- ▶ If Y is a normed space and $f: X \to Y$ is continuous, then f(O) is open whenever $O \subseteq X$ is open.
- Suppose $K \subseteq X$ is compact and X is a normed space. Any continuous functions $f: K \to X$ is uniformly continuous.

Topology on space of linear maps

Let X be a complete normed vector space. Then the set:

$$GL(X) := \{ L \in \mathscr{L}(X, X) \colon L^{-1} \text{exists} \}$$

Show that this set is open. Further more, show that if $\|L\| \leq 1$, then $\mathbb{I} - L \in \mathrm{GL}(X)$ and

$$(\mathbb{I}-L)^{-1}=\sum_{n=0}^{\infty}L^n$$

where $L^0 := \mathbb{I}$ which is the identity.

Judge the Followings about the First Derivative

Suppose X, V are finite-dimensional vector spaces and $\Omega \in X$ an open set. $f: X \to V$ is any function:

- $ightharpoonup Df|_{x}$ is a linear map.
- $ightharpoonup Df: x \mapsto Df_x$ is a linear map.
- $ightharpoonup D: C^1(\Omega, V) \to C(\Omega, \mathcal{L}(X, V)), \quad f \mapsto Df$ is a linear map

Calculate Derivatives

²Suppose $A \in \text{Mat}(n \times n : \mathbb{F})$, calculate their first derivatives:

- ② $g(A) = tr(A^2)$
- **3** $p(A) = A^2$

References I

- Practice questions from Leyang Zhang
- VV285 slides from Horst Hohberger
- VV286 slides from Horst Hohberger

