

AGR5201 Advanced Statistical Methods

Three factorial experiment

Topic outline

1.0 Three factor experiment

- Introduction
- Main effects

1.1 Interactions in 3-factor experiment

• 1st & 2nd order interaction

1.2 Three-factor analysis of variance

- ANOVA table
- Interaction
- Example 1st order & 2nd order interaction

Reference:

Gomez, A.G & Gomez, A.A. (1984). Statistical procedures for agricultural research. John Wiley & Sons. Page 130

- An experiment that deals with three factors (each factor has at least two levels)
- Design selection, treatment composition, and randomization remain the same as two factorial experiment.
- Each additional factor adds a layer of complexity to the analysis
- In a 3-factor experiment we estimate and test:
 - 3 main effects
 - 3 two-factor interactions (first order)
 - 1 three-factor interaction (second order)

In general...

- We have 'a' levels of A, 'b' levels of B, and 'c' levels of C
 - Total number of plots per replication will be a x b x c

• SSTot =
$$\sum (Y_{ijkl} - \overline{\overline{Y}})^2$$

- Excel spreadsheet:
 - = DEVSQ(Range of all observations)
- With a calculator:
 - = $s2*(n-1) = \sigma2*n$, where n = rabc

Table for Main Effects

	Level			
	1	2	•••	f
Factor A	A ₁	A_2	•••	A _a
Factor B	B ₁	B_2	•••	B_b
Factor C	C ₁	C_2	•••	C _c

Table of Means for Treatments

Treatment	Means over Reps
$A_1B_1C_1$	T ₁₁₁
$A_1B_1C_2$	T ₁₁₂
A_1B_1C	T ₁₁
$A_1B_1C_c$	T _{11c}
$A_1B_2C_1$	T ₁₂₁
$A_1B_2C_2$	T ₁₂₂
A_1B_2C	T ₁₂
$A_1B_2C_c$	T _{12c}
$A_aB_bC_c$	T_{abc}

Compute a mean over replications for each treatment.

Total number of treatments = $a \times b \times c$.

1.1 Interactions in 3-factor experiment

1st order interaction:

Interaction between two factors:

- A x B
- A x C
- B x C

2nd order interaction:

Interaction between all factors \rightarrow **A** \times **B** \times **C**

	Factor B			
Factor A	1	2	•••	b
1 2	T _{11.} T _{21.}	T _{12.} T _{22.}	•••	T _{1b.} T _{2b.}
 a	 T _{a1.}	 T _{a2.}	•••	T _{ab.}

Compute a table such as this for each first order interaction:

AxB

 $A \times C$

 $B \times C$

1.1 Interactions in 3-factor experiment

Linear model of 3 factorial (RCBD)

$$Y_{ijkl} = \mu + \gamma_l + \alpha_i + \beta_j + \tau_k + (\alpha\beta)_{ij} + (\alpha\tau)_{ik} + (\beta\tau)_{jk} + (\alpha\beta\tau)_{ijk} + \varepsilon_{ijkl}$$

Where,

 $Y_{ijkl} = observation$

 μ = overall mean

 γ_1 = the effect of the lth block

 α_i = the effect of the ith level of factor A

 β_j = the effect of the jth level of factor B

 τ_k = the effect of the kth level of factor C

 $(\alpha\beta)_{ij}$ = the ijth A*B interaction effect $(\alpha\tau)_{ik}$ = the ikth A*C interaction effect

 $(\beta \tau)_{jk}$ = the jkth B*C interaction effect

 $(\alpha\beta\tau)_{ijk}$ = the ijkth A*B*C interaction effect

 ε_{ijkl} = random error

ANOVA table (RCBD)

Linear model:

$$Y_{ijkl} = \mu + \gamma_l + \alpha_i + \beta_j + \tau_k + (\alpha\beta)_{ij} + (\alpha\tau)_{ik} + (\beta\tau)_{jk} + (\alpha\beta\tau)_{ijk} + \ \epsilon_{ijkl}$$

Sources of variation	df	SS	MS	F
Block	r-1	$SSR = abc \sum_{l} \left(\overline{Y}_{l} - \overline{\overline{Y}} \right)^{2}$	MSR = SSR/(r-1)	$F_R = MSR/MSE$
А	a-1	$SSA = rbc\sum_{i} \left(\overline{Y}_{i} - \overline{\overline{Y}}\right)^{2}$	MSA = SSA/(a-1)	$F_A = MSA/MSE$
В	b-1	$SSB = rac \sum_{j} \left(\overline{Y}_{.j} - \overline{\overline{Y}} \right)^{2}$	MSB = SSB/(b-1)	$F_B = MSA/MSE$
С	c-1	$SSC = \frac{rab\sum_{k} \left(\overline{Y}_{k.} - \overline{\overline{Y}}\right)^{2}}{rab\sum_{k} \left(\overline{Y}_{k.} - \overline{\overline{Y}}\right)^{2}}$	MSC = SSC/(c-1)	$F_C = MSA/MSE$

• • •

ANOVA table (RCBD) - cont'd

Sources of variation	df	SS	MS	F
AB	(a-1)(b-1)	$SSAB = rc\sum_{ij} \left(\overline{Y}_{ij} - \overline{\overline{Y}}\right)^{2} - SSA - SSB$	MSAB = SSAB / dfab	$F_{AB} = MSAB/MSE$
AC	(a-1)(c-1)	$SSAC = rb\sum_{ik} \left(\overline{\overline{Y}}_{i,k} - \overline{\overline{\overline{Y}}}\right)^2 - SSA - SSC$	MSAC = SSAC / dfac	$F_{AC} = MSAC/MSE$
ВС	(b-1)(c-1)	$SSBC = ra\sum_{jk} \left(\overline{\overline{Y}}_{.jk.} - \overline{\overline{\overline{Y}}}\right)^{2} - SSB - SSC$	MSBC = SSBC / dfbc	$F_{BC} = MSBC/MSE$
ABC	(a-1)(b-1)(c-1)	$SSABC = r\sum_{ijk} (\overline{\overline{Y}}_{ijk.} - \overline{\overline{\overline{Y}}})^{2} - SSA - SSB - SSC$ $-SSAB - SSAC - SSBC$	MSABC = SSABC / dfabc	F _{ABC} = MSABC/MSE
Error	(r-1)(abc-1)	SSE= SSTot-SSR-SSA-SSB-SSC -SSAB- SSAC-SSBC-SSABC	MSE = SSE/ dfe	
Total	rabc-1	SSTot= $\sum_{ijkl} \left(Y_{ijkl} - \overline{\overline{Y}} \right)^2$		

Interpretation

The interpretation depends on the outcome of the F tests for main effects and interactions:

- If the '3-factor (AxBxC)' interaction is significant
 - None of the factors are acting independently
 - Summarize with 3-way table of means for each treatment combination
- If the '1st order interactions' are significant (and not the 3-factor interaction)
 - Neither of the main effects are independent
 - Summarize with 2-way table of means for significant interactions
- If only the 'main effects' are significant (and not any of the interactions)
 - Summarize significant main effects with a 1-way table of factor means

Example 1 - 1st order interaction is significant

- Study the effect of three production factors:
 - Variety (2)
 - V1, V2
 - Phosphorus fertilization (3)
 - None, 25 kg/ha, 50 kg/ha
 - Weed control (2)
 - None, Herbicide
- Using RCBD design in three blocks

3-factor ANOVA table

- RCBD has block
- 1st order interaction
 - 2 factors interaction
- 2nd order interaction
 - 3 factors interaction
- Significance 1st order interaction

Source	df	SS	MS	F
Block	2	270.17	135.08	5.93**
Main effects:				
Variety (V)	1	306.25	306.25	13.44**
Phosphorus (P)	2	32	16	0.70
Weed (W)	1	12.25	12.25	0.54
1 st order interaction:				
VxP	2	18.67	9.33	0.41
$V \times W$	1	283.36	283.36	12.44**
PxW	2	468.67	234.33	10.29**
2 nd order interaction:				
$V \times P \times W$	2	44.22	22.11	<mark>0.97</mark>
Error	22	501.16	22.78	
Total	35	1936.75		

V x W interaction | Interpretation

The effect of herbicide depended on variety:

- The addition of herbicide reduced the yield for variety 1
- The yield of variety 2 was increased by the use of herbicide

Mean seed yield (kg/plot) from two varieties of chick-peas with and without herbicide

	Weed control			
Variety	None	Herbicide		
V_1	56.89	52.44		
V_2	57.11	63.89		
*Standard error = 1.59				

PxW interaction | Interpretation

- Response to added phosphorus depended on whether or not herbicide was used
 - If no herbicide, seed yield was reduced when phosphorus was added
 - However, seed yield increased when phosphorus was added in addition to herbicide

Mean seed yield (kg/plot) of chickpeas at three levels of phosphorus fertilization with and without herbicide

Weed control	Phosphorus		
	None	25 kg/ha	50 kg/ha
None	60.00	57.83	53.17
Herbicide	52.50	58.67	63.33
*Standard error = 1.95			

Figure: Line and bar graph (P x W and V x W interactions)

Figure 1. The interaction effect between phosphorus rate and weed control on seed yield of alfalfa (kg/ha). Within weed control, means with different letters are significantly different at P<0.05 using LSD.

Figure 2. The interaction effect between variety and weed control on seed yield of alfalfa (kg/ha). Within weed control, means with different letters are significantly different at P<0.05 using LSD.

Example 2 | 1st and 2nd order interaction is significant

- Objective: To study the effect of species, soil type and fungicide on seed germination.
- Design: RCBD (3 reps)
- Factor A: Legume species (alfalfa, red clover, sweet clover)
- Factor B: Soil type (Silt loam, sand, clay)
- Factor C: Fungicide (None, treated)

Analysis of variance table

Sources of variation	df	MS	F value
Block	2	178.39	1.90
A (Species)	2	4950.06	52.60 **
B (Soil type)	2	8218.06	87.33 **
C (Fungicide)	1	1932.02	20.53 **
AxB (Species*Soil type)	4	164.61	1.75 ns
AxC (Species*Fungicide)	2	97.02	1.03 ns
BxC (Soil type* Fungicide)	2	925.57	9.84 **
AxBxC (Species*Soil type*Fungicide)	4	267.41	<mark>2.84 *</mark>
Error	34	94.10	
Total	53		

^{*, **} Significantly difference at P<0.05 and 0.01, respectively. ns Not significantly difference at P<0.05

Significant interactions

- First order interaction: **BxC** (Soil type and fungicide)
 - The effect of fungicide is not the same for all soil type
- Second order interaction: AxBxC (Species*Soil type*Fungicide)
 - The BxC (soil type*fungicide) interaction differ with the level of A (species).

Graph of the 1st order interaction (BxC)

- The interaction between B (soil type) and C (fungicide) are the same for all level of A (species).
- The difference between fungicide c1 and c2 in soil type b1 (clay) is smaller than at soil type b3 (silt) → interaction

Graph of the 2nd order interaction (AxBxC)

- The 2nd order interaction can be explained as AxC at each level of B (soil)
- The interaction between A and C differs at every level of B
- Interpretation should be made on the interaction effect of A and C separately on each level of B
- In this example, the AxC interaction are not significant at b1 and b2, but significant at b3 (silt soil)
- Thus, the explanation for AxC interaction can be made for b3 (silt soil) only.

Details on the 2^{nd} order interaction: AxC interaction at b3 (soil type = silt) only

Figure 1. The interaction effect between species and fungicide treatment for silt soil type. Within species, means with different letters are significantly different at p<0.05 using LSD.

Interpretations:

- 1. For silt soil (b3), the germination of seeds depends on the species (A) and whether the seeds are treated with fungicide or not (C).
- 2. Fungicide treated seeds shows significantly higher number of germination compared to non treated seeds of alfalfa and sweet clover only but not for red clover.

