PCA - Contextualization [https://bit.ly/2UhS650]

NETIDMAP TABLE

MISS	IONS_DOCS
OECDID	VARCHAR2(20 char)
ATTACHFILE	VARCHAR2(50 char)
ATTACHMENT	BLOB

NEAD ADD db march 2009 simplified part 2/2

MISSIONS	MISSIONS_LIST					
REFERENCE_NUMBER	VARCHAR2(50 char)					
STAFF NAME	VARCHAR2(100 char)					
DOCUMENT_START_DATE	DATE					
DOCUMENT END DATE	VARCHAR2(10 char)					
DESCRIPTION	VARCHAR2(250 char)					
TITLE	VARCHAR2(500 char)					

Microarray Experiments

Objectives

PCA - Going for the Best Point of View

PCA - Best Point of View ~= Maximize our Line of Sight

Figure: Camel or dromedary? (illustration by J.P. Fénelon)

From Pictures to Points

https://plot.ly/~c.miyashiro/2/#/

From Pictures to Points

https://plot.ly/~c.miyashiro/2/#/

$$dist(O,A') = Xw$$

$$w^t w = 1$$

$$Cw = \lambda w$$

$$\frac{\partial \mathcal{L}}{\partial w} = 2wC - 2\lambda w$$

$$cov(X) = \frac{1}{m-1}X^tX$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = w^t w - 1$$

$$\mathcal{L} = w^t C w - \lambda (w^t w - 1)$$

 $arg \max cov(X^t w) = w^t C w$

$$cov(Xw) = \frac{1}{m-1}(Xw)^t Xw$$

$$w^t(\frac{1}{m-1}X^tX)w$$

$$cov(X^t w) = w^t Cw = w^t \lambda w = \lambda w^t w = \lambda$$

Changes in Perspective = Data Projection

Decathlon Dataset - Standardising and fitting


```
In [4]: df = pd.read_csv('data_PCA_Decathlon.csv', sep=';', index_col=0)
print(f'Dataset shape: {df.shape}')
df.head()
```

Dataset shape: (41, 13)

Out[4]:

	\$	100m \$	Long jump \$	Shot put \$	High jump ♦	400m \$	110m H \$	Discus \$	Pole vault \$	Javeline \$	1500m \$	Rank 	Points \$	Competition \$
5	Sebrle	10.85	7.84	16.36	2.12	48.36	14.05	48.72	5.0	70.52	280.01	1	8893	OlympicG
	Clay	10.44	7.96	15.23	2.06	49.19	14.13	50.11	4.9	69.71	282.00	2	8820	OlympicG
K	arpov	10.50	7.81	15.93	2.09	46.81	13.97	51.65	4.6	55.54	278.11	3	8725	OlympicG
N	Macey	10.89	7.47	15.73	2.15	48.97	14.56	48.34	4.4	58.46	265.42	4	8414	OlympicG
Wa	arners	10.62	7.74	14.48	1.97	47.97	14.01	43.73	4.9	55.39	278.05	5	8343	OlympicG

PCA = Rotating and Transforming

How many PC's? Variance Explained

<u>Total Variance Data</u> = Sum of variances of each variable

$$\sigma_{total}^2 = \sum_{i=1}^m \sigma_i^2$$

PCA Data

<u>Total Variance PCA</u> = Total Variance Data = Sum of 'explained_variance_' in scikit.

$$\sigma_{total}^2 = \sum_{i=1}^m \lambda_i$$

Math = Sum of eigenvalues

How many PC's? Variance Explained

Evaluation - Correlation Circle

Proxy to correlation matrix

In [23]: np.round(df.corr(), 2)

Out[23]:

\$	100m \$	Long jump \$	Shot put \$	High jump ♦	400m \$	110m H \$	Discus \$	Pole vault \$	Javeline \$	1500m \$	Rank \$	Points \$
100m	1.00	-0.60	-0.36	-0.25	0.52	0.58	-0.22	-0.08	-0.16	-0.06	0.30	-0.68
Long jump	-0.60	1.00	0.18	0.29	-0.60	-0.51	0.19	0.20	0.12	-0.03	-0.60	0.73
Shot put	-0.36	0.18	1.00	0.49	-0.14	-0.25	0.62	0.06	0.37	0.12	-0.37	0.63
High jump	-0.25	0.29	0.49	1.00	-0.19	-0.28	0.37	-0.16	0.17	-0.04	-0.49	0.58
400m	0.52	-0.60	-0.14	-0.19	1.00	0.55	-0.12	-0.08	0.00	0.41	0.56	-0.67
110m H	0.58	-0.51	-0.25	-0.28	0.55	1.00	-0.33	-0.00	0.01	0.04	0.44	-0.64
Discus	-0.22	0.19	0.62	0.37	-0.12	-0.33	1.00	-0.15	0.16	0.26	-0.39	0.48
Pole vault	-0.08	0.20	0.06	-0.16	-0.08	-0.00	-0.15	1.00	-0.03	0.25	-0.32	0.20
Javeline	-0.16	0.12	0.37	0.17	0.00	0.01	0.16	-0.03	1.00	-0.18	-0.21	0.42
1500m	-0.06	-0.03	0.12	-0.04	0.41	0.04	0.26	0.25	-0.18	1.00	0.09	-0.19
Rank	0.30	-0.60	-0.37	-0.49	0.56	0.44	-0.39	-0.32	-0.21	0.09	1.00	-0.74
Points	-0.68	0.73	0.63	0.58	-0.67	-0.64	0.48	0.20	0.42	-0.19	-0.74	1.00

Evaluation - Correlation Circle

Evaluation - Correlation Circle

```
In [19]: athlets = ['Parkhomenko', 'Warners']
df_scaled.loc[athlets]
```

Out[19]:

	100m	Long jump	Shot put	High jump	400m	110m H	Discus	Pole vault	Javeline	1500m
Parkhomenko	0.546396	-2.079872	1.489512	0.605182	1.249593	0.588297	-0.727015	0.136790	1.573837	-0.094092
Warners	-1.455178	1.535905	0.003594	-0.077730	-1.445050	-1.278656	-0.178519	0.500971	-0.613850	-0.084551

PCA in Dimensionality Reduction

PCA Applied to Images - Eigenfaces

First 3 components with colormap 'Greys_r' - positive values are white.

First 3 components with colormap 'Greys' - negative values are black.

Exercise!

Lets go to the repository:

PCA - Final Thoughts

- Unsupervised Learning No labelling data!
- Dimensionality Reduction
- Simpler representation on variable correlation

- Assumes linear relationship among explanatory variables
- "Target Variable" is variance, we have to be careful about noises

- Only numerical features (Categorical proxy as supplementary variables)
- No missing value support

Advances: Sparse PCA / Batch PCA

Thank you!

https://dilbert.com/strip/2000-01-03