## Kapitel 5

## Differential rechnung auf $\mathbb{R}$

# 5.1 Differential (Ableitung), Elementare Eigenschaften

## Definition 5.1

Sei  $f: \Omega \to \mathbb{R}$ ,  $\Omega \subset \mathbb{R}$ , und  $x_0 \in \Omega$ 

1. f heisst differenzierbar an der Stelle  $x_0$  falls

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert. Dieser Grenzwert wird dann mit  $f'(x_0)$  oder  $\frac{df}{dx}(x_0)$  bezeichnet. Die Zahl  $f'(x_0)$  heisst die Ableitung oder das Differential von f an der Stelle  $x_0$ 

2. f heisst in  $\Omega$  differenzierbar, falls sie an jeder Stelle  $x_0 \in \Omega$  differenzierbar. In diesem Fall, nennt sich die Funktion  $x \to f'(x)$  Ableitung von f

## Bemerkung 5.2

In der Definition 5.1, verlangen wir also, dass für jede in  $\Omega \setminus \{x_0\}$  erhaltene folge  $(x_n)_{n\geq 1}$  mit Grenzwert  $x_0$ , der Limes

## Bemerkung 5.3

Sei f differenzierbar in  $x_0$ 



Dann ist

$$\frac{f\left(x\right) - f\left(x_0\right)}{x - x_0}$$

die Steigung der Geraden durch die Punkte  $(x_0, f(x_0))$  und (x, f(x)).

Geometrisch ist also  $f'(x_0)$  die Steigung der Tangenten am Graphen von f im Punkt  $(x_0, f(x_0))$ . Diese Tangente hat die Gleichung

$$T(x) = f'(x_0)(x - x_0) + f(x_0)$$

Sei

$$f(x) = f'(x_0)(x - x_0) + f(x_0) + R_{x_0}(x) = T(x) + R_{x_0}(x)$$

$$\Rightarrow \frac{f(x) - f(x_0)}{x - x_0} = \frac{f'(x_0)(x - x_0)}{x - x_0} + \frac{R(x)}{x - x_0}$$

Dann folgt

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{R(x)}{x - x_0} = 0$$

Die Lineare Funktion  $f(x_0) + f'(x_0)(x - x_0)$  stellt eine gute Approximation der Funktion f(x) dar:

Es gilt

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + R_{x_0}(x)$$

mit

$$\lim_{x \to x_0} \frac{R\left(x\right)}{x - x_0} = 0$$



#### Beispiel 5.4

1.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \to mx + b$$

ist überall differenzierbar mit  $f'(x) = m, \forall x \in \mathbb{R}$ 

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{(x - x_0)} = m (x - x_0)$$

2.  $f\left(x\right)=\left|x\right|$ ist für alle  $x_{0}\neq0$  differenzierbar aber nicht für  $x_{0}=0$ 

$$f(x) - f(0) = \begin{cases} x & \text{für } x \ge 0 \\ -x & \text{für } x \le 0 \end{cases}$$

Also ist

$$\frac{f(x) - f(0)}{x - 0} = \begin{cases} 1 & \text{fur } x > 0\\ -1 & \text{fur } x < 0 \end{cases}$$

Besitzt also keinen Grenzwert für  $x \to 0, \, x \neq 0$ 

3.  $\exp : \mathbb{R} \to \mathbb{R}$  ist überall auf  $\mathbb{R}$  differenzierbar und  $\exp'(x) = \exp(x)$ . Sei  $x_0 \in \mathbb{R}, x_0 \neq x = x_0 + h \in \mathbb{R}$ 

$$\exp(x_0 + h) - \exp(x_0) = \exp(x_0) (\exp(h) - 1)$$
$$\exp(h) - 1 = h + \frac{h^2}{2!} + \dots$$
$$\Rightarrow \frac{\exp(h) - 1}{h} = 1 + \frac{h}{2!} + \frac{h^2}{3!} + \dots$$

Also

$$\left| \frac{\exp(h) - 1}{h} - 1 \right| \le |h| \left[ \frac{1}{2!} + \frac{|h|}{3!} + \frac{|h|^2}{4!} + \dots \right]$$

$$\le |h| \left[ 1 + |h| + \frac{|h|^2}{2!} + \dots \right]$$

$$\le |h| \exp(h)$$

Woraus

$$\lim_{h \to 0} \frac{\exp(h) - 1}{h} = 1$$

$$h \neq 0$$

und somit

$$\exp'(x_0) = \lim_{h \to 0} \frac{\exp(x_0 + h) - \exp(x_0)}{h}$$
$$= \lim_{h \to 0} \exp(x_0) \left(\frac{\exp(h) - 1}{h}\right)$$
$$= \exp(x_0)$$

4.  $\sin(x)$  und  $\cos(x)$  sind überall differenzierbar und

$$\sin' = \cos$$
  
 $\cos' = -\sin$ 

Aus der Additionsgesetzen:

$$\sin(x+h) - \sin(x) = \sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)$$
$$= \sin(x)(\cos(h) - 1) + \cos(x)\sin(h)$$

Nun ist

$$\lim_{h \to 0} \frac{\sin\left(h\right)}{h} = 1$$

und

$$\frac{\cos(h) - 1}{h} = \frac{\cos^2(h) - 1}{h(\cos(h) + 1)} = \frac{\sin^2(h)}{h(\cos(h) + 1)}$$
$$= \frac{1}{\cos(h) + 1} \cdot \frac{\sin^2(h)}{h}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \frac{1}{2} \qquad \qquad 0$$

There is a sin h/h which doesn't seem to belong anywhere, page 188 bottom right corner

$$\frac{\sin(x+h) - \sin(x)}{h} = \sin(x) \left(\frac{\cos(h) - 1}{h}\right) + \cos(x) \frac{\sin(h)}{h}$$

$$\Rightarrow \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \lim\left(\sin(x) \lim_{h \to 0} \left(\frac{\cos(h) - 1}{h}\right)\right)$$

$$+ \cos(x) \lim_{h \to 0} \left(\frac{\sin(h)}{h}\right)$$

$$= \sin(x) \lim\left(\frac{\cos(h) - 1}{h}\right)$$

$$+ \cos(x) \lim\left(\frac{\sin(h)}{h}\right)$$

$$= (\sin(x)) \cdot 0 + (\cos(x)) \cdot 1 = \cos(x)$$

Analog

$$\cos(x+h) - \cos(x) = \cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)$$
$$= \cos(x)(\cos(h) - 1) + \sin(x)\sin(h)$$

Da wie oben  $\frac{\cos(h)-1}{h} \to 0$ ,  $\frac{\sin(h)}{(h)} \to 1$  folgt  $\cos' = -\sin(h)$ 

Der Zusammenhang zwischen differenzierbarkeit und stetigkeit ist

#### **Satz 5.5**

Sei  $\Omega \subseteq \mathbb{R}$ ,  $x_0 \in \Omega$  und  $f: \Omega \to \mathbb{R}$  in  $x_0$  differenzierbar. Dann ist f in  $x_0$  stetig. (Also, "Diff" ist mehr als "Stetigkeit")

#### **Beweis**

f differenzierbar in  $x_0$ . Sei

$$T: \Omega \setminus \{x_0\} \to \mathbb{R}$$

$$x \to \frac{f(x) - f(x_0)}{x - x_0}$$

Da f differenzierbar in  $x_0$  ist, hat T ein Grenzwert in  $x_0$ , und

$$\lim_{x \to x_0} T(x) = f'(x)$$

Für  $x \neq x_0$ 

$$f(x) = T(x)(x - x_0) + f(x_0)$$

f(x) ist die Summe von 2 funktionen  $T(x)(x-x_0)$  und  $f(x_0) = \text{konstant}$ .

Da beide funktionen ein Grenzwert an der Stelle  $x_0$  besitzen, hat auch f eine Grenzwert in  $x_0$  und

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} (T(x)) \lim_{x \to x_0} (x - x_0) + \lim_{x \to x_0} f(x_0)$$
$$= f'(x) \cdot 0 + f(x_0) = f(x_0)$$

 $\Rightarrow$  ist stetig in  $x_0$ .

## Bemerkung

Die Umkehrung von Satz 5.5gilt nicht, z.B. f(x) = |x| ist stetig in x = 0 aber Add page + reference, nicht differenzierbar.

page 190 middle

## Beispiel 5.6

Das folgende Beispiel zeigt dass, es stetige funktionen  $f: \mathbb{R} \to \mathbb{R}$  gibt, die an keiner Stelle  $x_0 \in \mathbb{R}$  differenzierbar sind. (Von der Waerden (1930))

Sei für  $x \in \mathbb{R}$ 

$$< x>=$$
 Distanz von  $x$ zur nächsten ganzen Zahl
$$= \min \left\{ |x-m| : m \in \mathbb{Z} \right\}$$

Der Graph von  $\langle x \rangle$  sieht so aus



Graph von  $\frac{10x}{10}$ 



Sei

$$f(x) := \langle x \rangle + \frac{\langle 10x \rangle}{10} + \frac{\langle 10^2 x \rangle}{100} + \dots$$

Da

$$0 \le <10^n x > \le \frac{1}{2}$$

folgt absolut konvergenz. Ausserdem sei

$$f_k(x) = \sum_{n=0}^{k} \frac{\langle 10^n x \rangle}{10^n}$$

Dann ist

$$|f(x) - f_k(x)| = \left| \sum_{n=k+1}^{\infty} \frac{\langle 10^n x \rangle}{10^n} \right| \le \frac{1}{2} \left| \sum_{n=k+1}^{\infty} \frac{1}{10^n} \right| = \frac{1}{2} \cdot \frac{10^{-k}}{9}$$

 $\forall k \geq 1 \text{ ist } f_k : \mathbb{R} \to \mathbb{R} \text{ stetig.}$ 

Da die Folge  $(f_k)_{k\geq 1}$  gleichmässig gegen f konvergiert ist f stetig. Man kann zeigen, dass f in keinem Punkt von  $\mathbb R$  differenzierbar ist.

End of beweis is put here, I think it is better if it stays up when the bsp begins. Page 192 middle

Is this supposed to be a fraction?? page 192 bottom

## **Satz 5.7**

Seien  $f, g: \Omega \to \mathbb{R}$  Funktionen,  $x_0 \in \mathbb{R}$ . Wir nehmen an dass f und g in  $x_0$  differenzierbar sind. Dann sind f + g,  $f \cdot g$  und falls  $g(x_0) \neq 0$  auch f/g an der Stelle  $x_0$  differenzierbar. Es gelten dann folgende Formel:

1. 
$$(af + bg)'(x_0) = af'(x_0) + bf'(x_0) \quad \forall a, b \in \mathbb{R}$$

2. 
$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$$

3. 
$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{g(x_0)^2}$$

#### **Beweis**

1. Für  $x \neq x_0$ 

$$\frac{\left(af+bg\right)\left(x\right)-\left(af+bg\right)\left(x_{0}\right)}{x-x_{0}}=a\left(\frac{f\left(x\right)-f\left(x_{0}\right)}{x-x_{0}}\right)+b\left(\frac{g\left(x\right)-g\left(x_{0}\right)}{x-x_{0}}\right)$$

Da f und g in  $x_0$  differenzierbar sind, folgt das af+bg in  $x_0$  differenzierbar ist und

$$(af + bg)(x_0) = af'(x_0) + bf'(x_0)$$

2.

$$f(x) g(x) - f(x_0) g(x_0) = g(x) [f(x) - f(x_0)] + f(x_0) [g(x) - g(x_0)]$$

Durch  $(x - x_0)$  dividient

$$\frac{f(x) g(x) - f(x_0) g(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{(x - x_0)} \cdot g(x_0) + \frac{g(x) - g(x_0)}{(x - x_0)} \cdot f(x_0)$$

Da g in  $x_0$  differenzierbar ist, ist g in  $x_0$  stetig und (Satz 5.5)\_

Add reference + page number, page 194 middle

$$\lim_{x \to x_0} g\left(x\right) = g\left(x_0\right)$$

Die Formel folgt dann aus der differenzierbarkeit von f und g in  $x_0$ 

3.

$$\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x_0)} = \frac{f(x)g(x_0) - f(x_0)g(x)}{g(x)g(x_0)}$$

$$= \frac{[f(x) - f(x_0)]g(x_0) - f(x_0)[g(x) - g(x_0)]}{g(x)g(x_0)}$$

Man dividiere duch  $x-x_0$  und benutze die Stetigkeit von g in  $x_0$ 

## Beispiel 5.8

1.  $n\in\mathbb{N},\,f_{n}\left(x\right)=x^{n}$ ist überall differenzierbar und  $f_{n}'\left(x\right)=nx^{n-1}$ 

## Beweis

Induktion:  $f_0(x) = 1 \ \forall x$ 

$$f_0'(x) = 0 (= 0 \cdot x^{-1})$$

- $f_1(x) = x, \forall x$
- $f_1'(x) = 1 = 1 \cdot x^{1-1} \checkmark$

Sei  $n \geq 2$ . Wir nehmen an dass die Formel für n-1 gilt, i.e.

$$f'_{n-1}(x) = (x^{n-1})' = (n-1)x^{n-2}$$
  
 $f_n(x) = x^n = x \cdot x^{n-1} = x \cdot f_{n-1}(x)$ 

Nach 2., Satz 5.7

 $f'_{n}(x) = (x)' f_{n-1}(x) + x f'_{n-1}(x)$   $= f_{n-1}(x) + x (n-1) x^{n-2}$   $= x^{n-1} + (n-1) x^{n-1} = nx^{n-1}$ 

Add reference + pag number, page 195 m le to bottom

2.

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$
  
$$p'(x) = n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} + \dots + a_1$$

Insbesondere ist die Ableitung eines Polynom von Grad n ein Polynom von Grad  $(n-1), n \ge 1$ .

3. Sei  $R(x) = \frac{p(x)}{q(x)}$ , wobei p,q polynome bezeichnen. R(x) ist eine sogenannte rationale Funktion mit Definitionsbereich

$$\Omega = \{x \in \mathbb{R} : q(x) \neq 0\}$$

$$R'(x) = \frac{p'(x)q(x) - p(x)q'(x)}{q^2(x)}$$

$$R(x) = \frac{x^3 + 1}{x - 1}$$

$$R(x) = \frac{(3x^2)(x - 1) - (x^3 + 1)}{(x - 1)^2}$$

$$= \frac{3x^3 - 3x^2 - x^3 - 1}{(x - 1)^2}$$

$$= \frac{2x^3 - 3x^2 - 1}{(x - 1)^2}$$

z.B.

Die nächste Rechenregel wird uns erlauben Funktionen wie z.B.  $\exp(x^3 + 1)$ ,  $\sin(x^2)$  abzuleiten

## Satz 5.9 (Kettenregel)

Seien  $f:\Omega\to\mathbb{R},\ g:T\to\mathbb{R}$  Funktionen mit  $f(\Omega)\subset T$ , und  $x_0\in\Omega$ . Wir nehmen an, dass f an der Stelle  $x_0$  und g an der Stelle  $f(x_0)$ , differenzierbar sind. Dann ist  $g\circ f:\Omega\to\mathbb{R}$  an der Stelle  $x_0$  differenzierbar und

$$(g \circ f)'(x_0) = g'(f(x_0)) f'(x_0)$$

## Bemerkung

f ist differenzierbar in  $x_0$  falls

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert, d.h. für jede in  $\Omega \setminus \{x_0\}$  enthaltene folge  $(x_n)_{n \geq 1}$  mit Grenzwert  $x_0$ , der limes

$$\lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0}$$

existiert

## **Beweis**

Sei  $(x_n)_{n>1}$  mit  $\lim x_n=x_0, x_n\neq x_0$ . Dann gilt

$$\lim f\left(x_n\right) = f\left(x_0\right)$$

(Nach Satz 5.5 f differenzierbar  $\Rightarrow f$  stetig (in  $x_0$ )).

Add reference + page number, page 198 top

Sei  $y_n := f(x_n)$   $(y_0 := f(x_0))$ . Wir nehmen an dass  $y_n \neq f(x_0), \forall n$ . Dann folgt

$$\frac{\left(g\circ f\right)\left(x_{n}\right)-\left(g\circ f\right)\left(x_{0}\right)}{x_{n}-x_{0}}=\frac{g\left(f\left(x_{n}\right)\right)-g\left(f\left(x_{0}\right)\right)}{x-x_{0}}$$

$$=\left(\frac{g\left(f\left(x_{n}\right)\right)-g\left(f\left(x_{0}\right)\right)}{f\left(x_{n}\right)-f\left(x_{0}\right)}\right)\cdot\left(\frac{f\left(x_{n}\right)-f\left(x_{0}\right)}{x-x_{0}}\right)$$

$$=\left(\frac{g\left(y_{n}\right)-g\left(x_{0}\right)}{y_{n}-y_{0}}\right)\cdot\left(\frac{f\left(x_{n}\right)-f\left(x_{0}\right)}{x-x_{0}}\right)$$

$$\downarrow \lim_{n\to\infty} \qquad \downarrow \lim_{n\to\infty}$$

$$g'\left(y_{0}\right) \qquad f'\left(x_{0}\right)$$

$$\stackrel{n\to\infty}{=} g'\left(f\left(x_{0}\right)\right)f'\left(x_{0}\right)$$

## Beispiel 5.10

1. Berechne die Ableitung von  $\exp(x^3 + 1)$ 

$$g(x) = \exp(x)$$
  $f(x) = x^3 + 1$   
 $g'(x) = \exp(x)$   $f'(x) = 3x^2$ 

$$(g \circ f)(x) = \exp(x^3 + 1)$$
  
 $(g \circ f)'(x) = g'(f(x)) \cdot f'(x) = [\exp(x^3 + 1)] \cdot 3x^2$ 

$$\left(\sin\left(x^2\right)\right)' = \left(g \circ f\right)'(x)$$

mit

$$g(x) = \sin(x) \qquad f(x) = x^2$$
  

$$g'(x) = \cos(x) \qquad f'(x) = 2x$$
  

$$(\sin(x^2))' = \cos(x^2) \cdot 2x$$

3.

$$\left( \left( 3x^7 + 11x^6 + 5 \right)^2 \right)' = 2\left( 3x^7 + 11x^6 + 5 \right) \cdot \left( 21x^6 + 66x^5 \right)$$

4. Sei  $q: \mathbb{R} \to \mathbb{R}$  differenzierbar und  $n \in \mathbb{N}$ 

$$f\left(x\right) = g\left(x\right)^{n}$$

Dann ist

$$f'(x) = ng(x)^{n-1} \cdot g'(x)$$

5.

$$\exp(\exp(x)) = e^{e^x}$$
$$(e^{e^x})' = e^{(e^x)} \cdot e^x$$

## 5.2 Der Mittelwertsatz und Folgerungen

Wichtige Informationen über eine Funktion f lassen sich leicht aus der Ableitung schliessen. Dies geschieht mittels dem Mittelwertsatz . Ein Spezialfalls der Mittelwertsatz ist

## Satz 5.12

Sei  $f:[a,b]\to\mathbb{R}$  stetig und auf (a,b) differenzierbar. Sei  $z_+\in[a,b]$  mit  $f(z_+)=\max\{f(x):x\in[a,b]\}$ . Wir nehmen an dass  $z_+\in(a,b)$ . Dann gilt  $f'(z_+)=0$  Eine Analog Aussage gilt für z

## Bemerkung 5.13

- 1.  $z_+, z_-$  existieren nach Satz 4.9
- 2. Die Voraussetzung  $z_+ \in (a, b)$  ist wichtig, z.B. Sei  $f : [0, 1] \to \mathbb{R}$ , f(x) = x. Dann ist  $z_+ = 1$  und  $f'(x) = 1 \neq 0$   $(\forall x \in (a, b))$

#### **Beweis**

Sei  $z_+ \in (a, b)$ . Da  $(a, z_+) \neq \emptyset$ ,  $(z_+, b) \neq \emptyset$  gibt es

$$(x_n)_{n\geq 1}\subset (a,z_+)$$

sowie

$$(y_n)_{n\geq 1}\subset (z_+,b)$$

mit

$$\lim_{n \to \infty} x_n = z_+ = \lim_{n \to \infty} y_n$$

$$V - 10$$

$$(z.B. x_n = z_+ - \frac{1}{n}, y_n = z_+ + \frac{1}{n})$$

Für  $n \geq 1$  folgt

$$f'(z_{+}) = \lim_{n \to \infty} \underbrace{\frac{f(x_{n}) - f(z_{+})}{\underbrace{x_{n} - z_{+}}_{<0}}}_{\leq 0} \geq 0$$

$$f(z_{+}) = \max\{f(x)\}\$$

$$f(z_{+}) = \max \{f(x)\}\$$

$$f'(z_{+}) = \lim_{n \to \infty} \underbrace{\frac{f(y_{n}) - f(z_{+})}{\underbrace{y_{n} - z_{+}}}}_{>0} \le 0$$

Woraus

$$f'\left(z_{+}\right) = 0$$

folgt.

## Satz 5.14 (Mittelwertsatz)

Sei  $f:[a,b]\to\mathbb{R}$  stetig und auf (a,b) differenzierbar,  $a\neq b$ . Dann gibt es  $x_0 \in (a,b)$  mit

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$



## **Beweis**

Die Idee ist sich auf den Fall f(a) = f(b) = 0 züruckführen und dann der Satz 5.12anwenden. Die Gleichung für die sekante durch die Punkte (a, f(a)), (b, f(b)) ist

Add reference + pagenumber

$$S(x) = (x - a) \left( \frac{f(b) - f(a)}{b - a} \right) + f(a)$$

Sei nun g(x) = f(x) - S(x). Dann ist g(a) = 0 = g(b)

<u>Fall 1:</u> g ist identisch = 0. Also f(x) = S(x) eine Gerade und die Aussage Stimmt  $\forall x_0 \in (a,b)$ 

Fall 2:  $g \neq 0$ . Also ist entweder

$$\max_{x} g(x) > 0 \ \left( \text{oder } \min_{x} g(x) < 0 \right)$$

Im "max" Fall sei  $z_+$  mit

$$g(z_{+}) = \max\{g(x) : x \in [a, b]\}$$

Dann ist  $z_+ \in (a,b)$  (Da g(a)=g(b)=0, und  $g(z_+)>0$ ) und nach Satz  $5.12g'(z_+)=0$ , d.h.

$$g(z_{+}) = f'(z_{+}) - S'(z_{+}) = 0$$
  
 $\Rightarrow f'(z_{+}) = S'(z_{+}) = \frac{f(b) - f(a)}{b - a}$ 

Der "min" Fall ist Analog.

Als erste Anwendung haben wir

## Korollar 5.15

Add reference + page number, page 205 middle to bottom

Add reference + page

number, page 205 very

top

Sei  $f:[a,b]\to\mathbb{R}$  wie im Satz 5.14

- 1. Falls f'(x) = 0,  $\forall x \in (a, b)$  folgt dass f konstant ist.
- 2. Falls  $f'(x) \ge 0$ ,  $\forall x \in (a, b)$  so ist f monotone wachsend.
- 3. Falls f'(x) > 0,  $\forall x \in (a, b)$  so ist f streng monoton wachsend.
- 4. Falls  $f'(x) \leq 0$ ,  $\forall x \in (a, b)$  so ist f monotone fallend.
- 5. Falls  $f'(x) < 0, \forall x \in (a, b)$  so ist f streng monoton fallend.

## Beweis

1. Seien  $a \le x < y \le b$  beliebig und sei (nach mittelwertsatz)  $x_0 \in (x, y)$  mit

$$\frac{f(y) - f(x)}{y - x} = f'(x_0)$$

da  $f'(x_0)$  folgt  $f(y) = f(x) \Rightarrow f$  ist konstant

2. Seien  $a \le x < y \le b$  beliebig und  $x_0 \in (x, y)$  mit

$$\frac{f(y) - f(x)}{y - x} = f'(x_0 > 0)$$

woraus folgt  $f(y) \ge f(x)$  folgt  $\Rightarrow f$  monotone wachsend.

- 3. Analog
- 4. Analog

## Beispiel 5.16

1. Bestimme alle differenzierbar Funktionen  $f:\mathbb{R}\to\mathbb{R}$  mit  $f'=\lambda f$ . Offensichtlich erfüllt  $t\to e^{\lambda t}$  dieser Gleichung

$$f(t) = e^{\lambda t}$$
  
$$f'(t) = \lambda e^{\lambda t} = \lambda f(t)$$

Betrachten wir

$$\begin{split} g'\left(t\right) &= e^{-\lambda t} f\left(t\right) \\ g'\left(t\right) &= -\lambda e^{-\lambda t} f\left(t\right) + e^{-\lambda t} f'\left(t\right) \\ &= e^{-\lambda t} \left(-\lambda f\left(t\right) + f'\left(t\right)\right) \\ &= e^{-\lambda t} \left(0\right) \forall t \\ &= 0 \end{split}$$

Also folgt dass g konstant ist, d.h.

$$g(t) = C \Rightarrow f(t) = Ce^{\lambda t}$$

Anders sagt: Die Menge der Lösungen von  $f' = \lambda f$  ist ein 1-dimensionales Vektorraum

$$V = \{ f : \mathbb{R} \to \mathbb{R} \mid f' = \lambda f \} = \left\{ Ce^{\lambda t} \mid c \in \mathbb{R} \right\}$$

2.

$$f(x) = \frac{2x}{1+x^2}$$

$$f'(x) = \frac{2(1+x^2) - (2x)(2x)}{(1+x^2)^2}$$

$$= \frac{2-2x^2}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2}$$

$$f'(x) < 0 \text{ für } |x| > 1$$
  
$$f'(\pm 1) = 0$$
  
$$f'(x) > 0 \text{ für } |x| < 1$$

| x                  | x < -1 | -1 < x < 0 | 0 < x < 1 | x > 1 |
|--------------------|--------|------------|-----------|-------|
| f'(x)              | _      | +          | +         | _     |
| $f\left( x\right)$ | ¥      | 7          | 7         | ¥     |

Fix vertical positioning in table, page 208 bottom



## Korollar 5.17 (Bernoulli, l'Hopital)

Seien  $f, g : [a, b] \to \mathbb{R}$  stetig differenzierbar in (a, b) mit  $g'(x) \neq 0, \forall x \in (a, b)$ . Wir nehmen an, dass

(i) 
$$f(a) = 0 = g(a)$$

(ii) 
$$\lim_{x \searrow a} \frac{f'(x)}{g'(x)} = A$$

Dann ist  $g(x) \neq 0$ ,  $\forall x > a$  und  $\lim_{x \searrow a} \frac{f(x)}{g(x)} = A$ 

## **Beweis**

Falls es  $x_1 > a$  gibt mit  $g(x_1) = 0$ , dann folgt die Existenz von  $x_0 \in (a, x_1)$  mit  $g'(x_0) = 0$  (MWS.)



Wiederspruch zur Annahme  $g'(x) \neq 0$ ,  $\forall x \in (a,b)$ . Also  $g(x) \neq 0$ ,  $\forall x > a$ . Nunsei a < s < b beliebig, und

$$h(x) := \frac{f(s)}{g(s)} \cdot g(x) - f(x) \qquad x \in [a, s]$$

Dann gilt, h(a) = 0 und h(s) = 0, es gibt also  $x_s \in (a, s)$  mit  $h'(x_s) = 0$ , d.h.

$$0 = h'(x_s) = \frac{f(s)}{g(s)} \cdot g'(x_s) - f'(x_s)$$

$$\Rightarrow \frac{f'(x_s)}{g'(x_s)} = \frac{f(s)}{g(s)}$$

Sei nun  $s_n \in (a,b)$  beliebig mit  $\lim s_n = a$ . Da  $a < x_{s_n} < s_n$  folgt,  $\lim x_{s_n} = a$ , und aus (\*)

$$\lim \frac{f\left(s_{n}\right)}{g\left(s_{n}\right)} = \lim \frac{f'\left(x_{s_{n}}\right)}{g'\left(x_{s_{n}}\right)} = A$$

## Bemerkung 5.18

- 1. Es gibt die selbe version für  $\lim_{x \nearrow b}$
- 2. (Limes von links und rechts zusammen). Seien  $f,g:[a,b]\to\mathbb{R}$  stetig. Sei a< c< b, wir nehmen an f,g sind in  $(a,c)\cup(c,b)$  differenzierbar,  $g'(x)\neq 0, \, \forall x\in(a,c)\cup(c,b)$  und
  - (i) f(c) = g(c) = 0
  - (ii)  $\lim_{\begin{subarray}{c} x \to c \\ x \neq c \end{subarray}} \frac{f'(x)}{g'(x)} = A$

Dann ist  $g(x) \neq 0$ ,  $\forall x \in (a,c) \cup (c,b)$  und  $\lim_{\substack{x \to c \\ x \neq c}} \frac{f(x)}{g(x)} = A$ 

## Beispiel 5.19

- 1.  $\lim_{x \to 1} \frac{x^3 1}{x^2 1} = \lim_{x \to 1} \frac{3x^2}{2x} = \frac{3}{2}$
- 2.  $\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = 1$
- 3.  $\lim_{x \to 0} \frac{\sin(x^2)}{x^2} = \lim_{x \to 0} \frac{2x\cos(x^2)}{2x} = \lim_{x \to 0} \cos(x^2) = 1$
- 4.  $\lim_{x \to 0} \frac{\cos(x) 1}{x^2} = \lim_{x \to 0} \frac{-\sin(x)}{2x} = -\frac{1}{2}$
- 5.  $\lim_{x \to 0} \frac{\left(e^x 1 x \frac{x^2}{2!}\right)}{x^3} = \lim_{x \to 0} \left(\frac{e^x 1 x}{3x^2}\right) = \lim_{x \to 0} \frac{e^x 1}{6x} = \lim_{x \to 0} \frac{e^x}{6} = \frac{1}{6}$

Die nächste Anwendung der MWS ist der sogenannte "Umkehrsatz"

## Fundamentale Frage

Sei  $f:\mathbb{R}\to\mathbb{R}$  differenzierbar und bijektiv, und sei  $g:\mathbb{R}\to\mathbb{R}$  die Inverse Funktion. Ist dann g auch differenzierbar?

## **Beispiel**

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \to x^3$$

ist überall differential und Bijektiv. Die "Umkehrfunktion"

$$g: \mathbb{R} \to \mathbb{R}$$
$$x \to x^{\frac{1}{3}}$$

ist aber in nicht differenzierbar

Can't understand, page 213 middle to bottom

$$\frac{g(h) - g(0)}{h} = \frac{h^{\frac{1}{3}}}{h} = h^{-\frac{2}{3}} \to \infty$$

Man kann folgendes bemerken: Falls  $f: \mathbb{R} \to \mathbb{R}$  bijektiv und die Umkehrfunktion  $g: \mathbb{R} \to \mathbb{R}$  auch differenzierbar ist dann folgt aus  $(f \circ g)(x) = x$ ,  $\forall x$  und der Kettenregel dass:

$$f'(g(x))g'(x) = 1 \quad \forall x$$

Insbesondere  $f'(x) \neq 0$   $(g'(x) \neq 0), \forall x$ . Dies ist also eine Notwendige Bedingung zur Existenz der Ableitung von  $f^{-1}$ 

## Satz 5.20 (Umkehrsatz)

Sei  $f:(a,b)\to\mathbb{R}$  differenzierbar mit  $f'(x)>0,\,\forall x\in(a,b).$  Seien  $c=\inf_x f(x),$   $d=\sup_x f(x).$  Dann ist  $f:(a,b)\to(c,d)$  bijektiv, und die Umkehrfunktion