Introduction to Machine Learning

Advanced Risk Minimization
Bias-Variance 1:
Bias-Variance Decomposition

Learning goals

- Decompose GE of learner into
 - bias of learner
 - variance of learner
 - inherent noise of data
- Simulation study demo
- Capacity and overfitting

BIAS-VARIANCE DECOMPOSITION

• Generalization error of learner \mathcal{I} : Expected error of model $\mathcal{I}(\mathcal{D}_n) = \hat{t}_{\mathcal{D}_n}$, trained on set of size n, evaled on fresh test sample

$$GE_n(\mathcal{I}) = \mathbb{E}_{\mathcal{D}_n \sim \mathbb{P}_{xy}^n, (\mathbf{x}, y) \sim \mathbb{P}_{xy}} \left[L(y, \hat{f}_{\mathcal{D}_n}(\mathbf{x})) \right] = \mathbb{E}_{\mathcal{D}_n, xy} \left[L(y, \hat{f}_{\mathcal{D}_n}(\mathbf{x})) \right]$$

• \mathbb{E} taken over all train sets **and** independent test sample. Could also frame this as expected risk (expectation over \mathcal{D}_n)

$$GE_n(\mathcal{I}) = \mathbb{E}_{\mathcal{D}_n} \left[\mathbb{E}_{xy} \left[L(y, \hat{f}_{\mathcal{D}_n}(\mathbf{x})) \right] \right] = \mathbb{E}_{\mathcal{D}_n} \left[\mathcal{R}(\hat{f}_{\mathcal{D}_n}) \right]$$

- For L2 loss, can additively decompose $GE_n(\mathcal{I})$ into 3 components
- Assume data is generated by

$$y = f_{\mathsf{true}}(\mathbf{x}) + \epsilon$$

with 0-mean homoskedastic error $\epsilon \sim (0, \sigma^2)$; independent of ${\bf x}$

 Similar decomps exist for other losses expressable as Bregman divergences (e.g. log-loss). One exception is 0/1 → Brown and Ali 2024

BIAS-VARIANCE DECOMPOSITION

$$GE_n(\mathcal{I}) =$$

$$\underbrace{\sigma^{2}}_{\text{Var. of }\epsilon} + \mathbb{E}_{x} \underbrace{\left[\text{Var}_{\mathcal{D}_{n}}(\hat{f}_{\mathcal{D}_{n}}(\mathbf{x}) \mid \mathbf{x}) \right]}_{\text{Variance of learner at } \mathbf{x}} + \mathbb{E}_{x} \underbrace{\left[(f_{\text{true}}(\mathbf{x}) - \mathbb{E}_{\mathcal{D}_{n}}(\hat{f}_{\mathcal{D}_{n}}(\mathbf{x}) \mid \mathbf{x}))^{2} \right]}_{\text{Squared bias of learner at } \mathbf{x}}$$

- First: variance of "pure" **noise** ϵ ; aka Bayes, intrinsic or irreducible error; whatever we we do, will never be better
- Second: how much $\hat{f}_{\mathcal{D}_n}(\mathbf{x})$ fluctuates at test \mathbf{x} if we vary training data, averaged over feature space; = learner's tendency to learn random things irrespective of real signal (overfitting)
- Third: how "off" are we on average at test locations (underfitting); uses "average model integrated out over all \mathcal{D}_n "; models with high capacity have low **bias** and vice versa

SIMULATION EXAMPLE

DGP with true model:

$$y = x + \frac{x^2}{2} + \epsilon$$
 $\epsilon \sim N(0, 1)$

• We will later draw multiple training sets \mathcal{D}_n , but only generate one large test set to set to approx. integrate our loss (can nicely do this with simul data)

Data - Test - Train

(only part of large test set shown here and in later plots)

SIMULATION EXAMPLE

- Let's estimate bias and variance by drawing independent data sets from the DGP and averaging
- First, we train several (low capacity) LMs
- These are the $\hat{t}_{\mathcal{D}_n}(\mathbf{x})$, seen as a RV, based on the random data \mathcal{D}_n

AVERAGE MODEL

- Average model over different training datasets
- ullet This is $\mathbb{E}_{\mathcal{D}_n}[\hat{t}_{\mathcal{D}_n}(\mathbf{x})]$ in the decomp

SQUARED BIAS COMPUTATION / ESTIMATION

- Compute sq. diff. between avg. and true model at each test x
- Then average over all test points (plot only shows subset)
- ullet This is $\mathbb{E}_{{\scriptscriptstyle X}}[(f_{\mathsf{true}}({\scriptscriptstyle f X}) \mathbb{E}_{\mathcal{D}_n}(\hat{f}_{\mathcal{D}_n}({\scriptscriptstyle f X})) \mid {\scriptscriptstyle f X})^2]$

VARIANCE COMPUTATION

- Compute variance of model predictions at each test *x*
- Then average over all test points (plot only shows subset)
- This is $\mathbb{E}_{x}[\mathsf{Var}_{\mathcal{D}_{n}}(\hat{t}_{\mathcal{D}_{n}}(\mathbf{x}) \mid \mathbf{x})]$

• For irreducible noise component, we know data variance $\sigma^2 = 1$; could also estimate it from residuals

DECOMP RESULT AND COMPARISON WITH MSE

Decomp result; here bias is largest:

$$GE_n(\mathcal{I}) \approx 1 + 1.824 + 0.270 = 3.094$$

- Regular MSE: For each model, compute MSE on whole test set
- Then we average these MSEs over all models
- Result = 3.094; checks out;
- In general: Error is quite high as we underfitted

HIGHER COMPLEXITY LEARNER

Same procedure, but using a high-degree polynomial (d = 7).
 Average model looks good now (low bias)

HIGHER COMPLEXITY LEARNER

 $GE_n(\mathcal{I}) \approx 1 + 0.09 + 0.568 = 1.658$

- GE lower than before and hypo space now contains f_{true}
- Bias is much lower, and variance higher
- Higher capacity learner overfits (here).
 We also do not regularize, that would be better
- NB: There is an "edge effect" on LHS, Runge effect, leads to some bias as "artifact" here (ignore this)

CORRECT COMPLEXITY LEARNER

10.0 7.5

5.0 2.5 0.0 -2.5

-2

• What happens if we use a model with the same complexity as the true model (quadratic polynomial)?

Χ

CORRECT COMPLEXITY LEARNER

$$GE_n(\mathcal{I}) \approx 1 + 0.014 + 0.094 = 1.108$$

- Naturally: better result
- Lowest bias, low variance
- In any case, variance of the data (irreducible noise, here 1) is a lower bound of GE
- This part remains even when using true model and infinite data

POINT-WISE DECOMPOSITION

We can also compute these quantities point-wise, showing how each component varies over the domain of x

- For LM there is significant bias depending on x
- GE for degree 2 is dominated by irreducible noise and model var. at boundaries
- GE for degree 7 is dominated by exploding variance terms near boundaries

CAPACITY AND OVERFITTING

- Performance of a learner depends on its ability to
 - fit the training data well
 - **2** generalize to new data
- Failure of the first point is called underfitting
- Failure of the second point is called overfitting

Credit: Ian Goodfellow

CAPACITY AND OVERFITTING

- Tendency of a learner to underfit/overfit is function of its capacity, determined by the type of hypotheses it can learn
- ullet Usually: high capacity o low bias o better fit on train
- ullet But: high capacity o high variance o high chance of overfitting
- For such models, regularization (discussed later) is essential
- Even for correctly specified models, generalization error is lower-bounded by irreducible noise σ^2

