经典卷积网络

ImageNet

LeNet-5

- 99.2% acc.
- 5/6 layers

AlexNet

- GTX 580
 - 3GBx2

- 11x11
- 8 layers

AlexNet: ILSVRC 2012 winner

- Similar framework to LeNet but:
 - Max pooling, ReLU nonlinearity
 - More data and bigger model (7 hidden layers, 650K units, 60M params)
 - GPU implementation (50x speedup over CPU)
 - Trained on two GPUs for a week
 - Dropout regularization

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep Convolutional Neural Networks</u>, NIPS 2012

VGG

- 3x3
- 1x1
- 11-19 layer

VGGNet: ILSVRC 2014 2nd place

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	Е
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224 × 2	24 RGB image	e)	1
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
200222		max	pool	Y 21 1881-10	
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
V. S. 471273		max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
			4096		
			4096		
			1000		
		soft	-max		

Table 2: Number of parameters (in millions).

	P	P		(
Network	A,A-LRN	В	C	D	E	
Number of parameters	133	133	134	138	144	

- Sequence of deeper networks trained progressively
- Large receptive fields replaced by successive layers of 3x3 convolutions (with ReLU in between)

- One 7x7 conv layer with C feature maps needs 49C² weights, three 3x3 conv layers need only 27C² weights
- Experimented with 1x1 convolutions

K. Simonyan and A. Zisserman,

Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015

GoogLeNet

• 1st in 2014 ILSVRC

22 layers

GoogLeNet

C. Szegedy et al., Going deeper with convolutions, CVPR 2015

Stack more layers?

1000 layers? CIFAR-10 experiments

ResNet

The residual module

- Introduce skip or shortcut connections (existing before in various forms in literature)
- Make it easy for network layers to represent the identity mapping
- For some reason, need to skip at least two layers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, <u>Deep Residual Learning for Image Recognition</u>, CVPR 2016 (Best Paper)

ResNet

Deeper residual module (bottleneck)

Directly performing 3x3
convolutions with 256 feature
maps at input and output:
256 x 256 x 3 x 3 ~ 600K
operations

 Using 1x1 convolutions to reduce 256 to 64 feature maps, followed by 3x3 convolutions, followed by 1x1 convolutions to expand back to 256 maps:

256 x 64 x 1 x 1 ~ 16K 64 x 64 x 3 x 3 ~ 36K 64 x 256 x 1 x 1 ~ 16K Total: ~70K

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, <u>Deep Residual Learning for Image Recognition</u>, CVPR 2016 (Best Paper)

ResNet: ILSVRC 2015 winner

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual Learning for Image Recognition, CVPR 2016

BOOM!

Research

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

*improvements are relative numbers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Why call Residual?

$$\mathcal{F}(x)\,:=\,\mathcal{H}(x)-x$$

DenseNet

+ : Element-wise addition

