Versió 1 (la més recent)

	4
Pregunta	1

Resposta desada

Puntuat sobre 10.00

We wish to study how the temperature varies with depth in a swimming pool. For that, we take a vertical segment from the bottom to the surface at the pool midpoint, and mesh it with 3 linear elements of equal length as shown in the image.

The water temperature follows the 1D Poisson equation $-k_c \frac{d^2T}{dx^2} = f(x)$, where k_c is the thermal conductivity of water, which we approximate as $0.5 rac{W}{mC}$, and the internal heat source is the warming of the pool by sunlight, with a power density f(x)=(6x+3)W/m (x is the height above the pool bottom in m). The pool bottom is always at a temperature $T_1=18C$, and the temperature at the pool surface has been measured to be $T_4=26C$.

(a) (2 points) The trace of the stiffness matrix \boldsymbol{K} of the global system is

`	7

O Leave it empty (no penalty)

 \bigcirc 9 6

(b) (4 points) Find the load vector coefficient F(3) exactly (do not approximate f as constant in the elements).

O 6.5

○ 3

O Leave it empty (no penalty)

O 2.8125

4.5

Hint: the other coefficients of F are F(1)=1, F(2)=3, F(4)=2.75.

(c) (4 points) With the given boundary conditions and values of F, and assuming no convection, find the maximal water temperature among the nodes n_1, n_2, n_3, n_4 .

○ 32

O 26

O 24.1667

O Leave it empty (no penalty)

27.3333

Hint: $Q_1 = -7.1667$.

Torna a començar

Desa

Emplena amb les respostes correctes

Envia i acaba

Tanca la previsualització

Comentaris

Expandeix-ho tot

Opcions de previsualització

Opcions de visualització

Informació tècnica

Camps personalitzats de preguntes

Download this question in Moodle XML format