Université Denis Diderot Paris 7

Probability and Processus

Giambattista Giacomin: giacomin@math.univ-paris-diderot.fr, Mathieu Merle: merle@math.univ-paris-diderot.fr

Exercises sheet 5: Martingales

Exercise 1 Let $(X_n, n \ge 1)$ be independent, and such that $\mathbb{E}[X_i] := m_i$, $\text{Var}(X_i) := \sigma_i^2, i \ge 1$. As usual, we set $S_n = \sum_{i=1}^n X_i$, $\mathcal{F}_n = \sigma(X_1, ..., X_n)$.

- 1. Find sequences (b_n) , (c_n) of real numbers such that $S_n^2 + b_n S_n + c_n$ is a (\mathcal{F}_n) -martingale.
- 2. Assume moreover that $\lambda \in \mathbb{R}$ is such that $\exp(\lambda X_i) \in \mathbb{L}^1$ for any $i \geq 1$, and set $G_i(\lambda) := \mathbb{E}\left[\exp(\lambda X_i)\right], i \geq 1$. Find a sequence $(a_n^{\lambda})_{n\geq 0}$ such that $\left(\exp(\lambda S_n a_n^{\lambda})\right)_{n\geq 0}$ is a (\mathcal{F}_n) -martingale.

Exercise 2 Let (\mathcal{F}_n) be a filtration and (M_n) a UI (\mathcal{F}_n) -martingale. Show that $(M_n, n \ge 0)$ converges a.s. and in L^1 towards a limiting M_∞ . Show that for any $n \in \mathbb{N}$, $M_n = E[M_\infty \mid \mathcal{F}_n]$

Exercise 3 Find an example of a martingale $(M_n, n \ge 0)$ such that almost surely $M_n \to M_\infty$ for some integrable r.v. M_∞ , and such that $(\mathbb{E}[M_n])_{n\ge 0}$ does not converge to $\mathbb{E}[M_\infty]$.

Exercise 4

1. Set $X_0 = 0$ and for $k \ge 0$,

$$\mathbb{P}(X_{k+1} = 1 \mid X_k = 0) = \mathbb{P}(X_{k+1} = -1 \mid X_k = 0) = \frac{1}{2k'}, \qquad \mathbb{P}(X_{k+1} = 0 \mid X_k = 0) = 1 - \frac{1}{2k}$$

$$\mathbb{P}(X_{k+1} = kX_k \mid X_k \neq 0) = \frac{1}{k'}, \qquad \mathbb{P}(X_{k+1} = 0 \mid X_k \neq 0) = 1 - \frac{1}{k}$$

Show that $(X_n, n \ge 0)$ is a martingale. Does it converge a.s.? in probability? in \mathbb{L}^1 ?

2. Find a martingale $(X_n, n \ge 0)$ such that $X_n \to -\infty$ a.s. Hint: You may look for $X_n = \xi_1 + ... + \xi_n$ with $(\xi_i)_{i \ge 1}$ independent, centered (but not identically distributed). **Exercise 5** Let a > 0 be fixed, $(\xi_i, i \ge 1)$ be i.i.d., \mathbb{R}^d -valued r.v., with each $\xi_i \sim \text{Unif}(B(0, a))$. Set $S_n = x + \sum_{i=1}^n \xi_i$.

- 1. Let f be a superharmonic function. Show that $(f(S_n), n \ge 0)$ defines a supermartingale.
- 2. Show that if $d \le 2$, any nonnegative superharmonic function is in fact constant. Does this result remain true when d > 2?

Exercise 6 Let $(V_i, i \ge 1)$ be nonnegative i.i.d.r.r.v, such that $\mathbb{E}[V_i] = 1$, $\mathbb{P}(V_i = 1) < 1$. We set $X_0 = 1$, $X_n = \prod_{i=1}^n V_i$, and $\mathcal{F}_n = \sigma(V_i, i \le n)$.

- 1. Show that (X_n) is a (\mathcal{F}_n) -martingale.
- 2. Does (X_n) converge? In what sense?

Exercise 7

Consider the filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_n), P)$ where $\Omega = \mathbb{N}^*, \mathcal{F} = \mathcal{P}(\mathbb{N}^*), P(\{n\}) = \frac{1}{n} - \frac{1}{n+1}, \mathcal{F}_n = \sigma\{\{1\}, ..., \{n\}, [n+1, +\infty[\}. \text{ Define a sequence } X \text{ of r.r.v. such that } X_n = (n+1)\mathbf{1}_{[n+1, +\infty[} \text{ for any } n \in \mathbb{N}.$

- 1. Show that $(X_n, n \ge 0)$ is a nonnegative (\mathcal{F}_n) -martingale. Check that $X_n \to 0$ a.s. Does X_n converge in L^1 ?
- 2. What is $\sup_{n\geq 0} X_n(k)$; $k \in \mathbb{N}^*$? Is (X_n) uniformly integrable?

Exercise 8 Let $(U_n)_{n\geq 0}$ be i.i.d. Bernoulli with

$$P(U_n = 1) = p$$
, $P(U_n = 0) = q = 1 - p$, $0 .$

Let $T = \inf\{n \ge 0 : U_n = 1\}$, and for $n \ge 0$, $X_n = q^{-n} \mathbf{1}_{\{T > n\}}$

- 1. Show (X_n) is a martingale in a well-choosen filtration.
- 2. Show that (X_n) converges a.s. to 0.
- 3. Is the martingale (X_n) bounded in L^1 ? in L^2 ?
- 4. Does (X_n) converge in L^1 ?
- 5. Is the sequence $(Y_n = \sqrt{X_n})_{n \ge 0}$ UI?

Exercise 9 Let $\{X_n, n \in \mathbb{N}\}$ be i.i.d., $\sim \text{Unif}[0, 2]$. For $n \ge 1$, let $Y_n = \prod_{i=1}^n X_i$.

- 1. Show that (Y_n) converges a.s. towards a r.r.v Y_{∞} .
- 2. Let $Q_n = \sqrt{Y_n}$. Show one can find a real q > 1 such that $q^n Q_n$ converges a.s. towards a r.r.v.
- 3. Conclude that $Y_{\infty} = 0$ a.s. Is the class $\{Y_n, n \in \mathbb{N}^*\}$ UI?

Exercise 10 Let $(Y_n)_{n\geq 0}$ be nonnegative, independent r.r.v. defined on (Ω, \mathcal{F}, P) , such that $\mathbb{E}[Y_n] = 1 \ \forall n \in \mathbb{N}$. Set, for $n \geq 0$, $X_n = \prod_{i=0}^n Y_i$. We assume that (Y_n) is (\mathcal{F}_n) adapted.

- 1. Show (X_n) (resp. $\sqrt{X_n}$), is a (\mathcal{F}_n) -martingale, (resp. supermartingale).
- 2. Show that the infinite product $\prod_{k\geq 0} E(\sqrt{Y_k})$ converges in \mathbb{R}_+ . Denote by ℓ the limit.
- 3. Assume $\ell = 0$. Show then that $\sqrt{X_n} \to 0$ a.s. Is the martingale (X_n) UI in that case ?
- 4. Assume $\ell > 0$. Show then that $\sqrt{X_n}$ is Cauchy in L^2 . Is (X_n) UI in that case?

Exercise 11 (*) Let μ and ν be probability measures on (Ω, \mathcal{F}) , and \mathcal{F}_n a filtration generating \mathcal{F} (i.e. such that $\sigma(\cup \mathcal{F}_n) = \mathcal{F}$).

Let μ_n , ν_n the restrictions of μ , ν to \mathcal{F}_n . We assume that for any n, $\mu_n << \nu_n$ so we can set $X_n = \frac{d\mu_n}{d\nu_n}$.

- 1. Show that (X_n) is a (\mathcal{F}_n) -martingale.
- 2. For $X = \limsup_{n \to \infty} X_n$, show that ν -a.s., $X < \infty$ and $X_n \to X$. One should be careful however, that $\mu(X = \infty)$ may still be positive!
- 3. Introduce $\rho = \frac{\mu + \nu}{2}$ (so that $\mu \ll \rho, \nu \ll \rho$), and similarly $\rho_n = \frac{\mu_n + \nu_n}{2}$. Set $Y_n = \frac{d\mu_n}{d\rho_n}, Z_n = \frac{d\nu_n}{d\rho_n}$.
 - **a.** Show that $X_n = \frac{dY_n}{dZ_n}$.
 - **b.** Show that ρ -a.s.,

$$Y_n \xrightarrow[n \to \infty]{} Y, \qquad Z_n \xrightarrow[n \to \infty]{} Z$$

c. Establish that

$$Y = \frac{d\mu}{d\rho}, \qquad Z = \frac{d\nu}{d\rho}.$$

Hint: It suffices to check that for any $n \in \mathbb{N}$, for any $A \in \mathcal{F}_n$, $\mu(A) = \int_A Y d\rho$, $\nu(A) = \int_A Z d\rho$.

- **d.** Set $W = \frac{1}{Z} \mathbf{1}_{\{Z>0\}}$. Show that ν -a.s., YW = X.
- **e.** Show that for any $A \in \mathcal{F}$,

$$\int_A \mathbf{1}_{\{Z=0\}} Y d\rho = \int_A \mathbf{1}_{\{X=\infty\}} d\mu.$$

f. Using $1 = ZW + \mathbf{1}_{\{Z=0\}}$, deduce from the preceding questions that for any $A \in \mathcal{F}$,

$$\mu(A) = \int_A X d\nu + \mu(A \cap \{X = \infty\}).$$

Note : We have established that $\mu = \mu_r + \mu_s$, where $\mu_r(A) := \int_A X d\nu$ is absolutely continuous with respect to μ , while $\mu_s(A) = \mu(A \cap \{X = \infty\})$ is singular with respect to μ .

4. Assume in this question that μ and ν are, on $\mathbb{R}^{\mathbb{N}}$, product measures (i.e., measures which make the coordinates ($\xi_n(\omega) := \omega_n, n \in \mathbb{N}$) independent). For $x \in \mathbb{R}$, let $F_n(x) = \mu(\xi_n \le x)$, $G_n(x) = \nu(\xi_n \le x)$. We assume $F_n << G_n$ and let $q_n := \frac{dF_n}{dG_n}$. Finally, we assume that $\mathcal{F}_n = \sigma(\xi_k, k \le n)$ and let μ_n (resp. ν_n) be the restriction of μ (resp. of ν) to \mathcal{F}_n .

Establish Kakutani's dichotomy theorem : $\mu << \nu$ or $\mu \perp \nu$ according to wether

$$\prod_{m\geq 1}\int \sqrt{q_m}dG_m>0 \quad \text{or} \quad =0.$$

Exercise 12 Let $(X_n)_{n\geq 1}$ a sequence of i.i.d.r.r.v, $\sim \mathcal{N}(0,1)$, and $(\alpha_n)_{n\geq 1}$ a sequence of real numbers. Set

$$\mathcal{F}_0 = \{\emptyset, \Omega\}, \qquad \mathcal{F}_n = \sigma(X_1, ..., X_n), \quad M_n = \exp\left(\sum_{k=1}^n \alpha_k X_k - \frac{1}{2} \sum_{k=1}^n \alpha_k^2\right), n \geq 1.$$

- 1. Show that (M_n) is a (\mathcal{F}_n) -martingale and that (M_n) converges a.s.
- 2. Assume in addition that $\sum_{k\geq 1} \alpha_k^2 = +\infty$. Show then that $\lim_{n\to\infty} M_n = 0$, a.s. Is (M_n) UI?

Exercise 13 The following is a model for a reinforced random walk on the set $\{-1,0,1\}$. We let $W: \mathbb{N} \to \mathbb{R}_+^*$ be the reinforcement function and we define $V: \mathbb{N} \to \mathbb{R}_+^*$ by

$$V(0) = 0,$$
 $V(n) = \sum_{i=0}^{n-1} \frac{1}{W(i)}, n \ge 1.$

The walk is $(X_n, n \ge 0)$ and the filtration is $\mathcal{F}_n := \sigma(X_i, i \le n)$. We also define $Z_n^+ = \sum_{i=0}^n \mathbf{1}_{X_{i+1}}$ (resp. $Z_n^- = \sum_{i=0}^n \mathbf{1}_{X_{i+1}}$), the total occupation time at 1 (resp. -1) of the walk X up to time n. We are yet to define the transitions of $(X_n, n \ge 0)$: for all $n \in \mathbb{N}$, $X_{2n} = 0$ and

$$P\left(X_{2n+1}=1\mid\mathcal{F}_{2n}\right)=\frac{W(Z_{2n}^{+})}{W(Z_{2n}^{+})+W(Z_{2n}^{-})},\quad P\left(X_{2n+1}=-1\mid\mathcal{F}_{2n}\right)=\frac{W(Z_{2n}^{-})}{W(Z_{2n}^{+})+W(Z_{2n}^{-})}.$$

In other words, the walk is on $\{-1,0,1\}$ and starts at 0, all the jumps have size 1, and the walk takes value 1 at time 2n + 1 with a probability proportional to $W(Z_n^+)$.

- 1. Show that $(M_n = V(Z_n^+) V(Z_n^-), n \ge 0)$ is a (\mathcal{F}_n) -martingale.
- 2. Let $\tau = \inf\{n \ge 0 : X_n = 1\}$ the time of the first visit at 1. Find a necessary and sufficient condition for having $\tau < \infty$ a.s. In such a case compute $E[V(Z_{\tau}^-)]$.
- 3. Suppose now that $\sum_{k\geq 0} W(k)^{-1} < \infty$. Check then that (M_n) converges a.s. towards a limiting M_{∞} . Compute $E[M_{\infty}]$. Show that $P(Z_{\infty}^+ \neq Z_{\infty}^-) > 0$.

Exercise 14 Let $X \sim \mathcal{N}(0, \sigma^2)$, with $\sigma^2 \in (0, 1)$, and for $k \in \mathbb{N}$, let $\eta_k \sim \mathcal{N}(0, \varepsilon_k^2)$ with $\varepsilon_k > 0$. We assume that the variables $\{X, \eta_0, \eta_1, ...\}$ are independent. Define $Y_k = X + \eta_k, k \in \mathbb{N}$, $\mathcal{F}_n = \sigma(Y_0, ..., Y_n), n \in \mathbb{N}, \mathcal{F}_\infty = \sigma(Y_n; n \geq 0)$. Finally let $X_n := E(X \mid \mathcal{F}_n) = E(X \mid Y_0, ..., Y_n)$.

- 1. Show that (X_n) is a martingale and that (X_n) converges a.s. and in L^1 towards a r.r.v. X_{∞} . What is the relationship between X and X_{∞} ?
- 2. Show (X_n) is bounded in L^2 . Show that the three following properties are equivalent

$$a)X_n \xrightarrow[n \to \infty]{\mathbb{L}^2} X$$
, $b)X_n \xrightarrow[n \to \infty]{\mathbb{L}^1} X$, $c)X$ is \mathcal{F}_{∞} -measurable.

3. Compute $E(Y_iY_j)$, $E(Y_i^2)$ and $E(XY_i)$ for $i, j \ge 0, i \ne j$. Show that for any $n \ge 0$, i = 0, ..., n we have $E(Z_nY_i) = 0$, where

$$Z_n := X - \frac{\sigma^2}{1 + \sigma^2 \sum_{k=0}^n \varepsilon_k^{-2}} \sum_{j=0}^n \varepsilon_j^{-2} Y_j.$$

- 4. Show that for any $n \ge 0$ the variable Z_n is independent of $\sigma(Y_0, ..., Y_n)$, deduce that $X_n = X Z_n$.
- 5. Compute $E((X X_n)^2)$ and show that

$$X_n \xrightarrow[n \to \infty]{\mathbb{L}^2} X \quad \Leftrightarrow \quad \lim_{n \to \infty} \sum_{i=0}^n \varepsilon_i^{-2} = +\infty.$$

6. Discuss the case $\varepsilon_i = \varepsilon > 0$ for any $i \ge 0$.

Exercise 15

Suppose in a game between a gambler and a croupier the total capital in play is 1. After the nth hand the proportion of the capital held by the gambler is denoted $X_n \in [0,1]$, thus that held by the croupier is $1 - X_n$. We assume $X_0 = p \in (0,1)$. We assume that the rules of the game are such that after n hands, the probability for the gambler to win (n + 1)th hand is X_n ; if he does, he gains half of the capital the croupier held after the nth hand, while if he loses he gives half of his capital. Let $\mathcal{F}_n = \sigma(X_1, ..., X_n)$

- 1. Show (X_n) is a martingale.
- 2. Show that (X_n) converges a.s. and in \mathbb{L}^2 towards a limiting Z.
- 3. Show that $E(X_{n+1}^2) = E(3X_n^2 + X_n)/4$. Deduce that $E(Z^2) = E(Z) = p$. Deduce the law of Z.
- 4. For any $n \ge 0$, let $Y_n := 2X_{n+1} X_n$. Find the conditional law of X_{n+1} knowing \mathcal{F}_n . Deduce

$$P(Y_n = 0 \mid \mathcal{F}_n) = 1 - X_n; \quad P(Y_n = 1 \mid \mathcal{F}_n) = X_n,$$

and express the law of Y_n .

5. Let $G_n := \{Y_n = 1\}, P_n := \{Y_n = 0\}$. Prove that $Y_n \to Z$ a.s. and deduce that

$$P\left(\liminf_{n\to\infty}G_n\right)=p, \quad P\left(\liminf_{n\to\infty}P_n\right)=1-p.$$

Are the variables $\{Y_n, n \ge 1\}$ independent?

6. Interpret 4, 5, 6 in terms of gain/loss for the gambler.

Exercise 16 Let $Y := (Y_n)_{n \in \mathbb{N}^*}$ be independent and such that for $n \in \mathbb{N}^*$,

$$Y_n \sim \mathcal{N}\left(\sqrt{1-n^{-2}}, n^{-2}\right).$$

We set $M_0 := 1$ and for $n \in \mathbb{N}^*$, $M_n := M_{n-1}Y_n^2$. We finally let for any $n \in \mathbb{N}$, $\mathcal{F}_n := \sigma(Y_k, k \le n)$.

- 1. Show $M := (M_n)_n$ is a (\mathcal{F}_n) -martingale. Does M converge almost surely ?
- 2. For $i \in \mathbb{N}^*$ set

$$b_i := \frac{1}{i} \sqrt{\frac{2}{\pi}} \exp\left(\frac{1-i^2}{2}\right) + \sqrt{1-\frac{1}{i^2}} \mathbb{P}\left(|Z| \le \sqrt{i^2-1}\right), \quad \text{where } Z \sim \mathcal{N}(0,1).$$

Setting $N_0 := 1$, and for $n \in \mathbb{N}^*$,

$$N_n := \frac{\sqrt{M_n}}{\prod_{i=1}^n b_i},$$

show that N is a (\mathcal{F}_n) -martingale.

- 3. Establish that $b_n = 1 (2n^2)^{-1} + o(n^{-2})$ as $n \to \infty$ and deduce that $\sup_n \mathbb{E}[N_n^2] < \infty$.
- 4. Discuss convergence properties of N and establish that $N^2 = (N_n^2)_{n \in \mathbb{N}}$ is uniformly integrable.
- 5. Conclude that M converges in \mathbb{L}^1 (towards a limit denoted M_{∞}).
- 6. Show that $\mathbb{P}(M_{\infty} = 0) = 0$. (Hint : you may use Kolmogorov's 0–1 law.)
- 7. Define $\widetilde{Y} := (\widetilde{Y}_n)_{n \in \mathbb{N}^*}$ a sequence of independent random variables such that for $n \in \mathbb{N}^*$,

$$\widetilde{Y}_n \sim \mathcal{N}\left(\sqrt{1-n^{-1}}, n^{-1}\right)$$

and $\widetilde{\mathcal{F}}_n := \sigma(\widetilde{Y}_k, k \leq n)$.

Setting $\widetilde{M}_0 := 1$, and for $n \in \mathbb{N}^*$,

$$\widetilde{M}_n := \widetilde{M}_{n-1} \widetilde{Y}_n^2$$

establish that $\widetilde{M} := \left(\widetilde{M}_n\right)_{n \in \mathbb{N}}$ is a $(\widetilde{\mathcal{F}}_n)$ -martingale. Show then that \widetilde{M} converges almost surely to 0. Is \widetilde{M} uniformly integrable? (Hint: one could, similarly to the above, define an intermediate martingale \widetilde{N} .)

Exercise 17 Let $\{U_n\}_{n\in\mathbb{N}^*}$ be i.i.d., \sim Unif[0,1] on a probability space $(\Omega,\mathcal{F},\mathbb{P})$, $\mathcal{F}_0 = \{\emptyset,\Omega\}$, and for $n\in\mathbb{N}^*$, $\mathcal{F}_n := \sigma(U_1,\ldots,U_n)$. The sequence $X:=(X_n)_{n\in\mathbb{N}}$ is defined inductively as follows :

$$X_0 = p \in (0,1),$$
 and, for $n \ge 0$, $X_{n+1} := \theta X_n + (1-\theta)\mathbf{1}_{[0,X_n]}(U_{n+1})$,

with $\theta \in (0,1)$ being fixed.

- 1. Show that $0 < X_n < 1$, for any $n \in \mathbb{N}$.
- 2. Show that *X* is a $(\mathcal{F}_n)_{n\geq 0}$ -martingale.
- 3. Establish that X converges almost surely and in \mathbb{L}_p for any $p \ge 1$, towards a limiting random variable X_{∞} .

4. Show that for any $n \ge 0$,

$$\mathbb{E}\left[(X_{n+1}-X_n)^2\right] := (1-\theta)^2 \mathbb{E}\left[X_n(1-X_n)\right].$$

5. Compute $\mathbb{E}[X_{\infty}(1-X_{\infty})]$. Deduce the law of X_{∞} .

Exercise 18 Let $(Y_n)_{n \in \mathbb{N}^*}$ be a sequence of random variables, and assume (Y_n) converges to a limiting Y.

Also, on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the sequence of independent random variables $X := (X_n)_{n \in \mathbb{N}^*}$ is defined, and we assume that the sequence of partial sums $(S_n)_{n \in \mathbb{N}}$ (i.e. $S_0 = 0$ and $S_n := \sum_{j=1}^n X_j$) converges in distribution. Set (\mathcal{F}_n) the natural filtration of X and $\phi_n(t) = \mathbb{E}(\exp(itS_n))$ for $t \in \mathbb{R}$.

1. Establish that $(\phi_{Y_n}(\cdot))_{n\geq 1}$ converges uniformly on every compact, *i.e.* show that for any a>0,

$$\max_{t \in [-a,a]} |\phi_{Y_n}(t) - \phi_Y(t)| \xrightarrow[n \to \infty]{} 0.$$

Establish moreover there exists a > 0 such that for any $n \ge 1$, $\min_{t \in [-a,a]} |\phi_{Y_n}(t)| \ge 1/2$.

- 2. Show that there exists $t_0 > 0$ such that if $t \in [-t_0, t_0]$ then $\left(\exp(itS_n)/\phi_n(t)\right)_{n \ge 0}$ is a (\mathcal{F}_n) -martingale (i.e. real and imaginary parts of $\left(\exp(itS_n)/\phi_n(t)\right)_n$ are both (\mathcal{F}_n) -martingales).
- 3. Show that we can choose $t_0 > 0$ such that for any $t \in [-t_0, t_0]$, $\lim_{n\to\infty} \exp(itS_n(\omega))$ exists $\mathbb{P}(d\omega)$ -p.s..
- 4. (*) Set

$$C := \{(t, \omega) \in [-t_0, t_0] \times \Omega : \lim_{n \to \infty} \exp(itS_n(\omega)) \text{ exists } \}.$$

Explain why *C* is measurable (the σ -algebra of measurable subsets of $[-t_0, t_0] \times \Omega$ is the product of $\mathcal{B}([-t_0, t_0])$ with \mathcal{F}).

5. (*) Establish that $\int_{-t_0}^{t_0} \int_{\Omega} \mathbf{1}_C(t,\omega) \mathbb{P}(d\omega) dt = 2t_0$. Deduce $\lim_{n\to\infty} S_n(\omega)$ exists $\mathbb{P}(d\omega)$ -a.s. (One will admit the following result : if $(c_n)_{n\in\mathbb{N}^*}$ is a sequence of reals such that $\lim_{n\to\infty} \exp(itc_n)$ exists for almost every $t\in[-t_0,t_0]$, then $\lim_{n\to\infty} c_n\in\mathbb{R}$ exists).