KLASIFIKASI TANAMAN AGLAONEMA MENGGUNAKAN NEURAL NETWORK

PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

oleh : MUHAMMAD DAFFA DHIYAULHAQ 6705184083

D3 TEKNOLOGI TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2021

Latar Belakang

Aglaonema merupakan salah satu jenis tanaman hias yang menonjolkan daun sebagai daya tarik utama. Motif dan warna daunnya yang variatif belakangan menjadi perbincangan para penikmat jenis tanaman hias ini. Tanaman yang memiliki banyak jenis ini biasanya diletakkan di teras atau di dalam ruangan, oleh karena itu disebut tanaman hias indoor.

Dilansir pada laman Badan Penelitian dan Pengembangan Pertanian, jenis tanaman hias yang satu ini tidak hanya diminati oleh orang Asia saja, tapi juga di Eropa bahkan Amerika. Jenis tertentu Aglaonema mempunyai corak daun yang mirip satu dengan lainnya. Ini dapat menyulitkan identifikasi dan dapat menimbulkan kerugian baik penjual maupun pembeli. Oleh karena itu pada proyek akhir ini diperlukan sebuah aplikasi untuk mengklasifikasikan jenis-jenis tanaman Aglonema.

Pada proyek akhir ini diusulkan sebuah sistem yang nantinya dapat membedakan atau mengklasifikasi secara otomatis. Sistem ini menggunakan algoritma *Convolutional Neural Network* (CNN) adalah salah satu jenis neural network yang biasa digunakan pada data image. CNN bisa digunakan untuk mendeteksi dan mengenali object pada sebuah image. Sistem ini direncanakan mampu mengklasifikasikan tiga/empat/lima. Jenis Aglonema.

Dengan adanya usulan sistem ini diharapkan dapat mempermudah klasifikasi aglonema Oleh karena itu penulis membuat tugas akhir dengan judul "KLASIFIKASI TANAMAN AGLAONEMA MENGGUNAKAN NEURAL NETWORK".

Dengan alat atau aplikasi yang dibuat diharapkan dapat membantu untuk mengklasifikasi tanaman khususnya tanaman Aglaonema.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	Pendeteksian Citra Daun Tanaman Menggunakan Metode Box Counting, Universitas Jember. [1]	2020	Pada metode penelitian ini akan membahas tentang langkah-langkah untuk mengidentifikasi daun tanaman menggunakan metode box counting. Dalam penelitian ini, software yang digunakan adalah matlab R2014a. Langkah-langkah yang dilakukan yaitu mendapatkan data citra dan mengolah citra digital.
2.	Deteksi Tanaman Tebu Pada Lahan Pertanian Menggunakan Metode Convolutional Neural Network, Universitas Pembangunan Nasional Veteran Jawa Timur. [2]	2020	Penelitian ini dilakukan untuk mengembangkan sistem deteksi jenis tanaman berbasis drone dengan menerapkan algoritma CNN (Convolutional Neural Network) dengan menggunakan YOLO (You Only Look Once). Hasil penelitian menunjukkan bahwa metode CNN berhasil untuk mendeteksi tebu dengan cukup baik dengan menghasilkan rata-rata nilai confidence sebesar 95% pada pengujian video. Pengujian menggunakan pada nilai threshold 0.1, menghasilkan skor precision sebesar 1.00, skor recall sebesar 0.95 dan skor accuracy sebesar 0.95 pada tebu.

3.	Klasifikasi Citra Menggunakan	2016	Metode CNN terdiri dari dua tahap. Tahap pertama adalah klasifikasi citra
	Convolutional Neural Network (CNN)		menggunakan feedforward. Tahap kedua merupakan tahap pembelajaran
	pada Caltech 101, Institut Teknologi		dengan metode backpropagation. Sebelum dilakukan klasifikasi, terlebih
	Sepuluh Nopember [3]		dahulu dilakukan praproses dengan metode wrapping dan cropping untuk
			memfokuskan objek yang akan diklasifikasi. Selanjutnya dilakukan training
			menggunakan metode feedforward dan backpropagation.
4.	Perancangan dan Simulasi Deteksi	2016	Dari penelitian ini, maka ada beberapa kesimpulan yang dapat ditarik,
	Penyakit Tanaman Jagung Berbasis		yaitu untuk pengujian dengan menggunakan metode ekstraksi warna
	Pengolahan Citra Digital Menggunakan		(Color Moment) dan ekstraksi tekstur (GLCM) maka didapat akurasi
	Metode Color Moments dan GLCM,		tertinggi sebesar 89,375 dengan menggunakan Euclidean Distance dimana
	Telkom University. [4]		nilai k = 1. Hasil ini merupakan rata-rata dari nilai ciri dari masing-masing
			parameter ciri. Hasil pengujian untuk citra yang dirubah ukurannya
			memiliki nilai akurasi yang turun seiring dengan berkurangnya ukuran citra.
5.	Deteksi Buah Pada Pohon Menggunakan	2017	pada penelitian ini digunakan fitur tekstur, karena pada umumnya objek
	Metode Svm Dan Fitur Tekstur,		buah dan non-buah seperti daun, ranting, dan objek latar lainnya memiliki
	Universitas Nusantara PGRI Kediri. [5]		perbedaan tekstur yang sangat signifikan dibandingkan dengan warnanya.
			Hasil eksperimen pada beberapa citra ImageNet menunjukkan bahwa
			metode yang diusulkan mampu menghasilkan akurasi sebesar 76% dan
			tingkat kesalahan prediksi sebesar 24%.

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai perancangan aplikasi sistem deteksi tanaman aglaonema dengan menggunakan metode Convolutional Neural Network yang di gambarkan dalam *Flowchart* pada gambar 1 dibawah ini.

Gambar 1. Flowchart Perancangan Deteksi Tanaman Aglaonema

Convolutional Neural Network (CNN) adalah salah satu jenis neural network yang biasa digunakan pada data image. CNN bisa digunakan untuk mendeteksi dan mengenali object pada sebuah image.

Secara garis besar Convolutional Neural Network (CNN) tidak jauh beda dengan neural network biasanya. CNN terdiri dari neuron yang memiliki weight, bias dan activation function. Convolutional layer juga terdiri dari neuron yang tersusun sedemikian rupa sehingga membentuk sebuah filter dengan panjang dan tinggi (pixels). Secara garis besarnya, CNN memanfaatkan proses konvolusi dengan menggerakan sebuah kernel konvolusi (filter) berukuran tertentu ke sebuah gambar, komputer mendapatkan informasi representatif baru dari hasil perkalian bagian gambar tersebut dengan filter yang digunakan. Berikut jenis tanaman Aglaonema yang dideteksi, antara lain:

1. Kochin Hybrid

2. Dut Ajamani

3. Herly Queen

4. Red Stardust

Referensi

- [1] Alfi Salim., "Object Detection (Case: Plat Detection)" 2020.
- [2] Universitas Jember, "Pendeteksian Citra Daun Tanaman Menggunakan Metode Box Counting" 2020
- [3] Universitas Pembangunan Nasional Veteran Jawa Timur, "Deteksi Tanaman Tebu Pada Lahan Pertanian Menggunakan Metode Convolutional Neural Network " 2020
- [4] Institut Teknologi Sepuluh Nopember, "Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) pada Caltech 101" 2016.
- [5] Telkom University, "Perancangan Dan Simulasi Deteksi Penyakit Tanaman Jagung Berbasis Pengolahan Citra Digital Menggunakan Metode Color Moments Dan GLCM" 2016.
- [6] Universitas Nusantara PGRI Kediri, "Deteksi Buah Pada Pohon Menggunakan Metode Svm Dan Fitur Tekstur" 2017.
- [7] Qolbiyatul Lina, "Apa itu Convolutional Neural Network?" 2019.

Form Kesediaan Membimbing Proyek Akhir PROYEK AKHIR SEMESTER GANJILIGENAP* TA 2020/2021

Tanggal : 03 Mei 2021

Kami yang bertanda tangan dibawah in i:

CALON PEMBIMBING 1

Kode : SGO

Nama : Sugondo Hadiyoso, S.T., M.T.

CALON PEMBIMBING 2

Kode : YSN

Nama : Yuli Sun Hariyani, S.T., M.T.

Menyatakan bersedia menjadi dosen pembimbing Proyek Akhir bagi mahasiswa berikut,

NIM : 6705184083

Nama : Muhammad Daffa Dhiyaulhaq

Prodi / Peminatan : D3TT

Calon Judul PA : Klasifikasi tanaman Aglaonema menggunakan neural network

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Akhir yang berlaku.

n Pepubjuding 1 Calon Pembin

(Sugondo Hadiyoto, S.T., M.T.) (Yuli Sun Hariyani, S.T., M

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.idipanduan-proyek-akhir/
- Keputusan akhir penertuan pentilinbing berada di tengan Kelua Kelompok Keshilan dengan memperhatikan aturan yang be
 Manantinan sengah melah seriah seriah pendalan sengah melah seriah seriah

Tellisem University
J. Telekomunikasi No. 1, Terusan Bueh Batu Bandung 40257 Indistresia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomer Inskik Mahasiawa) Nama

6705184083

Dosery Walk

DUM / DADAN NUR RAMADAN D3 Teknologi Tekkumunikasi

NUHAMMAD DAFFA DHINAULHAD

Mata Kuliah yang Lulus

emester Kode Mata Kullah		Mata Kuliah	Nama Hata Kulan B. Inggris	SKS	Félai
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMPLINICATIONS SYSTEM	3	с
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PENROGRAHAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	AB
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	AB
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	AB
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	c
1	HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	Α.
1	DTH103	RANGKAJAN LISTRIK	ELECTRICAL CIRCUITS	3	C:
1	OTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	AB
2	DTH112	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	8
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	В
2	DMH1A2	OLAH RAGA	SPORT	2	A
2	ртнана	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	AB
2	DTH113	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	c
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	.3	C
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITEZENSHIP	3	A
2	COH182	BAHASA INGGRIS I	ENGLISH I	2	AB
3	DTH203	APLIKASI MEKRONONTROLER DAN ANTARMIJKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	AB

6/1/2021

6705184063 Nibsi | Telkom University

Semester Kode Mata Kuliah		Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Milai
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	AB
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	С
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	BC.
3	DTH283	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	AB
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	с
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	С
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	A
4	DMH182	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	A
4	DTH2H3	JARINGAN DATA BROADBAND	BRDADBAND DATA NETWORK	3	8
4	DTH232	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	8
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	AB
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	BC
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	AB
4	UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	AB
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	8
4	DTH213	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	8
5	UW13A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	A
5	VT13C3	TEKNIK ANTENNA & PROPAGASI	ANTENNA AND PROPAGATION TECHNIQUES	3	BC.
5	VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2	C
5	UWI3E1	HEI	HEI	1	A
5	VTI303	KEAMANAN JARINGAN	NETWORK SECURITY	3	AB
	96	3.01			

Mata Kullah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
	Jumlah :	16			

https://gracias.leikors.reiversity.ac.kt/score/index.php?pageid=13&eid=6705154063

2/3

6/1/2021

6705184083 Nilai | Telkom University

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
6	VP13GC	MAGANG	APPRENTICE	12	
6	6 VTI3F4 PR		FINAL PROJECT	4	
	Jumlah :	16			

Mata Kuliah yang Diulang

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
2	DTH1G3		MATHEMATICS TELECOMMUNICATIONS II	3	E
	3				

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 91 Juni 2021 09:38:13 oleh MUNAMMAD DAFFA DNYAULHAQ