Colle 10 - MPSI Suites

Exercice 1

- 1. Questions de cours :
 - (a) Définitions : suites majorées, minorées, monotones, convergentes, divergentes.
 - (b) Démontrer que toute suite convergeant vers une limite l > est minor'ee à partir d'un certain rang par $\frac{l}{2}$.
- 2. Calculer lorsqu'elles convergent les limites des suites définies par :

$$u_n = \frac{n+1}{n}$$
, $v_n = \sqrt{n(n+a)} - n$, $w_n = \sum_{k=1}^{n^2} \frac{1}{\sqrt{n^2 + 2k}}$.

Exercice 2

- 1. Questions de cours :
 - (a) Définitions : suites majorées, minorées, monotones, convergentes, divergentes.
 - (b) Démontrer que le produit d'une suite convergeant vers 0 et d'une suite bornée converge vers 0.
- 2. Calculer lorsqu'elles convergent les limites des suites définies par :

$$u_n = \frac{n}{n+1}$$
, $v_n = n - \sqrt{n^2 - 1}$, $w_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + 2k}}$.

Exercice 3

- 1. Questions de cours :
 - (a) Définitions : suites majorées, minorées, monotones, convergentes, divergentes.
 - (b) Démontrer que toute suite convergente est bornée.
- 2. Calculer lorsqu'elles convergent les limites des suites définies par :

$$u_n = \frac{1}{n^2 + 1},$$
 $v_n = n - \sqrt{n^2 - n},$ $w_n = \sum_{k=1}^n \frac{1}{k(k+1)}.$

Exercice 4

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 1, \ u_1 = 2\\ u_{n+2} = -2u_{n+1} - 2u_n \end{cases}$$

Exprimer u_n en fonction de n.

Exercice 5

Soit u une suite croissante telle que pour tout $n \in \mathbb{N}$, $u_{n+1} \leq u_n + \frac{1}{2^n}$.

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, $u_n \leq u_n + \sum_{k=0}^{n-1} \frac{1}{2^k}$.
- 2. En déduire que pour tout $n \in \mathbb{N}$, $u_n \leq u_0 + 2\left(1 \frac{1}{2^n}\right)$.
- 3. En déduire que u converge.

Exercice 6

Soit (u_n) une suite réelle telle que :

$$\forall n \in \mathbb{N}, u_n \in \mathbb{Z}.$$

Montrer que (u_n) converge si et seulement si (u_n) est stationnaire.

Exercice 7

Montrer que les suites suivantes sont adjacentes :

$$u_n = \sum_{k=3}^n \frac{1}{k^2 + 1}, \quad v_n = u_n + \frac{1}{n} - \frac{1}{2n^2}, \quad n \ge 3.$$

Exercice 8

Soit (u_n) une suite réelle telle que :

$$\forall (m,n) \in (\mathbb{N}^*)^2, \quad 0 \le u_{m+n} \le \frac{m+n}{mn}.$$

Montrer que (u_n) converge vers 0.

Exercice 9

Étudier la suite (u_n) définie par :

$$\begin{cases} u_0 \in \mathbb{R} \\ \forall n \in \mathbb{N}, u_{n+1} = u_n^2 + (-1)^n n. \end{cases}$$

Exercice 10

Soit (u_n) une suite définie dans \mathbb{K} telle que les suites (u_{2n}) , (u_{2n+1}) et (u_{n^2}) convergent. Montrer que (u_n) converge.

Exercice 11

Soient $(a,b) \in \mathbb{R}^2$, (u_n) , (v_n) deux suites réelles telles que :

$$\begin{cases} \forall n \in \mathbb{N}, & u_n \le a \\ \forall n \in \mathbb{N}, & v_n \le b \\ \lim_{n \to +\infty} u_n + v_n = a + b. \end{cases}$$

Montrer que (u_n) et (v_n) convergent respectivement vers a et b.

Exercice 12

En utilisant

$$\forall x \in \mathbb{R}_+, \quad x - \frac{x^2}{2} \le \ln(1+x) \le x,$$

montrer l'existence de la limite de la suite de terme général $\prod_{k=1}^{n} \left(1 + \frac{1}{n} + \frac{k}{n^2}\right)$, et calculer cette limite.

Exercice 13

Soient $(a, b) \in \mathbb{R}^2$ et $(u_n), (v_n)$ les suites définies par :

$$\begin{cases} u_0 = a & v_0 = b \\ u_{n+1} = \sqrt{u_n v_n}, & v_{n+1} = \frac{u_n + v_n}{2}, & \forall n \in \mathbb{N} \end{cases}.$$

Correction de l'exercice 1

Correction de l'exercice 2

Correction de l'exercice 3

Correction de l'exercice 4

Correction de l'exercice 5

Correction de l'exercice 6

Correction de l'exercice 7

Correction de l'exercice 8 En prenant m=n, on a $u_{2n} \leq \frac{2n}{n^2} = \frac{2}{n} \to 0$ En prenant m=n+1, on a $u_{2n+1} \leq \frac{2n+1}{n(n+1)} \to 0$

Correction de l'exercice 9

Correction de l'exercice 10

Correction de l'exercice 11

 $u_n \le a \text{ donc } 0 \le a - u_n$

De plus $v_n \leq b$ donc $0 \leq b - v_n$

Donc $0 \le a - u_n < a - u_n + b - v_n$

Or $a - u_n + b - v_n to0$ donc par le théorème des gendarmes $u_n \to a$.

On procède de même pour démontrer que $b_n \to b$.