

Redes IP

Redes de Comunicações 1

Licenciatura em Engenharia de Computadores e Informática

DETI-UA

Sub-redes

- Uma sub-rede (subnet) é um subconjunto de uma rede de classe A, B ou C
- A utilização de máscaras, permite que uma rede seja dividida em sub-redes estendendo a parte de rede à parte de host do endereço IP; esta técnica aumenta o número de redes e reduz o número de hosts

Exemplo – definição de sub-redes

Endereço Classe C: 192.228.17.0

1. Qual o endereço de broadcast das sub-redes:

- 200.3.27.128/25
- 200.3.27.0 e 200.3.27.128 máscara 255.255.248.0?

2. Qual a primeira máquina das sub-redes que têm uma máquina com o endereço:

- 175.0.92.191/23
- 175.0.92.190/26
- 175.0.92.18/28?

3. Qual a última máquina das sub-redes:

- 175.0.32.0 máscara 255.255.248.0
- 175.0.0.0 máscara 255.255.224.0
- 175.0.16.0 máscara 255.255.248.0

4. Qual o endereço de (sub-)rede das máquinas:

- 175.0.22.79/25
- 175.0.117.215/23
- 175.0.117.215/27?

5. Quantas redes e com quantas máquinas se obtêm nas redes particionadas como:

- Rede 175.0.4.0 com máscara 255.255.255.252
- 175.0.114.0 255.255.255.240?

6. Pretende subdividir-se a rede 192.168.12.0 em 6 "sub-redes"...

- A rede original é de classe ____;
- São precisos ____ bits para identificar as Subnets;
- A máscara será ____.__.__
- Cada Subnet pode conter ____ hosts.
- A primeira subnet será do endereço _____. ___ até ao endereço ____. ___ até ao
- A última subnet será do endereço ____. ___ até ao endereço ____. ___ até ao

7- Em determinada rede IP, um Host tem o endereço IP 10.1.5.122, e a máscara 255.255.0.0

- 1. A parte do endereço que identifica a Subnet tem:
 - a) 16 bits;
 - b) 8 bits;
 - c) 0 bits (não há subnetting);
 - d) 32 bits.
- 2. O número de Subnets que é possível criar é de:
 - a) 256;
 - b) 65535;
 - c) 2;
 - d) 0 (Já disse. Não há subnetting!)
- 3. O número de Hosts possível por subnet é:
 - a) 256;
 - b) 65534;
 - c) 2;
 - d) 0 (Tenho dito!)

- 8- Pretende-se criar 5 sub redes do endereço de rede 172.16.0.0 Qual:
- O nº de bits necessários para fazer essas sub-redes ?
- Quantos hosts podemos endereçar em cada sub-rede ?
- Qual o endereço de rede e de broadcast da 2ª sub-rede ?

- 9- Pretende-se criar 3 sub redes do endereço de rede 192.168.0.0 Qual:
- O nº de bits necessários para fazer essas sub-redes ?
- Quantos hosts podemos endereçar em cada sub-rede?
- Qual o endereço de rede e de broadcast da 3ª sub-rede ?

10. Considere que tem o conjunto de endereços IPv4 de classe C 200.123.189.0/24, que tem de ser usado para as diferentes sub-redes:

- 55 PCs no Networks1 Lab
- 48 PCs no Networks2 Lab
- 45 servidores no Internal Datacenter
- 5 PCs no Professors Lab
- 9 PCs na Administration room.

Define o esquema de endereçamento para as diferentes sub-redes usando os endereços disponíveis.

IPv4 Masks – All possibilities (1/2)

Binary Mask	N bits	Decimal mask	Number of Networks	Number of Hosts Per Network
0000000.0000000.00000000.000000000	/0	0.0.0.0	$2^0 = 1$	$2^{32} = 4,294,967,296$
10000000.00000000.00000000.000000000	/1	128.0.0.0	21=2	2^{31} = 2,147,483,648
11000000.000000000.00000000.000000000	/2	192.0.0.0	$2^2 = 4$	$2^{30} = 1,073,741,824$
11100000.000000000.00000000.000000000	/3	224.0.0.0	$2^3 = 8$	$2^{29} = 536,870,912$
11110000.00000000.00000000.000000000	/4	240.0.0.0	$2^4 = 16$	$2^{28} = 268,435,456$
11111000.000000000.00000000.00000000	/5	248.0.0.0	$2^5 = 32$	$2^{27} = 134,217,728$
11111100.00000000.00000000.000000000	/6	252.0.0.0	$2^6 = 64$	$2^{26} = 67,108,864$
11111110.00000000.00000000.000000000	/7	254.0.0.0	$2^7 = 128$	$2^{25} = 33,554,432$
11111111.00000000.00000000.000000000	/8	255.0.0.0	$2^8 = 256$	$2^{24} = 16,777,216$
1111111.10000000.00000000.000000000	/9	255.128.0.0	$2^9 = 512$	$2^{23} = 8,388,608$
1111111.11000000.00000000.00000000	/10	255.192.0.0	$2^{10} = 1,024$	$2^{22} = 4,194,304$
1111111.11100000.00000000.00000000	/11	255.224.0.0	$2^{11} = 2,048$	$2^{21} = 2,097,152$
11111111.11110000.00000000.00000000	/12	255.240.0.0	$2^{12} = 4,096$	$2^{20} = 1,048,576$
11111111.111111000.00000000.00000000	/13	255.248.0.0	$2^{13} = 8,192$	$2^{19} = 524,288$
11111111.111111100.00000000.00000000	/14	255.252.0.0	$2^{14} = 16,384$	$2^{18} = 262,144$
11111111.111111110.00000000.00000000	/15	255.254.0.0	$2^{15} = 32,768$	$2^{17} = 131,072$
1111111.111111111.00000000.00000000	/16	255.255.0.0	$2^{16} = 64,536$	$2^{16} = 64,536$

IPv4 Masks – All possibilities (2/2)

Binary Mask	N bits	Decimal mask	Number of Networks	Number of Hosts Per Network
11111111.111111111.10000000.00000000	/17	255.255.128.0	$2^{17} = 131,072$	$2^{15} = 32,768$
11111111.11111111.11000000.00000000	/18	255.255.192.0	$2^{18} = 262,144$	$2^{14} = 16,384$
11111111.11111111.11100000.00000000	/19	255.255.224.0	$2^{19} = 524,288$	$2^{13} = 8,192$
11111111.11111111.11110000.00000000	/20	255.255.240.0	$2^{20} = 1,048,576$	$2^{12} = 4,096$
11111111.11111111.11111000.00000000	/21	255.255.248.0	$2^{21} = 2,097,152$	$2^{11} = 2,048$
11111111.11111111.11111100.00000000	/22	255.255.252.0	$2^{22} = 4,194,304$	$2^{10} = 1,024$
11111111.11111111.111111110.000000000	/23	255.255.254.0	$2^{23} = 8,388,608$	$2^9 = 512$
11111111.11111111.11111111.000000000	/24	255.255.255.0	$2^{24} = 16,777,216$	$2^8 = 256$
11111111.111111111.11111111.100000000	/25	255.255.255.128	$2^{25} = 33,554,432$	$2^7 = 128$
11111111.11111111.111111111.11000000	/26	255.255.255.192	$2^{26} = 67,108,864$	$2^6 = 64$
11111111.111111111.111111111.11100000	/27	255.255.255.224	$2^{27} = 134,217,728$	$2^5 = 32$
11111111.111111111.111111111.11110000	/28	255.255.255.240	$2^{28} = 268,435,456$	$2^4 = 16$
11111111.111111111.111111111.11111000	/29	255.255.255.248	$2^{29} = 536,870,912$	$2^3 = 8$
11111111.111111111.111111111111100	/30	255.255.255.252	$2^{30} = 1,073,741,824$	$2^2 = 4$
11111111.111111111.11111111111111111111	/31	255.255.255.254	2^{31} = 2,147,483,648	$2^1 = 2$
11111111.111111111.11111111111111111111	/32	255.255.255.255	$2^{32} = 4,294,967,296$	$2^0 = 1$