Les réseaux de Petri
Partie III:
Graphe de marquages
&
Arborescence de couverture

Plant

1. Graphe de marquages

2. Arborescence de couverture

Graphe de marquages

Le graphe de marquages est utilisé lorsque le nombre de marquages accessibles est fini.

Exemple

*
$$M_0 = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}; \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \begin{bmatrix} 0 \\ 2 \end{bmatrix}; \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

Graphe de marquage correspondant

Questions:

1. Donnez à partir de ce graphe les propriétés du réseau

Exercice

Questions:

- 1. Etablir le graphe de marquage correspondant
- 2. Donnez à partir de ce graphe les propriétés du réseau

Remarque

Un graphe de marquage <u>ne peut plus être</u> construit quand <u>le réseau est non borné</u>

c-à-d quand le <u>nombre de marquages</u> accessibles est infini

D'où le recourt au graphe dit de couverture.

Arborescence de couverture

Le graphe de couverture est utilisé lorsque le nombre de marquages accessibles est infini.

Le graphe dit de couverture est un graphe à nombre de marquages fini.

Algorithme de construction d'un graphe de marquage

1^{ére} Itération:

- A partir du marquage initial M0 indiquer toutes les transitions validées et les marquages accessibles successeurs correspondants.
- Si un des marquages est strictement supérieur à M0, on met la variable "w" pour chacune des composantes supérieures aux composantes de M0.

2ième Itération: Pour chaque nouveau marquage Mi, on fait:

- a) S'il existe sur le chemin de M0 jusqu'à Mi (ce dernier exclut) un marquage Mj = Mi alors Mi n'a pas de successeurs.
- b) Sinon, on prolonge le graphe avec les successeurs Mk (Mi) : Une composante "w" de Mi reste une composante "w" de Mk.
- c) S'il existe un marquage Mj sur le chemin de M0 à Mk tel que Mk>Mj, alors on met "w" pour chacune des composantes supérieures aux composantes de Mi.

Remarque:

- Le marquage symbolique "w" désigne un nombre de jetons dans une place Pi qui peut atteindre un nombre très grand (l'infinie). Il représente en effet une infinité de marquages possibles.
- Les opérations sur "w" sont :

$$\forall n \in \mathbf{N} \hspace*{0.2cm} ; \hspace*{0.2cm} n < \boldsymbol{\varpi} \hspace*{0.2cm} : \begin{cases} n + \boldsymbol{\varpi} = \boldsymbol{\varpi} \hspace*{0.2cm} + \hspace*{0.2cm} n = \boldsymbol{\varpi} + \boldsymbol{\varpi} = \boldsymbol{\varpi} \\ \boldsymbol{\varpi} - n = \boldsymbol{\varpi} \end{cases}$$

Exemple graphe de couverture

T1 est une transition source, franchissable un nombre infini de fois.

Recours au graphe de couverture.

- ➤A partir du marquage initial Mo=(0), seule la transition T1 est franchissable: Mo(T1>M1=(1). M1 est supérieur à Mo donc M1=(w).
- ➤ A partir de M1, les deux transitions T1 et T2 sont franchissables :
- a) Si on franchit T1: M2=(w+1)=(w)= M1 donc M2 n'a plus de successeurs.
- b) Si on franchit T2 : M3=(w-1)=(w)= M1 donc M3 n'a plus de successeurs.

Graphe de marquage correspondant:

Exercice graphe de couverture

Questions:

- 1. Etablir le graphe de couverture correspondant
- 2. Etablir le graphe de marquage correspondant

Les réseaux de Petri Partie IV: Algèbre Linéaire

Plant

1. Notations et définitions

2. Equation fondamentale ou équation d'état

Notations et définitions (1/2)

 " pré (Pi , Tj) " est le poids "k" de l'arc reliant une place à une transition.

pré (Pi, Tj) =
$$\begin{cases} k \text{ si l'arc (Pi, Tj) existe} \\ 0 \text{ sinon} \end{cases}$$

• " post (Pi , Tj) " est le poids "k" de l'arc reliant une transition à une place .

post (Pi, Tj) =
$$\begin{cases} k \text{ si l'arc (Tj, Pi) existe} \\ 0 \text{ sinon} \end{cases}$$

Notations et définitions (2/2)

on appelle "matrice d'incidence avant":

$$W^{-} = [pr\acute{e}(Pi,Tj)]$$

on appelle "matrice d'incidence arrière" :

$$W^{+} = [post(Pi,Tj)]$$

on appelle "matrice d'incidence ":

$$W = W^{+} - W^{-}$$

Remarque

Dans ces matrices les transitions représentent les colonnes et les places représentent les lignes.

Equation fondamentale ou équation d'état (1/2)

- Soit « S » une séquence de franchissement réalisable à partir d'un marquage « Mi »: Mi [S > Mk
- Soit « S » le vecteur caractéristique de la séquence « S »: c'est un vecteur de dimension « m » égale au nombre de transitions dans le réseau.

Sa composante numéro « j » correspond au nombre de fois où la transition « Tj » est franchie dans la séquence « S ».

Par exemple si:

 $S=T2T4T1T4T2T4 \text{ alors } S=[1, 2, 0, 3]^T$

Equation fondamentale ou équation d'état (2/2)

Si la séquence de franchissement « S » est tel que:

alors l'équation fondamentale correspondante s'écrit:

$$M_{k}=M_{i}+W*\underline{S}$$

Exemple équation fondamentale

Questions:

- Déterminez la matrice d'incidence avant, la matrice d'incidence arrière et la matrice d'incidence.
- 2. Soit la séquence « S= T1T2 ». Donnez la matrice « S » correspondante à cette séquence.
- 3. Donnez puis évaluez l'équation fondamentale correspondante à cette séquence. En déduire le marquage « M2 ».