Smart Mirror Fashion Al

Data 298B Final Project Demo

Team 8Ililta Gebrihiwet, Mavis Wang, Xiaocen Xie, Coco

Content

Intro and Motivation

Literature and Tec Survey

Team Project Requirements

Data Engineering

Machine Learning Modeling

Machine Learning Evaluation Results

Web Portal Sys Design & Analysis

Sys Demo and testing

Future Work

1 Intro and Motivation

According to Fashion United, the global fashion industry is estimated to be worth \$3 trillion. Which is equal to 2% of the global Gross Domestic Product (GDP).

Al Application

Fashion retail businesses have incorporated artificial intelligence (AI) technologies into their market strategies to optimize sales and customer experience.

Our Model

Four sections:
Garment Segmentation
Human Pose Estimation
Garment Warping
Image Generation

2 Literature and Technology Survey

Product comparison based on market research on currently available virtual fitting products

Ref. ID	Product	Key Features	Model	Customer	
[47]	Memory Mirror	 360 degree video recording try-on history Instant change of clothing colors and patterns virtually Personalized recommendation Instant online shop 	Real Person Reflection	Neumen Marcus	
[48]	Fashion Navi Mirror	 Personalized avatar QR-code to scan items and try-on virtually In-store mirror platform and online Instant online shop 	3D Avatar	GU Style Studio	

2 Literature and Technology Survey

Virtual Fitting Model Comparison

Summarize the key points from the research paper, description, models and performance

Ref. ID	Title	Description	Model	Base Model	Performance
[30]	SwapNet: Image Based Garment Transfer	Interchange garment appearance between two images while preserving pose, with IS of 3.04 compared to GAN models	SwapNet	U-net	Inception Score (IS)
					SwapNet: 3.04 CGAN: 2.11
					SSIM
					SwapNet: 0.83 CGAN:0.22
[29]	Image-based Virtual Fitting Room	Detecting, changing the texture and style of clothing items. Compared to other models, Mask R-CNN achieves mAP of 68.72% and NST of 0.2%	NST	Mask R-CNN, Image Style Transfer CNN	mAP
					Mask R-CNN: 68.72% FCN-CRF: 66.70% PaperDoll: 33.34%
					ASDR
					NST: 0.2% Encoder-Decoder: 1.2% PRGAN:4.2% CAGAN: 4.8%

2 Literature and Technology Survey

Literature Review in Fashion Al Related Applications

Ref. ID	Title	Target Problem	Application	Model & Algorithm	
[6]	Tiered Deep Similarity Search for Fashion	Retrieving similar clothes based on brand, attributes and category.	Visual Search	AGML, Multitask-CNN	
[7]	DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations	Identifying clothing items and features from street photos.	Visual Search, Classification, Recommendation	FashionNet, Siamese CNNs, BPR	
[8]	Cross-domain Image Retrieval with a Dual Attribute-aware Ranking Network	Retrieving the same or similar attribute clothing items from photos of complex backgrounds.	Visual Search, Recommendation	CNN, DARN	

3 Team and Project Requirement

Small-scaled Dataset

Fashion Product Images

Benchmarking Dataset

VVT - LIP (video)

1500448501083_ frame_021

1500448501083_ frame_022

1500448501083_ frame_023

1500448501083_ frame 024

1500448501083_ frame_031

1500448501083_ frame_032

1500448501083_ frame_033

1500448501083_ frame 034

VTON (CP-VTON+)

000220_1

000228_1

000240_1

000248_1

The preprocessing contains two parts:

- product image selection
- style annotation filtering

Sample raw data of fashion product image URLs of FPI dataset

filename

1 ink

1 15970.jpg http://assets.myntassets.com/v1/images/style/p...

1 39386.jpg http://assets.myntassets.com/v1/images/style/p...

2 59263.jpg http://assets.myntassets.com/v1/images/style/p...

3 21379.jpg http://assets.myntassets.com/v1/images/style/p...

4 53759.jpg http://assets.myntassets.com/v1/images/style/p...

aset id gende	r masterCategory	subCategory	articleType	baseColour	season	year	usage	productDisplayName
5970 Me	n Appare	Topwear	Shirts	Navy Blue	Fall	2011.0	Casual	Turtle Check Men Navy Blue Shirt
9386 Me	n Appare	Bottomwear	Jeans	Blue	Summer	2012.0	Casual	Peter England Men Party Blue Jeans
9263 Wome	n Accessories	Watches	Watches	Silver	Winter	2016.0	Casual	Titan Women Silver Watch
1379 M	n Appare	Bottomwear	Track Pants	Black	Fall	2011.0	Casual	Manchester United Men Solid Black Track Pants
3759 M	n Appare	Topwear	Tshirts	Grey	Summer	2012.0	Casual	Puma Men Grey T-shirt

- 1. Data Exploration
- 2. Cleaning the annotation table
- 3. Join tables
- 4. Filter fashion product
- 5. Reconstruct and store data

Samples of the preprocessed data for training and evaluation of the proposed virtual fitting network module:

Segmentation

5 Machine Learning Modeling

5 Machine Learning Evaluation Results

Cp-vton-plus test dataset

Our test dataset (images)

5 Comparative Results of Models

Inference time				
Model	Average Inference Time			
RCNN (Body Parsing)	0.083s on CPU			
R50FPN (Pose Estimation)	0.089s on CPU			

CPVTON+

Model Runtime					
Model	Runtime (step/sec)				
GMM (Warping Cloth Module)	0.06s on GPU				
TOM Try-on Module - Unet	0.067s on GPU				

5 Machine Learning Evaluation

```
!python ssim.py -f /content/Structural-Similarity-Index-SSIM-/images/000002_0.jpg _s /content/Structural-Similarity-Index-SSIM-/images/000002_1.jpg
```

SSIM: 0.6233211832886018

SMFAI

- Structural Similarity Index: 0.62
- Compare input clothes and output person

6 Machine Learning **Testing Results**

Testing

- Images
- Video

Improvement

- Fine-tuned OpenPose
- Fixed Neck Parsing

Comparison

- CP-VTON
- ShineOn
- Ours

6 Testing **Dataset**

Person

- VVT
- Online Shop Video
- Custom Video

Cloth

- FPI
- Amazon Shop
- VTON

6 Testing **Video Frames**

6 Testing Shop Video

6 Testing Custom Video

6 Testing Custom Video

6 Testing Custom Video

6 Testing Summary

- Black outfits do not transfer well.
- Uneven video lighting will.
 interfere optical flow.
- Image resolution will affect quality of parsing result.
- Camera view works better with the front-angle.

Cloth Image

- Collar and hems
- Color and Style Complexity
- Only Trained with Tops

6 Testing Evaluation

Parsing

- Model: SCHP
- mloU on LIP test set: 82.29%.
- 18 parts + neck parsing

Alignment

- Model OpenPose
- Self-supervised
- 18 fine-tuned densePose Coco key-points

GMM and Try-On

- Model: CP-VTON+
- IoU: 0.8425 on VTON test set
- SSIM: 0.8163

6 Improved Keypoint Detection

Sample pose tracking test result with sequential video frames using pre-trained OpenPose.

The self-supervised performance was improved after adjusting hyperparameters of confidence, mean SD and fps.

6 Improved Keypoint Detection

Pre-trained OpenPose keypoint detection.

Fine-tuned CocoPose keypoints detection result.

6 Improved neck parsing

CP-VTON and **ShionOn** exclude neck area for body parsing.

Our model includes neck area for human parsing.

6 Model Comparison VVT dataset

6 Model Comparison VVT dataset

ShineOn Cloth Person **CP-VTON** Ours

7 System Architecture Design

- System Architecture
- Web Development Architecture
- Demo

7.1 System Architecture

7 Web Portal System Development

Front-End:

GUI: User uploads video. Displays the video try-on result using local HTTP response.

Back-End:

- Algorithms module: Implements virtual try-on model and generates video based try-on using OpenCV
- Web framework: Integrates try-on system and the UI using Flask framework.

7 Web GUI

8 System and Web App Demo

8 System and Web App Demo

9 Future Work

- Improve temporal consistency to achieve real-time virtual try-on
- 3D orientation to view garment at multiple angles
- Add features such as size measurement, personalized recommendation, visual search and style prediction

Thank You! Q & A Smart Mirror, Smart Life