$(S_f)_{RAD} = \frac{3\pi E'}{16r_f} \qquad (S_f)_{PKN} = \frac{2E'}{\pi h_f} \qquad (S_f)_{GDK} = \frac{E'}{\pi L_f}$	Radial	Perkins-Kern-Nordgren	Geertsma-deKlerk
	$(S_f)_{RAD} = \frac{3\pi E'}{16r_f}$		$(S_f)_{GDK} = \frac{E'}{\pi L_f}$

FIGURE 1

FIGURE 2

200

	<u>. </u>							
214	Adjusted Pseudopressure and	Adjusted Pseudotime variables	$(d_{qp})_j = \frac{\bar{c}_i}{(c_i)_j} \left[\frac{[p_a(p)]_{j-1} - [p_a(p)]_j}{(t_a)_j - (t_a)_{j-1}} \right]$	$c_{a1} \equiv \sqrt{\frac{\mu g}{\phi c_t}}$	$c_{a2} = \frac{5.615}{24} S_f w_L \frac{\overline{B}_g}{(B_g)_{ne}} \sqrt{\frac{\overline{\mu}_g}{\phi \overline{c}_t}}$	$b_M = \frac{141.2\pi (24)}{5.615} \frac{R_0}{r_p S_f} \frac{1}{t_{ne}}$	$m_M = \frac{(141.2)(2)(0.02878)(24)}{5.615} \frac{1}{r_p S_f \sqrt{k}}$ $m_{\omega M} = \frac{(141.2)(2)(0.02878)(24)}{5.615} \frac{1}{r_n S_f \sqrt{\omega k}}$	
7 213	Basic equation with Adjusted	Pseudopressure and Time variables	$(d_a)_j = \frac{(\mu_g)_j}{\bar{\mu}_g} \left[\frac{[p_a(p)]_{j-1} - [p_a(p)]_j}{t_j - t_{j-1}} \right]$	$c_{a1} \equiv \sqrt{\frac{\mu_{g}}{\phi c_{t}}}$	$c_{a2} = \frac{5.615}{24} S_f w_L \frac{\overline{B}_g}{(B_g)_{ne}} \sqrt{\frac{\overline{\mu}_g}{\phi \overline{c}_f}}$	$b_M = \frac{141.2\pi(24)}{5.615} \frac{R_0}{r_p S_f} \frac{1}{t_{ne}}$	$m_{M} \equiv \frac{(141.2)(2)(0.02878)(24)}{5.615} \frac{1}{r_{p}S_{f}\sqrt{k}}$ $m_{\omega M} \equiv \frac{(141.2)(2)(0.02878)(24)}{5.615} \frac{1}{r_{p}S_{f}\sqrt{\omega k}}$	Equations for before-closure pressure-transient fracture-injection/falloff analysis.
7 212	Basic equation with Pressure and	Time variables	$d_j = \frac{p_{j-1} - p_j}{t_j - t_{j-1}}$	$c_1 \equiv \sqrt{\frac{\mu}{\phi c_t}}$		$b_M = \frac{141.2\pi(24)}{5.615} \frac{R_0}{r_p S_f} \frac{1}{t_{ne}}$	$m_{M} = \frac{(141.2)(2)(0.02878)(24)}{5.615} \frac{1}{r_{p}S_{f}\sqrt{k}}$ $m_{0M} = \frac{(141.2)(2)(0.02878)(24)}{5.615} \frac{1}{r_{p}S_{f}\sqrt{ak}}$	Table 2B (cont'd)—Equations for befor
	Defined terms		$\int\limits_{0}^{d_{j},(d_{\boldsymbol{\mathcal{U}}})_{j},\alpha(d_{\boldsymbol{\mathcal{Q}}})_{j}}$	\int $c_1 ext{ or } c_{a1} ext{ or } c_{ap1}$	$\int c_2 \text{ or } c_{a2} \text{ or } c_{ap2}$	Mq	m_M or $m_{aM}=m_M$ $m_{\omega M}$ for dual porosity	T .
			204	205	206	207 -	- 508	

FIGURE 3

200

FIGURE 4

FIGURE 5

FIGURE 6A

FIGURE 6B

FIGURE 6C

FIGURE 7