# Sprawozdanie 4

### Jakub Markowiak album 255705

15 czerwca 2021

# Spis treści

| 4 | Podsumowanie                                                                                                                                              | 27 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | <ul> <li>3.2 Zastosowanie metody wektorów nośnych</li> <li>3.3 Ocena oraz porównanie jakości grupowania dla różnych algorytmów analizy skupień</li> </ul> |    |
|   | 3.1 Porównanie metod klasyfikacji dla danych Glass z pakietu mlbench cd                                                                                   |    |
| 3 | Wyniki                                                                                                                                                    | 2  |
| 2 | Opis eksperymentów/analiz                                                                                                                                 | 1  |
| 1 | Krótki opis zagadnienia                                                                                                                                   | 1  |

# 1 Krótki opis zagadnienia

W tym sprawozdaniu będziemy kontynuować porównywanie metod klasyfikacji dla danych Glass z pakietu mlbench. Tym razem, w celu poprawienia dokładności klasyfikacji, wykorzystamy algorytmy bagging, boosting oraz random forest, a następnie postaramy się rozstrzygnąć, który poradził sobie najlepiej z naszym zagadnieniem. Następnie zastosujemy metody analizy skupień, również dla danych Glass, oraz porównamy algorytmy k-means, PAM, AGNES i DIANA w celu wyłonienia najbardziej optymalnego. Postaramy się również wybrać optymalną liczbę skupień, a następnie zinterpretować otrzymany podział na klastry.

# 2 Opis eksperymentów/analiz

Przeprowadzimy następujące analizy i eksperymenty:

- 1. porównanie metod klasyfikacji dla danych Glass z pakietu mlbench (cd.),
- 2. ocena oraz porównanie jakości grupowania dla różnych algorytmów analizy skupień.

# 3 Wyniki

# 3.1 Porównanie metod klasyfikacji dla danych Glass z pakietu mlbench cd.

Porównywanie metod klasyfikacji będziemy kontynuować wykorzystując dane Glass, które zawierają informacje o współczynniku załamania światła oraz zawartości poszczególnych pierwiastków chemicznych dla badanych szkieł. Tak jak poprzednio przygotowujemy zbiór uczący i zbiór testowy (w proporcji 2:1).

|           | l. obserwacji | 1  | 2  | 3  | 5  | 6 | 7  |
|-----------|---------------|----|----|----|----|---|----|
| learn set | 143           | 49 | 43 | 12 | 10 | 7 | 22 |
| test set  | 71            | 21 | 33 | 5  | 3  | 2 | 7  |

Tabela 1: Podział na zbiór uczący i testowy

Za klasyfikator bazowy będzie nam służyło najlepsze drzewo klasyfikacyjne skonstruowane w poprzednim sprawozdaniu.



Rysunek 1: Drzewo klasyfikacyjne dla danych Glass

|                        | 5-cv  | bootstrap | .632+ | predykcje na zb. testowym |
|------------------------|-------|-----------|-------|---------------------------|
| błąd klasyfikacji (dk) | 0.346 | 0.339     | 0.288 | 0.324                     |

Tabela 3: Błędy klasyfikacji dla drzewa klas.

Analizę przeprowadzimy w celu porównania następujących metod:

#### 1. bagging,

Tabela 2: Macierz pomyłek dla zbioru testowego (dk)

| Rzeczywiste etykietki | Prognozowane etkietki |    |   |   | ietki |   |
|-----------------------|-----------------------|----|---|---|-------|---|
|                       | 1                     | 2  | 3 | 5 | 6     | 7 |
| 1                     | 17                    | 8  | 2 | 0 | 0     | 1 |
| 2                     | 3                     | 23 | 2 | 1 | 2     | 1 |
| 3                     | 0                     | 1  | 1 | 0 | 0     | 0 |
| 5                     | 0                     | 0  | 0 | 2 | 0     | 0 |
| 6                     | 0                     | 0  | 0 | 0 | 0     | 0 |
| 7                     | 1                     | 1  | 0 | 0 | 0     | 5 |

- 2. boosting,
- 3. random forest.

### Metoda bagging

Rozpoczniemy od metody **bagging**. Najpierw spróbujemy wyłonić optymalną liczbę replikacji B.

Bagging: error rate vs. B



Rysunek 2: Błąd w zależności od B

Widzimy, że optymalną wartością B jest 20. Przeprowadzimy zatem bagging dla 20 replikacji.

|                             | 5-cv  | bootstrap | .632+ | predykcje na zb. testowym |
|-----------------------------|-------|-----------|-------|---------------------------|
| błąd klasyfikacji (bagging) | 0.262 | 0.283     | 0.211 | 0.254                     |

Tabela 5: Ocena dokładności klasyfikacji

Tabela 4: Macierz pomyłek dla zbioru testowego (bagging)

| Rzeczywiste etykietki | Pro | gnoz | owa | ne | etki | ietki |
|-----------------------|-----|------|-----|----|------|-------|
|                       | 1   | 2    | 3   | 5  | 6    | 7     |
| 1                     | 19  | 7    | 2   | 0  | 0    | 1     |
| 2                     | 1   | 24   | 2   | 1  | 0    | 1     |
| 3                     | 0   | 1    | 1   | 0  | 0    | 0     |
| 5                     | 0   | 0    | 0   | 2  | 0    | 0     |
| 6                     | 0   | 0    | 0   | 0  | 2    | 0     |
| 7                     | 1   | 1    | 0   | 0  | 0    | 5     |

### Metoda boosting (AdaBoost)

Skonstruujemy teraz rodzinę klasyfikatorów z wykorzystaniem metody Adaptive Boosting. Ustalamy liczbę potwórzeń jako 100.

Tabela 6: Macierz pomyłek dla zbioru testowego (boosting)

| Rzeczywiste etykietki | Prognozowane etkietki |    |   |   | ietki |   |
|-----------------------|-----------------------|----|---|---|-------|---|
|                       | 1                     | 2  | 3 | 5 | 6     | 7 |
| 1                     | 18                    | 6  | 3 | 0 | 0     | 1 |
| 2                     | 2                     | 24 | 1 | 3 | 0     | 0 |
| 3                     | 1                     | 0  | 1 | 0 | 0     | 0 |
| 5                     | 0                     | 0  | 0 | 0 | 0     | 1 |
| 6                     | 0                     | 2  | 0 | 0 | 2     | 0 |
| 7                     | 0                     | 1  | 0 | 0 | 0     | 5 |

|                              | 5-cv  | bootstrap | .632+ | predykcje na zb. testowym |
|------------------------------|-------|-----------|-------|---------------------------|
| błąd klasyfikacji (boosting) | 0.257 | 0.275     | 0.201 | 0.296                     |

Tabela 7: Ocena dokłądności klasyfikacji

#### Metoda Random Forest

### RandomForest: error rate vs. ntree



Rysunek 3: Błąd klasyfikacji w zależności od liczby drzew.

Ustalamy liczbę drzew jako 50.

# RandomForest: error rate vs. mtry



Rysunek 4: Błąd klasyfikacji w zależności od liczby losowo wybranych cech Ustalamy liczbę losowo wybranych cech jako 3.

Tabela 8: Macierz pomyłek dla zbioru testowego (randomForest)

| Rzeczywiste etykietki | Prognozowane etkietki |    |   |   |   | ietki |
|-----------------------|-----------------------|----|---|---|---|-------|
|                       | 1                     | 2  | 3 | 5 | 6 | 7     |
| 1                     | 18                    | 5  | 2 | 0 | 0 | 1     |
| 2                     | 2                     | 26 | 2 | 1 | 0 | 1     |
| 3                     | 0                     | 1  | 1 | 0 | 0 | 0     |
| 5                     | 0                     | 0  | 0 | 2 | 0 | 0     |
| 6                     | 0                     | 0  | 0 | 0 | 2 | 0     |
| 7                     | 1                     | 1  | 0 | 0 | 0 | 5     |

|                                  | 5-cv  | bootstrap | .632+ | predykcje na zb. testowym |
|----------------------------------|-------|-----------|-------|---------------------------|
| błąd klasyfikacji (randomForest) | 0.234 | 0.253     | 0.180 | 0.239                     |

Tabela 9: Ocena dokładności klasyfikacji

#### Porównanie wyników

Porównajmy teraz otrzymane wyniki i sprawdźmy, czy zastosowanie rodzin klasyfikatorów zauważalnie zredukowały błąd klasyfikacji.

|               | 5-cv  | bootstrap | .632+ | predykcje na zb. testowym |
|---------------|-------|-----------|-------|---------------------------|
| 1 drzewo      | 0.346 | 0.339     | 0.288 | 0.324                     |
| bagging       | 0.262 | 0.283     | 0.211 | 0.254                     |
| boosting      | 0.257 | 0.275     | 0.201 | 0.296                     |
| random Forest | 0.234 | 0.253     | 0.180 | 0.239                     |

Tabela 10: Błąd klasyfikacji dla analizowanych modeli

Zauważamy, że zastosowanie rodzin klasyfikatorów znacznie zredukowało błąd klasyfikacji. Przyjrzyjmy się jeszcze błędom względnym.

|               | 5-cv   | bootstrap | .632+  | predykcje na zb. testowym |
|---------------|--------|-----------|--------|---------------------------|
| bagging       | 24.393 | 16.302    | 26.894 | 21.739                    |
| boosting      | 25.743 | 18.723    | 30.090 | 8.696                     |
| random Forest | 32.494 | 25.432    | 37.471 | 26.087                    |

Tabela 11: Błąd klasyfikacji dla analizowanych modeli (względem 1 drzewa) [%]

Widzimy, że najlepiej wypadł algorytm RandomForest. Sprawdzimy jeszcze jedno kryterium – czas potrzebny na skonstruowanie modelu.

|                               | Bagging | Boosting | randomForest |
|-------------------------------|---------|----------|--------------|
| czas konstruowania modelu [s] | 0.045   | 6.298    | 0.227        |

Tabela 12: Czas konstruowania modelu [s]

Wyraźnie więcej czasu zajmuje realizacja jednej funkcji boosting. Wnioskujemy stąd, że rodzina klasyfikatorów skonstruowana metodą RandomForest jest najlepsza spośród badanej

trójki – skonstruowany model charakteryzuje się najniższym błędem klasyfikacji oraz najkrótszym czasem realizacji. Korzystając z metody RandomForest sporządzimy teraz rankng cech.

### Ranking waznosci cech





Rysunek 5: Ranking ważności cech

Przypomnijmy, że wykorzystując jedynie metody analizy opisowej wytypowaliśmy żelazo Fe oraz potas Si jako zmienne o najgorszych zdolnościach dyskryminacyjnych. Ranking ważności cech potwierdził jedynie wysnute wcześniej wnioski.

# 3.2 Zastosowanie metody wektorów nośnych

Wykorzystamy teraz metodę wektorów nośnych w celu skonstruowania klasyfikatora dla jądra liniowego. Sprawdzimy najpierw, jak na błąd klasyfikacji wpływa parametr C.

### SVM (linear): error rate vs. C



Rysunek 6: Błąd klasyfikacji w zależności od parametru C

Widzimy, że optymalną wartością C dla jądra liniowego jest 8.

Tabela 13: Macierz pomyłek dla zbioru testowego (SVM (linear))

| Rzeczywiste etykietki | Prognozowane etkietki |    |   |   |   |   |  |
|-----------------------|-----------------------|----|---|---|---|---|--|
|                       | 1                     | 2  | 3 | 5 | 6 | 7 |  |
| 1                     | 15                    | 12 | 1 | 0 | 0 | 1 |  |
| 2                     | 4                     | 17 | 2 | 0 | 0 | 0 |  |
| 3                     | 2                     | 0  | 2 | 0 | 0 | 0 |  |
| 5                     | 0                     | 3  | 0 | 3 | 0 | 1 |  |
| 6                     | 0                     | 1  | 0 | 0 | 2 | 0 |  |
| 7                     | 0                     | 0  | 0 | 0 | 0 | 5 |  |

|                                  | 5-cv  | bootstrap | .632+ | predykcje na zb. testowym |
|----------------------------------|-------|-----------|-------|---------------------------|
| błąd klasyfikacji (SVM (linear)) | 0.374 | 0.390     | 0.357 | 0.380                     |

Tabela 14: Ocena jakości klasyfikacji

Widzimy, że otrzymaliśmy gorsze wyniki w porównaniu z np. metodą RandomForest. Sprawdzimy, jakie wyniki otrzymamy przy zastosowaniu innego jądra – rozpoczniemy od jądra wielomianowego (polynomial).

### SVM (polynomial): error rate vs. C



Rysunek 7: Błąd klasyfikacji w zależności od parametru C

Widzimy, że optymalną wartością C dla jądra wielomianowego jest 80.

Tabela 15: Macierz pomyłek dla zbioru testowego (SVM (polynomial))

| Rzeczywiste etykietki | Prognozowane etkietki |    |   |   |   |   |  |
|-----------------------|-----------------------|----|---|---|---|---|--|
|                       | 1                     | 2  | 3 | 5 | 6 | 7 |  |
| 1                     | 18                    | 11 | 4 | 0 | 0 | 0 |  |
| 2                     | 2                     | 16 | 1 | 2 | 1 | 1 |  |
| 3                     | 1                     | 0  | 0 | 0 | 0 | 0 |  |
| 5                     | 0                     | 5  | 0 | 1 | 0 | 1 |  |
| 6                     | 0                     | 1  | 0 | 0 | 1 | 0 |  |
| 7                     | 0                     | 0  | 0 | 0 | 0 | 5 |  |

|                                      | 5-cv  | bootstrap | .632+ | predykcje na zb. testowym |
|--------------------------------------|-------|-----------|-------|---------------------------|
| błąd klasyfikacji (SVM (polynomial)) | 0.346 | 0.360     | 0.312 | 0.423                     |

Tabela 16: Ocena jakości klasyfikacji

Również otrzymaliśmy dość słabe rezultaty – szczególnie wysoki jest błąd predykcji na zbiorze testowym. Analogicznie postępujemy dla jądra radialnego oraz sigmoid.

# SVM (radial basis): error rate vs. C



Rysunek 8: Błąd klasyfikacji w zależności od parametru C

Widzimy, że optymalną wartością C dla jądra radialnego jest 120.

Tabela 17: Macierz pomyłek dla zbioru testowego (SVM (radial))

| Rzeczywiste etykietki | Prognozowane etkietki |    |   |   |   |   |  |
|-----------------------|-----------------------|----|---|---|---|---|--|
|                       | 1                     | 2  | 3 | 5 | 6 | 7 |  |
| 1                     | 16                    | 7  | 1 | 0 | 0 | 0 |  |
| 2                     | 3                     | 22 | 1 | 2 | 0 | 1 |  |
| 3                     | 2                     | 1  | 3 | 0 | 0 | 0 |  |
| 5                     | 0                     | 1  | 0 | 1 | 0 | 1 |  |
| 6                     | 0                     | 1  | 0 | 0 | 2 | 0 |  |
| 7                     | 0                     | 1  | 0 | 0 | 0 | 5 |  |

|                                  | 5-cv  | bootstrap | .632+ | predykcje na zb. testowym |
|----------------------------------|-------|-----------|-------|---------------------------|
| błąd klasyfikacji (SVM (radial)) | 0.299 | 0.292     | 0.239 | 0.310                     |

Tabela 18: Ocena jakości klasyfikacji

Pozostało jeszcze zbadać jądro sigmoid.

# SVM (sigmoid): error rate vs. C



Rysunek 9: Błąd klasyfikacji w zależności od parametru C

Widzimy, że optymalną wartością C dla jądra sigmoid jest 0.5.

Tabela 19: Macierz pomyłek dla zbioru testowego (SVM (sigmoid))

| Rzeczywiste etykietki | Prognozowane etkietki |    |   |   |   |   |  |
|-----------------------|-----------------------|----|---|---|---|---|--|
|                       | 1                     | 2  | 3 | 5 | 6 | 7 |  |
| 1                     | 21                    | 28 | 3 | 0 | 0 | 1 |  |
| 2                     | 0                     | 4  | 2 | 2 | 2 | 0 |  |
| 3                     | 0                     | 0  | 0 | 0 | 0 | 0 |  |
| 5                     | 0                     | 1  | 0 | 1 | 0 | 1 |  |
| 6                     | 0                     | 0  | 0 | 0 | 0 | 0 |  |
| 7                     | 0                     | 0  | 0 | 0 | 0 | 5 |  |

|                                   | 5-cv  | bootstrap | .632+ | predykcje na zb. testowym |
|-----------------------------------|-------|-----------|-------|---------------------------|
| błąd klasyfikacji (SVM (sigmoid)) | 0.505 | 0.492     | 0.490 | 0.563                     |

Tabela 20: Ocena jakości klasyfikacji

Dla jądra sigmoid otrzymaliśmy rezultaty przypominające wyniki rzutu monetą – błędy klasyfikacji oscylują wokół 0.5. Porównajmy teraz ze sobą wszystkie jądra.

|                | 5-cv  | bootstrap | .632+ | predykcje na zb. testowym |
|----------------|-------|-----------|-------|---------------------------|
| SVM linear     | 0.374 | 0.390     | 0.357 | 0.380                     |
| SVM polynomial | 0.346 | 0.360     | 0.312 | 0.423                     |
| SVM radial     | 0.299 | 0.292     | 0.239 | 0.310                     |
| SVM sigmoid    | 0.505 | 0.492     | 0.490 | 0.563                     |

Tabela 21: Błąd klasyfikacji dla różnych jąder SVM

Widzimy, że wybór jądra ma kluczowy wpływ na błąd klasyfikacji. Porównując jądro radialne z jądrem sigmoid widzimy, że w tym drugim wystąpił niemal dwa razy większy błąd klasyfikacji.

Możemy również wysnuć wniosek, że dla naszych danych najbardziej odpowiednim jądrem jest jądro radialne. W związku z tym postaramy się "dostroić" otrzymany model z tym jądrem w celu zmniejszenia błędu klasyfikacji. Zoptymalizujemy w tym celu zarówno parametr  ${\tt C}$ , jak i parametr  $\gamma$ .

### SVM (radial basis): error rate vs. C



Rysunek 10: Błąd klasyfikacji w zależności od parametru C oraz gamma

Otrzymujemy, że najlepszą parą parametrów jest C równe 1450 oraz  $\gamma$  równa 0.125.

|                                            | 5-cv  | bootstrap | .632+ | predykcje na zb. testowym |
|--------------------------------------------|-------|-----------|-------|---------------------------|
| błąd klasyfikacji (SVM (radial optimized)) | 0.276 | 0.300     | 0.234 | 0.282                     |

Tabela 23: Ocena jakości klasyfikacji

Zbadajmy teraz względny błąd klasyfikacji.

Tabela 22: Macierz pomyłek dla zbioru testowego (SVM (radial optimized))

| Rzeczywiste etykietki | Prognozowane etkietki |    |   |   |   |   |  |
|-----------------------|-----------------------|----|---|---|---|---|--|
|                       | 1                     | 2  | 3 | 5 | 6 | 7 |  |
| 1                     | 17                    | 5  | 2 | 0 | 0 | 0 |  |
| 2                     | 2                     | 24 | 1 | 2 | 0 | 1 |  |
| 3                     | 2                     | 2  | 2 | 0 | 0 | 0 |  |
| 5                     | 0                     | 1  | 0 | 1 | 0 | 1 |  |
| 6                     | 0                     | 0  | 0 | 0 | 2 | 0 |  |
| 7                     | 0                     | 1  | 0 | 0 | 0 | 5 |  |

|                 | 5-cv  | bootstrap | .632+ | predykcje na zb. testowym |
|-----------------|-------|-----------|-------|---------------------------|
| SVM (optimized) | 7.813 | -2.525    | 1.936 | 9.091                     |

Tabela 24: Błąd klasyfikacji dla analizowanych modeli (radial optimized względem radial) [%]

Widzimy, że otrzymaliśmy zauważalnie mniejszy błąd predykcji na zbiorze testowym, a także błąd zmierzony przy użyciu metody 5 cross validation. Nieznaczne różnice pojawiły się natomiast badając błąd metodą bootstrap oraz .632+.

# 3.3 Ocena oraz porównanie jakości grupowania dla różnych algorytmów analizy skupień

W tym segmencie, ponownie z wykorzystaniem danych Glass z pakietu mlbench, weźmiemy pod lupę zagadnienie analizy skupień. Postaramy się porównać algorytmy oraz wyłonić ten, który najlepiej poradził sobie z naszymi danymi. Przygotujemy dane do analizy – usuwamy z ramki danych zmienną grupującą Type. Ponieważ wartości zmiennych są mierzone tą samą jednostką, nie ma potrzeby standaryzacji danych.



Rysunek 11: Macierz odległości dla danych Glass

Analizę przeprowadzimy dla następujących algorytmów:

- 1. k-means,
- 2. PAM,
- 3. AGNES,
- 4. DIANA.

Przyjmujemy liczbę skupień jako 6 – rzeczywistą liczbę klas.

### Algorytm k-means



Rysunek 12: k-means - wizualizacja wyników z wykorzystaniem PCA

Otrzymaliśmy dobrze odseparowane skupiska, natomiast dość poprawnie została wykryta tylko klasa 7, a więc ta najbardziej różniąca się od pozostałych zmiennych, dla których błąd jest wyraźnie większy.



Rysunek 13: PAM - wizualizacja wyników z wykorzystaniem PCA

Ponownie otrzymujemy widocznie odseparowane skupiska z wyjątkiem klastrów 2 i 3, które

wyraźnie się przenikają. Ponownie otrzymujemy dość dobre wyłonienie tylko typu 7. Sprawdźmy teraz, jak radzą sobie metody hierarchiczne – AGNES oraz DIANA.

### AGNES average linkage – Partycja na 6 skupien vs. rzeczywiste klasy



Rysunek 14: AGNES average linkage - dendrogram

Większość obserwacji została objęta w ramach jednego skupiska, zaledwie 13 obserwacji natomiast zostało podzielone na aż 5 grup.

### AGNES single linkage – Partycja na 6 skupien vs. rzeczywiste klasy



Rysunek 15: AGNES single linkage - dendrogram

Otrzymaliśmy bardzo podobny dendrogram – natomiast tym razem przed wcieleniem do najliczniejszej grupy uchroniło się jedynie 6 obserwacji.

### AGNES complete linkage - Partycja na 6 skupien vs. rzeczywiste klasy



Rysunek 16: AGNES complete linkage - dendrogram

Dendogram dla metody complete linkage wyraźnie różni się od poprzednich. Również mamy jedno dominujące skupisko, ale w pozostałych klastrach znalazła się zdecydowanie większa liczba obserwacji.

## AGNES complete – porównanie skupisk z rzeczywistymi etykietami (PCA)



Rysunek 17: AGNES - wizualizacja wyników z wykorzystaniem PCA

Również wyraźnie widać, że skupienia zostały wyraźnie odseparowane oraz tak samo jak w przypadku metod grupujących jedynie typ 7 został wyłoniony w sposób przypominający wyjściowe dane.





Rysunek 18: DIANA - dendrogram

Dla algorytmu DIANA dendogram dość wyraźnie wskazuje na dominację trzech klastrów,

ale ponownie tylko typ 7 został wyłoniony dość dokładnie. Podobne wnioski uzyskamy przy wizualizacji z wykorzystaniem PCA.



Rysunek 19: DIANA - wizualizacja wyników z wykorzystaniem PCA

Zajmiemy się teraz oceną jakości grupowania i postaramy się wyłonić najlepszy algorytm oraz najbardziej optymalną liczbę klastrów. Wykorzystamy w tym celu wskaźniki wewnętrzne.



Rysunek 20: Wskaźniki wewnętrzne

Widzimy, że algorytm AGNES osiąga najniższą wartość wskaźnika Connectivity oraz najwyższą wartość wskaźnika Dunn'a, a także najwyższą wartość wskaźnika Silhouette dla  $k \in \{2,3\}$ .



Rysunek 21: Badanie stabilności algorytmów

W badaniu stabilności również najlepiej wypadł algorytm AGNES – ma najniższy wskaźnik APN oraz ADM. Uzyskał natomiast najwyższy wskaźnik AD, jednak, ponieważ we wszystkich pozostałych testach wypadł najlepiej, wyciągamy wniosek, że ten algorytm jest najlepszy z badanej czwórki. Wykorzystamy teraz wskaźnik zewnętrzny w celu określenie optymalnej liczby klastrów – skorygowany wskaźnik Randa.

### Skorygowany wskaznik Randa



Rysunek 22: Skorygowany wskaźnik Randa dla różnej liczby skupień

Dla algorytmu AGNES (complete) widzimy duży wzrost wskaźnika Randa dla liczby skupień równej 4. Porównując z wynikami otrzymanymi z użyciem wskaźników wewnętrznych możemy wywnioskować, że to właśnie liczba klastrów równa 4 jest dobrym kompromisem (nieznaczny wzrost wskaźników Connectivity, ADM, APN, a także maleje wskaźnik AD oraz wskaźnik Dunna, jednak wciąż jest on najwyższy spośród badanych algorytmów).

|            | K-MEANS | PAM    | AGNES  | DIANA  |
|------------|---------|--------|--------|--------|
| diameter   | 7.02    | 9.45   | 7.02   | 7.20   |
| separation | 1.18    | 0.34   | 1.26   | 0.89   |
| size C.1   | 5.00    | 40.00  | 174.00 | 165.00 |
| size C.2   | 159.00  | 124.00 | 11.00  | 20.00  |
| size C.3   | 21.00   | 20.00  | 5.00   | 2.00   |
| size C.4   | 29.00   | 30.00  | 24.00  | 27.00  |

Tabela 25: Własności skupisk, k = 4

Ostatecznie wyciągnęliśmy wniosek, że najbardziej optymalnym algorytmem jest AGNES (complete) z liczbą klastrów 4. Zwizualizujmy wyniki dla tego algorytmu przy użyciu metody PCA oraz sporządzając dendrogram.



Rysunek 23: AGNES - wizualizacja wyników z wykorzystaniem PCA, K=4



Rysunek 24: AGNES - wizualizacja wyników z wykorzystaniem dendogramu, K=4 Spróbujmy teraz scharakteryzować obserwacje, które znalazły się w kolejnych skupieniach.



Rysunek 25: Nowa ramka danych - wykresy pudełkowe



Rysunek 26: Nowa ramka danych - wykresy gęstości



Rysunek 27: Nowa ramka danych - macierze korelacji



Rysunek 28: Nowa ramka danych - PCA

Spoglądając na powyższe wykresy, możemy wyciągnąć następujące wnioski dotyczące uzyskanych skupisk:

- 1. typ 1 charakteryzuje się większą zawartością magnezu oraz mniejszą zawartością baru,
- 2. typ 2 charakteryzuje się większą zawartością wapienia oraz wyższym współczynnikiem załamania (a także wysoką korelacją między tymi dwiema cechami) oraz niższą zawartością krzemu,
- 3. typ 3 charakteryzuje się niską korelacją pomiędzy zawartością wapienia oraz współczynnikiem załamania, wysoką korelacją pomiędzy zawartością wapienia i potasu oraz zawartością sodu i magnezu, a także wysoką zawartością baru oraz potasu,
- 4. typ 4 charakteryzuje się dużą zawartością baru i krzemu, niewielką zawartością potasu oraz większą zawartością glinu niż pozostałe typy.

### 4 Podsumowanie

Poniżej wypunktujemy najważniejsze wnioski, jakie można wyciągnąć z przeprowadzanych analiz:

- najlepszym algorytmem rodzin klasyfikatorów dla naszych danych okazał się być RandomForest
   najlepiej zwiększył dokładność klasyfikacji oraz najkrócej trwa realizacja jednego użycia funkcji,
- korzystając z metody wektorów nośnych, wybór jądra ma kluczowy wpływ na dokładność klasyfikacji,
- dostrojenie modelu uzyskanego metodą wektorów nośnych pozwala na zauważalne zmniejszenie błędu klasyfikacji,
- w zagadnieniu analizy skupień wykorzystanie wskaźników wewnętrznych i zewnętrznych pozwoliło na wybór optymalnej liczby klastrów oraz najlepszego algorytmu,
- klastry uzyskane z wykorzystaniem metod analizy skupień znacznie różniły się od grup w wyjściowych danych.