Biostatistics

Statistical computing Luca Alberto Rizzo

Agenda

- 1 Introduction to R
- 2 Penguins dataset
- 3 Histogram, barchart & boxplots
- 4 Statistical tests for means and proportions
- **5** ANOVA
- 6 Conclusions

1 Introduction to R

Introduction to R: why learn R?

Lingua franca for statistical computing

why learn

Free and open source

Latest model/tech implemented

Used in industry & academia

Robust

visualization

libraries

Large and active community

Introduction to R: what is R?

Introduction

- R is a language and environment for statistical computing and graphics
- R is developed and maintained by the R foundation
- R has >17,000 packages, with additional functions

Installation

- R can be installed easily via this link
- RStudio is an integrated development environment, or IDE, for R programming: It can be found <u>here</u>

Introduction to R: "hello world" and tidyverse

- 1. Let's start by greeting the whole world!
- 2. Install <u>tidyverse</u>, a <u>bundle of ~25 packages</u> designed to help with data management, reproducibility and multi-level programming
- 3. Let's compute our first mathematical operation in R (mean)

4. Assign a vector and compute its mean with the built-in R function

```
> print("hello world")
[1] "hello world"
```

> install.packages("tidyverse")
Installing package into '/home/lumaca/R/x86_64-pc-linux-gnu-library/4.2'
(as 'lib' is unspecified)

Take away:
Do not reinvent the wheel!

Introduction to R: data types

NULL

Vectors and types in R

- 6 atomic (simple) vectors: logical, integer, double, character, complex, raw
- Integers and doubles are numeric
- c operator builds non-atomic vectors
- a list is a heterogenous (recursive) vector

Vectors

Source: Figure 20.1 "R for Data Science"

Introduction to R: operators

Operators in R

• the assignment operator in R is both:

== checks equality between 2 elements

Assign with <-

Assign with =

Checking equality with ==

Souce: tutorial kart website

Introduction to R: dataframe & tibbles

A dataframe is a 2D data structure in R, a special case of a list which has each component of equal length.

```
> print(penguins)
# A tibble: 344 × 8
                     bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
   species island
                                                                                           vear
   <fct> <fct>
                               <dbl>
                                              <dbl>
                                                                <int>
                                                                             <int> <fct>
                                                                                          <int>
                                                                              3750 male
 1 Adelie
                                39.1
                                              18.7
                                                                  181
                                                                                           2007
           Torgersen
 2 Adelie
                                                                              3800 female
           Torgersen
                                39.5
                                              17.4
                                                                  186
                                                                                           2007
                                                                              3250 female
 3 Adelie
           Torgersen
                                40.3
                                              18
                                                                  195
                                                                                           2007
 4 Adelie
           Torgersen
                                NA
                                              NA
                                                                   NA
                                                                                NA NA
                                                                                           2007
 5 Adelie
                                36.7
                                                                              3450 female
           Torgersen
                                              19.3
                                                                  193
                                                                                           2007
 6 Adelie
           Torgersen
                                39.3
                                              20.6
                                                                  190
                                                                              3650 male
                                                                                           2007
 7 Adelie
           Torgersen
                                38.9
                                              17.8
                                                                  181
                                                                              3625 female
                                                                                           2007
 8 Adelie
                                39.2
                                              19.6
                                                                  195
                                                                              4675 male
                                                                                           2007
           Torgersen
 9 Adelie
                                                                              3475 NA
           Torgersen
                                34.1
                                              18.1
                                                                  193
                                                                                           2007
10 Adelie
           Torgersen
                                42
                                              20.2
                                                                              4250 NA
                                                                  190
                                                                                           2007
# ... with 334 more rows
```

This is a tibble, a special version of a dataframe implemented in the tidyverse library

Introduction to R: dataframe & tibbles

Summary prints useful information

> summary(penguins) species island bill length mm bill depth mm flipper length mm Adelie :152 Biscoe :168 Min. :32.10 Min. :13.10 Min. :172.0 :124 1st Ou.:39.23 1st Ou.:15.60 1st Ou.:190.0 Chinstrap: 68 Dream Median :44.45 Median :17.30 Median :197.0 Gentoo :124 Torgersen: 52 Mean :43.92 Mean :17.15 Mean :200.9 3rd Qu.:48.50 3rd Qu.:18.70 3rd Qu.:213.0 :59.60 Max. :21.50 Max. :231.0 Max. NA's :2 NA's :2 NA's :2 body mass g sex year Min. :2700 female:165 Min. :2007 1st Qu.:3550 male :168 1st Qu.: 2007 Median :4050 NA's : 11 Median :2008 Mean :4202 Mean :2008 3rd Qu.:4750 3rd Ou.:2009 :6300 :2009 Max. Max. NA's :2

Mutate adds columns

> mutate(penguins,

+ bill_ratio = bill_length_mm / bill_depth_mm)

```
# A tibble: 344 × 9
                    bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
   species island
                                                                                        year bill ratio
   <fct> <fct>
                              <dbl>
                                            <dbl>
                                                              <int>
                                                                          <int> <fct> <int>
                                                                                                   <dbl>
 1 Adelie Torgersen
                              39.1
                                             18.7
                                                                181
                                                                           3750 male
                                                                                        2007
                                                                                                   2.09
2 Adelie Torgersen
                              39.5
                                             17.4
                                                                186
                                                                           3800 female 2007
                                                                                                   2.27
3 Adelie Torgersen
                               40.3
                                             18
                                                                195
                                                                           <u>3</u>250 female <u>2</u>007
                                                                                                   2.24
4 Adelie Torgersen
                                             NA
                                                                                        2007
5 Adelie Torgersen
                              36.7
                                             19.3
                                                                193
                                                                           3450 female 2007
                                                                                                   1.90
6 Adelie Torgersen
                               39.3
                                             20.6
                                                                190
                                                                           3650 male
                                                                                        2007
                                                                                                   1.91
 7 Adelie Torgersen
                              38.9
                                             17.8
                                                                181
                                                                           3625 female 2007
                                                                                                   2.19
8 Adelie Torgersen
                               39.2
                                             19.6
                                                                195
                                                                           4675 male
                                                                                        2007
                                                                                                   2
9 Adelie Torgersen
                               34.1
                                             18.1
                                                                193
                                                                           3475 NA
                                                                                        2007
                                                                                                   1.88
10 Adelie Torgersen
                                             20.2
                                                                190
                                                                           4250 NA
                                                                                        2007
                                                                                                   2.08
# ... with 334 more rows
```

Filter and select

```
> penguins %>% select(species, island, body_mass_g) %>% filter(species == "Adelie")
# A tibble: 152 x 3
  species island
                    body mass g
  <fct> <fct>
                           <int>
1 Adelie Torgersen
                            3750
2 Adelie Torgersen
                            3800
3 Adelie Torgersen
                            3250
4 Adelie Torgersen
                             NA
 5 Adelie Torgersen
                            3450
6 Adelie Torgersen
                            3650
 7 Adelie Torgersen
                            3625
8 Adelie Torgersen
                            4675
9 Adelie Torgersen
                            3475
10 Adelie Torgersen
                            4250
# ... with 142 more rows
```

Group by computes quantities per categorical variable

2 Penguins dataset

Penguins dataset: introduction

<u>Penguins dataset</u> was collected by <u>Dr. Kristen Gorman</u> at the <u>Palmer Station, Antarctica LTER</u>, a member of the <u>Long Term Ecological Research Network</u>.

> summary(penguins)

```
species
                    island
                              bill length mm bill depth mm
                                                            flipper length mm
                                             Min. :13.10
                              Min. :32.10
                                                                 :172.0
Adelie :152
               Biscoe
                       :168
                                                            Min.
Chinstrap: 68
                       :124
                              1st Qu.:39.23
                                             1st Qu.:15.60
                                                            1st Qu.:190.0
               Dream
        :124
               Torgersen: 52
                              Median :44.45
                                             Median :17.30
                                                            Median :197.0
Gentoo
                              Mean :43.92
                                             Mean :17.15
                                                            Mean
                                                                  :200.9
                                             3rd Qu.:18.70
                                                            3rd Qu.:213.0
                              3rd Qu.:48.50
                                   :59.60
                                                    :21.50
                                                            Max.
                                                                   :231.0
                                             Max.
                              NA's :2
                                             NA's
                                                    :2
                                                            NA's
                                                                   :2
 body mass g
                               vear
                  sex
      :2700
              female:165
                          Min. :2007
1st Qu.:3550
              male :168
                          1st Qu.:2007
Median :4050
              NA's : 11
                          Median:2008
      :4202
                                 :2008
                          Mean
                          3rd Qu.:2009
3rd Qu.:4750
                                 :2009
      :6300
Max.
                          Max.
NA's
      :2
```


Artwork by @allison_hors

- 334 rows and 8 columns
- 3 species of penguins (Chinstrap, Gentoo, Adelie)
- 3 different islands (Biscoe, Dream, Torgersen)
- 3 factors (species, islands, sex), 2 doubles (bill_lenght_mm, bill_depht_mm) and 3 integers (flipper_length_mm, body_mass_g, year)

3 Histogram, barcharts, boxplots

Histogram, barcharts, boxplots: ggplot

"ggplot2 is a system for declaratively creating graphics, based on The Grammar of Graphics."

> ggplot(penguins, aes(bill_length_mm, flipper_length_mm, colour = species)) + geom_point()

Gentoo

- <u>ggplot(data = NULL, mapping = aes(),</u>
 <u>....)</u> initializes a ggplot object
- <u>aes(x,y,...)</u> "Aesthetic mappings" describes how variables in the data are mapped to visual properties
- layers, like <u>geom_point()</u>, specify which kind of plot you want to produce
- <u>ggplot cheasheet</u> for more functionalities

Histogram, barcharts, boxplots: histogram

How many penguins of each species are there in the dataset?

> ggplot(penguins) + aes(x=species) + geom_bar(stat= "count", fill = "#0c4c8a")

- <u>geom_bar(mapping = NULL, data = NULL, stat = "count", ...)</u> is the layer which prints "bar charts"
- if geom_bar(if stat= "count",...) a frequency histogram is plotted

if geom_bar(aes(y = (..count..)/sum(..count..)), ...), a relative frequency histogram is plotted

Histogram, barcharts, boxplots: boxplots

What is the average mass of penguins for each specie?

> ggplot(data=penguins, aes(x=species, y=body_mass_g)) + geom_bar(stat = "summary", fun= "mean", fill = "#0c4c8a")

geom_bar(stat= "summary",fun = "mean") we specified that we use a summary statistic, in particular the mean

Histogram, barcharts, boxplots: boxplots

Can we have more information about the distribution of mass among species?

> ggplot(data = penguins, mapping = aes(x = species, y = body_mass_g)) + geom_boxplot()

- thick line: median
- lower line: 25th percentile
- upper line: **75th percentile**
- whiskers: further non outlier points
- points: outliers

4 Statistical tests for proportions and means

Statistical tests: one sample z-test for proportion

Is the female to male ratio for penguins statistically similar to the expected one (0.5)?

<u>prop.test</u> tests if an observed proportion is equal to a certain expected value (z-test).

```
test sex <- prop.test(
  x = 165, # number of successes (female)
  n = 333, # total number of trials (total num penguins)
  p = 0.5, # we test for prob = 0.5
  conf.level = 0.95 # confidence level
          1-sample proportions test with continuity correction
  data: 165 out of 333, null probability 0.5
  X-squared = 0.012012, df = 1, p-value = 0.9127
  alternative hypothesis: true p is not equal to 0.5
  95 percent confidence interval:
   0.4406707 0.5504259
p-value = 0.91 and the estimated proportion is [0.44,0.55] \rightarrow
              fail to reject H0 of 50% female
```

Statistical tests: two sample z-test for proportion

Are proportions between Adelie and other species statistically similar on different islands?

<u>prop.test</u> also tests if proportions are similar between two groups (z-test 2 sided)

#testing for equality of species on Biscoe vs Dream
adelie <- c(44, 56)
total_penguins <- c(168,124)</pre>

#p value << 0.05 we can reject H0 with high confidence
prop.test(adelie, total_penguins)</pre>

2-sample test for equality of proportions with continuity correction

data: adelie out of total_penguins
X-squared = 10.575, df = 1, p-value = 0.001146
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.30668273 -0.07273355
sample estimates:
 prop 1 prop 2
0.2619048 0.4516129

p-value = $0.0011 \rightarrow$

We can reject the null hypothesis (proportions are statistically different)

Statistical tests: one sample t-test for means

Is the average mass of Adelie equal to 3.6 kg?

t.test performs one and two sample t-tests on vectors of data

```
#One Sample t-test with almost correct mean, unknown variance
test_right <- t.test(dat$body_mass_g,</pre>
                 mu = 3600,
                 alternative = 'greater')
             One Sample t-test
     data: dat$body mass g
     t = 2.6974, df = 150, p-value = 0.003894
     alternative hypothesis: true mean is greater than 3600
     95 percent confidence interval:
                     Inf
      3638.899
                        p-value = 0.004 \rightarrow
                 We can reject the null hypothesis
                (the mean is not stat. equal to 3.6kg)
                                                           21
```

Statistical tests: two sample t-test for means

Is the average mass of Adelie penguins statistically different from those of Gentoo and Chinstrap?

t.test performs one and two sample t-tests on vectors of data

Statistical tests: which t-test should I perform?

Source: "Stats and R" blog by Antoine Soetewey for this plot and a more general version of it

5 ANOVA

ANOVA: motivation and quick reminder

The main aim of ANOVA is to compare more than 2 groups in a statistically sound way

Probability of observing one significative results due to chance for 3 groups

$$P(\text{at least 1 sig. result}) = 1 - P(\text{no sig. results})$$

= $1 - (1 - 0.05)^3$
= 0.142625

ANOVA: analysis of variance

 $\frac{variance_{between}}{variance_{within}}$

is larger than a certain threshold (5%) groups are considered different

- <u>Independence</u> of observations
- Normality for the distributions of the <u>residuals</u>
- Equality (or "homogeneity") of variances

ANOVA: visual analysis

Do the 3 species have statistically significant different flipper lengths?

#visualizing the flipper length per specie ggplot(dat) + aes(x = species, y = flipper_length_mm, color = species) + geom_jitter() + theme(legend.position = "none")

geom_jitter is a shortcut for geom_point(position = "jitter").

It adds a **small amount of random variation** to the location of each point for visualization

Gentoo seem to have longer flippers!

ANOVA: perform ANOVA with R

Do the 3 species have statistically significant different flipper lengths?

Test for Equal Means in a One-Way Layout

Fit an Analysis of Variance Model

```
# 1st method for ANOVA
                                                            # 2nd method for ANOVA (more info)
oneway.test(flipper_length_mm ~ species,
                                                            res_aov <- aov(flipper_length_mm ~ species,
           data = dat,
                                                                           data = dat
           var.equal = TRUE # assuming equal variances
                      > #ANOVA summary for this method. In this particular case
                      > # groups are sign. different since p is very small
                      > summary(res aov)
                                   Df Sum Sq Mean Sq F value Pr(>F)
                                    2 52473
                      species
                                               26237
                                                        594.8 <2e-16 ***
                      Residuals
                                 339 14953
                                                   44
                      Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                      2 observations deleted due to missingness
```

We reject the H0 that the 3 means are equal due to the very low Pr(>F) (i.e. p)

6 Conclusions

Conclusions

- R is a powerful language for statistical computing, easy to learn and with a vibrant community (R blog)
- some of the basics of R: installation, data types, operators, tibbles, ...
- ggplot for visualization is powerful but can get complex fast
- statistical tests are easy to perform in R, but be careful which one you choose!
- Please check important topics that we don't have the time to cover in this course (e.g. functions, loops, recycling rules, modelling, ...)

Additional material

Contact me!

Github containing slides and code for this lecture

Do not hesitate to contact me

if you have any further question about this lecture

luca.alb.rizzo@gmail.com

My LinkedIn profile

Thank you

