T3

Minería de datos 24 Pérez León Gabriela 30 Tecuapacho López Jorge Gontran

Introducción

SIGLAS OCR: OCR es la sigla de Optical Character Recognition, una expresión en lengua inglesa que puede traducirse como Reconocimiento Óptico de Caracteres.

Para que sirve OCR

Es una tecnología que permite transformar el contenido de una imagen en texto plano. Normalmente, el contenido de una imagen que suele transformarse es aquél asociado a cadenas de texto, si bien algunas aplicaciones para OCR permiten transformar otro tipo de objetos gráficos contenidos en una imagen, como pueden ser, por ejemplo, códigos de barras.

En donde se aplica OCR:

- Reconocimiento de texto manuscrito
- Reconocimiento de matrículas
- Indexación en bases de datos
- Reconocimiento de datos estructurados con ROC Zonal

Requerimientos

- 1. Sistema operativo Windows 8.1
- 2. Anaconda 2.4.1 para 64 bits
- 3. Python 3.5.1
- 4. Microsoft Excel 2013

Conjunto de imágenes

El conjunto de imágenes usadas para la creación del DataSet está compuesto por 2,380 imágenes binarias divididas en 10 carpetas, son imágenes binarizadas las cuales anteriormente pasan por un proceso de segmentación donde se separan las imágenes, después se eliminan las imágenes de ruido y quedan solo las imágenes binarizadas.

Total números 0-9 = 2380

Tamaño de las imágenes

Las imágenes oscilan en un tamaño entre 50x90 píxeles

Dataset

Representación de datos residente en memoria que proporciona una modelo de programación relacional coherente independientemente del origen de datos que contiene. El DataSet contiene en sí, un conjunto de datos que han sido volcados desde el proveedor de datos.Dataset con 2380 instancias y cada una está compuesta por 14 características

	1	2	1	4	5	6	7	1	9	10	- II	12	13	34	15	16
10	1.6000	120.8250	27,7406	44,2993	23.019%	0	35.4702	0.1619	0.1863	0.0303	0.0556	0.0156	0.0707	.0	0.0009	
2	1.5818	121,3795	27,9063	44,0729	32,7493	0	\$8,3662	0.1634	4.1883	0.0214	0.0588	0.0186	0.0695	- 0	0.0906	- 0
1	1,6182	121.1236	27.9590	45.0459	24,1080		19.8674	0.1627	0.1865	0.0258	0.0556	0.0556	0.0707	0.	0.2909	- 0
4	1.5010	121,3799	28.1510	43.8975	22,4765	0	18.9162	0.1933	0.1880	0.0214	0.0388	0.0588	0.0642	- 0	0.0909	- 0
5	1,6506	121,8750	27.8154	44.7231	23.2734		89.5733	0.1657	0.1867	0.0252	0.0056	0.0556	0.0707	- 0	0.000	
6	1,3816	121.376	29.0156	44,0052	32.6201	5	38.3388	0.1634	0.1884	0.0214	5.2588	0.0588	5.0075	. 0	53909	
7	1.6111	119.7901	27,5678	43.346	23.5740		-89.4133	0.1653	0.1904	0.0521	5.2588	0.0588	63749	- 6	0.3909	- 0
2	1.5636	122,1512	27,6492	48,3977	21.6612	9	89.3979	0.1640	0.1896	8/821	0.0588	0.0588	0.0695	. 0	0.0909	- 0
9	1.6000	121,2500	28.4330	44.5670	22.7332	0	-89.0475	0.7616	0.1685	0.0251	0.0606	0.0556	4.0657	. 0	0.0909	
10	1,5818	120,1149	27.5632	49,0765	223057	- 6	-89.8990	8.1617	0.1879	0.6521	0.0588	0.0588	0.0695	- 5	52939	
13	T,6000	120.0000	29.6417	44,0677	22.6463	9	38,3505	0.1618	0.7854	0.0253	2,0556	0.0356	0.0707	. 0	0.0909	- 0
12	1.6000	121,2500	27,7165	44,3000	23,1819	0	86.1360	0.1623	0.1876	0.0103	0.0556	0.0556	0.0797	- 0	0.0909	
11	1.5818	122,5417	27,5479	444301	23.2215	- 0	88.6492	0.1664	0.1906	8.0267	0.0580	0.0588	0.0695		0.0909	. 0
14	1.6364	119,7776	27.2908	46.0102	25,2583	0	89.9386	0.1614	0.1873	0.0303	0,0556	0.055€	0.0606	. 0	0.0909	
15	1,6006	120.6250	27.8083	443407	22.6189	- 1	86.5331	0.1598	0.1862	0.0005	0.0556	0.0556	0.0707		0.0909	
16	1.5818	121.3799	27.9635	44,0104	22.6606	20	19.9673	0.1608	0.1860	0.0267	2,2588	9.0588	5.0695		0.0909	
17	1,6182	121.1236	28.0102	443947	24.0236	.0	88.3985	0.1601	0.1862	0.0103	0.0556	0.0556	48707	0	0.0909	
18	1.5536	123.5962	28.1675	44349	22.5296	0	89.9029	0.1619	0.1863	0.0214	2,2580	0.0588	1,0642		0.0909	
18	1,6182	119.3876	27.6649	45.4237	34.5775	0	-89,2054	0.1654	0.1863	0.0253	0,0606	0.055E	0.3636	. 0	0.090%	. 0
200	1,5714	124/2909	27.9126	44.7262	23,2584	- 1	89.4922	0.1641	0.1852	0.0258	14556	0.0556	0.0657	- 5	0.2909	- 0

Como se genera el dataset

El dataset se genera mediante 14 características que son:

1. Razón Filas columnas

La primera característica es el resultado de obtener la relación que existe entre el alto y el ancho de la imagen en la cual se dividen las filas entre las columnas.

2. Razón Pixeles Blancos

Segunda característica tomamos en consideración la cantidad de pixeles blancos de la imagen, y son sumados.

3. Cambios Primera Línea Horizontal

Tercera característica detectara los cambios de color de la primera línea horizontal que se ubica a un cuarto de la imagen.

4. Cambios Segunda Línea Horizontal

Cuarta característica detectara los cambios de color de la segunda línea horizontal que se ubica a la mitad de la imagen.

5. Cambios Tercera Línea Horizontal

Quinta característica detectara los cambios de color de la tercera línea horizontal que se ubica a tres cuarto de la imagen.

6. Cambio Primera Línea Vertical

Sexta característica detectara los cambios de color de la primera línea vertical que se ubica a un cuarto de la imagen.

7. Cambio Segunda Línea Vertical

Séptima característica detectara los cambios de color de la segunda línea vertical que se ubica a la mitad de la imagen.

8. Cambio Tercera Línea Vertical

Octava característica detectara los cambios de color de la tercera línea vertical que se ubica a tres cuartos de la imagen.

9. Contar Pixeles Primera Línea Horizontal

Novena característica cuenta los pixeles blancos que se encuentran en la primera línea horizontal que se ubica a un cuarto de la imagen.

10. Contar Pixeles Segunda Línea Horizontal

Decima característica cuenta los pixeles blancos que se encuentran en la segunda línea horizontal que se ubica a la mitad de la imagen.

11. Contar Pixeles Tercera Línea Horizontal

Onceava característica cuenta los pixeles blancos que se encuentran en la tercera línea horizontal que se ubica a tres cuartos de la imagen.

12. Contar Pixeles Primera Línea Vertical

Doceava característica cuenta los pixeles blancos que se encuentran en la primera línea vertical que se ubica a un cuarto de la imagen.

13. Contar Pixeles Segunda Línea Vertical

Treceava característica cuenta los pixeles blancos que se encuentran en la segunda línea vertical que se ubica a la mitad de la imagen.

14. Contar Pixeles Tercera Línea Vertical

Catorceava característica cuenta los pixeles blancos que se encuentran en la tercera línea vertical que se ubica a tres cuartos de la imagen.

Que es K-nn para clasificación

Consiste en que dado una colección de registros cada registro contiene un conjunto de variables denominado "x" con una variable adicional "y" el objetivo es predecir la clase a la que pertenece cada registro. Para ello será necesario un conjunto de prueba la tabla de testing se utiliza para determinar la precisión del modelo.

Practica OCR

- 1. Correr el programa Menu.py
- 2. Elegir una de las tres opciones
- 3. Si es seleccionada la opción 1 generara el dataset con las 10 clases y 2380 instancias en un archivo <u>csv</u>
- 4. Si es seleccionada la opción 2 se pide el nombre de la imagen con extensión .png y el número de k-vecinos, se clasificara la imagen y se mostrara el resultado de los vecinos más cercanos y la clase a la que pertenece.
- 5. Si es seleccionada la opción 3 el programa termina su ejecución

```
No. Total de instancias: 2380
Instancia del K vecino mas cercano: 239
K vecinos mas cercanos:
Instancia: 239 Distancia: 0.0000 Clase 1
Instancia: 347 Distancia: 2.2361 Clase 1
Instancia: 294 Distancia: 2.2369 Clase 1
Número de Instancias por clase:
 3 Instancias de la clase: 1
     Instancias de la clase: 9
 0 Instancias de la clase: 8
 0 Instancias de la clase: 7
 0 Instancias de la clase: 6
     Instancias de la clase: 5
     Instancias de la clase: 4
    Instancias de la clase: 3
 0 Instancias de la clase: 2
 0 Instancias de la clase: 0
La imagen es un : 1
```

Diagrama del funcionamiento del programa Menu.py.

