Data Dictionary

Feature Name	Description	Туре	Example
Age	Age of the patient	Numerical	54
Sex	Gender of the patient (0 = Female, 1 = Male)	Categorical	1
ChestPainType	Type of chest pain (TA, ATA, NAP, ASY)	Categorical	NAP
RestingBP	Resting blood pressure (mm Hg)	Numerical	130
Cholesterol	Serum cholesterol (mg/dL)	Numerical	246
FastingBS	Fasting blood sugar > 120 mg/dL (0 = No, 1 = Yes)	Categorical	0
RestingECG	ECG results (Normal, ST, LVH)	Categorical	Normal
MaxHR	Maximum heart rate achieved	Numerical	150
ExerciseAngina	Exercise-induced angina (0 = No, 1 = Yes)	Categorical	0
Oldpeak	ST depression induced by exercise	Numerical	1.4
ST_Slope	Slope of the peak exercise ST segment (Up, Flat, Down)	Categorical	Flat
HeartDisease	Target variable (0 = No, 1 = Yes)	Binary Target	1

Preprocessing Steps

1. Missing/Invalid Value Handling:

 Removed or replaced entries with invalid values (e.g., RestingBP or Cholesterol = 0).

2. Encoding Categorical Features:

- Label Encoding for binary features: Sex, ExerciseAngina
- One-Hot Encoding for multi-class features:
 ChestPainType, RestingECG, ST Slope

3. Feature Scaling:

 Applied StandardScaler to numerical features (e.g., Age, Cholesterol, RestingBP, MaxHR, Oldpeak) to normalize input ranges.

4. Splitting Features/Target:

 Dataset split into X (features) and y (HeartDisease target)

5. Train-Test Split:

 Split data into training and testing sets (e.g., 80/20 split) for model evaluation.

Model Explanation

Several machine learning models were trained and evaluated:

- Logistic Regression:
 - A linear model used for binary classification.
 - Interpretable and fast, but may underperform on complex relationships.
- Random Forest Classifier:
 - An ensemble of decision trees using bagging.
 - Robust, handles both numerical and categorical data well.

XGBoost:

- Gradient Boosted Trees optimized for performance.
- Excellent for structured/tabular data and imbalanced problems.
- Neural Network (Keras):
 - Multi-layer perceptron used to capture complex patterns.
 - Requires careful tuning and normalization.
- Final selection depends on evaluation metrics like accuracy, precision, recall, and F1-score.

User Guide

Overview:

The app allows users to input patient data and get a real-time prediction on heart disease risk.

Pages Overview:

1. Home Page:

Introduces the app and explains its purpose.

2. Preprocessing Page:

 Shows how raw data is cleaned and transformed.

3. Visualizations Page:

 Displays EDA charts (distribution, correlations) for insight into data behavior.

4. Modeling Page:

- Allows user input of medical parameters
- User selects model (e.g., Random Forest, XGBoost)
- App outputs prediction and probability instantly

How to Use:

- Navigate to the Modeling Page
- Enter values for all required medical fields
- Select a model from the dropdown
- Click "Predict"
- View result:
 - 。 🔽 No heart disease
 - Likely heart disease (with probability %)

System Requirements:

- Just a web browser
- No installation needed
- Hosted via Streamlit Cloud