Tiempo de Ejecución (I)

Tiempo de Ejecución de un Algoritmo

El Tiempo de Ejecución T(n) muestra el desempeño del algoritmo en función de la cantidad de datos (n)

Orden de complejidad

O(N), permite enfocarnos en la tasa de crecimiento, por eso descartamos los términos menos significativos del T(n)

Definición de Big-Oh

T(n) es O(n) si existen constantes c>0 y n_{0} , tal que

$$T(n) \le c*O(n)$$
, c > 0, para todo n>= n_0

Ejercicios de demostración

2^{n+1} es $O(2^n)$?

(es decir, 2^{n+1} crece a una velocidad <= que 2^n ?)

Para justificar la veracidad o falsedad de la afirmación:

- Usamos la definición de Big-Oh (encontrar c y n0 que confirmen la veracidad) ó ...
- Demostramos la falsedad mediante un absurdo

2^{n+1} es $O(2^n)$?

(es decir, 2^{n+1} crece a una velocidad \leq que 2^n ?)

Para que 2^{n+1} sea $O(2^n)$, usando definición de Big-Oh, tiene que verificarse que $2^{n+1} <= c2^n$, c> 0 y para todo n>= n_0 .

Ahora bien, $2^{n+1} = 2*2^n$

En particular, podemos decir que 2ⁿ⁺¹ <= **2***2ⁿ

Considerando c=2 y dado que vale para todo $n_0 >= 0$ logramos acotar 2^{n+1} con $c2^n$ por lo cual, 2^{n+1} es $O(2^n)$

2^{2n} es $O(2^n)$?

Usando definición de Big-Oh, tiene que verificarse que 2²ⁿ <= c2ⁿ para todo n>=n₀

Ahora bien, $2^{2n} = 2^{n*}2^{n}$.

Por lo cual, podemos escribir 2ⁿ*2ⁿ <= c2ⁿ

Despejando c, $2^{n*}2^{n}/2^{n} \le c$.

Simplificando, 2ⁿ<= c.

Sin embargo, esto es absurdo, puesto que nunca se puede acotar con una constante a una función creciente.

Por lo cual 2^{2n} no es $O(2^n)$.

Ejercicio de T(n) Caso de Algoritmo Iterativo

Encontrar el T(n)

```
public static void uno (int n) {
 int i, j, k ;
 int [] [] a, b, c;
 a = new int [n] [n];
b = new int [n] [n];
 c = new int [n] [n];
 for ( i=1; i<=n-1; i++) {
       for ( j=i+1; j<=n; j++) {
             for ( k=1; k<=j; k++) {
                c[i][j] = c[i][j] + a[i][j] * b[i][j];
```

A tener en cuenta...

- las declaraciones, asignaciones y operaciones matemáticas tienen un tiempo constante
- los bucles se traducen como sumatorias, que indican la cantidad de veces que se ejecuta dicho bucle
- existe la posibilidad de relación entre el índice de una sumatoria y el contenido anidado dentro de la sumatoria
- la resolución de sumatorias anidadas se realiza desde las más internas hacia las externas

$$T(n) = c1 + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sum_{k=1}^{J} c2^{-1}$$
 2do 3ro

A tener en cuenta...

$$\sum_{k=1}^{j} c2^{k} = c1 + c2 + c2 + c2 + + c2 = j * c2 \text{ (porque sumamos c2 j-veces)}$$

$$\sum_{j=1}^{i} j = 1 + 2 + 3 + 4 + 5 + \dots + i = i (i + 1) / 2 \text{ (aplico fórmula)}$$

Resolución

```
public static void uno (int n) {
 int i, j, k;
 int [] [] a, b, c;
 a = new int [n] [n];
 b = new int [n] [n];
 c = new int [n] [n];
 for ( i=1; i<=n-1; i++) {
         for ( j=i+1; j<=n; j++) {
                 for (k=1; k \le j; k++)
                     c[i][j] = c[i][j] + a[i][j] * b[i][j];
         }
```

$$T(n) = c1 + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sum_{k=1}^{j} c2 = c1 + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (j * c2) = c1 + \sum_{i=1}^{n} \sum_{j=i$$

$$= c1 + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (j * c2)$$

$$= c1 + c2 * \left(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} j\right)$$

$$= c1 + c2 * \sum_{i=1}^{n-1} \left(\sum_{j=1}^{n} j - \sum_{j=1}^{i} j \right)$$

$$= c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right)$$

$$= c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right)$$

$$=c1+\frac{c2}{2}\sum_{i=1}^{n-1}n*(n+1)-\frac{c2}{2}\sum_{i=1}^{n-1}i*(i+1)$$

$$= c1 + \frac{c2}{2}(n-1) * n * (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} (i^2 + i)$$

$$= c1 + \frac{c2}{2}(n-1) * n * (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} (i^2) - \frac{c2}{2} \sum_{i=1}^{n-1} (i) = c^2 \sum$$

$$c1 + \frac{c2}{2}(n-1) * n * (n+1) - \frac{c2}{2} \left(\frac{(n-1) * n(2(n-1)+1)}{6} \right) - \frac{c2}{2} \left(\frac{(n-1)n}{2} \right)$$

Encontrar el T(n)

$$T(n) = c1 + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sum_{k=1}^{j} c2 = c1 + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (j * c2) = c1 + c2 * \left(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} j\right) = c1 + c2 * \left(\sum_{i=1}^{n} j$$

$$T(n) = c1 + c2 * \sum_{i=1}^{n-1} \left(\sum_{j=1}^{n} j - \sum_{j=1}^{i} j \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (i+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (n+1)}{2} - \frac{i * (n+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (n+1)}{2} - \frac{i * (n+1)}{2} \right) = c1 + c2 * \sum_{i=1}^{n-1} \left(\frac{n * (n+1)}{2} - \frac{i * (n+1$$

$$T(n) = c1 + \frac{c2}{2} \sum_{i=1}^{n-1} n * (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} i * (i+1) = c1 + \frac{c2}{2} (n-1) * n * (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} (i^2 + i) = c1 + \frac{c2}{2} \sum_{i=1}^{n-1} (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} (i^2 + i) = c1 + \frac{c2}{2} \sum_{i=1}^{n-1} (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} (i^2 + i) = c1 + \frac{c2}{2} \sum_{i=1}^{n-1} (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} (i^2 + i) = c1 + \frac{c2}{2} \sum_{i=1}^{n-1} (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} (i^2 + i) = c1 + \frac{c2$$

$$c1 + \frac{c2}{2}(n-1) * n * (n+1) - \frac{c2}{2} \sum_{i=1}^{n-1} (i^2) - \frac{c2}{2} \sum_{i=1}^{n-1} (i) = 0$$

$$c1 + \frac{c2}{2}(n-1) * n * (n+1) - \frac{c2}{2} \left(\frac{(n-1) * n(2(n-1)+1)}{6} \right) - \frac{c2}{2} \left(\frac{(n-1)n}{2} \right)$$

Puntos claves

- Traducir constantes e iteraciones correctamente.
- Respetar los límites de las iteraciones al traducirlas a sumatorias (respetando las variables).
- Prestar atención a si dentro de una sumatoria se hace referencia a la variable índice.
- Tener presente que las equivalencias para la suma de los n primeros números naturales comienza en 1 y no en un número arbitrario.