In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Reading the Data

```
In [2]:
```

```
df = pd.read_csv("healthcare-dataset-stroke-data.csv")
```

In [3]:

```
df.head()
```

Out[3]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_typ
0	9046	Male	67.0	0	1	Yes	Private	Urba
1	51676	Female	61.0	0	0	Yes	Self- employed	Rura
2	31112	Male	80.0	0	1	Yes	Private	Rura
3	60182	Female	49.0	0	0	Yes	Private	Urba
4	1665	Female	79.0	1	0	Yes	Self- employed	Rura
4)

In [4]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5110 entries, 0 to 5109
Data columns (total 12 columns):
```

#	Column	Non-Null Count	Dtype
0	id	5110 non-null	int64
1	gender	5110 non-null	object
2	age	5110 non-null	float64
3	hypertension	5110 non-null	int64
4	heart_disease	5110 non-null	int64
5	ever_married	5110 non-null	object
6	work_type	5110 non-null	object
7	Residence_type	5 11 0 non-null	object
8	<pre>avg_glucose_level</pre>	5110 non-null	float64
9	bmi	4909 non-null	float64
10	smoking_status	5 11 0 non-null	object
11	stroke	5110 non-null	int64
44	C1+C4/3\	CA (A) - - + (F)	

dtypes: float64(3), int64(4), object(5)

memory usage: 479.2+ KB

```
In [5]:
```

```
df.duplicated().sum()
```

Out[5]:

0

In [6]:

```
df.isnull().sum()
```

Out[6]:

id 0 gender 0 0 age hypertension 0 heart_disease 0 0 ever married work_type 0 Residence_type 0 0 avg_glucose_level 201 0 smoking_status stroke 0 dtype: int64

In [7]:

```
# dealing with nan values with BMI column
df["bmi"]= df["bmi"].fillna(value=df["bmi"].mean())
df.isna().sum()
```

Out[7]:

0 id 0 gender 0 age hypertension 0 heart_disease 0 ever_married 0 work_type 0 Residence_type 0 avg_glucose_level 0 bmi 0 smoking_status 0 stroke 0 dtype: int64

In [8]:

```
df['age'] = df['age'].astype(int)
df.dtypes
```

Out[8]:

id int64 gender object int32 age int64 hypertension heart_disease int64 ever_married object work_type object Residence_type object avg_glucose_level float64 float64 object smoking_status stroke int64 dtype: object

In [9]:

```
df.drop('id', inplace=True, axis=1)
df.head()
```

Out[9]:

	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_(
0	Male	67	0	1	Yes	Private	Urban	
1	Female	61	0	0	Yes	Self- employed	Rural	
2	Male	80	0	1	Yes	Private	Rural	
3	Female	49	0	0	Yes	Private	Urban	
4	Female	79	1	0	Yes	Self- employed	Rural	
4								•

In [10]:

```
df["ever_married"].value_counts()
```

Out[10]:

Yes 3353 No 1757

Name: ever_married, dtype: int64

In [11]:

Out[11]:

<seaborn.axisgrid.FacetGrid at 0x29c17f3dac0>

In [12]:

```
df["gender"].value_counts()
```

Out[12]:

Female 2994 Male 2115 Other 1

Name: gender, dtype: int64

In [13]:

```
df = df[df["gender"] != "Other"]
df["gender"].value_counts()
```

Out[13]:

Female 2994 Male 2115

Name: gender, dtype: int64

In [14]:

Out[14]:

<seaborn.axisgrid.FacetGrid at 0x29c18732af0>

In [15]:

Out[15]:

<seaborn.axisgrid.FacetGrid at 0x29c18784a90>

In [16]:

```
df_bmi = df[df["bmi"] > 80]
df_bmi.head()
```

Out[16]:

		gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	a١
_	2128	Male	17	1	0	No	Private	Rural	
	4209	Male	38	1	0	Yes	Private	Rural	
4									•

In [17]:

```
# removing out liers
df = df[df["bmi"] < 80]</pre>
```

In [18]:

Out[18]:

<seaborn.axisgrid.FacetGrid at 0x29c18732d60>

In [19]:

```
df["smoking_status"].value_counts()
```

Out[19]:

never smoked 1891 Unknown 1543 formerly smoked 884 smokes 789

Name: smoking_status, dtype: int64

In [20]:

```
df["Residence_type"].value_counts()
```

Out[20]:

Urban 2596 Rural 2511

Name: Residence_type, dtype: int64

```
In [21]:
```

```
df["work_type"].value_counts()
```

Out[21]:

Private 2922 Self-employed 819 children 687 Govt_job 657 Never_worked 22

Name: work_type, dtype: int64

In [22]:

```
df["avg_glucose_level"].mean()
```

Out[22]:

106.1587487761894

In [23]:

```
df["avg_glucose_level"].median()
```

Out[23]:

91.89

In [24]:

Out[24]:

<seaborn.axisgrid.FacetGrid at 0x29c1885f4f0>

In [25]:

Out[25]:

<seaborn.axisgrid.FacetGrid at 0x29c18906220>

making analysis on the work_type data set

```
In [26]:
```

```
df_jop = df[df["work_type"] == "children"]
df_jop.head()
```

Out[26]:

	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avç
162	Female	1	0	0	No	children	Urban	
245	Female	14	0	0	No	children	Rural	
249	Male	3	0	0	No	children	Rural	
282	Female	3	0	0	No	children	Urban	
290	Male	13	0	0	No	children	Urban	
4								•

```
In [27]:
df_jop["age"].mean()
Out[27]:
6.756914119359534
In [28]:
df_jop["age"].median()
Out[28]:
6.0
In [29]:
df_jop["smoking_status"].value_counts()
Out[29]:
Unknown
                   618
never smoked
                     54
formerly smoked
                     13
smokes
Name: smoking_status, dtype: int64
In [30]:
df_jop["ever_married"].value_counts()
Out[30]:
      687
No
Name: ever_married, dtype: int64
In [31]:
df_jop["gender"].value_counts()
Out[31]:
Male
          361
Female
          326
Name: gender, dtype: int64
In [32]:
df_jop["bmi"].mean()
Out[32]:
20.244238414248493
In [33]:
df_jop["bmi"].median()
Out[33]:
19.0
```

answering questions

Q1: what is the number of male and female in each Residence_type

In [34]:

Out[34]:

<seaborn.axisgrid.FacetGrid at 0x29c18784ac0>

Q2: is there corr between marriage and hypertension?

In [45]:

Out[45]:

<seaborn.axisgrid.FacetGrid at 0x29c1a24be20>

Q3: what is the bmi of each work type

In [44]:

Out[44]:

<AxesSubplot:xlabel='bmi', ylabel='Count'>

Q4: which is the work type that has the highest number of hypertension

In [48]:

Out[48]:

<seaborn.axisgrid.FacetGrid at 0x29c1d44eca0>

Q5: is their corr between age and bmi?

In [60]:

Out[60]:

<seaborn.axisgrid.FacetGrid at 0x29c1e9ddcd0>

Q6 :knowing what is the mean of smoking status in each gender

In [59]:

Out[59]:

<function matplotlib.pyplot.show(close=None, block=None)>

In []: