WAHADŁO REWERSYJNE

Barbara Baranowska, Julia Kasiłowska, Olaf Radomski

1. Cel zadania

Wyznaczyć przyśpieszenie ziemskie za pomocą wahadła rewersyjnego.

2. Wstęp teoretyczny

Wahadło rewersyjne (odwracalne) jest specjalnym typem wahadła fizycznego pozwalającym na bardzo proste wyznaczenie jego długości zredukowanej.

Wahadło rewersyjne składa się z metalowego pręta, na którym w odległości h osadzone są dwa pryzmaty O_1 i O_2 , zwrócone ostrzami do siebie. Pryzmaty te wyznaczają stałe osie obrotu. Położenie środka masy wahadła można zmieniać przesuwając masywne soczewki M_1 i M_2 . Przy odpowiednio dobranym położeniu obu soczewek, okresy drgań wahadła na obu pryzmatach są jednakowe. Oznacza to, że odległość h między nimi jest tzw. długością zredukowaną wahadła, a jego okres drgań wyraża się wzorem:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Gdzie:

g – wartość przyspieszenia ziemskiego

T - okres drgań wahadła.

l - odległość między punktami zawieszenia wahadła (osiami)

Mierząc okres wahań T tak dobranego wahadła, wyznacza się wartość przyspieszenia ziemskiego na podstawie wzoru:

$$g = \frac{4\pi^2 l}{T^2}$$

Ponieważ odległość między punktami O₁O₂ może być ustalona i zmierzona z dużą dokładnością, pomiar przyspieszenia ziemskiego za pomocą wahadła rewersyjnego jest stosunkowo precyzyjny.

3. Procedura

Wahadło rewersyjne jest używane do badania zależności między okresem drgań a odległością punktu zawieszenia. W tej procedurze będziemy wykorzystywać wahadło rewersyjne, miarkę milimetrową i sekundomierz, aby zmierzyć czas dziesięciu okresów drgań dla różnych odległości soczewki.

Najpierw umieściliśmy soczewkę M_1 tak daleko powyżej ostrza O, jak to było możliwe. Następnie zamocowaliśmy soczewkę M_2 po drugiej stronie ostrza, jak najbliżej. Kolejnym krokiem było zmierzenie czasu dziesięciu okresów drgań wokół osi O. Powiesiliśmy wahadło na ostrzu O' i ponownie zmierzyliśmy czas dziesięciu okresów.

Aby dokładnie ustalić odległość h_B (lub h_A), dla której okresy drgań T i T' są równe, przeprowadziliśmy dodatkowe pomiary. Stopniowo przesuwaliśmy soczewkę M_2 o 1 cm, aby znaleźć pomiar o najbardziej zbliżonym czasie do czasu T'.

W położeniu h_B (lub h_A), które ustaliliśmy na podstawie wcześniejszych obserwacji, trzykrotnie zmierzyliśmy czas trzydziestu okresów dla wahadła zawieszonego na ostrzu O oraz O'.

4. Wyniki pomiarów

Długość wahadła:

 $l = 130 \ cm$

Tabela drgań wahadła

h [cm]	10T [s]	10T' [s]
10	31,87	22,9
18	21,19	22,66
26	18,47	22,37
34	17,93	22,15
42	17,81	21,99
50	18,15	22
58	18,71	21,83
66	19,21	22
74	20,03	21,99
82	20,84	21,9
90	21,22	22,18
98	22,05	22,08
106	22,62	22,59
114	23,11	22,87

Szukaliśmy przecięcia osi:

h[cm]	10T [s]	10T'[s]
16	22,23	22,66
17	21,44	22,66

Najbliższe odległości, które otrzymaliśmy dla zbliżonych okresów drgań wahadła rewersyjnego wokół osi O i O', wyniosły 17 cm oraz 98 cm.

Wykres i tabela przedstawiający miejsce przecięcia obu osi:

Punkt	h[a]	10 <i>T</i> [<i>s</i>]	10T'[s]
A	16	22,23	22,66
В	98	22,05	22,08

Punkt A (h_A = 16 cm):

Pomiar	30T [s]	30T'[s]
1	66,32	68,21
2	66,21	68,83
3	66,43	68,31

Punkt B ($h_A = 98 \text{ cm}$):

Pomiar	30T [s]	30T' [s]
1	64,25	66,82
2	64,18	66,95
3	63,71	67,12

5. Opracowanie wyników

5.1. Wyznaczenie średniej wartości okresu i jej odchylenia standardowego

T[s]	σ	$\overline{\mathtt{T}}'[\mathtt{s}]$	σ'
2,09	0,36	2,23	0,036

5.2. Wyznaczenie przyspieszenia ziemskiego na podstawie wzoru:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Gdzie:

T – okres wahadła

l – długość wahadła

g – przyspieszenie ziemskie

Przekształcając podany wzór otrzymujemy wzór na przyspieszenie ziemskie:

$$g = \frac{4\pi^2 l}{T^2}$$

Oraz na jego niepewność pomiarowa:

$$\Delta g = \left| \frac{4\pi^2}{T^2} \cdot \Delta l \right| + \left| -\frac{8\pi^2 l}{T^3} \cdot \Delta T \right|$$

Gdzie:

 $\Delta l = 0.01 \ cm = 0.0001 \ m$ – niepewność pomiarowa długości wahadła

 $\Delta T = 0.01 s$ – niepewność pomiarowa długości okresu

Dla *0*:

$$g = \frac{4\pi^2 \cdot 1{,}30}{2{,}09^2} = 11{,}75 \left[\frac{m}{s^2} \right]$$
$$\Delta g = \left| \frac{4\pi^2}{2{,}09^2} \cdot 0{,}0001 \right| + \left| -\frac{8\pi^2 \cdot 1{,}3}{2{,}09^3} \cdot 0{,}01 \right| = 0{,}12 \left[\frac{m}{s^2} \right]$$

Dla *0*′:

$$g = \frac{4\pi^2 \cdot 1,30}{2,23^2} = 10,32 \left[\frac{m}{s^2} \right]$$
$$\Delta g = \left| \frac{4\pi^2}{2,23^2} \cdot 0,0001 \right| + \left| -\frac{8\pi^2 \cdot 1,3}{2,23^3} \cdot 0,01 \right| = 0,10 \left[\frac{m}{s^2} \right]$$

6. Wnioski

Otrzymane wartości przyspieszenia ziemskiego dla 0 i 0' wynoszą odpowiednio:

$$g_0 = 11,75 \pm 0,12 \left[\frac{m}{s^2} \right]$$

$$g_{0}$$
, = 10,32 ± 0,10 $\left[\frac{m}{s^2}\right]$

Są one zbliżone do tablicowej wartości, która wynosi:

$$g = 9.81 \left[\frac{m}{s^2} \right]$$

Odchylenia od tej wielkości mogą być spowodowane niedokładnościami w pomiarach w czasie doświadczenia, jak nieprecyzyjne zatrzymywanie stopera w czasie ukończenia 10 okresów wahadła oraz różnice w kącie wychylenia wahadła w momencie jego opuszczenia. Dodatkowo układ pomiarowy mogli posiadać lekkie wady, które mogły wpłynąć na otrzymane wyniki.