## The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli

ACM CCS'17, Dallas, TX, USA

Matus Nemec<sup>1,2</sup> Marek Sys<sup>1</sup> Petr Svenda<sup>1</sup> Dusan Klinec<sup>3,1</sup> Vashek Matyas<sup>1</sup>





<sup>1</sup>Masaryk University Brno, Czech Republic



<sup>2</sup>Ca' Foscari University Venice, Italy



<sup>3</sup>Enigma Bridge Cambridge, UK

- Structure of RSA primes in library of Infineon Technologies
- Application of Coppersmith's factorization method
- Analysis of **impacted domains**, including **eID**, **TPM**, **tokens** and other NIST FIPS 140-2 and CC EAL 5+ **certified devices**
- Lessons learned and mitigation

## The Million-Key Question: Investigating the Origins of RSA Public Keys USENIX Security 2016

Library: Microsoft CryptoAPI



Card: Infineon JTOP 80K



## The Million-Key Question: Investigating the Origins of RSA Public Keys USENIX Security 2016

Distribution of RSA keys modulo small primes:





$$N = p * q$$
 $p_{ideal} = ext{random prime}$ 
 $p_{Infineon} = (k * M + 65537^a \mod M); \ a, k \in \mathbb{Z}$ 
 $M = 2 * 3 * 5 * 7 * \cdots * P_n$ 

Consequences of the structure:

- 1. Fingerprint
- 2. Entropy loss

3. Factorization is possible

Entropy in a prime

Infineon: a k determined by the structure

Random: random bits

Coppersmith: Partial knowledge of private key  $\Rightarrow$  full private key

- 1. Modulus
- 2. Unknown factors
- 3. Partial knowledge of prime p

4. Apply Coppersmith's attack



- $p = k * M + 65537^a \mod M$
- Guess **a** and compute **k** using Coppersmith's method



**a** is still too large – find a smaller M' (divisor of M)



## Attack complexity







Trusted Platform Modules (Data encryption, Platform integrity)





Message protection

(S-MIME, PGP)





Authentication

tokens











Secure browsing\* (TLS/HTTPS)

\*only a small number of vulnerable keys found

- Test public keys for fingerprint at roca.crocs.fi.muni.cz
- Revoke certificates of weak keys (services become unavailable)
- Change algorithm, e.g. ECC (must update infrastructure)
- Generate new, secure keys:
  - Firmware update (uncommon), replace the device (costly)
  - Import a secure keypair (requires trusted environment)
- **Temporarily** switch to less affected key lengths (e.g., 3936-bit)
  - Significantly reduced security level, attack may improve
- Additional risk management when a vulnerable key is detected

- End of Jan: Proof of Concept attack
- Feb 1st: Infineon notified
- Oct 10th: Microsoft Patch Tuesday
- Oct 16th: Public disclosure
- Oct 23rd: Tanja Lange & Daniel J.
   Bernstein announced a faster attack
- Vulnerable devices from 2007 found
- Oct 30th: Full paper published



Yup. Our 2048bit attack using @sagemath is now 5-25% faster than ROCA blog. 3fd6a53a3b6362248ac10de4a8108df3c839a 7193a96d0991c6675990599d917

12:34 AM - 23 Oct 2017

- Optimizations may weaken security
- Secret design  $\Rightarrow$  delayed discovery of flaws  $\Rightarrow$  increased impacts
- Reconsider the certification process
- Prevent a single point of failure
  - Secure multi-party computation
  - Collaborative RSA

Thank you for your attention