Universität Potsdam Institut für Physik und Astronomie Abgabe am 11. Juni 2020, 24 Uhr

V: Feldmeier Schwarz¹

Übungsaufgaben zur theoretischen Mechanik²

20 Punkte

SS2020: Übung 08

1. Hamilton- und Lagrangefunktion, Legendretransformation

8 Punkte

Die Hamiltonfunktion \mathcal{H} sei definiert als $\mathcal{H} = T + V$. Bestimmen Sie \mathcal{H} für

- a) den harmonischen Oszillator,
- b) das Fadenpendel für beliebige Auslenkungen,
- c) den freien Fall auf der Erde und
- d) das Keplerproblem!

Bestimmen Sie die entsprechenden Lagrangefunktionen per Legendretransformation.

<u>2.</u> Legendre-Trafo und Hamilton-Formalismus

6 Punkte

Ein System besitze die Lagrange Funktion

$$L(q, \dot{q}) = \ln(q + \dot{q})$$

- a) Bestimmen Sie die Hamilton-Funktion H(q, p) per Legendretransformation.
- b) Bestimmen Sie die kanonischen Gleichungen.
- c) Bestimmen Sie die allgemeine Lösung der kanonischen Gleichungen. Hinweis: Eine Lösung der Differentialgleichung $dy/dx + y = ae^{-x}$ $ist \ y(x) = xe^{-x}.$

<u>3.</u> Freies relativistisches Teilchen

6 Punkte

Die Hamilton-Funktion eines freien relativistischen Teilchens der Masse m lautet $H(p) = c\sqrt{p^2 + m^2c^2}$, wo c die Lichtgeschwindigkeit ist. Finden Sie die Lagrange-Funktion $L(\dot{q})$. Wie lauten die Ausdrücke für die Lagrange- und die Hamilton-Funktion im Grenzfall $|\dot{q}/c| \ll 1$?

¹udo.schwarz@uni-potsdam.de

²http://www.astro.physik.uni-potsdam.de/~afeld/2020SSMechanik.html http://www.astro.physik.uni-potsdam.de/~afeld/