基坑在线监测解决方案

监测背景:

城市基坑开挖具有施工风险高、施工难度大等特点。目前深圳、广州、东莞等地基坑施工的开挖越来越深,从最初的四到八米发展到目前最深已达二十多米。由于地下土体性质、荷载条件、施工环境的复杂性,单根据地质勘察资料和室内土工试验参数来确定设计和施工方案,往往含有许多不确定因素,对在施工过程中引发的土体性状、环境、邻近建筑物、地下设施变化的监测已成了工程建设必不可少的重要环节,同时也是指导正确施工的眼睛,是避免事故发生的必要措施,是一种信息技术。当前,基坑监测与工程的设计、施工同被列为深基坑工程质量保证的三大基本要素。

系统概述:

飞尚科技作为中国结构安全监测领导者,率先将结构健康监测与物联网结构体系、云计算、局域网/通讯网等多网无缝连接等技术结合,建立一套智能基坑在线监测系统,为基坑施工现场进行实时监测。基于云计算服务中心的监测系统可容纳上万个桥梁、隧道、边坡等结构物的监测数据,形成区域性结构健康监测平台,实现区域内的所有结构统一监控管理。

主要监测内容:

- 1. 支护结构
- 2. 相关自然环境
- 3. 施工工况
- 4. 地下水位状况
- 5. 基坑底部及周围土体

- 6. 周围建(构)筑物
- 7. 周围地下管线及地下设施
- 8. 其他应监测的对象

监测示意图:

监测项目一览表:

基坑监测	监测内容	监测仪器	测点布置
应项到目	围护侧墙水平 (竖向)位移	全站仪、压差式 变形测量传感 器	监测水平不宜大于 20m, 每边监测点数目 不宜少于 3 个,围护墙顶布置,水平竖向 点位共用
	土体深层水平位 移	导轮式固定测 斜仪	每边不宜少于一个围护墙体内、土体内布置
	锚杆内力	锚杆测力计	基坑每边中部、阳角处和地质条件复杂的 区段宜布置监测点
	支撑内力	轴力计	支撑端部
	地下水位	孔隙水压计	基坑内地下水位,宜布置在基坑中央和两相邻降水井的中间部位; 基坑外地下水位沿基坑周边建筑物、管线两者间以 20-50 米间距布设
	周边地表沉降	压差式变形测 量传感器	宜布置在管线的节点、转角点和变形曲率 较大的部位
	周边管线变形	压差式变形测 量传感器	沿重要管线每 5-15 米布设一个测点
	立柱沉降	压差式变形测 量传感器	布置在基坑中部、多根支撑交汇处、地质 条件复杂处的立柱上
	周边建筑、地表 裂缝	裂缝计	每条裂缝的监测点至少应设2个
选测项目	围护墙内力	钢筋计,内埋式 应变计	监测点数量和水平间距视具体情况而定
	孔隙水压力	孔隙水压计	竖向布置上测点宜在水压力变化影响深 度范围内按土层分布情况布设
	土体分层水平 (竖向)位移	分层沉降仪、导 轮式固定测斜 仪	每 10-20 米布设一处
	维护墙侧向土压 力	土压力盒	布置在受力、土质条件变化较大或其他有 代表性的部位

注: 可根据实际项目情况对传感器及布点进行优化

(周边建筑物监测一览表)

周边建筑 监测	监测项目	监测仪器	测点布置
应测 项目	周边建筑、 地表裂缝	裂缝计	每条裂缝的监测点至少应设2个
	周边建筑物 不均匀沉降	全站仪、压差式变 形测量传感器	布设间距 10-15 米
	周边建筑物 倾斜	盒式固定测斜仪	关键断面
	周边建筑物 水平位移	全站仪	一侧墙体的监测点不宜少于 3 点
选测 项目	地表建筑工 作环境	温湿度传感器	

实现功能:

- 1. 24 小时实时监测:通过对支护结构、地表沉降、围护桩倾斜等实时在线监测,实时掌握建筑基坑的结构变化。
- 2. 报表推送: 监测结果实时显示发布, 定期将监测报表推送给用户。
- 3. 多重分级预警:建立三级报警机制,当检测数据异常时,第一时间以短信、传真、广播等形式通知用户,实现综合预警功能。
- 4. 应急预案处理: 从专家系统中直接提取相应处理方法,及时采取人员介入、封锁道路等措施,将安全隐患消除在萌芽状态。
- 5. 结构趋势分析:通过对基坑施工期的监测数据分析与安全评价,可实现结构稳定性趋势分析。
- 6. 历史资料存储: 监测数据的存储, 为今后同类工程设计、施工提供类比依据。