Билеты по физике

Толстопятов А.А.

Историческое введение. Динамический, термодинамический и статистический методы описания систем большого числа частиц.

Древние идеи

Первые предположения о дискретном строении вещества возникли в глубокой древности. Их высказывали древнегреческие философы *Левкипп* и *Демокрит*, которые утверждали, что вселенная состоит из атомов и пустот.

XVII век

В XVII веке идеи о дискретном строении вещества возродил *П. Гассенди*. В 1660 году *Р. Бойль* выполнил опыты по сжимаемости газов и предложил объяснение наблюдаемых свойств на основе представления о мельчайших частицах — молекулах.

XIX век

В XVIII—XIX веках молекулярная теория строения вещества была развита в работах *М. В. Ломоносова*, Дж. Джоуля, *Р. Клаузиуса*, Дж. К. Максвелла и Л. Больцмана.

Они заложили основы молекулярно-кинетической теории, которая объясняет строение и свойства тел на основе закономерностей движения и взаимодействия молекул.

Современная малекулярная физика

В начале XX века молекулярная физика вступила в новый этап развития. В работах Ж. Перрена и Т. Сведберга, М. Смолуховского и А. Эйнштейна, посвящённых броуновскому движению

микрочастиц, были получены доказательства реальности существования молекул.

Статистический метод описания систем частиц

Статистический метод описания систем с большим числом частиц — это фундаментальный подход, который позволяет предсказывать макроскопические свойства вещества (давление P, температуру T, объем V, теплоемкость, энтропию и т.д.) на основе микроскопического строения (свойств атомов, молекул) и законов их движения, не отслеживая каждую частицу в отдельности.

Концепции метода

Фазовое пространство (Г-пространство) - это воображаемое многомерное пространство, по осям которого откладываются все обобщенные координаты $(q_1, q_2, ..., q_3N)$ и все обобщенные импульсы $(p_1, p_2, ..., p_3N)$ всех N частиц системы. Каждая точка в этом 6N-мерном пространстве (микроточка) полностью описывает микросостояние всей системы в данный момент.

Микросостояние Полное описание системы в данный момент времени через координаты и импульсы всех ее частиц. Соответствует одной точке в фазовом пространстве.

Макросостояние Описание системы через небольшое число макроскопических параметров E, V, N, P, T...

Одному макросостоянию соответствует огромное число Ω микросостояний, совместимых с заданными E, V, N.

Статистический ансамбль ЭТО мысленная совокупность копий физической огромного данной числа идентичных системы, находящихся в одинаковых макроскопических условиях E, V, NT, V, N(одинаковые или И т.д.), но, микросостояниях. Ансамбль представляет разных возможные способы, которыми система может реализовать свое макросостояние.

Статический метод использует функции распределения. Например использует среднюю квадратическую скорость распрееления молекул:

$$V_{\text{mid}}^2 = \frac{1}{N} \cdot \sum_{i=1}^{N}$$

Или импульсные характеристики определяющиеся как

$$p = \frac{n}{3}mV_{\text{mid}}^2, n \coloneqq \frac{dN}{d\vec{v}}$$

Основной постулат (Эргодическая гипотеза - в упрощенной форме):

Эргодическая гипотеза

Среднее по времени от некоторой величины для одной системы, наблюдаемой в течение достаточно длительного периода, равно среднему значению этой же величины по всем микросостояниям соответствующего статистического ансамбля в данный момент времени. Это позволяет заменить невероятно сложное усреднение по времени на статистическое усреднение по ансамблю.

Статический Метод позволяет рассчитывать

- Уравнение состояния *P*, *V*, *T* (например, вывод уравнения Клапейрона-Менделеева для идеального газа, уравнений Вандер-Ваальса для реального газа).
- Теплоемкость C_v , C_p для газов, твердых тел (модель Эйнштейна, Дебая).
- Распределение частиц по энергиям, скоростям, координатам.
- Термодинамические потенциалы, Внутреннюю энергию U, энтропия S, свободная энергия F, Гиббса G.
- Условия фазовых переходов и свойства фаз.

• Явления переноса (в рамках неравновесной статистики): коэффициенты вязкости, теплопроводности, диффузии.

Динамический метод описания систем большого числа частиц

Вместо статистического усреднения по ансамблю состояний, динамический метод прямо решает уравнения движения (как правило, классические уравнения Ньютона) для каждой частицы в системе (атома, молекулы) на протяжении определенного интервала времени.

Цель метода — это получение траектории всех частиц и, анализируя их, вычисление интересующих свойств системы.

Детали работы динамического метода

- 1. Задание начальных условий
- 2. Разрешение дифференциальных уравнений движения
- 3. Управление темпиратурой и давлением
- 4. Прогон системы

Задание начальных условий:

- Установка системы отсчета в трехмерном пространстве. (Устанавливаются начальные координаты $(x_0; y_0; z_0)$)
- Устанавка направлений. (Устанавливаются направления скорости или импульса исследуемого тела: $\vec{v} = \{x, y, z\}$ или $\vec{p} = m\vec{v}$)

Решение дифференциальных уравнений:

• Для каждой частицы i с массой m_i решается уравнение Ньютона:

$$F_i = m_i a_i = m_i \cdot \frac{d^2 r_i}{dt^2}$$

• Сила F_i вычисляется как сумма сил от всех других частиц j в системе:

$$F_i = -S_j(\nabla(V(r_{i,j})))$$

Градиент потенциала $\nabla(V(r_{i,j}))$ дает силу, действующую на i от j.

• Алгоритмы интегрирования решают дифференциальные уравнения движения численно, с дискретным шагом по времени Δt (фемтосекунды, 10^{-15} c).

Масса и размеры молекулы. Число Авогадро. Молярная масса. Потенциальная энергия взаимодействия молекул.

Масса и размеры молекулы –

Число Авогадро — это величина, численно равная количеству структурных единиц в 1 моле вещества.

$$n_A = 6.02214076 \cdot 10^{23}$$
 [моль]

Встречается в молекулярной физике число Авогадро в определении константы Больцмана

$$R = kN_A$$

Молярная масса — отношение массы вещества к его количеству. Численно равна массе одного моля вещества.

$$M = \left[\frac{\mathrm{K}\Gamma}{\mathrm{MOЛЬ}}\right]$$

Потенциальная энергия взаимодействия молекул

Давление газа на стенку сосуда. Основное уравнение молекулярнокинетической теории идеального газа.

Вывод Основного уравнения МКТ

Рассмотрим удар молекулы о стенку сосуда. Изменение импульса молекулы при упругом ударе о стенку: $\Delta p = 2mv_{\chi}$ (если стенка перпендикулярна оси х).

Сила, действующая на стенку со стороны одной молекулы:

$$F_i = \frac{\Delta p}{\Delta t} = \frac{2mv_x}{2\frac{L}{v_x}} = \frac{mv_x^2}{L}$$

где L — размер сосуда в направлении x. Это будет Время между ударами одной молекулы о одну и ту же стенку)

$$\Delta t = 2\frac{L}{v_x}$$

Тогда, полная сила от всех молекул определяется

$$F = \sum_{i=1}^{N} m \frac{v_{xi}^2}{L}$$

Давление определяется отношением вектора силы к площади поверхности:

$$P = \frac{F}{S} = \frac{F}{L^2}$$

Замена переменных

$$P = \left(rac{1}{L^3}
ight) \cdot \sum_{i:=1}^N m v_{xi}^2 = \left(rac{m}{V}
ight) \cdot \Sigma v_{xi}^2$$
, где $V = L^3$ $\sum_{i:=1}^N v_{xi}^2 = N \cdot < v_x^2 >$

В данном случае $< v_x^2 >$ — средний квадрат проекции скорости.

В рассмариваемой системе движение хаотичное, соответственно уравнение скоростей будет определено следующим образом:

$$< v_x^2 > = < v_y^2 > = < v_z^2 > = \frac{< v^2 >}{3}$$

.

Получаем:

$$P = \left(\frac{m}{V}\right) \cdot N \cdot \frac{\langle v^2 \rangle}{3} = \left(\frac{1}{3}\right) \cdot \left(N\frac{m}{V}\right) \cdot \langle v^2 \rangle$$

Учитывая, что $\frac{Nm}{V} = \rho = \frac{M}{V}$, а также что $n = \frac{N}{V}$ — концентрация, можно записать уравнение в следующем виде:

$$P = \frac{1}{3}nm < v^2 >$$

Состояние термодинамического равновесия. Термодинамические параметры. Термометр. Температура, температурные шкалы: Цельсия, Кельвина, Реомюра, Фаренгейта.

Температура

Темпиратура — это мера средней кинетической энергии поступательного движения молекул

Состояние термодинамического равновесия

Состояние термодинамического равновесия (равновесное состояние) — состояние термодинамической системы, в котором макроскопические параметры системы (температура, давление, объём, энтропия) не изменяются во времени при условии изоляции от окружающей среды.

Изолированная система самопроизвольно приходит в состояние термодинамического равновесия через достаточно большой промежуток времени.

Переход в состояние равновесия называется релоксацией.

Свойства

- В системе отсутствуют потоки энергии, вещества, импульса.
- Достигнуто равновесие во всех химических реакциях: скорость каждой реакции в прямом направлении сравнялась со скоростью обратной.
- Величины, которые не фиксируют заданные условия, могут испытывать малые колебания относительно своих средних значений (флуктуации).

остальное хз

Уравнение Клайперона - Менделеева. Законы Бойля-Мариотта, Гей-Люссака, Шарля. Парциальное давление, закон Дальтона

Вывод уравнения Менделеева-Клапейрона через уравнение МКТ

Основное уравнение МКТ было выведено в предыдущем билете. Здесь рассматривается его одна из форм

$$P = \frac{1}{3}nm_0 < v^2 > = \frac{2}{3}\frac{m_0 < v^2 >}{2} = \frac{2}{3}n < E_k >$$

Рассматривая среднюю кинетическую энергию, необходимо определить понятие температуры газа.

$$P = \frac{2}{3}n\frac{3}{2}k_BT = nk_BT$$

Необходимо перейти к количеству вещества от концентрации. В данном уравнении n подразумевает собой концентрацию частиц.

$$n = \frac{N}{V} = \frac{\nu N_A}{V} \Rightarrow P = \frac{\nu N_A}{V} k_B T$$

Из предыдущем билете было написано, что постоянная Больцмана определяется произведением числа Авогадро на число степеней свободы

$$R = kN_A \Rightarrow P = \frac{v(N_A k_B)}{V}T = P = \frac{vR}{V}T$$

Остается только переставить компоненты в канонический вид:

$$PV = \nu RT$$

Основные газовые Законы

Закон Бойля-Мариотта (Изотермический процесс)

Закон Бойля-Мариотта утверждает, что при фиксированной температуре соотношение давлений и объемов газа в разных состояниях одинаково

$$P_1V_1 = P_2V_2(T = const)$$

Закон Гей-Люссака (Изобарный процесс)

Закон Гей-Люссака утверждает, что при фиксированном давлении газа отношение характеристик разных состояний одинаковы

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}(P = \text{const})$$

Закон Шарля (Изохорный процесс)

Закон Шарля утверждает, что при фиксированном объеме газа, отношение характеристик одинаковы

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}(V = \text{const})$$