MODERN CRYPTOGRAPHY

Bachelor Computer Science, University of Amsterdam, 2020/21 TEACHER: Christian Schaffner, TA: Jana Sotáková, Aron van Baarsen

Problem Set 7

Problem 1: Not a PRF

Consider the keyed function $H:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^{2n}$ defined as: $H_k(x) = G(k) \oplus G(x)$, where $G:\{0,1\}^n \to \{0,1\}^{2n}$ is a pseudorandom generator.

- (a) Describe and formally analyze an explicit attack showing that H is not a PRF.
- (b) Is there a successful attack making a single query that distinguishes H_k (for random k) from a random function $f: \{0,1\}^n \to \{0,1\}^{2n}$? Why or why not?

Problem 2: A randomized variable-length MAC from a PRF

Let F be a pseudorandom function. Show that the following MAC is insecure for variable-length messages. Gen outputs a uniform $k \in \{0,1\}^n$. Let $\langle i \rangle$ denote an n/2-bit encoding of the integer i.

To authenticate a message $m = m_1 \| \dots \| m_\ell$, where $m_i \in \{0, 1\}^{n/2}$, choose a uniform $r \leftarrow \{0, 1\}^n$, compute $t := F_k(r) \oplus F_k(\langle 1 \rangle \| m_1) \oplus \dots \oplus F_k(\langle \ell \rangle \| m_\ell)$ and let the tag be (r, t).

Problem 3: Cryptographic Mechanisms

For each of the following, identify the most appropriate cryptographic mechanism(s) (from among private-key encryption, pseudorandom generators, pseudorandom functions, message authentication codes, hash functions, public-key encryption, or digital signatures) for addressing the problem. Points will be deducted if you list extraneous mechanisms. Explain your answer in 1-2 sentences.

- (a) A company wants to distribute authenticated software updates to its customers.
- (b) A user wants to ensure secrecy of the files stored on his hard drive.
- (c) A customer wants to send his credit card number (confidentially) to a merchant over the web to complete a purchase.
- (d) A general wants to send a message to a lieutenant, and wants to ensure both confidentiality and integrity.
- (e) A client wants to store a short record of a large file he uploads to a server, so that the client can verify that the file has not been altered when it downloads the file later.
- (f) A user needs 1,000,000 random bits in order to run a simulation, but obtaining truly random bits is expensive.

Problem 4: Mode of Encryption

Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher, and consider the following mode of encryption: to encrypt an ℓ -block message m_1, \ldots, m_ℓ using key k, choose uniform $c_0 \in \{0,1\}^n$ and then for $i=1,\ldots,\ell$ set $c_i := F_k(m_i) \oplus c_{i-1}$. Output the ciphertext $c_0, \ldots c_\ell$.

- (a) How would decryption of a ciphertext c_0, \ldots, c_ℓ be done?
- (b) Is this scheme EAV-secure? If yes, give a proof; if not, describe an explicit attack.
- (c) Is this scheme CPA-secure? Provide a brief justification of your answer.

Problem 5: Breaking El Gamal Encryption with a Quantum Computer

Recall that the El Gamal encryption scheme is given as follows: The key generation algorithm Gen on input 1^n generates a triple (G,q,g) where G is a cyclic group of order q and g is a generator of G. Then it chooses a uniform $x \leftarrow \mathbb{Z}_q$ and computes $h = g^x$. The public key is (G,q,g,h) and the private key is (G,q,g,x). The encryption algorithm Enc: on input a public key (G,q,g,h) and message m, chooses a uniform $y \leftarrow \mathbb{Z}_q$ and

- outputs $\langle g^y, h^y \cdot m \rangle$. Decryption Dec: on input private key (G, q, g, x) and ciphertext $\langle c_1, c_2 \rangle$ computes $\hat{m} = c_2/c_1^x$.
- (a) Give a sufficient condition under which the El Gamal scheme is CPA secure.
- (b) Assume you have oracle access to a quantum computer that can efficiently calculate discrete logarithms in *G* with respect to the generator *g*. Give an explicit CPA attacker on this scheme.

For the next two subexercises, consider the specific case of the cyclic group $\mathbb{G}=\mathbb{Z}_{37}^*$ with generator g=2. Assume x=6 is chosen during the key generation.

- (c) What are the actual values of q and h in the resulting public key $pk = \langle \mathbb{G}, q, g, h \rangle$? Show your calculations.
- (d) Using the public key from the previous part, encrypt the message m=7. You can assume any randomness y that you want.

Problem 6: Padded RSA

- Let $\tilde{\Pi}=(\tilde{\mathsf{Gen}},\tilde{\mathsf{Enc}},\tilde{\mathsf{Dec}})$ be the plain RSA encryption scheme for 2n bit messages, and consider the padded encryption scheme $\Pi=(\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$ where $\mathsf{Gen}=\tilde{\mathsf{Gen}}.$ To encrypt a plaintext $m\in\{0,1\}^n$, sample $r\leftarrow\{0,1\}^n$ and output $\tilde{\mathsf{Enc}}_{\mathsf{pk}}(m\|r).$ Decryption is done by decrypting with $\tilde{\mathsf{Dec}}_{\mathsf{sk}}$ and outputting the first half of the resulting string.
- (a) Find a chosen-ciphertext attack on Π . Give a precise description of an adversary \mathcal{A} , using the notation introduced for the indistinguishability experiments. Avoid imprecise verbose descriptions. Calculate the success probability \mathcal{A} .