

Tunowalność algorytmów

Agata Kopyt, Zuzanna Kotlińska

Tunowalność

Elastyczność w dostosowywaniu parametrów modelu w celu optymalizacji jego wydajności. Im większa tunowalność algorytmu, tym łatwiej dostosować go do różnych zestawów danych i problemów poprzez modyfikację hiperparametrów.

Eksperyment

Przeanalizowanie tunowalności hiperparametrów dla trzech różnych algorytmów uczenia maszynowego oraz czterech różnych zbiorów danych.

Dane

- Źródło: OpenML,
- Użyte w eksperymencie zbiory:
 - 1. kc2,
 - 2. fri-c2-500-25,
 - 3. breast-2,
 - 4. diabetes.
- Wszystkie wykorzystane zbiory danych służą do zadania klasyfikacji.

Modele

- Random Forest,
- Elastic Net,
- Decision Tree.

Metody samplingu

Random search

metoda oparta na wyborze punktów z rozkładu jednostajnego, w której wartości hiperparametrów są wybierane losowo z siatki.

Bayes Optimization

metoda oparta na technice bayesowskiej, wykorzystująca model probabilistyczny do przewidywania, które kombinacje hiperparametrów są najbardziej optymalne.

Siatki hiperparametrów

Hiperparametr	Тур	Wartości
n_estimators	integer	[1, 2000]
criterion	string	gini, entropy
max_depth	integer	[3, 10]
min_samples_split	integer	[2, 10]
min_samples_leaf	integer	[1, 10]
bootstrap	logical	True, False
max_samples	numeric	[0, 1]

Tabela: Zestaw hiperparametrów dla Random Forest

Siatki hiperparametrów

Hiperparametr	Тур	Wartości
alpha	numeric	2 ^x dla x ∈ [-10, 10]
l1_ratio	numeric	[0, 1]

Tabela: Zestaw hiperparametrów dla Elastic Net

Siatki hiperparametrów

Hiperparametr	Тур	Wartości
max_depth	integer	[1, 30]
max_features	string	None, log2, sqrt
criterion	string	gini, entropy
splitter	string	best, random
min_samples_split	integer	[1, 60]
min_samples_leaf	integer	[1, 60]

Tabela: Zestaw hiperparametrów dla Decision Tree

Trening i ewaluacja

- Znalezione zostało 100 różnych zestawów hiperparametrów dla każdego zbioru danych, metody samplingu i modelu uczenia maszynowego.
- Metryka do ewaluacji: ROC AUC.
- Wzór, według którego liczona jest tunowalność dla danego algorytmu, dla j-tego zbioru danych:

$$d^{(j)} \coloneqq R^{(j)}(\boldsymbol{\theta}^*) - R^{(j)}(\boldsymbol{\theta}^{(j)*})$$

Wyniki

Random Search - AUC

Bayesian Optimization - AUC

Tunowalność

Tunowalność

Wnioski

- Decision Tree okazał się najbardziej tunowalnym algorytmem,
- Korzystając z defaultu dla Elastic Net, występują szczególne przypadki, dla których default znacząco pogorszy wyniki,
- Korzytsanie z defaultu dla Random Forest i Elastic Net ma sens, jeśli niewielka poprawa dokładności modelu nie jest istotna,
- Nie można jednoznacznie stwierdzić wpływu metody strojenia parametrów na tunowalność algorytmu.

Źródła

Testowane zbiory danych pochodzą z OpenML:

https://www.openml.org

Siatki hiperparametrów oraz wzór na tunowalność wykorzystany w eksperymencie pochodzi z poniższego artykułu:

https://jmlr.org/papers/volume20/18-444/18-444.pdf

