Differential Equations Standards Module C: How can we solve and apply linear constant coefficient ODEs?	
	Constant coefficient first order. I can find the general solution to a first order constant coefficient ODE.
□ □ C3.	Homogeneous constant coefficient second order. I can find the general solution to a homogeneous second order constant coefficient ODE.
□ □ C4.	Non-homogenous constant coefficient second order. I can find the general solution to a non-homogeneous second order constant coefficient ODE
□ □ C5.	IVPs. I can solve initial value problems for constant coefficient ODEs
	Modeling motion in viscous fluids. I can model the motion of a falling object with linear drag
□ □ C7.	Modeling oscillators. I can model free mechanical oscillators with a second order ODE
Module	S: How can we solve and apply systems of linear ODEs?
	Solving systems. I can solve systems of constant coefficient ODEs Modeling interacting populations. I can model the populations of two interacting populations with a
	system of ODEs
⊔ ⊔ S3.	Modeling coupled oscillators. I can model systems of coupled mechanical oscillators using a system of ODEs
Module	F: How can we solve and apply first order ODEs?
□ □ F1.	Separable ODEs. I can find the general solution to a separable first order ODE
□ □ F2.	Autonomous ODEs. I can find and classify the equillibria of an autonomous first order ODE, and describe the long term behavior of solutions
□ □ F3.	First order linear ODEs. I can find the general solution to a first order linear ODE
□ □ F4.	Exact ODES. I can find the general solution to an exact first order ODE
□ □ F 5.	Modeling motion. I can model the motion of an object with quadratic drag
Module	N: How can we use numerical approximation methods to apply and solve unsolvable ODEs?
□ □ N 1.	First Order Existence and Uniqueness. I can determine when a unique solution exists for a first order ODE
□ □ N 2.	Second Order Linear Existence and Uniqueness. I can determine when a unique solution exists for a second order linear ODE
□ □ N 3.	Systems Existence and Uniqueness. I can determine when a unique solution exists for a system of first order ODEs
□ □ N 4.	Euler's method for first order ODES. I can use Euler's method to find approximate solution to first order ODEs
□ □ N 5.	Euler's method for systems. I can use Euler's method to find approximate solutions to systems of first order ODEs
Module	D: How can we solve and apply ODEs involving functions that are not continuous?
□ □ D1 .	Laplace Transform. I can compute the Laplace transform of a function
$\square \square \mathbf{D2}.$	Discontinuous ODEs. I can solve initial value problems for ODEs with discontinuous coefficients
□ □ D3 .	Modeling non-smooth motion. I can model the motion of an object undergoing discontinuous accel-

 \square D4. Modeling non-smooth oscillators. I can model mechanical oscillators undergoing discontinuous accel-

eration