

VICERRECTORÍA ACADÉMICA
DIRECCIÓN NACIONAL DE ADMISIONES

OCTUBRE 03 DE 2009

MATEMÁTICAS Preguntas 1 a 20

- 1. Si a, b, c son números primos diferentes y $n = \frac{a^{-1}b^{-3}}{a^{-2}b^{-4}c^{-2}}$, es correcto afirmar que
 - A. n es entero.
 - B. n es un número primo.
 - C. n es un racional negativo.
 - D. n es irracional.
- 2. Un almacén distribuye computadores de dos marcas (1 y 2). Durante el mes de diciembre uno de sus vendedores vendió 60 computadores. Por cada tres computadores de la marca 1 vendió dos de la marca 2. Si recibió una comisión de \$10.000 por cada computador de la marca 1 y una comisión de \$20.000 por cada computador de la marca 2, la comisión total que recibió en el mes de diciembre fue
 - A. \$60.000
 - B. \$120.000
 - C. \$840.000
 - D. \$720.000
- 3. Se define la siguiente operación entre números enteros: $m\star n=m^2n-1$, donde m^2n denota el producto usual de m^2 y n. Es correcto afirmar que
 - $\text{A. } m \star n < 0 \quad \text{s\'olo si} \quad m < 0 \quad \text{y} \quad n < 0.$
 - B. si $m \star n = 0$, entonces n = 1.
 - C. $m \star n$ es impar sólo si m = 2.
 - D. si $m \star n = 1$, entonces m = 1 y n = 1.
- 4. En una empresa el costo de producir un computador es c. Si se venden y computadores con un precio de v cada uno, entonces la expresión correcta para la ganancia g es
 - A. g = y(v+c)
 - B. g = vy c
 - C. g = c vy
 - D. g = y(v c)
- 5. Considere las siguientes proposiciones relacionadas con soluciones de ecuaciones:
 - (1) La ecuación $\frac{1+2x}{1+x} = \frac{x}{1+x}$ no tiene solución en el conjunto de los números reales.
 - (2) La ecuación $\sqrt{x^2-9}=4$ tiene exactamente 2 soluciones reales.

De las proposiciones es correcto afirmar que

- A. (1) es verdadera, (2) es falsa.
- B. (1) y (2) son falsas.
- C. (1) y (2) son verdaderas.
- D. (2) es verdadera y (1) es falsa.

- 6. Los 70 empleados de una empresa están divididos en clase A y clase B. La empresa paga una prima de \$20.000 a los empleados de clase A y de \$10.000 pesos a los de clase B. Si el pago total de la prima es de \$1'200.000, entonces el número total de empleados de clase A es
 - A. 20
 - B. 30
 - C. 40
 - D. 50
- 7. Considere las siguientes proposiciones:
 - (1) Las diagonales de un cuadrilátero pueden ser perpendiculares.
 - (2) Un cuadrilátero puede tener todos sus ángulos obtusos.

De las proposiciones es correcto afirmar que:

- A. (1) es verdadera, (2) es falsa.
- B. (1) y (2) son verdaderas.
- C. (1) y (2) son falsas.
- D. (1) es falsa, (2) es verdadera.
- 8. Sean PQR y STU dos triángulos tales que el ángulo en Q es congruente con el ángulo en T. Una condición *suficiente* para que los triángulos sean semejantes es

A.
$$\frac{PR}{SU} = \frac{QR}{TU}$$

$$\mathsf{B.} \ \frac{PQ}{ST} = \frac{QR}{TU}$$

$$\mathsf{C.} \ \frac{PQ}{ST} = \frac{PR}{SU}$$

D.
$$\frac{PR}{TU} = \frac{QR}{SU}$$

9. En la figura aparece un polígono regular de doce lados inscrito en una circunferencia de radio r. La longitud de cada lado del polígono es

A.
$$\frac{\pi r}{12}$$

B.
$$\frac{\pi r}{6}$$

C.
$$r\sqrt{2+\sqrt{3}}$$

D.
$$r\sqrt{2-\sqrt{3}}$$

10. Los ángulos de elevación de un globo desde dos puntos A y B son 30° y 60° respectivamente. Si la distancia entre estos dos puntos es de 50~m, el globo se halla a una altura de ______ m sobre el suelo.

C.
$$25\frac{\sqrt{3}}{3}$$

- 11. De todos los triángulos rectángulos de hipotenusa dada, el de mayor área es un triángulo
 - A. cuyos catetos están en la proporción 2 a 1.
 - B. isósceles.
 - C. escaleno.
 - D. equilátero.
- 12. Suponga que $\sin \alpha = \frac{1}{5}$ y $\tan \alpha < 0$. Es correcto afirmar que $\cos \alpha$ es igual a

A.
$$-\frac{\sqrt{24}}{5}$$

B.
$$\frac{4}{5}$$

$$\mathsf{C.} \ \frac{\sqrt{24}}{5}$$

D.
$$-\frac{4}{5}$$

13. La relación correcta entre cosecante y cotangente está dada por:

A.
$$\csc^2 \alpha + \cot^2 \alpha = 1$$

B.
$$\cot^2 \alpha = \csc^2 \alpha - 1$$

C.
$$\csc^2 \alpha + \cot^2 \alpha = -1$$

D.
$$\cot^2 \alpha = \csc^2 \alpha + 1$$

- 14. El mínimo valor positivo de x para el cual la expresión $y = \sin 3x$ toma su valor máximo es
 - A. $\frac{\pi}{6}$
 - B. $\frac{\pi}{12}$
 - C. $\frac{\pi}{2}$
 - D. $\frac{5\pi}{6}$
- 15. El período de la función definida por $f(x) = 3\cos(\pi x + 5) 8$ es
 - A. 3
 - B. 5
 - C. 8
 - D. 2
- 16. De las siguientes gráficas la que corresponde a y=f(x), donde f es una función polinómica de grado tres es

Α.

В.

C.

D.

- 17. De las gráficas de las funciones definidas por $f(x)=4(x-1)^2+3$ y $g(x)=4(x+1)^2+3$ es correcto afirmar que
 - A. tienen el mismo vértice.
 - B. una es abierta hacia arriba y la otra es abierta hacia abajo.
 - C. se cortan en un punto.
 - D. las dos tienen puntos de corte con el eje x.
- 18. Un caficultor que exporta la misma cantidad de café durante los meses 1, 2 y 3 recibe su pago en pesos colombianos.

Teniendo en cuenta los gráficos, es correcto afirmar que recibe

- A. más pesos en el mes 1.
- B. más pesos en el mes 2.
- C. la misma cantidad de pesos los tres meses.
- D. más pesos en el mes 3.
- 19. Al lanzar una vez un par de dados, la probabilidad de que salgan dos números consecutivos es:
 - A. $\frac{10}{21}$
 - B. $\frac{10}{36}$
 - C. $\frac{5}{21}$
 - D. $\frac{5}{36}$
- 20. En una bolsa se tienen 3 bolas rojas, 4 bolas blancas y 4 bolas azules. Se saca una bola al azar y ésta es de color azul. Si esta bola no se devuelve a la urna, ahora es más probable sacar al azar una bola ______ que una bola ______ .
 - A. blanca azul
 - B. azul blanca
 - C. roja azul
 - D. azul roja

FIN