中国科学技术大学数学科学学院 2021—2022 学年第一学期期末考试试卷

课程	名称 <u>分析 (III)</u>	班级 20 级中法	班	
考试时间	2022年1月10日	考试形式	闭卷	
姓名	学号	学院		

第一部分:概念题(40分,每小题8分)

(1.1) 设 $C^{\infty}(\mathbb{R})$ 表示 \mathbb{R} 上的光滑函数全体。定义一个距离函数 d,使得 $f_i \in C^{\infty}(\mathbb{R})$ 在距离意义下收敛,当且仅当,对于任何 K>0, f_i 及其不超过 K 阶的导数在 [-K,K] 上一致收敛。(不用证明。)

$$d(f,g) = \sup_{n \in \mathbb{N}} \min \left\{ 2^{-n}, \sup_{t=n,n} |f-g|^{(n)} \right\}$$

(1.2) 叙述覆叠映射 (covering map) 的定义,并证明它一定是开映射 (open map)。

(1.3) 用 $S(\mathbb{R})$ 表示 \mathbb{R} 上的速降函数类,设 $f \in S(\mathbb{R})$ 。计算函数 g(x) = f''(4x+1) 的 Fourier 变换。(用 f 的 Fourier 变换 \hat{f} 表示。)

$$\hat{g}(\xi) = \int_{-\infty}^{\infty} q(x) e^{-2\pi i \alpha \cdot \xi} dx = \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$\hat{g}(\xi) = \int_{-\infty}^{\infty} q(x) e^{-2\pi i \alpha \cdot \xi} dx = \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$\hat{g}(\xi) = \int_{-\infty}^{\infty} q(x) e^{-2\pi i \alpha \cdot \xi} dx = \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x+1) e^{-2\pi i \alpha \cdot \xi} dx$$

$$= \int_{-\infty}^{\infty} f'(4x$$

(1.4) 将 $n \times n$ 实系数矩阵自然的等同于 \mathbb{R}^{n^2} 。设 B 是一个固定的矩阵,问所有和 B 可交换的矩阵全体是不是一个子流形?为什么?

(1.5) 设 $E = \{u \in C^2([0,1],\mathbb{R}) | u(0) = u(1) = 0\}$. 推导在约束条件

$$\frac{1}{2}$$
 (u) = $\int_0^1 u^2 dx = 1$

下, u₀ 取到函数

$$\Phi(u) = \int_0^1 |u'|^2 + u^4 dx$$

最小值的必要条件。(Lagrange 乘子法,要计算过程,不要证明。)

$$\underline{\Phi}'(u) \cdot v = \int_{0}^{1} 2u'v' + 4u^{3}v \, dx$$

$$\underline{\Psi}'(u) \cdot v = \int_{0}^{1} 2uv \, dx = 0$$

Lagrange \$21212 FLER 17

$$\int_0^1 2u'v' + 4u^2v - 2\lambda uv dx = 0$$

中での任意性

第二部分:基础题(45分,每小题15分)

(2.1) 设 $(A_i)_{i\in\mathbb{N}}$ 是 \mathbb{R}^n 中的一列无内点闭集,求证: $\bigcup_i A_i$ 无内点。

(もと)

.

(2.2) 设 $p: Y \to X$ 是一个G-covering,而且有 $y_1, y_2 \in Y$ 满足 $p(y_1) = p(y_2) = x_\circ$ 求证: $p_*(\pi_1(Y, y_1)) = p_*(\pi_1(Y, y_2)).$

并且这是 $\pi_1(X,x)$ 的正规子群。

(2.3) 设 Ω 是平面 \mathbb{R}^2 上的区域。光滑函数 $f:\mathbb{R}^2 \to \mathbb{R}$ 称为调和函数,若它满足

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$

另一个光滑函数g称为f的共轭调和函数,若它满足

$$\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y}; \qquad \frac{\partial f}{\partial y} = -\frac{\partial g}{\partial x}.$$

求证:

- (1) g是调和函数。
- (2) 若Ω是 , 则任何调和函数都有共轭调和函数,而且在相差一个常数的意义下唯一。
- (3)举例表明对于一般的Ω上述命题未必成立。

(1)
$$\frac{\Delta x_3}{a_3 a_4} = -\frac{\Delta x_3 a_4}{a_3 a_4} = \frac{\Delta x_3 a_5}{a_3 a_4} \Rightarrow 3a = 0$$

(a).
$$\langle \omega \rangle = -\frac{2f}{2g} dx + \frac{2f}{2x} dy$$

$$d\omega = (2f) dxdy = 0$$
Pohorue $\langle \omega \rangle = 0$

$$i.e. \qquad \partial \omega = -\frac{2f}{2g} dx + \frac{2f}{2x} dy$$

$$i.e. \qquad \partial \omega = -\frac{2f}{2g} dx + \frac{2f}{2x} dy$$

$$06-4e \; \exists \forall x \in \mathbb{R}^{2d}$$

(3). 取
$$\Omega = \mathbb{R}^2 \setminus \{0\}$$

取 $f = \log r$ $r = \int x + y^2$
(强证)

第三部分:提高题(15)分)

- (3.1) S^2 表示 \mathbb{R}^3 中的单位球面,用 (x,y,z) 表示 \mathbb{R}^3 中的坐标。 $(1) \ (4\ \mathcal{H})\ \text{什么样的}\ f:S^2\to\mathbb{R}\ \text{能够满足}\ (作为\ S^2\ \text{上的微分形式})$

$$dx \wedge df = 0$$
?

月 (水田) 本学数10种面

$$S = 2 - x_{x} \cos \theta$$

$$S = 2 - x_{x} \cos \theta$$

在 (4.8) 4437 11年

$$dx \wedge df = dx \wedge \left(\frac{\partial f}{\partial f} dx + \frac{\partial f}{\partial f} d\theta\right) = \frac{\partial g}{\partial f} \wedge d\theta = 0$$

→ f共05年<u>值</u>.

(3.2) 定义C2中的子集

$$X = \left\{ (z, w) | \quad z^6 = w^2; \quad w \neq 0 \right\}.$$

- (1) (3分) 证明: *X*是**X**形。
- (2) (2分)设 $p: X \to \mathbb{C} \setminus \{0\}$ 定义为p(z, w) = w,求证: p是一个covering map.
- (3) (2分) 若x = (1,1), 求 $\pi_1(X,x)$.

(i):
$$f \cdot C^2 \rightarrow C$$

 $f(z,w) = z^6 - w^2$
 $\forall (z_0,w_0) \in X$. $w_0 \neq 0$, $\frac{2f}{2w} = zw_0 \neq 0$ 病 体Tashi 表事 这

(2)
$$6 = w^2 \times 1 \left(e^{i \cdot \frac{k}{3} \pi} \cdot z \right)^6 = w^2 \quad k = 0.1, z, ... 5$$

Covering 的独立法据了,写几句这次张女子了。 不是不可以写起, 这种:中里 locally diffeo. R proper in 可以了。