

WING-NUS at CL-SciSumm 2017: Syntactic and Semantic Ranking for Provenance and Facet Identification

Animesh Prasad

School of Computing, National University of Singapore

Introduction

➤ Tasks:

- ➤ Task1a: Given citance, i.e. citation context from a Citing Paper (CP) referring to a Reference Paper (RP), identify the text in RP which is referred by the CP i.e. provenance
- ➤ Task1b: Typing the identified text in one or many of the possible discourse facet

> Prior Work

Almost all prior systems deploy TF-IDF to capture surface level closeness and different textual similarity features for semantic closeness

> Challenges

- ➤ Identifying correct reference text among huge noisy signal
- ➤ Prior work doesn't capture instances of implied/interpreted provenance with less surface level similarity

Proposed Technique

Score = α_1 (surface level closeness score) + α_2 (learned semantic relation score)

surface level closeness score = α'_1 (TF-IDF score) + α'_2 (LCS score) + α'_3 (Jaccard similarity) +

learned semantic relation score: Neural Ranking Model

Model

➤ Neural Ranking Model

- Use neural network to capture the underlaying relationship between the CP and RP texts
- > Find preferential score of all pair of the RP text with respect to the citance
- ➤ Use the overall counts of times a RP text is preferred as provenance over other as score (normalised by maximum as output score)

> Classification Model

- > We classify the identified provenance by using similar architecture as ranking model with log scaled inverse frequency class weights
- \triangleright Output all labels within δ probability difference of the output class

Results

> Scores on Dev Set (CL-SciSumm 2016 Test Set)

➤ Task 1a Development Setups

Setup Type	Р	R	F ₁	F ₁ All False
Classification	0.69	0.70	0.69	0.67
Preferential Ranking	0.75	0.73	0.75	0.50

➤ Task 1a Exact Match

	Р	R	F ₁
Micro	0.09	0.05	0.07

➤ Task 1b

	Р	R	F ₁
Micro	0.06	0.03	0.04

Discussions

> Practical Issues

- > Very high noise to signal ratio, correct RT difficult to identify even for humans
- > OCR errors further exacerbate the problem, more so for neural models
- ➤ Facet classification doesn't favour rare class identification as distribution is very skew

> Future Directions

- ➤ Addressing some of the practical issues
- > We haven't learned the α_i in the current approach but fixed it to empirically determined values which need to be trained jointly as parameters
- ➤ We only use TF-IDF and LCS, however in all the prior work other textual similarity features have been shown to give improvement, so those can be included to get better results