

Machine Learning

Lecture 3: Probabilistic Inference

Prof. Dr. Stephan Günnemann

Data Analytics and Machine Learning Technical University of Munich

Winter term 2020/2021

We flip the same coin 10 times:

Probability that the next coin flip is **T**?

We flip the same coin 10 times:

Probability that the next coin flip is \(\bar{\tau}\)?

$$\sim 0$$
 ~ 0.3 ~ 0.38 ~ 0.5 ~ 0.76 ~ 1

Every flip is random. So every sequence of flips is random, i.e., it has some probability to be observed.

E<u>very flip is random</u>. So every sequence of flips is random, i.e., it has some probability to be observed.

For the *i*-th coin flip we write

prob of observing
$$p_i(F_i = \mathbf{T}) = \theta_i$$

Such event

Every flip is random. So every sequence of flips is random, i.e., it has some probability to be observed.

For the *i*-th coin flip we write

$$p_i(F_i = \bigcirc) = \theta_i$$

To denote that the probability distribution depends on θ_i , we write

$$p_i(F_i = \mathbf{T} \mid \theta_i) = \mathsf{Ber}(F_i = \mathbf{T} \mid \theta_i) = \theta_i$$

i.e. $F_i \sim \mathrm{Ber}(\theta_i)$ discrete prob distribution of random variable

Note the i in the index! We are trying to reason about θ_{11} .

Section 1

Maximum likelihood estimation

All the randomness of a sequence of flips is governed (modeled) by the parameters $\theta_1, \ldots, \theta_{10}$:

given data so to say parameters
$$p\big(\textbf{HTHHTHHHTH} \mid \theta_1, \theta_2, \dots, \theta_{10}\big)$$

What do we know about $\theta_1, \dots, \theta_{10}$? Can we infer something about θ_{11} ? At first sight, there is no connection.

Find θ_i 's such that that $p(\mathbf{H} \mathbf{T} \mathbf{H} \mathbf{H} \mathbf{T} \mathbf{H} \mathbf{H} \mathbf{T} \mathbf{H}) \mid \theta_1, \theta_2, \dots, \theta_{10}$ is as high as possible. This is a very important principle:

Maximize the likelihood of our observation. (Maximum Likelihood)

????
$$p(\mathbf{H} \mathbf{T} \mathbf{H} \mathbf{H} \mathbf{T} \mathbf{H} \mathbf{H} \mathbf{T} \mathbf{H}) \mid \theta_1, \theta_2, \dots, \theta_{10})$$
 ????

We need to model this.

First assumption: The coin flips do not affect each other—independence.

Likelihood Fn
$$p(\mathbf{H}, \mathbf{T}, \mathbf{H}, \mathbf{H},$$

Notice the i in p_i, θ_i ! This indicates: The coin flip at time 1 is different from the one at time 2, . . .

But the coin does not change.

i.e. coin behaves in the same way, it is the same coin!

Second assumption: The flips are qualitatively the same—identical distribution.

$$\prod_{i=1}^{10} p_i(F_i = f_i \mid \theta_i) = \prod_{i=1}^{10} p(F_i = f_i \mid \theta)$$
 cutcome i

In total: The 10 flips are *independent and identically distributed*(i.i.d.). all samples stem from the same generative process, and the generative process is assumed to have no memory of the past generated samples.

Remember θ_{11} ? With the i.i.d. assumption we can link it to $\theta_1,\ldots,\theta_{10}$.

Now we can write down the probability of our sequence with respect to θ :

$$\begin{split} \prod_{i=1}^{10} p(F_i = f_i \mid \theta) &= (1-\theta)\theta(1-\theta)(1-\theta)\theta(1-\theta)(1-\theta)(1-\theta)\theta(1-\theta) \\ &= \theta^3(1-\theta)^7 \qquad \text{Likelihood of seq given parameters} \end{split}$$

In ML context, given previous data we are learning new data assuming both come from the same distribution.

Under our model assumptions (i.i.d.):

$$p(\underbrace{\mathbf{H}\mathbf{T}\mathbf{H}\mathbf{H}\mathbf{T}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{T}\mathbf{H}}_{\text{observed data, }\mathcal{D}} \mid \theta) = \theta^{3}(1-\theta)^{7}$$

Under our model assumptions (i.i.d.):

$$p(\underbrace{\mathbf{HTHHTHHTH}}_{\text{observed data, }\mathcal{D}} \mid \theta) = \theta^3 (1-\theta)^7$$

This can be interpreted as a function $f(\theta) := p(\mathcal{D} \mid \theta)$. We want to find the maxima (maximum likelihood) of this function.

Our goal

$$\theta_{\text{MLE}} = \operatorname*{arg\,max}_{\theta \in [0,1]} f(\theta)$$

We are not interested in maximizing the fn itself, but the argument that maximize such fn

Very important: the likelihood function is not a probability distribution over $\underline{\theta}$ since $\int p(\mathcal{D} \mid \theta) d\theta \neq 1$ in general.

comment on next slide

How do we maximize the likelihood function?

High-school math! Take the derivative $\frac{\mathrm{d}f}{\mathrm{d}\theta}$, set it to 0, and solve for $\underline{\theta}$. Check these *critical points* by checking the second derivative.

This is possible, but even for our simple $f(\theta)$ the math is rather ugly.

Can we simplify the problem?

Likelihood: is the chance that the reality you hypothesized could've produced the particular data you got.

In other words, likelihood is the probability of data given hypothesize.

Probability: is the chance that the reality you're considering is true, given the data you have.

How do we maximize the likelihood function?

High-school math! Take the derivative $\frac{\mathrm{d}f}{\mathrm{d}\theta}$, set it to 0, and solve for θ . Check these *critical points* by checking the second derivative.

This is possible, but even for our simple $f(\theta)$ the math is rather ugly. Instead

Can we simplify the problem?

Log is simpler!

Luckily, monotonic functions preserve critical points.

Maximum Likelihood Estimation (MLE) for any coin sequence?

Generally,

Maximum Likelihood Estimation (MLE) for any coin sequence?

$$\theta_{ ext{MLE}} = \frac{|T|}{|T| + |H|}$$

|T|, |H| denote number of \bigcirc , \bigcirc , respectively. (derivation in the exercise sheet)

Remember we wanted to find the probability the next coin flip is T

$$F_{11} \sim \mathsf{Ber}(\theta_{\mathrm{MLE}})$$

$$p(F_{11} = \bigcirc \mid \theta_{\mathrm{MLE}}) = \mathsf{Ber}(F_{11} = \bigcirc \mid \theta_{\mathrm{MLE}}) = \theta_{\mathrm{MLE}} = \frac{|T|}{|T| + |H|}$$

This justifies 30% as a reasonable answer to our initial question. Problem solved?!

Just for fun, a totally different sequence (same coin!):

 $\theta_{\rm MLE} = 0.$

But even a fair coin ($\theta = 0.5$) has 25% chance of showing this result!

The MLE solution seems counter-intuitive. Why?

Just for fun, a totally different sequence (same coin!): assuming

MLE does not take into account our prioir knowledge on how coins should behave.

$$heta_{
m MLE} = 0.$$
 getting Tale

But even a fair coin ($\theta = 0.5$) has 25% chance of showing this result!

The MLE solution seems counter-intuitive. Why?

We have prior beliefs:

"Coins usually don't land heads all the time"

How can we

- 1. represent such beliefs mathematically?
- 2. incorporate them into our model?

Section 2

Bayesian inference

How can we represent our beliefs about θ mathematically?

(Subjective) Bayesian interpretation of probability:

A prior distribution $p(\theta)$ represents our beliefs before we observe any data.

How can we represent our beliefs about θ mathematically?

(Subjective) Bayesian interpretation of probability:

Distribution $p(\theta)$ reflects our subjective beliefs about θ .

A prior distribution $p(\theta)$ represents our beliefs before we observe any data.

How do we choose $p(\theta)$? The only constraints are

- 1. It must not depend on the data
- 2. $p(\theta) \ge 0$ for all θ
- 3. $\int p(\theta) d\theta = 1$ i.e. proper continuous distribution

Properties 2 and 3 have to hold on the support (i.e., feasible values) of θ . In our setting, only values $\theta \in [0, 1]$ make sense.

This leaves room for (possibly subjective) model choices! this is quite flexible!

Some possible choices for the prior on θ :

This is subjective choice.

assuming bias coins where 20% coin would be head

The Bayes formula tells us how to we update our beliefs about θ after observing the data $\mathcal D$

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta) \cdot p(\theta)}{p(\mathcal{D})}$$

Here, $p(\theta \mid D)$ is the posterior distribution. It encodes <u>our beliefs</u> in the value <u>of</u> θ <u>after</u> <u>observing</u> data.

The posterior depends on the following terms:

- $p(\mathcal{D} \mid \theta)$ is the likelihood.
- $p(\theta)$ is the prior that encodes our beliefs before observing the data.
- $p(\mathcal{D})$ is the evidence. It acts as a normalizing constant that ensures that the posterior distribution integrates to 1.

posterior \propto likelihood \cdot prior

The Bayes formula tells us how to we update our beliefs about θ after observing the data $\mathcal D$

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta) \cdot p(\theta)}{p(\mathcal{D})} \qquad \begin{aligned} & \mathsf{p}(\Theta, \mathsf{D}) = \mathsf{p}(\Theta \mid \mathsf{D}) \cdot \mathsf{p}(\mathsf{D}) \\ & = \mathsf{p}(\mathsf{D} \mid \Theta) \cdot \mathsf{p}(\Theta) \end{aligned}$$

Here, $p(\theta \mid \mathcal{D})$ is the posterior distribution. It encodes our beliefs in the value of θ after observing data.

The posterior depends on the following terms:

- $p(\mathcal{D} \mid \theta)$ is the likelihood.
- $p(\theta)$ is the prior that encodes our beliefs before observing the data.
- $p(\mathcal{D})$ is the evidence. It acts as a normalizing constant that ensures that the posterior distribution integrates to 1. Usually we are not interested in it!

 $\mathsf{posterior} \propto \mathsf{likelihood} \cdot \mathsf{prior}$

Usually, we define our model by specifying the <u>likelihood and the prior</u>. We can obtain the <u>evidence</u> using the <u>sum rule of probability</u>

$$p(\mathcal{D}) = \int p(\mathcal{D}, \theta) \, \mathrm{d} \theta = \int p(\mathcal{D} \mid \theta) p(\theta) \, \mathrm{d} \theta$$
 "marginalizing out Θ "

The Bayes formula tells us how to update our beliefs given the data

U

Note that the likelihood is scaled in the plots for better visibility.

Question: What happens if $p(\theta) = 0$ for some particular θ ?

Question: What happens if $p(\theta) = 0$ for some particular θ ?

Recall:

Question: What happens if $p(\theta) = 0$ for some particular θ ?

Recall:

Posterior will always be zero for that particular θ regardless of the likelihood/data.

Section 3

Maximum a posteriori estimation

Back to our coin problem: How do we estimate θ from the data?

In MLE, we were asking the wrong question

$$\theta_{\text{MLE}} = \underset{\theta}{\operatorname{arg\,max}} p(\mathcal{D} \mid \theta)$$

MLE ignores our prior beliefs and performs poorly if little data is available.

Back to our coin problem: How do we estimate θ from the data?

In MLE, we were asking the wrong question

$$\theta_{\text{MLE}} = \underset{\theta}{\operatorname{arg\,max}} \ p(\mathcal{D} \mid \theta)$$

MLE ignores our prior beliefs and performs poorly if little data is available.

Actually, we should care about the posterior distribution $p(\theta \mid \mathcal{D})$.

What if we instead maximize the posterior probability? Our interest!

$$\theta_{\text{MAP}} = \underset{\theta}{\operatorname{arg max}} \ p(\theta \mid \mathcal{D})$$

This approach is called *maximum a posteriori* (MAP) estimation.

Maximum a posterior estimation

$$\theta_{\text{MAP}} = \underset{\theta}{\operatorname{arg max}} \ p(\theta \mid \mathcal{D})$$
$$= \underset{\theta}{\operatorname{arg max}} \ \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}$$

We can ignore $\frac{1}{p(\mathcal{D})}$ since it's a (positive) constant independent of θ

$$= \underset{\theta}{\operatorname{arg\,max}} \ p(\mathcal{D} \mid \theta) p(\theta)$$

We already know the likelihood $p(\mathcal{D} \mid \theta)$ from before, how do we choose the prior $p(\theta)$?

Often, we choose the prior to make subsequent calculations easier.

In our case of coins,

We choose Beta distribution for reasons that will become clear later.

$$\operatorname{Beta}(\theta \mid a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}, \quad \theta \in [0, 1]$$

where

- ullet a>0,b>0 are the distribution parameters usually fixed; no need to learn them
- $\Gamma(n) = (n-1)!$ for $n \in \mathbb{N}$ is the gamma function

probabilistic Graphical Models
$$a,b \longrightarrow a \longrightarrow \#F$$
Beta Bornoulli

Let's put everything together

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta) \cdot p(\theta)}{p(\mathcal{D})}$$
$$\propto p(\mathcal{D} \mid \theta) \cdot p(\theta)$$

because $p(\mathcal{D})$ is constant w.r.t. θ .

Let's put everything together

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta) \cdot p(\theta)}{p(\mathcal{D})}$$
$$\propto p(\mathcal{D} \mid \theta) \cdot p(\theta)$$

because $p(\mathcal{D})$ is constant w.r.t. θ .

We know

$$p(\mathcal{D} \mid \theta) = \theta^{|T|} (1 - \theta)^{|H|},$$

$$p(\theta) \equiv p(\theta \mid a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1 - \theta)^{b-1}.$$

So we get:

$$p(\theta \mid \mathcal{D}) \propto \theta^{|T|} (1 - \theta)^{|H|} \cdot \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \theta^{a - 1} (1 - \theta)^{b - 1}$$
$$\propto \theta^{|T| + a - 1} (1 - \theta)^{|H| + b - 1}.$$

We are looking for

$$\begin{aligned} \theta_{\text{MAP}} &= \arg\max_{\theta} p(\theta \mid \mathcal{D}) \\ &= \arg\max_{\theta} \ \theta^{|T|+a-1} (1-\theta)^{|H|+b-1} \end{aligned}$$

As before, the problem becomes much easier if we consider the logarithm

$$\theta_{\text{MAP}} = \underset{\theta}{\operatorname{arg \, max}} \log p(\theta \mid \mathcal{D})$$

$$= \underset{\theta}{\operatorname{arg \, max}} (|T| + a - 1) \log \theta + (|H| + b - 1) \log(1 - \theta)$$

X

With some algebra we obtain

Notice Tradeoff:

$$\theta_{\text{MAP}} = \frac{|T| + a - 1}{|H| + |T| + a + b - 2}$$

N.B. the larger the likelihood, the more it dominates the MAP

Section 4

Estimating the posterior distribution

What we have so far

$$\theta_{\text{MAP}} = \underset{\theta}{\operatorname{arg\,max}} p(\theta \mid \mathcal{D})$$

The most probable value of θ under the posterior distribution.

just a number

Is this the best we can do?

- How certain are we in our estimate?
- What is the probability that θ lies in some interval?

For this, we need to consider the entire posterior distribution $p(\theta \mid \mathcal{D})$, not just its mode θ_{MAP} .

We know the posterior up to a normalizing constant (slide 24)

$$p(\theta \mid \mathcal{D}) \propto \theta^{|T|+a-1} (1-\theta)^{|H|+b-1}$$
.

Finding the true posterior $p(\theta \mid \mathcal{D})$ boils down to finding the normalization constant, such that the distribution integrates to 1.

We know the posterior up to a normalizing constant (slide 24)

$$p(\theta \mid \mathcal{D}) \propto \theta^{|T|+a-1} (1-\theta)^{|H|+b-1}$$
.

X

Finding the t<u>rue posterior</u> $p(\theta \mid \mathcal{D})$ b<u>oils down to finding</u> the normalization constant, such that the distribution integrates to 1.

Option 1: Brute-force calculation

- Computing $\int_0^1 \theta^{|T|+a-1} (1-\theta)^{|H|+b-1} d\theta$.
- This is tedious, difficult and boring. Any alternatives?

We know the posterior up to a normalizing constant (slide 24)

$$p(\theta \mid \mathcal{D}) \propto \theta^{|T|+a-1} (1-\theta)^{|H|+b-1}$$
.

Finding the true posterior $p(\theta \mid \mathcal{D})$ boils down to finding the normalization constant, such that the distribution integrates to 1.

Option 1: Brute-force calculation

- Computing $\int_0^1 \theta^{|T|+a-1} (1-\theta)^{|H|+b-1} d\theta$.
- This is tedious, difficult and boring. Any alternatives?

Option 2: Pattern matching

• The <u>unnormalized posterior</u> $\theta^{|T|+a-1}(1-\theta)^{|H|+b-1}$ looks similar to the PDF of the Beta distribution

Beta
$$(\theta \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Can we use this fact?

The unnormalized posterior

$$p(\theta \mid \mathcal{D}) \propto \theta^{|T|+a-1} (1-\theta)^{|H|+b-1}$$

Beta distribution

$$\underline{\text{Beta}(\theta \mid \alpha, \beta)} = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

The unnormalized posterior

$$p(\theta \mid \mathcal{D}) \propto \theta^{|T|+a-1} (1-\theta)^{|H|+b-1}$$

Beta distribution

Beta
$$(\theta \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Thus, we can conclude that the appropriate normalizing constant is

$$\frac{\Gamma(|T|+a+|H|+b)}{\Gamma(|T|+a)\Gamma(|H|+b)}$$

and the posterior is a Beta distribution

$$p(\theta \mid \mathcal{D}) = \text{Beta}(\theta \mid a + |T|, b + |H|)$$

Always remember this trick when you <u>try to solve integrals</u> that involve known pdfs (up to a constant factor)!

We started with the following prior distribution

$$p(\theta) = \text{Beta}(\theta \mid a, b)$$

And obtained the following posterior

$$p(\theta \mid \mathcal{D}) = \text{Beta}(\theta \mid a + |T|, b + |H|)$$

Was this just a lucky coincidence?

We started with the following prior distribution

$$p(\theta) = \text{Beta}(\theta \mid a, b)$$

And obtained the following posterior

$$p(\theta \mid \mathcal{D}) = \text{Beta}(\theta \mid a + |T|, b + |H|)$$

Was this just a lucky coincidence?

No, this is an instance of a more general principle. Beta distribution is a conjugate prior for the Bernoulli likelihood.

If a <u>prior</u> is conjugate for the given likelihood, then the <u>posterior</u> will be of the <u>same family</u> as the <u>prior</u>.

however, not every likelihood has prior conjugate

We started with the following prior distribution

$$p(\theta) = \text{Beta}(\theta \mid a, b)$$

And obtained the following posterior

$$p(\theta \mid \mathcal{D}) = \text{Beta}(\theta \mid a + |T|, b + |H|)$$

Was this just a lucky coincidence?

No, this is an instance of a more general principle. Beta distribution is a conjugate prior for the Bernoulli likelihood.

If a prior is conjugate for the given likelihood, then the posterior will be of the same family as the prior.

In our case, we can interpret the parameters a, b of the prior as the number of tails and heads that we saw in the past.

What are the advantages of the fully Bayesian approach?

We have an entire distribution, not just a point estimate

Prior of (1,1): flat constant.

Hence posterior will follow likelihood fn.

We can answer questions such as:

- What is the expected value of θ under $p(\theta \mid \mathcal{D})$?
- What is the <u>variance</u> of $p(\theta \mid \mathcal{D})$?
- Find a credible interval $[\theta_1, \theta_2]$, such that $\Pr(\theta \in [\theta_1, \theta_2] \mid \mathcal{D}) = 95\%$ (not to be confused with frequentist confidence intervals).

An interval within which an unobserved parameter value falls with a particular prob

We learned about three approaches for parameter estimation:

Maximum likelihood estimation (MLE)

- Goal: Optimization problem $\max_{\theta} \log p(\mathcal{D} \mid \theta)$
- Result: Point estimate $\theta_{\rm MLE}$
- Coin example: $\theta_{\text{MLE}} = \frac{|T|}{|T| + |H|}$

Maximum a posteriori (MAP) estimation

- Goal: Optimization problem $\max_{\theta} \log p(\theta \mid \mathcal{D})$
- Result: Point estimate θ_{MAP}
- Coin example: $\theta_{\text{MAP}} = \frac{|T|+a-1}{|T|+|H|+a+b-2}$

Estimating the posterior distribution

- Goal: Find the <u>normalizing constant</u> $p(\mathcal{D})$
- Result: Full distribution $p(\theta \mid \mathcal{D})$
- Coin example: $p(\theta \mid \mathcal{D}) = \text{Beta}(\theta \mid a + |T|, b + |H|)$

The three approaches are closely connected.

The posterior distribution is

$$p(\theta \mid \mathcal{D}) = \text{Beta}(\theta \mid a + |T|, b + |H|).$$

Recall that the mode of $\overline{\mathrm{Beta}(\alpha,\beta)}$ is $\frac{\alpha-1}{\alpha+\beta-2}$, for $\alpha,\beta>1$.

We see that the MAP solution is the mode of the posterior distribution

$$\theta_{\text{MAP}} = \frac{|T| + a - 1}{|H| + |T| + a + b - 2}$$

If we choose a uniform prior (i.e. a=b=1) we obtain the <code>MLE</code> solution i.e flat prior

$$\theta_{\text{MLE}} = \frac{|T|+1-1}{|H|+|T|+1+1-2} = \frac{|T|}{|H|+|T|}$$

All these nice formulas are a consequence of choosing a conjugate prior. Had we chosen a non-conjugate prior, $p(\theta \mid \mathcal{D})$ and θ_{MAP} could not have a closed form.

How many flips?

We had
$$p(\theta \mid \mathcal{D}) = \text{Beta}(\theta \mid a + |T|, b + |H|)$$

<u>Visualize the posterior</u> (for given prior, e.g. a = b = 1):

$$|T| = 1, |H| = 4$$

$$|T| = 10, |H| = 40$$

$$|T| = 10, |H| = 40$$

With more data the posterior becomes more peaky – we are more certain about our estimate of θ

0.4 0.6

0.2

Alternative view: a frequentist perspective

For MLE we had
$$\theta_{\mathrm{MLE}} = \frac{|T|}{|T| + |H|}$$

Clearly, we get the same result for
$$|T|=1, |H|=4$$
 and $|T|=10, |H|=40.$ Which one is better? Why?

Alternative view: a frequentist perspective

For MLE we had
$$heta_{\mathrm{MLE}} = \frac{|T|}{|T| + |H|}$$

Clearly, we get the same result for |T|=1, |H|=4 and |T|=10, |H|=40. Which one is better? Why? How to choose N?

How many flips? Hoeffding's Inequality for a sampling complexity bound:

prob of being
$$p(|\theta_{\rm MLE}-\theta|\geq\varepsilon)\leq 2e^{-2N\varepsilon^2}\leq\delta, \quad \text{Some prob}$$
 where $N=|T|+|H|$

events

For example, I want to know θ , within $\epsilon=0.1$ error, with probability at least $1-\delta=0.99$

We have:

It provides the upper bound of the prob that the sum of bounded independent random variables deviates from its expected value by a certain amount.

$$N \ge \frac{\ln(2/\delta)}{2\epsilon^2} \to N \approx 265$$

Section 5

Predicting the next flip

Remember that we want to predict the next coin flip...

For MLE:

- 1. Estimate $\theta_{\text{MLE}} = \frac{|T|}{|H|+|T|}$ from the data.
- 2. The probability that the next flip lands tails is

$$p(F_{11} = \mathbf{T} \mid \theta_{\text{MLE}}) = \text{Ber}(F_{11} = \mathbf{T} \mid \theta_{\text{MLE}}) = \theta_{\text{MLE}}$$

Θ gives a way to make the prediction

Similarly, for MAP:

- 1. Estimate $\theta_{\text{MAP}} = \frac{|T|+a-1}{|H|+|T|+a+b-2}$ from the data.
- 2. The probability that the next flip lands tails is

$$p(F_{11} = \bigcirc \mid \theta_{MAP}) = Ber(F_{11} = \bigcirc \mid \theta_{MAP}) = \theta_{MAP}$$

What if we have the entire posterior?

We have estimated the posterior distribution $p(\theta \mid \mathcal{D}, a, b)$ of the parameter θ .

Now, we want to compute the probability that the next coin flip is \bigcirc , given observations \mathcal{D} and prior belief a, b:

$$p(F = \mathbf{T} \mid \mathcal{D}, a, b)$$

This distribution is called the posterior predictive distribution.

Different from the posterior over the parameters $p(\theta \mid \mathcal{D}, a, b)!$

link to domains. e.g. posterior over Θ

So how do we obtain the posterior predictive distribution?

For simplicity, denote the outcome of the next flip as $f \in \{0, 1\}$.

$$p(F = f \mid \mathcal{D}, a, b) = p(f \mid \mathcal{D}, a, b)$$

We already know the posterior over the parameters $p(\theta \mid \mathcal{D}, a, b)$.

So how do we obtain the posterior predictive distribution?

For simplicity, denote the outcome of the next flip as $f \in \{0, 1\}$.

$$p(F = f \mid \mathcal{D}, a, b) = p(f \mid \mathcal{D}, a, b)$$

We already know the posterior over the parameters $p(\theta \mid \mathcal{D}, a, b)$.

Using the sum rule of probability

$$p(f \mid \mathcal{D}, a, b) \equiv \int_0^1 p(f, \theta \mid \mathcal{D}, a, b) d\theta$$
 marginalizing Θ out
$$= \int_0^1 p(f \mid \theta, \mathcal{D}, a, b) p(\theta \mid \mathcal{D}, a, b) d\theta$$

$$\equiv \int_0^1 p(f \mid \theta) p(\theta \mid \mathcal{D}, a, b) d\theta$$

The last equality follows from the conditional independence assumption.

"If we know θ , the next flip f is independent of the previous flips \mathcal{D} ."

Recall that

$$p(f \mid \theta) = \text{Ber}(f \mid \theta) = \theta^f (1 - \theta)^{1 - f}$$

FYT

and

$$\underline{p(\theta \mid \mathcal{D}, a, b)} = \frac{\Gamma(|T| + a + |H| + b)}{\Gamma(|T| + a)\Gamma(|H| + b)} \theta^{|T| + a - 1} (1 - \theta)^{|H| + b - 1}.$$

Substituting these expressions and doing some (boring) algebra we get

$$p(f \mid \mathcal{D}, a, b) = \int_0^1 p(f \mid \theta) p(\theta \mid \mathcal{D}, a, b) \, d\theta$$
$$= \frac{(|T| + a)^f (|H| + b)^{(1-f)}}{|T| + a + |H| + b}$$

Recall that

$$p(f \mid \theta) = \text{Ber}(f \mid \theta) = \theta^f (1 - \theta)^{1 - f}$$

and

$$p(\theta \mid \mathcal{D}, a, b) = \frac{\Gamma(|T| + a + |H| + b)}{\Gamma(|T| + a)\Gamma(|H| + b)} \theta^{|T| + a - 1} (1 - \theta)^{|H| + b - 1}.$$

Substituting these expressions and doing some (boring) algebra we get

$$p(f \mid \mathcal{D}, a, b) = \int_0^1 \frac{\text{specific outcome}}{p(f \mid \mathcal{D}, a, b)} \frac{\text{different os}}{\text{weighted fashion}}$$

$$= \frac{(|T| + a)^f (|H| + b)^{(1-f)}}{|T| + a + |H| + b}$$

No Θ anymore!
Just prior & likelihood

$$= \operatorname{Ber}\left(f \left| \frac{|T| + a}{|T| + a + |H| + b}\right)$$

Note that the posterior predictive distribution doesn't contain $\underline{\theta}$ — we have marginalized it out!

We call this approach fully Bayesian analysis.

Predictions using different approaches

- MLE: $p(F = \mathbf{\widehat{T}} \mid \theta_{\mathrm{MLE}}) = \mathrm{Ber}\left(F = \mathbf{\widehat{T}} \mid \frac{|T|}{|T| + |H|}\right)$
- MAP: $p(F = \mathbf{T} \mid \theta_{\text{MAP}}) = \text{Ber}\left(F = \mathbf{T} \mid \frac{|T| + a 1}{|T| + a + |H| + b 2}\right)$
- Fully Bayesian: $p(F = \mathbf{T} \mid \mathcal{D}) = \mathrm{Ber}\left(F = \mathbf{T} \mid \frac{|T|+a}{|T|+a+|H|+b}\right)$

Predictions using different approaches

• MLE:
$$p(F = \bigcirc \mid \theta_{\text{MLE}}) = \text{Ber}\left(F = \bigcirc \mid \frac{|T|}{|T| + |H|}\right)$$

• MAP:
$$p(F = \mathbf{T} \mid \theta_{\text{MAP}}) = \text{Ber}\left(F = \mathbf{T} \mid \frac{|T| + a - 1}{|T| + a + |H| + b - 2}\right)$$

• Fully Bayesian:
$$p(F = \mathbf{T} \mid \mathcal{D}) = \operatorname{Ber}\left(F = \mathbf{T} \mid \frac{|T| + a}{|T| + a + |H| + b}\right)$$

Given the prior a=b=5 and the counts |T|=4, |H|=8

$$p_{\text{MLE}} = \frac{4}{12} \approx 0.33$$
 $p_{\text{MAP}} = \frac{8}{20} = 0.40$ $p_{\text{FB}} = \frac{9}{22} \approx 0.41$

Predictions using different approaches

• MLE:
$$p(F = \bigcirc \mid \theta_{\text{MLE}}) = \text{Ber}\left(F = \bigcirc \mid \frac{|T|}{|T| + |H|}\right)$$

• MAP:
$$p(F = \mathbf{T} \mid \theta_{\text{MAP}}) = \text{Ber}\left(F = \mathbf{T} \mid \frac{|T| + a - 1}{|T| + a + |H| + b - 2}\right)$$

• Fully Bayesian:
$$p(F = \mathbf{T} \mid \mathcal{D}) = \operatorname{Ber}\left(F = \mathbf{T} \mid \frac{|T| + a}{|T| + a + |H| + b}\right)$$

no need to derive O, but taking its all possible values

Given the prior a=b=5 and the counts $\vert T \vert =4, \vert H \vert =8$

$$p_{\text{MLE}} = \frac{4}{12} \approx 0.33$$
 $p_{\text{MAP}} = \frac{8}{20} = 0.40$ $p_{\text{FB}} = \frac{9}{22} \approx 0.41$

How about if we have |T| = 304, |H| = 306?

$$p_{\rm MLE} = \frac{304}{610} \approx 0.50$$
 $p_{\rm MAP} = \frac{308}{618} \approx 0.50$ $p_{\rm FB} = \frac{309}{620} \approx 0.50$

- Maximum likelihood
- Maximum a posteriori
- Fully Bayesian analysis
- Prior, Posterior, Likelihood
- The i.i.d. assumption
- Conjugate prior
- Monotonic transforms for optimization.
- ¥ Solving integrals by reverse-engineering densities.

Reading material

• Murphy [ch. 3.1 - 3.3]