Analyse | CM: 12

Par Lorenzo

05 décembre 2024

1 Dérivée d'une fonction

equation
$$y = ax + b = (x - x_0)f'(x_0) + f(x_0) = f'(x_0)x + (f(x_0) - x_0f'(x_0))$$

Définition 1.1. Soit $f: I\mathbb{R}\mathbb{R}$, où I est un interval ouvert de \mathbb{R} . Soit $x_0 \in I$, on dit que f est dérivable en x_0 si le taux d'accroissements $\frac{f(x) - f(x_0)}{x - x_0}$ admet une limite lorsque x tend vers x_0 , et on la note $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$.

$$\forall \varepsilon > 0, \exists \delta > 0 \ alors \ \left| \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \right| < \varepsilon \iff |f(x) - f(x_0) - (x - x_0)f'(x_0)| < \varepsilon |x - x_0| \iff |f(x) - f(x_0) - (x - x_0)f'(x_0)| < \varepsilon |x - x_0| \iff |f(x) - f(x_0) - (x - x_0)f'(x_0)| < \varepsilon |x - x_0| \iff |f(x) - f(x_0) - (x - x_0)f'(x_0)| < \varepsilon |x - x_0| \iff |f(x) - f(x_0) - (x - x_0)f'(x_0)| < \varepsilon |x - x_0|$$

Définition 1.2. La fonction est dérivable sur I si f est dérivable en tout point x de I. On note la fonction $f': {}^{I\mathbb{R}\mathbb{R}}_{x\mapsto f'(x)}$ (parfois $\frac{df}{dx}$)

Proposition 1.1.

- 1. f est dérivable en x_0 si et seulement si $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ existe et est finie.
- 2. f est dérivable en x_0 ssi il existe un nombre réel $f'(x_0)$ et une fonction ε : $I\mathbb{RR}$ avec $\varepsilon(x) \to 0$ tel que $f(x) = f(x_0) + f'(x_0)(x x_0) + \varepsilon(x)(x x_0)$

Démonstration 1.1.

On pose
$$x = x_0 + h \Rightarrow x - x_0 = h$$

Définition 1.3. La droite qui passe par les points $(x_0, f(x_0))$ et (x, f(x)) admet par coefficient directeur $\frac{f(x) - f(x_0)}{x - x_0}$.

A la limite $x \to x_0$ on trouve le coefficient directeur de la tangente qui vaut $f'(x_0)$ et l'équation de la tangente au point $(x_0, f(x_0))$ est donné par $y = (x - x_0)f'(x_0) + f(x_0)$.

1.1 Dérivabilité et continuité

Proposition 1.2.

- 1. Si f est dérivable en x_0 , alors f est continue en x_0 .
- 2. Si f est dérivable sur I, alors f est continue sur I.
- 3. Si f est dérivable et f' est continue, on dit que f est de class ϕ^1 .

Démonstration 1.2.

Comme f dérivable en $x_0, \exists \varepsilon : I \to \mathbb{R}$ avec $\varepsilon(x) \to 0$ tel que $f(x) = f(x_0) + (x - x_0)f'(x_0) + \varepsilon(x)(x - x_0)$ et on veut montrer que $\lim_{x \to x_0} f(x) = f(x_0)$ $Ici \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x_0) + (x - x_0)f'(x_0) + \varepsilon(x)(x - x_0)$

Remarques 1.1. 1. Si f n'est pas continue, alors f n'est pas dérivable (contraposée).

2. La réciproque est fausse en général (Exemple la fonction |x| en x=0)

1.2 Calcul de dérivée

1.2.1 Règle de calcul

Propriétés 1.1.

Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ dérivable sur I. Alors $\forall x \in I$, on a

1.
$$(f+q)'(x) = f'(x) + q'(x)$$

2.
$$\forall \lambda \in \mathbb{R}(\lambda f)'(x) = \lambda f'(x)$$

3.
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

4. Si
$$g(x) \neq 0$$
, $(\frac{f}{g})'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$

Démonstration 1.3.

Pour 1 et 2, on utilise la définition de la dérivée.

$$\frac{(\lambda f + g)(x) - (\lambda f + g)(x_0)}{x - x_0} = \frac{\lambda f(x) + g(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{(\lambda f(x) - \lambda f(x_0)) + (g(x) - g(x_0))}{x - x_0} = \frac{\lambda f(x) + g(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) + g(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) + g(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) + g(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) + g(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) + g(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) + g(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) + g(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) + g(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0) - g(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda f(x_0)}{x - x_0} = \frac{\lambda f(x) - \lambda$$

Pour 3, on cherche $(fg)'(x_0) = \lim_{x \to x_0} \frac{fg(x) - fg(x_0)}{x - x_0}$.

$$\frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0) + f(x_0)g(x) - f(x_0)g(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0) + f(x_0)g(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0) + f(x_0)g(x_0) + f(x_0)g(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0) + f(x_0)g(x_0) + f(x_0)g(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0) + f(x_0)g(x_0) + f(x_0)g(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0) + f(x_0)g(x_0) + f(x_0)g(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0) + f(x_0)g(x_0) + f(x_0)g(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0) + f(x_0)g(x_0) + f(x_0)g(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0) + f(x_0)g(x_0) + f(x_0)g(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \frac{f(x)g(x)}{x - x_0} = \frac{f(x)g(x)}{x - x_0} = \frac{f(x)g(x)}{x - x_0} = \frac{$$

Flemme

1.2.2 Dérivée de fonctions usuelles

Méthode 1.1.

1.
$$f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$$

2.
$$f(x) = \frac{1}{x} \Rightarrow f'(x) = -\frac{1}{x^2}$$

3.
$$f(x) = \sqrt{x} \Rightarrow f'(x) = \frac{1}{2\sqrt{x}}$$

4.
$$f(x) = e^x \Rightarrow f'(x) = e^x$$

5.
$$f(x) = a^x \Rightarrow f'(x) = a^x \ln(a)$$

6.
$$f(x) = \ln(x) \Rightarrow f'(x) = \frac{1}{x}$$

7.
$$f(x) = \log_a(x) \Rightarrow f'(x) = \frac{1}{x \ln(a)}$$

8.
$$f(x) = \sin(x) \Rightarrow f'(x) = \cos(x)$$

9.
$$f(x) = \cos(x) \Rightarrow f'(x) = -\sin(x)$$

10.
$$f(x) = \tan(x) \Rightarrow f'(x) = \frac{1}{\cos^2(x)}$$

1.2.3 Composition

Proposition 1.3.

Si f dérivable en x et g dérivable en f(x), alors $g \circ f$ est dérivable en x et $(g \circ f)'(x) = g'(f(x))f'(x)$.

Démonstration 1.4.

À faire

Corollaire 1.1. $f: I \to J$ bijective et dérivable et $f^{-1}: J \to I$ sa réciproque. Si f' ne s'annule pas, alors f^{-1} est dérivable et $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$, $\forall x \in I$

Démonstration 1.5.

 $\grave{A} faire$

1.2.4 Dérivées succesives

Par récurrence, on définit la dérivée n-ième, notée $f^{(n)}$, comme $f^{(0)} = f$, $f^{(1)} = f'$, $f^{(n+1)} = (f^{(n)})'$.

Si les dérivées jusqu'à l'ordre n sont définies, on dit que f est de classe ϕ^n .

Définition 1.4 (Formule de Leibniz). $(fg)^{(n)}(x) = (f(x)g(x))^{(n)}$

Définition 1.5 (binome de Newton). $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \ \hat{A} \ faire$