1. Let $S \subset \mathbb{R}$ be bounded above, and let $a = \sup S$. Prove that for any $\epsilon > 0$, there exists $x \in S$ such that $x > a - \epsilon$.

Proof. By contradiction: Suppose there is some $\epsilon > 0$ such that $\forall x \in S, x \leq a - \epsilon$.

This means, by definition S is bounded by $a - \epsilon$, but $a > a - \epsilon$, which contradicts that $a = \sup S$. Therefore there must be an element in the range $(a - \epsilon, a)$ in S, $\forall \epsilon$.

2. Show that $\sup\{r \in \mathbb{Q} | r < a\} = a$, for any $a \in \mathbb{R}$.

Proof. By definition, S is bounded by a from above $(\forall r \in S = \{r \in \mathbb{Q} | r < a\}, r < a)$. Need to show it is the smallest such bound, i.e. $\forall k \in \mathbb{R}, k < a \implies \exists l \in S \text{ s.t. } k < l < a$. Let $k \in \mathbb{R}, k < a$. Then since \mathbb{Q} dense in \mathbb{R} , there is some $q \in \mathbb{Q}$ such that k < q < a, and so $q \in S$. So a is the lowest number that can serve as a bound, so $a = \sup S$.

- 3. Let $a_1 = 1$ and let $a_{n+1} = (1 1/4n^2)a_n$, for any $n \ge 1$.
 - (a) Show that $\lim a_n$ exists.

To show the limit exists, I will use the fact that a bounded monotone sequence converges.

Proof. Monotone (Strictly Decreasing): Base $a_1 = 1$, $a_2 = 3/4$, 1 > 3/4.

Induction : Suppose $a_{n-1} > a_n, n \in \mathbb{N}$

$$\left(1 - \frac{1}{4(n-1)^2}\right) a_{n-1} > \left(1 - \frac{1}{4(n-1)^2}\right) a_n
\left(1 - \frac{1}{4(n-1)^2}\right) a_{n-1} > \left(1 - \frac{1}{4(n-1)^2}\right) a_n > \left(1 - \frac{1}{4(n)^2}\right) a_n
\left(1 - \frac{1}{4(n-1)^2}\right) a_{n-1} > \left(1 - \frac{1}{4n^2}\right) a_n
a_n > a_{n+1}$$

Bounded: WTP: $0 < a_k \le 1, \forall k \text{ Base } a_0 = 1 \in (0, 1]$

Induction : Suppose $0 < a_n \le 1, n \in \mathbb{N}$

$$0 < a_n \le 1$$

$$0 < \left(1 - \frac{1}{4n^2}\right) a_n \le \left(1 - \frac{1}{4n^2}\right)$$

$$0 < a_{n+1} \le \left(1 - \frac{1}{4n^2}\right) < 1$$

$$0 < a_{n+1} < 1$$

Since the sequence is monotone and bounded, it converges.

- (b) What do you think that $\lim a_n$ is? ≈ 0.6 from empirical testing.
- 4. Let $\{s_n\}$ be a sequence such that

$$|s_{n+1} - s_n| < 2^{-N}$$

for all $n \in \mathbb{N}$. Prove that $\{s_n\}$ is a Cauchy sequence and hence converges.

Want $\forall \epsilon, \exists N \text{ s.t. } \forall m, n > N \implies |x_m - x_n| < \epsilon$

Lemma. Let $N \in \mathbb{N}, \forall m, n \in \mathbb{N}, m, n > N \implies |s_m - s_n| < 2^{-N+1}$

Proof. Given N, choose N < m < n such that the distance $|s_n - s_m|$ is the greatest possible for any choice of m, n. Then:

$$|s_n - s_m| = |s_n + \sum_{i=m+1}^{n-1} (s_i - s_i) - s_m|$$

$$= |s_n - s_{n-1}| + \sum_{i=m+1}^{n-2} (s_{i+1} - s_i) + s_{m+1} - s_m|$$

$$= |\sum_{i=m}^{n-1} (s_{i+1} - s_i)|$$

$$\leq \sum_{i=m}^{n-1} |s_{i+1} - s_i|$$

$$< \sum_{i=m}^{n-1} 2^{-i}$$

$$= \sum_{i=1}^{n-1} 2^{-i} - \sum_{i=1}^{m-1} 2^{-i}$$

$$= \frac{1 - 2^{1-n}}{2(1 - \frac{1}{2})} - \frac{1 - 2^{1-m}}{2(1 - \frac{1}{2})}$$

$$= 2^{1-m} - 2^{1-n}$$

$$= (2)2^{-m} < 2^{-N+1}$$

Now to prove the question.

Proof. Given $\epsilon > 0$ choose $N = \log_2(\frac{1}{\epsilon}) + 1$ Now let m, n > N, then by the lemma:

$$|s_n - s_m| < 2^{-N+1}$$

= $2^{-(\log_2(\frac{1}{\epsilon})+1)+1}$
= $2^{\log_2(\epsilon)}$

 $=\epsilon$

Therefore it is Cauchy and converges.