

Name	Oligonukleotid-Autbau	Oligonukleotid:Sequenz: (5, 🗢 3.)	* Molmasse	* Molmasse *** *******************************	(C) SUMIM NAT
GC67	5'-(NH2-C6)-10T-20nt-3'	TITITITI CGCG CIGA GGGG AGAG CIAG	6248,1	20	. 29
GC58	5'-(NH2-C6)-10T-16nt-3'	TITITITI ICIC GGGG ICAG GCGC	4914,2	75	58
GC48	5'-(NH2-C6)-10T-16nt-3'	TTTTTTTT GAGA TAGC CTCT AGCT	4881,2	50	48
GC67-MM1	5'-(NH2-C6)-10T-20nt-3'	TITITITI CGCG CIGA GGCG AGAG CIAG'	6208,1	70	
GC58-MM1	5'-(NH2-C6)-10T-16nt-3'	TITITITI ICIC GGCG ICAG GCGC	4874,2	75	
GC48-MM1	5'-(NH2-C6)-10T-16nt-3'	TITITITIT GAGA TACC CICT AGCT	4841,1	20	
GC67-MM2	5:-(NH2-C6)-10T-20nt-3'	TITITITI CGCG CTGA GGCC AGAG CTAG	6168,0	70	
GC58-MM2	5'-(NH2-C6)-10T-16nt-3'	ITITITIT TCIC GCCG ICAG GCGC	4834,2	75	
GC48-MM2	5'-(NH2-C6)-10T-16nt-3'	TTTTTTTT GAGA TTCC CTCT AGCT	4832,2	90	
GC37	5'-(NH2-C6)-10T-16nt-3'	TITITITIT GAIC TITI CTAG AGCT	4862,2	38	43

* Angaben beziehen sich auf die Nukleotid-Sequenz ohne 10T-Spacer und Amino-Link

Fig. 3

GC67-Hyb3	5'-Cy3-20nt-3'	CTAG CTCT CCCC TCAG CGCG	9,988,9	2	29	29,9	168,6	430,7
GC58-Hyb3	5'-Cy3-16nt-3'	GCGC CIGA CCCC GAGA	4852,2	75	58	24,3	145,4	374,2
GC48-Hyb3	5'-Cy3-16nt-3	AGCT AGAG GCTA TCTC	4881,2	20	48	17,9	116,7	302,1

Fig. 5

Fig. 6

200	\sim
20	\sim

Sonde	Mittelwert Cy3	Stabw	% +/-	PM/MM
GC67	28049,75	2197,12	7,83	
GC67MM1	21302,00	4849,96	22,77	1,32
GC67MM2	21924,75	8729,10	39,81	1,28
GC58	37585,75	6166,83	16,41	
GC58MM1	28874,75	4769,91	16,52	1,30
GC58MM2	1036,75	423,02	40,80	36,25
GC48	17745,75	2668,69	15,04	
GC48MM1	214,50	23,64	11,02	82,73
GC48MM2	12,00	0,00	0,00	1478,81
GC37*	107,81	66,30	61,50	

^{* 0-}Kontrolle

Fig. 7D

|--|

Sonde	Mittelwert Cy3	Stabw	% +/-	PM/MM
GC67	42137,25	5450,23	12,93	
GC67MM1	30812,50	14749,88	47,87	1,37
GC67MM2	22461,25	7815,19	34,79	1,88
GC58	48023,00	10010,84	20,85	
GC58MM1	11538,75	5829,19	50,52	4,16
GC58MM2	87,75	30,99	35,31	547,27
GC48	16626,25	2744,96	16,51	•
GC48MM1	63,25	32,91	52,03	262,87
GC48MM2	8,25	1,50	18,18	2015,30
GC37*	57,93	27,98	48,31	

^{* 0-}Kontrolle

Fig. 7C

)	ŏ	_		Ĺ
	-	-	_	=

Sonde	Mittelwert Cy3	Stabw	% +/-	PM/MM
GC67	43275,75	3211,55	7,42	,
GC67MM1	6241,00	838,20	13,43	6,93
GC67MM2	268,25	24,42	9,10	161,33
GC58	47969,25	3584,93	7,47	
GC58MM1	285,75	56,49	19,77	167,87
GC58MM2	14,25	1,89	13,28	3366,26
GC48	840,50	116,56	13,87	
GC48MM1	8,75	2,63	30,06	96,06
GC48MM2	3,00	0,82	27,22	280,17
GC37*	60,56	33,32	55,01	

^{* 0-}Kontrolle

Fig. 7B

67° C

Mittelwert Cy3	Stabw	% +/-	PM/MM
28507,25	2527,93	8,87	
279,75	114,55	40,95	101,90
91,75	63,29	68,98	310,71
6189,00	613,22	9,91	
314,25	139,47	44,38	19,69
31,00	10,71	34,54	199,65
144,00	109,69	76,18	
15,67	9,45	60,33	9,19
3,00	1,15	38,49	48,00
31,63	9,85	31,15	
	28507,25 279,75 91,75 6189,00 314,25 31,00 144,00 15,67 3,00	28507,25 2527,93 279,75 114,55 91,75 63,29 6189,00 613,22 314,25 139,47 31,00 10,71 144,00 109,69 15,67 9,45 3,00 1,15	28507,25 2527,93 8,87 279,75 114,55 40,95 91,75 63,29 68,98 6189,00 613,22 9,91 314,25 139,47 44,38 31,00 10,71 34,54 144,00 109,69 76,18 15,67 9,45 60,33 3,00 1,15 38,49

 ⁰⁻Kontrolle

•

Fig. 7A

WO 2005/064012 PCT/EP2004/014414 7/8

Bearbeitungsprotokoll

1. Hybridisieren:

Targets: GC67-Hyb3, GC58-Hyb3, GC48-Hyb3

Targetkonzentration: je 1 nM

Hybridisierungstemperatur: 67° C, 58° C, 48° C

Hybridisierungspuffer: 0,9 x Nexterion Hyb (Fa. Schott im Vertrieb von

PeqLab)

Hybridisierungszeit: 60 min

Mischleistung ArrayBooster™: 26 dBm

2. Waschen

Waschung1: 10 min 2xSSC 0,2 % SDS 200 ml

Waschung2: 2 x 5 min 2xSSC 200 ml

Waschung3: 10 min 0,2xSSC 200 ml

anschließend sofort durch Abblasen und Abzentrifugieren trocknen.

3. Scannen

Um den größten dynamischen Bereich ausnutzen zu können sollten von den signalstärksten Spot aller Slides eines Experiments einige Pixel (max. 20 %/Spot) in der Sättigung des Detektorssein.

1. Chip-Sonden:

Design aller Chip-Sonden ohne Negativ-Kontrolle: Design des GC28:

5'-(Amino-C6)-(15T)-(16nt)-3' 5'-(Amino-C6)-(15T)-(12nt)-3'

Name	Sequenz (5´ ⇔ 3´)	* GC %	*Tm (50mM Na+)	*Molmasse
GC61	TTTTTTTTTTTT GGACGCCCAGGCTGCC	81	61	4868.2
GC53	TTTTTTTTTTTTT GGTTACCCTGCTTGGC	63	53	4864.2
GC43	TTTTTTTTTTTTTT TTACGATCTGATCCTT	['] 38	43	4822.2
GC33	TTTTTTTTTTTTT ATATTTACTATAAGTT	13	33	4869.3
GC28	TTTTTTTTTTTTTT TATACATTGATA	17	28	3643.5
GC61-MM1	TTTTTTTTTTTTT GGACGCCGAGGCTGCC	81	61	4908.2
GC53-MM1	TTTTTTTTTTTTT GGTTACCGTGCTTGGC	63	53	4904.2
GC43-MM1	TTTTTTTTTTTTTT TTACGATGTGATCCTT	38	43	4862.2
GC33-MM1	${\tt TTTTTTTTTTTTTTT} \ \ {\tt ATATTTACAATAAGTT}$	13	33	4878.3
GC61-MM2	TTTTTTTTTTTT GGACGCCGTGGCTGCC	81	61	4899.2
GC53-MM2	TTTTTTTTTTTTT GGTTACCGAGCTTGGC	63	53	4913.2
GC43-MM2	TTTTTTTTTTTTTT TTACGATGAGATCCTT	38	43	4871.2
GC33-MM2	TTTTTTTTTTTTT ATATTTAGAATAAGTT	13	33	4918.2

^{*} Angaben beziehen sich auf Sequenz ohne 15T-Spacer.

2. Hybridisierungs-Targets:

Design aller Cy-labeled Hyb-Oligos:

5'-(Cy3)-(16nt)-3'

Name	Sequenz (5´ ⇒ 3´)	ΔG (kcal / mol)	ΔH (kcal / moi)	ΔS (cal /(°K mol)	Molmasse
GC61-Hyb3	GGCAGCCTGGGCGTCC	24.6	145.6	374.0	4899.2
GC53-Hyb3	GCCAAGCAGGGTAACC	20.7	135.6	354.4	4900.2
GC43-Hyb3	AAGGATCAGATCGTAA	17.2	122.5	323.3	4938.3
GC33-Hyb3	AACTTATAGTAAATAT	12.1	107.2	290.6	4887.3

Fig. 9