

核心技术 1: 关节扭矩传感器

自主研发基于MEMS技术的关节扭矩传感器,率先将 MEMS 传感技术 应用于机器人手臂关节。

- ·10倍灵敏 MEMS 传感器,灵敏度是传统方案的10倍;
- · 2倍刚性 特殊不锈钢基材与结构设计, 刚性是其他技术路线2倍;
- · 20倍稳定- 热熔硅技术,确保卓越性能,具有优秀的稳定性。

核心技术 2: 轻量化一体化关节模组

- · 模块化快速搭建手臂,简单高效。
- · 轻量化技术,同负载级别力控模组最轻。
- ·内置 EtherCAT 通讯驱动器,具备四环控制(位置环、速度环、 力矩环、电流环),在驱动器上直接实现 8k 力矩闭环控制。
- ·内置双绝对值编码器全闭环控制,实现无电池零点记录,
- · 内置摩擦式制动保持器, 停机无漂移, 开机无抖动。

核心技术 3: 阻抗控制动态跟踪算法

依托全身力控与阻抗技术, 使机器人能够安全地与人和环境交互, 能够像人类一样探索世界。

- ·人机交互场景中:机器人在与人类互动时表现出自然的顺应性,减少了对人类的冲击力, 提高了使用的舒适性和安全性。
- · 未知环境中作业时:能够帮助机器人更好地适应外部环境的变化,减少因外界干扰而导致的振荡和不稳定, 从而提高了机器人的任务执行效率和可靠性。
- 在需要精确控制力和位置的场景中(如精密柔性组装):阻抗控制能够确保机器人在遇到障碍时能够柔性调整, 避免损坏操作对象或机器人本身。

推荐方案

天机提供部分

:客户自备部分

天机一拖二控制器:

- ·一个控制器控制两条手臂,体积小,方便部署,
- ·提供二次开发接口,将手臂一些复杂的功能进行接口化,用户无需进行底层的开发即可快速使用手臂的控制功能, 降低了天机手臂的开发门槛轻松实现应用程序开发。
- ·Marvin.SDK提供了手臂典型应用的Demo示例,包含环境配置、典型功能关键代码说明等详细内容,为开发者进行 应用开发提供参考。

IIIIII 🋣

广东天机智能系统有限公司

ADD: 广东省东莞市松山湖园区工业西三路6号3栋

TEL: 0769-22892095-3115 WEB:www.tianjizn.com E-MAIL:sales@tianjizn.com

INDIT

Marvin

双臂机器人

Marvin M3 / Marvin M6 CCS / Marvin M6 SRS

轻量化七自由度仿人手臂设计,如臂指使 全方位开发接口,一站式开发,开启创意之门 卓越运动表现,超凡体验

广东天机智能系统有限公司

本体参数

名 称				
型 号	Marvin M3	Marvin M6 CCS	Marvin M6 SRS	
定 位	仿人十字交叉手腕。 超轻量,超经济;适用于科研,商用,准工业双臂或人形机器人 场景。	仿人十字交叉手腕。 适用于对精度,速度和刚性,负载能力,可靠性,寿命要求高的 双臂或人形机器人场景。	传统手腕。 适用于对精度,速度和刚性,负载能力,可靠性,寿命要求高的 双臂或人形机器人。	
单 臂 关 节 数	7	7	7	
额 定 负 载 (单臂)	3kg	6kg	6kg	
手 腕 构 型	十字交叉手腕	十字交叉手腕	传统协作手腕	
工 作 半 径 (J2轴线到末端法兰)	610mm	689mm	678mm	
本 体 重 量 (单臂)	7.5KG	11KG	11KG	
TCP 最大速度	1.5m/s	2m/s	2m/s	
重复定位精度	±0.05mm	±0.03mm	±0.03mm	
关节扭矩传感器	各轴标配	各轴标配	各轴标配	
相 机 线	可内置到小臂	可内置到末端	可内置到末端	
力 控 精 度	≤1N	≤0.5N	<0.3N	
末端六维 力传感器	支持选配	支持选配	支持选配	
J1	±178°	±178°	±178°	
J2	±120°	±120°	±120°	
运 动	±178°	±178°	±178°	
为 范	+60°/-145°	+60°/-145°	+60°/-145°	
围 J5	±178°	±178°	±178°	
J6	±60°	±60°	±110°	
J7	±90°	±90°	±178°	
J1 J2 最 大 法 度	180°/s	180°/s	180°/s	
	180°/s	180°/s	180°/s	
	180°/s	180°/s	180°/s	
	180°/s	180°/s	180°/s	
	180°/s	180°/s	180°/s	
J6	180°/s	180°/s	180°/s	
J7	180°/s	180°/s	180°/s	
防 护 等 级	IP54	IP54	IP54	

产品特点

为了实现手腕运动的完全拟人化和高度灵活性,Marvin 腕部结构采用了十字交叉轴设计。 这种设计避免了传统设计的自由度退化问题,运行特征和人体腕关节的生物力学结构相同、 实现了功能上和人手臂的等效。此外,该手腕拥有更小的回转半径,抓取姿态的调节对腕关节 空间位置影响更小更接近人类抓取动作的自然特性,显著提升了远程遥操作时的操控自然度 与场景适应性。

十字交叉手腕

类人设计与智能交互

7自由度对称设计,灵活如人臂

7自由度对称设计,让机器人手臂如同人类手臂一样灵活,操作自然流畅。

轻量化一体化设计

轻量化的一体化关节模组设计, 自由搭配,维护方便,使用体验 更加轻松愉快。

柔性交互,安全无忧

每个关节内置扭矩传感器,确保 机器人在交互过程中的柔性和 安全性,保护用户和周围环境。

如影随形,行走无界

支持多种行走机构,完美匹配不同种类工作场景。

工业级性能,可靠无忧

创新的弹性补偿技术,使绝对精度 大幅度提高,配合工业级的精度与刚性, 使得机器人无论在商业还是工业场景, 都表现卓越。

丰富的SDK功能

丰富的SDK功能,具备实时力控、位置控制接口,最高支持1kHz实时控制频率。开放动力学、运动学、阻抗控制、负载辨识,力位置混合控制、碰撞检测、拖动示教,双臂协作等SDK算法功能。

多种扩展与灵活配置

双臂末端有丰富的通讯接口(Ethercat, Can FD, RS485等),便于客户搭载灵巧手,六维力传感器,及多种执行器。大电流电源输出接口,方便向末端执行器供电。

内置线缆

整机大中空,可内置相机线,快速搭载双目相机,避免线体和环境物剐蹭。

末端8Pin插头

