MA323 Lab06 Report

Pavan Kumar A 210123043

 $I = E[exp(\sqrt{U})], where U \sim U(0,1)$

Exact value of I:

$$g(u) = e^{\sqrt{u}}$$

 $E(g(x)) = \int_{-\infty}^{\infty} f(x) g(x) dx$
here $f(x) = 1$ for $0 \le x \le 1$

hence,

$$E(g(U)) = \int_0^1 g(u) du$$

$$= \int_0^1 e^{\sqrt{u}} du$$

$$= 2$$

Readings:

М	Estimated Value	Exact Value	Variance	95% Confidence Interval
100	2.04386543735336	2	0.1802665831695	[1.960649, 2.127081]
1000	1.99653338955341	2	0.1906342092631	[1.969472, 2.023595]
10000	2.00502865000467	2	0.1953010579989	[1.996367, 2.013690]
100000	1.99927311235734	2	0.1946108622165	[1.996538, 2.002007]

Observations:

- The estimated value of I converges to 2 as the sample size increases.
- The confidence interval size decreases as the sample size increases.