BIOFLUID MECHANICS ON COMPUTATIONAL FLUID DYNAMICS

Vincent Belpaire

Faculty of Architecture and Engineering Ugent

Table of Contents

Meshing

Running an initial simulation

Mesh sensitivity analysis

Table of Contents

Meshing

2 Running an initial simulation

Mesh sensitivity analysis

The Aneurysm

Mesh element types

 \rightarrow in bulk tetrahedral (4 faces)

Tetrahedron

Mesh element types

- \rightarrow in bulk tetrahedral (4 faces)
- \rightarrow at boundaries prism

Mesh comparison

file	Element Type	N	Bulk View
Mesh1.cas	hexahedral, prism	496718	
Mesh2.cas	tetrahedral, prism	80846	^A
Mesh3.cas	tetrahedral, prism	319342	
Mesh4.cas	tetrahedral, prism	486960	

Table of Contents

Meshing

Running an initial simulation

Mesh sensitivity analysis

How is blood modelled by setting these values (density and viscosity) to be constant? Does this correspond to the normal behaviour of blood?

How is blood modelled by setting these values (density and viscosity) to be constant? Does this correspond to the normal behaviour of blood?

→ At large scales and relative high velocities, blood can be assumed to have a constant density (incompressible flow) and viscosity.

How is blood modelled by setting these values (density and viscosity) to be constant? Does this correspond to the normal behaviour of blood?

- ightarrow At large scales and relative high velocities, blood can be assumed to have a constant density (incompressible flow) and viscosity.
- → At small scales (around the size of a RBC) and relative slow velocities, blood can no longer be assumed homogeneous and it's apparent viscosity becomes very important.

How is blood modelled by setting these values (density and viscosity) to be constant? Does this correspond to the normal behaviour of blood?

- ightarrow At large scales and relative high velocities, blood can be assumed to have a constant density (incompressible flow) and viscosity.
- → At small scales (around the size of a RBC) and relative slow velocities, blood can no longer be assumed homogeneous and it's apparent viscosity becomes very important.
- ⇒ This model is physiological.

ightarrow Mesh2 has the lowest number of elements \Rightarrow Mesh2 is the coarsest mesh

- ightarrow Mesh2 has the lowest number of elements \Rightarrow Mesh2 is the coarsest mesh
 - The residuals OK!

- ightarrow Mesh2 has the lowest number of elements \Rightarrow Mesh2 is the coarsest mesh
 - The residuals OK!
 - Pressure contour: as expected, flow goes from higher pressures to lower pressures

- \rightarrow Mesh2 has the lowest number of elements \Rightarrow Mesh2 is the coarsest mesh
 - The residuals OK!
 - Pressure contour: as expected, flow goes from higher pressures to lower pressures
 - Conservation of mass?

Mass Flow Rate	[kg/s]	
inlet.1.1	0.078264423	_
outlet-1.1.1	-0.0039132212	. Nat
outlet-2.1.1	-0.0039132212	\rightarrow Net mass flow rate ≈ 0 \Rightarrow mass is conserved!
outlet-3.1.1	-0.070437981	⇒ mass is conserved!
Net	-1.3877788e-17	_

Table of Contents

Meshing

2 Running an initial simulation

Mesh sensitivity analysis

Mesh sensitivity

Mesh sensitivity

Mesh sensitivity

Consider a quantity A calculated via computational fluid dynamics with a mesh size N. Let's say that A_1 is calculated with a mesh size N_1 and A_2 is calculated with a mesh size N_2 , with $N_2 > N_1$. Then the mesh sensitivity, here denoted as ϵ , between A_1 and A_2 is defined as

$$\epsilon = \frac{|A_2 - A_1|}{N_2 - N_1} = \frac{|\Delta A|}{\Delta N}.$$

Mesh sensitivity

Mesh sensitivity

Consider a quantity A calculated via computational fluid dynamics with a mesh size N. Let's say that A_1 is calculated with a mesh size N_1 and A_2 is calculated with a mesh size N_2 , with $N_2 > N_1$. Then the mesh sensitivity, here denoted as ϵ , between A_1 and A_2 is defined as

$$\epsilon = \frac{|A_2 - A_1|}{N_2 - N_1} = \frac{|\Delta A|}{\Delta N}.$$

 ϵ indicates how much accuracy the model gains if the mesh size would be increase by ΔN elements. If ϵ is very small and the computitional time relativly large then it would not be faivorable to increase the mesh size.

→ From Coarse to Medium: relative high improvement

- → From Coarse to Medium: relative high improvement
- → From Medium to Fine: relative low improvement

→ From Coarse to Medium: relative high improvement

→ From Medium to Fine: relative low improvement

 \rightarrow Estimate computation time (all converged!):

Coarse: T < 3 min

Medium: $2 \min < T < 4 \min$

Fine: $5 \min < T$

→ From Coarse to Medium: relative high improvement

→ From Medium to Fine: relative low improvement

 \rightarrow Estimate computation time (all converged!):

Coarse: T < 3 min

Medium: $2 \min < T < 4 \min$

Fine: $5 \min < T$

- → From Coarse to Medium: relative high improvement
- → From Medium to Fine: relative low improvement
- \rightarrow Estimate computation time (all converged!):

Coarse: T < 3 min

Medium: $2 \min < T < 4 \min$

Fine: $5 \min < T$

⇒ Medium mesh will suffice

• Why usage of percentiles and not minimum or maximum?

- Why usage of percentiles and not minimum or maximum?
- \rightarrow preventing outliers to influence conclusion

- Why usage of percentiles and not minimum or maximum?
- → preventing outliers to influence conclusion
 - More advanced techniques for mesh sensitivity analysis?

- Why usage of percentiles and not minimum or maximum?
- ightarrow preventing outliers to influence conclusion
 - More advanced techniques for mesh sensitivity analysis?
- → Numerical Mathematics: knowing the structure of the CFD model and its properties

Me: If I'm patient, eventually ANSYS will solve. I'll just do something in the meantime

Inner Me: Loosen the convergence criteria and coarsen the mesh. It'll solve faster

