CVPDL-HW3

1. Image Captioning

 (a) Compare the performance of 2 selected different pre-trained models in generating captions, and use the one you find the most effective for later problems.

我選擇 Salesforce/blip2-opt-6.7b-coco 和 Salesforce/blip2-opt-6.7b 這兩個模型來比較,並且選了 6 張圖片來作為模型表現的參考。

Model	lmage1	lmage2	lmage3	Image4	lmage5	lmage6
Salesforce/blip2- opt-6.7b-coco	a large group of fish swimming in a large tank	a group of jellyfish swimming in a blue ocean with a blue sky	two fish swimming in an aquarium with coral and rocks	a penguin swimming in an aquarium with rocks and a waterfall	a group of starfish are swimming in an aquarium next to a rock	a shark swimming in the water near some rocks and plants
Salesforce/blip2- opt-6.7b	a large group of fish swimming in a blue ocean	jellyfish in a tank with blue water	a fish in an aquarium with other fish	a penguin swimming in an aquarium	a fish tank with a starfish and a sea anemone	a shark swimming in the water near some rocks

從上面的結果可以看出,Salesforce/blip2-opt-6.7b-coco 對於圖片的描述比較詳細,而 Salesforce/blip2-opt-6.7b 對於圖片的描述比較簡單,不過兩個模型都有描述到圖片中的物件,且描述的 內容大部分都是正確的。而因為後續是要生成圖片來訓練物件偵測模型,因此我認為如果使用詳細的描述,會造成容易生成相似的圖片,可能對於物件偵測模型不會提升太大的效果,因此我選擇描述較簡單的 Salesforce/blip2-opt-6.7b 這個模型來做後續的實驗,希望較簡單的文字敘述能讓後續模型生成的圖片比較有多樣性。

- (b) Design 2 templates of prompts for later generating comparison.
 - Template #1: blip2_generated_text, height: img_height, width: img_width, underwater background, real word, high quality, 8K Ultra HD, high detailed, Composition: shot with a Canon EOS-1D X Mark III, 50mm lens
 - Template #2: blip2_generated_text, categroy, height: img_height, width: img_width, ocean, undersea background, HD quality, high detailed

blip2_generated_text 代表模型生成出來的字,img_height 和 img_width 代表圖片的高和寬,categroy 代表圖片的類別。

而因為根據助教所說 BLIP-2 不認識 puffin 這個category,因此我手動調整 puffin 類別的 prompt,主要是將 BLIP-2 生成的文字中描述類別的地方改成 puffin,讓它能夠生成 puffin 的圖片。

2. Text-to-Image Generation

(a) Use 2 kinds of generated prompts from Problem 1(b) to generate images. (text only!)

Template #1

Template #2

• (b) Select the prompts for better-generating results, and perform image grounding generation. (text + image)

Template #1 + Image

3. Table of your performance based on FID

	Text grounding	Text grounding	Image grounding
prompt	Template #1	Template #2	Template #1
FID	143.27	147.44	135.59

4. Table of the improvement of your detection model from HW1 after data augmentation

	Before Data Augmentation	After Data Augmentation (Text grounding)	After Data Augmentation (Image grounding)
AP _[50:5:95]	0.582	0.586	0.584

Detailed settings of experiments:

- checkpoint: 跟 hw1 一樣,使用 DINO 本身提供的 pretrained model checkpoint0029 4scale swin.pth 再訓練 12 個週期,其餘參數也都跟 hw1 一樣。
- data augmentation:使用 hw1_dataset 所有的照片,再加上 140 張生成的照片 (每個類別 20 張)。
- 雖然沒有實際去平衡每個類別的照片數量,但就結果來說表現還是有提升。而沒有實際去平衡每個類別的數量原因如下:
 - 1. 只用 140 張的生成照片,表現是有提升的。
 - 2. 我認為應該要依照 bounding box label 數量去做平衡,因此有嘗試依照這個想法去生成照片,但換算下來,需要生成大約 7000 多張影像,而又因為生成影像時間過久,不好意思長時間占用實驗室資源,因此就沒有進行實驗。
 - 3. 若真的去平衡每個類別的照片,可能會使少數類別的影像大部分皆為生成出來的影像,這樣可能會使模型 在少數類別上有偏見,變成在辨識生成的影像,感覺生成出來的影像(data augmentation)不應該多 於原本的影像。
 - 4. 若將原本數量較多的類別影像減少,可能會使模型在原本數量較多的類別上表現變差,而且越多該類別的 影像,應該會使該類別學得比較好,我認為沒必要減少。
 - 5. 我有嘗試只加入少數類別的照片,在 penguin 、puffin、starfish、jellyfish 這四個類別上,加入 20 張生成的照片,結果 Text grounding 表現變差,Image grounding 的表現差不多。

5. Visualization

> show the best 5 images for each category (35 images in total!)

• Fish

• Jellyfish

• Penguin

• Puffin

Shark

Starfish

Stingray

