MASTER'S DIAGNOSTIC EXAMINATION January 2011

Student's Name
INSTRUCTIONS FOR STUDENTS:
1. DO NOT put your NAME on the exam. Place the NUMBER assigned to you on the
UPPER RIGHT HAND CORNER of EACH PAGE of your solutions.
2. Please start your answer to EACH QUESTION on a SEPARATE sheet of paper.
3. Use only one side of each sheet of paper.
4. You must answer all four questions: Questions I, II, III and IV.
5. Be sure to attempt all parts of the four questions. It may be possible to answer a later part of a question without having solved the earlier parts.
6. Be sure to hand in all of your exam. No additional material will be accepted once the exam has ended and you have left the exam room.
7. You may use only a calculator, pencil or pen, and blank paper for this examination. No other materials are allowed.
I attest that I spent no more than 4 hours to complete the exam. I used only the materials described above. I did not receive assistance from anyone during the taking of this exam.
Student's Signature
INSTRUCTIONS FOR PROCTOR:
Immediately after the student completes the exam, fax the student's solutions to $979-845-6060$ or email to $longneck@stat.tamu.edu$ Do not send the questions, just send the student's solutions.
(1) I certify that the time at which the student started the exam was
and the time at which the student completed the exam was
(2) I certify that the student has followed all the INSTRUCTIONS FOR STUDENTS listed above.
(3) I certify that the student's solutions were faxed to $\bf 979\text{-}845\text{-}6060$ or
emailed to longneck@stat.tamu.edu.
Proctor's Signature

PROBLEM I.

A computer programmer claims that U_1, \ldots, U_{30} is a random sample of size 30 from a uniform (0,1) distribution

- 1. Describe a graphical method to evaluate the programmer's claim. Be sure to label your axes.
- 2. Describe a test of hypotheses to evaluate the programmer's claim.
- 3. If U_1, \ldots, U_{30} are determined to be in fact a random sample from a uniform on (0,1) distribution, show how U_1, \ldots, U_{30} could be used to generate a random sample of 30 observations, Y_1, \ldots, Y_{30} from a distribution having cdf given by

$$F(y) = 1 - exp(-\alpha(y - \beta))$$
 if $y \ge \beta$,

where α and β are known constants.

4. Suppose we have n independent observations, Y_1, \ldots, Y_n on a random variable having cdf, F(y). Describe a graphical procedure to evaluate whether F(y) has the form:

$$F(y) = 1 - exp(-\alpha(y - \beta))$$
 if $y \ge \beta$,

where α and β are **unknown** constants.

5. How would you modify your graphical procedure in Part (4.) if you were told that the data was Type I censored data with m < n of the observations censored?

PROBLEM II:

There are two experimental situations described below. For each of the experiments provide the following information:

- 1. Type of Randomization, for example, CRD, RCBD, LSD, BIBD, SPLIT-PLOT, Crossover, etc.;
- 2. Type of Treatment Structure, for example, Single Factor, Crossed, Nested, Fractional, etc.;
- 3. Identify each of the factors as being Fixed or Random;
- 4. Describe the Experimental Units and Measurement Units;
- 5. Describe the Measurement Process: Response Variable, Covariates, SubSampling, Repeated Measures;
- 6. A partial ANOVA Table containing just Sources of Variation (SV) and Degrees of Freedom (DF);

Experiment A: A research specialist for a large seafood company investigated bacterial growth on oysters and mussels subjected to three different storage temperatures. Nine cold storage units were available. Three storage units were randomly assigned to be used for each of the storage temperatures: 0, 5, and 10 degrees C. Oysters and mussels were stored for two weeks in each of the cold storage units. A bacterial count was made from a sample of oysters and a sample of mussels from each storage unit at the end of two weeks so that for each storage unit there is a bacterial value for oysters and a bacterial value for mussels, yielding a total of 18 observations.

Experiment B: A study was designed to compare the effect of a vitamin E supplement on the growth of guinea pigs. There are 15 guinea pigs available for the study. The guinea pigs are randomly assigned to one of the three dose levels of vitamin E with 5 animals per level. For each animal the body weight was recorded at the end of weeks 1, 3, 4, 5, 6, and 7. All 15 animals were given a growth-inhibiting substance during week 1 and given identical diets during the first four weeks of the study. At the beginning of week 5, the vitamin E treatments were implemented. The three treatment levels (doses of vitamin E) were 0, L (low), and H (high). The data include the response variable WEIGHT for each of the 15 animals for each of the 6 weekly weighings (total of 90 measurements). The other information available for each observation are the levels of DOSE (0, L, H) and the WEEK (1, 3, 4, 5, 6, 7). The animals are numbered 1 through 15. In addition, a variable called BEFAFT is created which has the following values:

BEFAFT = B for weeks 1, 3, and 4, that is, before the start of the vitamin E doses

BEFAFT = A for weeks 5, 6, and 7, that is, after starting the vitamin E doses

PROBLEM III:

1.	A researcher, who has run a simple linear regression through the origin, states "My residuals do not sum to 0. Thus my model assumptions have been violated. I must transform Y or X." Is this a correct statement? Must the residuals sum to 0? Please explain your answer.
2.	A researcher believes that the log of the odds is a linear combination of x , $x*x$ and log x . Write out the logit function.
3.	Carefully study the results for the three models given below. What model would you recommend to your client? Explain why. Discuss the issues with validity of the models. Is there anything you can tell the client about his predictor variables?

Model 1:

Analysis of Variance												
		Sum of										
Source	DF	Squares	Square	F Value								
Model	9	154584	17176	166.62	<.0001							
Error	190	19586	103.08628									
Corrected Total	199	174171										

Root MSE	10.15314	R-Square	0.8875
Dependent Mean	227.04725	Adj R-Sq	0.8822
Coeff Var	4.47182		

	Parameter Estimates												
Variable	DF	Parameter Estimate		t Value	Pr > t	Variance Inflation							
Intercept	1	3.81085	6.13929	0.62	0.5355	0							
COL2	1	0.93090	1.53281	0.61	0.5444	12.23132							
COL3	1	2.46945	0.90784	2.72	0.0071	4.27408							
COL4	1	3.41763	1.17315	2.91	0.0040	8.77643							
COL5	1	3.68754	0.42996	8.58	<.0001	1.05793							
COL6	1	4.71660	0.41765	11.29	<.0001	1.06188							
COL7	1	6.02569	0.42912	14.04	<.0001	1.03296							
COL8	1	7.19138	0.45166	15.92	<.0001	1.06395							
COL9	1	7.95603	0.44949	17.70	<.0001	1.05266							
COL10	1	4.39536	1.49354	2.94	0.0037	19.06114							

Model 2

Analysis of Variance												
		Sum of										
Source	DF	Squares	Square	F Value	Pr > F							
Model	8	153692	19211	179.18	<.0001							
Error	191	20479	107.22094									
Corrected Total	199	174171										

Root MSE		R-Square	
Dependent Mean	227.04725	Adj R-Sq	0.8775
Coeff Var	4.56062		

	Parameter Estimates													
		Parameter	Standard			Variance								
Variable	DF	Estimate	Error	t Value	Pr > t	Inflation								
Intercept	1	4.08374	6.26048	0.65	0.5150	0								
COL2	1	5.24085	0.46140	11.36	<.0001	1.06556								
COL3	1	4.79871	0.45351	10.58	<.0001	1.02544								
COL4	1	6.65044	0.41997	15.84	<.0001	1.08134								
COL5	1	3.60344	0.43753	8.24	<.0001	1.05326								
COL6	1	4.57544	0.42313	10.81	<.0001	1.04787								
COL7	1	6.08528	0.43715	13.92	<.0001	1.03066								
COL8	1	7.25810	0.46005	15.78	<.0001	1.06127								
COL9	1	7.96753	0.45840	17.38	<.0001	1.05259								

Model 3 – Stepwise

Analysis of Variance												
		Sum of	Mean									
Source	DF	Squares	Square	F Value	Pr > F							
Model	7	153676	21954	205.66	<.0001							
Error	192	20495	106.74650									
Corrected Total	199	174171										

Root MSE	10.33182	R-Square	0.8823
Dependent Mean	227.04725	Adj R-Sq	0.8780
Coeff Var	4.55052		

	Parameter Estimates												
		Parameter	Standard			Variance							
Variable	DF	Estimate	Error	t Value	Pr > t	Inflation							
Intercept	1	5.19190	6.22902	0.83	0.4056	0							
COL2	1	-3.29178	0.58148	-5.66	<.0001	1.69988							
COL5	1	3.73159	0.43698	8.54	<.0001	1.05532							
COL6	1	4.88690	0.41914	11.66	<.0001	1.03276							
COL7	1	5.97025	0.43561	13.71	<.0001	1.02796							
COL8	1	7.05863	0.45679	15.45	<.0001	1.05090							
COL9	1	7.98222	0.45577	17.51	<.0001	1.04517							
COL10	1	8.62440	0.45761	18.85	<.0001	1.72803							

PROBLEM IV: Provide complete solutions to the following two problems:

Part 1. A study was carried out to examine the effect of injecting Botox on eye pain. Fifteen Patients received a high-dose injection in one eye (experimental treatment E) and a low-dose injection in the other eye (control treatment C). Patients were asked to rate the level of pain in each eye on a 1 to 10 scale, with higher values indicating more pain. Which eye received which treatment was randomized. The pain scores for the two eyes recorded on the last of several visits are given in the table:

Subject	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
E eye (x_1)	1.3	7.3	0	0	3	0	3.5	0	0	2.0	0	3.0	5.0	0.3	0
C eye (x_2)	8.8	1.3	0.8	9.5	7.8	9.0	5.0	2.3	2.5	8.0	4.5	4.5	9.0	7.5	0.5

Some possibly useful statistics follow:

$$\bar{x}_1 = 1.693, \ s_1 = 2.2569, \ \bar{x}_2 = 5.400, \ s_2 = 3.3058, \ d = x_2 - x_1, \ \bar{d} = 3.707, \ s_d = 3.9773$$

- 1. What is the design of the experiment? Discuss its appropriateness for this experiment.
- 2. Obtain a 95% confidence interval for the mean difference pain scores between the two eyes. Interpret your results.
- 3. Another way to look at these data is to consider the percentage of subjects who have less pain with the E eye versus the C eye. Carry out a test of whether the proportion of subjects who have less pain with the E eye differs from 0.5. Interpret your results.

Part 2. We wish to compare two different chemotherapy regimens for breast cancer after mastectomy. Patients are placed into pairs based on age and clinical condition. Then a random member of each pair receives treatment A and the other member treatment B. The patients are followed for five years and the number surviving is recorded. The data can be recorded into either of two tables:

	Table A		Γ	able B	
	Outo	come		Outcome fo	r B Patient
Treatment	Survive for	Die within	Outcome for	Survive for	Die within
	5 years	5 years	A patient	5 years	5 years
A	526	95	Survive for 5 years	510	16
В	515	106	Die within 5 years	5	90

- 1. Discuss which table is more appropriate for presenting these data. Explain why.
- 2. Carry out a test for association between treatment and survival for 5 years. You may use the SAS output on the next pages in your solution.

The FREQ Procedure

Table of Survive by Treatment

Treatment

Frequency			
Percent	A	В	Total
yes	526	515	1041
	42.35	41.47	83.82
no	95	106	201
	7.65	8.53	16.18 ⊥
Total	l 621	621	1242
	50.00	50.00	100.00

Statistics for Table of Survive by Treatment

Statistic	DF	Value	Prob
Chi-Square	1	0.7182	0.3967
Likelihood Ratio Chi-Square	1	0.7185	0.3966
Continuity Adj. Chi-Square	1	0.5936	0.4410
Mantel-Haenszel Chi-Square	1	0.7176	0.3969
Phi Coefficient		0.0240	
Contingency Coefficient		0.0240	
Cramer's V		0.0240	

Fisher's Exact Test

Cell (1,1) Frequency (F)	520
Left-sided Pr <= F	0.822
Right-sided Pr >= F	0.220
Table Probability (P)	0.042
Two-sided Pr <= P	0 441

Estimates of the Relative Risk (Row1/Row2)

Type of Study	Value	95% Confide	nce Limits
Case-Control (Odds Ratio)	1.1396	0.8422	1.5420
Cohort (Col1 Risk)	1.0691	0.9129	1.2520
Cohort (Col2 Risk)	0.9381	0.8118	1.0840

Sample Size = 1242

The FREQ Procedure

Table of SurviveA by SurviveB

SurviveA SurviveB

Frequency		ı	
Percent	yes	no	Total
yes	510	16	526
	82.13	2.58	84.70
no	5	90	95
	0.81	14.49	15.30
Total	515	106	† 621
	82.93	17.07	100.00

Statistics for Table of SurviveA by SurviveB

McNemar's Test

Statistic (S) 5.7619
DF 1
Pr > S 0.0164

Simple Kappa Coefficient

Карра		0.8754
ASE		0.0266
95% Lower	Conf Limit	0.8233
95% Upper	Conf Limit	0.9275

Sample Size = 621

Table A.3 Standard Normal Curve Areas $\Phi(z) = P(Z \le z)$

Standard normal density function

Shaded area = $\hat{\Phi}(z)$

0

~	≘	<u></u>	1	55	∞.		4	21	6	~	Ħ	9	<u></u>	9	?	-	4	'n	9	وک	(7)	0	∞	8	7	_	9	7	9	7	7		4	2
0.02	0.5080	0.5478	0.5871	0.6255	0.6628	0.6985	0.7324	0.7642	0.7939	0.8212	0.8461	0.8686	0.8888	0.9066	0.9222	0.9357	0.9474	0.9573	0.9656	0.9726	0.9783	0.9830	0.9868	0.9898	0.9922	0.9941	0.9956	0.9967	0.9976	0.9982	0.9987	0.9991	0.9994	0.9995
0.01	0.5040	0.5438	0.5832	0.6217	0.6591	0.6950	0.7291	0.7611	0.7910	0.8186	0.8438	0.8665	0.8869	0,9049	0.9207	0.9345	0.9463	0.9564	0.9649	0.9719	0.9778	0.9826	0.9864	0.9896	0.9920	0.9940	0.9955	0.9966	0.9975	0.9982	0.9987	0.9991	0.9993	0.9995
0.00	0.5000	0.5398	0.5793	0.6179	0.6554	0.6915	0.7257	0.7580	0.7881	0.8159	0.8413	0.8643	0.8849	0.9032	0.9192	0.9332	0.9452	0.9554	0.9641	0.9713	0.9772	0.9821	0.9861	0.9893	0.9918	0.9938	0.9953	0.9965	0.9974	0.9981	0.9987	0.9990	0.9993	0.9995
N	0.0	0.1	0.2	0.3	0,4	0.5	9.0	0.7	8.0	6.0	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1,7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3
0.00	0.0002	0.0003	0.0005	0.0007	0.0010	0.0014	0.0019	0.0026	0.0036	0.0048	0.0064	0.0084	0.0110	0.0143	0.0183	0.0233	0.0294	0.0367	0.0455	0.0559	0.0681	0.0823	0.0985	0.1170	0.1379	0.1611	0.1867	0.2148	0.2451	0.2776	0.3121	0.3483	0.3859	0.4247
0.08	0.0003	0.0004	0.0005	0.0007	0.0010	0.0014	0.0020	0.0027	0.0037	0.0049	0.0066	0.0087	0.0113	0.0146	0.0188	0.0239	0.0301	0.0375	0.0465	0.0571	0.0694	0.0838	0.1003	0.1190	0.1401	0.1635	0.1894	0.2177	0.2483	0.2810	0.3156	0.3520	0.3897	0.4286
0.07	0.0003	0.0004	0.0005	0.0008	0.0011	0.0015	0.0021	0.0028	0.0038	0.0051	0.0068	0.0089	0.0116	0.0150	0.0192	0.0244	0.0307	0.0394	0.0475	0.0582	0.0708	0.0853	0.1020	0.1210	0.1423	0.1660	0.1922	0.2206	0.2514	0.2843	0.3192	0.3557	0.3936	0.4325
90.0	0.0003	0.0004	0.0006	0.0008	0.0011	0.0015	0.0021	0.0029	0.0039	0.0052	0.0069	0.0091	0.0119	0.0154	0.0197	0.0250	0.0314	0.0392	0.0485	0.0594	0.0722	0.0869	0.1038	0.1230	0.1446	0.1685	0.1949	0.2236	0.2546	0.2877	0.3228	0.3594	0.3974	0.4364
0.05	0.0003	0.0004	0.0006	0.0008	0.0011	0.0016	0.0022	0:0030	0.0040	0.0054	0.0071	0.0094	0.0122	0.0158	0.0202	0.0256	0.0322	0.0401	0.0495	0.0606	0.0735	0.0885	0.1056	0.1251	0.1469	0.1711	0.1977	0.2266	0.2578	0.2912	0.3264	0.3632	0.4013	0.4404
0.04	0.0003	0.0004	0.0006	0.0008	0.0012	0.0016	0.0023	0.0031	0.0041	0.0055	0.0073	0.0096	0.0125	0.0162	0.0207	0.0262	0.0329	0.0409	0.0505	0.0618	0.0749	0.0901	0.1075	0.1271	0.1492	0.1736	0.2005	0.2296	0.2611	0.2946	0.3300	0.3669	0.4052	0.4443
0.03	0.0003	0.0004	0.0006	0.0009	0.0012	0.0017	0.0023	0.0032	0.0043	0.0057	0.0075	0.0099	0.0129	0.0166	0.0212	0.0268	0.0336	0.0418	0.0516	0,0630	0.0764	0.0918	0.1093	0.1292	0.1515	0.1762	0,2033	0.2327	0.2643	0.2981	0.3336	0.3707	0.4090	0.4483
0.02	0.0003	0.0005	0.0006	0.0009	0.0013	0.0017	0.0024	0.0033	0.0044	0.0059	0.0078	0.0102	0.0132	0.0170	0.0217	0,0274	0.0344	0.0427	0.0526	0.0643	0.0778	0.0934	0.1112	0.1314	0.1539	0.1788	0.2061	0.2358	0.2676	0.3015	0.3372	0.3745	0.4129	0.4522
0.01	0.0003	0.0005	0.0007	0.0009	0.0013	0.0018	0.0025	0.0034	0.0045	0.0060	0.0080	0.0104	0.0136	0.0174	0.0222	0.0281	0.0352	0.0436	0.0537	0.0655	0.0793	0.0951	0.1131	0.1335	0.1562	0.1814	0.2090	0.2389	0.2709	0.3050	0.3409	0.3783	0.4168	0,4562
 0.00	0.0003	0.0005	0.0007	0.0010	0.0013	0.0019	0.0026	0.0035	0.0047	0.0062	0.0082	0.0107	0.0139	0.0179	0.0228	0.0287	0.0359	0.0446	0.0548	0.0668	0.0808	0.0968	0.1151	0.1357	0.1587	0.1841	0.2119	0.2420	0.2743	0.3085	0.3446	0.3821	0.4207	0.4602
2	-3.4	-3.3	-3.2	-3.1	-3.0	-2.9	-2.8	-2.7	-2.6	-2.5	-2.4	-2.3	-2.2	-2.1	-2.0	-1.9	-1.8	-1.7	-1.6	-1.5	1.4	-13	-1.2	-1.1	-1.0	-0.9	8.0-	-0.7	-0.6	-0.5	-0.4	-0.3	-0.2	-0.1

Table A.3 Standard Normal Curve Areas $\Phi(z) = P(Z \le z)$ (cont.)

Standard normal density function

0.5753 0.7549 0.6141 0.6517 0.6879 0.7224 0.7852 0.8133 0.8389 0.8621 0.8830 0.9015 0.9177 0.9319 0.9545 0.9633 0.9706 0.9767 0.9817 0.9857 0.9890 0.9916 0.9936 0.9952 0.9986 0.9998 0.9964 0.9974 0.9990 0.9995 0.9441 0.9993 0.9997 0.9981 0.6103 0.8810 0.9761 0.6480 0.6844 0.7190 0.7517 0.7823 0.8106 0.8365 0.8599 0.9162 0.9306 0.9429 0.9535 0.9625 0.9699 0.9812 0.9913 0.8997 0.9854 0.9887 0.9934 0.9963 0.9973 0.9980 0.9986 0,9995 0.9996 0.9951 0.9990 0.9993 0.9997 0.6443 0.6808 0.7157 0.8790 0.9418 0.5675 0.6064 0.7486 0.7794 0.8078 0.8340 0.8980 0.9147 0.9292 0.9616 0.9756 0.9808 0.9850 0.9949 0.8577 0.9525 0.9693 0.9884 0.9911 0.9932 0.9962 0.9972 0.9979 0.9985 0.9989 0.9992 0.9995 0.9996 0.9997 0.6026 0.6406 0.7123 0.7454 0.8315 0.8770 0.9515 0.9608 0.9803 0.6772 0.7764 0.80510.8554 0.8962 0.9131 0.9278 0.9406 0.9686 0.9750 0.9846 0.9881 0.9909 0.9931 0.9948 0.9979 0.9985 0.9989 0.9992 0.9994 0.9996 0.9997 0.9961 0.9971 Shaded area = $\Phi(z)$ 0.8749 0.5199 0.5596 0.5987 0.6368 0.6736 0.7088 0.7422 0.7734 0.8023 0.8289 0.8944 0.9115 0.9265 0.9394 0.9505 0.9678 0.9744 0.9798 9066'0 0.8531 0.9599 0.9842 0.9878 0.9929 0.9946 0.9960 0.9970 0.9978 0.9989 0.9992 0.9994 0.9984 0.9996 0,9997 0.5160 0.5948 0.6700 0.04 0.5557 0.6331 0.7054 0.7389 0.8508 0.8729 0.8925 0.9099 0.9793 0.9838 0.9875 0.9945 0.9959 0.7704 0.7995 0.8264 0.9382 0.9495 0.9738 0.9904 0.9927 0.9969 0.9988 0.9251 0.9591 0.9671 0.9992 0.9996 7.260.0 0.9984 0.9994 0.9997 0.5910 0.5120 0.5517 0.6293 0.7019 0.8238 0.6664 0.7357 0.7673 0.7967 0.8485 0.8708 0.8907 0.9082 0.9236 0.9370 0.9484 0.9664 0.9732 0.9788 0.9582 0.9834 0.9925 0.9943 0.9968 0.9996 0.9871 0.9901 0.9957 0.9977 0.99830.9988 0.9994 0.9997 0.9991

Table A.1 Cumulative Binomial Probabilities (cont.)

c. n = 15

	0.99	000	.000	000	000	000	000	000	000.	000	900.	900.	00.	000.	.010	.140
	0.95	.000	000.	.000	900	000.	000.	000.	900	000.	000	.00T	.005	. 036	.171	.537
	0.90	000	90.	000	000	000	000	000	000.	000	.002	.013	950.	.184	.451	.794
	0.80	900.	000.	000	990.	000.	000:	.001	.004	.018	.061	.164	.352	.602	.833	365
	0.75	000.	000	000	000.	000	.001	.004	.017	.057	.148	.314	.539	.764	.920	.987
	0.70	9. 0.	000	000	000.	.001	.004	.015	.050	.131	.278	.485	.703	.873	.965	995
	09'0	8	900.	000.	.002	600.	.034	.095	.213	390	.597	.783	606.	.973	995	1.000
D	0.50	86.	00.	90.	.018	.059	.151	304	.500	969	.849	.941	.982	966	1.000	1.000
	0.40	99:	500	.027	160:	.217	.403	.610	787.	306	996.	.991	866.	1.000	1.000	1.000
	0.30	200.	.035	.127	.297	.515	.72Z	.869	,950	.985	966.	666	1.000	1.000	1.000	1.000
	0.25	.013	080	.236	.461	989	.852	.943	983	966	666,	1.000	1.000	1,000	1.000	1.000
	0.20	.035	167	398	.648	.836	626	.982	966:	666.	1.000	1.000	1.000	1.000	1.000	1.000
	0.10	206	.549	.816	946	786.	966	1,000	1.000	1.000	1,000	1.000	1.000	1:000	1.000	1.000
	50.0	.463	829	964	566.	666	1.000	1.000	1.000	1,000	1.000	1,000	1.000	1.000	1.000	1,000
	10.0	0.860	966	1.000	1,000	1.000	1.000	1.000	1,000	1.000	1,000	1,000	1.000	1,000	1.000	1.000
	ı	0	-	7	m	4	٧.	9	7	· ∞	0	10	1	12	13	14
									×	:						

ರ

7	10	50	025	.01	,005	.001	.0005
-	3.078	6.314	12.706	31.821	9	318.31	636.62
7	1.886		4.303	6,965		22.326	31.598
m	1.638	2,353	3.182	4.541		10.213	12.924
4	1.533		2.776	3.747		7.173	8.610
S	1.476		2.571	3.365		5.893	6.869
9	1.440		2.447	3.143		5.208	5.959
7	1.415		2.365	2.998		4.785	5.408
∞	1.397		2.306	2.896		4.501	5.041
6	1.383		2.262	2.821		4.297	4.781
10	1.372		2.228	2.764		4.144	4.587
11	1.363		2.201	2.718	3.106	4.025	4.437
12	1.356		2.179	2.681		3.930	4.318
13	1.350		2.160	2.650		3.852	4 221
14	1.345		2.145	2,624		3.787	4.140
15	1.341		2.131	2,602		3.733	4.073
16	1.337		2.120	2.583		3.686	4.015
17	1.333		2.110	2.567		3,646	3.965
18	1.330		2.101	2.552		3.610	3.922
19	1.328		2.093	2.539		3.579	3.883
20	1.325		2.086	2.528		3.552	3.850
21	1.323		2.080	2.518		3.527	3.819
22	1.321		2.074	2.508		3.505	3.792
23	1.319		2.069	2.500		3.485	3.767
27	1.318		2.064	2.492		3.467	3.745
25	1.316		2.060	2,485		3.450	3.725
56	1.315		2.056	2.479		3,435	3.707
27	1.314		2.052	2.473		3.421	3.690
28	1.313		2.048	2.467		3.408	3.674
29	1.311		2.045	1.462		3.396	3.659
30	1.310		2.042	2.457		3.385	3.646
40	1.303		2.021	2.423		3.307	3.551
90	1.296		2.000	2.390		3.232	3.460
120	1.289		1.980	2.358	2.617	3.160	3.373
8	1.282		1.960	2.326		3.090	3.291_{ι}
		1					

Table A.5 Critical Values $\chi^2_{\nu,\alpha}$ for the Chi-square Distribution

				7. v, u						
						α				
v	.995	.99	.975	.95	.90	.10	.05	.025	.01	.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.843	5.025	6.637	7.882
2	0.010	0.020	0.051	0.103	0.211	4.605	5.992	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.344	12.837
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.085	16.748
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.440	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.012	18.474	20.276
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.534	20.090	21.954
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.022	21.665	23.587
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483 _		25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.724	26.755
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.735	27.687	29.817
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.600	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.577	32.799
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.407	7.564	8.682	10.085	24.769	27.587	30.190	33.408	35.716
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.843	7.632	8.906	10.117	11.651	27.203	30.143	32.852	36.190	38.580
20	7.434	8.260	9.591	10.851	12.443	28.412	31,410	34.170	37.566	39.997
21 22	8.033	8.897	10.283	11.591	13.240	29.615	32.670	35.478	38.930	41.399
	8.643	9.542	10.982	12.338	14.042	30.813		36.781	40.289	42.796
23	9.260	10.195	11.688	13.090		32.007	35.172	38.075	41.637	44.179
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.558
25	10.519	11.523	13.120	14.611	16.473	34.381	37.652	40.646	44.313	46.925
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.807	12.878	14.573	16.151	18.114	36.741	40.113	43.194	46.962	49.642
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.120	14.256	16.147	17.708	19.768	39.087	42.557	45.772	49.586	52.333
30	13.787	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
31	14.457	15.65 5	17.538	19.280	21.433	41 422	44.985	48.231	52.190	55.000
32	15.134	16.362	18.291	20.072	22.271	42.585	46.194	49.480	53.486	56.328
33	15.814	17.073	19.046	20.866	23.110	43.745	`47.400	50.724	54.774	57.646
34	16.501	17.789	19.806	21.664	23.952	44.903	48.602	51.966	56.061	58.964
35	17.191	18.508	20.569	22.465	24.796	46.059	49.802	53.203	57.340	60.272
36	17.887	19.233	21.336	23.269	25.643	47.212	50.998	54.437	58.619	61.581
37	18.584	19.960	22.105	24.075	26.492	48.363	52.192	55.667	59.891	62.880
38	19.289	20.691	22.878	24.884	27.343	49.513	53.384	56.896	61.162	64.181
39	19.994	21.425	23.654	Z5.695	28.196	50.660	54.572	58-119	62.420	65.473
40*	20.706	22.164	24.433	26.509	29.050	51.805	55.758	59.342	63.691	66.766

Table A.10 Upper-Tail Probabilities of the Null Distribution of the Wilcoxon Signed Rank Statistic

		2	<u> </u>													·																														
																																	<u></u>													·······t
$P(W > w H_c)$	(0xx) = (1) 1	0.011	600.0	0.005	0.108	0.097	0.052	0.025	0.010	0.005	0.104	0.094	0.053	0.047	0.024	0.011	0.009	0.005	0.106	0.096	0.052	0.025	0.011	0.009	0.005	0.103	0.095	0.049	COC.	0.010	0.098	0.049	0.024	0.010	0.005	0.098	0.052	0.048	0.025	0.010	0.005	0.101	0.049	0.024	0.010	0.005
2		78	79	81	14 73	74	79	\$	88		15 83	8	68	8	95	100	101		16 93	8	100	106	112	113		17 104	50 5	112	116	120	18. 116	124	131	138		19 128	136	137	144	152	157	20 140	150	158	167	172
إد	Ì					-																																								
$\frac{D(W > \eta v) H_0}{D}$	1 (11 = m 440)	0.125	0.125	0.062	0.094	0.062	0.031	0.109	0.047	0.031	0.016	0.109	0.055	0.023	0.008	0.098	0.055	0.027	0.012	0.008	0.004	0.102	0.049	0.027	0.010	0.004	0.097	0.033	0.024	0.010	0.103	0.051	0.027	0.00	0.005	0.102	0.055	0.046	0.026	0.010	0.005	0.108	0.095	0.055	0.047	0.024
20 E	3	9	6	10	13	14	15	17	19	20	21	22	24	56	8	28	30	33	<u></u>	35	36	8	37	39	42	4 :	4 :	‡ <i>t</i>	4 V	3 8	4 8	52	55	59	61	26	8	61	2	89	7	\$	65	69	20	74
*	•	ы	4		5	٠		9				7				œ						6				!	07				7	€ €				12						13				

	:			$P(W \ge w_1)$					$P(W \geq w_1)$					$P(W \geq w_1)$
ź	7,	m,	. 12	$P(U > u_1)$	ż	22	\mathbf{g}_1	1 7	$P(U \geq u_1)$	ű	72	ສ	£	$P(U \geq u_1)$
1 60	4 60	15	9	0.050	4	6	4	34	90.00	9	10	99	45	0.059
1	4	17	11	0.057		10	42	32	0.053		10	69	84	0.028
	4	18	17	0.029		10	4	发	0.027		9	27	51	0.011
	S	20	14	0.036		2	46	36	0.012		10	74	8	0.005
	vn.	21	15	0.018		2	47	37	0.007	<u></u>	t ~ :	99	38	0.049
	9	22	16	0.048	'n	S	36	21	0.048		7	98	9	0.027
	9	23	17	0.024		2	37	22	0.028		۲-	71	43	0.009
	9	2	18	0.012		S	33	24	0.008		7	72	4	0.006
	7	24	18	0.058		5	€	25	0.004		∞	71	43	0.047
	~	26	70	0.017		9	4	25	0.041		∞	73	45	0.027
	7	27	21	0.008		9	4	26	0.026		∞	9/	8	0.010
	00	27	21	0.042		9	43	28	0.009		∞	78	S	0.005
	∞	78	55	0.024		9	4	53	0.004		6	75	4	0.057
	00	59	53	0.012		~	43	28	0.053		6	78	ß	0.027
	00	30	74	0.006		7	45	99	0.024		6	81	23	0.011
	•	29	23	0.050		~	47	32	0.009		6	83	22	0.006
	Ģ	Æ	25	0.018		~	48	33	0.005		10	80	25	0.054
	. 6	32	76	0.00		8	47	32	0.047		10	83	55	0.028
	. 6	33	27	0.005		∞	49	34	0.023		10	87	59	0.009
	5	2	52	0.056		00	51	36	0.009		10	8	19	0.005
	10	33	27	0.024		∞	22	37	0.005	∞	∞	84	48	0.052
	10	34	28	0.007		6	20	35	0.056		œ	87	51	0.025
	10	35	53	0.003		6	53	38	0.021		œ	8	54	0.010
4	4	24	14	0.057		6	55	\$	0.009		∞	32	26	0.005
	4	23	15	0.029		6	26	4]	900'0		6	8	53	0.057
	4	56	16	0.014		10	54	36	0.050		6	93	27	0.023
	S	27	17	0.056		10	32	41	0.027		6	8	9	0.010
	Ŋ	28	18	0.032		10	59		0.010		6	. 38	62	9000
	'n	59	19	0.016		10	9		0.006		10	95	59	0.051
	ν,	ဆ	20	0.008	9	9	S		0.047		10	98	62	0.027
	9	30	20	0.057		9	22	31	0.021	_	2	102	9	0.010
	9	32	52	0.019		9	54		0.008		10	10 40 10 10	89	0.006
	9	33	23	0.010		9	55		0.004	6	6	104	29	0.057
	9	34	24	0.005		7	5		0.051		0	108	63	.0.025
	7	33	23	0.055		7	56	35	0.026		6	111	99	0.012
	7	35	25	0.021		1-	58		0.011		6	114	69	0.005
	7	36	56	0.012		7	9		0.004		2	110	65	0.056
	7	37	53	9000		8	28	37	0.054		10	114	69	0.027
	œ	36	26	0.055		8	61		0.021		9	118	73	0.011
	∞	38	28	0.024		∞	63	42	0.010		10	121	9/	0.005
	. ∞	9	30	0.008		∞	65	4	0.004	10	10	127	72	0.053
	∞	41	31	0.004		9	62	41	0.057		10	131	9/	0.026
	0	39	59	0.053	_	9	65	•	0.025		10	135	8	0.012
	ŗ		,	4	_	(,		000	_	,	430	ć	2000
	0	4	;	CZ0.0	_	2	ò	4	0.009	_	2	28	Š	0.000