	Prism ID:
Name:	GTID#: 9

Problem	Dointe	Taab	Gained	Decree in a mate 1	шл
Problem	Points	Lost	Gained	Running Total	TA
1	1				
2	15				
3	5				
4	15				
5	14				
6	20				
7	5				
8	10				
9	15				
Total	100				
				+	1

- You may ask for clarification but you are ultimately responsible for the answer you write on the paper.
- Illegible answers are wrong answers.
- Please do not discuss this test by any means (until 5 pm today)
- Please look through the entire test before starting. WE MEAN IT!!!

Illegible answers are wrong answers.

Good luck!

1. (1 point, 1 min) (circle one)

Which of the following teams are in the semifinals of the 2011 World Cup Cricket (circle all that apply)?

- a) Australia b) South Africa c) India d) New Zealand e) Pakistan f) USA
- g) Sri Lanka h) England i) West Indies

	Prism ID:
Name:	GTID#: 9

Pipelining

- 2. (15 points, 10 min)
- (a) (2 points) (Select one **correct** choice)

With reference to the 5-stage pipelined implementation of LC-2200 instruction set, a second ALU is needed in the EXEC stage of the pipeline

- 1) To make the stage symmetrical
- 2) To enable address calculation for LW/SW instructions
- 3) To enable address calculation for BEQ instruction
- 4) To enable multi-precision arithmetic for ADD instruction
- 5) To enable ADD and NAND instructions to be executed in parallel if they occur one after another $\frac{1}{2}$
- (b) (3 points)

What role does Branch Target Buffer play in a pipelined processor design?

(c) (5 points)

I₁: R1 <- R2 + R3

I₂: R4 <- R1 + R5

If I_2 is immediately following I_1 in the pipeline with **no forwarding**, how many bubbles will be experienced by the pipeline? You must explain your answer to get any credit.

		Prism ID:
Name	S:	GTID#: 9
I1: LW	^{5 points)} R1, 0(R2); load R1 from memory <- R1 + R5	
many bul	immediately following I_1 in the pipeline abbles will be experienced by the pipeline to get any credit.	
3. (5 po (Use eac	s Scheduling points, 5 min) such of the following terms EXACTLY ONCE: "F	
b.	of process A is currently running and mak block of data from the disk, the OS	
qı	of process A is currently running and the quantum is up to run a different process E n the state.	
re	To dispatch a process A to run on the register values from A's	
	f fairness is more important than average the processes, we should use	

e) If we want to optimize the average waiting time for processes, then we

should use _____ non-preemptive scheduling algorithm.

algorithm.

	Prism ID:
Name:	GTID#: 9

4. (15 points, 15 min)

Recall that Shortest Remaining Time First (SRTF) is a variant of Shortest Job First (SJF) with preemption added in. Consider the following three processes vying for the CPU. The scheduler uses SRTF. The scheduler re-evaluates which process to run only upon the arrival of a new process into the scheduling queue, or the completion of a process. The table shows the arrival time of each process.

Process	Arrival Time	Execution Time
P1	T_0	2ms
P2	T_0 +1ms	3ms
Р3	T ₀ +2ms	1ms

The scheduling starts at time T_0 .

(a) (6 points) Fill in the table below with the process that is executing on the processor during each time slot.

Interval T ₀ +	0	1	2	3	4	5	6	7	8	9	10	11	12
Running													

Use the following tables to show your work as to how you arrived at the above schedule.

Time T_0 :

Process	Remaining time
P1	2ms
P2	Not arrived yet
P3	Not arrived yet

Time T_0+1 : (2 points) (Process P2 arrives)

Process	Remaining time
P1	
P2	
P3	Not arrived yet

Time T_0+2 : (3 points) (Process P3 arrives)

Process	Remaining time
P1	
P2	
P3	

		Prism ID:	
Name:		GTID#: 9	
(b) (2 points)	What is the total waitir	ng time for all processes?	
(c) (2 points)	What will be the total v	vaiting time for all processes	with
an FCFS sch	edule?		
	and Virtual Memory		
In a byte-address possible internal 1) 8192 bytes 2) 1 byte 3) 8191 bytes	hoose one of the follow:	size is 8192 bytes, the maximum	ι
(b) (4 points)	s 32 bits; pagesize 8192	2 bytes (8 Kbytes); How many en	tries.
(c) (4 points) For the same memo	ry system as in (b), the	e physical address is 24 bits.	How

many physical page frames does the memory system have?

	Prism ID:
Name:	GTID#: 9

(d) (2 points)

Total memory size is 24K. The current state of the memory allocation table for a variable-sized partition allocation scheme is as follows:

Start address	Size	Who has it?
0	4K	P1
4096	4K	P2
8192	4K	FREE
12288	2K	P3
14336	10K	FREE

What is the total amount of external fragmentation?

(e) (2 points)

The necessary conditions for a paging memory system are (select one of the following choices)

- 1) The virtual and physical addresses have to be of the same size
- 2) The sizes of the virtual page and the physical frame have to be the same
- 3) The number of physical frames should be larger than the number of virtual pages
- 4) (1) and (2)
- 5) (2) and (3)
- 6) (1) and (3)
- 7) (1), (2), and (3)

Working set, page replacement, TLB

6. (20 points, 15 min)

During the time interval t1 - t2, the following virtual page accesses are recorded for the process P1.

P1: 0, 10, 1, 0, 1, 2, 10, 2, 1, 1, 0

- a) (2 points) What is the working set for P1 in this time interval?
- b) (3 points) What is the memory pressure on the system during this interval?

	Prism ID:
Name:	GTID#: 9

c) (6 points)

P1 incurs a page fault at VPN = 2. The victim page frame chosen by the page replacement algorithm is PFN = 84. The "before" picture of the page manager's data structure are shown below. Note that only relevant entries of the Frame Table are shown in the Figures below. Show the contents of the data structures "after" the page fault is serviced. You can simply mark the changes in the figure below to show your answer.

	PFN	٧		
VPN = 0	50	٧] o [
VPN = 1	52	٧]	
VPN = 2		I		••••
VPN = 3	60	v	50	<p1, 0=""></p1,>
			52	<p1, 1=""></p1,>
	P1's	PT	60	<p1, 3=""></p1,>
			70	<p2, 0=""></p2,>
	PFN	٧	80	<p2, 1=""></p2,>
VPN = 0	70	V	84	<p2, 3=""></p2,>
VPN = 1	80	V	85	<p2, 2=""></p2,>
VPN = 2	85	٧		
VPN = 3	84	٧		Frame Table

P2's PT

d) (9 points)

A processor has a 4-entry TLB that uses a least recently used (LRU) replacement policy. The program executed by this processor generates the following sequence of memory requests (only the page number of each request is shown). Assuming that the TLB is initially empty, which of these memory requests will result in TLB misses?

LRU stack

	Prism ID:		
Name:	GTID#: 9		

Page #	TLB Miss?
0xF000	
0xE000	
0x10AB	
0xF000	
0x2000	
0x2001	
0x2000	
0xF000	
0x4000	
0xE000	
0x10AB	
0x2001	
0x10AB	
0x2000	
0x2001	

Caching

7. (5 points, 5 min)

A pipelined processor has an average CPI of 1.2 not considering memory effects. On an average each instruction has an I-cache miss of 1%, and a D-cache miss of 1%. The miss penalty is 20 cycles. What is the effective CPI taking into account memory stalls?

8. (10 points, 10 min)
Consider the following memory hierarchy:
 L1 cache: Access time = 2ns; hit rate = 99%
 L2 cache: Access time = 10ns; hit rate = 95%
 Main memory: Access time = 100ns
Compute the effective memory access time.

	Prism ID:		
Name:	GTID#: 9		

9. (15 points, 15 min)

Consider a 2-way set-associative cache for byte addressed processor.

- Data size of cache = 16KB.
- CPU address = 32 bits
- Memory word = 4 bytes.
- Cache block size = 16 bytes.
- Write policy is Write-back at the granularity of individual words.
- Cache replacement policy = LRU
- a) (5 points) Show the layout of the cache, clearly showing the fields of the cache (the data and metadata). The sketch should show the number of lines in the cache, the amount of data in each line, and the fields of the metadata in each line.

	Prism ID:
Name:	GTID#: 9

b) (5 points) Show how the CPU interprets the memory address (i.e., which bits are used as offset, index, and tag).

c) (5 points) Compute the size of the metadata in **each line of the cache** (remember that this is a 2-way set-associative cache). Show your work to get partial credit.