

Web Info Extraction & Text Classification

Antony Paulson Chazhoor

Purpose

"Can a machine be trained to read random text on the internet & identify what it is about?"

"Reading through entire texts is a cumbersome process. Can machine learning help to make this process easier?"

"Loans" & "Credit Cards": I address the questions by choosing two very similar but equally diverse topics within banking

Two specific subreddit pages scraped

Loans: https://www.reddit.com/r/Loans
Credit Cards: https://www.reddit.com/r/Loans

Exploratory data analysis on word distributions in both posts

3 different machine learning classification models applied

Logistic Regression
Gaussian Naive Bayes
Densely connected Neural Networks

Evaluation of models (Classification Accuracy & Confusion Matrices)

Project Highlights

Scraping of Reddit Posts

- Each page contains 25 posts
- Scraping done on nearly 50 pages to collect at least 1000 posts

Exploratory Data Analysis

- Checking the word distributions among posts
- An intuition into how similar/different they are
- Among top 50 words in both posts 31 were the same.
- There were 19 unique words

EDA (contd...)

Top unique words in Loan posts.

EDA (contd...)

• Top unique words in credit card posts.

EDA (contd...)

Common words and their occurence in both posts

Loan Posts

Credit card Posts

0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
Preprocessing				statis The compost	tical model ount vectorize occurring wo	er is used to rds and turn	fectively be add transform this to them into colun the frequency o	ext into a colle nns of a model	ction of l.

able abrubt absolutely ac accept access account accounts across act

Model Evaluation

- Classification accuracy on the testing set is the parameter by which the models were judged
- With 800 features from the Vectorizer, the models performed exceptionally well
- Logistic regression outperformed the other two models by a narrow margin
- The values for these results of each model:

Classification Model	Training Accuracy	Testing Accuracy
Naive Bayes	91.91 %	93.04 %
Neural Networks	94.65 %	93.22 %
Logistic Regression (with GridSearch)	95.19 %	95.54 %

Model Evaluation (Confusion Matrix)

Gaussian Naive Bayes model:

	Predicted Loan	Predicted Credit Car	rd
Loan	234		39

Credit Card

Predicted	Loan	Predicted	Credit	Card	
	234			39	
	0			288	

39
288

288

Loan Credit Card

Logistic Regression

248

Neural Networks:

	Predicted Loan	Predicted Credit	Card
Loan	254		19
Credit Card	19		269

The confusion matrices give a much clearer picture of model performance Though it misclassified 25 Loan posts logistic regression performed extremely well in identifying Credit card posts

Conclusions and further steps

The project indicates how machine learning can aid in text classification.

These models can save a lot of time spent otherwise in manual reading.

Similar banking subjects like loans and credit cards can be differentiated by machine learning.

A step forward would be to gather posts from more topics and train models to perform multi-class classification.