Exercice 1.

Une urne contient n boules rouges où n est un entier supérieur ou égal à 2, 3 boules jaunes et 2 boules vertes. On tire au hasard et simultanément deux boules de cette urne.

- 1. Il y a autant de tirages possibles que de combinaisons de 2 éléments pris parmi n+5 soit $\binom{n+5}{2} = \frac{(n+5)(n+4)}{2}.$
- 2. On choisit deux boules jaunes parmi les 3 boules jaunes : il y a alors $displaystyle(^3_2) = 3$ de tirages comportant deux boules jaunes.

3. Les deux boules sont tirées au hasard, on est ne situation d'équiprobabilité. On a donc
$$p_n = \frac{3}{\frac{(n+5)(n+4)}{2}} = \frac{6}{(n+5)(n+4)}$$
.

4. On a $\lim_{n\to+\infty} n+5=+\infty$ et $\lim_{n\to+\infty} n+4=+\infty$ donc par produit des limites :

$$\lim_{n \to +\infty} (n+5)(n+4) = +\infty \text{ et ainsi } \lim_{n \to +\infty} p_n = 0.$$

On en déduit que si on prend un nombre « illimité » de boules rouges, la probabilité de tirer deux boules jaunes sera nulle. Il sera donc impossible de tirer deux boules jaunes.

Exercice 2.

Soit la suite (v_n) définie sur \mathbb{N} par $v_0 = 5$ et pour tout entier naturel $n, v_{n+1} = v_n^2 - 7v_n + 16$.

1. $\forall n \in \mathbb{N}$,

$$v_{n+1} - v_n = v_n^2 - 7v_n + 16 - v_n$$

= $v_n^2 - 8v_n + 16$
= $(v_n - 4)^2$

Un carré étant toujours positif dans \mathbb{R} on a $(v_n-4)^2\geqslant 0$ et donc $v_{n+1}-v_n\geqslant 0$ ce qui prouve que la suite (v_n) est croissante.

- 2. Si (v_n) converge alors sa limite ℓ vérifie $\lim_{n \to +\infty} v_n = \ell$ et $\lim_{n \to +\infty} v_{n+1} = \ell$. Or $v_{n+1} = v_n^2 7v_n + 16$ donc $\lim_{n \to +\infty} v_{n+1} = \lim_{n \to +\infty} v_n^2 7v_n + 16$ soit $\ell = \ell^2 7\ell + 16$. Or $\ell = \ell^2 7\ell + 16 \iff \ell^2 8\ell + 16 = 0 \iff (\ell 4)^2 = 0 \iff \ell = 4$. Ainsi, si (v_n) converge alors sa limite est $\ell = 4$.
- 3. Supposons la suite (v_n) convergente. D'après la question précédente cela imposerait $\ell=4$. On a démontré que la suite (v_n) était croissante. La suite (v_n) convergente si et seulement si elle est majorée. Or $v_0 = 5$ et (v_n) est croissante donc pour tout entier naturel $n, v_n \ge 5$: la suite (v_n) ne peut donc converger vers 4. La suite (v_n) n'est donc pas majorée.
- 4. La suite (v_n) est croissante et non majorée : elle diverge donc vers $+\infty$: $\lim_{n\to+\infty}v_n=+\infty$.

1

Exercice 3.

Soit la fonction f définie sur l'intervalle [0; 2] par $: f(x) = \frac{2x+1}{x+1}$.

1. f est dérivable sur [0; 2]. $\forall x \in [0; 2]$,

$$f'(x) = \frac{2(x+1) - (2x+1)}{(x+1)^2}$$
$$= \frac{1}{(x+1)^2} > 0$$

On en déduit que f est strictement croissante sur [0; 2].

- 2. On a $1 \le x \le 2$ donc $f(1) \le f(x) \le f(2)$ car f est strictement croissante sur [0; 2]. Or $f(1) = \frac{3}{2}$ et $f(2) = \frac{5}{3}$ donc $1 \le \frac{3}{2} \le f(x) \le \frac{5}{3} \le 2$.
- 3. (a) Facile.
 - (b) La suite (u_n) semble être croissante et converger vers 1,6 et la suite (v_n) semble être décroissante et converger vers 1,7 également.
 - (c) Soit P_n la proposition de récurrence : $1 \le u_n \le u_{n+1} \le 2$.

 Initialisation : si n = 0 on a $u_0 = 2$ et $u_1 = f(u_0) = f(2) = \frac{5}{3}$ ainsi $1 \le u_1 \le u_0 \le 2$ et donc P_0 est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}:$ soit $k\in\mathbb{N}$ et supposons P_k vraie, alors $1\leqslant u_{k+1}\leqslant u_k\leqslant 2,$ donc :

 $f(1) \leqslant f(u_{k+1}) \leqslant f(u_k) \leqslant f(2)$ car f est strictement croissante sur [0; 2]. On a donc $1 \leqslant \frac{5}{3} \leqslant u_{k+2} \leqslant u_{k+1} \leqslant \frac{5}{3} \leqslant 2$.

Ainsi si P_k est vraie alors P_{k+1} est vraie

La proposition est vraie au rang 0, et si elle est vraie au rang n elle est vraie au rang n+1: d'après le principe de récurrence P_n est vraie quel que soit le naturel n.

Ainsi pour tout entier naturel $n, 1 \leq u_{n+1} \leq u_n \leq 2$.

- (d) On a $u_{n+1} \leq u_n$ donc la suite (u_n) est décroissante.
 - On a $1 \leq u_n$ donc la suite (u_n) est minorée par 1.
 - La suite (u_n) est donc convergente vers une limite ℓ telle que $\ell \geqslant 1$.
- (e) Soit ℓ la limite de la suite (u_n) . On a $\lim_{n\to+\infty}u_n=\ell$, $\lim_{n\to+\infty}u_{n+1}=\ell$ et $u_{n+1}=f(u_n)$. On passe à la limite.

On a alors: $\lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} f(u_n)$ soit $\ell = f(\ell)$ c'est-à-dire: $\ell = \frac{2\ell+1}{\ell+1}$.

(f) $\ell = \frac{2\ell+1}{\ell+1} \Longleftrightarrow \ell(\ell+1) = 2\ell+1 \Longleftrightarrow \ell^2-\ell-1 = 0.$

On a un trinôme de degré $2: \Delta = (-1)^2 - 4 \times 1 \times (-4) = 5 > 0$ donc le trinôme a deux racines réelles qui sont $\ell_1 = \frac{1 - \sqrt{5}}{2} < 0$ et $\ell_2 = \frac{1 + \sqrt{5}}{2} \geqslant 1$ donc la limite de la suite (u_n) est donc :

$$\ell = \frac{1 + \sqrt{5}}{2}.$$

Exercice 4.

- $\lim_{\substack{x \to 5 \\ x < 5}} f(x) = +\infty$ et $\lim_{\substack{x \to 5 \\ x > 5}} f(x) = -\infty$: on en déduit que la droite d'équation x = 5 est asymptote verticale à la courbe représentative de la fonction f.
- $\lim_{x\to +\infty} f(x) = 6$ donc la droite d'équation y=6 est asymptote horizontale à à la courbe représentative de la fonction f au voisinage de $+\infty$.