Insurance Forecast

Aren Zita Chamodi Basnayake Weibin Huang

Introduction

Given patient information, can you accurately predict insurance costs?

- 1. Dataset
- 2. Descriptive Statistics
- 3. Variable Selection
- 4. LASSO
- 5. Multicollinearity
- 6. Introduce interaction term
- 7. Box Cox
- 8. Cross Validation
- 9. Final Models
- 10. Decision Tree
- 11. Conclusion

Dataset

1338 data points

Response variable

Charges [\$ 1.12K - 63.8K]

6 Regressor variables

Age [18 - 64]

Sex [Female, Male]

Bmi [16 - 50]

Children [0, 1, 2, 3, 4, 5]

Smoker [true, false]

Region [SE, SW, NE, NW]

Descriptive Statistics

Descriptive Statistics

Variable Selection

Forward Selection

Backward Selection

Stepwise Regression

```
## Step: AIC=23314.58
## charges ~ smoker + age + bmi + children + region
##
             Df Sum of Sq
                                RSS
                                      AIC
                          4.8845e+10 23315
## <none>
## - region 3 2.3320e+08 4.9078e+10 23315
              1 5.7164e+06 4.8840e+10 23316
## + sex
## - children 1 4.3596e+08 4.9281e+10 23324
## - bmi
             1 5.1645e+09 5.4010e+10 23447
              1 1.7151e+10 6.5996e+10 23715
## - age
## - smoker
              1 1.2301e+11 1.7186e+11 24996
```

- Select all variables except Sex
- $R^2 = 74\%$
- RSE = 6060

LASSO(least absolute shrinkage and selection operator)

One of the Shrinkage Method

- Shrinks coefficients estimates to zero
- Minimize the criterion

$$RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Lasso coefficients

(Intercept)	age	sexmale	bmi	children
-11270.2740				392.1943
smokeryes	regionnorthwest	regionsoutheast	regionsouthwest	
23567.3485	0.0000	-393.8077	-380.5802	

Multicollinearity

- Multicollinearity High intercorrelations among the independent variables
 - High standard errors
 - Impacts significance

Introduce Interaction Terms

- Interaction effects exist?
- BMI, Age and Smoker
- Analyze slopes and significance

- $R^2 = 84\%$
- RSE = 4851

charges ~ a (age) + b (bmi) + c (children) + s (smoker) + r (region) + sb (smoker::bmi)

Box Cox Transformation

- Transform y variable
- Meet normality assumption
- $\lambda = 0.262623$

- $R^2 = 80\%$
- RSE = 1.181

k-fold Cross Validation

- Original data is randomly split into k partitions
- Use one subsample as test data and other remaining subsamples as training data.
 Calculate the residual sum of squared.
- Repeat it k times, picking different test data each iteration.
- Calculate the mean of residual sum of squared to evaluate the model

img: http://karlrosaen.com/ml/learning-log/2016-06-20/

10-fold Cross Validation of the Models

Model without the interaction term:

charges^0.1414 ~ smoker + age + bmi + children + region

```
1338 samples
5 predictor

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 1205, 1204, 1203, 1204, 1206, 1205, ...
Resampling results:

RMSE Rsquared MAE
0.2246241 0.776145 0.143058
```

Model with the interaction term:

charges^0.2626 ~ smoker + age + bmi + children + smoker:bmi

```
1338 samples
6 predictor

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 1204, 1205, 1203, 1203, 1206, 1204, ...
Resampling results:

RMSE Rsquared MAE
1.182119 0.806899 0.7138265
```

Final Model

charges^0.2626 ~ smoker + age + bmi + children

+ smoker:bmi

 R^2 Adj Value = 0.8074

Residual Standard Error = 1.181

```
Call:
lm(formula = charges^0.262626 ~ age + bmi + children + region +
    sex + smoker:bmi, data = data.insurance)
Residuals:
   Min
            10 Median
                                  Max
-2.3805 -0.4977 -0.2375 0.0359 6.4309
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                6.319609
                          0.191614 32.981 < 2e-16 ***
               0.090696
                          0.002319 39.113 < 2e-16 ***
age
               0.013902
                          0.005593 2.486 0.013054 *
bmi
                          0.026851 8.930 < 2e-16 ***
children
                0.239781
regionnorthwest -0.185733
                          0.092795 -2.002 0.045537 *
                          0.093286 -4.414 1.1e-05 ***
regionsoutheast -0.411757
regionsouthwest -0.363111
                          0.093117 -3.900 0.000101 ***
sexmale
                          0.064921 -3.088 0.002060 **
               -0.200442
bmi:smokeryes 0.160602
                          0.002571 62.457 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.181 on 1329 degrees of freedom
Multiple R-squared: 0.8085,
                              Adjusted R-squared: 0.8074
F-statistic: 701.6 on 8 and 1329 DF, p-value: < 2.2e-16
```

Regression Trees

Why Use Regression Tree?

- Effective when there are different clusters of observations.
- It is easier to visualize the effectiveness of each regressor.
- It can be helpful when making a rational decision.

Procedure

- 1. Pick a model
- 2. Construct a Large Decision Tree
- 3. Apply Pruning to the Tree (Cross Validation)
- 4. Decide a Final Tree

First Decision Tree

Model Used:

charges^0.1414~smoker+age+bmi+children+region

Original full tree

Pruning (Cross-Validation of Regression Tree)

- The graph shows the Relative Error vs cp (Complexity Parameter)

$$\sum_{Leaves} (RSS \text{ at each leaf}) + \lambda S$$

- The horizontal line represents the highest cross-validated error + 1 standard deviation of the error at the tree.
- Pick the cp at 0.017

Final Decision Tree

Final pruned tree

-People who smoke and are obese tend to have higher charges on insurance.

Height	Weight Range	вмі	Considered
5′ 9″	124 lbs or less	Below 18.5	Underweight
	125 lbs to 168 lbs	18.5 to 24.9	Healthy weight
	169 lbs to 202 lbs	25.0 to 29.9	Overweight
	203 lbs or more	30 or higher	Obese
	271 lbs or more	40 or higher	Class 3 Obese

ref: https://www.cdc.gov/obesity/adult/defining.html

Conclusion

- More complex transformations to better meet normality assumption
- Consider a Random Forest model
- Support Vector Machine might work better since there were several data apart on each other

THANK YOU

QUESTIONS?