Lab Nr. 8, Numerical Calculus

Hermite Interpolation

Summary and Review of Polynomial Interpolation

Implement Hermite interpolation with double nodes, using divided differences.

Applications

- **1.** Consider the function $f:(-1,\infty)\to\mathbb{R},\ f(x)=\frac{1}{1+x}$ and the nodes $x_0=0,x_1=1$ and $x_2=2$. Plot on the same set of axes the Lagrange and the Hermite (with double nodes) polynomials that interpolate the data. What are the degrees of the two polynomials?
- 2. The data below refers to a moving object.

Use interpolation to approximate the position and the speed of the object at time t=10.

Optional

3. Approximate $\sqrt[3]{7}$ using Hermite interpolation with 4 double nodes.

Review of Polynomial Interpolation

I. Summary

- **1.** What **type** of interpolation? It depends on what information is given:
 - only values of the function are given, e.g. $f(-1), f(0), f(1) \rightarrow$ Lagrange
 - values of the function are known for all nodes and, in addition, for some nodes, all the derivatives up to some order (not the same for all nodes) are also given, e.g. $f(-1), f(0), f'(0), f''(0), f''(1) \rightarrow \text{Hermite}$
 - random values of the function and/or of the derivatives are given, e.g. $f(-1), f'(0), f''(0), f''(1), f'''(2) \rightarrow \text{Birkhoff}$
- 2. What computational formula is more convenient?
 - Lagrange Newton's divided (/forward/backward) differences or Aitken's algorithm
 - Hermite → Newton's divided differences (caution!!, for multiple nodes, divided differences are computed with *derivatives*)
 - Birkhoff → fundamental (basis) polynomials or directly (determine the coefficients of the polynomial from the interpolation conditions)
- **3.** The **degree** of the interpolation polynomial
 - the set of indices I_k consists of the **orders** of the derivatives that are given for each node x_k (the derivative of order 0 is the function itself), e.g.

$$x_0 = -1$$
 and we know $f(-1), f'(-1) \rightarrow I_0 = \{0, 1\}$
 $x_1 = 0$ and we know $f'(0), f''(0) \rightarrow I_1 = \{1, 2\}$
 $x_2 = 1$ and we know $f(1), f'''(1), f^{(iv)}(1) \rightarrow I_2 = \{0, 3, 4\}$
 $x_3 = 2$ and we know $f''(2), f^{(v)}(2) \rightarrow I_3 = \{2, 5\}$

- the degree of the interpolation polynomial with nodes x_0,\ldots,x_m is

$$n = |I_0| + \ldots + |I_m| - 1,$$

where $|A| = \operatorname{card}(A)$ is the number of elements of the set A.

- 4. Birkhoff interpolation
 - The **notation** for Birkhoff fundamental polynomials: b_{ij} , where i is the index of the node, j is the order of the derivative that is known for that node, e.g. if we are given

$$f'(-1), f'(0), f''(0), f(1), f''(1),$$

that means

- f'(-1): for node $x_0 = -1$, the first derivative is known $\to b_{01}$
- f'(0), f''(0): for node $x_1 = 0$, the first and second derivatives are given $\to b_{11}$, b_{12}

• f(1), f''(1): for node $x_2 = 1$, the zero and second derivatives are given $\to b_{20}$, b_{22} . So the fundamental polynomials are

$$b_{01}, b_{11}, b_{12}, b_{20}, b_{22}$$

and the pairs of indices used are

$$(0,1),(1,1),(1,2),(2,0),(2,2).$$
 (*)

- The interpolation polynomial is then the **linear combination** of the basis polynomials found above, each having as coefficient the value of the function/derivative that it corresponds to:

$$(Bf)(x) = b_{01}f'(-1) + b_{11}f'(0) + b_{12}f''(0) + b_{20}f(1) + b_{22}f''(1).$$

- Each basis polynomial b_{ij} has (at most) **the same degree** as the overall interpolation polynomial Bf (discussed above) and its coefficients are determined from the conditions

$$b_{ij}^{(j)}(x_i) = 1,$$

while at all other combinations of indices used in the writing of the polynomial, it is 0. For the example above (check (*)):

$$\begin{cases}
(0,1) \to b_{01}'(x_0) = 1 \\
(1,1) \to b'_{01}(x_1) = 0 \\
(1,2) \to b''_{01}(x_1) = 0 \\
(2,0) \to b_{01}(x_2) = 0 \\
(2,2) \to b''_{01}(x_2) = 0
\end{cases}$$

$$\begin{cases}
(0,1) \to b'_{11}(x_0) = 0 \\
(1,1) \to b_{11}'(x_1) = 1 \\
(1,2) \to b''_{11}(x_1) = 0 \\
(2,0) \to b_{11}(x_2) = 0 \\
(2,2) \to b''_{11}(x_2) = 0
\end{cases}$$

$$\begin{cases}
(0,1) \to b'_{12}(x_0) = 0 \\
(1,1) \to b'_{12}(x_1) = 0 \\
(1,2) \to b_{12}''(x_1) = 1 \\
(2,0) \to b_{11}(x_2) = 0 \\
(2,2) \to b''_{11}(x_2) = 0
\end{cases}$$

and so on.

- If finding the Birkhoff polynomial **directly**, just impose the interpolation conditions on Bf (after determining its degree **correctly**!). There is just one system in this case, but it is, in general, **more difficult** to solve than the systems for b_{ij} and the remainder is more difficult to find.
- **5.** Check at the end that the polynomial found satisfies the interpolation conditions. If it exists, the interpolating polynomial is unique.

II. Peano's Theorem for the Remainder

- We have an approximating formula

$$f(x) \approx (P_n f)(x)$$
, or $f(x) = (P_n f)(x) + (R_n(f))(x)$, for $x \in [a, b]$,

where [a, b] is the smallest interval containing all the interpolation nodes. The formula has degree of precision (or exactness) d = n, if it is exact for all polynomials of degree up to n, i.e.

$$f(x) = (P_n f)(x)$$
, for $f(x) = e_k(x) = x^k$, $k = 0, 1, ..., n$, $e_{n+1}(x) \neq (P_n e_{n+1})(x)$, or, equivalently, $R_n(e_{n+1}) \not\equiv 0$.

- The remainder has the form

$$(R_n(f))(x) = \int_a^b K_n(x,t)f^{(n+1)}(t)dt$$

where

$$K_{n}(\mathbf{x},t) = R_{n} \left(\frac{(\mathbf{x}-t)_{+}^{n}}{n!} \right) = \frac{1}{n!} R_{n} \left((\mathbf{x}-t)_{+}^{n} \right) = \frac{1}{n!} \left((\mathbf{x}-t)_{+}^{n} - P_{n}((\mathbf{x}-t)_{+}^{n}) \right),$$

$$(\mathbf{x}-t)_{+}^{n} = ((\mathbf{x}-t)_{+}^{n})^{n} = \begin{cases} (\mathbf{x}-t)^{n}, & \mathbf{x} \geq t \\ 0, & \mathbf{x} < t \end{cases}.$$

- If K has constant sign on [a, b], then (by the MVT)

$$(R_n(f))(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} R_n(e_{n+1})(x), \ \xi \in [a,b].$$

- The function $F(x) = (x - t)_+^n$ has the derivative

$$F'(\mathbf{x}) = \frac{\partial [(\mathbf{x} - t)_+^n]}{\partial \mathbf{x}} = n(\mathbf{x} - t)_+^{n-1}$$

and the integral (this will only be needed later on, in Chapter 4)

$$\int_{a}^{b} F(\mathbf{x}) d\mathbf{x} = \frac{1}{n+1} (\mathbf{x} - t)_{+}^{n+1} \Big|_{\mathbf{x} = a}^{\mathbf{x} = b} = \frac{1}{n+1} \left[(b-t)_{+}^{n+1} - (a-t)_{+}^{n+1} \right]$$

- Peano's theorem can also be used to derive remainder formulas for Lagrange or Hermite interpolation, but we already have other forms for those (recall that Peano's theorem refers to *any* linear functional).

III. Practice Problems

Find the polynomial of minimum degree that interpolates the given data. Determine the remainder for each approximation.

1. f(0), f(1/2), f(1); **Answer**:

$$L_2 f(x) = (2x - 1)(x - 1)f(0) + 4x(1 - x)f(1/2) + x(2x - 1)f(1),$$

$$R_2 f(x) = \frac{x(x - 1/2)(x - 1)}{3!} f'''(\xi), \ \xi \in (0, 1).$$

2. f(-1), f(0), f'(0), f(1); **Answer**:

$$H_3 f(x) = \frac{1}{2} x^2 (1-x) f(-1) + (1-x^2) f(0) + x(1-x^2) f'(0) + \frac{1}{2} x^2 (x+1) f(1),$$

$$R_3 f(x) = \frac{x^2 (x^2-1)}{4!} f^{(iv)}(\xi), \ \xi \in (-1,1).$$

3. f(0), f'(0), f'(1). **Answer**:

$$B_2 f(x) = f(0) + \frac{1}{2}x(2-x)f'(0) + \frac{1}{2}x^2 f'(1),$$

$$R_2 f(x) = \frac{2x^3 - 3x^2}{2 \cdot 3!} f'''(\xi), \ \xi \in (0,1).$$