Package 'ivdoctr'

October 13, 2022

Title Ensures Mutually Consistent Beliefs When Using IVs
Version 1.0.1
Description Uses data and researcher's beliefs on measurement error and instrumental variable (IV) endogeneity to generate the space of consistent beliefs across measurement error, instrument endogeneity, and instrumental relevance for IV regressions. Package based on DiTraglia and Garcia-Jimeno (2020) <doi:10.1080 07350015.2020.1753528=""></doi:10.1080>
License CC0
LazyData TRUE
Depends R (>= 2.10)
Imports AER, coda, data.table, graphics, MASS, Rcpp (>= 0.11.6), rgl, sandwich, stats
LinkingTo Rcpp, RcppArmadillo
Suggests testthat, haven, MCMCpack, knitr, rmarkdown
RoxygenNote 7.1.2
Encoding UTF-8
NeedsCompilation yes
BugReports https://github.com/emallickhossain/ivdoctr/issues
VignetteBuilder knitr
Author Frank DiTraglia [aut], Mallick Hossain [aut, cre]
Maintainer Mallick Hossain <emallickhossain@gmail.com></emallickhossain@gmail.com>
Repository CRAN
Date/Publication 2021-12-05 16:00:02 UTC
R topics documented:
afghan

Index

	31
weber	29
toList	28
rinvwish	28
rect_points	27
plot_3d_beta	26
myformat	25
map2color	25
make_tex_row	24
make_full_row	24
makeTable	23
	21
g_runctionA2	
g_functionA2	20
get_r_uz_bounds_unrest	
get_r_uz_bounds_unrest	20
get_r_uz_bounds	19
get_r_uz	19
get_r_TstarU_bounds_unrest	18
get_p_valid	18
get_psi_upper	17
get_poi_lower	17
	16
get_new_draws	16
get_L	15
get_k_bounds_unrest	15
get_k_bounds_unrest	14
get_bounds_unrest	13
get_beta_bounds_binary_post	13
get_beta_bounds_binary_post	13
get_beta_bounds_binary	12
get_arpna_bounds	12
get_alpha_bounds	11
getInterval	10
getCoverage	10
format_HPDI	10
format_est	9
format_est	9
draw_observables	8
draw_bounds	7
colonial	6
collapse_3d_array	6
candidate3	5
candidate2	5
1:42	_

afghan 3

afghan

Burde and Linden (2013, AEJ Applied) Dataset

Description

Replicates IV using controls from Table 2

Usage

afghan

Format

A data frame with 687 rows and 17 variables:

enrolled Indicator if child is enrolled in formal school. Outcome.

testscore Normalized test score

buildschool Indicator if village is treated. Instrument.

headchild Indicator if child is child of head of household

nhh Number of household members

female Female indicator

age Child's age

yrsvill Time family has lived in village

farsi Indicator for speaking Farsi

tajik Indicator for speaking Tajik

farmers Indicator for if head of household is a farmer

land Number of jeribs of land owned

agehead Head of household age

educhead Years of education for head of household

sheep Number of sheep and goats owned

chagcharan Indicator if village is in Chagcharan district

distschool Distance to nearest non-community based school

Source

Provided by author.

References

```
https://www.jstor.org/stable/3083335
```

4 candidate1

b_functionA3

B function from Proposition A3

Description

B function from Proposition A3

Usage

```
b_functionA3(obs_draws, g, psi)
```

Arguments

obs_draws Row of the data.frame of observable draws

g Value from g function

psi Psi value

Value

A min and a max of the B function

candidate1 Evaluates the corners given user bounds. Vectorized wrt multiple

draws of obs.

Description

Evaluates the corners given user bounds. Vectorized wrt multiple draws of obs.

Usage

```
candidate1(r_TstarU_lower, r_TstarU_upper, k_lower, k_upper, obs)
```

Arguments

r_TstarU_lower Vector of lower bounds of endogeneity r_TstarU_upper Vector of upper bounds of endogeneity

k_lowerk_upperVector of lower bounds on measurement errorVector of upper bounds on measurement errorObservables generated by get_observables

Value

List containing vector of lower bounds and vector of upper bounds of r_uz

candidate2 5

candidate2	Evaluates the edge where k is on the boundary. Vectorized wrt multiple draws of obs.

Description

Evaluates the edge where k is on the boundary. Vectorized wrt multiple draws of obs.

Usage

```
candidate2(r_TstarU_lower, r_TstarU_upper, k_lower, k_upper, obs)
```

Arguments

r_TstarU_lower Vector of lower bounds of endogeneity
r_TstarU_upper Vector of upper bounds of endogeneity
k_lower Vector of lower bounds on measurement error
k_upper Vector of upper bounds on measurement error
obs Observables generated by get_observables

Value

List containing vector of lower bounds and vector of upper bounds of r_uz

candidate3 Evaluates	the edge where r_T star U is on the boundary.
----------------------	---

Description

Evaluates the edge where r_TstarU is on the boundary.

Usage

```
candidate3(r_TstarU_lower, r_TstarU_upper, k_lower, k_upper, obs)
```

Arguments

r_TstarU_upper Vector of upper bounds of endogeneity
k_lower Vector of lower bounds on measurement error
k_upper Vector of upper bounds on measurement error
obs Observables generated by get_observables

r_TstarU_lower Vector of lower bounds of endogeneity

Value

List containing vector of lower bounds and vector of upper bounds of r_uz

6 colonial

collapse_3d_array

Collapse 3-d array to matrix

Description

Collapse 3-d array to matrix

Usage

```
collapse_3d_array(myarray)
```

Arguments

myarray

A three-dimensional array.

Value

Matrix with the 3rd dimension appended as rows to the matrix

colonial

Acemoglu, Johnson, and Robinson (2001) Dataset

Description

Cross-country dataset used to construct Table 4 of Acemoglu, Johnson & Robinson (2001).

Usage

colonial

Format

A data frame with 64 rows and 9 variables:

shortnam three letter country abbreviation, e.g. AUS for Australia

africa dummy variable =1 if country is in Africa

lat_abst absolute distance to equator (scaled between 0 and 1)

rich4 dummy variable, =1 for "Neo-Europes" (AUS, CAN, NZL, USA)

avexpr Average protection against expropriation risk. Measures risk of government appropriation of foreign private investment on a scale from 0 (least risk) to 10 (most risk). Averaged over all years from 1985-1995.

logpgp95 Natural logarithm of per capita GDP in 1995 at purchasing power parity

logem4 Natural logarithm of European settler mortality

asia dummy variable, =1 if country is in Asia

loghjypl Natural logarithm of output per worker in 1988

draw_bounds 7

Source

```
http://economics.mit.edu/faculty/acemoglu/data/ajr2001
```

References

```
https://www.aeaweb.org/articles.php?doi=10.1257/aer.91.5.1369
```

draw_bounds

Computes bounds for simulated data

Description

This function takes data and user restrictions on measurement error and endogeneity and simulates data and the resulting bounds on instrument validity.

Usage

```
draw_bounds(
   y_name,
   T_name,
   z_name,
   data,
   controls = NULL,
   r_TstarU_restriction = NULL,
   k_restriction = NULL,
   n_draws = 5000
)
```

Arguments

y_name	Character vector of the name of the dependent variable		
T_name	Character vector of the names of the preferred regressors		
z_name	Character vector of the names of the instrumental variables		
data	Data to be analyzed		
controls	Character vector containing the names of the exogenous regressors		
r_TstarU_restriction			
	2 element vector of bounds on r_TstarU		
$k_{ m restriction}$	2-element vector of bounds on kappa		
n draws	Integer number of simulations to draw		

Value

List containing simulated data observables (covariances, correlations, and R-squares), indications of whether the identified set is empty, the unrestricted and restricted bounds on instrumental relevance, instrumental validity, and measurement error.

8 draw_sigma_jeffreys

draw	observables	S

Simulates different data draws

Description

This function takes the data and simulates potential draws of data from the properties of the observed data.

Usage

```
draw_observables(y_name, T_name, z_name, data, controls = NULL, n_draws = 5000)
```

Arguments

y_name	Character vector of the name of the dependent variable
T_name	Character vector of the names of the preferred regressors
z_name	Character vector of the names of the instrumental variables

data Data to be analyzed

controls Character vector containing the names of the exogenous regressors

n_draws Integer number of simulations to draw

Value

Data frame containing covariances, correlations, and R-squares for each data simulation

```
draw_sigma_jeffreys
```

Draws covariance matrix using the Jeffrey's Prior

Description

Draws covariance matrix using the Jeffrey's Prior

Usage

```
draw_sigma_jeffreys(y, Tobs, z, k, n_draws)
```

Arguments

У	Vector of dependent variable
Tobs	Matrix containing data for the preferred regressor
z	Matrix containing data for the instrumental variable
k	Number of covariates, including the intercept
n_draws	Integer number of draws to perform

format_est 9

Value

Array of covariance matrix draws

format_est

Creates LaTeX code for parameter estimates

Description

Creates LaTeX code for parameter estimates

Usage

```
format_est(est)
```

Arguments

est

Number

Value

LaTeX string for the number

 $format_HPDI$

Creates LaTeX code for the HPDI

Description

Creates LaTeX code for the HPDI

Usage

```
format_HPDI(bounds)
```

Arguments

bounds

2-element vector of the upper and lower HPDI bounds

Value

LaTeX string of the HPDI

10 getCoverage

format_se

Creates LaTeX code for the standard error

Description

Creates LaTeX code for the standard error

Usage

```
format_se(se)
```

Arguments

se

Standard error

Value

LaTeX string for the standard error

getCoverage

Computes coverage of list of intervals

Description

Computes coverage of list of intervals

Usage

```
getCoverage(data, guess)
```

Arguments

data 2-column data frame of confidence intervals

guess 2-element vector of confidence interval

Value

Coverage percentage

getInterval 11

ge	tIn	ter	val

Generates smallest covering interval

Description

Generates smallest covering interval

Usage

```
getInterval(data, center, conf = 0.9, tol = 1e-06)
```

Arguments

data 2-column data frame of confidence intervals
center 2-element vector to center coverage interval

conf Confidence level

tol Tolerance level for convergence

Value

2-element vector of confidence interval

get_alpha_bounds

Computes a0 and a1 bounds

Description

Computes a0 and a1 bounds

Usage

```
get_alpha_bounds(draws, p)
```

Arguments

draws data.frame of observables of simulated data
p Treatment probability from binary data

Value

List of alpha bounds

get_beta

Solves for beta

Description

This function solves for beta given r_T starU and kappa. It handles 3 potential cases when beta must be evaluated: 1. Across multiple simulations, but given the same r_T starU and k 2. For multiple simulations, each with a value of r_T starU and k 3. For one simulation across a grid of r_T starU and k

Usage

```
get_beta(r_TstarU, k, obs)
```

Arguments

r_TstarU Vector of r_TstarU values k Vector of kappa values

obs Observables generated by get_observables

Value

Vector of betas

```
get_beta_bounds_binary
```

Returns beta bounds in binary case using grid search

Description

Returns beta bounds in binary case using grid search

Usage

```
get_beta_bounds_binary(obs_draws, p, r_TstarU_restriction)
```

Arguments

obs_draws Row of the data.frame of observable draws

p Treatment probability from data

r_TstarU_restriction

2-element vector of restrictions on r_TstarU

Value

Min and max values for beta

```
get_beta_bounds_binary_post
```

Generates beta bounds off of beta draws

Description

Generates beta bounds off of beta draws

Usage

```
get_beta_bounds_binary_post(draws, n_observables)
```

Arguments

draws Posterior draws

n_observables Number of observable draws

Value

Upper and lower bounds of beta based on posterior draws

 get_bounds_unrest Wrapper function combines all unrestricted bounds together. Vector-

ized

Description

Wrapper function combines all unrestricted bounds together. Vectorized

Usage

```
get_bounds_unrest(obs)
```

Arguments

obs

Observables generated by get_observables

Value

List of unrestricted bounds for r_TstarU, r_uz, and kappa

~~+	estimates	
get	estimates	5

Computes OLS and IV estimates

Description

Computes OLS and IV estimates

Usage

```
get_estimates(y_name, T_name, z_name, data, controls = NULL, robust = FALSE)
```

Arguments

y_name	Character vector of the name of the dependent variable
T_name	Character vector of the names of the preferred regressors
z_name	Character vector of the names of the instrumental variables

data Data to be analyzed

controls Character vector containing the names of the exogenous regressors

robust Boolean of whether to compute heteroskedasticity-robust standard errors

Value

List of beta estimates and associated standard errors for OLS and IV estimation

get_k_bounds_unrest Given observables from the data, generates unrestricted bounds for kappa. Vectorized

Description

Given observables from the data, generates unrestricted bounds for kappa. Vectorized

Usage

```
get_k_bounds_unrest(obs, tilde)
```

Arguments

obs Observables generated by get_observables

tilde Boolean of whether or not kappa_tilde or kappa is desired

Value

List of upper bounds and lower bounds for kappa

get_L 15

get_L

Computes L, lower bound for kappa_tilde in paper

Description

Computes L, lower bound for kappa_tilde in paper

Usage

```
get_L(draws)
```

Arguments

draws

data.frame of observables of simulated data

Value

Vector of L values

get_M

Solves for the magnification factor

Description

This function solves for the magnification factor given r_TstarU and kappa. It handles 3 potential cases when the magnification factor must be evaluated: 1. Across multiple simulations, but given the same r_TstarU and k 2. For multiple simulations, each with a value of r_TstarU and k 3. For one simulation across a grid of r_TstarU and k

Usage

```
get_M(r_TstarU, k, obs)
```

Arguments

r_TstarU Vector of r_TstarU values
k Vector of kappa values

obs Observables generated by get_observables

Value

Vector of magnification factors

16 get_observables

get	new	draws	

Computes beliefs that support valid instrument

Description

Computes beliefs that support valid instrument

Usage

```
get_new_draws(obs_draws, post_draws)
```

Arguments

obs_draws data.frame of draws of reduced form parameters

post_draws data.frame of posterior draws

Value

data.frame of new draws

get_observables	Given data and function specification, returns the relevant correla-
	tions and covariances with any exogenous controls projected out.

Description

Given data and function specification, returns the relevant correlations and covariances with any exogenous controls projected out.

Usage

```
get_observables(y_name, T_name, z_name, data, controls = NULL)
```

Arguments

y_name	Name of the dependent variable
T_name	Name(s) of the preferred regressor(s)
z_name	Name(s) of the instrumental variable(s)

data Data to be analyzed

controls Exogenous regressors to be included

Value

List of correlations, covariances, and R^2 of first and second stage regressions after projecting out any exogenous control regressors

get_psi_lower 17

get_psi_lower	Computes the lower bound of psi for binary data
---------------	---

Description

Computes the lower bound of psi for binary data

Usage

```
get_psi_lower(s2_T, p, kappa)
```

Arguments

s2_T Vector of s2_T draws from observables
p Treatment probability from binary data

kappa Vector of kappa, NOTE: kappa_tilde in the paper

Value

Vector of lower bounds for psi

get_psi_upper	Computes the upper bound of psi for binary data

Description

Computes the upper bound of psi for binary data

Usage

```
get_psi_upper(s2_T, p, kappa)
```

Arguments

s2_T Vector of s2_T draws from observablesp Treatment probability from binary data

kappa Vector of kappa, NOTE: kappa_tilde in the paper

Value

Vector of upper bounds for psi

get_p_valid

Compute the share of draws that could contain a valid instrument.

Description

Compute the share of draws that could contain a valid instrument.

Usage

```
get_p_valid(draws)
```

Arguments

draws

List of simulated draws

Value

Numeric of the share of valid draws as determined by having the the restricted bounds for r_uz contain zero.

```
get_r_TstarU_bounds_unrest
```

Given observables from the data, generates the unrestricted bounds for rho_TstarU. Data does not impose any restrictions on r_TstarU Vectorized

Description

Given observables from the data, generates the unrestricted bounds for rho_TstarU. Data does not impose any restrictions on r_TstarU Vectorized

Usage

```
get_r_TstarU_bounds_unrest(obs)
```

Arguments

obs

Observables generated by get_observables

Value

List of upper and lower bounds for r_TstarU

get_r_uz

get	r	IJ7
צפנ	1	uz

Solves for r_uz given observables, r_TstarU, and kappa

Description

This function solves for r_uz given r_TstarU and kappa. It handles 3 potential cases when r_uz must be evaluated: 1. Across multiple simulations, but given the same r_TstarU and k 2. For multiple simulations, each with a value of r_TstarU and k 3. For one simulation across a grid of r_TstarU and k

Usage

```
get_r_uz(r_TstarU, k, obs)
```

Arguments

r_TstarU Vector of r_TstarU values k Vector of kappa values

obs Observables generated by get_observables

Value

Vector of r_uz values.

get_r_uz_bounds

Evaluates r_uz bounds given user restrictions on r_TstarU and kappa

Description

This function takes observables from the data and user beliefs over the extent of measurement error (kappa) and the direction of endogeneity (r_TstarU) to generate the implied bounds on instrument validity (r_uz)

Usage

```
get_r_uz_bounds(r_TstarU_lower, r_TstarU_upper, k_lower, k_upper, obs)
```

Arguments

r_TstarU_lower Vector of lower bounds of endogeneity
r_TstarU_upper Vector of upper bounds of endogeneity
k_lower Vector of lower bounds on measurement error
k_upper Vector of upper bounds on measurement error

obs Observables generated by get_observables

20 get_s_u

Value

2-column data frame of lower and upper bounds of r_uz

```
get_r_uz_bounds_unrest
```

Given observables from the data, generates the unrestricted bounds for rho_uz. Vectorized

Description

Given observables from the data, generates the unrestricted bounds for rho_uz. Vectorized

Usage

```
get_r_uz_bounds_unrest(obs)
```

Arguments

obs

Observables generated by get_observables

Value

List of upper and lower bounds for rho_uz

get_s_u

Solves for the variance of the error term u

Description

This function solves for the variance of u given r_TstarU and kappa. It handles 3 potential cases when the variance of u must be evaluated: 1. Across multiple simulations, but given the same r_TstarU and k 2. For multiple simulations, each with a value of r_TstarU and k 3. For one simulation across a grid of r_TstarU and k

Usage

```
get_s_u(r_TstarU, k, obs)
```

Arguments

r_TstarU Vector of r_TstarU values k Vector of kappa values

obs Observables generated by get_observables

Value

Vector of variances of u

g_functionA2 21

 $g_functionA2$

G function from Proposition A.2

Description

G function from Proposition A.2

Usage

```
g_functionA2(kappa, r_TstarU, obs_draws)
```

Arguments

kappa Kappa value r_TstarU r_TstarU value

obs_draws a row of the data.frame of observable draws

Value

G value

ivdoctr

Generates parameter estimates given user restrictions and data

Description

Generates parameter estimates given user restrictions and data

Usage

```
ivdoctr(
   y_name,
   T_name,
   z_name,
   data,
   example_name,
   controls = NULL,
   robust = FALSE,
   r_TstarU_restriction = c(-1, 1),
   k_restriction = c(1e-04, 1),
   n_draws = 5000,
   n_RF_draws = 1000,
   n_IS_draws = 1000,
   resample = FALSE
)
```

22 ivdoctr

Arguments

y_name Character string with the column name of the dependent variable
T_name Character string with the column name of the endogenous regressor(s)

z_name Character string with the column name of the instrument(s)

data Data frame

example_name Character string naming estimation

controls Vector of character strings specifying the exogenous variables

robust Indicator for heteroskedasticity-robust standard errors

r_TstarU_restriction

2-element vector of min and max of r_TstarU.

k_restriction 2-element vector of min and max of kappa.

n_draws Number of draws when generating frequentist-friendly draws of the covariance

matrix

n_RF_draws Number of reduced-form draws
n_IS_draws Number of draws on the identified set

resample Indicator of whether or not to resample using magnification factor

Value

List with elements:

- ols: Im object of OLS estimation,
- iv: ivreg object of the IV estimation
- n: Number of observations
- b_OLS: OLS point estimate
- se_OLS: OLS standard errors
- b IV: IV point estimate
- se_IV: IV standard errors
- k_lower: lower bound of kappa
- p_empty: fraction of parameter draws that yield an empty identified set
- p_valid: fraction of parameter draws compatible with a valid instrument
- r_uz_full_interval: 90% posterior credible interval for fully identified set of rho
- beta_full_interval: 90% posterior credible interval for fully identified set of beta
- r_uz_median: posterior median for partially identified rho
- r_uz_partial_interval: 90% posterior credible interval for partially identified set of rho under a conditionally uniform reference prior
- beta_median: posterior median for partially identified beta
- beta_partial_interval: 90% posterior credible interval for partially identified set of beta under a conditionally uniform reference prior
- a0: If treatment is binary, mis-classification probability of no-treatment case. NULL otherwise

makeTable 23

- a1: If treatment is binary, mis-classification probability of treatment case. NULL otherwise
- psi_lower: lower bound for psi
- binary: logical indicating if treatment is binary
- k_restriction: User-specified bounds on kappa
- r_TstarU_restriction: User-specified bounds on r_TstarU

Examples

makeTable

Generates table of parameter estimates given user restrictions and data

Description

Generates table of parameter estimates given user restrictions and data

Usage

```
makeTable(..., output)
```

Arguments

... Arguments of TeX code for individual examples to be combined into a single table

output File name to write

Value

LaTeX code that generates output table with regression results

24 make_tex_row

Examples

make_full_row

Takes the OLS and IV estimates and converts it to a row of the LaTeX table

Description

Takes the OLS and IV estimates and converts it to a row of the LaTeX table

Usage

```
make_full_row(stats, example_name)
```

Arguments

stats List with OLS and IV estimates and the bounds on kappa and r_uz example_name Character string detailing the example

Value

LaTeX code passed to makeTable()

make_tex_row

Makes LaTeX code to make a row of a table and shift by some amount of columns if necessary

Description

Makes LaTeX code to make a row of a table and shift by some amount of columns if necessary

Usage

```
make_tex_row(char_vec, shift = 0)
```

map2color 25

Arguments

char_vec Vector of characters to be collapsed into a LaTeX table

shift Number of columns to shift over

Value

LaTeX string of the whole row of the table

map2color

Generates a custom color palette given a vector of numbers

Description

Generates a custom color palette given a vector of numbers

Usage

```
map2color(x, pal, limits = NULL)
```

Arguments

x Vector of numbers

pal Palette function generate from colorRampPalette

limits Limits on the numeric sequence

Value

Hex values for colors

myformat

Rounds x to two decimal places

Description

Rounds x to two decimal places

Usage

myformat(x)

Arguments

x Number to be rounded

Value

Number rounded to 2 decimal places

26 plot_3d_beta

plot_3d_beta

Plot ivdoctr Restrictions

Description

Plot ivdoctr Restrictions

Usage

```
plot_3d_beta(
 y_name,
 T_name,
 z_name,
 data,
  controls = NULL,
  r_TstarU_restriction = c(-1, 1),
 k_restriction = c(0, 1),
 n_{grid} = 30,
 n_{colors} = 500,
  fence = NULL,
 gray_k = NULL,
 gray_rTstarU = NULL,
  theta = 0,
 phi = 15
)
```

Arguments

y_name	Character string with the column name of the dependent variable	
T_name	Character string with the column name of the endogenous regressor(s)	
z_name	Character string with the column name of the instrument(s)	
data	Data frame	
controls	Vector of character strings specifying the exogenous variables	
r_TstarU_restriction		
	2-element vector of bounds for r_TstarU	
k_restriction	2-element vector of bounds for kappa	
n_grid	Number of points to put in grid	
n_colors	Number of colors to use	
fence	Vector of left, bottom, right, and top corners of rectangle	
gray_k	2-element vector of kappa restrictions to recolor graph as gray	
gray_rTstarU	2-element vector of rTstarU restrictions to recolor graph as gray	
theta	Graphing parameters for orienting plot	
phi	Graphing parameters for orienting plot	

rect_points 27

Value

Interactive 3d plot which can be oriented and saved using rgl.snapshot()

Examples

rect_points

Construct vectors of points that outline a rectangle.

Description

Construct vectors of points that outline a rectangle.

Usage

```
rect_points(xleft, ybottom, xright, ytop, step_x, step_y)
```

Arguments

xleft	The left side of the rectangle
ybottom	The bottom of the rectangle
xright	The right side of the rectangle
ytop	The top of the rectangle
step_x	The step size of the x coordinates
step_y	The step size of the y coordinates

Value

List of x-coordinates and y-coordinates tracing the points around the rectangle

28 toList

rinvwish

Simulate draws from the inverse Wishart distribution

Description

Simulate draws from the inverse Wishart distribution

Usage

```
rinvwish(n, v, S)
```

Arguments

n An integer, the number of draws.

v An integer, the degrees of freedom of the distribution.

S A numeric matrix, the scale matrix of the distribution.

Details

Employs the Bartlett Decomposition (Smith & Hocking 1972). Output exactly matches that of riwish from the MCMCpack package if the same random seed is used.

Value

A numeric array of matrices, each of which is one simulation draw.

toList

Convert 3-d array to list of matrixes

Description

Convert 3-d array to list of matrixes

Usage

```
toList(myArray)
```

Arguments

myArray

A three-dimensional numeric array.

Value

A list of numeric matrices.

weber 29

weber

Becker and Woessmann (2009) Dataset

Description

Data on Prussian counties in 1871 from Becker and Woessmann's (2009) paper "Was Weber Wrong? A Human Capital Theory of Protestant Economic History."

Usage

weber

Format

A data frame with 452 rows and 44 variables:

kreiskey1871 kreiskey1871

county1871 County name in 1871

rbkey District key

lat_rad Latitude (in rad)

lon_rad Longitude (in rad)

kmwittenberg Distance to Wittenberg (in km)

zupreussen Year in which county was annexed by Prussia

hhsize Average household size

gpop Population growth from 1867-1871 in percentage points

f_prot Percent Protestants

f_jew Percent Jews

f_rw Percent literate

f_miss Percent missing education information

f_young Percent below the age of 10

f_fem Percent female

f_ortsgeb Percent born in municipality

f_pruss Percent of Prussian origin

f_blind Percent blind

f_deaf Percent deaf-mute

f_dumb Percent insane

f_urban Percent of county population in urban areas

Inpop Natural logarithm of total population size

lnkmb Natural logarithm of distance to Berlin (km)

poland Dummy variable, =1 if county is Polish-speaking

30 weber

```
latlon Latitude * Longitude * 100
f_over3km Percent of pupils farther than 3km from school
f_mine Percent of labor force employed in mining
inctaxpc Income tax revenue per capita in 1877
perc_secB Percentage of labor force employed in manufacturing in 1882
perc_secC Percentage of labor force employed in services in 1882
perc_secBnC Percentage of labor force employed in manufacturing and services in 1882
Inyteacher 100 * Natural logarithm of male elementary school teachers in 1886
rhs Dummy variable, =1 if Imperial of Hanseatic city in 1517
yteacher Income of male elementary school teachers in 1886
pop Total population size
kmb Distance to Berlin (km)
uni1517 Dummy variable, =1 if University in 1517
reichsstadt Dummy variable, =1 if Imperial city in 1517
hansestadt Dummy variable, =1 if Hanseatic city in 1517
f_cath Percentage of Catholics
sh_al_in_tot Share of municipalities beginning with letter A to L
ncloisters1517_pkm2 Monasteries per square kilometer in 1517
school1517 Dummy variable, =1 if school in 1517
dnpop1500 City population in 1500
```

Source

https://www.ifo.de/en/iPEHD

References

https://www.ifo.de/en/iPEHD doi: 10.1162/qjec.2009.124.2.531

Index

* datasets	<pre>get_r_uz_bounds_unrest, 20</pre>
afghan, 3	get_s_u, 20
colonial, 6	getCoverage, 10
weber, 29	getInterval, 11
afghan, 3	ivdoctr, 21
b_functionA3, 4	make_full_row, 24
candidate1, 4	<pre>make_tex_row, 24 makeTable, 23</pre>
candidate2, 5	
candidate3, 5	map2color, 25 myformat, 25
collapse_3d_array, 6	my r or mat, 25
colonial, 6	plot_3d_beta, 26
draw_bounds, 7	rect_points, 27
draw_observables, 8	rinvwish,28
draw_sigma_jeffreys, 8	
	toList, 28
format_est, 9	
format_HPDI,9	weber, 29
format_se, 10	
g_functionA2, 21	
get_alpha_bounds, 11	
get_beta, 12	
get_beta_bounds_binary, 12	
get_beta_bounds_binary_post, 13	
get_bounds_unrest, 13	
get_estimates, 14	
get_k_bounds_unrest, 14	
get_L, 15	
get_M, 15	
get_new_draws, 16	
get_observables, 16	
get_p_valid, 18	
get_psi_lower, 17	
get_psi_upper, 17	
get_r_TstarU_bounds_unrest, 18	
get_r_uz, 19	
get_r_uz_bounds, 19	