Understanding the Impact of Reaction Conditions on Methanation Catalyst Structure and Performance using in-situ Total Scattering

Objectives

- Disorder in Ni@g-Al₂O₃ CO₂ methanation catalysts under dynamic condtions, using Total X-ray scattering, PDF analysis
- Understanding Structural changes, and their impact on catalytic performance

The Pair Distribution Function

- PDF visually allow visual interpretation of atomic distances as histogram
- Peak width indicates thermal motion; peak height signifies coordination number, overall PDF decay reveals particle size
- Complements conventional XRD analysis; linked through Fourier transform; requirung high Q

Experimental

- Invesitgation emulating real word contions high pressures, up to 12 bar bars, with a focus on: Hydrogen methanation with simulated renewable hydrogen production using droup-out cycles
- 65 KeV ID15a ESRF

Results

- Achieving a time resolution of 100 ms
- Being able to resoleve 2 nm layers of oxide
- First PDF Methanation Last Dropout
- Growth of Ni from 2nm to 6 nm

RWITHAACHEN UNIVERSITY

