Initial Balance Assessment before Matching

Jake Bowers

November 19, 2019

Contents

0.0.1 Look at baseline imbalance before matching

The following analysis shows that the neighborhoods with and without marijuana selling pharmacies are quite similar on the covariates listed below. Below we show the standardized differences (differences in means in standard deviation units) and p-values for a test of the null of no difference in means between the registered pharmacies and the non-registered pharmacies.

First, drop the observations for the placebo pharmacies

```
dat17i <- wdat17i %>% filter(!is.na(soldvsnot17))
table(dat17i$soldvsnot17, exclude = c())
 0
    1
420 160
Looking at baseline (im)balance on individual level outcomes and covariates
baselineFmla <- reformulate(covs3, response = "soldvsnot17")</pre>
baselineFmlaCluster <- update(baselineFmla, . ~ . + cluster(Q56))</pre>
tmp <- model.matrix(update(baselineFmlaCluster, . ~ . - 1), data = dat17i)</pre>
uniqX <- sort(apply(tmp, 2, function(x) {</pre>
 length(unique(x))
uniqX[1:10]
    dis6_i
              mvd_int
                                     vic12_i
                                                 dis4_i
                                                            dis5_i sec_mea1_p sec_mea2_p sec_mea3_p sec_mea4_p
                    2
anyNA <- apply(tmp, 2, function(x) {</pre>
 any(is.na(x) | is.nan(x))
table(anyNA)
anyNA
FALSE
xb0i <- balanceTest(baselineFmlaCluster, data = dat17i, report = "all", p.adjust.method = "none")
Warning in sqrt((var.1 + var.0)/2): NaNs produced
xb0i$overall[, ]
chisquare
                 df p.value
 7.12094
           3.00000 0.06814
xb0ionebyone <- data.frame(xb0i$results[, , ])</pre>
xb0ionebyone$varnm <- row.names(xb0ionebyone)</pre>
xb0ionebyone <- xb0ionebyone %>% arrange(desc(abs(std.diff)))
xb0ionebyone
```

	Control	Treatment	std.diff	adj.diff	pooled.sd	z	p	varnm
1	7.52381	1.6250	-1.045312	-5.898810	5.64311	-2.82995	0.004656	vrobb_2016
2	1.58095	1.1000	-0.805782	-0.480952	0.59688	-2.71891	0.006550	dis1_i
3	1.36368		-0.747834	-0.284013		-2.15897		sec_mea3_p
4	39.82381		0.648282	2.431190	3.75020	2.14955		age_av
5	1.56905		-0.643943	-0.387798		-2.44627		dis2_i
6	1032.11905	755.3750		-276.744048	444.66544			pop
7 8	58.04762		-0.533144	-19.172619		-1.61854		robb_2016
9	1.16667 0.47619		0.525500 -0.482949	0.225010 -0.226190	0.42818	1.82523 -1.54971		sec_mea1_p mvd_int
10	31.70000	35.4446	0.473959	3.744597	7.90067		0.121210	pn_per
11	9.95881	11.6925	0.456913	1.733690	3.79436		0.078447	educ_av
12	49.58143		-0.455294	-4.370825		-1.49853		fa_per
13	2.28333		-0.451951	-0.452083		-1.62745		dis3_i
14	0.13095		0.400424	0.040764	0.10180		0.130115	pt_per
15	2.11490		-0.314181	-0.258646		-2.22913		n_sec_i
16	0.95714	0.7627	-0.309157	-0.194431	0.62891	-1.01572	0.309765	peri_per
17	1.26429	1.1008	-0.303781	-0.163438	0.53801	-1.03247	0.301851	ap_per
18	1.78571	1.8938	0.297174	0.108036	0.36354	2.60483	0.009192	vic12_i
19	12.82143	14.0450	0.295731	1.223593	4.13752	1.00932	0.312820	pc_per
20	1.20075	1.4249	0.279611	0.224161	0.80169		0.020429	neigh3_i
21	4.35458		-0.276394	-0.594003		-2.21236		pstigma3_i
22	55.26190		-0.266478	-3.861905		-1.01608		h_owners
23	5.12462		-0.233545	-0.465931		-1.91824		pstigma4_i
24	78.64095		0.229855	2.362173		0.77744		ubn_no
25	2.70691		-0.228366	-0.194407		-2.08994		c_sec_i
26 27	14.67333		-0.223520	-1.416458		-0.75155		ubn_one ps1718
28	0.06563 3.54286		-0.202424 -0.191851	-0.278272 -0.282794		-1.55286 -0.64098		ps://o pi_per
29	1.92857		-0.191760	-0.056866		-0.68416		sec_mea4_p
30	3.53952		-0.185869	-0.247739		-1.62323		law2_i
31	3.83257		-0.180392	-0.421208		-1.39807		op6_m_i
32	3.88065		-0.167424	-0.105646		-1.79655		neigh6_i
33	4.25415		-0.161451	-0.330460		-1.33594		pstigma2_i
34	5.81606	5.5469	-0.150701	-0.269206	1.78636	-1.48983	0.136269	op5_m_i
35	1.00952	1.0313	0.145338	0.021726	0.14949	1.41345	0.157523	dis5_i
36	2.70338	2.9932	0.144708	0.289791	2.00259	1.44497	0.148467	op3_m_i
37	3.56941	3.6875	0.143486	0.118085	0.82297	1.36605	0.171924	neigh2_i
38	2.79144		-0.137684	-0.274539		-1.20383		stigma4_i
39	2.25023		-0.137440	-0.095013		-1.23025		ph_impact_i
40	1.62143		-0.132466	-0.065179		-1.43666		sex_i
41	1.89046		-0.128006	-0.082435		-1.25762		vic12_n_i
42 43	2.31566		-0.127996 -0.127063	-0.088005 -0.405238		-1.14764 -0.40424		ps_impact_i
44	1.92024 1.00714		-0.127003	-0.405238		-1.08831		ubn_more dis6_i
45	2.05580		-0.113003	-0.088019		-1.13933		if_impact_i
46	4.36968		-0.114194	-0.238193		-0.90339		pstigma1_i
47	27.00952		-0.111637	-1.378274		-0.39343		rent_per
48	0.01844		-0.108686	-0.120605	1.10967	-0.92168	0.356693	st1718
49	2.47074		-0.103229	-0.179271		-0.99195		stigma6_i
50	1.73705	1.8646	0.097721	0.127590	1.30565	0.88029	0.378703	neigh4_i
51	1.01190	1.0208	0.093858	0.008929	0.09513	0.82143	0.411404	social_dis
52	2.97100	3.1625	0.088447	0.191500	2.16514	0.78243	0.433962	stigma1_i
53	2.70386		0.087303	0.174401		0.77680		op4_m_i
54	1.92913		-0.085803	-0.091212		-0.70751		rp_m1_i
55	4.26246		-0.079961	-0.148146		-0.69794		pstigma6_i
56	3.40261		-0.077806	-0.107718		-0.71700		law1_i
57	2.79703		0.077672	0.059000		0.76371		crime_t_i
58 50	3.63744		-0.075417 0.068236	-0.051832		-0.63872 0.57126		rp_m3_i
59 60	1.79682			0.058382 -152698.377976				neigh7_i
61	50.74762		-0.057045	-1.061695		-0.19064		cat_value age_i
62	7912.09524	8432.1500		520.054762	9453.82698			age_i dens
63	1.01905	1.0313	0.054233	0.012202		0.45221		dis4_i
64	1.99475		0.051319	0.038885		0.45948		dt_impact_i
65	5.19579		-0.050685	-0.112190		-0.46201		op2_m_i
66	1.48095		-0.050392	-0.043452		-0.42999		prev_lt_i
67	2.00283	2.0503	0.050201	0.047433	0.94486	0.53066	0.595654	ffuse_i

```
1.7666 -0.036914
                                              -0.053895
                                                              1.46000 -0.34820 0.727690
68
         1.82054
                                                                                                stigma3_i
69
         1.77610
                       1.7421 -0.035938
                                              -0.033972
                                                              0.94529 -0.24024 0.810145
                                                                                                neigh5_i
70
         3.66256
                       3.5981 -0.035469
                                              -0.064462
                                                              1.81745 -0.43012 0.667109
                                                                                               pstigma5_i
                       1.8705 -0.031962
                                                              0.32738 -0.10849 0.913603
                                                                                               sec_mea2_p
71
         1.88095
                                              -0.010464
                                                                                                  rp_m2_i
72
         2.66997
                       2.6386 -0.030738
                                              -0.031322
                                                              1.01899 -0.24984 0.802714
                       0.6765 0.029001
                                              0.005675
                                                              0.19569 0.23144 0.816973 activities_index
73
         0.67078
74
         5.24126
                       5.1924 -0.024590
                                              -0.048908
                                                              1.98890 -0.21399 0.830555
                                                                                               pstigma8_i
75
         5.10988
                       5.0798 -0.014753
                                              -0.030046
                                                              2.03660 -0.14381 0.885649
                                                                                                  op1_m_i
76
         5.77143
                       5.7438 -0.012579
                                              -0.027679
                                                              2.20040 -0.08485 0.932380
                                                                                                   educ i
77
         2.56974
                       2.5921 0.011092
                                              0.022368
                                                              2.01664 0.09913 0.921034
                                                                                                stigma2_i
78
         2.34828
                       2.3330 -0.010792
                                              -0.015293
                                                              1.41702 -0.07278 0.941985
                                                                                                neigh8_i
79
         5.38122
                       5.3569 -0.009962
                                              -0.024334
                                                              2.44258 -0.09409 0.925041
                                                                                               ideol_si_i
                       3.6900 0.004787
                                                              3.68052 0.01616 0.987109
80
         3.67238
                                              0.017619
                                                                                                  ubn_two
         4.57234
                       4.5671 -0.002798
                                              -0.005228
                                                              1.86867 -0.02935 0.976583
                                                                                               pstigma7_i
81
## head(xb0ionebyone, n=20) ## Worst balanced
## Number of small p-values
numsmallp1 <- sum(xb0ionebyone[, "p"] <= .05)</pre>
## xbOitest <- balanceTest(baselineFmla, data = wdat17, report = "all", p.adjust.method = "none")
## xbOitest$overall[,]
summary(xb0ionebyone$std.diff)
  Min. 1st Qu. Median
                           Mean 3rd Qu.
                                            Max.
-1.0453 -0.1859 -0.0754 -0.0842 0.0513
adjps <- p.adjust(xb0ionebyone$p, method = "holm")
xb0ionebyone$thevar <- 1:nrow(xb0ionebyone)</pre>
pdf(file = here::here("media", "initial_balance_plot.pdf"))
par(oma = rep(0, 4) + .01, mar = c(3, 8, 0, 0), mgp = c(1, .5, 0))
with(xb0ionebyone, {
  plot(abs(std.diff), thevar,
    pch = 21,
    xlab = "Absolute Std. Diff of Means", ylab = "",
    bg = c("white", "black")[as.numeric(xb0ionebyone$p <= .05) + 1],</pre>
    axes = FALSE
 axis(1)
 axis(2, at = thevar, labels = varnm, las = 2, tick = FALSE)
  segments(rep(0, nrow(xb0ionebyone)), thevar, abs(std.diff), thevar, lwd = .5, col = "gray")
7)
dev.off()
pdf
```

Relationship between pharmacies and baseline perception of risk:

```
table(dat17i$treat, dat17i$n_sec_i, exclude = c())
```

```
1 2 2.12818532818533 3 4
0 107 183 2 101 27
1 58 71 0 27 4

boxplot(n_sec_i ~ treat, data = dat17i)
stripchart(n_sec_i ~ treat, data = dat17i, vertical = TRUE, add = TRUE)
```

twidth

Hansen and Bowers (2008) suggested that an observational study could be judged, in part, by comparing it to a randomized experimental study of the same covariates and design. The preceding test makes this comparison. If we had randomly assigned pharmacies to register to sell marijuana and we had assessed treatment versus control mean differences in 100 variables, we would have expected 5 variables to have p less than .05 just through chance. That is, 5 small p-values out

of 100 would not impugn the design of an experiment — in fact it would be expected. In this case, we see 11 such small p-values — suggesting an overall inconsistency with the experimental standard (not surprising since this is observational data). The omnibus or overall p above attempts to direct attention away from the individual p-values and to focus on the collection of differences. And, we could also have used a multiple testing adjustment for the p-values (which would show no statistically significant differences).

We can also show that, using unadjusted p-values, that these covariates-to-marijuana selling relationships depart somewhat from the patterns of a randomized design by just counting up the number of significant p-values and comparing that number to the expected number under a randomized design.

```
## It looks pretty balanced at least on means!
## Recall the number of p-values less than .05 that we'd expect by chance:
nrow(xb0ionebyone) * .05

[1] 4.05
sum(xb0ionebyone[, "p"] <= .05)

[1] 11
## So perhaps some imbalance but not a lot.

Save products
save(xb0i, baselineFmla, baselineFmlaCluster, file = "initial_balance.rda")</pre>
```

0.1 References

References

Hansen, B.B. and J. Bowers (2008). "Covariate Balance in Simple, Stratified and Clustered Comparative Studies". In: *Statistical Science* 23, p. 219.