Activité 1.1 - L'explosion du port de Beyrouth

Objectifs de la séance :

- > Faire un bilan de matière à partir d'une équation de réaction fournie
- **\rightarrow** Utiliser la relation entre le volume et le volume molaire $V = n \times V_m$

Le 4 août 2020, une terrible explosion a fait voler en éclats le port de Beyrouth, blessant plus de 6 500 personnes et causant 190 décès. La cause, découverte récemment, indique qu'un incendie se serait déclaré dans un entrepôt de nitrate d'ammonium.

→ Comment expliquer l'ampleur de l'explosion dans ce hangar?

Document 1 - Description du stockage à Beyrouth

Le conseil supérieur de la défense indique qu'un incendie s'est déclaré dans un hangar de $50\,000\,\mathrm{m}^3$ dans lequel étaient stockés $2\,750\times10^3\,\mathrm{kg}$ de nitrate d'ammonium de formule brute NH₄NO₃.

Document 2 - Rappels sur la réaction chimique

On réalise une transformation chimique lorsqu'on mélange des espèces chimiques et que de nouvelles espèces chimiques apparaissent.

Pour modéliser une transformation chimique on écrit une **réaction chimique** entre entités chimiques.

équation de la transformation chimie produite lors de l'incendie dans le hangar à $300\,^{\circ}\mathrm{C}$:

$$2NH_4NO_3(s)$$
 \longrightarrow $2N_2(g) + O_2(g) + 4H_2O(l)$

Les espèces chimiques qui sont transformées au cours de la réaction chimique sont les **réactifs**. Les réactifs sont à gauche dans la réaction.

Les espèces chimiques qui sont produites au cours de la réaction chimique sont les **produits**. Les produits sont à droite dans la réaction.

Document 3 - Faire un bilan de matière

L'équation de la réaction est comme une recette de cuisine :

$$2NH_4NO_3(s) \longrightarrow 2N_2(g) + O_2(g) + 4H_2O(l)$$

Si je mélange deux NH₄NO₃, il se forme deux N₂, un O₂ et quatre H₂O.

Si je mélange 4 NH_4NO_3 , il se forme N_2 , O_2 et H_2O

Si je mélange 6 NH_4NO_3 , il se forme N_2 , O_2 et H_2O .

..... H₂O.

Terminale ST2S

Document 4 - calcul de quantité de matière (solide et gaz)

La relation utilisée pour calculer la quantité de matière dépend de l'état physique de l'espèce chimique.

Espèces chimique à l'état solide

$$n=\frac{m}{M}$$

- n la quantité de matière en mol
- m la masse en g
- M la masse molaire en $g \cdot \text{mol}^{-1}$

masse molaire atomique des entités chimiques qui composent la molécule.

Espèce chimique à l'état gazeux

$$n = \frac{V}{V_m}$$

- n la quantité de matière en mol
- V le volume en L
- V_m la volume molaire en L·mol⁻¹

La masse molaire se calcule en additionnant les Le volume molaire d'un gaz est une constante $V_m = 24 \,\mathrm{L \cdot mol^{-1}}$ (à 20 °C et sous pression atmosphérique)

Document 5 - Tableau descriptif des espèces chimiques

Espèce chimique	Nitrate d'ammonium	diazote	dioxygène	eau
Formule brute	$\mathrm{NH_4NO_3}$	N_2	O_2	$\mathrm{H}_2\mathrm{O}$
Propriétés physico- chimiques	Solide à 20°C (poudre blanche). Légèrement nocif.	Gazeux à 20°C. Gaz incolore inerte présent dans l'air.	Gazeux à 20°C. Gaz incolore oxydant présent dans l'air. Comburant.	Liquide à 20°C. Amphotère.

1 – Le stockage

Données:

- $M(C) = 12.0 \,\mathrm{g \cdot mol^{-1}}$
- $M(N) = 14.0 \,\mathrm{g \cdot mol^{-1}}$

- $M(O) = 16.0 \,\mathrm{g \cdot mol^{-1}}$
- $M(H) = 1.0 \,\mathrm{g \cdot mol^{-1}}$
- 1 Donner le nom et la formule brute de l'espèce chimique entreposée dans le port de Beyrouth responsable de l'explosion.

2 - Après avoir converti la masse de cette espèce chimique en gramme, calculer sa masse molaire notée $M(NH_4NO_3)$.

3 – En déduire, à l'entreposée dans le hangar		1 et 4, la quantité	de matière n_1 de r	nitrate d'ammonium
2 – La réacti	ion produite p	ar l'incendie		
Données :				
$- 1 \mathrm{m}^3 = 10^3 \mathrm{L}$		- 1 K = 273 °C		
4 - Réécrire l'équa nommer les réactifs et les p dangereuses?		-	-	tir du document 5, d'espèces chimiques
5 — La chaleur apport ligne « avant l'incendie aidant du document 3	» et la deuxième li	gne « après l'ince	ndie », du tableau	ci-dessous, en vous
Équation de la réaction	$: 2NH_4NO_3(s) -$			+ 4H ₂ O(l)
État du système		Quantités	de matières	
Avant l'incendie	$n_1 = \dots$	$n(N_2) = \dots$	$n(\mathcal{O}_2) = \dots$	$n(\mathrm{H}_2\mathrm{O}) = \ldots$
Après l'incendie	$n_{f,1} = \ldots$	$n_f(N_2) = \dots$	$n_f(\mathcal{O}_2) = \dots$	$n_f(\mathrm{H_2O}) = \ldots$
6 – En utilisant le d volume de diazote $V(N_2)$,			,	ditions normales), le t.

7 Soit n la quantité de matière produite totale avec $n = n_f(N_2) + n_f(O_2) + n_f(H_2O)$ et V le volume totale $V = V(N_2) + V(O_2) + V(H_2O)$. Calculer n et V .
8 — Conclure sur la valeur de V par rapport à celle du hangar
9 - Pour les plus rapide. La relation des gaz parfait est la suivante :
PV = nRT
avec $R=8,31\mathrm{Pa\cdot m^3\cdot mol^{-1}\cdot K^{-1}}$. Sachant que la température dans le hangar était de 600 °C après la réaction, calculer la pression produite par la réaction. La comparer avec la pression atmosphérique $P_{\mathrm{atm}}=100\mathrm{kPa}$ et la pression dans un pneu de vélo $P_{\mathrm{pneu}}=300\mathrm{kPa}$.