PHYS 481 Assignment 3: ODEs

Due: Thursday Oct 3 (23:00)

This assignment will introduce some ODE techniques. This material is discussed well in Chapters 22 and 23 of https://pythonnumericalmethods.berkeley.edu/notebooks/Index.html. Please use only numpy and matplotlib (not scipy).

Question 1

- a. **[1 pt]** For the equation $y'' + \sin(t) + 1 = 0$ write down the set of first-order ODEs in terms of the state vector $S = [y, y']^T$ (see notes, or chapter 22). This is only about 1 or 2 lines. (Don't overthink it!)
- **b. [8 pts]** Write a general function to integrate second-order ODEs using Euler's method. The function should accept a function F = dS/dt (which depends on S and t), an interval, an initial value vector S and a number of steps to integrate. It should return the step points x_n and the solution to the ODE y_n at all the step points. Use it to integrate the ODE from part a on the interval $[0,\frac{\pi}{2}]$ with the initial values y(0)=0 and y'(0)=1. Compare the results using different numbers of steps and compare to the analytic result $y=c_1+c_2x-\frac{x^2}{2}+\sin{(x)}$.
- c. [8 pts] Repeat part b but use RK4 integration instead of Euler's method.
- **d.** [1 pt] Using Euler's method in part b, each step yields a new value (at t_n) that is systematically too large. Why? [Hint: What order of accuracy is Euler's method? Where does the error come from? Does that error have a consistent sign?]

Question 2

- a. **[8 pts]** For $y'' + \sin(t) + 1 = 0$ (same ODE as in question 1) and the boundary values y(0) = 0 and $y\left(\frac{\pi}{2}\right) = 1$, use a shooting method to solve the equation on the interval $\left[0, \frac{\pi}{2}\right]$. Compare to the analytic result.
- b. **[8 pts]** Repeat question a using a finite difference method with a varying number of grid points (5,10,20,50).

Question 3 [8 pts]

The deflection y(x) of a 1-D beam is governed by the following ODE:

$$EI\frac{d^{2}y}{dx^{2}} = \frac{1}{2}\omega_{0}(Lx - x^{2})\left[1 + \left(\frac{dy}{dx}\right)^{2}\right]^{3/2}$$

where EI is a parameter known as the "flexural rigidity" that depends on the material and its cross-section, L is the length of the beam and ω_0 is the load per unit length applied to the beam. If L=5 m, $EI=1.8\times 10^7$ Nm², $\omega_0=1.5\times 10^4$ N/m and y(0)=y(L)=0, find the beam deflection y(x) on the interval [0,L]. [https://pythonnumericalmethods.berkeley.edu/notebooks/chapter23.06-Summary-and-Problems.html question 10]

Rubric

Question 1a is graded as correct/incorrect (1/0) with no part marks. Question 1d is graded as correct/partially correct/incorrect (1/0.5/0).

All other questions are worth 8 points each, assessed according to the following rubric. An example of a "minor error" in the 1-pt categories is if the code is commented, but not clearly, or the plot is missing a unit on one axis.

Code	Commenting: Clear and concise comments	1 pt	0: Missing or major error.
	explaining the code.		0.5: Minor error.
	Logical Structure: Code is logically organized into	1 pt	1: Correct.
	functions and modules.		
	Readability: Code is well-formatted with consistent	1 pt	
	and easily understood naming conventions.		
Plot(s)	Clarity: Plot is clear and easy to understand.	1 pt	
	Labels and Units: Proper labels and units are	1 pt	
	included on all axes.		
	Correctness : Plot shows the expected outcome of	3 pts	0: Plot is missing or entirely
	the question.		incorrect.
			1: Plot shows evidence of
			major conceptual errors.
			2: Plot shows evidence of
			minor errors in the analysis.
			3: Correct answer.