

УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники

Вычислительная математика

Малышева Татьяна Алексеевна, доцент, к.т.н. tamalysheva@itmo.ru

Санкт-Петербург, 2024

Численные методы решения нелинейных уравнений

Постановка задачи. Дано нелинейное уравнение вида **f(x)= 0,** где **f(x)** — заданная алгебраическая или трансцендентная (включает в себя тригонометрические или экспоненциальные функции) функция.

$$\mathbf{f}(\mathbf{x}) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$
 (имеет *n*-корней)

 $f(x) = sinx + 0,1x^2$ (имеет бесконечное множество решений)

Решить уравнение — это найти такое $x^* \in R$: $\mathbf{f}(x^*)=0$. Значение x^* называют *корнем уравнения*.

Методы делятся на:

- **точные** (позволяют найти решение непосредственно с помощью формул)
- **итерационные** (приближенные)

Этапы приближенного решения нелинейных уравнений

- Отделение (локализация) корней, т.е. определение интервала [a,b], на котором содержится ТОЛЬКО один корень уравнения **f(x)=0**. Такой интервал называется интервалом изоляции корня
- Уточнение корней до заданной точности

Способы отделения корней

- графический
- табличный
- аналитический

Графическое отделение корней

Табличное отделение корней

Аналитический способ состоит в нахождении экстремумов функции f(x), исследование ее поведения при $x \to \pm \infty$ и нахождении участков возрастания и убывания функции.

Табличный способ — это построение таблицы табулирования функции.

О наличии корней свидетельствуют перемены знака функции. Чтобы не произошла потеря корней, шаг изменения аргумента должен быть достаточно мелким, а интервал изменения достаточно широким.

упкц	<i>עועו</i> .
X	f(x)
-3	-29,280
-2,5	-13,818
-2	-3,330
-1,5	2,933
-1	5,720
-0,5	5,783
0	3,870
0,5	0,733
1	-2,880
1,5	-6,218
2	-8,530
2,5	-9,068
3	-7,080
3,5	-1,818
4	7,470
4,5	21,533
5	41,120

Теоремы существования корней

Необходимое условие существования корня уравнения на отрезке [a,b]:

Теорема 1. Если непрерывная функция **f(x)** на концах отрезка [a; b] принимает значения разных знаков, т.е. $f(a) \cdot f(b) < 0$, то на этом отрезке содержится хотя бы один корень уравнения.

■ Достаточное условие единственности корня на отрезке [a,b]:

Теорема 2. Если непрерывная функция **f(x)** на отрезке [a; b] принимает на концах отрезка значения разных знаков, а производная **f'(x)** сохраняет знак внутри отрезка (т.е. **f(x)** монотонна), то внутри отрезка существует единственный корень уравнения **f(x) = 0**.

Методы уточнения приближенных значений действительных корней

- метод половинного деления (метод дихотомии);
- метод хорд
- метод Ньютона (метод касательных) ;
- модифицированный метод Ньютона (метод секущих);
- метод простых итераций ;
- и др.

Основные требования и показатели численных методов

- ♥ сходимость;
- эффективность (скорость сходимости);

Алгоритм считается <u>устойчивым</u>, если он обеспечивает нахождение существующего и единственного решения при различных исходных данных (малые погрешности в исходной величине приводят к малым погрешностям в результате расчетов)

Алгоритм сходится, если итерационная последовательность приближений

$$\mathsf{x}_{\mathsf{1}},\,\mathsf{x}_{\mathsf{2}},...,\mathsf{x}_{\mathsf{n}}\to\mathsf{x}^{*}$$
 , $n\to\infty$, $\lim_{n\to\infty}x_n=x^{*}$

Скорость сходимости (эффективность) — обозначает количество итераций, затраченных алгоритмом для достижения приемлемой точности решения задачи. Чем выше скорость, тем меньше итераций необходимо выполнить.

Различают линейную, сверхлинейную, квадратичную скорость:

$$|x^n - x^*| \le \alpha |x^{n-1} - x^*|^{\beta}$$
, $\alpha \in (0,1)$, $\beta = 1$ – линейная, $1 < \beta < 2$ – сверхлинейная, $\beta = 2$ – квадратичная.

Метод половинного деления

Идея метода: начальный интервал изоляции корня делим пополам, получаем начальное приближение к корню:

$$x_0 = \frac{a_0 + b_0}{2}$$

Вычисляем $f(x_0)$. В качестве нового интервала выбираем ту половину отрезка, на концах которого функция имеет разные знаки: $[a_0, x_0]$ либо $[b_0, x_0]$. Другую половину отрезка $[a_0, b_0]$, на которой функция f(x) знак не меняет, отбрасываем. Новый интервал вновь делим пополам, получаем очередное приближение к корню: $x_1 = (a_1 + b_1)/2$. и т.д.

Рабочая формула метода:

$$x_i = \frac{a_i + b_i}{2}$$

Приближенное значение корня: $x^* = \frac{a_n + b_n}{2}$ или $x^* = a_n$ или $x^* = b_n$

Визуализация метода половинного деления

Критерии окончания итерационного процесса

Сходимость итерационного процесса фиксируется следующими способами:

- 1. Сходимость по аргументу: $|x_n x_{n-1}| \leq \varepsilon$
- 2. Сходимость по функции: $|f(x_n)| \leq \varepsilon$

Для метода половинного деления можно рассматривать еще один критерий окончания итерационного процесса:

$$|a_n - b_n| \leq \varepsilon$$

Блок-схема метода половинного деления

Достоинства и недостатки метода ПД

Достоинства:

- идейная простота и надежность метода;
- непритязательность к свойствам функции f (x) она должна
 быть лишь непрерывной, а дифференцируемость не предполагается;
- обладает абсолютной сходимостью (близость получаемого численного решения задачи к истинному решению).

Рекомендация: применять когда требуется высокая надежность счета, а скорость несущественна.

Недостатки:

- если интервал содержит несколько корней, то неизвестно к какому относится вычислительный процесс;
- медленный метод: имеет линейную сходимость.

Оценка числа итераций

$$|a_1-b_1|=\frac{|a_0-b_0|}{2},\ |a_2-b_2|=\frac{|a_1-b_1|}{2}=\frac{|a_0-b_0|}{2^2}$$

$$|a_k-b_k|=|a_0-b_0|\cdot 2^{-k}$$

$$|a_0-b_0|\cdot 2^{-k}\leq \varepsilon$$

$$k\geq \log_2\frac{|a_0-b_0|}{\varepsilon}$$
 Число итераций: $n=int(\log_2\frac{|a_0-b_0|}{\varepsilon})+1$ Для достижения точности $\varepsilon=10^{-3}$, при $|a_0-b_0|=1$ $k=9.966$; $n=9+1=10$

После 10 шагов дихотомии обеспечиваются лишь три верных десятичных знака искомого корня.

Пример 1. Метод половинного деления

Найти корень уравнения:

$$x^3 - x + 4 = 0$$

с точностью $\varepsilon = 0.01$

$$n = \log_2 \frac{|a_0 - b_0|}{\varepsilon} + 1 = 7$$

$$x^* = \frac{a_7 + b_7}{2} \approx -1,79297$$

№ итерации	a	b	х	F(a)	F(b)	F(x)	a-b
0	-2,00000	-1,00000	-1,50000	-2,00000	4,00000	2,12500	1
1	-2,00000	-1,50000	-1,75000	-2,00000	2,12500	0,39063	0,5
2	-2,00000	-1,75000	-1,87500	-2,00000	0,39063	-0,71680	0,25
3	-1,87500	-1,75000	-1,81250	-0,71680	0,39063	-0,14185	0,125
4	-1,81250	-1,75000	-1,78125	-0,14185	0,39063	0,12961	0,0625
5	-1,81250	-1,78125	-1,79688	-0,14185	0,12961	-0,00480	0,03125
6	-1,79688	-1,78125	-1,78906	-0,00480	0,12961	0,06273	0,015625
7	-1,79688	-1,78906	-1,79297	-0,00480	0,06273	0,02905	0,0078125

Метод хорд

<u>Идея метода:</u> функция y = f(x) на отрезке [a, b] заменяется хордой и в качестве приближенного значения корня принимается точка пересечения хорды с осью абсцисс.

Уравнение хорды, проходящей через точки A(a, f(a)) и B(b, f(b)):

$$\frac{y - f(a)}{f(b) - f(a)} = \frac{x - a}{b - a}$$

Точка пересечения хорды с осью абсцисс (y=0): $x=a-\frac{b-a}{f(b)-f(a)}f(a)$

Алгоритм метода:

<u>0 шаг:</u> Находим интервал изоляции корня $[a_0,b_0]$

<u>1 шаг:</u> Вычисляем x_0 : $x_0 = a_0 - \frac{b_0 - a_0}{f(b_0) - f(a_0)} f(a_0)$

<u>2 шаг:</u> Вычисляем $f(x_0)$.

<u>3 шаг:</u> В качестве нового интервала выбираем ту половину отрезка, на концах которого функция имеет разные знаки: $[a_0, x_0]$ либо $[b_0, x_0]$.

<u>4 шаг:</u> Вычисляем x_1 и т.д (повторяем 1-3 шаги).

Рабочая формула метода:

$$x_i = \frac{a_i f(b_i) - b_i f(a_i)}{f(b_i) - f(a_i)}$$

Критерии окончания итерационного процесса: $|x_n - x_{n-1}| \le \varepsilon$ или $|a_n - b_n| \le \varepsilon$ или $|f(x_n)| \le \varepsilon$ **Приближенное значение корня**: $x^* = x_n$

Визуализация метода хорд

Метод хорд

Семейство хорд может строиться:

а) при фиксированном левом конце $xop\partial$, тогда $x_0=b$ (рис. 1a)

Рабочая формула метода:

$$x_{i+1} = x_i - \frac{a - x_i}{f(a) - f(x_i)} f(x_i)$$

б) при фиксированном правом конце $xop\partial$, тогда x_0 =а (рис. 16)

Рабочая формула метода:

$$x_{i+1} = x_i - \frac{b - x_i}{f(b) - f(x_i)} f(x_i)$$

В этом случае НЕ надо определять на каждой итерации новые значения а, b

Рис. 1а

Рис. 1б

Метод хорд. Определение фиксированного конца

1 случай.

$$x_0=a$$
, граница b - зафиксирована

Производные имеют одинаковые знаки на отрезке [a,b]:

$$f'(x) \cdot f''(x) > 0$$

$$f'(x) > 0$$
 и $f''(x) > 0$, функция возрастает и выпукла вниз

$$f'(x) < 0$$
 и $f''(x) < 0$, функция убывает и выпукла вверх

2 случай.

$$x_0=b$$
, граница a - зафиксирована

Производные имеют разные знаки на отрезке [a, b]:

$$f'(x)\cdot f''(x)<0$$

$$f'(x) < 0$$
 и $f''(x) > 0$, функция убывает и выпукла вниз

$$f'(x) > 0$$
 и $f''(x) < 0$, функция возрастает и выпукла вверх

Достоинства и недостатки метода хорд

Достоинства:

• Простота реализации

Недостатки:

- Скорость сходимости линейная. Порядок сходимости метода хорд выше, чем у метода половинного деления.
- Выбор начального приближения.

Пример 2. Метод хорд

Найти корень уравнения $x^3-x+4=0$ с точностью $\varepsilon=0.01$

$$f(-2) < 0$$
 $f(-1) > 0$

$$x_i = \frac{a_i f(b_i) - b_i f(a_i)}{f(b_i) - f(a_i)}$$

$$n = 4$$

$$x^* \approx -1,79611$$

№ итерации	a	b	x	F(a)	F(b)	F(x)	$ x_{i+1}-x_i $
0	-2,00000	-1,00000	-1.66667	-2,00000	4,00000	1.03704	0.33333
1	-2,00000	-1.66667	-1.78049	-2,00000	1.03704	0.13610	0.11382
2	-2,00000	-1.78049	-1.79447	-2,00000	0.13610	0.01603	0.01399
3	-2,00000	-1.79447	-1.79611	-2,00000	0.01603	0.00186	0.00163

Пример 3. Метод хорд. Фиксированный конец

Найти корень уравнения $x^3-x+4=0$ с точностью $\varepsilon=0.01$

на интервале [-2, -1]

$$f'(x) = 3x^{2} - 1 > 0$$

$$f''(x) = 6x < 0$$

$$f'(x) \cdot f''(x) < 0 \rightarrow x_{0} = b = -1$$

a - зафиксирована

$$x_{i+1} = x_i - \frac{a - x_i}{f(a) - f(x_i)} f(x_i)$$

$$n = 4$$

Nº	а	x	F(a)	F(x)	$ x_{i+1} - x_i $
итерации					
0	-2,00000	-1.66667	-2,00000	1.03704	0.66667
1	-2,00000	-1.78049	-2,00000	0.13610	0.11382
2	-2,00000	-1.79447	-2,00000	0.01603	0.01399
3	-2,00000	-1.79611	-2,00000	0.00186	0.00163

Метод Ньютона (касательных)

Идея метода: функция y = f(x) на отрезке [a, b] заменяется касательной и в качестве приближенного значения корня принимается точка пересечения касательной с осью абсцисс.

Пусть $x_0 \in [a, b]$ - начальное приближение. Запишем уравнение касательной к графику функции y = f(x)в этой точке:

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Найдем пересечение касательной с осью x:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Рабочая формула метода:

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

Критерий окончания итерационного процесса:

$$|x_n-x_{n-1}|\leq arepsilon$$
 или $|rac{f(x_n)}{f'(x_n)}|\leq arepsilon$ или $|f(x_n)|\leq arepsilon$

Приближенное значение корня: $x^* = x_n$

Сходимость метода Ньютона

$$f(x) = arctgx$$

$$f(x)'' = \left(\frac{1}{1+x^2}\right)' = -\frac{2x}{(1+x^2)^2}$$

f(x)'' меняет знак на интервале изоляции корня

Условия сходимости метода Ньютона

Сходимость метода Ньютона зависит от того, насколько близко к корню выбрано начальное приближение. Тогда скорость сходимости велика.

Метода Ньютона эффективен, если выполняются условия сходимости:

- производные f'(x) и f''(x) сохраняют знак на отрезке [a;b],
- производная $f'(x) \neq 0$.

Выбор начального приближения $x_0 \in [a; b]$:

Метод обеспечивает быструю сходимость, если выполняется условие:

$$f(x_0) \cdot f''(x_0) > 0$$

(тот конец интервала, для которого знаки функции и второй производной совпадают)

$$x_0 = egin{cases} a_0, & ext{если } f(a_0) \cdot f''(a_0) > 0 \ b_0, & ext{если } f(b_0) \cdot f''(b_0) > 0 \end{cases}$$

Достоинства и недостатки метода Ньютона

Достоинства:

• квадратичная сходимость.

Недостатки:

- функции, участвующие в расчетах, должны быть дифференцируемыми;
- необходимость вычисления производной на каждой итерации;
- выбор начального приближения.

Пример 4. Метод Ньютона

Найти корень уравнения:

$$x^3 - x + 4 = 0$$

с точностью $\varepsilon = 0.01$
 $f'(x) = 3x^2 - 1$ $f''(x) = 6x$
Сохраняют знак на [-2,-1]
 $f(-2) < 0$ $f(-1) > 0$
 $f''(-2) < 0 \rightarrow x_0 = -2$
 $n = 3$ $x^* \approx -1.79632$

№ итерации	x_{i}	$f(x_i)$	$f'(x_i)$	x_{i+1}	$ x_{i+1} - x_i $
0	-2,00000	-2,00000	11.00000	-1.81818	0.18182
1	-1.81818	-0.19234	8.91736	-1.79661	0.02157
2	-1.79661	-0.00253	8.68345	-1.79632	0.00029

$$|x_n - x_{n-1}| \le \varepsilon |f(x_n)| \le \varepsilon$$

Метод секущих

Упростим метод Ньютона, заменив f'(x) разностным приближением:

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

Рабочая формула метода:

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$
 $i = 1, 2 ...$

Метод секущих является <u>двухшаговым</u>, т.е. новое приближение x_{i+1} определяется двумя предыдущими итерациями x_i и x_{i-1} .

Выбор x_0 определяется как и в методе Ньютона, x_1 - выбирается рядом с начальным самостоятельно.

Критерий окончания итерационного процесса:

$$|x_n - x_{n-1}| \le \varepsilon$$
 или $|f(x_n)| \le \varepsilon$

Приближенное значение корня: $x^* = x_n$

Визуализация метода секущих

Достоинства и недостатки метода секущих

Достоинства:

Меньший объем вычислений по сравнению с методом Ньютона, т.к. не требуется вычислять производную.

Недостатки:

Порядок сходимости метода секущих ниже, чем у метода касательных и равен золотому сечению ≈1,618 (сверхлинейная).

Пример 5. Метод секущих

Найти корень уравнения $x^3-x+4=0$ с точностью $\varepsilon=0.01$

$$x_0 = -2$$
 $x_1 = -1,5$

$$n = 3 \ x^* \approx 1,79612$$

(метод Ньютона: $n = 3 \ x^* \approx -1,79632$)

№ итерации	x_{i-1}	x_i	x_{i+1}	$f(x_{i+1})$	$ x_{i+1}-x_i $
0	-2,00000	-1.50000	-1.75758	2.12500	0.25758
1	-1.50000	-1.75758	-1.80464	0.32830	0.04706
2	-1.75758	-1.80464	-1.79612	-0.07258	0.00852

$$|x_n - x_{n-1}| < \varepsilon ||f(x_n)|| > \varepsilon \rightarrow n = 4$$

Метод простой итерации

Уравнение f(x) = 0 приведем к эквивалентному виду: $x = \varphi(x)$, выразив x из исходного уравнения.

Зная начальное приближение: $x_0 \in [a, b]$, найдем очередные приближения:

$$x_1 = \varphi(x_0) \to x_2 = \varphi(x_1) \dots$$

Рабочая формула метода: $x_{i+1} = \varphi(x_i)$

Условия сходимости метода простой итерации определяются следующей теоремой.

Теорема. Если на отрезке локализации [a,b] функция $\varphi(x)$ определена, непрерывна и дифференцируема и удовлетворяет неравенству:

 $|\varphi'(x)| < q$, где $0 \le q < 1$, то независимо от выбора начального приближения $x_0 \in [a,b]$ итерационная последовательность $\{x_n\}$ метода будет сходится к корню уравнения.

Достаточное условие сходимости метода:

 $|\varphi'(x)| \leq q < 1$, где q – некоторая константа (коэффициент Липшица или коэффициент сжатия) $q = \max_{[a,b]} |\varphi'(x)|$

При $q \approx 0$ - скорость сходимости высокая,

При q pprox 1 - скорость сходимости низкая,

При q > 1 - нет сходимости.

Чем меньше q, тем выше скорость сходимости.

Критерий окончания итерационного процесса:

$$|x_n - x_{n-1}| \le \varepsilon$$
 (при $0 < q \le 0.5$)

$$|x_n - x_{n-1}| < \frac{1-q}{q} \varepsilon$$
 (при 0,5 < $q < 1$)

Можно ограничиться: $|x_n - x_{n-1}| \le \varepsilon$

Геометрический смысл метода простой итерации

При итерационном процессе получается ломаная линия $M_0N_1M_1N_2M_2$ где абсциссы M_n - последовательные приближения x_n к решению x^* Последовательность итераций на рисунке сходится к точному значению корня: предел последовательности $\{(x^k)\}$ существует и совпадает с корнем.

Геометрический смысл метода простой итерации

Последовательность $\{(x^k)\}$ может расходиться. Это не значит, что уравнение не имеет корня. Просто, последовательность к нему не сходится.

Достоинства и недостатки метода простой итерации

Достоинства:

Простота реализации

Недостатки:

Недостатком этого метода является его сходимость в малой окрестности корня и вытекающая отсюда необходимость выбора начального приближения к корню из этой малой окрестности. В противном случае итерационный процесс расходится или сходится к другому корню этого уравнения.

Если $|\varphi'(x)| \approx 1$, то сходимость может быть очень медленной.

Метод простой итерации

Способы преобразования уравнения:

$$x^3 - x + 4 = 0$$

1 способ:

Преобразуем уравнение к виду $x = \varphi(x)$

$$\varphi(x) = x^3 + 4 = 0$$

$$a_0 = -2$$
 $b_0 = -1$

$$\varphi'(x) = 3x^2$$

$$\varphi'(-2) = 12 > 1$$

 $\varphi'(-1)=3>1$ Условие сходимости НЕ ВЫПОЛНЯЕТСЯ

2 способ:

$$\varphi(x) = \sqrt[3]{x-4}$$

$$\varphi'(x) = 1/3(x-4)^{-2/3} |\varphi'(-2)| < 1 |\varphi'(-1)| < 1$$

Условие сходимости ВЫПОЛНЯЕТСЯ

Метод простой итерации

Способы преобразования уравнения:

$$x^3 - x + 4 = 0$$

3 способ (наиболее используемый):

Если непосредственное преобразование уравнения к виду $x = \varphi(x)$

не позволяет получить уравнение, для которого выполняются условия сходимости метода,

применяем более общий прием введения параметра λ

- 1. преобразуем уравнение f(x)=0 к равносильному (при $\lambda\neq 0$) $\lambda f(x)=0$
- 2. прибавим x в обеих частях: $x = x + \lambda f(x)$
- 3. $\varphi(x) = x + \lambda f(x), \varphi'(x) = 1 + \lambda f'(x)$
- 4. высокая скорость сходимости обеспечивается при $q=\max_{[a,b]}|\varphi'(x)|pprox 0$. Тогда $\pmb{\lambda}=-rac{1}{\max\limits_{[a,b]}|f'(x)|}$

$$\lambda = -rac{1}{\max|f'(x)|}$$
, если $f'[a,b] > 0$

$$\lambda = rac{1}{max|f'(x)|}$$
 ,если $f'[a,b] < 0$

$$f'(x) = 3x^{2} - 1 f'(-2) = 11 f'(-1) = 2 \lambda = -\frac{1}{\max_{[a,b]} |f'(x)|} = -\frac{1}{11}$$
$$x = x + \lambda f(x) \to x = x + \lambda (x^{3} - x + 4) = \frac{12}{11}x - \frac{1}{11}x^{3} - \frac{4}{11}$$
$$\varphi(x) = \frac{12}{11}x - \frac{1}{11}x^{3} - \frac{4}{11}$$

Метод простой итерации

$$x = \frac{12}{11}x - \frac{1}{11}x^3 - \frac{4}{11}$$

$$x_0 = -2$$

$$x_1 = \varphi(x_0) = \frac{12}{11}x_0 - \frac{1}{11}x_0^3 - \frac{4}{11} \approx -1.8182$$

$$x_2 = \varphi(x_1) = \frac{12}{11}x_1 - \frac{1}{11}x_1^3 - \frac{4}{11} \approx -1.8007$$

№ итерации	x_i	x_{i+1}	$\varphi(x_{i+1})$	$f(x_{i+1})$	$ x_{i+1}-x_i $
0	-2,0000	-1.8182	-1.8007	-0.19234	0.1818
1	-1.8182	-1.8007	-1.7972	-0.03808	0.0175
2	-1.8007	-1.7972	-1.7965	-0.00793	0.0035

РЕШЕНИЕ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Пусть для вычисления неизвестных $x_1, x_2, ..., x_n$ требуется решить систему нелинейных уравнений:

$$\begin{cases}
F_1(x_1, x_2, \dots, x_n) = 0 \\
F_2(x_1, x_2, \dots, x_n) = 0 \\
\dots \\
F_n(x_1, x_2, \dots, x_n) = 0
\end{cases}$$
(1)

В отличие от систем линейных уравнений не существует прямых методов решения нелинейных систем общего вида.

Лишь в отдельных случаях систему можно решить непосредственно. Например, для случая двух уравнений иногда удается выразить одно неизвестное через другое и таким образом свести задачу к решению одного уравнения относительно одного неизвестного.

Для системы с двумя неизвестными можно использовать геометрические построения, но для системы с n > 2 неизвестными такой подход становится неприменимым.

К основе метода лежит использование разложения функций $F_i(x_1,x_2,...,x_n)$ в ряд Тейлора в окрестности некоторой фиксированной точки, причем члены, содержащие вторые (и более высоких порядков) производные, отбрасываются.

Пусть начальные приближения неизвестных системы (1) получены и равны соответственно a_1, a_2, \ldots, a_n . Задача состоит в нахождении приращений (поправок) к этим значениям $\Delta x_1, \Delta x_2, \ldots, \Delta x_n$, благодаря которым решение системы запишется в виде

$$x_1 = a_1 + \Delta x_1$$
, $x_2 = a_2 + \Delta x_2$, ..., $x_n = a_n + \Delta x_n$ (2)

Проведем разложение левых частей уравнений (1) с учетом (2) в ряд Тейлора, ограничиваясь лишь линейными членами относительно приращений:

$$\begin{cases} F_1(x_1, x_2, \dots, x_n) \approx F_1(a_1, a_2, \dots, a_n) + \frac{\partial F_1}{\partial x_1} \Delta x_1 + \dots + \frac{\partial F_1}{\partial x_n} \Delta x_n \\ F_2(x_1, x_2, \dots, x_n) \approx F_2(a_1, a_2, \dots, a_n) + \frac{\partial F_2}{\partial x_1} \Delta x_1 + \dots + \frac{\partial F_2}{\partial x_n} \Delta x_n \\ \dots & \dots & \dots \\ F_n(x_1, x_2, \dots, x_n) \approx F_n(a_1, a_2, \dots, a_n) + \frac{\partial F_n}{\partial x_1} \Delta x_1 + \dots + \frac{\partial F_n}{\partial x_n} \Delta x_n \end{cases}$$

Поскольку в соответствии с (1) левые части этих выражений должны обращаться в нуль, то приравняем к нулю и правые части. Получим следующую систему линейных алгебраических уравнений относительно приращений:

$$\begin{cases} \frac{\partial F_1}{\partial x_1} \Delta x_1 + \frac{\partial F_1}{\partial x_2} \Delta x_2 + \dots + \frac{\partial F_1}{\partial x_n} \Delta x_n = -F_1 \\ \frac{\partial F_2}{\partial x_1} \Delta x_1 + \frac{\partial F_2}{\partial x_2} \Delta x_2 + \dots + \frac{\partial F_2}{\partial x_n} \Delta x_n = -F_2 \\ \dots & \dots & \dots \\ \frac{\partial F_n}{\partial x_1} \Delta x_1 + \frac{\partial F_n}{\partial x_2} \Delta x_2 + \dots + \frac{\partial F_n}{\partial x_n} \Delta x_n = -F_n \end{cases}$$

$$(3)$$

Значения F_1, F_2, \dots, F_n и их производные вычисляются при $x_1 = a_1, x_2 = a_2, \dots, x_n = a_n$. Определителем системы (3) является **якобиан**:

$$J = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \dots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_1} & \dots & \frac{\partial F_2}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial F_n}{\partial x_1} & \dots & \frac{\partial F_n}{\partial x_n} \end{bmatrix}$$

Итерационный процесс решения систем нелинейных уравнений методом Ньютона состоит в определении приращений Δx_1 , Δx_2 , ..., Δx_n к значениям неизвестных на каждой итерации.

Критерий окончания итерационного процесса: $max | \Delta x_i \le \varepsilon |$.

В методе Ньютона:

- 1. Важен удачный выбор начального приближения для обеспечения хорошей сходимости.
- 2. Сходимость ухудшается с увеличением числа уравнений системы.

Рассмотрим систему нелинейных уравнений второго порядка:

$$\begin{cases} f(x,y) = 0 \\ g(x,y) = 0 \end{cases}$$

Пусть задано начальное приближение $\{x_0, y_0\}$ (его можно определить графическим методом). Тогда, очередное приближение:

$$\begin{cases} x_1 = x_0 + \Delta x \\ y_1 = y_0 + \Delta y \end{cases} \text{ if } \begin{cases} f(x_0 + \Delta x, y_0 + \Delta y) = 0 \\ g(x_0 + \Delta x, y_0 + \Delta y) = 0 \end{cases}$$

Разложим функцию в окрестности некоторой фиксированной точки по формуле Тейлора:

$$\begin{cases} f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + \frac{\partial f(x_0, y_0)}{\partial x} \Delta x + \frac{\partial f(x_0, y_0)}{\partial y} \Delta y + R = 0 \\ g(x_0 + \Delta x, y_0 + \Delta y) = g(x_0, y_0) + \frac{\partial g(x_0, y_0)}{\partial x} \Delta x + \frac{\partial g(x_0, y_0)}{\partial y} \Delta y + R = 0 \end{cases}$$

Пренебрегая остаточным членом, получаем:

$$\begin{cases} \left(\frac{\partial f(x_0, y_0)}{\partial x} \Delta x + \frac{\partial f(x_0, y_0)}{\partial y} \Delta y = -f(x_0, y_0) \right) \\ \left(\frac{\partial g(x_0, y_0)}{\partial x} \Delta x + \frac{\partial g(x_0, y_0)}{\partial y} \Delta y = -g(x_0, y_0) \right) \end{cases}$$

Введем матрицу Якоби:

$$J(x,y) = \begin{vmatrix} \frac{\partial f(x,y)}{\partial x} & \frac{\partial f(x,y)}{\partial y} \\ \frac{\partial g(x,y)}{\partial x} & \frac{\partial g(x,y)}{\partial y} \end{vmatrix}$$

Тогда, вместо системы нелинейных уравнений будем решать систему линейных уравнений относительно Δx , Δy :

$$\begin{vmatrix} \frac{\partial f(x,y)}{\partial x} & \frac{\partial f(x,y)}{\partial y} \\ \frac{\partial g(x,y)}{\partial x} & \frac{\partial g(x,y)}{\partial y} \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = -\begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$

А далее вычислять на каждой итерации:

$$x_{i+1} = x_i + \Delta x_i$$
 и $y_{i+1} = y_i + \Delta y_i$,

где x_i , y_i - текущее приближение к корню,

 x_{i+1}, y_{i+1} - последующее приближение,

 Δx_i , Δy_i – приращения к очередным приближениям.

Процесс вычисления заканчивается при выполнении следующих условий:

$$|x_{i+1} - x_i| \le \varepsilon, \quad |y_{i+1} - y_i| \le \varepsilon$$

Пример:

$$\begin{cases} x^2 + y^2 = 4 \\ y = 3x^2 \end{cases} \to \begin{cases} f(x, y) = 0 \\ g(x, y) = 0 \end{cases} \to \begin{cases} x^2 + y^2 - 4 = 0 \\ -3x^2 + y = 0 \end{cases}$$

Отметим, что решение системы уравнений являются точки пересечения окружности радиусом, равным 2, и параболы $y=3x^2$. Следовательно, система имеет не более двух различных решений.

Построим матрицу Якоби:

$$\frac{\partial f}{\partial x} = 2x$$
 $\frac{\partial f}{\partial y} = 2y$ $\frac{\partial g}{\partial x} = -6x$ $\frac{\partial g}{\partial y} = 1$

Тогда будем решать следующую систему линейных уравнений:

$$\begin{vmatrix} \frac{\partial f(x,y)}{\partial x} & \frac{\partial f(x,y)}{\partial y} \\ \frac{\partial g(x,y)}{\partial x} & \frac{\partial g(x,y)}{\partial y} \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = -\begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$

$$\begin{vmatrix} 2x & 2y \\ -6x & 1 \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} 4 - x^2 - y^2 \\ 3x^2 - y \end{pmatrix} \quad \text{или}$$

$$\begin{cases} 2x\Delta x + 2y\Delta y = 4 - x^2 - y^2 \\ -6x\Delta x + \Delta y = 3x^2 - y \end{cases} \tag{4}$$

АЛГОРИТМ РЕШЕНИЯ:

Шаг 1. Выбираем
$$x_0=1$$
 , $y_0=2$.
$$\begin{cases} 2x\Delta x + 2y\Delta y = 4 - x^2 - y^2 \\ -6x\Delta x + \Delta y = 3x^2 - y \end{cases}$$

На первой итерации система будет иметь вид:

$$\begin{cases} 2\Delta x + 4\Delta y = -1 \\ -6\Delta x + \Delta y = 1 \end{cases}$$

Шаг 2. Решаем полученную систему.

Получаем $\Delta x = -0.192$ и $\Delta y = -0.154$.

Шаг 3. Вычисляем очередные приближения:

$$x_1 = x_0 + \Delta x = 1 - 0.192 = 0.808$$

 $y_1 = y_0 + \Delta y = 2 - 0.154 = 1.846.$

Шаг 4. Проверяем критерий окончания итерационного процесса при $\varepsilon=0.01$:

$$|x_1 - x_0| \le \varepsilon$$
, $|y_1 - y_0| \le \varepsilon$
 $|0,808 - 1| > \varepsilon$, $|1,846 - 2| > \varepsilon$

Шаг 5. Если ответ не найден, возврат на шаг 2, подставив очередные приближения в систему:

$$\begin{cases} 1,616\Delta x + 3,692\Delta y = -0,06058 \\ -4,848\Delta x + \Delta y = 0,11259 \end{cases}$$

Приведем систему уравнений к эквивалентному виду:

$$\begin{cases} F_1(x_1, x_2, \dots, x_n) = 0 \\ F_2(x_1, x_2, \dots, x_n) = 0 \\ \dots \dots \dots \dots \\ F_n(x_1, x_2, \dots, x_n) = 0 \end{cases} \begin{cases} x_1 = \varphi_1(x_1, x_2, \dots, x_n) \\ x_2 = \varphi_2(x_1, x_2, \dots, x_n) \\ \dots \dots \dots \dots \\ x_n = \varphi_n(x_1, x_2, \dots, x_n) \end{cases}$$

Или, в векторной форме:
$$\pmb{X} = \pmb{\varphi}(\pmb{X})$$
 $\pmb{\varphi}(\pmb{X}) = \begin{pmatrix} \varphi_1(\pmb{X}) \\ \varphi_2(\pmb{X}) \\ \dots \\ \varphi_n(\pmb{X}) \end{pmatrix}$

Если выбрано начальное приближение: $\mathbf{X}^{(0)} = x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)},$ получим первые приближения к корням:

$$\begin{cases} x_1^{(1)} = \varphi_1(x_1^0, x_2^0, \dots, x_n^0) \\ x_2^{(1)} = \varphi_2(x_1^0, x_2^0, \dots, x_n^0) \\ \dots \dots \dots \dots \dots \dots \\ x_n^{(1)} = \varphi_n(x_1^0, x_2^0, \dots, x_n^0) \end{cases}$$

Последующие приближения находятся по формулам:

$$\begin{cases} x_1^{(k+1)} = \varphi_1(x_1^k, x_2^k, \dots, x_n^k) \\ x_2^{(k+1)} = \varphi_2(x_1^k, x_2^k, \dots, x_n^k) \\ \dots \\ x_n^{(k+1)} = \varphi_n(x_1^k, x_2^k, \dots, x_n^k) \end{cases} \qquad k = 0, 1, 2, \dots$$

Сходятся ли эти последовательности?

Пусть задача отделения корней уже решена и определена достаточно малая область изоляции G, в которой находится подлежащий уточнению корень.

Пусть в этой окрестности функции $\varphi_i(x_1^k, x_2^k, ..., x_n^k)$ дифференцируемы:

$$\varphi'(x) = \begin{bmatrix} \frac{\partial \varphi_1}{\partial x_1} & \frac{\partial \varphi_1}{\partial x_2} & \dots & \frac{\partial \varphi_1}{\partial x_n} \\ \frac{\partial \varphi_2}{\partial x_1} & \frac{\partial \varphi_2}{\partial x_2} & \dots & \frac{\partial \varphi_2}{\partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial \varphi_n}{\partial x_1} & \frac{\partial \varphi_n}{\partial x_2} & \dots & \frac{\partial \varphi_n}{\partial x_n} \end{bmatrix}$$

Достаточное условие сходимости итерационного процесса:

$$\max_{[x \in G]} |\varphi'(x)| \le q < 1$$
 или $\max_{[x \in G]} \max_{[i]} \sum_{j=1}^n \left| \frac{\partial \varphi_i(X)}{\partial x_j} \right| \le q < 1$

$$\left| \frac{\partial \varphi_1}{\partial x_1} \right| + \left| \frac{\partial \varphi_1}{\partial x_2} \right| + \dots + \left| \frac{\partial \varphi_1}{\partial x_n} \right| < 1$$

$$\left| \frac{\partial \varphi_2}{\partial x_1} \right| + \left| \frac{\partial \varphi_2}{\partial x_2} \right| + \dots + \left| \frac{\partial \varphi_2}{\partial x_n} \right| < 1$$

$$\dots \dots \dots$$

$$\left| \frac{\partial \varphi_n}{\partial x_1} \right| + \left| \frac{\partial \varphi_n}{\partial x_2} \right| + \dots + \left| \frac{\partial \varphi_n}{\partial x_n} \right| < 1$$

Если $X^{(0)}$ и все последовательные приближения: $X^{(k+1)} = \boldsymbol{\varphi}(X^k)$, $k = 0, 1, 2 \dots$ принадлежат ограниченной замкнутой области G, тогда итерационный процесс сходится к единственному решению уравнения $X = \boldsymbol{\varphi}(X)$

Критерий окончания итерационного процесса:

$$\max_{1 \le i \le n} \left| x_i^{(k+1)} - x_i^k \right| \le \varepsilon$$

Пример: найти положительное решение системы нелинейных уравнений с точностью $\varepsilon = 10^{-2}$

$$\begin{cases} f_1(x_1, x_2) = 0.1x_1^2 + x_1 + 0.2x_2^2 - 0.3 = 0 \\ f_2(x_1, x_2) = 0.2x_1^2 + x_2 + 0.1x_1x_2 - 0.7 = 0 \end{cases}$$

Определяем, что положительное решение системы уравнений находится в области G:

$$0 < x_1 < 1$$
, $0 < x_2 < 1$

$$\begin{cases} x_1 = 0.3 - 0.1x_1^2 - 0.2x_2^2 \\ x_2 = 0.7 - 0.2x_1^2 - 0.1x_1x_2 \end{cases}$$

Проверим условие сходимости. В области G имеем:

Проверим условие сходимости. В области G име
$$\frac{\partial \varphi_1}{\partial x_1} = -0.2x_1$$
 $\frac{\partial \varphi_1}{\partial x_2} = -0.4x_2$ $\frac{\partial \varphi_2}{\partial x_1} = -0.4x_1 - 0.1x_2$ $\frac{\partial \varphi_2}{\partial x_2} = -0.1x_1$ $\left|\frac{\partial \varphi_1}{\partial x_1}\right| + \left|\frac{\partial \varphi_1}{\partial x_2}\right| = |-0.2x_1| + |-0.4x_2| \le 0.6$ $\left|\frac{\partial \varphi_2}{\partial x_1}\right| + \left|\frac{\partial \varphi_2}{\partial x_2}\right| = |-0.4x_1 - 0.1x_2| + |-0.1x_1| \le 0.6$ $\max_{[x \in G]} |\varphi'(x)| \le 0.6 < 1$ \rightarrow Процесс сходящийся

$$\begin{cases} x_1 = 0.3 - 0.1x_1^2 - 0.2x_2^2 \\ x_2 = 0.7 - 0.2x_1^2 - 0.1x_1x_2 \end{cases}$$

Выберем начальное приближение: $x_1^{(0)} = 1$ $x_2^{(0)} = 1$

1 шаг.

$$x_1^{(1)} = 0.3 - 0.1 - 0.2 = 0$$
 $\left| x_1^{(1)} - x_1^{(0)} \right| = 1 > \varepsilon$
 $x_2^{(1)} = 0.7 - 0.2 - 0.1 = 0.4$ $\left| x_2^{(1)} - x_2^{(0)} \right| = 0.6 > \varepsilon$

<u>2 шаг.</u>

$$x_1^{(2)} = 0.3 - 0 - 0.2 \cdot 0.4^2 = 0.268$$
 $\left| x_1^{(2)} - x_1^{(1)} \right| = 0.268 > \varepsilon$
 $x_2^{(2)} = 0.7 - 0 - 0 = 0.7$ $\left| x_2^{(2)} - x_2^{(1)} \right| = 0.3 > \varepsilon$

3 шаг.

$$x_1^{(3)} = 0.3 - 0.1 \cdot 0.268^2 - 0.2 \cdot 0.7^2 = 0.195$$
 $\left| x_1^{(3)} - x_1^{(2)} \right| = 0.073 > \varepsilon$
 $x_2^{(3)} = 0.7 - 0.2 \cdot 0.268^2 - 0.1 \cdot 0.268 \cdot 0.7 = 0.667$ $\left| x_2^{(3)} - x_2^{(2)} \right| = 0.033 > \varepsilon$

4 шаг.

$$\begin{aligned} x_1^{(4)} &= 0,3 - 0,1 \cdot 0,195^2 - 0,2 \cdot 0,667^2 = 0,207 & \left| x_1^{(3)} - x_1^{(2)} \right| = 0,012 > \varepsilon \\ x_2^{(3)} &= 0,7 - 0,2 \cdot 0,195^2 - 0,1 \cdot 0,195 \cdot 0,667 = 0,679 & \left| x_2^{(3)} - x_2^{(2)} \right| = 0,002 > \varepsilon \end{aligned}$$

И т.д.