

SF1625 Envariabelanalys Tentamen Tisdagen 25 oktober

Skrivtid: 8:00-13:00 Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes

Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen utgörs av de första tre uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng, upp till som mest 12 poäng. Poängsumman på del A kan alltså bli högst 12 poäng, bonuspoäng medräknade. Bonuspoängen beräknas automatiskt och antalet bonuspoäng framgår av din resultatsida.

De tre följande uppgifterna utgör del B och de sista tre uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	A	В	C	D	Е	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng.

DEL A

- 1. (a) Bestäm Taylor polynomet av grad 2 till $\ln(1+x)$ omkring x=0. (2 p)
 - (b) Bestäm ett närmevärde för $\ln(6/5)$ som inte avviker mer än 3/1000. (2 p)
- 2. (a) Bestäm alla primitiva funktioner till $\frac{1}{\sqrt{x}+1}$. (Tips: Substituera $u=\sqrt{x}$.) (2 p)
 - (b) Bestäm gränsvärdet (2 p)

$$\lim_{x \to 0} \frac{2\cos(x) - 2 + x^2}{x^4}.$$

3. Låt L vara tangentlinjen i punkten (1,e) till kurvan $y=xe^{x^2}$. Bestäm skärningspunkten mellan L och x-axeln. (4 p)

DEL B

4. Vi betraktar en LRC-krets med en spänningskälla, en spole med induktansen 1 henry, ett motstånd med resistansen 15 ohm och en kondensator med kapacitansen 1/50 farad. Strömmen i genom kretsen uppfyller differentialekvationen

$$i''(t) + 15i'(t) + 50i(t) = 0.$$

Lös differentialekvationen och bestäm strömmen vid tiden t om i(0) = 0 ampere och i'(0) = 1 ampere/sekund. (4 p)

5. (a) Skissa kurvan $y = \cos x - 2x$.

- (2 p)
- (b) Använd lösningen av uppgift (a) för att visa att ekvationen $\cos x = 2x$ har exakt en lösning. (1 p)
- (c) Ange ett intervall av längd högst $\frac{1}{2}$ som innehåller lösningen av ekvationen $\cos x = 2x$. (Längden av ett intervall [a, b] är |b a|.) (1 p)
- 6. Vi betraktar funktionen

$$f(x) = \frac{e^x + e^{-x}}{2},$$

definerad på intervallet $-1 \le x \le 1$.

- (a) Skriv upp integralen som ger längden av funktionsgrafen y = f(x). (2 p)
- (b) Beräkna längden av denna kurva.

(2 p)

DEL C

- 7. (a) Definiera vad det betyder för en funktion f att vara kontinuerlig i a. (1 p)
 - (b) Definiera vad det betyder för en funktion f att vara deriverbar i a. (1 p)
 - (c) Bestäm talen a och b så att funktionen f som ges av

$$f(x) = \begin{cases} x^2 & x \le 1\\ ax + b & x > 1 \end{cases}$$

blir både kontinuerlig och deriverbar i punkten x = 1.

(2 p)

8. Låt funktionen f vara definierad genom

$$f(t) = \begin{cases} \cos^2 t, & 0 \le t \le 1 \\ t^2 + 1, & t > 1 \end{cases}$$

Beräkna för varje tal $x \ge 0$ integralen

(4 p)

$$\int_0^x f(t) \, dt.$$

9. Beräkna gränsvärdet

(4 p)

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{n+k}{n^4} \right)^{1/3}$$