PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number:	WO 99/47677
C12N 15/19, C07K 14/52, C12N 5/10, 15/86, 15/62, C07K 16/24, A61K 38/19, C12O 1/68, G01N 33/50, 33/577, 33/68	A2	(43) International Publication Date: 2	3 September 1999 (23.09.99)

(21) International Application Number:	PCT/US99/05190
--	----------------

(22) International Filing Date:

10 March 1999 (10.03.99)

(30) Priority Data: 09/040,220 09/184,216

17 March 1998 (17.03.98) US 2 November 1998 (02.11.98) US

(71) Applicant: GENENTECH, INC. [US/US]; 1 DNA Way, South San Francisco, CA 94080 (US).

(72) Inventors: FERRARA, Napoleone; 2090 Pacific Avenue #706, San Francisco, CA 94109 (US). KUO, Sophia, S.; Apartment 3, 59 Surrey Street, San Francisco, CA 94131 (US).

(74) Agent: DAIGNAULT, Ronald, A.; Merchant, Gould, Smith, Edell, Welter & Schmidt, P.A., 3100 Norwest Center, 90 South Seventh Street, Minneapolis, MN 55402-4131 (US).

(81) Designated States: AE, AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE, GUITIN model), DE, DE, CU, CZ, CZ (Utility model), DE, BE, CU IIII, DESIGNATION, DESIGN

Published

Without international search report and to be republished upon receipt of that report.

With an indication in relation to deposited biological material furnished under Rule 13bis separately from the description.

(54) Title: POLYPEPTIDES HOMOLOGOUS TO VEGF AND BMP1

(57) Abstract

The present invention involves the identification and preparation of vascular endothelial growth factor—E (VEGP-E). VEGP-E is a novel polypeptide related to vascular endothelial growth factor (VEGP) and bone morphogenetic protein I. VEGF-E has homology to VEGF including conservation of the amino acids required for activity of VEGF, VEGP-E can be useful in wound repair, as well as in the generation and regeneration of itsue.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL.	Albusia	ES	Spain	LS	Lesetho	SI	Slovenia
	Annonia	FI	Finland	LT	Litheania	SK	Slovakia
AM		FR	Prance	3.30	Lancenbourg	SN	Sonogal
AT	Austria	GA	Gabon	£.V	Latvia	82	Sweetland
AU	Australia	GB	United Kinndon	MC	Menaco	TD	Chad
AZ	Azerbaijan	GE	Georgia	MD	Republic of Moldovs	TG	Togo
BA	Bosnia and Herzegovina			MG	Madagascur	TI	Tajikistan
1333	Barbados	GH	Ghans	MK	The former Yugosiav	774	Turkmenistan
BE	Belgium	GN	Guinea	DER.	Republic of Macedonia	TR	Dukey
BF	Burkins Paso	GR	Greece		Mali	TT	Trinidad and Tobago
BG	Hulgaria	80	Hungary	ML		UA	Bonine
BJ	Beain	33	freiand	MEN	Mongolia	UK UG	Uganda
BR	Branif	H.	Bract	MR	Mauritania	US	United States of America
BY	Belarus	18	Scoland	MW	Makewi	US	Danger Stores or Storeton
CA	Canada	m	Italy	MX	Mexico		
CF	Central African Republic	38.	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenva	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstas	NO	Nonway	ZW	Zimbahwc
CI	Cite d'Iwaire	KP	Democratic People's	NZ	New Zealand		
CM	Camenon		Republic of Kores	PL.	Poland		
CN	Chise	KR	Republic of Korea	PT	Portugal		
	Cubs	KZ.	Kazaku:an	80	Romania		
CU		LC	Saint Eastin	833	Russian Pederation		
CZ.	Czech Republic	u	Liechtenstein	80	Sudan		
343	Germany	L.K	Latingenouse 0.17 Jun	ee	Pusaden		

800 Sudan Sweden

SE SG

LK Sri Lanka LR Liberia

Denmark DK

₽E Estonia Singapore

WO 99/47677 PCT/US99/05190

POLYPEPTIDES HOMOLOGOUS TO VEGF AND EMP1

Field of the Invention

The present invention is directed to polypeptides related to vascular endothelial cell growth factor (hereinafter sometimes referred to as VEGF) and bone morphogenetic protein 1 (hereinafter sometimes referred to as BMF1), termed herein as VEGF-E polypeptides, nucleic acids encoding therefor, methods for preparing VEGF-E, and methods, compositions, and assays utilizing VEGF-E.

10

25

30

Background of the Invention

Various naturally occurring polypeptides reportedly induce the proliferation of endothelial cells. Among those polypeptides are the basic and acidic fibroblast growth factors (FGF) (Burgess and 15 Maciag, Annual Rev. Biochem., 58: 575 (1989)), platelet-derived endothelial cell growth factor (PD-ECGF) (Ishikawa et al., Nature, 338: 557 (1989)), and vascular endothelial growth factor (VEGF). Leung et al., Science, 246: 1306 (1989); Ferrara and Henzel, Biochem. Biophys. Res. Commun., 161: 851 (1989); Tischer et al., 20 Biochem. Biophys. Res. Commun., 165: 1198 (1989); FF 471,754B granted July 31, 1996.

The heperin-binding endothelial cell-growth factor, VEGF, was identified and purified from media conditioned by bowine pitultary follicular or folliculo-stellate cells several years ago. See Ferrara et al., Biophys. Res. Comm., 161: 851 (1889). Media conditioned by cells transfected with the human VEGF (hVEGF) cDNA promoted the proliferation of capillary endothelial cells, whereas control cells did not. Leung et al., Science, 246: 1306 (1999). VEGF is a naturally occurring compound that is produced in follicular or folliculo-stellate cells (FC), a morphologically well-

5

10

15

20

2

characterized population of granular cells. The FC are stellate cells that send cytoplasmic processes between secretory cells.

VEGF is expressed in a variety of tissues as multiple homodimeric isoforms (121, 165, 189 and 206 amino acids per monomen), also collectively referred to as hVEGF-related proteins, resulting from alternative RNA splicing. The 121-amino acid protein differs from hVEGF by virtue of the deletion of the 44 amino acids between residues 116 and 159 in hVEGF. The 189-amino acid protein differs from hVEGF by virtue of the insertion of 24 amino acids at residue 116 in hVEGF, and apparently is identical to human vascular permeability factor (hVPF). The 205-amino acid protein differs from bVEGF by virtue of an insertion of 41 amino acids at residue 116 in hVEGF. Houck et al., Mol. Endocrin., 5: 1806 (1991); Ferrara et al., J. Cell. Biochem., 47: 211 (1991); Ferrara et al., Endocrine Reviews, 13: 18 (1992); Keck et al., Science, 246: 1309 (1989); Connolly et al., J. Biol. Chem., 264: 20017 (1989); EP 370,989 published May 30, 1990. VEGF121 is a soluble mitogen that does not bind heparin; the longer forms of VEGF bind heparin with progressively higher affinity. The heparin-binding forms of VESF can be cleaved in the carboxy terminus by plasmin to release (a) diffusible form(s) of VEGF. The amino acid sequence of the carboxyterminal peptide identified after plasmin cleavage is Argue-Alauu. Amino terminal "core" protein, VEGF (1-110), isolated as a homodimer, binds neutralizing monoclonal antibodies (4.6.1 and 283) 25 and soluble forms of FMS-like twrosine kinase (FLT-1), kinase domaid region (KDR) and fetal liver kinase (FLK) receptors with similar

As noted, VEGF contains two domains that are responsible respectively for binding to the KDR and FLT-1 receptors. These 30 receptors exist only on endothelial (vascular) cells. As cells become depleted in oxygen, because of trauma and the like, VEGF production increases in such cells which then bind to the respective receptors in order to signal ultimate biological effect. The signal ther increases vascular permeability and the cells divide and expand to form new vascular pathways - vasculogenesis and angiogenesis. 35

affinity compared to the intact VEGF:45 homodimer.

Thus. VEGF is useful for treating conditions in which a selected action on the vascular endothelial cells, in the absence of excessive tissue growth, is important, for example, diabetic ulcers

10

15

20

25

30

35

and vascular injuries resulting from trauma such as subcutaneous wounds. Being a vascular (artery and venus) endothelial cell growth factor, VEGF restores cells that are damaged, a process referred to as vasculogenesis, and stimulates the formulation of new vessels, a process referred to as angiogenesis.

VEGF would also find use in the restoration of vasculature after a myocardial infarct, as well as other uses that can be deduced. In this regard, inhibitors of VEGF are sometimes desirable, particularly to mitigate processes such as angiogenesis and vasculousnesis in cancerous cells.

It is now well established that angiogenesis, which involves the formation of new blood vessels from preexisting endothelium, is implicated in the pathogenesis of a variety of disorders. These include solid tumors and metastasis, atherosclerosis, retrolental fibroplasia, hemangiomas, chronic inflammation, intraocular necvascular syndromes such as proliferative retinopathies, e.g., diabetic retinopathy, age-related macular degeneration (RMD), neovascular glaucoma, immune rejection of transplanted corneal tissue and other tissues, rheumatoid arthritis, and psoriasis. Folkman et al., J. Biol. Chem., 267: 10931-10934 (1992); Klagsbrun et al., Annu. Rev. Physiol., 53: 217-239 (1991); and Garner A, "Vascular diseases", 1n: Pathobiology of Ocular Disease. A Dynamic Approach, Garner A, Klintworth GK, Eds., 2nd Edition (Marcel Dekker, NY, 1994), pp 1625-1710.

In the case of tumor growth, angiogenesis appears to be crucial for the transition from hyperplasia to neoplasia, and for providing nourishment to the growing solid tumor. Folkman et al., Nature, 339: 58 (1989). The neovascularization allows the tumor cells to acquire a growth advantage and proliferative autonomy compared to the normal cells. Accordingly, a correlation has been observed between density of microvessels in tumor sections and patient survival in breast cancer as well as in several other tumors. Weldner et al., N Engl J Med. 324: 1-6 (1991); Rorak et al., Lancet, 340: 1120-1124 (1992); Macchiarini et al., Lancet, 340: 145-146 (1992).

The search for positive regulators of angiogenesis has yielded many candidates, including aFGF, bFGF, TGF- α , TGF- β , HGF, TNF- α , angiogenin, Ib-8, etc. Folkman et al., <u>J.B.C.</u>, supra, and Klagsbrun

WO 99/47677 PCT/US99/05190

et al., supra. The negative regulators so far identified include thrombospondin (Good et al., Proc. Natl. Acad. Sci. USA., 87: 6624-6628 (1990)), the 16-kilodalton N-terminal fragment of prolactin (Clapp et al., Endocrinology, 133: 1292-1299 (1993)), angiostatin (O'Reilly et al. Cell, 79: 315-328 (1994)), and endostatin. O'Reilly et al., Cell, 88: 277-285 (1996). Work done over the last several years has established the key role of VEGF, not only in stimulating vascular endothelial cell proliferation, but also in inducing vascular permeability and angiogenesis. Ferrara et al., Endocr. Rev., 18: 4-25 (1997). The finding that the loss of even a single VEGF allele results in embryonic lethality points to an irreplaceable role played by this factor in the development and differentiation of the vascular system. Furthermore, VEGF has been shown to be a key mediator of neovascularization associated with tumors and intraocular disorders. Ferrara et al., Endocr. Rev., supra. The VEGF mRNA is overexpressed by the majority of human tumors examined. Berkman et al., J Clin Invest, 91: 153-159 (1993); Brown et al., Human Pathol., 26: 86-91 (1995); Brown et al., Cancer Res., 53: 4727-4735 (1993); Mattern et al., Brit. J. Cancer, 73: 20 931-934 (1996); Dvorak et al., Am J. Pathol., 146: 1029-1039 (1995).

Also, the concentration levels of VEGF in eve fluids are highly correlated to the presence of active proliferation of blood vessels in patients with diabetic and other ischemia-related retinopathies. Aiello et al., N. Engl. J. Med., 331: 1480-1487 (1994). Furthermore, recent studies have demonstrated the localization of VEGF in choroidal necwascular membranes in patients affected by AMD. Lopez et al., Invest. Ophthalmol. Vis. Sci., 37: 855-868 (1996). Anti-VEGF neutralizing antibodies suppress the growth of a variety of human tumor cell lines in nude mice (Kim et al., Nature, 362: 841-844 (1993); Warren et al., J. Clin. Invest., 95: 1789-1797 (1995); Borgström et al., Cancer Res., 56: 4032-4039 (1996); Melnyk et al., Cancer Res., 56: 921-924 (1996)) and also inhibit intraocular angiogenesis in models of ischemic retinal disorders. Adamis et al., Arch. Ophthalmol., 114: 66-71 (1996). 35 Therefore, anti-VEGF monoclonal antibodies or other inhibitors of VEGF action are promising candidates for the treatment of solid tumors and various intraocular neovascular disorders. Such

antibodies are described, for example, in EP 817,648 published January 14, 1998 and in PCT/US 98/06724 filed April 3, 1998.

Regarding the bone morphogenetic protein family, members of this family have been reported as being involved in the differentiation of cartilage and the promotion of vascularization and osteoinduction in preformed hydroxyapatite. Zou. er al., Genes Dev. (U.S.), 11(17):2191 (1997); Levine, et al., Ann. Flast. Surg., 39(2):158 (1997). A number of related bone morphogenetic proteins have been identified, all members of the bone morphogenetic crotein 16 (BMP) family. Bone morphogenetic native and mutant proteins. nucleic acids encoding them, related compounds including receptors, host cells, and uses are further described in at least: U.S. Patent Nos. 5,670,338; 5,454,419; 5,661,007; 5,637,480; 5,631,142; 5.166.058; 5,620,867; 5,543,394; 4,877,864; 5,013,649; 5,106,748; 15 and 5,399,677. Of particular interest are proteins having homology with bone morphogenetic protein 1, a procollagen C-proteinase that plays key roles in regulating matrix deposition. role of vascular endothelial cell growth and angiogenesis in many diseases and disorders, it is desirable to have a means of reducing 20 or inhibiting one or more of the biological effects causing these processes. It is also desirable to have a means of assaying for the cresence of pathogenic polypeptides in normal and diseased conditions, and especially cancer. Further, in a specific aspect, as there is no generally applicable therapy for the treatment of 25 cardiac hypertrophy, the identification of factors that can prevent or reduce cardiac myocyte hypertrophy is of primary importance in the development of new therapeutic strategies to inhibit pathophysiological cardiac growth. While there are several treatment modalities for various cardiovascular and oncologic 30 disorders, there is still a need for additional therapeutic

The present invention is predicated upon research intended to identify novel polypeptides which are related to VEGF and the BMP family, and in particular, polypeptides which have a role in the survival, proliferation, and/or differentiation of cells. While the novel polypeptides are not expected to have biological activity identical to the known polypeptides to which they have homology, the known polypeptide biological activities can be used to determine the

approaches.

relative biological activities of the novel polypeptides. In particular, the novel polypeptides described herein can be used in assays which are intended to determine the ability of a polypeptide to induce survival, proliferation, or differentiation of cells. In 5 turn, the results of these assays can be used accordingly, for diagnostic and therapeutic purposes. The results of such research are the subject of the present invention.

Summary of the Invention

10

20

Accordingly, in one aspect of the invention is provided isolated nucleic acid comprising a nucleotide sequence encoding a vascular endothelial cell growth factor-E (VEGF-E) polypeptide comprising amino acid residues 1 through 345 of Figure 2 (SEO ID NO:2). In preferred embodiments, this nucleic acid comprises the 15 coding nucleotide sequence of Fig. 1 (i.e., it comprises residues 259 through 1293 of SEQ ID NO: 1), or its complement. In other aspects, the invention provides a vector comprising this nucleic acid, preferably one that is operably linked to control sequences recognized by a host cell transformed with the vector, as well as a host cell comprising the nucleic acid, preferably a host cell transformed with the vector. Preferably, this bost cell is a Chinese Hamster Ovary cell, an insect cell, an E. coll cell, or a yeast cell, and is most preferably a baculovirus-infected insect cell.

25 In another embodiment, this invention provides a process for producing a VEGF-E polypeptide comprising culturing the host cell described above under conditions suitable for expression of the VEGF-E polypeptide and recovering the VEGF-E polypeptide from the cell culture. Further provided is a polypeptide produced by this 30 process.

In another embodiment, the invention provides a polypeptide comprising the amino acid sequence set forth in SEQ ID NO:2.

- In a further embodiment, the invention provides a chimeric polypeptide comprising the VEGF-E polypeptide fused to a
- heterologous amino acid sequence. In preferred embodiments, the heterologous amino acid sequence is an epitope tag sequence or a Fo region of an immunoglobulin.

In another aspect of the invention is provided a composition comprising the VEGF-E polypeptide in admixture with a carrier. In a preferred aspect, the composition comprises a therapeutically effective amount of the polypeptide, wherein the carrier is a pharmaceutically acceptable carrier. Also preferred is where the composition further comprises a cardiovascular, endothelial, or andiogenic agent.

In a still further embodiment, the invention provides a method for preparing the composition for the treatment of a cardiovascular or endothelial disorder comprising admixing a therapeutically effective amount of the VEGF-E polypeptide with the carrier.

In another embodiment, the invention provides a pharmaceutical product comprising:

(a) the composition described above:

15

- (b) a container containing said composition; and
- a label affixed to said container, or a package insert included in said pharmaceutical product referring to the use of said VEGF-E polypeptide in the treatment of a cardiovascular or endothelial disorder.

In yet another embodiment, the invention provides a method for 20 diagnosing a disease or a susceptibility to a disease related to a mutation in a nucleic acid sequence encoding VEGF-E comprising:

- (a) isolating a nucleic acid sequence encoding VEGF-E from a sample derived from a host; and
- 25 (b) determining a mutation in the nucleic acid sequence encoding VEGF-E.

In a still further embodiment, the invention provides a method of diagnosing cardiovascular and andothelial disorders in a mammal comprising detecting the level of expression of a gene 30 encoding a VEGF-E polypeptide (a) in a test sample of tissue cells obtained from the mammal, and (b) in a control sample of known normal rissue cells of the same cell type, wherein a higher or lower expression level in the test sample indicates the presence of a cardiovascular or endothelial dysfunction in the mammal from which the test tissue cells were obtained.

In a further embodiment, the invention provides a method for treating a cardiovascular or endothelial disorder in a mammal comprising administering to the mammal an effective amount of a

10

VEGF-E polypeptide. Preferably, the disorder is cardiac hypertrophy, trauma, or a bone-related disorder. Also, preferably said mammal is human. In another preferred embodiment, the disorder is cardiac hypertrophy and it is characterized by the presence of an elevated level of PGF_{2m}, or it has been induced by myocardial infarction, where preferably said VEGF-E polypeptide administration is initiated within 48 hours following myocardial inferction. In another preferred embodiment, the cardiovascular or endothelial disorder is cardiac hypertrophy and said VEGF-E polypeptide is administered together with a cardiovascular or endothelial agent. More preferably, said cardiovascular, endothelial, or angiogenic agent is selected from the group consisting of an antihypertensive drug, an ACE-inhibitor, an endothelin receptor antagonist, and a thrombolytic agent.

- 15 in another embodiment, the invention provides a method for identifying an agonist to a VEGF-E polypeptide comprising: (a) contacting cells and a candidate compound under conditions
- that allow the polypeptide to stimulate proliferation of the cells; and

 (b) measuring the extent to which cell proliferation is
- inhibited by the compound.
 - Further provided is an agonist to a VEGF-E polypeptide identified by the above method.

Also provided is a method for identifying a compound that 25 inhibits the expression or activity of a VEGF-S polypeptide, comprising:

- (a) contacting a candidate compound with the polypeptide under conditions and for a time sufficient to allow the compound and polypeptide to interact; and
- 30 (b) measuring the extent to which the compound interacts with the polypeptide.

In another embodiment, the invention provides a compound identified by the above method.

In a still further embodiment, the invention provides a 35 compound that inhibits the expression or activity of a VEGE-E polymentide.

In another embodiment, the invention provides a method for treating an angiogenic disorder in a mammal comprising administering to the mammal an effective amount of an antagonist to a VEGF-E polypeptide. In a preferred embodiment, the angiogenic disorder is cancer or age-related macular degeneration. In another preferred embodiment, the mammal is human. In a further preferred aspect, an effective amount of an angiostatic agent is administered in conjunction with the antagonist.

In other aspects, the invention provides an isolated antibody that binds a VEGF-E polypeptide. Preferably, this antibody is a monocional antibody.

In a further aspect, the invention provides a method for inhibiting angiogenesis induced by VESF-E polypeptide in a mammal comprising administering a therapeutically effective amount of the antibody to the mammal, where preferably the mammal is a human. Also, the mammal preferably has a tumor or a retinal disorder. In another preferred aspect, the mammal has cancer and the antibody is administered in combination with a chemotherapeutic agent, a growth inhibitory agent, or a cytotoxic agent.

In another preferred embodiment, the invention provides a method for determining the presence of a VEGT-E polypoptide comprising exposing a cell suspected of containing the VEGF-E polypoptide to the antibody and determining binding of said antibody to said cell.

In yet another preferred aspect, the invention supplies a method of diagnosing cardiovascular, endothelial, or angiogenic disorders in a mammal comprising (a) contacting the antibody with a test sample of tissue cells obtained from the mammal, and (b) detecting the formation of a complex between the anti-VEGF-E antibody and the VEGF-E polypeptide in the test sample.

In still further aspects, the invention provides a cancer diagnostic kit comprising the antibody and a carrier in suitable packaging. Freferably, the kit further comprises instructions for using said antibody to detect the VEGF-E polypeptide.

In yet another embodiment, the invention provides an article of manufacture, comprising:

35 a container;

10

- a label on the container; and
- a composition comprising an anti-VEGF-E antibody contained within the container; wherein the label on the container indicates

that the composition can be used in therapeutic or diagnostic methods.

Brief Description of the Drawings

Figure 1 depicts a full-length DNA sequence of VEGF-E (SEQ ID NO:1), the coding region of which is from nucleotide residues 259 through 1293. SEQ ID NO:1 represents DNA:29101 deposited as DNA29101-1276 March 5, 1998 at the American Type Culture Collection, Manassas, Virginia. Tr is DNA:29101, also termed UNQ:174 herein that contains the region encoding VEGF-E. The start and stop codon are circled, showing the coding region beginning with ATG and the stop codon immediately after the last coding nucleotide. The coding region, 1035 nucleic acids in length, is within SEQ ID No:1, at positions 259 through 1293. SEQ ID No:1 includes the nucleic acid be encoding the presumed leader signal sequence or pre-protein, and the putative mature protein.

Figure 2 depicts the deduced amino acid sequence for VEGF-E, also herein termed PRO:200, SEQ ID NO:2. This sequence represents the protein encoded by the open reading frame of UNQ:174. The corresponding molecular weight is 39,029 D. The pI is 6.06. The NX(S/T) is 3. Potential N-glycosylation sites are at positions 25, 54, and 254. CUB domains are at positions 52-65, 118-125 and 260-273.

20

30

Figures 3A-3H show the effect of no growth factor (Fig. 3A), and one or more growth factors (VEGF, bFGF, and/or PMA) (Figs. 118-11H) on HUVEC tube formation. Figure 3B shows VEGF, bFGF and PMA combined, Fig. 3C shows VEGF and bFGF combined, Fig. 3D shows VEGF and PMA combined, Fig. 3E shows bFGF and PMA combined, Fig. 3F shows VEGF alone, Fig. 3C shows bFGF alone, and Fig. 3R shows PMA alone.

Figures 4A and 4B show, respectively, the effect on HUVEC tube formation of VEGF-E conjugated to IgG at 1% dilution and of a buffer control (10 mM HEPES/0.14M NaC1/4% mannitol, pH 6.8) at 1% dilution.

Figures 5A and 5B show, respectively, the effect on HDVEC tube formation of VEGF-E conjugated to poly-his at 1% dilution and of a buffer control (same as in Fig. 4B) at 1% dilution.

11

Detailed Description of the Invention

Definitions

As used herein, "vascular endothelial cell growth factor-E," or "VEGF-E," refers to a mammalian growth factor as described 5 herein, including the human amino acid sequence of Figure 2, a sequence which has homology to VEGF and bone morphogenetic protein 1 and which includes complete conservation of all VEGF cysteine residues, which have been shown to be required for biological activity of VEGF. VEGF-E expression includes expression in human fetal bone, thymus, and the gastrointestinal tract, as well as in fetal testis, lung, and lymph nodes, and in other tissues as shown in the examples below. The biological activity of native VEGF-E is shared by any analogue or variant thereof that promotes selective growth and/or survival of umbilical vein endothelial cells, induces proliferation of pluripotent fibroblast cells, induces immediate early gene c-fos in human endothelial cell lines, causes myocyte hypertrophy in cardiac cells, inhibits VEGF-stimulated proliferation of adrenal cortical capillary endothelial cells, or which possesses an immune epitope that is immunologically cross-reactive with an antibody raised against at least one epitope of the corresponding 20 native VEGF-E. The human VEGF-E herein is active on rat and mouse cells, indicating conservation across species. Moreover, the VEGF-E herein is expressed at the growth plate region and has been shown to embrace fetal mvocvtes.

As used herein, "vascular endothelial cell growth factor," or
"VEGF," refers to a mammalian growth factor as defined in U.S.
Patent 5,332,671. The biological activity of native VEGF is shared
by any analogue or variant thereof that promotes selective growth of
vascular endothelial cells but not of bovine corneal endothelial
cells, lens epithelial cells, address cortex cells, BHK-21
fibroblasts, or keratinocytes, or that possesses an immune epitope
that is immunologically cross-reactive with an antibody raised
against at least one epitope of the corresponding native VEGF.

The terms "VEGF-E polypeptide" and "VEGF-E" when used herein

35 encompass native-sequence VEGF-E polypeptide and VEGF-E polypeptide

variants (which are further defined herein). The VEGF-E

polypeptides may be isolated from a variety of sources, such as from

human tissue types or from another source, or prepared by recombinant or synthetic methods.

A "native-sequence VEGF-E polypeptide" comprises a polypeptide having the same amino acid sequence as a VEGF-E polypeptide derived from nature. Such native-sequence VEGF-E polypeptide can be isolated from nature or can be produced by recombinant or synthetic means. The term "native-sequence VEGF-E polypeptide" specifically encompasses naturally-occurring truncated or secreted forms of a VEGF-E polypeptide, naturally-occurring variant forms (s.g., alternatively-spliced forms) and naturally-occurring allelic variants of a VEGF-E polypeptide. In one embodiment of the invention, the native-sequence VEGF-E polypeptide is a mature or full-length native sequence VEGF-E polypeptide comprising amino acids 1 through 345 as depicted in Figure 2.

"VEGF-E variant" means an active VEGF-E polypeptide as defined below having at least about 80% amino acid sequence identity with the VEGF-E polypeptide having the deduced amino acid sequence shown in Figure 2 for a full-length native-sequence VEGF-E polypeptide.

Such VEGF-E polypeptide variants include, for instance, VEGF-E polypeptide wherein one or more amino acid residues are added, deleted, or substituted at the N- or C-terminus of the sequence of Figure 2 or within the sequence as well as active fragments thereof.

Ordinarily, a VEGF-E polypeptide variant will have at least about 80% amino acid sequence identity, more preferably at least about 95% amino acid sequence identity with the amino acid sequence of Figure 2.

"Percent (%) amino acid sequence identity" with respect to the VEGF-E amino acid sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in a VEGF-E polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as ALIGN or Mecalian (DMASTAR) software.

Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.

"Percent (%) nucleic acid sequence identity" is defined as the percentage of nucleotides in a candidate sequence that are identical with the sequence shown in Figure 1 (SEQ ID NO:1), respectively, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent nucleic acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being commared.

"Isolated," when used to describe the various polypeptides disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the polypeptide will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or 25 internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-FAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Isolated polypeptide includes polypeptide in sita within recombinant cells, since at least one component of the VEGF-E polypeptide natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.

An "isolated" VEGF-E polypeptide-encoding nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the VEGF-E polypeptide-encoding nucleic acid. An isolated VEGF-E polypeptideencoding nucleic acid molecule is other than in the former setting in which it is found in nature. Isolated VEGF-E polypeptide-encoding nucleic acid molecules therefore are distinguished from the VEGF-E polypeptide-encoding nucleic acid molecule as it exists in natural cells. However, an isolated VEGF-E polypeptide-encoding nucleic acid molecule includes VEGF-E polypeptide-encoding nucleic acid molecules contained in cells that ordinarily express VEGF-E polypeptide where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.

10

20

30

35

The phrases "cardiovascular and endothelial disorder" and "cardiovascular and endothelial dysfunction" are used interchangeably and refer to disorders, typically systemic, that stimulate angiogenesis and/or cardiovascularization. This includes diseases that affect vessels, as well as diseases of the vessels themselves, such as of the arteries, capillaries, veins, and/or lymphatics. Such disorders include, for example, arterial disease, such as atherosclerosis, hypertension, inflammatory vasculitides, Reynaud's disease and Reynaud's phenomenon, aneurysms, and arterial restenosis; yengus and lymphatic disorders such as thrombophlebitis, lymphangiris, and lymphedema; and other vascular disorders such as peripheral vascular disease, trauma such as wounds, burns, and other injured tissue, amplant fixation, scarring, ischemia reperfusion injury, rheumatoid arthritis, cerebrovascular disease, renal diseases such as acute renal failure, and osteoporosis. This would also include angina, myocardial infarctions such as acute myocardial infarctions, cardiac hypertrophy, and heart failure such as congestive heart failure (CRF).

The phrase "angiogenic disorder" refers to a disorder that requires treatment with an agent that inhibits angiogenesis, e.g., an angiostatic compound. Such disorders include, for example, types of caucer such as vascular tumors, e.g., hemangioma (capillary and cavernous), glomus tumors, telangiectasia, bacillary angiomatosis, hemangioendothelioma, angiosarcoma, haemangiopericytoma, Kaposi's sarcoma, lymphangioma, and lymphangiosarcoma, and tumor angiogenesis.

"Mypertrophy", as used herein, is defined as an increase in mass of an organ or structure independent of natural growth that does not involve tumor formation. Rypertrophy of an organ or tissue

is due either to an increase in the mass of the individual cells (true hypertrophy), or to an increase in the number of cells making up the tissue (hyperplasia), or both. Certain organs, such as the heart, lose the ability to divide shortly after birth. Accordingly, "cardiac hypertrophy" is defined as an increase in mass of the heart, which, in adults, is characterized by an increase in myocyte cell size and contractile protein content without concomitant cell division. The character of the stress responsible for inciting the hypertrophy, (e.g., increased preload, increased afterload, loss of myocytes, as in myocardial infarction, or primary depression of contractility), appears to play a critical role in determining the nature of the response. The early stage of cardiac hypertrophy is usually characterized morphologically by increases in the size of microfibrils and mitochondria, as well as by enlargement of mitochondria and nuclei. At this stage, while muscle cells are larger than normal, cellular organization is largely preserved. At a more advanced stage of cardiac hypertrophy, there are preferential increases in the size or number of specific organelles, such as mitochondria, and new contractile elements are added in localized areas of the cells, in an irregular manner. Cells subjected to long-standing hypertrophy show more obvious disruptions in cellular organization, including markedly enlarged nuclei with highly lobulated membranes, which displace adjacent myofibrils and cause breakdown of normal Z-band registration. The phrase "cardiac 25 hypertrophy* is used to include all stages of the progression of this condition, characterized by various degrees of structural damage of the heart muscle, regardless of the underlying cardiac disorder. Hence, the term also includes physiological conditions instrumental in the development of cardiac hypertrophy, such as elevated blood pressure, acrtic stenosis, or myocardial infarction.

"Heart failure" refers to an abnormality of cardiac function where the heart does not pump blood at the rate needed for the requirements of metabolizing tissues. The heart failure can be caused by a number of factors, including ischemic, congenital, rheumatic, or idiopathic forms.

35

"Congestive heart failure" or "CHF" is a progressive pathologic state where the heart is increasingly unable to supply adequate cardiac output (the volume of blood pumped by the heart over time) to deliver the oxygenated blood to peripheral tissues. As CRF progresses, structural and hemodynamic damages occur. While these damages have a variety of manifestations, one characteristic symptom is ventricular hypertrophy. CRF is a common end result of a number of various cardiac disorders.

"Myocardial infarction" generally results from atherosclerosis of the coronary arteries, often with superimposed coronary thrombosis. It may be divided into two major types: transmural infarcts, in which myocardial necrosis involves the full thickness of the ventricular wall, and subendocardial (nontransmural) infarcts, in which the necrosis involves the subendocardium, the intramural myocardium, or both, without extending all the way through the ventricular wall to the epicardium. Myocardial infarction is known to cause both a change in bemodynamic effects and an alteration in structure in the damaged and healthy zones of the heart. Thus, for example, myocardial infarction reduces the maximum cardiac output and the stroke volume of the heart. Also associated with myocardial infarction is a stimulation of the DNA synthesis occurring in the interstice as well as an increase in the 20 formation of collagen in the areas of the heart not affected.

As a result of the increased stress or strain placed on the heart in prolonged hypertension due, for example, to the increased total peripheral resistance, cardiac hypertrophy has long been associated with "hypertension". A characteristic of the ventricle that becomes hypertrophic as a result of chronic pressure overload is an impaired diastolic performance. Fouad et al., J. Am. Coli. Cardiol., 4: 1560-1506 (1984); Smith et al., J. Am. Coll. Cardiol., 5: 869-874 (1985). A prolonged left ventricular relaxation has been detected in early essential hypertension, in spite of normal or supranormal systolic function. Hartford et al., Hypertension, 6: 329-338 (1984). However, there is no close parallelism between blood pressure levels and cardiac hypertrophy. Although improvement in left ventricular function in response to 35 antihypertensive therapy has been reported in humans, patients variously treated with a diuretic (hydrochlorothiazide), a β-blocker (propranolol), or a calcium channel blocker (diltiazem), have shown reversal of left ventricular hypertrophy, without improvement in

diastolic function. Incouye et al., Am. J. Cardiol., 53: 1583-7 (1984).

Another complex cardiac disease associated with cardiac hypertrophy is "hypertrophic cardiomyopathy". This condition is characterized by a great diversity of morphologic, functional, and clinical features (Maron et al., N. Engl. J. Med., 316: 780-789 (1987); Spirito et al., N. Engl. J. Med., 320: 749-755 (1989); Louis and Edwards, Prog. Cardiovasc. Dis., 36: 275-308 (1994); Wigle et al., Circulation, 92: 1680-1692 (1995)), the heterogeneity of which is accentuated by the fact that it afflicts patients of all ages. Spirito et al., N. Engl. J. Med., 336: 775-785 (1997). The causative factors of hypertrophic cardiomyopathy are also diverse and little understood. In general, mutations in genes encoding sarcomeric proteins are associated with hypertrophic cardiomyopathy. Recent data suggest that \$-myosin heavy chain mutations may account for approximately 30 to 40 percent of cases of familial hypertrophic cardiomyopathy. Watkins et al., N. Engl. J. Med., 326: 1108-1114 (1992); Schwartz et al. Circulation, 91: 532-540 (1995); Marian and Roberts, Circulation, 92: 1336-1347 (1995); Thierfelder et al., Cell, 77: 701-712 (1994); Watkins et al., Nat. Gen., 11: 434-437 (1995). Besides \$-myosin heavy chain, other locations of genetic mutations include cardiac troponin T, alpha topomyosin, cardiac myosin binding protein C. essential myosin light chain, and regulatory myosin light chain. See Malik and Watkins, Curr. Opin. 25 Cardiol., 12: 295-302 (1997).

Supravalvular "aortic stenosis" is an inherited vascular disorder characterized by narrowing of the ascending aorta, but other arteries, including the pulmonary arteries, may also be affected. Untreated aortic stenosis may lead to increased intracardiac pressure resulting in myocardial hypertrophy and eventually heart failure and death. The pathogenesis of this disorder is not fully understood, but hypertrophy and possibly hyperplasia of medial smooth muscle are prominent features of this disorder. It has been reported that molecular variants of the selection gene are involved in the development and pathogenesis of aortic stenosis. U.S. Patent No. 5,650,282 issued July 22, 1997.

"Valvular regurgitation" occurs as a result of heart diseases resulting in disorders of the cardiac valves. Various diseases, like rheumatic fever, can cause the shrinking or pulling apart of the valve crifice, while other diseases may result in endocarditis, an inflammation of the endocardium or lining membrane of the atrioventricular orifices and operation of the heart. Defects such as the narrowing of the valve stenosis or the defective closing of the valve result in an accumulation of blood in the heart cavity or regurgitation of blood past the valve. If uncorrected, prolonged valvuler stenosis or insufficiency may result in cardiac hypertrophy and associated damage to the heart muscle, which may eventually necessitate valve replacement.

The treatment of all these, and other cardiovascular and endothelial disorders, which may or may not be accompanied by cardiac hypertrophy, is encompassed by the present invention.

The terms "cancer", "cancerous", and "malignant" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include but are not limited to, carcinoma including adenocarcinoma, lymphoma, blastoma, melanoma, sarcoma, and leukemia. More particular examples of such cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, gastrointestinal 20 cancer, Hodgkin's and non-Hodgkin's lymphoma, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer such as hepatic carcinoma and hepatoma, bladder cancer, breast cancer, colon cancer, colorectal cancer, endometrial carcinoma, salivary gland carcinoma, kidney cancer such as renal cell carcinoma and Wilms' 25 tumors, basal cell carcinoma, melanoma, prostate cancer, vulval cancer, thyroid cancer, testicular cancer, esophageal cancer, and various types of head and neck cancer. The preferred cancers for treatment herein are breast, colon, lung, melanoma, ovarian, and 30 others involving vascular tumors as noted above.

The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., ¹³¹I, ¹²⁵1, ⁵⁰Y, and ¹⁶⁶Re), chemotherapeutic agents, and toxins such as enzymatically active toxins of bacterial, fungal, plant, or animal origin, or fragments thereof.

A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents, folic acid antagonists, anti-metabolites of nucleic acid metabolism, antibiotics, pyrimidine analogs, 5-

- 5 fluorouracil, cisplatin, purine nucleosides, amines, amino acids, triazol nucleosides, or corticosteroids. Specific examples include Adriamycin, Doxorubicin, 5-Fluorouracil, Cytosine arabinoside ("Ara-C"), Cyclophosphamide, Thiotepa, Busulfan, Cytoxin, Taxol, Toxotere, Methotrexate, Cisplatin, Melphalan, Vinblastine, Bleomycin,
- 10 Stoposide, Ifosfamide, Mitomycin C, Mitoxantrone, Vincreistine, Vinorelbine, Carboplatin, Teniposide, Daunomycin, Carminomycin, Aminopteria, Dactinomycia, Mitomycias, Esperamicias (see U.S. Pat. No. 4,675,187), Melphalan, and other related nitrogen mustards. Also included in this definition are hormonal agents that act to
 - regulate or inhibit hormone action on tumors, such as tamoxifen and onapristone.
- A "growth-inhibitory agent" when used herein refers to a compound or composition that inhibits growth of a cell, such as an Wnt-overexpressing cancer cell, either in vitro or in vivo. Thus, the growth-inhibitory agent is one which significantly reduces the percentage of malignant cells in S phase. Examples of growth-
- inhibitory agents include agents that block cell cycle progression (at a place other than S phase), such as agents that induce G1 arrest and M-phase arrest. Classical M-phase blockers include the 25 vincas (vincristine and vinblastine), taxol, and topo Ii inhibitors
 - such as dexerubicin, daugerubicin, etoposide, and bleemycin. Those agents that arrest GI also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5-
- 30 fluorouracil, and ara-C. Further information can be found in The Molecular Basis of Cancer, Mendelsohn and Israel, eds., Chapter 1, entitled "Cell cycle regulation, oncogenes, and antineoplastic drugs" by Murakami et al. (WB Saunders: Philadelphia, 1995), especially p. 13. Additional examples include tumor necrosis
- factor (TNF), an antibody capable of inhibiting or neutralizing the angiogenic activity of acidic or basic FGF or hepatocyte growth factor (HGF), an antibody capable of inhibiting or neutralizing the coagulant activities of tissue factor, protein C, or protein S (see

WO 91/01753, published 21 February 1991), or an antibody capable of binding to HER2 receptor (WO 89/06692), such as the 4D5 antibody (and functional equivalents thereof) (e.g., WO 92/22653).

"Treatment" is an intervention performed with the intention of preventing the development or altering the pathology of a cardiovascular, endothelial, or angiogenic disorder. The concept of treatment is used in the broadest sense, and specifically includes the prevention (prophylaxis), moderation, reduction, and curing of cardiovascular, endothelial, or angiogenic disorders of any stage. 10 Accordingly, "treatment" refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) a cardiovascular or endothelial disorder, such as hypertrophy, or an angiogenic disorder, such as cancer. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in 15 whom the disorder is to be prevented. The disorder may result from any cause, including idiopathic, cardiotrophic, or myotrophic causes, or ischemia or ischemic insults, such as myocardial infarction.

"Chronic" administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial effect, such as an anti-hypertrophic effect, for an extended period of time.

"Mammal" for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, coms, sneep, pigs, etc. Preferably, the mammal is human.

Administration "in combination with" one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.

30

The phrase "cardiovascular or endothelial agents' refers generically to any drug that acts in treating cardiovascular and/or endothelial disorders. Examples of cardiovascular agents are those that promote vascular homeostasis by modulating blood pressure, heart rate, heart contractility, and endothelial and smooth muscle biology, all of which factors have a role in cardiovascular disease. Specific examples of these include angiotensin-II receptor antagonists; endothelin receptor antagonists such as, for example,

BOSENTANTH and MCKONODINTH; interferon-gamma (IFN-y); des-aspertateangiotensin I; thrombolytic agents, e.g., streptokinase, urokinase. t-PA, and a t-PA variant specifically designed to have longer halflife and very high fibrin specificity, TNK t-PA (a T103N, N117Q, KHRR (296-299) AAAA t-PA variant, Keyt et al., Proc. Natl. Acad. Sci. USA 91, 3670-3674 (1994)); inotropic or hypertensive agents such as digoxidenin and B-adrenergic receptor blocking agents, e.g., propranolol, timolol, tertalolol, carteolol, nadolol, betaxolol, penbutoici, acetobutoloi, atenoloi, metoproloi, and carvediloi; angiotensin converting enzyme (ACE) inhibitors, e.g., quinapril. captopril, enalapril, ramipril, benazepril, fosinopril, and lisinopril; diuretics, s.g., chorothiazide, hydrochlorothiazide, hydroflumethazide, methylchlothiazide, benzthiazide, dichlorphenamide, acetazolamide, and indapamide; and calcium channel blockers, e.g., diltiazem, nifedipine, verapamil, nicardipine. One preferred category of this type is a therapeutic agent used for the treatment of cardiac hypertrophy or of a physiological condition

"Angiogenic agents" and "endothelial agents" are active agents that promote angiogenesis and endothelial cell growth, respectively, or, if applicable, vasculogenesis. This would include factors that accelerate wound healing, such as growth hormone, insulin-like growth factor-I (IGF-I), VEGF, VIGF, PDGF, epidermal growth factor.
25 (EGF), CTGF and members of ite family, FGF, and TGF-Φ and TGF-B.

instrumental in the development of cardiac hypertrophy, such as elevated blood pressure, acrtic stenosis, or myocardial infarction.

"Angiostatic agents" are active agents that inhibit angiogenesis or vasculogenesis or otherwise inhibit or prevent growth of cancer cells. Examples include antibodies or other antagonists to angiogenic agents as defined above, such as antibodies to VEGF. They additionally include cytotherapeutic agents such as cytotoxic agents, chemotherapeutic agents, growth-inhibitory agents, apoptotic agents, and other agents to treat cancer, such as anti-HER-2, anti-CD29, and other bioactive and organic chemical agents.

30

35

In a pharmacological sense, in the context of the present invention, a "therapeutically effective amount" of an active agent (VEGF-E polypeptide or antagonist thereto) refers to an amount effective in the treatment of a cardiovascular, endothelial, and analogenic disorder.

The term "antagonist" is used in the broadest sense, and includes any molecule that partially or fully blocks, inhibits, or neutralizes one or more of the biological activities of a native VEGF-E polypeptide disclosed herein, for example, if applicable, its mitogenic or angiogenic activity. Antagonists of VEGF-E polypeptide may act by interfering with the binding of the VEGF-E polypeptide to a cellular receptor, by incapacitating or killing cells that have 10 been activated by VEGF-E polypeptide, or by interfering with vascular endothelial cell activation after VEGF-E polypeptide binding to a cellular receptor. All such points of intervention by a VEGF-E polypeptide antagonist shall be considered equivalent for purposes of this invention. The antagonists imbibit the mitogenic. 15 angiogenic, or other biological activity of VEGF-E polypeptide, and thus are useful for the treatment of diseases or disorders characterized by undesirable excessive neovascularization, including by way of example tumors, and especially solid malignant tumors, rheumatoid arthritis, psoriasis, atherosclerosis, diabetic and other 28 retinopathies, retrolental fibroplasia, age-related macular degeneration, neovascular glaucoma, hemangiomas, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, and chronic inflammation. The antagonists also are useful for the treatment of diseases or disorders characterized by 25 undesirable excessive vascular permeability, such as edema associated with brain tumors, ascites associated with malignancies. Meigs' syndrome, lung inflammation, nephrotic syndrome, pericardial effusion (such as that associated with pericarditis), and pleural affusion.

In a similar manner, the term "agonist" is used in the broadest sense and includes any molecule that mimics a biological activity of a native VEGF-E polypeptide disclosed herein. Suitable agonist or antagonist molecules specifically include agonist or antagonist or antibodies or antibody fragments, fragments, or amino acid sequence variants of native VEGF-E polypeptides, peptides, small organic molecules, etc.

30

35

A "small molecule" is defined herein to have a molecular weight below about 500 daltons.

The term "VEGF-E polypeptide receptor" as used herein refers to a cellular receptor for VEGF-E polypeptide, ordinarily a cellsurface receptor found on vascular endothelial cells, as well as variants thereof that retain the ability to bind VEGF-E polypeptide.

The term "antibody" is used in the broadest sense and specifically covers single anti-VEGF-E polypeptide monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies) and anti-VEGF-E antibody compositions with polyepitopic specificity. The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially honogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts.

"Active" or "activity" for the purposes herein refers to form(s) of VEGF-E which retain the biologic activities of native or naturally-occurring VEGF-E polypeptide.

Hybridization is preferably performed under "stringent

15

conditions" which means (1) employing low ionic strength and high temperature for washing, for example, 0.015 sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C, or (2) employing 20 during hybridization a denaturing agent, such as formamide, for example, 50% (vol/vol) formamide with 0.1% bovine serum albumin/0.1% Ficol1/0.1% polyvinylpyrrolidone/50 nM sodium phosphace buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C. Another example is use of 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 2.5 M sodium citrate), 50 mM sodium phosphate (pH 6/8), 0.1% sodium pyrophosphate, 5 x Denhardt's sciution, sonicated salmon sperm DNA (50 ug/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2 x SSC and 0.1% SDS. Yet another example is hybridization using a buffer of 10% dextran sulfate, 2 x SSC (sodium 30 chloride/sodium citrate) and 50% formamide at 55°C, followed by a high-stringency wash consisting of 0.1 x SSC containing EDTA at 55°C. Other conditions previously described and well known can be used to arrive at high, low or moderate stringencies. When a nucleic acid sequence of a nucleic acid molecule is provided, other 35 nucleic acid molecules hybridizing thereto under the conditions described above are considered within the scope of the sequence.

Preferably, the nucleic acid sequence of a nucleic acid molecule as

provided herein has 70% or 80% nucleic acid sequence identity to SEQ ID NO:1, positions 259 through 1293. Most preferably, the nucleic acid sequence has 90% or 95% nucleic acid identity to SEQ ID NO:1, positions 259 through 1293.

"Transfection" refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO, and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.

"Transformation" means introducing nucleic acid into an organism so that the nucleic acid is reclicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described by Cohen, Proc. Natl. Acad. Sci. (USA), 69: 2110 (1972) and Mandel et al., J. Mol. Biol., 53: 154 (1970), is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, Virology, 52: 456-457 (1978) is preferred. General aspects of mammalian cell host system transformations have been described by Axel in U.S. Pat. No. 4,399,216 issued August 16, 1983. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact., 130: 946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA) ,76: 3829 (1979). However, other methods for introducing nucleic acid into cells such as by nuclear injection or by protoplast fusion may also be used.

"Site-directed mutagenesis" is a technique standard in the art, and is conducted using a synthetic oligonucleotide primer complementary to a single-stranded phage nucleic acid to be mutagenized except for limited mismatching, representing the desired mutation. Briefly, the synthetic oligonucleotide is used as a primer to direct synthesis of a strand complementary to the phage, and the resulting double-stranded nucleic acid is transformed into a phage-supporting host bacterium. Cultures of the transformed bacteria are plated in top agar, permitting plaque formation from single cells that harbor the phage. Theoretically, 50% of the new

plaques will contain the phage having, as a single strand, the mutated form; 50% will have the original sequence. The plaques are hybridized with kinased synthetic primer at a temperature that permits hybridization of an exact match, but at which the mismatches with the original strand are sufficient to prevent hybridization. Plaques that hybridize with the probe are then selected and cultured, and the nucleic acid is recovered.

"Operably linked" refers to juxtaposition such that the normal function of the components can be performed. Thus, a coding sequence "operably linked" to control sequences refers to a configuration wherein the coding sequence can be expressed under the control of these sequences and wherein the DNA sequences being linked are contiguous and, in the case of a secretory leader, contiguous and in reading phase. For example, nucleic acid for a presequence or secretory leader is operably linked to nucleic acid for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, then synthetic oligonucleotide adaptors or linkers are used in accord with conventional practice.

"Control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, a ribosome binding site, and possibly, other as yet poorly understood sequences. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

"Expression system" refers to DNA sequences containing a desired coding sequence and control sequences in operable linkage, so that hosts transformed with these sequences are capable of producing the encoded proteins. To effect transformation, the expression system may be included on a vector; however, the relevant DNA may then also be integrated into the host chromosome.

35

As used herein, "cell," "cell line," and "cell culture" are used interchangeably and all such designations include progeny. Thus, "transformants" or "transformed cells" includes the primary subject cell and cultures derived thereform without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Mutant progeny that have the same functionality as screened for in the originally transformed cell are included. Where distinct designations are intended, it will be clear from the context.

"Plasmids" are designated by a lower case p preceded and/or followed by capital letters and/or numbers. The starting plasmids herein are commercially available, are publicly available on an unrestricted basis, or can be constructed from such available plasmids in accord with published procedures. In addition, other equivalent plasmids are known in the art and will be apparent to the ordinary artisan.

10

15

"Digestion" of DNA refers to catalytic cleavage of the DNA with an enzyme that acts only at certain locations in the DNA. Such 20 enzymes are called restriction enzymes, and the site for which each is specific is called a restriction site. The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors, and other requirements as established by the enzyme suppliers are used. Restriction enzymes commonly are 25 designated by abbreviations composed of a capital letter followed by other letters representing the microorganism from which each restriction enzyme originally was obtained and then a number designating the particular enzyme. In general, about 1 mg of plasmid or DNA fragment is used with about 1-2 units of enzyme in 30 about 20 ml of buffer solution. Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer. Incubation of about 1 hour at 37°C is ordinarily used, but may vary in accordance with the supplier's instructions. After incubation, protein is removed by extraction with phenol and chloroform, and the digested nucleic acid is recovered from the aqueous fraction by precipitation with ethanol. Digestion with a restriction enzyme infrequently is followed with bacterial alkaline phospharase hydrolysis of the terminal 5' phosphates to prevent the

27

15

20

25

36

35

two restriction-cleaved ends of a DNA fragment from "circularizing" or forming a closed loop that would impede insertion of another DNA fragment at the restriction site. Unless otherwise stated, digestion of plasmids is not followed by 5'-terminal dephosphorylation. Procedures and reagents for dephosphorylation are conventional (Maniatis et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory, 1982), pp. 133-134).

"Recovery" or "isolation" of a given fragment of DNA from a restriction digest means separation of the digest on polyacrylamide or agarose gel by electrophoresis, identification of the fragment of interest by comparison of its mobility versus that of marker DNA fragments of known molecular weight, removal of the gel section containing the desired fragment, and separation of the gel from DNA. This procedure is known generally. For example, see Lawn et al., Nucleic Acids Res., 9: 6103-6114 (1981), and Goeddel et al., Nucleic Acids Res., 8, 4057 (1980).

"Southern Analysis" is a method by which the presence of DNA sequences in a digest or DNA-containing composition is confirmed by hybridization to a known, labelled oligonucleotide or DNA fragment. For the purposes herein, unless otherwise provided, Southern analysis shall mean separation of digests on 1 percent agarose, denaturation, and transfer to nitrocellulose by the method of Southern, J. Mol. Biol., 98: 503-517 (1975), and hybridization as described by Maniatis et al., Cell, 15: 687-701 (1978).

"Ligation" refers to the process of forming phosphodiester bonds between two double-stranded nucleic acid fragments (Maniatis et al., 1982, supra, p. 146). Unless otherwise provided, ligation may be accomplished using known buffers and conditions with 10 units of T4 DNA ligase ("ligase") per 0.5 mg of approximately equimolar amounts of the DNA fragments to be ligated.

"Preparation" of DNA from transformants means isolating plasmid DNA from microbial culture. Unless otherwise provided, the alkaline/SDS method of Maniatis et al. 1982, supra, p. 90, may be used.

"Oligonucleotides" are short-length, single- or doublestranded polydeoxynucleotides that are chemically synthesized by known methods (such as phosphotriester, phosphite, or

10

15

25

30

phosphoramidite chemistry, using solid phase techniques such as described in EP Pat. Pub. No. 266,032 published May 4, 1988, or via decxynucleoside H-phosphonate intermediates as described by Froehler et al., Nucl. Acids Res., 14: 5399-5407 (1986). They are then purified on polyacrylamide gels.

Inhibitors of VEGF-E include those which reduce or inhibit the activity or expression of VEGF-E and includes antisense molecules.

The abbreviation "KDR" refers to the kinase domain region of the VEGF molecule. VEGF-E has no homology with VEGF in this domain.

The abbreviation "FLT-1" refers to the FMS-like tyrosine kinase binding domain which is known to bind to the corresponding FLT-1 receptor. VEGF-E has no homology with VEGF in this domain.

Compositions and Methods of the Invention

A. Full-length VEGF-E Polypeptide

The present invention provides newly-identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as VEGF-E. In particular, cDNA encoding a VEGF-E polypeptide has been identified and isolated, as disclosed in further detail in the Examples below. Using BLAST sequence alignment computer programs, the VEGF-E polypeptide was found to have certain sequence identity with VEGF and BMP1.

VEGF-E Variants

In addition to the full-length native-sequence VEGF-E polypeptide described herein, it is contemplated that VEGF-E variants can be prepared. VEGF-E variants can be prepared by introducing appropriate nucleotide changes into the VEGF-E-encoding DNA, or by synthesis of the desired VEGF-E polypeptide. Those skilled in the art will appreciate that amino acid changes may alter post-translational processes of the VEGF-E polypeptide, such as changing the number or position of glycosylation sites or altering the membrane-anchoring characteristics.

Variations in the native full-length sequence VEGF-E or in various domains of the VEGF-E polypeptide described herein, can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance,

in U.S. Patent No. 5,364,934. Variations may be a substitution, deletion, or insertion of one or more codons encoding the VEGF-E polypeptide that results in a change in the amino acid sequence of the VEGF-E polypeptide as compared with the native-sequence VEGF-E. Optionally the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of the VEGF-E polypeptide. Guidance in determining which amino acid residue may be inserted, substituted, or deleted without adversely affecting the desired activity may be found by comparing the sequence of the VEGF-E polypeptide with that of homologous known protein molecules and minimizing the number of amino acid sequence changes made in regions of high homology. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements. Insertions or deletions may optionally be in the range of 1 to 5 amino acids. The variation allowed may be determined by systematically making insertions, deletions, or substitutions of amino acids in the sequence and testing the resulting variants for activity in the in vitro assays described in

The variations can be made using methods known in the art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis (Carter et al., Nucl. Acids Res., 12:4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)), cassette mutagenesis (Wells et al., Gene, 24:315 (1985)), restriction selection mutagenesis (Wells et al., Philos. Trans. R. Soc. London SerA, 317:415 (1986)), or other known techniques can be performed on the cloned DNA to produce the VEGF-E-encoding variant DNA.

the Examples below.

Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant. Alanine is also typically preferred because it is

the most common amino acid. Further, it is frequently found in both buried and exposed positions (Creighton, <u>The Proteins</u>, (W.H. Freeman & Co., N.Y.); Chothia, <u>J. Mol. Biol.</u>, <u>156:1</u> (1976)]. If alanine substitution does not yield adequate amounts of variant, an isoteric amino acid can be used.

C. Modifications of VEGF-F

Covalent modifications of VEGF-E polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a VEGF-E polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or Cterminal residues of a VEGF-E polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking VEGF-E to a water-insoluble support matrix or surface for use in the method for purifying anti-VEGF-E antibodies, and vice-versa. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional 20 imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis-(succinimidy)propionate), bifunctional maleimides such as bis-Nmaleimido-1,8-octane, and agents such as methyl-3-((p-azidophenyl)dithio)propioimidate.

Other modifications include deamidation of glutaminyl and
25 asparaginyl residues to the corresponding glutamyl and aspartyl
residues, respectively, hydroxylation of proline and lysine,
phosphorylation of hydroxyl groups of seryl or threonyl residues,
methylation of the α-amino groups of lysine, arginine, and histidine
side chains (T.E. Creighton, <u>Proteins: Structure and Molecular</u>
30 <u>Properties</u>, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)),
acetylation of the N-terminal amine, and amidation of any C-terminal
carboxyl group.

Another type of covalent modification of the VEGF-E polypeptide included within the scope of this invention comprises

35 altering the native glycosylation pattern of the polypeptide.

"Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native-sequence VEGF-E polypeptide, and/or adding one or more

glycosylation sites that are not present in the native-sequence VEGF-E polypeptide.

Addition of glycosylation sites to VEGF-E polypeptides may be accomplished by altering the amino acid sequence thereof. The alteration may be made, for example, by the addition of, or substitution by, one or more serine or threonine residues to the native-sequence VEGF-E polypeptide (for O-linked glycosylation sites). The VEGF-E amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the VEGF-E polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the VEGF-E polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published 11 September 1987, and in Aplin and Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).

Removal of carbohydrate moieties present on the VEGF-E

20 polypeptide may be accomplished chemically or enzymatically or by
mutational substitution of codons encoding amine acid residues that
serve as targets for glycosylation. Chemical deglycosylation
techniques are known in the art and described, for instance, by
Hakimuddin et al., Arch. Biochem. Biophys., 259:52 (1987) and by

25 Edge er al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of
carbohydrate moieties on polypeptides can be achieved by the use of
a variety of endo- and exo-glycosidases as described by Thotakura et
al., Meth. Enzymol., 138:350 (1987).

Another type of covalent modification of VEGF-E comprises

linking the VEGF-E polypeptide to one of a variety of
nomproteinaceous polymers, e.g., polyethylene glycol, polypropylene
glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent
Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or
4,179,337.

35 VEGF-E polypeptides of the present invention may also be modified in a way to form chimeric molecules comprising a VEGF-E polypeptide fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of a VEGF-E polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino- or carboxyl- tarminus of the VEGF-E polypeptide. The presence of such epitope-tagged forms of a VEGF-E polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the VEGF-E polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of a VEGF-E polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion could be to the Fo region of an IGG molecule.

Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; the flu HA tag polypeptide and its antibody 12CA5 (Field et al., Mol. Cell. Biol., 8:2159-2165 (1988)); the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto (Evan et al., Molecular and Cellular 20 Biology, 5:3610-3616 (1985)); and the Herpes Simplex virus glycoprotein D (qD) tag and its antibody (Paborsky et al., Protein Engineering, 3(6):547-553 (1990)). Other tag polypeptides include the Flag-peptide (Hopp et al., BioTechnology, 6:1204-1210 (1988)); the KT3 epitope peptide (Martin et al., Science, 255:192-194 2.5 (1992)); an α-tubulin epitope peptide (Skinner et al., J. Biol. Chem., 256:15163-15166 (1991)); and the T7 gene 10 protein peptide tag (Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)).

D. Preparation of VEGF-E

10

30

The description below relates primarily to production of VEGF-E by culturing cells transformed or transfected with a vector containing at least the coding nucleic acid shown in Figure 1, beginning with the circled start codon and ending just prior to the stop codon. It is, of course, contemplated that alternative methods, which are well known in the art, may be employed to prepare VEGF-E polypeptides. For instance, the VEGF-E sequence, or portions thereof, may be produced by direct peptide synthesis using solid-

phase techniques (see, e.g., Stewart et al., <u>Solid-Phase Peptide</u>

<u>Synthesis</u>, W.H. Freeman Co., San Francisco, CA (1969); Merrifield,

<u>J. Am. Chem. Soc.</u>, <u>85</u>:2149-2154 (1963)). In vitro protein synthesis may be performed using manual techniques or by automation.

5 Automated synthesis may be accomplished, for instance, using an Applied Bicsystems Peptide Synthesizer (Foster City, CA) using manufacturer's instructions. Various portions of VEGF-E polypeptides may be chemically synthesized separately and combined using chemical or enzymatic methods to produce a full-length VEGF-E polypeptide.

1. Isolation of DNA Encoding VEGF-E

DNA encoding a VEGF-E polypeptide may be obtained from a cDNA library prepared from tissue believed to possess the VEGF-E mRNA and to express it at a detectable level. Accordingly, human VEGF-E-encoding DNA can be conveniently obtained from a cDNA library prepared from human tissue, such as described in the Examples. The VEGF-E-encoding gene may also be obtained from a genomic library or by oligonucleotide synthesis.

20

30

Libraries can be screened with probes (such as antibodies to a VEGF-E polypeptide or oligonucleorides of at least about 17-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genemic library with the selected probe may be conducted using standard procedures, such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding VEGF-E is to use PCR methodology (Sambrook et al., supra; Dieffenbach et al., PCR Primer:A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1985).

The Examples below describe techniques for screening a cDNA library. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized. The oligonucleotide is preferably labeled such that it can be detected upon hybridization to DNA in the library being screened. Methods of labeling are well known in the art, and include the use of radiolabels like ²²E-labeled ATP, biotinylation, or enzyme labeling. Hybridization conditions,

including low stringency, moderate stringency, and high stringency, are provided in Sambrook et al., 1989, supra.

Sequences identified in such library screening methods can be compared and aligned to other known sequences deposited and 5 available in public databases such as GenBank or other private sequence databases. Sequence identity (at either the amino acid or nucleotide level) within defined regions of the molecule or across the full-length sequence can be determined through sequence alignment using computer software programs such as ALIGN, DNAstar, 10 and INHERIT.

Nucleic acid having protein coding sequence may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using conventional primer extension procedures as described in Sambrook et al., 1989, supra, to detect precursors and processing intermediates of mRNA that may not have been reversetranscribed into cDNA.

2. Selection and Transformation of Host Cells

20 Host cells are transfected or transformed with expression or cloning vectors described herein for VEGF-E polypeptide production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. The culture conditions, such 25 as media, temperature, pH, and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in Mammalian Cell Biotechnology: a Practical Approach, M. Butler, ed. (IRL Press. 30 1991) and Sambrook et al., 1989, supra.

Methods of transfection are known to the ordinarily skilled artisan, for example, CaPO, and electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., 1989, supra, or electroporation is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. For mammalian cells without such cell walls, the calcium phosphate precipitation

method of Graham and van der Eb, Virology, 52:456-457 (1978) can be employed. General aspects of mammalian cell host system transformations have been described in U.S. Patent No. 4,399,216. Transformations into yeast are typically carried out according to 5 the method of Van Solingen et al., J. Bact., 130:946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA), 76:3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene or polycrnithine, 10 may also be used. For various techniques for transforming mammalian cells, see Keown et al., Methods in Enzymology, 185:527-537 (1990)

Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells. Sultable proxaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E. coli. Various E. coli strains are publicly available, such as E. coli KIZ strain MM294 (ATCC 31,446); E. coli X1776 (ATCC 31,537); E. coli strain W3110 (ATCC 27,325) and 20 K5 772 (ATCC 53,635).

and Mansour et al., Nature, 336:348-352 (1988).

15

In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for VEGF-E-encoding vectors. Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism.

25 Suitable host cells for the expression of glycosylated VEGF-E are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9. as well as plant cells. Examples of useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CVI line transformed by \$940 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham st al., J. Gen Virol., 36:59 (1977)); Chinese hamster ovary ceils/-DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod., 23:243-251 (1980)); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); and mouse mammary tumor (MMT 060562, ATCC CCL51). The

selection of the appropriate host cell is deemed to be within the skill in the art.

3. Selection and Use of a Replicable Vector

5 The nucleic acid (e.g., cDNA or genomic DNA) encoding the desired VEGF-E polypeptide may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art. Vector components generally include, but are not limited to, one or more of a signal seguence, an origin of replication, one or more marker genes, an enhancer element, a 15 promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques which are known to the skilled artisan.

The desired VEGF-E polypeptide may be produced recombinantly 20 not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the VEGF-E-25 encoding DNA that is inserted into the vector. The signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heatstable enterotoxin II leaders. For yeast secretion the signal sequence may be, e.g., the yeast invertase leader, alpha factor 30 leader (including Saccharomyces and Kluyveromyces a-factor leaders, the latter described in U.S. Patent No. 5,810,182), or acid phosphatase leader, the C. albicans glucoamylase leader (EP 362,179 published 4 April 1990), or the signal described in WO 90/13646 published 15 November 1990. In mammalian cell expression, mammalian 3.5 signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or

related species, as well as viral secretory leaders.

Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2µ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV, or BPV) are useful for cloning yestors in mammalian cells.

Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racewase for Bacilli.

An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the VEGF-E-encoding nucleic acid, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Orlaub et al., Proc. Natl. Acad. Sci. USA, 72:4216 (1980). A suitable selection gene for use in yeast is the trpl gene present in the yeast plasmid YRp7 (Stinchcomb et al., Nature, 282:39 (1979); Kingaman et al., Gene, 7:141 (1979); Tschemper et al., Gene, 10:157 (1980)). The trpl gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or FEF4-1 (Jones, Genetics, 85:12 (1977)).

20

Expression and cloning vectors usually contain a promoter operably linked to the VEGF-E-encoding nucleic acid sequence to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems (Chang et al., Nature, 275:615 (1978); Gooddel et al., Nature, 281:544 (1979)), alkaline phosphatase, a tryptophan (trp) promoter system (Gooddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776), and hybrid promoters such as the tac promoter (deBoer et al., Proc. Natl. Acad. Sci. USA, 80:21-25 (1983)). Promoters for

use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the VESF-E polypeptide.

Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase (Ritzenan et al., J. Biol. Chem., 255:2073 (1980)) or other glycolytic enzymes (Hess et al., J. Adv. Enzyme Reg., 7:149 (1968); Holland, Biochemistry, 17:4900 (1978)), such as enclase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.

Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenese 2. isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657. UKGE-K 28 transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus, and Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems.

Transcription of a DNA encoding a VEGF-E polypoptide by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α -fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polypoma enhancer on the late side of the replication

oxigin, and adenovirus enhancers. The enhancer may be spliced into the vector at a position 5' or 3' to the VEGF-E coding sequence, but is preferably located at a site 5' from the promoter.

Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nuclectide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding VEGF-E. Still other methods, vectors, and host cells suitable for

Still other methods, vectors, and host cells suitable for adaptation to the synthesis of VEGF-E polypeptides in recombinant vertebrate cell culture are described in Gething et al., Nature, 293:620-625 (1981); Mantei et al., Nature, 261:40-46 (1979); EF 117,050, and EP 117,050.

4. Detecting Gene Amplification/Expression

Gene amplification and/or expression may be measured in a

20 sample directly, for example, by conventional Southern blotting,
Northern blotting to quantitate the transcription of mRNA (Thomas,
Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)), dot blotting (DNA
analysis), or in situ hybridization, using an appropriately labeled
probe, based on the sequences provided herein. Alternatively,
25 antibodies may be employed that can recognize specific duplexes,
including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or
DNA-protein duplexes. The antibodies in turn may be labeled and the
assay may be carried out where the duplex is bound to a surface, so
that upon the formation of duplex on the surface, the presence of
antibody bound to the duplex can be detected.

Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native-sequence VEGF-E polypeptide or against a synthetic peptide

based on the DNA sequences provided herein or against exogenous sequence fused to VEGF-E-encoding DNA and encoding a specific antibody epitope.

5 Furification of Polypeptide

Forms of VEGF-E may be recovered from culture medium or from Cells employed in expression of VEGF-E host cell lysates. polypeptides can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell lysing agents. It may be desired to purify VEGF-E from recombinant cell proteins or polypeptides. The following procedures are exemplary of suitable purification procedures; by fractionation on an ion-exchange column; ethanol precipitation; reverse-phase HPLC: chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulface precipitation; 15 gel filtration using, for example, Sephadex G-75; protein A Secharose columns to remove contaminants such as IqG; and metalchelating columns to bind epitope-tagged forms of the VEGF-E polypeptide. Various methods of protein purification may be employed and such methods are known in the art and described, for example, in Deutscher, Methods in Enzymology, 182 (1990); Scopes, Protein Purification: Principles and Practice, Springer-Verlag, New York (1982). The purification step(s) selected will depend, for example, on the nature of the production process used and the 25 particular VEGF-E polypeptide produced.

Since VEGF-E may aggregate into dimers, it is within the scope hereof to provide hetero- and homodimers. Where one or more subunits are variants, the changes in amino acid sequence can be the same or different for each subunit chain. Heterodimers are readily produced by cotransforming host cells with DNA encoding both subunits and, if necessary, purifying the desired heterodimer, or by separately synthesizing the subunits, dissociating the subunits (e.g., by treatment with a chaotropic agent such as urea, guanidine hydrochloride, or the like), mixing the dissociated subunits, and 5 then reassociating the subunits by dialyzing away the chaotropic agent.

(skin, endothelium).

E. Uses for VEGF-E and Formulations

1. Assays for Cardiovascular, Endothelial, and Acqueenic Activity

Various assays can be used to test the polypeptide herein for cardiovascular, endothelial, and angiogenic activity. Such assays include those provided in the Examples below.

Assays for testing for endothelin antagonist activity, as disclosed in U.S. Pat. No. 5,773,414, include a rat heart ventricle binding assay where the polypeptide is tested for its ability to inhibit iodinized endothelin-1 binding in a receptor assay, an endothelin receptor binding assay testing for intect cell binding of radiolabeled endothelin-1 using rabbit renal artery vascular smooth muscle cells, an inositol phosphate accumulation assay where functional activity is determined in Rat-1 cells by measuring intra-15 cellular levels of second messengers, an arachidonic acid release assay that measures the ability of added compounds to reduce endothelin-stimulated arachidonic acid release in cultured vascular smooth muscles, in vitro (isolated vessel) studies using endothelium from male New Zealand rabbits, and in vivo studies using male 20 Sprague-Dawley rats. Assays for tissue generation activity include, without limitation, those described in WO 95/16035 (bone, cartilage, tendon); WO 95/05846 (nerve, neuronal), and WO 91/07491

Assays for wound-healing activity include, for example, those described in Winter, <u>Epidermal Wound Healing</u>, Maibach, Hi and Rovee, DT, eds. (Year Book Medical Publishers, Inc., Chicago), pp. 71-112, as modified by the article of Eaglstein and Mertz, <u>J. Invest. Dermatol.</u>, 71: 382-384 (1978).

An assay to screen for a test molecule relating to a VEGF-E polypeptide that hinds an endothelin B₁ (ETB₁) receptor polypeptide and modulates signal transduction activity involves providing a host cell transformed with a DNA encoding endothelin B₁ receptor polypeptide, exposing the cells to the test candidate, and measuring endothelin B₁ receptor signal transduction activity, as described, e.g., in U.S. Pat. No. 5,773,223.

There are several cardiac hypertrophy assays. In vitro assays include induction of spreading of adult rat cardiac myocytes. In this assay, ventricular myocytes are isolated from a single (male

Sprague-Dawley) rat, essentially following a modification of the procedure described in detail by Piper et al., "Adult ventricular rat heart muscle cells" in <u>Cell Culture Techniques in Heart and Vassel Research</u>, H.M. Piper, ed. (Berlin: Springer-Verlag, 1990), pp. 36-60. This procedure permits the isolation of adult ventricular myocytes and the long-term culture of these cells in the rod-shaped phenotype. Phenylephrine and Prostaglandin Fig. (PGF₂₀) have been shown to induce a spreading response in these adult cells. The inhibition of myocyte spreading induced by PGF₂₀ or PGF₂₀ analogs (e.g., fluprostenol) and phenylephrine by various potential

inhibitors of cardiac hypertrophy is then tested.

One example of an in vivo assay is a test for inhibiting cardiac hypertrophy induced by fluprostenol in vivo. This pharmacological model tests the ability of the VEGF-E polypeptide to 15 inhibit cardiac hypertrophy induced in rats (e.g., male Wistar or Sprague-Dawley) by subcutaneous injection of fluprostenol (an agonist analog of PGF ... It is known that rats with pathologic cardiac hypertrophy induced by myocardial infarction have chronically elevated levels of extractable PGF in their myocardium. Lai et al., Am. J. Physiol. (Reart Circ. Physiol.), 271: H2197-H2208 (1996). Accordingly, factors that can inhibit the effects of fluprostenol on myocardial growth in vivo are potentially useful for treating cardiac hypertrophy. The effects of the VEGF-E polypeptide on cardiac bypertrophy are determined by measuring the weight of heart, ventricles, and left ventricle (normalized by body weight) relative to fluprostenol-treated rats not receiving the VEGF-E colvocatide.

Another example of an in vivo assay is the pressure-overload cardiac hypertrophy assay. For in vivo testing it is common to induce pressure-overload cardiac hypertrophy by constriction of the abdominal acrta of test animals. In a typical protocol, rats (e.g., male Wistar or Sprague-Dawley) are treated under anesthesia, and the abdominal acrta of each rat is narrowed down just below the diaphragm. Beznak M., Can. J. Biochem. Physiol., 33: 985-94 (1955). The acrta is exposed through a surgical incision, and a blunted needle is placed next to the vessel. The acrta is constricted with a ligature of silk thread around the needle, which is immediately removed and which reduces the lumen of the acrta to the diameter of

the needle. This approach is described, for example, in Rossi et al., Am. Heart J., 124: 700-709 (1992) and O'Rourke and Reibel, P.S.E.M.B., 200: 95-100 (1992).

In yet another in vivo assay, the effect on cardiac

hypertrophy following experimentally induced myocardial infarction (MI) is measured. Acute MI is induced in rats by left coronary artery ligation and confirmed by electrocardiographic examination. A sham-operated group of animals is also prepared as control animals. Earlier data have shown that cardiac hypertrophy is present in the group of animals with MI, as evidenced by an 10% increase in heart weight-to-body weight ratio. Lai et al., supra. Treatment of these animals with candidate blockers of cardiac hypertrophy, e.g., VEGF-E polypeptide, provides valuable information about the therspeutic potential of the candidates tested. One further such assay test for induction of cardiac hypertrophy is disclosed in U.S. Pat. No. 5,773,415, using Sprague-Dawley rats.

For cancer, a variety of well-known animal models can be used to further understand the role of the genes identified herein in the development and pathogenesis of tumors, and to test the efficacy of candidate therapeutic agents, including antibodies and other antagonists of the native VEGF-E polypeptides, such as smallmolecule antagonists. The is vivo nature of such models makes them particularly predictive of responses in human patients. Animal models of tumors and cancers (e.g., breast cancer, colon cancer, prostate cancer, lung cancer, etc.) include both non-recombinant and recombinant (transgenic) animals. Non-recombinant animal models include, for example, rodent, e.g., murine models. Such models can be generated by introducing tumor cells into syngeneic mice using standard techniques, e.g., subcutaneous injection, tail vein injection, spleen implantation, intraperitoneal implantation, implantation under the renal capsule, or orthopin implantation, e.g., colon cancer cells implanted in colonic tissue. See, s.g., PCT publication No. WO 97/33551, published September 18, 1997.

Probably the most often used animal species in oncological studies are immunodeficient mice and, in particular, nude mice. The observation that the nude mouse with thymic hypo/aplasia could successfully act as a host for human tumor xenografts has lead to its widespread use for this purpose. The autosomal recossive nu gene has been introduced into a very large number of distinct congenic strains of nude mouse, including, for example, ASW, A/He, AKR, BALB/o, B10.LF, C17, C3H, C57BL, C57, CBA, DBA, DDD, I/st, NC, NFR, NFS, NFS/N, NZB, NZC, NZW, F, RIII, and SJM. In addition, a wide variety of other animals with inherited immunological defects other than the nude mouse have been bred and used as recipients of

other than the nude mouse have been hred and used as recipients of tumor xenografts. For further details see, e.g., <u>The Nude Mouse in Oncology Research</u>, E. Boven and B. Winograd, eds. (CRC Fress, Inc., 1991).

The cells introduced into such animals can be derived from known tumor/cancer cell lines, such as any of the above-listed tumor cell lines, end, for example, the Bl04-1-1 cell line (stable NTH-3T3 cell line transfected with the nsw protooncogene); ras-transfected NTH-3T3 cells; Caco-2 (ATCC HTB-37); or a moderately well-differentiated grade II human colon adenocarcinoma cell line, HT-29 (ATCC HTB-38); or from tumors and cancers. Samples of tumor or cancer cells can be obtained from patients undergoing surgery, using standard conditions involving freezing and storing in liquid nitrogen. Karmali et al., Br. J. Cancer, 48: 689-696 (1983).

Tumor cells can be introduced into animals such as nude mice by a variety of procedures. The subcutaneous (s.c.) space in mice is very suitable for tumor implantation. Tumors can be transplanted s.c. as solid blocks, as needle biopsies by use of a trochar, or as cell suspensions. For solid-block or trochar implantation, tumor tissue fragments of suitable size are introduced into the s.c. space. Cell suspensions are freshly prepared from primary tumors or stable tumor cell lines, and injected subcutaneously. Tumor cells can also be injected as subdermal implants. In this location, the inoculum is deposited between the lower part of the dermal connective tissue and the s.c. tissue.

Animal models of breast cancer can be generated, for example, by implanting rat neuroblestoma cells (from which the new oncogene was initially isolated), or new-transformed NIH-3T3 cells into nude mice, essentially as described by Drebin et al. Proc. Nat. Acad.
Sci. USA, 83: 9129-9133 (1986).

Similarly, animal models of colon cancer can be generated by passaging colon cancer cells in animals, e.g., nude mice, leading to the appearance of tumors in these animals. An orthotopic transplant

model of human colon cancer in nude mics has been described, for example, by Wang at al., Cancer Research, 51: 4726-4728 (1994) and Too et al., Cancer Research, 55: 581-684 (1995). This model is based on the so-called "METAMOUSE" sold by AntiCancer, Inc. (San 5 Diego, California).

Tumors that arise in animals can be removed and cultured in vitro. Cells from the in vitro cultures can then be passaged to animals. Such tumors can serve as targets for further testing or drug screening. Alternatively, the tumors resulting from the passage can be isolated and RNA from pre-passage cells and cells isolated after one or more rounds of passage analyzed for differential expression of genes of interest. Such passaging techniques can be performed with any known tumor or cancer cell lines.

15

20

25

For example, Meth A. CMS4, CMS5, CMS21, and NEHI-164 are chemically induced fibrosarcomas of BALB/c female mice (Deleo et al., J. Exp. Med., 146: 720 (1977)), which provide a highly controllable model system for studying the anti-tumor activities of various agents. Palladino et al., J. Immunol., 138: 4023-4032 (1987). Briefly, tumor cells are propagated in vitro in cell culture. Prior to injection into the animals, the cell lines are washed and suspended in buffer, at a cell density of about 10x10⁶ to 10x10⁷ cells/ml. The animals are then infected subcutaneously with 10 to 100 µl of the cell suspension, allowing one to three weeks for a tumor to appear.

In addition, the Lewis lung (3LL) carcinoma of mice, which is one of the most thoroughly studied experimental tumors, can be used as an investigational tumor model. Efficacy in this tumor model has been correlated with beneficial effects in the treatment of human patients diagnosed with small-cell carcinoma of the lung (SCCL). This tumor can be introduced in normal mice upon injection of tumor fragments from an affected mouse or of cells maintained in culture. Zupi et al., Br. J. Cancer, 41: suppl. 4, 30 (1980). Evidence indicates that tumors can be started from injection of even a single cell and that a very high proportion of infected tumor cells survive. For further information about this tumor model see Zacharski, Haemostasis, 16: 300-320 (1986).

One way of evaluating the efficacy of a test compound in an animal model with an implanted tumor is to measure the size of the tumor before and after treatment. Traditionally, the size of implanted tumors has been measured with a slide caliper in two or 5 three dimensions. The measure limited to two dimensions does not accurately reflect the size of the tumor; therefore, it is usually converted into the corresponding volume by using a mathematical formula. Rowever, the measurement of tumor size is very inaccurate. The therapeutic effects of a drug candidate can be better described 10 as treatment-induced growth delay and specific growth delay. Another important variable in the description of tumor growth is the tumor volume doubling time. Computer programs for the calculation and description of tumor growth are also available, such as the program reported by Rygsard and Spang-Thomsen, Proc. 6th Int. Workshop on Immune-Deficient Animals, Wu and Sheng eds. (Basel, 1989), p. 301. It is noted, however, that necrosis and inflammatory responses following treatment may actually result in an increase in tumor size, at least initially. Therefore, these changes need to be carefully monitored, by a combination of a morphometric method and flow cytometric analysis.

Further, nucleic acids that encode VEGF-E polypeptide or any of its modified forms can also be used to generate either transgenic animals or "knock-out" animals which, in turn, are useful in the development and screening of therapeutically useful reagents. A transgenic animal (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A transgene is a DNA which is integrated into the genome of a cell from which a transgenic animal develops. Hence, recombinant (transgenic) animal models can be engineered by introducing the coding portion of the genes encoding VEGF-E identified herein into the genome of animals of interest, using standard techniques for producing transgenic animals. Animals that can serve as a target for transgenic manipulation include, without limitation, mice, rats, rabbits, quinea pigs, sheep, goats, pigs. and non-human primates, e.g., baboons, chimpanzees and monkeys. In one embodiment, cDNA encoding VEGF-E polypeptide can be used to

clone genomic DNA encoding VEGF-E in accordance with established

20

techniques and the genomic sequences used to generate transgenic animals that contain cells which express DNA encoding VEGF-E. Techniques known in the art to introduce a transgene into such animals include pronucleic microinjection (U.S. Patent No.

animals include pronucleic microinjection (U.S. Patent No. 5 4,873,191); retrovirus-mediated gene transfer into germ lines (e.g., Van der Putten et al., Proc. Natl. Acad. Sci. USA, 82: 6148-615 (1985)); gene targeting in embryonic stem cells (Thompson et al., Cell, 56: 313-321 (1989)); electroporation of embryos (Lo, Mol. Cell. Biol., 3: 1803-1814 (1983)); and sperm-mediated gene transfer. 10 Lavitraco et al., Cell, 57: 717-73 (1989). For a review, see, for example, U.S. Patent No. 4,736,866. Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009. Typically, particular cells would be targeted for VEGF-E transgene incorporation with tissue-specific enhancers. Transgenic animals that include a copy of a transgene encoding VEGF-E introduced into the germ line of the animal at an embryonic stage can be used to examine the effect of increased expression of DNA encoding VEGF-E. Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression. In accordance with this facet of the invention, an animal is treated with the reagent and a reduced incidence of the

animal is treated with the reagent and a reduced incidence of the pathological condition, compared to untreated animals bearing the transgene, would indicate a potential therapeutic intervention for the pathological condition.

For the purpose of the present invention, transgenic animals include those that carry the transgene only in part of their cells ("mosaic animals"). The transgene can be integrated either as a single transgene, or in concatamers, e.g., head-to-head or head-to-tail tandems. Selective introduction of a transgene into a particular cell type is also possible by following, for example, the technique of Lasko et al., <u>Proc. Natl. Acad. Sci. USA</u>, <u>89</u>: 6232-636 (1992). The expression of the transgene in transgenic animals can be monitored by standard techniques. For example, Southern blot analysis or FCR amplification can be used to verify the integration of the transgene. The level of mRNA expression can then be analyzed using techniques such as in situ hybridization, Northern blot

analysis, PCR, or immunocytochemistry. The animals are further examined for signs of tumor or cancer development.

Alternatively, "knock-out" animals can be constructed that have a defective or altered gene encoding a VEGF-E polypeptide identified herein, as a result of homologous recombination between the endogenous gene encoding the VEGF-E polypeptide and altered genomic DNA encoding the same polypeptide introduced into an embryonic cell of the animal. For example, cDNA encoding a particular VEGF-E polypeptide can be used to clone genomic DNA encoding that polypeptide in accordance with established techniques. A portion of the genomic DNA encoding a particular VEGF-E polypeptide can be deleted or replaced with another gene, such as a gene encoding a selectable marker that can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5' and 3' ends) are included in the vector. See, e.g., Thomas and Capecchi, Cell, 51: 503 (1987) for a description of homologous recombination vectors. The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected. See, e.g., Li et al., Cell, 69: 915 (1992). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras. See, e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (IRL: Oxford, 1987), pp. 113-152. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term to create a "knock-out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knockout animals can be characterized, for instance, by their ability to defend against certain pathological conditions and by their development of pathological conditions due to absence of the VEGF-E polypeptide.

The efficacy of antibodies specifically binding the VEGF-E polypeptides identified herein, and other drug candidates, can be tested also in the treatment of spontaneous animal tumors. A suitable target for such studies is the feline oral squamous cell carcinoma (SCC). Feline oral SCC is a highly invasive, malignant

tumor that is the most common oral malignancy of cats, accounting for over 60% of the oral tumors reported in this species. It rarely metastasizes to distant sites, although this low incidence of metastasis may merely be a reflection of the short survival times for cats with this tumor. These tumors are usually not amenable to surgery, primarily because of the anatomy of the feline oral cavity. At present, there is no effective treatment for this tumor. Prior to entry into the study, each cat undergoes complete clinical examination and biopsy, and is scanned by computed tomography (CT). Cats diagnosed with sublingual oral squamous cell tumors are excluded from the study. The tongue can become paralyzed as a result of such tumor, and even if the treatment kills the tumor, the animals may not be able to feed themselves. Each cat is treated repeatedly, over a longer period of time. Photographs of the tumore will be taken daily during the treatment period, and at each subsequent recheck. After treatment, each cat undergoes another CT scan. CT scans and thoracic radiograms are evaluated every 8 weeks thereafter. The data are evaluated for differences in survival. response, and toxicity as compared to control groups. Positive 20 response may require evidence of tumor regression, preferably with improvement of quality of life and/or increased life span.

In addition, other spontaneous animal tumors, such as fibrosarcoma, adenocarcinoma, lymphoma, chondroma, or leiomyosarcoma of dogs, cats, and baboons can also be tested. Of these, mammary adenocarcinoma in dogs and cats is a preferred model as its appearance and behavior are very similar to those in humans. However, the use of this model is limited by the rare occurrence of this type of tumor in animals.

Other in vitro and in vivo cardiovascular, endothellal, and 30 angiogenic tests known in the art are also suitable herein.

2. Tissue Distribution

The results of the cardiovascular, endothelial, and angiogenic assays herein can be verified by further studies, such as by determining mRNA expression in various human tissues.

35 As noted before, gene amplification and/or gene expression in various tissues may be measured by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA (Thomas, <u>Proc. Natl. Acad. Sci. USA. 77</u>:5201-5205 (1980)), dot blotting (DNA analysis), or in situ hybridization, using an appropriately laneled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes.

Gene expression in various tissues, alternatively, may be measured by immunological methods, such as immunohistochemical staining of tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native-sequence VEGF-E polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exceptous sequence fused to DNA encoding VEGF-E and encoding a specific antibody epitope. General techniques for generating antibodies, and special protocols for in situ hybridization are provided hereinbelow.

3. Antibody Binding Studies

10

15

20

30

The results of the cardiovascular, endothelial, and angiogenic study can be further verified by antibody binding studies, in which the ability of anti-VEGF-E antibodies to inhibit the effect of the VEGF-E polypeptides on endothelial cells or other cells used in the cardiovascular, endothelial, and angiogenic assays is tested. Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific, and heteroconjugate antibodies, the preparation of which will be described hereinbelow.

Antibody binding studies may be carried out in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays. 201a, Monoclonal Antibodies: A Manual of Techniques (CRC Press, Inc., 1987), pp.147-158.

Competitive binding assays rely on the ability of a labeled standard to compete with the test sample analyte for binding with a limited amount of antibody. The amount of target protein in the test sample is inversely proportional to the amount of standard that

becomes bound to the antibodies. To facilitate determining the amount of standard that becomes bound, the antibodies preferably are insolubilized before or after the competition, so that the standard and analyte that are bound to the antibodies may conveniently be separated from the standard and analyte that remain unbound.

Sandwich assays involve the use of two antibodies, each capable of binding to a different immunogenic portion, or epitope, of the protein to be detected. In a sandwich assay, the test sample analyte is bound by a first antibody that is immobilized on a solid support, and thereafter a second antibody binds to the analyte, Ebus forming an insoluble three-part complex. See, e.g., US Pat No. 4,376,110. The second antibody may itself be labeled with a detectable moiety (direct sandwich assays) or may be measured using an anti-immunoglobulin antibody that is labeled with a detectable moiety (indirect sandwich assay). For example, one type of sandwich assay is an ELISA assay, in which case the detectable moiety is an enzyme.

For immunohistochemistry, the tissue sample may be fresh or frozen or may be embedded in paraffin and fixed with a preservative such as formalin, for example.

4. Cell-Based Tumor Assays

Cell-based assays and animal models for cardiovascular, endothelial, and angiogenic disorders, such as tumors, can be used to verify the findings of a cardiovascular, endothelial, and 25 angiogenic assay herein, and further to understand the relationship between the genes identified herein and the development and pathogenesis of undesirable cardiovascular, endothelial, and angiogenic cell growth. The role of gene products identified herein in the development and pathology of undesirable cardiovascular, endothelial, and angiogenic cell growth, e.g., tumor cells, can be tested by using cells or cells lines that have been identified as being stimulated or inhibited by the VEGF-E polypeptide herein.

Such cells include, for example, those set forth in the Examples below.

35 In a different approach, cells of a cell type known to be invoived in a particular cardiovascular, endothelial, and angiogenic disorder are transfected with the cDNAs herein, and the ability of

these cDNAs to induce excessive growth or inhibit growth is analyzed. If the cardiovascular, endothelial, and angiogenic disorder is cancer, suitable tumor cells include, for example, stable tumor cells lines such as the B104-1-1 cell line (stable NTR-3T3 cell line transfected with the new protooncogene; and rastransfected NIH-3T3 ceils, which can be transfected with the desired gene and monitored for tumorigenic growth. Such transfected cell lines can then be used to test the ability of poly- or monoclonal antibodies or antibody compositions to inhibit tumorigenic cell

growth by exerting cytostatic or cytotoxic activity on the growth of the transformed cells, or by mediating antibody-dependent cellular cytotoxicity (ADCC). Cells transfected with the coding sequences of the genes identified herein can further be used to identify drug candidates for the treatment of cardiovascular, endothelial, and

anglogenic disorders such as cancer.

In addition, primary cultures derived from tumors in transgenic animals (as described above) can be used in the cellbased assays herein, although stable cell lines are preferred. Techniques to derive continuous cell lines from transgenic animals are well known in the art. See, e.g., Small et al., Mol. Cell. Biol. 5: 642-648 (1985).

5. Gene Therapy

30

35

The VEGF-E polypeptide herein and polypeptidyl agonists and antagonists may be employed in accordance with the present invention 25 by expression of such polypeprides in vivo, which is often referred to as gene therapy.

There are two major approaches to getting the nucleic acid (optionally contained in a vector) into the patient's cells: in vivo and ex vivo. For in vivo delivery the nucleic acid is injected directly into the patient, usually at the sites where the VEGF-E polypeptide is required, i.e., the site of synthesis of the VEGF-E polypeptide, if known, and the site (e.g., wound) where VEGF-E polypeptide biological activity is needed. For ex vivo treatment, the patient's cells are removed, the nucleic acid is introduced into these isolated cells, and the modified cells are administered to the patient either directly or, for example, encapsulated within porces

membranes that are implanted into the patient (see, e.g., 0.8. Pat. Nos. 4,892,538 and 5,283,187).

There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or transferred in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, transduction, cell fusion, DEAE-doxtran, the calcium phosphate precipitation method, etc. Transduction involves the association of a replication-defective, recombinant viral (preferably retroviral) particle with a cellular receptor, followed by introduction of the nucleic acids contained by the particle into the cell. A commonly used vector for ex vivo delivery of the gene is a retrovirus.

The currently preferred is vivo nucleic acid transfer techniques include transfection with viral or non-viral vectors (such as adenovirus, lentivirus, Herpes simplex I virus, or adeno-associated virus (AAV)) and lipid-based systems (useful lipids for lipid-mediated transfer of the gene are, for example, DOTMA, DOPE, and DC-Chol; see, e.g., Tonkinson et al., Cancer Investigation, 14(1): 54-65 (1996)). The most preferred vectors for use in gene therapy are viruses, most preferably adenoviruses, AAV, lentiviruses, or retroviruses. A viral vector such as a retroviral vector includes at least one transcriptional promoter/enhancer or locus-defining element(s), or other elements that control gene expression by other means such as alternate splicing, nuclear RNA export, or post-translational modification of messenger. In addition, a viral vector such as a retroviral vector includes a 30 nucleic acid molecule that, when transcribed in the presence of a gene encoding VEGF-E polypeptide, is operably linked thereto and acts as a translation initiation sequence. Such vector constructs also include a packaging signal, long terminal repeats (LTRs) or portions thereof, and positive and negative strand primer binding sites appropriate to the virus used (if these are not already present in the viral vector). In addition, such vector typically includes a signal sequence for secretion of the VEGF-E polypeptide from a host cell in which it is placed. Preferably the signal

sequence for this purpose is a mammalian signal sequence, most preferably the native signal sequence for VEGF-E polypeptide. Optionally, the vector construct may also include a signal that directs polyadenylation, as well as one or more restriction sites and a translation termination sequence. By way of example, such vectors will typically include a 5° LTR, a tRNA binding site, a packaging signal, an origin of second-strand DNA synthesis, and a 3° LTR or a portion thereof. Other vectors can be used that are non-viral, such as cationic lipids, polylysine, and dendrimers.

In some situations, it is desirable to provide the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell-surface membrane protein or the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed, proteins that bind to a cell-surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g., capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins that undergo internalization in cycling, and proteins that target intracellular localization and enhance intracellular half-life. The technique of receptor-mediated endocytosis is

10

described, for example, by Wu et al., J. Biol. Chem., 262: 4429-4432 (1987); and Wagner et al., Proc. Natl. Acad. Sci. USA, 87: 3410-3414 (1990). For a review of the currently known gene marking and gene therapy protocols, See Anderson et al., Science, 256: 808-813 (1992). See also WO 93/25673 and the references cited therein.

Suitable gene therapy and methods for making retroviral particles and structural proteins can be found in, e.g., U.S. Par. No. 5,681,746.

6. Use of Gene as Diagnostic

This invention is also related to the use of the gene encoding
the VEGF-E polypeptide as a diagnostic. Detection of a mutated form
of the VEGF-E polypeptide will allow a diagnosis of a
cardiovascular, endothelial, and angiogenic disease or a
susceptibility to a cardiovascular, endothelial, and angiogenic
disease, such as a tumor, since mutations in the VEGF-E polypeptide
may cause tumors.

Individuals carrying mutations in the gene encoding human VEGF-E polypeptide may be detected at the DNA level by a variety of techniques. Nucleic acids for diagnosis may be obtained from a patient's cells, such as from blood, urine, saliva, tissue blopsy, and autopsy material. The genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR (Saiki et al., Nature, 324: 163-166 (1986)) prior to analysis. RNA or cDNA may also be used for the same purpose. As an example, PCR primers complementary to the nucleic acid encoding the VEGF-E polypeptide can be used to identify and analyze VEGF-E polypeptide mutations. 10 For example, deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype Point mutations can be identified by hybridizing amplified DNA to radiolabeled RNA encoding VEGF-E polypeptide, or alternatively, radiolabeled antisense DNA sequences encoding VEGF-E polypeptide. Perfectly matched sequences can be distinguished from mismatched duplexes by RNAse A digestion or by differences in melting temperatures.

Genetic testing based on DNA sequence differences may be achieved by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Small sequence deletions and insertions can be visualized by high resolution gel electrophoresis. DNA fragments of different sequences may be distinguished on denaturing formamidine gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures. See, e.g., Myers et al., Science, 230: 1242 (1985).

Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNAse and S1 protection or the chemical cleavage method, for example, Cotton at al., Proc. Natl.. Acad. Sci. USA, 95: 4397-4401 (1985).

Thus, the detection of a specific DNA sequence may be achieved by methods such as hybridization, RNAse protection, chemical cleavage, direct DNA sequencing, or the use of restriction enzymes, e.g., restriction fragment length polymorphisms (RFLP), and Southern blotting of genomic DNA.

7. Use to Detect VEGF-E Polypeptide Levels

In addition to more conventional gel-electrophoresis and DNA sequencing, mutations can also be detected by in situ analysis.

VEGF-E polypeptide expression may be linked to vascular disease or neovascularization associated with tumor formation. If the VEGF-E polypeptide has a signal sequence and the mRNA is highly expressed in endothelial cells and to a lesser extent in smooth muscle cells, this indicates that the VEGF-E polypeptide is present in serum. Accordingly, an anti-VEGF-E polypeptide antibody could be used to diagnose vascular disease or neovascularization associated with tumor formation, since an altered level of this VEGF-E polypeptide may be indicative of such disorders.

A competition assay may be employed wherein entibodies specific to the VEGF-E polypeptide are attached to a solid support and labeled VEGF-E polypeptide and a sample derived from the host are passed over the solid support and the amount of label detected attached to the solid support can be correlated to a quantity of VEGF-E polypeptide in the sample.

8. Probes and Immunoassays

20

VEGF-E amino acid variant sequences and derivatives that are immunologically crossreactive with antibodies raised against native VEGF are useful in immunoassays for VEGF-E as standards, or, when labeled, as competitive reagents.

The full-length nucleotide sequence SEQ ID NO:1, or portions thereof, may be used as hybridization probes for a cDNA library to isolate the full-length VEGF-E gene or to isolate still other genes (for instance, those encoding naturally-occurring variants of VEGF-E or VEGF-E from other species) which have a desired sequence identity to the VEGF-E sequence disclosed in Figure 1 (SEQ ID No:1).

30 Optionally, the length of the probes will be about 17 to about 50 bases. The hybridization probes may be derived from the nucleotide sequence of SEQ ID NO:1 as shown in Figure 1 or from genomic sequences including promoters, enhancer elements, and introns of native-sequence VEGF-E-encoding DNA. By way of example, a screening method will comprise isolating the coding region of the VEGF-E gene using the known DNA sequence to synthesize a selected probe of about

40 bases. Hybridization probes may be labeled by a variety of

labels, including radionucleotides such as ^{MP}F or ^{MP}S, or enzymatic labels such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems. Labeled probes having a sequence complementary to that of the VEGF-E gene of the present invention can be used to screen libraries of human cDNA, genomic DNA, or MRNA to determine which members of such libraries the probe hybridizes to. Hybridization techniques are described in further detail in the Examples below.

The probes may also be employed in PCR techniques to generate 10 a pool of sequences for identification of closely related VEGF-E sequences.

9. Chromosome Mapping

Nucleotide sequences encoding a VEGF-E polypeptide can also be used to construct hybridization probes for mapping the gene which encodes that VEGF-E polypeptide and for the genetic analysis of individuals with genetic disorders. The nucleotide sequence provided herein may be mapped to a chromosome and specific regions of a chromosome using known techniques, such as in situ hybridization, linkage snalysis against known chromosomal markers, and hybridization screening with libraries.

For chromosome identification, the sequence is specifically targeted to and can hybridize with a particular location on an andividual human chromosome. Moreover, there is a current need for identifying particular sites on the chromosome. Few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location. The mapping of DNAs to chromosomes according to the present invention is an important first step in correlating those sequences with genes associated with disease. Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the cDNA. Computer analysis for the 3' untranslated region is used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the primer will vield an amplified fragment.

10

30

3.5

PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular DNA to a particular chromosome. Using the present invention with the same oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes or pools of large genomic clones in an analogous manner. Other mapping strategies that can similarly be used to map to its chromosome include in situ hybridization, prescreening with labeled flow-sorted chromosomes, and preselection by hybridization to construct chromosome-specific cDNA libraries.

Fluorescence in situ hybridization (FISH) of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step. This technique can be used with cDNA as short as 500 or 600 bases; however, clones larger than 2,000 bp have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection.
FISH requires use of the clones from which the gene encoding VEGF-E polypeptide was derived, and the longer the better. For example, 2,000 bp is good, 4,000 bp is better, and more than 4,000 is probably not necessary to get good results a reasonable percentage of the time. For a review of this technique, see Verma et al., Human Chromosomes: a Manual of Basic Techniques (Pergamon Press, New York, 1988).

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region is then identified through linkage analysis (coinheritance of physically adiacent genes).

Next, it is necessary to determine the differences in the cDNA or genomic sequence between affected and unaffected individuals. If a mutation is observed in some or all of the affected individuals but not in any normal individuals, then the mutation is likely to be the causative agent of the disease.

With current resolution of physical mapping and genetic mapping techniques, a cDNA precisely localized to a chromosomal region associated with the disease could be one of between 50 and

500 potential causative genes. (This assumes 1 megabase mapping resolution and one gene per 20 kb).

10. Screening Assays for Drug Candidates

- Screening assays can be designed to find lead compounds

 that mimic the biological activity of a native VEGF-E or a receptor
 for VEGF-E. Such screening assays will include assays amenable to
 high-throughput acreening of chemical libraries, making them
 particularly suitable for identifying small molecule drug
 candidates. Small molecules contemplated include synthetic organic
 or inorganic compounds. The assays can be performed in a variety of
- 0 or inorganic compounds. The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays and cell based assays, which are well characterized in the art.
- Hence, this invention encompasses methods of screening

 15 compounds to identify those that mimic the VEGF-E polypeptide
 (agonists) or prevent the effect of the VEGF-E polypeptide
 (antagonists). Screening assays for antagonist drug candidates are
 designed to identify compounds that bind or complex with the VEGF-E
 polypeptides encoded by the genes identified herein, or otherwise

 20 interfere with the interaction of the encoded polypeptides with
- other cellular proteins. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them perticularly suitable for identifying small molecule drug candidates.
- 25 The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays, and cell- based assays, which are well characterized in the art.
- All assays for antagonists are common in that they call for 30 contacting the drug candidate with a VEGF-E polypeptide encoded by a nucleic acid identified herein under conditions and for a time sufficient to allow these two components to interact.

In binding assays, the interaction is binding and the complex formed can be isolated or detected in the reaction mixture. In a particular embodiment, the VEGF-E polypoptide encoded by the gene identified herein or the drug candidate is immobilized on a solid phase, e.g., on a microtiter plate, by covalent or non-covalent