第3章 整数线性规划

3.1 整数规划问题举例

3.2 割平面法

整数(线性)规划

- 整数规划问题与模型
- 整数规划算法

背包问题

- 实例: 一个背包, 容量为W。
- n 件物品,物品 i 容量(重量)为 w_i ,价值 v_i 。
- 询问:选择一些物品装入背包,使其总容量≤W,总价值 最大。

物品	1	2	3	4	5	6	7	8	9	10
体积	200	350	500	430	320	120	700	420	250	100
价格	15	45	100	70	50	75	200	90	20	30

问题分析(建模)

- 变量 x_i 是否选择物品 i。
- 整数规划(0-1规划):

$$\max \sum_{i} v_{i}x_{i}$$
s.t.
$$\sum_{i} w_{i}x_{i} \leq W$$

$$x_{i} \in \{0, 1\}$$

集合覆盖(Set Cover)问题

- 实例:基础集合 $U = \{e_1, e_2, ..., e_n\}$,集合族 $C = \{S_1, S_2, ..., S_m\}$,每一个集合 S_i 是U的一个子集。
- 询问:最小数目的子集的集合族 $C' \subseteq C$,使得C'中子集的"并"包含(覆盖)U中的所有元素。
- 整数规划(0-1规划):
- 定义判定变量 x_i , $x_i = 1$ 表示集合 S_i 被选取, $x_i = 0$ 表示集合 S_i 未被选取。

min
$$\sum_{i} x_{i}$$

s.t. $\sum_{Si: e \in Si} x_{i} \ge 1$, $\forall e \in U$
 $x_{i} \in \{0, 1\}$

旅行售货员(TSP)问题

- 实例: 给定 n+1 个城市,任两个城市 v_i 和 v_j 之间有一个距 离 $c_{ij} \ge 0$ ($c_{ij} = c_{ji}$, $c_{ii} = 0$)。一个旅行售货员,从城市 v_0 出发,走遍所有的城市,再回到 v_0 。
- 询问: 售货员应该怎样走,才能使走过的总距离最短?

TSP实例

TSP实例

建模

- 变量 x_{ij} : 是否使用从城市 v_i 到城市 v_j 的路径。
- 约束
 - 每个城市只能到达一次、离开一次。
 - 所走过的路径构成一个圈(不能多于一个圈)。

TSP的整数规划

min
$$\sum_{i \neq j} c_{ij} x_{ij}$$

s.t. $\sum_{j=0}^{n} x_{ij} = 1$, $i = 0,1,2,\dots,n$
 $\sum_{i=0}^{n} x_{ij} = 1$, $j = 0,1,2,\dots,n$
 $\sum_{i \in S, j \notin \overline{S}} x_{ij} \ge 1$ $\forall S \subset \{0,1,2,\dots,n\}$
 $x_{ij} \in \{0,1\}$ $i, j = 0,1,2,\dots,n$

强制路径构成仅一个圈

使用如下约束:

$$\sum_{i \in S, j \in \overline{S}} x_{ij} \ge 1, \quad \forall S \subset \{0, 1, \dots, n\}$$

整数线性规划的特征、模型

- 特征—变量整数性要求
 - 问题本身的要求
 - 引入的逻辑变量的需要
- 性质—可行域是离散点的集合
- 整数线性规划的常见模型:
 - 一般整数规划模型——变量取值为整数。
 - 0-1整数规划模型——变量取值为0或1。
 - 混合整数规划模型——部分变量取值为整数,部分变量取值 为实数。

整数规划与线性规划的关系

整数规划

$$\min c^{\mathsf{T}} x$$
s.t.
$$\begin{cases} Ax = b \\ x \ge 0, \ x_i$$
 为整数

线性规划

$$\min c^{\mathsf{T}} x$$

$$\text{s.t.} \begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

- 线性规划是整数规划的放松。
- 整数规划的可行解是对应的放松问题的可行解。
- 放松的线性规划的最优值 ≤ 整数规划的最优值。

解整数规划

对整数规划的几点说明:

- 对放松问题的最优解进行简单的舍入(如,四舍五入)不能得到整数规划的最优解。
 这样的整数解对于原整数规划甚至是不可行的。
- 整数可行解的数目可呈爆炸 性增长,简单的枚举法不可 取。

Figure 14–1 A hypothetical ILP with optimum x° and its relaxation with optimum x^{*} .

算法

求精确解:

- 割平面算法
- 分枝定界算法

求近似解:

- 舍入法
- 原始-对偶方法

割平面算法[Gomory, 1959]

基本思想

- 用单纯形法解松驰问题(P_0),求到最优解 x^0 。
- 若x⁰是整数向量,则x⁰是ILP问题(P)的最优解,计算结束。
- 否则,根据x⁰设法对(P₀)增加一个约束条件,称为割平面条件。这个割平面条件将(P₀)的可行域割掉一块,且x⁰在被割掉的区域中,而原ILP的任何一个整数可行解都没有被割掉。
- 记增加了约束条件的问题为(P_1)。对(P_1)继续上述过程,直到求到一个整数最优解为止。

说明

- 如果在增加约束的过程中,得到的LP没有可行解,则原 ILP没有可行解。
- 如果得到的LP问题无界,则原ILP问题或者无界,或者没有可行解。

割平面生成方法

- ●给定整数规划问题 ILP $_0$, A,b,c 中的元素均为整数。
- ●设它的松弛问题为 LP₀。用单纯形算法解 LP₀,设求得的最优 bfs 为 x^0 ,它的基为 $B = (A_{B(1)}, A_{B(2)}, ..., A_{B(m)})$ 。
- ●为简便,记非基变量下标的集合为 N。最后一张单纯形表 所表示的 LP_0 的典式为:

$$\begin{split} z + \sum_{j \in N} \zeta_j x_j &= z_0 \\ x_{B(i)} + \sum_{j \in N} \overline{a}_{ij} x_j &= \overline{b}_i, \quad i = 1, \cdots, m \end{split}$$

●为简便记,令 $x_{B(0)}=z$, $\overline{a}_{0j}=\zeta_j$, $\overline{b}_0=z_0$ 。上式将统一记

$$\sum_{j\in N} \overline{a}_{ij} x_j = \overline{b}_i, \ i = 0, \dots, m$$

割平面生成方法

- ●若 $\overline{b_i}$ 全为整数 $(0 \le i \le m)$,则 x^0 为原问题 ILP₀的最优解。
- ●否则假设 $\overline{b_l}$ 不是整数 $(0 \le l \le m)$ 。 $\overline{b_l}$ 所对应的约束为:

$$x_{B(l)} + \sum_{j \in N} \overline{a}_{lj} x_j = \overline{b}_l$$
 (1)

●因为 $\forall j, x_j \geq 0$,可知 $\sum_{j \in N} \left| \overline{a}_{lj} \right| x_j \leq \sum_{j \in N} \overline{a}_{lj} x_j$ 。因此有 $x_{B(l)} + \sum_{j \in N} \left| \overline{a}_{lj} \right| x_j \leq \overline{b}_l$ 。由于所要求的x为整数向量,该不等

式可加强到

$$x_{B(l)} + \sum_{j \in N} \left[\overline{a}_{lj} \right] x_j \le \left[\overline{b}_l \right]_{\bullet}$$
 (2)

割平面生成方法

$$\bullet$$
 (1) $-$ (2),得: $\sum_{j \in N} \left(\overline{a}_{lj} - \left\lfloor \overline{a}_{lj} \right\rfloor \right) x_j \ge \overline{b}_l - \left\lfloor \overline{b}_l \right\rfloor$ 。将该式记为

$$\sum_{j \in N} f_{lj} x_j \ge f_l \tag{3}$$

其中 $0 \le f_{ij} < 1$, $\forall j$; $0 < f_i < 1$, 称为割平面条件。

- ●割平面条件(3)式是一个新的约束。将它加到 LP₀中,得到 更紧的松弛问题 LP₁。
- ●将(3)式两端乘以-1,再引入松弛变量 s,得到

$$-\sum_{j\in N} f_{lj}x_j + s = -f_l$$
, 称为割平面方程。

● 这样就得到 LP₁ 的一个基本(不可行)解和其对偶的一个可行解,从而可使用对偶单纯形算法继续求解 LP₁。

注意

- ●在割平面条件 $\sum_{j\in N} f_{lj}x_j \geq f_l$ 中,有 $f_{lj} = \overline{a}_{lj} \lfloor \overline{a}_{lj} \rfloor$ 和 $f_l = \overline{b}_l \lfloor \overline{b}_l \rfloor$ 。
- \bullet 当 $\bar{a}_{lj} > 0$ (以及 $\bar{b}_l > 0$) 时, f_{lj} (以及 f_l) 为 \bar{a}_{lj} (以及 \bar{b}_l) 的小数部分。

例: $\overline{a}_{lj} = 1.25$, $f_{lj} = 1.25 - \lfloor 1.25 \rfloor = 1.25 - 1 = 0.25$ 。

• 当 $\bar{a}_{lj} < 0$ 时, f_{lj} 等于 1 - " $|\bar{a}_{lj}|$ 的小数部分"。(\bar{b}_l 总是 0) 例: $\bar{a}_{lj} = -1.25$, $f_{lj} = -1.25 - \lfloor -1.25 \rfloor = -1.25 + 2 = 0.75$ 。

Gomory割平面算法

$$\max x_2$$

s.t.
$$\begin{cases} 3x_1 + 2x_2 \le 6 \\ -3x_1 + 2x_2 \le 0 \\ x_1, x_2 \ge 0, \text{ 2.8 } \end{cases}$$

得到松弛问题LPo

$$\min -x_2$$

$$s.t.\begin{cases} 3x_1 + 2x_2 + x_3 = 6\\ -3x_1 + 2x_2 + x_4 = 0\\ x_1, x_2, x_3, x_4 \ge 0 \end{cases},$$

将松弛问题化为标准型:

使用单纯形算法求解:

	x_1	x_2	x_3	x_4	
Z	0	1	0	0	0
x_3	3	2	1	0	6
x_4	-3	2	0	1	0

解松弛问题LPo

	x_1	x_2	x_3	x_4	
Z	3/2	0	0	-1/2	0
x_3	6	0	1	-1	6
x_2	-3/2	1	0	1/2	0
	x_1	x_2	x_3	x_4	
z	x_1 0	x_2	x_3 $-1/4$	x_4 $-1/4$	-3/2
z x_1					-3/2 1

$$\sum_{j \in N} f_{lj} x_j \ge f_l$$

求到松弛问题 LP_0 的最优 bfs,不是整数解。

第 2 行生成的割平面条件为: $\frac{1}{4}x_3 + \frac{1}{4}x_4 \ge \frac{1}{2}$,

$$\frac{1}{4}x_3 + \frac{1}{4}x_4 \ge \frac{1}{2},$$

得到松弛问题LP₁

割平面方程为: $-\frac{1}{4}x_3 - \frac{1}{4}x_4 + s_1 = -\frac{1}{2}$ 。加入割平面方程,得到松弛问题 LP₁的单纯形表:

	x_1	x_2	x_3	x_4	s_1	
Z	0	0	-1/4	-1/4	0	-3/2
x_1	1	0	1/6	-1/6	0	1
x_2	0	1	1/4	1/4	0	3/2
s_1	0	0	-1/4	-1/4	1	-1/2

应用对偶单纯形算法继续求解 LP1。

解松弛问题LP₁

_	x_1	x_2	x_3	x_4	s_1	
z	0	0	0	0	-1	-1
x_1	1	0	0	-1/3	2/3	2/3
x_2	0	1	0	0	1	1
x_3	0	0	1	1	-4	2

 LP_1 的最优解为 x = (2/3, 1, 2, 0, 0), 仍然不是整数解。

第 1 行生成的割平面条件为: $\frac{2}{3}x_4 + \frac{2}{3}s_1 \ge \frac{2}{3}$.

对应的割平面方程为: $-\frac{2}{3}x_4 - \frac{2}{3}s_1 + s_2 = -\frac{2}{3}$ 。

得到松弛问题LP₂

加入割平面方程,得到松弛问题 LP2:

-	x_1	x_2	x_3	x_4	s_1	s_2	
Z	0	0	0	0	-1	0	-1
x_1	1	0	0	-1/3	2/3	0	2/3
x_2	0	1	0	0	1	0	1
x_3	0	0	1	1	-4	0	2
s_2	0	0	0	-2/3	-2/3	1	-2/3

继续用对偶单纯形算法求解。

解松弛问题LP₂

	x_1	x_2	x_3	x_4	s_1	<i>s</i> ₂	
Z	0	0	0	0	-1	0	-1
x_1	1	0	0	0	1	-1/2	1
x_2	0	1	0	0	1	0	1
x_3	0	0	1	0	-5	3/2	1
x_4	0	0	0	1	1	-3/2	1

得到 LP₂ 的最优解 x = (1, 1, 1, 1, 0, 0),是整数解。 因此原问题 IP₀ 的最优解为 $x^* = (1, 1)$ 。

对割平面的解释

- ●第1次切割,割平面条件为 $\frac{1}{4}x_3 + \frac{1}{4}x_4 \ge \frac{1}{2}$ 。(1)
- •由问题 LP₀,可知 $x_3 = 6 3x_1 2x_2$, (2)

$$x_4 = 3x_1 - 2x_2 \tag{3}$$

●将(2)、(3)代入(1),得到与(1)等价的割平面条件:

$$x_2 \leq 1$$

- 第 1 次切割,加入的割平面方程为 $-\frac{1}{4}x_3 \frac{1}{4}x_4 + s_1 = -\frac{1}{2}$ 。(4)
- ●将(2)、(3)代入(4),可将 s_1 写成 x_1 和 x_2 的线性组合:

$$S_1 = -x_2 + 1_{\circ} \tag{5}$$

对割平面的解释

- ●第2次切割,割平面条件为 $\frac{2}{3}x_4 + \frac{2}{3}s_1 \ge \frac{2}{3}$ 。(6)
- ●将(3)、(5)代入(6),得到与(6)等价的割平面条件:

$$x_1 - x_2 \ge 0$$

max
$$x_2$$

$$s.t.\begin{cases} 3x_1 + 2x_2 \le 6 \\ -3x_1 + 2x_2 \le 0 \end{cases}$$

$$x_1, x_2 \ge 0, 整数$$

