Mathematische Anwendersysteme Einführung in Sage

Jochen Schulz, Cristoph Rügge

24.04.2010

Klausur

Aufgabe	1	2	3	4	5	6	8	Summe
Mögl. Pkt.	4	2	3	2	8	5	5	29
Erreichte Pkt.								

Bitte eintragen:

Nachname:	
Vorname:	
Studiengang:	
Semester:	
Immatrikulationsnummer:	

Hinweise:

- Die Klausur beginnt um 10.00 Uhr und endet um 11.30 Uhr.
- Benötigte Hilfsmittel sind Stift und Papier.
- Erlaubte Hilfsmittel sind gedruckte sowie handgeschriebene Notizen oder Skripte.
- Benutzen Sie zum Aufschreiben der Aufgaben Sage-Syntax.

Aufgabe 1

4 Punkte

- Definieren Sie in Sage eine Liste, ein Tuple, ein Dictionary und eine Menge (Set).
- Geben Sie jeweils eine kurze Erklärung zu den genannten Datentypen. Geben Sie 4 Operationen an, die Sie nur mit jeweils einen der genannten Datentypen durchführen können.

Aufgabe 2

2 Punkte

Nennen Sie Funktionen mit denen symbolische Ausdrücke bzgl. ihrer Struktur verändert werden können (z.B. Vereinfachen).

Aufgabe 3

2 Punkte

Erklären sie die Funktionsweise einer for-Schleife anhand eines kurzen Beispiels.

Aufgabe 4

2 Punkte

Schreiben sie eine Funktion mit def, die folgende Funktion berechnet:

$$f(n) = 2^{(2^n)} + 1$$

Gibt es noch eine andere Möglichkeit die Funktion zu definieren? Wenn ja, erklären sie kurz, wo die Unterschiede zwischen den beiden Varianten liegen.

Aufgabe 5

8 Punkte

Schreiben Sie eine Abfolge von Befehlen die mit einer gegebenen unbekannten Funktion $f: \mathbb{R} \to \mathbb{R}$ eine Kurvendiskussion durchführt, ohne dass Sie die Befehlsfolge noch an die Funktion anpassen müssten. Dabei sollen folgende Schritte bearbeitet werden:

- Untersuchen Sei das Verhalten von f(x) für $x \to \pm \infty$.
- Finden Sie die Nullstellen und berechnen sie die jeweilige Steigung in dem Punkt.
- Geben sie mittels des print-Befehls und einer Schleife die Nullstelle und ihre Steigung untereinander aus.

Aufgabe 6

5 Punkte

Schreiben Sie eine Funktion mit Input-Variablen x_0 und TOL, die die Folge

$$x_{n+1} = x_n - \frac{x_n^2 - x_n - 1}{2x_n - 1}, \quad n \in \mathbb{N}$$

berechnet und abbricht, wenn $|x_n^2 - x_n - 1| \le TOL$ ist. Die Funktion soll x_n und das zugehörige n zurückgeben.

Aufgabe 7

5 Punkte

Schreiben Sie eine ohne Verwendung der Funktion primes_first_n eine Funktion mit Input-Variablen n, die eine Liste der ersten n Primzahlen berechnet.

5 Punkte

Schreiben Sie eine Funktion, die den Binomialkoeffizienten $\binom{n}{k}$ berechnet. Nutzen Sie dafür die Rekursionsbeziehung

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}, \qquad \binom{n}{0} = 1, \ \binom{0}{k} = 0.$$

Aufgabe 9

5 Punkte

Schreiben Sie ohne Verwendung der Funktion index() eine Sage-Prozedur mit 2 Argumenten, die aus einer Liste von Zahlen den Index einer zu suchenden Zahl, oder -1, zurückliefert.