Semaine du 15/01/2024

Chapitre M3 – Énergie mécanique

Plan du cours

I Théorème de l'énergie cinétique

- **I.1** Puissance d'une force
 - → Reconnaître le caractère moteur ou résistant d'une force.
- I.2 Travail d'une force
- I.3 Théorème de l'énergie cinétique
 - → Exploiter le théorème de l'énergie cinétique.

II Énergie potentielle, énergie mécanique

- II.1 Force conservative et énergie potentielle
- II.2 Exemples de forces conservatives
 - → Établir et citer les expressions de l'énergie potentielle de pesanteur (champ uniforme), de l'énergie potentielle gravitationnelle (champ créé par un astre ponctuel), de l'énergie potentielle élastique.

II.3 Lien entre une énergie potentielle et une force conservative

- → Déduire qualitativement du graphe d'une fonction énergie potentielle le sens et l'intensité de la force associée pour une situation à un degré de liberté.
- II.4 Théorème de l'énergie mécanique

III Mouvement conservatif à une dimension

III.1 Mouvement conservatif

→ Exploiter la conservation de l'énergie mécanique pour analyser un mouvement.

III.2 Profil d'énergie potentielle

- → Identifier sur un graphe d'énergie potentielle une barrière et un puits de potentiel.
- \to Déduire d'un graphe d'énergie potentielle le comportement qualitatif : trajectoire bornée ou non, mouvement périodique, positions de vitesse nulle.

III.3 Approximation harmonique

- $\rightarrow~$ Déduire d'un graphe d'énergie potentielle l'existence de positions d'équilibre.
- \rightarrow Analyser qualitativement la nature, stable ou instable, de ces positions.
- \rightarrow Établir l'équation différentielle linéarisée du mouvement au voisinage d'une position d'équilibre.

Questions de cours

- → Citer les théorèmes de la puissance cinétique et de l'énergie cinétique.
- ightarrow Citer, puis établir les expressions des énergies potentielles de pesanteur, gravitationnelle et élastique.
- \rightarrow Citer les théorèmes de la puissance mécanique et de l'énergie mécanique.
- \rightarrow Identifier, sur un graphe d'énergie potentielle quelconque les positions d'équilibre stables et instables, les barrières et puits de potentiels.
- → Décrire qualitativement (par exemple, à l'aide d'un graphe commenté) l'évolution temporelle d'un système suivant son énergie mécanique, à partir d'un profil quelconque d'énergie potentielle.
- $\rightarrow\,$ Établir l'équation différentielle linéarisée du pendule simple en utilisant le théorème de l'énergie mécanique.

Note aux colleurs : l'opérateur grad n'est pas au programme de MP2I et ne sera introduit qu'en deuxième année. En particulier, la relation $\vec{F} = -\overline{\text{grad}}\mathcal{E}_p$ se restreint au cas à un degré de liberté, où $\vec{F} = -\frac{\mathrm{d}\mathcal{E}_p}{\mathrm{d}x}\vec{e_x}$.

Chapitre M4 – Mouvement d'une particule chargée dans un champ électromagnétique

Plan du cours

I Force de Lorentz

- I.1 Champ électromagnétique
- I.2 Force de Lorentz
 - \rightarrow Évaluer les ordres de grandeur des forces électrique ou magnétique et les comparer à ceux des forces gravitationnelles.

I.3 Puissance de la force de Lorentz

→ Justifier qu'un champ électrique peut modifier l'énergie cinétique d'une particule alors qu'un champ magnétique peut courber la trajectoire sans fournir d'énergie à la particule.

II Mouvement dans un champ électrique

- II.1 Potentiel électrostatique
 - $\rightarrow\,$ Effectuer un bilan énergétique pour déterminer la valeur de la vitesse d'une particule chargée accélérée par une différence de potentiel.
- II.2 Équation du mouvement
 - \rightarrow Mettre en équation le mouvement et le caractériser comme un mouvement à vecteur accélération constant.

III Mouvement dans un champ magnétique

- III.1 Expérimentations
- III.2 Rayon de la trajectoire
 - → Déterminer le rayon de la trajectoire sans calcul en admettant que celle-ci est circulaire.

Questions de cours

- → Donner l'expression de la force de Lorentz en s'appuyant sur un schéma et en donnant les unités des grandeurs.
- ightarrow Représenter sur un schéma la force de Lorentz associée à une configuration donnée par le colleur.
- → Déterminer le rayon de la trajectoire circulaire d'une particule chargée dans un champ magnétique uniforme et stationnaire, orthogonal à la vitesse.