Bayesian Statistics III/IV (MATH3341/4031)

Michaelmas term, 2017

Handout 17: Asymptotic behavior of the posterior distribution ^a

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Aim: We examine properties of the posterior distribution $\Pi(\theta|y)$ as the number of observations increases $n \to \infty$. We show that, as $n \to \infty$,:

- posterior beliefs about $\theta \in \Theta$ would become more and more concentrated around a "true" value θ^* (if exists)
- the unknown parameter $\theta \in \Theta$ has Normal distribution as asymptotic distribution (if $\Theta \subseteq \mathbb{R}^k$, $k \ge 1$).

References:

- Van der Vaart, A. W. (2000, Chapter 10). Asymptotic statistics. Cambridge series in statistical and probabilistic mathematics.
- Ferguson, T. S. (1996, Section 21). A course in large sample theory. Chapman and Hall/CRC.
- DeGroot, M. H. (1970, Chapter 10). Optimal statistical decisions (Vol. 82). John Wiley & Sons.

Web-applets

- https://georgios-stats-1.shinyapps.io/demo_conjugatepriors/
- https://georgios-stats-1.shinyapps.io/demo_conjugatejeffreyslaplacepriors/
- https://georgios-stats-1.shinyapps.io/demo_mixturepriors/

What is about?

We consider the Bayesian model $(F(x_{1:n}|\theta), \Pi(\theta))$ as

$$\begin{cases} x_i | \theta & \stackrel{\text{IID}}{\sim} F(x_i | \theta), \qquad i = 1, ..., n \\ \theta & \sim \Pi(\theta) \end{cases}$$
 (1)

- where a sequence of observables $x_{1:n} = (x_1, ..., x_n)$ are drawn from the parametric model $F(x|\theta)$ with unknown parameter $\theta \in \Theta$. We study the behavior of the posterior distribution $\Pi(\theta|x_{1:n})$ with respect to the number of observables n, first when θ is a discrete parameter, and them when it is a continuous one.
- All the theorems in this chapter are frequentist in character, namely we study the posterior laws under the assumption that the observables $x_{1:n}$ are a random IID sample from the sampling distribution $F(x|\theta^*)$ for some fixed, non-random $\theta^* \in \Theta$.

1 Asymptotic consistency: when θ is discrete

In this section we focus in the case that $\theta \in \Theta$ is a discrete parameter, and Θ is a countable space, given the Bayesian model (1). In particular, the theorem below states that, for countable Θ , the posterior distribution function for $\theta \in \Theta$ ultimately degenerates to a step function with a single (unit) step at $\theta = \theta^*$, where θ^* is the real value of the unknown discrete parameter θ .

^aAuthor: Georgios P. Karagiannis.

Theorem 1. (Discrete case) Assume the Bayesian model (1), let $x_{1:n} = (x_1, ..., x_n)$ be a sequence of observables, $\theta \in \Theta$ be the unknown parameter with prior distribution $\pi(\theta)$, and posterior distribution $\pi(\theta|x_{1:n})$, where Θ is a countable parametric space. Suppose $\theta^* \in \Theta$ is the (only) true value of θ such that $\pi(\theta^*) > 0$, and $-KL(f(\cdot|\theta^*), f(\cdot|\theta)) := \int \log \frac{f(x|\theta)}{f(x|\theta^*)} dF(x|\theta^*) < 0$ for all $\theta \neq \theta^*$. Then

$$\lim_{n \to \infty} \pi(\theta | x_{1:n}) = \begin{cases} 1 &, \theta = \theta^* \\ 0 &, \theta \neq \theta^* \end{cases}.$$

Proof. It is

$$\pi(\theta|x_{1:n}) = \frac{f(x_{1:n}|\theta)\pi(\theta)}{\sum_{\forall \theta \in \Theta} f(x_{1:n}|\theta)\pi(\theta)} = \frac{\frac{f(x_{1:n}|\theta)}{f(x_{1:n}|\theta^*)}\pi(\theta)}{\sum_{\forall \theta \in \Theta} \frac{f(x_{1:n}|\theta)}{f(x_{1:n}|\theta^*)}\pi(\theta)}.$$

Due to exchangeability of $x_{1:n}$, it is

$$\pi(\theta|x_{1:n}) = \frac{\prod_{i=1}^{n} \frac{f(x_{i}|\theta)}{f(x_{i}|\theta^{*})}]\pi(\theta)}{\sum_{\forall \theta \in \Theta} [\prod_{i=1}^{n} \frac{f(x_{i}|\theta)}{f(x_{i}|\theta^{*})}]\pi(\theta)} = \frac{\exp(\sum_{i=1}^{n} \log \frac{f(x_{i}|\theta)}{f(x_{i}|\theta^{*})})\pi(\theta)}{\sum_{\forall \theta \in \Theta} \exp(\sum_{i=1}^{n} \log \frac{f(x_{i}|\theta)}{f(x_{i}|\theta^{*})})\pi(\theta)} = \frac{\exp(S_{n}(\theta))\pi(\theta)}{\sum_{\forall \theta \in \Theta} \exp(S_{n}(\theta))\pi(\theta)}$$

Now about $S_n(\theta) = \sum_{i=1}^n \log \frac{f(x_i|\theta)}{f(x_i|\theta^*)}$. From the SLLN, as $n \to \infty$, it is

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \log \frac{f(x_i|\theta)}{f(x_i|\theta^*)} = \mathcal{E}_F \left(\log \frac{f(x|\theta)}{f(x|\theta^*)} |\theta^* \right), \quad \text{a.s.}$$
 (2)

By using Jensen's inequality and the fact that log is concave, it is

$$E_{F}\left(\log \frac{f(x|\theta)}{f(x|\theta^{*})}|\theta^{*}\right) \leq \log E_{F}\left(\frac{f(x|\theta)}{f(x|\theta^{*})}|\theta^{*}\right) = \log(1) = 0$$

$$\implies E_{F}\left(\log \frac{f(x|\theta)}{f(x|\theta^{*})}|\theta^{*}\right) \leq 0$$
(3)

In the (3), the equality holds for $\theta = \theta^*$ a.s., and the inequality holds for $\theta \neq \theta^*$ a.s., since Θ is a countable space and $\theta^* \in \Theta$, θ^* is "distinguishable" from the others, according to Theorem 15. Notice that, for any $\theta \neq \theta^*$, (2) and (3) imply that

$$\lim_{n \to \infty} \frac{1}{n} S_n(\theta) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \log \frac{f(x_i | \theta)}{f(x_i | \theta^*)} < 0, \quad \text{a.s.}$$

4 which implies that

$$\lim_{n\to\infty} S_n(\theta) = -\infty, \quad \text{as}$$

Therefore,

• for any $\theta \neq \theta^*$, it is

$$\lim_{n \to \infty} \pi(\theta | x_{1:n}) = \lim_{n \to \infty} \frac{\exp(S_n(\theta))\pi(\theta)}{\sum_{\forall \theta \in \Theta} \exp(S_n(\theta))\pi(\theta)} = 0, \quad \text{a.s.}$$

- for $\theta = \theta^*$, it is

$$\lim_{n \to \infty} \pi(\theta^* | x_{1:n}) = 1 - \sum_{\forall \theta \neq \theta^*} \lim_{n \to \infty} \pi(\theta | x_{1:n}) = 1, \quad \text{a.s.}$$

- *Remark* 2. It can be shown that if $\theta^* \notin \Theta$, the posterior degenerates onto the value in Θ which gives the parametric model closest θ^* .
- *Remark* 3. One important condition we considered was that the real parameter value θ^* is unique. If there was another θ^{**} such that $f(x|\theta^{**}) = f(x|\theta^*)$, we would observe IID data when θ equaled θ^* or θ^{**} , and hence the data could not discriminate between the two values.
- *Remark* 4. If θ is a continuous parameter, then $\pi(\theta|x_{1:n})$ is always zero for any finite sample, and so the above theorem 1 apply.

2 Asymptotic consistency and normality: when θ is continuous

- In this section, we focus in the case that $\theta \in \Theta$ may be a continuous parameter, $\Theta \subset \mathbb{R}^k$ is compact with $k \geq 1$, given the Bayesian model (1). In particular, under specific conditions, we prove that as $n \to \infty$:
 - 1. the posterior PDF of θ becomes more and more concentrated above an area around the true value θ^*
 - 2. the limiting posterior distribution of θ is a Normal distribution with specific parameters, and remarkably
 - 3. these conclusions do not depend on the choice of the prior distribution provided that $\pi(\theta^*) > 0$.
- We recall asymptotic results of MLE in Appendix B.
- Consider the Bayesian model $(F(x_{1:n}|\theta), \Pi(\theta))$ in (1), with $\theta \in \Theta$, where Θ is an open subset of \mathbb{R}^k . Assume a prior distribution $\Pi(\theta)$ with a PDF $\pi(\theta)$ where $\pi(\theta)$ continuous in Θ . To easy notation, we denote the likelihood as $L_n(\theta) := f(x_{1:n}|\theta) = \prod_{i=1}^n f(x_i|\theta)$. So the posterior PDF of θ is

$$\pi(\theta|x_{1:n}) = \frac{L_n(\theta)\pi(\theta)}{\int L_n(\theta)\pi(\theta)\mathrm{d}\theta} = \frac{\prod_{i=1}^n f(x_i|\theta)\pi(\theta)}{\int \prod_{i=1}^n f(x_i|\theta)\pi(\theta)\mathrm{d}\theta}$$

We present the Bernstein-von Mises theorem which (more-or-less) states that the posterior PDF $\pi(\theta|x_{1:n})$ is close to a normal density N $\left(\theta|\hat{\theta}_n,\frac{1}{n}\mathscr{I}(\theta^*)^{-1}\right)$ centered at $\hat{\theta}_n$ (the MLE of (16)), with variance $\frac{1}{n}\mathscr{I}(\theta^*)^{-1}$ when θ^* is the true value, when the size of the number of the observables n is really big. Here, $\mathscr{I}(\theta)$ is the Fisher information, where

$$\mathscr{I}(\theta) = \mathsf{E}_F \left(\left(\nabla_\theta \log f(x|\theta) \right)^\top (\nabla_\theta \log f(x|\theta)) | \theta \right) = -\mathsf{E}_F \left(\nabla_\theta^2 \log f(x|\theta) | \theta \right)$$

The following version of the theorem is due to Le Cam (1953). It equivalently states that the posterior PDF of (the linear transformation) $\vartheta = \sqrt{n}(\theta - \hat{\theta}_n)$ given the data

$$\pi(\vartheta|x_{1:n}) = \frac{L_n(\vartheta \frac{1}{\sqrt{n}} + \hat{\theta}_n)\pi(\vartheta \frac{1}{\sqrt{n}} + \hat{\theta}_n)}{\int L_n(\vartheta \frac{1}{\sqrt{n}} + \hat{\theta}_n)\pi(\vartheta \frac{1}{\sqrt{n}} + \hat{\theta}_n)d\vartheta}$$

- approaches the PDF of N(0, $\mathscr{I}(\theta^*)^{-1}$) and $n \to \infty$. Remarkably (!!!), this limiting posterior distribution is independent of the prior distribution $\pi(\theta)$.
- Theorem 5. (Bernstain-von Mises) Let x_1 , x_2 ,... be IID random variables drawn from a sample distribution with density $f(x|\theta)$, $\theta \in \Theta$, and let $\theta^* \in \Theta$ denote the true value of θ . Let $L_n(\theta) = f(x_{1:n}|\theta)$ denote the likelihood. Assume that the prior density $\pi(\theta)$ is continuous and $\pi(\theta) > 0$ for all $\theta \in \Theta$. Under the following assumptions:
 - **d1** Θ is an open subset of \mathbb{R}^k
 - **d2** second partial derivatives of $f(x|\theta)$ with respect to θ exist and are continuous for all x, and may be passed under the integral operator in $\int f(x|\theta) dx$

d3 there is a function K(x) such that $\mathrm{E}^{f(x|\theta_0)}(K(x)) < \infty$ and each component of $\nabla^2_{\theta} \log(f(x|\theta))$ is bounded in absolute value by K(x) uniformly in some neighborhood of θ^*

d4
$$\mathscr{I}(\theta_0) = -E_F\left(\nabla_{\theta}^2 \log f(x|\theta)|\theta_0\right)$$
 is positive definite

d5 (identifiability) $f(x|\theta) = f(x|\theta^*)$ a.s. then $\theta = \theta^*$

It is

$$\frac{L_n(\hat{\theta}_n + \vartheta \frac{1}{\sqrt{n}})}{L_n(\hat{\theta}_n)} \pi(\hat{\theta}_n + \vartheta \frac{1}{\sqrt{n}}) \xrightarrow{a.s.} \exp(-\frac{1}{2}\vartheta^{\top} \mathscr{I}(\theta_0)\vartheta) \pi(\theta^*), \tag{4}$$

where $\hat{\theta}_n$ is the strongly consistent sequence of roots of the likelihood equation (16) of Theorem 17. If, additionally,

$$\int_{\Theta} \frac{L_n(\hat{\theta}_n + \vartheta \frac{1}{\sqrt{n}})}{L_n(\hat{\theta}_n)} \pi(\hat{\theta}_n + \vartheta \frac{1}{\sqrt{n}}) d\vartheta \xrightarrow{a.s.} \int_{\Theta} \exp(-\frac{1}{2}\vartheta^{\top} \mathscr{I}(\theta^*)\vartheta) \pi(\theta^*) d\vartheta \tag{5}$$

2 then

$$\int_{\Theta} |\pi(\vartheta|x_{1:n}) - N(\vartheta|0, \mathscr{I}(\theta^*)^{-1})|d\theta \xrightarrow{a.s.} 0.$$
(6)

Proof. We prove: fist the existence of the the MLE, then (4), and finally (6).

• Existence of consistent roots

I gonna use Theorem 17 to prove that there exists a consistent sequence $\hat{\theta}_n$ of roots of (16), and hence I need to show that its conditions are satisfied. Let $S_{\rho} = \{\theta : |\theta - \theta^*| \le \rho\}$, with $\rho > 0$, be a neighborhood of θ^* on which (d3) is satisfied. So for $\Theta = S_{\rho}$ (in Theorem 17) I have:

- Conditions (c1), (c2), (c5), of that theorem are automatic!
- Condition (c4) follows from continuity of $f(x|\theta)$ at θ . !
- Condition (c3), ok.... By Taylor's theorem, I expand $U(x,\theta) = \log(f(x|\theta)) \log(f(x|\theta^*))$ around θ^* as

$$\begin{split} U(x,\theta) &= U(x,\theta^*) + \nabla_{\theta} \log(f(x|\theta^*))(\theta - \theta^*) \\ &+ (\theta - \theta^*) \int_0^1 \int_0^1 v \nabla_{\theta}^2 \log(f(x|\theta_0 + uv(\theta - \theta^*))) \mathrm{d}u \mathrm{d}v \, (\theta - \theta^*) \end{split}$$

So because $U(x,\theta^*)=0$, $\nabla_{\theta}\log(f(x|\theta^*))$ is integrable, and the components of $\nabla^2_{\theta}\log(f(x|\theta))$ are bounded by K(x) uniformly on S_{ρ} , we get that $U(x,\theta)$ is bounded on S_{ρ} . So (c3) holds. So

• Asymptotic Normality

Let

$$\ell_n(\theta) = \log(L_n(\theta));$$
 $\dot{\ell}_n(\theta) = \nabla_{\theta} \log(L_n(\theta));$ $\ddot{\ell}_n(\theta) = \nabla_{\theta}^2 \log(L_n(\theta))$

By Taylor's Theorem 14, we expand $\ell_n(\theta)$ around $\hat{\theta}_n$ as

$$\ell_n(\theta) = \ell_n(\hat{\theta}_n) + \dot{\ell}_n(\hat{\theta}_n)(\theta - \hat{\theta}_n) + (\theta - \hat{\theta}_n)^{\top} I_n(\theta)(\theta - \hat{\theta}_n)$$

where

$$I_n(\theta) = -\frac{1}{n} \int_0^1 \int_0^1 v \ddot{\ell}_n(\hat{\theta}_n + uv(\theta - \hat{\theta}_n) du dv)$$
 (7)

Because, it is $\dot{\ell}_n(\hat{\theta}_n) = 0$ a.s., we get:

$$\ell_n(\theta) = \ell_n(\hat{\theta}_n) + (\theta - \hat{\theta}_n)^{\top} I_n(\theta) (\theta - \hat{\theta}_n) \iff \frac{L_n(\theta)}{L_n(\hat{\theta}_n)} = \exp(-(\theta - \hat{\theta}_n)^{\top} I_n(\theta) (\theta - \hat{\theta}_n)), \text{ a.s.}$$

Let's work on the asymptotics of (7); it is:

$$\frac{1}{n}\ddot{\ell}_n(\theta) = \frac{1}{n}\nabla_{\theta}^2 \log(L_n(\theta)) = \frac{1}{n}\nabla_{\theta}^2 \log(\prod_{i=1}^n f(x_i|\theta)) = \frac{1}{n}\sum_{i=1}^n \nabla_{\theta}^2 \log(f(x_i|\theta))$$

$$\stackrel{\text{a.s.}}{\longrightarrow} E_F\left(\nabla_{\theta}^2 \log f(x|\theta)|\theta_0\right) \tag{8}$$

as $n \to \infty$ by SLLN. Also, it is

$$E_F\left(\nabla_\theta^2 \log f(x|\theta)|\theta_0\right) = -\mathscr{I}(\theta_0) \tag{9}$$

by Lemma ??. Hence, from (8) and (9), I get

$$\frac{1}{n}\ddot{\ell}_n(\theta) \xrightarrow{\text{a.s.}} -\mathscr{I}(\theta_0) \tag{10}$$

Therefore,

$$I_n(\hat{\theta}_n + \vartheta \frac{1}{\sqrt{n}}) = -\frac{1}{n} \int_0^1 \int_0^1 v \ddot{\ell}_n(\hat{\theta}_n + uv(\theta - \hat{\theta}_n) du dv \xrightarrow{\text{a.s.}} \frac{1}{2} \mathscr{I}(\theta^*)$$
 (11)

because of (10) and because of $\hat{\theta}_n \xrightarrow{\text{a.s.}} \theta^*$ from Theorem 17.

So back to what we wish to prove, and putting all these together, it is

$$\frac{L_n(\hat{\theta}_n + \vartheta \frac{1}{\sqrt{n}})}{L_n(\hat{\theta}_n)} \pi(\hat{\theta}_n + \vartheta \frac{1}{\sqrt{n}}) = \exp(-\vartheta^\top I_n(\hat{\theta}_n + \vartheta \frac{1}{\sqrt{n}})\vartheta) \pi(\hat{\theta}_n + \vartheta \frac{1}{\sqrt{n}})$$

$$\xrightarrow{\text{a.s.}} \exp(-\frac{1}{2}\vartheta^\top \mathscr{I}(\theta^*)\vartheta) \pi(\theta^*)$$

because of (11) and $\hat{\theta}_n \xrightarrow{\text{a.s.}} \theta^*$.

Now, about the second part of the proof. If (5) then by dividing (4) and (5), I get

$$\pi(\vartheta|x_{1:n}) \xrightarrow{\text{a.s.}} N(\vartheta|0, \mathscr{I}(\theta^*)^{-1})$$

for all $\theta \in \Theta$. Hence By Scheffe's Theorem 12 we get (6).

Remark 6. Note that Bernstain-von Mises Theorem 5 and Theorem A imply that the posterior distribution of $\vartheta = \sqrt{n}(\theta - \hat{\theta})$ given the data converges to the Normal distribution $N(0, \mathscr{I}(\theta_0)^{-1})$ in Total Variation Norm, namely

$$\sup_{\forall A \in \Theta} |\pi(\vartheta \in A|x_{1:n}) - \mathbf{N}(\vartheta \in A|0, \mathscr{I}(\theta^*)^{-1})| \mathrm{d}x \to 0, \quad \text{as } n \to \infty$$

Remark 7. Bernstain-von Mises Theorem 5 says that the posterior PDFs of $\sqrt{n}\mathscr{I}(\theta^*)^{1/2}(\theta-\hat{\theta}_n)$ converges to the PDF of Normal N(0, I_k). Hence, this imply the CDF of $\sqrt{n}\mathscr{I}(\theta^*)^{1/2}(\theta-\hat{\theta}_n)$ converges to the PDF of Normal N(0, I_k) as well. Namely

$$\sqrt{n}\mathscr{I}(\theta^*)^{1/2}(\theta-\hat{\theta}_n) \xrightarrow{D} z$$
 where $z \sim N(0, I_k)$ (convergence in distribution),

and $\mathscr{I}(\cdot) = [\mathscr{I}(\cdot)^{1/2}][\mathscr{I}(\cdot)^{1/2}]^{\mathsf{T}}$.

Corollary. If the conditions of Bernstain-von Mises Theorem 5 hold, and if $\mathcal{I}(\theta)$ is continuous at Θ , then

$$\sqrt{n}\mathscr{I}(\hat{\theta}_n)^{-1/2}(\theta - \hat{\theta}_n) \xrightarrow{D} z, \quad \text{where } z \sim N(0, I_k)$$
(12)

this is the result was stated in Stat Concepts II notes (Term 2 2017).

Proof. From Bernstain-von Mises Theorem implies $\sqrt{n}(\theta - \hat{\theta}_n) \xrightarrow{D} N(0, \mathscr{I}(\theta^*)^{-1})$ or equiv.

$$Y_n = \sqrt{n} \mathscr{I}(\theta^*)^{1/2} (\theta - \hat{\theta}_n) \xrightarrow{D} Z, \tag{13}$$

with $Z \sim N(0, I_k)$. From Theorem 17 I get $\hat{\theta}_n \to \theta^*$ a.s.. Due to continuity of $\mathscr{I}(\theta)$, it is

$$X_n = \mathscr{I}(\hat{\theta}_n)^{1/2} \mathscr{I}(\theta^*)^{-1/2} \xrightarrow{\text{a.s.}} I_k \tag{14}$$

According to Slutsky's theorem¹ by multiplying (13),(14), I get $X_nY_n \xrightarrow{D} Z$, i.e., $\sqrt{n}\mathscr{I}(\hat{\theta}_n)^{1/2}(\theta - \hat{\theta}_n) \xrightarrow{D} N(0, I_k)$.

Asymptotic efficiency of Bayes Estimates

Consider the squared error loss $\ell(\theta, \delta) = (\theta - \delta)^{\top}(\theta - \delta)$ which implies the posterior expectation $\delta^{\pi} = E_{\Pi}(\theta|x_{1:n})$ as Bayes point estimator. Given that, we can interchange the limit and the expectation operator of $\theta = \sqrt{n}(\theta - \hat{\theta}_n)$, we get $\sqrt{n}(\delta^{\pi} - \hat{\theta}_n) \to 0$ meaning that δ^{π} and $\hat{\theta}_n$ are asymptotically equivalent; i.e. $\delta^{\pi} = \hat{\theta}_n$ a.s.. Hence

$$\sqrt{n}(\delta^{\pi} - \theta^*) = \sqrt{n}(\delta^{\pi} - \hat{\theta}_n) + \sqrt{n}(\hat{\theta}_n - \theta^*) \xrightarrow{D} N(0, \mathscr{I}(\theta^*)^{-1})$$

which means that the Bayes estimator is asymptotically efficient.

¹Sluky's theorem: If $Y_n \xrightarrow{D} Z$ and $X_n \xrightarrow{\text{a.s.}} c$, where $c \in \mathbb{R}^k$ is a constant, then $X_n Y_n \xrightarrow{D} cZ$

3 Implementation

Nowadays, Bayesian asymptotics can be mainly be used for theoretical purposes such as investigating the behavior of Bayesian procedures-methods-algorithms mainly addressing big dataset problems.

Below, we demonstrate a toy example for pedagogical purposes.

Example 8. Consider a Bayesian model

$$\begin{cases} x_i | \theta & \stackrel{\text{iid}}{\sim} \text{Bn}(\theta), \\ \theta & \sim \text{Be}(a, b) \end{cases} i = 1, ..., n$$

where a > 0, b > 0, and n > 2.

- 1. Find the asymptotic posterior distribution of θ as $n \to \infty$, by using Bernstein-von Mises Theorem.
- 2. What is the Bayes estimators under the square loss and under the 0-1 loss. How do they behave as $n \to \infty$.

Solution.

1. I will find the MLE by computing the roots of the equation (16). The likelihood is $f(x_{1:n}|\theta) = \prod_{i=1}^n \text{Bn}(x_i|\theta)$. Then

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \log f(x_{1:n}|\theta) = \frac{\mathrm{d}}{\mathrm{d}\theta} \sum_{i=1}^{n} \log(\mathrm{Bn}(x_{i}|\theta)) = \frac{n\theta - \sum_{i=1}^{n} x_{i}}{\theta(1-\theta)} \Longrightarrow$$

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \log f(x_{1:n}|\theta)|_{\theta = \hat{\theta}_{n}} = 0 \implies \hat{\theta}_{n} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

Now, I will find the Fisher Information; it is

$$\frac{\mathrm{d}^2}{\mathrm{d}\theta^2} \log(f(x|\theta)) = \frac{\mathrm{d}^2}{\mathrm{d}\theta^2} \log(\mathrm{Bn}(x|\theta)) = -\frac{x}{\theta^2} - \frac{1-x}{(1-\theta)^2} \Longrightarrow$$

$$\mathscr{I}(\theta) = -\mathrm{E}_{\mathrm{Bn}(\theta)} \left(-\frac{x}{\theta^2} - \frac{1-x}{(1-\theta)^2} \right) = \frac{1}{\theta(1-\theta)} \tag{15}$$

So according to Bernstein-von Mises Theorem 5, it is

$$\pi(\theta|x_{1:n}) \xrightarrow{\text{a.s.}} \mathbf{N}(\theta|\underbrace{\frac{1}{n}\sum_{i=1}^{n}x_{i}}_{=\hat{\theta}_{-}},\underbrace{\frac{1}{n}\theta^{*}(1-\theta^{*})}_{=\frac{1}{n}\mathscr{I}(\theta^{*})^{-1}})$$

2. The exact posterior distr. is Be $(a+n\bar{x},b+n-n\bar{x})$. The squared loss and the 0-1 loss imply the posterior mean $\delta_1(x_{1:n})=\frac{n\bar{x}+a}{n+a+b}$ and posterior mode $\delta_2(x_{1:n})=\frac{n\bar{x}+a-1}{n+a+b-2}$ as Bayes estimators correspondingly. Both converge to the MLE $\hat{\theta}_n=\bar{x}$ since $\lim_{n\to\infty}\delta_1(x_{1:n})=\bar{x}$ and $\lim_{n\to\infty}\delta_2(x_{1:n})=\bar{x}$.

Appendix

A An inventory of definitions

- The following are definitions and statements used in proofs in Sections 1 and 2.
- Definition 9. (Types of converge) Assume a probability triplet $\{\Omega, \mathcal{F}, P\}$, and a sequence of random quantities $\{x_n; n=1,2,...\}$, such that $x_n: \Omega \to \mathbb{R}^d, d>0$. Then
 - $\{x_n\}$ converges almost surely to a random quantify x if and only if

$$P(\lim_{n\to\infty} x_n = x) = 1.$$

- It is demoted as $x_n \xrightarrow{\text{a.s.}} x$.
- $\{x_n\}$ converges in distribution to a random quantify x if and only if for all $\epsilon > 0$,

$$\lim_{n \to \infty} F_{x_n}(t) = F_x(t)$$

- for all continuity points t of F. in \mathbb{R} , where $F_{x_n}(t) = P(x_n \leq t)$ and $F_x(t) = P(x \leq t)$ are CDFs of x_n and x. It is demoted as $x_n \xrightarrow{D} x$.
- $\{x_n\}$ converges in total variation a random quantity x if and only if

$$\lim_{n \to \infty} \sup_{\forall B \subset \Theta} |P(x_n \in B) - P(x \in B)| = 0,$$

- It is demoted as $x_n \xrightarrow{\text{T.V.}} x$.
- **Definition 10.** (Upper semicontinuous) A real-valued function, $f(\theta)$, defined on Θ is said to be upper semicontinuous (u.s.c.) on Θ , if for all $\theta \in \Theta$ and for any sequence θ_n in Θ such that $\theta_n \to \theta$, we have

$$\lim_{n \to \infty} \sup f(\theta_n) \le f(\theta)$$

Proposition 11. If $\pi_n(\cdot)$ and $\pi(\cdot)$ are the PDFs of x_n and x correspondingly, then

$$\sup_{\forall B \subset \Theta} |P(x_n \in B) - P(x \in B)| = \int \frac{1}{2} |\pi_n(t) - \pi(t)| dt$$

Theorem 12. (Scheffe convergence theorem²) If $f_n(\cdot)$ and $g(\cdot)$ are density functions such that for all $x \in \mathcal{X}$ $\lim_{n \to \infty} f_n(x) = g(x)$, then

$$\lim_{n \to \infty} \int_{\mathcal{X}} |f_n(x) - g(x)| \mathrm{d}x = 0$$

- (that is a point-wise convergence of densities)
- Theorem If random variables x_n has density $f_n(x)$ and random variable x has density g(x), and if $\lim_{n\to\infty} \int_{\mathcal{X}} |f_n(x) g(x)| \mathrm{d}x = 0$ then

$$\sup_{\forall A \subset \mathcal{X}} |\mathsf{P}(x_n \in A) - \mathsf{P}(x \in A)| dx \to 0, \quad \text{as } n \to \infty$$

- that is called convergence in Total Variation.
- Theorem 13. (A Strong low of large numbers (SLLN)) Let $\{x_i\}_{i=1}^n$ be a sequence of IID random quantities, with $E(x_i) = \mu < \infty$, and $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$ then $\bar{x}_n \xrightarrow{a.s.} \mu$.

²This is not the original version, but it is what we need

Theorem 14. (Taylor's theorem) If $f: \mathbb{R}^d \to \mathbb{R}$, and if $\nabla^2 f(x) = \nabla (\nabla f(x))^\intercal$ is continuous in the ball $\{x \in \mathcal{X} : |x - x_0| < r\}$, then for |t| < r, it is

$$f(x_0 + t) = f(x_0) + \nabla f(x_0)t + t^{\mathsf{T}} \cdot \int_0^1 \int_0^1 u \nabla^2 f(x_0 + uvt) du dv \cdot t$$

Lemma 15. (Shannon-Kolmogorov Information Inequality) Let $f_0(x)$ and $f_1(x)$ be densities with respect to Lesbeque measure dx. Then

$$\mathit{KL}(f_0, f_1) = \mathsf{E}^{f_0(\mathsf{d} x)}(\log \frac{f_0(x)}{f_1(x)}) = \int_{\mathcal{X}} \log \frac{f_0(x)}{f_1(x)} f_0(x) \mathrm{d} x \ge 0,$$

with equality if and only if $f_1(x) = f_0(x)$ a.s.

Lemma 16. (Passing the derivative under the integral operator) If $(\partial/\partial\theta)g(x,\theta)$ exists and is continuous in θ for all x and all θ in an open interval x and if $|(\partial/\partial\theta)g(x,\theta)| \le K(x)$ on x where $|f(x)| \le K(x) \le K$

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \int g(x,\theta) \mathrm{d}x = \int \frac{\mathrm{d}}{\mathrm{d}\theta} g(x,\theta) \mathrm{d}x$$

B Strong consistency of Maximum Likelihood Estimates

In frequentist statistics, given that $\nabla_{\theta} f(x|\theta)$ exists, one may seek to find the MLE $\hat{\theta}_n$ as the solution of the likelihood equation:

$$\hat{\theta}_n: \nabla_{\theta} \log f(x_{1:n}|\theta)|_{\theta=\hat{\theta}_n} = \sum_{i=1}^n \nabla_{\theta} \log f(x_i|\theta)|_{\theta=\hat{\theta}_n} = 0$$
(16)

The following theorem states (more or less) that the MLE $\hat{\theta}_n$ in (16) is consistent.

Theorem 17. (Strong consistency of MLE) Let x_1 , x_2 ,... be IID random variables with density $f(x|\theta)$ (with respect to measure dx), $\theta \in \Theta$, and let θ^* denote the true value of θ . If the following conditions are satisfied:

- ${f c1} \ \ f C1 \ \ \Theta$ is a closed and bounded set in \mathbb{R}^k
- **c2** $f(x|\theta)$ is u.s.c. in θ for all $x \in \mathcal{X}$
- c3 there is a function K(x) such that $\mathrm{E}^{f(x|\theta^*)}(|K(x)|) < \infty$ and

$$\log(f(x|\theta)) - \log(f(x|\theta^*)) \le K(x), \quad \forall x, \forall \theta$$

- **c4** for all $\theta \in \Theta$ and sufficiency small $\rho > 0$, $\sup_{|\theta' \theta| < \rho} f(x|\theta')$ is measurable in x
- c5 (identifiability) $f(x|\theta) = f(x|\theta^*)$ a.s. then $\theta = \theta^*$
- then, for any sequence of maximum-likelihood estimates $\hat{\theta}_n$ of θ , it is

$$\hat{\theta}_n \xrightarrow{a.s.} \theta^* \tag{17}$$

The following theorem states (more or less) that the MLE is asymptotically normal.

Theorem 18. (Cramer) Let x_1 , x_2 ,... be IID random variables density $f(x|\theta)$ (with respect to some distribution $F(x|\theta)$), $\theta \in \Theta$, and let θ^* denote the true value of θ . If the conditions $f(x|\theta)$ (d1)-(d5) stated in Theorem 5 (check in the next Theorem) are satisfied, then there exists a strongly consistent sequence $\hat{\theta}_n$ of roots of the likelihood equation (16) such that

$$\sqrt{n}(\hat{\theta}_n - \theta^*) \xrightarrow{D} N(0, \mathscr{I}(\theta^*)^{-1})$$

³The conditions of the theorem are the (d1)-(d5) in Theorem 5.