₩ 第二次作业

T1

H5 (a)

符号位为0, 尾数为23位0, 指数为00000001; 实际有效数字为1, 实际指数为1-127=-126, 所以最小规约正数为 1×2^{-126}

H5 (b)

非规格数指数为00000000,实际指数为 -126; 尾数为23位1,隐藏的整数部分为0,所以实际尾数为 0.11111...,所以最大非规约数为 0.11111...× 2^{-126} \approx 1×2^{-126}

T2

最高位符号位为0,剩下31位1,所以32位二进制补码能表示的最大正数为231-1

T3

异或运算逻辑表达式为 $C = \overline{AB} + A\overline{B} = \overline{AB} + \overline{A}\overline{B} = \overline{AB} + \overline{A} + \overline{B}$,用一个与门,两个或非门即可实现,如下图:

① 上图为在logisim中画的,上面三角形的是power,下面三条杠的是ground

T4

	A	В	C	OUT
	0	0	0	
	0	0	1	
	0	1	0	
	0	1	1	1
Ø	1	0	0	1
	1	0	1	0
	1	1	0	
	1	1	1	

根据已知的真值表可以得到上面的电路,其中第一个框是不确定的,但不影响真值表,根据电路填出真值表如下:

A	В	C	OUT
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

T5

- \bigcirc 0 OR X = X
- \bigcirc 1 OR X = 1
- \bigcirc 0 AND X = 0
- \bigcirc 1 AND X = X

\circ 0 XOR X = X

T6

电路1为组合逻辑,设初始A,B均为0,当A为0时,D=C,当A为1时,D=B,A起选择作用;

电路2为时序逻辑,设初始A,B均为0,A,B中任意一个发生改变时D均会翻转,没有选择功能。

T7

H5 (a)

25=32个输出

H5 (b)

1bit 位的输出, 16=2⁴, 所以需要4bit位的选择信号

Т8

H5 (a)

3个门延迟

H5 (b)

逻辑表达式为 z = ABCDE = ((AB)(CD)E),有三个门延迟;若不限制与门的输入位数,那么可以用一个 5 输入与门完成。

T9

所以 50 个周期后,变化了 100-1=99 次,99%12=3 所以最终状态为 111000 6个周期后回到初始状态。

T10

NAND真值表为

A	В	C
0	0	1
0	1	1
1	0	1
1	1	0

对于任意的输入A与B,都有唯一的输出C,且输出C只与输入AB有关,所以逻辑完备。

T11

H5 (a)

Figure 1.

H5 (b)

共有 NULL HHT HTH HTHH 五种状态, 所以需要三个状态变量

T12

根据模5的余数分为5种状态,可画出状态机如下:

T13

28个内存位置,每个内存位置包含8字节。