From Greedy to Gracious Al

Teaching Machines to Play Nice

Al in News Proliferation and Autonomy

Image (CC): https://commons.wikimedia.org/wiki/File:ChatGPT_logo.svg
Image (CC): https://robotics.utoronto.ca/news/surgical-robotics-seminar-with-ucsds-michael-yip/
Image: https://www.xenonstack.com/use-cases/recommendation-system

Problems with Al

Recommender Systems

- Recommender Systems causing addiction
 - Rising teen depression rates
 - Hours spend on platforms per day
- News & Reporting
 - Clickbait is attention grabbing

Problems with Al Cost Savings — At what cost?

- Al becomes
 - more Autonomous
 - more Consequential to our lives

Reinforcement Learning

Not trained on datasets

 Learn by interacting with environment

Reinforcement Learning Reward Function

- Goals to Learned Behaviour
 - Pick up Blocks
 - Increase time users spend on platform
 - Increase profits

Self-Interested

Self-Interested: Demo

Aim

- Find approach to make Alphay nice
 - Teach it to care about external factors, while still pursuing own goals

Motivations & Applications

- Al as managers
 - Be effective without overworking employees
- Recommender Systems (News / Instagram)
 - Recommend engaging stories
 - Do not compromise quality (biased reporting)
 - Consider mental health (time spent on platform)

Rewards: Approach A

Respect Agent B's Goals — Design

Add Red's reward to Green's reward

Must know B's goals

Rewards: Approach A - Demo

Custom Rewards

Respect Agent B's Goals: Limitations

- Limitations:
- Must know B's goals (a priori)
 - Consider C, D, ...
 - Not scalable
- Can be mistaken about goals
 - Goals can change over time

Custom Rewards Force to Unlock door

 Agent A's reward is blocked / decreased while door is locked

- Limitations
 - Incentive is specific to environment
 - Does not generalise
 - Does not scale
 - Specification Gaming

Specification Gaming

Handcrafting Rewards is Hard!

Inverse Reinforcement Learning

Reward Approach C

Figure 1: Inverse Reinforcement Learning (Kasenberg, 2017)

Figure 2: Modeled v. Learned Reward Function (Christiano et al., 2017)

Custom Rewards: Learned

Learn B's Goals

 Reward Function R is learned by observing B's behaviour (ML model)

- Method is:
 - Agent agnostic (train more functions)
 - Environment agnostic (not predefined)

Custom Rewards: Learned Learn B's Goals

Custom Rewards: Learned

Learn B's Goals: Result

Extra Environments

Shared Resources & Adversarial

- Two other environments
- Shared Resources
 - Players have a shared pool of resources
 - Zero-sum game
- Adversarial
 - A touching B slows down B

References

- Christiano, P.F., Leike, J., Brown, T., Martic, M., Legg, S. and Amodei, D., 2017. Deep reinforcement learning from human preferences. Advances in neural information processing systems, 30.
- Kasenberg, D. (2017). Al Ethics: Inverse Reinforcement Learning to the Rescue? [online] Available at: https://dkasenberg.github.io/inversereinforcement-learning-rescue/.
- Kolbjørnsrud, V., Amico, R., & Thomas, R. J. (2017). Partnering with AI: How organizations can win over skeptical managers. Strategy and Leadership, 45(1), 37-43