ΜΑΣ029 - Στοιχεία Γραμμικής Άλγεβρας Χειμερινό εξάμηνο 2020

Ασκήσεις 3ου Κεφαλαίου

- 1. Έστω τα διανύσματα $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ -6 \end{bmatrix}$, $\mathbf{a_1} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$, $\mathbf{a_2} = \begin{bmatrix} 5 \\ -6 \\ 8 \end{bmatrix}$ και $\mathbf{a_3} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$. Προσδιορίστε αν το διάνυσμα \mathbf{b} είναι γραμμικός συνδυασμός των $\mathbf{a_1}$, $\mathbf{a_2}$ και $\mathbf{a_3}$ κι αν ναι να βρείτε τον γραμμικό συνδυασμό.
- **2.** Έστω $\mathbf{a_1} = \begin{bmatrix} 1 \\ 4 \\ -2 \end{bmatrix}$, $\mathbf{a_2} = \begin{bmatrix} -2 \\ -3 \\ 7 \end{bmatrix}$ και $\mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ h \end{bmatrix}$. Για ποια ή ποιες τιμές του h είναι το \mathbf{b} στο $Span\{\mathbf{a_1}, \mathbf{a_2}\}$;
- **3.** Aν $\mathbf{u}=\begin{bmatrix}0\\4\\4\end{bmatrix}$ και $A=\begin{bmatrix}3&-5\\-2&6\\1&1\end{bmatrix}$, εξετάσετε αν παράγεται το \mathbf{u} από τις στήλες του A.
- **4.** Αν $A = \begin{bmatrix} 2 & -1 \\ -6 & 3 \end{bmatrix}$ και $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$, δείξτε ότι η εξίσωση $A\mathbf{x} = \mathbf{b}$ δεν έχει λύση για όλα τα διανύσματα \mathbf{b} και περιγράψτε τα \mathbf{b} για τα οποία έχει λύση.
- 5. Δίνεται ότι

$$\begin{bmatrix} 4 & -3 & 1 \\ 5 & -2 & 5 \\ -6 & 2 & -3 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -7 \\ 3 \\ 10 \end{bmatrix}.$$

Βρείτε τους αριθμούς c_1 , c_2 και c_3 για τους οποίους ισχύει

$$\begin{bmatrix} -7 \\ -3 \\ 10 \end{bmatrix} = c_1 \begin{bmatrix} 4 \\ 5 \\ -6 \end{bmatrix} + c_2 \begin{bmatrix} -3 \\ -2 \\ 2 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}.$$

- **6.** Έστω $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3} \in \mathbb{R}^4$. Μπορεί να ισχύει $Span\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\} = \mathbb{R}^4$; Δικαιολογήστε την απάντησή σας.
- 7. Breíte to Span $\left\{\begin{bmatrix}1\\-1\\0\\2\end{bmatrix},\begin{bmatrix}3\\-1\\-4\\0\end{bmatrix},\begin{bmatrix}0\\-1\\2\\3\end{bmatrix},\begin{bmatrix}3\\1\\8\\-1\end{bmatrix}\right\}$.
- **8.** Προσδιορίστε σε καθεμία από τις περιπτώσεις αν τα διανύσματα είναι γραμμικώς ανεξάρτητα. Δικαιολογήστε την απάντησή σας.

1

$$1. \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 7 \\ 2 \\ -6 \end{bmatrix}, \begin{bmatrix} 9 \\ 4 \\ -8 \end{bmatrix}$$

$$2. \left[\begin{array}{c} 1 \\ -3 \end{array} \right], \left[\begin{array}{c} -3 \\ 9 \end{array} \right]$$

$$3. \left[\begin{array}{c} 5 \\ 1 \end{array}\right], \left[\begin{array}{c} 2 \\ 8 \end{array}\right], \left[\begin{array}{c} 1 \\ 3 \end{array}\right] \left[\begin{array}{c} -1 \\ 7 \end{array}\right]$$

$$4. \begin{bmatrix} 4 \\ -2 \\ 6 \end{bmatrix}, \begin{bmatrix} 6 \\ -3 \\ 9 \end{bmatrix}$$

$$5. \begin{bmatrix} 1 \\ 4 \\ -7 \end{bmatrix}, \begin{bmatrix} -2 \\ 5 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

9. Προσδιορίστε αν οι στήλες του πίνακα

$$A = \left[\begin{array}{rrr} 0 & -8 & 5 \\ 3 & -7 & 4 \\ -1 & 5 & -4 \\ 1 & -3 & 2 \end{array} \right]$$

είναι γραμμικώς ανεξάρτητες και δικαιολογήστε την απάντησή σας.

10. Για ποια ή ποιες τιμές του h είναι τα διανύσματα

$$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ -5 \\ 7 \end{bmatrix}, \begin{bmatrix} -1 \\ 5 \\ h \end{bmatrix}$$

γραμμικώς εξαρτημένα;

11. Έστω τα διανύσματα

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \quad \mathbf{v_2} = \begin{bmatrix} -3 \\ 9 \\ -6 \end{bmatrix}, \quad \mathbf{v_3} = \begin{bmatrix} 5 \\ -7 \\ h \end{bmatrix}.$$

Για ποια ή ποιες τιμές του h:

- (i) είναι το v_3 στο Span $\{v_1, v_2\}$?
- (ii) είναι το σύνολο $\{v_1, v_2, v_3\}$ γραμμικώς εξαρτημένο;