Mission 15: 학습 자동화 및 예측 분석 보고서

https://hub.docker.com/r/yena1/mission15-train

🔎 데이터 개요 및 EDA 요약

본 프로젝트에서는 학생의 학습 관련 데이터를 기반으로 성취도(Performance Index)를 예측하는 모델을 구축하였다.

7,000개의 데이터와 6개 열로 구성되어 있음, 주요 피처는 다음과 같다.

- 파일: researcher1/eda_modeling.ipynb
- 타깃: Performance Index (성취도 점수)
- 주요 인사이트:
 - Previous Scores ☑ 성취도와 매우 높은 상관관계 (r=0.91)
 - Hours Studied ☑ 중간 정도 영향 (r=0.37)
 - 。 나머지 변수들은 영향 미미
- 가설:
 - 。 이전 점수가 높을수록 성취도 상승
 - 。 공부 시간이 많을수록 성취도 상승
 - 수면시간/과외활동은 영향 미미

🐌 모델링 결과 요약

- ◆ 모델 구성 및 학습 개요
- 전처리 구성:

- o 수치형 피처(Hours Studied , Previous Scores , Sleep Hours , Sample Question Papers Practiced)
- 범주형 피처(Extracurricular Activities) → OneHotEncoder
- o ColumnTransformer 로 통합 후 파이프라인 구성
- 데이터 분할: 학습 80%, 검증 20%
- 모델 후보: Ridge Regression, Random Forest Regressor

✔ 하이퍼파라미터 튜닝

모델	주요 탐색 파라미터	최적 조합	RMSE(CV)
Ridge	α=[0.01~100], solver= ['auto','saga']	α=1.0, solver='saga'	2.0510
Random Forest	n_estimators=[100~300], max_depth=[5~20], min_samples_split= [2,5,10], max_features= ['sqrt','log2',None]	n_estimators=300, max_depth=10, min_samples_split=10	2.2815

▲ 최종 모델 선택

학습 데이터 기준 RMSE 비교 결과, Ridge Regression(RMSE:2.0510)이 Random Forest(RMSE: 2.2815) 보다 낮은 오차를 보여 최종 모델로 채택하였다.

검증 데이터 기준 Ridge Regression의 RMSE는 2.0106 값이 나왔다.

- 핵심 변수 영향:
 - o Previous Scores (+17.54)
 - Hours Studied (+7.41)
 - o Sleep Hours , Activities → 영향 미미

🧩 코드 아키텍처 도식 및 설명

🦰 전체 구조 개요

厂 researcher1/ → 학습 자동화				
├── data/	# 학습용 데이터			
mission15_train.csv				
mission15_test.csv				
shared/	# 학습 결과 저장 폴더			
L [timestamp]/model.pkl				
— train.py	# 데이터 전처리 + 하이퍼파라미터 튜닝 + 모델 학습 스크			
립트				
requirements.txt	# 모델 학습에 필요한 라이브러리 목록			
— Dockerfile	# 학습 환경 정의 파일			
· iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii				
— docker-compose.	yml # 연구자 1 이미지와 Jupyter 환경을 동시에 실행			
— inference.ipynb	# model.pkl 불러와 mission15_test.csv 추론 및 분			
석				
shared/	# 학습 결과(model.pkl) 자동 공유 폴더			
[timestamp]/model.pkl				
data/ # Docker Hub 이미지에서 전달받은 데이터				

🧶 동작 흐름 요약

🚇 연구자1: 학습 자동화 Docker 이미지 생성

1 환경 및 목적

• 목적

학습 과정을 완전히 자동화하여, 컨테이너 실행 시 데이터 로드 → 모델 학습 → 결과 저 장까지 일괄 수행

환경

Python 3.11-slim 기반 경량 이미지로 구성

• 자동 실행 구조

컨테이너 실행시 ENTRYPOINT ["python", "train.py"] 로 학습 자동 수행

2 주요 동작 흐름

단계	내용	설명
① 데이터 로드	mission15_train.csv	/app/data 경로에서 CSV 로드 후 DataFrame 생성
② 전처리 파이프라인 구성	ColumnTransformer	- 수치형(StandardScaler) + 범주형 (OneHotEncoder) 통합 전처리
③ 데이터 분할	train_test_split	학습:검증 = 8:2 비율로 분리
④ 모델 정의	Ridge / RandomForest	두 가지 모델을 Pipeline 으로 구성
⑤ 하이퍼파라미터 탐 색	GridSearchCV	- Ridge: α, solver 튜닝- RandomForest: 트리수, 깊이, 분할 조건 등 탐색
⑥ 성능 비교 및 최적		
모델 선택	RMSE 기준	교차검증 결과가 가장 낮은 모델을 best_model 로 선정
•	RMSE 기준 Ridge: coef_	

🧟 연구자2: 추론 및 분석 환경

1 환경 및 목적

• 목적

연구자1이 Docker Hub에 업로드한 학습 이미지를 활용해, model.pkl 을 불러와 예측 (inference)과 결과 분석을 수행한다.

환경

jupyter/base-notebook 기반 컨테이너 환경에서 Jupyther Lab을 실행한다.

- 자동 실행 구조
 - o docker-compose.yml 을 통해 두 컨테이너를 연동한다.
 - data-container : 연구자1 이미지(yena1/mission15-train:latest)
 - jupyter: 추론용 환경으로 실행

2 주요 동작 흐름

단계	내용	설명
① 모델 불러오기	model = load(model_path)	/app/shared 에서 학습된 model.pkl 로드
② 테스트 데이터 로드	mission15_test.csv	/app/data 경로에서 CSV 파일 로드
③ 예측 수행	preds = model.predict(X_test)	학습된 Ridge 모델을 활용한 성취도 예 측
④ 결과 저장	pd.DataFrame().to_csv(result_path)	/app/result/result_[timestamp].csv 장
⑤ 통계 분석	describe() , mean() , std() 등	예측값의 분포 확인 (평균·표준편차·최 솟값·최댓값)
⑥ 피처 영향 분석	coef_ 기반	Ridge 모델의 가중치(Feature Weight) 시각화
⑦ 시각화 및 해석	matplotlib , seaborn	예측 결과 히스토그램, 상관관계 히트맵 등 출력

☑ 결론

- 최적 모델: Ridge Regression (Validation RMSE = 2.0106)
- 핵심 영향 변수: Previous Scores , Hours Studied
- 의의:
 - 학습-추론 파이프라인이 완전히 자동화된 Docker 환경에서 재현 가능
 - 연구자 간 모델 공유 및 결과 분석이 용이한 협업 구조 구현
- 한계 및 개선 방향:
 - 。 입력 피처가 단순하여 모델의 예측 다양성은 제한적
 - 향후 학습 태도, 시간대, 과목별 점수 등 비선형 특성 확장 시
 Random Forest나 XGBoost 계열 모델로 성능 향상 기대 가능