과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 4	화면설명
≻Intro	• 병원 기록 속에 숨어 있는 데이터, AI가 읽어내면 달라집니다	① 본 학습 내용으로 들 어가기 전, 학습 주제
•학습열기	오늘날 우리는 병원에서 측정된 수많은 수치와 문진 결과들이 '차트'라는 이름으로 남겨진다	<mark>의 흥미를 이끌 만한</mark> 도입부의 내용이 있
•학습목표	는 사실에 익숙합니다. 하지만 이 데이터들은 단순히 보관되기 위한 것이 아닙니다. 예를 들어,	다면 제시해주세요.
▶학습하기 1. 코딩 환경 구 축	60세 남성 환자의 혈압, 심전도, 심박수, 협심증 여부와 같은 정보를 조합해 심장병 유무를 예 측할 수 있다면 어떨까요? 바로 이런 가능성을 실현시키는 도구가 머신러닝이며, 그 핵심에 데이터 전처리와 정규화가 있습니다. AI는 마법이 아닙니다. 제대로 준비된 데이터에서 출발	② ex. 관련 뉴스기사, 실생활과 관련된 이 야기 등 ③ 저작권 침해가 되지
2. 심장병 데이 터 전처리	할 때에만 그 성능을 온전히 발휘합니다. 이번 시간에는 심장병 데이터를 바탕으로 어떻게 데	않도록 내용을 구성 해 주세요.
3. 데이터 정규 화 및 시각화	이터를 가공하고, AI가 읽기 좋은 형태로 만드는지 직접 경험해보실 수 있습니다.	④ 출처가 있을 경우 반 드시 작성해 주세요.
▶ 적용하기		용어설명
≻Outro		
•문제풀기		
내 레 이 션	3	

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 4	화면설명
▶Intro•학습열기•학습목표		① 학습내용과 학습목표 는 강의계획서와 일 치해야 하며, 필요시 강의계획서를 수정할 수 있습니다.
 ▶학습하기 1. 코딩 환경 구축 2. 심장병 데이터 전처리 3. 데이터 정규화 및 시각화 	 실습을 위한 환경을 설정하고 필요한 패키지를 가져올 수 있다. 결측값 처리 및 특성 공학을 적용할 수 있다. 데이터 정규화 기법을 비교하고 특성 분포를 시각화할 수 있다. 	 ② 학습목표 ✓ 각 레슨에 맞는 학습목표를 2~3개 작성하 주세요. ③ 학습내용 ✓ 1회차 당 25분 분량이 되도록 2~3개 레슨으로 구성해주세요.
	◆ 학습내용1. 코딩환경 구축	✓ 학습내용과 레슨명은 일치해야 합니다.
▶적용하기	2. 심장병 데이터 전처리	용어설명
➤ Outro •문제풀기	3. 데이터 정규화 및 시각화	
내 레 이 션	4	4

과정명	PyTorch로 배우는 머신러닝	알고리즘	회차명 4		화면설명
≻Intro					
•학습열기					
•학습목표					
▶학습하기		간지			
1. 코딩 환경 구 축					
2. 심장병 데이 터 전처리					
3. 데이터 정규 화 및 시각화			코딩 환경 구축		
1 X M 1 1					
					0.111-1
▶적용하기					용어설명
≻Outro					
•문제풀기					
내 레 이 션					
0				5	
선					5

과정명	PyTorch	n로 배우는	· 머신러닝 알고리즘	회차명	4				화면설명
≻Intro	• 주요	요 속성							
•학습열기		열 이름	설명			결측값 유무	자료형 구분		
•학습목표		age	나이 (세)			없음	연속형		
> 취 소 취 기		sex	성별 (1: 남성, 0: 여성)			없음	범주형		
▶학습하기 1.코딩 환경 구		ср	가슴 통증 유형 (1: 무심장통 ~ 4: 싣	l각 통증)		없음	범주형		
1, 고 6 전 6 T 축		trestbps	안정시 혈압 (mm Hg)			없음	연속형		
2. 심장병 데이		chol	혈중 콜레스테롤 (mg/dl)			없음	연속형		
터 전처리		fbs	공복 혈당 > 120mg/dl 여부 (1: 참,	0: 거짓)		없음	범주형		
3. 데이터 정규 화 및 시각화		restecg	안정시 심전도 결과 (0: 정상, 1~2: ⁽	기상 소견 있음)		없음	범주형		
		thalach	최대 심박수			없음	연속형		
		exang	운동 유발 협심증 (1: 있음, 0: 없음)			없음	범주형		
		oldpeak	운동에 의한 ST depression			없음	연속형		
⋉정요청기		slope	ST segment 기울기 (0: 하강, 1: 평평	령, 2: 상승)		없음	범주형		용어설명
▶적용하기		ca	혈관 수 (0~3, 일부는 ?로 결측)			있음	연속형(정수)		0 120
≻Outro		thal	탈라슘 검사 결과 (3: 정상, 6: 결손,	7: 이상결손)		있음	범주형		
•문제풀기		target	심장병 유무 (0: 없음, 1~4: 있음 →	보통 이진 변환)	없음	범주형		
내 레								7	
이 선								,	
									7

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 4	화면설명
≻Intro	• 데이터시각화 및 정규화를 위한 라이브러리 가져오기	
•학습열기		
•학습목표	# 라이브러리 불러오기	
▶ 학습하기	import pandas as pd import numpy as np	
 1. 코딩 환경 구 축	import matplotlib.pyplot as plt	
2. 심장병 데이	import seaborn as sns	
터 전처리 3. 데이터 정규	# 최소-최대 정규화, 표준 정규화 함수 사용	
화 및 시각화	from sklearn.preprocessing import MinMaxScaler, StandardScaler	
▶ 적용하기		용어설명
≻Outro		
•문제풀기		
ᆥᄑᄱᆯᄼᅵ		
. 11		
내 레		
0	8	
션		

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	4	화면설명
≻Intro	• UCI 심장병 데이터 가져오기			
•학습열기	UCI 데이터 저장소 패키지 설치			
•학습목표	UCI 심장병 데이터 직접 가져오기			
▶학습하기 1. 코딩 환경 구축	# UCI 데이터 저장소 패키지 설치 !pip install ucimlrepo			
2. 심장병 데이 터 전처리	# UCI 데이터 저장소ㅇ에서 심장병 U from ucimlrepo import fetch_uc		^부 오기	
3. 데이터 정규 화 및 시각화	<pre># fetch dataset heart_disease = fetch_ucirepo # data (as pandas dataframes)</pre>		트지어 데이터ㅠ케이	
≻적용하기	<pre>X = heart_disease.data.feature y = heart_disease.data.targets</pre>			용어설명
▶Outro •문제풀기				
내 레 이 션			9	9

과정명	PyTorch로 배우는 머신러닝	알고리즘	회차명	4			화면설명
≽Intro	•			1			
•학습열기							
•학습목표							
▶학습하기		간지					
1. 코딩 환경 구 축							
2. 심장병 데이 터 전처리							
3. 데이터 정규 화 및 시각화	•	심정	당병 데이	터 전처리			
▶적용하기							용어설명
≻Outro							
•문제풀기							
내							
내 레 이 션						11	
션							1

과정명	PyTorch로 배우	우는	머신	· - - -	닝	알고리	즘		회차	명	4								화면설명	5
≻Intro	• 전처리를 수행할 df 생성																			
•학습열기																				
•학습목표	df = X.c	сору	· ()																	
▶학습하기 1. 코딩 환경 구 축	# <mark>열</mark> tar df['tar q df	_] =	np	.wh	ere(y.	num	<		1)		ng ol	dpeak	slope	ca	thal	target			
2. 심장병 데이		0	63		1	145	233	1				0	2.3		0.0	6.0	0			
5. 데이터 정규		1	67	1	4	160	286	0	2	108	3	1	1.5	2	3.0	3.0	1			
화 및 시각화		2	67	1	4	120	229	0	2	129)	1	2.6	2	2.0	7.0	1			
		3	37	1	3	130	250	0	0	187	7	0	3.5	3	0.0	3.0	0			
		4	41	0	2	130	204	0	2	172	2	0	1.4	1	0.0	3.0	0			
		•••		***	•••	***	•••				•		***	***	***	•••				
► 저용성기		298	45		1	110	264	0				0	1.2		0.0	7.0	1		용어설명	Ħ
▶적용하기		299	68		4	144	193	1				0	3.4		2.0	7.0	1		O TEC	
≻Outro		300	57		4	130	131	0				1	1.2		1.0	7.0				
•문제풀기		301	57		2	130	236	0				0	0.0		1.0	3.0	1			
· EMEN		302 303 ro			3	138	175	0	0	173	3	0	0.0	1	NaN	3.0	0			
		303 10	W5 ^	14 00	numms)														
내 레 이 션																		12		1

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	4						화면설명
▶Intro•학습열기•학습목표	• 결측값(missing value) 확인 df.info()					RangeIndex: 30	.core.frame.Data 3 entries, 0 to total 14 columns Non-Null Count 303 non-null 303 non-null	302 :):	
▶학습하기 1. 코딩 환경 구축 2. 심장병 데이터 전처리 3. 데이터 정규화 및 시각화	# 열별로 결측값 수 확인 df.isna().sum() # 결측값이 있는 열 이름 출력 df.columns[df.isnull().any Index(['ca', 'thal'], dtype='object')	(axis=0	∑ •	age sex cp trestbps chol fbs restecg	0 0 0	2 cp 3 trestbps 4 chol 5 fbs 6 restecg 7 thalach 8 exang 9 oldpeak 10 slope 11 ca 12 thal 13 target dtypes: float6	303 non-null 303 non-null 303 non-null 303 non-null 303 non-null 303 non-null 303 non-null 303 non-null 299 non-null 301 non-null 303 non-null 4(3), int64(11)	int64 int64 int64 int64 int64 int64 float64 float64 float64 float64	
➤ 적용하기 ➤Outro •문제풀기				exang oldpeak slope ca thal target	0 0 4 2	memory usage:	33.3 KB		용어설명
내 레 이 션								13	1

과정명	PyTorch로 배	우는	머신리	러닝 알고	리즘		회차당	병 4								화면설명	
≻Intro	• 하나라도	결측	i값O	있는 형	방 확인	인		·									
•학습열기	열 이름				설명	Ħ			결	측값 유무	자.	료형 구	구분				
•학습목표	ca	혈관	수 (0~	3, 일부는 ?	로 결측)			있음	-	연속학	형(정수	≃)				
▶학습하기	thal	탈라	슘 검시	· 결과 (3: 정	상, 6: 결	결손,	7: 이상결손)	있음	-	범주	형					
1. 코딩 환경 구 축	411		74 -	- 7101 (SI I	소II	취이										
2. 심장병 데이 터 전처리				흓값이 9 .any(a													
3. 데이터 정규 화 및 시각화		나라도 길 .isna()		있는 행 확(is=1)]	0												
	⊋	age s	sex cp	trestbps	chol	fbs	restecg t	halach	exang	o I dpeak	slope	ca	thal	target			
	87	53	0 3	128	216	0	2	115	0	0.0	1	0.0	NaN	0			
▶적용하기	166	52	1 3	138	223	0	0	169	0	0.0	1	NaN	3.0	0		용어설명	
	192	43	1 4	132	247	1	2	143	1	0.1	2	NaN	7.0	1			
≻Outro	266	52	1 4		204	1	0	156	1	1.0		0.0	NaN	1			
•문제풀기	287	58	1 2		220	0	0	144	0	0.4		NaN	7.0	0			
	302	38	1 3	138	175	0	0	173	0	0.0	1	NaN	3.0	0			
내 레 이 션															14		1

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	4	화면설명
≻Intro	• 결측값이 있는 열의 값 분포: ca, th	al		
•학습열기				
•학습목표	df.ca.value_counts(dropna=False), df.thal	.value_counts(dropna=False)	
▶학습하기 1. 코딩 환경 구축	⊕ (ca 0.0 176 1.0 65			
2. 심장병 데이 터 전처리	2.0 38			
3. 데이터 정규 화 및 시각화	3.0 20 NaN 4 Name: count, dtype: int64, thal 3.0 166 7.0 117 6.0 18			
▶적용하기	NaN 2 Name: count, dtype: int64)			용어설명
≻Outro				
•문제풀기				
내 레 이 션			15	1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 4	화면설명
≻Intro	• 결측값 처리	
•학습열기	연속형 자료 처리: 평균 값으로 대체	
•학습목표	범주형 자료 처리: 최빈 값으로 대체	
▶학습하기	행 제거	
1. 코딩 환경 구축 2. 심장병 데이	[19] # 연속형 'ca' 열의 결측값을 평균값으로 채움 df["ca"] = df["ca"].fillna(df["ca"].mean())	
터 전처리 3. 데이터 정규 화 및 시각화	# 범주형 'thal' 열의 결측값을 최빈값으로 채움 df["thal"] = df["thal"].fillna(df["thal"].mode()[0])	
	[20] # 하나라도 결측값이 있는 행이 없음을 확인 df[df.isna().any(axis=1)]	
▶적용하기	age sex cp trestbps chol fbs restecg thalach examg oldpeak slope ca thal target	용어설명
≻Outro		
•문제풀기		
내 레 이 션	16	

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 4	화면설명
≻Intro	• 범주형 변수의 원-핫 인코딩	
•학습열기	범주형(categorical) 변수로서, 숫자로 표현되어 있지만 숫자 간에 크고 작음의 의미가 없음	
•학습목표	변수 이름 설명	
▶학습하기 1. 코딩 환경 구 축	cp가슴 통증 유형 (1~4)restecg심전도 결과 (0~2)slopeST 기울기 (1~3)thal탈라슘 검사 결과 (3, 6, 7)	
2. 심장병 데이 터 전처리	함수 pd.get_dummies()	
3. 데이터 정규 화 및 시각화	범주형 변수를 각각의 고유 값(unique value) 별로 나누어 각각 하나의 열(column)로 바꿔 줌	
	각 열은 해당 범주의 여부를 나타냄 (1: 해당, 0: 해당 아님)	
	활용 예: cp_1 cp_2 cp_3 cp_4	
▶ 적용하기	'cp': [1, 2, 3, 4, 1, 2] 0 1 0 0 0 1 0 0	용어설명
≻Outro	2 0 0 1 0	
•문제풀기	3 0 0 0 1 4 1 0 0 0	
	5 0 1 0 0	
내 레 이 션	17	1

과정명	PyTorch로 배우는 머신러닝 알고i	리즘 회차명	4		화면설명
≻Intro					
•학습열기					
•학습목표		-1			
▶학습하기	간	지			
1. 코딩 환경 구 축					
2. 심장병 데이 터 전처리					
3. 데이터 정규 화 및 시각화		데이터 정규	화 및 시각화		
▶적용하기					용어설명
≻Outro					
•문제풀기					
내 레 이 션				19	
션					1

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	4		화면설명
≻Intro	• 연속형 데이터의 정규화				
•학습열기	정규화는 특성(feature) 들의 값을 공통	통된 척도(sc	ale)로 바꾸는 작업		
•학습목표	즉, 각 열의 값들을 0~1 범위 또-	는 평균 0, 표	표준편차 1 범위로 바꿈		
▶학습하기	모든 특성이 동일한 비중으로 처리되.	도록 만드는	기법		
1. 코딩 환경 구 축	데이터들의 출발선을 똑같이 맞춰주는	- 일종의 체	급 통일 작업		
2. 심장병 데이 터 전처리					
3. 데이터 정규 화 및 시각화					
▶ 적용하기					용어설명
≻Outro					
•문제풀기					
내 레 이 션				20	2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 4	화면설명					
≻Intro	 정규화의 필요성 						
•학습열기	특성 간 단위 차이로 인한 학습 불균형 방지						
•학습목표	예: age: 29 ~ 77, chol: 100 ~ 564, oldpeak: 0.0 ~ 6.2						
▶학습하기 1. 코딩 환경 구 축	→ 숫자가 큰 특성이 모델에서 더 중요한 것처럼 오해될 수 있음 정규화 없이 거리 계산 시 큰 수치를 가진 특성이 결정적 영향을 줌						
2. 심장병 데이 터 전처리	경사하강법(Gradient Descent)의 수렴 속도 향상						
3. 데이터 정규 화 및 시각화	정규화를 하지 않으면 손실 함수의 모양이 비대칭해져서 수렴 속도가 느려지거나 발산 위험이 있음						
	→ 신경망, 로지스틱 회귀에서 매우 중요						
	모델 성능 향상 및 안정성						
▶적용하기	정규화는 과적합을 줄이고, 일관된 모델 성능을 만드는 데 도움 됨	용어설명					
≻Outro							
•문제풀기							
내 레 이 션	21	2					

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명 4		화면설명
≻Intro	• 주요 정규화 기법			
•학습열기				
•학습목표	정규화 기법	수식	특징	
▶학습하기 1. 코딩 환경 구축	Min-Max Scaling (최소-최대 정규화)	- min) / (max - min)	0~1 사이로 조정, 간단함	
2. 심장병 데이 터 전처리 3. 데이터 정규 화 및 시각화	Z-score Standardization (표준 정규화)	- 평균) / 표준편차	평균 0, 표준편차 1 → 정규분포 기반	
	Robust Scaling (x	- median) / IQR	이상치에 강함	
▶적용하기	MaxAbs Scaling x ,	/ max(abs(x))	희소 행렬에 적합	용어설명
▶Outro •문제풀기				
내 레 이 션				22

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 4	화면설명
≻Intro	• 정규화 코드 준비	
•학습열기		
•학습목표	# 최소-최대 정규화, 표준 정규화 함수 사용 from sklearn.preprocessing import MinMaxScaler, StandardScaler	
▶학습하기 1. 코딩 환경 구 축	# 정규화 대상: 연속형 수치 변수만 선택 numeric_cols = ["age", "trestbps", "chol", "thalach", "oldpeak", "ca"]	
2. 심장병 데이 터 전처리		
3. 데이터 정규 화 및 시각화		
≻ 적용하기		용어설명
≻Outro		
•문제풀기		
내 레 이 션	23	2

과정명	PyTorch로 배-	우는	머신	<u></u>	고리즘	Ž	회차명	4				
≽Intro	• Z-score S	Scali	ing:	평균 0,	, 표준편	차 1						
•학습열기	이상치 김	각지,	정구	구분포 기	반 모델	에 적합						
•학습목표 ▷학습하기 1.코딩 환경 구			stand df_zs	core 정규화 ard_scaler core = df.c core[numeri	= StandardS opy()		aler.fit_tr	ansform(df_	zscore[nume	ric_cols];		
축 2. 심장병 데이		0	df_zs	cor <mark>e</mark> [numeri	c_cols]							
터 전처리 3. 데이터 정규		_		age	trestbps	cho l	thalach	oldpeak	ca			
3. 데이터 성규 화 및 시각화			0	0.948726	0.757525	-0.264900	0.017197	1.087338	-0.723095	11.		
			1	1.392002	1.611220	0.760415	-1.821905	0.397182	2.503851			
			2	1.392002	-0.665300	-0.342283	-0.902354	1.346147	1.428203			
			3	-1.932564	-0.096170	0.063974	1.637359		-0.723095			
▶적용하기			4	-1.489288	-0.096170	-0.825922	0.980537	0.310912	-0.723095			
≻Outro			200	1.040012	1 224422	0.224012		0.120272	0.722005			
•문제풀기			298	-1.046013 1.502821	-1.234430	0.334813		2.036303	-0.723095 1.428203			
*군제골기			300	0.283813		-2.238149		0.138373	0.352554			
			301	0.283813		-0.206864		-0.896862	0.352554			
내				-1.821745		-1.386944			0.000000			
레 이 션			303 rc	ows × 6 colu	umns							25

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 4	화면설명
≻Intro	• 전처리한 데이터셋 파일로 저장	
•학습열기	다음 시간 DNN 구현에서 파일 사용: heart_disease_zscore.csv	
•학습목표		
▶학습하기 1. 코딩 환경 구축 2. 심장병 데이터 전처리 3. 데이터 정규화 및 시각화	# 원-핫 인코딩 전처리한 파일 df.to_csv("heart_disease_preprocessed.csv", index=False) # 원-핫 인코딩, 최소-최대 정규화 전처리한 파일 df_minmax.to_csv("heart_disease_minmax.csv", index=False) # 원-핫 인코딩, 표준 정규화 전처리한 파일, 이 파일을 다음 시간에 사용 df_zscore.to_csv("heart_disease_zscore.csv", index=False)	
▶ 적용하기		용어설명
≻Outro		
•문제풀기		
내 레 이 션	28	2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 4	화면설명
▶Intro•학습열기•학습목표	• 머신러닝 모델 학습을 위해 심장병 데이터셋을 전처리할 때, 정규화 기법(Min-Max Scaling과 Z-score Standardization)을 각각 적용했을 때의 장단점과 그 선택 기준에 대해 설명해 보세요. 또한, 정규화가 모델 성능에 어떤 영향을 미치는지도 기술해 주	① 학습 내용과 관련하여 실제 적용력을 높일 수 있는 문제, 혹은 주제를 작성해 주세요.
▶학습하기 1.코딩 환경 구축 2.심장병 데이터 전체리 3.데이터 정규화 및 시각화 ▶적용하기 ▶Outro •문제풀기	세요. Min-Max Scaling은 데이터를 0과 1 사이로 스케일링하여 값의 상대적인 크기를 보존합니다. 구현이 간단하고, 값의 범위가 고정된 경우적절합니다. 하지만 이상치에 매우 민감하다는 단점이 있습니다. 반면, Z-score 정규화는 평균이 0이고 표준편차가 1이 되도록 변환하며, 정규분포를 가정한 알고리즘(예: 선형 회귀, 로지스틱 회귀, 신경망 등)에 유리합니다. 이상치가 존재해도 상대적으로 영향을 덜 받습니다. 따라서 데이터에 이상치가 많다면 Z-score 방식이 더 적합하며, 이상치가 거의 없고 값을 0~1 범위로 고정해야 하는 상황에서는 Min-Max Scaling이 유리할 수 있습니다. 정규화는 모델의 수렴 속도를 높이고, 경사하강법 기반 학습에서 손실 함수의 왜곡을 방지하여 더 안정적인 학습을 가능하게 합니다	 ② ex. 사례 제시 후 전문가 의견, 실습과제, 응용 예시 시뮬레이션 등 ③ 저작권 침해가 되지않도록 내용을 구성해 주세요. ④ 출처가 있을 경우 반드시 작성해 주세요. 용어설명
내 레 이	29	