Table des matières du¹

Séminaire de Géométrie Algébrique du Bois Marie (SGA)

Dirigé par A. Grothendieck

SGA 1 – Revêtements étales et groupe fondamental	I
SGA 1 — Revêtements étales et groupe fondamental	I
§ I. Morphismes étales	I
1. Notions de calcul différentiel	I
2. Morphismes quasi-finis	I
3. Morphismes non ramifiés ou nets	I
4. Morphismes étales. Revêtements étales	I
5. La propriété fondamentale des morphismes étales	I
6. Application aux extensions étales des anneaux locaux complets	I
7. Construction locale des morphismes non ramifiés et étales	I
8. Relèvement infinitésimal des schémas étales. Application aux	
schémas formels	I
9. Propriétés de permanence	I
10. Revêtements étales d'un schéma normal	I
11. Quelques compléments	I
§ II. Morphismes lisses : généralités, propriétés différentielles	I
1. Généralités	I

¹Transcription by M. Carmona

2. Quelques critères de lissité d'un morphisme	I
3. Propriétés de permanence	I
4. Propriétés différentielles des morphismes lisses	I
5. Cas d'un corps de base	I
§ III. Morphismes lisses : propriétés de prolongement	I
1. Homomorphismes formellement lisses	I
2. Propriété de relèvement caractéristique des homomorphismes	
formellement lisses	I
3. Prolongement infinitésimal local des morphismes dans un S-	
schéma lisse	I
4. Prolongement infinitésimal local des S-schémas lisses	I
5. Prolongement infinitésimal global des morphismes	I
6. Prolongement infinitésimal global des S-schémas lisses	I
7. Application à la construction de schémas formels et de schémas	
ordinaires lisses sur un anneau local complet A	I
§ IV. Morphismes plats	I
1. Sorites sur les modules plats	I
2. Modules fidèlement plats	I
3. Relations avec la complétion	I
4. Relations avec les modules libres	I
5. Critères locaux de platitude	I
6. Morphismes plats et ensembles ouverts	I
§ V. Le groupe fondamental : généralités	I
0. Introduction	I
1. Préschéma à groupe fini d'opérateurs, préschéma quotient	I
2. Groupes de décomposition et d'inertie. Cas étale	I
3. Automorphismes et morphismes de revêtements étales	I
4. Conditions axiomatiques d'une théorie de Galois	I
5. Catégories galoisiennes	I
6. Foncteurs exacts d'une catégorie galoisienne dans une autre	I
7. Cas des préschémas	I
8. Cas d'un préschéma de base normale	I

9. Cas des préschémas non connexes : catégories multigaloisiennes	I
§ VI. Catégories fibrées et descente	I
0. Introduction	I
1. Univers, catégories, équivalence de catégories	I
2. Catégories sur une autre	I
3. Changement de base dans les catégories sur &	I
4. Catégories-fibres ; équivalence de &-catégories	I
5. Morphismes cartésiens, images inverses, foncteurs cartésiens	I
6. Catégories fibrées et catégories préfibrées. Produits et change-	
ment de base dans icelles	I
7. Catégories clivées sur ${\mathscr E}$	I
8. Catégorie clivée définie par un pseudo-foncteur $\mathscr{E}^{\circ} \longrightarrow Cat \; . \; . \; .$	I
9. Exemple : catégorie clivée définie par un foncteur $\mathscr{E}^{\circ} \longrightarrow \operatorname{Cat}$;	
catégories scindées sur &	I
10. Catégories co-fibrées, catégories bi-fibrées	I
11. Exemples divers	I
12. Foncteurs sur une catégorie clivée	I
13. Bibliographie	I
§ VII. n'existe pas	I
§ VIII. Descente fidèlement plate	I
1. Descente des Modules quasi-cohérents	I
2. Descente des préschémas affines sur un autre	I
3. Descente de propriétés ensemblistes et de propriétés de finitude	
de morphismes	I
4. Descente de propriétés topologiques	I
5. Descente de morphismes de préschémas	I
6. Application aux morphismes finis et quasi-finis	I
7. Critères d'effectivité pour une donnée de descente	I
8. Bibliographie	I
§ IX. Descente des morphismes étales. Application au groupe fondamental	I
1. Rappels sur les morphismes étales	I
2. Morphismes submersifs et universellement submersifs	I

3. Descente de morphismes de préschémas étales	I
4. Descente de préschémas étales : critères d'effectivité	I
5. Traduction en termes du groupe fondamental	I
6. Une suite exacte fondamentale. Descente par morphismes à	
fibres relativement connexes	I
7. Bibliographie	I
§ X. Théorie de la spécialisation du groupe fondamental	I
1. La suite exacte d'homotopie pour un morphisme propre et sé-	
parable	I
2. Application du théorème d'existence de faisceaux : théorème de	
semi-continuité pour les groupes fondamentaux des fibres	
d'un morphisme propre et séparable	Ι
3. Application du théorème de pureté : théorème de continuité	
pour les groupes fondamentaux des fibres d'un morphisme	
propre et lisse	I
4. Bibliographie	I
§ XI. Exemples et compléments	I
1. Espaces projectifs, variétés unirationnelles	I
2. Variétés abéliennes	I
3. Cônes projetants, exemple de Zariski	I
4. La suite exacte de cohomologie	I
5. Cas particuliers de fibrés principaux	I
6. Application aux revêtements principaux : théories de Kummer	
et d'Artin-Schreier	I
7. Bibliographie	I
§ XII. Géométrie algébrique et géométrie analytique, par Mme M. Ray-	
naud	Ι
1. Espace analytique associé à un schéma	I
2. Comparaison des propriétés d'un schéma et de l'espace analy-	
tique associé	I
3. Comparaison des propriétés des morphismes	Ĭ

	d'arrectance
5	d'existence
	Bibliographie
	Propreté cohomologique des faisceaux d'ensembles et des fais-
	eaux de groupes non commutatifs, par Mme M. Raynaud
	Rappels sur la théorie des champs
	Propreté cohomologique
	Un cas particulier de propreté cohomologique : diviseurs à croisements normaux relatifs
3.	Propreté cohomologique et locale acyclicité générique
	Suites exactes d'homotopie
	Appendice I : Variations sur le lemme d'Abhyankar
	Appendice II : théorème de finitude pour les images directes des
	champs
	Bibliographie
GA 2 -	•
GA 2 - néorème	Bibliographie
GA 2 - néorème GA 2 - Lefsche	Bibliographie
GA 2 - néorème GA 2 - Lefsche § I. Les	Bibliographie
GA 2 - néorème GA 2 - Lefsche § I. Les es	Bibliographie
GA 2 - eorème GA 2 - Lefsche § I. Les es 1.	Bibliographie
GA 2 - néorème GA 2 - Lefsche § I. Les es 1. 2.	Bibliographie
GA 2 - léorème GA 2 - Lefsche § I. Les es 1. 2. Bi	Bibliographie
GA 2 - néorème GA 2 - Lefsche § I. Les es 1. 2. Bi § II. Ap	Bibliographie
GA 2 - néorème GA 2 - Lefsche § I. Les es 1. 2. Bi § II. Ap § III. In	Bibliographie
GA 2 - néorème GA 2 - Lefsche § I. Les es 1. 2. Bi § II. Ap § III. In 1.	Bibliographie
GA 2 - néorème GA 2 - Lefsche § I. Les es 1. 2. Bi § II. Ap § III. In 1. 2.	Bibliographie

§ IV. Modules et foncteurs dualisants	I
1. Généralités sur les foncteurs de modules	I
2. Caractérisation des foncteurs exacts	I
3. Étude du cas où T est exact à gauche et $T(M)$ de type fini pour	
tout M	I
4. Module dualisant. Foncteur dualisant	I
5. Conséquences de la théorie des modules dualisants	I
\S V. Dualité locale et structure des $H^i(M)$	I
1. Complexes d'homomorphismes	I
2. Le théorème de dualité locale pour un anneau local régulier	I
3. Application à la structure des $H^i(M)$	I
\S VI. Les foncteurs $\operatorname{Ext}_Z^{\bullet}(X;F,G)$ et $\operatorname{\underline{Ext}}_Z^{\bullet}(F,G)$	I
1. Généralités	I
2. Applications aux faisceaux quasi-cohérents sur les préschémas .	I
Bibliographie	I
\S VII. Critères de nullité, conditions de cohérence des faisceaux $\underline{\operatorname{Ext}}_Y^i(F,G)$	I
1. Étude pour $i < n$	I
2. Étude pour $i > n$	I
§ VIII. Le théorème de finitude	I
1. Une suite spectrale de bidualité	I
2. Le théorème de finitude	I
3. Applications	I
Bibliographie	I
§ IX. Géométrie algébrique et géométrie formelle	I
1. Le théorème de comparaison	I
2. Théorème d'existence	I
§ X. Application au groupe fondamental	I
1. Comparaison de $\acute{\mathbf{E}}\mathbf{t}(\hat{X})$ et de $\acute{\mathbf{E}}\mathbf{t}(Y)$	I
2. Comparaison de $\acute{\mathbf{E}}\mathbf{t}(Y)$ et de $\acute{\mathbf{E}}\mathbf{t}(U)$, pour U variable	I
3. Comparaison de $\pi_1(X)$ et de $\pi_1(U)$	I
§ XI. Application au groupe de Picard	I
1. Comparaison de $Pic(\hat{X})$ et de $Pic(Y)$	1

2. Comparaison de $\operatorname{Pic}(X)$ et de $\operatorname{Pic}(\hat{X})$	I
3. Comparaison de P et de $\mathbf{P}(U)$	I
§ XII. Applications aux schémas algébriques projectifs	I
1. Théorème de dualité projective et théorème de finitude	I
2. Théorie de Lefschetz pour un morphisme projectif : théorème	
de comparaison de Grauert	I
3. Théorie de Lefschetz pour un morphisme projectif : théorème	
d'existence	I
4. Complétion formelle et platitude normale	Ι
5. Conditions de finitude universelles pour un morphisme non	
propre	I
§ XIII. Problèmes et conjectures	I
1. Relations entre résultats globaux et locaux. Problèmes affines	
liés à la dualité	I
2. Problèmes liés au π_0 : théorèmes de Bertini locaux	I
3. Problèmes liés au π_1	I
4. Problèmes liés aux π_i supérieurs : théorèmes de Lefschetz lo-	
caux et globaux pour les espaces analytiques complexes	I
5. Problèmes liés aux groupes de Picard locaux	I
6. Commentaires	I
Bibliographie	I
§ XIV. Profondeur et théorèmes de Lefschetz en cohomologie étale	Ι
1. Profondeur cohomologique et homotopique	Ι
2. Lemmes techniques	Ι
3. Réciproque du théorème de Lefschetz affine	Ι
4. Théorème principal et variantes	Ι
5. Profondeur géométrique	I
6. Questions ouvertes	Ι
Bibliographie	T

SGA 3 — Schémas en groupes	I
SGA 3-I — Schémas en groupes	I
§ I. Structures algébriques. Cohomologie des groupes, par M. Demazure	Ι
1. Généralités	I
2. Structures algébriques	I
3. La catégorie des O-modules, la catégorie des G-O-modules	I
4. Structures algébriques dans la catégorie des schémas	Ι
5. Cohomologie des groupes	I
6. Objets et modules G -équivariants	I
Bibliographie	I
§ II. Fibrés tangents — Algèbres de Lie, par M. Demazure	I
1. Les foncteurs $\underline{\mathrm{Hom}}_{\mathbb{Z}/S}(X,Y)$	I
2. Les schémas $I_{S}(\mathcal{M})$	I
3. Le fibré tangent, la condition (E)	I
4. Espace tangent à un groupe — Algèbres de Lie	I
5. Calcul de quelques algèbres de Lie	I
6. Remarques diverses	I
Bibliographie	I
§ III. Extensions infinitésimales, par M. Demazure	I
0. Rappels de SGA 1 III et remarques diverses	I
1. Extensions et cohomologie	I
2. Extensions infinitésimales d'un morphisme de schémas en groupes	I
3. Extensions infinitésimales d'un schéma en groupes	I
4. Extensions infinitésimales de sous-groupes fermés	I
Bibliographie	I
§ IV. Topologies et faisceaux, par M. Demazure	I
1. Épimorphismes effectifs universels	I
2. Morphismes de descente	I
3. Relations d'équivalence effectives universelles	I
4. Topologies et faisceaux	I
5. Passage au quotient et structures algébriques	I
6. Topologies dans la catégorie des schémas	Ī

Bibliographie	I
§ V. Construction de schémas quotients, par P. Gabriel	I
1. C-groupoïdes	I
2. Exemples de <i>C</i> -groupoïdes	I
3. Queques sorites sur les <i>C</i> -groupoïdes	I
4. Passage au quotient par un groupoïde fini et plat (démonstration	
d'un cas particulier)	I
5. Passage au quotient par un groupoïde fini et plat (cas général) .	I
6. Passage au quotient lorsqu'il existe une quasi-section	I
7. Quotient par un groupoïde propre et plat	I
8. Passage au quotient par un groupoïde plat non nécessairement	
propre	I
9. Élimination des hypothèses noethériennes dans le théorème 7.1	I
10. Complément : quotients par un schéma en groupes	I
Bibliographie	I
§ VI-A. Généralités sur les groupes algébriques, par P. Gabriel	I
0. Remarques préliminaires	I
1. Propriétés locales d'un A-groupe localement de type fini	I
2. Composantes connexes d'un A-groupe localement de type fini .	I
3. Construction de quotients $F \setminus G$ (pour G, F de type fini)	I
4. Construction de quotients $F \setminus G$ (cas général)	I
5. Liens avec l'Exposé IV et conséquences	I
6. Compléments sur les k -groupes non nécessairement de type fini	I
Bibliographie	I
§ VI-B. Généralités sur les schémas en groupes, par JE. Bertin	I
1. Morphismes de groupes localement de type fini sur un corps	I
2. "Propriétés ouvertes" des groupes et des morphismes de groupes	
localement de présentation finie	I
3. Composante neutre d'un groupe localement de présentation finie	I
4. Dimension des fibres des groupes localement de présentation finie	I
5. Séparation des groupes et espaces homogènes	I
6 Sous-foncteurs et sous-schémas en groupes	1

/. Sous-groupes engendres; groupe des commutateurs	1
8. Schémas en groupes résolubles ou nilpotents	I
9. Faisceaux quotients	I
10. Passage à la limite projective dans les schémas en groupes et les	
schémas à groupe d'opérateurs	Ι
11. Schémas en groupes affines	I
12. Compléments sur $G_{\rm af}$ et les groupes "anti-affines"	I
13. Groupes affines plats sur une base régulière de dimension ≤ 2	I
Bibliographie	I
§ VII-A. Étude infinitésimale des schémas en groupes, par P. Gabriel	I
1. Opérateurs différentiels	I
2. Opérateurs différentiels invariants sur les schémas en groupes .	I
3. Coalgèbres et dualité de Cartier	I
4. "Frobeniuseries"	I
5. <i>p</i> -algèbres de Lie	I
6. <i>p</i> -algèbre de Lie d'un <i>S</i> -schéma en groupes	I
7. Groupes radiciels de hauteur 1	I
8. Cas d'un corps de base	I
Bibliographie	I
§ VII-B. Étude infinitésimale des schémas en groupes, par P. Gabriel	I
0. Rappels sur les anneaux et modules pseudocompacts	I
1. Variétés formelles sur un anneau pseudocompact	I
2. Généralités sur les groupes formels	I
3. Phénomènes particuliers à la caractéristique 0	I
4. Phénomènes particuliers à la caractéristique $p > 0 \dots \dots$	I
5. Espaces homogènes de groupes formels infinitésimaux sur un	
corps	I
Bibliographie	I
SGA 3-II — Schémas en groupes	I
§ VIII. Groupes diagonalisables	I
1. Bidualité	I
2. Propriétés schématiques des groupes diagonalisables	I

	3. Propriétés d'exactitude du foncteur D_S	I
	4. Torseurs sous un groupe diagonalisable	I
	5. Quotient d'un schéma affine par un groupe diagonalisable	
	opérant librement	I
	6. Morphismes essentiellement libres, et représentabilité de cer-	
	tains foncteurs de la forme $\prod_{Y/S} Z/Y$	I
	7. Appendice : Sur les monomorphismes de préschémas en groupes	I
	Biliographie	I
§ IX.	Groupes de type multiplicatif: homomorphismes dans un schéma	
	en groupes	I
	1. Définitions	I
	2. Extension de certaines propriétés des groupes diagonalisables	
	aux groupes de type multiplicatif	I
	3. Propriétés infinitésimales : théorèmes de relèvement et de con-	
	jugaison	I
	4. Le théorème de densité	I
	5. Homomorphismes centraux des groupes de type multiplicatif .	I
	6. Monomorphismes des groupes de type multiplicatif, et factori-	
	sation canonique d'un homomorphisme d'un tel groupe .	I
	7. Algébricité des homomorphismes formels dans un groupe affine	Ι
	8. Sous-groupes, groupes quotients et extensions de groupes de	
	type multiplicatif sur un corps	I
	Biliographie	I
§ X.	Caractérisation et classification des groupes de type multiplicatif .	I
	1. Classification des groupes isotriviaux. Cas d'un corps de base .	Ι
	2. Variations de structure infinitésimales	I
	3. Variations de structure finies : anneau de base complet	I
	4. Cas d'une base quelconque. Théorème de quasi-isotrivialité	I
	5. Schéma des homomorphismes d'un groupe de type multipli-	
	catif dans un autre. Groupes constants tordus et groupes	
	de type multiplicatif	I

6. Revêtements principaux galoisiens infinis et groupe fondamen-	T
tal élargi	I
type multiplicatif de type fini en termes du groupe fonda- mental élargi	I
8. Appendice. Élimination de certaines hypothèses affines	I
9. Addenda	I
Biliographie	I
XI. Critères de représentabilité. Applications aux sous-groupes de type	
multiplicatif des schémas en groupes affines	I
0. Introduction	I
1. Rappels sur les morphismes lisses, étales, non ramifiés	I
2. Exemples de foncteurs formellement lisses tirés de la théorie des	
groupes de type multiplicatif	I
3. Résultats auxiliaires de représentabilité	I
4. Le schéma des sous-groupes de type multiplicatif d'un groupe lisse affine	I
5. Premiers corollaires du théorème de représentabilité	I
6. Sur une propriété de rigidité pour les homomorphismes de cer-	
tains schémas en groupes, et la représentabilité de certains	
transporteurs	I
XII. Tores maximaux, groupe de Weyl, sous-groupes de Cartan, centre	
réductif des schémas en groupes lisses et affines	I
1. Tores maximaux	I
2. Le groupe de Weyl	I
3. Sous-groupes de Cartan	I
4. Le centre réductif	I
5. Application au schéma des sous-groupes de type multiplicatif .	I
6. Tores maximaux et sous-groupes de Cartan des groupes al-	
gébriques non nécessairement affines (corps de base al-	
géhriquement clos)	T

7. Application aux préschémas en groupes lisses non nécessaire-	
ment affines	I
8. Éléments semi-simples, réunion et intersection des tores maxi-	
maux dans les schémas en groupes non nécessairement affines	I
9. Complément : action d'un schéma en groupes et points fixes	I
Biliographie	I
§ XIII. Éléments réguliers des groupes algébriques et des algèbres de Lie	I
1. Un lemme auxiliaire sur les variétés à opérateurs	I
2. Théorème de densité et théorie des points réguliers de G	I
3. Cas d'un préschéma de base quelconque	I
4. Algèbres de Lie sur un corps : rang, éléments réguliers, sous-	
algèbres de Cartan	I
5. Cas de l'algèbre de Lie d'un groupe algébrique lisse : théorème	
de densité	I
6. Sous-algèbres de Cartan et sous-groupes de type (C) , relatifs à	
un groupe algébrique lisse	I
§ XIV. Éléments réguliers : suite, application aux groupes algébriques .	I
1. Constructon de sous-groupes de Cartan et de torus maximaux	
pour un groupe algébrique lisse	I
2. Algèbres de Lie sur un préschéma quelconque : sections	
réguliers et sous-algèbres de Cartan	I
3. Sous-groupes de type (C) des préschémas en groupes sur un	
préschéma quelconque	I
4. Un digression sur les sous-groupes de Borel	I
5. Relations entre sous-groupes de Cartan et sous-algèbres de Cartan	I
6. Applications à la structure des groupes algébriques	I
7. Appendice : Existence d'éléments réguliers sur les corps finis,	
par JP. Serre	I
§ XV. Compléments sur les sous-tores d'un préschéma en groupes. Ap-	
plication aux groupes lisses, par M. Raynaud	I
0. Introduction	I
1 Relèvement des sous-groupes finis	T

2. Relèvement infinitésimal des sous-tores	I
3. Caractérisation d'un sous-tore par son ensemble sous-jacent	I
4. Caractérisation d'un sous-tore T par les sous-groupes $_nT$	Ι
5. Représentabilité du foncteur : sous-groupes lisses identiques à	
leur normalisateur connexe	I
6. Foncteur de sous-groupes de Cartan et fonteur des sous-groupes	
paraboliques	I
7. Sous-groupes de Cartan d'un groupe lisse	I
8. Critère de représentabilité du foncteur des sous-tores d'un	
groupe lisse	I
§ XVI. Groupes de rang unipotent nul, par M. Raynaud	I
1. Un critère d'immersion	I
2. Un théorème de représentabilité des quotients	I
3. Groupes à centre plat	Ι
4. Groupes à fibres affines, de rang unipotent nul	Ι
5. Application aux groupes réductifs et semi-simples	I
6. Applications : Extensions de certaines propriétés de rigidité des	
tores aux groupes de rang unipotent nul	I
§ XVII. Groupes algébriques unipotents. Extensions entre groupes	
unipotents et groupes de type multiplicatif, par M. Raynaud	I
0. Quelques notations	I
1. Définition des groupes algébriques unipotents	I
2. Premières propriétés des groupes unipotents	Ι
3. Groupes unipotents opérant sur un espace vectoriel	I
4. Une caractérisation des groupes unipotents	I
5. Extension d'un groupe de type multiplicatif par un groupe	
unipotent	Ι
6. Extension d'un groupe unipotent par un groupe de type multi-	
plicatif	I
7. Groupes algébriques affines nilpotents	I
A. Appendice I. Cohomologie de Hochschild et extensions de	
orounes algébriques	T

B. Appendice II. Rappels et compléments sur les groupes radiciels	I
C. Appendice III. Remarques et compléments concernant les ex-	
posés XV, XVI, XVII	I
§ XVIII. Théorème de Weil sur la construction d'un groupe à partir	
d'une loi rationnelle, par M. Artin	I
0. Introduction	I
1. "Rappels" sur les applications rationnelles	I
2. Détermination locale d'un morphisme de groupes	I
3. Construction d'un groupe à partir d'une loi rationnelle	I
Biliographie	I
SGA 3-III — Schémas en groupes	I
§ XIX. Groupes réductifs — Généralités, par M. Demazure	I
1. Rappels sur les groupes sur un corps algébriquement clos	I
2. Schémas en groupes réductifs. Définitions et premières propriétés	I
3. Racines et systèmes de racines des schémas en groupes réductifs	I
4. Racines et schémas en groupes vectoriels	I
5. Un exemple instructif	I
6. Existence locale de tores maximaux. Le groupe de Weyl	I
Bibliographie	I
§ XX. Groupes réductifs de rang semi-simple 1, par M. Demazure	I
1. Systèmes élémentaires. Les groupes $U_{\scriptscriptstylelpha}$ et $U_{\scriptscriptstyle-lpha}$ \ldots	I
2. Structure des systèmes élémentaires	I
3. Le groupe de Weyl	I
4. Le théorème d'isomorphisme	I
5. Exemples de systèmes élémentaires, applications	I
6. Générateurs et relations pour un système élémentaire	I
§ XXI. Données radicielles, par M. Demazure	I
1. Généralités	I
2. Relations entre deux racines	I
3. Racines simples, racines positives	I
4. Données radicielles réduites de rang semi-simple 2	I
5. Le groupe de Weyl : générateurs et relations	I

6. Morphismes de données radicielles	I
7. Structure	I
Bibliographie	I
§ XXII. Groupes réductifs : déploiements, sous-groupes, groupes quo-	
tients, par M. Demazure	I
1. Racines et coracines. Groupes déployés et données radicielles .	I
2. Existence d'un déploiement. Type d'un groupe réductif	I
3. Le groupe de Weyl	I
4. Homomorphismes de groupes déployés	I
5. Sous-groupes de type (R)	I
6. Le groupe dérivé	I
Bibliographie	I
§ XXIII. Groupes réductifs : unicité des groupes épinglés, par M. De-	
mazure	I
1. Épinglages	I
2. Générateurs et relations pour un groupe épinglé	I
3. Groupes de rang semi-simple 2	I
4. Unicité des groupes épinglés : théorème fondamental	I
5. Corollaires du théorème fondamental	I
6. Systèmes de Chevalley	I
Bibliographie	I
§ XXIV. Automorphismes des groupes réductifs, par M. Demazure	I
1. Schéma des automorphismes d'un groupe réductif	I
2. Automorphismes et sous-groupes	I
3. Schéma de Dynkin d'un groupe réductif. Groupes quasi-déployés	I
4. Isotrivialité des groupes réductifs et des fibrés principaux sous	
les groupes réductifs	I
5. Décomposition canonique d'un groupe adjoint ou simplement	
connexe	I
6. Automorphismes des sous-groupes de Borel des groupes réductifs	I
7 Représentabilité des foncteurs Hom (G, H) pour G réductif	1

	6. Appendice. Conomologie d'un groupe risse sur un armeau nen-	т
	sélien. Cohomologie et foncteur ∏	1
c vv	Bibliographie	1
§ X2	KV. Le théorème d'existence, par M. Demazure	I
	1. Énoncé du théorème	I
	2. Théorème d'existence : construction d'un morceau de groupe.	I
	3. Théorème d'existence : fin de la démonstration	I
	4. Appendice	I
	Bibliographie	I
$\S X$	XVI. Sous-groupes paraboliques des groupes réductifs, par M. De-	
	mazure	I
	1. Rappels. Sous-groupes de Levi	I
	2. Structure du radical unipotent d'un sous-groupe parabolique	I
	3. Schéma des sous-groupes paraboliques d'un groupe réductif	I
	4. Position relative de deux sous-groupes paraboliques	I
	5. Théorème de conjugaison	I
	6. Sous-groupes paraboliques et tores déployés	I
	7. Donnée radicielle relative	I
	Bibliographie	I
SGA 4	— Théorie des topos et cohomologie étale des schémas	Ι
SGA 4-1	I — Théorie des topos et cohomologie étale des schémas	I
§ I. I	Préfaisceaux, par A. Grothendieck et JL. Verdier	I
	0. Univers	I
	1. W-catégories. Préfaisceaux d'ensembles	I
	2. Limites projectives et inductives	I
	3. Propriétés d'exactitude de la catégorie des préfaisceaux	I
	4. Cribles	I
	5. Fonctorialité des catégories de préfaisceaux	I
	6. Foncteurs fidèles et foncteurs conservatifs	I
	7. Sous-catégories génératrices et cogénératrices	ī
	7. Sous-categories generatrices et cogeneratrices	1

	8. Ind-objets et pro-objets	I
	9. Foncteurs accessibles, filtrations cardinales et construction de	
	petites sous-catégories génératrices	I
	10. Glossaire	I
	Références	I
	II. Appendice: Univers (par N. Bourbaki)	I
§ II.	Topologies et faisceaux, par JL. Verdier	I
	1. Topologies, familles couvrantes, prétopologies	I
	2. Faisceaux d'ensembles	I
	3. Faisceau associé à un préfaisceau	I
	4. Propriétés d'exactitude de la catégorie des faisceaux	I
	5. Extension d'une topologie de C à \hat{C}	I
	6. Faisceaux à valeurs dans une catégorie	I
	Références	I
§ III.	Fonctorialité des catégories de faisceaux, par JL. Verdier	I
	1. Foncteurs continus	I
	2. Foncteurs cocontinus	I
	3. Topologie induite	I
	4. Lemme de comparaison	I
	5. Localisation	I
	Références	I
§ VI.	Topos	I
	0. Introduction	I
	1. Définition et caractérisation des topos	I
	2. Exemples de topos	I
	3. Morphismes de topos	I
	4. Exemples de morphismes de topos	I
	5. Topos induit	I
	6. Points d'un topos et foncteurs fibres	I
	7. Exemples de foncteurs fibres et de points de topos	I
	8. Localisation. Ouverts d'un topos	I
	9. Sous-topos et recollement de topos	I

	10. Faisceaux de morphismes	I
	11. Topos annelés, localisation dans les topos annelés	I
	12. Opération sur les modules	I
	13. Morphisme de topos annelés	I
	14. Modules sur un topos défini par recollement	I
	Références	I
SGA 4-	II — Théorie des topos et cohomologie étale des schémas	I
§ V.	Cohomologie dans les topos, par JL. Verdier	I
	Introduction	Ι
	0. Généralités sur les catégories abéliennes	I
	1. Modules plats	I
	2. Cohomologie de Čech. Notation cohomologique	I
	3. La suite spectrale de Cartan-Leray relative à un recouvrement .	I
	4. Faisceaux acycliques	I
	5. Les R q u_* et la suite spectrale de Cartan-Leray relative à un mor-	
	phisme de topos	I
	6. Ext locaux et cohomologie à supports	I
	7. Appendice : Cohomologie de Čech	I
	8. Appendice. Limites inductives locales (par P. Deligne)	I
	Références	I
§ Vł	ois. Techniques de descente cohomologique, par B. Saint-Donat	Ι
	Introduction	I
	1. Préliminaires	I
	2. La méthode de la descente cohomologique	I
	3. Critères de descente	I
	4. Exemples	I
	5. Applications	I
	Références	I
§ VI	. Conditions de finitude. Topos et sites fibrés. Applications aux ques-	
	tions de passage à la limite, par A. Grothendieck et JL. Verdier .	I
	0. Introduction	I
	1. Conditions de finitude pour les objets et flèches d'un topos	I

2. Conditions de finitude pour un topos]
3. Conditions de finitude pour un morphisme de topos	I
4. Conditions de finitude dans un topos obtenu par recollement .	I
5. Commutation des foncteurs $H^i(X,-)$ aux limites inductives	
filtrantes	I
6. Limites inductive et projective d'une catégorie fibrée	I
7. Topos et sites fibrés	I
8. Limites projectives de topos fibrés	I
9. Appendice. Critère d'existence de points	I
Références	I
§ VII. Site et topos étales d'un schéma	I
1. La topologie étale	I
2. Exemples de faisceaux	I
3. Générateurs du topos étale. Cohomologie d'une lim de faisceaux	I
4. Comparaison avec d'autres topologies	I
5. Cohomologie d'une limite projective de schémas	I
§ VIII. Foncteurs fibres, supports, étude cohomologique des mor-	
phismes finis	I
1. Invariance topologique du topos étale	I
2. Faisceaux sur le spectre d'un corps	I
3. Foncteurs fibres relatifs aux points géométriques d'un schéma .	I
4. Anneaux et schémas strictement locaux	I
5. Application au calcul des fibres des $\mathbb{R}^q f_* \dots \dots$	I
6. Supports	I
7. Morphismes de spécialisation des foncteurs fibres	I
8. Deux suites spectrales pour les morphismes entiers	I
9. Descente de faisceaux étales	I
SGA 4-III — Théorie des topos et cohomologie étale des schémas	I
§ IX. Faisceaux constructibles. Cohomologie dune courbe algébrique,	
par M. Artin	I
O. Introduction	I
1. Le sorite des faisceaux de torsion	I

2. Faisceaux constructibles	I
3. Théories de Kummer et d'Artin-Schreier	I
4. Cas d'une courbe algébrique	I
5. La méthode de la trace	I
Références	I
§ X. Dimension cohomologique : premiers résultats, par M. Artin	I
1. Introduction	I
2. Résultats auxiliaires sur un corps	I
3. Corps des fractions d'un anneau strictement local	I
4. Dimension cohomologique : cas ℓ inversible dans \mathscr{O}_X	I
5. Dimension cohomologique : cas $\ell = p \ldots \ldots \ldots$	I
6. Dimension cohomologique pour un préschéma de type fini sur	
Spec Z	I
Références	I
§ XI. Comparaison avec la cohomologie classique : cas dun schéma lisse,	
par M. Artin	I
1. Introduction	I
2. Existence de sections hyperplanes assez générales	I
3. Construction des bons voisinages	I
4. Le théorème de comparaison	I
Références	I
§ XII. Théorème de changement de base pour un morphisme propre,	
par M. Artin	I
1. Introduction	I
2. Un exemple	I
3. Rappels sur le H¹ non-abélien	I
4. Le morphisme de changement de base	I
5. Énoncé du théorème principal et de quelques variantes	I
6. Premières réductions	I
7. Une variante du Lemme de Chow	I
8. Réductions définitives	I
D !f!	т

§ XIII. Théorème de changement de base pour un morphisme pro-
pre : fin de la démonstration, par M. Artin
1. Le cas projectif et plat
2. Le cas de dimension relative ≤ 1
3. Un résultat auxiliaire sur le groupe de Picard l
Références
§ XIV. Théorème de finitude pour un morphisme propre ; dimension co-
homologique des schémas algébriques affines, par M. Artin
1. Théorème de finitude pour un morphisme propre
2. Une variante de la dimension
3. Dimension cohomologique des schémas algébriques affines
4. Démonstration du théorème 3.1
§ XV. Morphismes acycliques, par M. Artin
Introduction
1. Généralités sur les morphismes globalement et localement acy-
cliques 1
2. Acyclicité locale d'un morphisme lisse
3. Démonstration du lemme principal
Appendice : Un critère de 0-acyclicité locale
§ XVI. Théorème de changement de base par un morphisme lisse, et ap-
plications, par M. Artin
1. Le théorème de changement de base par un morphisme lisse
2. Théorème de spécialisation des groupes de cohomologie
3. Le théorème de pureté cohomologique relatif
4. Théorème de comparaison de la cohomologie pour les présché-
mas algébriques sur C
5. Le théorème de finitude pour les préschémas algébriques en car-
actéristique zéro
Références
§ XVII. Cohomologie à supports propres, par P. Deligne
Introduction
0 Préliminaires terminologiques

	1. Les catégories dérivées
	2. Catégories fibrées en catégories dérivées
	3. Recollement de catégories fibrées ou cofibrées
	4. Résolutions. Application à la flèche de changement de base
	5. Les foncteurs image directe à support propre
	6. Le foncteur f_1
	7. Appendice
	Références
§ XV	/III. La formule de dualité globale, par P. Deligne
	0. Introduction
	1. Cohomologie des courbes
	2. Le morphisme trace
	3. Le théorème de dualité globale
	Références
§ XI	X. Cohomologie des préschémas excellents dégales caractéristiques,
	par M. Artin
	1. Pureté pour l'anneau $k[[x_1,,x_n]]$
	2. Le cas d'un anneau strictement local
	3. Pureté
	4. Acyclicité locale d'un morphisme régulier
	5. Théorème de finitude
	6. Dimension cohomologique des morphismes affines
	7. Morphismes affines — fin de la démonstration
	Références
GA 5	— Cohomologie ℓ -adique et fonctions L
	201101119
GA 5 -	– Cohomologie ℓ -adique et fonctions L
§ I. (Complexes dualisants, par A. Grothendieck, rédigé par L. Illusie
	Introduction
	1. Définition et propriétés formelles des complexes dualisants
	2. Unicité du complexe dualisant

3. Existence de complexes dualisants	I
4. Dualité locale	I
5. Dualité locale sur les courbes	I
Bibliographie	I
Appendice, par L. Illusie	I
§ III. Formule de Lefschetz, par A. Grothendieck, rédigé par L. Illusie .	I
1. Notations et rappels de formules de Künneth	I
2. Fonctorialité de R <u>Hom</u> et produits tensoriels externes	I
3. Correspondances cohomologiques	I
4. Accouplements de correspondances. Formule de Lefschetz	I
5. Compléments	I
6. Appendice. Formule de Lefschetz pour les faisceaux cohérents	I
Bibliographie	I
§ III-B. Calculs de termes locaux, par L. Illusie	I
I. Correspondances en position générale entre courbes	I
1. Énoncé du théorème et corollaires	I
2. Réduction à un théorème d'annulation	I
3. Réduction au cas modéré	I
4. Fin de la démonstration de 1.2	I
II. Correspondances équivariantes	I
5. Traces non commutatives	I
6. Correspondances équivariantes et divisibilité de termes locaux .	I
Bibliographie	I
\S V. Système projectifs J -adiques, par JP. Jouanolou	I
1. Généralités sur les A-catégories abéliennes	I
2. Condition de Mittag-Leffler-Artin-Rees	I
3. Systèmes projectifs J -adiques et AR - J -adiques	I
4. Filtrations et graduations	I
5. Systèmes projectifs J -adiques et AR - J -adiques noethériens	I
Appendice : le théorème de Shih	I
\S VI. Cohomologie ℓ -adique, par JP. Jouanolou	I
1. Faisceaux ℓ -adiques constructibles	I

	2. Formalisme de la cohomologie ℓ -adique
	3. Classe de cohomologie ℓ -adique associée à un cycle \dots
§ V]	I. Cohomologie de quelques schémas classiques et théorie coho-
	mologique des classes de Chern, par JP. Jouanolou
	1. Fibres vectoriels
	2. Schémas projectifs
	3. Classes de Chern
	4. Formule de self-intersection et applications
	5. Schémas de drapeaux
	6. Schémas en groupes
	7. Intersections complètes
	8. Variétés éclatées
	9. Anneau de Chow d'une variété et formule de self-intersection
	dans l'anneau de Chow
	Bibliographie
§ VI	II. Groupes de classes des catégories abéliennes et triangulées, com-
	plexes parfaits, par A. Grothendieck, rédigé par I. Bucur
	1. Cas des catégories abéliennes
	2. Cas des catégories triangulées
	3. Caractère fonctoriel
	4. Comparaison avec le cas des catégories abéliennes
	5. Complexes pseudo-cohérents
	6. Complexes parfaits
	7. Cas particulier important
	8. Tor de complexes
	9. Propriétés fonctorielles
	10. Construction relative
	Bibliographie
§ X	K. Formule d'Euler-Poincaré en cohomologie étale par A.
-	Grothendieck. rédigé par I. Bucur
	1. Faisceaux sur un schéma à opérateurs

parfait	ī
3. Rappels sur les représentations linéaires des groupes finis	I
	1
4. La représentation de Swan	1
5. La formule de Weil	1
6. Définition des termes locaux $\varepsilon_x^{\Delta}(F)$	I
7. Formule d'Euler-Poincaré	1
Références	J
§ XII. Formules de Nielsen-Wecken et de Lefschetz en géométrie al-	
gébrique, par A. Grothendieck, rédigé par I. Bucur	I
1	I
2	I
3. L'invariant local de Nielsen-Wecken	I
4	I
5. Généralisation d'un formule de type Nielsen-Wecken	I
6. Application à une formule de Lefschetz	I
7. Commentaires sur les conditions de validité de la formule de	
Lefschetz	I
\S XIV = XV. Morphisme de Frobenius et rationalité des fonctions L ,	
par C. Houzel	I
1. Morphisme de Frobenius	I
2. Correspondance de Frobenius	I
3. La fonction L	I
SGA 6 – Théorie des Intersections et Théorème de Riemann	-
Roch	I
SGA 6 — Théorie des Intersections et Théorème de Riemann-Roch	I
§ 0. Esquisse d'un Programme pour une Théorie des Intersections sur	
les Schémas Généraux	I
Classes de Faisceaux et Théorème de Riemann-Roch	I
I. λ-Anneaux (préliminaires formels)	I
2. A Timewas premimanes formers,	1

	II. Classes de faisceaux algébriques cohérents et classes de Chern . I
§ I.	Généralités sur les Conditions de Finitude dans les Catégories
	Dérivées, par L. Illusie
	0. Introduction
	1. Définitions préliminaires I
	2. Complexes pseudo-cohérents
	3. Lien avec la notion classique de cohérence
	4. Complexes parfaits
	5. Tor-dimension finie et perfection
	6. Rang d'un complexe parfait I
	7. Dualité des complexes parfaits
	8. Traces et cup-produits
	Bibliographie
§ II.	Existence de Résolutions Globales, par L. Illusie
	1. Critères généraux de globalisation
	2. Application à certaines catégories de Modules I
	3. Compléments sur les faisceaux quasi-cohérents sur les schémas .
	Appendice I. Un contre-exemple de Verdier
	Appendice II. Définition de l'indice analytique d'un complexe el-
	liptique relatif
	Bibliographie
§ III.	Conditions de Finitude Relatives
	1. Pseudo-cohérence relative
	2. Le théorème de finitude
	3. Tor-dimension finie relative
	4. Perfection relative
	5. Applications : théorèmes d'échange et de semi-continuité I
§ IV.	Groupes de Grothendieck des Topos Annelés, par L. Illusie
	1. Rappels et généralités sur les groupes de Grothendieck I
	2. Les foncteurs K_{\bullet} et K^{\bullet} d'un topos annelé
	3. Compléments sur les groupes de Grothendieck des schémas I
	Bibliographie

§ V. Généralités sur les λ-Anneaux	I
1. Polynômes universels	I
2. Définition des λ -anneaux ; exemples	I
3. Les opérations γ	I
4. λ-anneaux engendrés par générateurs et relations	I
5. Les $\lambda^p(N,x)$	I
6. Anneau de Chern	I
7. Appendice : Les opérations φ^k d'Adams $\ldots \ldots \ldots$	I
Bibliographie	I
\S VI. Le K^{\bullet} d'un Fibre Projectif : Calculs et Conséquences, par P. Berthelot	I
1. Calcul du K^{\bullet} d'un fibré projectif : cas des faisceaux localement	
libres de type fini	I
2. Calcul du K^{\bullet} d'un fibré projectif : cas des complexes parfaits	I
3. Conséquence du théorème de structure pour le k^{ullet} d'un fibré	
projectif	I
4. Calcul du K^{\bullet} d'un fibré de drapeaux	I
5. Applications aux fibrés projectifs ; étude de $f_* \ldots \ldots$	I
6. Étude de la filtration de $K^{\bullet}(X)$, X ayant un faisceau ample	I
Bibliographie	I
\S VII. Immersions Régulières et Calcul du K^{ullet} d'un Schéma Éclaté	I
1. Généralités sur les immersions régulières	I
2. Calculs sur les immersions régulières	I
3. Calcul du K• d'un schéma éclaté	I
4. Immersions régulières et filtrations du K^{\bullet}	I
Bibliographie	I
§ VIII. Le théorème de Riemann-Roch, par P. Berthelot	I
1. Morphismes d'intersection complète	I
2. Complexe cotangent relatif	I
3. Théorème de Riemann-Roch : énoncé	I
4. Théorème de Riemann-Roch : cas d'une immersion fermée	
régulière	I

5. Théorème de Riemann-Roch : cas du morphisme structural
d'un fibré projectif
Bibliographie
\S IX. Quelques Calculs de Groupes K , par P. Berthelot
1. Fibrés vectoriels
2. Fibrés principaux sous les tores déployés
3. Fibrés projectifs et fibrés en drapeaux
4. Fibre principaux sous les groupes $Gl(n)_S$
§ X. Formalisme des Intersections sur les Schémas Algébriques Propres,
par O. Jussila
1. Compatibilité des filtrations avec la loi de composition $K^{\bullet}(X) \times$
$K_{\bullet}(X) \longrightarrow K_{\bullet}(X) \dots \dots \dots \dots \dots \dots$
2. Polynômes de Snapper
3. Formules de projection pour les gradués associés
4. Nombres d'intersection
5. L'isomorphisme $Pic(X) \cong Gr^1(X)$
6. Appendice : Calcul des déterminants des faisceaux localement
libres
7. Appendice : Spécialisation en théorie des intersections, par A.
Grothendieck
Bibliographie
§ XI. Non rédigé
§ XII. Un Théorème de Représentabilité Relative sur le Foncteur de Pi-
card, parM. Raynaud (rédigé par S. Kleiman)
1. Énoncé du théorème principal et applications
2. Premières réductions
3. Démonstration de I : le dévissage de Oort
4. Démonstration de II : la partie la plus délicate de la démonstration
§ XIII. Les Théorèmes de Finitude pour le Foncteur de Picard
1. Les (b)-faisceaux
2. Plusieurs lemmes techniques
3. Théorèmes de finitude généraux

4. Théorèmes de finitude pour $\operatorname{Pic}_{X/S}^{\tau}$	I
5. Théorèmes de finitude du type "Néron-Séveri"	Ι
6. Appendice : Étude des (b) -faisceaux sur $P = \mathbb{P}_k^N \ldots \ldots$	I
7. Appendice : Théorème de l'indice de Hodge	Ι
Bibliographie	Ι
§ XIV. Problèmes Ouverts en Théorie des Intersections	I
1. Opérations \wedge^i dans la catégorie dérivée $\mathrm{D}(X) \ldots \ldots$	Ι
2. La formule de Riemann-Roch sans hypothèses projectives	I
3. Formule de Riemann-Roch "sans démonstration" pour une im-	
mersion	I
4. Relations entre $K^{\bullet}(X)$ et l'anneau de Chow $A(X)$	I
5. Relations entre $Gr^{\bullet}(X)$ et $H^{2x}(X, \mathbf{Z}_{\ell}(x))$	I
6. Théorème de Riemann-Roch cohomologique, et homomor-	
phisme de Gysin	I
7. Classes de Chern des complexes parfaits	I
8. Anneau de Chow des schémas réguliers	I
Bibliographie	I
SGA 7 — Groupes de monodromie en géométrie algébrique	I
SGA 7-I – Groupes de monodromie en géométrie algébrique	I
§ I. Résumé des premiers exposés de A. Grothendieck, rédigé par P. Deligne	I
0. Préliminaires	I
1. Démonstration arithmétique du théorème de monodromie	I
2. Cycles évanescents	I
3. Démonstration géométrique du théorème de monodromie	I
4. Critères de nullité pour les faisceaux de cycles évanescents	I
5. Action de la monodromie sur les $\pi_1 \dots \dots$	I
6. Appendice par P. Deligne : démonstration arithmétique du	
théorème de réduction stable	I
Bibliographie	I
§ II. Propriétés de finitude du groupe fondamental, par Mme M. Raynaud	I

§ VI. Formal deformation theory, par D. S. Rim	I
1. Formal existence theorem	I
2. Prorepresentable cofibered groupoids	I
3. The coherent sheaves D_X^i	I
4. Formal moduli of deformations	I
5. Formal Jacobian subschemes	I
6. Non-degenerate quadratic singularities	I
§ VII. Biextensions de faisceaux de groupes	I
0. Introduction	I
1. Compléments sur les extensions de Groupes	I
2. La notion de biextension de faisceaux abéliens	I
3. Compléments d'algèbre homologique	I
Bibliographie	I
§ VIII. Compléments sur les biextensions. Propriétés générales des biex-	
tensionssss des schémas en grupes	I
0. Introduction	I
1. Cas particuliers divers sur un topos quelconque	I
2. Accouplements définis par une biextension	I
3. Biextensions de schémas en groupes (P,Q) par \underline{G}_m : généralités	Ι
4. Extensions et biextensions des schémas en groupes lisses et con-	
nexes sur un corps	I
5. Extensions et biextensions par des schémas en groupes constants	
tronqués sans torsion	I
6. Extensions et biextensions par le modèle de Néron de \underline{G}_m	I
7. Prolongements canonique d'extensions et de biextensions par \underline{G}_m	I
Bibliographie	I
§ IX. Modèles de Néron et monodromie	I
0. Introduction	I
1. Modèle de Néron des schémas abéliens : notations ;	
l'accouplement canonique $\Phi_{\circ} \times \Phi'_{\circ} \longrightarrow (Q/\mathbf{Z})_k$, et la biex-	
tensions canonique W° de $(A^{\circ}, A^{\prime})^{\circ}$	Ī

	2. Partie fixe et partie torique de $T_{\ell}(A_K)$. Critères de bonne réduc-	
	tion. Théorème d'orthogonalité pour $\ell \neq p$	I
	3. Cas de la réduction semi-stable. Le théorème de réduction semi-	
	stable	I
	4. Application à une conjecture de Serre-Tate et au conducteur	I
	5. Le théorème d'orthogonalité dans le cas $\ell=p$ (cas semi-stable).	
	Dualité des schémas abéliens B_o et B_o' . Carctérisation de la	
	partie fixe. Critères de bonne réduction, de bonne réduc-	
	tion essentielle et de réduction semi-stable	I
	6. Remarques sur la construction de la partie torique et la partie	
	fixe de $T_p(A)$ dans le cas de réduction non semi-stable	I
	7. L'extension de Raynaud $G^{ atural}$ sur S attachée au schéma abélien A_K	
	à réduction semi-stable. Dualité des schémas abéliens B, B'	
	$\operatorname{sur} S$	I
	8. L'extension de Raynaud $A_K^{\dagger \circ}$ dans le cas semi-stable, et le ind- groupe A_K^{\dagger}	Ι
	9. Définition de l'accouplement de monodromie $\underline{M}_{\ell} \otimes \underline{M}'_{\ell} \longrightarrow \mathbf{Z}_{\ell S}$	Ι
	10. Propriétés de l'accouplement de monodromie. Théorème	τ
	d'intégrité et de positivité	I
	11. Composantes connexes du modèles de Néron : relation de du-	т
	alité, comportement asymptotique	Ι
	Lefschetz	I
	13. Liens avec la théorie transcendante : cas analytique complexe .	I
	14. Liens avec la théorie transcendante : cas rigide-analytique.	
	L'homomorphisme canonique $\underline{M}_K \longrightarrow A_K^{\flat \circ} \ldots \ldots$	I
	Bibliographie	I
SGA 7-I	I – Groupes de monodromie en géométrie algébrique	I
§ X.	Intersections sur les surfaces régulières, par P. Deligne	I
	1. Nombres d'intersection sur les surfaces arithmétiques	I
	2. Intersections italiennes	I
	Bibliographie	I

§ XI. Cohomologie des intersections complètes, par P. Deligne	I
1. Cohomologie de l'espace projectif et des intersections complètes	I
2. Résultats numériques	I
Bibliographie	I
§ XII. Quadratiques, par P. Deligne	I
1. Formes quadratiques	I
2. Quadratiques	I
3. Cohomologie des quadratiques	I
Bibliographie	I
§ XIII. Le formalisme des cycles évanescents, par P. Deligne	I
Introduction	I
1. Faisceaux d'ensembles	I
2. Cycles évanescents	I
Bibliographie	I
§ XIV. Comparaison avec la théorie transcendante, par P. Deligne	I
Introduction	I
1. Formalisme transcendant des cycles évanescents	I
2. Le théorème de comparaison	I
3. Singularités isolées	I
4. Cohomologie de De Rham	I
Bibliographie	I
§ XV. La formule de Picard-Lefschetz, par P. Deligne	I
1. Singularités quadratiques ordinaires (formes canoniques)	I
2. Calcul des cycles évanescents dans un cas quadratique ordinaire	
standard	I
3. La formule de Picard-Lefschetz	I
§ XVI. La formule de Milnor, par P. Deligne	I
1. Énoncé du problème	I
2. Le cas "géométrique"	I
Bibliographie	I
§ XVII. Pinceaux de Lefschetz : théorème d'existence, par N. Katz	I
0. Introduction	I

	1. Un rappel sur les singularités quadratiques	I
	2. Les pinceaux de Lefschetz : énoncé des résultats	I
	3. La variété duale	I
	4. Le cas général	I
	5. Le degré de la variété duale par voie "élémentaire"	I
	6. Le cas d'une base générale	I
	Références	I
§ XV	VIII. Étude cohomologique des pinceaux de Lefschetz, par N. Katz	I
	Introduction	I
	1. La cohomologie d'un fibré projectif	I
	2. La cohomologie des variétés éclatées	I
	3. L'éclatement associé à un pinceau	I
	4. La cohomologie de l'éclatement associé à un pinceau	I
	5. La cohomologie du morphisme $p:\widetilde{X}\longrightarrow \mathbb{P}^1$ associé à un pinceau	I
	6. Applications de la théorie des cycles évanescents (Picard-Lefschetz)	I
	Bibliographie	I
§ XI	X. Le théorème de Noether, par P. Deligne	I
	1. Énoncés des théorèmes	I
	2. Complément à XVIII	I
	3. Preuve de 1.3	I
	4. Deuxième complément à XVIII	I
	5. Les cas d'exception au théorème de Noether	I
	Bibliographie	I
§ XX	K. Le théorème de Griffiths, par N. Katz	I
	0. Introduction	I
	1. Le formalise des classes primitives	I
	2. Un rappel sur le niveau	I
	3. Application aux pinceaux de Lefschetz	I
	4. Le théorème de Griffiths	I
	5. Le groupe de Griffiths	I
	P of form and	т

$\S XX$	II. Le niveau de la cohomologie des intersections complètes, par N.	
	Katz	I
	0. Introduction	I
	1. La matrice de Hasse-Witt d'une intersection complète	I
	2. Le coniveau dans le cas d'un corps de définition fini	I
	3. Application aux intersections complètes	I
	4. Les conclusions	I
	5. Théorèmes d'intégralité	I
	Bibliographie	I
§ XX	III. Une formule de congruence pour la fonction, par N. Katz	I
	0. Introduction	I
	1. Un rappel sur les opérations "p-linéaires"	I
	2. Cohomologie cohérente et cohomologie étale	I
	3. Le formule de congruence : énoncés et équivalences élémentaires	I
	4. Le calcul de la fonction zêta d'une hypersurface à la Dwork	I
	5. Un théorème d'Ax	I
	6. Fin de la démonstration de la formule de congruence	I
	Bibliographie	I