#### Brzytwa Occama vs. rynek: Jak proste modele odpowiadają na złożone pytania

Mateusz Panasiuk
Chief Scientific Officer, Al Investments





#### Krótki bieg przez modelowanie w finansach

- 1. Wyzwania w przewidywaniach finansowych
- 2. Problem złożoności modelu
- Rozwiązania problemu złożoności
- 4. Wyniki

### Czy spekulacja jest trudna?

#### Czy spekulacja jest trudna?



#### Jak dobrzy musimy być żeby pobić rynek?



# Ja rozwiązać złożony problem?

## Najnowsze sieci neuronowe

## Najnowsze sieci neuronowe

Więcej cech

## Najnowsze sieci neuronowe Inżynieria cech Więcej cech

Większe sieci Większe sieci neuronowe neuronowe Inżynieria cech Więcej cech Większe sieci Większe sieci neuronoweGPT neuronowe Inżynieria cech Więcej cech

#### Brzytwa Williama



"Pluralitas non est ponenda sine necessitate." - attributed to William of Ockham

"Obiekty powinny być mnożone tylko przy wystąpieniu konieczności."

#### Wiodące architektury



```
{"d_model": 32,

"N": 6,

"heads": 8,

"features_count": 24,

"length": 20}
```

300'000 parameters

#### llość obserwacji

Standardowy Conformer był trenowany na 1000-1500 obserwacjach (daily), gdyż wyższe częstotliwości niosły szum.

300`000 / 1'000 = 300

Skutkowało to tym, że na pojedynczą obserwację przypadało <u>300</u> parametrów.

#### XIV-wieczny filozof nie będzie nam mówił co robić!



#### 20 obserwacji - tylko 25 parametrów



#### 20 obserwacji - tylko 5 parametrów



#### Bias vs. variance



## Czy złożoność modelu i ilość próbek to jedyne o czym powinniśmy myśleć przy overfittingu?



## Czego możemy realistycznie oczekiwać od modelu?

Komu zdecydowalibyście się zaufać?

- 1. Osobie twierdzącej, że może przewidzieć kierunek zmiany ceny jutro z 80% dokładnością?
- 2. Osobie twierdzącej, że może przewidzieć kierunek zmiany ceny jutro z 52% dokładnością?

## Jaka była dokładność do której trenowaliśmy sieci?

Zazwyczaj ~65%.

Jest to ekwiwalent osoby która znalazła regułę która działa w 65% przypadków. Rozważając regułę działającą tak sprawnie - czy jesteśmy w stanie oczekiwać, że faktycznie opisuje one "ukryte wzorce" rynku? Czy zwyczajnie znaleźliśmy nadmiarową korelację?

"Do tej pory odrzucałeś wszystko o czym rozmawialiśmy. Nie zrobiłeś niczego co wskazało by nam drogę prawdziwej Dharmy!"

> - sfrustrowany uczeń zwracający się do Huang Po Blofeld, *Teachings of Huang Po*

#### Czas na przykłady z prawdziwego życia

- Problem złożoności modelu
- Problem wielkości zbioru danych
- Problem nadmiernej ilości cech

#### Otwórzmy się na prostotę!

Model liniowy klasyfikacji - f+1 parametrów:

$$p_{\bar{a}}(\bar{x}) = \frac{1}{1 - e^{-\bar{x}\bar{a}}}$$

Model bayesowskiej klasyfikacji - 2\*f\*c parametrów:

$$p(\bar{x}) = \prod_{i=1}^{k} \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{\bar{\mu}_i - \bar{x}_i}{2\sigma})^2}$$

## Klasyfikator bayesowski / Klasyfikator procesów Gaussa



## Klasyfikator bayesowski / Klasyfikator procesów Gaussa



## Klasyfikator bayesowski / Klasyfikator procesów Gaussa



#### Predykcje sieci neuronowej \* prawdopodobieństwa



#### Predykcje sieci neuronowej \* prawdopodobieństwa



#### Predykcje modeli statystycznych



#### Predykcje modeli statystycznych



#### Co zrobiliśmy

- Zmniejszyliśmy model (300′000 → ~10 parametrów)
- Zmniejszyliśmy przestrzeń cech (10-100 → 4)
- Oparliśmy nasze decyzje o pewność modelu

### Zadziałało?

#### Tak!



#### I zarabia.



#### **EURUSD**



#### Zainteresowani?





### Dziękuję!