Algèbre 4

A. Ramadane, Ph.D.

Chapitres

- 1. Géométrie vectorielle (rappels)
- 2. Espaces vectoriels V² et V³
- 3. Applications linéaires
- 4. Diagonalisation des matrices
- 5. Formes quadratiques
- 6. Applications à la géométrie

Géométrie vectorielle

- 1. Coordonnées cartésiennes et vecteurs
- 2. Produit scalaire
- 3. produit vectoriel
 - produit mixte
 - double produit vectoriel
- 4. Équations de droites et de plans

Exemples de problèmes que vous pourrez résoudre à la fin du cours

Soit Π un plan d'équation cartésienne ax + by + cz = d et Q un point n'appartenant pas à Π . Quel est le point P de Π le plus près de Q?

Exemple 1

Exemple 2 résolution de système d'équations linéaires

$$x + y + \lambda z = 2$$

$$3x + 4y + 2z = \lambda$$

$$2x + 3y - z = 1$$

Pour quelles valeurs de λ

- il n'y pas de solution
- il y a une solution unique
- il y a plusieurs solutions

Exemple 3 tranformer (sous certaines conditions) une matrice A en une matrice diagonale D

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & a_{nn} \end{bmatrix} \longrightarrow \begin{bmatrix} d_1 & 0 & 0 & \dots & 0 \\ 0 & d_2 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & d_n \end{bmatrix}$$

Exemple 4 équation quadratique en 3 variables

 $Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$

SURFACES

Quel est le lien?

René DESCARTES (1596-1650)
philosophe, scientifique,
mathématicien
invente les systèmes de
coordonnées dans le plan
et dans l'espace
liaison
géométrie algèbre

vecteur: grandeur + direction

notation : lettre avec flèche

au dessus a

Remarque

application des vecteurs en physique et en ingénierie

- forces de tension
- forces de compression
- forces de torsion
- vitesse
- accélération
- ...

vecteur placé dans un système de coordonnées

(a₁, a₂, a₃): composantes du vecteur a dans un système de coordonnées
 V¹ V⁴ Vⁿ n ≥ 4 existent-ils?

vecteurs égaux:

même direction et même grandeur

deux vecteurs parallèles

= deux vecteurs égaux

addition de 2 vecteurs : loi du triangle loi du parallélogramme

La figure 3 illustre la définition de l'addition vectorielle. Vous pouvez y voir pourquoi cette définition est parfois appelée le loi du triangle.

FIGURE 3 La loi du triangle

FIGURE 4 La loi du parallélogramme

dualité : point ←→ vecteur

base standard: i j

$$\vec{t} = (1, 0, 0)$$
 $\vec{j} = (0, 1, 0)$ $\vec{k} = (0, 0, 1)$

cteurs \tilde{i} , \tilde{j} et \tilde{k} scot de longueur 1 et pointent dans le sens positif de chaque uxe, me, en dimension deux, on définit $\tilde{i} = (1, 0)$ et $\tilde{j} = (0, 1)$ (voyez la figure 17).

les composantes d'un vecteur dépendent du système de coordonnées employé

point $P(a_1,a_2,a_3)$ génère un vecteur OP joignant le point O(0,0,0) et le point P et vice versa

Etant donnés les points $A(x_1, y_1, z_1)$ et $B(x_2, y_2, z_2)$, le vecteur \vec{a} représenté par \overrightarrow{AB} est

$$\vec{a} = (x_2 - x_1, y_2 - y_1, z_2 - z_1).$$

longueur (mesure, norme) d'un vecteur

La longueur d'un vecteur de dimension deux $\vec{a} = (a_1, a_2)$ est égale à

$$\|\vec{a}\| = \sqrt{a_1^2 + a_2^2}.$$

La longueur d'un vecteur de dimension trois $\vec{a} = (a_1, a_2, a_3)$ est égale à

$$\|\vec{a}\| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

distance entre 2 points P₁ et P₂ dans l'espace

$$|P_1P_2| = ||\overrightarrow{P_1P_2}||$$

Formule de la distance dans l'espace La distance $|P_1P_2|$ entre les points $P_1(x_1, y_1, z_1)$ et $P_2(x_2, y_2, z_2)$ est égale à

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Multiplication d'un vecteur v par un scalaire (nombre réel) c

Définition de la multiplication scalaire Si c est un scalaire et \vec{v} un vecteur, alors le **multiple scalaire** $c\vec{v}$ est le vecteur qui a même orientation que \vec{v} , dont la mesure est |c| fois la mesure de \vec{v} et qui a le même sens que \vec{v} si c > 0 et le sens opposé si c < 0. Si c = 0 ou si $\vec{v} = \vec{0}$, alors $c\vec{v} = \vec{0}$.

- addition de vecteurs
- multiplication par un scalaire

dans un système de coordonnées

Si
$$\vec{a} = (a_1, a_2)$$
 et $\vec{b} = (b_1, b_2)$, alors
$$\vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2) \quad \vec{a} - \vec{b} = (a_1 - b_1, a_2 - b_2)$$

$$c\vec{a} = (ca_1, ca_2)$$

De même, pour les vecteurs de dimension trois,

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

$$(a_1, a_2, a_3) - (b_1, b_2, b_3) = (a_1 - b_1, a_2 - b_2, a_3 - b_3)$$

$$c(a_1, a_2, a_3) = (ca_1, ca_2, ca_3)$$

propriété des vecteurs

Les propriétés des vecteurs Soient \vec{a} , \vec{b} et \vec{c} des vecteurs de V_n et c et d des scalaires. Alors

1.
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

3.
$$\vec{a} + \vec{0} = \vec{a}$$

5.
$$c(\vec{a} + \vec{b}) = c\vec{a} + c\vec{b}$$

7.
$$(cd)\vec{a} = c(d\vec{a})$$

2.
$$\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$$

4.
$$\vec{a} + (-\vec{a}) = \vec{0}$$

6.
$$(c+d)\vec{a} = c\vec{a} + d\vec{a}$$

8.
$$1\vec{a} = \vec{a}$$

Remarques

- 1. vecteur $\overrightarrow{0}$ n'a pas de direction et sa grandeur est 0
- 2. le propriétés 1-8 serviront à définir les espaces vectoriels au chapitre suivant

Exemple d'application

Deux câbles C₁ et C₂ soutienne un poids de 100 N Illustré à la figure 19

Calculez les tensions (forces) T_1 et T_2 ainsi que leur grandeur (module)

SOLUTION ...

SOLUTION

$$T_{1} = - \| T_{1} \| \cos 50^{\circ} i + \| T_{1} \| \sin 50^{\circ} j$$

$$T_{2} = \| T_{2} \| \cos 32^{\circ} i + \| T_{2} \| \sin 32^{\circ} j$$

$$T_{1} + T_{2} = - w = 100 j = 0 i + 100 j$$

$$T_{1} \| \sin 50^{\circ} + \| T_{2} \| \sin 32^{\circ} = 100 \quad (2)$$

de (1)
$$\|T_2\| = \|T_1\| \cos 50^\circ / \cos 32^\circ$$

 $= \|T_1\| (\sin 32^\circ / \cos 32^\circ) \cos 50^\circ = \|T_1\| \tan 32^\circ \cos 50^\circ$ (3)
(3) dans (2) $\|T_1\| = 100 / (\sin 50^\circ + \tan 32^\circ \cos 50^\circ) = 85,65$ (4)
(4) dans (3) $\|T_2\| = 64,9$ $T_1 = -50,05 i + 65,60 j$
 $T_2 = 50,05 i + 34,40 j$

Mise en contexte concept de travail en physique travail W accompli par une force constante F en déplaçant un objet d'une distance d dans la direction du mouvement de l'objet W = Fd

Si le déplacement n'est pas dans la direction du mouvement ?

$$\|\overrightarrow{PS}\| = \|\overrightarrow{F}\| \cos \theta$$

$$W = \|\overrightarrow{D}\| \|\overrightarrow{PS}\| = \|\overrightarrow{D}\| \|\overrightarrow{F}\| \cos \theta$$

Définition

le produit scalaire de 2 vecteurs non nuls à et b est le nombre

$$\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos\theta \qquad 0 \le \theta \le \pi$$

θ: le plus petit angle entre les vecteurs

Aussi:
$$\cos\theta = \vec{a} \cdot \vec{b} / ||\vec{a}|| ||\vec{b}||$$
 calcul l'angle θ

 \vec{a} et \vec{b} sont orthogonaux si $\vec{a} \cdot \vec{b} = 0$

$$\vec{a} \cdot \vec{b} > 0$$

$$\vec{a} \cdot \vec{b} = 0$$

$$\vec{a} \cdot \vec{b} < 0$$

calcul du produit scalaire avec les composantes

$$\Rightarrow$$
 a= (a₁, a₂, a₃) \Rightarrow b = (b₁, b₂, b₃)

Loi des cosinus

$$\|\overrightarrow{a} - \overrightarrow{b}\|^2 = \|\overrightarrow{a}\|^2 + \|\overrightarrow{b}\|^2 - 2 \|\overrightarrow{a}\| \|\overrightarrow{b}\| \cos\theta$$
$$= \|\overrightarrow{a}\|^2 + \|\overrightarrow{b}\|^2 - 2 \overrightarrow{a} \cdot \overrightarrow{b}$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{2} \left[\| \overrightarrow{a} \|^2 + \| \overrightarrow{b} \|^2 - 2 \| \overrightarrow{a} - \overrightarrow{b} \|^2 \right]$$

$$= \frac{1}{2} \left[a_1^2 + a_2^2 + a_3^2 + b_1^2 + b_2^2 + b_3^2 + (a_1 - b_1)^2 - (a_2 - b_2)^2 - (a_3 - b_3)^2 \right]$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

produit scalaire

propriétés du produit scalaire

1.
$$\vec{a} \cdot \vec{a} = |\vec{a}|^2$$

3.
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

5.
$$\vec{0} \cdot \vec{a} = 0$$

2.
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

4.
$$(c\vec{a}) \cdot \vec{b} = c(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (c\vec{b})$$

Exemple d'application

molécule de méthane : CH4
4 atomes d'hydrogène H
occupent les sommets d'un
tétraèdre régulier et l'atome
de carbone C occupe le
centre

angle de liaison est formé par l'angle joignant H-C-H

angle de liaison = ?

SOLUTION ..

Projection d'un vecteur


```
point S: désigne le pied de la perpendiculaire
        abaissée de R sur la droite de support PQ
PS = vecteur projection du vecteur b
sur le vecteur a sera noté proj a b
||PS|| = composante ( = grandeur ) de b selon a
           = comp a b
           = \|\mathbf{b}\| \cos \theta = \|\mathbf{b}\| \cos \theta \|\mathbf{a}\| / \|\mathbf{a}\|
           = a · b / ||a||
\overrightarrow{PS} = \overrightarrow{proj} \overrightarrow{a} \overrightarrow{b} = \|\overrightarrow{PS}\| (\overrightarrow{a}/\|a\|) = (\overrightarrow{a} \cdot \overrightarrow{b}/\|\overrightarrow{a}\|^2) \overrightarrow{a}
```

Projection scalaire de
$$\vec{b}$$
 sur \vec{a} : comp _{\vec{a}} $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|}$

Vecteur projection de
$$\vec{b}$$
 sur \vec{a} : $\operatorname{proj}_{\vec{a}} \vec{b} = \left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|}\right) \frac{\vec{a}}{\|\vec{a}\|} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2} \vec{a}$.

Exemple

- 1. calculer la composante et la projection du vecteur $\overrightarrow{b} = (1, 1, 2)$ sur le vecteur $\overrightarrow{a} = (-2, 3, 1)$
- 2. montrer que le vecteur \overrightarrow{b} proj_a \overrightarrow{b} = orth \overrightarrow{a} \overrightarrow{b} est orthogonal à \overrightarrow{a}

On peut donc écrire
$$\vec{b} = \text{proj}_a^* \vec{b} + \text{orth}_a^* \vec{b}$$

SOLUTION ...

Exemple: calculer la composante et la projection du vecteur \overrightarrow{b} = (1, 1, 2) sur le vecteur \overrightarrow{a} = (-2, 3, 1)

$$\overrightarrow{a} = (-2, 3, 1) \qquad \overrightarrow{b} = (1, 1, 2)$$

$$\|\overrightarrow{a}\| = [(-2)^2 + 3^2 + 1^2]^{0,5} = 14^{0,5} = \sqrt{14}$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = (-2)(1) + (3)(1) + (1)(2) = 3$$

$$\operatorname{comp}_{\overrightarrow{a}} \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{b} / \|\overrightarrow{a}\| = 3/\sqrt{14}$$

$$\operatorname{proj}_{\overrightarrow{a}} \overrightarrow{b} = (3/\sqrt{14})\overrightarrow{a}/\|\overrightarrow{a}\| = (3/\sqrt{14})\overrightarrow{a}/\sqrt{14}$$

$$= (3/14)(-2, 3, 1) = (-6/14, 9/14, 3/14)$$

$$\overrightarrow{b} - \operatorname{proj}_{\overrightarrow{a}} \overrightarrow{b} = (1, 1, 2) - (-6/14, 9/14, 3/14)$$

$$= (20/14, 5/14, 25/14) = \operatorname{orth}_{\overrightarrow{a}} \overrightarrow{b}$$

$$\overrightarrow{a} \cdot \operatorname{orth}_{\overrightarrow{a}} \overrightarrow{b} = (-2, 3, 1) \cdot (20/14, 5/14, 25/14) = 0$$

Produit vectoriel

Définition Si \vec{a} et \vec{b} sont des vecteurs de dimension trois non nuls, le produit vectoriel de \vec{a} et \vec{b} est le vecteur

$$\vec{a} \wedge \vec{b} = (\|\vec{a}\| \|\vec{b}\| \sin \theta)\vec{n}$$

où θ est l'angle entre \vec{a} et \vec{b} , $0 \le \theta \le \pi$, et où \vec{n} est un vecteur unitaire perpendiculaire aux deux vecteurs \vec{a} et \vec{b} et dont le sens est donné par la règle de la main droite : lorsque les doigts de votre main droite tournent d'un angle θ de \vec{a} jusqu'à \vec{b} , alors votre pouce indique le sens de \vec{n} . (Voyez la figure 3.)

Si l'un des vecteurs \vec{a} ou \vec{b} est le vecteur nul, alors, par définition, $\vec{a} \wedge \vec{b} = \vec{0}$. Puisque $\vec{a} \wedge \vec{b}$ est un multiple scalaire de \vec{n} , il a la même direction que \vec{n} et donc

 $\vec{a} \wedge \vec{b}$ est orthogonal à \vec{a} et \vec{b} .

Si on se rappelle que deux vecteurs non nuls sont parallèles si et seulement si l'angle θ entre eux mesure 0 ou π , on constate qu'alors $\vec{a} \wedge \vec{b} = \vec{0}$, puisque dans l'un et l'autre cas sin $\theta = 0$.

Deux vecteurs non nuls \vec{a} et \vec{b} sont parallèles si et seulement si $\vec{a} \wedge \vec{b} = \vec{0}$.

Produit vectoriel

cas particuliers importants

$$\overrightarrow{j} \wedge \overrightarrow{j} = \overrightarrow{k}$$

$$\overrightarrow{j} \wedge \overrightarrow{k} = \overrightarrow{i}$$

$$\overrightarrow{k} \wedge \overrightarrow{i} = \overrightarrow{j}$$

mémorisation ?

Exemple

un boulon est serré en appliquant une force \vec{F} de 40 N sur un clé de 0,25 m comme dans la figure.

r et F font un angle de 75°

Calculer l'intensité du moment de torsion par rapport au centre du boulon

SOLUTION ...

Produit vectoriel

0,25 m 40 N FIGURE 4

SOLUTION

l'intensité (norme) du moment de torsion τ

$$\| \overrightarrow{\tau} \| = \| \overrightarrow{r} \wedge \overrightarrow{F} \| = \| \overrightarrow{r} \| \| \overrightarrow{F} \| \sin 75^{\circ} \| \overrightarrow{n} \|$$

$$= 0.25*40 \sin 75^{\circ} = 10 \sin 75^{\circ} = 9.66 \text{ Nm}$$

$$= 9.66 \text{ J} \qquad \qquad J = \text{Nm} = \text{joules}$$

$$\overrightarrow{\tau} = \| \overrightarrow{\tau} \| \overrightarrow{\mathbf{n}} = 9,66 \overrightarrow{\mathbf{n}}$$

n vecteur unitaire qui pointe en direction de la feuille de dessin

une interprétation géométrique du produit vectoriel

La norme du produit vectoriel $\vec{a} \wedge \vec{b}$ est égale à l'aire du parallélogramme déterminé par \vec{a} et \vec{b} .

justification

base =
$$\|\overrightarrow{a}\|$$

hauteur = $\|\overrightarrow{b}\|$ sin θ
Aire = base X hauteur
= $\|\overrightarrow{a}\| \|\overrightarrow{b}\|$ sin θ
= $\|\overrightarrow{a} \wedge \overrightarrow{b}\|$

Propriétés du produit vectoriel Si \vec{a} , \vec{b} et \vec{c} sont des vecteurs et c un scalaire, alors

1.
$$\vec{a} \wedge \vec{b} = -\vec{b} \wedge \vec{a}$$

anti commutatif

2.
$$(c\vec{a}) \wedge \vec{b} = c(\vec{a} \wedge \vec{b}) = \vec{a} \wedge (c\vec{b})$$

3.
$$\vec{a} \wedge (\vec{b} + \vec{c}) = \vec{a} \wedge \vec{b} + \vec{a} \wedge \vec{c}$$

4. $(\vec{a} + \vec{b}) \wedge \vec{c} = \vec{a} \wedge \vec{c} + \vec{b} \wedge \vec{c}$

4.
$$(\vec{a} + \vec{b}) \wedge \vec{c} = \vec{a} \wedge \vec{c} + \vec{b} \wedge \vec{c}$$

distributivité

Le produit vectoriel n'est pas associatif

$$(\overrightarrow{a} \wedge \overrightarrow{b}) \wedge \overrightarrow{c} \neq \overrightarrow{a} \wedge (\overrightarrow{b} \wedge \overrightarrow{c})$$

Exemple?

Le produit vectoriel n'est pas associatif

$$(a \land b) \land \overrightarrow{c} \neq \overrightarrow{a} \land (\overrightarrow{b} \land \overrightarrow{c})$$

Exemple?

prenons
$$\overrightarrow{a} = \overrightarrow{i} \quad \overrightarrow{b} = \overrightarrow{j} \quad \overrightarrow{c} = \overrightarrow{i} + \overrightarrow{j}$$

$$\overrightarrow{(a \land b)} \land \overrightarrow{c} = (i \land j) \land (i + j) = k \land (i + j)$$

$$= (k \land i) + (k \land j) = j + -i = -i + j$$

$$\Rightarrow \Rightarrow \Rightarrow$$

$$a \land (b \land c) = i \land (j \land (i + j)) = i \land (j \land i + j \land j)$$

$$= i \land (-k) = -i \land k = -j$$

Évaluation du produit vectoriel en termes de ses composantes

2 Soit
$$\vec{a} = (a_1, a_2, a_3)$$
 et $\vec{b} = (b_1, b_2, b_3)$. Alors,

$$\vec{a} \wedge \vec{b} = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)$$

justification....

formule difficile à retenir

Évaluation du produit vectoriel en termes de ses composantes

Soit
$$\vec{a} = (a_1, a_2, a_3)$$
 et $\vec{b} = (b_1, b_2, b_3)$. Alors,
$$\vec{a} \wedge \vec{b} = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)$$

$$\vec{a} \wedge \vec{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \vec{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \vec{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \vec{k}$$

Rappel: évaluation d'un déterminant d'ordre 3

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

$$\vec{a} \wedge \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

déterminant symbolique

- a) Déterminer un vecteur perpendiculaire au plan déterminé par les 3 points P(1, 4, 6) Q(-2, 5, -1) R(1, -1, 1)
- b) Aire du triangle de sommets P Q R

SOLUTION ...

a) Déterminer un vecteur perpendiculaire au plan déterminé par les 3 points P(1, 4, 6) Q(-2, 5, -1) R(1, -1, 1)

SOLUTION

PQ
$$\wedge$$
 PR est perpendiculaire à PQ et à PR
PQ = $(-2 - 1)\overrightarrow{i}$ + $(5 - 4)\overrightarrow{j}$ + $(-1 - 6)\overrightarrow{k}$ = $-3\overrightarrow{i}$ + \overrightarrow{j} - $7\overrightarrow{k}$
PR = $0\overrightarrow{i}$ - $5\overrightarrow{j}$ - $5\overrightarrow{k}$

$$\overrightarrow{PQ} \wedge \overrightarrow{PR} = \begin{vmatrix} i & j & k \\ -3 & 1 & -7 \\ 0 & -5 & -5 \end{vmatrix} = (-5 - 35)i - (15 - 0)j + (15 - 0)k$$

b) aire du triangle de sommets P(1, 4, 6) Q(-2, 5, -1) R(1, -1, 1)

SOLUTION

$$\overrightarrow{PQ} \wedge \overrightarrow{PR} = -40 i - 15 j + 15 k$$

$$\| \overrightarrow{PQ} \wedge \overrightarrow{PR} \| = [(-40)^2 + (-15)^2 + (15)^2]^{0,5} = 5\sqrt{82}$$

aire du triangle PQR

= ½ aire du parallélogramme PQP'RP

$$= \frac{1}{2} 5 \sqrt{82}$$

Produit mixte

 \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} 3 vecteurs

a · (b ^ c): produit mixte c'est un scalaire

Interprétation géométrique

aire du parallélogramme engendré par \overrightarrow{b} et $\overrightarrow{c} = ||\overrightarrow{b} \wedge \overrightarrow{c}||$

hauteur du parallélépipède = | a | | cos θ|

Le volume du parallélépipè de construit sur les vecteurs \vec{a} , \vec{b} et \vec{c} est la norme de leur produit mix te :

$$V = Ah = |\vec{a} \cdot (\vec{b} \wedge \vec{c})|.$$

$$\vec{b} \wedge \vec{c}$$

$$h = \begin{pmatrix} \vec{c} & \vec{c} & \vec{c} \\ \vec{c} & \vec{c} \end{pmatrix}$$

$$\overrightarrow{a}$$
 \overrightarrow{b} \overrightarrow{c} 3 vecteurs

$$\overrightarrow{a} \cdot (\overrightarrow{b} \wedge \overrightarrow{c})$$
 produit mixte

Inversion des rôles de a b c

aire du parallélogramme engendré par \overrightarrow{a} et \overrightarrow{b} = $\|\overrightarrow{a} \wedge \overrightarrow{b}\|$ hauteur du parallélépipède = $\|\overrightarrow{c}\|$ |cos θ |

$$\overrightarrow{a} \cdot (\overrightarrow{b} \wedge \overrightarrow{c}) = \overrightarrow{c} \cdot (\overrightarrow{a} \wedge \overrightarrow{b}) = (\overrightarrow{a} \wedge \overrightarrow{b}) \cdot \overrightarrow{c}$$

Équations des droites et des plans

droite d de l'espace de dimension 3 est complètement déterminée si on fixe

- point $P(x_0, y_0, z_0)$ par lequel elle passe
- vecteur direction \overrightarrow{v} = (a, b, c) parallèle à d

$$\vec{r} = \vec{r_0} + t\vec{v}$$

équation vectorielle de d

t : paramètre réel

<u>Équation de la droite sous forme paramétrique</u>

$$x = x_0 + at$$

$$x = x_0 + at$$
 $y = y_0 + bt$ $x = z_0 + ct$

$$x = z_0 + ct$$

forme la plus utilisée

si a, b, c ≠ 0 équations symétriques de d

$$(x-x_0)/a = (y-y_0)/b = (z-z_0)/c$$

comment écrire si a = 0?

Écrire une équation vectorielle et les équations paramétriques de la droite qui passe par le point (5, 1, 3) et parallèle au vecteur i + 4j - 2k

$$\overrightarrow{r_0} = \overrightarrow{5i} + \overrightarrow{j} + 3 \overrightarrow{k}$$

$$\overrightarrow{v} = \overrightarrow{i} + 4\overrightarrow{j} - 2\overrightarrow{k}$$

$$\overrightarrow{l'} = \overrightarrow{quation} \text{ vectorielle}$$

$$\overrightarrow{r} = \overrightarrow{r_0} + \overrightarrow{t} \text{ v}$$

$$\overrightarrow{r} = (5+t)\overrightarrow{i} + (1+4t)\overrightarrow{j} + (3-2t)\overrightarrow{k}$$

équations paramétriques

$$x = 5 + t$$
 $y = 1 + 4t$ $z = 3 - 2t$

Équations des droites et des plans

Exemple

montrer que les droites d₁ et d₂

$$d_1: x = 1 + t \quad y = -2 + 3t \quad z = 4 - t$$

$$d_2$$
: $x = 2s$ $y = 3 + s$ $z = -3 + 4 s$

sont GAUCHES

= ne se coupent pas et ne sont pas parallèlesi.e. ne sont pas dans un même plan

SOLUTION

(1, 3, -1) et (2, 1, 4) ne sont pas proportionnels droites ne sont pas parallèles

point en commun?
$$1+t=2s=(1)$$

 $-2+3t=3+s=(2)$
 $4-t=-3+4s=(3)$
solution de (1) et (2) $t=11/5$ et $s=8/5$
vérifie pas l'équation (3)

Plans

plan T est déterminé par

- point $P_0(x_0, y_0, z_0)$ dans le plan
- vecteur n orthogonal au plan

forme vectorielle

$$P(x, y, z)$$
: point quelconque de Π

 $\overrightarrow{r_0}$: vecteur position de P_0

r : vecteur position de P

 $\overrightarrow{r-r_0}$: vecteur dans le plan \mathbf{T}

$$\overrightarrow{n} \cdot (\overrightarrow{r-r_0}) = 0$$

forme scalaire

$$\overrightarrow{n} = (a, b, c)$$
 $\overrightarrow{r} = (x, y, z)$ $\overrightarrow{r_0} = (x_0, y_0, z_0)$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$ax + by + cz + d = 0$$

Exemple équation du plan déterminé par les points P(1, 3, 2) Q(3, -1, 6) R(5, 2, 0)

$$\overrightarrow{PQ} = (2, -4, 4)$$
 $\overrightarrow{PR} = (4, -1, -2)$ sont dans le plan

$$\overrightarrow{n} = \overrightarrow{PQ} \wedge \overrightarrow{PR} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & -4 & 4 \\ 4 & -1 & -2 \end{vmatrix} = 12\overrightarrow{i} + 20\overrightarrow{j} + 14\overrightarrow{k}$$

équation : 12(x-1) + 20(y-3) + 14(z-2) = 0

2 plans sont parallèles SI leurs vecteurs normaux sont parallèles

Plans

Exemple

- a) angle entre les plans x + y + z = 1 et x 2y + 3z = 1
- b) équation de la droite d d'intersection

a) angle entre les plans x + y + z = 1 et x - 2y + 3z = 1

a)
$$\overrightarrow{n_1} = (1, 1, 1)$$
 $\overrightarrow{n_2} = (1, -2, 3)$
 $\theta = \text{angle entre les 2 plans}$
 $\cos\theta = \overrightarrow{n1} \cdot \overrightarrow{n2} / (\|\overrightarrow{n1}\| \| \overrightarrow{n2} \|) = 2 / (\sqrt{3} \sqrt{14})$
 $= 0,3086$
 $\theta = \text{ArcCos}(0,3086) = 72^\circ$

```
    b) un point P de d disons avec z = 0 x+y=1 et x-2y = 1 alors x = 1 et y = 0 et le point P(1, 0, 0)
    d est perpendiculaire aux 2 vecteurs normaux n₁ et n₂ v vecteur parallèle à d v = n1 ∧ n2 = 5i - 2j -3k
    équations symétrique de d (x - 1) / 5 = y / -2 = z / -3
    intersection de 2 plans: (x-1)/5 = y/-2 et y/-2 = z/-3
```

Plans

Formule de la distance D d'un point $P_1(x_1, y_1, z_1)$ à un plan ax + by + cz + d = 0

$$D = |ax_1 + by_1 + cz_1 + d|/(a^2 + b^2 + c^2)^{0.5}$$

 $P_0(x_0, y_0, z_0)$ point quelconque du plan

$$ax_0 + by_0 + cz_0 + d = 0$$

$$\Rightarrow$$
 b = vecteur $P_0P_1 = (x_1 - x_0, y_1 - y_0, z_1 - z_0)$

$$D = |\operatorname{comp}_n \overrightarrow{b}| = |\overrightarrow{n} \cdot \overrightarrow{b}| / ||\overrightarrow{n}||$$

quelle est la distance entre les 2 plans parallèles

$$10x + 2y - 2z = 5$$
 (plan $\pi 1$) et $5x + y - z = 1$ (plan $\pi 2$)

SOLUTION

```
plans sont parallèles? oui car leurs vecteurs normaux (10, 2, -2) (5, 1, -1) sont proportionnels
```

on choisit un point quelconque du plan
$$\pi 1$$
:
y = z = 0 donne x = $\frac{1}{2}$ point $P_1(\frac{1}{2}, 0, 0)$

distance D de P₁ au plan π2

D =
$$|5(\frac{1}{2}) + 1(0) + (-1)(0) - 1| / (5^2 + 1^2 + (-1)^2)^{0.5}$$

= $(3/2) / \sqrt{27} = (3/2) / 3\sqrt{3} = \sqrt{3} / 6$