COMP5313/COMP4313 - Large Scale Networks

Week 10a: Power Laws

Lijun Chang

May 8, 2025

Introduction

- We talked about evolution through decisions
 - Information cascade can depend on the outcome of few initial decisions
 - A technology can win simply because it reaches an audience before its competitors
- Let us talk now about a model of uncertain evolution
 - Various quantities, like popularity, have highly skewed distributions
 - How can this be explained?

Outline

Power Law Distribution of Popularity

The Preferential Attachment Mode

Unpredictability of the Rich-get-richer Effect

Popularity

- ▶ Popularity is a phenomenon characterized by extreme imbalances
 - While most people are known only by people in their immediate social circles
 - Very few people achieve global name recognition
- How can we quantify these imbalances?
 - It is hard to answer these questions for people popularity
 - Let's try to answer these questions for Web page popularity

Popularity

- Let us define the popularity of a Web page as the number of its in-links
 - The links pointing to a given page are referred to as the in-links of the page
- ► To quantify the imbalance of popularity, let us consider the distribution of the number of in-links
 - As a function of k, what fraction of pages on the Web have k in-links?
 - $-\ k$ translates into popularity: the higher k is, the more popular the page

Distribution of Popularity

▶ What could be the distribution?

- ► The normal distribution is popular (cf. Central Limit Theorem)
 - The sum of independent random quantities follows the normal distribution
 - k would be normally distributed if pages would connect independently at random

- ▶ The distribution of links on the Web is different from a normal distribution. ¹
 - The fraction of Web pages that have k in-links is approximately $1/k^2$ (More precisely, the exponent on k is generally a number slightly larger than 2)

¹A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener. Graph structure in the web. Computer networks, vol. 33, no. 1-6, 2000.

- ▶ How does it differ from the normal distribution?
 - $-1/k^2$ decreases much more slowly as k increases than in the normal distribution (there are more pages with a very high numbers of in-links)
 - $-1/k^2$ is only 1/1000000 for k=1000, while $1/2^k$ is unimaginably low
- A power law is a function that decreases as k increases to some fixed power, such as $1/k^2$ in the present case

→ There is an extreme imbalance in the distribution of in-links on Web pages

- Similar power laws exist:
 - The fraction of telephone numbers that receive k calls per day is $O(1/k^2)$
 - The fraction of books that are bought by k people is $O(1/k^3)$
 - The fraction of scientific papers that receive k citations is $O(1/k^3)$
 - ..
- ▶ Hence, if someone gives you a table showing the number of monthly downloads for each song at a large online music site, then it is worth testing whether it is approximately a power law $1/k^c$ for some c, and if so to estimate c.

- ► How to test that some dataset is power law?
- \blacktriangleright Let f(k) be the fraction of items that have value k
- Suppose you want to know whether the equation $f(k) = a/k^c$ approximately holds
- If we apply the log to both sides, we have:

$$\log f(k) = \log a - c \log k$$

 \implies If we plot $\log f(k)$ as a function of $\log k$, then we should have a straight line with -c the slope and $\log a$ the y-intercept

Power Law

► A power law distribution, like the Web page in-links, shows up as a straight line on a log-log plot

Outline

Power Law Distribution of Popularity

The Preferential Attachment Model

Unpredictability of the Rich-get-richer Effect

The Preferential Attachment Model

- Here is a simple model for the creation of links among Web pages
 - 1. Pages are created in order and named $1, 2, 3, \dots, n$
 - 2. When page j is created, it produces a link to an earlier Web page by choosing between actions (a) and (b) below according to the following probabilistic rule (controlled by a single number p between 0 and 1):
 - a) With probability p, page j chooses a page i uniformly at random from among all earlier pages and creates a link to i
 - b) With probability 1-p, page j instead chooses a page i uniformly at random from among all earlier pages and creates a link to a page i points to

(This described the creation of a single link from page j; one can repeat this process to obtain multiple, independently generated links from page j)

The Preferential Attachment Model

- If we repeat for many pages, the fraction of pages with k in-links follow a power law distribution $1/k^{c}$
- \triangleright Step 2(b) is the key: j copies the behavior of node i instead of linking i
- ▶ We could have replaced Step 2(b) by:
 - b) With probability 1-p, page j chooses a page i with probability proportional to i's current number of in-links, and creates a link to i
- \implies The probability that i's popularity increases is proportional to i's popularity
- Preferential attachment: links are formed "preferentially" to pages that already have high popularity. 2

²A.-L. Barabasi, R. Albert. Emergence of scaling in random networks. Science, vol. 286, no. 5439, 1999.

Outline

Power Law Distribution of Popularity

The Preferential Attachment Mode

Unpredictability of the Rich-get-richer Effect

Rich Get Richer

- Popularity grows at a rate proportional to its current value
- The populations of cities:
 - The fraction of cities with population k is roughly $1/k^c$ for some constant c. ³
 - If we assume that cities are created at different times and grow at a rate proportional to its current size simply as a result of people having children, then we have roughly the same model
- Citations: new citations to a paper are proportional to the number it already has
- Sociology: Matthew effect
 - https://en.wikipedia.org/wiki/Matthew_effect

³H. A. Simon. On a class of skew distribution functions. Biometrika, vol. 42, no. 3/4, 1955

Unpredictability of the Rich-get-richer Effect

- ► For a Web page, a book, a song, or any other object of popular attention, the initial phase of its rise to popularity is relatively fragile.
- Once popularity is established, the rich-get-richer dynamics are likely to push it even higher.
- But getting this rich-get-richer process ignited is a precarious process, full of potential accidents and near misses.

Unpredictability of the Rich-get-richer Effect

- Salgankik, Dodds, Watts created a music download site
 - With 48 obscure songs of varying quality written by actual performing groups
 - Visitors were presented with a list of the songs and could listen to them
 - Each visitor would see a "download count" for each song
 - At the end, the visitor was proposed to download the song that she liked
- Upon arrival, visitors were redirected to one of 8 copies of the site
 - These copies were initially the same with download count set to 0
 - These copies evolved differently as visitors arrived
- ► The market share of the different songs varied considerably across the different parallel copies