5

10

15

20

25

30

35

CCGGGTCGACCCACGCGTCCGAAGGCCCCCTCTCACTCCGCTCCACTCCTCGGGCTGG CTCTCCTGAGGATGCACCAGCGTCACCCCCGGGCAAGATGCCCTCCCCTCTGTGTGGC CGGAATCCTTGCCTGTGCTTTCTCCTGGGCTGCTGGGGACCCTCCCATTTCCAGCAGA GTTGTCTTCAGGCTTTGGAGCCACAGGCCGTGTCTTCTTACTTGAGCCCTGGTGCTCCC TTAAAAGGCCGCCTCCTTCCCCTGGCTTCCAGAGGCAGAGGCAGAGGCAGAGGCGGG CTGCAGGCGGCATCCTACACCTGGAGCTGCTGGTGGCCGTGGGCCCCGATGTCTTCCA GGCTCACCAGGAGGACACAGAGCGCTATGTGCTCACCAACCTCAACATCGGGGCAGAA CTGCTTCGGGACCCGTCCCTGGGGGCTCAGTTTCGGGTGCACCTGGTGAAGATGGTCA TTCTGACAGAGCCTGAGGGTGCTCCAAATATCACAGCCAACCTCACCTCGTCCCTGCTG AGCGTCTGTGGGTGGAGCCAGACCATCAACCCTGAGGACGACACGGATCCTGGCCATG CTGACCTGGTCCTCTATATCACTAGGTTTGACCTGGAGTTGCCTGATGGTAACCGGCAG GTGCGGGCGTCACCCAGCTGGGCGGTGCCTGCTCCCCAACCTGGAGCTGCCTCATTA CCGAGGACACTGGCTTCGACCTGGGAGTCACCATTGCCCATGAGATTGGGCACAGCTT CGGCCTGGAGCACGACGCGCCCGGCAGCGGCTGCGGCCCCAGCGGACACGTGA TGGCTTCGGACGCGCGCGCCCCGCGCCCTGCCTGCTCCCCTGCAGCCGCC GGCAGCTGCTGAGCCTGCTCAGCGCAGGACGGGCGCGCTGCGTGTGGGACCCGCCGC GGCCTCAACCCGGGTCCGCGGGGCACCCGCCGGATGCGCAGCCTGGCCTCTACTACA GCGCCAACGAGCAGTGCCGCGTGGCCTTCGGCCCCAAGGCTGTCGCCTGCACCTTCGC CAGGGAGCACCTGGATATGTGCCAGGCCCTCTCCTGCCACACAGACCCGCTGGACCAA AGCAGCTGCAGCCGCCTCCTCGTTCCTCCTGGATGGGACAGAATGTGGCGTGGAGA AGTGGTGCTCCAAGGGTCGCTGCCGCTCCCTGGTGGAGCTGACCCCCATAGCAGCAGT GCATGGCCGCTGGTCTAGCTGGGGTCCCCGAAGTCCTTGCTCCCGCTCCTGCGGAGGA GGTGTGGTCACCAGGAGGCGGCAGTGCAACACCCCAGACCTGCCTTTGGGGGGCGT GCATGTGTTGGTGCTGACCTCCAGGCCGAGATGTGCAACACTCAGGCCTGCGAGAAGA CCCAGCTGGAGTTCATGTCGCAACAGTGCGCCAGGACCGACGGCCAGCCGCTGCGCTC CTCCCTGGCGGCGCCTCCTTCTACCACTGGGGTGCTGCTGTACCACACAGCCAAGGG GATGCTCTGTGCAGACACATGTGCCGGGCCATTGGCGAGAGCTTCATCATGAAGCGTG GAGACAGCTTCCTCGATGGGACCCGGTGTATGCCAAGTGGCCCCCGGGAGGACGGGA CCCTGAGCCTGTGTGTCGGGCAGCTGCAGGACATTTGGCTGTGATGGTAGGATGGA CTCCCAGCAGGTATGGGACAGGTGCCAGGTGTGTGGTGGGGACAACAGCACGTGCAGC CCACGGAAGGGCTCTTTCACAGCTGGCAGAGCGAGAGAATATGTCACGTTTCTGACAGT TACCCCAACCTGACCAGTGTCTACATTGCCAACCACAGGCCTCTCTTCACACACTTGG CGGTGAGGATCGGAGGGCGCTATGTCGTGGCTGGGAAGATGAGCATCTCCCCTAACAC CACCTACCCTCCTCGGGGGGTGGTCGTGTCGAGTACAGAGTGGCCCTCACCGAG

5

10

15

20

25

30

35

GACCGGCTGCCCGCCTGGAGGAGATCCGCATCTGGGGACCCCTCCAGGAAGATGCT GACATCCAGGTTTACAGGCGGTATGGCGAGGAGTATGGCAACCTCACCCGCCCAGACA TCACCTTCACCTACTTCCAGCCTAAGCCACGGCAGGCCTGGGTGTGGGCCGCTGTGCG TGGGCCCTGCTCGGTGAGCTGTGGGGCAGGGCTGCGCTGGGTAAACTACAGCTGCCTG CCAGCGTGGCCAGAGGCCTGCGTGCTCGAACCCTGCCCTACTGGGCGGTGGGA GACTTCGGCCCATGCAGCGCCTCCTGTGGGGGTGGCCTGCGGGAGCGGCCAGTGCGC TGCGTGGAGGCCCAGGCCGGCCGGTGCAGAGCA AGGTGGGAGGTGTCAGAGCCCAGCTCATGCACATCAGCTGGTGGAGCAGGCCTGGCCT TGGAGAACGAGACCTGTGTGCCAGGGGCAGATGGCCTGGAGGCTCCAGTGACTGAGG GGCCTGGCTCCGTAGATGAGAAGCTGCCTGCCCCTGAGCCCTGTGTCGGGATGTCATG TGGGGCAGCATCAGGACGGGGGCTCAAGCTGCACACGTGTGGACCCCTGCGGCAGGG TCGTGCTCCGTCTCCTGCGGGCGAGGTCTGATGGAGCTGCGTTTCCTGTGCATGGACT CCGGCGGGAGGTCTGCCAGGCTGTCCCGTGCCCTGCTCGGTGGCAGTACAAGCTGGC GGCCTGCAGCGTGAGCTGTGGGAGAGGGTCGTGCGGAGGATCCTGTATTGTGCCCG GGCCCATGGGGAGGACGATGGTGAGGAGATCCTGTTGGACACCCAGTGCCAGGGGCT GCCTCGCCCGGAACCCCAGGAGGCCTGCAGCCTGGAGCCCTGCCCACCTAGGTGGAA AGTCATGTCCCTTGGCCCATGTTCGGCCAGCTGTGGCCTTGGCACTGCTAGACGCTCG GTGGCCTGTGCAGCCCAAGGCCAGGACGTGGAGGTGGACGAGGCGGCCTGT GCGGCGCTGGTGCGGCCCGAGGCCAGTGTCCCCTGTCTCATTGCCGACTGCACCTACC GCTGGCATGTTGGCACCTGGATGGAGTGCTCTGTTTCCTGTGGGGATGGCATCCAGCG CCGGCGTGACACCTGCCTCGGACCCCAGGCCCAGGCGCCTGTGCCAGCTGATTTCTGC CAGCACTTGCCCAAGCCGGTGACTGTGCGTGGCTGCTGGGCCCTGTGTGGGAC AGGGTACGCCCAGCCTGCTCCCACGAAGAAGCCGCTGCTCCAGGACGACCACAG CCACCCTGCTGGTGCCTGTGGCAGGCAGCACTTGAGCCAACAGGAACCATTGACAT GCGAGGCCCAGGGCAGACTGTGCAGTGGCCATTGGGCGGCCCCTCGGGGAGGT GGTGACCCTCCGCGTCCTTGAGAGTTCTCTCAACTGCAGTGCGGGGGACATGTTGCTG CTTTGGGGCCGGCTCACCTGGAGGAAGATGTGCAGGAAGCTGTTGGACATGACTTTCA TGCTGCTGCGGTATGGGAGCCAGCTTGCTCCTGAAACCTTCTACAGAGAATGTGACATG CAGCTCTTTGGGCCCTGGGGTGAAATCGTGAGCCCCTCGCTGAGTCCAGCCACGAGTA GCCCTGGCCACCAACATGGGCGCTGGGACCGAGGGAGCCAATGCCAGCTACATCTTGA TCCGGGACACCCACAGCTTGAGGACCACAGCGTTCCATGGGCAGCAGGTGCTCTACTG

FIG. 2

5

10

15

20

25

PGRPTRPKAPSHSAPLLGLALLRMHQRHPRARCPPLCVAGILACGFLLGCWGPSHFQQSCL QALEPQAVSSYLSPGAPLKGRPPSPGFQRQRQRQRRAAGGILHLELLVAVGPDVFQAHQED TERYVLTNLNIGAELLRDPSLGAQFRVHLVKMVILTEPEGAPNITANLTSSLLSVCGWSQTINP **EDDTDPGHADLVLYITRFDLELPDGNRQVRGVTQLGGACSPTWSCLITEDTGFDLGVTIAHEI** GHSFGLEHDGAPGSGCGPSGHVMASDGAAPRAGLAWSPCSRRQLLSLLSAGRARCVWDP PRPQPGSAGHPPDAQPGLYYSANEQCRVAFGPKAVACTFAREHLDMCQALSCHTDPLDQS SCSRLLVPLLDGTECGVEKWCSKGRCRSLVELTPIAAVHGRWSSWGPRSPCSRSCGGGVV TRRRQCNNPRPAFGGRACVGADLQAEMCNTQACEKTQLEFMSQQCARTDGQPLRSSPGG ASFYHWGAAVPHSQGDALCRHMCRAIGESFIMKRGDSFLDGTRCMPSGPREDGTLSLCVS GSCRTFGCDGRMDSQQVWDRCQVCGGDNSTCSPRKGSFTAGRAREYVTFLTVTPNLTSV YIANHRPLFTHLAVRIGGRYVVAGKMSISPNTTYPSLLEDGRVEYRVALTEDRLPRLEEIRIWG PLQEDADIQVYRRYGEEYGNLTRPDITFTYFQPKPRQAWVWAAVRGPCSVSCGAGLRWVN YSCLDQARKELVETVQCQGSQQPPAWPEACVLEPCPPYWAVGDFGPCSASCGGGLRERP VRCVEAQGSLLKTLPPARCRAGAQQPAVALETCNPQPCPARWEVSEPSSCTSAGGAGLAL ENETCVPGADGLEAPVTEGPGSVDEKLPAPEPCVGMSCPPGWGHLDATSAGEKAPSPWG SIRTGAQAAHVWTPAAGSCSVSCGRGLMELRFLCMDSALRVPVQEELCGLASKPGSRREV CQAVPCPARWQYKLAACSVSCGRGVVRRILYCARAHGEDDGEEILLDTQCQGLPRPEPQE ACSLEPCPPRWKVMSLGPCSASCGLGTARRSVACVQLDQGQDVEVDEAACAALVRPEASV PCLIADCTYRWHVGTWMECSVSCGDGIQRRRDTCLGPQAQAPVPADFCQHLPKPVTVRGC WAGPCVGQGTPSLVPHEEAAAPGRTTATPAGACGRQHLEPTGTIDMRGPGQADCAVAIGR PLGEVVTLRVLESSLNCSAGDMLLLWGRLTWRKMCRKLLDMTFSSKTNTLVVRQRCGRPG GGVLLRYGSQLAPETFYRECDMQLFGPWGEIVSPSLSPATSNAGGCRLFINVAPHARIAIHAL ATNMGAGTEGANASYILIRDTHSLRTTAFHGQQVLYWESESSQAEMEFSEGFLKAQASLRG QYWTLQSWVPEMQDPQSWKGKEGT

Figure 3

Domain structure of ADAMTS-M and translated nucleic acid sequence. A) Diagram of ADAMTS-M showing the following domains and signature motifs (with amino acid numbers in parentheses): partial prodomain (1-97), furin cleavage site (94-97), metalloproteinase domain (98-311), zinc-binding motif (247-272), disintegrin domain (324-394), thrombospondin submotifs (410-473 and 1099-1156), and a heparin-binding motif (419-424). B) ADAMTS-M nucleotide sequence with translated amino acid sequence above.

345 GCTGGTGGCC GTGGGCCCCG ATGTCTTCCA GGCTCACCAG GAGGACACAG AGCGCTATGT GCTCACCAAC CTCAACATCG
CGACCACCGG CACCCGGGGC TACAGAAGGT CCGAGTGGTC CTCCTGTGTC TCGCGATACA CGAGTGGTTG GAGTTGTAGC

+1	G A E L L R D P S L G A Q F R V H L V K M V I L T E P Metalloproteinase Domain								
425	GGCAGAACT GCTTCGGGAC CCGTCCCTGG GGGCTCAGTT TCGGGTGCAC CTGGTGAAGA TGGTCATTCT GACAGAGCCT CCCGTCTTGA CGAAGCCCTG GGCAGGGACC CCCGAGTCAA AGCCCACGTG GACCACTTCT ACCAGTAAGA CTGTCTCGGA								
+1	E G A P N I T A N L T S S L L S V C G W S Q T I N P E Metalloproteinase Domain								
505	GAGGGTGCTC CAAATATCAC AGCCAACCTC ACCTCGTCCC TGCTGAGCGT CTGTGGGTGG AGCCAGACCA TCAACCCTGA CTCCCACGAG GTTTATAGTG TCGGTTGGAG TGGAGCAGGG ACGACTCGCA GACACCCACC TCGGTCTGGT AGTTGGGACT								
+1	1 D D T D P G H A D L V L Y I T R F D L E L P D G N R Metalloproteinase Domain								
585	GGACGACACG GATCCTGGCC ATGCTGACCT GGTCCTCTAT ATCACTAGGT TTGACCTGGA GTTGCCTGAT GGTAACCGGC CCTGCTGTGC CTAGGACCGG TACGACTGGA CCAGGAGATA TAGTGATCCA AACTGGACCT CAACGGACTA CCATTGGCCG								
+1	Q V R G V T Q L G G A C S P T W S C L I T E D T G F D Metalloproteinase Domain								
665	AGGTGCGGGG CGTCACCCAG CTGGGCGGTG CCTGCTCCCC AACCTGGAGC TGCCTCATTA CCGAGGACAC TGGCTTCGAC TCCACGCCCC GCAGTGGGTC GACCCGCCAC GGACGAGGGG TTGGACCTCG ACGGAGTAAT GGCTCCTGTG ACCGAAGCTG								
+1	L G V T I A H E I G H S F G L E H D G A P G S G C G P Zinc-binding Motif								
	Metalloproteinase Domain								
745	CTGGGAGTCA CCATTGCCCA TGAGATTGGG CACAGCTTCG GCCTGGAGCA CGACGGCGCG CCCGGCAGCG GCTGCGGCCC GACCCTCAGT GGTAACGGGT ACTCTAACCC GTGTCGAAGC CGGACCTCGT GCTGCCGCGC GGGCCGTCGC CGACGCCGGG								
+1	S G H V M A S D G A A P R A G L A W S P C S R R Q L Zinc-binding Motif								
	Metalloproteinase Domain								
825	CAGCGGACAC GTGATGGCTT CGGACGGCGC CGCGCCCCGC GCCGGCCTCG CCTGGTCCCC CTGCAGCCGC CGGCAGCTGC GTCGCCTGTG CACTACCGAA GCCTGCCGCG GCGCGGGGCG CGGCCGGAGC GGACCAGGGG GACGTCGGCG GCCGTCGACG								
+1	L S L L S A G R A R C V W D P P R P Q P G S A G H P P Metalloproteinase Domain								
905	TGAGCCTGCT CAGCGCAGGA CGGGCGCGCT GCGTGTGGGA CCCGCCGCGG CCTCAACCCG GGTCCGCGGG GCACCCGCCG ACTCGGACGA GTCGCGTCCT GCCCGCGCGA CGCACACCCT GGGCGGCGC GGAGTTGGGC CCAGGCGCCC CGTGGGCGGC								
+1	DAQPGLYYSANEQCRVAFGPKAVACTF Disintegrin Domain								
985	GATGCGCAGC CTGGCCTCTA CTACAGCGCC AACGAGCAGT GCCGCGTGGC CTTCGGCCCC AAGGCTGTCG CCTGCACCTT CTACGCGTCG GACCGGAGAT GATGTCGCGG TTGCTCGTCA CGGCGCACCG GAAGCCGGGG TTCCGACAGC GGACGTGGAA								

+1	Disintegrin Domain
1065	CGCCAGGGAG CACCTGGATA TGTGCCAGGC CCTCTCCTGC CACACAGACC CGCTGGACCA AAGCAGCTGC AGCCGCCTCC GCGGTCCCTC GTGGACCTAT ACACGGTCCG GGAGAGGACG GTGTGTCTGG GCGACCTGGT TTCGTCGACG TCGGCGGAGG
+1	L V P L L D G T E C G V E K W C S K G R C R S L V E L Disintegrin Domain
1145	TCGTTCCTCT CCTGGATGGG ACAGAATGTG GCGTGGAGAA GTGGTGCTCC AAGGGTCGCT GCCGCTCCCT GGTGGAGCTG AGCAAGGAGA GGACCTACCC TGTCTTACAC CGCACCTCTT CACCACGAGG TTCCCAGCGA CGGCGAGGGA CCACCTCGAC
+1	Heparin-binding Motif
1225	Thrombospondin Submotif ACCCCCATAG CAGCAGTGCA TGGGCGCTGG TCTAGCTGGG GTCCCCGAAG TCCTTGCTCC CGCTCCTGCG GAGGAGGTGT
+1	V T R R R Q C N N P R P A F G G R A C V G A D L Q A Thrombospondin Submotif
1305	GGTCACCAGG AGGCGGCAGT GCAACAACCC CAGACCTGCC TTTGGGGGGGC GTGCATGTGT TGGTGCTGAC CTCCAGGCCG CCAGTGGTCC TCCGCCGTCA CGTTGTTGGG GTCTGGACGG AAACCCCCCG CACGTACACA ACCACGACTG GAGGTCCGGC
+1	E M C N T Q A C E K T Q L E F M S Q Q C A R T D G Q P Thrombospondin Submotif
1385	AGATGTGCAA CACTCAGGCC TGCGAGAAGA CCCAGCTGGA GTTCATGTCG CAACAGTGCG CCAGGACCGA CGGCCAGCCG TCTACACGTT GTGAGTCCGG ACGCTCTTCT GGGTCGACCT CAAGTACAGC GTTGTCACGC GGTCCTGGCT GCCGGTCGGC
-	L R S S P G G A S F Y H W G A A V P H S Q G D A L C R CTGCGCTCCT CCCCTGCGG CGCCTCCTTC TACCACTGGG GTGCTGCTGT ACCACAGGC CAAGGGGATG CTCTGTGCAG GACGCGAGGA GGGGACCGCC GCGGAGGAAG ATGGTGACCC CACGACGACA TGGTGTGTCG GTTCCCCTAC GAGACACGTC
+1 1545	H M C R A I G E S F I M K R G D S F L D G T R C M P ACACATGTGC CGGGCCATTG GCGAGAGCTT CATCATGAAG CGTGGAGACA GCTTCCTCGA TGGGACCCGG TGTATGCCAA TGTGTACACG GCCCGGTAAC CGCTCTCGAA GTAGTACTTC GCACCTCTGT CGAAGGAGCT ACCCTGGGCC ACATACGGTT
	S G P R E D G T L S L C V S G S C R T F G C D G R M D GTGGCCCCCG GGAGGACGGG ACCCTGAGCC TGTGTGTGTC GGGCAGCTGC AGGACATTTG GCTGTGATGG TAGGATGGAC CACCGGGGGC CCTCCTGCCC TGGGACTCGG ACACACACA CCCGTCGACG TCCTGTAAAC CGACACTACC ATCCTACCTG
+1 1705	S Q Q V W D R C Q V C G G D N S T C S P R K G S F T A TCCCAGCAGG TATGGGACAG GTGCCAGGTG TGTGGTGGGG ACAACAGCAC GTGCAGCCCA CGGAAGGGCT CTTTCACAGC AGGGTCGTCC ATACCCTGTC CACGGTCCAC ACACCACCCC TGTTGTCGTG CACGTCGGGT GCCTTCCCGA GAAAGTGTCG
+1 1785	G R A R E Y V T F L T V T P N L T S V Y I A N H R P TGGCAGAGCG AGAGAATATG TCACGTTTCT GACAGTTACC CCCAACCTGA CCAGTGTCTA CATTGCCAAC CACAGGCCTC ACCGTCTCGC TCTCTTATAC AGTGCAAAGA CTGTCAATGG GGGTTGGACT GGTCACAGAT GTAACGGTTG GTGTCCGGAG

- +1 L F T H L A V R I G G R Y V V A G K M S I S P N T T Y

 1865 TCTTCACACA CTTGGCGGTG AGGATCGGAG GGCGCTATGT CGTGGCTGGG AAGATGAGCA TCTCCCCTAA CACCACCTAC

 AGAAGTGTGT GAACCGCCAC TCCTAGCCTC CCGCGATACA GCACCGACCC TTCTACTCGT AGAGGGGATT GTGGTGGATG
- +1 P S L L E D G R V E Y R V A L T E D R L P R L E E I R

 1945 CCCTCCCTCC TGGAGGATGG TCGTGTCGAG TACAGAGTGG CCCTCACCGA GGACCGGCTG CCCCGCCTGG AGGAGATCCG

 GGGAGGGAGG ACCTCCTACC AGCACAGCTC ATGTCTCACC GGGAGTGGCT CCTGGCCGAC GGGGCGGACC TCCTCTAGGC
- +1 I W G P L Q E D A D I Q V Y R R Y G E E Y G N L T R
 2025 CATCTGGGGA CCCCTCCAGG AAGATGCTGA CATCCAGGTT TACAGGCGGT ATGGCGAGGA GTATGGCAAC CTCACCCGCC
 GTAGACCCCT GGGGAGGTCC TTCTACGACT GTAGGTCCAA ATGTCCGCCA TACCGCTCCT CATACCGTTG GAGTGGGCGG
- +1 P D I T F T Y F Q P K P R Q A W V W A A V R G P C S V
 2105 CAGACATCAC CTTCACCTAC TTCCAGCCTA AGCCACGGCA GGCCTGGGTG TGGGCCGCTG TGCGTGGGCC CTGCTCGGTG
 GTCTGTAGTG GAAGTGGATG AAGGTCGGAT TCGGTGCCGT CCGGACCCAC ACCCGGCGAC ACGCACCCGG GACGAGCCAC
- +1 S C G A G L R W V N Y S C L D Q A R K E L V E T V Q C
 2185 AGCTGTGGGG CAGGGCTGCG CTGGGTAAAC TACAGCTGCC TGGACCAGGC CAGGAAGGAG TTGGTGGAGA CTGTCCAGTG

 TCGACACCCC GTCCCGACGC GACCCATTG ATGTCGACGG ACCTGGTCCG GTCCTTCCTC AACCACCTCT GACAGGTCAC
- +1 Q G S Q Q P P A W P E A C V L E P C P P Y W A V G D

 2265 CCAAGGGAGC CAGCAGCCAC CAGCGTGGCC AGAGGCCTGC GTGCTCGAAC CCTGCCCTCC CTACTGGGCG GTGGGAGACT

 GGTTCCCTCG GTCGTCGGTG GTCGCACCGG TCTCCGGACG CACGAGCTTG GGACGGGAGG GATGACCCGC CACCCTCTGA
- +1 F G P C S A S C G G G L R E R P V R C V E A Q G S L L
 2345 TCGGCCCATG CAGCGCCTCC TGTGGGGGTG GCCTGCGGGA GCGCCCAGTG CGCTGCGTGG AGGCCCAGGG CAGCCTCCTG
 AGCCGGGTAC GTCGCGGAGG ACACCCCCAC CGGACGCCCT CGCCGGTCAC GCGACGCACC TCCGGGTCCC GTCGGAGGAC
- +1 K T L P P A R C R A G A Q Q P A V A L E T C N P Q P C
 2425 AAGACATTGC CCCCAGCCCG GTGCAGAGCA GGGGCCCAGC AGCCAGCTGT GGCGCTGGAA ACCTGCAACC CCCAGCCCTG
 TTCTGTAACG GGGGTCGGGC CACGTCTCGT CCCCGGGTCG TCGGTCGACA CCGCGACCTT TGGACGTTGG GGGTCGGGAC
- +1 P A R W E V S E P S S C T S A G G A G L A L E N E T

 2505 CCCTGCCAGG TGGGAGGTGT CAGAGCCCAG CTCATGCACA TCAGCTGGTG GAGCAGGCCT GGCCTTGGAG AACGAGACCT

 GGGACGGTCC ACCCTCCACA GTCTCGGGTC GAGTACGTGT AGTCGACCAC CTCGTCCGGA CCGGAACCTC TTGCTCTGGA
- +1 C V P G A D G L E A P V T E G P G S V D E K L P A P E
 2585 GTGTGCCAGG GGCAGATGGC CTGGAGGCTC CAGTGACTGA GGGGCCTGGC TCCGTAGATG AGAAGCTGCC TGCCCCTGAG
 CACACGGTCC CCGTCTACCG GACCTCCGAG GTCACTGACT CCCCGGACCG AGGCATCTAC TCTTCGACGG ACGGGGACTC
- +1 P C V G M S C P P G W G H L D A T S A G E K A P S P W
 2665 CCCTGTGTCG GGATGTCATG TCCTCCAGGC TGGGGCCATC TGGATGCCAC CTCTGCAGGG GAGAAGGCTC CCTCCCCATG
 GGGACACAGC CCTACAGTAC AGGAGGTCCG ACCCCGGTAG ACCTACGGTG GAGACGTCCC CTCTTCCGAG GGAGGGGTAC
- +1 G. S I R T G A Q A A H V W T P A A G S C S V S C G R
 2745 GGGCAGCATC AGGACGGGG CTCAAGCTGC ACACGTGTGG ACCCCTGCGG CAGGGTCGTG CTCCGTCTCC TGCGGGCGAG
 CCCGTCGTAG TCCTGCCCCC GAGTTCGACG TGTGCACACC TGGGGACGCC GTCCCAGCAC GAGGCAGAGG ACGCCCGCTC
- +1 G L M E L R F L C M D S A L R V P V Q E E L C G L A S
 2825 GTCTGATGGA GCTGCGTTTC CTGTGCATGG ACTCTGCCCT CAGGGTGCCT GTCCAGGAAG AGCTGTGTGG CCTGGCAAGC
 CAGACTACCT CGACGCAAAG GACACGTACC TGAGACGGGA GTCCCACGGA CAGGTCCTTC TCGACACACC GGACCGTTCG

- +1 K P G S R R E V C Q A V P C P A R W Q Y K L A A C S V
 2905 AAGCCTGGGA GCCGGCGGA GGTCTGCCAG GCTGTCCCGT GCCCTGCTCG GTGGCAGTAC AAGCTGGCGG CCTGCAGCGT

 TTCGGACCCT CCGGCCGCCT CCAGACGGTC CGACAGGGCA CGGGACGAGC CACCGTCATG TTCGACCGCC GGACGTCGCA
- +1 S C G R G V V R R I L Y C A R A H G E D D G E E I L
 2985 GAGCTGTGGG AGAGGGGTCG TGCGGAGGAT CCTGTATTGT GCCCGGGCCC ATGGGGAGGA CGATGGTGAG GAGATCCTGT
 CTCGACACCC TCTCCCCAGC ACGCCTCCTA GGACATAACA CGGGCCCGGG TACCCCTCCT GCTACCACTC CTCTAGGACA
- +1 L D T Q C Q G L P R P E P Q E A C S L E P C P P R W K

 3065 TGGACACCCA GTGCCAGGGG CTGCCTCGCC CGGAACCCCA GGAGGCCTGC AGCCTGGAGC CCTGCCCACC TAGGTGGAAA

 ACCTGTGGGT CACGGTCCCC GACGGAGGGG GCCTTGGGGT CCTCCGGACG TCGGACCTCG GGACGGTGG ATCCACCTTT
- +1 V M S L G P C S A S C G L G T A R R S V A C V Q L D Q
 3145 GTCATGTCCC TTGGCCCATG TTCGGCCAGC TGTGGCCTTG GCACTGCTAG ACGCTCGGTG GCCTGTGTGC AGCTCGACCA

 CAGTACAGGG AACCGGGTAC AAGCCGGTCG ACACCGGAAC CGTGACGATC TGCGAGCCAC CGGACACACG TCGAGCTGGT
- +1 G Q D V E V D E A A C A A L V R P E A S V P C L I A
 3225 AGGCCAGGAC GTGGAGGTGG ACGAGGCGGC CTGTGCGGCG CTGGTGCGGC CCGAGGCCAG TGTCCCCTGT CTCATTGCCG
 TCCGGTCCTG CACCTCCACC TGCTCCGCCG GACACGCCG GACCACGCCG GGCTCCGGTC ACAGGGGACA GAGTAACGGC
 - +1 D C T Y R W H V G T W M E C S V S C G D G I Q R R R D
 Thrombospondin Submotif
- 3305 ACTGCACCTA CCGCTGGCAT GTTGGCACCT GGATGGAGTG CTCTGTTTCC TGTGGGGATG GCATCCAGCG CCGGCGTGAC
 TGACGTGGAT GGCGACCGTA CAACCGTGGA CCTACCTCAC GAGACAAAGG ACACCCCTAC CGTAGGTCGC GGCCGCACTG
 - +1 T C L G P Q A Q A P V P A D F C Q H L P K P V T V R G
 Thrombospondin Submotif
- 3385 ACCTGCCTCG GACCCCAGGC CCAGGCGCCT GTGCCAGCTG ATTTCTGCCA GCACTTGCCC AAGCCGGTGA CTGTGCGTGG

 TGGACGGAGC CTGGGGTCCG GGTCCGCGGA CACGGTCGAC TAAAGACGGT CGTGAACGGG TTCGGCCACT GACACGCACC
 - +1 C W A G P C V G Q G T P S L V P H E E A A A P G R T
 Thrombospondin Submotif
- 3465 CTGCTGGGCT GGGCCCTGTG TGGGACAGGG TACGCCCAGC CTGGTGCCCC ACGAAGAAGC CGCTGCTCCA GGACGGACCA
 GACGACCCGA CCCGGGACAC ACCCTGTCCC ATGCGGGTCG GACCACGGGG TGCTTCTTCG GCGACGAGGT CCTGCCTGGT
- +1 T A T P A G A C G R Q H L E P T G T I D M R G P G Q A

 3545 CAGCCACCC TGCTGGTGCC TGTGGCAGGC AGCACCTTGA GCCAACAGGA ACCATTGACA TGCGAGGCC AGGGCAGGCA
 GTCGGTGGGG ACGACCACGG ACACCGTCCG TCGTGGAACT CGGTTGTCCT TGGTAACTGT ACGCTCCGGG TCCCGTCCGT
- +1 D C A V A I G R P L G E V V T L R V L E S S L N C S A
 3625 GACTGTGCAG TGGCCATTGG GCGGCCCCTC GGGGAGGTGG TGACCCTCCG CGTCCTTGAG AGTTCTCTCA ACTGCAGTGC
 CTGACACGTC ACCGGTAACC CGCCGGGGAG CCCCTCCACC ACTGGGAGGC GCAGGAACTC TCAAGAGAGT TGACGTCACG
- +1 G D M L L L W G R L T W R K M C R K L L D M T F S S

 3705 GGGGGACATG TTGCTGCTTT GGGGCCGGCT CACCTGGAGG AAGATGTGCA GGAAGCTGTT GGACATGACT TTCAGCTCCA

 CCCCCTGTAC AACGACGAAA CCCCGGCCGA GTGGACCTCC TTCTACACGT CCTTCGACAA CCTGTACTGA AAGTCGAGGT
- +1 K T N T L V V R Q R C G R P G G V L L R Y G S Q L A
 3785 AGACCAACAC GCTGGTGGTG AGGCAGCGCT GCGGGCGGCC AGGAGGTGGG GTGCTGCTGC GGTATGGGAG CCAGCTTGCT

 TCTGGTTGTG CGACCACCAC TCCGTCGCGA CGCCCGCCGG TCCTCCACCC CACGACGACG CCATACCCTC GGTCGAACGA

- +1 P E T F Y R E C D M Q L F G P W G E I V S P S L S P A
 3865 CCTGAAACCT TCTACAGAGA ATGTGACATG CAGCTCTTTG GGCCCTGGG TGAAATCGTG AGCCCCTCGC TGAGTCCAGC
 GGACTTTGGA AGATGTCTCT TACACTGTAC GTCGAGAAAC CCGGGACCC ACTTTAGCAC TCGGGGAGCG ACTCAGGTCG
- +1 T S N A G G C R L F I N V A P H A R I A I H A L A T

 3945 CACGAGTAAT GCAGGGGGCT GCCGGCTCTT CATTAATGTG GCTCCGCACG CACGGATTGC CATCCATGCC CTGGCCACCA
 GTGCTCATTA CGTCCCCCGA CGGCCGAGAA GTAATTACAC CGAGGCGTGC GTGCCTAACG GTAGGTACGG GACCGGTGGT
- +1 N M G A G T E G A N A S Y I L I R D T H S L R T T A F
 4025 ACATGGGCG TGGGACCGAG GGAGCCAATG CCAGCTACAT CTTGATCCGG GACACCCACA GCTTGAGGAC CACAGCGTTC
 TGTACCCGCG ACCCTGGCTC CCTCGGTTAC GGTCGCAAG
- +1 H G Q Q V L Y W E S E S S Q A E M E F S E G F L K A Q
 4105 CATGGGCAGC AGGTGCTCTA CTGGGAGTCA GAGAGCAGCC AGGCTGAGAT GGAGTTCAGC GAGGGCTTCC TGAAGGCTCA
 GTACCCGTCG TCCACGAGAT GACCCTCAGT CTCTCGTCGG TCCGACTCTA CCTCAAGTCG CTCCCGAAGG ACTTCCGAGT
- +1 A S L R G Q Y W T L Q S W V P E M Q D P Q S W K G K
 4185 GGCCAGCCTG CGGGGCCAGT ACTGGACCCT CCAATCATGG GTACCGGAGA TGCAGGACCC TCAGTCCTGG AAGGGAAAGG
 CCGGTCGGAC GCCCCGGTCA TGACCTGGGA GGTTAGTACC CATGGCCTCT ACGTCCTGGG AGTCAGGACC TTCCCTTTCC
- +1 E G T
 4265 AAGGAACC
 TTCCTTGG

Fig. 4

Metalloproteinase Domain Alignment of ADAMTS-M v. ADAMTS Family

7.75-4 V. TRS-5)			
Homolo 1dent 28 28 29 29 32 48			
Percent Homology Sim Ident 44 37 44 28 47 29 46 29 49 32 48 63 48 63 48 64 64 64 64 64 64 64			
360 MARAA PASTAN PSYAA MSYAA MNTW MNTW MSIAA	420 LGIDHEEH PSDRAABH FSDRAPEH FSDRAPEH PDTGHDEY PDTGHDEY	480 480 100 475 475 500 500 500 500	540 MEPERE LEDE
360 MG-AGLKRYLLTVRARARA A'G-RGEGHYLLTGREGRARA FIG-SCREHYLGTGREGRAR YG-ADLQNHTTLIANSVRA HSKEHYGYLLTMATVA HSCEPTER VILTANIALAA HG GLO YLLTLANIAAA	RGLAT CHOHNO CKCHNP CRRFNO AYLOOK SCTINP	480 CSAFTA MELCHULG CAAET MELCHULG CAAET MELCHULG CAAET MELCHULG CSAET MELCHULG CAAET AHELGHULG	TOFF NGYGHALL TEFT DERIGNELL TELFOCHGELM TELFOCHGDELL SKYTHSYDFL ISLEARYW T FLD GHG CLLI
VELLUVADDKMAARHG-AGLKRY VELLUVADSKMARKYG-RGAGHY VETHUVADGSWARKG-SGLKHY VETLUVADSWARKG-ADIQNH I EVLUADDSWARKG-BINGKY LELLWAVGPPYTOARG GLQ Y	SAACTERSERANGE NAALTERNERANGE NGGLTENNERANGE NPSCSENWY REA NLTSSELSVERE	RAIVEDDELOSAFT RAVIEDDELOSAFT SVIEDELOSAFT SVIEDELOSAFT RETHNEDSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	APESARFI RETSATI SPUSAMI SPUSAMI BRESCOEL
ALMSLSRP-VELLOV SSIERARO-VELLILV AVSSHRY-VELTILLY RUNDOYNIEVILG ARGILH-LELLOVA VENS R VETLLVY	AAKHPETRNPVSIVVTRLVILGSGEECPOVGP-SAAOTEK RIVSHABIRNSVSIVVVRUIJVIHDEOKGEEVTS-NAALTEN RIVKHPETRNSVSIVVVRUIJVIHDEOKGEEVTS-NAALTEN RIVKHPETRNSIVVVRUIJVEDEKWGEEVSD-NGGLEEN SIKHDETRGAHINVVLVRIIJISVGKSMSLEEGNPSOSEN SILKDPETGAAGRÜHHVKMVILTEPEGAPNTTA-NIJSSELS	ADVGIV DDARNG ADVGIV DD SERE ADVGIV DD SER ADWIGGI DD NE ADWIGGI CON TONE ADVGI CDP RSC	CISINEELSTSRHVERBYNAHVDPEEPERPESARF CEETFESTE-DKRIESIIITSIDASKPESK IVSAT CASINE-NVODSHMERSMISNIDHSOPHRPESAYM CTRIFTERMG-KHHVERBIFVHINOII PROPESAMYNRCEDEVRIGSIERPIVQAAFHRFHERSOOG -GSGCETSGHVRASS D PWSPCSA
BAE WWRRRU FEKRI FTR	VSLVVTRLVLLGS IRLAVKRVTLGD VSLVVKRVLLVTLD INLAVVKVLLVTLYED INVVLVRLTLLGSY ERZHLVKRVLTTE I LVVVK VIL D	DDLCG-VSTCDTLEMADVGTV RDDLCG-HHSCDTLEMADVGTV ROLLCG-SQTCDTLEMADVGTV RQNFCGQEGLCDTLEVALHGTI RDDLGP-SGMOEVAPWTCM RPDLELPDGNROVREVTOLGGA RROLLCG G CDTLGMADVGT C	THE STERNARDS THE STEED BY THE
SPSPRER OSALSEAGGSGPQT OGVGQTTGTGSI ASEPPEPEPEPEF EHANSRR P	ACOL RIVERA LEMHIRAN RIVERHERINSWENN RIVERENSINAN ELEDEHGAHINVU ELEDEHGARINSH ELEDEHGARINNU	TALLE DDICG TALLE DDICG TALLE DDICG TALLE RODICG HALL RODICG TALLE RODICG TALLE RODICG	TOSKPOLEDNE BOSKFOLEDF BOSK POTER BOSK POTER BOSK POTER BOSK C SL GP
		S K Y II K K K K H L	N HDL
(202) (241) (220) (199) (248) (248) (1)	(251) (299) (274) (253) (300) (361)	(310) (358) (333) (312) (360) (98)	(369) (417) (392) (372) (416) (158)
hadawrs-4 (abo14588) hadawrs-5 (ar142099) hadawrs-1 (ar060152) hadawrs-8 (ar060153) hadawrs-2 (aJ003125) hadawrs-2 (aJ003125)	hadawrs-4 (abo14588) hadawrs-5 (aF142099) hadawrs-1 (aF060152) hadawrs-8 (aF060153) hadawrs-2 (aJ003125) hadawrs-2 (aJ003125)	hadawrs-4 (abo14588) hadawrs-5 (ar142099) hadawrs-1 (ar060152) hadawrs-8 (ar060153) hadawrs-2 (aJ003125) hadawrs-2 (aJ003125)	hadamts-4 (ab014588) hadamts-5 (aF142099) hadamts-1 (aF060152) hadamts-8 (aF060153) hadamts-2 (aJ003125) malamts-2 (consensus
hal hal hal hal	hal hal hal hal hal	hAD hAD hAD hAD hAD	had had had hadi hadi

200	WW.) L		2	0	,
•	HINMH;	VROCON	TACCAT:	TDGAET	ACS-HPDWPVF)
	ALMOSG	RIMOAV	TT.WCT	HUMIC	OFFICES		LWC	,
	PPPCA	MDVCA	ASTOR	DOVEA	FDPCK		D CA LWC	
	SRHCPOL	SVCPG	(HCPDAASTOST	REFINESA	MCTAFRT	No.	HCP	
	LTFGPDS]	LTFGPEY	FTFGEDS	OIFGPDF	FDFGLGY		YDA OC TEGPD HCP	
	ROCO	O	R	OOCR	EOCR	(Marketon)	ပ္ပ	ı
	-KDYDAD	-OTYDAT	-TSYDAN	MLYOLD	PGTHYSMN		YDA	
	TEPG	ELFG	DIPG	GAALPLETGLEGRMAL			TP LPG	
	EMPLHIEV	RKQILGFEE	-IOLEG	-LPLPT	FAHDWPALP-OLE	13) BD	LP	
541	EF P		ONP-	GAA-	FAHDI	P.D.	, A	
	(429)	(476)	(451)	(431)	(471)	(213)	(541)	
	hADAMTS-4 (AB014588)	hADAMTS-5 (AF142099)	hADAMTS-1 (AF060152)	hADAMTS-8 (AF060153)	hADAMTS-2 (AJ003125)	MI-MPD	Consensus	