Computer Vision Project

Object Recognition

Performance comparison between Fast RCNN and YOLOv5 in terms of mAP

BY Pradip Das(CS2115) Pritam Gupta(CS2117)

INSTRUCTOR

Pradipta Maji

ISI Kolkata, 2022

Outline

- 1. Fast RCNN
- 2. YOLOv5
- 3. Mean Average Precision

Data Collection and Annotations

- "Fruit Images for Object Detection" dataset downloaded from Kaggle
 https://www.kaggle.com/datasets/mbkinaci/fruit-images-for-object-detection
- Data annotation: Make Sense (https://www.makesense.ai/)

About Dataset

Context:

A different dataset for object detection. 240 images in train folder. 60 images in test folder.

• Content:

3 different class:

- Apple
- Banana
- Orange

Fast RCNN

R-CNN: Regions with CNN features

Fast RCNN

Selective Search

- Generate initial sub-segmentation and many candidate regions.
- Use greedy algorithm to recursively combine similar regions into larger ones.
- Use the generated regions to produce the final candidate region proposals.

Problems with R-CNN

- It still takes a huge amount of time to train the network.
- It cannot be implemented real time as it takes around 47 seconds for each test image.
- The selective search algorithm is a fixed algorithm. Therefore, no learning is happening at that stage.

Fast RCNN

The reason "Fast R-CNN" is faster than R-CNN is because instead of feeding the region proposals to the CNN, we feed the input image to the CNN to generate a convolutional feature map

YOLOv5

- mAP is a popular evaluation metric used for object detection (i.e localisation and classification).
 - Localization determines the location of an instance.
 - classification tells you what it is.
- The general definition for the Average Precision (AP) is finding the area under the precision-recall curve.
- mAP is the average of all APs.

Mean Average Precision

Metric	Fast RCNN	YOLOv5
mAP	0.57	0.60
Time	25.92 min (30 Epoch)	2.32 min (200 Epoch)

GitHub Link

https://github.com/pradipdas9040/Computer-Vision/tree/main/Object%20Detection

Thank