ARQUITETURA DE COMPUTADORES

Sistemas de Numeração

Introdução

O homem através dos tempos sentiu a necessidade da utilização de sistemas numéricos. Existem vários sistemas numéricos, dentre os quais se destacam: o sistema decimal, binário, octal e hexadecimal. Com exceção do sistema decimal, os outros destacados no parágrafo anterior são utilizados nas áreas de circuitos digitais, automação e ambientes computacionais.

Sistema binário de numeração:

O sistema binário de numeração é um sistema no qual existem apenas dois algarismos → 0(zero) ou 1 (um)

Para entender melhor o sistema de numeração, vamos tomar como exemplo o número 594 na base 10, cuja notação passará a ser denominada 594 ₁₀ \rightarrow isto significa que:

$$5 \times 100 + 9 \times 10 + 4 \times 1$$

 $5 \times 10^{2} + 9 \times 10^{1} + 4 \times 10^{0} = 594_{10}$

agora podemos entender melhor o sistema de numeração binário, cuja base é 2:

$$5_{10} = 101_2 \rightarrow$$

Para converter um número decimal em um binário temos dois métodos a) arranjo na base dois:

ARQUITETURA DE COMPUTADORES

Portanto o número 001012 corresponde a 5₁₀

b) Outro método: divisão pela base desejada

Se o número é decimal podemos dividir por 2 e assim teremos o resultado da conversão

O processo de conversão de um binário para um decimal, é fazer o arranjo conforme a tabela:

2⁰ - 1 2¹ - 2 2² - 4

 $2^3 - 8$

24 - 16

2⁵ - 32 2⁶ - 64

2° - 64 2⁷ - 128

2⁶ - 128 2⁸ - 256

2⁹ - 512

2¹⁰ - 1024

211 - 2048

212 - 4096

2¹³ - 8192

2¹⁴ - 16384

etc

O sistema octal

Um sistema octal significa que sua base terá apenas oito algarismos

0, 1,2,3,4,5,6 e 7

ARQUITETURA DE COMPUTADORES

Veja a tabela a seguir

decimal	octal
0	0
1	1
2	2
2 3 4 5 6 7	3
4	4
5	5 6 7
6	6
	7
8	10
9	11
10	12
11	13
12	14
etc	etc

Conversão de decimal para Octal

Mesmo procedimento do octal para decimal

144₈ --→ para decimal

$$1x 8^2 + 4x8^1 + 4x8^0 = 1x64 + 4x8 + 4x1 = 64 + 32 + 4 = 100_{10}$$

Decimal para Octal

Conversão do Octal para binário

O sistema octal é um octeto composto por três bits então:

ARQUITETURA DE COMPUTADORES

$$34_8 \rightarrow 3 \qquad 4 \qquad 11 \qquad 100 \rightarrow 011100_2$$

Conversão de binário para Octal

Sistema Hexadecimal

O sistema hexadecimal é um sistema que possui dezesseis algarismos:

DECIMAL	HEXADECIMAL
0	0
1	1
3	2
3	3
4	4
5 6	5
6	6
7	7
8	8
9	9
10	Α
11	В
12	С
13	D
14	E
15	F

Conversão de um sistema hexadecimal para decimal

$$3 F_{16} \rightarrow 3x16^{1} + F x 16^{0} = 3 x 16 + F x 1 = 3 x 16 + 15 x 1 = 63_{10}$$

Conversão do sistema hexadecimal para o sistema binário

O sistema hexadecimal é um sistema de 4 bits

ARQUITETURA DE COMPUTADORES

C13₁₆
$$\rightarrow$$
 C 1 3
1100 0001 0011 \rightarrow 110000010011₂

Conversão de um sistema binário para hexadecimal

Conversão de um sistema decimal para hexadecimal

2 métodos

a)
$$1000 16$$

8

62

14

3

 \rightarrow 3

14

8

3 E8₁₆

1111101000₂
$$\rightarrow$$
 0011 1110 1000
3 E 8 \rightarrow 3E8₁₆

ARQUITETURA DE COMPUTADORES

Exercícios

1) Converter os seguintes números binários abaixo em decimal
1001100 1111 11111 10000 10001 1010110 011001100110101
2) Converter os seguintes números decimais abaixo para binários
78 102 215 404 808 5429 16383 512 12 2 17 33 43 7
3) Converter os números octais abaixo para sistema decimal
14 67 153 1544 15874
4) Converter os seguintes números octais abaixo em binários 477 1523 4764 10000 4321
5) Converter os seguintes números abaixo em binário para octal 1011 10011100 110101110

ARQUITETURA DE COMPUTADORES

1000000001

6) Converter os números em decimal abaixo em octal
107
185
2048
4097

7) Converter os números no sistema hexadecimal abaixo para binário

84

7F

3B8C

47FD

F1CD

8) Converter os binários abaixo para sistema de numeração em hexadecimal 10011

1110011100

100110010011

1111101111

9) Converter os seguintes números decimais abaixo em hexadecimais

486

2000

4096