

Clustered and distributed storage

with commodity hardware and open source software

Phil Cryer

BHL Developer, Systems Analyst BHL Europe Technical Board Meeting 25-27 August 2010, NHM London

BHL's first cluster in Woods Hole

- **Hardware** commodity servers
 - (6) six 4U sized cabinets
 - o (24) twenty-four 1.5TB hard drives in each cabinet

BHL's first cluster in Woods Hole

- **Hardware** commodity servers
 - (6) six 4U sized cabinets
 - (24) twenty-four 1.5TB hard drives in each cabinet
- Software open source software
 - operating system is Debian GNU/Linux (squeeze)
 - filesystem ext4
 - supports filesystems up to 1 EB (1000 PB) and max file size of 16 TB
 - o clustered file system GlusterFS (3.0.4)
 - all drives run in a networked/RAID1 setup
 - all files are replicated and redundantly copied across the cluster
 - New: Acquia is using GlusterFS for their Drupal SaaS implementation
 - o monitoring Monit, Ganglia for alerts and reporting

BHL's first cluster in Woods Hole

- **Hardware** commodity servers
 - (6) six 4U sized cabinets
 - o (24) twenty-four 1.5TB hard drives in each cabinet
- **Software** open source software
 - o operating system is Debian GNU/Linux (squeeze)
 - o filesystem ext4
 - supports filesystems up to 1 EB (1000 PB) and max file size of 16 TB
 - clustered file system GlusterFS (3.0.4)
 - all drives run in a networked/RAID1 setup
 - all files are replicated and redundantly copied across the cluster
 - New: Acquia is using GlusterFS for their Drupal SaaS implementation
 - o monitoring Monit, Ganglia for alerts and reporting
- Capacity cluster has 97TB of replicated/distributed storage
 - o currently using 66TB of data for 78492 books
 - o a full record for a book can be 24MB 3GB

Files from a record


```
# ls -lh /mnt/glusterfs/www/a/actasocietatissc26suom
total 649M
-rwxr-xr-x 1 www-data www-data 19M 2009-07-10 01:55 actasocietatissc26suom abbyy.gz
-rwxr-xr-x 1 www-data www-data 28M 2009-07-10 06:53 actasocietatissc26suom bw.pdf
-rwxr-xr-x 1 www-data www-data 1.3K 2009-06-12 10:21 actasocietatissc26suom dc.xml
-rwxr-xr-x 1 www-data www-data 18M 2009-07-10 03:05 actasocietatissc26suom.djvu
-rwxr-xr-x 1 www-data www-data 1.3M 2009-07-10 06:54 actasocietatissc26suom djvu.txt
-rwxr-xr-x 1 www-data www-data 14M 2009-07-10 02:08 actasocietatissc26suom djvu.xml
-rwxr-xr-x 1 www-data www-data 4.4K 2009-12-14 04:42 actasocietatissc26suom files.xml
-rwxr-xr-x 1 www-data www-data 20M 2009-07-09 18:57 actasocietatissc26suom flippy.zip
-rwxr-xr-x 1 www-data www-data 285K 2009-07-09 18:52 actasocietatissc26suom.gif
-rwxr-xr-x 1 www-data www-data 193M 2009-07-09 18:51 actasocietatissc26suom jp2.zip
-rwxr-xr-x 1 www-data www-data 5.7K 2009-06-12 10:21 actasocietatissc26suom marc.xml
-rwxr-xr-x 1 www-data www-data 2.0K 2009-06-12 10:21 actasocietatissc26suom meta.mrc
-rwxr-xr-x 1 www-data www-data 416 2009-06-12 10:21 actasocietatissc26suom metasource.xml
-rwxr-xr-x 1 www-data www-data 2.2K 2009-12-01 12:20 actasocietatissc26suom meta.xml
-rwxr-xr-x 1 www-data www-data 279K 2009-12-14 04:42 actasocietatissc26suom names.xml
-rwxr-xr-x 1 www-data www-data 324M 2009-07-09 13:28 actasocietatissc26suom orig jp2.tar
-rwxr-xr-x 1 www-data www-data 34M 2009-07-10 04:35 actasocietatissc26suom.pdf
-rwxr-xr-x 1 www-data www-data 365K 2009-07-09 13:28 actasocietatissc26suom scandata.xml
```

Initial file population

Populating a cluster with our data at the Internet Archive

- Looked at many options
 - ship a pre-populated server (Sun Thumper with 48TB capacity)
 - shipping individual external hard-drives
 - download the files on our own

Initial file population

	191Mb	381Mb	5	72Mb	763Mb		954Mb
clustr- <mark>02</mark>		<= ia3	311215.us.archive.org		85.7Mb	54.2Mb	41.7Mb
clu <mark>str-02</mark>			311030.us.archive.org		24.6Mb	19.1Mb	13.4Mb
clu <mark>str-02</mark>		<= ia3	310807.us.archive.org		22.3Mb	19.0Mb	15.4Mb
clustr-02		<= ia3	860606.us.archive.org		18.1Mb	16.7Mb	16.5Mb
clustr-02			350603.us.archive.org		17.9Mb	13.9Mb	13.6Mb
clustr-02		<= ia3	31404.us.archive.org		14.3Mb	11.0Mb	12.8Mb
clustr-02		<= ia3	31419.us.archive.org		9.52Mb	6.89Mb	7.21Mb
clustr-02		<= ia3	801506.us.archive.org		9.44Mb	4.67Mb	3.11Mb
clustr-02		<= ia3	801531.us.archive.org		2.67Mb	2.43Mb	2.66Mb
clustr-02		<= vpn	reserved2.mbl.edu		208b	208b	208b
128.128.175.255		<= gel	ldoc319.mbl.edu		θЬ	366b	203b
clustr-02		<= dns	:1.mbl.edu		704b	246b	352b
128.128.163.255		<= DHC	P160103.mbl.edu		936b	187b	47b
128.128.175.255		<= bpc	colorphoto.mbl.edu		θЬ	183b	92b
128.128.171.255		<= 128	3.128.171.146		θЬ	183b	46b
255.255.255.255		<= 192	2.168.56.1		θЬ	54b	14b
128.128.171.255		<= 128	3.128.168.27		θЬ	54b	14b
255.255.255.255		<= 10.	0.1.1		θЬ	θЬ	691b
255.255.255.255		<= 10.	0.2.1		θЬ	θЬ	461b
128.128.175.255		<= 175	wins134.mbl.edu		θЬ	θЬ	216b
128.128.175.255		<= squ	ualus.mbl.edu		θЬ	θЬ	163b
255.255.255.255		<= *			θЬ	θЬ	138b
128.128.163.255		<= 128	3.128.162.165		θЬ	θЬ	109b
128.128.171.255		<= 128	3.128.170.216		θЬ	θЬ	52b
128.128.171.255		<= 128	3.128.168.227		θЬ	θЬ	52b
TX: cumm:	37.0MB peak:	3.39Mb		rates:	3.39Mb	2.43Mb	2.12Mb
RX:	2.20GB	205Mb			205Mb	148Mb	126Mb
TOTAL:	2.24GB	208Mb			208Mb	150Mb	128Mb

Initial file population

Populating a cluster with our data at the Internet Archive

- Looked at many options
 - ship a pre-populated server (Sun Thumper with 48TB capacity)
 - shipping individual external hard-drives
 - download the files on our own
- Path of least resistance, we wrote a script and used the Internet2 connection at the Marine Biology Laboratory (Woods Hole) to download directly to the first cluster
 - knew it would take forever to download (but it took longer)
 - needed space to download files (cluster buildout)
 - o networking issues in Woods Hole (overloaded local router)
 - file verification (checksums that don't...)
- Lessons learned would we do it again? Probably not.
- Current propagation method
 - initial distribution mailing external drives (1, 5)
 - syncing of the changes for future content (smaller bites)

Code: grabbyd

Automated process to continuously download the latest BHL data

- Uses **subversion** to get an updated list of new BHL content as IA identifiers http://code.google.com/p/bhl-bits/source/browse/#svn/trunk/iaidentifiers
- An enhanced version of the original download script to transfer the data
 - o **grabbyd** a script that parses the latest iaidentifiers list, determines the IDs of the new data and downloads the data to the cluster
 - Will provide detailed reporting with status pages and/or another method (webapp, email, RSS, XML, etc)

Code available (open sourced, BSD licensed):

[1] http://code.google.com/p/bhl-bits/source/browse/trunk/utilities/grabby/grabbyd

Code: grabbyd + reporting

Current transfer rate 10043.09 KB/s

Clustered data store size 66 of 97 Terabytes

RUN1 download completed at 15:13:26 NUM: 3136/9950 ID: anatomischeranze47anat Number of files: 18 Size of files: 463M total RUN2 download completed at 15:25:47 NUM: 570/10000 ID: blainesoutlineso00blai Number of files: 18 Size of files: 959M total RUN3 download completed at 14:38:35 NUM: 866/10000 ID: controlseriesbul1556mass Number of files: 18 Size of files: 1.4G total

cluster status as of Tue Aug 24 15:30:01 EDT 2010 - updated every 15 minutes

Replication Replication

Why do we need replication?

- First BHL stored everything at the Internet Archive in San Francisco
 - no backup or safety net
 - o limited in what we could do with, and serve, our data
- Now with our first BHL cluster, we gain
 - redundancy will be able to serve from the cluster and fall back to IA if needed
 - o analytics the files are 'local' to parse through, discover new relationships
 - o serving options geo-location, eventually will be able to serve from closest server

Replication Replication

Why do we need replication?

- First BHL stored everything at the Internet Archive in San Francisco
 - no backup or safety net
 - limited in what we could do with, and serve, our data
- Now with our first BHL cluster, we gain
 - redundancy will be able to serve from the cluster and fall back to IA if needed
 - analytics the files are 'local' to parse through, discover new relationships
 - o serving options geo-location, eventually will be able to serve from closest server
- Next share the data with everyone
 - Europe
 - Australia
 - China
 - o etc...
- Provide safe harbor
 - lots of copies...

Code: bhl-sync

Open source **Dropbox** model

- uses and implements many open source projects
 - o **inotify** a subsystem within the Linux kernel that extends the filesystem to notice changes to the filesystem and report them to applications (in the kernel since 2.6.13 (2005))
 - **lsyncd** an open source project that provides a wrapper into inotify
 - OpenSSH secure file transfer
 - rsync long term, proven syncing subsystem

Code: bhl-sync

Open source **Dropbox** model

- uses and implements many open source projects
 - o inotify a subsystem within the Linux kernel that extends the filesystem to notice changes to the filesystem and report them to applications (in the kernel since 2.6.13 (2005))
 - **Isyncd** an open source project that provides a wrapper into inotify
 - OpenSSH secure file transfer
 - o rsync long term, proven syncing subsystem

What does bhl-sync do?

- runs lsyncd as a daemon that notices kernel events and kicks off rync over OpenSSH to mirror data to designated remote servers
- the only requirement on the remote system is a secure login for a normal user (using a key based OpenSSH) keeping the process neutral and not requiring any other specific technologies (OS, applications, filesystem) on the remote system (cross-platform)
- want to mirror BHL? it's now possible (you just need a lot of storage)

Code available (open sourced, BSD licensed): http://code.google.com/p/bhl-bits/source/browse/trunk/utilities/bhl-sync.sh

Code: bhl-sync + status

bhl-sync

St. Louis ← Woods Hole → London
Synced 24476 files Synced

updated: Fri Aug 20 13:02:18 EDT 2010 (updated hourly)

Code available (open sourced, BSD licensed):

- [1] http://code.google.com/p/bhl-bits/source/browse/trunk/utilities/grabby/grabbyd
- [2] http://code.google.com/p/bhl-bits/source/browse/trunk/utilities/bhl-sync.sh

Code available (open sourced, BSD licensed):

- [1] http://code.google.com/p/bhl-bits/source/browse/trunk/utilities/grabby/grabbyd
- [2] http://code.google.com/p/bhl-bits/source/browse/trunk/utilities/bhl-sync.sh

Other replication challenges

- Deleting content "going dark"
 - this can be data that is removed from search indexes, but still retrievable via URI
 - or deleted data not available (requires a separate sync process)
- New content coming in from other sources
 - Localization of content maybe it all can't be shared?
 - National nodes consideration

BHL content + local data

Content sourced from China, scanned by Internet Archive, replicated into BHL Global

BHL content + regional data

Content sourced from BHL Europe partners may, or may not, be passed back to Internet Archive and BHL Global

Fedora-commons integration

Integrated digital repository-centered platform

- Enables storage, access and management of virtually any kind of digital content
- can be a base for software developers to build tools and front ends on for sharing, reuse and displaying data online
- Is free, community supported, open source software

Fedora-commons integration

Integrated digital repository-centered platform

- Enables storage, access and management of virtually any kind of digital content
- can be a base for software developers to build tools and front ends on for sharing, reuse and displaying data online
- Is free, community supported, open source software
- Creates and maintains a persistent, stable, digital archive
 - o provides backup, redundancy and disaster recovery
 - complements (doesn't replace or put any demands upon) existing architecture by incorporating open standards
 - stores data in a neutral manner, allowing for an independent disaster recovery option
 - shares data via OAI, REST based interface

Thanks + questions

email phil.cryer@mobot.org skype phil.cryer twitter @fak3r

slides available on slideshare