90% Confidence Level Upper Bound

Brief discussion of Feldman & Cousins

Outline

Outline 1	Bayes Theorem 16
Parameter Estimataion 2	Summary: Bayesian Credible
Poisson Distribution 3	Interval
Confidence Interval (CI) 4	
CI Definition5	
CI Construction: Confidence	
Belt 7	
Acceptance Region 11	
Maximum Likelihood 12	
Derivation (skip me!) 13	
Likelihood Ratio 14	
Bayesian 15	

Parameter Estimataion

Parameter Estimataion

• Expect an average of μ counts per time, with $\mu \in \mathbb{R} \geq 0$

Parameter Estimataion

- Expect an average of μ counts per time, with $\mu \in \mathbb{R} \geq 0$
- Probability of getting $n \in \mathbb{N}$ counts per time?

Parameter Estimataion

- Expect an average of μ counts per time, with $\mu \in \mathbb{R} \geq 0$
- Probability of getting $n \in \mathbb{N}$ counts per time?
- Poisson Distribution:

$$\Pr(n|\mu) = \frac{e^{-\mu}\mu^n}{n!}$$

• Prob. of data n, given parameter μ ; aka the *likelihood*.

Parameter Estimataion

- Expect an average of μ counts per time, with $\mu \in \mathbb{R} \geq 0$
- Probability of getting $n \in \mathbb{N}$ counts per time?
- Poisson Distribution:

$$\Pr(n|\mu) = \frac{e^{-\mu}\mu^n}{n!}$$

• Prob. of data n, given parameter μ ; aka the *likelihood*.

• Example:

Confidence Interval (CI)

• Goal: estimate parameter μ whose true value is μ_t

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; suppose the first measurement yields x_0 .

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; suppose the first measurement yields x_0 .
- Construct an interval (discussed later) $[\mu_l, \mu_u]$

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; suppose the first measurement yields x_0 .
- Construct an interval (discussed later) $[\mu_l, \mu_u]$
 - $\mu_l = \mu_l(x_0)$: lower bound associated w/ this 1st measurement

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; suppose the first measurement yields x_0 .
- Construct an interval (discussed later) $[\mu_l, \mu_u]$
 - $\mu_l = \mu_l(x_0)$: lower bound associated w/ this 1st measurement
 - $\mu_u = \mu_u(x_0)$: upper bound associated w/ this 1st measurement

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; suppose the first measurement yields x_0 .
- Construct an interval (discussed later) $[\mu_l, \mu_u]$
 - $\mu_l = \mu_l(x_0)$: lower bound associated w/ this 1st measurement
 - $\mu_u = \mu_u(x_0)$: upper bound associated w/ this 1st measurement
- Repeat experiment; get outcome $x_1 \to \text{construct} \ [\mu_l(x_1), \mu_u(x_1)]$

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; suppose the first measurement yields x_0 .
- Construct an interval (discussed later) $[\mu_l, \mu_u]$
 - $\mu_l = \mu_l(x_0)$: lower bound associated w/ this 1st measurement
 - $\mu_u = \mu_u(x_0)$: upper bound associated w/ this 1^{st} measurement
- Repeat experiment; get outcome $x_1 \to \text{construct} \ [\mu_l(x_1), \mu_u(x_1)]$
- More experiments; get a bunch of intervals. *i.e.* we get a set

$$C \equiv \{ [\mu_l(x_0), \mu_u(x_0)], [\mu_l(x_1), \mu_u(x_1)], [\mu_l(x_2), \mu_u(x_2)] ... \}$$

$$P([\mu_l, \mu_u] \ni \mu) = \alpha \quad \forall \text{ allowed } \mu$$

Confidence Interval (CI)

$$P([\mu_l, \mu_u] \ni \mu) = \alpha \quad \forall \text{ allowed } \mu$$

- In words:
 - pick a *fixed* value of μ ; say we pick the truth μ_t .

$$P([\mu_l, \mu_u] \ni \mu) = \alpha \quad \forall \text{ allowed } \mu$$

- In words:
 - pick a *fixed* value of μ ; say we pick the truth μ_t .
 - of the members in C, a fraction α would cover μ_t .

$$P([\mu_l, \mu_u] \ni \mu) = \alpha \quad \forall \text{ allowed } \mu$$

- In words:
 - pick a *fixed* value of μ ; say we pick the truth μ_t .
 - of the members in C, a fraction α would cover μ_t .
 - others won't.

$$P([\mu_l, \mu_u] \ni \mu) = \alpha \quad \forall \text{ allowed } \mu$$

- In words:
 - pick a *fixed* value of μ ; say we pick the truth μ_t .
 - of the members in C, a fraction α would cover μ_t .
 - others won't.
- The members of C are called *confidence intervals*.

Confidence Interval (CI)

• Consider probability $\Pr(x|\mu)$

- Consider probability $\Pr(x|\mu)$
- Take for example $\mu = 4$, consider $\Pr(x|\mu = 4)$

- Consider probability $\Pr(x|\mu)$
- Take for example $\mu = 4$, consider $\Pr(x|\mu = 4)$
- Select a region $[x_l, x_u]$ such that the probability of measuring $x \in [x_l, x_u]$ is, say, 80%.

- Consider probability $\Pr(x|\mu)$
- Take for example $\mu = 4$, consider $\Pr(x|\mu = 4)$
- Select a region $[x_l, x_u]$ such that the probability of measuring $x \in [x_l, x_u]$ is, say, 80%.
- that is,

$$\Pr(x \in [x_l, x_u] | \mu = 4) = 80\%$$

- Consider probability $\Pr(x|\mu)$
- Take for example $\mu = 4$, consider $\Pr(x|\mu = 4)$
- Select a region $[x_l, x_u]$ such that the probability of measuring $x \in [x_l, x_u]$ is, say, 80%.
- that is,

$$\Pr(x \in [x_l, x_u] | \mu = 4) = 80\%$$

- Consider probability $\Pr(x|\mu)$
- Take for example $\mu = 4$, consider $\Pr(x|\mu = 4)$
- Select a region $[x_l, x_u]$ such that the probability of measuring $x \in [x_l, x_u]$ is, say, 80%.
- that is,

$$\Pr(x \in [x_l, x_u] | \mu = 4) = 80\%$$

- Take another value μ , say $\mu = 5$
- Get another acceptance region $[x_l, x_u]$ associated with this value

$$\Pr(x \in [x_l, x_u] | \mu = 5) = 80\%$$

Confidence Interval (CI)

- Take another value μ , say $\mu = 5$
- Get another acceptance region $[x_l, x_u]$ associated with this value

$$\Pr(x \in [x_l, x_u] | \mu = 5) = 80\%$$

• Rinse and repeat

Confidence Interval (CI)

- Take another value μ , say $\mu = 5$
- Get another acceptance region $[x_l, x_u]$ associated with this value

$$\Pr(x \in [x_l, x_u] | \mu = 5) = 80\%$$

• Rinse and repeat

Confidence Interval (CI)

- Take another value μ , say $\mu = 5$
- Get another acceptance region $[x_l, x_u]$ associated with this value

$$\Pr(x \in [x_l, x_u] | \mu = 5) = 80\%$$

• Rinse and repeat

- Make a measurement, get result x_0
- The probability of x_0 falling in the region is 80%, by construction

Confidence Interval (CI)

- Make a measurement, get result x_0
- The probability of x_0 falling in the region is 80%, by construction
- The confidence interval $[\mu_l, \mu_u]$ from this experiment is

the vertical intercept.

Confidence Interval (CI)

- Make some more measurements
- Get some more confidence intervals.
- Have a set

$$C = \{\operatorname{CI}_1, \operatorname{CI}_2, \operatorname{CI}_3, \operatorname{CI}_4, \operatorname{CI}_5\}$$

• 80% of this set would cover the true value, μ_t .

Acceptance Region

• Recall acceptance region:

$$\Pr(n \in [n_1, n_2] \mid \mu_{\text{fixed}}) = 80\%$$

- <u>Complete freedom</u> in choosing how to construct the acceptance regions.
- Consider Poisson with background *b*:

$$\mathcal{L} \equiv \Pr(n \mid \mu) = \frac{(\mu + b)^n e^{-\mu + b}}{n!}$$

- F&C propose to compute a likelihood ratio R
 - This needs a "best fit" $\mu_{\text{best}} \equiv \max(0, n-b)$

Derivation (skip me!)

• Likelihood is a Poisson in this case.

$$\mathcal{L} \equiv \Pr(n \mid \mu) = \frac{(\mu + b)^n e^{-\mu + b}}{n!}$$

• Find maximum (fixing n, vary μ):

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}\mu}\bigg|_{\mu=\mu_{\mathrm{best}}} = 0$$

- Result: "best fit" $\mu = \mu_{\text{best}} = n b$
- Require physical $\mu \ge 0 \Rightarrow \mu_{\text{best}} = \max(0, n b)$

- Do this for representative values of μ ; say we start with $\mu = 0.5$
 - As an example background, b = 3
 - $ightharpoonup \Rightarrow \mu_{\mathrm{best}} \equiv \max(0, n b) = \max(0, n 3)$
- Procedure:

 \blacktriangleright

 \blacktriangleright

>

n	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
0					

- Do this for representative values of μ ; say we start with $\mu = 0.5$
 - As an example background, b = 3
 - $ightharpoonup \Rightarrow \mu_{\mathrm{best}} \equiv \max(0, n-b) = \max(0, n-3)$
- Procedure:
 - For n = 0, compute $Pr(n \mid \mu = 0.5)$

•

 \blacktriangleright

n	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
0	0.03				

- Do this for representative values of μ ; say we start with $\mu = 0.5$
 - As an example background, b = 3
 - $ightharpoonup \Rightarrow \mu_{\mathrm{best}} \equiv \max(0, n-b) = \max(0, n-3)$
- Procedure:
 - For n = 0, compute $Pr(n \mid \mu = 0.5)$
 - For n = 0, compute $\mu_{\text{best}} = 0$

▶

n	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
0	0.03	0			

- Do this for representative values of μ ; say we start with $\mu = 0.5$
 - As an example background, b = 3
 - $ightharpoonup \Rightarrow \mu_{\mathrm{best}} \equiv \max(0, n-b) = \max(0, n-3)$
- Procedure:
 - For n = 0, compute $Pr(n \mid \mu = 0.5)$
 - For n=0, compute $\mu_{\text{best}}=0$
 - For n = 0, compute $Pr(n \mid \mu = \mu_{best})$

•

$oldsymbol{n}$	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
0	0.03	0	0.05		

Likelihood Ratio

Acceptance Region

- Do this for representative values of μ ; say we start with $\mu = 0.5$
 - As an example background, b = 3
 - $ightharpoonup \Rightarrow \mu_{\mathrm{best}} \equiv \max(0, n-b) = \max(0, n-3)$
- Procedure:
 - For n = 0, compute $Pr(n \mid \mu = 0.5)$
 - For n=0, compute $\mu_{\text{best}}=0$
 - For n = 0, compute $Pr(n \mid \mu = \mu_{best})$
 - ightharpoonup Divide likelihoods to get R.

n	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
0	0.03	0	0.05	0.607	

Bayesian

• The problem is that the parameter λ is what we want to figure out.

Bayesian

- The problem is that the parameter λ is what we want to figure out.
 - e.g. the flux of neutrinos at some energy $E = 10^{21}$ eV.

Bayesian

- The problem is that the parameter λ is what we want to figure out.
 - e.g. the flux of neutrinos at some energy $E = 10^{21}$ eV.
- What we can do is measure n and estimate λ

- The problem is that the parameter λ is what we want to figure out.
 - e.g. the flux of neutrinos at some energy $E = 10^{21}$ eV.
- What we can do is measure n and estimate λ
- Bayes Theorem

$$\frac{\Pr(\lambda \mid n)}{\Pr(n)} = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)}$$

$$Posterior$$

- The problem is that the parameter λ is what we want to figure out.
 - e.g. the flux of neutrinos at some energy $E = 10^{21}$ eV.
- What we can do is measure n and estimate λ
- Bayes Theorem

- The problem is that the parameter λ is what we want to figure out.
 - e.g. the flux of neutrinos at some energy $E = 10^{21}$ eV.
- What we can do is measure n and estimate λ
- Bayes Theorem

• Evidence is typically just a normalization and ignored. Let's call it 1:)

$$\Pr(\lambda \mid n) = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)}$$

$$\Pr(\lambda \mid n) = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)} \leftarrow prior$$

• If we specify a prior, we get the posterior.

$$\Pr(\lambda \mid n) = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)} \leftarrow prior$$

- If we specify a prior, we get the posterior.
- "uniform prior" $Pr(\lambda) = 1$

$$\Pr(\lambda \mid n) = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)} \longleftarrow prior$$

- If we specify a prior, we get the posterior.
- "uniform prior" $\Pr(\lambda) = 1 \Longrightarrow \Pr(\lambda \mid n) = \Pr(n \mid \lambda)$

$$\Pr(\lambda \mid n) = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)} \longleftarrow prior$$

- If we specify a prior, we get the posterior.
- "uniform prior" $\Pr(\lambda) = 1 \Longrightarrow \Pr(\lambda \mid n) = \Pr(n \mid \lambda)$
- Suppose we measure n=0 event, then the posterior is

$$\Pr(\lambda \mid n = 0) = \Pr(n = 0 | \lambda) = \frac{e^{-\lambda} \cdot \lambda^n}{n!} = e^{-\lambda}$$

Bayesian

- Want an upper bound on λ

- Want an upper bound on λ
- A choice: find a λ_{\max} such that

$$\int_0^{\lambda_{\text{max}}} \text{Posterior} = 90\%$$

- Want an upper bound on λ
- A choice: find a λ_{max} such that

$$\int_{0}^{\lambda_{\text{max}}} \text{Posterior} = 90\%$$

$$\Rightarrow \int_{0}^{\lambda_{\text{max}}} e^{-\lambda} = 0.9$$

$$\Rightarrow \lambda_{\text{max}} = \ln(10) \approx 2.3$$

- Want an upper bound on λ
- A choice: find a λ_{max} such that

$$\int_{0}^{\lambda_{\text{max}}} \text{Posterior} = 90\%$$

$$\Rightarrow \int_{0}^{\lambda_{\text{max}}} e^{-\lambda} = 0.9$$

$$\Rightarrow \lambda_{\text{max}} = \ln(10) \approx 2.3$$

- Want an upper bound on λ
- A choice: find a λ_{\max} such that

$$\int_{0}^{\lambda_{\text{max}}} \text{Posterior} = 90\%$$

$$\Rightarrow \int_{0}^{\lambda_{\text{max}}} e^{-\lambda} = 0.9$$

$$\Rightarrow \lambda_{\text{max}} = \ln(10) \approx 2.3$$

• so we "estemate with 90% confidence that $\lambda \leq 2.3$ " base on a non-detection.

- Let μ denote the unknown parameter we wish to estimate.
- Let x_0 denote the outcome of a single measurement.
- Assume that we know how the measurement outcome depends on the parameter, $x=x(\mu)$.
 - *e.g.* if the neutrino flux is very small, then oftentimes a measurement reports a non-detection.
 - In other words, we know the *likelihood*, $P(x_0|\mu)$.
- From the Bayesian perspective, we can flip things around and say that the parameter is a function of the measurement, $P(\mu|x_0)$, provided that we state our prior beliefs about the parameter, $P(\mu)$.