GUJARAT TECHNOLOGICAL UNIVERSITY

Diploma Engineering – SEMESTER – 2 (NEW) – EXAMINATION – Winter-2024

Subject Code: 4320002 Date: 23-01-2025

Subject Name: Engineering Mathematics

Time: 10:30 AM TO 01:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make Suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of simple calculators and non-programmable scientific calculators are permitted.
- 5. English version is authentic.
- Fill in the blanks using appropriate choice from the given options. Q.1(યોગ્ય વિકલ્પ પસંદ કરી ખોલીજગ્યા પુરો)
 - If A = $\begin{bmatrix} 2 & -1 \\ 3 & -3 \end{bmatrix}$ then Adj $A^T =$

a.
$$\begin{bmatrix} -3 & 1 \\ -3 & 2 \end{bmatrix}$$

b.
$$\begin{bmatrix} -3 & -3 \\ 1 & 2 \end{bmatrix}$$

c.
$$\begin{bmatrix} 2 & 3 \\ -1 & -3 \end{bmatrix}$$

a.
$$\begin{bmatrix} -3 & 1 \\ -3 & 2 \end{bmatrix}$$
 b. $\begin{bmatrix} -3 & -3 \\ 1 & 2 \end{bmatrix}$ c. $\begin{bmatrix} 2 & 3 \\ -1 & -3 \end{bmatrix}$ d. $\begin{bmatrix} -2 & -3 \\ 1 & 3 \end{bmatrix}$

14

૧ જો A =
$$\begin{bmatrix} 2 & -1 \\ 3 & -3 \end{bmatrix}$$
 હોય તો Adj $A^T =$

અ.
$$\begin{bmatrix} -3 & 1 \\ -3 & 2 \end{bmatrix}$$

અ.
$$\begin{bmatrix} -3 & 1 \\ -3 & 2 \end{bmatrix}$$
 બ. $\begin{bmatrix} -3 & -3 \\ 1 & 2 \end{bmatrix}$ ક. $\begin{bmatrix} 2 & 3 \\ -1 & -3 \end{bmatrix}$ 5. $\begin{bmatrix} -2 & -3 \\ 1 & 3 \end{bmatrix}$

$$5. \begin{bmatrix} 2 & 3 \\ -1 & -3 \end{bmatrix}$$

$$S. \begin{bmatrix} -2 & -3 \\ 1 & 3 \end{bmatrix}$$

- If $A = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 2 & 4 \\ 3 & 0 \end{bmatrix}$ then order of $AB = \underline{\hspace{1cm}}$
 - a. 2×3
- b. 2×2
- $c. 3 \times 3$
- $d.3\times2$
- **ર** જો $A = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 0 & 1 \end{bmatrix}$ અને $B = \begin{bmatrix} 1 & 1 \\ 2 & 4 \\ 3 & 0 \end{bmatrix}$ હોય તો AB શ્રેણિકનો ઓર્ડર = ______
 - અ. 2×3
- Щ. 2×2
- 8. 3×3
- 5.3×2
- If $A = \begin{bmatrix} -1 & 2 \\ 3 & -1 \\ 0 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 4 & -3 \\ -2 & 1 \\ 4 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & -1 \\ 5 & 3 \\ 2 & 1 \end{bmatrix}$ then $A + B C = \underline{\qquad}$

 - a. $\begin{bmatrix} 3 & 0 \\ -4 & -3 \end{bmatrix}$ b. $\begin{bmatrix} -3 & -2 \\ 6 & 1 \end{bmatrix}$ c. $\begin{bmatrix} -5 & 4 \\ 0 & 1 \end{bmatrix}$ d. $\begin{bmatrix} -3 & -1 \\ 10 & 5 \end{bmatrix}$

3 જો
$$A = \begin{bmatrix} -1 & 2 \\ 3 & -1 \\ 0 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & -3 \\ -2 & 1 \\ 4 & 0 \end{bmatrix}$$
 અને $C = \begin{bmatrix} 0 & -1 \\ 5 & 3 \\ 2 & 1 \end{bmatrix}$ હોય તો $A + B - C =$ ____

$$\omega \begin{bmatrix} -3 & -2 \\ 6 & 1 \\ -6 & 3 \end{bmatrix}$$

$$5.\begin{bmatrix} -5 & 4 \\ 0 & 1 \\ -2 & 3 \end{bmatrix}$$

4 If
$$A = \begin{bmatrix} -3 & 1 \\ 2 & 1 \end{bmatrix}$$
 then, $A^2 =$ _____

a.
$$\begin{bmatrix} -3 & 1 \\ 2 & 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} -9 & 1 \\ 4 & 1 \end{bmatrix}$$

a.
$$\begin{bmatrix} -3 & 1 \\ 2 & 1 \end{bmatrix}$$
 b. $\begin{bmatrix} -9 & 1 \\ 4 & 1 \end{bmatrix}$ c. $\begin{bmatrix} 11 & -2 \\ -4 & 3 \end{bmatrix}$ d. $\begin{bmatrix} 7 & -4 \\ -8 & 1 \end{bmatrix}$

d.
$$\begin{bmatrix} 7 & -4 \\ -8 & 1 \end{bmatrix}$$

અ.
$$\begin{bmatrix} -3 & 1 \\ 2 & 1 \end{bmatrix}$$

$$\omega_{\cdot\cdot\cdot}\begin{bmatrix} -9 & 1 \\ 4 & 1 \end{bmatrix}$$

$$S.\begin{bmatrix} 7 & -4 \\ -8 & 1 \end{bmatrix}$$

$$\frac{d}{dx}\left(\frac{\cos x}{\sin x}\right) = \underline{\hspace{1cm}}$$

b.
$$tan^2x$$
 c. $-cot^2x$ d. $-cosec^2x$

$$\mathbf{q} \qquad \frac{d}{dx} \left(\frac{\cos x}{\sin x} \right) = \underline{\hspace{1cm}}$$

$$\delta$$
. $-\cot^2 x$

$$5. -\cot^2 x$$
 $5. -\csc^2 x$

$$6 \quad \frac{d}{dx} \left(\sin^2 x \right)$$

$$\frac{d}{dx}(\sin^2 x)$$

7 If
$$\sqrt{x} + \sqrt{y} = 9$$
 then $\frac{dy}{dx} =$ _____.

a.
$$\sqrt{\frac{x}{y}}$$

a.
$$\sqrt{\frac{x}{y}}$$
 b. $-\sqrt{\frac{x}{y}}$ c. $\sqrt{\frac{y}{x}}$

c.
$$\sqrt{\frac{y}{x}}$$

d.
$$-\sqrt{\frac{y}{x}}$$

9 જો
$$\sqrt{x} + \sqrt{y} = 9$$
, હોય તો $\frac{dy}{dx} =$ ______.

અ.
$$\sqrt{\frac{x}{y}}$$

આ.
$$\sqrt{\frac{x}{y}}$$
 બ. $-\sqrt{\frac{x}{y}}$ ક. $\sqrt{\frac{y}{x}}$

$$5. \sqrt{\frac{y}{x}}$$

$$5.-\sqrt{\frac{y}{x}}$$

8
$$\int 2^x dx = \underline{\hspace{1cm}} + C$$

b.
$$2^x \log 2$$

c.
$$\frac{2^x}{log 2}$$

d.
$$\frac{log2}{2^x}$$

$$\int 2^x dx = \underline{\hspace{1cm}} + C$$

c. 8 + 7i

d.8 + i

a. 4 + i b. 4 + 7i

 $(2-i)(3+2i) = \underline{\hspace{1cm}}$

c.
$$8 + 7i$$

$$d.8 + i$$

(a) Attempt any two . (કીઇ પણ બે ના જવાબ આપો). **Q.2**

06

1. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 then prove that A^2 -5A + 7I = 0

૧. જો
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 કોય તો સાબિત કરો કે $A^2 - 5A + 7I = 0$

2. If
$$A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$
 then find Adj.A.

Solve the differential equation : y(1+x)dx + x(1+y) dy = 03.

3. વિકલ સમીકરણ નો ઉકેલ શોધો:
$$y(1+x)dx + x(1+y) dy = 0$$

Attempt any two. (કોઇપણ બે ના જવાબ આપો.) **(b)**

08

1. If
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -2 \\ 2 & -4 \end{bmatrix}$ then show that $(AB)^T = B^T \cdot A^T$

૧.
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 0 \end{bmatrix}$$
 તથા
$$B = \begin{bmatrix} 3 & -2 \\ 2 & -4 \end{bmatrix}$$
 હોય તો સાબિત કરો કે
$$(AB)^T = B^T . A^T$$

2. If
$$A = \begin{bmatrix} -4 & -3 \\ 4 & 2 \end{bmatrix}$$
 then prove that $A \cdot A^{-1} = A$

ર. જો
$$A = \begin{bmatrix} -4 & -3 \\ 4 & 2 \end{bmatrix}$$
 હોય તો સાબિત કરો કે $A \cdot A^{-1} = 1$

3. Solve the given equations by using matrices: 5x + 3y = 11 and 3x - 2y = -1.

3. સિમિકરણોનો ઉકેલ શ્રેણિકની મદદથી શોધો :
$$5x + 3y = 11$$
 તથા $3x - 2y = -1$

Attempt any two. (કોઇપણ બે ના જવાબ આપો.) **Q.3**

06

1. If
$$y = \log \sqrt{\frac{a+x}{a-x}}$$
 then find $\frac{dy}{dx}$.

૧. જો
$$y = \log \sqrt{\frac{a+x}{a-x}}$$
 કોય તો $\frac{dy}{dx}$ શોધો.

2. If
$$y = (sinx)^x$$
 then find $\frac{dy}{dx}$.

ર. જો
$$y = (sinx)^x$$
 હોય તો $\frac{dy}{dx}$ શોધો.

- 3. Simplify: $\int \frac{x^2 + 5x + 6}{x^2 + 2x} dx$
- 3. મેળવો : $\int \frac{x^2 + 5x + 6}{x^2 + 2x} dx$
- (b) Attempt any two. (કોઇપણ બે ના જવાબ આપો.) **08**
 - 1 If $x = e^{\theta}(\cos\theta + \sin\theta)$ and $y = e^{\theta}(\cos\theta \sin\theta)$ then find $\frac{dy}{dx}$.
- ૧. જો $x = e^{\theta}(\cos\theta + \sin\theta)$ તથા $y = e^{\theta}(\cos\theta \sin\theta)$ હોય તો $\frac{dy}{dx}$ શોધો.
- 2. If $y = \log(\sin x)$ then show that : $\frac{d^2y}{dx^2} + (\frac{dy}{dx})^2 + 1 = 0$
- રે. જો $y = \log(\sin x)$ કોય તો $\frac{d^2y}{dx^2} + (\frac{dy}{dx})^2 + 1 = 0$ સાબિત કરો.
- 3. When the equation of moving particles is $S = t^3 6t^2 + 9t + 4$, then solve given questions.(1) When a = 0, find 'v' and 's' (2) When v = 0 find 'a' and 's'.
- 3. ગતિમાન પદાર્થ ની ગતિ નું સિમિકરણ $S=t^3-6t^2+9t+4$ હોય તો નીયેના પ્રશ્નો નો ઉકેલ મેળવો.(1) જયારે a=0 હોય તો 'v' અને 's' શોધો (2) જયારે v=0 હોય તો 'a' અને 's' શોધો .
- Q.4 (a) Attempt any two : (કોઇપણ બે ના જવાબ આપો.)
 - 1. $\int \frac{(1-3x)^2}{x^3} dx : Evaluate$
 - ૧. $\int \frac{(1-3x)^2}{x^3} dx : \mathcal{H}$ ભવો
 - 2. $\int x \cdot e^{3x} dx$: Evaluate
 - ર. $\int x.e^{3x} dx$: મેળવો
 - 3. Find the square root of the complex number $\sqrt{3}$ i
 - 3. સંકર સંખ્યા $\sqrt{3}$ i નું વર્ગમૂળ શોધો.
 - (b) Attempt any two : (કોઇપણ બે ના જવાબ આપો.) **08**
 - 1. Find the value of : $\int_0^{\frac{\pi}{2}} \frac{\sin x}{\cos x + \sin x} dx$
 - ૧. મૂલ્ય શોધો : $\int_0^{\frac{\pi}{2}} \frac{\sin x}{\cos x + \sin x} dx$
 - 2. Find an equation of an area of the circle $x^2 + y^2 = a^2$.
 - ર. વર્તુળ $x^2 + y^2 = a^2$ ના ક્ષેત્રફળનું સિમકરણ શોધો .

- 3. If $z_1 = 3 + 4i$ and $z_2 = 2 i$ then find $z_1 + z_2$, $z_1 z_2$, $z_1 \times z_2$ and $z_1 \div z_2$
- 3. જો $z_1 = 3 + 4i$ અને $z_2 = 2 i$ હોય તો $z_1 + z_2$, $z_1 z_2$, $z_1 \times z_2$ તથા $z_1 \div z_2$ શોધો.
- 5 (a) Attempt any two . : (કોઇપણ બે ના જવાબ આપો.) **06**
 - 1. Find Modulus and conjugate form of the complex number (2-3i)(-2+i)
 - 9. સંકર સંખ્યા (2-3i)(-2+i) નો માનાંક તથા અનુબધ્ધ સંકર સંખ્યા શોધો.
 - 2. Find the principal Argument of the Complex number $\frac{1+i}{1-i}$
 - ર. સંકર સંખ્યા $\frac{1+i}{1-i}$ નો મુખ્ય કોણાંક શોધો.
 - 3. Show that : $\frac{(\cos 2\theta + i\sin 2\theta)^3 (\cos 3\theta i\sin 3\theta)^2}{(\cos 4\theta + i\sin 4\theta)^5 (\cos 5\theta i\sin 4\theta)^5} = 1$
 - 3. સાબિત કરો કે : $\frac{(\cos 2\theta + i\sin 2\theta)^3 (\cos 3\theta i\sin 3\theta)^2}{(\cos 4\theta + i\sin 4\theta)^5 (\cos 5\theta i\sin 4\theta)^5} = 1$
 - (b) Attempt any two: (કોઇપણ બે ના જવાબ આપો.) **08**
 - Solve the differential equation : $\frac{dy}{dx} = \frac{y}{x} + x\sin(\frac{y}{x})$
 - ૧ વિકલ સમિકરણનો ઉકેલ શોધો: $\frac{dy}{dx} = \frac{y}{x} + x\sin(\frac{y}{x})$
 - 2. Solve the differential equation : $\frac{dy}{dx} = \frac{y}{x} + x^2$
 - ર વિકલ સમિકરણનો ઉકેલ શોધો: $\frac{dy}{dx} = \frac{y}{x} + x^2$
 - Solve the differential equation : $(e^y + 1)\cos x dx + e^y \sin x dy = 0$
 - 3 વિકલ સમિકરણનો ઉકેલ શોધો : $(e^y + 1)\cos x dx + e^y \sin x dy = 0$
