機器學習生物學。

機器學習≈機器自動找一個函式

根據函式輸出來分類

• 迴歸 (Regression): 函式的輸出是一個數值

• 分類 (Classification): 函式的輸出是一個類別 (選擇題)

Structured Learning

- 生成有結構的物件 (例如:影像、文句)
- 又叫做「生成式學習」 (Generative Learning)

(圖片來源:漫畫獵人)

ChatGPT 是哪一類呢?

把生成式學習拆解成多個分類問題

設定範圍

設定標準

達成目標

前置作業:決定要找什麼樣的函數

• 與技術無關,取決於想要做的應用

Source of image: https://wiki.52poke.com/wiki/%E4%B8%BB%E9%A1%B5

Model

訂出候選函式的集合

設定範圍

設定標準

達成目標

1. 訂出候選函式的集合

• 深度學習中類神經網路的結構 (例如:CNN, RNN, Transformer 等等) 指的就是不同的候選函式集合

某個類神經網路的結構

1. 訂出候選函式的集合

深度學習中類神經網路的結構 (例如:CNN, RNN, Transformer 等等) 指的就是不同的候選函式集合

Network

This is a function. Input vector, output vector $f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix}$ $f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$ Given network structure, define a function set

Fully Connect Feedforward

https://youtu.be/Dr-WRIEFefw

ML Lecture 6: Brief Introduction of Deep Learning

設定範圍

Model

訂出候選函式的集合

設定標準

Loss

訂出「評量函式好壞」的標準

達成目標

2.訂出「評量函式好壞」的標準

Supervised Learning

 f_1 的輸出距離正確答案總和為 15 \blacksquare

 $L(f_1) = 15$

Loss

取決於訓練資料

2.訂出「評量函式好壞」的標準

Semi-supervised Learning

 $L(f_1) = 輸出距離正確答案 + 長得像的寶可夢差距$

設定範圍

Model 訂出候選函式的集合

設定標準

訂出「評量函式好壞」的標準

達成目標

找出最好的函式 🖶 最佳化 (Optimization)

Loss

3. 找出最好的函式

$$f_1 \longrightarrow 2$$

$$L(f_1) = 5$$

$$L(f_2) = 33$$

$$\mathcal{H}$$

$$L(f_3) = 11$$

$$f^* = arg \min_{f \in \mathcal{H}} L(f)$$

3. 找出最好的函式

Comparison between different parameters

Larger 1st order derivative means far from the minima

ML Lecture 3-1: Gradient Descent

https://youtu.be/yKKNr-QKz2Q

Backpropagation – Backward Pass

Compute $\partial \mathcal{C}/\partial z$ for all activation function inputs z

Compute $\partial C/\partial z$ from the output layer

ML Lecture 7: Backpropagation

https://youtu.be/ibJpTrp5mcE

"RL 要取代 Deep Learning 了"

設定範圍

訂出候選函式的集合

Deep Learning (CNN, Transformer ...), Decision Tree, etc.

設定標準

訂出「評量函式好壞」的標準

Supervised Learning, Semi-supervised Learning, RL, etc.

達成目標

找出最好的函式

Gradient Descent (Adam, AdamW ...), Genetic Algorithm, etc.

達成目標

找出最好的函式

Gradient Descent (Adam, AdamW ...), Genetic Algorithm, etc.

設定標準

訂出「評量函式好壞」的標準

Supervised Learning, Semi-supervised Learning, RL, etc.

在 Loss 上做額外考量 (如: Regularization)

考量任務特性,訂出候選函式的集合

Deep Learning (CNN, Transformer ...), Decision Tree, etc.

考量任務特性,訂出候選函式的集合

Deep Learning (CNN, Transformer ...), Decision Tree, etc.

寶可夢、數碼寶貝分類器

淺談機器學習原理

https://youtu.be/_j9MVVcvyZI

【機器學習 2022】再探寶可夢、數碼寶貝分類器 - 淺 談機器學習原理

考量任務特性,訂出候選函式的集合

Deep Learning (CNN, Transformer ...), Decision Tree, etc.

https://youtu.be/OP5HcXJg2Aw

Benefit of Convolutional Layer

【機器學習2021】卷積神經網路 (Convolutional Neural Networks, CNN)

考量任務特性,訂出候選函式的集合

Deep Learning (CNN, Transformer ...), Decision Tree, etc.

https://youtu.be/gmsMY5kc-zw

【機器學習2021】自注意力機制 (Self-attention) (下)

有一些方法的好是可以支援其他步驟

設定範圍

Residual Connection Batch Normalization

設定標準

Cross-entropy loss

達成目標

總結

設定範圍

考量任務特性,訂出候選函式的集合

Deep Learning (CNN, Transformer ...), Decision Tree, etc.

設定標準

訂出「評量函式好壞」的標準

Supervised Learning, Semi-supervised Learning, RL, etc.

達成目標

找出最好的函式

Gradient Descent (Adam, AdamW ...), Genetic Algorithm, etc.