

IoT predictive maintenance

DJEBAR Loïc - FERRANDI Emmanuel - LAURENS Pierre - TISSOT Evan 2019-2020

Context of the project & issues to solve

Test bench rack

Test bench racks make radiofrequency tests

Some parts might break down

⇒ unusable rack during a period

Anticipate the need for maintenance by monitoring all the components of the test bench

Method chosen: build an IoT System

Build an IoT system for radiofrequency test bench

- Monitor in real time the condition of the tested equipment
- Detect anomaly
- Anticipate the need for maintenance
- Keep a history of equipment life

Expected results

A working prototype that can:

Store

Display

But also ...

- Fit in a rack
- Be easily configurable
- Be modular

- Work with Thales network
- User friendly to deploy and to use

What has already been done

Completed

Structure of the dashboard Data visualization (charts)

Next

Dynamic display

Completed

Define the structure Implement debug & test services

Next

Implement more services

What has already been done

Completed

Design the circuit Choose components

Next

Realize physical implementation

Completed

Define the structure Add simulated data

Next

Store sensor measurements

What has already been done

Current advancement - API

Current advancement - Dashboard

■ Dashboard

Relais 1

20
nbr de commutations
Limite : 500

Relais 2

150

nbr de commutations
Limite: 1000

Relais 3

50

nbr de commutations

Limite: 600

Relais 4

230

nbr de commutations

Limite: 7500

 Derniers Incidents

 Composant
 Id capteur
 Timestamp
 Valeur

 Amplificateur
 dev5_sens1 - 10/11/2019
 10/11/2019
 95

 1
 Temperature
 15:08
 95

Current advancement - Dashboard

Organisation

Project Management -> Based on "Trello" Tool

Manage some "post it" related to a Task

Technical Management -> Based on "Git" Tool

Manage the Programming version of our Project

					$\overline{}$
	API	Dashboards	Cloud	Sensors	
Djebar Loïc	×				
Ferrandi Emmanuel	×			×	
Laurens Pierre	×	*			
Tissot Evan	×	×			

Project timeline

	Weeks	21/10/2019	28/10/2019	04/11/2019	11/11/2019	18/11/2019	25/11/2019	02/12/2019	09/12/2019	16/12/2019	23/12/2019	30/12/2019	06/01/2020	13/01/2020	20/01/2020
Parts															
Organisation				t.											
Planning & Tasks Distribution															
Order components															
Architecture Decision													ata a		
Final tests															
Technical															
Elec															
Technical choices & Architecture															
Prototype											(
Test & Implementation															ĺ
Measurement Acquisition								2							*
Technical choices & Architecture															
Define all sensors															
Development															
Implement test&debug services															
API															
Technical choices & Architecture															
Define all services															
Implement test&debug services											_				7
Implement others services															·
Documentation															

Current situation assessment

	Expected	Realized		
Electrical	35%*	30%		
Measurement acquisition	20%*	10%		
API	45%*	50%		
Dashboard Data Visualisation	40%*	65%		
Dashboard Configuration Interface	20%*	15%		
Data management	30%*	40%		
Cloud	20%*	15%		

Schedule

Weekly review with mails or Skype calls on Wednesdays Meeting at Thales on Thursdays as often as possible

Risks

Lack of electrical knowledge

We can use the help of the electrical expert in the Thales Team and our INSA tutor

Work in real situation with the testbench

Thales can lend us a testbench
We can work on the Thales site (FabLab)

Bring the parts together

Test each part individually
Standardize the communication

Social Acceptance

Opposition can be faced if:

The cost of our solution is too high

Thales's engineer does not have the technical skills to maintain the IoT architecture

Raspberry's technology is too mainstream to be used in an industrial context

Conclusion

Technical Skills

Programming Languages (Python - React)

PCB (Printed Circuit Board) conception

Microservices Management (Docker)

Database management (MongoDB)

Technical documentation

Project Management

Planning gestion (Trello)

Technical writing

Meeting with Thales team

Following specifications

Project planning & scheduling

Contact us:

Students contacts:

Pierre LAURENS	plaurens@etud.insa-toulouse.fr
Loïc DJEBAR	<u>djebar@etud.insa-toulouse.fr</u>
Evan TISSOT	tissot@etud.insa-toulouse.fr
Emmanuel FERRANDI	ferrandi@etud.insa-toulouse.fr

INSA Tutor contact:

Alexandre BOYER = <u>alexandre.boyer@insa-toulouse.fr</u>