Median-of-Means for Outlier-Robust MMD Estimation*

Matthieu Lerasle 1,3 , Zoltán Szabó 2 , Timothée Mathieu 3 , Guillaume Lecué 4

²CMAP, CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France ³Laboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, France ⁴CREST ENSAE ParisTech, France ¹CNRS, Université Paris Saclay, France

Quick Summary

- Mean embedding, MMD: information theory on kernel-enriched domains.
- Goal: their outlier-robust estimation.
- Contribution:
- Optimal sub-Gaussian deviation bound (minimal 2nd order assumption). – Practical algorithms.

Target Quantities

• Mean embedding:

$$\mathbb{P} \mapsto \mu_{\mathbb{P}} = \int_{\mathfrak{X}} \underbrace{\varphi(x)}_{\text{example: } e^{\langle \cdot, x \rangle}} d\mathbb{P}(x) \in \mathcal{H}_{K}$$

• Maximum mean discrepancy (MMD):

$$\mathrm{MMD}(\mathbb{P}, \mathbb{Q}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}_{K}} = \sup_{f \in B_{K}} \underbrace{\langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \rangle_{\mathcal{H}_{K}}}_{\mathbb{E}_{x \sim \mathbb{P}} f(x) - \mathbb{E}_{x \sim \mathbb{Q}} f(x)$$

Notes:

- Large number of applications; review [1].
- Numerous kernel-endowed domains. $K(x,y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{H}_{\kappa}}, \varphi(x) = K(\cdot,x)$.

Goal

- Design outlier-robust estimators.
- Interest: unbounded kernels
- exponential kernel: $K(x,y) = e^{\gamma \langle x,y \rangle}$.
- polynomial kernel: $K(x,y) = (\langle x,y \rangle + \gamma)^p$.
- string, time series or graph kernels.

• Issue with average: A single outlier can ruin it.

Estimator

- Idea (MOM):
- 1. Partition: $x_1, \ldots, x_{N/Q}, \ldots, \underbrace{x_{N-N/Q+1}, \ldots, x_N}$.
- 2. Compute average in each block:

$$a_1 = \frac{1}{|S_1|} \sum_{i \in S_1} x_i, \dots, a_Q = \frac{1}{|S_Q|} \sum_{i \in S_Q} x_i.$$

- 3. Estimate $\mathbb{E}X$: $\operatorname{med}_{q\in[Q]}a_q$.
- On MMD: replace the expectation with MON

$$\widehat{\mathrm{MMD}}_Q(\mathbb{P}, \mathbb{Q}) = \sup_{f \in B_K} \max_{q \in [Q]} \left\{ \frac{1}{|S_q|} \sum_{j \in S_q} f(x_j) - \frac{1}{|S_q|} \sum_{j \in S_q} f(y_j) \right\}.$$

• Code: https://bitbucket.org/TimotheeMathieu/monk-mmd

-0.18

120 140 160

Sample number (N)

(h) Intra-class: EI-EI

Sample number (N)

(g) Inter-class: EI-IE

Finite-Sample Bound for $\widetilde{\mathrm{MMD}}_Q(\mathbb{P},\mathbb{Q})$ ($\hat{\mu}_{\mathbb{P}}$: Similar)

Assume:

- Contamination: $\{(x_{n_i}, y_{n_i})\}_{i=1}^{N_c}, \quad N_c \leq Q(1/2 \delta), \quad \delta \in (0, 1/2].$
- Mild 2nd-order assumption: $\exists \operatorname{Tr}(\Sigma_{\mathbb{P}}), \operatorname{Tr}(\Sigma_{\mathbb{O}}).$

Then, for any $\eta \in (0,1)$ such that $Q = 72\delta^{-2}\ln(1/\eta)$ satisfies $Q \in$ $\left(N_c/\left(\frac{1}{2}-\delta\right),N/2\right)$, with probability at least $1-\eta$

$$\left|\widehat{\mathrm{MMD}}_Q(\mathbb{P},\mathbb{Q}) - \mathrm{MMD}(\mathbb{P},\mathbb{Q})\right| \leq \frac{12 \max\left(\sqrt{\frac{(\|\Sigma_{\mathbb{P}}\| + \|\Sigma_{\mathbb{Q}}\|)\ln(1/\eta)}{\delta N}}, 2\sqrt{\frac{\mathrm{Tr}(\Sigma_{\mathbb{P}}) + \mathrm{Tr}(\Sigma_{\mathbb{Q}})}{N}}\right)}{\delta}.$$

Discussion

- (i) N-dependence: $\mathcal{O}\left(\frac{1}{\sqrt{N}}\right)$ is optimal for MMD estimation [2].
- (ii) Σ -dependence:
 - Optimal sub-Gaussian deviation bound for mean estimation under minimal 2ndorder condition even on \mathbb{R}^d [3] – long-lasting open question.
 - They rely on tournament procedure: numerically hard.
 - Most practical convex relaxation [4]: $O(N^{24})$.
 - After submission: [5]: $O(N^4 + dN^2)$, $d < \infty$.

(iii) δ -dependence:

- Larger δ means less outliers, - the bound becomes tighter,
- one needs less blocks.
- optimal?
- (iv) Breakdown point asymptotic concept:
 - median \Rightarrow Using Q blocks is resistant to Q/2 outliers.
 - Q can grow with N, as (almost) N/2.
 - Breakdown point can be 25%.

(v) Unknown Q:

- \bullet One choose Q adaptively by the Lepski method.
- Same guarantee but with increased computional cost.

Acknowledgements

Guillaume Lecué is supported by a grant of the French National Research Agency (ANR), "Investissements d'Avenir" (LabEx Ecodec/ANR-11-LABX-0047).

References

- [1] Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Schölkopf. Kernel mean embedding of distributions: A review and beyond. Foundations and Trends in Machine Learning, 10(1-2):1-141, 2017.
- [2] Ilya Tolstikhin, Bharath K. Sriperumbudur, and Bernhard Schölkopf. Minimax estimation of maximal mean discrepancy with radial kernels. In Advances in Neural Information Processing Systems (NIPS), pages 1930–1938,
- [3] Gábor Lugosi and Shahar Mendelson. Sub-Gaussian estimators of the mean of a random vector. *Annals of Statistics*, 47(2):783–794, 2019.
- [4] Samuel B. Hopkins. Mean estimation with sub-Gaussian rates in polynomial time. Technical report, 2018. (https://arxiv.org/abs/1809.07425).
- [5] Yeshwanth Cherapanamjeri, Nicolas Flammarion, and Peter L. Bartlett. Fast mean estimation with sub-Gaussian rates. Technical report, 2019. (https://arxiv.org/abs/1902.01998).