Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Тульский государственный университет»

КАФЕДРА ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

ИССЛЕДОВАНИЕ РАБОТЫ ТРАНЗИСТОРА

отчет о лабораторной работе №6

по дисциплине ЭЛЕКТРОТЕХНИКА, ЭЛЕКТРОНИКА И СХЕМОТЕХНИКА

ВАРИАНТ 2

Выполнили: студенты гр. 230711 Павлова В.С.

Семененко И.В.

Хромов А.С.

Проверил: асс. каф. ИБ Греков М.М.

ЦЕЛЬ И ЗАДАЧА РАБОТЫ

Цель: освоить материал «Биполярные транзисторы».

ЗАДАНИЕ НА РАБОТУ

- 1. Получить характеристики биполярного транзистора при включении по схеме с общей базой.
- 2. Получить характеристики биполярного транзистора при включении по схеме с общим эмиттером.
- 3. Получить характеристики биполярного транзистора при инверсном включении по схеме с общим эмиттером.

ХОД РАБОТЫ

Для исследования биполярного транзистора при включении с общей базой соберём следующую схему, приведённую на рисунке 1. Сначала снимем показания входных характеристик.

Рисунок 1 – Схема для снятия входных характеристик при подключении с общей базой

Полученные значения входных характеристик занесём в таблицу 1.

Таблица 1 – Входные характеристики при включении с общей базой

$I_{\mathfrak{I}}(MA)$	0	1	3	8	10	20	
$U_{69}(B)$	0	0.14	0.18	0.23	0.25	0.30	$U_{6\kappa} = 10$
U _{бэ} (В)	0	0.17	0.23	0.28	0.30	0.34	$U_{6\kappa} = 0$

Полученную зависимость можно выразить графически следующим образом (рисунок 2):

Рисунок 2 — График полученной зависимости $U_{69}(I_9)$

Для исследование выходных характеристик транзистора соберём схему, приведённую на рисунке 3:

Рисунок 3 – Схема для снятия выходных характеристик с общей базой

На установке это выглядит следующим образом (рисунок 4):

Рисунок 4 – Общий вид установки при снятии характеристик с общей базой

Полученные значения входных характеристик занесём в таблицу 2.

	_	ے ں	U
Таблица 2 – Выходные характеристики при включении	e oom	еи ба	зои
Tacinique 2 Bentognere naparitéphetimai nem bione tenimi	- ссщ	-	

$I_{\kappa}(A)\backslash U_{\delta\kappa}(B)$	20	15	10	5	3	1	0
0	0	0	0	0	0	0	0
1	$3*10^{-5}$	$3,1*10^{-5}$	$3.6 * 10^{-5}$	$3.6 * 10^{-5}$	$3,6*10^{-5}$	$9.3 * 10^{-5}$	$18 * 10^{-5}$
2	$6*10^{-5}$	$6,6*10^{-5}$	$6,6*10^{-5}$	$7,2*10^{-5}$	$12*10^{-5}$	$2,22*10^{-5}$	$8*10^{-4}$
4	$9,6*10^{-5}$	$10,2*10^{-5}$	$10.8 * 10^{-5}$	$15 * 10^{-5}$	$22,8 * 10^{-5}$	$12 * 10^{-4}$	$16 * 10^{-4}$
5	$12,6*10^{-5}$	$13,2 * 10^{-5}$	$14,4*10^{-5}$	$19,8 * 10^{-5}$	$3*10^{-3}$	$18 * 10^{-4}$	$2*10^{-3}$
7	$18*10^{-5}$	$18,9 * 10^{-5}$	$20,4*10^{-5}$	$1,2*10^{-3}$	$2*10^{-3}$	$2,4*10^{-4}$	$2,9*10^{-3}$
8	$22,5*10^{-5}$	$24 * 10^{-5}$	$27 * 10^{-5}$	$2*10^{-3}$	$28 * 10^{-4}$	$32 * 10^{-4}$	$3,6*10^{-3}$
10	$28,8 * 10^{-5}$	10^{-3}	$2*10^{-3}$	$3.6 * 10^{-3}$	$44 * 10^{-4}$	$48 * 10^{-4}$	$5,2*10^{-3}$
12	$4*10^{-3}$	4,8 * 10 ⁻³	$5,2*10^{-3}$	$5,4*10^{-3}$	$5,4*10^{-3}$	6 * 10 ⁻³	6,1 * 10 ⁻³

Такую зависимость можно выразить графически следующим образом (рисунок 5):

Рисунок 5 – График полученной зависимости $U_{\text{бк}}\left(I_{\text{k}}\right)$

Аналогичным образом проведём исследование характеристик биполярного транзистора при включении по схеме с общим эмиттером. Её вид приведён на рисунке 6.

Рисунок 6 – Схема для снятия входных характеристик при подключении с общим эмиттером

Полученные значения входных характеристик занесём в таблицу 3.

Таблица 3 – Входные характеристики при включении с общим эмиттером

I ₆ (A)	0	3 * 10 ⁻⁵	6 * 10 ⁻⁵	9 * 10 ⁻⁵	12 * 10 ⁻⁵	48 * 10 ⁻⁵	7 * 10 ⁻³	12 * 10 ⁻³	
Uбэ(B)	0	0.5	1	2	4	5.5	9.2	9.7	II _10
$I_{\kappa}(A)$	0	0.1	0.4	1.8	2	2.4	4	4.1	$U_{\kappa_3}=10$
U бэ(В)	0	0.5	1	1.5	2.7	3.2	5	5.2	П – 0
$I_{\kappa}(A)$	0	0.4	0.8	1.2	2.8	4	8	13	$U_{\kappa_9} = 0$

Данную зависимость можно выразить графически следующим образом (рисунок 7):

Рисунок 7 – График полученной зависимости: $U_{69}(I_6)$

Для исследование выходных характеристик транзистора видоизменим схему, собранную на установке (рисунок 8):

Рисунок 8 – Общий вид установки при снятии характеристик с общим эмиттером

Полученные значения входных характеристик занесём в таблицу 4.

Таблица 4 – Выходные характеристики при включении с общим эмиттером

$I_6(MKA)\backslash U_{K9}(B)$	2	4	6	8	10	12
0	0мА	0 мА	0 мА	0 мА	0 мА	0 мА
10	0.3 мА	0.7 мА	1 мА	1.2 мА	1.2 мА	1.5 мА
20	2.1 мА	2.3 мА	2.5 мА	2.5 мА	2.6 мА	2.8 мА
30	2.8 мА	3.3 мА	3.4 мА	3.5 мА	3.7 мА	3.9 мА
40	4 мА	4.2 мА	4.3 мА	4.5 мА	4.6 мА	4.9 мА
50	5 мА	5.2 мА	5.4 мА	5.4 мА	5.6 мА	5.6 мА
60	5.8 мА	6 мА	6.2 мА	6.4 мА	6.5 мА	6.7 мА
70	6.7 мА	7 мА	7.2 мА	7.3 мА	7.6 мА	7.6 мА
80	7.2 мА	7.5 мА	8 мА	8.2 мА	8.5 мА	9 мА
90	8 мА	8.2 мА	8.5 мА	9 мА	9.1 мА	9.3 мА
100	9 мА	9.3 мА	9.7 мА	9.9 мА	10.1 мА	10.5 мА

Данную зависимость можно выразить графически следующим образом (рисунок 9):

Рисунок 9 – График зависимости $U_{\kappa 9}(I_{6})$

Исследование характеристик транзистора при инверсном включении по схеме с общим эмиттером проведём по аналогии с предыдущими шагами. Общий вид установки для данного случая приведён на рисунке 10.

Рисунок 10 – Общий вид установки при снятии характеристик при инверсном включении по схеме с общим эмиттером

Полученные значения входных характеристик занесём в таблицу 5.

Таблица 5 – Входные характеристики при инверсном включении с общим эмиттером

Iь(мА)\Uьк(В)	0	0,01	0,03	0,05	0,08	0,1	0,2	
10	0	-0,5	-1	-1,5	-3,5	-5	-7	Uэь (B)
	0	-0,8	-1,5	-1,7	-2,5	-2,7	-3	IK(MA)
0	0	-0,5	-0,8	-1,3	-2,1	-3	-6	UэБ (B)
J	0	-0,3	-0,4	-0,7	-1,7	-1,9	-2,3	IK(MA)

Данную зависимость можно выразить графически следующим образом (рисунок 11):

Рисунок 11 – График зависимости $U_{\text{96}}(I_{\text{6}})$

Полученные значения выходных характеристик занесём в таблицу 6.

Таблица 6 – Выходные характеристики при инверсном включении с общим эмиттером

$I_6(MKA)\backslash U_{K9}(B)$	2	4	6	8	10	12
0	0мА	0 мА	0 мА	0 мА	0 мА	0 мА
10	-0.3 мА	-0.7 мА	-1 мА	-1.2 мА	-1.2 мА	-1.6 мА
20	-2.1 мА	-2.3 мА	-2.5 мА	-2.5 мА	-2.6 мА	-2.8 мА
30	-2.8 мА	-3.3 мА	-3.4 мА	-3.5 мА	-3.7 мА	-3.9 мА
40	-4 мА	-4.3 мА	-4.3 мА	-4.7 мА	-4.6 мА	-4.9 мА
50	-5 мА	-5.2 мА	-5.4 мА	-5.4 мА	-5.6 мА	-5.2 мА
60	-5.7 мА	-6 мА	-6.2 мА	-6.4 мА	-6.5 мА	-6.7 мА
70	-6.7 мА	-7,2 мА	-7.2 мА	-7.3 мА	-7.6 мА	-7.8 мА
80	-7.2 мА	-7.5 мА	-8 мА	-8.4 мА	-8.5 мА	-9 мА
90	-8 мА	-8.2 мА	-8.5 мА	-9 мА	-9.1 мА	-9.3 мА
100	-9 мА	-9.3 мА	-9.7 мА	-9.9 мА	-10.1 мА	-10.7 мА

Данную зависимость можно выразить графически следующим образом (рисунок 12):

Рисунок 12 – График зависимости $U_{K\Im}(I_{6})$

ВЫВОД

Мы освоили материал «Биполярные транзисторы», а также получили входные и выходные характеристики транзистора с общей базой, с прямым и инверсным подключением с общим эмиттером.