

Histograms of Oriented Gradients

Brife Introduction

Main Thoughts

HOG Feature

Feature Extractior

The Flow Cha of HOG Featu Extraction

The Detailed Process of HOG

Histograms of Oriented Gradients 梯度方向直方图

TangNing

CVBIOUC

http://vision.ouc.edu.cn/~zhenghaiyong

March 18, 2016

Contents

Histograms of Oriented Gradients

Brife Introduction

Main Thoughts

Steps in HOG Feature Extraction

The Flow Char of HOG Featur Extraction

Extraction
The Detailed

1 Brife Introduction

 \blacksquare Main Thoughts

2 Steps in HOG Feature Extraction

- The Flow Chart of HOG Feature Extraction
- The Detailed Process of HOG

Main Thoughts

Histograms of Oriented Gradients

duction

Main Thoughts

HOG Feature Extraction

The Flow Chart of HOG Feature Extraction The Detailed Histograms of Oriented Gradients (HOG) is a technique for feature extraction, which is extensively used in human detection:

- Substance: the statistics of gradient information in some dense overlapping grids.
- Basic Idea: local object appearance and shape can often be characterized rather well by the distribution of local intensity gradients edge directions.

The Flow Chart of HOG Feature Extraction

Histograms of Oriented Gradients

Brife Introduction

Main Thoughts

HOG Feature

The Flow Chart of HOG Feature Extraction

The Detailed

The Detailed Process of HOG

Histograms of Oriented Gradients

Brife Introluction ^{Main Thought:}

Steps in HOG Feature Extraction

The Flow Char of HOG Featur Extraction

The Detailed Process of HOC

1. Gamma Normalization:

reduce the local shadow and illumination changes in image, yet it has a modest effect on performance because the subsequent normalization. (can be omitted)

$$I(x, y) = I(x, y)^{gamma}$$

for example,
$$gamma = \frac{1}{2}$$

The Detailed Process of HOG

Histograms of Oriented Gradients

Brife Introluction ^{Main Thought}

steps in HOG Feature Extractio

The Flow Char of HOG Featur Extraction

The Detailed Process of HOC

2. Gradient Computation:

capture the contour, human shadow, and texture information, weaken the effect of illumination. (Simple masks without Gaussian smoothing work best)

Horizontal gradient operator: [-1, 0, 1]Vertical gradient operator: $[-1, 0, 1]^T$

The **magnitude** of the gradient:

$$M(x, y) = mag(\nabla f) = \sqrt{g_x^2 + g_y^2}$$

The **direction** of the gradient:

$$\alpha(x, y) = \arctan\left[\frac{g_x}{g_y}\right]$$

Spatial / Orientation Binning

Histograms of Oriented Gradients

Brife Introluction Main Thought

Steps in HOG Feature Extraction

The Flow Char of HOG Featur Extraction

The Detailed Process of HOC

3. Spatial / Orientation Binning:

each pixel calculates a weighted vote for an edge orientation histogram channel in the cell which belongs to. (For getting the best results: the orientation bins is 0° - 180° , the number of orientation bins is 9, the vote is magnitude)

Spatial / Orientation Binning

Histograms of Oriented Gradients

Brife Introluction ^{Main Thoughts}

HOG Feature

Extractio

of HOG Featur Extraction

The Detailed Process of HOG

Normalization and Descriptor Blocks

Histograms of Oriented Gradients

Brife Introluction ^{Main Thought}

Steps in HOG Feature Extraction

The Flow Char of HOG Featur Extraction

The Detailed Process of HOC

4. Normalization and Descriptor Blocks: gradient strengths vary over a wide range owing to local

gradient strengths vary over a wide range owing to local variations in illumination and foreground-background contrast

 grouping cells into larger spatial blocks. (Two arrangements: R-HOG, C-HOG)

Normalization and Descriptor Blocks

Histograms of Oriented Gradients

Brife Introduction

Main Thought

Steps in HOG Feature Extractio

The Flow Char of HOG Feature

Extraction
The Detailed

• contrast normalizing each block separately. Let \mathbf{v} be the unnormalized descriptor vector, $\|\mathbf{v}\|_k$ be its k-norm for k=1, 2, and ϵ be a small constant.

(a)
$$L2 - norm$$
: $\mathbf{v} \rightarrow \mathbf{v}/\sqrt{\|\mathbf{v}\|_2^2 + \epsilon^2}$

(b) L2 - Hys: L2 - norm followed by clipping (limiting the maximum values of v to 0.2) and renormalizing.

(c)
$$L1 - sqrt$$
: $\mathbf{v} \rightarrow \sqrt{\mathbf{v}/(|\mathbf{v}|_1 + \epsilon)}$

Collect HOG Features for All Blocks

Histograms of Oriented Gradients

Brife Introduction

Steps in

Feature

Extractio

of HOG Featu Extraction

The Detailed Process of HOG

5. Collect HOG Features for All Blocks:

