

Serial No.: 10/595993

DeMont & Breyer Docket: 9771-005US
Docket: 06VIN0142USP

**IN THE UNITED STATES
PATENT AND TRADEMARK OFFICE**

Patent Application

Inventor: Dr. Andreas Noack
Docket: 9771-005US
Serial No.: 10/595993
Filing Date: 5/24/2006
Examiner: Not Yet Assigned
Group Art Unit: Not Yet Assigned

Certificate of Mailing

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on **10 August 2006**.

Name of person signing this certificate: **Lillian Hayes**

Signature:

Title: Method for the preparation of multi-component mineral preparations

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

SIR:

Enclosed are the following papers relating to the above-named application for patent:

1. Transmittal Letter with Certificate of Mailing — 1 Page (1x)
2. Certified Copy of Priority Document: DE 103 55 400.9
4. Return Postcard

The enclosed document, pursuant to 37CFR 1.55(a)(2), is a certified copy of the foreign application specified under 35 U.S.C. 119(b) in the Application Data Sheet of this application.

Pursuant to 37 C.F.R. 1.136(a)(3), please treat this and any concurrent or future reply in this application that requires a petition for an extension of time for its timely submission as incorporating a petition for extension of time for the appropriate length of time.

Respectfully,

By
Wayne S. Breyer
Attorney for Applicants
Reg. No. 38089
732-578-0103 x12

Date: 10 Aug 2006

DeMont & Breyer, L.L.C.
Suite 250
100 Commons Way
Holmdel, NJ 07733
United States of America

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung DE 103 55 400.9 über die Einreichung einer Patentanmeldung

Aktenzeichen: 103 55 400.9

Anmeldetag: 25. November 2003

Anmelder/Inhaber: Dr. Andreas Noack, 55130 Mainz/DE

Bezeichnung: Multikomponenten Mineralstoffpräparate und Verfahren zur Herstellung von Multikomponenten-Mineralstoffpräparaten

IPC: A 23 L, A 61 K, A 61 Q

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 8. Juni 2006
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

SL
Stremme

CERTIFIED COPY OF
PRIORITY DOCUMENT

Mainz, 25. November 2003
16

NOACK, Dr. Andreas
Am Jungstück 41
55130 Mainz

**Multikomponenten Mineralstoffpräparate und Verfahren zur Herstellung von
Multikomponenten-Mineralstoffpräparaten**

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Multikomponenten-Mineralstoffpräparaten sowie die entsprechende Klasse von Mineralstoffpräparaten.

Die derzeitigen dem Stand der Technik entsprechenden Mineralpräparate sind hauptsächlich aus Einzelsalzen zusammengemischt. Basis der Mischungszusammensetzung ist die Annahme, dass eine bestimmte Einnahme von den wesentlichen im Körper vorkommenden Mineralien in einer festgelegten Dosis sinnvoll ist; die Festlegung der Mischungszusammensetzung ist aber in letzter Konsequenz eher willkürlich, da das medizinische Know How nicht weit genug geht, um insbesondere dezidierte Dosis-Empfehlungen für Spurenelemente allgemeingültig auszusprechen. Spurenelemente, wie Zink, Molybdän, Chrom, Gold, Rhodium, Platin, Nickel, Kobalt, Iridium, Osmium werden in Mineralstoffpräparaten in der Regel nicht beachtet, sodass bei einer „synthetischen“ Zusammenmengung von Salzen unterschiedlichen Ursprungs die Verabreichung der Spurenelementen immer in unnatürlicher Dosis, vor allen auch in Relation zu den „Primärmineralien“ wie Kalzium, Magnesium, Kalium erfolgt.

Es gibt zwar zahlreiche Meinungen über eine optimale Dosierung von Mineralien; deren Zusammenmischen ist aber eine Wissenschaft für sich ist; wobei das hierzu notwendige Wissen ganze Bände von Spezialliteratur füllt. Insbesondere ist der Einfluss von Spurenelementen auf unsere Gesundheit und unser Wohlbefinden, sehr schwierig abzuschätzen; die Möglichkeiten der absoluten wie auch der relativen Dosierung der Spurenelementen untereinander sind schier unbegrenzt. Das große Problem bei einer Dosisempfehlung für Spurenmineralien ist die mangelnde Analytik in diesem Ultra-Spurenbereich, wobei man fast immer nur die Aussage treffen kann, dass bestimmte Ionen wie Iridium, Rhodium, Platin, Gold, etc. unterhalb der Nachweisgrenze in natürlichen Nahrungsstoffen auftreten – aber aus der Chemie dieser Spezies, insbesondere von den katalytischen Eigenschaften deren homogen gelösten Komplexspezies weis man, dass diese mit nichts zu Vergleichen sind. Selbst geringste Spuren bestimmter Übergangsmetallkomplexe können dramatische Folgen für der Verlauf oder Nichtverlauf bestimmter körperinternen Reaktionen auslösen.

Da aller Wahrscheinlichkeit nach eine fehlerhafte Überdosierung von Spurenelementen selbst im Bereich von extrem kleinen Mengen schwerwiegende Folgen haben kann, klammert man diese Spezies bei kommerziell verfügbaren Mineralstoffpräparaten aus. Die Konsequenz ist, dass uns solche Mineralstoffpräparate an Spurenmineralien relativ gesehen untermineralisieren. Besonders kritisch ist hierbei, dass auf Grund der intensiven Landwirtschaft in den Industrieländern der Gehalt an Spurenelementen in den Ackerböden ohnehin bereits sehr niedrig ist, dementsprechend sind auch Gemüse, Obst von ihrem Gehalt an Spurenelementen massiv verarmt. Experten gehen davon aus, dass unsere körpereigenen Mineralstoffdepots mit zunehmendem Alter stark abgebaut werden, was eines der Hauptfaktoren für zunehmende Immunschwächekrankheiten oder Krebs ist.

Experten gehen davon aus, dass die synthetisch zusammengemischten Mineralprodukte, die oft hohe Dosen an Kalzium enthalten, unter Gesundheitsaspekten bedenklich sind: Mineralstoffe haben im Besonderen die Aufgabe den Körper-pH-Wert möglichst hoch zu halten, um der chronischen Azidose, unter der mehr als 80% der Bevölkerung in Industrieländern mittelbar oder

8

unmittelbar leiden und welche die Ursache für Herz-Kreislaufkrankheiten, Pilzkrankheiten, Parasitenbefall und für eine verminderte Aktivität des Immunsystems darstellt, entgegenzuwirken, Azidose ist die ernährungsbedingte Anreicherung von Säure in den Körperflüssigkeiten hauptsächlich der Lymphe; stark säurebildende Lebensmittel, denen Mineralstoffen entzogen wurden wie, Weissmehl und Zucker sind hierfür ursächlich.

Im Laufe der Jahre reichern sich diese Säuren in Verbindung mit Erdalkalikationen, insbesondere Kalzium, als feste Schlacke, so genannte polymolekulare Erdalkalisalze, in unserem Körper an und behindern die freie Blutzirkulation und damit den Sauerstofftransport in unsere Zellen. Will man diesen Verschlackungsprozess rückgängig machen oder wenigstens verlangsamen, so bedarf es des Einsatzes von Mineralstoffpräparaten, um einerseits den pH-Wert zu erhöhen, bzw. um die schwerlöslichen polymolekularen-Erdalkalisalze wieder auflösen.

Genau an dieser Problematik arbeiten die einfach zusammengemischten, stark kalzium- und magnesiumhaltigen Mineralsalzmischungen vorbei. Schwerlösliche Erdalkalisalze lassen sich nicht mit noch mehr Erdalkalionen auflösen. Das Gegenteil ist der Fall: Benutzt man stark kalzium- und magnesiumhaltige Mineralstoffpräparate, um den Körper pH-Wert anzuheben, appliziert hierbei möglicherweise sogar hohe Dosen, so kann es zu einem akuten und sehr gefährlichen Ausfällen von weiteren Schlackensalzen kommen, die das Herz-Kreislaufsystem stark hemmen bzw. blockieren können.

Ein weiteres Problem bei dem Applizieren und Dosieren von Mineralien stellen jene Spezies dar, die sich gegenseitig hemmen und nicht zusammen eingenommen werden sollen. Beispielsweise gilt Molybdän als Antagonist für Kobalt, Kupfer gilt wiederum als Antagonist für Zink; siehe: A Beginners Introduction to Trace Minerals, Erwin Dicyn Keats Publishing, Inc. New Canaan, Connecticut/USA.

Bedenkt man dass es derzeit über 87 bekannte Spurenelemente gibt, die man in ihrer Dosierung verändern kann, so wird klar, dass die Möglichkeiten zur synthetischen Zusammensetzung von Mineralstoffpräparaten unendlich groß sind:

Wollte man den biologischen Wert auch nur der wesentlichsten synthetischen Mineralstoffpräparaten an Probanden, Anwendern langfristig testen, so würde das eine kaum quantifizierbar lange Zeit beanspruchen. Hinzu kommt ein weiteres Problem bei der Dosierung von Spurenelementen: die Bioverfügbarkeit und Wirksamkeit in unterschiedlicher Modifikation. So sind beispielsweise Spurenelemente, die in essbaren Pflanzen eingelagert sind in Form von Kolloiden vorhanden also in Metall-Clusterform. Nach Meinung führender Experten sind diese Cluster sind für unseren Organismus viel wertvoller als die entsprechenden Salze.

Der beste Ratgeber für die Zusammensetzung von Mineralstoffpräparaten setzt deshalb an der tatsächlichen Mineralisierung von Pflanzen an.

Hieraus folgt ein zweiter Ansatz zur Herstellung von Mineralstoffpräparaten, die so genannten Ascheprodukte. Hierbei versucht man durch Veraschung von hauptsächlich pflanzlichen Rohstoffen ein ausgewogenes, weil natürlich-gefiltertes Mineralstoffpräparat zu erhalten.

Gemäß der DE 3727417A sind Mineralstoffpräparate einfach durch Veraschen von organischen bzw. pflanzlichen Materialien herzustellen. Danach wird das entsprechende Präparat einfach durch eine diskontinuierliche Temperaturbehandlung bis 920°C von pflanzlichen Materialien hergestellt.

Das Problem hierbei liegt aber vor allem im Bereich der Verfahrenstechnik, allen voran in dem Bestreben ein hochreines, schadstofffreies Präparat zu erhalten. Einerseits ist man versucht durch die Wahl einer möglichst hohen Temperatur die möglichst vollständige Zersetzung organischer Materialien zu erreichen, andererseits will man die Temperatur möglichst niedrig halten, um der Bildung von Stickoxiden entgegenzuwirken.

Bei der im Stand der Technik benutzten diskontinuierlichen und einstufigen Veraschungsmethode kommt es zudem zu einem grossen Temperaturgradienten innerhalb der veraschten Probe. Dies führt entweder zur Adsorption von Schadstoffen in Kältenestern oder aber zu einer unvollständigen Oxidation des Rohmaterials; beide Effekte können letztendlich das gesamte Produkt unbrauchbar

10

machen. Die geeignete Verfahrenstechnik übt deshalb den entscheidenden Einfluss darüber aus, ob das Produkt gesundheitsfördernd ist, oder aber eher toxisch wirkt. In kleinster Weise nimmt der angegebene Stand der Technik Bezug auf die Kontamination durch Nitrate/Nitrite sowie organische Restkomponenten.

Ein weiteres Problem beim Stand der Technik ist die Bioverfügbarkeit der Spurenmineralien, die nach Expertenmeinung besonders groß ist, wenn diese in metallischem Zustand als Kolloid vorliegen. Einige Experten vermuten, dass eine Clustergrösse zwischen 10 und 100 Atome als ein Optimum für unseren Organismus darstellen. Im Stand der Technik wird hierauf nicht eingegangen.

In der JP 04016164A ist die Darstellung von Mineralstoffpräparaten auf Basis veraschter organischer Substanzen beschrieben, wobei die Asche entweder sauer basisch oder neutral extrahiert wird. Dabei wird jedoch auch nicht auf die Schadstoffproblematik des Veraschungsvorgangs eingegangen.

Um ein neutrales Salz mit hoher Löslichkeit zu erhalten extrahiert man gemäß der JP 2001292725A mit heißem Wasser eine Pflanze mit dem Namen **Salicornia**, trocknet und verascht das Extrakt anschließend über 4 Stunden. Hierbei werden jedoch vor allem die leichtlöslichen Mineralien wie Kalium und Natrium gewonnen, dagegen werden die Spurenmineralien der seltenen Elemente durch die Wasserextraktion nicht aus dem pflanzlichen Rohstoff herausgelöst und landen damit auch nicht im Produkt, wodurch wiederum das natürliche, pflanzlich gefilterte Mineralspektrum verzerrt wird.

Zusammenfassend zum Stand der Technik lässt sich sagen, dass die Qualität, d.h. die Brauchbarkeit oder die Toxizität von Mineralstoffpräparaten auf Aschebasis sehr sensibel von der Kontamination mit Schadstoffen abhängig ist. Zudem ist festzustellen, dass die in der Literatur beschriebenen Verfahren ausschließlich in Batch-Prozess durchgeführt wurde und dies noch mit sehr geringen Produktmengen. Dieser Prozess lässt technisch kein Up-scaling zu, da die geringe Wärmeleitfähigkeit sowie die Strömungs- und Diffusionsdynamik bei einer Probe im Grammbereich völlig unterschiedlich von der im kg-Bereich oder tonnen-Bereich ist. Die verfahrenstechnische Lösung der schadstofffreien Veraschung ist absolut kritisch

M

davon abhängig, dass das saubere Produkt nicht mit halbfertigem Material kontaminiert wird; die Komplexizität besteht darin, dass das Zwischenprodukt, das primär oxidierte Material, stark toxisch ist und jegliche Kontamination des Endproduktes hiermit ausgeschlossen werden muss; d. h. der Transport des mineralisierten Produktes im Prozess muss völlig kontrollierbar und reproduzierbar sein.

Besonders problematisch bei dem Prozess ist die immense Volumenreduzierung während der Veraschung, wodurch eine inhomogene Durchmischung von vollständig veraschten und nur teilweise veraschten Bereichen erfolgt. Auch der Umstand, dass verdampfende, schädliche Gase an Asche adsorbiert werden und somit die Asche kontaminiert, ist ein Problem das mit Hilfe des Standes der Technik nicht beherrschbar ist.

A

Aufgabe der vorliegenden Erfindung ist die Schaffung eines Multikomponenten Mineralstoffpräparat, das möglichst komplett ist, also alle Mineralien enthält, die die Vitalkraft unseres Körpers gewährleisten und stärken und das frei von gesundheitsbedenklichen Substanzen ist sowie die Angabe eines entsprechenden Verfahren ist. Wesentlich dabei ist, dass die Schadstofffreiheit bereits im Herstellungsprozess sicherzustellen ist, da beispielsweise ein Kristallisationsprozess als Reinigungsstufe nicht appliziert werden kann, da hierbei wichtige Spurenelemente/-mineralien verloren gehen würden.

Diese Aufgaben werden erfindungsgemäß durch die Merkmale der unabhängigen Patentansprüche gelöst.

Das erfindungsgemäße Verfahren zur Herstellung von schadstofffreien Multikomponenten Mineralstoffpräparaten beinhaltet insbesondere die folgenden Schritte:

- a. Primäroxidation von organischen Rohstoffen, aus pflanzlichen oder tierischen Ursprungs, in einer primären Temperaturbehandlungszone;
- b. Konditionierung des primäroxidierten Materials;
- c. Transport des primäroxidierten Materials in eine sekundäre Temperaturbehandlungszone;
- d. Sekundäroxidation des primäroxidierten Materials in einer sekundären Temperaturbehandlungszone.

Die Erfindung beinhaltet ferner eine Vorrichtung zur Herstellung von Mineralstoffpräparaten,

- a. eine Einrichtung zum Eintrag von primäroxidiertem Material pflanzlichen oder tierischen Ursprungs,
- b. eine Fördereinheit mit der das primäroxidierte Material transportiert wird,
- c. einen Transportkanal in dem das primäroxidierte Material transportiert wird,
- d. eine Heizzone,
- e. einen Abluftkanal.

Durch die Zweistufigkeit des Verfahrens wird ein definiertes Verweilzeitverhalten aller mineralisierenden Volumenelemente, vor allem im sekundären Oxidationsprozess, erreicht, was es erleichtert, ein nicht kontaminiertes Endprodukt zu erhalten.

Die Primäroxidation wird in einem Temperaturbereich von 500 bis 3000°C durchgeführt, bevorzugt wird das organische Material bei 500 – 1500°C mit Luft oxidiert. Dabei bleiben maximal 40%, bevorzugt maximal 10% des ursprünglichen Kohlenstoffgehalts als organisch gebundenen Kohlenstoff erhalten.

13

Vorteilhaft bei der erfindungsgemäßen Vorrichtung bzw. bei dem Verfahren ist die kontinuierliche oder quasikontinuierliche Betriebsweise, zumindest in der Sekundäroxidation. Quasikontinuierlich im Sinne der Erfindungsbeschreibung bedeutet, dass das primäroxidierte Material auch schubweise durch die sekundäre Oxidationsstufe transportiert bzw. durchgeschoben werden kann.

Vorteilhaft ist die Konditionierung des primäroxidierten Materials für die sekundäre Oxidationsstufe. Es Bedarf einer sehr homogenen Pulvermatrix, um schließlich in der Sekundäroxidation eine sehr einheitliche Verweilzeit zu erreichen. Mit einer einheitlichen und definierten Verweilzeit des sekundäroxidierten Materials wie auch der homogenen Verweilzeit des entstehenden Abgases lässt sich schlussendlich ein Prozess gestalten, der eine Schadstofffreiheit des Produktes bei vertretbarem Aufwand ermöglicht.

Ein wichtiger fluid-dynamischer Parameter ist dabei das Strömungsverhalten des Oxidationsgases. Dieses durchströmt definiert die Pulvermatrix des primär oxidierten Materials, wobei die Gasströmgeschwindigkeit zwischen 1 mm/s und 4 m/s, bevorzugt zwischen 2 cm/s und 1m/s liegt

Die Fördereinheit mit der das primär oxidierte Material in die sekundäre Temperaturbehandlungszone gelangt konditioniert dieses, indem es dieses verpressst, wobei ein Druck zwischen 1 kPa und 10.000 kPa aufgebaut wird. Dieses Konditionieren/ Verpressen ist wichtig für das einheitliche Verweilzeitverhalten sowie für die definierte Durchströmung der Mineralmatrix von den in der Sekundäroxidation entstehenden Abgasen. Vorteilhaft ist es ferner, die Strömungsrichtung der Abgase so zu wählen, das sie gleichgerichtet mit der Bewegungsrichtung des Primäroxidats in der Sekundäroxidation ist. Obwohl man verfahrenstechnisch ein Gegenstromverhalten anstreben könnte, stehen hier praktische Gründe zu Buche. Besonders Vorteilhaft ist eine vertikal nach oben gerichtete Bewegung des Primäroxidats wie auch der Abgase, denn so lässt sich die Temperaturbelastung der Fördereinheit begrenzen.

Die Konditionierung des primäroxidierten Materials erfolgt optional durch ein Absieben der gröberen Partikel, die in der Sekundäroxidation möglicherweise nicht vollständig umgesetzt werden würden. Vorteilhaft ist es dabei ein Sieb so zu wählen, dass nur Partikel kleiner 1 mm, bevorzugt kleiner 0,2 mm in die sekundäre Temperaturbehandlungszone eintreten können.

Im Rahmen dieser Konditionierung sinkt die Temperatur der Primäroxidats um mindestens 50°C bevorzugt um mindestens 100°C und besonders bevorzugt um mindestens 300°C.

In der Primäroxidation findet erfahrungsgemäß eine Volumenreduzierung um mindestens 65%, bevorzugt um mindestens 80% statt, was in der folgenden Verarbeitung das Handling und die Kontrollierbarkeit im Prozess stark vereinfacht. Der Begriff Primäroxidat wird im Sinne dieser Patentschrift als das Zwischenprodukt verstanden zwischen dem Temperaturmaximum der primären und dem Temperaturmaximum der sekundären Oxidationsstufe vorliegt. Nach dem Durchlaufen des 2. Temperaturmaximums wird das Produkt als Sekundäroxidat bezeichnet.

Hierbei wird die Sekundäroxidation bevorzugt in einem von außen beheizten Rohr oder Ringspalt durchgeführt in dem das Primäroxidat beispielsweise durch eine rotierende Förderschnecke in einem Rohr bewegt wird. Als Transportsystem eignet sich ferner ein Schieber- oder Kolbenschiebersystem, aber auch gut ein Drehrohr, das Fördereinheit, Transportkanal und Heizzone in sich vereinigt, wenn es zugleich beheizt wird. Vorteilhaft wird es von außen beheizt, aber auch die direkte Eindüseung von Brenngasen im Sauerstoffüberschuss ist möglich.

Vorteilhaft ist es zudem die Sekundäroxidation mit angereichertem oder reinem Sauerstoff, Wasserdampf oder ein entsprechendes Gemisch durchzuführen, was die Oxidationstemperatur erniedrigt und die Bildung von NOx bzw. Nitraten/Nitriten stark vermindert bzw. unterbindet. Hierzu ist die Vorrichtung optional mit einer Gaszuführung versehen, worüber man definiert das entsprechende Oxidationsgas/Gemisch in den Oxidationsbereich einbringt.

Für Qualität des Endproduktes sind besonders das Verweilzeitverhalten und die Fließgeschwindigkeit des Primäroxidats in der sekundären Temperaturbehandlungszone ausschlaggebend. Diese Durchsatzgeschwindigkeit liegt für ein Flugaschenoxidationsverfahren zwischen 0,1 und 4 m/s, für ein Fliesbettverfahren zwischen 0,01 m/h und 3 m/min, bevorzugt zwischen 1 m/h und 1 m/min. In Bezug auf die Länge der Heizzone des sekundären Temperaturbehandlungsbereichs bedeutet das für ein Fliesbett-Verfahren Verweilzeiten von 5 s bei sehr geringen Schichtdicken des Primäroxidats und bis zu 48 h bei sehr großen Schichtdicken. Die Schichtdicken variieren dabei zwischen 1 mm und 50 cm, bevorzugt zwischen 5 mm und 5 cm.

Für ein Flugaschenoxidationsverfahren betragen typische Verweilzeiten in der sekundären Temperaturbehandlungszone zwischen 0,1 s bis 2 min, bevorzugt zwischen 0,5 bis 60 s.

Optional, wenn gleich nicht bevorzugt lässt sich die Primäroxidation in derselben Vorrichtung wie die Sekundäroxidation durchführen. Erfindungsgemäß kann Primäroxidation aber auch an einem völlig anderen Ort durchgeführt werden, beispielsweise am Ort der Ernte der pflanzlichen Ausgangsstoffe. Somit lässt sich der Transportaufwand zu einer zentralen Sekundäroxidationsanlage optimieren. Der Zeitraum zwischen Primär- und Sekundäroxidation ist deshalb bevorzugt größer als einen Tag; wenn aber die Primäroxidation kontinuierlich durchgeführt wird so kann das Intervall auch nur wenige Sekunden bevorzugt mindestens 5 s betragen.

Vorteilhaft ist es ferner das Sekundäroxidat in Wasser aufzuschlämmen und mit Ozon und/oder Wasserstoffperoxyd zu behandeln, um eventuell noch vorhandene letzte Spuren organischer Verunreinigungen zu eliminieren.

Optional lässt sich im Aufschlamm- bzw. Extraktionsprozess durch definierte Zugabe von CO₂ oder Alkalicarbonaten, -hydrogencarbonaten schwerlösliches Kalziumcarbonat zurückhalten, was letztendlich die Löslichkeit des Mineralpräparats auch bei hohen Dosen im Körper erheblich verbessert und somit der sogenannten Verkalkung von Blutgefäßen oder der Bildung von Nieren-, Harn und Gallensteinen entgegenwirkt.

16

Es ist ferner vorteilhaft die Mineralien maximal bioverfügbar zu machen und nicht lösliche und resorbierbare Kieselsäure, Siliziumdioxid und Silikate abzutrennen. Auch wenn der gesundheitliche Aspekt dieser Substanzen noch wenig verstanden ist, so kann es sinnvoll sein diese von den restlichen Mineralien abzutrennen. Ferner ist es sinnvoll den pH-Wert der Präparate so einzustellen, dass sie gut bioverträglich sind. Auch lässt sich über eine fraktionierte Extraktion das Präparat in unterschiedliche Klassen aufteilen: Die Extraktion mit reinen Wasser führt zu einem Extract mit einem hohen Kalium- bzw. Natriumgehalt. Eine leicht saure Extraktion führt zur Anreicherung von Kalzium und Magnesium sowie der weniger gut löslichen Spurenelemente wie Eisen. Eine basische Extraktion mit Ammoniak führt zu einem Kalzium- um Magnesiumarmen Präparat, das allerdings sehr reich an Spurenelementen ist. So lassen sich für verschiedene medizinische Indikationen unterschiedliche Multikomponenten-Mineralstoffpräparate gezielt herstellen.

Schließlich ist ein letzter Verfahrensschritt optional anwendbar, der die Bioverfügbarkeit vor allem der Spurenelemente drastisch erhöht. Als Spurenminerale sind folgende Elemente entsprechend ihrer chemischen Kurzschreibweise anzusehen: Li, Rb, Cs, Be, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, In, Tl, Ge, Sn, As, Sb, Bi, Se, Te, Ce, Pr, Sm, Eu, Gd, Tb, Yb, Lu.

Spurenelemente in Clusterform lassen sich viel besser vom Körper aufnehmen. Aus diesem Grunde wird optional die wässrige basische, neutrale oder saure Lösung mit mindestens einem Reduktionsmittel behandelt. Beispiele für Reduktionsmittel sind Wasserstoff, Schwefeldioxid, Hydrazin, Glucose, Aldehyde, Milchzucker etc. Vorteilhaft hat sich das Einperlen von Wasserstoff in die entsprechende Lösung gezeigt. Sonnig ist dabei, wenn man der Lösung ein entsprechendes Impfkolloid zusetzt, das den Reduktionsprozess erheblich beschleunigt. Diese Lösungen weisen ein Redoxpotential von +0,0 V bis 2,0 V, bevorzugt von +0,1 V bis 1,5 V, besonders bevorzugt von 0,2 V bis 1 V gegenüber einer Normalwasserstoffelektrode auf.

Über die Reduktionszeit lässt sich die Clustergrösse steuern. Die Cluster erfindungsgemäßer Präparate bestehen aus 5 bis 1.000.000 Atomen/Ionen, bevorzugt aus 10 bis 8.000 und besonders bevorzugt aus 12 bis 600. Der mittlere Durchmesser der Cluster liegt dabei zwischen 0,3 nm und 500 nm., bevorzugt zwischen 0,7 und 100 nm. Diese Cluster können aus einen oder mehreren Spurenelementen bestehen.

Abschließend kann die Lösung entweder eingedampft werden und als Salz bzw. Pulver verschiedenartig eingesetzt werden. Oder die kolloidale Lösung wird direkt angewendet, z.B. oral eingenommen.

Die Bestimmung der Clustergröße bzw. die Größe der kolloiden Teilchen kann u. a. anhand der Lichtstreuung an der kolloiden Lösung vollzogen werden. Hierzu bedient man sich ferner der Theorien von Rayleigh bzw. der von Debye erweiterten Rayleighschen Theorie oder aber der Theorie von Zimm, die das das Verhältnis aus eingeschossitem zu gestreutem Licht mit der Partikelgröße des Kolloids korrelieren – siehe hierzu Physikalische Chemie; W. J. Moore und D.O. Hummel; Walter de Gruyter 1983 S. 1158 ff. Weitere Methoden zur Bestimmung der Clustergröße sind Bestimmung der Sedimentationsgeschwindigkeit in einer Ultrazentrifuge, vorzugsweise mit optischem Messinstrumentarium, sowie die Elektrophorese.

Erfindungsgemäß lässt sich das Verfahren sowohl im Batch-Betrieb mit zwei unterschiedlichen Heizzonen durchführen, bevorzugt ist aber eine zumindest teilweise kontinuierliche Prozessführung, wobei vorzugsweise die Sekundäroxidation kontinuierlich betrieben wird. Ein Ausführungsbeispiel ist in Bild 1 dargestellt.

Beschreibung zu Bild 1: Das primär oxidierte Material wird durch eine rotierende Schnecke transportiert und durch eine vertikal angeordnete Heizzone geschoben. Die Heizzone kann dabei durch elektrische Widerstände oder auch induktiv oder sogar durch elektromagnetische Strahlung oder durch Gas- oder Ölfeuerung auf eine Temperatur zwischen 300 und 3000°C gebracht werden. Bevorzugter Weise wird durch Einspeisen von Sauerstoff oder sauerstoffangereicherter Luft der O₂-Partialdruck in dem primär oxidierten Material erhöht, wodurch sich die notwendige Temperatur in der Heizzone verringert und andererseits die Bildung von NOx

erheblich reduziert wird, wodurch sich schließlich in Verbindung mit dem sich ergebenden, sehr einheitlichen und engen Verweilzeitspektrum eine sehr geringe Nitrat-/Nitritkonzentration des Endproduktes ergibt.

Alternativ zu der indirekten Beheizung lässt sich auch eine direkte Beheizung mit Gas – bevorzugt mit einem Wasserstoff/ Sauerstoffgemisch durchführen, wobei hier eine Flugstauboxidation des primäroxidierten Materials erfolgt. Diese Methode ist jedoch verfahrenstechnisch komplexer, da das sekundäroxidierte Material aus einem viel höheren Volumenstrom wieder abgeschieden werden muss und zudem es ist energieaufwendiger.

Die Primäroxidation ist verfahrenstechnisch nicht aufwendig. Im Prinzip kann diese in einem einfachen Ofen oder auch in einem Kamin durchgeführt werden. Wichtig hierbei ist lediglich dass der Veraschungsprozess bereits weitgehend vollzogen ist. Nur dann ist es möglich die Sekundäroxidation verfahrenstechnisch definiert durchzuführen und den simultanen Transport von Primär-/Sekundäroxidat und Abgase aufeinander abzustimmen.

Ein großer Vorteil des Verfahrens ist zudem die einfache Kontrollier- und Steuerbarkeit des Prozesses. Da das Abgas die Pulvermatrix des Sekundäroxidats vollkommen durchströmt, korespondiert die Schadstoffbelastung des Abgases mit der Schadstoffbelastung des Produktes. Aus diesem Grund kann man durch entsprechende Gasanalytik, vorzugsweise einen Gaschromatographen mit angegeschlossenem massenspektroskopischen Detektor anhand der Abgasüberwachung auch eine sehr spezifische Produktüberwachung erreichen.

Das erfindungsgemäße Verfahren umfasst ferner eine Variante, wonach am Ort der Ernte die Pflanzen bereits primäroxidiert werden, das Primäroxidat zum Ort der Sekundäroxidation transportiert wird und dort entsprechend dem dargelegten Verfahren weiterverarbeitet wird.

Für die Güte des Produktes lässt sich leicht schließlich das Verhältnis der Summe aus Kalium- und Natriumionen zu der Nitratkonzentration heranziehen. Letztere lässt sich mit der Reduzierung des Nitrats zum Nitrit und anschließendem Versetzen mit

Sulfanilsäure gut analysieren. Durch die intensive Farbgebung des sich ergebenden Azo-Farbstoffs ist der Nitratgehalt leicht bestimmbar.

Ein qualitativ hochwertiges Präparat weist ein (Na+K) / (NO₃)-Verhältnis (Kurz: NaKNO) größer 1.000, bevorzugt größer 10.000 und besonders bevorzugt grösser 100.000 auf. Mit einer einfachen Veraschung von Pflanzenbestandteilen sind NaKNO-Werte größer 1000 nicht möglich. Mit erfundungsgemäßem Verfahren, insbesondere, wenn man reinen Sauerstoff in die Temperaturbehandlungszone einströmt, wurden NaKNO-Werte zwischen 10.000 und 100.000 bestimmt.

Ein weiters Merkmal für das Produkt ist das Verhältnis von Kalium + Natrium zu organisch gebundenem Kohlenstoff: Kohlenstoffverbindungen die jene hohen Temperaturen der Herstellung überstanden haben, sind biologisch kaum noch abbaubar und in der Regel stark toxisch. Diese organischen Rückstände werden mit den in der Organischen Chemie üblichen Methoden für den Bereich der Spurenanalytik bestimmt.

Entsprechend hergestellte Mineralstoffpräparate lassen sich selbstverständlich mit anderen Mineralien vermengen, wobei man sinnvoller Weise mindestens 2% des erfundungsgemäßen Mineralstoffpräparats in handelsübliche Mineralstoffpräparate hinzumischt, was die Ausgewogenheit handelsüblicher Präparate deutlich steigert. Natürlich lassen sich auch jegliche Lebensmittel mit Beimengungen erfundungsgemäßer Mineralienpräparate in ihrer Qualität aufwerten.

Als Rohstoffe lassen sich prinzipiell alle Pflanzen und hier auch alle Pflanzenteile verwenden; weniger bevorzugt, aber durchaus möglich sind spezielle Tiere oder Tierenteile wie Knochen oder spezielle Organe. Aus Medizinischen Erwägungen ist die Verwendung spezieller Pflanzen oder Tierenteile deshalb interessant, da man speziell die „natürliche“ Anreicherung einiger Spurenelemente für therapeutische Zwecke einsetzen möchte. Als besonders hochwertige Rohstoffe werden Gräser bestimmter Bergwiesen angesehen, die bisher keine intensive Landwirtschaft betrieben wurde sowie Meeresalgen. Andere hochwertige Rohstoffe stellen auch Blätter wie Olivenbaumblätter, Ahornblätter, Birkenbätter Brennesel, Aloe Vera, Thymian etc.

bar. Besonders bevorzugt sind Wurzel und Wurzelteile, beispielsweise von Wild und/oder Waldkräuter, Ginseng etc. Ferner Pilze und Pilzmyzel.

Mineralstoffe, die nach erfindungsgemäßem Verfahren hergestellt werden eignen sich als ein Breitbandmedikament auch für jene Kuren für die kolloidales Silber empfohlen wird. Besonders wirkungsvoll sind erfindungsgemäß hergestellte Präparate bei folgenden Indikationen: Schwermetallvergiftungen, chronische Übelkeit, Migräne, Allergien, Herz-Kreislauferkrankheiten, Bluthochdruck. Hierbei wird von Experten ein starker Zusammenhang zwischen dem Mangel an Spurenelementen und dem Auftreten der Krankheit beobachtet.

Die Vorteile des Verfahrens gegenüber dem Stand der Technik kann man zusammenfassend wie folgt beschreiben: Erstmals sind schadstofffreie Multikomponenten Mineralpräparate natürlichen Ursprungs verfügbar. Eine ausgewogene, natürliche Abstufung der Mineralien und Spurenelemente, als optimale Nahrungsergänzung zur vielfach entmineralisierten Nahrung, verhelfen die körpereigenen Mineralstoffdepots aufzufüllen. Dadurch stärken Anwender ihr Immunsystem. Ein „natürlicher Mineralstoffcocktail“ hat größere Toleranzen bei Mineralisierungs-Kuren, ohne dass gesundheitsschädlich bedenkliche Situationen eintreten können, da keine einseitige Belastung entstehen kann. Aufgrund des hohen Kalium-/Natriumgehaltes werden Körperflüssigkeiten alkaliert, d.h. der Körper-pH steigt an und Schlämme werden gelöst – daraus folgt: Gute Regulierung des Blutdrucks; Prophylaktische Wirkung gegen Herz-Kreislauf-Krankheiten; Erhöhung des Sauerstoffflusses in die Zellen; Steigerung der Körperenergie – Steigerung des Gesundheits- und Fitnessniveaus.

Ausführungsbeispiel:

Vorrichtung: Eine Vorrichtung bestehend aus einem Schneckenförderer, mit einer 5 cm langen Spirale, mit einem Durchmesser von 20 mm, die ein Rohr, mit einem Innendurchmesser von 22 mm beschickt. Das Rohr verläuft ca. 80 mm waagrecht und ist dann nach oben gebogen, wobei der vertikale Anteil ca. 800 mm beträgt. Im waagrechten Bereich ist ferner eine Gaszuführung für reinen Sauerstoff

angebracht, die mit einem Partikelfilter < 0,2 µm gegen das Primäroxidat geschützt ist. Der vertikale Teil ist von einem Röhrenofen umgeben; Höhe ca. 500 mm, Rohrdurchmesser 40 mm. Am Ende von dem vertikalen Rohr ist ein Verteiler aufgeschraubt, der entsprechend Bild 1 das Primäroxidat unter Kühlung nach unten Abführt und die Abluft nach oben in einen Abzug abführt. Ferner wird über ein in die Heizzone eingebrachtes Thermoelement die Innentemperatur ca. in Rohrmitte bestimmt. Über ein am Abluftkanal angeschlossenen GC mit Massenspektrometer wird die Zusammensetzung der Abluft bestimmt.

Verfahren: 50 kg getrocknete Berggräser werden in einem Kamin verbrannt, und das erhaltene Primäroxidat, das noch stark nach Verbranntem/Geräuchertem riecht wird auf 0,2 mm abgesiebt – Ausbeute 3,2 kg. Das ausgesiebte Primäroxidat wird über einen Befüllugstrichter der Förderschnecke zugeführt. Es wurde ferner an der Gaszuführung 99,9% reiner Sauerstoff mit ca. 5l/min. beaufschlagt. Die Außentemperatur am Rohr in der Heizzone wurde mit 1200°C eingeregelt. Die Durchschubsgeschwindigkeit bezogen auf das Sekundäroxidat betrug 1 – 2 g/min. Die Innentemperatur betrug 825°C. Bei diesen Parametern wurden im Abgas keine Schadstoffe, lediglich CO₂ und Spuren von CO beobachtet. Das erhaltene Sekundäroxidat wurde auf Nitrat negativ analysiert. 10 g von dem erhaltenen Sekundäroxidat wurden in 1 l Wasser angelöst, dekantiert, wieder auf 1 l mit heißem Wasser aufgefüllt und mit Zitronensäure auf einen pH-Wert von ca. 3 eingestellt. Die Lösung wurde mit dem 1. Extrakt vereinigt. In dem vereinigten Extrakt wurde unter Rühren 5 h Wasserstoff über eine Fritte ca. 1l/min eingepert, wobei sich mit der Zeit die Trübung der Lösung intensivierte. Die somit erhaltene kolloidale Lösung eignet bereits als Mineralstoff-Getränk.

Ein Teil dieser Lösung wurde im Rotationsverdampfer eingedampft, und der Rückstand wurde im Mörser zerrieben. Das erhaltene Pulver eignet sich zum eintrühen in verschiedenste Lebensmittel, zum Verpressen mit z.B. Milchzucker zu Tabletten oder zum Einfüllen in Gelatinekapseln u. v. a. m.

Bild 1**Legende**

- 1: Kühlung
- 2: Hochtemperaturzone mit Heizung
- 3: Einfüllung von Luft, O₂-angereicherter Luft, reinen O₂
- 4: Einbringung von primäroxydiertem Material
- 5: Antrieb für Förderschnecke
- 6: Förderwelle
- 7: Förderrohr
- 8: Einbauten zur Erhöhung der Durchmischung bzw. Verbesserung des Wärmeübergangs
- 9: sekundär oxydiertes Material
- 10: Abgasrohr
- 11: Abgas
- 12: Rückströmende Luft
- 13: Förderrichtung

Ansprüche

1. Verfahren zur Herstellung von schadstofffreien Multikomponenten Mineralstoffpräparate umfassend die folgenden Schritte:
 - a. Primäroxidation von organischen Rohstoffen, aus pflanzlichen oder tierischen Ursprungs, in einer primären Temperaturbehandlungszone;
 - b. Konditionierung des primäroxidierten Materials;
 - c. Transport des primäroxidierten Materials in eine sekundäre Temperaturbehandlungszone;
 - d. Sekundäroxidation des primäroxidierten Materials in einer sekundären Temperaturbehandlungszone.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Primäroxidation bei einer Temperatur zwischen 500°C und 3000°C durchgeführt wird.
3. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass nach der Primäroxidation maximal 40% des ursprünglichen Kohlenstoffgehaltes als organisch gebundener Kohlenstoff erhalten bleibt
4. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Matrix des Primäroxidats in der sekundären Temperaturbehandlungszone gasdurchströmt ist
5. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Gasströmgeschwindigkeit zwischen 1 mm/s und 4 m/s, bevorzugt zwischen 2 cm/s und 1m/s liegt.
6. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Sekundäroxidation kontinuierlich durchgeführt wird.

- 24
7. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das primäroxidierte Material verpresst wird, wobei ein Druck zwischen 1 kPa und 10.000 kPa auftritt.
 8. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das primäroxidierte Material nachdem es die primäre Temperaturstufe durchlaufen hat, eine Abkühlung um mindestens 50°C erfolgt.
 9. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass in der Primäroxidation eine Volumenreduzierung von mindestens 65% eintritt.
 10. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das primäroxidierte Material durch ein Sieb klassiert wird bevor es in die sekundäre Temperaturstufe eingebracht wird
 11. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass nur Partikel kleiner 1 mm bevorzugt kleiner 0,2 mm in die sekundäre Temperaturstufe eingebracht werden.
 12. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass eine Abkühlung zwischen der Primäroxidation und der Sekundäroxidation von mindestens 100°C, bevorzugt mehr als 300°C durchlaufen wird.
 13. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass in der Primäroxidation eine Reduzierung an organischem Kohlenstoff um mindestens 90% und eine Volumenreduzierungen von mindestens 80% eintritt.

14. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das Primäroxidat in der Sekundäroxydationsstufe durch einen Kanal, beispielsweise ein Rohr, bewegt wird, das von außen beheizt wird, oder das ein der Energieeintrag von außen erfolgt.
15. Verfahren nach zumindest einem der vorgenannten Ansprüche , dadurch gekennzeichnet, dass die primäre Temperaturbehandlungszone und die sekundäre Temperaturbehandlungszone identisch ist.
16. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das Primäroxidat sowie die Abgase in der 2. Temperaturbehandlungszone die gleiche Bewegungsrichtung aufweisen.
17. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Sekundäroxidation unter angereichertem oder reinen Sauerstoff und/oder Wasserdampf durchgeführt wird.
18. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Durchsatzgeschwindigkeit des Primäroxidats durch die sekundäre Temperaturbehandlungszone zwischen 4 m /s und 0,01 m /h, bezogen auf den freien Querschnitt in der Heizzone, beträgt.
19. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass in einem Fließbettverfahren die Durchsatzgeschwindigkeit des Primäroxidats durch die 2. Temperaturbehandlungszone bevorzugt zwischen 1 m/min und 1m/h beträgt.
20. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das Material, das die Sekundäroxidation durchlaufen hat, insbesondere zur Clusterherstellung in basischen, neutralen oder sauren wässrigen Lösungen partiell gelöst bzw. extrahiert wird.

21. Verfahren nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass Ozon und/oder Wasserstoffperoxyd in die wässrige Lösung eingebracht wird.
22. Verfahren nach zumindest einem der zuvor genannten Ansprüche, dadurch gekennzeichnet, dass die Temperaturmaxima der Primäroxidation und der Sekundäroxidation länger als eine Sekunde, bevorzugt länger als 1 Minute und besonders bevorzugt länger als einen Tag auseinander liegen.
23. Verfahren nach zumindest einem der zuvor genannten Ansprüche, dadurch gekennzeichnet, dass die wässrige Lösung des Sekundäroxidats, bzw. des entsprechenden Extrakts reduktiv behandelt wird.
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass sich das Redoxpotential der Lösung um – 0.1 bis – 2 V verschiebt, gemessen mit einer Platinenelektrode, gegen eine Normalwasserstoffelektrode.
25. Vorrichtung zur Herstellung von Mineralstoffpräparaten, umfassend:
 - a. eine Einrichtung zum Eintrag von primäroxidiertem Material pflanzlichen oder tierischen Ursprungs,
 - b. eine Fördereinheit mit der das primäroxidierte Material transportiert wird,
 - c. einen Transportkanal in dem das primäroxidierte Material transportiert wird ,
 - d. eine Heizzone,
 - e. einen Abluftkanal.
26. Vorrichtung nach zumindest einem vor vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Heizzone auf eine Temperatur zwischen 300°C und 3000°C aufgeheizt wird.

27. Vorrichtung nach zumindest einem vor vorgenannten Ansprüche, dadurch gekennzeichnet, dass diese kontinuierlich oder quasikontinuierlich betrieben wird.

28. Vorrichtung nach zumindest einem vor vorgenannten, dadurch gekennzeichnet, dass diese zusätzlich einen Gaszuführung umfasst.

29. Vorrichtung nach zumindest einem vor vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Heizzone indirekt, mit Gas und/oder elektrisch, beheizt wird.

30. Vorrichtung nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das primär oxidierte Material in der Heißzone eine Verweilzeit von 5s – 48h innehat.

31. Vorrichtung nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass an der Gaszuführung ein Sauerstoffgas mit einem Sauerstoffgehalt von mindestens 90 Vol.% angeschlossen ist.

32. Vorrichtung nach zumindest einem vor vorgenannten Ansprüche, dadurch gekennzeichnet, dass Fördereinheit, Transportkanal und Heizzone in einem beheizten Drehrohr vereinigt sind.

33. Vorrichtung nach zumindest einem vor vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Heizzone ein Kanal, d.h. ein Rohr oder ein Ringspalt, darstellt.

34. Vorrichtung nach zumindest einem vorgenannten Ansprüche, dadurch gekennzeichnet, dass in der Heißzone, das primär oxidierte Material eine Schichtdicke zwischen 1 mm und 50 cm aufweist, bevorzugt zwischen 5 mm und 5 cm.

35. Vorrichtung nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das primäroxidierte Material direkt mit Hilfe einer Gasflamme erhitzt wird, in der ein Sauerstoffüberschuss besteht.
36. Vorrichtung nach zumindest einem vorgenannten Ansprüche, dadurch gekennzeichnet, dass das primäroxidierte Material eine Kontaktzeit in der Heißzone von 0,1 s – 5 min aufweist, bevorzugt zwischen 0,5 s und 60 s.
37. Vorrichtung nach zumindest einem vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Fördereinrichtung ein Drehrohr oder eine Förderschnecke oder Schiebeelement darstellt.
38. Mineralstoffpräparate herstellbar oder hergestellt gemäß einem Verfahren nach den Ansprüchen 1 – 24, dadurch gekennzeichnet, dass diese ein (K + Na)/C(organisch)-Massenverhältnis > 100, bevorzugt > 1.000 und besonders bevorzugt > 10.000 aufweisen.
39. Mineralstoffpräparate herstellbar oder hergestellt gemäß einem Verfahren nach den Ansprüchen 1 – 24, dadurch gekennzeichnet, dass diese Spurenelemente in kolloidaler Form enthalten.
40. Mineralstoffpräparate nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass diese ein (K + Na)/Nitrat-Verhältnis > 1000 bevorzugt > 10.000 und besonders bevorzugt > 100.000 aufweisen.
41. Mineralstoffpräparate nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass diese in wässriger Lösung ein Redoxpotential von + 0,0 V bis 2,0 V, bevorzugt von +0,1V bis 1,5 V, besonders bevorzugt von 0.2V bis 1 V gegenüber einer Normalwasserstoffelektrode aufweisen.
42. Mineralstoffpräparate nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass diese Cluster von Spurenelementen enthalten.

43. Mineralstoffpräparate nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass diese Cluster aus einem oder mehreren Spurenelementen bestehen.
44. Mineralstoffpräparate nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der mittlere Durchmesser der Cluster zwischen 0,3 nm und 500 nm, bevorzugt zwischen 0,7 und 100 nm liegt.
45. Mineralstoffpräparate nach zumindest einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass diese Cluster aus 5 bis 1.000.000 Atomen/Ionen bestehen, bevorzugt aus 10 bis 8.000 und besonders bevorzugt aus 12 bis 600.
46. Mineralstoffpräparate, nach den Ansprüchen 38 - 45, dadurch gekennzeichnet, dass sie maximal zu 98% mit anderen Mineralien und Salzen vermischt oder vermengt werden bzw. entsprechende Mineralstoffgemische in wässrigen oder alkoholischen Lösungen.
47. Mineralstoffpräparate herstellbar oder hergestellt nach zumindest einem der Ansprüche 1 – 24, verwendbar als Nahrungsergänzungsmittel, Lebensmittelzusatzstoff, Kosmetika, Arzneimittel, wobei die Aufnahme insbesondere entweder oral, inhalativ, intravenös, rektal oder äußerlich erfolgen kann.
48. Mineralpräparate nach zumindest einen der Ansprüche 38-46, verwendbar als Nahrungsergänzungsmittel, Lebensmittelzusatzstoff, Kosmetika, Arzneimittel, wobei die Aufnahme insbesondere entweder oral, inhalativ, intravenös, rektal oder äußerlich erfolgen kann.
49. Verwendung eines Mineralpräparates nach Anspruch 47 oder 48 zur Behandlung von Schwermetallvergiftungen, Haarausfall, chronische Übelkeit, Migräne, Allergien, Herzkreislauferkrankheiten, Bluthochdruck, wobei Mineralstoffpräparate Patienten insbesondere oral, rektal oder intravenös verabreicht werden.

Zusammenfassung

Verfahren zur Herstellung von schadstoffarmen bzw. schadstofffreien Multikomponenten Mineralstoffpräparate wobei pflanzliche oder tierische Materialien eingesetzt, mindestens zwei unterschiedliche Oxidationsprozesse durchlaufen. Erfindungsgemäß hergestellte Mineralstoffpräparate zeichnen sich dadurch aus, dass sie außer den flüchtigen Mineralien (z.B. Iod) komplett alle Mineralien enthalten, die die jeweilige Pflanze aus dem Boden aufnimmt, und dies einen extrem niedrigen oder nicht nachweisbaren Nitratgehalt, bei einem gleichzeitigen Gehalt an organischen Verbindungen unter 100 ppm. Spurenelemente liegen hierbei bevorzugt in kolloidaler Form vor, weshalb die biologische Aufnahmefähigkeit besonders hoch ist. Diese Mineralstoffpräparate sind ihrer Wirkung auf Gesundheit und Fitness den heute verfügbaren Mineralstoffpräparaten bei weitem überlegen, da sie eben auch alle Spurenelemente enthält, die sich analytisch gar nicht mehr nachweisen lassen, aber dennoch eine erhebliche energetisierende Wirkung auf unseren Organismus haben können. Es werden ferner Vorrichtungen offenbart und beansprucht, mit denen sich das erfindungsgemäße Verfahren umsetzen lässt.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.