I SEMESTER 2016 - 2017 BEL714 - PROTEIN SCIENCE AND ENGINEERING

MAJOR TEST

Page	activity of the enzyme? Explain your		
	Using high resolution structural data on your with alanine. You have reason using high resolution structural data on your mith alanine. You have binding a buried aspartate residue is important for substrate binding a buried aspartate residue is important for substrate binding and to believe that the aspartate residue is substitution to have on the stability and to believe that the appart of the substitution to have on the stability and to believe that the appart of the substitution to have on the stability and to be substitution to have on the stability and to be substitution to have on the stability and to be substitution to have on the stability and to be substitution to have on the stability and to be substitution to have on the stability and to be substitution to have on the stability and to be substitution to have on the stability and to be substitution to have on the stability and to be substitution to have on the stability and to be substitution to have on the stability and to be substitution to have on the stability and to be substitution to have on the stability and to be substitution to have on the stability and to be substitution to have on the stability and the substitution to have on th	(1	
(3)	b) Large aromaics. Why? alpha- helices. Why?		
	List the key structural features of an arrivers. List the key structural features of an arrivers that pattern, direction in which side chains point, etc.) pattern, direction in which side chains prefer to reside in beta-sheets rather than pattern, direction in side-chains prefer to reside in beta-sheets rather than pattern.		
	In most protein structures, a very large in most protein structures, a very la	o	
(3)	schematic diagram to corp. schematic diagram to corp. complementation and assisted re-assembly.		
	Employing an ITCHY strategy, describe for a platform to be a platform to be a ssociating heterodimeric methyltransferases include a detailed associating site-specific methyltransferases of protein fragment developing site-specific availan various steps of protein fragment	4	
(4)	(a) Exonuclease III (b) Mungbean nuclease (c)	(*	
(each of the following, employed protein fragment library:		
3	on its advantages and limitations.		
	Protein engineering using directed evolution is a common strately protein engineering using directed evolution is a common strately inspecting the catalytic properties of enzymes. With examples, describe improving the catalytic properties of enzymes.	ω	
3	bonding (ii) the hydrophobic effect (iii) conformations.	(
(3)	Describe the contributions to protein stability of the following: (i) Hydrogen		
g g	9 D	9	
Marks	Question	Questiop	_
And the second second	SECTION - A (30 marks)		
> > >	The question paper contains two Sections – A and B Please use separate Major Test Answer Book for answering the questions in Section A and B respectively	The question p Please use seg B respectively	22
		Instructions	5
Max. Marks = 40	Time = 2 hours (3:30 - 5:30 PM) (Venue - LH-512) Max. M	me = 2 hou	<u> </u>
			١

		Marks
Question #	A single-chain enzyme of relative molecular mass 15,000 has been chosen for use in an industrial process which will take place at a temperature slightly above its melting temperature, Tm. To increase the temperature slightly above its melting temperature, it has been operational half-life of the enzyme at the process temperature, it has been decided to attempt to increase its stability by introducing a disulfide bridge, decided to attempt to increase its stability by introducing a disulfide bridge. The enzyme has been cloned but its three-dimensional structure is not available. However, both the primary and high resolution crystal structures are available for a highly homologous enzyme from the same family.	
	a) Explain how the primary and tertiary structural information that is available can be used to generate a homology model of the target available.	(2)
	 enzyme. b) How you might use the homology model to help decide which residue(s) to mutate in order to introduce a disulfide bridge? In what situations would you choose to do Fold recognition/threading? c) Introducing a disulfide bridge is one means by which protein stability may be enhanced. Provide rationalizations for TWO other approaches which may be employed. 	(2)
9	In class we discussed the advantages of using sequence motifs over consensus sequences. However, there are some features that sequence motifs do not capture. Carefully examine the sequences below, which are a representative part of a much larger data set. Identify a sequence pattern that is not captured by a sequence motif built from these sequences (even if you include pseudocounts). In other words, what types of sequences are unlikely to ever occur in this full dataset but would be scored well by a motif built on these data. (You do not need to compute the motif to answer this question). I 2 3 4 5 6 7 8 9 10 11 12 A C T A T C G T A G T G G C A T C G T A C C C G T T C G G C A G A G A A T T C G T A C C C C G T T C G G C A G C T G C T T C G G C T T C G A C T T C G G T C G C T A G T T C G C T A G C T A G T T C G C G C G A A G A T T C G C G C G A A G A T T C G C G C G A A G A T T C G C G C G A A G A T T C G C G C G A A G A T T C G C G C G A A G A T T C G C G C G C G A A G A T T C G C G C G C G A A G A T T C G C G C G C G A A G A T T C G C G C G C G A A G A T T C G C G C G C G A A G A T T C G C G C G C G A A G A T T C G A G T T A A C T T T C G A G T A T G G T T T C G A G T A T G G T T T C G A G T A	(4)

Page 2 of 3

SECTION - B

(10 marks)

Question #	Question					Marks
10	involved	symatic acylation v	natural amino acids in vas done of yeast tR c acylation. Why was	NA Show	the steps	(2)
	the hyper	othesis that unnati ? What experimen al amino acid has	atal observations in the ural amino acids can l ts would you design to been incorporated in	oe incorpor show that	rated in the indeed the	(2)
	c) Examine a part of the data generated through <i>in vitro</i> translation of β–lactamase gene. How do you determine the amount of β–lactamase synthesized in the <i>in vitro</i> reaction? What was the efficiency of incorporation of Phe using suppressor tRNA? Is it similar or dissimilar to what was observed with other modified amino acid. Comment.					(2)
	Amino acid	Suppressor	Enzyme synthesized (µg/ml)	km	kcat	
	Phe	-	26.0 ± 3.8	55 ± 5	880 ± 10	
	Phe	Phe-tRNA _{CUA}	2.9 ± 0.9	59 ± 6	870	
	p-FPhe	p-FPhe-tRNA _{CUA}	2.1 ± 0.9	59 ± 2	1120 ± 290	
11	 a) What are the chemical constituents in inclusion bodies and is it good or bad to have your proteins precipitated in the form of inclusion bodies? Explain. b) Describe how the circular dichroism method can be used to determine 					(-)
	the stru	e how the circular ctural integrity of ein is fully denatu	proteins, vynat would	an be use I the CD o	data look like	if (2)