Лабораторная работа №2

Выполнил Бабков Дмитрий Николаевич

№ студ. билета: 1032201726, Группа: НФИбд-01-20

Задача о погоне

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии k км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 2 раза больше скорости браконьерской лодки. Необходимо определить по какой траектории необходимо двигаться катеру, чтоб нагнать лодку

- Принимаем за t_0 , $x_{\pi}0$ место нахождения лодки браконьеров в момент обнаружения, $x_{\kappa}0=k$ место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения.
- Введем полярные координаты. Считаем, что полюс это точка обнаружения лодки браконьеров $x_{_{\!\it I}}\,0(\theta=x_{_{\!\it I}}\,0=0)$, а полярная ось r проходит через точку нахождения катера береговой охраны

• Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса θ , только в этом случае траектория катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.

• Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер k-x или k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x/v или k-x/2v (во втором случае x+k/2v). Так как время одно и то же, то эти величины одинаковы.

• После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и v_τ - тангенциальная скорость. $v_r = \frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем, что $\frac{dr}{dt} = v$. Тангенциальная скорость равна произведению угловой скорости $\frac{d\theta}{dt}$ на радиус r, $v_\tau = r \frac{d\theta}{dt}$.

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений

$$egin{cases} rac{dr}{dt} = v \ rrac{d heta}{dt} = \sqrt{3}v \end{cases}$$

с начальными условиями

$$egin{cases} heta_0 = 0 \ r_0 = x_1 \end{cases}$$

ИЛИ

$$egin{cases} heta_0 = -\pi \ r_0 = x_2 \end{cases}$$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению:

$$rac{dr}{d heta} = rac{r}{\sqrt{3}}$$

Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах.

Результат выполнения

В результате выполнения работы при начальных значениях $k=19.1, v_{_{\!\it I}}/v_{_{\!\it K}}=5.2$ получились следующие траектории в двух случаях: Задача о погоне

Результат выполнения

Задача о погоне

Спасибо за внимание