DIGITAL CIRCUIT DESIGN AND IMPLEMENTATION

CALCULATOR OPERATIONS:

- Addition
- Subtraction
- Multiplication
- Division

DETAILS OF MODULES AND SUBMODULES

- Calculator
 - o num_latch
 - D latch
 - o multiplier
 - One Bit Full Adder
 - o Full Adder Substractor
 - One_Bit_Full_Adder
 - Eight_Bit_Full_Adder
 - One_Bit_Full_Adder
 - Eight_bit_divider
 - Divide_module
 - > One Bit Full Substractor
 - > Two one mux
 - o four one mux
 - o overflowDetector
 - debounce
 - d ff
- Debounce
 - \circ d_ff
- Display_num
 - o BCD_7Segment
 - o binary to BCD
 - add3
- frequencyDivider
- FSM
 - $\circ \quad d_ff$

BLOCK DIAGRAM OF OVER ALL CALCULATOR SYSTEM

✓ MODULE: DISPLAY NUM

SUBMODULE: BCD_7SEGMENT

D	С	В	Α	а	b	С	d	е	f	g
0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	1	0	0	1	1	1	1
0	0	1	0	0	0	1	0	0	1	0
0	0	1	1	0	0	0	0	1	1	0
0	1	0	0	1	0	0	1	1	0	0
0	1	0	1	0	1	0	0	1	0	0
0	1	1	0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	1	1	0	0
1	0	1	0	0	1	1	0	0	0	0

TABLE 01: TRUTH TABLE FOR 7 SEGMENT

а	(A~B~C~D)+(~AC~D)
b	(CD)+(B~CD)+(A~BC)+(~ABC)
С	(CD)+(AD)+(~AB~C)
d	(A~B~C)+(ABC~D)+(~A~BC~D)
е	(A~D)+(~BC~D)+(A~B~CD)
f	(A~D~C)+(BA~D)+(B~D~C)
g	(~B~C~D)+(ABC~D)

TABLE 02: BOOLEAN LOGIC EQUATIONS USING K'MAP

SUBMODULE: BINARY_TO_BCD

SUBMODULE: ADD3

D	С	В	Α	OUT3	OUT2	OUT1	OUT0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	1	0	0
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	0	0	0	0
1	0	1	1	0	0	0	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	0	0
1	1	1	0	0	0	0	0
1	1	1	1	0	0	0	0

TABLE 03: TRUTH TABLE FOR BINARY TO BCD

OUT0	(A~C~D)+(~ABC~D)+(~A~B~C~D)
OUT1	(AB~D)+(B~C~D)+(~A~B~C~D)
OUT2	(~A~BC~D)+(A~B~CD)
OUT3	(~B~CD)+(AC~D)+(BC~D)

TABLE 04: BOOLEAN LOGIC EQUATIONS USING K'MAP

✓ MODULE: FREQUENCY DIVIDER

✓ MODULE: DEBOUNCE

SUBMODULE: D_FF

CLK	Q(t)	D	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

STATE TABLE

STATE DIAGRAM

STATE EQUATION: Q(t+1)=D

✓ MODULE: FSM

Input Mode	00	LED6
Operation Mode	01	LED7
Output Mode	10	LED8
Reset Mode	11	LED9

A(t)	B(t)	Key0	A(t+1)	B(t+1)	Y0	Y1	Y2	Y3	dA	dB
0	0	0	0	0	1	0	0	0	0	0
0	0	1	0	1	1	0	0	0	0	1
0	1	0	0	1	0	1	0	0	0	1
0	1	1	1	0	0	1	0	0	1	0
1	0	0	1	0	0	0	1	0	1	0
1	0	1	1	1	0	0	1	0	1	1
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	0	0	0	1	0	0

STATE TABLE

State equation:

$$dA = (\sim kA(t)) + (A(t) \sim B(t)) + (\sim A(t)B(t)k)$$

$$dB = (\sim kB(t)) + (k\sim B(t))$$

✓ MODULE: CALCULATOR

SUB MODULE: EIGHT_BIT_FULL_ADDER

SUB MODULE: FULL_ADDER_SUBSTRACTOR

SUBMODULE: ONE_BIT_FULL_ADDER

Α	В	С	SUM	CARRY	DIFFERENCE	BORROW
0	0	0	0	0	0	0
0	0	1	1	0	1	1
0	1	0	1	0	1	1
0	1	1	0	1	0	1
1	0	0	1	0	1	0
1	0	1	0	1	0	0
1	1	0	0	1	0	0
1	1	1	1	1	1	1

TABLE 03: TRUTH TABLE FOR FULL ADDER AND SUBSTRACTOR

SUBMODULE: MULTIPLIER

SUBMODULE: EIGHT_BIT_DIVIDER

SUBMODULE: ONE_BIT_FULL_SUBSTRACTOR

SUBMODULE: TWO_ONE_MUX

SUBMODULE: 5 ARRAY LATCH

SUBMODULE: LATCH

SUBMODULE: DEBOUNCE

SUBMODULE: FOUR_ONE_MUX

SUBMODULE: OVERFLOW_DETECTOR

