Лабораторная работа №5 «Интерполяция функции».

Цель лабораторной работы: решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

Лабораторная работа состоит из двух частей: вычислительной и программной. № варианта задания лабораторной работы определяется как номер в списке группы согласно ИСУ.

Для исследования использовать:

- многочлен Лагранжа;
- многочлен Ньютона;
- многочлен Гаусса.

Обязательное задание (до 80 баллов)

Вычислительная реализация задачи:

- 1. Выбрать из табл. 1 заданную по варианту таблицу y = f(x) (таблица 1.1 таблица 1.5);
- 2. Построить таблицу конечных разностей для заданной таблицы. Таблицу отразить в отчете;
- 3. Вычислить значения функции для аргумента X_1 (см. табл.1), используя первую или вторую интерполяционную формулу Ньютона. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 4. Вычислить значения функции для аргумента X_2 (см. табл. 1), используя первую или вторую интерполяционную формулу Гаусса. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 5. Подробные вычисления привести в отчете.

Программная реализация задачи:

- 1. Исходные данные задаются тремя способами:
- а) в виде набора данных (таблицы х,у), пользователь вводит значения с клавиатуры;
- b) в виде сформированных в файле данных (подготовить не менее трех тестовых вариантов);
- с) на основе выбранной функции, из тех, которые предлагает программа, например, $\sin x$. Пользователь выбирает уравнение, исследуемый интервал и количество точек на интервале (не менее двух функций).
- 2. Сформировать и вывести таблицу конечных разностей;
- 3. Вычислить приближенное значение функции для заданного значения аргумента, введенного с клавиатуры, указанными методами (см. табл. 5.2). Сравнить полученные значения;
- 4. Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционного многочлена Ньютона/Гаусса (разными цветами);

- 5. Программа должна быть протестирована на различных наборах данных, в том числе и некорректных.
- 6. Проанализировать результаты работы программы.

Необязательное задание (до 20 баллов)

- 1. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Стирлинга;
- 2. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Бесселя.

Оформить отчет, который должен содержать:

- Титульный лист.
- Цель лабораторной работы.
- Порядок выполнения работы.
- Рабочие формулы.
- Вычисление значений функции п.2.
- Листинг программы.
- Результаты выполнения программы.
- Выводы

Варианты заданий для вычислительной части Таблица 1

	Х	у	№ варианта	X_1	X_2
Таблица 1.1	0,25	1,2557	1	0,251	0,402
	0,30	2,1764	6	0,512	0,372
	0,35	3,1218	11	0,255	0,405
	0,40	4,0482	16	0,534	0,384
	0,45	5,9875	21	0,272	0,445
	0,50	6,9195	26	0,551	0,351
	0,55	7,8359	31	0,294	0,437
	X	у	№ варианта	X_1	X_2
	0,50	1,5320	2	0,502	0,645
2	0,55	2,5356	7	0,751	0,651
Таблица 1.2	0,60	3,5406	12	0,523	0,639
	0,65	4,5462	17	0,761	0,661
	0,70	5,5504	22	0,545	0,627
	0,75	6,5559	27	0,783	0,683
	0,80	7,5594	32	0,557	0,641

	X	у	№ варианта	X_1	X_2
\$	1,10	0,2234	3	1,121	1,482
	1,25	1,2438	8	1,852	1,652
Габлица 1.3	1,40	2,2644	13	1,168	1,463
Іиц	1,55	3,2984	18	1,875	1,575
a6J	1,70	4,3222	23	1,189	1,491
	1,85	5,3516	28	1,891	1,671
	2,00	6,3867	33	1,217	1,473
	X	у	№ варианта	X_1	\mathbf{X}_2
	1,05	0,1213	4	1,051	1,277
4	1,15	1,1316	9	1,562	1,362
Габлица 1.4	1,25	2,1459	14	1,112	1,319
Іиц	1,35	3,1565	19	1,573	1,375
a6J	1,45	4,1571	24	1,146	1,289
Т	1,55	5,1819	29	1,614	1,414
	1,65	6,1969	34	1,154	1,328
	X	У	№ варианта	X_1	X_2
	2,10	3,7587	5	2,112	2,205
ν;	2,15	4,1861	10	2,355	2,254
a 1.	2,20	4,9218	15	2,114	2,216
Пип	2,25	5,3487	20	2,359	2,259
Таблица 1.5	2,30	5,9275	25	2,128	2,232
	2,35	6,4193	30	2,352	2,284
	2,40	7,0839	35	2,147	2,247

Методы для реализации в программе:

- 1 Многочлен Лагранжа,
- 2 Многочлен Ньютона с конечными разностями,
- 3 Многочлен Гаусса.

Таблица 2

<u>No</u>	Метод	$\mathcal{N}_{\underline{0}}$	Метод
варианта		варианта	
1	1, 2	19	1, 3
2	1, 3	20	1, 2
3	1, 2	21	1, 2
4	1, 2	22	1, 3
5	1, 3	23	1, 2
6	1, 2	24	1, 3
7	1, 3	25	1, 2
8	1, 2	26	1, 3
9	1, 2	27	1, 2

10	1, 3	28	1, 3
11	1, 2	29	1, 2
12	1, 2	30	1, 2
13	1, 3	31	1, 3
14	1, 3	32	1, 3
15	1, 2	33	1, 2
16	1, 2	34	1, 2
17	1, 3	35	1, 3
18	1, 2	36	1, 3

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Когда возникает необходимость в использовании интерполяционных метолов?
 - 2. Чем отличается аппроксимация от интерполяции?
 - 3. В чём сущность задачи интерполирования?
 - 4. Поясните смысл терминов: интерполяция, экстраполяция.
 - 5. Как найти приближенное значение функции при линейной интерполяции?
- 6. Как найти приближенное значение функции при квадратичной интерполяции?
 - 7. Как строится интерполяционный многочлен Лагранжа?
- 8. Дайте определение понятий разделенной разности нулевого и первого порядков.
 - 9. Объясните принцип построения интерполяционного полинома Ньютона.
 - 10. Покажите графическую интерпретацию интерполяции.
 - 11. В каких случаях используются конечные разности, в каких разделенные?
- 12. В каких случаях используют формулу Ньютона для интерполирования вперед и для интерполирования назад?
- 13. В каких случаях используют формулу Гаусса для интерполирования вперед и для интерполирования назад?
 - 14. В каких случаях используют формулу Стирлинга?
 - 15. В каких случаях используют формулу Бесселя?
- 16. В чем разница между глобальной и локальной разновидностями интерполяции?
 - 17. В чем заключается интерполяция кубическими сплайнами.