Découverte des composants électroniques sous Proteus

Site Internet : Type de document : Intercalaire : Date : www.gecif.net TP

L'objectif de ce TP est de découvrir de nouveaux composants électroniques et de nouveaux appareils de mesure dans le logiciel de simulation électronique Proteus. L'ensemble de ces nouveaux composants vous permettra de simuler ultérieurement le fonctionnement d'un montage électronique analogique complexe. Après une découverte des nouveaux composants et des nouveaux appareils vous devrez appliquer vos acquis dans différents problèmes. Ce TP est structuré en 6 grandes parties :

- * Listes des composants et des appareils à connaître dans Proteus
- * Utilisation des interrupteurs, des ampoules et des LED
- * Découverte de deux nouveaux composants interactifs
- * Découverte du comparateur de tension
- * Utilisation du GBF et de l'oscilloscope
- * Applications à réaliser en mettant en œuvre les savoir-faire acquis précédemment

I - Liste des 16 composants de base à connaître à l'issue du TP

Vous trouverez dans le tableau suivant l'ensemble des composants électroniques disponibles dans le logiciel Proteus et utilisés dans ce TP. Vous ferez systématiquement référence à ce tableau pour connaître les noms exacts et les catégories des différents composants utilisés dans ce TP et dans les TP futurs. On rappelle que l'utilisation des « Mots clés » accélère la recherche des composants dans la boîte de dialogue « Pick Devices » de Proteus Cochez la case identique sur tous les mots si vous saisissez le nom complet du composant dans « Mots clés ».

Nom réel du composant	Nom exact du composant (colonne Device dans la catégorie) à saisir dans Mots clés	Catégorie contenant le composant
Une batterie d'accumulateur composée de plusieurs cellules	BATTERY	Miscellaneous
Une pile (composée d'une seule cell ule)	CELL	Miscellaneous
Une résistance	RES	Resistors
Un potentiomètre	POT-HG	Resistors
Une LED rouge	LED-RED	Optoelectronics
Une LED jaune	LED-YELLOW	Optoelectronics
Une LED verte	LED-GREEN	Optoelectronics
Une LED bleue	LED-BLUE	Optoelectronics
Une ampoule	LAMP	Optoelectronics
Un bouton poussoir	BUTTON	Switches & Relays
Un interrupteur simple	SWITCH	Switches & Relays
Un interrupteur va-et-vient	SW-SPDT	Switches & Relays
Un interrupteur 3 positions	SW-ROT-3	Switches & Relays
Capteur de présence interactif	TOUCHPAD	Miscellaneous
Une torche interactive et un capteur de lumière (LDR)	TORCH_LDR	Miscellaneous
Un comparateur de tension	OPAMP	Operational Amplifiers

Remarque au sujet des composants BATTERY et CELL :

D'un point de vue électrique les composants **BATTERY** et **CELL** sont strictement équivalents. Leur seule différence est leur symbole. Le composant **BATTERY** est symbolisé par plusieurs cellules (plusieurs piles) branchées en série. Le composant **CELL** est symbolisé par une seule cellule (symbole d'une pile). En pratique, dans le but de simplifier les symboles utilisés dans Proteus et afin de faciliter la lecture des schémas le composant **CELL** sera préférable au composant **BATTERY**, mais les deux composants sont à connaître.

II - Liste des 4 appareils de base à connaître à l'issue du TP

Vous trouverez dans le tableau suivant les trois appareils de mesure de base et le générateur de tension variable (le GBF = Générateur Basse Fréquence = générateur de signal) à connaître sous Proteus.

Remarque à surligner en fluo, à retenir et à appliquer pour toutes vos futures utilisations de Proteus :

Tous ces appareils de mesure se trouvent dans le « *Mode instruments virtuels »* accessible par le bouton du même nom dans Proteus

Nom réel de l'appareil	Nom exact dans le Mode instruments virtuels
Un voltmètre	DC VOLTMETER
Un ampèremètre	DC AMMETER
Un oscilloscope	OSCILLOSCOPE
Un générateur de tension variable (GBF)	SIGNAL GENERATOR

Remarque au sujet des voltmètres et des ampèremètres :

- * Le préfixe DC indique que l'appareil est fait pour mesurer du courant continu [DC = Direct Current en anglais = courant continu en français]
- * Le préfixe AC indique que l'appareil est fait pour mesurer du courant alternatif (AC = Alternating Current en anglais = courant alternatif en français)
- * Dans la pratique nous ne mesurerons que des courants continus et des tensions continues en TP : il faut donc systématiquement utiliser le voltmètre et l'ampèremètre préfixés par DC
- * L'ampèremètre possède 3 calibres (microampère, milliampère et ampère) qu'il faut choisir consciemment afin d'obtenir une précision maximale dans la mesure : le choix du calibre n'est pas automatique

III - Utilisation des interrupteurs, des ampoules et des LED

III - 1 - Ouvrez le logiciel de simulation Proteus (son icône de couleur bleue s'appelle ISIS 7 Professional et elle est disponible dans le menu **Démarrer** → **Tous les programmes** → **Proteus 7 Professional**), et agrandissez sa fenêtre à tout l'écran. Ouvrez la boîte de dialogue **Pick Devices** permettant d'ajouter de nouveaux composant à votre projet : pour cela appuyez simplement sur la touche P du clavier.

Ajoutez les 8 composants suivants dans votre sélecteur :

- * Une pile CELL
- * Un interrupteur SWITCH
- * Un interrupteur SW-SPDT
- * Un interrupteur SW-ROT-3
- * Un bouton poussoir **BUTTON**
- * Une ampoule **LAMP**
- * Une LED rouge LED-RED
- * Une résistance RES

Montage 1

III – 2 – Réaliser le Montage 1 ci-dessus utilisant une pile CELL configurée à 12V, un interrupteur SWITCH et une ampoule de 12V LAMP puis lancez la simulation en appuyant sur le bouton Jouer disponible en bas à gauche de l'écran. Cliquez sur l'interrupteur et observez l'état de l'ampoule. Remarque : le bouton Arrêt disponible en bas à gauche de l'écran permet d'arrêter la simulation afin de pouvoir modifier le schéma.

_	•		-							
Ш	- 3 - Parmi les propositi	ons suivar	ntes, cochez les 2 éta	ats	de l'interrupteu	ır:				
	marche ouvert	☐ éteint☐ vide			fermé arrêt			plein allumé		
Ш	- 4 - Parmi les propositi	ons suivar	ntes, cochez les 2 éta	ats	de l'ampoule :					
	marche ouvert	☐ éteint☐ vide			fermé arrêt			plein allumé		
Ш	- 5 - Complétez le tablea	au suivant	récapitulant le fonctio	on	nement du <i>Mon</i>	tage 1 :				
Etat de l'interrupteur →										
	Etat de l'ampoul	le →					•			
Т.	P. : <i>Découverte des composant</i>	ts électroniqu	ue sous Proteus		www.ged	if.net		<u> </u>	Page 2 / 8	3

III - 6 - Arrêtez la simulation puis modifiez votre montage afin de réaliser le Montage 2 utilisant un interrupteur SW-SPDT et une seconde ampoule LAMP :

III - 7 - Lancez la simulation puis actionnez l'interrupteur dans chacune de ses 2 positions.

III - 8 - Arrêtez la simulation puis modifiez votre montage afin de réaliser le *Montage 3* utilisant un interrupteur **SW-ROT-3** (à orienter comme sur le schéma ci-dessous) et une troisième ampoule **LAMP** :

Montage 3

III - 9 - Lancez la simulation puis actionnez l'interrupteur dans chacune de ses 3 positions.

Est-il possible avec le <i>Montage 3</i> d'allumer aucune ampoule ?	OUI	■ NON
Est-il possible avec le <i>Montage 3</i> d'allumer une seule ampoule ?	OUI	■ NON
Est-il possible avec le <i>Montage 3</i> d'allumer seulement deux ampoules ?	OUI	■ NON
Est-il possible avec le <i>Montage 3</i> d'allumer les trois ampoules en même temps ?	OUI	■ NON

III - 10 - Arrêtez la simulation puis modifiez votre montage afin de réaliser le *Montage 4* utilisant deux interrupteurs **SWITCH**, une LED rouge **LED-RED** et une résistance **RES** de 470 Ω :

Montage 4

III - 11 - Complétez le tableau page suivante en indiquant l'état de la LED D1 du *Montage 4* pour chacun des états des interrupteurs A et B.

Etat de l'interrupteur A	Etat de l'interrupteur B	Etat de la LED D1 (<i>allumée</i> ou <i>éteinte</i>)
ouvert	ouvert	
ouvert	fermé	
fermé	ouvert	
fermé	fermé	

- III 12 Dans le Montage 4, à quelle condition la LED est-elle allumée (cochez une seule réponse parmi les 4) ?
- □ si au moins un interrupteur est fermé □ si et seulement si les deux interrupteurs sont fermés
- ☐ si au moins un interrupteur est ouvert ☐ si et seulement si les deux interrupteurs sont ouverts
- III 13 Arrêtez la simulation puis modifiez votre montage afin de réaliser le Montage 5 :

Montage 5

III - 14 - Complétez le tableau suivant en indiquant l'état de la LED D1 du *Montage 5* pour chacun des états des interrupteurs A et B.

Etat de l'interrupteur A	Etat de l'interrupteur B	Etat de la LED D1
ouvert	ouvert	
ouvert	fermé	
fermé	ouvert	
fermé	fermé	

- III 15 Dans le *Montage 5*, à quelle condition la LED est-elle allumée (cochez une seule réponse parmi les 4) ?
- □ si au moins un interrupteur est fermé
 □ si et seulement si les deux interrupteurs sont fermés
 □ si et seulement si les deux interrupteurs sont auverts
- ☐ si au moins un interrupteur est ouvert ☐ si et seulement si les deux interrupteurs sont ouverts

III - 16 - Arrêtez la simulation puis modifiez votre montage afin de réaliser le *Montage 6* utilisant un interrupteur poussoir **BUTTON**, trois LED rouge **LED-RED** et trois résistances **RES** de 470 Ω chacune :

Montage 6

III - 17 - Lancez la simulation puis actionnez l'interrupteur poussoir.

Est-il possible avec le <i>Montage 6</i> d'allumer aucune LED ?	OUI	■ NON
Est-il possible avec le <i>Montage 6</i> d'allumer une seule LED ?	OUI	□ NON
Est-il possible avec le <i>Montage 6</i> d'allumer seulement deux LED ?	OUI	□ NON
Est-il possible avec le <i>Montage 6</i> d'allumer les trois LED en même temps ?	OUI	■ NON

IV - Découverte de deux nouveaux composants interactifs

Un composant interactif est un composant sur lequel l'utilisateur peut agir durant la simulation afin de modifier le comportement du montage électronique. Tous les interrupteurs vus précédemment sont des composants interactifs. Vous allez maintenant découvrir deux nouveaux composants bien pratiques dont l'utilisation est à retenir pour vos futurs montages : le capteur de présence **TOUCHPAD** et le capteur de lumière **TORCH_LDR**.

IV - 1 - Ajoutez les composants TOUCHPAD et TORCH_LDR dans votre sélecteur puis réalisez le Montage 7 utilisant un composant TOUCHPAD et un voltmètre DC VOLTMETER :

Remarque à surligner en fluo, à retenir et à appliquer :

La masse est le composant GROUND disponible dans le « Mode terminal » de Proteus

- IV 2 Lancez la simulation, agissez sur les deux boutons rouges du capteur de présence TOUCHPAD et observez la variation de tension sur le voltmètre.
- IV 3 Lorsque l'utilisateur approche sa main du capteur de présence TOUCHPAD, comment évolue la tension délivrée par le capteur ? □ elle augmente □ elle diminue
- IV 4 Lorsque l'utilisateur éloigne sa main du capteur de présence TOUCHPAD, comment évolue la tension délivrée par le capteur ? □ elle augmente □ elle diminue

Montage 7

- IV 5 Quelle est la valeur maximale de la tension délivrée par le capteur TOUCHPAD ?
- IV 6 Quelle est la valeur minimale de la tension délivrée par le capteur TOUCHPAD ?
- IV 7 La valeur maximale délivrée par le capteur TOUCHPAD est parfaitement configurable dans les propriétés du composant en modifiant le paramètre VOUT when touching. Réglez le comportement du capteur TOUCHPAD afin que la tension délivrée varie entre 0 V et 12 V puis tester le comportement du capteur.
- IV 8 Le dernier composant interactif à découvrir est le capteur de lumière. Réalisez le *Montage 8* utilisant un composant **TORCH LDR** (capteur de lumière associé à une torche), un ampèremètre, un voltmètre et une pile :

Remarque : une LDR est une résistance particulière dont la valeur varie en fonction de la lumière reçue.

IV - 9 - Les 10 positions de la torche sont appelées position 0 (lorsque la torche est très éloignée du capteur de lumière) à position 9 (lorsque la torche est au plus près de la LDR). Lancez la simulation puis complétez le tableau suivant indiquant la tension, le courant (avec l'ampèremètre sur le meilleur calibre ...) et la résistance de la LDR:

Position de la torche	\rightarrow	0	1	2	3	4	5	6	7	8	9
Tension aux bornes de la LDR											
Courant circulant dans la LDR	\rightarrow										
Résistance de la LDR	\rightarrow										

T.P.: Découverte des composants électronique sous Proteus www.gecif.net Page 5 / 8

- IV 10 Lorsque la lumière reçue sur le capteur LDR augmente, comment évolue la résistance de la LDR ?
- ☐ la résistance de la LDR augmente

- ☐ la résistance de la LDR diminue
- IV 11 Lorsque la lumière reçue sur le capteur LDR diminue, comment évolue la résistance de la LDR ?
- ☐ la résistance de la LDR augmente

$lue{}$ la résistance de la LDR diminue

V - Découverte du comparateur de tension

Un comparateur de tension est un composant électronique possédant 2 entrées et une sortie. Comme le montre le symbole cicontre, une entrée est repérée par le signe + [on l'appelle « *l'entrée plus* »] et une entrée est repérée par le signe – [on l'appelle « *l'entrée moins* »].

Symbole du comparateur de tension

On appelle V^+ le potentiel (c'est-à-dire la tension par rapport à la masse) présent sur l'entrée plus, V^- le potentiel présent sur l'entrée moins, et V^- la tension présente en sortie du comparateur. Comme vous allez le constater dans l'expérience suivante, la sortie du comparateur de tension ne peut prendre que 2 valeurs différentes selon les niveaux des tensions V^+ et V^- .

V - 1 - Ajoutez le composant **OPAMP** dans votre sélecteur puis réalisez le *Montage 9* utilisant un comparateur de tension **OPAMP**, deux piles et trois voltmètres :

V - 2 - En modifiant la tension délivrée par chaque pile, complétez le tableau suivant en indiquant la valeur de la tension Vs présente en sortie du comparateur de tension en fonction des tensions V⁺ et V⁻ :

V ⁺	2 V	2 V	3 V	3 V	4 V	4 V	1 V	5 V
V-	1 V	3 V	2 V	4 V	1 V	5 V	2 V	4 V
Vs								

- V 3 Quelles sont les deux seules valeurs de la tension Vs en sortie du comparateur de tension?.....

- V 6 Complétez les conditions suivants récapitulant le fonctionnement du comparateur de tension :
 - * Si V⁺ > V⁻ alors Vs =
 - * Si V⁻ > V⁺ alors Vs =

Remarque : les deux valeurs présentes en sortie du comparateur de tension **OPAMP** sont configurables dans les propriétés du composant en modifiant les paramètres **Positive Rail Voltage** et **Negative Rail Voltage**.

VI - Utilisation du GBF et de l'oscilloscope

VI - 1 - Créez un nouveau projet dans Proteus sans rien enregistrer (menu *Fichier* + *Nouveau projet*) puis réalisez le *Montage* 10 utilisant un générateur de signal et un oscilloscope.

VI - 2 - Lancez la simulation puis agissez sur les 4 boutons suivant du générateur tout

Montage 10

en observant l'allure de la tension (c'est-à-dire le signal) sur l'oscilloscope : **Frequency Centre**, **Frequency Range**, **Amplitude Level** et **Waveform** (ne pas toucher les boutons **Amplitude Range** et **Polarity** du GBF ni les réglages de l'oscilloscope).

Le seul objectif de ce paragraphe est de vous montrer l'existence, l'emplacement et le câblage du GBF et de l'oscilloscope dans Proteus. Ces appareils virtuels doivent vous rappeler les appareils réels que vous avez déjà utilisés. Comme tous les appareils de mesure, la maîtrise du GBF et de l'oscilloscope s'acquiert progressivement par une utilisation fréquente et régulière que vous aurez l'occasion de renouveler dans les futurs TP.

VII - Applications à réaliser en mettant en œuvre les savoir-faire acquis précédemment

Créez un nouveau projet dans Proteus sans rien enregistrer (menu *Fichier + Nouveau projet*) puis réalisez chacune des applications après avoir intégré la remarque suivante (touches + et - pour la rotation rapide des composants) :

Remarque à surligner en fluo, à retenir et à appliquer pour toutes vos futures utilisations de Proteus :

Proteus s'utilise avec les 2 mains : une main sur la souris et l'autre sur le clavier pour actionner les raccourcis clavier (touches p, Echap, + et -, zoom F5 à F8, etc.)

VII - 1 - Application 1

Réalisez le *Montage 11* utilisant un potentiomètre **POT-LIN** et une pile de 12V, lancez la simulation puis modifiez la position du curseur du potentiomètre en cliquant sur ses deux boutons rouges.

Combien de positions différentes possède le curseur ?

Quel est le potentiel sur le curseur lorsque ce dernier est en position **haute** ?

Quel est le potentiel sur le curseur lorsque ce dernier est en position **médiane** ?

Quel est le potentiel sur le curseur lorsque ce dernier est en position **basse** ?

Comme le montre le schéma équivalent ci-contre, un potentiomètre est équivalent à 2 résistances **RA** et **RB** avec le curseur en point milieu (point **C**). Selon la position du curseur du potentiomètre, les résistances **RA** (entre **A** et **C**) et **RB** (entre **B** et **C**) changent de valeur. En mesurant le courant (qui est le même dans RA et RB) et la tension sur les résistances RA et RB du montage 11, donnez la valeur de RA et RB pour chaque position du curseur du potentiomètre :

Position du curseur →	(basse)	1	2	3	4	5 (médiane)	6	7	8	9	10 (haute)
Valeur de RA (en ohms) →											
Valeur de RB (en ohms) →											
Valeur de RA + RB →											

Remarque : en éditant les propriétés du potentiomètre vous pouvez modifier la valeur totale de sa résistance [RA+RB, qui est une valeur constante quelque soit la position du curseur] en modifiant le paramètre **Resistance**.

VII - 2 - Application 2

Créez un nouveau projet dans Proteus sans rien enregistrer puis réalisez le Montage 12.

Pour le Montage 12 réglez tous les composants afin que :

- * Le capteur de présence TOUCHPAD délivre une tension comprise entre OV et 12V
- * La pile fournisse une tension de 12V
- * Les comparateurs de tension délivrent en sortie soit OV soit 12V
- * Les 3 résistances valent 10 k Ω

Complétez le tableau suivant en indiquant le potentiel en chacun des point E, A, B, S1 et S2 du schéma, et ce pour chacune des position de la main par rapport au capteur de présence (position 0 = main éloignée du capteur) :

Position de la mair	n →	0	1	2	3	4	5	6	7	8	9	10
Potentiel V _E	\rightarrow											
Potentiel VA	\rightarrow											
Potentiel V _B	\rightarrow											
Potentiel Vs1	\rightarrow											
Potentiel Vs2	\rightarrow											

VII - 3 - Application 3

Créez un nouveau projet dans Proteus sans rien enregistrer. Vous allez maintenant proposer un montage électronique, basé sur le principe du *Montage 12*, et permettant de mesurer la quantité de lumière ambiante. Vous utiliserez pour cela le capteur de lumière **TORCH_LDR**, 3 comparateurs de tension (délivrant soit OV soit 12V ensortie), 3 LED de couleur différente (une jaune, une verte et une bleue), ainsi qu'une pile de 12 V et des résistances qu'il vous appartient de dimensionner.

Proposez dans Proteus un montage répondant au fonctionnement décrit dans le tableau suivant (*rappel :* la position 0 de la torche correspond à l'obscurité totale) :

Position de la torche \rightarrow	0	1	2	3	4	5	6	7	8	9
Etat de la LED jaune →	éteinte	éteinte	éteinte	allumée						
Etat de la LED verte →	éteinte	éteinte	éteinte	éteinte	éteinte	allumée	allumée	allumée	allumée	allumée
Etat de la LED bleue →	éteinte	allumée	allumée	allumée						

Testez votre montage, modifiez-le en cas de dysfonctionnement, puis faite valider par le professeur votre solution une fois qu'elle est parfaitement fonctionnelle.

Ce TP vous a montré de nouveaux composants dans le logiciel Proteus. Il vous appartient désormais d'utiliser naturellement ces composants, et surtout de ressortir rapidement cette fiche de TP pour y faire fréquemment référence dans tous vos futurs TP.