Sprawozdanie VI

Poszukiwanie zer wielomianów metodą iterowanego dzielenia (metoda Newtona).

Adam Łaba

14 kwietnia 2021

1. Wstęp teoretyczny

1.1 Metoda Newtona

Metoda Newtona jest narzędziem służącym do wyznaczania pierwiastków funkcji. Jej działanie opiera się na wykorzystaniu iteracyjnego algorytmu. Aby możliwe było użycie metody dla danej funkcji, muszą być spełnione trzy założenia: w danym przedziale domkniętym znajduje się dokładnie jeden pierwiastek, na krańcach przedziału funkcja ma różne znaki oraz dwie pierwsze pochodne mają w tym przedziale ten sam znak. W tym zadaniu został wykorzystany algorytm:

$$//$$
 inicjalizacja wektora danych $for(L=1;L\leqslant N;L++) \ n=N-L+1 \ x_0=0 \ for(it=1;it\leqslant ITackslash_MAX;it++) \ R_j=a_0+x_jb_0 \ R'_j=b_0+x_jc_0 \ x_1=x_0-rac{R_j}{R'_j} \ ifig(|x_1-x_0|<10^{-7}ig) \ break \ x_0=x_1 \ forig(i=0;i\leqslant n-1;i++) \ a_i=b_i \ ,$

gdzie: N - stopień wielomianu, x_0 , x_1 - kolejne przybliżenia wartości pierwiastka, R_j , R'_j - reszta z dzielenia, a, b, c - tablice zawierające współczynniki wielomianu. Metoda szacuje wartość kolejnych przybliżeń na podstawie poprzednich wartości. Działanie jest przerywane, gdy kolejne przybliżenia są identyczne lub po przekroczeniu pewnej liczby iteracji. Powyższy algorytm różni się od wersji podstawowej o dodatkowe dzielenie wielomianu przez dwumian, dzięki czemu usuwamy z funkcji znalezione miejsce zerowe.

2. Zadanie do wykonania

2.1 Dana funkcja

Funkcja, na której operowano dana była równaniem:

$$f(x) = x^5 + 14x^4 + 33x^3 - 92x^2 - 196x + 240$$

2.2 Wykonanie zadania

Przyjmując za IT_MAX 30, bazując na własnej implementacji wcześniej przedstawionego algorytmu wykonanej w języku C, wykonano zadanie, dodatkowo w każdej iteracji zapisując do pliku wartości L, it, x_0 , R_j oraz R'_j . Pomocniczo zaimplementowana została jeszcze funkcja do obliczania wartości R_j oraz R'_j .

3. Wyniki

3.1 Pierwsze miejsce zerowe x = 1

L	it	χ_{it}	R_{it}	R'_{it}
1	1	1.22449	240	-196
1	2	0.952919	-43.12895	-158.813037
1	3	0.999111	10.571412	-228.859896
1	4	1	0.195695	-220.179375
1	5	1	0.00008	-220.000073
1	6	1	0	-220

3.2 Drugie miejsce zerowe x = -4

L	it	x_{it}	R_{it}	R'_{it}
2	1	-5.454545	-240	-44
2	2	-4.463518	-120.975343	122.070624
2	3	-4.108252	-24.275461	68.330402
2	4	-4.009574	-4.317535	43.75392
2	5	4.00009	-0.347977	36.689078
2	6	-4	-0.003237	36.006473
2	7	-4	0	36.000001

3.3 Trzecie miejsce zerowe x = 2

L	it	χ_{it}	R_{it}	R'_{it}
3	1	15	-60	4
3	2	9.20218	5850.000163	1009.000018
3	3	5.537523	1687.531902	460.488347
3	4	3.383159	469.259437	217.818009
3	5	2.335342	118.158848	112.766776
3	6	2.0277	22.069987	71.739008
3	7	2.000215	1.675047	60.944092
3	8	2	0.012884	60.007301
3	9	2	0.000001	60

3.4 Czwarte miejsce zerowe x = -3

L	it	χ_{it}	R_{it}	R'_{it}
4	1	-2.307692	30	13
4	2	-2.942837	5.325444	8.384615
4	3	-2.999541	0.403409	7.114326
4	4	-3	0.003215	7.000919

4	5	-3	0	7
	_		· ·	, , , , , , , , , , , , , , , , , , ,

3.5 Piąte miejsce zerowe x = -10

L	it	x_{it}	R_{it}	R'_{it}
5	1	-10	10	1
5	2	-10	0	1

4. Wnioski

Dla funkcji, które spełniają wymienione we wstępie założenia, metoda Newtona w stosunkowo krótkim czasie znajduje miejsca zerowe. Jak widać, w żadnym przypadku liczba iteracji nie przekroczyła 10, a otrzymane wyniki różnią się od rzeczywistych wartości o mniej niż 10⁻⁷. Kolejne przybliżenia wartości miejsc zerowych dobrze ilustrują działanie metody - każde z nich jest coraz bliższe wartości rzeczywistej.