Data-Driven Computer Animation Lecture 4.

Forward/Inverse Dynamics

Overview

- Motivation
- Background / Notation
- Articulate Dynamics Algorithms
 - Newton-Euler Algorithm
 - Recursive Newton-Euler
 - Articulated-Body Algorithm (Featherstone)

Character Animation

- There are three methods
 - Create them manually
 - –Use real human / animal motions
 - Use physically based simulation

Physically-based Animation

- Forward/inverse dynamics
- Voluntary motion, passive motion
- PD control for voluntary motion, response motion

How to do the physics computation?

- For every rigid body, its motion follows Newton's law
- $F_{ext} = M\ddot{x}$ (linear motion)
- $r \times F_{ext} + \tau = I\dot{\omega} + \omega \times I\omega$ (angular motion)

How to do the physics computation?

- For every rigid body, its motion follows Newton's law
- $F_{ext} = M\ddot{x}$ (linear motion)
- $r \times F_{ext} + \tau = I\dot{\omega} + \omega \times I\omega$ (angular motion)

Physical Simulation

• Using the computed \ddot{x} , $\dot{\omega}$, update the position and orientation by integration

$$- \begin{pmatrix} \dot{x} \\ \omega \end{pmatrix} = \begin{pmatrix} \dot{x}_{prev} \\ \omega_{prev} \end{pmatrix} + \begin{pmatrix} \ddot{x} \\ \dot{\omega} \end{pmatrix} \Delta t$$

$$- \begin{pmatrix} x \\ \theta \end{pmatrix} = \begin{pmatrix} x_{prev} \\ \theta_{prev} \end{pmatrix} + \begin{pmatrix} \dot{x} \\ \omega \end{pmatrix} \Delta t$$
Previous state

new state

Articulated Body

- An articulated body is a group of rigid bodies (called links) connected by joints
- Multiple types of joints
 - Hinge/Revolute (1 degree of freedom)
 - Ball joint (3 degrees of freedom)
 - Prismatic, screw, etc.

Articulated Bodys

- For articulated bodies, there will be
 - Force between the joints
 - Torque generated by the motors at the joints
 - These forces and torques will result in a motion of the entire model

Notation: generalized coordinates

Transitioning this to articulated bodies

$$\mathbf{q} = (q_1, q_2, \dots, q_n)$$

- Generalized coordinates
- All degrees of freedom put into a single vector

Notation

Transitioning this to articulated bodies

$$\mathbf{\tau} = \mathbf{H} \, \ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{\tau}_{g}$$

- τ is the force on link i
- H is the joint-space inertia matrix (n x n)

 q, q and q are the coordinates, velocities and accelerations of the joints

- C are Coriolis force
- τ_g : force due to gravity

Forward vs. Inverse Dynamics

- Inverse Dynamics
 - The calculation of forces given a set of accelerations
- Forward Dynamics
 - The calculation of accelerations given a set of forces

$$\mathbf{\tau} = \mathbf{H} \, \ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{\tau}_{g}$$

Algorithms

- Inverse Dynamics
 - Newton-Euler Algorithm
- Forward Dynamics
 - Recursive Newton-Euler
 - Articulated-Body Algorithm

Inverse Dynamics: Newton-Euler Algorithm

- Goal
 - Given the accelerations and velocities at the joints, find the forces/torques required at the joints to generate those accelerations
- Recursive approach

- Compute v_i , a_i from root to leaf using \mathbf{q} , $\dot{\mathbf{q}}$, $\ddot{\mathbf{q}}$
- Compute the force f_i , τ_i from leaves to root using the equation of motion

Spatial Notation

- Spatial notation combines linear and angular quantities – extending the 3x3 notion to 6x6
- $\mathbf{v} = \begin{bmatrix} \boldsymbol{\omega} \\ \dot{\mathbf{x}} \end{bmatrix}$ $\boldsymbol{\omega}$ angular velocity, $\dot{\mathbf{x}}$ linear velocity
- $\mathbf{a} = \begin{bmatrix} \dot{\mathbf{\omega}} \\ \ddot{\mathbf{x}} \end{bmatrix}$ $\dot{\mathbf{\omega}}$ angular acceleration, $\ddot{\mathbf{x}}$ linear acceleration
- $\mathbf{f} = \begin{bmatrix} n \\ f \end{bmatrix} n$ momentum, \mathbf{f} force
- $\mathbf{I} = \begin{bmatrix} I & 0 \\ 0 & m\mathbf{1} \end{bmatrix} I$ moment of inertia around center of mass, m is mass

1. Find the velocities and accelerations of the links

$$v_i = v_{i-1} + \Phi_i \dot{q}_i \quad (v_0 = 0)$$

$$a_{i} = a_{i-1} + \Phi_{i}\ddot{q}_{i} + \dot{\Phi}_{i}\dot{q}_{i} (a_{0} = 0)$$

where Φ_i is the axis of rotation of joint i, q, \dot{q} and \ddot{q} are the joint angle, rotation speed and acceleration

and

 v_i and a_i are the velocity and acceleration of the link in the world

2. Calculate the equation of motion for each link

$$\mathbf{f_i^a} = \mathbf{I_i} \mathbf{a_i} + \mathbf{v_i} \times \mathbf{I_i} \mathbf{v_i}$$

Computing \mathbf{f}_{i}^{a} , the total amount of force needed to do the motion

3. Calculate the joint forces (from leaves towards the root)

$$f_i^a = f_i - f_{i+1} + f_i^c$$

$$\mathbf{f_i} = \mathbf{f_i}^a - \mathbf{f_i}^c + \mathbf{f_{i+1}}$$

- **f**_i: force at joint i
- $\mathbf{f_i}^c$: external forces

3. Calculate the joint forces (from leaves towards the

root)

$$\mathbf{f_i} = \mathbf{f_i}^a - \mathbf{f_i}^c + \sum_{j \in c(i)} \mathbf{f_j}$$

- **f**_i: force at joint i
- c(i): the child joints of link i
- $\mathbf{f_i}^c$: external forces like gravity

Calculate the active forces

Inverse Dynamics: Summary

- Inverse Dynamics
 - The calculation of forces given a set of accelerations
 - Newton-Euler: O(N)

Useful for motion analysis, motion synthesis by optimization (covered later)

Forward Dynamics

- The calculation of accelerations given a set of forces
- Needed for simulating the motion in the virtual environment
- Two approaches described here
 - Recursive Newton-Euler Algorithm
 - A method based on inverse dynamics
 - Easy to understand but slow: O(N³)
 - Articulated Body Inertia
 - Faster to compute: O(N)
 - Standard approach in robotics

$$\mathbf{\tau} = \mathbf{H} \, \ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{\tau}_{g}$$

- τ is the vector of the forces on the links
- H is the joint-space inertia matrix (n x n)
- C is the Coriolis force
- \mathbf{q} , $\dot{\mathbf{q}}$ and $\ddot{\mathbf{q}}$ are the coordinates, velocities and accelerations
- To compute $\ddot{\mathbf{q}}$ from $\mathbf{\tau}$, we need to know \mathbf{H} , $\mathbf{C}(\mathbf{q},\dot{\mathbf{q}})$, $\mathbf{\tau}_g$
- Then we can compute \(\bar{q}\) by solving

$$\mathbf{H}\ddot{\mathbf{q}} = \left(\mathbf{\tau} - \mathbf{\tau}_g - \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})\right)$$

$$\mathbf{\tau} = \mathbf{H} \, \ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{\tau}_{g}$$

- Algorithm (based on Newton-Euler ID)
 - Calculate $\mathbf{C}(\mathbf{q},\dot{\mathbf{q}}) + \mathbf{\tau}_g$
 - Calculate H
 - Solve for q

- Compute $C(q, \dot{q}) + \tau_g$
 - Setting the acceleration to zero, we get $C(q, \dot{q}) + \tau_g$
 - We can use the inverse dynamics solver (Newton-Euler) to solve for the forces given the position, velocity and an acceleration of zero

- How to construct **H**? $\tau = \mathbf{H} \, \ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{\tau}_g$
- Again, we use the inverse dynamics solver
- This time we can set $\ddot{\mathbf{q}}$ to (0,...,1,....,0) to compute the i-th column of \mathbf{H}
- By subtracting $C(q, \dot{q}) + \tau_g$ from the computed τ , we get the i-th column of H

- How to construct **H**? **H**(q) ў
 - Denote $\mathbf{H} = [\mathbf{H_1H_2 \cdots H_n}]$, $\mathbf{H_i}$: i-th column of $\mathbf{H_i}$
 - Then $\mathbf{H_i} = ID(\mathbf{e_i}, \mathbf{q}, \dot{\mathbf{q}}) (\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{\tau}_g)$ (ID :inverse dynamics) where $\mathbf{e_i}$ is the i-th basis vector (all zero except i-th element 1)
- Algorithm to construct equations of motion
 - $c = ID(0, q, \dot{q})$
 - for i=1 to n
 - $M_i = ID(e_i, q, \dot{q}) c$
 - $H=[H_1, H_2 ... H_n]$

ID called (N+1) times \rightarrow O(N²)

Solving for $\mathbf{H}\ddot{\mathbf{q}} = \mathbf{b}$ O(N³) 29

Articulated-Body Algorithm

- Until now, we've seen a forward dynamics procedure
 - Step 1: Constructing equations of motion \rightarrow O(N²)
 - Step 2: Computing joint acceleration \rightarrow O(N³)
- In fact, there's a much faster algorithm
- Articulated-Body Algorithm
 - Developed by Featherstone in 1983
 - It only takes O(N) time for open-loop system!
 - It is a recursive algorithm like Recursive Newton-Euler inverse dynamics
 - It doesn't construct equations of motion explicitly.
 - If interested, read Ch. 2 of Handbook of Robotics, Springer
 - Next slides show only the idea of the algorithm

Summary of Forward Dynamics

 Let's define a function FD (forward dynamics)

$$\ddot{q} = FD(q, \dot{q}, \tau)$$

We looked at two approaches to realize $\ddot{q} = FD(q, \dot{q}, \tau)$

- 1. Construct equations of motion and solve it
 - Typically O(N³) algorithms
 - Composite-rigid-body method is efficient in this kind
- 2. Articulated-body algorithm
 - O(N) algorithm

References

- R. Featherstone, The Calculation of Robot Dynamics Using Articulated-Body Inertias, IJRR 1983
- Springer Handbook of Robotics Ch. 2 Can read online from the library
- Roy Featherstone's home page
 - http://royfeatherstone.org/abstracts.html#RAM-tutorial-1