Théorie de Fourier et ondelettes

Q. RIBLE

Feuille d'exercices 1 : Rappels sur les calculs de sommes et d'intégrales

Exercice 1 : Rappels de sommes usuelles

Calculer en fonction de $n \in \mathbb{N}$ les sommes suivantes :

$$1) \sum_{k=1}^{n} k,$$

3)
$$\sum_{k=1}^{n} \binom{n}{k}$$
,

2)
$$\sum_{k=1}^{n} k^2$$
,

4)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$
.

Exercice 2:

Soit $x \neq 1$ et $n \in \mathbb{N}$. Calculer les sommes suivantes :

1)
$$\sum_{k=1}^{n} x^k$$
,

$$2) \sum_{k=1}^{n} kx^{k}.$$

Exercice 3:

Soit $\theta \in]0; \frac{\pi}{2}[$. Calculer

$$\sum_{k=0}^{n} \cos(k\theta).$$

Exercice 4:

Soit $n \in \mathbb{N}$. Calculer les sommes :

$$1) \sum_{i,j=1}^{n} ij,$$

$$2) \sum_{i,j=1}^{n} \max(i,j).$$

Exercice 5:

Calculer les sommes infinies suivantes :

$$1) \sum_{k=0}^{+\infty} x^k,$$

2)
$$\sum_{k=0}^{+\infty} (-1)^k \frac{x^{2k}}{(2k)!}$$
.

Indication : Pour la deuxième somme on essaiera d'abord de calculer $i^k - (-i)^k$ pour $k \ge 0$.

Exercice 6:

Soit $x \in \mathbb{R}$. Calculer les sommes suivantes :

$$1) \sum_{k \ge 0} \frac{k-1}{k!} x^k,$$

$$2) \sum_{k>1} \frac{x^k}{k}.$$

Exercice 7: Intégration par partie

Calculer les primitives de $x \mapsto \cos(x)e^{-x}$

Exercice 8: Intégration par partie

Calculer les intégrales suivantes :

$$1) \int_0^1 x e^x dx,$$

2)
$$\int_0^x \arctan(t)dt$$
,

3)
$$\int_{1}^{2} \frac{\ln(1+t)}{t^2} dt$$
.

Exercice 9: Changement de variables

Calculer les intégrales suivantes

$$1) \int_{1}^{9} \frac{1 - \sqrt{t}}{\sqrt{t}} dt,$$

2)
$$\int_0^1 \frac{dt}{1+e^t}$$
,

3)
$$\int_{-1}^{1} \sqrt{1-t^2} dt$$
.

Exercice 10: Moment

Soit $\lambda > 0$ calculer

$$1) \int_0^{+\infty} e^{-\lambda x} dx,$$

2)
$$\int_0^{+\infty} xe^{-\lambda x}$$
,

$$3) \int_0^{+\infty} x^2 e^{-\lambda x} dx.$$

Exercice 11:

Calculer l'intégrale $\int_0^{+\infty} \frac{x}{e^x-1} dx$. On pourra utiliser $\sum_{k\geq 1} \frac{1}{k^2} = \frac{\pi^2}{6}$.

Exercice 12:

On pose $I = \int_0^{+\infty} e^{-x^2} dx$. Calculer I^2 à l'aide d'un changement de variables polaires, en déduire la valeur de I.