Minimizing Functions of Multiple Variables

Pascal Fua IC-CVLab

Reminder: Logistic Regression

$$y(\mathbf{x}; \tilde{\mathbf{w}}) = \sigma(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}})$$
$$= \frac{1}{1 + \exp(-\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}})}$$

Given a **training** set $\{(\mathbf{x}_n, t_n)_{1 \le n \le N}\}$ minimize

$$E(\tilde{\mathbf{w}}) = -\sum_{n} (t_n \ln y(\mathbf{x}_n) + (1 - t_n) \ln(1 - y(\mathbf{x}_n)))$$

with respect to $\tilde{\mathbf{w}}$.

Reminder: Maximizing the Margin

$$\mathbf{w}^* = \min_{(\mathbf{w}, \{\xi_{\mathbf{n}}\})} \frac{1}{2} ||\mathbf{w}^2|| + C \sum_{n=1}^{N} \xi_n,$$

subject to $\forall n, \quad t_n \cdot (\tilde{\mathbf{w}} \cdot \mathbf{x}_n) \ge 1 - \xi_n \text{ and } \xi_n \ge 0.$

- C is constant that controls how costly constraint violations are.
- The problem is still convex.

- How do you minimize a function of several variables?
- Why does it matter that the problem is convex?

—> Let's talk about that today.

Derivative of a 1-Variable Function

- The derivative of a function y = f(x) of a single variable x is the rate at which y changes as x changes. = pendiente
- It is measured for an infinitesimal change in x, starting from a point x_0 , and written as

$$f'(x_0) = \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

 \rightarrow The derivative is the slope of the tangent at x_0 .

Derivative of a Linear Function

- The tangent to the function is the function itself: The slope is constant.
- For example, y = 2x 1 and $\frac{dy}{dx} = 2$.

Derivative of a Non-Linear Function

- The tangent (in red) to the function varies with x and so does the slope.
- For example, $y = x^2 + 2x + 2$ and $\frac{dy}{dx} = 2x + 2$.

Evolution of the Tangent

Figure from Wikipedia

$$y = x \sin(x^2) + 1$$
$$\frac{dy}{dx} = \sin(x^2) + 2x^2 \cos(x^2)$$

First and Second Derivatives

$$y = x\sin(x^2) + 1$$

$$\frac{dy}{dx} = \sin(x^2) + 2x^2 \cos(x^2)$$

$$\frac{d^2y}{dx^2} = 6x\cos(x^2) - 4x^3\sin(x^2)$$

$$\frac{dy}{dx} = 0$$
 and $\frac{d^2y}{dx^2} > 0$: Minimum

$$\frac{dy}{dx} = 0$$
 and $\frac{d^2y}{dx^2} < 0$: Maximum

$$\frac{dy}{dx} = 0$$
 and $\frac{d^2y}{dx^2} = 0$: Saddle

Convex vs Non-Convex

- There is only one minimum.
- The second derivative is ≥ 0 .

- There are several **local** minima.
- There is one global minimum.

—> Non-convex functions are much more difficult to minimize than convex ones.

The line segment between any two points on the curve lies above the curve.

$$\frac{df(x^*)}{dx} = 0$$

For some simple functions this can be done in closed form, that is, by solving an equation.

Minimizing a Simple Convex Function

$$f(x) = x^2 + 2x + 2$$
$$\frac{df(x)}{dx} = 2x + 2$$

$$\frac{df(x^*)}{dx} = 0 \Leftrightarrow 2x^* + 2 = 0$$
$$\Leftrightarrow 2x^* = -2$$
$$\Leftrightarrow x^* = -1$$

Minimizing a Generic Convex Function

When the minimum cannot be found in closed-form, we use the derivative:

At x_1 , the slope is negative. Hence, one should move in the positive direction $(\Delta x > 0)$ to go towards the minimum

At x_2 , the slope is positive. Hence, one should move in the negative direction ($\Delta x < 0$) to go towards the minimum

—> One should move in the direction opposite to the derivative for minimization

Simplest algorithm:

- 1. Initialize x_0 (e.g., randomly)
- 2. While not converged

2.1. Update
$$x_k \leftarrow x_{k-1} - \eta \frac{df(x_{k-1})}{dx}$$

- η defines the step size of each iteration.
- In ML, it is often referred to as the *learning rate*.

Potential stopping Criteria:

- Change in function value less than threshold: $|f(x_{i-1}) f(x_i)| < \delta$.
- Change in parameter value less than threshold: $|x_{i-1} x_i| < \delta$.
- Maximum number of iterations reached without a guarantee to have reached the minimum.

Influence of the Step Size

The steps are of the appropriate size for convergence.

The steps are too large and the algorithm starts jumping between these two points.

Influence of the Starting Point

Converges to the same place, but faster.

$$x_0 = 1.5$$
 Global minimum

Local minimum

$$\eta = 0.01, \ x_0 = 1.5$$
Global minimum

$$\eta = 0.1, \ x_0 = 1.5$$
Saddle point

—> No guarantees when the function is not convex!

Functions of Multiple Variables

Multivariate function:

$$f: R^D \to R$$
$$y = f(\mathbf{x}) = f(x_1, ..., x_D)$$

Partial derivative:

$$\frac{\delta y}{\delta x_d} = \lim_{\Delta x \to 0} \frac{f(\dots, x_d + \Delta x, \dots) - f(\dots, x_d, \dots)}{\Delta x}$$

Gradient vector:

$$\nabla f = \left[\frac{\delta f}{\delta x_1}, \dots, \frac{\delta f}{\delta x_D}\right]$$

Quadratic Function

$$f(\mathbf{x}) = x_1^2 + x_2^2$$

$$\frac{\partial f}{\partial x_1} = 2x_1$$

$$\frac{\partial f}{\partial x_1} = 2x_1$$
$$\frac{\partial f}{\partial x_2} = 2x_2$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix} \in \mathbb{R}^2$$

The color also represents the value of $f(\mathbf{x})$

Sinusoidal Function

$$f(\mathbf{x}) = \sin x_1 + \cos x_2$$

$$\frac{\partial f}{\partial x_1} = \cos(x_1)$$

$$\frac{\partial f}{\partial x_2} = -\sin(x_2)$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \cos(x_1) \\ -\sin(x_2) \end{bmatrix} \in \mathbb{R}^2$$

The color also represents the value of $f(\mathbf{x})$

Gradient in 4 Dimensions

$$f(\mathbf{x}) = x_1^2 x_2^2 + x_1 x_2 x_3 + x_3 x_4 + 2x_4 + 1$$

$$\frac{\partial f}{\partial x_1} = 2x_1 x_2^2 + x_2 x_3$$

$$\frac{\partial f}{\partial x_2} = 2x_2x_1^2 + x_1x_3$$

$$\frac{\partial f}{\partial x_3} = x_1 x_2 + x_4$$

$$\frac{\partial f}{\partial x_4} = x_3 + 2$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_3} \\ \frac{\partial f}{\partial x_4} \end{bmatrix} \in \mathbb{R}^4$$

Gradient Properties

- The gradient at a point x indicates the direction of greatest increase of the function at x.
- Its magnitude is the rate of increase in that direction.

Gradient Properties

The gradient vanishes (becomes a zero vector) at the stationary points of the function:

- Minima,
- Maxima,
- Saddle points.

Convex vs Non-Convex

Convex: The line segment between any two points on the function lies above the function

Non-convex: At least one line segment between two points lies in part below the function.

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$

- Because the gradient is a vector, this yields a system of equations.
- It can still be solved in closed form for some functions.

Minimizing a Simple Convex Function

$$f(\mathbf{x}) = x_1^2 + x_2^2$$

$$\frac{\partial f}{\partial x_1} = 2x_1 \qquad \frac{\partial f}{\partial x_2} = 2x_2$$

$$\nabla f(\mathbf{x}) = 0 \Leftrightarrow \begin{cases} 2x_1 = 0\\ 2x_2 = 0 \end{cases}$$

$$\Leftrightarrow x_1 = x_2 = 0$$

Revisiting K means

$$\min_{\{\mu_k\},\{r_i^k\}} \sum_{i=1}^{N} \sum_{k=1}^{K} r_i^k ||\mathbf{x}_i - \mu_k||^2$$
 such that $r_i^k \in \{0,1\}, \ \forall i, k$
$$\sum_{k=1}^{K} r_i^k = 1, \ \forall i$$

—> We will derive the solution by alternating between the two types of variables.

Revisiting K means

$$\min_{\{r_i^k\}} \sum_{i=1}^N \sum_{k=1}^K r_i^k ||\mathbf{x}_i - \mu_k||^2$$
 such that
$$r_i^k \in \{0,1\}, \ \forall i,k$$

$$\sum_{k=1}^K r_i^k = 1, \ \forall i$$

- Because of the constraints, for each sample, only one r_i^k can be 1.
- We take it to be the one corresponding to the nearest center:

$$r_i^k = \begin{cases} 1, & \text{if } k = \underset{j}{\operatorname{argmin}} \|\mathbf{x}_i - \mu_j\|^2 \\ 0, & \text{otherwise} \end{cases}$$

Revisiting K means

$$\min_{\{\mu_k\}} \sum_{i=1}^{N} \sum_{k=1}^{K} r_i^k ||\mathbf{x}_i - \mu_k||^2$$

• This can be done by zeroing out the gradient for each center:

$$\frac{\partial R}{\partial \mu_k} = 2 \sum_{i=1}^{N} r_i^k(\mathbf{x}_i - \mu_k) = 0$$

This yields:

$$\mu_k = \frac{\sum_{i=1}^N r_i^k \mathbf{x}_i}{\sum_{i=1}^N r_i^k}$$

This corresponds to the mean of the samples assigned to cluster k.

Back to Logistic Regression

- Replace the step function by a smooth function σ .
- The prediction becomes $y(\mathbf{x}; \tilde{\mathbf{w}}) = \sigma(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}})$.
- Given the training set $\{(\mathbf{x}_n, t_n)_{1 \leq n \leq N}\}$ where $t_n \in \{0, 1\}$, minimize the cross-entropy

$$E(\tilde{\mathbf{w}}) = -\sum_{n} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$
$$y_n = y(\mathbf{x}_n; \tilde{\mathbf{w}})$$

with respect to $\tilde{\mathbf{w}}$.

E is convex but cannot be minimized in closed form!

Gradient Descent

Simplest algorithm:

- 1. Initialize \mathbf{x}_0 (e.g., randomly)
- 2. While not converged

2.1. Update
$$\mathbf{x}_k \leftarrow \mathbf{x}_{k-1} - \eta \nabla f$$

- η defines the step size of each iteration.
- In ML, it is often referred to as the *learning rate*.

The gradient replaces the derivative.

Minimizing a Non-convex Function

$$f(\mathbf{x}) = \sin x_1 + \cos x_2$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \cos(x_1) \\ -\sin(x_2) \end{bmatrix} \in \mathbb{R}^2$$

Stopping criteria:

- Thresholding the change in function value.
- Thresholding the change in parameters, i.e. $\|\mathbf{x}_{k-1} \mathbf{x}_k\| < \delta$.

Theoretical Justification

Steepest gradient descent:

$$\mathbf{x}_k \leftarrow \mathbf{x}_{k-1} - \eta \, \nabla f$$

First order Taylor expansion:

$$f(\mathbf{x} + \mathbf{dx}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{dx}$$
$$f(\mathbf{x} - \eta \nabla f(\mathbf{x})) \approx f(\mathbf{x}) - \eta \|\nabla f(\mathbf{x})\|^2 < f(\mathbf{x})$$

Issues:

- Justification but no guarantee
- How do we choose choose η ?
- Many iterations in long and narrow valleys.

Trouble Spots

$$\mathbf{x}_0 = \begin{bmatrix} 7 \\ 6.5 \end{bmatrix} \text{ (vs } \begin{bmatrix} 7 \\ 6 \end{bmatrix} \text{)}$$

Learning Rate $\mathbf{x} - \eta_2 \nabla f$ $\mathbf{x} - \eta_1 \nabla f$

η too large:

- The first order approximation stops being valid.
- f can increase instead of decrease.

η too small:

Convergence rate will be very slow.

Partial solution:

probamos puntos en la linea del gradiente hasta encontrar el min

 Instead of using a fixed learning rate perform a line search in the direction of the gradient.

Line Search

- Search along the gradient direction for a minimum.
- This is a 1D search and therefore doable.

Python Implementation

```
def steepestGrad(objF,x0,nIt=100,eps=1e-6,step=1.0):
  for i in range(nIt):
     y0,g0=objF(x0)
                                                     # Compute the value of objF and its gradient.
     x1=x0-step*g0
                                                     # Take a step in the direction of the gradient.
     y1,=objF(x1)
                                                     # Compute the new value of objF.
     while(y1>y0):
                                                      # Check that the function value has decreased.
        if(np.allclose(x0,x1,eps)):
                                                     # Stopping condition.
          return x0
        step=step/2.0
                                                     # Reduce the step size.
       x1 = x0-step*g0
                                                     # Try again.
       y1, =objF(x1)
     x0,y0=lineSearch(objF,x0,y0,x1,y1,params) \# \arg \min \lambda \mathbf{x}_0 + (1-\lambda)\mathbf{x}_1
  return x0
                                                                        y0
                                                                       y<sub>1</sub>
```


Local Minima

The result depends critically on the starting point and is very likely to be closest local minimum, which is not usually the global one.

Zig-Zagging towards the Solution

- Successive line searches tend to be perpendicular to each other.
- They would be if we found a true local minimum each time.

Conjugate Gradient

Take the search direction to be a weighted average of the gradient vector and the previous search directions:

- 1. Start at \mathbf{x}_0 .
- 2. $\mathbf{g}_0 = \nabla F(\mathbf{x}_0)$.
- 3. For k from 0 to n-1:
 - (a) Find α_k that minimizes $f(\mathbf{x}_k + \alpha_k \mathbf{g}_k)$.
 - (b) $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{g}_k$.
 - (c) $\beta_k = \frac{\|\nabla f(\mathbf{x}_{k+1})\|^2}{\|\nabla f(\mathbf{x}_k)\|^2}$.
 - (d) $\mathbf{g}_{k+1} = -\nabla f(\mathbf{x}_{k+1}) + \beta_k \mathbf{g}_k$.
- 4. $\mathbf{x}_0 = \mathbf{x}_n$ and go to step 2 until convergence.

Python Implementation

```
def conjugateGrad(objF,x0,nIt=100,eps=1e-10,step=1.0):
    y0,g0=objF(x0)
    h0 = -g0
                                                   # g: Function gradient.
    g0 = h0
                                                  # h: Conjugate direction.
    for i in range(1,nIt):
       10=np.linalg.norm(h0)
       if(10<eps):
          print('Gradient has vanished.')
          break
       x1 = x0 + (step/l0) * h0
       y1, =objF(x1)
       while(y1>y0):
                                                    # Check that the function value has decreased
         if(np.allclose(x0,x1,eps)):
                                                    # Stopping condition.
            return x0
         step=step/2.0
         x1 = x0 + (step/np.linalg.norm(h0))*h0
         y1, =objF(x1,False)
       x1,y1=lineSearch(objF,x0,y0,x1,y1)
       y1,g1=objF(x1)
                                                    # Recompute value and gradient.
       g1 = -g1
       h1=g1
       if((i\%n)>0):
                                                    # Compute conjugate direction but reset every n iterations.
          gamma=np.dot((g1-g0),g1)/np.dot(g0,g0) # Modified Polak Ribiere, i.e. only if gamma > 0.
         if(gamma>0):
            h1=g1+gamma*h0
       # Switch variables
       g0=g1
       h0=h1
       x0=x1
```


y0=y1

In Real Life (1)

```
import scipy
def f(x):
  ..... # return the value of the function.
def g(x):
  ..... # return the gradient of the function.
x0= .... # starting point.
x1 = scipy.optimize.fmin cg(f,x0,fprime=g,epsilon=eps,maxiter=nIt)
```


In Real Life (2)

Second Order Methods

Second order Taylor expansion:

$$f(\mathbf{x} + \mathbf{dx}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{dx} + \frac{1}{2} \mathbf{dx}^T H(\mathbf{x}) \mathbf{dx}$$
$$\nabla f(\mathbf{x} + \mathbf{dx}) \approx \nabla f(\mathbf{x}) + H(\mathbf{x}) \mathbf{dx}$$

Newton method:

Solve
$$H(\mathbf{x})\mathbf{dx} = -\nabla f(\mathbf{x})$$

$$\Rightarrow \mathbf{dx} = -H(\mathbf{x})^{-1}\nabla f(\mathbf{x})$$

$$\nabla f(\mathbf{x} + \mathbf{dx}) \approx 0$$

$$f(\mathbf{x} + \mathbf{dx})) \approx f(\mathbf{x}) - \nabla f(\mathbf{x})^T H(\mathbf{x})^{-1} \nabla f(\mathbf{x})$$

$$+ \frac{1}{2} \nabla f(\mathbf{x})^T H(\mathbf{x})^{-1} H(\mathbf{x}) H(\mathbf{x})^{-1} \nabla f(\mathbf{x})$$

$$\approx f(\mathbf{x}) - \frac{1}{2} \nabla f(\mathbf{x})^T H(\mathbf{x})^{-1} \nabla f(\mathbf{x})$$

Optional

Newton in 1D

$$0 = g(x + dx) = g(x) + g'(x)dx$$
$$dx = -\frac{g(x)}{g'(x)}$$

$$x \leftarrow x - \frac{g(x)}{g'(x)}$$

Finding the Root of a Polynomial

- There is more than one root.
- The one you find depends on the starting point.

Potential Instability

• Individual steps can be very large, leading to instability.

Damped Newton

Second order Taylor expansion:

$$f(\mathbf{x} + \mathbf{dx}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{dx} + \frac{1}{2} \mathbf{dx}^T H(\mathbf{x}) \mathbf{dx}$$
$$\nabla f(\mathbf{x} + \mathbf{dx}) \approx \nabla f(\mathbf{x}) + H(\mathbf{x}) \mathbf{dx}$$

Introduce a damping term:

$$\mathbf{x} \leftarrow \mathbf{x} + \mathbf{dx} \text{ with } \begin{cases} & \text{Regular Newton Method: } H(\mathbf{x}) \mathbf{dx} = -\nabla f(\mathbf{x}) \\ & \text{Damped Newton: } (H(\mathbf{x}) + \lambda \mathbf{I}) \mathbf{dx} = -\nabla f(\mathbf{x}) \end{cases}$$

- $\lambda = 0$: Regular Newton
- $\lambda >> 0$: Gradient descent

Optional

Qualitative Result

Damped Newton converges much faster!

Python Implementation

```
def dampedNewton(objF,x,nIt=10,lbda=None):
  for i in range(nIt):
    f,g,H=objF(x)
                                     # Evaluate f, its gradient, and its Hessian.
    x = linSolve(H,g,lbda=lbda)
                                     # Solve (H + \lambda I) x = g
  return x
def linSolve(A,b,lbda=None):
  if(lbda is not None):
       A=A+lbda*np.eye(A.shape[0]) #A < A + \lambda I
                            # Solve A x = b
   x=np.linalg.solve(A,b)
  return(x)
```


Optimization in Short

- Convex functions have a global minimum.
- It can be found using either 1st or 2nd order methods. The latter is usually faster but requires computing second derivatives.
- Non-convex functions can be optimized in a similar manner but this will usually yield a local minimum.

