Higgs boson searches beyond the Standard Model

Claudio Caputo*†

Universitá degli Studi di Bari, Istituto Nazione di Fisica Nucleare E-mail: claudio.caputo@cern.ch

Paolo Francavilla[‡]

Laboratoire de Physique NuclÂt'eaire et de Hautes Energies and Institute Lagrange de Paris, E-mail: paolo.francavilla@cern.ch

VII Workshop italiano sulla fisica pp a LHC 16-18 Maggio 2016 Pisa, Italy

^{*}Speaker.

 $^{^{\}dagger}A$ footnote may follow.

[‡]This work is partially supported by the ILP LABEX (under reference ANR-10-LABX-63 and ANR-11-IDEX-0004-02).

1. Introduction

test

2. Search for neutral Higgs bosons $H/A \to au au$

3. Search for Higgs boson pair production

The Higgs boson pair production could be use to investigate both the SM and the BSM scenarios.

Searches for *non-resonant hh* production give information on the trilinear coupling present in the SM Higgs potential fields; the same searches could spot out discrepancies with respect to the SM λ_{hhh} introduced by anomalous couplings and new physics.

Similar searches in the *resonant* regime could be used to explore the BSM world; new particles, introduced by extensions in the \mathcal{L}_{SM} , could decay in a couple of Higgs SM like boson (Di-Higgs). The experience acquired during the $8 \, TeV$ data taking period at LHC for SM Higgs search is used for seek different final state configuration of the Di-Higgs.

In this paragraph an overview of the latest *resonant* results, provided by ATLAS and CMS experiment for 13 *TeV* collision, will be presented. Both collaboration have produced results with 8 *TeV* data [1][2] in many Di-Higgs decay configurations as shown in figure 1.

Figure 1: (left) ATLAS combination Higgs boson pair production in the $hh \to bb\tau\tau$, $\gamma\gamma WW^*$, $\gamma\gamma bb$, bbbb channels with $8\,TeV$ data, (right) CMS Observed and expected 95% CL upper limits on the product of cross section and the branching fraction $\sigma(gg \to X) \times B(X \to hh)$ obtained by different analyses assuming spin-0 hypothesis.

3.1 $H \rightarrow hh \rightarrow bbbb$ channel

The Higgs boson decay mode in b quarks has the highest branching ratio, this imply that a Di-Higgs final state, with each Higgs dacaying into a b pair, it's the most prominent one between the others. Although search of this kind of final state should take into account the overwhelming multi-jet background, largely produced at hadrons collider.

ATLAS and CMS collaborations analysis scan a mass range $260 \, GeV < m_H < 3000 \, GeV$, particularly CMS cover from $260 \, GeV$ to $1200 \, GeV$ and ATLAS from $500 \, GeV$ to $3000 \, GeV$. Both analysis have different strategy for different m_H ranges: low-mass region $(260 \, GeV < m_H < 400 \, GeV)$, medium-mass ragion $(400 \, GeV < m_H < 1200 \, GeV)$, boosted region $(1200 \, GeV < m_H < 3000 \, GeV)$. The categorisation is chosen to maximise to significance of the analysis.

The results are shown in figure 2.

Figure 2: (left) CMS: The observed and expected upper limits on the cross section for a spin-2 resonance $H \to hh \to bbbb$ at a 95% confidence level using data corresponding to an integrated luminosity of $2.3 fb^{?1}$ at 13 TeV using the asymptotic CL_S method, (right) ATLAS: The expected and observed upper limit for $pp \to H \to hh \to bbbb$ with fixed $\Gamma_H = 1 GeV$, at the 95% confidence level.

3.2 $H \rightarrow hh \rightarrow bb\tau\tau$ channel

The $bb\tau\tau$ channel can exploit the presence of the τ leptons to take care of the multi-jet background.

The analysis performed by CMS collaboration scans a $260 \, GeV < m_H < 900 \, GeV$ and combine three different $\tau\tau$ final state: $\mu\tau_h$, $e\tau_h$ and $\tau_h\tau_h$, where τ_h stands for the hadronic decays of a τ . The finale m_H shape is constructed using a dedicated kinematic fit procedure.

Observed and expected 95% CL upper limits are shown in figure 3.

Figure 3: Observed and expected 95% CL upper limits on $\sigma(pp \to H) \times BR(H \to hh \to bb\tau\tau)$ from the combination of the three channels as a function of the mass of the resonance m_H

3.3 $H \rightarrow hh \rightarrow bbWW$ channel

The search for resonant Higgs pair production, $H \to hh$, where one of the h decays as $h \to bb$, and the other as $H \to WW \to l?l?$ (where l is either an electron or a muon) is performed by CMS collaboration using LHC proton-proton collision data at $13\,TeV$. The analysis focuses on the invariant mass distribution of the b-jet pair, searching for a resonant-like excess compatible with the h boson mass in combination with a boosted decision tree discriminant based on kinematic information. The dominant background is tt production with smaller contributions from Drell-Yan and single top processes. Figure 4 shows the result obtained.

Figure 4: Observed and expected 95% CL upper limits on $\sigma(pp \to H) \times BR(H \to hh \to bblvlv)$

3.4 $H \rightarrow hh \rightarrow bb\gamma\gamma$ channel

The $bb\gamma\gamma$ final state is particularly promising for the DiHiggs search, as it benefits from the large branching fraction of the $h\to bb$ decay and the clean di-photon signal, due to high $m_{\gamma\gamma}$ resolution, on top of a smooth continuum di-photon background from multi-jet and multi-photon SM processes.

The analysis performed by ATLAS collaboration scans masses in the range $275 GeV < m_H < 400 GeV$. A counting approach is adopted in order to estimate the number of signal and background events.

Observed and expected 95% CL upper limits are shown in figure 5.

Figure 5: Observed and expected 95% CL upper limits on $\sigma(pp \to H) \times BR(H \to hh \to bb\gamma\gamma)$

4. Conclusions

References

- [1] ATLAS Collaboration. Searches for Higgs boson pair production in the $hh \rightarrow bb\tau\tau$, $\gamma\gamma WW^*$, $\gamma\gamma bb$, bbbb channels with the ATLAS detecto. 10.1103/PhysRevD.92.092004, Phys. Rev. D, American Physical Society, 2015
- [2] https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryResultsHIG.
- [3]