

AD-A283 253

(1)

ARMY RESEARCH LABORATORY

Thin Lithium Cobalt Dioxide Rechargeable Cells Using
Polyacrylonitrile-Based Polymer Electrolytes

Steve Slane

ARL-TR-359

July 1994

94-25573

1998

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

94 8 12 060 DTIC QUALITY INSPECTED 1

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)			2. REPORT DATE July 1994		3. REPORT TYPE AND DATES COVERED Technical Report: Jan to Nov 93		
4. TITLE AND SUBTITLE THIN LITHIUM COBALT DIOXIDE RECHARGEABLE CELLS USING POLYACRYLONITRILE-BASED POLYMER ELECTROLYTES			5. FUNDING NUMBERS PE: 612705 PR: 52MP02P				
6. AUTHOR(S) Steve Slane							
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army Research Laboratory (ARL) Electronics and Power Sources Directorate (EPSD) ATTN: AMSRL-EP-PB Fort Monmouth, NJ 07703-5601			8. PERFORMING ORGANIZATION REPORT NUMBER ARL-TR-359				
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING AGENCY REPORT NUMBER				
11. SUPPLEMENTARY NOTES							
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.			12b. DISTRIBUTION CODE				
13. ABSTRACT (Maximum 200 words) Rechargeable Li/LiCoO ₂ cells with polymer electrolytes have achieved 100 mAh/g capacity and over 75 charge/discharge cycles with an average discharge potential of 3.7 volts. Solid-state polymer lithium electrolytes based on poly(acrylonitrile) (PAN) have achieved room temperature conductivities of 1x10 ⁻³ siemens per cm, equal to that of some liquid organic electrolytes. Polymer films of ethylene carbonate, propylene carbonate, PAN, and lithium salts have yielded conductivities as high as 4x10 ⁻⁴ siemens per cm at 25 deg C. These high conductivities made the use of polymer electrolytes a viable possibility in advanced lithium batteries. Reported here are the film preparation techniques, conductivities from -70 to 70 deg C, and discharge curves of Li/LiCoO ₂ cells.							
14. SUBJECT TERMS Rechargeable battery; lithium; polymer electrolyte; ionic conductivity					15. NUMBER OF PAGES 19		
					16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT Unclassified		18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified		19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified		20. LIMITATION OF ABSTRACT UL	

CONTENTS

	PAGE
INTRODUCTION	1
EXPERIMENTAL	2
RESULTS AND DISCUSSION	3
CONCLUSIONS	11
REFERENCES	11

FIGURES

FIGURE 1. Arrhenius plot of conductivities of EC:PC:PAN:LiX electrolytes where EC + PC:LiX is 17.6:1.	4
FIGURE 2. Arrhenius plot of EC:PC:PAN:LiAsF ₆ electrolyte conductivities.	5
FIGURE 3. Cyclic voltammogram of Li/EC:PC:PAN:LiAsF ₆ /LiCoO ₂ cell with 1.2 coulomb (277 mAh/g) capacity.	6
FIGURE 4. Discharge curves of a Li/LiCoO ₂ cell with 40EC:34.75PC:21PAN:4.25LiAsF ₆ , charged and discharged at 0.25 mA/cm ² .	8
FIGURE 5. Discharge curves of a Li/LiCoO ₂ cell with 44.3EC:39PC:12PAN:4.7LiAsF ₆ , charged and discharged at 0.25 mA/cm ² .	9
FIGURE 6. Discharge curves at various rates of a Li/LiCoO ₂ cell with 44.3EC:39PC:12PAN:4.7LiAsF ₆ , charged at 0.5 mA/cm ² .	10

TABLES

TABLE 1. Li/LiCoO ₂ Discharge Capacities at 0.25 mA/cm ² and 25°C.	7
---	---

INTRODUCTION

The use of solid polymer electrolytes (SPE's) with a high energy cathode material such as LiCoO_2 in rechargeable lithium batteries is currently being widely investigated for both commercial and military applications. Polymer electrolytes can be prepared into very thin films possessing large surface area yielding high power densities. An energy advantage of a solid flexible electrolyte is its ability to enable the design of more volume efficient battery configurations. In an electrochemical cell, especially in a reversible cell, a flexible electrolyte can accommodate the volume changes that occur with charge/discharge cycles. A solid electrolyte can enable the development of bipolar batteries without intercell current leakage. Polymer electrolytes may also increase cell safety by preventing ignition by acting as a shutdown separator, if thermal runaway should occur within a cell. A thin Li^+ ion conducting polymer film acts as both the electrolyte and a separator between the lithium anode and a lithium insertion cathode. The use of high energy cathode films of reversible compounds such as LiCoO_2 , LiNiO_2 , LiMn_2O_4 , V_2O_5 , or V_6O_{13} with thin lithium foil anodes and the structural flexibility of polymer electrolytes makes the lithium polymer battery a promising candidate for advanced battery systems for electric vehicles (EV) or consumer/military electronics applications.

The use of Li_xCoO_2 ($0 < x < 1$) as a lithium intercalating electrode was first reported by Mizushima et.al. (1). LiCoO_2 has a layered rock-salt structure and can theoretically deintercalate one mole of lithium per mole of oxide. In practice, the reversible range at ambient temperatures is ($1 < x < 0.5$) in Li_xCoO_2 . Due to the high Li^+ ion mobility in LiCoO_2 , Li/organic electrolyte/ LiCoO_2 cells can be cycled more than 100 times at current densities of 1 to 10 mA/cm^2 with average discharge potentials of 3.7 to 3.9 volts.(2,3)

One of the first polymer electrolyte chemistries consisted of poly(ethylene oxide) PEO-LiX complexes (4,5) which need to operate at around 100°C . New multiphase systems involve adding plasticizing solvents to PEO-LiX or trapping liquid electrolyte solutions in a polymer matrix to form a "gel" electrolyte. The latter more "liquid-like" chemistries can operate at room temperature and therefore are of interest for further research. One of the basic fundamental problems in the development of solid state ionic materials based on polymers is the conductivities of these materials. Recently, room temperature conductivities as high as $10^{-3} \text{ S cm}^{-1}$ have been reported by Abraham and Alamgir (6) for poly(acrylonitrile) (PAN) based lithium salt complexes. It is this gel electrolyte chemistry utilized in Li/ LiCoO_2 laboratory cells that has been investigated.

EXPERIMENTAL

The preparation of the solid gel electrolytes involved the immobilization of LiX in ethylene carbonate (EC) and propylene carbonate (PC) mixtures with PAN. The LiAsF₆ (Lithco "Lectro-salt") and LiN(CF₃SO₂)₂ (3M) were dried under vacuum at 60°C for 24 h. LiClO₄ (Alfa reagent grade) was recrystallized in distilled water then dried under vacuum at 150°C for 24 h. PC (Burdick and Jackson) was dried with type 4A molecular sieves for 48 h then distilled under vacuum. EC (Fluka AG) was fractionated under vacuum. Dimethyl carbonate (DMC) (Burdick and Jackson) was fractionated in an argon atmosphere. Karl Fisher titration for EC, PC, and DMC indicated water contents of < 24 ppm. Poly(acrylonitrile) (Polyscience Inc.) with an average molecular weight of 150,000 was dried under vacuum at 60°C for 48 h. Molecular sieves, type 3A, were ball-milled for 24 h then dried under vacuum at 60 °C for 24 h.

The liquid electrolyte EC:PC:LiX was prepared in a vial with a stirring bar. PAN powder was then added and the mixture stirred to ensure wetting of the PAN. The mixture was heated slowly in an oil bath to 100°C, avoiding overheating and decomposing the PAN. The mixture turned to a clear highly viscous gel and was cast between glass plates, with 0.25 mm spacers, and allowed to cool. The resulting polymer electrolyte was an elastomeric mechanically stable film. Two general film compositions were prepared with mole percentages of 40EC:34.75PC:21PAN:4.25LiAsF₆ (17.6:1 EC + PC:LiAsF₆) and 38EC:33PC:21PAN:8LiAsF₆ (8.8:1 EC + PC:LiAsF₆). Variations on the 17.6:1 film include the addition of 5 weight percent molecular sieves, the mixture of DMC with EC and PC, and the reduction of PAN content to 12 mole percent. Chemical storage, film casting, and cell assemblies were performed in a Vacuum Atmospheres Company argon-filled dry box.

Electrolyte conductivities were determined from ac impedance measurements using an EG&G PAR model 388 impedance system with a frequency range of 5 Hz to 1000 kHz. The conductivity measurements were performed with a test cell with an electrode configuration of SS/SPE/SS. A thermocouple was in close proximity to the SPE in the cell. The cell assembly was inserted into a wide-mouthed glass reaction vessel packed with molecular sieves. Argon was bubbled through the vessel. The temperature testing (70°C to -70°C) was performed in a Tenney environmental chamber.

Thin film electrodes of LiCoO₂ were prepared by a modified spray sol-gel method which involved the thermal decomposition of organometallic starting materials on a hot aluminum substrate (7). Resulting film thickness was approximately 2 μm. X-ray diffraction confirmed the product to be LiCoO₂. Due to the very thin nature of the electrode, no electrolyte was required in the cathode

bulk. Lithium, 5 mil, was used as the anode. The cell stack of LiCoO₂ / electrolyte / Li was sandwiched between stainless steel current collectors in a Teflon screw type cell. Electrode areas were approximately 0.7 cm². They were cycled with ECO galvanostats between 4.2 and 3.25 volts at 25°C and the data collected with a Nicolet model 310 digital oscilloscope.

RESULTS AND DISCUSSION

For polymer electrolytes to be of practical use, Li-ion mobility must be high enough to enable useful rate capabilities in lithium batteries. The PAN-based electrolyte films demonstrate conductivities approaching that of the liquid and a significant increase in ion mobility over the PEO-based electrolytes. It is this result, first demonstrated by Abraham and Alamigir for this chemistry (6), that makes a mechanically stable free standing film a possible battery electrolyte. Having established that PAN-based films can be prepared with PC, EC mixtures and produce ionic conductivities close to liquid organic electrolytes, further studies of Li-ion mobility in these types of electrolytes were performed.

The arrhenius plots in Figure 1 show the conductivities of three LiX salt complexes, LiAsF₆ and LiClO₄ with the composition 40EC:34.75PC:21PAN:4.25LiX and LiN(CF₃SO₂)₂ with a composition of 56.5EC:23PC:16PAN:4.5LiN(CF₃SO₂)₂. The solvent to LiX ratio in all three electrolytes is 17.6:1. As in liquid organic systems the LiAsF₆ electrolyte produced the highest conductivity. The imide salt, known as a high temperature stabilizing salt, demonstrated poor conductivity at low temperatures. This is believed to be due to precipitation of the salt from the EC:PC mixture resulting in loss of lithium ions. In Figure 2, ionic conductivities of three compositional variations of the EC:PC:PAN:LiAsF₆ electrolyte are shown. Changing the solvent to LiAsF₆ ratio from 17.6:1 to 8.8:1 (i.e., doubling the amount of salt while holding the PAN concentration at 21 mole percent) lowers the conductivity over the whole temperature range. Lowering the amount of PAN from 21 mole percent to 12 mole percent increased the conductivity at lower temperatures. This is expected since the film with less polymer is more liquid-like. This "wetter" electrolyte still had the physical integrity of a solid film. Both these effects on ionic mobility are due to viscosity.

In Figure 3, a cyclic voltammogram of the second cycle, with a sweep rate of 2 mV/s, demonstrates the electrochemical window between 2.5 and 4.3 volts. This is a typical Li/LiCoO₂ voltammogram, with the cell achieving approximately 0.45 F/mol on charge and discharge. The dotted line on the graph represents a sweep of Li/EC:PC:PAN:LiAsF₆/Al resulting in negligible current in the voltage range of 2.0 to 4.5 volts. It can be concluded from these voltammograms that this polymer electrolyte is stable in the operating voltages of a Li/LiCoO₂ cell.

Figure 1. Arrhenius plot of conductivities of EC:PC:PAN:LiX electrolytes where EC+PC:LiX is 17.6:1.

Figure 2. Arrhenius plot of EC:PC:PAN:LiAsF₆ electrolyte conductivities.

Figure 3. Cyclic voltammogram of Li/EC:PC:PAN: LiAsF_6 /LiCoO₂ cell with 1.2 coulomb (277 mAh/g) capacity.

Discharge curves for a cell with 40EC:34.75PC:21PAN:LiAsF₆ electrolyte are displayed in Figure 4. The figure shows that the cell loses half its capacity in fifty cycles. Capacities of cells with other polymer electrolyte chemistries are shown in Table 1. Changing the solvent to salt ratio to 8.8:1 did not improve cycling. The addition of DMC, in liquid organic electrolytes makes the solvent more stable with lithium metal and improves lithium cycling efficiency (3). In the polymer the addition of DMC (35EC:30PC:9.75DMC:21PAN:4.25LiAsF₆) lowers the conductivity at lower temperatures due to its high melting point but the room temperature charge/discharge behavior is not as good as the film without DMC. The addition of ceramic materials such as γ -LiAlO₂ dispersed in PEO-based polymer electrolytes has been reported to increase ionic conductivity and reduce interfacial corrosion (8). It is believed the LiAlO₂ particles decreased the polymer crystallinity and absorbed impurities such as water that are reactive with lithium. In this study, type 3A molecular sieves were ground and dispersed in a mixture of 40EC:34.75PC:21PAN:4.25LiAsF₆ in the amount of 5 weight percent. The effect on conductivity was to lower slightly the ionic mobility at higher temperatures. Cells with this composite film also did not cycle as well as the baseline 17.6 :1 electrolyte. In general, the change in salt concentration, the addition of DMC, and the composite film formation with the sieves had little effect on conductivity at room temperature and above and no enhanced cycling performance was observed.

TABLE 1. Li/LiCoO₂ Discharge Capacities at 0.25 mA/cm² and 25°C.

ELECTROLYTE	CYCLE:	F/mol		
		1	25	50
EC:PC:PAN:LiAsF ₆ (21%PAN)		0.46	0.32	0.24
EC:PC:DMC:PAN:LiAsF ₆		0.48	0.35	0.26
EC:PC:PAN:LiAsF ₆ w/3A sieves		0.44	0.36	0.27
EC:PC:PAN:LiAsF ₆ (12%PAN)		0.48	0.46	0.42
				0.36

A significant improvement in cycling capacity is observed with the 12 mole percent PAN film (44.3EC:39PC:12PAN:4.7LiAsF₆). In Figure 5, a cell after 50 charge/discharge cycles is still delivering 0.42 F/mol and at 100 cycles only a 25% capacity loss is observed, both with excellent voltage retention. In Figure 6, the effect of current density on the discharge profile is shown. Even at 2 mA/cm² only a small loss in capacity and a slightly lower operating voltage is observed.

**Figure 4. Discharge curves of a Li/LiCoO₂ cell with
40EC:34.75PC:21PAN:4.25LiAsF₆, charged and
discharged at 0.25 mA/cm².**

Figure 5. Discharge curves of a Li/LiCoO₂ cell with 44.3EC:39PC:12PAN:4.7LiAsF₆, charged and discharged at 0.25 mA/cm².

Figure 6. Discharge curves at various rates of a Li/LiCoO₂ cell with 44.3EC:39PC:12PAN:4.7LiAsF₆, charged at 0.5 mA/cm².

CONCLUSIONS

It can be concluded from this study that solid gel polymers based on PAN and LiX salt complexes have adequate ionic conductivities to be used in lithium rechargeable batteries. Cycle performance was best with the electrolyte film that contained less PAN (12%). While improving conductivity and cycling, this film still maintained the physical integrity of a solid film. Future work will concentrate on improved electrolytes and thicker (greater capacity) cathodes which include polymer electrolyte in the composition.

REFERENCES

1. K. Mizushima, P.C. Jones, P.T. Wiseman, and J.B. Goodenough, *Mater. Res. Bull.*, 15, 783, (1980).
2. E. Plichta, M. Salomon, S. Slane, and M. Uchiyama, *J. Power Sources*, 21, 25 (1987).
3. E. Plichta, S. Slane, M. Uchiyama, M. Salomon, D. Chua, W.B. Ebner, and H.W. Lin, *J. Electrochem. Soc.*, 136, 1865 (1989).
4. F.M. Gray, Solid Polymer Electrolytes, VCH Publishers Inc., New York, 1991.
5. J.R. MacCallum and C.A. Vincent, eds. Polymer Electrolytes Reviews, Vol. 2, Elsevier Applied Science, London, 1989.
6. K.M. Abraham and M. Alamgir, *J. Electrochem Soc.*, 137, 1657 (1990).
7. E. Plichta, W.K. Behl, D. Vujic, W.H.S. Chang, and D.M. Schleich, *J. Electrochem. Soc.*, 139, 1509 (1992).
8. F. Croce, F. Capuano, A. Selvaggi, and B. Scrosati, *J. Power Sources*, 32, 381 (1990).

ARMY RESEARCH LABORATORY
ELECTRONICS AND POWER SOURCES DIRECTORATE
CONTRACT OR IN-HOUSE TECHNICAL REPORT
MANDATORY DISTRIBUTION LIST

June 1994
Page 1 of 4

Defense Technical Information Center*
ATTN: DTIC-OCC
Cameron Station (Bldg 5)
Alexandria, VA 22304-6145
(*Note: Two copies will be sent from
STINFO office, Fort Monmouth, NJ)

Commander, CECOM
R&D Technical Library
Fort Monmouth, NJ 07703-5703
(1) AMSEL-IM-BM-I-L-R (Tech Library)
(3) AMSEL-IM-BM-I-L-R (STINFO ofc)

Director
US Army Material Systems Analysis Actv
ATTN: DRXSY-MP
(1) Aberdeen Proving Ground, MD 21005

Commander, AMC
ATTN: AMCDE-SC
5001 Eisenhower Ave.
(1) Alexandria, VA 22333-0001

Director
Army Research Laboratory
ATTN: AMSRL-D (John W. Lyons)
2800 Powder Mill Road
(1) Adelphi, MD 20783-1145

Director
Army Research Laboratory
ATTN: AMSRL-DD (COL William J. Miller)
2800 Powder Mill Road
(1) Adelphi, MD 20783-1145

Director
Army Research Laboratory
2800 Powder Mill Road
Adelphi, MD 20783-1145
(1) AMSRL-OP-CI-AD (Tech Pubs)
(1) AMSRL-OP-CI-AD (Records Mgt)
(1) AMSRL-OP-CI-AD (Tech Library)

Directorate Executive
Army Research Laboratory
Electronics and Power Sources Directorate
Fort Monmouth, NJ 07703-5601
(1) AMSRL-EP
(1) AMSRL-EP-T (M. Howard)
(1) AMSRL-OP-RM-FM
(22) Originating Office

Advisory Group on Electron Devices
ATTN: Documents
2011 Crystal Drive, Suite 307
(2) Arlington, VA 22202

**ARMY RESEARCH LABORATORY
ELECTRONICS AND POWER SOURCES DIRECTORATE
SUPPLEMENTAL DISTRIBUTION LIST
(ELECTIVE)**

June 1994
Page 2 of 4

- (1) Deputy for Science & Technology
Office, Asst Sec Army (R&D)
Washington, DC 20310

(1) HQDA (DAMA-ARZ-D/
Dr. F.D. Verderame)
Washington, DC 20310

(1) Director
Naval Research Laboratory
ATTN: Code 2627
Washington, DC 20375-5000

(1) Cdr, PM JTFUSION
ATTN: JTF
1500 Planning Research Drive
McLean, VA 22102

(1) Rome Air Development Center
ATTN: Documents Library (TILD)
Griffiss AFB, NY 13441

(1) Dir, ARL Battlefield
Environment Directorate
ATTN: AMSRL-BE
White Sands Missile Range
NM 88002-5501

(1) Dir, ARL Sensors, Signatures,
Signal & Information Processing
Directorate (S3I)
ATTN: AMSRL-SS
2800 Powder Mill Road
Adelphi, MD 20783-1145

(1) Dir, CECOM Night Vision/
Electronic Sensors Directorate
ATTN: AMSEL-RD-MV-D
Fort Belvoir, VA 22060-5677

(1) Dir, CECOM Intelligence and
Electronic Warfare Directorate
ATTN: AMSEL-RD-IEW-D
Vint Hill Farms Station
Warrenton, VA 22186-5100

(1) Cdr, Marine Corps Liaison Office
ATTN: AMSEL-LN-MC
Fort Monmouth, NJ 07703-5033

ELECTRONICS AND POWER SOURCES DIRECTORATE
SUPPLEMENTAL CONTRACT DISTRIBUTION LIST
(ELECTIVE)

Page 3 of 4

Dow Chemical Company
M.E. Pruitt Research Center
Midland, MI 48674
ATTN: Mr. Don Dix

E.I. DuPont
P.O. Box 2700
Richmond, VA 23261
ATTN: Dr. Thomas K. Bednarz

Michigan Molecular Institute
1910 West St., Andrews Road
Midland, MI 48640
ATTN: Dr. Robert Hotchkiss

E.I. DuPont, Electronics Dept
BMP21-2126
P.O. Box 80021
Wilmington, DE 19880-0021
ATTN: Dr. Roger O. Uhler

Westinghouse Electric Corp.
R&D Center
1310 Beulah Road
Pittsburgh, PA 15235
ATTN: Dr. L. Mandlkorn

Celanese Hoechst
86 Morris Avenue
Summit, NJ 07901
ATTN: Bill Timmons

3M Company
3M Center
St. Paul, MN 55144-1000
ATTN: Dr. Dave Redmond

Eni Chem Americas, Inc.
2000 Princeton Park Corp Ctr
Monmouth Junction, NJ 08852
ATTN: Dr. Alex Jen

Sprague
Film Capacitor Group
Longwood, FL 32750
ATTN: Dr. Mark Carter

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109
ATTN: Dr. S.P.S. Yen

3M Company
3M Center
St. Paul, MN 55144-1000
ATTN: Dr. E.F. Hampl

Sandia National Laboratories
Passive Components Division 2552
P.O. Box 5800
Albuquerque, NM 87185
ATTN: Dr. James O. Harris

Aerovox, Inc.
740 Belleville Ave.
New Bedford, MA 02745
ATTN: Tim Egan

General Electric
Capacitor Division
381 Upper Broadway
Fort Edward, NY 12828
ATTN: Larry Bock

General Electric
Capacitor and Power Division
381 Upper Broadway
Fort Edward, NY 12828
ATTN: Don Nicols-MESS

3M Company
Federal Systems Research &
Development
Building 224-2S-25
St. Paul, MN 55144
ATTN: Ed Westlund

ABB Power T&D Company
300 North Curry Pike
Bloomington, IN 47402
ATTN: George S. Papadopolous

Maxwell Laboratories, Inc.
888 Balboa Avenue
San Diego, CA 92123-1506
ATTN: Joel B. Ennis

Defense Nuclear Agency
6801 Telegraph Road
Alexandria, VA 22310
ATTN: John Farber

Commander
U.S. Army AMCCOM, ARDEC
ATTN: SMCAR-FSP-E/E.J. Zimpo
Bldg 1530
Picatinny Arsenal, NJ 07801

Allied-Signal, Inc.
P.O. Box 1987R
Morristown, NJ 07960
ATTN: Dr. Cheng-Jiu Wu

Exfluor Research Company
P.O. Box 7807
Austin, TX 78713
ATTN: Dr. H. Kawa

Defense Nuclear Agency
6801 Telegraph Road
Alexandria, VA 22310
ATTN: Janet Meiserhelder

GE Corporate Research & Development
K1-2S86, P.O. Box 8
Schenectady, NY 12301
ATTN: Dr. Clive Reed