Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 1: lista M 2 11 października 2017 r.

M2.1. | 1 punkt | Dla danych: naturalnej liczby t oraz niezerowej liczby rzeczywistej $x = s m 2^c$, gdzie s jest znakiem liczby x, c – liczbą całkowitą, a m – liczbą z przedziału [1, 2), o rozwinięciu dwójkowym $m=1+\sum_{k=1}^{\infty}e_{-k}2^{-k}$, w którym $e_{-k}\in\{0,1\}$ dla $k\geqslant 1$, definiujemy zaokrąglenie liczby x do t+1cyfr za pomocą wzoru

$$rd(x) := s \,\bar{m} \, 2^c,$$

gdzie $\bar{m} = 1 + \sum_{k=1}^{t} e_{-k} 2^{-k} + e_{-t-1} 2^{-t}$.

Wykazać, że

$$|\operatorname{rd}(x) - x| \leq 2^{c} \mathsf{u},$$

gdzie $u := 2^{-t-1}$ jest precyzją arytmetyki.

Wywnioskować stąd, że błąd względny zaokrąglenia liczby x nie przekracza precyzji arytmetyki u.

1 punkt $|\operatorname{Zał\acute{o}zmy},$ że $|\alpha_j|\leqslant \mathsf{u}$ i $\rho_j\in\{-1,+1\}$ dla $j=1,2,\ldots,n$ oraz że $n\mathsf{u}<1,$ gdzie $\mathsf{u}:=2^{-t-1}$. M2.2.Wykazać, że zachodzi równość

$$\prod_{j=1}^{n} (1 + \alpha_j)^{\rho_j} = 1 + \theta_n,$$

gdzie θ_n jest wielkością spełniającą nierówność $|\theta_n| \leqslant \gamma_n$, gdzie z kolei

$$\gamma_n := \frac{n\mathsf{u}}{1-n\mathsf{u}}.$$

1 punkt | Załóżmy, że $|\alpha_i| \le u$ dla $j = 1, 2, \dots, n$ oraz że nu < 0.01. Wykazać, że zachodzi równość

$$\prod_{j=1}^{n} (1 + \alpha_j) = 1 + \eta_n,$$

gdzie

$$|\eta_n| \leqslant 1.01nu$$
.

- 1 punkt | Wykazać, że jeśli x, y są liczbami maszynowymi takimi, że $|y| \leq \frac{1}{2}u|x|$, to f(x+y) = x.
- M2.5. | 1 punkt | Znaleźć liczbę maszynową x (double, w standardzie IEEE 754) z przedziału (1,2), dla $\overline{\text{której fl}(x \cdot \text{fl}(1/x))} \neq 1.$
- M2.6. | 1 punkt | Zaproponować sposób uniknięcia utraty cyfr znaczących wyniku w związku z obliczaniem wartości wyrażeń

(a)
$$e^x - e^{-2x}$$
; (c) $\cos^2 x - 1$.

M2.7. 1 punkt Zbadać uwarunkowanie zadania obliczania wartości funkcji f, podanej wzorem $\overline{(\mathbf{a})}$ $f(x) = 1/(x^2 + c)$, gdzie c jest stałą; $f(x) = (1 - \cos x)/x^2$ dla $x \neq 0$.