МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра ПЗ

3BIT

До лабораторної роботи № 5

на тему: "Складення та відлагодження циклічної програми мовою асемблера мікропроцесорів x86 для Windows"

з дисципліни: "Архітектура комп'ютера"

Лектор:
доц. каф. ПЗ
Крук О.Г.
Виконав:
ст. гр. ПЗ-22
Солтисюк Д.А.
Прийняв: доц. каф. ПЗ Крук О.Г.
«» 2022 p.
Σ=

Тема: складення та відлагодження циклічної програми мовою асемблера мікропроцесорів x86 для Windows.

Мета: ознайомитись на прикладі циклічної програми з основними командами асемблера; розвинути навички складання програми з вкладеними циклами; відтранслювати і виконати в режимі відлагодження програму, складену відповідно до свого варіанту; перевірити виконання тесту.

Варіант: 22

22	(5 × 8)	1. Обчисліть скалярний добуток 5-го і 4-го рядків. 2. Обчисліть кількість і суму елементів 5-го стовпця, які	63	a_i < b або a_i >= c
		задовільняють вказаній умові.		

ТЕОРЕТИЧНІ ВІДОМОСТІ

До регістрів загального призначення належать EAX, EBX, ECX, EDX, EBP, EDI та ESI.

EAX (ассиmulator – акумулятор) адресується як 32-бітовий (EAX), 16-бітовий (AX) або як 8-бітовий регістр (AH та AL). При записуванні в 8- або 16-бітовий регістр решта бітів регістра EAX не змінюється. Регістр-акумулятор EAX/AX/AL використовується як обов'язковий операнд таких інструкцій, як множення, ділення, двійково-десяткова корекція тощо. В мікропроцесорах 80386 — Pentium 4 регістр EAX може використовуватись для непрямої адресації пам'яті.

EBX (base index – вказівник бази) адресується як EBX, BX, BH або BL. В усіх поколіннях мікропроцесорів він використовується як вказівник. У мікропроцесорах 80386 і вище регістр EBX також може використовуватись для непрямої адресації до пам'яті.

ECX (count – лічильник) адресується як ECX, CX, CH або CL, використовується як лічильник в інструкціях циклів, зсуву, циклічного зсуву та рядкових інструкціях з префіксами повторення REP/REPE/REPNE. В мікропроцесорах 80386 – Pentium 4 регістр ECX також може використовуватись для непрямої адресації пам'яті.

EDX (data – дані) адресується як EDX, DX, DH або DL. Його ще називають розширювачем акумулятора, в командах множення і ділення він використовується в парі з EAX/AX. У мікропроцесорах 80386 і вище регістр EDX може використовуватись як вказівник при адресації до пам'яті.

EBP (base pointer – вказівник бази) адресується як EBP, BP і в обох варіантах використовується як вказівник бази.

EDI (destination index – вказівник приймача) адресується як EDI та DI, в рядкових інструкціях використовується як вказівник операнда-приймача.

ESI (sourse index – вказівник джерела) адресується як ESI та SI, у рядкових інструкціях адресує операнд-джерело.

Інструкції регістрової адресації

Інструкція	Розмірність	Дія
MOV AL, BL MOV CH, CL MOV AX, CX MOV SP, BP MOV DS, AX MOV SI, DI MOV BX, ES M O V ECX,EBX M O V E S P, EDX	Розмірність Байт Байт Слово Слово Слово Слово Слово Слово Подвійне слово Подвійне	Копіює BL в AL Копіює CL в CH Копіює CX в AX Копіює BP в SP Копіює AX в DS Копіює DI в SI Копіює ES в BX Копіює EBX в ECX Копіює EDX в ESP Недопустима інструкція - копіювання сегментного регістра в сегментний регістр заборонено
/	, , ,	регістра в сегментний регістр заборонено
MOV ES, DS	-	Інструкція недопустима - операнди мають різну розмірність
MOV BL, DX MOV <mark>CS, AX</mark>	- -	Недопустима інструкція - сегментний регістр коду не може бути приймачем

Інструкції прямої адресації

Інструкція	Розмі	Дія
	рність	
MOV AL, NUMBER MOV AX, COW MOV EAX, WATER MOV NEWS, AL MOV THERE, AX MOV HOME, EAX MOV CH, [2000H], AL MOV CH, [1000H] MOV CH, [1000H] MOV CH, [1000H] MOV ES, DATA6 MOV DATA7, BP MOV DATA1, EAX MOV EDI, SUM1	Байт Слово Подвій не слово Байт Слово Подвій не слово Байт Байт Байт Слово Слово Слово Слово Подвій не слово Подвій не слово	Копіює в AL байт з сегмента даних за зміщенням NUMBER Копіює в AX слово з сегмента даних за зміщенням COW Копіює в EAX подвійне слово з сегмента даних за зміщенням WATER Копіює AL в сегмент даних за зміщенням NEWS Копіює AX в сегмент даних за зміщенням HOME Копіює EAX в сегмент даних за зміщенням HOME Копіює AL в додатковий сегмент даних за зміщенням 2000Н Копіює в CH байт з сегмента даних, розташований за зміщенням DOG Копіює в CH байт з сегмента даних, розташований за зміщенням 1000Н Копіює в ES слово з сегмента даних, розташоване за зміщенням DATA6 Копіює BP в сегмент даних за зміщенням DATA7 Копіює SP в сегмент даних за зміщенням NUMBER Копіює EAX в сегмент даних за зміщенням DATA1 Копіює в EDI подвійне слово, розташоване в сегменті даних за зміщенням SUM1

Інструкції непрямої адресації

Інструкція	Розмі	Дія
	рність	

EDW1	MOV CX	′	. Копіює в СХ слово, розташоване в сегменті даних за
[BX]		Байт	зміщенням, заданим в ВХ
	MOV [BP]	, Байт	Копіює DL в сегмент стека за зміщенням, заданим в BP
DL*			Копіює ВН в сегмент даних за зміщенням, заданим в DI
	MOV [DI], BH		Помилка - передача даних між комірками пам'яті
	MOV [DI]	, Байт	підтримується тільки для рядкових інструкцій
[BX]		Подвій	Копіює в AL байт з сегмента даних, зміщення якого задано
		не слово	регістром EDX
	M O V A L	,	Копіює в ЕСХ подвійне слово з сегмента даних, зміщення
[EDX]			якого задано в ЕВХ
	MOV ECX	,	
[EBX]			

Інструкції умовного переходу

jb / jnae C = 1 equal) jbe / jna C = 1 aбо Z = 1 Беззнакове менше (below) jc C = 1 Беззнакове менше або рівне (below о рівне (below о рівне / разнакове менше або рівне / разнакове більше або рівне (greater than о рівне / разнакове менше або рівне (greater than о рівне / разнакове менше або рівне (greater than о рівне / разнакове менше або рівне (less than о рівне / разнакове менше або рівне (less than о рівне / разнакове менше або рівне (less than о рівне / разнакове менше або рівне (less than о рівне / разнакове менше або рівне (less than о рівне / разнакове менше або рівне (less than о разнакове менше або рівне (разнакове менше або рівне (разнако	Команда	Значення прапорців для переходу	Умова переходу
	jae / jnb jb / jnae jbe / jna jc je / jz jg / jnle jge / jnl jl / jnge jle / jng jnc jne / jnz jno jns jnp / jpo jo jp / jpe js jcxz	C = 0 C = 1 C = 1 and $C = 1C = 1C = 1C = 1C = 0C = 0$	Беззнакове більше або рівне (above or equal) Беззнакове менше (below) Беззнакове менше або рівне (below or equal) Встановлений прапорець переносу Рівне / Нуль (equal / zero) Знакове більше (greater than) Знакове більше або рівне (greater than or equal) Знакове менше (less than) Знакове менше або рівне (less than or equal) Немає переносу Не рівне / Не нуль (not equal / not zero) Немає переповнення Немає знака (no sign) Немає паритету (по рагіту) Встановлений прапорець переповнення Встановлений прапорець знака (sign) Вміст регістра СХ дорівнює нулю

Індивідуальне завдання

22	(5×8)	1. Обчисліть скалярний добуток 5-го і 4-го рядків. 2.	-4	63	$a_i < b$ або $a_i >= c$
		Обчисліть кількість і суму елементів 5-го стовпця, які	6		
		задовільняють вказаній умові.			

Хід роботи

Приклад циклічної програми:

.586P

; плоска модель пам'яті

.MODEL FLAT, STDCALL

·,-----

; сегмент даних

DATA SEGMENT

Num1 DD 17, 3, -51, 242, -113 ; Оголошення масиву чисел, кожне з яких займає

подвійне слово

N DD 5 ; Кількість елементів в масиві Num1

Sum DD 0 ; Сума елементів масиву Num1

_DATA ENDS

; сегмент коду TEXT SEGMENT

START:

lea EBX, Num1 ; Завантажуємо в BX адресу першого елемента масиву Num1

mov ECX, N ; Завантажуємо в СХ кількість елементів в масиві Num1

mov EAX, 0 ; В АХ буде сума елементів масиву Num1

M1: add EAX, [EBX] ; Додаємо до АХ поточний елемент масиву Num1

аdd EBX, 4 ; Формуємо адресу наступного елемента масиву Num1 loop M1 ; Декрементує СХ і якщо СХ не дорівнює нулю, то на М1

mov Sum, EAX ; Цикл завершений. Зберігаємо обчислену суму в змінній Sum

RET ; Buxiд

_TEXT ENDS END START

Значення регістру ЕАХ під час виконання

Перед ітераціями:

EAX = 00000000

Ітерація 1:

EAX = 00000011

Ітерація 2:

EAX = 00000014

Ітерація 3:

EAX = FFFFFFE1

Ітерація 4:

EAX = 0000000D3

Ітерація 5:

EAX = 00000062

Значення в регістрі ЕАХ відповідає значенню суми в 16-ковому форматі:

```
11_{16}=17_{10}
14_{16}=20_{10}=17+3
FFFFFFE1<sub>16</sub>=-31<sub>10</sub>=17+3-51
D3<sub>16</sub>=211<sub>10</sub>=17+3-51+242
62<sub>16</sub>=98<sub>10</sub>=17+3-51+242-113
```

Код основної програми:

```
; vim: ft=masm
      .586P
      .MODEL FLAT, STDCALL
      DATA SEGMENT
     m
                        DD 7
                        DD 8
     n
                        DD -46
      a
      b
                        DD 63
      tempColumn
                        DD 0
     scalarProduct DD 0
      condPickedElements DD 0
      condPickedSum DD 0
     matrix
                        DD 1, 18, 8, 4, 15, -19, 4, -13
     DD
                        1, -1, 7, 20, -2, -1, -8, -19
                         3, 8, 11, 14, -4, 1, 14, 2
     DD
     DD
                        -9, -5, 20, -16, 4, -12, 4, -1
     DD
                        -6, 4, -8, 3, 13, 2, 11, 13
     DD
                        19, -15, 13, 17, -12, -9, 10, -13
                        -1, 3, 17, 10, 9, 2, 16, -18
     transposedMatrix DD 56 DUP(?)
      DATA ENDS
      TEXT SEGMENT
START:
      lea esi, matrix; source index
     lea edi, transposedMatrix; destination index
     mov ebx, m; outer loop
OUTER LOOP:
     mov ecx, n; inner loop
INNER LOOP:
     mov eax, [esi]
     mov [edi], eax
      add esi, 4; move pointer by 1 element
      add edi, 28; 7(m) * 4(bytes) move pointer to element of the next row
      dec ecx
      jnz INNER LOOP
     add tempColumn, 4
     lea edi, transposedMatrix
     add edi, tempColumn
      dec ebx
      jnz OUTER_LOOP
SCALAR PREPARE:
      lea esi, [matrix+16]
```

```
lea edi, [matrix+20]
      mov ecx, m
SCALAR_COMPUTATIONS:
      mov eax, [esi]
      imul eax, [edi]
      add scalarProduct, eax
      add esi, 32; 8(m) * 4(bytes) move pointer to element of the next row
      add edi, 32; 8(m) * 4(bytes) move pointer to element of the next row
      loop SCALAR_COMPUTATIONS
CONDITION_PREPARE:
      mov ecx, m; loop by rows of column
      lea esi, [matrix+24]; start from 6th column
CONDITION:
      cmp [esi], a
      jl TRUE
      jnl FALSE
      cmp [esi], b
      jge TRUE
      jnge FALSE
TRUE:
      inc condPickedElements
      add condPickedSum, [esi]
      jmp NEXT
FALSE:
      jmp NEXT
NEXT:
      add esi, 32; 8(m) * 4(bytes) move pointer to element of the next row
      loop CONDITION
      RET
      TEXT ENDS
      END START
```

Масив *matrix*:

0x000B4020	+1	+18	+8	+4	+15	-92	+4	-13
0x000B4040	+1	-1	+7	+20	-2	-1	-8	-19
0x000B4060	+3	+8	+11	+14	-4	+1	+14	+2
0x000B4080	-9	-5	+20	-16	+4	-12	+4	-1
0x000B40A0	-6	+4	-8	+3	+13	+2	+11	+13
0x000B40C0	+19	-15	+13	+17	-12	-9	+10	-13
0x000B40E0	-1	+3	+17	+10	+9	+2	+16	-18

Macuв transposedMatrix:

0x000B4100	+1	+1	+3	-9	-6	+19	-1
0x000B411C	+18	-1	+8	-5	+4	-15	+3
0x000B4138	+8	+7	+11	+20	-8	+13	+17
0x000B4154	+4	+20	+14	-16	+3	+17	+10
0x000B4170	+15	-2	-4	+4	+13	-12	+9
0x000B418C	-92	-1	+1	-12	+2	-9	+2
0x000B41A8	+4	-8	+14	+4	+11	+10	+16
0x000B41C4	-13	-19	+2	-1	+13	-13	-18

Скалярний добуток 4 та 5 рядків: 4*15+20*(-2)+14*(-4)+(-16)*4+3*13+17*(-12)+10*9=-175

Скалярний добуток, сума потрібних елементів в 5 стовці:

int(scalarProduct)	-175	int
int(condPickedSum)	-92	int
fig condPickedElements	1	unsigned long

Значення суми 6 стовпця з заданими умовами a_i має бути на проміжку (- ∞ ; -46) v [63,+ ∞), тоді сума: -92

Кількість елементів - 1.

Отже, програма працює правильно.

Висновки

Під час виконання цієї лабораторної роботи я ознайомився з основними командами асемблера, відтранслював і виконав покроково в режимі відлагодження просту циклічну програму, модифікував її відповідно до свого варіанту, відлагодив і перевірив виконання тесту, а також написав програму для роботи з двовимірними масивам, виконав покроково в режимі відлагодження та перевірив правильність роботи.