

Large models are impossible to regulate.

Inria SIRISA

Augustin Godinot (WIDE) Université de Rennes, IRISA, INRIA, PEReN

CHANGE MY MIND

m What regulators ask for...

- ▶ Digital Services Act (**DSA**): Large platforms induce risks for society, they have to implement risk mitigation meechanisms.
- ▶ Digital Markets Act (**DMA**): Large platforms have a lot of power, we must avoid power imbalance.
- ► Artificial Intelligence Act (**AI Act**): limit the use of some algorithms.

ML audit you said?

- ▶ **Input space** \mathcal{X} . *Example: The space of all possible* 1000×1000 *images.*
- ▶ **Hypothesis** $h: \mathcal{X} \to \{0,1\}$. *Example: a deep neural network.*
- ▶ **Hypothesis class** $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$. *Example: all the ResNet models with* 50 *blocks.*

Audit a parity metric

$$\mu(h,S) = \mathbb{P}(h(X) = 1 \,|\, X \in S, E) - \mathbb{P}\big(h(X) = 1 \,|\, X \in S, \overline{E}\big)$$

Example: make sure that in average, men are not advantaged compared to women by a resume screening algorithm.

Large Machine Learning models

Figure 1: The training loss of an Inception model trained on CI-FAR10. After enough steps, the loss reaches 0 even when trained on random labels.

Taken from *Understanding deep* learning requires rethinking generalization (Zang et al, CACM 2021)

- ► Current ML models can reach **billions of parameters**.
- ► Current ML models can **overfit the train data** and have **good generalization** properties.
- ▶ Some explanation attempts: **benign overfitting** and **double descent**.

Threat model

Mesuring the effect of potential manipulations

Version space

Impossibility theorem

Definition 2: Benign overfitting on c

 \mathcal{H} exhibits benign overfitting with respect to c iif fhere exists $d_0 \in \mathbb{N}_*$ and $\varepsilon \in [0,1)$ such that $\forall d \leq d_0, S \in \mathcal{X}, \sigma \in \{0,1\}^d$,

$$\exists h \in \mathcal{H}, \begin{cases} \forall x_i \in S, h(x_i) = \sigma_i \text{ (fits any train set)} \\ \mathbb{P} \Big(h(X) = c(X) \, \Big| \, X \in \overline{S} \Big) = 1 - \varepsilon \text{ (low error)} \end{cases}$$

Theorem: Better than random? No can do.

If \mathcal{H} exhibits benign overfitting with respect to the sensitive attribute, then,

$$\forall S, |S| = |S_{\mathrm{random}}|, \quad \mathrm{diam}_{\mu}(h, S) = \mathrm{diam}_{\mu}(h, S_{\mathrm{random}})$$

And in practice?

Figure 2: The value of the μ -diameter with respect to the Rademacher complexity of the hypothesis class. Informally: hypothesis class = fixed architecture + hyperparameters.

Figure 3: What is the accuracy cost for a platform to evade an audit? Not much. Let $\mathcal{F} = (\mathcal{H}_1, ..., \mathcal{H}_f)$ be a family of hypothesis classes. Example: all the decision trees with varying maximum depth.

- $\mathcal{H}^* \in \mathcal{F}$ with best test accuracy.
- $ightharpoonup \mathcal{H}_{\mathrm{evade}} \in \mathcal{F} \ \ \mathrm{with} \ \ \mathrm{largest} \ \ \mu\text{-diameter.}$ ter.

 $\begin{aligned} & \operatorname{CostOfExhaustion}(\mathcal{F}) = \\ & \operatorname{Accuracy}(\mathcal{H}^*) - \operatorname{Accuracy}(\mathcal{H}_{\operatorname{evade}}) \end{aligned}$

 μ -diameter