Esercizio 1

giovedì 10 luglio 2025 14:56

ESERCIZIO 1: Si realizzi una rete sequenziale sincrona \mathbf{R} con un ingresso \mathbf{X} ed una uscita \mathbf{Z} . La rete riconosce sequenze del tipo $\mathbf{xya}_0\mathbf{a}_1\mathbf{a}_2$ tali che il bit \mathbf{a}_k sia pari ad 1, dove \mathbf{k} è dato dalla somma dei bit \mathbf{x} e \mathbf{y} , e in tal caso restituisce 1 in corrispondenza di \mathbf{a}_2 e 0 altrimenti. Successivamente la rete riprende il suo funzionamento dal principio.

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
X:	0	0	1	1	0	1	0	1	0	1	1	1	1	1	0	0	1	0	1	1	
		xy	a _o a,	a ₂			xy	/a _o a	a ₂			xy	/a _o a	a ₂			xy	a _o a	a ₂		
Z:	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	

Nell'esempio sopra riportato la rete riceve la prima sequenza negli istanti di tempo che vanno da t = 0 e t = 4; la sequenza inizia con x = 0 e y = 0, per cui k = x+y = 0, e quindi la rete restituisce 1 in corrispondenza di t = 4 perché $a_0 = 1$.

La rete riceve la seconda sequenza negli istanti di tempo che vanno da t = 5 e t = 9; la sequenza inizia con x = 1 e y = 0, per cui k = x + y = 1, e quindi la rete restituisce 0 in corrispondenza di t = 9 perché $a_t = 0$. La rete riceve la terza sequenza negli istanti di tempo che vanno da t = 10 e t = 14; la sequenza inizia con t = 1 e t = 1, per cui t = x + y = 2, e quindi la rete restituisce 0 in corrispondenza di t = 14 perché t = 14 perché

CODIFICA
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

STATO	× 0 × 3 × 2 × 1 × 4 ₹	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0000	20010	100 100
0001	00110	01000
0010	91000	01010
0011	0110,0	0111,0
0100	1000,0	1000,0
0101	1001,0	1001,0
0110	1010,0	10100
0111	1011,0	10 11'0
1000	10110	10100
1001	11000	11 000
1010	00001	00 001
1011	0000	00 600
1100	00000	20001
1101	1	,
1110		
1111		

2)
$$\times y \land 0 \land 1 \land 2$$

 $0 \land - 0 \rightarrow 0$
 $- 1 \rightarrow 1$
 $\times = 0 \lor = 1$
 $\times = 0 \lor = 1$
 $\times = 1 \lor = 0$
3) $\times y \land 0 \land 1 \land 2$

