

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ PROBA D

Varianta043

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze $\sin \frac{\pi}{3} + \cos \frac{\pi}{6}$.
- (4p) b) Să se calculeze produsul scalar al vectorilor $\vec{u} = 2\vec{i} 3\vec{j}$ și $\vec{v} = 3\vec{i} + \vec{j}$.
- (4p) c) Să se determine $a \in \mathbb{R}$ știind că dreptele x 2y + 1 = 0 și ax + 3y = 0 sunt paralele.
- (4p) d) Să se calculeze $\cos(\hat{A})$ dacă laturile triunghiului ABC sunt AB = 5, BC = 12, CA = 13.
- (2p) e) Să se calculeze numărul de elemente ale mulțimii $M_2 \cup M_4$ dacă $M_n = \{z \in \mathbb{C} \mid z^n = 1\}, \ \forall n \in \mathbb{N}^*.$
- (2p) f) Să se determine un punct pe cercul $x^2 + y^2 = 13$, care are ambele coordonate numere întregi.

SUBIECTUL II (30p)

1.

- (3p) a) Să se determine câte numere de trei cifre de forma $\overline{a0b}$ există, unde a şi b sunt cifre.
- (3p) b) Să se calculeze valoarea sumei $\hat{1} + \hat{3} + \hat{5} + ... + \hat{15}$ în grupul ($\mathbf{Z}_{16}, +$).
- (3p) c) Dacă $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, să se calculeze A^2 .
- (3p) d) Să se determine numărul funcțiilor injective $f: \{1,2\} \rightarrow \{1,2,3\}$.
- (3p) e) Să se determine restul împărțirii polinomului $f = X^4 + 1$ la g = X 1.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, f(x) = arctg x.
- (3p) a) Să se calculeze $\lim_{x \to a} f(x)$.
- (3p) b) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) c) Să se arate ca funcția f este concavă pe intervalul $(0, \infty)$.
- (3p) d) Să se determine numărul soluțiilor ecuației f(x) = 2.
- (3p) e) Să se calculeze aria suprafeței plane cuprinsă între graficul funcției f, axa Ox și dreptele x = 0 și x = 1.

SUBIECTUL III (20p)

În inelul $\mathbf{Z_4}[X]$ se consideră submulțimile $U = \left\{ f \in \mathbf{Z_4}[X] \middle| \exists g \in \mathbf{Z_4}[X], \ astfel \ \hat{\mathit{incat}} \ f \cdot g = \hat{\mathbf{1}} \right\}$

$$\text{ și } N = \Big\{ f \in \mathbf{Z_4} \big[X \big] \Big| \, \exists \, n \in \mathbf{N}^* \, \, ast fel \, \, \, \widehat{n} c \widehat{a}t \, \, \, f^n = \widehat{0} \Big\}.$$

- (4p) a) Să se verifice că $\hat{1} \in U$, $\hat{3} \in U$, $\hat{0} \in N$, $\hat{2} \in N$.
- (4p) b) Să se verifice că $\hat{2}X + \hat{1} \in U$ și $\hat{2}X + \hat{2} \in N$.
- (2p) | c) Să se arate că $U \cap N = \emptyset$.
- (2p) d) Să se arate că dacă $u, v \in N$, atunci $u + v \in N$.
- (2p) e) Să se arate că dacă $u \in U$ și $g \in N$, atunci $u + g \in U$.
- (2p) f) Să se arate că dacă $f \in U$, atunci termenul liber al polinomului f este $\hat{1}$ sau $\hat{3}$.
- (2p) g) Să se arate că dacă $f \in N$, atunci toți coeficienții polinomului f sunt din mulțimea $\{\hat{0}, \hat{2}\}$.
- (2p) h) Să se arate că fiecare dintre mulțimile U și N conține cel puțin 2007 elemente.

SUBIECTUL IV (20p)

Se consideră șirurile $(a_n)_{n \in \mathbb{N}^*}$ și $(b_n)_{n \in \mathbb{N}^*}$, $a_n = \frac{1}{2^{1!}} + \frac{1}{2^{2!}} + \dots + \frac{1}{2^{n!}}$ și $b_n = a_n + \frac{1}{n \cdot 2^{n!}}$,

 $\forall n \in \mathbf{N}^*$.

- (4p) a) Să se verifice că șirul $(a_n)_{n \in \mathbb{N}^*}$ este strict crescător.
- (4p) b) Să se arate că șirul $(b_n)_{n \in \mathbb{N}^*}$ este strict descrescător.
- (4p) c) Să se arate că șirurile $(a_n)_{n\in\mathbb{N}^*}$ și $(b_n)_{n\in\mathbb{N}^*}$ sunt mărginite.
- (2p) d) Să se arate că șirurile $(a_n)_{n \in \mathbb{N}^*}$ și $(b_n)_{n \in \mathbb{N}^*}$ sunt convergente și au aceeași limită.
- (2p) e) Notăm cu $a \in \mathbf{R}$ limita șirului $(a_n)_{n \in \mathbf{N}^*}$. Să se arate că numărul a este irațional.
- (2p) **f**) Să se arate că $\lim_{n \to \infty} \frac{n^{2007}}{2^{n!}} = 0$.
- (2p) g) Să se arate că nu există polinoame nenule $f, g \in \mathbf{R}[\mathbf{X}]$, cu proprietatea că $a_n = \frac{f(n)}{g(n)}, \ \forall \ n \in \mathbf{N}^*$.

2