SE328:Topology

Hyosang Kang¹

 1 Division of Mathematics School of Interdisciplinary Studies DGIST

Week 03

Let X, Y be two topological spaces. The **product topology** on the product $X \times Y$ is the topology generated by the subset of the form

$$U \times V$$

where U, V are open subsets in X, Y respectively.

Theorem

If \mathcal{B} is a basis for the topology of X and \mathcal{C} is a basis for the toplogy of Y, then the collection

$$\mathcal{D} = \{ B \times C \mid B \in \mathcal{B}C \in \mathcal{C} \}$$

is a basis for the topology of $X \times Y$.

Let $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ be defined by

$$\pi_1(x, y) = x, \quad \pi_2(x, y) = y.$$

The maps π_1 , π_2 are called the projections of $X \times Y$ onto its factors.

Theorem

The collection

$$S = \{\pi_1^{-1}(U) \mid U \text{ is open in } X\} \cup \{\pi_2^{-1}(V) \mid V \text{ is open in } X\}$$

is a subbasis for the topology $X \times Y$.

Let X be a topological space with the topology \mathcal{T} . Let $Y \subset X$ be a subset. The collection

$$\mathcal{T}' = \{ Y \cap U \mid U \in \mathcal{T} \}$$

is a topology of Y, called the **subspace topology**. With this topology, Y is called a subspace of X.

Lemma

If \mathcal{B} is a basis for the topology of X, then the collection

$$\mathcal{B}_Y = \{ B \cap Y \mid B \in \mathcal{B} \}$$

is a bsis for the subspace topology of Y.

Lemma

Let Y be a subspace of X. If U is open in Y and Y is open in X, then U is open in X.

Theorem

If A is a subspace of X and B is a subspace of Y, then the product topology on $A \times B$ is the same topology $A \times B$ inherits as a subspace of $X \times Y$.

Let X be a set with order relation. Assume |X| > 1. Let \mathcal{B} a collection of subsets of the following types:

- 1. all open intervals (a, b) in X;
- 2. all half-intervals $[a_0, b)$ where a_0 is the smallest element (if any) of X;
- 3. all half-interval $(a, b_0]$ where b_0 is the largest element (if any) of X.

Then the collection \mathcal{B} is a basis for a topology of X, called the order toplogy.

Suppose that $Y = [0,1) \cup \{2\}$. Show that the one-point set $\{2\}$ is open in the subspace topology $Y \subset \mathbb{R}$, while it is not open in the order topology, $\{2\}$ is not open.

Let I = [0, 1]. The dictionary order on $I \times I$ is the restriction of dictionary order on $\mathbb{R} \times \mathbb{R}$. Show that dictionary order topology on $I \times I$ is not the same as the subspace topology obtained from dictionary order topology on $\mathbb{R} \times \mathbb{R}$.

Given an ordered set X, a subset $Y \subset X$ is called convex if for each pair of points a < b, the interval (a, b) lies in Y.

Theorem

Let X be an ordered set in the order topology. Let Y be a subset of X that is convex in X. Then the order topology on Y is the same as the topology Y as the subspace of X.

A map $f: X \to Y$ is an **open map** if for every open set $U \subset X$ the image f(U) is open in X. Show that $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ are open maps.

A subset A of a topological space X is **close** if X - A is open.

Example

- 1. A subset $[a, b] \subset \mathbb{R}$ is closed in the standard topology.
- 2. A subset $\{(x,y) \mid x,y \geq 0\} \subset \mathbb{R}^2$ is closed in the standard topology.
- 3. In the finite complement topology of X, every closed set is either X itself or finite subset.

Let X be a topological space. Then

- 1. \emptyset and X are closed.
- 2. Arbitrary intersection of closed sets is closed.
- 3. Finite union of closed sets is closed.

Theorem

Let Y be a subspace of X. A subset $A \subset Y$ is closed (in Y) if and only if $A = A \cap C$ for some closed subset $C \subset X$.

Theorem

Let Y be a subspace of X. If $A \subset Y$ is closed in Y and Y is closed in X, then A is closed in X.

Let A be a subset of topological space X. The **interior** of A is the union of all open sets contained in A. The **closure** of A is the intersection of all closed sets containing A. The interior of A is denoted by \overline{A} .

Theorem

Let Y be a subspace of X. Let A be a subset of Y. Let \overline{A} is the closure of A in X. Then the closure of A in Y equals $\overline{A} \cap Y$.

Let A be a subset of a topological space X.

- 1. $x \in \overline{A}$ if and only if every open set U containing x intersects A.
- 2. Let \mathcal{B} be a basis of X. $x \in \overline{A}$ if and only if $x \in B \in \mathcal{B}$ implies $B \cap A \neq \emptyset$.

Remark

The phrase "U is open set containing x" equal to the statement "U is (open) neighborhood of x."

Let A be a subset of a topological space X. An element $x \in X$ is a **limit point** of A if every neighborhood of x intersects A in some point other than x itself.

Theorem

Let A be a subset of a topological space X. Let A' be the set of all limit points of A. Then

$$\overline{A} = A \cup A'$$

Given a topological space X, a sequence x_1, x_2, \cdots converges to $x_{\infty} \in X$ if for each neighborhood U of x_{∞} , there exists an integer N > 0 such that $x_i \in U$ for all i > N.

Definition

A topological space X is **Hausdorff** if for each pair x_1 , x_2 of distinct points of X, there exist neighborhoods U_1 , U_2 of x_1 , x_2 respectively which are disjoint.

Every finite set in a Hausdorff space is closed.

Definition

A topological space X has the T_1 axiom if finite point set is closed.

Example

The finite complement topology on \mathbb{R} has the T_1 axiom but it is not Hausdorff.

Every sequence in a Haudorff space converges at most one point.

Example

- 1. Every ordered set is Hausdorff in the order topology.
- 2. The product of two Hausdorff space is Hausdorff.
- 3. A subspace of Hausdorff space is Hausdorff.

Example

X is Hausdorff if and only if the **diagonal** $\Delta = \{(x, x) \mid x \in X\}$ is closed in $X \times X$.

The **boundary** of a subset $A \subset X$, denoted by BdA or ∂A , is defined by

$$\partial A = \overline{A} \cap \overline{X-A}$$

- 1. Show that $\overline{A} \cap \partial A = \emptyset$.
- 2. Show that $\overline{A} = \partial A \cup \text{Int} A$
- 3. Show that $\partial A = \emptyset$ if and only if A is both open and closed.
- 4. Show that U is open if and only If $\partial U = \overline{U} U$.
- 5. Prove or disprove: $U = \operatorname{Int}(\overline{U})$.