Calcolo differenziale

1. Tra i seguenti enunciati si indichino quelli sicuramente veri.

☐ Ogni funzione continua in un punto è derivabile in quel punto

☐ Ogni funzione derivabile in un punto è continua in quel punto

☐ Una funzione è derivabile in un punto se e solo se è continua in quel punto

☐ Una funzione continua in un punto non è detto che sia derivabile in quel punto

2. Si scriva il più grande insieme $I \subseteq \mathbb{R}$ in cui la funzione f indicata risulta derivabile.

(a) $f(x) = \sqrt{x}$

(b) $f(x) = x^3$

(c) $f(x) = x\sqrt{x}$

(d) $f(x) = \sqrt[3]{x}$

3. Per ciascuna delle seguenti funzioni si dica se è derivabile nel punto x_0 indicato.

(a) $f(x) = |x|, x_0 = 0$

(b) $f(x) = |x|, x_0 = 1$

(c) $f(x) = \sqrt[3]{x}$, $x_0 = 0$

(d) $f(x) = x^2$, $x_0 = 0$

4. Si dica quali tra le seguenti funzioni verificano le ipotesi del teorema di Fermat nell'intervallo indicato.

 $\Box f(x) = x, x \in [0, 1]$

 $\Box f(x) = x^3, x \in [-1, 1]$

 $\Box f(x) = x^2, x \in [-1, 1]$

 $\Box f(x) = \operatorname{sen} x, x \in [0, \pi]$

5. Se $f(x) = \sqrt{9-x}$ con $x \in [0, 9]$, si dica quali tra le seguenti affermazioni sono garantite dal teorema di Lagrange.

 \square Esiste c compreso tra 0 e 9 tale che $f'(c) = \frac{1}{3}$

 \square Esiste c compreso tra 0 e 9 tale che $f'(c) = -\frac{1}{3}$

 \square Esiste c compreso tra 0 e 9 tale che f'(c) = 0

 \Box $f'(c) = -\frac{1}{3}$ per ogni c compreso tra 0 e 9

6. Se $f:[a,b]\to\mathbb{R}$ è una funzione continua in [a,b] e derivabile in (a,b), tra i sequenti enunciati si indichino quelli veri. \Box f è strettamente crescente in (a, b) se e solo se f'(x) > 0 per ogni $x \in (a, b)$ \Box f è crescente in (a, b) se e solo se $f'(x) \ge 0$ per ogni $x \in (a, b)$ \Box f è decrescente in (a, b) se e solo se $f'(x) \leq 0$ per ogni $x \in (a, b)$ \square Se f'(x) < 0 per ogni $x \in (a, b)$ allora f è strettamente decrescente in (a, b)7. Se $f:[a,b]\to\mathbb{R}$ è una funzione convessa in [a,b] e derivabile due volte in (a,b), tra i sequenti enunciati si indichino quelli veri. \Box f' è strettamente decrescente in (a, b) \Box Per ogni $x, x_0 \in (a, b), f(x) \ge f(x_0) + f'(x_0)(x - x_0)$ \Box f' è crescente in (a, b) $\Box f''(x) < 0$ per ogni $x \in (a, b)$ 8. Tra i seguenti enunciati si indichino quelli sicuramente veri. \square Per $x \to 0$, $e^x = 1 + x + o(x)$ \square Per $x \to 0$. $e^x = 1 + o(x^2)$ \square Per $x \to 0$, $e^x = 1 + x + O(x)$ \square Per $x \to 0$, $e^x = 1 + o(x)$ 9. Tra i seguenti enunciati si indichino quelli sicuramente veri. \square Per $x \to 0$, sen $x = x - \frac{x^3}{6} + o(x^3)$ \square Per $x \to 0$, sen x = x + o(x) \square Per $x \to 0$, sen x = x + O(x) \square Per $x \to 0$, sen $x - x \sim -\frac{x^3}{6}$ 10. Se per $x \to 0$, $f(x) = O(x^4)$, tra i seguenti enunciati si indichino quelli sicuramente veri. \square Per $x \to 0$, $f(x) = o(x^2)$ \square Per $x \to 0$. $f(x) = o(x^3)$

 \square Per $x \to 0$, $f(x) \sim x^4$

 \square Per $x \to 0$, $f(x) = o(x^7)$