Общая постановка задачи обучения по прецедентам

```
X — множество объектов; Y — множество ответов; y: X \to Y — неизвестная зависимость (target function).
```

Дано:

```
\{x_1, \ldots, x_\ell\} \subset X — обучающая выборка (training sample); y_i = y(x_i), i = 1, \ldots, \ell — известные ответы.
```

Найти:

 $a\colon X o Y$ — алгоритм, решающую функцию (decision function), приближающую y на всём множестве X.

Весь курс машинного обучения — это конкретизация:

- как задаются объекты и какими могут быть ответы;
- в каком смысле «а приближает у»;
- как строить функцию а.

 $f_j\colon X o D_j,\ j=1,\ldots,n$ — признаки объектов (features).

Типы признаков:

- ullet $D_j = \{0,1\} \mathit{бинарный}$ признак f_j ;
- ullet $|D_j| < \infty$ номинальный признак f_j ;
- ullet $|D_j|<\infty$, D_j упорядочено порядковый признак f_j ;
- ullet $D_j = \mathbb{R} \kappa$ оличественный признак f_j .

Вектор $(f_1(x), \dots, f_n(x))$ — признаковое описание объекта x.

Матрица «объекты-признаки» (feature data)

$$F = \|f_j(x_i)\|_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}$$

Задачи классификации (classification):

- $Y = \{-1, +1\}$ классификация на 2 класса.
- ullet $Y = \{1, \dots, M\}$ на M непересекающихся классов.
- $Y = \{0,1\}^M$ на M классов, которые могут пересекаться.

Задачи восстановления регрессии (regression):

ullet $Y=\mathbb{R}$ или $Y=\mathbb{R}^m$.

Задачи ранжирования (ranking, learning to rank):

• Y — конечное упорядоченное множество.

Модель (predictive model) — параметрическое семейство функций

$$A = \{g(x,\theta) \mid \theta \in \Theta\},\$$

где $g: X \times \Theta \to Y$ — фиксированная функция, Θ — множество допустимых значений параметра θ .

Пример.

Линейная модель с вектором параметров $\theta = (\theta_1, \dots, \theta_n)$, $\Theta = \mathbb{R}^n$:

$$g(x,\theta)=\sum_{j=1}^n heta_j f_j(x)$$
 — для регрессии и ранжирования, $Y=\mathbb{R}$;

$$g(x, \theta) = \operatorname{sign} \sum_{j=1}^n \theta_j f_j(x) - для классификации, $Y = \{-1, +1\}.$$$

Метод обучения (learning algorithm) — это отображение вида

$$\mu \colon (X \times Y)^{\ell} \to A$$
,

которое произвольной выборке $X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$ ставит в соответствие некоторый алгоритм $a \in A$.

В задачах обучения по прецедентам всегда есть два этапа:

- ullet Этап *обучения* (training): метод μ по выборке X^ℓ строит алгоритм $a=\mu(X^\ell)$.
- Этап применения (testing): алгоритм a для новых объектов x выдаёт ответы a(x).

Этап *обучения* (train):

метод μ по выборке $X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$ строит алгоритм $a = \mu(X^{\ell})$:

$$\begin{bmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_1(x_\ell) \end{bmatrix} \xrightarrow{y} \begin{pmatrix} y_1 \\ \dots \\ y_\ell \end{pmatrix} \xrightarrow{\mu} a$$

Этап *применения* (test):

алгоритм a для новых объектов x_i' выдаёт ответы $a(x_i')$.

$$\begin{pmatrix} f_1(x'_1) & \dots & f_n(x'_1) \\ \dots & \dots & \dots \\ f_1(x'_k) & \dots & f_n(x'_k) \end{pmatrix} \stackrel{a}{\longrightarrow} \begin{pmatrix} a(x'_1) \\ \dots \\ a(x'_k) \end{pmatrix}$$

 $\mathscr{L}(a,x)$ — функция потерь (loss function) — величина ошибки алгоритма $a \in A$ на объекте $x \in X$.

Функции потерь для задач классификации:

 $\mathscr{L}(a,x) = [a(x) \neq y(x)] -$ индикатор ошибки;

Функции потерь для задач регрессии:

- $\mathscr{L}(a,x) = |a(x) y(x)|$ абсолютное значение ошибки;
- $\mathscr{L}(a,x) = (a(x) y(x))^2$ квадратичная ошибка.

Эмпирический риск — функционал качества алгоритма a на X^{ℓ} :

$$Q(a,X^{\ell})=\frac{1}{\ell}\sum_{i=1}^{\ell}\mathscr{L}(a,x_i).$$

Метод минимизации эмпирического риска:

$$\mu(X^{\ell}) = \arg\min_{a \in A} Q(a, X^{\ell}).$$

Пример: *метод наименьших квадратов* ($Y = \mathbb{R}$, \mathscr{L} квадратична):

$$\mu(X^{\ell}) = \arg\min_{\theta} \sum_{i=1}^{\ell} (g(x_i, \theta) - y_i)^2.$$

Проблема обобщающей способности:

- найдём ли мы «закон природы» или *переобучимся*, то есть подгоним функцию $g(x_i, \theta)$ под заданные точки?
- ullet будет ли $a=\mu(X^\ell)$ приближать функцию y на всём X?
- ullet будет ли $Q(a, X^k)$ мало́ на новых данных контрольной выборке $X^k = (x_i', y_i')_{i=1}^k$, $y_i' = y(x_i)$?

Зависимость $y(x) = \frac{1}{1+25x^2}$ на отрезке $x \in [-2,2]$. Признаковое описание $x \mapsto (1, x^1, x^2, \dots, x^n)$.

Модель полиномиальной регрессии

$$a(x,\theta) = \theta_0 + \theta_1 x + \cdots + \theta_n x^n$$
 — полином степени n .

Обучение методом наименьших квадратов:

$$Q(\theta, X^{\ell}) = \sum_{i=1}^{\ell} (\theta_0 + \theta_1 x_i + \cdots + \theta_n x_i^n - y_i)^2 \to \min_{\theta_0, \dots, \theta_n}.$$

Обучающая выборка: $X^\ell = \left\{x_i = 4 \frac{i-1}{\ell-1} - 2 \mid i = 1, \dots, \ell\right\}$. Контрольная выборка: $X^k = \left\{x_i = 4 \frac{i-0.5}{\ell-1} - 2 \mid i = 1, \dots, \ell-1\right\}$.

Что происходит с $Q(\theta, X^\ell)$ и $Q(\theta, X^k)$ при увеличении n?

Переобучение — это когда $Q(\mu(X^{\ell}), X^k) \gg Q(\mu(X^{\ell}), X^{\ell})$:

$$y(x) = \frac{1}{1 + 25x^2}$$
; $a(x)$ — полином степени $n = 38$

- Из-за чего возникает переобучение?
 - избыточная сложность пространства параметров Θ , лишние степени свободы в модели $g(x,\theta)$ «тратятся» на чрезмерно точную подгонку под обучающую выборку.
 - переобучение есть всегда, когда есть оптимизация параметров по конечной (заведомо неполной) выборке.
- Как обнаружить переобучение?
 - эмпирически, путём разбиения выборки на train и test.
- Избавиться от него нельзя. Как его минимизировать?
 - минимизировать одну из теоретических оценок;
 - накладывать ограничения на θ (регуляризация);
 - минимизировать HoldOut, LOO или CV, но осторожно!

Эмпирический риск на тестовых данных (hold-out):

$$\mathsf{HO}(\mu, X^\ell, X^k) = Q(\mu(X^\ell), X^k) o \mathsf{min}$$

ullet Скользящий контроль (leave-one-out), $L=\ell+1$:

$$\mathsf{LOO}(\mu, X^L) = \frac{1}{L} \sum_{i=1}^{L} \mathscr{L}(\mu(X^L \setminus \{x_i\}), x_i) \to \mathsf{min}$$

• Кросс-проверка (cross-validation), $L = \ell + k$, $X^L = X_n^\ell \sqcup X_n^k$:

$$\mathsf{CV}(\mu, X^L) = \frac{1}{|\mathcal{N}|} \sum_{n \in \mathcal{N}} Q(\mu(X_n^\ell), X_n^k) o \mathsf{min}$$

• Эмпирическая оценка вероятности переобучения:

$$Q_{\varepsilon}(\mu, X^{L}) = \frac{1}{|N|} \sum_{n \in N} \left[Q(\mu(X_{n}^{\ell}), X_{n}^{k}) - Q(\mu(X_{n}^{\ell}), X_{n}^{\ell}) \geqslant \varepsilon \right] \to \min$$

Bias-variance tradeoff

- The bias is error from erroneous assumptions in the learning algorithm. High bias can cause an algorithm to miss the relevant relations between features and target outputs (underfitting).
- The variance is error from sensitivity to small fluctuations in the training set. High variance can cause overfitting: modeling the random noise in the training data, rather than the intended outputs.

Low High Model Complexity

If we denote the variable we are trying to predict as Y and our covariates as X, we may assume that there is a relationship relating one to the other such as $Y = f(X) + \epsilon$ where the error term ϵ is normally distributed with a mean of zero like so $\epsilon \sim \mathcal{N}(0, \sigma_{\epsilon})$.

We may estimate a model $\hat{f}(X)$ of f(X) using linear regressions or another modeling technique. In this case, the expected squared prediction error at a point x is:

$$Err(x) = E\left[(Y - \hat{f}\left(x
ight))^2
ight]$$

This error may then be decomposed into bias and variance components:

$$Err(x) = \left(E[\hat{f}\left(x
ight)] - f(x)
ight)^2 + E\Big[\hat{f}\left(x
ight) - E[\hat{f}\left(x
ight)]\Big]^2 + \sigma_e^2$$

$$Err(x) = Bias^2 + Variance + Irreducible Error$$

Hold-out validation

K-fold Cross Validation

- Randomly divide your data into K pieces/folds
- Treat 1st fold as the test dataset. Fit the model to the other folds (training data).
- Apply the model to the test data and repeat k times.
- Calculate statistics of model accuracy and fit from the test data only.

	True condition		
Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\sum \text{Total population}} = \frac{\sum \text{Condition positive}}{\sum \text{Total population}}$
Predicted condition positive	True positive	False positive (Type I error)	Positive predictive value (PPV), Precision = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$
Predicted condition negative	False negative (Type II error)	True negative	False omission rate (FOR) $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$
Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	True positive rate (TPR), Sensitivity, Recall $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$
	$\frac{\text{False negative rate}}{\text{Miss rate}} = \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	True negative rate (TNR), $\frac{\text{Specificity (SPC)}}{\Sigma \text{ True negative}}$ $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$

	Spam (Predicted)	Non-Spam (Predicted)	Accuracy
Spam (Actual)	27	6	81.81
Non-Spam (Actual)	10	57	85.07
Overall Accuracy			83.44

Fig. 1. Confusion matrix and common performance metrics calculated from it.

 Основные понятия машинного обучения: объект, ответ, признак, алгоритм, модель алгоритмов, метод обучения, эмпирический риск, переобучение.

• Этапы решения задач машинного обучения:

- понимание задачи и данных;
- предобработка данных и изобретение признаков;
- построение модели;
- сведение обучения к оптимизации;
- решение проблем оптимизации и переобучения;
- оценивание качества;
- внедрение и эксплуатация.

• Прикладные задачи машинного обучения:

очень много, очень разных, во всех областях бизнеса, науки, производства.

