09:58

Digital communications Quadrature modulations (QAM)

Quadrature modulations

• In analog modulations, QAM is obtained by transmitting two orthogonal DSB signals $m_I(t), m_O(t)$ and the complex envelope is

$$\tilde{s}_{OAM}(t) = m_I(t) + jm_O(t)$$

- Quadrature PAM is obtained exactly in the same manner by transmitting two PAM signals in quadrature $m_I(t) = \sum_i a_i g_T(t-iT)$ and $m_Q(t) = \sum_i b_i g_T(t-iT)$, with a_i, b_i PAM symbols.
- The QAM signal is

$$s_{QAM}(t) = \sum_{i} (a_i + jb_i)g_T(t - iT) = \sum_{i} c_i g_T(t - iT)$$

and the QAM complex symbols take the form $c_i = a_i + jb_i$.

QAM symbols

- Because QAM is the combination of two orthogonal PAM, the values of $M_{OAM}=M_{PAM}^2$ are squared powers of 2, i.e. m is always even.
 - If the two PAMs have $M_{PAM}=4$ symbols than the QAM has $M_{QAM}=16$ symbols, if $M_{PAM}=8$ than $M_{QAM}=64$.

000100 00100 01100 01100 1000 10

Energy of a QAM symbol

- In the computation of power and energy the only difference between PAM and QAM is in the mean square value of the symbols.
- · Keeping in mind that th in-phase and quadrature symbols are indipendent and

$$A = E\{c_i c_i^*\} = E\{a_i^2\} + E\{b_i^2\} = 2\frac{M_{PAM}^2 - 1}{3} = 2\frac{M_{QAM} - 1}{3}$$

- Compared to PAM, QAM constellation is much more compact and requires less energy per symbol. $A^{(4-PAM)} = \frac{16-1}{2} = 5$; $A^{(4-QAM)} = 2\frac{4-1}{2} = 2$.
 - $A^{(4-PAM)} = \frac{16-1}{2} = 5;$ $A^{(4-QAM)} = 2\frac{4-1}{3} = 2.$ $A^{(16-PAM)} = \frac{2\overline{5}6-1}{3} = 85;$ $A^{(16-QAM)} = 2\frac{\overline{1}6-1}{3} = 10.$
- The energy per symbol is

$$E_s = \frac{A}{2} = \frac{M_{QAM} - 1}{3}$$

am and bm are indipendent

$$c_{n} = a_{n} + j b_{n}$$
 $E \{ c_{m} c_{m}^{*} \} = E \{ (a_{m} + i b_{m}) (a_{m} - i b_{m}) \} = E \{ a_{m}^{2} - (i b_{m})^{2} \} = E \{ a_{m}^{2} + b_{m}^{2} \} = E \{ a_{m}^{2} \}$

4-8 AH is obtained as two 2-PAH in quadrature

ES(cn|2) = ES am } + ES b2 = 1+1=2

4-RAM = {1+1, 1-1, -1+3, -1-1}

QAM error probability

· The complex decision variable is

$$x(m) = c_m + n(m) = (a_m + jb_m) + (n_l(m) + jn_Q(m))$$

= $a_m + n_l(m) + j(b_m + n_Q(m))$

- The in-phase and quadrature noise components $n_I(m)$ and $n_Q(m)$ are independent.
- · Error events depend on noise. If the noise is independent also the error events on the two components are independent.
- · The probability of error can be computed as

 $Pr\{error\} = Pr\{\{error \ on \ the \ I \ channel\} \cup \{error \ on \ the \ Q \ channel\}\}$ $\leq Pr\{error\ on\ the\ I\ channel\} + Pr\{error\ on\ the\ Q\ channel\}$

• The error probability can be approximated as the sum of the probability of making an error on the in-phase symbol a_m and probability of making an error on the quadrature symbol b_m .

P(AUB) = P(A) + P(B) - P(ANB)

4-QAM error probability

- 4-QAM is obtained as the composition of two 2-PAM in quadrature.
- The symbol error probability is $P_e^{(4-QAM)} = \frac{1}{4} \sum\nolimits_{i=0}^{3} P(e|c^{(i)}) = P(e|c^{(0)})$

$$\begin{split} &P(e|c^{(0)}) \approx Q\left(\frac{d\left(c_{l}^{(0)},0\right)}{\sigma_{n_{l}}}\right) + Q\left(\frac{d\left(c_{Q}^{(0)},0\right)}{\sigma_{n_{Q}}}\right) \\ &= 2Q\left(\frac{1}{\sigma}\right) \\ &P_{e}^{(4-QAM)} \approx 2P_{e}^{(2-PAM)} \end{split}$$

$$P(e|t^{(0)}) \approx Q\left(\frac{1}{G_{n_{I}}}\right) + Q\left(\frac{1}{G_{n_{Q}}}\right) = 2Q\left(\frac{1}{G}\right)$$

$$P_e^{(4-eAH)} \approx 2Q\left(\frac{1}{6}\right)$$

M-QAM error probability

- M-QAM is obtained as the composition of two PAM in quadrature, each with \sqrt{M} symbols.
- The symbol error probability can always be approximated as $P_e^{(M-QAM)}\approx 2P_e^{(\sqrt{M}-PAM)}$

QAM symbol error probability

$$\begin{split} \bullet \text{ 4-QAM: } M = 4, E_S &= \frac{4-1}{3} = 1 \Longrightarrow E_S = 1, \text{and } \frac{1}{\sigma} = \sqrt{\frac{1}{\sigma^2}} = \sqrt{\frac{E_S}{N_0}} \\ &P_e^{(4-QAM)} \approx 2Q \left(\sqrt{\frac{E_S}{N_0}}\right); \\ \mathbf{16-QAM:} M = \mathbf{16}, E_S &= \frac{16-1}{3} = 5 \Longrightarrow \frac{1}{5}E_S = 1, \text{and } \frac{1}{\sigma} = \sqrt{\frac{1}{\sigma^2}} = \sqrt{\frac{E_S}{5N_0}} \\ &P_e^{(16-QAM)} \approx 2\,\frac{3}{2} \left(\frac{1}{\sigma}\right) = 3Q \left(\sqrt{\frac{E_S}{5N_0}}\right). \end{split}$$

M-QAM bit error probability

- The total number of M-QAM transmitted bits is the sum of the number of bits transmitted on the in-phase and quadrature channels.
- Because each channel is independent, the bit error probability per channel is independent.
- Accordingly, $P_e^{(M-QAM),b}$ can be *exactly* computed as the sum of the bit error probability on the in-phase channel and the quadrature channel, divided by two. $P_e^{(M-QAM),b} = \frac{1}{2} 2 P_e^{\left(\sqrt{M}-PAM\right),b} = P_e^{\left(\sqrt{M}-PAM\right),b}$

QAM bit error probability

• 4-QAM: $P_e^{(4-QAM),b} = P_e^{(2-PAM),b} \approx Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$

• 16-QAM
$$P_e^{(16-QAM),b} = P_e^{(4-PAM),b} \approx \frac{3}{4}Q\left(\sqrt{\frac{4E_b}{5N_0}}\right)$$

16-9 AM m= lop 16=4 bits x symbol
2. 2 bits x symbol
x-PAH