ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

11 июня 2015г.

ФИО	№ группы

ВАРИАНТ А

1	2	3	4	5	Σ	оценка

1А. Фазированная антенная решётка (радар) представляет собой неподвижную квадратную двумерную решётку излучателей периода d, излучающую радиоволны длиной $\lambda=10$ см (размер решётки D=10 м). Для управления лучом радара (направлением главного дифракционного максимума) начальные фазы излучающих элементов φ меняются по закону $\varphi(x,y,t)=\frac{\varphi_0 x}{\lambda}\sin\Omega t+\frac{\varphi_0 y}{\lambda}\cos\Omega t$, где $\varphi_0=\frac{\pi}{10}$, $\Omega=20\pi$ рад/с. Оцените, с какой минимальной скоростью v должна двигаться ракета, чтобы, пролетая через центр зоны облучения на расстоянии L=100 км от радара, иметь шанс остаться незамеченной?

2A. При наблюдении колец Ньютона в отражённом свете через микроскоп было обнаружено, что если навести микроскоп точно на верхнюю поверхность плоской стеклянной пластинки, то можно разглядеть $m_1 = 100$ тёмных колец, а если после этого поднять тубус микроскопа на $\delta = 1$ мм, то можно разглядеть только $m_2 = 10$ колец. Оцените ширину спектра $\Delta\lambda$ и угловой размер θ источника излучения, если известно, что средняя длина волны $\lambda = 400$ нм, а радиус кривизны выпуклой поверхности линзы R = 2.5 см.

Указание. Для оценки можно пренебречь преломлением света на изогнутой поверхности линзы и считать, что в микроскоп наблюдается интерференция плоской волны, отражённой от пластинки, и сферической волны, отражённой от выпуклой поверхности линзы.

3А. Круглый диск диаметра d, изготовленный из поляроидной плёнки, освещается нормально падающей плоской волной естественного света (длина волны λ , интенсивность света I_0). Во сколько раз изменится интенсивность света в точке P, если вплотную к диску поместить собирающую линзу диаметра 2d, и при этом точка P окажется в фокусе линзы? Диск закрывает 1,5 зоны Френеля для точки P и для разрешённого направления вносит фазовую задержку, кратную 2π . Толщина линзы на краях равна нулю.

4A. В спектрах рентгеновской дифракции на тонких кристаллических пленках, помимо выраженных брэгговских пиков, наблюдаются слабые осцилляции, связанные с конечной толщиной пленки (осцилляции Киссига). Определите по представленной зависимости интенсивности отраженного рентгеновского излучения от угла скольжения: 1) толщину пленки; 2) расстояние между атомными плоскостями в направлении роста пленки. Длина волны рентгеновского излучения $\lambda = 1,54$ Å. Учтите, что показатель преломления рентгеновского излучения в веществе близок к единице.

5A. В оптических Blu-гау приводах для острой фокусировки излучения полупроводникового лазера на диск используются светосильные асферические линзы, у которых отношение квадратов диаметра и фокусного расстояния \sim 1. Они обеспечивают почти идеальный сферический фронт сходящейся волны, но имеют малый продольный (вдоль оси z) размер фокального пятна. Найти, с какой точностью нужно поддерживать расстояние между линзой и поверхностью диска, чтобы еще не попасть в первый минимум (при продольном смещении) интенсивности световой волны. Числовая апертура $\sin \theta = 0.85$, длина волны $\lambda = 0.405$ мкм, амплитуда световой волны одинакова во всех точках волнового фронта после линзы.

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

11 июня 2	2015г.
-----------	--------

ФИО	<u>No</u>
	группы

ВАРИАНТ Б

1	2	3	4	5	Σ	оценка

1Б. Фазированная антенная решётка (радар) представляет собой неподвижную квадратную двумерную решётку излучателей периода d, излучающую радиоволны длиной $\lambda=10$ см (размер решётки D=10 м). Для управления лучом радара (направлением главного дифракционного максимума) начальные фазы излучающих элементов φ меняются по закону $\varphi(x,y,t)=\frac{\varphi_0 x}{\lambda}\sin\Omega t+\frac{\varphi_0 y}{\lambda}\cos\Omega t$, где $\varphi_0=\frac{\pi}{10}$, $\Omega=20\pi$ рад/с. Оцените, сколько раз самолёт, пролетающий с постоянной скоростью v=500 м/с через центр зоны облучения на расстоянии L=100 км от радара, окажется в области луча радара.

2Б. Для наблюдения колец Ньютона в отражённом свете используется источник света с угловым размером $\theta = 5\cdot10^{-2}$ рад, средней длиной волны $\lambda = 450$ нм и шириной спектра $\Delta\lambda = 9$ нм. Кольца наблюдают с помощью микроскопа, сфокусированного на верхнюю поверхность стеклянной пластинки, на которой лежит плосковыпуклая линза с радиусом кривизны выпуклой поверхности R = 5 см.

- 1. Какое максимальное число тёмных колец m_{max} можно увидеть в данных условиях?
- 2. Оцените, при каком максимальном смещении δ тубуса микроскопа по вертикали количество видимых колец ещё не будет уменьшаться?

Указание. Для оценки можно пренебречь преломлением света на изогнутой поверхности линзы и считать, что в микроскоп наблюдается интерференция плоской волны, отражённой от пластинки, и сферической волны, отражённой от выпуклой поверхности линзы.

3Б. Плоскопараллельная прозрачная пластинка толщины d с показателем преломления n освещается параллельным, нормально падающим пучком света с длиной волны λ и интенсивностью I_0 . В пластинке просверлено маленькое отверстие в 1,5 зоны Френеля для точки наблюдения P, лежащей на оси отверстия (см. рис.1).

Рис 2

Отверстие перегорожено непрозрачным диском. Найти изменение интенсивности в т. P, если диск заменить линзой, вставленной в отверстие так, что точка P оказывается в фокусе линзы (толщина линзы на краях равна нулю, см. рис.2). При какой толщине пластинки интенсивность в т. P максимальна? Найти I_{max} .

4Б. Наблюдается дифракция рентгеновского излучения ($\lambda = 1,54$ Å) на многослойной структуре, составленной из чередующихся слоев материалов A и B. Толщины слоев t_A и t_B различны, межплоскостные расстояния в материалах A и B также различны. При этом на зависимости интенсивности отраженного излучения от угла скольжения наблюдаются пики, связанные с искусственной периодичностью структуры и

конечной толщиной всей многослойной пленки. Определить период структуры $d=t_A+t_B$, а также толщину многослойной пленки L. Учтите, что показатель преломления рентгеновского излучения в веществе близок к единице, и в рассматриваемом диапазоне углов скольжения структура дифракционной картины, связанная с отражением от отдельных атомных плоскостей, никак не проявляется.

5Б. В экспериментах по лазерному термоядерному синтезу для острой фокусировки лазерного излучения на мишень используются светосильные асферические линзы, у которых отношение квадратов диаметра и фокусного расстояния \sim 1. Они обеспечивают почти идеальный сферический фронт сходящейся волны, но имеют малый продольный размер фокального пятна. Найти, насколько можно сместить мишень в продольном направлении от фокальной плоскости, чтобы еще не попасть в первый минимум интенсивности световой волны? Диаметр пучка D=6 см, фокусное расстояние F=10 см, длина волны $\lambda=0.53$ мкм, амплитуда световой волны одинакова во всех точках волнового фронта.