Data Structures and Algorithms 2 Course Syllabus (2024-2025) Start of Semester 24/9/2024

Course Schedule

Week 1	Chap. 1 - Programming: A General Overview Lecture 1	1.1 Introduction 1.2 Mathematics Review 1.3 A Brief Introduction to Recursion
Week 2	Chap. 2 - Algorithm Analysis Lecture 1	2.1 Mathematical Background 2.2 Model 2.3 What to Analyze
Week 3	Chap. 2 - Algorithm Analysis	2.4 Running-Time Calculations
	Lecture 2	
Week 4	Chap. 3 - Lists, Stacks, and Queues	3.1 Abstract Data Types (ADTs) 3.2 The List ADT 3.3 vector and list in the STL 3.4 Implementation of vector
	Lecture 1	
Week 5	Chap. 3 - Lists, Stacks, and Queues	3.5 Implementation of list 3.6 The Stack ADT 3.7 The Queue ADT
	Lecture 2	
Week 6	Chap. 4 - Trees Lecture 1	4.1 Preliminaries 4.2 Binary Trees 4.3 The Search Tree ADT—Binary Search Trees Quiz #1
		<u> </u>

		·
Week 7	Chap. 4 - Trees Lecture 2	4.4 AVL Trees 4.5 Splay Trees (self study) 4.6 Tree Traversals (Revisited) 4.7 B-Trees 4.8 Sets and Maps in the Standard Library
Week 8	Chap. 5 - Hashing Lecture 1	5.1 General Idea 5.2 Hash Function 5.3 Separate Chaining 5.4 Hash Tables without Linked Lists 5.5 Rehashing 5.6 Hash Tables with Worst-Case O(1) Access 5.7 Universal Hashing 5.8 Extendible Hashing
Week 9	Chap. 5 - Hashing Lecture 2	5.6 Hash Tables with Worst-Case O(1) Access 5.7 Universal Hashing 5.8 Extendible Hashing
Week 10	Chap. 6 - Priority Queues (Heaps) Lecture 1	6.1 Model 6.2 Simple Implementation 6.3 Binary Heap 6.4 Applications of Priority Queues 6.5 d-Heaps
Week 11	Chap. 6 - Priority Queues (Heaps) Lecture 2	6.6 Leftist Heaps 6.7 Skew Heaps 6.8 Binomial Queues 6.9 Priority Queues in the Standard Library (self study) Quiz #2
Week 12	Chap. 7 - Sorting Lecture 1	7.1 Preliminaries 7.2 Insertion Sort 7.3 A Lower Bound for Simple Sorting Algorithms 7.4 Shellsort
Week 13	Chap. 7 - Sorting Lecture 2	7.8 A General Lower Bound for Sorting 7.9 Decision-Tree Lower Bounds for Selection Problems 7.10 Adversary Lower Bounds 7.11 Linear-Time Sorts: Bucket Sort and Radix Sort 7.12 External Sorting

Week 14 Chap. 8 - Graph Algorithms (Brief Intro.) Lecture 1	 8.1 Definitions 8.2 Topological Sort 8.3 Shortest-Path Algorithms 8.4 Network Flow Problems 8.5 Minimum Spanning Tree 8.6 Applications of Depth-First Search
--	---

Required Materials:

- Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, 4th edition, Pearson, 2014

Assessment and Grading:

- Final Examination: [50%]
- Midterm Examination: [20%] week#8
- Quiz #1 [7,5 %] week#6,
- Quiz #2 [7,5 %] week#11
- 2 Homework Assignment [10%]
- Lab & Tutorial attendance and Participation: [5%]

Note: This syllabus is subject to change. Any modifications will be communicated in advance.