Rajalakshmi Engineering College

Name: Monish T

Email: 240801208@rajalakshmi.edu.in

Roll no: 240801208 Phone: 8838363490

Branch: REC

Department: I ECE AF

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_MCQ

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: MCQ

1. Given a pointer to a node X in a singly linked list. If only one point is given and a pointer to the head node is not given, can we delete node X from the given linked list?

Answer

Possible if X is not last node.

Status: Correct Marks: 1/1

2. Consider the singly linked list: $15 \rightarrow 16 \rightarrow 6 \rightarrow 7 \rightarrow 17$. You need to delete all nodes from the list which are prime.

What will be the final linked list after the deletion?

Answer

15 -> 16 -> 6

્ર હ્યુદ, **Status** : Correct Marks : 1/1

3. The following function reverse() is supposed to reverse a singly linked list. There is one line missing at the end of the function.

What should be added in place of "/*ADD A STATEMENT HERE*/", so that the function correctly reverses a linked list?

```
struct node {
     int data;
     struct node* next;
static void reverse(struct node** head_ref) {
     struct node* prev = NULL;
     struct node* current = *head_ref;
     struct node* next:
     while (current != NULL) {
        next = current->next;
        current->next = prev;
        prev = current;
        current = next;
     /*ADD A STATEMENT HERE*/
   Answer
   *head_ref = prev;
   Status: Correct
                                                                     Marks: 1/1
```

4. Consider the singly linked list: 13 -> 4 -> 16 -> 9 -> 22 -> 45 -> 5 -> 16 -> 6, and an integer K = 10, you need to delete all nodes from the list that are less than the given integer K.

What will be the final linked list after the deletion?

Answer

13 -> 16 -> 22 -> 45 -> 16

Status : Correct Marks: 1/1

5. Linked lists are not suitable for the implementation of?

Answer

Binary search

Status: Correct Marks: 1/1

- 6. Consider an implementation of an unsorted singly linked list. Suppose it has its representation with a head pointer only. Given the representation, which of the following operations can be implemented in O(1) time?
 - i) Insertion at the front of the linked list
 - ii) Insertion at the end of the linked list
 - iii) Deletion of the front node of the linked list
 - iv) Deletion of the last node of the linked list

Answer

I and III

Marks : 1/1 Status: Correct

7. The following function takes a singly linked list of integers as a parameter and rearranges the elements of the lists.

The function is called with the list containing the integers 1, 2, 3, 4, 5, 6, 7 in the given order. What will be the contents of the list after the function completes execution?

```
struct node {
struct node* next;
```

```
void rearrange (struct node* list) {
    struct node *p,q;
    int temp;
    if (! List || ! list->next) return;
    p=list; q=list->next;
    while(q) {
        temp=p->value; p->value=q->value;
        q->value=temp;p=q->next;
        q=p?p->next:0;
    }
}
Answer
2, 1, 4, 3, 6, 5, 7
Status: Correct

Marks: 1/1
```

8. In a singly linked list, what is the role of the "tail" node?

Answer

It stores the last element of the list

Status: Correct Marks: 1/1

9. Given the linked list: 5 -> 10 -> 15 -> 20 -> 25 -> NULL. What will be the output of traversing the list and printing each node's data?

Answer

5 10 15 20 25

Status: Correct Marks: 1/1

10. Which of the following statements is used to create a new node in a singly linked list?

```
struct node { int data;
```

struct node * next;
}
typedef struct node NODE;
NODE *ptr; **Answer** ptr = (NODE*)malloc(sizeof(NODE)); Status: Correct Marks: 1/1