Math 1LS3 Week 2: Exponents, Logs, Trig Review

Owen Baker

McMaster University

Sept. 17-21, 2012

- This week covers sections 0.3, 1.2 and 1.3 of the textbook.
- We won't have time to cover all the material in class. Assignments 3 and 4 cover many examples of exponential, log, trig and inverse trig questions. As well, assignment 5 checks your understanding of concepts from chapters 0 and 1.
- Inverse Functions
- 2 Thinking in Half-Lives and Doubling Times
- 3 Exponential Models; Logarithms
- 4 Graphing Exponential Decay, Growth
- Semilog plots; Log-Log plots
- 6 Graph Transformations and Trigonometric graphs
- Inverse Trigonometric Functions

Converting Celsius to Fahrenheit

Problem

Celsius to Fahrenheit conversion is given by the formula:

$$T_F = \frac{9}{5}T_C + 32$$

where T_C denotes Celsius temperature and T_F denotes Fahrenheit temperature. Find a formula for converting Fahrenheit to Celsius.

Solution

$$T_F - 32 = \frac{9}{5}T_C$$

$$T_C = \frac{5}{9}(T_F - 32).$$

What we've done is invert the function $T_C \mapsto T_F$.

Inverse Functions

Function y = f(x). Given x, can compute y.

Inverse problem: Given y, solve for x. (Notation: $x = f^{-1}(y)$).

Problem

Find the **inverse function** of $f(x) = x^3 - 1$.

Solution

$$y = x^3 - 1 \Longleftrightarrow y + 1 = x^3 \Longleftrightarrow x = \sqrt[3]{y+1}$$
.

The inverse function is $f^{-1}(y) = \sqrt[3]{y+1}$.

- Confusingly, we can also write this as $f^{-1}(x) = \sqrt[3]{x+1}$.
- Protip: don't change variable names without a good reason. You might forget what they mean.

A subtlety on notation

The inverse of
$$T_F = \frac{9}{5}T_C + 32$$
 is $T_C = \frac{5}{9}(T_F - 32)$

• In terms of different variables: T_C and T_F .

On the other hand, we write $f(x) = x^3$ and its inverse $f^{-1}(x) = \sqrt[3]{x}$.

• In terms of same variable: x.

Moral: when working with <u>physically meaningful</u> variables, invert by solving for the desired variable. Don't swap the variable names.

Thinking in Half-Lives

• A half-life is the amount of time it takes for half of the starting amount to remain.

Used for:

- Radioactive decay
- Drug remaining in body
- Any other exponential decay model

# Half–Lives	Percentage Remaining
0	100
1	50
2	25
3	12.5
4	6.25
5	3.125
6	1.5625

	1.1-16.1:6-
	Half-life
Tetrahydrocannabinol Marijuana	1.3-3 days
(infrequent users)	
Marijuana (frequent users)	1-10 days
Marijuana (if taken orally as pills)	25-36 hours
Marijuana (smoking/inhaling)	1.6-59 hours
LSD (Lysergic acid diethylamide)	3-5 hours
MDMA ecstasy	6-10 hours
Methylenedioxymethamphetamine	
Caffeine adults	4-5 hours
Caffeine infants	10-20 hours
Caffeine with oral contraceptives	5-10 hours
Caffeine (if pregnant)	9-11 hours
Caffeine (liver disease)	several days
Codeine (Tylenol 3)	3-6 hours
Demerol (pain killer)	3-5 hours
Morphine (pain killer)	2-3 hours

Doubling times of breast cancer

age	median doubling time in days	
	(doubling time interval)	
< 50	80 (44 - 147)	
50-70	157 (121 - 204)	
> 70	188 (120 - 295)	

T = very large ... ductal cancer in situ

source:PG Peer et al, Age-dependent growth rate of primary breast cancer. Cancer. 1993 Jun 1; 71(11): 3547-51

Doubling Times of Breast Cancer

According to your textbook, it takes 3 doublings to get from the time when a tumour is first detectable by mammogram to the time when it can be detected in a clinical breast exam.

Using the doubling time of 157 days for 50-70 year olds, this corresponds to $3 \cdot 157 = 471$ days of advance knowledge.

Radiocarbon dating, Half-life (p.69)

Problem

 14 C has a half-life of 5730 years. Analysis of wooden artifacts shows they contain 29.7 percent of the 14 C in a living tree. How old are they?

Solution

Radioactive decay fits an exponential model:

$$C(t) = C(0)e^{kt}$$

- t is the amount of time after the trees died
- C(t) is the ¹⁴**C** percentage at time t
- k is rate depending only on the particular isotope (e.g. ^{14}C)

Our first step is to find k using the half-life.

Radiocarbon dating; Half-life (p.69)

Solution

Our first step is to find k in $C(t) = C(0)e^{kt}$ using half-life T = 5730yr.

$$\frac{1}{2}C(0)=C(0)e^{kT}$$

$$1/2 = e^{kT}$$

$$\ln(1/2) = \ln(e^{kT}) = kT$$

$$k = \frac{\ln(1/2)}{T} = \frac{\ln(1/2)}{5730} \approx -0.00012097$$

The exponential model for 14 **C** decay is thus $C(t) = C(0)e^{-0.00012097t}$.

Radiocarbon dating; Half-life (p.69)

Given: wooden artifacts contain 29.7 percent of the $^{14}\mathrm{C}$ levels of a living tree.

Solution

We obtained the model $C(t) = C(0)e^{-0.00012097t}$.

Assume that modern trees have the same $^{14}{\it C}$ levels as the trees from which the artifact was made.

Then $C(T_{now}) = .297C(0)$ where T_{now} is the present time.

$$.297C(0) = C(0)e^{-0.00012097T_{now}}$$

$$\ln(.297) = \ln e^{-0.00012097 T_{now}} = -.00012097 T_{now}$$

The age is therefore $T_{now} = \ln(.297)/-.00012097 \approx 10,000$ years.

Is this a reasonable answer?

Yes. Slightly over a quarter of ¹⁴C left; age is almost two half-lives.

Log Properties (p. 64 of your text)

Memorize and be able to use them **fluently**.

$$\log_c(1) = 0$$

$$\log_c(ab) = \log_c(a) + \log_c(b)$$

$$\log_c(a/b) = \log_c(a) - \log_c(b)$$

$$\log_c(1/a) = -\log_c(a)$$

$$\log_c(a^b) = b\log_c(a)$$

$$\log_b(a) = \log_c(a)/\log_c(b)$$

If you need the blue hints on the next slide, practice these!

Do Section 1.2 textbook exercises until you're very comfortable with properties.

Another Look at Half-Life: Solve for Age

In exponential decay, if T is the half-life, then:

fraction remaining =
$$\left(\frac{1}{2}\right)^{Age/T}$$

Writing this as a logarithm:

$$\log_{1/2}(\text{fraction remaining}) = \text{Age}/T$$

"Change of base": $\log_b c = \ln(c) / \ln(b)$ gives:

$$\frac{\mathsf{ln}(\mathrm{fraction\ remaining})}{\mathsf{ln}(1/2)} = \mathrm{Age}/\mathcal{T}$$

Property ln(1/a) = -ln(a) gives:

$$\frac{ln({\rm fraction\ remaining})}{-ln(2)} = {\rm Age}/{\cal T}.$$

$$\mathrm{Age} = \ - \ \frac{\mathsf{In}(\mathrm{fraction} \ \mathrm{remaining}) \, \mathcal{T}}{\mathsf{In}(2)}$$

How old are dinosaur fossils? (p.70)

Problem

Modern tests can't distinguish between zero 14 **C** in a sample and < 0.0005C(0). Can carbon dating be used to find the age of dinosaur fossils? (Dinosaurs went extinct 65 million years ago.)

Solution

$$\mathit{Age} = -\frac{\ln(\mathit{fraction}\ \mathit{remaining})T}{\ln(2)}$$

The oldest sample we can date is where fraction remaining=.0005.

$$Age = -\frac{\ln(.0005) \cdot 5730}{\ln 2} \approx 63,000 years \ll 65,000,000 years$$

No, we need something with a longer half–life, e.g. $^{40} \emph{K}$.

Note: no need to memorize formulas for half-life, doubling time, age, etc.

How to Stretch a Graph Vertically/Horizontally

Starting from the blue curve y = f(x):

- y = f(x) is the original curve.
- y = 3f(x) is blue curve vertically stretched by a factor of 3.
- y = f(x/2) is blue curve horizontally stretched by a factor of 2.
- y = 3f(x/2) is vertically and horizontally stretched.

Why? If a point (a, b) lies on the blue curve, then b = f(a), so: (a, b) and (a, 3b) and (2a, b) and (2a, 3b) must lie on their respective curves.

Problem

Graph $y = 3 * e^{-2t}$ and describe its behaviour.

Solution

 $y = 3e^{-2t}$ is obtained from $y = e^{-t}$ by

- stretching by 3 vertically
- compressing by 2 horizontally

This is an exponential decay graph. It decreases for all time, approaching the horizontal asymptote y = 0.

Semilog plots (p.72-74)

Goal: find explicit model to fit this data.

What kind of function model to use? Exponential

Transform data into a line:

- Plot x coordinates on horizontal axis
- Plot *logs* of y coords on vertical axis

Semilog plots (p.72-74)

Goal: find explicit model fitting data.

What kind of function model fits this data? Exponential

Draw a line through data. Measure slope, intercept.

$$\ln(y) = 1.459 + 0.531x$$

Semilog plots (p.72-74)

Goal: find explicit model fitting data.

What kind of function model fits this data? Exponential

Solve for y to get model for original data set.

$$ln(y) = 1.459 + 0.531x \implies e^{ln(y)} = e^{1.459 + 0.531x} \implies \boxed{y = 4.3 \cdot 1.7^x}$$

Semilog Paper

Semilog paper exponentially distorts the y-axis.

Semilog-Plot Summary

Suppose you have a data set you think fits an exponential model.

- Plot the data on a semilog graph.
- 2 Find a line ln(y) = mx + b that fits the data.
- 3 Then $y = e^{mx+b} = e^b \cdot e^{mx}$.

The *slope* of the line gives the *growth rate* of the exponential curve.

Similarly, log-log plots are used to fit data to curves $y = c * x^m$.

- Plot $(\ln(x), \ln(y))$ for each data point (x, y).
- ② Find a line ln(y) = m ln(x) + b fitting the data.

The slope of the line is the power of the power curve!

Order of graph transformations

The *first* operation performed on x is the *last* transformation to be applied to the graph.

Examples

- $y = f\left(\frac{x-a}{b}\right)$. Stretch horizontally by b. Then translate right by a.
- $y = f(\frac{x}{b} a)$. Translate right by a. Then stretch horizontally by b.
- $y = f\left(\frac{-(x-a)}{b}\right)$. Stretch. Then flip over y-axis. Then translate.
- $y = f\left(\frac{-x-a}{b}\right)$. Stretch. Translate. Then flip.

The *first* operation performed on y is the *first* transformation to be applied to the graph.

Examples

- y = a + bf(x). Stretch vertically by b. Then translate up a.
- y = b(a f(x)). Flip over x-axis. Translate up. Stretch vertically.

Trig functions

Memorize these. Be able to sketch any of them quickly.

Oscillation terminology

A *sinusoid* is the result of transforming $y = \sin(x)$

by translations, reflections, vertical stretches, horizontal stretches.

Note: y = cos(x) is a sinusoid.

Terms describing sinusoids:

- The **minimum** is the smallest *y*-value achieved.
- The maximum is the largest y-value achieved.
- The average is halfway between min, max.
- The amplitude is the (vertical) distance between average and either extreme.
- The period is the time between successive peaks.
- The frequency is the reciprocal of the period.
- The **phase** is how much sine or cosine is shifted to the right <u>after</u> horizontally stretching. [Caution: nonstandard definition.]

Oscillation terminology

- The maximum is 4.
- The minimum is 2.
- The amplitude is 1.
- The average is 3.
- The period is π .
- The phase (as a sine curve) is 0.
- The phase (as a cosine curve) is $\pi/4$.

Transforming a trig graph(see p.83)

Starting with the graph y = f(x), suppose we stretch:

- vertically by A
- horizontally by B

and then translate

- vertically by u
- horizontally by v.

The resulting graph is $y = u + Af(\frac{x-v}{B})$.

Problem

Plot:

$$f(t) = 2 + 0.4\cos\left(\frac{2\pi}{10}(t-7)\right)$$

$f(t) = 2 + 0.4\cos((2\pi/10)(t-7))$

- The graph is vertically stretched by 0.4, so the amplitude is 0.4
- The graph is horizontally stretched by $10/(2\pi)$, so period is 10.
- The graph is shifted up by 2, so the average is 2.
- The maximum is average+amplitude=2.4.
- The minimum is average-amplitude=1.6.
- The phase is 7 (or -3), the amount the graph is shifted right.

Graphing Inverse Functions

If
$$f(a) = b$$
 then $f^{-1}(b) = a$.
So $y = f(x)$ and $y = f^{-1}(x)$ are mirror images over $y = x$.

- Functions only have inverses if the mirror image is a function.
- Horizontal line test.

Invertible Functions

Trig functions are periodic. They take the same output value many times. Not invertible!

To make an invertible function, we have to restrict the domain.

(A *piece* of sin(x) shown on left, *all* of $sin^{-1}(x)$ on right.) $sin^{-1}(x)$, also called arcsin(x), is the angle in $[-\pi/2,\pi/2]$ whose sine is x. Caution: arccos(x) is the angle in $[0,\pi]$ whose cosine is x. Why?

Arctangent example: Find $\arctan(-\sqrt{3})$

 $\arctan(x)$ is the angle in $[-\pi/2, \pi/2]$ whose tangent is x.

Solution

$$\tan(\pi/3) = \frac{\sin(\pi/3)}{\cos(\pi/3)} = \frac{\sqrt{3}/2}{1/2} = \sqrt{3}.$$

So
$$\arctan(-\sqrt{3}) = -\pi/3$$
. (Why?)

We've finished the material for the week!

Questions? Problems to work through? Or would you like to look at pictures of blood splattering?

Also, here's an application of arctan as a human population model:

[S.P. Kapitza, The Phenomenological Theory of World Population Growth, *Physics-Uspekhi* 39(1), 57–71(1996)]. See textbook p.278.

Fun fact

Stretching an exponential graph [vertically or horizontally? you figure it out!] yields the exact same result as translating it horizontally!