Where am 1?

Triangulation, Kalmanfilter and Monte-Carlo localization

BY KIM ZÜLSDORFF

Overview

Triangulation

Kalmanfilter

Monte-Carlo localization

Problems

Errors in sensor information

"kidnapped robot problem"

Finding the right pose (direction + position of the robot)

Typically three landmarks (more are possible)

Multiple ways to detect

- GPS
- Images (Poster, light switches, traffic lights, light sources, ...)

https://i2.wp.com/bigpicturequestions.com/wp-content/uploads/2014/04/triangulation.png

Images

Limitations

15m x 15m

~2m x 1m area

Choose the right landmarks

Choose the right landmarks

- 1. Determine the set of visible landmarks using the current position estimate
- 2. Find all possible combinations (not permutations) of three visible landmarks (triplets)
- 3. Determine the set of landmark triplets that are within the same field of view
- 4. Compute a goodness measure for all such triplets
- 5. Rank triplets according to goodness measure and choose best

Straight lines intersection

P: robot

 L_i : landmark

 Ψ : angle of robot

 Θ_i : angle of landmark

Gaussian filter

Reduces errors caused by measurement

Basic cycle: posterior encoder measurements state Odometry **State Prediction Update** or IMU innovation from predicted matched landmarks state landmarks in global Measurement Data coordinates **Association** Prediction predicted measurements in sensor coordinates Map landmarks Feature/Landmark **Extraction** raw sensory data Sensors

Advantages

- Robust
- Efficient
- Accurate

Disadvantages

- "kidnapped robot problem"
- Can't handle multi-modal densities

Also known as particle filter

Problem: sensor data is inaccurate/noisy

Can handle nonlinear systems

1. Generate sample

Create random possible poses

- 1. Generate sample
- 2. Move and calculate probability of each sample

Calculate possibility of each sample with data from sensors

- 1. Generate sample
- 2. Move and calculate probability of each sample
- 3. Resampling

Actual movement

Monte-Carlo localization ---

Odometry

Kalmanfilter vs. Monte-Carlo

Kalmanfilter	Monte-Carlo
More accurate	Many possible particles
Linear	Nonlinear
Difficulties to handle wrong sensor data	Can handle problems in sensor data
Difficulties after respositioning	Gets actual position relatevely fast after failure

- [1] Frank Dellaerty, Dieter Foxy, Wolfram Burgardz, Sebastian Thruny. Monte Carlo Localization for Mobile Robots. Institute of Computer Science III, University of Bonn, Computer Science Department, Carnegie Mellon University, Pittsburgh PA 15213.
- [2] Josep Maria Font, Joaquim A. Batlle. MOBILE ROBOT LOCALIZATION. REVISITING THE TRIANGULATION METHODS. Technical University of Catalonia (UPC), 2006.
- [3] Claus B. Madsen & Claus S. Andersen & Jens S. Sorensen. A Robustness Analysis of Triangulation-Based Robot Self-Positioning. Laboratory of Image Analysis, Aalborg University, Fr. Bajers Vej 7D1, DK-9220 Aalborg East, Denmark.
- [4] Dirk Neumann. Kalman-Filter und Partikelfilter zur Selbstlokalisation Ein Vergleich. 8. Januar 2002.

- [5] Wolfram Burgard, Kai Arras. Introduction to Mobile Robotics EKF Localization. Lecture, University Freiburg, June 2010.
- [6] Puneet Goel, Stergios I. Roumeliotis, Gaurav S. Sukhatme. Robot Localization Using Relative and Absolute Position Estimates. Department of Computer Science, Institute for Robotics and Intelligent Systems, University of Southern California.
- [7] Prof. Dr. O. Bitte. Mobile Roboter Lokalisierung. Lecture, Hochschule Konstanz Technik, Wirtschaft und Gestaltung, Konstanz, 2017.
- [8] Ling Chen, Huosheng Hu, Klaus McDonald-Maier. EKF based Mobile Robot Localization. School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester C04 3SQ, United Kingdom, 2012.

- [9] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Research Institute for Advanced Study, Baltimore, Md.
- [10] Matthias Heine, Norbert Müller, Silvia Schreier, Oliver Zöllner. Lokalisierung.
- [11] Florian Wilmshöver. Multi-Modell Kalman Filter zur Lokalisierung im Roboterfußball, 01.09.2009.
- [12] S. Shoval, A. Mishan, J. Dayan. ODOMETRY AND TRIANGULATION DATA FUSION FOR MOBILE-ROBOTS ENVIROMENT RECOGNITION. Faculty of mechanical Engineering, Technion Israel Institute of Technology Haifa 32000.
- [13] Vincent Pierlot, Marc van Droogenbroeck. 18 Triangulation Algorithms for 2D Positioning (also known as the Resection Problem): benchmarking, software, source code in C, and documentation. Online: http://www.telecom.ulg.ac.be/triangulation/, 30.12.2016.

[14] RobotShop. Basic Triagulation Positioning System | Let's Make Robots! | RobotShop. Online: http://www.robotshop.com/letsmakerobots/basic-triagulation-positioning-system, 15.03.2010.