msu-eps-converted-to.pdf

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

«Быстрое преобразование Фурье»

Студент 315 группы В. А. Сливинский

Руководители практикума к.ф.-м.н., доцент И.В. Рублёв к.ф.-м.н., доцент П.А. Точилин

Содержание

1	Постановка задачи		3
	1.1	Общая формулировка задачи	3
	1.2	Формальная постановка задачи	3
2	Написание функции plotFT		
	2.1	Разбиение на подзадачи	5
	2.2	Вычисление аппроксимации преобразования Фурье	5
3	Вычисление аналитических преобразований Фурье		
	3.1	числение аналитических преобразований Фурье Некоторые необходимые обозначения и соотношения	6
	3.2	Вычисление аналитического преобразования Фурье	
		функции $f_1(t) = e^{-2 t }\cos(t)$	8
	3.3	Вычисление аналитического преобразования Фурье	
		функции $f_2(t)=rac{e^{- t }-1}{t}$	9
\mathbf{A}	Код	д функции plotFT	10

1 Постановка задачи

1.1 Общая формулировка задачи

Дана система функций (всюду далее, если не сказано противное, предполагается, что $f(t): \mathbb{R} \to \mathbb{R}$ и функция суммируема и обладает достаточной гладкостью)

$$\begin{cases}
f_1(t) = e^{-2|t|} \cos(t) \\
f_2(t) = \frac{e^{-|t|} - 1}{t} \\
f_3(t) = \frac{\operatorname{arctg} t^2}{1 + t^4} \\
f_4(t) = t^3 e^{-t^4}
\end{cases} \tag{1.1}$$

Для каждой функции из системы (1.1) требуется:

- 1. Получить аппроксимацию преобразования Фурье $F(\lambda)$ для каждой функции f(t) из заданного набора при помощи быстрого преобразования Фурье ($\mathbf{Б}\mathbf{\Pi}\mathbf{\Phi} / \mathbf{FFT}$), выбирая различные шаги дискретизации исходной функции и различные окна, ограничивающие область определения f(t)
- 2. Построить графики $F(\lambda)$
- 3. Для функций $f_1(t)$ и $f_2(t)$ из заданного набора вычислить аналитически преобразование Фурье

$$\mathfrak{F}(\lambda) = \int_{-\infty}^{+\infty} f(t)e^{-i\lambda t} dt$$
 (1.2)

и сравнить графики $\mathfrak{F}(\lambda)$ с графиками $F(\lambda)$, полученного из аппроксимации через $\mathbf{Б} \mathbf{\Pi} \mathbf{\Phi}$

1.2 Формальная постановка задачи

- 1. Реализовать на языке MATLAB функцию plotFT(hFigure, fHandle, fFTHandle, step, inpLimVec, outLimVec) со следующими параметрами:
 - hFigure указатель на фигуру, в которой требуется отобразить графики
 - fHandle указатель на функцию (Function Handle), которую требуется преобразовывать (f(t))
 - fFTHandle указатель на функцию (Function Handle), моделирующую аналитическое преобразование Фурье (1.2) функции f(t) (может быть пустым вектором, в таком случае график аналитического преобразования строить не требуется)
 - step положительное число, задающее шаг дискретизации Δt

- inpLimVector вектор-строка, задающая окно [a,b] для функции f(t), первый элемент вектора содержит a, второй b, причём a < b, но не обязательно a = -b
- outLimVector вектор-строка, задающая окно [c,d] для вывода графика преобразования Фурье (пределы осей абсцисс). В случае, если передаётся пустой вектор, следует брать установленные в фигуре пределы или определять свои разумным образом

Данная функция строит графики вещественной и мнимой частей численной аппроксимации преобразования Фурье (1.2) функции f(t), заданной в fHandle (и, при необходимости, соответствующие графики аналитического преобразования Фурье $\mathfrak{F}(\lambda)$)

Кроме того, данная функция, должна возвращать структуру, содержащую следующие параметры:

• **nPoints** — число вычисляемых узлов сеточной функции, рассчитываемое по формуле:

$$nPoints = \left\lfloor \frac{(b-a)}{step} \right\rfloor \tag{1.3}$$

• step — поправленное значение шага дискретизации Δt , рассчитываемое по формуле:

$$step = \frac{(b-a)}{nPoints - 1} \tag{1.4}$$

- inpLimVec окно [a,b] для функции f(t)
- outLimVec окно для вывода графика преобразования Фурье $F(\lambda)$
- 2. Построить, используя написанную функцию plotFT, для каждой из функций системы (1.1) графики $F(\lambda)$ для разных значений входных параметров (окон inpLimVec, outLimVec и частоты дискретизации step).
 - В частности, для некоторых функций подобрать параметры так, чтобы проиллюстрировать эффекты наложения спектра, появления ряби и их устранения (в случае ряби в точках непрерывности $F(\lambda)$)
- 3. Для функций $f_1(t)$ и $f_2(t)$ из системы (1.1) вычислить аналитически их преобразования Фурье $\mathfrak{F}(\lambda)$ и построить их графики вместе с графиками численной аппроксимации $F(\lambda)$

2 Написание функции plotFT

2.1 Разбиение на подзадачи

Написание функции plotFT удобно делать по частям, разбив поставленнию задачу на следующие подзадачи

- 1. Вычисление аппроксимации преобразования Фурье
- 2. Подготовка фигуры к выводу графиков
- 3. Вывод графиков быстрого и, при необходимости, аналитического преобразований Фурье

Соответственно, будем решать подзадачи в приведённом порядке, приводя необходимые выкладки и теоретические обоснования. 1

2.2 Вычисление аппроксимации преобразования Фурье

1. Найдем число вычисляемых узлов сеточной функции nPoints, хранимое в переменной n по формуле (1.3):

```
a = inpLimVec(1);
b = inpLimVec(2);
n = floor((b - a) ./ step) + 1;
```

2. Откорректируем значение шага **step** в соответствии с числом точек (формула (1.4)):

$$step = (b - a) ./ (n - 1):$$

3. Вычислим на сетке [a,b], состоящей из $\mathbf n$ точек значения самой функции f(t), тем самым получим дискретизацию $f_{\mathsf{дискp}}(t)$, затем воспользуемся функциями MATLAB fft() и fftshift(), первая из которых вычисляет дискретное преобразование Фурье (ДПФ) функции $f_{\mathsf{дискp}}(t)$, однако возвращает вектор значений в зеркальном виде, а вторая — «отзеркаливает» этот вектор, приводя его к нормальному виду. Искомая аппроксимация преобразования Фурье $F(\lambda)$ вычисляется по следующей формуле (доказательство её справедливости приведено в [1]):

$$F(\lambda) = \text{step} \cdot F_{\text{дискр}}(\lambda) \tag{2.1}$$

Здесь $F_{\text{дискр}}(\lambda)$ — вектор значений **ДПФ** функции $f_{\text{дискр}}(t)$, полученный путем применения fftshift(fft(...)) к вектору значений $f_{\text{дискр}}(t)$ на заданной сетке. Приведём, в заключение, общую схему работы данного этапа:

$$f(t) \xrightarrow[\text{на сетке}]{\text{дискретизация}} f_{\text{дискр}}(t) \xrightarrow[]{\text{fftshift(fft())}} F_{\text{дискр}}(\lambda) \xrightarrow[]{(2.1)} F(\lambda)$$

¹Полный код функции plotFT приведён в приложении А (стр. 10)

4.

3 Вычисление аналитических преобразований Фурье

3.1 Некоторые необходимые обозначения и соотношения

Напомним, что преобразование Фурье $\mathfrak{F}(\lambda)$ функции f(t) задаётся формулой (1.2):

$$\mathfrak{F}(\lambda) = \int_{-\infty}^{+\infty} f(t)e^{-i\lambda t} dt$$

Впредь, будем для краткости писать:

$$f(t) \to \mathfrak{F}(\lambda)$$

Напомним также следующие свойства преобразования Фурье:

Свойство 3.1. Пусть

$$f(t) = \alpha \cdot f_1(t) + \beta \cdot f_2(t)$$
, $u \begin{cases} f_1(t) \to \mathfrak{F}_1(\lambda) \\ f_2(t) \to \mathfrak{F}_2(\lambda) \end{cases}$

Тогда:

$$f(t) \to \alpha \cdot \mathfrak{F}_1(\lambda) + \beta \cdot \mathfrak{F}_2(\lambda)$$

Свойство 3.2. Пусть

$$f(t) = f_1(t) \cdot f_2(t)$$
, $u \begin{cases} f_1(t) \to \mathfrak{F}_1(\lambda) \\ f_2(t) \to \mathfrak{F}_2(\lambda) \end{cases}$

Тогда:

$$2\pi f_1(t) \cdot f_2(t) \to (\mathfrak{F}_1 * \mathfrak{F}_2)(\lambda) \ , \ \text{ede} \ (\mathfrak{F}_1 * \mathfrak{F}_2)(\lambda) = \int\limits_{-\infty}^{+\infty} \left[\mathfrak{F}_1(\lambda - s) \cdot \mathfrak{F}_2(s) \right] ds$$

Отметим некоторые тривиальные преобразования Фурье:

$$\delta(\lambda) \to 1$$
 (3.1)

$$1 \to 2\pi\delta(\lambda) \tag{3.2}$$

$$e^{iat} \to 2\pi\delta(\lambda - a)$$
 (3.3)

$$\cos(t) = \frac{e^{it} + e^{-it}}{2} \to \pi(\delta(\lambda - 1) + \delta(\lambda + 1))$$
(3.4)

$$\frac{1}{t} \to -i\pi \operatorname{sgn}(t) \tag{3.5}$$

Где $\delta(t) = \begin{cases} +\infty, & t=0 \\ 0, & t\neq 0 \end{cases}$ — дельта-функция Дирака, а соотношение (3.4) вытекает из свойства 3.1, с учётом (3.3).

Вывод этих преобразований, а также доказательства свойств (3.1) и (3.2) можно найти в [1]

Установим также важное отношения для свёртки дельта-функции с произвольной функцией $\varphi(t)$:

$$\left[\left(\delta * \varphi \right) (s) = \int_{-\infty}^{+\infty} \delta(s - \tau) \cdot \varphi(\tau) \, d\tau = \varphi(s) \right]$$
 (3.6)

Докажем следующее соотношение:

Лемма 3.1.

$$e^{-A|t|} \to \frac{2A}{A^2 + \lambda^2} \tag{3.7}$$

Доказательство:

$$\int_{-\infty}^{+\infty} e^{-A|t|} \cdot e^{-i\lambda t} dt = \int_{-\infty}^{0} e^{(A-i\lambda)t} dt + \int_{0}^{+\infty} e^{-(A+i\lambda)t} dt =$$

$$= \left[e^{(A-i\lambda)t} \cdot \frac{1}{A-i\lambda} \right]_{t=-\infty}^{0} - \left[e^{-(A+i\lambda)t} \cdot \frac{1}{A+i\lambda} \right]_{t=0}^{+\infty} =$$

$$= \frac{1}{A-i\lambda} + \frac{1}{A+i\lambda} = \frac{2A}{A^2 + \lambda^2}$$

3.2 Вычисление аналитического преобразования Фурье функции $f_1(t) = e^{-2|t|}\cos(t)$

Преобразование Фурье $\mathfrak{F}_1(\lambda)$ функции $f_1(t)=e^{-2|t|}\cos(t)$ задаётся формулой:

$$\mathfrak{F}_{1}(\lambda) = \int_{-\infty}^{+\infty} e^{-2|t|} \cos(t) e^{-i\lambda t} dt$$

Утверждение.

$$\boxed{\mathfrak{F}_1(\lambda) = \frac{4(\lambda^2 + 5)}{\lambda^4 + 6\lambda^2 + 25}} \tag{3.8}$$

Доказательство: Заметим, что $f_1(t)$ представима в виде:

$$f_1(t) = g_1(t) \cdot g_2(t)$$
, где $g_1(t) = e^{-2|t|}$, $g_2(t) = \cos(t)$ (3.9)

Пользуясь этим соотношением, выражениями для преобразований Фурье $g_1(t)$ (3.7) и $g_2(t)$ (3.4), установленным свойством 3.2 и соотношением (3.6) для свёртки с дельтафункцией, получим:

$$\mathfrak{F}_{1}(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{4}{4+\tau^{2}} \cdot \pi(\delta(\lambda-\tau-1)+\delta(\lambda+1-\tau)) d\tau =$$

$$= \frac{2}{4+(\lambda-1)^{2}} + \frac{2}{4+(\lambda+1)^{2}} = \frac{4(\lambda^{2}+5)}{\lambda^{4}+6\lambda^{2}+25}$$

3.3 Вычисление аналитического преобразования Фурье функции $f_2(t) = \frac{e^{-|t|}-1}{t}$

Преобразование Фурье $\mathfrak{F}_2(\lambda)$ функции $f_2(t)=rac{e^{-|t|}-1}{t}$ задаётся формулой:

$$\mathfrak{F}_{2}(\lambda) = \int_{-\infty}^{+\infty} \frac{e^{-|t|} - 1}{t} e^{-i\lambda t} dt$$

Утверждение.

$$\mathfrak{F}_{2}(\lambda) = i \left(\pi \operatorname{sgn}(\lambda) - 2 \operatorname{arctg}(\lambda) \right)$$
(3.10)

Доказательство: (Аналогично (3.9) представим $f_2(t)$ в виде:

$$f_2(t) = g_1(t) \cdot g_2(t)$$
 где $g_1(t) = \left(e^{-|t|} - 1\right), g_2(t) = \frac{1}{t}$ (3.11)

Пользуясь установленными свойствами 3.1, 3.2, выражениями для преобразований Фурье $g_1(t)$ (3.7), (3.2) и $g_2(t)$ (3.5) и соотношением (3.6) для свёртки с дельта-функцией, получим:

$$f_2(t) \to \mathfrak{F}_2(\lambda) = \int_{-\infty}^{+\infty} \frac{e^{-|t|} - 1}{t} e^{-i\lambda t} dt = \frac{1}{\pi} \left[\left(\frac{1}{1 + (\cdot)^2} - \pi \delta(\cdot) \right) * (-i\pi \operatorname{sgn}(\cdot)) \right] (\lambda) =$$

$$= -i \int_{\lambda}^{+\infty} \frac{1}{1 + \tau^2} d\tau + i \int_{-\infty}^{\lambda} \frac{1}{1 + \tau^2} d\tau + \pi i \operatorname{sgn}(\lambda) =$$

$$= i (\pi \operatorname{sgn}(\lambda) + 2 \operatorname{arctg}(\lambda))$$

A Код функции plotFT

```
function [ res ] = plotFT( hFigure, fHandle, fFTHandle, ...
                            step, inpLimVec, outLimVec)
    res = struct('nPoints', [], 'Step', []);
    res.inpLimVec = inpLimVec;
   moe = .001;
    a = inpLimVec(1);
   b = inpLimVec(2);
   n = floor((b - a) ./ step) + 1;
    step = (b - a) ./ (n - 1);
   res.nPoints = n;
    res.Step = step;
    lsp = linspace(inpLimVec(1), inpLimVec(2), n);
    func = fHandle(lsp);
    fourier = step .* fftshift(fft(func));
    lsp = linspace(0, 2 * pi ./ step, n);
    lsp = lsp - lsp(floor(n ./ 2 + 1)); %symmetrical partition
    fourier = fourier .* exp(-1i.*lsp.*a); %shifting the fourier transform
    SPlotInfo = get(hFigure, 'UserData');
    if isempty(SPlotInfo)
        if isempty(outLimVec)
            limits = [0 0];
            for i = 1:n
                if abs(fourier(i)) > moe
                    if limits(1) == 0
                        limits(1) = i;
                    end
                    limits(2) = i;
                end
            end
            outLimVec = [lsp(limits(1)), lsp(limits(2))];
            res.outLimVec = outLimVec;
        end
        clf(hFigure); %clear figure window
        axRe = subplot(1, 2, 1);
        set(axRe, 'XLim', outLimVec);
        axRe.Title.String = 'Real part of fft';
```

```
axRe.XLabel.String = '\Lambda';
    axRe.YLabel.String = 'Re(fft)';
    axIm = subplot(1, 2, 2);
    set(axIm, 'XLim', outLimVec);
    axIm.Title.String = 'Imaginary part of fft';
    axIm.XLabel.String = '\Lambda';
    axIm.YLabel.String = 'Im(fft)';
    SPlotInfo = struct('axRe', axRe, 'axIm', axIm);
end
if isempty(outLimVec)
    outLimVec = get(SPlotInfo.axRe, 'xLim');
else
    set(SPlotInfo.axRe, 'XLim', outLimVec);
    set(SPlotInfo.axIm, 'XLim', outLimVec);
end
set(hFigure, 'UserData', SPlotInfo);
% drawing graphs
hFigure.CurrentAxes = SPlotInfo.axRe;
hFigure.CurrentAxes.NextPlot = 'replacechildren';
plot(lsp, real(fourier), 'Color', [0 0 0]);
legend('Re fft');
if ~isempty(fFTHandle)
    hFigure.CurrentAxes.NextPlot = 'add';
    plot(lsp, real(fFTHandle(lsp)), 'r');
    legend('Re fft', 'Re analytical fourier transform');
end
hFigure.CurrentAxes = SPlotInfo.axIm;
hFigure.CurrentAxes.NextPlot = 'replacechildren';
plot(lsp, imag(fourier), 'Color', [0 0 0]);
legend('Im fft');
if ~isempty(fFTHandle)
    hFigure.CurrentAxes.NextPlot = 'add';
    plot(lsp, imag(fFTHandle(lsp)), 'r');
    legend('Im fft', 'Im analytical fourier transform');
end
```

end

Список литературы

[1] И. В. Рублёв, *курс лекций «Преобразования Лапласа-Фурье»*, кафедра Системного Анализа, Факультет Вычислительной Математики и Кибернетики, МГУ им. М. В. Ломоносова, 2017