

Database Systems(2)

Tutorial 2

DR. ALYAA HAMZA

ENG. ESRAA SHEHAB

1. Review in database systems 1:

1.1What is a database systems:

A database is an organized collection of structured information, or data, typically stored electronically in a computer system.

A database is usually controlled by a database management system(DBMS).

1.2What is a database management systems(DBMS):

A database typically requires a comprehensive database software program known as a database management system (DBMS).

A DBMS serves as an interface between the database and its end users or programs, allowing users to retrieve, update, and manage how the information is organized and optimized.

1.3 What is a relational database management systems(RDBMS):

A relational database management system (RDBMS or just RDB) is a common type of database that stores data in tables, so it can be used in relation to other stored datasets.

Relational Database Management System

www.learncomputerscienceonline.com

1.4 What is a Relational database schema:

A database schema is an abstract design that represents the storage of your data in a database.

It describes both the organization of data and the relationships between tables in each database.

1.5 Normalization:

Normalization is a database design technique that reduces data redundancy and eliminates undesirable characteristics.

Normalization rules divides larger tables into smaller tables and links them using relationships.

The purpose of **Normalization in SQL** is to eliminate redundant (repetitive) data and ensure data is stored logically.

1NF	Customer Firstname	Customer Lastname	Item 1	Item 2
	Joe	Bloggs	Baked beans	Bread
2NF	Customer Firstname	Customer Lastname	Item	
	Joe	Bloggs	Baked beans	
	Joe	Bloggs	Bread	
3NF	Customer ID	Customer Firstname	Customer Lastname	
	1	Joe	Bloggs	
	2	Jeff	Smith	
	Item ID	ltem		
	1	Baked beans		
	2	Bread		
	Customer ID	ltem		
	1	Baked beans		
	2	Bread		

1.6 Architecture of database schema:

1.6 Architecture of database schema:

Conceptual layer (Logical): A conceptual database schema represents how the data is organized in terms of tables. It also explains how attributes from tables are linked together.

Note: Integrity constraints are a set of rules for a DBMS that maintain quality for data insertion and updates.

To create a conceptual database schema, we use tools to illustrate relationships between components of your data. This is called entity-relationship modeling (ER Modeling). It specifies what the relationships between entity types are.

- •Primary key: identify a record in the table.
- •Foreign key: primary key for another table.

Physical layer: The physical database schema represents how data is stored on disk storage. In other words, it is the actual code that will be used to create the structure of your database.

Note: Compared to the logical schema, it includes the database table names, column names, and data types.

1.7 What is DDL and DML:

DDL:

- 1. Is Data Definition Language which is used to <u>define data structures</u>. For example: <u>create table, alter table are instructions in SQL</u>.
- 2. Basic command present in DDL are CREATE, DROP, RENAME, ALTER.

<u>DML</u>:

- 1. Is Data Manipulation Language which is used to <u>manipulate data</u> itself. <u>For example: insert, update, delete are instructions in SQL</u>.
- 2. BASIC command present in DML are UPDATE, INSERT, MERGE.

2. Relational Algebra:

2.1 Why it is important:

Relational algebra defines the basic set of operations of relational database model. The result of this expression represents the result of a database query.

The basic operations are:

Projection, Selection

Union, Intersection

Minus, Join

2.2 What is query optimizer:

2.2 What is query plan:

A query plan (or query execution plan) is a sequence of steps used to <u>access data</u> in a <u>SQL relational</u> <u>database management system</u>.

This is a specific case of the <u>relational model</u> concept of access plans.

Since <u>SQL</u> is <u>declarative</u>, there are typically many alternative ways to execute a given query, with widely varying performance. When a <u>query</u> is submitted to the database, the <u>query</u> <u>optimizer</u> evaluates some of the different, correct possible plans for executing the query and returns what it considers the best option.

2.3 Classification of Relational algebra operations:

Selection with Projection Example

FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
John		Smith	123456789	1965-01-09	731 Fondren, Houston, TX	M	30000	333445555	5
Franklin		Wong	333445555	1955-12-08	638 Voss, Houston, TX	M	40000	888665555	5
Alicia		Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer		Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	E	43000	888665555	4
Ramesh	3	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	M	38000	333445555	5
Joyce	2	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad		Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	M	25000	987654321	4
James		Borg	888665555	1937-11-10	450 Stone, Houston, TX	M	55000	null	1

$$\pi_{\text{LNAME, FNAME, SALARY}} (\sigma_{\text{DNO=5}}(\text{EMPLOYEE}))$$

FNAME	LNAME	SALARY
John	Smith	30000
Franklin	Wong	40000
Ramesh	Narayan	38000
Joyœ	English	25000

Slide 6a-14

Other Projection Examples

 $\pi_{\text{LNAME, FNAME, SALARY}}(\text{EMPLOYEE})$

LNAME	FNAME	SALARY
Smith	John	30000
Wong	Franklin	40000
Zelaya	Alicia	25000
Wallace	Jennifer	43000
Narayan	Ramesh	38000
English	Joyce	25000
Jabbar	Ahmad	25000
Borg	James	55000

 $\pi_{SEX, SALARY}(EMPLOYEE)$

SEX	SALARY
M	30000
М	40000
F	25000
F	43000
М	38000
М	25000
М	55000

1-11

Projection & Join Example:

Employee table				
ename	did			
Vivek	10			
Akash	20			
Ajay	30			
	ename Vivek Akash			

Department table		
did	dname	
10	IPF	
20	HR	
40	TIS	

 Π eid,dname(Employee \bowtie Department)

eid	dname	
101	IPF	
102	HR	

Cartesian Product Example

EMP	F	7
ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

SAL	
TITLE	SAL
Elect. Eng.	40000
Syst. Anal.	34000
Mech. Eng.	27000
Programmer	24000

EMP × S	AL	1	F 71	
ENO	ENAME	EMP.TITLE	SAL.TITLE	SAL
E1	J. Doe	Elect. Eng.	Elect. Eng.	40000
E1	J. Doe	Elect. Eng.	Syst. Anal.	34000
E1	J. Doe	Elect. Eng.	Mech. Eng.	27000
E1	J. Doe	Elect. Eng.	Programmer	24000
E2	M. Smith	Syst. Anal.	Elect. Eng.	40000
E2	M. Smith	Syst. Anal.	Syst. Anal.	34000
E2	M. Smith	Syst. Anal.	Mech. Eng.	27000
E2	M. Smith	Syst. Anal.	Programmer	24000
E3	A. Lee	Mech. Eng.	Elect. Eng.	40000
E3	A. Lee	Mech. Eng.	Syst. Anal.	34000
E3	A. Lee	Mech. Eng.	Mech. Eng.	27000
E3	A. Lee	Mech. Eng.	Programmer	24000
20 V <u>2</u>	=			<u></u> 3
E8	J. Jones	Syst. Anal.	Elect. Eng.	40000
E8	J. Jones	Syst. Anal.	Syst. Anal.	34000
E8	J. Jones	Syst. Anal.	Mech. Eng.	27000
E8	J. Jones	Syst. Anal.	Programmer	24000

INNER JOIN

OUTER JOIN

Algebra Operators (Join)

T

U

~		-	
(am	tesian	Proc	1101
Car	Coran	IIOC	uci

Theta Join

A	В
a	1
b	2

В	В	\mathbf{C}
1	1	X
1	1	у
1	3	Z
2	1	X
2	1	У
2	3	Z
	1 1 1 2 2 2	B B 1 1 1 1 1 3 2 1 2 1 2 3

A	В	В	C
b	2	1	X
b	2	1	У

EquiJoin

A	В	В	\mathbf{C}
a	1	1	X
a	1	1	У

Natural Join

В	\mathbf{C}
1	x
1	У
	1 1

SemiJoin

D
1

Outer Join

Α	В	C
a	1	X
a	1	У
b	2	600 E

Examples of Division A/B

sno	pno
s1	p1
s1	p2
s1	р3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

pno)
p2	
B_{I}	1

pno
p2
p4

pno

p1

p2

p4

A/B3

Set Operations UNION, INTERSECTION, MINUS

The next group of relational algebra operations are the standard mathematical operations on sets.

Course_1

C_id	C_name
11	Foundation C
21	C++
31	JAVA

Course_2

C_id	C_name
12	Python
21	C++

Course_1 - Course_2

C_id	C_name
11	Foundation C
31	JAVA

Web Applications architecture

Discussion about projects