MATEMÁTICA FINANCEIRA BÁSICA

(SEM COMPLICAÇÕES)

APOIO AO MICRO E PEQUENO EMPRESÁRIO

Nenhuma empresa é pequena quando os dirigentes são grandes e o segredo para ser grande é se instruir sempre!

PROJETO INTEGRALMENTE IDEALIZADO PELO Prof. Veslaine Antônio Silva - UNIFENAS -Coordenação de Extensão

MATEMÁTICA FINANCEIRA BÁSICA

(SEM COMPLICAÇÕES)

APOIO AO MICRO E PEQUENO EMPRESÁRIO

Nenhuma empresa é pequena quando os dirigentes são grandes e o segredo para ser grande é se instruir sempre!

Resumo do Curso:

Simples:

c.i.n

Composto:

 $(1+i)^n$

Prof. Veslaine Antônio Silva LINIFENAS

UNIVERSIDADE JOSÉ DO ROSÁRIO VELLANO - UNIFENAS

Reitor:

Prof. Edson Antônio Velano

Vice-reitora:

Profa Maria do Rosário Velano

Supervisor de Câmpus e Coordenador do Colegiado de Supervisores:

Prof. João Batista Magalhães

Supervisor de Pesquisa e Pós-Graduação:

Prof. Mário Sérgio de Oliveira Swerts

Supervisor Administrativo:

Prof. Osvaldo Luiz Mariano

Supervisor de Textos e Publicações:

Prof. Vinícius Vieira Vignoli

Coordenadora De Graduação:

Profa Marlene Leite Godoy Vieira de Souza

Assessora Pedagógica:

Profa Daisy Fábis de Almeida Singi

Coordenador de Extensão e do Curso de Administração::

Prof. Rogério Ramos Prado

Gerente Financeiro:

Paulo Tadeu Barroso de Salles

Gerente de Administração Escolar:

Helaine Faria Pinto

MATEMÁTICA FINANCEIRA:

PRICÍPIOS BÁSICOS COM EXEMPLOS PARA UM APRENDIZADO COM A BUSCA DE EXERCÍCIOS E AUTODIDÁTICA.

Prof. Veslaine Antônio Silva

LEMBRE-SE EM TODOS OS CÁLCULOS:

- 1º Operações dentro dos parênteses (se houver);
- 2º Operações dentro dos colchetes (se houver);
- 3º operações dentro das chave (se houver).

Em todas elas:

Multiplicações e divisões primeiro, somas e subtrações depois.

É usado também para a multiplicação: . (ponto) ou \mathbf{x} (letra) ou sem sinal.

Exemplos: 1. (1 + 0.2) ou 1 x (1 + 0.2) ou 1 (1 + 0.2)

É usada também para a divisão: / (barra)

PERÍODOS:

a. a. = ao ano a. b. = ao bimestre a. q. = ao quadrimestre a. p. = ao período

a. m. = ao mês a. t. = ao trimestre a. s. = ao semestre

•••

SE PUDER DECORAR AS FÓRMULAS, TUDO BEM, MAS NÃO SE PREOCUPE COM ISSO; NÃO SE TRATA DE NENHUM CONCURSO E NA VIDA VOCÊ PODERÁ SEMPRE CONSULTAR O SEU MATERIAL. ALIÁS, O SIMPLES FATO DE VOCÊ ESTAR ESTUDANDO PARA UM CONCURSO, SE FOR O CASO, CONSULTANDO AS FÓRMULAS PARA RESOLVER OS EXERCÍCIOS, ACABARÁ DECORANDO-AS DE UMA FORMA NATURAL. "UM BOM PROFISSIONAL NÃO PRECISA SABER DE TUDO, MAS SIM, SABER ONDE ENCONTRARAS INFORMAÇÕES QUE PRECISA".

DANDO UMA ESQUENTADA COM PORCENTAGEM (ELEMENTAR MAS NÃO CUSTANADA):

Exemplos:

5,00% de 500,00 ou simplesmente:

 $= 5,00 \times 500,00 : 100$ pula duas casas para a esquerda: 5% = 0,05

= 2.500,00 : 100 $0,05 \times 500 = 25,00$

=25,00

15,00% de 1.200,00 ou simplesmente:

 $= 15,00 \times 1.200,00 : 100$ pula duas casas para a esquerda: 15% = 0,15

= 18.000,00 : 100 $0,15 \times 1.200,00 = 180,00$

= 180,00

\$ 03

33,00% de 2.800,00 ou simplesmente:

 $= 33,00 \times 2.800,00 : 100$ pula duas casas para a esquerda: 33% = 0,33

= 92.400,00:100 0,33 x 2.800,00 = 924

= 924,00

148,00% de 4.600,00 ou simplesmente:

 $= 148,00 \times 4.600,00 : 100$ pula duas casas para a esquerda: 148% = 1,48

= 680.800,00:100 1,48 x 4.600,00 = 6.808,00

=6.808,00

217,00% de 821.810,35 ou simplesmente:

= 217,00 x 821.810,00 : 100 pula duas casas para a esquerda: 217\$ =

2,17

= 178.332.846,00:100 $2,17 \times 821.810,35 = 1.783.328,46$

= 1.783.328,46

Quer achar um valor com um acréscimo percentual, é só acrescentar 1, ... (sem %) e multiplicar. Exemplos:

100,00 com acréscimo de 30% = 100,00 x 1,30 = 130,00

200,00 com acréscimo de 25% = 200,00 x 1,25 = 250,00

2.500,00 com acréscimo de $17\% = 2.500,00 \times 1,17 = 2.925,00$

185.500,00 com acréscimo de 35,9% = 185.500,00 x 1,359 = 252.094,50

185.500,00 com acréscimo de 200% = 185.500,00 x 3,00 = 556.500,00

185.500,00 com acréscimo de 319,5% = 185.500,00 x 4,195 =

778.172,50

Quer achar um valor com desconto percentual, é só multiplicar pela diferença decimal para 1,00. Exemplos:

100,00 com desconto de 20% (0,20) = 100,00 x 0,80 = 80,00 200,00 com desconto de 25% (0,25) = 200,00 x 075 = 150,00 2.500,00 com desconto de 17% (0,17) = 2.500,00 x 0,83 = 2.075,00 185.500,00 com desconto de 35,9% (0,395) = 185.500,00 x 0,605 = 112.227,75

185.500,00 com desconto de 100,% (1,00) = 185.55,00 x 0,00 = 0

Quer multiplicar um número por 100, é só pular duas casas para a direita.

 $40,00 \times 100$ pule duas casas para a direita = 4.000,00

Quer dividir um número por 100, é só pular duas casas para a esquerda

40,00:100 pule duas casas para a esquerda = 0,40

E assim por diante: por 10, pular uma casa. Por 100, pular duas casas. Por 1000, pular três casas. Por 10.000, pular quatro casas, etc. Quando não tiver mais números, complete com zeros. Exemplo:

5,00 : por 1000 = 0,005

JUROS SIMPLES:

JURO E MONTANTE:

JURO (j)

Remuneração pelo capital inicial (também chamado de principal), diretamente proporcional ao seu valor e ao tempo. O fator de proporcionalidade é a TAXA DE JUROS

$$\begin{array}{cccc} \underline{F\acute{O}RMULAS} \colon & j = c.i.n \, onde & j = juros \\ & c = capital \\ & i = taxa \\ & n = tempo \end{array}$$

Dessa fórmula se extraem outras:

- Sabendo-se o juro, a taxa e o tempo, podemos encontrar o capital:

- Sabendo-se o juro, o capital e o tempo, podemos encontrar a taxa:

$$\begin{array}{ccc} & j \\ i = ---- & ou & i = j/c \,.\, n \\ & c \,.\, n \end{array}$$

- Sabendo-se o juro, o capital e a taxa, podemos encontrar o tempo:

$$\begin{array}{cccc} & j \\ n = & & \text{ou} & n = j/c.i \\ & c.i \end{array}$$

EXEMPLOS:

Quanto rende um capital inicial (principal) de \$100,00 aplicado à taxa de 5% ao semestre e por um prazo de 2 anos?

Resposta:

Capital (c) =
$$100,00$$

Taxa (i) = 5% ao ano (se colocarmos % fica 5%. Para não ter que dividir por 100, usamos 0.05 que é o mesmo que 5/100)

Tempo (n) =
$$2 \operatorname{anos} (4 \operatorname{semestres})$$

Conhecendo a fórmula (j = c.i.n), é só substituirmos os símbolos:

$$J = 100,00 \times 0,05 \times 4 = 20,00$$

Digamos que você desconhecesse o capital, tendo os outros dados, como encontrá-lo?

$$c = 20 / 0,05 \times 4 = 20 / 0,20 = 100 \quad \text{ou } c = ---- = 100$$

$$0,05 . 4 \quad 0,20$$

Digamos que você desconhecesse o tempo, tendo os outros dados, como encontrá-lo?

j

c.n

$$i=20/100 \times 4 = 20/400 = 0.05$$
 ou $i=----==0.05$

Digamos ainda que você desconhecesse a taxa, tendo os outros dados, como encontrá-lo?

j

c.i

$$20$$
 20 $n = 20/100 \times 0.05 = 20/5 = 4$ ou $n = ---- = 4$ $100.0.05$ 5

MONTANTE (M)

Montante é a soma do juros mais o capital inicial (principal).

FÓRMULAS:
$$M = c.(1+i.n)$$
 Onde $M = Montante$

Dessa fórmula se extraem outras:

Sabendo-se o montante, a taxa de juros e o tempo, podemos encontrar o capital:

$$\begin{array}{c} M \\ c = ----- \\ 1+i \cdot n \end{array}$$
 ou $c=M/1+i \cdot n$

Sabendo-se o montante, o capital e o tempo, podemos encontrar a taxa:

Sabendo-se o montante o capital e a taxa, podemos encontrar o tempo:

EXEMPLOS:

Qual o montante de um capital de \$1.000,00 aplicado à taxa de 10% ao ano, pelo prazo de 2 anos?

Resposta:

Capital (c) =
$$1.000,00$$

Taxa (i) = 10% ao ano (a. a.) ou $0,10$ a. a.
Tempo = 2 anos

Conhecendo a fórmula (M = c.(1+i.n), é só substituirmos os símbolos:

$$M = 1.000 (1+0.10 x 2)$$

$$M = 1.000 (1+0.20)$$

$$M = 1.000 x 1.20$$

$$M = 1.200.00$$

Digamos que você desconheça o capital, tendo os outros dados, como encontrá-lo?

$$M$$
 Conhecendo a fórmula (c = $M/(1+i.n)$ ou c = ---- = é só substituirmos os
$$1+i.n$$

símbolos:

$$c = 1.200 / (1+0.10 \times 2)$$
 1.200 1.200
 $c = 1.200 / 1.20$ ou $c = ---- = 1.000$
 $c = 1.000$ $1+0.10.2$ 1.20

Digamos que você desconheça a taxa, tendo os outros dados, como encontrá-la?

Aqui também, conhecendo a fórmula (i = $[(M/c \ 1)/n)$, é só substituirmos os símbolos:

$$i = [(1.200/1000 \ 1)/2] \qquad 1.000 \qquad 1,20 \ 1 \qquad 0,20$$

$$i = 0,20/2 \ ou \ i = ----- = 0,10$$

$$i = 0,10 \qquad 2 \qquad 2 \qquad 2$$

Digamos ainda que você desconheça o tempo, tendo os outros dados, como encontrá-lo?

Conhecendo a fórmula (n = [(M/c - 1)/i), é só substituirmos os símbolos:

ALGUNS EXERCÍCIOS:

Calcular os juros simples referente a um capital de \$1.000,00 aplicado conforme hipóteses abaixo:

Taxa de juros	Prazo
a) 15% ao ano	1 ano
b) 17% ao ano	4 anos
c) 21% ao ano	5 meses
d) 26,8% ao ano	30 meses
e) 30,8% ao ano	5,5 anos ou 5 anos e 6 meses
f) 38% ao ano	4 anos e 8 meses

Respostas:

$$A)i = c.i.n = 1.000 \times 0.15 \times 1 = 150$$

b)
$$i = 1.000 \times 0.17 \times 4 = 680.00$$

$$c)j = 1.000 \times 0.21/12 \times 5 = 1.000 \times 0.0875 = 87.50$$

d)
$$j = 1.000 \times 0.268 / 12 \times 30 = 1.000 \times 0.67 = 670$$

$$e)j = 1.000 \times 0.306 \times 5.5 = 1.000 \times 1.694 = 1.694$$

f)
$$j = 1.000 \times 0.38 / 12 \times 56 = 1.000 \times 1.77333 = 1.773.33$$

Obs.: -4 anos e 8 meses = 56 meses

- Nos casos em que a taxa foi dividida por 12, é porque a taxa é anual e o número de períodos se refere a meses

Que montante receberá um aplicador que tenha investido \$5.000,00, se as hipóteses de taxas de aplicação e respectivos prazos forem:

Taxa de juros	Prazo	
a) 18% ao ano	6 meses	
b) 31,8% ao ano	2 anos e 7 meses	
c) 42% ao ano	4 anos e 3 meses	

Respostas:

A)
$$M = c.(1+i.n) = 5.000.(1+0.18 \times 6/12) = 5.000 \times 1.09 = 5.450$$

b)
$$M = 5.000 (1 + 0.318 \times 31 / 12)$$

$$M = 5.000 x 1 + 0.8215$$

$$M = 5.000 x 1,8215 = 9.107,50$$

Obs.: 2 anos e 7 meses = 31 meses

c)
$$M = 5.000 (1 + 0.42 \times 51 / 12$$

$$M = 5.000 (1 + 1,785)$$

$$M = 5.000 \times 2,785 = 13.925$$

Obs.: novamente dividido por 12, porque a taxa é anual

Qual a taxa de juros cobrada em cada um dos casos abaixo, se uma pessoa aplicou um capital de \$1.000,00 e recebeu:

Montantes	Prazos
a) 1.420,00	2 anos
b) 1.150,00	10 meses
c) 1.350,00	1 ano e 9 meses

Respostas:

Usando a mesma fórmula:

b)
$$i = (1.150/1.000 \ 1)/(10/12)$$
 0,15
 $i = 0,15/0,8333 = 0,18$ ou 18% ou $i = -----= 0,18$ ou 18% 0,8333

c)
$$i = (1.350/1.000 \ 1)/(21/12)$$
 0,35
 $i = 0.35/1.75 = 0.20$ ou 20% ou $i = ---- = 0.20$ ou 20%
1,75

Obs.: - dividido por 12 porque a taxa é anual - 1 ano e 9 meses = 21 meses

Quanto tempo deve ficar aplicado um capital para que os resultados abaixo sejam verdadeiros?

Capital Inicial	Montante	Taxa de Juros	
a) \$800,00	832	16% a.a.	
b) \$1.200,00	2.366	22% a. a.	

Uma loja vende um gravador por \$ 1.500,00 a vista. A prazo é vendido por \$1.800, sendo \$200 de entrada e o restante, após 1 ano. Qual taxa de juros anual cobrada?

Se a pessoa optar por pagar a prazo, receberá financiamento por apenas \$1.300, pois se possuísse essa quantia, compraria a vista, com \$200 que serão desembolsados.

Tudo se passa como se o cliente tivesse recebido \$1.300 emprestados, comprometendo-se a dever \$1.600 após o prazo de 1 ano:

Quanto tempo deve permanecer aplicado um capital para que o juro seja igual a 5 vezes o capital, se a taxa de juros for de 25% a. a

Pelo enunciado temos:

Juros =
$$5 \times 0$$
 capital (j=5c)
i = 25% a. a.

J 5 x c 5

$$n = ---- = ---- = cortando o "c" = ---- = 20 anos$$

c. i c x 0,25 0,25

ALGUNS EXERCÍCIOS COM RESPOSTAS, PARA VOCÊ DESENVOLVERO CÁLCULO:

Calcular o juros simples e o montante de:

a) \$ 500,00 a 25% a. a. em 8 meses Respostas: 83,33 e 583,33

b) \$2.200,00 a 30,2% a. a. em, 2 anos e 5 meses Respostas: 1.605,63 e 3.805,63

c) \$3.000,00 a 34% a. a. em 19 meses Respostas: 1.615,00 e 4.615,00

Qual a taxa de juros que, de um capital de \$1.200,00, gera um montante de:

a) \$1.998,00 em 3 anos e 2 meses Resposta: 21% b) \$1.470,00 em 10 meses Resposta: 27% c) \$2.064,00 em 1 ano e 8 meses Resposta: 43,2%

Qual o capital que rende:

a) \$1.150,00 a 18% a. a. em 10meses Resposta: \$1.000,00 b) \$648 a 21,6% a. a. em 2 anos e 6 meses Resposta: \$420,00 c) \$1.500 a 30% a. a. em 3 anos e 4 meses Resposta: \$750,00

Em quanto tempo um capital de \$10.000 aplicado a 26,4% a. a. renderá:

\$ 17

a) \$ 4.620,00

B) \$16.160,00

Resposta: 21 meses

Resposta: 28 meses

Qual a taxa bimestral equivalente a 28,2% a. a.? Resposta: 4,7% ou 0,047.

Quais as proposições corretas?

- a) 1% ao mês equivale a 12% ao ano
- b) 2,25 ao bimestre equivale a 26,80% ao biênio
- c) 3,4% ao trimestre equivale a 13,6% ao ano
- d) 50% ao ano equivale a 20% em 5 meses

Resposta: a alternativa "a" e a "c"

JUROS COMPOSTOS:

JURO E MONTANTE

JURO (J)

 $\underline{FORMULA}$ $Co(1+I)^n$

A diferença entre o regime de juros simples e o de juros compostos, pode ser mais facilmente demonstrada através de exemplos:

Seja um principal de 1.000,00 aplicado à taxa de 20% ao ano, por um período de 4 anos

EXEMPLO "A"

A juros simples e compostos temos:

Co = 1.000,00

i = 20% a. a.

n = 4 anos

n	JUROS SIMPLES		JUROS COMPOSTOS	
	JUROS	MONTANTE	JUROS	MONTANTE
1	$1.000 \times 0.20 = 200$	1.200	$1.000 \times 0.20 = 200$	1.200
2	$1.000 \times 0.20 = 200$	1.400	$1.200 \times 0.20 = 240$	1.440
3	$1.000 \times 0.20 = 200$	1.600	$1.440 \times 0.20 = 288$	1.728
4	$1.000 \times 0.20 = 200$	1.800	$1.728 \times 0.20 = 346$	2.074

No caso dos juros simples, a formação é linear.

No caso dos juros compostos, a formação é exponencial (juros sobre juros).

EXEMPLO "B":

COMPRAS A PRAZO NAS CASAS "CEARÁ" (COMPARANDO SIMPLES E COMPOSTO).

Compras a prazo significa capitalização composta (juros sobre juros). Diferente de juros simples.

É "de espantar". Veja o exemplo :

JUROS SIMPLES - (c.i.t)

JUROS COMPOSTOS - (1+i)ⁿ

\$200,00 EM 5 MESES 5%

$1.200,00 \times 0,05 = 10,00$	$1.200,00 \times 0,05 = 10,00$
$2.200,00 \times 0,05 = 10,00$	2.200,00 + 10,00 = 210,00 x 0,05 = 10,50
$3.200,00 \times 0,05 = 10,00$	3.210,00 + 10,50 = 220,50 x 0,05 = 11,03
$4.200,00 \times 0,05 = 10,00$	4. 220,50 + 11,03 = 231,03 x 0,05 = 11,58
$5.200,00 \times 0,05 = 10,00$	5.231,03 + 11,58 = 243,11 x 0,05 = 12,16

SOMA DOS JUROS

50,00	EM 5 MESES	55,27
120,00	EM 12 MESES	159,17
240,00	EM 24 MESES	445,02
360,00 *	EM 36 MESES	958,36** ======

*
$$c.i.t = 200,00 \times 0,05 \times 36 = 360$$

**
$$(1+i)^n = (1+i)^{36} = 5,79182$$

5,79182 x 200,00 = 1.158,36
1.158,36 200 = 958,36

Montante, portanto usando os dados acima (voltando ao exemplo "A" - capitalização composta):

$$C1 = Co.(1+i) = 1.000.(1+0.20) \\ = 1.000 \times 1 + 1.000 \times 0.20 = 1.200 \text{ ou simplesmente} = 1.000 \times 1.20 = 1.200$$

$$C2 = C1.(1+i) = 1.200.(1+0.20) \\ = 1.200 \times 1 + 1.200 \times 0.20 = 1.440 \text{ ou simplesmente} = 1.200 \times 1.20 = 1.440$$

$$C3 = C2.(1+i) = 1.440.(1+0.20) \\ = 1.440 \times 1 + 1.440 \times 0.20 = 1.728 \text{ ou simplesmente} = 1.440 \times 1.20 = 1.728$$

$$C4 = C3.(1+i) = 1.728.(1+0.20) \\ = 1.728 \times 1 + 1.440 \times 0.20 = 2.074 \text{ ou simplesmente} = 1.728 \times 1.20 = 2.074$$

$$Obs.: Co = capital inicial no tempo zero$$

$$C1 = capital mais juros no final do primeiro ano$$

$$C2 = capital mais juros no final do segundo ano$$

$$C3 = capital mais juros no final do terceiro ano$$

$$C4 = capital mais juros no final do quarto ano$$

Já pensou se tivermos que calcular dessa forma para 50 anos (C50)?

Podemos resumir numa fórmula

$$Cn = Co.(1+i)^n$$

Cn = capital mais juros no final de n períodos (montante)

Co = capital inicial no tempo zero

i = taxa de juros

n = número de períodos (tempo)

EXEMPLO:

Uma pessoa toma \$1.000,00 emprestados a juros de 2% ao mês pelo prazo de 10 meses, com capitalização composta (juros sobre juros)

Co = 1.000,00

i = 2% ou 0.02 a m.

n = 10 meses

 $Cn = Co.(1+i)^n$

 $Cn = 1.000..(1+0.02)^{10}$

 $Cn = 1.000..(1,02)^{10}$

Cn = 1.000.1,218994

Cn = 1.218,99

Como encontramos (1,02)¹⁰ que é igual a 1,218992?

Multiplicando $1,02 \times 1,02 \times 1,02 \times 1,02...$ até 10 vezes **Já pensou (1,02)** ⁵⁰⁰?

Pode ser encontrado facilmente através de uma tabela financeira, no final de qualquer livro de matemática financeira ou mais facilmente ainda, com auxilio de uma calculadora que tenha exponencial (yⁿ)

Aplicando um valor fixo a cada período a uma determinada taxa, quanto se terá no final de n períodos?

Retirando um valor fixo (P) a cada período, durante n períodos até "zerar", qual o valor total (R) a ser aplicado a uma determinada taxa?

.
$$(1+i)^n - 1 \\ R = P. \left[\begin{array}{ccc} & & & \\ ----- & & \\ i. & (1+i)^n \end{array} \right] \quad \text{ou} \quad R = P. \left[(1+i)^n \ 1 \right] / i. \left(1+i \right)^n$$

Tendo-se um valor fixo (R) a ser aplicado a uma taxa (i) por n períodos e querendo-se retirar um valor fixo (P) a cada período até o final (zerando), qual o valor a ser aplicado?

.
$$R = P. \left[\frac{i.(1+i)^n}{(1+i)^{n-1}} \right] \quad \text{ou} \quad R = p. \left[i.(1+i)^n \right] / (1+i)^{n-1}$$

EXEMPLOS:

Uma pessoa possui uma letra de câmbio que vence daqui a 1 ano, com o valor nominal de \$1.344,89. Foi lhe proposta a troca daquele título por outro, vencível daqui a 3 meses e no valor de\$1.080,00. Sabendo-se que a taxa de mercado é de 1,2% a.m., pergunta-se: a troca é vantajosa?

$$\begin{array}{ccc}
Cn = 1.344,89 \\
Cn = 1.080,00 & & \uparrow \\
\hline
0 & 3 & & 12
\end{array}$$

$$1^{\circ} \text{ Co} = \text{Cn}/(1+i)^{\circ} = 1.344,89/(1+0,025)^{\circ} = 1.344,89/1,344889 = 1.000,00$$

ou

$$C_0 = \frac{C_n}{(1+i)^n} = \frac{1.344,89}{(1+0,025)^{12}} = \frac{1.344,89}{1,344889} = 1.000,00$$

 2° Co = Cn/ $(1+i)^{\circ}$ = 1.080,00 / $(1+0,025)^{\circ}$ = 1.080,00 / 1,076891 = 1.002,89

ou

$$C_0 = \frac{C_0}{(1+i)^n} = \frac{1.080,00}{(1+0,025)^3} = \frac{1.080,00}{1,076891} = 1.002,89$$

A diferença é pequena, mas o título que vence daqui a 3 meses tem valor atual maior. A troca é vantajosa.

Calcular o montante de uma aplicação de \$10.000,00 conforme hipóteses abaixo:

TAXA	PRAZO
a) 20% a. a.	5 anos
b) 5% asem.	3 anos e meio
c) 2,5% a. m.	1 ano

Respostas:

a) Cn = Co.
$$(1 + i)^n$$
 = 10.000. $(1 + 0.20)^5$ = 10.000. $(1.20)^5$ = 10.000. 2.488320 = 24.883.20

B) n = 3,5 anos = 7 semestres
Cn = Co.
$$(1 + i)^n$$
 = 10.000. $(1 + 0.05)^7$ = 10.000. $(1.05)^7$ = 10.000.
1,407100 = 14.071.00

c) Cn = Co
$$(1+i)^n$$
 = 10.000. $(1+0.025)^{12}$ =10.000. $(1.025)^{12}$ = 10.000. $(1.025)^{12}$ = 10.000. $(1.025)^{12}$ = 10.000.

Qual é o juro auferido de um capital de \$1.500,00, aplicado segundo as hipóteses abaixo?

TAXA PRAZO

a) 10% a. a. 10 anos

b) 8% a. trim. 18 meses

Respostas:

a)
$$J_n = \text{Co.}[(1+i)^n \ 1] = 1.500. [(1+0.10)^{10} \ 1] = 1.500. [2.59374 \ 1]$$

= 1.500 x 1.5934 = 2.390.61

b) Transformando 18 meses em trimestres = 18 / 3 = 6 trimestres

Jn = Co.[
$$(1+i)^n$$
 1] = 1.500. [$(1+0.08)^6$ 1] = 1.500. [1,586874 1] = 1.500 x 0,586874 = 880,31

Querendo comprar um carro de \$60.000,00 (valor futuro), quanto se deve aplicar hoje para que daqui a 2 anos possua tal valor? Considerar as seguintes taxas:

- a) 2,5% a.m.
- b) 10% a. sem.
- c) 20% a. a.

Respostas:

a) 2 anos igual a 24 meses

C.n
Co = ----- ou Co = Cn/(1+i)ⁿ

$$(1+i)^n$$

$$Co = 60.000 / (1+0.025)^{24} = 60.000 / 1.808726 = 33.172.52$$

ou

$$Co = \frac{60.000}{(1+0.025)^{24}} = \frac{60.000}{1,808726} = 33.172,52$$

b) 2 anos = 4 semestres

$$Co = 60.000 / (1+0.10)^4 = 60.000 / 1.464100 = 40.980.81$$

ou

c) Co =
$$60.000 / (1+0.20)^2 = 60.000 / 1.440000 = 41.666.67$$

ou

$$C_0 = \frac{60.000}{(1+0.20)^2} = \frac{60.000}{1,440000} = 41.666,67$$

Quanto deve ser aplicado hoje para se auferirem \$10.000,00 de juros ao final de 5 anos, se a taxa de juros for de:

- a) 4% a. trim.
- b) 20% a. q. (quadrimestre)
- c) 30% a. a.

Respostas:

a) 5 anos = 20 trimestres

$$Co = \frac{Jn}{(1+i)^n \ 1}$$
 ou $Co = Jn / (1+i)^n - 1$

ao trimestre 5 anos = 20 trimestres

$$Co = 10.000 / [(1+0.04)^{20} -1] = 10.000 / [2.191123 1] = 10.000 / 1.191123 = 8.395,44$$

b) A. quadrimestre 5 anos = 15 quadrimestres

$$Co = 10.000 / (1+0.20)^{15} - 1 = 10.000 / 15,407022 - 1 = 10.000 / 14,407022 = 694,11$$

ou

$$Co = \frac{Jn}{(1+i)^n \ 1} = \frac{10.000}{(1+0.20)^{15} \ 1} = \frac{10.000}{14,407022} = 694,11$$

c) Co =
$$10.000 / [(1+0.30)^5 - 1] = 10.000 / 3.712930 - 1 = 10.000 / 2.712930 = 3.686.05$$

ou

Co =
$$\frac{\text{Jn}}{(1+i)^5} \frac{10.000}{10.000} = \frac{10.000}{10.000} = 3.686,05$$

Uma empresa empresta \$500.000,00 de um banco à taxa de juros de 21% a. a , com capitalizações quadrimestrais. Quanto deverá devolver ao final de 2 anos?

Resposta:

Quanto deve uma pessoa depositar em um banco que paga 24% a. a., com capitalizações bimestrais, para que no final de 5 anos possua

\$ 27

200.000,00 (capital + juros)?

Resposta:

$$Co = Cn / (1+i)^n = 200.000 / (1+0.04)^{30} = 200.000 / 3,243398 = 61.663,72$$

Uu

ou
$$Co = \frac{Cn}{(1+i)^n} = \frac{200.000}{(1+0.04)^{30}} = \frac{200.000}{3,243398} = 61.663,72$$

ALGUNS AUTORES DE LIVROS DE MATEMÁTICA FINANCEIRA UTILIZAM SÍMBOLOS (LETRAS) DIEFERENTES, MAS O RACIOCÍNIO É O MESMO.

• MAIS ALGUNS EXERCÍCIOS:

Quanto terei no final de 12 períodos, aplicando \$500,00 a 20% a. p. (ao período)

$$Sn = P (1 + /i)^n = 500,00 \cdot (1 + 0,20)^{12}$$

= 500,00 \cdot 8,9161
= 4.458,05

Quanto tenho que guardar para que no final de 12 períodos, a 20% a.p. obtenha \$4.458,05.

$$P = Sn [1/(1+i)^n] = 4.458,05[1/(1+0.20)^{12}] = 4.458,05/8,9167 = 500,00$$

$$P = Sn \left[\frac{1}{(1+i)^n} \right] = 4.458,05 \left[\frac{1}{(1+0,20)^{12}} \right]$$

$$= 4.458,05 \left(\frac{1}{8,9161} \right)$$

$$= \frac{4.458,05}{8,9161}$$

$$= \frac{4.458,05}{8,9161}$$

Viu?

É o inverso do exercício anterior!

Guardando \$500,00 em cada período a uma taxa de 20% a.p., quanto terei no final de 12 períodos?

Sn = R.[
$$(1+i)^n - 1$$
] / $i = 500 \times [(1+0,20)^{12} - 1)$] / $0,20 = 500 \times 7,9161 / 0,20 = 19.790,25$
ou
$$Sn = R \left[\frac{(1+i)^n - 1}{i} \right] = 500 \times \left[\frac{(1+0,20)^{12} - 1}{0,20} \right]$$

$$= 500 \times \left[\frac{7,9161}{0,20} \right]$$

= 19.790,25

Pretende-se deixar na poupança \$2.219,61 aplicado à 20% a. p., durante 12 períodos. Pretende-se retirar um valor fixo a cada período até "zerar. Qual o valor fixo a ser retirado?

$$R = Px[i.(1+i)^n]/[(1+i)^n - 1] = 2.219,61[0,20.(1+0,20)^{12}]/[(1+0,20)^{12} - 1]$$

$$= 2.21961 \times (0.20 \times 8.916,100)/(8.916100 \ 1) = 2.219.61/1,783220/7.916100 = 500$$

ΟU

Que valor devo aplicar a 20% a. p. para que possa retirar \$500,00 a cada período durante 12 períodos?

$$P = R[(1+i)^{n} - 1] / (1+i)^{n} \text{ ou} 500.[(1+0.20)^{12} - 1] / (1+0.20)^{12}$$

= 500 x (8.9161 1)/(0.20 x 8.9161) = 500 x 7.9161/1.78332 = 2.219.61

Ou

$$P = R \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right] = 500 \cdot \left[\frac{(1+0.20)^{12} - 1}{0.20(1+0.20)^{12}} \right]$$
$$= 500 \cdot \left[\frac{8.9161 - 1}{0.20 \times 8.9161} \right]$$
$$= 500 \cdot \left[\frac{7.9161}{1.78332} \right]$$
$$= 2.219.61$$

Viu?

É o inverso do exercício anterior

É claro que
no dia a dia,
no exercício da profissão,
quando se exige rapidez nas operações,
você não vai ficar usando fórmulas.
Mas primeiro entenda bem,
através das fórmulas,
e depois aprenda a usar a
calculadora financeira,
para não ir na onda
dos agentes financeiros.

CAMPUS DE ALFENAS

Rodovia MG 179 - Km 0 - Caixa Postal 23 Tel.: (35) 3299 -3000 - CEP 37130-000 Alfenas MG - http://www.unifenas.br

CÂMPUS DE BELO HORIZONTE

Câmpus I

Rua Líbano, 66 - Itapoã Tel.: (31) 3497-4300

Câmpus II

Rua Boaventura, 50 - Bairro Universitário / Jaraguá Tel.: (35) 3497-4305

E-mail: belohorizonte@unifenas.b

CÂMPUS DE CAMPO BELO

Al. Roberto Assunção, s/nº - Eldorado - Cx. P. 519

Fone/fax: (35) 3832-6462 CEP 37270-000 - Campo Belo-MG E-mail: campobelo@unifenas.br

CÂMPUS DE DIVINÓPOLIS

Rua Tedinho Alvim n° 1000 Bairro Liberdade Tel.: (35) 3212-7888 CEP 35500-000 - Divinópolis - MG E-mail: divinopolis@unifenas.br

CÂMPUS DE POÇOS DE CALDAS

Rod. Geraldo Martins Costa, s/n° -Cx.P.695 - Jd Kennedy Tel.: (035) 3713 - 4400

CEP 37701-970 - Poços de Caldas - MG E-mail: pocosdecaldas@unifenas.br

FACULDADE DE SÃO SEBASTIÃO DO PARAÍSO

Praça dos Imigrantes, 20- Lagoinha Tel.: (35) 3531 1666 /3531-6128 CEP 37950-000 -São Sebastião do Paraíso-MG Email paraiso@unifenas.br

CÂMPUS DE VARGINHA

Praça do Estudante, 2000 - Imaculada Conceição Fone:(35) 3212 -7766 /3212-7957 /3212- 9472 /3212-9473 CEP 37002-970 - Varginha-MG

E-mail: varginha@unifenas.br