Discrete Mathematics (2015 Spring) Final

- 1. **(5, 5 points)** Determine the coefficient of (a) y^2x^{-1} in the complete expansion of $(2x y + 3x^{-1} + 1)^5$. (b) x^{10} in $(x^3-5x)/(1-2x)^3$.
- 2. (10 points) Define the connective "Nand" by $(p \uparrow q) \Leftrightarrow \neg (p \land q)$, for any statements p, q. Represent the following using only this connective. (a) $\neg p$ (b) $p \rightarrow q$.
- 3. **(5 points)** Use a combinatorial argument to show that $\binom{2n}{2} = 2\binom{n}{2} + n^2$
- 4. **(15 points)** (a) How many nine-digit sequences have each of digits 1, 3, 5 appearing at least once? (b) How many derangements of 1, 2, 3, 4, 5, 6, 7 start with 1, 2, 3 in some order? (c) In how many ways can we arrange the integers 1, 2, 3, 4, 5, 6 in a line so that there are no occurrences of the patterns 12, 23, 34, 45, 56, 61?
- 5. **(5, 5 points)** (a) In how many ways can 30030 (2*3*5*7*11*13) be factored into 2, 4, and 6 factors, each greater than 1 and the order of the factors is relevant? (b) In (a), if no factor is prime? (exhaustively list all answers is not allowed.)
- 6. **(4,3,3 points)** Let $A = \{a, b, c, d, e, f\}$, determine the number of relations on A that are (a) antisymmetric and do not contain (a, b), (c, d) and contain (e, f) (b) reflexive and symmetric but not transitive, (c) equivalence relations where $a \in [b]$, $c \in [d]$.
- 8. **(2, 5, 3 points)** Let $A = \{a, b, c, d, e\}$, $B = \{1, 2, 3, 4, 5, 6\}$. (a) How many one-to-one functions are there from A to B and $f(a) \ne 1$? (b) How many one-to-one functions from A to B where $f(a) \ne 2$, 3, $f(b) \ne 1$, 3, $f(c) \ne 4$, and $f(d) \ne 2$ (c) How many onto functions from B to A satisfying f(1) = a?
- 9. **(5,5 points)** Please determine how many positive integer solutions for $x_1+x_2+x_3+x_4 < n$, where (a) n=8, x_1 , $x_2 > 0$, $x_3 > 2$. (b) n=10, $1 \le x_1 \le 4$, $0 \le x_2 \le 5$. (exhaustively list all answers is not allowed.)
- 10. (3,3,4 points) (a) For $n \ge 1$, $A = \{00, 1\}$, let a_n count the number of strings in A^* of length n. Find the recurrence relation for a_n . (b) In (a), if $A = \{0, 01, 011, 0111, 1111\}$. (c) Find a recurrence relation for the number of 4-ary $\{0,1,2,3\}$ sequences (e.g., 021, 0113) of length n that have no consecutive 0's.
- 11. **(6 points)** (a) more small quizzes is good for you? (b) a roll call at the class is good for you? (c) Please list 2 examples/methods/strategies to improve your (or others') learning motivation/performance.