Faculty Civil EngineeringChair of Intelligent Technical Design
Prof. Dr.-Ing. Christian Koch

Bauhaus-Universität Weimar

Object-oriented Modeling and Programming in Engineering (OOMPE)

Winter semester 2018-19

06 - Data structures

Organisation

Bauhaus-Universität Weimar

- Convenor/ contributors
 - Christian Koch, c.koch@uni-weimar.de, M13A room 208
 - Mathias Artus, mathias.artus@uni-werimar.de, M13A room 204
- Time
 - Lectures: Mondays, 15:15-16:45, Coudraystr. 13B, room 210
 - Tutorials: Fridays, 9:15-10:45, Marienstr. 7, Luna blue+grey (computer pool)
- Moodle
 - Learning material related to lectures and tutorials, messages
- Examination
 - Passed 2 coursework assignments
 - Written exam (100%)

10/12/2018

Object-oriented Modeling and Programming in Engineering – 05 $\,$

Organisation

Bauhaus-Universität Weimar

Schedule

Lectures			Tutorials		
Nr	Date	Content	Nr	Date	Content
	1 08.10.2018		1		
- 2	2 15.10.2018	Introduction	2	19.10.2018	Introduction Eclipse
3	3 22.10.2018	Objects	3	26.10.2018	Objects
4	4 29.10.2018	Classes-1	4	02.11.2018	free programming and questions
į	5 05.11.2018	Classes-2	5	09.11.2018	classes
(5 12.11.2018	Control structures and Algorithms-1	6	16.11.2018	free programming and questions
-	7 19.11.2018	Control structures and Algorithms-2	7	23.11.2018	Algorithms 1; Assignm. 1
8	3 26.11.2018	Matrix algorithms-1	8	30.11.2018	free programming and questions
Ç	03.12.2018	Matrix algorithms-2	9	07.12.2018	Algorithms 2
10	10.12.2018	Data structures-1	10	14.12.2018	free programming and questions
1:	1 17.12.2018	Data structures-2	11	21.12.2018	Datastructures; Assignm. 2, Assignm. 1 due
12	07.01.2019	Inheritance and polymorphism	12	11.01.2019	Inheritance
13	3 14.01.2019	Associations	13	18.01.2019	Associations
14	4 21.01.2019	Triangulation	14	25.01.2019	free programming and questions, Assignm. 2 due
15	28.01.2019	GUI	15	01.02.2019	GUI programming

10/12/2018

Object-oriented Modeling and Programming in Engineering – 05

Note

Bauhaus-Universität Weimar

- The lecture content and slides are based on the course
 - "Modern Programming Concepts in Engineering "
 - taught by Prof. Dr.-Ing. Matthias Baitsch, Bochum University of Applied Sciences

Hochschule Bochum Bochum University of Applied Sciences

10/12/2018

Object-oriented Modeling and Programming in Engineering – $05\,$

Faculty Civil Engineering
Chair of Intelligent Technical Design
Prof. Dr.-Ing. Christian Koch

Topic 6: Data structures

Bauhaus-Universität Weimar

 A data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently

– Dictionary: How to store millions of words for fast access?

10/12/2018

Object-oriented Modeling and Programming in Engineering – 05

Bauhaus-Universität Weimar

 A data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently

– Routing: How to store towns and streets to find the shortest connection?

10/12/2018

Object-oriented Modeling and Programming in Engineering – 05 $\,$

Bauhaus-Universität Weimar

 A data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently

- Family tree: Who are the descendants of a certain person?

10/12/2018

Object-oriented Modeling and Programming in Engineering – 05

Bauhaus-Universität Weimar

 A data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently

 Finite element program: How to access and modify thousands of nodes and elements.

10/12/2018

Object-oriented Modeling and Programming in Engineering – $05\,$

Bauhaus-Universität Weimar

- A data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently
 - Different kinds of data structures are suited to different kinds of applications
 - Specific data structures are essential ingredients of many efficient algorithms, and make possible the management of huge amounts of data

10/12/2018

Object-oriented Modeling and Programming in Engineering – 05 $\,$

Bauhaus-Universität Weimar

- A data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently
 - Different kinds of data structures are suited to different kinds of applications
 - Specific data structures are essential ingredients of many efficient algorithms, and make possible the management of huge amounts of data
 - Two different general types of data structures are distinguished
 - Array structures
 - Linked structures
 - Array data structures are based on computing the addresses of data items with arithmetic operations
 - Linked data structures are based on storing addresses of data items within the structure itself

10/12/2018

Object-oriented Modeling and Programming in Engineering – 05

Bauhaus-Universität Weimar

- A data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently
 - In this topic we are dealing with two types data structures:
 - · lists and
 - trees
 - Practically, data structures are implemented as classes
 - An instance of a data structure is an object of the data structure type
 - A data structure object stores objects of the same type

10/12/2018

Object-oriented Modeling and Programming in Engineering – 05 $\,$

 A list (or sequence) is an ordered collection of elements with a linear structure

$$L := \langle e_0, e_1, ..., e_{n-1} \rangle$$

- Lists have an absolute order
 - each element has a dedicated index
- as well as a relative order
 - Beside the first and the last element, each element has a predecessor and successor element

10/12/2018

Object-oriented Modeling and Programming in Engineering – 05 $\,$

Lists

Bauhaus-Universität Weimar

- The elements of a list are objects
 - List of String objects

L := < "Modern", "Programming", "Concepts" >

- List of Integer objects (Fibonacci numbers)

$$L := <0,1,1,2,3,5,8,13>$$

- List of Point objects (polyline) $\mathbf{L} := < p_1, p_2, p_3, p_4, p_5 >$

10/12/2018

Object-oriented Modeling and Programming in Engineering – 05 $\,$

Lists

Bauhaus-Universität Weimar

- · Two implementations for lists exist
 - Array list (absolute order)

Linked list (relative order)

- Typical operations are
 - add an element to the end
 - insert an element at a specified position
 - set an element at a specified position
 - return the element at a specified position
 - remove the element at a specified position
 - return the size
 - print the elements

10/12/2018

Object-oriented Modeling and Programming in Engineering – 05 $\,$

Array lists

Bauhaus-Universität Weimar

ArrayListDouble

```
- elements : double[]
```

- + ArrayListDouble()
- + ArrayListDouble(size: int)
- + add(x: double): void
- + insert(i: int, x: double): void
- + set(i: int, x: double): void
- + get(i: int): double
- + remove(i: int): void
- + size(): int
- + print(): void
- Array lists store data elements in an array
- A new array has to be created when elements are added or removed and existing elements have to be copied into the new array

10/12/2018

Object-oriented Modeling and Programming in Engineering – 05 $\,$

Array lists

Bauhaus-Universität Weimar

```
public class ArrayListDouble {
  private double[] elements = new double[0];
  public void insert(int i, double x) {
    if (i < 0 || i > this.size()) {
        throw new IndexOutOfBoundsException("Index: " + i);
    }
    double[] tmp = new double[this.size() + 1];
    for (int j = 0; j < i; j++) {
        tmp[j] = this.elements[j];
    }
    tmp[i] = x;
    for (int j = i; j < this.size(); j++) {
        tmp[j + 1] = this.elements[j];
    }
    this.elements = tmp;
}

public void add(double x) {
    this.insert(this.size(), x);
}

// other methods come here ...
}</pre>
```

10/12/2018

Object-oriented Modeling and Programming in Engineering – $05\,$

Demo program

Bauhaus-Universität Weimar

```
public class ArrayListDoubleDemoProgram {
   public static void main(String[] args) {
        ArrayListDouble list = new ArrayListDouble();

        list.add(5.0);
        list.set(0, 1.0);
        list.print();

        list.insert(1, 3.0);
        list.print();

        list.add(5.0);
        list.remove(2);
        list.print();
    }
}
```

```
<1.0, 4.0>
<1.0, 3.0, 4.0>
<1.0, 3.0, 5.0>
```


