

Générale Organique

CHIMIE GÉNÉRAIE - Pr. Gueddari

L'essentiel à mémoriser

Chapitre 1: Atomistique

Les isotopes:

- Même nombre de protons
- Même propriétés chimiques
- Propriétés physiques différentes, masse différente, stabilité différente
- Caractère radioactif ou stable pour certains isotopes

N.B:

H (A=1, Z=1, N=0) : Hydrogène H (A=2, Z=1, N=1) : Deutérium H (A=3, Z=1, N=2) : Tritium

La masse atomique:

Définitions :

- La masse d'un mole d'atome
- La masse d'un atome gramme
- La masse molaire atomique
- La masse de N_{4} atomes

Unité:

• Unité masse atomique (u.m.a ou u)

Evolution des modèles atomiques :

Modèle de Rutherford

- Soleil = noyau
- Planètes = électrons

Modèle de Niels Bohr

- Les électons sont sur des orbites (trajectoire circulaire)
- Perte d'énergie : les e- tombent sur les orbites
- •Gain d'électron : les e- gagnent une autre orbite

Modèle de Sommerfield

- •Certaines couches (niveaux d'énergie) se présentent sous forme de sous couches
- •La première couche est sans sous-couches

Nombres quantiques:

Nombre quantique principale « n »

Nombre entier non nul

Les couches ou les niveaux d'énergie (Taille de l'orbite)

→ Nombre maximale d'e- dans une couche : 2n²

Valeur de « n »	1	2	3	4	5	6	7
Couche	K	L	M	N	0	Р	Q
Nb d'électrons	2	8	18	32	50	64	98

Nombre quantique secondaire « L »

Nombre entier

Sous-couches (Forme et symétrie de l'orbitale)

 \rightarrow Nombre de sous-couches dans une couche n : $0 \le L \le n-1$

Ex : Pour $n = 1 \Rightarrow L = 0$ (1 ss-couche) | Pour $n = 2 \Rightarrow L = 0$, 1 (2 ss-couches)

→ Nombre maximale d'e- dans une sous-couche : 2(2L+1)

Valeur de « I »	0	1	2	3
Sous-couche	S	р	d	f
	« sharp »	« principal »	« diffuse »	« fondamental »
Nb d'électrons	2	6	10	14
Forme de	Forme	Symétrie	Symétrie	
l'orbitale	sphérique	axiale	complexe	

Nombre quantique magnétique « m »

Nombre entier

Nombre de case (Orientation de l'orbitale)

→ Nombre d'orbitales pour une sous-couche L : -L ≤ m ≤ L

Ex : Pour L = 0 => m = 0 (1 case) | Pour L = 1 => m= -1, 0, 1 (3 cases)

→ Nombre d'orientations : (2L+1) orbitales = cases

Nombre quantique magnétique « m_s » ou « s »

Sens de rotation de l'électron sur lui-même

Il prend la rotation de +1/2 (\uparrow orienté vers le haut)

ou -1/2 (↓ orienté vers le bas)

*Orbitales dégénérées : orbitales ayant le même niveau d'énergie

*Orbitale à 2 électrons : électrons appariés
*Orbitale à 1 électron : électron célibataire

Configuration électronique la plus stable : (Règles et principes)

-> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= 1		
Règle de KLECHKOWSKI	■ Le remplissage des orbitales se fait par		
15	valeur croissante de (n+L)		
2s 2p	■ En cas d'égalité, le remplissage se fait		
3s 3p 3d	d'abord dans la couche de plus petit « n »		
4s 4p 4d 4f	■ Ordre de remplissage :		
5s 5p 5d 5f 6s 6p 6d	1s 2s 2p 3s 3p 4s 3d 4p 5s		
Principe de PAULI	■ Deux électrons d'un même atome ne		
-	peuvent pas avoir leur quatre nombre		
	quantiques identiques		
	■ Au maximum, il y'a deux électrons sur		
	une orbitale : différent de nombre		
	quantique « m_s » (les deux électrons sont		
	antiparallèles ou appariés)		
Règle de stabilité de HUND	■ Pour des orbitales de même niveau		
+1 + + + +	d'énergie, les électrons de spin identique		
1 1 1 1 1	occupent un maximum d'orbitales.		

Couches de valence et électrons de valence :

Couche de valence = Couche électronique externe = Couche périphérique

→ Couche où se trouvent les électrons de valence, couche électronique partiellement ou totalement remplie.

Electrons de valence = Les + éloignés du noyau

Représentation de Lewis :

X (A, Z) est entouré de :

Un point (•) : les électrons de valence (only les célibataires)

Un trait (-) : les électrons de la dernière <u>couche</u> (only les appariés)

^{*}Halogène: monovalent (besoin d'un électron de valence pour saturer la dernière sous-couche.

^{*}Chalcogène: divalent (besoin de deux électrons de valence pour saturer la dernière sous-couche.

Tableau périodique : (Classification périodique ou Table Mendelienne)

Regroupe tous les éléments classé selon le numéro atomique du plus petit au plus grand.

7 périodes	■ C'est les 7 lignes horizentales		
Ou 7 niveaux d'énergie	■ La période peut-être K, L, M, N, O, P, Q		
Ou / Iliveaux a chergie	■ Le numéro de la période dans le tableau		
	est <u>le plus grand nombre quantique</u>		
	principale « n » dans la configuration		
	<u>électronique</u>		
	■ Les éléments de la même période ont le		
	même nombre quantique « n »		
18 groupes	■ C'est les 18 colonnes verticales		
Ou 18 familles	■ Les éléments d'une même famille ont le		
Ou 16 faifilles	même nombre d'électrons de valence.		
	■ Le numéro de la famille dans la catégorie		
	est le nombre d'électrons de la couche de		
	valence.		
	(7 ^{ème} famille = 7 électrons de valence)		
	■ Les éléments d'une même famille sont à		
	propriété chimique voisine.		

Les familles

Numéro du groupe	Couche externe	Nom de la famille
1	ns ¹ (1e-)	Alcalins
2	ns² (2e-)	Alcalino-terreux
3	$ns^2 np^1$ (3e-)	Du Bore « Terreux »
4	$ns^2 np^2$ (4e-)	Carbonides
5	$ns^2 np^3$ (5e-)	De l'Azote « Prictogène »
6	$ns^2 np^4$ (6e-)	Chalcogènes
7	$ns^2 np^5$ (7e-)	Halogènes
8	ns ² np ⁶ (8e-)	Gaz nobles

A Savoir:

- Les métaux de transition : la sous-couche « d » est non saturée.
- Les métaux perdent des électrons
- Les non-métaux gagnent des électrons pour satifaire la règle de l'octet et acquérir la structure des gazs rares.
- La règle de l'octet : 8 électrons de valence. (Comme les gazs nobles)

Propriétés périodiques des éléments :

	,
Energie ou potentiel d'ionisation (El / Pl)	Energie nécessaire à un atome pour arracher un électron de sa couche de valence à l'état gazeux et former un cation. Grandeur toujours positive
	Unités : eV ou J
Affinité électronique	Energie libérée par un atome qui capte un
(AE)	électron.
()	Grandeur positive ou négative
	AE > 0 : si l'anion formé est moins stable que
	l'atome.
	AE < 0 : si l'anion formé est plus stable que
	l'atome et possède la structure des gazs rares
Electronégativité (EN)	Capacité de l'élément à attirer les électrons lors
	d'une liaison chimique avec un autre élément.
	Concerne les non-métaux
	Exemple :
	EN(Fluor) = 4 (Le plus éléctronégatif)
	EN(Sillicon) = 0,5 (Le plus éléctropositif)

- 1eV = 1,6 x 10^{-19} J
- Fluor fait parti de la famille des halogènes.
- Echelle de PAULING : ordre d'électronégativité décroissante F > O > Cl = N > Br > S > I > C > H > Si > Al > Mg > Na = Ca > Fr

Fati o Clara n3sso brahech sghar

Variation de El et EN dans le tableau périodique :

r : rayon de l'atome

A : nombre de nucléons

Z : numéro atomique

A retenir pour les configurations électroniques :

Couches	Sous-couches	e-
1	S	2
2	S	2
	р	6
3	S	2
	р	6
	d	10
4	S	2
	р	6
	d	10
	f	14

Chapitre 2 : Liaisons chimiques

I. Liaisons interatomiques

1)- Liaison covalente : met en commun des e- venant chacun d'un atome.

<u>Deux types</u>: Recouvrement axial σ et Recouvrement latéral π La liaison σ est plus forte que la liaison π (σ > π) La liaison π ne permet pas la rotation de la molécule.

■ Les types d'hybridations :

Hybridation	Liaisons covalentes	Géométrie	Angle entre orbitales
sp^3	4σ	Tétraèdre	109°
sp^2	3σ et 1π	Coplanaire	120°
sp	2σ et 2π	Linéaire	180°

2)- Liaison covalente polarisée :

- S'effectue entre 2 atomes différents, d'électronégativité légèrement différente.
- L'atome le plus électronégatif attire le doublet de liaison de son côté : un de charge partielle – et l'autre de charge partielle +

3)- Liaison ionique ou électrovalente :

- S'effectue entre 2 atomes différents, d'électronégativité largement différente.
- L'atome le plus électronégatif attire **totalement** le doublet de liaison de son côté.

4)- Liaison semi-polaire ou dative ou de coordinance :

- S'effectue entre 2 atomes différents : un donneur de doublet et un ayant un orbitale vide.
- Flèche du donneur vers l'orbitale vide.
- Pas d'attraction électrostatique

5)- Complexe de coordination :

Le complexe est formé de :

A. Un atome centrale: cation métallique avec un orbital vide. **B. Ligands**: ions ou molécules, porteurs de doublets libres.

C. Liaison semi-polaire: relie l'atome et le ligand.

Types:

- /				
Complexe	électrons	Champ	Hybridation	Géométrie
		magnétique		
Paramagnétique	Célibataires	Attiré	sp^3d^2	Octaédre
Diamagnétique	Appariés	Repoussé	d^2sp^3	(90° entre
				les orbitales)

6)- Liaison métallique

- S'effectue entre atomes d'électronégativités voisines et faibles.
- Concerne les métaux de transitions (ions positifs qui ont tendance à perdre les électrons)
- Les électrons perdus des atomes formtent un bain d'électrons.

II. Liaison intermoléculaire

1)- Liaison Hydrogène	Intermoléculaire
Entre un atome très électronégatif	Intramoléculaire
(N,O,Cl) et un hydrogène.	
2)- Liaisons de VAN DER WAALS	Interaction de Keeson - Force
	d'orientation : deux molécules polaires
	Interaction de Debye - Force
	d'induction : une polaire et une apolaire
	Interaction de London – Force de
	dispersion : deux molécules apolaires

■ Monovalent : une liaison simple avec un autre atome (ex : Halogènes)

■ **Divalent**: deux liaisons simples avec un autre atome (ex : Oxygène O)

■ Trivalent: trois liaisons simples avec un autre atome (ex: Azote N)

CHIMIE ORGANIQUE - Pr. IbenMoussa

L'essentiel à mémoriser

<u>Chapitre 1:</u> Notion de fonction et nomenclature Principales fonctions :

Hydrocarbures	Alcanes (saturés) $C_n H_{2n+2}$
-	Cyclanes (saturés et insaturés) $\mathcal{C}_n H_{2n}$
	Alcènes (insaturés) $C_n H_{2n}$
	Alcynes (insaturés) C_nH_{2n-2}
Fonctions	Hydroxylée (Alcool primaire, secondaire, tertiaire) R- OH
univalentes	Ether-oxyde R- O –R'
	Halogénée R- X (X : F, Cl, Br, I)
	Aminée (Amine primaire, secondaire, tertiaire) R – NH2
Fonctions	Carbonylée (Cétone R- CO –R') (Imine R- CO –H)
bivalentes	Imine R- C = N - R
Fonctions	Acide R- COOH
trivalentes	Dérivés d'acide (ester, anhydride, amide, halogénée)
	Nitrile R − C ≡N

Types des Hydrocarbures:

Saturés : contiennent des liaisons simples

Insaturés: contiennent des liaisons doubles et triples

Primaire/Secondaire/Tertiaire: (Voir le nombre de R)

■ Exemple : Amine

Amine primaire Amine secondaire Amine tertiaire

Nomenclature des alcanes :

	1		ı		
1	Méthane	11	Un décane	30	Tria contane
2	Ethane	12	Do décane	40	Tétra contane
3	Propane	13	Tri décane	50	Penta contane
4	Butane	14	Tétra décane	60	Hexa contane
5	Pentane	15	Penta décane	70	Hepta contane
6	Hexane	16	Hexa décane	80	Octa contane
7	Heptane	17	Hepta décane	90	Nona contane
8	Octane	18	Octa décane		
9	Nonane	19	Nona décane		
10	Décane	20	Eicosane		

Hydrocarbures saturés et insaturés :

	Hydrocarbures saturés	Hydrocarbures insaturés		
Familles	Alcanes	Alcènes Alcynes Cyclanes		
Suffixe	« -ane »	« -ène »	« -yne »	
Préfixe				« Cyclo- »
Radicaux	« -yle »	« -ylidène »	« -ylidyne »	« -yle »

	Monovalents	1 Hydrogène	Liaison simple
Radicaux	Divalents	2 Hydrogènes	Liaison double
	Trivalents	3 Hydrogènes	Liaison triple

A Savoir:

- Pour n = 1, n = 2 ou n = 3 : il y'a une seule structure possible.
- A partir de n = 4 : il y'a une structure linéaire et une structure ramifiée.

Concernant la nomenclature des alcanes :

- Les substituants sont cités par ordre alphabétique.
- Les termes multiplicatifs des chaînes latérales (di, tri...) ne sont pas pris en compte dans l'ordre alphabétique. De même pour les termes multiplicatifs des ramifications des chaînes latérales (bis, tris, tétrakis..) et ces chaînes latérales ramifiés doivent avoir même nom et numéro pour avoir un terme multiplicatif
- Le carbone lié **directement à la chaine principale** porte le numéro 1 (<u>ex :</u> le C de COOH de l'acide carboxylique)
- Le nom prioritaire entre deux chaînes latérales ayant la même première lettre, est celui ayant le numéro le plus petit. (ex : « 1 méthylpropyl » passe ayant « 2 méthylpropyl »)

Concernant la nomenclature des alcènes :

- Il y'a l'exception de H2C = CH2 qu'on appelle <u>éthylène</u> et non **éthène**.
- La chaîne est numéro de façon à donner l'ensemble des indices le plus bas pour les doubles liaisons /! \
- On note pour plusieurs doubles liaisons :

« alc-chiffres-diène, alc-chiffres-triène »

Exemple: prop-2-ènyle

■ Il existe des liaisons doubles dans quelques cas pour :

Les radicaux bivalents (= R)

H2C = méthylène

Les radicaux univalents (- R et le R contient double liaison)

H2C = CH - : éthylène ou vinyle

H2C = CH - CH2 - : prop-2-ènyle ou allyle

H2C = C(CH3) - : isopropenyle

Concernant la nomenclature des alcynes :

- Il y'a l'exception de HC ≡ CH qu'on appelle <u>acétylène</u> et non **éthyne.**
- La numérotation des doubles et triples liaisons se fait de façon à ce que la chaîne soit numérotée avec la somme d'indices la plus petite. Et en cas de même somme d'indices, les indices de positions les plus faibles doivent être aux doubles liaisons.

Concernant la nomenclature des cyclanes :

■ Lorsque le nombre de carbones du substituant alkyl est plus grand que le cycloalkane lui-même : cyclo alkyl alcane Les cycloalcanes insaturés sont nommés comme les acènes et alcynes.

Les composés aromatiques les plus importants :

Benzène C_6H_6		Toluène	CH ₃
Phényl C_6H_5	R	Acide benzoique (Benzène + COOH)	НО
Phénol	ОН		

Ordre de priorité des fonctions :

I. Acide carboxylique (acide alcanoïque) -COOH

II. Ester (alcanoate de alkyle) R- COO -R'

III. Amide (Alcanamide) R – CO – NH2

IV. Aldéhyde (alcanal) R – CHO –R'

V. Cétone (oxo-/alcan**one**) R - CO - R'

VI. Alcool (alcanol/hydroxy-) R - OH

VII. Thiol (mecarpto-) R - SH

VIII. Amine (amino-) R - NH2

IX. Halogénée (fluoro- chloro- bromo- iodo-) R – X

Loic est l'ami de Daltone

N.B

<u>Chapitre 2 :</u> Représentation des molécules et analyse conformationnelle

Représentation des molécules

. 10p1 0001 10a	bioli des molecules	
Projective (CRAM)	H C''''H H	atomes dans le plan C — C atome en avant du plan atome en arrière du plan C — C atomes dans le plan
Perspective	OH H ₂ N COOH H COOH	Très utilisé dans les cycles Deux plans : Avant et arrière.
Newman	HOH HOH HH	Permet de montrer la rotation autour d'une liaison
Fisher	A gauche 1	Cram à Fisher 1. Chaîne principale verticale et en arrière. 2. Les autres liaisons horizentales et en avant. 3. L'élément le plus oxygénée haut.

Analyse conformationnelle

Gradient de stabilité (du - stable au + stable)

Eclipsée totale Eclipsée partielle Décalée gauche Décalée anti

A savoir:

- (1) (2) (3) (4) sont appelés des conformères/rotamères.
- Le (1) et (3) sont les stables : il y'a un gène stérique.
- Le stable est toujours l'éclipsée totale.
- Le + stable est :

En absence de liaison hydrogène	Décalée anti
En présence de liaison hydrogène	Décalée gauche

Chapitre 3 : Isomérie

The hardest one

Isomérie de constitution

Isomérie de fonction	Diffèrent par leurs fonctions (ex : CO/COOH)	
Isomérie de chaînes	Même fonctions, même nombre de carbones, diffèrent	
	par la chaîne principale	
Isomérie de position	Même fonctions, même chaînes, diffèrent par la	
·	position du groupement fonctionnel (ex : Cl sur C1 ou	
	C2 Double liaison sur C1 ou C3)	

Stériomérie

I. Isomérie géométrique :

»» On consulte les substituants, il doit y avoir une double liaison et les molécules de chaque côté de la double liaison doivent être différents.

1)- Mêmes substituants (Cis - Trans)

CIS (Sisters, proches)

TRANS

2)- Substituants différents (Z - E)

Isomére Z

Isomère E

On classe les substituants par ordre prioritaire (selon électronégativité)

1. CI 2. COOOH 3. CH3 4. H

Si les deux premiers sont du même côté par rapport à l'axe horizentale : Z

Si les deux premiers sont de côtés opposés par rapport à l'axe horizentale : E

II. Isomérie optique :

»» On consulte le carbone α, il doit v avoir au minimum un carbone asymétrique (CHOH/CHNH2)

• C'est un objet chiral. l'atome est asymétrique : centre asymétrique portant 4 substituants différents

Molécule	Chirale	Achirale
Superposable à son image	X	✓
Plan de symétrie	X	✓

L'inverse optique est obtenue par permutations de 2 carbones.

N.B : Un stériomère peut-être un isomère géométrique et optique en même temps.

Nomenclature des stériomères

1)- Configuration relative D et L

» On consulte la position de OH ou NH2.

- Pour mémoriser (D): Droite (L): Left

2)- Configuration relative R et S

Configuration R

Configuration S Sens des aiguilles d'une montre Sens inverse des aiguilles d'une montre

On classe les substituants par **ordre prioritaire** (selon électronégativité)

Pour mémoriser : R comme Rolex (montre)

En **Fisher**, on **inverse le sens**, si on obtient R, c'est S. Si on obtient S, c'est R.

3)- Configuration érythro et thréo et méso:

- La configuration **D et L** est obtenu grâce à la molécule **OH inférieure**.
- Un même composé (même substituants des 2 côtés) peut avoir : 2 Thréo et 1 Méso
- Le compsoé Méso contient un axe symétrique
- Pour mémoriser : Ery = United

Notion d'énantiomères et diastéréomères :

Enantiomères : Permutatoin de substituants dans 2 carbones asymétriques Diastéréomères : Permutation de substituants dans 1 carbone asymétrique

N.B:

Le nombre de stéréomères optiques ayant « n » centres aysmétriques : $\mathbf{2}^n$

Chapitre 4 : Effets électriques

Effet Inductif (EI)

- ullet lié à la polarisation d'une liaison σ
- s'affaiblit au bout de quelques liaisons (4 carbones)
- n'est pas due à la conjuguaison
- ne fait pas appartenir de charges (+/-)

Effet Mésomère (EM)

- dues à la délocalisation des électrons π ou n
- ne s'affaiblit pas
- est due à la conjuguaison $\pi \sigma \pi / \pi \sigma n$
- fait appartenir des charges (+/-)

N.B: Effet Mésomère l'emporte sur l'Effet Inductif (Mes > Ind)

Effet Inductif (EI)		EM Mésomère (EM)	
El Donneur (+I)	El Attracteur (-I)	EM Donneur (+M)	EM Attracteur (-M)
Atomes moins	Atomes plus	Les atomes plus	Les atomes plus
électronégatfs que	électronégatifs que	électronégatifs	éléctronégatifs
le carbone.	le carbone.	donnent une	récupèrent une
- Les métaux : Na,	F, Cl, Br, I, OH,	liaison au carbone	liaison du carbone
Mg, Li	NH2, CN, NO2,		
- Les groupements	Phényl		
alkyles:			
CH3, C2H5			

Chapitre 5 : Notion de mécanismes réactionnels

Types de réactions chimiques :

Elimination	1 réactif → 2 produits
(déshydratation)	Composé insaturé → Composé saturé
	Acide fort à chaud avec un alcool
	Produit mineur : le – substitué (beaucoup d'hydrogène)
	Produit majeur : le ++ substitué (peu d'hydrogène)
Réduction	Cétone → Alcool
Décarboxylation	Acide oxaloacetique → Pyruvate
,	1 carbone disparait (-1C)
Substitution	2 réactifs → 2 produits
	Alcool tertiaire avec acide orthophosphorique très
	dillué à froid.
	On remarque qu'un élément d'un réactif a été
	substitué par un autre.
	Ex: CH3 – CH2 – OH devient CH3 – CH2 - Cl
Addition	2 réactifs → 1 produit
	Composé saturé → Composé insaturé
	On remarque dans les produits qu'un élément d'un
	réactif, apparaît dans l'autre réactif.
	Ex : CH2 = CH2 devient CH3 – CH2 - Cl
Désamination	Amine → Alcool

N.B:

Acide $\xrightarrow{R\'eduction}$ Alcool

Alcool $\xrightarrow{Oxydation}$ Acide

Addition H2O en milieu acide :

- Obéit à la loi de Markovnikov
- Conduit à un alcool secondaire

Règles de Markovnikov et Anti-Markovnikov

Anti-Markovnikov
Réaction: Addition radicalaire in présence du peroxyde résence de température ixation du nucléophile sur le C e – substitué (bcp de H)
r

Les réactifs

► a une orbitale vide et capable de reçevoir un		
doubet non liant d'une base		
porte un do	ublet non liant (libre)	
► Entité qui est	susceptible de fournir : des	
anions et des b	ases de Lewis	
► Ils attaquent un site chargé posititvement		
Anions $HO^-Cl^-Br^-CH3OH$		
Base de Lewis	Porte une paire d'électrons	
► Entité qui est susceptible de perdre : des		
cations et des acides de Lewis		
Cations $H^+ H3O^+ AlCl_3$		
Acide de Lewis Contiennent des orbitales vides		
	Description doubet non liar Description porte un doubet Description por	

Moment dipolaire (Pour savoir le type, on dessine la molécule et on nomme des flèches sur les liaisons du moins électronégatif vers le plus électronégatif)

- 1. Non nul : Si les flèches sont réunis au milieu comme H2O
- 2. Nul : Si les flèches sont vers le dehors comme CF4 et Cl2