theoretische Biologie (SS 2017)

Inhaltsverzeichnis

1	Vorlesung 06.04.2017 1.1 Begriffe und Konzepte	1
2	Vorlesung 13.04.2017 2.1 Begriffe und Konzepte	1
3	Vorlesung 20.04.2017	1
4	Vorlesung 27.04.2017 4.1 Teil 1: Dynamische Systeme	2 2 3 4
5	Vorlesung 04.05.2017	4
6	Vorlesung 11.05.2017 6.1 Teil 1: Populationsdynamik	5 k-
7	Vorlesung 18.05.2017 7.1 Musterbildung	6
8	Vorlesung 01.06.2017 8.1 Teil 1: Musterbildung	7 7 7
9	Vorlesung 08.06.2017 9.1 Teil 1: Fitnesslandschaften	8 9
		10

1 Vorlesung 06.04.2017

1.1 Begriffe und Konzepte

- Begriffsbildung am Beispiel Information (Was ist Information? [Prüfungsrelevant!])
- Vorlesungsunterlagen siehe ¹
- Begriffsbildung am Beispiel Gen [Prüfungsrelevant!]
 - Welche Überschneidungen, welche Differenzen?
 - Welche Genkonzepte gibt es? (zu lesen: siehe ² und ³)

2 Vorlesung 13.04.2017

2.1 Begriffe und Konzepte

- GWAS (Prof. Markus Scholz)
- Diskussion zum Begriff Struktur

3 Vorlesung 20.04.2017

- Gendefinition im Kontext der Messtechnik⁴
- random mating, rezessive und dominante Epistasis????

¹http://www.bioinf.uni-leipzig.de/Leere/SS17/TBio/concepts.pdf

²http://www.bioinf.uni-leipzig.de/Leere/SS17/TBio/Gerstein07_gene_definition.pdf

³http://www.bioinf.uni-leipzig.de/Leere/SS17/TBio/Stadler09_gene_definition.pdf

⁴http://www.bioinf.uni-leipzig.de/Leere/SS17/TBio/gene_definition.pdf

Vorlesung 27.04.2017 4

4.1 Teil 1: Dynamische Systeme

• diskrete Zeit: "Generationen"

$$X_1, X_2, ...$$

Änderung des Zustandes

$$X_n = F(X_{n-1}) =: X_{n-1} +$$

 $X_{n+1} = F(X_n) = F(F(X_{n-1}))$ $f(X_{n-1})$

Beispiel:

Beispiel:
$$X_n = (1 + \underbrace{a}_{\text{effektive Vermehrungsrate}}) \cdot x_{n-1} = \text{Geburtenrate} - \text{Sterberate}$$

Anfangsbedingung: $X_{t_0} = X_0$

Bedingung: effektive Vermehrungsrate a verändert sich nicht

Lösung: $X_n = (1+a)^n \cdot x_0$

im allgemeinen mit zeitlich variablen Vermehrungsraten: $X_n = \prod_{i=0}^{n-1} (1+a_i) \cdot x_0$

3 verschiedene Resultate:

$$-+\infty$$
 für $a>0$

$$-x_0$$
 für $a=0$

$$-0$$
 für $a<0$

$$X_n = X_{n-1} + a \cdot \underbrace{X_{n-1}}_{f(X_{n-1})}$$

$$f(X_{n-1}) = X_{n-1} \cdot r(X_{n-1})$$

mit r(0)=const. entspricht autonomer Wachstumsrate $[lim(x \to 0)r(x) \in$ R_0^+

• kontinuierliche Zeit

$$x(t + \Delta t) = x(t) + f(x(t)) \cdot \Delta t$$

$$\frac{x(t+\delta t) - x(t)}{\delta t} = f(x(t))$$

$$\lim(\delta t \to 0) \frac{x(t+\delta t) - x(t)}{\delta t} = \frac{\delta x}{\delta t}$$
 $\hat{}$ zeitlicher Ableitung von x $= \dot{x} = f(x)$

Beispiel:

$$\dot{x} = a \cdot x, \ x(0) = x_0$$

$$\frac{dx}{dt} = a \cdot x$$

$$\frac{dx}{a \cdot x} = dt$$

$$\int_{x_0}^{x(t)} \frac{1}{a \cdot x} \cdot dx = \int_{0}^{1} 1 \cdot dt = 1$$

$$\dot{x} = f(x) \Rightarrow \int_{x_0}^{x(t)} \frac{1}{f(x)} = \int_{0}^{1} dt = t$$

$$\frac{1}{a} \int_{x}^{1} \frac{1}{x} dx = \frac{1}{a} \cdot \ln(x)$$

$$\int_{a}^{t} \ln(x(t)) - \int_{a}^{t} \ln(x_0) = a \cdot t$$

$$\ln(x(t)) = at + \ln(x_0)$$

$$x(t) = e^{at} \cdot x_0$$

Wie machen wir das Model realistischer?

f(x) und r(x) muss für sehr große x dann ≤ 0 werden.

$$\dot{x} = f(x) = x \cdot (a - bx)$$

Übungsaufgabe:

- 1. Löse $\dot{x} = x(a bx)$ mit $x(0) = x_0$
- 2. Löse x' = x + x(a bx) mit $x(0) = x_0$

4.2 Qualitative Analyse von DS

- 1. Fixpunkte: keine zeitliche Veränderung $(x' = x, \dot{x} = 0)$ d.h. diskret und kontinuierlich, f(x)=0Welche Fixpunkte gibt es? im Beispiel x(a-bx)=0
 - (a) $x=0 \rightarrow Population ausgestorben$
 - (b) a-bx=0 $\rightarrow x = \frac{a}{b}$

Störung:
$$x(0) = \underbrace{\hat{x}}_{Fixpunkt} + \epsilon$$
 mit sehr kleinem ϵ
$$\dot{x} = f(x) = f(\hat{x} + \epsilon) = \dot{\epsilon}$$
 mit $x = \hat{x} + \epsilon$
$$\dot{x} = \frac{\delta \hat{x}}{\delta t} + \dot{\epsilon}$$

$$\dot{\epsilon} = f(\hat{x} + \epsilon)$$
 mit Taylorreihenentwicklung: $0 = f(\hat{x}) + \epsilon \frac{\delta f}{\delta x}(\hat{x}) + O(\epsilon^2)$

Für sehr kleine Störungen:

$$\dot{\epsilon} = \frac{\delta f}{\delta x}(\hat{x}) \cdot \epsilon + O(\epsilon^2)$$

 $\dot{\epsilon} = \frac{\delta f}{\delta x}(\hat{x}) \cdot \epsilon + O(\epsilon^2)$ Linearisierung der Differentialgleichung x = f(x) in der Nähe eines Fixpunktes \hat{x} : $\epsilon(x) = e^{\left[\frac{\delta f}{\delta x}(\hat{x})\right] \cdot t}$

$$\epsilon_0 = x_0 - \hat{x}$$

 $\epsilon_0 \leftarrow \text{initiale St\"{o}rung}$

 \bullet Störung wird gedämpft wenn $\frac{\delta f}{\delta x}(\hat{x})<0=\text{STABIL}$

 \bullet Störung eskaliert wenn $\frac{\delta f}{\delta x}(\hat{x})>0=\text{INSTABIL}$

im Diskreten Fall?

$$\begin{array}{l} x' = x + f(x) \text{ mit } x = \hat{x} + \epsilon \\ \mathscr{Z} + \epsilon' = \mathscr{Z} + \epsilon + f(\hat{x} + \epsilon) = f(\hat{x}) + \epsilon \cdot \frac{\delta f}{\delta x}(\hat{x}) + \underbrace{Rest(\epsilon)}_{\epsilon'} \\ \epsilon' = \epsilon (1 + \frac{\delta f}{\delta x}(\hat{x})) \text{ mit:} \end{array}$$

- $\epsilon \to 0$ wenn $|1 + \frac{\delta f}{\delta x}(\hat{x})| < 1$
- $\epsilon \to \infty$ wenn $|1 + \frac{\delta f}{\delta x}(\hat{x})| > 1$

jetzt Mehrdimensional:

- Räuber x: $f_x(x,y) = x(-a+by-cx)$
- Beute y: $f_y(x, y) = y(+d ex gy)$

Fixpunkte:

- $f_x(x,y) = 0$
- $f_y(x,y) = 0$

Stabilität:

gegeben durch

- $\frac{\delta f_x}{\delta x}(\hat{x}, \hat{y}) \frac{\delta f_x}{\delta y}(\hat{x}, \hat{y})$
- $\frac{\delta f_y}{\delta x}(\hat{x}, \hat{y}) \frac{\delta f_y}{\delta y}(\hat{x}, \hat{y})$

Übungsaufgabe 2:

Bestimme die Fixpunkte von Räuber-Beute-Modell für a,b,c,d,e,g >0 Welche Fixpunkte gibt es immer? Wieviele sind das?

4.3 Teil 2: Genkonzept

• Unterschiede und Überscheidungen zwischen den beiden in den Papern vorgestellten Genkonzepten (siehe Vorlseung 13.04.2017) [Prüfungsrelevant]

5 Vorlesung 04.05.2017

 \bullet Vorlesung entfallen wegen: Mitteldeutschen Bioinformatik-Meeting 2017^5

⁵http://me17.bioinf.uni-leipzig.de/

- 6 Vorlesung 11.05.2017
- 6.1 Teil 1: Populationsdynamik
- 6.2 Teil 2: Diskussion zu den Vorträgen beim mitteldeutschen Bioinformatik-Meeting 2017

- 7 Vorlesung 18.05.2017
- 7.1 Musterbildung

- 8 Vorlesung 01.06.2017
- 8.1 Teil 1: Musterbildung
- 8.2 Teil 2: Cat Coat Colors
- 8.3 Vergleich Übungsaufgaben

9 Vorlesung 08.06.2017

9.1 Teil 1: Fitnesslandschaften

evol. Theorie: Wachstumsrate in Räuber-Beute-Modellen + Reproduktion mit Variation + "Survival of the fittests" \to Wachstumsrate einer Population in einer gege. Umgebung

Günther Wagner: Messtheorie von Fitness (measurement theorie)

X... Suchraum (genotyp—phänotyp), allgemein irgendeine Repräsentation der betrachteten Taxa

Ähnlichkeitsstruktur σ

Fitness funktion: $f: x \to R$

mit R=totale geordnete Menge $(f_1, f_2 \in R : f_1 < f_2, f_1 > f_2, f_1 = f_2)$

Begründer: Sewall Wright (~ 1930)

siehe zurückliegendes Bild: Individuum hat höhere Wahrscheinlichkeit Erbgut in nächste Generation zu übertragen ("Verbesserung")

9.1.1 Genetische Algorithmen

Idee: benutze künstliche Evolution um Optimierungsprobleme zu lösen

- 1. Population $A \subseteq X$
- 2. Nachfolgerpopulation von Kandidaten C(A)
- 3. Selektiere die Besten bezüglich Fitnessfunktion $x \in C(A)$
- 4. zurück zu 1.

genetische Algorithmen, evolutionäre Progammierung (Rechenberg, Schwefel $\sim 1960/70)$

<u>geg.:</u> RNA oder Proteinsequenz α ges.: Alle möglichen Strukturen x, die α einnehmen kann \to Menge x von Konfigurationen

Energiefunktion $f: X \to R$

z.B. Loop basiertes Energiemodell für RNA Sekundärstrukturen

Lenskis E.Coli Zucht⁶

X... Menge von Gen oder Genomsequenzen

 σ ... Mutationen (hauptsächlich Substitution, Insertion, Deletion)

 (X,σ) ... Suchraum \Leftrightarrow Graphen über $\{A,G,T,C\}^n$

mit n=Sequenzlänge

mit Kanten=Hammingdistanz 1 (| Levensteindistanz 1)

9.1.2 3D-Strukturen

Proteinstruktur = $(\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_n})$ mit $\overrightarrow{x_1} = 3$ D-Koordinaten für Atom 1

Constraint: Bindungswinkel, Bindungslängen

X... alle möglichen 3D-Einbettungen des Proteins

Nachbar: $||\overrightarrow{x} - \overrightarrow{x}'|| = \sum_{i} |\overrightarrow{x_i} - \overrightarrow{x_i}'| < \epsilon$ für gegebenes $\epsilon > 0$

Wenn RNA Sekundärstrukturen?

X... Menge aller erlaubten Strukturen [(,),.]

 $x\sim y$ wenn x und y sich durch ein Basenpaar unterscheiden \Rightarrow Graph

Beispiel:

9.1.3 Optimierung auf Landschaften

 \rightarrow max, min finden

Wie misst man Rauheit?

Minimum: $\hat{x} \in X$ sodass $\forall y$ Nachbar von $\hat{x} : f(\hat{x}) \leq f(y)$

für metrischen (kontinuierlichen) Raum: $\forall y: |\hat{x} - y| < \epsilon$

Maximum: $f(\hat{x}) \ge f(y)$

Was möchte man messen?

- # lokale Minima, nur gut bei kleinen Instanzen, daher sampeln! (zufällige x wählen und bestimmen ab Minimum)
- mittlere Länge von <u>adaptiven walks</u> $x_0, x_1, x_2, \dots, x_l$ sodass x_i Nachbar von x_{i-1} ist und $\underbrace{f(x_i) > f(x_{i-1})}_*$ i=1...l
 - * für Fitness (für Energie <)
- Alternative: gradient walks (Weg des stelsten Anstiegs), Distanz zum "nächstgelegenenllokalen Min/Max

9.1.4 Autokorrelationsfunktionen

 $x_0, x_1, x_2, \ldots, x_l$ sodass x_i Nachbar von x_{i-1} betrachte Folge der Funktionswerte $f(x_0), f(x_1), \ldots$ betrachte das als Signal (Zeitserie)

$$\varrho(\tau) = \frac{\langle f(x_t) \cdot f(x_{t+\tau}) \rangle_t - \langle f \rangle_t^2}{\langle f^2 \rangle_t - \langle f \rangle_t^2}$$

$$< f_t > \dots$$
 Mittelwert über die $f(x)$
 $< f_t > := \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} f(x_t)$
 $< f(x_t) \cdot f(x_{t+\tau}) > := \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} f(x_t) f(x_{t-\tau})$

X... Menge von Gen oder Genomsequenzen

 σ ... Graph, regulär (jedes x hat gleich viele Nachbarn D)

A... Adjazenz von (X,σ)

$$\begin{split} \varrho(\tau) &= \frac{(f(\frac{1}{D} \cdot A)^{\tau} \cdot f) - (f)^2}{(f^2) - (f)^2} \\ \Rightarrow \text{leichter so auf Graphen als direkt auf Fitness (Funktion)} \end{split}$$

Korellationslänge:

Funktion in Abhängigkeit der Verschiebung von τ

$$L_{c} = \sum_{\tau=0}^{\infty} \varrho(\tau)$$

$$(f) = \frac{1}{|X|} \sum_{x \in X} f(x)$$

$$(f^{2}) = \sum_{x \in X} f(x)^{2}$$

$$(f, \frac{1}{D} \cdot A \cdot f) := \sum_{x \in X} \sum_{y \in X} \frac{1}{D} f(y) \cdot A_{yx} \cdot f(x)$$
wenn $(f) = 0$ folgt vereinfachte Gleichung
$$(f^{2}) = 1 \rightarrow \varrho(\tau) = \langle f(x_{t}), f(x_{x_{t}-\tau}) \rangle = (f, \underbrace{\frac{1}{D} \cdot A \cdot f})$$
Graphstruktur

Beispiel:

Kostenfunktion in Fall 1 ändert sich stärker als in Falls 2 $\Rightarrow L_R \simeq 2L_T$

?(Länge Korrelationslängen \rightarrow Lange Wege zum nächsten Minimum \rightarrow gut!)

Übung farbliche Ausprägung Katzenfell und beteilig-9.2 te Gene