Note Title 27-07-2012 Last Class: ARM Instructions. (ADD/SUB/ CMP/B) Sum= 0) for (i = 1; i < 100; i+t) *R*1,#0 mov MOV Ro, #1 cml Ro, # 100 . Loop BGE exit ADD R1, R1, RO ADD Ro, Ro, # 1 . Loop . ezit

i = 10;	mov Ro, #10
switch (i) {	CMP Ro, #1.
•	CMP Ro, #1. BNE . next1
Case 1:	Mov 2, #2
j=2; break;	Mov R, #2 B . exit
break;	·
	. mext1 cmp Ro, #2
cose 2:	BNE. nest 2
	Mo∨ R ₁ , #3
break;	B. enit
delault:	
j=3; break; default: j=4;	· next2 mov R,, #4
1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4	·exit

link register:
int j=0; (1/2 (-) Ro) (j -> R,) MOV R1, #0 Mov Ro, #5 (lv= pc + y) BL . foo --.. ADD Ro, Ro, RI B. exit main() MOV R, #7
MOV pc, (r (return) ·foo

```
(i -> Ro) (j -> Ri)
int for (int 2) {

return (x+2)}.
                                                   mov Ro, #0 (i=0)
                                                   BL . for
                                                   Mov R1, #3
                                                   ADD RI, RI, RD
B. exit
  main ()
              i = 0; j = 3;

i = 0; j = 3;

i = 0; j = 3;
                                            . foo ADD Ro, Ro, #2
                                                    mov PC, LR
                        Take home foom t: poss and obtain values in functions through registers.
```

func $(\frac{R_0}{R_0}, \frac{R_1}{R_1}, \frac{R_2}{R_2})$ Riskz 3 10 11 12 Bosic Concepts

Bosic Concepts $CUR \leftarrow PC+4$ 3) mov Pc, LR
(return) 2) Args, Ret vols passed through regs.

2 = A [4]	$(\chi \rightarrow R_1)$ $\angle DR R_1, [R_0, \#_{16}]$