PROBLEMS

In each of Problems 1 through 4, sketch the graph of the given function. In each case determine whether f is continuous, piecewise continuous, or neither on the interval $0 \le t \le 3$.

1.
$$f(t) = \begin{cases} t^2, & 0 \le t \le 1\\ 2+t, & 1 < t \le 2\\ 6-t, & 2 < t \le 3 \end{cases}$$

2.
$$f(t) = \begin{cases} t^2, & 0 \le t \le 1\\ (t-1)^{-1}, & 1 < t \le 2\\ 1, & 2 < t \le 3 \end{cases}$$

3.
$$f(t) = \begin{cases} t^2, & 0 \le t \le 1\\ 1, & 1 < t \le 2\\ 3 - t, & 2 < t \le 3 \end{cases}$$

4.
$$f(t) = \begin{cases} t, & 0 \le t \le 1\\ 3 - t, & 1 < t \le 2\\ 1, & 2 < t < 3 \end{cases}$$

- 5. Find the Laplace transform of each of the following functions:
 - (a) f(t) = t
 - (b) $f(t) = t^2$
 - (c) $f(t) = t^n$, where *n* is a positive integer
- 6. Find the Laplace transform of $f(t) = \cos at$, where a is a real constant.

Recall that $\cosh bt = (e^{bt} + e^{-bt})/2$ and $\sinh bt = (e^{bt} - e^{-bt})/2$. In each of Problems 7 through 10, find the Laplace transform of the given function; a and b are real constants.

7.
$$f(t) = \cosh bt$$

8.
$$f(t) = \sinh bt$$

9.
$$f(t) = e^{at} \cosh bt$$

10.
$$f(t) = e^{at} \sinh bt$$

Recall that $\cos bt = (e^{ibt} + e^{-ibt})/2$ and that $\sin bt = (e^{ibt} - e^{-ibt})/2i$. In each of Problems 11 through 14, find the Laplace transform of the given function; a and b are real constants. Assume that the necessary elementary integration formulas extend to this case.

11.
$$f(t) = \sin bt$$

12.
$$f(t) = \cos bt$$

13.
$$f(t) = e^{at} \sin bt$$

14.
$$f(t) = e^{at} \cos bt$$

In each of Problems 15 through 20, use integration by parts to find the Laplace transform of the given function; n is a positive integer and a is a real constant.

15.
$$f(t) = te^{at}$$

16.
$$f(t) = t \sin at$$

17.
$$f(t) = t \cosh at$$

18.
$$f(t) = t^n e^{at}$$

19.
$$f(t) = t^2 \sin at$$

20.
$$f(t) = t^2 \sinh at$$

In each of Problems 21 through 24, find the Laplace transform of the given function.

21.
$$f(t) = \begin{cases} 1, & 0 \le t < \pi \\ 0, & \pi \le t < \infty \end{cases}$$

22.
$$f(t) = \begin{cases} t, & 0 \le t < 1 \\ 0, & 1 \le t < \infty \end{cases}$$

23.
$$f(t) = \begin{cases} t, & 0 \le t < 1 \\ 1, & 1 \le t < \infty \end{cases}$$

24.
$$f(t) = \begin{cases} t, & 0 \le t < 1 \\ 2 - t, & 1 \le t < 2 \\ 0, & 2 \le t < \infty \end{cases}$$

In each of Problems 25 through 28, determine whether the given integral converges or diverges.

$$25. \int_0^\infty (t^2 + 1)^{-1} dt$$

26.
$$\int_{0}^{\infty} te^{-t} dt$$

27.
$$\int_{1}^{\infty} t^{-2} e^{t} dt$$

28.
$$\int_0^\infty e^{-t} \cos t \, dt$$

- 29. Suppose that f and f' are continuous for $t \ge 0$ and of exponential order as $t \to \infty$. Use integration by parts to show that if $F(s) = \mathcal{L}\{f(t)\}$, then $\lim_{s \to \infty} F(s) = 0$. The result is actually true under less restrictive conditions, such as those of Theorem 6.1.2.
- 30. **The Gamma Function.** The gamma function is denoted by $\Gamma(p)$ and is defined by the integral

$$\Gamma(p+1) = \int_0^\infty e^{-x} x^p \, dx. \tag{i}$$

The integral converges as $x \to \infty$ for all p. For p < 0 it is also improper at x = 0, because the integrand becomes unbounded as $x \to 0$. However, the integral can be shown to converge at x = 0 for p > -1.

(a) Show that, for p > 0,

$$\Gamma(p+1) = p\Gamma(p)$$
.

- (b) Show that $\Gamma(1) = 1$.
- (c) If p is a positive integer n, show that

$$\Gamma(n+1) = n!.$$

Since $\Gamma(p)$ is also defined when p is not an integer, this function provides an extension of the factorial function to nonintegral values of the independent variable. Note that it is also consistent to define 0! = 1.

(d) Show that, for p > 0,

$$p(p+1)(p+2)\cdots(p+n-1) = \Gamma(p+n)/\Gamma(p).$$

Thus $\Gamma(p)$ can be determined for all positive values of p if $\Gamma(p)$ is known in a single interval of unit length—say, $0 . It is possible to show that <math>\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. Find $\Gamma\left(\frac{3}{2}\right)$ and $\Gamma\left(\frac{11}{2}\right)$.

- 31. Consider the Laplace transform of t^p , where p > -1.
 - (a) Referring to Problem 30, show that

$$\mathcal{L}\{t^p\} = \int_0^\infty e^{-st} t^p \, dt = \frac{1}{s^{p+1}} \int_0^\infty e^{-x} x^p \, dx$$
$$= \Gamma(p+1)/s^{p+1}, \qquad s > 0.$$

(b) Let p be a positive integer n in part (a); show that

$$\mathcal{L}\lbrace t^n\rbrace = n!/s^{n+1}, \qquad s > 0.$$

(c) Show that

$$\mathcal{L}\left\{t^{-1/2}\right\} = \frac{2}{\sqrt{s}} \int_0^\infty e^{-x^2} dx, \qquad s > 0.$$

It is possible to show that

$$\int_0^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2};$$

hence

$$\mathcal{L}\lbrace t^{-1/2}\rbrace = \sqrt{\pi/s}, \qquad s > 0.$$

(d) Show that

$$\mathcal{L}\{t^{1/2}\} = \sqrt{\pi}/(2s^{3/2}), \quad s > 0.$$