Ceng 471 Cryptography

Symmetrical Cryptosystems

Block Cipher

MODES OF OPERATION

Asst. Prof. Dr. Serap ŞAHİN Izmir Institute of Technology

- The encryption modes prevent an eavesdropper from reading the traffic.
- They do not provide any authentication, so an attacker can still change the messages.
- Therefore; all encryption processes should be combined with authentication.
- In general, the length of the plaintext can not be an exact multiple of block size. This requires some padding.

$$l(P)$$
 P Padding

- After padding, we cut padded plaintext in to blocks.
- The number of blocks : $k = \lceil (l(P) + 1)/b \rceil$

- Modes of operation
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - Cipher Feedback (CFB)
 - Output Feedback (OFB)
 - Counter (CTR)

ELECTRONIC CODE BOOK (ECB)

- Message is broken into independent blocks which are encrypted
- Each block is a value which is substituted, like a codebook, hence name
- Each block is encoded independently of the other blocks

$$C_i = E_{K1} (P_i)$$

ELECTRONIC CODE BOOK (ECB)

Limitations of ECB

- Repetitions in message can be reflected in cipher text
 - if aligned with message block
 - particularly with data such graphics
 - or with messages that change very little, which become a code-book analysis problem
- Weakness is because enciphered message blocks are independent of each other
- It has serious weaknesses.

CIPHER BLOCK CHAINING (CBC)

- Is an enhanced mode of ECB
- Message is broken into blocks
- Linked together in encryption operation
- Each previous cipher blocks is chained with current plaintext block, hence name
- Use Initial Vector (IV) to start process

$$C_{-1} = IV$$
 $C_{i} = E_{K} (P_{i} XOR C_{i-1})$

CIPHER BLOCK CHAINING (CBC)

Advantages and Limitations of CBC

- A cipher text block depends on all blocks before it
- Any change to a block affects all following cipher text blocks
- To start need an Initial Value (IV) which must be known by both sender and receiver
 - however if IV is sent in the clear, an attacker can change bits of the first block, and change IV to compensate
 - hence either IV must be a fixed value (as in EFTPOS) or it must be sent encrypted in ECB mode before rest of message

CIPHER FEEDBACK (CFB)

- Message is treated as a stream of bits or bytes
- Result is feed back for next stage (hence name)
- Standard allows any number of bit (1,8, 64 or 128 etc) to be feed back
 - denoted CFB-1, CFB-8, CFB-64, CFB-128 etc
- Most efficient to use all bits in block (64 or 128)

$$C_{-1} = IV$$

 $C_{i} = P_{i} XOR E_{K}(C_{i-1})$

Used for stream data encryption

CIPHER FEEDBACK (CFB)

CIPHER FEEDBACK (CFB)

Advantages and Limitations of CFB

- Appropriate when data arrives in bits/bytes
- Most common stream mode
- Note that the block cipher is used in encryption mode at both ends
- Errors during transmission propagate for several blocks only (till the "dirty" part is eliminated from the shift register).

OUTPUT FEEDBACK (OFB)

- Message is treated as a stream of bits
- Output of cipher is added to message
- Output is then feed back (hence name)
- Feedback is independent of message
 - $-C_i=P_i\oplus E_k(O_{i-1})$, with $O_{-1}=IV$
- So feedback can be computed in advance

OUTPUT FEEDBACK (OFB)

OUTPUT FEEDBACK (OFB)

Advantages and Limitations of OFB

- Bit errors do not propagate
- Is superficially similar to CFB, but the feedback is from the output of the block cipher and is independent of the message
- Encryption and decryption of blocks can be done in parallel

COUNTER (CTR)

- Similar to OFB but encrypts counter value rather than any feedback value
- Must have a different counter value for every plaintext block (never reused)

```
C_{i} = P_{i} XOR O_{i}
O_{i} = E_{K1} (i)
```

Uses: high-speed network encryptions

COUNTER (CTR)

COUNTER (CTR)

Advantages and Limitations of CTR

- Efficiency
 - can do parallel encryptions in h/w or s/w
 - can preprocess in advance of need
- Random access to encrypted data blocks
- Provable security (good as other modes)
- But must ensure never reuse key/counter values, otherwise could break.