Сложность вычислений «Дерево Штейнера: покупка или аренда ребер»

Бондарь София, группа Б05-021 $13 \ \mathrm{января} \ 2023 \ \mathrm{r}.$

Оглавление

1	Введение
2	Определения
3	Постановка задачи
4	Доказательство NP-полноты задачи
5	Сведение к метрическому случаю
	5.1 Метрическая версия задачи Штейнера
6	Алгоритм 2-приближения для метрической задачи Штейнера
7	Реализация(план)
	7.1 Асимптотика работы алгоритма
	7.2 Код

1 Введение

Задача Штейнера о минимальном дереве, названная в честь швейцарского математика Якова Штейнера, заключается в поиске минимального подграфа, соединяющего конечное число заданных вершин (терминалов) и образующего таким образом сеть кратчайших путей между этими вершинами и является обобщением задачи поиска минимального остовного дерева. В данном проекте будет рассмотрена одна из вариаций этой задачи.

2 Определения

Деревом Штейнера для ненаправленного взвешенного связного графа G = (V, E), и множества вершин $V_0 \subseteq V$, с весами на рёбрах $\omega : E \to \mathbb{R}^+$ называется дерево T минимального веса, покрывающее все вершины V_0 .

Mножеством требования назовём множество V_0

Mножеством Штейнера назовём множество $V \setminus V_0$

Метрическим деревом Штейнера для полного графа G = (V, E) в метрическом пространстве (X, ρ) , где $V \subset X$ и для каждого ребра $e = \{u, v\} \in E$ определена его длина, как расстояние $\rho(u, v)$ и для конечного множества $V_0 \subseteq V$ называется дерево T минимальной длины, покрывающее все вершины V_0 .

Mинимальным остовным деревом для графа G = (V, E) называется дерево $T \subseteq G$ минимального веса, проходящее по всем вершинам V.

3 Постановка задачи

Условие

Дан ненаправленный связный граф G = (V, E), в нём выделена вершина r и множество вершин V_0 . Также имеются веса на рёбрах $\omega : E \to \mathbb{R}^+$. Для дерева T, покрывающего r и все вершины V_0 , издержки определяются так:

- (а) Если через ребро e проходит k < M кратчайших путей от вершин V_0 к корню r, то ребро даёт вклад kw_e (каждая из вершин «арендует» ребро).
- (б) Если через ребро e проходит k >= M кратчайших путей от вершин V_0 к корню r, то ребро даёт вклад Mw_e (вершины в совокупности «покупают» ребро).

Требуется найти дерево T минимального веса, покрывающее все вершины V_0 и r.

Пояснение

Задача является модификацией обычной задачи дерева Штейнера с наложением доп условия - веса ребер в зависимости от этого условия будут домнажаться на какое-то число.

Задание

- 1. Докажите, что проверка существования дерева веса не более k является NP-полной.
- 2. Сведите задачу к метрической версии (в метрической версии исходный граф является полным и верно $w(x,z) \leq w(x,y) + w(y,z)$.
- 3. Опираясь на алгоритм для поиска дерева Штейнера, постройте алгоритм, дающий 2-приближение для метрической версии задачи, а также имплементируйте его.

4 Доказательство NP-полноты задачи

Теорема 4.1.

 $ST = \{(G, k) \mid$ в неориентированном графе G есть дерево Штейнера весом не более чем $k \in \mathbb{Z}\} \in NP$

Доказательство.

- 1. $ST \in NP$: В качестве сертификата можно предъявить дерево веса не более k.
- 2. **ST NP-трудный**:

Чтоб это доказать сведем задачу к обычному дереву Штейнера. (доказательство NP трудности обычной задачи будет ниже).

Для того чтоб свести нашу задачу обозначим произвольную вершину в графе как r и берём все остальные вершины как V0.

Посчитаем расстояние от r до всех с помощью алгоритма Форда-Беллмана (работает за O(|E|*|V|) - полином, значит все в порядке) и, исходя их полученной информации, меняем вес рёбер исходя из дополнительных ограничений задачи (Форд-Беллман умеет восстанавливать кратчайшие пути, поэтому мы можем очень просто для каждого ребра посчиать сколько кратчайших путей через него проходит - O(|V|* длина макс пути + |E|). Получается, что после этой замены весов мы свели задачу к обычной задаче поиска минимального дерева.

 $STS = \{(G, k) \mid$ в неориентированном графе G есть обычное дерево Штейнера весом не более чем $k \in \mathbb{Z}\}$

3. STS — NР-трудный: Докажем, что $VERTEX-COVER\leqslant_p STS$.

Полиномиальное сведение:

- 1. Дополним G = (V, E) до полного графа и после подразделим исходные рёбра. V_1 обозначим множество, добавленных вершин. В результате получим граф G = (V', E'). Назначим весом каждого ребра в G: 1.
- 2. Если после преобразования за V_0' взять V_1 , то в G' имеется дерево Штейнера веса не больше $|E|+k-1 \iff$ в G существует вершинное покрытие можности не больше k

Доказательство.

 \Rightarrow Пусть T дерево Штейнера для V_0' в G'. Рассмотрим множество $V' = V(T) \setminus V_0'$, можно заметить, что V' вершинное покрытие в $G(V' \subset V$ и накрывает все ребра из Е по построению). Также:

$$|V'| = |V(T)| - |V_0'| = \omega(T) + 1 - |V_0'| \leqslant (|E| + k - 1) + 1 - |V_0'| = k,$$

т.к. $|E| = |V_0'|$ по построению.

 \Leftarrow Теперь пусть $V' \subset V$, $|V'| \leqslant k$ и T - дерево в G' на вершинах V'. Нам надо чтобы T покрывало множество терминальных вершин. Чтобы быть уверенными в том, что $V'_0 \subset V(T)$ расширим T: Для всех вершин $v'_0 = V'_0 \setminus V(T)$ добавим ребро (v', v'_0) , где $v' \in V'$ вершина, накрывающая ребро, подразделением которого получена вершина v'_0 . В итоговом графе

рёбер не меньше, чем E+k-1. Если в T после расширения появились циклы их можно раскрыть. В итоге мы получили дерево Штейнера с весом не меньше E+k-1 для V_0' в G'.

Ещё надо проверить, что наши шаги построения G' полиномиальны:

- ullet Добавляем $O(|V|^2)$ рёбер и вершин
- Для восстановления вершинного покрытия по Дереву Штейнера нужно $O(|V|^2)$ операций
- ullet А из вершинного покрытия в дерево штейнера мы тратим тоже $O(|V|^2)$ операций

5 Сведение к метрическому случаю

5.1 Метрическая версия задачи Штейнера

$$\omega(x,y) \le \omega(x,z) + \omega(z,y),$$

Теорема 5.1. Существование p-приближенного алгоритма для метрической задачи Штейнера влечет существование p-приближенного алгоритма для задачи Штейнера.

Доказательство.

- Пусть G = (V, E) граф для задачи Штейнера. По графу G построим полный граф G_0 для метрической задачи Штейнера. Определим стоимость ребра (u, v) в G_0 , как стоимость кратчайшего uv пути в G с учетом пересчитанных весов по Форду-Беллману. Граф G_0 называется метрическим замыканием графа G. Множество требований и множество Штейнера в обоих примерах совпадают. Стоимость любого ребра $(u, v) \in E$ в графе G_0 не превосходит стоимости этого ребра в графе G. Поэтому стоимость оптимального решения для G не превосходит стоимости оптимального решения примера G_0 .
- Пусть задано дерево Штейнера T_0 для графа G_0 . Покажем, как за полиномиальное время построить дерево Штейнера для G не большей стоимости. Стоимость ребра (u,v) в графе G_0 соответствует стоимости пути в графе G. Заменим каждое ребро дерева T_0 на соответствующий путь для получения подграфа графа G. Очевидно, что в этом подграфе все вершины множества требований соединены. Однако, этот подграф в общем случае может содержать цикл. Если это так, то удалим лишние ребра, чтобы получить дерево T. Пусть C_0 решение, найденное p—приближенным алгоритмом для метрической задачи Штейнера. Способом, описанным выше, найдем решение стоимости C в задаче Штейнера, такое, что

$$C \leqslant C_0 \leqslant pOPT_0 \leqslant pOPT$$

6 Алгоритм 2-приближения для метрической задачи Штейнера

Теорема 6.1. Рассмотрим метрическое дерево Штейнера для графа G = (V, E), и множества вершин $V_0 \subseteq V$. Стоимость минимального остовного дерева в V_0 не превосходит двух стоимостей оптимального дерева Штейнера в графе G.

Доказательство. Рассмотрим дерево Штейнера стоимость которого равна OPT. Дублируя ребра, получим Эйлеров граф, связывающий все вершины из множества V_0 , а также, возможно, и некоторые Штейнеровы вершины. Найдем Эйлеров обход в этом графе. Стоимость этого обхода равна $2 \cdot OPT$. Затем, используя порядок вершин в Эйлеровом обходе, получим Гамильтонов цикл методом срезания углов, пропуская вершины Штейнера и уже пройденные вершины. Из неравенства треугольника следует, что стоимость нового цикла не может превышать стоимости Эйлерова обхода. Удалив одно ребро из Гамильтонового цикла, получим путь Р по вершинам из V_0 стоимости, не превышающей $2 \cdot OPT$. Путь Р является остовным деревом на R. Поэтому стоимость минимального остовного дерева не превышает $2 \cdot OPT$.

Теорема 6.2. Алгоритм поиска остовного дерева для подрафа G с множеством вершин V_0 является 2-приближенным алгоритмом для задачи Штейнера.

Доказательство. Приведём пример графа для которого оценка достигается (в пределе). Дерево построенное алгоритмом будет состоять из вершин внешнего цикла (V_0) без одного ребра . А дерево Штейнера будет состоять из корня вершины $V\setminus V_0$, и листьев V_0 . То есть, если внешний цикл имеет вид n-угольника, то верно, что $\frac{d(T_MST)}{d(T)}=\frac{2n-2}{n}=2-\frac{2}{n}\to 2$.

7 Реализация(план)

Найдём EMST для $V_0(|V_0| = n)$:

- Строим триангуляцию Делоне за время O(nlogn) с использованием памяти O(n). Поскольку триангуляция Делоне является планарным графом и число рёбер не более чем в три раза превосходит число вершин, в любом планарном графе, это построение образует лишь O(n) рёбер.
- Запустим алгоритм Форда-Беллмана (O(n|E|)) из r до всех вершин из V_0 и найдем новые веса ребер.
- Помечаем каждое ребро его длиной.
- Запускаем алгоритм поиска минимального остовного дерева на этом графе. Поскольку имеется O(n) рёбер, этот алгоритм потребует время O(nlogn)

7.1 Асимптотика работы алгоритма

Теорема 7.1. Алгоритм построения Евклидова минимального остовного дерева на плоскости требует O(n|E| + nlogn) времени.

7.2 Кол

Код можно посмотреть по ссылке