IUPWARE Alumni Event 2018 26 - 1 March 2018, Cuenca, Ecuador

Groundwater supply for the urban poor in peri urban areas

Philip Nyenje Makerere University, Uganda

Project Partners:

CONTENT

- Introduction, problem and study area description
- Introducing the aquifers
- The groundwater system and water quality
- Predominant form of groundwater use
- Legislative framework
- Self Management
- Preliminary conclusions

INTRODUCTION

T-GROUP

"Experimenting with practical **T**ransition **Gro**undwater management strategies for the **U**rban **P**oor in Sub-Saharan Africa"

Aims to improve access to safe water in poor peri-urban areas using Transition Management (TM) approach

What changes are required to make transition towards sustainable groundwater management in urban SSA?

RQ1: Relations between 'belowground' and 'above-ground' systems (systems analysis)?

RQ2: Can TM be a suitable model for groundwater management and governance in urban SSA?

The Problem

- Poor peri-urban settings or slums are growing in urban cities in SSA:
 - High population density
 - Informal settlements = slums
 - Lack of formal services
- Complex social, institutional, financial and environmental conditions making dependence on groundwater a challenge
 - Affordability
 - Pollution
 - Sustainability
 - Use and management

The Transitional Management (TM) Approach

- TM approach embraces complexity and challenges in slums by finding new and collaboratively ways of managing groundwater
- TM process, a promising tool:
 - Seeks collaborative ways of managing groundwater
 - Learning alliances
 - Multi-level perspective approach.
 - Small scale demonstrations to show the promise in making the transition towards near self management

Phase 1:

Understanding the system above and below ground

- Socio-economic
- Governance
- Hydrogeology/ groundwater system
 - Geophysical investigations
 - Drilling of piezometers
 - Soil sampling and analysis
 - •Slug tests MLU software
 - •Water level monitoring Pressure transducers
 - Water quality (Hydrochemistry)

Phase 2:

TM Arena meeting and TM experiments

Kampala study area

- Kawempe Division
 - North western boundary of Kampala city
- Lubigi catchment (65 Km²)
 - peri-urban slum area
 - High population density (1000 people/km²)
 - Elevation ~ 1200 masl
- 6 Urban poor Parishes
 - Bwaise II
 - Bwaise III
 - Makerere II
 - Kasubi Kawaala
 - Kazo-Nabweru

INTRODUCING THE AQUIFER (S)

Groundwater flow system

A good aquifer underlies discharge areas capped with clay Groundwater system development is local Low yields $K = 6.72 \times 10^{-3} \text{ m/d}$, $S = 3.91 \times 10^{-3} \text{ T} = 6.5 \times 10^{-1} \text{ m}^2/\text{d}$

Discharge – Recharge zones

Artesian w B4, B8, B11,

Water quality

Shallow groundwater (Springs)

- Acidic (pH 4.4 5.5)
- High NO₃ concentrations (30 150 mg/l)
- NaNO3 & NaCl water type
- High levels of E.Coli & Salmonella found
 - Ecoli: Dry season: 111 1014 CFU/100 ml
 Wet season: 8000 40,000 CFU/100 ml

Deep groundwater relatively clean

- Low NO₃ concentrations: 0 25 mg/L (Average 6 mg/l)
- NaHCO3 and CaHCO3
- pH: 5 7.5 (Average 6) Slightly acidic
- Low levels of pathogens.
- Some viruses detected using DNA

PREDOMINANT FORMS OF GROUNDWATER USE

- Springs dominant form of groundwater use especially for urban poor (~ 40%).
- People boil water to disinfect it. Some children drink spring water directly
- KCCA discouraging use of springs due to microbial pollution (Diahhorea, Cholera and Typhoid)

Piped water access and cost

- 58% access piped water supply.
 - Intermittent water supply
 - Public taps personalized by landlords
 - —High costs urban poor cannot afford
 - 20 litre jerrycan = 200 Ush ~ 0.06 USD
 - —10-20% of monthly income is spent on buying water

Use of household wells limited

- Few household wells
 - High costs
 - Permit issues.
 - Availability of other sources: Springs
 & piped water
- Some community wells constructed by NGOs for urban poor:
 - Poor management Ownership issues
 - Poor materials and frequent break down of boreholes

Community wells in Kawaala slum area, Kampala

LEGISLATIVE FRAMEWORK

- NWSC public utility responsible for water service delivery in Kampala (NWSC)
 - Water abstracted from Lake Victoria
 - Pre-paid meters introduced for the urban poor
- KCCA responsible for management of springs and wells
 - Construction of wells and springs usually by NGOs with partnership with KCCA
 - KCCA discouraging use of springs for drinking due to pollution
 - KCCA promotes use of piped water from NWSC
 - Individual boreholes require permits from NWSC.

Prepaid meter in Kampala (source: Kathy Eales)

General observations on water use and supply

- Piped water supply still a challenge
 - High costs urban poor cannot afford
 - Intermittent water supply in some areas especially in dry season
 - Inadequate supply due to increasing demands rationing, negative pressures.
 - Prepaid meters still expensive / personalized by landlords
- Communities perceive springs to be contaminated.
- Deep groundwater perceived to be clean
 - Strong desire by landlords to acquire individual household wells
 - Existing community wells broken down

SELF MANAGEMENT

- Need to provide of boreholes self-managed by the communities
- Complexities and challenges in slums
 - Do households have capacity to maintain the wells?
 - How to enforce and maintain construction standards?
 - No legal framework to promote groundwater use in slums
 - Potential costs to the wider community from the proliferation of household/community wells
 - How to introduce self-management approaches in communities
- Can the TM approach can be a good tool to introduce construction and self management of boreholes in slums?
 - Currently in process of actor selection and setting up learning alliances
 - To learn from communities if TM works or not

PRELIMINARY CONCLUSIONS

- There is fairly good groundwater potential esp in lower slopes.
- Shallow groundwater (Springs) contaminated whereas deep groundwater less contaminated
- Use of household wells limited
- Challenges in piped water supply means urban poor largely depend on contaminated springs
- Strong desire by landlords to acquire deep boreholes Need to introduce self management of water supply using boreholes
- T-group project in process of experimenting with TM approach to introduce self-management of boreholes in the slums.

IUPWARE Alumni Event 2018 26 - 1 March 2018, Cuenca, Ecuador

Groundwater supply for the urban poor in peri urban areas

THANK YOU FOR LISTENING

https://upgro.org/consortium/t-group/

Philip Mayanja Nyenje, MSc, PhD

nyenje@gmail.com nyenje@cedat.mak.ac.ug

