Notation

discrete : UPPER CASE continuous : lower case

ln = nats

y: latent varaible / ground truth (hidden, not measurable)

x: observable variable / measurement

 \hat{y} : output of DNN

 \odot element-wise multiplication

Downstream task (DN) : the task you actually want to solve (classification, $\ldots)$

General stuff

Matrix & Math basics

Matrix & Matrix basics
$$(cA)^{-1} = c^{-1}A^{-1}$$

$$\det (A^{-1}) = (\det A)^{-1}$$

$$\partial X^{-1} = -X^{-1}(\partial X)X^{-1}$$

$$(\min XX^{-1} = I \text{ und } \partial(I) = 0)$$

$$\frac{\partial}{\partial x}x^T\mathbf{B}x = x^T(\mathbf{B} + \mathbf{B}^T)$$

$$\|\underline{x}\|^2 = \underline{x}^T\underline{x}$$

$$\log_b(P \cdot Q) = \log_b P + \log_b Q$$

$$\log_b(P \cdot Q) = \log_b P + \log_b Q$$

$$\log_b(P \cdot Q) = \log_b P + \log_b Q$$

$$\log_b(P \cdot Q) = \log_b P + \log_b Q$$

$$\log_b(P \cdot Q) = \log_b P + \log_b Q$$

$$\log_b(P \cdot Q) = \log_b(P \cdot Q) = \log(x)$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} + \cdots + \frac{\partial^2 f}{\partial x^2} + \cdots + \frac{\partial^2 f}{\partial x^2}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} + \cdots + \frac{\partial^2 f}{\partial x^2} + \cdots + \frac{\partial^2 f}{\partial x^2}$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$$
$$\lim_{x \to 0} x \ln(x) = 0$$

Moments of vector

$$\begin{array}{l} \text{mean}: \underline{\mu} = \mathbb{E}(\underline{X}) = \int \underline{x} p(\underline{x}) d\underline{x} \overset{\text{discrete}}{=} \sum \underline{x}_i P(\underline{x}_i) \\ \text{correlation}: \mathbf{R} = E(\underline{X}\underline{X}^\intercal) \int \underline{x}\underline{x}^\intercal p(\underline{x}) d\underline{x} \overset{\text{discrete}}{=} \sum \underline{x}_i \underline{x}_i^\intercal P(\underline{x}_i) \\ \text{covariance}: \mathbf{C} = E((\underline{X} - \underline{\mu})(\underline{X} - \underline{\mu})^\intercal) \overset{\text{discrete}}{=} \mathbf{R} - \underline{\mu}\underline{\mu}^\intercal \\ \mathbf{Jaccard} \ / \ \mathbf{IoU} \ (\text{intersection-over-union}) \end{array}$$

 $0 \leqslant J = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|} \leqslant 1$ Dice coefficient

Dice coefficient $0 \le D = \frac{2|A \cap B|}{|A| + |B|}$

$\begin{array}{l} \textbf{Chain rule of derivative} \\ \frac{\mathrm{d}f(g(\theta))}{\mathrm{d}\theta} = \frac{\mathrm{d}f}{\mathrm{d}g}\frac{\mathrm{d}g}{\mathrm{d}\theta} \end{array}$

Hyperparameters η : configuration parameters, not adapted during training. (Gradient descent not applicable)

time-invariant shifted input signal \to shifted output signal $x(n-n_0)\to y(n-n_0)$ (e.g. convolution 1D)

shift-invariant $x(n_1 - i_1, n_2 - i_2) \rightarrow y(n_1 - i_1, n_2 - i_2)$ (e.g. convolution 2D)

temporal correlation: loss of meaning if data is scrambled Inductive bias: Bias that shapes learning in a desired way (e.g. infrastructure enables things).

- dense layer \rightarrow information from all neurons \rightarrow decision making
- convolutional layer \rightarrow learning of local feature
- recurrent layer \rightarrow learning of temporal correlations

 ${\bf Cross\text{-}correlation} \ (= {\rm attention}) : {\rm find} \ {\rm known} \ {\rm segment} \ {\rm in} \ {\rm long}$ measurement

 ${\bf Autocorrelation} \;(= {\rm self\text{-}attention}) : {\rm find} \; {\rm self\text{-}similarities} \; {\rm beween} \; {\rm segments} \; {\rm of} \; {\rm same} \; {\rm signal} \;$

Neural architecture search (NAS): automated search for good fitting DNN architecture

Causal inference/reasoning is beyond ML!

Epoche: one whole pass of all training-samples through the NN. (Consists of N/B minibatches)

 $\nabla ||\underline{w}||^2 = 2\underline{w}$

Empirical distribution : $\hat{p}(x,y) = \frac{1}{N}\delta(\underline{x} - \underline{x}(n), \ \underline{y} - \underline{y}(n)) \ (\delta : \text{Dirac-Kernel})$

Probabilities

PMF -
$$P(\cdot)$$
 (probability mass function) discrete

 $\begin{aligned} \mathbf{PDF} &- p(\cdot) \\ \text{(probability density function)} \\ \text{continuouse} \end{aligned}$

Uniform distribution

PDF:
$$p(x) = \begin{cases} \frac{1}{b-a} & a \leq x \leq b \\ 0 & \text{otherwise} \end{cases}$$

Gaussian/normal distribution

PDF:
$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

mit $\underline{x} \sim \mathcal{N}(\mu, \sigma^2)$ and $|\mathbf{C}| = \det(\mathbf{C})$ $\det(\sigma^2 \mathbb{I}) = \sigma^{2d}$
Mean $E(\underline{x}) = \underline{\mu} = \frac{1}{N} \sum_{n=1}^N x_n$
Covariance $\mathbf{C} = \mathbb{E}[(\underline{x} - \underline{\mu})(\underline{x} - \underline{\mu})^T] = \frac{1}{N} \sum_{n=1}^N (\underline{x}_n - \hat{\underline{\mu}})(\underline{x}_n - \hat{\underline{\mu}})^T$
Contour lines: ellipsoids centered at $\underline{\mu}$. Direction & size of principal axes given by eigenvectors of \mathbf{C}

Standard Gaussian/normal:

PDF:
$$p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

mit $\underline{x} \sim \mathcal{N}(0, 1)^{-\frac{x^2}{2}}$
Q-func: $Q(x) = 1 - \int_{-\infty}^{x} p(z) dz$

Laplace distribution

PDF:
$$p(x) = \frac{1}{2b} \exp\left(\frac{|x-\mu|}{b}\right)$$

Bernulli distribution

coin-flip
$$X \in \{0,1\}$$

$$p = P(X = 1) > 0$$

$$P(x) = \begin{cases} 1-p & x = 0 \\ p & x = 1 \end{cases}$$

Cross Entropy (CE)

Entropy H(X): measurement of uncertainty Between two distributions $X \sim p$ and $Y \sim q(y)$ $H(X,Y) = H(p,q) = -\mathbb{E}_{X \sim p} \ln(q(x)) = -\int p(x) \ln(q(x)) dx$ Applied to learning: $H(\hat{p},q) = \frac{1}{N} \sum_{n=1}^{N} L(\underline{x}(n), y(n), \underline{\theta})$

Kullback-Leibler-Divergence (KLD)

Between two distributions p and q

D_{KL}
$$(p||q) = \int p(x) \ln\left(\frac{p(x)}{q(x)}\right) dx = \mathbb{E}_{\underline{x}-p(x)}\left[\ln\left(\frac{p(x)}{q(x)}\right)\right]$$
 with Gaussian distribution :

$$D_{\text{KL}}(p \sim \mathcal{N}(\mu_p, \sigma_p^2) || q \sim \mathcal{N}(\mu_q, \sigma_q^2) = \ln\left(\frac{\sigma_q}{\sigma_p}\right) + \frac{\sigma_p^2 + (\mu_p - \mu_q)^2}{2\sigma_q^2} - \frac{1}{2}$$

- non-negative $D_{KL}(p||q) \ge 0$
- equality $D_{KL}(p||q) = 0$ if $p(x) = q(x) \forall x$
- asymmetry $D_{KL}(p||q) \neq D_{KL}(q||p)$ forward vs backward (\rightarrow NOT a distance)
- additivity $D_{KL}(p||q) = D_{KL}(p_1||q_1) + D_{KL}(p_2||q_2)$ with $x = [x_1, x_2]^{\mathsf{T}}$, all x_i independent $(\rightarrow p(x) = p(x_1)p(x_2))$

	Forward KL divergence $D_{KL}(p \parallel q)$	Backward KL divergence $D_{KL}(q \parallel p)$
	$p(x) \ln \left(\frac{p(x)}{q(x)} \right)$	$q(x) \ln \left(\frac{q(x)}{p(x)} \right)$
p > q $q \rightarrow 0$	> 0	< 0
$q \rightarrow 0$	$\rightarrow \infty$	$\rightarrow 0$
$p \rightarrow 0$	$\rightarrow 0$	$\rightarrow \infty$
	Minimize $D_{KL}(p \parallel q)$	Minimize $D_{KL}(q \parallel p)$
	p = 0: doesn't care about q	q = 0: doesn't care about p
	p > 0: make q close to p	q > 0: make q close to p
	"Zero avoiding" strategy for q :	"Zero avoiding" strategy for q :
	q > 0 if p > 0	q = 0 if p = 0
	i.e., makes $q(x)$ broader than $p(x)$	i.e., makes $q(x)$ narrower than $p(x)$
Make denominator in $\ln(\cdot)$ broad to minimize D_{KL}		

 $D_{KL}(p||f) = -H(p) + H(p,f)$ as H(p) fixed:

 $\min_{q} \mathrm{D_{KL}}(p||q) \hat{=} \min_{q} H(p||q) \Rightarrow \mathrm{KLD} \hat{=} \mathrm{Cross} \; \mathrm{Entropy}$

Jensen-Shannon divergence

Symetric KLD : $D_{JS} = \frac{1}{2} \left(D_{KL} \left(p \parallel \frac{p+q}{2} \right) + D_{KL} \left(q \parallel \frac{p+q}{2} \right) \right)$

Neuron

 $y = \phi(\underline{w}^{\mathsf{T}}\underline{x} + b)$

Initialization

Zero initialization is bad! (All neurons behave the same)

Must be Symmetry-breaking!

Random initialization bias : zeros; weight : random ✓

e.g. normal or uniform distribution

He initialization

Constant activation flow (forward pass)

through
$$\operatorname{Var}(a_{l,i}) = M_{l-1}\sigma_{w,l}^2\sigma_{x,l-1}^2$$

 $\Rightarrow \sigma_{w,l} \sim \frac{1}{\sqrt{M_{l-1}}} \quad M_{l-1} : \text{Fan-in}$

Glorot initialization

Constant gradient flow (forward & backward pass)

$$||\frac{\partial L}{\partial a}|| = \text{const}$$

 $\Rightarrow \sigma_l \sim \frac{1}{\sqrt{M_l}} \quad M_l : \text{Fan-out}$

Hyper-parameter optimization

use of a validation-set D_{val}

Grid-search: time-consuming (many params)

Bayesian optimization

Kernels

Create estimate \hat{p} of $p(\underline{x})$ based on samples $\underline{x}(n)$ $\hat{p}(\underline{x}) = \frac{1}{N} \sum_{n=1}^{N} k(\underline{x} - \underline{x}(n))$ with kernel $k(\underline{x})$

Dirac-Kernel

$$k(\underline{x}) = \delta(\underline{x}) = \begin{cases} \infty & x = 0 \\ 0 & x \neq 0 \end{cases} \quad \text{with } \int \delta(x) dx = 1$$

Layers

weights: $w \in \mathbb{R}^d$ bias : $b \in \mathbb{R}$ activation : $a = w^{\mathsf{T}}x + b \in \mathbb{R}$ activation-function : $\phi : \mathbb{R} \mapsto \mathbb{R}$ $y = \phi(a)$

> Dense Layer (ch. 4)

fully connected layer with c neurons $(c \cdot d \text{ weights} + c \text{ bias } \Rightarrow c(d+1) \text{ parameters })$

> Convolutional layers (ch. 7)

 $A \in \mathbb{R}^{H \times W \times C_{\text{in}} \times C_{\text{out}}}$: height H, width W, channel depth C **convolution** wit kernel $h(n): y(n) = \sum_{i} h(i)x(n-i)$ **2D** convolutional layer 2D feature map of size $H_l \times W_l \rightarrow 3D$ tensor requires 4D kernel

Key ideas:

- Sparse connections: Neuron are only connected to a small
- Parameter sharing: Params can not be chosen independently. (In CNN: each neuron has the same set pf in- and outgoing weights.

Properties:

- Few parameters (parameter sharing), many multiplications
- sparse connections
- small receptive field (focus on local patterns)
- time-shift invariant (translation-equivariant)
- one feature per feature-map
- $-H_l = H_{l-1} k_l + 1 \rightarrow \text{image shrinks}$

$$a_h = \sum_{i=1}^{K} w_i x_{h+i-1} \quad 1 \le h \le H - K + 1$$

 $a_h = \sum_{i=1}^K w_i x_{h+i-1}$ $1 \le h \le H-K+1$ Padded convolution: Zero-padding input to get same output-size as input. $p \ge 0$

Strided convolution: Move kernel by $S \ge 1$ steps (instead of 1) $f.7-9 \Rightarrow Downsampling$

Dilated convolution : Let kernel select only every $D \ge 1$ 'th entry (instead of 1) - f.7-10 \Rightarrow Downsampling

output dimension :
$$\left[\frac{H_{l-1}+2P-((K-1)\cdot D+1)}{S}\right]+1$$

Kernel; Padding= 0; Dilation= 1; Stride= 1

> Recurrent layer (ch. 8)

 $\textbf{cross-neuron feedback}: \underline{\underline{W}}_{l.s}$ non-diagonal \rightarrow feedback to also other neurons in this layer

LSTM layer

Gates (long short-term memory):

- **input** (write)
- forget (reset)
- **output** (read) 8 weight matrices

0 < signal < 1

0 : close / clear memory - 1 : open / keep content

> Attention (ch. 9)

Similarity metric

Scaled dot product : $\frac{\underline{k}^{\mathsf{T}}\underline{q}}{\sqrt{2}}$ (with dimension d)

cosine similarity : $0 \leqslant \frac{\underline{k}^{\mathsf{T}} \underline{q}}{||\underline{k}||\cdot||q||} \leqslant 1$

Single-query attention

query $q \in \mathbb{R}^d$ (d interval dimension) $N \times$ key-value pairs $k_i, v_i \in \mathbb{R}^d$, $\underline{K} = [k_1, ..., k_N], \underline{V}$ calc similarities $a_i = s(q, \underline{k}) \to \text{importance weights } \alpha_i = \text{softmax}(a_i)$ \rightarrow refined v_i for q: attention $(q, \underline{K}, \underline{V}) = \sum_{i=0}^{N} \alpha_i v_i$

Multi-query attention

multiple queries $Q \in \mathbb{R}^{d \times M}$ $\rightarrow M$ attention vectors

Multi-head attention

h heads (each with own dot-product attentions - with own weights from) $\underline{\underline{W}}_{i}^{Q}, \underline{\underline{W}}_{i}^{K}, \underline{\underline{W}}_{i}^{V}$

Skip connections (Shortcut)

over one or multiple layers (identity paths) backward pass: $\underline{x}_l = \phi_l(W_l x_{l-1} + b_l) + \underline{x}_{l-1}$ $\frac{\partial \underline{x}_{l}}{\partial \underline{x}_{l-1}} = \frac{\partial \phi_{l}()}{\partial \underline{x}_{l-1}} + \boldsymbol{I}$ Residual connections mandatory for deep networks!

Normalization

(weight normalization (\underline{W})) and activation normalization (\underline{A})

- instance normalization (across single channel)
- batch normalization (across same channel whole batch)
- layer normalization (across channels)

Downsampling layer

Strided convolution: (see "Convolutional layers") **Pooling**: max pooling / mean pooling / l_2 -norm pooling \rightarrow translation invariance!

Upsampling laver

interpolation, unpooling, deconvolution

Reshaping layer

flatten layer $\underline{X} \in \mathbb{R}^{H \times W \times C} \mapsto \text{vec}(\underline{X}) \in \mathbb{R}^{HWC}$ global average pooling (GAP) layer reduce each channel/feature to \mathbb{R}^1

Activation functions

linear / identity:

used in output-layer of regression.

Unit step

$$\phi(a) = \begin{cases} 0 & a < 0 \\ 1 & a > 0 \end{cases}$$
 not differentiable!

Sign function

$$\phi(a) = \begin{cases} -1 & a < 0 \\ 1 & a > 0 \end{cases} = 2u(a) - 1 \text{ not differentiable!}$$

Sigmoid

$$\phi(a) = \sigma(a) = \frac{1}{1 + e^{-a}}$$

$$\frac{d}{da}\phi(a) = \phi(a)(1 - \phi(a))$$

- $-0 \le \phi(a) \le 1 \to \text{good for probabilities}$
- svmmetry
- easy computable derivative

Hyperbolic tangent

$$\phi(a) = \tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

$$\frac{\mathrm{d}}{\mathrm{d}a}\phi(a) = 1 - \phi(a)^2$$

— like sigmoid with other output range

ReLU Rectified linear unit

$$\phi(a) = \text{Relu}(a) = \begin{cases} a & a > 0 \\ 0 & a \leqslant 0 \end{cases} = \max(a, 0)$$

$$\frac{d}{da}\phi(a) = \begin{cases} 1 & a > 0\\ 0 & a < 0\\ 1 \text{ or } 1 & a = 0 \end{cases}$$

- verry simple
- easy derivative
- zero-gradient for a < 0 (bad) \Rightarrow

Leaky ReLU =
$$\begin{cases} a & a > 0 \\ 0.01a & a \le 0 \end{cases}$$

Softmax

$$\phi(a): \mathbb{R}^c \mapsto \mathbb{R}^c$$

$$\phi(a) = [\phi_1(a), \dots, \phi_c(a)]^{\mathsf{T}} \quad \text{with } \phi_i(a) = \frac{e^{a_i}}{\sum_{j=1}^c e^{a_j}}$$

$$\frac{\mathrm{d}}{\mathrm{d}a_j}\phi_i(a) = \begin{cases} -\phi_i(a)(1 - \phi_i(a)) & i = j \\ -\phi_i(a)\phi_j(a) & i \neq j \end{cases} = \phi_i(a)(\delta_{ij} - \phi_j(a))$$

Binary case : $\phi_1(a) = \sigma(a_1 - a_2)$ and $\phi_2(a) = 1 - \phi_1(a)$

Used for output-layer (normalization of classification-problems)

Loss functions

Loss $l(x, y, \theta)$: quality of prediction of one pair Cost function $L(\theta)$: average loss over all training samples $y = f(\underline{x}; \underline{\theta}) + \text{noise}$ y|x Distribution of y given x

L_2 -loss

mean square error (MSE) - (white Gaussian noise $\mathcal{N}(0, \sigma^2 I)$) $l(\underline{x}, y; \underline{\theta}) = ||y - f(\underline{x}; \underline{\theta})||^2$ $L(\underline{\theta}) = \frac{1}{N} \sum_{n=1}^{N} ||y(n) - f(\underline{x}(n); \underline{\theta})||^2$

L_1 -loss

mean absolute error (MAE) - (Laplace distribution) $l(\underline{x}, y; \underline{\theta}) = \frac{1}{h}||y - f(\underline{x}; \underline{\theta})||_1 + \text{const}$ $L(\underline{\theta}) = \frac{1}{N} \sum_{n=1}^{N} ||\underline{\underline{y}}(n) - f(\underline{\underline{x}}(n); \underline{\theta})||_{1}$

Categorical CE loss

 $y \in \{\underline{e}_1, \dots, \underline{e}_c\}$ (class-labels one-hot coded) for classification p is approximated by $Q(y|y;\underline{\theta}) = \prod_{i=0}^{c} f_i^{y_i}$ $l(x, y; \theta) = -\ln Q(y|y; \theta) = -y^{\mathsf{T}} \ln(f(x; \theta))$ (improvement: focal loss $l(\underline{x}, \overline{y}; \underline{\theta}) = -y^{\mathsf{T}} (1 - \overline{f})^{\gamma} \odot \ln(f(\underline{x}; \underline{\theta})))$

↑ distribution-based loss ↓ region-based loss

IoU and Dice loss

 $\begin{array}{l} \text{IoU}: 1 - J = 1 - \frac{|A \cap B|}{|A| + |B| - |A \cap B|} \\ \text{Dice}: 1 - D = 1 - \frac{2|A \cap B|}{|A| + |B|} \end{array}$

Independent of region of background.

For multi-class segmentation : $J = \frac{1}{c} \sum_{i=1}^{c} J_i$

Soft IoU and Dice loss: $J = \frac{\alpha + \epsilon}{\beta - \alpha + \epsilon} \Rightarrow \text{no} \div 0$

Use Soft for training!

Important networks

MNISTnet3: CNN for digit recognition on MNIST

CIFAR10net: CNN for image recognition (on CIFAR-10)

ResNet: stack of residual blocks

U-Net: semantic image segmentation: symmetric encoder-decoder & residual connections

Vision transformer (ViT): transformer for image classification patch tokenization (with embedding); "transformer encoder"; "MLP head" (for classification)

SimCLR: contrastive learning with linear classification head **CLIP** Contrastive language image pretraining:

a) \rightarrow few-shot transfer : (few labeled images) backbone for image representation

or b) → zero-shot transfer: largest similarity between text and

Pix2Pix: cGAN; translates between paired images

Visualization techniques

Grad-CAM: Gradient-weighted class activation mapping → important regions

DNN architectures

feedforward multilayer NN or Multilayer perceptron (MLP)

Convolutional Neural Networks (CNN)

for image and time-series

lower memory complexity + hirarchical feature learning + time-invariant

$$\underline{\underline{X}}_{l-1} \to \begin{vmatrix} \underline{\underline{W}}_l \\ \underline{\underline{b}}_l \\ \underline{\underline{\Phi}}_l \end{vmatrix} \to \underline{\underline{X}}_l$$

 \underline{W}_l Kernel tensor, \underline{b}_l bias vector

Number of parameters : $\approx K_l^2 C_{l-1} \rightarrow \text{quiet large}$

encoder-head

 $image \rightarrow number (classification)$

encoder-decoder

 $image \rightarrow image (segmentation)$

Recurrent Neural Networks (RNN)

NN with feedback - nonlinear extension of IIR filters. (recursive) → memory of neurons : sequential input-data (temporal correlation)

Training: SGD with $\underline{\theta}^{t+1} = \underline{\theta}^t - \gamma^t \nabla L(t,\underline{\theta})|_{\theta=\theta^t}$ (Difficult to train, vanishing gradients, hard to parallelize → sequential calculations)

$$\underline{s}_{l}(n) = \underline{\phi}_{l} \left(W_{l,x} \underline{x}_{l-1}(n) + W_{l,s} \underline{s}_{l}(n-1) + \underline{b}_{l} \right)$$

Bidirectional recurrent neural networks (BRNN)

minibatch in forward- and backward-time direction in two separate recurrent layers; concatenate outputs (\rightarrow next layer has past + future info)

Long short-term memory (LSTM)

Most successful type of RNN

Replace recurrent neuron with LSTM-cell(/neuron)

 $\underline{f}_{l}(n) \odot \underline{s}_{l}(n-1) + \underline{i}_{l}(n) \odot \underline{\phi}_{l} \left(W_{l,sx} \underline{x}_{l-1}(n) + W_{l,so} \underline{x}_{l}(n-1) + \underline{b}_{l} \right)$ → no vanishing gradient in long memory

Peephole-LSTM: gates depend on prev. state $s_i(n-1)$

more complex (11 weight matrices)

Gated recurrent unit (GRU): lower complexity

simplified: 2 gates (reset, update)

Transformer

multi-head self-attention; general purpose

- parallel computing (no recurrence)
- short- and long-range dependencies
- very high computation complexity (quadratic \mathcal{N}^2)
- very high memory complexity
- requires more training data

Tokenization: divide text into known units (tokens) - by NN (e.g. Word2Vec)

Positional encoding required for consideration of sequential order Feedforward dense layer: relationships within sequence

For images: tokens for patches based on flattened 2D image-slices

Self-supervised learning

To solve data-inefficiency of NN

Self-supervised learning is representation-oriented Self-supervised representation learning (SSL) unlabeled dataset; mostly for

Semi-supervised learning with small dataset; reduce labeling effort

Split training in **pretraining**: model trained on other (more general?) dataset. Better than random params!

Later **finetuning** with small labeled dataset (for downstream task) of whole model, or only head (with others params frozen)

Foundation models (FM) are general-purpose models, trained on task-agnostic data

Autoencoder (AE)

encoder-decoder architecture; simplest SSL; undercomplete (inner dimension $c \ll d$ input/output)

input \rightarrow encoder \rightarrow latent variable z (hidden, compressed representation) \rightarrow decoder \rightarrow loss against input $y = \underline{x}$

Pretext task (PT)

Artificially generated supervised task self-reconstruction (autoencoder) ∈ pretext task example-tasks: image rotation, colorization, masking, super-resolution.

Contrastive learning

learn contrast between similar/dissimilar samples

samples are generated: crop, resize, rotate, flip, color distortion, cutout, gaussian noise/blur, other filters, ...

 \rightarrow No task, no y, no supervised loss (loss in representation space) Goal for representation space z:

similar/dissimilar samples (positives/negatives) pulled/pushes to/from each other

Transfer learning

embedded systems: one model for one task (due to system-restraints)

With source task $\mathcal{T}_s = \{X_s, Y_s, p_s(x, y)\}$

Transfer learning applicable to Related tasks $(X_s = X_t, Y_s \neq Y_t)$ and Distribution/Domain shift

 $(X_s = X_t, Y_s = Y_t, p_s(\underline{x}, y) \neq p_t(\underline{x}, y)$ - like cross sensor, cross daytime, ...)

New task $(X_s \neq X_t)$ is too difficult!

Related tasks: Freeze backbone and train new head - or multitask-training

Distribution/Domain shift:

- Domain adaptation (Transform new task to source-domain)
- Continual learning (model must perform well in all new tasks), no catastrophical forgetting!

Generative models

learn joint distribution p(x,y) (instead of focusing on decision boundaries like discriminative models) to generate new data according to p(x, y)

Variational autoencoder (VAE)

- = AE with requirement : z need to be known distribution
- \rightarrow after training : draw sample from z, use decoder to generate output

 $q(\underline{x}, \underline{\theta}) = \int q(\underline{x}, \underline{z}; \underline{\theta}) d\underline{z} = \int q(\underline{x} \mid \underline{z}; \underline{\theta}) \cdot q(\underline{z}) d\underline{z}$ for solution : replace $-\ln q(x;\theta)$ by its variational upper bound; use stochastic encoding + reparametrization (to enable backpropagation of gradient through sampling unit)

Generative adversarial network (GAN)

More powerful than VAE;

generator (G) vs discriminator (D), while generator has packpropagation from discriminator.

min-max optimization : $\min_{\underline{\theta}_G} \max_{\underline{\theta}_D} L(\underline{\theta}_G, \underline{\theta}_D)$

with $L(\underline{\theta}_G, \underline{\theta}_D) =$

 $\mathbb{E}_{\underline{x} \sim p_{\text{data}}} \ln \left(D(\underline{x}; \underline{\theta}_D) \right) + \mathbb{E}_{\underline{z} \sim p_{\text{noise}}} \ln \left(1 - D(G(\underline{z}; \underline{\theta}_G); \underline{\theta}_D) \right)$

Ping-Pong training:

- one minibatch updating D $(\max_{\underline{\theta}_D} L(\ldots)) \to \operatorname{stoch}$ grad ascent
- one minibatch updating G $(\min_{\underline{\theta}_G} L(\ldots)) \to \operatorname{stoch}$ grad descent
- → Nash-equilibrium (saddle point)

difficult; mode collapse possible

Generate realistic (fake) samples: data augmentation for training; data generation without privacy concerns.

No control over output (from noise z) - no labels used

- → Extension : conditional GAN (cGAN) :
- + class label input $y \sim p_{label}$

D accepts only if real AND matches label

 \rightarrow Extension : Paired image translation :

On paired data (x, y) (e.g. semantic segmentation, day-night)

Diffusion model

high quality; simpler training than GAN; high complexity; long training Forward process (diffusion process):

Input \underline{x}_0 to Gaussian noise $\mathcal{N}(0,I)$ by sequence of first-order Markov processes

Reverse process (generation process):

random sample $\underline{x}_T \sim \mathcal{N}(0, I)$ backwards through Markov process

Gradient Descent

local search! $-\nabla f(x)$ orthogonal to contour line (towards descent) γ : step-size / learning rate

 $\theta^{t+1} = \theta^t - \gamma^t \nabla L(\theta)|_{\theta = \theta^t}$

No need to calc Hessian → much simpler

Stochastic Gradient Descent (SGD)

Batch gradient descent - more noisy than $L(\theta)$

Use Minibatch of size $B \ll D_{\text{train}}$

 $\underline{\theta}^{t+1} = \underline{\theta}^t - \gamma^t \nabla L(\underline{t}; \underline{\theta})|_{\theta = \theta^t}$

 \uparrow minibatch size $\Rightarrow \uparrow$ less noise, convergence, parallel processing

... with Momentum

improvement to SGD : $\theta^{t+1} = \theta^t + \Delta \theta^t$ $\theta^{t+1} = \theta^t - \gamma^t \nabla L(t;\theta)|_{\theta=\theta^t} + \frac{\overline{\beta} \Delta \theta^{t-1}}{\overline{\beta}}$

mit $\Delta \theta^t = \beta \Delta \theta^{t-1} - \gamma^t \nabla L(t; \theta)|_{\theta = \theta^t}$ regular SGD

 $0 \le \beta \le 1$ $\beta = 0 \rightarrow SGD$

reduce noise in stochastic gradient: reduce oscillation: accelerate ill-conditioned convergence Nesterov Momentum + look-ahead gradient (ch. 5.5)

Input normalization

covariate shift: change of distribution of input data over time. or large offset between channels.

Input normalization over whole dataset (individually per channel)

zero-mean unit-variance normalization decouples layers \rightarrow easier training

Batch normalization: fix internal covariance shift over layers and

input normalization for hidden layers and each minibatch

(During inference exponentially

weighted averages of the training values are used)

Optimization Difficulties

- stochastic gradient
- ill conditioning

contour lines curvatures strongly different

- covariate shift
- saddle point / plateau

verry slow convergence, as $\nabla L(\theta) \approx 0$ - some parameters have a very small influence

- sensitive to step size

slow convergence vs. oscillation (with overshoots) and no convergence

- \Rightarrow learning rate decay:
 - 1. Static schedule independent of θ^t : (Step decay, Inverse time decay, Exponential decay)

2. Adaptive schedules:

RMSprop (root mean square propagation) Adam (adaptive moment estimation) AdaGrad (adaptive gradient algorithm)

- local minimum
- vanishing gradient (or exploding)

Backpropagation of "error vector" $J_L(\underline{a}_L) = \frac{\partial L}{\partial a_L}$

If
$$\forall L : ||J_{a_{l+1}}(a_l)|| \ge 1 \rightarrow_{l \to 1} ||J_L(a_l)|| = 0$$

More serious for deep layers.

ReLU less serious that e.g. Sigmoid other options:

- gradient clipping
- better optimization algorithm (adam)
- skip-connections in architecture

Regularization

techniques to prevent overfitting

Model capacity

Ability of themodel to learn amapping

too simple model → underfitting

too complex model → overfitting

weight norm penalty regularized cost function:

 $L_r(\theta) = L(\theta) + \sum_l \lambda_l P(W_l)$ with penalty-term P and regularization parameter λ

(large weights tends to overfitting)

early stopping

data augmentation use artificial but realistic training samples to increase training-material \rightarrow better model

modify data without changing class labels:

translation/rotation/scaling/flip, added noise, modified colors / textures, use of image patches, ...

ensemble learning train different models (training data subsets, architecture, cost functions, optimizer, ...)

combine models (regression : average; classification : voting)

dropout (Implicit ensemble learning method)

randomly removes neurons based on dropout rate d_l outgoing weights corrected by $(1-d_l)$

Model reduction

Reduce computational/memory complexity and power consumption Low-rank factorization : $W \in \mathbb{R}^{M \times N} \approx AB \in \mathbb{R}^{M \times K} \cdot \mathbb{R}^{K \times N}$ reduces MN to (M+N)K multiplications

Pruning: Force \approx zero columns/rows in W, remove the corresponding neurons

Quantization: reduce word length