

Practical applications of distillation profiles

in lattice meson spectroscopy

Jan Neuendorf

Introduction **Topic:**

- Lattice QCD
 - - → Distillation
 - \hookrightarrow Profiles

Who is involved:

- J. Finkenrath
- J. Heitger
- R. Höllwieser
- F. Knechtli
- T. Korzec
- M. Peardon
- · L. Struckmeier
- I Urrea-Niño

Outline:

- 1. Basics
- 2. Distillation Profiles
- 3. Performing the contractions
- 4. Charmonium Spectroscopy
- 5. The static-light system
- 6. The *D* meson
- 7. Outlook

Basics

$$\langle\langle O_i(t)O_j(0)\rangle\rangle = \sum_n Z_n \exp(-E_n t)$$

- **Isolate channel** with lattice group representation
- We want **good overlap** with physical states. (Typically the ground state)
- For that we need smooth and pysically extended sources.
 Quark fields are often smeared.

Standard Distillation

- Higher Laplacian eigenmodes are suppressed.
- Write quark fields in space of N_V lowest eigenmodes. [Michael Peardon et al., PhysRevD.80.054506, 2009]
- $q \rightarrow VV^{\dagger}q$ with $\Delta V_i = \lambda_i V_i$
- Inversions can be **precomputed** and stored.
- Increasingly used for spectroscopy.

Distillation Profiles

- We can exploit that we are free to choose $q \to VJV^{\dagger}q$ instead [Francesco Knechtli et al., PhysRevD.106.034501, 2022] [see thesis prize J. Urrea Niño].
- *J* is diagonal with entries $g(\lambda_i)$, the quark profile
- Gaussians are used in practice.
- Changes are independent of inversion.
- The **optimal profile** is determined by solving the GEVP.

Distillation Profiles

Performing the contractions

Example: One meson $\langle\langle PP\rangle\rangle$ **correlator**

With the **perambulator**:

$$T = V^{\dagger}$$
 S V

And the **elemental**:

Graphics by Tomasz Korzec

Figure: Sketch of the correlator. Time on *x*-axis.

Performing the contractions

$$\langle \langle tr \big[\blacksquare_0(0) \blacksquare_{q_0}(t_0,t_1) \blacksquare_1(t_1) \blacksquare_{q_1}(t_1,t_2) \dots \blacksquare_{N-1}(t_{N-1}) \blacksquare_{q_{N-1}}(t_{N-1},t_0) \big] \rangle \rangle_{\text{gauge}}$$

- and are $4N_V \times 4N_V$ matrices
- decomposes into $(4 \times 4) \bigotimes (N_V \times N_V)$
- Changing the profiles:
 - is volume independent
 - can be done independently for every t_n -combination

Figure: N-point diagram with distillation

Charmonium Spectroscopy

- We are interested in Ψ'' ($c\bar{c}$, 1^{--})
- $48 \times 24^3 \ (N_f = 2)$
- 8×8 -GEVP with:
 - γ_i and $\gamma_4\gamma_i$
 - different smearings
 - covariant derivatives

Figure: spectrum without distillation.

Charmonium Spectroscopy

With Distillation:

- 14×14 -GEVP with:
 - γ_i and $\gamma_4\gamma_i$
 - different profiles
 - No covariant derivatives
- Similar dependence on γ_4 inclusion

Figure: Spectrum with distillation.

The static-light system

- Static-light = static limit of *B*-mesons
- Investigated on $N_f = 3 + 1$
- Distillation profiles provide improvement.

Figure: Different number of eigenvectors for standard distillation (from [L. Struckmeier @ Lattice 24]).

The D meson

- Different particles show different optimal profiles

Figure: Different profiles and masses on $N_f = 3 + 1$ ensemble.

The D meson

- Different momenta show different optimal profiles
- Profiles still improve results
- Also works with twisted boundary conditions

Figure: Optimal profiles and energies at different momenta.

Outlook

- Application of profiles in two-particle operators
- Targets might be $\Psi'' \to D\bar{D}$ or $T_{CC} \to DD^*$

- Charmonium spectroscopy on N_f = 3 + 1 [J. Urrea-Niño @ Lattice23]
 [J. Urrea-Niño @ Lattice24]
- Combine: more complex diagrams + momenta + profiles

Thank you for listening!

