Elektrostatika 1/2

1. Dva beskonačno duga linijska naboja jednoliko raspodijeljene gustoće 2nC/m leže u ravnini x=0 paralelno s osi z, na lokacijama $y_1=+3m$ i $y_2=-3m$. Odredite jakost električnog polja u u V/m točki (5m,0,10m).

Rj. 10,57

2. Naboj plošne gustoće σ=5·10⁻⁴r⁻¹ [C/m²] raspoređen je na kružnom disku radijusa 5m.Odredite jakost električnog polja u [MV/m] na osi diska u točki udaljenoj 4m od ravnine u kojoj leži disk.

Rj. 5,51

3. Odredite električni tok u [C] kroz sferu radijusa 3m, ako ona obuhvaća naboj gustoće $\rho=5\sin^2(\alpha)r^{-2}$ [C/m³] 1m≤r≤2m koji se nalazi između dvije koncentrične sfere radijusa $R_1=1$ m i $R_2=2$ m.

Rj. 31,42

- 4. Ukupni naboj 30nC raspoređen je jednoliko po disku radijusa 1m. Odredite potencijal u [V] u točki na osi diska 2m udaljenoj od ravnine diska. Rj. 127,03
- 5. Na točkasti naboj iznosa $q_1=300$ nC, koji se nalazi u točki (1m,-1m,3m), djeluje sila $F=8a_x-8a_y+4a_z$ [mN], uzrokovana nabojem q_2 u točki (3m,-3m,2m).

Odredite q_2 u μ C.

Rj. -40,05

6. Naboj jednolike gustoće 0.3 nC/m² raspoređen je po ravnini zadanoj jednadžbom 2x-3y+z = 6[m]. Odredite x komponentu jakosti električnog polja u V/m u ishodištu.

Rj. -9,05

7. Za zadani vektor gustoće električnog toka $D=10x^3$ a_x Cm⁻² odredite električni tok u [C] koji prolazi površinom 2m² okomitom na x os na x = 2m. Ri. 160

8. U cilindričnom koordinatnom sustavu jakost električnog polja zadana je u obliku $E=5r^{-2}$ a_r V/m za $0< r \le 2m$ i $E=2.5r^{-1}$ a_r V/m za r>2m. Odredite razliku potencijala U_{AB} u [V] između točaka A(1m,0,0) i B(4m,0,0), pri čemu je točka zadana u obliku (r,α,z) .

Rj. 4,23

- Osam jednakih naboja iznosa 100nC svaki postavljeno je na kružnicu radijusa 5m tako da su svi međusobno jednako udaljeni. Odredite silu u μN na naboj iznosa 20nC, smješten u točki na osi kružnice, od ravnine kružnice udaljenoj 2m. Rj. 1,84
- 10. Linijski naboj gustoće 5nCm⁻¹ leži na x osi. Odredite y komponentu vektora gustoće električnog toka u nCm⁻² u točki (3m,3m,1m). Rj. 0,239
- 11. Četiri jednaka naboja iznosa Q=20nC svaki nalaze se u točkama (4m,0,0), (-4m,0,0), (0,4m,0) i (0,-4m,0). Odredite iznos sile u μN na naboj iznosa 100nC smješten u točki (0,0,3m).

Rj. 1,73

- 12. Naboj linijske gustoće 30 nC/m raspoređen je po z osi od z = 8 m do $+\infty$ i od z =-8 m do $-\infty$. Odredite jakost električnog polja u V/m u točki (3m,0,0). Rj.11,45
- 13. Naboj linijske gustoće 1nCm⁻¹ je jednoliko raspoređen je po rubovima kvadrata koji je zadan vrhovima (3m,-3m,0)(3m,3m,0)(-3m,3m,0)(-3m,-3m,0). Odredite potencijal u [V] u točki (0,0,5m). Rj. 35,53
- 14. Naboj plošne gustoće $\sigma=10^{-9}\cos^2\alpha$ C/m² raspoređen je po kružnom disku radijusa 4m. Odredite jakost električnog polja u V/m u točki na osi diska udaljenoj od diska 2m.

Rj.15,61

15. U sfernom koordinatnom sustavu vlada polje $E=-16r^{-2}a_r$ V/m. Odredite napon U_{AB} u [V] između točaka A(2m, π , π /2) i B(4m,0, π), pri čemu su točke zadane kao (r, θ , α).

Rj. -4

16. Tri naboja iznosa 10nC svaki nalaze se u točkama (0,0,0),(1m,0,0) i (1m,1m,1m). Odredite iznos sile u μ N na naboj q_2 = 20nC smješten u točki (0,0,1m).

17. Linijski naboj jednoliko je raspoređen po pravcu i leži na x osi Kartezijevog koordinatnog sustava. Odredite dio električnog toka u [%] koji prolazi dijelom ravnine y=6m za -1m≤z≤1m.
Rj. 5,26

- 18. Točkasti naboj iznosa 18nC smješten je u ishodište sfernog koordinatnog sustava. Odredite tok u [nC] koji prolazi površinom $4\pi m^2$ koncentrične sfere radijusa 3m. Rj. 2
- 19. Naboj plošne gustoće $\sigma=3(x^2+y^2+1)^{3/2}$ [nC/m²] raspoređen je po pravokutniku $2\le x\le 2$, $-2\le y\le 2$ [m] u ravnini z=0. Odredite jakost električnog polja u V/m u točki (0,0,1m). Rj. 431,41
- 20. Za zadanu funkciju linijske gustoće naboja $\lambda(x,y,z)=2x+3y-4z$ [C/m], odredite ukupni naboj na dužini od (2m,1m,5m) do (4m,3m,6m). Rj. -30C
- 21. Linijski naboj gustoće 0,4 μ C/m paralelan je s osi z i prolazi točkom (3m,-3m,0). Odredite jakost električnog polja u točki (-3m,0,5m). Rj. -960 a_x +480 a_y V/m
- 22. Ravnina y = 3m nabijena je nabojem površinske gustoće (1/(600 π)) [μ C/m²]. Odredite jakost električnog polja u prostoru.

$$E = 30 a_y \text{ V/m}$$
; y > 3m
E = -30 $a_y \text{ V/m}$; y < 3m.

- 23. Beskonačno dugi linijski naboj konstantne linijske gustoće λ leži u z osi. Odredite divergenciju jakosti električnog polja u točki (1,1,1).
 Rj. 0
- 24. Dva točkasta naboja Q_a =20 nC i Q_b =10nC razmaknuta su na udaljenost od 25cm u slobodnom prostoru. Odredite jakost električnog polja u točki koja je za 15 cm udaljena od Q_a , a za 20 cm udaljena od Q_b . Rj. 8,31 kV/m
- 25. Unutar sfere radijusa 1m nalazi se naboj gustoće $\rho(r)$ =1- r^3 . Odredite jakost električnog polja za r=4m.

Rj.
$$\frac{1}{96\varepsilon_0}$$

26. Vektor gustoće električnog toka zadan je jednadžbom u sfernom koordinatnom

sustavu:
$$D_r = \begin{cases} \frac{5r^2}{4} & r \leq 2 \\ \frac{20}{r^2} & r > 2 \end{cases}$$
. Odredite gustoću naboja u prostoru. Rj. $\rho = \begin{cases} 5r & r \leq 2 \\ 0 & r > 2 \end{cases}$

$$Rj. \rho = \begin{cases} 5r & r \le 2\\ 0 & r > 2 \end{cases}$$