Глава 1: Геометрия пространств со скалярным произведением.

Определение 1 (Метрическое простривство). *Метрика* $\rho(x,y):M^2\to\mathbb{R}$

- 1) $\forall x, y : \rho(x, y) \ge 0 (\rho(x, y) = 0 \Leftrightarrow x = y)$
- 2) $\forall x, y \in M : \rho(x, y) = \rho(y, x)$
- 3) $\forall x, y, z : \rho(x, z) \le \rho(x, y) + \rho(y, z)$

$$B_{\varepsilon}(x) = \{ y \in M | \rho(x, y) < \varepsilon \}$$

Определение 2. *Множество открытое, если любая точка в нем содержится в нем вместе некоторой окрестностью.*

Пример дискреткой метрики:

$$\rho(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

1. Линейно (векторное) пространство

Определение 3. Непустое множество элементов L произвольной природы, называется линейным (векторным) над полем чисел $\mathbb{R}(\mathbb{C})$ если

- 1) $\forall x, y$ введена операция сложения:
 - 1.1) x + y = y + x (коммутативность)
 - 1.2) x + (y + z) = (x + y) + z (ассоциативность)
 - 1.3) В L существует элемент называемым нулем 0: x+0=x , $\forall x \in L$
 - $1.4) \ \forall x \in L \ cyществует противоположный элемент принадлежащий$
- L: x + y = 0, обозначается как -x
- 2) $\forall x \in L \ u \ \forall \ \text{числа} \ \alpha \in \mathbb{R}(\mathbb{C})$ определен вектор из L произведения элементов на число $\alpha, \alpha x \in L$:

1.1)
$$\alpha(\beta x) = (\alpha \beta) x, \forall \alpha, \beta$$

$$1.2)\ 1 \cdot x = x \ (существования единицы)$$

1.3)
$$\alpha(x+y) = \alpha x + \alpha y$$

1.4)
$$(\alpha + \beta)x = \alpha x + \beta x$$

Примеры:

1)

$$\mathbb{C}^n \quad + \frac{\alpha(x_1, x_2, \dots, x_n)}{\beta(y_1, y_2, \dots, y_n)} = (\alpha x_1 + \beta y_1, \dots \alpha x_n + \beta y_n)$$

- 2) $C[a,b] = \{f(a,b) \to \mathbb{C}, \text{ непрерывная функции } f \text{ непрерывна } \}$
- 3) $L_p(x)=\{f$ измерима по Лебегу, заданная на $X,f:X\to\mathbb{C}$ таких, что

$$\int_{X} |f(x)| dx < \infty$$

4)
$$l_2: x = \{x_1, \dots, x_n\}$$
 $\sum_{1}^{\infty} |x_n|^2 < \infty$

Определение 4. x_1, \ldots, x_n называется линейно зависимыми, если $\exists \alpha_1, \ldots, \alpha_n$ не все равные нулю, такие что $\alpha_1 x_1 + \cdots + \alpha_n x_n = 0$

В противном случае: из того, что $\alpha_1 x_1 + \dots + \alpha_n x_n = 0$ следует, что все $\alpha_i = 0$ x_1, \dots, x_n называется линейно независимыми наборами векторов.

Определение 5. Бесконечный набор элементов L называется линейно независимым, если любой его конечный поднабор линейно независимым.

Определение 6. Если в L можно найти n линейно независимых векторов, а любой набор из n+1 векторов является линейно зависимыми, то $\dim L=n$. Если в L можно указать набор из произвольного числа линейно независимых элементов, то $\dim L=\infty$.

Определение 7. Непустое подмножество $S \subset L$ называется подпространством, если оно само является пространством введенных в L линейных операций.

Определение 8. Линейной оболочкой < M > называется совокупность всех линейных комбинаций $\alpha x + \beta y$ где $x, y \in M \subset \alpha, \beta \in \mathbb{C}(\mathbb{R})$

 $<\!\!M\!\!>$ - подпространство в L (натянутое или порожденное множеством элементов M)

Определение 9. Норма в линейном пространстве $L: \| \| : L \to \mathbb{R}^+ = [0, \infty)$

 $\forall x, y \in L, \forall \alpha \in \mathbb{C}(\mathbb{R})$

- 1) $||x|| \ge 0, ||x|| = 0 \Leftrightarrow x = 0$ (положительная определенность нормы)
- 2) $||\alpha x|| = |\alpha|||x||$ (положительная однородность нормы)
- 3) $||x + y|| \le ||x| + ||y||$

В конечномерных пространствах все нормы эквиваленты $c_1||x||_1 \le ||x||_2 \le c_2||x||_1$. В конечномерных пространствах это не так!

Пример норм:

$$\|f\| = \max_{t \in [a,b]} |f(t)|$$
 - норма в $C[a,b]$ равномерная норма.

2)
$$||f||_{L_1} = \int_X |f| dx$$
 B L_1

$$3) \quad ||f||_{L_p} = \sqrt[p]{\int_X |f|^p dx} BL_p$$

4)
$$||x||_{l_2} = \sqrt{\sum_{i=1}^{\infty} |x_i|^2}$$

Определение 10. Последовательность $(x_n)_{n\in\mathbb{N}}$ точек линейно нормированное пространств L сходятся κ x, если $||x_n-x||\xrightarrow{n\to\infty}0, \forall \varepsilon>0, \exists n_0,n>n_0: ||x_n-x||<\varepsilon$

Определение 11. Предельной точкой $M \subset L$ называется точка x, если существует сходящаяся κ x последовательность элементов из $M \exists x_n \in M : x_n \to x$

Определение 12. Замыканием \overline{M} - объединение M и его предельных точек (по конкретной норме).

Определение 13. Множество замкнутое, если содержит все предельные точки.

Определение 14. Множество M в L - линейно нормированном пространстве называется плотным в L, если $\overline{M}=L$

Определение 15. Сепарабельное множество, если в нем \exists счетное плотное подмножество