

Mind the Gap: Attainable Data Movement and Operational Intensity Bounds for Tensor Algorithms

Qijing Huang, Po-An Tsai, Joel Emer, Angshuman Parashar NVIDIA, MIT CSAIL

Approach 1: Design space exploration

Approach 1: Design space exploration

Architecture Algorithm Design Space **GPT**x Off-chip DRAM

Mapping Space

Evaluation Time

Tool	Eval Time
Timeloop	0.01s
FPGA	2 mins
VCS	10 mins
Power	6 hrs

- Time-consuming and costly
- No optimality guarantee
- Lack of design insight

Approach 2: Roofline model analysis

"Speeds and feeds"

Approach 2: Roofline model analysis

"Speeds and feeds"

 No buffer storage tradeoffs are present in the analysis

Roofline Model

Motivation: Lack of design tools

What is missing?

• The workload **does not** always operate with *algorithmic minimal accesses*, or equivalently, *algorithmic maximal OI*.

• Actual backing-store accesses and OI depend on the **mapping** and **buffer sizes**.

A desirable data movement bound

Matrix Multiplication (GEMM) Einsum:

 $O_{m,n} = I_{m,k} W_{k,n}$

M – output row dim

K - reduction dim

N – output column dim

Mind the gap: key design questions

[Gap 0] Given a buffer capacity, what is the minimal attainable data access count?

Mind the gap: key design questions

[Gap 0] Given a buffer capacity, what is the minimal attainable data access count?

[Gap 1] How much buffer capacity is required to achieve full data reuse?

Mind the gap: key design questions

[Gap 0] Given a buffer capacity, what is the minimal attainable data access count? [Gap 1] How much buffer capacity is required to achieve full data reuse?

[rate of change of Gap 0] How does a workload benefit from incremental increase in buffer capacity?

The Snowcat Architecture

Enables exhaustive search

Real Design

Snowcat
Architecture

The Orojenesis Methodology

A single exhaustive mapping search per workload

Ski-slope Diagram

min(buffer util, accesses)

Ol Bound Derivation

Data Movement Bound

Ol Bound

Multiply by

total operations

GEMM Einsum:

$$O_{m,n} = I_{m,k} W_{k,n}$$

M – output row dim K – reduction dim N – output column dim

Data Movement Bound

Ol Bound

Data Movement Bound

Ol Bound

Data Movement Bound

The maximal effectual buffer size of a GEMM is approximately its smallest operand size

#1: Orojenesis produces bounds that reveal powerful design insights

Inputs

movement for a chain of operations

Fusion imposes extra intra-layer mapping constraints

Fusion Analysis

A chain of 6 operations in GPT-6.7b block

Fusion Analysis

A chain of 6 operations in GPT-6.7b block

Fusion is effective when buffer size is large

#2: Orojenesis comprehends complex workload optimizations (e.g. fusion)

Orojenesis Performance Model

Orojenesis Performance Model

Orojenesis for DSE

GPT3-6.7b

Orojenesis for DSE

GPT3-6.7b

Orojenesis for DSE

GPT3-6.7b

#3: Orojenesis complements the roofline model to provide buffer size suggestions

Orojenesis

- A radically new approach for early-stage architectural DSE
- Offers visualization and insights for design tradeoffs
- Can be a powerful addon to the roofline performance model

Webpage: https://timeloop.csail.mit.edu/orojenesis