COURS NO4

Chapitres 1, 2, 3 Él

- Le taux d'intérêt, l'intérêt simple et l'intérêt composé
- Différents facteurs : F/P, P/F, P/A, A/P, F/A, A/F
- Gradients arithmétiques et géométriques
- L'utilisation des tables d'intérêts
- Représentation des flux monétaires : diagrammes

Contenu

- Notion d'intérêt
 - Signification, notation et convention
 - Simple et composé
- Équivalence
- Déplacement de \$ dans le temps par :
 - Montant unique
 - Annuité
 - Gradient linéaire
 - Gradient géométrique
 - Flux monétaire composé
- TRAM
- Séries décalées

L'intérêt et la valeur de l'argent

DÉFINITION:

Somme versée pour utiliser les services d'un capital monétaire pendant un certain temps (loyer de l'argent)

Deux catégories principales d'intérêts

Notation dans les transactions impliquant l'intérêt

- P = montant présent
- F = montant dans le futur
- A = série de montants égaux (annuités) (fin de période)
- G = Gradient arithmétique
- **g** = gradient géométrique
- **n** = nombre de périodes d'intérêt
- i = taux d'intérêt ou de rendement par période
- / = montant en \$ d'intérêt (total)

Intérêt simple

- Intérêts sont payés uniquement sur le capital initial
- Ces intérêts sont retirés à chaque échéance. Seul le capital est replacé lors de la période suivant une échéance.
- Notamment utilisés dans les financements à court terme.

FORMULES:

Intérêts cumulés après n années: | = Pin

Capital + intérêts: F = P (1 + in)

Exemple: P = 1 000 \$; i = 8%/année; n = 4 ans.

I = 1 000 \$ x 8 % x 4 = 320 \$

F = 1000\$ x (1+8%x4)=1 320\$ (capital + intérêts)

Intérêt composé

Les intérêts composés sont la huitième merveille du monde:

Celui qui les comprend les gagne... et celui qui ne les comprend pas les paie'.

- Albert Einstein

- Les intérêts sont replacés avec le capital et rapportent à leur tour des intérêts.
- Les intérêts versés à la date d'échéance du prêt
- Ce mode de calcul est souvent utilisé dans les cas de financement à long et moyen terme.
- **FORMULE**

$$I = P(1+i)^n - P$$

- Intérêt + capital: $F = P \left(1 + i \;
ight)^n$

Exemple: P = 1 000 \$; i = 8%/année; n = 4 ans.

$$F = 1000$$
\$ x $(1+8\%)^4 = 1360.50$ \$

INTÉRÊT SIMPLE (I_s) v.s. INTÉRÊT COMPOSÉ (I_c)

Intérêt simple: $I_s = Pin$

Intérêt composé: $I_c = P(1+i)^n - P$

• Quand n = 1, $I_c = I_s$

• Quand i et n augmentent, l'écart entre Ic et Is augmente

EXEMPLE : IMPACT DE L'INTÉRÊT

Exemple: Valeur de l'île de Manhattan

Données

En 1626

$$P = 24$$
\$

$$i = 8\%$$

Résolution

1. Intérêt simple 8%:

Valeur foncière de l'île en 2016?

2. Intérêt composé 8%:

$$F=24$$
* $(1+8\%)^{390}=26 \times 10^{13}$ \$!!

En 1626, Peter Minuit, de la Dutch West India Company, a acheté aux Autochtones l'île de Manhattan pour 24\$. Si i=8%, valeur en 2016?

Règle de 72

Objectif

Permet de connaître approximativement le nombre d'années (n) pour doubler un capital à un certain taux d'intérêt (i).

$$n = \frac{72}{i}$$

Exemple:

$$i = 8 \%$$

$$n = \frac{72}{8} = 9 \text{ ans}$$

Ou:
$$n = \frac{\ln 2}{\ln(1+i\%)} = \frac{\ln 2}{\ln(1.08)} = 9 \ ans$$

Formules d'équivalence

- Montant unique
- Annuité
- Gradient
- Flux monétaire composé (ou quelconque)

Diagramme des flux monétaires

Point de vue de l'emprunteur et du prêteur.

Emprunteur

Encaissements

Décaissements

Encaissements

Décaissements

La notation universelle des facteurs d'intérêt

Forme générale : (X/Y;i;n)

- X représente la valeur inconnue.
- Y représente la valeur connue.
- *i* et *n* représentent **des données** qui peuvent être connues ou inconnues, selon le problème.

Formules de paiements uniques (facteurs F/P et P/F)

Diagramme des flux monétaires de base

1)
$$F_n = P_0(1+i)^n \rightarrow \text{Facteur}(F/P;i;n) \rightarrow \text{Excel} := \text{VC}(i;n;;-P)$$

2) $P_0 = F_n(1+i)^{-n} \rightarrow \text{Facteur}(P/F;i;n) \rightarrow \text{Excel} := \text{VA}(i;n;;-F)$

2)
$$P_0 = F_n(1+i)^{-n} \rightarrow \text{Facteur}(P/F;i;n) \rightarrow \text{Excel} : = VA(i;n;;-F)$$

Formules de calcul des intérêts

1) Trouver une valeur future (F) quand on connaît sa valeur présente (P): (montant composé) (F/ P; i; n)

```
à la fin de la 1<sup>ère</sup> période: F = P + Pi = P(1+i)
```

à la fin de la
$$2^{\text{ème}}$$
 période: F = $(P+Pi) + (P+Pi)i$
= $P(1+i)(1+i)$
= $P(1+i)^2$

à la fin de $n^{ième}$ période: $F=P(1+i)^n$ (1)

qu'on dénote: F=P(F/P; i; n)

Table F/P

(F/P;i;n)= Facteur de valeur accumulée d'un paiement unique

Excel: =VC(i;n;;-P)

EXEMPLE (F/P;i;n)

1000 \$ placés à 5%/an, à taux composé pendant 5 ans. Valeur à la fin des 5 ans (capital + intérêts) ?

Ou:

Excel: = VC(5%;5;;-1000)

Table

2) Trouver une valeur présente (P) quand on connaît sa valeur future (F) (P/F; i; n)

$$P = F (1+i)^{-n}$$
 (2)

$$= F(P/F;i;n)$$

(P/F;i;n) = Facteur de la valeur présente d'un montant futur unique.

Excel :
$$=VA(i;n;;-F)$$

EXEMPLE: (P/F;i;n)

Montant à déposer aujourd'hui pour accumuler un montant donné

$$P_0 = 1000(1+5\%)^{-5} =$$

Montant à placer aujourd'hui à 5% pour accumuler une somme de 1000\$ à la fin de la 5e année ?

Les annuités: série constantes sans interruption

Requis: trouver P ou F lorsque A est connu (facteurs F/A et P/A)

Les flux monétaires sont constants, consécutifs et se produisent à la fin de chaque période d'intérêt.

$$P_0 = A \frac{(1+i)^n - 1}{i(1+i)^n}$$
$$= A(P/A; i; n)$$

Excel : =
$$VA(i;n;-A)$$

$$F_n = A \frac{(1+i)^n - 1}{i}$$
$$= A(F/A;i;n)$$

3) Trouver une valeur finale (F) quand le montant de l'annuité (A) est connu. (Montant composé série uniforme) (F/A; i; n)

On peut établir la relation entre F et A comme suit:

$$F = A(1+i)^{n-1} + A(1+i)^{n-2} + A(1+i)^{n-3} + ... + A(1+i)^{2} + A(1+i)^{1} + A(1+i)^{0}$$
 (3)

En multipliant les deux côtés de (3) par (1 + i) on aura :

$$F(1+i) = A(1+i)^{n} + A(1+i)^{n-1} + ... + A(1+i)^{2} + A(1+i)^{1}$$
(4)

(4) - (3):
$$F(1+i-1) = A(1+i)^n - A$$

 $F i = A[(1+i)^n - 1]$

Facteur
$$(F/A; i; n)$$
, Excel = $VC(i; n; -A)$

Donc
$$F = A \left[\frac{(1+i)^n - 1}{i} \right]$$
 (5)
= $A(F/A; i; n)$

EXEMPLE (F/A;i;n)

Dépôt dans un compte d'épargne ayant un taux de rendement de 7%

Soit: A= 3 000\$, n= 10 années et i= 7% par année

4) Trouver la valeur présente P quand le montant de l'annuité (A) est connu (Facteur d'actualisation série uniforme) (P/A;i;n) (Table)

En combinant les équations 1 et 5

$$F = P(1+i)^n$$
 (1) $F = A \left| \frac{(1+i)^n - 1}{i} \right|$ (5)

On obtient:

$$P = A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right]$$

$$= A(P/A;i;n)$$
Où:
[P/A

Facteur (P/A;i;n)

Excel : =VA(*i*;*n*;-*A*)

[P/A;i;n] = Facteur de valeur présente d'une annuité de fin de Période.

EXEMPLE (P/A;i;n)

Dépôt aujourd'hui pour assurer des retraits constants sur 5 ans?

A=1000\$

$$P_0 = 1000 [(1+5\%)^5 - 1]/[5\%(1+5\%)^1 1000 \times 4.3295 = 4 329 $$$
 $(P/A;5\%;5)$

Montant à placer aujourd'hui à 5% pour nous assurer une entrée de 1000\$ par année pendant chacune des 5 années ?

5) Trouver l'annuité (A) quand la valeur présente (P) est connue (Recouvrement du capital) (A/P;i;n)

En reformulant l'équation (6), on trouve:

$$A = P \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right]$$

$$= P(A/P;i;n)$$

Facteur de recouvrement du capital

Facteur (A/P;i;n)

Excel: =VPM(i;n;-P)

EXEMPLE: (A/P;i;n)

•Soit: P= 250 000\$, n= 6 années et i= 8% par année

•Trouvez: A

Diagramme du flux monétaire

Excel = VPM(8%;6;-250000)

6) Trouver l'annuité (A) quand la valeur future (F) est connue (A/F;i;n)

En reformulant l'équation (5), on obtient:

$$A = F\left[\frac{i}{(1+i)^{n}-1}\right]$$

$$= F(A/F; i; n)$$
(8)

$$A = F\left[\frac{i}{(1+i)^n - 1}\right]$$

Facteur (AIF; i; n)

Excel : =**VPM**(*i*;*n*;;-*F*)

Où: [A/F; i; n]= Facteur donnant l'annuité d'une valeur finale

A/F: Exemple

Série uniforme avec paiements au début de période

$$P = A [P/A; i; (n-1)] + A$$

$$F = A[F/A, i, n] \times [F/P, i, 1]$$

Les facteurs des séries arithmétiques de gradient G (facteurs P/G et A/G)

7) Trouver P lorsque la série de flux monétaires de gradient G est connue $A_1 + (n-1)G$ $A_1 + 2G$ $A_1 + G$ $A_2 + G$ $A_3 + G$ $A_4 + G$ $A_1 + G$ $A_1 + G$ $A_1 + G$ $A_2 + G$ $A_3 + G$ $A_4 + G$ $A_1 + G$ $A_1 + G$ $A_1 + G$ $A_2 + G$ $A_3 + G$ $A_4 + G$ $A_4 + G$ $A_5 + G$ $A_5 + G$ $A_7 + G$

$$P = G (1+i)^{-2} + 2G (1+i)^{-3} + ... + (n-1)G (1+i)^{-n} + A_{1}(P/A;i;n)$$

$$P = A_{1} (P/A;i;n) + G(P/G;i;n) = \frac{G}{i} \left[\frac{(1+i)^{n}-1}{i(1+i)^{n}} - \frac{n}{(1+i)^{n}} \right]$$

$$= G[P/G;i;n]$$

8) Trouver A quand G est connu (A/G;i;n)

La relation entre A et P est donnée par l'éq 9:

$$A = P \left[\frac{i (1+i)^n}{(1+i)^n - 1} \right]$$
 (9)

et celle entre P et G, l'équation 10:

$$P = \frac{G}{i} \left[\frac{(1+i)^n - 1}{i(1+i)^n} - \frac{n}{(1+i)^n} \right]$$
 (10)

Combinant les équations 9 et 10, on obtient:

$$A = G \left[\frac{1}{i} - \frac{n}{(1+i)^n - 1} \right]$$

$$= G (A/G; i; n)$$
(11)
Table

(A/G; i; n) est donné par la table

$$(1/i) [1-n(A/F)]$$

Gradient arithmétique (Exemple)

Les coûts d'entretien d'un équipement s'établissent comme suit (taux = 12%):

Gradient arithmétique (Exemple)

Gradient géométrique: facteur d'actualisation

Trouver un facteur (P/A;g;i;n) qui permettra de convertir les flux monétaires capitalisés en une valeur actualisée unique en temps t=0

$$-Si \quad i \neq g, \quad alors$$

$$P = A_1 \left[\frac{1 - \left(\frac{1+g}{1+i}\right)^n}{i - g} \right]$$

$$= A_1 (P / A_1; g; i; n)$$

$$-Si \quad i = g \quad , \quad alors$$

$$P = \frac{nA_1}{1+i}$$

GRADIENT GÉOMÉTRIQUE: FACTEUR DE CAPITALISATION

$$-Si \ i \neq g, \ alors \ F = A_1 \left[\frac{(1+i)^n - (1+g)^n}{i-g} \right]$$

$$= A_1 (F/A_1; g; i; n)$$

$$-Si \ g = i, \ alors \ F = nA_1 (1+i)^{(n-1)}$$

$$A_1 (1+g)^{n-2}$$

$$A_1 (1+g)^{n-3}$$

$$A_1 (1+g)^{n-3}$$

$$A_1 (1+g)^{n-4}$$

$$A_1 (1+g)^{n-4}$$

$$A_2 (1+g)^{n-4}$$

$$A_3 (1+g)^{n-4}$$

$$A_4 (1+g)^{n-4}$$

$$A_4 (1+g)^{n-4}$$

$$A_5 (1+g)^{n-4}$$

$$A_7 (1+g)^{n-4}$$

$$A_7 (1+g)^{n-4}$$

$$A_7 (1+g)^{n-4}$$

Périodes

Exemple d'application

$$P = 1625$$
\$

$$F = 3008$$
\$

$$A = 283$$
\$

Le taux de rendement acceptable minimum (TRAM)

- Le TRAM est établi par les gestionnaires financiers d'une entreprise.
- Le TRAM s'exprime en <u>pourcentage</u>.
- On estime le TRAM à partir du coût moyen pondéré du capital de l'entreprise provenant de toutes les sources confondues.
- La plupart des projets, voire tous, devraient procurer un taux de rendement égal ou supérieur au TRAM établi.
- TR de l'entreprise > TRAM > coût du capital, où TR est le taux de rendement
- Le TRAM devrait permettre:
 - d'absorber le coût du capital;
 - d'absorber ou d'amortir les aspects inflationnistes perçus;
 - de tenir compte du **risque**;
 - de tenir compte d'une marge bénéficiaire.

Les flux monétaires : estimations et diagrammes

- Définition des termes
 - Encaissements (recettes): rentrées de fonds de l'entreprise
 - Décaissements (débours) : sorties de fonds de l'entreprise
- Flux monétaires nets (FMN)
 - Encaissements décaissements
- Convention pour analyse : fin de période
 - On considère que les flux monétaires se produisent à la fin d'une période (d'intérêt) donnée.

ÉLÉMENTS DES FLUX MONÉTAIRES

Exemples de valeurs P et F d'une série constante décalée

Valeur F de cette série située à l'année t = 6:

$$F_6 = -500(F/A; 10\%; 4) = -500x4,64100 = -2320,5$$
\$

Valeur P_0 de cette série située à l'année 0 :

$$P_0 = -500(P/A; 10\%; 4)(P/F; 10\%; 2) = -500x3, 16987x0, 82645 = 1309, 87$$

Série arithmétique de gradient G décalée: exemple

> VA l'annuité 500

$$P_0 = 500(P/A;10\%;8)(P/F;10\%;2)$$

= 500(5,3349) (0,8264) = **2 204,38 \$**

> VA du gradient 100

$$P_0 = 100 \$ (P/G;10\%;8)) (P/F;10\%;2)$$

= 100 \$(16,0287) (0,8264) = **1 324,61** \$

> VA totale:

$$P = 2\ 204,38\ \$ + 1\ 324,61\ \$ = 3528,99\ \$$$

Séries arithmétiques de gradient G décalées et décroissantes: exemple

SOLUTION

$$P_0 = [1\ 000\ \$(P/A;10\%;5) - 100\ \$(P/G;10\%;5)](P/F;10\%;2)$$

 $P_0 = [1\ 000\ \$(3,7908) - 100\ \$(6,8618)](0,8264) = 2565,65\ \$$

TAUX D'INTÉRÊT VARIABLES

Cas de montants différents: calcul de la valeur actualisée P

$$P = F_1(P/F; i_1; 1) + F_2(P/F; i_2; 1)(P/F; i_1; 1) + ...$$

$$+ F_n(P/F; i_n; 1)(P/F; i_{(n-1)}; 1) ... (P/F; i_2; 1)(P/F; i_1; 1)$$

Cas de montant unique: calcul de la valeur actualisée P

$$P = F_n(P/F; i_n; 1)(P/F; i_{(n-1)}; 1) \dots (P/F; i_2; 1)(P/F; i_1; 1)$$

Calcul de l'annuité équivalente (A): trouver d'abord la valeur P à l'aide de l'une des deux dernières équations précédentes, puis remplacer chaque symbole F_t par le symbole A.

$$A = P / [(P/F; i_1; 1) + (P/F; i_2; 1)(P/F; i_1; 1) + ... + (P/F; i_n; 1)(P/F; i_{(n-1)}; 1) ... (P/F; i_2; 1)(P/F; i_1; 1)]$$

TAUX D'INTÉRÊT VARIABLES: exemple 4.12

Déterminez la valeur actualisée **P** et la valeur équivalente **A** des flux monétaires nets (FMN) suivants en considérant les taux indiqués.

Année	1	2	3	4
FMN	70 000	70 000	35 000	25 000
Taux annuel	7 %	7 %	9 %	10 %

Solution

```
P = [70\ 000(P/A;7\ \%;2) + 35\ 000(P/F;9\ \%;1)(P/F;7\ \%;2) + 25\ 000(P/F;10\ \%;1)(P/F;9\ \%;1)(P/F;7\ \%;2)]
= [70\ 000(1,8080) + 35\ 000(0,8013) + 25\ 000(0,7284)]
= 172\ 816\ \$
A: 172\ 816\ \$ = A(1,8080 + 0,8013 + 0,7284)

A = 172\ 816\ \$ / 3,3377 = 51\ 777\$
```

Le facteur P/A avec n tendant vers l'infini

Facteur P/A:

$$P = A(P / A; i; n) = A\left[\frac{(1+i)^n - 1}{i(1+i)^n}\right]$$

Diviser par
$$(1+i)^n$$
: $P = A \begin{vmatrix} 1 - \frac{1}{(1+i)^n} \\ i \end{vmatrix}$

Quand
$$n$$
 tend vers $+\infty$, on aura : Coût immobilisé (CI)=P= $\frac{A}{i}$

Montant annuel pour toujours :

$$A = Pi = (CI)i$$

Exemple sur le coût immobilisé 5.4

Paramètres du problème

Le coût du système à l'installation est de 150 000 \$ et les coûts supplémentaires sont de 50 000 \$ après 10 ans.

Les frais de maintenance annuels du logiciel sont de 5 000 \$ les 4 premières années, et de 8 000 \$ par la suite.

On prévoit également un coût récurrent de 15 000 \$ pour des mises à niveau importantes effectuées tous les 13 ans. Les calculs sont basés sur i = 5% par année pour les fonds de la municipalité.

Déterminez :

- 1. la valeur actualisée (P) des coûts à 5 %;
- 2. le montant annuel (\$/année) (A) que devra débourser la municipalité.

44

Exemple 5.4 - solution


```
A_1 = 15\ 000(A/F;5\%;13) = 847,00 $
```

$$A_2 = 5000$$
\$

$$CI_1 = 150\ 000 + 50\ 000(P/F;5\%;10) =$$
 180 695 \$ $CI_2 = (3\ 000/0,05)(P/F;5\%;4) =$ **49 362 \$** $CI_3 = (A_1 + A_2)/i = (\ 847 + 5\ 000)/0,05 =$ **116 940 \$**

$$CI_T = P = 180 695 \$ + 49 362 \$ + 116 940 \$ = 346 997 \$$$

$$A = Pi = CI_{T}(i) = 346 997 \times 5\% = 17 350 \text{ s/an pour toujours}$$

TRAVAIL À FAIRE

• Problèmes: Économie pour ingénieurs:

```
1.10, 1.11, 1.20, 1.32, 1.42
2.1, 2.2, 2.6, 2.13, 2.18, 2.21, 2.29, 2.34, 2.44,
2.45, 2.61
```

- 3.2, 3.4, 3.16, 3.21, 3.23, 3.33, 3.45, 3.50, 3.55
- Lire chapitres 4, 5, 10 et 14 : Économie pour ingénieurs