хранения данных (HSM) А.Н. Мойбенко МЛИТ, ОИЯИ

Распределенные иерархические системы

Требования пользователей

- Побольше места (лучше неогранниченно)
- Побыстрее скорость передачи
- Минимализация времени доступа к данным
- Легкая доступность к данным
- Надежность хранения
- Защита
- Разрешение / ограничение доступа

Немного истории

- ЭВМ коллективного пользования.(< ~1980)
- Пользователи используют одну ЭВМ
- Данные хранятся на диске (дисках) ЭВМ
- Данные архивируются на магнитных лентах (16 мм)
- ЭВМ индивидуального пользования (РС) (late 1980)
- Данные хранятся на диске (дисках) ЭВМ
- Данные архивируются на магнитных кассетах (8 мм)
- РС соединяются в кластеры для (> 1990):
- Увеличения скорости сбора и обработки данных
- Увеличения объема доступных данных (пользователю доступны данные с многих PC)
- Архивирование на магнитных кассетах через магнитофоны, расположенные в автоматических ленточных библиотеках

Продолжительность и стоимость хранения информации

- Hard Disk Drive (HDD) 4 7 years
 - active (require power)
 - Max capacity 20 TB
 - Cost \$16/TB
- Solid State Drives (SSD) 5 10 years
 - Active, require power
 - Max capacity 4 TB
 - Cost \$60 / TB
- Flash 10 years with average use
 - passive
 - Max capacity 1 TB
 - Cost \$90 / TB
- Magnetic Tape 15 30 years
 - Max capacity 20 TB
 - Passive, but require tape drive, tape library
 - 20000 load / unload cycles
 - \$5 / TB (\$2.5 / TB compressed)

Consider:

- Acquisition cost
- Operational cost
- Power and cooling
- Warranty

Tape system cost ~ 1/3 disk system cost per PB not considering lifespan

Структура иерархической системы хранения данных

Потребность в иерархических распределенных системах хранения данных

- Возрастание объемов даных (> 10 PB) и числа compute nodes.
 - Распределение данных
 - Распределение ресурсов хранения
 - добавление элементов хранения
 - Определение неисправных элементов и их замена
- Увеличение скорости передачи данных
- Автоматизация архивирования, освобождения /восстановления / и репликации "быстрого" хранилища данных в "медленном" хранилище
- Обеспечение надежного долговременного хранения

Способы доступа к данным в иерархических системах хранения

- Кэширование
 - Если данных нет в быстром хранилище они копируются из более медленного.
 - Если быстрое хранилище переполняется менее ценные данные удаляются
- Tiering (передача между уровнями) данные копируются с более медленного уровня на более быстрый. После чтения данные не остаются на более быстром уровне (backup подход).

Иерархические системы в НЕР

- HPSS High perfomance Strorage System (DOE, NSF, IN2P3) (~1992)
- CASTOR CERN Avanced STORage manager (CERN) (1998)
- Dcache + Enstore (FNAL, PIC, JINR, KIAE) (1998)
- EOS + CTA CERN Tape Archive (CERN) (2021)
- Dcache+HPSS BNL (~2004 Atlas)

Как требования пользователей удовлетворяются в HSM

- Побольше места (лучше неогранниченно)
 - Высокосроростная, расширяемая централизованная система управления метаданными, доступная на каждом уровне системы хранения и транспортировки
 - Расширяемость за счет добавления элементов хранения (horizontal scalability)
- Побыстрее скорость передачи
 - Распараллеливание процессов передачи данных
 - Репликация данных на первом (user facing) уровне

Как требования пользователей удовлетворяются в HSM

- Минимализация времени доступа к данным
 - Кэширование данных на "быстром" (1) уровне
 - Massive data prestaging from "slow" (2nd) (Tape) to "fast" (1st) layer
- Легкая доступность к данным
 - Каталог данных
 - Средства доставки
- Надежность хранения
 - Магнитные ленты (можно положить на полку)
 - Автоматизация копирования по запросу на магнитных лентах

Как требования пользователей удовлетворяются в HSM

- Защита данных
 - Аутентикация пользователя
 - Данные на магнитной ленте трудно переписать
 - Автоматизация переключения клавиши "запрет записи" на магнитной кассете
- Разрешение / ограничение доступа
 - Авторизация доступа

Пример: JINR CMS T1 dCahe + Enstore

- 2 Layer HSM
- Dcache "fast" data storage layer (distributed disk system)
- Current capacity 2.4 PB
- Enstore "slow" layer (distributed tape system)
- Current capacity ~ 5000 20 GB tapes
- Occupied 11 PB
- In production since 2016

JINR CMS T1 dcache + enstore data transfers

