Matemática Discreta-Hoja 4

1.	Razona	cuáles	de las	afirma	ciones	sign	ientes	son	verdad	eras:
т.	razona	Cuarco	ac ras	amma	CIOIICS	5150	TOTTUCE	DOIL	verauc	crao.

a)
$$1 \in \{1\}$$

b)
$$\{1\} \subseteq \{1\}$$

c)
$$\{1\} \in \{1\}$$

d)
$$\emptyset \in \emptyset$$

e)
$$\{1\} \subseteq \{\{1\}\}$$

f)
$$\{1\} \in \{\{1\}\}$$

g)
$$\emptyset \subseteq \emptyset$$

k) $\{\emptyset\} = \emptyset$

h)
$$\emptyset \subseteq \{\emptyset\}$$

i)
$$\emptyset \subseteq \{1\}$$

$$(k)$$
 $\{\emptyset\} = \emptyset$

1)
$$\emptyset \in \{\emptyset\}$$

2. De las cuatro afirmaciones que se presentan, para A, B, C conjuntos cualesquiera no vacíos, demuestra que únicamente una es cierta y pon contraejemplos para las otras tres, que son falsas:

a) Si
$$A \in B$$
 y $B \subseteq C$ entonces $A \in C$.

b) Si
$$A \in B$$
 y $B \subseteq C$ entonces $A \subseteq C$.

c) Si
$$A \subseteq B$$
 y $B \in C$ entonces $A \in C$.

d) Si
$$A \subseteq B$$
 y $B \in C$ entonces $A \subseteq C$.

3. Sea
$$U = \{1, 2, ..., 10\}$$
 $A = \{1, 4, 7, 10\}$ $B = \{1, 2, 3, 4, 5\}$ $C = \{2, 4, 6, 8\}$. Enumera los elementos de:

a)
$$B \cap (\overline{C \cup A})$$

b)
$$\mathcal{P}(A - (B \cap C))$$

b)
$$\mathcal{P}(A - (B \cap C))$$
 c) $\left[((A - B) \times (C - B)) \times (A \cap C) \right] \cup \left[B \cap (\overline{C \cup A}) \right]$

a)
$$\overline{A} - B$$

b)
$$B \cap (\overline{C \cup A})$$

c)
$$(\overline{A} \cup B) \cap (\overline{C} - A)$$

b)
$$B \cap (\overline{C \cup A})$$
 c) $(\overline{A} \cup B) \cap (\overline{C} - A)$ d) $((C \cap A) - (\overline{B - A})) \cap C$

- 5. Construye dos conjuntos A, B tales que $A \in B$ y $A \subseteq B$.
- 6. Dados los conjuntos $A = \{1, \{2\}\}, B = \{1, 2, \{1, 2\}\},$ enumera los elementos de cada uno de los siguientes conjuntos:

a)
$$A \cup B$$

e) $\mathcal{P}(A)$

b)
$$A \cap B$$

c)
$$A \setminus B$$

g) $A \times B$

d)
$$B \setminus A$$

b)
$$A \cap B$$
 c) $A \setminus B$ d) $B \setminus A$ f) $B \cap \mathcal{P}(A)$ g) $A \times B$ h) $(A \times B) \cap (B \times A)$

- 7. Enumera los elementos de: $\mathcal{P}(\emptyset)$ y $\mathcal{P}(\mathcal{P}(\emptyset))$, $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.
- 8. Dado un conjunto A, sea $A' = A \cup \{A\}$. Enumera los elementos de \emptyset' , \emptyset'' , \emptyset''' .
- 9. Sean A, B, X conjuntos. Demuestra que las tres condiciones siguientes son equivalentes:

$$a)X \subseteq A \cup B$$

$$b)(X - A) \cap (X - B) = \emptyset \qquad c)(X - A) \subseteq B$$

$$c)(X - A) \subseteq B$$

10. Sean $A, B, C \neq \emptyset$, demuestra que:

$$\left. \begin{array}{l} (A\cap C)\subseteq (B\cap C) \\ \\ (A\cap \overline{C})\subseteq (B\cap \overline{C}) \end{array} \right\} \implies A\subseteq B$$

11. Usa las leyes de Boole para demostrar las afirmaciones siguientes:

a)
$$\overline{(A \cup (B \cap C))} = (\overline{C} \cup \overline{B}) \cap \overline{A}$$

b)
$$\overline{(\overline{(A \cup B)} \cap C)} = (\overline{C} \cup B) \cup A$$

c)
$$(\overline{A} \cup B) \cap A = A \cap B$$

d)
$$\overline{(\overline{A} \cup B)} \cup B = A \cup B$$

e)
$$\overline{(\overline{A} \cup B)} \cup A = A$$

12. Determina si las siguientes afirmaciones son verdaderas o falsas. Demuestra las válidas y construye un contraejemplo para las falsas.

a)
$$(A - B) \cap C = (A \cap C) - B$$

b)
$$(A \cap B) - C = A \cap (B - C) = (A - C) \cap B$$

c)
$$A - (B - C) = (A - B) - C$$

b)
$$(A \cap B) - C = A \cap (B - C) = (A - C) \cap B$$

d) $(A \times B) - (C \times D) = ((A - C) \times B) \cup (A \times (B - D))$

- 13. Sean $A, B, C \subseteq \mathcal{U}$, demuestra que
 - a) $A \cup B = \mathcal{U} \operatorname{sii} \overline{A} \subseteq B$
 - b) $A \cap B = \emptyset \text{ sii } \overline{A} \supseteq B$
- 14. Sean A, B, C conjuntos. ?'Podemos deducir A = B si
 - a) $A \cup C = B \cup C$?
 - b) $A \cap C = B \cap C$?
 - c) $A \cup C = B \cup C$ y $A \cap C = B \cap C$?
- 15. Sean $A, B, C \subseteq \mathcal{U}$. Demuestra que $(A \cap B) \cup C = A \cap (B \cup C)$ sii $C \subseteq A$.
- 16. Simplifica las expresiones siguientes usando las Leyes de Boole:
 - $a) \ \ ((A \cup B) \cap \overline{C \cup A}) \cup ((C \cap B) \cup A)$
 - $b) \ \overline{A} \cup \overline{B} \cup (A \cap B \cap \overline{C})$
 - c) $\overline{(A \cup B) \cap C} \cup \overline{B}$
 - $d) \ (\overline{(\overline{A \cup \overline{C}}) \cap B}) \cup \overline{(A \cap (\overline{(C \cap \overline{B})})} \cup C$
- 17. La Diferencia Simétrica de los conjuntos A y B se define como: $A \oplus B \stackrel{\text{def}}{=} (A B) \cup (B A)$

Determina si las siguientes afirmaciones son verdaderas o falsas. Demuestra las válidas y construye un contraejemplo para las falsas.

- a) $A \oplus (B \cap C) = (A \oplus B) \cap (A \oplus C)$
- $\mathbf{b})A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$
- c) $A \oplus C = B \oplus C \Longrightarrow A = B$
- d) $A \subseteq B \implies A \oplus C \subseteq B \oplus C$
- 18. Definimos una sucesión de conjuntos:

$$A_k = \{ \{ m \in \mathbb{N} \mid m < n \} \mid n \leq k \} \qquad \quad (\text{para todo } k \in \mathbb{N})$$

y un conjunto $B = \{\{m \in \mathbb{N} \: | \: m < n\} \: | \: n \in \mathbb{N}\}$

- a) Enumera A_0 , A_1 and A_2 .
- b) Demuestra que $A_k \subseteq B$ para todo $k \in \mathbb{N}$.
- c) Demuestra que $\emptyset \in A_k$ para todo $k \in \mathbb{N}$.
- 19. Para todo $k \in \mathbb{N}$, sea

$$A_k = \{ n \in \mathbb{N} \mid n \le k \}$$

$$B_k = \{ n \in \mathbb{N} \mid n > k \}$$

Determina:

$$\bigcup \{A_k \mid k \in \mathbb{N}\} \qquad \qquad \bigcap \{A_k \mid k \in \mathbb{N}\}
\bigcup \{B_k \mid k \in \mathbb{N}\} \qquad \qquad \bigcap \{B_k \mid k \in \mathbb{N}\}$$

20. Para todo $k \in \mathbb{Z}^+$, sea

$$A_k = \{k+1, k+2, k+3...\}$$

Determina:

- a) $\bigcup \{A_k \mid 1 \le k \le 8\}$
- b) $\bigcap \{A_k \mid 3 \le k \le 12\}$
- c) $\bigcup \{A_k \mid k \ge 1\}$
- $d) \cap \{A_k \mid 1 \leq k\}$