Computer Networks. Unit 3: LANs

Notes of the subject Xarxes de Computadors, Facultat Informàtica de Barcelona, FIB

Llorenç Cerdà-Alabern

April 6, 2021

Contents

3		3: LANs
	3.1	WAN vs LAN
	3.2	IEEE LAN Architecture
	3.3	Ethernet
	3.4	Ethernet MAC
	3.5	CSMA/CD
	3.6	Ethernet Frame
	3.7	IEEE Ethernet standards
	3.8	Ethernet Switches
	3.9	Virtual LANs, VLANs
	3.10	Broadcast domains
	3.11	Switch flow control
	3.12	Spanning Tree Protocol (STP)
	3.13	Evaluation of Computer Networks
	3.14	Wireless LANs (WiFi)
	3 15	List of Acronyms

3 Unit 3: LANs

3.1 WAN vs LAN

- LANs:
 - Multy-access network with shared media
 - Medium Access Control (MAC) protocol: governs who can access the shared media
 - Note: Ethernet has evolved to a switched network

Figure 1: WAN topology (switched media) vs LAN topoloty (shared media).

Agronyme

Actionins.

LAN Local Area Network

MAC Medium Access Control

PSTN Public Switched Telephone Network

WAN Wide Area Network

3.2 IEEE LAN Architecture

• LLC sublayer (802.2): Generic L2 layer common to all LAN standards (802.x)

OSI Reference model:

Figure 2: IEEE LAN architecture.

Acronyms: LLC Logical Link Control

3.2.1 IEEE LAN encapsulation

Figure 3: IEEE LAN encapsulation.

Acronyms:
PDU Protocol Data Unit
CRC Cyclic Redundancy Check

3.2.2 IEEE LLC header

Figure 4: IEEE LAN LLC frame.

SAP: Service Access Point

- Identify the **protocols** handling the frame
- Standardized by IEEE
- SNAP allows non IEEE protocol IDs URL

	Protocol	SAP (hex)
	ARPANET Internet Protocol (IP)	06
	SNA	80
	3IEEE 802.1 Bridge Spanning Tree Protocol	42
	ARPANET Address Resolution Protocol (ARP)	98
SNAP: used in TCP/II	SubNetwork Access Protocol (SNAP)	AA
	Novell Netware	E0
	IBM NetBIOS	F0
	Global LSAP	FF

Example of some IEEE SAP values.

Figure 5: Table with some IEEE SAP values. SNAP is used to extend IEEE SAP values.

Acronyms:
SAP Service Access Point
SNAP Subnetwork Access Protocol

3.2.3 Ethernet with IEEE Sub-Network Access Protocol (SNAP)

- Used in TCP/IP
- **Type** field identifies the Ethernet frame payload.
- Values standarized by **IETF** in **RFC1700** (Assigned Numbers Ether Types)

Figure 6: IEEE SNAP encapsulation.

Acronyms:
DSAP Destination SAP
SSAP Source SAP
OUI Organizationally Unique Identifier

3.2.4 Types of MACs

• Token Passing:

Only the station having the token can transmit. After transmission the token is passed to another station.

- Examples: FDDI and Token-Ring (obsolete)
- · Random:

There is no token. Instead, there is a non null collision probability. In case of **collision**, the frame is retransmitted after a **random backoff time**.

• Examples: Ethernet, WiFi

3.3 Ethernet

- Designed by **Bob Metcalfe** at Xerox in mid-1970s
- Original design: random access, bus topology
- Initially was commercialized by Digital, Intel and Xerox consortium (DIX)
- Standardized by IEEE (802.3) in 1983
- Nowadays Ethernet is the leading LAN technology

Figure 7: Original figure of Bob Metcalfe of an Ethernet LAN.

3.4 Ethernet MAC

- Carrier Sense Multiple Access/Collision Detection (CSMA/CD)
 - Is a random MAC where the stations **listen** the medium (carrier sense) before transmission.
 - When the medium is becomes free the frame is transmitted immediately, and the medium is listened to detect collisions.
 - In case of collision, the frame is retransmitted after a random backoff time.

Acronyms: CSMA/CD Carrier Sense Multiple Access/Collision Detection

3.5 CSMA/CD

Figure 8: Flow diagram of CSMA/CD.

3.5.1 CSMA/CD: Collision example

Figure 9: Time diagram of a collision with CSMA/CD.

3.5.2 Half Duplex and full-duplex

- Half Duplex: only one NIC can be simultaneously transmitting into the medium. CSMA/CD is used
- Full Duplex: When 2 Ethernet NICs are connected **point-to-point**, some Ethernet standards allow a full-duplex Tx. **CSMA/CD** is NOT used (no collisions can occur).
- Ethernet NICs have an **auto-negotiation** mechanism to detect the full-duplex availability and bitrate (backward compatible)

3.6 Ethernet Frame

There are 2 Ethernet frames currently used: URL

• DIX: most common type in use today. Do not use LLC

Preamble	++ Destination MAC Address	Source MAC	Frame type	Payload	CRC (4 bytes)
	(6 bytes) ++	· / / /		1500 bytes)	

Figure 10: DIX ethernet frame.

• IEEE: use LLC

+			+	+	++
Preamble	Destination	Source MAC	Length of	Payload	CRC
(8 bytes)	MAC Address	Address	the frame	(46 to	(4 bytes)
1	(6 bytes)	(6 bytes)	(2 bytes)	1500 bytes)	
+		-	-	4	400000000000

Figure 11: IEEE ethernet frame.

- Minimum payload of 46 bytes when CSMA/CD is used
- Length (IEEE): Payload size (0~1500)
- Type (DIX): Identifies the upper layer protocol (IP, ARP, etc.) RFC1700, Assigned numbers. Always > 1500
- TCP/IP with IEEE encapsulation uses SNAP RFC1042

3.7 IEEE Ethernet standards

Standard: 802.3xx. Name convention:

Figure 12: IEEE ethernet standards name convention.

Commercial	bps					UTP/OF			segment	distance*
name		Standard	year	Name	Cabling	Pairs	Connector	Codification	Half duplex	Full duplex
		802.3	1983	10Base5	Coax-thick	-	AUI	Manchester	500m	n/a
Ethernet	10Mbps	802.3a	1985	10Base2	Coax-thin	-	BNC	Manchester	185m	n/a
Luieniet	TOMINHS	802.3i	1990	10BaseT	UTP-cat.3	2	RJ45	Manchester	100m	100m
		802.3j	1993	10BASE-FL	FO	2	SC	on/off Manchester	2000m	>2000m
Foot	100Mbps	802.3u	1995	100BaseTX	UTP-cat.5	2	RJ45	4B/5B	100m	100m
Fast Ethernet		802.3u	1995	100BaseFX	FO	2	SC	4B/5B	412m	2000m
Luieniet		TIA/EIA-785	1999	100BaseSX	FO/led	2	SC	4B/5B	300m	300m
	1Gbps	802.3z	1998	1000BaseSX	FO	2	SC	8B/10B	275-316m	275-550m
Gigabit-Eth.		802.3z	1998	1000BaseLX	FO	2	SC	8B/10B	316m	550-10000m
Gigabit-Liii.		802.3z	1998	1000BaseLH	FO	2	SC	8B/10B	n/a	100km
		802.3ab	1999	1000BaseT	UTP-cat. 5e	4	RJ45	PAM5	100m	100m
		802.3ae	2002	10GBASE-CX4	InfiniBand	4	CX4	8B/10B	n/a	15m
10Gigabit-	10Gbps	802.3ae	2002	10GBASE-SR	FO	2	SC	64B/66B	n/a	26-300m
Eťh.	Tognhs	802.3ae	2002	10GBASE-LR	FO	2	SC	64B/66B	n/a	10km
		802.3ae	2002		FO	2	SC		n/a	

*With OF the distance depends on the OF type.

Figure 13: Table with main IEEE ethernet standards.

Figure 14: IEEE ethernet 10BaseT configuration.

3.8 Ethernet Switches

- CSMA/CD (hub): with many stations collisions are inefficient
- Solution: Ethernet bridge

Figure 15: Ethernet bridge concept.

- In each **port** there is a NIC
- The source address is used to learn which MAC is in each port (MAC table)
- If dest. address is not in the table: **flooding** (Tx in all ports). Otherwise, Tx only in 1 port (segments the **collision domain**)
- An Ethernet switch is a multiport bridge

Figure 16: Ethernet switch architecture and MAC table.

3.8.1 Ethernet switch capabilities

- Each port is different a collision domain
- Different ports can Tx/Rx simultaneously
- Ports can have different bitrates
- Ports can be **full-duplex**
- There can be ports half or full duplex
- Link aggregation: several links can be aggregated acting as a single link of higher capacity
- Security: stations see only traffic of their collision domain

3.9 Virtual LANs, VLANs

- Motivation: Adapt logic to physical topology
- The switch isolates different VLANs: Each VLAN is equivalent to a different switch

Figure 17: VLAN physical and logical topology.

3.9.1 VLAN Trunking

- The port configured as trunk belongs to all VLANs
- VLANs are distinguished by tagging

Figure 18: VLAN trunking.

• IEEE-802.1Q (VLAN tagging)

+	+	+			+		+	+
•	Destination	•			Length of		CRC	i
(8 bytes)	MAC Address	Address			the frame	(46 to	(4 bytes)	İ
1	(6 bytes)	(6 bytes)	(2 bytes)	(2 bytes)	(2 bytes)	1500 bytes)		
1	1						1	

Figure 19: IEEE-802.3 frame with the 802.1Q tag.

- Tag Protocol Identifier (TPID): 8100 for Ethernet
- Tag Control Information (TCI): VLAN ID (12 bits)

3.10 Broadcast domains

- Set of stations that will received a broadcast frame sent by any of them
- ARP cannot solve an @IP out of the broadcast domain
- Hubs and switches does not partition broadcast domains
- To leave the broadcast domain a router is required

Figure 20: Broadcast domain.

3.11 Switch flow control

Figure 21: Flow control in ethernet switches.

- Flow control techniques
 - Jabber signal (half duplex, CSMA/CD): The switch sends a signal into the port which need to be throttled down, such that CSMA see the medium busy
 - Pause frames (full duplex): The switch send special pause frames indicating the time that the NICs receiving
 the frame must be silent

Flow Control head of line blocking

Figure 22: Flow control may be inefficient if head of line blocking occurs.

• We shall assume an **ideal flow control in the problems**, which allow achieving the maximum throughput

3.12 Spanning Tree Protocol (STP)

• loops can produce a **broadcast storm** which could block the network

Figure 23: A broadcast storm occurs when there is a layer 2 loop.

• Solution: IEEE 802.1D Spanning Tree Protocol (STP)

Figure 24: STP remove loops and generate a spanning tree topology.

Acronyms: STP Spanning Tree Protocol

3.13 Evaluation of Computer Networks

• Let the **network capacity** v_t be the maximum transition rate that a connection can reach in bits per second (bps). For instance, if we have a single link, v_t would be the line bit rate

$$v_t[\mathrm{bps}] = \frac{1}{t_b}$$

where t_b is the transmission time of a bit.

• Throughput (velocidad efectiva). It is the average transmission rate of the user data in bps:

Figure 25: Definition of Throughput: information bits and observation time.

• Efficiency

$$E[\%] = \frac{v_{ef}}{v_t} \times 100$$

3.13.1 Practical example:

throughput with speedtest

tcpdump -ni wlan0 tcp

3.13.2 Bottleneck

• Given a network condition, the **bottleneck** of a connection is the computer component, the link or network device that limits the maximum throughput.

Example:

Figure 26: Router R1 connects 2 switches SW1 (100 Mpbs), and SW2 (1 Gbps). In SW1 are connected hosts H1, H2, in SW2 are connected S1 and H3.

The hosts H1, H2, H3 download a large file using TCP from the server S1 and write it to the local disc. The disc of the hosts has a writing speed of 80 Mbps. The disc of the server has a reading speed of 8 Gpbs. Identify **bottlenecks** and compute the **throughput**. **Solution**:

- H1, H2: The bottleneck is the link Sw1-R1. The throughput is $v_1 = v_2 = 100/2 = 50$ Mbps
- H3: The bottleneck is the disc. The throughput is $v_3 = 80 \text{ Mbps}$

3.14 Wireless LANs (WiFi)

ISM: Industrial Scientific and Medical, no license required

Year	standard	max bitrate	ISM band
1997	802.11	2 Mbps	2,4 GHz
1999	802.11a	54 Mbps	5 GHz
1999	802.11b	10 Mbps	2,4 GHz
2003	802.11g	54 Mbps	2,4 GHz
2009	802.11n	600 Mbps	2,4/5 GHz
2013	802.11ac	6,9 Gpbs	5 GHz

Figure 27: Table showing WiFi stadards, maximum bitrate and ISM bands.

3.14.1 802.11 Components

- Basic Service Set, BSS: Identifies a WiFi Network
 - Service Set identifier (**SSID**) or Network name
 - BSS Identifier (**BSSID**): 48 bits number (MAC address of the AP)
- Distribution System (DS): Exchange frames with other networks. (e.g. an Ethernet switch)

Figure 28: 3 types of WiFi configurations: ad-hoc, infrastructure and extended service set.

• Practical example:

sudo iw wlan0 scan

Acronyms:

AP Access Point
BSS Basic Service Set
BSSID BSS Identifier
SSID Service Set identifier
DS Distribution System

3.14.2 802.11 MAC

- In WiFi collisions cannot be detected while transmitting
- Carrier Sense Multiple Access with Collision Avoidance CSMA/CA: In contrast to CSMA/CD, always wait a random backoff before Tx
- Acks are used to detect whether a unicast transmitted frame collided
- Collisions of broadcast frames are not detected
- 802.11 Addresses
 - Designed to be compatible with Ethernet
 - Use non overlapping ranges with Ethernet
 - The frame may have up to 4 addresses

Figure 29: General data frame format.

Acronyms:
Ack Acknowledgment
CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

3.14.3 802.11 Addresses

Use 3/4 addresses depending on the to-DS/from-DS bits of the frame control field

Scenario	Usage	to-DS	from-DS	Address1	Address2	Address3	Address4
STA→STA	Ad-hoc	0	0	DA	SA	BSSID	-
STA→AP	Infrastructure	1	0	BSSID	SA	DA	-
AP→STA	Infrastructure	0	1	DA	BSSID	SA	-
AP→AP	WDS	1	1	RA	TA	DA	SA

Legend: Destination Address (DA), Source Address (SA), Receiver Address (RA), Transmitter Address (TA)

Figure 30: Table with Wifi addresses scenarios.

Ethernet: MESSAGE-TYPE(destination address, source address)

Figure 31: Transmission with an AP in bridge mode.

4 addresses

Figure 32: Transmission with APs in WDS mode.

3.14.4 Hidden Node Problem

- When A transmits to AP, B cannot detect the transmission using the carrier sense mechanism
- If **B** transmits, a collision will occur at AP
- Solution 802.11 RTS/CTS

Figure 33: Hidden node problem: Stations A and B are in coverage with the AP, but are hidden from each other.

Acronyms:
RTS Request To Send
CTS Clear To Send

802.11 RTS/CTS

- Upon receiving a RTS/CTS, the station use a virtual carrier sensing
- RTS/CTS is only used for unicast Tx

Figure 34: RTS/CTS time diagram.

Acronyms: SIFS Short Inter Frame Space

3.15 List of Acronyms

AP	Access Point	OUI	Organizationally Unique Identifier
Ack	Acknowledgment	PDU	Protocol Data Unit
BSS	Basic Service Set	PSTN	Public Switched Telephone Network
BSSID	BSS Identifier	RTS	Request To Send
CRC	Cyclic Redundancy Check	Rx	Reception
CSMA	Carrier Sense Multiple Access	SAP	Service Access Point
CSMA/C	A CSMA/Collision Avoidance	SNAP	Subnetwork Access Protocol
CSMA/CI	D CSMA/Collision Detection	SSAP	Course CAD
CTS	Clear To Send		Source SAP
DS	Distribution System	SSID	Service Set identifier
DSAP	Destination SAP	STP	Spanning Tree Protocol
LAN	Local Area Network	Tx	Transmission
LLC	Logical Link Control	WAN	Wide Area Network
MAC	Medium Access Control	WDS	Wireless Distribution System