Thesis: 02/12/2021 Analysing LUMC Dataset

Georgy Gomon

December 3, 2021

Data

	ID	severity_score_pseudo	$day_{-}no$	$Cytokine_{-1}$	Cytokine $_2$	Cytokine $_3$
1	1	2.00	11.00	92.03	1053.03	244.03
2	1	3.00	13.00	106.68	1011.68	214.68
3	1	7.00	15.00	49.19	1010.19	183.19
4	1	0.00	18.00	77.63	1473.63	269.63
5	1	1.00	20.00	38.73	1129.73	259.73
6	2	15.00	38.00	152.03	727.03	347.03
_7	2	15.00	43.00	199.81	987.81	350.81

- Missing data: only in variable day_no
 - ▶ For 2 patients: ID 46 (11 measurements) & ID 98 (8 measurements), both all time points

Transformations

Initial Data Analysis

 In the table we see the correlations with severity score for different transformations of the cytokines

	NO	ln	sqrt
Cytokine 1	0.22	0.38	0.31
Cytokine 2	0.04	0.07	0.05
Cytokine 3	0.32	0.34	0.34

- We thus take a log transformation for all Cytokines
- As Cytokine 1 has highest correlation with severity score we focus on Cytokine 1

Time-Transformations

- We have only data about days when patient was at the ICU?
 - Average time-span per patient: 13 days.
 - ★ RIVM: Average time at ICU: 13 days
 - Minimum: 0 days, Maximum: 47 days
- We see that time-patterns are very different

Different Time-scales

Initial Data Analysis

000000000

- Thus I tried different time-scales
 - ► Time since infection (day_no)
 - Nomalized time since infection
 - ► Time since admittance
 - Normalized time since admittance
- Below correlation table: However, correlation measures only linear association

	score	$Cy_{-}1$	day_no	nor_day_no	$day_{-}admit$	nor_admit
severity_score_pseudo	1.00	0.38	-0.07	-0.34	-0.20	-0.31
$Cy_{-}1$	0.38	1.00	-0.04	-0.18	-0.07	-0.14
day_no	-0.07	-0.04	1.00	0.40	0.81	0.48
normalized_day_no	-0.34	-0.18	0.40	1.00	0.39	0.84
day_admittance	-0.20	-0.07	0.81	0.39	1.00	0.64
normalized_admittance	-0.31	-0.14	0.48	0.84	0.64	1.00

Initial Data Analysis

0000000000

Initial Data Analysis

o 0000●00000

Different Time-scales

- I decided to focus on days since infection
 - Day since infection is most interesting for a doctor
 - Normalized days can not be used as a prediction model (can be useful for etiology).
- Here you do not account for different disease progression speeds in individuals.
 - Random breakpoints?

Possible Time-models

- For days since infection time is clearly not linear!
 - ▶ There are several ways in which to account for this
 - * Quadratic change
 - ★ Piecewise linear change (with breakpoints)
 - ★ Quadratic Splines model (with breakpoints)
 - I also added Linear change model as reference
- Piecewise linear change: How to get breakpoints?
 - MARS (Multivariate adaptive regression spline)
 - ★ For Cytokine 1: breakpoints 28 & 40
 - ★ For Severity Score: breakpoints 14 & 28
- Quadratic Splines: location of breakpoints less important
 - ▶ I set bp to 1st and 3rd quartiles

Time-models Severity Score

	Linear	Piecewise	Quadratic	Cubic
AIC	3088	3033	3083	3074
BIC	3109	3072	3109	3117
logLik	-1539	-1507	-1536	-1527

Time-models Cytokine 1

	Linear	Piecewise	Quadratic	Cubic
AIC	1333.00	1318.00	1324.00	1319.00
BIC	1350.00	1344.00	1345.00	1358.00
logLik	-662.00	-653.00	-657.00	-651.00

Modelling time: Conclusion

- I decided to stick with piecewise linear time-model
 - Breakpoints as given by MARS
- Applied Models 0 & 2 & 3 in INLA using piecewise time
 - First without breakpoints (simply linear)
 - No breakpoints within random effects
 - Only breakpoint 28 as random effects
 - All breakpoints as random effects
- Breakpoint 28 is more important than the other because:
 - ▶ Cy: Few patients have data further than bp 40 (only 25/99)
 - Score: The breakpoint at 28 seems much stronger than that at 14 (judging by loess fit)

Model 0 3: General Model structure in INLA

Model 0 3

$$\begin{cases} Cy_{i,j} = & (\beta_0^{(Cy)} + u_{0,i}^{(Cy)}) + \beta_{Sc}^{(Cy)} Score_{i,j} + (\beta_t^{(Cy)} + u_{t,i}^{(Cy)})t_{i,j} + \\ & (\beta_t^{(Cy),28} + u_{t,i}^{(Cy),28})(t_{i,j} - 28)_+ + \\ & (\beta_t^{(Cy),40} + u_{t,i}^{(Cy),40})(t_{i,j} - 40)_+ + \epsilon_{i,j}^2 \\ Sc_{i,j} = & (\beta_0^{(Sc)} + u_{0,i}^{(Sc)}) + \beta_{Cy}^{(Sc)} Cy_{i,j} + (\beta_t^{(Sc)} + u_{t,i}^{(Sc)})t_{i,j} + \\ & (\beta_t^{(Sc),28} + u_{t,i}^{(Sc),28})(t_{i,j} - 28)_+ + \\ & (\beta_t^{(Sc),14} + u_{t,i}^{(Sc),14})(t_{i,j} - 14)_+ + \epsilon_{i,j}^2 \end{cases} \\ \left(u_{0,i}^{(Cy)}, u_{t,i}^{(Cy)}, u_{t,i}^{(Cy),28}, u_{t,i}^{(Cy),40}\right) \sim \mathcal{N}(0, unstructured) \\ \left(u_{0,i}^{(Sc)}, u_{t,i}^{(Sc)}, u_{t,i}^{(Sc),28}, u_{t,i}^{(Sc),14}\right) \sim \mathcal{N}(0, unstructured) \end{cases}$$

Model 0_0: No breakpoints

$$\begin{cases} Cy_{i,j} = & (\beta_0^{(Cy)} + u_{0,i}^{(Cy)}) + \beta_{Sc}^{(Cy)}Score_{i,j} + (\beta_t^{(Cy)} + u_{t,i}^{(Cy)})t_{i,j} + \\ & (\beta_t^{(Cy),28} \pm u_{t,i}^{(Cy),28})(t_{i,j} - 28)_+ + \\ Sc_{i,j} = & (\beta_0^{(Sc)} + u_{0,i}^{(Sc)}) + \beta_{Cy}^{(Sc)}Cy_{i,j} + (\beta_t^{(Sc)} + u_{t,i}^{(Sc)})t_{i,j} + \\ & (\beta_t^{(Sc),28} \pm u_{t,i}^{(Sc),28})(t_{i,j} - 28)_+ + \\ & (\beta_t^{(Sc),14} \pm u_{t,i}^{(Sc),14})(t_{i,j} - 14)_+ + \epsilon_{i,j}^2 \\ & (u_{0,i}^{(Cy)}, u_{t,i}^{(Cy)}, u_{t,i}^{(Cy),28}, u_{t,i}^{(Cy),40}) \sim \mathcal{N}(0, unstructured) \\ & (u_{0,i}^{(Sc)}, u_{t,i}^{(Sc)}, u_{t,i}^{(Sc),28}, u_{t,i}^{(Se),14}) \sim \mathcal{N}(0, unstructured) \end{cases}$$

Model 0_1: No breakpoints as random effects

$$\begin{cases} Cy_{i,j} = & (\beta_0^{(Cy)} + u_{0,i}^{(Cy)}) + \beta_{Sc}^{(Cy)}Score_{i,j} + (\beta_t^{(Cy)} + u_{t,i}^{(Cy)})t_{i,j} + \\ & (\beta_t^{(Cy),28} + u_{t,i}^{(Cy),28})(t_{i,j} - 28)_+ + \\ & (\beta_t^{(Cy),40} + u_{t,i}^{(Cy),40})(t_{i,j} - 40)_+ + \epsilon_{i,j}^2 \\ Sc_{i,j} = & (\beta_0^{(Sc)} + u_{0,i}^{(Sc)}) + \beta_{Cy}^{(Sc)}Cy_{i,j} + (\beta_t^{(Sc)} + u_{t,i}^{(Sc)})t_{i,j} + \\ & (\beta_t^{(Sc),28} + u_{t,i}^{(Sc),28})(t_{i,j} - 28)_+ + \\ & (\beta_t^{(Sc),14} + u_{t,i}^{(Sc),44})(t_{i,j} - 14)_+ + \epsilon_{i,j}^2 \\ & (u_{0,i}^{(Cy)}, u_{t,i}^{(Cy)}, u_{t,i}^{(Cy),28}, u_{t,i}^{(Cy),40}) \sim \mathcal{N}(0, unstructured) \\ & (u_{0,i}^{(Sc)}, u_{t,i}^{(Sc)}, u_{t,i}^{(Sc),28}, u_{t,i}^{(Sc),14}) \sim \mathcal{N}(0, unstructured) \end{cases}$$

Model 0_2: Only breakpoint 28 as random effect

$$\begin{cases} Cy_{i,j} = & (\beta_0^{(Cy)} + u_{0,i}^{(Cy)}) + \beta_{Sc}^{(Cy)} Score_{i,j} + (\beta_t^{(Cy)} + u_{t,i}^{(Cy)}) t_{i,j} + \\ & (\beta_t^{(Cy),28} + u_{t,i}^{(Cy),28}) (t_{i,j} - 28)_+ + \\ & (\beta_t^{(Cy),40} + u_{t,i}^{(Cy),40}) (t_{i,j} - 40)_+ + \epsilon_{i,j}^2 \\ Sc_{i,j} = & (\beta_0^{(Sc)} + u_{0,i}^{(Sc)}) + \beta_{Cy}^{(Sc)} Cy_{i,j} + (\beta_t^{(Sc)} + u_{t,i}^{(Sc)}) t_{i,j} + \\ & (\beta_t^{(Sc),28} + u_{t,i}^{(Sc),28}) (t_{i,j} - 28)_+ + \\ & (\beta_t^{(Sc),14} + u_{t,i}^{(Sc),44}) (t_{i,j} - 14)_+ + \epsilon_{i,j}^2 \end{cases}$$

$$\begin{pmatrix} u_{0,i}^{(Cy)}, u_{t,i}^{(Cy)}, u_{t,i}^{(Cy),28}, u_{t,i}^{(Cy),40} \end{pmatrix} \sim \mathcal{N}(0, unstructured)$$

$$\begin{pmatrix} u_{0,i}^{(Sc)}, u_{t,i}^{(Sc)}, u_{t,i}^{(Sc),28}, u_{t,i}^{(Sc),24} \end{pmatrix} \sim \mathcal{N}(0, unstructured)$$

Georgy Gomon

Thesis: 02/12/2021

Model 2 3: General Model structure in INLA

Model 2 3

$$\begin{cases} Cy_{i,j} = & (\beta_0^{(Cy)} + u_{0,i}^{(Cy)}) + \beta_{Sc}^{(Cy)} Score_{i,j} + (\beta_t^{(Cy)} + u_{t,i}^{(Cy)})t_{i,j} + \\ & (\beta_t^{(Cy),28} + u_{t,i}^{(Cy),28})(t_{i,j} - 28)_+ + \\ & (\beta_t^{(Cy),40} + u_{t,i}^{(Cy),40})(t_{i,j} - 40)_+ + \epsilon_{i,j}^2 \\ Sc_{i,j} = & (\beta_0^{(Sc)} + u_{0,i}^{(Sc)}) + \beta_{Cy}^{(Sc)} Cy_{i,j} + (\beta_t^{(Sc)} + u_{t,i}^{(Sc)})t_{i,j} + \\ & (\beta_t^{(Sc),28} + u_{t,i}^{(Sc),28})(t_{i,j} - 28)_+ + \\ & (\beta_t^{(Sc),14} + u_{t,i}^{(Sc),14})(t_{i,j} - 14)_+ + \epsilon_{i,j}^2 \end{cases}$$

$$\left(u_{0,i}^{(Cy)}, u_{t,i}^{(Cy)}, u_{0,i}^{(Sc)}, u_{t,i}^{(Sc)}\right) \sim \mathcal{N}(0, unstructured)$$

$$\left(u_{t,i}^{(Cy),28}, u_{t,i}^{(Cy),40}, u_{t,i}^{(Sc),28}, u_{t,i}^{(Sc),14}\right) \sim \mathcal{N}(0, unstructured)$$

Model 2_0: No breakpoints

$$\begin{cases} Cy_{i,j} = & (\beta_0^{(Cy)} + u_{0,i}^{(Cy)}) + \beta_{Sc}^{(Cy)}Score_{i,j} + (\beta_t^{(Cy)} + u_{t,i}^{(Cy)})t_{i,j} + \\ & (\beta_t^{(Cy),28} + u_{t,i}^{(Cy),28})(t_{i,j} - 28)_+ + \\ & (\beta_t^{(Cy),40} + u_{t,i}^{(Cy),40})(t_{i,j} - 40)_+ + \epsilon_{i,j}^2 \\ Sc_{i,j} = & (\beta_0^{(Sc)} + u_{0,i}^{(Sc)}) + \beta_{Cy}^{(Sc)}Cy_{i,j} + (\beta_t^{(Sc)} + u_{t,i}^{(Sc)})t_{i,j} + \\ & (\beta_t^{(Sc),28} + u_{t,i}^{(Sc),28})(t_{i,j} - 28)_+ + \\ & (\beta_t^{(Sc),14} + u_{t,i}^{(Sc),14})(t_{i,j} - 14)_+ + \epsilon_{i,j}^2 \\ & (u_{0,i}^{(Cy)}, u_{t,i}^{(Cy)}, u_{0,i}^{(Sc)}, u_{t,i}^{(Sc)}) \sim \mathcal{N}(0, unstructured) \end{cases}$$

$$(u_{t,i}^{(Cy),28}, u_{t,i}^{(Cy),40}, u_{t,i}^{(Sc),28}, u_{t,i}^{(Sc),14}) \sim \mathcal{N}(0, unstructured)$$

Model 2_1: No breakpoints as random effects

$$\begin{cases} Cy_{i,j} = & (\beta_0^{(Cy)} + u_{0,i}^{(Cy)}) + \beta_{Sc}^{(Cy)} Score_{i,j} + (\beta_t^{(Cy)} + u_{t,i}^{(Cy)})t_{i,j} + \\ & (\beta_t^{(Cy),28} + u_{t,i}^{(Cy),28})(t_{i,j} - 28)_+ + \\ & (\beta_t^{(Cy),40} + u_{t,i}^{(Cy),40})(t_{i,j} - 40)_+ + \epsilon_{i,j}^2 \\ Sc_{i,j} = & (\beta_0^{(Sc)} + u_{0,i}^{(Sc)}) + \beta_{Cy}^{(Sc)} Cy_{i,j} + (\beta_t^{(Sc)} + u_{t,i}^{(Sc)})t_{i,j} + \\ & (\beta_t^{(Sc),28} + u_{t,i}^{(Sc),28})(t_{i,j} - 28)_+ + \\ & (\beta_t^{(Sc),14} + u_{t,i}^{(Sc),24})(t_{i,j} - 14)_+ + \epsilon_{i,j}^2 \\ & (u_{0,i}^{(Cy)}, u_{t,i}^{(Cy)}, u_{0,i}^{(Sc)}, u_{t,i}^{(Sc)}) \sim \mathcal{N}(0, unstructured) \\ & (u_{t,i}^{(Cy),28}, u_{t,i}^{(Cy),40}, u_{t,i}^{(Sc),28}, u_{t,i}^{(Sc),14}) \sim \mathcal{N}(0, unstructured) \end{cases}$$

Model 2_2: Only breakpoint 28 as random effect

$$\begin{cases} Cy_{i,j} = & (\beta_0^{(Cy)} + u_{0,i}^{(Cy)}) + \beta_{Sc}^{(Cy)} Score_{i,j} + (\beta_t^{(Cy)} + u_{t,i}^{(Cy)})t_{i,j} + \\ & (\beta_t^{(Cy),28} + u_{t,i}^{(Cy),28})(t_{i,j} - 28)_+ + \\ & (\beta_t^{(Cy),40} + u_{t,i}^{(Cy),40})(t_{i,j} - 40)_+ + \epsilon_{i,j}^2 \\ Sc_{i,j} = & (\beta_0^{(Sc)} + u_{0,i}^{(Sc)}) + \beta_{Cy}^{(Sc)} Cy_{i,j} + (\beta_t^{(Sc)} + u_{t,i}^{(Sc)})t_{i,j} + \\ & (\beta_t^{(Sc),28} + u_{t,i}^{(Sc),28})(t_{i,j} - 28)_+ + \\ & (\beta_t^{(Sc),14} + u_{t,i}^{(Sc),44})(t_{i,j} - 14)_+ + \epsilon_{i,j}^2 \end{cases}$$

$$\left(u_{0,i}^{(Cy)}, u_{t,i}^{(Cy)}, u_{0,i}^{(Sc)}, u_{t,i}^{(Sc)}\right) \sim \mathcal{N}(0, unstructured)$$

$$\left(u_{t,i}^{(Cy),28}, u_{t,i}^{(Sc),28}, u_{t,i}^{(Cy),40}, u_{t,i}^{(Se),14}\right) \sim \mathcal{N}(0, unstructured)$$

Georgy Gomon

Thesis: 02/12/2021

Model 3 3: General Model structure in INLA

$$\begin{cases} m_{i,j} = & (\beta_0^{(Cy)} + u_{0,i}^{(Cy)}) + (\beta_t^{(Cy)} + u_{t,i}^{(Cy)})t_{i,j} + \\ & (\beta_t^{(Cy),28} + u_{t,i}^{(Cy),28})(t_{i,j} - 28)_+ + \\ & (\beta_t^{(Cy),40} + u_{t,i}^{(Cy),40})(t_{i,j} - 40)_+ \\ Cy_{i,j} = & m_{i,j} + \epsilon_{i,j}^2 \\ Sc_{i,j} = & \gamma m_{i,j} + (\beta_0^{(Sc)} + u_{0,i}^{(Sc)}) + \beta_{Cy}^{(Sc)} Cy_{i,j} + (\beta_t^{(Sc)} + u_{t,i}^{(Sc)})t_{i,j} + \\ & (\beta_t^{(Sc),28} + u_{t,i}^{(Sc),28})(t_{i,j} - 28)_+ + \\ & (\beta_t^{(Sc),14} + u_{t,i}^{(Sc),14})(t_{i,j} - 14)_+ + \epsilon_{i,j}^2 \end{cases}$$

$$\left(u_{0,i}^{(Cy)}, u_{t,i}^{(Cy)}, u_{t,i}^{(Cy),28}, u_{t,i}^{(Cy),40}\right) \sim \mathcal{N}(0, unstructured)$$

$$\left(u_{0,i}^{(Sc)}, u_{t,i}^{(Sc)}, u_{t,i}^{(Sc),28}, u_{t,i}^{(Sc),14}\right) \sim \mathcal{N}(0, unstructured)$$

Georgy Gomon Thesis: 02/12/2021

Models 3

- Similarly to Models 0 and 2 we also introduced Models 3_0, 3_1 and 3_2.
- A problem with Model 3 is that we can not put Score into the linear predictor of Cy
 - $Cy_{i,j} = \beta_{Sc}^{(Cy)} Score_{i,j}$ is not possible
 - ▶ INLA then simply ensures that $\gamma \cdot \beta_{SC}^{(Cy)} = 1$, and all other terms are set to 0.
 - ▶ This problem can be averted when using Lagged values!
- Fitting these models takes a lot of computing power!
 - ▶ I therefore do a lot of the programming on the LUMC-test computer, is that allowed?
 - Can I install git on the LUMC computer?

General form of Model 3

• Association supplied via γ .

$$\begin{cases} m_{ij} = (\beta_0^{(x)} + u_{0,i}^{(x)}) + \beta_v^{(x)} \cdot v_i + \left(\beta_t^{(x)} + u_{t,i}^{(x)}\right) \cdot t_{i,j} \\ x_{i,j} = m_{ij} + \epsilon_{i,j}^{(x)} \\ y_{i,j} = \gamma \cdot m_{ij} + (\beta_0^{(y)} + u_{0,i}^{(y)}) + \beta_v^{(y)} \cdot v_i + \left(\beta_t^{(y)} + u_{t,i}^{(y)}\right) \cdot t_{i,j} + \epsilon_{i,j}^{(y)} \end{cases}$$
with
$$\begin{bmatrix} u_{0,i}^{(x)} \\ u_{t,i}^{(x)} \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{x,0}^2 & \sigma_{x,(0,t)} \\ \sigma_{x,(t,0)} & \sigma_{x,t}^2 \end{pmatrix} \end{bmatrix}; \quad \begin{bmatrix} u_{0,i}^{(y)} \\ u_{t,i}^{(y)} \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{y,0}^2 & \sigma_{y,(0,t)} \\ \sigma_{y,(t,0)} & \sigma_{y,t}^2 \end{pmatrix} \end{bmatrix};$$

General form of Model 3

This can be rewritten as:

$$y_{i,j} = \gamma \cdot m_{ij} + (\beta_0^{(y)} + u_{0,i}^{(y)}) + \beta_v^{(y)} \cdot v_i + (\beta_t^{(y)} + u_{t,i}^{(y)}) \cdot t_{i,j} + \epsilon_{i,j}^{(y)} =$$

$$= (\gamma \beta_0^{(x)} + \beta_0^{(y)}) + (\gamma \beta_v^{(x)} + \beta_v^{(y)}) v_i + (\gamma \beta_t^{(x)} + \beta_t^{(y)}) \cdot t_{i,j} + (\gamma u_{0,i}^{(x)} + u_{0,i}^{(y)}) +$$

$$+ (\gamma u_{t,i}^{(x)} + u_{t,i}^{(y)}) t_{i,j} + \epsilon_{i,j}^{(y)} =$$

$$= \beta_0^{(y)'} + \beta_v^{(y)'} v_i + \beta_t^{(y)'} t_{i,j} + u_{0,i}^{(y)'} + u_{t,i}^{(y)'} \cdot t_{i,j} + \epsilon_{i,j}^{(y)}$$
with $\beta_0^{(y)'} = \gamma \beta_0^{(x)} + \beta_0^{(y)}$, $\beta_v^{(y)'} = \gamma \beta_v^{(x)} + \beta_v^{(y)}$ and $\beta_t^{(y)'} = \gamma \beta_t^{(x)} + \beta_t^{(y)}$.
For the random effects, they now have distribution:

$$\begin{bmatrix} u_{0,i}^{(y)'} \\ u_{t,i}^{(y)'} \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \gamma^2 \sigma_{x,0}^2 + \sigma_{y,0}^2 & \gamma^2 \sigma_{x,(0,t)} + \sigma_{y,(0,t)} \\ \gamma^2 \sigma_{x,(t,0)} + \sigma_{y,(t,0)} & \gamma^2 \sigma_{x,t}^2 + \sigma_{y,t}^2 \end{pmatrix} \end{bmatrix}$$

To-do

General form of Model 3

We obtain:

$$x_{i,j} = (\beta_0^{(x)} + u_{0,i}^{(x)}) + \beta_v^{(x)} \cdot v_i + (\beta_t^{(x)} + u_{t,i}^{(x)}) \cdot t_{i,j} + \epsilon_{i,j}^{(x)}$$

$$y_{i,j} = (\beta_0^{(y)'} + u_{0,i}^{(y)'}) + \beta_v^{(y)'} v_i + (\beta_t^{(y)'} + u_{t,i}^{(y)'}) t_{i,j} + \epsilon_{i,j}^{(y)}$$
with
$$\begin{bmatrix} u_{0,i}^{(x)} \\ u_{t,i}^{(x)} \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \sigma_{x,0}^2 & \sigma_{x,(0,t)} \\ \sigma_{x,(t,0)} & \sigma_{x,t}^2 \end{pmatrix} \end{bmatrix},$$

$$\beta_0^{(y)'} = \gamma \beta_0^{(x)} + \beta_0^{(y)}, \quad \beta_v^{(y)'} = \gamma \beta_v^{(x)} + \beta_v^{(y)} \text{ and } \beta_t^{(y)'} = \gamma \beta_t^{(x)} + \beta_t^{(y)}$$

$$\begin{bmatrix} u_{0,i}^{(y)'} \\ u_{0,i}^{(y)'} \\ u_{t,i}^{(y)'} \end{bmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \mathbf{0}, \begin{pmatrix} \gamma^2 \sigma_{x,0}^2 + \sigma_{y,0}^2 & \gamma^2 \sigma_{x,(0,t)} + \sigma_{y,(0,t)} \\ \gamma^2 \sigma_{x,(t,0)} + \sigma_{y,(t,0)} & \gamma^2 \sigma_{x,t}^2 + \sigma_{y,t}^2 \end{pmatrix} \end{bmatrix}$$

To-do

Lagged effects

- Via multiple γ 's
- Via history of outcome/endogenous covariate

27 / 32

Multiple γ 's

Initial Data Analysis

$$\begin{aligned}
m_{ij} &= (\beta_0^{(x)} + u_{0,i}^{(x)}) + \beta_v^{(x)} \cdot v_i + \left(\beta_t^{(x)} + u_{t,i}^{(x)}\right) \cdot t_{i,j} \\
x_{i,j} &= m_{ij} + \epsilon_{i,j}^{(x)} \\
x_{i,(j-1)} &= m_{i,(j-1)} + \epsilon_{i,(j-1)}^{(x)} \\
y_{i,j} &= \gamma_1 \cdot m_{ij} + \gamma_2 \cdot m_{i,(j-1)} + (\beta_0^{(y)} + u_{0,i}^{(y)}) + \beta_v^{(y)} \cdot v_i + \left(\beta_t^{(y)} + u_{t,i}^{(y)}\right) \cdot t_{i,j} + \epsilon_{i,j}^{(y)}
\end{aligned}$$

• Here the same problem arises as in model with single γ .

Multiple γ 's

• We obtain:

$$\begin{aligned} x_{i,j} &= (\beta_0^{(x)} + u_{0,i}^{(x)}) + \beta_v^{(x)} \cdot v_i + \left(\beta_t^{(x)} + u_{t,i}^{(x)}\right) \cdot t_{i,j} + \epsilon_{i,j}^{(x)} \\ y_{i,j} &= (\beta_0^{(y)'} + u_{0,i}^{(y)'}) + \beta_v^{(y)'} v_i + (\beta_t^{(y)'} + u_{t,i}^{(y)'}) t_{i,j} + \epsilon_{i,j}^{(y)} \\ & \text{with} \\ \beta_0^{(y)'} &= (\gamma_1 + \gamma_2) \beta_0^{(x)} + \beta_0^{(y)}, \quad \beta_v^{(y)'} = (\gamma_1 + \gamma_2) \beta_v^{(x)} + \beta_v^{(y)} \\ &\text{and} \quad \beta_t^{(y)'} &= (\gamma_1 + \gamma_2) \beta_t^{(x)} + \beta_t^{(y)} \end{aligned}$$

Variable History

Initial Data Analysis

• Can be implemented via e.g. AR process

$$\begin{cases} x_{i,j} = (\beta_0^{(x)} + u_{0,i}^{(x)}) + \beta_v^{(x)} \cdot v_i + (\beta_t^{(x)} + u_{t,i}^{(x)}) \cdot t_{i,j} + \sum_{t=1}^p \phi_t x_{j-t} + \epsilon_{i,j}^{(x)} \\ y_{i,j} = (\beta_0^{(y)} + u_{0,i}^{(y)}) + \beta_v^{(y)} \cdot v_i + (\beta_t^{(y)} + u_{t,i}^{(y)}) \cdot t_{i,j} + \sum_{t=1}^p \phi_t y_{j-t} + \epsilon_{i,j}^{(y)} \end{cases}$$

- One can set the depth of the history by varying p
- One can set requirements for ϕ , e.g. $\phi_t = \phi^t$.
- Can also be combined with model 3

Model comparison

- We see that overall Model 0_3 performs best
 - ▶ No association between the endogenous covariate and the outcome
 - Maximum number of breakpoints
 - Maximum number of random effects, maximum covariance between random effects

	0_0	$0_{-}1$	0_2	0_3	2_0	2_{-1}	2_2	2_3	3_0	3_1	3_2	3_3
MLIK	-2399	-2404	-2420	-2411	-2402	-2394	-2417	-2418	-2406	-2404	-2417	-2407
DIC_approx	4798	4808	4840	4821	4804	4789	4834	4836	4811	4809	4834	4813
DIC	4108	4088	4087	4024	4114	4074	4039	4040	4136	4137	4131	4060
WAIC	4103	4085	4081	4013	4109	4072	4034	4031	4129	4132	4123	4046
PIT	0.0394	0.0315	0.0255	0.0254	0.0380	0.0317	0.0324	0.0279	0.0290	0.0252	0.0277	0.0291
CPO	2083	2072	2074	2046	2081	2061	2049	2054	2093	2092	2092	2060
MSE	3.61	3.70	4.03	3.52	3.73	3.91	3.71	3.70	3.60	3.68	4.06	3.52

To-do

- Focus should be on lagged effects!
 - Using Lagged functional form
 - ★ Using $\gamma_2 \cdot m_i(t_{i,j-1})$
 - ★ Using autoregressive model?
 - Using other residual error covariance structures
- Inspect different time-scales and time-models

To-do

- H. Rue, S. Martino, Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations, 2009, JRSS B
 - J. van Niekerk, H. Bakka, H. Rue, Joint models as latent Gaussian models not reinventing the wheel, 2019, arXiv
- J. van Niekerk, H. Bakka, H. Rue, Competing risks joint models using R-INLA, 2021, Statistical Modelling
- R. Weiss, Modelling Longitudinal Data, 2005, Chapter 13