

Machine Learning

Linear Regression with multiple variables

Multiple features

Multiple features (variables).

Size (feet²)	Price (\$1000)	
$\rightarrow x$	y ~	
2104	460	
1416	232	
1534	315	
852	178	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

	bedrooms	floors	Age of home (years)	Price (\$1000)	
* 1	X	×3	*4	9	
2104	5	1	45	460 7	m = 47
1416	3	2	40	232	m= 47
1534	3	2	30	315	
852	2	1	36	178	Change Varley
]	Coldants Assista
tation: $n = nu$	mber of fea	ጥ ፞፞፞፞፞፞፞፞፞ atures	n=4 = dinun	ision ×	(2) = [1416] (2) = [2] =
· .	•	•		, ·	= 2 Farst Taspas? C 40 [C 40 [
	1534 852 tation: n = nu $x^{(i)} = \text{inp}$	1534 3 852 2 tation: $-\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ 1	1534 3 2 852 2 1 tation:	1534 3 2 30 852 2 1 36	852 2 1 36 178

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$
 $h_{\theta}(x) = 0_{0} + 0_{1}x_{1} + 0_{2}x_{2} + 0_{3}x_{3} + 0_{4}x_{4}$

Eq. $h_{\theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$

age

17174가 않은 시나217

$$\rightarrow h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$. $(x_0^{(i)} = 1)$

$$\begin{aligned}
x &= \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_n \end{bmatrix} \in \mathbb{R}^{m_1} & O &= \begin{bmatrix} O_0 \\ O_1 \\ O_2 \\ \vdots \\ O_n \end{bmatrix} \in \mathbb{R}^{m_1} \\
&= \begin{bmatrix} O_0 \\ O_1 \\ O_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} O_0 \\ O_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_0 \\ O_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ O_2 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ O_2 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ O_2 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ O_2 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ O_2 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ O_2 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ O_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_1 \\ X_1 \\ \vdots \\ X_n \end{bmatrix} \\
&= \begin{bmatrix} O_$$

Multivariate linear regression.

Multiple features (variables).

(N1-912	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
	- 2104	5	1	45	460
وسو.	1416	3	2	40	232 + m = 47
	1534	3	2	30	315
	852	2	1	36	178
No	 etation:	 ★	 *	 1] / [1416]
Notation: $n = n$ = number of features $n = 4$					
$\rightarrow x^{(i)}$ = input (features) of i^{th} training example.					
$\rightarrow x_j^{(i)}$ = value of feature <u>j</u> in <u>i</u> th training example. \checkmark 3 = 2					

Linear Regression with multiple variables

Gradient descent in practice I: Feature Scaling

Machine Learning

$$y = ax + b$$
 | 128
 $0 = a - 1 + b$ | $a = a - 7 + b$ | $b = a - 6$

ON1 Norm.

Feature Scaling न्यम् रिश्वार रायुटा ल द्भाराप्ट Ronge

· Outlier of FRES

Idea: Make sure features are on a similar scale.

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters:
$$\theta_0, \theta_1, \dots, \theta_n$$

Cost function:
$$\frac{J(\theta_0, \theta_1, \dots, \theta_n)}{J(\theta_0, \theta_1, \dots, \theta_n)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 \frac{\chi_i \chi_2 y}{3 - 1 7} + \frac{\chi_i \chi_2 y}{3 - 1 7}$$

$$\downarrow h_{\theta}(r) = \theta_0 + \theta_1 \chi_1 + \theta_2 \chi_2 = \theta^{T} \chi = [\theta_0 \theta_1 \theta_2] \begin{bmatrix} \chi_i \\ \chi_i \end{bmatrix}$$

Repeat
$$\{$$

$$\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n) = (\theta_0) \left(\frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n) \right) \left(\frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n) \right)$$

 $\theta = \begin{bmatrix} \theta_0 \\ \phi_i \end{bmatrix} \quad \chi = \begin{bmatrix} \chi_0 \\ \chi_i \\ \chi_0 \end{bmatrix} = \begin{bmatrix} \chi_i \\ \chi_i \end{bmatrix}$

Gradient Descent

Repeat
$$\{ \theta_0 := \theta_0 - o | \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \}$$

$$\frac{m}{\sum_{i=1}^{\infty}} \frac{\partial}{\partial \theta_0} J(\theta)$$

$$:= \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update $\hat{ heta}_0, heta_1$)

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\theta_0 := \theta_0 - Q_m^1 \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

7 New algorithm $(\underline{n} \geq 1)$: মানামুক এ+ Repeat <

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
(simultaneously undate θ for

(simultaneously update
$$\theta_j$$
 for $j=0,\ldots,n$)

$$j=0,\ldots,n$$
)
$$0.$$

$$-Q\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})x_{0}^{(i)}$$

$$\theta_0 := \theta_0 - Q_m^1 \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

 $\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$

Machine Learning

Linear Regression with multiple variables

Features and polynomial regression

Housing prices prediction

$$h_{\theta}(x) = \theta_{0} + \theta_{1} \times frontage + \theta_{2} \times depth$$

Area

 $\times = frontage \times depth$
 $h_{\theta}(x) = \Theta_{0} + \Theta_{1} \times depth$

Polynomial regression

$$\Rightarrow x_1 = (size)$$

$$\Rightarrow x_2 = (size)^2$$

$$x_3 = (size)^3$$

Choice of features

Andrew Ng