Домашняя работа по дискретной математике №1 Вариант 1

Выполнила Абдуллаева София

Исходная таблица соединений R:

1

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	2	2					2	4			
e2	2	0		4		4		4	4	4	3	
e3	2		0		4		4	4		1		
e4		4		0		4	3	3				
e5			4		0		4			1	1	
e6		4		4		0			2	3	1	4
e7			4	3	4		0	1			1	1
e8	2	4	4	3			1	0	1	4	2	4
e9	4	4				2		1	0	2		3
e10		4	1		1	3		4	2	0		
e11		3			1	1	1	2			0	4
e12						4	1	4	3		4	0

Воспользуемся алгоритмом, использующим упорядочивание вершин

- 1. Пусть j=1
- 2. Подсчитаем кол-во ненулевых элементов r_i в матрице R

V/V	e ₁	e ₂	e ₃	e ₄	e ₅	e_6	e ₇	e ₈	e ₉	e ₁₀	e ₁₁	e ₁₂	$\mathbf{r}_{\mathbf{i}}$
\mathbf{e}_{1}	0	1	1					1	1				4
$\mathbf{e_2}$	1	0		1		1		1	1	1	1		7
e ₃	1		0		1		1	1		1			5
e ₄		1		0		1	1	1					4
e_5			1		0		1			1	1		4
e ₆		1		1		0			1	1	1	1	6
e ₇			1	1	1		0	1			1	1	6
e ₈	1	1	1	1			1	0	1	1	1	1	9
e ₉	1	1				1		1	0	1		1	6
e ₁₀		1	1		1	1		1	1	0			6
e ₁₁		1			1	1	1	1			0	1	6
e ₁₂				_		1	1	1	1		1	0	5

- 3. Упорядочим вершины графа в порядке невозрастания r_i e_8 , e_2 , e_6 , e_7 , e_9 , e_{10} , e_{11} , e_3 , e_{12} , e_1 , e_4 , e_5
- 4. Красим в первый цвет вершины **e**₈, **e**₅, **e**₆ Так как остались неокрашенные вершины, удалим из матрицы R строки и столбцы, соответствующие вершинам **e**₈, **e**₅, **e**₆
- 5. Пусть j = j+1 = 2

V/V	e ₁	e ₂	e ₃	e ₄	e ₇	e ₉	e ₁₀	e ₁₁	e ₁₂	\mathbf{r}_{i}
\mathbf{e}_{1}	0	1	1			1				3
e_2	1	0		1		1	1	1		5
e ₃	1		0		1		1			3
e ₄		1		0	1					2
e ₇			1	1	0			1	1	4
e ₉	1	1				0	1		1	4
e ₁₀		1	1			1	0			3
e ₁₁		1			1			0	1	3
e ₁₂					1	1		1	0	3

- 6. Упорядочим вершины графа в порядке невозрастания r_i e_2 , e_7 , e_9 , e_1 , e_3 , e_{10} , e_{11} , e_{12} , e_4
- 7. Красим во второй цвет вершины e_2 , e_3 , e_{12} . Так как остались неокрашенные вершины, удалим строки и столбцы с этими вершинами
- 8. Пусть j = j+1 = 3

V/V	e_1	e ₄	e ₇	e ₉	e ₁₀	e ₁₁	r_{i}
e ₁	0			1			1
e ₄		0	1				1
e ₇		1	0			1	2
e ₉	1			0	1		2
e ₁₀				1	0		1
e ₁₁			1			0	1

- 9. Упорядочим вершины графа в порядке невозрастания r_{i}
 - e_7 , e_9 , e_1 , e_4 , e_{10} , e_{11}
- 10. Красим в третий цвет вершины e_7 , e_1 , e_{10} . Так как остались неокрашенные вершины, удалим строки и столбцы с этими вершинами
- 11. Пусть j = j+1=4

V/V	e ₄	e ₉	e ₁₁	r_i
e ₄	0			0
e ₉		0		0
e ₁₁			0	0

12. Упорядочим вершины графа в порядке невозрастания r_i

e9, e4, e11

- 13. Красим в четвёртый цвет вершины е9, е4, е11
- 14. Теперь все вершины окрашены, хроматическое число: 4