Solutions to Ireland, Rosen "A Classical Introduction to Modern Number Theory"

Richard Ganaye

September 17, 2019

1 Chapter 1

Ex 1.1 Let a and b be nonzero integers. We can find nonzero integers q and r such that a = qb + r where $0 \le r < b$. Prove that (a, b) = (b, r).

Proof. Notation: if a, b are integers in \mathbb{Z} , $a \wedge b$ is the non negative greatest common divisor of a, b, the generator in $\mathbb{N} = \{0, 1, 2, \ldots\}$ of the ideal $(a, b) = a\mathbb{Z} + b\mathbb{Z}$.

Let $d \in \mathbb{Z}$.

- If $d \mid a, d \mid b$, then $d \mid a qb = r$, so $d \mid b, d \mid r$.
- If $d \mid b, d \mid r$, then $d \mid qb + r = a$, so $d \mid a, d \mid b$.

$$\forall d \in \mathbb{Z}, \ (d \mid b, d \mid r) \iff (d \mid a, d \mid b).$$

If a = bq + r, the set of common divisors of a, b is equal to the set of common divisors of b, r.

As $a \wedge b$ is the smallest positive element of this set, so is $b \wedge r$, we conclude that $a \wedge b = b \wedge r$.

Ex 1.2 If $r \neq 0$, we can find q_1 and r_1 such that $b = q_1r + r_1$, with $0 \leq r_1 < r$. Show that $(a,b) = (r,r_1)$. This process can be repeated. Show that it must end in finitely many steps. Show that the last nonzero remainder must equal (a,b). The process looks like

$$a = bq + r, 0 \le r < b$$

$$b = q_1r + r_1, 0 \le r_1 < r$$

$$r = q_2r_1 + r_2, 0 \le r_2 < r_1$$

$$\vdots$$

$$r_{k-1} = q_{k+1}r_k + r_{k+1}, 0 \le r_{k+1} < r_k$$

$$r_k = q_{k+2}r_{k+1}$$

Then $r_{k+1} = (a, b)$. This process of finding (a, b) is known as the Euclidean algorithm.

Proof. The Euclidian division of b by r gives $b = q_1r + r_1, 0 \le r_1 < r$. The result of exercise 1.1 applied to the couple (b, r) shows that

$$b \wedge r = r \wedge r_1$$
.

Let $N \in \mathbb{N}$. While the remainders $r_i, i \leq N$, are not equal to 0, we can define the sequences $(q_i), (r_i)$ by

$$r_{-1} = a, r_0 = b,$$
 $r_{i-1} = q_{i+1}r_i + r_{i+1}, \ 0 \le r_{i+1} < r_i \ 0 \le i \le N$

.

If no $r_i, i \in \mathbb{N}$, is equal to 0, we can continue this construction indefinitely. So we obtain a strictly decreasing sequence $(r_i)_{i \in \mathbb{N}}$ of positive numbers: it is impossible. Therefore, there exists an index k such as $r_{k+2} = 0$, this is the end of the algorithm.

$$a = bq + r,$$
 $0 \le r < b$
 $b = q_1r + r_1,$ $0 \le r_1 < r$
 $r = q_2r_1 + r_2,$ $0 \le r_2 < r_1$
 \vdots
 $r_{k-1} = q_{k+1}r_k + r_{k+1},$ $0 \le r_{k+1} < r_k$
 $r_k = q_{k+2}r_{k+1},$ $r_{k+2} = 0$

From exercise 1, $r_{i-1} \wedge r_i = r_i \wedge r_{i+1}, 0 \leq i \leq k$, so

$$a \wedge b = b \wedge r = \dots = r_k \wedge r_{k+1} = r_{k+1} \wedge r_{k+2} = r_{k+1} \wedge 0 = r_{k+1}.$$

The last non zero remainder is the gcd of a, b.

Ex 1.3 Calculate (187, 221), (6188, 4709), (314, 159).

Proof. With direct instructions in Python, we obtain :

This gives the equalities

$$187 = 0 \times 221 + 187$$
$$221 = 1 \times 187 + 34$$
$$187 = 5 \times 34 + 17$$
$$34 = 2 \times 17 + 0$$

So $187 \land 221 = 17$.

With the same instructions, we obtain

$$6188 = 1 \times 4709 + 1479$$

$$4709 = 3 \times 1479 + 272$$

$$1479 = 5 \times 272 + 119$$

$$272 = 2 \times 119 + 34$$

$$119 = 3 \times 34 + 17$$

$$34 = 2 \times 17 + 0$$

 $6188 \wedge 4709 = 17.$ Finally

$$314 = 1 \times 159 + 155$$

$$159 = 1 \times 155 + 4$$

$$155 = 38 \times 4 + 3$$

$$4 = 1 \times 3 + 1$$

$$3 = 3 \times 1 + 0$$

 $314 \wedge 159 = 1.$

The Python script which gives the gcd is very concise:

def gcd(a,b):

Ex 1.4 Let d = (a, b). Show how one can use the Euclidean algorithm to find numbers m and n such that am + bn = d. (Hint: In Exercise 2 we have that $d = r_{k+1}$. Express r_{k+1} in terms of r_k and r_{k+1} , then in terms of r_{k-1} and r_{k-2} , etc.).

Proof. With a slight modification of the notations of exercise 2, we note the Euclid's algorithm under the form

$$r_0 = a, r_1 = b,$$
 $r_i = r_{i+1}q_{i+1} + r_{i+2},$ $0 < r_{i+2} < r_{i+1}, 0 \le i < k,$ $r_k = q_{k+1}r_{k+1}, r_{k+2} = 0$

We show by induction on i $(i \le k+1)$ the proposition

$$P(i): \exists (m_i, n_i) \in \mathbb{Z} \times \mathbb{Z}, \ r_i = am_i + bn_i.$$

• $r_0 = a = 1.a + 0.b$. Define $m_0 = 1, n_0 = 0$. We obtain $r_0 = am_0 + bn_0$, then P(0) is true.

 $r_1 = b = 0.a + 1.b$. Define $m_1 = 0, n_1 = 1$. We obtain $r_1 = am_1 + bn_1$, then P(1) is true.

• Suppose for $0 \le i < k$ the induction hypothesis P(i) et P(i+1):

$$r_i = am_i + bn_i,$$
 $m_i, n_i \in \mathbb{Z},$ $r_{i+1} = am_{i+1} + bn_{i+1},$ $m_{i+1}, n_{i+1} \in \mathbb{Z}.$

Then $r_{i+2} = r_i - r_{i+1}q_{i+1} = a(m_i - q_{i+1}m_{i+1}) + b(n_i - q_{i+1}n_{i+1}).$

If we define $m_{i+1} = m_i - q_{i+1}m_{i+1}$, $n_{i+1} = n_i - q_{i+1}n_{i+1}$, we obtain $r_{i+2} = am_{i+2} + bn_{i+2}$, $m_{i+2}, n_{i+2} \in \mathbb{Z}$, so P(i+2).

• The conclusion is that P(i) is true for all $i, 0 \le i \le k+1$, in particular $r_{k+1} = am_{k+1} + bn_{k+1}$, that is

$$a \wedge b = d = am + bn$$
,

where
$$m = m_{k+1}, n = n_{k+1} \in \mathbb{Z}$$
.

Ex 1.5 Find m and n for the pairs a and b given in Ex 1.3

Proof. From exercises 1.3, 1.4, we know that the sequences $(r_i), (m_i), (n_i)$ are given by

$$r_0 = a, r_1 = b$$

 $m_0 = 1, m_1 = 0$
 $n_0 = 0, n_1 = 1$

and for all i < k,

$$r_{i+2} = r_i - q_{i+1}r_{i+1}$$

$$m_{i+2} = m_i - q_{i+1}m_{i+1}$$

$$n_{i+2} = n_i - q_{i+1}n_{i+1}$$

and for all i

17 0 6 -13 -5 11

$$r_i = m_i a + n_i b.$$

This gives the direct instructions in Python:

```
>>> a,b = 187, 221
>>> r0,r1,m0,m1,n0,n1 = a,b,1,0,0,1
>>> q = r0//r1;
>>> q = r0//r1; r0,r1,m0,m1,n0,n1 = r1, r0 -q*r1,m1, m0 -q*m1, n1, n0 - q*n1
>>> print(r0,r1,m0,m1,n0,n1)
221 187 0 1 1 0
>>> q = r0//r1; r0,r1,m0,m1,n0,n1 = r1, r0 -q*r1,m1, m0 -q*m1, n1, n0 - q*n1
>>> print(r0,r1,m0,m1,n0,n1)
187 34 1 -1 0 1
>>> q = r0//r1; r0,r1,m0,m1,n0,n1 = r1, r0 -q*r1,m1, m0 -q*m1, n1, n0 - q*n1
>>> print(r0,r1,m0,m1,n0,n1)
34 17 -1 6 1 -5
>>> q = r0//r1; r0,r1,m0,m1,n0,n1 = r1, r0 -q*r1,m1, m0 -q*m1, n1, n0 - q*n1
>>> print(r0,r1,m0,m1,n0,n1)
```

So

$$17 = 187 \land 221 = 6 \times 187 - 5 \times 221.$$

Similarly

$$17 = 6188 \land 4709 = 121 \times 6188 - 159 \times 4709.$$
$$1 = 314 \land 159 = -40 \times 314 + 79 \times 159.$$

We obtain the same results with the following Python script:

```
def bezout(a,b):
    """input : entiers a,b
        output : tuple (x,y,d),
        (x,y) solution de ax+by = d, d = pgcd(a,b)
    """
    (r0,r1)=(a,b)
    (u0,v0) = (1,0)
    (u1,v1) = (0,1)
    while r1 != 0:
        q = r0 // r1
        (r2,u2,v2) = (r0 - q*r1,u0 - q*u1,v0 - q*v1)
        (r0,r1) = (r1,r2)
        (u0,u1) = (u1,u2)
        (v0,v1) = (v1,v2)
    return (u0,v0,r0)
```

Ex 1.6 Let $a, b, c \in \mathbb{Z}$. Show that the equation ax + by = c has solutions in integers iff (a, b)|c.

Proof. Let $d = a \wedge b$.

- If $ax + by = c, x, y \in \mathbb{Z}$, as $d \mid a, d \mid b, d \mid ax + by = c$.
- Reciprocally, if $d \mid c$, then c = dc', $c' \in \mathbb{Z}$.

From Prop. 1.3.2., $d\mathbb{Z} = a\mathbb{Z} + b\mathbb{Z}$, so d = au + bv, $u, v \in \mathbb{Z}$, and c = dc' = a(c'u) + b(c'v) = ax + by, where x = c'u, y = c'v are integers.

Conclusion:

$$\exists (x,y) \in \mathbb{Z} \times \mathbb{Z}, \ ax + by = c \iff a \wedge b \mid c.$$

Ex 1.7 Let d = (a, b) and a = da' and b = db'. Show that (a', b') = 1.

Proof. Suppose $d \neq 0$ (if d = 0, then a = b = 0, and a', b' are any numbers in \mathbb{Z} and the result may be false, so we must suppose $d \neq 0$).

As d = am + bn, $m, n \in \mathbb{Z}$, d = d(a'm + b'n), so 1 = a'm + b'n, which proves $a' \wedge b' = 1$. conclusion: if $d = a \wedge b \neq 0$, and a = da', b = db', then $a' \wedge b' = 1$.

Ex. 1.8 Let x_0 and y_0 be a solution to ax + by = c. Show that all solutions have the form $x = x_0 + t(b/d)$, $y = y_0 - t(a/d)$, where d = (a, b) and $t \in \mathbb{Z}$.

Proof. Suppose $a \neq 0, b \neq 0$.

Let x_0 and y_0 be a solution to ax + by = c.

If (x, y) is any solution of the same equation,

$$ax + by = c$$
$$ax_0 + by_0 = c,$$

then

$$a(x - x_0) = -b(y - y_0),$$

so

$$\frac{a}{d}(x-x_0) = -\frac{b}{d}(y-y_0).$$

Let a' = a/d, b' = b/d: from ex. 1.7, we know that $a' \wedge b' = 1$.

As $a'(x-x_0) = -b'(y-y_0)$, $b' \mid a'(x-x_0)$, and $b' \wedge a' = 1$, so (Gauss' Lemma : prop. 1.1.1) $b' \mid x - x_0$.

There exists $t \in \mathbb{Z}$ such that $x - x_0 = tb'$. Then $a'tb' = -b'(y - y_0)$. As $b \neq 0$, $b' \neq 0$, so $a't = -(y - y_0)$:

$$x = x_0 + t(b/d)$$
$$y = y_0 - t(a/d)$$

Reciprocally, $a(x_0 + t(b/d)) + b(y_0 - t(a/d)) = ax_0 + by_0 = c$.

Conclusion: if $a \neq 0, b \neq 0$, and $ax_0 + by_0 = c$,

$$ax + by = c \iff \exists t \in \mathbb{Z}, \ x = x_0 + t(b/d), y = y_0 - t(a/d).$$

Ex. 1.9 Suppose that $u, v \in \mathbb{Z}$ and that (u, v) = 1. If $u \mid n$ and $v \mid n$, show that $uv \mid n$. Show that this is false if $(u, v) \neq 1$.

Proof. As $u \mid n$, n = uq, $q \in \mathbb{Z}$, so $v \mid n = uq$, and $v \wedge u = 1$, so (Gauss' lemma : prop. 1.1.1), $v \mid q : q = vl$, $l \in \mathbb{Z}$, and $l = uvl : uv \mid n$.

If the case $u \land v \neq 1$, we give the counterexample $6 \mid 18, 9 \mid 18$, but $6 \times 9 \nmid 18$.

Ex. 1.10 Suppose that (u, v) = 1. Show that (u + v, u - v) is either 1 or 2.

Proof. Let $d = (u+v) \land (u-v)$. Then $d \mid u+v, d \mid u-v$, so $d \mid 2u = (u+v) + (u-v)$ and $d \mid 2v = (u+v) - (u-v)$. So $d \mid (2u) \land (2v) = 2(u \land v) = 2$. As $d \ge 0$, d = 1 or d = 2.

Ex. 1.11 *Show that* (a, a + k) | k.

Proof. Let
$$d = a \wedge (a + k)$$
. As $d \mid a, d \mid (a + k), d \mid k = (a + k) - a$. Conclusion : $a \wedge (a + k) \mid k$.

Ex. 1.12 Suppose that we take several copies of a regular polygon and try to fit them evenly about a common vertex. Prove that the only possibilities are six equilateral triangles, four squares, and three hexagons.

Proof. Let n be the number of sides of the regular polygon, m the number of sides starting from a summit in the lattice, α the measure of the exterior angle, β the measure of the interior angle (in radians) ($\alpha + \beta = \pi$).

Then $\alpha = 2\pi/n, \beta = \pi - 2\pi/n$.

 $m\beta = 2\pi, m(\pi - 2\pi/n) = 2\pi, m(1 - 2/n) = 2$, so

$$\frac{1}{m} + \frac{1}{n} = \frac{1}{2}, \qquad m > 0, n > 0.$$
 (1)

As this equation is symmetric in m, n, we may suppose first $m \leq n$.

In this case $1/m \ge 1/n$, so $2/n \le 1/2$: $n \ge 4$.

If n > 6, 1/n < 1/6, 1/m = 1/2 - 1/n > 1/2 - 1/6 = 1/3, so m < 3, $m \le 2$: m = 1 or m = 2.

If m=1, n<0: it is impossible. If m=2, 1/n=0: also impossible. Therefore $n \le 6$: $4 \le n \le 5$. If n=4, m=4. if n=5, n=10/3: impossible. if n=6, m=3. Using the symetry, the set of solutions of (1) is

$$S = \{(3,6), (6,3), (4,4)\},\$$

corresponding with the usual lattices composed of equilateral triangles, squares or hexagons.

Ex. 1.13 Let $n_1, n_2, \ldots, n_s \in \mathbb{Z}$. Define the greatest common divisor d of n_1, n_2, \ldots, n_s and prove that there exist integers m_1, m_2, \ldots, m_s such that $n_1 m_1 + n_2 m_2 \cdots + n_s m_s = d$.

Proof. Let $n_1, n_2, \ldots, n_s \in \mathbb{Z}$. The ideal of \mathbb{Z} , $(n_1, \ldots, n_s) = n_1 \mathbb{Z} + \cdots + n_s \mathbb{Z}$ is principal, so there exists an unique $d \in \mathbb{Z}$, $d \geq 0$ such that

$$n_1\mathbb{Z} + \dots + n_s\mathbb{Z} = d\mathbb{Z} \quad (d \ge 0).$$

We define

$$d = \gcd(n_1, \dots, n_s) \iff n_1 \mathbb{Z} + \dots + n_s \mathbb{Z} = d \mathbb{Z} \text{ and } d \ge 0.$$
 (2)

The characterization of the gcd is

$$d = \gcd(n_1, \dots, n_s) \iff$$

$$(i) \ d \ge 0 \tag{3}$$

$$(ii) \ d \mid n_1, \dots, d \mid n_s \tag{4}$$

$$(iii) \ \forall \delta \in \mathbb{Z}, \ (\delta \mid n_1, \dots, \delta \mid n_s) \Rightarrow \delta \mid d$$
 (5)

(\Rightarrow) Indeed, if we suppose (1), then $d \geq 0$, and $n_1 = n_1.1 + n_2.0 + \cdots + n_s.0 \in n_1\mathbb{Z} + \cdots + n_s\mathbb{Z} = d\mathbb{Z}$, so $d \mid n_1$. Similarly $d \mid n_i, 1 \leq i \leq s$ so (i)(ii) are true. if $\delta \mid n_i, 1 \leq i \leq s$, as $d = n_1m_1 + \cdots + n_sm_s, m_1, \ldots, m_s \in \mathbb{Z}$, then $\delta \mid d$.

(\Leftarrow) Suppose that d verify (i)(ii)(iii). From (ii), we see that $n_i\mathbb{Z} \subset d\mathbb{Z}, i = 1, \ldots, s$, so $n_1\mathbb{Z} + \cdots + n_s\mathbb{Z} \subset d\mathbb{Z}$.

As \mathbb{Z} is a principal ring, there exists $\delta \geq 0$ such that $n_1\mathbb{Z} + \cdots + n_s\mathbb{Z} = \delta\mathbb{Z}$. $n_i \in n_1\mathbb{Z} + \cdots + n_s\mathbb{Z}$ so $n_i \in \delta\mathbb{Z}$, $i = 1, \ldots, s : \delta \mid n_1, \ldots, \delta \mid n_s$. From (iii), we deduce $\delta \mid d$. As $\delta\mathbb{Z} \subset d\mathbb{Z}$, $d \mid \delta$, with $d \geq 0$, $\delta \geq 0$. Consequently, $d = \delta$ and $n_1\mathbb{Z} + \cdots + n_s\mathbb{Z} = d\mathbb{Z}$, $d \geq 0$, so $d = \gcd(n_1, \ldots, n_s)$.

At last, as $n_1\mathbb{Z} + \cdots + n_s\mathbb{Z} = d\mathbb{Z}$, there exist integers m_1, m_2, \dots, m_s such that $n_1m_1 + n_2m_2 + \cdots + n_sm_s = d$.

Ex. 1.14 Discuss the solvability of $a_1x_1 + a_2x_2 + \cdots + a_rx_r = c$ in integers. (Hint: Use Exercise 13 to extend the reasoning behind Exercise 6.)

Proof. Let $a_1, a_2, \ldots, a_r \in \mathbb{Z}$.

Note $gcd(a_1, a_2, ..., a_r) = a_1 \wedge a_2 \wedge \cdots \wedge a_r$. The following result generalizes Ex. 6:

$$\exists (x_1, x_2, \dots, x_r) \in \mathbb{Z}^r, \ a_1 x_1 + a_2 x_2 + \dots + a_r x_r = c \iff a_1 \land a_2 \land \dots \land a_r \mid c.$$

Let $d = a_1 \wedge a_2 \wedge \cdots \wedge a_r$.

- If $a_1x_1 + a_2x_2 + \cdots + a_rx_r = c$, as $d \mid a_1, \dots, d \mid a_r, d \mid a_1x_1 + a_2x_2 + \cdots + a_rx_r = c$.
- Reciprocally, if $d \mid c$, then $c = dc', c' \in \mathbb{Z}$.

As $d\mathbb{Z} = a_1\mathbb{Z} + a_2\mathbb{Z} + \dots + a_r\mathbb{Z}$, so $d = a_1m_1 + a_2m_2 + \dots + a_rm_r$, $m_1, m_2, \dots, m_r \in \mathbb{Z}$. $c = dc' = a_1(m_1c') + \dots + a_r(m_rc') = a_1x_1 + \dots + a_rx_r$, where $x_i = m_ic', i = 1, 2, \dots, r$. \square

Ex. 1.15 Prove that $a \in \mathbb{Z}$ is the square of another integer iff $\operatorname{ord}_p(a)$ is even for all primes p. Give a generalization.

Proof. Suppose $a = b^2, b \in \mathbb{Z}$. Then $\operatorname{ord}_p(a) = 2 \operatorname{ord}_p(b)$ is even for all primes p.

Reciprocally, suppose that $\operatorname{ord}_p(a)$ is even for all primes p. We must also suppose a > 0. Let $a = \prod_{p} p^{a(p)}$ the decomposition of a in primes. As a(p) is even, a(p) = 2b(p) for an integer b(p) function of the prime p. Let $b = \prod_{p} p^{b(p)}$. Then $a = b^2$

for an integer b(p) function of the prime p. Let $b = \prod_{p} p^{b(p)}$. Then $a = b^2$.

With a similar demonstration, we obtain the following generalization for each integer $a \in \mathbb{Z}, a > 0$:

$$a = b^n$$
 for an integer $b \in \mathbb{Z}$ iff $n \mid \operatorname{ord}_p(a)$ for all primes p .

Ex. 1.16 If (u, v) = 1 and $uv = a^2$, show that both u and v are squares.

Proof. Here $u, v \in \mathbb{N}$, where $\mathbb{N} = \{0, 1, 2, \ldots\}$.

For all primes p such that $p \mid u$, $\operatorname{ord}_p(u) + \operatorname{ord}_p(v) = 2 \operatorname{ord}_p(a)$. As $u \wedge v = 1$ and $p \mid u$, $p \nmid v$, so $\operatorname{ord}_p(v) = 0$. Consequently, $\operatorname{ord}_p(u)$ is even for all prime p such that $p \mid u$. From Exercise 1.15, we can conclude that u is a square. Similarly, v is a square.

Ex. 1.17 Prove that the square root of 2 is irrational, i.e., that there is no rational number r = a/b such that $r^2 = 2$.

Proof. Suppose there exists $r \in \mathbb{Q}$, r > 0 such that $r^2 = 2$. Then $r = a/b, a \in \mathbb{N}^*, b \in \mathbb{N}^*$. With $d = a \wedge b$, $a = da', b = db', a' \wedge b' = 1$, so $r = a'/b', a' \wedge b' = 1$, so we may suppose $r = a/b, a > 0, b > 0, a \wedge b = 1$ and $a^2 = 2b^2$.

 a^2 is even, then a is even (indeed, if a is odd, $a=2k+1, k \in \mathbb{Z}$, $a^2=4k^2+4k+1=2(2k^2+2k)+1$ is odd).

So $a = 2A, A \in \mathbb{N}$, then $4A^2 = 2b^2, 2A^2 = b^2$.

With the same reasoning, b^2 is even, then b is even : $b=2B, B\in \mathbb{N}$. $2\mid a,2\mid b,$ $2\mid a\wedge b,$ in contradiction with $a\wedge b=1.$

Conclusion: $\sqrt{2}$ is irrational.

Ex. 1.18 Prove that $\sqrt[n]{m}$ is irrational if m is not the n-th power of an integer.

Proof. Here $m \in \mathbb{N}$.

Suppose that $r = \sqrt[n]{m} \in \mathbb{Q}$. As $r \ge 0$, r = a/b, $a \ge 0$, b > 0, $a \land b = 1$, and $r^n = m$, so $a^n = mb^n$.

For all primes p, n ord_p $(a) = \operatorname{ord}_p(m) + n$ ord_p(b), so $n \mid \operatorname{ord}_p(m)$.

From Ex. 1.15, we conclude that m is a n-th power.

Conclusion: if $m \ge 0$ is not the *n*-th power of an integer, $\sqrt[n]{m}$ is irrational.

Ex. 1.19 Define the least common multiple of two integers a and b to be an integer m such that $a \mid m, b \mid m$, and m divides every common multiple of a and b. Show that such an m exists. It is determined up to sign. We shall denote it by [a, b].

Proof. As $a\mathbb{Z} \cap b\mathbb{Z}$ is an ideal of \mathbb{Z} , and \mathbb{Z} is a principal ideal domain, there exists an unique $m \geq 0$ such that $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$. So by definition,

$$m = [a, b] \iff a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z} \text{ and } m \geq 0.$$

We may note also $[a, b] = a \vee b$.

characterization of lcm:

$$m = a \lor b \iff$$

$$(i) \ m \ge 0$$

$$(ii) \ a \mid m, b \mid m$$

$$(iii) \ \forall \mu \in \mathbb{Z}, (a \mid \mu, b \mid \mu) \Rightarrow m \mid \mu$$

- (⇒) By definition, $m \ge 0$. $m \in m\mathbb{Z} = a\mathbb{Z} \cap b\mathbb{Z}$, so $a \mid m$ and $b \mid m$: (ii) is verified. If $\mu \in \mathbb{Z}$ is such that $a \mid \mu, b \mid \mu$, then $\mu \in a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$, so $m \mid \mu$: (iii) is true.
- (\Leftarrow) Suppose that m verifies (i),(ii),(iii). Let m' such that $a\mathbb{Z} \cap b\mathbb{Z} = m'\mathbb{Z}, m' \geq 0$. We show that m = m'.

As $m' \in a\mathbb{Z} \cap b\mathbb{Z}$, $a \mid m', b \mid m'$, so from (iii) $m \mid m'$. From (ii), we see that $m \in a\mathbb{Z} \cap b\mathbb{Z} = m'\mathbb{Z}$, so $m' \mid m, m \geq 0, m' \geq 0$. The conclusion is m = m' and $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}, m \geq 0$, so $m = a \vee b$.

Ex. 1.20 Prove the following:

- (a) $\operatorname{ord}_p[a, b] = \max(\operatorname{ord}_p(a), \operatorname{ord}_p(b)).$
- (b) (a,b)[a,b] = ab.
- (c) (a + b, [a, b]) = (a, b).

Proof. (a) Let $a=\varepsilon\prod_p p^{a(p)}, b=\varepsilon'\prod_p p^{b(p)}, \varepsilon, \varepsilon'=\pm 1$, and

$$m = \prod_{p} p^{\max(a(p), b(p))}.$$

Then

(i) $m \ge 0$.

- (ii) As $a(p) \leq \max(a(p), b(p))$, $p^{a(p)} \mid p^{\max(a(p), b(p))}$, so $a \mid m$. Similarly, $b \mid m$.
- (iii) If $\mu = \varepsilon'' \prod_{p} p^{c(p)}$ is a common multiple of a and b, then for all primes p, $a(p) \le a(p) = a(p)$

 $c(p), b(p) \leq c(p)$, so $\max(a(p), b(p) \leq c(p))$, so $m \mid \mu$. m verifies the characterisation of lcm:

$$m = a \lor b = \prod_{p} p^{\max(a(p), b(p))}.$$

So $\operatorname{ord}_p[a, b] = \max(\operatorname{ord}_p(a), \operatorname{ord}_p(b)).$

(b) Similarly, we prove that

$$a \wedge b = \prod_{p} p^{\min(a(p), b(p))}.$$

As $\max(a, b) + \min(a, b) = a + b$, we obtain

$$(a \lor b)(a \land b) = |ab|.$$

Second proof (without decompositions in primes):

Let $d = a \wedge b$. If d = 0, then a = b = 0 and $(a \vee b)(a \wedge b) = ab$.

Suppose now that $d \neq 0$. There exist integers a', b' such that

$$a = da', b = db', a' \wedge b' = 1.$$

Let m = da'b': $a = da' \mid m$ and $b = db' \mid m$. If μ is a common multiple of a and b, then $d \mid \mu$, and $a' \mid \mu/d$, $b' \mid \mu/d$. As $a' \land b' = 1$, $a'b' \mid \mu/d$ (see Ex.1.9). so $m = da'b' \mid \mu$.

|m| verifies the characterization of lcm (Ex. 1.19), so $a \lor b = |m| = |da'b'| = |ab|/d$. Conclusion : $(a \lor b)(a \land b) = |ab|$.

(c) Let $\delta \in \mathbb{Z}$. If $\delta \mid a, \delta \mid b$, then $\delta \mid a + b$ and $\delta \mid a \vee b$.

Reciprocally, suppose that $\delta \mid a+b, \delta \mid a \vee b$.

Let $a', b' \in \mathbb{Z}$ such that $a = da', b = db', a' \wedge b' = 1$. Then $a \vee b = da'b'$, so

$$\delta \mid d(a'+b'),$$

$$\delta \mid da'b'.$$

Multiplying the first relation by b' and a', we obtain : $\delta \mid da'b' + db'^2, \delta \mid da'^2 + da'b'$. As $\delta \mid da'b'$, we obtain :

$$\delta \mid db'^2$$

$$\delta \mid da'^2$$

As $a'^2 \wedge b'^2 = 1$, $\delta \mid d(a'^2 \wedge b'^2) = d$, so $\delta \mid a, \delta \mid b$.

The set of divisors of a, b is the same that the set of divisors of $a + b, a \vee b$, so

$$(a+b) \wedge (a \vee b) = a \wedge b.$$

Ex. 1.21 Prove that $\operatorname{ord}_p(a+b) \ge \min(\operatorname{ord}_p a, \operatorname{ord}_p b)$ with equality holding if $\operatorname{ord}_p a \ne \operatorname{ord}_p b$.

Proof. As $a \wedge b \mid a+b, \operatorname{ord}_p(a \wedge b) \leq \operatorname{ord}_p(a+b)$, so $\min(\operatorname{ord}_p(a), \operatorname{ord}_p(b)) \leq \operatorname{ord}_p(a+b)$. Suppose $\operatorname{ord}_p(a) \neq \operatorname{ord}_p(b)$, The problem being symmetric in a, b, we may suppose $\alpha = \operatorname{ord}_p(a) < \beta = \operatorname{ord}_p(b)$. So there exist $q, r \in \mathbb{Z}$ such that

$$a = p^{\alpha}q, \ p \nmid q$$

$$b = p^{\beta}r, \ p \nmid r \qquad \alpha < \beta$$

Then $a + b = p^{\alpha}(q + p^{\beta - \alpha}r)$, where $p \nmid q + p^{\beta - \alpha}r$ (as $p \mid p^{\beta - \alpha}$ and $p \nmid q$). So $\operatorname{ord}_p(a + b) = \alpha = \min(\operatorname{ord}_p(a), \operatorname{ord}_p(b))$.

Ex. 1.22 Almost all the previous exercises remain valid if instead of the ring \mathbb{Z} we consider the ring k[x]. Indeed, in most we can consider any Euclidean domain. Convince yourself of this fact. For simplicity we shall continue to work in \mathbb{Z} .

Proof. We can adapt all the preceding proofs to the Euclidean domain k[x]. The only difference is that the units in \mathbb{Z} are ± 1 , and the units in k[x] are the elements of k^* . \square

Ex. 1.23 Suppose that $a^2 + b^2 = c^2$ with $a, b, c \in \mathbb{Z}$ For example, $3^2 + 4^2 = 5^2$ and $5^2 + 12^2 = 13^2$. Assume that (a, b) = (b, c) = (c, a) = 1. Prove that there exist integers u and v such that $c - b = 2u^2$ and $c + b = 2v^2$ and (u, v) = 1 (there is no loss in generality in assuming that b and c are odd and that a is even). Consequently a = 2uv, $b = v^2 - u^2$, and $c = v^2 + u^2$. Conversely show that if u and v are given, then the three numbers a, b, and c given by these formulas satisfy $a^2 + b^2 = c^2$.

Proof. Suppose $x^2 + y^2 = z^2$, $x, y, z \in \mathbb{Z}$. Let $d = x \wedge y \wedge z$. If d = 0, then x = y = z = 0. If $d \neq 0$, and a = x/d, b = y/d, c = z/d, then $a^2 + b^2 = c^2$, with $a \wedge b \wedge c = 1$. If a prime p is such that $p \mid a, p \mid b$, then $p \mid c^2$, so $p \mid c$ (as p is a prime). Then $p \mid a \wedge b \wedge c = 1$: this is impossible, so $a \wedge b = 1$, and similarly $a \wedge c = 1$, $b \wedge c = 1$.

If a, b are odd, then $a^2 \equiv b^2 \equiv 1 \pmod 4$, so $c^2 \equiv 2 \pmod 4$. As the squares modulo 4 are 0,1, this is impossible. As $a \wedge b = 1$, a, b are not both even, so a, b are not of the same parity. Without loss of generality, we may exchange a, b so that a is even, b is odd, and then c is odd.

$$a^2 = c^2 - b^2 = (c - b)(c + b)$$
, so

$$\left(\frac{a}{2}\right)^2 = \left(\frac{c-b}{2}\right)\left(\frac{c+b}{2}\right).$$

where a/2, (c-b)/2, (c+b)/2 are integers.

If $d \mid (c-b)/2$ and $d \mid (c+b)/2$, then $d \mid c = (c+b)/2 + (c-b)/2$, and $d \mid b = (c-b)/2 - (c-b)/2$, so $d \mid a \land b = 1$. This proves

$$\left(\frac{c+b}{2}\right) \wedge \left(\frac{c-b}{2}\right) = 1.$$

Using Ex. 1.16, we see that (c+b)/2 and (c-b)/2 are squares: there exist u, v such that

$$c - b = 2u^2, c + b = 2v^2, \qquad u \wedge v = 1.$$

 $(a/2)^2=u^2v^2$, and we can choose the signs of u,v such that a=2uv. Then $b=v^2-u^2, c=v^2+u^2$. There exists $\lambda\in\mathbb{Z}$ $(\lambda=d)$ such that $x=2\lambda uv, y=\lambda(v^2-u^2), z=\lambda(v^2+u^2)$.

Conversely, if λ, u, v are any integers, $(2\lambda uv)^2 + (\lambda(v^2 - u^2)^2 = \lambda^2(4u^2v^2 + v^4 + u^4 - 2u^2v^2) = \lambda^2(v^4 + u^4 + 2u^2v^2) = (\lambda(u^2 + v^2))^2$.

Conclusion: if $x, y, z \in \mathbb{Z}$,

$$x^2 + y^2 = z^2 \iff \exists \lambda \in \mathbb{Z}, \exists (u, v) \in \mathbb{Z}^2, u \land v = 1,$$

$$\begin{cases} x = 2\lambda uv \\ y = \lambda(v^2 - u^2) \\ z = \lambda(v^2 + u^2) \end{cases} \text{ or } \begin{cases} x = \lambda(v^2 - u^2) \\ y = 2\lambda uv \\ z = \lambda(v^2 + u^2) \end{cases}$$

Ex. 1.24 Prove the identities

(a)
$$x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + \dots + y^{n-1})$$

(b) For
$$n$$
 odd, $x^n + y^n = (x+y)(x^{n-1} - x^{n-2}y + \dots + y^{n-1})$

Proof. Let R any commutative ring, and $x, y \in R$.

a) Let

$$S = \sum_{i=0}^{n} x^{n-1-i} y^i.$$

Then

$$\begin{split} xS &= \sum_{i=0}^{n} x^{n-i} y^i = x^n + \sum_{i=0}^{n-1} x^{n-i} y^i \\ yS &= \sum_{i=0}^{n-1} x^{n-1-i} y^{i+1} = \sum_{j=1}^{n} x^{n-j} y^j \qquad (j = i+1) \\ &= y^n + \sum_{i=1}^{n-1} x^{n-i} y^i. \end{split}$$

So $xS - yS = x^n - y^n$,

$$x^{n} - y^{n} = (x - y) \sum_{i=0}^{n} x^{n-1-i} y^{i} = (x - y)(x^{n-1} + x^{n-2}y + \dots + x^{n-1-i}y^{i} + \dots + y^{n-1}).$$

b) If we substitute -y by y, we obtain

$$x^{n} - (-1)^{n}y^{n} = (x+y)\sum_{i=0}^{n} (-1)^{i}x^{n-1-i}y^{i}.$$

If n is odd,

$$x^{n} + y^{n} = (x+y) \sum_{i=0}^{n} (-1)^{i} x^{n-1-i} y^{i} = (x+y)(x^{n-1} - x^{n-2}y + \dots + (-1)^{i} x^{n-1-i} y^{i} + \dots + y^{n-1}).$$

Ex. 1.25 If $a^n - 1$ is a prime, show that a = 2 and that n is a prime. Primes of the form $2^p - 1$ are called Mersenne primes. For example, $2^3 - 1 = 7$ and $2^5 - 1 = 31$. It is not known if there are infinitely many Mersenne primes.

Proof. Suppose n > 1, $a \ge 0$, and $a^n - 1$ is a prime. As $0^n - 1 = -1$, $1^n - 1 = 0$ are not primes, a > 2.

As $(a^n - 1) = (a - 1)(a^{n-1} + \dots + a^i + \dots + 1)$, a - 1 is a factor of the prime $a^n - 1$, so a - 1 = 1 or $a - 1 = a^n - 1$.

As $a \ge 2$, and n > 1, $a = a^n$ is impossible, so a = 2.

If $n \ge 2$ wasn't prime, then n = uv, 1 < u < n, 1 < v < n, and

$$2^{n} - 1 = 2^{uv} - 1 = (2^{u} - 1)(2^{u(v-1)} + \dots + 2^{ui} + \dots + 1).$$

with $1 = 2^1 - 1 < 2^u - 1 < 2^n - 1$. $2^n - 1$ has a non trivial factor : this is impossible, so n is a prime.

Conclusion: if $a^n - 1$ $(a \ge 0, n > 1)$ is a prime, then a = 2 and n is a prime.

Ex. 1.26 If $a^n + 1$ is a prime, show that a is even and that n is a power of 2. Primes of the form $2^{2^t} + 1$ are called Fermat primes. For example, $2^{2^1} + 1 = 5$ and $2^{2^2} + 1 = 17$. It is not known if there are infinitely many Fermat primes.

Proof. If $a = 1, a^n + 1$ is a prime. Suppose a > 1, and n > 1. If a was odd, $a^n + 1 > 2$ is even, so is not a prime. Consequently, if $a^n + 1$ is prime, a > 1, then a is even.

Write $n = 2^t u$, where u is odd.

If u > 1, then, from Ex. 24(b), we obtain

$$a^{n} + 1 = a^{2^{t}u} + 1 = (a^{2^{t}} + 1) \sum_{i=0}^{u-1} (-1)^{i} a^{i2^{t}}.$$

So $1 < a^{2^t} + 1 < a^n + 1$, and $a^{2^t} + 1$ is a non trivial factor of $a^n + 1$, in contradiction with the hypothesis.

Conclusion: if $a^n + 1$ is a prime (a > 1, n > 1), a is even and n is a power of 2. \square

Ex. 1.27 For all odd n show that $8 \mid n^2 - 1$. If $3 \nmid n$, show that $6 \mid n^2 - 1$.

Proof. As n is odd, write $n = 2k + 1, n \in \mathbb{Z}$. Then

$$n^2 - 1 = (2k+1)^2 - 1 = 4k^2 + 4k = 4k(k+1).$$

As k or k+1 is even, $8 \mid n^2-1$.

 $(n-1)n(n+1) = n(n^2-1)$, product of three consecutive numbers, is a multiple of 3. As $3 \nmid n$, and 3 is a prime, $3 \land n = 1$, so $3 \mid n^2 - 1$.

$$3 \nmid n \Rightarrow 3 \mid n^2 - 1.$$

(This is also a consequence of Fermat' Little Theorem.)

As n is odd, $n^2 - 1$ is even. $3 \mid n^2 - 1, 2 \mid n^2 - 1$ and $2 \land 3 = 1$, so $6 \mid n^2 - 1$.

Ex. 1.28 For all n show that $30 | n^5 - n$ and that $42 | n^7 - n$.

Proof. If we want to avoid Fermat's Little Theorem (Prop. 3.3.2. Corollary 2 P. 33), note that

$$(n-2)(n-2)n(n+1)(n+2) = n(n^2 - 1)(n^2 - 4)$$
$$= n^5 - 5n^2 + 4n$$
$$= n^5 - n + 5(-n^2 + n)$$

As the product of 5 consecutive numbers is divisible by 5,

$$5 \mid n^5 - n$$
.

Moreover,

$$2 \mid (n-1)(n+1) = n^2 - 1 \mid n^4 - 1 \mid n^5 - n$$
$$3 \mid (n-1)n(n+1) = n(n^2 - 1) \mid n(n^4 - 1) = n^5 - n$$

As 2, 3, 5 are distinct primes, $2 \times 3 \times 5 = 30 \mid n^5 - n$. Similarly,

$$(n-3)(n-2)(n-1)n(n+1)(n+2)(n+3) = n(n^2-1)(n^2-4)(n^2-9)$$

$$= n(n^4-5n^2+4)(n^2-9)$$

$$= n^7-14n^5+49n^3-36n$$

$$= n^7-n+7(-2n^5+7n^3-5n)$$

As the product of 7 consecutive numbers is divisible by 7,

$$7 | n^7 - n$$
.

Moreover

$$2 \mid (n-1)(n+1) = n^2 - 1 \mid n^6 - 1 \mid n^7 - n$$
$$3 \mid (n-1)n(n+1) = n(n^2 - 1) \mid n(n^6 - 1) = n^7 - n$$

As 2, 3, 7 are distinct primes $2 \times 3 \times 7 = 42 \mid n^7 - n$.

Ex. 1.29 Suppose that $a, b, c, d \in \mathbb{Z}$ and that (a, b) = (c, d) = 1. If (a/b) + (c/d) = an integer, show that $b = \pm d$.

Proof. If $\frac{a}{b} + \frac{c}{d} = n \in \mathbb{Z}$ $(a \wedge b = c \wedge d = 1)$, then ad + bc = nbd, so $d \mid bc, d \wedge c = 1$, which implies $d \mid b$. Similarly $b \mid d$. Then $d = \pm b$.

Ex. 1.30 Prove that $H_n = \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}$ is not an integer.

Proof. Let s such that $2^s \le n < 2^{s+1}$ $(s = \lfloor \frac{\ln n}{\ln 2} \rfloor \ge 1)$.

$$H_n = \frac{1}{2} + \dots + \frac{1}{n} = \frac{\sum_{i=2}^n a_i}{n!}, \quad \text{where } a_i = \frac{n!}{i} \in \mathbb{Z}.$$

Let $k = \operatorname{ord}_2(n!)$. We will show that $\operatorname{ord}_s(a_i)$ is minimal for $i_0 = 2^s$, where $\operatorname{ord}_2(a_{i_0}) = k - s$, and that this minimum is reached only for this index i_0 .

Indeed, each i such that $2 \le i \le n$ can be written with the form $i = 2^t q, 2 \nmid q$. Then $i = 2^t q \le n < 2^{s+1}$, so $2^t < 2^{s+1}$, t < s+1, $t \le s$, which proves

$$\operatorname{ord}_2(a_i) = k - t \ge k - s = \operatorname{ord}_2(a_{i_0}).$$

Moreover, if $\operatorname{ord}_2(a_i) = \operatorname{ord}_2(a_{i_0})$, then k - t = k - s, so s = t.

 $i=2^sq, 2 \nmid q$. If q>1, then $i\geq 2^{s+1}>n$: it's impossible. So q=1 and $i=2^s=i_0$. Using Ex 1.21, we see that

$$\operatorname{ord}_2\left(\sum_{i=2}^n a_i\right) = \operatorname{ord}_2(a_{i_0}) = k - s < k = \operatorname{ord}_2(n!).$$

So

$$H_n = \frac{2^{k-s}Q}{2^k R} = \frac{Q}{2^s R},$$

where Q, R are odd integers. H_n is a quotient of an odd integer by an even integer: H_n is never an integer.

Ex. 1.31 Show that 2 is divisible by $(1+i)^2$ in $\mathbb{Z}[i]$.

Proof. $(1+i)^2 = 1 + 2i - 1 = 2i$, so $2 = -i(1+i)^2$ is divisible by $(1+i)^2$. (As i is an unit, 2 and $(1+i)^2$ are associate.)

Ex. 1.32 For $\alpha = a + bi \in \mathbb{Z}[i]$ we defined $\lambda(\alpha) = a^2 + b^2$. From the properties of λ deduce the identity $(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$.

Proof. For all complex numbers $\alpha, \beta, |\alpha\beta| = |\alpha||\beta|$, so

$$\lambda(\alpha\beta) = \lambda(\alpha)\lambda(\beta).$$

If $\alpha = a + bi \in \mathbb{Z}[i)$, $\beta = c + di \in \mathbb{Z}[i]$, then $\alpha\beta = (ac - bd) + (ad + bc)i$, so

$$(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2.$$

Ex. 1.33 Show that $\alpha \in \mathbb{Z}[i]$ is a unit iff $\lambda(\alpha) = 1$. Deduce that 1, -1, i, and - i are the only units in $\mathbb{Z}[i]$.

Proof. Let $\alpha = a + bi \in \mathbb{Z}[i]$.

- If $\lambda(\alpha) = 1$, then $\alpha \overline{\alpha} = 1$, where $\overline{\alpha} = a bi \in \mathbb{Z}[i]$, so α is an unit.
- Reciprocally, if α is an unit, there exists $\beta \in \mathbb{Z}[i]$ such that $\alpha\beta = 1$, then $\lambda(\alpha)\lambda(\beta) = 1$, where $\lambda(\alpha), \lambda(\beta)$ are positive integers, hence $\lambda(\alpha) = 1$.

So $\alpha = a + ib$ is an unit of $\mathbb{Z}[i]$ if and only if $a^2 + b^2 = 1$. In this case, $|a|^2 \le 1$, $a \in \{0, 1, -1\}$. If $a = 0, b = \pm 1$, and if $a = \pm 1, b = 0$, so the only units of $\mathbb{Z}[i]$ are 1, i, -1, -i.

Ex. 1.34 Show that 3 is divisible by $(1 - \omega)^2$ in $\mathbb{Z}[\omega]$.

Proof. As
$$\omega^3 = 1, \overline{\omega} = \omega^2$$
, and $1 + \omega + \omega^2 = 0$, $|1 - \omega|^2 = (1 - \omega)(1 - \omega^2) = 1 + \omega^3 - \omega - \omega^2 = 3$, so $3 = (1 - \omega)(1 - \omega^2)$.

Consequently,

$$3 = (1 - \omega)(1 - \omega^2) = (1 + \omega)(1 - \omega)^2 = -\omega^2(1 - \omega)^2.$$

3 is divisible by $(1 - \omega)^2$ in $\mathbb{Z}[\omega]$ (as $-\omega^2$ is an unit, 3 and $(1 - \omega)^2$ are associated. 3 is not irreducible in $\mathbb{Z}[\omega]$).

Ex. 1.35 For $\alpha = a + b\omega \in \mathbb{Z}[\omega]$ we defined $\lambda(\alpha) = a^2 - ab + b^2$. Show that α is a unit iff $\lambda(\alpha) = 1$. Deduce that $1, -1, \omega, -\omega, \omega^2, and -\omega^2$ are the only units in $\mathbb{Z}[\omega]$.

Proof. If $\alpha = a + b\omega \in \mathbb{Z}[\omega]$, using $1 + \omega + \omega^2 = 0$ and $\overline{\omega} = \omega^2$, we obtain

$$\alpha \overline{\alpha} = (a + b\omega)(a + b\omega^2)$$

$$= a^2 + b^2 + ab(\omega + \omega^2)$$

$$= a^2 + b^2 - ab$$

$$= \lambda(\alpha)$$

Consequently, λ is a multiplicative function.

- If $\lambda(\alpha) = 1$, then $\alpha \overline{\alpha} = 1$, where $\overline{\alpha} = a + b\omega^2 = (a b) b\omega \in \mathbb{Z}[\omega]$, so α is an unit.
- Reciprocally, if α is an unit, there exists $\beta \in \mathbb{Z}[\omega]$ such that $\alpha\beta = 1$, then $\lambda(\alpha)\lambda(\beta) = 1$, where $\lambda(\alpha), \lambda(\beta)$ are positive integers, so $\lambda(\alpha) = 1$.

$$\lambda(\alpha) = 1 \iff a^2 - ab + b^2 = 1$$
$$\iff (2a - b)^2 + 3b^2 = 4$$

 $3b^2 \le 4$, so b = 0 or $b = \pm 1$.

If b = 0, then $a = \pm 1$, $\alpha = 1$ or $\alpha = -1$

If b = 1, then $(2a - 1)^2 = 1$, $2a - 1 = \pm 1$: a = 0 or a = 1, $\alpha = \omega$ or $\alpha = 1 + \omega = -\omega^2$.

If b = -1, then $(2a + 1)^2 = 1$, $2a + 1 = \pm 1$: a = 0 or a = -1, $\alpha = -\omega$ or $\alpha = -1 - \omega = \omega^2$.

So

$$\lambda(\alpha) = 1 \iff \alpha \in \{1, \omega, \omega^2, -1, -\omega, -\omega^2\}.$$

The set of units of $\mathbb{Z}[\omega]$ is the group of the roots of $x^6 - 1$.

Ex. 1.36 Define $\mathbb{Z}[\sqrt{-2}]$ as the set of all complex numbers of the form $a + b\sqrt{-2}$, where $a, b \in \mathbb{Z}$. Show that $\mathbb{Z}[\sqrt{-2}]$ is a ring. Define $\lambda(\alpha) = a^2 + 2b^2$ for $\alpha = a + b\sqrt{-2}$. Use λ to show that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.

Proof. Note $\sqrt{-2} = i\sqrt{2}$, and $A = \mathbb{Z}[\sqrt{-2}]$.

Let $\alpha = a + b\sqrt{-2}, \beta = c + d\sqrt{-2} \in A$:

- $1 = 1 + 0\sqrt{-2} \in A$.
- $\alpha \beta = (a + b\sqrt{-2}) (c + d\sqrt{-2}) = (a c) + (b d)\sqrt{-2} \in A$.
- $\alpha\beta = (a + b\sqrt{-2})(c + d\sqrt{-2}) = (ac 2bd) + (ad + bc)\sqrt{-2} \in A$.

So A is a subring of $(\mathbb{C}, +, \times)$: $\mathbb{Z}[\sqrt{-2}]$ is a ring.

Let $z = a + ib\sqrt{-2}$ any complex number. Let $a_0, b_0 \in \mathbb{Z}$ such that $|a - a_0| \le 1/2, |b - b_0| \le 1/2$ (it suffice to take for a_0 the nearest integer of $a : a_0 = \lfloor a + \frac{1}{2} \rfloor$). Let $z_0 = a_0 + ib_0\sqrt{-2}$.

As
$$\lambda(z) = z\overline{z} = a^2 + 2b^2$$
, then

$$\lambda(z-z_0) = (a-a_0)^2 + 2(b-b_0)^2 \le \frac{1}{4} + 2 \times \frac{1}{4} = \frac{3}{4} < 1.$$

Conclusion: for any $z \in \mathbb{C}$, there exists $z_0 \in A$ such that $\lambda(z - z_0) < 1$.

Let $(z_1, z_2) \in A \times A$, $z_2 \neq 0$. We apply the preceding result to the complex z_1/z_2 : there exists $q \in A$ such that $\left|\frac{z_1}{z_2} - q\right| \leq 1$. Let $r = z_1 - qz_2$. Then $z_1 = qz_2 + r$, $\lambda(r) < \lambda(z_2)$.

So
$$\mathbb{Z}[\sqrt{-2}]$$
 is a Euclidean domain.

Ex. 1.37 Show that the only units in $\mathbb{Z}[\sqrt{-2}]$ are 1 and -1.

Proof. As in Ex. 35, we prove that $\alpha = a + b\sqrt{-2}$ is an unit if and only if $\lambda(\alpha) = 1$, i.e. $a^2 + 2b^2 = 1$. As $2b^2 \le 1$, b = 0, and $a^2 = 1$. So the only units are 1 and -1.

Ex. 1.38 Suppose that $\pi \in \mathbb{Z}[i]$ and that $\lambda(\pi) = p$ is a prime in \mathbb{Z} . Show that π is a prime in $\mathbb{Z}[i]$. Show that the corresponding result holds in $\mathbb{Z}[\omega]$ and $\mathbb{Z}[\sqrt{-2}]$.

Proof. If $\pi = \alpha \beta$, where $\alpha, \beta \in \mathbb{Z}[i]$, then $p = \lambda(\pi) = \lambda(\alpha)\lambda(\beta)$. As p is a prime in \mathbb{Z} , and $\lambda(\alpha) \geq 0$, $\lambda(\beta) \geq 0$, $\lambda(\alpha) = 1$ or $\lambda(\beta) = 1$, so (Ex.1.33) α or β is an unit. Consequently, π is irreducible in $\mathbb{Z}[i]$. As $\mathbb{Z}[i]$ is a PID, π is a prime in $\mathbb{Z}[i]$ (Prop. 1.3.2 Corollary 2).

As $\mathbb{Z}[\omega]$ and $\mathbb{Z}[\sqrt{-2}]$ are Euclidean domains, the same result is true in these principal ideals domains.

Ex. 1.39 Show that in any integral domain a prime element is irreducible.

Proof. Let R an integral domain, and π a prime in R.

If $\pi = \alpha\beta$, $\alpha, \beta \in R$, a fortiori π divides $\alpha\beta$. As π is a prime, π divides α or β , say α , so there exists $\xi \in R$ such that $\alpha = \xi\pi$, so $\pi = \xi\pi\beta$, $\pi(1 - \xi\beta) = 0$. As A is an integral domain, and $\pi \neq 0$ by definition, $1 = \xi\beta$, so β is an unit. If $\pi = \alpha\beta$, α or β is an unit, so π is irreducible.

2 Chapter 2

Ex 2.1 Show that k[x], with k a finite field, has infinitely many irreducible polynomials

Proof. Suppose that the set S of irreducible polynomials is finite : $S = \{P_1, P_2, \dots, P_n\}$. Let $Q = P_1 P_2 \cdots P_n + 1$. As S contains the polynomials $x - a, a \in k$, $\deg(Q) \ge q = |k| > 1$. Thus Q is divisible by an irreducible polynomial. As S contains all the

irreducible polynomials, there exists $i, 1 \le i \le n$, such that $P_i \mid Q = P_1 P_2 \cdots P_n + 1$, so $P_i \mid 1$, and P_i is an unit, in contradiction with the irreducibility of P_i .

Conclusion: k[x] has infinitely many irreducible polynomials. As each polynomial has only a finite number of associates, there exists infinitely many monic irreducible polynomials.

Ex. 2.2. Let $p_1, p_2, \ldots, p_t \in \mathbb{Z}$ be primes and consider the set of all rational numbers r = a/b, $a, b \in \mathbb{Z}$, such that $\operatorname{ord}_{p_i} a \geq \operatorname{ord}_{p_i} b$ for $i = 1, 2, \ldots, t$. Show that this set is a ring and that up to taking associates p_1, p_2, \ldots, p_t are the only primes.

Proof. Let R the set of such rationals. Simplifying these fractions, we obtain

$$r \in R \iff \exists p \in \mathbb{Z}, \exists q \in \mathbb{Z} \setminus \{0\}, \ r = \frac{p}{q}, \ q \land p_1 p_2 \cdots p_t = 1.$$

- $1 = 1/1 \in R$.
- if $r, r' \in R$, r = p/q, r' = p'/q', with $q \wedge p_1 p_2 \cdots p_t = 1, q' \wedge p_1 p_2 \cdots p_t = 1$. then $qq' \wedge p_1 p_2 \cdots p_t = 1$, and $r r' = \frac{pq' qp'}{qq'}$, $rr' = \frac{pp'}{qq'}$, so $r r', rr' \in R$.

Thus R is a subring of \mathbb{Q} .

If $r = a/b \in R$ is an unit of R, then $b/a \in R$, so $\operatorname{ord}_{p_i} a = \operatorname{ord}_{p_i}(b)$, $i = 1, \ldots, t$. After simplification, r = p/q, with $p \wedge p_1 \cdots p_t = 1$, $q \wedge p_1 \cdots p_t = 1$, and such rationals are all units.

 $p_i, 1 \leq i \leq t$, is a prime: if $p_i \mid rs$ in R, where $r = a/b, s = c/d \in R$, then there exists $u = e/f \in R$ such that $rs = p_i u$, with b, d, e relatively prime with p_1, \ldots, p_t . Then $acf = p_i bde$. As $p_i \wedge f = 1$, p_i divides a or c in \mathbb{Z} , so p_i divides r or s in R.

If $r = a/b \in R$, with $b \wedge p_1 \cdots p_r = 1$, $a = p_1^{k_1} \cdots p_t^{k_t} v, v \in \mathbb{Z}, k_i \geq 0, i = 1, \dots, t$. So $r = up_1^{k_1} \cdots p_t^{k_t}$, where u = v/b is an unit.

Let π be any prime in R. As any element in R, $\pi = up_1^{k_1} \cdots p_t^{k_t}$, $k_i \geq 0$, u = a/b an unit. $u^{-1}\pi = p_1^{k_1} \cdots p_t^{k_t}$, so $\pi \mid p_1^{k_1} \cdots p_t^{k_t}$ (in R). As π is a prime in R, $\pi \mid p_i$ for an index $i = 1, \ldots, t$. Moreover $p_i \mid p$, so p_i and π are associate.

Conclusion: the primes in R are the associates of p_1, \ldots, p_t .

Ex. 2.3 Use the formula for $\phi(n)$ to give a proof that there are infinitely many primes. [Hint: If p_1, p_2, \ldots, p_t were all the primes, then $\phi(n) = 1$, where $n = p_1 p_1 \cdots p_t$.]

Proof. Let $\{p_1, \dots, p_t\}$ the finite set of primes, with $p_1 < p_2 < \dots < p_t$, and $n = p_1 \dots p_t$. By définition, $\phi(n)$ is the number of integers $k, 1 \le k \le n$, such that $k \wedge n = 1$. From the existence of decomposition in primes, if $k \ge 1$, $k = p_1^{k_1} \dots p_t^{k_t}$, where $k_i \ge 0, i = 1, \dots, t$. So $k \wedge n = 1$ if and only if k = 1. Thus $\phi(n) = 1$ The formula for $\phi(n)$ gives $\phi(n) = (p_1 - 1) \dots (p_t - 1) = 1$. As $p_i \ge 2$, this equation implies that $p_1 = p_2 = \dots = p_t = 2$, so t = 1, and the only prime number is 2. But 3 is also a prime number: this is a contradiction.

Conclusion: there are infinitely many prime numbers.

Ex. 2.4 If a is a nonzero integer, then for n > m show that $(a^{2^n} + 1, a^{2^m} + 1) = 1$ or 2 depending on whether a is odd or even.

Proof. Let $d = a^{2^n} + 1 \wedge a^{2^m} + 1$. Then $d \mid a^{2^n} + 1, d \mid a^{2^m} + 1$. So

$$a^{2^n} \equiv -1 \pmod{d}$$

$$a^{2^m} \equiv -1 \pmod{d}$$

As n > m, 2^{n-m} is even, so

$$-1 \equiv a^{2^n} = (a^{2^m})^{2^{n-m}} \equiv (-1)^{2^{n-m}} \equiv 1 \pmod{d}.$$

 $-1 \equiv 1 \pmod{d}$, then $d \mid 2 \pmod{2}$. Thus d = 1 or d = 2.

If a is even, $a^{2^n} + 1$ is odd, so d = 1. If a is odd, both $a^{2^n} + 1$, $a^{2^m} + 1$ are even, so d = 2.

Ex. 2.5 Use the result of Ex. 2.4 to show that there are infinitely many primes. (This proof is due to G.Polya.)

Proof. Let $F_n = 2^{2^n} + 1, n \in \mathbb{N}$. We know from Ex. 2.4 that $n \neq m \Rightarrow F_n \wedge F_m = 1$. Define p_n as the least prime divisor of F_n . If $n \neq m, F_n \wedge F_m = 1$, so $p_n \neq p_m$. The application $\varphi: \mathbb{N} \to \mathbb{N}, n \mapsto p_n$ is injective (one to one), so $\varphi(\mathbb{N})$ is an infinite set of prime numbers.

Ex. 2.6 For a rational number r let |r| be the largest integer less than or equal to r, $e.g., \lfloor \frac{1}{2} \rfloor = 0, \lfloor 2 \rfloor = 2, \ and \lfloor 3 + \frac{1}{3} \rfloor = 3. \ Prove \ \operatorname{ord}_p n! = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor \cdots$

Proof. The number N_k of multiples m of p^k which are not multiple of p^{k+1} , where $1 \le m \le n$, is

$$N_k = \left| \frac{n}{p^k} \right| - \left| \frac{n}{p^{k+1}} \right|.$$

Each of these numbers brings the contribution k to the sum $\operatorname{ord}_p n! = \sum_{k=1}^n \operatorname{ord}_p k$. Thus

$$\operatorname{ord}_{p} n! = \sum_{k \ge 1} k \left(\left\lfloor \frac{n}{p^{k}} \right\rfloor - \left\lfloor \frac{n}{p^{k+1}} \right\rfloor \right)$$

$$= \sum_{k \ge 1} k \left\lfloor \frac{n}{p^{k}} \right\rfloor - \sum_{k \ge 1} k \left\lfloor \frac{n}{p^{k+1}} \right\rfloor$$

$$= \sum_{k \ge 1} k \left\lfloor \frac{n}{p^{k}} \right\rfloor - \sum_{k \ge 2} (k-1) \left\lfloor \frac{n}{p^{k}} \right\rfloor$$

$$= \left\lfloor \frac{n}{p} \right\rfloor + \sum_{k \ge 2} \left\lfloor \frac{n}{p^{k}} \right\rfloor$$

$$= \sum_{k \ge 1} \left\lfloor \frac{n}{p^{k}} \right\rfloor$$

Note that $\left|\frac{n}{p^k}\right| = 0$ if $p^k > n$, so this sum is finite.

Ex. 2.7 Deduce from Ex. 2.6 that $\operatorname{ord}_p n! \leq n/(p-1)$ and that $\sqrt[n]{n!} \leq \prod_{p \leq n} p^{1/(p-1)}$. (The original statement $\prod_{p|n} p^{1/(p-1)}$ was modified.)

Proof.

$$\operatorname{ord}_{p} n! = \sum_{k \ge 1} \left\lfloor \frac{n}{p^k} \right\rfloor \le \sum_{k \ge 1} \frac{n}{p^k} = \frac{n}{p} \frac{1}{1 - \frac{1}{p}} = \frac{n}{p - 1}$$

The decomposition of n! in prime factors is $n! = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ where $\alpha_i = \operatorname{ord}_{p_i} n! \leq \frac{n}{p_i - 1}$, and $p_i \leq n$, $i = 1, 2, \dots, k$. Then

$$\begin{split} n! &\leq p_1^{\frac{n}{p_1-1}} p_2^{\frac{n}{p_2-1}} \cdots p_k^{\frac{n}{p_n-1}} \\ \sqrt[n]{n!} &\leq p_1^{\frac{1}{p_1-1}} p_2^{\frac{1}{p_2-1}} \cdots p_k^{\frac{1}{p_n-1}} \\ &\leq \prod_{p \leq n} p^{\frac{1}{p-1}} \end{split}$$

(the values of p in this product describe all prime numbers $p \leq n$.)

Ex. 2.8 Use Exercise 7 to show that there are infinitely many primes.

Proof. If the set \mathbb{P} of prime numbers was finite, we obtain from Ex.2.7, for all $n \geq 2$:

$$\sqrt[n]{n!} \le C = \prod_{p \in \mathbb{P}} p^{\frac{1}{p-1}},$$

where C is an absolute constant.

Yet $\lim_{n\to\infty} \sqrt[n]{n!} = +\infty$. Indeed

$$\ln(\sqrt[n]{n!}) = \frac{1}{n}(\ln 1 + \ln 2 + \dots + \ln n)$$

As ln is an increasing function,

$$\int_{i-1}^{i} \ln t \, dt \le \ln i, \ i = 2, 3, \dots, n$$

So

$$\int_{1}^{n} \ln t \, dt = \sum_{i=2}^{n} \int_{i-1}^{i} \ln t \, dt \le \sum_{i=2}^{n} \ln i = \sum_{i=1}^{n} \ln i$$

Thus

$$\ln(\sqrt[n]{n!}) \ge \frac{1}{n} \int_{1}^{n} \ln t \, dt = \frac{1}{n} (n \ln n - n + 1) = \ln n - 1 + \frac{1}{n}$$

As $\lim_{n \to \infty} \ln n - 1 + \frac{1}{n} = +\infty$, $\lim_{n \to \infty} \ln(\sqrt[n]{n!}) = +\infty$, so $\lim_{n \to \infty} \sqrt[n]{n!} = +\infty$.

So there exists n such that $\sqrt[n]{n!} \ge C$: this is a contradiction. \mathbb{P} is an infinite set. \square

Ex. 2.9 A function on the integers is said to be multiplicative if f(ab) = f(a)f(b). whenever (a,b) = 1. Show that a multiplicative function is completely determined by its value on prime powers.

Proof. Let the decomposition of n in prime factors be $n=p_1^{k_1}\cdots p_t^{k_t}, p_1<\cdots< p_t$. As $p_i^{k_i}\wedge p_j^{k_j}=1$ for $i\neq j,\ i,j=1,\ldots,t,$

$$f(n) = f(p_1^{k_1} \cdots p_t^{k_t}) = f(p_1^{k_1}) \cdots f(p_t^{k_t})$$

(by induction on the number of prime factors.)

So f(n) is completely determined by its value on prime powers.

Ex. 2.10 If f(n) is a multiplicative function, show that the function $g(n) = \sum_{d|n} f(d)$ is also multiplicative.

Proof. If $n \wedge m = 1$,

$$g(nm) = \sum_{\delta|nm} f(\delta)$$
$$= \sum_{d|n,d'|m} f(dd')$$

Actually, if $d \mid n, d' \mid m$, so $\delta = dd' \mid nm$, and reciprocally, if $\delta \mid nm$, as $n \land m = 1$, there exist d, d' such that $d \mid n, d' \mid m$, and $\delta = dd'$.

If $d \mid n, d' \mid m$, with $n \wedge m = 1$, then $d \wedge d' = 1$, so

$$g(nm) = \sum_{d|n} \sum_{d'|m} f(d)f(d')$$
$$= \sum_{d|n} f(d) \sum_{d'|m} f(d')$$
$$= g(n)g(m)$$

g is a multiplicative function.

Ex. 2.11 Show that $\phi(n) = n \sum_{d|n} \mu(d)/d$ by first proving that $\mu(d)/d$ is multiplicative and then using Ex. 2.9 and 2.10.

Proof. Let's verify that μ is a multiplicative function.

If $n \wedge m = 1$, then $n = p_1^{a_1} \cdots p_l^{a_l}$, $m = q_1^{b_1} \cdots q_r^{b_r}$, where $p_1, \dots, p_l, q_1, \dots q_r$ are distinct primes. Then the decomposition in prime factors of nm is $nm = p_1^{a_1} \cdots p_l^{a_l} q_1^{b_1} \cdots q_r^{b_r}$. If one of the a_i or one of the b_j is greater than 1, then $\mu(nm) = 0 = \mu(n)\mu(m)$. Otherwise, $n = p_1 \cdots p_l, m = q_1 \cdots q_r, nm = p_1 \cdots p_l q_1 \cdots q_r$, and $\mu(nm) = (-1)^{l+r} = (-1)^l (-1)^r = \mu(n)\mu(m)$. So

$$\frac{\mu(nm)}{nm} = \frac{\mu(n)}{n} \frac{\mu(m)}{m}.$$

that is, $n \mapsto \frac{\mu(n)}{n}$ is a multiplicative function.

From Ex.2.10, $n \mapsto \sum_{d|n} \frac{\mu(d)}{d}$ is also a multiplicative function, and so is ψ , where ψ is defined by

$$\psi(n) = n \sum_{d|n} \frac{\mu(d)}{d}.$$

To verify the equality $\phi = \psi$, it is sufficient from Ex. 2.9 to verify $\phi(p^k) = \psi(p^k)$ for all prime powers $p^k, k \ge 1$ ($\phi(1) = \psi(1) = 1$).

$$\psi(p^k) = p^k \sum_{d|p^k} \frac{\mu(p^k)}{p^k}$$
$$= p^k \left(\frac{\mu(1)}{1} + \frac{\mu(p)}{p}\right)$$

(The other terms are null.)

So

$$\psi(p^k) = p^k \left(1 - \frac{1}{p}\right) = p^k - p^{k-1} = \phi(p^k).$$

Thus $\phi = \psi$: for all $n \geq 1$,

$$\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d}.$$

Ex. 2.12 Find formulas for $\sum_{d|n} \mu(d)\phi(d)$, $\sum_{d|n} \mu(d)^2\phi(d)^2$, and $\sum_{d|n} \mu(d)/\phi(d)$.

Proof. As μ, ϕ are multiplicative, so are $\mu\phi, \mu^2\phi^2, \mu/\phi$. We deduce from Ex. 2.10 that the three following functions F, G, H are multiplicative, defined by

$$F(n) = \sum_{d|n} \mu(d)\phi(d), G(n) = \sum_{d|n} \mu(d)^2 \phi(d)^2, H(n) = \sum_{d|n} \mu(d)/\phi(d),$$

so it is sufficient to compute their values on prime powers $p^k, k \geq 1$.

$$F(p^k) = \sum_{i=0}^k \mu(p^i)\phi(p^i)$$

= $\phi(1) - \phi(p) = 1 - (p-1) = 2 - p$

So $F(n) = \sum_{p|n} (2-p)$. Similarly,

$$G(p^k) = \sum_{i=0}^k \mu(p^i)^2 \phi(p^i)^2$$

= $\phi(1)^2 + \phi(p)^2 = 1 + (p-1)^2 = p^2 - 2p + 2$

$$\begin{split} H(p^k) &= \sum_{i=0}^k \mu(p^i)/\phi(p^i) \\ &= 1/\phi(1) - 1/\phi(p) = 1 - 1/(p-1) = (p-2)/(p-1) \end{split}$$

Ex. 2.13 Let $\sigma_k(n) = \sum_{d|n} d^k$. Show that $\sigma_k(n)$ is multiplicative and find a formula for it.

Proof. As $n \mapsto n^k$ is multiplicative, then so is σ_k (Ex. 2.10).

• Suppose $k \neq 0$.

If $n = p^{\alpha}$ is a prime power $(\alpha \ge 1)$,

$$\sigma_k(p^{\alpha}) = \sum_{i=0}^{\alpha} p^{ik}$$
$$= \frac{p^{(\alpha+1)k} - 1}{p^k - 1}$$

• if k = 0, $\sigma_0(n)$ is the number of divisors of n.

$$\sigma_0(p^{\alpha}) = \sum_{i=0}^{\alpha} 1$$
$$= \alpha + 1$$

Conclusion: if $n = p_1^{\alpha_1} \cdots p_t^{\alpha_t}$ is the decomposition of n in prime factors, then

$$\sigma_0(n) = (\alpha_1 + 1) \cdots (\alpha_t + 1),$$

$$\sigma_k(n) = \prod_{i=0}^t \frac{p_i^{(\alpha_i + 1)k} - 1}{p_i^k - 1} \ (k \neq 0).$$

Ex. 2.14 If f(n) is multiplicative, show that $h(n) = \sum_{d|n} \mu(n/d) f(d)$ is also multiplicative.

Proof. We show first that the Dirichlet product $f \circ g$ of two multiplicative functions f, g is multiplicative. Suppose that $n \wedge m = 1$. If $d \mid n, d' \mid m$, so $\delta = dd' \mid nm$, and reciprocally, if $\delta \mid nm$, as $n \wedge m = 1$, there exist d, d' such that $d \mid n, d' \mid m$, and $\delta = dd'$. Thus

$$(f \circ g)(nm) = \sum_{\delta \mid nm} f(\delta)g\left(\frac{m}{\delta}\right)$$

$$= \sum_{d \mid n, d' \mid m} f(dd')g\left(\frac{nm}{dd'}\right)$$

$$= \sum_{d \mid n} \sum_{d' \mid m} f(d)f(d')g\left(\frac{n}{d}\right)g\left(\frac{m}{d'}\right)$$

$$= \sum_{d \mid n} f(d)g\left(\frac{n}{d}\right) \sum_{d' \mid m} f(d')g\left(\frac{m}{d'}\right)$$

$$= (f \circ g)(n)(f \circ g)(m)$$

Applying this result with $g = \mu$, we obtain that $n \mapsto h(n) = \sum_{d|n} \mu(n/d) f(d)$ is multiplicative, if f is multiplicative.

Ex. 2.15 Show that

- (a) $\sum_{d|n} \mu(n/d)\nu(d) = 1$ for all n.
- (b) $\sum_{d|n} \mu(n/d)\sigma(d) = n$ for all n.

Proof. Here $\nu = \sigma_0, \sigma = \sigma_1$.

(a) From the Möbius Inversion Theorem, as $\nu(n) = \sum_{d|n} 1 = \sum_{d|n} I(d)$, where I(n) = 1 for all $n \ge 1$,

$$1 = I(n) = \sum_{d|n} \mu(n/d)\nu(d).$$

(b) From the same theorem, as $\sigma(n) = \sum_{d|n} d = \sum_{d|n} \operatorname{Id}(d)$, where $\operatorname{Id}(n) = n$ for all $n \ge 1$,

$$n = \operatorname{Id}(n) = \sum_{d|n} \mu(n/d)\sigma(d).$$

Ex. 2.16 Show that $\nu(n)$ is odd iff n is a square.

Proof. • If $n = a^2$ is a square, where $a = p_1^{k_1} \cdots p_t^{k_t}$, then $\nu(n) = (2k_1 + 1) \cdots (2k_t + 1)$ is odd.

• Reciprocally, if $n=q_1^{l_1}\cdots q_r^{l_r}$ is odd, then $(l_1+1)\cdots (l_r+1)$ is odd. So each l_i+1 is odd, and then l_i is even, for $i=1,2,\ldots,r$: n is a square.

Ex. 2.17 Show that $\sigma(n)$ is odd iff n is a square or twice a square.

Proof. • Note that for all $r \ge 0$, $\sigma(2^r) = 1 + 2 + 2^2 + \dots + 2^r = 2^{r+1} - 1$ is always odd. If $p \ne 2$, $\sigma(p^{2k}) = 1 + p + p^2 + \dots + p^{2k}$ is a sum of 2k + 1 odd numbers, so is odd. So if $n = a^2$, or $n = 2a^2$, $a \in \mathbb{Z}$, $\sigma(n)$ is odd.

• Reciprocally, suppose that $\sigma(n)$ is odd, where $n = p_1^{k_1} p_2^{k_2} \cdots p_t^{k_t}$, with $p_1 = 2 < p_2 < \cdots < p_t$. Then

$$\sigma(n) = (2^{k_1+1} - 1) \frac{p_2^{k_2+1} - 1}{p_2 - 1} \cdots \frac{p_t^{k_t+1} - 1}{p_t - 1}$$

is odd. Then each $\frac{p_i^{k_i+1}-1}{p_i-1}=1+p_i+\cdots+p_i^{k_i}\ (i=2,\cdots,t)$ is odd. As each $p_i^j, j=0,\ldots,k_i$ is odd, the number of terms k_i+1 is odd, so k_i is even $(i=2,\ldots,t)$. Thus n is a square, or twice a square.

Ex. 2.18 Prove that $\phi(n)\phi(m) = \phi((n,m))\phi([n,m])$.

Proof. Let p_1, \dots, p_r the common prime factors of n and m.

$$n = p_1^{\alpha_1} \cdots p_r^{\alpha_r} q_1^{\lambda_1} \cdots q_s^{\lambda_s}$$
$$m = p_1^{\beta_1} \cdots p_r^{\beta_r} s_1^{\mu_1} \cdots s_t^{\mu_t}$$

where $\alpha_i, \beta_i, \lambda_j, \mu_k \in \mathbb{N}^*$, $1 \le i \le r, 1 \le j \le s, 1 \le k \le t$ (the formula $\phi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$ is not valid if $\alpha = 0$). Then

$$n \wedge m = p_1^{\gamma_1} \cdots p_r^{\gamma_r} \ n \vee m = p_1^{\beta_1} \cdots p_r^{\beta_r} q_1^{\lambda_1} \cdots q_s^{\lambda_s} s_1^{\mu_1} \cdots s_t^{\mu_t},$$

where $\gamma_i = \min(\alpha_i, \beta_i), \delta_i = \max(\alpha_i, \beta_i) \ (\gamma_i \ge 1, \delta_i \ge 1), 1 \le i \le r$. Then

$$\phi(n \wedge m) = \prod_{i=1}^{r} (p_i^{\gamma_i} - p_i^{\gamma_i - 1})$$

$$\phi(n \vee m) = \prod_{i=1}^{r} (p_i^{\delta_i} - p_i^{\delta_i - 1}) \prod_{i=1}^{s} (q_i^{\lambda_i} - q_i^{\lambda_i - 1}) \prod_{i=1}^{t} (s_i^{\mu_i} - s_i^{\mu_i - 1})$$

As $\alpha_i + \beta_i = \min(\alpha_i, \beta_i) + \max(\alpha_i, \beta_i) = \gamma_i + \delta_i, 1 \le i \le r$, then

$$\begin{split} \phi(n)\phi(m) &= \prod_{i=1}^{r} (p_{i}^{\alpha_{i}} - p_{i}^{\alpha_{i}-1}) \prod_{i=1}^{s} (q_{i}^{\lambda_{i}} - q_{i}^{\lambda_{i}-1}) \prod_{i=1}^{r} (p_{i}^{\beta_{i}} - p_{i}^{\beta_{i}-1}) \prod_{i=1}^{t} (s_{i}^{\mu_{i}} - s_{i}^{\mu_{i}-1}) \\ &= \prod_{i=1}^{r} \left[p_{i}^{\alpha_{i}+\beta_{i}} \left(1 - \frac{1}{p_{i}} \right)^{2} \right] \prod_{i=1}^{s} (q_{i}^{\lambda_{i}} - q_{i}^{\lambda_{i}-1}) \prod_{i=1}^{t} (s_{i}^{\mu_{i}} - s_{i}^{\mu_{i}-1}) \\ &= \prod_{i=1}^{r} \left[p_{i}^{\gamma_{i}+\delta_{i}} \left(1 - \frac{1}{p_{i}} \right)^{2} \right] \prod_{i=1}^{s} (q_{i}^{\lambda_{i}} - q_{i}^{\lambda_{i}-1}) \prod_{i=1}^{t} (s_{i}^{\mu_{i}} - s_{i}^{\mu_{i}-1}) \\ &= \prod_{i=1}^{r} (p_{i}^{\gamma_{i}} - p_{i}^{\gamma_{i}-1}) \prod_{i=1}^{r} (p_{i}^{\delta_{i}} - p_{i}^{\delta_{i}-1}) \prod_{i=1}^{s} (q_{i}^{\lambda_{i}} - q_{i}^{\lambda_{i}-1}) \prod_{i=1}^{t} (s_{i}^{\mu_{i}} - s_{i}^{\mu_{i}-1}) \\ &= \phi(n \land m) \phi(n \lor m) \end{split}$$

Ex. 2.19 Prove that $\phi(nm)\phi((n,m)) = (n,m)\phi(n)\phi(m)$.

Proof. With the notations of Ex. 2.18,

$$\phi(nm) = \prod_{i=1}^r p_i^{\alpha_i + \beta_i} \left(1 - \frac{1}{p_i} \right) \prod_{i=1}^s q_i^{\lambda_i} \left(1 - \frac{1}{q_i} \right) \prod_{i=1}^t s_i^{\mu_i} \left(1 - \frac{1}{s_i} \right)$$
$$\phi(n \wedge m) = \prod_{i=1}^r p_i^{\gamma_i} \left(1 - \frac{1}{p_i} \right)$$

so

$$\begin{split} (n \wedge m)\phi(n)\phi(m) &= \prod_{i=1}^{r} p_{i}^{\gamma_{i}} \prod_{i=1}^{r} \left[p_{i}^{\alpha_{i} + \beta_{i}} \left(1 - \frac{1}{p_{i}} \right)^{2} \right] \prod_{i=1}^{s} q_{i}^{\lambda_{i}} \left(1 - \frac{1}{q_{i}} \right) \prod_{i=1}^{t} s_{i}^{\mu_{i}} \left(1 - \frac{1}{s_{i}} \right) \\ &= \prod_{i=1}^{r} \left[p_{i}^{\alpha_{i} + \beta_{i} + \gamma_{i}} \left(1 - \frac{1}{p_{i}} \right)^{2} \right] \prod_{i=1}^{s} q_{i}^{\lambda_{i}} \left(1 - \frac{1}{q_{i}} \right) \prod_{i=1}^{t} s_{i}^{\mu_{i}} \left(1 - \frac{1}{s_{i}} \right) \\ &= \phi(nm)\phi(n \wedge m) \end{split}$$

Conclusion:

$$(n \wedge m)\phi(n)\phi(m) = \phi(nm)\phi(n \wedge m).$$

Ex. 2.20 Prove that $\prod_{d|n} d = n^{\nu(n)/2}$.

Proof. Let

$$n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$$

the decomposition of n in prime factors.

$$\left(\prod_{d|n} d\right)^2 = \prod_{d|n} d \prod_{d|n} d$$

$$= \prod_{d|n} d \prod_{\delta|n} \frac{n}{\delta} \qquad (\delta = n/d)$$

$$= n^{\nu(n)} \prod_{d|n} d \prod_{d|n} \frac{1}{d}$$

$$= n^{\nu(n)}$$

Conclusion:

$$\prod_{d|n} d = n^{\frac{\nu(n)}{2}}.$$

Ex. 2.21 Define $\wedge(n) = \log p$ if n is a power of p and zero otherwise. Prove that $\sum_{d|n} \mu(n/d) \log d = \wedge(n)$. [Hint: First calculate $\sum_{d|n} \wedge(d)$ and then apply the Möbius inversion formula.]

Proof.

$$\left\{ \begin{array}{rcl} \wedge(n) & = & \log p & \text{if } n = p^{\alpha}, \ \alpha \in \mathbb{N}^* \\ & = & 0 & \text{otherwise.} \end{array} \right.$$

Let $n = p_1^{\alpha_1} \cdots p_t^{\alpha_t}$ the decomposition of n in prime factors. As $\wedge(d) = 0$ for all divisors of *n*, except for $d = p_i^i, i > 0, j = 1, ...t$,

$$\sum_{d|n} \wedge (d) = \sum_{i=1}^{\alpha_1} \wedge (p_1^i) + \dots + \sum_{i=1}^{\alpha_t} \wedge (p_t^i)$$
$$= \alpha_1 \log p_1 + \dots + \alpha_t \log p_t$$
$$= \log n$$

By Möbius Inversion Theorem,

$$\wedge(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \log d.$$

Ex. 2.22 Show that the sum of all the integers t such that $1 \le t \le n$ and (t,n) = 1 is $\frac{1}{2}n\phi(n)$.

Proof. Suppose n>1 (the formula is false if n=1). Let $S=\sum\limits_{1\leq t\leq n,\ t\wedge n=1}t=\sum\limits_{1\leq t\leq n-1,\ t\wedge n=1}t.$

Let
$$S = \sum_{1 \le t \le n, \ t \land n=1} t = \sum_{1 \le t \le n-1, \ t \land n=1} t$$

Using the symmetry $t \mapsto n - t$, as $t \wedge n = 1 \iff (n - t) \wedge n = 1$, we obtain

$$\begin{split} 2S &= \sum_{1 \leq t \leq n-1, \ t \wedge n=1} t + \sum_{1 \leq t \leq n-1, \ t \wedge n=1} t \\ &= \sum_{1 \leq t \leq n-1, \ t \wedge n=1} t + \sum_{1 \leq s \leq n-1, \ (n-s) \wedge n=1} n - s \qquad (s = n-t) \\ &= \sum_{1 \leq t \leq n-1, \ t \wedge n=1} t + \sum_{1 \leq t \leq n-1, \ (n-t) \wedge n=1} n - t \\ &= \sum_{1 \leq t \leq n-1, \ t \wedge n=1} t + \sum_{1 \leq t \leq n-1, \ t \wedge n=1} n - t \\ &= \sum_{1 \leq t \leq n-1, \ t \wedge n=1} n \\ &= n \operatorname{Card}\{t \in \mathbb{N} \mid 1 \leq t \leq n-1, t \wedge n=1\} \\ &= n\phi(n) \end{split}$$

Conclusion:

$$\forall n \in \mathbb{N}^*, \sum_{1 < t < n, \ t \land n = 1} t = \frac{1}{2} n \phi(n).$$

(See another interesting proof in Adam Michalik's paper.)

Ex. 2.23 Let $f(x) \in \mathbb{Z}[x]$ and let $\psi(n)$ be the number of f(j), j = 1, 2, ..., n, such that (f(j), n) = 1. Show that $\psi(n)$ is multiplicative and that $\psi(p^t) = p^{t-1}\psi(p)$. Conclude that $\psi(n) = n \prod_{p|n} \psi(p)/p$.

Proof. My interpretation of this statement is that $\psi(n)$ is the number of j, j = 1, 2, ..., n, such that (f(j), n) = 1 (if f is not one to one, we may obtain a different value).

Let $A_n = \{j \in \mathbb{Z}, 1 \le j \le n \mid f(j) \land n = 1\}$: then $\psi(n) = |A_n|$. If $f(x) = \sum_{k=0}^{d} a_k x^k$, note $f_n(x) \in (\mathbb{Z}/n\mathbb{Z})[x]$ the polynomial $f_n(x) = \sum_{k=0}^{n} [a_k]_n x^k$ (here, we represent the class of $j \in \mathbb{Z}$ in $\mathbb{Z}/n\mathbb{Z}$ by $[j]_n$). We can write without inconvenient $f = f_n$.

Let $B_n = \{a \in \mathbb{Z}/n\mathbb{Z} \mid f(a) \in (\mathbb{Z}/n\mathbb{Z})^*\}$, where $(\mathbb{Z}/n\mathbb{Z})^*$ is the group of invertible elements of $\mathbb{Z}/n\mathbb{Z}$.

Then $u: A_n \to B_n, j \mapsto [j]_n$ is a bijection.

Indeed u is well defined: if $j \in A_n$, $f(j) \wedge n = 1$, so $f([j]_n) = [f(j)]_n \in (\mathbb{Z}/n\mathbb{Z})^*$.

u is injective: $[j]_n = [k]_n$ with $1 \le j \le n, 1 \le k \le n$ implies j = k.

u is surjective: if $a \in \mathbb{Z}/n/Z$ verifies $f(a) \in (\mathbb{Z}/n\mathbb{Z})^*$, let j the unique representative of a such that $1 \leq j \leq n$. Then $f(j) \wedge n = 1$, so u(j) = a.

Thus

$$\psi(n) = |B_n|$$
, where $B_n = \{a \in \mathbb{Z}/n\mathbb{Z} \mid f(a) \in (\mathbb{Z}/n\mathbb{Z})^*\}.$

Suppose $n \wedge m = 1$. Let

$$\varphi: \left\{ \begin{array}{ccc} B_{nm} & \to & B_n \times B_m \\ [j]_{nm} & \mapsto & ([j]_n, [j]_m) \end{array} \right.$$

- φ is well defined : $[j]_{nm} = [k]_{nm} \Rightarrow j \equiv k \pmod{nm} \Rightarrow (j \equiv k \pmod{n}, j \equiv k \pmod{m}) \Rightarrow ([j]_n, [j]_m) = ([k]_n, [k]_m).$
- φ is injective: if $\varphi([j]_{nm}) = \varphi([k]_{nm})$, then $[j]_n = [k]_n$, $[j]_m = [k]_m$, so $n \mid j-k, m \mid j-k$. As $n \land m = 1, nm \mid j-k$ so $[j]_{nm} = [k]_{nm}$.

• φ is surjective: if $(a,b) \in B_n \times B_m$, there exist $j,k \in \mathbb{Z}, 1 \leq j \leq n, 1 \leq j \leq m$, such that $a = [j]_n, b = [k]_n$. From the Chinese Remainder Theorem, there exists $i \in$ $\mathbb{Z}, 1 \leq i \leq n$, such that $i \equiv j \pmod{n}, i \equiv k \pmod{m}$. Then $\varphi([i]_{nm}) = ([i]_n, [i]_m) = ([i]_n, [i]_m)$ $([j]_n, [k]_m) = (a, b).$

Finally, $\psi(nm) = |B_{nm}| = |B_n| |B_m| = \psi(n)\psi(m)$, if $n \wedge m = 1$: ψ is a multiplicative function.

The interval $I = [1, p^t]$ is the disjoint reunion of the p^{t-1} intervals $I_k = [kp+1, (k+1)p]$ for $k = 0, 1, \dots, p^{t-1} - 1$, so $\psi(p^t) = \sum_{k=0}^{p^{t-1}-1} \operatorname{Card} C_k$, where $C_k = \{j \in I_k | f(j) \land p^t = 1\}$ $1\} = \{ j \in I_k | f(j) \land p = 1 \}.$

As $f(j) \wedge p = 1 \iff f(j-kp) \wedge p = 1$, the application $v: C_k \to C_0, j \mapsto j-kp$ is well defined and is bijective, so $|C_k| = |C_0| = \psi(p)$. Thus $\psi(p^t) = p^{t-1} \operatorname{Card} I_0 = p^{t-1} \psi(p)$:

$$\psi(p^t) = p^{t-1}\psi(p).$$

If $n = \prod_{p|n} p^{t(p)}$, then

$$\psi(n) = \prod_{p|n} \psi(p^{t(p)})$$

$$= \prod_{p|n} p^{t(p)-1} \psi(p)$$

$$= n \prod_{p|n} \frac{\psi(p)}{p}$$

Ex. 2.24 Supply the details to the proof of Theorem 3.

As Adam Michalik, I suppose that there is a misprint, we must prove Theorem 4: Let k a finite field with q elements.

 $\sum q^{-\deg p(x)}$ diverges, where the sum is over all monic irreducible p(x) in k[x].

Proof. Notations:

 \mathcal{P} : set of all monic polynomials p in k[x].

 \mathcal{P}_n : set of all monic polynomials p in k[x] with $\deg(p) \leq n$.

 \mathcal{M} : set of all monic irreducible polynomials p in k[x]. We must prove that $\sum_{p \in \mathcal{M}} q^{-\deg p(x)}$ diverges.

• $\sum_{f \in \mathcal{D}} q^{-\deg f}$ diverges :

$$\sum_{f \in \mathcal{P}_n} \frac{1}{q^{\deg f}} = \sum_{d=0}^n \sum_{\deg(f)=d} \frac{1}{q^d}$$

$$= \sum_{d=0}^n \frac{1}{q^d} \operatorname{Card} \{ f \in \mathcal{P} \mid \deg(f) = d \}$$

$$= \sum_{d=0}^n \frac{1}{q^d} q^d = n + 1.$$

So $\sum_{f \in \mathcal{D}} q^{-\deg f}$ diverges.

• $\sum_{f \in \mathcal{P}} q^{-2 \deg f}$ converges :

$$\begin{split} \sum_{f \in \mathcal{P}_n} q^{-2\deg(f)} &= \sum_{d=0}^n \sum_{\deg(f)=d} \frac{1}{q^{2d}} \\ &= \sum_{d=0}^n \frac{1}{q^{2d}} \operatorname{Card} \{ f \in \mathcal{P} \mid \deg(f) = d \} \\ &= \sum_{d=0}^n \frac{1}{q^d} \\ &\leq \frac{1}{1 - \frac{1}{q}} \end{split}$$

As any finite subset of \mathcal{P} is included in some \mathcal{P}_n , $\sum_{f \in \mathcal{P}} q^{-2 \deg f}$ converges.

• $\sum q^{-\deg p(x)}$ diverges :

Let $\mathcal{P}_n = \{p_1, p_2, \dots, p_{l(n)}\}$ the set of all monic irreducible polynomials such that $\deg p_i \leq n$. Let

$$\lambda(n) = \prod_{i=1}^{l(n)} \frac{1}{1 - \frac{1}{q^{\deg(p_i)}}}.$$

For simplicity, we write l = l(n) for a fixed $n \in \mathbb{N}$. Then

$$\lambda(n) = \prod_{i=1}^{l} \sum_{a_i=0}^{\infty} \frac{1}{q^{a_i \deg p_i}}$$

$$= \left(1 + \frac{1}{q^{\deg p_1}} + \frac{1}{q^{\deg p_1^2}} + \cdots \right) \times \cdots \times \left(1 + \frac{1}{q^{\deg p_l}} + \frac{1}{q^{\deg p_l^2}} + \cdots \right)$$

$$= \sum_{\substack{(a_1, \dots, a_i) \in \mathbb{N}^l \\ q^{\deg(p_1^{a_1} \dots p_l^{a_l})}}} \frac{1}{q^{\deg(p_1^{a_1} \dots p_l^{a_l})}}$$

Since the monic prime factors of any polynomial $p \in \mathcal{P}_n$ are in \mathcal{P}_n , the decomposition of p is $p = p_1^{a_1} \cdots p_l^{a_l}$, so

$$\lambda(n) \ge \sum_{p \in \mathcal{P}_n} \frac{1}{q^{\deg p}} = n + 1.$$

So $\lim_{n\to\infty}\lambda(n)=\infty$: this is another proof that there exist infinitely many monic irreducible polynomials in k[x] (cf Ex. 2.1).

$$\log \lambda(n) = -\sum_{i=1}^{l(n)} \log \left(1 - \frac{1}{q^{\deg p_i}} \right)$$

$$= \sum_{i=1}^{l(n)} \sum_{m=1}^{\infty} \frac{1}{mq^{m \deg p_i}}$$

$$= \frac{1}{q^{\deg p_1}} + \dots + \frac{1}{q^{\deg p_{l(n)}}} + \sum_{i=1}^{l(n)} \sum_{m=2}^{\infty} \frac{1}{mq^{m \deg p_i}}$$

Yet

$$\sum_{m=2}^{\infty} \frac{1}{mq^{m \deg p_{i}}} \le \sum_{m=2}^{\infty} \frac{1}{q^{m \deg p_{i}}}$$

$$= \frac{1}{q^{2 \deg p_{i}}} \frac{1}{1 - \frac{1}{q^{\deg p_{i}}}}$$

$$= \frac{1}{q^{2 \deg p_{i}} - q^{\deg p_{i}}} \le \frac{2}{q^{2 \deg p_{i}}}$$

(the last inequality is equivalent to $2 \leq q^{\deg p_i}$). So

$$\log \lambda(n) \le \frac{1}{q^{\deg p_1}} + \dots + \frac{1}{q^{\deg p_{l(n)}}} + 2\left(\frac{1}{q^{2\deg p_1}} + \dots + \frac{1}{q^{2\deg p_{l(n)}}}\right).$$

As $\frac{1}{q^{2 \deg p_1}} + \dots + \frac{1}{q^{2 \deg p_{l(n)}}}$ is less than the constant $\sum_{f \in \mathcal{P}} q^{-2 \deg f}$, if $\sum_{p \in \mathcal{M}} q^{-\deg p(x)}$ converges, then $\log \lambda(n) \leq C$, where C is a constant, so $\lambda(n) \leq e^{C}$ for all $n \in \mathbb{N}$, in

contradiction with
$$\lim_{n\to\infty} \lambda(n) = \infty$$
.
Conclusion: $\sum_{p\in\mathcal{M}} q^{-\deg p(x)}$ diverges.

Ex. 2.25 Consider the function $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$. ζ is called the Riemann zeta function. It converges for s > 1. Prove the formal identity (Euler's identity)

$$\zeta(s) = \prod_{p} (1 - 1/p^s)^{-1}.$$

Proof. We prove this equality, not only formally, but for all complex value s such that Re(s) > 1.

Let $s \in \mathbb{C}$ and $f(n) = \frac{1}{n^s}$, $n \in \mathbb{N}^*$. f is completely multiplicative : f(mn) = f(m)f(n) for $m, n \in \mathbb{N}^*$.

Moreover $\sum_{n=1}^{\infty} f(n)$ is absolutely convergent for Re(s) > 1. Indeed, If $s = u + iv, u, v \in \mathbb{R}$, $|f(n)| = |n^{-s}| = |e^{-s\log(n)}| = |e^{-u\log(n)}e^{-iv\log(n)}| = e^{-u\log(n)} = \frac{1}{n^u}$, so $\sum_{n=1}^{\infty} |f(n)| = 1/n^u \text{ converges if } u = \text{Re}(s) > 1.$

With these properties of f (f multiplicative and $\sum_{n=1}^{\infty} f(n)$ absolutely convergent), we will show that

$$\sum_{n=1}^{\infty} f(n) = \prod_{p} (1 + f(p) + f(p^{2}) + \cdots).$$

Let $S^* = \sum_{n=1}^{\infty} |f(n)| < \infty$, and $S = \sum_{n=1}^{\infty} f(n) \in \mathbb{C}$. For each prime number $p, \sum_{k=1}^{\infty} |f(p^k)|$ converges (this sum is less than S^*), so $\sum_{k=0}^{\infty} f(p^k)$ converges absolutely. Thus, for $x \in \mathbb{R}$, the two finite products

$$P(x) = \prod_{p \le x} \sum_{k=0}^{\infty} f(p^k), \qquad P^*(x) = \prod_{p \le x} \sum_{k=0}^{\infty} |f(p^k)|$$

are well defined.

If p,q are two prime numbers, as $\sum_{i=0}^{\infty} f(p^i)$, $\sum_{j=0}^{\infty} f(q^j)$ are absolutely convergent, $(f(p^i)f(q^j))_{(i,j)\in\mathbb{N}^2}$ is sommable, so the sum of these elements can be arranged in any order:

$$\sum_{i=0}^{\infty} f(p^i) \sum_{k=0}^{\infty} f(q^k) = \sum_{(i,j) \in \mathbb{N}^2} f(p^i) f(q^j) = \sum_{(i,j) \in \mathbb{N}^2} f(p^i q^j).$$

If p_1, \dots, p_t are all the prime $p \leq x$, repeating t times these products, we obtain

$$P(x) = \prod_{p \le x} \sum_{k=0}^{\infty} f(p^k)$$

$$= \sum_{i_1=0}^{\infty} f(p_1^{i_1}) \cdots \sum_{i_t=0}^{\infty} f(p_t^{i_t})$$

$$= \sum_{(i_1, \dots, i_k) \in \mathbb{N}^k} f(p_1^{i_1} \cdots p_t^{i_t})$$

$$= \sum_{n \in \Lambda} f(n),$$

where Δ is the set of integers $n \in \mathbb{N}^*$ whose prime factors are not greater than x. Let $\overline{\Delta} = \mathbb{N}^* \setminus \Delta$: this is the set of numbers $n \in \mathbb{N}^*$ such that at least a prime factor is greater than x. So

$$P(x) = \sum_{n \in \Delta} f(n) = S - \sum_{n \in \overline{\Delta}} f(n).$$

Then

$$|P(x) - S| \le \sum_{n \in \overline{\Lambda}} |f(n)| \le \sum_{n \ge x} |f(n)|.$$

So $\lim_{x \to +\infty} P(x) = S$, that is

$$\prod_{p} \sum_{k=0}^{\infty} f(p^k) = \sum_{n=1}^{\infty} f(n).$$

Finally,

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \left(1 + \frac{1}{p^s} + \dots + \frac{1}{p^{ks}} + \dots \right)$$
$$= \prod_{p} (1 - 1/p^s)^{-1}$$

Ex. 2.26 Verify the formal identities:

(a)
$$\zeta(s)^{-1} = \sum \mu(n)/n^s$$

(b)
$$\zeta(s)^2 = \sum \nu(n)/n^s$$

(c)
$$\zeta(s)\zeta(s-1) = \sum \sigma(n)/n^s$$

Proof. Without any consideration of convergence:

$$\zeta(s) \sum_{m=1}^{\infty} \frac{\mu(m)}{m^s} = \sum_{n=1}^{\infty} \frac{1}{n^s} \sum_{m=1}^{\infty} \frac{\mu(m)}{m^s}$$

$$= \sum_{n,m \ge 1} \frac{\mu(m)}{n^s m^s}$$

$$= \sum_{u=1}^{\infty} \sum_{m|u} \mu(m) \frac{1}{u^s} \qquad (u = nm)$$

$$= \sum_{u=1}^{\infty} \frac{1}{u^s} \sum_{m|u} \mu(m)$$

$$= 1$$

Indeed, $\sum_{m|u} \mu(m) = 1$ if u = 1, 0 otherwise. So

$$\zeta(s)^{-1} = \sum_{n \in \mathbb{N}^*} \mu(n) / n^s.$$

(b)

$$\zeta(s)^2 = \sum_{n=1}^{\infty} \frac{1}{n^s} \sum_{m=1}^{\infty} \frac{1}{m^s}$$

$$= \sum_{n=1}^{\infty} \frac{1}{(nm)^s}$$

$$= \sum_{n=1}^{\infty} \sum_{n \mid n} \frac{1}{n^s}$$

$$= \sum_{n \mid n} \sum_{n \mid n} \frac{1}{n^s}$$

$$= \sum_{n \mid n} \frac{1}{n^s} \sum_{n \mid n} 1$$

$$= \sum_{n \mid n} \frac{1}{n^s} \nu(n)$$

So

$$\zeta(s)^2 = \sum_{n=1}^{\infty} \frac{\nu(n)}{n^s}.$$

(c) For Re(s) > 2,

$$\zeta(s)\zeta(s-1) = \sum_{n\geq 1} \frac{1}{n^s} \sum_{m\geq 1} \frac{1}{m^{s-1}}$$
$$= \sum_{m,n\geq 1} \frac{m}{(nm)^s}$$
$$= \sum_{u\geq 1} \left(\sum_{m|u} m\right) \frac{1}{u^s}$$
$$= \sum_{u\geq 1} \frac{\sigma(u)}{u^s}$$

So

$$\zeta(s)\zeta(s-1) = \sum_{n \ge 1} \frac{\sigma(n)}{n^s}.$$

Ex. 2.27 Show that $\sum 1/n$, the sum being over square free integers, diverges. Conclude that $\prod_{p < N} (1 + 1/p) \to \infty$ as $N \to \infty$. Since $e^x > 1 + x$, conclude that $\sum_{p < N} 1/p \to \infty$. (This proof is due to I.Niven.)

Proof. Let $S \subset \mathbb{N}^*$ the set of square free integers.

Let $N \in \mathbb{N}^*$. Every integer $n, 1 \le n \le N$ can be written as $n = ab^2$, where a, b are integers and a is square free. Then $1 \le a \le N$, and $1 \le b \le \sqrt{N}$, so

$$\sum_{n \leq N} \frac{1}{n} \leq \sum_{a \in S, a \leq N} \sum_{1 < b < \sqrt{N}} \frac{1}{ab^2} \leq \sum_{a \in S, a \leq N} \frac{1}{a} \sum_{b=1}^{\infty} \frac{1}{b^2} = \frac{\pi^2}{6} \sum_{a \in S, a \leq N} \frac{1}{a}.$$

So

$$\sum_{a \in S, a \le N} \frac{1}{a} \ge \frac{6}{\pi^2} \sum_{n \le N} \frac{1}{n}.$$

As $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, $\lim_{N \to \infty} \sum_{a \in S, a \le N} \frac{1}{a} = +\infty$, so the family $\left(\frac{1}{a}\right)_{a \in S}$ of the inverse of square free integers is not summable.

Let $S_N = \prod_{p < N} (1 + 1/p)$, and p_1, p_2, \dots, p_l (l = l(N)) all prime integers less than N. Then

$$S_N = \left(1 + \frac{1}{p_1}\right) \cdots \left(1 + \frac{1}{p_l}\right)$$
$$= \sum_{(\varepsilon_1, \dots, \varepsilon_l) \in \{0, 1\}^l} \frac{1}{p_1^{\varepsilon_1} \cdots p_l^{\varepsilon_l}}$$

We prove this last formula by induction. This is true for l = 1: $\sum_{\varepsilon \in \{0,1\}} 1/p_1^{\varepsilon} = 1 + 1/p_1$. If it is true for the integer l, then

$$\begin{split} \left(1 + \frac{1}{p_{1}}\right) \cdots \left(1 + \frac{1}{p_{l}}\right) \left(1 + \frac{1}{p_{l+1}}\right) &= \sum_{(\varepsilon_{1}, \dots, \varepsilon_{l}) \in \{0, 1\}^{l}} \frac{1}{p_{1}^{\varepsilon_{1}} \cdots p_{l}^{\varepsilon_{l}}} \left(1 + \frac{1}{p_{l+1}}\right) \\ &= \sum_{(\varepsilon_{1}, \dots, \varepsilon_{l}) \in \{0, 1\}^{l}} \frac{1}{p_{1}^{\varepsilon_{1}} \cdots p_{l}^{\varepsilon_{l}}} + \sum_{(\varepsilon_{1}, \dots, \varepsilon_{l}) \in \{0, 1\}^{l}} \frac{1}{p_{1}^{\varepsilon_{1}} \cdots p_{l}^{\varepsilon_{l}} p_{l+1}} \\ &= \sum_{(\varepsilon_{1}, \dots, \varepsilon_{l}, \varepsilon_{l+1}) \in \{0, 1\}^{l+1}} \frac{1}{p_{1}^{\varepsilon_{1}} \cdots p_{l}^{\varepsilon_{l}} p_{l+1}^{\varepsilon_{l+1}}} \end{split}$$

So it is true for all l.

Thus $S_N = \sum_{n \in \Delta} \frac{1}{n}$, where Δ is the set of square free integers whose prime factors are less than N.

As $\sum 1/n$, the sum being over square free integers, diverges, $\lim_{N\to\infty} S_N = +\infty$:

$$\lim_{N \to \infty} \prod_{p < N} \left(1 + \frac{1}{p} \right) = +\infty.$$

 $e^x \ge 1 + x, x \ge \log(1 + x)$ for x > 0, so

$$\log S_N = \sum_{k=1}^{l(N)} \log \left(1 + \frac{1}{p_k} \right) \le \sum_{k=1}^{l(N)} \frac{1}{p_k}.$$

 $\lim_{N\to\infty} \log S_N = +\infty$ and $\lim_{N\to\infty} l(N) = +\infty$, so

$$\lim_{N \to \infty} \sum_{p < N} \frac{1}{p} = +\infty.$$

3 Chapter 3

Ex. 3.1 Show that there are infinitely many primes congruent to -1 modulo 6.

Proof. Let n any integer such that $n \geq 3$, and $N = n! - 1 = 2 \times 3 \times \cdots \times n - 1 > 1$.

Then $N \equiv -1 \pmod 6$. As N+2, N+3, N+4 are composite, every prime factor of N is congruent to 1 or -1 modulo 6. If every prime factor of N was congruent to 1, then $N \equiv 1 \pmod 6$: this is a contradiction because $-1 \not\equiv 1 \pmod 6$. So there exists a prime factor p of N such that $p \equiv -1 \pmod 6$.

If $p \le n$, then $p \mid n!$, and $p \mid N = n! - 1$, so $p \mid 1$. As p is prime, this is a contradiction, so p > n.

Conclusion:

for any integer n, there exists a prime p > n such that $p \equiv -1 \pmod{6}$: there are infinitely many primes congruent to -1 modulo 6.

Ex. 3.2 Construct addition and multiplication tables for $\mathbb{Z}/5\mathbb{Z}$, $\mathbb{Z}/8\mathbb{Z}$, and $\mathbb{Z}/10\mathbb{Z}$.

Proof. More a latex exercise than a mathematical one.

 $\mathbb{Z}/5\mathbb{Z}$:

+	0	1	2	3	4	×	0	1	2	3	4
0	0	1	2	3	4				0		
1	1	2	3	4	0	1	0	1	2	3	4
2	2	3	4	0	1	2	0	2	4	1	3
3	3	4	0	1	2	3	0	3	1	4	2
4	4	0	1	2	3	4	0	4	3	2	1

 $\mathbb{Z}/8\mathbb{Z}$:

+	0	1	2	3	4	5	6	7	×	<	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7)	0	0	0	0	0	0	0	0
1	1	2	3	4	5	6	7	0	1	-	0	1	2	3	4	5	6	7
2	2	3	4	5	6	7	0	1	2	2	0	2	4	6	0	2	4	6
3	3	4	5	6	7	0	1	2	3	3	0	3	6	1	4	7	2	5
4	4	5	6	7	0	1	2	3	4	Į	0	4	0	4	0	4	0	4
5	5	6	7	0	1	2	3	4	5	5	0	5	2	7	4	1	6	3
6	6	7	0	1	2	3	4	5	6	;	0	6	4	2	0	6	4	2
7	7	0	1	2	3	4	5	6	7	7	0	7	6	5	4	3	2	1

 $\mathbb{Z}/10\mathbb{Z}$:

+	0	1	2	3	4	5	6	7	8	9		×	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9	-	0	0	0	0	0	0	0	0	0	0	0
1	1	2	3	4	5	6	7	8	9	0		1	0	1	2	3	4	5	6	7	8	9
2	2	3	4	5	6	7	8	9	0	1		2	0	2	4	6	8	0	2	4	6	8
3	3	4	5	6	7	8	9	0	1	2		3	0	3	6	9	2	5	8	1	4	7
4	4	5	6	7	8	9	0	1	2	3		4	0	4	8	2	6	0	4	8	2	6
5	5	6	7	8	9	0	1	2	3	4		5	0	5	0	5	0	5	0	5	0	5
6	6	7	8	9	0	1	2	3	4	5		6	0	6	2	8	4	0	6	2	8	4
7	7	8	9	0	1	2	3	4	5	6		7	0	7	4	1	8	5	2	9	6	3
8	8	9	0	1	2	3	4	5	6	7		8	0	8	6	4	2	0	8	6	4	2
9	9	0	1	2	3	4	5	6	7	8		9	0	9	8	7	6	5	4	3	2	1

Python code to generate the latex code to create such an array :

```
n=10
print('$')
ligne = '\begin{array}{c|'+ n*'c'+'}'
print(ligne)
ligne='\\times'
for j in range(n):
    ligne += ' & ' + str(j)
ligne += '\\'
ligne += '\\'
ligne += ' \\hline'
print(ligne)
for i in range(n):
    ligne = str(i)
    for j in range(n):
        ligne +=' & '+ str((i * j) % n)
    ligne += '\\'
    ligne += '\\'
    print(ligne)
print('\\end{array}')
print('$')
```

Ex. 3.3 Let abc be the decimal representation for an integer between 1 and 1000. Show that abc is divisible by 3 iff a + b + c is divisible by 3. Show that the same result is true if we replace 3 by 9. Show that abc is divisible by 11 iff a - b + c is divisible by 11. Generalize to any number written in decimal notation.

```
Proof. Let n = \overline{abc} the decimal representation of n.

As 10 \equiv 1 \pmod{3}, 10^3 \equiv 10^2 \equiv 10 \equiv 1 \pmod{3}, so
3 \mid n \iff 10^3 a + 10^2 b + c \equiv 0 \pmod{3}
\iff a + b + c \equiv 0 \pmod{3}
3 \mid a + b + c \equiv 0
```

As $10 \equiv 1 \pmod{9}$ the same demonstration is true for the result

$$9 \mid n \iff 9 \mid a+b+c$$
.

Similarly, $10 \equiv -1 \pmod{11}$, and $10^2 \equiv 1, 10^3 \equiv -1$, so

$$11 \mid n \iff 10^3 a + 10^2 b + c \equiv 0 \pmod{1}$$
$$\iff a - b + c \equiv 0 \pmod{3}$$

More generally, let $n = \overline{a_l a_{l-1} \cdots a_0}$ is the decimal representation of n. $10^n \equiv 1 \pmod{9}$, so

$$9 \mid n \iff \sum_{k=0}^{l} a_k 10^k \equiv 0 \pmod{9}$$

$$\iff \sum_{k=0}^{l} a_k \equiv 0 \pmod{9}$$

$$\iff 9 \mid a_0 + a_1 + \dots + a_n$$

Ex. 3.4 Show that the equation $3x^2 + 2 = y^2$ has no solution in integers.

Proof. If $3x^2 + 2 = y^2$, then $\overline{y}^2 = \overline{2}$ in $\mathbb{Z}/3\mathbb{Z}$.

As $\{-1,0,1\}$ is a complete set of residues modulo 3, the squares in $\mathbb{Z}/3\mathbb{Z}$ are $\overline{0}=\overline{0}^2$ and $\overline{1} = \overline{1}^2 = (\overline{-1})^2$, so $\overline{2}$ is not a square in $\mathbb{Z}/3\mathbb{Z}$: $\overline{y}^2 = \overline{2}$ is impossible in $\mathbb{Z}/3\mathbb{Z}$.

Thus $3x^2 + 2 = y^2$ has no solution in integers.

Ex. 3.5 Show that the equation $7x^2 + 2 = y^3$ has no solution in integers.

Proof. If $7x^2 + 2 = y^3$, $x, y \in \mathbb{Z}$, then $y^3 \equiv 2 \pmod{7}$ (so $y \not\equiv 0 \pmod{7}$) From Fermat's Little Theorem, $y^6 \equiv 1 \pmod{7}$, so $2^2 \equiv y^6 \equiv 1 \pmod{7}$, which implies $7 \mid 2^2 - 1 = 3$: this is a contradiction. Thus the equation $7x^2 + 2 = y^3$ has no solution in integers.

Ex. 3.6 Let an integer n > 0 be given. A set of integers $a_1, \ldots, a_{\phi(n)}$ is called a reduced residue system modulo n if they are pairwise incongruent modulo n and $(a_i, n) = 1$ for all i. If (a,n)=1, prove that $aa_1,aa_2,\ldots,aa_{\phi(n)}$ is again a reduced residue system modulo

Proof. Let $a_1, \ldots, a_{\phi(n)}$ a reduced residue system modulo n.

- As $a \wedge n = 1$ and $a_i \wedge n = 1$, $i = 1, 2, \dots, \phi(n)$, then $aa_i \wedge n = 1$.
- As $a \wedge n = 1$, there exists $a' \in \mathbb{Z}$ such that $aa' \equiv 1 \pmod{n}$. then

$$aa_i \equiv aa_j \Rightarrow a'aa_i \equiv a'au_j \pmod{n} \Rightarrow a_i \equiv a_j \pmod{n}.$$

So $i \neq j \Rightarrow a_i \not\equiv a_j \Rightarrow aa_i \not\equiv aa_j$:

 $aa_1, \ldots, aa_{\phi(n)}$ a reduced residue system modulo n.

Note that $\{a_1, a_2, \ldots, a_{\phi(n)}\}$ is a reduced residue system modulo n if and only if $\{\overline{a_1},\overline{a_2},\ldots,\overline{a_{\phi(n)}}\}=U(\mathbb{Z}/n\mathbb{Z}).$ **Ex. 3.7** Use Ex. 2.6 to give another proof of Euler's theorem, $a^{\phi(n)} \equiv 1 \pmod{n}$ for (a, n) = 1.

Proof. The proof is more clear if we stay in $\mathbb{Z}/n\mathbb{Z}$.

Let
$$P = \prod_{x \in U(\mathbb{Z}/n\mathbb{Z})} x$$

(if $\{a_1,\ldots,a_{\phi(n)}\}$ is a reduced residue system modulo n, then $\overline{P}=\prod_{i=1}^{\phi(n)}a_i$.)

Let $a \in \mathbb{Z}$ such that $a \wedge n = 1$, then $b = \overline{a} \in U(\mathbb{Z}/n\mathbb{Z})$, and

$$\psi \left\{ \begin{array}{ccc} U(\mathbb{Z}/n\mathbb{Z}) & \to & U(\mathbb{Z}/n\mathbb{Z}) \\ x & \mapsto & bx \end{array} \right.$$

- $\psi(x) = \psi(x') \Rightarrow bx = bx' \Rightarrow b^{-1}bx = b^{-1}ax' \Rightarrow x = x'$ so ψ is injective.
- Let $y \in U(\mathbb{Z}/n\mathbb{Z})$. If $x = b^{-1}y$, then $\psi(x) = bb^{-1}y = y$, so ψ is surjective. ψ is a bijection, so

$$\prod_{x \in U(\mathbb{Z}/n\mathbb{Z})} bx = \prod_{x \in U(\mathbb{Z}/n\mathbb{Z})} x,$$

that is

$$b^{\phi(n)} \prod_{x \in U(\mathbb{Z}/n\mathbb{Z})} x = \prod_{x \in U(\mathbb{Z}/n\mathbb{Z})} x.$$

П x is invertible,

$$b^{\phi(n)} = 1.$$

That is $\overline{a}^{\phi(n)} = 1$: for all $a \in \mathbb{Z}$, if $a \wedge n = 1$, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Ex. 3.8 Let p be an odd prime. If $k \in \{1, 2, ..., p-1\}$, show that there is a unique b_k in this set such that $kb_k \equiv 1 \pmod{p}$. Show that $k \neq b_k$ unless k = 1 or k = p - 1.

Proof. \bullet existence.

As p is prime and $1 \leq k \leq p-1$, $k \wedge p = 1$, so there exist $\lambda_k, \mu_k \in \mathbb{Z}$ such that $\lambda_k p + \mu_k k = 1$. Let $b_k \in \{0, 1, \dots, p-1\}$ such that $b_k \equiv \mu_k \pmod{p}$. Then $kb_k \equiv 1$, and $b_k \not\equiv 0 \pmod{p}$, so $1 \leq b_k \leq p - 1$.

• unicity. If $kb_k \equiv kb'_k \pmod{p}$, where $b_k, b'_k \in \{1, 2, \dots, p-1\}$, then $p \mid k(b'_k - b_k)$, and $p \wedge k = 1$, so $p \mid b'_k - b_k$. $b'_k \equiv b_k$, and $b_k, b'_k \in \{1, 2, ..., p - 1\}$, so $b_k = b'_k$. If p is a prime number, and $k \in \{1, 2, ..., p - 1\}$, there is a unique b_k in $\{1, 2, ..., p - 1\}$

such that $kb_k \equiv 1 \pmod{p}$.

If $k = b_k$, then $k^2 \equiv 1 \pmod{p}$, so $p \mid (k-1)(k+1)$, and p is a prime, thus $p \mid k-1$ or $p \mid k+1$, that is $k \equiv \pm 1 \pmod{p}$. As $1 \leq k \leq p-1$, k=1 or k=p-1 (and $1^2 \equiv (p-1)^2 \equiv 1 \pmod{p}.$

Use Ex. 3.8 to prove that $(p-1)! \equiv -1 \pmod{p}$. (misprint corrected)

Proof. Each element k in the product p! can be associated with its inverse b_k modulo k, except 1 and p-1, which are their own inverse, so

$$p! \equiv 1 \times (p-1) \equiv -1 \pmod{p}$$
.

Ex. 3.10 If n is not a prime, show that $(n-1)! \equiv 0 \pmod{n}$, except when n=4.

Proof. Suppose that n > 1 is not a prime. Then n = uv, where $2 \le u \le v \le n - 1$.

- If $u \neq v$, then $n = uv \mid (n-1)! = 1 \times 2 \times \cdots \times u \times \cdots \times v \times \cdots \times (n-1)$ (even if $u \wedge v \neq 1$!).
 - If u = v, $n = u^2$ is a square.

If u is not prime, u = st, $2 \le s \le t \le u - 1 \le n - 1$, and n = u'v', where $u' = s, v' = st^2$ verify $2 \le u' < v' \le n - 1$. As in the first case, $n = u'v' \mid (n - 1)!$.

If u = p is a prime, then $n = p^2$.

In the case p = 2, n = 4 and $n = 4 \nmid (n-1)! = 6$. In the other case p > 2, and $(n-1)! = (p^2-1)!$ contains the factors $p < 2p < p^2$, so $p^2 \mid (p^2-1)!$, $n \mid (n-1)!$.

Conclusion: if n is not a prime, $(n-1)! \equiv 0 \pmod{n}$, except when n=4.

Ex. 3.11 Let $a_1, \ldots, a_{\phi(n)}$ be a reduced residue system modulo n and let N be the number of solutions to $x^2 \equiv 1 \pmod{n}$. Prove that $a_1 \cdots a_{\phi(n)} \equiv (-1)^{N/2} \pmod{n}$.

Proof. If n=2, then N=1 and the result is false. So we suppose n>2.

Let H the subset of $\mathbb{Z}/n\mathbb{Z}$ of all $x \in \mathbb{Z}/n\mathbb{Z}$ such that $x^2 = 1$:

$$H = \{ x \in \mathbb{Z} / n\mathbb{Z} \mid x^2 = 1 \}$$

(here $1 = \overline{1}$).

 $H \subset U(\mathbb{Z}/n\mathbb{Z})$, and $x \in H, y \in H \Rightarrow x^2 = y^2 = 1 \Rightarrow (xy^{-1})^2 = 1 \Rightarrow xy^{-1} \in H$, so H is a subgroup of $(U(\mathbb{Z}/n\mathbb{Z}), \times)$, and $N = \operatorname{Card} H$.

Each $x \in U(\mathbb{Z}/n\mathbb{Z})$ such that $x \notin H$ can be paired with its inverse x^{-1} , and $xx^{-1} = 1$, so

$$P:=\prod_{x\in U(\mathbb{Z}/n\mathbb{Z})}x=\prod_{x\in H}\,x.$$

If $x \in H, -x \in H$.

• If n is odd, each $x = \overline{a} \in H(a \in \mathbb{Z}, 1 \le a \le n-1)$ satisfy $-x \ne x$: otherwise $2a \equiv 0 \pmod{n}, 2a = kn, k \in \mathbb{Z}$. As 0 < 2a = kn < 2n, then k = 1, and n = 2a is even, which is in contradiction with the hypothesis.

So we each $x \in H$ can be paired with -x in the product P, and x(-x) = -1, so

$$P = \prod_{x \in H} x = (-1)^{N/2}.$$

• If n is even, if $x = \overline{a} \in H$ $(a \in \mathbb{Z}, 1 \le a \le n-1)$ satisfy x = -x, then $0 < a = k\frac{n}{2} < n$, so $a = \frac{n}{2}$, and $x = \overline{\left(\frac{n}{2}\right)}$ is the only element in Z/nZ such that x = -x. $\overline{2}x = \overline{0}$, and $x \in H$, so $\overline{2}x^2 = \overline{0}, \overline{2} = \overline{0}$: since n > 2, this is impossible, so $x \ne -x$ for all $x \in H$, and $\prod_{x \in H} x = (-1)^{N/2}$.

Conclusion: if n > 2,

$$\prod_{x \in U(\mathbb{Z}/n\mathbb{Z})} x = (-1)^{N/2}.$$

If $a_1, \ldots, a_{\phi(n)}$ is a reduced residue system modulo n, then $\overline{a_1 \cdots a_{\phi(n)}} = P = \prod_{x \in U(\mathbb{Z}/n\mathbb{Z})} x = (-1)^{N/2}$, so

$$a_1 \cdots a_{\phi(n)} \equiv (-1)^{N/2}.$$

Ex. 3.12 Let $\binom{p}{k} = \frac{p!}{k!(p-k)!}$ be a binomial coefficient, and suppose p is prime. If $1 \le k \le p-1$, show that p divides $\binom{p}{k}$. Deduce $(a+b)^p \equiv a^p + b^p \pmod{p}$.

Proof. $p \mid p! = k!(p-k)!\binom{p}{k}$.

If $1 \le k \le p-1$, then for each $i, 1 \le i \le k$, $1 \le i < p$, so $i \land p = 1$. Thus $\left(\prod_{i=1}^{k} i\right) \land p = 1, k! \land p = 1$. Similarly, p - k < p, so $\left(\prod_{i=1}^{p-k} i\right) \land p = 1, (p-k)! \land p = 1$. Thus $p \land k! (p-k)! = 1$, and $p \mid p! = k! (p-k)! \binom{p}{k}$, so $p \mid \binom{p}{k}$.

Finally, from binomial formula

$$(a+b)^p = a^p + \sum_{k=1}^{p-1} \binom{p}{k} a^k b^{n-k} + b^p$$
$$\equiv a^p + b^p \pmod{p}$$

Ex. 3.13 Use Ex. 3.12 to give another proof of Fermat's theorem, $a^{p-1} \equiv 1 \pmod{p}$ if p does not divide a.

Proof. If we make the induction hypothesis

$$\mathcal{P}(k) \iff \forall (a_1, a_2, \dots, a_k) \in \mathbb{Z}^k, \ (a_1 + a_2 + \dots + a_k)^p \equiv a_1^p + a_2^p + \dots + a_k^p$$

(which is true for k = 1, k = 2) then, from induction hypothesis and the case k = 2 already proved in Ex 3.12,

$$(a_1 + a_2 + \dots + a_k + a_{k+1})^p = ((a_1 + a_2 + \dots + a_k) + a_{k+1})^p$$

$$\equiv (a_1 + a_2 + \dots + a_k)^p + a_{k+1}^p \pmod{p}$$

$$\equiv a_1^p + a_2^p + \dots + a_k^p + a_{k+1}^p \pmod{p}$$

so $\mathcal{P}(k) \Rightarrow \mathcal{P}(k+1)$:

$$\forall k \in \mathbb{N}^*, \forall (a_1, a_2, \dots, a_k) \in \mathbb{Z}^k, \ (a_1 + a_2 + \dots + a_k)^p \equiv a_1^p + a_2^p + \dots + a_k^p$$

If we apply this result to the particular case $a_1 = a_2 = \cdots = a_k = 1$, we obtain

$$\forall k \in \mathbb{N}^*, \ k^p \equiv k \pmod{p}.$$

and $(-k)^p \equiv -k^p \equiv -k \pmod{p}$ (even if p=2), and $0^p=0$, so

$$\forall k \in \mathbb{Z}, \ k^p \equiv k \pmod{p}.$$

If $p \nmid a, a \in \mathbb{Z}$, then $p \wedge a = 1$, and $p \mid a^p - a = a(a^{p-1} - 1)$, so $p \mid a^{p-1} - 1, a^{p-1} \equiv 1 \pmod{p}$: this is another proof of Fermat's theorem.

Ex. 3.14 Let p and q be distinct odd primes such that p-1 divides q-1. If (n, pq) = 1, show that $n^{q-1} \equiv 1 \pmod{pq}$.

Proof. As $n \wedge pq = 1, n \wedge p = 1, n \wedge q = 1$, so from Fermat's Little Theorem

$$n^{q-1} \equiv 1 \pmod{q}, \qquad n^{p-1} \equiv 1 \pmod{p}.$$

 $p-1 \mid q-1$, so there exists $k \in \mathbb{Z}$ such that q-1=k(p-1). Thus

$$n^{q-1} = (n^{p-1})^k \equiv 1 \pmod{p}.$$

 $p \mid n^{q-1} - 1, q \mid n^{q-1} - 1, \text{ and } p \land q = 1, \text{ so } pq \mid n^{q-1} - 1:$

$$n^{q-1} \equiv 1 \pmod{pq}$$
.

Ex. 3.15 For any prime p show that the numerator of $1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{p-1}$ is divisible by p.

Proof. As the result is false for p=2, we must suppose p>2, so p is odd.

$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{p-1} = \frac{N}{D}$$
, where

$$N = (p-1)! + \frac{(p-1)!}{2} + \dots + \frac{(p-1)!}{p-1}, \qquad D = (p-1)!.$$

From Wilson's theorem, $(p-1)! \equiv -1 \pmod{p}$, so in the field $\mathbb{Z}/p\mathbb{Z}$,

$$\overline{N} = (-\overline{1})(\overline{1}^{-1} + \overline{2}^{-1} + \dots + \overline{p-1}^{-1}).$$

As the application $\varphi: (\mathbb{Z}/p\mathbb{Z})^* \to (\mathbb{Z}/p\mathbb{Z})^*, x \mapsto x^{-1}$ is bijective (it's an involution),

$$\overline{1} + \overline{2}^{-1} + \dots + \overline{p-1}^{-1} = \overline{1} + \overline{2} + \dots + \overline{p-1} = \overline{p} \times \overline{\left(\frac{p-1}{2}\right)} = \overline{0}.$$

So $p \mid N$, and $p \land (p-1)! = 1$, that is $p \land D = 1$. Thus p divides the numerator of the reduced fraction of N/D.

Ex. 3.16 Use the proof of the Chinese Remainder Theorem to solve the system $x \equiv 1 \pmod{7}$, $x \equiv 4 \pmod{9}$, $x \equiv 3 \pmod{5}$.

Proof. Let $m_1 = 7$, $m_2 = 9$, $m_3 = 5$, $m = m_1 m_2 m_3 = 315$, $n_1 = m/m_1 = m_2 m_3 = 45$, $n_2 = m_1 m_3 = 35$, $n_3 = m_1 m_2 = 63$.

If $r_1 = 13$, $s_1 = -2$, then $r_1m_1 + s_1n_1 = 13m_1 - 2m_2m_3 = 13 \times 7 - 2 \times 45 = 1$, so $e_1 = s_1n_1 = -2 \times 45 = -90$ verifies

$$e_1 = -90, \qquad e_1 \equiv 1 \pmod{7}, e_1 \equiv 0 \pmod{9}, e_1 \equiv 0 \pmod{5}.$$

If $r_2 = 4$, $s_2 = -1$, then $r_2m_2 + s_2n_2 = 4 \times 9 - 1 \times 35 = 1$, so $e_2 = s_2n_2 = -35$ verifies

$$e_2 = -35, \qquad e_2 \equiv 0 \pmod{7}, e_2 \equiv 1 \pmod{9}, e_2 \equiv 0 \pmod{5}.$$

If
$$r_3 = -25$$
, $s_3 = 2$, then $r_3m_3 + s_3n_3 = -25 \times 5 + 2 \times 63 = 1$,

so $e_3 = s_3 n_3 = 2 \times 63 = 126$ verifies

$$e_3 = 126, \qquad e_3 \equiv 0 \pmod{7}, e_3 \equiv 0 \pmod{9}, e_3 \equiv 1 \pmod{5}.$$

Let $x_0 = e_1 + 4e_2 + 3e_3 = 148$: then

$$x_0 = 148, \qquad x_0 \equiv 1 \pmod{7}, x_0 \equiv 4 \pmod{9}, x_0 \equiv 3 \pmod{5}.$$

If $x \in \mathbb{Z}$ is any solution of the system, then $7 \mid x - x_0, 9 \mid x - x_0, 5 \mid x - x_0$, with $7 \land 9 = 7 \land 5 = 9 \land 5 = 1$, so $m = 315 \mid x - x_0$:

$$x = 148 + k315, k \in \mathbb{Z}$$

and all these integers are solutions of the system.

Ex. 3.17 Let $f(x) \in \mathbb{Z}[x]$ and $n = p_1^{a_1} \cdots p_t^{a_t}$. Show that $f(x) \equiv 0 \pmod{n}$ has a solution iff $f(x) \equiv 0 \pmod{p_i^{a_i}}$ has a solution for $i = 1, \ldots, t$.

Proof. If x is such that $f(x) \equiv 0 \pmod{n}$, as $p_i^{\alpha_i} \mid n, f(x) \equiv 0 \pmod{p_i^{a_i}}$. Reciprocally, let x_1, x_2, \ldots, x_t such that

$$f(x_1) \equiv 0 \pmod{p_1^{a_1}}$$
...
$$f(x_t) \equiv 0 \pmod{p_t^{a_t}}$$

As $p_i^{a_i} \wedge p_j^{a_j} = 1$ if $i \neq j$, the Chinese Remainder Theorem gives an integer x such that $x \equiv x_i \pmod{p_i^{a_i}}, \ i = 1, 2, \dots, t$. As $f(x) \in \mathbb{Z}[x], \ f(x) \equiv f(x_i) \equiv 0 \pmod{p_i^{a_i}}$. So $p_i^{a_i} \mid f(x), \ i = 1, 2, \dots, t$, where $p_i^{a_i} \wedge p_j^{a_j} = 1$ if $i \neq j$, then $n = p_1^{a_1} \cdots p_t^{a_t} \mid f(x) : x$ is a somution of $f(x) \equiv 0 \pmod{n}$.

Conclusion: $f(x) \equiv 0 \pmod{n}$ has a solution iff $f(x) \equiv 0 \pmod{p_i^{a_i}}$ has a solution for i = 1, ..., t.

Ex. 3.18 For $f \in \mathbb{Z}[x]$, let N be the number of solutions to $f(x) \equiv 0 \pmod{n}$ and N_i be the number of solutions to $f(x) \equiv 0 \pmod{p_i^{a_i}}$. Prove that $N = N_1 N_2 \cdots N_t$.

Proof. Note $[x]_n$ the class of x modulo n. Let S the set of solutions in $\mathbb{Z}/n\mathbb{Z}$ of $f(\overline{x}) = 0$, and S_i the set of solutions in $\mathbb{Z}/p^{a_i}\mathbb{Z}$ of $f(\overline{x}) = 0$.

(We designate with the same letter the polynomial f in $\mathbb{Z}[x]$ or its reduction in $\mathbb{Z}/n\mathbb{Z}[x]$.)

Let

$$\varphi: \left\{ \begin{array}{ccc} S & \rightarrow & S_1 \times S_2 \times \cdots \times S_t \\ [x]_n & \mapsto & ([x]_{p_1^{a_1}}, [x]_{p_2^{a_2}}, \dots, [x]_{p_t^{a_t}}) \end{array} \right.$$

- φ is well defined: if $x \equiv x' \pmod{n}$, then $x \equiv x' \pmod{p_i^{a_i}}$, $i = 1, 2, \dots, t$, so $([x]_{p_1^{a_1}}, [x]_{p_2^{a_2}}, \dots, [x]_{p_t^{a_t}}) = ([x']_{p_1^{a_1}}, [x']_{p_2^{a_2}}, \dots, [x']_{p_t^{a_t}})$. Moreover, we proved in Ex 3.17 that $[x]_n \in S \Rightarrow [x]_{p_i^{a_i}} \in S_i$.
- φ is injective: if $([x]_{p_1^{a_1}}, [x]_{p_2^{a_2}}, \dots, [x]_{p_t^{a_t}}) = ([x']_{p_1^{a_1}}, [x']_{p_2^{a_2}}, \dots, [x']_{p_t^{a_t}})$, then $p_i^{a_i} \mid x' x$, $i = 1, 2, \dots, t$, so $n \mid x' x$ and $[x]_n = [x']_n$.
- φ is surjective: if $y = ([x_1]_{p_1^{a_1}}, [x_2]_{p_2^{a_2}}, \dots, [x_t]_{p_t^{a_t}})$ is any element of $S_1 \times S_2 \times \dots \times S_t$, there exists from Chinese remainder theorem $x \in \mathbb{Z}$ such that $x \equiv x_i \pmod{p_i^{a_i}}$. Then $\varphi([x]_n) = y$ (see Ex. 3.17).

In conclusion, a φ is bijective, $N = |S| = |S_1 \times S_2 \times \cdots \times S_t| = N_1 N_2 \cdots N_t$.

Ex. 3.19 If p is an odd prime, show that 1 and -1 are the only solutions of $x^2 \equiv 1$ $\pmod{p^a}$.

Proof.

$$x^2 - 1 \pmod{p^a} \iff p^a \mid (x - 1)(x + 1).$$

Let $d = (x - 1) \land (x + 1) : d = 1$ or d = 2.

• If d=1, then x is even (if not, x-1 and x+1 are even, and $2\mid d$). As $p^a\mid$ (x-1)(x+1) and $(x-1) \wedge (x+1) = 1$, then $p^a \mid x-1$, or $p^a \mid x+1$, that is

$$x \equiv \pm 1 \pmod{p^a}$$
.

• If d=2, then x is odd, and

$$p^a \mid 4\frac{x-1}{2}\frac{x+1}{2}.$$

As p is an odd prime, $p \wedge 4 = 1$, so $p \mid \frac{x-1}{2} \frac{x+1}{2}$, where $\frac{x-1}{2} \wedge \frac{x+1}{2} = 1$, hence $p^a \mid \frac{x-1}{2} \mid x-1 = 1$ or $p^a \mid \frac{x+1}{2} \mid x+1$:

$$x \equiv \pm 1 \pmod{p^a}$$
.

 $\{-\overline{1},\overline{1}\}$ is the set of roots of $x^2-\overline{1}$ in $\mathbb{Z}/p^a\mathbb{Z}$.

Ex. 3.20 Show that $x^2 \equiv 1 \pmod{2^b}$ has one solution if b = 1, two solutions if b = 2, and four solutions if $b \geq 3$.

Proof. Consider the equation $x^2 \equiv 1 \pmod{2^b}$.

- If $b=1, x^2 \equiv 1 \pmod{2} \iff 2 \mid (x-1)(x+1) \iff x \equiv 1 \pmod{2}$: one
- If b=2, as $0^2\equiv 2^2\equiv 0\pmod 4$, $x^2\equiv 1\pmod 4$ $\iff x\equiv \pm 1\pmod 4$: two solutions.
 - Suppose $b \ge 3$. The equation has 4 solutions $1, -1, 1+2^{b-1}, -1+2^{b-1}$. Indeed, $(\pm 1)^2 \equiv 1 \pmod{2^b}$, and

$$(1+2^{b-1})^2=1+2\cdot 2^{b-1}+2^{2b-2}=1+2^b(1+2^{b-2})\equiv 1\pmod{2^b},$$

and similarly $(-1+2^{b-1})^2 \equiv 1 \pmod{2^b}$.

These solutions are incongruent modulo 2^b :

 $1 \not\equiv -1 \pmod{2^b}$ and $1 + 2^{b-1} \not\equiv -1 + 2^{b-1}$ (if not, $2^b \mid 2$, so $b \leq 1$).

 $1+2^{b-1} \equiv -1 \pmod{2^b} \iff 2^b \mid 2+2^{b-1} = 2(1+2^{b-2}) : \text{so } 2 \mid 2^{b-1} \mid (1+2^{b-2}), \text{ this}$ is impossible because $1+2^{b-2}$ is odd (b > 3). With the same argument, $-1+2^{b-1} \not\equiv 1$ $(\text{mod } 2^b)$. $1 + 2^{b-1} \equiv 1 \pmod{2^b}$ implies $2^b \mid 2^{b-1}$, so $2 \mid 1$: this is a contradiction, so $1 + 2^{b-1} \not\equiv 1 \pmod{2^b}$, and also $-1 + 2^{b-1} \not\equiv -1 \pmod{2^b}$. There exist at least 4 solutions.

We show that these are the only solutions:

$$\forall x \in \mathbb{Z}, \ x^2 \equiv 1 \pmod{2^b} \Rightarrow x \equiv \pm 1 \pmod{2^{b-1}}.$$

Indeed, if $x^2 \equiv 1 \pmod{2^b}$, $2^b \mid (x-1)(x+1)$, where $d = (x-1) \land (x+1) = 2$.

As in Ex.3.19, if d=1, then $2^b \mid x-1$ or $2^b \mid x+1$, a fortiori $x\equiv \pm 1\pmod{2^{b-1}}$. If d=2, then x is odd, and $2^b \mid 4\frac{x-1}{2}\frac{x+1}{2}$, so $2^{b-2} \mid \frac{x-1}{2}\frac{x+1}{2}$, with $\frac{x-1}{2} \wedge \frac{x+1}{2} = 1$, so $2^{b-2} \mid \frac{x-1}{2}$ or $2^{b-2} \mid \frac{x+1}{2}$, that is $2^{b-1} \mid x-1$ or $2^{b-1} \mid x+1 : x \equiv \pm 1 \pmod{2^{b-1}}$.

(Alternatively, we can prove this implication by induction.)

Hence every solution of $x^2 \equiv 1 \pmod{2^b}$, $b \geq 3$ is such that $x = \pm 1 + k2^{b-1}$, $k \in \mathbb{Z}$: there exit only four such value in the interval $[0, 2^b]$, namely $1, -1+2^b-1, 1+2^{b-1}, -1+2^b$.

Conclusion: if $b \geq 3$, the roots of $x^2 - 1$ in $\mathbb{Z}/2^b\mathbb{Z}$ are $\overline{1}, -\overline{1}, \overline{1} + \overline{2}^{b-1}, -\overline{1} + \overline{2}^{b-1}$. \square

Ex. 3.21 Use Ex. 18-20 to find the number of solutions to $x^2 \equiv 1 \pmod{n}$.

Proof. Let $n=2^{a_0}p_1^{a_1}\cdots p_k^{a_k}$ the decomposition in prime factors of n>1 ($p_0=2< p_1<\cdots< p_k, a_0\geq 0, a_i>0, 1\leq i\leq k$). Let N the number of solutions of $x^2\equiv 1\pmod n$, and N_i the number of solutions of $x^2\equiv 1\pmod p^i$, $i=0,1,\ldots k$. From Ex.3.18, we know that $N=N_0N_1\cdots N_k$, where (Ex. 3.19), $N_i=2, i=1,2,\ldots,k$, and (Ex.3.20), $N_0=1$ if $a_0=1$ (or $a_0=0$), $N_0=2$ if $a_0=2$, $N_0=4$ if $a_0\geq 3$.

Conclusion: the number of solutions of $x^2 \equiv 1 \pmod{n}$, where $n = 2^{a_0} p_1^{a_1} \cdots p_k^{a_k}$, is

$$N = 2^k$$
 if $a_0 = 0$ or $a_0 = 1$
 $N = 2^{k+1}$ if $a_0 = 2$
 $N = 2^{k+2}$ if $a_0 \ge 3$

Ex. 3.22 Formulate and prove the Chinese Remainder Theorem in a principal ideal domain.

Proposition. Let R a principal ideal domain, and $m_1, \ldots, m_t \in R$. Suppose that $(m_i, m_j) = 1$ for $i \neq j$ (that is $(m_i) + (m_j) = (1), m_i R + n_i R = R$). Let $b_1, \ldots, b_t \in R$ and consider the system of congruences:

$$x \equiv b_1 \pmod{m_1}, x \equiv b_2 \pmod{m_2}, \dots, x \equiv b_t \pmod{m_t}.$$

This system has solutions and any two solutions differ by a multiple of $m_1m_2\cdots m_t$.

Proof. Let $m = m_1 m_2 \cdots m_t$, and $n_i = m/m_i$, $i = 1, 2, \dots, t$.

As $(m_1, m_i) = (1)$, we can find $u_i, v_i \in R$ such that $m_1 u_i + m_i v_i = 1, i = 2, ..., t$.

So $1 = \prod_{i=2}^{t} (m_1 u_i + m_i v_i) = m_1 u + (m_2 \cdots m_t) v$ for some elements $u, v \in R$, thus $(m_1, n_1) = (m_1, m_2 m_3 \cdots m_t) = (1)$, and similarly $(m_i, n_i) = 1$. So there are $r_i, s_i \in R$ such that $r_i m_i + s_i n_i = 1$. Let $e_i = s_i n_i$. Then $e_i \equiv 1 \pmod{m_i}$ and $e_i \equiv 0 \pmod{m_j}$ for $j \neq i$.

Set $x_0 = \sum_{i=1}^t b_i e_i$. Then we have $x_0 \equiv b_i e_i \equiv b_i \pmod{m_i}$ and so x_0 is a solution. Suppose that x_1 is another solution. Then $x_1 - x_0 \equiv 0 \pmod{m_i}$ for $i = 1, 2, \ldots, t$, in other words m_1, m_2, \ldots, m_t divide $x_1 - x_0$, with $(m_i, m_j) = 1$: from lemma 2 generalized to principal rings, m divides $x_1 - x_0$.

This result can be generalized to any commutative ring, not necessarily a PID (see S.LANG, Algebra):

Proposition. Let A a commutative ring. Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ be ideals of A such that $\mathfrak{a}_i + \mathfrak{a}_j = A$ for all $i \neq j$. Given elements $x_1, \ldots, x_n \in A$, there exists $x \in A$ such that $x \equiv x_i \pmod{\mathfrak{a}_i}$ for all i.

Ex. 3.23 Extend the notion of congruence to the ring $\mathbb{Z}[i]$ and prove that a + bi is always congruent to 0 or 1 modulo 1 + i.

Proof. If a, b, c are in $\mathbb{Z}[i]$ we say that $a \equiv b \pmod{c}$ if there exists $q \in \mathbb{Z}[i]$ such that a - b = qc.

As
$$i \equiv -1 \pmod{1+i}$$
, $a + bi \equiv a - b \pmod{1+i}$.
 $(1-i)(1+i) = 2$, so $2 \equiv 0 \pmod{1+i}$.

If a-b is even, $a-b=2k, k\in\mathbb{Z}\subset\mathbb{Z}[i]$, so $a-b\equiv 0\pmod{1+i}$. If a-b is odd, $a-b=2k+1, k\in\mathbb{Z}$, so $a-b\equiv 1\pmod{1+i}$. Conclusion: for all $z\in\mathbb{Z}[i]$, $z\equiv 0,1\pmod{1+i}$.

Ex. 3.24 Extend the notion of congruence to the ring $\mathbb{Z}[\omega]$ and prove that $a + b\omega$ is always congruent to -1, 0 or 1 modulo $1 - \omega$.

Proof. Same definition of congrence in $\mathbb{Z}[\omega]$ as in Ex. 3.23.

 $\omega \equiv 1 \pmod{1-\omega}$, so $a + b\omega \equiv a + b \pmod{-\omega}$.

 $0 = 1 - \omega^3 = (1 - \omega)(1 + \omega + \omega^2)$, with $1 - \omega \neq 0$, so $1 + \omega + \omega^2 = 0$. Hence $3 \equiv 0 \pmod{1 - \omega}$.

$$a+b\equiv 0,1,-1\pmod 3, \text{ so } a+b\equiv 0,1,-1\pmod {1-\omega}$$
 For all $z\in\mathbb{Z}[\omega],\ z\equiv 0,1,-1\pmod {1-\omega}.$

Ex. 3.25 Let $\lambda = 1 - \omega \in \mathbb{Z}[\omega]$. If $\alpha \in \mathbb{Z}[\omega]$ and $\alpha \equiv 1 \pmod{\lambda}$, prove that $\alpha^3 \equiv 1 \pmod{9}$.

Proof. $\alpha \equiv 1 \pmod{\lambda}$, so $\alpha = 1 + \beta \lambda$, $\beta \in \mathbb{Z}[\omega]$. $\overline{\lambda} = 1 - \omega^2 = (1 - \omega)(1 + \omega) = -\omega^2(1 - \omega) = -\omega^2 \lambda$ (so $\overline{\lambda}$ and λ are associate).

$$\alpha^{3} - 1 = (\alpha - 1)(\alpha - \omega)(\alpha - \omega^{2})$$

$$= (\alpha - 1)(\alpha - 1 + \lambda)(\alpha - 1 + \overline{\lambda})$$

$$= (\alpha - 1)(\alpha - 1 + \lambda)(\alpha - 1 - \omega^{2}\lambda)$$

$$= \beta\lambda(\beta\lambda + \lambda)(\beta\lambda - \omega^{2}\lambda)$$

$$= \lambda^{3}\beta(\beta + 1)(\beta - \omega^{2})$$

Moreover,

$$\beta(\beta+1)(\beta-\omega^2) \equiv \beta(\beta+1)(\beta-1) \pmod{\lambda}$$
$$\equiv 0 \pmod{\lambda}$$

since $\beta \equiv 0, 1, -1 \pmod{\lambda}$ (see Ex. 3.24).

So $\lambda^4 \mid \alpha^3 - 1$.

As $\lambda \overline{\lambda} = (1 - \omega)(1 - \omega^2) = 1 - \omega - \omega^2 + \omega^3 = 3$, then $\lambda \overline{\lambda} = -\omega^2 \lambda^2 = 3$, so λ^2 and 3 are associate: $\lambda^2 = -\omega \lambda^2$. So $9 = (-\omega^2 \lambda^2)^2 = \omega \lambda^4$, so $9 \mid \omega^2 9 = \lambda^4 \mid \alpha^3 - 1$.

For all $\alpha \in \mathbb{Z}[\omega]$,

$$\alpha \equiv 1 \pmod{\lambda} \Rightarrow \alpha^3 \equiv 1 \pmod{9}.$$

Ex. 3.26 Use Ex. 25 to show that ξ, η, ζ are not zero and $\xi^3 + \eta^3 + \zeta^3 = 0$, then λ divides at least one of the elements ξ, η, ζ .

Proof. Let $\xi, \eta, \zeta \in \mathbb{Z}[\omega] \setminus \{0\}$ such that $\xi^3 + \eta^3 + \zeta^3 = 0$.

With a reductio ad absurdum, suppose that $\lambda \nmid \xi, \lambda \nmid \eta, \lambda \nmid \zeta$.

From Ex. 3.24,

$$\xi \equiv \pm 1 \pmod{\lambda}, \eta \equiv \pm 1 \pmod{\lambda}, \zeta \equiv \pm 1 \pmod{\lambda},$$

and from Ex.3.25,

$$\xi^3 \equiv \pm 1 \pmod{9}, \eta^3 \equiv \pm 1 \pmod{9}, \zeta^3 \equiv \pm 1 \pmod{9},$$

As $\pm 1 \pm 1 \pm 1 \not\equiv 0 \pmod{9}$, this is a contradiction.

Conclusion: if ξ, η, ζ are not zero and $\xi^3 + \eta^3 + \zeta^3 = 0$, then λ divides at least one of the elements ξ, η, ζ .

(consequence: if $x^3 + y^3 + z^3 = 0$, $x, y, z \in \mathbb{Z}$, then $3 \mid xyz$: this is the first case of Fermat's theorem for the exponent 3.)

4 Chapter 4

Ex. 4.1 Show that 2 is a primitive root modulo 29.

```
Proof. Let p = 29: p - 1 = 2^2 \times 7.

2^4 = 16 \neq 1[29]

2^{14} = 4^7 = 4 \times 16^3 = 64 \times 256 \equiv 6 \times (-34) = -204 \equiv 86 = 3 \times 29 - 1 \equiv -1[29]

2^{28} \equiv 1[29] and 2^d \neq 1 if d \mid 28, d < 28, hence 2 is a primitive element modulo 29. \square
```

Ex. 4.2 Compute all primitive roots for p = 11, 13, 17, and 19.

```
Proof. • p = 11. Then p - 1 = 10 = 2 \times 5.
```

 $2^2 = 4 \not\equiv 1 \pmod{11}$, and $2^5 = 32 \equiv -1 \not\equiv 1 \pmod{11}$, so 2 is a primitive element modulo 11.

The other primitive elements modulo 11 are congruent to the powers $2^i, i \wedge 10 = 1, 1 \leq i < 10$, namely $2, 2^3, 2^7, 2^9$.

```
2^7 \equiv 7 \pmod{11}, 2^9 \equiv 6 \pmod{11}, so
```

 $\{\overline{2}, \overline{8}, \overline{7}, \overline{6}\}\$ is the set of the generators of $U(\mathbb{Z}/11\mathbb{Z})$.

Similarly:

- $p = 13 : \{2, 6, 11, 7\}$ is the set of the generators of $U(\mathbb{Z}/13\mathbb{Z})$.
- $p = 17 : \{3, 10, 5, 11, 14, 7, 12, 6\}$ is the set of the generators of $U(\mathbb{Z}/17\mathbb{Z})$.
- $p = 19 : \{2, 13, 14, 15, 3, 10\}$ is the set of the generators of $U(\mathbb{Z}/19\mathbb{Z})$.

I obtain these results with the direct orders in S.A.G.E.:

```
p = 19; Fp = GF(p); a = Fp.multiplicative_generator()
print([a^k for k in range(1,p) if gcd(k,p-1) == 1])
```

Ex. 4.3 Suppose that a is a primitive root modulo p^n , p an odd prime. Show that a is a primitive root modulo p.

Proof. Suppose that a is a primitive root modulo p^n : then \overline{a} is a generator of $U(\mathbb{Z}/p^n\mathbb{Z})$. If a was not a primitive root modulo p, \overline{a} is not a generator of $U(\mathbb{Z}/p\mathbb{Z})$, so there exists $b \in \mathbb{Z}$, $b \wedge p = 1$ such that $a^k \not\equiv b \pmod{p}$ for all $k \in \mathbb{Z}$. A fortior $a^k \not\equiv b \pmod{p^n}$, and $b \wedge p^n = 1$, so $\overline{b} \in U(\mathbb{Z}/p^n\mathbb{Z})$ and $\overline{b} \not\in \langle \overline{a} \rangle$ in $U(\mathbb{Z}/p^n\mathbb{Z})$, in contradiction with the

hypothesis. So a is a primitive root modulo p.

(the reasoning on the orders of a, modulo p and modulo p^n , is possible, but not so easy.)

Ex. 4.4 Consider a prime p of the form 4t + 1. Show that a is a primitive root modulo p iff -a is a primitive root modulo p.

Proof. Solution 1.

As. p-1 is even, $(-a)^{p-1} = a^{p-1} \equiv 1 \pmod{p}$.

If $(-a)^n \equiv 1 \pmod{p}$, with $n \in \mathbb{N}$, then $a^n \equiv (-1)^n \pmod{p}$.

If n is odd, then $a^n \equiv -1, a^{2n} \equiv 1 \pmod{p}$. As a is a primitive root modulo p, $p-1 \mid 2n, 2t \mid n$, so n is even: this is a contradiction.

Consequently, n is even, and $a^n \equiv 1 \pmod{p}$, so $p-1 \mid n$, so the least $n \in \mathbb{N}^*$ such that $a^n \equiv 1 \pmod{p}$ is p-1: the order of a modulo p is p-1, a is a primitive root modulo p.

Reciprocally, if -a is a primitive root modulo p, we apply the previous result at -a to to obtain that -(-a) = a is a primitive root.

Solution 2.

Let $p-1=2^{a_0}p_1^{a_1}\cdots p_k^{a_k}$ the decomposition of p-1 in prime factors. As p_i is odd for $i=1,2,\cdots k, (p-1)/p_i$ is even, and a is primitive, so

$$(-a)^{(p-1)/p_i} = a^{(p-1)/p_i} \not\equiv 1 \pmod{p},$$

 $(-a)^{(p-1)/2} = (-a)^{2k} = a^{2k} = a^{(p-1)/2} \not\equiv 1 \pmod{p}.$

So the order of a is p-1 modulo p (see Ex. 4.8): a is a primitive element modulo p. \square

Ex. 4.5 Consider a prime p of the form 4t+3. Show that a is a primitive root modulo p iff -a has order (p-1)/2.

Proof. Let a a primitive root modulo p.

As $a^{p-1} \equiv 1 \pmod{p}$, $p \mid (a^{(p-1)/2} - 1)(a^{(p-1)/2} + 1)$, so $p \mid a^{(p-1)/2} - 1$ or $p \mid a^{(p-1)/2} + 1$. As a is a primitive root modulo p, $a^{(p-1)/2} \not\equiv 1 \pmod{p}$, so

$$a^{(p-1)/2} \equiv -1 \pmod{p}.$$

Hence $(-a)^{(p-1)/2} = (-1)^{2t+1}a^{(p-1)/2} \equiv (-1) \times (-1) = 1 \pmod{p}$.

Suppose that $(-a)^n \equiv 1 \pmod{p}$, with $n \in \mathbb{N}$.

Then $a^{2n} = (-a)^{2n} \equiv 1 \pmod{p}$, so $p - 1 \mid 2n, \frac{p-1}{2} \mid n$.

So -a has order (p-1)/2 modulo p.

Reciprocally, suppose that -a has order (p-1)/2 = 2t+1 modulo p. Let $2, p_1, \ldots p_k$ the prime factors of p-1, where p_i are odd.

$$a^{(p-1)/2} = a^{2t+1} = -(-a)^{2t+1} = -(-a)^{(p-1)/2} \equiv -1$$
, so $a^{(p-1)/2} \not\equiv 1 \pmod{2}$.

As p-1 is even, $(p-1)/p_i$ is even, so

 $a^{(p-1)/p_i} = (-a)^{(p-1)/p_i} \not\equiv 1 \pmod{p}$ (since -a has order p-1).

So the order of a is p-1 (see Ex. 4.8): a is a primitive root modulo p.

Ex. 4.6 If $p = 2^{2^n} + 1$ is a Fermat prime, show that 3 is a primitive root modulo p.

Proof. Solution 1 (with quadratic reciprocity).

Write $p = 2^k + 1$, with $k = 2^n$.

We suppose that n > 0, so $k \ge 2, p \ge 5$. As p is prime, $3^{p-1} \equiv 1 \pmod{p}$.

In other words, $3^{2^k} \equiv 1 \pmod{p}$: the order of 3 is a divisor of 2^k , a power of 2.

3 has order 2^k modulo p iff $3^{2^{k-1}} \not\equiv 1 \pmod{p}$. As $\left(3^{2^{k-1}}\right)^2 \equiv 1 \pmod{p}$, where p is prime, this is equivalent to $3^{2^{k-1}} \equiv -1 \pmod{p}$, which remains to prove.

$$3^{2^{k-1}} = 3^{(p-1)/2} \equiv \left(\frac{3}{p}\right) \pmod{p}.$$

As the result is true for p = 5, we can suppose $n \ge 2$. From the law of quadratic reciprocity:

$$\left(\frac{3}{p}\right)\left(\frac{p}{3}\right) = (-1)^{(p-1)/2} = (-1)^{2^{k-1}} = 1.$$

So $\left(\frac{3}{p}\right) = \left(\frac{p}{3}\right)$

$$p = 2^{2^n} + 1 \equiv (-1)^{2^n} + 1 \pmod{3}$$

 $\equiv 2 \equiv -1 \pmod{3}$,

so $\left(\frac{3}{p}\right) = \left(\frac{p}{3}\right) = -1$, that is to say

$$3^{2^{k-1}} \equiv -1 \pmod{p}.$$

The order of 3 modulo $p = 2^{2^n} + 1$ is $p - 1 = 2^{2^n} : 3$ is a primitive root modulo p. (On the other hand, if 3 is of order p - 1 modulo p, then p is prime, so

$$F_n = 2^{2^n} + 1$$
 is prime $\iff 3^{(F_n - 1)/2} = 3^{2^{2^n - 1}} \equiv -1 \pmod{F_n}$.)

Solution 2 (without quadratic reciprocity, with the hint of chapter 4).

As above, if if we suppose that 3 is not a primitive root modulo p, then $3^{2^{n-1}} \equiv 1 \pmod{p}$, so $n \geq 2$, and $(-3)^{(p-1)/2} = 3^{2^{n-1}} \equiv 1 \pmod{p}$, so -3 is a square modulo p: there exists $a \in \mathbb{Z}$ such that $-3 \equiv a^2 \pmod{p}$.

As $2 \wedge p = 1$, there exists $u \in \mathbb{Z}$ such that $2u \equiv -1 + a \pmod{p}$ (\overline{u} is similar to $\omega = \frac{-1 + i\sqrt{3}}{2} \in \mathbb{C}$). Then

$$8u^{3} \equiv (-1+a)^{3}$$

$$\equiv -1+3a-3a^{2}+a^{3}$$

$$\equiv -1+3a+9-3a$$

$$\equiv 8 \pmod{p}$$

As $p \wedge 2 = p \wedge 8 = 1$, $u^3 \equiv 1 \pmod p$. Moreover, if $u \equiv 1 \pmod 3$, then $a \equiv 3 \pmod p$, $-3 \equiv 9 \pmod p$, $p \mid 12$, so p = 2 or p = 3, in contradiction with $p \geq 5$. So the order of u modulo p is $3 : (\mathbb{Z}/p\mathbb{Z})^*$ contains an element \overline{u} of order 3. So $3 \mid p-1$, $p \equiv 1 \pmod 3$, but $p \equiv (-1)^{2^n} + 1 \equiv 2 \equiv -1 \pmod 3$: this is a contradiction, so 3 is a primitive root modulo $p = 2^{2^n} + 1$.

Ex. 4.7 Suppose that p is a prime of the form 8t + 3 and that q = (p - 1)/2 is also a prime. Show that 2 is a primitive root modulo p.

Proof. The first examples of such couples (q, p) are (5, 11), (29, 59), (41, 83), (53, 107), (89, 179). <math>p = 2q + 1 = 8t + 3 and p, q are prime numbers.

From Fermat's little theorem, $2^{p-1} \equiv 1 \pmod{p}$, so $2^{2q} \equiv 1 \pmod{p}$.

The order of 2 modulo p divides 2q: to prove that the order of 2 is 2q = p - 1, it is suffisant to prove

$$2^2 \not\equiv 1 \pmod{p}, \quad 2^q \not\equiv 1 \pmod{p}.$$

If $2^2 \equiv 1 \pmod{p}$, then $p \mid 3$, p = 3 and q = 1 : q is not a prime, so $2^2 \not\equiv 1 \pmod{p}$. If $2^q = 2^{(p-1)/2} \equiv 1 \pmod{p}$, then 2 is a square modulo p (prop. 4.2.1) : there exists $a \in \mathbb{Z}$ such that $2 \equiv a^2 \pmod{p}$.

From the complementary case of law of quadratic reciprocity (see next chapter, prop. 5.1.3), 2 is a square modulo p iff

$$1 = \left(\frac{2}{p}\right) = (-1)^{(p^2 - 1)/8}.$$

Yet $p \equiv 3 \pmod 8$, so $p^2 \equiv 1 \pmod {16}$, $\binom{2}{p} = (-1)^{(p^2-1)/8} = -1$, so 2 is not a square modulo p. This is a contradiction, so $2^q \not\equiv 1 \pmod p$: 2 is a primitive root modulo p.

Ex. 4.8 Let p be an odd prime. Show that a is a primitive root modulo p iff $a^{(p-1)/q} \not\equiv 1 \pmod{p}$ for all prime divisors q of p-1.

Proof. • If a is a primitive root, then $a^k \not\equiv 1$ for all $k, 1 \leq k < p-1$, so $a^{(p-1)/q} \not\equiv 1 \pmod{p}$ for all prime divisors q of p-1.

• In the other direction, suppose $a^{(p-1)/q} \not\equiv 1 \pmod p$ for all prime divisors q of p-1. Let δ the order of a, and $p-1=q_1^{a_1}q_2^{a_2}\cdots q_k^{a_k}$ the decomposition of p-1 in prime factors. As $\delta \mid p-1, \delta = q_1^{b_1}p_2^{b_2}\cdots q_k^{b_k}$, with $b_i \leq a_i, i=1,2,\ldots,k$. If $b_i < a_i$ for some index i, then $\delta \mid (p-1)/q_i$, so $a^{(p-1)/q_i} \equiv 1 \pmod p$, which is in contradiction with the hypothesis. Thus $b_i = a_i$ for all i, and $\delta = q-1$: a is a primitive root modulo p. \square

Ex. 4.9 Show that the product of all the primitive roots modulo p is congruent to $(-1)^{\phi(p-1)}$ modulo p.

Proof. Here we suppose p prime, p > 2. Let g a primitive root modulo p. $U(\mathbb{Z}/p\mathbb{Z})$ is cyclic, generated by \overline{q} :

$$U(\mathbb{Z}/p\mathbb{Z}) = \{\overline{1}, \overline{g}, \overline{g}^2, \dots, \overline{g}^{p-2}\}, \qquad \overline{g}^{p-1} = \overline{1}.$$

 \overline{g}^k is a primitive element iff $k \wedge (p-1) = 1$, so the product of primitive elements in $U(\mathbb{Z}/p\mathbb{Z})$ is

$$\overline{P} = \prod_{\substack{k \wedge (p-1)=1\\1 \le k < p-1}} \overline{g}^k.$$

so $\overline{P} = \overline{g}^S$, where $S = \sum_{\substack{k \wedge (p-1)=1\\1 \leq k < p-1}} k$.

From Ex. 2.22, we know that for $n \geq 2$,

$$\sum_{\substack{k \wedge n = 1 \\ 1 < k < n}} k = \frac{1}{2} n \phi(n).$$

So
$$S = \sum_{\substack{k \wedge (p-1)=1\\1 \le k < p-1}} k = \frac{1}{2}(p-1)\phi(p-1).$$

As p > 2, p-1 is even. $(\overline{g}^{(p-1)/2})^2 = \overline{g}^{p-1} = \overline{1}$, and $\overline{g}^{(p-1)/2} \neq \overline{1}$. As $\mathbb{Z}/p\mathbb{Z}$ is a field, $\overline{g}^{(p-1)/2} = -\overline{1}$.

Thus $\overline{P} = (-\overline{1})^{\phi(p-1)}$: so the product P of all the primitive roots modulo p is such that

$$P \equiv (-1)^{\phi(p-1)} \pmod{p}.$$

Ex. 4.10 Show that the sum of all the primitive roots modulo p is congruent to $\mu(p-1)$ modulo p.

Proof. Notation : $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is the field with p elements, |x| the multiplicative order of an element $x \in \mathbb{F}_p^*$, $\mathbb{N}^* = \{1, 2, 3, \ldots\}$.

$$\psi: \left\{ \begin{array}{ccc} \mathbb{N}^* & \to & \mathbb{F}_p \\ n & \mapsto & \psi(n) = \sum_{d \in \mathbb{F}_p^*, |d| = n} d \end{array} \right.$$

 $\psi(n)$ is the sum of the elements with order n in \mathbb{F}_p^* . So $\psi(n)=0$ if $n\nmid p-1$, and $S = \psi(p-1)$ is the sought sum of all the primitive roots modulo p.

We compute for all $n \in \mathbb{N}^*$

$$f(n) = \sum_{d|n} \psi(d).$$

f(n) is the sum of elements whose order divides n, in other worlds the sum of the roots of $x^n - 1$. This sum is, up to the sign, the coefficient of x^{n-1} , so is null, except in the case n=1, where the sum of the unique root 1 of x-1 is 1. So

$$f(1) = 1, \quad \forall n > 1, f(n) = 0,$$

 $(f = \chi_{\{1\}})$ is the characteristic function of $\{1\}$).

From the Möbius inversion formula, for all $n \in \mathbb{N}^*$, $\psi(n) = \sum_{d|m} \mu\left(\frac{n}{d}\right) f(d)$, so

$$\psi(p-1) = \sum_{d|p-1} \mu\left(\frac{p-1}{d}\right) f(d) = \mu(p-1).$$

Conclusion:

$$S = \sum_{d \in \mathbb{F}_{n}^{*}, |d| = p-1} d = \mu(p-1):$$

the sum of all the primitive roots modulo p is congruent to $\mu(p-1)$ modulo p.

Ex. 4.11 Prove that $1^k + 2^k + ... + (p-1)^k \equiv 0 \pmod{p}$ if $p-1 \nmid k$, and $-1 \pmod{p}$ if p - 1 | k.

Proof. Let $S_k = 1^k + 2^k + \dots + (p-1)^k$. Let g a primitive root modulo $p : \overline{g}$ a generator of \mathbb{F}_p^* . As $(\overline{1}, \overline{g}, \overline{g}^2, \dots, \overline{g}^{p-2})$ is a permutation of $(\overline{1}, \overline{2}, \dots, \overline{p-1})$,

$$\overline{S_k} = \overline{1}^k + \overline{2}^k + \dots + \overline{p-1}^k$$

$$= \sum_{i=0}^{p-2} \overline{g}^{ki} = \begin{cases} \overline{p-1} = -\overline{1} & \text{if } p-1 \mid k \\ \frac{\overline{g}^{(p-1)k} - 1}{\overline{g}^k - 1} = \overline{0} & \text{if } p-1 \nmid k \end{cases}$$

since $p-1 \mid k \iff \overline{g}^k = \overline{1}$.

Conclusion:

$$1^{k} + 2^{k} + \dots + (p-1)^{k} \equiv 0 \pmod{p} \text{ if } p - 1 \nmid k$$
$$1^{k} + 2^{k} + \dots + (p-1)^{k} \equiv -1 \pmod{p} \text{ if } p - 1 \mid k$$

4.12 Use the existence of a primitive root to give another proof of Wilson's $theorem(p-1)! \equiv -1 \pmod{p}$.

Proof. As the result is trivial if p=2, we suppose that p is an odd prime.

Let g a primitive root modulo p : \overline{g} a generator of \mathbb{F}_p^* .

As $(\overline{g}^{(p-1)/2})^2 = \overline{g}^{p-1} = \overline{1}$, and $\overline{g}^{(p-1)/2} \neq 1$ in the field \mathbb{F}_n^* , then $\overline{g}^{(p-1)/2} = -1$, and $(\overline{1}, \overline{g}, \overline{g}^2, \dots, \overline{g}^{p-2})$ is a permutation of $(\overline{1}, \overline{2}, \dots, \overline{p-1})$, so

$$\overline{(p-1)!} = \prod_{k=0}^{p-2} \overline{g}^k
= \overline{g}^{\sum_{k=0}^{p-2} k}
= \overline{g}^{(p-2)(p-1)/2}
= (\overline{g}^{(p-1)/2})^{p-2}
= (-\overline{1})^{p-2}
= -1$$

Hence $(p-1)! \equiv -1 \pmod{p}$ for each prime p.

Ex. 4.13 Let G be a finite cyclic group and $g \in G$ a generator. Show that all the other generators are of the form g^k , where (k, n) = 1, n being the order of G.

Proof. Suppose $G = \langle g \rangle$, with Card G = n, so the order of g is n.

Let x another generator of G, then $x = g^k$, and $g = x^l$, $k, l \in \mathbb{Z}$, so $g = g^{kl}, g^{kl-1} =$ $e: n \mid kl-1$, then $kl-1 = qn, q \in \mathbb{Z}$, so $n \wedge k = 1$.

Reciprocally, if $u \wedge k = 1$, there exist $u, v \in \mathbb{Z}$ such that un + vk = 1, so $g = g^{un + vk} = 1$ $(g^n)^u(g^k)v=x^v\in\langle x\rangle$, so $G\subset\langle x\rangle$, $G=\langle x\rangle$: x is a generator of G.

Conclusion: if g is a generator of G, all the other generators are the elements g^k , where $k \wedge n = 1$, n = |G|.

Ex. 4.14 Let A be a finite abelian group and $a, b \in A$ elements of order m and n, respectively. If (m, n) = 1, prove that ab has order mn.

Proof. Suppose $|a|=m, |b|=n, m \wedge n=1$. • If $(ab)^k=e$, then $a^k=b^{-k}$, so $a^{kn}=b^{-kn}=(b^n)^{-k}=e$, so $m \mid kn$, with $m \wedge n=1$, so $m \wedge k$.

Similarly, $b^{km} = a^{-km} = (a^m)^{-k} = e$, so $n \mid km, n \land m = 1 : n \mid k$.

As $n \mid k, m \mid k, n \land m = 1, nm \mid k$.

• Reciprocally, if $nm \mid k, nm = qnm, q \in \mathbb{Z}$, so $(ab)^k = a^k b^k = (a^m)^{qn} (b^n)^{qm} = e$.

$$\forall k \in \mathbb{Z}, \ (ab)^k = e \iff nm \mid k.$$

So |ab| = nm.

Ex. 4.15 Let K be a field and $G \subset K^*$ a finite subgroup of the multiplicative group of K. Extend the arguments used in the proof of Theorem 4.1 to show that G is cyclic.

Solution 1.

Proof. Let n = |G|. From Lagrange's theorem, $a^n = 1$ for all $a \in G$, so the polynomial $x^n - 1 \in K[x]$ has exactly n roots in G, and so

$$\forall x \in K, x \in G \iff x^n = 1.$$

If $d \mid n$, the polynomial $x^d - 1 \in K[x]$ has exactly d roots in K otherwise $x^n - 1 =$ $(x^d-1)g(x), g(x) \in K[x]$, and $\deg(g) = n-d$ has at most n-d roots, so x^n-1 would have less than n roots in K. As $x_0^d = 1 \Rightarrow x_0^n = 1$, all these roots are in $G: x^d - 1$ has d roots in G.

Let $\psi(d)$ the number of elements in G of order d ($\psi(d) = 0$ if $d \nmid n$). Then $\sum_{c|d} \psi(c) = d$. Applying the Möbius inversion theorem, $\psi(d) = \sum_{c|d} \mu(c) d/c = \Phi(d)$ (Prop. 2.2.5), in particular, $\psi(n) = \phi(n) > 1$ if n > 2. Since a group of order 2 is cyclic, we have shown in all cases the existence of an element of order n in G, so G is cyclic.

(variation: $\psi(d) = 0$ if there exists no element of order d, and $\psi(d) = \phi(d)$ otherwise : see Ex.4.13. So $\psi(d) \leq \phi(d)$ for all $d \mid n$. As $\sum_{d \mid n} \psi(d) = \sum_{d \mid n} \phi(d) = n$, $\psi(d) = \phi(d)$ for all $d \mid n$. So there exists in G an element of order n, and G is cyclic.)

Solution 2.

Proof. Let $n = |G| = p_1^{a_1} \cdots p_k^{a_k}$. From Lagrange's theorem, $y^n = 1$ for all $y \in G$. $p(x) = x^{n/p_1} - 1 \in K[x]$ has at most $n/p_1 < n$ roots in K^* , a fortiori in G, so there exists $a \in G$ such that $a^{n/p_1} \neq 1$.

Let $c_1 = a^{n/p_1^{a_1}} = a^{p_2^{a_2} \cdots p_k^{a_k}}$. Then $c_1^{p_1^{a_1}} = 1$ and $c_1^{p_1^{a_1-1}} = a^{n/p_1} \neq 1$, so $|c_1| = p_1^{a_1}$. Similarly, there exist c_2, \ldots, c_k with respective orders $|c_i| = p_i^{a_i}$.

From exercise 4.14, we obtain by induction that $c = c_1 \cdots c_k$ has order $p_1^{a_1} \cdots p_k^{a_k} = n$,

so G is cyclic.

Calculate the solutions to $x^3 \equiv 1 \pmod{19}$ and $x^4 \equiv 1 \pmod{17}$. Ex. 4.16

Proof. Here we note a the class of a in $\mathbb{Z}/p\mathbb{Z}$.

Let
$$x \in \mathbb{F}_{19}$$
. $x^3 - 1 = 0 \iff x - 1 = 0 \text{ or } x^2 + x + 1 = 0$.

$$x^{2} + x + 1 = 0 \iff (x + 10) - 99 = 0$$

 $\iff (x + 10)^{2} - 4 = 0$
 $\iff (x + 8)(x + 12) = 0$

So, for all $x \in \mathbb{Z}$,

$$x^3 \equiv 1 \pmod{19} \iff x \equiv 1, 7, 11 \pmod{19}.$$

Let $x \in \mathbb{F}_{17}$.

$$x^4 = 1 \iff x^2 = 1 \text{ or } x^2 = -1 = 4^2$$

 $\iff x = \pm 1 \text{ or } x = \pm 4$

So, for all $x \in \mathbb{Z}$,

$$x^4 \equiv 1 \pmod{17} \iff x \equiv -1, 1, -4, 4 \pmod{17}.$$

Alternatively, we can take primitives roots modulo 19 and 17.

2 is a primitive root modulo 19, Let $x = 2^k \in \mathbb{F}_{19}$.

$$x^{3} = 1 \iff 2^{3k} = 1$$

$$\iff 18 \mid 3k$$

$$\iff 6 \mid k$$

$$\iff x = 1, 2^{6} = 7, 2^{12} = 11$$

3 is a primitive root modulo 17. Let $x = 3^k \in \mathbb{F}_{17}$.

$$\begin{aligned} x^4 &= 1 &\iff 3^{4k} = 1 \\ &\iff 16 \mid 4k \\ &\iff 4 \mid k \\ &\iff x = 1, 3^4 = -4, 3^8 = -1, 3^{12} = 4 \end{aligned}$$

Ex. 4.17 Use the fact that 2 is a primitive root modulo 29 to find the seven solutions to $x^7 \equiv 1 \pmod{29}$.

Proof. Let $x \in \mathbb{Z}$, then $x \equiv 2^k \pmod{29}$, $k \in \mathbb{N}$.

$$x^7 \equiv 1 \pmod{29} \iff 2^{7k} \equiv 1 \pmod{29}$$

$$\iff 28 \mid 7k$$

$$\iff 4 \mid k$$

So the group cyclic S of the roots of $x^7 - 1$ in \mathbb{F}_{29} are

$$S = \{1, 2^4, 2^8, 2^{12}, 2^{16}, 2^{20}, 2^{24}\},$$

$$S = \{1, 16, 24, 7, 25, 23, 20\}.$$

Ex. 4.18 Solve the congruence $1 + x + \cdots + x^6 \equiv 0 \pmod{29}$.

Proof. As $(1 + x + \cdots + x^6)(1 - x) = 1 - x^7$,

$$1 + x + \dots + x^6 \equiv 0 \pmod{29} \iff \begin{cases} x^7 \equiv 1 \pmod{29} \\ x \not\equiv 1 \pmod{29} \end{cases}$$

From Ex. 4.17, the solutions are congruent to 2^4 , 2^8 , 2^{12} , 2^{16} , 2^{20} , 2^{24} modulo 29.

Ex. 4.19 Determine the numbers a such that $x^3 \equiv a \pmod{p}$ is solvable for p = 7, 11, 13.

Proof. (a) If
$$p = 7$$
, then $3 \mid p - 1, d = 3 \land (p - 1) = 3$. From Prop. 4.2.1, $\exists x \in \mathbb{Z}, \ a \equiv x^3 \pmod{7} \iff a \equiv 0 \pmod{7} \text{ or } a^{(p-1)/3} = a^2 \equiv 1 \pmod{7}.$

So the numbers a such that $x^3 \equiv a \pmod{7}$ is solvable are congruent at 0, 1, -1 modulo 7.

(b) If p = 11, then $d = 3 \land (p - 1) = 1$. With the same proposition,

$$\exists x \in \mathbb{Z}, \ a \equiv x^3 \pmod{11} \iff a \equiv 0 \pmod{11} \text{ or } a^{p-1} = a^6 \equiv 1 \pmod{11}.$$

So all integers a are cube modulo 11, in only one way.

For an alternative proof, the application

$$f: \left\{ \begin{array}{ccc} \mathbb{F}_{11}^* & \to & \mathbb{F}_{11}^* \\ x & \mapsto & x^3 \end{array} \right.$$

f is a bijection. Indeed,

- f is a group homomorphism,
- $x^3 = 1 \Rightarrow (x^3)^7 = 1 \Rightarrow x = 1$ so $\ker(f) = \{1\},\$
- $f: \mathbb{F}_{11}^* \to \mathbb{F}_{11}^*$ is injective and \mathbb{F}_{11}^* is finite, so f is bijective.

In
$$\mathbb{F}_{11}$$
, $0 = 0^3$, $1 = 1^3$, $2 = 7^3$, $3 = 9^3$, $4 = 5^3$, $5 = 3^3$, $6 = 8^3$, $7 = 6^3$, $8 = 2^3$, $9 = 4^3$, $10 = 10^3$.

(c) If p = 13, then $3 \mid p - 1, 3 \land (p - 1) = 3$, so

$$\exists x \in \mathbb{Z}, \ a \equiv x^3 \pmod{13} \iff a \equiv 0 \pmod{13} \text{ or } a^{(p-1)/3} = a^4 \equiv 1 \pmod{13} \iff a \equiv 0, 1, -1, 5, -5 \pmod{13}$$

$$(5 \equiv 8^3 \pmod{13}.)$$

Ex. 4.20 Let p be a prime, and d a divisor of p-1. Show that dth powers form a subgroup of $U(\mathbb{Z}/p\mathbb{Z})$ of order (p-1)/d. Calculate this subgroup for p=11, d=5, for p=17, d=4, and for p=19, d=6.

Proof. Here p is a prime number, and $d \mid p-1$. Let

$$f: \left\{ \begin{array}{ccc} \mathbb{F}_p^* & \to & \mathbb{F}_p^* \\ x & \to & x^d \end{array} \right.$$

Then f is a group homomorphism, and $\operatorname{im}(f)$ is the set of dth powers, and consequently is a subgroup of $U(\mathbb{F}_p) = \mathbb{F}_p^*$. $\ker(f)$ is the group of the roots of $x^d - 1$. As $d \mid p - 1$, the polynomial $x^d - 1$ has exactly d roots (Prop. 4.1.2), so $|\ker(f)| = d$.

As $\operatorname{im}(f) \simeq \mathbb{F}_p^* / \ker(f)$,

$$|\operatorname{im}(f)| = |\mathbb{F}_p^*|/|\ker(f)| = (p-1)/d.$$

So there exist exactly (p-1)/d dth powers in $(\mathbb{Z}/p\mathbb{Z})^*$.

From Prop. 4.2.1, as $d \mid p-1, d \wedge p-1$, for all $x \in \mathbb{F}_n^*$,

$$x \in \operatorname{im}(f) \iff x^{(p-1)/d} = 1.$$

So the group of dth powers is the group of the roots of $x^{(p-1)/d} - 1$.

- If p = 11, d = 5, $im(f) = \{1, -1\}$.
- If $p = 17, d = 4, x \in \text{im}(f) \iff x^4 = 1 : \text{im}(f) = \{1, -1, 4, -4\}.$
- If $p = 19, d = 6, x \in \text{im}(f) \iff x^3 = 1 : \text{im}(f) = \{1, 7, 7^2 = 11\},$ where $7 \equiv 2^6 \pmod{19}$.

Ex. 4.21 If g is a primitive root modulo p, and d|p-1, show that $g^{(p-1)/d}$ has order d. Show also that a is a dth power iff $a \equiv g^{kd} \pmod{p}$ for some k. Do Exercises 16-20 making use of those observations.

Proof. Let $x = \overline{g}^{(p-1)/d} \in \mathbb{F}_p^*$, where g is a primitive root modulo p. For all $k \in \mathbb{Z}$,

$$x^{k} = 1 \iff g^{k\frac{p-1}{d}} = 1$$
$$\iff p-1 \mid k\frac{p-1}{d}$$
$$\iff d \mid k$$

So the ordre of $\overline{g}^{(p-1)/d}$ is d.

- If $\overline{a} = \overline{g}^{kd}$, then $\overline{a} = x^d$, where $x = \overline{g}^k$, so \overline{a} is a dth power.
- If $\overline{a} \neq \overline{0}$ is a dth power, $\overline{a} = x^d, x \in \mathbb{F}_p^*$. As $x \in \langle \overline{g} \rangle, x = \overline{g}^k$, so $\overline{a} = \overline{g}^{kd}$.

So, if $a \not\equiv 0 \pmod{p}$, a is a dth power iff $a \equiv g^{kd} \pmod{p}$ for some k.

By example (Ex. 4.20), 2 is a primitive root modulo 19, so the 6th powers modulo 19 are $2^0 = 1, 2^6 = 7, 2^{12} = 11$.

Ex. 4.22 If a has order 3 modulo p, show that 1 + a has order 6.

Proof. If a has order 3 modulo p, then $0 \equiv a^3 - 1 = (a-1)(a^2 + a + 1) \pmod{p}$, with $a \not\equiv 1 \pmod{p}$, so $a^2 + a + 1 \equiv 0 \pmod{p}$. Thus

$$(1+a)^3 \equiv 1 + 3a + 3a^2 + a^3$$

 $\equiv 1 + 3a + 3(-1-a) + 1$
 $\equiv -1 \pmod{p}$

So $(1+a)^6 \equiv 1 \pmod{p}$.

 $(1+a)^2 \equiv 1 + 2a + a^2 = 1 + 2a + (-1-a) \equiv a \not\equiv 1 \pmod{p}.$

So $(1+a)^6 \equiv 1, (1+a)^2 \not\equiv 1, (1+a)^3 \not\equiv 1 \pmod{p}$, so the order of 1+a divides 6, but doesn't divides 2 or 3, so 1+a has order 6 modulo p.

Ex. 4.23 Show that $x^2 \equiv -1 \pmod{p}$ has a solution iff $p \equiv 1 \pmod{4}$, and that $x^4 \equiv -1 \pmod{p}$ has a solution iff $p \equiv 1 \pmod{8}$.

Proof. If $x^2 \equiv -1 \pmod{p}$, then \overline{x} has order 4 in \mathbb{F}_p^* , hence from Lagrange's theorem, $4 \mid p-1$.

Reciprocally, suppose $4 \mid p-1$, so $p=4k+1, k \in \mathbb{N}^*$. From proposition 4.2.1, as $2 \mid p-1, -1$ is a square modulo p iff $(-1)^{(p-1)/2} \equiv 1 \pmod{p}$, which is true because $(-1)^{(p-1)/2} = (-1)^{2k} = 1$.

If $x^4 \equiv -1 \pmod{p}$, then $\overline{x}^8 = 1 \in \mathbb{F}_p^*$, and $\overline{x}^4 \neq 1$, so x has order 8 in \mathbb{F}_p^* , so $8 \mid p-1$. Reciprocally, if $p \equiv 1 \pmod{8}$, p = 8K + 1, $K \in \mathbb{N}^*$. From Prop.4.2.1, as $4 \mid p-1$, there exists $x \in \mathbb{Z}$ such that $-1 = x^4$ iff $(-1)^{(p-1)/4} \equiv 1 \pmod{8}$, which is true because $(-1)^{(p-1)/4} = (-1)^{2K} = 1$.

Conclusion:

$$\exists x \in \mathbb{Z}, \ x^4 \equiv -1 \pmod{p} \iff p \equiv 1 \pmod{8}.$$

Ex. 4.24 Show that $ax^m + by^n \equiv c \pmod{p}$ has the same number of solutions as $ax^{m'} + by^{n'} \equiv c \pmod{p}$, where m' = (m, p - 1) and n' = (n, p - 1).

Proof. If $a \wedge b \nmid c$, the two equations have no solution. So we can suppose $a \wedge b \mid c$, and after division by $\delta = a \wedge b$, we obtain an equation $a'x^m + b'y^n = c'$, $a' = a/\delta, b' = b\delta, c' = c\delta$, and $a' \wedge b' = 1$. So it remains to prove that $ax^m + by^n \equiv c \pmod{p}$ has the same number of solutions as $ax^{m'} + by^{n'} \equiv c \pmod{p}$ when $a \wedge b = 1$.

In this case the equation au + bv = c has solutions. Let N the number of solutions $(\overline{x}, \overline{y})$ of the equation $\overline{a} \, \overline{x}^m + \overline{b} \, \overline{y}^n = \overline{c}, N'$ the number of solutions $(\overline{x}, \overline{y})$ of the equation $\overline{a} \, \overline{x}^{m'} + \overline{b} \, \overline{y}^{n'} = \overline{c}$. Then

$$\begin{split} N &= \operatorname{Card}\{(\overline{x}, \overline{y}) \in \mathbb{F}_p \times \mathbb{F}_p \mid \overline{a} \, \overline{x}^m + \overline{b} \, \overline{y}^n = \overline{c}\} \\ &= \sum_{\overline{a}\overline{u} + \overline{b}\overline{v} = \overline{c}} \operatorname{Card}\{(\overline{x}, \overline{y}) \in \mathbb{F}_p \times \mathbb{F}_p \mid \overline{x}^m = \overline{u}, \overline{y}^n = \overline{v}\} \\ &= \sum_{\overline{a}\overline{u} + \overline{b}\overline{v} = \overline{c}} \operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} \times \operatorname{Card}\{\overline{y} \in \mathbb{F}_p \mid \overline{y}^n = \overline{v}\}. \end{split}$$

The same is true for N', so it is suffisant to prove that

$$\operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} = \operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^{m'} = \overline{u}\},\$$

where $m' = m \wedge (p-1)$, and a similar equality for the equation $\overline{y}^n = \overline{v}$. Let \overline{g} a generator of \mathbb{F}_p^* . Write $\overline{u} = \overline{g}^r, r \in \mathbb{N}$.

$$\exists \overline{x} \in \mathbb{F}_p, \ \overline{x}^m = \overline{u} \iff \exists k \in \mathbb{Z}, \ \overline{g}^{mk} = \overline{g}^r$$

$$\iff \exists k \in \mathbb{Z}, \ p-1 \mid mk-r$$

$$\iff \exists k \in \mathbb{Z}, \exists l \in \mathbb{Z}, \ r = mk + l(p-1)$$

$$\iff m \land (p-1) \mid r$$

So

$$\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} \neq \emptyset \iff m \land (p-1) \mid r,$$

and similarly

$$\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^{m'} = \overline{u}\} \neq \emptyset \iff m' \land (p-1) \mid r.$$

Since $m' \wedge (p-1) = (m \wedge (p-1)) \wedge (p-1) = m \wedge (p-1)$, these two conditions are equivalent, so these two sets are empty for the same values of \overline{u} .

Let \overline{u} is such that $\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} \neq \emptyset$, and x_0 a fixed solution of $\overline{x}^m = \overline{u}$. Write $\overline{x} = \overline{g}^k, \overline{x_0} = g^{k_0}$. Let $d = m \land (p-1)(=m')$.

$$\overline{x}^{m} = u \iff \overline{x}^{m} = \overline{x_0}^{m}$$

$$\iff \overline{g}^{mk} = \overline{g}^{mk_0}$$

$$\iff p - 1 \mid m(k - k_0)$$

$$\iff \frac{p - 1}{d} \mid \frac{m}{d}(k - k_0)$$

$$\iff \frac{p - 1}{d} \mid k - k_0$$

$$\iff \exists j \in \mathbb{Z}, k = k_0 + j \frac{p - 1}{d}$$

As g is a primitive root modulo p, the distinct solutions are $x_0, x_0 g^{\frac{p-1}{d}}, \dots, x_0 g^{k\frac{p-1}{d}}, \dots x_0 g^{(d-1)\frac{p-1}{d}}$. so in this case

$$\operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} = d = m \land (p-1).$$

As $m' \wedge (p-1) = m \wedge (p-1)$,

$$\operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} = \operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^{m'} = \overline{u}\}.$$

So N = N': $ax^m + by^n \equiv c \pmod{p}$ has the same number of solutions as $ax^{m'} + by^{n'} \equiv c$ (mod p), where m' = (m, p - 1) and n' = (n, p - 1).

Ex. 4.25 Prove Propositions 4.2.2 and 4.2.4.

Proposition 4.2.2. Suppose that a is odd, $e \geq 3$, and consider the congruence $x^n \equiv a \pmod{2^e}$. If n is odd, a solution always exists and it is unique.

If n is even, a solution exists iff $a \equiv 1 \pmod{4}$, $a^{2^{e-2}/d} \equiv 1 \pmod{2^e}$, where $d = 1 \pmod{4}$ $(n, 2^{e-2})$. When a solution exists there are exactly 2d solutions.

Proof. We suppose that a is odd and $e \geq 3$.

From Theorem 2', we know that $\{(-1)^a 5^b \mid 0 \le a \le 1, 0 \le b \le 2^{e-2}\}$ constitutes a reduced residue system modulo 2^e , so we can write

$$a \equiv (-1)^s 5^t \pmod{2^e}, 0 \le s \le 1, 0 \le t \le 2^{e-2},$$

 $x \equiv (-1)^y 5^z \pmod{2^e}, 0 \le y \le 1, 0 \le z \le 2^{e-2}.$

For all $x \in \mathbb{Z}$,

$$x^n \equiv a \pmod{2^e} \iff (-1)^{ny} 5^{nz} \equiv (-1)^s 5^t \pmod{2^e}$$

Then $(-1)^{ny} \equiv (-1)^s \pmod{4}$, $ny \equiv s \pmod{2}$, $(-1)^{ny} = (-1)^s$, so $5^{nz} \equiv 5^t \pmod{2^e}$. Reciprocally, if $ny \equiv s \pmod{2}$ and $5^{nz} \equiv 5^t \pmod{2^e}$, then $x^n \equiv a \pmod{2^e}$, so

$$x^n \equiv a \pmod{2^e} \iff \left\{ \begin{array}{ccc} ny & \equiv & s \pmod{2} \\ 5^{nz} & \equiv & 5^t \pmod{2^e} \end{array} \right. \iff \left\{ \begin{array}{ccc} ny & \equiv & s \pmod{2} \\ nz & \equiv & t \pmod{2^{e-2}} \end{array} \right.$$

since the order of 5 modulo 2^e is 2^{e-2} .

 \bullet Suppose that n is an odd integer. Then

$$\left\{ \begin{array}{lll} ny & \equiv & s \pmod{2} \\ nz & \equiv & t \pmod{2^{e-2}} \end{array} \right. \iff \left\{ \begin{array}{lll} y & \equiv & s \pmod{2} \\ z & \equiv & n't \pmod{2^{e-2}} \end{array} \right.$$

where n' is an inverse of n modulo 2^{e-2} : $nn' \equiv 1 \pmod{2^{e-2}}$.

So $x^n \equiv a \pmod{2^e}$ has an unique solution modulo 2^e .

 \bullet Suppose that n is an even integer.

Then
$$\begin{cases} ny \equiv s \pmod{2} \\ nz \equiv t \pmod{2^{e-2}} \end{cases} \text{ implies } s \equiv 0 \pmod{2} \text{ and } d = n \wedge 2^{e-2} \mid t.$$
Then $a \equiv (-1)^s 5^t \equiv 5^t \pmod{2^e}$, so $a \equiv 1 \pmod{4}$.

Hence $a^{\frac{2^{e-2}}{d}} \equiv \left(5^{2^{e-2}}\right)^{\frac{t}{d}} \equiv 1 \pmod{2^e}$, since 5 has order 2^{e-2} , and $d \mid t$.

So, if n is even, and $d = n \wedge 2^{e-2}$,

$$\exists x \in \mathbb{Z}, \ x^n \equiv a \pmod{2^e} \Rightarrow \begin{cases} a \equiv 1 \pmod{4} \\ a^{\frac{2^{e-2}}{d}} \equiv 1 \pmod{2^e} \end{cases}$$

Reciprocally, suppose that $\begin{cases} a \equiv 1 \pmod{4} \\ a^{\frac{2^{e-2}}{d}} \equiv 1 \pmod{2^e} \end{cases}$. Then $a \equiv (-1)^s 5^t \pmod{2^e}$ implies $a \equiv (-1)^s \pmod{4}$, so s is even, and $a \equiv 5^t \pmod{2^e}$.

Therefore $5^{t\frac{2^{e-2}}{d}} \equiv 1 \pmod{2^e}$, which implies $2^{e-2} \mid t^{\frac{2^{e-2}}{d}}$, so $d \mid t$.

$$\exists x \in \mathbb{Z}, \ x^n \equiv a \pmod{2^e} \iff \exists y \in \mathbb{Z}, \ \exists z \in \mathbb{Z}, \ \begin{cases} ny \equiv s \pmod{2} \\ nz \equiv t \pmod{2^{e-2}} \end{cases}$$

$$\iff \exists z \in \mathbb{Z}, \ nz \equiv t \pmod{2^{e-2}} \pmod{2^{e-2}}$$

$$\iff \exists z \in \mathbb{Z}, \ 2^{e-2} \mid nz - t$$

$$\iff \exists z \in \mathbb{Z}, \ \frac{2^{e-2}}{d} \mid \frac{n}{d}z - \frac{t}{d}$$

$$\iff \exists z \in \mathbb{Z}, \ \exists q \in \mathbb{Z}, \ q \frac{2^{e-2}}{d} + z \frac{n}{d} = \frac{t}{d}$$

As $\frac{2^{e-2}}{d} \wedge \frac{n}{d} = 1$, there exists a solution (q, z_0) of this last equation, where $0 \le z_0 < \frac{2^{e-2}}{d}$, and so $x_0 = 5^{z_0}$ is a particular solution of $x^n \equiv a \pmod{2^e}$, therefore

$$\exists x \in \mathbb{Z}, \ x^n \equiv a \pmod{2^e} \iff \left\{ \begin{array}{ccc} a & \equiv & 1 \pmod{4} \\ a^{\frac{2^{e-2}}{d}} & \equiv & 1 \pmod{2^e} \end{array} \right.$$

If there exists a particular solution $x_0 \equiv (-1)^{y_0} 5^{z_0}$, then

$$x^{n} \equiv a \pmod{2^{e}} \iff x^{n} \equiv x_{0}^{n} \pmod{2^{e}}$$

$$\iff \begin{cases} ny \equiv ny_{0} \pmod{2} \\ nz \equiv nz_{0} \pmod{2^{e-2}} \end{cases}$$

$$\iff n(z - z_{0}) \equiv 0 \pmod{2^{e-2}} \pmod{2^{e-2}}$$

$$\iff \frac{2^{e-2}}{d} \mid \frac{n}{d}(z - z_{0})$$

$$\iff \frac{2^{e-2}}{d} \mid z - z_{0}, \qquad (\text{since } \frac{2^{e-2}}{d} \land \frac{n}{d} = 1)$$

$$\iff \exists k \in \mathbb{Z}, \ z = z_{0} + k \frac{2^{e-2}}{d}$$

As the order of 5 modulo 2^e is 2^{e-2} , the solutions of $x^n \equiv a \pmod{2^e}$ are

$$x_k = (-1)^y 5^{z_0 + k\frac{2^{e-2}}{d}}, \ 0 \le y < 2, \ 0 \le k < d,$$

so there are exactly 2d solutions modulo 2^e .

Proposition 4.2.4. Let 2^l be the highest power of 2 dividing n. Suppose that a is odd and that $x^n \equiv a \pmod{2^{2l+1}}$ is solvable. Then $x^n \equiv a \pmod{2^e}$ is solvable for all $e \geq 2l+1$, and consequently for all $e \geq 1$). Moreover, all these congruences have the same number of solutions.

Proof. We suppose that a is odd, and that $x^n \equiv a \pmod{2^{2l+1}}$ is solvable. l is such that $n = 2^l n'$, where n' is an odd integer.

Let the induction hypothesis be, for a fixed integer $m \geq 2l+1$,

$$\exists x_0 \in \mathbb{Z}, \ x_0^n \equiv a \pmod{2^m}.$$

Let $x_1 = x_0 + b2^{m-l}$: we show that for an appropriate choice of $b \in \{0,1\}$, $x_1^n \equiv a \pmod{2^{m+1}}$.

$$x_1^n = x_0^n + nb2^{m-l}x_0^{n-1} + 2^{2m-2l}A, \ A \in \mathbb{Z}.$$

Since $m \ge 2l + 1, 2m - 2l \ge m + 1$, so

$$x_1^n \equiv x_0^n + nb2^{m-l}x_0^{n-1} \pmod{2^{m+1}}.$$

$$x_1^n \equiv a \pmod{2^{m+1}} \iff (x_0^n - a) + n'bx_0^{n-1}2^m \equiv 0 \pmod{2^{n+1}}$$

 $\iff \frac{x_0^n - a}{2^m} + n'bx_0^{n-1} \equiv 0 \pmod{2}$

As a is odd, and $x_0^n \equiv a \pmod{2^m}, m \geq 1$, x_0 is odd, and n' is odd, so there exists an unique $b \in \{0,1\}$ such that $\frac{x_0^{n-a}}{2^m} + n'bx_0^{n-1} \equiv 0 \pmod{2}$. So there exists $x_1 \in \mathbb{Z}$ such that $x_1^b \equiv a \pmod{2^{m+1}}$, and the induction is completed. Therefore, $x^n \equiv a \pmod{2^e}$ is solvable for all $e \geq 2l+1$, and consequently for all $e \geq 1$).

From the Proposition 4.2.2., with the hypothesis $e \geq 3$, we know that the number of solutions of the solvable equation $x^n \equiv a \pmod{2^e}$, $e \geq 2l+1$, is 1 if n is odd, $2(n \wedge 2^{e-2})$ if n is even.

If n is even, $l \ge 1$, $e \ge 2l+1 \ge 3$. Since $e \ge 2l+1$, and $n=2^l n'$ for an odd n', $l \le \frac{e-1}{2} \le e-2$, so $n \wedge 2^{e-2} = n'2^l \wedge 2^{e-2} = 2^l$, and the number of solutions is 2^{l+1} , independent of $e \ge 2l+1$.

Conclusion: under the hypothesis $x^n \equiv a \pmod{2^{2l+1}}$, where $l = \operatorname{ord}_2(n)$, then $x^n \equiv a \pmod{2^e}$ is solvable for all $e \geq 1$, and all these congruences have the same number of solutions for $e \geq 2l+1, e \geq 3$.