Numerical Relativity Implementations

Created December 6, 2023; Latest January 13, 2024

RidiculeAmuser

0.1. Conventions

$$\gamma_{\mu\nu} \Leftrightarrow (-,+,+,+)$$

All indices are raised and lowered with $\tilde{\gamma}_{ij}$ and $\tilde{\gamma}^{ij}$ unless specified otherwise.

1. BSSN W-Formalism Equations

Field Magnitudes: $W = \det \left(\gamma_{ij} \right)^{-\frac{1}{6}}, \ \tilde{\gamma}_{ij} = W^2 \gamma_{ij} \iff \tilde{\gamma}^{ij} = W^{-2} \gamma^{ij}$ Conjugate Momenta: $K = \gamma^{ij} K_{ij}, \ \tilde{A}_{ij} = W^2 \left(K_{ij} - \frac{1}{3} \gamma_{ij} K \right)$

Constraint Variables: $\tilde{\Gamma}^i = \tilde{\Gamma}^i{}_{ik}\tilde{\gamma}^{jk}$

$$\begin{split} \tilde{\Gamma}^i &= \tilde{\Gamma}^i{}_{jk} \tilde{\gamma}^{jk} \\ &\det \left(\tilde{\gamma}_{ij} \right) \stackrel{\text{\tiny def}}{=} \mathcal{D} = 1, \quad \tilde{\gamma}_{ij} \tilde{A}^{ij} \stackrel{\text{\tiny def}}{=} \mathcal{A} = 0, \quad \tilde{\mathcal{G}}^i \stackrel{\text{\tiny def}}{=} \tilde{\Gamma}^i - \tilde{\Gamma}^i{}_{jk} \tilde{\gamma}^{jk} = 0 \end{split}$$
Constraint Equations:

Energy Momentum Constraints:

$$\mathcal{H} \stackrel{\mbox{\tiny def}}{=} \ ilde{\mathcal{R}}_{ij} ilde{\gamma}^{ij} + rac{2}{3} K^2 - ilde{A}^{ij} ilde{A}_{ij} - 16\pi
ho - 2\Lambda = 0$$

$$\begin{split} \mathcal{H} &\stackrel{\text{\tiny def}}{=} \ \tilde{\mathcal{R}}_{ij} \tilde{\gamma}^{ij} + \frac{2}{3} K^2 - \tilde{A}^{ij} \tilde{A}_{ij} - 16\pi\rho - 2\Lambda = 0 \\ \\ \mathcal{M}_j &\stackrel{\text{\tiny def}}{=} \ \tilde{D}^i \tilde{A}_{ij} - \frac{2}{3} \partial_j K - 3 \frac{\partial^i W}{W} \tilde{A}_{ij} - 8\pi J_j = 0 \end{split}$$

Raw Equations:

$$\begin{split} \partial_t W &= \beta^i \partial_i W + \frac{1}{3} W (\alpha K - \mathcal{B}) \\ \partial_t \tilde{\gamma}_{ij} &= \beta^m \partial_m \tilde{\gamma}_{ij} + 2 \tilde{\gamma}_{m(i} \partial_{j)} \beta^m - \frac{2}{3} \tilde{\gamma}_{ij} \ \mathcal{B} - 2 \alpha \tilde{A}_{ij} \\ \partial_t K &= \beta^i \partial_i K - \tilde{\gamma}^{ij} \tilde{\mathcal{V}}_{ij} + \alpha \tilde{A}^{ij} \tilde{A}_{ij} + \frac{1}{3} \alpha K^2 + \alpha [4 \pi (S + \rho) - \Lambda] \\ \partial_t \tilde{A}_{ij} &= \beta^m \partial_m \tilde{A}_{ij} + 2 \tilde{A}_{m(i} \partial_{j)} \beta^m - \frac{2}{3} \tilde{A}_{ij} \ \mathcal{B} + \alpha K \tilde{A}_{ij} - 2 \alpha \tilde{A}_{im} \tilde{A}^m{}_j \\ &+ \left[\alpha \left(\tilde{\mathcal{R}}_{ij} - 8 \pi \tilde{S}_{ij} \right) - \tilde{\mathcal{V}}_{ij} \right]^{\mathrm{TF}} \\ \partial_t \tilde{\Gamma}^i &= \beta^m \partial_m \tilde{\Gamma}^i - \tilde{\Gamma}^m \partial_m \beta^i + \frac{2}{3} \tilde{\Gamma}^i \ \mathcal{B} + \partial^m \partial_m \beta^i + \frac{1}{3} \partial^i \ \mathcal{B} \\ -2 \tilde{A}^{im} \left[3 \alpha \frac{\partial_m W}{W} + \partial_m \alpha \right] + 2 \alpha \tilde{\Gamma}^i{}_{jk} \tilde{A}^{jk} - \frac{4}{3} \alpha \partial^i K - 16 \alpha \pi \tilde{J}^i \end{split}$$

1.1. Auxilliary Variables

$$\begin{split} \tilde{\mathcal{V}}_{ij} &= W \Big[W \tilde{D}_i \tilde{D}_j \alpha + 2 \partial_{(i} W \partial_{j)} \alpha - \tilde{\gamma}_{ij} \tilde{\gamma}^{ab} \partial_a W \partial_b \alpha \Big] \\ \Gamma^i{}_{jk} &= \tilde{\Gamma}^i{}_{jk} - W^{-1} \Big(\delta^i{}_k \partial_j W + \delta^i{}_j \partial_k W - \tilde{\gamma}_{jk} \partial^i W \Big) \\ \tilde{\mathcal{R}}^W{}_{ij} &= \tilde{\gamma}_{ij} \Big[W \tilde{D}^m \tilde{D}_m W - 2 \partial_m W \partial^m W \Big] + W \tilde{D}_i \tilde{D}_j W \\ \tilde{\mathcal{R}}^C{}_{ij} &= W^2 \Big(\tilde{\gamma}_{m(i} \partial_j) \tilde{\Gamma}^m + \tilde{\Gamma}^m \tilde{\Gamma}_{(ij)m} + \tilde{\gamma}^{mn} \Big[2 \tilde{\Gamma}^k{}_{m(i} \tilde{\Gamma}_{j)kn} + \tilde{\Gamma}^k{}_{im} \tilde{\Gamma}_{kjn} \Big] - \frac{1}{2} \partial^m \partial_m \tilde{\gamma}^{ij} \Big) \\ \tilde{\mathcal{R}}_{ij} &= \tilde{\mathcal{R}}^W{}_{ij} + \tilde{\mathcal{R}}^C{}_{ij}, \quad \mathcal{B} = \partial_m \beta^m \end{split}$$

1.2. Normal Vectors:

$$\begin{split} n_{\alpha} &= \left(-\alpha,0,0,0\right) = -\alpha (\mathrm{d}t)_{\alpha} \\ n^{\alpha} &= \frac{1}{\alpha} \Big(\left(\partial_{t}\right)_{\mu} - \beta^{\mu} \Big) = \left(\frac{1}{\alpha}, -\frac{\beta^{x}}{\alpha}, -\frac{\beta^{y}}{\alpha}, -\frac{\beta^{z}}{\alpha} \right) \\ \mathcal{P}^{\alpha}{}_{\mu} &= \delta^{\alpha}{}_{\mu} + n^{\alpha}n_{\mu} = \begin{pmatrix} 0 & \beta^{x} & \beta^{y} & \beta^{z} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{split}$$

1.3. Tensorial Relations

$$\begin{split} \tilde{\Gamma}^{ij}{}_{j} &= -\frac{1}{2}\frac{\partial^{i}}{\mathcal{D}} - \partial_{j}\tilde{\gamma}^{ij} \quad \Rightarrow \quad \tilde{\Gamma}^{i} = -\partial_{j}\tilde{\gamma}^{ij} \\ \tilde{\Gamma}^{j}{}_{ij} &= \frac{1}{2}\frac{\partial_{i}}{\mathcal{D}} := 0 \\ \tilde{\mathcal{R}}^{W} &= 4W\tilde{D}^{m}\tilde{D}_{m}W - 6\partial_{m}W\partial^{m}W \\ \tilde{\mathcal{V}} &= W \left[W\tilde{D}_{i}\tilde{D}^{i}\alpha - \partial_{i}W\partial^{i}\alpha\right] \\ \tilde{D}_{i}\mathcal{M}_{j} &= \quad \tilde{D}_{i}\tilde{D}^{k}\tilde{A}_{kj} - \frac{2}{3}\tilde{D}_{i}\tilde{D}_{j}K - 3(\partial^{k}\ln W)\tilde{D}_{i}\tilde{A}_{kj} - 3\tilde{A}_{kj}\tilde{D}_{i}\tilde{D}^{k}\ln W - 8\pi\tilde{D}_{i}J_{j} \end{split}$$

2. Constraint Stabilizing Modifications

$$\begin{split} \partial_t \tilde{\Gamma}^i &= \left(\partial_t \tilde{\Gamma}^i\right)^{\text{BSSN}} - \left((1+\kappa_1) \max(\lambda^i,0) + \frac{2}{3}[\mathcal{B} - 2\alpha K]\right) \tilde{\mathcal{G}}^i \\ \lambda^i &= \frac{2}{3}[\mathcal{B} - 2\alpha K] - \partial_i \beta^i - \frac{2}{5}\alpha \tilde{A}^i_{\ i} \quad \text{(No summation)} \end{split}$$

$$\partial_t K = \left(\partial_t K\right)^{\mathrm{BSSN}} - \underbrace{\underline{s_1 \alpha (\Delta h)^2 \tilde{D}^i \mathcal{M}_i}}_{\mathrm{Shown \ to \ interfere \ with \ other \ constraints.}} - \kappa_2 \alpha K \ \mathcal{H}$$

$$\partial_t \tilde{A}_{ij} = \left(\partial_t \tilde{A}_{ij}\right)^{\text{BSSN}} + \kappa_3 \alpha \left[\mathcal{F}(\mathcal{M}_i, W, ...)^{\text{TF}} \right]_{(ij)} + \kappa_7 \alpha \mathcal{H} \tilde{A}^{ij}$$

$$\text{Candidate:} \quad \mathcal{F}(\mathcal{M}_i, W, \ldots) = \tilde{D}_i \mathcal{M}_j + 3W^{-1} \mathcal{M}_i \partial_j W \qquad \left(\text{Inspired by } \frac{\delta \ \|\mathcal{M}_i\|^2}{\delta \tilde{A}_{ij}} \right)$$

$$\partial_t \tilde{\boldsymbol{\gamma}}_{ij} = \left(\partial_t \tilde{\boldsymbol{\gamma}}_{ij}\right)^{\mathrm{BSSN}} + \kappa_4 \beta_{(i} \boldsymbol{\mathcal{G}}_{j)} - \frac{1}{5} \tilde{\boldsymbol{\gamma}}_{ij} \boldsymbol{\mathcal{G}}^k \beta_k - \kappa_5 \tilde{D}_{(i} \boldsymbol{\mathcal{G}}_{j)}$$

$$\begin{split} \partial_t W &= \left(\partial_t W\right)^{\mathrm{BSSN}} + \kappa_6 f(\mathcal{H}, \ldots) \\ \Rightarrow \partial_t \ \mathcal{H} &= \left(\partial_t \ \mathcal{H}\right)^{\mathrm{BSSN}} + 4\kappa_6 \left[f(\mathcal{H}, \ldots) \tilde{D}^m \tilde{D}_m W + W \tilde{D}_m \tilde{D}^m f(\mathcal{H}, \ldots) - 3\partial_m f(\mathcal{H}, \ldots) \partial^m W\right] \end{split}$$

$$\text{Candidate:} \qquad \qquad f(\mathcal{H},\ldots) = \mathcal{H}\left[1-\min\left(2,\frac{\tilde{D}_i\tilde{D}^iW}{W}\right)\right] \qquad \left(\text{Inspired by }\frac{\delta\mathcal{H}^2}{\delta W}\right)$$

Comments on constraint damping:

 κ_1 : Essential for stability and physicality.

 $\kappa_2:$ Reduces constraints but harms physicality and dynamics.

 κ_3 : Essential for stability and physicality, unstable at strengths higher than 0.125 with $\Delta h = 1$. Dissipative.

 κ_4 : Helpful for stability and constraint damping.

 κ_5 : Helpful for stability and constraint damping for \mathcal{G}^i . Causes dissipative effects at high strength.

 κ_6 : Very helpful to reduce ${\mathcal H}$ constraints. Unstable at high strength.

 κ_7 : Helpful for stability and damping ${\mathcal H}$ constraints. Dynamics unknown.

2.1. Singularity Detection

$$\mathcal{S} \coloneqq \max \left(0, 5 \frac{\partial_i \partial^i W}{W}\right) > 1 \quad \text{(Near potential singularity)}$$

2.2. Kreiss Oliger Dissipation

$$\partial_t T^{ijk\dots}{}_{abc\dots} = \left(\partial_t T^{ijk\dots}{}_{abc\dots}\right)^{\mathrm{BSSN}} + \sigma \frac{\left(\Delta h\right)^{2n-1}}{4} \left(-\frac{1}{4}\right)^{n-1} \Delta^n \ T^{ijk\dots}{}_{abc\dots}$$

Note: Dissipative and severely harms dynamics at higher strengths. Apply when necessary.

2.3. Boundary Conditions

At outgoing boundary, apply the following with appropriate 1-sided derivatives.

$$\partial_t T^{ab\dots}{}_{cd\dots} = -\frac{v}{r} \Big(r^i \partial_i T^{ab\dots}{}_{cd\dots} + T^{ab\dots}{}_{cd\dots} - \left(T^{ab\dots}{}_{cd\dots} \right)_{\infty} \Big)$$

2.4. Numerical Constraints

$$\tilde{\boldsymbol{\gamma}}_{ij} \coloneqq \tilde{\boldsymbol{\gamma}}_{(ij)} \, \det(\tilde{\boldsymbol{\gamma}})^{-\frac{1}{3}}, \quad \tilde{A}_{ij} \coloneqq \tilde{A}_{(ij)} - \frac{1}{3} \boldsymbol{\gamma}^{ij} \tilde{A}_{(ij)}$$

2.5. Gauge Conditions

1+Log Slicing Conditions:

$$\partial_t \alpha = \beta^i \partial_i \alpha - 2\alpha K, \quad [\alpha]_{t=0} = 1$$

$$\partial_t \beta^i = \kappa_8 \tilde{\Gamma}^i - N \beta^i, \quad [\beta^i]_{t=0} = 0$$

Note: Numerics depend heavily on κ_8 and dynamics are strongly affected.

2.6. Non-zero Vacuum Energy

With a non-zero vacuum energy, the ambient, fields at asymptotic infinity evolve as follows:

$$\begin{split} \partial_t W_\infty &= W_\infty \frac{\alpha_\infty K_\infty}{3} \\ \partial_t K_\infty &= \alpha_\infty \left[\frac{1}{3} {K_\infty}^2 - \Lambda \right] \\ \partial_t \left(\tilde{\gamma}_\infty \right)_{ii} &= 0, \ \partial_t \left(\tilde{A}_\infty \right)_{ii} = 0, \ \partial_t \tilde{\Gamma}_\infty^i = 0 \end{split}$$

Using the 1+log slicing gauge condition:

$$\partial_t \alpha_{\infty} = -2\alpha_{\infty} K_{\infty}$$
$$\partial_t \beta_{\infty}^i = 0$$

3. Numerical Implementation

3.1. Finite Difference Coefficients

Distance From Edge	Index 0	Index 1	Index 2	Index 3	Index 4	Index 5	Index 6
0L	$-\frac{49}{20}$	$\frac{6}{1}$	$-\frac{15}{2}$	$\frac{20}{3}$	$-\frac{15}{4}$	$\frac{6}{5}$	$-\frac{1}{6}$
1L	$-\frac{1}{6}$	$-\frac{77}{60}$	$\frac{5}{2}$	$-\frac{5}{3}$	$\frac{5}{6}$	$-\frac{1}{4}$	$\frac{1}{30}$
2L	$\frac{1}{30}$	$-\frac{2}{5}$	$-\frac{7}{12}$	$\frac{4}{3}$	$-\frac{1}{2}$	$\frac{2}{15}$	$-\frac{1}{60}$
Non-Boundary	$-\frac{1}{60}$	$\frac{3}{20}$	$-\frac{3}{4}$	$\frac{0}{1}$	$\frac{3}{4}$	$-\frac{3}{20}$	$\frac{1}{60}$
2R	$\frac{1}{60}$	$-\frac{2}{15}$	$\frac{1}{2}$	$-\frac{4}{3}$	$\frac{7}{12}$	$\frac{2}{5}$	$-\frac{1}{30}$
1R	$-\frac{1}{30}$	$\frac{1}{4}$	$-\frac{5}{6}$	5 3	$-\frac{5}{2}$	$\frac{77}{60}$	$\frac{1}{6}$
0R	$\frac{1}{6}$	$-\frac{6}{5}$	$\frac{15}{4}$	$-\frac{20}{3}$	$\frac{15}{2}$	$-\frac{6}{1}$	$\frac{49}{20}$

3.2. Coordinate Grid

The following coordinate transforms are performed on cartesian axes to convert from domain space to physical space:

$$\mathcal{F}\!(i) = \frac{r\Delta h}{2} \tanh^{-1}\!\left(\frac{2i+1}{r} - 1\right)$$

$$\mathcal{F}^{-1}(p) = \frac{r}{2} \tanh\!\left(\frac{2p}{r\Delta h}\right) - \frac{1}{2}$$

Where (r) is the resolution of the domain on one axis and (Δh) is the base size of a voxel. Given 2 binary black holes with masses 4.83 and positions $\pm 32.51 \ \hat{x}$, the following voxel sizes Δh are most appropriate for the resolutions listed below:

Resolution (r)	Voxel Size (Δh)	Relative Qual. (Voxels)	Internal Domain Size
100	≥ 1.792	≤ -6.541	≥ 273.73
125	≥ 1.131	≤ 2.199	≥ 232.39
150	≥ 0.814	≤ 8.968	≥ 212.22
175	≥ 0.630	≤ 14.683	≥ 200.30
200	≥ 0.522	≤ 19.764	≥ 196.87
225	≥ 0.436	≤ 24.425	≥ 190.89
$r \to \infty$	$\geq 82r^{-1}$	$\leq 0.1358r$	N.A.

3.3. Data Formatting and Structures

3.3.1. Data Formats

Data Type	Implementation		
float(N)	Standard 32 bit floating point precision format		
f3Comp	float3 format, compressed into 4 bytes with shared 5 bit exponent.		
f3x3Comp	float3x3 format, compressed into 12 bytes with 3 f3Comp row vectors.		
Sf3x3Comp	Symmetric float3x3 format, f3Comp for diagonal and off-diagonal.		
Sfloat3x3	Symmetric uncompressed float3x3 matrix, with a stride of 24 bytes.		
CompressedChristoffel	Conformal Christoffel Symbols $\tilde{\Gamma}^i_{\ jk}$, stored as Sf3x3Comp[3]		

Immediate Voxel Data Structure:

Field Variable	Data Type	Stride (bytes)
$\tilde{\boldsymbol{\gamma}}_{ij}$	Sfloat3x3	24
$ ilde{A}_{ij}$	Sfloat3x3	24
$ ilde{\Gamma}^i$	float3	12
(β^i, α)	float4	16
W	float	4
K	float	4
Summary:	Voxel $ imes 3$	$84 \times 3 = 252$

Derivative Data Structure:

Field Variable	Data Type	Stride (bytes)
$\partial_k \tilde{\boldsymbol{\gamma}}_{ij}$	Sf3x3Comp[3]	24
$\partial_k \tilde{A}_{ij}$	Sf3x3Comp[3]	24
$\partial_j \tilde{\Gamma}^i$	f3x3Comp	12
$\partial_j\beta^i$	f3x3Comp	12
$(\partial_i K, \partial_i \alpha, \partial_i W)$	f3x3Comp	12
$\tilde{\Gamma}^{i}_{\ jk},\ \tilde{\Gamma}_{ijk}$	CompressedChristoffel	$24 \times 2 = 48$
Summary:	CompScalarVectorDerivs,	132
	CompTensorDerivs,	
	CompressedChristoffel	

Auxiliary Variables:

Field Variable	Data Type	$\operatorname{Stride}\left(\mathtt{bytes}\right)$
S_{ij}	Sf3x3Comp	8
(J_i, ρ)	(f3Comp, float)	8

3.4. Modifications in Numerical Treatment

For all field variables to be differentiated, for example $\partial_k \tilde{\gamma}_{ij}, \partial_k \tilde{A}_{ij}$, etc:

Add random noise on the order of $\sim 0.5\%$ of the derivative magnitude:

The truncation error of the f3Comp and related formats are of 0.5% as they store 8 bit significands. As such, adding random noise on the order of the truncation error removes bias from the stored values.

Apply Kreiss-Oliger Dissipation with strength on order of $\sigma = 0.25$.

Kreiss Oliger Dissipation (K.O.) at 6^{th} order with a strength of $\sigma = 0.25$ effectively damps away high frequency noise and certain constraint violating modes.

Apply K.O. dissipation over the entire domain, including at the boundaries; Use 1-sided derivatives at said boundaries.

Apply Modified Sommerfeld Boundary Conditions

At the boundaries, apply the sommerfeld boundary conditions as described in (2.3).

The velocity of the sommerfeld radiation v is set to α_{∞} . However, the lie derivative of all fields are applied (\mathcal{L}_{β}) .

For example:

$$\partial_t \tilde{\boldsymbol{\gamma}}_{ij} = \underbrace{\beta^m \partial_m \tilde{\boldsymbol{\gamma}}_{ij} + 2 \tilde{\boldsymbol{\gamma}}_{m(i} \partial_{j)} \beta^m - \frac{2}{3} \tilde{\boldsymbol{\gamma}}_{ij} \, \mathcal{B}}_{\mathcal{L}_{\beta}} - \frac{\alpha_{\infty}}{r} \bigg(r^k \partial_k \tilde{\boldsymbol{\gamma}}_{ij} + \tilde{\boldsymbol{\gamma}}_{ij} - \left(\tilde{\boldsymbol{\gamma}}_{ij} \right)_{\infty} \bigg)$$

Exceptions are made to the following fields for non-zero vacuum energies:

$$\partial_t W = \underbrace{\beta^i \partial_i W - \frac{1}{3} W \; \mathcal{B}}_{\mathcal{L}_\beta} + \frac{1}{3} W \alpha_\infty K_\infty - \frac{\alpha_\infty}{r} \big(r^i \partial_i W + W - W_\infty \big)$$

$$\partial_t K = \underbrace{\beta^i \partial_i K}_{\mathcal{L}_\beta} + \frac{1}{3} \alpha_\infty [K_\infty]^2 - \alpha_\infty \Lambda - \frac{\alpha_\infty}{r} \big(r^i \partial_i K + K - K_\infty \big)$$

With the 1+log gauge slicing conditions:

$$\partial_t \alpha = \underbrace{\beta^i \partial_i \alpha}_{\mathcal{L}_\beta} - 2\alpha K_\infty - \frac{\alpha_\infty}{r} \big(r^i \partial_i \alpha + \alpha - \alpha_\infty \big)$$

4. Initial Conditions

4.1. Bowen-York Black Hole Initial Conditions

For a pure black hole initial state with masses m_b , momenta P_b and spin S_b (Indices raised and lowered with δ_{ij}):

$$\begin{split} n_b^i &= \frac{r_b^i}{{\cal r}_b}, \ \widehat{K}^{ij} = 3 \sum_b \biggl({\cal r}_b^{-2} \biggl[P_b^{(i} n_b^{j)} - \frac{1}{2} \Bigl(\delta^{ij} - n_b^i n_b^j \Bigr) (P_b)_k n_b^k \biggr] + {\cal r}_b^{-3} n_b^{(i} \varepsilon^{j)kl} \bigl(S_b \bigr)_k (n_b)_l \biggr) \\ \xi &= \sum_b \frac{m_b}{2 {\cal r}_b}, \quad {\cal H} \Rightarrow \ \nabla^2 u = -\frac{1}{8} \widehat{K}_{ij} \widehat{K}^{ij} (\xi + u + 1)^{-7} \\ & \lim_{r \to \infty} u = 0, \quad \lim_{r \to \infty} \widehat{K}^{ij} = 0, \quad \lim_{r \to \infty} \xi = 0 \end{split}$$

Field Initialization:

$$\begin{split} K_{ij} &= W \widehat{K}_{ij}; \quad W = (\xi + u + 1)^{-2} \\ \widetilde{\gamma}_{ij} &= \delta_{ij}, \ \widetilde{\Gamma}^i = 0, \ \widetilde{A}_{ij} = W^2 K_{ij}, \ K = 0 \\ \\ \alpha &= 1, \ \beta^i = 0 \end{split}$$

4.2. Matter Simulations

Energy Momentum Tensor Projections in ADM $(T_{\alpha\beta} \Rightarrow S_{\alpha\beta}; J_{\alpha}; \rho)$

$$\begin{split} S_{\alpha\beta} &= \mathcal{P}^{\,\mu}_{\ \alpha} T_{\mu\nu} \mathcal{P}^{\,\nu}_{\ \beta} & \text{(Spatial Stress Tensor)} \\ J_{\alpha} &= -T_{\mu\nu} \mathcal{P}^{\,\mu}_{\ \alpha} n^{\nu} & \text{(Momentum Density)} \\ \rho &= -T_{\mu\nu} n^{\mu} n^{\nu} & \text{(Energy Density)} \\ & \tilde{S}_{ij} &= W^2 S_{ij}, \ \tilde{J}^i = W^{-2} J^i \end{split}$$

 $S = S_{\mu\nu}\gamma^{\mu\nu} = S_{ij}\gamma^{ij} = \tilde{S}_{ij}\tilde{\gamma}^{ij}$

4.3. Elliptic Equation Solver: Multi-grid Relaxation

Method:

- 1. Values of ξ and $\widehat{K}_{ij}\widehat{K}^{ij}$ are computed with the Bowen-York initial data at full resolution.
- 2. An initial guess for u is computed:

$$u = \sum_{b} \frac{\sqrt{\left|S_{b}\right| + P_{b}^{i}(P_{b})_{i} + m_{b}^{2}}}{2 \varkappa_{b}} - \xi$$

- 3. ξ , u and $\hat{K}_{ij}\hat{K}^{ij}$ are downsampled and averaged to specified resolutions given in the editor.
- 4. u is solved with ξ and $\widehat{K}_{ij}\widehat{K}^{ij}$ at the lowest resolution with the **method of relaxation**, while maintaining outgoing boundary conditions.
- 5. Once convergence has been attained, u is upscaled to the next higher resolution.
- 6. Repeat steps 4 and 5 until the original resolution has been attained.

Analysis:

The naive *method of relaxation* fails to converge in a reasonable amount of time for high resolutions due to its poor ability to correct for lower frequency errors while remaining stable for high frequency modes.

A multi-grid approach speeds up convergence by solving for lower frequency errors with a much larger relaxation factor than otherwise possible, and solving higher frequencies last.

In the Fourier basis (r represents the relaxation factor):

$$\Delta u = \left(\underbrace{\mathcal{F}\left[-\frac{1}{8}\widehat{K}_{ij}\widehat{K}^{ij}(\xi+u+1)^{-7}\right](\omega^i)}_{(1)} - \underbrace{\omega_i\omega^i u}_{(2)}\right)r$$

Whose iteration Δu is unstable when the following condition is true.

$$\left| \frac{\partial (\Delta u)}{\partial u} \right| > 2$$

The term (1) does not contribute significantly to the condition while (2) explodes for high frequencies. Specifically,

$$\omega_i \omega^i > \frac{2}{r} \implies \text{(Guaranteed) Instability}$$

By limiting the resolution, one limits ω^i such that r can be made much larger at each step.

5. Diagnostic Equations

The total **ADM mass** of spacetime is:

$$E_{ADM} = \frac{1}{16\pi} \lim_{r \to \infty} \int_{\mathcal{S}} W^{-1} \bigg[4 \partial^l \ln(W) + \left[\tilde{\Gamma}_{\text{Analytic}} \right]^l \bigg] \; \mathrm{d}S_l$$

The total **ADM linear momentum** of spacetime is:

$$\left[P_{ADM}\right]_i = \frac{1}{8\pi} \lim_{r \to \infty} \int_{\mathcal{S}} W^{-3} \bigg[\tilde{A}^j{}_m - \frac{2}{3} \delta^j{}_i K \bigg] \ \mathrm{d}S_j$$

The total **ADM angular momentum** of spacetime is:

$$\left[J_{ADM}\right]_i = \frac{1}{8\pi} \varepsilon_{is}^{m} \lim_{r \to \infty} \int_{\mathcal{S}} x^s \bigg[\tilde{A}^j_{m} - \frac{2}{3} \delta^j_{m} K \bigg] W^{-3} \ \mathrm{d}S_j$$