Does Vote-by-Mail Cause Voters to Gather Information About Politics?*

James Szewczyk
Department of Political Science
Emory University
james.szewczyk@emory.edu

April 9, 2020

Abstract

I argue that vote-by-mail electoral systems result in a more informed electorate, because voters have additional time with their ballots and access to resources to conduct research about races on the ballot that they know nothing about. I test this prediction with two empirical studies. First, I find that all-mail elections in Utah cause a 5.237 to 6.368 percentage point decrease in straight ticket voting. This is consistent with the logic that voters spend more time with their ballots when voting by mail relative to when they are voting at a polling place. Second, I estimate the effects of vote-by-mail on voter knowledge using an original repeated cross-sectional survey that was fielded during the 2018 general election in California. The research design exploits the implementation of the California Voters Choice Act (VCA), which resulted in five counties in the state switching to an election system in which all voters in the counties are sent a mail-in ballot. I find that the VCA causes an increase in voter knowledge and an increase in time that voters spend gathering information about the election. However, the reform does not affect the prevalence of political discussion or levels of knowledge about the party identification and ideology of candidates.

^{*}I thank the MIT Election Data and Science Lab and the Madison Initiative of the William Flora Hewlett Foundation for generously funding this research. I am also grateful to Tom Clark, Zac Peskowitz, Adam Glynn, participants at the 2019 meeting of the Southern Political Science Association, participants at the 2019 State Politics and Policy Conference, and participants at the 2019 Election Sciences, Reform, and Administration Conference for helpful feedback on this project.

Scholars have extensively documented that Americans have low levels of political knowledge (Delli Carpini and Keeter 1996, Zaller 1992). A lack of information about politics among citizens can generate a number of negative consequences for representative democracy, while increasing relevant political knowledge in the electorate can sometimes lead to better outcomes. For example, changing information levels in the electorate has implications for voters' choices at the ballot box as well as representation in government and policy outcomes. When information is provided to voters about candidates and parties prior to their ballots being cast, voters adjust their choices at the ballot box to better reflect their own preferences (Fowler and Margolis 2014, Klein and Baum 2001). Moreover, institutions that facilitate access to information about politics affect the behavior of elected officials and incentivize them to work harder for their constituents (Snyder and Strömberg 2010). As a result, institutional reforms that impact how voters gather political information can affect the quality of democratic governments.

In this paper, I argue that an electoral reform, vote-by-mail, changes the behavior of voters in a way that increases the likelihood that they gather information about politics. Consequently, voters who reside in a jurisdiction that implements the use of mail-in ballots will be more informed than voters who cast their ballots at a polling place. Voters are able to obtain relevant political information when voting by mail because they have additional time with their ballots when voting. Voters can use this extra time to access resources on the Internet and consult their voter information guides to conduct research about the election. On the other hand, voters do not have the ability to use these information sources when voting at a polling place if they come across a race on the ballot that they do not know anything about.

I test several implications of this theoretical framework with two empirical studies that take advantage of the staggered roll-out of all-mail election systems at the county level in Utah and California. In the first study I establish that there are patterns in aggregate election return data that are consistent with my theoretical expectations by estimating the effects of compulsory vote-by-mail in Utah on the prevalence of straight ticket voting. Voters in Utah have the option to cast a straight ticket vote by making a single mark on their ballot to vote for the member of a given political party in each race on the ballot. I argue that if citizens use more time to fill out their ballots when voting by mail, they will be less likely to use this straight ticket option because they will consider each race individually. Exploiting within-county changes in the use of all-mail elections in Utah over time, I find that the electoral institution causes a 5.237 to 6.368 percentage point decrease in straight ticket votes.

In the second study, I directly estimate the effects of vote-by-mail on voter behavior and voter knowledge with original survey data. I exploit a policy intervention in California, the Voter's Choice Act (VCA), which resulted in five counties in the state switching to an all-mail electoral system during the 2018 primary and general elections. This provides exogenous variation in vote-by-mail use among Californians. I field a repeated cross-sectional survey of eligible voters during the 2018 general election in California that measures voter knowledge about statewide races on the ballot and voter behavior at two points in time: first, prior to when voters were sent mail-in ballots; second, after the election took place. I use the survey data to directly test my theory of how vote-by-mail affects voter knowledge and how citizens gather information about politics. I estimate the effects of the VCA on the outcomes of interest with a two sample two-stage least squares (TS2SLS) estimation strategy. TS2SLS allows me to combine information from the California voter file and my original survey to examine the relationship between vote-by-mail and voter behavior.

In the process of generating the TS2SLS estimates I calculate three quantities of interest. First, the first-stage model uses the California voter file data and reveals the effect of the VCA on the probability that registered voters use a mail-in ballot. I find that the VCA increases the likelihood an individuals uses vote-by-mail by 0.115. Second, I estimate the direct effect of implementing the VCA on aggregate voter behavior and knowledge with the original California survey data. These are the reduced form estimates and are interpreted as the intent-to-treat (ITT) effect or the net effect of a county implementing the VCA on the outcomes of interest. Third, I estimate the impact of using a mail-in ballot by combining information from the first-stage and reduced form. In particular, I generate the 2STSLS estimates can by calculating the ratio of the coefficients of interest from the reduced form and first-stage models. This quantity is the local average treatment effect (LATE) of using vote-by-mail and is interpreted as the effect of vote-by-mail on voter knowledge among individuals who were caused to use a mail-in ballot by the VCA. The reduced form and TS2SLS estimates indicate that the VCA causes changes in voter behavior. Using a mail-in ballot results in voters increasing the amount of time they spent conducting research about the election. In addition, implementing the VCA causes an increase in the likelihood that voters are able to answer questions about the ballot measures that appeared on the ballot correctly. Vote-by-mail does not appear to affect the probability of political discussion or the types of information sources that voters report to use.

These findings make significant contributions to several literatures. First, this study contributes to our knowledge of vote-by-mail. As all-mail elections have spread across the United States, a robust line of research has developed examining the consequences of this electoral institution. Previous research examines

the impact of vote-by-mail on voter turnout (Bergman and Yates 2011, Berinsky, Burns and Traugott 2001, Gerber, Huber and Hill 2013, Kousser and Mullin 2007, Magleby 1987, Richey 2008), election outcomes (Meredith and Malhotra 2011), ballot roll-off (Alvarez, Beckett and Stewart 2013, Dubin and Kalsow 1996, Hanmer and Traugott 2004, Marble 2018, Menger, Stein and Vonnahme 2018), and electoral accountability (Szewczyk 2019). Although some of this research suggests that vote-by-mail may cause increases in voter knowledge (Hanmer and Traugott 2004, Marble 2018, Menger, Stein and Vonnahme 2018, Szewczyk 2019), previous studies have not examined the direct effects of the reform on this outcome. Second, this paper contributes to a literature on the costs of acquiring information in elections (Feddersen, Sandroni et al. 2006, Martinelli 2006) by providing empirical evidence that decreasing the costs of information acquisition through mailing voters ballots results in voters becoming more informed. Third, previous research examines the tools and shortcuts that voters use when making decisions at the ballot box (Lau and Redlawsk 2006, Lupia 1994) and if turning out to vote motivates voters to gather information about politics (Shineman 2016). The findings presented in this paper provide an example of how election administration impacts voter behavior and suggests that reforms that allow voters to fill out their ballots in the comfort of their own home will lead to better informed voters.

Political Information, Elections, and Vote-by-Mail

Voters in the United States must make decisions about many races when voting. Elected officials ranging from dog catcher and county coroner to mayor and governor regularly appear on the ballot. In addition, in a number of states and local jurisdictions there are systems of direct democracy where politicians or the public place measures on the ballot. These ballot measures are often complex and ask voters to make decisions about technical policy issues. As a result, in order to make informed choices when casting their ballots, voters must have high levels of knowledge about policy issues and candidates across multiple levels of government.

However, voters have many competing demands for their time and the ballot that they cast is rarely pivotal in deciding the outcome of an election (Downs 1957), so voters may not be motivated to seek out information. The proliferation of entertainment options also gives voters the ability to avoid political news, which can reduce knowledge of upcoming elections (Prior 2007). Therefore, when the average voter shows up to vote at a polling place on election day it is unlikely that she has sufficient knowledge to make an

informed decision about each race on the ballot. Indeed, previous research finds that voters may not have enough political knowledge to meet this ideal of being sufficiently informed to vote in their best interest. For example, voters are often unable to correctly identify the policy positions of candidates (Freeder, Lenz and Turney 2019), and they may not make voting decisions that are most in line with their policy preferences when casting their ballots for prominent electoral contests that are heavily covered by the media, like presidential elections (Bartels 1996, Lau, Andersen and Redlawsk 2008). So, it is not surprising that citizen know even less about elections for statewide office and local elections (Binder et al. 2016).

In light of these limitations, how do voters make decision while casting their ballots? Scholars have long recognized that voters use a variety of information shortcuts when voting and that ballots provide informational cues to voters that may aid them when making decisions (e.g., Matson and Fine 2006). For example, markings on the ballot identifying which candidate is the incumbent (Krebs 1998) and labels indicating candidate party identification (Schaffner, Streb and Wright 2001) provide informational shortcuts to voters. These heuristics may make up for the lack of knowledge that voters have about politics and cause them to make vote choices more in line with their preferences (e.g., Lupia 1994).

There are a number of drawbacks to voters relying solely on heuristics when casting their ballots. First, heuristics do not always appear on the ballot. For example, in many local elections in the United States citizens are not provided with the partisan affiliation of candidates when voting. In addition, during primary elections in which voters must choose between a set of candidates from the same political party a candidate's party affiliation does allow voters to differentiate among candidates. Second, some simple informational shortcuts may require a base level of political knowledge and sophistication that some voters lack (Delli Carpini and Keeter 1996), and in some settings heuristics can mislead voters (Dancey and Sheagley 2013, Lau and Redlawsk 2001). Finally, voters use shortcuts like a candidate's race, ethnicity, and beauty, which could penalize candidates from racial minority groups (Crowder-Meyer, Gadarian and Trounstine 2019) and inflate the vote shares of more attractive candidates (Jones and Price 2017). These effects are exacerbated when voters are asked to complete cognitively complex tasks and when information levels are low (Crowder-Meyer et al. 2018, Jones and Price 2017).

It is apparent that many voters in the United States do not have enough political knowledge to make informed decisions at the ballot box and that it could be beneficial to increase the amount of information that citizens obtain about politics before voting. In this paper, I argue that vote-by-mail elections can help solve this issue and result in voters being more informed than they would when voting at a polling place.

When casting a ballot in a vote-by-mail election a voter has an extended period of time with her ballot and access to information about candidates and propositions that she knows nothing about. In addition, voters do not need to take on the higher cost of learning about what is going to be on the ballot before they vote, as they would when voting at a polling place. Because of the lower costs of obtaining information (Martinelli 2006), individuals who use vote-by-mail will seek out more information about politics and will have higher levels of political knowledge than they would when voting at a polling place. I now expand on the mechanisms that result in the additional acquisition of political information when elections are held using mail-in ballots.

Most importantly, voters have additional time with their ballot when voting by mail. In jurisdictions that use vote-by-mail in the United States, ballots are typically sent to voters about thirty days before an election. This time gives individuals who receive their ballots in the mail the ability to seek out information about politics. However, when a voter goes to a polling place she may be confronted with races that she knows nothing about in the voting booth. At this point, the voter does not have the ability to conduct additional research about the election. This additional time with the ballot is useful because voters can use it to seek out new political information. Indeed, mailing a ballot to voters may serve as a form of a nudge (Thaler and Sunstein 2009) that encourages a voter that would otherwise be uninformed to gather information about the issues and races on the ballot. Because there may be many low salience races during a given election, a voter may not even know what she does not know until she sees her ballot. If voters learn that they do not know anything about a particular race on the ballot, they may be encouraged to conduct research about the race if they have the opportunity.

There are a number of resources that voters have access to and can use to obtain information about politics when they are filling out their ballot at home. One of the main tools available to voters in many states is a voter information guide that is mailed to every voter. For example, the voter information guide in California contains biographical information about candidates for federal and statewide office as well as summaries and detailed descriptions of propositions that appear on the ballot. Although these information sources are typically used by individuals who are very interested in politics (Mummolo and Peterson 2017), being able to look at the voter information guide while filling out a ballot may encourage low interest voters to use the resource. Voters also have access to the Internet when casting a mail-in ballot, which gives them an avenue to uncover a great deal of political information. Notably, individuals have access to candidates' websites, which will have relevant information about the election. A voter can also use a search engine, like Google, to look up more details about the policy positions of and background information on candidates.

There are a variety of other sources of information that voters can exploit, either through the Internet or in print, when they do not have to vote in a polling place. For example, citizens can consult local news coverage to gather information about low salience races when voting with a mail-in ballot. Further, special interest groups, like the League of Women Voters and the Sierra Club, regularly produce pamphlets and websites with recommendations of which candidates to vote for and which ballot measures to vote in favor of.

Finally, mailing a ballot to a voter's home may lead to a more social voting experience and encourage political discussion, which will increase voter information levels (Eveland 2004). Although scholars have argued that vote-by-mail decreases the social pressure to vote¹ (Funk 2010), I argue that the electoral institution introduces a new social dimension to the voting process. That is, when voting by mail individuals may be encouraged to discuss the election with a spouse or a roommate. This may result in the person that voter lives with sharing new information with her or it can encourage the housemates to seek out political information together because they receive their ballots at the same time. In an editorial in *New York Magazine*, a mail-in ballot voter in California describes his social voting process during the 2018 primary election as follows:

So this weekend, [my wife] and I plan to sit down with our mail ballots and our handy-dandy state and county voter guides...We will have the leisure to make our way through the incredibly extensive list of statewide candidates facilitated by California's jungle nonpartisan top-two primary...That means there are 32 U.S. Senate candidates and 27 gubernatorial candidates on the June 5 ballot. It's really not something you want to first encounter alone, in a voting booth (Kilgore 2018).

This quote summarizes the intuition behind how vote-by-mail results in a substantial change in how citizens vote. Voters are faced with an excessively large number of decisions on election day. It is easier to make these decisions when a voter is filling out her ballot at home, because she has access ample time with her ballot, access to information, and can discuss the candidates and issues with other individuals as she fills out her ballot.

Based on this theoretical discussion, I argue that vote-by-mail changes the voting experience and encourages individuals to gather information about politics. I hypothesize that when voters cast their ballot in a

¹However, vote-by-mail does not eliminate the possibility that an individual may still be asked if he voted, which drives voter turnout due to disutility from lying about voting (DellaVigna et al. 2017).

vote-by-mail election they will be more informed than they would be when voting at a polling place. This is because voters will spend more time filling out their ballots and will use this time to conduct research about the races that they are voting on. I test these predictions by exploiting policy interventions in California and Utah that resulted in the staggered roll-out of all-mail elections these states. In the next section, I present the results of the study that examines the effects of mail-in ballot use on straight ticket voting. Then, in the following section I report the estimates of the effects of vote-by-mail on individual-level voter behavior and knowledge in California.

Study 1: The Effects of Vote-by-Mail on Straight Ticket Voting

In the first set of empirical analyses in this paper I test the implications of the theory by examining a behavior of voters that is observable in aggregate election returns: straight ticket voting. A voter casts a straight ticket vote when she casts her ballot for all of the candidates of a given political party with one mark on the ballot. Nine states in the United States currently have a straight ticket voting option. This includes Utah, which is a state that is transitioning to all-mail elections. If the theory that I have proposed is correct, then we should observe changes in the prevalence of straight ticket voting after the switch to vote-by-mail. In particular, if voters are spending more time with their ballots and are conducting more research about elections when voting by mail then they should be more likely to consider each race that appears on the ballot individually. Therefore, we should observe that there is a decrease in straight ticket voting, if the option is available, after the switch to vote-by-mail. The purpose of this analysis is to establish that implementing vote-by-mail causes aggregate changes in voting behavior that are consistent with the theory. In Study 2, which is in the next section of this paper, I present the results of a study in which I directly estimate the effects of mail-in ballot use on voter knowledge and how voter conduct research about elections.

There is a large body of work that studies the determinants of straight ticket voting. For example, while some previous research suggests that split ticket voting, voting for multiple political parties across different races, is the result of voters behaving strategically (Carsey and Layman 2004, Fiorina 1996) or not having strong partisan preferences (Beck et al. 1992), other work focuses on how electoral systems impact straight ticket voting. These studies find that reforms that simplify the voting process result in decreases in straight ticket voting (Barnes, Tchintian and Alles 2017). Further, institutions that expand access to political information, like the availability of local news, lead to increases in split ticket voting (Moskowitz

2018). It is apparent that a major contributor to the prevalence of straight ticket voting is voters' lack of information about down ballot races. I argue that because vote-by-mail eases the process of gathering political information, it will cause a decrease in straight ticket voting. Simply, when sitting down in the comfort of their own homes to fill out their ballots voters will take the time to consider each race on the ballot individually and cast a vote in each of those contests.

This study expands on previous work that examines the relationship between vote-by-mail and straight ticket voting (Hanmer and Traugott 2004) by using new data and sources of over time variation in the use of all-mail elections to estimate the effects of vote-by-mail elections on straight ticket voting. In particular, I exploit the staggered implementation of all-mail elections in Utah, which allows me to more credibly identify the effects of all-mail elections by comparing changes in the rate of straight-ticket voting in jurisdictions that did implement all-mail elections to changes in jurisdictions that did not implements the reform. I now turn to a discussion of the context of the transition to vote-by-mail in Utah.

The Transition to Vote-by-Mail in Utah

Vote-by-mail has become an increasingly popular method of election administration in the United States. Three states currently hold all of their elections entirely by mail², and there are a number of states that use vote-by-mail for some elections or allow local jurisdictions to decide if and when they would like to use vote-by-mail. The empirical analyses that I present in this study take advantage of the fact the power over the decision to use all-mail elections has been devolved to county election administrators in Utah. The staggered implementation of the reform in Utah gives me the ability to estimate the effects of all-mail elections on straight ticket voting using only within-county changes the use of the electoral system over time.

Figure 1 displays the proportion of counties in Utah that held all-mail elections from 2008 to 2018. The first county in the state to run an all-mail election was Duchesne in 2012. In 2016 over 75% of counties in Utah were using vote-by-mail and by 2018 all of Utah's counties conducted elections entirely by mail except for Carbon and Emery Counties. In 2020, every county in Utah plans to use vote-by-mail. Table C.1 in the Online Appendix displays the year that each county in the state switched to compulsory vote-by-mail.

²These states are Colorado, Oregon, and Washington

Figure 1: Transition to Vote-by-Mail in Utah

This figure displays the proportion of counties that used all-mail elections during each even-year general election in Utah from 2008 to 2018.

Data

To construct the dependent variable, I gather county-level election return data for even-year general elections in Utah from the Utah Lieutenant Governor's Office. The data includes county-level information on the total number of ballots cast and the total number of voters who chose a straight ticket vote option. The data is used to calculate the dependent variable of interest, $PercentStraightTicket_{ct}$, which is the percentage of voters in a county who cast a straight ticket vote in a given election. The data ranges from 2008 to 2018 because information on the number of straight ticket votes cast at the county level in Utah is only consistently available starting in 2008. I also construct variables that measure the time-varying demographic characteristics of Utah's counties with the U.S. Census American Community Survey 5-Year Estimates. These variables include controls for counties' total population, race, gender, education, and median age.

Figure 2 displays the average value of the dependent variable in each year. The average percentage of straight ticket voting in Utah's counties ranges from about 26% to 34% over the time period of interest. There appear to be spikes in straight ticket voting in presidential election years (2008, 2012, and 2016), which likely reflects the fact that there are more occasional voters who cast a ballot in these high profile

Figure 2: Percentage of Straight Ticket Voters in Utah, 2008-2018

The black line reveals the average of the percentage of voters who cast a straight ticket vote at the county level in Utah during each even-year general election from 2008 to 2018.

election years. More detailed summary statistics of the straight ticket voting data are displayed in Table B.1 in the Online Appendix.

Results

I estimate the effects of vote-by-mail on the percentage of straight ticket votes by estimating ordinary least squares (OLS) models of the following form,

$$PercentStraightTicket_{ct} = \beta AllMail_{ct} + \alpha_c + \gamma_t + X'_{ct}\Theta + \alpha_c \times t + \epsilon_{ct}$$
 (1)

where the dependent variable, $PercentStraightTicket_{ct}$, is the percentage of straight votes cast in county c in year t. $AllMail_{ct}$ is a dummy variable equal to one if county c held its elections entirely by mail in year t. The models also include county, α_c , and year, γ_t fixed effects. In some specifications I add a vector of time varying county demographic control variables from the U.S. Census³, \mathbf{X}_{ct} , in addition to county time trends, $\alpha_c \times t$. The estimate of β is the quantity of interest; the effect of all-mail elections on the percentage of straight-ticket votes. β is interpreted as the causal effect of conducting elections entirely by mail under the assumption that the timing of the switch to all-mail elections is independent of unobserved variables after controlling for time invariant county specific factors, year specific shocks that are constant across counties, time varying county-level demographic characteristics, and county time trends.⁴

The results of the models with percent straight ticket votes as the dependent variable are displayed in Table 1. The model in Column 1 includes county and year fixed effects; in Column 2 I add demographic controls to the specification; and, Column 3 shows estimates from models with control variables and county time trends. The results indicate that implementing all-mail elections caused a substantial decrease in the number of straight ticket votes cast in Utah. For example, in Column 1 I find that all-mail elections cause a statistically significant 5.237 percentage point decrease in straight ticket votes. Across all of the specifications of the model, the point estimates are statistically significant and the estimated effect size ranges from 5.237 to 6.368 percentage points.

This is a substantively large reduction in straight ticket voting after the implementation of all-mail elections. On average, there were 911,093 ballots cast in Utah's even-year general elections from 2008 to 2018. The estimated treatment effect translates to 47,714 to 58,018 fewer voters casting straight ticket votes, depending on the specification of the model. Further, this is equal to a 17.4% to 21.10% decrease in straight

³The control variables include total population, median age, percent Black, Native America, Hispanic, Asian, high school graduate, college graduate, and female.

⁴In Table C.2 I display models with a lead of the treatment variable. There is not a statistically significanty effect of future switches to all-mail elections on straight ticket voting, which provides evidence in favor of the identifying assumptions.

Table 1: The Effects of Vote-by-Mail on Straight Ticket Voting in Utah

	DV = Percent Straight Ticket Votes		
	(1)	(2)	(3)
All-Mail Election	-5.237***	-5.602***	-6.495***
	(1.451)	(1.547)	(1.958)
County Fixed Effects	Yes	Yes	Yes
Year Fixed Effects	Yes	Yes	Yes
Controls	No	Yes	Yes
County Time Trends	No	No	Yes
Observations	174	174	174
Adjusted R ²	0.655	0.668	0.678

Note:

*p<0.1; **p<0.05; ***p<0.01

Robust standard errors clustered by county.

ticket votes relative to the average percentage of straight ticket votes cast in counties before the implementation of vote-by-mail, 30.18%. The substantive magnitude of the effect is slightly larger than Moskowitz's (2018) finding that access to local news increases split ticket voting by 4 to 5 percentage points.

One may be concerned that there are unobserved confounders that could explain away the finding that all-mail elections cause a decrease in straight ticket voting. I employ sensitivity analysis exercises outlined in Cinelli and Hazlett (2020) to quantify how large an unobserved confounder must be to eliminate the result. First, according to the estimates from the model with control variables and county time trends in Column 3 of Table 1 the robustness value (RV) of the treatment variable, holding an all-mail election, is 27.89%. This means that for a confounder to explain the entirety of the effect of all-mail elections on straight ticket voting it must explain at least 27.89% of the residual variance of all-mail election adoption and 27.89% of the residual variance of straight ticket voting. Second, I find that $R^2_{Y\sim D|\mathbf{X}}$ is 12.93%, which is the partial R^2 of all-mail elections with the percentage of straight ticket votes or the proportion of the variation in percentage of straight ticket votes that is explained by the implementation of all-mail elections. Cinelli and Hazlett (2020) show that this quantity is also the size of the association between a potential confounder and the treatment variable that would result in an effect size of zero if the confounder in question is associated with the entirety of the residual variance of the outcome. Therefore, to eliminate the estimated effect of all-mail elections on straight ticket voting a confounder would need to explain both 100% of the residual variance of straight ticket voting and 12.93% of the variation in the implementation of all-mail elections. These two quantities, the RV and $R_{Y\sim D|\mathbf{X}}^2$, indicate that it would take a confounder that explains a substantial amount of the decision to adopt of vote-by-mail and the percentage of straight ticket votes to eliminate the effects that are shown in Table 1. It seems implausible that such a confounder exists after already controlling for demographic characteristics, like total population, that are known to be a strong determinant of the implementation of all-mail elections.

These findings, of course, do not rule out the possibility that voters in Utah choose to mark each race on the ballot for the candidate of a given political party instead of choosing the straight party option after the switch to vote-by-mail. That being said, voters are less likely to engage in split ticket voting when they are not able to use a straight ticket option (Darcy and Schneider 1989, Reynolds and McCormick 1986), so these estimates do likely indicate legitimate increases in ticket splitting after the implementation of vote-by-mail. Further, regardless of whether or not voters in Utah are actually splitting their votes across political parties after the switch to vote-by-mail, the results support the hypothesis that voters are spending more time with their ballots.

In all, the results present evidence consistent with the argument that voters spend more time filling out their ballots when voting by mail relative to when they are voting at a polling place. Instead of only marking their ballots once in order to vote for a political party's entire slate of candidates, voters make decisions about each individual race separately when voting by mail. That is, the decrease in the use of the straight ticket voting option after all-mail elections are implemented suggests that voters are considering each race on the ballot. This provides compelling evidence that vote-by-mail induces substantial changes in the way the citizens vote.

An important limitation of these results and previous work that examines the relationship between all-mail elections and ballot roll-off (Marble 2018, Menger, Stein and Vonnahme 2018) or policy outcomes (Szewczyk 2019) is that we cannot draw definitive inferences about how vote-by-mail affects individual level voter behavior. In particular, we cannot answer two essential questions about the consequences of vote-by-mail. Do all-mail elections cause an increase in the amount of time that voters spend conducting research about the election? And, does vote-by-mail cause voters to be more informed about races on the ballot than when they voted at a polling place? In the next section of this paper I present the results of a study that begins to provide answers to these important questions.

Study 2: The Effects of Vote-by-Mail on Voter Knowledge

The previous study shows that switching to all-mail elections in Utah causes a decrease in the percentage of voters who choose the straight party option on the ballot. What explains these findings? I have proposed that voters are spending additional time with their ballots in order to gather information about politics when voting by mail. I directly test this hypothesis by estimating the effects of a reform that caused California citizens in some counties to use a mail-in ballot for the first time during the 2018 general election.

The California Voter's Choice Act

The California Voter's Choice Act (VCA) was passed in 2016, which dramatically overhauled the administration of elections in California and provides a much more flexible voting experience for citizens. Under the VCA system, all voters in a county that implement the reform are delivered a ballot 28 days prior to the election through the mail. After a voter makes her selections and fills out the ballot, it can be returned through the mail, at a county ballot drop box, or at a county vote center. Ballot drop boxes and county vote centers replace polling places and are located throughout each county. The number of these drop boxes and vote centers are determined with a formula that is based on the population of each county. In addition to voting with her mail-in ballot, a voter in a VCA county can choose to go to any vote center in her county to obtain a ballot in person, fill it out, and return it at the same time. Even though each voter is still sent a ballot in the mail, this method of voting under the VCA approximates the experience of voting at a polling place. In addition, voters that do not reside in a county that implemented VCA can still opt to use a mail-in ballot, as they could prior to the VCA being passed by the state legislature.

Importantly, the entire state did not simultaneously switch to the VCA. The choice of whether or not a county implements the reform is up to the county's board of supervisors. Fourteen counties in the state were given permission to switch to the new system in 2018 and the remaining counties in the state can begin to switch in 2020. This excludes Los Angeles county, which will not be permitted to change electoral systems until 2024. Five counties in the state opted into the new vote-by-mail system for the 2018 primary and general elections. Nine counties chose to wait to potentially implement the reform during a future election.

There are a number of reasons as to why counties who were able to implement the VCA chose not to in 2018. Most notably, the debate surrounding the reform fell along partisan lines in the state legislature⁵

⁵For the final vote in the State Assembly, 46 Democrats and only 1 Republican voted in favor of the bill. In the State Senate, 25 Democrats and 2 Republicans voted for the bill.

Figure 3: Map of the Implementation of the California Voter's Choice Act The map shows each county in California. Counties shaded in gray implemented the VCA in 2018.

as well as among county supervisors with Democrats being more supportive of the policy than Republicans. In fact, the all-Republican board of supervisors in Orange County refused to even consider implementing the reform in 2018 (Wildermuth 2017). Election administration officials also cited the upfront costs as a drawback of switching to the new system. Despite the fact that the VCA will save money on election administration in the long run, some counties were concerned with the initial startup costs of implementing the reform, like replacing outdated voting machines. Even counties that eventually decided to switch to the VCA faced conflict over the price of the reform. For example, the board of supervisors in Nevada county only approved the reform after the estimated cost of implementing the VCA was lowered from \$303,000 to \$258,000 (Riquelmy 2018). In addition to funding issues, county officials were concerned with the potential for abuse of a vote-by-mail based electoral system as well as potential negative consequences of closing local polling places that citizens have grown accustomed to (Wildermuth 2017).

Figure 3 displays a map of California with counties that implemented the VCA during the 2018 general and primary elections shaded in gray. The five counties that implemented the electoral reform are Madera, Napa, Nevada, Sacramento, and San Mateo. The source of exogenous variation in this study is that voters who reside in one of these counties that switched to the VCA in 2018 will be sent a mail-in ballot to their place of residence. This is essentially a source of encouragement for individuals to uptake the treatment

of interest: using a mail-in ballot to vote. As discussed, voters are able to choose their voting methods so they do not have to comply with this encouragement to be treated with using a mail-in ballot. I discuss how this impacts the interpretation of the results when presenting the empirical strategy. Nevertheless, this is a shock to election administration that resulted in many individuals using a mail-in ballot for the first time in 2018. I exploit this intervention by administering a repeated cross-sectional survey among California voters during the 2018 general election that includes a battery of questions measuring political knowledge and voter behavior.

Data

The data used in the analysis come from two sources. First, I use data from an original survey of eligible voters in California that I fielded during the 2018 general election. Second, I use data from the California voter file.

Survey Data

The survey instrument asks respondents questions about their objective knowledge of the statewide races that were on the ballot during the general election. In addition, to measure how voters' experiences change when using vote-by-mail, I ask subjective questions about how informed they feel during the election cycle and how they conducted research about races on the ballot. The survey only asks about statewide elections in order to hold the campaign context constant across respondents that live in different counties. A copy of the full survey questionnaire is located in Section A of the Online Appendix.

Before discussing the survey design in more detail, I briefly describe the races on the ballot that the survey questions were based on. On November 6, 2018 in California there were elections for governor, lieutenant governor, and treasurer among other statewide executive positions. The most high profile race on the ballot was that for governor, which pitted Democrat Gavin Newsom against Republican John Cox. Meanwhile due to California's top-two primary system two Democrats were up for election for lieutenant governor, Eleni Kounalakis and Ed Hernandez, while the candidates for treasurer were Fiona Ma, a Democrat, and Greg Conlon, a Republican. In addition, California citizens decided on a total of 12 statewide ballot measures during the 2018 general election. Two measures dealt directly with tax issues. Proposition 5 proposed to remove a requirement for the transfer of property tax bases that would expand the ability of

older and disabled homeowners to transfer their property tax base to a new property. This may decrease revenue for school and local governments. Proposition 6 sought to repeal a transportation tax law from 2017 that increased fuel and vehicle taxes. There was also a measure, Proposition 9, that met all requirements to appear on the ballot but was removed by the California Supreme Court. The measure proposed to split California into three different states. Finally, Proposition 10 and Proposition 11 concerned rent control policies enacted by local governments and breaks for private sector employees, respectively.

The survey was administered by the survey research firm Civiqs. The Civiqs panel provides a number of advantages over similar survey research firms. First, the online platform and large panel allows Civiqs to quickly gather data. This is important in this context as I am interested in obtaining a snapshot of voter information levels at particular points of the election cycle. Second, Civiqs has a large number of panel members who reside in California. This gives me the ability to collect a sufficient number of responses from individuals who live in counties that switched to the VCA in 2018, which only accounts for about 7% of the state's total population.

The survey consisted of two waves that asked two different cross-sections of respondents to answer the same survey questionnaire at two different points in time.⁶ The final data set used in the analysis includes a sample of 2,253 eligible voters in California who were surveyed during the first wave of the survey and 1,166 eligible voters who were interviewed during the second wave, for a total of 3,419 respondents.⁷ The first wave of the survey was fielded from October 1, 2018 to October 4, 2018 and the second wave was fielded from November 7, 2018 to November 12, 2018. Importantly, the first wave of the survey was administered prior to when ballots were mailed to voters and the second wave was administered after election day. I choose to field the second wave after election day, because many vote-by-mail voters choose to deliver their ballots to a vote center on election day.

I measure voter information levels and behavior using a number of different variables that are generated from individuals' responses to the survey questions. To ease comparison across the dependent variables, they are rescaled to range between zero and one. The first set of dependent variables capture how voters gather information about politics. First, I generate the measure *Time Spent Researching* using a question

⁶There are slight changes made to verb tenses on the questionnaire for the second wave to reflect that it was fielded after the election took place.

⁷The number of observations used in the analysis differs slightly from the total number of respondents in the data that I received from Civiqs. Respondents are dropped for three reasons. First, they are dropped if their county of residence is not in California. Second, respondents matched to the TargetSmart data are removed if they are not registered to vote in California. Third, there were a small number of respondents younger than 18 who are removed from the sample.

that asks respondents how much time they spent conducting research about the election. Higher values of this variable indicate that voters spent more time conducting research. Second, I ask respondents to identify whether or not they used any of the following sources of information: the Voter Information Guide, a local newspaper, or an Internet search engine. *Information Sources* is equal to one if a respondent reported using any of these sources of information. Third, the variable *Political Discussion* is equal to one if a respondent has discussed politics with someone that she lives with and zero otherwise. I only observe this variable for individuals who report that they do not live alone, because I am particularly interested in how vote-by-mail shapes interactions about politics with the people that voters live with.

I then take the eleven questions that ask about knowledge of statewide elections and create an index of the number of correct responses for each individual that took the survey. These questions ask respondents to identify the ideological position of candidates for governor, the party ID of candidates for lieutenant governor and treasurer, and correct details about ballot measures. The resulting variable, *Knowledge Index*, is the average number of questions that a respondent answered correctly. Next, I create three variables that indicate whether or not respondents answered all of the questions correctly in the three categories of knowledge questions. These variables, *Ballot Measure Correct*, *Party ID Correct*, and *Ideology Correct*, are equal to one if a respondent answered all of the questions regarding ballot measures, party identification, and ideology correct, respectively, and zero otherwise. The final dependent variable is a self-assessment of how informed voters feel about the candidates for statewide executive office and statewide ballot measures. This variable, *Knowledge Self-Assessment*, is the average response from two separate questions asking about candidates and ballot measures.

Table 2: Summary Statistics of Dependent Variables

Statistic	N	Mean	St. Dev.	Min	Max
Time Spent Researching	3,419	0.306	0.307	0.000	1.000
Information Sources	3,419	0.613	0.487	0	1
Discussion	2,434	0.810	0.393	0	1
Knowledge Index	3,419	0.523	0.273	0.000	1.000
Ballot Measure Correct	3,419	0.180	0.384	0	1
Party ID Correct	3,419	0.167	0.373	0	1
Ideology Correct	3,419	0.737	0.440	0	1
Knowledge Self-Assessment	3,419	0.357	0.306	0.000	1.000

Summary statistics of the dependent variables across both waves of the survey and among individuals who do and do not live in VCA counties are displayed in Table 2. The data also includes information on the following demographic characteristics of respondents: age, party identification, education, race, and gender. Summary statistics of the full set of covariates in the dataset are displayed in Table B.2 in the Online Appendix. I now briefly discuss the summary statistics of the dependent variables. First, the average of Time Spent Researching is 0.306, which is equivalent to individuals reporting that they spent fewer than five minutes conducting research about the 2018 general election. Over half of the respondents report using one of the *Information Sources* that were asked about and over three quarters of individuals report engaging in Political Discussion. Next, the mean of the Knowledge Index dependent variable indicates that respondents were able to answer about half of the survey questions correctly. The mean values of *Party Identification* Correct and Ballot Measure Correct are 0.167 and 0.180, respectively. This makes it apparent that it was difficult for respondents to correctly identify the political party that candidates for relatively low salience races, like treasurer and lieutenant governor, and to answer questions about ballot measures. On the other hand, 73.7% of respondents can identify which side of the ideological spectrum the candidates for governor belong on. Finally the average of Knowledge Self-Assessment is 0.357. This translates into respondents saying that they feel moderately to somewhat uninformed about the statewide elections and ballot measures.

Voter File Data

In order to examine how the VCA affected the propensity of voters to use mail-in ballots, I use individual-level voter file data from the California Secretary of State. The data is an extract of VoteCal, California's statewide voter registration database, taken in April of 2019. The publicly available files from the database contain two essential pieces of information: first, there is a list of all registered voters in the state; second, there is a list of who voted and the method (i.e. polling place or mail-in ballot) that each individual used to cast their ballot in each election for which there is data available. For the analyses presented in this paper, I use the voter file data from 2016 and 2018. The central reason for only using these two years of data is to match the number of waves of the survey. In addition, the VoteCal database only consistently contains voter registration and vote history information starting in 2016, which is the first year that counties were required to report this information to the state. For years prior to 2016 there is uneven coverage in VoteCal across counties. Using the information on the method individuals used to vote, I create the variable *UseMailBallot*, which is a dummy variable equal to one if an individual used a mail-in ballot to vote in a given election.

In addition to the indicator for the use of a mail-in ballot, I am able to obtain information on the gender, party identification, age, and race of individuals from the voter file. Age is constructed using each respondents' dates of birth. Gender and party identification are coded using information in the voter file that citizens provide when they register to vote. To predict the race of registered voters I match their surnames to the Census Bureau's Surname List and use information on county of residence, age, and party identification to calculate the probability they belong to each of the following racial groups: White, Black, Hispanic, Asian, and other (Imai and Khanna 2016). I identify an individual as being a member of the racial group that has the highest probability after this procedure is complete.

Estimation Strategy

There are a number of potential pitfalls when estimating the effects of vote-by-mail, or any electoral reform, on voter behavior. For example, one could test the hypothesized relationship using data from a state that allows registered voters to opt into using a mail-in ballot by comparing the behavior of voters who use a mail-in ballot to those that choose to vote at a polling place. This would lead to positively biased estimates of the effects of vote-by-mail if individuals who choose to use the voting method are more likely to conduct research about an election and be more informed about politics. It is very likely that this is the case, because opting into using vote-by-mail suggests that the individual is an active voter and cares enough about politics to take this additional step after or while registering to vote. Using a related research design, a researcher could make cross-sectional comparisons between individuals in jurisdictions that have compulsory vote-by-mail and those that do not have all-mail elections. If jurisdictions adopt all-mail elections because their citizens care about politics and are more informed about elections than jurisdictions that do not, this research design would also lead to positively biased estimates of the effects of vote-by-mail.

My estimation strategy overcomes both of these issues. First, I exploit the implementation of the Voter's Choice Act in California, which provides exogenous variation in the use of vote-by-mail. Second, because the survey instrument was fielded at multiple points in time I can identify the effects of using a mail-in ballot with within-county changes in the use of all-mail elections over time. This allows me to hold the time invariant characteristics of counties constant. I identify the effects of vote-by-mail on the outcome variables of interest with the two-sample two-stage least squares (TS2SLS) estimator developed by Angrist and

Krueger (1992; 1995).⁸ This method has been used in a variety of applications ranging from examining the relationship between teen drinking and education outcomes (Dee and Evans 1997; 2003) to understanding the effects of public assistance on food insecurity (Borjas 2004).

TS2SLS is an instrumental variables model that can be used in instances in which the endogenous and outcome variables of interest are not observed in the same data set, but there are two data sets that contain at least one of these pieces of information along with the instrumental variable. In the context of this study, the endogenous treatment variable is a voter actually using a mail-in ballot to vote and the exogenous instrument is living in a county that is assigned to the VCA. The outcome variables are the measures of voter knowledge and behavior. The two datasets used in the analysis are the voter file data and the survey data. In the voter file data, I observe if individuals live in a VCA county (the instrument) and if they used a mail-in ballot during the 2016 and 2018 general elections (the endogenous variable). However, the voter file data does not have any measures of voter knowledge. The survey data contains the instrumental variable (living in a VCA county) and the outcome variables (measures of voter behavior and knowledge), but there is no measure of whether or not respondents used a mail-in ballot in the two most recent elections. TS2SLS provides a framework in which to combine information from both of these data sources to estimate three distinct quantities of interest and characterize the relationship between these estimates: the first-stage, the reduced from, and the TS2SLS estimates. I now turn to a discussion of the three estimating equations and the interpretation of the main quantities of interest.

First-Stage

I estimate the first-stage models using the California voter file data with the following equation,

$$UseMailBallot_{ict} = \beta_1 VCA_{ict} + X'_{ict}\pi_1 + u_{1c} + v_{1t} + \epsilon_{1ict}$$
(2)

where $UseMailBallot_{ict}$ is an indicator for whether or not individual i in county c used a mail-in ballot in year t. VCA_{ict} is a dummy variable equal to one for individuals who live in a VCA county in the time period after the reform was implemented. β_1 is the estimate of the effect of the VCA on the probability that

⁸This estimator is what Angrist and Krueger (1995) refer to as split-sample instrumental variables. I use the terminology from Inoue and Solon (2010) who refer to it as the two-sample two-stage least squares estimator and show that it is preferable to the related two-sample instrumental variables estimator (Angrist and Krueger 1992).

⁹In the survey data, I only observe whether or not respondents from the second wave of the survey used a mail-in ballot during the 2018 general election. The survey does not ask first-wave respondents about their use of mail-in ballots in previous elections because it is unlikely that respondents will be able to accurately report voting method in previous elections.

a registered voter uses a mail-in ballot and is the coefficient of interest from this model. X_{ict} represents a vector of individual-level exogenous control variables. The control variables include measures of race, gender, age, party identification, and permanent absentee status. Finally, u_{1c} and v_{1t} are county and time period fixed effects, respectively. For all of the analyses, I report robust standard errors clustered by county.

Reduced Form (Intent-to-Treat Effect)

I next estimate the reduced form, which is the effect of the VCA on the behavioral outcomes of interest. The reduced form can be interpreted as the intent-to-treat effect (ITT) of the VCA on the dependent variables. ¹⁰ In other words, it is the net effect of implementing the VCA on voter knowledge in the context of the 2018 general election in California. I estimate the reduced form using the survey of eligible voters in California with the following equation,

$$Y_{ict} = \beta_2 V C A_{ict} + X'_{ict} \pi_2 + u_{2c} + v_{2t} + \epsilon_{2ict}$$
(3)

 Y_{ict} represents the variables measuring how voters gather information about politics and their knowledge of races that appeared on the ballot. The right hand side of the reduced form equation takes the same form as that for the first-stage equation. That being said, for all of the reduced form models I estimate a model with an extended set of control variables, X_{ict} . In particular, I add controls for respondents' levels of education. This set of controls is not included in the main specification because I do not observe it in the voter file used for the first-stage model, and all control variables must be the same for both the reduced form and first-stage models when estimating an instrumental variables model. The coefficient of interest from this model is β_2 , which is the effect of implementing the VCA on voter knowledge and behavior while controlling for time invariant county factors, year specific shocks that are constant across counties, and individual-level demographic characteristics of respondents.

In this context, the ITT effect will underestimate the effect of actually using a mail-in ballot on the outcomes of interest. This is because there is a great deal of noncompliance with the VCA as a mechanism that causes individuals to use a mail-in ballot. There are three ways that an individual cannot comply with their treatment status: first, an individual in a VCA county can cast their ballot at a county vote center; second, an individual in a non-VCA county can use a mail-in ballot because they are a permanent absentee

¹⁰This can also be interpreted as the difference-in-differences estimate under the parallel trends assumption.

voter or live in a precinct with fewer than 250 registered voters; third, an individual can choose not to vote. Using data on mail-in ballot usage from the California Secretary of State's Office, Figure 4 displays the percentage of registered voters who used each type of voting option or did not vote by VCA treatment status. The plot illustrates that noncompliance did indeed take place during the 2018 general election in California. 67.4% of registered voters who live in VCA counties chose to use a mail-in ballot in 2018 and, thus, complied with their treatment status. In these counties, 27.7% of registered voters in did not vote and 4.9% cast their ballot at a county vote center. Among registered voters who do not reside in VCA counties 49.6% opted for vote-by-mail and received the treatment of using a mail-in ballot while only 18.4% of registered voters in these counties went to a traditional polling place. Because of this noncompliance, simply comparing changes in the outcome variable between VCA and non-VCA counties over time, as is done in the reduced form models, may underestimate the impact of vote-by-mail on voter knowledge.

Figure 4: Voting Method Use in California, 2018 General Election

The figure reveals the percentage of registered voters in California who voted with a mail-in ballot, voted at a polling place, or did not vote in the 2018 general election in VCA and non-VCA counties.

TS2SLS (Local Average Treatment Effect)

Although the reduced form identifies the ITT effect, or the net effect of the VCA, I am also interested the impact of actually using a mail-in ballot on voter behavior and knowledge. I estimate this quantity of interest

with the second-stage of the TS2SLS model. The model is exactly identified so, as observed by Dee and Evans (1997; 2003), the TS2SLS estimate is simply the ratio of the coefficients of interest from the reduced form and first-stage, like in the standard 2SLS setting:¹¹

$$\beta_{TS2SLS} = \frac{\beta_2}{\beta_1} \tag{4}$$

Recall that β_2 is the estimated effect of the VCA on the probability that a registered voter uses a mail-in ballot and β_1 is the estimated effect of the VCA on the measures of voter behavior and knowledge. Combining these two estimates, β_{TS2SLS} is interpreted as the effect of using a mail-in ballot among individuals that were caused to use a mail-in ballot by the VCA. The is the Local Average Treatment Effect (LATE). This quantity can also be interpreted as the estimated effect of all individuals in a jurisdiction switching from using a polling place to vote to using vote-by-mail to cast their ballots, assuming that all citizens comply with their assignment to treatment. The cluster-robust standard errors for the TS2SLS estimates are calculated using the method described in Pacini and Windmeijer (2016). 12

The causal interpretation of β_{TS2SLS} , along with the estimates of β_1 and β_2 , requires that selection into adopting the VCA in 2018 is independent of the outcome variables of interest after controlling for the time invariant characteristics of counties and year specific shocks. I argue that this is plausible because the main determinants of the implementation of the VCA in 2018, which are population and partisanship according to news coverage, are unlikely to change drastically over time. In addition to this assumption, in order for the estimate of β_{TS2SLS} to be unbiased the exclusion restriction must hold. The exclusion restriction is that the VCA only affects voter's knowledge levels and how they gather information about politics through the use of a mail-in ballot. It is indeed unlikely that the implementation of the VCA itself would have an effect on voter knowledge and how they gather information about the election except for through the channel of using a mail-in ballot.

Results

In this section I present the results of the California study. I first discuss the first-stage before presenting the reduced form and second-stage models. The first-stage estimates are displayed in Table 3. Column 1 shows

¹¹Alternatively, the TS2SLS estimates can be produced using the cross-sample fitted values from the first-stage.

¹²I use the estimator for the variance of the TS2SLS estimates shown in Equation 12 (Pacini and Windmeijer 2016). As suggested for cluster-robust standard errors, I substitute estimates of the cluster-robust variances from my first-stage and reduced form models for the robust variances in the equation.

the estimated effect of the VCA on mail-in ballot use without any individual-level demographic controls while in Column 2 I add these additional control variables to the model. The preferred first-stage estimate used to construct the TS2SLS estimates includes the set of control variables. I estimate that the VCA caused a .107 to .115 increase in the probability that a voter used a mail-in ballot. Importantly, this is a very strong instrument, and considering the large sample size, it is not surprising that the results are highly statistically significant for both specifications of the model. That being said, this is only a moderate increase in the likelihood that vote-by-mail is used. This is likely the case because so many individuals in California used mail-in ballot prior to the implementation of the VCA, so there is a limit on the potential magnitude of the increase. It is also important to note that this suggests, as we will see in the next set of the results, that the TS2SLS estimates will be substantially larger than the reduced from estimates.

Table 3: First-Stage: The Effects of the VCA on VBM Ballot Use

	Dependent variable: Use VBM		
	(1)	(2)	
VCA	0.107***	0.115***	
	(0.013)	(0.009)	
County Fixed Effects	Yes	Yes	
Year Fixed Effects	Yes	Yes	
Controls	No	Yes	
Observations	30,157,797	30,157,797	
Adjusted R ²	0.066	0.411	

Note: *p<0.1; **p<0.05; ***p<0.01
Robust standard errors clustered by county.

What are the effects of this uptake in vote-by-mail on the behavior of voters and how informed they were about the races on the ballot during the 2018 general election in California? To answer this question, I turn to a discussion of the reduced form and TS2SLS models. The results of the models that estimate the effects of the VCA on voter behavior are displayed in Table 4. Each row of the table shows the results of three different models for a given dependent variable. All of the dependent variables are standardized such that they range between zero and one. Columns 1 and 2 reveal the reduced form estimates with two different sets of control variables. The basic control variables include ace, gender, age, party identification, and permanent absentee status. The models with extended control variables add measures of educational attainment to this specification. Column 3 displays the results of the TS2SLS models with the basic set of

control variables. Recall that the TS2SLS estimates will be equal to the ratio of the coefficient from the reduced form and the coefficient from the first-stage model in Column 2 of Table 3.

In the first row of Table 4 I show the effects of the VCA and using a vote-by-mail ballot on the amount of time that respondents spent conducting research about the election. The estimates are positive and remain at least marginally significant (p<0.1) across all of the specifications of the model. With the reduced form models I estimate that vote-by-mail causes a 0.022 to 0.024 increase in the dependent variable. According to the TS2SLS model, however, I estimate that using a mail-in ballot causes a significantly larger 0.188 increase in the measure of the amount of time that voters spend conducting research about the election. To aid in the substantive interpretation of these estimates, it is important to note that there are five response categories to the question asking respondents how long they spent conducting research about the election: fewer than 5 minutes, five minutes to one hour, one to two hours, three to 4 hours, and more than four hours. A 0.25 increase on the zero to one scale indicates that a respondent moves from one category to the next. Therefore, the substantive size of TS2SLS estimate is only slightly smaller than a unit increase in the amount time voters expend gathering information about the election. The most common response to this question from survey respondents was the first category, so the effect of using a mail-in ballot for the typical respondent would be causing them to increase the amount of time they spent conducting research about the election from less than five minutes to about five minutes to between five minutes and an hour.

Let us turn next to the dependent variable that measures whether or not a respondent used the Official California Voter Information Guide, an online search engine, or a local newspaper to gather information about the 2018 California general election. Across all three specifications of the model, the coefficient on the independent variables of interest are positive, which indicates an increase in the probability that a voter uses one of these sources of information. However, the estimates never achieve standard levels of statistical significance. Finally, the bottom row of Table 4 indicates the estimates for the discussion dependent variable are negative, which is in the opposite direction of what I expected. These coefficients are also imprecisely estimated.

The survey data suggests that voters spend more time conducting research about an election when voting by mail relative to when they vote at a polling place. However, there is little evidence that the electoral reform causes other changes in the behavior of voters, like the types of information sources that they use or their propensity to discuss politics with individuals that they live with. Despite the null effects for these latter two outcomes, these findings corroborate my interpretation of the previous results in which I find that

Table 4: Reduced Form and TS2SLS: The Effects of the VCA and Vote-by-Mail on Voter Behavior

	Reduced F	orm Estimates:	TS2SLS Estimates:	
	VCA County		Use VBM	
Dependent Variable:	(1)	(2)	(3)	
Time Spent Researching	0.022*	0.024*	0.188*	
	(0.013)	(0.013)	(0.112)	
Information Sources	0.028	0.033	0.244	
	(0.021)	(0.021)	(0.181)	
Discussion	-0.035	-0.031	-0.301	
	(0.042)	(0.041)	(0.303)	
Time Fixed Effects	Yes	Yes	Yes	
County Fixed Effects	Yes	Yes	Yes	
Controls	Basic	Extended	Basic	

Note: Robust standard errors clustered by county in parentheses. Each cell represents the results from a seperate model. Reduced form estimates display the coefficient on the variable indicating if a respondent lives in a VCA county. TS2SLS estimates display the estimated effect of using a mail-in ballot from the second-stage model. Basic control variables include race, gender, age, party identification, and permanent absentee status. Extended control variables add education to this set of controls. N = 3,419 for rows one and two. N = 2,434 for row three. p<0.1; **p<0.05; ***p<0.01.

vote-by-mail causes a decrease in straight-ticket voting in Utah. I argue that this decrease in straight-ticket voting is the result voters spending more time and using more care filling out their ballots when voting by mail. Indeed, the survey of voters in California suggests that vote-by-mail causes an increase in the amount of time spent gather information.

I now examine if this increase in the time spent conducting research about the election translates into an increase in the amount of knowledge that voters have about the election. Table 5 reveals the estimated effects of the VCA on voter knowledge. In the first row of Table 5 I show the effects of the VCA and using a mail-in ballot on the knowledge index, which is simply the average number of factual questions about the races on the ballot that voters could correctly answer. The reduced form estimates (Columns 1 and 2) are very small, the effect size ranges from 0.003 to 0.006, and imprecisely estimated. As expected, the TS2SLS estimate (Column 3) is slightly larger but statistically insignificant.

Next, let us look at the models examining if respondents were able to answer questions identifying the ideological position and party identification of candidates correctly. These two dependent variables are dummy variables equal to one if a respondent is able to answer all of the questions in each of these categories correctly. The ideology correct variable is constructed using two questions on the ideological position of the two candidates from governor. The party ID correct variable is constructed using four questions asking which political party each candidate belongs to in the races for lieutenant governor and treasurer. The results indicate that using vote-by-mail does not have an effect on the ability of respondents to recall the ideology and party identification of candidates for statewide executive office. The point estimates from both the reduced form and TS2SLS estimates are negative, substantively small, and very imprecisely estimated.

Table 5: Reduced Form and TS2SLS: The Effects of the VCA and Vote-by-Mail on Voter Knowledge

	Reduced Fe	orm Estimates:	TS2SLS Estimates:	
	VCA County		Use VBM	
Dependent Variable:	(1)	(2)	(3)	
Knowledge Index	0.003	0.006	0.029	
	(0.012)	(0.012)	(0.104)	
Party ID Correct	-0.008	-0.006	-0.070	
·	(0.027)	(0.027)	(0.232)	
Ideology Correct	-0.017	-0.016	-0.149	
23	(0.013)	(0.013)	(0.116)	
Ballot Measure Correct	0.041**	0.043**	0.355**	
	(0.021)	(0.021)	(0.181)	
Knowledge Self-Assessment	0.013	0.016	0.116	
C	(0.016)	(0.015)	(0.135)	
Time Fixed Effects	Yes	Yes	Yes	
County Fixed Effects	Yes	Yes	Yes	
Controls	Basic	Extended	Basic	

Note: Robust standard errors clustered by county in parentheses. Each cell represents the results from a seperate model. Reduced form estimates display the coefficient on the variable indicating if a respondent lives in a VCA county. TS2SLS estimates display the estimated effect of using a mail-in ballot from the second-stage model. Basic control variables include race, gender, age, party identification, and permanent absentee status. Extended control variables add education to this set of controls. N = 3,419. *p<0.1; **p<0.05; ***p<0.01.

Despite the null effects of the VCA on the overall knowledge index in addition the party ID correct and ideology correct dependent variables, I find that the implementation of the VCA causes voters to be more likely to correctly answer questions about the statewide ballot measures that were voted on during the 2018 general election in California. The ballot measure correct dependent variable is equal to one if respondents correctly answered all of the survey questions about ballot measures that they actually had to

vote on during the election. Examining the fourth row of Table 5, the reduced form models reveal that living in a VCA county causes a 0.041 to 0.043 increase in the probability that respondents answer questions about ballot measures from the 2018 California general election correctly. The TS2SLS estimates indicate that among the group of individuals that were caused to use vote-by-mail by the VCA, using a mail-in ballot increases the likelihood that an individual is able to answer the ballot measure survey questions by 0.355 points. Thus, there is clear evidence that implementing the VCA caused voters in California to be more informed when casting their vote on propositions that appeared on the ballot. Finally, the last set of results in row five of Table 5 indicate that the VCA and using a mail-in ballot does not have an effect on the voters' self-assessment of their knowledge about the election.

Why does vote-by-mail appear to increase knowledge of ballot measure but not the party ID or ideology of candidates? One possible explanation for these findings is that the ballot measures are likely the most complicated issues that respondents are asked about in the survey. There were many measures being voted on during the 2018 general election in California that dealt with policies ranging from rent control to property and transportation taxes. So, it is possible that these more complicated tasks that voters are faced with is where we should expect to find vote-by-mail to have an effect on levels of voter knowledge. Conversely, the questions regarding the ideological placement of candidates asked about the two candidates for governor. As discussed, the two candidates for governor were a Democrat and a Republican so voters may be able to easily distinguish between these two candidates.

Robustness Checks and Additional Results

In this section I present a series of placebo tests and robustness checks. First, I estimate a placebo test that exploits the fact that there was a group of counties that was eligible to adopt the VCA in 2018 but chose not to do so and a group of counties that was not eligible to adopt the VCA in 2018. For this placebo test, I categorize individuals who live in eligible non-adopting counties as being in the treatment group while individuals in counties that where ineligible are in the control group. Individuals in counties that adopted the VCA are excluded from the analysis. If it is actually the implementation of the VCA that is causing changes in voter behavior and not some unaccounted for difference between counties that were and were not eligible for the VCA, then these placebo tests should produce null results. The results indicate that this is indeed the case. Tables D.1 and D.2 in the Online Appendix reveal that the coefficients on the variables of interest are close to zero and not statistically significant across all of the dependent variables.

Second, I expect that the effects of vote-by-mail on voter behavior and knowledge will be driven by individuals who are less enthusiastic about politics than highly engaged voters. This is because individuals who care a lot about an election are likely to be motivated to gather political information regardless of whether or not they receive a ballot in the mail. In Figure D.1 in the Online Appendix I display the results of the reduced form models with respondents split into quartiles based on their level of enthusiasm and interest in the election. The political interest measure comes from TargetSmart, a voter file vendor that generates predictions about the characteristics of registered voters. I am only able to match a portion of the survey sample to the TargetSmart voter file, so this analysis is restricted to a subset of respondents. I find evidence that the effects of the VCA are driven by low enthusiasm voters. For example, for the time spent researching, ballot measure correct, and knowledge self-assessment dependent variables, the estimates for respondents in the lowest quartile of political interest are substantively larger than the estimates for respondents in the other quartiles and statistically significant (p<0.05). Further, for this group of voters the effect of the VCA on the knowledge index is marginally significant (p<0.1). I discuss additional details of this analysis in Section D.2 in the Online Appendix.

Third, I construct post-stratification weights for the survey data to make the sample more representative of the California population as a whole. There are substantial differences in the demographic characteristics of the population compared to the survey sample, as illustrated in Table D.4, so one may be concerned that the estimated effects do not represent the effects among the population. However, I find that the reduced form estimates with the weighted survey data (Tables D.5 and D.6) are substantively similar to the main reduced form estimates, though the results are more statistically uncertain. In Section D.1 of the Online Appendix I describe the weighting procedure and discuss the results in more detail.

Finally, I also estimate the effects of the VCA on ballot roll-off using county-level administrative data from the California Secretary of State's Office. If voters are spending more time with their ballots and gathering more information about politics than they would when voting at a polling place, then there should also be a decrease in roll-off for lower salience races on the ballot. Table D.3 in the Online Appendix displays the effects of the VCA on ballot roll-off at the county level for ballot measures, attorney general, controller, governor, insurance commissioner, lieutenant governor, secretary of state, superintendent, and treasurer. The dependent variable for ballot measures is the average roll-off among all measures on the ballot in a given year. I find that the VCA causes a 0.872 percentage point decrease in ballot roll-off on statewide ballot measures. There are also at least marginally statistically significant decreases in roll-off

for low salience races like treasurer, secretary of state, and insurance commissioner. On the other hand, it appears that the VCA did decrease roll-off for the more high profile races for governor and lieutenant governor. This is consistent with the results of the survey in which I find that the VCA only increased knowledge about statewide ballot measures and the expectation that the effects of vote-by-mail will be largest for lower salience contests.

Conclusion

In this paper, I examine the effects of vote-by-mail on voter knowledge and how voters gather information about politics. In the first empirical section of the paper, I find that all-mail elections cause a decrease in the percentage of straight ticket votes cast in Utah. Then, I present the results of a study that exploits a policy intervention in California which resulted in five counties in the state implementing a new electoral system in which all voters in the county are mailed a ballot to their residence. I field an original survey that measures how citizens' knowledge and behavior changes over the election cycle. I find that vote-by-mail causes an increase in voter knowledge and an increase in some behaviors that suggest voters in VCA counties are gathering more information about politics.

These findings expand our understanding about vote-by-mail. Previous research on the reform tends to focus on how the electoral reform affects voter turnout (e.g., Magleby 1987, Southwell and Burchett 2000, Gerber, Huber and Hill 2013). Further, although some have suggested that the usage of mail-in ballots may also cause voters to become more informed (Marble 2018, Szewczyk 2019), scholars have been unable to estimate the effects of vote-by-mail on voter knowledge. I contribute to our knowledge on vote-by-mail by showing that the institutions does indeed result in voters gathering more information about politics than they would when voting at a polling place. More broadly these findings suggest that the rules that govern how elections are run and the design of the voting experience can have a profound impact on the quality of voters' engagement with the political system.

This research also opens up several avenues for additional work. For example, future research should examine if these results transfer to other contexts. Does vote-by-mail cause voters to gather information about races for federal office or local elections? In addition, the increases in voter knowledge caused by vote-by-mail suggest that the reform could also result in changes in the behavior of elected officials and policy outcomes (Ashworth and Bueno De Mesquita 2014), and Szewczyk (2019) finds that this is indeed

the case in Washington. As more jurisdictions implement vote-by-mail scholars should continue to analyze how all-mail elections affect public policy and democratic accountability.

References

- Alvarez, R Michael, Dustin Beckett and Charles Stewart. 2013. "Voting Technology, Vote-by-Mail, and Residual Votes in California, 1990–2010." *Political Research Quarterly* 66(3):658–670.
- Angrist, Joshua D and Alan B Krueger. 1992. "The Effect of Age at School Entry on Educational Attainment: An Application of Instrumental Variables with Moments from Two Samples." *Journal of the American statistical Association* 87(418):328–336.
- Angrist, Joshua D and Alan B Krueger. 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling." *Journal of Business & Economic Statistics* 13(2):225–235.
- Ashworth, Scott and Ethan Bueno De Mesquita. 2014. "Is Voter Competence Good for Voters?: Information, Rationality, and Democratic Performance." *American Political Science Review* 108(3):565–587.
- Barnes, Tiffany D, Carolina Tchintian and Santiago Alles. 2017. "Assessing Ballot Structure and Split Ticket Voting: Evidence from a Quasi-Experiment." *The Journal of Politics* 79(2):439–456.
- Bartels, Larry M. 1996. "Uninformed votes: Information Effects in Presidential Elections." *American Journal of Political Science* pp. 194–230.
- Beck, Paul Allen, Lawrence Baum, Aage R Clausen and Charles E Smith. 1992. "Patterns and Sources of Ticket Splitting in Subpresidential Voting." *American Political Science Review* 86(4):916–928.
- Bergman, Elizabeth and Philip A. Yates. 2011. "Changing Election Methods: How Does Mandated Vote-By-Mail Affect Individual Registrants?" *Election Law Journal* 10(2):115–127.
- Berinsky, Adam J., Nancy Burns and Michael W. Traugott. 2001. "Who Votes by Mail?: A Dynamic Model of the Individual-Level Consequences of Voting-By-Mail Systems." *Public Opinion Quarterly* 65(2):178–197.
- Binder, Michael, Matthew Childers, Andrew Hopkins and Colleen Hampsey. 2016. "In Voters Minds, Are All Politics Really Local? Comparing Voters Knowledge of National and Local Politics." *Working Paper*
- Borjas, George J. 2004. "Food Insecurity and Public Assistance." *Journal of Public Economics* 88(7-8):1421–1443.

- Carsey, Thomas M and Geoffrey C Layman. 2004. "Policy Balancing and Preferences for Party Control of Government." *Political Research Quarterly* 57(4):541–550.
- Cinelli, Carlos and Chad Hazlett. 2020. "Making Sense of Sensitivity: Extending Mmitted Variable Bias." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 82(1):39–67.
- Crowder-Meyer, Melody, Shana Kushner Gadarian and Jessica Trounstine. 2019. "Voting Can Be Hard, Information Helps." *Urban Affairs Review*.
- Crowder-Meyer, Melody, Shana Kushner Gadarian, Jessica Trounstine and Kau Vue. 2018. "A Different Kind of Disadvantage: Candidate Race, Cognitive Complexity, and Voter Choice." *Political Behavior* pp. 1–22.
- Dancey, Logan and Geoffrey Sheagley. 2013. "Heuristics Behaving Badly: Party Cues and Voter Knowledge." *American Journal of Political Science* 57(2):312–325.
- Darcy, Robert and Anne Schneider. 1989. "Confusing Ballots, Roll-Off, and the Black Vote." *Western Political Quarterly* 42(3):347–364.
- DeBell, Matthew and Jon A Krosnick. 2009. "Computing Weights for American National Election Study Survey Data." *Ann Arbor, MI, and Palo Alto, CA*.
- Dee, Thomas S and William N Evans. 2003. "Teen Drinking and Educational Attainment: Evidence From Two-Sample Instrumental Variables Estimates." *Journal of Labor Economics* 21(1):178–209.
- Dee, Thomas Sean and William N Evans. 1997. *Teen Drinking and Educational Attainment: Evidence From Two-Sample Instrumental variables (TSIV) estimates*. Vol. 6082 National Bureau of Economic Research.
- Della Vigna, Stefano, John A List, Ulrike Malmendier and Gautam Rao. 2017. "Voting to Tell Others." *The Review of Economic Studies* 84(1):143–181.
- Delli Carpini, Michael X and Scott Keeter. 1996. *What Americans Know About Politics and Why it Matters*. Yale University Press.
- Downs, Anthony. 1957. "An Economic Theory of Political Action in a Democracy." *Journal of Political Economy* 65(2):135–150.

- Dubin, Jeffrey A and Gretchen A Kalsow. 1996. "Comparing Absentee and Precinct Voters: Voting on Direct Legislation." *Political Behavior* 18(4):393–411.
- Eveland, Jr., William P. 2004. "The Effect of Political Discussion In Producing Informed Citizens: The Roles of Information, Motivation, and Elaboration." *Political Communication* 21(2):177–193.
- Feddersen, Timothy, Alvaro Sandroni et al. 2006. "Ethical Voters and Costly Information Acquisition." Quarterly Journal of Political Science 1(3):287–311.
- Fiorina, Morris P. 1996. Divided Government. Allyn and Bacon.
- Fowler, Anthony and Michele Margolis. 2014. "The Political Consequences of Uninformed Voters." *Electoral Studies* 34:100–110.
- Freeder, Sean, Gabriel S Lenz and Shad Turney. 2019. "The Importance of Knowing"What Goes with What": Reinterpreting the Evidence on Policy Attitude Stability." *The Journal of Politics* 81(1):274–290.
- Funk, Patricia. 2010. "Social Incentives and Voter Turnout: Evidence from the Swiss Mail Ballot System." Journal of the European Economic Association 8(5):1077–1103.
- Gerber, Alan S., Gregory A. Huber and Seth J. Hill. 2013. "Identifying the Effect of All-Mail Elections on Turnout: Staggered Reform in the Evergreen State." *Political Science Research and Methods* 1(01):91–116.
- Hanmer, Michael J and Michael W Traugott. 2004. "The Impact of Voting by Mail on Voter Behavior." American Politics Research 32(4):375–405.
- Imai, Kosuke and Kabir Khanna. 2016. "Improving Ecological Inference by Predicting Individual Ethnicity from Voter Registration Records." *Political Analysis* 24(2):263–272.
- Inoue, Atsushi and Gary Solon. 2010. "Two-Sample Instrumental Variables Estimators." *The Review of Economics and Statistics* 92(3):557–561.
- Jones, Todd R and Joseph Price. 2017. "Information and the Beauty Premium in Political Elections." *Contemporary Economic Policy* 35(4):677–683.

- Kilgore, Ed. 2018. "The Joy of Voting by Mail." New York Magazine.
 - **URL:** http://nymag.com/intelligencer/2018/05/voting-by-mail-is-growing-and-should-grow-more.html?gtm=bottom;m=top
- Klein, David and Lawrence Baum. 2001. "Ballot Information and Voting Decisions in Judicial Elections." Political Research Quarterly 54(4):709–728.
- Kousser, Thad and Megan Mullin. 2007. "Does Voting by Mail Increase Participation? Using Matching to Analyze a Natural Experiment." *Political Analysis* 15(4):428–445.
- Krebs, Timothy B. 1998. "The Determinants of Candidates' Vote Share and the Advantages of Incumbency in City Council Elections." *American Journal of Political Science* 42:921–935.
- Lau, Richard R, David J Andersen and David P Redlawsk. 2008. "An Exploration of Correct Voting in Recent US Presidential Elections." *American Journal of Political Science* 52(2):395–411.
- Lau, Richard R and David P Redlawsk. 2001. "Advantages and Disadvantages of Cognitive Heuristics in Political Decision Making." *American Journal of Political Science* pp. 951–971.
- Lau, Richard R and David P Redlawsk. 2006. *How Voters Decide: Information Processing in Election Campaigns*. Cambridge University Press.
- Lupia, Arthur. 1994. "Shortcuts Versus Encyclopedias: Information and Voting Behavior in California Insurance Reform Elections." *American Political Science Review* 88(01):63–76.
- Magleby, David B. 1987. "Participation in Mail Ballot Elections." *The Western Political Quarterly* 40(1):79–91.
- Marble, William. 2018. "Mail Voting Reduces Ballot Roll-Off: Evidence from Washington State." *Working Paper*.
- Martinelli, César. 2006. "Would Rational Voters Acquire Costly Information?" *Journal of Economic Theory* 129(1):225–251.
- Matson, Marsha and Terri Susan Fine. 2006. "Gender, Ethnicity, and Ballot Information: Ballot Cues in Low-Information Elections." *State Politics & Policy Quarterly* 6(1):49–72.

- Menger, Andrew, Robert M Stein and Greg Vonnahme. 2018. "Reducing the Undervote With Vote by Mail." American Politics Research 46(6):1039–1064.
- Meredith, Marc and Neil Malhotra. 2011. "Convenience Voting Can Affect Election Outcomes." *Election Law Journal* 10(3):227–253.
- Moskowitz, Daniel J. 2018. Local News, Information, and the Nationalization of US Elections. Technical report Working Paper, https://bit.ly/2W15rjp.
- Mummolo, Jonathan and Erik Peterson. 2017. "How Content Preferences Limit the Reach of Voting Aids." *American Politics Research* 45(2):159–185.
- Pacini, David and Frank Windmeijer. 2016. "Robust Inference for the Two-Sample 2SLS Estimator." *Economics letters* 146:50–54.
- Prior, Markus. 2007. Post-Broadcast Democracy: How Media Choice Increases Inequality in Political Involvement and Polarizes Elections. Cambridge University Press.
- Reynolds, John F and Richard L McCormick. 1986. "Outlawing" Treachery": Split Tickets and Ballot Laws in New York and New Jersey, 1880-1910." *The Journal of American History* 72(4):835–858.
- Richey, Sean. 2008. "Voting by Mail: Turnout and Institutional Reform in Oregon." *Social Science Quarterly* 89(4):902–915.
- Riquelmy, Alan. 2018. "Nevada County Supervisors Approve Voters Choice Act, Ushering in New Way to Vote." *The Union*.
 - **URL:** https://www.theunion.com/news/local-news/nevada-county-supervisors-approve-voters-choice-act-ushering-in-new-way-to-vote/
- Schaffner, Brian F., Matthew Streb and Gerald Wright. 2001. "Teams Without Uniforms: The Nonpartisan Ballot in State and Local Elections." *Political Research Quarterly* 54(1):7–30.
- Shineman, Victoria Anne. 2016. "If You Mobilize Them, They Will Become Informed: Experimental Evidence that Information Acquisition is Endogenous to Costs and Incentives to Participate." *British Journal of Political Science* pp. 1–23.

Snyder, James M. and David Strömberg. 2010. "Press Coverage and Political Accountability." *Journal of Political Economy* 118(2):355–408.

Southwell, Priscilla L. and Justin I. Burchett. 2000. "The effect of all-mail elections on voter turnout." American Politics Research 28(1):72–79.

Szewczyk, James. 2019. "How Electoral Institutions Affect Political Accountability: Evidence from All-Mail Elections." *Working Paper*.

Thaler, Richard H. and Cass R. Sunstein. 2009. *Improving Decisions About Health, Wealth, and Happiness*. Penguin Books.

Wildermuth, John. 2017. "Partisan Rift Opens Over Vote-by-Mail Law." San Franciso Chronicle .

URL: https://www.sfchronicle.com/politics/article/Partisan-rift-opens-over-vote-by-mail-law-11290232.php

Zaller, John R. 1992. The Nature and Origins of Mass Opinion. Cambridge university press.

Online Appendix

A Survey Questionnaire

The following questionnaire is from the first wave of the survey. For the second wave, verb tenses and wording were slightly changed to reflect the fact that the survey was in the field *after* the election took place.

Question 1: How liberal or conservative do you think Gavin Newsom, candidate for governor is, on a scale from 1-7?

Response categories labeled as follows: $1 = Extremely \ Liberal; \ 2; \ 3; \ 4 = Moderate; \ 5; \ 6; \ 7 = Extremely \ Conservative; I Dont Know$

Question 2: How liberal or conservative do you think John Cox, candidate for governor is, on a scale from 1-7?

Response categories labeled as follows: 1 = Extremely Liberal; 2; 3; 4 = Moderate; 5; 6; 7 = Extremely Conservative; I Dont Know

Question 3: Eleni Kounalakis is a candidate for lieutenant governor of California. Which political party do you think she is a member of?

Response categories labeled as follows: Democratic; Republican; Green; Libertarian; No party preference; I Don't Know

Question 4: Ed Hernandez is a candidate for lieutenant governor of California. Which political party do you think he is a member of?

Response categories labeled as follows: Democratic; Republican; Green; Libertarian; No party preference; I Don't Know

Question 5: Greg Conlon is a candidate for treasurer of California. Which political party do you think he is a member of?

Response categories labeled as follows: Democratic; Republican; Green; Libertarian; No party preference; I Don't Know

Question 6: Fiona Ma is a candidate for treasurer of California. Which political party do you think she is a member of?

Response categories labeled as follows: Democratic; Republican; Green; Libertarian; No party preference; I Don't Know

Question 7: Proposition 5 is a ballot measure that will change the requirements for certain property owners to transfer their property tax base to a new property. If this measure passes, will it increase or decrease property tax revenue for school and local governments?

Response categories labeled as follows: Increase revenue; Decrease revenue; I Don't Know

Question 8: Proposition 6 proposes to repeal a 2017 transportation tax law. If this measure passes, will there be an increase or decrease in fuel taxes in California?

Response categories labeled as follows: Increase in fuel taxes; Decrease in fuel taxes; I Don't Know

Question 9: Proposition 9, a ballot measure that proposes to divide California into three states, was removed from the ballot for the 2018 general election in California. Who decided to remove the measure?

Response categories labeled as follows: The California state legislature; The California Supreme Court; The Governor of California; The United States Supreme Court; I Don't Know

Question 10: Proposition 10 concerns rent control policies put in place by local governments. If this measure passes, will it increase or decrease the power of local governments to enact rent control policies? Response categories labeled as follows: Increase power to enact rent control policies; Decrease power to enact rent control policies; I Don't Know

Question 11: Proposition 11 pertains to breaks from work for private sector employees. If this measure passes, will private sector emergency ambulance employees have to remain on-call during work breaks? *Response categories labeled as follows: Yes; No; I Don't Know*

Question 12: For the races for statewide executive office on the ballot during the 2018 general election in California, how informed do you feel about the candidates and issues?

Response categories labeled as follows: Very uninformed; Moderately uninformed; Somewhat uninformed; Somewhat informed; Moderately informed; Very informed

Question 13: For the statewide ballot measures being voted on during the 2018 general election in California, how informed do you feel about the issues?

Response categories labeled as follows: Very uninformed; Moderately uninformed; Somewhat uninformed; Somewhat informed; Moderately informed; Very informed

Question 14: In the past month, about how much time do you think that you have spent doing research about the races on the ballot for the 2018 California general election?

Response categories labeled as follows: Fewer than 5 minutes; 5 minutes - 1 hour; 1 - 2 hours; 3 - 4 hours; More than 4 hours

Question 15: In the past month, have you used the Official California Voter Information Guide to gather information about the races on the ballot for the 2018 California general election?

Response categories labeled as follows: Yes; No

Question 16: In the past month, have you used an online search engine, like Google, to gather information about the races on the ballot for the 2018 California general election?

Response categories labeled as follows: Yes; No

Question 17: In the past month, have you used local newspapers, either online or in print, to gather information about races on the ballot for the 2018 California general election?

Response categories labeled as follows: Yes; No

Question 18: In the past month, have you discussed the 2018 California general election with anyone that you live with or do you live alone?

Response categories labeled as follows: Yes; No; I Live Alone

B Summary Statistics

Table B.1: Summary Statistics of Utah Straight Ticket Voting Data

Statistic	N	Mean	St. Dev.	Min	Max
Percent Straight Ticket Votes	174	29.919	7.803	0.000	51.022
All-Mail Election	174	0.351	0.479	0	1
Total Population	174	96,530.870	212,382.200	702.000	1,106,700.000
Median Age	174	33.349	5.334	24.100	53.100
Percent Black	174	0.484	0.428	0.000	2.047
Percent Native American	174	2.962	8.794	0.000	50.483
Percent Hispanic	174	8.279	3.891	0.550	17.911
Percent Asian	174	0.789	0.753	0.000	3.890
Percent High School Graduate	174	29.435	6.440	14.467	43.320
Percent College Graduate	174	16.181	5.622	7.085	32.748
Percent Female	174	49.076	1.528	39.459	52.452

Table B.2: Summary Statistics of Survey Data

Statistic	N	Mean	St. Dev.	Min	Max
Time Spent Researching	3,419	0.306	0.307	0.000	1.000
Information Sources	3,419	0.613	0.487	0	1
Discussion	2,434	0.810	0.393	0	1
Knowledge Index	3,419	0.523	0.273	0.000	1.000
Ballot Measure Correct	3,419	0.180	0.384	0	1
Party ID Correct	3,419	0.167	0.373	0	1
Ideology Correct	3,419	0.737	0.440	0	1
Knowledge Self-Assessment	3,419	0.357	0.306	0.000	1.000
VCA County*Time	3,419	0.152	0.359	0	1
Permanent Absentee Voter	3,419	0.306	0.461	0	1
Democrat	3,419	0.374	0.484	0	1
Republican	3,419	0.249	0.432	0	1
Independent	3,419	0.300	0.458	0	1
Female	3,419	0.464	0.499	0	1
Male	3,419	0.527	0.499	0	1
Age	3,419	0.640	0.480	0	1
White	3,419	0.040	0.196	0	1
Black	3,419	0.190	0.392	0	1
Hispanic	3,419	0.029	0.167	0	1
Asian	3,419	0.009	0.093	0	1
Some High School	3,419	0.058	0.233	0	1
High School Degree	3,419	0.335	0.472	0	1
Some College	3,419	0.330	0.470	0	1
Bachelor's Degree	3,419	0.255	0.436	0	1

Table B.3: Summary Statistics of Voter File Data

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
Use VBM	30,157,797	0.429	0.495	0	0	1	1
Receive VBM Ballot	30,157,797	0.601	0.490	0	0	1	1
VCA County*Time	30,157,797	0.002	0.042	0	0	0	1
Permanent Absentee Voter	30,157,797	0.600	0.490	0	0	1	1
Democrat	30,157,797	0.441	0.496	0	0	1	1
Republican	30,157,797	0.249	0.433	0	0	0	1
Independent	30,157,797	0.262	0.440	0	0	1	1
Female	30,157,797	0.172	0.377	0	0	0	1
Male	30,157,797	0.149	0.356	0	0	0	1
Age	30,157,797	49.842	18.869	16	34	64	257
White	30,157,797	0.588	0.492	0	0	1	1
Black	30,157,797	0.059	0.236	0	0	0	1
Hispanic	30,157,797	0.261	0.439	0	0	1	1
Asian	30,157,797	0.092	0.288	0	0	0	1

C Study 1: Robustness Checks

Table C.1: Year of First All-Mail Election in Utah Counties

County	Year of Switch
Beaver	2014
Box Elder	2018
Cache	2014
Carbon	
Daggett	2018
Davis	2014
Duchesne	2012
Emery	
Garfield	2014
Grand	2014
Iron	2016
Juab	2016
Kane	2016
Millard	2016
Morgan	2016
Piute	2018
Rich	2016
Salt Lake	2016
San Juan	2014
Sanpete	2014
Sevier	2014
Summit	2016
Tooele	2016
Uintah	2016
Utah	2018
Wasatch	2016
Washington	2016
Wayne	2014
Weber	2016

Notes: Data obtained from Utah Lieutenant Governor's Office. Empty cells indicate that county has not yet held all-mail elections.

Table C.2: The Effects of Vote-by-Mail on Straight Ticket Voting in Utah (Leads of Treatment Variable)

	DV = I	Percent Straight	Ticket Votes
	(1)	(2)	(3)
Switch to All-Mail in Next Election	2.011	1.622	0.825
	(1.537)	(1.476)	(1.672)
All-Mail Election	-3.498*	-4.154**	-5.575**
	(1.856)	(1.982)	(2.653)
County Fixed Effects	Yes	Yes	Yes
Year Fixed Effects	Yes	Yes	Yes
Controls	No	Yes	Yes
County Time Trends	No	No	Yes
Observations	174	174	174
Adjusted R ²	0.658	0.668	0.675

 $\label{eq:problem} ^*p{<}0.1; \ ^{**}p{<}0.05; \ ^{***}p{<}0.01$ Robust standard errors clustered by county.

Note:

D Study 2: Robustness Checks and Additional Results

Table D.1: Reduced Form: The Effects of the VCA and Vote-by-Mail on Voter Behavior (Placebo Test)

	Reduced Form Estimates:			
	VCA County			
Dependent Variable:	(1)	(2)		
Time Spent Researching	-0.007	-0.009		
	(0.034)	(0.037)		
Information Sources	0.026	0.023		
	(0.053)	(0.056)		
Discussion	0.006	0.005		
	(0.038)	(0.034)		
Time Fixed Effects	Yes	Yes		
County Fixed Effects	Yes	Yes		
Controls	Basic	Extended		

Note: Robust standard errors clustered by county in parentheses. Each cell represents the results from a seperate model. Reduced form estimates display the coefficient on the variable indicating if a respondent lives in a VCA county. Basic control variables include race, gender, age, party identification, and permanent absentee status. Extended control variables add education to this set of controls. N = 2,348 for rows one and two. N = 1,685 for row three. *p<0.1; **p<0.05; ***p<0.01.

Table D.2: Reduced Form: The Effects of the VCA and Vote-by-Mail on Voter Knowledge (Placebo Test)

	Reduced F	Form Estimates:
	VCA	A County
Dependent Variable:	(1)	(2)
Knowledge Index	-0.013	-0.013
	(0.017)	(0.020)
Party ID Correct	0.008	0.005
•	(0.040)	(0.041)
Ideology Correct	0.031	0.030
	(0.030)	(0.030)
Ballot Measure Correct	-0.004	-0.006
	(0.065)	(0.066)
Knowledge Self-Assessment	-0.003	-0.004
	(0.025)	(0.027)
Time Fixed Effects	Yes	Yes
County Fixed Effects	Yes	Yes
Controls	Basic	Extended

Note: Robust standard errors clustered by county in parentheses. Each cell represents the results from a seperate model. Reduced form estimates display the coefficient on the variable indicating if a respondent lives in a VCA county. Basic control variables include race, gender, age, party identification, and permanent absentee status. Extended control variables add education to this set of controls. N=2,348. *p<0.1; **p<0.05; ***p<0.01.

Table D.3: The Effects of Vote-by-Mail on Ballot Roll-Off in California

		DV = Percent Ballot Roll-Off							
	Measures	AG	Controller	Gov.	Insur. Com.	Lt. Gov.	SoS	Super.	Treas.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
All-Mail Election	-0.827** (0.348)	-0.351 (0.368)	-0.446 (0.501)	0.088 (0.234)	-1.235* (0.692)	-3.822 (2.681)	-0.627* (0.331)	-1.902 (1.457)	-0.639^* (0.333)
County Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	580	290	290	290	290	290	232	232	290
Adjusted R ²	0.709	0.564	0.592	0.344	0.575	0.857	0.683	0.567	0.588

Note:

*p<0.1; **p<0.05; ***p<0.01 Robust standard errors clustered by county.

D.1 Survey Weights

In this paper, I am interested in drawing inferences about the California population as a whole. Because the sample from Civiqs is an opt-in online convenience sample one may be concerned that the sample is not representative of the residents of California. There is evidence that this is the case. In Table D.4 I show the percentage of individuals in the California population and the percentage of survey respondents who belong to a variety of demographic groups. The difference between these two percentages is displayed in the fourth column of Table D.4. If the difference is negative it indicates that there are more members of that demographic group in the population while if it is positive it means there are more survey respondents that identify as being a part of that group.

This exercise highlights some significant differences between the California population and the survey sample. The survey sample is older, more educated, and more likely to live in a county that switched to the VCA in 2018. There are 19.40% fewer individuals in the 35 to 64 age range and 17.31% fewer individuals older than 65 in the population compared to the respondents. Further, among respondents whose highest level of education is a high school degree or lower, there is a 4.93% difference between the population and the sample. Notably, there are nearly 25% more respondents from VCA counties in the survey sample compared to California as a whole. This is due to an oversampling of individuals who live in counties that switched to the VCA in 2018 in order to ensure that I could estimate the effects of the reform.

Table D.4: Comparison of Survey Sample and California Population

Variable	Population	Survey (unweighted)	Survey (weighted)	Difference (unweighted)	Difference (weighted)
35-64	38.43	57.83	53.87	19.40	15.45
Age 65 and Over	13.21	30.51	19.86	17.31	6.66
Age Under 35	24.99	11.66	26.27	-13.33	1.28
Asian	14.12	2.84	8.84	-11.28	-5.28
Black	5.81	4.06	5.93	-1.74	0.13
Mixed Race	4.71	5.05	5.28	0.34	0.58
Native American or Hawaiian	0.75	1.37	0.90	0.63	0.15
Other Race	13.67	3.08	10.04	-10.59	-3.63
White	60.56	83.59	69.00	23.03	8.45
College	13.58	33.56	28.49	19.99	14.91
High School or Less	11.66	6.72	15.82	-4.93	4.16
Postgraduate	8.11	25.76	17.59	17.65	9.48
Some College	19.52	33.95	38.10	14.43	18.59
Female	50.32	46.95	50.34	-3.37	0.02
Male	49.68	53.05	49.66	3.37	-0.02
Not VCA County	93.19	68.41	88.85	-24.78	-4.35
VCA County	6.81	31.59	11.15	24.78	4.35

To address the potential biases that may result from the demographic differences between the population and survey sample, I calculate survey weights. The first step of this process accounts for the fact individuals

had an unequal probability of selection into the sample based on where they lived. In particular, respondents in VCA counties were 4.615 times more likely than respondents in non-VCA counties. Based on this, I first generate a set of design weights that are equal to 0.217 for respondents in VCA counties and 1 for respondents in non-VCA counties.

Next, I calculate post-stratification weights to account for differences between the demographic characteristics of the California population and the Civiqs survey panel. Traditional cell weighting requires that there are observations in the survey sample for each possible combination of the different variables that the researcher wants to post-stratify on. For the variables that I want to post-stratify on - age, race, education, and gender - this is not the case, so I would not to eliminate demographic variables to use cell weighting. Therefore, I use raking to calculate the post-stratification weights, which is an algorithm that gives me the ability to flexibly use all of the available information on the demographic characteristics of the survey respondents.

To implement the raking procedure I use the guidelines outlined in DeBell and Krosnick (2009). Raking is done with the variables indicating respondents' race, gender, age, and level of education. The raked post-stratification weights are then combined with the design weights that take into account that individuals in VCA counties were more likely to appear in the sample. Following DeBell and Krosnick (2009), the weights are trimmed at five times the mean value of the weights, because larger values are more likely to inflate the variance of estimates.

Table D.5: Reduced Form: The Effects of the VCA on Voter Behavior (Weighted Data)

	Dependent variable:					
	Time Spent Researching	Information Sources	Discussion			
	(1)	(2)	(3)			
VCA County	0.041	0.013	-0.005			
	(0.034)	(0.052)	(0.045)			
Time Fixed Effects	Yes	Yes	Yes			
County Fixed Effects	Yes	Yes	Yes			
Extended Controls	Yes	Yes	Yes			
Observations	3,346	3,346	2,390			

*p<0.1; **p<0.05; ***p<0.01 Robust standard errors clustered by county.

The distributions of the demographic variables in the final weighted data are also displayed in Table D.4. As can be seen, the weights significantly improve th representativeness of the sample from Civiqs.

Note:

Table D.6: Reduced Form: The Effects of the VCA on Voter Knowledge (Weighted Data)

	Dependent variable:							
	Knowledge Index	Party ID Correct	Ideology Correct	Ballot Measure Correct	Self-Assessment			
	(1)	(2)	(3)	(4)	(5)			
VCA County	0.003 (0.029)	0.016 (0.044)	0.013 (0.043)	0.065* (0.036)	-0.007 (0.036)			
Time Fixed Effects	Yes	Yes	Yes	Yes	Yes			
County Fixed Effects	Yes	Yes	Yes	Yes	Yes			
Extended Controls	Yes	Yes	Yes	Yes	Yes			
Observations	3,346	3,346	3,346	3,346	3,346			

Note:

*p<0.1; **p<0.05; ***p<0.01

Robust standard errors clustered by county.

The results of the reduced form models with the weighted data are displayed in Tables D.5 and D.6. For the most robust main results, ballot measure correct and time spent researching, the point estimates with the weighted data are substantively very similar to that for the unweighted data though they are statistically more uncertain. The estimated effect of the VCA on time spent researching is no longer significant with the weighted data though the effect is marginally significant when ballot measure correct is the dependent variable.

D.2 Who is Affected by Vote-by-Mail?

I propose that the effects of vote-by-mail on voter knowledge and behavior will be conditioned by a voter's level of political interest. In particular, I expect that the effects of the VCA on voter knowledge will be largest among individuals who are least interested in the 2018 general election while the effects will be smallest for voters who are highly enthusiastic about politics. This is because voters who care a lot about the election will gather information even if they are not mailed a ballot. Indeed, previous research finds that voters in California with high levels of political interest are the most likely to use voter information guides Mummolo and Peterson (2017). Meanwhile, individuals who are not very interested in politics will be affected by the extra nudge that receiving a ballot in the mail gives them.

In order to test this hypothesis, I take advantage of the fact that a subset of respondents in the sample are able to be matched to the TargetSmart voter database. TargetSmart is a company that aggregates state voter files and generates predictions about a variety of characteristics of registered voters. I categorize respondents of my survey based on their enthusiasm for the 2018 general election, which is derived from

one of TargetSmart's proprietary models. The measure is based on turnout in previous elections and survey data measuring individuals' interest in the 2018 midterm election. I split respondents into quartiles based on their enthusiasm scores and estimate the effects of the VCA on the outcome variables separately. The lowest quartile represents individuals that were not very interested in the 2018 general election. The two middle quartiles include voters that have medium levels of interest. Finally, individuals who were very enthusiastic about the election are in the top quartile. It is important to note that for these analyses, the data is restricted to the 1,386 respondents that I am able to observe in the TargetSmart data, so the sample size is much smaller than that for the main set of results discussed in the previous section.

The results of the reduced form models with the data split into quartiles based on respondents' enthusiasm about the 2018 general election are displayed in Figure D.1. The Figure shows the regression coefficient on the causal variable of interest, a dummy variable equal to one for individuals who live in a VCA county in the second wave of the survey. For each dependent variable, the first estimate that is displayed is for respondents in the lowest quintile and the second estimate is for the second lowest quintile, which are the low enthusiasm and low-medium enthusiasm groups. Meanwhile, the results for respondents in the mediumhigh and high enthusiasm groups are the third and fourth estimates. In addition to the point estimates, Figure D.1 reveals 90% and 95% confidence intervals.

The results are supportive of the predictions of the theory about who should be most affected by vote-by-mail. Across all of the dependent variables, except information sources used and political discussion, the estimated effects are largest among those in the lowest quintile of the election interest measure. The effects among respondents in this group are at least marginally statistically significant for several dependent variables. For example, although the average effect estimated from the reduced form and TS2SLS models in Table 5 was substantively very small, among respondents who are least enthusiastic about the 2018 general election the estimated effect of the VCA on the knowledge index is large (.073) and marginally significant (p<.1). Moreover, the impact of vote-by-mail on answering ballot measure questions correctly, the amount of time spent conducting research, and how knowledgeable respondents feel appear to be driven exclusively by changes in the knowledge and behavior of individuals who are in the bottom quintile of the variable measuring respondents' interest in the election. For these dependent variables, the point estimates are largest and statistically significant (p<.05) for the models with those in the low enthusiasm group.

This set of results provides additional evidence in favor of my argument that vote-by-mail causes voters to gather more information about politics than they would otherwise. The group of individuals that I expect

Interest in Election -- Low --- Low-Medium --- Medium-High --- High

Figure D.1: The Effects of VCA by Voter's Interest in Election

The reduced form estimates of the effects of the VCA on voter knowledge and behavior across voters' interest in 2018 election. I report 90% and 95% confidence intervals calculated with robust standard errors clustered at the county-level. All models include the extended set of individual-level control variables.

to be most affected by this change, those who are least interested in politics, do indeed drive the impact of using a mail-in ballot on voter knowledge and behavior.