Linear Optimization: Assignment 1

$$\begin{array}{lll} \max & z = x_1 + 12x_2 \\ \text{s.t.} & 3x_1 + & x_2 + 12x_3 \leq 5 \\ & x_1 & + & x_3 \leq 16 \\ & 15x_1 + & x_2 & = 14 \\ & x_j \geq 0, & j = 1, 2, 3. \end{array}$$

1.17 (a)

(b)

$$\begin{aligned} & \text{min} & c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4 \\ & \text{s.t.} & x_1 + x_2 + x_3 + x_4 \geq K \\ & x_1 + x_2 + x_3 + x_4 \leq M \\ & P_1x_1 + P_2x_2 + P_3x_3 + P_4x_4 \leq P \\ & N_1x_1 + N_2x_2 + N_3x_3 + N_4x_4 \leq N \\ & x_j \geq 0, \quad j = 1, 2, 3, 4 \end{aligned}$$

1.18 (a)

$$\begin{array}{lll} & \min & \sum_{i=1}^4 c_i x_{1,i} + \sum_{i=1}^4 c_i x_{2,i} + \sum_{i=1}^4 c_i x_{3,i} \\ & \text{s.t.} & \sum_{i=1}^4 c_i x_{1,i} & \geq K_A \\ & & \sum_{i=1}^4 c_i x_{2,i} & \geq K_B \\ & & \sum_{i=1}^4 c_i x_{3,i} \geq K_C \\ & \sum_{i=1}^4 c_i x_{1,i} & \leq M_1 \\ & & \sum_{i=1}^4 c_i x_{2,i} & \leq M_2 \\ & & & \sum_{i=1}^4 c_i x_{3,i} \leq M_1 + M_2 \\ & \sum_{i=1}^4 P_i x_{1,i} & \geq K_A P_S / M_1 \\ & & \sum_{i=1}^4 P_i x_{2,i} & \geq K_B P_B / M_2 \\ & & \sum_{i=1}^4 P_i x_{3,i} \geq K_C P_S / (M_1 + M_2) \\ & \sum_{i=1}^4 N_i x_{1,i} & \geq K_A N_S / M_1 \\ & & \sum_{i=1}^4 N_i x_{3,i} \geq K_C N_S / (M_1 + M_2) \\ & & \sum_{i=1}^4 N_i x_{3,i} \geq K_C N_S / (M_1 + M_2) \\ & & x_{i,j} \geq 0, \quad i = 1, 2, 3, j = 1, 2, 3, 4 \end{array}$$

- (b) The c_i 's, P_i 's and N_i 's will unique for each plant thus we will have $c_{p,i}$'s, $P_{p,i}$ and $N_{p,i}$ for $p \in \{A, B, C\}$.
- 1.20 We shall let t denote the $t+6 \mod 12$ month of the year, i.e. t=0 is June and t=10 is April. Let $x_t=x_t^+-x_t^-$ denote the change in production from month t to month t+1 and d_t denote the sales forecast for month t. Letting the units to be in thousands below:

1.25 We first list down the different ways such that a 100-inch roll can be cut into combinations of 24-, 40-, and 32-inch widths. Let x_i denote the number of combination i used.

Combination	24	40	32	trim waste	
1	4	0	0	4	
2	0	2	0	20	
3	0	0	3	4	
4	1	1	1	4	
5	2	1	0	12	
6	2	0	1	20	
7	1	0	2	12	

$$\begin{array}{lllll} & \min & 4x_1 + 20x_2 + 4x_3 + 4x_4 + 12x_5 + 20x_6 + 12x_7 \\ & \mathrm{s.t.} & 4x_1 & + x_4 & + 2x_5 & + 2x_6 & + x_7 \geq 75 \\ & & 2x_2 & + x_4 & + x_5 & \geq 50 \\ & & 3x_3 & + x_4 & + x_6 & + 2x_7 \geq 110 \\ & x_j \geq 0, \quad j = 1, \dots, 7 \end{array}$$

2.7 Letting the units be in thousands below:

$$\begin{array}{ll} \max & 2x_1 + 1.8x_2 \\ \text{s.t.} & x_1 & + x_2 \leq 10 \\ & 2x_1 & + x_2 \leq 9 \\ & x_1, x_2 \geq 0 \end{array}$$

2.8 Let the units be in pounds below, and x_1, x_2 and x_3 denoting amount of ingredient A, B and C used respectively.

min
$$4x_1 + 3x_2 + 2x_3$$

s.t. $x_1 \ge 200$
 $x_2 \ge 400$
 $x_3 \le 800$
 $x_1, x_2, x_3 \ge 0$

The bounded-variable simplex method cannot be used to solve this problem as it will lead to a matrix A that is of not full rank.

2.9 Phase I:

2.12

2.13

(-w)	0	0	0	
x_6	1	0	0	9
x_7	1	0	0	4
x_{8}	1	0	0	6