Pennant Race Problem

w = #A's wins (assuming A wins all remaining games)

 w_i = # T_i 's wins

 $\{(T_i,T_j)\}$ = games remaining to be played

If $w_i>w$ then no hope for A. Done.

So assume $W_i \leq w$ for all i.

Can draw a flow graph with s pointing to each game, and each game pointing to the two participating teams, and the teams pointing to t..

Edges:

 $(s,(T_i,T_j))$ with capacity 1

$$((T_i,T_j),T_i),((T_i,T_j),T_j)$$
 with capacity 1

 (T_i,t) with capacity w_i-w .

If max flow size = # games to play, then A still has hope.

Runtime O((#games*3+#teams)*(#games+#teams)).