

Auxiliar 17

Profesor
s Claudio Romero Z. Profesores auxiliares: Felipe Isaule , Rodrigo Sabaj S.

Martes 3 de Diciembre de 2013

P1. Se tiene un solenoide infinito con n vueltas por unidad de largo por el que circula una corriente I. Si el solenoide es llenado con un material de susceptibilidad magnética χ_m , encuentre el campo magnético y la magnetización dentro del solenoide.

P2. Se tiene un cable coaxial como el de la figura por el que circula una corriente I. Si se llena el cable coaxial con un material de susceptibilidad χ_m , encuentre las corrientes generadas por la magnetización.

P3. Considere una bobina toroidal de N vueltas con corriente I, de sección rectangular, radio interno a, radio externo b y altura h. El interior del toroide es llenado con un núcleo de permeabilidad μ_1 entre $0 \le \phi \le \alpha$ y μ_2 para el resto de la bobina. Encuentre el flujo magnético dentro de una sección de la bobina.

P4. Un electroimán que tiene forma de U, de longitud l, separación entre los polos d y permeabilidad μ , tiene una sección transversal cuadrada de área A. Se enrolla con N vueltas de alambre por las cuales pasa una corriente I. Calcule la fuerza con la cual el imán sostiene contra sus polos una barra del mismo material y de la misma sección transversal. Suponga que el núcleo del electroimán es de hierro dulce.

P5. En un material ferromagnético la conexión entre los campos B y H depende de su historia, la que esta dada por las curvas de histéresis.

En la curva de la figura, prueba que la energía perdida por llevar el campo de $-B_0$ a $+B_0$ es $1/4\pi \int S(r)d^3r$, donde S(r) es el área encerrada por la curva de histéresis.

