Applied Machine Learning

Low Dimensional Embeddings

Low-Dimensional Embeddings

- Reminder of Principal Coordinate Analysis (PCoA)
- Sammon Mapping
- Stochastic Neighbor Embedding

Low-Dimensional Embedding

- $\mathbf{x}_i \mapsto \mathbf{y}_i$
 - *N* items
 - \mathbf{x} : high-dimensional dataset with d features

- y: low-dimensional dataset with m features
- usually $d \gg m$
 - $m \in \{2,3\}$ for visualization

$$\mathbf{x}_i = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_d \end{bmatrix}$$

$$\mathbf{y}_i = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_m \end{bmatrix}$$

Principal Coordinate Analysis

- Preserves rations of distances between sets x and y
 - Distances between items within set $D_{i,j}(\mathbf{x}) = (\mathbf{x}_i \mathbf{x}_j)(\mathbf{x}_i \mathbf{x}_j)^{\mathsf{T}}$
 - Select items in \mathbf{y} that minimize cost function: $\sum_{i,j} (D_{i,j}(\mathbf{x}) D_{i,j}(\mathbf{y}))^2$
- Issue: weight of pairs of points vary with their distance
 - Pairs with long distances have a higher squared distance
 - Pairs with small distances have smaller squared distance
 - uneven distribution of distances in lower-dimensional map

Sammon Mapping

Sammon mapping function gives higher weight to smaller distances

$$C(\mathbf{y}) = \frac{1}{\sum_{i < j} ||\mathbf{x}_i - \mathbf{x}_j||} \sum_{i < j} \frac{(||\mathbf{y}_i - \mathbf{y}_j|| - ||\mathbf{x}_i - \mathbf{x}_j||)^2}{||\mathbf{x}_i - \mathbf{x}_j||}$$

- Issue:
 - critical to correctly map pairs much closer to each other than every other pair
- Solved through gradient descent

Stochastic Neighbor Embedding (SNE)

- Preserve the probability of neighbors in set x in the target set y
- Probability models:
 - probability of items in high-dimensional set x to be neighbors
 - probability of items in low-dimensional set y to be neighbors

SNE - model for high-dimensional set

• high-dimensional set ${\bf x}$ with N items

probability of item i being picked by point j as a neighbor in high-dimensional dataset \mathbf{x}

$$p_{j|i} = \frac{e^{-\frac{\|\mathbf{x}_{j} - \mathbf{x}_{i}\|^{2}}{2\sigma_{i}^{2}}}}{\sum_{k \neq i} e^{-\frac{\|\mathbf{x}_{k} - \mathbf{x}_{i}\|^{2}}{2\sigma_{i}^{2}}}}$$

- variance as length scale for point i: σ_i^2
 - chosen so that $p_{i,j}$ has user-defined perplexity $PP(p)=2^{H(p)}$ with H(p): entropy of p
 - larger σ_i^2 : more neighbors around i
 - smaller σ_i^2 : less neighbors around i
- probability of items in high-dimensional dataset ${\bf x}$ (with N items) to be neighbors:

$$p_{i,j} = \begin{cases} 0 & i = j \\ \frac{p_{j|i} + p_{i|j}}{2N} & i \neq j \end{cases}$$

SNE - model for low-dimensional set

- low-dimensional set \mathbf{y} with N items
- crowding problem: distances in low dimensions reduce with respect to high dimensions
 - Probabilistic model with heavy tails reduce crowding in low dimensions
 - t-SNE
 - Student's t distribution with $\nu=1$
 - similar to normal with higher probability far from the mean

probability of items in low-dimensional dataset ${f y}$ to be neighbors:

$$q_{i,j} = \begin{cases} 0 & i = j \\ \frac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_{k \neq l} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}} & i \neq j \end{cases}$$

t-SNE Cost Function and Gradient

- Goal: high-dimensional $p_{i,j}$ similar to low-dimensional $q_{i,j}$
 - $_{\bullet}$ KL Divergence between P and Q

$$\mathbb{D}(P||Q) = \int P(X)log \frac{P(X)}{Q(X)} dx$$

Cost function to minimize

$$\mathcal{L} = C_{tSNE} = \sum_{i \neq j} p_{i,j} \log \frac{p_{i,j}}{q_{i,j}}$$

- Gradient descent
 - Gradient

$$\nabla y_i \mathcal{L} = 4 \sum_{j} \frac{(p_{i,j} - q_{i,j})(\mathbf{y}_i - \mathbf{y}_j)}{1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2}$$

Low-Dimensional Embeddings

- Reminder of Principal Coordinate Analysis (PCoA)
- Sammon Mapping
- Stochastic Neighbor Embedding

Applied Machine Learning

Low Dimensional Embeddings