

Revised Point of Departure Design Options for Nuclear Thermal Propulsion

James E. Fittje¹
Bruce G. Schnitzler²
Stanley Borowoski³

¹ Vantage Partners, (216) 416-5565, James. E. Fittje@grc.nasa.gov

² Oak Ridge National Laboratory

³ NASA Glenn Research Center

OAK RIDGE National Laboratory

Introduction

- Brief NTR Systems Background
- Fuel Element Geometries
- MCNP/NESS Model
- NERVA Derived Designs
 - Criticality Limited
 - 111 kN (25 klb_f) Thrust Class
- Cermet Based Designs
 - Criticality Limited
 - 111 kN (25 klb_f) Thrust Class
- Analysis Results
- Questions

Typical NTR System

Typical NTR Core Cross Section

NERVA Derived Reactor Cross Section

Fuel Element and Tie Tube Arrangement

Fuel Element And Tie Tube Cross Sections

OAK RIDGE National Laboratory

NTR Fuel Element Comparison

(Relative Scale)

1.905cm (0.750in)

GE-710 and GE-711 Comparison

91 Coolant Passages

GE-710 and **GE-711** Comparison, cont.

Parameter	GE-710		GE-711	
Fuel Element Width w/o Cladding	2.278 cm	0.8976 in	2.278 cm	0.8976 in
Fuel Element Width with Cladding	2.361 cm	0.9296 in	2.361 cm	0.9296 in
Outer Cladding Thickness	0.381 mm 0.015 in		0.381 mm	0.015 in
Fuel Element Length	60.96 cm	24.00 in	60.96 cm	24.00 in
Fuel Composition	W -60% UO ₂ -6% Gd ₂ O ₃		W -60% UO ₂ -6% Gd ₂ O ₃	
Cladding Composition	W / 25% Re		W / 25% Re	
Coolant Channels per Element	91		91	
Coolant Channel Diameter without Cladding	1.321 mm	0.052 in	1.524 mm	0.060 in
Coolant Channel Diameter with Cladding	0.914 mm	0.036 in	1.118 mm	0.044 in
Coolant Channel Pitch	2.353 mm	0.0938 in	2.353 mm	0.0938 in

NESS (Nuclear Engine System Simulation) Code Features and Capabilities

- Developed by NASA, SAIC, and Westinghouse in early 1990's
- NESS is used for Conceptual Level Analysis of both the Reactor and Key Engine Subsystems
- NESS can Model Expander, Gas Generator, and Bleed Cycles
- GASPLUS for Liquid Hydrogen Properties
- Accept MCNP Analysis Results as Input
- Propellant Flow Rate Determined by Reactor Thermal Performance
- Able to Optimize Engine System Performance Based on Peak Allowable Fuel Temperature

NESS System Model

- Reactor Component Mass and Thermal Energy Deposition Data from MCNP
 - Fuel Elements and Tie-Tubes (NERVA Derived Systems Only)
 - Control Drums, Radial Reflector, and Filler Elements
 - Numerous Other Non-Nuclear Components
- Expander Cycle with Two Different Chamber Pressures
 - 3.89 MPa (565 psia) for Criticality Limited Designs
 - 6.89 MPa (1000 psia) for 111 kN (25 klb_f) Class Engines
- Fixed Pump and Turbine Efficiency Values
 - Pump Efficiency of 65%
 - Turbine Efficiency of 80%
- Regeneratively Cooled Thrust Chamber and Nozzle to a Nozzle AR of 25:1
- Individually Orificed Fuel Elements
- Peak Allowable Fuel Temperature of 2860 K (5148 R)
- Total Nozzle Area Ratio 300:1
- RL10-B2 Style Retractable Nozzle Extension

NESS System Model (Cermet Only)

- No Tie-Tubes, Periphery Fuel Elements Used to Provide Supplemental TPA Drive Energy as Required
 - Added to TPA Drive Flow Path in Opposing Pairs
 - No Longer Used to Heat Propellant to Produce Thrust
 - Corresponding Fuel Element Pressure Drop Added to Cycle Flow Path
 - Thermal Energy Added in Parallel Path to Control Drums and Radial Reflector
- Axial BeO Axial Reflector Treated
 Computationally as Fuel Element Extension

NERVA Derived Engine Design Results

Normalized Thermal Energy Deposition Rate Profiles

NERVA Derived Engine Designs – Composite Fuel

Criticality Limited NERVA Derived Option

111 kN (25 klb_f) Thrust NERVA Derived Design

- Fuel Element
- Tie-Tube

Normalized Axial Thermal Energy Deposition Rate Profiles

(NERVA Derived Designs)

NERVA Derived Expander Cycle Flow Path (Single TPA)

NERVA Derived Engine Summary

Peak Fuel Temperature of ~2860 K and Nozzle Area Ratio (NAR) of ~300:1

	NERVA-Derived (Composite)		
Masses (kg)	Criticality-Limited	25 klb, Class	
Fuel Elements (FE)	207.7	612.84	
Tie Tubes (TT)	231.0	313.70	
Heater Elements (HE)	-	-	
Reflector Assembly	717.71	1141.57	
Pressure Vessel	87.93	284.72	
TPA	9.07	41.43	
TVC, Lines, and Valves	38.2	85.82	
Nozzle	81.03 Crew Retu	m in MAV149.78	
Assorted Hardware	416.36	708.14	
Engine Mass	1789	3338	
Dimensions (cm)			
Core / FE Length	89	132	
TPA / TVC System Length	178.1	228.3	
Pressure Vessel Length	207.1	320.9	
Nozzle Length	233.7	320.2	
Nozzle Exit Diameter	137.9	189.0	
Approx. Total Engine Length	618.9	869.4	
Engine Parameters			
No. Elements (FE/TT/HE)	260 / 251 / 0	564 / 241 / 0	
Core Power Level (MW,)	157	563	
Chamber Pressure (MPa)	3.89	6.89	
U-235 Mass (kg)	27.5	36.8	
Thrust (klb _f)	7.52	25.18	
Thrust-to-Weight Ratio	1.91	3.42	
Delivered Isp (s)	894	909	

Cermet Engine Design Results

Normalized Thermal Energy Deposition Rate Profiles

Cermet Fuel Based Engine Designs

Criticality Limited ANL-200 Based Design

111 kN (25 klb_f) Thrust GE-711 Based Design

- Fuel Element
- Driver Element

Normalized Axial Thermal Energy Deposition Rate Profiles

(Cermet Designs)

Normalized Axial Distance

Cermet Based NTR Flow Diagram

(Expander Cycle with Single TPA)

Point of Departure Engine Summary

Peak Fuel Temperature of ~2860 K and Nozzle Area Ratio (NAR) of ~300:1

	NERVA-Derived (Composite)		ANL-200	GE-711 Variant	
Masses (kg)	Criticality-Limited	25 klb _f Class	Criticality-Limited	25 klb, Class	
Fuel Elements (FE)	207.7	612.84	950.50	1226.63	
Tie Tubes (TT)	231.0	313.70	-	-	
Heater Elements (HE)	-	-	-	48.90	
Reflector Assembly	717.71	1141.57	414.74	437.51	
Pressure Vessel	87.93	284.72	74.98	205.28	
TPA	9.07	41.43	13.28	53.04	
TVC, Lines, and Valves	38.2	85.82	42.68	73.39	
Nozzle	81.03	149.78	106.95	149.49	
Assorted Hardware	416.36	708.14	208.87	480.76	
Engine Mass	1789	3338	1812	2675	
Dimensions (cm)					
Core / FE Length	89	132	71	61	
TPA / TVC System Length	178.1	228.3	209.3	225.3	
Pressure Vessel Length	207.1	320.9	155.0	157.0	
Nozzle Length	233.7	320.2	292.0	318.9	
Nozzle Exit Diameter	137.9	189.0	172.3	188.2	
Approx. Total Engine Length	618.9	869.4	656.3	701.2	
Engine Parameters					
No. Elements (FE/TT/HE)	260 / 251 / 0	564 / 241 / 0	163 / 0 / 0	313 / 0 / 12	
Core Power Level (MW _t)	157	563	266	564	
Chamber Pressure (MPa)	3.89	6.89	3.89	6.89	
U-235 Mass (kg)	27.5	36.8	238.5	258.6	
Thrust (klb _f)	7.52	25.18	11.92	25.09	
Thrust-to-Weight Ratio	1.91	3.42	2.98	4.26	
Delivered Isp (s)	894	909	903	906	

Conclusions

- Four Revised Point of Departure NTR Engines were Designed and Analyzed using MCNP and NESS
- All Four Engines Have Thermodynamically Closed Cycles at Nominal Chamber Pressures
- 111 kN (25 klb_f) Cermet Design Required Dedicated Heater Elements to Close the Cycle
- Cermet Based Designs had Slightly Higher T/W Ratios, but Required Substantially More U-235
- NERVA Derived Criticality Limited Engine Could Operate at Lower Power and Thrust Levels Compared to the Criticality Limited Cermet Design

Back-up Charts

Carbide/Graphite Based Fuels

RL10-B2 Retractable Nozzle

Nozzle Extension Retracted

Nozzle Extension Deployed

Deployable Nozzle Components

Translating Nozzle Bracket Design

Translating Nozzle Bracket, cont.

Thermodynamic State Points for Small (~7.5 klb_f) POD NERVA-derived Engine at 161 MW_t and Isp ~894 s

Station	Na	Flow Rate		Pressure		Temperature	
	No.	(lbm/s)	(kg/s)	(psia)	(MPa)	(R)	(K)
Tank Exit	1	8.50	3.86	28.20	0.194	30.6	17.0
Pump Inlet	2	8.50	3.86	18.28	0.126	30.6	17.0
Pump Exit	3	8.50	3.86	976.0	6.728	44.17	24.54
Tie Tube and Slat Inlet	3	4.65	2.11	940.1	6.481	44.17	24.54
Tie Tubeand Slat Exit	7	4.65	2.11	840.1	5.791	749.6	416.5
Nozzle Inlet	4	3.86	1.75	940.1	6.481	44.17	24.54
Reflector Inlet	5	3.86	1.75	865.1	5.964	438.4	243.5
Reflector Exit	6	3.86	1.75	840.1	5.791	530.2	294.5
Turbine Inlet	8a	7.50	3.40	840.1	5.791	677.5	376.4
Turbine Bypass	8b	1.00	0.45	840.1	5.791	677.5	376.4
Turbine Exit	9	7.50	3.40	717.0	4.943	644.5	358.1
Reactor Inlet	10	8.45	3.84	667.3	4.600	644.5	358.1
Fuel Element Inlet	11	8.45	3.84	641.9	4.425	645.8	358.8
Chamber Inlet	12	8.45	3.84	565.0	3.895	4922.7	2734.8
Nozzle Exit (Static)	13	8.45	3.84	0.033	0.0002	196.5	109.2

NOTE: Engine Fuel Element length is 89 cm / 35 inches and uses single TPA

Relative NTR Engine Size

Hydrogen Dissociation

- ISP ~ (Tc/Mw)^0.5
- Potential Performance Increase with Hydrogen Dissociation
- Lower Pressure and Higher Temperature Allow for Dissociation
- NTR System Size and Mass Tend to Increase with Lower Pc

Potential Performance with Hydrogen Dissociation

OAK RIDGE National Laboratory

Hydrogen Propellant

- Hydrogen Delivers
 Highest Possible
 ISP for Given Tch,
 Pch, and Nozzle AR
- Current and Well Understood Technology
- Allows for Simpler and more Robust Design if used as Monopropellant
- Dissociation at Lower Pch Yields Even Higher ISP

Hydrogen Propellant Performance (300:1 Nozzle Area Ratio, Isentropic Expansion, Ionized Species)

