

ML507 BSB PPC440 Design Adding Standard IP

May 2009

ML507 Standard IP Design Overview

ML507 Standard IP Design Overview

- Standard IP Added or Modified
- Software Requirements
- ML507 Setup
- Using the Pre-Built Design

Add Standard IP to BSB Design

- Extracting the Base Design
- Add Standard IP
- Connect Buses
- IP Configuration
- Connect IP Ports
- Generate Addresses
- Software Configuration
 - Software Platform Settings
- Create MFS Image
- Compile Standard IP Design
 - Generate the ELF Files
 - Generate the Bitstream
- Loading a Bootloop ELF into the Block RAM
 - Running the Lwipdemo Application
- Create an ACE File
- References

ML507 Standard IP Design Overview

Standard IP Added:

- TFT xps_tft
- $PS/2 xps_ps2$
- General Purpose IO xps_gpio
- IIC Interface xps_iic
- Second PLB v46 bus plb_v46
- PLB to PLB Bridge plbv46_plbv46_bridge

Standard IP Modified:

SRAM Interface – xps_mch_emc

Xilinx ML507 Board

ML507 Base System Builder Hardware

■ The ML507 PPC440 Design Hardware includes:

- PPC440MC DDR2 Interface
- BRAM
- External Memory Controller (EMC)
 - ZBT SRAM
- Networking
- UART
- Interrupt Controller
- System ACE CF Interface
- GPIO (IIC, LEDs and LCD)
- PLB Arbiter

ISE Software Requirement

Xilinx ISE 11.1 software

EDK Software Requirement

Xilinx EDK 11.1 software

ML507 Setup

Connect the Xilinx Platform
 Cable USB to the
 ML507 board

 Connect the RS232 null modem cable to the ML507 board

ML507 Setup

- Set ML507 Jumpers for GMII
 - Set both J22 and J23 to positions 1-2 (as shown)

ML507 Setup

Start the Terminal Program:

Additional ML507 Setup Details

- Refer to ml505_overview_setup.ppt for details on:
 - Software Requirements
 - ML507 Board Setup
 - Equipment and Cables
 - Software
 - Network
- Terminal Programs
 - This presentation requires the 9600-8-N-1 Baud terminal setup

Using the Pre-Built Design

- Unzip ml507_bsb_std_ip_ppc440.zip and locate pre-built bitstream and executable software files:
 - ml507_bsb_std_ip_ppc440/implementation/download.bit
 - ml507_bsb_std_ip_ppc440/ppc440_0/code/*.elf
- Configure FPGA
 - Launch XPS project, ml507_bsb_system.xmp
 - From the menu, select Project → Launch EDK Shell and type:
 impact -batch etc/download.cmd
 - Go to Slide 92, to run the software application
- For a tutorial on how to create the contents of the ml507_bsb_std_ip_ppc440.zip continue to the next slide

Add Standard IP to BSB Design

Extracting the Design

- Unzip the ml507_bsb_design_ppc440.zip file
 - This creates ISE and EDK project directories

Extracting the Design

Rename the project directory to

ml507_bsb_std_ip_ppc440

Extracting the Design

- Unzip the ml507 bsb std ip ppc440 overlay.zip file
 - Unzip to the ml507_bsb_std_ip_ppc440 directory
 - This adds the Standard IP UCF and software to the design directory

- Open XPS project <design path>\ml507_bsb_system.xmp
- Add General Purpose IO
 - Right-click on the XPS General Purpose IO
 - Select Add IP ...

- Add General Purpose IO
 - Add 2 more instances of the XPS General Purpose IO IP

Add two instances of the XPS IIC Interface

- Right-click on XPS IIC Interface
- Select Add IP...
- Repeat for second instance

Add Video Controller

- Right-click on XPS TFT
- Select Add IP...

Add PS/2 Interface

- Right-click on XPS PS2 Interface
- Select Add IP...

Add an Inverter

- Right-click on **Utility Vector Logic**
- Select Add IP...

Connect Buses

- Expand these instances:
 - xps_gpio_0, xps_gpio_1, xps_gpio_3, xps_iic_0, and xps_iic_1
 - Connect them to plb_v46_0

Connect Buses

- Expand this instance:
 - xps_ps2_0
 - Connect it to plb_v46_0

Connect Buses

- Expand this instance:
 - xps_tft_0
 - Connect both the MPLB and the SPLB to plb_v46_0

IP Configuration

- Configure the GPIO IP
 - Right-click on the xps_gpio_0
 - Select Configure IP...

- Under the User tab:
 - Select Common
 - Check Enable Channel 2

- Under the User tab:
 - Select Channel 1
 - Set GPIO2 Data Channel Width to 2 (Error LEDs)

- Under the User tab:
 - Select Channel 2
 - Set GPIO2 Data Channel Width to 1 (Piezo transducer)

- Configure the GPIO IP
 - Right-click on the xps_gpio_1
 - Select Configure IP...

- Under the User tab:
 - Select Common
 - Check Enable Channel 2

• Under the User tab:

- Select Channel 1
- Set GPIO2 Data Channel Width to 3 (Rotary Encoder/Push Button)
- Set Channel 1 is Input Only to TRUE

• Under the User tab:

- Select Channel 2
- Set GPIO2 Data Channel Width to 2 (SMA Diff CLK In)
- Set Channel 2 is Input Only to TRUE

- Configure the GPIO IP
 - Right-click on the xps_gpio_2
 - Select Configure IP...

- Under the User tab:
 - Select Channel 1
 - Set GPIO2 Data Channel Width to 7 (LCD Display)

- Configure the SRAM
 - Right-click on the SRAM
 - Select Configure IP...

• Under the User tab:

- Select Common
- Set Number of Memory Banks to 2
- Set number of MCH Channels to 2

• Under the User tab:

- Select Bank 1
- Set Data Bus Width of Bank 1 to 16
- Set Data Width Matching to True

• Under the User tab, Bank 1:

Set TCEDV and TAVDV to: 110000

Set THZCE to: 35000

Set THZOE to: 15000

Set TWC to: 110000

• Under the User tab, Bank 1:

Set TWP to: 70000

Set TLZWE to: **35000**

- Configure the PS/2 Interface
 - Right-click on the xps_ps2_0
 - Select Configure IP...

- Under the User tab:
 - Select Common
 - Check Enable Port 2

- Configure the DVI Interface
 - Right-click on the xps_tft_0
 - Select Configure IP...

- Under the User tab:
 - Select All
 - Set Base Address of PLB Attached Video Memory to 0x0000000

Configure the Clock Generator

- Select the Bus Interfaces Tab
- Right-click on the clock_generator
- Select Configure IP...

- Under the System tab:
 - Select xps_tft_0 → SYS_TFT_Clk
 - Set the frequency to 25 MHz

- Under the System tab:
 - Select proc_sys_reset_0 → Slowest_sync_clk
 - Set the frequency to 25 MHz

- Configure the Utility Vector Logic
 - Right-click on the util_vector_logic_0
 - Select Configure IP...

• Under the User tab:

- Select All
- Set Type of Vector Operation To Perform to not
- Set Size of The Vector to 1

Connect IP Ports

- Select the Ports tab
- Expand this instance:
 - xps_gpio_0
 - Select Make External for the GPIO_IO and GPIO2_IO ports

- Expand this instance:
 - xps_gpio_1
 - Select Make External for the GPIO_IO and GPIO2_IO ports

- Expand this instance:
 - xps_gpio_2
 - Select Make External for the GPIO_IO port

- Expand this instance:
 - xps_iic_0
 - Select Make External for the Sda and ScI ports

- Expand this instance:
 - xps_iic_1
 - Select Make External for the Sda and ScI ports

- Expand this instance:
 - SRAM
 - Select Make External for the Mem_LBON port

- Expand this instance:
 - xps_tft_0
 - Select Make External for TFT_HSYNC, TFT_VSYNC, TFT_DE,
 TFT_DVI_CLK_P, TFT_DVI_CLK_N, and TFT_DVI_DATA

- For instance xps_tft_0:
 - Select Make External for TFT_IIC_SCL and TFT_IIC_SDA ports

- Expand this instance:
 - xps_ps2_0
 - Select New Connection for IP2INTC_Irpt_1 and IP2INTC_Irpt_2 ports

- For instance xps_ps2_0:
 - Select Make External for PS2_1_DATA, PS2_1_CLK, PS2_2_DATA, and PS2_2_CLK ports

Expand this instance:

- util_vector_logic_0
- Connect Op1 to sys_periph_reset
- Connect Res to sys_periph_reset_n

- Expand External Ports
 - Set fpga_0_SRAM_Mem_CEN_pin and fpga_0_SRAM_Mem_OEN_pin to a range of [0:1]

Add an External Port

- Click Add External Port
- Pin name: vga_reset_pin
- Net name: sys_periph_reset_n, Dir: O, Class: RST, Reset Polarity: 0

- Expand this instance:
 - xps_intc_0
 - Click on the gray Intr area to open the Interrupts dialog

- Add this interrupt:
 - xps_ps2_0_IP2INTC_Irpt_1

- Add this interrupt:
 - xps_ps2_0_IP2INTC_Irpt_2

- Select the Addresses tab
 - Click the Generate Addresses Button

The new addresses appear

- The Flash is 32 Megabytes
 - Set C_MEM1_BASEADDR to 32M
 - Click the Generate Addresses Button again

- The new addresses appear
 - The FLASH now has a full 32M address range

- Expand this instance:
 - ppc440_0
 - Connect SPLB0 to plb_v46_0

Note: See AR 32699 for details on SPLB0 and Address Generation

- Configure the PPC440 SPLB0 Interface
 - Right-click on the ppc440_0
 - Select Configure IP...

Make the following settings

- Check Allow SPLB0 to Access MPLB Addr
- Set Number of MPLBAddr Ranges to 1
- Set MPLB0 Range0from 0x9000000to 0x9FFFFFF

- Select the Addresses tab
 - Set C_SPLB0_RNG_MC_BASEADDR to 256M
 - Address range should be 0x0000000 to 0x0FFFFFF

Software Configuration

- Configure the Software Platform
 - Select Software →
 Software Platform
 Settings... (1)

Under Software Platform

- Set OS to xilkernel
- Select xilmfs,
 xilflash,
 xilfatfs, and
 lwip130

- Under OS and Libraries,
 Configuration for OS,
 set these xilkernel settings:
 - systmr_freq = 40000000
 - pthread_stack_size = 32768
 - max_pthread_mutex = 20
 - max_readyq = 20
 - config_time = true
 - max_tmrs = 20
 - config_sema = true
 - max_sem = 50
 - max sem waitq = 20
 - enhanced_features = true
 - config_yield = true
 - stdin = RS232_Uart_1
 - stdout = RS232 Uart 1
 - sysintc_spec = xps_intc_0

- Under OS and Libraries, Configuration for OS
 - Click static_pthread_table

- Edit the static_pthread_table
 - Click Add
 - Set pthread_start_func =
 main_thread
 - Set pthread_prio = 1

- Under OS and Libraries,
 Configuration for Libraries,
 make these settings
 - numbytes = **400000**
 - base address = 0x8d000000
 - · sram flash address
 - int_type to MFSINIT_IMAGE
 - need utils = true
 - num_parts: 1
 - base_address = 0x8e000000
 - · sram address
 - CONFIG_WRITE = true
 - CONFIG_DIR_SUPPORT = true
 - api_mode = SOCKET_API

Create MFS Image

Create MFS Image

Open an EDK shell

Select Project →LaunchEDK Shell (1)

Create MFS Image

At the bash prompt, type (1): cd sw/standalone/lwipdemo/memfs mfsgen -cvbfs ../image.mfs 750 *

```
Xilinx Cygwin Shell
                                                                                                      _ | D | X
bash-2.05$ cd sw/standalone/lwipdemo/memfs
bash-2.05$ mfsgen -cvbfs ../image.mfs 750 *
Xilinx EDK 11.1 EDK_L.29.1
Copyright (c) 2004 Xilinx, Inc. All rights reserved.
css:
main.css
             744
images:
logo.gif 1148
m1505.jpg 44176
index.html 2870
js:
main.js 7248
lwip.pdf 91305
anim.js 12580
conn.js 11633
dom.jš 10855
event.js 14309
yahoo.js 5354
MFS block usage (used / free / total) = 406 / 344 / 750
Size of memory is 399000 bytes
Block size is 532
mfsgen done!
bash-2.05$
```


Compile Standard IP Design

Generate the ELF Files

- Generate the libraries needed to create the bitstream
 - Select Software →
 Generate Libraries
 and BSPs (1)

Generate the ELF Files

- Compile the Software Applications and create an executable (executable.elf)
 - Select Software →
 Build All User
 Applications (1)

Generate the Bitstream

- Create the hardware design, ml507_bsb_system.bit that is located in <project directory> /implementation
 - Select Hardware →Generate Bitstream(1)

- A concatenated software/hardware file, known as an ACE file, is useful for loading large programs, such as a Linux, VxWorks, or U-Boot into the external memory
- A bootloop program must be used to occupy the processor until the software is loaded into memory
- The following pages show how to initialize a bootloop program into Block RAM and to test its existence

- Update the bitstream (download.bit) with a bootloop ELF file (ppc440_0.elf)
 - Select Device
 Configuration →
 Update
 Bitstream (1)

- Load the new design onto the FPGA and load the bootloop program into the Block RAM
 - Select Device
 Configuration →
 Download
 Bitstream (1)

- A memory read can be executed to test if bootloop was successfully loaded
 - Select **Debug** →Launch XMD (1)

 The first time XMD runs on a project, the XMD Debug options must be set

XMD opens and connects to the processor, using the default options

```
O:\XILINX L.33.3.1\EDK\bin\nt\xbash.exe
Device
        ID Code
                      IR Length
                                   Part Name
         £5059093
                         16
                                   XCF32P
                         16
                                   XCF32P
         £5059093
                                   XC9500XL
        59608093
                                   System_ACE_CF
XC5VFX70T
         0a001093
                          8
        632c6093
                         10
PowerPC440 Processor Configuration
No of PC Breakpoints.....4
Connected to "ppc" target. id = 0
Starting GDB server for "ppc" target (id = 0) at TCP port no 1234
XMDz
```


- To execute a memory read, type mrd 0xfffffffc
- This will read the memory address at the reset vector; the value should be 0x48000000 as shown below

```
O:\XILINX L.33.3.1\EDK\bin\nt\xbash.exe
                                                                                               _ | _ | ×
           £5059093
                                               XCF32P
           59608093
                                              XC9500XL
                                              System_ACE_CF
           632c6093
PowerPC440 Processor Configuration
No of PC Breakpoints.....4
No of Addr/Data Watchpoints.....2
User Defined Address Map to access Special PowerPC Features using XMD:
I-Gache (Data).....0x10000000 - 0x10007fff
          I-Cache (TAG).....0x10010000 - 0x10017fff
D-Cache (Data)....0x10020000 - 0x10027fff
D-Cache (TAG)....0x10030000 - 0x10037fff
          Connected to "ppc" target. id = 0
Starting GDB server for "ppc" target (id = 0) at TCP port no 1234
XMD% mrď Øxfffffffc
FFFFFFFC:
```


Download the MFS image:

dow -data sw/standalone/lwipdemo/image.mfs 0x8d000000

Download and run the Lwipdemo Application:

dow ppc440_0/code/lwipdemo.elf con

```
D:\XILINX L.33.3.1\EDK\bin\nt\xbash.exe
XMD% dow ppc440_0/code/lwipdemo.elf
System Reset .... DONE
Downloading Program -- ppc440_0/code/lwipdemo.elf
        section, .vectors: 0x00000000-0x000004af
        section, .text: 0x000004b0-0x000278a3
        section, .init: 0x000278a4-0x000278c7
        section, .fini: 0x000278c8-0x000278e7
        section, .boot0: 0xffffff00-0xffffffa7
        section, .boot: 0xfffffffc-0xffffffff
        section, .rodata: 0x000278e8-0x00029bba
        section, .data: 0x00029bbc-0x0002a183
        section, .got2: 0x0002a184-0x0002a19f
        section, .ctors: 0x0002a1a0-0x0002a1a7
        section, .dtors: 0x0002a1a8-0x0002a1af
        section, .eh_frame: 0x0002a1b0-0x0002a1ff
        section, .jcr: 0x0002a200-0x0002a203
        section, .sdata: 0x0002a204-0x0002a267
        section, .sbss: 0x0002a268-0x0002a35b
        section, .bss: 0x0002a360-0x0014e127
        section, .stack: 0x0014e128-0x0016e12f
        section, .heap: 0x0016e130-0x0018e12f
Setting PC with Program Start Address Øxfffffffc
Info:Processor started. Type "stop" to stop processor
RUNNING> XMD%
```


View the output in the terminal window

Open a web browser to address 192.168.1.10

Click the Toggle LEDs button; view change on ML507

The Lwipdemo application shows the web transaction for the button push

```
🎹 Tera Term - COM1 VT
                                                                                       File Edit Setup Control Window Help
   ---lwIP Socket Mode Demo Application -----
Board IP: 192.168.1.10
Netmask : 255.255.255.0
Gateway : 192.168.1.1
                          Port Connect With..
                Server
                            7 $ telnet <board_ip> 7
          echo server
          ecno server
tftp server
                            69 $ tftp -i 192.168.1.10 PUT <source-file>
80 Point your web browser to http://192.168.1.10
          http server
auto-negotiated link speed: 1000
http POST: switch state: 0
http POST: ledstatus: FFFFFFFF
```


- Open an EDK shell
 - Select Project →
 Launch Xilinx
 BASH Shell (1)

At the bash prompt, type (1):

cd ace
./genace_iic_ddr2.sh

```
Dash-2.05$ cd ace
bash-2.05$ ./genace_iic_ddr2.sh
```


- This creates a concatenated (HW+SW) ACE file
 - Input: iic_ddr2.elf, download.bit
- genace_iic_ddr2.sh uses XMD and a genace.tcl script with ML507 appropriate options to generate an ACE file

Run ACE File

- Copy iic_ddr2.ace to the ML50X\cfg6 directory on your CompactFlash card
 - Important: Delete any existing ace files in this cfg6 directory
 - Note: Use a CompactFlash reader to mount the CompactFlash as a disk drive

Run ACE File

Use the new ACE file

- Eject the CompactFlash from your PC and insert it back into the ML507
- Type 6 to run the newly created ACE file

Run ACE File

iic_ddr2 output after booting ACE file

```
💹 Tera Term - COM1 VT
                                                                                  _ | | | | | | |
File Edit Setup Control Window Help
ReadBuffer[42] = 69
ReadBuffer[43] = 80
ReadBuffer[44] = 1E
ReadBuffer[45] = 28
ReadBuffer[46] = 00
ReadBuffer[47] = 00
ReadBuffer[48] = 00
ReadBuffer[49] = 00
ReadBuffer[50] = 00
ReadBuffer[51] = 00
ReadBuffer[52] = 00
ReadBuffer[53] = 00
ReadBuffer[54] = 00
ReadBuffer[55] = 00
| | ReadBuffer[56] = 00
| | ReadBuffer[57] = 00
ReadBuffer[58] = 00
ReadBuffer[59] = 00
ReadBuffer[60] = 00
ReadBuffer[61] = 00
ReadBuffer[62] = 12
ReadBuffer[63] = C9
Test passed
```


References

Platform Studio

- Embedded Development Kit (EDK) Resources
 http://www.xilinx.com/tools/platform.htm
- Embedded System Tools Reference Manual
 http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/est_rm.pdf
- EDK Concepts, Tools, and Techniques
 http://www.xilinx.com/support/documentation/swmanuals/xilinx11/edk ctt.pdf

- XPS Multi-CHannel External Memory Controller (XPS MCH EMC) DS575
 http://www.xilinx.com/support/documentation/ http://www.xilinx.com/support/documentation/ xps mch emc.pdf
- XPS Thin Film Transistor (TFT) Controller DS695
 www.xilinx.com/support/documentation/ip_documentation/xps_tft.pdf
- XPS PS2 Controller DS707
 www.xilinx.com/support/documentation/ip_documentation/xps_ps2.pdf
- XPS IIC Bus Interface DS606
 http://www.xilinx.com/support/documentation/ip-documentation/xps-iic.pdf
- XPS General Purpose Input/Output (GPIO) DS569
 http://www.xilinx.com/support/documentation/ip_documentation/xps_gpio.pdf

Additional Documentation

Virtex-5

- Silicon Deviceshttp://www.xilinx.com/products/devices.htm
- Virtex-5 Multi-Platform FPGA
 http://www.xilinx.com/products/virtex5/index.htm
- Virtex-5 Family Overview: LX, LXT, SXT, and FXT Platforms
 http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
- Virtex-5 FPGA DC and Switching Characteristics Data Sheet
 http://www.xilinx.com/support/documentation/data-sheets/ds202.pdf

Virtex-5

- Virtex-5 FPGA User Guide
 http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
- Virtex-5 FPGA Configuration User Guide
 http://www.xilinx.com/support/documentation/user_guides/ug191.pdf
- Virtex-5 System Monitor User Guide
 http://www.xilinx.com/support/documentation/user_guides/ug192.pdf
- Virtex-5 Packaging and Pinout Specification
 http://www.xilinx.com/support/documentation/user_guides/ug195.pdf

- Virtex-5 RocketIO
 - RocketIO GTP Transceivers
 http://www.xilinx.com/products/virtex5/lxt.htm
 - RocketIO GTP Transceiver User Guide UG196
 http://www.xilinx.com/support/documentation/user_guides/ug196.pdf
 - RocketIO GTX Transceivers
 http://www.xilinx.com/products/virtex5/fxt.htm
 - RocketIO GTX Transceiver User Guide UG198
 http://www.xilinx.com/support/documentation/user_guides/ug198.pdf

Design Resources

- IDS ISE Design Suite
 http://www.xilinx.com/tools/designtools.htm
- ISE Manuals
 http://www.xilinx.com/support/documentation/dt ise11-1.htm
- ISE Command Line Tools User Guide
 http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/devref.pdf
- ISE Development System Libraries Guide
 http://www.xilinx.com/support/documentation/swmanuals/xilinx11/virtex5 hdl.pdf

Additional Design Resources

Customer Supporthttp://www.xilinx.com/support

- Xilinx Design Services:

http://www.xilinx.com/xds

– Titanium Dedicated Engineering:

http://www.xilinx.com/titanium

– Education Services:

http://www.xilinx.com/education

– Xilinx On Board (Board and kit locator):

http://www.xilinx.com/products/devkits/boardsearch.htm

Platform Studio

- Embedded Development Kit (EDK) Resources
 http://www.xilinx.com/tools/platform.htm
- Embedded System Tools Reference Manual
 http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/est_rm.pdf
- EDK Concepts, Tools, and Techniques
 http://www.xilinx.com/support/documentation/swmanuals/xilinx11/edk ctt.pdf

PowerPC 440

- Embedded Processor Block in Virtex-5 FPGAs Reference Guide UG200
 http://www.xilinx.com/support/documentation/user_guides/ug200.pdf
- PPC440 Virtex-5 Wrapper DS621
 http://www.xilinx.com/support/documentation/ ppc440 virtex5.pdf
- DDR2 Memory Controller for PowerPC 440 Processors DS567
 http://www.xilinx.com/support/documentation/ ppc440mc ddr2.pdf

MicroBlaze

- MicroBlaze Processor
 http://www.xilinx.com/tools/microblaze.htm
- MicroBlaze Processor Reference Guide UG081
 http://www.xilinx.com/support/documentation/sw-manuals/mb-ref-guide.pdf

ChipScope Pro

- ChipScope Pro 10.1i Serial IO Toolkit User Manual
 http://www.xilinx.com/ise/verification/chipscope pro siotk 10 1 ug213.pdf
- ChipScope Pro 11.1 ChipScope Pro Software and Cores User Guide http://www.xilinx.com/support/documentation/ sw manuals/xilinx11/chipscope pro sw cores 11 1 ug029.pdf

Memory Solutions

- Demos on Demand Memory Interface Solutions with Xilinx FPGAs
 http://www.demosondemand.com/clients/xilinx/001/page_new2/index.asp#35
- Xilinx Memory Corner
 http://www.xilinx.com/products/design-resources/mem_corner
- Additional Memory Resources
 http://www.xilinx.com/support/software/memory/protected/index.htm
- Xilinx Memory Interface Generator (MIG) 3.0 User Guide
 http://www.xilinx.com/support/documentation/ip_documentation/ug086.pdf
- Memory Interfaces Made Easy with Xilinx FPGAs and the Memory Interface Generator
 http://www.xilinx.com/support/documentation/white_papers/wp260.pdf

Ethernet

- Virtex-5 Embedded Tri-Mode Ethernet MAC Wrapper Data Sheet
 http://www.xilinx.com/support/documentation/ http://www.xilinx.com/support/ http://www.xilin
- Virtex-5 Embedded Tri-Mode Ethernet MAC Wrapper Getting Started Guide
 http://www.xilinx.com/support/documentation/ip_documentation/
 http://www.xilinx.com/support/documentation/
 http://www.xilinx.com/support/documentation/
 https://www.xilinx.com/support/documentation/
 <a href="https:/
- Virtex-5 Tri-Mode Ethernet Media Access Controller User Guide
 http://www.xilinx.com/support/documentation/user_guides/ug194.pdf
- LightWeight IP (IwIP) Application Examples XAPP1026
 http://www.xilinx.com/support/documentation/application-notes/xapp1026.pdf

PCle

- LogiCORE Endpoint Block Plus for PCI Express Data Sheet
 http://www.xilinx.com/support/documentation/joie blk plus ds551.pdf
- LogiCORE Endpoint Block Plus for PCI Express Designs
 http://www.xilinx.com/support/documentation/ip-documentation/
 pcie-blk-plus-ug341.pdf
- LogiCORE Endpoint Block Plus Getting Started Guide for PCI Express Designs
 - http://www.xilinx.com/support/documentation/ip_documentation/
 pcie blk plus gsg343.pdf
- Virtex-5 Integrated Endpoint Block User Guide for PCI Express Designs http://www.xilinx.com/support/documentation/user_guides/ug197.pdf

System Generator

- System Generator for DSP
 http://www.xilinx.com/tools/sysgen.htm
- Xilinx System Generator for DSP Getting Started Guide UG639
 http://www.xilinx.com/support/documentation/swmanuals/xilinx11/sysgen_ref.pdf
- Xilinx System Generator for DSP Getting Started Guide UG639
 http://www.xilinx.com/support/documentation/
 sw manuals/xilinx11/sysgen gs.pdf
- Virtex-5 XtremeDSP Design Considerations User Guide UG193
 http://www.xilinx.com/support/documentation/user_guides/ug193.pdf

- Processor Local Bus (PLB) v4.6 DS531
 http://www.xilinx.com/support/documentation/ip-documentation/plb-v46.pdf
- Multi-Port Memory Controller (MPMC) DS643
 http://www.xilinx.com/support/documentation/ip_documentation/mpmc.pdf
- XPS Multi-CHannel External Memory Controller (XPS MCH EMC) DS575
 http://www.xilinx.com/support/documentation/ http://www.xilinx.com/support/documentation/ xps mch emc.pdf

- XPS IIC Bus Interface DS606
 http://www.xilinx.com/support/documentation/ip documentation/xps iic.pdf
- XPS SYSACE (System ACE) Interface Controller DS583
 http://www.xilinx.com/support/documentation/ip_documentation/
 xps_sysace.pdf
- XPS Timer/Counter DS573
 http://www.xilinx.com/support/documentation/ip documentation/xps timer.pdf

- XPS Interrupt Controller DS572
 http://www.xilinx.com/support/documentation/ip documentation/xps intc.pdf
- Using and Creating Interrupt-Based Systems Application Note
 http://www.xilinx.com/support/documentation/application_notes/xapp778.pdf
- XPS General Purpose Input/Output (GPIO) DS569
 http://www.xilinx.com/support/documentation/ip_documentation/xps_gpio.pdf
- XPS External Peripheral Controller (EPC) DS581
 http://www.xilinx.com/support/documentation/ip_documentation/xps_epc.pdf

- PLB v4.6 IP
 - XPS 16550 UART DS577
 http://www.xilinx.com/support/documentation/j documentation/
 xps uart16550.pdf
 - XPS Thin Film Transistor (TFT) Controller DS695
 www.xilinx.com/support/documentation/ip_documentation/xps_tft.pdf
 - XPS PS2 Controller DS707
 www.xilinx.com/support/documentation/ip_documentation/xps_ps2.pdf
 - XPS Block RAM (BRAM) Interface Controller DS596
 www.xilinx.com/support/documentation/ip_documentation/
 xps_bram_if_cntlr.pdf

- OPB Bridge IP
 - PLBV46 to OPB Bridge DS403
 http://www.xilinx.com/support/documentation/ plbv46 opb bridge.pdf
 - On-Chip Peripheral Bus V2.0 with OPB Arbiter DS401
 http://www.xilinx.com/support/documentation/ip documentation/opb v20.pdf

IP

- Local Memory Bus DS445
 http://www.xilinx.com/support/documentation/ip documentation/lmb v10.pdf
- Block RAM Block DS444
 http://www.xilinx.com/support/documentation/ip_documentation/
 bram_block.pdf
- Microprocessor Debug Module DS641
 http://www.xilinx.com/support/documentation/ip_documentation/mdm.pdf
- LMB Block RAM Interface Controller DS452
 http://www.xilinx.com/support/documentation/ip_documentation/
 Imb bram if cntlr.pdf

IP

- JTAGPPC Controller DS298
 http://www.xilinx.com/support/documentation/jtagppc cntlr.pdf
- Processor System Reset Module DS402
 http://www.xilinx.com/support/documentation/jproc sys reset.pdf
- Clock Generator v2.0 DS614
 http://www.xilinx.com/support/documentation/j documentation/
 clock generator.pdf

IP

- Utility Vector Logic DS481
 http://www.xilinx.com/support/documentation/jutil vector logic.pdf
- Utility IO Multiplexer DS694
 http://www.xilinx.com/support/documentation/j documentation/
 util io mux.pdf

ML505/506/507

- ML505 Overviewhttp://www.xilinx.com/ml505
- ML506 Overviewhttp://www.xilinx.com/ml506
- ML507 Overviewhttp://www.xilinx.com/ml507
- ML505/506/507 Evaluation Platform User Guide UG347
 http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
- ML505/506/507 Getting Started Tutorial UG348
 http://www.xilinx.com/support/documentation/boards_and_kits/ug348.pdf
- ML505/506/507 Reference Design User Guide UG349
 http://www.xilinx.com/support/documentation/boards_and_kits/ug349.pdf

ML505/506/507

- ML505/506/507 Schematics
 http://www.xilinx.com/support/documentation/boards and kits/ml50x schematics.pdf
- ML505/506/507 Bill of Material
 http://www.xilinx.com/support/documentation/boards_and_kits/ml505_501_bom.xls

