IN THE CLAIMS:

Cancel claims 1-53.
Add new claims 54-74:

--54. (New) A method of treating a mammal having a condition where inhibition of a cAMP-specific PDE is of therapeutic benefit, said method comprising administering to said mammal at therapeutically effective amount of a compound of

wherein R^1 is selected from the group consisting of hydrogen, lower alkyl, bridged alkyl, aryl, cycloalkyl, a 4-, 5-, or 6-membered saturated heterocycle, heteroaryl, C_{1-4} alkylenearyl, C_{1-4} alkyleneOaryl, C_{1-4} alkyleneheteroaryl, C_{1-4} alkyleneHet, C_{2-4} alkylenearyl-Oaryl, C_{1-4} alkylene bridged alkyl, C_{1-4} alkylenecycloalkyl, substituted or unsubstituted propargyl, substituted or unsubstituted allyl, and halocycloalkyl;

 ${\ensuremath{\mathsf{R}}}^2$ is selected from the group consisting of hydrogen, methyl, and halo-substituted methyl;

 R^3 is selected from the group consisting of $C(=0)OR^7$, $C(=0)R^7$, $NHC(=0)OR^7$, $C_{1-3}alkyleneC(=0)OR^8$, $C_{1-3}alkyleneC(=0)R^8$, $C(=NH)NR^8R^9$, $C(=0)NR^8R^9$, $C(=0)C(=0)-NR^8R^9$, $C(=0)C(=0)OR^8$, $C_{1-4}alkyleneOR^8$, aryl, $C_{1-3}alkyleneOR^8$

aryl, C_{1-3} alkyleneheteroaryl, SO_2 heteroaryl, Het, and heteroaryl;

R⁴ is selected from the group consisting of hydrogen, lower alkyl, haloalkyl, cycloalkyl, and aryl;

R⁵ is selected from the group consisting of hydrogen, lower alkyl, alkynyl, haloalkyl, hydroxyalkyl, cycloalkyl, and aryl;

 ${\ensuremath{\mathsf{R}}}^6$ is selected from the group consisting of hydrogen, lower alkyl, and $C(=0)\,{\ensuremath{\mathsf{R}}}^7$;

 R^7 is selected from the group consisting of lower alkyl, branched or unbranched, C_{1-4} alkylenearyl, cycloalkyl, Het, C_{1-4} alkylenecycloalkyl, heteroaryl, and aryl, each optionally substituted with one or more of $OC(=0)R^8$, $C(=0)OR^8$, OR^8 , OR^8 , OR^8 , OR^8 , or OR^8 ;

 R^8 and R^9 , same or different, are selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, heteroaryl, C(=0)Oalkyl, C(=0)Oaryl, C(=0)alkyl, alkyl SO_2 , haloalkyl SO_2 , C(=0)C₁₋₃alkylenearyl, C(=0)OC₁₋₄alkylenearyl, C_{1-4} alkylenearyl, and Het, or R^8 and R^9 together form a 4-membered to 7-membered ring;

 R^{10} is selected from the group consisting of hydrogen, alkyl, haloalkyl, cycloalkyl, aryl, C(=0) - alkyl, C(=0) cycloalkyl, C(=0) aryl, C(=0) Oalkyl, C(=0) aryl, C(=0)

 ${\rm R}^{11}$ is selected from the group consisting of alkyl, cycloalkyl, trifluoromethyl, aryl, aralkyl, and ${\rm NR}^{8}{\rm R}^{9}$;

55. (New) A method of modulating cAMP levels in a mammal comprising administering to said mammal an effective amount of a compound of

wherein R^1 is selected from the group consisting of hydrogen, lower alkyl, bridged alkyl, aryl, cycloalkyl, a 4-, 5-, or 6-membered saturated heterocycle, heteroaryl, C_{1-4} alkylenearyl, C_{1-4} alkyleneOaryl, C_{1-4} alkyleneheteroaryl, C_{1-4} alkyleneHet, C_{2-4} alkylenearyl-Oaryl, C_{1-4} alkylene bridged alkyl, C_{1-4} alkylenecycloalkyl, substituted or unsubstituted propargyl, substituted or unsubstituted allyl, and halocycloalkyl;

 R^2 is selected from the group consisting of hydrogen, methyl, and halo-substituted methyl;

 R^3 is selected from the group consisting of $C\,(=\!O)\,OR^7,\;C\,(=\!O)\,R^7,\;NHC\,(=\!O)\,OR^7,\;C_{1-3}alkyleneC\,(=\!O)\,OR^8,\;C_{1-3}alkyleneC\,(=\!O)\,R^8,\;C\,(=\!NH)\,NR^8R^9,\;C\,(=\!O)\,NR^8R^9,\;C\,(=\!O)\,C\,(=\!O)\,-NR^8R^9,\;C\,(=\!O)\,C\,(=\!O)\,OR^8,\;C_{1-4}alkyleneOR^8,\;aryl,\;C_{1-3}alkylenearyl,\;C_{1-3}alkylenearyl,\;SO_2heteroaryl,\;Het,\;and\;heteroaryl;$

R⁴ is selected from the group consisting of hydrogen, lower alkyl, haloalkyl, cycloalkyl, and aryl;
R⁵ is selected from the group consisting of hydrogen, lower alkyl, alkynyl, haloalkyl, hydroxyalk-yl, cycloalkyl, and aryl;

 R^7 is selected from the group consisting of lower alkyl, branched or unbranched, C_{1-4} alkylenearyl, cycloalkyl, Het, C_{1-4} alkylenecycloalkyl, heteroaryl, and aryl, each optionally substituted with one or more of $OC(=0)R^8$, $C(=0)OR^8$, OR^8 , NR^8R^9 , or SR^8 ;

 R^8 and R^9 , same or different, are selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, heteroaryl, C(=0)Oalkyl, C(=0)Oaryl, C(=0)alkyl, alkyl SO_2 , haloalkyl SO_2 , C(=0)C₁₋₃alkylenearyl, C(=0)OC₁₋₄alkylenearyl, C_{1-4} alkylenearyl, and Het, or R^8 and R^9 together form a 4-membered to 7-membered ring;

 $\rm R^{10}$ is selected from the group consisting of hydrogen, alkyl, haloalkyl, cycloalkyl, aryl, C(=O)-alkyl, C(=O)cycloalkyl, C(=O)aryl, C(=O)Oalkyl, C(=O)-Ocycloalkyl, C(=O)aryl, CH₂OH, CH₂Oalkyl, CHO, CN, NO₂, and SO₂R¹¹;

 ${\rm R}^{11}$ is selected from the group consisting of alkyl, cycloalkyl, trifluoromethyl, aryl, aralkyl, and ${\rm NR}^8{\rm R}^9$;

56. (New) A method of treating a mammal having a condition where inhibition of a cAMP-specific PDE is of a therapeutic benefit comprising administering to said mammal an effective amount of a pharmaceutical composition comprising (a) a compound of

wherein R^1 is selected from the group consisting of hydrogen, lower alkyl, bridged alkyl, aryl, cycloalkyl, a 4-, 5-, or 6-membered saturated heterocycle, heteroaryl, C_{1-4} alkylenearyl, C_{1-4} alkyleneOaryl, C_{1-4} alkyleneheteroaryl, C_{1-4} alkyleneHet, C_{2-4} alkylenearyl-Oaryl, C_{1-4} alkylene bridged alkyl, C_{1-4} alkylenecycloalkyl, substituted or unsubstituted propargyl, substituted or unsubstituted allyl, and halocycloalkyl;

 ${\ensuremath{\mathsf{R}}}^2$ is selected from the group consisting of hydrogen, methyl, and halo-substituted methyl;

 $\rm R^3$ is selected from the group consisting of $\rm C\,(=0)\,OR^7,\,\,C\,(=0)\,R^7,\,\,NHC\,(=0)\,OR^7,\,\,C_{1-3}alkyleneC\,(=0)\,OR^8,\,\,C_{1-3}alkyleneC\,(=0)\,R^8,\,\,C\,(=NH)\,NR^8R^9,\,\,C\,(=0)\,NR^8R^9,\,\,C\,(=0)\,C\,(=0)\,OR^8,\,\,C_{1-4}alkyleneOR^8,\,\,aryl,\,\,C_{1-3}alkylenearyl,\,\,C_{1-3}alkylenearyl,\,\,C_{1-3}alkyleneheteroaryl,\,\,SO_2heteroaryl,\,\,Het,\,\,and\,\,heteroaryl;$

R⁴ is selected from the group consisting of hydrogen, lower alkyl, haloalkyl, cycloalkyl, and aryl;

R⁵ is selected from the group consisting of hydrogen, lower alkyl, alkynyl, haloalkyl, hydroxyalk-yl, cycloalkyl, and aryl;

 R^6 is selected from the group consisting of hydrogen, lower alkyl, and $C(=0)R^7$;

 R^7 is selected from the group consisting of lower alkyl, branched or unbranched, C_{1-4} alkylenearyl, cycloalkyl, Het, C_{1-4} alkylenecycloalkyl, heteroaryl, and aryl, each optionally substituted with one or more of $OC(=0)R^8$, $C(=0)OR^8$, OR^8 , OR^8 , OR^8 , OR^8 , or SR^8 ;

 R^8 and R^9 , same or different, are selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, heteroaryl, C(=0)Oalkyl, C(=0)Oaryl, C(=0)alkyl, alkyl SO_2 , haloalkyl SO_2 , C(=0)C₁₋₃alkylenearyl, C(=0)OC₁₋₄alkylenearyl, C_{1-4} alkylenearyl, and Het, or R^8 and R^9 together form a 4-membered to 7-membered ring;

 R^{10} is selected from the group consisting of hydrogen, alkyl, haloalkyl, cycloalkyl, aryl, C(=0) - alkyl, C(=0) cycloalkyl, C(=0) aryl, C(=0) Oalkyl, C(=0) - Ocycloalkyl, C(=0) aryl, CH_2OH , CH_2O alkyl, CHO, CN, NO_2 , and SO_2R^{11} ;

 R^{11} is selected from the group consisting of alkyl, cycloalkyl, trifluoromethyl, aryl, aralkyl, and NR^8R^9 ; or a salt or solvate thereof; and

- (b) a pharmaceutically acceptable carrier.
- 57. (New) The method of claim 56 wherein the condition is an allergic disease, an autoimmune disease, an inflammatory disease, an arthritic disease, or dermatitis.

- 58. (New) The method of claim 56 wherein the condition is rheumatoid arthritis, osteoarthritis, gouty arthritis, or spondylitis.
- 59. (New) The method of claim 56 wherein the condition is thyroid-associated ophthalmopathy, Behcet disease, sepsis, septic shock, endotoxic shock, gram negative sepsis, gram positive sepsis, toxic shock syndrome, allergic conjunctivitis, vernal conjunctivitis, or eosinophilic granuloma.
- 60. (New) The method of claim 56 wherein the condition is asthma, chronic bronchitis, allergic rhinitis, adult respiratory distress syndrome, chronic pulmonary inflammatory disease, chronic obstructive pulmonary disease, silicosis, or pulmonary sarcoidosis.
- 61. (New) The method of claim 56 wherein the condition is reperfusion injury of the myocardium, brain, or extremities as a brain or spinal cord injury due to trauma.
- 62. (New) The method of claim 56 wherein the condition is a fibrosis, keloid formation, or scar tissue formation.
- 63. (New) The method of claim 56 wherein the condition is systemic lupus erythematosus, a transplant rejection disorder, a graft vs. host reaction, or an allograft rejection.

- 64. (New) The method of claim 56 wherein the condition is chronic glomerulonephritis, nephropathy attributed to Type 2 diabetes, an inflammatory bowel disease, Crohn's disease, or ulcerative colitis.
- 65. (New) The method of claim 56 wherein the condition is proliferative lymphocytic disease or a leukemia.
- 66. (New) The method of claim 56 wherein the condition is an inflammatory dermatosis, atopic dermatitis, psoriasis, or urticaria.
- the condition is a cardiomyopathy, congestive heart failure, atherosclerosis, pyrexia, cachexia, cachexia secondary to infection or malignancy, cachexia secondary to acquired immune deficiency syndrome, ARC, cerebral malaria, osteoporosis, a bone resorption disease, fever and myalgias due to infection, erectile dysfunction, male or female infertility, diabetes insipidus, a central nervous system disorder, an anxiety or stress response, cerebral ischemia, tardive dyskinesia, Parkinson's Disease, or premenstrual syndrome.
- 68. (New) The method of claim 56 wherein the mammal exhibits minimal adverse central nervous system side effects.
- 69. (New) The method of claim 56 wherein the mammal is free of adverse central nervous system side effects.

- 70. (New) The method of claim 56 wherein the mammal exhibits a minimal emetic response.
- 71. (New) The method of claim 56 wherein the mammal is free of an emetic response.

72. (New) The method of reducing TNF levels in a mammal comprising administering to said mammal therapeutically effective amount of a compound

wherein R^1 is selected from the group consisting of hydrogen, lower alkyl, bridged alkyl, aryl, cycloalkyl, a 4-, 5-, or 6-membered saturated heterocycle, heteroaryl, C_{1-4} alkylenearyl, C_{1-4} alkyleneOaryl, C_{1-4} alkyleneheteroaryl, C_{1-4} alkyleneHet, C_{2-4} alkylenearyl-Oaryl, C_{1-4} alkylene bridged alkyl, C_{1-4} alkylenecycloalkyl, substituted or unsubstituted propargyl, substituted or unsubstituted allyl, and halocycloalkyl;

R² is selected from the group consisting of hydrogen, methyl, and halo-substituted methyl;

 R^3 is selected from the group consisting of $C(=0) OR^7$, $C(=0) R^7$, $NHC(=0) OR^7$, $C_{1-3}alkyleneC(=0) OR^8$, $C_{1-3}alkyleneC(=0) R^8$, $C(=NH) NR^8R^9$, $C(=0) NR^8R^9$, $C(=0) C(=0) OR^8$, $C_{1-4}alkyleneOR^8$, $C_{1-3}alkylene-aryl$, $C_{1-3}alkyleneheteroaryl$, SO_2 heteroaryl, Het, and heteroaryl;

R⁴ is selected from the group consisting of hydrogen, lower alkyl, haloalkyl, cycloalkyl, and aryl;
R⁵ is selected from the group consisting of hydrogen, lower alkyl, alkynyl, haloalkyl, hydroxyalk-yl, cycloalkyl, and aryl;

 R^7 is selected from the group consisting of lower alkyl, branched or unbranched, C_{1-4} alkylenearyl, cycloalkyl, Het, C_{1-4} alkylenecycloalkyl, heteroaryl, and aryl, each optionally substituted with one or more of $OC(=0)R^8$, $C(=0)OR^8$, OR^8 , OR^8 , OR^8 , OR^8 , or OR^8 ;

 R^8 and R^9 , same or different, are selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, heteroaryl, C(=0)Oalkyl, C(=0)Oaryl, C(=0)alkyl, alkyl SO_2 , haloalkyl SO_2 , C(=0)C₁₋₃alkylenearyl, C(=0)OC₁₋₄alkylenearyl, C₁₋₄alkylenearyl, and Het, or R^8 and R^9 together form a 4-membered to 7-membered ring;

 R^{10} is selected from the group consisting of hydrogen, alkyl, haloalkyl, cycloalkyl, aryl, C(=0) - alkyl, C(=0) cycloalkyl, C(=0) aryl, C(=0) Ocycloalkyl, C(=0) aryl, CH_2OH , CH_2O alkyl, CHO, CN, NO_2 , and SO_2R^{11} ;

 ${\bf R}^{11}$ is selected from the group consisting of alkyl, cycloalkyl, trifluoromethyl, aryl, aralkyl, and ${\bf NR}^8{\bf R}^9$;

73. (New) A method of suppressing inflammatory cell activation in a mammal comprising administering to said mammal a therapeutically effective amount of a compound

$$\begin{array}{c|c}
R^1 & & & \\
R^1 & & & \\
R^7 & & & \\
R^6 & & & \\
\end{array}$$

wherein R^1 is selected from the group consisting of hydrogen, lower alkyl, bridged alkyl, aryl, cycloalkyl, a 4-, 5-, or 6-membered saturated heterocycle, heteroaryl, C_{1-4} alkylenearyl, C_{1-4} alkyleneOaryl, C_{1-4} alkyleneheteroaryl, C_{1-4} alkyleneHet, C_{2-4} alkylenearyl-. Oaryl, C_{1-4} alkylene bridged alkyl, C_{1-4} alkylenecycloalkyl, substituted or unsubstituted propargyl, substituted or unsubstituted allyl, and halocycloalkyl;

R² is selected from the group consisting of hydrogen, methyl, and halo-substituted methyl;

 $\rm R^3$ is selected from the group consisting of $\rm C(=0)\,OR^7$, $\rm C(=0)\,R^7$, NHC(=0)OR^7, $\rm C_{1-3}alkyleneC(=0)OR^8$, $\rm C_{1-3}alkyleneC(=0)R^8$, $\rm C(=NH)\,NR^8R^9$, $\rm C(=0)\,NR^8R^9$, $\rm C(=0)\,C(=0)\,OR^8$, $\rm C_{1-4}alkyleneOR^8$, aryl, $\rm C_{1-3}alkylene-aryl$, $\rm C_{1-3}alkyleneheteroaryl$, SO₂heteroaryl, Het, and heteroaryl;

 R^4 is selected from the group consisting of hydrogen, lower alkyl, haloalkyl, cycloalkyl, and aryl; R^5 is selected from the group consisting of hydrogen, lower alkyl, alkynyl, haloalkyl, hydroxyalk-

yl, cycloalkyl, and aryl;

 R^7 is selected from the group consisting of lower alkyl, branched or unbranched, C_{1-4} alkylenearyl, cycloalkyl, Het, C_{1-4} alkylenecycloalkyl, heteroaryl, and aryl, each optionally substituted with one or more of $OC(=0)R^8$, $C(=0)OR^8$, OR^8 , OR^8 , OR^8 , OR^8 , or OR^8 ;

 R^8 and R^9 , same or different, are selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, heteroaryl, C(=0)Oalkyl, C(=0)Oaryl, C(=0)alkyl, alkyl SO_2 , haloalkyl SO_2 , C(=0)C₁₋₃alkylenearyl, C(=0)OC₁₋₄alkylenearyl, C_{1-4} alkylenearyl, and Het, or R^8 and R^9 together form a 4-membered to 7-membered ring;

 $\rm R^{10}$ is selected from the group consisting of hydrogen, alkyl, haloalkyl, cycloalkyl, aryl, C(=O)-alkyl, C(=O)cycloalkyl, C(=O)aryl, C(=O)Oalkyl, C(=O)-Ocycloalkyl, C(=O)aryl, CH₂OH, CH₂Oalkyl, CHO, CN, NO₂, and SO₂R¹¹;

 ${\rm R}^{11}$ is selected from the group consisting of alkyl, cycloalkyl, trifluoromethyl, aryl, aralkyl, and ${\rm NR}^{8}{\rm R}^{9}$;

74. (New) A method of inhibiting PDE4 function in a mammal comprising administering to said mammal a therapeutically effective amount of a compound

wherein R^1 is selected from the group consisting of hydrogen, lower alkyl, bridged alkyl, aryl, cycloalkyl, a 4-, 5-, or 6-membered saturated heterocycle, heteroaryl, C_{1-4} alkylenearyl, C_{1-4} alkyleneOaryl, C_{1-4} alkyleneheteroaryl, C_{1-4} alkyleneHet, C_{2-4} alkylenearyl-Oaryl, C_{1-4} alkylene bridged alkyl, C_{1-4} alkylenecycloalkyl, substituted or unsubstituted propargyl, substituted or unsubstituted allyl, and halocycloalkyl;

 ${\ensuremath{\mathsf{R}}}^2$ is selected from the group consisting of hydrogen, methyl, and halo-substituted methyl;

 $\rm R^3$ is selected from the group consisting of $\rm C\,(=0)\,OR^7,\,\,C\,(=0)\,R^7,\,\,NHC\,(=0)\,OR^7,\,\,C_{1-3} alkyleneC\,(=0)\,OR^8,\,\,C_{1-3} alkyleneC\,(=0)\,R^8,\,\,C\,(=NH)\,NR^8R^9,\,\,C\,(=0)\,NR^8R^9,\,\,C\,(=0)\,C\,(=0)\,OR^8,\,\,C_{1-4} alkyleneOR^8,\,\,aryl,\,\,C_{1-3} alkylenearyl,\,\,C_{1-3} alkylenearyl,\,\,SO_2 heteroaryl,\,\,Het,\,\,and\,\,heteroaryl;$

R⁴ is selected from the group consisting of hydrogen, lower alkyl, haloalkyl, cycloalkyl, and aryl;
R⁵ is selected from the group consisting of hydrogen, lower alkyl, alkynyl, haloalkyl, hydroxyalk-yl, cycloalkyl, and aryl;

 R^7 is selected from the group consisting of lower alkyl, branched or unbranched, C_{1-4} alkylenearyl, cycloalkyl, Het, C_{1-4} alkylenecycloalkyl, heteroaryl, and aryl, each optionally substituted with one or more of $OC(=0)R^8$, $C(=0)OR^8$, OR^8 , OR^8 , OR^8 , OR^8 , or OR^8 ;

 R^8 and R^9 , same or different, are selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, heteroaryl, C(=0)Oalkyl, C(=0)Oaryl, C(=0)alkyl, alkyl SO_2 , haloalkyl SO_2 , C(=0)C₁₋₃alkylenearyl, C(=0)OC₁₋₄alkylenearyl, C_{1-4} alkylenearyl, and Het, or R^8 and R^9 together form a 4-membered to 7-membered ring;

 R^{10} is selected from the group consisting of hydrogen, alkyl, haloalkyl, cycloalkyl, aryl, C(=0) - alkyl, C(=0) cycloalkyl, C(=0) aryl, C(=0) Ocycloalkyl, C(=0) aryl, CH_2OH , CH_2O alkyl, CHO, CN, NO_2 , and SO_2R^{11} ;

 ${\rm R}^{11}$ is selected from the group consisting of alkyl, cycloalkyl, trifluoromethyl, aryl, aralkyl, and ${\rm NR}^8{\rm R}^9;$