AN ANALYSIS OF THE RELATIONSHIPS OF PERSONNEL CHARACTERISTICS TO THE PERFORMANCE OF DD 963 CLASS SHIPS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA J D MAY DEC 83 F/G 5/10 AD-A140 858 1/1 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS -1963 - A

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

MAY 8 198.

AN ANALYSIS OF THE RELATIONSHIPS OF PERSONNEL CHARACTERISTICS TO THE PERFORMANCE OF DD 963 CLASS SHIPS

by

John Donald May

December 1983

Thesis Advisor:

William E. McGarvey

Approved for Public Release; Distribution unlimited

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Enter

1. REPORT NUMBER		BEFORE COMPLETING FORM
Į.		3. RECIPIENT'S CATALOG NUMBER
!	A140 85	8
4. TITLE (and Subtitio)		S. TYPE OF REPORT & PERIOD COVERED
An Analysis of the Relationships		Master's Thesis
Personnel Characteristics to the		December 1983
Performance of DD 963 Class Ships		5. PERFORMING ORG. REPORT NUMBER
- AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(s)
John Donald May		
PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Postgraduate School		
Monterey, California 93940	'	
1. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Postgraduate School		December 1983
Monterey, California 93940		13. NUMBER OF PAGES 83
4. MONITORING AGENCY NAME & ADDRESS(I dillorent t	train Controlling Office)	15. SECURITY CLASS. (of this report)
		15e DECLASSIFICATION DOWNGRADING SCHEDULE
4. DISTRIBUTION STATEMENT (of this Report)		
Approved for Public Release; Dist	ritution unlimi	ted.
•		
7. DISTRIBUTION STATEMENT (of the abetract entered in	Block 50, if different free	n Report)
8. SUPPLEMENTARY NOTES		
8. SUPPLEMENTARY NOTES		
9. SUPPLEMENTARY NOTES		
9. SUPPLEMENTARY NOTES		
D. KEY WORDS (Continue on reverse side if necessary and	identify by block number)	
		,
KEY WORDS (Continue on reverse side if necessary and i		,
KEY WORDS (Continue on reverse side if necessary and i	identify by block master, ince, engineerin (*/} > k'(/'(,
Personnel attributes and performa	(ASK) /(,
Personnel attributes and performa	(* /) S / (/) ()	11. 2 0
Personnel attributes and performa ABSTRACT (Cantinuo en reverse side !! necessary and in The purpose of this thesis was to	tentify by block number) analyze the re	elationship of fill ratios
Personnel attributes and performa ASSTRACT (Common on reverse wide 11 recessory and 12 The purpose of this thesis was to and personnel attributes to the p	analyze the reperformance of s	elationship of fill ratios seventeen operational
Personnel attributes and performa ASSTRACT (Continue on reverse side !! recessory and !! The purpose of this thesis was to and personnel attributes to the pDD 963 class ships. Data sets we	analyze the reperformance of series created from	elationship of fill ratios seventeen operational of files provided by the
Personnel attributes and performa ABSTRACT (Continue on reverse side if necessary and in The purpose of this thesis was to and personnel attributes to the p DD 963 class ships. Data sets we Defense Manpower Data Center to de	analyze the repersonmence of some created from	elationship of fill ratios seventeen operational files provided by the fill ratios and aftributes.
Personnel attributes and performa **ABSTRACT (Continue on reverse size if recessory and if The purpose of this thesis was to and personnel attributes to the p DD 963 class ships. Data sets we Defense Manpower Data Center to of Descriptive aggregate data such a	analyze the reperformance of some created from letermine the first percentage of	elationship of fill ratios seventeen operational in files provided by the ill ratios and attributes. Thigh school graduates,
Personnel attributes and performa The purpose of this thesis was to and personnel attributes to the pDD 963 class ships. Data sets we Defense Manpower Data Center to describe the position of the position o	analyze the reperformance of series created from letermine the files percentage of grade were sel	elationship of fill ratios seventeen operational in files provided by the ill ratios and aftributes. Thigh school graduates, lected to provide

NAMES OF THE PROPERTY OF THE P

EDITION OF 1 NOV 45 IS OBSOLETE

UNCLASSIFIED

SPEC (SPIP PRPTS CONTROL (SIT V)

provided by SPCC, were converted to nine variables to be used as the measures of ship performance. They included total downtime, downtime due to maintenance, total number of CASREPs, and two "readiness" indices. The relationships between these variables and personnel attributes were examined at the ship, departmental and individual rating level. Separate effects of the individual UIC's as well as overhaul quarters were accounted for. Personnel attributes and number of personnel vs personnel requirements had little relationship to readiness. In summary, the relationships between personnel attributes, personnel staffing levels and ship readiness measures remain to be proven.

UIC'S (UNIT
IDENTIFICATION CODE)

Accession For

NTIS GRABI
DTIC TAB
Unemnounced
Justification

B
Distribution/
Lvailability Codes
Avail and/or
Dist
Fracial

5 N 0102- LF- 014- 6601

UNCLASSIFIED

2

SECURITY CLASSIFICATION OF THIS PAGE(Then Date Entered)

Approved for public release; distribution unlimited.

An Analysis of the Relationships of Personnel Characteristics to the Performance of DD 963 Class Ships

by

John D. Hay Lieutenant Commander, United States Naval Reserve B. A., Roano ke College, 1968

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL December 1983

Author:	Som Donay
	Million Eng
Approved ty:	Thesis Advisor
	Kickerto & State
·	Se cond Reader
	Ticker S. Eller
	Chairman, Department of Administrative Science K.T.Manlin
•	Dean of Information and Policy Sciences

LESTRACT

to the south of the set of the set of the section of the set of the section of the sec

The purpose of this thesis was to analyze the relationship of fill ratios and personnel attributes to the performance of seventeen operational DD 963 class ships. Data sets were created from files provided by the Defense Eata Center to determine the fill ratios and attributes. Descriptive aggregate data such as percentage of high school graduates, entry ace, AFQT score and time in grade were provide demographic information for selected to personnel involved. Summary CASREP data, provided by SPCC, were converted to nine variables to be used as the measures of ship performance. They included total downtime, downtime due to maintenance, total number of CASREPS, and two "readi-The relationships between these variables ness" indices. and personnel attributes were examined at the ship, departmental and individual rating level. Separate effects of the individual UTC's as well as overhaul quarters were accounted for. Fersonnel attributes and number of personnel vs personnel requirements had little relationship to readiness. In summary, the relationships between personnel attributes, personnel staffing levels and ship readiness measures remain to be proven.

TABLE OF CONTENTS

I	INTRODUCTION	8
	A. FECBLEM	8
	B. BACKGROUND	
	C. POBFCSE	
II	DATA	12
	A. CATA BASES	
	B. DEFENDENT VARIABLES	
	C. INDEFENDENT VARIABLES	17
III	ANALYSIS	20
	A. HITHCD	20
	B. ANALYSIS	
	C. SUBBARY OF DATA AWALTSIS	
IA	CONCLUSIONS	29
APP	ENDIX A PERSCUREL SELECTION PROGRAM LISTING	31
APP	ENDIX E CASREP PECGRAM LISTING	50
APP	ENDIX C DATA - ENGINEERING DEPARTMENT	53
APP	BUCIX C DATA - OTHER VARIABLES	57
APP	ENCIX E FINAL REGRESSION OUTPUT	72
repi	BRENCIS	81
INIT	TIAL DISTRIBUTION LIST	82

LIST OF TABLES

I	LIST OF SHIPS	14
II	CEFENDENT VARIABLES	15
III	BATING USED IN ANALYSIS	18
IA	FERSONNEL ATTRIBUTES SELECTED	18
T	FESCENT OF VARIANCE ACCOUNTED FOR	21
AI	F-RATIO - EACH ATTRIBUTE	23
VII	STATISTICALLY SIGNIFICANT ATTRIBUTES	24
AIII	F-EATIO BY BATING	25
IX	EFFECT OF THE PREDICTORS	28

ACKNOWLEDGEMENT

I would like to thank CDR Bill King, USN (Ret.) and Mrs. Barbara Cunningham from DNDC for their assistance in providing the personnel input files used in this thesis. I would also like to thank Professor William E. McGarvey for his expert technical guidance, generous assistance and untiring patience.

I. INTRODUCTION

A. PROBLEM

The need to document quantitative relationships between readiness and resources is an ongoing problem that the Navy is trying to solve. Manning Maval ships with the "correct" number of sailors with the proper "attributes" receives an enormous ascunt of attention by personnel at all echelons within the Mavy. The problem is also of vital concern and receives such attention from the Congress, OMB and OSD.

A conceptual model describing relationships between resources and readiness needs to be developed. If the Navy had an explicit, quantitative method for determining the best mix of each rating and rate on board each class of ship, it would be better able to man that ship.

As a result, ship readiness could then be increased cost effectively. Knowledge of how personnel characteristics are likely to contribute to readiness is necessary for policy analysis regarding ship manning, assignment and rotation.

Research, to date, has not produced an accepted, "working" acdel which can measure current ship readiness or predict future ship performence. Two such formal measures currently used by the Mavy to measure readiness are the UNITRIP and CASREP reporting systems. One problem with such a measurement is that many areas are difficult to quantify, e.g., training, morale and esprit de corps.

From one perspective, an effective unit can be defined as one that meets its commitments. Throughout the fleet there are various administrative and practical procedures to measure readiness. There are local assistance visits and more formal inspections such as Propulsion Examining Board

inspections, Diesel Readiness Assistance Team inspections, Squadron Administrative inspections, Operational Readiness inspections, and Command inspections, just to name a few. All of these, however, usually result in a subjective analysis by the inspecting party instead of a consistent, valid, and quantifiable measure.

The purpose of this thesis was to examine the relationship between personnel characteristics and unit performance. The terms "readiness" and "downtime" are used interchangeably in this thesis as a measure of "success". Emphasis was not placed on the reasons for differences among personnel assigned to different ships or ship types, but rather on the unit and the relationship that may exist between personnal characteristics and the performance of that unit. Similarly, reasons for the differences between UIC's as to their reasons for submitting CASREPS were not explored; however, some differences among UICs were statistically controlled for in the regression equations.

E. BACKGEQUED

Every officer has thought to himself "If I only had enough of the right people, I'd get better results acre quickly." There is more discussion than research as to whether higher quality people or the proper number of people is more important in accomplishing the mission. For the purpose of this thesis, personnel characteristics are hypothesized to influence the readiness of a unit.

Ascng other things, a study by the Center For Naval Analyses (CNA) in 1976, [Ref. 1] concluded, that entry test scores appear to be more consistent predictors of maintenance effective; ass than high school graduation, and that length if givice was frequently a significant determinant of a ship's condition.

The CNA published another study in 1977 [Ref. 2] which concluded in part that higher quality personnel are more valuable on ships with more complex equipment. On ships with relatively simple equipment, however, having a full complement of personnel might be more valuable.

Both CWA studies used CASREP data as the bases for their criteria. Total number of CASREPs, total downtime and downtime due to maintenance were all used as dependent variables. In addition, to the three criteria mentioned above, the present study will look at six other variables based on the CASREP system.

Personnel turbulence (crew turnover) has been examined as a predictor for ship performance. Reeves [Ref. 3] determined that no significant relationship could be supported between macro levels of turnover and ship performance. It could not be concluded that personnel characteristics were related to downtime.

Since clder more experienced personnel are likely to be in the higher paygrades, an analysis which only focused on paygrade would not be able to determine how much productivity was due to promotion and how much was actually the result of experience. By including both paygrade and years of active duty, it is hoped one can separate to some extent the quality dimension of higher paygrade from the effect of experience.

Age was used as a predictor in order to determine if an clder force made a difference. With an increase in retention rates, the average age of the force will increase. Might such an increase in age foretell an improvement in readiness? Additionally, time in grade was examined to ascertain the correlation between individual time in pay grade and level of ship performance. However, an extended period of time in a paygrade might mean poor performance because the individual was not promoted.

Even when personnel characteristics have been taken into account, a very large range of individual human behavior remains unaccounted for. Individuals in the same rating at the same time, having the same years of service and paygrade, may still be extremely different from one another in how they will perform their shipboard jobs. These performance differences among the individuals may be largely uncorrelated with level of education, metal group, pay grade etc. Additionally, attitudes and motivation are influenced by the interaction of the crew. Regretably, such measures were not available for use in the present study. Future studies of ship readiness should try to take into account measures of motivation, esprit de corps, etc.

C. PURPOSE

The objectives of this thesis were to:

- 1. examine the characteristics and fill ratios of each rating for the rersonnel on the ships involved; and
- 2. examine the differences among ships on measures of readiness: and
- 3. explore any relationship that may exist between measures of readiness and personnel attributes of the crew.

The study will examine seventeen DD 963 class ships and their assigned personnel from September 1976 to March 1983. Personnel characteristics and personnel fill ratios will be the predictors, and CASREP information will provide the measures of readiness.

II. DATA

A. DATA BASES

Three data bases were utilized in this effort. The first was a personnel characteristics file created from information provided by the Defense Manpower Data Center (DMDC). The data came from all personnel assigned to the ships in question during the time frame involved and contained some 14,622 observations. A data file was then created which aggregated for each ships Unit Identification Code (UIC) within each of the 27 calender quarters, attributes of personnel assinged to a given rating. An example of a Statistical Analysis System (S.A.S.) "production model" used for the 32 ratings aggregations, (developed by Prof. W. E. McGarvey, Naval Postgraduate School, Monterey, Calif.) is given in Appendix A.

Thus, the new file associated each UIC by quarter with the personnel assigned to it. It also recoded the education level of each individual by high school or non high school graduate. The percentage of high school graduates within a rating was then calculated. The data were then sorted by quarter and UIC bringing along the data for the independent variables that were chosen for use in this thesis. In total, thirty three files were created and then sorted and merged by UIC and quarter for each rating to create the final output file.

A second data bark utilized was also created by DMDC and included the fill ratio, by rating, of each ship's billets. The data included number authorized, number assigned and the fill ratio. Fill ratio was computed as the number of personnel on board divided by the number required. The

number required for each ship, by Department and rating, were provided by OPNAV914 from the Ship Manning Document (SMD) files.

A third data base was a statistical summary report provided by the Navy Ships Parts Control Center (SFCC), Hechanicsburg, Pa. The data contained information provided by the individual units through the Consolidated Casualty Reporting System (CASEEP).

The casualty reporting system provides a timely method for reporting equipment failures and the effect of these failures on the capability of the reporting units. The CASREP Reports are designed to assist in indentifying problem equipment, supply support deficiencies, maintenance difficulties, etc., which tend to reduce the combat readiness of the Navy. CASREPs are reported by the individual ships and the data was compiled by SPCC. The severity rating of each CASREF is assigned by the individual ship in accordance with Operation Reports Publication NWP 7. The severity codes are as follows:

- C-2 (Substantially Ready) A deficiency exists in mission essential equipment which causes a minor degradation in any primary mission area.
- C-3 (Marginally Ready) A deficiency exists in mission essential equipment which causes a major degradation but not the loss of any primary mission area.
- C-4 (Not Ready) A deficiency exists in mission essential equipment that is worse than C-3 and causes a loss of at least one primary mission area.

The three data files were merged into one file that contained for each quarter the personnel characteristics, fill ratics and CASREF data for each UIC.

TABLE I List of Ships

nec	CEDUTANCE	22063
USS	SPRUANCE	DD 963
USS	FAUL F. FOSTER	DD964
USS	KINKAID	DD965
USS	HEVITT	DD966
ŬŠŠ	filiott	DD 967
022	FINIOII	20301
USS	ARTHUR W. RADFORD	DD968
US \$	FETERSO N	DD969
USS	CARON	DD 970
ŪŠŠ	LAVID R. RAY	DD971
ÜŠŠ	CIDENDORF	DD972
	JCHN YOUNG	DD973
USS	JCDB IOOGG	
USS	CONTE DE GRASSE	DD 974
USS	C BRIEN	DD 975
USS	MERRILL	DD976
ŬŠŠ	ĒRĪS COE	ĎĎŚŤŤ
USS	SIUMP	DD 978
USS	CCHOLLY	DD979

The seventeen ships involved are named in Table I. A single class of ships built by the same contractor was selected to eliminate some factors that could effect readiness. The ships contain, for the most part, similiar equipment, propulsion plants, and armament, and are all were approximately the same age, viz., three to seven years cld at the time the data were collected for this thesis.

B. DEPENDENT VARIABLES

A completely adequate set of measures of readiness, or ship performance, is difficult to achieve. Yet a set of readiness measures must be used to analyze or design policies. Instead of trying to invent measures of readiness, measures which are currently in use were utilized. In this study, CASREP data provided by SPCC were used for the dependent variables. Nine criteria were used. They are given in Table II.

The variables TK1, TK2, TK3 and TK4 were taken directly from the information provided on the SPCC tape.

An alternative "readiness" index (TINDEX01) was derived by Professor W.E. McGarvey. It is a rough parallel to the

TABLE II Dependent Variables

TK 1	Total number of CASREPS submitted by a unit
TK2 TK3	Number of C-2 CASREPS
TK3	Number of C-3 CASREPS
TK4	Number of C-4 CASREPS
TINCEXO 1	Readiness Index01 (McGarvey)
THEEBAC	Readiness Index (SPCC)
TTECHASS	Number of technical assistance calls requested
TDOWNBUT	Total downtine for maintenance (hours)
TDCWNTCI	Total dewntime (hours)

"material condition index" (NCI) and the "mission essential material readiness and conditon" (NEHRAC) indices computed by SPCC but is slanted more toward maintenance downtime. INDEXO1 was computed as follows:

To smooth and help equate this alternative index (INDEXO1) to other variable distributions, a log transformation was employed. Instances of calls for outside technical assistance were also coded for use directly from the SECC tape.

The "Hission Essential Material Readiness and Condition Beport" (THEMRAC) is used by SPCC [Ref. 4] to identify systems/equipments that contribute to the downtime of a Ship Category which falls below the Standard Ready Material Condition by 5% or more. Mathematically it is defined by SPCC as:

Index=
$$X = (W3) (Sun C-3) + (W4) (Sun C-4) (W'3)$$

(Sun DIC-3) + (W'4) (Sun DIC-4)

Where:

W3 = A factor to weigh the severity of the C-3 CASREPS in relation to C-4 CASREPS. (W3=.5)

W4 = A factor to weigh the severity of the C-4 CASREPS in relation to C-3 CASREPS. (W4=1.0)

 W^3 = A factor to weigh the effects of "URGENCY" on C-3 CASREP downtime. (W*3=.33)

 W^4 = A factor to weigh the effects of "URGENCY" on C-4 CASREP downtime. (W⁴4=.67)

DTC-3 = Total Dcwntime for a C-3 casualty.

DTC-4 = Total Countine for a C-4 casualty.

P = The average number of ships per day, by generic category, as taken from EDAC Group I Report.

A lcg transformation, plus a recoding of fractional values on this index, was also performed.

For casualties that have been corrected, the following were used:

TDCWHERT - For casualties which have been CASCORed (casualty correction message) this reflects the number of hours the equipment was down due solely to maintenance. It is the resultant figure of subtracting the CASREP message (msg) date time group (DTG) from the CASCOR msg DTG; obtaining a balance; then subtracting the hours awaiting parts given in the CASCOR msg. The underlying assumption is that time not awaiting parts is maintenance time.

TDCWNTOT - For casualties which have been CASCORed this reflects the total number of hours the equipment was CASREPed. If the CASREP and the CASCOR are the same day, the total will be 0000.

Total downtime was used even though it includes supply downtime (time spent waiting for parts). While arguable, it was hypothesized that higher quality personnel could influence the total amount of time spent waiting for parts. In addition, if a problem was misdiagnosed total downtime would be increased while waiting for the the correct part to arrive (after the part which did arrive was found to be incorrect).

If preventive maintenance were performed better, the total number of CASREPS might also decrease, assuming that more qualified personnel perform better. Since the personnel characteristics may well influence total supply time, the two measures of downtime were included.

It was felt that by using nine different dependent variables a more complete picture of the inter-relationships of the personnel attributes and measures of "readiness" could be developed. Each dependent variable may measure a different aspect of maintenence, and hence, readiness.

C. INDEPENDENT VARIABLES

When both files had been sorted by UIC and calender quarter, the data file created from the DMDC tape of personnel attributes was merged with the CASREP file. The program that was needed to first match each individual assigned to a UIC, and then to correlate the individuals characteristics with each quarter's CASREPS within each UIC is shown in Appendix P.

The new file for each quarter now contained the dependent variables and the personnel characteristics of the sailors assigned to those units in each quarter. The fill ratio file and CASBEP data file were then merged so a complete file with all the desired information was available for analysis.

TABLE III Ratings Used in Analysis

en	Enginesan
nr Pm	Machinery Repairman Electricians Mate
ΕÜ	Electricians Hate
IĈ BT GSE	Interior Communications Hull Technician
BT_	Hull Technician
GSE	Gas Systems Technician (Electic)
GSM	Gas Systems Technician (Electic) Gas Systems Technician (Mechanical)

Although the file contained information for all 33 ratings assigned to the DD 963's, this research was directed instead toward the seven ratings assigned to the engineering department. Under the assumption that many (or most) of a ship's CASREPs will originate in the engineering department, this was felt to be an acceptable, plausible direction in which to proceed. The ratings used are shown in Table III.

A list of the engineering ratings with the mean, standard deviation, minimum value, maximum value and the standard error of the mean for each variable by rating is

TABLE IV Personnel Attributes Selected

BSDG	The percentage of high school graduates
APCT ENAGE	The percentage of high school graduates Armed forces qualification test scores
	Entry age
PRAG PAYGR	Presènt age Paygrade
YRACD-	I pars of active duty
THEGR —	Time in grade Fill ratio
FILLE	Fill ratio

Where __ represents each of the seven individual ratings.

provided in Appendix C. A complete list of the other ratings on the ships as well as other variables is provided in Appendix D. Table IV shows the attributes selected for each rating. An "attribute" is operationally defined as the combined contribution of the seven engineering ratings for each characteristic. For example the HSDG attribute is the

combined HSDG effect of the EM, MR, EM, IC, HT, GSE, and GSM ratings.

These attributes were selected because it was hypothesized that as each attribute showed improvement, readiness would improve. It was hypothized that "smarter", older, more senior personnel, plus a full complement of personnel, would be associated with increased readiness.

Because of its greater statistical robustness as a measure of central tendency with small samples, the median was used to represent the personnel characteristics of ratings (except for HSDG and FILLE). The median for education was almost always a high school education, or just less than that level of education. As a result, a new variable was developed - HSDG, or percentage of high school graduates on board (college education was not taken into account). The new variable had enough variability to be used as a predictor. FILLE was calculated as a percentage of the on toard strength as compared to the required strength of the SHD.

III. ANALYSIS

A. BETHCD

Multiple regression analyses was used to determine if a set of variables could be developed to predict "readiness". The nine dependent variables and the eight personnel characteristics for each engineering rating were utilized, for a total of 72 prediction equations.

Calculating R Squares in this manner and using the F test to evaluate the statistical significance of increments to prediction is a robust method of analysis. It enables the user to determine the relative contribution of different variables in the regression equation.

The statistical significance used in this thesis was the .05 level. It is quite possible for a variable to be in and of itself a significant predictor of a dependent variable, but, when added to a model with another variable (that by itself is a significant predictor) contribute insignificantly to the prediction. Humarous systematic regressions were run in an effort to determine the significant predictors.

B. ABALYSIS

The first step in the analysis was to examine the real-tionship of downtime to the UIC's themselves. Before addressing the issue of personnel attributes, it was felt that some individual differences among the ships had to be examined before the personnel characteristics should be utilized as predictors of readiness.

Overhaul quarters were accounted for with the variable OVERHAUL. This dichotomous dummy variable takes into

account the quarters that the individual UIC's reported C-5 in the CASREP system (CASREPs, perhaps not supprisingly, drop to a very low level during overhaul quarters). The variable made each quarter that a ship was in overhaul a separate predictor. It separated overhaul quarters from normal operating quarters.

and the state of the second of the second of the state of the second of the second of the second of the second

TABLE V
PERCENTAGE OF VARIANCE ACCOUNTED FOR

DEPENDENT VARIABLE	UIC S	WITH UIC'S & OVERHAUL	ALL Variables	FINAL REGRESSION	CHANGE IN R2 x 100
TDOWNENT TK1 TK2 TK3	32.73 28.10 25.94 16.29	36.59 41.57 40.66 16.89	55.70 60.28 56.21 47.54	40.64 46.85 *** 22.71	4.05 5.28 5.82
TK4 TINDEXO1 THENRAC TTECHASS TDOWNTOT	11.43 36.69 22.13 17.79 30.98	11.86 43.06 22.61 31.21 33.03	33.07 63.12 49.80 53.18	16. 16 47. 06 25. 31 32. 59 33. 50	4.30 4.70 1.38 .47

*** Not Statistically Significant

The results were significant. Individual ship differences accounted for from 11.43 percent to 36.69 percent of the variance for each individual dependent variable and with the overhaul quarters added, the percentage of variance accounted for ranged from 11.86 to 43.06. The results are given in Table V. This table shows the percentage of R-squared for the ship differences, with all the variables and the final regression after the F tests.

STORY CONTROLL OF STATE OF STATE OF STATE STATE OF STATE STATES CONTROL

The variables used in the regressions to get the results in the "ALL VARIABLES" column of Table V are: the overhaul predictors, OIC effects, and each personnel variable listed in Table IV for all the shipboard ratings. For the "FINAL REGRESSION", the list of variables used is shown in Table VII.

The change in R-squared (times 100) is the increase in the percentage of dependent variable variance accounted for by the final regression equation over the regressions with just the UIC's and CVERHAUL as predictors. The R-squared with all the variables entered is shown as an example of how a R-Square can be artifically inflated by using a large number of predictors. This is why successive F-tests must be computed - to determine which predictors are statistically significant and appropriate for retention.

The results of the UIC and overhaul regressions are interesting. For the total number of CASREPs, 41.57% of the variance could be "explained" by ship differences, while only 11.86% could be explained for the number of C-4 CASREPs and 16.89 for C-3 CASREPs. This could be the result of the differences among the philosophies or practices of Commanding Officers or Squadron Commanders.

while the directions of the CASREP system are quite specific, the judgment of the Commanding Officer probably always plays a part. If a system is C-3 or C-4 it will usually be CASREP'd because it seriously degrades some mission area of the ship. But the number of C-2 CASREPs could be a function of the operational policy of the Commanding Officer. If his philosophy (or that of the Squadron Commander) is such that CASREPs make the ship look bad, then he might be hesitant to submit too many. On the other hand, if he follows policy to the letter, more CASREPs might be submitted.

The next step was to compute an F ratio on each of the personnel "attributes" listed in table Four. As described above an "attribute" is operationally defined as the combined contribution of the seven engineering ratings for each characteristic. For example the HSDG attribute is the combined HSDG effect of the EN, MR, EM, IC, HT, GSE, and GSM ratings. The combined data from all ratings were utilized.

The question that must be answered is: Does the addition of each attribute add significantly to the prediction? The F ratio must be calculated for the difference between the two R-Squares for each predictor on each dependent variable. The formula used [Ref. 5] was:

Where N = total number of cases

R2xyz = larger R Squared

R2xy = smaller B Squared

K1 = Number of independent variables of the larger R
Squared and

K2 = Number of independent variables of the smaller R
Squared.

TABLE VI P Batio - Bach Attribute

TDOWNEHT TK1 TK2 TK3 TK4 TINDEXO1 THEMRAC	HSDG 2.12* 2.53* 1.67* 0.43 2.94* 2.69*	AP OT 1. 86 1. 75 1. 87 3 1. 87 3 8 9 8	EN AGE 0.64 0.60 1.33 1.16 0.82	PRAG 0.570 0.97 0.93 0.62 0.98	PAYGR 2.56* 1.88 1.73 0.16* 1.40	YRACD 1.536 1.521 2.35* 0.90 1.97	TMEGR 0.839 0.345 0.051	FILLR 0.37 0.56 0.47 2.31* 0.66
THENRAC TTBCHASS TDCWHTOT	2.69* 1.24 1.49			0.98 0.49 1.30	1.40 1.55 2.24*	1.26 0.91 1.66	1.51 0.89 0.97	0.77 0.85 0.35

F.05 = 2.07 *Statistically significant Degrees of Freedcm: Numerator = 7 Denominator = 174

In this case each individual attribute (i.e., 7 degrees of freedcm) was removed from each equation and a F ratio calculated. The results are given in Table VI. In this step, 72 different regression equations were derived and 72 F ratios calculated.

TABLE VII
Statistically Significant Attributes

DEPENDENT	SIGNIFICANT
VARIABLE	PREDICTORS
T D CW M M MT TK 1 TK 2 TK 3 TK 4 TINDEX 01 THEMRAC TTECHASS TD CW MT CT	HSDG, PAYGR HSDG, PAYGR NONE HSDG, YRACD FILLR HSDG, PAYGR HSDG AFOT PAYGR

As can be seen, only twelve variables seemed to contribute significantly (p less than .05). These are shown in Table VII. TK2 had no personnel attributes which proved to be statistically significant predictors of it.

Even though there was a variance among individuals within ships, as can be seen in Appendix C, it is interesting to note that entry age, present age, and time in grade did not contribute to any prediction. These results would indicate that in the engineering department age and time in grade are not a factor in determining "readiness".

The two attributes that proved statistically significant most often were the percentage of high school graduates and pay grade. This would seem to indicate that the more high school graduates and more senior personnel on board each UIC would effect the measure of downtime, but such a conclusion

would be premature. Additionally, this finding disagrees with the earlier studies by CNA that found HSDG was not a significant predictor of maintenance effectiveness.

TABLE VIII
F Ratio - By Rating

	en	ME	EM	IC	HT	GSE	GSB
TTECHASS	8.52*	1. 17	hout 1.45	1.20	. 743	.353	.672
TDOWNTOT TK1 TK3 TINDEX01 THEMRAC	2. 47 5. 17* 10. 41* 4. 81*1 7. 96*	6.28* 8.72* 3.58** 1.75*	.175 .630 .99		.044 0 .283 .312	.471 .263 2.25 .613	.393 2.32 2.72 1.93 3.05
IDOWNTOT TK1 TINDEXO1 IDOWNENT	0.08 0.09 0.33 0.04	3.02 0.04 0.47 1.63	0.12 0.09 0.11	PAYGR 2.86 4.95* 5.56* 4.05*	0.24	0.47 2.23 1.56 0.07	10.49* 11.52* 13.35* 7.92*
TK3	1.79	2.26	thout 0.13	YRACD 0.27	₀	0.30	11.31*
TK4	2.99	1.66	thout 1.69	FILLR 6.06*	7.13	4.11*	0.52
P .05 = T .05 =	3.90 1.97		*Sic	nifican Inifican	nt usin nt usin	ng F I	atio tatistic
Degrees c	f Freed	lom - 1	iume ra	tor = 1	l Der	nomina	tor = 174

Now that it was determined twelve attributes were statistically significant, the next step was to take these twelve, and separate each individual attribute into seven different predictors, one for each of the seven ratings' within the engineering department. In this stage, each individual ratings' characteristics are taken into consideration, to determine, in other words, which rating in each proven predictor made the difference. For example, was it the HSDGEN (the percentage of EN's with high-school degrees) or HSDGGSN (the percentage of GSN's with high school degrees) attribute that made the difference. The results are summarized in Table VIII.

WARRAND AUGUSTAN SANASAN KESASISI MURUMAN PANASA

By way of explanation. Table VIII is broken down into five sections. One section for each attribute that proved significant. Each section shows the F ratio that was computed when each rating was omitted from the regression equation. Another series of regressions were computed to determine for which rating the attribute was statistically significant.

For example, the general attribute AFQT was shown to predict the number of technical assistance calls requested. A series of seven regressions was computed, leaving a different rating out of the equation each time to determine for which ratings AFQT was important. The result of the F test indicated that in the EN rating AFQT was significantly related to the measure, number of technical assistance calls requested. All the ratings found which influenced the dependent variable for each valid predictor are stared in Table VIII.

The twenty rating variables whose F ratios indicated they contributed significantly were then combined with the original regression equation. The R-squares of these new regressions were then used to compute a new F ratic to determine if the variables that were deleted had added to the prediction. The following F's were computed: TDCWNTOT 1.09, TK1 1.13, TK3 1.62, TK4 .814, TINDEXO1 1.46, THEMRAC 1.58, TTECHASS 1.17, TDOWNENT 1.35. (The F for p less than .01 = 1.65 and for p less than .05 = 1.44.)

This showed that for the dependent variables TK3 and the two readiness indices, the combined predictive value of all the variables was significant at the .05 level (but not at the .01 level), although individually each independent variable was not significant enough.

To determine if any of the other variables, which had been deleted, made a difference in the prediction at test was run on all the predictors to see if any more could be

determined to be significant. The t test indicates which variables contribute significantly to the regression after the other variables are taken into account. As a result of this procedure the variable HSDGMR was found to be valid and was added to the final regression equations.

C. SUMBARY OF DATA AMALYSIS

A statistical truism: it is worth remembering that F or t ratios can be statistically significant when the magnitude of a relationship is actually small. This is the case in this research. Although the several variables discussed did make a statistically significant addition to the prediction equation, the contributions were small (the percentage change ranging from .47 to 5.82, as was shown in Table V).

Another important, if yet unaddressed problem in the analysis, is the sign of the independent variables. Maively, it was thought that as each variable "improved" the amount of downtime would decrease. Surprisingly, this was not always the case in the empirical results. In most regression equations, some predictors had positive signs and some negative signs. An example of the final regression output is provided in Appendix E.

This shows that for the dependent variable Total Hours Downtime, percentage of high school graduates for the MR rating (HSDGMR) had a negative effect and pay grade for the GSM rating (PAYGRGSM) had a positive. This can be interpreted to mean that as the percentage of high school graduates increased the total number of downtime hours decreased. However, it also means that the more senior the GSM's on board, the greater was the total hours of downtime.

Of the retained predictors for the dependent variables nine were positive and the other eleven negative. The actual results can be seen in Appendix E and Table IX also

TABLE IX Effect of the Predictors

Direction of Obtained Relationship

Dependent Variable	Intuitive	Counter-Intuitive
TDOWN TOT IK1 IK3 IK4 ILMDEXO1	HSDGMR HSIGMR PAYGRIC YRACDGSM FIILRIC FILLRGSE	PAYGRGSM HSDGEN PAYGRGSM HSDGEN HSDGIC
TINDEXO 1 THEMRAC TTECHASS TDOWNENT	H SDGMR PAYGRIC PAYGRIC	HSDGEN PAYGRGSM HSDGEN HSDGIC APQTEN PAYGRGSM
700 4 2 2 2 2 7	EBIGNIC	1 81 01/0 311

shows the effects of each predictor on each dependent variable. HSDGHR and PAYGRIC behaved as expected but HSDGEN and FAYGRGSH did not. An "intuitive" effect indicates that as the predictor increases (e.g. more senior, greater percentage, etc.) the downtime decreases. A "counter-intuitive" effect, of course, is opposite.

As is evident, attributes of the personnel in the EN rating had nothing but counter-intuitive relationships with downtime. Four of the five variables for the GSM ratings also had counter-intuitive relationships. An explanation for this might be the rapid promotion in the GSM rating when it was first created. Perhaps the promotion rate was so accelerated that the requisite experience level of senior petty officers was lost.

As can be seen, the only independent variable that consistently had the intuitively proper sign was fill-ratio. The variable FILLE was only significant for the total number of C-4 CASREPs, however, and not at all useful in the predictions of the other eight measures used. The results showed that the more IC's and GSE's on board, the lower the number of C-4 CASREP's. However, the IC rating also had some predictors that had counter-intuitive signs. Such a mixture of results makes any comprehensive conclusion ambiguous.

IV. CONCLUSIONS

The amount of ship downtime was related to the individual ship, (i.e., there were differences among the readiness data of ships that could not be explained by the predicters used) the fill ratio and the characteristics of the crew. Disregarding the direction of their relationship for the mement, those personnel characteristics that influenced readiness included percentage of high school graduates, AFQT scores, pay grade, years of active duty and fill ratio.

The analyses determined that although a relationship existed between certain personnel characteristics and equipment downtime, it was small and often in a counter-intuitive direction. For example, the inverse relationship between the median GSM paygrade and downtime is difficult to explain. The fill ratio for the GSE's did, however, behave as expected in predicting the total number of C-4 CASREFS.

Other questions remain. What effect did each Commanding Officer have on the number of CASREPs submitted? Further research is warranted in this area, matching Commanding Officers against CASREPs submitted during their command.

The differences that were discovered in the amount of R-squared for the number of CASREPs submitted in the different categories makes it imperative that each individual UIC be accounted for in any analysis before any other variable is examined.

Some predictors and some ratings showed both an intuitive and counter-intuitive relationship with readiness. For example, the HSDG predictor and the IC rating had both sorts of relationships. Without a plausible theoretical explanation for this, the results might be due to chance.

<u>Estatututututututututututututut</u>

CASREF reporting may depend on what a ship is doing when the equipment fails. What effect does a 3-M or INSURV inspection have? The CASREP system itself is often said to be abused. For instance, were some CASREP's submitted to get priority status for the ordering of parts? Although this is not allowed, it does happen.

Inclusion of the other ratings from the other ship departments would undoubtedly have raised R-Squares to a higher figure. Alternatively, concentrating on only those equipment identification codes (EIC's) associated with the engineering department might have proven useful. But attaining a large R- Square was not the major purpose of this thesis. The effect, if any, of the personnel characteristics of the ratings in the engineering department on downtime was the prime concern.

Given all the above, the analysis of the personnel characteristics can still be considered valid because the effects of differences between UICs were accounted for. However, the results would tend to indicate that personnel characteristics have no real effect and other correlates should be sought.

The results do not mean that personnel characteristics do not make a difference, but that variations in these characteristics within the ranges observed on the DD 963's are not likely to make much difference. Furthermore, such effects may often be counter-intuitive.

CASREFS for the entire ship level might result in too gross a criterion for analysis. Analysis by sub-systems or pieces of individual equipment, where downtime can be identified by a specific rating, might be more appropriate. Such an approach, however, would still not preclude the possibility that the rating which "should have" worked on the equipment might not have. In summary, the relationships between personnel attributes, fill-ratios and ship readiness remain complex--not intuitively obvious.

APPENDIX A PERSCHUEL SELECTION PROGRAM LISTING

CATA BATING; SET FILEIN. HRGDFIO1; IF

(The cases having a given rating through the 27 quarters are extracted by the following section)

((RATINGUI='') OR (RATINGU2='') OR
(RATINGO3='') OR (RATINGO4='') OR
(RATINGOS='') OR (RATINGO6='') OR
(RATING07='') OR (RATING08='') OR
(RATING09='') OR (RATING10='') OR
(RATING11='') OR (RATING12='') OR
(RATING13='') OR (RATING14='') OR
(RATING15='') OR (RATING16='') OR
(RATING17='') OR (RATING18='') OR
(RATING19='') OR (RATING20='') OR
(RATING21= '') OR (RATING22= '') OR
(RATING23='') OR (RATING24='') OR
(RATING25='') OR (RATING26='') OR
(RATING27=''));
ATA QUARTRO1; SET RATING;
(Here high-shcool degreed are defined and those with a given
rating aboard one of the UIC's are assembled.)
F (((UICO1='574') OR (UICO1='575') OR (UICO1='576')
R (UICO1='586') OR (UICO1='588')) AND (RATINGO1=''));
F (((HYECO1 GE 1) AND (HYECO1 LE 5)) OR (HYECO1 EQ 13))
HEN CHYECO1=0; IF ((HYECO1 GE 6) AND (HYECO1 LE 12))
HEN CHIECO1=1; FROC SORT DATA=QUARTRO1 OUT=QUARTRO1; BY UICO1;
ATA QUARTRO2; SET RATING;
F (((UICO2='574') OR (UICO2='575') OR (UICO2='576')
R (UICO2='586') OR (UICO2='588')) AND (RATINGO2=' ')):

```
IF (((HYECO2 GE 1) AND (HYECO2 LE 5)) OR (HYECO2 EQ 13))
THEN CHIECO2=0: IF ((BYECO2 GE 6) AND (HYECO2 LE 12))
THEN CHYECO 2=1:
PROC SORT DATA=QUARTEC2 OUT=QUARTRO2; BY UICO2;
CATA CUASTRO3:SET RATING:
IF (((UICO3='574') OR (UICO3='575')
OR (UICO3='576') OR (UICO3='586') OR
    (UICO3='587') OR (UICO3='588')) AND (RATINGO3='___'));
IF (((HYECO3 GE 1) AND (HYECO3 LE 5))
OR (HYECO3 EQ 13)) THEN CHYECO3=0:
IF ((HYECO3 GE 6) AND (HYECO3 LE 12)) THEN CHYECO3=1;
PROC SORT DATA=QUARTRO3 OUT=QUARTRO3:BY UICO3:
DATA QUARTRO4; SET RATING;
IF (((UICO4='574') OR (UICO4='575') OR
(UICO4='576') OR (UICO4='586') OR
     (UICO4='587') OE (UICO4='588') OR
(UICO4='589')) AND (RATINGO4='___'
IF (((HYECO4 GE 1) AND (HYECO4 LE 5))
OR (EYECO4 EQ 13)) THEN CHYECO4=0:
IF ((BYECO4 GE 6) AND (HYECO4 LE 12)) THEN CHYECO4=1:
FROC SORT DATA=QUARTEO4 OUT=QUARTRO4: BY UICO4:
DATA QUARTROS: SET RATING:
IF (((UICO5='574') OB (UICO5='575')
OR (UICO5='576') OR (UICO5='586') OR
     (UICO5='587') OR (UICO5='588')
OR (UICO5='589') OR (UICO5='590')) AN
     (RATING05='___'));
IF (((HYECO5 GE 1) AND (HYECO5 LE 5))
OR (HYECO5 EQ 13)) THEN CHYECO5=0:
IF ((BIECO5 GE 6) AND (HYECO5 LE 12)) THEN CHYECO5=1;
FROC SORT DATA=QUARTRO5 OUT=QUARTRO5: BY UICO5:
DATA QUARTRO6; SET RATING;
IF (((UICO6='574') OR (UICO6='575')
OR (UICO6='576') OR (UICO6='586') OR
     (UICO6='587') OR (UICO6='588')
```

```
OR (UICO6='589') OR (UICO6='590') OR
     (UICO6='591')) AND (RATINGO6='___'));
IF ((EYECO6 GE 1) AND (HYECO6 LE 5))
OR (HYECC6 EQ 13)) THEN CHYECO6=0;
IF ((HYECO6 GE 6) AND (HYECO6 LE 12)) THEN CHYECO6=1;
FROC SORT DATA=QUARTRO6 OUT=QUARTRO6; BY UICO6;
DATA QUARTRO7; SET RATING;
IF (((UICO7='574') OB (UICO7='575')
OR (UICO7='576') OR (UICO7='586') OR
     (UICO7='587') OF (UICO7='588')
OR (UICO7='589') OR (UICO7='590') OR
     (UICO7='591') OR (UICO7='598')
OR (UICO7='601') OR (UICO7='602')) AN
     (RATING07= '___'));
IF (((HYECO7 GE 1) AND (HYECO7 LE 5))
OR (HYECC7 EQ 13)) THEN CHYECO7=0;
IF ((HYECG7 GE 6) AND (HYECO7 LE 12)) THEN CHYECO7=1;
FROC SORT CATA=QUARTEO7 OUT=QUARTRO7; BY UICO7;
DATA QUARTROS; SET RATING:
IF (((UICC8='574') OR (UICO8='575') OR
(UICO8='576') OR (UICO8='586') OR
     (UICO8='587') OR (UICO8='588') OR
(UICO8='589') OR (UICC8='590') OR
     (UICO8='591') OB (UICO8='598') OR
(UICO8='599') OR (UICO8='601') OR
     (UICC8='602') OR (UICO8='603')) AND (RATINGO8='___'));
IF (((HYECO8 GE 1) AND (HYECO8 LE 5))
OR (HYECCS EQ 13)) THEN CHYECO8=0;
IF ((HYECO8 GE 6) AND (HYECO8 LE 12)) THEN CHYECO8=1:
PROC SORT DATA=QUARTRO8 OUT=QUARTRO8: BY UICO8:
DATA QUARTRO9: SET RATING:
IF (((UICO9='574') OF (UICO9='575') OR
(UICO9='576') OR (UICO9='586') OR
     (UICO9='587') OR (UICO9='588') OR
(UICO9='589') OR (UICO9='590') OR
```

```
(UICO9='591') OR (UICO9='598')
OR (UICO9='599') OR (UICO9='600') OR
     (UICO9='601') OB (UICO9='602')
OR (UICO9= 603') OR (UICO9= 604')) AND (RATINGO9= 1, 1));
IF (((HYECO9 GE 1) AND (HYECO9 LE 5))
OR (HYECO9 EQ 13)) THEN CHYECO9=0;
IF ((EYECC9 GE 6) AND (HYECO9 LE 12)) THEN CHYECO9=1;
FROC SORT CATA=QUARTEO9 OUT=QUARTRO9; BY UICO9;
DATA QUARTR 10: SET RATING:
IF (((UIC10='574') OF (UIC10='575') OR
(UIC10='576') OR (UIC10='586') OR
     (UIC10='587') OR (UIC10='588') OR
(UIC10='589') OR (UIC10='590') OR
     (UIC10='591') OR (UIC10='598') OR
(UIC10='599') OR (UIC10='600') OR
     (UIC10='601') OR (UIC10='602') OR
(UIC10='603') OR (UIC10='604') OR
     (UIC10='611')) AND (RATING10='___'));
IF (((HYEC10 GE 1) AND (HYEC10 LE 5))
OR (HYEC 10 EQ 13)) THEN CHYEC 10=0;
IP ((HYEC10 GE 6) AND (HYEC10 LE 12)) THEN CHYEC10=1;
PROC SORT DATA=QUARTR10 OUT=QUARTR10; BY UIC10;
DATA QUARTR 11; SET RATING;
IP (((UIC11='574') OB (UIC11='575') OR
(UIC11='576') OR (UIC11='586') OR
     (UIC11='587') OB (UIC11='588') OR
(UIC11='589') OR (UIC11='590') OR
     (UIC11='591') OR (UIC11='598') OR
(UIC11='599') OR (UIC11='600') OR
     (UIC11='601') OF (UIC11='602') OR
(UIC11='603') OR (UIC11='604') OR
     (UIC11='611')) AND (RATING11='___'));
IF (((HYEC11 GE 1) AND (HYEC11 LE 5)) OR
(HYEC 11 EQ 13)) THEN CHYEC 11=0:
IF ((HYEC11 GE 6) AND (HYEC11 LE 12)) THEN CHYEC11=1;
```

```
FROC SORT DATA=QUARTE11 OUT=QUARTE11: BY UIC11:
CATA QUARTR 12; SET RATING:
IF (((UIC12='574') OF (UIC12='575') OR
(UIC12='576') OR (UIC12='586') OR
     (UIC12='587') OR (UIC12='588') OR
(UIC12='589') OR (UIC12='590') OR
     (UIC12='591') OR (UIC12='598') OR
(UIC12='599') OR (UIC12='600') OR
     (UIC12='601') OF (UIC12='602') OR
(UIC12='603') OR (UIC12='604') OR
     (UIC12='611')) AND (RATING12='___'));
IF (((HYEC12 GE 1) AND (HYEC12 LE 5))
OR (HYEC12 EQ 13)) THEN CHYEC12=0;
IF ((HYEC12 GE 6) AND (HYEC12 LE 12)) THEN CHYEC12=1;
PROC SORT DATA=QUARTR12 OUT=QUARTR12; BY UIC12;
CATA QUARTR 13; SET RATING;
IF (((UIC13='574') OF (UIC13='575') OR
(UIC13='576') OR (UIC13='586') OR
     (UIC13='587') OR (UIC13='588') OR
(UIC13='589') OR (UIC13='590') OR
     (UIC13='591') OR (UIC13='598') OR
(UIC13='599') OR (UIC13='600') OR
     (UIC13='601') OB (UIC13='602') OR
(UIC 13='603') OR (UIC 13='604') OR
     (UIC13='611')) AND (RATING13='___'));
IF ((HYEC13 GE 1) AND (HYEC13 LE 5))
OR (HYEC13 EQ 13)) THEN CHYEC13=0;
IF ((HIEC13 GE 6) AND (HIEC13 LE 12)) THEN CHIEC13=1:
PROC SORT DATA=QUARTR13 OUT=QUARTR13: BY UIC13:
CATA QUARTR 14; SET RATING:
IF (((UIC14='574') OB (UIC14='575') OR
(UIC14='576') OR (UIC14='586') OR
     (UIC14='587') OB (UIC14='588') OR
(UIC14='589') OR (UIC14='590') OR
     (UIC14='591') OR (UIC14='598') OR
```

```
(UIC 14='599') OR (UIC 14='600') OR
     (UIC14='601') OR (UIC14='602') OR
(UIC14='603') OR (UIC14='604') OR
     (UIC14='611')) AND (RATING14='___'));
IF (((HYEC14 GE 1) AND (HYEC14 LE 5))
OR (HYEC14 EQ 13)) THEN CHYEC14=0;
IF ((HYEC14 GE 6) AND (HYEC14 LE 12)) THEN CHYEC14=1;
PROC SORT CATA=QUARTE14 OUT=QUARTR14; BY UIC14;
CATA QUARTR 15: SET RATING:
IF (((UIC15='574') OF (UIC15='575') OR
(UIC15='576') OR (UIC15='586') OR
     (UIC15='587') OR (UIC15='588') OR
(UIC15='589') OR (UIC15='590') OR
     (UIC15='591') OR (UIC15='598') OR
(UIC15='599') OR (UIC15='600') OR
     (UIC15='601') OR (UIC15='602') OR
(UIC15='6C3') OR (UIC15='604') OR
     (UIC15='611')) AND (RATING15='___'));
IF (((HYEC15 GE 1) AND (HYEC15 LE 5))
OR (HYEC15 EQ 13)) THEN CHYEC15=0:
IF ((HYEC15 GE 6) AND (HYEC15 LE 12)) THEN CHYEC15=1;
PROC SORT DATA=QUARTR15 OUT=QUARTR15; BY UIC15;
CATA QUARTR 16: SET RATING:
IF (((UIC16='574') OR (UIC16='575') OR
(UIC16='576') OR (UIC16='586') OR
     (UIC16='587') OE (UIC16='588') OR
(UIC16='589') OR (UIC16='590') OR
     (UIC16='591') OR (UIC16='598') OR
(UIC16='599') OR (UIC16='600') OR
     (DIC16='601') OB (DIC16='602') OR
(UIC 16='603') OR (UIC 16='604') OR
     (UIC16='611')) AND (RATING16='___'));
IF (((HYEC16 GE 1) AND (HYEC16 LE 5))
OR (HYEC 16 EQ 13)) THEN CHYEC 16=0;
IF ((HYEC16 GE 6) AND (HYEC16 LE 12)) THEN CHYEC16=1:
```

```
FROC SORT CATA=QUARTE16 OUT=QUARTR16: BY UIC16:
DATA QUARTR 17; SEI RATING:
IF (((UIC17='574') OB (UIC17='575')
OR (UIC17='576') OR (UIC17='586') OR
     (UIC17='587') OR (UIC17='588')
OR (UIC17='589') OR (UIC17='590') OR
     (UIC17='591') OR (UIC17='598')
CR (UIC17='599') OR (UIC17='600') OR
     (UIC17='601') OF (UIC17='602')
OR (UIC17='603') OR (UIC17='604') OR
     (UIC17='611')) AND (RATING17='___'));
IF ((HYEC17 GE 1) AND (HYEC17 LE 5))
OR (HYEC17 EQ 13)) THEN CHYEC17=0;
IP ((HYEC17 GE 6) AND (HYEC17 LE 12)) THEN CHYEC17=1;
PROC SORT DATA=QUARTR17 OUT=QUARTR17; BY UIC17;
CATA QUARTR 18: SET RATING:
IF (((UIC18='574') OF (UIC18='575') OR
(UIC18='576') OR (UIC18='586') OR
     (UIC18='587') OR (UIC18='588') OR
(UIC18='589') OR (UIC18='590') OR
     (UIC18='591') OR (UIC18='598') OR
(UIC18='599') OR (UIC18='600') OR
     (UIC18='601') OF (UIC18='602') OR
(UIC18='603') OR (UIC18='604') OR
     (UIC18='611')) AND (RATING18='___'));
IF (((HYEC18 GE 1) AND (HYEC18 LE 5))
OR (HYEC18 EQ 13)) THEN CHYEC18=0;
IF ((HYEC18 GE 6) AND (HYEC18 LE 12)) THEN CHYEC18=1;
FROC SORT DATA=QUARTR18 OUT=QUARTR18: BY UIC18;
DATA QUARTR19: SET RATING:
IF (((UIC19='574') OR (UIC19='575') OR
(UIC19='576') OR (UIC19='586') OR
     (UIC19='587') OR (UIC19='588') OR
(UIC19='589') OR (UIC19='590') OR
     (UIC19='591') OR (UIC19='598') OR
```

```
(UIC19='599') OR (UIC19='600') OR
     (UIC19='601') OR (UIC19='602') OR
(UIC19='603') OR (UIC19='604') OR
     (UIC19='611')) AND (RATING19=' ')):
IF ((HYEC19 GE 1) AND (HYEC19 LE 5))
OR (HYEC19 EQ 13)) THEN CHYEC19=0:
IF ((HYEC19 GE 6) AND (HYEC19 LE 12)) THEN CHYEC19=1;
FROC SORT DATA=QUARTE19 OUT=QUARTR19: BY UIC19:
DATA QUARTR 20: SET RATING:
IF (((UIC20='574') OB (UIC20='575') OR
(UIC20='576') OR (UIC20='586') OR
     (UIC20=*587*) OR (UIC20=*588*) OR
(UIC20= '589') OR (UIC20= '590') OR
     (UIC20='591') OR (UIC20='598') OR
(UIC20='599') OR (UIC20='600') OR
     (UIC20='601') OR (UIC20='602') OR
(UIC20='603') OR (UIC20='604') OR
     (UIC20='611')) AND (RATING20='___'));
IF ((HYEC20 GE 1) AND (HYEC20 LE 5))
OR (HYEC20 EQ 13)) THEN CHYEC20=0:
IF ((HYEC20 GE 6) AND (HYEC20 LE 12)) THEN CHYEC20=1;
FROC SORT DATA=QUARTR20 OUT=QUARTR20; BY UIC20;
CATA QUARTR 21; SET RATING;
IF (((UIC21='574') OF (UIC21='575') OR
(UIC21='576') OR (UIC21='586') OR
     (UIC21='587') OR (UIC21='588') OR
(UIC21='589') OR (UIC21='590') OR
     (UIC21='591') OR (UIC21='598') OR
(UIC21='599') OR (UIC21='600') OR
     (UIC21='601') OR (UIC21='602') OR
(UIC21='603') OR (UIC21='604') OR
     (UIC21='611')) AND (RATING21='___'));
IF (((BYEC21 GE 1) AND (HYEC21 LE 5))
OR (HYEC21 EQ 13)) THEN CHYEC21=0;
IF ((HYEC21 GE 6) AND (HYEC21 LE 12)) THEN CHYEC21=1:
```

```
PROC SORT CATA=QUARTR21 OUT=QUARTR21; BY UIC21;
DATA QUARTR 22; SET RATING:
IF (((DIC22='574') OF (DIC22='575') OR
(UIC22='576') OR (UIC22='586') OR
     (UIC22='587') OR (UIC22='588') OR
(UIC22='589') OR (UIC22='590') OR
     (UIC22='591') OR (UIC22='598') OR
(UIC22=15991) OR (UIC22=16001) OR
     (UIC22='601') OF (UIC22='602') OR
(UIC22='603') OR (UIC22='604') OR
     (UIC22='611')) AND (RATING22='___'));
IF ((HYEC22 GE 1) AND (HYEC22 LE 5))
OR (HYEC22 EQ 13)) THEN CHYEC22=0;
IF ((HYEC22 GE 6) AND (HYEC22 LE 12)) THEN CHYEC22=1;
FROC SORT DATA=QUARTR22 OUT=QUARTR22: BY UIC22:
CATA QUARTR23; SEI RATING;
IF (((UIC23='574') OR (UIC23='575') OR
(UIC23='576') OR (UIC23='586') OR
     (UIC23='587') OF (UIC23='588') OR
(UIC23='589') OR (UIC23='590') OR
     (UIC23='591') OR (UIC23='598') OR
(UIC23='599') OR (UIC23='600') OR
     (UIC23='601') OF (UIC23='602') OR
(UIC23='603') OR (UIC23='604') OR
     (UIC23='611')) AND (RATING23='___'));
IF (((HYEC23 GE 1) AND (HYEC23 LE 5))
OR (HYEC23 EQ 13)) THEN CHYEC23=0:
IF ((HYEC23 GE 6) AND (HYEC23 LE 12)) THEN CHYEC23=1;
FROC SORT DATA=QUARTR23 OUT=QUARTR23: BY UIC23:
DATA QUARTR24; SET RATING;
IF (((UIC24='574') OF (UIC24='575') OR
(UIC24='576') OR (UIC24='586') OR
     (UIC24='587') OF (UIC24='588') OR
(UIC24='589') OR (UIC24='590') OR
     (UIC24='591') OR (UIC24='598') OR
```

```
(UIC24='599') OR (UIC24='600') OR
     (UIC24='601') OF (UIC24='602') OR
(UIC24='603') OR (UIC24='604') OR
     (UIC24='611')) AND (RATING24='___'));
IF (((HYEC24 GE 1) AND (HYEC24 LE 5))
OR (HYEC24 EQ 13)) THEN CHYEC24=0:
IF ((HYEC24 GE 6) AND (HYEC24 IE 12)) THEN CHYEC24=1;
PROC SORT CATA=QUARTE24 OUT=QUARTR24; BY UIC24;
CATA QUARTR 25: SET RATING:
IF (((UIC25='574') OF (UIC25='575') OR
(UIC25='576') OR (UIC25='586') OR
     (UIC25='587') OR (UIC25='588') OR
(UIC25='589') OR (UIC25='590') OR
     (UIC25='591') OR (UIC25='598') OR
(UIC25='599') OR (UIC25='600') OR
     (UIC25='601') OB (UIC25='602') OR
(UIC25='6C3') OR (UIC25='604') OR
     (UIC25='611')) AND (RATING25='___'));
IF (((HYEC25 GE 1) AND (HYEC25 LE 5))
OR (HYEC25 EQ 13)) THEN CHYEC25=0;
IF ((HYEC25 GE 6) AND (HYEC25 LE 12)) THEN CHYEC25=1;
PROC SORT DATA=QUARTR25 OUT=QUARTR25; BY UIC25;
DATA QUARTR26: SET RATING:
IF (((UIC26='574') OF (UIC26='575') OR
(UIC26='576') OR (UIC26='586') OR
     (UIC26='587') OR (UIC26='588') OR
(UIC26='589') OR (UIC26='590') OR
     (UIC26='591') OR (UIC26='598') OR
(UIC26='599') OR (UIC26='600') OR
     (UIC26='601') OR (UIC26='602') OR
(UIC26='603') OR (UIC26='604') OR
     (UIC26='611')) AND (RATING26='___'));
IF ((HYEC26 GE 1) AND (HYEC26 LE 5))
OR (HYEC26 EQ 13)) THEN CHYEC26=0:
IF ((HYEC26 GE 6) AND (HYEC26 LE 12)) THEN CHYEC26=1;
```

```
FROC SORT DATA=QUARTE26 OUT=QUARTE26: BY UIC26;
DATA QUARTR27: SET RATING:
IF (((UIC27='574') OF (UIC27='575') OR
(UIC27='576') OR (UIC27='586') OR
     (UIC27='587') OR (UIC27='588') OR
(UIC27='589') OR (UIC27='590') OR
     (UIC27='591') OR (UIC27='598') OR
(UIC27='599') OR (UIC27='600') OR
     (UIC27='601') OB (UIC27='602') OR
(UIC27='603') OR (UIC27='604') OR
     (UIC27='611')) AND (RATING27='___'));
IF ((HYEC27 GE 1) AND (HYEC27 LE 5))
OR (HYEC27 EQ 13)) THEN CHYEC27=0;
IF ((HYEC27 GE 6) AND (HYEC27 LE 12)) THEN CHYEC27=1;
PROC SORT DATA=QUARTR27 OUT=QUARTR27; BY UIC27;
FROC UNIVARIATE DATA=QUARTRO1 NOPRINT: BY UICO1:
     VAR CHYECO1 APQTESTR ENTAGEO1
PRSAGEO1 FAYGRDO1 YRACDUO1 TIMEGRO1:
OUTPUT CUT=SUMMRYO1 MEAN=HS DG____
MEDIAN=MECHSDG AFQT____ENAGE___
       PRAGE PAYGE YRACD THEGR N=N HSD ;
DATA SUMMRYO1; SET SUMMRYO1; DROP MEDHSDG; QUARTER=1;
FROC FRINT CATA=SUMMRY01:
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET:
TITLE3 ___ BATING, QUARTER NO. 1;
  (The aggregate statistics are now computed)
PROC UNIVARIATE DATA=QUARTRO2 NOPRINT; BY UICO2;
     VAR CHYECO2 AFQTESTR ENTAGEO2 PRSAGEO2
PAYGRC02 YRACDU02 TIMEGR02:
OUTPUT OUT=SUMMRYO2 MEAN=HSDG___ MEDIAN=MEDHSDG AFQT__
ENAGE__ PRAGE__ PAYGR__ YRACD__ TMEGR__ N=N_HSD__;
DATA SUMMRYO2; SET SUMMRYO2; DROP MEDHSDG; QUARTER=2;
PROC FRINT CATA=SUMMBY02:
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET:
```

TITLE3 FATING, QUARTER NO. 2;
FROC UNIVARIATE DATA=QUARTRO3 MOPRIMT; BY UICO3;
VAR CHIECO3 AFQTESTR ENTAGEO3 PRSAGEO3
PAYGRE03 YRACDU03 TIMEGR03;
OUTPUT CUT=SUMMRYO3 MEAN=HSDG MEDIAN=MEDMSDG AFQT
ENAGE PRAGE PAIGR YRACD THEGR N=N HSD ;
DATA SUMMRY03; SET SUMMRY03; DROP MEDHSDG; QUARTER=3;
PROC PRINT LATA=SUMMEYO3;
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
TITLE3 FATING, QUARTER NO. 3;
PROC UNIVARIATE DATA=QUARTRO4 NOPRINT: BY UICO4:
VAR CHYECO4 AFQTHSTR ENTAGEO4 PRSAGEO4
FAYGRE04 YRACDU04 TIMEGRO4;
CUTPUT CUT=SUMMRYO4 MEAN=HSDG MEDIAN=MEDHSDG AFQT
ENAGE PRAGE PAIGR YRACD TMEGR N=N HSD :
DATA SUMMRYO4; SET SUMMRYO4; DROP MEDHSDG; QUARTER=4;
FROC FRINI CATA=SUMMEYO4;
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET:
TITLE3 RATING, QUARTER NO. 4;
PROC UNIVARIATE DATA=QUARTROS NOPRINT; BY UICO5;
VAR CHYECOS AFQUESTR ENTAGEOS PRSAGEOS
FAYGRD05 TRACDU05 TIMEGR05;
OUTPUT OUT=SUMMRYO5 MEAN=HSDG MEDIAN=MEDHSDG AFQT
FNAGE PRAGE PAYGR YRACD TMEGR N=N HSD ;
DATA SUMMRY05; SET SUMMRY05; DROP MEDHSDG: QUARTER=5;
PROC PRINT CATA=SUMMEY05;
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET:
TITLE3 RATING, QUARTER NO. 5;
FROC UNIVARIATE DATA=QUARTRO6 NOPRINT; BY UICO6;
VAR CHIECO6 AFQTESTR ENTAGEO6 PRSAGEO6
PATGREO6 TRACDUO6 TIMEGRO6;
OUTPUT OUT=SUMMRYO6 HEAN=HSDG MEDIAN=MEDHSDG AFQT
ENAGE PRAGE PAYGR YRACD THEGR N=N HSD :
DATA SUMMRYO6; SET SUMMRYO6; DROP MEDHSDG; QUARTER=6;
FROC FRINT LATA=SUMMBY06;

TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
TITLE3 BATING, QUARTER NO. 6;
PROC UNIVARIATE DATA=QUARTRO7 NOPRINT; BY UICO7;
VAR CHYECO7 APQTESTR ENTAGEO7 PRSAGEO7
FAYGRD07 YRACDU07 TIMEGR07;
OUTPUT OUT=SUMMRY07 MEAN=HSDG MEDIAN=MEDHSDG AFQT
ENAGE FRAGE PAYGR YRACD THEGR N=N_HSD;
CATA SUMMRY07; SET SUMMRY07; DROP MEDHSDG; QUARTER=7;
FROC PRINT DATA=SUMMRY07;
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
TITLE3 RATING, QUARTER NO. 7;
FROC UNIVARIATE DATA=QUARTROS NOPRINT; BY UICOS;
VAR CHYECO8 AFQINSTR ENTAGEO8 PRSAGEO8
PAYGRE08 YRACDU08 TIMEGR08;
OUTPUT OUT=SUMMRYO8 HEAN=HSDG MEDIAN=MEDHSDG AFQT
ENAGE PAYGR TRACD THEGR N=N_HSD;
DATA SUMERYO8; SET SUMMRYO8; DROP MEDHSDG; QUARTER=8;
PROC FRINI CATA=SUMMRY08;
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
TITLE3 RATING, QUARTER NO. 8;
FROC UNIVARIATE DATA=QUARTRO9 NOPRINT; BY UIC 09;
VAR CHYECO9 AFQTESTR ENTAGEO9 PRSAGEO9
FAYGRD09 TRACDU09 TIMEGR09;
OUTPUT OUT=SUMMRY09 MEAN=HSDG MEDIAN=MEDHSDG AFQT
ENAGE FRAGE PAYGR YRACD THEGR N=N HSD ;
DATA SUMMRY09; SET SUMMRY09; DROP MEDHSDG; QUARTER=9;
FROC PRINT DATA=SUMMRIO9;
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
TITLE3 RATING, QUARTER NO. 9;
FROC UNIVARIATE DATA=QUARTR 10 NOPRINT; BY UIC 10;
VAR CHYEC 10 AFQTHSTR ENTAGE10 PRSAGE10
FAYGRD10 TRACDU10 TIMEGR10;
OUTPUT OUT=SUMMRY10 MEAN=HSDG MEDIAN=MEDHSDG AFQT
ENAGE FRAGE PAYGR TRACC TMEGR N=N_HSD;
CATA SUMMAY 10: SET SUMMAY 10: DROP MEDHSDG: OUARTER = 10:

Sharan	and the same and the same and appropriate the second of the same and about the same at the same and are also be a second or
स्र	
	PROC PRINT DATA=SUMMRY10;
199	TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
ASS	TITLE3 RATING, QUARTER NO. 10;
	FROC UNIVARIATE CATA=QUARTR11 NOPRINT; BY UIC11;
	VAR CHYEC 11 AFQIESTR ENTAGE11 PRSAGE11
	FAYGRD11 YRACDU11 TIMEGR11;
	OUTPUT OUT=SUMMRY11 MEAN=HSDG MEDIAN=MEDHSDG AFQT
X	ENAGE PRAGE PAYGR YRACC TMEGR N=N_HSD;
	DATA SUMBRY11; SET SUMBRY11; DROP MEDHSDG; QUARTER=11;
	PROC PRINT DATA=SUMMRY11;
	TITLE CH THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET:
(22	TITLE3 RATING, QUARTER NO. 11:
	FROC UNIVARIATE DATA=QUARTR12 NOPRINT: BY UIC 12:
	VAR CHIEC12 AFQIESTR ENTAGE12 PRSAGE12
~	FAYGBD12 YRACDU12 TIHEGR12;
	OUTPUT OUT=SUMMRY12 HEAN=HSDG HEDIAN=HEDHSDG AFQT
	ENAGE FRAGE PAYGR YRACL THEGR N=N_HSD;
	CATA SUMMRY 12; SET SUMMRY 12; DROP MEDHSDG; QUARTER = 12;
\$5°	FROC PRINT CATA=SUMMRY12;
	TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
	TITLE3 RATING, QUARTER NO. 12;
33	FROC UNIVARIATE DATA=QUARTR 13 NOPRINT: BY UIC 13;
(2)	VAR CHYEC 13 AFQIHSTR ENTAGE 13 PRSAGE 13
	FAYGRD13 YRACDU13 TIMEGR13;
	OUTPUT OUT=SUMERY13 HEAM=HSDG HEDIAM=HEDHSDG AFQT
	PRAGE PRAGE PAYGR YRACD TMEGR N=N_HSD;
	CATA SUMBRY13; SET SUMBRY13; DROP MEDHSDG; QUARTER=13;
	PROC PRINT DATA=SUMMRY13:
	·
	TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
	TITLE3 RATING, QUARTER NO. 13;
	FROC UNIVARIATE DATA=QUARTR14 MOPRINT; BY UIC14;
	VAR CHIEC 14 AFQTHSTR ENTAGE 14 PRSAGE 14
	FAIGBD14 TRACDU14 TINIGR14;
	OUTPUT OUT=SUMBRY14 MEAN=HSDG MEDIAN=MEDHSDG AFQT
	ENAGE PRAGE PAYGR YRACD THEGR N=N_HSD;
	44
気	

DATA SUMPRY 14: SET SUMMRY 14: DROP MEDHSDG: QUARTER=14: PROC PRINT CATA=SUMMRY14: TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET: TITLE3 ___ RATING, QUARTER NO. 14: FROC UNIVARIATE DATA=CUARTR 15 NOPRINT: BY UIC 15: VAR CHYEC15 AFQIESTR ENTAGE15 PRSAGE15 FAYGRD15 YRACDU15 TIMEGR15: OUTPUT OUI=SUMMRY15 MEAN=HSDG___ MEDIAN=MEDHSDG AFQT___ ENAGE__ PAYGR__ YRACC__ THEGR__ N=N_HSD__; DATA SUMMEN 15: SET SUMMEN 15: DROP MEDHS DG: QUARTER = 15: PROC PRINT CATA=SUMMRY15: TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET; TITLE3 RATING, QUARTER NO. 15: FROC UNIVARIATE CATA=CUARTR 16 NOPRINT: BY UIC 16: VAR CHYEC 16 AFQIESTR ENTAGE 16 PRSAGE 16 PAYGRD16 YRACDU16 TIMEGR16: OUTPUT OUT=SUMMRY16 MEAN=HSDG___ MEDIAN=MEDHSDG AFQT___ ENAGE__ FRAGE__ PAYGE__ YRACD__ TMEGR__ N=N_HSD__; DATA SUMBRY 16; SET SUMBRY 16; DROP MEDHSDG; QUARTER=16; FROC FRINT DATA=SUMMRY16: TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET: TITLE3 ___ RATING, QUARTER NO. 16: FROC UNIVARIATE DATA=CUARTR 17 NOPRINT: BY UIC 17: VAR CHYEC 17 APQTHSTR ENTAGE 17 PRSAGE 17 FAYGRC17 YRACDU17 TIMEGR17: OUTPUT OUT=SUMMRY17 MEAN=HSDG MEDIAN=MEDHSDG AFOT ENAGE__ FRAGE__ PAYGR__ TRACD__ TMEGR__ N=N_HSD__; CATA SUMMEY 17; SET SUMMEY 17; DROP MEDHSDG; QUARTER=17; FROC PRINT DATA=SUMMRY17: TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET: TITLE3 ___ RATING, QUARTER NO. 17: FROC UNIVARIATE CATA=CUARTR 18 NOPRINT: BY UIC 18: VAR CHYEC 18 AFQTHSTR ENTAGE18 PRSAGE18 FAYGRE18 TRACDU18 TIMEGR18: OUTPUT OUT=SUMMRY18 MEAN=HSDG___ MEDIAN=MEDHSDG AFQT_

	ENICE DDICE DIACD ADICU WADED A-A GEV .
	ENAGE PRAGE PAYGR YRACD THEGR N=N_HSD_;
	DATA SUMBRY 18; SET SUMBRY 18; DROP MEDHSDG; QUARTER=18;
	FROC PRINT DATA=SUMMRY18;
•	TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
	TITLE3 RATING, QUARTER NO. 18;
•	FROC UNIVARIATE DATA=CUARTR 19 NOPRINT; BY UIC 19;
	VAR CHYEC19 AFQINSTR ENTAGE19 PRSAGE19
	PAYGRD19 TRACDU19 TIMEGR19;
	OUTPUT OUT=SUMMRY19 MEAN=HSDG MEDIAN=MEDHSDG AFQT
	ENAGE FRAGE PAYGR YRACD TMEGR N=N_HSD;
	DATA SUMBRY19; SET SUMBRY19; DROP MEDHSDG; QUARTER=19;
	PROC PRINT TATA=SUMMRY19;
	TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
	TITLE3 RATING, QUARTER NO. 19;
	FROC UNIVARIATE CATA=QUARTR20 HOPRINT; BY UIC20;
	VAR CHYEC20 AFQIESTR ENTAGE20 PRSAGE20
	FAYGRE20 TRACDU20 TIMEGR20;
•	OUTPUT CUI=SUMMRY20 MEAN=HSDG MEDIAN=MEDHSDG AFQT
	ENAGE PRAGE PAYGR YRACD TMEGR N=N_HSD;
•	DATA SUMBRY20; SET SUMBRY20; DROP MEDHSDG; QUARTER=20;
	FROC FRIET CATA=SUMM BY20;
	TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
	TITLE3 RATING, QUARTER NO. 20;
	PROC UNIVARIATE DATA=QUARTR21 NOPRINT: BY UIC21:
	VAR CHYEC21 AFQTUSTR ENTAGE21 PRSAGE21
	FAYGRD21 YRACDU21 TIMEGR21:
	OUTPUT OUT=SUMMRY21 HEAN=HSDG MEDIAN=MEDHSDG AFQT
	ENAGE PAYGR YRACD TMEGR N=N_HSD;
	CATA SUMMRY21; SET SUMMRY21; DROP MEDHSDG; QUARTER=21;
	FROC FRINT CATA=SUMMEY21:
	TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
•	TITLES BATING, QUARTER NO. 21:
•	FROC UNIVARIATE DATA=QUARTR22 NOPRINT; BY UIC22;
	VAR CHYEC22 AFQTESTR ENTAGE22 PRSAGE22
	FAYGRD22 YRACDU22 TIMEGR22;
	46

	CUTPUT CUT=SUBBRIZZ EFAB=HSDG BEDIAN=BEDHSDG AFQT
	<pre>ENAGE PRAGE PAYGR YRACD TMEGR N=N_HSD;</pre>
	DATA SUMMRY 22; SET SUMMRY 22; DROP MEDHSDG; QUARTER=22;
	FROC FRINT CATA=SUMMFY22;
	TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
	TITLE3 FATING, QUARTER NO. 22;
	FROC UNIVARIATE DATA=QUARTR 23 NOPRINT: BY UIC 23:
% 5 68	VAR CHYEC23 AFQTHSTR ENTAGE23 PRSAGE23
	PAYGRD23 YRACDU23 TIMEGR23:
	OUTPUT OUT=SUMMRY23 MEAN=HSDG MEDIAN=MEDHSDG AFQT
	ENAGE PRAGE PAYGR YRACD THEGR N=N HSD :
	DATA SUMMRY 23; SET SUMMRY 23; DROP MEDHSDG; QUARTER=23;
	PROC FRINT DATA=SUMBEY23;
	TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
	TITLE3 BATING, QUARTER NO. 23;
Q.S	FROC UNIVARIATE DATA=QUARTR 24 NOPRINT: BY UIC 24:
	VAR CHYEC24 AFQTHSTR ENTAGE24 PRSAGE24
	FAYGRD24 YRACDU24 TIMEGR24:
₹.	OUTPUT OUT=SUMMRY24 MEAN=HSDG MEDIAN=MEDHSDG AFQT
3 3	
	ENAGE PRAGE PAYGR YRACD THEGR N=N HSD :
	DATA SUMMRY24; SET SUMMRY24; DROP MEDHSDG; QUARTER=24;
	FROC FRIBI CATA=SUMMBY24;
3.5	TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
	TITLE3 BATING, QUARTER NO. 24;
	PROC UNIVARIATE DATA=QUARTR 25 NOPRINT; BY UIC 25;
	VAR CHYEC25 APQTHSTR BHTAGE25 PRSAGE25
4.7k	PAYGRD25 TRACDU25 TIMEGR25;
	OUTPUT OUT=SUMMRY25 MEAN=HSDG MEDIAN=MEDHSDG AFQT
	ENAGE PAYGR YRACD THEGR N=N_HSD;
	DATA SUMMRY25; SET SUMMRY25; DROP MEDHSDG; QUARTER=25;
	FROC FRINT CATA-SUMMBY25;
	TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
	TITLE3 BATING, QUARTER NO. 25;
	FROC UNIVARIATE DATA=QUARTR26 NOPRINT; BY UIC26;
	VAR CHIEC 26 AFQIESTR ENTAGE 26 PRSAGE 26
	47
W	

FAYGRE26 YRACDU26 TIMEGR26; OUTPUT OUT=SUMMRY26 MEAN=HSDG___ MEDIAN=MEDHSDG AFQT_ ENAGE__ FRAGE__ PAYGR__ YRACC__ THEGR__ N=N_HSD__; CATA SUBBRY26; SET SUBBRY26; DROP MEDHSDG; QUARTER=26; FROC PRINT CATA=SUMMRY26: TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET: TITLE3 ___ RATING, QUARTER NO. 26; FROC UNIVARIATE CATA=CUARTR27 NOPRINT: BY UIC 27: VAR CHYEC27 AFQIESTR ENTAGE27 PRSAGE27 FAYGRD27 YRACDU27 TIMEGR27; OUTPUT OUT=SUMMRY27 MEAN=HSDG___ MEDIAN=MEDHSDG AFQT__ ENAGE__ FRAGE__ PAYGR__ YRACC__ THEGR__ N=N_HSD__; CATA SUMMRY27; SET SUMMRY27; DROP MEDHSDG; QUARTER=27; PROC PRINT DATA=SUMMRY27: TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET: TITLE3 ___ RATING, QUARTER NO. 27; DATA READY___; SET (The 27 quarters of data aggregation across a rating within a UIC are now combined.) SUMBRYO1 SUMBRYO2 SUMBRYO3 SUMBRYO4 SUMBRYO5 SUMMRYO6 SUMMRYO7 SUMMRYO8 SUMBRY09 SUMMRY10 SUMBRY11 SUMBRY12 SUMBRY13 SUMBRY 14 SUMBRY 15 SUMBRY 16 SUMBRY17 SUMBRY18 SUMBRY19 SUMBRY20 SUMBRY21 SUMMRY22 SUMMRY23 SUMMRY24 SUMMRY25 SUMMRY26 SUMMRY27; IF (UICO1 NE .) THEN UIC=UICO1; IF (UICO2 NE .) THEN UIC=UICO2; IF (UICO3 NE .) THEN UIC=UICO3: IF (UICO4 NE .) THEN UIC=UICO4; IF (UICOS NE .) THEN UIC=UICO5: IF (UICO6 NE.) THEN UIC=UICO6; IF (DICO7 NE .) THEN DIC=DICO7;

was Conservated Image Says Conservated Investment and and action

```
IF (UICO8 NE .) THEN UIC=UICO8:
IF (UICO9 NE .) THEN UIC=UICO9;
IF (UIC10 NE .) THEN UIC=UIC10;
IP (UIC11 NE .) THEN UIC=UIC11;
IF (UIC12 NE .) THEN UIC=UIC12:
IF (UIC13 NE .) THEN UIC=UIC13;
IF (UIC14 NE .) THEN UIC=UIC14;
IF (DIC15 NE .) THEN DIC=DIC15:
IF (UIC16 NE .) THEN UIC=UIC16;
IF (UIC17 NE .) THEN UIC=UIC17;
IF (UIC18 NE.) THEN UIC=UIC18;
IF (UIC19 NE .) THEN UIC=UIC19;
IF (UIC20 NE .) THEN UIC=UIC20:
IF (UIC21 NE .) THEN UIC=UIC21;
IF (UIC22 NE .) THEN UIC=UIC22;
IF (UIC23 NE .) THEN UIC=UIC23:
IF (UIC24 NE .) THEN UIC=UIC24:
IF (UIC25 NE .) THEN UIC=UIC25;
IF (UIC26 NE.) THEN UIC=UIC26;
IF (UIC27 NE .) THEN UIC=UIC27;
DROP UICO1 UICO2 UICO3 UICO4 UICO5
UICO6 UICC7 WICO8 UICO9 UIC10 UIC11
     DIC12 DIC13 DIC14 DIC15 DIC16
DIC17 DIC18 DIC19 DIC20 DIC21 DIC22
     UIC23 UIC24 UIC25 UIC26 UIC27:
HSDG___=INT (100 * HSDG___);
LABEL N_HSD__=N USED IN COMPUTING HIGH SCHOOL GRADS
      HSDG___ = PERCENTAGE OF HIGH SCHOOL GRADUATES;
PROC SORT DATA=READY___ OUT=FILEOUT.READY___; BY UIC QUARTER;
PROC PRINT DATA = FILECUT. READY___;
TITLE SCREED BY U.I.C. AND THE AGGREGATE DATA FOR THE:
TITLE3
                               RATING:
```

A STATE OF THE PARTY OF THE PAR

A SECTION OF STATE OF STATES SECTIONS STATES SECTION

APPENDIX B CASREP PROGRAM LISTING

HERE TEE FIRST CARD ONLY IS SELECTED, THROUGH USE OF THE SEVERITY OF CASREF VARIABLE. THIS DISTINGUISHES THE CASREFS FECH THE SITEPS (SITUATION REPORTS) WHICH FOLLOW ON CARD NUMBER 2.

IF SEVERITY NE '.':

IN THIS SECTION, A SERIES OF NEW VARIABLES ARE DEFINED. THE OCCUBRENCE OF ANY SEVERITY CASREP (K1), THE OCCURRENCE OF A LEVEL 2 CASREP (K2), THE CCCURRENCE OF A LEVEL 3 CASREP (K3), THE OCCURRENCE OF A LEVEL 4 CASREP (K4), ARE NOTEC. AN ALTERNATIVE 'READINESS' INDEX IS DERIVED, IN ROUGH PARALLEL TO THE 'MATERIAL CONDITION INDEX' (MCI) AND THE *HISSION ESSENTIAL MATERIAL READINESS AND CONDITION* (MEMRAC) INDICES COMPUTED BY THE NAVY SHIP PARTS CONTROL CENTER (USNSPCC), AS WELL AS A ROUGH EQUIVALENT TO THE 'MEMRAC' INDEX. TO SMOOTH, AND HEIF TC EQUATE THIS ALTERNATIVE INDEX (INDEXO1) TO OTHER VARIABLES' DISTRIBUTIONS, A LOG TRANSFORM--AND A DIVISION BY 10--ARE EMPLOYED. A LOG TRANSFORM. FLUS A RECODING CP FEACTIONAL VALUES, ON THE 'MEMRAC' INDEX ARE ALSO PERFORMED. ADDITIONALLY, CASREP CAUSE CODES (CAUSECDE) WHICH MIGHT LOOSELY BE TERMED 'PERSONNEL-RELATED' ARE ALSO NOTED AND THEIR OCCURRENCES CODED. INSTANCES OF CALLS FCF OUTSIDE TECHNICAL ASSISTANCE (CODE 'T' OF THE VARIABLE REPRACTY) ARE ALSO CODED.

H=DOWNMENTH+0;S=DCWNSUFL+0;T=DOWNTOTL+0; IF ((SEVERTY=2) CR (SEVERTY=3) OR (SEVERTY=4)) THEN K1=1;ELSE K1=0;

IF SEVERTY= 2 THEN K2=1; ELSE K2=0; IF SEVERTY= 3 THEN K3=1; ELSE K3=0; IF SEVERTY= 4 THEN K4=1; ELSE K4=0;

INDEX 01= (LOG((.1*K2*H)+(.5*K3*H)+(1.0*K4*H)+1))/10;

IF K3=1 THEN DT3=.33*T; ELSE DT3=0;

IF K4=1 THEN DT4=.67*T; ELSE DT4=0;

MEMRAC = ((.5*K3)+K4)*(DT3+DT4);

IF MEMRAC<1.0 THEN CMEMRAC=1.0: ELSE CMEMRAC=MEMRAC;

HEMRAC = ICG (CHEMRAC);

IF ((CAUSECDE='F') OR (CAUSECDE='3') OR (CAUSECDE='S')

OR (CAUSECDE='7') OR

(CAUSECDE='6') OR (CAUSECDE='H') OR (CAUSECDE='9')

OR (CAUSECDE='0')) THEN

PRSCAUSE=1: ELSE PRSCAUSE=0:

IF REPRACTV='T' THEN TECHASS=1; ELSE TECHASS=0;

THE CATA ARE NEXT SORTED BY UIC AND QUARTER NUMBER.

FROC SORT DATA=CASREF OUT=CASREP: BY UIC QUARTER:

QUARTERLY TOTALS FOR EACH UIC ARE COMPUTED NEXT ON THE FOLICWING VARIABLES:

- (1) TOTAL NUMBER OF CASUALTY REPORTS -- TK1,
- (2) TCTAL NUMBER OF LEVEL 2 CASREPS--TK2.
- (3) TOTAL NUMBER OF LEVEL 3 CASREPS-TK3.
- (4) TOTAL NUMBER OF LEVEL 4 CASREPS-TK4,
- (5) ICTAL ALTERNATIVE READINESS INDEX SCORES -- TINDEXO 1,
- (6) TOTAL 'HEMRAC' INDEX SCORES -- THEMRAC,
- (7) TCTAL 'PERSONNEL-RELATED' INDEX
 SCORES--TPRSCASE.
- (8) TOTAL TECHNICAL ASSISTANCE CALLS-TTECHASS,
- (9) TOTAL DOWNTIME DUE TO MAINTENCE -TDOWNMIT,
- (10) TOTAL DOWNTIME DUE TO SUPPLIES -- TOOWNSUP.
- AND (11) TOTAL DOWNTIME -- TDOWNTOT.

PROC MEANS NOPRINT DATA=CASREP; BY UIC QUARTER; VAR

K1 K2 K3 K4 INDEX01 MEMRAC PRSCAUSE TECHASS

M S T:

OUTFUT OUT= NEW

SUN=IK1 IK2 TK3 TK4 TINDEX01 THEMRAC TPRSCASE TTECHASS TOOWNENT TDOWNSUP TOOWNTOT:

FROC PLOT UNIFORM DATA=NEW: PLOT

THEMRAC + QUARTER = " H "

TINDEX 01 * QUARTER = "I"/

HAXIS=1 TO 27 BY 1

VAXIS=0 TO 60 BY 1 OVERLAY; BY UIC;

TITLE SCHE MEASURES CF READINESS, ACROSS QUARTERS, EY UIC; FROC FIOT UNIFORM DATA=NEW; PLOT

TK 1+OUARTER= 11

TK2+OUARTER= 121

TK3+QUARTER='3'

TK4*QUARTER= 4 4

TFRSCASE*QUARTER= "P"

TTECHASS*QUARTER= 'T'/

HAXIS=1 TO 27 BY 1

VAXIS=0 TO 35 BY 1 OVERLAY: BY UIC:

TITLE SCHE MEASURES OF READINESS, ACROSS QUARTERS, EY UIC; LABEL

TK1 = TOTAL NUMBER OF CASREPS

TK2 =TOTAL NUMBER OF C-2 CASREPS

TK3 = TOTAL NUMBER OF C-3 CASREPS

TK4 =TOTAL NUMBER OF C-4 CASREPS

TINDEXO 1=TRANSFORMED READINESS INDEX (NPS)

THEMRAC =TRANSFORMED BEADINESS INDEX (SPCC)

TPRSCASE=TOTAL OF PRESUMED PERSONNEL-BASED CAUSES

TTECHASS=NUMBER OF TECHNICAL ASSISTANCE REQUESTS

IDOWNERT=TOTAL HOURS COUNTINE DUE TO MAINTENANCE

TDOWNSUP=TOTAL HOURS DOWNTIME DUE TO SUPPLY

IDOWNTCT=TOTAL HCURS DOWNTIME:

APPENDIX C
DATA - ENGINEERING DEPARTMENT

Descriptive Statistics

VARIABLE	N	MEAN	ST AND ARD	MIN	MAX	STD Error
			DEVIATION	VALUE	VALUE	OF MEAN
HSDGEM	386	94.191	8.56781	60.00	100.00	0.4360
APQTEM	386	66.255	11.35749	21.00	92.00	0.5780
ENAGEEM	386	18.831	0.81473	17.50	23.50	0.0414
PRAGEEM	336	23.507	2.10471	19.00	32.00	0.1071
PAYGEEM	386	4.306	0.55915	3.00	6.00	0.0284
YRACDEM	386	4.555	1.55342	1.00	11.50	0.0790
THEGRES	386	15.905	6.82800	2.00	44.00	0.3475
N_HSDEM	386	7.852	2.62781	2.00	16.00	0.1337
HSDGPN	386	80.588	12.82403	33.00	100.00	0.6527
APQTEN	386	57.770	8.23785	41.00	82.50	0.4192
enageen	386	18.408	0.52715	17.00	21.00	0.0268
PRAGEEN	386	21.920	1.47123	19.00	29.00	0.0748
PAYGBEN	386	3.871	0.62398	2.00	6.00	0.0317
YRACDEN	386	3.667	1.05741	2.00	9.00	0.0538
THEGREN	386	10.677	4.51724	2.00	33.00	0.2299
n_HSDEN	386	15.313	5.96985	5.00	38.00	0.3038
HSDGGSE	305	96.186	7.09901	71.00	100.00	0.4064
AFQTGSE	305	77.442	5.96984	55.00	91.00	0.3418
enagegse	305	18.867	0.75300	17.50	22.50	0.0431
PRAGEGSE	305	24.459	1.93839	21.00	31.00	0.1109
PAYGRGSE	305	4.947	0.39802	4.00	6.00	0.0227
TRACDGSE	305	5.272	1.39950	2.00	11.00	0.0801
THEGRESE	305	19.057	6.44581	5.00	40.00	0.3690
n_HSDGSE	305	7.911	1.78131	2.00	13.00	0.1019
H SDGGS B	306	94.673	5.13021	78.00	100.00	0.2932
AFQTGSM	306	76.276	6.05925	64.50	91.00	0.3463

ENAGEGSE	306	18.669	0.55711	18.00	20.00	C.0318
PRAGEGSM	306	23,176	1.23404	20.00	28.00	0.0705
PAYGRGSM	306	4.516	0.48895	3.00	6.00	0.0279
YRACDGSH	306	4.223	0.89884	2.00	8.00	0.0513
THEGRGSH	306	17.772	5.55006	2.00	37.50	0.3172
N_HSEGSM	306	16.830	4.19413	1.00	25.00	0.2397
HSDGGS	128	87.890	32.44990	0.00	100.00	2.8681
APQTGS	111	68.121	20.03908	29.00	93.00	1.9020
ENAGEGS	128	18.800	2.62284	17.00	28.00	0.2318
PRAGEGS	128	37.464	3.11915	32.00	47.00	0.2756
PAYGRGS	128	8.339	0.47344	8.00	9.00	0.0418
YRACDGS	128	19.230	2.30363	14.00	24.00	0.2036
THEGRGS	128	23.113	13.25183	2.00	59.00	1.1713
n_HSDGS	1 28	1.031	0.17468	1.00	2.00	0.0154
HSDGHT	386	84.663	11.18931	42.00	100.00	0.5695
AFQTHT	386	56.306	6.54463	36.00	83.00	0.3331
ENAGEHT	386	18.582	0.55443	17.50	20.00	0.0282
PRAGEHT	386	22.444	1.48591	20.00	35.00	0.0756
PAYGRHT	386	4.077	0.46895	2.00	5.50	0.0238
YRACDHT	386	4.C03	0.85165	2.00	8.00	0.0433
TMEGRHT	386	10.661	3.96744	1.00	29.00	0.2019
N_HSDHT	386	10.792	2.50476	2.00	18.00	0.1274
HSDGIC	385	93.838	11.75466	50.00	100.00	0.5990
APQTIC	385	67.853	10.45295	36.00	90.50	0.5327
ENAGEIC	385	18.809	1.05168	17.00	24.00	0.0535
PRAGEIC	385	22.309	1.53621	20.00	32.00	0.0782
PAYGRIC	385	4.215	0.55693	2.00	6.00	0.0283
TRACDIC	385	3.771	0.97946	2.00	9.00	0.0499
THEGRIC	385	12.972	6.60807	2.00	40.50	0.3367
N_HSCIC	385	4.446	1.30420	1.00	9.00	0.0664
HSDGMR	363	86.545	32.52470	0.00	100.00	1.7071
AFQIMR	323	63.273	17.05995	22.00	97.00	0.9492
ENAGEER	363	19.950	2.71257	17.00	31.00	0.1423
PRAGEMR	363	26.287	5.02512	19.00	41.00	0.2637
PAYGRER	363	4.820	1.26399	1.00	7.00	0.0663

YRACDHR	363	6.840	4.29626	1.00	21.00	0.2254
THEGRER	347	18.309	15.95436	1.00	97.00	0.8564
N_HSDMR	363	1.269	0.47461	1.00	3.00	0.0249
AUTHREM	388	5.000	0.00000	5.00	5.00	0.0000
ASSGBEN	388	7.811	2.68081	0.00	16.00	0.1360
FILLREM	388	156.237	53.61616	0.00	320.00	2.7219
AUTHREN	388	11.000	0.00000	11.00	11.00	0.0000
ASSGNEN	388	15.234	6.05480	0.00	38.00	0.3073
FILLEEN	388	138.500	55.04216	0.00	345.50	2.7943
AUTERGS	388	1.000	0.00000	1.00	1.00	0.0000
ASSGNGS	388	0.340	0.49570	0.00	2.00	0.0251
FILLRGS	388	34.020	49.56993	0.00	200.00	2.5165
AUTHRGSE	388	7.721	0.44877	7.00	8.00	0.0227
ASSGNGSE	388	6.219	3.61177	0.00	13.00	0.1833
FILIRGSE	388	80.107	46.24058	0.00	171.39	2.3475
AUTHRGSM	388	21.000	0.00000	21.00	21.00	0.0000
ASSGNGSM	388	13.273	7.82282	0.00	25.00	0.3971
FILLRGSM	388	63.204	37.25216	0.00	119.00	1.8911
AUTHRHT	388	9.000	0.00000	9.00	9.00	0.0000
ASSGNHT	388	10.737	2.61539	0.00	18.00	0.1327
FILLEHT	388	119.296	29.06051	0.00	200.00	1.4753
AUTHRIC	388	5.054	0.22655	5.00	6.00	0.0115
ASSGNIC	388	4.412	1.35641	0.00	9.00	0.0688
FILLRIC	388	87.465	27.09953	0.00	180.00	1.3757
AUTHEMR	388	1.000	0.00000	1.00	1.00	0.0000
ASSGNMR	388	1.188	0.55514	0.00	3.00	0.0281
FILLEMR	388	118.814	55.51392	0.00	300.00	2.8182

Where:

HSDG__ The percentage of high school graduates

AFQT__ Armed forces qualification test scores

ENAGE__ Entry age

PRAG__ Present age

FAYGR_ Faygrade

YRACD_ Years of active duty

THEGR__ Time in grade

AUTHR_ Number Authorized

ASSGN__ Number Assigned

FILLR_ Fill ratio

APPREDIX D DATA - OTHER VARIABLES

Descriptive Statistics

HSDGNC 114 88.596 31.92572 0.00 100.00 2.990 AFQTNC 67 57.761 20.92562 18.00 86.00 2.556 EWAGENC 114 20.074 2.24124 17.00 27.00 0.209 PRAGENC 114 33.767 3.04987 27.00 39.00 0.285 PAIGENC 114 6.008 0.09366 6.00 7.00 0.008 YRACDNC 114 14.258 2.90805 9.00 20.00 0.272 THEGENC 114 55.000 31.22627 1.00 120.00 2.924 M_HSDNC 114 1.008 0.09366 1.00 2.00 0.008 QUARTER 389 15.840 6.97679 1.00 27.00 0.353 HSDGHH 385 95.355 14.52712 0.00 100.00 0.740 AFQTHH 374 64.604 17.09624 24.00 98.00 0.884 EWAGEHN 385 19.732 1.59544 17.00 25.00 0.081 PRAGENH 385 5.266 0.74471 2.00 7.00 0.037 YRACDHH 385 5.266 0.74471 2.00 7.00 0.037 YRACDHH 385 9.353 2.92905 2.00 24.00 0.149 THEGENH 385 27.131 16.58898 1.00 120.00 0.845 M_HSDGHH 385 9.353 2.92905 2.00 24.00 0.149 THEGENH 385 9.353 2.92905 2.00 24.00 0.149 THEGENH 385 9.353 2.92905 2.00 24.00 0.081 M_HSDGHA 388 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 EWAGENA 348 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 EWAGENA 348 19.748 3.22845 17.00 31.00 0.173 PRAGENA 348 19.748 3.22845 17.00 31.00 0.173 PRAGENA 348 19.748 3.22845 17.00 31.00 0.173 PRAGENA 348 19.748 3.22845 17.00 31.00 0.279 PAIGENA 348 15.592 4.18631 7.00 31.00 0.279 PAIGENA 348 15.592 4.18631 7.00 31.00 0.224 THEGENA 348 15.592 4.18631 7.00 31.00 0.224 THEGENA 348 15.592 4.18631 7.00 31.00 0.224 THEGENA 348 1.063 0.24371 1.00 2.00 0.013 HSDGPC 356 84.269 35.28197 0.00 100.00 100.00 1.869	VARIABLE	n	MEAN	STANDARD	MIN	MAX	STC Error
AFQTNC 67 57.761 20.92562 18.00 86.00 2.556 ENAGENC 114 20.074 2.24124 17.00 27.00 0.209 PRAGENC 114 33.767 3.04987 27.00 39.00 0.285 PATGENC 114 6.008 0.09366 6.00 7.00 0.008 YRACDNC 114 14.258 2.90805 9.00 20.00 0.272 THEGENC 114 55.000 31.22627 1.00 120.00 2.924 N_BSDNC 114 1.008 0.09366 1.00 2.00 0.008 QUARTER 389 15.840 6.97679 1.00 27.00 0.353 HSDGHN 385 95.355 14.52712 0.00 100.00 0.740 AFQTHN 374 64.604 17.09624 24.00 98.00 0.884 ENAGEHN 385 19.732 1.59544 17.00 25.00 0.081 PRAGEHN 385 5.266 0.74471 2.00 7.00 0.37 YRACCHH 385 9.353 2.92905 2.00 24.00 0.165 PATGRHN 385 9.353 2.92905 2.00 24.00 0.149 THEGENH 385 27.131 16.58898 1.00 120.00 0.845 N_BSDHN 385 27.131 16.58898 1.00 120.00 0.845 N_BSDHN 385 27.131 16.58898 1.00 4.00 0.027 HSDGHA 388 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 ENAGENA 348 19.748 3.22845 17.00 31.00 0.173 PRAGENA 348 35.150 5.21866 25.00 51.00 0.279 PATGRHA 348 6.636 0.56753 5.50 8.00 0.030 YRACCHA 348 15.592 4.18631 7.00 31.00 0.224 THEGENA 348 15.69 35.28197 0.00 100.00 1.866				DEVIATION	value	VALUE	OF MEAN
ENAGENC 114 20.074 2.24124 17.00 27.00 0.209 PRAGENC 114 33.767 3.04987 27.00 39.00 0.285 PAYGENC 114 6.008 0.09366 6.00 7.00 0.008 YRACDNC 114 14.258 2.90805 9.00 20.00 0.272 THEGENC 114 55.000 31.22627 1.00 120.00 2.924 N_HSDNC 114 1.008 0.09366 1.00 2.00 0.008 QUARTER 389 15.840 6.97679 1.00 27.00 0.353 HSDGHH 385 95.355 14.52712 0.00 100.00 0.740 AFQTHH 374 64.604 17.09624 24.00 98.00 0.884 ENAGENH 385 19.732 1.59544 17.00 25.00 0.081 PRAGENH 385 28.594 3.23908 20.00 42.00 0.165 PAYGENH 385 9.353 2.92905 2.00 24.00 0.149 THEGENH 385 9.353 2.92905 2.00 24.00 0.149 THEGENH 385 27.131 16.58898 1.00 120.00 0.845 N_HSDHH 385 2.137 0.53935 1.00 4.00 0.027 HSDGHA 348 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 ENAGENH 348 19.748 3.22845 17.00 31.00 0.173 PRAGENH 348 19.748 3.22845 17.00 31.00 0.173 PRAGENH 348 6.636 0.56753 5.50 8.00 0.030 YRACDNA 348 15.592 4.18631 7.00 31.00 0.227 THEGENH 348 6.636 0.56753 5.50 8.00 0.030 YRACDNA 348 15.592 4.18631 7.00 31.00 0.224 THEGENA 348 15.693 35.28197 0.00 100.00 1.8669	HSDGNC	114	88.596	31.92572	0.00	100.00	2.990
PRAGENC 114 33.767 3.04987 27.00 39.00 0.285 PAYGENC 114 6.008 0.09366 6.00 7.00 0.008 TRACDNC 114 14.258 2.90805 9.00 20.00 0.272 THEGENC 114 55.000 31.22627 1.00 120.00 2.924 N_HSDNC 114 1.008 0.09366 1.00 2.00 0.008 QUARTER 389 15.840 6.97679 1.00 27.00 0.353 HSDGHH 385 95.355 14.52712 0.00 100.00 0.740 AFQTHH 374 64.604 17.09624 24.00 98.00 0.884 ENAGEHH 385 19.732 1.59544 17.00 25.00 0.081 PRAGEHH 385 28.594 3.23908 20.00 42.00 0.165 PAYGRHH 385 5.266 0.74471 2.00 7.00 0.037 TRACCHH 385 9.353 2.92905 2.00 24.00 0.149 THEGENH 385 27.131 16.58898 1.00 120.00 0.845 N_HSDHH 385 2.137 0.53935 1.00 4.00 0.027 HSDGHA 348 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 ENAGEHA 348 19.748 3.22845 17.00 31.00 0.173 PRAGEHA 348 19.748 3.22845 17.00 31.00 0.173 PRAGEHA 348 6.636 0.56753 5.50 8.00 0.030 TRACCHA 348 15.592 4.18631 7.00 31.00 0.279 PAYGEHA 348 44.765 29.97601 1.00 120.00 1.669 M_HSDHA 348 1.063 0.24371 1.00 2.00 0.013 HSDGFC 356 84.269 35.28197 0.00 100.00 1.869	APQINC	67	57.761	20.92562	18.00	86.00	2.556
PAYGENC 114 6.008 0.09366 6.00 7.00 0.008 YEACDNC 114 14.258 2.90805 9.00 20.00 0.272 THEGENC 114 55.000 31.22627 1.00 120.00 2.924 N_HSDNC 114 1.008 0.09366 1.00 2.00 0.008 QUARTER 389 15.840 6.97679 1.00 27.00 0.353 HSDGHN 385 95.355 14.52712 0.00 100.00 0.740 AFQTHM 374 64.604 17.09624 24.00 98.00 0.884 ENAGEHN 385 19.732 1.59544 17.00 25.00 0.081 PRAGEHH 385 28.594 3.23908 20.00 42.00 0.165 PAYGRHH 385 5.266 0.74471 2.00 7.00 0.037 YEACTH 385 9.353 2.92905 2.00 24.00 0.149 THEGENH 385 27.131 16.58898 1.00 120.00 0.845 N_HSDHN 385 2.137 0.53935 1.00 4.00 0.027 HSDGHA 348 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 ENAGENA 348 19.748 3.22845 17.00 31.00 0.173 PRAGENA 348 35.150 5.21866 25.00 51.00 0.279 PAYGENA 348 15.592 4.18631 7.00 31.00 0.279 PAYGENA 348 44.765 29.97601 1.00 120.00 1.606 N_HSDHA 348 1.063 0.24371 1.00 2.00 0.013	ENAGENC	1 14	20.074	2.24124	17.00	27.00	0.209
TRACDNC 114 14.258 2.90805 9.00 20.00 0.272 TMEGENC 114 55.000 31.22627 1.00 120.00 2.924 M_HSDNC 114 1.008 0.09366 1.00 2.00 0.008 QUARTER 389 15.840 6.97679 1.00 27.00 0.353 HSDGHN 385 95.355 14.52712 0.00 100.00 0.740 AFQTHN 374 64.604 17.09624 24.00 98.00 0.884 ENAGEHN 385 19.732 1.59544 17.00 25.00 0.081 PRAGEHH 385 28.594 3.23908 20.00 42.00 0.165 PAYGRHH 385 5.266 0.74471 2.00 7.00 0.037 TRACTHH 385 9.353 2.92905 2.00 24.00 0.149 THEGENH 385 27.131 16.58898 1.00 120.00 0.845 M_HSDHH 385 2.137 0.53935 1.00 4.00 0.027 HSDGHA 348 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 ENAGENA 348 19.748 3.22845 17.00 31.00 0.173 PRAGENA 348 19.748 3.22845 17.00 31.00 0.173 PRAGENA 348 6.636 0.56753 5.50 8.00 0.030 TRACDNA 348 15.992 4.18631 7.00 31.00 0.224 THEGENA 348 44.765 29.97601 1.00 120.00 1.666 M_HSDHA 348 1.063 0.24371 1.00 2.00 0.013	PRAGENC	114	33.767	3.04987	27.00	39.00	0.285
THEGENC 114 55.000 31.22627 1.00 120.00 2.924 N_HSDNC 114 1.008 0.09366 1.00 2.00 0.008 QUARTER 389 15.840 6.97679 1.00 27.00 0.353 HSDGHH 385 95.355 14.52712 0.00 100.00 0.740 AFQTHH 374 64.604 17.09624 24.00 98.00 0.884 ENAGEHH 385 19.732 1.59544 17.00 25.00 0.081 PRAGEHH 385 28.594 3.23908 20.00 42.00 0.165 PAYGRHH 385 5.266 0.74471 2.00 7.00 0.037 TRACCHH 385 9.353 2.92905 2.00 24.00 0.149 THEGBHH 385 27.131 16.58898 1.00 120.00 0.845 N_HSDHA 348 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244	PAYGENC	1 14	6.008	0.09366	6.00	7.00	0.008
N_HSDNC 114 1.008 0.09366 1.00 2.00 0.008 QUARTER 389 15.840 6.97679 1.00 27.00 0.353 HSDGHM 385 95.355 14.52712 0.00 100.00 0.740 AFQTHM 374 64.604 17.09624 24.00 98.00 0.884 ENAGEHM 385 19.732 1.59544 17.00 25.00 0.081 PRAGEHM 385 28.594 3.23908 20.00 42.00 0.165 PAYGRHM 385 5.266 0.74471 2.00 7.00 0.037 YRACCHM 385 9.353 2.92905 2.00 24.00 0.149 THEGRHM 385 2.137 0.53935 1.00 120.00 0.845 N_HSDHM 385 2.137 0.53935 1.00 4.00 0.027 HSDGHA 348 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244	TRACDIC	114	14.258	2.90805	9.00	20.00	0.272
QUARTER 389 15.840 6.97679 1.00 27.00 0.353 HSDGHM 385 95.355 14.52712 0.00 100.00 0.740 AFQTHM 374 64.604 17.09624 24.00 98.00 0.884 ENAGEHM 385 19.732 1.59544 17.00 25.00 0.081 PRAGEHM 385 28.594 3.23908 20.00 42.00 0.165 PAYGRHM 385 5.266 0.74471 2.00 7.00 0.037 YRACDHM 385 9.353 2.92905 2.00 24.00 0.149 THEGRHM 385 27.131 16.58898 1.00 120.00 0.845 N_HSDHM 385 2.137 0.53935 1.00 4.00 0.027 HSDGHA 348 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 ENAGEMA 348 19.748 3.22845 17.00 31.00 0.173 PRAGEMA 348 35.150 5.21866 25.00 51.00 0.279 PAYGRMA 348 6.636 0.56753 5.50 8.00 0.030 YRACDMA 348 15.992 4.18631 7.00 31.00 0.224 THEGHA 348 15.992 4.18631 7.00 31.00 0.224 THEGHA 348 1.063 0.24371 1.00 2.00 0.013 HSDGFC 356 84.269 35.28197 0.00 100.00 1.869	THEGRNC	1 14	55.000	31.22627	1.00	120.00	2.924
HSDGHM 385 95.355 14.52712 0.00 100.00 0.740 AFQTHM 374 64.604 17.09624 24.00 98.00 0.884 ENAGEHM 385 19.732 1.59544 17.00 25.00 0.081 PRAGEHM 385 28.594 3.23908 20.00 42.00 0.165 PAYGRHM 385 5.266 0.74471 2.00 7.00 0.037 YRACCHM 385 9.353 2.92905 2.00 24.00 0.149 THEGRHM 385 27.131 16.58898 1.00 120.00 0.845 N_HSDHM 385 2.137 0.53935 1.00 4.00 0.027 HSDGHA 348 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 ENAGEHA 348 19.748 3.22845 17.00 31.00 0.173 PRAGEHA 348 35.150 5.21866 25.00 51.00 0.279 PAYGRHA 348 6.636 0.56753 5.50 8.00 0.030 YRACCHA 348 15.992 4.18631 7.00 31.00 0.224 THEGRHA 348 44.765 29.97601 1.00 120.00 1.606 N_HSDHA 348 1.063 0.24371 1.00 2.00 0.013 HSDGPC 356 84.269 35.28197 0.00 100.00 1.869	N_HSDNC	1 14	1.008	0.09366	1.00	2.00	0.008
AFQTHM 374 64.604 17.09624 24.00 98.00 0.884 ENAGEHN 385 19.732 1.59544 17.00 25.00 0.081 PRAGEHN 385 28.594 3.23908 20.00 42.00 0.165 PAYGRHN 385 5.266 0.74471 2.00 7.00 0.037 YRACCHN 385 9.353 2.92905 2.00 24.00 0.149 THEGBHN 385 27.131 16.58898 1.00 120.00 0.845 N_HSDHN 385 2.137 0.53935 1.00 4.00 0.027 HSDGNA 348 97.270 16.09649 0.00 100.00 0.862 AFQTNA 272 61.716 20.51902 22.00 95.00 1.244 ENAGENA 348 19.748 3.22845 17.00 31.00 0.173 PRAGENA 348 35.150 5.21866 25.00 51.00 0.279 PAYGRNA 348 6.636 0.56753 5.50 8.00 0.030 YRACCNA 348 15.592 4.18631 7.00 31.00 0.224 THEGBNA 348 44.765 29.97601 1.00 120.00 1.606 N_HSCNA 348 1.063 0.24371 1.00 2.00 0.013 HSDGPC 356 84.269 35.28197 0.00 100.00 1.869	QUARTER	389	15.840	6.97679	1.00	27.00	0.353
ENAGEHM 385 19.732 1.59544 17.00 25.00 0.081 PRAGEHM 385 28.594 3.23908 20.00 42.00 0.165 PATGRHM 385 5.266 0.74471 2.00 7.00 0.037 TRACCHM 385 9.353 2.92905 2.00 24.00 0.149 THEGRHM 385 27.131 16.58898 1.00 120.00 0.845 N_HSDHM 385 2.137 0.53935 1.00 4.00 0.027 HSDGMA 348 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 ENAGEMA 348 19.748 3.22845 17.00 31.00 0.173 PRAGEMA 348 35.150 5.21866 25.00 51.00 0.279 PATGRMA 348 6.636 0.56753 5.50 8.00 0.030 TRACCMA 348 15.592 4.18631 7.00 31.00 0.224 THEGRMA 348 44.765 29.97601 1.00 120.00 1.606 N_HSDMA 348 1.063 0.24371 1.00 2.00 0.013 HSDGPC 356 84.269 35.28197 0.00 100.00 1.869	HSDGHM	385	95.355	14.52712	0.00	100.00	0.740
PRAGEHM 385 28.594 3.23908 20.00 42.00 0.165 PAYGRHM 385 5.266 0.74471 2.00 7.00 0.037 YRACCHM 385 9.353 2.92905 2.00 24.00 0.149 TMEGRHM 385 27.131 16.58898 1.00 120.00 0.845 M_HSDHM 385 2.137 0.53935 1.00 4.00 0.027 HSDGHA 348 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 ENAGEHA 348 19.748 3.22845 17.00 31.00 0.173 PRAGEHA 348 35.150 5.21866 25.00 51.00 0.279 PAYGHA 348 6.636 0.56753 5.50 8.00 0.030 YRACDMA 348 15.992 4.18631 7.00 31.00 0.224 THEGRHA 348 44.765 29.97601 1.00 120.00 1.606 <t< td=""><td>AFQTHM</td><td>374</td><td>64.604</td><td>17.09624</td><td>24.00</td><td>98.00</td><td>0.884</td></t<>	AFQTHM	374	64.604	17.09624	24.00	98.00	0.884
PAYGRHM 385 5.266 0.74471 2.00 7.00 0.037 YRACCHM 385 9.353 2.92905 2.00 24.00 0.149 TMEGBHM 385 27.131 16.58898 1.00 120.00 0.845 N_HSDHM 385 2.137 0.53935 1.00 4.00 0.027 HSDGHA 348 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 ENAGENA 348 19.748 3.22845 17.00 31.00 0.173 PRAGENA 348 35.150 5.21866 25.00 51.00 0.279 PAYGRHA 348 6.636 0.56753 5.50 8.00 0.030 YRACDHA 348 15.592 4.18631 7.00 31.00 0.224 TMEGBHA 348 44.765 29.97601 1.00 120.00 1.606 N_HSDHA 348 1.063 0.24371 1.00 2.00 0.013	en a g p h m	385	19.732	1.59544	17.00	25.00	0.081
TRACTHE 385 9.353 2.92905 2.00 24.00 0.149 THEGBHH 385 27.131 16.58898 1.00 120.00 0.845 N_HSDHH 385 2.137 0.53935 1.00 4.00 0.027 HSDGBA 348 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 ENAGEHA 348 19.748 3.22845 17.00 31.00 0.173 PRAGEHA 348 35.150 5.21866 25.00 51.00 0.279 PAYGRHA 348 6.636 0.56753 5.50 8.00 0.030 YRACDMA 348 15.992 4.18631 7.00 31.00 0.224 THEGBHA 348 44.765 29.97601 1.00 120.00 1.606 N_HSDHA 348 1.063 0.24371 1.00 2.00 0.013 HSDGPC 356 84.269 35.28197 0.00 100.00 1.869 <td>PRAGEHM</td> <td>385</td> <td>28.594</td> <td>3.23908</td> <td>20.00</td> <td>42.00</td> <td>0.165</td>	PRAGEHM	385	28.594	3.23908	20.00	42.00	0.165
THEGRHM 385 27.131 16.58898 1.00 120.00 0.845 N_HSDHM 385 2.137 0.53935 1.00 4.00 0.027 HSDGNA 348 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 ENAGENA 348 19.748 3.22845 17.00 31.00 0.173 PRAGENA 348 35.150 5.21866 25.00 51.00 0.279 PAYGRNA 348 6.636 0.56753 5.50 8.00 0.030 YRACDNA 348 15.992 4.18631 7.00 31.00 0.224 THEGRNA 348 44.765 29.97601 1.00 120.00 1.606 N_HSDNA 348 1.063 0.24371 1.00 2.00 0.013 HSDGPC 356 84.269 35.28197 0.00 100.00 1.869	PAYGRHM	385	5.266	0.74471	2.00	7.00	0.037
N_HSDHM 385 2.137 0.53935 1.00 4.00 0.027 HSDGMA 348 97.270 16.09649 0.00 100.00 0.862 AFQTMA 272 61.716 20.51902 22.00 95.00 1.244 ENAGEMA 348 19.748 3.22845 17.00 31.00 0.173 PRAGEMA 348 35.150 5.21866 25.00 51.00 0.279 PAYGRMA 348 6.636 0.56753 5.50 8.00 0.030 YRACDMA 348 15.992 4.18631 7.00 31.00 0.224 THEGRMA 348 44.765 29.97601 1.00 120.00 1.606 N_HSDMA 348 1.063 0.24371 1.00 2.00 0.013 HSDGPC 356 84.269 35.28197 0.00 100.00 1.869	YRACDHE	385	9.353	2.92905	2.00	24.00	0.149
HSDGHA 348 97.270 16.09649 0.00 100.00 0.862 AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 ENAGENA 348 19.748 3.22845 17.00 31.00 0.173 PRAGENA 348 35.150 5.21866 25.00 51.00 0.279 PAYGRHA 348 6.636 0.56753 5.50 8.00 0.030 YRACDNA 348 15.992 4.18631 7.00 31.00 0.224 THEGRHA 348 44.765 29.97601 1.00 120.00 1.606 N_HSDMA 348 1.063 0.24371 1.00 2.00 0.013 HSDGPC 356 84.269 35.28197 0.00 100.00 1.869	THEGRHH	385	27.131	16.58898	1.00	120.00	0.845
AFQTHA 272 61.716 20.51902 22.00 95.00 1.244 ENAGENA 348 19.748 3.22845 17.00 31.00 0.173 PRAGENA 348 35.150 5.21866 25.00 51.00 0.279 PAYGENA 348 6.636 0.56753 5.50 8.00 0.030 YRACDMA 348 15.992 4.18631 7.00 31.00 0.224 THEGENA 348 44.765 29.97601 1.00 120.00 1.606 N_HSDMA 348 1.063 0.24371 1.00 2.00 0.013 HSDGPC 356 84.269 35.28197 0.00 100.00 1.869	N_HSDHM	385	2.137	0.53935	1.00	4.00	0.027
ENAGENA 348 19.748 3.22845 17.00 31.00 0.173 PRAGENA 348 35.150 5.21866 25.00 51.00 0.279 PAYGHNA 348 6.636 0.56753 5.50 8.00 0.030 YRACDNA 348 15.992 4.18631 7.00 31.00 0.224 THEGHNA 348 44.765 29.97601 1.00 120.00 1.606 N_HSDNA 348 1.063 0.24371 1.00 2.00 0.013 HSDGPC 356 84.269 35.28197 0.00 100.00 1.869	HSDG HA	348	97.270	16.09649	0.00	100.00	0.862
PRAGENA 348 35.150 5.21866 25.00 51.00 0.279 PATGRHA 348 6.636 0.56753 5.50 8.00 0.030 YRACDNA 348 15.992 4.18631 7.00 31.00 0.224 THEGRHA 348 44.765 29.97601 1.00 120.00 1.606 N_HSDMA 348 1.063 0.24371 1.00 2.00 0.013 HSDGPC 356 84.269 35.28197 0.00 100.00 1.869	AFQTHA	272	61.716	20.51902	22.00	95.00	1.244
PAYGRMA 348 6.636 0.56753 5.50 8.00 0.030 YRACDMA 348 15.992 4.18631 7.00 31.00 0.224 THEGRMA 348 44.765 29.97601 1.00 120.00 1.606 N_HSDMA 348 1.063 0.24371 1.00 2.00 0.013 HSDGPC 356 84.269 35.28197 0.00 100.00 1.869	enagena	348	19.748	3.22845	17.00	31.00	0.173
TRACDMA 348 15.992 4.18631 7.00 31.00 0.224 THEGRMA 348 44.765 29.97601 1.00 120.00 1.606 N_HSDMA 348 1.063 0.24371 1.00 2.00 0.013 HSDGPC 356 84.269 35.28197 0.00 100.00 1.869	PRAGENA	348	35.150	5.21866	25.00	51.00	0.279
THEGRHA 348 44.765 29.97601 1.00 120.00 1.606 N_HSDMA 348 1.063 0.24371 1.00 2.00 0.013 HSDGPC 356 84.269 35.28197 0.00 100.00 1.869	PAYGRMA	348	6.636	0.56753	5.50	8.00	0.030
N_HSDMA 348 1.063 0.24371 1.00 2.00 0.013 HSDGPC 356 84.269 35.28197 0.00 100.00 1.869	YRACDMA	348	15.992	4.18631	7.00	31.00	0.224
HSDGPC 356 84.269 35.28197 0.00 100.00 1.869	THEGRHA	348	44.765	29.97601	1.00	120.00	1.606
	N_HSDMA	348	1.063	0.24371	1.00	2.00	0.013
57	HSDGPC	356	84.269	35.28197	0.00	100.00	1.869
				57			

AFQTPC	3 26	46.C82	19.88647	13.00	88.00	1.101
ENAGEPC	356	19.931	2.17771	17.00	30.00	0.115
PRAGEPC	356	26.592	4.71585	19.00	41.00	0.249
PAYGRPC	356	4.449	0.87306	2.00	6.00	0.046
YRACDPC	356	7.188	4.22481	1.00	18.00	0.223
THEGRPC	356	23.369	22.73486	1.00	100.00	1.204
N_HSDPC	356	1.087	0.28235	1.00	2.00	0.014
HSDGPN	386	92.556	17.63064	0.00	100.00	0.897
APQTEN	384	65.332	10.42854	39.00	93.00	0.532
en a g ep n	386	19.990	2.06279	17.00	29.00	0.104
PRAGEFN	386	26.479	3.57347	18.00	37.00	0.181
PAYGRPN	386	4.475	0.85511	1.00	7.00	0.043
YRACDEN	386	6.555	3.00867	1.00	16.00	0.153
THEGRPN	386	18.165	12.87476	1.00	85.00	0.655
n_HSDP n	386	2.367	0.70942	1.00	5.00	0.036
HSDGYN	387	92.994	13.14743	33.00	100.00	0.668
APQTYN	387	55.202	11.01104	24.00	79.00	0.559
en a g ey n	387	19.020	1.09560	17.00	23.00	0.055
PRAGEYN	387	22.771	2.08188	18.00	29.00	0.105
PAYGRYN	387	3.762	0.54613	2.00	5.00	0.027
YRACDYN	387	3.542	1.22902	1.00	9.00	0.062
THEGRYN	387	10.116	5.02565	1.00	34.00	0.255
n_HSDY N	387	4.565	0.96180	1.00	8.00	0.048
HSDGEXC	387	92.622	7.14921	70.00	100.00	0.363
APQTEXC	387	59.071	7.79602	37.00	83.00	0.396
en a gee x c	387	19.033	0.79435	17.00	22.00	0.040
PRAGEEXC	387	25.645	2.27967	18.00	32.00	0.115
PAYGREXC	387	4.444	0.60451	2.00	6.00	0.030
YRACDEXC	387	5.480	2.01040	1.00	11.00	0.102
THEGREXC	387	14.175	5.70168	5.00	37.00	0.289
N_HSDEXC	387	11.307	1.57244	1.00	17.00	0.079
HSDGBM	387	77.193	14.57715	28.00	100.00	0.740
AFQTEM	386	45.621	8.81149	22.00	68.00	0.448
ENAGEBE	387	19.047	0.88359	18.00	24.00	0.044
PRAGEEM	387	25.732	2.39687	21.00	35.00	0.121

PAYGRBE	387	4.440	0.54257	3.50	7.00	0.027
YRACCEM	387	6.000	1.94083	3.00	17.00	0.098
Thegrbn	387	13.624	6.33469	2.00	46.00	0.322
N_HSCB#	387	9.428	2.48456	1.00	18.00	0.126
HSDGOS	388	89.286	7.70872	64.00	100.00	0.391
AFQTCS	388	69.921	5.43730	58.00	86.00	0.276
ENAGEOS	388	18.600	0.70486	18.00	22.00	0.035
PRAGEOS	388	22.393	1.13928	20.00	27.00	0.057
PAYGROS	388	3.984	0.49652	3.00	5.00	0.025
YRACDOS	388	3.472	0.69134	1.00	6.00	0.035
TMEGROS	388	10.324	3.14572	1.00	21.00	0.159
N_HSDOS	388	17.943	3.32353	1.00	28.00	0.168
HS D G Q M	387	86.183	15.20601	0.00	100.00	0.772
AFQTQH	387	60.475	10.99778	35.00	91.00	0.513
en a g eq m	387	18.825	0.96234	17.00	23.00	0.048
PRAGEQN	387	22.675	1.88225	18.00	29.00	0.095
PAYGRQM	387	3.859	0.54124	2.00	5.50	0.027
YRACDQH	387	3.680	0.98346	1.00	7.00	0.049
Thegrom	387	10.379	4.56464	1.00	26.00	0.232
N_HSDQH	387	5.359	1.32637	1.00	9.00	0.067
HSDGRM	386	92.489	6.84531	70.00	100.00	0.348
APQTRE	386	56.615	5.85421	39.50	78.0C	0.297
en a ger m	386	18.466	0.67336	18.00	21.00	0.034
PRAGERM	386	22.970	1.45799	20.50	27.50	0.074
PAYGRRM	386	4.156	0.45088	3.00	5.00	0.022
TRACDRM	386	4.290	1.02184	2.00	8.00	0.052
THEGREM	386	12.917	5.06307	3.00	44.00	0.257
N_HSDR#	386	12.450	1.56385	8.00	18.00	0.079
HSDGSM	386	73.266	17.87805	16.00	100.00	0.909
APQTSE	386	58.170	9.65808	32.00	86.00	0.491
en a g e s e	386	18.511	0.83541	17.00	22.00	0.042
PRAGESM	386	22.168	1.74107	19.00	32.00	0.088
PAYGRSH	386	3.713	0.68683	1.00	5.50	0.034
YR A C DS H	386	3.674	1.11186	1.50	10.00	0.056
THEGRAM	386	9.902	4.08183	2.00	25.00	0.207

N_H SDS M	386	5.305	1.09536	2.00	8.00	0.055
HSDGOPS	388	85.693	5.49007	66.00	100.00	0.278
AFQTCPS	388	57.936	4.82315	32.00	75.00	0.244
ENAGEOPS	388	18.654	0.46927	18.00	20.00	0.023
PRAGEOPS	388	22.903	0.92220	20.00	25.00	0.046
PAYGEOPS	388	4.076	0.26902	3.00	5.00	0.013
TRACDOPS	388	4.020	0.54354	1.00	7.00	0.027
THEGROPS	388	10.807	2.58971	1.00	22.00	0.131
N_HSDOPS	388	50.358	6.17597	1.00	64.00	0.313
HSDGDS	387	99.152	3.95637	71.00	100.00	0.201
APQTDS	387	82.602	8.64254	55.00	97.00	0.439
ENAGEDS	387	18.764	0.79929	18.00	22.00	0.040
PRAGEDS	387	23.928	1.85434	21.00	31.00	0.094
PATGEDS	387	4.904	0.36157	4.00	7.00	0.018
TRACDDS	387	5.087	1.23791	2.50	12.00	0.062
TMEGRDS	387	20.346	5.91621	7.50	43.00	0.300
N_HSDDS	387	6.819	1.08849	1.00	12.00	0.055
HSDGET	385	99.124	3.42023	75.00	100.00	0.174
APQTET	385	83.687	6.24104	66.00	95.50	0.318
enageet	385	18.736	0.75604	17.50	21.50	0.038
PRAGEET	385	25.836	4.04280	21.00	38.00	0.206
PAYGRET	385	5.067	0.88129	4.00	8.00	0.044
YRACDET	385	7.123	4.09185	3.00	21.00	0.208
THEGRET	385	24.674	18.09155	2.00	103.00	0.922
N_HSDET	385	8.592	3.70704	1.00	16.00	0.188
HSDGET2	388	98.865	3.06140	88.00	100.00	0.155
AFQTET 2	388	82.997	5.25930	67.50	95.50	0.267
ENAGEET2	388	18.730	0.73945	17.50	21.50	0.037
PRAGEET2	388	23.572	1.41830	19.50	29.00	0.072
PAYGBET2	388	4.618	0.45621	4.00	6.00	0.023
YRACDET 2	388	4.682	0.86192	2.00	9.00	0.043
THEGRET2	388	18.951	5.81777	2.00	40.00	0.295
N_HSDET2	388	11.079	2.10851	1.00	21.00	0.107
HSDGETN	115	98.826	5.41483	66.00	100.00	0.504
APQTETN	115	79.517	8.13184	66.00	95.50	0.758

enageetn	1 15	19.178	1.15885	17.50	22.50	0.108
PRAGEETN	1 15	22.630	1.50596	19.50	26.00	0.140
PAYGRETN	115	4.330	0.53347	3.00	5.00	0.049
YRACDETE	1 15	3.760	1.03098	2.00	6.50	0.096
THEGRETN	115	20.656	7.76699	2.00	40.00	0.724
N_HSDETN	115	4.460	2.04033	1.00	11.00	0.190
HSDGETR	114	97.798	6.21471	75.00	100.00	0.582
APQTETR	1 14	80.991	6.89683	58.00	94.00	0.645
enageetr	114	18.868	0.98001	17.50	22.00	0.091
PRAGEETR	114	22.307	1.25245	19.00	26.00	0.117
PAYGRETR	114	4.359	0.48202	3.00	5.00	0.045
YRACDETR	114	3.815	1.07519	2.00	7.50	0.100
THEGRETR	1 14	17.188	10.50966	2.00	67.50	0.984
N_HSDETR	114	4.192	1.69788	1.00	11.00	0.159
HSDGEW	354	96.412	9.24513	50.00	100.00	0.491
APQTEW	349	81.514	8.23190	55.00	97.00	0.440
ENAGEEW	354	19.423	1.19896	17.50	24.0C	0.063
PRAGEEW	354	24.461	2.33870	19.50	33.00	0.124
PAYGREW	354	4.819	0.50192	3.00	6.00	0.026
TRACDEW	354	5.080	1.67717	2.00	13.00	0.089
THEGREW	3 54	18.610	8.10094	2.00	56.00	0.430
N_HSCEW	354	4.155	1.22585	1.00	9.00	0.065
HSDGFTG	386	94.717	9.04106	55.00	100.00	0.460
APQTFTG	386	80.777	7.50305	60.00	96.00	0.381
enageftg	386	18.822	0.82666	17.50	22.00	0.042
PRAGEFTG	386	23.318	1.75463	20.00	29.50	0.089
PAYGRFTG	386	4.643	0.53396	3.00	6.00	0.027
YRACDFTG	386	4.652	1.28879	2.00	9.50	0.065
THEGRPTG	386	17.453	6.86941	2.00	37.00	0.349
N_HSDFTG	386	6.966	2.19478	2.00	15.00	0.111
H SDG FT H	369	96.913	7.25341	66.00	100.00	0.377
APQTFTH	369	75.338	7.32989	51.00	97.00	0.381
ENAGEPTH	3 69	18.704	0.93803	17.00	23.00	0.048
PRAGEFTM	369	22.521	1.40441	18.00	28.50	0.073
PAYGRITH	369	4.226	0.54263	2.00	6.00	0.028

YRACCPTH	369	4.025	1.11073	1.00	12.00	0.057
THEGRPTH	369	17.124	7.03297	1.00	44.50	0.366
N_HSDPTM	369	. 6.344	1.93037	1.00	12.00	0.100
HSDGGMG	386	81.777	15.49334	20.00	100.00	0.788
AFQTGMG	386	62.306	9.62530	44.50	91.00	0.489
ena geg hg	386	18.808	0.90570	17.00	23.00	0.046
PRAGEGEG	386	24.229	2.61810	19.00	33.00	0.133
PAYGRGEG	386	4.619	0.66940	3.00	6.00	0.034
YRACDGMG	386	5.435	2.09909	2.00	13.50	0.106
THEGRGEG	386	14.003	5.46969	2.00	32.00	0.278
N_HSDGMG	386	7.235	1.73695	2.00	12.00	0.088
HSDGGMT	386	83.611	18.75583	33.00	100.00	0.954
AFQTGMT	385	62.206	10.31923	26.00	93.50	0.525
ENAGEGET	386	18.602	1.42264	17.00	26.00	0.072
PRAGEGET	386	23.358	3.06151	18.00	32.50	0.155
PAYGEGHT	386	4.405	0.69656	2.50	6.00	0.035
TRACDGHT	386	4.672	2.35449	2.00	16.00	0.119
THEGRGNT	386	14.415	11.65934	2.00	115.0C	0.593
n_HSDGMT	386	4.160	1.26084	1.00	8.00	0.064
HSDGGHH	363	91.517	20.10131	0.00	100.00	1.055
AFQTGHH	355	65.415	11.57132	35.00	96.00	0.614
ENAGEGNN	363	18.973	1.35282	17.00	22.50	0.071
PRAGEGNN	363	23.396	2.75565	18.00	36.00	0.144
PAYGRGHE	363	4.165	0.79897	. 2.00	6.00	0.041
TRACDGMM	363	4.720	2.23907	1.00	15.00	0.117
Thegran	363	15.792	13.34012	1.00	100.00	0.700
n_HSCGMM	363	2.451	1.06151	1.00	6.00	0.055
H SDG STG	386	94.567	5.91295	77.00	100.00	0.300
AFQTSTG	386	77.764	4.83670	64.50	90.00	0.246
ENAGESTG	386	18.661	0.59898	18.00	20.00	0.030
PRAGESTG	386	22.423	0.89515	21.00	26.00	0.045
PAYGRSTG	386	4.182	0.37059	3.00	5.00	0.018
YRACDSTG	386	3.778	0.70676	2.00	6.50	0.035
THEGRSTG	386	14.550	3.72958	3.00	27.00	0.189
N_HSDSTG	386	17.608	2.14532	10.00	24.00	0.109

HSDGTH	385	85.680	21.66228	0.00	100.00	1.104
APQTTH	380	47.119	11.28648	16.00	91.00	0.578
ENAGETH	385	18.462	1.30024	17.00	25.00	0.066
PRAGETM	385	22.122	3.54280	18.00	46.00	0.180
PAYGETM	385	3.690	0.78349	1.00	6.00	0.039
YRACDTH	385	4.053	2.73202	1.00	21.00	0.139
Thegeth	380	12.573	12.41392	1.00	97.00	0.636
N_HSCTM	385	2.296	0.85733	1.00	5.00	0.043
HSDGCHB	388	93.229	2.81496	87.00	100.00	0.142
AFQTCMB	388	76.694	3.68654	67.00	94.00	0.187
ENAGECHE	388	18.590	0.50024	17.00	20.00	0.025
PRAGECME	388	22.907	0.75081	19.00	26.00	0.038
PAYGECHE	388	4.512	0.48872	4.00	5.00	0.024
TRACECHB	388	4.213	0.57790	2.00	6.00	0.029
THEGRCHE	388	15.712	2.67161	8.00	26.00	0.135
n_HSDCMB	388	68.064	9.02414	3.00	85.00	0.458
HSDGHH	59	94.915	22.15719	0.00	100.00	2.884
apq thm	51	81.686	13.06712	25.00	96.00	1.829
ENAGEMM	59	19.076	1.77340	17.00	24.00	0.230
PRAGEMM	59	22.237	4.13704	18.00	30.00	0.538
PAYGRME	59	4.364	0.79237	2.00	7.00	0.103
TRACDEM	59	3.635	2.93732	1.00	12.00	0.382
Theg ban	59	9.847	7.70538	1.00	34.00	1.003
n_HSDHH	59	4.355	8.35786	1.00	58.00	1.088
HSDGENG	386	89.145	3.89868	79.00	100.00	0.198
APQTENG	386	66.446	3.87957	58.00	80.00	0.197
en a greng	386	18.595	0.48471	18.00	19.50	0.024
PRAGEENG	386	22.567	0.76064	20.50	25.00	0.038
PAYGRENG	386	4.195	0.38808	4.00	5.00	0.019
YRACDENG	386	4.034	0.53154	3.00	7.00	0.027
THEGRENG	386	13.226	3.03183	6.00	25.00	0.154
n_HSDENG	386	59.181	7.32782	14.00	73.00	0.372
HSDGCK	385	93.228	18.63827	0.00	100.00	0.949
APQTCK	373	51.643	15.86621	12.00	93.00	0.821
ENAGEDK	385	20.238	1.79700	17.50	26.00	0.091

PRAGEDK	385	27.902	4.12282	20.00	39.00	0.210
PAYGRDK	385	4.767	0.80193	1.00	7.00	0.040
YRACDDK	385	8.101	3.62843	1.00	22.00	0.184
THEGRDK	385	26.751	21.18170	1.00	120.00	1.079
N_HSDDK	385	1.828	0.58338	1.00	3.00	0.029
HSDGHS	386	82.152	9.64728	50.00	100.00	0.491
APQTES	386	44.760	8.25166	13.50	62.00	0.419
en a gem s	386	19.611	1.10924	18.00	23.00	0.056
PRAGEMS	386	26.432	3.35003	20.00	36.00	0.170
PAYGRMS	386	4.160	0.46443	2.50	5.00	0.023
YRACDHS	386	6.097	2.66756	2.00	16.00	0.135
THEGRMS	386	15-370	6.09546	1.00	49.00	0.310
N_H SDMS	386	12.217	1.89169	6.00	17.00	0.096
HSDGSH	386	82.670	15.69277	25.00	100.00	0.798
AFQTSH	386	46.287	8.82765	19.00	76.00	0.449
ENAGESH	386	19.707	1.36222	17.50	26.00	0.069
PRAGESH	386	24.606	2.63229	19.00	32.50	0.133
PAYGRSH	386	4.036	0.62521	2.50	6.00	0.031
YRACDSH	386	4.672	1.84763	1.50	12.00	0.094
THEGRSH	386	12.796	6.05500	1.00	43.00	0.308
N_HSDSH	386	5.924	1.52283	2.00	11.00	0.077
HSDGSK	386	87.525	14.49839	33.00	100.00	0.737
AFQTSK	386	52.652	10.02820	24.00	75.00	0.510
EN A G E SK	386	19.567	1.31598	17.00	24.50	0.066
PRAGESK	386	26.167	3.12945	19.00	35.00	0.159
PAYGRSK	386	4.501	0.69926	3.00	6.00	0.035
YRACDSK	386	5.744	2.53347	1.50	16.00	0.128
THEGRSK	386	15.533	8.91170	2.00	73.00	0.453
N_HSDSK	386	5.896	1.43233	3.00	10.00	0.072
HSDGSUP	386	84.163	6.66776	60.00	100.00	0.339
AFQTSUP	386	47.665	4.98293	35.00	60.50	0.253
EN A GE SUP	386	19.492	0.79115	18.00	22.00	0.040
PRAGESUP	386	25.625	1.99945	21.00	31.00	0.101
PAYGRSUP	386	4.200	0.44045	3.00	5.00	0.022
YRACDSUP	386	5.126	1.63229	2.00	10.00	0.083

THEGRSUP	386	13.905	4.10093	5.00	32.50	0.208
N_HSDSUF	386	25.862	3.40806	12.00	37.00	0.173
HSDGSR	3 7 5	65.181	24.65840	0.00	100.00	1.273
AFQTSR	371	50.320	9.64230	21.00	82.00	0.500
ENAGES R	3 7 5	18.310	0.78600	17.00	23.00	0.040
PRAGESR	3 7 5	19.460	0.92340	17.00	25.00	0.047
PAYGRSR	3 7 5	1.000	0.00000	1.00	1.00	0.000
YRACDSR	3 7 5	1.486	0.57332	1.00	3.50	0.029
THEGRSR	365	5.893	2.79881	1.00	19.00	0.146
n_HSCSR	3 7 5	6.856	4.18113	1.00	21.00	0.215
HSDGSA	387	72.718	15.23310	0.00	100.00	0.774
AFQTSA	387	48.807	6.70761	30.50	67.00	0.340
ENAGESA	387	18.529	0.59881	17.00	21.00	0.030
PRAGESA	387	19.918	0.71383	18.00	24.00	0.036
PAYGRSA	387	2.000	0.00000	2.00	2.00	0.000
YRACDSA	387	1.803	0.47359	1.00	3.00	0.024
TMEGRSA	387	6.910	3.19677	1.00	22.00	0.162
N_HSDSA	387	14.560	5.95869	2.00	43.00	0.302
HSDGSN	387	81.981	12.82554	41.00	100.00	0.651
AFQTSN	387	50.135	6.31485	32.50	74.00	0.321
ENAGES N	387	18.817	0.80784	17.50	22.50	0.041
PRAGESN	387	21.147	0.93244	19.00	24.00	0.047
PAYGRSN	387	3.000	0.00000	3.00	3.00	0.000
YRACDSN	387	2.586	0.56758	1.00	4.00	0.028
THEGRSN	386	8.527	3.23313	1.00	18.00	0.164
n_HSDSN	387	16.516	5.12553	2.00	33.00	0.260
HSDGFR	298	50.510	36.88359	0.00	100.00	2.136
AFQTFR	287	49.707	10.10953	15.00	82.00	0.596
ENAGEFR	298	18.414	1.11776	17.00	25.00	0.064
PRAGETR	298	19.614	1.29571	17.00	26.00	0.075
PAYGRER	298	1.000	0.00000	1.00	1.00	0.000
YRACDFR	298	1.644	0.77480	1.00	6.00	0.044
THEGEPR	275	6.849	5.22469	1.00	41.00	0.315
W_HSDFR	298	2.748	1.86959	1.00	9.00	0.108
HSDGFA	379	67.411	25.66872	0.00	100.00	1.318

APQTFA	376	48.531	9.97726	21.00	75.00	0.514
ENAGEFA	379	18.503	0.84632	17.00	24.00	0.043
PRAGEFA	3 7 9	20.022	1.03390	18.00	26.0C	0.053
PAYGRFA	3 7 9	2.000	0.00000	2.00	2.00	0.000
YRACDFA	3 7 9	1.978	0.67716	1.00	4.00	0.034
TMEGRFA	3 7 9	8.201	5.24488	1.00	33.00	0.269
N_HSCFA	3 7 9	5.514	3.18423	1.00	23.00	0.163
HSDGFN	383	74.827	21.14996	0.00	100.00	1.080
APQTFN	381	50.108	8.83120	22.00	73.00	0.452
ENAGEFN	383	18.822	0.95367	17.00	25.00	0.048
PRAGEFN	383	21.011	1.13741	19.00	27.00	0.058
PAYGREN	383	3.000	0.00000	3.00	3.00	0.000
YRACDFN	383	2.652	0.60390	1.00	4.00	0.030
TMEGRPN	383	8.134	3.95668	1.00	20.00	0.202
N_HSCFN	383	6.558	2.88725	1.00	19.00	0.147
UIC	389	591.239	10.65929	574.00	611.00	0.540
UICEFF01	388	-0.023	0.34021	-1.00	1.00	0.017
UICEFF02	388	-0.020	0.34415	-1.00	1.00	0.017
UICEFF03	388	-0.018	0.34802	-1.00	1.00	0.017
UICEFF04	388	-0.015	0.35184	-1.00	1.00	0.017
UICEFF05	388	-0.015	0.35184	-1.00	1.00	0.017
UICEFF06	388	-0.020	0.34415	-1.00	1.00	0.017
UICEFF07	388	-0.018	0.34802	-1.00	1.00	0.017
UICEFF08	388	-0.015	0.35184	-1.00	1.00	0.017
UICEFF09	388	-0.012	0.35560	-1.00	1.00	0.018
UICEFF10	388	-0.010	0.35929	-1.00	1.00	0.018
UICEFF 11	388	-0.007	0.36294	-1.00	1.00	0.018
UICEFF12	388	0.000	0.37354	-1.00	1.00	0.018
UICEFF 13	388	-0.C05	0.36652	-1.00	1.00	0.018
UICEFF14	388	0.000	0.37354	-1.00	1.00	0.018
UICEFF 15	388	0.000	0.37354	-1.00	1.00	0.018
UICEFF16	388	0.000	0.37354	-1.00	1.00	0.018
OVERHAUL	388	0.203	0.40320	0.00	1.00	0.020
AUTHRE9	388	1.000	0.00000	1.00	1.00	0.000
ASSGNE9	388	0.000	0.00000	0.00	0.00	0.000

PILLRE9	388	0.000	0.00000	0.00	0.00	0.000
AUTERHM	388	2.000	0.00000	2.00	2.00	0.000
ASSG NH M	388	2.121	0.56903	0.00	4.00	0.028
FILLRHM	388	106.056	28.45127	0.00	200.00	1.444
AUTHRMA	388	1.000	0.00000	1.00	1.00	0.000
ASSGNMA	388	0.953	0.39755	0.00	2.00	0.020
PILLRMA	388	95.360	39.75537	0.00	200.00	2.018
AUTHRNC	388	1.000	0.00000	1.00	1.00	0.000
ASSGNNC	388	0.296	0.46287	0.00	2.00	0.023
PILLRNC	388	29.639	46.28720	0.00	200.00	2.349
AUTHEPC	388	1.000	0.00000	1.00	1.00	0.000
ASSGNPC	388	0.997	0.40347	0.00	2.00	0.020
FILIBPC	388	99.742	40.34650	0.00	200.00	2.048
AUTHRPN	388	2.000	0.00000	2.00	2.00	0.000
ASSGNEN	388	2.355	0.72767	0.00	5.00	0.036
FILLRPN	388	117.783	36.38347	0.00	250.00	1.847
AUTHRYN	388	5.000	0.00000	5.00	5.00	0.000
ASSGNYN	388	4.554	0.98813	0.00	8.00	0.050
FILLRYN	388	91.082	19.76250	0.00	160.00	1.003
AUTHREXC	388	13.000	0.00000	13.00	13.00	0.000
ASSGNEXC	388	11.278	1.67204	0.00	17.0C	0.084
FILLREXC	388	86.742	12.87052	0.00	130.79	0.653
AUTHEBM	388	11.000	0.00000	11.00	11.00	0.000
ASSGNBM	388	9.404	2.52710	0.00	18.00	0.128
PILLRBM	388	85.482	22.98931	0.00	163.59	1.167
AUTHROS	388	25.162	0.67966	25.00	28.00	0.034
ASSG NOS	388	17.943	3.32353	1.00	28.00	0.168
FILLROS	388	71.347	13.21283	3.59	112.00	0.670
AUTHRQM	388	5.000	0.00000	5.00	5.00	0.000
ASSGNQH	388	5.345	1.35231	0.00	9.00	0.068
FILLECM	388	106.907	27.04617	0.00	180.00	1.373
AUTHRRM	388	13.000	0.00000	13.00	13.00	0.000
ASSGNRM	388	12.386	1.79722	0.00	18.00	0.091
PILLBRM	388	95.275	13.83530	0.00	138.50	0.702
AUTHRSM	388	6.000	0.00000	6.00	6.00	0.000

ASSGNSM	388	5.278	1.15687	0.00	8.0C	0.058
FILLRSM	388	87.969	19.28254	0.00	133.29	0.978
AUTHROPS	388	60.162	0.67966	60.00	63.00	0.034
ASSGNOPS	388	50.358	6.17597	1.00	64.00	0.313
FILLROPS	388	83.706	10.18457	1.59	103.29	0.517
AUTHRDS	388	6.938	0.24120	6.00	7.00	0.012
ASSGNDS	388	6.801	1.14088	0.00	12.00	0.057
FILIRDS	388	98.168	16.89963	0.00	171.39	0.857
AUTERET	388	11.000	0.00000	11.00	11.00	0.000
ASSGNET	388	8.525	3.76875	0.00	16.00	0.191
FILLRET	388	77.511	34.25471	0.00	145.50	1.739
AUTHREW	388	6.000	0.00000	6.00	6.00	0.000
ASSGNEW	388	3.791	1.65975	0.00	9.00	0.084
FILLREW	388	63.190	27.65994	0.00	150.00	1.404
AUTBRFT	388	0.000	0.00000	0.00	0.00	0.000
ASSGNFT	388	0.113	0.32553	0.00	2.00	0.016
FILLRFT	388	0.000	0.00000	0.00	0.00	0.000
AUTHRFTG	388	7.347	1.27390	7.00	12.00	0.064
ASSGNFTG	388	6.930	2.24536	0.00	15.00	0.113
FILLRFTG	388	96.237	33.51442	0.00	214.29	1.701
AUTHRFTM	388	7.278	0.92334	7.00	11.00	0.046
ASSGNFTM	388	6.033	2.32866	0.00	12.00	0.118
FILLRFTM	388	83.642	33.17007	0.00	171.39	1.683
AUTHEGM	388	0.000	0.00000	0.00	0.00	0.000
ASSGNGM	388	0.012	0.11293	0.00	1.00	0.005
FILLRGM	388	0.000	0.00000	0.00	0.00	0.000
AUTHRGMG	388	6.876	0.32968	6.00	7.00	0.016
ASSG NG MG	388	7.198	1.80848	0.00	12.00	0.091
FILLRGMG	388	104.951	26.83412	0.00	171.39	1.362
AUTHRGHH	388	3.000	0.00000	3.00	3.0C	0.000
ASSGNGMM	388	2.293	1.19052	0.00	6.00	0.060
FILLEGEN	388	76.465	39.68699	0.00	200.00	2.014
AUTERGMT	388	3.000	0.00000	3.00	3.00	0.000
ASSGNGMT	388	4.139	1.29248	0.00	8.00	0.065
FILLRGMT	388	137.966	43.08477	0.00	266.68	2.187

AUTHRSTG	388	18.000	0.00000	18.00	18.00	0.000
ASSGNSTG	388	17.518	2.48451	0.00	24.00	0.126
FILLESTG	388	97.318	13.80928	0.00	133.29	0.701
AUTHRTM	388	2.000	0.00000	2.00	2.00	0.000
ASSGRTE	388	2.278	0.87742	0.00	5.00	0.044
FILLRTM	388	113.917	43.87100	0.00	250.00	2.227
AUTHRCHE	388	71.440	1.59427	70.00	76.00	0.080
ASSGRCEE	388	68.190	9.04252	3.00	85.00	0.459
FILLRCME	388	95.514	12.86908	4.00	121.39	0.653
AUTHRMM	388	0.000	0.00000	0.00	0.00	0.000
ASSGNMM	388	0.662	3.59470	0.00	58.00	0.182
PILLRMM	388	0.000	0.00000	0.00	0.00	0.000
AUTHRENG	388	60.775	0.53191	60.00	62.00	0.027
ASSGNENG	388	59.878	9.64476	0.00	131.00	0.489
FILLRENG	388	98.507	15.70193	0.00	214.79	0.797
AUTHRAK	388	0.000	0.00000	0.00	0.00	0.000
ASSGNAK	388	0.005	0.07170	0.00	1.00	0.003
FILIRAK	388	0.000	0.00000	0.00	0.00	0.000
AUTHRDK	388	2.000	0.00000	2.00	2.00	0.000
ASSGNDK	388	1.814	0.60283	0.00	3.00	0.030
FILLRDK	388	90.721	30.14170	0.00	150.00	1.530
AUTHRES	388	12.000	0.00000	12.00	12.00	0.000
ASSGNMS	388	12.154	2.08025	0.00	17.00	0.105
PILIBES	388	101.287	17.33906	0.00	141.69	0.880
AUTERSE	388	5.000	0.00000	5.00	5.00	0.000
ASSGNSH	388	5.894	1.57719	0.00	11.00	0.080
FILLRSH	388	117.886	31.54370	0.00	220.00	1.601
AUTHRSK	388	5.000	0.00000	5.00	5.00	0.000
ASSGNSK	88E	5.865	1.48987	0.00	10.00	0.075
FILIRSK	388	117.319	29.79744	0.00	200.00	1.512
AUTHRSUP	388	24.000	0.00000	24.00	24.00	0.000
ASSGNSUF	388	25.734	3.87187	0.00	37.00	0.196
FILLRSUP	388	107.226	16.13454	0.00	154.19	0.819
AUTHRAR	388	0.000	0.00000	0.00	0.00	0.000
ASSGNAR	388	0.115	0.33635	0.00	2.00	0.017

SYNYID KAKKKII DINANIN DINANIN DINANIN SYNYIN DINANIN DINANINA DINANINA

FILIRAR	388	0.000	0.00000	0.00	0.00	0.000
AUTHRCR	388	0.000	0.00000	0.00	0.00	0.000
ASSGNCR	388	0.002	0.05077	0.00	1.00	0.002
FILLRCR	388	0.COO	0.00000	0.00	0.00	0.000
AUTHEFR	388	10.000	0.00000	10.00	10.00	0.000
ASSGNFR	388	13.971	3.58676	0.00	29.00	0.182
PILLRFR	388	139.716	35.86757	0.00	290.00	1.820
AUTHRSR	388	37.226	1.75799	33.00	39.00	0.089
ASSGNSR	388	37.626	6.98925	0.00	66.00	0.354
FILLRSR	388	101.353	19.61752	0.00	173.69	0.995
AUTHRNON	388	47.226	1.75799	43.00	49.00	0.089
ASSGNNON	388	51.716	8.85788	0.00	92.00	0.449
FILIENCE	388	109.71093	19.51958	0.00	191.69	0.990
AUTHRTOT	388	276.60567	2.48232	271.00	284.00	0.126
ASSGNTOT	388	267.54124	26.20020	4.00	359.00	1.330
FILLRTOT	388	96.73761	9.52046	1.39	129.59	0.483
TK1	366	21.16940	11.34774	1.00	51.00	0.593
TK 2	366	18.35246	10.34839	0.00	50.00	0.540
TK3	366	2.51639	2.61890	0.00	17.00	0.136
TK4	366	0.30055	0.66403	0.00	4.00	0.034
TINDEX01	366	6.02063	3.79400	0.00	21.91	0.198
THEMRAC	366	11.53407	11.97704	0.00	86.17	0.626
TPRSCASE	366	6.44536	4.89238	0.00	23.00	0.255
TTECHASS	366	5.68033	3.86399	0.00	21.00	0.201
TDOWNHNT	366	11319.2759	11465.676	0.00	75936.0	599.32
TDOWNSUF	366	10951.1284	8190.798	0.00	61281.0	428.13
TDOWNTOT	3 6 6	22270.4043	16609.540	171.00	106439.0	868.19
TOTC	359	1840.2701	2755.719	0.00	19103.0	145.44
TOTE	359	2027.0835	2969.708	0.00	23699.0	156.73
TOTO	359	21.4206	348.205	0.00	6563.0	18.37

Where:

HSDG__ The percentage of high school graduates

AFQT__ Armed forces qualification test scores

ENAGE__ Entry age

FRAG__ Present age

PAYGR__ Paygrade

YRACD__ Years of active duty

THEGR__ Time in grade

ASSGN__ Number Assigned

AUTHR__ Number Authorized

FILLR_ Fill ratio

UICEFF__ UIC effect of each ship

TK1 Total number of CASREPS submitted by a unit

TK2 Number of C-2 CASREPS
TK3 Number of C-3 CASREPS
TK4 Number of C-4 CASREPS

TINDEX01 Readiness Index01 (McGarvey)

THEHRAC Readiness Index (SPCC)

TTECHASS Number of technical assistance calls requested

TDOWNERT Total downtime for maintenance (hours)

TDOWNTOT Total downtime (hours)

TOT Total

APPENDIX E FINAL REGRESSION OUTPUT

FINAL REGRESSIONS FOR ALL VARIABLES THAT PASSEC THE F TEST

DEP VARIABLE	TDOWNTCT TOT	AL HOURS DOWN	TIME
	Sum of	MEAN	
SOURCE DF	S QUAR ES	SQUARE	F VALUE PROB>F
MODEL 19	3 19 3 1 1 0 4 8 9 2	1680584468	8.252 0.0001
ERROR 229	46639899138	203667682	
C TOTAL 248	78571004031		
ROOT MSE	14271.219	R-SQUARE	0.4064
DEP MEAN	23427.795	ADJ R-SQ	0.3571
C.V.	60.91576		
	PAR ABET ER	STANDARD	T FOR HO:
VARIABLE DP	estina te	ERROR	PARAMETER=0
INTERCEF 1	5548.529	9600.701	0.578
UICEFF01 1	-4421.994	3891.181	-1.136
UICEFF02 1	-5172.832	4036.091	-1.282
UICEFF03 1	-11718.158	3462.851	-3.384
UICEFF04 1	17379.680	3749.434	4.635
UICEFF05 1	9793.099	3521.378	2.781
UICEFF06 1	-13593.889	3557.343	-3.821
UICEFF07 1	14881.765	3522.093	4. 225
UICEFF08 1	1980.813	4229.804	0.468
UICEFF09 1	16950.595	3429.337	4.943
UICEFF10 1	-14961.330	4939.773	-3.029
UICEFF11 1	-5175.444	3511.702	-1.474
UICEFF12 1	-13136.213	4013.530	-3.273

UICEPF 13	1	-2651.594	3432.200	-0.773
UICEFF14	1	1335.107	3620.996	0.369
UICEFF15	1	-740.071	4066.522	-0.182
UICEFF 16	1	17704.234	3480.064	5.087
OVERHAUL	1	-8583.670	2522.566	-3.403
HSDGMR	1	-132.980	45.458227	-2.925
PAYGRGSE	1	6822.226	2111.960	3.230

FINAL REGRESSIONS FOR ALL VARIABLES ... THAT PASSEC THE F TEST

DEP	VARI	ABLE:	TK1 TOT	AL NUMBER	OF	CASREPS	
			SUM OF	MI	MAS		
SOUR	CE	DF	S QUAR ES	SQU	RE	F VALUE	PROB>F
MODE	L	21	14772.305	703.4	43	9.529	0.0001
ERRO	R	227	16756.594	73.8175	96		
C TO	TAL	248	31528.900				
	ROCT	MSE	8.591717	R-5QU1	RE	0.4685	
	DEP	MEAN	21.353414	ADJ R-	sq	0.4194	
	C.V.		40.2358				
			PARAMETER	STAND	RD	T FOR HO:	
VARI	ABLE	DF	ESTIMATE	er i	OR	PARAMETER=0	
INTE	RCEP	1	11.624726	8.4957	726	1.368	
UICE	FF01	1	-5.119238	2.4619	69	-2.079	
UICE	FF02	. 1	2.093294	2.5928	119	0.807	
UICE	FF03	1	-6.446311	2.0882	245	-3.087	
UICE	FF04	1	8.263701	2.2819	26	3.630	
UICE	FF05	1	8.152205	2.1986	73	3.708	
UICE	FP06	1	-8.880552	2.1567	702	-4.118	
UICE	FF07	1	7.858420	2.2162	12	3.546	
UICE	FF08	1	-0.586175	2.5825	91	-0.227	
UICE	FF09	1	12.411956	2.1341	75	5.816	
UICE	FF 10	1	-4.127897	2.9974	72	-1.377	
DICE	FF11	1	-2.710987	2.1181	28	-1.280	

UICEFF12	1	-8.337958	2.462128	-3.386
UICEFF 13	1	0.687631	2.097971	0.328
UICEFF14	1	-1.253051	2.224906	-0.563
UICEFF 15	1	-4.097570	2.516532	-1.628
UICEFF16	1	5.016752	2.189573	2.291
OVERHAUL	1	-10.363435	1.546171	-6.703
HSDGEN	1	0.043401	0.052978	0.819
HSDGHR	1	-0.068901	0.027835	-2.475
PAYGRIC	1	-1.988643	1.089516	-1.825
PAYGRGSM	1	4.936087	1.272171	3.880

PINAL REGRESSIONS PCF ALL VARIABLES
THAT PASSED THE F TEST

DEP	VARI	ABLE:	TK3 TOTAL	NUMBER OF	C-3 CASREPS	
			SUM OF	MEAN		
SOUI	RCE	DF	SQUAR ES	SQUARE	F VALUE	PROE>F
MODI	EI	21	392.650	18.697611	3. 177	0.0001
ERRO	RC	227	1335.953	5.885254	•	
C T	CTAL	248	1728.602			
	ROOT	MSE	2.425954	R-SQUARE	0.2271	
	DEP	MEAN	2.349398	ADJ R-SQ	0.1557	
	C. V.		103.2586			
			Paramet er	STANDARD	T FOR HO:	
VAR	IABLE	DF	ESTINATE	ERROR	PARAMETE R=0	
INT	ERCEF	1	-0.970982	1.958948	-0.496	
UIC	eff01	1	-1.000923 ·	0.677504	-1.477	
UIC	EFF02	1	0.138726	0.727643	0.191	
UIC	eff03	1	-0. 607997	0.586232	-1.378	
UIC	EFF04	1	-0.041764	0.640845	-0.065	
UIC	eff05	1	-0.00798798	0.622547	-0.013	
UIC	epp06	1	-1.010776	0.603351	-1.675	
UIC	BPP07	1	3.6C9680	0.640733	5.634	
UIC	eff08	1	-0.689457	0.740828	-0.931	

UICEFF09	1	1.692948	0.647232	2.616
UICEFF 10	1	-0.316427	0.844663	-0.375
UICEFF11	1	-0.721348	0.604763	-1.193
UICEFF 12	1	-0.804408	0.699026	-1.151
UICEFF13	1	0.133607	0.628943	0.212
UICEFF 14	1	-0.487682	0.637676	-0.765
UICEFF 15	1	-1.098730	0.715484	-1.536
UICEFF 16	1	1.011689	0.596174	1.697
OVERHAUL	1	-0.528242	0.439166	-1.203
HSDGEN	1	0.023832	0.015225	1.565
HSDGMR	1	-0.013163	0.007738342	-1.701
HSDGIC	1	0.043914	0.014475	3.034
YRACEGSH	1	-0.337999	0.213181	-1.585

FINAL REGRESSIONS FOR ALL VARIABLES THAT PASSEC THE F TEST

DEP	VARIA	BLE:	TK4 TOT AL	NUMBER OF	C-4 CASREPS
			SUM OF	MEAN	
SOU	RCE	CF	S QUAR ES	SQUARE	F VALUE PROB>F
HOD	EL	19	17.862910	0.940153	2.324 0.0019
ERR	OR	229	92.643114	0.404555	
C T	OTAL	248	110.506		
	HOOT	ese	0.636046	R-SQUARE	0.1616
	DEP I	IEAN	0.265060	ADJ R-SQ	0.0921
	C.V.		239.963		
		,	PARAMETER	STANDARD	T FOR HO:
VAR	IABLE	CF	ESTIMATE	error	PARAMETER=0
INT	ERCEP	1	1.196981	0.304683	3.929
UIC	EFF01	1	-0.066458	0.166810	-0.398
UIC	EFP02	1	0.018384	0.186498	0.099
UIC	EFF03	1	0.015866	0.153552	0.103
UIC	EFF04	1	-0.102711	0.165367	-0.621
UIC	eff05	1	0.143942	0.157543	0.914

UICEFF06	1	-0.202937	0.169923	-1.194
UICEFF07	1	0.445774	0.160634	2.775
UICEFF08	1	-0.103352	0.187552	-0.551
UICEFF09	1	0.558753	0.150903	3.703
UICEFF 10	1	-0.185018	0.170707	-1.084
UICEFF11	1	-0.189952	0.158960	-1.195
UICEFF12	1	-0.C77447	0.177617	-0.436
UICEFF13	1	0.061348	0.159126	0.386
UICEFF 14	1	-0.211516	0.162901	-1.298
UICEFF15	1	-0.305762	0.183406	-1.667
UICEFF 16	1	-0.120055	0.154927	-0.775
OVERHAUL	1	-0.185411	0.113329	-1.636
PILLRIC	1	-0.00678605	0.002192912	-3.095
FILIRGSE	1	-0.0034275	0.002309794	-1.484

FINAL REGRESSIONS FOR ALL VARIABLES THAT PASSED THE F TEST

DEP	VARI	ABLE:	TINDEX01	TRAN	SFORMED	READ	INESS	INDEX	(NPS)
			SUM	OP	1	1 E A N			
SOUI	RCE	DF	SÇUAI	R BS	sqt	JARE	F	VALUE	PROB>F
MODI	EL	21	1848.	552	88.026	5284	9.	609	0.0001
ERR	OR	227	2079.	107	9.160	384			
C TO	DTAL	248	3927.	959					
	ROOT	BSE	3.026	5 13	R-SQ	JARE		0.470	6
	DEP	MEAN	6.206	3 35	ADJ I	a-sq		0.421	6
	C.V.		48.76	551					
			PARAME:	CER	STANI	ARD	T F	OR HO:	
VAR	TABLE	CP	ESTIM	ATE	E	RROR	PARA	METER=	0
INT	ERCEP	1	3.642	3 0 5	2.992	2798		1.21	7
UIC	EFF01	1	-1.635	119	0.867	7280		-1.88	6
UIC	EFF02	1	-1.018	781	0.913	3375		-1.11	5
UICI	EPP03	1	-2.938	144	0.735	5628		-3.99	4
UIC	EFF04	1	3.361	746	0.803	856		4.18	2

UICEPF05	1	3.051413	0.774529	3.940
UICEFF06	1	-3.030693	0.759744	-3.989
UICEFF07	1	2.898149	0.780707	3.712
UICEFF08	1	0.611743	0.909772	0.672
UICEFF09	1	5.181669	0.751808	6.892
UICEFF10	1	-2.752034	1.055923	-2.606
UICEFF11	1	-1.450196	0.746155	-1.944
UICEFF12	1	-3.161426	0.867336	-3.645
UICEFF 13	1	0.438981	0.739054	0.594
UICEPP14	1	0.178774	0.783770	0.228
UICEFF15	1	-0.897679	0.886501	-1.013
UICEFF16	1	2.612683	0.771323	3.387
OVERBAUL	1	-2.515674	0.544671	-4.619
HSDGEN	1	0.014030	0.018662	0.752
HSDGMR	1	-0.030455	0.009805563	-3.106
PAYGRIC	• 1	-0.330350	0.383805	-0.861
PAYGRGSH	1	1.303154	0.448149	2.908

PINAL REGRESSIONS FOR ALL VARIABLES THAT PASSED THE F TEST

DEP VARIA	BLE:	Themr ac	TRA	NSFORMED	REAL	DINESS	INDEX	(SPCC)
		SUM	OF	H	EAN			
SOURCE	DF	SQUAR	ES	SQU	ARE	F T	VALUE	FROE>F
MODEL	19	9395.3	81	494.	494	4.0	085	0.0001
ERROR	229	27723.3	64	121.	063			
C TOTAL	248	37118.7	44					
ROOT	MSE	11.0028	51	R-SQU	ARE		0.253	1
DEP M	EAN	10.7566	68	ADJ B	-SQ		0.191	1
C.V.		102.28	86					
		PAR AMET	ER	STAND	ARD	T F	OR HO:	
VARIABLE	DP	ESTIMA	TE	EF	ROR	PARA	mete R=	:0
INTERCEF	1	-10. 8629	93	7.782	410		-1.39	6
UICEFF01	1	-3.8224	03	2.964	483		-1.28	19

UICEFF02	1	-1.391949	3.286655	-0.424
UICEFF03	1	-3.980647	2.629888	-1.514
UICEFF04	1	-2.152893	2.868579	-0.751
UICEFF05	1	-0.076521	2.761266	-0.028
UICEFF06	1	-6.426480	2.692132	-2.387
UICEFF07	1	17.603876	2.828506	6.224
UICEFF08	1	-5.422810	3.341368	-1.623
UICEFF09	1	10.C41185	2.871149	3.497
UICEFF10	1	-0.671062	3.017736	-0.222
UICEFF11	1	-3.230901	2.724936	-1.186
UICEFF12	1	-4.021291	3.075372	-1.308
UICEFF 13	1	2.462705	2.835014	0.876
UICEFF14	1	-2.848687	2.878616	-0.990
UICEFF 15	1	-3.881452	3.178404	-1.221
UICEFF16	1	4.187176	2.693936	1.554
OVERBAUL	1	-1.894058	1.958756	-0.967
HSDGEN	1	0.079346	0.066641	1.191
HSDGIC	1	0.165242	0.065215	2.534

PINAL REGRESSIONS FOR ALL VARIABLES THAT PASSED THE P TEST

DEP A	ARIABLE:	TTECHASS NUMBE	R OF TECHNI	CAL ASSISTANCE	REQUESTS
		SUM OF	M E A N		
SOURCE	e de	squar es	SQUARE	F VALUE FE	OB>F
MODEL	18	1136.374	63.131907	6.177 0.	0001
ERROR	230	2350.782	10.220793		
C TOT	AL 248	3487.157			
R	OOT MSE	3.196997	R-SQUARE	0.3259	
D	EP BEAN	5.566265	ADJ R-SQ	0.2731	
C	. v .	57.43524			
		Paramet er	STANDARD	T FOR HO:	
VARIA	BLE DF	estima te	ERROR	PARAMETER=0	
INTER	CEP 1	2.230403	1.836799	1.214	

UICEFF01	1	-0.224980	0.835593	-0.269
UICEFF02	1	-1.540671	0.900286	-1.711
UICEFF03	1	-0. 6516 95	0.759823	-1.121
UICEFF04	1	1.395168	0.828624	1.684
UICEFF05	1	0.178005	0.779531	0.228
UICEFF06	1	-1.545767	0.778697	-1.985
UICEFF07	1	1.250213	0.810057	1.543
UICEFF08	1	-1.016931	0.946478	-1.074
UICEFF09	1	2.645828	0.758966	3.486
UICEFF 10	1	2.533714	0.865914	2.926
UICEFF 11	1	-0.117980	0.793764	-0.149
UICEFF12	1	-0.729838	0.909285	-0.803
UICEFF 13	1	-1.558194	0.759174	-2.052
UICEFF14	1	-1.570366	0.824056	-1.906
UICEFF 15	1	-0.617845	0.894158	-0.691
UICEPF16	1	2.355788	0.780563	3.018
OVERHAUL	1	-3.860134	0.562218	-6.866
APQTEN	1	0.071244	0.032899	2.166

FINAL REGRESSIONS FOR ALL VARIABLES THAT PASSED THE F TEST

DEP VARIABLE	3: TDOWNENT TOTAL	. HOURS DOWNT	IME DUE TO	MAINTENANCE
	SUM OF	MEAN		
SOURCE D	S QUAR ES	SQUARE	F VALUE	PROB>P
HODEL 1	9 13426 8824 98	706678026	6.072	0.0001
ERROR 22	26652958570	116388465		
C TOTAL 24	40079841068			
ROOT MS	10788.349	R-SQUARE	0.3350)
DEP MEA	12493.904	ADJ R-SQ	0.2798	3
C. V.	86.3489			
	PARAMETER	STANDARD	T FOR HO:	
VARIABLE C	P BSTIMATE	er ror	PARAMETER=)
INTERCEP	9398.201	9222.760	1.019)

UICEFF01	1	-6561.047	2920.772	-2.246
UICEFF02	1	-6925.338	3037.691	-2.280
UICEFF03	1	-8566.722	2604.309	-3.289
UICEFF04	1	11404.057	2808.393	4.061
UICEFF05	1	76 90.291	2668.748	2.882
UICEFF06	1	-9084.174	2686.562	-3.381
UICEFF07	1	4367.707	2641.678	1.653
UICEFF08	1	4095.237	3182.395	1.287
UICEFF09	1	9386.285	2567.996	3.655
UICEFF 10	1	-4252.314	2915.995	-1.458
UICEFF11	1	-6255.954	2628.229	-2.380
UICEFF12	1	-8369.711	3065.466	-2.730
UICEFF13	1	-162.088	2565.953	-0.063
UICEFF 14	1	797.893	2716.524	0.294
UICEFP15	1	1416.563	3011.502	0.470
UICEFF 16	1	12648.607	2733.941	4.627
OVERHAUL	1	-4629.826	1929.469	-2.400
PAYGRIC	1	-907.140	1362.898	-0.666
PAYGRGSM	1	1661-903	1559.373	1.066

LIST OF REFERENCES

- 1. Horcwitz, S.S. and Sherman, A., Maintenance Personnel Effectiveness in the Navy, Center for Naval Analysis, Refer CNA 76-0162.10, October 1976.
- 2. Horowitz, S.S. and Sherman, A., <u>Crew Characteristics</u> and <u>Ship Conditon (Maintenance Personnel Effectiveness Study (MEPS))</u>. Center for Naval Analysis, Report CNA 1090, March 1977.
- Reeves, W.R., An Analysis of the effect of Personnel Turbulence on the Performance of Operational Units, B.S. Thesis, Naval Postgraduate School, December 1982.
- 4. <u>Consolidated Casualty Reporting System</u> (<u>CASREP</u>)
 Reports Catalog, May 1982.
- 5. Kerlinger F.N., & Pedhazur, E. J., <u>Multiple Regression</u> in <u>Behavioral Research</u>, pp. 70, Holt, Rinehart and Winston, 1973.

REPORTED THE PROPERTY OF THE P

INITIAL DISTRIBUTION LIST

	Nc. Copies
1. Defense Technical Information Center Cameron Station Alexandria, Virginia 22314	2
2. Litrary, Code 0142 Naval Fostgraduate School Monterey, California 93943	2
3. Professor Richard Flster, Code 54Ea Department of Administrative Science Naval Fostgraduate School Mcnterey, California 93943	2
4. William E. McGarvey, Code 54ms Department of Administrative Science Naval Fostgraduate School Monterey, California 93943	4
5. Deruty Chief of Naval Operations (Manpower, Personnel and Training) Chief of Naval Personnel (OP-01) Arlington Annex Columnia Pike and Arlington Ridge Road	1
Arlington, Virginia 20370	1
6. Deputy Chief of Naval Operations (Manpower, Personnel and Training) Chief of Naval Personnel (OF-11) Arlington Annex Columbia Pike and Arlington Ridge Road Arlington, Virginia 20370	
7. Deruty Chief cf Naval Operations (Manpower, Personnel and Training) Chief cf Naval Personnel (OP-12) Arlington Annex Columbia Pike and Arlington Ridge Road	1
Columbia Pike and Arlington Ridge Road Arlington, Virginia 20370 8. Deputy Chief of Naval Operations	1
(Hanpower, Personnel and Training) Chief of Naval Personnel (OF-12B) Arlington Annex Columbia Pike and Arlington Ridge Road Arlington, Virginia 20370	·
9. Deputy Chief of Naval Operations (Manpower, Personnel and Training) Chief of Naval Personnel (OP-13)	1
Arlington Annex Columbia Pike and Arlington Ridge Road Arlington, Virginia 20370	
10. Deputy Chief of Naval Operations (Manpower, Personnel and Training) Chief of Naval Personnel (OP-135K) Arlington Annex Columbia Pike and Arlington Ridge Road Arlington, Virginia 20370	1

6. LCDR Jchn D. May 4408 Glen Lake Path Virginia Beach, Virginia 23462

 (\mathbf{O})

(?