Jutge.org

The Virtual Learning Environment for Computer Programming

Number of constant square submatrices

X22897_en

Each case of the input in this exercise is a matrix of 0s and 1s. The program has to compute the total number of non-empty submatrices that are square and constant (same number of rows and columns and the same symbol). For instance, consider this as the input matrix:

It has 1 constant submatrix of size 3×3 (with 0s), 6 constant submatrices 2×2 (4 of them with 0s, and 2 of them with 1s), and 20 constant submatrices 1×1 . Therefore, in this case the output would be 27.

Input

The input has several cases. Each case starts with a line with two positive naturals n and m. After that come n lines with m characters, either 0 or 1, which describe a matrix of size $n \times m$, followed by an empty line.

Output

For each case, the program must write the total number of non-empty square submatrices in one line.

Sample input	010
4 7	010
1011111	001
1101111	001
1111111	8 9
1010110	000000000
	100000000
10 4	000000000
0010	000100001
1000	1000100001
1011	010000000
0000	000001000
0000	000000000
0000	00000000
0000	7 6
0101	100100
0000	000000
0000	001000
	101000
10 3	010000
000	000000
000	000000
100	
100	1 8
000	10110001
000	

3 1 1 1 0	110110110 111111111 111111010 111011111 111011111 111111
7 5 11011 10111 11111 11001 01111 11111 10111	111011111 5 4 1111 0111 1111 0101 1101
2 1 0 1 10 5 111110 01011 11111 11111 11111 11111 11111 11111 10101 11111 11011	10 8 10111111 11111111 11111101 11011101 111111
7 6 000000 000001 000000 001010 100100 000010 000000	11110111 11101111 111111110 2 1 1 0 1 9
6 1 0 1 0 1 1	100011110
2 6 100111 111111	
5 5 00000 00000 11000 01000 01000	
8 9 111111111	

Sample output	83
	58
38	6
57	14
38	38
115	116
64	25
8	132
3	57
45	2
2	9

Observation

Evaluation out of 10 points:

• Slow solution: 5 points.

• Fast solution: 10 points.

A fast solution is one which is correct, of linear cost and passing the test cases, both public and private. A slow solution is one which is not fast, but it is correct and passes the public test cases.

Problem information

Author: PRO1

Generation: 2024-01-02 20:56:14

© *Jutge.org*, 2006–2024. https://jutge.org