Combinatorial Optimization by Neural Reinforcement Learning

By Lei Zhang

Combinatorial optimization

- Finding an optimal solution from a finite set of possible solutions
 - o In operations research, applied math, computer science
 - Feasible solutions are discrete, often has graphical structures
 - Many are NP-hard

Travelling Salesman Problem (TSP)

Maximum independent set (MIS)

Machine learning for combinatorial optimization literature

- Routing problems: TSP, Vehicle routing problem(VRP), etc.
 - Vinyals et al., Pointer networks, NIPS 2015
 - TSP, Pointer network with **supervised learning**, near optimal solution for 2D TSP up to 50 nodes
 - o Bello et al., Neural combinatorial optimization with reinforcement learning, ICLR 2017
 - TSP: pointer network, and RL (policy gradient), near optimal up to 100 nodes
 - Nazari et al, Reinforcement Learning for solving the vehicle routing problem, NeurlPS 2018
 - VRP: RNN, policy gradient
 - Kool et al, Attention, learn to solve routing problem! ICLR 2019
 - TSP & VPR, Attention network, policy gradient with baseline
- Graph theoretical problems: Maximum independent set, minimum vertex cover, maximum cut, etc.
 - Dai et al., Learning combinatorial optimization algorithms over graphs, NeurIPS 2017
 - Structure2vec, greedy algorithm, DQN
 - Li et al., Combinatorial Optimization with graph convolutional networks and guided tree search, NeurlPS 2018
 - O Abe et al., Solving NP-hard problems on graphs by reinforcement learning without domain knowledge
 - Graph Isomorphism Networks and the Monte-Carlo Tree Search
- A survey by Bengio, et al.
 - Machine learning for combinatorial optimization: a methodological tour d'horizon, Nov 2018

Process Flexibility Design Problem

Stochastic Mixed Integer Linear Program

Goal: design a flexibility structure to maximize expected profit

$$\max_{f \in F} E_{d \sim D}[P(f, d)]$$

- F: set of feasible solutions -- bipartite graph
- D: demand distribution
- P(f, d): a function to calculate maximum profit -- a linear programing problem

Applications of process flexibility

Manufacturing

Health care

E-commerce

Delivery logistics

Service operations

Designing flexibility structure

How to design a structure with 15 arcs?

The neural reinforcement learning approach

- Goal: design a structure with target # of arcs
- Generating structures like playing games
 - Starting from zero arcs, at each step play an action (add/remove one arc), until target arc # is reached
- State: adjacency matrix
- Action: the arc to be added/removed
- Reward:
 - If done: average profits of 50 simulation instances
 - o Else: 0
- Algorithm: Proximal Policy Optimization (PPO)

Proximal Policy Optimization

Take the biggest possible improvement step on a policy without stepping so far which leads to performance collapse, by penalizing KL-divergence of pi old and pi new or clipping

Algorithm 1 PPO-Clip

- 1: Input: initial policy parameters θ_0 , initial value function parameters ϕ_0
- 2: for k = 0, 1, 2, ... do
- Collect set of trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in the environment.
- Compute rewards-to-go \hat{R}_t .
- Compute advantage estimates, \hat{A}_t (using any method of advantage estimation) based on the current value function V_{ϕ_k} .
- Update the policy by maximizing the PPO-Clip objective:

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \min\left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)} A^{\pi_{\theta_k}}(s_t, a_t), \quad g(\epsilon, A^{\pi_{\theta_k}}(s_t, a_t))\right),$$

typically via stochastic gradient ascent with Adam.

Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \left(V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

typically via some gradient descent algorithm.

Clipping function

Advantage function estimation

$$\begin{split} \hat{A}_t^{(1)} &:= \delta_t^V &= -V(s_t) + r_t + \gamma V(s_{t+1}) \\ \hat{A}_t^{(2)} &:= \delta_t^V + \gamma \delta_{t+1}^V &= -V(s_t) + r_t + \gamma r_{t+1} + \gamma^2 V(s_{t+2}) \\ \hat{A}_t^{(3)} &:= \delta_t^V + \gamma \delta_{t+1}^V + \gamma^2 \delta_{t+2}^V = -V(s_t) + r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 V(s_{t+3}) \end{split}$$

$$\hat{A}_{t}^{(k)} := \sum_{l=0}^{k-1} \gamma^{l} \delta_{t+l}^{V} = -V(s_{t}) + r_{t} + \gamma r_{t+1} + \dots + \gamma^{k-1} r_{t+k-1} + \gamma^{k} V(s_{t+k})$$

Training results of 10x10 flexibility environment

Policy testing after convergence

Training time vs # of simulation samples

To converge to the same performance, curve sample_50 took about one hour, while curve sample_5000 took ~ 12.5 hours.

Performance comparison of RL and heuristics

Expected Sales of RL, Drop and Add heuristics

Main findings

- First attempt to apply neural RL to stochastic combinatorial optimization problems
 - Stochasticity plays to RL's advantage
- Game play
 - Larger learning capacity
 - Others: greedy, or one shot construction
- Performance is promising
- Framework is easily extensible to other variations of flexibility design problem
- Takes a long time to develop
 - Justifiable if the gain is high

Limitations and next steps

- MLP model is not extensible
 - Use graph neural net to capture more input features
 - Use RNN
- Can also try Monte Carlo Tree Search

Backup slides

Training results of 20x20 flexibility environment

~ 400k episodes