历届试题选(四)

一、已知函数
$$f(x) = \arctan x + \sin x$$
, 求 $f^{(11)}(0)$. (2016—2017)

二、邑知
$$y = x^2 \cos^2 x + \frac{1}{1+x}$$
,求 $y^{(n)}(0)$ $(n \ge 3)$. (2017—2018)

三、设函数
$$f(x) = x \ln(1-x^2)$$
, 求 $f^{(11)}(0)$. (2019—2020)

四、设
$$f(x) = (x^2 + x + 1)\cos^2\frac{x}{2}$$
,求 $f^{(20)}(0)$. (2020—2021)

五、设函数
$$f(x) = (x^2 + x + 1)\cos 2x$$
, 求 $f^{(8)}(0)$. (2021—2022)

六、求函数
$$y = \sqrt[3]{\frac{(x+1)(x+2)}{(1+x^2)(2+x^2)}}$$
 在 $x = 0$ 处的导数 $\frac{dy}{dx}\Big|_{x=0}$. (2017—2018)

七、求函数
$$y = \sqrt[6]{\frac{x^2 - 1}{(x+2)(x+4)}}$$
 在 $x = 2$ 处的微分 $dy|_{x=2}$. (2019—2020)

九、求函数
$$y = \arctan \frac{1-x^2}{1+x^2}$$
的微分 dy 和 dy $\Big|_{x=1}$. (2017—2018)

十、设方程 $e^{x-y} = y-1$ 确定了隐函数 y = y(x),求此隐函数在点(2,2)处的一阶导数和二阶导数. (2019-2020)

十一、求由方程 $y = \tan(x + y)$ 所确定的隐函数 y = y(x) 的导数 y'(x) 和 y''(x). (2017—2018)

十二、设方程 $\ln(x^2+y^2)=2\arctan\frac{y}{x}$ 确定了隐函数 y=y(x) ,求此隐函数在点 (1,0) 处的

一阶导数和二阶导数. (2018—2019)

十三、设方程 $2^{xy} = x^2 + y$ 确定了函数 y = y(x) , 求 $dy|_{x=0}$. (2020—2021)

十四、设方程 $y-x-\frac{1}{2}\sin y=0$ 确定了隐函数 y=y(x) ,求此隐函数的一阶导数和二阶导

3 0

数. (2021—2022)

十五、求星形线
$$\begin{cases} x = a\cos^3\theta \\ y = a\sin^3\theta \end{cases}$$
 在 $\theta = \frac{\pi}{4}$ 处的二阶导数 $\frac{d^2y}{dx^2}$ 的值. (2016—2017)

十六、求函数
$$\begin{cases} x = \frac{t}{1+t^2} \\ y = \frac{t^2}{1+t^2} \end{cases}$$
 在 $t = 2$ 所对应点处的切线方程和法线方程. (2017—2018)

十七、计算由摆线的参数方程 $\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$ $(0 < t < 2\pi)$ 所确定的函数 y = y(x) 的一阶

导数和二阶导数. (2018-2019)

十八、求星形线
$$\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases} (0 < t < 2\pi)$$
 在点 $(\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4})$ 处的切线方程. (2019—2020)

十九、
$$y = y(x)$$
 由
$$\begin{cases} x = 2t - 1 \\ te^y + y + 1 = 0 \end{cases}$$
 所确定,求 $\frac{dy}{dx}\Big|_{x=-1}$ 及 $\frac{d^2y}{dx^2}\Big|_{x=-1}$. (2020—2021)

二十、已知笛卡尔叶形线的参数方程为

$$\begin{cases} x = \frac{3at}{1+t^3} \\ y = \frac{3at^2}{1+t^3}, \quad 其中 a > 0 为常数。 \end{cases}$$

求由此参数方程所确定的函数 y = y(x) 在 t = 1 处的一阶导数和二阶导数。 (2021—2022)