KANAZAWA UNIVERSITY

Variational approach to crack propagation in a cantilever beam 片持ち梁における亀裂進展に対する変分的 アプローチ

by: Alifian Mahardhika Maulana 1715011056

Supervisor: Professor Masato Kimura

A thesis submitted in fulfilment of the requirements for the degree of Master of Science

Graduate School of Natural Sciences and Technology Division of Mathematical and Physical Sciences

September 2019

KANAZAWA UNIVERSITY

Abstract

Graduate School of Natural Sciences and Technology Division of Mathematical and Physical Sciences

Master of Science

Variational approach to crack propagation in a cantilever beam

by Alifian Mahardhika Maulana 1715011056

keyword:

Acknowledgements

I would like to thank

Contents

Abstract	i
Acknowledgements	ii
Contents	iii
List of Figures	iv
List of Tables	v
Abbreviations	\mathbf{v}^{j}
Physical Constants	vii
Symbols	viii
1 Introduction	1
2 Basic Theory	2
3 Method	3
4 Numerical Example	4
5 Conclusion	5
A Notation	6
B Numerical code	7
References	8

List of Figures

List of Tables

Abbreviations

LAH List Abbreviations Here

Physical Constants

Speed of Light $c = 2.997 \ 924 \ 58 \times 10^8 \ \mathrm{ms^{-S}} \ (\mathrm{exact})$

Symbols

a distance m

P power W (Js⁻¹)

 ω angular frequency rads⁻¹

For/Dedicated to/To my...

Introduction

Basic Theory

Method

Numerical Example

Conclusion

Appendix A

Notation

Appendix B

Numerical code

References