2. MODELING OF ELECTRONIC SYSTEMS

Fernando Gonçalves ©

Projecto, Teste e Fiabilidade de Sistemas Electrónicos - 2019/2020

1

Basic Concepts

The relationship between inputs and outputs defines the behavior of the system

Some examples of models used to describe an electronic system are \dots

- Structural models
- Functional models at logic level
- Behavioral models (VHDL, Verilog or even C)

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

_

Structural Models

- The structural models describe the system as a set of subsystems or components
- The smallest components (lowest hierarchical level) are called primitives
- Block diagrams and schematics are examples of structural models

Graphical representation

Textual representation

```
module gate (Z, A, B, C);
input A, B, C;
output Z;
wire D;
  and gate1 (D, B, C);
  or gate2 (Z, A, D);
endmodule
```


Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

2

Functional Models at Logic Level

Truth tables and primitive cubes

The function $Z(\boldsymbol{x}_1,\,\boldsymbol{x}_2,\,\dots\,,\,\boldsymbol{x}_n)$ needs a table with 2^n entries to be fully defined

If the number of outputs of Z is \mathbf{m} , then we will need \mathbf{m} tables to describe the function

When the tables are compressed using the "don't care" symbols, we obtain a representation called **cubic notation**

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

4

Functional Models at Logic Level

Truth table

x ₁	X ₂	X ₃	Z
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Primitive cubes

x ₁	X ₂	X ₃	Z
х	1	0	0
1	1	Х	0
х	0	х	1
0	Х	1	1

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

5

Functional Models at Logic Level

Sequential circuits

- A sequential function can be modeled as a Finite State Machine (FSM)
- The FSMs ...
 - present a finite number of internal states
 - change from one state to another in response to some external inputs
 - can be described using state transition tables or state diagrams

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

0

Functional Models at Logic Level

State transition table

	Condition		
Present state	Х	Υ	Z
Α			
В		<next state="">, <output></output></next>	
С			

The transitions between states are synchronous to a clock signal

The outputs can be associated to the present state (Moore machines) or associated to the state transitions (Mealy machines)

The example represented in the table corresponds to a Mealy machine

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos - 2019/2020

7

7

Functional Models at Logic Level

Input (y)

State transition table

	iliput (x)		
Present state	0	1	
1	2,1	3,0	
2	2,1	4,0	
3	1,0	4,0	
4	3,1	3,0	

<next state>, <output>

State diagram

The state is stored in flip-flops

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

0

Functional Models at Logic Level

State transition table (asynchronous circuit)

	Inputs (x ₁ x ₂)			
Present state	00	01	11	10
1	1 ,0	5,1	2,0	1 ,0
2	1,0	2 ,0	2 ,0	5,1
3	3 ,1	2,0	4,0	3 ,0
4	3,1	5,1	4 ,0	4 ,0
5	3,1	5 ,1	4,0	5 ,1

Stable configurations (marked in red and bold in the table):

<next state> = <pr

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

12

Functional Models at Logic Level

Binary Decision Diagrams (BDD)

- Describes a circuit functionality as a graph
- It is a very compact representation of a Boolean function
- The output value is obtained by traversing the graph, analyzing the input values in a given sequence
- The BDDs are extensively used in the CAD tools, namely, in the logic synthesis
- The size of the BDD depends on the ordering of the variables

Fernando Gonçalves

Projecto. Teste e Fiabilidade de Sistemas Electrónicos - 2019/2020

13

13

Functional Models at Logic Level

Binary Decision Diagrams (BDD)

- The procedure starts at the root of the graph
- In each node, we decide to follow the left edge or the right edge depending on the value of the variable (0 or 1), respectively
- A circle in an edge complements the value of the variable associated to that edge f

 $f = \overline{a}.b.\overline{c} + a.c$

Evaluate f for ...

1. abc = 001

2. a = 1

TÉCNICO LISBOA

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

