UC Berkeley

Department of Electrical Engineering and Computer Sciences

EECS 126: Probability and Random Processes

Homework 06

Spring 2023

1. Jensen's Inequality and Information Measures

Note: This problem set is designed to be worked on in the order that the questions appear. You may cite results from previous problems in your solutions.

- a. Prove **Jensen's inequality**: if φ is a convex function from \mathbb{R} to \mathbb{R} and Z is a random variable, then $\varphi(\mathbb{E}(Z)) \leq \mathbb{E}(\varphi(Z))$.
 - *Hint*: A convex function $\varphi \colon \mathbb{R} \to \mathbb{R}$ is lower bounded by all tangent lines ℓ that intersect φ at some point(s) and lie below φ everywhere else.
- b. Show that $H(X) \leq \log |\mathcal{X}|$ for any distribution p_X . Conclude that for random variables taking values in $[n] := \{1, \ldots, n\}$, the distribution which maximizes H(X) is Uniform([n]). Hint: $-\log$ is a convex function.
- c. For two random variables X, Y, we define their mutual information to be

$$I(X;Y) = \sum_{x} \sum_{y} p_{X,Y}(x,y) \log \frac{p_{X,Y}(x,y)}{p_{X}(x) p_{Y}(y)},$$

where the sums are taken over all outcomes of X and Y. Show that $I(X;Y) \geq 0$.

d. The conditional entropy of X given Y is defined to be

$$\begin{split} H(X \mid Y) &= \sum_{y} p_{Y}(y) \cdot H(X \mid Y = y) \\ &= \sum_{y} p_{Y}(y) \sum_{x} p_{X|Y}(x \mid y) \log \frac{1}{p_{X|Y}(x \mid y)}. \end{split}$$

Show that $H(X) \ge H(X \mid Y)$. Intuitively, conditioning will only ever reduce or maintain our uncertainty, never increase it. *Hint*: Use part c.

Solution:

a. Per the hint, for every $x \in \mathbb{R}$, $\varphi(x) = \sup\{\ell(x) : \ell \text{ an affine function such that } \ell \leq \varphi\}$. Consider any particular $\ell(x) = ax + b$ such that $\ell \leq \varphi$. We have that

$$\mathbb{E}(\varphi(Z)) > \mathbb{E}(\ell(Z)) = a \,\mathbb{E}(Z) + b = \ell(\mathbb{E}(Z)).$$

As this is true for all affine functions $\ell \leq \varphi$, we can take the supremum to find that

$$\mathbb{E}(\varphi(Z)) \geq \sup_{\ell \leq \varphi} \ell(\mathbb{E}(Z)) = \varphi(\mathbb{E}(Z)).$$

b. $Z = 1/p_X(X)$ is a function of X and thus a random variable, taking values in $[1, \infty)$. Since log is a concave function, or $-\log$ is a convex function, by Jensen's inequality,

$$\begin{split} H(X) &= \mathbb{E}\left(\log\frac{1}{p_X(X)}\right) \leq \log \mathbb{E}\left(\frac{1}{p_X(X)}\right) \\ &= \log \sum_{x \in \mathcal{X}} p_X(x) \frac{1}{p_X(x)} \\ &= \log \sum_{x \in \mathcal{X}} 1 = \log |\mathcal{X}|. \end{split}$$

Then, note that for $X \sim \text{Uniform}([n])$, we have

$$H(X) = \sum_{k=1}^{n} \frac{1}{n} \log \frac{1}{1/n} = \log n = \log |\{1, \dots, n\}|.$$

Hence the uniform distribution maximizes entropy for the finite set [n].

c. Observe that Z = p(X) p(Y)/p(X,Y) is a function of X,Y and thus a random variable. Moreover, by the Law of the Unconscious Statistician, we see that

$$I(X;Y) = \mathbb{E}(\log \frac{1}{Z}) = \mathbb{E}(-\log Z).$$

Applying Jensen's inequality, we have

$$I(X;Y) \ge -\log\left(\sum_{x} \sum_{y} p(x,y) \frac{p(x) p(y)}{p(x,y)}\right)$$

$$= -\log\left(\sum_{x} \sum_{y} p(x) p(y)\right)$$

$$= -\log\left(\sum_{x} p(x) \sum_{y} p(y)\right)$$

$$= -\log(1) = 0.$$

d. We now observe that $H(X) = \mathbb{E}(-\log p(X))$, and

$$H(X \mid Y) = \sum_{x} \sum_{y} p(x, y) \log \frac{1}{p(x \mid y)} = \mathbb{E}(-\log p(X \mid Y)).$$

By part c and the linearity of expectation, we find that

$$I(X;Y) = \mathbb{E}[-\log(p(X)/p(X\mid Y))]$$

$$= \mathbb{E}(-\log p(X)) - \mathbb{E}(-\log p(X\mid Y))$$

$$= H(X) - H(X\mid Y) > 0.$$

2. Introduction to Information Theory

Recall that the *entropy* of a discrete random variable X is defined as

$$H(X) \stackrel{\Delta}{=} -\sum_{x} p(x) \log p(x) = -\mathbb{E}(\log p(X)),$$

where $p(\cdot)$ is the PMF of X. Here, the logarithm is taken in base 2, and entropy is measured in the unit of bits.

- a. Prove that $H(X) \geq 0$.
- b. Entropy is often described as the average information content of a random variable. If H(X) = m, then observing the value of X gives you m bits of information on average. Let X be a Bernoulli(p) random variable. Would you expect H(X) to be greater when $p = \frac{1}{2}$ or when $p = \frac{1}{3}$? Calculate H(X) in both of these cases and verify your answer.
- c. We now consider a binary erasure channel (BEC).

Figure 1: The channel model for the BEC showing a mapping from channel input X to channel output Y. The probability of erasure is p_e .

The input X is a Bernoulli random variable with $\mathbb{P}(X=0) = \mathbb{P}(X=1) = \frac{1}{2}$. Each time that we use the channel, the input X is either erased with probability p_e or transmitted correctly with probability $1 - p_e$. Using the character '?' to denote erasures, the output Y of the channel can be written as

$$Y = \begin{cases} X & \text{with probability } 1 - p_e \\ ? & \text{with probability } p_e. \end{cases}$$

Compute H(Y).

d. We defined the entropy of a single random variable as a measure of the uncertainty inherent in its distribution. We now extend this definition to a pair of random variables (X,Y) by considering (X,Y) as a single vector-valued random variable, or equivalently considering its joint distribution. Define the *joint entropy* of (X,Y) to be

$$H(X,Y) \stackrel{\Delta}{=} - \mathbb{E}(\log p(X,Y)),$$

where $p(\cdot, \cdot)$ is the joint PMF, and the expectation is taken over the joint distribution of X and Y. Compute H(X,Y) for the BEC.

Solution:

a. This follows from $\log p(x) \leq 0$ for $p(x) \leq 1$.

b. The closer p is to 0 or 1, the less information you gain from observing X. As an extreme example, when p=1, you already know that X will be 1, so observing X gives you no new information. Therefore, we expect that the entropy will be greatest when $p=\frac{1}{2}$. The entropy of a Bernoulli random variable with bias p is

$$H(X) = -p \log p - (1 - p) \log(1 - p).$$

When $p = \frac{1}{2}$,

$$H(X) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = 1$$
 bit.

When $p = \frac{1}{3}$,

$$H(X) = -\frac{1}{3}\log\frac{1}{3} - \frac{2}{3}\log\frac{2}{3} \approx 0.918$$
 bits.

c. The random variable Y takes on three values: 0, 1, and ?. The marginal PMF of Y is

$$Y = \begin{cases} 0 & \text{with probability } \frac{1-p_e}{2} \\ 1 & \text{with probability } \frac{1-p_e}{2} \\ ? & \text{with probability } p_e. \end{cases}$$

Therefore the entropy of Y is

$$H(Y) = -p_e \log p_e - (1 - p_e) \log \frac{1 - p_e}{2}$$
$$= 1 - p_e - p_e \log p_e - (1 - p_e) \log (1 - p_e).$$

d. The joint PMF of (X, Y) can be found as

$$(X,Y) = \begin{cases} (0,0) & \text{with probability } \frac{1-p_e}{2} \\ (0,?), & \text{with probability } \frac{p_e}{2} \\ (1,1) & \text{with probability } \frac{1-p_e}{2} \\ (1,?), & \text{with probability } \frac{p_e}{2}. \end{cases}$$

Therefore the entropy of the pair (X, Y) is

$$H(X,Y) = -p_e \log \frac{p_e}{2} - (1 - p_e) \log \frac{1 - p_e}{2}$$
$$= 1 - p_e \log p_e - (1 - p_e) \log (1 - p_e).$$

3. Mutual Information and Noisy Typewriter

The mutual information of X and Y is defined as

$$I(X;Y) := H(X) - H(X \mid Y),$$

where $H(X \mid Y)$ is the *conditional entropy* of X given Y, defined by

$$H(X \mid Y) = \sum_{y \in \mathcal{Y}} p_Y(y) \cdot H(X \mid Y = y)$$
$$= \sum_{y \in \mathcal{Y}} p_Y(y) \sum_{x \in \mathcal{X}} p_{X|Y}(x \mid y) \log_2 \frac{1}{p_{X|Y}(x \mid y)}.$$

Conditional entropy can be interpreted as the average amount of uncertainty remaining in the random variable X after observing Y. Then, mutual information is the amount of information about X gained by observing Y.

- a. Show the **chain rule**: $H(X,Y) = H(Y) + H(X \mid Y)$. Interpret this rule.
- b. Show that mutual information is symmetric: I(X;Y) = I(Y;X). Or, equivalently, show that I(X;Y) = H(X) + H(Y) H(X,Y). Note that H(X,Y) = H(Y,X).
- c. Consider the noisy typewriter.

w.p.
$$A \longrightarrow 1/2 \longrightarrow A$$

$$1/2 \longrightarrow B$$

$$1/2 \longrightarrow B$$

$$1/2 \longrightarrow B$$

$$1/2 \longrightarrow ...$$

$$1/2 \longrightarrow ...$$

$$1/2 \longrightarrow Z$$

Each symbol gets sent to one of the adjacent symbols with probability $\frac{1}{2}$. Let X be the input to the noisy typewriter, taking values in the English alphabet, and let Y be the output. What is a distribution of X that maximizes I(X;Y)?

Solution:

a. By the linearity of expectation,

$$\begin{split} H(X,Y) &= \mathbb{E}(-\log p(X,Y)) \\ &= \mathbb{E}[-\log(p(Y) \cdot p(X \mid Y))] \\ &= \mathbb{E}(-\log p(Y)) + \mathbb{E}(-\log p(X \mid Y)) \\ &= H(Y) + H(X \mid Y). \end{split}$$

Intuitively, the amount of uncertainty or information in (X, Y) is the amount of uncertainty in Y, plus the amount of uncertainty still remaining in X after observing Y.

b. Using the previous part, we get

$$I(X;Y) = H(X) - H(X \mid Y) = H(X) + H(Y) - H(X,Y).$$

c. Since $I(X;Y) = H(Y) - H(Y \mid X)$, and $H(Y \mid X) = 1$ regardless of the distribution of X, then I(X;Y) = H(Y) - 1. This is maximized by letting Y be uniform over the English alphabet, which can be achieved by letting X be uniformly distributed as well. Note that a class of solutions that makes Y uniform is by setting even-numbered alphabet indices to p, and odd-numbered alphabet indices to 1 - p.

4. Information Loss

Suppose we have discrete random variables X and Y, which represent the input message and received message respectively. Let n be the number of distinct values X can take. Our estimate of X from Y is $\hat{X} = g(Y)$, where g is some decoding function. Now define $E = \mathbb{1}\{X \neq \hat{X}\}$ to be the indicator of estimation error, and define the probability of error $p_e := \mathbb{P}(X \neq \hat{X})$.

- a. Show that $H(\hat{X} \mid Y) = 0$.
- b. Show that $H(E, X \mid \hat{X}) = H(X \mid \hat{X})$.
- c. Show that $H(X \mid Y) \leq p_e \log_2(n-1) + H(E)$. (You may use the fact that $H(X \mid Y) \leq H(X \mid \hat{X})$.)

Hint. The chain rule for entropy can be generalized to three random variables:

$$H(A, B \mid C) = H(A \mid C) + H(B \mid A, C).$$

Solution:

a. Intuitively, $\hat{X} = g(Y)$ is a function of Y, so observing Y allows us to determine \hat{X} with no remaining uncertainty. Formally,

$$H(\hat{X} \mid Y) = \sum_{z} \sum_{y} p_{\hat{X}, Y}(z, y) \log \frac{1}{p_{\hat{X} \mid Y}(z \mid y)}$$
$$= \sum_{z} \sum_{y} p(y) \mathbb{1}\{z = g(y)\} \log \frac{1}{\mathbb{1}\{z = g(y)\}} = 0.$$

b. By the chain rule for entropy,

$$H(E,X\mid \hat{X}) = H(X\mid \hat{X}) + H(E\mid X,\hat{X}) = H(X\mid \hat{X}).$$

 $H(E\mid X,\hat{X})=0$ by the same reasoning as in part a: E is a function of $X,\hat{X}.$

c. Note that $H(X \mid Y) \leq H(X \mid \hat{X}) = H(E, X \mid \hat{X})$ by part b. Now, by another application of the chain rule,

$$H(E, X \mid \hat{X}) = H(E \mid \hat{X}) + H(X \mid E, \hat{X})$$

= $H(E \mid \hat{X}) + (1 - p_e) H(X \mid E = 0, \hat{X}) + p_e H(X \mid E = 1, \hat{X}).$

- $H(E \mid \hat{X}) \leq H(E)$ by problem 1d.
- $H(X \mid E = 0, \hat{X}) = 0$, as E = 0 implies $X = \hat{X}$.
- $H(X \mid E = 1, \hat{X}) \leq \log_2(n-1)$, as $X \neq \hat{X}$ means that X can take on n-1 possible values, so its conditional entropy is at most $\log_2(n-1)$.

Putting it all together, we have that

$$H(X \mid Y) \le H(E) + p_e \log_2(n-1).$$

5. Crafty Bounds

We have an alphabet \mathcal{X} containing n letters $\{x_1, \ldots, x_n\}$, where each letter x_i occurs with probability p_i . We wish to *encode* the alphabet by assigning to each letter x_i a binary string of length ℓ_i . Let $L = \sum_{i=1}^n p_i \ell_i$ be the expected codeword length, and let H(p) be the entropy of the distribution on \mathcal{X} .

- a. Prove the lower bound $H(p) \leq L$. You may cite well-known results.
- b. A code is *prefix-free* if no codeword is a prefix of another codeword. For example, 011 is a prefix of 01101. Show that if we have a prefix-free code where each x_i is mapped to a codeword of length ℓ_i , then

$$\sum_{i=1}^{n} 2^{-\ell_i} \le 1.$$

Hint: Consider the codewords as sequences of coin flips that we can feed into a decoder to recover the original letters, and revisit midterm 1 question 2b.

c. Prove the converse of part b: If $\ell_1, \ell_2, \dots, \ell_n$ satisfy $\sum_{i=1}^n 2^{-\ell_i} \leq 1$, then there exists a prefix-free code where each x_i is mapped to a codeword of length ℓ_i .

Hint: Consider induction. Can you assume without loss of generality that $\sum_{i=1}^{n} 2^{-\ell_i} = 1$?

- d. Show that there exists a prefix-free code with $\ell_i = \lceil -\log_2 p_i \rceil$ for $i = 1, \ldots, n$.
- e. Conclude that there exists a prefix-free code such that $L \leq H(p) + 1$.

Solution:

- a. This bound follows from Shannon's source coding theorem, namely that the entropy gives a lower bound on the average number of bits required to encode each letter.
- b. Consider a sequence of i.i.d. Bernoulli($\frac{1}{2}$) random bits, and let A_i be the event that the first ℓ_i bits in the sequence decode to the letter x_i . Then A_1, \ldots, A_n are disjoint because the code is prefix-free, and we have that

$$\sum_{i=1}^{n} 2^{-\ell_i} = \sum_{i=1}^{n} \mathbb{P}(A_i) = \mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) \le 1.$$

- c. Assume without loss of generality that $\sum_{i=1}^{n} 2^{-\ell_i} = 1$, which we can always achieve by reducing the lengths ℓ_i . If a prefix-free code exists for the reduced ℓ_i , then we can simply extend those codewords until we have the desired lengths.
 - The base case can be taken to be n=1 (degenerate) or n=2, where $\ell_1=\ell_2=1$ and a prefix-free code is given by 0 and 1.
 - Now, suppose that the proposition holds for n=k. Given ℓ_1,\ldots,ℓ_{k+1} such that $\sum_{i=1}^{k+1} 2^{-\ell_i} = 1$, consider the two longest lengths, without loss of generality ℓ_k and ℓ_{k+1} . Because equality is achieved, we must actually have $\ell_k = \ell_{k+1}$. By the inductive hypothesis, there exists a prefix-free code whose codeword lengths are $\ell_1,\ldots,\ell_{k-1},(\ell_k-1)$. We can replace the codeword s of length ℓ_k-1 with two codewords s0 and s1, which have lengths $\ell_k=\ell_{k+1}$, and this is the desired code for n=k+1. This finishes the inductive step and the proof.

Remark. Parts b and c are known as the Kraft-McMillan inequality.

Alternate solution. Suppose without loss of generality that $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_n$, and let us assign codewords one-by-one. In step k, given that we have prefix-free codewords of lengths $\ell_1, \ldots, \ell_{k-1}$, there exists a valid codeword of length ℓ_k iff

$$2^{\ell_k} \ge 1 + \sum_{i=1}^{k-1} 2^{\ell_k - \ell_i}.$$

The right-hand sum counts the number of bitstrings of length ℓ_k that do share a prefix with any of the previous k-1 codewords. Now, dividing on both sides, this says

$$1 \ge 2^{-\ell_k} + \sum_{i=1}^{k-1} 2^{-\ell_i} = \sum_{i=1}^k 2^{-\ell_i}.$$

There exists a prefix-free code with codeword lengths ℓ_1, \ldots, ℓ_n if and only if the inequality above holds at every step $k = 1, \ldots, n$. But this is precisely equivalent to $\sum_{i=1}^{n} 2^{-\ell_i} \leq 1$.

d. For $\ell_i = \lceil -\log_2 p_i \rceil$, we observe that

$$\sum_{i=1}^{n} 2^{-\lceil -\log_2 p_i \rceil} \le \sum_{i=1}^{n} 2^{-(-\log_2 p_i)} = \sum_{i=1}^{n} p_i = 1.$$

By part c, the desired prefix-free code indeed exists.

e. Considering the code identified in part d, we have that

$$L = \sum_{i=1}^{n} p_i \lceil -\log_2 p_i \rceil \le \sum_{i=1}^{n} p_i (-\log_2 p_i + 1) = H(p) + 1.$$

Remark. The Huffman code is optimal among all prefix-free codes that assign codewords letter-by-letter, so its expected codeword length satisfies the bounds $H(p) \le L \le H(p) + 1$.