Chapitre 35

Intégrales sur un segment

Intégrale d'une fonction continue sur un segment 1

Ensemble $\mathcal{CM}(I,\mathbb{K})$ 1.1

Définition 1: Fonction continue par morceaux sur un intervalle.

Soit I un intervalle et $f: I \to \mathbb{K}$. On dit que f est **continue par morceaux** sur I si pour tout segment $[a, b] \subset I$, $f_{|[a,b]}$ est continue par morceaux sur [a, b].

On note $\mathcal{CM}(I,\mathbb{K})$ l'ensemble des fonctions continues par morceaux sur I.

Exemple 2: $x \mapsto \lfloor \frac{1}{x} \rfloor$

La fonction $x \mapsto \lfloor \frac{1}{x} \rfloor$ est continue par morceaux sur \mathbb{R}_+^* . Expliquer.

Preuve:

Soit $[a,b] \subset \mathbb{R}_+^*$. Notons $S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a,b[$. Cet ensemble est finito : pour $n \in \mathbb{N}^*$, $a < \frac{1}{n} < b \iff \frac{1}{b} < n < \frac{1}{a} \iff \lfloor \frac{1}{b} \rfloor + 1 \le n \le \lfloor \frac{1}{a} \rfloor$.

S contient donc au plus $\lfloor \frac{1}{a} \rfloor - \lfloor \frac{1}{b} \rfloor$ points.

Notons n = |S| puis $S = \{a_1, ..., a_n\}$, avec $a_1 < a_2 < ... < a_n$.

Posons $\sigma = (a_0, a_1, ..., a_n, a_{n+1})$ avec $a_0 := a$ et $a_{n+1} := b$.

Soit $i \in [0,], f_{]a_i,a_{i+1}[}$ est constante, elle y est donc continue et prolongeable par continuité aux bords. Ainsi, $f \in \mathcal{CM}(\mathbb{R}_+^*, \mathbb{R})$.

Remarque: En posant f(0) := 0, ça ne marche plus car $f_{|[0,b]}$ n'est pas cpm sur [0,b].

Intégrale d'une fonction continue par morceaux entre deux bornes

Définition 3

Soit $f \in \mathcal{CM}(I,\mathbb{R})$ et $a,b \in I$. On note $\int_a^b f(x) dx$, ou plus simplement $\int_a^b f$ le réel défini par :

$$\int_{a}^{b} f(x) dx := \int_{[a,b]} f \text{ si } a < b, \quad \int_{a}^{a} f(x) dx := 0, \quad \text{et} \quad \int_{a}^{b} f(x) dx := -\int_{[b,a]} f \text{ si } a > b.$$

Proposition 4

Soit $f \in \mathcal{CM}(I,\mathbb{C})$.

Les fonctions $x \mapsto \text{Re}(f(x))$ et $x \mapsto \text{Im}(f(x))$ sont continues par morceaux sur I.

Pour $a, b \in I$, on pose :

$$\int_{a}^{b} f(x) dx := \int_{a}^{b} \operatorname{Re}(f(x)) dx + i \int_{a}^{b} \operatorname{Im}(f(x)) dx.$$

Ainsi, la partie réelle de l'intégrale est l'intégrale de la partie réelle, idem pour la partie imaginaire.

Preuve:

Pour prouver la continuité par morceaux de Re(f) et Im(f) à partir de celle de f, on introduit une subdivision adaptée à $f \sigma = (a_0, ..., a_n)$ et on prouve qu'elle est adaptée à sa partie réelle et à sa partie imaginaire. On peut utiliser:

$$\forall x \in I \ \mathrm{Re}(f(x)) = \frac{1}{2}(f(x) + \overline{f(x)}) \ \mathrm{et} \ \mathrm{Im}(f(x)) = \frac{1}{2i}(f(x) - \overline{f(x)}).$$

En effet, ces relations donnent que pour $i \in [0, n-1]$, les restrictions de Re(f) et Im(f) à $]a_i, a_{i+1}[$ y sont continues, et prolongeables par continuité sur les bords.

Relation de Chasles.

Proposition 5: Relation de Chasles

Soient $f \in \mathcal{CM}(I, \mathbb{K})$ et $a, b, c \in I$.

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

Preuve:

La relation a été établie dans le cours de construction pour une fonction à valeurs réelles dans le cas où a < c < b.

• cas a < b < c:

$$\int_{a}^{c} f + \int_{c}^{b} f = \int_{[a,c]} f - \int_{[b,c]} f = \int_{[a,b]} f + \int_{[b,c]} f - \int_{[b,c]} f = \int_{[a,b]} f = \int_{a}^{b} f.$$

• cas b=c < a: D'une part $\int_a^b f = -\int_{[b,a]} f$, d'autre part : $\int_a^c f + \int_c^b f = -\int_c^a f = -\int_[b,a] f$.

Les autres cas sont similaires.

1.4 Linéarité.

Proposition 6: Linéarité de l'intégrale.

Soient $f, g \in \mathcal{CM}(I, \mathbb{K})$, et $a, b \in I$. Pour tous scalaires $\lambda, \mu \in \mathbb{K}$,

$$\int_{a}^{b} (\lambda f + \mu g) = \lambda \int_{a}^{b} f + \mu \int_{a}^{b} g.$$

Preuve:

On l'a prouvé pour a < b et f, g à valeurs réelles. Il faut le vérifier dans les autres cas.

1.5 Intégrales et inégalités.

Proposition 7: Positivité

Soit $f \in \mathcal{CM}([a,b],\mathbb{R})$ où le segment [a,b] est tel que $|a \leq b|$.

Si f est positive sur [a, b], alors l'intégrale $\int_a^b f(x) dx$ est un nombre positif.

Si f est négative sur [a, b], alors cette intégrale est un nombre négatif.

Preuve:

On l'a déjà prouvé.

Proposition 8: Intégrale nulle d'une fonction positive et continue

Soit $f : [a, b] \to \mathbb{R}$, avec [a, b], continue et positive sur [a, b].

Si $\int_a^b f(x) dx = 0$, alors f est nulle sur [a, b].

Par contraposée, si $\exists c \in [a,b] \ f(c) > 0$, alors $\int_a^b f > 0$.

Preuve:

Il y a aussi la preuve suivante dans L'Exercice 79 de la banque CCINP :

On suppose f continue et positive sur [a,b] et $\int_a^b f = 0$.

Posons $F: x \mapsto \int_a^x f(t) dt$ définie sur [a,b], f étant continue sur [a,b], F est une primitive de f sur [a, b] d'après le TFA (prouvé plus loin).

Donc $\forall x \in [a, b], \ F'(x) = f(x) \ge 0$, ainsi F est croissante sur [a, b].

Or, $F(b) = \int_a^b f = 0$, de plus, $F(a) = \int_a^a f = 0$.

Par croissance, $\forall x \in [a, b], \ F(a) \le F(x) \le F(b) \ \text{donc} \ F(x) = 0.$

Donc F est constante sur [a, b], on a a < b donc $\forall x \in [a, b], F'(x) = f(x) = 0$.

Remarque: Pourquoi continue et pas continue par morceaux?

Soit
$$f: \begin{cases} [0,1] \to \mathbb{R} \\ x \mapsto \begin{cases} 0 \text{ si } x \neq \frac{1}{2} \\ 1 \text{ si } x = \frac{1}{2} \end{cases}$$
, son intégrale est nulle, mais f ne l'est pas.

Proposition 9: Croissance

Soient $f, g \in \mathcal{CM}([a, b], \mathbb{R})$ avec $a \leq b$.

$$f \le g \implies \int_a^b f(x) dx \le \int_a^b g(x) dx$$

Preuve:

On a:

$$\int_a^b g - \int_a^b f = \int_a^b (g - f)$$

Comme g-f est continue par morceaux et positive, on a $\int_a^b (g-f) \ge 0$ donc $\int_a^b f \le \int_a^b g$.

Proposition 10: Inégalité de la moyenne

Soit $f \in \mathcal{CM}([a,b],\mathbb{R})$ avec $|a \leq b|$

Si f est minorée par un réel \overline{m} et majorée par M sur [a,b], alors :

$$m(b-a) \leq \int_a^b f(x) \mathrm{d}x \leq M(b-a), \text{ Lorsque } a < b, \text{ on a } m \leq \frac{1}{b-a} \int_a^b f(x) \mathrm{d}x \leq M.$$

Preuve:

On a $\forall x \in [a, b], m \le f(x) \le M$.

La fonction $f, x \mapsto m, x \mapsto M$ sont continues par morceaux.

Par croissance:

$$\int_a^b m \mathrm{d}t \le \int_a^b f(t) \mathrm{d}t \le \int_a^b M \mathrm{d}t$$

Donc

$$m(b-a) \le \int_a^b f(t) dt \le M(b-a)$$

Proposition 11: Inégalité triangulaire

Soit $f \in \mathcal{CM}([a,b],\mathbb{K})$, avec $a \leq b$.

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

Preuve:

 \odot Cas réel: Soit $f \in \mathcal{CM}([a,b],\mathbb{R})$.

On a $f \leq |f|$ et $-f \leq |f|$, or f, -f et |f| sont cpm sur [a, b]. Par croissance de l'intégrale $(a \leq b)$: $\int_a^b f \leq \int_a^b |f|$ et $-\int_a^b f \leq \int_a^b |f|$. Donc $\max(\int_a^b f, -\int_a^b f) \leq \int_a^b |f|$ et alors $\left|\int_a^b f\right| \leq \int_a^b |f|$.

© Cas complexe: admis.

Quelques exercices de cours.

Exemple 12

Pour $a \in \mathbb{R}_+^*$, on pose $I_a = \int_a^{a^2} \ln^3(x) dx$. Existence et signe de I_a .

Preuve:

Existence: \ln^3 est continue (par morceaux) sur \mathbb{R}_+^* .

1er cas: Supposons $a \ge 1$, alors $a \le a^2$ et $\forall x \in [a, a^2]$ $\ln^3(x) \ge 0$, par positivité, $\int_a^{a^2} \ln^3 \ge 0$. 2eme cas: Supposons $a \in]0,1[$, alors $a^2 \le a$ et $\forall x \in [a^2,a]$ $\ln^3(x) \le 0$, par positivité, $\int_{a^2}^a \ln^3 \le 0$ donc $\int_a^{a^2} \ln^3 \ge 0$. Ainsi, $\forall a \in \mathbb{R}_+^*, I_a \ge 0$

Exemple 13

Soit $f : [a, b] \to \mathbb{R}$ avec a < b continue telle que $\int_a^b f(t) dt = 0$. Justifier que f s'annule au moins une fois sur [a, b].

Preuve:

1er cas: Supposons que f change de signe sur [a, b], alors d'après le TVI, f s'annule sur [a, b] puisque f est continue.

2eme cas: Supposons que f ne change pas de signe sur [a, b]. On a que a < b, que f est continue et monotone sur [a, b], et d'intégrale nulle. Par théorème, $\forall x \in [a, b], f(x) = 0$.

Exemple 14: Un exercice : suite définie par une intégrale.

Soit, pour $n \in \mathbb{N}$, $I_n := \int_1^e (\ln(x))^n dx$.

- 1. Prouver que (I_n) est convergente.
- 2. Prouver que la limite vaut 0 à l'aide d'une IPP.
- 3. Donner un équivalent de I_n .

Preuve:

1. Monotonie: Soit $n \in \mathbb{N}$.

$$I_{n+1} - I_n = \int_1^e \underbrace{(\ln(x))^n}_{>0} \underbrace{(\ln(x) - 1)}_{<0} dx$$

La fonction $x \mapsto (\ln(x))^n(\ln(x) - 1)$ est continue sur [1, e] on a $1 \le e$ et la fonction est négative. Par positivité de l'intégrale, $I_{n+1} - I_n \le 0$ et donc (I_n) est décroissante.

Convergence: Par positivité, on a $\forall n \in \mathbb{N}, I_n \geq 0$, donc I_n est décroissante et minorée par 0 donc elle converge d'après le TLM.

2. Une IPP pour trouver une relation de récurrence. Pour $n \in \mathbb{N}^*$:

$$I_n = \int_1^e (\ln(x))^n dx$$

= $[x(\ln(x))^n]_1^e - \int_1^e x n \frac{1}{k} (\ln(x))^{n-1} dx$
= $e - nI_{n-1}$

On a $\forall n \in \mathbb{N}^*$ $I_n = \frac{1}{n+1}(e - I_{n+1})$. Notons $l = \lim I_n$, qui existe d'après 1. Alors $I_n = \frac{1}{n+1}(e - I_{n+1}) \to 0$ car $e - I_{n+1} \to e - l$.

3. On a $nI_n = \frac{n}{n+1}(e - I_{n+1}) \to e \text{ donc } I_n \sim \frac{e}{n}$.

Exemple 15: Lemme de Riemann-Lebesgue

Soit $f \in \mathcal{C}^1([a,b],\mathbb{C})$. Montrer que

$$\int_{a}^{b} f(t)e^{int} dt \to 0.$$

Remarque: Le lemme est vrai pour f continue sur [a, b], mais difficile à démontrer.

Preuve:

Idée : IPP. Soit $n \in \mathbb{N}$. f et $\frac{1}{in}e^{int}$ sont de classe \mathcal{C}^1 sur [a,b] donc :

$$\int_{a}^{b} f(t)e^{int}dt = \left[f(t) \cdot \frac{1}{in}e^{int}\right]_{a}^{b} - \int_{a}^{b} f'(t) \cdot \frac{1}{in}e^{int}dt$$

Alors

$$|I_n| = \left| \dots \right| \le \left| [\dots]_a^b \right| + \left| \int_a^b \dots \right|$$

D'une part : $\left| \left[f(t) \frac{1}{in} e^{int} \right]_a^b \right| = \frac{1}{n} \left| f(b) e^{inb} - f(a) e^{ina} \right| \le \frac{1}{n} (|f(b)| + |f(a)|).$

D'autre part : $\left| \int_a^b f'(t) \frac{1}{in} e^{int} dt \right| \le \frac{1}{n} \int_a^b \left| f'(t) \right| dt$.

Par majoration, $|I_n| = O(\frac{1}{n})$ donc $I_n \to 0$.

Théorème 16: Théorème fondamental de l'analyse

Soit I un intervalle et $f: I \to \mathbb{K}$ une fonction continue sur I. Soit $a \in I$. La fonction

$$E: \begin{cases} I \to \mathbb{K} \\ x \mapsto F(x) = \int_a^x f(t) dt \end{cases}$$

est de classe C^1 sur I et de dérivée F' = f.

Preuve:

Soit $x_0 \in I$. Montrons que $\frac{F(x)-F(x_0)}{x-x_0} \to f(x_0)$ Soit $x \in I \setminus \{x_0\}$.

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| = \left| \frac{1}{x - x_0} \left(\int_a^x f(t) dt - \int_a^{x_0} f(t) dt \right) - f(x_0) \right|$$

$$= \left| \frac{1}{x - x_0} \int_{x_0}^x f(t) dt - \frac{1}{x - x_0} \int_{x_0}^x f(x_0) dt \right|$$

$$= \frac{1}{|x - x_0|} \left| \int_{x_0}^x (f(t) - f(x_0)) dt \right|$$

$$\leq \frac{1}{|x - x_0|} \int_{\min(x_0, x)}^{\max(x_0, x)} |f(t) - f(x_0)| dt$$

Soit $\varepsilon > 0$. Par continuité de f en x_0 , $\exists \eta > 0 \forall x \in I \cap]x_0 - \eta, x_0 + \eta[|f(t) - f(x_0)| \le \varepsilon$. Supposons que $|x - x_0| \le \eta$. Alors $[\min(x_0, x), \max(x_0, x)] \subset I \cap]x_0 - \eta, x_0 + \eta[$. Par croissance :

$$\int_{\min}^{\max} |f(t) - f(x_0)| dt \le \int_{\min}^{\max} \varepsilon dt = \varepsilon(\max - \min) = \varepsilon |x - x_0|.$$

Ainsi,
$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| \le \frac{1}{|x - x_0|} \varepsilon |x - x_0| = \varepsilon$$