1. Значение вектора неизвестных параметров x определяется при помощи измерительного устройства (датчика). Процесс измерения описывается формулой y = x + w, где w — некоторая помеха. В результате одного измерения был получен вектор $y = (4,6,1,-7,-8)^{\top}$. (a) Определите оценку вектора x, используя метод наименьших квадратов. (б) Определите оценку вектора x, используя метод наименьших квадратов, если известно, что искомый вектор лежит в линейном подпространстве $V = \operatorname{span}(v_1, v_2, v_3)$, где

$$v_1 = (2, 0, 1, 0, 2)^{\top}, \qquad v_2 = (1, \sqrt{3}, 3, 1, 0, 0)^{\top}, \qquad v_3 = (0, 6, 0, -3, 0)^{\top}.$$

Указание. В рассматриваемом случае оценка \hat{x} находится из решения задачи оптимизации с ограничениями:

$$\widehat{x} = \arg\min_{z \in V} (y - z)^{\top} (y - z).$$

2. Радиолокационная станции отслеживает ракету, летящую с постоянной скоростью в плоскости Oxy. Определите состояние ракеты $(x_0, v_x, y_0, v_y)^{\top}$, где x_0 и $v_x = \text{const} - \text{её начальное положение и скорость по оси } x, <math>v_x$ — скорость ракеты по оси x (предполагается постоянной), а y_0 и $v_y = \text{const} - \text{её начальное положение и скорость по оси } y$. В каждый момент времени t_k , $k = 1, \ldots, 6$, радиолокационная станция выдает данные о местоположении ракеты. Эти измерения напрямую связаны с вектором состояния через уравнение

$$z_k = \begin{bmatrix} z_{1,k} \\ z_{2,k} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \end{bmatrix} + w_k, \qquad w_k \sim \mathcal{N}(0,W), \qquad W = \operatorname{diag}(0.25, 0.36), \qquad \mathsf{E}\{w_i w_j^\top\} = W \delta_{ij}.$$

В таблице приведены данные измерений, выполненных радиолокационной станцией:

Время	10	25	35	42	57	68
$z_{1,k}$	284.7	470.0	606.1	697.2	885.9	1030.3
$z_{2,k}$	302.2	344.7	375.8	396.2	439.7	472.8

(a) Определите оценку вектора состояния ракеты, используя метод наименьших квадратов. (б) Определите оценку вектора состояния ракеты, используя взвешенный метод наименьших квадратов в случае, когда весовая матрица $\Omega = W^{-1}$. (в) Определите оценку вектора состояния ракеты, используя метод минимума дисперсии.

Указание. Положение ракеты в произвольный момент времени t_k описывается соотношениями:

$$x_k = x_0 + v_x t_k, \qquad y_k = y_0 + v_y t_k.$$

3. Требуется оценить тензор инерции космического аппарата, пока он находится на орбите. Для этого с помощью двигателей спутнику придают угловой импульс относительно одной из его осей. После того, как космический аппарат перейдет в режим стационарного движения, с помощью гироскопов измеряются результирующие угловые скорости. Описанный процесс повторяется для оставшихся осей. Соответствующее уравнение измерения имеет следующий вид:

$$\begin{bmatrix} L_x \\ L_y \\ L_z \end{bmatrix} = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{xy} & I_{yy} & I_{yz} \\ I_{xz} & I_{yz} & I_{zz} \end{bmatrix} \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}.$$

Постройте оценку параметров I_{xx} , I_{xy} , I_{xz} , I_{yy} , I_{yz} и I_{zz} по методу наименьших квадратов, используя данные, приведенные в таблице. Угловые скорости указаны в радианах в секунду.

	$L_x = 0.5,$	$L_y = 0.5,$	$L_z = 0.5,$
	$L_y = L_z = 0$	$L_x = L_z = 0$	$L_x = L_y = 0$
ω_x	$0.50 \cdot 10^{-3}$	$0.24 \cdot 10^{-4}$	$0.28 \cdot 10^{-4}$
ω_y	$0.02 \cdot 10^{-3}$	$0.98 \cdot 10^{-4}$	0.0
ω_z	$0.03 \cdot 10^{-3}$	0.0	$0.83 \cdot 10^{-4}$