



# How to Develop a Computational Model?

"All models are wrong, but some are useful" George E. P. Box







#### What we will cover:

- → An example for how to select the proper model with respect to a specific task design
- → The Rescorla Wagner model
- → The concept of learning rate
- → The concept of temperature
- → What is a "softmax" function







# Developing a computational model









# Developing a computational model

















#### 2-arm bandit













# Experimental task -





How do you maximise reward if you do not know which slot machine is better?

- → Learn expected value of each slot machine
- → Make the next choice based on values learnt

| Trial | Choice                         | Outcome |
|-------|--------------------------------|---------|
| 1     | Right                          | 0       |
| 2     | Left new choice                | +1      |
| 3     | Left                           | +1      |
| 4     | Right                          | 0       |
| 5     | <b>Left</b> past<br>experience | +1      |









$$V_t = V_{t-1} + \alpha(R_t - V_{t-1})$$





























$$V_t = V_{t-1} + \alpha(R_t - 0.5)$$









$$V_t = V_{t-1} + \alpha(1-0.5)$$









0.5 
$$V_{t}=V_{t-1}+\alpha(1-0.5)$$















$$V_t = V_{t\text{-}1} + \quad \alpha \quad \left(R_t\text{-}V_{t\text{-}1}\right)$$
 Value on (of the slot machine) = Value on previous trial























```
Value Value on Learning (Reward - previous trial + rate (Reward - previous trial )
```









```
Value Value on Learning ( Reward - Value on (of the slot machine) = previous trial + rate ( Reward - previous trial )
```









Prediction error
what you received - what you expected

Value Value on Learning (Reward - previous trial + rate (Reward - previous trial)

| Trial | ? |  |  |
|-------|---|--|--|
| 1     |   |  |  |

























Trial











Prediction error

what you received - what you expected

learning - Value on

Value Value on Learning (Reward - previous trial)

| Trial | 1 | 0.5 | + | 0.5 |
|-------|---|-----|---|-----|
| 1     |   |     |   |     |







Prediction error
what you received - what you expected
Learning / Dawned Value on

| Value                 | Value on      |     | Learning (Reward | Value      | on      |
|-----------------------|---------------|-----|------------------|------------|---------|
|                       |               | , + | Reward           | - previous | trial)  |
| (of the slot machine) | previous tria | T   | rate ( Table 1   | previous   | criat ) |

| Trial<br>1 | 1 | 0.5 | + | 0.5 |
|------------|---|-----|---|-----|
| Trial<br>2 |   | 1   | + | 7   |







Prediction error what you expected



| Trial<br>1 | 1 | 0.5 | + | 0.5 |   |
|------------|---|-----|---|-----|---|
| Trial<br>2 |   | 1   | + | 1   | 1 |







Prediction error what you received - what you expected

Value Value on Learning (Reward - previous trial + rate (Reward - previous trial)

| Trial<br>1 | 1 | 0.5 | + | 0.5     |
|------------|---|-----|---|---------|
| Trial<br>2 |   | 1   | + | (1 - 1) |









| Trial<br>1 | 1 | 0.5 | + | 0.5 |
|------------|---|-----|---|-----|
| Trial<br>2 |   | 1   | + | 0   |







| Trial<br>1 | 1 | 0.5 | + | 0.5 |
|------------|---|-----|---|-----|
| Trial<br>2 | 1 | 1   | + | 0   |







| Trial<br>1 | 1 | 0.5 | + | 0.5 |
|------------|---|-----|---|-----|
| Trial<br>2 | 1 | 1   |   | 0   |







# Modelling behaviour with RL

what you received - what you expected

Value

Value on + Learning (Reward - previous trial)

| Trial<br>1 | 1 | 0.5 | + | 0.5 |
|------------|---|-----|---|-----|
| Trial<br>2 | 1 | 1   | + | 0   |
| Trial<br>3 |   | 1   | + | 1   |







Prediction error what you expected

Value Value on Cof the slot machine) = Value on Previous trial + Compared (Neward - Previous trial)

| Trial<br>1 | 1 | 0.5 | + | 0.5 |
|------------|---|-----|---|-----|
| Trial<br>2 | 1 | 1   | + | 0   |
| Trial<br>3 |   | 1   | + | 0 1 |







| Trial<br>1 | 1 | 0.5 | + | 0.5 |
|------------|---|-----|---|-----|
| Trial<br>2 | 1 | 1   | + | 0   |
| Trial<br>3 |   | 1   | + | -1  |









Prediction error what you received - what you expected

Value Value on Cof the slot machine) = Value on Previous trial + Compared (Neward - Previous trial)

| Trial<br>1 | 1 | 0.5 | + | 0.5 |
|------------|---|-----|---|-----|
| Trial<br>2 | 1 | 1   | ٠ | 0   |
| Trial<br>3 | 0 | 1   | + | -1  |















#### HARILEY LA

#### How much should we learn?

What happens if we manipulate learning rate?











## How much should we learn?

What happens if we manipulate learning rate?













## How much should we learn?

What happens if we manipulate learning rate?













## Is low learning rate always better?

$$V_{t}=V_{t-1}+\alpha(R_{t}-V_{t-1})$$

- → Depend on the statistics of the environment
  - Low volatility-> low a is better
  - High volatility-> high a is better







#### What did we learn so far

- → What are multi arm bandit tasks
- → How RL and, specifically Rescorla Wagner model can help us to 'solve' such problems
- → Expected value
- → Prediction error
- → High vs low learning rate

























20% reward

80% reward

← learnt via trial and error ← (value function)









80% reward

#### Maximise rewards

- → Pick slot machine with largest likelihood of reward
- → Exploit

































#### Exploit

→ Choose slot machine when reward is better than the other







#### Try other options

- → Sample the outcomes of the other slot machine
- **→** Explore



20% reward











#### Explore

→ Choose slot machine equally













Exploit — an individual difference — Explore we can model as a free parameter







Temperature  $(\tau)$ : parameter that determines the extent to which value estimates influence choice behaviour





Temperature  $(\tau)$ : parameter that determines the extent to which value estimates influence choice behaviour

#### Low temperature

→ Choices are less noisy







Temperature  $(\tau)$ : parameter that determines the extent to which value estimates influence choice behaviour

#### Low temperature

- → Choices are less noisy
- → More affected by value
- → More deterministic







Temperature  $(\tau)$ : parameter that determines the extent to which value estimates influence choice behaviour

## High temperature

- → Choices are more noisy
- → Less affected by value
- → Less deterministic







Temperature  $(\tau)$ : parameter that determines the extent to which value estimates influence choice behaviour





→ Let's assume that if we don't pick purple we will pick orange; and vice versa







Temperature  $(\tau)$ : parameter that determines the extent to which value estimates influence choice behaviour

#### Softmax equation:

 $\exp([V_{\text{purple}}]/\tau)$ 

P(purple) =

SUM[exp( $\begin{bmatrix} V_{purple} \\ V_{orange} \end{bmatrix} / \tau$ )]



Let's assume that if we don't pick purple we will pick orange; and vice versa







Temperature  $(\tau)$ : parameter that determines the extent to which value estimates influence choice behaviour

#### Softmax equation:

$$\exp([V_{purple}]/\tau)$$

P(purple) =

Probability of choosing purple

 $\rightarrow$  P(orange) = 1 - P(purple)







→ Let's assume that if we don't pick purple we will pick orange; and vice versa







Temperature  $(\tau)$ : parameter that determines the extent to which value estimates influence choice behaviour

#### **Softmax equation:**

Value of machines

 $\exp([V_{purple}]/\tau)$ 



Probability of choosing purple

→ P(orange) = 1 - P(purple)





→ Let's assume that if we don't pick purple we will pick orange; and vice versa







Temperature  $(\tau)$ : parameter that determines the extent to which value estimates influence choice behaviour

#### Softmax equation:

Value of machines

 $\exp([V_{purple}]/\tau)$ 

Probability of choosing purple

→ P(orange) = 1 - P(purple)



Free parameter temperature





Let's assume that if we don't pick purple we will pick orange; and vice versa







$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

#### **Exploit**

→ Choose slot machine when reward is better than the other









$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

#### **Exploit**

→ Choose slot machine when reward is better than the other









$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

#### **Exploit**

→ Choose slot machine when reward is better than the other

#### Temperature is low

- → Choices are less noisy
- → More affected by value
- → More deterministic





## Developmental Computational Psychiatry lab



$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

#### **Explore**

→ Random choice









$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

#### **Explore**

→ Random choice









$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

#### **Explore**

→ Random choice

#### Temperature is high

- → Choices are more noisy
- → Less affected by value
- → More random





# Developmental Computational Psychiatry lab HARTLEY LAB

## How should we choose?

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{V_{orange}}$$

$$SUM[exp([V_{orange}]/\tau)]$$

#### Temperature is low

- → Choices are less noisy
- → More affected by value
- → More deterministic

#### Temperature is high

- → Choices are more noisy
- → Less affected by value
- → Less deterministic









$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

#### Temperature is low

- → Choices are less noisy
- → More affected by value
- → More deterministic

#### Temperature is high

- → Choices are more noisy
- → Less affected by value
- → Less deterministic







#### Softmax

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

What does the exponential (exp) do?









#### Softmax

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

#### What does the exponential (exp) do?

- → Non-linear transformation of value
- → Deals with negative values











#### Softmax

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

#### What does the exponential (exp) do?

- → Non-linear transformation of value
- → Deals with negative values

#### What does the division by SUM do?

→ Normalizes values to between 0 to 1







$$P(purple) = \frac{\exp([V_{purple}])}{SUM[\exp([V_{orange}])]}$$

#### Softmax

→ Transforms value input into values between 0 to 1

Assume temperature = 1







$$P(purple) = \frac{\exp([V_{purple}])}{SUM[\exp([V_{orange}])]}$$

#### Softmax

→ Transforms value input into values between 0 to 1

Assume temperature = 1

For my next slot machine play...

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$







$$P(purple) = \frac{\exp([V_{purple}])}{SUM[exp([V_{orange}])]}$$

$$= \frac{exp([V_{purple}])}{SUM[exp([G_{orange}])]}$$

$$= \frac{exp([G_{orange}])}{SUM[exp([G_{orange}])]}$$

#### Softmax

→ Transforms value input into values between 0 to 1

Assume temperature = 1

For my next slot machine play...

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$







$$P(purple) = \frac{\exp([V_{purple}])}{SUM[exp([V_{orange}])]}$$

$$= \frac{exp([60])}{SUM[exp([60])]}$$

$$= \frac{e^{60}}{e^{60} + e^{40}}$$

$$= 1$$

#### Softmax

→ Transforms value input into values between 0 to 1

Assume temperature = 1

For my next slot machine play...

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$







$$P(purple) = \frac{\exp([V_{purple}])}{SUM[exp([V_{purple}])]}$$

$$= \frac{exp([60])}{SUM[exp([60])]}$$

$$= \frac{e^{60}}{e^{60} + e^{40}}$$

$$= 1$$

#### Softmax

→ Transforms value input into values between 0 to 1



$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$







$$P(purple) = \frac{\exp([V_{purple}])}{SUM[\exp([V_{orange}])}$$

$$= \frac{\exp([60])}{SUM[\exp([60])]}$$

$$= \frac{e^{60}}{e^{60} + e^{40}}$$

$$= 1$$

#### Softmax

→ Transforms value input into values between 0 to 1

$$P(orange) = \frac{\exp([V_{orange}])}{SUM[\exp([V_{orange}])}$$

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$







$$P(purple) = \frac{\exp([V_{purple}])}{SUM[\exp([V_{orange}])]}$$

$$= \frac{\exp([60])}{SUM[\exp([60])]}$$

$$= \frac{e^{60}}{e^{60} + e^{40}}$$

$$= 1$$

#### Softmax

→ Transforms value input into values between 0 to 1

P(orange) = 
$$\frac{\exp([V_{orange}])}{SUM[\exp([V_{orange}])}$$
$$= \frac{e^{40}}{e^{60} + e^{40}}$$
$$= 0$$

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$







$$P(purple) = \frac{\exp([V_{purple}])}{SUM[\exp([V_{purple}])]}$$

$$= \frac{\exp([60])}{SUM[\exp([60])]}$$

$$= \frac{\exp([60])}{[60]}$$

$$= \frac{e^{60}}{e^{60} + e^{40}}$$

probability equals to 1

Tricia Seow | Samuel Hewitt | Noam Goldway

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$



Softmax





$$P(purple) = \frac{\exp([V_{purple} ]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

#### Temperature $(\tau)$

→ how much value affects choices

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$







P(purple) = 
$$\frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$
$$= \frac{\exp([60]/15)}{SUM[\exp([60]/15)]}$$

#### Temperature $(\tau)$

→ how much value affects choices

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$







$$P(purple) = \frac{\exp([\frac{V_{purple}}{V_{purple}}]/\tau)}{SUM[\exp([\frac{V_{purple}}{V_{orange}}]/\tau)]}$$

$$= \frac{\exp([\frac{60}{V_{purple}}]/\tau)}{SUM[\exp([\frac{60}{40}]/15)]}$$

$$= \frac{e^{60/15}}{e^{60/15} + e^{40/15}}$$

$$= 0.79$$

#### Temperature $(\tau)$

→ how much value affects choices

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$







$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

$$= \frac{\exp([60]/15)}{SUM[\exp([60]/15)]}$$

$$= \frac{e^{60/15}}{e^{60/15} + e^{40/15}}$$

$$= 0.79$$

#### Temperature $(\tau)$

→ how much value affects choices



$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$







$$P(purple) = \frac{\exp([V_{purple} ]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

$$= \frac{1}{\text{SUM}[\exp(\left[\frac{60}{40}\right]/15)]}$$

$$= \frac{e^{60/15}}{e^{60/15} + e^{40/15}}$$

#### Temperature $(\tau)$

→ how much value affects choices

#### Assume temperature = 15

P(orange) = 
$$\frac{\exp([V_{orange}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$
$$= \frac{e^{40/15}}{e^{60/15} + e^{40/15}}$$
$$= 0.21$$

probability equals to 1

Tricia Seow | Samuel Hewitt | Noam Goldway

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$







# What have we learnt about choice?

#### **Softmax equation:**

$$P(purple) = \frac{exp([V_{purple}]/\tau)}{SUM[exp([V_{purple}]/\tau)]}$$

$$V_{orange}$$

Temperature (τ): parameter that determines the extent to which value estimates influence choice behaviour

**Exploit or Explore** 









### What have we learnt about choice?

#### **Exploit versus Explore:**

- → Discover "what works" by alternating between exploration and exploitation
- → In uncertain environments, more exploration could be useful









# Summary



| Task            | Trial and error learning                 | Reinforcement Learning |
|-----------------|------------------------------------------|------------------------|
| Value Function  | Subjective value from objective outcomes | Rescorla-Wagner        |
| Choice Function | Choice probabilities from value          | Softmax                |

