Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

ОТЧЁТ

по лабораторной работе №1 по дисциплине «Общая теория интеллектуальных систем» на тему: система «Робот-пылесос»

Выполнил: Р. В. Липский

Студент группы 121701

Проверил: Н. В. Гракова

1 Постороение модели «Чёрный ящик»

Цель: построение и исследование модели «чёрный ящик».

Характеристика: система «робот-пылесос» предназначена для автоматической уборки помещений с минимальным участием человека или без него. Робот-пылесос должен быть способен к самостоятельному перемещению и ориентированию в пространстве, для чего оснащается аккумулятором, колёсными движителями, навигационными сенсорами и управляющим микроконтроллером. Относится к классу бытовых роботов и интеллектуальной бытовой технике для умного дома.

Пользователь системы: человек, владеющий жилым пространством, имеющий базовые навыки использования электронных приборов.

Входы

- 1.1. Панель кнопок управления
- 1.2. Разъём для шнура электропитания
- 1.3. Аккумуляторная батарея
- 1.4. Датчик расстояния
 - 1.4.1. Оптический датчик расстояния
 - 1.4.2. Ультразвуковой датчик расстояния
 - 1.4.3. Инфракрасный датчик расстояния
- 1.5. Пылесборник
- 1.6. Щётки

2. Выходы

- 2.1. Чистка пола
- 2.2. Удобство эксплуатации
- 2.3. Уборка по расписанию
- 2.4. Влажная уборка
- 2.5. Контейнеры с загрязняющими частицами

3. Нежелательные входы

- 3.1. Жидкости
- 3.2. Крупные частицы
- 3.3. Химически активные вещества
- 3.4. Сильное электромагнитное поле
- 3.5. Электростатическое поле
- 3.6. Высокая температура
- 3.7. Повышенное напряжение питания
- 3.8. Пониженное напряжение питания
- 3.9. Сильное физическое воздействие (удары, падения)

4. Нежелательные выходы

- 4.1. Превышение допустимой рабочей температуры
- 4.2. Дым
- 4.3. Огонь
- 4.4. Загрязнение пола

5. Способы устранения недостатков системы

- 5.1. Отсутствие перепадов напряжения
- 5.2. Своевременная замена аккумуляторных батарей
- 5.3. Своевременная чистка от загрязнения
- 5.4. Своевременный ремонт
- 5.5. Соответствие инструкции эксплуатации
- 5.6. Избежание воздействия электромагнитных и механических волн
- 5.7. Избежание попадания жидкости и химически активных веществ
- 5.8. Избежание попадания особо крупных частиц (грязи)
- 5.9. Избежание сильного физического воздействия

2 Модель состава системы

- 1. Корпус
- 2. Панель кнопок управления
- 3. Подсистема движения
 - 3.1. Датчики расстояния
 - 3.2. Микрокомпьютер
 - 3.3. Электродвигатель
 - 3.4. Электроприводы
 - 3.5. Колёсики
- 4. Подсистема сборки загрязняющих частиц
 - 4.1. Щётки
 - 4.2. Пылесборник
 - 4.3. Вакуумный насос
 - 4.4. Контейнер для загрязняющих частиц
- 5. Аккумулятор
- 6. Разъём для шнура электропитания

3 Модель структуры системы

Элемент	Свойства
Корпус	Механическая защита внутренних деталей
	от любого внешнего воздействия
Панель кнопок управле-	Запуск и контроль работы системы
ния	
Датчики расстояния	Предоставляют информацию для управле-
	ния движением механизма в пространстве
Микрокомпьютер	Контроллирует движение механизме в про-
	странстве
Электроприводы	Преобразуют электрическую энергию в ме-
	ханическую
Колёсики	Снижают трение для обеспечения передви-
	жения механизма в пространстве
Щётки	Подают загрязняющие частицы к пылесбор-
	нику
Пылесборник	Собирает загрязняющие частицы
Вакуумный насос	Всасывает загрязняющие частицы из внеш-
	ней среды
Контейнер для загряз-	Собирает загрязняющие частицы для удоб-
няющих частиц	ного извлечения
Аккумулятор	Хранит электрическую энергию для пита-
	ния элементов механизма
Разъём для шнура элек-	Получает электрическую энергию из внеш-
тропитания	ней среды

Взаимодействие между элементами системы

Пара элементов	Связь между ними
Корпус и микрокомпью-	Защита
тер	
Корпус и электроприво-	Защита
ды	
Корпус и вакуумный на-	Защита
coc	
Корпус и контейнер для	Защита
загрящняющих частиц	
Корпус и аккумулятор	Защита
Панель кнопок управле-	Инициация работы подсистемы, окончание
ния и подсистема дви-	работы подсистемы
жения	
Панель кнопок управле-	Инициация работы подсистемы, окончание
ния и подсистема сбор-	работы подсистемы
ки загрязняющих ча-	
стиц	
Датчики расстояния и	Передаёт информацию о расстоянии до
микрокомпьютер	ближайшего объекта
Микрокомпьютер и	Задаёт направление скорость движения
электроприводы	
Электроприводы и ко-	Преобразуют электрическую энергию в ме-
лёсики	ханическую для движения
Щётки и пылесборник	Направляют загрязняющие частицы
Вакуумный насос и пы-	Засасывают загрязняющие частицы
лесборник	
Вакуумный насос и кон-	Собирают загрязняющие частицы в контей-
тейнер для сборки за-	нер
грязняющих частиц	
Аккумулятор и подси-	Питает элементы подсистемы движения
стема движения	
Аккумулятор и подси-	Питает подсистему сборки загрязняющих
стема сборки загрязня-	частиц
ющих частиц	
Разъём для шнура элек-	Подаёт в аккумулятор электрическую энер-
тропитания и аккумуля-	ГИЮ
тор	

4 Построение структурной схемы системы

