# 1. gyakorlat

#### Téma:

Algoritmusok műveletigényének meghatározása, hatékonyság, hatékonyság jellemzése (aszimptotikus korlátok bevezetése). Az anyag úgy lett összeállítva, hogy akkor is elvégezhető, ha még nem volt előtte előadás.

#### Javasolt feladatok:

1. Polinom helyettesítési értékének kiszámítása. Adott egy n-ed fokú polinom, határozzuk meg egy adott x helyen felvett értékét:  $a_n^*x^n+a_{n-1}^*x^{n-1}+....$   $a_1^*x+a_0$ 

(Tfh nagyon sok polinomunk van, és nagyon sok helyen kell kiszámítani az értékét, ezért készítsünk minél hatékonyabb megoldást.)

A polinom együtthatóit egy nullától indexelt, n+1 méretű tömbben helyezzük el. (Megállapodás: ha a tömböt nem nullától indexeljük, a deklarációnál és a specifikációnál jelezzük, pl. A/1:T[n]. Most tehát Z:R[] ugyanaz, mint Z/0:R[].) A Z tömb mérete: Z.length (hangsúlyozzuk, hogy: Z.length=n+1).

A megoldásoknál írjuk fel, hogy az egyes lépések hányszor hajtódnak végre. Vizsgáljuk meg a ciklusiterációk it(n), a szorzások S(n) és az összeadások  $\ddot{O}(n)$  számát, a polinom fokszámának függvényében.

Feltehető, hogy n≥0, azaz Z.length>0

Első megoldás, az összegzés tételéből származik:



Hányszor fut le (Z.lenght=n+1)



$$S(n) = \frac{n * (n + 1)}{2} = \frac{n^2 + n}{2}$$
  
 $\ddot{O}(n) = n$   $it(n) = S(n)$ 

Második megoldás, x hatványait rekurzívan számoljuk a h változóban:  $x^i=x^{i-1}*x$ , ha i>0,  $x^0=1$ 

# Rekurzív(Z:R[]; x:R) :R

$$S(n) = 2 * n$$

$$\ddot{O}(n) = n$$

$$it(n) = n$$

Harmadik megoldás, a Horner séma:

$$y=(...(a_n*x+a_{n-1})*x+a_{n-2})*x+...+a_1)*x+a_0$$



$$S(n) = n$$
  $it(n) = n$   $\ddot{O}(n) = n$ 

Jellemezzük a három megoldást a  $\Theta$  aszimptotikus korlát segítségével. Írjuk fel a definíciót, rajzoljunk szemléltető ábrát, majd készítsük el az alábbi táblázatot! it(n) a futási idő nagyságrendjét általában, minden nemrekurzív program esetében is megadja:

|       | Polinom1              | Rekurzív      | Horner        |
|-------|-----------------------|---------------|---------------|
| S(n)  | $\Theta(n^2)$         | $\Theta(n)$   | $\Theta(n)$   |
| Ö(n)  | <b>Θ</b> ( <i>n</i> ) | $\Theta(n)$   | $\Theta(n)$   |
| it(n) | $\Theta(n^2)$         | Θ( <i>n</i> ) | Θ( <i>n</i> ) |

2. Buborék rendezés (ezt tanulták programozásból, de nem biztos, hogy mindegyik csoportnál vették). Készítsük el az alap algoritmust, majd a javított változatot. Elemezzük itt is, hogy a struktogram egyes lépései hányszor hajtódnak végre. Nézzük meg az összehasonlítások Öh(n) és cserék számát Cs(n). Cserék elemzésénél használjuk a mCs(n), MCs(n) ACs(n) jelöléseket. Átlagos csere számot nem kell pontosan kiszámolni, elég csak a "megérzés"-re támaszkodni.

Mutassuk be a rendezés menetét egy rövid példán, majd írjuk fel a struktogramot.

| Bubore | ék péld  | a:         |          | Csere      |                                 |
|--------|----------|------------|----------|------------|---------------------------------|
| 3      | 5        | 2          | 4        | 1          | 0                               |
| 3      | 5        | <b>2</b>   | 4        | 1          | 1                               |
| 3      | 2        | 5          | <b>4</b> | 1          | 1                               |
| 3      | 2        | 4          | 5 🔷      | <b>→</b> 1 | 1                               |
| 3      | 2        | 4          | 1        | 5          | 1. menet vége, 5 a helyén van   |
| 3 🛑    | <b>2</b> | 4          | 1        | 5          | 1                               |
| 2      | 3        | 4          | 1        | 5          | 0                               |
| 2      | 3        | 4 🝁        | <b>1</b> | 5          | 1                               |
| 2      | 3        | 1          | 4        | 5          | 2. menet vége                   |
| 2      | 3        | 1          | 4        | 5          | 0                               |
| 2      | 3 🛑      | <b>→</b> 1 | 4        | 5          | 1                               |
| 2      | 1        | 3          | 4        | 5          | 3. menet vége                   |
| 2 👍    | <b>1</b> | 3          | 4        | 5          | 1                               |
| 1      | 2        | 3          | 4        | 5          | 4. menet vége, rendezett a tömb |

Csere összesen: 7 Összehasonlítás összesen: 10 A rendezendő kulcsokat (és a hozzájuk tartozó adatokat) egy A nevű tömbben helyeztük el. A.length = n, a rendezendő kulcsok darabszáma.

# Buborék(A/1:T[n]) Hányszor fut le (A.length=n) i = n downto 2 j=1 to i-1 A[j] > A[j+1] Csere(A[j],A[j+1]) n+n-1+...+2 n-1+n-2+...+1 Csereszám?

Az összehasonlítások száma Ö
$$(n)=\sum_{i=1}^{n-1}i=rac{n*(n-1)}{2}=rac{n^2-n}{2}\in\Theta(n^2)$$

Cserék számát hogyan tudjuk meghatározni?

Cserék száma a rendezendő adatsorban található inverziók számával egyenlő. Lásd a példában 7 inverzió van: 3,2 3,1 5,2 5,4 5,1 2,1 4,1

Ebből adódik, hogy mCs(n)=0 (nincs inverzió, azaz növekvően rendezett a bemenet)

MCs(n)= Ö(n) (minden összehasonlítást csere követ, azaz fordítottan rendezett a tömb)

 $ACs(n) = \frac{n*(n-1)}{4} = \Theta(n^2)$  Ezt nem kell pontosan levezetni, a lejjebb megadott linken megtalálható.

Vezessük be az  $\Omega$  és O aszimptotikus korlátokat, és használjuk a csere számra: mCs(n)=0, MCs(n)= $O(n^2)$  azaz Cs(n)= $O(n^2)$ 

Az átlagos futási idő kiszámítása részletesen megtalálható dr Fekete István jegyzetében: https://people.inf.elte.hu/fekete/algoritmusok jegyzet/01 fejezet Muveletigeny.pdf

Említsük meg a buborék rendezés javítási módszereit:

- figyelhetjük egy logikai változóval, hogy volt-e csere, ha nem volt akkor a külső ciklus álljon le,
- megjegyezhetjük az utolsó csere helyét: ha ez u és u+1 indexen történt, akkor u+1-től már a tömb rendezett, a külső ciklus változót u-ra lehet csökkenteni (ezt a változatot én fel szoktam írni). Itt elég csak a legkedvezőbb és legrosszabb esetet vizsgálni mÖ(n)∈Θ(n), MÖ(n)∈Θ(n²). Megemlíthetjük a futási idő jelölést: mT(n)∈Θ(n), MT(n)∈Θ(n²); azaz mT(n),MT(n)∈Ω(n), mT(n),MT(n)∈O(n)

## Példa:

| Javítot | t bubo     | rék pélo | da: | Csere |                               |
|---------|------------|----------|-----|-------|-------------------------------|
| 2       | 3          | 1        | 4   | 5     | 0                             |
| 2       | 3 🛑        | 1        | 4   | 5     | 1 u=2                         |
| 2       | 1          | 3        | 4   | 5     | 0                             |
| 2       | 1          | 3        | 4   | 5     | 0                             |
| 2       | 1          | 3        | 4   | 5     | 1. menet vége 3,4,5 rendezett |
| 2 🛑     | <b>→</b> 1 | 3        | 4   | 5     | 1 u=1                         |
| 1       | 2          | 3        | 4   | 5     | kész                          |

Csere összesen: 2 Összehasonlítás összesen: 5

Struktogramja, elemzés nélkül:

# JavítottBuborék(A/1:T[n])



3. A maximum kiválasztásos rendezés struktogramjának elkészítése, elemzése.

Mutassuk be a rendezést egy rövid példán, majd írjuk fel a struktogramot. Beszéljük meg, miért nem érdemes a cserét egy elágazásba tenni? (Maximum értéket azért nem használunk, mert rendezésnél mindig feltesszük, hogy nem csak kulcs, hanem a kulcshoz tartozó rekord is tárolva van a tömbben, melynek mozgatása költséges lenne.)

### Példa:



# MaxKivRend(A/1:T[n])

Hányszor fut le (A.length=n)



#### Házi feladatok:

1. Legendre algoritmus műveletigényének meghatározása k függvényében: (Az algoritmus az  $a^k$  hatványt számolja ki, ezt nem szokták tudni, így elsőként fel lehet adni kitalálós feladatnak, hogy mit csinál az algoritmus.  $0^0$ =1, definíció szerint.)

Legendre(a:R,k:N):R



a' és k' : a és k kezdeti értéke

Ciklus invariáns:

s\*(a^k) = a'^k' és k in 0..k'

(a^k: hatványozás)

#### Útmutatás:

Érdemes lejátszani egy példán: 311

| Menet                                                      | а              | S               | k  |  |  |  |  |
|------------------------------------------------------------|----------------|-----------------|----|--|--|--|--|
| Kezdés                                                     | 3              | 1               | 11 |  |  |  |  |
| 1. k páratlan                                              | 3              | 3               | 10 |  |  |  |  |
| 2. k páros                                                 | 3 <sup>2</sup> | 3               | 5  |  |  |  |  |
| 3. k páratlan                                              | 3 <sup>2</sup> | 3 <sup>3</sup>  | 4  |  |  |  |  |
| 4. k páros                                                 | 3 <sup>4</sup> | 3 <sup>3</sup>  | 2  |  |  |  |  |
| 5. k páros                                                 | 3 <sup>8</sup> | 3 <sup>3</sup>  | 1  |  |  |  |  |
| 6. k páratlan                                              | 3 <sup>8</sup> | 3 <sup>11</sup> | 0  |  |  |  |  |
| k=0, vége az algoritmusnak, s –ben a megfelelő hatvány van |                |                 |    |  |  |  |  |

- Legkedvezőbb eset, amikor k 2 hatványa, ekkor bináris alakja: 100...00, azaz a legutolsó menet kivételével mindig a páros ágon fut az algoritmus, k mindig feleződik. A legutolsó menetben k=1 esetében egyszer fut le a páratlan ág. Ilyenkor a ciklus meneteinek száma:  $T(k) = \log_2 k + 1$
- Legkedvezőtlenebb az az eset amikor felváltva fut a páratlan, majd páros ágon. Ilyenkor 2 hatvány-1 alakú a k, aminek bináris alakja csupa 1-es: 111...11. amikor a "k:=k-1" ágon fut páros lesz a szám, majd kettővel osztva ismét páratlan. Ilyenkor a ciklus meneteinek száma:  $T(k) = 2* \lfloor \log_2 k \rfloor + 1$  (vagy  $T(k) = 2* \log_2(k+1)-1$  is jó megoldás)
- Mivel ugyanazt a nagyságrendet kaptuk, azaz mT(k), $MT(k) \in \Theta(\log_2 k) = \Theta(\log k)$ , így az átlagos eset is e kettő közé kell essen, tehát  $AT(k) \in \Theta(\log k)$
- Említsük meg, esetleg később vissza lehet rá térni, hogy log<sub>a</sub>n∈Θ(log<sub>b</sub>n) és fordítva, azaz ha a,b>1 akkor a logaritmusok ugyanazt a nagyságrendet képviselik, így a logaritmus alapszáma elhanyagolható.
- Megemlíthető, hogy a k:=k/2 nem jelent osztást, ez csak a bitek shiftelése jobbra, így ez a Horner sémához hasonlóan a szorzások számát tekintve egy nagyon hatékony algoritmus.

2. Adott egy n hosszú, egész számokat tartalmazó tömb. Keressük a tömb azon szakaszát, melynek összege a lehető legnagyobb. (Legyen a tömb neve: A, adjuk meg az a két indexet:  $1 \le ind1 \le ind2 \le n$ , melyre a  $\sum_{i=ind1}^{ind2} A[i]$  a maximális.). Elemezzük a megoldás műveletigényét, készítsünk minél hatékonyabb algoritmust! A "Brute-Force" megoldás  $\Theta(n^3)$ , könnyen javítható  $\Theta(n^2)$ -re, de van  $\Theta(n)$ -es megoldás is!

## Megoldások:

BruteForce(A/1:Z[n])



sum(A/1:Z[], i:N, j:N): Z



A két főciklus négyzetes műveletigényű (mintha egy négyzetes mátrix felső háromszögét járnánk be): $\Theta(n^2)$ , a kiemelt összegző függvény pedig i-től j-ig előállítja a vektor elemeinek összegét, ami O(n), összességében belátható, hogy  $\Theta(n^3)$  a műveletigény.

Négyzetes(A/1:Z[n])



Ugyanúgy a "felső háromszöget" járjuk be, de az összeg előállítását az előző összegből egy összeadással állítjuk elő (mint a hatványok számítása a polinomos feladatban), így a műveletigény:  $\Theta(n^2)$ 

A legügyesebb megoldás lineáris:

## Lineáris(A/1:Z[n])

| s:=A            | [1] k:  | =1    |         |  |  |  |  |  |
|-----------------|---------|-------|---------|--|--|--|--|--|
| max:=A[1]       | ind1:=1 | ind2: | =1      |  |  |  |  |  |
| i = 2 to n      |         |       |         |  |  |  |  |  |
| A[i] > s + A[i] |         |       |         |  |  |  |  |  |
| s:=A[i]         | k:=i    | s:    | =s+A[i] |  |  |  |  |  |
|                 | s > ma  | x     |         |  |  |  |  |  |
| max:=s          |         |       |         |  |  |  |  |  |
| ind1:=k         | ind2:=i |       | skip    |  |  |  |  |  |

Illusztráció:

| Α    | 1 | 2 | 3  | 4  | 5 | 6  | 7 | 8 | 9  | 10 |
|------|---|---|----|----|---|----|---|---|----|----|
|      | 4 | 5 | -3 | -7 | 4 | -1 | 2 | 3 | -1 | 10 |
| S    | 4 | 9 | 6  | -1 | 4 | 3  | 5 | 8 | 7  | 17 |
| k    | 1 |   |    |    | 5 |    |   |   |    |    |
| max  | 4 | 9 |    |    |   |    |   |   |    | 17 |
| ind1 | 1 | 1 |    |    |   |    |   |   |    | 5  |
| ind2 | 1 | 2 |    |    |   |    |   |   |    | 10 |

Egy adott k kezdőindextől (kezdetben 1-től) elkezdjük összeadni a vektorban lévő számokat. Mindig a következő (i-dik) elemmel növeljük az összeget. Ha az így kapott összeg nagyobb, mint az A[i], akkor megyünk tovább az összeg számolással. Amikor az összeg negatívvá válik (lásd a példában a 4. elem, akkor a következő körben s+A[i]<A[i] teljesül, így nem érdemes a részösszeget folytatni, egy új részösszeget kezdünk s-ben, és megjegyezzük az új kezdőindexet k-ban. Ha az adott körben s értéke nagyobb lesz, mint az eddigi részösszegek maximuma, akkor max-ot, és ind1, ind2 változókat is megfelelően átállítjuk.

Tulajdonképpen ez egy rekurzív függvényen végzett maximum keresés<sup>1</sup>, ahol a rekurzív függvény értéke két komponensből áll, egy összegből (s), és egy kezdőindexből (k). A rekurzív függvény egyenlete pedig:

$$\begin{aligned} szum(1) &= (A[1],1) \\ i &> 1 \ esetben: \\ szum(i) &= \begin{cases} (A[i],i), ha \ A[i] > szum(i-1)_1 + A[i] \\ (szum(i-1)_1 + A[i], szum(i-1)_2), \ egyébként \end{cases} \end{aligned}$$

A ciklusmag elsőként meghatározza a rekurzív függvény i-dik értékét, majd a maximum kiválasztás tétel ezeken keresi a maximumot.

Készült az "Integrált kutatói utánpótlás-képzési program az informatika és számítás-tudomány diszciplináris területein" című EFOP 3.6.3-VEKOP-16-2017-00002 azonosítójú projekt támogatásával.

-

<sup>&</sup>lt;sup>1</sup> A megoldás dr. Gregorics Tibor Programozás kurzusán szerepelt: a rekurzív függvény kiszámolása iterációval progtétel kapcsán.