Vektorprodukt

nur im \mathbb{R}^3

$$a = \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array}\right) \ , \ b = \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array}\right)$$

$$a \times b = \left(\begin{array}{c} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{array}\right) \Rightarrow a, b \perp a \times b$$

Orthogonale Projektion

Orthogonales Komplement

Vist ein euklidischer Vektorraum über $\mathbb R$ mit Skalarprodukt $\langle \cdot, \cdot \rangle$

$$U \leq V$$

orthogonales Komplement zu U:

$$U^{\perp} = \{ v \in V \mid v \bot u \; \forall u \in U \}$$

- $U^{\perp} < V$
- $U \cap U^{\perp} = \{0\}$
- \exists_1 Darstellung der Form $v=u+u^\perp \ \, \forall v \in V \mid u \in U, \; u^\perp \in U^\perp$

Bestimmung des orthogonalen Komplement

 $U \leq V, \ dim(V) = n, \ dim(U) = r$

$$U = \langle a_1, \dots, a_r \rangle$$

ergänze basis $B_u = \{a_1, \dots, a_n\}$ zu Basis von V:

$$B_V = \{a_1 \dots, a_r, a_{r+1}, \dots, a_n\}$$

Bilde ONB $B = \{b_1, \dots, b_r, b_{r+1}, \dots, b_n\}$ von Vwobei $\{b_1, \dots, b_r\}$ ONB von U

$$U^\perp = \{b_{r+1}, \dots, b_n\}$$

Orthogonale Projektion

$$P_U: \left\{ \begin{array}{ccc} V & \to & U \\ v = u + u^\perp & \to & u \end{array} \right.$$

Veuklidischer Vektorraum mit Untervektorraum $U \leq V$

$$dim(V) = n$$

$$dim(U) = v$$

noch machen ahh

Bestimme $u = P_u(v)$

$$\begin{aligned} ||v-w||^2 &= ||\stackrel{=u^{\perp}}{\widehat{v-u}} + u - w||^2 \\ &= \langle u^{\perp} + (u-w), \ u^{\perp} + (u-w) \rangle \\ &= ||u^{\perp}||^2 + ||u-w||^2 + 2\langle u^{\perp}, u-w \rangle \\ &\geq ||u^{\perp}||^2 = ||v-u||^2 \end{aligned}$$

$$u = \min_{w \in U} ||v - w||$$

Ausrechnen:

$$V = \mathbb{R}^n$$
 , $U \leq V$, $U = \langle b_1, \dots, b_r \rangle \mid b_i \in \mathbb{R}^n$

$$u=\lambda_1b_1+\ldots+\lambda_rb_r$$

Bilde Matrix $A = (b_1, \dots, b_r) \in \mathbb{R}^{n \times r}$

$$u = (b_1, \dots, b_r) \left(\begin{array}{c} \lambda_1 \\ \vdots \\ \lambda_r \end{array} \right) = A \cdot \underbrace{\left(\begin{array}{c} \lambda_1 \\ \vdots \\ \lambda_r \end{array} \right)}_{=:r}$$

$$\rightarrow ||v-u|| = ||v-Ax|| = \min$$

Das Lineare Ausgleichsproblem

Gegeben: $A \in \mathbb{R}^{n \times r}, \ r \leq n, \ b \in \mathbb{R}^n$

Gesucht: $x \in \mathbb{R}^r : ||b - Ax|| = \min$

Lösung: Finde x als Lösung des LGS $A^TAx = A^Tb =$ "Normalgleichung"