Beyond Basics with **LingoRank**: Elevating French Text Analysis using Machine Learning

Data Science and Machine Learning

Detecting the difficulty level of French texts Team: UNIL_Zurich

Matteo Frison Takaaki Kishida

December 20, 2023

Our Project Goals

Enhancing Language Learning

 LingoRank is committed to revolutionizing language learning by accurately assessing the difficulty level of French texts for English speakers.

Personalized Learning

- Our primary goal is to enhance the learning experience by matching readers with texts that align with their current proficiency level.
- This approach ensures that learners are engaged with material that is challenging yet appropriate for their skill level.

Data Overview

Source

The dataset consists of French texts of varying complexity

Labels

 Texts are labeled with language proficiency levels, ranging from A1 (beginner) to C2 (advanced).

Volume

- Training Data: 4,800 entries, 3 features each (id, sentence, difficulty).
- Unlabeled Test Data: 1,200 entries, 2 features each (id, sentence).

Methodology Overview

Preprocessing Steps

1. Data Preparation

NN Readability feature

- (X) Avg sentence length, Avg word length, Avg syllable count per word, Nb of word with 1 to 3 syllables, Nb of words with 4 syllables, Nb of long (>10) words, Nb of {NOUN, AJD, ADV, ADP, PRON, DET, VERB} using spaCy "fr_dep_news_trf"
- (y) Onehot Encoding

NN CamemBert

- (X) Tokenized sentences with CamembertTokenizer. Max length = 250.
- (y) Label Encoding

NN Word Frequency

- (X) Tokenized sentences spaCy "fr_dep_news_trf" (with stopwords!). TfidfVectorizer with ngram_range=(1, 1).
- (y) Onehot Encoding

Final NN

- (X) Predictions from the 3 NN above.
- (y) Onehot Encoding

2. Data Splitting

- Initially, split into training and validation sets with a 70-30 ratio for the first 3 NN.
- Then, train the final model with a 80-20 ratio.
- Re-train the first 3 model with a 99.9-0.01 ratio.

Core Model Architecture and Training (1/4)

Model Architecture

- Readability Feature: Analyzes linguistic features such as sentence length and syllable count using pyphen and spaCy.
- Input Layer→BatchNormalization Layer→ Dense Layer (256 neurons, relu activation, L2)→Dropout Layer (0.1)→ Dense Layer (128 neurons, relu activation, L2)→Dropout Layer (0.1)→Dense Layer (6 neurons, softmax activation, L2)

Training Process

- Optimization: Applies AdamW optimizer and a linear learning rate scheduler. Lr = 3e-5
- Training Details: Conducts training over 100 epochs. Batch size = 16

Core Model Architecture and Training (2/4)

Model Architecture

- CamemBERT Model: Uses
 CamembertForSequenceClassification
 which is a CamemBERT Model
 transformer with a sequence
 classification/regression head on
 top. Model trained on 138GB of
 French text
- From CamemBERT: a Tasty French Language Model:
- "Similar to RoBERTa and BERT, CamemBERT is a multi-layer bidirectional Trans-former"
- "CamemBERT uses the original architectures of BERTBASE (12 layers, 768 hidden dimensions, 12 attention heads, 110M parameters)"

Training Process

- **Optimization**: Applies AdamW optimizer and a linear learning rate scheduler. Lr = 3e-5
- Training Details: Conducts training over 4 epochs. Batch size = 16

Core Model Architecture and Training (3/4)

Model Architecture

- Word Frequency NN: TF-IDF to use the importance of a word as a text difficulty measure.
- Input Layer→BatchNormalization
 →Layer Dropout Layer
 (0.1)→Dense Layer (6 neurons, softmax activation, L2)

Training Process

- Optimization: Applies AdamW optimizer and a linear learning rate scheduler. Lr = 3e-5
- Training Details: Conducts training over 60 epochs. Batch size = 16

Core Model Architecture and Training (4/4)

Model Architecture

Final Model:

 Input Layer→BatchNormalization Layer→Dropout Layer (0.1)→Dense Layer (128 neurons, relu activation, L2)→Dropout Layer (0.1)→Dense Layer (6 neurons, softmax activation, L2)

Training Process

- **Optimization**: Applies AdamW optimizer and a linear learning rate scheduler. Lr = 3e-5
- Training Details: Conducts training over 100 epochs. Batch size = 16

Model Evaluation and Final Prediction

Evaluation and Prediction

- Ensemble Approach: Combines outputs from BERT, TF-IDF, and feature-based models for robust predictions.
- Final Classifier Model: Uses a concatenated output to predict difficulty levels with a custom TensorFlow model.

Output and Deployment

- Performance Visualization: Employs confusion matrices to showcase model accuracy.
- **Result Exporting**: Predicts difficulty levels for new sentences.

Results (1/4)

Readiblity features NN

 Our model achieved an accuracy of 41.1%

- Strongest at identifying beginner, particular A1. Not too bad with C1
- Most confusion with other levels.

Results (2/4)

CamemBert NN

- Our model achieved an accuracy of 55%
- Strongest at identifying beginner and advanced levels. Quite precise, very few outliers.
- Most confusion with C1 and A2. Most confusion between adjacent levels.

Results (3/4)

Word Frequency NN

Our model achieved an accuracy of 45.7%

 Strongest at identifying beginner and advanced levels.

 Most confusion between middle levels, such as B1 and B2. A lot of outliers.

Results (4/4)

Final NN

Our model achieved an accuracy of 54.1%

 Strongest at identifying beginner and advanced levels. Very few outliers

 Most confusion between middle levels such as B1 and B2.

Conclusion: Next Steps in Model Evolution

- Enhanced Differentiation of Intermediate Levels
 - Improve distinction between intermediate levels with advanced feature engineering.
- Real-World Testing
 - Deploy in a beta setting for user feedback and model refinement.

Thank you for listening!