1 Ejercicio 128

Halla el area de regio limitada por la grafica de la funcion $f(x) = \sqrt{x}$, el eje Y (x = 0) y la recta y = 4 (la llamare g(x), por tanto g(x) = 4)

1.1 Grafica

Para hacer la grafica necesitamos algun punto importante,

1.1.1 f(x) con eje Y:

Como el eje Y es la recta vertical que pasa por el origen, sabemos que f(0) cortara con la recta. $x_1 = \sqrt{0} = 0$

1.1.2 f(x) con g(x):

$$f(x) = 4 \iff \sqrt{x} = 4 \iff |x| = 16 \implies x = \pm 16$$

Como hemos elevado al cuadrado, la solucion negativa no es possible (ademas \sqrt{x} cuando x es negativo no existe)

$$x_2=16$$

1.1.3 eje Y con g(x):

Es obvio que corta cuando x = 0. $x_3 = x_1 = 0$;

Entonces ahora queremos calcular el area encerrada por las tres funciones:

1.2 Resolucion

$$Area = \int_0^{16} g(x) - f(x)$$

Si nos fijamos, el area de g(x) es simplemente un rectangulo, de hecho Area es la diferencia entre el Area debajo g(x), que llamaremos A_1 . Y el area debajo de f(x) que llamaremos A_2 . Entonces:

$$Area = A_1 - A_2 = b * h - \int_0^{16} f(x) = 64 - \left[\frac{2 * x^{\frac{3}{2}}}{3} \right]_0^{16} = 64 - \frac{2 * 16^{\frac{3}{2}}}{3} - 0 = 21.333$$