CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS UNIFESO DIREÇÃO ACADÊMICA DE CIÊNCIAS HUMANAS E TECNOLÓGICAS DACHT CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Letícia Lindberght da	. Costa	
RMA WEB PARA O REAPRO ROMOÇÃO DA ECONOMIA (OVEITAMENTO DE ELETRÔNI CIRCULAR	COS E

CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS UNIFESO DIREÇÃO ACADÊMICA DE CIÊNCIAS HUMANAS E TECNOLÓGICAS DACHT CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

ORBITAR: UMA PLATAFORMA WEB PARA O REAPROVEITAMENTO DE ELETRÔNICOS E PROMOÇÃO DA ECONOMIA CIRCULAR

Trabalho de Conclusão de Curso apresentado ao Centro Universitário Serra dos Órgãos como requisito obrigatório para obtenção do título de Bacharel em Ciência da Computação.

Orientador: Prof. Nome do Orientador

Teresópolis 2025

CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS UNIFESO DIREÇÃO ACADÊMICA DE CIÊNCIAS HUMANAS E TECNOLÓGICAS DACHT CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

ORBITAR: UMA PLATAFORMA WEB PARA O REAPROVEITAMENTO DE ELETRÔNICOS E PROMOÇÃO DA ECONOMIA CIRCULAR

LETÍCIA LINDBERGHT DA COSTA

Trabalho de Co	nclusão de Curso	apresentado ao	Centro Uni	versitário Se	erra dos Órgãos (como
requisito obriga	atório para obtenç	ão do título de	Bacharel em	Ciência da	Computação.	

Prof. Nome do Orientador Orientador - MSc.		
Coorientador - DSc.		
Nome do Primeiro Membro da Banca - DSc.		
Nome do Segundo Membro da Banca - DSc.		

Agradecimentos

Escreva a	aani d	os seus	agradecimentos	da	maneira	aue	melhor	lhe	convêm.
Docto, a c	-9	00 0000	agradeemiemes	uu	munch	440	momor	1110	COII, CIII.

Resumo

Escreva aqui o resumo do seu trabalho.

Palavra-chave: Palavra-chave1, Palavra-chave2, Palavra-chave3

Abstract

Escreva aqui o seu abstract (Resumo em inglês) **Keywords**: Keywords1. Keywords2. Keywords3.

Lista de ilustrações

Figura 1 –	Fluxo do Modelo de Economia Linear	17
Figura 2 -	Hierarquia dos 5 Rs na Economia Circular	18
Figura 3 -	A Plataforma Orbitar como Ponte entre o Descarte Precoce e a Inclusão	
	Digital	19

Lista de Quadros

Quadro 1 - C	Comparativo entre Economia Linear e Economia Circular	19
--------------	---	----

Lista de tabelas

Lista de Algoritmos

Lista de abreviaturas e siglas

ABNT Associação Brasileira de Normas Técnicas

API Application Programming Interface (Interface de Programação de Aplica-

ções)

BFRs Brominated Flame Retardants (Retardantes de Chama Bromados)

CGI.br Comitê Gestor da Internet no Brasil

OCDE Organização para a Cooperação e Desenvolvimento Econômico

REEE Resíduos de Equipamentos Elétricos e Eletrônicos

REST Representational State Transfer (Transferência de Estado Representacional)

SGBD Sistema de Gerenciamento de Banco de Dados

TI Tecnologia da Informação

TIC Tecnologias da Informação e Comunicação

Sumário

1		INTRODUÇÃO
	1.1	Motivação
	1.2	Justificativa
	1.3	Objetivos
		1.3.1 Objetivo Geral
		1.3.2 Objetivos Específicos
	1.4	Organização do Trabalho
2		FUNDAMENTAÇÃO TEÓRICA
	2.1	A Economia Linear e a Cultura do Descarte
	2.2	O Problema do Descarte Precoce e suas Consequências
		2.2.1 Composição e Impactos do E-waste
	2.3	A Economia Circular como Paradigma de Solução
	2.4	A Reutilização como Ponte para a Inclusão Digital
3		REVISÃO BIBLIOGRÁFICA
	3.1	Procedimentos de Pesquisa e Análise Bibliográfica
	3.2	Soluções Nacionais para a Gestão de E-waste
	3.3	Modelos e Soluções em Escala Global
	3.4	Identificação de Lacunas e a Proposta Orbitar
4		METODOLOGIA E DESENVOLVIMENTO 2
5		CONCLUSÃO
		REFERÊNCIAS
		APÊNDICES 2
		APÊNDICE A – EXEMPLO DE APÊNDICE
		ANEXOS 2
		ANEXO A – EXEMPLO DE ANEXO

1 INTRODUÇÃO

As Tecnologias da Informação e Comunicação (TIC) são pilares da sociedade contemporânea, catalisando o progresso social e econômico. Contudo, o modelo de produção que as sustenta gerou um problema crítico: o descarte precoce de equipamentos eletrônicos, que acelera a formação do lixo eletrônico (e-waste). Este fenômeno é o resultado direto de um sistema caracterizado pela obsolescência programada e por padrões de consumo que normalizam a substituição de dispositivos ainda em plenas condições de uso.

A consequência direta desse descarte acelerado é documentada por múltiplas fontes globais. O relatório *Global E-waste Monitor 2024* revela que a geração de lixo eletrônico atingiu um recorde histórico, crescendo a uma taxa cinco vezes superior à da reciclagem documentada (FORTI et al., 2024). Para além do volume, a periculosidade desses resíduos é um fator crítico, dada a presença de substâncias tóxicas como chumbo e mercúrio, que representam uma séria ameaça à saúde e aos ecossistemas quando manuseados incorretamente (PERKINS et al., 2014a).

Este cenário reflete um desafio sistêmico maior. Segundo a Organização para a Cooperação e Desenvolvimento Econômico (OCDE), os atuais padrões de extração e uso de materiais são insustentáveis (Organisation for Economic Co-operation and Development (OECD), 2019). Portanto, intervir no ciclo do descarte precoce é uma dupla necessidade: por um lado, mitigar a contaminação ambiental e, por outro, romper com um modelo econômico extrativista e desperdiçador. A solução mais eficaz, alinhada aos princípios da economia circular, é atuar no momento da decisão do descarte, antes que um equipamento funcional se torne resíduo.

Neste contexto, a reutilização emerge como a estratégia prioritária. É a partir desta premissa que este trabalho se desenvolve, propondo uma solução tecnológica para transformar um problema gerado pela própria tecnologia. O objetivo é criar uma ferramenta que ofereça um destino útil para eletrônicos subutilizados, transformando o que seria um desperdício de potencial em um ativo social e promovendo, como valioso benefício secundário, a inclusão digital.

1.1 Motivação

A motivação central deste projeto nasce da constatação de uma grande lacuna no ciclo de vida dos eletrônicos: a ausência de um caminho simples e confiável para o reaproveitamento de equipamentos funcionais que são substituídos. Para um cidadão ou empresa, o processo para dar um destino sustentável a um dispositivo usado é frequentemente opaco e inconveniente. Estudos sobre a gestão de resíduos no Brasil apontam que a falta de canais acessíveis e a desinformação são barreiras significativas (Green Eletron, 2022). Na ausência de uma alternativa clara para a doação, a opção mais fácil se torna o armazenamento indefinido ou, pior, o descarte, que transforma um ativo potencial em lixo eletrônico (FORTI et al., 2024).

Por outro lado, existe uma demanda latente e socialmente urgente por esses mesmos dispositivos. A exclusão digital no Brasil é um reflexo direto da desigualdade socioeconômica, onde o alto custo de equipamentos novos é um obstáculo para milhões de famílias. A pesquisa TIC Domicílios evidencia essa barreira, mostrando que a posse de um computador — ferramenta essencial para a educação — ainda é significativamente menor nas classes D e E (Comitê Gestor da Internet no Brasil (CGI.br), 2024). Essa realidade cria um paradoxo: de um lado, dispositivos plenamente funcionais são descartados prematuramente; de outro, uma vasta parcela da população carece de acesso a essa mesma tecnologia.

Nesse contexto, a tecnologia pode, ironicamente, resolver um problema que ela mesma ajudou a criar. A proposta é desenvolver a **Orbitar**, uma aplicação web que atue como uma ponte, conectando quem deseja repassar um eletrônico funcional com quem pode dar a ele uma nova vida, tornando o processo de reutilização simples, seguro e geograficamente acessível.

1.2 Justificativa

A relevância deste trabalho se justifica pela necessidade urgente de se contrapor ao descarte precoce e ao modelo de consumo linear. A importância de intervir nesse ciclo reside em seu duplo impacto negativo: primeiro, os riscos ambientais e de saúde pública causados pelos componentes tóxicos, caso o descarte seja inadequado (PERKINS et al., 2014a); segundo, o esgotamento de recursos naturais, desperdiçados quando equipamentos úteis são descartados.

A plataforma **Orbitar** ataca diretamente essa questão, alinhando-se aos princípios da economia circular ao promover a reutilização (Ellen MacArthur Foundation, 2023). Ao estender a vida útil de um produto que seria descartado precocemente, evitam-se os impactos da produção de um novo e do descarte de um antigo. Como um benefício social derivado, a plataforma aborda a persistente desigualdade digital no Brasil. Dados da pesquisa TIC Domicílios (Comitê Gestor da Internet no Brasil (CGI.br), 2024) mostram que a posse de um computador ainda é um forte indicador de oportunidade. Portanto, a proposta se justifica por criar um mecanismo que ataca a raiz do desperdício e, como consequência, transforma um passivo ambiental em um ativo para a inclusão social.

1.3 Objetivos

Diante do cenário exposto, os objetivos deste trabalho são definidos a seguir.

1.3.1 Objetivo Geral

Desenvolver a Orbitar, uma aplicação web focada em promover a economia circular e a sustentabilidade, que conecte doadores e receptores de produtos eletrônicos de forma organizada, segura e localizada, a fim de mitigar o descarte precoce de e-waste e estender a vida útil da tecnologia.

1.3.2 Objetivos Específicos

Para alcançar o objetivo geral, os seguintes objetivos específicos foram definidos:

- a Desenvolver um sistema de cadastro e autenticação de usuários (doadores e receptores) para garantir um ambiente seguro para as transações;
- b Implementar a funcionalidade de registro de produtos eletrônicos para doação, incluindo campos para descrição, categoria, estado de conservação e localização;
- c Construir uma interface de busca e filtragem de eletrônicos baseada em geolocalização, permitindo que receptores encontrem doações próximas;
- d Modelar e implementar o fluxo completo de doação, incluindo a reserva de um item por um receptor, a comunicação entre as partes e a confirmação de entrega;
- e Integrar um sistema de avaliação mútua entre usuários para construir uma relação de confiança na comunidade da plataforma.

1.4 Organização do Trabalho

O restante deste trabalho está organizado da seguinte forma: o Capítulo 2 apresenta a fundamentação teórica, abordando os conceitos de e-waste como consequência do descarte precoce, a economia circular e as tecnologias que servem de base para o projeto. O Capítulo 3 apresenta a revisão da literatura, analisando soluções existentes e identificando as lacunas que justificam a proposta. O Capítulo 4 descreve detalhadamente a metodologia empregada, incluindo a arquitetura do sistema, o modelo de dados e as ferramentas utilizadas no desenvolvimento. No Capítulo 5, são apresentados os resultados, com a demonstração das funcionalidades da plataforma. Finalmente, o Capítulo 6 traz as considerações finais, discutindo as conclusões do estudo, as limitações encontradas e as sugestões para trabalhos futuros.

2 FUNDAMENTAÇÃO TEÓRICA

Esta seção tem o objetivo de fundamentar os conceitos que sustentam este trabalho. Inicia-se pela contextualização do modelo de produção linear e suas consequências, aprofunda-se no problema do descarte precoce de eletrônicos e, por fim, apresenta-se a economia circular como o paradigma de solução que orienta o desenvolvimento da plataforma **Orbitar**.

2.1 A Economia Linear e a Cultura do Descarte

O modelo econômico predominante desde a Revolução Industrial é a economia linear, cujo fluxo de materiais segue uma lógica unidirecional: extrair, produzir, usar e descartar (Figura 1). Este sistema trata os recursos naturais como se fossem inesgotáveis e não atribui valor a um produto após seu primeiro ciclo de vida, gerando um volume massivo de resíduos.

Figura 1 - Fluxo do Modelo de Economia Linear.

Fonte: Adaptado de Ellen MacArthur Foundation (2013).

Associada a esse modelo, a obsolescência programada emerge como uma estratégia deliberada para encurtar a vida útil dos produtos, seja por limitações de hardware, incompatibilidade de software ou dificuldade de reparo. Essa prática, combinada com o marketing que incentiva a troca constante por novos modelos, acelera o ciclo de consumo e é a principal causa do descarte precoce de equipamentos eletrônicos, muitas vezes ainda em perfeito estado de funcionamento (FORTI et al., 2020).

2.2 O Problema do Descarte Precoce e suas Consequências

O descarte precoce de eletrônicos é o ato de se desfazer de um dispositivo funcional, transformando-o prematuramente em lixo eletrônico (e-waste). Essa prática agrava um problema já crítico, cujas consequências são de ordem ambiental e social.

2.2.1 Composição e Impactos do E-waste

O lixo eletrônico possui uma composição complexa. Embora contenha materiais valiosos que o caracterizam como "minério urbano" (ROBINSON, 2009), sua maior ameaça reside nos componentes tóxicos, como chumbo, mercúrio e cádmio (WIDMER et al., 2005). O manejo inadequado desses resíduos contamina o solo e a água, além de expor populações a riscos de saúde, como danos neurológicos e doenças respiratórias (PERKINS et al., 2014b; HEACOCK et al., 2016). O descarte precoce intensifica esses impactos ao aumentar desnecessariamente o volume de resíduos perigosos gerados.

2.3 A Economia Circular como Paradigma de Solução

Em contraposição ao modelo linear, a economia circular propõe um sistema regenerativo, onde o valor dos produtos e materiais é mantido em circulação pelo maior tempo possível. Seus princípios são: eliminar resíduos, manter produtos em uso e regenerar sistemas naturais (Ellen MacArthur Foundation, 2013).

Para operacionalizar este conceito, utiliza-se a hierarquia de estratégias conhecida como os "5 Rs"(Figura 2), onde a Reutilização se destaca como uma das ações de maior valor, sendo superior à reciclagem. Reutilizar um produto conserva toda a energia, trabalho e materiais embutidos em sua fabricação, enquanto a reciclagem recupera apenas a matéria-prima, com gasto energético adicional (KIRCHHERR; REIKE; HEKKERT, 2017). A plataforma **Orbitar** foi projetada para atuar precisamente nesta camada estratégica.

Figura 2 – Hierarquia dos 5 Rs na Economia Circular.

Fonte: Adaptado de Ellen MacArthur Foundation (2013), com destaque para a estratégia de Reutilização pela Orbitar.

O quadro a seguir (Quadro 1) sintetiza as principais diferenças entre os dois modelos

econômicos.

Quadro 1 – Comparativo entre Economia Linear e Economia Circular.

Critério	Economia Linear	Economia Circular	
Fluxo	Unidirecional (extrair-usar-descartar).	Cíclico e regenerativo.	
Mentalidade	Focada no consumo e na posse do produto.	Focada no uso, no acesso e no serviço.	
Resíduos	Vistos como um subproduto inevitável a ser gerenciado.	Vistos como uma falha de design a ser eliminada.	
Valor	O valor é destruído no final da vida útil do produto.	 O valor é mantido e recirculado pelo maior tempo possível. 	
Estratégia	Eficiência na produção em massa e obsolescência.	Reutilização, reparo, remanufatura e reciclagem.	

Fonte: Elaborado pelo autor (2025), com base em Ellen MacArthur Foundation (2013).

2.4 A Reutilização como Ponte para a Inclusão Digital

A estratégia de interceptar o descarte precoce através da reutilização cria uma oportunidade única de gerar impacto social positivo. Enquanto dispositivos funcionais são subutilizados ou descartados, uma parcela significativa da população brasileira ainda enfrenta a exclusão digital. Dados da pesquisa TIC Domicílios mostram que a posse de um computador, ferramenta essencial para a educação e qualificação profissional, ainda é um privilégio das classes de maior renda (Comitê Gestor da Internet no Brasil (CGI.br), 2024).

A plataforma **Orbitar** se posiciona como uma ponte (Figura 3) que conecta esses dois problemas, transformando o que seria um passivo ambiental em um ativo social. Ao facilitar que um eletrônico funcional chegue a quem precisa, o projeto aplica na prática os princípios da economia circular para combater a desigualdade digital.

Figura 3 – A Plataforma Orbitar como Ponte entre o Descarte Precoce e a Inclusão Digital.

Fonte: Elaborado pelo autor (2025).

3 REVISÃO BIBLIOGRÁFICA

Este capítulo apresenta uma análise do estado da arte de sistemas e plataformas voltados ao reaproveitamento de eletrônicos. A revisão visa identificar pesquisas e soluções existentes, suas contribuições e limitações e, consequentemente, as lacunas que o presente trabalho busca preencher.

3.1 Procedimentos de Pesquisa e Análise Bibliográfica

A pesquisa bibliográfica foi realizada em bases de dados científicas e repositórios relevantes, como Google Scholar, Scielo e ACM Digital Library, além da análise de plataformas comerciais e sociais consolidadas. As palavras-chave utilizadas, combinadas em diferentes configurações, foram:

- "plataforma de doação de eletrônicos"ou "e-waste donation platform"
- "reutilização de lixo eletrônico" ou "e-waste reuse systems"
- "economia circular software"ou "circular economy platform"
- "inclusão digital e doação de computadores"

Foram selecionados trabalhos que descrevem a concepção ou análise de sistemas digitais, bem como plataformas já em operação, que servissem de base comparativa para a solução proposta.

3.2 Soluções Nacionais para a Gestão de E-waste

No Brasil, as iniciativas digitais de maior destaque para o descarte de e-waste focam majoritariamente na conexão do consumidor com pontos de reciclagem, em linha com a Política Nacional de Resíduos Sólidos.

A plataforma **E-cycle** (eCycle, 2024) é um dos serviços mais conhecidos nesse segmento. Ela funciona como um robusto motor de busca que ajuda os usuários a encontrarem os postos de coleta mais próximos para uma vasta gama de resíduos, incluindo os eletrônicos. O seu mérito está em facilitar a logística reversa para a reciclagem. Contudo, sua abordagem não contempla a reutilização. A plataforma indica onde descartar um produto para que ele seja desmontado, mas não oferece uma via para que um equipamento funcional seja doado e continue em uso, o que representa uma lacuna em relação ao princípio de maior valor da economia circular.

No campo acadêmico, o trabalho de (NETO; OLIVEIRA, 2020) propôs o desenvolvimento de um aplicativo para gestão integrada de resíduos sólidos em uma cidade no Piauí, incluindo um módulo para doações. Embora a proposta seja relevante ao integrar a doação no

fluxo de gestão de resíduos, sua principal limitação é a escala local e a ausência de um ecossistema focado na confiança e segurança necessárias para escalar uma rede de doações diretas entre usuários.

3.3 Modelos e Soluções em Escala Global

No cenário internacional, existem plataformas de grande escala que promovem o reaproveitamento de bens, servindo como referência para o modelo da **Orbitar**.

A **Freecycle Network** (The Freecycle Network, 2024) é uma rede global sem fins lucrativos que promove a doação de itens para evitar que se tornem lixo. A plataforma opera por meio de grupos locais moderados por voluntários. Apesar do seu enorme sucesso e impacto positivo, seu modelo tecnológico, baseado em fóruns e listas de e-mail, apresenta barreiras de usabilidade para o usuário moderno, que espera uma experiência mais ágil, visual e geolocalizada, como a oferecida por aplicativos contemporâneos.

A iniciativa britânica **Donate a Tech** (Donate a Tech, 2024) tem um foco mais específico: a doação de equipamentos de TI (laptops, tablets) para instituições de caridade e escolas. A plataforma atua como uma intermediária, recebendo os equipamentos, realizando o recondicionamento e a limpeza de dados, e então os repassando. O modelo é muito eficaz para garantir a qualidade e a segurança dos dispositivos doados. No entanto, por ser **centralizado**, ele cria uma dependência logística da própria organização e não promove a conexão direta e ágil (peerto-peer) entre o cidadão doador e o receptor final.

3.4 Identificação de Lacunas e a Proposta Orbitar

A análise dos trabalhos e plataformas existentes permitiu identificar as lacunas que justificam o desenvolvimento da **Orbitar**. O presente projeto se diferencia e contribui para a área ao:

- Integrar múltiplas fontes e focar na reutilização: Diferente de sistemas como o Ecycle, que focam na reciclagem, a Orbitar prioriza a reutilização, a estratégia de maior valor agregado na economia circular.
- Oferecer uma experiência de usuário moderna e descentralizada: Em contraste com modelos como o da Freecycle ou da Donate a Tech, a Orbitar propõe uma plataforma web moderna, com interface intuitiva, geolocalização e um modelo peer-to-peer, que confere agilidade e escalabilidade à rede de doações.
- Conectar as agendas ambiental e social de forma explícita: A plataforma não se posiciona apenas como um meio de descarte correto, mas como uma ferramenta ativa de inclusão digital, dando visibilidade e propósito social ao ato da doação.

Dessa forma, este trabalho não apenas se apoia nos conhecimentos existentes, mas também busca oferecer uma solução inovadora, preenchendo a lacuna de uma plataforma nacional, descentralizada e focada em transformar o passivo do e-waste em um ativo para a inclusão social no Brasil.

4 METODOLOGIA E DESENVOLVIMENTO

Escreva aqui a metodologia adotada no seu trabalho.

5 Conclusão

Escreva a sua conclusão do seu trabalho.

Referências

Comitê Gestor da Internet no Brasil (CGI.br). **Pesquisa sobre o uso das tecnologias de informação e comunicação nos domicílios brasileiros: TIC Domicílios 2023**. São Paulo, 2024. Disponível em: https://cgi.br/media/docs/publicacoes/2/20241104102822/tic_domicilios_2023_livro_eletronico.pdf.

Donate a Tech. **Donate Your Old Tech to Charity**. 2024. A data de acesso reflete a consulta para esta revisão. Disponível em: https://donateatech.co.uk/>.

eCycle. **Sua busca por um mundo mais sustentável começa aqui**. 2024. A data de acesso reflete a consulta para esta revisão. Disponível em: https://www.ecycle.com.br/>.

Ellen MacArthur Foundation. **Towards the Circular Economy, Vol.1: Economic and business rationale for an accelerated transition**. Cowes, UK, 2013. Disponível em: https://www.ellenmacarthurfoundation.org/ towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an>.

Ellen MacArthur Foundation. **O que é economia circular?** 2023. Disponível em: https://www.ellenmacarthurfoundation.org/pt/temas/economia-circular-introducao/visao-geral.

FORTI, V. et al. **The global e-waste monitor 2020: Quantities, flows and the circular economy potential**. Bonn/Geneva/Rotterdam, 2020. Disponível em: https://ewastemonitor.info/gem-2020/>.

FORTI, V. et al. **Global e-waste monitor 2024: Electronic waste rising five times faster than documented e-waste recycling**. Geneva, 2024. Disponível em: https://ewastemonitor.info/the-global-e-waste-monitor-2024/>.

Google. Angular documentation. 2024. Disponível em: https://angular.io.

Green Eletron. **Desafios para a reciclagem do lixo eletrônico no Brasil**. 2022. Artigo de blog. Disponível em: https://www.greeneletron.org.br/blog/desafios-para-a-reciclagem-do-lixo-eletronico-no-brasil/.

HEACOCK, M. et al. E-waste and harm to vulnerable populations: A growing global problem. **Environmental Health Perspectives**, v. 124, n. 5, p. 550–555, 2016. Doi:10.1289/ehp.1509699.

KIRCHHERR, J.; REIKE, D.; HEKKERT, M. Conceptualizing the circular economy: An analysis of 114 definitions. **Resources, Conservation and Recycling**, v. 127, p. 221–232, 2017. Doi:10.1016/j.resconrec.2017.09.005.

Microsoft. **Documentação do .NET**. 2024. Disponível em: https://dotnet.microsoft.com.

Microsoft. **SQL Server documentation**. 2024. Disponível em: https://www.microsoft.com/pt-br/sql-server.

NETO, J. P. S.; OLIVEIRA, M. S. de. Desenvolvimento de um aplicativo móvel para gerenciamento de resíduos sólidos urbanos: um estudo de caso em picos-pi. **Revista Brasileira de Gestão Ambiental e Sustentabilidade**, v. 7, n. 15, p. 681–695, 2020. Doi:10.21438/rbgas.071505.

Organisation for Economic Co-operation and Development (OECD). **Global material resources outlook to 2060: Economic drivers and environmental consequences**. Paris: OECD Publishing, 2019. Doi:10.1787/9789264307452-en.

PERKINS, D. N. et al. E-waste: A global hazard. **Annals of Global Health**, v. 80, n. 4, p. 286–295, 2014. Doi:10.1016/j.aogh.2014.10.001.

PERKINS, D. N. et al. Health and environmental hazards of e-waste and its management: A review. **Journal of Environmental Management**, v. 146, p. 424–432, 2014. Doi:10.1016/j.jenvman.2014.07.039.

ROBINSON, B. H. E-waste: An assessment of global production and environmental impacts. **Science of the Total Environment**, v. 408, n. 2, p. 183–191, 2009. Doi:10.1016/j.scitotenv.2009.09.044.

The Freecycle Network. **The Freecycle Network**. 2024. A data de acesso reflete a consulta para esta revisão. Disponível em: https://www.freecycle.org/.

WIDMER, R. et al. Global perspectives on e-waste. **Environmental Impact Assessment Review**, v. 25, n. 5, p. 436–458, 2005. Doi:10.1016/j.eiar.2005.04.001.

APÊNDICE A - Exemplo de Apêndice

ANEXO A - Exemplo de Anexo