1

AI1110 Assignment 1

Varun Gupta (cs21btech11060)

Q.)

In the Figure 1, O is the centre of the circle. $\angle DAE$ = 70°. Find giving suitable reasons, the measure of:

- 1) ∠*BCD*
- **2**) ∠*BOD*
- **3**) ∠*OBD*

Fig. 1. Problem figure

Solution:

Given,

$$\angle DAE = \theta = \frac{7\pi}{18} \tag{1}$$

Assume, O (centre of circle) be origin. Assuming A, B is reflection of A about Y-axis. The standard basis vectors are defined as

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{2}$$

$$\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{3}$$

The general formula for image of any point P about line with equation:

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c \tag{4}$$

is given by:

$$\mathbf{R} = \mathbf{P} + 2 \frac{c - \mathbf{n}^{\mathsf{T}} \mathbf{P}}{\|\mathbf{n}\|^2} \mathbf{n}$$
 (5)

where n is the normal vector of the line. For Y-axis,

$$\mathbf{n} = \mathbf{e}_1 \tag{6}$$

$$c = 0 \tag{7}$$

Hence,

$$\mathbf{B} = \mathbf{A} + 2 \frac{c - \mathbf{n}^{\top} \mathbf{A}}{\|\mathbf{n}\|^{2}} \mathbf{n}$$
 (8)

$$= \mathbf{A} + 2 \frac{0 - \mathbf{e}_1^{\mathsf{T}} \mathbf{A}}{1^2} \mathbf{e}_1 \tag{9}$$

$$= \mathbf{A} - (2\mathbf{e}_1^{\mathsf{T}} \mathbf{A}) \mathbf{e}_1 \tag{10}$$

D is obtained by rotating **B** by 2θ anti-clockwise about **O**. Rotation matrix **Q** is given by:

$$\mathbf{Q} = \begin{pmatrix} \cos 2\beta & -\sin 2\beta \\ \sin 2\beta & \cos 2\beta \end{pmatrix} \tag{11}$$

where a point vector is rotated anti-clockwise by β . Hence,

$$D = QB \tag{12}$$

: BE is a straight line,

$$\Rightarrow \angle BAD = \pi - \theta \tag{13}$$

 \because Sum of opposite angles in a cyclic quadrilateral is $180^{\circ},$

$$\Rightarrow \angle BAD + \angle BCD = \pi \tag{14}$$

$$\Rightarrow \angle BCD = \theta \tag{15}$$

In general,

$$\angle BOD = 2\angle BCD = 2\theta$$
 (16)

$$:: OB = OD = R$$

$$\Rightarrow \angle OBD = \angle ODB \tag{17}$$

: The sum of angles of any triangle equals the straight angle.

$$\Rightarrow \angle BOD + \angle ODB + \angle OBD = \pi \tag{18}$$

$$\Rightarrow 2\theta + 2\angle OBD = \pi \tag{19}$$

$$\Rightarrow \angle OBD = \frac{\pi}{2} - \theta \quad (20)$$

Using, $\theta = 70^{\circ}$, we can say

- 1) $\angle BCD = 70^{\circ}$
- 2) $\angle BOD = 140^{\circ}$
- 3) $\angle OBD = 20^{\circ}$

The input parameters for drawing the figure are available in table shown below.

Symbol	Value	Description
R	20	Radius of the Circle
О	0	Centre of the circle (Origin)
A	$\begin{pmatrix} 12 \\ -16 \end{pmatrix}$	Design Choice
В	$\mathbf{A} - (2\mathbf{e}_1^{T}\mathbf{A})\mathbf{e}_1$	Derived Vector
C	$\begin{pmatrix} -10\\10\sqrt{3} \end{pmatrix}$	Design Choice
D	QB	Derived Vector
Q	$ \begin{pmatrix} \cos 2\beta & -\sin 2\beta \\ \sin 2\beta & \cos 2\beta \end{pmatrix} $	Rotation Matrix
θ	$\frac{7\pi}{18}$	$\angle DAE$