Rappels

- représentation de $G \rho \to GL(V)$
- somme direct $\rho_1: G \to \operatorname{GL}(V), \, \rho_2: G \to \operatorname{GL}(U), \, \rho_1 \oplus \rho_2: G \to (V \otimes U)$
- Sous-représentation $U \subset V$ G invarient $\forall g \in G, \, \rho(g)u \in U$
- ρ est irréductible si les seul sous-représentation sont $\{0\}$ et V
- Théorème : Si $U \subset V$ est une sous représentation de $\rho: G \to \operatorname{GL}(V)$ alors $\exists W \subset V$ sous-espace t.q. $V = U \oplus W$

Exemple:

 $\rho: S_3 \to \mathrm{GL}(\mathbb{C}^3)$: représentation de permutation

$$U = \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle \subset \mathbb{C}^3$$

est une sous-représentation

$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{C}^3 | x + y + z = 0 \right\}$$

$$\mathbb{C}^3 = U \oplus W$$

Corrolaire: Toute représentation s'écrit comme une somme directe de représentation irréductible

 $\underline{\text{D\'efinition: Un morphisme de repr\'esentation}} \text{ entre } \rho_1: GGL(U), \ \rho_2: \rho_2: GL(U) \text{ est une application lin\'eaire } \varphi V \to U$ telle que $\forall g \in G$

$$\varphi \circ \rho_{1(g)} = \rho_{2(g)} \circ \varphi$$

Si φ est inversible, c'est un isomorphisme de représentation

Proposition:

- 1. $Ker(\varphi) \subset V$
- 2. $\operatorname{Im}(\varphi) \subset U$ sont des sous représentation

$\underline{\text{D\'emonstration}}$:

1. Si
$$v < in \text{Kerr}(\varphi) \implies \varphi(v) = 0$$

$$\varphi(\rho_1(g)v) = \rho_2(g)(\varphi(v)) = 0$$

$$\implies \rho_1(g)v \in \ker(\varphi)$$

2. $\rho_2(g)(\varphi(v)) = \varphi(\rho_1(g)V) \in \operatorname{Im}(\varphi)$

Lemme de Shur

1. $\varphi:V\to U$ est un morphisme entre représentation irréductible alors $\varphi=0$ ou φ est un iso

2. $\varphi:V\to V$ Morphisme de V représentation irréductible alors $\varphi=\lambda\mathbb{1}$

 $\underline{\text{D\'emonstration}}:\varphi:V\to U$

1.

. . .

2. $\varphi V \to V \varphi$ admet une valeur propre λ

$$\implies \operatorname{Kerr}(\varphi - \lambda \mathbb{1}) \neq 0$$

$$\implies \operatorname{Kerr}(\varphi - \lambda \mathbb{1}) = V$$

$$\implies \varphi - \lambda \mathbb{1} = 0$$

$$\implies \varphi = \lambda I$$

La décomposition en irréductible

$$V = V_1^{m_1} \oplus \cdots V_k^{m_k}$$

est unique à isomorphisme près

Exemple : Soit G une goupe fini abélien

$$G = \mathbb{Z}_{m_1}^{n_1} \oplus \cdots$$

et supposons $\rho: G \to \mathrm{GL}(V)$ irréductible. Fixons $g \in G$

 $\rho(g): V \to V$ alors $\rho(g)$ est une morphisme de représentation car $\rho(h)(\rho(h)v) = \rho(gh)b = \rho(hg)v = \rho(h)(\rho(g)v)$

Par le Lemme de Shor $\rho(g) = \lambda_g \mathbb{1} \implies \text{tout les } \rho(g) \operatorname{sont} \lambda_g \mathbb{I}$

 \implies tout sous-espace de V est stable par $\rho(g) \forall g \in G$

donc dim V = 1

<u>Conclusion</u>: tout représentaiton irréductible d'un groupe abélien est de dim 1

Exemple: $G = \mathbb{Z}_4$

. . .

Exemple: $G = S_3 = \{e, (12), (12), (123), (132)\}$

$$H = \{e, (123), (132)\}$$

est le plus grand sous-groupe de G que est abélien

Remarque: G est engendré par (123) et (12)

On leur donne des petit non spéciaux en cette honneur $\tau = (123), \sigma = (12)$

$$\sigma \tau \sigma = (12)(123)(12) = (132) = \tau^2$$

Soit $\rho: S_3 \to \operatorname{GL}(V)$ une représentation irréductible

on a $\rho(\tau)^3 = 1 \operatorname{car} \tau^3 = e$

 $\implies \rho(\tau)$ est diagonalisable est ses valeurs propres sont des racines cubiques de 1. Soit $v \in V$ vecteurs propres de $\rho(\tau)$ $\implies \rho(\tau)v = \omega^k v$ pour $\omega = e^{2\pi i/3}, i \in \{0,1,2\}$

on a

$$\begin{split} \rho(\tau) \left(\rho(\sigma) v \right) = & \rho(\tau \sigma) v \\ &= \rho(\sigma \tau^{2)} v \\ &= & \rho(\sigma) \rho(\tau)^{2} v \\ &= & \rho(\sigma) \omega^{2k} v \\ &= & \omega^{2k}(\rho(\sigma) v) \end{split}$$

conclusion si v est une vecteur propre de $\rho(\tau)$ de valeur propre ω^k alors $\rho(\tau)v$ est vecteur propre de $\rho(\tau)$ de valeur propre $\omega^2 k$

Il y a deux cas selon la valeur propre

1. k = 1 ou $2 \implies \omega^2 \neq \omega^{2k}$

$$\implies v \text{ et } \rho(\sigma)v$$

sont linéairement indépendants $U=\langle v_1\rho(\sigma)v\rangle,\ U$ est stable par G:V et $\rho(\sigma)V$ sont vecteur propres de $\rho(\tau)$ et $\rho(\sigma)(v)=\rho(\sigma)v,\ \rho(\sigma)(\rho(\sigma)(v))=v$

$$\implies U = V$$

et dans la base $v, \rho(\sigma)v$ on alors

$$\rho(\tau) = \begin{pmatrix} \omega^k & 0\\ 0 & \omega^{2k} \end{pmatrix}$$

$$\rho(\sigma) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

2. k = 0

$$\rho(\tau)v = v$$
$$\rho(\tau)(\rho(\sigma)v) = \rho(\sigma)v$$

(a)
$$\rho(\sigma)v = \lambda v$$
 et $\lambda \in \{1, -1\}$ $(\sigma^2 = 1)$ si $\lambda = 1$ $\langle v \rangle = V$ et $\rho = \rho_{\text{trivial}}$ si $\lambda = -1$, $\langle v \rangle = V$ et $\rho - \rho_{\text{sign}}$

(b) v et $\rho(\sigma)v$ sont linéairement indépendants

Considérons
$$V + \rho(\sigma)v$$
, $V - \rho(\sigma)v$

$$\rho(\tau)(v + \rho(\sigma)v) = v + \rho(\sigma)v$$
 et $\rho(\sigma)(v + \rho(\sigma)v) = \rho(\sigma)v + v$

$$\implies v + \rho(\sigma)v$$
 est stable par G .

idem pour -. C'est donc une contradiction au fait que ${\cal V}$ soit irréductible.

Théorie des caractères

 soit

$$\rho: G \to \mathrm{GL}(\mathbf{v})$$

une représentation

Alors sont <u>caractère</u> est la fonction

$$\chi_{\rho}:G\to\mathbb{C}$$

$$g \mapsto \operatorname{tr}(\rho(\mathbf{g}))$$