Control Systems

G V V Sharma*

	Contents	10 Oscillator 10.1 Introduction	3
1	Signal Flow Graph	1 10.2 Example	3
	1.1 Mason's Gain Formula	1	
	1.2 Matrix Formula	1 Abstract—This manual is an introduction to cont systems based on GATE problems.Links to sample Pyth	
2	Bode Plot	1 codes are available in the text.	1011
	2.1 Introduction	1 Download python codes using	
	2.2 Example	1 svn co https://github.com/gadepall/school/trunk/	
3	Second order System	1 control/codes	
3	3.1 Damping	1	
	3.2 Example	1	
	3.3 Peak Overshoot	1 Signal Flow Graph	
	3.3 Teak Overshoot	1.1 Mason's Gain Formula	
4	Routh Hurwitz Criterion	3 1.2 Matrix Formula	
	4.1 Routh Array	3 2 Bode Plot	
	4.2 Marginal Stability	3	
	4.3 Stability	3	
	4.4 Example	3 2.2 Example	
5	State-Space Model	3 Second order System	
	5.1 Controllability and Observ-	3.1 Damping	
	ability	3 3.2 Example	
	5.2 Second Order System	3 3.3 Peak Overshoot	
	5.3 Example	3 2 2 1. Find the neek eversheet for the second or	dar
	5.4 Example	control system given by:	JCI
	5.5 Example	3 control system given by.	
6	Nyquist Plot	$G(S) = \frac{100}{s^2 + 10s + 100} \tag{3.3.1}$	1)
			•1)
7	Compensators	Solution: Peak overshoot (M_p) is defined as	the
	7.1 Phase Lead	deviation of the response at peak time from	the
	7.2 Example	final value of response.	
8	Gain Margin	$3 \qquad \Longrightarrow M_p = c(t_p) - c(\infty) \tag{3.3.1}$.2)
	8.1 Introduction	3 Given	
	8.2 Example	$\frac{3}{3}$ Given,	
9	Phase Margin	$G(S) = \frac{C(s)}{R(s)} = \frac{100}{s^2 + 10s + 100} $ (3.3.1)	.3)
7	i nase margin		
*Th	e author is with the Department of Electrical Engine	To calculate the unit step response,	

 $r(t) = 1 \implies R(s) = \frac{1}{s}$

(3.3.1.4)

*The author is with the Department of Electrical Engineering,

Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU

GPL. Free and open source.

$$\implies C(S) = \frac{1}{s} \cdot \frac{100}{s^2 + 10s + 100}$$
 (3.3.1.5)

C(s) can be expanded as:

$$C(s) = \frac{1}{s} - \frac{s+5}{(s+5)^2 + 75} - \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{75}}{(s+5)^2 + 75}$$

 $c(t) = \mathcal{L}^{-1}C(s)$ (3.3.1.7)

$$\implies c(t) = 1 - e^{-5t} \cos\left(\sqrt{75}t\right) \qquad (3.3.1.8)$$
$$-\frac{e^{-5t}}{\sqrt{3}} \cdot \sin\left(\sqrt{75}t\right) \qquad (3.3.1.9)$$

c(t) can be further simplified to:

$$c(t) = 1 - \frac{2e^{-5t}}{\sqrt{3}} \cdot \sin\left(5\sqrt{3}t + \frac{\pi}{3}\right) \quad (3.3.1.10)$$

From Final Value theorem:

$$\lim_{s \to 0} s.C(s) = \lim_{t \to \infty} c(t)$$
 (3.3.1.11)

$$\implies c(\infty) = \lim_{s \to 0} \frac{100}{s^2 + 10s + 100} = 1$$
(3.3.1.12)

At t_p , c(t) is maximum:

$$\implies c'(t)|_{t=t_p} = \frac{10e^{-5t}}{\sqrt{3}} \cdot \sin\left(5\sqrt{3}t + \frac{\pi}{3}\right)$$
$$-\frac{10e^{-5t}}{\sqrt{3}} \cdot \sqrt{3} \cdot \cos\left(5\sqrt{3}t + \frac{\pi}{3}\right) = 0 \quad (3.3.1.13)$$

$$\implies \sin\left(5\sqrt{3}t + \frac{\pi}{3}\right) - \sqrt{3}.\cos\left(5\sqrt{3}t + \frac{\pi}{3}\right) = 0$$
(3.3.1.14)

$$\implies \tan\left(5\sqrt{3}t + \frac{\pi}{3}\right) = \tan\left(\frac{\pi}{3}\right) \quad (3.3.1.15)$$

$$\implies 5\sqrt{3}t_p = n\pi \tag{3.3.1.16}$$

The maximum overshoot occurs at n = 1:

$$t_p = \frac{\pi}{\sqrt{75}} = 0.36 \tag{3.3.1.17}$$

Substitute t_p in (3.3.1.10) to get $c(t_p)$:

$$c(t_p) = 1 + e^{\frac{-\pi}{\sqrt{3}}} \implies c(t_p) = 1.163 \quad (3.3.1.18)$$

Substitute $c(t_p)$ and $c(\infty)$ in (3.3.1.2) to get peak overshoot:

$$M_p = 1.16 - 1 = 0.16$$
 (3.3.1.19)

(3.3.1.6) 3.3.2. Verify using a Python Plot

Solution:

codes/ee18btech11045.py

Fig. 3.3.2: c(t) vs t plot

4 ROUTH HURWITZ CRITERION

- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 4.4 Example
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- 6 Nyquist Plot
- 7 Compensators
- 7.1 Phase Lead
- 7.2 Example
- 8 Gain Margin
- 8.1 Introduction
- 8.2 Example
- 9 Phase Margin
- 10 Oscillator
- 10.1 Introduction
- 10.2 Example