Scheduling Mix-flows in Commodity Datacenters with Karuna

Li Chen, Kai Chen, Wei Bai, Mohammad Alizadeh (MIT) SING Group, CSE Department Hong Kong University of Science and Technology

Massachusetts
Institute of
Technology

Datacenter Transport

- Deadline flows
 - Meeting deadlines
 - D3, D2TCP, ...
- General (non-deadline) flows
 - Reduce flow completion time (FCT)
 - pFabric, PDQ, PASE, PIAS, ...

We investigate a practical, yet neglected, problem:

Mix-flow Scheduling

Prior solutions do not work for mix-flows

Shortest Job First (SJF) Scheduling – pFabric, PASE, PIAS, PDQ

Flow Priority = Remaining size

Deadline Miss Rate

Percentage of non-deadline flows smaller than deadline flows.

Scheduling only with sizes hurts deadline flows Problem: unawareness of deadlines.

Prior solutions do not work for mix-flows

Earliest Deadline First Scheduling – pFabric, PASE, PIAS, PDQ

Prioritizing deadline flows hurts non-deadline flows, especially short ones. Problem: Existing transports for deadline flows unnecessarily takes all bandwidth.

How to schedule mix-flows?

Karuna

Key Insight: Deadline flows should minimally impact non-deadline flows.

- Deadline flows
 - High priority with minimal bandwidth to complete just before deadlines.
- Non-deadline flows
 - Low priority but take all available bandwidth to reduce FCT.

MCP for deadline flows:

Completing deadlines with minimal bandwidth

Minimal-impact Congestion control Protocol

MCP: Formulation and solution

- Objective → Minimal impact
 - Per-packet latency
- Constraints:
 - Meet deadlines $Z_s($
 - Network capacity

IMPOCT
$$P(\mathbf{y}(t)) = \lim_{T} \frac{1}{T} \sum_{t=0}^{T-1} \sum_{s} \{ \sum_{l \in L(s)} d_{l}(y_{l}(t)) \}$$

 $\min_{\mathbf{x}(t)} \sum_{s} \{ V \sum_{l \in L(s)} d_{l}(y_{l}(t)) + \frac{Z_{s}(t)\gamma_{s}(t)}{x_{s}(t)} + \sum_{l \in L(s)} (Q_{l}(t) + \mu)x_{s}(t) \}$

subject to
$$y_l(t) = \sum_{s \in S(l)} x_s(t), \forall l$$

$$W_s(t+\tau_s(t)) \leftarrow W_s(t) + \tau_s(t) (\Theta(\gamma_s(t), \frac{W_s(t)}{\tau_s(t)}) - \sum_{l \in L(s)} (Q_l(t) + \lambda_l(t)))$$

MCP: Formulation and solution

- Objective → Minimal impact
 - Per-packet latency
- Constraints
 - Meet deadlines
 - Network capacity

- Solution
- → Near-deadline completion

Reducing FCT for non-deadline flows

Mimicking SJF

Non-deadline flows with/out known sizes

Non-deadline flows with unknown size

• PIAS [2] is best known scheme.

Karuna for non-deadline flows

- Non-deadline flows with unknown size ← PIAS
- Non-deadline flows with known size
 - Karuna extends PIAS to schedule flows with/out known sizes.

Sum of Linear Ratios Problem (PIAS)

Reformulation to include flows with known sizes

Quadratic Sum of Ratios Problem (Karuna)

Demotion Thresholds: $\{\alpha_i\}$

Demotion Thresholds: $\{\alpha_i\}$ Splitting Thresholds: $\{\beta_i\}$

Karuna for non-deadline flows: mimicking SJF

Information passing

Pass flow information (deadline, size) to the kernel using SO_MARK

Network Fabric

Information Passing Packet tagging

TC module at the sender-side.

Tag DSCP fields in packet headers based on thresholds.

Network Fabric

Information Passing Packet tagging Rate control

TC module.

Non deadline flows use DCTCP

Modifies window size using MCP.

Network Fabric

Evaluation

Testbed Experiments
Simulations

Deadline flows

Evaluation: Testbed Experiments

Setup

- 16 servers
- A Gigabit Pronto-3295 switch
- 8 Priority queues mapped to DSCP
- RTT ~100us
- Karuna kernel module
- Traffic trace
 - Web search (DCTCP [3])
 - Data mining (VL2 [4])

^[3] Alizadeh, Mohammad, et al. "Data center tcp (dctcp)." ACM SIGCOMM computer communication review. Vol. 40. No. 4. ACM, 2010.

^[4] Greenberg, Albert, et al. "VL2: a scalable and flexible data center network." ACM SIGCOMM computer communication review. Vol. 39. No. 4. ACM, 2009.

Flow	Size	Deadline	Start Time
1	14.4MB	20ms	0ms
2	48MB	120ms	0ms
3	ЗМВ	5ms	50ms
4	0.5MB	10ms	80ms

Flow	Size	Deadline	Start Time
1	14.4MB	20ms	0ms
2	48MB	120ms	0ms
3	ЗМВ	5ms	50ms
4	0.5MB	10ms	80ms

Flow	Size	Deadline	Start Time
1	14.4MB	20ms	0ms
2	48MB	120ms	0ms
3	ЗМВ	5ms	50ms
4	0.5MB	10ms	80ms

Flow	Size	Deadline	Start Time
1	14.4MB	20ms	0ms
2	48MB	120ms	0ms
3	ЗМВ	5ms	50ms
4	0.5MB	10ms	80ms

Karuna completes deadline flow just before deadline, leaving bandwidth for non-deadline flows.

Mimics shortest job first scheduling for non-deadline flows.

Evaluation: Simulations

- Simulation Setup
 - Spine-leaf with 144 servers
 - 10G Server-ToR links
 - 40G ToR-Spine links
- Compare with:
 - D3
 - D2TCP
 - pFabric EDF

Large-scale Simulations: Key Benefit of Karuna

Concluding remarks

- Filling a gap in datacenter flow scheduling
- Karuna
 - Prioritizes deadline flows but control their rates.
 - Uses the remaining bandwidth to schedule non-deadline flows based on size.
- Thank you! Q & A!