Especificaciones para el lenguaje AUTOMATA

❖ Tipos de autómatas

TMA = Máquina de Turing PDA = Autómata a Pila

FDA = Autómata Finito Determinístico FNA = Autómata Finito No Determinístico NPDA = Autómata a Pila No Determinístico

Caracteres especiales

\H Representa un estado de aceptación. \Ε Representa la cadena vacía (o sea ε).

 \Z Representa al símbolo de pila vacía (o sea Z_0).

\\$ Representa al carácter de fin de cadena (lo que en C se representa por '\0').

Descripción de la sintaxis

AUTOMATA → "AUTOMATA" '[' "TMA" ']' '[' DESCR ']' '{' TMA_DECL '}' ';'

→ "AUTOMATA" '[' "PDA" ']' '[' DESCR ']' '{' PDA_DECL '}' ';'
 → "AUTOMATA" '[' "FDA" ']' '[' DESCR ']' '{' FDA_DECL '}' ';'
 → "AUTOMATA" '[' "FNA" ']' '[' DESCR ']' '{' FNA_DECL '}' ';'
 → "AUTOMATA" '[' "NPDA" ']' '[' DESCR ']' '{' NPDA_DECL '}' ';'

DESCR → Descripción del autómata.

TMA_DECL \rightarrow {CONFIG} {TMA_STATE}

TMA_STATE → '&' '(' QSTATE ',' TMA_INPUT ')' '=' '(' QNEWSTATE ',' TMA_OUTPUT ',' TMA_DIRECTION ')' ';'

TMA_INPUT $\rightarrow c / c \in \Sigma$ TMA_OUTPUT $\rightarrow c / c \in \Sigma$ TMA_DIRECTION $\rightarrow '-' | '<' | '>'$

PDA_DECL → {CONFIG} {PDA_STATE}

PDA_STATE → '&' '(' QSTATE ',' PDA_INPUT ',' PDA_POP ')' '=' '(' QNEWSTATE ',' PDA_PUSH ')' ';'

PDA_INPUT $\rightarrow c / c \in \Sigma$ PDA_POP $\rightarrow p / p \in \Gamma$ PDA_PUSH $\rightarrow p / p \in \Gamma^*$

 $FDA_DECL \rightarrow \{CONFIG\} \{FDA_STATE\}$

FDA_STATE \rightarrow '&' '(' QSTATE ',' FDA_INPUT ')' '=' QNEWSTATE ';'

FDA_INPUT $\rightarrow c / c \in \Sigma$

FNA_DECL \rightarrow {CONFIG} {FNA_STATE}

FNA_STATE → '&' '(' QSTATE ',' FNA_INPUT ')' '=' '{' {QNEWSTATE} '}' ';'

FNA_INPUT $\rightarrow c / c \in (\Sigma \cup \{\epsilon\})$

 $NPDA_DECL \rightarrow \{CONFIG\} \{NPDA_STATE\}$

NPDA_STATE → '&' '(' QSTATE ',' NPDA_INPUT ',' NPDA_POP ')' '=' '(' QNEWSTATE ',' NPDA_PUSH ')' ';'

 $\begin{array}{ll} \text{NPDA_INPUT} & \rightarrow c \ / \ c \in (\Sigma \cup \{\epsilon\}) \\ \text{NPDA_POP} & \rightarrow p \ / \ p \in (\Gamma \cup \{\epsilon\}) \\ \text{NPDA_PUSH} & \rightarrow p \ / \ p \in \Gamma^* \end{array}$

QSTATE \rightarrow 'q' DIGIT {DIGIT}

QNEWSTATE \rightarrow QSTATE

CONFIG → START_STATE | FINAL_STATES

START_STATE → '<' "StartState" '=' QSTATE '>'

FINAL_STATES → '<' "FinalStates" '=' '{' QSTATE {',' QSTATE} '}' '>'

 \rightarrow Alfabeto de la entrada, caracteres ASCII con rango [32-126]

 Γ \rightarrow Alfabeto de la pila, $\Sigma \cup \{Z_0\}$