地理建模实验4 实验报告

42109232 吕文博 地信2101班

2024-05-23

R 语言多元线性回归

加载数据

dt = readxl::read_xlsx('../data/exp4/4.xlsx')
skimr::skim(dt)

表 1: Data summary

Name	dt
Number of rows	52
Number of columns	4
Column type frequency:	
numeric	3
Group variables	None

Variable type: character

$skim_variable$	n_missing	$complete_rate$	min	max	empty	n_unique	whitespace
台站	0	1	2	5	0	52	0

Variable type: numeric

skim_variable	mean	sd	p25	p50	p75	hist
年降水	372.20	215.17	159.01	420.52	542.56	
量P/mm						
纬度坐标Y	36.75	2.38	34.93	35.79	38.80	
(北纬0°)						
海拔Z/m	1756.98	608.32	1343.00	1560.90	2036.92	

拟合多元线性回归模型

```
data = dt
summary(lm.model)
##
## Call:
## lm(formula = `年降水量P/mm` ~ `纬度坐标Y(北纬0°)` +
      `海拔Z/m`, data = dt)
##
##
## Residuals:
##
      Min
              1Q Median
                             3Q
                                    Max
## -188.63 -57.85 -12.86 40.47 178.58
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                       3260.83143 200.51255 16.262 <2e-16 ***
## `纬度坐标Y(北纬0°)` -80.62259
                                  5.24426 -15.373 <2e-16 ***
## `海拔Z/m`
                                  0.02055 2.061 0.0446 *
                         0.04235
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 88.68 on 49 degrees of freedom
## Multiple R-squared: 0.8368, Adjusted R-squared: 0.8301
```

lm.model = lm(`年降水量P/mm`~`纬度坐标Y(北纬0°)`+`海拔Z/m`,

R方为0.8368,说明数据有83.68%的可能被该回归方程解释,数据与模型的拟合程度较高.

F-statistic: 125.6 on 2 and 49 DF, p-value: < 2.2e-16

由回归方程的F检验可得,P < 2.2e - 16 << 0.05, F检验通过,说明回归方程显著,自变量能显著影响因变量.

回归模型的方程为 年降水量 = $-80.62259 \times$ 纬度坐标 + $0.04235 \times$ 海拔 + 3260.83143 ,对自变量进行t检

 $验, P_{4g_{\text{坐}fr}} < 2e - 16 << 0.05$ 且 $P_{4g_{\text{W}}} = 0.0446 < 0.05$,纬度坐标和海拔的t检验都通过,说明两个自变量 能显著影响因变量.

Python 多元线性回归

```
import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
dt = pd.read_excel('../data/exp4/4.xlsx')
dt.head()
##
     台站
          年降水量P/mm 纬度坐标Y(北纬0°)
                                          海拔Z/m
## 0 安西
             48.25
                   40.500000 1170.8
## 1 白银
            193.72 36.599998 1707.2
## 2 定西
          413.94 35.533000 1908.8
## 3 古浪
            358.60 37.483003 2072.4
## 4 和政
            615.04
                     35.432998 2136.4
X = dt.loc[:,['纬度坐标Y(北纬0°)','海拔Z/m']]
y = dt.loc[:,'年降水量P/mm']
X = sm.add_constant (X)
lm_model = sm.OLS(y,X).fit()
print(lm_model.summary())
```

##			OLS Regress	sion Res	ults		
##	=======================================	=====	.========			========	=======
##	Dep. Variable:		年降水量P/	mm R-s	squared:		0.837
##	Model:		OLS	Adj. R	-squared:		0.830
##	Method:		Least Squares	F-stat	istic:		125.6
##	Date:		周四, 23 5月 202	4 Prob	(F-statist	ic):	5.16e-20
##	Time:		15:06:23	Log-Li	kelihood:		-305.46
##	No. Observations:		52	AIC:			616.9
##	Df Residuals:		49	BIC:			622.8
##	Df Model:		2				
##	Covariance Type:		nonrobust				
##	=======================================	=====				=======	======
##		coef	std err	t	P> t	[0.025	0.975]
##							

## 纬度坐标Y(北纬0°) -80.6226 5.244 -15.373 0.000 -91.161 -70.0 ## 海拔Z/m 0.0424 0.021 2.061 0.045 0.001 0.084	
## 海拔Z/m 0.0424 0.021 2.061 0.045 0.001 0.084	084
##	
## Omnibus: 1.609 Durbin-Watson: 1.438	
## Prob(Omnibus): 0.447 Jarque-Bera (JB): 1.588	
## Skew: 0.358 Prob(JB): 0.452	
## Kurtosis: 2.530 Cond. No. 3.03e+04	
##	

##

Notes:

- ## [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- ## [2] The condition number is large, 3.03e+04. This might indicate that there are
- ## strong multicollinearity or other numerical problems.

R方为0.837,说明数据有83.7%的可能被该回归方程解释,数据与模型的拟合程度较高.

由回归方程的F检验可得,P=5.16e-20<<0.05, F检验通过,说明回归方程显著,自变量能显著影响因变量.

回归模型的方程为 年降水量 = $-80.6226 \times$ 纬度坐标 + $0.0424 \times$ 海拔 + 3260.8314 ,对自变量进行t检验, $P_{4624} = 0 << 0.05$ 且 $P_{64} = 0.045 < 0.05$,纬度坐标和海拔的t检验都通过,说明两个自变量能显著影响因变量.