EPITA	1	InfoS3
NOM		

	_					
	D١	ré	n	0	m	
1	133		и	u	111	

Novembre 2021 Groupe:......

Contrôle Electronique - CORRIGE

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (QCM sans points négatifs – 3 points)

Choisissez la bonne réponse :

Q1. Le dopage permet d'augmenter la conductivité du semi-conducteur

(a) VRAI

b- FAUX

Q2. Si on prend du silicium comme élément semi-conducteur et qu'on le dope avec un élément ayant un électron de valence de moins que le silicium, on a :

a- Un dopage N

C Un dopage P

b- Aucun dopage

d- Dopage NP

Q3. Soit le circuit ci-contre, dans lequel on considère la diode idéale. Que vaut la tension V_{AK} aux bornes de la diode si E=10V, $R=100\Omega$.

a- 10 V

b- 0 V

C-) -10 V

d- 0,7 V

Q4. Soit le circuit ci-contre.

Quel type de porte logique réalise ce montage ?

a- OU

c- NON ET

(b) ET

d- NON OU

Soit le circuit suivant où $v(t) = V.\sqrt{2}.\sin(\omega t)$. (Q5&Q6)

- **Q5.** Quelles sont les diodes passantes si v(t) est négative ?
 - a- D_1 et D_3
 - (b) D_2 et D_4

- c- D_3 et D_4
- d- D_1 et D_2

- Q6. Choisir l'affirmation correcte:
 - (a) $u(t) \le 0 \ \forall t$
 - b- $u(t) \ge 0 \ \forall t$

- c- u(t) = 0 si $v(t) \le 0$
- $d- u(t) = 0 \text{ si } v(t) \ge 0$

Exercice 2. Diodes (5 points+1)

Pour les questions suivantes, vous utiliserez un <u>raisonnement</u> <u>par l'absurde</u>.

1. Soit le montage ci-contre. Montrer que la diode est passante.

On prendra $R_1=2k\Omega, R_2=R_3=1k\Omega, \ E_1=5V$ $E_2=20V$, et on supposera la diode idéale (modèle interrupteur)

BONUS: Déterminer alors le courant qui traverse la diode.

2. Soit le montage ci-contre, où $R_1=R_2=1k\Omega$, $E_1=12V$ et $E_2=10V$. On supposera la diode à seuil (source de tension idéale) avec $V_0=0.6V$.

Montrer que la diode est bloquée.

Suffesons la diode pranaute.

Entropy
$$\frac{1}{1}$$
 Results $\frac{1}{1}$ Loi des nœuds: $\frac{1}{1}$ $\frac{1}{1}$ Results $\frac{1}{1}$ $\frac{1}{$

Exercice 3. Diodes (6 points)

Soit le circuit suivant.

On utilisera le modèle à seuil pour la diode (Modèle générateur de tension parfait) et on notera ${\it V}_0$ tension de seuil.

1. Déterminer le générateur de Thévenin vu par la diode.

2. Déterminer la relation entre E, R, I et V_0 pour que la diode soit passante ?

La diode sera bloquée tant que VAK (Vo Si la diode est bloquée, alors VAK = E+RI = 2 da disde sera blopuse s' _ E+RI < VOGS E+RI >-Vo Cl: La d'ode sera passante si E+RI <-Vo.

Exercice 4. Diode Zéner (6 points)

On considère le schéma suivant. V est une tension pouvant prendre n'importe quelle valeur réelle. On veut tracer l'allure de la caractéristique de transfert c'est-à-dire U=f(V) en substituant la diode par son modèle réel. On notera V_0 la tension de seuil en direct, r_D , la résistance interne de la diode en direct, V_Z ($V_Z>0$), la tension de seuil Zéner et r_Z , la résistance interne de la diode en inverse.

1. Quelle est l'expression de U quand la diode Zéner est bloquée ? Pour quelles valeurs de V eston dans ce cas ?

2. Quelle est l'expression de U quand la diode Zéner est passante en direct ?

3. Quelle est l'expression de U quand la diode Zéner est passante en inverse ?

PR | 1/2 Venue raisonnement pue précèdem -
of -
$$V_2$$
 ment en remplaçant V_0 poir - V_2 et G prair F_2 .

=D $U = \frac{f_2}{2f_2 + R}$ $V - \frac{R}{2f_2 + R}$ V_2

4. Tracez l'allure de la caractéristique de transfert U = f(V).

