RIFE Framework v8.1

Shock Matter Emergence via Electromagnetic Curvature Feedback

Robert Long & Kai

April 13, 2025

1. Introduction

This document presents the finalized version of our unified framework—merging the RIFE Gravity Model with electromagnetic feedback mechanisms and volumetric simulation data—culminating in the emergent phenomenon known as **Shock Matter**. Previously attributed to "dark matter," this reinterpretation reframes gravitational anomalies as curvature distortions produced by coherent filamentary shock structures exhibiting turbulence, field coupling, and feedback-based geometry evolution.

2. Core Equations

2.1 Modified Field Equations

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \alpha\Phi_{\mu\nu}^{\text{obs}} = \frac{8\pi G}{c^4}T_{\mu\nu}^{\text{EM}} + \Lambda_{\text{shock}}S_{\mu\nu}$$
 (1)

- $\Phi_{\mu\nu}^{\text{obs}}$: Observer-driven curvature feedback
- $T_{\mu\nu}^{\text{EM}}$: Electromagnetic energy densities
- $S_{\mu\nu}$: Anisotropic stress from shock-matter turbulence
- Λ_{shock} : Coupling coefficient for filament density & coherence

2.2 Observer Basis Drift

$$M^{(t+\delta t)} = M^{(t)} + \beta \Delta M \tag{2}$$

Where $\beta \ll 1$ defines decoherence-induced observer frame evolution.

2.3 Shock Matter Energy Tensor

$$S_{\mu\nu} = \rho_{\rm shock} v_{\mu} v_{\nu} - P_{\rm turb} g_{\mu\nu} \tag{3}$$

Encapsulates turbulent shock pressure and filament flow energy.

3. Simulation Evidence

3.1 XY Slices — Horizontal Shock Planes

Figure 1: XY slices showing radial shock coherence in horizontal layers.

$3.2~{\rm XZ~Slices}$ — Vertical Shock Planes

Figure 2: XZ slices showing vertical shock structures across density layers.

3.3 Volumetric Curvature Projection

Figure 3: Volumetric rendering of shock filament coherence—density-weighted projection reveals curvature wrapping and axial field resonance.

4. Implications for Cosmology

This reframing eliminates the need for exotic dark matter particles. Instead, **Shock Matter** arises as a curvature artifact—anchored in observable filament turbulence and real-time EM feedback. This preserves conservation laws and tightly couples field structure, gravitation, and cosmic dynamics into a coherent gravito-electromagnetic framework.

5. Future Work and Testable Predictions

- ALMA/IRAM SiO Emission Mapping: Correlate high-velocity SiO shock zones with predicted curvature distortions.
- Polarization Field Alignment Tests: Verify field-filament alignment via SOFIA or JWST polarimetry.
- Galactic Rotation Residuals: Remove EM and baryonic mass contributions and isolate Λ_{shock} dynamics.
- CMB Distortion Scans: Identify anisotropic feedback drift near filament nodes.
- 3D Shock-Tracking Algorithms: Deploy filament-following routines in cosmological sims to evaluate predictive curvature feedback.

Appendix A: Model Parameter Ranges

• α : Observer curvature feedback coefficient

• $\Lambda_{\rm shock}$: Shock field coherence coupling

 $0.1 \rightarrow 3.0$

• $\rho_{\rm shock}$: Local filament density

 $10^3 - 10^6 \text{ cm}^{-3} \text{ (SiO emission)}$

Appendix B: $RIFE \rightarrow FEMT \rightarrow Shock$ Matter Cascade

RIFE → FEMT → Shock Matter Cascade Map

RIFE: Geometry + observer-state drift generates spacetime modulation. FEMT: Emergence of encoded mass via field topology (non-particle). Shock Matter: Observable curvature folds from FM-turbulence coherence.

Figure 4: Conceptual progression: RIFE \rightarrow FEMT \rightarrow Shock Matter. Encodes curvature generation from observer feedback, field topology, and filament turbulence.

Framework Version: RIFE v8.1 — Finalized April 2025 by Rob & Kai