

1. Introduction

Attention Unet is Best!

1. Introduction

Problem

- Cuda Memory out (In colab)
- Abnormally high loss value
- Evaporate learning model upon error

02

Related Work

We looked for models mainly on the Unet

Unet

https://arxiv.org/pdf/1505 .04597.pdf

Attention R2U-Net

https://downloads.hindawi.c om/journals/scn/2021/662 5688.pdf

Res Unet

https://arxiv.org/pdf/1904. 00592.pdf

Attention Unet

https://arxiv.org/pdf/1804.0 3999.pdf

four decoder blocks that are connected via a bridge.

Res Unet

Residual Block

The structure of Res Unet and Unet is the same. But there is a difference that the convolutional block is different.

Attention R2U-Net

- A basic unit of the U-net
- B R2 Convolutional layer block

Convolutional encoding and decoding unit based on the recurrent residual convolutional layer and R2AU-Net structure with AG connection

Attention Unet

Attention Gate

Figure 2: Schematic of the proposed additive attention gate (AG). Input features (x^l) are scaled with attention coefficients (α) computed in AG. Spatial regions are selected by analysing both the activations and contextual information provided by the gating signal (g) which is collected from a coarser scale. Grid resampling of attention coefficients is done using trilinear interpolation.

Learning Where to Look for the Pancreas (췌장)

AG is to connect the featuremap of the encoding layer with the featuremap of the previous decoding layer through skip connection.

03

Methods

Problem

- Cuda Memory out (In colab) -> batch size setting
- Abnormally high loss value -> Change Loss function
- Evaporate learning model upon error
 - -> Save and load learning models per epoch

Data augmentation

Flip the image using opency -> training dataset (10,000 -> 40,000)

Hyperparameter

yperparameter				
Batch size	6			
Learning rate	0.0001			
Lambda learning rate	Lambda epoch - 0.95			
Loss function	L1 Loss			
Optimizer	Adam			

Our Model Architecture

Our Network

04

Experiments

We used Github to share the experimental situation and manage the version -

https://github.com/dntjr41/CV_TermP

h	main - 1 branch 🗘 0 tags	Go to file			
	banggeunho Colaboratory를 통해 생성된	9936d27 2 days ago 3 23 commits			
	geunho	Update attention_unet.py	6 days ago		
<u></u>	Image_Colorization_UNet.ipynb	Image Colorization using U-Net	8 days ago		
<u></u>	Image_Colorization_with_U_Net_and	Colaboratory를 통해 생성됨	10 days ago		
<u></u>	README.md	Update README.md	14 days ago		
<u></u>	TermP.ipynb	Initial Upload	14 days ago		
<u></u>	attention_unet_colab.ipynb	Colaboratory를 통해 생성됨	6 days ago		
<u></u>	cv_project.ipynb	Colaboratory를 통해 생성됨	2 days ago		
<u></u>	cv_test.ipynb	Colaboratory를 통해 생성됨	6 days ago		

Model - Checkpoint per 1-epoch

model-epoch-5-losses-0.00722.pth

- model-epoch-1-losses-0.03572.pth model-epoch-2-losses-0.00670.pth model-epoch-2-losses-0.01222.pth model-epoch-2-losses-0.01959.pth model-epoch-3-losses-0.00671.pth model-epoch-3-losses-0.00870.pth model-epoch-3-losses-0.01171.pth model-epoch-4-losses-0.00869.pth model-epoch-4-losses-0.00999.pth model-epoch-4-losses-0.01587.pth
- model-epoch-6-losses-0.00692.pth model-epoch-6-losses-0.00712.pth model-epoch-7-losses-0.00826.pth model-epoch-8-losses-0.00689.pth model-epoch-8-losses-0.00698.pth model-epoch-8-losses-0.00719.pth model-epoch-9-losses-0.00683.pth model-epoch-11-losses-0.00680.pth model-epoch-12-losses-0.00666.pth model-epoch-13-losses-0.00675.pth

We were all conducted in colab, we had to save the experimental results in the middle.

To do this, we saved the model when performance improved after 1epoch

epoch: 1 epoch: 5 epoch: 30

	CVIP leaderboard: Task Colorization									
								Submit		
	teamname	nickname	method	code	submitted_on	PSNRMetric	SSIMMetric	total		
0	Team 2	Gyu	Unet_D		2022-05-29 15:39:53.54355	31.352034	0.967172	0.44780		
1	Team 2	Gyu	Unet		2022-05-27 17:44:37.372120	31.075518	0.965470	0.40069		
2	Team 2	Gyu	Unet		2022-05-27 18:07:11.256076	31.075518	0.965470	0.40069		
3	Team 4	Bang	ResUNet		2022-05-27 21:42:03.865637	31.096777	0.964803	0.40057		
4	Team 6	giyomi_ghgh	Att_Unet		2022-05-30 02:42:18.854697	31.065446	0.965370	0.39879		
5	Team 1	JeonTak	ResUNet		2022-05-29 23:36:32.361510	31.069423	0.964685	0.39614		
6	Team 6	giyomi_ghgh	unet_epoch10		2022-05-29 17:02:53.538124	31.076611	0.964317	0.39543		
7	Team 6	giyomi_ghgh	unet_epoch9		2022-05-29 16:50:39.432272	30.993914	0.963967	0.38209		
8	Team 6	giyomi_ghgh	unet_epoch8		2022-05-28 20:57:34.328831	30.949584	0.963815	0.37510		
9	Team8	Team8	Attention U- Net		2022-05-26 01:45:51.698920	30.875850	0.965543	0.37278		
10	Team 3	Gyu	Unet+		2022-05-26 11:02:24.426813	30.910913	0.963905	0.37005		
11	Team 1	JeonTak	ResU-Net		2022-05-29 14:30:53.616575	30.868060	0.964910	0.36871		

Check the total score per epoch

05

Conclusion

5. Conclusion

What we learned

- There are various models just for colorization, and learning time and results vary widely depending on which model we choose.
- When doing deep learning, better performance hardware (mainly graphic cards) is needed for better results.
- It takes a very long time for an accurate result.
- Methods of various libraries held by PyTorch.

5. Conclusion

Future Extensions

Team 6 Info.

방근호

- 201635816
- 소프트웨어학과
- panggeunho@gmail.com

심우석

- 201636417
- 소프트웨어학과
- qkqh8639@gmail.com

조민혁

- 201735880
- 소프트웨어학과
- mhcho98@gmail.com

이소정

- 201935098
- 소프트웨어학과
- sjthwjd27@gachon.ac.kr

박윤재

- 201835455
- 소프트웨어학과
- rnjsxorl3075@gmail.com

Github

Team 6 - Github Repository

https://github.com/dntjr41/CV_TermP

Resources

Papers

- https://arxiv.org/pdf/1804.03999.pdf
- https://arxiv.org/pdf/1904.00592.pdf
- https://arxiv.org/pdf/1505.04597.pdf
- https://downloads.hindawi.com/journals/scn/2021/6625688.pdf
- https://www.koreascience.or.kr/article/JAKO201810263413596.pdf

Websites

- https://github.com/LeeJunHyun/Image_Segmentation
- https://github.com/sungyoonahn/Hint-based-image-colorization-using-Attention-Unet
- https://github.com/richzhang/colorization-pytorch
- https://hoya012.github.io/blog/Image-Data-Augmentation-Overview/

Thanks!

