- 7.1. MC Fragen: Häufungspunkte, Grenzwerte von Funktionen. Wählen Sie die einzige richtige Antwort.
- (a) Sei $D \subset \mathbb{R}$ eine Teilmenge. Welche der folgenden Bedingungen besagt, dass $x_0 \in \mathbb{R}$ ein Häufungspunkt von D ist?
 - $\bigcirc x_0 \in D$

Falsch: "Isolierte Punkte" von D sind keine Häufungspunkte von D. Somit kann es Punkte in D geben, die keine Häufungspunkte von D sind. Auf der anderen Seite kann es Häufungspunkte von D geben, welche nicht in D liegen. Siehe z.B. Beispiel 3.10.2 im Skript.

• für jedes $\delta > 0$ gilt $((x_0 - \delta, x_0 + \delta) \setminus \{x_0\}) \cap D \neq \emptyset$

Richtig: Siehe Definition 3.10.1 im Skript. Diese Definition ist äquivalent dazu, dass eine Folge $(a_n)_{n\geq 1}$ in $D\setminus\{x_0\}$ existiert mit $\lim_{n\to\infty}a_n=x_0$, was für $x_0\in\mathbb{R}$ die Definition in der Vorlesung war.

 \bigcirc für jedes $\delta > 0$ gilt $(x_0 - \delta, x_0 + \delta) \cap D \neq \emptyset$

Falsch: Hier wird x_0 nicht "weggenommen" und somit wären isolierte Punkte von D auch als Häufungspunkte erlaubt, was sie aber nicht sind.

 \bigcirc es gibt eine Folge $(a_n)_{n>1}$ in D mit $\lim_{n\to\infty} a_n = x_0$

Falsch: Diese Bedingung ist äquivalent zur dritten Antwortmöglichkeit und würde somit auch isolierte Punkte von D als Häufungspunkte erlauben.

- (b) Sei $D \subset \mathbb{R}$ eine Teilmenge. Welche der folgenden Bedingungen besagt *nicht*, dass ∞ ein Häufungspunkt von D ist?
 - für jedes $\varepsilon > 0$ gibt es ein $x \in D$ mit $x^2 > \frac{1}{\varepsilon}$

Richtig: $D=(-\infty,0)$ ist ein Gegenbeispiel.

 \bigcirc für jedes $M\in\mathbb{N}$ gilt $(M,\infty)\cap D\neq\emptyset$

Falsch: Diese Bedingung impliziert, dass ∞ ein Häufungspunkt von D ist. Eine Folge in D, die gegen ∞ (uneigentlich) konvergiert, kann konstruiert werden, indem $a_n \in (n,\infty) \cap D$ gewählt wird.

 $\bigcirc \sup(D) = \infty$

Falsch: Diese Bedingung impliziert die Bedingung in der zweiten Antwortmöglichkeit, da sie aussagt, dass kein $M \in \mathbb{N}$ eine obere Schranke von D sein kann, und somit $(M, \infty) \cap D \neq \emptyset$ folgt.

15. April 2024 1/10

 \bigcirc es gibt eine Folge $(a_n)_{n\geq 1}$ in D mit $\lim_{n\to\infty}a_n=\infty$

Falsch: Dies ist die Definition aus der Vorlesung.

- (c) Sei $f(x) = \cos(\frac{1}{x})$ für $x \neq 0$. Wählen Sie die richtige Antwort.
 - $\bigcap_{x \to \infty} f(x) = 0$
 - $\bullet \lim_{x \to \infty} f(x) = 1$
 - $\bigcap_{x \to \infty} \lim_{x \to \infty} f(x) = \infty$
 - $\bigcap_{x \to \infty} \lim_{x \to \infty} f(x)$ existiert nicht

Lösung: Da cos stetig ist, folgt aus Satz 3.10.6 im Skript, dass

$$\lim_{x \to \infty} \cos\left(\frac{1}{x}\right) = \cos\left(\lim_{x \to \infty} \frac{1}{x}\right) = \cos(0) = 1.$$

- (d) Sei $g(x) = \frac{\cos(x)-1}{x}$ für $x \neq 0$. Wählen Sie die richtige Antwort.
 - $\bullet \lim_{x \to 0} g(x) = 0$
 - $\bigcirc \lim_{x \to 0} g(x) = 1$
 - $\bigcap \lim_{x \to 0} g(x) = \infty$
 - $\bigcap_{x\to 0} \lim_{x\to 0} g(x)$ existiert nicht

Lösung: Nach Definition ist

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \pm \dots = 1 - \underbrace{\left(\frac{x^2}{2!} - \frac{x^4}{4!} + \frac{x^6}{6!} \mp \dots\right)}_{=:S(x)}$$

Mit derselben Argumentation wie im Beweis von Korollar 3.9.2 findet man, dass

$$\frac{x^2}{2!} - \frac{x^4}{4!} \le S(x) \le \frac{x^2}{2!}$$

für alle $x \in [0, \sqrt{12}]$. Daraus folgt

$$1 - \frac{x^2}{2!} \le \cos(x) \le 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$$

für alle $x \in [0, \sqrt{12}]$. Da alle Funktionen in der letzten Ungleichung gerade sind, ändern sie sich nicht, wenn wir x durch -x ersetzen. Daher gelten diese Ungleichungen für

alle $x \in [-\sqrt{12}, \sqrt{12}]$. Aus den letzten Ungleichungen und der Definition von g ergibt sich

$$-\frac{x}{2!} \le g(x) \le -\frac{x}{2!} + \frac{x^3}{4!}$$

für alle $x \in [-\sqrt{12}, \sqrt{12}] \setminus \{0\}$. Da die linke und rechte Seite in der letzten Ungleichung für $x \to 0$ gegen 0 konvergieren, folgt, dass $\lim_{x\to 0} g(x) = 0$ ist (vgl. Bemerkung 3.10.4(5)).

7.2. Gleichmässige Konvergenz von Potenzreihen I. Sei $\sum_{k\geq 0} c_k x^k$ eine Potenzreihe, die gleichmässig in \mathbb{R} konvergiert. Beweisen Sie, dass ein $N \in \mathbb{N}$ existiert, so dass $c_n = 0$ für alle $n \geq N$ ist.

Lösung: Die gleichmässige Konvergenz der Potenzreihe bedeutet, dass die Folge der Partialsummen $S_n = \sum_{k=0}^n c_k x^k$ gleichmässig in \mathbb{R} konvergiert. Wenn wir das Cauchy-Kriterium für gleichmässige Konvergenz auf die Folge der S_n anwenden, dann folgt (für $\varepsilon = 1$), dass es ein $N \in \mathbb{N}^*$ gibt, so dass für alle $m, n \geq N - 1$ gilt, dass

$$|S_n(x) - S_m(x)| < 1$$

für alle $x \in \mathbb{R}$. Für $n \ge N$ und m = n - 1 impliziert dies, dass

$$|c_n x^n| = |S_n(x) - S_{n-1}(x)| < 1$$

für alle $x \in \mathbb{R}$. Wäre $c_n \neq 0$ für ein $n \geq N$, so könnten wir hieraus direkt einen Widerspruch erhalten, wenn wir $x = \frac{1}{\sqrt[n]{|c_n|}}$ setzen. Somit folgt $c_n = 0$ für alle $n \geq N$.

- 7.3. Gleichmässige Konvergenz von Potenzreihen II. Geben Sie je ein Beispiel für eine Potenzreihe $\sum_{k>0} c_k x^k$ mit Konvergenzradius 1 an (mit Beweis), so dass
- (a) die Potenzreihe nicht gleichmässig in (-1,1) konvergiert

Hinweis: Betrachten Sie eine Potenzreihe, die eine unbeschränkte Funktion darstellt.

Lösung: Die geometrische Reihe $\sum_{k\geq 0} x^k$ hat Konvergenzradius 1, wie man direkt über das Konvergenzverhalten für |x|<1 und |x|>1 oder über die Formel für den Konvergenzradius sehen kann. Wir wissen, dass für |x|<1 gilt, dass

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

(vgl. Beispiel 2.7.2). Die Potenzreihe stellt also eine auf (-1,1) unbeschränkte Funktion dar, da $\lim_{x\to 1^-}\frac{1}{1-x}=\infty$. Gleichmässige Konvergenz in (-1,1) würde bedeuten,

15. April 2024

dass die Folge $S_n = \sum_{k=0}^n x^k$ der Partialsummen gleichmässig in (-1,1) konvergiert. Allerdings sind alle S_n für $n \in \mathbb{N}$ beschränkt in (-1,1). Somit kann es kein $n \in \mathbb{N}$ geben, so dass für alle $x \in (-1,1)$ gilt, dass

$$\left| S_n(x) - \frac{1}{1-x} \right| < 1.$$

Dies zeigt, dass die Folge der Partialsummen nicht gleichmässig in (-1,1) konvergieren kann.

(b) die Potenzreihe gleichmässig in (-1,1) konvergiert

Lösung: Wir betrachten die Potenzreihe $\sum_{k\geq 1}\frac{x^k}{k^2}$. Der Konvergenzradius ist wiederum 1, da $\lim_{k\to\infty} \sqrt[k]{\frac{1}{k^2}}=1$. Da $\sum_{k\geq 1} \frac{1}{k^2}$ konvergiert (siehe Beispiel 2.7.8), konvergiert die Potenzreihe auch für $x=\pm 1$ (absolut). Wir zeigen nun, dass die Potenzreihe gleichmässig konvergiert, und zwar sogar im abgeschlossenen Intervall [-1,1]. Aus der Konvergenz von $\sum_{k>1} \frac{1}{k^2}$ folgt, dass es für jedes $\varepsilon > 0$ ein $N \in \mathbb{N}$ gibt mit

$$\sum_{k=N+1}^{\infty} \frac{1}{k^2} < \varepsilon.$$

Für $n \geq N$ und $x \in [-1, 1]$ folgt dann aufgrund der Dreiecksungleichung für Reihen,

$$\left| \sum_{k=0}^{\infty} \frac{x^k}{k^2} - \sum_{k=0}^{n} \frac{x^k}{k^2} \right| = \left| \sum_{k=n+1}^{\infty} \frac{x^k}{k^2} \right| \le \sum_{k=n+1}^{\infty} \frac{|x|^k}{k^2} \le \sum_{k=n+1}^{\infty} \frac{1}{k^2} \le \sum_{k=N+1}^{\infty} \frac{1}{k^2} < \varepsilon.$$

Dies weist aufgrund der Definition die gleichmässige Konvergenz in [-1,1] nach.

7.4. Spezielle Werte von Cosinus und Sinus. Berechnen Sie cos(x) und sin(x)

(a)
$$x = \frac{\pi}{4}$$

Lösung: Aus der Vorlesung wissen wir, dass $\sin(\pi/2) = 1$ und $\cos(\pi/2) = 0$ ist. Aus den Winkelverdoppelungsformeln (Korollar 3.8.3) folgt:

$$1 = \sin\left(\frac{\pi}{2}\right) = \sin\left(2 \cdot \frac{\pi}{4}\right) = 2\sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{4}\right)$$
$$0 = \cos\left(\frac{\pi}{2}\right) = \cos\left(2 \cdot \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right)^2 - \sin\left(\frac{\pi}{4}\right)^2$$

Da wir auch wissen, dass $\sin(\pi/4)$, $\cos(\pi/4) > 0$ sind (Korollar 3.9.3), folgt aus der zweiten Gleichung oben $\sin(\pi/4) = \cos(\pi/4)$. Die erste Gleichung impliziert dann

$$\sin\left(\frac{\pi}{4}\right)^2 = \frac{1}{2},$$

D-INFK

und wiederum aus der Positivität folgt

$$\sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}.$$

(b)
$$x = \frac{\pi}{3}$$

Hinweis: Finden Sie ein Polynom, das e^{ix} als Nullstelle hat, und bestimmen Sie alle (komplexen) Nullstellen dieses Polynoms.

Lösung: Aus der Vorlesung wissen wir, dass $e^{i\pi} = -1$ (Korollar 3.9.3(1)). Somit ist $e^{i\frac{\pi}{3}}$ eine Nullstelle des Polynoms $z^3 + 1$. Da -1 auch eine Nullstelle dieses Polynoms ist, hat es den Linearfaktor z + 1. Wir finden (z.B. durch Polynomdivision):

$$z^3 + 1 = (z+1)(z^2 - z + 1).$$

Die Nullstellen von z^2-z+1 finden wir mit der Lösungsformel für quadratische Gleichungen:

$$z_{1,2} = \frac{1 \pm i\sqrt{3}}{2}.$$

Da $e^{i\frac{\pi}{3}} = \cos(\pi/3) + i\sin(\pi/3)$ und sowohl $\cos(\pi/3)$ als auch $\sin(\pi/3)$ positiv sind (Korollar 3.9.3), muss $e^{i\frac{\pi}{3}}$ diejenige Nullstelle von $z^3 + 1$ sein, die positiven Real- und Imaginärteil hat, also

$$e^{i\frac{\pi}{3}} = \frac{1 + i\sqrt{3}}{2}.$$

Daraus erhalten wir

$$\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}.$$

(c)
$$x = \frac{\pi}{6}$$

Lösung: Aus den Winkelverdoppelungsformeln (Korollar 3.8.3) und Aufgabenteil (b) folgt:

$$\frac{\sqrt{3}}{2} = \sin\left(\frac{\pi}{3}\right) = \sin\left(2 \cdot \frac{\pi}{6}\right) = 2\sin\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right)$$
$$\frac{1}{2} = \cos\left(\frac{\pi}{3}\right) = \cos\left(2 \cdot \frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right)^2 - \sin\left(\frac{\pi}{6}\right)^2$$

Unter Verwendung von $\sin(z)^2 + \cos(z)^2 = 1$ (Satz 3.8.2(5)) können wir die zweite Gleichung umformen zu

$$\frac{1}{2} = 1 - 2\sin\left(\frac{\pi}{6}\right)^2 \implies \sin\left(\frac{\pi}{6}\right)^2 = \frac{1}{4}.$$

Aus $\sin(\pi/6) > 0$ folgt somit

$$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}.$$

Setzen wir dies in der ersten Gleichung oben ein, so erhalten wir sofort

$$\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}.$$

7.5. Trigonometrische Funktionen I.

(a) Schreiben Sie $\cos(5x)$ als Linearkombination von Produkten von Potenzen von $\sin(x)$ und $\cos(x)$.

Lösung: Wir wissen aus Satz 3.8.2(4), dass $\cos(z+w) = \cos(z)\cos(w) - \sin(z)\sin(w)$ und $\sin(z+w) = \cos(w)\sin(z) + \sin(w)\cos(z)$. Insbesondere $\cos(2z) = \cos^2(z) - \sin^2(z)$ und $\sin(2z) = 2\sin(z)\cos(z)$ (vgl. Korollar 3.8.3). Wir berechnen damit:

$$\cos(5x) = \cos(x + 2(2x)) = \cos(x)\cos(2(2x)) - \sin(x)\sin(2(2x))$$

$$= \cos(x)(\cos^{2}(2x) - \sin^{2}(2x)) - 2\sin(x)\sin(2x)\cos(2x)$$

$$= \cos(x)\left((\cos^{2}(x) - \sin^{2}(x))^{2} - 4\sin^{2}(x)\cos^{2}(x)\right)$$

$$- 4\sin(x)\sin(x)\cos(x)\left(\cos^{2}(x) - \sin^{2}(x)\right)$$

$$= \cos(x)\left(\cos^{4}(x) + \sin^{4}(x) - 6\sin^{2}(x)\cos^{2}(x)\right)$$

$$- 4\sin^{2}(x)\cos(x)\left(\cos^{2}(x) - \sin^{2}(x)\right)$$

$$= \cos^{5}(x) + 5\cos(x)\sin^{4}(x) - 10\cos^{3}(x)\sin^{2}(x).$$

(b) Schreiben Sie $\sin(x)^5$ als Linearkombination von $\sin(kx)$ und $\cos(kx)$, wobei $0 \le k \le 5$ natürliche Zahlen sind.

Lösung: Aus Satz 3.8.2(3) folgt, dass

$$\sin^{5}(x) = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^{5} = \frac{(e^{ix} - e^{-ix})^{5}}{(2i)^{5}}$$

$$= \frac{e^{5ix} - e^{-5ix} - 5e^{3ix} + 5e^{-3ix} + 10e^{ix} - 10e^{-ix}}{32i}$$

$$= \frac{\sin(5x) - 5\sin(3x) + 10\sin(x)}{16}.$$

7/10

7.6. Trigonometrische Funktionen II.

(a) Zeigen Sie, dass für alle $z, w \in \mathbb{C}$

$$\sin z - \sin w = 2\sin\left(\frac{z-w}{2}\right)\cos\left(\frac{z+w}{2}\right)$$
$$\cos z - \cos w = -2\sin\left(\frac{z-w}{2}\right)\sin\left(\frac{z+w}{2}\right)$$

Lösung: Wir verwenden Satz 3.8.2(4) mit $\frac{z+w}{2}$ und $\pm \frac{z-w}{2}$:

$$\begin{split} \sin z - \sin w &= \sin \left(\frac{z+w}{2} + \frac{z-w}{2} \right) - \sin \left(\frac{z+w}{2} - \frac{z-w}{2} \right) \\ &= \sin \left(\frac{z+w}{2} \right) \cos \left(\frac{z-w}{2} \right) + \cos \left(\frac{z+w}{2} \right) \sin \left(\frac{z-w}{2} \right) \\ &- \sin \left(\frac{z+w}{2} \right) \cos \left(\frac{z-w}{2} \right) + \cos \left(\frac{z+w}{2} \right) \sin \left(\frac{z-w}{2} \right) \\ &= 2 \sin \left(\frac{z-w}{2} \right) \cos \left(\frac{z+w}{2} \right) \end{split}$$

$$\begin{aligned} \cos z - \cos w &= \cos \left(\frac{z+w}{2} + \frac{z-w}{2} \right) - \cos \left(\frac{z+w}{2} - \frac{z-w}{2} \right) \\ &= \cos \left(\frac{z+w}{2} \right) \cos \left(\frac{z-w}{2} \right) - \sin \left(\frac{z+w}{2} \right) \sin \left(\frac{z-w}{2} \right) \\ &- \cos \left(\frac{z+w}{2} \right) \cos \left(\frac{z-w}{2} \right) - \sin \left(\frac{z+w}{2} \right) \sin \left(\frac{z-w}{2} \right) \\ &= -2 \sin \left(\frac{z-w}{2} \right) \sin \left(\frac{z+w}{2} \right) \end{aligned}$$

(b) Zeigen Sie, dass sin: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-1, 1\right]$ streng monoton steigend und bijektiv ist.

Lösung: Wir wissen aus der Vorlesung (vgl. Satz 3.9.1, Korollar 3.9.3) dass

- a) $\sin x > 0$ für alle $x \in (0, \pi)$
- b) $\cos x > 0$ für alle $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$
- c) $\sin \frac{\pi}{2} = 1$, $\sin(-\frac{\pi}{2}) = -1$
- d) $\sin(x)^2 + \cos(x)^2 = 1$ für alle $x \in \mathbb{R}$

Aus d) folgt, dass sin auf \mathbb{R} nur Werte in [-1,1] annimmt. Somit ist sin: $[-\frac{\pi}{2},\frac{\pi}{2}] \to [-1,1]$ wohldefiniert.

15. April 2024

D-INFK Dr. R. Prohaska

Streng monoton: Für $-\frac{\pi}{2} \le y < x \le \frac{\pi}{2}$ gilt, dass $\frac{x-y}{2} \in (0, \frac{\pi}{2}]$ und $\frac{x+y}{2} \in (-\frac{\pi}{2}, \frac{\pi}{2})$. Somit können wir aus Aufgabenteil (a) und den Feststellungen a) und b) oben folgern, dass

$$\sin x - \sin y = 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right) > 0.$$

Dies zeigt, dass sin: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-1, 1\right]$ streng monoton steigend ist.

Bijektiv: Da sin: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-1, 1\right]$ wie zuvor gezeigt streng monoton wachsend und auch stetig ist (Satz 3.8.1), folgt aus dem Satz über die Umkehrabbildung (Satz 3.5.3), dass sin: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to J$ bijektiv ist, wobei $J = \sin\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$ ein Intervall ist. Wir wissen, dass $J \subset \left[-1, 1\right]$, aber auch dass $-1 \in J$ (da $\sin\left(-\frac{\pi}{2}\right) = -1$) und $1 \in J$ (da $\sin\left(\frac{\pi}{2}\right) = 1$). Es folgt, dass $J = \left[-1, 1\right]$ ist, was die Bijektivität von sin: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-1, 1\right]$ zeigt.

(c) Zeigen Sie, dass $\cos: [0, \pi] \to [-1, 1]$ streng monoton fallend und bijektiv ist.

Lösung: Es ist möglich, analoge Überlegungen wie in der Lösung zu Aufgabenteil (b) anzustellen. Alternativ genügt es zu bemerken, dass wegen Korollar 3.9.3(2)

$$\cos(x) = \cos(-x) = \sin\left(\frac{\pi}{2} - x\right) = -\sin\left(x - \frac{\pi}{2}\right)$$

ist. Damit folgt aus der Bijektivität und strengen Monotonie von sin: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-1, 1\right]$ aus Aufgabenteil (b) direkt, dass cos: $\left[0, \pi\right] \to \left[-1, 1\right]$ streng monoton und bijektiv ist. Man bemerke nur, dass das Minus vor dem Sinus auf der rechten Seite in der obigen Formel "streng monoton steigend" zu "streng monoton fallend" umkehrt.

7.7. Polarkoordinaten in komplexer Form.

(a) Sei $S^1=\{z\in\mathbb{C}\mid |z|=1\}$ der komplexe Einheitskreis. Beweisen Sie, dass die Funktion cis: $[0,2\pi)\to S^1,\ x\mapsto e^{ix}$ bijektiv ist.

Lösung: Um die Injektivität zu zeigen, bemerken wir, dass für $x,y \in [0,2\pi)$ die Gleichung $e^{ix} = e^{iy}$ äquivalent ist zu

$$1 = e^{i(x-y)} = \cos(x-y) + i\sin(x-y),$$

also $\cos(x-y)=1$ und $\sin(x-y)=0$. Da die Nullstellen von sin aufgrund von Korollar 3.9.3(5) gegeben sind durch $\pi\mathbb{Z}$ und $x-y\in(-2\pi,2\pi)$, folgt hieraus $x-y\in\{-\pi,0,\pi\}$. Allerdings ist $\cos(\pm\pi)=-1$, sodass nur x-y=0, d.h. x=y in Frage kommt. Dies beweist die Injektivität von cis auf $[0,2\pi)$.

Um die Surjektivität zu zeigen, bemerken wir, dass für $z \in S^1$ gilt, dass $(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2 = 1$. Aufgrund von Aufgabe 7.6(c) können wir $x \in [0, \pi]$ wählen mit $\cos(x) = \operatorname{Re} z$. Wegen $\cos(x)^2 + \sin(x)^2 = 1$ folgt hieraus, dass auch $|\sin(x)| = |\operatorname{Im} z|$ gilt. Es gibt also zwei Möglichkeiten:

- Entweder es ist $\sin(x) = \text{Im } z$. Dann ist $z = e^{ix}$.
- Oder es ist $\sin(x) \neq \text{Im } z$, aber $\sin(x) = -\text{Im } z$. Dann ist $x \neq 0$, also $2\pi x \in [0, 2\pi)$, und es gilt aufgrund der Periodizität von sin und cos und der Tatsache, dass cos gerade und sin ungerade ist, dass

$$\cos(2\pi - x) = \cos(-x) = \cos(x) = \operatorname{Re} z,$$

$$\sin(2\pi - x) = \sin(-x) = -\sin(x) = \operatorname{Im} z.$$

Also ist in diesem Fall $z = e^{i(2\pi - x)}$.

Somit ist z in jedem Fall in $\operatorname{cis}([0,2\pi))$ enthalten, was die Surjektivität beweist.

(b) Zeigen Sie, dass es für jedes $z \in \mathbb{C}$ mit $z \neq 0$ eindeutige reelle Zahlen r > 0 und $\varphi \in [0, 2\pi)$ gibt, so dass $z = re^{i\varphi}$.

Lösung: Sei r=|z|>0. Es folgt, dass $\left|\frac{z}{r}\right|=1$, also gibt es aufgrund von Aufgabenteil (a) ein $\varphi\in[0,2\pi)$ mit $e^{i\varphi}=\frac{z}{r}$. Dann ist $z=re^{i\varphi}$. Die Zahlen r>0 und $\varphi\in[0,2\pi)$ sind eindeutig, da aus $z=re^{i\varphi}$ zuerst durch Anwendung des Absolutbetrags folgt, dass $|z|=|re^{i\varphi}|=|r||e^{i\varphi}|=r$ und dann aus der Injektivität von cis: $[0,2\pi)\to S^1$, dass auch $\varphi\in[0,2\pi)$ mit $e^{i\varphi}=\frac{z}{r}=\frac{z}{|z|}$ eindeutig bestimmt ist.

7.8. Bogenmass. Es seien $x \in \mathbb{R}$, $n \in \mathbb{N}^*$ und $z_{n,k} := e^{ikx/n} \in S^1$ für $k = 0, 1, \dots, n$. Ferner sei

$$L_n := \sum_{k=1}^{n} |z_{n,k} - z_{n,k-1}|$$

die Länge des Polygonzuges $z_{n,0}, z_{n,1}, \ldots, z_{n,n}$. Man zeige:

$$L_n = 2n \cdot \left| \sin \left(\frac{x}{2n} \right) \right|$$
 und $\lim_{n \to \infty} L_n = |x|$.

Bemerkung: Für grosse $n \in \mathbb{N}^*$ und für $x \in [0, 2\pi]$ wird das Bild von [0, x] unter der Abbildung eis durch den Polygonzug $z_{n,0}, z_{n,1}, \ldots, z_{n,n}$ approximiert. Also kann L_n als Näherungswert für die Länge des im Gegenuhrzeigersinn durchlaufenen Kreisbogens von 1 nach $\operatorname{cis}(x) = e^{ix}$ verstanden werden. Folglich zeigt diese Aufgabe, dass durch die Abbildung $\operatorname{cis}: \mathbb{R} \to S^1$ die Gerade \mathbb{R} längentreu auf S^1 "aufgewickelt" wird.

Lösung: Wir möchten beweisen, dass unabhängig von $k \in \{1, ..., n\}$ gilt, dass

$$|z_{n,k} - z_{n,k-1}| = 2 \left| \sin \left(\frac{x}{2n} \right) \right|$$

15. April 2024

ist. Es genügt, die Behauptung für k=1 zu beweisen, da

$$|e^{ikx/n} - e^{i(k-1)x/n}| = |e^{i(k-1)x/n}||e^{ix/n} - 1| = |e^{ix/n} - 1|$$

ist. Setzen wir y = x/n, so erhalten wir wegen $e^{iy} = \cos(y) + i\sin(y)$, der Identität $\cos(y)^2 + \sin(y)^2 = 1$ und der Winkelverdoppelungsformel $\cos(y) = \cos(y/2)^2 - \sin(y/2)^2 = 1 - 2\sin(y/2)^2$, dass

$$|e^{iy} - 1| = \sqrt{(\cos(y) - 1)^2 + \sin(y)^2} = \sqrt{2}\sqrt{1 - \cos(y)} = \sqrt{2}\sqrt{2\sin(y/2)^2}$$
$$= 2\left|\sin\left(\frac{y}{2}\right)\right|.$$

Zusammen zeigt all dies, dass

$$L_n = \sum_{k=1}^n |z_{n,k} - z_{n,k-1}| = \sum_{k=1}^n 2 \left| \sin \left(\frac{x}{2n} \right) \right| = 2n \cdot \left| \sin \left(\frac{x}{2n} \right) \right|$$

gilt.

Es bleibt, die Behauptung bezüglich des Grenzwerts zu beweisen. Nehmen wir an, dass $x \neq 0$, da sonst das Ergebnis klar ist. Aus Beispiel 3.10.5 und der Stetigkeit des Absolutbetrags folgt, dass

$$\lim_{t \to 0} \left| \frac{\sin(t)}{t} \right| = 1.$$

Da die Folge definiert durch $a_n = x/(2n)$ in $\mathbb{R} \setminus \{0\}$ enthalten ist und gegen 0 konvergiert, folgt aus obigem Grenzwert, dass

$$\lim_{n \to \infty} \frac{\left| \sin \left(\frac{x}{2n} \right) \right|}{\left| \frac{x}{2n} \right|} = \lim_{n \to \infty} \frac{\left| \sin (a_n) \right|}{\left| a_n \right|} = 1.$$

Aus den bekannten Rechenregeln für konvergente Folgen ergibt sich somit

$$\lim_{n \to \infty} L_n = \lim_{n \to \infty} 2n \cdot \left| \sin \left(\frac{x}{2n} \right) \right| = \lim_{n \to \infty} |x| \cdot \frac{\left| \sin \left(\frac{x}{2n} \right) \right|}{\left| \frac{x}{2n} \right|} = |x|.$$