BREAST_CANCER CLASSIFIER

Classification Project with Multiple ML Models & Streamlit

Deployment

PROJECT OVERVIEW:

Predict whether a tumor is

Malignant (M) or Benign (B) using the Breast Cancer Wisconsin (Diagnostic) dataset.

AGENDA:

- 1. Dataset
- 2. Data Preprocessing
- 3. Exploratory Data Analysis (EDA)
- 4. Feature Selection & Explanation
- 5. Model Training & Evaluation
- 6. Streamlit App Deployment
- 7. Conclusion

1. DATASET:

• 30 numeric features such as: radius, texture, smoothness, compactness, symmetry, fractal dimension

• Target: diagnosis (M = Malignant, B = Benign)

• Rows: 569

2. DATA PREPROCESSING:

- Removed unnecessary columns (id, Unnamed:32)
- Checked missing values & duplicates
- Handled outliers with Boxplots (replaced extreme values with boundary values)
- Normalized features using Min-Max Scaling
- Encoded target variable (Label Encoding)

3. EXPLORATORY DATA ANALYSIS (EDA):

CorrelationHeatmap

- 0.2

3. EXPLORATORY DATA ANALYSIS (EDA):

 Count plot for target distribution: B = 357

 Boxplots of key features (radius_mean, texture_mean,

4. FEATURE SELECTION & EXPLANATION:

- Removed highly correlated features (≥0.8)
- Selected 13 final features for MLP model:
 - 1.radius_mean: Average radius of the cells
 - 2. texture mean: Variation in texture
 - 3. smoothness_mean: How smooth the cell edges are
 - 4. compactness_mean: Ratio of area to perimeter²
 - 5. symmetry_mean: Symmetry of the cells
 - 6. fractal_dimension_mean: Complexity of cell boundary
 - 7. radius_se: Standard error of radius
 - 8. texture_se: Standard error of texture
 - 9.smoothness_se: Standard error of smoothness
 - 10.compactness_se: Standard error of compactness
 - 11.symmetry_se: Standard error of symmetry
 - 12. symmetry_worst: Worst (largest) symmetry
 - 13.fractal_dimension_worst: Worst fractal dimension

5. MODEL TRAINING & EVALUATION:

- Train, Test Split: 80% training, 20% testing
 - Trained multiple classifiers: Random Forest, Decision Tree, XGBoost, Gradient Boosting, Perceptron, MLP
 - Metrics: Accuracy, Precision, Recall, F1
 Score
 - Model Test Accuracy F1 Score:
 - 1. Random Forest 93.86% 0.916
 - 2. Decision Tree 92.11% 0.897
 - 3. XGBoost 95.61% 0.941
 - 4. Gradient Boosting 94.74% 0.930
 - 5. Perceptron 94.74% 0.929
 - 6.MLP 96.49% 0.953

MLP is best due to:

High Test Accuracy

Balanced Precision & Recall

6. STREAMLIT APP DEPLOYMENT:

- Interactive sliders for input
- Shows predicted tumor
 type and
 probabilities
- Features have descriptive tooltips
- Streamlit link:
 https://breast-cancer-app55.streamlit.app/

7. CONCLUSION:

- Built robust breast cancer classifier with MLP
- Demonstrated: data preprocessing, feature selection, model comparison
- Deployed with Streamlit for easy interaction
- MLP chosen for best performance: high accuracy & F1 Score

THANK YOU