

기상기후 **빅데이터 분석 플랫폼**

. 데이터로딩

- 1. 분석 환경 설정 및 패키지로딩
- 2. 데이터 불러오기: 기상데이터
- 3. 데이터 결합하기: 기상데이터
- 4. 데이터 불러오기: 적조 및 해구 데이터
- 5. 데이터 결합하기: 적조 및 해구 데이터
- 6. 데이터 결합하기: 기상 및 적조 데이터

Ⅱ.데이터처리

- 1. 결측 처리
- 2. 파생변수생성

Ⅲ. 모형구축

- 1. 분석 데이터 셋
- 2. 모형구축

IV. 모형검증

- 1. 최종 모형 선택
- 2. 모형 성능 및 예측력 검증

분석개요

분석 교육 실습 주제인 ASOS(종관기상관측장비)와 적조에 대해 알아봅니다.

종관기상관측장비(ASOS)¹⁾

- 기상청은 서울기상관측소를 비롯하여 전국 95개소의 종관기상관측장비(ASOS)와 무인으로 운영되는 493 개소의 자동기상관측장비(AWS)를 이용하여 지상기상관측업무를 수행하고 있다. 종관기상관측 장비(ASOS)는 지방청, 지청, 기상대, 관측소 등에 설치되어 기상 현상 관측 및 국제 전문을 통한 자료 공유 등의 관측 업무를 수행한다.
- 기압, 기온, 풍향, 풍속, 습도, 강수량, 강수 유무, 일사량, 일조시간, 지면 온도, 초상 온도, 지중 온도, 토양수분, 지하수위 14개 요소에 대해서는 종관기상관측장비(ASOS)로 자동 관측하고, 시정, 구름, 증발량, 일기 현상 등은 일부 자동과 목측(目測)으로 관측한다.
- 현상은 일정 시간(오전, 오후) 동안 발생한 일기 현상을 관측한 것이다. 일반적으로 일기 현상을 관측하기 위해 목측 또는 CCTV를 통해 원격 관측한다. 특히 이슬과 서리의 경우 다양한 기상요소(기온, 습도, 풍향, 풍속 등)에 의해 영향을 받으며 시간에 따라 변화한다.

■ 적조²⁾

- 플랑크톤의 대량 번식으로 바다나 강, 운하, 호수의 색이 적색, 황색, 적갈색등으로 변하는 자연현상이다.
- 대량의 담수 유입 등의 원인으로 적조 생물의 에너지 원인 영양염류가 풍부해지고, 수온, 염분, 일조량이 적절하여 적조 생물이 대량 번식 할 수 있는 환경일 때 적조가 발생하는 것으로 알려져 있다.

1) 출처:기상청 홈페이지

2) 출처:기상기후 빅데이터 융합서비스 기술노트 2017

분석 시나리오

실습할에제는ASOS(종관기상관측장비)기상데이터와비기상데이터를활용하여적조관측을 산출하는 모형을 구축하는 것입니다. 실습 예제를 통해 현재 수집되고 있는 적조 발생을 자동으로 산출하는 모형을 구축해봅니다.

● 적조 관측 산출 모형 구축시나리오

4

※본실습 예제는 적조 발생 모형 분석을 중심으로 합니다.

분석 절차

실습은 데이터 로딩, 데이터 탐색, 데이터 처리, 모형 구축, 모형 검증의 단계에 따라 진행됩니다.

● 적조 관측 산출 모형 구축절차

[실습 설명]

[실습 단계]

1 데이터 로딩

분석환경을 설정하고 분석에 필요한 기상 데이터 및비기상데이터를 로딩하여 분석에 필요한 데이터를 준비하는 단계

- 1. 분석 환경 설정 및 패키지로딩
- 2. 데이터불러오기
- 3. 데이터 결합하기

2 데이터 탐색

분석 데이터의 요약 통계를 확인하는 단계

(1. 요약통계보기)

3 데이터 처리

이상치를 처리하고 결측치를 대체하며 파생 변수를 생성하여 최종 데이터셋을 구성하는 단계

(1. 이상치처리)

- 2. 결측치처리
- 3. 파생변수 생성

4 모형 구축

분석할 데이터를 선정하고, 적조 관측 산출 모형을 구축하는 단계

- 1. 분석 데이터셋
- 2. 모형구축

모형 검증

5

최종 구축한 산출 모형의성능을 검증하는 단계

- 1. 최종 모형 선택
- 2. 모형 성능 및 예측력 검증

※적조 발생 모형 분석에 사용되는 데이터들은 이상치가 기처리된 데이터이므로 본 실습 예제에서는 데이터 탐색 과정과 데이터 처리에서 이상치 처리 과정이 없습니다.

5

분석데이터 (1/3)

적조 발생 관측산출 모형 구축에 사용된 파일 및 변수 정보를 확인합니다.

● 적조 발생 관측 산출 모형 구축에 사용된 파일 및 변수정보

파일명	파일설명	변수명	변수설명	형식	예제
		HAEGU_NUM	해구번호	Int	97
		YYMMDD	년월일	DATE	2008-09-20
		YEAR	년도	Num	2008
		MONTH	월	Num	9
		WS_MAX_ASOS	최대 풍속	Num	4.665211304
	종관기상	WS_INS	일 최대순간풍속	Num	6.248399844
ASOS	관측장비	TA_MAX	최대 기온	Num	27.50820413
A303	(ASOS)	HM_AVG	평균 상대습도	Num	81.39204617
	관측 자료	PA_AVG	평균 현지기압	Num	998.3676807
		SS_DAY	일조	Num	2.18794463
		EV_L	대형 증발량	Num	2.319477555
		SI_DAY	일사	Num	0.08144039
		RN_DAY	강수	Num	0.654936286
		RN_DUR	강수 지속	Num	1.103152996
	부이_등표	HAEGU_NUM	해구번호	Int	97
		YYMMDD	년월일	DATE	2008-09-19
		YEAR	년도	Num	2008
RLIOV DP		MONTH	월	Num	9
		WS_MAX_BD	최대 풍속	Num	9.904917206
		WS_MIN	최소 풍속	Num	1.452665542
		PS_MIN	최소 해면기압	Num	1008.818021
		WH_MAX	최대 파고	Num	2.46486516
		YYMMDD	년월일	Date	2008-09-20
		HAEGU_NUM	해구번호	Int	97
		YEAR	년도	Num	2008
		MONTH	월	Num	9
		AVG_EMP	평균 표면 유력	Num	-0.0000679318
		MAX_SSH	최대 해수 고도	Num	0.259959
		AVG_SURFACE_SALINITY_TREND	평균 표면 염분 동향	Num	0.0193792
HYCOM	HYCOM	STDEV_SURFACE_TEMPERATURE_TREND	표준 편차 평균 수온 동향	Num	0.131165
		AVG_SALINITY_01	평균 염분 10m	Num	31.6075
		AVG_SALINITY_02	평균 염분 20m	Num	31.6081
		AVG_SALINITY_03	평균 염분 30m	Num	31.7308
		AVG_SALINITY_04	평균 염분 40m	Num	-999
		MAX_SALINITY_01	최대 염분 10m	Num	32.3698
		MAX_SALINITY_02	최대 염분 20m	Num	32.3677
		MAX_SALINITY_03	최대 염분 30m	Num	31.7308

※본실습 예제는 적조 발생 모형 분석을 중심으로 합니다.

분석데이터 (2/3)

적조 발생 관측산출 모형 구축에 사용된 파일 및 변수 정보를 확인합니다.

● 적조 발생 관측 산출 모형 구축에 사용된 파일 및 변수정보

파일명	파일설명	변수명	변수설명	형식	예제
		MAX_SALINITY_04	최대 염분 40m	Num	-999
		MIN_SALINITY_01	최소 염분 10m	Num	30.8946
		MIN_SALINITY_02	최소 염분 20m	Num	30.8968
		MIN_SALINITY_03	최소 염분 30m	Num	31.7308
		MIN_SALINITY_04	최소 염분 40m	Num	-999
		STDEV_SALINITY_01	표준편차 염분 10m	Num	0.496018
		STDEV_SALINITY_02	표준편차 염분 20m	Num	0.496018
		STDEV_SALINITY_03	표준편차 염분 30m	Num	0.496018
		STDEV_SALINITY_04	표준편차 염분 40m	Num	0.496018
		AVG_TEMP_01	평균 수온 10m	Num	26.3307
		AVG_TEMP_02	평균 수온 20m	Num	26.2999
		AVG_TEMP_03	평균 수온 30m	Num	26.1335
		AVG_TEMP_04	평균 수온 40m	Num	-999
		MAX_TEMP_01	최고 수온 10m	Num	26.5592
		MAX_TEMP_02	최고 수온 20m	Num	26.5603
		MAX_TEMP_03	최고 수온 30m	Num	26.1335
		MAX_TEMP_04	최고 수온 40m	Num	-999
		MIN_TEMP_01	최저 수온 10m	Num	26.1057
HYCOM	HYCOM	MIN_TEMP_02	최저 수온 20m	Num	26.0367
		MIN_TEMP_03	최저 수온 30m	Num	26.1335
		MIN_TEMP_04	최저 수온 40m	Num	-999
		STDEV_TEMP_01	표준편차 수온 10m	Num	0.161473
		STDEV_TEMP_02	표준편차 수온 20m	Num	0.161473
		STDEV_TEMP_03	표준편차 수온 30m	Num	0.161473
		STDEV_TEMP_04	표준편차 수온 40m	Num	0.161473
		AVG_U_VELOCITY_01	평균 유속(동쪽) 10m	Num	-0.0215417
		AVG_U_VELOCITY_02	평균 유속(동쪽) 20m	Num	0.0072745
		AVG_U_VELOCITY_03	평균 유속(동쪽) 30m	Num	0.0462051
		AVG_U_VELOCITY_04	평균 유속(동쪽) 40m	Num	-999
		MAX_U_VELOCITY_01	최대 유속(동쪽) 10m	Num	-0.00495796
		MAX_U_VELOCITY_02	최대 유속(동쪽) 20m	Num	0.0288187
		MAX_U_VELOCITY_03	최대 유속(동쪽) 30m	Num	0.0462051
		MAX_U_VELOCITY_04	최대 유속(동쪽) 40m	Num	-999
		MIN_U_VELOCITY_01	최저 유속(동쪽) 10m	Num	-0.0441653
		MIN_U_VELOCITY_02	최저 유속(동쪽) 20m	Num	-0.00253834
		MIN_U_VELOCITY_03	최저 유속(동쪽) 30m	Num	0.0462051
		MIN_U_VELOCITY_04	최저 유속(동쪽) 40m	Num	-999

※본실습 예제는 적조 발생 모형 분석을 중심으로 합니다.

분석데이터 (3/3)

적조 발생 관측산출 모형 구축에 사용된 파일 및 변수 정보를 확인합니다.

● 적조 발생 관측 산출 모형 구축에 사용된 파일 및 변수정보

파일명	파일설명	변수명	변수설명	형식	예제
		STDEV_U_VELOCITY_01	표준편차 유속(동쪽) 10m	Num	0.0131619
		STDEV_U_VELOCITY_02	표준편차 유속(동쪽) 20m	Num	0.0131619
		STDEV_U_VELOCITY_03	표준편차 유속(동쪽) 30m	Num	0.0131619
		STDEV_U_VELOCITY_04	표준편차 유속(동쪽) 40m	Num	0.0131619
		AVG_V_VELOCITY_01	평균 유속(북쪽) 10m	Num	-0.059696
		AVG_V_VELOCITY_02	평균 유속(북쪽) 20m	Num	-0.0138137
		AVG_V_VELOCITY_03	평균 유속(북쪽) 30m	Num	-0.017062
		AVG_V_VELOCITY_04	평균 유속(북쪽) 40m	Num	-999
		MAX_V_VELOCITY_01	최대 유속(북쪽) 10m	Num	-0.030235
HYCOM	HYCOM	MAX_V_VELOCITY_02	최대 유속(북쪽) 20m	Num	0.00260627
HICOIVI	HYCOIVI	MAX_V_VELOCITY_03	최대 유속(북쪽) 30m	Num	-0.017062
		MAX_V_VELOCITY_04	최대 유속(북쪽) 40m	Num	-999
		MIN_V_VELOCITY_01	최저 유속(북쪽) 10m	Num	-0.121754
		MIN_V_VELOCITY_02	최저 유속(북쪽) 20m	Num	-0.0356542
		MIN_V_VELOCITY_03	최저 유속(북쪽) 30m	Num	-0.017062
		MIN_V_VELOCITY_04	최저 유속(북쪽) 40m	Num	-999
		STDEV_V_VELOCITY_01	표준편차 유속(북쪽) 10m	Num	0.0323702
		STDEV_V_VELOCITY_02	표준편차 유속(북쪽) 20m	Num	0.0149721
		STDEV_V_VELOCITY_03	표준편차 유속(북쪽) 30m	Num	-999
		STDEV_V_VELOCITY_04	표준편차 유속(북쪽) 40m	Num	-999
		YYYYMMDD	적조발생일자	Char	20090825
		COCHLO_YN	적조발생여부	Int	0
	정조이려	TYPE	적조생물유형	Char	Gonyaulax sp.
REDTIDE	적조이력 자료	CELL_MIN	적조 최소농도	Num	500
	시표	CELL_MAX	적조 최대농도	Num	15000
		LAT	적조 발생 위도	Num	35.9271433
		LON	적조 발생 경도	Num	129.6089087
	÷II ⊃	HAEGU_NUM	해구번호	Int	1
HAEGU	해구 자료	LAT	위도	Num	42.66666667
	기프	LON	경도	Num	131.6666667

8

. 데이터로딩

- 1. 분석 환경 설정 및 패키지로딩
- 2. 데이터불러오기:기상데이터
- 3. 데이터 결합하기: 기상데이터
- 4. 데이터 불러오기: 적조 및 해구 데이터
- 5. 데이터 결합하기: 적조 및 해구 데이터
- 6. 데이터 결합하기:기상 및 적조데이터

1. 분석 환경 설정 및 패키지로딩 (1/2)

● 실습 실행 예제 파일 경로

- 분석을 실행하기 위한 예제 파일 경로

■ redtide.ipynb 파일을 클릭

● 패키지 로딩

- 분석을 실행하기 전 사용할 패키지를 로딩

1. 분석 환경 설정 및 패키지로딩 (2/2)

● 분석 환경 설정

- 분석을 실행하기 전 메모리를 초기화 하고 현재 설정된 디렉토리를 확인

#====================================
sys.stdout.flush() #Python 메모리에 생성된 모든 객체 삭제(초기화)
- ,
#
작업 디렉토리 경로 확인
#============
currentPath=os.getcwd() #현재 위치한 디렉토리 경로확인
print('Current working dir: %s' % currentPath)
1

- sys.stdout.flush()로 Python 메모리 초기화
- os.getcwd() 로 현재 설정된 디렉토리 위치를 확인 print 문을 사용하여 현재 설정 위치를 확인한다

2. 데이터불러오기:기상데이터(1/2)

- 데이터를 불러온 뒤, 구조확인하기
 - 분석에 활용 할 종관기상관측장비(ASOS) 관측 자료 데이터와 부이(BUOY), 등표(DP), 해양 데이터 (HYCOM) 를 data.table 형태로 불러옴

12

- pd_read_csv()로 기상 데이터 및 부이(BUOY), 등표(DP), 해양 데이터를 불러옴
- rename()으로 컬럼명을 변경
- 데이터 구조확인

2. 데이터불러오기:기상데이터 (2/2)

실	행 결과										
	HAEGU_NUM	YYMMDD	year	month	WS_MAX_AS	os ws	_INS	TA_MAX	HM_AVG	PA_AVG	SS_DAY
0	97	2008-09- 19	2008	9	4.7017	703 6.99	7652	30.666605	67.651732	998.790286	10.581403
1	97	2008-09-	2008	9	4.6652	211 6.24	3400	27.508204	81.392046	998.367681	2.187945
2	97	2008-09-	2008	9	5.5202	223 8.75	1942	25.648252	82.103245	997.070368	2.028152
3	97	2008-09-	2008	9	6.4209	983 8.78	0729	25.827896	75.537215	998.256090	6.096607
4	97	2008-09-	2008	9	4.2080	98 6.17	3675	27.989062	81.541756	999.196706	2.193075
5	97	2008-09- 24	2008	9	4.5086	6.62	9025	24.288109	81.355187	7 1002.273661	0.079262
	HAEGU_NUM	YYMMDD	year	month	WS_MAX_BD	WS_MIN		PS_MIN	WH_MAX		
0	97	2008-09-19	2008	9	9.904917	1.452666	100	08.818021	2.464865		
1	97	2008-09-20	2008	9	9.288222	2.390402	100	07.305026	1.235755		
2	97	2008-09-21	2008	9	9.690123	1.218966	100	07.076554	8.596796		
3	97	2008-09-22	2008	9	8.917646	3.311054	100	7.822278	1.394302		
4	97	2008-09-23	2008	9	6.518775	0.932692	100	08.615224	1.049736		
5	97	2008-09-24	2008	9	10.736216	3.193103	10	11.243100	1.772686		
	YYMMDD H	AEGU_NUM	year	month	AVG_EMP M	MAX_SSH	AVG	_SURFACE	_SALINITY_	TREND	
0	2008-09- 20	97	2008	9	-0.000068	0.259959			0	.019379	
1	2008-09- 20	98	2008	9	0.000088	0.240687			0	.061153	
2	2008-09- 20	99	2008	9	0.000333	0.258393			-0	.242847	
3	2008-09- 20	213	2008	9	0.000091	0.249247			-0	.293269	
4	2008-09- 20	214	2008	9	0.000153	0.239578			-0	.443171	
5	2008-09- 21	97	2008	9	-0.000011	0.266343			0	.014799	
6	2008-09- 21	98	2008	9	0.000075	0.249976			-0	.272004	

3. 데이터결합하기:기상데이터

데이터 결합하기

- 해구 번호(HAEGU_NUM) 및 날짜 정보를 중심으로 기상데이터(ASOS), 부이등표(BUOY_DP), 해양 데이터(HYCOM) 테이블을 결합

- merge() 로 기상데이터(ASOS) 와 부이(등표), 해양(HYCOM) 데이터를 결합
- columns로 결합한 테이블의 Column 이름확인

```
> 실행 결과
          YYMMDD HAEGU_NUM
                                    month
                                             AVG_EMP
                                                       MAX_SSH
Π
      2008-09-20
                          97
                              2008
                                         9 -0.000068 0.259959
      2008-09-20
                              2008
                                         9 0.000088 0.240687
2
      2008-09-20
                         99
                              2008
                                         9 0.000333 0.258393
3
      2008-09-20
                         213
                              2008
                                        9 0.000091 0.249247
4
      2008-09-20
                         214
                              2008
                                         9 0.000153
                                                      0.239578
5
                          97 2008
                                         9 -0.000011 0.266343
      2008-09-21
12743 1026.637640
                   1.753968
12744 1026.173269
                  2.472960
12745 1029,682347
                   1.915282
      1029.563176
                   1.787385
12746
12747
      1029.237699
                   1.775651
12748
      1030 444385
                   1.422014
12749 1029.843490
                  2.373297
      1028.553362
                   1.214834
12750
12751
      1028, 489670
12752
      1028.002832
                   1.344273
12753 1029.031511
                   0.868813
12754 1028 739520
[12755 rows x 86 columns]
```


4. 데이터불러오기: 적조 및 해구데이터 (1/2)

- 데이터를 불러온 뒤, 구조확인하기
 - 분석에 활용할 적조 이력(redtide) 데이터와 해구(HAEGU) 데이터를 data.table 형태로 불러옴

- pd.read_csv()로 적조 데이터 불러옴
- rename()로 컬럼명을 변경
- to_datetime() 로 문자열인 데이터를 날짜 데이터로 변환
- to_numeric() 으로 문자열인 데이터를 숫자형 데이터로 변환
- Info() 로 데이터 구조확인

> 실행 결과

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2324 entries, 0 to 2323
Data columns (total 9 columns):
             2324 non-null datetime64[ns]
YYMMDD.
Cochlo_YN
            2324 non-null int64
           1697 non-null object
type
Cell_min 2303 non-null float64
Cell_max 2262 non-null float64
            2324 non-null float64
LAT r
LON_r
            2324 non-null float64
month
            2324 non-null int64
            2324 non-null int64
dtypes: datetime64[ns](1), float64(4), int64(3), object(1)
memory usage: 163.5+ KB
```

15

4. 데이터불러오기: 적조 및 해구데이터 (2/2)

#=========
해구 데이터 읽어오기
#
$HAEGU = pd.read_csv(currentPath + "/redtide/input/SEA_latlon.csv", sep='\text{\psi}t', encoding='UTF-8') #loadi$
ng redtide data HAEGU = HAEGU.sort_values(by=['HAEGU_NUM'])
HAEGU['row h'] = HAEGU.index + 1
$\label{eq:haegu:rename} HAEGU.rename (columns = \{HAEGU.columns [1]: "LAT_h"\}, inplace = True)$
HAEGU.rename(columns={HAEGU.columns[2]:"LON_h"}, inplace = True)
#
#====================================
#====================================
HAEGU.info()

- pd.read_csv()로 해구 데이터 불러옴
- rename()로 컬럼명을 변경
- Info() 로 데이터 구조 확인

> 실행 결과

5. 데이터 결합하기: 적조 및 해구데이터 (1/2)

● 데이터 결합하기

- 위도, 경도를 중심으로 적조 데이터(redtide) 테이블과 해구 정보(HAEGU) 테이블을 결합

```
# 테이블 결합 및 확인
#========
match=redtide[["LAT_r","LON_r"]].drop_duplicates()
match["row_r"]=match.index+1
def expand_grid(data_dict):
  rows = itertools.product(*data_dict.values())
  return pd.DataFrame.from_records(rows, columns=data_dict.keys())
tmp = expand_grid({'row_h': HAEGU['row_h'], 'row_r': match['row_r']})
np.shape(tmp)[0]
tmp = pd.merge(tmp, HAEGU, how='left', on=['row_h'])
tmp = pd.merge(tmp, match, how='left', on=['row r'])
tmp['dist'] = np.hypot(tmp['LAT_h'].sub(tmp['LAT_r']), tmp['LON_h'].sub(tmp['LON_r']))
pysqldf = lambda q: sqldf(q, globals())
tmp = pysqldf("select HAEGU_NUM, LAT_h, LON_h, LAT_r, LON_r, min(dist) as dist from tmp group by ro
w r;")
redtide = pd.merge(redtide, tmp, how='left', on=['LAT r', 'LON r'])
redtide.info()
redtide.head(5)
# HAEGU, period 선택
start = datetime.datetime.strptime("2008-09-19", "\%Y-\%m-\%d").date() \\ end = datetime.datetime.strptime("2016-12-31", "\%Y-\%m-\%d").date() \\
redtide = redtide.loc[pd.to datetime(redtide['YYMMDD']) >= start]
redtide = redtide.loc[pd.to_datetime(redtide['YYMMDD']) <= end]
redtide = redtide[redtide['month'].isin([5, 6, 7, 8, 9, 10, 11, 12])]
redtide = redtide[redtide['HAEGU_NUM'].isin([97, 98, 99, 213, 214])]
# 해구Num, 같은 날짜 여러 상태의 경우 Cochlo_YN값 MAX로 표출
redtide = redtide.groupby(['HAEGU_NUM', 'YYMMDD']).max()['Cochlo_YN'].reset_index()
redtide.head(5)
```


5. 데이터 결합하기: 적조 및 해구데이터 (2/2)

- 적조 데이터의 위도, 경도로 가장 가까운 해구 번호를 찾아 그 값을 중심으로 적조 데이터 결합
- drop_duplicates() 로 unique한 1개의 행만 남기고 나머지 중복은 제거
- expand_grid 함수를 정의하여 제공된 벡터 또는 요인의 모든 조합에서 데이터 프레임 생성
- np.hypot() 로 제곱근을 구합
 - : np.hypot() 함수는 유클리드 표준을 반환하는 Python의 내장 수학함수로서, sqrt(x*x + y*y) 를 갖는 float 값을 반환
- pysqldf() sql문을 사용하여 필요한 데이터 테이블 추출
 : 적조 관측 위치에서 가장 가까운 거리 (min dist)를 가진 해구정보(HAEGU_NUM, LAT_h, LON_h) 추출
- 데이터 날짜 및 해구 구간 설정
 - 기간 : 2008-09-19 ~ 2016-12-31 - month : 5, 6, 7, 8, 9, 10, 11, 12 - HAEGU : 97, 98, 99, 213, 214
- head() 로 결합한 데이터 확인

6. 데이터결합하기:기상 및 적조데이터

● 데이터 결합하기

- 년월일(YYMMDD), 해구 번호(HAEGU_NUM)를 중심으로 기상 데이터(DT) 테이블과 적조 (redtide) 테이블을 결합

- merge() 로 기상 데이터(DT) 테이블을 중심으로 적조 데이터(redtide) 테이블 결합
- isnull(),sum() 으로 데이터 결측치 확인

> 실행 결과	
YYMMDD	0
HAEGU_NUM	0
year	
month	
AVG_EMP	0
MAX_SSH AVG_SURFACE_SALINITY_TREND	0
STDEV_SURFACE_TEMPERATURE_TREND	
AVG_SALINITY_01	
AVG_SALINITY_02	
AVG_SALINITY_03	
AVG_SALINITY_04	0
MAX_SALINITY_01	0
MAX_SALINITY_02	0
MAX_SALINITY_03	0
MAX_SALINITY_04	0
MIN_SALINITY_01	0
MIN_SALINITY_02	0
•••	
STDEV_V_VELOCITY_01	0
STDEV_V_VELOCITY_02	ō
STDEV_V_VELOCITY_03	0
STDEV_V_VELOCITY_04	0
WS_MAX_ASOS	0
₩S_INS	0
TA_MAX	0
HM_AVG	
PA_AVG	
SS_DAY	0
EV_L SI_DAY	0
ST_DAY RN_DAY	0
RN_DUR	0
WS_MAX_BD	
WS_MIN	
PS_MIN	
WH_MAX	
Cochlo_YN	0
Length: 87, dtype: int64	

Ⅱ. 데이터처리

- 1. 결측처리
- 2. 파생변수 생성

1. 결측 처리

● 결측 처리

- 해당 데이터의 -999 값을 NA로 판단하여 결측 처리 (결측은 변수별 mean 값으로 대체)

- fillna() 로 해당 데이터가 NA인 값을 선택하여 mean값으로 치환
- isnull().sum()으로 최종적으로 모든 NA가 mean으로 치환되었는지 확인

2. 파생변수 생성 (1/4)

● 파생변수생성

- 7일 평균값, 14일 평균값, 14일 누적치의 파생변수 생성

```
#======
# 파생변수 생성
#======
# 7일 평균값을 구함
AB['mean_AVG_EMP'] = AB.groupby(['HAEGU_NUM', 'year'])['AVG_EMP'].apply(lambda x : x.rolling(7).sum().shift
(1)) / 7
AB['mean_MAX_SSH'] = AB.groupby(['HAEGU_NUM', 'year'])['MAX_SSH'].apply(lambda x : x.rolling(7).sum().shift
(1)) / 7
AB['mean_STDEV_V_VELOCITY_03'] = AB.groupby(['HAEGU_NUM', 'year'])['STDEV_V_VELOCITY_03'].ap
ply(lambda x : x.rolling(7).sum().shift(1)) / 7
AB['mean_STDEV_V_VELOCITY_04'] = AB.groupby(['HAEGU_NUM', 'year'])['STDEV_V_VELOCITY_04'].ap
ply(lambda x : x.rolling(7).sum().shift(1)) / 7
# 전처리 이전 변수 삭제
AB.drop(['AVG_EMP', 'MAX_SSH', 'AVG_SURFACE_SALINITY_TREND',
  'STDEV_SURFACE_TEMPERATURE_TREND', 'AVG_SALINITY_01', 'AVG_SALINITY_02',
  'AVG_SALINITY_03', 'AVG_SALINITY_04', 'MAX_SALINITY_01', 'MAX_SALINITY_02', ...
  'MAX_V_VELOCITY_04', 'MIN_V_VELOCITY_01', 'MIN_V_VELOCITY_02', 'MIN_V_VELOCITY_03',
  'MIN_V_VELOCITY_04', 'STDEV_V_VELOCITY_01', 'STDEV_V_VELOCITY_02', 'STDEV_V_VELOCITY_03',
  'STDEV_V_VELOCITY_04'], axis='columns', inplace=True)
```

■ groupby() 와 shift()를 이용하여 7일 평균값을 구함

2. 파생변수 생성 (2/4)

```
#14days mean
AB['mean\_TA\_MAX'] = AB.groupby(['HAEGU\_NUM', 'year'])['TA\_MAX'].apply(lambda x : AB['mean\_TA\_MAX']) = AB.groupby(['MaEGU\_NUM', 'year'])['TA\_MAX'].apply(lambda x : AB['mean\_TA\_MAX']).apply(lambda x : AB['mean\_TA\_M
 x.rolling(14).sum().shift(1)) / 14
 AB['mean_WS_MAX_ASOS'] = AB.groupby(['HAEGU_NUM', 'year'])['WS_MAX_ASOS'].apply(lambda x:
x.rolling(14).sum().shift(1)) / 14
 AB['mean WS MAX BD'] = AB.groupby(['HAEGU NUM', 'year'])['WS MAX BD'].apply(lambda x:
 x.rolling(14).sum().shift(1)) / 14
 AB['mean\_WS\_INS'] = AB.groupby(['HAEGU\_NUM', 'year'])['WS\_INS'].apply(lambda x : x.rolling(14).sum().shift(1))
 AB['mean WS MIN'] = AB.groupby(['HAEGU NUM', 'year'])['WS MIN'].apply(lambda x:
 x.rolling(14).sum().shift(1)) / 14
 AB['mean\_HM\_AVG'] = AB.groupby(['HAEGU\_NUM', 'year'])['HM\_AVG'].apply(lambda x : AB.groupby(['HAEGU\_NUM', 'year'])['HM_AVG'].apply(lambda x : AB.groupby(['HAEGU\_NUM', 'year'])['HAEGU_NUM', 'year'])['HAEGU_NUM', 'year']].apply(lambda x : AB.groupby(['HAEGU\_NUM', 'year'])['HAEGU_NUM', 'year'])['HAEGU_NUM', 'year']].apply(lambda x : AB.groupby(['HAEGU\_NUM', 'year'])['HAEGU_NUM', 'year']]].apply(['HAEGU\_NUM', 'year']]].apply(['HAEGU\_NUM', 'year'])['
x.rolling(14).sum().shift(1)) / 14
 AB['mean EV L'] = AB.groupby(['HAEGU NUM', 'year'])['EV L'].apply(lambda x : x.rolling(14).sum().shift(1)) / 14
AB['mean\_PA\_AVG'] = AB.groupby(['HAEGU\_NUM', 'year'])['PA\_AVG'].apply(lambda x : lambda x : lambd
 x.rolling(14).sum().shift(1)) / 14
AB['mean\_PS\_MIN'] = AB.groupby(['HAEGU\_NUM', 'year'])['PS\_MIN'].apply(lambda x : x.rolling(14).sum().shift(1))
 AB['mean WH MAX'] = AB.groupby(['HAEGU NUM', 'year'])['WH MAX'].apply(lambda x:
 x.rolling(14).sum().shift(1)) / 14
 # 전처리 이전 변수 삭제
 AB.drop(['TA MAX', 'WS MAX ASOS', 'WS MAX BD', 'WS INS', 'WS MIN', 'HM AVG', 'EV L', 'PA AVG',
 'PS_MIN', 'WH_MAX'], axis='columns', inplace=True)
 #14days cumulative
 AB['mean\_SS\_DAY'] = AB.groupby(['HAEGU\_NUM', 'year'])['SS\_DAY'].apply(lambda x : x.rolling(14).sum().shift(1))['SS\_DAY'].apply(lambda x : x.rolling(14).sum().shift(1)]['SS\_DAY'].apply(lambda x : x.rolling(14).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum().shift(15).sum
AB['mean\_RN\_DAY'] = AB.groupby(['HAEGU\_NUM', 'year'])['RN\_DAY'].apply(lambda x : lambda x : lambd
 x.rolling(14).sum().shift(1))
 AB['mean_SI_DAY'] = AB.groupby(['HAEGU_NUM', 'year'])['SI_DAY'].apply(lambda x:x.rolling(14).sum().shift(1))
 AB['mean RN DUR'] = AB.groupby(['HAEGU NUM', 'year'])['RN DUR'].apply(lambda x:
 x.rolling(14).sum().shift(1))
 AB.drop(['SS_DAY', 'RN_DAY', 'SI_DAY', 'RN_DUR'], axis='columns', inplace=True)
```

■ groupby() 와 shift()를 이용하여 14일 평균값, 14일 누적치를 구함

2. 파생변수 생성 (3/4)

■ del() 를 이용하여 불필요한 데이터를 삭제 함으로써 메모리 용량을 줄임

2. 파생변수 생성 (4/4)

> '	실행 결	과						
<pre><class 'pandas.core.frame.dataframe'=""> Int64Index: 8850 entries, 70 to 12599 Data columns (total 87 columns): YYMMDD HAEGU_NUM year month Cochlo_YN mean_AVG_EMP mean_MAX_SSH mean_AVG_SURFACE_SALINITY_TREND mean_STDEY_SURFACE_TEMPERATURE_TREND mean_AVG_SALINITY_01 mean_AVG_SALINITY_02 mean_AVG_SALINITY_03 mean_AVG_SALINITY_04 mean_MAX_SALINITY_01 mean_MAX_SALINITY_02 mean_MAX_SALINITY_01 mean_MAX_SALINITY_01 mean_MIN_SALINITY_03 mean_MIN_SALINITY_04 mean_MIN_SALINITY_04 mean_MIN_SALINITY_01 mean_MIN_SALINITY_01 mean_MIN_SALINITY_01 mean_STDEY_SALINITY_01 mean_STDEY_SALINITY_03 mean_STDEY_SALINITY_04</class></pre>		8850 non-null datetime64[ns 8850 non-null int64 8850 non-null int64 8850 non-null int64 8850 non-null float64		ıs]				
			••	•				
		HAEGU_NUM	year	month	Cochlo_YN	mean_AVG_EMP	mean_MAX_SSH	mean_AVG_SURFACE_SALINITY_TREND
70	2008-10- 04	97	2008	10	0.0	-0.000148	0.208562	0.079170
75	2008-10- 05	97	2008	10	0.0	-0.000140	0.201662	0.107633
80	2008-10- 06	97	2008	10	0.0	-0.000136	0.210660	0.106639
85	2008-10- 07	97	2008	10	0.0	-0.000132	0.200848	0.130929
90	2008-10- 08	97	2008	10	0.0	-0.000137	0.208403	0.159245
5 rov	vs × 87 co	lumns						

Ⅲ。 모형구축

- 1. 분석 데이터 셋
- 2. 모형구축

1. 분석 데이터셋 (1/2)

● H2O 서버세팅

- H2O는 빅데이터 처리를 위한 분산처리 프로세스를 통해 빠른 처리속도를 지원하고 다양한 머신러닝 분석 기술을 제공하는 패키지
- H2O 랜덤 포레스트 모델(Random Forest)을 활용하여분석

■ h2o,init()으로 H2O 자바가상머신을 세팅

> 실행 결과	
Checking whether there is an H2O in Warning: Your H2O cluster version i p://h2o.ai/download/	
H2O cluster uptime:	21 days 7 hours 11 mins
H2O cluster version:	3.10.0.8
H2O cluster version age:	4 years, 2 months and 13 days !!!
H2O cluster name:	H2O_from_python_p00000678_wkpuxj
H2O cluster total nodes:	1
H2O cluster free memory:	3.488 Gb
H2O cluster total cores:	10
H2O cluster allowed cores:	1
H2O cluster status:	locked, healthy
H2O connection url:	http://localhost:54321
H2O connection proxy:	None
Python version:	3.6.1 final

1. 분석 데이터셋 (2/2)

● 데이터 셋 분할

- 모델 학습 및 최적화, 테스트를 위해 데이터 셋을 train_data, valid_data, test_data로 나눔

```
# setting AB data
dataXY = AB
dataXY = dataXY.drop(['HAEGU_NUM', 'YYMMDD', 'month', 'year'], axis=1)
dataXY = dataXY.rename(columns = {"Cochlo_YN":"Y"})
dataXY.reset_index(drop=True, inplace=True)
dataXY.info()
# train, valid, test 데이터 분리 (split to train, valid, test)
dataXY = h2o.H2OFrame(dataXY)
train_data, valid_data, test_data = dataXY.split_frame(ratios=[0.7,0.15], seed=1111)
# 독립변수, 종속변수 설정(x: 독립변수, y: 종속변수)
x = dataXY.columns
x.remove('Y')
y='Y'
train_data['Y'] = train_data['Y'].asfactor()
valid_data['Y'] = valid_data['Y'].asfactor()
test_data['Y'] = test_data['Y'].asfactor()
```

- h2o.H2OFrame() 으로 분석 데이터셋을 H2OFrame구조의 데이터로 변환
- split_frame()으로 데이터 셋을 분할
 1) train → 0.7, valid → 0.15, test → 0.15
- asfactor()를 이용하여 문자형을 요인형(factor) 로 변환

2. 모형구축

- 하이퍼 파라미터 최적화(Hyper-parameter Optimization)
- 랜덤 포레스트 모델의 하이퍼 파라미터를 조정하여 AUC(Area Under the Curve)가 가장 높은 모형을 선택

```
#모형 튜닝 자동화
hyper_parameters = {'max_depth': [4, 6, 8, 12, 16, 20]}
#조합 모형 돌리기
m = H2OGridSearch(H2ORandomForestEstimator,
         hyper_params=hyper_parameters,
         search_criteria={'strategy': "Cartesian"},
         grid_id='RF_depth_grid')
m.train(x = x,
   y = y
    training_frame = train_data,
    validation_frame = valid_data,
    ntrees = 10000,
    stopping_rounds = 5,
    stopping_tolerance = 1e-4,
   stopping_metric = 'AUC',
   score_tree_interval = 5,
    seed=1111)
# AUC가 높은 순으로 정렬하기
sortedGrid = m.get_grid(sort_by='auc', decreasing=True)
print('==== sortedGrid =====')
print(sortedGrid)
```

- {}로 하이퍼 파라미터 조합 리스트를 생성
- H2OGridSearch()로 하이퍼 파라미터 조합들을 활용하여 모형을 구축한 "RF_depth_grid" 를 생성
- get_grid()로 "RF_depth_grid"의 모형 구축 결과를 AUC(Area Under the Curve)가 높은
 순으로 정렬

V. 모형 검증

- 1. 최종 모형 선택
- 2. 모형 성능 및 예측력 검증

1. 최종 모형 선택 (1/3)

● 최종 모형 선택

- 모형 성능을 AUC(Area Under the Curve) 기준으로 예측력 검증하여 최종 모형 선택

```
# 모형 튜닝 자동화
minDepth = 12
maxDepth = 20
# options for grid search
max_runtime_secs = 60*10
max_models = 100
# random grid search
hyper_params = {
  'max_depth': list(range(minDepth, maxDepth + 1)),
  'sample_rate': [i * 0.01 for i in range(20, 100 + 1)],
  'col_sample_rate_per_tree': [i * 0.01 \text{ for } i \text{ in range}(20, 100 + 1)],
  'col_sample_rate_change_per_level': [i * 0.01 for i in range(90, 110 + 1)],
  'min_rows': [1,5,10,20,50,100],
  'min_split_improvement': [0,1e-8,1e-6,1e-4],
  'histogram_type': ['UniformAdaptive', 'QuantilesGlobal', 'RoundRobin']
}
search_criteria = {
  'strategy': "RandomDiscrete",
  'max_runtime_secs': max_runtime_secs,
  'max_models': max_models
}
grid = H2OGridSearch(H2ORandomForestEstimator
            , hyper_params=hyper_params
            , search_criteria=search_criteria
            , grid_id='RF_grid')
grid.train(
   \chi = \chi
  , y = y
  , training_frame = train_data
  , validation_frame = valid_data
  , ntrees = 10000
  , stopping\_rounds = 5
  , stopping_tolerance = 1e-4
  , stopping_metric = 'AUC'
  , score_tree_interval = 5
  , seed = 1111
)
```


1. 최종 모형 선택 (2/3)

Sort the grid models by AUC sortedGrid = grid.get_grid(sort_by='auc', decreasing=True) RF_AB_Tune = h2o.get_model(sortedGrid.model_ids[1]) print(RF_AB_Tune)

- getGrid 의 summary table 에서 상위 3개의 값을 확인 후, max_depth의 min, max 값을 확인하여 minDepth, maxDepth에 입력
 : 패키지에서 R과 Python 제공 함수가 다르므로, 해당 부분 python에서는 값을 확인하여 직접 지정
- {} 로 하이퍼 파라미터와 search_criteria 조합 리스트 생성
- H2OGridSearch()로 하이퍼 파라미터 및 search_criteria 조합 들을 활용하여 모형을 구축한 "RF_grid " 를 생성
- get_grid()로 "RF_grid" 의 모형 구축 결과를 AUC(Area Under the Curve)가 높은 순으로 정렬
- get_model()로 최종 모형 선택

* Python 실행결과는 랜덤 효과가 상이하여 모형 결과가 다를 수 있습니다.

1. 최종 모형 선택 (3/3)

2. 모형 성능 및 예측력검증

● 모형 성능 및 예측력 검증

- 최종 선택한 모형으로 테스트 데이터를 예측하고, AUC(Area Under the Curve)와 혼동행렬(Confusion Matrix) 로 결과 확인

- predict()로 최종 선택 모형을 예측
- confusion_matrix()로 예측값과 실제값으로 혼동행렬을 출력
- classification_report()로 주요 분류 지표를 보여주는 텍스트 보고서를 작성

> 실행 결과					
drf prediction	progress:				100%
[[1294 6] [15 10]]		precision	recall	f1-score	support
0	0.99	1.00	0.99	1300	
1	0.62	0.40	0.49	25	
accuracy			0.98	1325	
macro avg	0.81	0.70	0.74	1325	
weighted avg	0.98	0.98	0.98	1325	

34

본 문서의 내용은 기상청 날씨마루(https://bd.kma.go.kr)의 분석 플랫폼 활용을 위한 Python 프로그래밍 교육 자료 입니다.