Trabajo Práctico 5B

Grupo Nº 11

Ejercicio 1

Conociendo el dato

$${^0
ho_c}=({^0}x_c,{^0}y_c,{^0}z_c)$$

Punto 1

Para calcular geométricamente el valor de θ_1 usando arcotangente se plantea:

$$heta_1 = rctan\left(rac{^0y_c}{^0x_c}
ight)$$

Punto 2

Considerando articulaciones de $\pm 180^{\circ}$, existen 2 soluciones para θ_1 . Por ello, se utiliza una herramienta matemática: mod n. Esto me permite normalizar ángulos en el rango $[+\pi, -\pi]$. Entonces, tenemos 2 valores posibles para θ_1 :

$$egin{aligned} heta_1 &= rctan\left(rac{^0y_c}{^0x_c}
ight) \ heta_1' &= \left[rctan\left(rac{^0y_c}{^0x_c}
ight) + \pi
ight](ext{mod } 2\pi) - \pi \end{aligned}$$

Esto me permite obtener 2 ángulos desfasados 180° uno del otro, ambos en el rango $[-180^\circ, +180^\circ]$ o $[+\pi, -\pi]$.

Punto 3

La gráfica de las soluciones me dejaría:

Esto nos permite concluir que, partiendo de offsets nulos, las soluciones tendrán valores repetidas de θ_2 , θ_3 para los dos valores solución de θ_1 pero cuando se agregan los offset ("home position") estos valores no conservan su "simetría", ya que se modifica el valor que se considera "el cero" del intervalo de rotación.

Punto 4

Se plantean 2 formas de resolver el ejercicio. Para ambas soluciones, primero se debe conocer la coordenada de la muñeca respecto al sistema $\{1\}$. Esto se puede hacer debido a la geometría de nuestro robot. Debido a que Z_0 y , Z_1 son perpendiculares se tiene que $d_1=0$ y $\alpha_1=\frac{\pi}{2}$. Luego, podemos plantear la matriz de transformación de la base $\{0\}$ a la base $\{1\}$ y con ello calcular las coordenadas de la primer articulación. Se plantea:

$${}^{0}\mathrm{T}_{1} = \mathrm{Rot}_{\mathbf{Z}}(\theta_{1})\mathrm{Tras}_{\mathbf{Z}}(d_{1})\mathrm{Tras}_{\mathbf{X}}(a_{1})\mathrm{Rot}_{\mathbf{X}}(\alpha_{1})$$

$$^{1}
ho_{c}=(^{0}\mathrm{T}_{1})^{-1}\,\cdot\,^{0}
ho_{c}$$

Para ambos ángulos de la solución θ_1 y θ_1' se tiene el vector con las mismas coordenadas, debido a que el punto es el mismo (el punto $^1\rho_0$ es invariante en el espacio, porque el eslabón entre los ejes X_0 y X_1 solo puede rotar).

Gracias a esto, reducimos nuestro problema de 3 GDL en el espacio a 2 GDL en el plano.

Ahora, existen 2 formas de obtener los valores de θ_2 y θ_3 :

Forma con Matrices de Transformación Homogénea

Con $\frac{1}{\rho_c}$ podemos plantear un triangulo de lados $\overline{a_2 \ d_3 \ ^1 \rho_c}$ y aplicar el teorema del coseno para conseguir el valor de θ_2 .

$$d_3^2=a_2^2+(^1
ho_c)^2-2a_2(^1
ho_c)\cos\left(heta_2-rctan\left(rac{^0y_c}{^0x_c}
ight)
ight)$$

$$heta_2 = eta \, \pm \, \, rccos \left(rac{a_2^2 + (^1
ho_c)^2 - d_3^2}{2 \, a_2 \, (^1
ho_c)^2}
ight)$$

Con esto, podemos crear la matriz de transformación homogénea:

$$^{1}\mathrm{T}_{2} = \mathrm{Rot}_{\mathrm{Z}}(heta_{2})\mathrm{Tras}_{\mathrm{Z}}(d_{2})\mathrm{Tras}_{\mathrm{X}}(a_{2})\mathrm{Rot}_{\mathrm{X}}(lpha_{2})$$

Y repetimos lo mismo que hicimos con la articulación anterior:

$$^{2}
ho_{c}=(^{1}\mathrm{T}_{2})^{-1}\,\cdot\,^{1}
ho_{c}$$

Esto nos permite saber la coordenada de la muñeca respecto al sistema {2}. Con ello, podemos calcular simplemente:

$$heta_3 = rctan\left(rac{^2y_c}{^2x_c}
ight)$$

Forma geométrica

Calculamos los valores de los ángulos utilizando el teorema del coseno en el triangulo $\overline{a_2\ d_3\ ^1\rho_c}$ y utilizando relaciones de ángulos.

$$d_3^2=a_2^2+(^1
ho_c)^2-2a_2(^1
ho_c)\cos\left(heta_2-rctan\left(rac{^0y_c}{^0x_c}
ight)
ight)$$

$$heta_2 = eta \, \pm \, \, rccos \left(rac{a_2^2 + (^1
ho_c)^2 - d_3^2}{2 \, a_2 \, (^1
ho_c)^2}
ight)$$

Y con relación de ángulos, podemos llegar a:

$$\beta = \theta_2 + \theta_3$$

$$\theta_3 = \beta - \theta_2$$