

A. I. Kaplinskii, A. I. Propoi, Nonlocal optimization methods that use potential theory, *Avtomat. i Telemekh.*, 1993, Issue 7, 55–65

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use

http://www.mathnet.ru/eng/agreement

Download details:

IP: 67.81.248.28

August 4, 2022, 18:30:58



# Стохастические системы

УДК 517.977

© 1993 г. А.И. КАПЛИНСКИЙ, канд. техн. наук (Воронежский государственный университет),

А.И. ПРОПОЙ, д-р техн. наук (Институт системного анализа РАН, Москва)

# МЕТОДЫ НЕЛОКАЛЬНОЙ ОПТИМИЗАЦИИ, ИСПОЛЬЗУЮЩИЕ ТЕОРИЮ ПОТЕНЦИАЛА

Рассматривается подход, основанный на замене задачи минимизации функции многих переменных на эквивалентную рандомизированную задачу. В результате вариации функционала рандомизированной задачи показано, что исходная задача сводится к максимизации потенциальной функции, являющейся решением некоторой краевой задачи математической физики. Рассмотрены методы первого и второго порядка (аналоги градиентного спуска и метода Ньютона применительно к потенциальной функции), которые для своей реализации требуют лишь значения исходной функции. На основе анализа свойств потенциальной функции выявлены основные структурные свойства нелокального поиска: неустойчивая составляющая в неперспективной области поиска, операции отражения и растяжения соответственно в неперспективном и перспективном направлении.

#### 1. Введение

Методы решения экстремальных задач к настоящему времени достаточно хорошо разработаны. Однако эти методы в основном ориентированы на решение "хороших" задач (выпуклых, гладких, детерминированных) и основаны на использовании локальной информации (типа "градиент в точке"). Принципиальная черта "плохих" экстремальных задач (невыпуклых, негладких, недетерминированных) состоит в том, что они требуют нелокальной информации в процессе их решения.

Общим путем введения нелокальности является рандомизация исходной задачи. Для задач нелинейного програмирования это было сделано в [1–4]. Методы решения таких задач основывались на стохастической модификации (обычного) градиента и приводили к вероятностным итеративным методам их решения (см., например, [4–6]).

Цель настоящей работы — рассмотреть альтернативный (двойственный) подход к понятию градиента в негладкой оптимизации и следующие из него методы. Это направление имеет глубокие корни с методами адаптации и обучения [7], теорией потенциальных функций [8], математической теорией систем [9] и сформировалось сравнительно недавно [10–17].

В работе в систематизированном виде изложены основы теории этого направления. Рассмотрена вариация первого порядка функционала рандомизированной задачи. Даны условия, которым должно удовлетворять усредненное векторное поле, приводящее к улучшению решения. В результате его разложения на потенциальную и "бездивергентную" составляющую показано, что исходную задачу можно свести к максимизации потенциальной

функции, являющейся решением краевой задачи математической физики. Рассмотрены методы первого и второго порядка (аналоги градиентного спуска и метода Ньютона применительно к потенциальной функции), для реализации которых требуется вычисление лишь значений исходной функции. Показано, каким способом можно учитывать априорные сведения о задаче (учет дифференциальных свойств целевой функции, предположений о локализации решения). На основе анализа свойств потенциальной функции выявлены основные структурные свойства нелокального поиска: неустойчивая компонента в неперспективной области, операции отражения и растяжения пространства в неперспективном и перспективном направлениях поиска.

### 2. Рапдомизация задачи

Рассматривается задача безусловной оптимизации

(1) 
$$f(x) \to \min$$

где функция  $f: \mathbb{R}^n \to \mathbb{R}$ .

При построении методов решения задачи (1) будем ориентироваться на "плохую" функцию f, предполагая, что в общем случае измеримы лишь значения f(x). Однако при этом хотелось бы иметь технологию построения таких методов решения (1), которые учитывали бы уровень информированности о решаемой задаче (знание производных, области локализации решения и т.д.).

Для этой цели переформулируем задачу (1), вводя распределение x, т.е. осуществляя рандомизацию (1):

(2) 
$$F(X) = E[f(X)] \to \min_{X \in \{X\}}.$$

Здесь  $\{X\}$  – множество допустимых случайных векторов со значениями в  $R^n$ . Задача (2) может быть также переписана в виде

(3) 
$$\int_{\mathbb{R}^n} f(x) p(x) dx \to \min_{p(x)},$$

где p(x) — плотность распределения вероятностей случайного вектора X, понимаемая, вообще говоря, в обобщенном смысле.

Возможность замены задачи (1) на рандомизированную (2) основана на следующих утверждениях.

Предложение 1. Если множество случайных векторов  $\{X\}$  включает в себя множество дискретно распределенных векторов, т.е. множество допустимых распределений p(x) включает  $\delta$ -функции, то

(4) 
$$\min_{x \in R^n} f(x) = \min_{X \in \{X\}} E[f(X)].$$

Предложение 2. Пусть  $X^*$  – случайный вектор с распределением  $p^*(x)$  – решение (2). Тогда любая точка  $x^* \in R^n$ , для которой f(x) непрерывна и при

$$||x-x^*|| \le \varepsilon \int_{\|x-x^*\| \le \varepsilon} p^*(x) dx > 0$$
, будет решением задачи (1).

Доказательство этих предложений достаточно очевидно и может быть найдено, например, в [11].

Рассмотрим задачу нелинейного программирования

(5) 
$$\omega = \{ \min f(x) | f_j(x) \le 0, j = 1, ..., m, x \in \mathbb{R}^n \}$$

и ее рандомизацию [2]:

(6) 
$$\overline{\omega} = \{ \min \int_{\mathbb{R}^n} f(x) p(x) dx | \int_{\mathbb{R}^n} f_j(x) p(x) dx \leq 0, j = 1, \dots, m \}.$$

В этом случае, в отличие от (4),  $\overline{\omega} \le \omega$ . Это происходит потому, что множество допустимых решений (6), вообще говоря, шире, чем в (5) (ограничения в (6) могут выполняться лишь в среднем). Если же (5) — задача выпуклого программирования, то имеют место утверждения относительно эквивалентности задач (5) и (6), аналогичные предложениям 1 и 2.

Вариантом задачи (2) является задача

(7) 
$$\overline{\omega}_{\Omega} = \{ \min_{\Omega} \int_{\Omega} f(x) p(x) dx | x \in \Omega \},$$

где  $\Omega$  — некоторое множество в  $R^n$ , причем  $\int\limits_{\Omega} p(x)dx=1$  (например,  $\Omega$  может характеризовать априорную информацию о локализации решения задачи). В этом случае также имеют место утверждения об эквивалентности задач, даже если множество  $\Omega$  невыпукло (так как здесь рандомизируется целевая функция, а не ограничения).

### 3. Вариация рапдомизировапного функционала

Для решения задачи (2) будем рассматривать итеративные процедуры, имеющие в пространстве случайных векторов обычный вид

$$(8) X_{N+1} = X_N + \varepsilon_N Y_N.$$

Здесь  $Y_N$  – случайное направление изменения  $X_N$  с совместной плотностью распределения  $p_N(x, y)$ ,  $\varepsilon_N$  – длина шага вдоль  $Y_N$ .

Для нахождения  $Y_N$  определим  $\delta_Y F(X)$  – производную функционала (2) в состоянии X по направлению Y.

По определению

(9) 
$$\delta_{Y}F(X) = \lim_{\varepsilon \to 0} \frac{F(X + \varepsilon Y) - F(X)}{\varepsilon} = \frac{d}{d\varepsilon} [F(X + \varepsilon Y)]_{\varepsilon = 0} = \frac{d}{d\varepsilon} [F(X_{\varepsilon})]_{\varepsilon = 0} =$$

$$= \left[ \frac{d}{d\varepsilon} \int_{R^{n}} f(x) p_{\varepsilon}(x) dx \right]_{\varepsilon = 0},$$

где плотность распределения  $p_{\varepsilon}(x)$  случайного вектора  $X_{\varepsilon} = X + \varepsilon Y$  может быть выражена через совместную плотность

(10) 
$$p_{\varepsilon}(x) = \int_{R^n} p(x - \varepsilon y, y) dy.$$

Предполагая выполненными условия дифференцируемости интегралов по параметру (они всегда могут быть обеспечены соответствующим выбором распределений), получим

(11) 
$$\delta_Y F(X) = \left[ \frac{d}{d\varepsilon} \int_{\mathbb{R}^n} f(x) \int_{\mathbb{R}^n} p(x - \varepsilon y, y) dy dx \right]_{\varepsilon = 0} = \int_{\mathbb{R}^n} \frac{d}{d\varepsilon} [A_{\varepsilon} f(y)]_{\varepsilon = 0} dy.$$

Здесь

(12) 
$$A_{\varepsilon}f = \int_{R^n} f(x)p(x-\varepsilon y, y)dx$$

- оператор псевдодифференциального типа [18].

Для вычисления (11) воспользуемся известным соотношением векторного анализа

$$\left[\frac{d}{d\varepsilon}p(x-\varepsilon y,y)\right]_{\varepsilon=0} = -\left(\frac{\partial p(x,y)}{\partial x},y\right) = -\operatorname{div}_{x}[p(x,y)y],$$

где (,) – скалярное произведение в  $R^n$ , div  $f = \sum_{i=1}^n \frac{\partial f}{\partial x_i}$ . В результате

$$\delta_{Y}F(X) = -\int_{R^{n}} \int_{R^{n}} f(x) \left( \frac{\partial p(x,y)}{\partial x}, y \right) dy dx =$$

$$= -\int_{R^{n}} \int_{R^{n}} f(x) \operatorname{div}_{x} \left[ p(x,y)y \right] dy dx = -\int_{R^{n}} \int_{R^{n}} f(x) \operatorname{div}_{x} \left[ \int_{R^{n}} p(x,y)y dy \right] dx.$$

Используя условную плотность вероятности p(x, y) = p(x)p(y|x) и обозначая

(13) 
$$\overline{y}(x) = \int_{\mathbb{R}^n} yp(y|x)dy = E[Y|X=x],$$

перепишем последнее выражение в виде

$$\delta_{Y}F(X) = -\int_{R^{n}} f(x)\operatorname{div}[p(x)\overline{y}(x)]dx.$$

Дифференцируя по  $\varepsilon$  тождество  $\int\limits_{R^n} p_\varepsilon(x) dx \equiv 1$ , получим

(14) 
$$\int_{R^n} \operatorname{div}[p(x)\overline{y}(x)]dx = 0.$$

Окончательно получим для производной F по направлению Y выражение

(15) 
$$\delta_{\gamma}F(X) = -\iint_{R^n} [f(x) - c] \operatorname{div}[p(x)\overline{y}(x)] dx,$$

где c – произвольная константа.

Направление Y, которое приводит к уменьшению F, должно удовлетворять неравенству  $\delta_Y F(X) \le 0$ . В частности, оно будет выполняться, если

$$\operatorname{div}[p(x)\overline{y}(x)] = [f(x) - c]p_U(x), p_U(x) \ge 0.$$

Подробно выполнение этого неравенства обсуждается в следующем разделе. Пусть функция f(x) имеет непрерывные производные первого порядка. Тогда  $\delta_Y F(X)$  может быть представлена в виде

$$\delta_{Y}F(X) = \left[\frac{d}{d\varepsilon} \int_{R^{n}} \int_{R^{n}} f(x+\varepsilon y) p(x,y) dx dy\right]_{\varepsilon=0} =$$

$$= \int_{R^{n}} \int_{R^{n}} \left(\frac{\partial f(x)}{\partial x}, y\right) p(x,y) dx dy = \int_{R^{n}} \left(\frac{\partial f(x)}{\partial x}, \overline{y}(x)\right) p(x) dx,$$

где  $\overline{y}(x)$  определено в (13).

Таким образом, производная по направлению  $\delta \gamma F(X)$  имеет два эквивалентных представления:

(16) 
$$\delta_{Y}F(X) = \int_{\mathbb{R}^{n}} \left( \frac{\partial f(x)}{\partial x}, \overline{y}(x) \right) p(x) dx = -\int_{\mathbb{R}^{n}} (f(x) - c) \operatorname{div}[p(x)\overline{y}(x)] dx.$$

Первое представление в (16) ведет к известным вероятностным итеративным методам оптимизации (типа стохастической аппроксимации) [7], в то время как второе представление в (16) является основой новых методов, которые будут рассмотрены в следующем разделе.

### 4. Понятие градиента в негладкой оптимизации

Определим теперь направление Y, которое максимизирует  $\delta_Y F(X)$  (при некоторых естественных ограничениях на Y, чтобы избежать бесконечных решений). Такое направление будем называть градиентным. Для этой цели воспользуемся обобщенным неравенством Шварца с весовой функцией  $p_U(x)$ :

(17) 
$$|\delta_{Y}F(X)| = \left(\int_{\mathbb{R}^{n}} (f(x) - c)^{2} p_{U}(x) dx\right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^{n}} \left\{\frac{\operatorname{div}[p(x)\overline{y}(x)]}{p_{U}(x)}\right\}^{2} p_{U}(x) dx\right)^{\frac{1}{2}},$$

где  $p_U(x) > 0$  может рассматриваться как плотность распределения вероятности некоторого случайного вектора U. Соответствующий выбор  $p_U(x)$  позволяет обеспечить существование интегралов в (17).

Из (17) следует, что максимизация  $\delta_Y F(X)$  по Y приводит к уравнению

$$\frac{\operatorname{div}[p(x)\overline{y}(x)]}{p_U(x)} = \lambda(f(x) - c), \lambda > 0$$

или

(18) 
$$\operatorname{div}[p(x)\overline{y}(x)] = \lambda(f(x) - c)p_U(x),$$

где теперь вследствие (14) постоянная с определяется равенством

(19) 
$$c = \int_{R^n} f(x) p_U(x) dx.$$

Если ограничить "длину" вектора У:

(20) 
$$\int_{R^n} \left\{ \frac{\operatorname{div}[p(x)\overline{y}(x)]}{p_U(x)} \right\}^2 p_U(x) dx = \alpha^2,$$

где  $\alpha > 0$  задана, то параметр  $\lambda$  в (18) определится как

(21) 
$$\lambda = \alpha \left[ \int_{\mathbb{R}^n} (f(x) - c)^2 p_U(x) dx \right]^{-\frac{1}{2}}.$$

Соответствующая величина  $\delta_Y F(X)$ :

(22) 
$$\delta_{Y}F(X) = \alpha \left[ \int_{\mathbb{R}^{n}} (f(x) - c)^{2} p_{U}(x) dx \right]^{\frac{1}{2}}.$$

Если функцию  $p_U(x)$  интерпретировать как плотность распределения вероятности случайного вектора U, то (22) и (19) можно переписать в виде

(23) 
$$\delta_Y F(X) = \alpha \{\sigma^2[f(U)]\}^{1/2}, \quad c = E[f(U)],$$

где  $\sigma^2[f]$  – дисперсия f(U).

Суммируем полученные результаты.

Предложение 3. Градиентное направление Y, определяемое векторным полем (13), которое максимизирует  $\delta_Y F(X)$  при ограничениях (14), (20), удовлетворяет уравнениям (18), (19). Соответствующее значение  $\delta_Y F(X)$  при этом направлении определяется (22) или (23).

Градиентное направление определено с точностью до функции  $p_U(x) > 0$ . Концентрируя  $p_U(x)$  в произвольной точке  $x_0: p_U(x) \to \delta(x-x_0)$ , можно уменьшить нелокальность поиска:  $\delta_Y F(X) \to 0$  в (23). Наоборот, увеличение нелокальности поиска достигается за счет концентрации плотности  $p_U(x)$  в точках максимума и минимума f (что приводит к максимизации дисперсии (23)).

Легко видеть близость приведенных конструкций с выводом неравенства Крамера—Рао [19]. В частности, интеграл в (20) можно ассоциировать с функцией информации Фишера и интерпретировать как меру информации, доставляемой случайным вектором U (который, в соответствии с замечанием, сделанным выше, характеризует нелокальность поиска).

## 5. Потепциальная функция

Приведенное понятие градиентного векторного поля пока неконструктивно, поскольку множество решений (18) бесконечно. Для описания множества решений этого уравнения воспользуемся возможностью представления финитного или исчезающего на бесконечности векторного поля  $p(x)\overline{y}(x)$  в виде

(24) 
$$p(x)\overline{y}(x) = \nabla \varphi(x) + w(x),$$

(25) 
$$\operatorname{div} w(x) = 0.$$

При дополнительном условии  $\phi|_{\infty}=0$  такое представление является однозначным. Учитывая, что div grad  $\phi=\Delta\phi$ , где  $\Delta$  – оператор Лапласа, получим из (18), (24), (25)

(26) 
$$\Delta \varphi = -\lambda [f(x) - c] p_U(x).$$

Таким образом, потенциальная функция, характеризующая градиентное направление, должна удовлетворять уравнению Пуассона (в неограниченной среде). Его решение, стремящееся к нулю на бесконечности (что естественно допустить в силу свойств плотности  $p_U(x)$ ), единственно и имеет вид

(27) 
$$\varphi(x) = -\lambda \int_{R''} E(x,\zeta) f(\zeta) - c) p_U(\zeta) d\zeta,$$

где  $E(x,\zeta)$  – фундаментальное решение уравнения Лапласа.

Из (27) получим выражение для градиента потенциальной функции:

(28) 
$$\nabla \varphi(x) = -\lambda \int_{R^n} \nabla_x E(x, \zeta) (f(\zeta) - c) p_U(\zeta) d\zeta$$

или

(29) 
$$\nabla \varphi(x) = -\lambda E[f(U) - c) \nabla_x E(x, U)].$$

Таким образом, в достаточно общих предположениях о функции f, затрагивающих, по существу, лишь ее интегральные свойства (имеется в виду законность операции дифференцирования интеграла по параметру (11)), было получено представление (24), (25), (28) для направления движения, обеспечивающее максимизацию производной по направлению функционала F(X) в экстремальной задаче (2), эквивалентной исходной задаче (1). Такое представление (также при общих и естественных предположениях) единственно. Поэтому вектор  $\nabla \phi$  в (28) может рассматриваться как градиент исходной функции f, использующий в своем выражении лишь ее значения; ньютоновский потенциал  $\phi$  (27) может интерпретироваться как "портрет", модель исходной функции f. Эта модель определяется случайным вектором U или, в соответствии с (19), (23), средним значением f по распределению U и меняется при изменении наших знаний о минимальной величине f:  $\phi = \phi(x; c)$ .

Изложение этого раздела в основном следует [16]. Отметим в заключение, что потенциальная функция вида (27) для поиска глобального экстремума на эвристической основе использовалась в [20].

#### 6. Численные методы

В этом разделе кратко рассмотрим численные методы, использующие потенциал ф (подробнее см. [12, 13]).

Методы первого порядка могут быть записаны в виде

(30) 
$$X_{N+1} = X_N - \varepsilon_N \nabla \varphi_N(X_N),$$

где  $\nabla \phi_N$  определен в (28), (29) при  $c=c_N$ ,  $p_U=p_{U_N}(x)$ . Вследствие представления  $\nabla \phi$  в виде математического ожидания (29), в (30) естественно воспользоваться вероятностными итеративными методами, использующими реализации случайных векторов [7, 21]. В этом случае длина шага должна удовлетворять известным условиям:

(31) 
$$\sum_{N=0}^{\infty} \varepsilon_N = \infty, \quad \sum_{N=0}^{\infty} \varepsilon_N^2 < \infty, \quad \varepsilon_N > 0.$$

Методы второго порядка имеют вид

(32) 
$$X_{N+1} = X_N - [\nabla^2 \varphi_N(X_N)]^{-1} \nabla \varphi_N(X_N).$$

Для их реализации необходима оценка  $[\nabla^2 \phi_N]^{-1}$ . При довольно общих предположениях, использующих понятие сингулярного интеграла, можно показать [11], что

(33) 
$$\nabla^2 \varphi(x) = p(x)(\hat{f}(x)/n)I + E[v(U,x)]I - nE[v(U,x)\theta\theta^T],$$

где I – единичная матрица,  $\hat{f}(x) = f(x) - c$ ,  $\theta = (U - x) / ||U - x||$ ;

$$v(U,x) = \chi_{R^{n} \setminus S_{\rho}}(U) \frac{\hat{f}(U)}{\omega_{n} ||U - x||^{n}} + \chi_{S_{\rho}}(U) \frac{\hat{f}(U) - \hat{f}(x) \frac{p_{U}(x)}{p_{U}(U)}}{\omega_{n} ||U - x||^{n}},$$

$$\chi_{S_{\rho}}(U) = \begin{cases} 1, & ||U - x|| \leq \rho \\ 0, & ||U - x|| > \rho \end{cases}, \quad \rho > 0,$$

 $\omega_n$  – площадь поверхности единичной сферы в  $R^n$ .

Можно показать [12, 15], что структура матрицы  $\nabla^2 \varphi$  содержит операции растяжения и отражения (соответственно в перспективном и неперспективном направлениях), которые являются основой современных методов оптимизации [22] и позволяют существенно упростить операцию обращения  $\nabla^2 \varphi$ . Таким образом, эти операции с необходимостью входят в структуру алгоритмов ньютоновского типа (32), не использующих дифференциальные характеристики исходной функции f.

Анализ сходимости методов (30), (32) был проделан в [17], где было показано, что в качестве функции Ляпунова можно использовать потенциал ф.

Отметим в заключение, что к методам второго порядка можно прийти, если вместо  $\nabla^2 \phi$  использовать вариацию второго порядка функционала F в (2) [11].

# 7. Методы возможных направлений

Как было отмечено в разделе 2, вместо градиентного направления Y (максимизирующего  $\delta_Y F(X)$ ), можно использовать такие направления, для которых  $\delta_Y F(X) \le 0$ . В этом случае получим из (15) и (24), (25), что

(34) 
$$\int_{\mathbb{R}^n} (f(x) - c) \Delta \varphi(x) dx \ge 0.$$

Из (34) следует

(35) 
$$\Delta \varphi(x) \ge 0, \quad x \in \Omega_{\mathbf{H}} = \{x | f(x) > c\},$$
$$\Delta \varphi(x) \le 0, \quad x \in \Omega_{\mathbf{H}} = \{x | f(x) \le c\}.$$

Следовательно, в неперспективной области  $\Omega_{\rm H}$  потенциальная функция ф является субгармонической, в то время как в перспективной области  $\Omega_{\rm H}$  – супергармонической [23].

В соответствии с классической теоремой Рисса любая субгармоническая функция может быть представлена в виде суммы гармонической и потенциальной функций [23].

Наличие в структуре субгармонической функции потенциала  $\phi$  показывает, что в структуре векторного поля  $\overline{y}(x)$ , карактеризующего направление движения, должна присутствовать составляющая  $\nabla_x E(x,\zeta) = \omega_n ||x-\zeta||^{-n} (x-\zeta)$ . Следовательно, ядро  $\nabla_x E(x,\zeta)$  образует структурную (универсальную) составляющую процедур нелокального поиска, использующих как градиентные, так и в общем случае возможные направления.

Проанализируем особенности потенциальной функции более подробно. Разобьем ф на две составляющие:

(36) 
$$\varphi(x) = \int_{\Omega_{\Pi}} E(x,\zeta)\tilde{f}(\zeta)d\zeta + \int_{\Omega_{H}} E(x,\zeta)\tilde{f}(\zeta)d\zeta = \varphi_{\sharp}(x) + \varphi_{H}(x),$$

где 
$$\tilde{f}(\zeta) = (f(\zeta) - c)p_U(\zeta)$$
.

Очевидно, что функция  $\phi_{\pi}(x)$  является в  $R^n$  супергармонической (гармонической в  $\Omega_{\rm H}$ ), а функция  $\phi_{\rm H}(x)$  — субгармонической в  $R^n$  (в  $\Omega_{\pi}$  — гармонической). В результате векторное поле  $\overline{y}(x)$  представится в виде

(37) 
$$p(x)\overline{y}(x) = \nabla \varphi_{n}(x) + \nabla \varphi_{n}(x).$$

Если поисковая точка x оказывается в неперспективном множестве  $\Omega_{\rm H}$ , то  $\delta_Y F(X)=0$  для  $\nabla \phi_{\rm II}$ , так как  $\phi_{\rm II}$  гармонична в  $\Omega_{\rm H}(\Delta \phi_{\rm II}(x)=0,x\in\Omega_{\rm H})$ . Поэтому ограничимся здесь (т.е. в  $\Omega_{\rm H}$ ) составляющей направления движения  $\nabla \phi_{\rm II}$ , субгармонична. В силу принципа максимума для субгармонических функций [23, 24] максимальное значение  $\phi_{\rm H}$ , равное нулю (так как  $f(x)-c\geqslant 0$  и  $E(x,\zeta)<0$  для  $x\in\Omega_{\rm H}$ ), не достигается внутри области  $\Omega_{\rm H}$ . Таким образом, поисковые движения, осуществляемые в направлении  $\nabla \phi_{\rm H}$  (т.е. соответствующие максимизации  $\phi_{\rm H}.(x)$ ), приводят к "выталкиванию" поисковой точки из неперспективной области  $\Omega_{\rm H}$  Так как максимизация  $\phi_{\rm H}$  эквивалентна нахождению таких точек x, для которых  $\phi_{\rm H}=0$ , то плотность  $p_U(x)$  целесообразно концентрировать именно в этих точках, что соответствует решению уравнения  $E(x_0,\zeta)$  ( $f(\zeta)-c)=0$ , где  $x_0$ — реализация текущего случайного вектора  $X_0$  (т.е. в

окрестности локального минимума f). Тогда член  $||x_0 - \zeta||^{n-2}$  в знаменателе  $E(x_0, \zeta)$  и будет обеспечивать выталкивание поисковой точки из окрестности локальных минимумов. В этом идея туннельных алгоритмов [25].

В заключение отметим, что использование ньютонова потенциала (27) является, очевидно, не единственным способом обеспечить неравенство  $\delta_Y F(X) \le 0$ . В частности, волновой потенциал  $\psi(x)$ , который является решением волнового уравнения [24, 26]

(38) 
$$\Delta \psi(x) + \omega^2 \psi(x) = (f(x) - c) p_U(x),$$

также может служить как основа для развития нелокальных методов поиска [11, 17].

#### 8. Граничные условия

На этапе постановки задачи или обработки текущей информации в процессе решения задачи область поиска может сужаться, т.е. в общем случае нужно решать задачу (7), а не (2). В этом случае производная по направлению будет иметь вид

(39) 
$$\delta_{Y}F(X) = \int_{\Omega} (\nabla f(x), p(x)\overline{y}(x))dx.$$

Используя формулу Стокса, получим

$$\delta_{\gamma}F(X) = \int_{\partial\Omega} (f(x) - c)(p(x)\overline{y}(x), n(x))ds - \int_{\Omega} (f(x) - c)\operatorname{div}[p(x)\overline{y}(x)]dx,$$

где n(x) – единичная нормаль к границе  $\partial\Omega$ . Отсюда и из представления (24), (25) будем иметь

(40) 
$$\delta_Y F(X) = \int_{\partial \Omega} (f - c) (\frac{\partial \varphi}{\partial n} + w_n) ds - \int_{\Omega} (f - c) \Delta \varphi dx,$$

где  $\partial \varphi / \partial n = (\nabla \varphi(x), n(x)), \quad w_n = (w(x), n(x)).$ 

Условие улучшения  $\delta_Y F(X) \le 0$  для (40) приводит в этом случае к краевой задаче Неймана [24] (при  $w_n = 0$ ):

(41) 
$$\Delta \varphi(x) = (f(x) - c) p_U(x), \quad x \in \Omega,$$
$$\partial \varphi(x) \partial n = -(f(x) - c) p_V(x), \quad x \in \partial \Omega,$$

где  $p_U(x)$ ,  $p_V(x)$  — некоторые неотрицательные функции, которые могут интерпретироваться как плотности распределения вероятностей случайных векторов U и V, выбираемых на основе текущей информации в процессе решения задачи.

Таким образом, краевая задача Неймана естественно возникает в процессе построения потенциального поля для нелокального поиска.

Можно также рассмотреть и краевую задачу Дирихле

(42) 
$$\Delta \varphi(x) = (f(x) - c) p_U(x), \quad x \in \Omega,$$
$$\varphi(x) = -(f(x) - c) p_V(x), \quad x \in \partial \Omega.$$

Однако в этом случае граничное условие постулируется (несколько искусственно), в отличие от (41), где оно выводится из (40).

Решение краевых задач (41), (42) может быть получено с помощью функции Грина. Таким образом, в общем случае универсальная составляющая нело-кального поиска, определяемая ядром в (27), заменяется функцией Грина  $G(x, \zeta)$ .

# 9. Учет дифференциальных свойств оптимизируемой функции

В предыдущих построениях информация о дифференциальных свойствах f не использовалась. Если такая информация имеется, то для ее учета перепишем (30) в виде

(43) 
$$\nabla \varphi(x) = -\lambda \int_{\mathbb{R}^n} \nabla_{\zeta} E(x,\zeta) (f(\zeta) - c) p_U(\zeta) d\zeta$$

и, применяя к (43) формулу Грина, получим

$$\nabla \varphi(x) = -\lambda \int_{\mathbb{R}^n} \nabla [(f(\zeta) - c) p_U(\zeta)] E(x, \zeta) d\zeta$$

или, окончательно,

(44) 
$$\nabla \varphi(x) = -\lambda \int_{\mathbb{R}^n} E(x,\zeta) \nabla f(\zeta) p_U(\zeta) d\zeta - \lambda \int_{\mathbb{R}^n} E(x,\zeta) (f(\zeta) - c) \nabla p_U(\zeta) p_U(\zeta) d\zeta.$$

Таким образом, локальная информация о  $\nabla f$  (первый член в (44)) добавляется ко второму "нелокальному" члену в (44).

# 10. Структурные составляющие нелокального поиска

Проанализируем последовательность предположений и построений, приведших к определению потенциала и алгоритмов его минимизации. Прежде всего отметим, что переход от исходной задачи к рандомизированной является в рассматриваемом случае эквивалентным (в смысле асимптотического решения) и лишь расширяет возможности построения процедур нелокального поиска. Последующие построения делались также при естественных и неограничивающих предположениях (типа существования интеграла или законности операции дифференцирования интеграла по параметру). Поэтому можно говорить о структурных (универсальных) составляющих, с необходимостью присутствующих в процедурах нелокального поиска.

Действительно, анализ построений (1) – (30), приведших к построению потенциала, показывает, что ядро  $E(x,\zeta)$  (или в общем случае функция Грина  $G(x,\zeta)$ ) является такой универсальной составляющей нелокального поиска, не зависящей ни от способа рандомизации, ни от выбора конкретной целевой функции f. Анализ производных первого порядка этого ядра показывает, что в нелокальном поиске с необходимостью присутствует неустойчивая составляющая в неперспективной области, а анализ производных второго порядка приводит (также с необходимостью) к операциям растяжения — отражения пространства в нелокальном поиске.

В заключение кратко остановимся на роли векторного поля w(x) в нелокальном поиске. Подставляя (24), (25) в (18), (22) и предполагая, что  $\Delta \phi(x) = 0$ , получим, что  $\delta_Y F(X) = 0$ . Таким образом, движение, которое определяется векторным полем w(x), не меняет среднего значения функции и необходимо для накопления знаний о ней. Поэтому неоднозначность представления (24), (25), связанная с выбором w(x), может рассматриваться как своего рода "плата" за отсутствие априорной информации о наблюдаемой функции.

#### 11. Заключение

В настоящей работе основное внимание было уделено теоретическим аспектам рассматриваемого направления. Численные методы подробно рассмотрены в [12, 13]. Следует отметить преемственность этих алгоритмов (на уровне основных операций или структурных составляющих) с известными детерминированными аналогами (методы первого и второго порядка, сопряженных направлений, растяжения пространства, эллипсоидов и др.). При этом в алгоритмах, основанных на использовании потенциальной функции, вычисляются лишь значения исходной целевой функции.

Наконец, в заключение отметим, что в этой работе использовался потенциал, зависящий от интегральных свойств оптимизируемой функции  $\varphi = \varphi(x; c)$ .  $c = \int f(x)p_U(x)dx$ . Возможно построение потенциальной функции, зависящей от усредненного решения ("центра" аппроксимации):  $\varphi = \varphi(x, \overline{x})$ ;  $\overline{x} = \int xp_U(x)dx$ . В этом случае соответствующие методы будут близки к методам локальной аппроксимации [27] или проекционным и ядерным оценкам плотности [28] и кратко рассмотрены в [29].

#### СПИСОК ЛИТЕРАТУРЫ

1. Fromovitz S. Nonlinear programming with randomization // Management Sci.1965. V. 11. No. 9. P. 831-846.

- 2. *Каплинский А.И.*, *Пропой А.И*. О стохастическом подходе к задачам нелинейного программирования // AuT. 1970. № 3. С. 122–133.
- 3. *Ермольев Ю.М.* Об одной общей задаче стохастического программирования // Кибернетика. 1971. № 3. С. 47–50.
- 4. Юдин Д.Б. Математические методы управления в условиях неопределенности. М.: Советское радио, 1974.
- 5. *Каплинский А.И.*, *Позняк А.С.*, *Пропой А.И.* Условия оптимальности для некоторых задач стохастического программирования // AuT. 1971. № 8. С. 51–60.
- 6. Каплинский А.И., Позняк А.С., Пропой А.И. О некоторых методах решения задач стохастического программирования // АиТ. 1971. № 10. С. 87–94.
- 7. Цыпкин Я.З. Адаптация и обучение в автоматических системах. М.: Наука, 1968.
- 8. Айзерман М.А., Браверман Э.М., Розоноэр Л.И. Методы потенциальных функций в теории обучения машин. М.: Наука, 1970.
- 9. Пропой А.И., Пухликов А.В. Основания математической теории систем. М.: ВНИИСИ, 1990.
- 10. Каплинский А.И., Лимарев Е.Е., Чернышева Г.Д. Построение рандомизированных алгоритмов оптимизации // Проблемы случайного поиска. 1980. Вып. 8. С. 63–91.
- 11. Каплинский А.И., Пропой А.И. Вариационный подход к построению алгоритмов нелокальной оптимизации. М.: ВНИИСИ, 1986.
- 12. Каплинский А.И., Пропой А.И. Структурные составляющие методов нелокального поиска, использующих теорию потенциала. М.: ВНИИСИ, 1990.
- 13. Каплинский А.И., Пропой А.И. Конструирование вычислительных алгоритмов нелокального поиска, использующих теорию потенциала. М.: ВНИИСИ, 1990.
- 14. Гиль А.Б., Каплинский А.Й., Пропой А.И. Построение вычислительных схем нелокальной оптимизации на основе теории потенциала // Статистические методы и модели. Сб. трудов. М.: ВНИИСИ. 1987. Вып. 1. С. 11–23.
- 15. Гиль А.Б., Каплинский А.И., Пропой А.И. Об использовании теории потенциала в вариационном подходе к построению алгоритмов оптимизации, использующих операции отражения и растяжения // Модели и методы оптимизации. Сб. трудов. М.: ВНИИСИ. 1987. Вып. 11. С. 72–78.
- 16. Каплинский А.И., Пропой А.И. О градиентной основе негладкой оптимизации, использующей теорию потенциала // Задачи и методы оптимизационного моделирования. Сб. трудов. М.: ВНИИСИ, 1988. Вып. 13. С. 11–16.
- 17. Каплинский А.И., Песин А.М., Пропой А.И. О методах нелокального поиска // Модели и методы оптимизации. Сб. трудов. М.: ВНИИСИ, 1991. Вып. 11. С. 35 45.
- 18. Егоров Ю.В. Линейные дифференциальные уравнения главного типа. М.: Наука, 1984.
- 19. Закс Ш. Теория статистических выводов. М.: Мир, 1975.
- 20. *Красовский А.А.* Непрерывные алгоритмы и стохастическая динамика поиска экстремума // АиТ. 1991. № 4. С. 55–65.
- 21. Невельсон М.Б., Хасьминский Р.З. Стохастическая аппроксимация и рекуррентное оценивание. М.: Наука, 1972.
- 22. *Шор Н.З.* Методы минимизации недифференцируемых функций и их приложения. Киев: Наукова думка, 1979.
- 23. Хейман Х., Кеннеди П. Субгармонические функции. М.: Мир, 1980.
- 24. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1972.
- 25. Levi A.V., Montalvo A. The tunneling algorithm for the global minimization of functions /i SIAM J. Sci. Comp. 1985. V. 6. № 1. P. 15–29.
- 26. Санчес-Паленсия Э. Неоднородные среды и теория колебаний. М.: Мир, 1984.
- 27. *Катковник В.Я.* Линейные оценки и стохастические задачи оптимизации. М.: Наука, 1976.
- 28. Деврой Л., Дьерфи Л. Непараметрическое оценивание плотности. М.: Мир, 1988.
- 29. Пропой А.И. О некоторых принципах нелокального поиска // Оптимизация и управление в сложных системах. Сб. трудов М.: ВНИИСИ, 1986. Вып. 4. С. 67–80.

Поступила в редакцию 25.06.92.