

Limitations of the Directly-Follows Graph

Exercise 1a

#	Trace		
100	abcef		
90	abecf		
87	abdef		
85	abedf		
3	abef		
1	abcdef		

Draw a Directly-Follows Graph for the event log above.

Limitations of the Directly-Follows Graph Exercise 1a

Christian-Albrechts-Universität zu Kiel

Given the event log. create a directly follows graph for traces observed:

1. Create a table with pairs of consecutive activities and their quantity

> _L	а	b	С	d	е	f	Е
S	366						
а		366					
b			101	87	178		
С				1	100	90	
d					88	85	
е			90	85		191	
f							366

#	Trace
100	abcef
90	abecf
87	abdef
85	abedf
3	abef
1	abcdef

Limitations of the Directly-Follows Graph Exercise 1a

Christian-Albrechts-Universität zu Kiel

2. Draw the Directly-Follows Graph from the collected information in the table:

> _L	а	b	С	d	е	f	E
S	366						
а		366					
b			101	87	178		
С				1	100	90	
d					88	85	
е			90	85		191	
f							366

Limitations of the Directly-Follows GraphExercise 1b

Christian-Albrechts-Universität zu Kiel

Compare the Directly-Follows Graph with the Petri net above.

Does the DFG allow for behaviour that is not allowed according to the Petri net?

Limitations of the Directly-Follows Graph

Exercise 1b

Christian-Albrechts-Universität zu Kiel

The Directly-Follows Graph allows for a loop involving activities c, d and e. The Petri net from which the event log was created does not permit any loops involving activities c and d. According to the Petri net there is an exclusive choice between c and d.

Limitations of the Directly-Follows Graph

Christian-Albrechts-Universität zu Kiel

Exercise 1c

Explain the following thresholds:

$ au_{var}$	Defines the thresholds for the minimal number of traces for each variant included
	(based on $\#_L(\sigma)$).

au	Defines the minimal number of events for each activity included
$ au_{act}$	(based on $\#_L(a)$).

Defines the minimal number of direct successions for each relation included (based on
$$\#_L(a,b)$$
).

Soundness in Directly-Follows GraphsExercise 2a

Define soundness in DFG in a non-formal way.

A DFG with N (the set of nodes) and E (the set of edges) is sound, if every node $x \in N$ is on a path from start to end.

Soundness in Directly-Follows GraphsExercise 2b

How can a sound DFG be turned into an unsound Graph?

To reduce the complexity of a DFG, edges might be filtered out, possibly resulting in deadlocks and an unsound Graph.

Transformation from DFG to PN

In order to compute performance measures, each transition has to be modelled as a start and end event.

Source: DFM consisting of (N, E)

Target: PN consisting of (P, T, F)

For each edge $(s, t) \in E$ subgraphs will be created.

There is a differentiation between the *end node* and the other nodes:

If t is end

If t is not end

Transformation from DFG to PN

CAU

Exercise 3

Christian-Albrechts-Universität zu Kiel

Transform the DFG above into a Petri net.

Model each transition as a combination of start and end event.

Transformation from DFG to PN

CAU

Christian-Albrechts-Universität zu Kiel

Exercise 3

