Debriefing

Luis Francisco Gómez López

FAEDIS

2025-05-29

Table of contents I

- Please Read Me
- 2 Purpose
- 3 Resource imbalances and the relationship among the parties
- 4 Types of agreements
- 5 Stability of coalitions
- 6 Fairness criteria
- Acknowledgments

• This presentation is based on (Program on Negotiation 2008)

Discuss negotiation performance, share feedback, and identify key learning points during the debrief

- There is a disparity between the resources controlled by each role
 - A control more resources than B
 - B control more resources than C

• For this reason, roles must be randomly assigned to ensure fairness

Table 1: Agreements excluding C

Α	В	С
59	59	0
60	58	0
60	60	1
59	59	3

Table 2: Agreements which tend to have an equally distribution of points

Α	В	С
121/3	121/3	121/3
41	40	40
43	40	38

Table 3: Agreements according to the control of resources

Α	В	С
60	40	21
50	40	31

- Other agreements
 - A became so greedy so B and C exclude A
 - C blocks the coalition between A and B and chooses to work with A¹

Stability of coalitions

- A: 59, B: 59
 - C is excluded
- Counter offer by C: A: 60, C: 24
 - B is excluded
- Counter offer by B: A: 61, B: 57
 - C is excluded
- Counter offer by C: A: 62, A: 22
 - B is excluded

It is possible to prove that in this game any coalition can be brake

• Possible states in case of agreement

Figure 1: Scenarios in the game if an agreement is reached

Figure 2: Jeremy Bentham

- Benthamite social welfare function
 - ullet G_i : grade of student i

$$\max \frac{1}{n}G_1 + \cdots \frac{1}{n}G_n = \max \sum_{i=1}^n \frac{1}{n}G_i$$

Figure 3: John Rawls

- Rawlsian social welfare function
 - ullet G_i : grade of student i

$$\max\min\{G_1,\dots,G_m\}$$

- To my family that supports me
- To the taxpayers of Colombia and the UMNG students who pay my salary
- To the Business Science and R4DS Online Learning communities where I learn R
- To the R Core Team, the creators of RStudio IDE, Quarto and the authors and maintainers of the packages tidyverse, knitr, kableExtra, tinytex for allowing me to access these tools without paying for a license
- To the Linux kernel community for allowing me the possibility to use some Linux distributions as my main OS without paying for a license

References I

Program on Negotiation. 2008. "Three Party Coalition Exercise - Game Theory and Negotiation Analytics Role-Play." Edited by Harvard Law School.

