

ECEN 765: Machine learning with Networks

Recommendation System based on Collaborative Filtering with focus on Cold Start

Presented By:
Ankit Yadav



## **Contents**

- Introduction
- Objectives
- Recommendation System Overview
- Related research work
- Procedure
  - System Overview
  - Methodology
- Result & Conclusion
- Future Scope

## Introduction



- Internet has witnessed rapid growth
- Addition of new products
- Disinterest of users
- Cold Start Problem



# **Objective**



Address the cold start problem



# **Recommendation System**



- Recommends items to the user
- First recommendation system built in 1992
- Based on information from the user



## Recommendation System Contd..



#### Types of Recommendation System:

- 1. Collaborative Filtering
- 2. Content based Filtering
- 3. Demographic Filtering
- 4. Social Filtering
- 5. Hybrid Filtering

## **Information Overload Problem**





#### Related research work



 Using Demographic Information to Reduce the New User Problem in Recommender Systems

#### Demographic Information:

user id | age | gender | occupation | zipcode

#### User ratings:

user id | item id | rating | timestamp



#### Related Research Contd...



#### Collaborative Filtering Enhanced By Demographic Correlation

- Introduced two algorithms, U-Demo and I-Demo
- Improves performance

| feature # | feature contents | • each user belongs to a                                                                                          |  |  |
|-----------|------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
| 1         | age <= 18        |                                                                                                                   |  |  |
| 2         | 18 < age <= 29   | <ul><li>single age group,</li><li>the corresponding slot</li></ul>                                                |  |  |
| 3         | 29 < age <= 49   | takes value 1 (true)                                                                                              |  |  |
| 4         | age > 49         | the rest of the features re-<br>main 0 (false)                                                                    |  |  |
| 5         | male             | the slot describing the     user gender is 1                                                                      |  |  |
| 6         | female           | • the other slot takes a value of 0                                                                               |  |  |
| 7-27      | occupation       | <ul> <li>a single slot describing<br/>the user occupation is 1</li> <li>the rest of the slots remain 0</li> </ul> |  |  |

#### Related Research Contd...



Cold-start Problem in Collaborative Recommender Systems: Efficient Methods Based on Ask-to-rate Technique



## **Procedure: System overview**



- Combination of the above methods
- Dataset: MovieLens 100k
- User id | age | gender | occupation | Zipcode
- User id | movie id | rating value



## **Procedure: System overview**



- Preprocessing of the data
- 1. Age has been divided into the following group: 0-18, 19-24, 25-30, 31-40, 41-50, 51-60, 61-70, 71-100
- 2. 0/1 corresponding to M/F for gender identification.
- 3. Occupation has 21 categories in the dataset.

#### Processed data: [Age | Gender | Occupation]

#### Example:

1. **10** year guy

2. 23 year old, female scientist

# **Procedure: Methodology**





## **Result & Conclusion**



- Tested it on 20 people.
- Type1: Demography based
- Type2: Entropy0
- Type3: Hybrid
- Type4: Random

| User Demographics |        |                              | User Preference Score |        |        |           |
|-------------------|--------|------------------------------|-----------------------|--------|--------|-----------|
| Age               | Gender | Occupation                   | Type<br>1             | Type 2 | Type 3 | Type<br>4 |
| 30                | M      | Engineer                     | 3                     | 4      | 1      | 2         |
| 22                | F      | Student                      | 1                     | 3      | 4      | 2         |
| 38                | M      | Technician                   | 4                     | 3      | 2      | 1         |
| 18                | M      | Student                      | 4                     | 3      | 1      | 2         |
| 20                | M      | Artist                       | 4                     | 3      | 2      | 1         |
| 24                | M      | Engineer (Just<br>Graduated) | 3                     | 4      | 1      | 2         |
| 43                | F      | homemaker                    | 3                     | 4      | 2      | 1         |
| 39                | F      | homemaker                    | 1                     | 4      | 2      | 3         |
| 35                | M      | Other (Gardner)              | 4                     | 1      | 2      | 3         |
| 23                | F      | Student                      | 3                     | 4      | 1      | 2         |
| 65                | M      | retired                      | 4                     | 1      | 2      | 3         |

#### **Result & Conclusion**



- EntropyO and demography based system performed almost similar.
- Hybrid system was not as good as the EntropyO and demography

| User Demographics |        |                              | User Preference Score |        |        |           |  |
|-------------------|--------|------------------------------|-----------------------|--------|--------|-----------|--|
| Age               | Gender | Occupation                   | Type<br>1             | Type 2 | Type 3 | Type<br>4 |  |
| 30                | M      | Engineer                     | 3                     | 4      | 1      | 2         |  |
| 22                | F      | Student                      | 1                     | 3      | 4      | 2         |  |
| 38                | М      | Technician                   | 4                     | 3      | 2      | 1         |  |
| 18                | M      | Student                      | 4                     | 3      | 1      | 2         |  |
| 20                | M      | Artist                       | 4                     | 3      | 2      | 1         |  |
| 24                | М      | Engineer (Just<br>Graduated) | 3                     | 4      | 1      | 2         |  |
| 43                | F      | homemaker                    | 3                     | 4      | 2      | 1         |  |
| 39                | F      | homemaker                    | 1                     | 4      | 2      | 3         |  |
| 35                | M      | Other (Gardner)              | 4                     | 1      | 2      | 3         |  |
| 23                | F      | Student                      | 3                     | 4      | 1      | 2         |  |
| 65                | M      | retired                      | 4                     | 1      | 2      | 3         |  |

#### **Future Work**



- Find a new dataset or develop one with more demographic information e.g. religion, ethnicity
- Try the algorithm on other products, not just movies



# ELECTRICAL & COMPUTER ENGINEERING

TEXAS A&M UNIVERSITY