ЛАБОРАТОРНАЯ РАБОТА №2 «ИССЛЕДОВАНИЕ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ И ДИОДНЫХ СХЕМ»

1.1 Цель работы

Экспериментальные исследования характеристик полупроводниковых диодов и схем преобразования переменного тока в постоянный и схем стабилизации напряжений. Приобретение практических навыков измерения электрических параметров и регистрации временных диаграмм с помощью электро- и радиоизмерительных приборов.

1.2 Постановка задачи

- 1. Используя конспект и рекомендованную литературу, изучить теоретический материал, относящийся к теме работы.
- 2. Нарисовать схему снятия ВАХ диода в рабочем окне симулятора Proteus. Исследовать характеристику выпрямительного диода (англ. Rectifiers Diode) типа 1N4001 при прямом и обратном включении. В качестве задатчика напряжения на диоде использовать потенциометр RV1 сопротивлением 100 Ом. Величину ограничительного резистора R1 установить равным 20 Ом. Входное напряжение для прямой ветви характеристики 9 В, при измерении зависимости обратного тока входное напряжение 100 В.
- 3. Изменяя напряжение на диоде снять зависимость ID от UD. Количество точек должно быть не менее 10. При нулевых показаниях миллиамперметра переконфигурировать его на измерения микроампер.
- 4. Начертить в рабочем окне симулятора схему однополупериодного выпрямителя. В выпрямителе использовать диоды типа 1N4002. Входное напряжение установить равным 50 В. Используемый трансформатор TRAN-2P2S.
- 5. Снять осциллограммы входного и выходного напряжений без емкостного фильтра и при наличии фильтрующего конденсатора и определить величину пульсаций выходного напряжения.
- 6. Снять осциллограммы напряжений при изменении фильтрующей емкости от 0,1 мкФ до 10 мкФ.
- 7. Начертить в рабочем окне симулятора схему двухполупериодного выпрямителя (Приложение Б). Используемый трансформатор TRAN-1P2S, остальные параметры элементов указаны на схеме.
- 8. Снять осциллограммы входного и выходного напряжений без емкостного фильтра и при наличии фильтрующего конденсатора.
- 9. Снять осциллограммы напряжений при изменении фильтрующей емкости от 1 мкФ до 100 мкФ.
- 10. Составить в области рабочего окна симулятора схему стабилизатора напряжения на основе стабилитрона (англ. Zener Diode). Схема установки приведена в Приложение В. Напряжение стабилизации задается преподавателем.
- 11.Снять зависимость выходного напряжения стабилизатора при изменении входного напряжения на $\pm~20\%$ при неизменном сопротивлении нагрузки и рассчитать коэффициент стабилизации напряжения.
- 12.Снять зависимость выходного напряжения при изменении нагрузки на $\pm 20\%$ при неизменном входном напряжении.

1.3 Ход выполнения работы

1.3.1 Собрана схема снятия ВАХ диода. В качестве задатчика напряжения на диоде использован потенциометр RV1 сопротивлением 100 Ом. Величина ограничительного резистора R1 установлена равная 20 Ом. Входное напряжение для прямой ветви характеристики 9 В. Изменяя напряжение на диоде изучена зависимость ID от UD.

Рисунок 1 – Схема снятия ВАХ диода для прямого включения

Таблица 1 – Показания, снятые с ВАХ диода при прямом включении

%	10	20	30	40	50	60	70	80	90	100
I	0.397	0.263	0.194	0.152	0.123	0.101	0.081	0.061	0.042	0.006
U	0.86	0.83	0.82	0.81	0.80	0.79	0.78	0.77	0.76	0.69

Рисунок 2 — Зависимость I от U при снятии BAX диода для прямого включения

1.3.2 Собрана схема однополупериодного выпрямителя. В выпрямителе использованы диоды типа 1N4002. Входное напряжение установлено равное 50 В. Сняты осциллограммы входного и выходного напряжений при наличии фильтрующего конденсатора. Сняты осциллограммы напряжений при изменении фильтрующей емкости от 0,1 мкФ до 10 мкФ.

Рисунок 3 – Схема однополупериодного выпрямителя

Рисунок 4 – Показания осциллографа при отключенной ёмкости

Рисунок 5 – Показания осциллографа при 0.1 мкФ.

Рисунок 6 – Показания осциллографа при 1 мкФ.

Рисунок 7 – Показания осциллографа при 10 мкФ.

1.3.3 Собрана схема о двухполупериодного выпрямителя. В выпрямителе использованы диоды типа 1N5711W. Входное напряжение установлено равное 50 В. Сняты осциллограммы входного и выходного напряжений при наличии фильтрующего конденсатора. Сняты осциллограммы напряжений при изменении фильтрующей емкости от 0,1 мкФ до 10 мкФ.

Рисунок 8 — Схема двухполупериодного выпрямителя

Рисунок 9 – Показания осциллографа при 1 мкФ

Рисунок 10 – Показания осциллографа при 10 мкФ

Рисунок 11 — Показания осциллографа при 100 мк Φ

1.3.5 Составлена схема стабилизатора напряжения на основе стабилитрона. Снята зависимость выходного напряжения стабилизатора при изменении входного напряжения от 0 до 9 В при неизменном сопротивлении нагрузки. Снята зависимость выходного напряжения при изменении нагрузки от 0 до 2k при неизменном входном напряжении.

Рисунок 12 – Схема стабилизатора напряжения

Таблица 2 – Показания вольтметров при изменении входного напряжения

							F					
$U_{\text{\tiny BX}}$	0.00	0.9	1.79	3.49	4.21	4.95	5.74	6.63	7.69	8.99		
$U_{\text{вых}}$	0.00	0.85	1.70	3.02	3.05	3.07	3.08	3.09	3.10	3.1		

Рисунок 13 — Зависимость выходного напряжения стабилизатора при изменении входного напряжения от 0 до 9 В

Одним из важнейших параметров стабилизатора является коэффициентом стабилизации ($K_{\rm cr}$), количественно равный отношению относительного изменения напряжения на входе стабилизатора ($\Delta U_{\rm BX}/U_{\rm BX}$) к относительному изменению напряжения на его выходе ($\Delta U_{\rm BыX}/U_{\rm BыX}$)

$$K_{\mathit{CT}} = \frac{\Delta U_{\mathit{BX}}}{U_{\mathit{BX}}} : \frac{\Delta U_{\mathit{BLIX}}}{U_{\mathit{BLIX}}} = \frac{\Delta U_{\mathit{BX}} U_{\mathit{BLIX}}}{\Delta U_{\mathit{BLIX}} U_{\mathit{BX}}} = \frac{\Delta U_{\mathit{BX}} U_{\mathit{CT}}}{\Delta U_{\mathit{BLIX}} U_{\mathit{BX}}}$$

Для высчитывания коэффициента стабилизации, возьмем за основу следующие значения.

Таблица 3 – Показания для расчета коэффициента стабилизации

$U_{\text{\tiny BX}}$	3.49	4.95
$U_{\text{вых}}$	3.02	3.07

$$\frac{(4.95 - 3.49)}{3.49} : \frac{(3.07 - 3.02)}{3.02} = \frac{1.46 * 3.02}{3.49 * 0.05} = \frac{4.4092}{0.1745} = 25,26$$

Таблица 4 – Показания вольтметров при изменении нагрузки

R	0	200	400	600	800	1000	1200	1400	1600	1800	2000
U_1	3.61	4.15	4.21	4.21	4.21	4.21	4.21	4.21	4.21	4.21	4.21
U_2	0.07	2.77	3.03	3.04	3.04	3.05	3.05	3.05	3.05	3.05	3.05

Рисунок 14 — Зависимости входного и выходного напряжения стабилизатора при изменении нагрузки

Выводы

В ходе выполнения данной лабораторной работы были проведены исследования постоянного и переменного тока. Приобретены навыки измерения электрических параметров с помощью электро и радиоизмерительных приборов. Меняя напряжение на схеме ВАХ диода изучена зависимость I_D от U_D , которая представляет собой гиперболу. Сняты осциллограммы напряжений однополупериодного и двухполупериодного выпрямителя при изменении фильтрующей емкости и установлено, что при увеличении емкости амплитуда пилообразного сигнала уменьшается. Снята зависимость выходного напряжения стабилизатора напряжения при изменении нагрузки от 0 до 2k при неизменном входном напряжении и установлено, что зависимость возрастающая гиперболической формуле. На основе проделанной работы составлен отчет.