# **REPORT: ASSIGNMENT 2**

Sudhanshu Raj (160050041) Maitrey Gramophadye (160050049)

### 1. Mining power utilization Vs block generation rate

- Three miners have been used for each run: Hashpower among them being equal.
- The mining power utilization is on the y-axis and block generation rate =
  1/interarrivaltime is on the x-axis.
- For each value of block interarrival time, the mining has been simulated for four different seed values and then average has been taken over all the results obtained.

### Block Generation Rate Mining Power Utilization



#### Raw data for the above graph:

| Block Generation Rate | Mining power Utilization |
|-----------------------|--------------------------|
| 0.2                   | 1                        |
| 0.3                   | 1                        |
| 0.4                   | 0.9503387534             |
| 0.5                   | 0.8632484946             |
| 0.66                  | 0.680226635              |
| 1                     | 0.5021880012             |
| 2                     | 0.1930448631             |

# 2. Attacker mining power Vs fraction of blocks mined by it that appears in the longest chain

- Four miners have been used for each run: one being the adversary and rest being honest miners with interArrival time of 5 sec.
- Hashpower of adversary is in the x-axis and remaining hashpower is equally distributed among the honest miners.
- For each value of adversary hashpower, the mining has been simulated for four different seed values and then average has been taken over all the results obtained.

# Fraction of adversary blocks in blockchain vs. Adversary Hashpower



#### Raw data for the above graph:

| Adversary Hashpower |    | Fraction of adversary blocks in blockchain |
|---------------------|----|--------------------------------------------|
|                     | 20 | 0.1912341359                               |
|                     | 25 | 0.327508149                                |
|                     | 35 | 0.40625                                    |
|                     | 45 | 0.8806132225                               |
|                     | 50 | 0.9187997755                               |
|                     | 55 | 0.9582853794                               |

# 3. A para clearly explaining your criterion determining the longest chain from the blocks stored in your database

- The longest chain in the blocks is the block sequence with maximum number of blocks.
- Since, the interArrival time is fixed during the simulation and is the same for each node, then there is no difference in PoW for creating the block.
- So, the block sequence whose length is the maximum is the chain on which the miners mine
- If there are multiple such sequence, then any random one is selected for mining which could hence may be different for each miner.

## 4. A sample graphical representation of blockchain

