

Centre d'innovation en logistique et chaîne d'approvisionnement durable (CILCAD)

TITRE:

Étude exploratoire d'innovation logistique :

Réduction des émissions de GES chez Metro Logistique à Domicile par la prise en compte de territoires de livraison

Etude réalisée par :

Etienne Chanca Jean-François Côté Mikael Rönnqvist

Table des matières

1	RES	SUME EXECUTIF	
2	INT	TRODUCTION	
3	LE	MANDAT D'OPTIMISATION LOGISTIQUE	
	3.1	Objectif	8
	3.2	Methodologie	8
	3.2	2.1 Données utilisées	8
	3.2	2.2 Calcul des distances kilométriques	10
	3.2	2.3 Performance environnementale : mesure des émissions de CO2eq	1
	3.2	2.4 Construction d'une métrique de la connaissance	12
	3.2	2.5 Modélisation et optimisation mathématique	14
	3.2	2.6 Visualisation	15
4	PEI	RFORMANCE DU RESEAU ACTUEL DE METRO LOGISTIQUE	18
	4.1	Affectation des clients aux livreurs	18
	4.2	OPTIMISATION DES ROUTES DE LIVRAISON	18
	4.2	2.1 Reconstruction des solutions du répartiteur	18
	4.2	2.2 Evaluation des routes du répartiteur	19
5	PIS	STES D'AMELIORATIONS ET ESTIMATION DES EMISSIONS DE GES EVITABLES	20
	5.1	RESOLUTION D'UN PROBLEME GLOBAL	20
	5.2	AMELIORATION DE LA METHODE DE RESOLUTION	2:
	5.3	PERFORMANCES ATTENDUES	22
6	co	NCLUSION	2!
7	REI	MERCIEMENTS	20
Δ	NNFXF	A	2

1 Résumé exécutif

Metro Logistique à Domicile est une compagnie de plus de 5 000 employés au Canada, gérant des opérations dans plus de 12 millions de pieds cubes d'espace d'entreposage. Ils ont développé une expertise comme 3PL (Third-party logistics). Ils offrent leur service en transport et entreposage à des détaillants, manufacturiers et industries spécialisées. Leur chiffre d'affaires dépasse le 600 millions.

Clear Destination est une entreprise québécoise de 24 employés. Elle développe des logiciels d'optimisation des tournées de véhicules avec suivi de l'exécution des livraisons en temps réel principalement dans le marché des ventes au détail de gros items : meubles, électroménagers, téléviseurs, exerciseurs, souffleuses, tondeuses, etc. Elle offre des solutions pour différentes entreprises telles que des détaillants, des manufacturiers, des transporteurs et des prestataires logistiques (3PL). La compagnie connait chaque année une belle croissance et son revenu annuel a dépassé 2,5 millions pour 2016-2017.

Ce travail de recherche répond à un besoin réel émanant de Metro Logistique et de Clear Destination qui effectue la planification de livraisons pour Metro Logistique. Quotidiennement, cette entreprise doit optimiser le trajet d'une dizaine de véhicules de livraison pour desservir jusqu'à environ six-cents clients.

Figure 1 Une solution possible à un problème de tournée de véhicule

Ce processus d'optimisation, qui est opéré par Clear Destination s'effectue en plusieurs étapes. Tout d'abord, l'entreprise établit une liste prévisionnelle des clients à livrer avec des fenêtres de livraison larges. Celle-ci est amenée à évoluer, certains clients pouvant modifier la date de livraison souhaitée, la fenêtre de livraison voir même simplement annuler leur demande. Une fois la liste définitive établie, un employé nommé répartiteur est chargé d'affecter les clients aux livreurs disponibles pour la journée de livraison en fonction d'une carte préétablie et de son expérience personnelle. Les trajets sont ensuite optimisés par une heuristique en respectant les affectations du répartiteur et ces trajets sont finalement communiqués aux livreurs. Clear Destination établit également un historique des livraisons. L'entreprise souhaite améliorer la manière dont est effectué le processus d'affectation des clients aux livreurs. Cela permettrait ainsi une consommation réduite

de carburant ainsi qu'une affectation non biaisée des livreurs aux clients. Pour traiter ce nouveau problème, une méthode de représentation de la connaissance construite à partir d'un historique de livraison est proposée.

Paramètres	Valeur
Véhicules utilisés	Camions moyens
Carburant	Essence
Consommation	21,7 L/100 Km
Emission de CO2 eq	2,302 Kg/L
Quantification énergétique	Giga Joules (GJ)
Dépense énergétique	0,035 GJ/L
Prix du carburant	1,34 \$/L

Tableau 1 : Paramètres utilisés

Nombre de jours considéré	250
% Amélioration moyenne	21,5%
Carburant moyen sauvé par jour (L)	53 L
Ecart-type carburant sauvé	21 L
Carburant total sauvé sur 250 jours (L)	13 143 L
CO2 eq total sauvé sur 250 jours (Kg)	30 254 Kg
Kilomètres économisés sur 250 jours	60 000 Km

Tableau 2 : Sommaire des résultats

2 Introduction

L'entreprise Metro Logistique à Domicile œuvre dans le domaine de la livraison de meubles et d'électroménagers à domicile. Elle utilise le logiciel de répartition et d'optimisation de routes de la compagnie Clear Destination. À partir d'une liste de clients à livrer, le logiciel confectionne des routes de livraison où chaque client est affecté à un conducteur et séquencé dans une route. L'optimisation des livraisons est un aspect primordial pour Metro, car la plus grande partie de ses coûts et de ses émissions de GES proviennent de ses opérations de transport. Ainsi, l'objectif d'un tel logiciel est de réduire le plus possible les distances parcourues par les véhicules pour réduire la consommation de carburant et donc les émissions de GES offrant ainsi des gains économiques et énergétiques à la compagnie.

La répartition des livraisons dans une grande région comme celle de la région Métropolitaine de Montréal a son lot de défis. L'environnement de répartition implique la plupart du temps de prendre des décisions où plusieurs informations sont trop onéreuses à obtenir ou encore qui sont totalement inconnues. Le répartiteur doit souvent utiliser des informations intangibles comme la connaissance du terrain ou encore l'expérience des conducteurs pour concevoir les meilleures routes. Ceci mène les répartiteurs de Metro Logistique à Domicile à ne pas utiliser pleinement le logiciel d'optimisation pour la conception des routes. Leur stratégie est plutôt de décider eux-mêmes des affectations clients-conducteurs et ils laissent ensuite le logiciel optimiser les routes de chaque conducteur séparément. L'idée derrière cette opération est d'envoyer les conducteurs dans les territoires qu'ils connaissent le mieux. En fait, les conducteurs possèdent une multitude d'informations souvent absentes des systèmes GPS: zones et heures de trafic, positionnement des adresses dans les régions rurales, manière de stationner son véhicule efficacement, les rues interdites aux camions ou encore les nouveaux développements non cartographiés. De plus, certains préfèrent travailler dans des territoires particuliers pour toutes sortes de raisons. Ne pas satisfaire cette exigence peut entraîner la perte d'une main-d'œuvre difficile à recruter. Ceci fait en sorte que si un conducteur travaille dans un secteur qu'il connait, il sera plus rapide, plus efficace et plus heureux.

Figure 2 : Exemple fictif de territoires de livraison

Clear Destination offre déjà un outil d'automatisation en donnant la possibilité aux répartiteurs de créer des territoires de livraison en dessinant des polygones sur une carte. Chaque conducteur peut être associé à un territoire et le logiciel optimise les territoires des conducteurs. Cette méthode simple permet d'aller chercher des réductions de distances, de carburant et d'émission de GES par rapport à l'optimisation manuelle des répartiteurs, mais cette fonctionnalité n'est pas beaucoup utilisée. Les gains d'automatisation sont limités lorsque plusieurs clients proches l'un de l'autre se retrouvent dans des territoires différents. Les répartiteurs ont la possibilité de revoir les polygones, mais ceci est très laborieux avec plus de 20 territoires et des centaines de clients. L'approche pose également problème lorsqu'il y a des conducteurs absents. Au final, les répartiteurs ne l'utilisent pas et ils préfèrent une approche manuelle pour réduire le temps de confectionner les routes.

L'objectif de cette étude est de créer de nouveaux modèles d'optimisation qui utilisent les décisions passées des répartiteurs et des conducteurs pour la confection de routes de livraison. À notre connaissance, ce type de modèle n'a jamais été proposé par la littérature. La partie innovatrice de notre étude est d'utiliser la quantité massive de données, comme les affectations clients-conducteurs et les coordonnées GPS, pour proposer des routes qui sont en concordance avec les décisions prises par le passé. Numériquement, Metro Logistique à Domicile possède une flotte de 10 véhicules qui opèrent dans la province de Québec. Annuellement, elle effectue environ 48 000 livraisons, nécessitant environ 3 200 routes de livraisons et parcourant en moyenne 575 000 km. La flotte de la compagnie est constituée de 10 véhicules. Selon Metro Logistique à Domicile, ses camions consomment environ 31 litres de diesel pour 100 km. Selon le Ministère de l'Énergie et des Ressources Naturelles (2014), un litre de diesel génère 2,69 kg de CO₂ et donc une réduction de 1% des kilomètres parcourus donnerait une diminution des GES générés d'environ 4 800 kg sur une base annuelle. Il sera possible d'évaluer la réduction des GES en faisant la différence entre le kilométrage d'avant et après.

Notre étude fera face à deux importantes problématiques. La première concerne la représentation mathématique du niveau de connaissance des conducteurs. Nous utiliserons les données Metro Logistique à Domicile comme toutes les livraisons passées et les points GPS sont des coordonnées latitude-longitude. Le défi est de taille, car la quantité de données est massive : il y a plusieurs millions d'enregistrements qui occupent plusieurs giga-octets d'espace. À partir de ces informations, il faudra innover en proposant des mesures de proximité pour représenter le degré de connaissance du conducteur par rapport à un nouveau lieu de livraison. Une attention particulière devra être portée sur les secteurs dont le nombre de visites peut changer par conducteur. Ainsi, il est possible qu'un nouveau conducteur ait visité seulement quelques fois ce secteur alors qu'un autre possédant une expérience beaucoup plus grande l'aurait visité plus souvent, mais sur une plus grande période. Ceci pourrait engendrer des solutions où le conducteur expérimenté est toujours choisi avant les nouveaux. Nous pensons pouvoir établir une mesure propre pour Metro Logistique à Domicile qui nous permettra de faire la distinction entre les différents niveaux d'expériences. Selon nos recherches, ce type de problème n'a jamais été considéré par la littérature.

La seconde problématique porte sur la conception de routes en s'assurant que deux objectifs soient respectés : la réduction des distances parcourues et que les conducteurs travaillent dans des secteurs désirés et connus. L'optimisation de ces deux objectifs apporte son lot de difficulté, car la réduction de l'un peut causer l'augmentation de l'autre. Ainsi, l'ancienne pratique est de considérer uniquement que la réduction des distances requière de ne tenir aucunement compte des

connaissances et préférences des conducteurs. Dans ce cas, la distance théorique serait minimale et les secteurs seraient attribués sans garantir que les conducteurs travailleront dans des secteurs où ils possèdent de l'expérience. L'autre option serait d'attribuer les clients aux conducteurs ayant le plus d'expérience en tenant compte de la capacité des véhicules. La réduction des distances devient alors secondaire, les distances parcourues et les GES seront forcément plus élevés que dans le premier cas. La seconde partie de l'étude utilisera les mesures définies dans la première problématique pour proposer un modèle qui équilibrera les deux aspects : soit la réduction des distances et la maximisation de l'expérience des conducteurs. Pour répondre à la problématique, nous proposerons un modèle simple permettant d'intégrer la connaissance des livreurs. Ce dernier utilise une approche multicritère : les deux objectifs sont combinés en un seul. Par la suite, ce modèle est testé selon les routes passées de la compagnie pour obtenir des kilométrages qui seront comparés à l'historique. Nous comptons aussi présenter nos résultats aux répartiteurs de Metro. Cette comparaison permettra d'estimer les réductions des GES potentielles.

Comme Metro Logistique à Domicile sera la première à utiliser cette nouvelle technologie, il serait possible d'étendre ces résultats et les réductions potentielles à d'autres compagnies de livraison qui sont des clients de Clear Destination. D'après Clear Destination, ses autres clients effectuent environ 180 000 livraisons par année en parcourant environ 2 189 000 kilomètres.

3 Le mandat d'optimisation logistique

3.1 Objectif

Cette étude vise les objectifs suivants :

- Analyser et cartographier les secteurs de livraison des conducteurs de Metro Logistique à Domicile. Ceci permettra de s'assurer que les routes obtenues sont dans des secteurs connus.
- Proposer des mesures pour représenter le niveau de connaissance des conducteurs.
- Proposer des modèles d'optimisation pour la conception des routes de livraison qui équilibre les niveaux de connaissance et la réduction des distances.
- Estimer les gains économiques des différents modèles pour de Metro Logistique à Domicile en termes de distances parcourues, carburant utilisé et des émissions de GES.

3.2 Méthodologie

Au niveau méthodologique, les étapes suivantes seront suivies.

- Traitement des données. La première tâche consistera à obtenir la base de données de Clear Destination. Nous devrons récupérer les données qui sont pertinentes et éliminer les erreurs.
- Représentations mathématiques des niveaux de connaissance. Cette tâche se chargera d'élaborer des mesures pour représenter le niveau de connaissance des conducteurs à partir de leurs livraisons passées et de leurs points GPS.
- Cartographie des niveaux de connaissance. La troisième étape portera sur la représentation visuelle des mesures pour en faire leur évaluation visuelle.
- Modèles de conception de routes. La quatrième étape proposera un modèle et des algorithmes pour la conception de routes de livraison.
- Comparaison. À partir des données historiques, nous comparerons notre modèle avec les routes conçues par le répartiteur.
- Estimation des gains. Finalement, nous ferons l'estimation des gains économiques en termes de distances, carburant et réduction d'émission de GES.

3.2.1 Données utilisées

Nous disposons d'un historique qui concerne la ville de Montréal. Cet historique est celui de la compagnie Clear Destination concernant Metro Logistique.

L'historique des livraisons brutes a cependant nécessité un nettoyage. En effet, un certain nombre de données était manquantes et certaines coordonnées aberrantes. Une zone de travail a aussi été définie pour la ville de Montréal et ses alentours. Les livraisons qui se trouvent à l'extérieur de cette zone sont également supprimées. Enfin, seuls les livreurs totalisant plus de cent livraisons sont conservés. Cet historique s'étend du 01/03/2018 au 06/04/2019 et contient un total de 45300 points de livraison pour 31 livreurs.

Variable	Signification	
PickupDateTime	Le jour et l'heure de livraison tels qu'ils ont initialement planifié	
IdDriver	Identifiant du livreur qui a effectué la livraison	
RoadOrder	L'ordre dans la route du livreur	
Longitude	La coordonnée de longitude	
Latitude	La coordonnée de latitude	
RealPickupDateTime	Le jour et l'heure de livraison tels qu'ils ont été réellement effectuée	
TWStart	Le début de la fenêtre de temps communiquée au client	
TWEnd	La fin de la fenêtre de temps communiquée au client	
Volume	Le volume occupé par la demande du client	
ServiceTime	La durée en secondes estimée pour décharger la demande du client.	

Tableau 3 : Données de l'historique et leur signification

Au total, l'historique retrace les données de 250 jours de livraison. Chacun de ces jours se présente comme une instance avec un certain nombre de clients. La figure ci-dessous présente sous forme d'un histogramme le nombre d'instances pour différents nombres de clients.

Figure 3 : Taille des instances de l'historique de livraison

On constate que les instances sont de tailles aux alentours de 100 clients par jour. Nous avons également étudié la répartition des clients dans l'espace. Chaque point de la figure ci-dessous représente une livraison effectuée. Un nombre très important de livraisons sont localisées dans le centre de Montréal.

Figure 4 : Répartition des livraisons

3.2.2 Calcul des distances kilométriques

Pour résoudre le problème de tournée de véhicules, il est nécessaire de construire la matrice des distances et des temps pour se rendre d'un nœud à un autre. Pour cela, on utilise les données réelles telles que les routes pour calculer la distance et le temps de parcours. Nous avons donc eu recours à la base de données libre de droits d'Open Street Map. Celle-ci est un système d'information géographique constitué d'éléments tels que des points et des lignes associés à des coordonnées GPS. Ces éléments symbolisent par exemple des routes et des intersections.

Figure 5 : Processus de calcul des distances

Plus spécifiquement le choix s'est porté sur l'utilisation d'Open Source Routing Machine (OSRM), un engin de routage permettant de trouver le plus court chemin dans un réseau de nœuds et d'arcs, en l'occurrence, une carte issue d'Open Street Map.

3.2.3 Performance environnementale : mesure des émissions de CO2eq

Dans le cas présent il est facile d'identifier les sources de GES : l'entreprise à laquelle nous nous intéressons effectue des livraisons à domicile. Les camions de livraison sont donc la seule source de GES qui rentre dans le cadre de notre étude.

Nous allons estimer la quantité de carburant utilisée à partir de la distance parcourue par les camions. Pour cela il suffit simplement de multiplier la distance totale parcourue par le facteur de conversion en émission de CO2 équivalent par kilomètre.

Nous nous sommes notamment appuyés sur la norme ISO 14064-2 relative à la quantification des réductions d'émissions des GES ainsi qu'aux préconisations de Transition énergétique Québec.

Il est important de noter ici qu'à partir de l'historique de livraison, on connait l'ordre des clients dans les routes, cependant cela ne garantit pas que les trajets exacts des routes tels que recalculés avec OSRM seront tout à fait fidèles à ceux effectués par l'entreprise. En effet, celle-ci n'utilise pas le même logiciel de routage et le chauffeur a peut-être pris un autre chemin. D'une manière générale on peut tout de même supposer que la différence est minime : nous avons choisi une stratégie basée sur le temps de parcours minimal pour obtenir les chemins entre les paires de nœuds. Cette stratégie est celle qui est très majoritairement utilisée dans l'industrie. Ainsi, les distances entre les paires de nœuds que nous calculons avec OSRM ne sont pas les distances les plus courtes, mais celles associées aux trajets dont les temps de parcours sont les plus rapides.

Nous utiliserons également certaines données issues du rapport de Transition énergétique Québec (Transition énergétique Québec, 2017) et notamment les facteurs de conversion préconisés pour les véhicules en termes d'émissions de GES. La consommation de carburant des véhicules sera déterminée à partir des données fournies par l'entreprise, mais également par les résultats du rapport (Office de l'efficacité énergétique, 2007).

Paramètres	Valeur
Véhicules utilisés	Camions moyens
Carburant	Essence
Consommation	21,7 L/100 Km
Emission de CO2 eq	2,302 Kg/L
Quantification énergétique	Giga Joules (GJ)
Dépense énergétique	0,035 GJ/L
Prix du carburant	1,34 \$/L

Tableau 4: Paramètres utilisés

19/09/2019	Centre d'Innovation en Logistique et Chaîne	Page 11 sur 32
	d'approvisionnement Durable - CILCAD	

3.2.4 Construction d'une métrique de la connaissance

Pour rappel, l'historique de livraison consiste en une liste de toutes les livraisons qui ont été effectuées par les livreurs dans une zone donnée pour une certaine durée. On peut supposer que chaque livreur a acquis une certaine connaissance associée à chaque point qu'il a précédemment livré. S'il est nécessaire de livrer à nouveau le même point, il semble pertinent d'affecter un livreur ayant une bonne connaissance de celui-ci (à priori un livreur ayant dans le passé été fréquemment livré ce client).

Nous supposons donc que la connaissance se répartit selon une fonction gaussienne bidimensionnelle centrée sur le point de livraison, de la même manière pour chacun d'eux. L'utilisation d'une fonction gaussienne se justifie par le fait que la connaissance au point de livraison est maximum et au fur et à mesure que l'on s'éloigne, elle diminue.

Figure 6 : Représentation de la connaissance associée à un client

Ce profil de connaissance peut être interprété comme la quantité d'information que le livreur a acquis aux alentours du point de livraison, comme par exemple la disposition des rues, les feux de circulation, ou encore la manière dont il va pouvoir stationner son véhicule.

La figure ci-dessous montre la sommation de plusieurs gaussiennes dont le centre est représenté par les points rouges.

Figure 7 : Superposition des connaissances pour plusieurs livraisons d'un même livreur

On souhaite intégrer la notion de connaissance au problème classique de tournée de véhicules avec fenêtres de temps présenté précédemment. On suppose qu'à chaque livreur est associée une zone de travail qui est construite en effectuant la sommation de plusieurs gaussiennes (chaque gaussienne représentant une livraison). Une valeur élevée à une certaine coordonnée géographique signifie que le livreur a une bonne connaissance aux coordonnées géographiques associées et inversement.

Figure 8: Exemple avec quatre livraisons et deux livreurs

La figure ci-dessus propose un exemple de livraisons pour deux livreurs et leur territoire respectif. On constate que la livraison 1 est située en un point bien connu pour le livreur D1 alors que la livraison 4 sera plutôt favorable au livreur D0. La livraison 2 est placée en une zone où les deux livreurs ont une bonne valeur de connaissance tandis que la livraison 3 n'est favorable à aucun d'eux.

Les territoires de livraison ont été bâtis à partir de l'historique des deux livreurs en regardant les endroits où ils ont été amenés à livrer dans le passé et en appliquant la méthodologie expliquée cidessus.

3.2.5 Modélisation et optimisation mathématique

Résoudre un problème de VRP consiste à créer des routes commençant et finissant au dépôt de manière à desservir tous les clients avec les véhicules de livraison. L'objectif principal est de minimiser le temps de parcours.

Dans l'objectif de modéliser au mieux la réalité, il est nécessaire d'intégrer les fenêtres de temps des clients et du dépôt. Celles-ci sont censées représenter les plages horaires durant lesquelles les clients sont disponibles pour être livrés. Si un livreur arrive avant le début de la fenêtre de temps d'un client, il devra attendre jusqu'à ce que ce dernier soit disponible. Le temps de service qui comprend le temps de déchargement des objets est également pris en compte. La fenêtre de temps du dépôt représente les horaires d'ouvertures de celui-ci. Dans cette étude nous avons eu recours à l'Adaptative Large Neighborhood Search (ALNS). L'ALNS est une méta-heuristique à large voisinage. Elle est composée de deux éléments principaux :

- Une ou plusieurs heuristiques d'insertion N+,
- Une ou plusieurs heuristiques de retrait N-.

L'idée générale est d'initialiser une solution et de successivement en détruire des morceaux pour la reconstruire autrement. Ces deux opérations, destruction et reconstruction, sont générées par les heuristiques d'insertion et de retrait.

Algorithm 1 ALNS

Construire une solution initiale $x, x^* \leftarrow x$

while n < nb Itérations do

Choisir un opérateur de retrait N^- et d'insertion N^+

Appliquer N^- puis N^+ à x pour obtenir x'

if x' est accepté par le recuit simulé then

$$x^* \leftarrow x'$$

 $n \leftarrow n + 1, x \leftarrow x'$

Retourner *x**

Figure 9: Algorithme ALNS

L'heuristique ALNS a été modifiée pour intégrer les changements apportés à la formulation. La principale modification concerne la manière de calculer le coût d'une solution, qui doit intégrer la connaissance des livreurs.

Pour chaque nouveau client à livrer il est possible d'évaluer la connaissance à partir des coordonnées géographiques de ce nouveau client pour chaque livreur. On peut alors formuler un second objectif qui consiste à maximiser la connaissance totale des livreurs. Ce second objectif est combiné à l'objectif du problème de VRP qui consiste à minimiser le temps de parcours. Déférentes approches permettent de tenir compte de deux objectifs, l'approche choisie dans cette étude consiste à les agréger en un seul. On pose α et β les pondérations associées respectivement aux objectifs de temps de parcours et de connaissance. Le choix des valeurs des coefficients peut faire grandement varier la solution obtenue.

$$min\,\alpha\sum_{k\,\in K}\sum_{(i,j)\,\in A}c_{ij}x_{ijk}\ -\ \beta\sum_{k\,\in K}\sum_{(i,j)\,\in A}e_{jk}x_{ijk}$$

3.2.6 Visualisation

Une grande importance a été apportée à l'aspect visuel. En effet, visualiser la solution permet dans une certaine mesure de contrôler rapidement celle-ci et s'assurer qu'aucune affectation aberrante n'a été effectuée par l'algorithme.

La première figure ci-dessous montre un exemple d'une solution obtenue pour une zone de la ville de Montréal avec 256 clients et 10 véhicules. On peut ainsi visualiser le trajet planifié de chaque livreur pour la solution complète ou indépendamment des autres.

On peut également représenter graphiquement la connaissance des livreurs en s'appuyant sur la méthodologie décrite précédemment. C'est ce que montre la deuxième figure ci-dessous où on a représenté les connaissances de quatre livreurs.

Figure 10 : Visualisation d'une solution

Figure 11 : Représentation de la connaissance pour quatre livreurs

4 Performance du réseau actuel de METRO Logistique

4.1 Affectation des clients aux livreurs

Dans la situation initiale, chaque livreur travaille dans un territoire déterminé. Cela permet de s'assurer que les livreurs connaissent bien le territoire dans lequel ils opèrent et seront plus efficaces que s'ils avaient à travailler dans un territoire qui leur est moins familier. Chaque jour, un répartiteur est chargé d'associer manuellement chaque nouveau client au livreur adéquat.

Des routes minimisant le temps de parcours sont ensuite calculées à l'aide d'une heuristique en tenant compte des pré affectations établies par le répartiteur. En procédant de la sorte, le répartiteur s'assure que les routes obtenues sont satisfaisantes pour les livreurs à condition que la pré affectation des clients aux livreurs ait été effectuée correctement. Des informations préalables et une certaine expertise sont donc nécessaires au répartiteur pour garantir que le processus de pré affectation a été effectué correctement. On procède donc ici en deux étapes successives : tout d'abord la pré affectation clients-livreurs et ensuite l'obtention des routes.

Figure 12 : Méthodologie actuelle

Cette manière de procéder pose plusieurs problèmes. Tout d'abord, la garantie d'obtenir des routes satisfaisantes repose beaucoup sur l'expertise d'un seul individu : le répartiteur. S'il part ou s'absente, cela pourrait augmenter les coûts de livraison. D'autre part, elle nécessite une intervention humaine à chaque fois qu'on veut trouver de nouvelles routes ce qui rend l'ensemble du processus fastidieux. Enfin, en résolvant le problème en deux étapes, la solution obtenue à la fin sera de moindre qualité : en effet, en pré affectant les clients aux livreurs, on diminue énormément l'espace de recherche des solutions et on se prive donc certainement des meilleures.

4.2 Optimisation des routes de livraison

4.2.1 Reconstruction des solutions du répartiteur

Les historiques de livraison dont nous disposons sont constitués de plusieurs jours d'opération. Chacun de ces jours peut être interprété comme une instance dont la taille varie. Les historiques contiennent suffisamment d'informations pour être capables de reconstruire les solutions des livreurs telles que générées par Clear Destination. Nous comparerons par la suite celles-ci aux solutions obtenues par notre méthodologie.

Une procédure simple permet de reconstruire les routes à partir de l'historique. Tout d'abord, on isole le jour dont on souhaite reconstruire la solution parmi l'historique et on sélectionne toutes les livraisons qui lui sont associées. On peut ensuite séparer les livraisons en fonction de leur livreur.

Enfin, on peut retrouver l'ordre original de chaque route à l'aide de la position dans la route qui est indiquée dans l'historique de livraisons, et donc de la reconstruire tel qu'elle a été planifiée.

4.2.2 Evaluation des routes du répartiteur

On peut ensuite évaluer les routes reconstruites en termes de temps et de distance avec Open Street Map et en termes de connaissance avec la méthodologie développée dans cette étude.

Instance	Taille	Temps (h)	Connaissance	Distance (Km)	GES (Kg)
22/06/2018	120	23,5	421	1198	598
13/07/2018	144	27,4	596	1399	699
10/08/2018	90	20,0	523	1054	527
07/09/2018	87	20,0	344	1007	503
02/11/2018	90	19,6	437	1032	516
16/11/2018	75	18,0	524	916	458
03/12/2018	121	25,2	493	1222	610
15/12/2018	167	31,9	636	1599	799
15/02/2019	108	25,8	404	1324	661
30/03/2019	150	29,4	406	1433	716

Tableau 5 : Evaluation d'un échantillon des instances du répartiteur

Le tableau ci-dessus donne les résultats de l'évaluation de dix routes du répartiteur (il y en a au total 250). On peut également déduire une approximation de la quantité de gaz à effet de serre émise à partir de la distance. Pour cela on utilise la consommation moyenne des véhicules et la quantité de gaz émis par litre de carburant. Ces informations sont présentées au tableau 1.

5 Pistes d'améliorations et estimation des émissions de GES évitables

5.1 Résolution d'un problème global

Nous avons introduit une méthode permettant de construire des routes de livraison appropriées aux livreurs, mais en procédant en une seule étape afin d'améliorer les solutions obtenues.

Figure 13 : Méthodologie idéale

Pour parvenir à cet objectif, il est nécessaire de comprendre comment procède le répartiteur : on dispose pour cela d'un historique conséquent des affectations clients-livreurs effectuées par celuici. Nous avons tout d'abord développé un modèle de la connaissance des livreurs dans l'espace. On définit alors le territoire d'un livreur comme la zone dans laquelle la connaissance de celui-ci est importante. Nous avons ensuite utilisé un système d'information géographique pour visualiser la connaissance des livreurs, mais également calculer les temps de parcours entre les différents clients à livrer. Enfin, nous avons intégré la connaissance des livreurs au problème de tournées de véhicules et conçu une heuristique afin de résoudre ce problème de manière à obtenir des routes satisfaisantes pour les livreurs.

Figure 14 : Schéma de la méthodologie

Le schéma ci-dessus récapitule la méthodologie que nous avons développée : en partant de la gauche vers la droite, on calcule tout d'abord la connaissance des livreurs à partir de l'historique de livraison et on détermine quelle est la valeur des connaissances de chaque nouvelle livraison. Les temps de parcours sont également calculés et stockés dans un fichier texte. Les données du problème sont ensuite transmises à une heuristique qui détermine une solution réalisable.

5.2 Amélioration de la méthode de résolution

Une fois qu'une solution est obtenue à l'aide de l'ALNS, l'heuristique Cross-Exchange est exécutée de manière à potentiellement améliorer encore la solution. La figure ci-dessous montre une opération de Cross-Exchange : la route 1 est coupée entre X11 et X12 ainsi que X13 et X14, la route 2 est coupée entre X21 et X22 ainsi que X23 et X24. Les sections de route ainsi coupées sont interverties pour créer de nouvelles routes si les contraintes sont satisfaites.

Dans cet exemple, les carrés symbolisent le dépôt et les ronds les clients. L'idée générale est de tester toutes les paires de chaines de requêtes possibles entre deux routes et d'effectuer l'échange si ce mouvement entraine une amélioration dans le coût de la solution. La procédure est répétée jusqu'à ce qu'il ne soit plus possible d'améliorer la solution.

Figure 15 : Une opération du Cross-Exchange

5.3 Performances attendues

A l'aide des paramètres déterminés précédemment, nous avons évalué les solutions du répartiteur pour l'ensemble des instances à notre disposition soit 250. Nous les avons ensuite comparés aux solutions obtenues par la combinaison de l'ALNS et du Cross Exchange. On peut alors en déduire le gain en Km apporté pour chacune des solutions. Cette valeur permet ensuite de déterminer le gain en litres de carburant et la quantité d'équivalents CO_2 qui aurait pu potentiellement être évitée en utilisant notre approche.

Instance	Taille	Temps (h)	Connaissance	Distance (Km)	GES (Kg)
22/06/2018	120	19,6	667	956	478
13/07/2018	144	20,1	944	954	477
10/08/2018	90	16,1	588	808	404
07/09/2018	87	16,0	520	753	376
02/11/2018	90	15,3	556	785	392
16/11/2018	75	14,6	515	733	366
03/12/2018	121	22,2	489	1047	523
15/12/2018	167	26,1	825	1214	606
15/02/2019	108	19,8	449	964	482
30/03/2019	150	25,7	629	1216	607

Tableau 6: Evaluation d'un échantillon des instances avec ALNS

19/09/2019	Centre d'Innovation en Logistique et Chaîne	Page 22 sur 32
	d'approvisionnement Durable - CILCAD	

Le tableau ci-dessus montre les résultats obtenus pour les instances précédemment présentées. La quantité de gaz à effet de serre émise est déduite de la même manière qu'expliquée précédemment.

La pondération utilisée pour l'objectif de connaissance par rapport à l'objectif de distance a été déterminée expérimentalement et correspond à la valeur qui permet de maximiser la connaissance sans détériorer la distance totale des solutions, cette valeur vaut 10.

Instance	Taille	Temps %	Connaissance %	GES %
22/06/2018	120	16,6%	58,4%	20,2%
13/07/2018	144	26,6%	58,4%	31,8%
10/08/2018	90	19,5%	12,4%	23,3%
07/09/2018	87	20,1%	51,1%	25,2%
02/11/2018	90	21,6%	27,1%	24,0%
16/11/2018	75	18,9%	-1,8%	20,0%
03/12/2018	121	11,8%	-0,7%	14,4%
15/12/2018	167	18,2%	29,7%	24,1%
15/02/2019	108	23,0%	11,2%	27,2%
30/03/2019	150	12,8%	54,8%	15,1%

Tableau 7 : Amélioration des solutions par rapport à celles du répartiteur

On peut ensuite comparer les solutions obtenues avec celles du répartiteur en termes de temps de parcours, de connaissance et de distance. Le tableau ci-dessus donne le pourcentage d'amélioration obtenue pour ces différentes composantes. Selon la méthode d'estimation des gaz à effet de serre utilisé ici, le pourcentage d'amélioration en distance est égal au pourcentage de réduction de GES (distances et GES sont reliés par un facteur multiplicateur).

On constate une certaine homogénéité en termes d'amélioration du temps de parcours et de la réduction de GES (entre 11 et 25%), cependant une disparité au niveau de l'amélioration de la connaissance. Ces disparités sont dues à la structure des instances : à la localisation des livraisons de celles-ci et à la disponibilité ou non de certains livreurs (on pourra espérer une bonne amélioration de la connaissance s'il y a une bonne compatibilité entre la localisation des livraisons et les territoires de livraison des livreurs disponibles).

Les résultats pour l'ensemble des instances sont présentés en Annexe A.

Figure 16 : Économies de carburant réalisées pour différents jours

En moyenne notre méthodologie permettrait une économie totale de 13 000 litres de carburant sur une année complète. Cela correspond environ à une réduction respective d'environ 30 tonnes de CO2eq par année ou encore 60 000 Km.

Nombre de jours considéré	250
% Amélioration moyenne	21,5%
Carburant moyen sauvé par jour (L)	53 L
Ecart-type carburant sauvé	21 L
Carburant total sauvé (L)	13 143 L
CO2 eq total sauvé (Kg)	30 254 Kg
Kilomètres économisés	60 000 Km

Tableau 8 : Sommaire des résultats

Ces améliorations proviennent simplement d'une meilleure résolution du problème liée au fait que l'on résout ici un problème global et à la performance de l'algorithme utilisé. Une autre amélioration liée elle à la connaissance des livreurs serait à prévoir, mais cette dernière nécessiterait un travail approfondi en partenariat avec des entreprises de livraison pour mesurer exactement son impact.

6 Conclusion

Cette étude introduit une nouvelle classe de problème de tournées de véhicules qui permet d'intégrer la notion de territoires et de connaissance des livreurs. Pour ce faire, nous avons conçu une méthode de construction de la connaissance en fonction d'un historique de livraison pour chaque livreur. Il est ainsi possible de calculer la valeur de la connaissance de ceux-ci en tout point d'une zone déterminée à l'avance. Nous intégrons ensuite la connaissance au problème de tournées de véhicules en utilisant un deuxième objectif qu'on cherche à maximiser. Enfin, le problème est résolu à l'aide de l'heuristique ALNS. Il est possible d'améliorer les performances de la méthode de résolution avec l'heuristique Cross-Exchange comme cela a été montré. On peut ensuite déduire la quantité de GES émise en utilisant la consommation moyenne des véhicules utilisés.

Nous disposons de données réelles issues d'un historique de livraison qui nous ont permis de tester notre approche. La pertinence de notre méthodologie est confirmée par les résultats issus de la comparaison entre les solutions du répartiteur de Clear Destination et ceux produits par notre approche. On constate notamment une nette amélioration des solutions en termes d'émissions de gaz à effet de serre. Il serait intéressant de déterminer à quel point une meilleure connaissance des livreurs permet également de diminuer la consommation en carburant des solutions. En effet on peut supposer qu'une plus grande connaissance améliore la performance des livreurs, non seulement en termes de temps (les livreurs connaissant bien une zone pourraient être plus rapides pour servir les clients dans cette zone), mais également adopter un mode de conduite plus écologique (mieux anticiper les freinages et démarrages, garder une vitesse stable plus longtemps, anticiper le trafic). Ce dernier point est complexe et mériterait un approfondissement.

Il est prévu d'intégrer la méthodologie que nous avons développée au logiciel de Clear Destination. L'un des objectifs lorsque nous avons développé cette méthodologie était de la garder suffisamment simple et permettre sa compatibilité avec les autres catégories de problèmes de tournées de véhicules. De cette matière, nous la rendons accessible à d'autres entreprises.

7 Remerciements

Mes premiers remerciements vont à Clear Destination et à Christian Lafrance et Mariam Tagmouti, pour l'intérêt particulier qu'ils ont porté à mon travail et pour les données qu'ils ont pu fournir, sans lesquels ce projet serait resté au stade d'idées sans concrétisation. Je tiens aussi à remercier le CILCAD, le CIRRELT et Metro Canada Logistics pour leur soutien financier. Cette étude a été réalisée grâce au soutien financier du Fonds vert dans le cadre du Plan d'action 2013-2020 sur les changements climatiques, priorité mise en oeuvre par Transition énergétique Québec (TEQ) que nous remercions également.

Annexe A

Instance	ALNS (Km)	Répartiteur (Km)	Amélioration (%)	Carburant économisé (L)	GES économisés (Kg)
02/03/2018	714	805	11,3%	19,7	45,3
03/03/2018	864	966	10,6%	22,2	51,0
06/03/2018	820	915	10,3%	20,5	47,3
08/03/2018	851	1035	17,8%	39,9	91,8
09/03/2018	698	911	23,4%	46,2	106,3
10/03/2018	760	935	18,7%	37,9	87,3
13/03/2018	814	885	8,1%	15,5	35,6
14/03/2018	743	914	18,8%	37,2	85,7
15/03/2018	690	784	12,0%	20,5	47,1
16/03/2018	682	873	21,9%	41,4	95,3
17/03/2018	939	1054	10,9%	24,8	57,2
20/03/2018	762	1025	25,7%	57,1	131,6
22/03/2018	684	935	26,9%	54,6	125,7
23/03/2018	731	881	17,0%	32,5	74,9
24/03/2018	841	1023	17,9%	39,7	91,3
27/03/2018	857	1177	27,2%	69,4	159,7
30/03/2018	841	1095	23,2%	55,1	126,8
31/03/2018	828	990	16,4%	35,1	80,9
03/04/2018	854	1046	18,3%	41,5	95,6
05/04/2018	674	860	21,7%	40,4	93,1
06/04/2018	629	759	17,1%	28,1	64,6
07/04/2018	910	1117	18,6%	45,0	103,5
09/04/2018	729	1021	28,6%	63,3	145,8
10/04/2018	708	831	14,8%	26,7	61,4
12/04/2018	711	948	24,9%	51,3	118,1
13/04/2018	920	1119	17,8%	43,3	99,7
14/04/2018	991	1313	24,5%	69,7	160,6
16/04/2018	691	912	24,2%	48,0	110,4
17/04/2018	839	1145	26,7%	66,4	152,9
19/04/2018	589	676	12,8%	18,8	43,3
20/04/2018	955	1101	13,3%	31,7	72,9
21/04/2018	939	1161	19,2%	48,3	111,2
23/04/2018	919	1081	15,0%	35,1	80,8
24/04/2018	818	1154	29,1%	72,9	167,7
27/04/2018	728	1015	28,3%	62,4	143,6
28/04/2018	929	1105	15,9%	38,2	87,9
30/04/2018	855	974	12,3%	26,0	59,8
01/05/2018	800	1003	20,2%	44,1	101,5
04/05/2018	831	992	16,3%	35,1	80,8

05/05/2018	1121	1374	18,4%	55,0	126,6
07/05/2018	817	1129	27,6%	67,7	155,8
08/05/2018	801	1070	25,2%	58,5	134,6
11/05/2018	841	1172	28,3%	71,9	165,5
12/05/2018	990	1265	21,7%	59,6	137,3
15/05/2018	788	1102	28,5%	68,2	157,0
16/05/2018	832	1077	22,7%	53,1	122,3
18/05/2018	698	822	15,1%	26,9	62,0
19/05/2018	874	1083	19,3%	45,3	104,3
22/05/2018	789	977	19,2%	40,7	93,7
23/05/2018	791	1038	23,7%	53,5	123,1
25/05/2018	785	1016	22,7%	50,0	115,2
26/05/2018	993	1202	17,4%	45,4	104,5
28/05/2018	692	882	21,6%	41,3	95,1
29/05/2018	922	1053	12,5%	28,5	65,6
31/05/2018	652	946	31,0%	63,6	146,5
01/06/2018	909	1084	16,1%	37,9	87,2
02/06/2018	1053	1278	17,6%	48,9	112,6
04/06/2018	1069	1421	24,8%	76,5	176,1
05/06/2018	965	1213	20,5%	53,8	123,9
07/06/2018	811	985	17,7%	37,8	87,1
08/06/2018	727	928	21,6%	43,6	100,3
09/06/2018	964	1350	28,6%	83,6	192,5
11/06/2018	1085	1337	18,9%	54,9	126,3
12/06/2018	1011	1358	25,5%	75,1	172,9
15/06/2018	1025	1340	23,5%	68,4	157,4
16/06/2018	1079	1501	28,1%	91,6	210,9
18/06/2018	726	936	22,4%	45,5	104,8
19/06/2018	740	913	18,9%	37,4	86,2
20/06/2018	715	1130	36,7%	90,0	207,3
21/06/2018	703	860	18,2%	34,1	78,4
22/06/2018	954	1199	20,4%	53,0	122,0
23/06/2018	892	1127	20,9%	51,1	117,6
26/06/2018	818	1043	21,6%	49,0	112,7
27/06/2018	901	1202	25,0%	65,3	150,3
28/06/2018	869	1214	28,4%	74,8	172,3
29/06/2018	939	1171	19,8%	50,4	116,0
30/06/2018	999	1285	22,3%	62,0	142,8
02/07/2018	964	1342	28,1%	81,9	188,5
03/07/2018	747	1043	28,4%	64,2	147,8
04/07/2018	934	1213	23,0%	60,6	139,6
05/07/2018	1134	1533	26,0%	86,4	199,0
06/07/2018	911	1095	16,8%	40,0	92,2
07/07/2018	1129	1539	26,6%	89,0	204,8

09/07/2018	1026	1325	22,5%	64,7	148,9
10/07/2018	1006	1383	27,3%	81,9	188,6
11/07/2018	883	1207	26,9%	70,3	161,9
12/07/2018	876	1147	23,7%	58,9	135,6
13/07/2018	967	1399	30,9%	93,8	215,9
14/07/2018	985	1265	22,1%	60,7	139,7
16/07/2018	827	1089	24,1%	56,9	131,0
17/07/2018	828	969	14,5%	30,6	70,4
18/07/2018	889	1215	26,8%	70,7	162,8
20/07/2018	847	1111	23,8%	57,3	132,0
21/07/2018	1002	1211	17,3%	45,4	104,5
24/07/2018	946	1171	19,2%	48,8	112,3
27/07/2018	755	1013	25,5%	56,0	129,0
28/07/2018	960	1167	17,7%	44,8	103,1
30/07/2018	820	1035	20,7%	46,5	107,1
31/07/2018	824	1035	20,4%	45,7	105,2
02/08/2018	758	900	15,8%	30,9	71,1
03/08/2018	783	993	21,2%	45,6	105,0
06/08/2018	751	956	21,4%	44,4	102,3
09/08/2018	713	866	17,6%	33,1	76,2
10/08/2018	817	1055	22,5%	51,5	118,5
13/08/2018	808	1151	29,8%	74,4	171,2
17/08/2018	779	913	14,7%	29,1	67,0
18/08/2018	842	992	15,1%	32,6	74,9
21/08/2018	814	1005	19,1%	41,6	95,8
24/08/2018	730	929	21,5%	43,3	99,6
27/08/2018	864	1063	18,8%	43,3	99,6
28/08/2018	801	989	19,0%	40,8	93,9
31/08/2018	866	1099	21,2%	50,6	116,4
01/09/2018	997	1240	19,6%	52,7	121,4
04/09/2018	683	812	15,9%	28,0	64,4
05/09/2018	942	1177	19,9%	50,9	117,2
06/09/2018	722	861	16,2%	30,3	69,7
07/09/2018	763	1007	24,3%	53,1	122,1
08/09/2018	1043	1289	19,1%	53,5	123,2
11/09/2018	739	956	22,7%	47,1	108,4
13/09/2018	876	1097	20,1%	47,9	110,3
14/09/2018	966	1165	17,1%	43,3	99,6
15/09/2018	759	974	22,1%	46,7	107,4
18/09/2018	1101	1394	21,1%	63,7	146,6
20/09/2018	956	1270	24,7%	68,2	157,1
21/09/2018	970	1176	17,5%	44,8	103,1
22/09/2018	1221	1553	21,4%	72,0	165,8
24/09/2018	935	1185	21,1%	54,1	124,6

25/09/2018	699	844	17,2%	31,6	72,7
26/09/2018	880	1147	23,3%	58,0	133,4
27/09/2018	847	1067	20,6%	47,7	109,9
28/09/2018	697	888	21,6%	41,6	95,7
29/09/2018	902	1173	23,0%	58,6	135,0
01/10/2018	896	1141	21,5%	53,1	122,3
02/10/2018	885	1163	23,9%	60,3	138,8
05/10/2018	795	1018	22,0%	48,5	111,7
06/10/2018	829	993	16,5%	35,5	81,7
09/10/2018	732	852	14,0%	26,0	59,7
10/10/2018	835	1034	19,2%	43,0	99,1
11/10/2018	775	991	21,8%	46,9	107,9
12/10/2018	929	1282	27,5%	76,6	176,4
13/10/2018	1165	1435	18,8%	58,7	135,0
15/10/2018	770	995	22,6%	48,8	112,2
16/10/2018	809	1042	22,4%	50,6	116,4
17/10/2018	841	1079	22,1%	51,8	119,2
18/10/2018	732	881	16,9%	32,3	74,4
19/10/2018	849	1135	25,2%	61,9	142,6
20/10/2018	1059	1325	20,1%	57,7	132,8
22/10/2018	933	1209	22,9%	60,1	138,3
23/10/2018	865	1022	15,4%	34,1	78,5
24/10/2018	640	847	24,5%	44,9	103,5
25/10/2018	691	861	19,7%	36,9	84,9
26/10/2018	648	811	20,1%	35,4	81,6
27/10/2018	937	1236	24,2%	64,9	149,5
29/10/2018	801	1044	23,3%	52,7	121,3
30/10/2018	808	979	17,4%	37,0	85,2
31/10/2018	777	942	17,6%	35,9	82,7
01/11/2018	809	985	17,8%	38,0	87,6
02/11/2018	798	1033	22,8%	51,1	117,5
03/11/2018	968	1291	25,0%	69,9	160,9
05/11/2018	776	920	15,6%	31,2	71,8
06/11/2018	899	1054	14,7%	33,7	77,5
07/11/2018	1018	1178	13,6%	34,7	79,8
08/11/2018	882	1304	32,3%	91,4	210,5
09/11/2018	832	1119	25,6%	62,2	143,2
10/11/2018	1364	1723	20,9%	78,0	179,6
12/11/2018	931	1348	31,0%	90,7	208,7
13/11/2018	628	973	35,4%	74,7	171,9
14/11/2018	864	1301	33,6%	94,9	218,5
15/11/2018	682	825	17,3%	31,0	71,3
16/11/2018	720	916	21,4%	42,6	98,0
17/11/2018	938	1257	25,4%	69,3	159,6

19/11/2018	653	849	23,1%	42,6	98,0
20/11/2018	827	1068	22,6%	52,4	120,6
22/11/2018	661	814	18,8%	33,1	76,2
23/11/2018	723	973	25,7%	54,3	124,9
24/11/2018	1031	1340	23,1%	67,3	154,8
26/11/2018	732	915	20,0%	39,7	91,4
28/11/2018	942	1164	19,1%	48,2	111,1
29/11/2018	864	1082	20,1%	47,3	108,9
30/11/2018	1091	1382	21,1%	63,2	145,5
01/12/2018	1215	1431	15,0%	46,7	107,5
03/12/2018	1060	1223	13,3%	35,4	81,4
04/12/2018	827	1062	22,2%	51,2	117,8
05/12/2018	800	931	14,1%	28,4	65,4
06/12/2018	598	819	27,0%	48,0	110,6
07/12/2018	772	982	21,4%	45,6	105,1
08/12/2018	1113	1418	21,6%	66,3	152,7
10/12/2018	816	1078	24,3%	56,8	130,8
11/12/2018	780	1111	29,8%	71,9	165,5
14/12/2018	731	916	20,2%	40,1	92,4
15/12/2018	1205	1599	24,6%	85,5	196,8
17/12/2018	840	1116	24,7%	59,9	137,8
18/12/2018	677	954	29,0%	60,0	138,1
20/12/2018	716	973	26,4%	55,8	128,4
21/12/2018	770	918	16,2%	32,2	74,1
22/12/2018	993	1331	25,4%	73,3	168,8
27/12/2018	1380	1165	-18,5%	-46,7	-107,5
28/12/2018	974	1139	14,5%	35,9	82,6
03/01/2019	871	1703	48,9%	180,7	416,0
04/01/2019	827	958	13,7%	28,5	65,5
05/01/2019	982	1270	22,7%	62,5	143,9
07/01/2019	801	1073	25,3%	59,0	135,7
09/01/2019	765	970	21,2%	44,6	102,6
10/01/2019	799	1139	29,8%	73,8	169,8
11/01/2019	735	908	19,1%	37,6	86,5
12/01/2019	1102	1330	17,2%	49,6	114,2
14/01/2019	731	925	21,0%	42,3	97,3
15/01/2019	725	850	14,6%	27,0	62,2
16/01/2019	709	772	8,2%	13,7	31,5
17/01/2019	649	835	22,3%	40,3	92,9
18/01/2019	1070	1461	26,7%	84,7	195,0
19/01/2019	1230	1816	32,3%	127,1	292,6
21/01/2019	690	904	23,7%	46,4	106,9
22/01/2019	755	1018	25,8%	57,1	131,4
24/01/2019	904	1297	30,3%	85,3	196,3

25/01/2019	814	1133	28,2%	69,3	159,5
26/01/2019	1124	1626	30,9%	109,0	251,0
01/02/2019	914	1184	22,8%	58,6	135,0
02/02/2019	1037	1361	23,8%	70,3	161,9
04/02/2019	750	968	22,5%	47,4	109,0
05/02/2019	699	799	12,5%	21,7	49,9
06/02/2019	745	1029	27,6%	61,6	141,8
07/02/2019	764	996	23,3%	50,4	116,1
08/02/2019	873	1291	32,4%	90,8	209,1
09/02/2019	898	1134	20,8%	51,2	117,9
11/02/2019	743	968	23,2%	48,8	112,4
15/02/2019	966	1324	27,1%	77,9	179,3
16/02/2019	1023	1319	22,4%	64,2	147,7
22/02/2019	764	970	21,2%	44,6	102,6
23/02/2019	974	1499	35,0%	114,0	262,4
25/02/2019	811	1095	26,0%	61,8	142,3
28/02/2019	759	1225	38,1%	101,2	233,0
01/03/2019	855	1118	23,5%	57,1	131,4
02/03/2019	1213	1574	23,0%	78,5	180,7
04/03/2019	843	944	10,7%	21,8	50,2
05/03/2019	782	975	19,8%	41,9	96,4
06/03/2019	802	1091	26,5%	62,9	144,7
08/03/2019	761	960	20,7%	43,2	99,5
09/03/2019	1035	1312	21,1%	60,2	138,5
11/03/2019	900	1145	21,4%	53,1	122,3
12/03/2019	863	1306	33,9%	96,2	221,4
15/03/2019	849	1048	19,0%	43,3	99,6
16/03/2019	907	1047	13,4%	30,5	70,3
18/03/2019	708	932	24,0%	48,7	112,0
22/03/2019	924	1167	20,8%	52,7	121,4
23/03/2019	1140	1449	21,3%	67,1	154,4
25/03/2019	785	1137	31,0%	76,4	175,8
26/03/2019	749	946	20,8%	42,8	98,5
29/03/2019	1013	1202	15,7%	41,1	94,6
30/03/2019	1195	1433	16,7%	51,8	119,3