Divide And Conquer — Continuous Master Theorem or Generalized Master Theorem —Introduction

A generalized version of the Akra — Bazzi theorem has been given as follows:

and $a \geq 1, b > 1, n_0 \geq 1, d > 0$ and f(n) is positive for $n > n_0$, or

Let a > 0 and b > 1 be constants, and let numbers $n \ge 1$. Then the recurrence:

$$T(n) = \left\{ egin{array}{ll} & 0 \leq n < 1 \ & \\ & aT\left(rac{n}{b}
ight) + f(n) & if \ n \geq 1 \end{array}
ight.$$

Then the asymptotic behavior of T(n) can be characterized as follows:

- 1. If there exists a constant $\varepsilon > 0$ such that $f(n) = O(n^{\log_b a \varepsilon})$, then $T(n) = O(n^{\log_b a})$.
- 2. If there exists a constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \log^k n)$, then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$.
- 3. If there exists a constant $\varepsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \varepsilon})$, and if f(n) additionally satisfies the regularity condition $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for some constant } c < 1 \text{ and all sufficiently large } n, \text{ then } T(n) = \Theta(f(n)).$
