Discussion 8

CUNY MSDS DATA 605

Duubar Villalobos Jimenez mydvtech@gmail.com
March 21, 2018

5 † Page 289

Book: Grinstead: Introduction to Probability

Exercise

Consider the following two experiments: the first has outcome X taking on the values 0, 1, and 2 with equal probabilities; the second results in an (in-dependent) outcome Y taking on the value 3 with probability 1/4 and 4 with probability 3/4. Find the distribution of:

Solution

Outcome	Probability
0	0.333333333333333
1	0.3333333333333333
2	0.33333333333333333

Table 1: Probability Table for Outcome X.

Outcome	Probability
3	0.25
4	0.75

Table 2: Probability Table for Outcome Y.

a) Y + X.

Operation	Result	Convoluted	Probability
3 + 0	3	$0.25 \times 0.333333333333333333$	0.0833
4 + 0	4	$0.75 \times 0.33333333333333333$	0.2500
3 + 1	4	$0.25 \times 0.33333333333333333$	0.0833
4 + 1	5	$0.75 \times 0.33333333333333333$	0.2500
3 + 2	5	$0.25 \pm 0.33333333333333333333333333333333333$	0.0833
4 + 2	6	$0.75 \pm 0.33333333333333333333333333333333333$	0.2500

Table 3: Probability Table of individual Outcomes Sn = Y + X.

From the above table, we can deduct that our possible outcomes for Sn are as follows: $Sn = \{3, 4, 5, 6\}$. From here we can deduct our probabilities as follows:

Sn	Probability	Percentage
3	0.0833	8.33 %
4	0.3333	33.33~%
5	0.3333	33.33~%
6	0.2500	25~%

Table 4: Probability Table for Unique Outcomes Sn = Y + X.

b) Y - X.

Operation	Result	Convoluted	Probability
3 - 0	3	$0.25 \times 0.33333333333333333$	0.0833
4 - 0	4	$0.75 \times 0.33333333333333333$	0.2500
3 - 1	2	$0.25 \times 0.33333333333333333$	0.0833
4 - 1	3	$0.75 \times 0.33333333333333333$	0.2500
3 - 2	1	$0.25 \times 0.33333333333333333$	0.0833
4 - 2	2	$0.75 \pm 0.33333333333333333$	0.2500

Table 5: Probability Table of individual Outcomes Sn = Y - X.

From the above table, we can deduct that our possible outcomes for Sn are as follows: $Sn = \{1, 2, 3, 4\}$. From here we can deduct our probabilities as follows:

Sn	Probability	Percentage
1	0.0833	8.33 %
2	0.3333	33.33~%
3	0.3333	33.33~%
4	0.2500	25~%

Table 6: Probability Table for Unique Outcomes Sn = Y - X.

Let me know what you think.