

Pipeline per l'estrazione di virus da dati metagenomici correlati ad IBS

Pillole teoriche

La sindrome dell'intestino irritabile (IBS) è un disturbo gastrointestinale prolungato e invalidante con un tasso di incidenza del 11% nel mondo.

Tra le possibili cause: stress, dieta, alterazioni del microbioma intestinale

La metagenomica è lo studio del materiale genetico recuperato direttamente da campioni ambientali o clinici mediante un metodo chiamato sequenziamento

L'allineamento di sequenze è una procedura bioinformatica con cui vengono messe a confronto ed allineate due o più sequenze di aminoacidi, DNA o RNA.

Utilizzato da BowBin per allineare reads metagenomiche con scaffolds virali.

La **coverage table** è caratterizzata, oltre ai dati degli scaffolds, come : nome, lunghezza ... anche dalla media e dalla deviazione standard per ogni file.

scaffoldName	scaffoldLen	totalAvgDepth	file1.sort.bam	file1.sort.bam.var	file2.sort.bam	file2.sort.bam.var
nome1	IIIIIII	M1 + M2	M1	V1	M2	V2
nome2	IIIIII	M'1 + M'2	M'1	V'1	M'2	V'2
nome3	IIIIIII	M"1 + M"2	M"1	V"1	M"2	V"2
nome4	IIIIII	M""1 + M""2	M""1	V""1	M'''2	V""2

Il **binning** è il processo di raggruppamento di reads, contigs o scaffolds e di assegnazione a singoli genomi .

Problema

Scendiamo nel dettaglio

OPPURE

Bacteria:

10¹¹ cfu g¹ faeces, 27% of stool dry mass, ~4x10¹³ (~0.2 kg) total ~93% of total DNA, (Sender et al., 2016)

Protista:

Unknown N of cells, ~0.2% of total DNA (Arumugam et al., 2011)

Gruppi tassonomici nell'intestino umano

Batteri 93,1%

Archaea:

00

10⁸ - 10¹⁰ cfu g⁻¹ faeces, ~0.8% of total DNA (Wampach et al., 2017)

Fungi:

10² - 10⁶ cfu g¹ faeces ~0.1% of total DNA (Huseyin et al., 2017) cfu g⁻¹ indica milioni di unità che formano colonie per grammo VLP g⁻¹ indica milioni di particelle virus-like per grammo

OBIETTIVO

Pertanto abbiamo deciso, partendo da un metagenoma, di estrarne i virus e classificarli mediante dei tools che formeranno la nostra pipeline: BowBin.

Soluzione Tools

SOLUZIONE

Nel corso degli anni il machine learning ha contribuito allo sviluppo della classificazione dei virus, mediante l'utilizzo di tools specifici al problema.

Il primo passaggio identifica le reads virali nel campione metagenomico con Magic-BLAST, che consente questo passaggio senza dover scaricare il set di dati metagenomici (spesso piuttosto grandi).

Le reads grezze estratte vengono assemblate in contigs utilizzando MEGAHIT.

Una volta assemblate sono annotate per geni da – Glimmer.

MEGAHIT -=== -

Dopo l'annotazione, l'algoritmo Building Up Domains (BUD) consente di estendere i contigs in base alla sovrapposizione delle reads.

Bowtie2

Bowtie 2 è un tool ultraveloce ed efficiente in termini di memoria per allineare le reads di sequenziamento a lunghe sequenze di riferimento, nel nostro caso a scaffolds.

Prende in input un indice Bowtie2 e una serie di reads del sequenziamento e restituisce una serie di allineamenti in formato SAM.

SAMtools

SAMtools è un insieme di utilità per l'interazione e la post-elaborazione di allineamenti di reads di brevi sequenze di DNA nei formati SAM (Sequence Alignment/Map) e BAM (Binary Alignment/Map).

Metabat

Metabat è pensato per il raggruppamento di grandi frammenti genomici assemblati da sequenze metagenomiche consentendo lo studio dei singoli organismi e delle loro interazioni.

Nel nostro caso Viene utilizzato "jgi_summarize_bam_contig_depths" di Metabat2 che, dato in input il file BAM ordinato, genera la coverage table e la salva nel file depth.txt

C = # Area coperta dalle reads #Scaffold area

vRhyme

vRhyme è un tool per il binning di genomi dei virus partendo da metagenomi.

Pipeline BowBin

Pipeline

Pipeline

Pipeline Virus STEP 2 Indice Bowtie2 STEP 2 Metagenoma allineamento ₩ ₩ ₩ Indice Bowtie2 SAM 介介介 A-C

Pipeline STEP 3 SAM BAM STEP 3 SORT BAM **BAM**

Pipeline

Pipeline Script di vRhyme: covarege_table_convert.py **Coverage table** File depth PY **TSV TXT** STEP 5 Virus **Binning** Coverage table TSV **TSV**

INVECE NON E' ANDATA PROPRIO COSI

Problemi della Pipeline

Problemi della Pipeline

Risoluzione dei problemi

Oltre a provare ulteriori tools con problematiche analoghe a quelle di ViruSpy o per eccessiva capacità di archiviazione richiesta, abbiamo deciso di prendere direttamente i virus completi

Risoluzione dei problemi

BinSanity

BinSanity contiene una suite di script progettati per raggruppare i contig generati dall'assemblaggio metagenomico in presunti genomi.

Risoluzione dei problemi

New Pipeline

Scendiamo nel dettaglio...

Adattamento dei dati

Adattamento dei dati Script remove_rows_tsv **Coverage table Coverage table TSV TSV** STEP 5 Virus Binning Coverage table TSV TSV

Analisi dei risultati

Risultati

Nome virus	Numero scaffolds	Lineage
Achromobacter Phage vB_AchrS_AchV4	12	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Casjensviridae; Gediminasvirus; Gediminasvirus AchV4
CrAssphage cr7_1	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Crassvirales; Suoliviridae; Oafivirinae; Burzaovirus; Burzaovirus coli
Lactococcus phage phiQ1	6	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Teubervirus; Teubervirus Q1
Lactococcus phage 16802	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Skunavirus; Skunavirus sv16802
Xanthomonas phage f20-Xaj	2	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Autographiviridae; Pradovirus; Pradovirus f20
Shigella phage SfII	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Myoviridae; unclassified Myoviridae
Enterobacteria phage AR1	2	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Straboviridae; Tevenvirinae; Tequatrovirus; Tequatrovirus ar1
Clostridium phage phiCD38-2	3	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Leicestervirus; Leicestervirus CD382

Nome virus	Numero scaffolds	Lineage
Achromobacter phage vB_AchrS_AchV4	3	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Casjensviridae; Gediminasvirus; Gediminasvirus AchV4
Lactococcus phage phiQ1	3	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Teubervirus; Teubervirus Q1
Enterobacteria phage AR1	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Straboviridae; Tevenvirinae; Tequatrovirus; Tequatrovirus ar1
Clostridium phage phiCD38-2	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Leicestervirus; Leicestervirus CD382

Risultati

Nome virus	Numero scaffolds	Lineage
Achromobacter Phage vB_AchrS_AchV4	8	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Casjensviridae; Gediminasvirus; Gediminasvirus AchV4
Lactococcus phage fd13	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Skunavirus; Skunavirus fd13
Lactococcus phage phiQ1	11	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Teubervirus; Teubervirus Q1
Lactococcus phage 56003	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Skunavirus; Skunavirus sv56003
Lactococcus Phage ASCC281	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Skunavirus; Skunavirus ASCC281
Xanthomonas phage f20-Xaj	5	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Autographiviridae; Pradovirus; Pradovirus f20
Enterobacteria phage AR1	2	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Straboviridae; Tevenvirinae; Tequatrovirus; Tequatrovirus ar1

Nome virus	Numero scaffolds	Lineage
Achromobacter Phage vB_AchrS_AchV4	3	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Casjensviridae; Gediminasvirus; Gediminasvirus AchV4
CrAssphage cr56_1	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Crassvirales; Suoliviridae; Oafivirinae; Burzaovirus; Burzaovirus faecalis
Lactococcus phage phiQ1	5	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Teubervirus; Teubervirus Q1
Lactococcus phage 13w11L	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Skunavirus; Skunavirus sv13w11L
Lactococcus phage 16802	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Skunavirus; Skunavirus sv16802
Lactococcus phage CHPC965	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Skunavirus; Skunavirus CHPC965
Xanthomonas phage f20-Xaj	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Autographiviridae; Pradovirus; Pradovirus f20

Nome virus	Numero scaffold s	Lineage
Achromobacter Phage vB_AchrS_AchV4	5	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Casjensviridae; Gediminasvirus; Gediminasvirus AchV4
Enterobacteria phage AR1	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Straboviridae; Tevenvirinae; Tequatrovirus; Tequatrovirus ar1
Clostridium phage phiCD38-2	2	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Leicestervirus; Leicestervirus CD382

Risultati

Nome virus	Numero scaffolds	Lineage
Achromobacter Phage vB_AchrS_AchV4	2	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Casjensviridae; Gediminasvirus; Gediminasvirus AchV4
Lactococcus phage phiQ1	6	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Teubervirus; Teubervirus Q1
Lactococcus phage 936 group phage PhiL.6	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Skunavirus; Skunavirus L6
Xanthomonas phage f20-Xaj	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Autographiviridae; Pradovirus; Pradovirus f20
Enterobacteria phage AR1	2	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Straboviridae; Tevenvirinae; Tequatrovirus; Tequatrovirus ar1

Nome virus	Numero scaffolds	Lineage
Achromobacter Phage vB_AchrS_AchV4	6	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Casjensviridae; Gediminasvirus; Gediminasvirus AchV4
Lactococcus phage fd13	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Skunavirus; Skunavirus fd13
Lactococcus phage phiQ1	24	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Teubervirus; Teubervirus Q1
Lactococcus phage 16802	1	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Skunavirus; Skunavirus sv16802
Xanthomonas phage f20-Xaj	4	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Autographiviridae; Pradovirus; Pradovirus f20
Enterobacteria phage AR1	4	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Straboviridae; Tevenvirinae; Tequatrovirus; Tequatrovirus ar1
Clostridium phage phiCD38-2	2	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Leicestervirus; Leicestervirus CD382

Genome Detective

Genome Detective

La pipeline di Genome Detective di è progettata per identificare e classificare in modo rapido e accurato i virus presenti in dati NGS.

ERR5084065 & ERR5084067 & ERR5084069 & ERR5084070

VS

Genome Detective

- Lactococcus phage 936 group phage PhiB1127
- Lactococcus phage 936 group phage Phi91127
- Lactococcus lactis phage p272
- Lactococcus phage LP9207
- Skunavirus sv3R16S
- Skunavirus sv30804
- Skunavirus sv16802
- Lactococcus phage CB19
- Lactococcus phage R31
- Lactococcucs phage CB20
- Leuconostoc phage phiLN6B
- Leuconostoc phage Lmd1
- Salmonella phage vB_SenS_Sasha
- Streptococcus phage YMC-2011

Virus uguali

ERR5084065 & ERR5084067 & ERR5084069 & ERR5084070 vs

Genome Detective

Genome Detective

BinSanity

CrAss-like virus sp. Burzaovirus Faecalis Brigitvirus Brigit

Taranisvirus Taranis

Skunavirus fd13

Toutatisvirus Toutatis

CrAssphage 50_1 - 10_1 - 4_1 - 6_1 - 114_1 - 125_1

CrAssphage cr7_1

Faecalibacterium phage FP_Brigit

Faecalibacterium phage FP_Taranis

Lactococcus phage fd13

Faecalibacterium phage FP_Toutatis

Conclusioni

Conclusioni

Scalabilità: oltre all'estrazione di virus dai dati metagenomici permette l'estrazione di batteri, funghi e di qualsiasi altro regno.

Velocità : grazie a bowtie2 l'esecuzione dell'allineamento è rapida

Limitatezza : pochi virus a disposizione

Implementazioni future

Migliorare la fase di pre-processing, ad esempio inserire la fase di trimming

Uno script per l'invocazione automatica dei vari tools.

Utilizzare hardware più potente per avere una maggiore potenza computazionale e quindi poter disporre di più virus

GRAZIE A TUTTI PER L'ATTENZIONE