

It's complicated — Insights into models and privacy guarantees of synthetic data.

Prof. Dr. Jörg Drechsler, Dr. Jonathan Latner & Dr. Marcel Neunhoeffer, E-Mail: marcel.neunhoeffer@iab.de

What are synthetic data?

Two perspectives on synthetic data:

1. Generating synthetic data is easy.

More and more commercial vendors and software packages to generate synthetic data on the "market". For example:

- Gretel.ai: "The synthetic data platform for developers. Generate artificial datasets with the same characteristics as real data, so you can develop and test AI models without compromising privacy."
- Mostly.ai: "Synthetic Data. Better than real. Still struggling with real data? Use existing data for synthetic data generation. Synthetic data is more accessible, more flexible, and simply...smarter."

2. Generating synthetic data is hard.

- See, e.g., the report of the Alan Turing Institute (Jordan et al. 2022): "Significant care is required to produce synthetic data that is useful and comes with privacy guarantees."
- There is a trade-off between utility/quality of synthetic data and privacy guarantees.
 - From a statistical perspective, synthetic data cannot be used to protect privacy and as an equivalent substitute for original data.

Can traditional synthetic data generators satisfy formal privacy guarantees?

- Traditionally, synthetic data are generated to protect privacy.
- **However**, models to generate synthetic data **do not** automatically satisfy formal privacy guarantees.
- There is relatively little research into whether and how traditional statistical disclosure control (SDL) methods satisfy formal privacy guarantees.
 - First results on SDL methods like swapping show that traditional models can satisfy differential privacy (see Bailie, Gong & Meng 2023).
 - We want to analyze if and under what conditions parametric synthetic data generators can satisfy differential privacy guarantees.

What is Differential Privacy?

- Differential Privacy (Dwork, McSherry, Nissim & Smith 2006) is a formal privacy guarantee.
- "A randomized algorithm M is differentially private if for every pair of neighboring datasets $X, X' \in \mathcal{X}^n$, the random variables M(X) and M(X') are similarly distributed."

It's complicated...

- One real data set
 - We use real data with all of its quirks for our evaluation.
- Here the Social Diagnosis 2011 data set.
- Three different synthetic data generators
 - DataSynthesizer (Ping, Stoyanovich & Howe 2017)
 - CTGAN (Xu, Skoularidou, Cuesta-Infante & Veeramachaneni 2019)
 - Synthpop (Nowok, Raab & Dibben 2016)
- Four quality measures

Confidence Interval Overlap

Computational Efficiency

29. Walling 21. Sales of the Wild Control of t

Our conclusion: Generating synthetic data is easier than ever. **But**, to generate good synthetic data, scientists need to have a detailed understanding how and for what purpose the synthetic data are generated.

First Results

We start with a very simple case: Generating synthetic data from a sample from a univariate normal distribution with known variance using a normal synthetic data generator.

In this case, we can show that releasing synthetic data is equivalent to noise addition with a ρ -zCDP (Bun & Steinke 2016) guarantee (i.e., noise addition with a Gaussian mechanism).

Noise Addition

$$\tilde{x} \sim \bar{x} + \mathcal{N}(0, \frac{\Delta^2}{2\rho})$$

Synthetic Data
$$\sigma^2$$

 $\tilde{x}\sim \bar{x}+\mathcal{N}(0,\frac{\sigma^2}{n_{synth}})$ les n_{synth} can be set such that the

This means, that the number of synthetic samples n_{synth} can be set such that the synthetic data satisfies a ρ -zCDP guarantee by:

$$n_{synth} = \left[\frac{2\rho\sigma^2}{\Lambda^2}\right]$$

Two observations:

- 1. To satisfy formal privacy guarantees, the sensitivity (Δ^2) of the sufficient statistics must be bounded.
- 2. The number of synthetic samples is the privacy parameter. Releasing multiple/more synthetic data samples weakens the privacy guarantee.

Next steps: Moving to the case with unknown variance makes things more complicated (but can be done).

Our conclusion: Under certain conditions, traditional synthetic data generators (here: parametric models) can satisfy differential privacy guarantees.

