Penalizations L^1 and L^2

1 Warm-up

Consider a model given by

$$Y = X\theta_* + \varepsilon$$
.

where $X \in \mathbb{R}^{n \times d}$ and $\varepsilon \sim \mathcal{N}(0, \sigma_*^2 I_n)$. The Ridge estimator is defined for all $\lambda > 0$ by:

$$\widehat{\theta}_{\lambda} \in \operatorname{Argmin}_{\theta \in \mathbb{R}^d} \mathcal{L}(\theta) \quad \text{with} \quad \mathcal{L}(\theta) = \|Y - X\theta\|_2^2 + \lambda \|\theta\|_2^2.$$

For all $\lambda > 0$, the excess risk is given by

$$\begin{split} \mathbb{E}\left[\mathsf{R}(\widehat{\theta}_{n,\lambda}^{\mathrm{ridge}}) - \mathsf{R}(\theta_{\star})\right] &= \lambda^{2}\theta_{\star}^{\top} \left(\frac{1}{n}X^{\top}X + \lambda I_{d}\right)^{-2} \frac{1}{n}X^{\top}X\theta_{\star} \\ &\quad + \frac{\sigma_{\star}^{2}}{n}\mathrm{Trace}\left((n^{-1}X^{\top}X)^{2}(n^{-1}X^{\top}X + \lambda I_{d})^{-2}\right) \,. \end{split}$$

1. Prove that

$$\mathbb{E}\left[\mathsf{R}(\widehat{\theta}_n^{\mathrm{ridge}}) - \mathsf{R}(\theta_\star)\right] \leqslant \frac{\lambda}{2} \|\theta_\star\|_2^2 + \frac{\sigma_\star^2}{2n\lambda} \mathrm{Trace}\left(n^{-1}X^\top X\right) \,.$$

2. Propose an "optimal" value for λ and compute the associated excess risk.

2 Elastic-Net

Consider a model given by

$$Y = X\theta_* + \varepsilon,$$

where $X \in \mathbb{R}^{n \times d}$ and $\varepsilon \sim \mathcal{N}(0, \sigma_*^2 I_n)$. The Elastic-Net estimator involves both L¹ and L² penalties. It is defined for all $\lambda, \mu > 0$ by:

$$\widehat{\theta}_{\lambda,\mu} \in \operatorname{Argmin}_{\theta \in \mathbb{R}^d} \mathcal{L}(\theta) \quad \text{with} \quad \mathcal{L}(\theta) = \|Y - X\theta\|_2^2 + \lambda \|\theta\|_2^2 + \mu \|\theta\|_1.$$

In the following, we assume that for all $1 \le j \le d$, the j-th column of X satisfies $\|\mathbf{X}_j\|_2 = 1$.

- 1. For all $1 \leq j \leq d$ provide the partial derivative of \mathcal{L} with respect to θ_j for $\theta_j \neq 0$.
- 2. Provide an expression of the answer of the first question with $R_j = \mathbf{X}_i^{\top} (Y \sum_{k \neq j} \theta_k \mathbf{X}_k)$.
- 3. Assume that θ_k , $1 \leq k \neq j \leq d$ are fixed and assume that the minimum of $\theta_j \mapsto \mathcal{L}(\theta)$ is reached at a $\theta_j \neq 0$. Prove that the sign of θ_j is the same as the signe of R_j and conclude.
- 4. Provide an algorithm to obtain an approximation of $\widehat{\theta}_{\lambda,\mu}$.