Lecture 39 Sampling Distribution For Coefficients In Simple Linear Regression

BIO210 Biostatistics

Xi Chen Spring, 2025

School of Life Sciences
Southern University of Science and Technology

Summary of Simple Linear Regression Using OLS

Population regression line: $\mathbb{E}\left[\boldsymbol{Y}|\boldsymbol{X}\right] = \mu_{y|x} = \beta_0 + \beta_1 x$

Take a sample to make estimate β_0 and β_1 using OLS:

$$\hat{y} = \hat{\mu}_{y|x} = \hat{\beta_0} + \hat{\beta_1}x$$
, where $\hat{\beta_1} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$, $\hat{\beta_0} = \bar{y} - \hat{\beta_1}\bar{x}$

Sampling Distribution of The Coefficients in OLS

Population regression line: take a sample OLS regression line:
$$\mathbb{E}\left[\boldsymbol{Y}|\boldsymbol{X}\right] = \mu_{y|x} = \beta_0 + \beta_1 x$$

$$\hat{\mu}_{y|x} = \hat{\beta}_0 + \hat{\beta}_1 x$$

 $\hat{\mu}_{u|x}, \hat{eta_0}, \hat{eta_1}$ have nice distributions

$$\hat{\boldsymbol{\beta_0}} \sim \mathcal{N}\left(\beta_0, \frac{\sigma_{\epsilon}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \cdot \frac{\sum_{i=1}^n x_i^2}{n}\right)$$

$$\hat{\boldsymbol{\beta_1}} \sim \mathcal{N}\left(\beta_1, \frac{\sigma_{\epsilon}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)$$

$$\hat{\boldsymbol{\mu}}_{\boldsymbol{y}|\boldsymbol{x}} \sim \mathcal{N}\left(\mu_{\boldsymbol{y}|\boldsymbol{x}}, \sigma_{\epsilon}^2 \cdot \left[\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right]\right)$$

Sampling Distribution of The Coefficients in OLS - Example

Population regression line:

$$F = \beta_0 + \beta_1 \cdot C$$

$$\beta_0 = 32$$

$$\beta_1 = 1.8$$

$$\sigma_{\epsilon}^2 = 4$$

$$\sigma_{\epsilon}^2 = 4$$

Sampling Distribution of The Coefficients in OLS - Example

95% Confidence Interval for $\hat{\mu}_{y|x}$

 $F = 34.85 + 1.69 \cdot C$ 95% confidence interval of $\mathbb{E}\left[F|C\right]$

What Is σ_{ϵ}^2 ?

$$\hat{\beta}_0 \sim \mathcal{N}\left(\beta_0, \frac{\sigma_{\epsilon}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \cdot \frac{\sum_{i=1}^n x_i^2}{n}\right)$$

$$\hat{\beta}_1 \sim \mathcal{N}\left(\beta_1, \frac{\sigma_{\epsilon}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)$$

$$\hat{\mu}_{y|x} \sim \mathcal{N}\left(\mu_{y|x}, \frac{\sigma_{\epsilon}^2}{\sigma_{\epsilon}^2} \cdot \left[\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right]\right)$$

In reality, we rarely know σ_{ϵ}^2 , what is the best estimate for σ_{ϵ}^2 ?

$$s_y^2 = \frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}?$$

good estimate for the variance of the entire population of y, not for σ_ϵ^2

We denote the best estimate for $\sigma^2_{\pmb{\epsilon}}$ as $s^2_{\pmb{\epsilon}}$. Since $\sigma^2_{\pmb{\epsilon}} = \mathbb{V}\mathrm{ar}\,(\pmb{\epsilon}|x)$, intuitively, we should use:

$$s_{\epsilon}^2 = MSE = \frac{SSE}{n-2} = \frac{\sum_{i=1}^{n} (y_i - \hat{y_i})^2}{n-2}$$

When using s_{ϵ}^2 to estimate σ_{ϵ}^2 , we introduce some error, those distributions become t_{n-2}

Is There A Linear Relationship Between x And y?

$$H_0$$
: no linear relationship H_1 : some linear relationsh

Use Pearson's
$$r: \frac{H_0: \rho = 0}{H_1: \rho \neq 0} \quad \frac{r}{\sqrt{(1-r^2)/(n-2)}} \sim t_{n-2}$$

$$\begin{cases} \text{Use Pearson's } r: \frac{H_0: \rho = 0}{H_1: \rho \neq 0} \quad \frac{r}{\sqrt{(1-r^2)/(n-2)}} \sim \boldsymbol{t}_{n-2} \\ \\ H_0: \text{ no linear relationship} \\ H_1: \text{ some linear relationship} \end{cases}$$
 Use Regression slope
$$H_0: \beta_1 = 0 \quad \frac{\hat{\beta_1} - \beta_1}{\sqrt{\sum\limits_{i=1}^n (x_i - \bar{x})^2}} \sim \boldsymbol{t}_{n-2}$$

Use var. : H_0 : most var. is NOT explained by the regression H_1 : most var. is explained by the regression

$$\mathcal{F}(1,n-2)$$