Methods of Applied Mathematics

Homework 2 (Due on Friday, Sep 23)

Wenhao Wang CAM Program

Exercise 1.4

10. A topology τ on X makes $F: X \to \mathbb{R}$ continuous iff

$$\{F^{-1}(U)\subset X:U \text{ is an open set in }\mathbb{R}\}\subset \tau.$$

where $\tau_1 = \{F^{-1}(U) \subset X : U \text{ is an open set in } \mathbb{R} \}$ is the weakest one, and the discrete topology $\tau_2 = \mathcal{P}(X)$ is the strongest one.

- **12. Proof:** Let $f: X \to Y$ be continuous, and $A \subset X$ is compact. If $\{E_{\alpha}\}_{{\alpha} \in I}$ is an open cover of f(A)
 - $\Rightarrow f(A) \subset \bigcup_{\alpha \in I} E_{\alpha};$
 - $\Rightarrow A \subset \bigcup_{\alpha \in I} f^{-1}(E_{\alpha});$
- $\Rightarrow \exists \alpha_1, \alpha_2, \cdots, \alpha_n \in I \text{ such that } A \subset \bigcup_{i=1}^n f^{-1}(E_{\alpha_i}) \text{ (since } A \text{ is compact)};$
 - $\Rightarrow f(A) \subset \bigcup_{i=1}^n E_{\alpha_i};$
 - $\Rightarrow f(A)$ is compact.
- 14. Proof: According to the conclusion of Problem 12, we have $f(X) \subset \mathbb{R}$ is compact
- $\Rightarrow f(X) \subset \mathbb{R}$ is a bounded closed set (we know it from Mathematical Analysis);
 - \Rightarrow f takes on its maximum and minimum values.
 - 16. Proof (a): Let $U \subset \mathbb{R}$ be an open set.
 - $\Rightarrow g^{-1}(U) \subset \mathbb{R}$ is an open set (since g is continuous);
- \Rightarrow $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) \subset \mathbb{R}^d$ is measurable (since f is measurable);
 - $\Rightarrow g \circ f$ is measurable.

Proof (b): Let $U \subset \mathbb{R}$ be an open set.

Since $f:\Omega\to\mathbb{R}^d$ is continuous

- $\Rightarrow f^{-1}(U) \subset \Omega$ is an open set;
- $\Rightarrow \exists$ an open set $V \subset \mathbb{R}^d$ such that $V \cap \Omega = f^{-1}(U)$;
- $\Rightarrow f^{-1}(U)$ is measurable (since Ω and V are measurable in \mathbb{R}^d);
- $\Rightarrow f: \Omega \to \mathbb{R}$ is measurable.
- 17. Proof: First of all, $0 \le d_x \le 1$. We only need to test the countable addition. Let $A_n \in \mathcal{B}$ $(n \in \mathbb{N})$ are disjoint, we have

If all $A_n \ni x$, then

$$d_x(\bigcup_{n=1}^{\infty} A_n) = 0 = \sum_{n=1}^{\infty} d_x(A_n);$$

If there is some $A_{n_0} \ni x$, then

$$d_x(\bigcup_{n=1}^{\infty} A_n) = 1 = d_x(A_{n_0}) = \sum_{n=1}^{\infty} d_x(A_n).$$

Any way, we have

$$d_x(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} d_x(A_n),$$

which means that d_x is a measure on \mathcal{B} .

Prove LEMMA 1.42 (Chebyshev's Inequality)

Proof: Since $f \geq 0$, we have

$$\begin{split} \int_{\Omega} f(x) dx &\geq \int_{\{x \in \Omega: f(x) > \alpha\}} f(x) dx \geq \alpha \int_{\{x \in \Omega: f(x) > \alpha\}} 1 dx \\ &= \alpha \mu(\{x \in \Omega: f(x) > \alpha\}) \end{split}$$

Therefore,

$$\mu(\lbrace x \in \Omega : f(x) > \alpha \rbrace) \le \frac{1}{\alpha} \int_{\Omega} f(x) dx.$$