Spring 2012: Geometry/Topology Graduate Exam

Peter Kagey

April 30, 2018

Problem 1. Prove that a compact manifold of dimension n cannot be immersed in \mathbb{R}^n .

Proof.

Problem 2. (Topology)

Proof. \Box

Problem 3. Let S be an oriented embedded surface in \mathbb{R}^3 and ω be an area form on S which satisfies $\omega(p)(e_1,e_2)=1$ for all $p\in S$ and any orthonormal basis (e_1,e_2) of T_pS with respect to the standard Euclidean metric on \mathbb{R}^3 . If (n_1,n_2,n_3) is the unit normal vector field of S, then prove that

$$\omega = n_1 dy \wedge dz - n_2 dx \wedge dz + n_1 dx \wedge dy,$$

where (x, y, z) are the standard Euclidean coordinates on \mathbb{R}^3 .

Proof. \Box

Problem 4. (Topology)

Proof. \Box

Problem 5. (Topology)

Proof.

Problem 6. Let $f: M \to N$ be a smooth map between smooth manifolds, X and Y be smooth vector fields on M and N respectively, and suppose that $f_*X = Y$.

Prove that $f^*(\mathcal{L}_Y\omega) = \mathcal{L}_X(f^*\omega)$, where ω is a 1-form on N. Here \mathcal{L} denotes the Lie derivative.

Proof.

Problem 7. (Geometry) Consider the linearly independent vector fields on $\mathbb{R}^4 - \{0\}$ given by:

$$X(x_1, x_2, x_3, x_4) = x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2} + x_3 \frac{\partial}{\partial x_3} + x_4 \frac{\partial}{\partial x_4}$$
$$Y(x_1, x_2, x_3, x_4) = -x_2 \frac{\partial}{\partial x_1} + x_1 \frac{\partial}{\partial x_2} - x_4 \frac{\partial}{\partial x_3} + x_3 \frac{\partial}{\partial x_4}.$$

Is the rank 2 distribution orthogonal to these two vector fields integrable? Here orthogonality is measured with respect to the standard Euclidean metric on \mathbb{R}^4 .

Proof.