PJJ

DJ Ilhan rmx

April 2, 2016

Solusi No 1 -

Solusi No 2 Misalkan G adalah $centroid \triangle ABC$. Mudah dilihat bahwa terdapat dilatasi f dengan pusat G dan faktor -2 yang membawa A'B'C' ke ABC. Sekarang, misalkan f(P') = Q. Maka PA : PB : PC = P'A' : P'B' : P'C' = QA : QB : QC.

 $Lemma\ 1$: Notasikan Osebagai titik pusat lingkaran luar ABC. MakaP,Q,Osegaris

Bukti: Karena PA:PB=QA:QB,maka Pdan Qkeduanya terletak pada lingkaran P-apollonius $\triangle APB.$ Analog, Pdan Qkeduanya terletak pada lingkaran P-apollonius $\triangle APC.$ Maka Pdan Qmerupakan titik perpotongan dari lingkaran P-apollonius $\triangle APB$ dan lingkaran P-apollonius $\triangle APC.$ Sekarang cukup dibuktikan bahwa kuasa dari O terhadap kedua lingkaran ini sama, sehingga O terletak pada radical axis kedua lingkaran ini, yakni PQ. Misal Xdan Ypada AB sehingga XYmerupakan diameter dari lingkaran P-apollonius $\triangle APB.$ Notasikan K sebagai titik pusat lingkaran ini. Maka karena $\frac{AX}{VB}=\frac{AY}{VB}$ diperoleh A,B,X,Y harmonik sehingga :

$$KA \times KB = KX^2$$

Maka lingkaran ini orthogonal dengan lingkaran luar $\triangle ABC$, sehingga kuasa O ke lingkaran P-apollonius segitiga APB ini adalah $OK^2 - KX^2 = R^2$. Analog, kuasa O ke lingkaran P-apollonius segitiga APC juga R^2 . Sehingga lemma terbukti. (R adalah OA = OB = OC)

Lebih jauh kita peroleh : $PA = P'A' = \frac{QA}{2}...(1)$. Sekarang akan dibuktikan

rasio $\frac{OP}{OQ}$ konstan. Sebelumnya sudah diperoleh $OA^2 = OP \times OQ$. Karena O, P, Q kolinear, maka diperoleh : $\triangle OPA \sim \triangle OAQ$. Sehingga : $\frac{OP}{OA} = \frac{OA}{OQ} = \frac{PA}{AQ}$. Ekspresi terakhir bernilai $\frac{1}{2}$ menurut ...(1), sehingga :

$$\frac{OP}{OA} = \frac{OA}{OQ} = \frac{1}{2} \rightarrow \frac{OP}{OQ} = \frac{1}{4}$$

Sekarang, misal PP' memotong OG di L. Dengan menggunakan Menelaus pada $\triangle OGQ$ dan transversal PLP' didapat : $\frac{OL}{LG}=1$. Maka PP' melewati titik tetap, yaitu titik tengah segmen OG. \square

Solusi No 3 -