Facultad de Ingeniería.

Examen de Matemática Discreta II

\ldots de diciembre de 2013

Número de Examen	Cédula	Nombre y Apellido

1. (*aa* **puntos**)

- a) Hallar todas las soluciones posibles con $a, b \in \mathbb{N}$ de
 - a + b = 1235
 - $\mod(a,b) = 714 \mod(a,b).$
- b) ¿Qué restos puede dejar un cubo perfecto al dividir entre (d-10)? (siendo $d=\operatorname{mcd}(a,b)$ de la parte anterior).
- c) Mostrar que la ecuación $x^3 117y^3 = 5$ no tiene soluciones enteras.

2. (bb puntos)

- a) Sea $f:(G_1,*) \longrightarrow (G_2,*)$ un morfismo de grupos. Definir $\operatorname{Ker}(f)$ y demostrar que $\operatorname{Ker}(f)$ es un subgrupo normal de G_1 .
- b) Sea R(x el grupo de las funciones racionales con el producto......
- c) Sea $f:(Z\!\!\!Z,+) \longrightarrow (Z\!\!\!Z,+)$ un morfismo de grupos,
 - i. Demostrar que $h: \mathbb{Z} \longrightarrow R(x)$, tal que $h(n) = x^{f(n)}$ es un morfismo de grupos.
 - ii. Hallar el Ker(h).
- d) Sabiendo que $h(-1) = \frac{1}{x^a}$ donde a es la menor raíz primitiva de U(17), describir el morfismo f.

3. (*cc* **puntos**)

- a) Mostrar que 3 es raíz primitiva módulo 31.
- b) Calcular $\sum_{i=0}^{309} 3^i \mod(31)$

4. (*dd* **puntos**)

- a) Describir el Criptosistema RSA.
- b) Definir la función dde desencriptado y demostrar que desencripta.