Unit-1 Number Systems Dr. Krishan Arora Asstt. Prof. and Head

Analog vs Digital

Analog signal are time varying

Analog devices accepts value across a continuous range

Digital signal is modeled as accepting only one of two discrete value. High '1' or Low '0'

Digital devices preferred over Analog

- Reproducibility of result
- > Ease of design
- Flexibility
- Programmability
- Processing speed
- > Economy
- Steadily advanced technology

Most common digital devices are Logic gate, Flip Flop

Number System and Code

Digital system process binary digits 0 and 1

Base 10 is important for everyday business

Base 2 is important for processing of digital circuit

Base 8 and Base 16 provide convenient shortened representation for multibit

number in a digital system

Binary	Decimal	Octal	3-Bit String	Hexadecimal	4-Bit String
0	0	0	000	0	0000
1	1	1	001	1	0001
10	2	2	010	2	0010
11	3	2	011	3	0011
100	4	4	100	4	0100
101	5	4 5	101	5	0101
110	6	6	110	6	0110
111	7	7	111	7	0111
1000	8	10		8	1000
1001	9	11	_	9	1001
1010	10	12	_	A	1010
1011	11	13		В	1011
1100	12	14	-	C	1100
1101	13	15	=	D	1101
1110	14	16	_	E	1110
1111	15	17	1 <u>1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1</u>	F	1111

Positional Number System

Digital system can understand positional number system

Value of a number is determined with help of digit, position of the digit in the number and base of the number system

Decimal positional number

$$(1234)_{10} = 1000 + 200 + 30 + 4$$

$$= (1 \times 1000) + (2 \times 100) + (3 \times 10) + (4 \times 1)$$

$$= (1 \times 10^{3}) + (2 \times 10^{2}) + (3 \times 10^{1}) + (4 \times 10^{0})$$

Each weight is a power of 10.

Decimal point allow negative as well as positive power of 10

$$(5185.68)_{10} = (5 \times 1000) + (1 \times 100) + (8 \times 10) + (5 \times 1) + (6 \div 10) + (8 \div 100)$$
$$= (5 \times 10^{3}) + (1 \times 10^{2}) + (8 \times 10^{1}) + (5 \times 10^{0}) + (6 \times 10^{-1}) + (8 \times 10^{-2})$$

In general a Number D in base r

$$D = a_n r^n + a_{n-1} r^{n-1} + \dots + a_2 r^2 + a_1 r^1 + a_0 r^0 + a_{-1} r^{-1} + a_{-2} r^{-2} + \dots + a_{-m} r^{-m}$$

Number conversion

Methods or techniques used to convert numbers from one base to another

Decimal to Other

- **Step 1** Divide the decimal number to be converted by the value of the other base.
- Step 2 Get the remainder from Step 1 as (least significant digit) of new base number
- **Step 3** Divide the quotient of the previous divide by the new base.
- **Step 4** Record the remainder from Step 3 as the next digit
- Repeat Steps 3 and 4, getting remainders until the quotient becomes zero
- The last remainder thus obtained will be the Most Significant bit(MSB) of the new base number.

Example

Integer part:

2	10	0	
2	5	1	
2	2	0	
	1		

(10)10 = (1010)2

Fractional part

(0.25)10 = (0.01)2

Decimal to Hexadecimal $(3509)_{10} = (DB5)_{16}$

$$Decimal to Octal$$
$$(569)_{10} = (1071)_{8}$$

Jr.	16	3509	5	ler
ivisor	16	219	11	Remainder
Div	16	13	13	Rem
	Ī	0	1	H
		Quotient	•	

8	569	Remainders	
8	71	1	\
8	8	7 [Read in
8	1	0	reverse order
	0	1	_

$$0.342_{10} = ?_8$$

 $0.342 \times 8 = 2.736 \ (.2_8)$
 $0.736 \times 8 = 5.888 \ (.25_8)$
 $0.888 \times 8 = 7.104 \ (.257_8)$
 $0.104 \times 8 = 0.832 \ (.2570_8)$
 $0.342_{10} \approx 0.2570_8$ it's an approximation

Other Base System to Decimal System

Step 1 – Determine positional value of each digit

Step 2 – Multiply the obtained position values by the digits in the corresponding columns.

Step 3 – Sum the products calculated in Step 2.

Binary Number - 111012

Calculating Decimal Equivalent -

Step	Binary Number	Decimal Number
Step 1	111012	$((1 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0))_{10}$
Step 2	111012	(16 + 8 + 4 + 0 + 1) ₁₀
Step 3	111012	29 ₁₀

Octal to Decimal

$$(2754)_8 = (2 \times 8^3) + (7 \times 8^2) + (5 \times 8^1) + (4 \times 8^4)$$
$$= 1024 + 448 + 40 + 4$$
$$= 1516_{10}$$

Hexadecimal to Decimal

$$(54.D2)^{16} = (5 \times 16^{1}) + (4 \times 16^{0}) + (13 \times 16^{-1}) + (2 \times 16^{-2})$$
$$= 80 + 4 + 0.8125 + 0.0078125$$
$$= 84.8203125_{10}$$

Binary to Octal

Step 1 – Divide the binary digits into groups of three (starting from the right).

Step 2 – Convert each group of three binary digits to one octal digit.

Binary Number - 10101₂

Calculating Octal Equivalent -

Step	Binary Number	Octal Number
Step 1	101012	010 101
Step 2	101012	28 58
Step 3	101012	258

Octal to Binary

Step 1 – Convert each octal digit to a 3 digit binary number.

Step 2 – Combine all the resulting binary groups (of 3 digits each) into a single binary number

Octal Number – 258

Calculating Binary Equivalent -

Step	Octal Number	Binary Number
Step 1	258	0102 1012
Step 2	258	0101012

Binary to Hexadecimal

Step 1 – Divide the binary digits into groups of four (starting from the right).

Step 2 – Convert each group of four binary digits to one hexadecimal symbol.

Binary Number - 10101₂

Calculating hexadecimal Equivalent -

Step	Binary Number	Hexadecimal Number
Step 1	101012	0001 0101
Step 2	101012	15 ₁₆

Hexadecimal to Binary

Step 1 – Convert each hexadecimal digit to a 4 digit binary number.

Step 2 – Combine all the resulting binary groups (4 digits each) into a single binary number.

Hexadecimal Number - 15₁₆

Calculating Binary Equivalent -

Step	Hexadecimal Number	Binary Number
Step 1	15 ₁₆	00012 01012
Step 2	15 ₁₆	000101012

Practice Question

$$if (25)x = (37)_{10}$$
 find x
 $2x + 5 = 37$
 $2x = 32$
 $x = 16$

Quick Quiz (Poll 1)

 $73_x = 54_y$ Possible value of x and y

- (A) 8, 16
- (B) 10, 12
- (C) 9, 13
- (D) 8, 11

Solution

Given
$$73_x = 54_y$$

 $7^*x^1 + 3^*x^0 = 5^*y^1 + 4^*y^0$
 $7x + 3 = 5y + 4$

put the value of option one by one and remember that base-value can't be less than given numbers in eq.

we are trying with option d

$$7*8 + 3 = 5*11 + 4$$

 $56 + 3 = 55 + 4$
 $59 = 59$, so ans is d.

Quick Quiz (Poll 2)

The representation of octal number (532.2)8 in decimal is _____

- a) (346.25)10
- b) (532.864)10
- c) (340.67)10
- d) (531.668)10

Answer: a

Explanation: Octal to Decimal conversion is obtained by multiplying 8 to the power of base index along with the value at that index position.

 $(532.2)8 = 5 * 8^2 + 3 * 8^1 + 2 * 8^0 + 2 * 8^{-1} = (346.25)10$

Practice Question

If
$$\sqrt{(41)_r} = (7)_{10}$$
 find value of r

H int s: ConvertLHS and RHS in same format

Square on both side

$$(41)_r = (49)_{10}$$

$$4r + 1 = 49$$

$$r = \frac{48}{4}$$

$$r = 12$$

Example

If
$$\sqrt{(224)_r} = (13)_r$$
 find value of r
 $(224)_r = 169_r$
 $2r^2 + 2r + 4 = r^2 + 6r + 9$
 $r^2 - 4r - 5 = 0$
 $r = 5, -1$
 $r = 5$

Practice Question