CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS – DES PREUVES HUMAINES FACILES

CHRISTOPHE BAL

Document, avec son source $L^{A}T_{E}X$, disponible sur la page https://github.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International ».

Table des matières

1.	Ce qui nous interesse	2
2.	Notations utilisées	2
3.	Les carrés parfaits	2
3.1.	. Structure	2
3.2.	. Distance entre deux carrés parfaits	3
4.	Avec 2 facteurs	3
5.	Avec 3 facteurs	3
6.	Avec 4 facteurs	4
7.	Avec 5 facteurs	4
8.	Avec 6 facteurs	4
9.	Avec 7 facteurs	5
10.	Avec 8 facteurs	6
11.	Avec 9 facteurs	7
12.	Avec 10 facteurs	8
13.	Avec 11 facteurs	9
14.	Avec 12 facteurs	10
15.	Avec 13 facteurs	10
16.	Sources utilisées	11

Date: 21 Fév. 2024.

1. CE QUI NOUS INTÉRESSE

Dans l'article « Note on Products of Consecutive Integers » 1 , Paul Erdős démontre que pour tout couple $(n,k) \in \mathbb{N}^* \times \mathbb{N}^*$, le produit de (k+1) entiers consécutifs $n(n+1) \cdots (n+k)$ n'est jamais le carré d'un entier. Plus précisément, l'argument général de Paul Erdős est valable pour $k+1 \geq 100$, soit à partir de 100 facteurs.

Dans ce document, nous donnes des preuves très simples de quelques cas particuliers.

Remarque 1.1. Dans mon document « Carrés parfaits et produits d'entiers consécutifs — Des solutions à la main » sont réunis d'autres preuves, plus ou moins efficaces, mais toutes intéressantes dans leur approche.

2. Notations utilisées

Dans la suite, nous emploierons les notations suivantes.

- $\forall (n,k) \in (\mathbb{N}^*)^2$, $\pi_n^k = \prod_{i=0}^{k-1} (n+i)$. Par exemple, $\pi_n^1 = n$, $\pi_n^2 = n(n+1)$ et $\pi_{n+2}^4 = (n+2)(n+3)(n+4)(n+5)$.
- ${}^{2}\mathbb{N} = \{n^{2}, n \in \mathbb{N}\}$ est l'ensemble des carrés parfaits. On note aussi ${}^{2}_{*}\mathbb{N} = {}^{2}\mathbb{N} \cap \mathbb{N}^{*}$. \mathbb{N}_{sf} est l'ensemble des naturels non nuls sans facteur carré 2 .
- \mathbb{P} désigne l'ensemble des nombres premiers. $\forall (p\,;n)\in\mathbb{P}\times\mathbb{N}^*\,,\,v_p(n)\in\mathbb{N}$ est la valuation p-adique de n, c'est-à-dire $p^{v_p(n)}\mid n$ et $p^{v_p(n)+1}\nmid n$, autrement dit $p^{v_p(n)}$ divise n, contrairement à $p^{v_p(n)+1}$.
- $\forall (n,m) \in \mathbb{N}^2$, $n \wedge m$ désigne le PGCD de n et m.
- $2 \mathbb{N}$ désigne l'ensemble des nombres naturels pairs. $2 \mathbb{N} + 1$ est l'ensemble des nombres naturels impairs.
- $(a \pm b)$ est un raccourci pour (a + b)(a b).

3. Les carrés parfaits

3.1. Structure.

Fait 3.1. $n \in {}_{*}^{2}\mathbb{N}$ si, et seulement si, $\forall p \in \mathbb{P}$, $v_{p}(n) \in 2\mathbb{N}$.

Démonstration. Immédiat à valider.

Fait 3.2. $\forall n \in {}^2_*\mathbb{N}$, s'il existe $m \in {}^2_*\mathbb{N}$ tel que n = fm alors $f \in {}^2_*\mathbb{N}$.

Démonstration. $\forall p \in \mathbb{P}$, $v_p(fm) \in 2\mathbb{N}$, $v_p(m) \in 2\mathbb{N}$ et $v_p(fm) = v_p(f) + v_p(m)$ donnent $v_p(f) \in 2\mathbb{N}$.

Fait 3.3. $\forall (a,b) \in \mathbb{N}^* \times \mathbb{N}^*$, si $a \wedge b = 1$ et $ab \in {}^2_*\mathbb{N}$, alors $a \in {}^2_*\mathbb{N}$ et $b \in {}^2_*\mathbb{N}$.

Démonstration. $\forall p \in \mathbb{P}$, $v_p(ab) \in 2\mathbb{N}$, et p ne peut diviser à la fois a et b, donc $\forall p \in \mathbb{P}$, $v_p(a) \in 2\mathbb{N}$ et $v_p(b) \in 2\mathbb{N}$, autrement dit $(a,b) \in {}_*^2\mathbb{N} \times {}_*^2\mathbb{N}$.

^{1.} J. London Math. Soc. 14 (1939).

^{2.} En anglais, on dit « square free ».

Fait 3.4. Soit $(a,b) \in \mathbb{N}^* \times \mathbb{N}^*$ tel que $ab \in {}^2_*\mathbb{N}$, ainsi que $(\alpha,\beta,A,B) \in (\mathbb{N}_{sf})^2 \times \mathbb{N}^2$ tel que $a = \alpha A^2$ et $b = \beta B^2$. Nous avons alors forcément $\alpha = \beta$.

Démonstration. Le fait 3.2 donne $\alpha\beta \in {}^2_*\mathbb{N}$. De plus, $\forall p \in \mathbb{P}$, nous avons $v_p(\alpha) \in \{0,1\}$ et $v_p(\beta) \in \{0,1\}$. Finalement, $\forall p \in \mathbb{P}$, $v_p(\alpha) = v_p(\beta)$, autrement dit $\alpha = \beta$.

3.2. Distance entre deux carrés parfaits.

Fait 3.5. Soit $(M, N) \in \mathbb{N}^* \times \mathbb{N}^*$ tel que N > M.

- (1) $N^2 M^2 > 2N 1$, d'où l'impossibilité d'avoir $N^2 M^2 < 3$.
- (2) Notons nb_{sol} le nombre de solutions $(M, N) \in \mathbb{N}^* \times \mathbb{N}^*$ de $N^2 M^2 = \delta$.

Pour $\delta \in [1; 10]$, nous avons:

- (a) $nb_{sol} = 0$ si $\delta \in \{1, 2, 4, 6, 10\}$.
- (b) $nb_{sol} = 1 \text{ si } \delta \in \{3, 5, 7, 8, 9\}$.

Par exemple, $N^2 - M^2 = 3$ uniquement si (M, N) = (1, 2).

Démonstration.

- (1) Comme $N-1 \ge M$, nous obtenons : $N^2-M^2 \ge N^2-(N-1)^2=2N-1$.
- (2) Nous avons $2N-1 \le \delta$, soit $N \le \frac{\delta+1}{2}$. Ceci permet de comprendre le programme Python donné dans la page suivante qui sert à obtenir facilement les nombres de solutions indiqués.

```
from math import sqrt, floor

# N**2 - M**2 = diff ?

def sol(diff):
    solfound = []

for N in range(1, (diff + 1) // 2 + 1):
    M_square = N**2 - diff

if M_square > 0:
    M = floor(sqrt(M_square))

if M != 0 and M**2 == M_square:
    solfound.append((M, N))
return solfound
```

4. Avec 2 facteurs

Fait 4.1. $\forall n \in \mathbb{N}^*, \ n(n+1) \notin {}^2\mathbb{N}$.

Preuve. Il suffit de noter que $n^2 < n(n+1) < (n+1)^2$.

5. Avec 3 facteurs

Fait 5.1. $\forall n \in \mathbb{N}^*, \ n(n+1)(n+2) \notin {}^2\mathbb{N}$.

Preuve. Supposons que $\pi_n^3 \in {}_*^2\mathbb{N}$.

Posons m=n+1 pour « symétriser » la formule. Ceci donne $\pi_n^3=(m-1)m(m+1)=m(m^2-1)$ où $m\in\mathbb{N}_{\geq 2}$. Comme $m\wedge(m^2-1)=1$, le fait 3.3 donne $(m,m^2-1)\in{}_*^2\mathbb{N}\times_*^2\mathbb{N}$. Or, $m^2-1\in{}_*^2\mathbb{N}$ est impossible d'après le fait 3.5.

6. Avec 4 facteurs

Fait 6.1.
$$\forall n \in \mathbb{N}^*, \ n(n+1)(n+2)(n+3) \notin {}^2\mathbb{N}$$
.

Preuve. En « symétrisant » la formule, nous obtenons les manipulations algébriques naturelles suivantes qui vont nous permettre de conclure

$$\pi_n^4 = n(n+1)(n+2)(n+3)$$

$$= \left(x \pm \frac{3}{2}\right)\left(x \pm \frac{1}{2}\right)$$

$$= \left(x^2 - \frac{9}{4}\right)\left(x^2 - \frac{1}{4}\right)$$

$$= (y \pm 1)$$

$$= (y \pm 1)$$

$$= y^2 - 1$$

$$= (n^2 + 3n + 1)^2 - 1$$

$$= m^2 - 1$$

$$y = (n + \frac{3}{2})^2 - \frac{5}{4} = n^2 + 3n + 1$$

$$= m^2 - 1$$

Comme m>0, $m^2-1\notin{}^2\mathbb{N}$ d'après le fait 3.5, donc $\pi_n^4\notin{}^2\mathbb{N}$.

7. Avec 5 facteurs

Fait 7.1.
$$\forall n \in \mathbb{N}^*, \ n(n+1)(n+2)(n+3)(n+4) \notin {}_*^2\mathbb{N}$$
.

La preuve suivante s'inspire directement d'une démonstration citée via une source dans un échange sur https://math.stackexchange.com (voir la section 16).

Preuve. Supposons que $\pi_n^5\in {}^2_*\mathbb{N}$.

Clairement, $\forall p \in \mathbb{P}_{\geq 5}$, $\forall i \in [0;4]$, $v_p(n+i) \in 2\mathbb{N}$. On doit donc s'intéresser à $p \in \{2,3\}$, mais on peut observer très grossièrement qu'au maximum deux facteurs (n+i) de π_n^5 sont divisibles par 3, donc au moins 3 facteurs sont de valuation p-adique paire dès que $p \in \mathbb{P}_{\geq 3}$. Ces facteurs vérifient alors l'une des deux alternatives suivantes, chacune d'elles levant une contradiction.

- Deux facteurs différents (n+i) et (n+i') sont de valuations 2-adiques impairs. Dans ce cas, $(n+i,n+i')=(2M^2,2N^2)$ avec $|2(N^2-M^2)|\in [1;4]$, c'est-à-dire $|N^2-M^2|\in \{1,2\}$, mais c'est impossible d'après le fait 3.5.
- Deux facteurs différents (n+i) et (n+i') sont de valuations 2-adiques pairs. Dans ce cas, $(n+i,n+i')=(M^2,N^2)$ avec $|N^2-M^2|\in [1;4]$, mais ceci n'est possible que si $|N^2-M^2|=3$ d'après le fait 3.5 qui donne aussi que soit (M,N)=(1,2), soit (M,N)=(2,1). Ceci impose d'avoir n=1, mais $\pi_1^5=5!\notin {}^2\mathbb{N}$ car $v_5(5!)=1$.

8. Avec 6 facteurs

Fait 8.1. $\forall n \in \mathbb{N}^*$, $\pi_n^6 \notin {}^2\mathbb{N}$.

La démonstration suivante se trouve dans l'article « Solution of a Problem » 3 de G. W. Hill et J. E. Oliver. Une petite simplification a été faite pour arriver à $\pi_n^6 = (a-4)a(a+2)$.

^{3.} The Analyst (1874).

Preuve. Supposons que $\pi_n^6 \in {}^2\mathbb{N}$.

Commençons par de petites manipulations algébriques où la première modification fait apparaître le même coefficient pour n dans chaque parenthèse.

$$\pi_n^6 = n(n+5) \cdot (n+1)(n+4) \cdot (n+2)(n+3)$$

$$= (n^2 + 5n)(n^2 + 5n + 4)(n^2 + 5n + 6)$$

$$= x(x+4)(x+6)$$

$$= (a-4)a(a+2)$$

$$x = n^2 + 5n \in \mathbb{N}_{\geq 6}$$

$$a = x+4 \in \mathbb{N}_{\geq 10}$$

Nous avons $a \in \mathbb{N}_{\geq 10}$ vérifiant $a(a+2)(a-4) \in {}_*^2\mathbb{N}$. Posons $a = \alpha A^2$ où $(\alpha, A) \in \mathbb{N}_{sf} \times \mathbb{N}^*$, de sorte que $\alpha(\alpha A^2 + 2)(\alpha A^2 - 4) \in {}_*^2\mathbb{N}$ via le fait 3.2. Or $\alpha \in \mathbb{N}_{sf}$ donne $\alpha \mid (\alpha A^2 + 2)(\alpha A^2 - 4)$, d'où $\alpha \mid 8$, et ainsi $\alpha \in \{1, 2\}^4$. Nous allons voir que ceci est impossible.

Supposons que $\alpha = 1$.

• Notons les équivalences suivantes.

$$(A^{2}+2)(A^{2}-4) \in {}_{*}^{2}\mathbb{N}$$

$$\iff (u+3)(u-3) \in {}_{*}^{2}\mathbb{N}$$

$$\iff u^{2}-9 \in {}_{*}^{2}\mathbb{N}$$

$$\downarrow u = A^{2}-1 \text{ où } -1 = \frac{2-4}{2}.$$

• Ensuite, prenant $m \in \mathbb{N}^*$ tel que $m^2 = u^2 - 9$, le fait 3.5 donne (u, m) = (5, 4) d'où la contradiction suivante.

$$u = 5 \iff A^2 - 1 = 5$$
$$\iff A^2 = 6$$
 \rightarrow 6 \neq 2 \mathbb{N} .

Supposons que $\alpha = 2$.

• Notons l'équivalence suivante.

$$2(2A^{2}+2)(2A^{2}-4) \in {}_{*}^{2}\mathbb{N} \iff 2(A^{2}+1)(A^{2}-2) \in {}_{*}^{2}\mathbb{N}$$
 $\bigvee Via \ 4 \cdot 2(A^{2}+1)(A^{2}-2) \ .$

• Ensuite, en travaillant modulo 3, nous avons $2(A^2+1)(A^2-2)\equiv -4\equiv -1$ qui ne correspond pas à un carré modulo 3.

9. Avec 7 facteurs

Fait 9.1.
$$\forall n \in \mathbb{N}^*, \ \pi_n^7 \notin {}^2\mathbb{N}$$
.

Pour la preuve suivante, nous reprenons l'idée de la démonstration du cas 12.1; nous indiquons juste les adaptations à faire en reprenant les notations de la preuve citée.

Preuve. Ici nous avons au moins 5 facteurs (n+i) de π_n^7 de valuation p-adique paire dès que $p \in \mathbb{P}_{\geq 5}$. Ceci nous amène aux cas suivants.

- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A}\,\mathbf{1}]$. Dans ce cas, $(n+i,n+i')=(M^2,N^2)$ avec $|N^2-M^2|\in [\![1\,;6]\!]$, mais ce qui suit lève des contradictions.
 - (1) $|N^2 M^2| = 3$ donne n = 1, mais $\pi_1^7 = 7! \notin {}^2\mathbb{N}$ via $v_7(7!) = 1$.
 - $(2)\ |N^2-M^2|=5\ \mathrm{donne}\ n\in \llbracket 2\,; 4\rrbracket\,,\, \mathrm{mais}\ \forall n\in \llbracket 2\,; 4\rrbracket\,,\, v_7(\pi_n^7)=1\ \mathrm{donne}\ \pi_n^7\notin {}^2\mathbb{N}\ .$

^{4.} On comprend ici le choix d'avoir $\pi_n^6 = (a-4)a(a+2)$.

- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A2}]$. Dans ce cas, $(n+i,n+i')=(3M^2,3N^2)$ avec $|3(N^2-M^2)|\in [1;6]$, mais c'est impossible d'après le fait 3.5.
- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A3}]$. Dans ce cas, $(n+i,n+i')=(2M^2,2N^2)$ avec $|2(N^2-M^2)|\in [1;6]$, puis nécessairement $|N^2-M^2|=3$ qui implique $n\in [1;2]$, mais on sait que cela est impossible.
- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A4}]$.

 Dans ce cas, $(n+i,n+i')=(6M^2,6N^2)$ avec $|6(N^2-M^2)|\in [1;6]$, mais c'est impossible d'après le fait 3.5.

10. Avec 8 facteurs

Fait 10.1. $\forall n \in \mathbb{N}^*, \ \pi_n^8 \notin {}^2\mathbb{N}$.

La démonstration très astucieuse suivante est proposée dans un échange sur https://math.stackexchange.com (voir la section 16). Comme pour le cas de quatre facteurs, l'algèbre va nous permettre d'aller très vite.

Preuve.

- L'une des preuves du fait 6.1 nous donne $n(n+1)(n+2)(n+3) = (n^2+3n+1)^2-1$. En particulier, $(n+4)(n+5)(n+6)(n+7) = (n^2+11n+29)^2-1$.
- L'idée astucieuse va être de considérer les deux expressions suivantes qui viennent de $\pi_n^8 = (f(n)^2 1)(g(n)^2 1)$.
 - (1) $f(n) = n^2 + 3n + 1$.
 - (2) $g(n) = n^2 + 11n + 29$.
- Nous avons les manipulations algébriques naturelles suivantes.

$$\begin{aligned} \pi_n^8 &= \left(f(n)^2 - 1 \right) \left(g(n)^2 - 1 \right) \\ &= (a^2 - 1)(b^2 - 1) \end{aligned} \quad \text{\Rightarrow $a = f(n)$ et $b = g(n)$.} \\ &= a^2b^2 - a^2 - b^2 + 1 \end{aligned} \quad \text{\Rightarrow $Choisir $(a - b)^2$ au lieu de $(a + b)^2$ va nous permettre,} \\ &= a^2b^2 - (a - b)^2 - 2ab + 1 \end{aligned} \quad \text{\Rightarrow $a = f(n)$ et $b = g(n)$.} \\ &= (ab - 1)^2 - (a - b)^2 - 2ab + 1 \end{aligned} \quad \text{\Rightarrow $a = f(n)$ et $b = g(n)$.} \\ &= (ab - 1)^2 - (a - b)^2 - 2ab + 1 \end{aligned} \quad \text{\Rightarrow $a = f(n)$ et $b = g(n)$.} \\ &= (ab - 1)^2 - (a - b)^2 - 2ab + 1 \end{aligned} \quad \text{\Rightarrow $a = f(n)$ et $b = g(n)$.} \\ &= (ab - 1)^2 - (a - b)^2 - 2ab + 1 \end{aligned} \quad \text{\Rightarrow $a = f(n)$ et $b = g(n)$.} \\ &= (ab - 1)^2 - (a - b)^2 - 2ab + 1 \end{aligned} \quad \text{\Rightarrow $a = f(n)$ et $b = g(n)$.} \\ &= (ab - 1)^2 - (a - b)^2 - 2ab + 1 \end{aligned} \quad \text{\Rightarrow $a = f(n)$ et $b = g(n)$.} \\ &= (ab - 1)^2 - (a - b)^2 - 2ab + 1 \end{aligned} \quad \text{\Rightarrow $a = f(n)$ et $b = g(n)$.} \\ &= (ab - 1)^2 - (a - b)^2 - 2ab + 1 \end{aligned} \quad \text{\Rightarrow $a = f(n)$ et $b = g(n)$.} \\ &= (ab - 1)^2 - (a - b)^2 - 2ab + 1 \end{aligned} \quad \text{\Rightarrow $a = f(n)$ et $b = g(n)$.} \\ &= (ab - 1)^2 - (a - b)^2 - 2ab + 1 \end{aligned} \quad \text{\Rightarrow $a = f(n)$ et $b = g(n)$.}$$

Donc $\pi_n^8 < (f(n)g(n) - 1)^2$.

• Le point précédent rend naturel de tenter de démontrer que $(f(n)g(n)-2)^2 < \pi_n^8$, car, si tel est le cas, π_n^8 sera encadré par les carrés de deux entiers consécutifs, et forcément nous aurons $\pi_n^8 \notin {}^2\mathbb{N}$. Ce qui suit montre que notre pari est gagnant dès que $n \geq 4$. Que c'est joli!

$$\begin{split} & \left(f(n)g(n)-2\right)^2 < \pi_n^8 \\ \iff & (ab-2)^2 < (a^2-1)(b^2-1) \end{split} \ \, \begin{array}{l} a=f(n) \ \ et \ b=g(n) \ . \\ \Leftrightarrow & a^2b^2-4ab+4 < a^2b^2-a^2-b^2+1 \\ \Leftrightarrow & a^2+b^2-4ab+3 < 0 \end{split}$$

Le site https://www.wolframalpha.com nous donne sans effort cognitif⁵ ce qui suit (les « transhumanophobes » se reporteront à la remarque 10.1 qui suit).

$$a^{2} + b^{2} - 4ab + 3$$

$$= -2(n^{2} + 7n)^{2} + 36(n^{2} + 7n) + 729$$

$$= -2m^{2} + 36m + 729$$

$$= -2(m - 9)^{2} + 891$$

$$m = n^{2} + 7n$$

Or, $n^2+7n-9=0$ admet pour pour unique racine positive $n=\frac{-7+\sqrt{85}}{2}\approx 1,1$, donc $a^2+b^2-4ab+3$ décroît en fonction de n à partir de n=2. Les calculs suivants donnent alors que $a^2+b^2-4ab+3<0$ pour $n\geq 4$.

• Nous venons de voir que $(ab-2)^2 < \pi_n^8 < (ab-1)^2$ sur $\mathbb{N}_{\geq 4}$, donc $\pi_n^8 \notin {}^2\mathbb{N}$ dès que $n \in \mathbb{N}_{\geq 4}$, mais pour $n \in \{1,2,3\}$, $v_7(\pi_n^8) = 1$ donne $\pi_n^8 \notin {}^2\mathbb{N}$, ce qui permet de conclure.

Remarque 10.1. Voici comment obtenir une preuve 100% non silliconé. Pour cela, commençons par les manipulations algébriques naturelles suivantes qui cherchent à obtenir le même coefficient pour n dans chaque parenthèse, tout en passant d'un polynôme de degré 8 à un polynôme de degré 4.

$$\pi_n^8 = n(n+7) \cdot (n+1)(n+6) \cdot (n+2)(n+5) \cdot (n+3)(n+4)$$

$$= (n^2 + 7n) \cdot (n^2 + 7n + 6) \cdot (n^2 + 7n + 10) \cdot (n^2 + 7n + 12)$$

$$= m(m+6)(m+10)(m+12)$$

$$\downarrow m = n^2 + 7n$$

Nous décidons d'offrir un 1^{er} rôle à la variable $m=n^2+7n$. Voyons où cela nous mène...

$$a^{2} + b^{2} - 4ab + 3$$

$$= a(a - 4b) + b^{2} + 3$$

$$= (m - 4n + 1)(-3m - 20n - 115) + (m + 4n + 29)^{2} + 3$$

$$= -3m^{2} - (8n + 118)m + (4n - 1)(20n + 115) + m^{2} + 2(4n + 29)m + (4n + 29)^{2} + 3$$

$$= -2m^{2} - 60m + 729 + 672n + 96n^{2}$$

$$= -2m^{2} - 60m + 729 + 96(n^{2} + 7n)$$

$$= -2m^{2} - 60m + 729 + 96m$$

$$= -2m^{2} + 36m + 729$$

$$= -2m^{2} + 36m + 729$$

11. Avec 9 facteurs

Fait 11.1. $\forall n \in \mathbb{N}^*, \ \pi_n^9 \notin {}^2\mathbb{N}$.

L'idée suivie est celle de la démonstration du cas 12.1; nous indiquons juste les adaptations à faire en reprenant les notations de la preuve citée.

Preuve. Ici nous avons au moins 5 facteurs (n+i) de π_n^9 de valuation p-adique paire dès que $p \in \mathbb{P}_{>5}$. Ceci nous amène aux cas suivants.

^{5.} Il faut vivre avec son temps...

- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A}\mathbf{1}]$. Dans ce cas, $(n+i,n+i')=(M^2,N^2)$ avec $|N^2-M^2|\in [1;8]$. Ce qui suit lève des contradictions.
 - (1) $|N^2 M^2| = 3$ donne n = 1, mais $\pi_1^9 = 9! \notin {}^2\mathbb{N}$ via $v_7(9!) = 1$.
 - (2) $|N^2 M^2| = 5$ donne $n \in [2; 4]$, mais $\forall n \in [2; 4]$, $v_7(\pi_n^9) = 1$ donne $\pi_n^9 \notin {}^2\mathbb{N}$.
 - (3) $|N^2 M^2| = 7$ donne $n \in [5; 9]$, mais $\forall n \in [5; 9]$, $v_{11}(\pi_n^9) = 1$ donne $\pi_n^9 \notin {}^2\mathbb{N}$.
 - (4) $|N^2 M^2| = 8$ donne n = 1, mais ceci est impossible.
- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A2}]$. Dans ce cas, $(n+i,n+i')=(3M^2,3N^2)$ avec $|3(N^2-M^2)|\in [1;8]$, mais c'est impossible d'après le fait 3.5.
- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A3}]$. Dans ce cas, $(n+i,n+i')=(2M^2,2N^2)$ avec $|2(N^2-M^2)|\in [1;8]$, puis nécessairement $|N^2-M^2|=3$ qui implique $n\in [1;2]$, mais on sait que cela est impossible.
- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A4}]$.

 Dans ce cas, $(n+i,n+i')=(6M^2,6N^2)$ avec $|6(N^2-M^2)|\in [1;8]$, mais c'est impossible d'après le fait 3.5.

12. Avec 10 facteurs

Fait 12.1. $\forall n \in \mathbb{N}^*, \ \pi_n^{10} \notin {}^2\mathbb{N}$.

La démonstration suivante, qui fait penser à la première preuve du fait 7.1, est citée via une source dans un échange sur https://math.stackexchange.com (voir la section 16).

Preuve. Supposons que $\pi_n^{10} \in {}_*^2\mathbb{N}$.

Clairement, $\forall p \in \mathbb{P}_{\geq 10}$, $\forall i \in [0; 9]$, $v_p(n+i) \in 2\mathbb{N}$. On doit donc s'intéresser à $p \in \{2, 3, 5, 7\}$. Voici ce que l'on peut observer très grossièrement.

- Au maximum deux facteurs (n+i) de π_n^{10} sont divisibles par 5.
- \bullet Au maximum deux facteurs (n+i) de π_n^{10} sont divisibles par 7 .
- Les points précédents donnent au moins 6 facteurs (n+i) de π_n^{10} de valuation p-adique paire dès que $p \in \mathbb{P}_{\geq 5}$.

Nous avons alors l'une des alternatives suivantes pour chacun des 6 facteurs (n+i) vérifiant $v_p(n+i) \in 2\mathbb{N}$ pour $p \in \mathbb{P}_{>5}$.

- [A1] $(v_2(n+i), v_3(n+i)) \in 2\mathbb{N} \times 2\mathbb{N}$
- [A2] $(v_2(n+i), v_3(n+i)) \in 2\mathbb{N} \times (2\mathbb{N}+1)$
- [A3] $(v_2(n+i), v_3(n+i)) \in (2\mathbb{N}+1) \times 2\mathbb{N}$
- [A4] $(v_2(n+i), v_3(n+i)) \in (2\mathbb{N}+1) \times (2\mathbb{N}+1)$

Comme nous avons six facteurs pour quatre alternatives, ce bon vieux principe des tiroirs va nous permettre de lever des contradictions.

- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A}\mathbf{1}]$.

 Dans ce cas, $(n+i,n+i')=(M^2,N^2)$ avec $(M,N)\in\mathbb{N}^*$. Par symétrie des rôles, on
 - pans ce cas, $(n+i, n+i) = (M^2, N^2)$ avec $(M, N) \in \mathbb{N}$. Par symetrie des roles, on peut supposer N > M, de sorte que $N^2 M^2 \in [1; 9]$. Selon le fait 3.5, seuls les cas suivants sont possibles mais ils lèvent tous une contradiction.
 - (1) $N^2 M^2 = 3$ avec (M, N) = (1, 2) est possible, mais ceci donne $n = 1^2 = 1$, puis $\pi_1^{10} = 10! \in {}^2\mathbb{N}$, or ceci est faux car $v_7(10!) = 1$.
 - (2) $N^2 M^2 = 5$ avec (M, N) = (2, 3) est possible d'où $n \in [1; 4]$. Nous venons de voir que n = 1 est impossible. De plus, pour $n \in [2; 4]$, $v_7(\pi_n^{10}) = 1$ montre que $\pi_n^{10} \in {}^2\mathbb{N}$ est faux.
 - (3) $N^2 M^2 = 7$ avec (M, N) = (3, 4) est possible d'où $n \in [1; 9]$, puis $n \in [5; 9]$ d'après ce qui précède. Mais ici, $\forall n \in [5; 9]$, $v_{11}(\pi_n^{10}) = 1$ montre que $\pi_n^{10} \in {}^2\mathbb{N}$ est faux.
 - (4) $N^2 M^2 = 8$ avec (M, N) = (1, 3) est possible d'où n = 1, mais ceci est impossible comme nous l'avons vu ci-dessus.
 - (5) $N^2-M^2=9$ avec (M,N)=(4,5) est possible d'où $n\in \llbracket 10\,;16\rrbracket$ d'après ce qui précède. Or $\forall n\in \llbracket 10\,;16\rrbracket$, $v_{17}(\pi_n^{10})=1$, donc $\pi_n^{10}\in {}^2\mathbb{N}$ est faux.
- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A2}]$. Dans ce cas, $(n+i,n+i')=(3M^2,3N^2)$ avec $(M,N)\in\mathbb{N}^*$. Par symétrie des rôles, on peut supposer N>M, de sorte que $3(N^2-M^2)\in \llbracket 1\,; 9 \rrbracket$, puis $N^2-M^2\in \llbracket 1\,; 3 \rrbracket$. Selon le fait 3.5, nécessairement $N^2-M^2=3$ avec (M,N)=(1,2), d'où $n\in \llbracket 1\,; 3 \rrbracket$, mais on sait que cela est impossible.
- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A}\,\mathbf{3}]$. Dans ce cas, $(n+i,n+i')=(2M^2,2N^2)$ avec $(M,N)\in\mathbb{N}^*$. Par symétrie des rôles, on peut supposer N>M, de sorte que $2(N^2-M^2)\in \llbracket 1\,; 9 \rrbracket$, puis $N^2-M^2\in \llbracket 1\,; 4 \rrbracket$. Selon le fait 3.5, nécessairement $N^2-M^2=3$ avec (M,N)=(1,2), d'où $n\in \llbracket 1\,; 2 \rrbracket$, mais on sait que cela est impossible.
- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A4}]$. Dans ce cas, $(n+i,n+i')=(6M^2,6N^2)$ avec $(M,N)\in\mathbb{N}^*$. Par symétrie des rôles, on peut supposer N>M, de sorte que $6(N^2-M^2)\in[1;9]$, puis $N^2-M^2=1$, mais c'est impossible d'après le fait 3.5.

13. Avec 11 facteurs

Fait 13.1. $\forall n \in \mathbb{N}^*, \ \pi_n^{11} \notin {}^2\mathbb{N}$.

L'idée suivie est celle de la démonstration du cas 12.1; nous indiquons juste les adaptations à faire en reprenant les notations de la preuve citée.

Preuve. Ici nous avons moins 6 facteurs (n+i) de π_n^{11} de valuation p-adique paire dès que $p \in \mathbb{P}_{\geq 5}$, en notant qu'ici il y a au maximum trois facteurs (n+i) de π_n^{11} divisibles par 5. Ceci nous amène aux cas suivants.

- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A}\,\mathbf{1}]$. Dans ce cas, $(n+i,n+i')=(M^2,N^2)$ avec $|N^2-M^2|\in [\![1\,;10]\!]$. Ce qui suit lève des contradictions.
 - (1) $|N^2 M^2| = 3$ donne n = 1, mais $\pi_1^{11} = 11! \notin {}^2\mathbb{N}$ via $v_{11}(11!) = 1$.

- (2) $|N^2 M^2| = 5$ donne $n \in [2; 4]$, mais $\forall n \in [2; 4]$, $v_{11}(\pi_n^{11}) = 1$ donne $\pi_n^{11} \notin {}^2\mathbb{N}$.
- (3) $|N^2 M^2| = 7$ donne $n \in [5; 9]$, mais $\forall n \in [5; 9]$, $v_{11}(\pi_n^{11}) = 1$ donne $\pi_n^{11} \notin {}^2\mathbb{N}$.
- (4) $|N^2 M^2| = 8$ donne n = 1, mais ceci est impossible.
- (5) $|N^2 M^2| = 9$ donne $n \in [10; 16]$, mais $\forall n \in [10; 16]$, $v_{17}(\pi_n^{11}) = 1$, donc $\pi_n^{11} \in {}^2\mathbb{N}$ est faux.
- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A2}]$. Dans ce cas, $(n+i, n+i') = (3M^2, 3N^2)$ avec $|3(N^2 - M^2)| \in [1; 10]$, d'où $n \in [1; 3]$ que nous savons impossible.
- Deux facteurs différents (n+i) et (n+i') vérifient [A3]. Dans ce cas, $(n+i, n+i') = (2M^2, 2N^2)$ avec $|2(N^2 - M^2)| \in [1; 10]$, puis nécessairement $|N^2 - M^2| \in \{3, 5\}$, d'où $n \in [1; 8]$, mais on sait que cela est impossible.
- Deux facteurs différents (n+i) et (n+i') vérifient [A4]. Dans ce cas, $(n+i, n+i') = (6M^2, 6N^2)$ avec $|6(N^2-M^2)| \in [1; 10]$, mais c'est impossible d'après le fait 3.5.

14. Avec 12 facteurs

Fait 14.1. $\forall n \in \mathbb{N}^*, \ \pi_n^{12} \notin {}^2\mathbb{N}$.

L'idée suivie est celle de la démonstration des cas 12.1 et 13.1 avec les changements suivants.

Preuve. Ici nous avons moins 5 facteurs (n+i) de π_n^{12} de valuation p-adique paire dès que $p \in \mathbb{P}_{\geq 5}$ avec ici 11 un nouveau compagnon premier à prendre en compte. Ceci nous amène juste à adapter le cas où deux facteurs différents (n+i) et (n+i') vérifient [A1]. Dans ce cas, nous avons $(n+i,n+i')=(M^2,N^2)$ avec $|N^2-M^2|\in [1;11]$. Ce qui suit lève des contradictions.

- (1) $|N^2-M^2|\in\{3,5,7,8,9\}$ se traite comme pour le cas 13.1. On sait alors que n>9 .
- (2) Un nouveau cas est à gérer car $|N^2 M^2| = 11$ est possible. Ceci ne se peut que si (M,N)=(5,6) ou (N,M)=(6,5), d'où $n\in [10;25]$, mais nous arrivons aux contradictions suivantes.

 - $\forall n \in [10; 20]$, $v_{17}(\pi_n^{12}) = 1$, donc $\pi_n^{12} \in {}^2\mathbb{N}$ est faux. $\forall n \in [20; 25]$, $v_{29}(\pi_n^{12}) = 1$, donc $\pi_n^{12} \in {}^2\mathbb{N}$ est faux.

15. Avec 13 facteurs

Fait 15.1. $\forall n \in \mathbb{N}^*, \ \pi_n^{13} \notin {}^2\mathbb{N}$.

Preuve. Les arguments de la preuve du cas 14.1 s'adaptent immédiatement.

Remarque 15.1. Que donnerait l'analyse du cas suivant $\pi_n^{14} \notin {}^2\mathbb{N}$? Nous avons ce qui suit.

- $\forall p \in \mathbb{P}_{>14}$, $\forall i \in [0;13]$, $v_p(n+i) \in 2\mathbb{N}$.
- Au maximum trois facteurs (n+i) de π_n^{14} sont divisibles par 5.
- Au maximum deux facteurs (n+i) de π_n^{14} sont divisibles par 7.
- ullet Au maximum deux facteurs (n+i) de π_n^{14} sont divisibles par 11 .
- Au maximum deux facteurs (n+i) de π_n^{14} sont divisibles par 13. Un nouveau venu!
- ullet Les points précédents nous donnent qu'au moins 5 facteurs (n+i) de π_n^{14} sont de valuation p-adique paire dès que $p \in \mathbb{P}_{>5}$.

Dans mon document « Carrés parfaits et produits d'entiers consécutifs — Jusqu'à 100 facteurs? » est proposée une approche informatique se basant principalement sur l'idée précédente pour traiter les cas jusqu'à 100 facteurs, c'est-à-dire ceux supposés connus dans la démonstration de Paul Erdős.

16. Sources utilisées

Fait 6.1.

La démonstration non algébrique a été impulsée par la source du fait 9.1 donnée plus bas.

Fait 7.1.

• Un échange consulté le 28 janvier 2024, et titré « n(n+1)...(n+k) est un carré? » sur le site lesmathematiques.net.

La démonstration via le principe des tiroirs trouve sa source dans cet échange.

• Un échange consulté le 12 février 2024, et titré « Is there an easier way of proving the product of any 5 consecutive positive integers is never a perfect square? » sur le site www.quora.com/.

La démonstration « élémentaire » sans le principe des tiroirs vient de cet échange.

• L'article « Le produit de 5 entiers consécutifs n'est pas le carré d'un entier. » de T. Hayashi, Nouvelles Annales de Mathématiques, est consultable via Numdam, la bibliothèque numérique française de mathématiques.

Cet article a fortement inspiré la longue preuve.

Fait 8.1.

Un échange consulté le 28 janvier 2024, et titré « product of six consecutive integers being a perfect numbers » sur le site https://math.stackexchange.com.

La courte démonstration est donnée dans cet échange. Vous y trouverez aussi un très joli argument basé sur les courbes elliptiques rationnelles.

Fait 9.1.

Un échange consulté le 3 février 2024, et titré « Proof that the product of 7 successive positive integers is not a square » sur le site https://math.stackexchange.com.

La courte démonstration est donnée dans cet échange, mais certaines justifications manquent.

Fait 10.1.

Un échange consulté le 4 février 2024, et titré « How to prove that the product of eight consecutive numbers can't be a number raised to exponent 4? » sur le site https://math.stackexchange.com.

La démonstration astucieuse vient de l'une des réponses de cet échange, mais la justification des deux inégalités n'est pas donnée.

Fait 12.1.

Un échange consulté le 13 février 2024, et titré « Product of 10 consecutive integers can never be a perfect square » sur le site https://math.stackexchange.com.

La démonstration vient d'une source Wordpress donnée dans une réponse de cet échange, mais cette source est très expéditive...