1. On se met dans l'e.v. \mathbb{R}^3 muni des lois habituelles. Soit:

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid \begin{cases} x - y + z = 0 \\ 2x - y = 0 \end{cases} \}$$

$$G = \{(x, y, z) \in \mathbb{R}^3 \mid (x - y)^2 = 2x + y \}$$

- (a) Vérifier que F est un s.e.v de \mathbb{R}^3 alors que G ne l'est pas
- (b) Trouver une base de F et en dyduire sa dimension
- (c) Quelle est l'interprétation géométrique de F
- 2. On se met dans $M_2(\mathbb{R})$ muni des lois habituelles. On considère les sous ensembles:

$$E = \{A \in M_2(\mathbb{R}) \mid A = \begin{pmatrix} a+b & c \\ 2c & -b \end{pmatrix} \}$$

$$F = \{A \in M_2(\mathbb{R}) \mid A = \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} \}$$

- (a) Vérifier que F est un s.e.v de \mathbb{R}^3 alors que G ne l'est pas
- (b) Trouver une base de F et en dyduire sa dimension
- 3. Montrer que $\{v_1, v_2\}$ où $v_1 = (1, 2), v_2 = (-1, 1)$ engendre \mathbb{R}^2 . Est-elle une base?
- 4. La famille $\{v_1, v_2, v_3\} \subset \mathbb{R}^3$ où $v_1 = (1, 1, -1), v_2 = (2, 1, 3), v_3 = (0, -1, 5)$ est -elle libre? Est-elle génératrice? Quelle relation linéaire lie ces vecteurs? Quel est l'espace qu'ils engendrent?
 - (a) Le corps \mathbb{k} désigne \mathbb{R} ou \mathbb{C} . Montrer que $E = \{A \in M_n(\mathbb{k}) \mid tr(A) = 0\}$ est un s.e.v. de $M_n(\mathbb{k})$. En donner une base pour n = 2
 - (b) Montrer que $F = \{P \in \mathbb{R}_2[x] \mid P = \lambda + (2\lambda 3\mu)x + \mu x^2 \ (\lambda, \ \mu \in \mathbb{R})\}$ est un s.e.v. de $\mathbb{R}_2[x]$. En donner une base
- 5. On se place dans le \mathbb{R} -espace vectoriel $\mathbb{R}_2[x]$ des polynômes à coèfficients réels de degré ≤ 2 . Soit

$$E = \{ P \in \mathbb{R}_2[x] \mid P(-1) = 0 \} \text{ et } F = \{ P \in \mathbb{R}_2[x] \mid P(1-x) = P(x) \}$$

- (a) Montrer que E et F sont deux s.e.v de $\mathbb{R}_2[x]$. En donner une base de chacun d'eux et déduire leurs dimensions
- (b) E et F sont-ils supplémentaires dans $\mathbb{R}_2[x]$?
- 6. On se place dans $M_2(\mathbb{R})$. Soit $A = \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix}$ et $I = I_2$. On définit l'ensemble

$$E = \{ M \in M_2(\mathbb{R}) \mid AM = MA \}$$

(a) Montrer que E est un s.e.v. de $M_2(\mathbb{R})$

- (b) Montrer que $\{A, I\}$ est un système de générateurs de E, en dyduire la dimension de E
- (c) Résoudre dans E l'équation: $X A^2X + AXA A = 0$.
- 7. Soient E et F deux &-espaces vectoriels, et soit $V = E \times F$. On pose

$$U = \{(x,0), x \in E\}$$
 et $W = \{(0,x), x \in F\}$

Montrer que U et W sont deux sous-espaces vectoriels de V, et que $V=U\oplus W$

8. Soit

$$U = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}); b+c+d=0 \right\} \text{ et}$$

$$V = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}); a+b=0 \text{ et } c=2d \right\}$$

- (a) Montrer que U et V sont deux sous-espaces vectoriels de $M_2(\mathbb{R})$
- (b) Trouver une base de U, V, et $U \cap V$ et en déduire leur dimension respective
- (c) On pose W=U+V. Trouver une base de W. A-t-on $W=U\oplus V?$ Pourquoi?
- 9. On donne les éléments suivants de \mathbb{R}_4 :

$$x_1 = (1; 1; 0; -1), \quad x_2 = (1; 2; 3; 0), \quad x_3 = (2, 3, 3, -1),$$

 $x_4 = (1; 2; 2; -2), \quad x_5 = (2; 3; 2; -3), \quad x_6 = (1; 3; 4; -3)$

Trouver les dimeensions de U+V et de $U\cap V$ dans les cas suivants:

(a)
$$U = \langle x_1, x_2, x_3 \rangle$$
 et $V = \langle x_4, x_5, x_6 \rangle$

(b)
$$U = \langle x_1, x_2 \rangle$$
 et $V = \langle x_1, x_3, x_4 \rangle$