SAP Predictive Maintenance and Service, on-premise edition and Data Science

Predictive Maintenance is a process, not just an algorithm... Domain expertise is as important as data science, if not more...

CRISP-DM Cross Industry Standard Process for Data Mining

^{*} Involvement of domain expert necessary

Data Science – Predictive Maintenance Architecture

Operationalize Data Science by embedding it in applications and use it to trigger follow-up actions.

Data Science algorithms from many sources – R, PAL, APL... plus customer's own.

Data Science – Predictive Maintenance Architecture

Data Science – Predictive Maintenance Architecture

Data Science – Predictive Maintenance Analyses

Defect Pattern Identification

- Statistical analysis, text clustering, association analysis, and decision trees.
- Visualization of big data with parallel coordinates and multi-dimensional scaling.

Systems Trending and Alert Management

- Detect outliers and anomalies in the data with supervised and unsupervised machine learning
- Text analysis and text mining to classify scheduled vs. unscheduled maintenance events

Machine Health Prediction

- Historic machine data are used to predict breakdowns via decision trees
- Energy consumption pattern profiles are calculated with k-means clustering
- Domain expert knowledge was modelled in SAP HANA with decision tables

Vehicle Health Prediction

- Used association rule mining and regression tree learning to correlate production rework and customer satisfaction data
- SAP HANA/R data mining and data visualization capabilities applied to surveys and production data sets

Emerging Issues

 Analysing telematics data & relating them to equipment's service and warranty data using text mining, association analysis

Predictive Quality Assurance

- Visual detection of cracks (image processing techniques)
- Heat image comparison of "areas of interest" of sample images of material with issues to current material (Euclidean vector distance calculation)

Maintenance Prioritization

- Forecast production and probability of failure calculation at asset level.
- Prioritize maintenance activities based on actual and forecasted KPIs

Health Prediction for aircraft components

- 5 aircrafts over 5 years, 400 sensors each aircraft 44.1 Billion sensor readings
- Correlated with maintenance history (notifications), weather data & geo locations
- Text Analysis to understand maintenance activities
- Use of Statistical Process Control and Symbolic Aggregate Approximation for anomaly detection

Bad Actor Analytics

- Weibull life time analyses
- Use classification techniques to identify rotating equipment likely to fail based on past patterns

Root Cause Analysis for Quality Issues

- Find causal relationships between claims and production settings from machine readings
- Improve on Statistical Process Control usage

Maximize Machine Efficiency in Production

- Augmenting (human) expert rules with (machine) rule mining (regression trees)
- Approximating machine state to circumvent "rare event problem" (anomaly detection)
- De-clutter sensor data for root cause analysis (trend analysis)

Asset Health Prediction

- Optimize testing and crew efficiency based on limited resources
- Optimize capital investment for URD Cables
- Machine health prediction from historic data and outages

Data Science – Predictive Maintenance Algorithms

Many Data Science Algorithms are used in Predictive Maintenance

Data Science in Predictive Maintenance (PdMS on Premise)

PdMS on Premise provides three Data Science services 'out of the box' that can be applied to customer data.
 Anomaly Detection, Distance-Based Failure Analysis and Remaining Useful Life Prediction

- New Data Science Services (algorithms) can be integrated by embedding the algorithms using R packages that conform to the interface provided.
- PdMS on Premise includes functionality to manage Data Mining Models

Data Science Services – Anomaly Detection

Business Problem: Certain components are crucial for the functioning of a machine or are very expensive, therefore abnormal behavior should be detected and potential problems fixed. Minimizing cost and downtime are important goals as well.

Solution:

- 1. Data extraction and preparation: Extract the equipment's senor data from the time series storage and prepare it.
- 2. Learn a model and store it: Apply Principal Component Analysis to the historic sensor data of healthy machines.
- 3. Apply model to new data and store results (anomaly scores) in the time series storage.
- 4. Show anomalies in the application and allow to create work orders.

Benefits:

Automatic detection of multivariate anomalies which could lead to failures in components and possibility to take action. Helps to prevent downtimes and minimize maintenance costs.

Data Science Services - Distance-Based Failure Analysis

Problem: Some components are crucial assets that can lead to unexpected downtimes when they fail.

Solution:

- 1. Data extraction and preparation: Extract the equipment's senor data from time series storage and prepare it.
- 2. Learn a model and score new data: Compute the distances of each component to a reference component using earth mover's distance (laz learner type of algorithm) and store distances in time series storage.
- 3. Show components ranked by distance (in descending order) in the application.

Benefits:

Early identification of malfunctioning components in order to reduce downtime.

Data Science Services – Remaining Useful Life Prediction

Problem: The frequent occurrence of failures leads to increased costs for maintenance and downtime.

Solution

- 1. Data extraction and preparation: Extract repair data (IT data) and compute repair time KPI's (mean time between repairs, uptime, downtime) for components.
- 2. Learn a model and store it: Perform Weibull Life Time Analysis on repair data and store model.
- 3. Score new data: Calculate remaining useful life and probability of failure for each machine/component and store scores in time series storage.
- 4. Show remaining useful life and probability of failure in application.

Benefits

Use statistics based approach for estimating lifetime of components. Usage of Weibull Life Time Analysis beneficial if no sensor data available (e.g. new component).

Predictive Maintenance

Discover rules or relationships between attributes and failures

Required:

An incident indication (message or failure criteria)

Attributes with potential relation to failure (sensor data, configurations, countries, product lines, ...)

Usage:

Serves as starting point for expert review

Product/process improvement based on analysis results

Algorithms:

Decision Tree, Association Rule Mining

Predictive Maintenance

Detect anomalies that led to upcoming component failures

Required:

An incident indication (message or failure criteria)

Attributes with potential relation to failure (sensor data, configurations, countries, product lines, ...)

Usage:

Early failure indicator

Product/process improvement and understanding

Algorithms:

Univariate methods (Box Plot Rule, Statistical Control Charts, Student's Test, Grub's Test, Likelihood Ratio Test)

Multivariate methods (PCA, One-Class Support Vector Machines, Self-Organizing Maps, Neural Networks)

Predictive Maintenance

Create statistical models based on past sensor data and failures

Required:

- A classification of past data (failure / no failure)
- Attributes with potential relation to failure (sensor data, configurations, countries, product lines, ...)
- Sufficient number of failures that occurred in the past that can be related to the sensor data

Usage:

- Optimize maintenance to reduce costs and downtime
- Optimize spare parts planning

Algorithms:

 Decision Trees, Logistic Regression, Support Vector Machines, Neural Networks, Binary Classification...

Example: From battery data to battery health to action for Trenitalia

Outcome

60% maintenance cost reduction for batteries

Data Science – Predictive Maintenance Application

Machine Health Control Center - Machine Explorer

Machine Health Control Center - Geospatial Visualization

Machine Health Control Center - Anomaly Score History

Machine Health Control Center - 3D Data Visualization

Data Science – Predictive Maintenance Application

Health Fact Sheet

Risk Matrix and Survival Curve

Health Fact Sheet by Components

MRS Planning board with re scheduled maintenance