Trabajo final de Radionavegación

Medición de VOR del aeropuerto de Río Cuarto

Motivación

- VOR disponible en el aeropuerto de Río Cuarto
- Hacer uso del equipo disponible para realizar mediciones
 - RTL-SDR
 - Antena Dipolo
 - Software
- Utilizar herramientas de software para comprobar el funcionamiento del VOR
 - Audacity
 - Python

VOR Río Cuarto

- Frecuencia: 114.2 MHz
- Código Morse: .-. (TRC)
- Latitud: -33.092201
- Longitud: -64.264999

Puntos de medición

Elementos

- Antena
- RTL-SDR
- GQRX
- Audacity
- Python

Antena

- O Dipolo de λ/2
- o Longitud de 1,3 metros, calculada para 114.2 MHz

RTL-SDR

- Radio definida por software
- o R820T/2
- Rango de 24 a 1766 MHz
- Usado junto con GQRX

GQRX

- Software utilizado junto con RTL-SDR
- Open source
- Selector de frecuencia y ganancia
- Filtro pasa banda variable
- Visualización
 - Espectro electromagnético
 - Espectrograma
- Demoduladores AM, FM-N, FM-W, SSB
 - Obtención del audio código morse

GQRX

GQRX

Audacity

- Software para análisis de audio y señales
- Open source
- Gráfica del espectro
- Espectrograma
 - Comparación de la señal de referencia y variable en el tiempo con el espectrograma
 - Análisis del código morse
 - Obtención de las señales que componen al VOR y sus frecuencias
 - Trabajo manual y poco preciso para determinar el ángulo con respecto al VOR

Audacity

Python

Se realizó un programa en Python para la demodulación de las señales

- Señal de referencia de 30Hz:
 - Filtro pasa bajos de 500Hz
- Señal variable de 30Hz:
 - Aislar subportadora FM con filtro pasa banda
 - Multiplicar por exponencial compleja para centrar FM en los 0Hz
 - Calcular argumento de cada muestra para obtener la modulante
- Comparación de fases por medio de correlación cruzada

178.2°

En mapa: 177°

235.8°

En mapa: 234°

291.6°

En mapa: 293°

Conclusión

- Se pudo lograr la obtención de señales del VOR de Río Cuarto
- Resultados dentro de los 3º de error, es necesario calibrar con una medición precisa
- Ventajas de desarrollar un software en Python
 - Automatización de la demodulación de las señales y obtención del ángulo
 - Mayor precisión de la estimación del ángulo

Muchas Gracias