# Geometry of PCA

- The loading vector  $\phi_1$  with elements  $\phi_{11}, \phi_{21}, \dots, \phi_{p1}$  defines a direction in feature space along which the data vary the most.
- If we project the n data points  $x_1, \ldots, x_n$  onto this direction, the projected values are the principal component scores  $z_{11}, \ldots, z_{n1}$  themselves.

#### Further principal components

- The second principal component is the linear combination of  $X_1, \ldots, X_p$  that has maximal variance among all linear combinations that are *uncorrelated* with  $Z_1$ .
- The second principal component scores  $z_{12}, z_{22}, \ldots, z_{n2}$  take the form

$$z_{i2} = \phi_{12}x_{i1} + \phi_{22}x_{i2} + \ldots + \phi_{p2}x_{ip},$$

where  $\phi_2$  is the second principal component loading vector, with elements  $\phi_{12}, \phi_{22}, \dots, \phi_{p2}$ .

# Further principal components: continued

- It turns out that constraining  $Z_2$  to be uncorrelated with  $Z_1$  is equivalent to constraining the direction  $\phi_2$  to be orthogonal (perpendicular) to the direction  $\phi_1$ . And so on.
- The principal component directions  $\phi_1$ ,  $\phi_2$ ,  $\phi_3$ ,... are the ordered sequence of right singular vectors of the matrix  $\mathbf{X}$ , and the variances of the components are  $\frac{1}{n}$  times the squares of the singular values. There are at most  $\min(n-1,p)$  principal components.

#### Illustration

- USAarrests data: For each of the fifty states in the United States, the data set contains the number of arrests per 100,000 residents for each of three crimes: Assault, Murder, and Rape. We also record UrbanPop (the percent of the population in each state living in urban areas).
- The principal component score vectors have length n=50, and the principal component loading vectors have length p=4.
- PCA was performed after standardizing each variable to have mean zero and standard deviation one.

# USAarrests data: PCA plot



# Figure details

The first two principal components for the USArrests data.

- The blue state names represent the scores for the first two principal components.
- The orange arrows indicate the first two principal component loading vectors (with axes on the top and right). For example, the loading for Rape on the first component is 0.54, and its loading on the second principal component 0.17 [the word Rape is centered at the point (0.54, 0.17)].
- This figure is known as a *biplot*, because it displays both the principal component scores and the principal component loadings.

# PCA loadings

|          | PC1       | PC2        |
|----------|-----------|------------|
| Murder   | 0.5358995 | -0.4181809 |
| Assault  | 0.5831836 | -0.1879856 |
| UrbanPop | 0.2781909 | 0.8728062  |
| Rape     | 0.5434321 | 0.1673186  |

# Another Interpretation of Principal Components





# PCA find the hyperplane closest to the observations

- The first principal component loading vector has a very special property: it defines the line in *p*-dimensional space that is *closest* to the *n* observations (using average squared Euclidean distance as a measure of closeness)
- The notion of principal components as the dimensions that are closest to the *n* observations extends beyond just the first principal component.
- For instance, the first two principal components of a data set span the plane that is closest to the n observations, in terms of average squared Euclidean distance.

# Scaling of the variables matters

- If the variables are in different units, scaling each to have standard deviation equal to one is recommended.
- If they are in the same units, you might or might not scale the variables.



# Proportion Variance Explained

- To understand the strength of each component, we are interested in knowing the proportion of variance explained (PVE) by each one.
- The *total variance* present in a data set (assuming that the variables have been centered to have mean zero) is defined as

$$\sum_{j=1}^{p} Var(X_j) = \sum_{j=1}^{p} \frac{1}{n} \sum_{i=1}^{n} x_{ij}^2,$$

and the variance explained by the mth principal component is

$$Var(Z_m) = \frac{1}{n} \sum_{i=1}^{n} z_{im}^2.$$

• It can be shown that  $\sum_{j=1}^{p} \operatorname{Var}(X_j) = \sum_{m=1}^{M} \operatorname{Var}(Z_m)$ , with  $M = \min(n-1, p)$ .

# Proportion Variance Explained: continued

• Therefore, the PVE of the *m*th principal component is given by the positive quantity between 0 and 1

$$\frac{\sum_{i=1}^{n} z_{im}^2}{\sum_{j=1}^{p} \sum_{i=1}^{n} x_{ij}^2}.$$

• The PVEs sum to one. We sometimes display the cumulative PVEs.





# How many principal components should we use?

If we use principal components as a summary of our data, how many components are sufficient?

- No simple answer to this question, as cross-validation is not available for this purpose.
  - Why not?

# How many principal components should we use?

If we use principal components as a summary of our data, how many components are sufficient?

- No simple answer to this question, as cross-validation is not available for this purpose.
  - Why not?
  - When could we use cross-validation to select the number of components?

#### How many principal components should we use?

If we use principal components as a summary of our data, how many components are sufficient?

- No simple answer to this question, as cross-validation is not available for this purpose.
  - Why not?
  - When could we use cross-validation to select the number of components?
- the "scree plot" on the previous slide can be used as a guide: we look for an "elbow".