Lab 2: Rules of Inference

Mathematics for Computer Science

1. ในแต่ละข้อย่อยต่อไปนี้ใช้กฎการอนุมาน (rule of inference) ข้อใด

1.1 อลิซเรียนสาขาคณิตศาสตร์ เพราะฉะนั้น อลิซเรียนสาขาคณิตศาสตร์หรือวิทยาการคอมพิวเตอร์

$$\frac{\rho}{\rho \vee q} \Rightarrow \rho \rightarrow (\rho \vee q)$$

: Pring Addition

1.2 เจอรี่เรียนสาขาคณิตศาสร์และสาขาวิทยาการคอมพิวเตอร์ เพราะฉะนั้น เจอรี่เรียนสาขาคณิตศาสตร์

$$\frac{\rho \wedge q}{\rho} \Rightarrow (\rho \wedge q) \rightarrow \rho$$

.. Prag Simpli fication

1.3 ถ้าฝนตกแล้วสระว่ายน้ำจะปิด ฝนตก เพราะฉะนั้น สระว่ายน้ำปิด

: Ring Modus pollens

1.4 ถ้าหิ้มะตกวันนี้ มหาวิทยาลัยจะปิด มหาวิทยาลัยไม่ได้ปิด เพราะฉะนั้น วันนี้หิมะไม่ตก

$$p \rightarrow q$$

$$\frac{-q}{-p} \quad \Leftrightarrow [(p \rightarrow q) \land \neg q] \rightarrow \neg p$$

- Pring Modus pollens

1.5 ถ้าเราไปว่ายน้ำ เราจะตากแดดนานเกินไป ถ้าเราตากแดดนานเกินไป ผิวหนังเราจะไหม้แดด เพราะฉะนั้น ถ้า เราไปว่ายน้ำ ผิวหนังเราจะไหม้แดด

This en
$$= \rho$$

on the part $= \rho$
 $\rho \rightarrow q$
 $q \rightarrow r$
 $p \rightarrow r$
 $p \rightarrow r$
 $p \rightarrow r$
 $p \rightarrow r$

2. เราสามารถสรุปอะไรได้บ้างจากหลักฐานข้อมูลเบื้องต้นต่อไปนี้ โดยให้ระบุว่าข้อสรุปที่ได้ใช้กฎการอนุมานข้อ ใดบ้าง จากหลักฐานใดด้วย
2.1 "ถ้าเราลางาน ก็เพราะว่าฝนตกหรือหิมะตก" "เราลางานวันอังคารหรือวันพฤหัส" "แดดออกทั้งวันในวัน อังคาร" "หิมะไม่ได้ตกในวันพฤหัส"
2.2 "ถ้าเรากินอาหารรสจัด เราจะฝันประหลาด" "เราจะฝันประหลาด ถ้าฝนตกฟ้าคะนองตอนเราหลับ" "เรา ไม่ได้ฝันประหลาด"
2.3 "เราฉลาดหรือโชคดี" "เราไม่ได้โชคดี" "ถ้าเราโชคดี เราจะถูกหวย"
2.4 "นักศึกษาสาขาวิทยาการคอมพิวเตอร์ทุกคนมีคอมพิวเตอร์ส่วนตัว" "ราฟไม่ไคอมพิวเตอร์ส่วนตัว" "แอนมี คอมพิวเตอร์ส่วนตัว"
2.5 "อะไรที่ดีต่อบริษัทย่อมดีต่อประเทศ" "อะไรที่ดีต่อประเทศย่อมดีต่อคุณ" "สิ่งที่ดีต่อบริษัทคือการที่คุณช้อป กระจาย"

(2.1) ใน p. = เราการานในวันอังคาร $P_{1}(q_{1} \vee f_{1}), P_{2} \rightarrow (q_{2} \vee f_{2}), (p_{1} \vee p_{2}), \sim (q_{1} \vee f_{1}), \sim f_{2}$ P2 = เราลางานในวันพฤ หัส 1) p, > (q, vr,) ~ premise ๆ, = ฝน ลูกกวันอังคาง 2) ~ $(q_1 \vee r_1) \leftarrow premise$ 12 - ฝน อากวันพฤหัส 3) ~P, == 1), 2) using Modus pollens บ. ช พระ อากวันอังการ โ2 * หิมะ ตกวันพฤนัส 4) $\rho_1 \vee \rho_2 \leftarrow \text{premise}$ 5) P2 = 3), 4) using Disjunctive syllogism 6) p2 → (q2 v r2) ← premise ∴ ฝลดกในวันพฤหัส # 7) q 2 v r = (5), 6) using Modus pones 8) ~ [2 ~ premise 9)~92 ← 7), 8) using Modus tollens

(2.2) ใน p = เราก็นอานารรสจัก $(p \rightarrow q), (q \rightarrow r), \sim q$ 2 = เราผนประชาก 1) p → q ← premise r= ผมเกลีาคะของ 2) q → r ← premise ← 12,2) using Hypothetical syllogism 3) $\rho \rightarrow r$ 4) ~pvr

(3) using Implementation 5) ~q

remise จก ~q^~p ะ เภไล่เกินอาหารรสจัดจือไม่ ปันประหลด √ 6) -q ∧(~pvr) ← 4),5) using Conjunction " $q \wedge r = i = i = 1$ $\frac{1}{2}$ $\frac{1}{2}$.. จิงสรุปได้ว่า : เราไม่ได้ อื่นประชลาดเพราะ เราไม่ ได้กันอาหุก รถจัด

2.3) 10 p - 1312a10 (pvq),~q,(q→r) 2 " 131/ VAR ← premise 1) pvq r= เมาบังชอ ← 1) using Implementation 2)~p → 9 ← premise 3) ~9 ← 2), 3) using Modus follens 4) p 5) q →r ← premise 6) -q v r == 5) using Implementation 8) (pA=q) v (pAr) + 7) using Distributive

จก ρ^~ ๆ " เราฉลาก และ เราไม่ โปคดี หรือ ρ^Ր " เราฉลาก เละเรากุกนวย

े ชีวสรุปได้ชา : เราฉลาดแต่ เราโม่โชคตีเราชีวไม่ถูกขอย #

$$\forall x (P(x) \rightarrow Q(x)), \neg Q (ralph), Q(annie)$$

1) $\forall x (Pcx) \rightarrow Q(x)) \leftarrow \text{premise}$

2) $P(\text{ralph}) \rightarrow Q(\text{ralph}) \leftarrow 1) \text{Using Universal instantiation}$

3) $\sim Q (\text{ralph}) \leftarrow \text{premise}$

4) $\sim P(\text{ralph}) \leftarrow P(\text{ralph}) \leftarrow 2), 3) \text{ using Modus tollens}$

5) $P(\text{annie}) \rightarrow Q(\text{annie}) \leftarrow 1) \text{ using Universal instantiation}$

6) $Q(\text{annie}) \leftarrow \text{premise}$

จังสรุปได้ว่า ราฟไม่ได้เป็นนักศึกษาสาขาวิทยาการคอมพิวเตอร์จังไม่มีคอมพิวเตอร์สังนตัว
เองนณีเป็นนักศึกษา สาขาวิทยาการคอมพิวเตอร์จังไม่มีคอมพิวเตอร์สังนตัว
#

สิวส์สุปได้ว่า : 5 implies r = การชาปปั้งกัย่อม ตี ค่อ ตัวคุณ เองด้วย #

 จงอธิบายว่า ข้อความต่อไปนี้ใช้กฎการอนุมาณข้อใดในแต่ละขั้นตอน จงอธิบายว่า ข้อความต่อไปนี้ใช้กฎการอนุมาณข้อใดในแต่ละขั้นตอน ดอน นักเรียนในวิชานี้ สามารถเขียนภาษาจาวาได้ ทุกคนที่เขียนภาษาจาวาได้สามารถได้รับเงินเดือนสูง ดังนั้น มีบางคนในวิชานี้สามารถได้รับเงินเดือนสูง
3.2 นักเรียนบางคนในวิชานี้ชอบออกทะเลดูวาฬ ทุกคนที่ชอบออกทะเลดูวาฬใส่ใจเรื่องมลพิษทางทะเล ดังนั้น มี คนในวิชานี้ที่ใส่ใจเรื่องมลพิษทางทะเล
3.3 นักเรียนทั้ง 93 คนในวิชานี้ต่างก็มีคอมพิวเตอร์ส่วนตัว ทุกคนที่มีคอมพิวเตอร์ส่วนตัวมีโปรแกรมจัดการ เอกสาร ดังนั้น เสกซึ่งเป็นนักเรียนในวิชานี้ มีโปรแกรมจัดการเอกสารให้ใช้
3.4 ทุกคนในกรุงเทพฯ ทุกคนอยู่ห่างจากทะเลไม่เกิน 60 กิโลเมตร บางคนในกรุงเทพฯ ไม่เคยเห็นทะเล ดังนั้น มี บางคนที่อยู่ห่างจากทะเลไม่เกิน 60 กิโลเมตรที่ไม่เคยเห็นทะเล

```
3-7) 12 P(x) = 81217 กเบียน java 18
                                                             P(don), Yx (P(x) -> Q(x)), Ix(Q(x))
      Q(x) = ใต้รับเวินเดื้อนสุว
       don + nort
                              1) \forall x (P(x) \rightarrow Q(x)) \leftarrow premise
                              2) P(don) \rightarrow Q(don) \leftarrow 1) using Universal Instantiation
                              3) P (don)
                                                             premise
<- 1), 3) using Modus pollens</pre>
                             4) Q (don)
                              5) ] x (Q(x))
                                                              premise
                                                              ← Existential instantiation
← 4), 6) using Idempotence
                              6) Q (don)
                             7) Q (don)
                            .. จังสอปโตว่า : ในวิบานี คอนโตไว้น เดือนกุ้ง #
                                               ∃x (P(x)), ∀x (P(x) → Q(x)), ∃x (Q(x))
     (3.2) ใน Pcx) : ชอบออกพะเลลูกาฟ
               Q(x) = ใส่ โดเรื่องจัดกับสการกรเล
                                               1) \forall x (P(x) \rightarrow Q(x)) \leftarrow \text{premise}
                                               2) Pear - Quer
                                                                        ← 1) using Universal Instantiation
                                               37 1x (Pcx)
                                                                        ← pre mise
  .. จึงสมุปได้ว่า : มีนักเรียนขางคนในอิชานีที่ใส่ ใจบลพัษ
                                              4) Pcc)
                                                                       ← 3) Using Existential Instantiation
                                                                      ( 2),4) using Modus ponens
                                              5) Q(c)
               ทบทะเล #
                                              6) 3x (Q(x))
                                                                     ← premise
                                              7) Q(c)
                                                                      ← 6) using Existential Instantiation
                                              8) Q(c)
                                                                      ← 5],7) using Indempotence
                                                Yx (P(x)), Yx (Pcx) -> Q(x)), Q (6/6)
     3.5) ให้ P(x) = มีคอมกิวเดอร่ ส่งห ตั้ง
                Qcx) = ฆีโปรแกรมสิกการเกาล์กร
                                              1). \forall x (P(x) \rightarrow Q(x)) \leftarrow \text{premise}
                                              2). PLOKA) - Q (18A1) - N using Universal Instantiation
                                              3) Yx (Pcx)
                                                                < premise
                                              47 P ( 15/n)
                                                                   ← 3) using Universal Instantiation
👉 จึงสรุปโติว่า : เสกมีโปรแกรมจัดการ เอกสังว์โร้ใร้
```

5) Q (ián)

← 2), 4) using Modus pollens

3.4) ให้ P(x) - อยู่ห่างจากทะเลไม่เกิน 60 km
Q (x) - เพยเพิ่มพะเล

∀x(P(x)), ∃x(~Q(x)), ∃x(P(x) ∧ ~Q(x))

- 1) $\forall_x (p_{(x)}) \leftarrow premise$
- 3) $\exists x (\neg Q(x)) \leftarrow \rho_{\text{remise}}$
- 4) ~Q (C)

 (3) using Existential Instantiation
- 5) PCC) ~~QCC) ~ 2), 4) using Idempotence

 Math with conclusion

:. จึงสรุปได้ว่า = มีคนกรุงเทพ ๆ บางคนที่อยู่หางจากพะเลไล่เกิน 60 km ที่ไม่เคยเห็นพะเล #

- 4. ตรวจสอบว่าการให้เหตุผลด้านล่างถูกต้องหรือไม่ ถ้าถูกต้อง ให้ระบุว่าใช้กฎอนุมาณข้อใด ถ้าไม่ถูกต้อง ให้ อธิบายว่าผิดอย่างไร
- 4.1 ถ้า n เป็นจำนวนจริงที่ n>1 แล้ว $n^2>1$ ดังนั้น ถ้า $n^2 > 1$ แล้ว n > 1.

4.2 ถ้า n เป็นจำนวนจริงที่ n>3 แล้ว $n^2>9$ ดังนั้น ถ้า n²≤9 แล้ว n≤3

The
$$n > 3$$
 with p relative $p \rightarrow q$

$$n^2 > 9$$
 with q

$$\therefore \neg q \rightarrow \neg p$$

∴ $\rho \rightarrow q$ สมมุลกับ $\sim q \rightarrow \sim \rho$ # $q \rightarrow q \rightarrow q$ Contraposition Law 4.3 ถ้า n เป็นจำนวนจริงที่ n>2 แล้ว $n^2 > 4$

ดังนั้น ถ้า n≤2 แล้ว n2≤4

The
$$n > 2$$
 who ρ and $\rho \rightarrow q$

$$n^2 > 4 \text{ with } q \qquad \sim \rho \rightarrow \sim q$$

$$\therefore \rho \rightarrow q \quad \text{This way and} \quad \sim \rho \rightarrow \sim q \quad \#$$

The n > 3 bits p and p > q $n^{2} > q$ bits q q > -p # Or Contraposition Law $p > q = -p \lor q \leftarrow using Material implication$ $= q \lor -p \leftarrow using Material implication$

- 5. ระบุข้อผิดพลาดของการให้เหตุผล(อาจมีมากกว่า 1 ข้อ) ที่พยายามจะพิสูจน์ว่า ถ้า $\exists x P(x) \land \exists x Q(x)$ เป็น จริง แล้ว $\exists x (P(x) \bigwedge_{x \in Q(x)} Q(x))$ จะเป็นจริง.
 - Premise \ 1. $\exists x P(x) \forall \exists x Q(x)$
 - Simplification from (1) 2. $\exists x P(x)$
 - Existential instantiation from (2) 3. *P*(*c*)
 - Simplification from (1) X can't not be q 4. $\exists x O(x)$
 - Existential instantiation from (4) 5. *Q(c)*
 - Conjunction from (3) and (5) 6. $P(c) \Lambda Q(c)$
 - Existential generalization X should be 1x (P(x)) N1x (Q(x)) 7. $\exists x (P(x) \land Q(x))$

6. ระบุข้อผิดพลาดของการให้เหตุผล(อาจมีมากกว่า 1 ข้อ) ที่พยายามจะพิสูจน์ว่า ถ้า $\nabla x(P(x) \ V \ Q(x))$ เป็นจริง แล้ว $\nabla x P(x) \ V \ \nabla x Q(x)$ จะเป็นจริง

```
1. \forall x(P(x) \lor Q(x)) Premise \sqrt{2. P(c) \lor Q(c)} Universal instantiation from (1) \chi (x) (
```

8. ใช้กฎการอนุมาณเพื่อแสดงว่า ถ้า $\forall x (P(x) \ V \ Q(x)),$

 $\forall x (\neg Q(x) \lor S(x)), \forall x (R(x) \rightarrow \neg S(x)), \text{ and } \exists x \neg P(x) \text{ iduals only formally } \exists x \neg R(x) \text{ iduals}$

```
1) Vx (~Qcx) V S(x)) 

premise
2) Vx (Q(x) -> S(x1) 

1) Using Material Implication
3) \forall x (R(x) \rightarrow {}^{\sim}S_{(x)}) \leftarrow premise
4) \forall x (-5(x) \lor \sim R(x)) \leftarrow 3) using Material Implication
                                                                          Commutative
5) \forall x (5(x) \rightarrow \sim R(x)) \leftarrow 4) using Material Implication
6) ∀x (Q(x) → ~R(x)) ← 2), 5) using Hypothetical syllogism
7) Yx (-Q(x) V~R(x)) 		 6) using Material Implication
 8) Yx (~ R(x))
                   ← 7) Using
                                          Commutative and Disjunctive simplification
 9) ~ R (C)
                           ← 8) using
                                           Universal Instantiation
(x) 9 x (~ P(x))
                          ← premise
11) ~ P(C)
                          ← 10) using
                                        Existential Instantiation
12) ~ R ce) ~ ~ Pce)
                          ( 9), 11) using Conjunction
B) - Rces
                           ← 12) using Simplification
14) 3 x (~ R cx)
                          ←13) using Existential generalization
   ขั้นตอนการดำเนินการ
```

- 1. ทำแบบฝึกหัดที่กำหนดให้
- 2. ส่งงานผ่าน MS Team ตามกำหนด