## **Déterminants**

 $\mathbb{K}$  est un corps commutatif, par exemple  $\mathbb{K} = \mathbb{R}$  ou  $\mathbb{K} = \mathbb{C}$ .

### 1.1 Déterminant en dimension 2 et 3

Matrice  $2 \times 2$ .

$$\det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$



C'est donc le produit des éléments sur la diagonale principale (en bleu) moins le produit des éléments sur l'autre diagonale (en orange).

**Proposition.** Eaire du parallélogramme délimité par  $v_1=\left(\begin{smallmatrix}a\\c\end{smallmatrix}\right)$  et  $v_2=\left(\begin{smallmatrix}b\\d\end{smallmatrix}\right)$ est donnée par la valeur absolue du déterminant :

$$\mathcal{A} = \left| \det(\nu_1, \nu_2) \right| = \left| \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right|$$



**Matrice**  $3 \times 3$ . Soit  $A \in M_3(\mathbb{K})$  une matrice  $3 \times 3$ :

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Voici la formule pour le déterminant :

 $\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}$ 

Règle de Sarrus: Addition de trois produits de trois termes le long de la diagonale descendante (en bleu, à gauche) puis soustraction de trois produits de trois termes le long de la diagonale montante (en orange, à droite)





**Proposition.** Le volume du parallélépipède délimité par trois vecteurs  $v_1 =$  $\begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}$ ,  $v_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ a_{23} \end{pmatrix}$ ,  $v_3 = \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}$  est donné par la valeur absolue du déterminant de la matrice correspondante :  $\mathcal{V} = |\det(A)|$ 



### 1.2 Définition du déterminant

Théorème (Existence et d'unicité du déterminant). Il existe une unique application de  $M_n(\mathbb{K})$  dans  $\mathbb{K}$ , appelée déterminant, telle que

- (i) le déterminant est linéaire par rapport à chaque vecteur colonne, les autres étant fixés;
- (ii) si une matrice A a deux colonnes identiques, alors son déterminant est nul;
- (iii) le déterminant de la matrice identité I, vaut 1.

Le déterminant est donc la seule forme multilinéaire (propriété (i)), alternée (propriété (ii)) qui prend comme valeur 1 sur la matrice  $I_n$ . Si on note  $C_i$  la i-ème colonne de A, alors

$$\det A = \begin{vmatrix} C_1 & C_2 & \cdots & C_n \end{vmatrix} = \det(C_1, C_2, \dots, C_n).$$

Avec cette notation, la propriété (i) de linéarité par rapport à la colonne j s'écrit : pour tout  $\lambda, \mu \in \mathbb{K}$ ,  $\det(C_1, \ldots, \lambda C_j + \mu C'_j, \ldots, C_n) =$  $\lambda \det(C_1,\ldots,C_j,\ldots,C_n) + \mu \det(C_1,\ldots,C_j',\ldots,C_n)$ , soit

Proposition (Opérations élémentaires sur les colonnes).

1.  $C_i \leftarrow \lambda C_i$  avec  $\lambda \neq 0$ : A' est obtenue en multipliant une colonne de Apar un scalaire non nul. Alors  $\det A' = \lambda \det A$ .

- 2.  $C_i \leftarrow C_i + \lambda C_i$  avec  $\lambda \in \mathbb{K}$  (et  $j \neq i$ ): A' est obtenue en ajoutant à une colonne de A un multiple d'une autre colonne de A. Alors  $\det A' = \det A$ .
- 3.  $C_i \leftrightarrow C_i : A'$  est obtenue en échangeant deux colonnes distinctes de A. Alors  $\det A' = -\det A$ . Échanger deux colonnes change le signe du déterminant.

Corollaire. Si une colonne  $C_i$  de la matrice A est combinaison linéaire des autres colonnes, alors  $\det A = 0$ .

Proposition. Le déterminant d'une matrice triangulaire supérieure (ou inférieure, ou diagonale) est égal au produit des termes diagonaux.

# 1.3 Propriétés du déterminant

Déterminant d'un produit

Théorème.

$$\det(AB) = \det A \cdot \det B$$

## Déterminant des matrices inversibles

Corollaire. Une matrice carrée A est inversible si et seulement si son déterminant est non nul. De plus si A est inversible, alors :

$$\det\left(A^{-1}\right) = \frac{1}{\det A}$$

Déterminant de la transposée

Corollaire.

$$\det\left(A^{T}\right) = \det A$$

Conséquence. Par transposition, tout ce que l'on a dit des déterminants à propos des colonnes est vrai pour les lignes : le déterminant est multilinéaire par rapport aux lignes; si une matrice a deux lignes égales, son déterminant est nul; on ne modifie pas un déterminant en ajoutant à une ligne une combinaison linéaire des autres lignes, etc.

# 1.4 Calculs de déterminants

### Cofacteur

Soit  $A = (a_{ij}) \in M_n(\mathbb{K})$  une matrice carrée.

- On note  $A_{ij}$  la matrice extraite, obtenue en effaçant la ligne i et la colonne j de A.
- Le nombre  $\det A_{ij}$  est un *mineur d'ordre* n-1 de la matrice A.
- Le nombre  $C_{ij} = (-1)^{i+j} \det A_{ij}$  est le *cofacteur* de *A* relatif au coefficient  $a_{ii}$ .

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1,j-1} & a_{1,j} & a_{1,j+1} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j} & a_{i-1,j+1} & \cdots & a_{i-1,n} \\ \\ a_{i,1} & \cdots & a_{i,j-1} & a_{i,j} & a_{i,j+1} & \cdots & a_{i,n} \\ \\ a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j} & a_{i+1,j+1} & \cdots & a_{i+1,n} \\ \vdots & \vdots & & & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & \vdots & & \vdots \\ a_{n,j} & a_{n,j+1} & \cdots & a_{nn} \end{pmatrix}$$

$$A_{ij} = \begin{pmatrix} a_{1,1} & \dots & a_{1,j-1} & a_{1,j+1} & \dots & a_{1,n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{i-1,1} & \dots & a_{i-1,j-1} & a_{i-1,j+1} & \dots & a_{i-1,n} \\ a_{i+1,1} & \dots & a_{i+1,j-1} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,j-1} & a_{n,j+1} & \dots & a_{n,n} \end{pmatrix}$$

Pour déterminer si  $C_{ij} = + \det A_{ij}$  ou  $C_{ij} = - \det A_{ij}$ , on peut se souvenir que l'on associe des signes en suivant le schéma d'un échiquier :

$$A = \begin{pmatrix} + & - & + & - & \dots \\ - & + & - & + & \dots \\ + & - & + & - & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

**Théorème** (Développement suivant une ligne ou une colonne). *Formule de développement par rapport* à la ligne i :

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij} = \sum_{j=1}^{n} a_{ij} C_{ij}$$

Formule de développement par rapport à la colonne j :

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij} = \sum_{i=1}^{n} a_{ij} C_{ij}$$

On commence souvent par faire apparaître un maximum de zéros par des opérations élémentaires sur les lignes et/ou les colonnes qui ne modifient pas le déterminant, avant de développer le déterminant suivant la ligne ou la colonne qui a le plus de zéros.

### Inverse d'une matrice

Soit  $A\in M_n(\mathbb{K})$  une matrice carrée. La matrice C des cofacteurs, appelée comatrice, et notée Com(A) :

$$C = (C_{ij}) = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{pmatrix}$$

Théorème. Soient A une matrice inversible, et C sa comatrice. On a alors

$$A^{-1} = \frac{1}{\det A} C^T$$

# 1.5 Applications des déterminants

#### Méthode de Cramer

Considérons le système d'équations linéaires à n équations et n inconnues suivant :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n & = & b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n & = & b_2 \\ & \dots & & & \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n & = & b_n \end{cases}$$

Ce système s'écrit sous forme matricielle AX = B où

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in M_n(\mathbb{K}), \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Définissons la matrice  $A_j\in M_n(\mathbb{K})$  obtenue en remplaçant la j-ème colonne de A par le second membre B :

$$A_{j} = \left( \begin{array}{ccccc} a_{11} & \dots & a_{1,j-1} & b_{1} & a_{1,j+1} & \dots & a_{1n} \\ a_{21} & \dots & a_{2,j-1} & b_{2} & a_{2,j+1} & \dots & a_{2n} \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & \dots & a_{n,j-1} & b_{n} & a_{n,j+1} & \dots & a_{nn} \end{array} \right)$$

**Théorème** (Règle de Cramer). Soit AX = B un système de n équations à n inconnues. Supposons que  $\det A \neq 0$ . Alors l'unique solution  $(x_1, x_2, \ldots, x_n)$  du système est donnée par :

$$x_1 = \frac{\det A_1}{\det A}$$
  $x_2 = \frac{\det A_2}{\det A}$  ...  $x_n = \frac{\det A_n}{\det A}$ .

#### Déterminant et base

**Théorème.** Une famille de n vecteurs de  $\mathbb{R}^n$ 

$$\begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} \quad \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix} \quad \cdots \quad \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{pmatrix}$$

forme une base si et seulement si det  $(a_{ij}) \neq 0$ .

## Calcul du rang d'une matrice

Soit  $A=(a_{ij})\in M_{n,p}(\mathbb{K})$  une matrice à n lignes et p colonnes à coefficients dans  $\mathbb{K}$ . Le rang de A est la dimension de l'espace vectoriel engendré par les vecteurs colonnes. C'est donc le nombre maximum de vecteurs colonnes linéairement indépendants.

Soit k un entier inférieur à n et à p. On appelle mineur d'ordre k le déterminant d'une matrice carrée de taille k obtenue à partir de A en supprimant n-k lignes et p-k colonnes.

**Théorème.** Le rang d'une matrice  $A \in M_{n,p}(\mathbb{K})$  est le plus grand entier r tel qu'il existe un mineur d'ordre r extrait de A non nul.

**Proposition.** Le rang de A est égal au rang de sa transposée  $A^T$ .