Introduction to Algebra - Day 4

David Sellers

Spring 2025

Day 4 - Rational Exponents

Consider $x \cdot x$. Using rules we know then we know this is x^2 . From this we gather that $\sqrt{x^2}$ should be x. While this is true, in more complicated cases it can be notationally confusing. For instance, $\sqrt[3]{x^{24}}$.

From here we can introduce a new notation to simplify these cases. The 3 is the index, 24 is the power and x^{24} is the radicand. We can rewrite this expression as $x^{\frac{24}{3}}$ and this is called a rational exponent. We can now see that this simplifies easily to x^8 meaning that the cube root of x^{24} is x^8 since $x^8 \cdot x^8 \cdot x^8 = x^{24}$.

Applications

- 1. $\sqrt{p^8}$ 2. $\sqrt[4]{n^{32}}$ 3. $\sqrt[5]{\frac{p^{40}}{q^{15}}}$ 4. $\sqrt[9]{x^{99}y^{18}}$ 5. $\sqrt[3]{\frac{x^{-6}y^{12}z^{18}}{x^9y^4z^{21}}}$

Simplifying radicals

These same ideas can be used to simplify radicals with constant radicands. For instance $\sqrt{8}$ is $\sqrt{4 \cdot 2}$ and by our properties $\sqrt{4}\sqrt{2} = 2\sqrt{2}$.

The process we are using here is looking for factors of the radicand that are perfect roots, factor the radicand and take the root.

Applications

- 1. $\sqrt{50}$
- 2. $\sqrt{128}$
- 3. $\sqrt{250}$

- $4. \sqrt{108}$ $5. \sqrt[3]{256}$ $6. \sqrt[3]{250}$ $7. \sqrt[3]{16}$
- \ll previous Home next »