

VSU COPPG - 'Grand Escape'

Problem description

As a maze runner, you are given a map of the maze m. Mazes are represented as $n \times n$ matrices with 0's as spaces and -1's as its walls. You start at the coordinates (x_1, y_1) and should escape at (x_2, y_2) . You can only move up, down, left, or right.

Your goal is to determine the shortest number of steps *s* to reach the exit.

Input

The first line contains n, representing the dimension of the maze.

The next line contains $n \times n$ integers, which give the representation of the maze.

The third line contains the starting coordinate (x_1, y_1) .

The fourth line contains the ending coordinate (x_2, y_2) .

Output

Print s, which is the minimum number of steps required to escape the maze. If escape isn't possible, print -1.

Constraints

- $0 < n \le 100$
- $0 \le i, j, \le n, where m[i][j] = 0 or m[i][j] = -1$
- $0 \le x_1, y_1, x_2, y_2 \le n$, where $m[x_1][y_1] = 0$ and $m[x_2][y_2] = 0$

Sample input/output

Sample input and output for this problem:

Input	Output
6	10
0 -1 -1 0 0 -1	
0 0 -1 0 -1 0	
-1 0-1 0 0 0	
0 0 -1 0 -1 0	
-1 0 0 0 0 -1	
0 0 -1 -1 0 0	
0 0	
2 4	
4	-1
-1 -1 0 -1	
0 0 -1 0	
0 -1 0 0	
0 0 0 -1	
0 2	
3 0	

Explanation

In the first sample, you can escape the maze in 10 steps. From m[0][0], you can traverse through the following path:

In the second sample, you can't escape the maze since m[0][2] is enclosed, and therefore cannot reach m[3][0].