Корреляционный анализ.

- 1 Переставим использованные при введении коэффициента корреляции Спирмэна пары рангов (R_i, S_i) , $i = 1, \ldots, n$, в порядке возрастания первой компоненты получается набор $(1, T_1), \ldots, (n, T_n)$. Доказать, что $\rho_S = 1 \frac{12}{n^3 n} \sum_{i < j} (j i) I\{T_i > T_j\}$ и $\tau = 1 \frac{4}{n^2 n} \sum_{i < j} I\{T_i > T_j\}$, где τ коэффициент корреляции Кэндалла.
- **2** Доказать, что при верной гипотезе о независимости выборок $\mathsf{E} \tau = 0$ и $\mathsf{D} \tau = 2(2n+5)/(9n(n-1))$, где τ коэффициент корреляции Кэндалла.
- **3** Пусть $\{X_i^{(j)}\}$, $i=1,\ldots,n,\ j=1,\ldots,k,-k$ выборок. Доказать, что ранговый коэффициент конкордации Кэндалла удовлетворяет соотношению

$$W = \frac{(k-1)\overline{\rho_S} + 1}{k},$$

где $\overline{\rho_S}$ – среднее арифметическое коэффициентов корреляции Спирмэна по всем k(k-1)/2 парам выборок.

- **4** Выданы выборки X_1, \ldots, X_n и Y_1, \ldots, Y_n . Определить на уровне значимости $\alpha = 0.05$, являются ли они зависимыми.
- **5** Выдано k выборок $\{X_i^{(1)}\}_{i=1}^n,\dots,\{X_i^{(k)}\}_{i=1}^n$. Проверить гипотезу о независимости выборок методами корреляционного анализа с помощью статистической процедуры, контролирующей FWER на уровне $\alpha=0.05$. Являются ли выборки независимыми в совокупности? Если нет, укажите пары выборок, которые в результате проведённой статистической процедуры признаны зависимыми.
- **6** Выдано k выборок $\{X_i^{(1)}\}_{i=1}^n,\ldots,\{X_i^{(k)}\}_{i=1}^n$. Пользуясь выборочным коэффициентом корреляции для оценки корреляции между выборками, проверить гипотезу о том, что распределение выборки векторов $X=(X_1,\ldots,X_n)$, где $X_i=(X_i^{(1)},\ldots,X_i^{(k)})^T$, является многомерным нормальным распределением, на уровне значимости $\alpha=0.05$. Указание. Выборку из векторов следует разделить на 2 части, по первой части "обучать" коэффициенты корреляции, а по второй уже проверять нормальность с учётом оцененных параметров.