

СИМУЛЯТОР ФИЗИЧЕСКИХ МОДЕЛЕЙ ИЗ ШКОЛЬНОГО КУРСА ФИЗИКИ

Преимущества цифрового обучения: доступность, экономическая эффективность, предоставление персонализированного опыта обучения, удобство проведения

Цель работы: разработка приложения для исследования физических закономерностей тех или иных процессов в интерактивной форме.

Объект работы: физические модели

Предмет работы: разработка графического интерфейса и программного кода

Область применения: образовательные учреждения

Результат: разработанное приложение на Java с возможностью добавления новых моделей

ПРЕДСТАВЛЕННЫЕ ЗАДАЧИ

Требования к Технические Функциональные дизайну требования характеристики Единая Расширяемость Windows 10 пветовая функционала палитра Взаимодействие с Структура конфигурационным Java 17 пользовательского файлом интерфейса Парсинг Разметочная Процессор: Intel Core іЗ 1115G4 и выше html- кода из файла сетка **RAM: 8 Гб** Свободное место на диске: 1 Гб

СУЩЕСТВУЮЩИЕ СПОСОБЫ ЦИФРОВОГО ОБУЧЕНИЯ

	Видеоролики	Сторонние программы	Разработанное приложение
Обучаемость	+	+	+
Интерактивность	-	+	+
Невысокая стоимость создания контента	-	-	+
Простота разработки	-	-	+
Открытый исходный код	Отсутствует	-	+

ИНТЕРФЕЙС ПРИЛОЖЕНИЯ

X

КОНФИГУРАЦИОННЫЙ ФАЙЛ

- moduleName
- moduleDescription
- modelName
- modelDescription
- modelFilePath
- iconPath*
- isGridNeeded*

К счастью, в случае запуска снаряда с некоторой начальной высоты h нам нужно просто добавить это значение в итоговую формулу:

$$h_{max} = h + V_y^2/(2g)$$

Здесь мог бы быть ваш текст

Для использования данного модуля следует изменить угол ствола для прорисовки траектории и запустить демонстрацию модели, дважды нажав на ствол либо нажав на кнопку "Начать выполнение" в панели инструментов. За условную единицу принимается одив метр.

Вся необходимая информация для анализа находится в панели настроек модели.

МОДЕЛЬ "ПУШЕЧНОЕ ЯДРО"

МОДЕЛЬ "ГРУЗ С ПРУЖИНОЙ"

МОДЕЛЬ "ПРЕЛОМЛЕНИЕ ЧЕРЕЗ ЛИНЗУ"

ЗАКЛЮЧЕНИЯ И ВЫВОДЫ

В ходе выполнения ВКР было разработано приложение для симуляции физических моделей.

- Достаточно небольшое количество человек и вычислительных ресурсов.
- Приложение получилось с открытым исходным и задокументированным кодом.
- Развитием данного приложения является добавление новых физических моделей, доработка старых, уточнение теоретической базы, перенос приложения на различные платформы и ОС, улучшение графической составляющей.