Chapter 1

Iteration Methods

1.1 Convergence of Value Iteration

In this section, the convergence of value iteration for the simple discounted problem is proven. The proof is done similarly as in Bertsekas volume 1 p.298-299. [Will be replaced by proper citation in report] The Bellman equations that we are going to use, are

$$V(x_k) = \begin{cases} \min\{c + \alpha_{\delta}V(1), \alpha_{\delta}\mathbb{E}[V(S(x_k))]\}, & \text{if } x_k > 0\\ c + a + \alpha_{\delta}V(1), & \text{else.} \end{cases}$$
 (1.1)

Where $\mathbb{E}[V(S(x_k))] = \mathbb{P}(\omega_k = 0)V(0) + \mathbb{P}(\omega_k = 1)V(x_k + 1).$

We define an operator T. Such that at each iteration the value function is updated as follows

$$V_{k+1}(x) = TV_k$$

$$= \left\{ \min \left\{ \begin{aligned} c + \alpha_{\delta} V_k(1), \\ \alpha_{\delta} \mathbb{P}(\omega(x) = 0) V_k(0) + \alpha_{\delta} \mathbb{P}(\omega(x) = 1) V_k(x+1) \end{aligned} \right\}, & \text{if } x > 0 \\ c + a + \alpha_{\delta} V_k(1), & \text{else.} \end{aligned} \right.$$
(1.2)

And the corresponding policy is given by

$$\mu_{k+1}(x) = \begin{cases} a_R, & \text{if } x = 0 \text{ or} \\ c + \alpha_\delta V_k(1) < \alpha_\delta \mathbb{P}(\omega(x) = 0) V_k(0) + \alpha_\delta \mathbb{P}(\omega(x) = 1) V_k(x+1) \\ a_W, & \text{else.} \end{cases}$$

$$(1.3)$$

For this T, it holds that for every V_a, V_b , the following property holds [Bertsekas]

$$(\forall_x : V_a \le V_b) \Rightarrow (\forall_x : TV_a \le TV_b). \tag{1.4}$$

Also, defining e(x) = 1, we have [Bertsekas]

$$T(V + Ce)(x_0) = TV(x_0) + \alpha_{\delta}C. \tag{1.5}$$

For every policy $\pi = \{\mu_0, \mu_1, ...\}$ with corresponding random variables X_m $(m \geq 0)$ such that $X_0 = x_0$ and $X_{m+1} = f(X_m, \mu_m(X_m), \omega_m)$ for $m \geq 0$, we

define the random variable

$$V^{\pi}(x_0) = \sum_{m=0}^{\infty} \alpha_{\delta}^m g(X_m, \mu_m(X_m))$$

as the discounted cost starting from state x_0 , using policy π . Since $g(x_m, u_m) \le c + a$ for all x_m, u_m , we can write

$$\mathbb{E}[V^{\pi}(x_0)] = \mathbb{E}\left[\sum_{m=0}^{\infty} \alpha_{\delta}^m g(X_m, \mu_m(X_m))\right]$$

$$= \sum_{m=0}^{\infty} \alpha_{\delta}^m \mathbb{E}[g(X_m, \mu_m(X_m))]$$

$$\leq \sum_{m=0}^{\infty} \alpha_{\delta}^m (c+a)$$

$$= \frac{c+a}{1-\alpha_{\delta}}.$$
(1.6)

Moreover, for the optimal expected discounted cost V^* we have that for all x_0 $V^*(x_0) \leq \mathbb{E}[V^{\pi}(x_0)] \leq \frac{c+a}{1-\alpha_{\delta}}$. Also, $TV^* = V^*$ because V^* satisfies the Bellman equations. Now we choose an initial value V_0 such that there exists an M such that for each x, $0 \leq V_0(x) \leq M$ holds. The following inequality now holds. We can now write for all x_0

$$V^*(x_0) - \frac{c+a}{1-\alpha_\delta} \le 0 \le V_0(x_0) \le M \le M + V^*(x_0). \tag{1.7}$$

If we apply T k times to this equation and let $k \to \infty$, we get

$$T^{k}\left(V^{*}(x_{0}) - \frac{c+a}{1-\alpha_{\delta}}\right)$$

$$= V^{*}(x_{0}) - \alpha_{\delta}^{k} \frac{c+a}{1-\alpha_{\delta}}$$

$$\leq T^{k}V_{0}(x_{0})$$

$$= V_{k}(x_{0})$$

$$\leq T^{k}(M+V^{*}(x_{0}))$$

$$= \alpha_{\delta}^{k}M+V^{*}(x_{0}).$$

$$(1.8)$$

Where the first and last equalities follows from (1.5), the second equality from the definition of T and the two inequalities follow from (1.4). Letting $k \to \infty$, we get $V_k(x_0) \to V^*(x_0)$ such that the convergence is proven for all bounded positive V_0 .

1.2 Convergence of custom iteration

The convergence of the iteration method for the simple discounted problem will now be proven. Let V^{μ} be the total discounted cost of the policy corresponding to repairing the machine when it has lived a time equal to control limit μ .

Since this value is finite for every control limit $\mu > 0$, some μ^* must exist that minimizes this cost. For this μ^* , the following equation must hold

$$V^{\mu^*} = \inf_{\mu > 0} \mathbb{P}(Q > \mu) e^{-\beta \mu} (c + V^{\mu^*}) + \mathbb{P}(Q \le \mu) \mathbb{E}[e^{-\beta Q} | Q \le \mu] (c + a + V^{\mu^*})]. \tag{1.9}$$

Note that these are not the Bellman equations since the discount depends on the chosen action. Let $\alpha_{\mu} = \mathbb{P}(Q > \mu)e^{-\beta\mu}\mathbb{P}(Q \leq \mu)\mathbb{E}[e^{-\beta Q}|Q \leq \mu]$ denote the factor at which the costs for the next stage are discounted when choosing control limit μ . The cost that is incurred when a control μ is chosen equals

$$g(\mu) := \mathbb{P}(Q > \mu)e^{-\beta\mu}c + \mathbb{P}(Q \le \mu)\mathbb{E}[e^{-\beta Q}|Q \le \mu](c+a).$$

We can now write

$$V^{\mu^*} = \sum_{n=0}^{\infty} \alpha_{\mu^*}^k g(\mu^*).$$

Note that α_{μ} is decreasing in μ since $\frac{d}{d\mu}\alpha_{\mu} = -\beta \mathbb{P}(Q > \mu)e^{-\beta\mu} < 0$. Since $\lim_{\mu \to 0} V^{\mu} = \infty$, we know that for every B > 0 for sufficiently small ε , we have $\mu < \varepsilon \Rightarrow V^{\mu} > B$.

Note that $g(\mu) < c + a$ for all μ so that

$$V^{\mu^*} = \sum_{n=0}^{\infty} \alpha_{\mu^*}^k g(\mu^*) \le \sum_{n=0}^{\infty} \alpha_{\varepsilon}^k (c+a) = \frac{c+a}{1-\alpha_{\varepsilon}}$$

The iteration is given by

$$V_{n+1} = TV_n = \inf_{\mu_{n+1} > 0} \left\{ g(\mu_{n+1}) + \alpha_{\mu_{n+1}} V_n \right\}$$
 (1.10)

By $\mu(V)$ we will denote the μ at which TV is attained. For this T we will prove the following properties:

Lemma 1. For A_1, A_2 such that $\frac{1}{2}B > A_1 \ge A_2 \ge 0$:

- 1. $T(A_1 + A_2) \leq TA_1 + \alpha_{\varepsilon} A_2$,
- 2. $T(A_1) \geq T(A_2)$,
- 3. $T(A_1 A_2) \ge TA_1 \alpha_{\varepsilon}A_2$.

Proofs:

1.

$$T(A_1 + A_2) = g(\mu(A_1 + A_2)) + \alpha_{\mu(A_1 + A_2)}(A_1 + A_2)$$

$$\leq g(\mu(A_1)) + \alpha_{\mu(A_1)}(A_1 + A_2)$$

$$\leq g(\mu(A_1)) + \alpha_{\mu(A_1)}A_1 + \alpha_{\varepsilon}A_2$$

$$= TA_1 + \alpha_{\varepsilon}A_1$$
(1.11)

where the first inequality follows from the fact that $\mu(A_1 + A_2)$ minimizes $g(\mu) + \alpha_{\mu}(A_1 + A_2)$ and the second from the fact that $a_{\varepsilon} > a_{\mu(A_1 + A_2)}$.

2.

$$T(A_2) = g(\mu(A_2)) + \alpha_{\mu(A_2)} A_2$$

$$\leq g(\mu(A_1)) + \alpha_{\mu(A_1)} A_2$$

$$\leq g(\mu(A_1)) + \alpha_{\mu(A_1)} A_1$$

$$= T(A_1)$$
(1.12)

where the first inequality follows from the fact that $\mu(A_2)$ minimizes $g(\mu) + \alpha_{\mu}A_2$ and the second from $A_1 \geq A_2$.

3.

$$T(A_{1} - A_{2}) = g(\mu(A_{1} - A_{2})) + \alpha_{\mu(A_{1} - A_{2})}(A_{1} - A_{2})$$

$$\geq g(\mu(A_{1} - A_{2})) + \alpha_{\mu(A_{1} - A_{2})}A_{1} - \alpha_{\varepsilon}A_{2}$$

$$\geq g(\mu(A_{1})) + \alpha_{\mu(A_{1})}A_{1} - \alpha_{\varepsilon}A_{2}$$

$$= TA_{1} - \alpha_{\varepsilon}A_{2}$$
(1.13)

where the first inequality follows from $a_{\varepsilon} > a_{\mu(A_1 - A_2)}$ and the second from the fact that $\mu(A_1)$ minimizes $g(\mu) + \alpha_{\mu} A_1$.

If our initial $0 \le V_0 < B$, then the following inequality now holds

$$V^{\mu^*} - \frac{c+a}{1-\alpha_{\varepsilon}} \le 0 \le V_0 \le B \le V^{\mu^*} + B.$$

If we now apply T k times on this inequality, we get

$$V^{\mu^*} - \alpha_{\varepsilon}^k \frac{c+a}{1-\alpha_{\varepsilon}} \le T^k (V^{\mu^*} - \frac{c+a}{1-\alpha_{\varepsilon}}) \le T^k V_0 = V_k \le T^k (V^{\mu^*} + B) \le V^{\mu^*} + \alpha_{\varepsilon}^k B.$$

$$\tag{1.14}$$

Where the first and last inequalities follow from Lemma 1. Concluding $\lim_{k\to\infty}V_k=V^{\mu^*}$. So that the convergence for value iteration is proven. Note that the difficulty of this iteration still lies in finding the μ_{n+1} that minimizes (1.10). For increasing hazard rates, there is at most one μ such that

$$h(\mu) = \beta \frac{c + V_n}{a}.$$

And μ_{n+1} should be chosen as either this μ or ∞ .