

Cloudera Impala

Important Notice

(c) 2010-2015 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, Cloudera Impala, and any other product or service names or slogans contained in this document are trademarks of Cloudera and its suppliers or licensors, and may not be copied, imitated or used, in whole or in part, without the prior written permission of Cloudera or the applicable trademark holder.

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software Foundation. All other trademarks, registered trademarks, product names and company names or logos mentioned in this document are the property of their respective owners. Reference to any products, services, processes or other information, by trade name, trademark, manufacturer, supplier or otherwise does not constitute or imply endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Cloudera, the furnishing of this document does not give you any license to these patents, trademarks copyrights, or other intellectual property. For information about patents covering Cloudera products, see http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall not be liable for any damages resulting from technical errors or omissions which may be present in this document, or from use of this document.

Cloudera, Inc. 1001 Page Mill Road Bldg 2 Palo Alto, CA 94304 info@cloudera.com US: 1-888-789-1488 Intl: 1-650-362-0488 www.cloudera.com

Release Information

Version: 2.1.x / CDH 5.3.x Date: June 24, 2015

Table of Contents

Introducing Cloudera Impala	15
Impala Benefits	15
How Cloudera Impala Works with CDH	15
Primary Impala Features	
Impala Concepts and Architecture	17
Components of the Impala Server	17
The Impala Daemon	
The Impala Statestore	1
The Impala Catalog Service	18
Programming Impala Applications	18
Overview of the Impala SQL Dialect	18
Overview of Impala Programming Interfaces	19
How Impala Fits Into the Hadoop Ecosystem	20
How Impala Works with Hive	20
Overview of Impala Metadata and the Metastore	20
How Impala Uses HDFS	2 ⁻
How Impala Uses HBase	2
Planning for Impala Deployment	22
Cloudera Impala Requirements	22
Product Compatibility Matrix	22
Supported Operating Systems	22
Hive Metastore and Related Configuration	22
Java Dependencies	2
Networking Configuration Requirements	2
Hardware Requirements	2
User Account Requirements	24
Cluster Sizing Guidelines for Impala	24
Guidelines for Designing Impala Schemas	26
Installing Impala	29
What is Included in an Impala Installation	29
Impala Installation Procedure for CDH 4 Users	29
Installing Impala with Cloudera Manager	30

Installing Impala without Cloudera Manager	30
Configuring Impala	33
Post-Installation Configuration for Impala	
Configuring Impala to Work with ODBC	
Configuring Impala to Work with JDBC	
Configuring the JDBC Port	
Choosing the JDBC Driver	
Enabling Impala JDBC Support on Client Systems	
Establishing JDBC Connections	
Upgrading Impala	41
Upgrading Impala through Cloudera Manager - Parcels	41
Upgrading Impala through Cloudera Manager - Packages	
Upgrading Impala without Cloudera Manager	
Starting Impala	45
Starting Impala through Cloudera Manager	
Starting Impala from the Command Line	
Modifying Impala Startup Options	
Configuring Impala Startup Options through Cloudera Manager	
Configuring Impala Startup Options through the Command Line	
Checking the Values of Impala Configuration Options	
Startup Options for impalad Daemon	49
Startup Options for statestored Daemon	49
Startup Options for catalogd Daemon	49
Impala Tutorial	50
Tutorials for Getting Started	50
Explore a New Impala Instance	50
Set Up Some Basic .csv Tables	55
Point an Impala Table at Existing Data Files	57
Describe the Impala Table	58
Query the Impala Table	59
Data Loading and Querying Examples	
Advanced Tutorials	
Attaching an External Partitioned Table to an HDFS Directory Structure	
Switching Back and Forth Between Impala and Hive	
Cross Joins and Cartesian Products with the CROSS JOIN Operator	64

Admission Control and Query Queuing	
Overview of Impala Admission Control	
How Impala Admission Control Relates to YARN	
How Impala Schedules and Enforces Limits on Concurrent Queries	
How Admission Control works with Impala Clients (JDBC, ODBC, HiveServer2)	
Configuring Admission Control	
Guidelines for Using Admission Control	
Integrated Resource Management with YARN	
The Llama Daemon	
Controlling Resource Estimation Behavior	
Checking Resource Estimates and Actual Usage	
How Resource Limits Are Enforced	
Enabling Resource Management for Impala	
Limitations of Resource Management for Impala	
Setting Timeout Periods for Daemons, Queries, and Sessions	
Using Impala through a Proxy for High Availability	
Overview of Proxy Usage and Load Balancing for Impala	
Special Proxy Considerations for Clusters Using Kerberos	
Example of Configuring HAProxy Load Balancer for Impala	
Managing Disk Space for Impala Data	
Managing Disk Space for Impala Data	
Managing Disk Space for Impala Data	
Managing Disk Space for Impala Data mpala Security	
Managing Disk Space for Impala Data mpala Security Security Guidelines for Impala	
Managing Disk Space for Impala Data	
Managing Disk Space for Impala Data	
Managing Disk Space for Impala Data	
Managing Disk Space for Impala Data	
Managing Disk Space for Impala Data	
Managing Disk Space for Impala Data	
Managing Disk Space for Impala Data	
Managing Disk Space for Impala Data mpala Security Security Guidelines for Impala Securing Impala Data and Log Files Installation Considerations for Impala Security Securing the Hive Metastore Database Securing the Impala Web User Interface Configuring SSL for Impala Using Cloudera Manager Using the Command Line Enabling Sentry Authorization for Impala The Sentry Privilege Model	
Managing Disk Space for Impala Data	
Managing Disk Space for Impala Data mpala Security Security Guidelines for Impala Securing Impala Data and Log Files Installation Considerations for Impala Security Securing the Hive Metastore Database Securing the Impala Web User Interface Configuring SSL for Impala Using Cloudera Manager Using the Command Line Enabling Sentry Authorization for Impala The Sentry Privilege Model	
Managing Disk Space for Impala Data	
Managing Disk Space for Impala Data	
Managing Disk Space for Impala Data	
Managing Disk Space for Impala Data	

The DEFAULT Database in a Secure Deployment	101
Impala Authentication	101
Enabling Kerberos Authentication for Impala	101
Enabling LDAP Authentication for Impala	104
Using Multiple Authentication Methods with Impala	106
Auditing Impala Operations	106
Durability and Performance Considerations for Impala Auditing	
Format of the Audit Log Files	107
Which Operations Are Audited	107
Reviewing the Audit Logs	108
Impala SQL Language Reference	109
Comments	109
Data Types	
BIGINT Data Type	
BOOLEAN Data Type	
CHAR Data Type (CDH 5.2 or higher only)	
DECIMAL Data Type (CDH 5.1 or higher only)	
DOUBLE Data Type	
FLOAT Data Type	
INT Data Type	
REAL Data Type	
SMALLINT Data Type	
STRING Data Type	
TIMESTAMP Data Type	
TINYINT Data Type	130
VARCHAR Data Type (CDH 5.2 or higher only)	131
Literals	133
Numeric Literals	134
String Literals	135
Boolean Literals	136
Timestamp Literals	136
NULL	136
SQL Operators	137
Arithmetic Operators	137
BETWEEN Operator	138
Comparison Operators	139
EXISTS Operator	139
IN Operator	142
IS NULL Operator	144
LIKE Operator	144
Logical Operators	145
REGEXP Operator	147

RLIKE Operator	148
Schema Objects and Object Names	149
Aliases	149
Databases	150
Functions	150
Identifiers	150
Tables	151
Views	153
SQL Statements	157
DDL Statements	157
DML Statements	158
ALTER TABLE Statement	159
ALTER VIEW Statement	163
COMPUTE STATS Statement	164
CREATE DATABASE Statement	169
CREATE FUNCTION Statement	171
CREATE ROLE Statement (CDH 5.2 or higher only)	173
CREATE TABLE Statement	174
CREATE VIEW Statement	180
DESCRIBE Statement	181
DROP DATABASE Statement	186
DROP FUNCTION Statement	186
DROP ROLE Statement (CDH 5.2 or higher only)	187
DROP STATS Statement	187
DROP TABLE Statement	191
DROP VIEW Statement	192
EXPLAIN Statement	192
GRANT Statement (CDH 5.2 or higher only)	195
INSERT Statement	196
INVALIDATE METADATA Statement	203
LOAD DATA Statement	206
REFRESH Statement	208
REVOKE Statement (CDH 5.2 or higher only)	211
SELECT Statement	211
SET Statement	234
SHOW Statement	235
USE Statement	246
Built-in Functions	246
Impala Mathematical Functions	248
Impala Type Conversion Functions	
Impala Date and Time Functions	
Impala Conditional Functions	
Impala String Functions	
Impala Miscellaneous Functions	

Impala Aggregate Functions	271
Impala Analytic Functions	282
Impala User-Defined Functions (UDFs)	295
SQL Differences Between Impala and Hive	310
HiveQL Features not Available in Impala	310
Semantic Differences Between Impala and HiveQL Features	311
Porting SQL from Other Database Systems to Impala	312
Porting DDL and DML Statements	312
Porting Data Types from Other Database Systems	312
SQL Statements to Remove or Adapt	315
SQL Constructs to Doublecheck	316
Next Porting Steps after Verifying Syntax and Semantics	317
Using the Impala Shell (impala-shell Command)	318
impala-shell Configuration Options	
Summary of impala-shell Configuration Options	
impala-shell Configuration File	
Connecting to impalad through impala-shell	
Running Commands in impala-shell	
impala-shell Command Reference	
Query Options for the SET Statement	
ABORT_ON_DEFAULT_LIMIT_EXCEEDED Query Option	
ABORT_ON_ERROR Query Option	
ALLOW_UNSUPPORTED_FORMATS Query Option	
APPX_COUNT_DISTINCT Query Option	
BATCH_SIZE Query Option	
COMPRESSION_CODEC Query Option	
DEBUG_ACTION Query Option	
DEFAULT_ORDER_BY_LIMIT Query Option	
DISABLE_CODEGEN Query Option DISABLE_UNSAFE_SPILLS Query Option	
EXEC_SINGLE_NODE_ROWS_THRESHOLD Query Option	
EXPLAIN_LEVEL Query Option	
HBASE_CACHE_BLOCKS Query Option	
HBASE_CACHING Query Option	
MAX_ERRORS Query Option	
MAX_IO_BUFFERS Query Option	
MAX_SCAN_RANGE_LENGTH Query Option	
MEM_LIMIT Query Option	
NUM_NODES Query Option	
NUM_SCANNER_THREADS Query Option	
PARQUET_COMPRESSION_CODEC Query Option	
PARQUET_FILE_SIZE Query Option	
, = 3 / - F	

QUERY_TIMEOUT_S Query Option	337
REQUEST_POOL Query Option	337
RESERVATION_REQUEST_TIMEOUT Query Option (CDH 5 only)	338
SUPPORT_START_OVER Query Option	338
SYNC_DDL Query Option	338
V_CPU_CORES Query Option (CDH 5 only)	339
Tuning Impala for Performance	340
Impala Performance Guidelines and Best Practices	340
Performance Considerations for Join Queries	343
How Joins Are Processed when Statistics Are Unavailable	
Overriding Join Reordering with STRAIGHT_JOIN	344
Examples of Join Order Optimization	
How Impala Uses Statistics for Query Optimization	349
Overview of Table Statistics	
Overview of Column Statistics	350
Overview of Incremental Statistics	350
Detecting Missing Statistics	351
Keeping Statistics Up to Date	
Setting Statistics Manually through ALTER TABLE	354
Examples of Using Table and Column Statistics with Impala	354
Benchmarking Impala Queries	357
Controlling Impala Resource Usage	358
Using HDFS Caching with Impala (CDH 5.1 or higher only)	358
Overview of HDFS Caching for Impala	
Setting Up HDFS Caching for Impala	358
Enabling HDFS Caching for Impala Tables and Partitions	359
Loading and Removing Data with HDFS Caching Enabled	360
Administration for HDFS Caching with Impala	361
Performance Considerations for HDFS Caching with Impala	362
Testing Impala Performance	363
Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles	364
Using the EXPLAIN Plan for Performance Tuning	364
Using the SUMMARY Report for Performance Tuning	365
Using the Query Profile for Performance Tuning	366
Detecting and Correcting HDFS Block Skew Conditions	371
Scalability Considerations for Impala	374
Scalability Considerations for the Impala Statestore	374
SQL Operations that Spill to Disk	
Limits on Query Size and Complexity	
Scalability Considerations for Impala I/O	

Scalability Considerations for Table Layout	378
Partitioning for Impala Tables	379
When to Use Partitioned Tables	379
SQL Statements for Partitioned Tables	
Static and Dynamic Partitioning Clauses	
Permissions for Partition Subdirectories	
Partition Pruning for Queries	
Checking if Partition Pruning Happens for a Query	
What SQL Constructs Work with Partition Pruning	
Partition Key Columns	
Setting Different File Formats for Partitions	
Managing Partitions	
ivialiaging Partitions	
How Impala Works with Hadoop File Formats	384
Choosing the File Format for a Table	385
Using Text Data Files with Impala Tables	
Query Performance for Impala Text Tables	
Creating Text Tables	
Data Files for Text Tables	387
Loading Data into Impala Text Tables	387
Using LZO-Compressed Text Files	388
Using gzip, bzip2, or Snappy-Compressed Text Files	391
Using the Parquet File Format with Impala Tables	392
Creating Parquet Tables in Impala	392
Loading Data into Parquet Tables	
Query Performance for Impala Parquet Tables	
Snappy and GZip Compression for Parquet Data Files	396
Exchanging Parquet Data Files with Other Hadoop Components	
How Parquet Data Files Are Organized	
Compacting Data Files for Parquet Tables	
Schema Evolution for Parquet Tables	
Data Type Considerations for Parquet Tables	
Using the Avro File Format with Impala Tables	
Creating Avro Tables	
Using a Hive-Created Avro Table in Impala	
Specifying the Avro Schema through JSON	
Loading Data into an Avro Table	
Enabling Compression for Avro Tables	
How Impala Handles Avro Schema Evolution	
Data Type Considerations for Avro Tables	
Using the RCFile File Format with Impala Tables	40/

Creating RCFile Tables and Loading Data	407
Enabling Compression for RCFile Tables	408
Using the SequenceFile File Format with Impala Tables	408
Creating SequenceFile Tables and Loading Data	409
Enabling Compression for SequenceFile Tables	409
Using Impala to Query HBase Tables	411
Overview of Using HBase with Impala	411
Configuring HBase for Use with Impala	
Supported Data Types for HBase Columns	412
Performance Considerations for the Impala-HBase Integration	412
Use Cases for Querying HBase through Impala	417
Loading Data into an HBase Table	
Limitations and Restrictions of the Impala and HBase Integration	417
Examples of Querying HBase Tables from Impala	418
Using Impala Logging	421
Locations and Names of Impala Log Files	
Managing Impala Logs through Cloudera Manager or Manually	
Rotating Impala Logs	
Reviewing Impala Logs	
Understanding Impala Log Contents	
Setting Logging Levels	
Troubleshooting Impala	425
Troubleshooting Impala SQL Syntax Issues	
Impala Troubleshooting Quick Reference	
Impala Web User Interface for Debugging	
Debug Web UI for impalad	
Ports Used by Impala	429
Importo Decemied Mende	/24
Impala Reserved Words	431
Cloudera Impala Version and Download Information	434
Impala Download Information	434
Impala 2.1.0	
Impala 2.0.1	435

Impala 2.0.0	435
Impala 1.4.3	435
Impala 1.4.0	436
Impala 1.3.1	436
Impala 1.2.4	436
Impala 1.2.3	437
Impala 1.2.2	437
Impala 1.2.1	438
Impala 1.2.0 (Beta)	438
Impala 1.1.1	438
Impala 1.0.1	438
Cloudera Impala Frequently Asked Questions	440
Trying Impala	440
Impala System Requirements	441
Supported and Unsupported Functionality In Impala	442
How do I?	443
Impala Performance	444
Impala Use Cases	446
Questions about Impala And Hive	
Impala Availability	
Impala Internals	
SQL	
Partitioned Tables	
HBase	453
Cloudera Impala Release Notes	454
Cloudera Impala Release Notes	454
New Features in Impala	454
New Features in Impala Version 2.1.4 / CDH 5.3.4	454
New Features in Impala Version 2.1.3 / CDH 5.3.3	454
New Features in Impala Version 2.1.2 / CDH 5.3.2	454
New Features in Impala Version 2.1.1 / CDH 5.3.1	454
New Features in Impala Version 2.1.0 / CDH 5.3.0	454
New Features in Impala Version 2.0.4 / CDH 5.2.5	
New Features in Impala Version 2.0.3 / CDH 5.2.4	455
New Features in Impala Version 2.0.2 / CDH 5.2.3	
New Features in Impala Version 2.0.1 / CDH 5.2.1	
New Features in Impala Version 2.0.0 / CDH 5.2.0	
New Features in Impala Version 1.4.4 / CDH 5.1.5	
New Features in Impala Version 1.4.3 / CDH 5.1.4	
New Features in Impala Version 1.4.2 / CDH 5.1.3	458

New Features in Impala Version 1.4.1 / CDH 5.1.2	458
New Features in Impala Version 1.4.0 / CDH 5.1.0	458
New Features in Impala Version 1.3.3 / CDH 5.0.5	459
New Features in Impala Version 1.3.2 / CDH 5.0.4	459
New Features in Impala Version 1.3.1 / CDH 5.0.3	459
New Features in Impala Version 1.3.0 / CDH 5.0.0	460
New Features in Impala Version 1.2.4	461
New Features in Impala Version 1.2.3	462
New Features in Impala Version 1.2.2	462
New Features in Impala Version 1.2.1	463
New Features in Impala Version 1.2.0 (Beta)	464
New Features in Impala Version 1.1.1	465
New Features in Impala Version 1.1	466
New Features in Impala Version 1.0.1	467
New Features in Impala Version 1.0	467
New Features in Version 0.7 of the Cloudera Impala Beta Release	467
New Features in Version 0.6 of the Cloudera Impala Beta Release	468
New Features in Version 0.5 of the Cloudera Impala Beta Release	468
New Features in Version 0.4 of the Cloudera Impala Beta Release	468
New Features in Version 0.3 of the Cloudera Impala Beta Release	468
New Features in Version 0.2 of the Cloudera Impala Beta Release	468
Incompatible Changes in Impala	469
Incompatible Changes Introduced in Cloudera Impala 2.1.4 / CDH 5.3.4	469
Incompatible Changes Introduced in Cloudera Impala 2.1.3 / CDH 5.3.3	469
Incompatible Changes Introduced in Cloudera Impala 2.1.2 / CDH 5.3.2	469
Incompatible Changes Introduced in Cloudera Impala 2.1.1 / CDH 5.3.1	469
Incompatible Changes Introduced in Cloudera Impala 2.1.0 / CDH 5.3.0	469
Incompatible Changes Introduced in Cloudera Impala 2.0.4 / CDH 5.2.5	469
Incompatible Changes Introduced in Cloudera Impala 2.0.3 / CDH 5.2.4	470
Incompatible Changes Introduced in Cloudera Impala 2.0.2 / CDH 5.2.3	470
Incompatible Changes Introduced in Cloudera Impala 2.0.1 / CDH 5.2.1	470
Incompatible Changes Introduced in Cloudera Impala 2.0.0 / CDH 5.2.0	470
Incompatible Changes Introduced in Cloudera Impala 1.4.4 / CDH 5.1.5	472
Incompatible Changes Introduced in Cloudera Impala 1.4.3 / CDH 5.1.4	472
Incompatible Changes Introduced in Cloudera Impala 1.4.2 / CDH 5.1.3	472
Incompatible Changes Introduced in Cloudera Impala 1.4.1 / CDH 5.1.2	472
Incompatible Changes Introduced in Cloudera Impala 1.4.0 / CDH 5.1.0	472
Incompatible Changes Introduced in Cloudera Impala 1.3.3 / CDH 5.0.5	473
Incompatible Changes Introduced in Cloudera Impala 1.3.2 / CDH 5.0.4	473
Incompatible Changes Introduced in Cloudera Impala 1.3.1 / CDH 5.0.3	473
Incompatible Changes Introduced in Cloudera Impala 1.3.0 / CDH 5.0.0	473
Incompatible Changes Introduced in Cloudera Impala 1.2.4	474
Incompatible Changes Introduced in Cloudera Impala 1.2.3	474
Incompatible Changes Introduced in Cloudera Impala 1.2.2	
Incompatible Changes Introduced in Cloudera Impala 1.2.1	475

Incompatible Changes Introduced in Cloudera Impala 1.2.0 (Beta)	475
Incompatible Changes Introduced in Cloudera Impala 1.1.1	476
Incompatible Change Introduced in Cloudera Impala 1.1	476
Incompatible Changes Introduced in Cloudera Impala 1.0	476
Incompatible Change Introduced in Version 0.7 of the Cloudera Impala Beta Release	476
Incompatible Change Introduced in Version 0.6 of the Cloudera Impala Beta Release	476
Incompatible Change Introduced in Version 0.4 of the Cloudera Impala Beta Release	477
Incompatible Change Introduced in Version 0.3 of the Cloudera Impala Beta Release	477
Known Issues and Workarounds in Impala	477
Known Issues in the Current Production Release (Impala 2.1.x)	477
Fixed Issues in Impala	481
Issues Fixed in the 2.1.4 Release / CDH 5.3.4	481
Issues Fixed in the 2.1.3 Release / CDH 5.3.3	483
Issues Fixed in the 2.1.2 Release / CDH 5.3.2	484
Issues Fixed in the 2.1.1 Release / CDH 5.3.1	485
Issues Fixed in the 2.1.0 Release / CDH 5.3.0	485
Issues Fixed in the 2.0.3 Release / CDH 5.2.4	486
Issues Fixed in the 2.0.2 Release / CDH 5.2.3	486
Issues Fixed in the 2.0.1 Release / CDH 5.2.1	487
Issues Fixed in the 2.0.0 Release / CDH 5.2.0	487
Issues Fixed in the 1.4.4 Release / CDH 5.1.5	489
Issues Fixed in the 1.4.3 Release / CDH 5.1.4	489
Issues Fixed in the 1.4.2 Release / CDH 5.1.3	490
Issues Fixed in the 1.4.1 Release / CDH 5.1.2	490
Issues Fixed in the 1.4.0 Release / CDH 5.1.0	491
Issues Fixed in the 1.3.3 Release / CDH 5.0.5	493
Issues Fixed in the 1.3.2 Release / CDH 5.0.4	493
Issues Fixed in the 1.3.1 Release / CDH 5.0.3	493
Issues Fixed in the 1.3.0 Release / CDH 5.0.0	495
Issues Fixed in the 1.2.4 Release	497
Issues Fixed in the 1.2.3 Release	498
Issues Fixed in the 1.2.2 Release	499
Issues Fixed in the 1.2.1 Release	500
Issues Fixed in the 1.2.0 Beta Release	500
Issues Fixed in the 1.1.1 Release	501
Issues Fixed in the 1.1.0 Release	502
Issues Fixed in the 1.0.1 Release	503
Issues Fixed in the 1.0 GA Release	504
Issues Fixed in Version 0.7 of the Beta Release	507
Issues Fixed in Version 0.6 of the Beta Release	508
Issues Fixed in Version 0.5 of the Beta Release	509
Issues Fixed in Version 0.4 of the Beta Release	510
Issues Fixed in Version 0.3 of the Beta Release	511
Issues Fixed in Version 0.2 of the Beta Release	511

Introducing Cloudera Impala

Cloudera Impala provides fast, interactive SQL queries directly on your Apache Hadoop data stored in HDFS or HBase. In addition to using the same unified storage platform, Impala also uses the same metadata, SQL syntax (Hive SQL), ODBC driver, and user interface (Cloudera Impala query UI in Hue) as Apache Hive. This provides a familiar and unified platform for real-time or batch-oriented queries.

Cloudera Impala is an addition to tools available for querying big data. Impala does not replace the batch processing frameworks built on MapReduce such as Hive. Hive and other frameworks built on MapReduce are best suited for long running batch jobs, such as those involving batch processing of Extract, Transform, and Load (ETL) type jobs.

Impala Benefits

Impala provides:

- Familiar SQL interface that data scientists and analysts already know
- Ability to interactively query data on big data in Apache Hadoop
- Distributed queries in a cluster environment, for convenient scaling and to make use of cost-effective commodity hardware
- Ability to share data files between different components with no copy or export/import step; for example, to write with Pig and read with Impala, or to write with Impala and read with Hive
- Single system for big data processing and analytics, so customers can avoid costly modeling and ETL just for analytics

How Cloudera Impala Works with CDH

The following graphic illustrates how Impala is positioned in the broader Cloudera environment:

The Impala solution is composed of the following components:

- Clients Entities including Hue, ODBC clients, JDBC clients, and the Impala Shell can all interact with Impala. These interfaces are typically used to issue queries or complete administrative tasks such as connecting to Impala.
- Hive Metastore Stores information about the data available to Impala. For example, the metastore lets Impala know what databases are available and what the structure of those databases is. As you create, drop,

Introducing Cloudera Impala

and alter schema objects, load data into tables, and so on through Impala SQL statements, the relevant metadata changes are automatically broadcast to all Impala nodes by the dedicated catalog service introduced in Impala 1.2.

- Cloudera Impala This process, which runs on DataNodes, coordinates and executes queries. Each instance of Impala can receive, plan, and coordinate queries from Impala clients. Queries are distributed among Impala nodes, and these nodes then act as workers, executing parallel query fragments.
- HBase and HDFS Storage for data to be queried.

Queries executed using Impala are handled as follows:

- 1. User applications send SQL queries to Impala through ODBC or JDBC, which provide standardized querying interfaces. The user application may connect to any impalad in the cluster. This impalad becomes the coordinator for the query.
- 2. Impala parses the guery and analyzes it to determine what tasks need to be performed by impalad instances across the cluster. Execution is planned for optimal efficiency.
- 3. Services such as HDFS and HBase are accessed by local impalad instances to provide data.
- 4. Each impalad returns data to the coordinating impalad, which sends these results to the client.

Primary Impala Features

Impala provides support for:

- Most common SQL-92 features of Hive Query Language (HiveQL) including <u>SELECT</u>, joins, and aggregate functions.
- HDFS and HBase storage, including:
 - HDFS file formats: Text file, SequenceFile, RCFile, Avro file, and Parquet.
 - Compression codecs: Snappy, GZIP, Deflate, BZIP.
- Common data access interfaces including:
 - JDBC driver.
 - ODBC driver.
 - Hue Beeswax and the Cloudera Impala Query UI.
- Impala command-line interface.
- Kerberos authentication.

Impala Concepts and Architecture

The following sections provide background information to help you become productive using Cloudera Impala and its features. Where appropriate, the explanations include context to help understand how aspects of Impala relate to other technologies you might already be familiar with, such as relational database management systems and data warehouses, or other Hadoop components such as Hive, HDFS, and HBase.

Components of the Impala Server

The Impala server is a distributed, massively parallel processing (MPP) database engine. It consists of different daemon processes that run on specific hosts within your CDH cluster.

The Impala Daemon

The core Impala component is a daemon process that runs on each node of the cluster, physically represented by the impalad process. It reads and writes to data files; accepts queries transmitted from the impala-shell command, Hue, JDBC, or ODBC; parallelizes the queries and distributes work to other nodes in the Impala cluster; and transmits intermediate query results back to the central coordinator node.

You can submit a query to the Impala daemon running on any node, and that node serves as the *coordinator* node for that query. The other nodes transmit partial results back to the coordinator, which constructs the final result set for a query. When running experiments with functionality through the impala-shell command, you might always connect to the same Impala daemon for convenience. For clusters running production workloads, you might load-balance between the nodes by submitting each query to a different Impala daemon in round-robin style, using the JDBC or ODBC interfaces.

The Impala daemons are in constant communication with the statestore, to confirm which nodes are healthy and can accept new work.

They also receive broadcast messages from the catalogd daemon (introduced in Impala 1.2) whenever any Impala node in the cluster creates, alters, or drops any type of object, or when an INSERT or LOAD DATA statement is processed through Impala. This background communication minimizes the need for REFRESH or INVALIDATE METADATA statements that were needed to coordinate metadata across nodes prior to Impala 1.2.

Related information: Modifying Impala Startup Options on page 46, Starting Impala on page 45, Setting the Idle Query and Idle Session Timeouts for impalad on page 79, Ports Used by Impala on page 429, Using Impala through a Proxy for High Availability on page 80

The Impala Statestore

The Impala component known as the *statestore* checks on the health of Impala daemons on all the nodes in a cluster, and continuously relays its findings to each of those daemons. It is physically represented by a daemon process named statestored; you only need such a process on one node in the cluster. If an Impala node goes offline due to hardware failure, network error, software issue, or other reason, the statestore informs all the other nodes so that future queries can avoid making requests to the unreachable node.

Because the statestore's purpose is to help when things go wrong, it is not critical to the normal operation of an Impala cluster. If the statestore is not running or becomes unreachable, the other nodes continue running and distributing work among themselves as usual; the cluster just becomes less robust if other nodes fail while the statestore is offline. When the statestore comes back online, it re-establishes communication with the other nodes and resumes its monitoring function.

Related information:

Scalability Considerations for the Impala Statestore on page 374, Modifying Impala Startup Options on page 46, Starting Impala on page 45, Increasing the Statestore Timeout on page 79, Ports Used by Impala on page 429

Impala Concepts and Architecture

The Impala Catalog Service

The Impala component known as the catalog service relays the metadata changes from Impala SQL statements to all the nodes in a cluster. It is physically represented by a daemon process named catalogd; you only need such a process on one node in the cluster. Because the requests are passed through the statestore daemon, it makes sense to run the statestored and catalogd services on the same node.

This new component in Impala 1.2 reduces the need for the REFRESH and INVALIDATE METADATA statements. Formerly, if you issued create database, drop database, create table, alter table, or drop table statements on one Impala node, you needed to issue INVALIDATE METADATA on any other node before running a query there, so that it would pick up the changes to schema objects. Likewise, if you issued INSERT statements on one node, you needed to issue REFRESH table name on any other node before running a query there, so that it would recognize the newly added data files. The catalog service removes the need to issue REFRESH and INVALIDATE METADATA statements when the metadata changes are performed by statement issued through Impala; when you create a table, load data, and so on through Hive, you still need to issue REFRESH OR INVALIDATE METADATA on an Impala node before executing a query there.

This feature, new in Impala 1.2, touches a number of aspects of Impala:

- See <u>Installing Impala</u> on page 29, <u>Upgrading Impala</u> on page 41 and <u>Starting Impala</u> on page 45, for usage information for the catalogd daemon.
- The refresh and invalidate metadata statements are no longer needed when the create table, insert, or other table-changing or data-changing operation is performed through Impala. These statements are still needed if such operations are done through Hive or by manipulating data files directly in HDFS, but in those cases the statements only need to be issued on one Impala node rather than on all nodes. See REFRESH Statement on page 208 and INVALIDATE METADATA Statement on page 203 for the latest usage information for those statements.

By default, the metadata loading and caching on startup happens asynchronously, so Impala can begin accepting requests promptly. To enable the original behavior, where Impala waited until all metadata was loaded before accepting any requests, set the catalogd configuration option --load_catalog_in_background=false.

Note:

In Impala 1.2.4 and higher, you can specify a table name with INVALIDATE METADATA after the table is created in Hive, allowing you to make individual tables visible to Impala without doing a full reload of the catalog metadata. Impala 1.2.4 also includes other changes to make the metadata broadcast mechanism faster and more responsive, especially during Impala startup. See New Features in Impala Version 1.2.4 on page 461 for details.

Related information: Modifying Impala Startup Options on page 46, Starting Impala on page 45, Ports Used by Impala on page 429

Programming Impala Applications

The core development language with Impala is SQL. You can also use Java or other languages to interact with Impala through the standard JDBC and ODBC interfaces used by many business intelligence tools. For specialized kinds of analysis, you can supplement the SQL built-in functions by writing user-defined functions (UDFs) in C++ or Java.

Overview of the Impala SQL Dialect

The Impala SQL dialect is highly compatible with the SQL syntax used in the Apache Hive component (HiveQL). As such, it is familiar to users who are already familiar with running SQL queries on the Hadoop infrastructure. Currently, Impala SQL supports a subset of HiveQL statements, data types, and built-in functions. Impala also

includes additional built-in functions for common industry features, to simplify porting SQL from non-Hadoop systems.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the SQL dialect might seem familiar:

- The SELECT statement includes familiar clauses such as WHERE, GROUP BY, ORDER BY, and WITH. You will find familiar notions such as joins, built-in functions for processing strings, numbers, and dates, aggregate functions, subqueries, and comparison operators such as IN() and BETWEEN. The SELECT statement is the place where SQL standards compliance is most important.
- From the data warehousing world, you will recognize the notion of partitioned tables. One or more columns serve as partition keys, and the data is physically arranged so that queries that refer to the partition key columns in the WHERE clause can skip partitions that do not match the filter conditions. For example, if you have 10 years worth of data and use a clause such as where year = 2015, where year > 2010, or where year IN (2014, 2015), Impala skips all the data for non-matching years, greatly reducing the amount of I/O for the query.
- In Impala 1.2 and higher, <u>UDFs</u> let you perform custom comparisons and transformation logic during SELECT and INSERT...SELECT statements.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the SQL dialect might require some learning and practice for you to become proficient in the Hadoop environment:

- Impala SQL is focused on queries and includes relatively little DML. There is no UPDATE or DELETE statement. Stale data is typically discarded (by DROP TABLE or ALTER TABLE ... DROP PARTITION statements) or replaced (by INSERT OVERWRITE statements).
- All data creation is done by INSERT statements, which typically insert data in bulk by querying from other tables. There are two variations, INSERT INTO which appends to the existing data, and INSERT OVERWRITE which replaces the entire contents of a table or partition (similar to TRUNCATE TABLE followed by a new INSERT). There is no INSERT ... VALUES syntax to insert a single row.
- You often construct Impala table definitions and data files in some other environment, and then attach Impala so that it can run real-time queries. The same data files and table metadata are shared with other components of the Hadoop ecosystem. In particular, Impala can access tables created by Hive or data inserted by Hive, and Hive can access tables and data produced by Impala. Many other Hadoop components can write files in formats such as Parquet and Avro, that can then be queried by Impala.
- Because Hadoop and Impala are focused on data warehouse-style operations on large data sets, Impala SQL includes some idioms that you might find in the import utilities for traditional database systems. For example, you can create a table that reads comma-separated or tab-separated text files, specifying the separator in the CREATE TABLE statement. You can create external tables that read existing data files but do not move or transform them.
- Because Impala reads large quantities of data that might not be perfectly tidy and predictable, it does not impose length constraints on string data types. For example, you can define a database column as STRING with unlimited length, rather than CHAR(1) or VARCHAR(64). (Although in Impala 2.0 and later, you can also use length-constrained CHAR and VARCHAR types.)

Related information: Impala SQL Language Reference on page 109, especially SQL Statements on page 157 and Built-in Functions on page 246

Overview of Impala Programming Interfaces

You can connect and submit requests to the Impala daemons through:

- The <u>impala-shell</u> interactive command interpreter.
- The Hue web-based user interface.

Impala Concepts and Architecture

- JDBC.
- ODBC.

With these options, you can use Impala in heterogeneous environments, with JDBC or ODBC applications running on non-Linux platforms. You can also use Impala on combination with various Business Intelligence tools that use the JDBC and ODBC interfaces.

Each impalad daemon process, running on separate nodes in a cluster, listens to several ports for incoming requests. Requests from impala-shell and Hue are routed to the impalad daemons through the same port. The impalad daemons listen on separate ports for JDBC and ODBC requests.

How Impala Fits Into the Hadoop Ecosystem

Impala makes use of many familiar components within the Hadoop ecosystem. Impala can interchange data with other Hadoop components, as both a consumer and a producer, so it can fit in flexible ways into your ETL and ELT pipelines.

How Impala Works with Hive

A major Impala goal is to make SQL-on-Hadoop operations fast and efficient enough to appeal to new categories of users and open up Hadoop to new types of use cases. Where practical, it makes use of existing Apache Hive infrastructure that many Hadoop users already have in place to perform long-running, batch-oriented SQL

In particular, Impala keeps its table definitions in a traditional MySQL or PostgreSQL database known as the metastore, the same database where Hive keeps this type of data. Thus, Impala can access tables defined or loaded by Hive, as long as all columns use Impala-supported data types, file formats, and compression codecs.

The initial focus on query features and performance means that Impala can read more types of data with the SELECT statement than it can write with the INSERT statement. To query data using the Avro, RCFile, or SequenceFile file formats, you load the data using Hive.

The Impala query optimizer can also make use of table statistics and column statistics. Originally, you gathered this information with the ANALYZE TABLE statement in Hive; in Impala 1.2.2 and higher, use the Impala COMPUTE STATS statement instead. COMPUTE STATS requires less setup, is more reliable, and does not require switching back and forth between impala-shell and the Hive shell.

Overview of Impala Metadata and the Metastore

As discussed in How Impala Works with Hive on page 20, Impala maintains information about table definitions in a central database known as the metastore. Impala also tracks other metadata for the low-level characteristics of data files:

The physical locations of blocks within HDFS.

For tables with a large volume of data and/or many partitions, retrieving all the metadata for a table can be time-consuming, taking minutes in some cases. Thus, each Impala node caches all of this metadata to reuse for future queries against the same table.

If the table definition or the data in the table is updated, all other Impala daemons in the cluster must receive the latest metadata, replacing the obsolete cached metadata, before issuing a query against that table. In Impala 1.2 and higher, the metadata update is automatic, coordinated through the catalogd daemon, for all DDL and DML statements issued through Impala. See The Impala Catalog Service on page 18 for details.

For DDL and DML issued through Hive, or changes made manually to files in HDFS, you still use the REFRESH statement (when new data files are added to existing tables) or the INVALIDATE METADATA statement (for entirely new tables, or after dropping a table, performing an HDFS rebalance operation, or deleting data files). Issuing INVALIDATE METADATA by itself retrieves metadata for all the tables tracked by the metastore. If you know that only specific tables have been changed outside of Impala, you can issue REFRESH table_name for each affected table to only retrieve the latest metadata for those tables.

How Impala Uses HDFS

Impala uses the distributed filesystem HDFS as its primary data storage medium. Impala relies on the redundancy provided by HDFS to guard against hardware or network outages on individual nodes. Impala table data is physically represented as data files in HDFS, using familiar HDFS file formats and compression codecs. When data files are present in the directory for a new table, Impala reads them all, regardless of file name. New data is added in files with names controlled by Impala.

How Impala Uses HBase

HBase is an alternative to HDFS as a storage medium for Impala data. It is a database storage system built on top of HDFS, without built-in SQL support. Many Hadoop users already have it configured and store large (often sparse) data sets in it. By defining tables in Impala and mapping them to equivalent tables in HBase, you can query the contents of the HBase tables through Impala, and even perform join queries including both Impala and HBase tables. See <u>Using Impala to Query HBase Tables</u> on page 411 for details.

Planning for Impala Deployment

Before you set up Impala in production, do some planning to make sure that your hardware setup has sufficient capacity, that your cluster topology is optimal for Impala queries, and that your schema design and ETL processes follow the best practices for Impala.

Cloudera Impala Requirements

To perform as expected, Impala depends on the availability of the software, hardware, and configurations described in the following sections.

Product Compatibility Matrix

The ultimate source of truth about compatibility between various versions of CDH, Cloudera Manager, and various CDH components is the online <u>Product Compatibility Matrix</u>.

For Impala, see the Impala compatibility matrix page.

Supported Operating Systems

The relevant supported operating systems and versions for Impala are the same as for the corresponding CDH 4 and CDH 5 platforms. For details, see the Supported Operating Systems page for CDH 4 or CDH 5.

Hive Metastore and Related Configuration

Impala can interoperate with data stored in Hive, and uses the same infrastructure as Hive for tracking metadata about schema objects such as tables and columns. The following components are prerequisites for Impala:

MySQL or PostgreSQL, to act as a metastore database for both Impala and Hive.

Note:

Installing and configuring a Hive metastore is an Impala requirement. Impala does not work without the metastore database. For the process of installing and configuring the metastore, see Installing Impala on page 29.

Always configure a **Hive metastore service** rather than connecting directly to the metastore database. The Hive metastore service is required to interoperate between possibly different levels of metastore APIs used by CDH and Impala, and avoids known issues with connecting directly to the metastore database. The Hive metastore service is set up for you by default if you install through Cloudera Manager 4.5 or higher.

A summary of the metastore installation process is as follows:

- Install a MySQL or PostgreSQL database. Start the database if it is not started after installation.
- Download the MySQL connector or the PostgreSQL connector and place it in the /usr/share/java/directory.
- Use the appropriate command line tool for your database to create the metastore database.
- Use the appropriate command line tool for your database to grant privileges for the metastore database to the hive user.
- Modify hive-site.xml to include information matching your particular database: its URL, user name, and password. You will copy the hive-site.xml file to the Impala Configuration Directory later in the Impala installation process.

• Optional: Hive. Although only the Hive metastore database is required for Impala to function, you might install Hive on some client machines to create and load data into tables that use certain file formats. See How Impala Works with Hadoop File Formats on page 384 for details. Hive does not need to be installed on the same data nodes as Impala; it just needs access to the same metastore database.

Java Dependencies

Although Impala is primarily written in C++, it does use Java to communicate with various Hadoop components:

- The officially supported JVM for Impala is the Oracle JVM. Other JVMs might cause issues, typically resulting in a failure at impalad startup. In particular, the JamVM used by default on certain levels of Ubuntu systems can cause impalad to fail to start.
- Internally, the impalad daemon relies on the JAVA HOME environment variable to locate the system Java libraries. Make sure the impalad service is not run from an environment with an incorrect setting for this
- All Java dependencies are packaged in the impala-dependencies. jar file, which is located at /usr/lib/impala/lib/. These map to everything that is built under fe/target/dependency.

Networking Configuration Requirements

As part of ensuring best performance, Impala attempts to complete tasks on local data, as opposed to using network connections to work with remote data. To support this goal, Impala matches the **hostname** provided to each Impala daemon with the **IP address** of each DataNode by resolving the hostname flag to an IP address. For Impala to work with local data, use a single IP interface for the DataNode and the Impala daemon on each machine. Ensure that the Impala daemon's hostname flag resolves to the IP address of the DataNode. For single-homed machines, this is usually automatic, but for multi-homed machines, ensure that the Impala daemon's hostname resolves to the correct interface. Impala tries to detect the correct hostname at start-up, and prints the derived hostname at the start of the log in a message of the form:

```
Using hostname: impala-daemon-1.cloudera.com
```

In the majority of cases, this automatic detection works correctly. If you need to explicitly set the hostname, do so by setting the --hostname flag.

Hardware Requirements

During join operations, portions of data from each joined table are loaded into memory. Data sets can be very large, so ensure your hardware has sufficient memory to accommodate the joins you anticipate completing.

While requirements vary according to data set size, the following is generally recommended:

- CPU Impala version 2.x uses the SSE4.1 instruction set, which is included in newer processors.
 - Note: This required level of processor is higher than in Impala version 1.x. Be sure to check the hardware of the hosts in your cluster before upgrading to Impala 2.x or the equivalent versions of CDH (5.2.0 and higher).
- Memory 128 GB or more recommended, ideally 256 GB or more. If the intermediate results during query processing on a particular node exceed the amount of memory available to Impala on that node, the query writes temporary work data to disk, which can lead to long query times. Note that because the work is parallelized, and intermediate results for aggregate queries are typically smaller than the original data, Impala can query and join tables that are much larger than the memory available on an individual node.
- Storage DataNodes with 12 or more disks each. I/O speeds are often the limiting factor for disk performance with Impala. Ensure that you have sufficient disk space to store the data Impala will be querying.

Planning for Impala Deployment

User Account Requirements

Impala creates and uses a user and group named impala. Do not delete this account or group and do not modify the account's or group's permissions and rights. Ensure no existing systems obstruct the functioning of these accounts and groups. For example, if you have scripts that delete user accounts not in a white-list, add these accounts to the list of permitted accounts.

For the resource management feature to work (in combination with CDH 5 and the YARN and Llama components), the impala user must be a member of the hdfs group. This setup is performed automatically during a new install, but not when upgrading from earlier Impala releases to Impala 1.2. If you are upgrading a node to CDH 5 that already had Impala 1.1 or 1.0 installed, manually add the impala user to the hdfs group.

For correct file deletion during DROP TABLE operations, Impala must be able to move files to the HDFS trashcan. You might need to create an HDFS directory /user/impala, writeable by the impala user, so that the trashcan can be created. Otherwise, data files might remain behind after a DROP TABLE statement.

Impala should not run as root. Best Impala performance is achieved using direct reads, but root is not permitted to use direct reads. Therefore, running Impala as root negatively affects performance.

By default, any user can connect to Impala and access all the associated databases and tables. You can enable authorization and authentication based on the Linux OS user who connects to the Impala server, and the associated groups for that user. Impala Security on page 85 for details. These security features do not change the underlying file permission requirements; the impala user still needs to be able to access the data files.

Cluster Sizing Guidelines for Impala

This document provides a very rough guideline to estimate the size of a cluster needed for a specific customer application. You can use this information when planning how much and what type of hardware to acquire for a new cluster, or when adding Impala workloads to an existing cluster.

Note: Before making purchase or deployment decisions, consult your Cloudera representative to verify the conclusions about hardware requirements based on your data volume and workload.

Always use hosts with identical specifications and capacities for all the nodes in the cluster. Currently, Impala divides the work evenly between cluster nodes, regardless of their exact hardware configuration. Because work can be distributed in different ways for different queries, if some hosts are overloaded compared to others in terms of CPU, memory, I/O, or network, you might experience inconsistent performance and overall slowness

For analytic workloads with star/snowflake schemas, and using consistent hardware for all nodes (64 GB RAM, 12 2 TB hard drives, 2x E5-2630L 12 cores total, 10 GB network), the following table estimates the number of data nodes needed in the cluster based on data size and the number of concurrent queries, for workloads similar to TPC-DS benchmark queries:

Table 1: Cluster size estimation based on the number of concurrent queries and data size with a 20 second average query response time

Data Size	1 query	10 queries	100 queries	1000 queries	2000 queries
250 GB	2	2	5	35	70
500 GB	2	2	10	70	135
1 TB	2	2	15	135	270
15 TB	2	20	200	N/A	N/A
30 TB	4	40	400	N/A	N/A
60 TB	8	80	800	N/A	N/A

Factors Affecting Scalability

A typical analytic workload (TPC-DS style queries) using recommended hardware is usually CPU-bound. Each node can process roughly 1.6 GB/sec. Both CPU-bound and disk-bound workloads can scale almost linearly with cluster size. However, for some workloads, the scalability might be bounded by the network, or even by memory.

If the workload is already network bound (on a 10 GB network), increasing the cluster size won't reduce the network load; in fact, a larger cluster could increase network traffic because some queries involve "broadcast" operations to all data nodes. Therefore, boosting the cluster size does not improve query throughput in a network-constrained environment.

Let's look at a memory-bound workload. A workload is memory-bound if Impala cannot run any additional concurrent queries because all memory allocated has already been consumed, but neither CPU, disk, nor network is saturated yet. This can happen because currently Impala uses only a single core per node to process join and aggregation queries. For a node with 128 GB of RAM, if a join node takes 50 GB, the system cannot run more than 2 such queries at the same time.

Therefore, at most 2 cores are used. Throughput can still scale almost linearly even for a memory-bound workload. It's just that the CPU will not be saturated. Per-node throughput will be lower than 1.6 GB/sec. Consider increasing the memory per node.

As long as the workload is not network- or memory-bound, we can use the 1.6 GB/second per node as the throughput estimate.

A More Precise Approach

A more precise sizing estimate would require not only queries per minute (QPM), but also an average data size scanned per query (D). With the proper partitioning strategy, D is usually a fraction of the total data size. The following equation can be used as a rough guide to estimate the number of nodes (N) needed:

```
Eq 1: N > QPM * D / 100 GB
```

Here is an example. Suppose, on average, a query scans 50 GB of data and the average response time is required to be 15 seconds or less when there are 100 concurrent queries. The QPM is 100/15*60 = 400. We can estimate the number of node using our equation above.

```
N > OPM * D / 100GB
N > 400 * 50GB / 100GB
N > 200
```

Because this figure is a rough estimate, the corresponding number of nodes could be between 100 and 500.

Depending on the complexity of the query, the processing rate of query might change. If the query has more joins, aggregation functions, or CPU-intensive functions such as string processing or complex UDFs, the process rate will be lower than 1.6 GB/second per node. On the other hand, if the query only does scan and filtering on numbers, the processing rate can be higher.

Estimating Memory Requirements

Impala can handle joins between multiple large tables. Make sure that statistics are collected for all the joined tables, using the COMPUTE STATS statement. However, joining big tables does consume more memory. Follow the steps below to calculate the minimum memory requirement.

Suppose you are running the following join:

```
select a.*, b.col_1, b.col_2, ... b.col_n
from a, b
where a.key = b.key
and b.col_1 in (1,\bar{2},4...)
and b.col_4 in (....);
```

Planning for Impala Deployment

And suppose table B is smaller than table A (but still a large table).

The memory requirement for the query is the right-hand table (B), after decompression, filtering (b.col_n in ...) and after projection (only using certain columns) must be less than the total memory of the entire cluster.

```
Cluster Total Memory Requirement = Size of the smaller table *
  selectivity factor from the predicate *
 projection factor * compression ratio
```

In this case, assume that table B is 100 TB in Parquet format with 200 columns. The predicate on B (b. col_1 in ...and b.col_4 in ...) will select only 10% of the rows from B and for projection, we are only projecting 5 columns out of 200 columns. Usually, Snappy compression gives us 3 times compression, so we estimate a 3x compression factor.

```
Cluster Total Memory Requirement = Size of the smaller table *
  selectivity factor from the predicate '
 projection factor * compression ratio
 = 100TB * 10% * 5/200 * 3
 = 0.75TB
 = 750GB
```

So, if you have a 10-node cluster, each node has 128 GB of RAM and you give 80% to Impala, then you have 1 TB of usable memory for Impala, which is more than 750GB. Therefore, your cluster can handle join queries of this magnitude.

Guidelines for Designing Impala Schemas

The guidelines in this topic help you to construct an optimized and scalable schema, one that integrates well with your existing data management processes. Use these guidelines as a checklist when doing any proof-of-concept work, porting exercise, or before deploying to production.

If you are adapting an existing database or Hive schema for use with Impala, read the guidelines in this section and then see Porting SQL from Other Database Systems to Impala on page 312 for specific porting and compatibility tips.

Prefer binary file formats over text-based formats.

To save space and improve memory usage and query performance, use binary file formats for any large or intensively queried tables. Parquet file format is the most efficient for data warehouse-style analytic queries. Avro is the other binary file format that Impala supports, that you might already have as part of a Hadoop ETL pipeline.

Although Impala can create and query tables with the RCFile and SequenceFile file formats, such tables are relatively bulky due to the text-based nature of those formats, and are not optimized for data warehouse-style queries due to their row-oriented layout. Impala does not support INSERT operations for tables with these file formats.

Guidelines:

- For an efficient and scalable format for large, performance-critical tables, use the Parquet file format.
- To deliver intermediate data during the ETL process, in a format that can also be used by other Hadoop components, Avro is a reasonable choice.
- For convenient import of raw data, use a text table instead of RCFile or SequenceFile, and convert to Parquet in a later stage of the ETL process.

Use Snappy compression where practical.

Snappy compression involves low CPU overhead to decompress, while still providing substantial space savings. In cases where you have a choice of compression codecs, such as with the Parquet and Avro file formats, use Snappy compression unless you find a compelling reason to use a different codec.

Prefer numeric types over strings.

If you have numeric values that you could treat as either strings or numbers (such as YEAR, MONTH, and DAY for partition key columns), define them as the smallest applicable integer types. For example, YEAR can be SMALLINT, MONTH and DAY can be TINYINT. Although you might not see any difference in the way partitioned tables or text files are laid out on disk, using numeric types will save space in binary formats such as Parquet, and in memory when doing queries, particularly resource-intensive queries such as joins.

Partition, but don't over-partition.

Partitioning is an important aspect of performance tuning for Impala. Follow the procedures in Partitioning for Impala Tables on page 379 to set up partitioning for your biggest, most intensively queried tables.

If you are moving to Impala from a traditional database system, or just getting started in the Big Data field, you might not have enough data volume to take advantage of Impala parallel queries with your existing partitioning scheme. For example, if you have only a few tens of megabytes of data per day, partitioning by YEAR, MONTH, and DAY columns might be too granular. Most of your cluster might be sitting idle during queries that target a single day, or each node might have very little work to do. Consider reducing the number of partition key columns so that each partition directory contains several gigabytes worth of data.

For example, consider a Parquet table where each data file is 1 HDFS block, with a maximum block size of 1 GB. (In Impala 2.0 and later, the default Parquet block size is reduced to 256 MB. For this exercise, let's assume you have bumped the size back up to 1 GB by setting the query option PARQUET_FILE_SIZE=1g.) if you have a 10-node cluster, you need 10 data files (up to 10 GB) to give each node some work to do for a query. But each core on each machine can process a separate data block in parallel. With 16-core machines on a 10-node cluster, a query could process up to 160 GB fully in parallel. If there are only a few data files per partition, not only are most cluster nodes sitting idle during queries, so are most cores on those machines.

You can reduce the Parquet block size to as low as 128 MB or 64 MB to increase the number of files per partition and improve parallelism. But also consider reducing the level of partitioning so that analytic queries have enough data to work with.

Always compute stats after loading data.

Impala makes extensive use of statistics about data in the overall table and in each column, to help plan resource-intensive operations such as join queries and inserting into partitioned Parquet tables. Because this information is only available after data is loaded, run the COMPUTE STATS statement on a table after loading or replacing data in a table or partition.

Having accurate statistics can make the difference between a successful operation, or one that fails due to an out-of-memory error or a timeout. When you encounter performance or capacity issues, always use the SHOW STATS statement to check if the statistics are present and up-to-date for all tables in the query.

When doing a join query, Impala consults the statistics for each joined table to determine their relative sizes and to estimate the number of rows produced in each join stage. When doing an INSERT into a Parquet table, Impala consults the statistics for the source table to determine how to distribute the work of constructing the data files for each partition.

See COMPUTE STATS Statement on page 164 for the syntax of the COMPUTE STATS statement, and How Impala Uses Statistics for Query Optimization on page 349 for all the performance considerations for table and column statistics.

Verify sensible execution plans with EXPLAIN and SUMMARY.

Before executing a resource-intensive query, use the EXPLAIN statement to get an overview of how Impala intends to parallelize the query and distribute the work. If you see that the query plan is inefficient, you can take tuning steps such as changing file formats, using partitioned tables, running the COMPUTE STATS statement, or adding query hints. For information about all of these techniques, see **Tuning Impala for Performance** on page 340.

Planning for Impala Deployment

After you run a query, you can see performance-related information about how it actually ran by issuing the SUMMARY command in impala-shell. Prior to Impala 1.4, you would use the PROFILE command, but its highly technical output was only useful for the most experienced users. SUMMARY, new in Impala 1.4, summarizes the most useful information for all stages of execution, for all nodes rather than splitting out figures for each node.

Installing Impala

Cloudera Impala is an open-source add-on to the Cloudera Enterprise Core that returns rapid responses to queries.

Note:

Under CDH 5, Impala is included as part of the CDH installation and no separate steps are needed. Therefore, the instruction steps in this section apply to CDH 4 only.

What is Included in an Impala Installation

Impala is made up of a set of components that can be installed on multiple nodes throughout your cluster. The key installation step for performance is to install the impalad daemon (which does most of the query processing work) on all data nodes in the cluster.

The Impala package installs these binaries:

- impalad The Impala daemon. Plans and executes queries against HDFS and HBase data. Run one impalad process on each node in the cluster that has a data node.
- statestored Name service that tracks location and status of all impalad instances in the cluster. Run one instance of this daemon on a node in your cluster. Most production deployments run this daemon on the namenode.
- catalogd Metadata coordination service that broadcasts changes from Impala DDL and DML statements to all affected Impala nodes, so that new tables, newly loaded data, and so on are immediately visible to queries submitted through any Impala node. (Prior to Impala 1.2, you had to run the REFRESH OR INVALIDATE METADATA statement on each node to synchronize changed metadata. Now those statements are only required if you perform the DDL or DML through Hive.) Run one instance of this daemon on a node in your cluster, preferably on the same host as the statestored daemon.
- impala-shell Command-line interface for issuing queries to the Impala daemon. You install this on one or more hosts anywhere on your network, not necessarily data nodes or even within the same cluster as Impala. It can connect remotely to any instance of the Impala daemon.

Before doing the installation, ensure that you have all necessary prerequisites. See <u>Cloudera Impala Requirements</u> on page 22 for details.

Impala Installation Procedure for CDH 4 Users

You can install Impala under CDH 4 in one of two ways:

- Using the Cloudera Manager installer. This is the recommended technique for doing a reliable and verified Impala installation. Cloudera Manager 4.8 or higher can automatically install, configure, manage, and monitor Impala 1.2.1 and higher. The latest Cloudera Manager is always preferable, because newer Cloudera Manager releases have configuration settings for the most recent Impala features.
- Using a manual process for systems not managed by Cloudera Manager. You must do additional verification steps in this case, to check that Impala can interact with other Hadoop components correctly, and that your cluster is configured for efficient Impala execution.

Installing Impala with Cloudera Manager

Before installing Impala through the Cloudera Manager interface, make sure all applicable nodes have the appropriate hardware configuration and levels of operating system and CDH. See Cloudera Impala Requirements on page 22 for details.

Note: To install the latest Impala under CDH 4, upgrade Cloudera Manager to 4.8 or higher. Cloudera Manager 4.8 is the first release that can manage the Impala catalog service introduced in Impala 1.2. Cloudera Manager 4.8 requires this service to be present, so if you upgrade to Cloudera Manager 4.8, also upgrade Impala to the most recent version at the same time.

For information on installing Impala in a Cloudera Manager-managed environment, see installation instructions for CDH 5 or the Cloudera Manager Installation Guide for Cloudera Manager 4.

Managing your Impala installation through Cloudera Manager has a number of advantages. For example, when you make configuration changes to CDH components using Cloudera Manager, it automatically applies changes to the copies of configuration files, such as hive-site.xml, that Impala keeps under /etc/impala/conf. It also sets up the Hive Metastore service that is required for Impala running under CDH 4.1.

In some cases, depending on the level of Impala, CDH, and Cloudera Manager, you might need to add particular component configuration details in some of the free-form option fields on the Impala configuration pages within Cloudera Manager. In Cloudera Manager 4, these fields are labelled Safety Valve; in Cloudera Manager 5, they are called **Advanced Configuration Snippet**.

Installing Impala without Cloudera Manager

Before installing Impala manually, make sure all applicable nodes have the appropriate hardware configuration, levels of operating system and CDH, and any other software prerequisites. See Cloudera Impala Requirements on page 22 for details.

You can install Impala across many hosts or on one host:

- Installing Impala across multiple machines creates a distributed configuration. For best performance, install Impala on all DataNodes.
- Installing Impala on a single machine produces a pseudo-distributed cluster.

To install Impala on a host:

- 1. Install CDH as described in the Installation section of the CDH 4 Installation Guide or the CDH 5 Installation
- 2. Install the Hive metastore somewhere in your cluster, as described in the Hive Installation topic in the CDH <u>4 Installation Guide</u> or the <u>CDH 5 Installation Guide</u>. As part of this process, you configure the Hive metastore to use an external database as a metastore. Impala uses this same database for its own table metadata. You can choose either a MySQL or PostgreSQL database as the metastore. The process for configuring each type of database is described in the CDH Installation Guide).

Cloudera recommends setting up a Hive metastore service rather than connecting directly to the metastore database; this configuration is required when running Impala under CDH 4.1. Make sure the /etc/impala/conf/hive-site.xml file contains the following setting, substituting the appropriate host name for *metastore_server_host*:

```
cproperty>
<name>hive.metastore.uris
<value>thrift://metastore_server_host:9083</value>
cproperty>
<name>hive.metastore.client.socket.timeout</name>
<value>3600</value>
```

```
<description>MetaStore Client socket timeout in seconds</description>
</property>
```

3. (Optional) If you installed the full Hive component on any host, you can verify that the metastore is configured properly by starting the Hive console and querying for the list of available tables. Once you confirm that the console starts, exit the console to continue the installation:

```
Hive history file=/tmp/root/hive_job_log_root_201207272011_678722950.txt
hive> show tables;
table1
table2
hive> quit;
```

- 4. Confirm that your package management command is aware of the Impala repository settings, as described in Cloudera Impala Requirements on page 22. (For CDH 4, this is a different repository than for CDH.) You might need to download a repo or list file into a system directory underneath /etc.
- 5. Use one of the following sets of commands to install the Impala package:

For RHEL, Oracle Linux, or CentOS systems:

```
$ sudo yum install impala # Binaries for daemons
$ sudo yum install impala-server # Service start/stop script
$ sudo yum install impala-state-store # Service start/stop script
$ sudo yum install impala-catalog  # Service start/stop script
```

For SUSE systems:

```
$ sudo zypper install impala-state-store # Service start/stop script
$ sudo zypper install impala-catalog  # Service start/stop script
```

For Debian or Ubuntu systems:

```
$ sudo apt-get install impala-state-store # Service start/stop script
$ sudo apt-get install impala-catalog  # Service start/stop script
```

- Note: Cloudera recommends that you not install Impala on any HDFS NameNode. Installing Impala on NameNodes provides no additional data locality, and executing queries with such a configuration might cause memory contention and negatively impact the HDFS NameNode.
- 6. Copy the client hive-site.xml, core-site.xml, hdfs-site.xml, and hbase-site.xml configuration files to the Impala configuration directory, which defaults to /etc/impala/conf. Create this directory if it does not already exist.
- 7. Use one of the following commands to install impala-shell on the machines from which you want to issue queries. You can install impala-shell on any supported machine that can connect to DataNodes that are running impalad.

For RHEL/CentOS systems:

```
$ sudo yum install impala-shell
```

For SUSE systems:

```
$ sudo zypper install impala-shell
```

Installing Impala

For Debian/Ubuntu systems:

```
$ sudo apt-get install impala-shell
```

8. Complete any required or recommended configuration, as described in Post-Installation Configuration for Impala on page 33. Some of these configuration changes are mandatory. (They are applied automatically when you install using Cloudera Manager.)

Once installation and configuration are complete, see Starting Impala on page 45 for how to activate the software on the appropriate nodes in your cluster.

If this is your first time setting up and using Impala in this cluster, run through some of the exercises in Impala <u>Tutorial</u> on page 50 to verify that you can do basic operations such as creating tables and querying them.

Configuring Impala

This section explains how to configure Impala to accept connections from applications that use popular programming APIs:

- Post-Installation Configuration for Impala on page 33
- Configuring Impala to Work with ODBC on page 36
- Configuring Impala to Work with JDBC on page 38

This type of configuration is especially useful when using Impala in combination with Business Intelligence tools, which use these standard interfaces to query different kinds of database and Big Data systems.

You can also configure these other aspects of Impala:

- Impala Security on page 85
- Modifying Impala Startup Options on page 46

Post-Installation Configuration for Impala

This section describes the mandatory and recommended configuration settings for Cloudera Impala. If Impala is installed using Cloudera Manager, some of these configurations are completed automatically; you must still configure short-circuit reads manually. If you installed Impala without Cloudera Manager, or if you want to customize your environment, consider making the changes described in this topic.

In some cases, depending on the level of Impala, CDH, and Cloudera Manager, you might need to add particular component configuration details in one of the free-form fields on the Impala configuration pages within Cloudera Manager. In Cloudera Manager 4, these fields are labelled Safety Valve; in Cloudera Manager 5, they are called Advanced Configuration Snippet.

- You must enable short-circuit reads, whether or not Impala was installed through Cloudera Manager. This setting goes in the Impala configuration settings, not the Hadoop-wide settings.
- If you installed Impala in an environment that is not managed by Cloudera Manager, you must enable block location tracking, and you can optionally enable native checksumming for optimal performance.
- If you deployed Impala using Cloudera Manager see <u>Testing Impala Performance</u> on page 363 to confirm proper configuration.

Mandatory: Short-Circuit Reads

Enabling short-circuit reads allows Impala to read local data directly from the file system. This removes the need to communicate through the DataNodes, improving performance. This setting also minimizes the number of additional copies of data. Short-circuit reads requires libhadoop.so (the Hadoop Native Library) to be accessible to both the server and the client. libhadoop. so is not available if you have installed from a tarball. You must install from an .rpm, .deb, or parcel to use short-circuit local reads.

Note: If you use Cloudera Manager, you can enable short-circuit reads through a checkbox in the user interface and that setting takes effect for Impala as well.

Cloudera strongly recommends using Impala with CDH 4.2 or higher, ideally the latest 4.x release. Impala does support short-circuit reads with CDH 4.1, but for best performance, upgrade to CDH 4.3 or higher. The process of configuring short-circuit reads varies according to which version of CDH you are using. Choose the procedure that is appropriate for your environment.

To configure DataNodes for short-circuit reads with CDH 4.2 or higher:

1. Copy the client core-site.xml and hdfs-site.xml configuration files from the Hadoop configuration directory to the Impala configuration directory. The default Impala configuration location is /etc/impala/conf.

Configuring Impala

2. On all Impala nodes, configure the following properties in Impala's copy of hdfs-site.xml as shown:

```
property>
   <name>dfs.client.read.shortcircuit</name>
   <value>true</value>
</property>
opertv>
   <name>dfs.domain.socket.path
   <value>/var/run/hdfs-sockets/dn</value>
</property>
property>
   <name>dfs.client.file-block-storage-locations.timeout.millis/name>
   <value>10000</value>
</property>
```

- **3.** If /var/run/hadoop-hdfs/ is group-writable, make sure its group is root.
 - Note: If you are also going to enable block location tracking, you can skip copying configuration files and restarting DataNodes and go straight to Optional: Block Location Tracking. Configuring short-circuit reads and block location tracking require the same process of copying files and restarting services, so you can complete that process once when you have completed all configuration changes. Whether you copy files and restart services now or during configuring block location tracking, short-circuit reads are not enabled until you complete those final steps.
- 4. After applying these changes, restart all DataNodes.

To configure DataNodes for short-circuit reads with CDH 4.1:

- Note: Cloudera strongly recommends using Impala with CDH 4.2 or higher, ideally the latest 4.x release. Impala does support short-circuit reads with CDH 4.1, but for best performance, upgrade to CDH 4.3 or higher. The process of configuring short-circuit reads varies according to which version of CDH you are using. Choose the procedure that is appropriate for your environment.
- 1. Enable short-circuit reads by adding settings to the Impala core-site.xml file.
 - If you installed Impala using Cloudera Manager, short-circuit reads should be properly configured, but you can review the configuration by checking the contents of the core-site.xml file, which is installed at /etc/impala/conf by default.
 - If you installed using packages, instead of using Cloudera Manager, create the core-site.xml file. This can be easily done by copying the core-site.xml client configuration file from another machine that is running Hadoop services. This file must be copied to the Impala configuration directory. The Impala configuration directory is set by the IMPALA_CONF_DIR environment variable and is by default /etc/impala/conf. To confirm the Impala configuration directory, check the IMPALA_CONF_DIR environment variable value.
 - Note: If the Impala configuration directory does not exist, create it and then add the core-site.xml file.

Add the following to the core-site.xml file:

```
<name>dfs.client.read.shortcircuit</name>
  <value>true</value>
</property>
```

- Note: For an installation managed by Cloudera Manager, specify these settings in the Impala dialogs, in the options field for HDFS. In Cloudera Manager 4, these fields are labelled Safety Valve; in Cloudera Manager 5, they are called **Advanced Configuration Snippet**.
- 2. For each DataNode, enable access by adding the following to the hdfs-site.xml file:

```
<name>dfs.client.use.legacy.blockreader.local
  <value>true</value>
</property>
cproperty>
  <name>dfs.datanode.data.dir.perm
  <value>750</value>
</property>
cproperty>
  <name>dfs.block.local-path-access.user</name>
  <value>impala</value>
</property>
cproperty>
   <name>dfs.client.file-block-storage-locations.timeout.millis</name>
   <value>10000</value>
</property>
```

- **Note:** In the preceding example, the dfs.block.local-path-access.user is the user running the impalad process. By default, that account is impala.
- 3. Use usermod to add users requiring local block access to the appropriate HDFS group. For example, if you assigned impala to the dfs.block.local-path-access.user property, you would add impala to the hadoop HDFS group:

```
$ usermod -a -G hadoop impala
```

- Note: The default HDFS group is hadoop, but it is possible to have an environment configured to use an alternate group. To find the configured HDFS group name using the Cloudera Manager admin console, click Services and click HDFS. Click the Configuration tab. Under Service-Wide, click **Advanced** in the left column. The **Shared Hadoop Group Name** property contains the group name.
- Note: If you are going to enable block location tracking, you can skip copying configuration files and restarting DataNodes and go straight to Mandatory: Block Location Tracking on page 35. Configuring short-circuit reads and block location tracking require the same process of copying files and restarting services, so you can complete that process once when you have completed all configuration changes. Whether you copy files and restart services now or during configuring block location tracking, short-circuit reads are not enabled until you complete those final steps.
- 4. Copy the client core-site.xml and hdfs-site.xml configuration files from the Hadoop configuration directory to the Impala configuration directory. The default Impala configuration location is /etc/impala/conf.
- 5. After applying these changes, restart all DataNodes.

Mandatory: Block Location Tracking

Enabling block location metadata allows Impala to know which disk data blocks are located on, allowing better utilization of the underlying disks. Impala will not start unless this setting is enabled.

To enable block location tracking:

Configuring Impala

1. For each DataNode, adding the following to the hdfs-site.xml file:

```
opertv>
 <name>dfs.datanode.hdfs-blocks-metadata.enabled
 <value>true</value>
</property>
```

- 2. Copy the client core-site.xml and hdfs-site.xml configuration files from the Hadoop configuration directory to the Impala configuration directory. The default Impala configuration location is /etc/impala/conf.
- 3. After applying these changes, restart all DataNodes.

Optional: Native Checksumming

Enabling native checksumming causes Impala to use an optimized native library for computing checksums, if that library is available.

To enable native checksumming:

If you installed CDH from packages, the native checksumming library is installed and setup correctly. In such a case, no additional steps are required. Conversely, if you installed by other means, such as with tarballs, native checksumming may not be available due to missing shared objects. Finding the message "unable to load native-hadoop library for your platform... using builtin-java classes where applicable" in the Impala logs indicates native checksumming may be unavailable. To enable native checksumming, you must build and install libhadoop.so (the Hadoop Native Library).

Configuring Impala to Work with ODBC

Third-party products can be designed to integrate with Impala using ODBC. For the best experience, ensure any third-party product you intend to use is supported. Verifying support includes checking that the versions of Impala, ODBC, the operating system, and the third-party product have all been approved for use together. Before configuring your systems to use ODBC, download a connector.

Note: You may need to sign in and accept license agreements before accessing the pages required for downloading ODBC connectors.

Versions 2.5 and 2.0 of the Cloudera ODBC Connector, currently certified for some but not all BI applications, use the HiveServer2 protocol, corresponding to Impala port 21050. Impala supports Kerberos authentication with all the supported versions of the driver, and requires ODBC 2.05.13 for Impala or higher for LDAP username/password authentication.

Version 1.x of the Cloudera ODBC Connector uses the original HiveServer1 protocol, corresponding to Impala port 21000.

See the downloads page for the versions of these drivers for different products, and the documentation page for installation instructions.

- Important: If you are using the Cloudera Connector for Tableau, to connect Impala to your Kerberos-secured CDH clusters, contact your Tableau account representative for an updated Tableau Data-connection Customization (TDC) file. The updated TDC file will override the Tableau connection settings to set specific parameters on the connection string that are required for a secure connection.
- Note: If your JDBC or ODBC application connects to Impala through a load balancer such as haproxy, be cautious about reusing the connections. If the load balancer has set up connection timeout values, either check the connection frequently so that it never sits idle longer than the load balancer timeout value, or check the connection validity before using it and create a new one if the connection has been closed.

To illustrate the outline of the setup process, here is a transcript of a session to set up all required drivers and a business intelligence application that uses the ODBC driver, under Mac OS X. Each . dmg file runs a GUI-based installer, first for the underlying IODBC driver needed for non-Windows systems, then for the Cloudera ODBC Connector, and finally for the BI tool itself.

```
Cloudera-ODBC-Driver-for-Impala-Install-Guide.pdf
BI_Tool_Installer.dmg
iodbc-sdk-3.52.7-macosx-10.5.dmg
ClouderaImpalaODBC.dmg
$ open iodbc-sdk-3.52.7-macosx-10.dmg
Install the IODBC driver using its installer
$ open ClouderaImpalaODBC.dmg
Install the Cloudera ODBC Connector using its installer
$ installer_dir=$(pwd)
$ cd /opt/cloudera/impalaodbc
$ ls -1
Cloudera ODBC Driver for Impala Install Guide.pdf
Readme.txt
Setup
lib
ErrorMessages
Release Notes.txt
Tools
$ cd Setup
$ ls
odbc.ini odbcinst.ini
$ cp odbc.ini ~/.odbc.ini
$ vi ~/.odbc.ini
$ cat ~/.odbc.ini
[ODBC]
# Specify any global ODBC configuration here such as ODBC tracing.
[ODBC Data Sources]
Sample Cloudera Impala DSN=Cloudera ODBC Driver for Impala
[Sample Cloudera Impala DSN]
# Description: DSN Description.
# This key is not necessary and is only to give a description of the data source.
Description=Cloudera ODBC Driver for Impala DSN
# Driver: The location where the ODBC driver is installed to.
Driver=/opt/cloudera/impalaodbc/lib/universal/libclouderaimpalaodbc.dylib
# The DriverUnicodeEncoding setting is only used for SimbaDM
# When set to 1, SimbaDM runs in UTF-16 mode.
# When set to 2, SimbaDM runs in UTF-8 mode.
#DriverUnicodeEncoding=2
# Values for HOST, PORT, KrbFQDN, and KrbServiceName should be set here.
# They can also be specified on the connection string.
HOST=hostname.sample.example.com
PORT=21050
Schema=default
# The authentication mechanism.
# 0 - No authentication (NOSASL)
# 1 - Kerberos authentication (SASL)
# 2 - Username authentication (SASL)
# 3 - Username/password authentication (SASL)
# 4 - Username/password authentication with SSL (SASL)
# 5 - No authentication with SSL (NOSASL)
# 6 - Username/password authentication (NOSASL)
AuthMech=0
# Kerberos related settings.
KrbFODN=
KrbRealm=
KrbServiceName=
# Username/password authentication with SSL settings.
```

Configuring Impala

```
UID=
PWD
CAIssuedCertNamesMismatch=1
TrustedCerts=/opt/cloudera/impalaodbc/lib/universal/cacerts.pem
# Specify the proxy user ID to use.
#DelegationUID=
# General settings
TSaslTransportBufSize=1000
RowsFetchedPerBlock=10000
SocketTimeout=0
StringColumnLength=32767
UseNativeQuery=0
Ś pwd
/opt/cloudera/impalaodbc/Setup
$ cd $installer_dir
$ open BI_Tool_Installer.dmg
Install the BI tool using its installer
$ ls /Applications | grep BI_Tool
BI_Tool.app
$ open -a BI_Tool.app
In the BI tool, connect to a data source using port 21050
```

Configuring Impala to Work with JDBC

Impala supports the standard JDBC interface, allowing access from commercial Business Intelligence tools and custom software written in Java or other programming languages. The JDBC driver allows you to access Impala from a Java program that you write, or a Business Intelligence or similar tool that uses JDBC to communicate with various database products.

Setting up a JDBC connection to Impala involves the following steps:

- Verifying the communication port where the Impala daemons in your cluster are listening for incoming JDBC
- Installing the JDBC driver on every system that runs the JDBC-enabled application.
- Specifying a connection string for the JDBC application to access one of the servers running the impalad daemon, with the appropriate security settings.

Configuring the JDBC Port

The default port used by JDBC 2.0 and later (as well as ODBC 2.x) is 21050. Impala server accepts JDBC connections through this same port 21050 by default. Make sure this port is available for communication with other hosts on your network, for example, that it is not blocked by firewall software. If your JDBC client software connects to a different port, specify that alternative port number with the --hs2_port option when starting impalad. See Starting Impala on page 45 for details about Impala startup options. See Ports Used by Impala on page 429 for information about all ports used for communication between Impala and clients or between Impala components.

Choosing the JDBC Driver

In Impala 2.0 and later, you have the choice between the Cloudera JDBC Connector and the Hive 0.13 JDBC driver. Cloudera recommends using the Cloudera JDBC Connector where practical.

If you are already using JDBC applications with an earlier Impala release, you must update your JDBC driver to one of these choices, because the Hive 0.12 driver that was formerly the only choice is not compatible with Impala 2.0 and later.

You download and install the Cloudera JDBC 2.5 connector on any Linux, Windows, or Mac system where you intend to run JDBC-enabled applications. From the <u>Cloudera Connectors download page</u>, you choose the appropriate protocol (JDBC or ODBC) and target product (Impala or Hive). The ease of downloading and installing on non-CDH systems makes this connector a convenient choice for organizations with heterogeneous environments.

You install the Hive JDBC driver (hive-jdbc package) through the Linux package manager, on hosts within the CDH cluster.

Both the Hive JDBC driver and the Cloudera JDBC 2.5 Connector provide a substantial speed increase for JDBC applications with Impala 2.0 and higher, for queries that return large result sets.

Enabling Impala JDBC Support on Client Systems

The Impala JDBC integration is made possible by a client-side JDBC driver, made up of several Java JAR files. The same driver is used by Impala and Hive.

To get the JAR files, install the Hive JDBC driver on each CDH-enabled host in the cluster that will run JDBC applications. Follow the instructions for CDH 5 or CDH 4.

Note: The latest JDBC driver, corresponding to Hive 0.13, provides substantial performance improvements for Impala queries that return large result sets. Impala 2.0 and later are compatible with the Hive 0.13 driver. If you already have an older JDBC driver installed, and are running Impala 2.0 or higher, consider upgrading to the latest Hive JDBC driver for best performance with JDBC applications.

If you are using JDBC-enabled applications on hosts outside the CDH cluster, you cannot use the CDH install procedure on the non-CDH hosts. Install the JDBC driver on at least one CDH host using the preceding procedure. Then download the JAR files to each client machine that will use JDBC with Impala:

```
commons-logging-X.X.X.jar
hadoop-common.jar
hive-common-X.XX.X-cdhX.X.X.jar
hive-jdbc-X.XX.X-cdhX.X.X.jar
hive-metastore-X.XX.X-cdhX.X.jar
hive-service-X.XX.X-cdhX.X.X.jar
httpclient-X.X.X.jar
httpcore-X.X.X.jar
libfb303-X.X.X.jar
libthrift-X.X.X.jar
log4j-X.X.XX.jar
slf4j-api-X.X.X.jar
slf4j-logXjXX-X.X.jar
```

To enable JDBC support for Impala on the system where you run the JDBC application:

- 1. Download the JAR files listed above to each client machine.
 - Note: For Maven users, see this sample github page for an example of the dependencies you could add to a pom file instead of downloading the individual JARs.
- 2. Store the JAR files in a location of your choosing, ideally a directory already referenced in your CLASSPATH setting. For example:
 - On Linux, you might use a location such as /opt/jars/.
 - On Windows, you might use a subdirectory underneath C:\Program Files.
- 3. To successfully load the Impala JDBC driver, client programs must be able to locate the associated JAR files. This often means setting the CLASSPATH for the client process to include the JARs. Consult the documentation for your JDBC client for more details on how to install new JDBC drivers, but some examples of how to set CLASSPATH variables include:

Configuring Impala

• On Linux, if you extracted the JARs to /opt/jars/, you might issue the following command to prepend the JAR files path to an existing classpath:

```
export CLASSPATH=/opt/jars/*.jar:$CLASSPATH
```

- On Windows, use the System Properties control panel item to modify the Environment Variables for your system. Modify the environment variables to include the path to which you extracted the files.
 - Note: If the existing CLASSPATH on your client machine refers to some older version of the Hive JARs, ensure that the new JARs are the first ones listed. Either put the new JAR files earlier in the listings, or delete the other references to Hive JAR files.

Establishing JDBC Connections

The JDBC driver class is org.apache.hive.jdbc.HiveDriver.Once you have configured Impala to work with JDBC, you can establish connections between the two. To do so for a cluster that does not use Kerberos authentication, use a connection string of the form jdbc:hive2://host:port/;auth=noSas1. For example, you might use:

```
idbc:hive2://myhost.example.com:21050/;auth=noSas1
```

To connect to an instance of Impala that requires Kerberos authentication, use a connection string of the form jdbc:hive2://host:port/;principal=principal_name. The principal must be the same user principal you used when starting Impala. For example, you might use:

```
jdbc:hive2://myhost.example.com:21050/;principal=impala/myhost.example.com@H2.EXAMPLE.COM
```

To connect to an instance of Impala that requires LDAP authentication, use a connection string of the form jdbc:hive2://host:port/db_name;user=ldap_userid;password=ldap_password.Forexample,you might use:

```
jdbc:hive2://myhost.example.com:21050/test_db;user=fred;password=xyz123
```

Note: If your JDBC or ODBC application connects to Impala through a load balancer such as haproxy, be cautious about reusing the connections. If the load balancer has set up connection timeout values, either check the connection frequently so that it never sits idle longer than the load balancer timeout value, or check the connection validity before using it and create a new one if the connection has been closed.

Upgrading Impala

Upgrading Cloudera Impala involves stopping Impala services, using your operating system's package management tool to upgrade Impala to the latest version, and then restarting Impala services.

Note:

- Each version of CDH 5 has an associated version of Impala, When you upgrade from CDH 4 to CDH 5, you get whichever version of Impala comes with the associated level of CDH. Depending on the version of Impala you were running on CDH 4, this could install a lower level of Impala on CDH 5. For example, if you upgrade to CDH 5.0 from CDH 4 plus Impala 1.4, the CDH 5.0 installation comes with Impala 1.3. Always check the associated level of Impala before upgrading to a specific version of CDH 5. Where practical, upgrade from CDH 4 to the latest CDH 5, which also has the latest Impala.
- When you upgrade Impala, also upgrade Cloudera Manager if necessary:
 - Users running Impala on CDH 5 must upgrade to Cloudera Manager 5.0.0 or higher.
 - Users running Impala on CDH 4 must upgrade to Cloudera Manager 4.8 or higher. Cloudera Manager 4.8 includes management support for the Impala catalog service, and is the minimum Cloudera Manager version you can use.
 - Cloudera Manager is continually updated with configuration settings for features introduced in the latest Impala releases.
- If you are upgrading from CDH 5 beta to CDH 5.0 production, make sure you are using the appropriate CDH 5 repositories shown on the CDH version and packaging page, then follow the procedures throughout the rest of this section.
- Every time you upgrade to a new major or minor Impala release, see <u>Incompatible Changes in</u> Impala on page 469 in the *Release Notes* for any changes needed in your source code, startup scripts, and so on.
- Also check Known Issues and Workarounds in Impala on page 477 in the Release Notes for any issues or limitations that require workarounds.
- Due to a change to the implementation of logging in Impala 1.1.1 and higher, currently you should change the default setting for the logbuflevel property for the Impala service after installing through Cloudera Manager. In Cloudera Manager, on the log settings page for the Impala service, change the setting Impala Daemon Log Buffer Level (logbuflevel) from -1 to 0. You might change this setting to a value higher than 0, if you prefer to reduce the I/O overhead for logging, at the expense of possibly losing some lower-priority log messages in the event of a crash.
- For the resource management feature to work (in combination with CDH 5 and the YARN and Llama components), the impala user must be a member of the hdfs group. This setup is performed automatically during a new install, but not when upgrading from earlier Impala releases to Impala 1.2. If you are upgrading a node to CDH 5 that already had Impala 1.1 or 1.0 installed, manually add the impala user to the hdfs group.

Upgrading Impala through Cloudera Manager - Parcels

Parcels are an alternative binary distribution format available in Cloudera Manager 4.5 and higher.

Important: In CDH 5, there is not a separate Impala parcel; Impala is part of the main CDH 5 parcel. Each level of CDH 5 has a corresponding version of Impala, and you upgrade Impala by upgrading CDH. See the CDH 5 upgrade instructions and choose the instructions for parcels. The remainder of this section only covers parcel upgrades for Impala under CDH 4.

Upgrading Impala

To upgrade Impala for CDH 4 in a Cloudera Managed environment, using parcels:

1. If you originally installed using packages and now are switching to parcels, remove all the Impala-related packages first. You can check which packages are installed using one of the following commands, depending on your operating system:

```
# RHEL, Oracle Linux, CentOS, Debian
rpm -qa
dpkg --get-selections # Debian
_____
```

and then remove the packages using one of the following commands:

```
sudo yum remove pkg_names # RHEL, Oracle Linux, CentOS
sudo zypper remove pkg_names # SLES
sudo apt-get purge pkg_names # Ubuntu, Debian
```

- 2. Connect to the Cloudera Manager Admin Console.
- 3. Go to the Hosts > Parcels tab. You should see a parcel with a newer version of Impala that you can upgrade to.
- Click Download, then Distribute. (The button changes as each step completes.)
- Click Activate.
- **6.** When prompted, click **Restart** to restart the Impala service.

Upgrading Impala through Cloudera Manager - Packages

To upgrade Impala in a Cloudera Managed environment, using packages:

- 1. Connect to the Cloudera Manager Admin Console.
- 2. In the Services tab, click the Impala service.
- 3. Click Actions and click Stop.
- 4. Use one of the following sets of commands to update Impala on each Impala node in your cluster:

For RHEL, Oracle Linux, or CentOS systems:

```
$ sudo yum update impala
$ sudo yum update hadoop-lzo-cdh4 # Optional; if this package is already installed.
```

For SUSE systems:

```
$ sudo zypper update impala
$ sudo zypper update hadoop-lzo-cdh4 # Optional; if this package is already
```

For Debian or Ubuntu systems:

```
$ sudo apt-get install impala
$ sudo apt-get install hadoop-lzo-cdh4 # Optional; if this package is already
```

5. Use one of the following sets of commands to update Impala shell on each node on which it is installed:

For RHEL, Oracle Linux, or CentOS systems:

```
$ sudo yum update impala-shell
```

For SUSE systems:

```
$ sudo zypper update impala-shell
```

For Debian or Ubuntu systems:

```
$ sudo apt-get install impala-shell
```

- **6.** Connect to the Cloudera Manager Admin Console.
- 7. In the **Services** tab, click the Impala service.
- Click Actions and click Start.

Upgrading Impala without Cloudera Manager

To upgrade Impala on a cluster not managed by Cloudera Manager, run these Linux commands on the appropriate hosts in your cluster:

- 1. Stop Impala services.
 - **a.** Stop impalad on each Impala node in your cluster:

b. Stop any instances of the state store in your cluster:

```
$ sudo service impala-state-store stop
```

c. Stop any instances of the catalog service in your cluster:

```
$ sudo service impala-catalog stop
```

- 2. Check if there are new recommended or required configuration settings to put into place in the configuration files, typically under /etc/impala/conf. See Post-Installation Configuration for Impala on page 33 for settings related to performance and scalability.
- 3. Use one of the following sets of commands to update Impala on each Impala node in your cluster:

For RHEL, Oracle Linux, or CentOS systems:

```
$ sudo yum update impala-server
$ sudo yum update hadoop-lzo-cdh4 # Optional; if this package is already installed
$ sudo yum update impala-catalog # New in Impala 1.2; do yum install when upgrading
```

For SUSE systems:

```
$ sudo zypper update impala-server
$ sudo zypper update hadoop-lzo-cdh4 # Optional; if this package is already
installed
$ sudo zypper update impala-catalog # New in Impala 1.2; do zypper install when
upgrading from 1.1.
```

For Debian or Ubuntu systems:

```
$ sudo apt-get install impala-server
$ sudo apt-get install hadoop-lzo-cdh4 # Optional; if this package is already
installed
$ sudo apt-get install impala-catalog # New in Impala 1.2.
```

4. Use one of the following sets of commands to update Impala shell on each node on which it is installed:

Upgrading Impala

For RHEL, Oracle Linux, or CentOS systems:

```
,-----
$ sudo yum update impala-shell
```

For SUSE systems:

```
$ sudo zypper update impala-shell
```

For Debian or Ubuntu systems:

```
$ sudo apt-get install impala-shell
```

- 5. Depending on which release of Impala you are upgrading from, you might find that the symbolic links /etc/impala/conf and /usr/lib/impala/sbin are missing. If so, see Known Issues in the Current Production Release (Impala 2.1.x) on page 477 for the procedure to work around this problem.
- **6.** Restart Impala services:
 - a. Restart the Impala state store service on the desired nodes in your cluster. Expect to see a process named statestored if the service started successfully.

```
$ sudo service impala-state-store start
$ ps ax | grep [s]tatestored
6819 ? Sl 0:07 /usr/lib/impala/sbin/statestored
-log_dir=/var/log/impala -state_store_port=24000
```

Restart the state store service before the Impala server service to avoid "Not connected" errors when you run impala-shell.

b. Restart the Impala catalog service on whichever host it runs on in your cluster. Expect to see a process named catalogd if the service started successfully.

```
$ sudo service impala-catalog restart
$ ps ax | grep [c]atalogd
6068 ? Sl 4:06 /usr/lib/impala/sbin/catalogd
```

c. Restart the Impala daemon service on each node in your cluster. Expect to see a process named impalad if the service started successfully.

```
$ sudo service impala-server start
$ ps ax | grep [i]mpalad
            Sl
                   0:12 /usr/lib/impala/sbin/impalad -log_dir=/var/log/impala
-state_store_port=24000 -use_statestore
-state_store_host=127.0.0.1 -be_port=22000
```

Note:

If the services did not start successfully (even though the sudo service command might display [OK]), check for errors in the Impala log file, typically in /var/log/impala.

Starting Impala

To begin using Cloudera Impala:

- 1. Set any necessary configuration options for the Impala services. See Modifying Impala Startup Options on page 46 for details.
- 2. Start one instance of the Impala statestore. The statestore helps Impala to distribute work efficiently, and to continue running in the event of availability problems for other Impala nodes. If the statestore becomes unavailable, Impala continues to function.
- **3.** Start one instance of the Impala catalog service.
- 4. Start the main Impala service on one or more DataNodes, ideally on all DataNodes to maximize local processing and avoid network traffic due to remote reads.

Once Impala is running, you can conduct interactive experiments using the instructions in Impala Tutorial on page 50 and try Using the Impala Shell (impala-shell Command) on page 318.

Starting Impala through Cloudera Manager

If you installed Impala with Cloudera Manager, use Cloudera Manager to start and stop services. The Cloudera Manager GUI is a convenient way to check that all services are running, to set configuration options using form fields in a browser, and to spot potential issues such as low disk space before they become serious. Cloudera Manager automatically starts all the Impala-related services as a group, in the correct order. See the Cloudera Manager Documentation for details.

Note:

Currently, Impala UDFs and UDAs are not persisted in the metastore database. Information about these functions is held in the memory of the catalogd daemon. You must reload them by running the CREATE FUNCTION statements again each time you restart the catalogd daemon.

Starting Impala from the Command Line

To start the Impala state store and Impala from the command line or a script, you can either use the service command or you can start the daemons directly through the impalad, statestored, and catalogd executables.

Start the Impala statestore and then start impalad instances. You can modify the values the service initialization scripts use when starting the statestore and Impala by editing /etc/default/impala.

Start the statestore service using a command similar to the following:

\$ sudo service impala-state-store start

Start the catalog service using a command similar to the following:

\$ sudo service impala-catalog start

Start the Impala service on each data node using a command similar to the following:

\$ sudo service impala-server start

Note:

Currently, Impala UDFs and UDAs are not persisted in the metastore database. Information about these functions is held in the memory of the catalogd daemon. You must reload them by running the CREATE FUNCTION statements again each time you restart the catalogd daemon.

If any of the services fail to start, review:

- Reviewing Impala Logs on page 422
- Troubleshooting Impala on page 425

Modifying Impala Startup Options

The configuration options for the Impala-related daemons let you choose which hosts and ports to use for the services that run on a single host, specify directories for logging, control resource usage and security, and specify other aspects of the Impala software.

Configuring Impala Startup Options through Cloudera Manager

If you manage your cluster through Cloudera Manager, configure the settings for all the Impala-related daemons by navigating to this page: Services > Impala > Configuration > View and Edit. See the Cloudera Manager documentation for instructions about how to configure Impala through Cloudera Manager: Impala information for Cloudera Manager 5, Impala information for Cloudera Manager 4.

If the Cloudera Manager interface does not yet have a form field for a newly added option, or if you need to use special options for debugging and troubleshooting, the **Advanced** option page for each daemon includes one or more fields where you can enter option names directly. In Cloudera Manager 4, these fields are labelled Safety Valve; in Cloudera Manager 5, they are called Advanced Configuration Snippet. There is also a free-form field for query options, on the top-level Impala Daemon options page.

Configuring Impala Startup Options through the Command Line

When you run Impala in a non-Cloudera Manager environment, the Impala server, statestore, and catalog services start up using values provided in a defaults file, /etc/default/impala.

This file includes information about many resources used by Impala. Most of the defaults included in this file should be effective in most cases. For example, typically you would not change the definition of the CLASSPATH variable, but you would always set the address used by the statestore server. Some of the content you might modify includes:

```
IMPALA_STATE_STORE_HOST=127.0.0.1
IMPALA_STATE_STORE_PORT=24000
IMPALA_BACKEND_PORT=22000
IMPALA_LOG_DIR=/var/log/impala
IMPALA_CATALOG_SERVICE_HOST=...
IMPALA_STATE_STORE_HOST=...
export IMPALA_STATE_STORE_ARGS=${IMPALA_STATE_STORE_ARGS:- \
    -log_dir=${IMPALA_LOG_DIR} -state_store_port=${IMPALA_STATE_STORE_PORT}}
IMPALA_SERVER_ARGS="
-log_dir=${IMPALA_LOG_DIR} \
-catalog_service_host=${IMPALA_CATALOG_SERVICE_HOST} \
-state_store_port=${IMPALA_STATE_STORE_PORT} \
-use_statestore \
-state_store_host=${IMPALA_STATE_STORE_HOST} \
-be_port=${IMPALA_BACKEND_PORT}"
export ENABLE_CORE_DUMPS=${ENABLE_COREDUMPS:-false}
```

To use alternate values, edit the defaults file, then restart all the Impala-related services so that the changes take effect. Restart the Impala server using the following commands:

```
$ sudo service impala-server restart
                                                          [ OK ]
Stopping Impala Server:
Starting Impala Server:
```

Restart the Impala statestore using the following commands:

```
$ sudo service impala-state-store restart
                                                           [ OK
[ OK
Stopping Impala State Store Server:
Starting Impala State Store Server:
```

Restart the Impala catalog service using the following commands:

```
$ sudo service impala-catalog restart
                                                        [ OK ]
Stopping Impala Catalog Server:
Starting Impala Catalog Server:
                                                       [ OK ]
```

Some common settings to change include:

• Statestore address. Cloudera recommends the statestore be on a separate host not running the impalad daemon. In that recommended configuration, the impalad daemon cannot refer to the statestore server using the loopback address. If the statestore is hosted on a machine with an IP address of 192.168.0.27, change:

```
IMPALA_STATE_STORE_HOST=127.0.0.1
to:
  IMPALA STATE STORE HOST=192.168.0.27
```

Catalog server address (including both the hostname and the port number). Update the value of the IMPALA_CATALOG_SERVICE_HOST variable. Cloudera recommends the catalog server be on the same host as the statestore. In that recommended configuration, the impalad daemon cannot refer to the catalog server using the loopback address. If the catalog service is hosted on a machine with an IP address of 192.168.0.27, add the following line:

```
TMPALA CATALOG SERVICE HOST=192.168.0.27:26000
```

The /etc/default/impala defaults file currently does not define an IMPALA_CATALOG_ARGS environment variable, but if you add one it will be recognized by the service startup/shutdown script. Add a definition for this variable to /etc/default/impala and add the option -catalog_service_host=hostname. If the port is different than the default 26000, also add the option -catalog_service_port=port.

Memory limits. You can limit the amount of memory available to Impala. For example, to allow Impala to use no more than 70% of system memory, change:

```
export IMPALA_SERVER_ARGS=${IMPALA_SERVER_ARGS:- \
   -log_dir=${IMPALA_LOG_DIR} \
   -state_store_port=${IMPALA_STATE_STORE_PORT} \
   -use_statestore -state_store_host=${IMPALA_STATE_STORE_HOST} \
   -be_port=${IMPALA_BACKEND_PORT}}
```

to:

```
export IMPALA_SERVER_ARGS=${IMPALA_SERVER_ARGS:-
   -log_dir=${IMPALA_LOG_DIR} -state_store_port=${IMPALA_STATE_STORE_PORT} \
    -use_statestore -state_store_host=${IMPALA_STATE_STORE_HOST} \
   -be_port=${IMPALA_BACKEND_PORT} -mem_limit=70%}
```

Starting Impala

You can specify the memory limit using absolute notation such as 500m or 2G, or as a percentage of physical memory such as 60%.

- Note: Queries that exceed the specified memory limit are aborted. Percentage limits are based on the physical memory of the machine and do not consider cgroups.
- Core dump enablement. To enable core dumps, change:

```
export ENABLE_CORE DUMPS=${ENABLE_COREDUMPS:-false}
```

```
export ENABLE_CORE_DUMPS=${ENABLE_COREDUMPS:-true}
```

- **Note:** The location of core dump files may vary according to your operating system configuration. Other security settings may prevent Impala from writing core dumps even when this option is enabled.
- Authorization using the open source Sentry plugin. Specify the -server_name and -authorization policy file options as part of the IMPALA SERVER ARGS and IMPALA STATE STORE ARGS settings to enable the core Impala support for authentication. See Starting the impalad Daemon with Sentry Authorization Enabled on page 90 for details.
- Auditing for successful or blocked Impala queries, another aspect of security. Specify the -audit_event_log_dir=directory_path option and optionally the -max_audit_event_log_file_size=number_of_queries and -abort_on_failed_audit_event options as part of the IMPALA_SERVER_ARGS settings, for each Impala node, to enable and customize auditing. See <u>Auditing Impala Operations</u> on page 106 for details.
- Password protection for the Impala web UI, which listens on port 25000 by default. This feature involves adding some or all of the --webserver_password_file, --webserver_authentication_domain, and --webserver certificate file options to the IMPALA SERVER ARGS and IMPALA STATE STORE ARGS settings. See <u>Security Guidelines for Impala</u> on page 85 for details.
- Another setting you might add to IMPALA_SERVER_ARGS is:

```
-default_query_options='option=value;option=value;...'
```

These options control the behavior of queries performed by this impalad instance. The option values you specify here override the default values for <u>Impala query options</u>, as shown by the SET statement in impala-shell.

- Options for resource management, in conjunction with the YARN and Llama components. These options include -enable_rm,-llama_host,-llama_port,-llama_callback_port,and-cgroup_hierarchy_path. Additional options to help fine-tune the resource estimates are --rm_always_use_defaults, --rm_default_memory=size, and --rm_default_cpu_cores. For details about these options, see impalad Startup Options for Resource Management on page 77. See Integrated Resource Management with YARN on page 76 for information about resource management in general, and The Llama Daemon on page 76 for information about the Llama daemon.
- During troubleshooting, Cloudera Support might direct you to change other values, particularly for IMPALA_SERVER_ARGS, to work around issues or gather debugging information.

The following startup options for impalad enable resource management and customize its parameters for your cluster configuration:

-enable_rm: Whether to enable resource management or not, either true or false. The default is false. None of the other resource management options have any effect unless <code>-enable_rm</code> is turned on.

- -llama_host: Hostname or IP address of the Llama service that Impala should connect to. The default is 127.0.0.1.
- -llama_port: Port of the Llama service that Impala should connect to. The default is 15000.
- -llama_callback_port: Port that Impala should start its Llama callback service on. Llama reports when resources are granted or preempted through that service.
- -cgroup hierarchy path: Path where YARN and Llama will create cgroups for granted resources. Impala assumes that the cgroup for an allocated container is created in the path 'cgroup hierarchy path + container id.
- -rm_always_use_defaults: If this Boolean option is enabled, Impala ignores computed estimates and always obtains the default memory and CPU allocation from Llama at the start of the query. These default estimates are approximately 2 CPUs and 4 GB of memory, possibly varying slightly depending on cluster size, workload, and so on. Cloudera recommends enabling -rm_always_use_defaults whenever resource management is used, and relying on these default values (that is, leaving out the two following options).
- -rm_default_memory=size: Optionally sets the default estimate for memory usage for each query. You can use suffixes such as M and G for megabytes and gigabytes, the same as with the MEM_LIMIT query option. Only has an effect when -rm_always_use_defaults is also enabled.
- -rm_default_cpu_cores: Optionally sets the default estimate for number of virtual CPU cores for each query. Only has an effect when -rm_always_use_defaults is also enabled.

Note:

These startup options for the impalad daemon are different from the command-line options for the impala-shell command. For the impala-shell options, see impala-shell Configuration Options on page 318.

Checking the Values of Impala Configuration Options

You can check the current runtime value of all these settings through the Impala web interface, available by default at http://impala_hostname:25000/varz for the impalad daemon,

http://impala_hostname:25010/varz for the statestored daemon, or

http://impala hostname: 25020/varz for the catalogd daemon. In the Cloudera Manager interface, you can see the link to the appropriate *service_name* Web UI page when you look at the status page for a specific daemon on a specific host.

Startup Options for impalad Daemon

The impalad daemon implements the main Impala service, which performs query processing and reads and writes the data files.

Startup Options for statestored Daemon

The statestored daemon implements the Impala statestore service, which monitors the availability of Impala services across the cluster, and handles situations such as nodes becoming unavailable or becoming available again.

Startup Options for catalogd Daemon

The catalogd daemon implements the Impala catalog service, which broadcasts metadata changes to all the Impala nodes when Impala creates a table, inserts data, or performs other kinds of DDL and DML operations.

By default, the metadata loading and caching on startup happens asynchronously, so Impala can begin accepting requests promptly. To enable the original behavior, where Impala waited until all metadata was loaded before accepting any requests, set the catalogd configuration option --load_catalog_in_background=false.

Impala Tutorial

This section includes tutorial scenarios that demonstrate how to begin using Impala once the software is installed. It focuses on techniques for loading data, because once you have some data in tables and can query that data, you can quickly progress to more advanced Impala features.

Note:

Where practical, the tutorials take you from "ground zero" to having the desired Impala tables and data. In some cases, you might need to download additional files from outside sources, set up additional software components, modify commands or scripts to fit your own configuration, or substitute your own sample data.

Before trying these tutorial lessons, install Impala using one of these procedures:

- If you already have a CDH environment set up and just need to add Impala to it, follow the installation process described in Installing Impala on page 29. Make sure to also install the Hive metastore service if you do not already have Hive configured.
- To set up Impala and all its prerequisites at once, in a minimal configuration that you can use for small-scale experiments, set up the Cloudera QuickStart VM, which includes CDH and Impala on CentOS 6.3 (64-bit). Use this single-node VM to try out basic SQL functionality, not anything related to performance and scalability. For more information, see the Cloudera QuickStart VM.

Tutorials for Getting Started

These tutorials demonstrate the basics of using Impala. They are intended for first-time users, and for trying out Impala on any new cluster to make sure the major components are working correctly.

Explore a New Impala Instance

This tutorial demonstrates techniques for finding your way around the tables and databases of an unfamiliar (possibly empty) Impala instance.

When you connect to an Impala instance for the first time, you use the SHOW DATABASES and SHOW TABLES statements to view the most common types of objects. Also, call the version() function to confirm which version of Impala you are running; the version number is important when consulting documentation and dealing with support issues.

A completely empty Impala instance contains no tables, but still has two databases:

- default, where new tables are created when you do not specify any other database.
- _impala_builtins, a system database used to hold all the built-in functions.

The following example shows how to see the available databases, and the tables in each. If the list of databases or tables is long, you can use wildcard notation to locate specific databases or tables based on their names.

```
$ impala-shell -i localhost --quiet
Starting Impala Shell without Kerberos authentication
Welcome to the Impala shell. Press TAB twice to see a list of available commands.
Copyright (c) 2012 Cloudera, Inc. All rights reserved.
(Shell build version: Impala Shell v...
[localhost:21000] > select version();
version()
```

```
impalad version ...
Built on ...
[localhost:21000] > show databases;
name
  _impala_builtins
 ctas
 d1
 d2
 d3
 default
 explain_plans
 external_table
 file_formats
 tpc
[localhost:21000] > select current_database();
current_database()
default
[localhost:21000] > show tables;
name
 ex_t
 ±.1
[localhost:21000] > show tables in d3;
[localhost:21000] > show tables in tpc;
 city
 customer
 customer_address
 customer_demographics
 household_demographics
 item
 promotion
 store
 store2
 store_sales
 ticket_view
 time_dim
 tpc_tables
[localhost:21000] > show tables in tpc like 'customer*';
name
 customer
 customer_address
customer_demographics
```

Once you know what tables and databases are available, you descend into a database with the USE statement. To understand the structure of each table, you use the DESCRIBE command. Once inside a database, you can issue statements such as INSERT and SELECT that operate on particular tables.

The following example explores a database named TPC whose name we learned in the previous example. It shows how to filter the table names within a database based on a search string, examine the columns of a table, and run queries to examine the characteristics of the table data. For example, for an unfamiliar table you might want to know the number of rows, the number of different values for a column, and other properties such as

whether the column contains any NULL values. When sampling the actual data values from a table, use a LIMIT clause to avoid excessive output if the table contains more rows or distinct values than you expect.

```
[localhost:21000] > use tpc;
[localhost:21000] > show tables like '*view*';
name
ticket_view
[localhost:21000] > describe city;
               type comment
name
id int name string countrycode string district string population int
[localhost:21000] > select count(*) from city;
count(*)
0
[localhost:21000] > desc customer;
                                  type comment
name
  c_customer_sk
                                  int
  c_customer_sk string
c_current_cdemo_sk int
c_current_hdemo_sk int
c_current_addr_sk int
c_first_shipto_date_sk int
c_first_sales_date_sk int
c_salutation string
c_first_name string
 c_salutation string
c_first_name string
c_last_name string
c_preferred_cust_flag string
c_birth_day int
c_birth_wonth int
c_birth_year int
c_birth_country string
c_login string
c_email_address string
c_last_review_date string
[localhost:21000] > select count(*) from customer;
count(*)
100000
[localhost:21000] > select count(distinct c_birth_month) from customer;
+-----
count(distinct c_birth_month)
[localhost:21000] > select count(*) from customer where c_email_address is null;
count(*)
[localhost:21000] > select distinct c_salutation from customer limit 10;
+----+
c_salutation
  Mr.
  Ms.
```

```
Dr.
Miss
Sir
Mrs.
```

When you graduate from read-only exploration, you use statements such as CREATE DATABASE and CREATE TABLE to set up your own database objects.

The following example demonstrates creating a new database holding a new table. Although the last example ended inside the TPC database, the new EXPERIMENTS database is not nested inside TPC; all databases are arranged in a single top-level list.

```
[localhost:21000] > create database experiments;
[localhost:21000] > show databases;
name
 _impala_builtins
 ctas
 d1
 d2
 d3
 default
 experiments
 explain_plans
 external_table
 file_formats
 tpc
[localhost:21000] > show databases like 'exp*';
 name
 experiments
 explain_plans
```

The following example creates a new table, T1. To illustrate a common mistake, it creates this table inside the wrong database, the TPC database where the previous example ended. The ALTER TABLE statement lets you move the table to the intended database, EXPERIMENTS, as part of a rename operation. The USE statement is always needed to switch to a new database, and the current_database() function confirms which database the session is in, to avoid these kinds of mistakes.

```
[localhost:21000] > create table t1 (x int);
[localhost:21000] > show tables;
 name
 city
 customer
 customer_address
  customer_demographics
 household_demographics
  item
 promotion
 store
  store2
  store_sales
 ticket_view
  time_dim
 tpc_tables
[localhost:21000] > select current_database();
+----+
current_database()
```

```
tpc
[localhost:21000] > alter table t1 rename to experiments.t1;
[localhost:21000] > use experiments;
[localhost:21000] > show tables;
name
| t1
[localhost:21000] > select current_database();
+----+
current_database()
experiments
```

For your initial experiments with tables, you can use ones with just a few columns and a few rows, and text-format data files.

Note: As you graduate to more realistic scenarios, you will use more elaborate tables with many columns, features such as partitioning, and file formats such as Parquet. When dealing with realistic data volumes, you will bring in data using LOAD DATA or INSERT ... SELECT statements to operate on millions or billions of rows at once.

The following example sets up a couple of simple tables with a few rows, and performs queries involving sorting, aggregate functions and joins.

```
[localhost:21000] > insert into t1 values (1), (3), (2), (4);
[localhost:21000] > select x from t1 order by x desc;
x
 4
 3
 2
[localhost:21000] > select min(x), max(x), sum(x), avg(x) from t1;
| min(x) | max(x) | sum(x) | avg(x) |
| 1
    | 4 | 10 | 2.5
[localhost:21000] > create table t2 (id int, word string);
[localhost:21000] > insert into t2 values (1, "one"), (3, "three"), (5, 'five');
[localhost:21000] > select word from t1 join t2 on (t1.x = t2.id);
 word
 one
 three
```

After completing this tutorial, you should now know:

- How to tell which version of Impala is running on your system.
- How to find the names of databases in an Impala instance, either displaying the full list or searching for specific names.
- How to find the names of tables in an Impala database, either displaying the full list or searching for specific
- How to switch between databases and check which database you are currently in.
- How to learn the column names and types of a table.
- How to create databases and tables, insert small amounts of test data, and run simple queries.

Set Up Some Basic .csv Tables

This scenario illustrates how to create some very small tables, suitable for first-time users to experiment with Impala SQL features. TAB1 and TAB2 are loaded with data from files in HDFS. A subset of data is copied from TAB1 into TAB3.

Populate HDFS with the data you want to query. To begin this process, create one or more new subdirectories underneath your user directory in HDFS. The data for each table resides in a separate subdirectory. Substitute your own user name for cloudera where appropriate. This example uses the -p option with the mkdir operation to create any necessary parent directories if they do not already exist.

```
$ whoami
cloudera
$ hdfs dfs -ls /user
Found 3 items

      drwxr-xr-x
      - cloudera cloudera
      0 2013-04-22 18:54 /user/cloudera

      drwxrwx---
      - mapred mapred
      0 2013-03-15 20:11 /user/history

      drwxr-xr-x
      - hue supergroup
      0 2013-03-15 20:10 /user/hive

$ hdfs dfs -mkdir -p /user/cloudera/sample_data/tab1 /user/cloudera/sample_data/tab2
```

Here is some sample data, for two tables named TAB1 and TAB2.

Copy the following content to .csv files in your local filesystem:

tab1.csv:

```
1, true, 123.123, 2012-10-24 08:55:00
2, false, 1243.5, 2012-10-25 13:40:00
3,false,24453.325,2008-08-22 09:33:21.123
4, false, 243423.325, 2007-05-12 22:32:21.33454
5, true, 243.325, 1953-04-22 09:11:33
```

tab2.csv!

```
1, true, 12789.123
2,false,1243.5
3, false, 24453.325
4, false, 2423.3254
5, true, 243.325
60, false, 243565423.325
70, true, 243.325
80, false, 243423.325
90, true, 243.325
```

Put each . csv file into a separate HDFS directory using commands like the following, which use paths available in the Impala Demo VM:

```
$ hdfs dfs -put tabl.csv /user/cloudera/sample_data/tabl
$ hdfs dfs -ls /user/cloudera/sample_data/tab1
Found 1 items
                                 192 2013-04-02 20:08
-rw-r--r-- 1 cloudera cloudera
/user/cloudera/sample_data/tab1/tab1.csv
$ hdfs dfs -put tab2.csv /user/cloudera/sample_data/tab2
$ hdfs dfs -ls /user/cloudera/sample_data/tab2
Found 1 items
                                 158 2013-04-02 20:09
-rw-r--r-- 1 cloudera cloudera
/user/cloudera/sample_data/tab2/tab2.csv
```

The name of each data file is not significant. In fact, when Impala examines the contents of the data directory for the first time, it considers all files in the directory to make up the data of the table, regardless of how many files there are or what the files are named.

Impala Tutorial

To understand what paths are available within your own HDFS filesystem and what the permissions are for the various directories and files, issue hdfs dfs -ls / and work your way down the tree doing -ls operations for the various directories.

Use the impala-shell command to create tables, either interactively or through a SQL script.

The following example shows creating three tables. For each table, the example shows creating columns with various attributes such as Boolean or integer types. The example also includes commands that provide information about how the data is formatted, such as rows terminating with commas, which makes sense in the case of importing data from a .csv file. Where we already have .csv files containing data in the HDFS directory tree, we specify the location of the directory containing the appropriate .csv file. Impala considers all the data from all the files in that directory to represent the data for the table.

```
DROP TABLE IF EXISTS tab1;
-- The EXTERNAL clause means the data is located outside the central location
-- for Impala data files and is preserved when the associated Impala table is dropped.
-- We expect the data to already exist in the directory specified by the LOCATION
clause.
CREATE EXTERNAL TABLE tab1
   id INT,
  col_1 BOOLEAN,
  col_2 DOUBLE,
   col_3 TIMESTAMP
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/cloudera/sample_data/tab1';
DROP TABLE IF EXISTS tab2;
-- TAB2 is an external table, similar to TAB1.
CREATE EXTERNAL TABLE tab2
   id INT,
   col_1 BOOLEAN,
   col_2 DOUBLE
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/cloudera/sample_data/tab2';
DROP TABLE IF EXISTS tab3;
-- Leaving out the EXTERNAL clause means the data will be managed
-- in the central Impala data directory tree. Rather than reading
-- existing data files when the table is created, we load the
-- data after creating the table.
CREATE TABLE tab3
   id INT,
   col_1 BOOLEAN,
   col_2 DOUBLE,
  month INT,
   day INT
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
```

- **Note:** Getting through these CREATE TABLE statements successfully is an important validation step to confirm everything is configured correctly with the Hive metastore and HDFS permissions. If you receive any errors during the CREATE TABLE statements:
 - Make sure you followed the installation instructions closely, in <u>Installing Impala</u> on page 29.
 - Make sure the hive.metastore.warehouse.dir property points to a directory that Impala can write to. The ownership should be hive: hive, and the impala user should also be a member of
 - If the value of hive.metastore.warehouse.dir is different in the Cloudera Manager dialogs and in the Hive shell, you might need to designate the hosts running impalad with the "gateway" role for Hive, and deploy the client configuration files to those hosts.

Point an Impala Table at Existing Data Files

A convenient way to set up data for Impala to access is to use an external table, where the data already exists in a set of HDFS files and you just point the Impala table at the directory containing those files. For example, you might run in impala-shell a *.sql file with contents similar to the following, to create an Impala table that accesses an existing data file used by Hive.

Note:

In early beta Impala releases, the examples in this tutorial relied on the Hive CREATE TABLE command. The CREATE TABLE statement is available in Impala for 0.7 and higher, so now the tutorial uses the native Impala CREATE TABLE.

The following examples set up 2 tables, referencing the paths and sample data supplied with the Impala Demo VM. For historical reasons, the data physically resides in an HDFS directory tree under /user/hive, although this particular data is entirely managed by Impala rather than Hive. When we create an external table, we specify the directory containing one or more data files, and Impala queries the combined content of all the files inside that directory. Here is how we examine the directories and files within the HDFS filesystem:

```
$ cd ~/cloudera/datasets
$ ./tpcds-setup.sh
... Downloads and unzips the kit, builds the data and loads it into HDFS ...
$ hdfs dfs -ls /user/hive/tpcds/customer
Found 1 items
-rw-r--r- 1 cloudera supergroup
                                           13209372 2013-03-22 18:09
/user/hive/tpcds/customer/customer.dat
$ hdfs dfs -cat /user/hive/tpcds/customer/customer.dat | more
1 | AAAAAAAAAAA | 980124 | 7135 | 32946 | 2452238 | 2452208 | Mr. | Javier | Lewis | Y | 9 | 12 | 1936 | CHILE | | Javie
r.Lewis@VFAxlnZEvOx.org | 2452508 |
2 | AAAAAAAAAAA | 819667 | 1461 | 31655 | 2452318 | 2452288 | Dr. | Amy | Moses | Y | 9 | 4 | 1966 | TOGO | Amy . Moses@
Ovk9KjHH.com | 2452318
3 | AAAAAAAADAAAAAA | 1473522 | 6247 | 48572 | 2449130 | 2449100 | Miss | Latisha | Hamilton | N | 18 | 9 | 1979 | NIUE | |
Latisha. Hamilton@V.com 2452313
4 | AAAAAAAAAAA | 1703214 | 3986 | 39558 | 2450030 | 2450000 | Dr. | Michael | White | N | 7 | 6 | 1983 | MEXICO | | Mic
hael.White@i.org 2452361
5 | AAAAAAAAAAA | 953372 | 4470 | 36368 | 2449438 | 2449408 | Sir | Robert | Moran | N | 8 | 5 | 1956 | FIJI | Robert.
Moran@Hh.edu | 2452469 |
```

Here is the SQL script we might save as customer_setup.sql:

```
-- store_sales fact table and surrounding dimension tables only
create database tpcds;
use tpcds;
drop table if exists customer;
create external table customer
      c_customer_sk int,
c_customer_id string,
c_current_cdemo_sk int,
c_current_hdemo_sk int,
c_current_addr_sk int,
      c_first_shipto_date_sk int,
c_first_sales_date_sk int,
c_salutation string,
c_first_name string,
      c_sarted_c_c_first_name string, c_last_name string, c_preferred_cust_flag string, c_birth_day int, int,
      c_birth_year int,
c_birth_country string,
c_login string,
       c_email_address
                                                string,
```

```
c_last_review_date
                          string
)
row format delimited fields terminated by '|'
location '/user/hive/tpcds/customer';
drop table if exists customer_address;
create external table customer_address
                          int,
   ca_address_sk
                         string,
string,
   ca_address_id
   ca_address_iu
ca_street_number
   ca_street_name
                          string,
                        string,
string,
string,
   ca_street_type
   ca_suite_number
   ca_city
                          string,
   ca_county
   ca_state
                           string,
                           string,
   ca_zip
   ca_country
                          string,
   ca_gmt_offset
                           float,
   ca_location_type
                           string
row format delimited fields terminated by '|'
location '/user/hive/tpcds/customer_address';
_____
```

We would run this script with a command such as:

```
impala-shell -i localhost -f customer_setup.sql
```

Describe the Impala Table

Now that you have updated the database metadata that Impala caches, you can confirm that the expected tables are accessible by Impala and examine the attributes of one of the tables. We created these tables in the database named default. If the tables were in a database other than the default, we would issue a command use db_name to switch to that database before examining or querying its tables. We could also qualify the name of a table by prepending the database name, for example default.customer and default.customer_name.

```
[impala-host:21000] > show databases
Query finished, fetching results ...
default
Returned 1 row(s) in 0.00s
[impala-host:21000] > show tables
Query finished, fetching results ...
customer
customer_address
Returned 2 row(s) in 0.00s
[impala-host:21000] > describe customer_address
                 type comment
name
  ca_address_sk int
ca_address_id string
ca_street_number string
 ca_street_number | string | ca_street_name | string | ca_street_type | string | ca_suite_number | string | ca_city | string | ca_county | string | ca_state | string | ca_zip | string | ca_country | ca_gmt_offset | ca_location_type | string |
Returned 13 row(s) in 0.01
```

Query the Impala Table

You can query data contained in the tables. Impala coordinates the query execution across a single node or multiple nodes depending on your configuration, without the overhead of running MapReduce jobs to perform the intermediate processing.

There are a variety of ways to execute queries on Impala:

Using the impala-shell command in interactive mode:

```
$ impala-shell -i impala-host
Connected to localhost:21000
[impala-host:21000] > select count(*) from customer_address;
Returned 1 row(s) in 0.37s
```

Passing a set of commands contained in a file:

```
$ impala-shell -i impala-host -f myquery.sql
Connected to localhost:21000
50000
Returned 1 row(s) in 0.19s
```

 Passing a single command to the impala-shell command. The query is executed, the results are returned, and the shell exits. Make sure to quote the command, preferably with single quotation marks to avoid shell expansion of characters such as *.

```
$ impala-shell -i impala-host -q 'select count(*) from customer_address'
Connected to localhost:21000
50000
Returned 1 row(s) in 0.29s
```

Data Loading and Querying Examples

This section describes how to create some sample tables and load data into them. These tables can then be queried using the Impala shell.

Loading Data

Loading data involves:

- Establishing a data set. The example below uses .csv files.
- Creating tables to which to load data.
- Loading the data into the tables you created.

Sample Queries

To run these sample queries, create a SQL query file query.sgl, copy and paste each query into the query file, and then run the query file using the shell. For example, to run query.sql on impala-host, you might use the command:

```
impala-shell.sh -i impala-host -f query.sql
```

The examples and results below assume you have loaded the sample data into the tables as described above.

Example: Examining Contents of Tables

Let's start by verifying that the tables do contain the data we expect. Because Impala often deals with tables containing millions or billions of rows, when examining tables of unknown size, include the LIMIT clause to

Impala Tutorial

avoid huge amounts of unnecessary output, as in the final query. (If your interactive query starts displaying an unexpected volume of data, press Ctrl-C in impala-shell to cancel the query.)

```
SELECT * FROM tab1;
SELECT * FROM tab2;
SELECT * FROM tab2 LIMIT 5;
```

Results:

id	+ col_1	col_2	col_3
1 2 3 4 5	true false false false true	123.123 1243.5 24453.325 243423.325 243.325	2012-10-24 08:55:00 2012-10-25 13:40:00 2008-08-22 09:33:21.123000000 2007-05-12 22:32:21.334540000 1953-04-22 09:11:33
id	+ col_1	col_2	+
1 2 3 4 5 60 70 80 90	true false false false true false true false true true	12789.123 1243.5 24453.325 2423.3254 243.325 243565423.32 243.325 243423.325 243.325	25
id	+	col_2	
1 2 3 4 5	true false false false false true	12789.123 1243.5 24453.325 2423.3254 243.325	

Example: Aggregate and Join

```
SELECT tab1.col_1, MAX(tab2.col_2), MIN(tab2.col_2)
FROM tab2 JOIN tab1 USING (id)
GROUP BY col_1 ORDER BY 1 LIMIT 5;
```

Results:

```
| col_1 | max(tab2.col_2) | min(tab2.col_2) |

    false
    24453.325
    1243.5

    true
    12789.123
    243.325
```

Example: Subquery, Aggregate and Joins

```
SELECT tab2.*
FROM tab2,
(SELECT tab1.col_1, MAX(tab2.col_2) AS max_col2
FROM tab2, tab1
WHERE tab1.id = tab2.id
GROUP BY col_1) subquery1
WHERE subquery1.max_col2 = tab2.col_2;
```

Results:

```
id | col_1 | col_2
    true | 12789.123
false | 24453.325
1
3
```

Example: INSERT Query

```
INSERT OVERWRITE TABLE tab3
SELECT id, col_1, col_2, MONTH(col_3), DAYOFMONTH(col_3)
FROM tab1 WHERE YEAR(col_3) = 2012;
```

Ouery TAB3 to check the result:

```
______
SELECT * FROM tab3;
```

Results:

E					
100	id	col_1	col_2	month	day
			123.123 1243.5		
į	++		+		+

Advanced Tutorials

These tutorials walk you through advanced scenarios or specialized features.

Attaching an External Partitioned Table to an HDFS Directory Structure

This tutorial shows how you might set up a directory tree in HDFS, put data files into the lowest-level subdirectories, and then use an Impala external table to query the data files from their original locations.

The tutorial uses a table with web log data, with separate subdirectories for the year, month, day, and host. For simplicity, we use a tiny amount of CSV data, loading the same data into each partition.

First, we make an Impala partitioned table for CSV data, and look at the underlying HDFS directory structure to understand the directory structure to re-create elsewhere in HDFS. The columns field1, field2, and field3 correspond to the contents of the CSV data files. The year, month, day, and host columns are all represented as subdirectories within the table structure, and are not part of the CSV files. We use STRING for each of these columns so that we can produce consistent subdirectory names, with leading zeros for a consistent length.

```
create database external_partitions;
use external_partitions;
create table logs (field1 string, field2 string, field3 string)
 partitioned by (year string, month string , day string, host string) row format delimited fields terminated by ',';
insert into logs partition (year="2013", month="07", day="28", host="host1") values
("foo", "foo", "foo");
insert into logs partition (year="2013", month="07", day="28", host="host2") values
("foo", "foo", "foo");
insert into logs partition (year="2013", month="07", day="29", host="host1") values
("foo", "foo"
             ,"foo");
insert into logs partition (year="2013", month="07", day="29", host="host2") values
("foo", "foo", "foo");
insert into logs partition (year="2013", month="08", day="01", host="host1") values
("foo", "foo", "foo");
```

Back in the Linux shell, we examine the HDFS directory structure. (Your Impala data directory might be in a different location; for historical reasons, it is sometimes under the HDFS path /user/hive/warehouse.) We use the hdfs dfs -ls command to examine the nested subdirectories corresponding to each partitioning column, with separate subdirectories at each level (with = in their names) representing the different values for each partitioning column. When we get to the lowest level of subdirectory, we use the hdfs dfs -cat command to examine the data file and see CSV-formatted data produced by the INSERT statement in Impala.

```
$ hdfs dfs -ls /user/impala/warehouse/external_partitions.db
Found 1 items
drwxrwxrwt - impala hive
                                0 2013-08-07 12:24
/user/impala/warehouse/external_partitions.db/logs
$ hdfs dfs -ls /user/impala/warehouse/external_partitions.db/logs
Found 1 items
drwxr-xr-x - impala hive
                               0 2013-08-07 12:24
/user/impala/warehouse/external_partitions.db/logs/year=2013
$ hdfs dfs -ls /user/impala/warehouse/external_partitions.db/logs/year=2013
Found 2 items
drwxr-xr-x - impala hive
                               0 2013-08-07 12:23
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=07
drwxr-xr-x - impala hive
                            0 2013-08-07 12:24
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=08
$ hdfs dfs -ls /user/impala/warehouse/external_partitions.db/logs/year=2013/month=07
Found 2 items
drwxr-xr-x - impala hive
                               0 2013-08-07 12:22
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=07/day=28
drwxr-xr-x - impala hive 0 2013-08-07 12:23
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=07/day=29
$ hdfs dfs -ls
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=07/day=28
Found 2 items
drwxr-xr-x - impala hive
                               0 2013-08-07 12:21
drwxr-xr-x - impala hive 0 2013-08-07 12:22
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=07/day=28/host=host2
$ hdfs dfs -ls
Found 1 items
-rw-r--r-- 3 impala hive
                              12 2013-08-07 12:21
/user/impala/warehouse/external_partiti
ons.db/logs/year=2013/month=07/day=28/host=host1/3981726974111751120--8907184999369517436_822630111_data.0
$ hdfs dfs -cat
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=07/day=28/\
host=host1/3981726974111751120--8 907184999369517436_822630111_data.0
foo,foo,foo
```

Still in the Linux shell, we use hdfs dfs -mkdir to create several data directories outside the HDFS directory tree that Impala controls (/user/impala/warehouse in this example, maybe different in your case). Depending on your configuration, you might need to log in as a user with permission to write into this HDFS directory tree; for example, the commands shown here were run while logged in as the hdfs user.

```
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=28/host=host1
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=28/host=host2
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=28/host=host1
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=29/host=host1
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=08/day=01/host=host1
```

We make a tiny CSV file, with values different than in the INSERT statements used earlier, and put a copy within each subdirectory that we will use as an Impala partition.

```
$ cat >dummy_log_data
bar,baz,bletch
$ hdfs dfs -mkdir -p
/user/impala/data/external_partitions/year=2013/month=08/day=01/host=host1
$ hdfs dfs -mkdir -p
/user/impala/data/external_partitions/year=2013/month=07/day=28/host=host1
$ hdfs dfs -mkdir -p
/user/impala/data/external_partitions/year=2013/month=07/day=28/host=host2
$ hdfs dfs -mkdir -p
```

```
/user/impala/data/external_partitions/year=2013/month=07/day=29/host=host1
$ hdfs dfs -put dummy_log_data
/user/impala/data/logs/year=2013/month=07/day=28/host=host1
$ hdfs dfs -put dummy_log_data
/user/impala/data/logs/year=2013/month=07/day=28/host=host2
$ hdfs dfs -put dummy_log_data
/user/impala/data/logs/year=2013/month=07/day=29/host=host1
$ hdfs dfs -put dummy_log_data
/user/impala/data/logs/year=2013/month=08/day=01/host=host1
```

Back in the impala-shell interpreter, we move the original Impala-managed table aside, and create a new external table with a LOCATION clause pointing to the directory under which we have set up all the partition subdirectories and data files.

```
use external partitions;
alter table logs rename to logs_original;
create external table logs (field1 string, field2 string, field3 string)
  partitioned by (year string, month string, day string, host string) row format delimited fields terminated by ','
  location '/user/impala/data/logs';
```

Because partition subdirectories and data files come and go during the data lifecycle, you must identify each of the partitions through an ALTER TABLE statement before Impala recognizes the data files they contain.

```
alter table logs add partition (year="2013",month="07",day="28",host="host1")
alter table log_type add partition (year="2013",month="07",day="28",host="host2"); alter table log_type add partition (year="2013",month="07",day="29",host="host1");
alter table log_type add partition (year="2013", month="08", day="01", host="host1");
```

We issue a REFRESH statement for the table, always a safe practice when data files have been manually added, removed, or changed. Then the data is ready to be queried. The SELECT * statement illustrates that the data from our trivial CSV file was recognized in each of the partitions where we copied it. Although in this case there are only a few rows, we include a LIMIT clause on this test query just in case there is more data than we expect.

```
refresh log_type;
select * from log_type limit 100;
  field1 | field2 | field3 | year | month | day | host

      bletch
      2013
      07
      28
      host1

      bletch
      2013
      08
      01
      host1

      bletch
      2013
      07
      29
      host1

      bletch
      2013
      07
      28
      host2

    bar baz
                   baz
baz
baz
    bar
    bar
```

Switching Back and Forth Between Impala and Hive

Sometimes, you might find it convenient to switch to the Hive shell to perform some data loading or transformation operation, particularly on file formats such as RCFile, SequenceFile, and Avro that Impala currently can query but not write to.

Whenever you create, drop, or alter a table or other kind of object through Hive, the next time you switch back to the impala-shell interpreter, issue a one-time invalidate METADATA statement so that Impala recognizes the new or changed object.

Whenever you load, insert, or change data in an existing table through Hive (or even through manual HDFS operations such as the hdfs command), the next time you switch back to the impala-shell interpreter, issue a one-time REFRESH table_name statement so that Impala recognizes the new or changed data.

For examples showing how this process works for the REFRESH statement, look at the examples of creating RCFile and SequenceFile tables in Impala, loading data through Hive, and then querying the data through Impala. See Using the RCFile File Format with Impala Tables on page 407 and Using the SequenceFile File Format with <u>Impala Tables</u> on page 408 for those examples.

Impala Tutorial

For examples showing how this process works for the INVALIDATE METADATA statement, look at the example of creating and loading an Avro table in Hive, and then querying the data through Impala. See Using the Avro <u>File Format with Impala Tables</u> on page 402 for that example.

Note:

Originally, Impala did not support UDFs, but this feature is available in Impala starting in Impala 1.2. Some INSERT ... SELECT transformations that you originally did through Hive can now be done through Impala. See Impala User-Defined Functions (UDFs) on page 295 for details.

Prior to Impala 1.2, the REFRESH and INVALIDATE METADATA statements needed to be issued on each Impala node to which you connected and issued queries. In Impala 1.2 and higher, when you issue either of those statements on any Impala node, the results are broadcast to all the Impala nodes in the cluster, making it truly a one-step operation after each round of DDL or ETL operations in Hive.

Cross Joins and Cartesian Products with the CROSS JOIN Operator

Originally, Impala restricted join gueries so that they had to include at least one equality comparison between the columns of the tables on each side of the join operator. With the huge tables typically processed by Impala, any miscoded query that produced a full Cartesian product as a result set could consume a huge amount of cluster resources.

In Impala 1.2.2 and higher, this restriction is lifted when you use the CROSS JOIN operator in the query. You still cannot remove all where clauses from a query like <code>SELECT * FROM t1 JOIN t2</code> to produce all combinations of rows from both tables. But you can use the CROSS JOIN operator to explicitly request such a Cartesian product. Typically, this operation is applicable for smaller tables, where the result set still fits within the memory of a single Impala node.

The following example sets up data for use in a series of comic books where characters battle each other. At first, we use an equijoin query, which only allows characters from the same time period and the same planet to meet.

```
[localhost:21000] > create table heroes (name string, era string, planet string);
[localhost:21000] > create table villains (name string, era string, planet string);
[localhost:21000] > insert into heroes values
                 > ('Tesla','20th century','Earth'),
                 > ('Pythagoras','Antiquity','Earth'),
                 > ('Zopzar','Far Future','Mars');
Inserted 3 rows in 2.28s
[localhost:21000] > insert into villains values
                 > ('Caligula','Antiquity','Earth'),
                 > ('John Dillinger','20th century','Earth'),
                 > ('Xibulor','Far Future','Venus');
Inserted 3 rows in 1.93s
[localhost:21000] > select concat(heroes.name, 'vs. ', villains.name) as battle
                 > from heroes join villains
                > where heroes.era = villains.era and heroes.planet = villains.planet;
battle
 Tesla vs. John Dillinger
Pythagoras vs. Caligula
Returned 2 row(s) in 0.47s
```

Readers demanded more action, so we added elements of time travel and space travel so that any hero could face any villain. Prior to Impala 1.2.2, this type of query was impossible because all joins had to reference matching values between the two tables:

```
[localhost:21000] > -- Cartesian product not possible in Impala 1.1.
                  > select concat(heroes.name, ' vs. ', villains.name) as battle from
heroes join villains;
```

```
ERROR: NotImplementedException: Join between 'heroes' and 'villains' requires at least
one conjunctive equality predicate between the two tables
```

With Impala 1.2.2, we rewrite the query slightly to use CROSS JOIN rather than JOIN, and now the result set includes all combinations:

```
[localhost:21000] > -- Cartesian product available in Impala 1.2.2 with the CROSS JOIN
             > select concat(heroes.name,' vs. ',villains.name) as battle from
heroes cross join villains;
battle
 Tesla vs. Caligula
 Tesla vs. John Dillinger
Tesla vs. Xibulor
 Pythagoras vs. Caligula
 Pythagoras vs. John Dillinger
  Pythagoras vs. Xibulor
 Zopzar vs. Caligula
 Zopzar vs. John Dillinger
Zopzar vs. Xibulor
Returned 9 row(s) in 0.33s
```

The full combination of rows from both tables is known as the Cartesian product. This type of result set is often used for creating grid data structures. You can also filter the result set by including WHERE clauses that do not explicitly compare columns between the two tables. The following example shows how you might produce a list of combinations of year and quarter for use in a chart, and then a shorter list with only selected quarters.

```
[localhost:21000] > create table x_axis (x int);
[localhost:21000] > create table y_axis (y int);
[localhost:21000] > insert into x_axis values (1),(2),(3),(4);
Inserted 4 rows in 2.14s
[localhost:21000] > insert into y_axis values (2010),(2011),(2012),(2013),(2014);
Inserted 5 rows in 1.32s
[localhost:21000] > select y as year, x as quarter from x_axis cross join y_axis;
 year | quarter
  2010
  2011
        1
  2012
        1
       1
  2013
  2014
  2010
  2011
  2012
  2013
  2014
  2010
  2011
  2012
  2013
  2014
  2010
  2011
       4
  2012
       4
  2013
 2014 4
Returned 20 row(s) in 0.38s
[localhost:21000] > select y as year, x as quarter from x_axis cross join y_axis where
 x in (1,3);
| year | quarter |
  2010 | 1
        1
  2011
  2012 | 1
```

Impala Tutorial

Impala Administration

As an administrator, you monitor Impala's use of resources and take action when necessary to keep Impala running smoothly and avoid conflicts with other Hadoop components running on the same cluster. When you detect that an issue has happened or could happen in the future, you reconfigure Impala or other components such as HDFS or even the hardware of the cluster itself to resolve or avoid problems.

Related tasks:

As an administrator, you can expect to perform installation, upgrade, and configuration tasks for Impala on all machines in a cluster. See Installing Impala on page 29, Upgrading Impala on page 41, and Configuring Impala on page 33 for details.

For security tasks typically performed by administrators, see Impala Security on page 85.

Administrators also decide how to allocate cluster resources so that all Hadoop components can run smoothly together. For Impala, this task primarily involves:

- Deciding how many Impala queries can run concurrently and with how much memory, through the admission control feature. See Admission Control and Query Queuing on page 67 for details.
- Dividing cluster resources such as memory between Impala and other components, using YARN for overall resource management, and Llama to mediate resource requests from Impala to YARN. See Integrated Resource Management with YARN on page 76 for details.

Admission Control and Query Queuing

Admission control is an Impala feature that imposes limits on concurrent SQL queries, to avoid resource usage spikes and out-of-memory conditions on busy CDH clusters. It is a form of "throttling". New queries are accepted and executed until certain conditions are met, such as too many queries or too much total memory used across the cluster. When one of these thresholds is reached, incoming queries wait to begin execution. These queries are queued and are admitted (that is, begin executing) when the resources become available.

In addition to the threshold values for currently executing queries, you can place limits on the maximum number of queries that are queued (waiting) and a limit on the amount of time they might wait before returning with an error. These queue settings let you ensure that queries do not wait indefinitely, so that you can detect and correct "starvation" scenarios.

Enable this feature if your cluster is underutilized at some times and overutilized at others. Overutilization is indicated by performance bottlenecks and queries being cancelled due to out-of-memory conditions, when those same queries are successful and perform well during times with less concurrent load. Admission control works as a safeguard to avoid out-of-memory conditions during heavy concurrent usage.

Impala Administration

Important:

- Cloudera strongly recommends you upgrade to CDH 5 or higher to use admission control. In CDH 4, admission control will only work if you don't have Hue deployed; unclosed Hue queries will accumulate and exceed the queue size limit. On CDH 4, to use admission control, you must explicitly enable it by specifying --disable_admission_control=false in the impalad command-line options.
- Use the COMPUTE STATS statement for large tables involved in join queries, and follow other steps from Tuning Impala for Performance on page 340 to tune your queries. Although COMPUTE STATS is an important statement to help optimize query performance, it is especially important when admission control is enabled:
 - When queries complete quickly and are tuned for optimal memory usage, there is less chance of performance or capacity problems during times of heavy load.
 - The admission control feature also relies on the statistics produced by the COMPUTE STATS statement to generate accurate estimates of memory usage for complex queries. If the estimates are inaccurate due to missing statistics, Impala might hold back queries unnecessarily even though there is sufficient memory to run them, or might allow queries to run that end up exceeding the memory limit and being cancelled.

Overview of Impala Admission Control

On a busy CDH cluster, you might find there is an optimal number of Impala queries that run concurrently. Because Impala queries are typically I/O-intensive, you might not find any throughput benefit in running more concurrent queries when the I/O capacity is fully utilized. Because Impala by default cancels queries that exceed the specified memory limit, running multiple large-scale queries at once can result in having to re-run some gueries that are cancelled.

The admission control feature lets you set a cluster-wide upper limit on the number of concurrent Impala queries and on the memory used by those queries. Any additional queries are queued until the earlier ones finish, rather than being cancelled or running slowly and causing contention. As other queries finish, the queued queries are allowed to proceed.

For details on the internal workings of admission control, see How Impala Schedules and Enforces Limits on Concurrent Queries on page 69.

How Impala Admission Control Relates to YARN

The admission control feature is similar in some ways to the YARN resource management framework, and they can be used separately or together. This section describes some similarities and differences, to help you decide when to use one, the other, or both together.

Admission control is a lightweight, decentralized system that is suitable for workloads consisting primarily of Impala queries and other SQL statements. It sets "soft" limits that smooth out Impala memory usage during times of heavy load, rather than taking an all-or-nothing approach that cancels jobs that are too resource-intensive.

Because the admission control system is not aware of other Hadoop workloads such as MapReduce jobs, you might use YARN with static service pools on heterogeneous CDH 5 clusters where resources are shared between Impala and other Hadoop components. Devote a percentage of cluster resources to Impala, allocate another percentage for MapReduce and other batch-style workloads; let admission control handle the concurrency and memory usage for the Impala work within the cluster, and let YARN manage the remainder of work within the cluster.

You could also try out the combination of YARN, Impala, and Llama, where YARN manages all cluster resources and Impala queries request resources from YARN by using the Llama component as an intermediary. YARN is a more centralized, general-purpose service, with somewhat higher latency than admission control due to the requirement to pass requests back and forth through the YARN and Llama components.

The Impala admission control feature uses the same mechanism as the YARN resource manager to map users to pools and authenticate them. Although the YARN resource manager is only available with CDH 5 and higher, internally Impala includes the necessary infrastructure to work consistently on both CDH 4 and CDH 5. You do not need to run the YARN and Llama components for admission control to operate.

In Cloudera Manager, the controls for Impala resource management change slightly depending on whether the Llama role is enabled, which brings Impala under the control of YARN. When you use Impala without the Llama role, you can specify three properties (memory limit, query queue size, and queue timeout) for the admission control feature. When the Llama role is enabled, you can specify query queue size and queue timeout, but the memory limit is enforced by YARN and not settable through resource pools.

How Impala Schedules and Enforces Limits on Concurrent Queries

The admission control system is decentralized, embedded in each Impala daemon and communicating through the statestore mechanism. Although the limits you set for memory usage and number of concurrent queries apply cluster-wide, each Impala daemon makes its own decisions about whether to allow each query to run immediately or to queue it for a less-busy time. These decisions are fast, meaning the admission control mechanism is low-overhead, but might be imprecise during times of heavy load. There could be times when the query queue contained more queries than the specified limit, or when the estimated of memory usage for a query is not exact and the overall memory usage exceeds the specified limit. Thus, you typically err on the high side for the size of the queue, because there is not a big penalty for having a large number of queued queries; and you typically err on the low side for the memory limit, to leave some headroom for queries to use more memory than expected, without being cancelled as a result.

At any time, the set of queued queries could include queries submitted through multiple different Impala daemon hosts. All the queries submitted through a particular host will be executed in order, so a CREATE TABLE followed by an INSERT on the same table would succeed. Queries submitted through different hosts are not guaranteed to be executed in the order they were received. Therefore, if you are using load-balancing or other round-robin scheduling where different statements are submitted through different hosts, set up all table structures ahead of time so that the statements controlled by the queuing system are primarily queries, where order is not significant. Or, if a sequence of statements needs to happen in strict order (such as an INSERT followed by a SELECT), submit all those statements through a single session, while connected to the same Impala daemon

The limit on the number of concurrent queries is a "soft" one, To achieve high throughput, Impala makes quick decisions at the host level about which queued queries to dispatch. Therefore, Impala might slightly exceed the limit from time to time.

To avoid a large backlog of queued requests, you can also set an upper limit on the size of the queue for queries that are delayed. When the number of gueued gueries exceeds this limit, further gueries are cancelled rather than being queued. You can also configure a timeout period, after which queued queries are cancelled, to avoid indefinite waits. If a cluster reaches this state where queries are cancelled due to too many concurrent requests or long waits for query execution to begin, that is a signal for an administrator to take action, either by provisioning more resources, scheduling work on the cluster to smooth out the load, or by doing Impala performance tuning to enable higher throughput.

How Admission Control works with Impala Clients (JDBC, ODBC, HiveServer2)

Most aspects of admission control work transparently with client interfaces such as JDBC and ODBC:

- If a SQL statement is put into a queue rather than running immediately, the API call blocks until the statement is dequeued and begins execution. At that point, the client program can request to fetch results, which might also block until results become available.
- If a SQL statement is cancelled because it has been queued for too long or because it exceeded the memory limit during execution, the error is returned to the client program with a descriptive error message.

If you want to submit queries to different resource pools through the REQUEST_POOL query option, as described in <u>REQUEST_POOL Query Option</u> on page 337, In Impala 2.0 and higher you can change that query option through a SQL SET statement that you submit from the client application, in the same session. Prior to Impala 2.0, that

Impala Administration

option was only settable for a session through the impala-shell SET command, or cluster-wide through an impalad startup option.

Admission control has the following limitations or special behavior when used with JDBC or ODBC applications:

- The MEM_LIMIT query option, sometimes useful to work around problems caused by inaccurate memory estimates for complicated queries, is only settable through the impala-shell interpreter and cannot be used directly through JDBC or ODBC applications.
- Admission control does not use the other resource-related query options, RESERVATION REQUEST TIMEOUT or V_CPU_CORES. Those query options only apply to the YARN resource management framework.

Configuring Admission Control

The configuration options for admission control range from the simple (a single resource pool with a single set of options) to the complex (multiple resource pools with different options, each pool handling queries for a different set of users and groups). You can configure the settings through the Cloudera Manager user interface, or on a system without Cloudera Manager by editing configuration files or through startup options to the impalad daemon.

Admission Control Options

The following Impala configuration options let you adjust the settings of the admission control feature. When supplying the options on the command line, prepend the option name with --.

default_pool_max_queued

Purpose: Maximum number of requests allowed to be queued before rejecting requests. Because this limit applies cluster-wide, but each Impala node makes independent decisions to run queries immediately or queue them, it is a soft limit; the overall number of queued queries might be slightly higher during times of heavy load. A negative value or 0 indicates requests are always rejected once the maximum concurrent requests are executing. Ignored if fair scheduler config path and llama site path are set.

Type: int64 Default: 200

default_pool_max_requests

Purpose: Maximum number of concurrent outstanding requests allowed to run before incoming requests are queued. Because this limit applies cluster-wide, but each Impala node makes independent decisions to run queries immediately or queue them, it is a soft limit; the overall number of concurrent queries might be slightly higher during times of heavy load. A negative value indicates no limit. Ignored if fair_scheduler_config_path and llama_site_path are set.

Type: int64 Default: 200

default_pool_mem_limit

Purpose: Maximum amount of memory (across the entire cluster) that all outstanding requests in this pool can use before new requests to this pool are queued. Specified in bytes, megabytes, or gigabytes by a number followed by the suffix b (optional), m, or q, either uppercase or lowercase. You can specify floating-point values for megabytes and gigabytes, to represent fractional numbers such as 1.5. You can also specify it as a percentage of the physical memory by specifying the suffix %. 0 or no setting indicates no limit. Defaults to bytes if no unit is given. Because this limit applies cluster-wide, but each Impala node makes independent decisions to run queries immediately or queue them, it is a soft limit; the overall memory used by concurrent queries might be slightly higher during times of heavy load. Ignored if fair_scheduler_config_path and llama_site_path are set.

Note: Impala relies on the statistics produced by the COMPUTE STATS statement to estimate memory usage for each query. See **COMPUTE STATS Statement** on page 164 for guidelines about how and when to use this statement.

Type: string

Default: " " (empty string, meaning unlimited)

disable admission control

Purpose: Turns off the admission control feature entirely, regardless of other configuration option settings.

Type: Boolean Default: true

disable pool max requests

Purpose: Disables all per-pool limits on the maximum number of running requests.

Type: Boolean Default: false

disable_pool_mem_limits

Purpose: Disables all per-pool mem limits.

Type: Boolean Default: false

fair_scheduler_allocation_path

Purpose: Path to the fair scheduler allocation file (fair-scheduler.xml).

Type: string

Default: " " (empty string)

Usage notes: Admission control only uses a small subset of the settings that can go in this file, as described below. For details about all the Fair Scheduler configuration settings, see the Apache wiki.

llama_site_path

Purpose: Path to the Llama configuration file (llama-site.xml). If set, fair_scheduler_allocation_path must also be set.

Type: string

Default: " " (empty string)

Usage notes: Admission control only uses a small subset of the settings that can go in this file, as described below. For details about all the Llama configuration settings, see the documentation on Github.

queue wait timeout ms

Purpose: Maximum amount of time (in milliseconds) that a request waits to be admitted before timing out.

Type: int64 Default: 60000

Configuring Admission Control Using Cloudera Manager

In Cloudera Manager, you can configure pools to manage queued Impala queries, and the options for the limit on number of concurrent queries and how to handle queries that exceed the limit. For details, see Managing Resources with Cloudera Manager.

Impala Administration

See Examples of Admission Control Configurations on page 72 for a sample setup for admission control under Cloudera Manager.

Configuring Admission Control Using the Command Line

If you do not use Cloudera Manager, you use a combination of startup options for the Impala daemon, and optionally editing or manually constructing the configuration files fair-scheduler.xml and llama-site.xml.

For a straightforward configuration using a single resource pool named default, you can specify configuration options on the command line and skip the fair-scheduler.xml and llama-site.xml configuration files.

For an advanced configuration with multiple resource pools using different settings, set up the fair-scheduler.xml and llama-site.xml configuration files manually. Provide the paths to each one using the Impala daemon command-line options, --fair_scheduler_allocation_path and --llama_site_path respectively.

The Impala admission control feature only uses the Fair Scheduler configuration settings to determine how to map users and groups to different resource pools. For example, you might set up different resource pools with separate memory limits, and maximum number of concurrent and queued queries, for different categories of users within your organization. For details about all the Fair Scheduler configuration settings, see the Apache <u>wiki</u>.

The Impala admission control feature only uses a small subset of possible settings from the <code>llama-site.xml</code> configuration file:

```
llama.am.throttling.maximum.placed.reservations.queue_name
llama.am.throttling.maximum.queued.reservations.queue_name
```

For details about all the Llama configuration settings, see <u>Llama Default Configuration</u>.

See Example Admission Control Configurations Using Configuration Files on page 74 for sample configuration files for admission control using multiple resource pools, without Cloudera Manager.

Examples of Admission Control Configurations

Example Admission Control Configurations Using Cloudera Manager

For full instructions about configuring dynamic resource pools through Cloudera Manager, see <u>Dynamic Resource</u> <u>Pools</u> in the CDH 5 documentation. The following examples demonstrate some important points related to the Impala admission control feature.

The following figure shows a sample of the Dynamic Resource Pools page in Cloudera Manager, accessed through the Clusters > Cluster name > Resource Management > Dynamic Resource Pools menu choice and then the Configuration tab. Numbers from all the resource pools are combined into the topmost root pool. The default pool is for users who are not assigned any other pool by the user-to-pool mapping settings. The development and production pools show how you can set different limits for different classes of users, for total memory, number of concurrent queries, and number of queries that can be queued.

Figure 1: Sample Settings for Cloudera Manager Dynamic Resource Pools Page

The following figure shows a sample of the Placement Rules page in Cloudera Manager, accessed through the Clusters > Cluster name > Resource Management > Dynamic Resource Pools menu choice and then the **Configuration** > **Placement Rules** tabs. The settings demonstrate a reasonable configuration of a pool named default to service all requests where the specified resource pool does not exist, is not explicitly set, or the user or group is not authorized for the specified pool.

Figure 2: Sample Settings for Cloudera Manager Placement Rules Page

Example Admission Control Configurations Using Configuration Files

For clusters not managed by Cloudera Manager, here are sample fair-scheduler.xml and llama-site.xml files that define resource pools equivalent to the ones in the preceding Cloudera Manager dialog. These sample files are stripped down: in a real deployment they might contain other settings for use with various aspects of the YARN and Llama components. The settings shown here are the significant ones for the Impala admission control feature.

fair-scheduler.xml:

Although Impala does not use the vcores value, you must still specify it to satisfy YARN requirements for the file contents.

Each <aclSubmitApps> tag (other than the one for root) contains a comma-separated list of users, then a space, then a comma-separated list of groups; these are the users and groups allowed to submit Impala statements to the corresponding resource pool.

If you leave the <aclSubmitApps> element empty for a pool, nobody can submit directly to that pool; child pools can specify their own <aclsubmitApps> values to authorize users and groups to submit to those pools.

```
<allocations>
    <queue name="root">
        <aclSubmitApps> </aclSubmitApps>
        <queue name="default">
           <maxResources>50000 mb, 0 vcores</maxResources>
           <aclSubmitApps>*</aclSubmitApps>
        </queue>
        <queue name="development">
            <maxResources>200000 mb, 0 vcores</maxResources>
            <aclSubmitApps>user1,user2 dev,ops,admin</aclSubmitApps>
        </queue>
        <queue name="production">
            <maxResources>1000000 mb, 0 vcores</maxResources>
            <aclSubmitApps> ops,admin</aclSubmitApps>
        </gueue>
   </queue>
    <queuePlacementPolicy>
        <rule name="specified" create="false"/>
        <rule name="default" />
    </queuePlacementPolicy>
</allocations>
```

llama-site xml-

```
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
  cproperty>
   <name>Îlama.am.throttling.maximum.placed.reservations.root.default</name>
   <value>10</value>
  </property>
  cproperty>
   <name>llama.am.throttling.maximum.queued.reservations.root.default/name>
    <value>50</value>
  </property>
  property>
    <name>llama.am.throttling.maximum.placed.reservations.root.development</name>
    <value>50</value>
  </property>
  opertv>
    <name>llama.am.throttling.maximum.queued.reservations.root.development/name>
    <value>100</value>
  </property>
  cproperty>
    <name>llama.am.throttling.maximum.placed.reservations.root.production/name>
    <value>100</value>
  </property>
  property>
    <name>llama.am.throttling.maximum.queued.reservations.root.production/name>
    <value>200</value>
```

```
</property>
</configuration>
```

Guidelines for Using Admission Control

To see how admission control works for particular queries, examine the profile output for the query. This information is available through the PROFILE statement in impala-shell immediately after running a query in the shell, on the **queries** page of the Impala debug web UI, or in the Impala log file (basic information at log level 1, more detailed information at log level 2). The profile output contains details about the admission decision, such as whether the query was queued or not and which resource pool it was assigned to. It also includes the estimated and actual memory usage for the query, so you can fine-tune the configuration for the memory limits of the resource pools.

Where practical, use Cloudera Manager to configure the admission control parameters. The Cloudera Manager GUI is much simpler than editing the configuration files directly. In Cloudera Manager 4, the admission control settings are not available directly, but you can use the impalad safety valve field to configure appropriate startup options.

Remember that the limits imposed by admission control are "soft" limits. Although the limits you specify for number of concurrent queries and amount of memory apply cluster-wide, the decentralized nature of this mechanism means that each Impala node makes its own decisions about whether to allow gueries to run immediately or to queue them. These decisions rely on information passed back and forth between nodes by the statestore service. If a sudden surge in requests causes more queries than anticipated to run concurrently, then as a fallback, the overall Impala memory limit and the Linux cgroups mechanism serve as hard limits to prevent overallocation of memory, by cancelling queries if necessary.

If you have trouble getting a query to run because its estimated memory usage is too high, you can override the estimate by setting the MEM_LIMIT query option in impala-shell, then issuing the query through the shell in the same session. The MEM_LIMIT value is treated as the estimated amount of memory, overriding the estimate that Impala would generate based on table and column statistics. This value is used only for making admission control decisions, and is not pre-allocated by the query.

In impala-shell, you can also specify which resource pool to direct queries to by setting the REQUEST_POOL query option. (This option was named YARN_POOL during the CDH 5 beta period.)

The statements affected by the admission control feature are primarily queries, but also include statements that write data such as INSERT and CREATE TABLE AS SELECT. Most write operations in Impala are not resource-intensive, but inserting into a Parquet table can require substantial memory due to buffering 1 GB of data before writing out each Parquet data block. See <u>Loading Data into Parquet Tables</u> on page 393 for instructions about inserting data efficiently into Parquet tables.

Although admission control does not scrutinize memory usage for other kinds of DDL statements, if a query is queued due to a limit on concurrent queries or memory usage, subsequent statements in the same session are also queued so that they are processed in the correct order:

```
-- This query could be queued to avoid out-of-memory at times of heavy load.
select * from huge_table join enormous_table using (id);
-- If so, this subsequent statement in the same session is also queued
-- until the previous statement completes.
drop table huge_table;
```

If you set up different resource pools for different users and groups, consider reusing any classifications and hierarchy you developed for use with Sentry security. See Enabling Sentry Authorization for Impala on page 89 for details.

For details about all the Fair Scheduler configuration settings, see Fair Scheduler Configuration, in particular the tags such as <queue> and <aclSubmitApps> to map users and groups to particular resource pools (queues).

Integrated Resource Management with YARN

You can limit the CPU and memory resources used by Impala, to manage and prioritize workloads on clusters that run jobs from many Hadoop components. (Currently, there is no limit or throttling on the I/O for Impala queries.) In CDH 5, Impala can use the underlying Apache Hadoop YARN resource management framework, which allocates the required resources for each Impala query. Impala estimates the resources required by the query on each host of the cluster, and requests the resources from YARN.

Requests from Impala to YARN go through an intermediary service called Llama. When the resource requests are granted, Impala starts the query and places all relevant execution threads into the cgroup containers and sets up the memory limit on each host. If sufficient resources are not available, the Impala query waits until other jobs complete and the resources are freed. During query processing, as the need for additional resources arises, Llama can "expand" already-requested resources, to avoid over-allocating at the start of the query.

After a query is finished, Llama caches the resources (for example, leaving memory allocated) in case they are needed for subsequent Impala queries. This caching mechanism avoids the latency involved in making a whole new set of resource requests for each query. If the resources are needed by YARN for other types of jobs, Llama returns them.

While the delays to wait for resources might make individual queries seem less responsive on a heavily loaded cluster, the resource management feature makes the overall performance of the cluster smoother and more predictable, without sudden spikes in utilization due to memory paging, CPUs pegged at 100%, and so on.

The Llama Daemon

Llama is a system that mediates resource management between Cloudera Impala and Hadoop YARN. Llama enables Impala to reserve, use, and release resource allocations in a Hadoop cluster. Llama is only required if resource management is enabled in Impala.

By default, YARN allocates resources bit-by-bit as needed by MapReduce jobs. Impala needs all resources available at the same time, so that intermediate results can be exchanged between cluster nodes, and queries do not stall partway through waiting for new resources to be allocated. Llama is the intermediary process that ensures all requested resources are available before each Impala query actually begins.

For management through Cloudera Manager, see The Impala Llama Application Master.

Controlling Resource Estimation Behavior

By default, Impala consults the table statistics and column statistics for each table in a query, and uses those figures to construct estimates of needed resources for each query. See <u>COMPUTE STATS Statement</u> on page 164 for the statement to collect table and column statistics for a table.

To avoid problems with inaccurate or missing statistics, which can lead to inaccurate estimates of resource consumption, Impala allows you to set default estimates for CPU and memory resource consumption. As a query grows to require more resources, Impala will request more resources from Llama (this is called "expanding" a query reservation). When the query is complete, those resources are returned to YARN as normal. To enable this feature, use the command-line option -rm_always_use_defaults when starting impalad, and optionally -rm_default_memory=size and -rm_default_cpu_cores. Cloudera recommends always running with -rm_always_use_defaults enabled when using resource management, because if the query needs more resources than the default values, the resource requests are expanded dynamically as the query runs. See impalad Startup Options for Resource Management on page 77 for details about each option.

Checking Resource Estimates and Actual Usage

To make resource usage easier to verify, the output of the EXPLAIN SQL statement now includes information about estimated memory usage, whether table and column statistics are available for each table, and the number of virtual cores that a query will use. You can get this information through the EXPLAIN statement without actually running the query. The extra information requires setting the query option EXPLAIN_LEVEL=verbose; see EXPLAIN Statement on page 192 for details. The same extended information is shown at the start of the output from the PROFILE statement in impala-shell. The detailed profile information is only available after running the query. You can take appropriate actions (gathering statistics, adjusting query options) if you find that queries fail or run with suboptimal performance when resource management is enabled.

How Resource Limits Are Enforced

- CPU limits are enforced by the Linux cgroups mechanism. YARN grants resources in the form of containers that correspond to cgroups on the respective machines.
- Memory is enforced by Impala's query memory limits. Once a reservation request has been granted, Impala sets the query memory limit according to the granted amount of memory before executing the query.

Enabling Resource Management for Impala

To enable resource management for Impala, first you set up the YARN and Llama services for your CDH cluster. Then you add startup options and customize resource management settings for the Impala services.

Required CDH Setup for Resource Management with Impala

YARN is the general-purpose service that manages resources for many Hadoop components within a CDH cluster. Llama is a specialized service that acts as an intermediary between Impala and YARN, translating Impala resource requests to YARN and coordinating with Impala so that queries only begin executing when all needed resources have been granted by YARN.

For information about setting up the YARN and Llama services, see the instructions for Cloudera Manager.

Using Impala with a Llama High Availability Configuration

Impala can take advantage of the Llama high availability (HA) feature, with additional Llama servers that step in if the primary one becomes unavailable. (Only one Llama server at a time services all resource requests.) Before using this feature from Impala, read the background information about Llama HA, its main features, and how to set it up.

Command-line method for systems without Cloudera Manager:

Setting up the Impala side in a Llama HA configuration involves setting the impalad configuration options -llama_addresses (mandatory) and optionally -llama_max_request_attempts,

-llama registration timeout secs, and -llama registration wait secs. See the next section impalad Startup Options for Resource Management on page 77 for usage instructions for those options.

The impalad daemon on the coordinator host registers with the Llama server for each query, receiving a handle that is used for subsequent resource requests. If a Llama server becomes unavailable, all running Impala queries are cancelled. Subsequent queries register with the next specified Llama server. This registration only happens when a query or similar request causes an impalad to request resources through Llama. Therefore, when a Llama server becomes unavailable, that fact might not be reported immediately in the Impala status information such as the metrics page in the debug web UI.

Cloudera Manager method: See Llama High Availailability.

impalad Startup Options for Resource Management

The following startup options for impalad enable resource management and customize its parameters for your cluster configuration:

- -enable_rm: Whether to enable resource management or not, either true or false. The default is false. None of the other resource management options have any effect unless -enable_rm is turned on.
- -llama_host: Hostname or IP address of the Llama service that Impala should connect to. The default is 127.0.0.1.
- -llama_port: Port of the Llama service that Impala should connect to. The default is 15000.

Impala Administration

- -llama_callback_port: Port that Impala should start its Llama callback service on. Llama reports when resources are granted or preempted through that service.
- -cgroup_hierarchy_path: Path where YARN and Llama will create cgroups for granted resources. Impala assumes that the cgroup for an allocated container is created in the path 'cgroup_hierarchy_path + container id.
- -rm_always_use_defaults: If this Boolean option is enabled, Impala ignores computed estimates and always obtains the default memory and CPU allocation from Llama at the start of the query. These default estimates are approximately 2 CPUs and 4 GB of memory, possibly varying slightly depending on cluster size, workload, and so on. Cloudera recommends enabling -rm_always_use_defaults whenever resource management is used, and relying on these default values (that is, leaving out the two following options).
- -rm_default_memory=size: Optionally sets the default estimate for memory usage for each query. You can use suffixes such as M and G for megabytes and gigabytes, the same as with the MEM_LIMIT query option. Only has an effect when -rm_always_use_defaults is also enabled.
- -rm_default_cpu_cores: Optionally sets the default estimate for number of virtual CPU cores for each query. Only has an effect when -rm_always_use_defaults is also enabled.

The following options fine-tune the interaction of Impala with Llama when Llama high availability (HA) is enabled. The -llama_addresses option is only applicable in a Llama HA environment. -llama_max_request_attempts, -llama_registration_timeout_secs, and -llama_registration_wait_secs work whether or not Llama HA is enabled, but are most useful in combination when Llama is set up for high availability.

- -llama_addresses: Comma-separated list of hostname: port items, specifying all the members of the Llama availability group. Defaults to "127.0.0.1:15000".
- -llama_max_request_attempts: Maximum number of times a request to reserve, expand, or release resources is retried until the request is cancelled. Attempts are only counted after Impala is registered with Llama. That is, a request survives at mostllama_max_request_attempts-1 re-registrations. Defaults to
- -llama_registration_timeout_secs: Maximum number of seconds that Impala will attempt to register or re-register with Llama. If registration is unsuccessful, Impala cancels the action with an error, which could result in an impalad startup failure or a cancelled query. A setting of -1 means try indefinitely. Defaults to
- -llama_registration_wait_secs: Number of seconds to wait between attempts during Llama registration. Defaults to 3.

impala-shell Query Options for Resource Management

Before issuing SQL statements through the impala-shell interpreter, you can use the SET command to configure the following parameters related to resource management:

- EXPLAIN_LEVEL Query Option on page 329
- MEM_LIMIT Query Option on page 335
- RESERVATION_REQUEST_TIMEOUT Query Option (CDH 5 only) on page 338
- V CPU CORES Query Option (CDH 5 only) on page 339

Limitations of Resource Management for Impala

Currently, Impala in CDH 5 has the following limitations for resource management of Impala queries:

- Table statistics are required, and column statistics are highly valuable, for Impala to produce accurate estimates of how much memory to request from YARN. See Overview of Table Statistics on page 349 and Overview of Column Statistics on page 350 for instructions on gathering both kinds of statistics, and EXPLAIN Statement on page 192 for the extended EXPLAIN output where you can check that statistics are available for a specific table and set of columns.
- If the Impala estimate of required memory is lower than is actually required for a guery, Impala dynamically expands the amount of requested memory. Queries might still be cancelled if the reservation expansion fails, for example if there are insufficient remaining resources for that pool, or the expansion request takes long enough that it exceeds the query timeout interval, or because of YARN preemption. You can see the actual

memory usage after a failed query by issuing a PROFILE command in impala-shell. Specify a larger memory figure with the MEM_LIMIT query option and re-try the query.

The MEM_LIMIT query option, and the other resource-related query options, are settable through the ODBC or JDBC interfaces in Impala 2.0 and higher. This is a former limitation that is now lifted.

Setting Timeout Periods for Daemons, Queries, and Sessions

Depending on how busy your CDH cluster is, you might increase or decrease various timeout values. Increase timeouts if Impala is cancelling operations prematurely, when the system is responding slower than usual but the operations are still successful if given extra time. Decrease timeouts if operations are idle or hanging for long periods, and the idle or hung operations are consuming resources and reducing concurrency.

Increasing the Statestore Timeout

If you have an extensive Impala schema, for example with hundreds of databases, tens of thousands of tables, and so on, you might encounter timeout errors during startup as the Impala catalog service broadcasts metadata to all the Impala nodes using the statestore service. To avoid such timeout errors on startup, increase the statestore timeout value from its default of 10 seconds. Specify the timeout value using the -statestore_subscriber_timeout_seconds option for the statestore service, using the configuration instructions in Modifying Impala Startup Options on page 46. The symptom of this problem is messages in the impalad log such as:

```
Connection with state-store lost
Trying to re-register with state-store
```

See <u>Scalability Considerations for the Impala Statestore</u> on page 374 for more details about statestore operation and settings on clusters with a large number of Impala-related objects such as tables and partitions.

Setting the Idle Query and Idle Session Timeouts for impalad

To keep long-running queries or idle sessions from tying up cluster resources, you can set timeout intervals for both individual gueries, and entire sessions.

Note:

The timeout clock for queries and sessions only starts ticking when the query or session is idle. For queries, this means the query has results ready but is waiting for a client to fetch the data. A query can run for an arbitrary time without triggering a timeout, because the query is computing results rather than sitting idle waiting for the results to be fetched. The timeout period is intended to prevent unclosed queries from consuming resources and taking up slots in the admission count of running queries, potentially preventing other queries from starting.

For sessions, this means that no query has been submitted for some period of time.

Specify the following startup options for the impalad daemon:

- The --idle_query_timeout option specifies the time in seconds after which an idle query is cancelled. This could be a query whose results were all fetched but was never closed, or one whose results were partially fetched and then the client program stopped requesting further results. This condition is most likely to occur in a client program using the JDBC or ODBC interfaces, rather than in the interactive impala-shell interpreter. Once the query is cancelled, the client program cannot retrieve any further results.
- The --idle_session_timeout option specifies the time in seconds after which an idle session is expired. A session is idle when no activity is occurring for any of the queries in that session, and the session has not started any new queries. Once a session is expired, you cannot issue any new query requests to it. The session remains open, but the only operation you can perform is to close it. The default value of 0 means that sessions never expire.

Impala Administration

For instructions on changing impalad startup options, see Modifying Impala Startup Options on page 46.

You can reduce the idle query timeout by using the QUERY_TIMEOUT_S query option. Any value specified for the --idle_query_timeout startup option serves as an upper limit for the QUERY_TIMEOUT_S query option. See **QUERY TIMEOUT S Query Option** on page 337 for details.

Using Impala through a Proxy for High Availability

For most clusters that have multiple users and production availability requirements, you might set up a proxy server to relay requests to and from Impala.

Currently, the Impala statestore mechanism does not include such proxying and load-balancing features. Set up a software package of your choice to perform these functions.

Overview of Proxy Usage and Load Balancing for Impala

Using a load-balancing proxy server for Impala has the following advantages:

- Applications connect to a single well-known host and port, rather than keeping track of the hosts where the impalad daemon is running.
- If any host running the impalad daemon becomes unavailable, application connection requests still succeed because you always connect to the proxy server rather than a specific host running the impalad daemon.
- The coordinator node for each Impala query potentially requires more memory and CPU cycles than the other nodes that process the query. The proxy server can issue queries using round-robin scheduling, so that each connection uses a different coordinator node. This load-balancing technique lets the Impala nodes share this additional work, rather than concentrating it on a single machine.

The following setup steps are a general outline that apply to any load-balancing proxy software.

- 1. Download the load-balancing proxy software. It should only need to be installed and configured on a single host.
- 2. Configure the software (typically by editing a configuration file). Set up a port that the load balancer will listen on to relay Impala requests back and forth.
- 3. Specify the host and port settings for each Impala node. These are the hosts that the load balancer will choose from when relaying each Impala query. See Ports Used by Impala on page 429 for when to use port 21000, 21050, or another value depending on what type of connections you are load balancing.
- 4. Run the load-balancing proxy server, pointing it at the configuration file that you set up.
- 5. On systems managed by Cloudera Manager, on the page Impala > Configuration > Impala Daemon Default **Group**, specify a value for the **Impala Daemons Load Balancer** field. Specify the address of the load balancer in host: port format. This setting lets Cloudera Manager route all appropriate Impala-related operations through the proxy server.
- 6. For any scripts, jobs, or configuration settings for applications that formerly connected to a specific datanode to run Impala SQL statements, change the connection information (such as the -i option in impala-shell) to point to the load balancer instead.

Special Proxy Considerations for Clusters Using Kerberos

In a cluster using Kerberos, applications check host credentials to verify that the host they are connecting to is the same one that is actually processing the request, to prevent man-in-the-middle attacks. To clarify that the load-balancing proxy server is legitimate, perform these extra Kerberos setup steps:

- 1. This section assumes you are starting with a Kerberos-enabled cluster. See Enabling Kerberos Authentication for Impala on page 101 for instructions for setting up Impala with Kerberos. See the CDH Security Guide for general steps to set up Kerberos: <u>CDH 5 instructions</u> or <u>CDH 4 instructions</u>.
- 2. Choose the host you will use for the proxy server. Based on the Kerberos setup procedure, it should already have an entry impala/proxy_host@realm in its keytab. If not, go back over the initial Kerberos configuration steps to the keytab on each host running the impalad daemon.

- 3. Copy the keytab file from the proxy host to all other hosts in the cluster that run the impalad daemon. (For optimal performance, impalad should be running on all DataNodes in the cluster.) Put the keytab file in a secure location on each of these other hosts.
- 4. On systems not managed by Cloudera Manager, add an entry impala/actual_hostname@realm to the keytab on each host running the impalad daemon.
- 5. For each impalad node, merge the existing keytab with the proxy's keytab using ktutil, producing a new keytab file. For example:

```
$ ktutil
ktutil: read_kt proxy.keytab
ktutil: read_kt impala.keytab
ktutil: write_kt proxy_impala.keytab
ktutil: quit
```

• Note: On systems managed by Cloudera Manager 5.1.0 and later, the keytab merging happens automatically. To verify that Cloudera Manager has merged the keytabs, run the command:

```
klist -k keytabfile
```

which lists the credentials for both principal and be_principle on all nodes.

- **6.** Make sure that the impala user has permission to read this merged keytab file.
- 7. Change some configuration settings for each host in the cluster that participates in the load balancing. Follow the appropriate steps depending on whether you use Cloudera Manager or not:
 - In the impalad option definition, or the Cloudera Manager safety valve (Cloudera Manager 4) or advanced configuration snippet (Cloudera Manager 5), add:

```
--principal=impala/proxy_host@realm
--be_principal=impala/actual_host@realm
--keytab_file=path_to_merged_keytab
```

- **Note:** Every host has a different --be_principal because the actual host name is different on each host.
- On a cluster managed by Cloudera Manager, create a role group to set the configuration values from the preceding step on a per-host basis.
- On a cluster not managed by Cloudera Manager, see Modifying Impala Startup Options on page 46 for the procedure to modify the startup options.
- 8. Restart Impala to make the changes take effect. Follow the appropriate steps depending on whether you use Cloudera Manager or not:
 - On a cluster managed by Cloudera Manager, restart the Impala service.
 - On a cluster not managed by Cloudera Manager, restart the impalad daemons on all hosts in the cluster, as well as the statestored and catalogd daemons.

Example of Configuring HAProxy Load Balancer for Impala

If you are not already using a load-balancing proxy, you can experiment with HAProxy a free, open source load balancer. This example shows how you might install and configure that load balancer on a Red Hat Enterprise Linux system.

- Install the load balancer: yum install haproxy
- Set up the configuration file: /etc/haproxy/haproxy.cfq. See the following section for a sample configuration file.

Run the load balancer (on a single host, preferably one not running impalad):

```
,------
/usr/sbin/haproxy -f /etc/haproxy/haproxy.cfg
```

In impala-shell, JDBC applications, or ODBC applications, connect to the listener port of the proxy host, rather than port 25000 on a host actually running impalad. The sample configuration file sets haproxy to listen on port 25003, therefore you would send all requests to haproxy_host: 25003.

This is the sample haproxy.cfg used in this example:

```
global
    # To have these messages end up in /var/log/haproxy.log you will
    # need to:
    # 1) configure syslog to accept network log events. This is done
        by adding the '-r' option to the SYSLOGD_OPTIONS in
         /etc/sysconfig/syslog
    #
    #
    # 2) configure local2 events to go to the /var/log/haproxy.log
      file. A line like the following can be added to
    #
       /etc/sysconfig/syslog
    #
            127.0.0.1 local0
127.0.0.1 local1 notice
/var/lib/haproxy
/var/run/haprovv
4000
    #
        local2.*
                                        /var/log/haproxy.log
    #
    log
    log
    chroot
    pidfile
    maxconn
              haproxy
            haproxy
    group
    daemon
    # turn on stats unix socket
    #stats socket /var/lib/haproxy/stats
# common defaults that all the 'listen' and 'backend' sections will
# use if not designated in their block
# You might need to adjust timing values to prevent timeouts.
defaults
    mode
                            http
    log
                             qlobal
    option
                            httplog
    option
                           dontlognull
    option http-server-close
    option forwardfor except 127.0.0.0/8
    option
                            redispatch
    retries
                            3000
    maxconn
    contimeout 5000
    clitimeout 50000
    srvtimeout 50000
# This sets up the admin page for HA Proxy at port 25002.
listen stats :25002
    balance
    mode http
    stats enable
    stats auth username:password
# This is the setup for Impala. Impala client connect to load_balancer_host:25003.
# HAProxy will balance connections among the list of servers listed below.
# The list of Impalad is listening at port 21000 for beeswax (impala-shell) or original
 ODBC driver.
# For JDBC or ODBC version 2.x driver, use port 21050 instead of 21000.
listen impala :25003
```

```
mode tcp
option tcplog
balance leastconn
server symbolic_name_1 impala-host-1.example.com:21000
server symbolic_name_2 impala-host-2.example.com:21000
server symbolic_name_3 impala-host-3.example.com:21000
server symbolic_name_4 impala-host-4.example.com:21000
```

Note: If your JDBC or ODBC application connects to Impala through a load balancer such as haproxy, be cautious about reusing the connections. If the load balancer has set up connection timeout values, either check the connection frequently so that it never sits idle longer than the load balancer timeout value, or check the connection validity before using it and create a new one if the connection has been closed.

Managing Disk Space for Impala Data

Although Impala typically works with many large files in an HDFS storage system with plenty of capacity, there are times when you might perform some file cleanup to reclaim space, or advise developers on techniques to minimize space consumption and file duplication.

- Use compact binary file formats where practical. Numeric and time-based data in particular can be stored in more compact form in binary data files. Depending on the file format, various compression and encoding features can reduce file size even further. You can specify the STORED AS clause as part of the CREATE TABLE statement, or ALTER TABLE with the SET FILEFORMAT clause for an existing table or partition within a partitioned table. See How Impala Works with Hadoop File Formats on page 384 for details about file formats, especially Using the Parquet File Format with Impala Tables on page 392. See CREATE TABLE Statement on page 174 and <u>ALTER TABLE Statement</u> on page 159 for syntax details.
- You manage underlying data files differently depending on whether the corresponding Impala table is defined as an internal or external table:
 - Use the DESCRIBE FORMATTED statement to check if a particular table is internal (managed by Impala) or external, and to see the physical location of the data files in HDFS. See <u>DESCRIBE Statement</u> on page 181 for details.
 - For Impala-managed ("internal") tables, use DROP TABLE statements to remove data files. See DROP TABLE Statement on page 191 for details.
 - For tables not managed by Impala ("external" tables), use appropriate HDFS-related commands such as hadoop fs, hdfs dfs, or distop, to create, move, copy, or delete files within HDFS directories that are accessible by the impala user. Issue a REFRESH table_name statement after adding or removing any files from the data directory of an external table. See REFRESH Statement on page 208 for details.
 - Use external tables to reference HDFS data files in their original location. With this technique, you avoid copying the files, and you can map more than one Impala table to the same set of data files. When you drop the Impala table, the data files are left undisturbed. See External Tables on page 152 for details.
 - Use the LOAD DATA statement to move HDFS files into the data directory for an Impala table from inside Impala, without the need to specify the HDFS path of the destination directory. This technique works for both internal and external tables. See LOAD DATA Statement on page 206 for details.
- Make sure that the HDFS trashcan is configured correctly. When you remove files from HDFS, the space might not be reclaimed for use by other files until sometime later, when the trashcan is emptied. See DROP TABLE Statement on page 191 and the FAQ entry Why is space not freed up when I issue DROP TABLE? on page 451 for details. See <u>User Account Requirements</u> on page 24 for permissions needed for the HDFS trashcan to operate correctly.
- Drop all tables in a database before dropping the database itself. See <u>DROP DATABASE Statement</u> on page 186 for details.

Impala Administration

- Clean up temporary files after failed INSERT statements. If an INSERT statement encounters an error, and you see a directory named .impala_insert_staging or _impala_insert_staging left behind in the data directory for the table, it might contain temporary data files taking up space in HDFS. You might be able to salvage these data files, for example if they are complete but could not be moved into place due to a permission error. Or, you might delete those files through commands such as hadoop fs or hdfs dfs, to reclaim space before re-trying the INSERT. Issue DESCRIBE FORMATTED table name to see the HDFS path where you can check for temporary files.
- By default, intermediate files used during large sort, join, aggregation, or analytic function operations are stored in the directory /tmp/impala-scratch. These files are removed when the operation finishes. (Multiple concurrent queries can perform operations that use the "spill to disk" technique, without any name conflicts for these temporary files.) You can specify a different location by starting the impalad daemon with the --scratch_dirs="path_to_directory" configuration option or the equivalent configuration option in the Cloudera Manager user interface. You can specify a single directory, or a comma-separated list of directories. The scratch directories must be on the local filesystem, not in HDFS. You might specify different directory paths for different hosts, depending on the capacity and speed of the available storage devices. Impala will not start if it cannot create or read and write files in the "scratch" directory. If there is less than 1 GB free on the filesystem where that directory resides, Impala still runs, but writes a warning message to its log.

Impala includes a fine-grained authorization framework for Hadoop, based on the Sentry open source project. Sentry authorization was added in Impala 1.1.0. Together with the Kerberos authentication framework, Sentry takes Hadoop security to a new level needed for the requirements of highly regulated industries such as healthcare, financial services, and government. Impala also includes an auditing capability; Impala generates the audit data, the Cloudera Navigator product consolidates the audit data from all nodes in the cluster, and Cloudera Manager lets you filter, visualize, and produce reports. The auditing feature was added in Impala 1.1.1.

The security features of Cloudera Impala have several objectives. At the most basic level, security prevents accidents or mistakes that could disrupt application processing, delete or corrupt data, or reveal data to unauthorized users. More advanced security features and practices can harden the system against malicious users trying to gain unauthorized access or perform other disallowed operations. The auditing feature provides a way to confirm that no unauthorized access occurred, and detect whether any such attempts were made. This is a critical set of features for production deployments in large organizations that handle important or sensitive data. It sets the stage for multi-tenancy, where multiple applications run concurrently and are prevented from interfering with each other.

The material in this section presumes that you are already familiar with administering secure Linux systems. That is, you should know the general security practices for Linux and Hadoop, and their associated commands and configuration files. For example, you should know how to create Linux users and groups, manage Linux group membership, set Linux and HDFS file permissions and ownership, and designate the default permissions and ownership for new files. You should be familiar with the configuration of the nodes in your Hadoop cluster, and know how to apply configuration changes or run a set of commands across all the nodes.

The security features are divided into these broad categories:

authorization

Which users are allowed to access which resources, and what operations are they allowed to perform? Impala relies on the open source Sentry project for authorization. By default (when authorization is not enabled), Impala does all read and write operations with the privileges of the impala user, which is suitable for a development/test environment but not for a secure production environment. When authorization is enabled, Impala uses the OS user ID of the user who runs impala-shell or other client program, and associates various privileges with each user. See Enabling Sentry Authorization for Impala on page 89 for details about setting up and managing authorization.

authentication

How does Impala verify the identity of the user to confirm that they really are allowed to exercise the privileges assigned to that user? Impala relies on the Kerberos subsystem for authentication. See Enabling Kerberos Authentication for Impala on page 101 for details about setting up and managing authentication.

auditing

What operations were attempted, and did they succeed or not? This feature provides a way to look back and diagnose whether attempts were made to perform unauthorized operations. You use this information to track down suspicious activity, and to see where changes are needed in authorization policies. The audit data produced by this feature is collected by the Cloudera Manager product and then presented in a user-friendly form by the Cloudera Manager product. See Auditing Impala Operations on page 106 for details about setting up and managing auditing.

Security Guidelines for Impala

The following are the major steps to harden a cluster running Impala against accidents and mistakes, or malicious attackers trying to access sensitive data:

Secure the root account. The root user can tamper with the impalad daemon, read and write the data files in HDFS, log into other user accounts, and access other system services that are beyond the control of Impala.

- Restrict membership in the sudoers list (in the /etc/sudoers file). The users who can run the sudo command can do many of the same things as the root user.
- Ensure the Hadoop ownership and permissions for Impala data files are restricted.
- Ensure the Hadoop ownership and permissions for Impala log files are restricted.
- Ensure that the Impala web UI (available by default on port 25000 on each Impala node) is password-protected. See Impala Web User Interface for Debugging on page 427 for details.
- Create a policy file that specifies which Impala privileges are available to users in particular Hadoop groups (which by default map to Linux OS groups). Create the associated Linux groups using the groupadd command if necessary.
- The Impala authorization feature makes use of the HDFS file ownership and permissions mechanism; for background information, see the CDH HDFS Permissions Guide. Set up users and assign them to groups at the OS level, corresponding to the different categories of users with different access levels for various databases, tables, and HDFS locations (URIs). Create the associated Linux users using the useradd command if necessary, and add them to the appropriate groups with the usermod command.
- Design your databases, tables, and views with database and table structure to allow policy rules to specify simple, consistent rules. For example, if all tables related to an application are inside a single database, you can assign privileges for that database and use the * wildcard for the table name. If you are creating views with different privileges than the underlying base tables, you might put the views in a separate database so that you can use the * wildcard for the database containing the base tables, while specifying the precise names of the individual views. (For specifying table or database names, you either specify the exact name or * to mean all the databases on a server, or all the tables and views in a database.)
- Enable authorization by running the impalad daemons with the -server_name and -authorization_policy_file options on all nodes. (The authorization feature does not apply to the statestored daemon, which has no access to schema objects or data files.)
- Set up authentication using Kerberos, to make sure users really are who they say they are.

Securing Impala Data and Log Files

One aspect of security is to protect files from unauthorized access at the filesystem level. For example, if you store sensitive data in HDFS, you specify permissions on the associated files and directories in HDFS to restrict read and write permissions to the appropriate users and groups.

If you issue queries containing sensitive values in the WHERE clause, such as financial account numbers, those values are stored in Impala log files in the Linux filesystem and you must secure those files also. For the locations of Impala log files, see Using Impala Logging on page 421.

All Impala read and write operations are performed under the filesystem privileges of the impala user. The impala user must be able to read all directories and data files that you query, and write into all the directories and data files for INSERT and LOAD DATA statements. At a minimum, make sure the impala user is in the hive group so that it can access files and directories shared between Impala and Hive. See <u>User Account Requirements</u> on page 24 for more details.

Setting file permissions is necessary for Impala to function correctly, but is not an effective security practice by itself:

The way to ensure that only authorized users can submit requests for databases and tables they are allowed to access is to set up Sentry authorization, as explained in Enabling Sentry Authorization for Impala on page 89. With authorization enabled, the checking of the user ID and group is done by Impala, and unauthorized access is blocked by Impala itself. The actual low-level read and write requests are still done by the impala user, so you must have appropriate file and directory permissions for that user ID.

You must also set up Kerberos authentication, as described in Enabling Kerberos Authentication for Impala on page 101, so that users can only connect from trusted hosts. With Kerberos enabled, if someone connects a new host to the network and creates user IDs that match your privileged IDs, they will be blocked from connecting to Impala at all from that host.

Installation Considerations for Impala Security

Impala 1.1 comes set up with all the software and settings needed to enable security when you run the impalad daemon with the new security-related options (-server_name and -authorization_policy_file). You do not need to change any environment variables or install any additional JAR files. In a cluster managed by Cloudera Manager, you do not need to change any settings in Cloudera Manager.

Securing the Hive Metastore Database

It is important to secure the Hive metastore, so that users cannot access the names or other information about databases and tables the through the Hive client or by querying the metastore database. Do this by turning on Hive metastore security, using the instructions in the CDH 5 Security Guide or the CDH 4 Security Guide for securing different Hive components:

- Secure the Hive Metastore.
- In addition, allow access to the metastore only from the HiveServer2 server, and then disable local access to the HiveServer2 server.

Securing the Impala Web User Interface

The instructions in this section presume you are familiar with the <u>..htpasswd mechanism</u> commonly used to password-protect pages on web servers.

Password-protect the Impala web UI that listens on port 25000 by default. Set up a .htpasswd file in the \$IMPALA_HOME directory, or start both the impalad and statestored daemons with the --webserver_password_file option to specify a different location (including the filename).

This file should only be readable by the Impala process and machine administrators, because it contains (hashed) versions of passwords. The username / password pairs are not derived from Unix usernames, Kerberos users, or any other system. The domain field in the password file must match the domain supplied to Impala by the new command-line option --webserver_authentication_domain. The default is mydomain.com.

Impala also supports using HTTPS for secure web traffic. To do so, set --webserver_certificate_file to refer to a valid . pem SSL certificate file. Impala will automatically start using HTTPS once the SSL certificate has been read and validated. A . pem file is basically a private key, followed by a signed SSL certificate; make sure to concatenate both parts when constructing the .pem file.

If Impala cannot find or parse the .pem file, it prints an error message and quits.

Note:

If the private key is encrypted using a passphrase, Impala will ask for that passphrase on startup, which is not useful for a large cluster. In that case, remove the passphrase and make the .pem file readable only by Impala and administrators.

When you turn on SSL for the Impala web UI, the associated URLs change from http://prefixes to https://. Adjust any bookmarks or application code that refers to those URLs.

Configuring SSL for Impala

Impala supports SSL network encryption, between Impala and client programs, and between the Impala-related daemons running on different nodes in the cluster. This feature is important when you also use other features such as Kerberos authentication or Sentry authorization, where credentials are being transmitted back and forth.

Important:

- You can use either Cloudera Manager or the following command-line instructions to complete this configuration.
- This information applies specifically to CDH 5.3.x . If you use an earlier version of CDH, see the documentation for that version located at Cloudera Documentation.

Using Cloudera Manager

To configure Impala to listen for Beeswax and HiveServer2 requests on SSL-secured ports:

- 1. Open the Cloudera Manager Admin Console and navigate to the Impala service.
- 2. Click Configuration.
- 3. In the Search field, type SSL to show the Impala SSL properties (found under the Service-Wide > Security
- 4. If you are **not** using Kerberos, edit the following SSL properties according to your cluster configuration.

Table 2: Impala SSL Properties

Property	Description
Enable SSL for Impala Client Services	Enable support for encrypted client-server communication using Secure Socket Layer (SSL) for Impala client services.
SSL Server Certificate	Local path to the SSL server certificate file.
SSL Server Private Key	Local path to the SSL private key file.

Cloudera Manager 5.3 does not have the ability to configure SSL when Kerberos is enabled. Hence, if you are using Kerberos, add the following properties to the Impala Command Line Argument Advanced Configuration Snippet (Safety Valve) property (found under the Service-Wide > Advanced category):

```
-ssl_server_certificate=/etc/impala/<certificate>.pem
-ssl_private_key=/etc/impala/<private_key>.pem
```

- Click Save Changes.
- **6.** Restart the Impala service.

For information on configuring SSL communication with the impala-shell interpreter, see the section below on Configuring SSL Communication for the Impala Shell.

Using the Command Line

To enable SSL for Impala network communication, add both of the following flags to the impalad startup options:

- --ssl_server_certificate: the full path to the server certificate, on the local filesystem.
- --ssl_private_key: the full path to the server private key, on the local filesystem.

If either of these flags are set, both must be set. In that case, Impala starts listening for Beeswax and HiveServer2 requests on SSL-secured ports only. (The port numbers stay the same; see Ports Used by Impala on page 429 for details.)

Configuring SSL Communication for the Impala Shell

Typically, a client program has corresponding configuration properties in Cloudera Manager to verify that it is connecting to the right server. For example, with SSL enabled for Impala, you use the following options when starting the impala-shell interpreter:

- --ssl: enables SSL for impala-shell.
- --ca_cert: the local pathname pointing to the third-party CA certificate, or to a copy of the server certificate for self-signed server certificates.

If --ca_cert is not set, impala-shell enables SSL, but does not validate the server certificate. This is useful for connecting to a known-good Impala that is only running over SSL, when a copy of the certificate is not available (such as when debugging customer installations).

Enabling Sentry Authorization for Impala

Authorization determines which users are allowed to access which resources, and what operations they are allowed to perform. In Impala 1.1 and higher, you use the Sentry open source project for authorization. Sentry adds a fine-grained authorization framework for Hadoop. By default (when authorization is not enabled), Impala does all read and write operations with the privileges of the impala user, which is suitable for a development/test environment but not for a secure production environment. When authorization is enabled, Impala uses the OS user ID of the user who runs impala-shell or other client program, and associates various privileges with each user.

Note: Sentry is typically used in conjunction with Kerberos authentication, which defines which hosts are allowed to connect to each server. Using the combination of Sentry and Kerberos prevents malicious users from being able to connect by creating a named account on an untrusted machine. See Enabling Kerberos Authentication for Impala on page 101 for details about Kerberos authentication.

The Sentry Privilege Model

Privileges can be granted on different objects in the schema. Any privilege that can be granted is associated with a level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the child object automatically inherits it. This is the same privilege model as Hive and other database systems such as MySQL.

The object hierarchy covers Server, URI, Database, and Table. (The Table privileges apply to views as well; anywhere you specify a table name, you can specify a view name instead.) Currently, you cannot assign privileges at the partition or column level. The way you implement column-level or partition-level privileges is to create a view that queries just the relevant columns or partitions, and assign privileges to the view rather than the underlying table or tables.

A restricted set of privileges determines what you can do with each object:

SELECT privilege

Lets you read data from a table or view, for example with the SELECT statement, the INSERT...SELECT syntax, or Create Table...like. Also required to issue the Describe statement or the Explain statement for a query against a particular table. Only objects for which a user has this privilege are shown in the output for SHOW DATABASES and SHOW TABLES Statements. The REFRESH statement and INVALIDATE METADATA statements only access metadata for tables for which the user has this privilege.

INSERT privilege

Lets you write data to a table. Applies to the INSERT and LOAD DATA statements.

ALL privilege

Lets you create or modify the object. Required to run DDL statements such as CREATE TABLE, ALTER TABLE, Or DROP TABLE for a table, CREATE DATABASE OR DROP DATABASE for a database, or CREATE VIEW, ALTER VIEW, Or DROP VIEW for a view. Also required for the URI of the "location" parameter for the CREATE EXTERNAL TABLE and LOAD DATA statements.

Privileges can be specified for a table or view before that object actually exists. If you do not have sufficient privilege to perform an operation, the error message does not disclose if the object exists or not.

Originally, privileges were encoded in a policy file, stored in HDFS. This mode of operation is still an option, but the emphasis of privilege management is moving towards being SQL-based. Although currently Impala does not have GRANT or REVOKE statements, Impala can make use of privileges assigned through GRANT and REVOKE statements done through Hive. The mode of operation with GRANT and REVOKE statements instead of the policy file requires that a special Sentry service be enabled; this service stores, retrieves, and manipulates privilege information stored inside the metastore database.

Starting the impalad Daemon with Sentry Authorization Enabled

To run the impalad daemon with authorization enabled, you add one or more options to the IMPALA_SERVER_ARGS declaration in the /etc/default/impala configuration file:

- The -server name option turns on Sentry authorization for Impala. The authorization rules refer to a symbolic server name, and you specify the name to use as the argument to the -server_name option.
- If you specify just -server_name, Impala uses the Sentry service for authorization, relying on the results of GRANT and REVOKE statements issued through Hive. (This mode of operation is available in Impala 1.4.0 and higher.) Prior to Impala 1.4.0, or if you want to continue storing privilege rules in the policy file, also specify the -authorization_policy_file option as in the following item.
- Specifying the -authorization_policy_file option in addition to -server_name makes Impala read privilege information from a policy file, rather than from the metastore database. The argument to the -authorization_policy_file option specifies the HDFS path to the policy file that defines the privileges on different schema objects.

For example, you might adapt your /etc/default/impala configuration to contain lines like the following. To use the Sentry service rather than the policy file:

```
IMPALA SERVER ARGS=" \
-server_name=server1 \
```

Or to use the policy file, as in releases prior to Impala 1.4:

```
IMPALA_SERVER_ARGS=" \
-authorization_policy_file=/user/hive/warehouse/auth-policy.ini \backslash
-server_name=server1
```

The preceding examples set up a symbolic name of server1 to refer to the current instance of Impala. This symbolic name is used in the following ways:

- In an environment managed by Cloudera Manager, the server name is specified through Impala > Service-Wide > Advanced > Server Name for Sentry Authorization and Hive > Service-Wide > Advanced > Server Name for Sentry Authorization. The values must be the same for both, so that Impala and Hive can share the privilege rules. Restart the Impala and Hive services after setting or changing this value.
- In an environment not managed by Cloudera Manager, you specify this value for the sentry.hive.server property in the sentry-site.xml configuration file for Hive, as well as in the -server_name option for impalad.
 - If the impalad daemon is not already running, start it as described in Starting Impala on page 45. If it is already running, restart it with the command sudo /etc/init.d/impala-server restart. Run the appropriate commands on all the nodes where impalad normally runs.
- If you use the mode of operation using the policy file, the rules in the [roles] section of the policy file refer to this same <code>server1</code> name. For example, the following rule sets up a role <code>report_generator</code> that lets

users with that role query any table in a database named reporting_db on a node where the impalad daemon was started up with the -server_name=server1 option:

```
[roles]
report_generator = server=server1->db=reporting_db->table=*->action=SELECT
```

When impalad is started with one or both of the -server name=server1 and -authorization policy file options, Impala authorization is enabled. If Impala detects any errors or inconsistencies in the authorization settings or the policy file, the daemon refuses to start.

Using Impala with the Sentry Service (CDH 5.1 or higher only)

When you use the Sentry service rather than the policy file, you set up privileges through GRANT and REVOKE statement in either Impala or Hive, then both components use those same privileges automatically. (Impala added the GRANT and REVOKE statements in Impala 2.0.0 / CDH 5.2.0.)

Hive already had GRANT and REVOKE statements prior to CDH 5.1, but those statements were not production-ready. CDH 5.1 is the first release where those statements use the Sentry framework and are considered GA level. If you used the Hive GRANT and REVOKE statements prior to CDH 5.1, you must set up these privileges with the CDH 5.1 versions of GRANT and REVOKE to take advantage of Sentry authorization.

For information about using the updated Hive GRANT and REVOKE statements, see Sentry service topic in the CDH 5 Security Guide.

Using Impala with the Sentry Policy File

The policy file is a file that you put in a designated location in HDFS, and is read during the startup of the impalad daemon when you specify both the -server name and -authorization policy file startup options. It controls which objects (databases, tables, and HDFS directory paths) can be accessed by the user who connects to impalad, and what operations that user can perform on the objects.

Note: This mode of operation works on both CDH 4 and CDH 5, but in CDH 5 the emphasis is shifting towards managing privileges through SQL statements, as described in Using Impala with the Sentry Service (CDH 5.1 or higher only) on page 91. If you are still using policy files, plan to migrate to the new approach some time in the future.

The location of the policy file is listed in the auth-site.xml configuration file. To minimize overhead, the security information from this file is cached by each impalad daemon and refreshed automatically, with a default interval of 5 minutes. After making a substantial change to security policies, restart all Impala daemons to pick up the changes immediately.

Policy File Location and Format

The policy file uses the familiar .ini format, divided into the major sections [groups] and [roles]. There is also an optional [databases] section, which allows you to specify a specific policy file for a particular database, as explained in <u>Using Multiple Policy Files for Different Databases</u> on page 96. Another optional section, [users], allows you to override the OS-level mapping of users to groups; that is an advanced technique primarily for testing and debugging, and is beyond the scope of this document.

In the [groups] section, you define various categories of users and select which roles are associated with each category. The group and user names correspond to Linux groups and users on the server where the impalad daemon runs.

The group and user names in the [groups] section correspond to Linux groups and users on the server where the impalad daemon runs. When you access Impala through the impalad interpreter, for purposes of authorization, the user is the logged-in Linux user and the groups are the Linux groups that user is a member of. When you access Impala through the ODBC or JDBC interfaces, the user and password specified through the connection string are used as login credentials for the Linux server, and authorization is based on that user name and the associated Linux group membership.

In the [roles] section, you a set of roles. For each role, you specify precisely the set of privileges is available. That is, which objects users with that role can access, and what operations they can perform on those objects. This is the lowest-level category of security information; the other sections in the policy file map the privileges to higher-level divisions of groups and users. In the [groups] section, you specify which roles are associated with which groups. The group and user names correspond to Linux groups and users on the server where the impalad daemon runs. The privileges are specified using patterns like:

```
server=server_name->db=database_name->table=table_name->action=SELECT
server=server_name->db=database_name->table=table_name->action=CREATE
server=server_name->db=database_name->table=table_name->action=ALL
```

For the server_name value, substitute the same symbolic name you specify with the impalad -server_name option. You can use * wildcard characters at each level of the privilege specification to allow access to all such objects. For example:

```
server=impala-host.example.com->db=default->table=t1->action=SELECT
server=impala-host.example.com->db=*->table=*->action=CREATE
server=impala-host.example.com->db=*->table=audit_log->action=SELECT
server=impala-host.example.com->db=default->table=t1->action=*
```

When authorization is enabled, Impala uses the policy file as a whitelist, representing every privilege available to any user on any object. That is, only operations specified for the appropriate combination of object, role, group, and user are allowed; all other operations are not allowed. If a group or role is defined multiple times in the policy file, the last definition takes precedence.

To understand the notion of whitelisting, set up a minimal policy file that does not provide any privileges for any object. When you connect to an Impala node where this policy file is in effect, you get no results for SHOW DATABASES, and an error when you issue any SHOW TABLES, USE database name, DESCRIBE table name, SELECT, and or other statements that expect to access databases or tables, even if the corresponding databases and tables exist.

The contents of the policy file are cached, to avoid a performance penalty for each query. The policy file is re-checked by each impalad node every 5 minutes. When you make a non-time-sensitive change such as adding new privileges or new users, you can let the change take effect automatically a few minutes later. If you remove or reduce privileges, and want the change to take effect immediately, restart the impalad daemon on all nodes, again specifying the -server_name and -authorization_policy_file options so that the rules from the updated policy file are applied.

Examples of Policy File Rules for Security Scenarios

The following examples show rules that might go in the policy file to deal with various authorization-related scenarios. For illustration purposes, this section shows several very small policy files with only a few rules each. In your environment, typically you would define many roles to cover all the scenarios involving your own databases, tables, and applications, and a smaller number of groups, whose members are given the privileges from one or more roles.

A User with No Privileges

If a user has no privileges at all, that user cannot access any schema objects in the system. The error messages do not disclose the names or existence of objects that the user is not authorized to read.

This is the experience you want a user to have if they somehow log into a system where they are not an authorized Impala user. In a real deployment with a filled-in policy file, a user might have no privileges because they are not a member of any of the relevant groups mentioned in the policy file.

Examples of Privileges for Administrative Users

When an administrative user has broad access to tables or databases, the associated rules in the [roles] section typically use wildcards and/or inheritance. For example, in the following sample policy file, db=* refers to all databases and db=*->table=* refers to all tables in all databases.

Omitting the rightmost portion of a rule means that the privileges apply to all the objects that could be specified there. For example, in the following sample policy file, the all_databases role has all privileges for all tables in all databases, while the one_database role has all privileges for all tables in one specific database. The all_databases role does not grant privileges on URIs, so a group with that role could not issue a CREATE TABLE statement with a LOCATION clause. The entire_server role has all privileges on both databases and URIs within the server.

```
[groups]
supergroup = all_databases
[roles]
read_all_tables = server=server1->db=*->table=*->action=SELECT
all_tables = server=server1->db=*->table=*
all_databases = server=server1->db=*
one_database = server=server1->db=test_db
entire_server = server=server1
```

A User with Privileges for Specific Databases and Tables

If a user has privileges for specific tables in specific databases, the user can access those things but nothing else. They can see the tables and their parent databases in the output of SHOW TABLES and SHOW DATABASES, USE the appropriate databases, and perform the relevant actions (SELECT and/or INSERT) based on the table privileges. To actually create a table requires the ALL privilege at the database level, so you might define separate roles for the user that sets up a schema and other users or applications that perform day-to-day operations on the tables.

The following sample policy file shows some of the syntax that is appropriate as the policy file grows, such as the # comment syntax, \ continuation syntax, and comma separation for roles assigned to groups or privileges assigned to roles.

```
[groups]
cloudera = training_sysadmin, instructor
visitor = student
[roles]
training_sysadmin = server=server1->db=training, \
server=server1->db=instructor_private,
server=server1->db=lesson development
instructor = server=server1->db=training->table=*->action=*, \
server=server1->db=instructor_private->table=*->action=*, \
server=server1->db=lesson_development->table=lesson*
# This particular course is all about queries, so the students can SELECT but not INSERT
or CREATE/DROP.
student = server=server1->db=training->table=lesson_*->action=SELECT
```

Privileges for Working with External Data Files

When data is being inserted through the LOAD DATA statement, or is referenced from an HDFS location outside the normal Impala database directories, the user also needs appropriate permissions on the URIs corresponding to those HDFS locations.

In this sample policy file:

- The external_table role lets us insert into and query the Impala table, external_table.sample.
- The staging_dir role lets us specify the HDFS path /user/cloudera/external_data with the LOAD DATA statement. Remember, when Impala queries or loads data files, it operates on all the files in that directory, not just a single file, so any Impala LOCATION parameters refer to a directory rather than an individual file.
- We included the IP address and port of the Hadoop name node in the HDFS URI of the staging_dir rule. We found those details in /etc/hadoop/conf/core-site.xml, under the fs.default.name element. That is what we use in any roles that specify URIs (that is, the locations of directories in HDFS).
- We start this example after the table external_table.sample is already created. In the policy file for the example, we have already taken away the external_table_admin role from the cloudera group, and replaced it with the lesser-privileged external_table role.

- We assign privileges to a subdirectory underneath /user/cloudera in HDFS, because such privileges also apply to any subdirectories underneath. If we had assigned privileges to the parent directory /user/cloudera, it would be too likely to mess up other files by specifying a wrong location by mistake.
- The cloudera under the [groups] section refers to the cloudera group. (In the demo VM used for this example, there is a cloudera user that is a member of a cloudera group.)

Policy file:

```
[groups]
cloudera = external_table, staging_dir
[roles]
external table admin = server=server1->db=external table
external_table = server=server1->db=external_table->table=sample->action=*
staging_dir =
server=server1->uri=hdfs://127.0.0.1:8020/user/cloudera/external_data->action=*
```

impala-shell session:

```
[localhost:21000] > use external_table;
Query: use external_table
[localhost:21000] > show tables;
Query: show tables
Query finished, fetching results ...
name
sample
Returned 1 row(s) in 0.02s
[localhost:21000] > select * from sample;
Query: select * from sample
Query finished, fetching results ...
X
 5
150
Returned 3 row(s) in 1.04s
[localhost:21000] > load data inpath '/user/cloudera/external_data' into table sample;
Query: load data inpath '/user/cloudera/external_data' into table sample
Query finished, fetching results ...
summary
| Loaded 1 file(s). Total files in destination location: 2
Returned 1 row(s) in 0.26s
[localhost:21000] > select * from sample;
Query: select * from sample
Query finished, fetching results ...
X
  2.
  4
  64738
 49152
  5
 150
Returned 9 row(s) in 0.22s
[localhost:21000] > load data inpath '/user/cloudera/unauthorized data' into table
```

```
sample;
Query: load data inpath '/user/cloudera/unauthorized_data' into table sample
ERROR: AuthorizationException: User 'cloudera' does not have privileges to access:
hdfs://127.0.0.1:8020/user/cloudera/unauthorized_data
```

Controlling Access at the Column Level through Views

If a user has SELECT privilege for a view, they can query the view, even if they do not have any privileges on the underlying table. To see the details about the underlying table through EXPLAIN OR DESCRIBE FORMATTED statements on the view, the user must also have SELECT privilege for the underlying table.

Important:

The types of data that are considered sensitive and confidential differ depending on the jurisdiction the type of industry, or both. For fine-grained access controls, set up appropriate privileges based on all applicable laws and regulations.

Be careful using the ALTER VIEW statement to point an existing view at a different base table or a new set of columns that includes sensitive or restricted data. Make sure that any users who have SELECT privilege on the view do not gain access to any additional information they are not authorized to see.

The following example shows how a system administrator could set up a table containing some columns with sensitive information, then create a view that only exposes the non-confidential columns.

```
[localhost:21000] > create table sensitive info
                > (
                > name string,
> address string,
                 > credit_card string,
                    taxpayer_id string
[localhost:21000] > create view name address view as select name, address from
sensitive info;
```

Then the following policy file specifies read-only privilege for that view, without authorizing access to the underlying table:

```
[groups]
cloudera = view_only_privs
[roles]
view_only_privs = server=server1->db=reports->table=name_address_view->action=SELECT
```

Thus, a user with the view_only_privs role could access through Impala queries the basic information but not the sensitive information, even if both kinds of information were part of the same data file.

You might define other views to allow users from different groups to query different sets of columns.

Separating Administrator Responsibility from Read and Write Privileges

Remember that to create a database requires full privilege on that database, while day-to-day operations on tables within that database can be performed with lower levels of privilege on specific table. Thus, you might set up separate roles for each database or application: an administrative one that could create or drop the database, and a user-level one that can access only the relevant tables.

For example, this policy file divides responsibilities between users in 3 different groups:

- Members of the supergroup group have the training_sysadmin role and so can set up a database named
- Members of the cloudera group have the instructor role and so can create, insert into, and query any tables in the training database, but cannot create or drop the database itself.

 Members of the visitor group have the student role and so can query those tables in the training database.

```
[groups]
supergroup = training_sysadmin
cloudera = instructor
visitor = student
[roles]
training_sysadmin = server=server1->db=training
instructor = server=server1->db=training->table=*->action=*
student = server=server1->db=training->table=*->action=SELECT
```

Using Multiple Policy Files for Different Databases

For an Impala cluster with many databases being accessed by many users and applications, it might be cumbersome to update the security policy file for each privilege change or each new database, table, or view. You can allow security to be managed separately for individual databases, by setting up a separate policy file for each database:

- Add the optional [databases] section to the main policy file.
- Add entries in the [databases] section for each database that has its own policy file.
- For each listed database, specify the HDFS path of the appropriate policy file.

For example:

```
[databases]
# Defines the location of the per-DB policy files for the 'customers' and 'sales'
databases.
customers = hdfs://ha-nn-uri/etc/access/customers.ini
sales = hdfs://ha-nn-uri/etc/access/sales.ini
```

To enable URIs in per-DB policy files, add the following string in the Cloudera Manager field Impala Service Environment Advanced Configuration Snippet (Safety Valve):

```
JAVA_TOOL_OPTIONS="-Dsentry.allow.uri.db.policyfile=true"
```

Important: Enabling URIs in per-DB policy files introduces a security risk by allowing the owner of the db-level policy file to grant himself/herself load privileges to anything the impala user has read permissions for in HDFS (including data in other databases controlled by different db-level policy files).

Setting Up Schema Objects for a Secure Impala Deployment

Remember that in your role definitions, you specify privileges at the level of individual databases and tables, or all databases or all tables within a database. To simplify the structure of these rules, plan ahead of time how to name your schema objects so that data with different authorization requirements is divided into separate databases.

If you are adding security on top of an existing Impala deployment, remember that you can rename tables or even move them between databases using the ALTER TABLE statement. In Impala, creating new databases is a relatively inexpensive operation, basically just creating a new directory in HDFS.

You can also plan the security scheme and set up the policy file before the actual schema objects named in the policy file exist. Because the authorization capability is based on whitelisting, a user can only create a new database or table if the required privilege is already in the policy file: either by listing the exact name of the object being created, or a * wildcard to match all the applicable objects within the appropriate container.

Privilege Model and Object Hierarchy

Privileges can be granted on different objects in the schema. Any privilege that can be granted is associated with a level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the child object automatically inherits it. This is the same privilege model as Hive and other database systems such as MySQL.

The kinds of objects in the schema hierarchy are:

```
Server
URI
Database
  Table
```

The server name is specified by the -server_name option when impalad starts. Specify the same name for all impalad nodes in the cluster.

URIs represent the HDFS paths you specify as part of statements such as CREATE EXTERNAL TABLE and LOAD DATA. Typically, you specify what look like UNIX paths, but these locations can also be prefixed with hdfs://to make clear that they are really URIs. To set privileges for a URI, specify the name of a directory, and the privilege applies to all the files in that directory and any directories underneath it.

There are not separate privileges for individual table partitions or columns. To specify read privileges at this level, you create a view that queries specific columns and/or partitions from a base table, and give SELECT privilege on the view but not the underlying table. See Views on page 153 for details about views in Impala.

URIs must start with either hdfs://orfile://. If a URI starts with anything else, it will cause an exception and the policy file will be invalid. When defining URIs for HDFS, you must also specify the NameNode. For example:

```
data_read = server=server1->uri=file:///path/to/dir,
server=server1->uri=hdfs://namenode:port/path/to/dir
```

Warning:

Because the NameNode host and port must be specified, Cloudera strongly recommends you use High Availability (HA). This ensures that the URI will remain constant even if the namenode changes.

```
data read = server=server1->uri=file:///path/to/dir,\
server=server1->uri=hdfs://ha-nn-uri/path/to/dir
```

Table 3: Valid privilege types and objects they apply to

Privilege	Object
INSERT	DB, TABLE
SELECT	DB, TABLE
ALL	SERVER, TABLE, DB, URI

Note:

Although this document refers to the ALL privilege, currently if you use the policy file mode, you do not use the actual keyword ALL in the policy file. When you code role entries in the policy file:

- To specify the ALL privilege for a server, use a role like server=server_name.
- To specify the ALL privilege for a database, use a role like server=server_name->db=database_name.
- To specify the ALL privilege for a table, use a role like server=server_name->db=database_name->table=table_name->action=*.

Operation	Scope	Privileges	URI	Others
EXPLAIN	TABLE	SELECT		
LOAD DATA	TABLE	INSERT	URI	
CREATE DATABASE	SERVER	ALL		
DROP DATABASE	DATABASE	ALL		
CREATE TABLE	DATABASE	ALL		
DROP TABLE	TABLE	ALL		
DESCRIBE TABLE	TABLE	SELECT/INSERT		
ALTER TABLE ADD COLUMNS	TABLE	ALL		
ALTER TABLE REPLACE COLUMNS	TABLE	ALL		
ALTER TABLE CHANGE column	TABLE	ALL		
ALTER TABLE RENAME	TABLE	ALL		
ALTER TABLE SET TBLPROPERTIES	TABLE	ALL		
ALTER TABLE SET FILEFORMAT	TABLE	ALL		
ALTER TABLE SET LOCATION	TABLE	ALL	URI	
ALTER TABLE ADD PARTITION	TABLE	ALL		
ALTER TABLE ADD PARTITION location	TABLE	ALL	URI	
ALTER TABLE DROP PARTITION	TABLE	ALL		
ALTER TABLE PARTITION SET FILEFORMAT	TABLE	ALL		
ALTER TABLE SET SERDEPROPERTIES	TABLE	ALL		
CREATE VIEW	DATABASE; SELECT on TABLE	ALL		SELECT on TABLE
DROP VIEW	VIEW/TABLE	ALL		
ALTER VIEW	You need ALL privilege on the named view and the parent database, plus SELECT privilege for any tables or views referenced by the view query. Once the view is created or altered by a	ALL, SELECT		

Operation	Scope	Privileges	URI	Others
	high-privileged system administrator, it can be queried by a lower-privileged user who does not have full query privileges for the base tables. (This is how you implement column-level security.)			
ALTER TABLE SET LOCATION	TABLE	ALL	URI	
CREATE EXTERNAL TABLE	Database (ALL), URI (SELECT)	ALL, SELECT		
SELECT	TABLE	SELECT		
USE <dbname></dbname>	Any			
CREATE FUNCTION	SERVER	ALL		
DROP FUNCTION	SERVER	ALL		
REFRESH	TABLE	SELECT/INSERT		
INVALIDATE METADATA	SERVER	ALL		
INVALIDATE METADATA	TABLE	SELECT/INSERT		
COMPUTE STATS	TABLE	ALL		
SHOW TABLE STATS, SHOW PARTITIONS	TABLE	SELECT/INSERT		
SHOW COLUMN STATS	TABLE	SELECT/INSERT		
SHOW FUNCTIONS	DATABASE	SELECT		
SHOW TABLES		No special privileges needed to issue the statement, but only shows objects you are authorized for		
SHOW DATABASES, SHOW SCHEMAS		No special privileges needed to issue the statement, but only shows objects you are authorized for		

Debugging Failed Sentry Authorization Requests

Sentry logs all facts that lead up to authorization decisions at the debug level. If you do not understand why Sentry is denying access, the best way to debug is to temporarily turn on debug logging:

- In Cloudera Manager, add log4j.logger.org.apache.sentry=DEBUG to the logging settings for your service through the corresponding **Logging Safety Valve** field for the Impala, Hive Server 2, or Solr Server services.
- On systems not managed by Cloudera Manager, add log4j.logger.org.apache.sentry=DEBUG to the log4j.properties file on each host in the cluster, in the appropriate configuration directory for each service.

Specifically, look for exceptions and messages such as:

```
FilePermission server..., RequestPermission server..., result [true|false]
```

which indicate each evaluation Sentry makes. The FilePermission is from the policy file, while Request Permission is the privilege required for the query. A Request Permission will iterate over all appropriate FilePermission settings until a match is found. If no matching privilege is found, Sentry returns false indicating "Access Denied".

Configuring Per-User Access for Hue

When users connect to Impala directly through the impala-shell interpreter, the Impala authorization feature determines what actions they can take and what data they can see. When users submit Impala queries through a separate application, such as Hue, typically all requests are treated as coming from the same user. In Impala 1.2 and higher, authorization is extended by a new feature that allows applications to pass along credentials for the users that connect to them (known as "delegation"), and issue Impala queries with the privileges for those users. Currently, the delegation feature is available only for Impala queries submitted through the Hue interface; for example, Impala cannot issue queries using the privileges of the HDFS user.

A new startup option for impalad, --authorized_proxy_user_config, is available in Impala 1.2 and higher. When you specify this option, users whose names you specify (such as hue) can delegate the execution of a query to another user. The query runs with the privileges of the delegated user, not the original user such as hue. The name of the delegated user is passed using the HiveServer2 configuration property impala.doas.user.

You can specify a list of users that the application user can delegate to, or * to allow a superuser to delegate to any other user. For example:

```
impalad --authorized_proxy_user_config 'hue=user1,user2;admin=*' ...
._____
```

Note: Make sure to use single quotes or escape characters to ensure that any * characters do not undergo wildcard expansion when specified in command-line arguments.

See Modifying Impala Startup Options on page 46 for details about adding or changing impalad startup options. See this Cloudera blog post for background information about the delegation capability in HiveServer2.

Managing Sentry for Impala through Cloudera Manager

To enable the Sentry service for Impala and Hive, set Hive/Impala > Service-Wide > Sentry Service parameter to the Sentry service. Then restart Impala and Hive. Simply adding Sentry service as a dependency and restarting enables Impala and Hive to use the Sentry service.

To set the server name to use when granting server level privileges, set the Hive > Service-Wide > Advanced > Server Name for Sentry Authorization parameter. When using Sentry with the Hive Metastore, you can specify the list of users that are allowed to bypass Sentry Authorization in Hive Metastore using Hive > Service-Wide > Security > Bypass Sentry Authorization Users. These are usually service users that already ensure all activity has been authorized.

Note: The Hive/Impala > Service-Wide > Policy File Based Sentry tab contains parameters only relevant to configuring Sentry using policy files. In particular, make sure that Enable Sentry Authorization using Policy Files parameter is unchecked when using the Sentry service. Cloudera Manager throws a validation error if you attempt to configure the Sentry service and policy file at the same time.

The DEFAULT Database in a Secure Deployment

Because of the extra emphasis on granular access controls in a secure deployment, you should move any important or sensitive information out of the DEFAULT database into a named database whose privileges are specified in the policy file. Sometimes you might need to give privileges on the DEFAULT database for administrative reasons; for example, as a place you can reliably specify with a USE statement when preparing to drop a database.

Impala Authentication

Authentication is the mechanism to ensure that only specified hosts and users can connect to Impala. It also verifies that when clients connect to Impala, they are connected to a legitimate server. This feature prevents spoofing such as impersonation (setting up a phony client system with the same account and group names as a legitimate user) and man-in-the-middle attacks (intercepting application requests before they reach Impala and eavesdropping on sensitive information in the requests or the results).

Impala supports authentication using either Kerberos or LDAP.

Impala currently does not support application data wire encryption.

Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and data files owned by the same user (typically impala). To implement user-level access to different databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained in Enabling Sentry Authorization for Impala on page 89.

Once you are finished setting up authentication, move on to authorization, which involves specifying what databases, tables, HDFS directories, and so on can be accessed by particular users when they connect through Impala. See Enabling Sentry Authorization for Impala on page 89 for details.

Enabling Kerberos Authentication for Impala

Impala supports Kerberos authentication. For more information on enabling Kerberos authentication, see the topic on Configuring Hadoop Security in the CDH4 Security Guide or the CDH 5 Security Guide.

Impala currently does not support application data wire encryption.

When using Impala in a managed environment, Cloudera Manager automatically completes Kerberos configuration. In an unmanaged environment, create a Kerberos principal for each host running impalad or statestored. Cloudera recommends using a consistent format, such as impala/_HOST@Your-Realm, but you can use any three-part Kerberos server principal.

In Impala 2.0 and later, user() returns the the full Kerberos principal string, such as user@example.com, in a Kerberized environment.

Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and data files owned by the same user (typically impala). To implement user-level access to different databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained in Enabling Sentry Authorization for Impala on page 89.

An alternative form of authentication you can use is LDAP, described in Enabling LDAP Authentication for Impala on page 104.

Requirements for Using Impala with Kerberos

On version 5 of Red Hat Enterprise Linux and comparable distributions, some additional setup is needed for the impala-shell interpreter to connect to a Kerberos-enabled Impala cluster:

```
sudo yum install python-devel openssl-devel python-pip sudo pip-python install ssl \,
```

Important:

If you plan to use Impala in your cluster, you must configure your KDC to allow tickets to be renewed, and you must configure krb5.conf to request renewable tickets. Typically, you can do this by adding the max_renewable_life setting to your realm in kdc.conf, and by adding the renew_lifetime parameter to the libdefaults section of krb5.conf. For more information about renewable tickets, see the Kerberos documentation.

Currently, you cannot use the resource management feature in CDH 5 on a cluster that has Kerberos authentication enabled.

Start all impalad and statestored daemons with the --principal and --keytab-file flags set to the principal and full path name of the keytab file containing the credentials for the principal.

Impala supports the Cloudera ODBC driver and the Kerberos interface provided. To use Kerberos through the ODBC driver, the host type must be set depending on the level of the ODBD driver:

- SecImpala for the ODBC 1.0 driver.
- SecBeeswax for the ODBC 1.2 driver.
- Blank for the ODBC 2.0 driver or higher, when connecting to a secure cluster.
- HS2NoSas1 for the ODBC 2.0 driver or higher, when connecting to a non-secure cluster.

To enable Kerberos in the Impala shell, start the impala-shell command using the -k flag.

To enable Impala to work with Kerberos security on your Hadoop cluster, make sure you perform the installation and configuration steps in <u>Authentication in the CDH 5 Security Guide</u> or the topic on Configuring Hadoop Security in the <u>CDH4 Security Guide</u>. Also note that when Kerberos security is enabled in Impala, a web browser that supports Kerberos HTTP SPNEGO is required to access the Impala web console (for example, Firefox, Internet Explorer, or Chrome).

If the NameNode, Secondary NameNode, DataNode, JobTracker, TaskTrackers, ResourceManager, NodeManagers, HttpFS, Oozie, Impala, or Impala statestore services are configured to use Kerberos HTTP SPNEGO authentication, and two or more of these services are running on the same host, then all of the running services must use the same HTTP principal and keytab file used for their HTTP endpoints.

Configuring Impala to Support Kerberos Security

Enabling Kerberos authentication for Impala involves steps that can be summarized as follows:

- Creating service principals for Impala and the HTTP service. Principal names take the form: serviceName/fully.qualified.domain.name@KERBEROS.REALM
- Creating, merging, and distributing key tab files for these principals.
- Editing /etc/default/impala (in cluster not managed by Cloudera Manager), or editing the **Security** settings in the Cloudera Manager interface, to accommodate Kerberos authentication.

Enabling Kerberos for Impala

1. Create an Impala service principal, specifying the name of the OS user that the Impala daemons run under, the fully qualified domain name of each node running impalad, and the realm name. For example:

```
$ kadmin
kadmin: addprinc -requires_preauth -randkey
impala/impala_host.example.com@TEST.EXAMPLE.COM
```

2. Create an HTTP service principal. For example:

```
kadmin: addprinc -randkey HTTP/impala host.example.com@TEST.EXAMPLE.COM
```

- Note: The HTTP component of the service principal must be uppercase as shown in the preceding example.
- 3. Create keytab files with both principals. For example:

```
kadmin: xst -k impala.keytab impala/impala_host.example.com
kadmin: xst -k http.keytab HTTP/impala_host.example.com
kadmin: quit
```

4. Use ktutil to read the contents of the two keytab files and then write those contents to a new file. For example:

```
$ ktutil
ktutil: rkt impala.keytab
ktutil: rkt http.keytab
ktutil: wkt impala-http.keytab
ktutil: quit
```

5. (Optional) Test that credentials in the merged keytab file are valid, and that the "renew until" date is in the future. For example:

```
$ klist -e -k -t impala-http.keytab
```

6. Copy the impala-http.keytab file to the Impala configuration directory. Change the permissions to be only read for the file owner and change the file owner to the impala user. By default, the Impala user and group are both named impala. For example:

```
$ cp impala-http.keytab /etc/impala/conf
$ cd /etc/impala/conf
$ chmod 400 impala-http.keytab
$ chown impala:impala impala-http.keytab
```

Add Kerberos options to the Impala defaults file, /etc/default/impala. Add the options for both the impalad and statestored daemons, using the IMPALA SERVER ARGS and IMPALA STATE STORE ARGS variables. For example, you might add:

```
-kerberos_reinit_interval=60
-principal=impala_1/impala_host.example.com@TEST.EXAMPLE.COM
-keytab_file=/var/run/cloudera-scm-agent/process/3212-impala-IMPALAD/impala.keytab
```

For more information on changing the Impala defaults specified in /etc/default/impala, see Modifying Impala Startup Options.

Note: Restart impalad and statestored for these configuration changes to take effect.

Enabling Kerberos for Impala with a Proxy Server

A common configuration for Impala with High Availability is to use a proxy server to submit requests to the actual impalad daemons on different hosts in the cluster. This configuration avoids connection problems in case of machine failure, because the proxy server can route new requests through one of the remaining hosts in the cluster. This configuration also helps with load balancing, because the additional overhead of being the "coordinator node" for each guery is spread across multiple hosts.

Although you can set up a proxy server with or without Kerberos authentication, typically users set up a secure Kerberized configuration. For information about setting up a proxy server for Impala, including Kerberos-specific steps, see <u>Using Impala through a Proxy for High Availability</u> on page 80.

Using a Web Browser to Access a URL Protected by Kerberos HTTP SPNEGO

Your web browser must support Kerberos HTTP SPNEGO. For example, Chrome, Firefox, or Internet Explorer.

To configure Firefox to access a URL protected by Kerberos HTTP SPNEGO:

- 1. Open the advanced settings Firefox configuration page by loading the about:config page.
- 2. Use the Filter text box to find network.negotiate-auth.trusted-uris.
- 3. Double-click the network.negotiate-auth.trusted-uris preference and enter the hostname or the domain of the web server that is protected by Kerberos HTTP SPNEGO. Separate multiple domains and hostnames with a comma.
- 4. Click OK.

Enabling LDAP Authentication for Impala

Authentication is the process of allowing only specified named users to access the server (in this case, the Impala server). This feature is crucial for any production deployment, to prevent misuse, tampering, or excessive load on the server. Impala users LDAP for authentication, verifying the credentials of each user who connects through impala-shell, Hue, a Business Intelligence tool, JDBC or ODBC application, and so on.

• Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and data files owned by the same user (typically impala). To implement user-level access to different databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained in Enabling Sentry Authorization for Impala on page 89.

An alternative form of authentication you can use is Kerberos, described in <u>Enabling Kerberos Authentication</u> <u>for Impala</u> on page 101.

Requirements for Using Impala with LDAP

Authentication against LDAP servers is available in Impala 1.2.2 and higher. Impala 1.4.0 adds support for secure LDAP authentication through SSL and TLS.

The Impala LDAP support lets you use Impala with systems such as Active Directory that use LDAP behind the scenes.

Client-Server Considerations for LDAP

Only client->Impala connections can be authenticated by LDAP.

You must Kerberos authentication mechanism for connections between internal Impala components, such as between the impalad, statestored, and catalogd daemons. See Enabling Kerberos Authentication for Impala on page 101 for how to set up Kerberos for Impala.

Server-Side LDAP Setup

These requirements apply on the server side when configuring and starting Impala:

To enable LDAP authentication, set the following startup options for impalad:

- --enable_ldap_auth enables LDAP-based authentication between the client and Impala.
- --ldap_uri sets the URI of the LDAP server to use. Typically, the URI is prefixed with ldap://. In Impala 1.4.0 and higher, you can specify secure SSL-based LDAP transport by using the prefix ldaps://. The URI can optionally specify the port, for example: ldap://ldap_server.cloudera.com: 389 or ldaps://ldap_server.cloudera.com: 636. (389 and 636 are the default ports for non-SSL and SSL LDAP connections, respectively.)

 For ldaps://connections secured by SSL, --ldap_ca_certificate="/path/to/certificate/pem" specifies the location of the certificate in standard . PEM format. Store this certificate on the local filesystem. in a location that only the impala user and other trusted users can read.

Support for Custom Bind Strings

When Impala connects to LDAP it issues a bind call to the LDAP server to authenticate as the connected user. Impala clients, including the Impala shell, provide the short name of the user to Impala. This is necessary so that Impala can use Sentry for role-based access, which uses short names.

However, LDAP servers often require more complex, structured usernames for authentication. Impala supports three ways of transforming the short name (for example, 'henry') to a more complicated string. If necessary, specify one of the following configuration options when starting the impalad daemon on each data node:

- --ldap_domain: Replaces the username with a string username@ldap_domain.
- --ldap_baseDN: Replaces the username with a "distinguished name" (DN) of the form: uid=userid, ldap_baseDN. (This is equivalent to a Hive option).
- --ldap_bind_pattern: This is the most general option, and replaces the username with the string Idap_bind_pattern where all instances of the string #UID are replaced with userid. For example, an ldap_bind_pattern of "user=#UID,OU=foo,CN=bar" with a username of henry will construct a bind name of "user=henry, OU=foo, CN=bar".

For clusters not managed by Cloudera Manager, specify the option on the impalad command line. For clusters managed by Cloudera Manager 5.4.0 and higher, search for the configuration field names ldap_domain, ldap_basedn, or ldap_bind_pattern, fill in and save the appropriate field values, and restart the Impala service. Prior to Cloudera Manager 5.4.0, these values were filled in using the Impala Daemon Command Line Argument Advanced Configuration Snippet (Safety Valve) field.

These options are mutually exclusive; Impala does not start if more than one of these options is specified.

Secure LDAP Connections

To avoid sending credentials over the wire in cleartext, you must configure a secure connection between both the client and Impala, and between Impala and the LDAP server. The secure connection could use SSL or TLS.

Secure LDAP connections through SSL:

For SSL-enabled LDAP connections, specify a prefix of ldaps://instead of ldap://. Also, the default port for SSL-enabled LDAP connections is 636 instead of 389.

Secure LDAP connections through TLS:

TLS, the successor to the SSL protocol, is supported by most modern LDAP servers. Unlike SSL connections, TLS connections can be made on the same server port as non-TLS connections. To secure all connections using TLS, specify the following flags as startup options to the impalad daemon:

- --ldap_tls tells Impala to start a TLS connection to the LDAP server, and to fail authentication if it cannot
- --ldap_ca_certificate="/path/to/certificate/pem" specifies the location of the certificate in standard . PEM format. Store this certificate on the local filesystem, in a location that only the impala user and other trusted users can read.

LDAP Authentication for impala-shell Interpreter

To connect to Impala using LDAP authentication, you specify command-line options to the impala-shell command interpreter and enter the password when prompted:

- -1 enables LDAP authentication.
- -u sets the user. Per Active Directory, the user is the short user name, not the full LDAP distinguished name. If your LDAP settings include a search base, use the --ldap_bind_pattern on the impalad daemon to translate the short user name from impala-shell automatically to the fully qualified name.
- impala-shell automatically prompts for the password.

For the full list of available impala-shell options, see impala-shell Configuration Options on page 318.

LDAP authentication for JDBC applications: See <u>Configuring Impala to Work with JDBC</u> on page 38 for the format to use with the JDBC connection string for servers using LDAP authentication.

LDAP Restrictions for Impala

The LDAP support is preliminary. It currently has only been tested against Active Directory.

Using Multiple Authentication Methods with Impala

Impala 2.0 and later automatically handles both Kerberos and LDAP authentication. Each impalad daemon can accept both Kerberos and LDAP requests through the same port. No special actions need to be taken if some users authenticate through Kerberos and some through LDAP.

Prior to Impala 2.0, you had to configure each impalad to listen on a specific port depending on the kind of authentication, then configure your network load balancer to forward each kind of request to a data node that was set up with the appropriate authentication type. Once the initial request was made using either Kerberos or LDAP authentication, Impala automatically handled the process of coordinating the work across multiple nodes and transmitting intermediate results back to the coordinator node.

Auditing Impala Operations

To monitor how Impala data is being used within your organization, ensure that your Impala authorization and authentication policies are effective, and detect attempts at intrusion or unauthorized access to Impala data, you can use the auditing feature in Impala 1.2.1 and higher:

- On a system managed by Cloudera Manager, enable auditing by <u>configuring Impala Daemon logging</u>. On a system not managed by Cloudera Manager, include the option -audit_event_log_dir=directory_path in your impalad startup options. The log directory must be a local directory on the server, not an HDFS directory.
- Decide how many queries will be represented in each log files. By default, Impala starts a new log file every 5000 queries. To specify a different number, configure Impala Daemon logging in Cloudera Manager, or include the option -max_audit_event_log_file_size=number_of_queries in the impalad startup options for systems not managed by Cloudera Manager.
- Configure the Cloudera Navigator product to collect and consolidate the audit logs from all the nodes in the cluster.
- Use Cloudera Navigator or Cloudera Manager to filter, visualize, and produce reports based on the audit data.
 (The Impala auditing feature works with Cloudera Manager 4.7 to 5.1 and Cloudera Navigator 2.1 and higher.)
 Check the audit data to ensure that all activity is authorized and/or detect attempts at unauthorized access.

Durability and Performance Considerations for Impala Auditing

The auditing feature only imposes performance overhead while auditing is enabled.

Because any Impala host can process a query, enable auditing on all hosts where the impalad daemon runs. Each host stores its own log files, in a directory in the local filesystem. The log data is periodically flushed to disk (through an fsync() system call) to avoid loss of audit data in case of a crash.

The runtime overhead of auditing applies to whichever node serves as the coordinator for the query, that is, the node you connect to when you issue the query. This might be the same node for all queries, or different applications or users might connect to and issue queries through different nodes.

To avoid excessive I/O overhead on busy coordinator nodes, Impala syncs the audit log data (using the fsync() system call) periodically rather than after every query. Currently, the fsync() calls are issued at a fixed interval, every 5 seconds.

By default, Impala avoids losing any audit log data in the case of an error during a logging operation (such as a disk full error), by immediately shutting down impalad on the host where the auditing problem occurred. You

can override this setting by specifying the option -abort_on_failed_audit_event=false in the impalad startup options.

Format of the Audit Log Files

The audit log files represent the query information in JSON format, one query per line. Typically, rather than looking at the log files themselves, you use the Cloudera Navigator product to consolidate the log data from all Impala nodes and filter and visualize the results in useful ways. (If you do examine the raw log data, you might run the files through a JSON pretty-printer first.)

All the information about schema objects accessed by the query is encoded in a single nested record on the same line. For example, the audit log for an INSERT ... SELECT statement records that a select operation occurs on the source table and an insert operation occurs on the destination table. The audit log for a query against a view records the base table accessed by the view, or multiple base tables in the case of a view that includes a join query. Every Impala operation that corresponds to a SQL statement is recorded in the audit logs, whether the operation succeeds or fails. Impala records more information for a successful operation than for a failed one, because an unauthorized query is stopped immediately, before all the query planning is completed.

Impala records more information for a successful operation than for a failed one, because an unauthorized query is stopped immediately, before all the query planning is completed.

The information logged for each query includes:

- Client session state:
 - Session ID
 - User name
 - Network address of the client connection
- SOL statement details:
 - Query ID
 - Statement Type DML, DDL, and so on
 - SOL statement text
 - Execution start time, in local time
 - Execution Status Details on any errors that were encountered
 - Target Catalog Objects:
 - Object Type Table, View, or Database
 - Fully qualified object name
 - Privilege How the object is being used (SELECT, INSERT, CREATE, and so on)

Which Operations Are Audited

The kinds of SQL queries represented in the audit log are:

- Queries that are prevented due to lack of authorization.
- Queries that Impala can analyze and parse to determine that they are authorized. The audit data is recorded immediately after Impala finishes its analysis, before the query is actually executed.

The audit log does not contain entries for queries that could not be parsed and analyzed. For example, a query that fails due to a syntax error is not recorded in the audit log. The audit log also does not contain queries that fail due to a reference to a table that does not exist, if you would be authorized to access the table if it did exist.

Certain statements in the impala-shell interpreter, such as CONNECT, SUMMARY, PROFILE, SET, and QUIT, do not correspond to actual SQL queries, and these statements are not reflected in the audit log.

Reviewing the Audit Logs

You typically do not review the audit logs in raw form. The Cloudera Manager Agent periodically transfers the log information into a back-end database where it can be examined in consolidated form. For CDH 5, see Audit Events and Audit Reports. For CDH 4, see the Cloudera Navigator documentation.

Cloudera Impala uses SQL as its query language. To protect user investment in skills development and query design, Impala provides a high degree of compatibility with the Hive Query Language (HiveQL):

- Because Impala uses the same metadata store as Hive to record information about table structure and properties, Impala can access tables defined through the native Impala CREATE TABLE command, or tables created using the Hive data definition language (DDL).
- Impala supports data manipulation (DML) statements similar to the DML component of HiveQL.
- Impala provides many built-in functions with the same names and parameter types as their HiveQL equivalents.

Impala supports most of the same statements and clauses as HiveQL, including, but not limited to JOIN, AGGREGATE, DISTINCT, UNION ALL, ORDER BY, LIMIT and (uncorrelated) subquery in the From clause. Impala also supports INSERT INTO and INSERT OVERWRITE.

Impala supports data types with the same names and semantics as the equivalent Hive data types: string, TINYINT, SMALLINT, INT, BIGINT, FLOAT, DOUBLE, BOOLEAN, STRING, TIMESTAMP.

For full details about Impala SQL syntax and semantics, see SQL Statements on page 157.

Most HiveQL select and insert statements run unmodified with Impala. For information about Hive syntax not available in Impala, see SQL Differences Between Impala and Hive on page 310.

For a list of the built-in functions available in Impala queries, see Built-in Functions on page 246.

Comments

Impala supports the familiar styles of SQL comments:

- All text from a -- sequence to the end of the line is considered a comment and ignored. This type of comment can occur on a single line by itself, or after all or part of a statement.
- All text from a /* sequence to the next */ sequence is considered a comment and ignored. This type of comment can stretch over multiple lines. This type of comment can occur on one or more lines by itself, in the middle of a statement, or before or after a statement.

For example:

```
______
-- This line is a comment about a table.
create table ...;
This is a multi-line comment about a query.
select ...;
select * from t /* This is an embedded comment about a query. */ where ...;
select * from t -- This is a trailing comment within a multi-line command.
where ...;
```

Data Types

Impala supports a set of data types that you can use for table columns, expression values, and function arguments and return values.

Note: Currently, Impala supports only scalar types, not composite or nested types. Accessing a table containing any columns with unsupported types causes an error.

For the notation to write literals of each of these data types, see Literals on page 133.

See <u>SQL Differences Between Impala and Hive</u> on page 310 for differences between Impala and Hive data types.

BIGINT Data Type

An 8-byte integer data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

```
column_name BIGINT
```

Range: -9223372036854775808 .. 9223372036854775807. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a floating-point type (FLOAT or DOUBLE) automatically. Use CAST() to convert to TINYINT, SMALLINT, INT, STRING, or TIMESTAMP. Casting an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date (January 1, 1970).

Examples:

```
CREATE TABLE t1 (x BIGINT);
SELECT CAST(1000 AS BIGINT);
```

Usage notes:

BIGINT is a convenient type to use for column declarations because you can use any kind of integer values in INSERT statements and they are promoted to BIGINT where necessary. However, BIGINT also requires the most bytes of any integer type on disk and in memory, meaning your queries are not as efficient and scalable as possible if you overuse this type. Therefore, prefer to use the smallest integer type with sufficient range to hold all input values, and CAST() when necessary to the appropriate type.

For a convenient and automated way to check the bounds of the BIGINT type, call the functions MIN_BIGINT() and MAX_BIGINT().

If an integer value is too large to be represented as a BIGINT, use a DECIMAL instead with sufficient digits of precision.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently than a STRING representation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other binary formats.

Internal details: Represented in memory as an 8-byte value.

Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

<u>Numeric Literals</u> on page 134, <u>TINYINT Data Type</u> on page 130, <u>SMALLINT Data Type</u> on page 125, <u>INT Data Type</u> on page 124, <u>BIGINT Data Type</u> on page 110, <u>DECIMAL Data Type</u> (<u>CDH 5.1 or higher only</u>) on page 114, <u>Impala Mathematical Functions</u> on page 248

BOOLEAN Data Type

A data type used in CREATE TABLE and ALTER TABLE statements, representing a single true/false choice.

In the column definition of a CREATE TABLE statement:

```
column_name BOOLEAN
```

Range: TRUE or FALSE. Do not use quotation marks around the TRUE and FALSE literal values. You can write the literal values in uppercase, lowercase, or mixed case. The values queried from a table are always returned in lowercase, true or false.

Conversions: Impala does not automatically convert any other type to BOOLEAN. All conversions must use an explicit call to the CAST() function.

You can use $\mathtt{cast}()$ to $\mathtt{convert}$ $\mathtt{tinyint}$, $\mathtt{smallint}$, \mathtt{int} , \mathtt{bigint} , \mathtt{float} , \mathtt{or} \mathtt{double} $\mathtt{boolean}$: \mathtt{a} \mathtt{value} of $\mathtt{0}$ represents false, and any non-zero value is converted to true.

You can cast DECIMAL values to BOOLEAN, with the same treatment of zero and non-zero values as the other numeric types. You cannot cast a BOOLEAN to a DECIMAL.

You cannot cast a STRING value to BOOLEAN, although you can cast a BOOLEAN value to STRING, returning '1' for true values and '0' for false values.

Although you can cast a TIMESTAMP to a BOOLEAN or a BOOLEAN to a TIMESTAMP, the results are unlikely to be useful. Any non-zero TIMESTAMP (that is, any value other than 1970-01-01 00:00:00) becomes TRUE when converted to BOOLEAN, while 1970-01-01 00:00:00 becomes FALSE. A value of FALSE becomes 1970-01-01 00:00:00 when converted to BOOLEAN, and TRUE becomes one second past this epoch date, that is, 1970-01-01 00:00:01.

NULL considerations: An expression of this type produces a NULL value if any argument of the expression is NULL.

Partitioning:

Do not use a BOOLEAN column as a partition key. Although you can create such a table, subsequent operations produce errors:

```
[localhost:21000] > create table truth_table (assertion string) partitioned by (truth
 boolean);
[localhost:21000] > insert into truth_table values ('Pigs can fly',false);
ERROR: AnalysisException: INSERT into table with BOOLEAN partition column (truth) is
not supported: partitioning.truth_table
```

Examples:

```
SELECT 1 < 2i
SELECT 2 = 5;
SELECT 100 < NULL, 100 > NULL;
CREATE TABLE assertions (claim STRING, really BOOLEAN);
INSERT INTO assertions VALUES
  ("1 is less than 2", 1 < 2),
("2 is the same as 5", 2 = 5),
  ("Grass is green", true),
  ("The moon is made of green cheese", false);
SELECT claim FROM assertions WHERE really = TRUE;
```

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other binary formats.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information: Boolean Literals on page 136, SQL Operators on page 137, Impala Conditional Functions on page 262

CHAR Data Type (CDH 5.2 or higher only)

A fixed-length character type, padded with trailing spaces if necessary to achieve the specified length. If values are longer than the specified length, Impala truncates any trailing characters.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name CHAR(length)

The maximum length you can specify is 255.

Semantics of trailing spaces:

- When you store a CHAR value shorter than the specified length in a table, queries return the value padded with trailing spaces if necessary; the resulting value has the same length as specified in the column definition.
- If you store a CHAR value containing trailing spaces in a table, those trailing spaces are not stored in the data file. When the value is retrieved by a query, the result could have a different number of trailing spaces. That is, the value includes however many spaces are needed to pad it to the specified length of the column.
- If you compare two CHAR values that differ only in the number of trailing spaces, those values are considered identical.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values over character-based values, if the partition key is a string representation of a number, prefer to use an integer type with sufficient range (INT, BIGINT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.

Parquet considerations:

- This type can be read from and written to Parquet files.
- There is no requirement for a particular level of Parquet.
- Parquet files generated by Impala and containing this type can be freely interchanged with other components such as Hive and MapReduce.
- Any trailing spaces, whether implicitly or explicitly specified, are not written to the Parquet data files.
- Parquet data files might contain values that are longer than allowed by the CHAR(n) length limit. Impala ignores any extra trailing characters when it processes those values during a query.

Text table considerations:

Text data files might contain values that are longer than allowed for a particular CHAR(n) column. Any extra trailing characters are ignored when Impala processes those values during a query. Text data files can also contain values that are shorter than the defined length limit, and Impala pads them with trailing spaces up to the specified length. Any text data files produced by Impala INSERT statements do not include any trailing blanks for CHAR columns.

Compatibility:

This type is available using Impala 2.0 or higher under CDH 4, or with Impala on CDH 5.2 or higher. There are no compatibility issues with other components when exchanging data files or running Impala on CDH 4.

Some other database systems make the length specification optional. For Impala, the length is required.

Internal details: Represented in memory as a byte array with the same size as the length specification. Values that are shorter than the specified length are padded on the right with trailing spaces.

Added in: CDH 5.2.0 (Impala 2.0.0)

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always filled in for column statistics, even before you run the COMPUTE STATS statement.

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or user-defined aggregate function (UDA).

Examples:

These examples show how trailing spaces are not considered significant when comparing or processing CHAR values. CAST() truncates any longer string to fit within the defined length. If a CHAR value is shorter than the specified length, it is padded on the right with spaces until it matches the specified length. Therefore, LENGTH () represents the length including any trailing spaces, and CONCAT() also treats the column value as if it has trailing spaces.

```
select cast('x' as char(4)) = cast('x ' as char(4)) as "unpadded equal to padded";
+-----
unpadded equal to padded
true
create table char_length(c char(3));
insert into char_length values (cast('1' as char(3))), (cast('12' as char(3))),
(cast('123' as char(3))), (cast('123456' as char(3)));
select concat("[",c,"]") as c, length(c) from char_length;
c | length(c) |
 [1] 3
 [12] 3
[123] 3
[123] 3
```

This example shows a case where data values are known to have a specific length, where CHAR is a logical data type to use.

```
create table addresses
 (id bigint,
  street_name string,
  state_abbreviation char(2),
  country_abbreviation char(2));
```

The following example shows how values written by Impala do not physically include the trailing spaces. It creates a table using text format, with CHAR values much shorter than the declared length, and then prints the resulting data file to show that the delimited values are not separated by spaces. The same behavior applies to binary-format Parquet data files.

```
create table char in_text (a char(20), b char(30), c char(40))
 row format delimited fields terminated by ',';
insert into char_in_text values (cast('foo' as char(20)), cast('bar' as char(30)),
cast('baz' as char(40))), (cast('hello' as char(20)), cast('goodbye' as char(30)),
cast('aloha' as char(40)));
 - Running this Linux command inside impala-shell using the ! shortcut.
!hdfs dfs -cat
'hdfs://127.0.0.1:8020/user/hive/warehouse/impala_doc_testing.db/char_in_text/*.*';
foo,bar,baz
hello,goodbye,aloha
```

The following example further illustrates the treatment of spaces. It replaces the contents of the previous table with some values including leading spaces, trailing spaces, or both. Any leading spaces are preserved within the

data file, but trailing spaces are discarded. Then when the values are retrieved by a query, the leading spaces are retrieved verbatim while any necessary trailing spaces are supplied by Impala.

```
insert overwrite char in text values (cast('trailing ' as char(20)), cast(' leading
and trailing 'as char(30)), cast(' leading' as char(40)));
!hdfs dfs -cat
'hdfs://127.0.0.1:8020/user/hive/warehouse/impala_doc_testing.db/char_in_text/*.*';
trailing, leading and trailing, leading
select\ concat('[',a,']')\ as\ a,\ concat('[',b,']')\ as\ b,\ concat('[',c,']')\ as\ c\ from
char_in_text;
                   b
] |
```

Restrictions:

Because the blank-padding behavior requires allocating the maximum length for each value in memory, for scalability reasons avoid declaring CHAR columns that are much longer than typical values in that column.

All data in CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have binary data from another database system (that is, a BLOB type), use a STRING column to hold it.

When an expression compares a CHAR with a STRING or VARCHAR, the CHAR value is implicitly converted to STRING first, with trailing spaces preserved.

```
select cast("foo " as char(5)) = 'foo' as "char equal to string";
char equal to string
false
```

This behavior differs from other popular database systems. To get the expected result of TRUE, cast the expressions on both sides to CHAR values of the appropriate length:

```
______
select cast("foo " as char(5)) = cast('foo' as char(3)) as "char equal to string";
char equal to string
true
```

This behavior is subject to change in future releases.

Related information:

STRING Data Type on page 126, VARCHAR Data Type (CDH 5.2 or higher only) on page 131, String Literals on page 135, Impala String Functions on page 265

DECIMAL Data Type (CDH 5.1 or higher only)

A numeric data type with fixed scale and precision, used in CREATE TABLE and ALTER TABLE statements. Suitable for financial and other arithmetic calculations where the imprecise representation and rounding behavior of FLOAT and DOUBLE make those types impractical.

Syntax:

In the column definition of a CREATE TABLE statement:

```
column_name DECIMAL[(precision[,scale])]
```

DECIMAL with no precision or scale values is equivalent to DECIMAL (9,0).

Precision and Scale:

precision represents the total number of digits that can be represented by the column, regardless of the location of the decimal point. This value must be between 1 and 38. For example, representing integer values up to 9999, and floating-point values up to 99.99, both require a precision of 4. You can also represent corresponding negative values, without any change in the precision. For example, the range -9999 to 9999 still only requires a precision

scale represents the number of fractional digits. This value must be less than or equal to precision. A scale of O produces integral values, with no fractional part. If precision and scale are equal, all the digits come after the decimal point, making all the values between 0 and 0.999... or 0 and -0.999...

When precision and scale are omitted, a DECIMAL value is treated as DECIMAL(9,0), that is, an integer value ranging from -999, 999, 999 to 999, 999, 999. This is the largest DECIMAL value that can still be represented in 4 bytes. If precision is specified but scale is omitted, Impala uses a value of zero for the scale.

Both *precision* and *scale* must be specified as integer literals, not any other kind of constant expressions.

To check the precision or scale for arbitrary values, you can call the precision() and scale() built-in functions. For example, you might use these values to figure out how many characters are required for various fields in a report, or to understand the rounding characteristics of a formula as applied to a particular DECIMAL column.

Range:

The maximum precision value is 38. Thus, the largest integral value is represented by DECIMAL (38,0) (999... with 9 repeated 38 times). The most precise fractional value (between 0 and 1, or 0 and -1) is represented by DECIMAL (38, 38), with 38 digits to the right of the decimal point. The value closest to 0 would be .0000...1 (37 zeros and the final 1). The value closest to 1 would be .999... (9 repeated 38 times).

For a given precision and scale, the range of DECIMAL values is the same in the positive and negative directions. For example, DECIMAL (4,2) can represent from -99.99 to 99.99. This is different from other integral numeric types where the positive and negative bounds differ slightly.

When you use DECIMAL values in arithmetic expressions, the precision and scale of the result value are determined as follows:

- For addition and subtraction, the precision and scale are based on the maximum possible result, that is, if all the digits of the input values were 9s and the absolute values were added together.
- For multiplication, the precision is the sum of the precisions of the input values. The scale is the sum of the scales of the input values.
- For division, Impala sets the precision and scale to values large enough to represent the whole and fractional parts of the result.
- For UNION, the scale is the larger of the scales of the input values, and the precision is increased if necessary to accommodate any additional fractional digits. If the same input value has the largest precision and the largest scale, the result value has the same precision and scale. If one value has a larger precision but smaller scale, the scale of the result value is increased. For example, DECIMAL(20,2) UNION DECIMAL(8,6) produces a result of type DECIMAL (24,6). The extra 4 fractional digits of scale (6-2) are accommodated by extending the precision by the same amount (20+4).
- To doublecheck, you can always call the PRECISION() and SCALE() functions on the results of an arithmetic expression to see the relevant values, or use a CREATE TABLE AS SELECT statement to define a column based on the return type of the expression.

Compatibility:

- Using the DECIMAL type is only supported under CDH 5.1.0 and higher.
- Use the DECIMAL data type in Impala for applications where you used the NUMBER data type in Oracle. The Impala DECIMAL type does not support the Oracle idioms of * for scale or negative values for precision.

Conversions and casting:

Casting an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date (January 1, 1970).

Impala automatically converts between DECIMAL and other numeric types where possible. A DECIMAL with zero scale is converted to or from the smallest appropriate integral type. A DECIMAL with a fractional part is automatically converted to or from the smallest appropriate floating-point type. If the destination type does not have sufficient precision or scale to hold all possible values of the source type, Impala raises an error and does not convert the value.

For example, these statements show how expressions of DECIMAL and other types are reconciled to the same type in the context of UNION queries and INSERT statements:

```
[localhost:21000] > select cast(1 as int) as x union select cast(1.5 as decimal(9,4))
as x;
x
1.5000
1.0000
[localhost:21000] > create table int_vs_decimal as select cast(1 as int) as x union
select cast(1.5 as decimal(9,4)) as x;
summary
Inserted 2 row(s)
[localhost:21000] > desc int_vs_decimal;
name | type | comment
| x | decimal(14,4) |
```

To avoid potential conversion errors, you can use CAST() to convert DECIMAL values to FLOAT, TINYINT, SMALLINT, INT, BIGINT, STRING, TIMESTAMP, OR BOOLEAN. You can use exponential notation in DECIMAL literals or when casting from STRING, for example 1.0e6 to represent one million.

If you cast a value with more fractional digits than the scale of the destination type, any extra fractional digits are truncated (not rounded). Casting a value to a target type with not enough precision produces a result of NULL and displays a runtime warning.

```
[localhost:21000] > select cast(1.239 as decimal(3,2));
| cast(1.239 as decimal(3,2)) |
1.23
[localhost:21000] > select cast(1234 as decimal(3));
| cast(1234 as decimal(3,0)) |
NULL
WARNINGS: Expression overflowed, returning NULL
```

When you specify integer literals, for example in INSERT ... VALUES statements or arithmetic expressions, those numbers are interpreted as the smallest applicable integer type. You must use CAST() calls for some combinations of integer literals and DECIMAL precision. For example, INT has a maximum value that is 10 digits long, TINYINT has a maximum value that is 3 digits long, and so on. If you specify a value such as 123456 to go into a DECIMAL column, Impala checks if the column has enough precision to represent the largest value of that integer type, and raises an error if not. Therefore, use an expression like CAST(123456 TO DECIMAL(9,0)) for DECIMAL columns with precision 9 or less, CAST(50 TO DECIMAL(2,0)) for DECIMAL columns with precision 2 or less, and so on. For DECIMAL columns with precision 10 or greater, Impala automatically interprets the value as the correct DECIMAL type; however, because DECIMAL(10) requires 8 bytes of storage while DECIMAL(9) requires only 4 bytes, only use precision of 10 or higher when actually needed.

```
[localhost:21000] > create table decimals_9_0 (x decimal);
[localhost:21000] > insert into decimals <math>90 values (1), (2), (4), (8), (16), (1024),
 (32768), (65536), (1000000);
ERROR: AnalysisException: Possible loss of precision for target table
'decimal_testing.decimals_9_0'.
Expression '1' (type: INT) would need to be cast to DECIMAL(9,0) for column 'x'
[localhost:21000] > insert into decimals_9_0 values (cast(1 as decimal)), (cast(2 as
decimal)), (cast(4 as decimal)), (cast(8 as decimal)), (cast(16 as decimal)), (cast(1024
as decimal)), (cast(32768 as decimal)), (cast(65536 as decimal)), (cast(1000000 as
decimal));
[localhost:21000] > create table decimals_10_0 (x decimal(10,0));
[localhost:21000] > insert into decimals 10 0 values (1), (2), (4), (8), (16), (1024),
(32768), (65536), (1000000);
[localhost:21000] >
```

Be aware that in memory and for binary file formats such as Parquet or Avro, DECIMAL(10) or higher consumes 8 bytes while DECIMAL (9) (the default for DECIMAL) or lower consumes 4 bytes. Therefore, to conserve space in large tables, use the smallest-precision DECIMAL type that is appropriate and CAST() literal values where necessary, rather than declaring DECIMAL columns with high precision for convenience.

To represent a very large or precise DECIMAL value as a literal, for example one that contains more digits than can be represented by a BIGINT literal, use a quoted string or a floating-point value for the number, and CAST() to the desired DECIMAL type:

```
insert into decimals_38_5 values (1), (2), (4), (8), (16), (1024), (32768), (65536),
(1000000),
 (cast("9999999999999999999999999999999" as decimal(38,5))),
```

- The result of an aggregate function such as MAX(), SUM(), or AVG() on DECIMAL values is promoted to a scale of 38, with the same precision as the underlying column. Thus, the result can represent the largest possible value at that particular precision.
- STRING columns, literals, or expressions can be converted to DECIMAL as long as the overall number of digits and digits to the right of the decimal point fit within the specified precision and scale for the declared DECIMAL type. By default, a DECIMAL value with no specified scale or precision can hold a maximum of 9 digits of an integer value. If there are more digits in the string value than are allowed by the DECIMAL scale and precision, the result is NULL.

The following examples demonstrate how STRING values with integer and fractional parts are represented when converted to DECIMAL. If the scale is 0, the number is treated as an integer value with a maximum of precision digits. If the precision is greater than 0, the scale must be increased to account for the digits both to the left and right of the decimal point. As the precision increases, output values are printed with additional trailing zeros after the decimal point if needed. Any trailing zeros after the decimal point in the STRING value must fit within the number of digits specified by the precision.

```
[localhost:21000] > select cast('100' as decimal); -- Small integer value fits
within 9 digits of scale.
cast('100' as decimal(9,0))
100
[localhost:21000] > select cast('100' as decimal(3,0)); -- Small integer value
fits within 3 digits of scale.
cast('100' as decimal(3,0))
100
[localhost:21000] > select cast('100' as decimal(2,0)); -- 2 digits of scale is
```

```
not enough!
| cast('100' as decimal(2,0)) |
   -----
NULL
[localhost:21000] > select cast('100' as decimal(3,1)); -- (3,1) = 2 digits left of the decimal point, 1 to the right. Not enough.
cast('100' as decimal(3,1))
   -----
NULL
[localhost:21000] > select cast('100' as decimal(4,1)); -- 4 digits total, 1 to
the right of the decimal point.
| cast('100' as decimal(4,1)) |
  -----
100.0
[localhost:21000] > select cast('98.6' as decimal(3,1)); -- (3,1) can hold a 3
digit number with 1 fractional digit.
| cast('98.6' as decimal(3,1)) |
98.6
[localhost:21000] > select cast('98.6' as decimal(15,1)); -- Larger scale allows
bigger numbers but still only 1 fractional digit.
| cast('98.6' as decimal(15,1))
98.6
[localhost:21000] > select cast('98.6' as decimal(15,5)); -- Larger precision
allows more fractional digits, outputs trailing zeros.
cast('98.6' as decimal(15,5))
98.60000
[localhost:21000] > select cast('98.60000' as decimal(15,1)); -- Trailing zeros
in the string must fit within 'scale' digits (1 in this case).
| cast('98.60000' as decimal(15,1)) |
NULL
```

• Most built-in arithmetic functions such as SIN() and COS() continue to accept only DOUBLE values because they are so commonly used in scientific context for calculations of IEEE 954-compliant values. The built-in functions that accept and return DECIMAL are:

```
- ABS()
- CEIL()
- COALESCE()
- FLOOR()
- FNV_HASH()
- GREATEST()
- IF()
- ISNULL()
- LEAST()
- NEGATIVE()
- NULLIF()
- POSITIVE()
```

- PRECISION()

```
- ROUND()
- SCALE()
- TRUNCATE()
- ZEROIFNULL()
```

See Built-in Functions on page 246 for details.

BIGINT, INT, SMALLINT, and TINYINT values can all be cast to DECIMAL. The number of digits to the left of the decimal point in the DECIMAL type must be sufficient to hold the largest value of the corresponding integer type. Note that integer literals are treated as the smallest appropriate integer type, meaning there is sometimes a range of values that require one more digit of DECIMAL scale than you might expect. For integer values, the precision of the DECIMAL type can be zero; if the precision is greater than zero, remember to increase the scale value by an equivalent amount to hold the required number of digits to the left of the decimal point.

The following examples show how different integer types are converted to DECIMAL.

```
_____
[localhost:21000] > select cast(1 as decimal(1,0));
cast(1 as decimal(1,0))
1
[localhost:21000] > select cast(9 as decimal(1,0));
cast(9 as decimal(1,0))
[localhost:21000] > select cast(10 as decimal(1,0));
| cast(10 as decimal(1,0)) |
10
[localhost:21000] > select cast(10 as decimal(1,1));
| cast(10 as decimal(1,1)) |
10.0
[localhost:21000] > select cast(100 as decimal(1,1));
| cast(100 as decimal(1,1)) |
100.0
[localhost:21000] > select cast(1000 as decimal(1,1));
cast(1000 as decimal(1,1))
1000.0
```

When a DECIMAL value is converted to any of the integer types, any fractional part is truncated (that is, rounded towards zero):

```
[localhost:21000] > create table num_dec_days (x decimal(4,1));
[localhost:21000] > insert into num_dec_days values (1), (2), (cast(4.5 as
decimal(4,1));
[localhost:21000] \ > \ insert \ into \ num\_dec\_days \ values \ (cast(0.1 \ as \ decimal(4,1))),
(cast(.9 \text{ as decimal}(4,1))), (cast(9.1 \text{ as decimal}(4,1))), (cast(9.9 \text{ as}))
decimal(4,1));
[localhost:21000] > select cast(x as int) from num_dec_days;
cast(x as int)
1 1
2
```

```
4
0
0
```

You cannot directly cast TIMESTAMP or BOOLEAN values to or from DECIMAL values. You can turn a DECIMAL value into a time-related representation using a two-step process, by converting it to an integer value and then using that result in a call to a date and time function such as from_unixtime().

```
[localhost:21000] > select from_unixtime(cast(cast(1000.0 as decimal) as bigint));
from unixtime(cast(cast(1000.0 as decimal(9,0)) as bigint))
  1970-01-01 00:16:40
[localhost:21000] > select now() + interval cast(x as int) days from num_dec_days;
-- x is a DECIMAL column.
[localhost:21000] > create table num_dec_days (x decimal(4,1));
[localhost:21000] > insert into num_dec_days values (1), (2), (cast(4.5 as
decimal(4,1));
[localhost:21000] > select now() + interval cast(x as int) days from num_dec_days;
-- The 4.5 value is truncated to 4 and becomes '4 days'.
| now() + interval cast(x as int) days |
 2014-05-13 23:11:55.163284000
 2014-05-14 23:11:55.163284000
 2014-05-16 23:11:55.163284000
```

 Because values in INSERT statements are checked rigorously for type compatibility, be prepared to use CAST() function calls around literals, column references, or other expressions that you are inserting into a DECIMAL column.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

DECIMAL differences from integer and floating-point types:

With the DECIMAL type, you are concerned with the number of overall digits of a number rather than powers of 2 (as in TINYINT, SMALLINT, and so on). Therefore, the limits with integral values of DECIMAL types fall around 99, 999, and so on rather than 32767, 65535, 2 ³² -1, and so on. For fractional values, you do not need to account for imprecise representation of the fractional part according to the IEEE-954 standard (as in Float and DOUBLE). Therefore, when you insert a fractional value into a DECIMAL column, you can compare, sum, query, GROUP BY, and so on that column and get back the original values rather than some "close but not identical" value.

FLOAT and DOUBLE can cause problems or unexpected behavior due to inability to precisely represent certain fractional values, for example dollar and cents values for currency. You might find output values slightly different than you inserted, equality tests that do not match precisely, or unexpected values for GROUP BY columns. DECIMAL can help reduce unexpected behavior and rounding errors, at the expense of some performance overhead for assignments and comparisons.

Literals and expressions:

- When you use an integer literal such as 1 or 999 in a SQL statement, depending on the context, Impala will treat it as either the smallest appropriate DECIMAL type, or the smallest integer type (TINYINT, SMALLINT, INT, or BIGINT). To minimize memory usage, Impala prefers to treat the literal as the smallest appropriate integer type.
- When you use a floating-point literal such as 1.1 or 999.44 in a SQL statement, depending on the context, Impala will treat it as either the smallest appropriate DECIMAL type, or the smallest floating-point type (FLOAT or DOUBLE). To avoid loss of accuracy, Impala prefers to treat the literal as a DECIMAL.

Storage considerations:

- Only the precision determines the storage size for DECIMAL values; the scale setting has no effect on the storage size.
- Text, RCFile, and SequenceFile tables all use ASCII-based formats. In these text-based file formats, leading zeros are not stored, but trailing zeros are stored. In these tables, each DECIMAL value takes up as many bytes as there are digits in the value, plus an extra byte if the decimal point is present and an extra byte for negative values. Once the values are loaded into memory, they are represented in 4, 8, or 16 bytes as described in the following list items. The on-disk representation varies depending on the file format of the table.
- Parquet and Avro tables use binary formats. In these tables, Impala stores each value in as few bytes as possible depending on the precision specified for the DECIMAL column.
 - In memory, DECIMAL values with precision of 9 or less are stored in 4 bytes.
 - In memory, DECIMAL values with precision of 10 through 18 are stored in 8 bytes.
 - In memory, DECIMAL values with precision greater than 18 are stored in 16 bytes.

File format considerations:

- The DECIMAL data type can be stored in any of the file formats supported by Impala, as described in How Impala Works with Hadoop File Formats on page 384. Impala only writes to tables that use the Parquet and text formats, so those formats are the focus for file format compatibility.
- Impala can query Avro, RCFile, or SequenceFile tables containing DECIMAL columns, created by other Hadoop components, on CDH 5 only.
- You can use DECIMAL columns in Impala tables that are mapped to HBase tables. Impala can query and insert into such tables.
- Text, RCFile, and SequenceFile tables all use ASCII-based formats. In these tables, each DECIMAL value takes up as many bytes as there are digits in the value, plus an extra byte if the decimal point is present. The binary format of Parquet or Avro files offers more compact storage for DECIMAL columns.
- Parquet and Avro tables use binary formats, In these tables, Impala stores each value in 4, 8, or 16 bytes depending on the precision specified for the DECIMAL column.
- Parquet files containing DECIMAL columns are not expected to be readable under CDH 4. See the Compatibility section for details.

UDF considerations: When writing a C++ UDF, use the DecimalVal data type defined in /usr/include/impala_udf/udf.h.

Partitioning:

You can use a DECIMAL column as a partition key. Doing so provides a better match between the partition key values and the HDFS directory names than using a DOUBLE or FLOAT partitioning column:

Schema evolution considerations:

 For text-based formats (text, RCFile, and SequenceFile tables), you can issue an ALTER TABLE . . . REPLACE COLUMNS statement to change the precision and scale of an existing DECIMAL column. As long as the values in the column fit within the new precision and scale, they are returned correctly by a query. Any values that do not fit within the new precision and scale are returned as NULL, and Impala reports the conversion error. Leading zeros do not count against the precision value, but trailing zeros after the decimal point do.

```
[localhost:21000] > create table text_decimals (x string);
[localhost:21000] > insert into text_decimals values ("1"), ("2"), ("99.99"), ("1.234"), ("000001"), ("1.000000000");
[localhost:21000] > select * from text_decimals;
  1
 99.99
 1.234
  000001
  1.000000000
```

```
[localhost:21000] > alter table text_decimals replace columns (x decimal(4,2));
[localhost:21000] > select * from text_decimals;
 1.00
 2.00
  99.99
 NULL
  1.00
NULL
ERRORS:
Backend 0: Error converting column: 0 TO DECIMAL(4, 2) (Data is: 1.234)
file:
hdfs://127.0.0.1:8020/user/hive/warehouse/decimal_testing.db/text_decimals/634d4bd3aa0
e8420-b4b13bab7f1be787_56794587_data.0
record: 1.234
Error converting column: 0 TO DECIMAL(4, 2) (Data is: 1.000000000)
file:
hdfs://127.0.0.1:8020/user/hive/warehouse/decimal_testing.db/text_decimals/cd40dc68e20
c565a-cc4bd86c724c96ba_311873428_data.0
record: 1.000000000
```

 For binary formats (Parquet and Avro tables), although an ALTER TABLE . . . REPLACE COLUMNS statement that changes the precision or scale of a DECIMAL column succeeds, any subsequent attempt to query the changed column results in a fatal error. (The other columns can still be queried successfully.) This is because the metadata about the columns is stored in the data files themselves, and ALTER TABLE does not actually make any updates to the data files. If the metadata in the data files disagrees with the metadata in the metastore database, Impala cancels the query.

Examples:

```
CREATE TABLE t1 (x DECIMAL, y DECIMAL(5,2), z DECIMAL(25,0));
INSERT INTO t1 VALUES (5, 99.44, 123456), (300, 6.7, 999999999);
SELECT x+y, ROUND(y,1), z/98.6 FROM t1;
SELECT CAST(1000.5 AS DECIMAL);
```

Restrictions:

Currently, the COMPUTE STATS statement under CDH 4 does not store any statistics for DECIMAL columns. When Impala runs under CDH 5, which has better support for DECIMAL in the metastore database, COMPUTE STATS does collect statistics for DECIMAL columns and Impala uses the statistics to optimize query performance.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other binary formats.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 134, TINYINT Data Type on page 130, SMALLINT Data Type on page 125, INT Data Type on page 124, BIGINT Data Type on page 110, DECIMAL Data Type (CDH 5.1 or higher only) on page 114, Impala Mathematical Functions on page 248 (especially PRECISION() and SCALE())

DOUBLE Data Type

An 8-byte (double precision) floating-point data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

```
column_name DOUBLE
```

Range: 4.94065645841246544e-324d .. 1.79769313486231570e+308, positive or negative

Conversions: Impala does not automatically convert DOUBLE to any other type. You can use CAST() to convert DOUBLE values to FLOAT, TINYINT, SMALLINT, INT, BIGINT, STRING, TIMESTAMP, OF BOOLEAN. You can use exponential notation in DOUBLE literals or when casting from STRING, for example 1.0e6 to represent one million. Casting an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date (January 1, 1970).

Usage notes:

The data type REAL is an alias for DOUBLE.

Examples:

```
CREATE TABLE t1 (x DOUBLE);
SELECT CAST(1000.5 AS DOUBLE);
```

Partitioning: Because fractional values of this type are not always represented precisely, when this type is used for a partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition on a DECIMAL column instead.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other binary formats.

Internal details: Represented in memory as an 8-byte value.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always filled in for column statistics, even before you run the COMPUTE STATS statement.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and distributed queries can perform these operations in different order for each query, results can vary slightly for aggregate function calls such as SUM() and AVG() for FLOAT and DOUBLE columns, particularly on large data sets where millions or billions of values are summed or averaged. For perfect consistency and repeatability, use the DECIMAL data type for such operations instead of FLOAT or DOUBLE.

Related information:

Numeric Literals on page 134, Impala Mathematical Functions on page 248, FLOAT Data Type on page 123

FLOAT Data Type

A 4-byte (single precision) floating-point data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

```
column_name FLOAT
```

Range: 1.40129846432481707e-45 .. 3.40282346638528860e+38, positive or negative

Conversions: Impala automatically converts FLOAT to more precise DOUBLE values, but not the other way around. You can use Cast() to convert float values to Tinyint, SMALLINT, INT, BIGINT, STRING, TIMESTAMP, OR BOOLEAN. You can use exponential notation in FLOAT literals or when casting from STRING, for example 1.0e6 to represent

one million. Casting an integer or floating-point value n to TIMESTAMP produces a value that is n seconds past the start of the epoch date (January 1, 1970).

Examples:

```
CREATE TABLE t1 (x FLOAT);
SELECT CAST(1000.5 AS FLOAT);
```

Partitioning: Because fractional values of this type are not always represented precisely, when this type is used for a partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition on a DECIMAL column instead.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other binary formats.

Internal details: Represented in memory as a 4-byte value.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always filled in for column statistics, even before you run the COMPUTE STATS statement.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and distributed queries can perform these operations in different order for each query, results can vary slightly for aggregate function calls such as SUM() and AVG() for FLOAT and DOUBLE columns, particularly on large data sets where millions or billions of values are summed or averaged. For perfect consistency and repeatability, use the DECIMAL data type for such operations instead of FLOAT or DOUBLE.

Related information:

Numeric Literals on page 134, Impala Mathematical Functions on page 248, DOUBLE Data Type on page 122

INT Data Type

A 4-byte integer data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

```
column_name INT
```

Range: -2147483648 .. 2147483647. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a larger integer type (BIGINT) or a floating-point type (FLOAT or DOUBLE) automatically. Use CAST() to convert to TINYINT, SMALLINT, STRING, OR TIMESTAMP. Casting an integer or floating-point value n to TIMESTAMP produces a value that is n seconds past the start of the epoch date (January 1, 1970).

Usage notes:

The data type INTEGER is an alias for INT.

For a convenient and automated way to check the bounds of the INT type, call the functions MIN_INT() and MAX_INT().

If an integer value is too large to be represented as a INT, use a BIGINT instead.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

```
CREATE TABLE t1 (x INT);
SELECT CAST(1000 AS INT);
```

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently than a STRING representation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations:

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other binary formats.

Internal details: Represented in memory as a 4-byte value.

Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 134, TINYINT Data Type on page 130, SMALLINT Data Type on page 125, INT Data Type on page 124, BIGINT Data Type on page 110, DECIMAL Data Type (CDH 5.1 or higher only) on page 114, Impala Mathematical Functions on page 248

REAL Data Type

An alias for the DOUBLE data type. See <u>DOUBLE Data Type</u> on page 122 for details.

Examples:

These examples show how you can use the type names REAL and DOUBLE interchangeably, and behind the scenes Impala treats them always as DOUBLE.

```
[localhost:21000] > create table r1 (x real);
[localhost:21000] > describe r1;
| name | type | comment |
| x | double |
[localhost:21000] > insert into r1 values (1.5), (cast (2.2 as double));
[localhost:21000] > select cast (1e6 as real);
cast(1000000.0 as double)
1000000
```

SMALLINT Data Type

A 2-byte integer data type used in CREATE TABLE and ALTER TABLE statements.

In the column definition of a CREATE TABLE statement:

```
column_name SMALLINT
```

Range: -32768 .. 32767. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a larger integer type (INT or BIGINT) or a floating-point type (FLOAT or DOUBLE) automatically. Use CAST() to convert to TINYINT, STRING, OR TIMESTAMP. Casting an integer

or floating-point value n to TIMESTAMP produces a value that is n seconds past the start of the epoch date (January 1, 1970).

Usage notes:

For a convenient and automated way to check the bounds of the SMALLINT type, call the functions MIN_SMALLINT() and MAX_SMALLINT().

If an integer value is too large to be represented as a SMALLINT, use an INT instead.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

```
CREATE TABLE t1 (x SMALLINT);
SELECT CAST(1000 AS SMALLINT);
```

Parquet considerations:

Physically, Parquet files represent TINYINT and SMALLINT values as 32-bit integers. Although Impala rejects attempts to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE ... LIKE PARQUET SYNTAX, ANY TINYINT OR SMALLINT COlumns in the original table turn into INT columns in the new table.

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently than a STRING representation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other binary formats.

Internal details: Represented in memory as a 2-byte value.

Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 134, TINYINT Data Type on page 130, SMALLINT Data Type on page 125, INT Data Type on page 124, BIGINT Data Type on page 110, DECIMAL Data Type (CDH 5.1 or higher only) on page 114, Impala Mathematical Functions on page 248

STRING Data Type

A data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

```
column_name STRING
```

Length: Maximum of 32,767 bytes. Do not use any length constraint when declaring STRING columns, as you might be familiar with from VARCHAR, CHAR, or similar column types from relational database systems. If you do need to manipulate string values with precise or maximum lengths, in Impala 2.0 and higher you can declare columns as VARCHAR(max_length) or CHAR(length).

Character sets: For full support in all Impala subsystems, restrict string values to the ASCII character set. UTF-8 character data can be stored in Impala and retrieved through queries, but UTF-8 strings containing non-ASCII characters are not guaranteed to work properly with string manipulation functions, comparison operators, or the ORDER BY clause. For any national language aspects such as collation order or interpreting extended ASCII variants such as ISO-8859-1 or ISO-8859-2 encodings, Impala does not include such metadata with the table

definition. If you need to sort, manipulate, or display data depending on those national language characteristics of string data, use logic on the application side.

Conversions:

- Impala does not automatically convert STRING to any numeric type. Impala does automatically convert STRING to TIMESTAMP if the value matches one of the accepted TIMESTAMP formats; see TIMESTAMP Data Type on page 128 for details.
- You can use CAST() to convert STRING values to TINYINT, SMALLINT, INT, BIGINT, FLOAT, DOUBLE, or TIMESTAMP.
- You cannot directly cast a STRING value to BOOLEAN. You can use a CASE expression to evaluate string values such as 'T', 'true', and so on and return Boolean true and false values as appropriate.
- You can cast a BOOLEAN value to STRING, returning '1' for true values and '0' for false values.

Partitioning:

Although it might be convenient to use STRING columns for partition keys, even when those columns contain numbers, for performance and scalability it is much better to use numeric columns as partition keys whenever practical. Although the underlying HDFS directory name might be the same in either case, the in-memory storage for the partition key columns is more compact, and computations are faster, if partition key columns such as YEAR, MONTH, DAY and so on are declared as INT, SMALLINT, and so on.

Zero-length strings: For purposes of clauses such as DISTINCT and GROUP BY, Impala considers zero-length strings (" "), NULL, and space to all be different values.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other binary formats.

Column statistics considerations: Because the values of this type have variable size, none of the column statistics fields are filled in until you run the COMPUTE STATS statement.

The following examples demonstrate double-quoted and single-quoted string literals, and required escaping for quotation marks within string literals:

```
SELECT 'I am a single-quoted string';
SELECT "I am a double-quoted string";
SELECT 'I\'m a single-quoted string with an apostrophe';
SELECT "I\'m a double-quoted string with an apostrophe";
SELECT 'I am a "short" single-quoted string containing quotes';
SELECT "I am a \"short\" double-quoted string containing quotes";
```

The following examples demonstrate calls to string manipulation functions to concatenate strings, convert numbers to strings, or pull out substrings:

```
SELECT CONCAT("Once upon a time, there were ", CAST(3 AS STRING), ' little pigs.');
SELECT SUBSTR("hello world",7,5);
```

The following examples show how to perform operations on STRING columns within a table:

```
CREATE TABLE t1 (s1 STRING, s2 STRING);
INSERT INTO t1 VALUES ("hello", 'world'), (CAST(7 AS STRING), "wonders");
SELECT s1, s2, length(s1) FROM t1 WHERE s2 LIKE 'w%';
```

Related information:

String Literals on page 135, CHAR Data Type (CDH 5.2 or higher only) on page 112, VARCHAR Data Type (CDH 5.2 or higher only) on page 131, Impala String Functions on page 265, Impala Date and Time Functions on page 256

TIMESTAMP Data Type

A data type used in CREATE TABLE and ALTER TABLE statements, representing a point in time.

Syntax:

In the column definition of a CREATE TABLE statement:

```
column_name TIMESTAMP
```

Range: Allowed date values range from 1400-01-01 to 9999-12-31; this range is different from the Hive TIMESTAMP type. Internally, the resolution of the time portion of a TIMESTAMP value is in nanoseconds.

INTERVAL expressions:

You can perform date arithmetic by adding or subtracting a specified number of time units, using the INTERVAL keyword and the + and - operators or date_add() and date_sub() functions. You can specify units as YEAR[S], MONTH[S], WEEK[S], DAY[S], HOUR[S], MINUTE[S], SECOND[S], MILLISECOND[S], MICROSECOND[S], and NANOSECOND[S]. You can only specify one time unit in each interval expression, for example INTERVAL 3 DAYS OR INTERVAL 25 HOURS, but you can produce any granularity by adding together successive INTERVAL values, such as timestamp_value + INTERVAL 3 WEEKS - INTERVAL 1 DAY + INTERVAL 10 MICROSECONDS.

For example:

```
select now() + interval 1 day;
select date_sub(now(), interval 5 minutes);
insert into auction_details
  select auction_id, auction_start_time, auction_start_time + interval 2 days + interval
12 hours
  from new_auctions;
```

Time zones:

By default, Impala does not store timestamps using the local timezone, to avoid undesired results from unexpected time zone issues. Timestamps are stored and interpreted relative to UTC, both when written to or read from data files, or when converted to or from Unix time values through functions such as from_unixtime() or unix_timestamp().

Because Impala does not assume that TIMESTAMP values are in any particular time zone, you must be conscious of the time zone aspects of data that you query, insert, or convert.

For consistency with Unix system calls, the TIMESTAMP returned by the now() function represents the local time in the system time zone, rather than in UTC. To store values relative to the current time in a portable way, convert any now() return values using the to_utc_timestamp() function first. For example, the following example shows that the current time in California (where Cloudera HQ is located) is shortly after 2 PM. If that value was written to a data file, and shipped off to a distant server to be analyzed alongside other data from far-flung locations, the dates and times would not match up precisely because of time zone differences. Therefore, the to_utc_timestamp() function converts it using a common reference point, the UTC time zone (descended from the old Greenwich Mean Time standard). The 'PDT' argument indicates that the original value is from the Pacific time zone with Daylight Saving Time in effect. When servers in all geographic locations run the same transformation on any local date and time values (with the appropriate time zone argument), the stored data uses a consistent representation. Impala queries can use functions such as EXTRACT(), MIN(), AVG(), and so on to do time-series analysis on those timestamps.

```
2015-04-09 21:08:07.664547000
```

The converse function, from_utc_timestamp(), lets you take stored TIMESTAMP data or calculated results and convert back to local date and time for processing on the application side. The following example shows how you might represent some future date (such as the ending date and time of an auction) in UTC, and then convert back to local time when convenient for reporting or other processing. The final query in the example tests whether this arbitrary UTC date and time has passed yet, by converting it back to the local time zone and comparing it against the current date and time.

```
[localhost:21000] > select to_utc_timestamp(now() + interval 2 weeks, 'PDT');
to_utc_timestamp(now() + interval 2 weeks, 'pdt')
2015-04-23 21:08:34.152923000
[localhost:21000] > select from_utc_timestamp('2015-04-23 21:08:34.152923000','PDT');
 from_utc_timestamp('2015-04-23 21:08:34.152923000', 'pdt')
2015-04-23 14:08:34.152923000
[localhost:21000] > select from_utc_timestamp('2015-04-23 21:08:34.152923000','PDT')
< now();
from_utc_timestamp('2015-04-23 21:08:34.152923000', 'pdt') < now()
```

Conversions:

Impala automatically converts STRING literals of the correct format into TIMESTAMP values. Timestamp values are accepted in the format YYYY-MM-DD HH:MM:SS.ssssssss, and can consist of just the date, or just the time, with or without the fractional second portion. For example, you can specify TIMESTAMP values such as '1966-07-30', '08:30:00', or '1985-09-25 17:45:30.005'. Casting an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date (January 1, 1970).

In Impala 1.3 and higher, the FROM_UNIXTIME() and UNIX_TIMESTAMP() functions allow a wider range of format strings, with more flexibility in element order, repetition of letter placeholders, and separator characters. See Impala Date and Time Functions on page 256 for details.

Partitioning:

Although you cannot use a TIMESTAMP column as a partition key, you can extract the individual years, months, days, hours, and so on and partition based on those columns. Because the partition key column values are represented in HDFS directory names, rather than as fields in the data files themselves, you can also keep the original TIMESTAMP values if desired, without duplicating data or wasting storage space. See Partition Key <u>Columns</u> on page 382 for more details on partitioning with date and time values.

```
[localhost:21000] > create table timeline (event string) partitioned by (happened
timestamp);
ERROR: AnalysisException: Type 'TIMESTAMP' is not supported as partition-column type
in column: happened
```

Examples:

```
select cast('1966-07-30' as timestamp);
select cast('1985-09-25 17:45:30.005' as timestamp);
select cast('08:30:00' as timestamp);
select hour('1970-01-01 15:30:00');
                                             -- Succeeds, returns 15.
-- Returns NULL because seconds field
select hour('1970-01-01 15:30');
required.
select hour('1970-01-01 27:30:00');
                                             -- Returns NULL because hour value out of
 range.
```

```
select dayofweek('2004-06-13'); -- Returns 1, representing Sunday.
select dayname('2004-06-13'); -- Returns 'Sunday'.
select date_add('2004-06-13', 365); -- Returns 2005-06-13 with zeros for hh:mm:ss fields.
select day('2004-06-13'); -- Returns 13.
select datediff('1989-12-31','1984-09-01'); -- How many days between these 2 dates? select now(); -- Returns current date and time in local timezone.

create table dates_and_times (t timestamp); insert into dates_and_times values ('1966-07-30'), ('1985-09-25 17:45:30.005'), ('08:30:00'), (now());
```

NULL considerations: Casting any unrecognized STRING value to this type produces a NULL value.

Partitioning: Because this type potentially has so many distinct values, it is often not a sensible choice for a partition key column. For example, events 1 millisecond apart would be stored in different partitions. Consider using the TRUNC() function to condense the number of distinct values, and partition on a new column with the truncated values.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other binary formats.

Internal details: Represented in memory as a 16-byte value.

Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always filled in for column statistics, even before you run the COMPUTE STATS statement.

Restrictions:

If you cast a STRING with an unrecognized format to a TIMESTAMP, the result is NULL rather than an error. Make sure to test your data pipeline to be sure any textual date and time values are in a format that Impala TIMESTAMP can recognize.

Currently, Avro tables cannot contain TIMESTAMP columns. If you need to store date and time values in Avro tables, as a workaround you can use a STRING representation of the values, convert the values to BIGINT with the UNIX_TIMESTAMP() function, or create separate numeric columns for individual date and time fields using the EXTRACT() function.

Related information:

- <u>Timestamp Literals</u> on page 136.
- To convert to or from different date formats, or perform date arithmetic, use the date and time functions described in lmpala-bate-and-Time-Functions on page 256. In particular, the from_unixtime() function requires a case-sensitive format string such as "yyyy-MM-dd HH:mm:ss.SSSS", matching one of the allowed variations of a TIMESTAMP value (date plus time, only date, only time, optional fractional seconds).
- See <u>SQL Differences Between Impala and Hive</u> on page 310 for details about differences in TIMESTAMP handling between Impala and Hive.

TINYINT Data Type

A 1-byte integer data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

```
column_name TINYINT
```

Range: -128 .. 127. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a larger integer type (SMALLINT, INT, OF BIGINT) or a floating-point type (FLOAT or DOUBLE) automatically. Use CAST() to convert to STRING or TIMESTAMP. Casting an integer or floating-point value n to TIMESTAMP produces a value that is n seconds past the start of the epoch date (January 1, 1970).

Usage notes:

For a convenient and automated way to check the bounds of the TINYINT type, call the functions MIN_TINYINT() and MAX_TINYINT().

If an integer value is too large to be represented as a TINYINT, use a SMALLINT instead.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

```
CREATE TABLE t1 (x TINYINT);
SELECT CAST(100 AS TINYINT);
```

Parquet considerations:

Physically, Parquet files represent TINYINT and SMALLINT values as 32-bit integers. Although Impala rejects attempts to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE ... LIKE PARQUET SYNTAX, ANY TINYINT OR SMALLINT COlumns in the original table turn into INT columns in the new table.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other binary formats.

Internal details: Represented in memory as a 1-byte value.

Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 134, TINYINT Data Type on page 130, SMALLINT Data Type on page 125, INT Data Type on page 124, BIGINT Data Type on page 110, DECIMAL Data Type (CDH 5.1 or higher only) on page 114, Impala Mathematical Functions on page 248

VARCHAR Data Type (CDH 5.2 or higher only)

A variable-length character type, truncated during processing if necessary to fit within the specified length.

Syntax:

In the column definition of a CREATE TABLE statement:

```
column_name VARCHAR(max_length)
```

The maximum length you can specify is 65,535.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values over character-based values, if the partition key is a string representation of a number, prefer to use an integer type with sufficient range (INT, BIGINT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.

Parquet considerations:

- This type can be read from and written to Parquet files.
- There is no requirement for a particular level of Parquet.

- Parquet files generated by Impala and containing this type can be freely interchanged with other components such as Hive and MapReduce.
- Parquet data files can contain values that are longer than allowed by the VARCHAR (n) length limit. Impala ignores any extra trailing characters when it processes those values during a query.

Text table considerations:

Text data files can contain values that are longer than allowed by the VARCHAR(n) length limit. Any extra trailing characters are ignored when Impala processes those values during a query.

Schema evolution considerations:

You can use ALTER TABLE ... CHANGE to switch column data types to and from VARCHAR. You can convert from STRING to VARCHAR(n), or from VARCHAR(n) to STRING, or from CHAR(n) to VARCHAR(n), or from VARCHAR(n) to CHAR(n). When switching back and forth between VARCHAR and CHAR, you can also change the length value. This schema evolution works the same for tables using any file format. If a table contains values longer than the maximum length defined for a VARCHAR column, Impala does not return an error. Any extra trailing characters are ignored when Impala processes those values during a query.

Compatibility:

This type is available using Impala 2.0 or higher under CDH 4, or with Impala on CDH 5.2 or higher. There are no compatibility issues with other components when exchanging data files or running Impala on CDH 4.

Internal details: Represented in memory as a byte array with the minimum size needed to represent each value.

Added in: CDH 5.2.0 (Impala 2.0.0)

Column statistics considerations: Because the values of this type have variable size, none of the column statistics fields are filled in until you run the COMPUTE STATS statement.

Restrictions:

All data in CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have binary data from another database system (that is, a BLOB type), use a STRING column to hold it.

Examples:

The following examples show how long and short VARCHAR values are treated. Values longer than the maximum specified length are truncated by CAST(), or when queried from existing data files. Values shorter than the maximum specified length are represented as the actual length of the value, with no extra padding as seen with

```
create table varchar_1 (s varchar(1));
create table varchar_4 (s varchar(4));
create table varchar_20 (s varchar(20));
insert into varchar_1 values (cast('a' as varchar(1))), (cast('b' as varchar(1))),
(cast('hello' as varchar(1))), (cast('world' as varchar(1)));
insert into varchar_4 values (cast('a' as varchar(4))), (cast('b' as varchar(4))),
(cast('hello' as varchar(4))), (cast('world' as varchar(4)));
insert into varchar_20 values (cast('a' as varchar(20))), (cast('b' as varchar(20))),
(cast('hello' as varchar(20))), (cast('world' as varchar(20)));
select * from varchar_1;
s
 ---+
  а
  h
 h
W
select * from varchar_4;
s
a
```

```
b
 hell
 worl
[localhost:21000] > select * from varchar_20;
 а
 hello
select concat('[',s,']') as s from varchar_20;
 [a]
 [b]
 [hello]
 [world]
```

The following example shows how identical VARCHAR values compare as equal, even if the columns are defined with different maximum lengths. Both tables contain 'a' and 'b' values. The longer 'hello' and 'world' values from the VARCHAR_20 table were truncated when inserted into the VARCHAR_1 table.

```
select s from varchar_1 join varchar_20 using (s);
s
l a
l b
```

The following examples show how VARCHAR values are freely interchangeable with STRING values in contexts such as comparison operators and built-in functions:

```
select length(cast('foo' as varchar(100))) as length;
+----+
length
3
select cast('xyz' as varchar(5)) > cast('abc' as varchar(10)) as greater;
greater
true
```

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or user-defined aggregate function (UDA).

Related information:

STRING Data Type on page 126, CHAR Data Type (CDH 5.2 or higher only) on page 112, String Literals on page 135, Impala String Functions on page 265

Literals

Each of the Impala data types has corresponding notation for literal values of that type. You specify literal values in SQL statements, such as in the SELECT list or WHERE clause of a query, or as an argument to a function call. See <u>Data Types</u> on page 109 for a complete list of types, ranges, and conversion rules.

Numeric Literals

To write literals for the integer types (TINYINT, SMALLINT, INT, and BIGINT), use a sequence of digits with optional leading zeros.

To write literals for the floating-point types (DECIMAL, FLOAT, and DOUBLE), use a sequence of digits with an optional decimal point (. character). To preserve accuracy during arithmetic expressions, Impala interprets floating-point literals as the DECIMAL type with the smallest appropriate precision and scale, until required by the context to convert the result to FLOAT or DOUBLE.

Integer values are promoted to floating-point when necessary, based on the context.

You can also use exponential notation by including an e character. For example, 1e6 is 1 times 10 to the power of 6 (1 million). A number in exponential notation is always interpreted as floating-point.

When Impala encounters a numeric literal, it considers the type to be the "smallest" that can accurately represent the value. The type is promoted to larger or more accurate types if necessary, based on subsequent parts of an expression.

For example, you can see by the types Impala defines for the following table columns how it interprets the corresponding numeric literals:

```
[localhost:21000] > create table ten as select 10 as x;
summary
Inserted 1 row(s)
[localhost:21000] > desc ten;
name type comment
x | tinyint |
[localhost:21000] > create table four_k as select 4096 as x;
summary
| Inserted 1 row(s)
[localhost:21000] > desc four k;
+----
| name | type | comment |
x | smallint |
[localhost:21000] > create table one point five as select 1.5 as x;
summary
| Inserted 1 row(s) |
[localhost:21000] > desc one_point_five;
name | type | comment
\times | decimal(2,1) |
[localhost:21000] > create table one_point_three_three_three as select 1.333 as x;
summary
Inserted 1 row(s)
[localhost:21000] > desc one_point_three_three;
+----+
name | type | comment
```

```
| decimal(4,3) |
```

String Literals

String literals are quoted using either single or double quotation marks. You can use either kind of quotes for string literals, even both kinds for different literals within the same statement.

Quoted literals are considered to be of type STRING. To use quoted literals in contexts requiring a CHAR or VARCHAR value, CAST() the literal to a CHAR or VARCHAR of the appropriate length.

Escaping special characters:

To encode special characters within a string literal, precede them with the backslash (\) escape character:

- \t represents a tab.
- \n represents a newline or linefeed. This might cause extra line breaks in impala-shell output.
- \r represents a carriage return. This might cause unusual formatting (making it appear that some content is overwritten) in impala-shell output.
- \b represents a backspace. This might cause unusual formatting (making it appear that some content is overwritten) in impala-shell output.
- \0 represents an ASCII nul character (not the same as a SQL NULL). This might not be visible in impala-shell output.
- \Z represents a DOS end-of-file character. This might not be visible in impala-shell output.
- \% and _ can be used to escape wildcard characters within the string passed to the LIKE operator.
- \ followed by 3 octal digits represents the ASCII code of a single character; for example, \101 is ASCII 65, the character A.
- Use two consecutive backslashes (\\) to prevent the backslash from being interpreted as an escape character.
- Use the backslash to escape single or double quotation mark characters within a string literal, if the literal is enclosed by the same type of quotation mark.
- If the character following the \ does not represent the start of a recognized escape sequence, the character is passed through unchanged.

Quotes within quotes:

To include a single quotation character within a string value, enclose the literal with either single or double quotation marks, and optionally escape the single quote as a \ ' sequence. Earlier releases required escaping a single quote inside double quotes. Continue using escape sequences in this case if you also need to run your SQL code on older versions of Impala.

To include a double quotation character within a string value, enclose the literal with single quotation marks, no escaping is necessary in this case. Or, enclose the literal with double quotation marks and escape the double quote as a \ " sequence.

```
[localhost:21000] > select "What\'s happening?" as single_within_double,
                      > 'I\'m not sure.' as single_within_single,
> "Homer wrote \"The Iliad\"." as double_within_double,
> 'Homer also wrote "The Odyssey".' as double_within_single;
  single within double | single within single | double within double
double_within_single
                                                          | Homer wrote "The Iliad". | Homer also
 What's happening?
                             I'm not sure.
 wrote "The Odyssey". |
```

Field terminator character in CREATE TABLE:

Note: The CREATE TABLE clauses FIELDS TERMINATED BY, ESCAPED BY, and LINES TERMINATED BY have special rules for the string literal used for their argument, because they all require a single character. You can use a regular character surrounded by single or double quotation marks, an octal sequence such as '\054' (representing a comma), or an integer in the range '-127'..'128' (with quotation marks but no backslash), which is interpreted as a single-byte ASCII character. Negative values are subtracted from 256; for example, FIELDS TERMINATED BY '-2' sets the field delimiter to ASCII code 254, the "Icelandic Thorn" character used as a delimiter by some data formats.

impala-shell considerations:

When dealing with output that includes non-ASCII or non-printable characters such as linefeeds and backspaces, use the impala-shell options to save to a file, turn off pretty printing, or both rather than relying on how the output appears visually. See impala-shell Configuration Options on page 318 for a list of impala-shell options.

Boolean Literals

For BOOLEAN values, the literals are TRUE and FALSE, with no quotation marks and case-insensitive.

```
select true;
select * from t1 where assertion = false;
select case bool_col when true then 'yes' when false 'no' else 'null' end from t1;
```

Timestamp Literals

Impala automatically converts STRING literals of the correct format into TIMESTAMP values. Timestamp values are accepted in the format YYYY-MM-DD HH:MM:SS.ssssssss, and can consist of just the date, or just the time, with or without the fractional second portion. For example, you can specify TIMESTAMP values such as '1966-07-30', '08:30:00', or '1985-09-25 17:45:30.005'. Casting an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date (January 1, 1970).

You can also use INTERVAL expressions to add or subtract from timestamp literal values, such as '1966-07-30' + INTERVAL 5 YEARS + INTERVAL 3 DAYS. See TIMESTAMP Data Type on page 128 for details.

NULL

The notion of NULL values is familiar from all kinds of database systems, but each SQL dialect can have its own behavior and restrictions on NULL values. For Big Data processing, the precise semantics of NULL values are significant: any misunderstanding could lead to inaccurate results or misformatted data, that could be time-consuming to correct for large data sets.

- NULL is a different value than an empty string. The empty string is represented by a string literal with nothing inside, " " or ' '.
- In a delimited text file, the NULL value is represented by the special token \N.
- When Impala inserts data into a partitioned table, and the value of one of the partitioning columns is NULL or the empty string, the data is placed in a special partition that holds only these two kinds of values. When these values are returned in a query, the result is <code>NULL</code> whether the value was originally <code>NULL</code> or an empty string. This behavior is compatible with the way Hive treats NULL values in partitioned tables. Hive does not allow empty strings as partition keys, and it returns a string value such as __HIVE_DEFAULT_PARTITION__ instead of NULL when such values are returned from a query. For example:

```
create table t1 (i int) partitioned by (x int, y string);
-- Select an INT column from another table, with all rows going into a special
HDFS subdirectory
-- named __HIVE_DEFAULT_PARTITION__. Depending on whether one or both of the
partitioning keys
-- are null, this special directory name occurs at different levels of the physical
data directory
```

```
-- for the table.
insert into t1 partition(x=NULL, y=NULL) select c1 from some_other_table;
insert into t1 partition(x, y=NULL) select c1, c2 from some_other_table; insert into t1 partition(x=NULL, y) select c1, c3 from some_other_table;
```

- There is no NOT NULL clause when defining a column to prevent NULL values in that column.
- There is no DEFAULT clause to specify a non-NULL default value.
- If an INSERT operation mentions some columns but not others, the unmentioned columns contain NULL for all inserted rows.
- In Impala 1.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASC queries, and at the beginning of the result set for ORDER BY ... DESC queries. In effect, NULL is considered greater than all other values for sorting purposes. The original Impala behavior always put <code>NULL</code> values at the end, even for ORDER BY ... DESC queries. The new behavior in Impala 1.2.1 makes Impala more compatible with other popular database systems. In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL by adding the clause NULLS FIRST or NULLS LAST at the end of the ORDER BY clause.
 - Note: Because the NULLS FIRST and NULLS LAST keywords are not currently available in Hive queries, any views you create using those keywords will not be available through Hive.
- In all other contexts besides sorting with ORDER BY, comparing a NULL to anything else returns NULL, making the comparison meaningless. For example, 10 > NULL produces NULL, 10 < NULL also produces NULL, 5 BETWEEN 1 AND NULL produces NULL, and so on.

Several built-in functions serve as shorthand for evaluating expressions and returning NULL, 0, or some other substitution value depending on the expression result: ifnull(), isnull(), nvl(), nullif(), nullifzero(), and zeroifnull(). See Impala Conditional Functions on page 262 for details.

SQL Operators

SQL operators are a class of comparison functions that are widely used within the WHERE clauses of SELECT statements.

Arithmetic Operators

The arithmetic operators use expressions with a left-hand argument, the operator, and then (in most cases) a right-hand argument.

Syntax:

```
left_hand_arg_binary_operator_right_hand_arg
unary_operator single_arg
```

- + and -: Can be used either as unary or binary operators.
 - With unary notation, such as +5, -2.5, or -col_name, they multiply their single numeric argument by +1 or -1. Therefore, unary + returns its argument unchanged, while unary - flips the sign of its argument. Although you can double up these operators in expressions such as ++5 (always positive) or -+2 or +-2 (both always negative), you cannot double the unary minus operator because -- is interpreted as the start of a comment. (You can use a double unary minus operator if you separate the - characters, for example with a space or parentheses.)
 - With binary notation, such as 2+2, 5-2.5, or coll + col2, they add or subtract respectively the right-hand argument to (or from) the left-hand argument. Both arguments must be of numeric types.
- * and /: Multiplication and division respectively. Both arguments must be of numeric types.

When multiplying, the shorter argument is promoted if necessary (such as SMALLINT to INT OR BIGINT, OR FLOAT to DOUBLE), and then the result is promoted again to the next larger type. Thus, multiplying a TINYINT

and an INT produces a BIGINT result. Multiplying a FLOAT and a FLOAT produces a DOUBLE result. Multiplying a FLOAT and a DOUBLE or a DOUBLE and a DOUBLE produces a DECIMAL (38,17), because DECIMAL values can represent much larger and more precise values than DOUBLE.

When dividing, Impala always treats the arguments and result as DOUBLE values to avoid losing precision. If you need to insert the results of a division operation into a FLOAT column, use the CAST() function to convert the result to the correct type.

- %: Modulo operator. Returns the remainder of the left-hand argument divided by the right-hand argument. Both arguments must be of one of the integer types.
- &, |, and ^: Bitwise operators that return the logical AND, logical OR, or logical XOR (exclusive OR) of their argument values. Both arguments must be of one of the integer types. If the arguments are of different type, the argument with the smaller type is implicitly extended to match the argument with the longer type.

You can chain a sequence of arithmetic expressions, optionally grouping them with parentheses.

The arithmetic operators generally do not have equivalent calling conventions using functional notation. For example, there is no MOD() function equivalent to the % modulo operator. Conversely, there are some arithmetic functions that do not have a corresponding operator. For example, for exponentiation you use the POW() function, but there is no ** exponentiation operator. See Impala Mathematical Functions on page 248 for the arithmetic functions you can use.

BETWEEN Operator

In a where clause, compares an expression to both a lower and upper bound. The comparison is successful is the expression is greater than or equal to the lower bound, and less than or equal to the upper bound. If the bound values are switched, so the lower bound is greater than the upper bound, does not match any values.

Syntax:

```
expression BETWEEN lower_bound AND upper_bound
```

Data types: Typically used with numeric data types. Works with any data type, although not very practical for BOOLEAN values. (BETWEEN false AND true will match all BOOLEAN values.) Use CAST() if necessary to ensure the lower and upper bound values are compatible types. Call string or date/time functions if necessary to extract or transform the relevant portion to compare, especially if the value can be transformed into a number.

Usage notes:

Be careful when using short string operands. A longer string that starts with the upper bound value will not be included, because it is considered greater than the upper bound. For example, BETWEEN 'A' and 'M' would not match the string value 'Midway'. Use functions such as upper(), lower(), substr(), trim(), and so on if necessary to ensure the comparison works as expected.

Examples:

```
-- Retrieve data for January through June, inclusive.
select c1 from t1 where month between 1 and 6;
-- Retrieve data for names beginning with 'A' through 'M' inclusive.
-- Only test the first letter to ensure all the values starting with 'M' are matched.
-- Do a case-insensitive comparison to match names with various capitalization
conventions.
select last_name from customers where upper(substr(last_name,1,1)) between 'A' and 'M';
-- Retrieve data for only the first week of each month.
select count(distinct visitor_id)) from web_traffic where dayofmonth(when_viewed)
between 1 and 7;
```

Comparison Operators

Impala supports the familiar comparison operators for checking equality and sort order for the column data types:

Syntax:

```
left_hand_expression comparison_operator right_hand_expression
```

- =, !=, <>: apply to all types.
- <, <=, >, >=: apply to all types; for BOOLEAN, TRUE is considered greater than FALSE.

Alternatives:

The IN and BETWEEN operators provide shorthand notation for expressing combinations of equality, less than, and greater than comparisons with a single operator.

Because comparing any value to NULL produces NULL rather than TRUE or FALSE, use the IS NULL and IS NOT NULL operators to check if a value is NULL or not.

EXISTS Operator

The EXISTS operator tests whether a subquery returns any results.

The converse, NOT EXISTS, helps to find all the values from one table that do not have any corresponding values in another table.

Syntax:

```
EXISTS (subquery)
NOT EXISTS (subquery)
```

Usage notes:

The subquery can refer to a different table than the outer query block, or the same table. For example, you might USE EXISTS OF NOT EXISTS to check the existence of parent/child relationships between two columns of the same table.

You can also use operators and function calls within the subquery to test for other kinds of relationships other than strict equality. For example, you might use a call to COUNT() in the subquery to check whether the number of matching values is higher or lower than some limit. You might call a UDF in the subquery to check whether values in one table matches a hashed representation of those same values in a different table.

NULL considerations:

If the subquery returns any value at all (even NULL), EXISTS returns TRUE and NOT EXISTS returns false.

The following example shows how even when the subquery returns only NULL values, EXISTS still returns TRUE and thus matches all the rows from the table in the outer query block.

```
[localhost:21000] > create table all_nulls (x int);
[localhost:21000] > insert into all_nulls values (null), (null), (null);
[localhost:21000] > select y from t2 where exists (select x from all_nulls);
У
 2
 4
 6
```

However, if the table in the subquery is empty and so the subquery returns an empty result set, EXISTS returns FALSE:

```
[localhost:21000] > create table empty (x int);
[localhost:21000] > select y from t2 where exists (select x from empty);
[localhost:21000] >
```

Added in: CDH 5.2.0 (Impala 2.0.0)

Restrictions:

Correlated subqueries used in EXISTS and IN operators cannot include a LIMIT clause.

The NOT EXISTS operator requires a correlated subquery.

Examples:

The following examples refer to these simple tables containing small sets of integers or strings:

The following example shows a correlated subquery that finds all the values in one table that exist in another table. For each value x from T1, the query checks if the Y column of T2 contains an identical value, and the EXISTS operator returns TRUE or FALSE as appropriate in each case.

An uncorrelated query is less interesting in this case. Because the subquery always returns TRUE, all rows from T1 are returned. If the table contents where changed so that the subquery did not match any rows, none of the rows from T1 would be returned.

The following example shows how an uncorrelated subquery can test for the existence of some condition within a table. By using LIMIT 1 or an aggregate function, the query returns a single result or no result based on

whether the subquery matches any rows. Here, we know that T1 and T2 contain some even numbers, but T3 does not.

```
[localhost:21000] > select "contains an even number" from t1 where exists (select x
from t1 where x % 2 = 0) limit 1;
 'contains an even number'
contains an even number
[localhost:21000] > select "contains an even number" as assertion from t1 where exists
(select x from t1 where x % 2 = 0) limit 1;
 ----+
contains an even number
[localhost:21000] > select "contains an even number" as assertion from t2 where exists
 (select x from t2 where y % 2 = 0) limit 1;
ERROR: AnalysisException: couldn't resolve column reference: 'x'
[localhost:21000] > select "contains an even number" as assertion from t2 where exists
(select y from t2 where y % 2 = 0) limit 1;
assertion
contains an even number
[localhost:21000] > select "contains an even number" as assertion from t3 where exists
 (select z from t3 where z % 2 = 0) limit 1;
[localhost:21000] >
```

The following example finds numbers in one table that are 1 greater than numbers from another table. The EXISTS notation is simpler than an equivalent CROSS JOIN between the tables. (The example then also illustrates how the same test could be performed using an IN operator.)

```
[localhost:21000] > select x from t1 where exists (select y from t2 where x = y + 1);
x
| 3
5
[localhost:21000] > select x from t1 where x in (select y + 1 from t2);
x
| 3
5
```

The following example finds values from one table that do not exist in another table.

```
[localhost:21000] > select x from t1 where not exists (select y from t2 where x = y);
X
1 1
3
5
```

The following example uses the NOT EXISTS operator to find all the leaf nodes in tree-structured data. This simplified "tree of life" has multiple levels (class, order, family, and so on), with each item pointing upward through a PARENT pointer. The example runs an outer query and a subquery on the same table, returning only those items whose ID value is *not* referenced by the PARENT of any other item.

```
[localhost:21000] > create table tree (id int, parent int, name string);
[localhost:21000] > insert overwrite tree values
```

Related information:

Subqueries on page 228

IN Operator

The IN operator compares an argument value to a set of values, and returns TRUE if the argument matches any value in the set. The NOT IN operator reverses the comparison, and checks if the argument value is not part of a set of values.

Syntax:

```
expression IN (expression [, expression])
expression IN (subquery)

expression NOT IN (expression [, expression])
expression NOT IN (subquery)
```

The left-hand expression and the set of comparison values must be of compatible types.

The left-hand expression must consist only of a single value, not a tuple. Although the left-hand expression is typically a column name, it could also be some other value. For example, the WHERE clauses WHERE id IN (5) and WHERE 5 IN (id) produce the same results.

The set of values to check against can be specified as constants, function calls, column names, or other expressions in the query text. When the values are listed explicitly, the maximum number of expressions is 10,000.

In Impala 2.0 and higher, the set of values can also be generated by a subquery. In can evaluate an unlimited number of results using a subquery.

Usage notes:

Any expression using the IN operator could be rewritten as a series of equality tests connected with OR, but the IN syntax is often clearer, more concise, and easier for Impala to optimize. For example, with partitioned tables, queries frequently use IN clauses to filter data by comparing the partition key columns to specific values.

NULL considerations:

If there really is a matching non-null value, IN returns TRUE:

```
true
[localhost:21000] > select 1 not in (1,null,2,3);
1 not in (1, null, 2, 3)
```

If the searched value is not found in the comparison values, and the comparison values include NULL, the result

```
[localhost:21000] > select 5 in (1,null,2,3);
5 in (1, null, 2, 3)
NULL
[localhost:21000] > select 5 not in (1,null,2,3);
5 not in (1, null, 2, 3)
NULL
[localhost:21000] > select 1 in (null);
| 1 in (null) |
[localhost:21000] > select 1 not in (null);
1 not in (null)
NULL
```

If the left-hand argument is NULL, IN always returns NULL. This rule applies even if the comparison values include NULL.

```
[localhost:21000] > select null in (1,2,3);
null in (1, 2, 3)
NULL
[localhost:21000] > select null not in (1,2,3);
| null not in (1, 2, 3) |
[localhost:21000] > select null in (null);
null in (null)
NULL
[localhost:21000] > select null not in (null);
null not in (null)
NULL
```

Added in: Available in earlier Impala releases, but new capabilities were added in CDH 5.2.0 / Impala 2.0.0

Restrictions:

Correlated subqueries used in EXISTS and IN operators cannot include a LIMIT clause.

Examples:

```
-- Using IN is concise and self-documenting.
SELECT * FROM t1 WHERE c1 IN (1,2,10);
-- Equivalent to series of = comparisons ORed together.
SELECT * FROM t1 WHERE c1 = 1 OR c1 = 2 OR c1 = 10;
SELECT c1 AS "starts with vowel" FROM t2 WHERE upper(substr(c1,1,1)) IN
('A','E','I','O','U');
SELECT COUNT(DISTINCT(visitor_id)) FROM web_traffic WHERE month IN
('January','June','July');
```

Related information:

Subqueries on page 228

IS NULL Operator

The IS NULL operator, and its converse the IS NOT NULL operator, test whether a specified value is NULL. Because using NULL with any of the other comparison operators such as = or != also returns NULL rather than TRUE or FALSE, you use a special-purpose comparison operator to check for this special condition.

Syntax:

```
expression IS NULL
expression IS NOT NULL
```

Usage notes:

In many cases, NULL values indicate some incorrect or incomplete processing during data ingestion or conversion. You might check whether any values in a column are NULL, and if so take some followup action to fill them in.

With sparse data, often represented in "wide" tables, it is common for most values to be NULL with only an occasional non-NULL value. In those cases, you can use the IS NOT NULL operator to identify the rows containing any data at all for a particular column, regardless of the actual value.

With a well-designed database schema, effective use of NULL values and IS NULL and IS NOT NULL operators can save having to design custom logic around special values such as 0, -1, 'N/A', empty string, and so on. NULL lets you distinguish between a value that is known to be 0, false, or empty, and a truly unknown value.

Examples:

```
-- If this value is non-zero, something is wrong.
select count(*) from employees where employee_id is null;
-- With data from disparate sources, some fields might be blank.
-- Not necessarily an error condition.
select count(*) from census where household_income is null;
-- Sometimes we expect fields to be null, and followup action
-- is needed when they are not.
select count(*) from web_traffic where weird_http_code is not null;
```

LIKE Operator

A comparison operator for STRING data, with basic wildcard capability using _ to match a single character and % to match multiple characters. The argument expression must match the entire string value. Typically, it is more efficient to put any % wildcard match at the end of the string.

Syntax:

```
string_expression LIKE wildcard_expression
string_expression NOT LIKE wildcard_expression
```

Examples:

```
select distinct c_last_name from customer where c_last_name like 'Mc%' or c_last_name
like 'Mac%';
select count(c_last_name) from customer where c_last_name like 'M%';
select c_email_address from customer where c_email_address like '%.edu';
-- We can find 4-letter names beginning with 'M' by calling functions...
select distinct c_last_name from customer where length(c_last_name) = 4 and
substr(c_last_name,1,1) = 'M';
-- ...or in a more readable way by matching M followed by exactly 3 characters.
select distinct c_last_name from customer where c_last_name like 'M___';
```

For a more general kind of search operator using regular expressions, see <u>REGEXP Operator</u> on page 147.

Logical Operators

Logical operators return a BOOLEAN value, based on a binary or unary logical operation between arguments that are also Booleans. Typically, the argument expressions use comparison operators.

Syntax:

```
boolean_expression binary_logical_operator boolean_expression
unary_logical_operator boolean_expression
```

The Impala logical operators are:

- AND: A binary operator that returns true if its left-hand and right-hand arguments both evaluate to true, NULL if either argument is NULL, and false otherwise.
- OR: A binary operator that returns true if either of its left-hand and right-hand arguments evaluate to true, NULL if one argument is NULL and the other is either NULL or false, and false otherwise.
- NOT: A unary operator that flips the state of a Boolean expression from true to false, or false to true. If the argument expression is <code>NULL</code>, the result remains <code>NULL</code>. (When <code>NOT</code> is used this way as a unary logical operator, it works differently than the IS NOT NULL comparison operator, which returns true when applied to a NULL.)

Examples:

These examples demonstrate the AND operator:

```
______
[localhost:21000] > select true and true;
true and true
true
[localhost:21000] > select true and false;
true and false
false
[localhost:21000] > select false and false;
false and false
false
[localhost:21000] > select true and null;
true and null
NULL
[localhost:21000] > select (10 > 2) and (6 != 9);
(10 > 2) and (6 != 9)
```

These examples demonstrate the OR operator:

```
[localhost:21000] > select true or true;
true or true
true
[localhost:21000] > select true or false;
true or false
[localhost:21000] > select false or false;
false or false
false
[localhost:21000] > select true or null;
true or null
[localhost:21000] > select null or true;
| null or true |
true
[localhost:21000] > select false or null;
false or null
NULL
[localhost:21000] > select (1 = 1) or ('hello' = 'world');
(1 = 1) or ('hello' = 'world')
true
[localhost:21000] > select (2 + 2 != 4) or (-1 > 0);
(2 + 2 != 4) \text{ or } (-1 > 0)
false
```

These examples demonstrate the NOT operator:

```
not null
NULL
[localhost:21000] > select not (1=1);
| not (1 = 1) |
false
```

REGEXP Operator

Tests whether a value matches a regular expression. Uses the POSIX regular expression syntax where ^ and \$ match the beginning and end of the string, . represents any single character, * represents a sequence of zero or more items, + represents a sequence of one or more items, ? produces a non-greedy match, and so on.

Syntax:

```
string_expression REGEXP regular_expression
```

Usage notes:

The regular expression must match the entire value, not just occur somewhere inside it. Use . * at the beginning and/or the end if you only need to match characters anywhere in the middle. Thus, the ^ and \$ atoms are often redundant, although you might already have them in your expression strings that you reuse from elsewhere.

The RLIKE operator is a synonym for REGEXP.

The | symbol is the alternation operator, typically used within () to match different sequences. The () groups do not allow backreferences. To retrieve the part of a value matched within a () section, use the regexp extract() built-in function.

Note:

In Impala 1.3.1 and higher, the REGEXP and RLIKE operators now match a regular expression string that occurs anywhere inside the target string, the same as if the regular expression was enclosed on each side by .*. See <u>REGEXP Operator</u> on page 147 for examples. Previously, these operators only succeeded when the regular expression matched the entire target string. This change improves compatibility with the regular expression support for popular database systems. There is no change to the behavior of the regexp_extract() and regexp_replace() built-in functions.

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from regular expressions in Perl, Python, and so on, including . *? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression patterns if necessary. See <u>Incompatible Changes Introduced in Cloudera Impala 2.0.0 / CDH 5.2.0</u> on page 470 for details.

Examples:

The following examples demonstrate the identical syntax for the REGEXP and RLIKE operators.

```
-- Find all customers whose first name starts with 'J', followed by 0 or more of any
character.
select c_first_name, c_last_name from customer where c_first_name regexp '^J.*';
select c_first_name, c_last_name from customer where c_first_name rlike '^J.*';
-- Find 'Macdonald', where the first 'a' is optional and the 'D' can be upper- or
lowercase.
```

```
-- The ^...$ are required, to match the start and end of the value.
select c_first_name, c_last_name from customer where c_last_name regexp
'^Ma?c[Dd]onald$';
select c_first_name, c_last_name from customer where c_last_name rlike '^Ma?c[Dd]onald$';
-- Match multiple character sequences, either 'Mac' or 'Mc'.
select c_first_name, c_last_name from customer where c_last_name regexp
'^(Mac|Mc)donald$';
select c_first_name, c_last_name from customer where c_last_name rlike
'^(Mac | Mc)donald$';
-- Find names starting with 'S', then one or more vowels, then 'r', then any other
characters.
-- Matches 'Searcy', 'Sorenson', 'Sauer'.
select c_first_name, c_last_name from customer where c_last_name regexp '^S[aeiou]+r.*$';
select c_first_name, c_last_name from customer where c_last_name rlike '^S[aeiou]+r.*$';
-- Find names that end with 2 or more vowels: letters from the set a,e,i,o,u.
select c_first_name, c_last_name from customer where c_last_name regexp '.*[aeiou]{2,}$';
select c_first_name, c_last_name from customer where c_last_name rlike '.*[aeiou]{2,}$';
-- You can use letter ranges in the [] blocks, for example to find names starting with
A, B, or C.
select c_first_name, c_last_name from customer where c_last_name regexp '^[A-C].*';
select c_first_name, c_last_name from customer where c_last_name rlike '^[A-C].*';
-- If you are not sure about case, leading/trailing spaces, and so on, you can process
-- column using string functions first.
select c_first_name, c_last_name from customer where lower(trim(c_last_name)) regexp
'^de.*';
select c_first_name, c_last_name from customer where lower(trim(c_last_name)) rlike
'^de.*';
```

RLIKE Operator

Synonym for the REGEXP operator. See <u>REGEXP Operator</u> on page 147 for details.

Examples:

The following examples demonstrate the identical syntax for the REGEXP and RLIKE operators.

```
______
-- Find all customers whose first name starts with 'J', followed by 0 or more of any
select c_first_name, c_last_name from customer where c_first_name regexp '^J.*';
select c_first_name, c_last_name from customer where c_first_name rlike '^J.*';
-- Find 'Macdonald', where the first 'a' is optional and the 'D' can be upper- or
 -- The ^...$ are required, to match the start and end of the value.
select c_first_name, c_last_name from customer where c_last_name regexp
 '^Ma?c[Dd]onald$';
select c_first_name, c_last_name from customer where c_last_name rlike '^Ma?c[Dd]onald$';
-- Match multiple character sequences, either 'Mac' or 'Mc'.
select c_first_name, c_last_name from customer where c_last_name regexp
 '^(Mac Mc)donald$';
 select c_first_name, c_last_name from customer where c_last_name rlike
 '^(Mac|Mc)donald$';
 -- Find names starting with 'S', then one or more vowels, then 'r', then any other
characters.
-- Matches 'Searcy', 'Sorenson', 'Sauer'.
select c_first_name, c_last_name from customer where c_last_name regexp '^S[aeiou]+r.*$';
 select c_first_name, c_last_name from customer where c_last_name rlike '^S[aeiou]+r.*$';
-- Find names that end with 2 or more vowels: letters from the set a,e,i,o,u.
select c_first_name, c_last_name from customer where c_last_name regexp '.*[aeiou]{2,}$'; select c_first_name, c_last_name from customer where c_last_name rlike '.*[aeiou]{2,}$';
 -- You can use letter ranges in the [] blocks, for example to find names starting with
```

```
A, B, or C.
select c_first_name, c_last_name from customer where c_last_name regexp '^[A-C].*';
select c_first_name, c_last_name from customer where c_last_name rlike '^[A-C].*';
-- If you are not sure about case, leading/trailing spaces, and so on, you can process
the
-- column using string functions first.
select c_first_name, c_last_name from customer where lower(trim(c_last_name)) regexp
'^de.*';
select c_first_name, c_last_name from customer where lower(trim(c_last_name)) rlike
'^de.*';
```

Schema Objects and Object Names

With Impala, you work schema objects that are familiar to database users: primarily databases, tables, views, and functions. The SQL syntax to work with these objects is explained in SQL Statements on page 157. This section explains the conceptual knowledge you need to work with these objects and the various ways to specify their names.

Within a table, partitions can also be considered a kind of object. Partitioning is an important subject for Impala, with its own documentation section covering use cases and performance considerations. See Partitioning for Impala Tables on page 379 for details.

Impala does not have a counterpart of the "tablespace" notion from some database systems. By default, all the data files for a database, table, or partition are located within nested folders within the HDFS file system. You can also specify a particular HDFS location for a given Impala table or partition. The raw data for these objects is represented as a collection of data files, providing the flexibility to load data by simply moving files into the expected HDFS location.

Information about the schema objects is held in the <u>metastore</u> database. This database is shared between Impala and Hive, allowing each to create, drop, and query each other's databases, tables, and so on. When Impala makes a change to schema objects through a CREATE, ALTER, DROP, INSERT, or LOAD DATA statement, it broadcasts those changes to all nodes in the cluster through the <u>catalog service</u>. When you make such changes through Hive or directly through manipulating HDFS files, you use the REFRESH or INVALIDATE METADATA statements on the Impala side to recognize the newly loaded data, new tables, and so on.

Aliases

When you write the names of tables, columns, or column expressions in a query, you can assign an alias at the same time. Then you can specify the alias rather than the original name when making other references to the table or column in the same statement. You typically specify aliases that are shorter, easier to remember, or both than the original names. The aliases are printed in the query header, making them useful for self-documenting output.

To set up an alias, add the AS alias clause immediately after any table, column, or expression name in the SELECT list or FROM list of a query. The AS keyword is optional; you can also specify the alias immediately after the original name.

To use an alias name that matches one of the Impala reserved keywords (listed in <u>Impala Reserved Words</u> on page 431), surround the identifier with either single or double quotation marks, or `` characters (backticks).

```
select c1 as name, c2 as address, c3 as phone from table_with_terse_columns;
select sum(ss_xyz_dollars_net) as total_sales from table_with_cryptic_columns;
select one.name, two.address, three.phone from
  census one, building_directory two, phonebook three
  where one.id = two.id and two.id = three.id;
```

Aliases follow the same rules as identifiers when it comes to case insensitivity. Aliases can be longer than identifiers (up to the maximum length of a Java string) and can include additional characters such as spaces and dashes when they are quoted using backtick characters.

Alternatives:

Another way to define different names for the same tables or columns is to create views. See Views on page 153 for details.

Databases

In Impala, a database is a logical container for a group of tables. Each database defines a separate namespace. Within a database, you can refer to the tables inside it using their unqualified names. Different databases can contain tables with identical names.

Creating a database is a lightweight operation. There are no database-specific properties to configure. Therefore, there is no alter database

Typically, you create a separate database for each project or application, to avoid naming conflicts between tables and to make clear which tables are related to each other.

Each database is physically represented by a directory in HDFS.

There is a special database, named default, where you begin when you connect to Impala. Tables created in default are physically located one level higher in HDFS than all the user-created databases.

Impala includes another predefined database, _impala_builtins, that serves as the location for the built-in functions. To see the built-in functions, use a statement like the following:

```
show functions in _impala_builtins;
show functions in _impala_builtins like '*substring*';
```

Related statements:

CREATE DATABASE Statement on page 169, DROP DATABASE Statement on page 186, USE Statement on page 246, SHOW DATABASES on page 238

Functions

Functions let you apply arithmetic, string, or other computations and transformations to Impala data. You typically use them in SELECT lists and WHERE clauses to filter and format query results so that the result set is exactly what you want, with no further processing needed on the application side.

Scalar functions return a single result for each input row. See Built-in Functions on page 246.

Aggregate functions combine the results from multiple rows. See Impala Aggregate Functions on page 271.

User-defined functions let you code your own logic. They can be either scalar or aggregate functions. See Impala <u>User-Defined Functions (UDFs)</u> on page 295.

Related statements: CREATE FUNCTION Statement on page 171, DROP FUNCTION Statement on page 186

Identifiers

Identifiers are the names of databases, tables, or columns that you specify in a SQL statement. The rules for identifiers govern what names you can give to things you create, the notation for referring to names containing unusual characters, and other aspects such as case sensitivity.

- The minimum length of an identifier is 1 character.
- The maximum length of an identifier is currently 128 characters, enforced by the metastore database.
- An identifier must start with an alphabetic character. The remainder can contain any combination of alphanumeric characters and underscores. Quoting the identifier with backticks has no effect on the allowed characters in the name.
- An identifier can contain only ASCII characters.

To use an identifier name that matches one of the Impala reserved keywords (listed in Impala Reserved Words on page 431), surround the identifier with `` characters (backticks). Quote the reserved word even if it is part of a fully qualified name. The following example shows how a reserved word can be used as a column name if it is quoted with backticks in the CREATE TABLE statement, and how the column name must also be quoted with backticks in a query:

```
[localhost:21000] > create table reserved (`data` string);
[localhost:21000] > select data from reserved;
ERROR: AnalysisException: Syntax error in line 1:
select data from reserved
Encountered: DATA
Expected: ALL, CASE, CAST, DISTINCT, EXISTS, FALSE, IF, INTERVAL, NOT, NULL, STRAIGHT_JOIN, TRUE, IDENTIFIER
CAUSED BY: Exception: Syntax error
[localhost:21000] > select reserved.data from reserved;
ERROR: AnalysisException: Syntax error in line 1:
select reserved.data from reserved
Encountered: DATA
Expected: IDENTIFIER
CAUSED BY: Exception: Syntax error
[localhost:21000] > select reserved.`data` from reserved;
[localhost:21000] >
```

- Important: Because the list of reserved words grows over time as new SQL syntax is added, consider adopting coding conventions (especially for any automated scripts or in packaged applications) to always quote all identifiers with backticks. Quoting all identifiers protects your SQL from compatibility issues if new reserved words are added in later releases.
- Impala identifiers are always case-insensitive. That is, tables named t1 and T1 always refer to the same table, regardless of quote characters. Internally, Impala always folds all specified table and column names to lowercase. This is why the column headers in query output are always displayed in lowercase.

See Aliases on page 149 for how to define shorter or easier-to-remember aliases if the original names are long or cryptic identifiers. Aliases follow the same rules as identifiers when it comes to case insensitivity. Aliases can be longer than identifiers (up to the maximum length of a Java string) and can include additional characters such as spaces and dashes when they are quoted using backtick characters.

Another way to define different names for the same tables or columns is to create views. See Views on page 153 for details.

Tables

Tables are the primary containers for data in Impala. They have the familiar row and column layout similar to other database systems, plus some features such as partitioning often associated with higher-end data warehouse systems.

Logically, each table has a structure based on the definition of its columns, partitions, and other properties.

Physically, each table is associated with a directory in HDFS. The table data consists of all the data files underneath that directory:

- Internal tables, managed by Impala, use directories inside the designated Impala work area.
- External tables use arbitrary HDFS directories, where the data files are typically shared between different Hadoop components.
- Large-scale data is usually handled by partitioned tables, where the data files are divided among different HDFS subdirectories.

Related statements: CREATE TABLE Statement on page 174, DROP TABLE Statement on page 191, ALTER TABLE Statement on page 159 INSERT Statement on page 196, LOAD DATA Statement on page 206, SELECT Statement on page 211

Internal Tables

The default kind of table produced by the CREATE TABLE statement is known as an internal table. (Its counterpart is the external table, produced by the CREATE EXTERNAL TABLE syntax.)

- Impala creates a directory in HDFS to hold the data files.
- You can create data in internal tables by issuing INSERT or LOAD DATA statements.
- If you add or replace data using HDFS operations, issue the REFRESH command in impala-shell so that Impala recognizes the changes in data files, block locations, and so on.
- When you issue a DROP TABLE statement, Impala physically removes all the data files from the directory.
- To see whether a table is internal or external, and its associated HDFS location, issue the statement DESCRIBE FORMATTED table_name. The Table Type field displays MANAGED_TABLE for internal tables and EXTERNAL_TABLE for external tables. The Location field displays the path of the table directory as an HDFS URI.
- When you issue an ALTER TABLE statement to rename an internal table, all data files are moved into the new HDFS directory for the table. The files are moved even if they were formerly in a directory outside the Impala data directory, for example in an internal table with a LOCATION attribute pointing to an outside HDFS directory.

Examples:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

```
-- Switch a table from internal to external.
ALTER TABLE table name SET TBLPROPERTIES('EXTERNAL'='TRUE');
-- Switch a table from external to internal.
ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='FALSE');
```

Related information:

External Tables on page 152, CREATE TABLE Statement on page 174, DROP TABLE Statement on page 191, ALTER TABLE Statement on page 159, DESCRIBE Statement on page 181

External Tables

The syntax CREATE EXTERNAL TABLE sets up an Impala table that points at existing data files, potentially in HDFS locations outside the normal Impala data directories.. This operation saves the expense of importing the data into a new table when you already have the data files in a known location in HDFS, in the desired file format.

- You can use Impala to query the data in this table.
- You can create data in external tables by issuing INSERT or LOAD DATA statements.
- If you add or replace data using HDFS operations, issue the REFRESH command in impala-shell so that Impala recognizes the changes in data files, block locations, and so on.
- When you issue a DROP TABLE statement in Impala, that removes the connection that Impala has with the associated data files, but does not physically remove the underlying data. You can continue to use the data files with other Hadoop components and HDFS operations.
- To see whether a table is internal or external, and its associated HDFS location, issue the statement DESCRIBE FORMATTED table_name. The Table Type field displays MANAGED_TABLE for internal tables and

EXTERNAL TABLE for external tables. The Location field displays the path of the table directory as an HDFS URI.

- When you issue an ALTER TABLE statement to rename an external table, all data files are left in their original locations.
- You can point multiple external tables at the same HDFS directory by using the same LOCATION attribute for each one. The tables could have different column definitions, as long as the number and types of columns are compatible with the schema evolution considerations for the underlying file type. For example, for text data files, one table might define a certain column as a STRING while another defines the same column as a BIGINT.

Examples:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

```
-- Switch a table from internal to external.
ALTER TABLE table name SET TBLPROPERTIES('EXTERNAL'='TRUE');
-- Switch a table from external to internal.
ALTER TABLE table name SET TBLPROPERTIES('EXTERNAL'='FALSE');
```

Related information:

Internal Tables on page 152, CREATE TABLE Statement on page 174, DROP TABLE Statement on page 191, ALTER TABLE Statement on page 159, DESCRIBE Statement on page 181

Views

Views are lightweight logical constructs that act as aliases for queries. You can specify a view name in a query (a SELECT statement or the SELECT portion of an INSERT statement) where you would usually specify a table name.

A view lets you:

- Set up fine-grained security where a user can query some columns from a table but not other columns. See Controlling Access at the Column Level through Views on page 95 for details.
- Issue complicated gueries with compact and simple syntax:

```
-- Take a complicated reporting query, plug it into a CREATE VIEW statement..
create view v1 as select c1, c2, avg(c3) from t1 group by c3 order by c1 desc limit
10;
-- ... and now you can produce the report with 1 line of code.
select * from v1;
```

 Reduce maintenance, by avoiding the duplication of complicated queries across multiple applications in multiple languages:

```
create view v2 as select t1.c1, t1.c2, t2.c3 from t1 join t2 on (t1.id = t2.id);
-- This simple query is safer to embed in reporting applications than the longer
query above.
-- The view definition can remain stable even if the structure of the underlying
tables changes.
select c1, c2, c3 from v2;
```

 Build a new, more refined query on top of the original query by adding new clauses, select-list expressions, function calls, and so on:

```
create view average_price_by_category as select category, avg(price) as avg_price
from products group by category;
create view expensive_categories as select category, avg_price from
average_price_by_category order by avg_price desc limit 10000;
```

```
create view top_10_expensive_categories as select category, avg_price from
expensive_categories limit 10;
```

This technique lets you build up several more or less granular variations of the same query, and switch between them when appropriate.

Set up aliases with intuitive names for tables, columns, result sets from joins, and so on:

```
    The original tables might have cryptic names inherited from a legacy system. create view action_items as select rrptsk as assignee, treq as due_date, dmisc as notes from vxy_t1_br;
    You can leave original names for compatibility, build new applications using more intuitive ones.
    select assignee, due_date, notes from action_items;
```

• Swap tables with others that use different file formats, partitioning schemes, and so on without any downtime for data copying or conversion:

```
create table slow (x int, s string) stored as textfile;
create view report as select s from slow where x between 20 and 30;
-- Query is kind of slow due to inefficient table definition, but it works.
select * from report;

create table fast (s string) partitioned by (x int) stored as parquet;
-- ...Copy data from SLOW to FAST. Queries against REPORT view continue to work...

-- After changing the view definition, queries will be faster due to partitioning,
-- binary format, and compression in the new table.
alter view report as select s from fast where x between 20 and 30;
select * from report;
```

Avoid coding lengthy subqueries and repeating the same subquery text in many other queries.

The SQL statements that configure views are <u>CREATE VIEW Statement</u> on page 180, <u>ALTER VIEW Statement</u> on page 163, and <u>DROP VIEW Statement</u> on page 192. You can specify view names when querying data (<u>SELECT Statement</u> on page 211) and copying data from one table to another (<u>INSERT Statement</u> on page 196). The <u>WITH clause creates an inline view</u>, that only exists for the duration of a single query.

```
[localhost:21000] > create view trivial as select * from customer;
[localhost:21000] > create view some_columns as select c_first_name, c_last_name,
c_login from customer;
[localhost:21000] > select * from some_columns limit 5;
Query finished, fetching results ...
+-----
 c_first_name | c_last_name | c_login |
 Javier Lewis Amy Moses
 Latisha Hamilton
Michael White
Robert Moran
 Robert
[localhost:21000] > create view ordered_results as select * from some_columns order by
 c_last_name desc, c_first_name desc limit 1000;
[localhost:21000] > select * from ordered_results limit 5;
Query: select * from ordered_results limit 5 Query finished, fetching results ...
 c_first_name | c_last_name | c_login |
  -----
 Thomas Zuniga
Sarah Zuniga
Norma Zuniga
Lloyd Zuniga
Lisa Zuniga
Lisa
Returned 5 row(s) in 0.48s
```

The previous example uses descending order for <code>ORDERED_RESULTS</code> because in the sample TPCD-H data, there are some rows with empty strings for both C_FIRST_NAME and C_LAST_NAME, making the lowest-ordered names unuseful in a sample query.

```
create view visitors_by_day as select day, count(distinct visitors) as howmany from
web_traffic group by day;
create view top_10_days as select day, howmany from visitors_by_day order by howmany
limit 10;
select * from top_10_days;
```

Usage notes:

To see the definition of a view, issue a DESCRIBE FORMATTED statement, which shows the query from the original CREATE VIEW statement:

+ name		comment
		1
# col_name	data_type	comment
	NULL	NULL
X	int	None
Y	int	None
5	string	None
	NULL	NULL
# Detailed Table Information	NULL	NULL
Database:	views	NULL
Owner:	cloudera	NULL
CreateTime:	Mon Jul 08 15:56:27 EDT 2013	NULL
LastAccessTime:	UNKNOWN	NULL
Protect Mode:	None	NULL
Retention:	0	NULL
Table Type:	VIRTUAL_VIEW	NULL
Table Parameters:	NULL	NULL
	transient_lastDdlTime	1373313387
	NULL	NULL
# Storage Information	NULL	NULL
SerDe Library:	null	NULL
InputFormat:	null	NULL
OutputFormat:	null	NULL
Compressed:	No	NULL
Num Buckets:	0	NULL
Bucket Columns:	[]	NULL

```
| NULL | NULL | NULL |

# View Information | NULL | NULL |

View Original Text: | SELECT * FROM t1 | NULL |

View Expanded Text: | SELECT * FROM t1 | NULL |

**Returned 29 row(s) in 0.05s
```

Prior to Impala 1.4.0, it was not possible to use the CREATE TABLE LIKE <code>view_name</code> syntax. In Impala 1.4.0 and higher, you can create a table with the same column definitions as a view using the CREATE TABLE LIKE technique. Although CREATE TABLE LIKE normally inherits the file format of the original table, a view has no underlying file format, so CREATE TABLE LIKE <code>view_name</code> produces a text table by default. To specify a different file format, include a STORED AS <code>file_format</code> clause at the end of the CREATE TABLE LIKE statement.

Restrictions

- You cannot insert into an Impala view. (In some database systems, this operation is allowed and inserts rows into the base table.) You can use a view name on the right-hand side of an INSERT statement, in the SELECT part.
- If a view applies to a partitioned table, any partition pruning is determined by the clauses in the original query. Impala does not prune additional columns if the query on the view includes extra WHERE clauses referencing the partition key columns.
- An ORDER BY clause without an additional LIMIT clause is ignored in any view definition. If you need to sort the entire result set from a view, use an ORDER BY clause in the SELECT statement that queries the view. You can still make a simple "top 10" report by combining the ORDER BY and LIMIT clauses in the same view definition:

```
[localhost:21000] > create table unsorted (x bigint);
[localhost:21000] > insert into unsorted values (1), (9), (3), (7), (5), (8), (4),
[localhost:21000] > create view sorted_view as select x from unsorted order by x;
[localhost:21000] > select x from sorted_view; -- ORDER BY clause in view has no
effect.
X
 1
 9
 3
 7
 5
 8
 4
 6
[localhost:21000] > select x from sorted_view order by x; -- View query requires
ORDER BY at outermost level.
 X
 1
 2
 3
 4
 5
 6
 7
 8
 9
[localhost:21000] > create view top_3_view as select x from unsorted order by x
```

```
limit 3;
[localhost:21000] > select x from top_3_view; -- ORDER BY and LIMIT together in
view definition are preserved.
x
 1
 2
 3
```

Related statements: CREATE VIEW Statement on page 180, ALTER VIEW Statement on page 163, DROP VIEW Statement on page 192

SOL Statements

The Impala SQL dialect supports a range of standard elements, plus some extensions for Big Data use cases related to data loading and data warehousing.

Note:

In the impala-shell interpreter, a semicolon at the end of each statement is required. Since the semicolon is not actually part of the SQL syntax, we do not include it in the syntax definition of each statement, but we do show it in examples intended to be run in impala-shell.

DDL Statements

DDL refers to "Data Definition Language", a subset of SQL statements that change the structure of the database schema in some way, typically by creating, deleting, or modifying schema objects such as databases, tables, and views. Most Impala DDL statements start with the keywords CREATE, DROP, or ALTER.

The Impala DDL statements are:

- ALTER TABLE Statement on page 159
- ALTER VIEW Statement on page 163
- COMPUTE STATS Statement on page 164
- CREATE DATABASE Statement on page 169
- CREATE FUNCTION Statement on page 171
- CREATE ROLE Statement (CDH 5.2 or higher only) on page 173
- CREATE TABLE Statement on page 174
- <u>CREATE VIEW Statement</u> on page 180
- DROP DATABASE Statement on page 186
- DROP FUNCTION Statement on page 186
- DROP ROLE Statement (CDH 5.2 or higher only) on page 187
- DROP TABLE Statement on page 191
- DROP VIEW Statement on page 192
- GRANT Statement (CDH 5.2 or higher only) on page 195
- REVOKE Statement (CDH 5.2 or higher only) on page 211

After Impala executes a DDL command, information about available tables, columns, views, partitions, and so on is automatically synchronized between all the Impala nodes in a cluster. (Prior to Impala 1.2, you had to issue a REFRESH or INVALIDATE METADATA statement manually on the other nodes to make them aware of the changes.)

If the timing of metadata updates is significant, for example if you use round-robin scheduling where each query could be issued through a different Impala node, you can enable the SYNC_DDL query option to make the DDL statement wait until all nodes have been notified about the metadata changes.

Although the INSERT statement is officially classified as a DML (data manipulation language) statement, it also involves metadata changes that must be broadcast to all Impala nodes, and so is also affected by the SYNC_DDL query option.

Because the SYNC_DDL query option makes each DDL operation take longer than normal, you might only enable it before the last DDL operation in a sequence. For example, if you are running a script that issues multiple of DDL operations to set up an entire new schema, add several new partitions, and so on, you might minimize the performance overhead by enabling the query option only before the last CREATE, DROP, ALTER, or INSERT statement. The script only finishes when all the relevant metadata changes are recognized by all the Impala nodes, so you could connect to any node and issue queries through it.

The classification of DDL, DML, and other statements is not necessarily the same between Impala and Hive. Impala organizes these statements in a way intended to be familiar to people familiar with relational databases or data warehouse products. Statements that modify the metastore database, such as COMPUTE STATS, are classified as DDL. Statements that only query the metastore database, such as SHOW or DESCRIBE, are put into a separate category of utility statements.

Note: The query types shown in the Impala debug web user interface might not match exactly the categories listed here. For example, currently the USE statement is shown as DDL in the debug web UI. The query types shown in the debug web UI are subject to change, for improved consistency.

Related information:

The other major classifications of SQL statements are data manipulation language (see <u>DML Statements</u> on page 158) and queries (see SELECT Statement on page 211).

DML Statements

DML refers to "Data Manipulation Language", a subset of SQL statements that modify the data stored in tables. Because Impala focuses on query performance and leverages the append-only nature of HDFS storage, currently Impala only supports a small set of DML statements:

- INSERT Statement on page 196
- LOAD DATA Statement on page 206

INSERT in Impala is primarily optimized for inserting large volumes of data in a single statement, to make effective use of the multi-megabyte HDFS blocks. This is the way in Impala to create new data files. If you intend to insert one or a few rows at a time, such as using the INSERT ... VALUES syntax, that technique is much more efficient for Impala tables stored in HBase. See <u>Using Impala to Query HBase Tables</u> on page 411 for details.

LOAD DATA moves existing data files into the directory for an Impala table, making them immediately available for Impala queries. This is one way in Impala to work with data files produced by other Hadoop components. (CREATE EXTERNAL TABLE is the other alternative; with external tables, you can query existing data files, while the files remain in their original location.)

To simulate the effects of an update or delete statement in other database systems, typically you use INSERT or CREATE TABLE AS SELECT to copy data from one table to another, filtering out or changing the appropriate rows during the copy operation.

Although Impala currently does not have an UPDATE statement, you can achieve a similar result by using Impala tables stored in HBase. When you insert a row into an HBase table, and the table already contains a row with the same value for the key column, the older row is hidden, effectively the same as a single-row UPDATE.

Related information:

The other major classifications of SQL statements are data definition language (see <u>DDL Statements</u> on page 157) and queries (see <u>SELECT Statement</u> on page 211).

ALTER TABLE Statement

The ALTER TABLE statement changes the structure or properties of an existing table. In Impala, this is a logical operation that updates the table metadata in the metastore database that Impala shares with Hive; ALTER TABLE does not actually rewrite, move, and so on the actual data files. Thus, you might need to perform corresponding physical filesystem operations, such as moving data files to a different HDFS directory, rewriting the data files to include extra fields, or converting them to a different file format.

Syntax:

```
ALTER TABLE [old_db_name.]old_table_name RENAME TO [new_db_name.]new_table_name
ALTER TABLE name ADD COLUMNS (col_spec[, col_spec ...])
ALTER TABLE name DROP [COLUMN] column_name
ALTER TABLE name CHANGE column_name new_name new_type
ALTER TABLE name REPLACE COLUMNS (col_spec[, col_spec ...])
ALTER TABLE name { ADD | DROP } PARTITION (partition_spec)
ALTER TABLE name [PARTITION (partition_spec)]
  SET { FILEFORMAT file_format
   LOCATION 'hdfs_path_of_directory'
    TBLPROPERTIES (table_properties)
   SERDEPROPERTIES (serde_properties) }
ALTER TABLE name [PARTITION (partition_spec)] SET { CACHED IN 'pool_name' | UNCACHED
new_name ::= [new_database.]new_table_name
col_spec ::= col_name type_name
partition_spec ::= partition_col=constant_value
table_properties ::= 'name'='value'[, 'name'='value' ...]
serde_properties ::= 'name'='value'[, 'name'='value' ...]
file_format ::= { PARQUET | TEXTFILE | RCFILE | SEQUENCEFILE | AVRO }
```

Statement type: DDL

Usage notes:

Whenever you specify partitions in an ALTER TABLE statement, through the PARTITION (partition_spec) clause, you must include all the partitioning columns in the specification.

Most of the ALTER TABLE operations work the same for internal tables (managed by Impala) as for external tables (with data files located in arbitrary locations). The exception is renaming a table; for an external table, the underlying data directory is not renamed or moved.

HDFS caching (CACHED IN clause):

If you specify the CACHED IN clause, any existing or future data files in the table directory or the partition subdirectories are designated to be loaded into memory with the HDFS caching mechanism. See <u>Using HDFS</u> Caching with Impala (CDH 5.1 or higher only) on page 358 for details about using the HDFS caching feature.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 338 for details.

The following sections show examples of the use cases for various ALTER TABLE clauses.

To rename a table (RENAME TO clause):

The RENAME TO clause lets you change the name of an existing table, and optionally which database it is located

For internal tables, his operation physically renames the directory within HDFS that contains the data files; the original directory name no longer exists. By qualifying the table names with database names, you can use this technique to move an internal table (and its associated data directory) from one database to another. For example:

```
create database d1;
create database d2;
create database d3;
use d1;
create table mobile (x int);
use d2;
-- Move table from another database to the current one.
alter table d1.mobile rename to mobile;
use d1;
-- Move table from one database to another.
alter table d2.mobile rename to d3.mobile;
```

For external tables,

To change the physical location where Impala looks for data files associated with a table or partition:

```
ALTER TABLE table_name [PARTITION (partition_spec)] SET LOCATION 'hdfs_path_of_directory';
```

The path you specify is the full HDFS path where the data files reside, or will be created. Impala does not create any additional subdirectory named after the table. Impala does not move any data files to this new location or change any data files that might already exist in that directory.

To set the location for a single partition, include the PARTITION clause. Specify all the same partitioning columns for the table, with a constant value for each, to precisely identify the single partition affected by the statement:

```
create table p1 (s string) partitioned by (month int, day int);

-- Each ADD PARTITION clause creates a subdirectory in HDFS.

alter table p1 add partition (month=1, day=1);

alter table p1 add partition (month=2, day=1);

alter table p1 add partition (month=2, day=1);

alter table p1 add partition (month=2, day=2);

-- Redirect queries, INSERT, and LOAD DATA for one partition

-- to a specific different directory.

alter table p1 partition (month=1, day=1) set location

'/usr/external_data/new_years_day';
```

• Note: If you are creating a partition for the first time and specifying its location, for maximum efficiency, use a single ALTER TABLE statement including both the ADD PARTITION and LOCATION clauses, rather than separate statements with ADD PARTITION and SET LOCATION clauses.

To change the key-value pairs of the TBLPROPERTIES and SERDEPROPERTIES fields:

```
ALTER TABLE table_name SET TBLPROPERTIES ('key1'='value1', 'key2'='value2'[, ...]);
ALTER TABLE table_name SET SERDEPROPERTIES ('key1'='value1', 'key2'='value2'[, ...]);
```

The TBLPROPERTIES clause is primarily a way to associate arbitrary user-specified data items with a particular table.

The SERDEPROPERTIES clause sets up metadata defining how tables are read or written, needed in some cases by Hive but not used extensively by Impala. You would use this clause primarily to change the delimiter in an existing text table or partition, by setting the 'serialization.format' and 'field.delim' property values to the new delimiter character:

```
-- This table begins life as pipe-separated text format.
create table change_to_csv (s1 string, s2 string) row format delimited fields terminated
by '|';
-- Then we change it to a CSV table.
alter table change_to_csv set SERDEPROPERTIES ('serialization.format'=',',
```

```
'field.delim'=',');
insert overwrite change_to_csv values ('stop','go'), ('yes','no');
!hdfs dfs -cat 'hdfs://hostname:8020/data_directory/dbname.db/change_to_csv/data_file';
ves, no
```

Use the DESCRIBE FORMATTED statement to see the current values of these properties for an existing table. See CREATE TABLE Statement on page 174 for more details about these clauses. See Setting Statistics Manually through ALTER TABLE on page 354 for an example of using table properties to fine-tune the performance-related table statistics.

To reorganize columns for a table:

```
ALTER TABLE table_name ADD COLUMNS (column_defs);
ALTER TABLE table_name REPLACE COLUMNS (column_defs);
ALTER TABLE table_name CHANGE column_name new_name new_type;
ALTER TABLE table_name DROP column_name;
```

The column_spec is the same as in the CREATE TABLE statement: the column name, then its data type, then an optional comment. You can add multiple columns at a time. The parentheses are required whether you add a single column or multiple columns. When you replace columns, all the original column definitions are discarded. You might use this technique if you receive a new set of data files with different data types or columns in a different order. (The data files are retained, so if the new columns are incompatible with the old ones, use INSERT OVERWRITE OR LOAD DATA OVERWRITE to replace all the data before issuing any further queries.)

You might use the CHANGE clause to rename a single column, or to treat an existing column as a different type than before, such as to switch between treating a column as STRING and TIMESTAMP, or between INT and BIGINT. You can only drop a single column at a time; to drop multiple columns, issue multiple ALTER TABLE statements, or define the new set of columns with a single ALTER TABLE ... REPLACE COLUMNS statement.

To change the file format that Impala expects data to be in, for a table or partition:

Use an ALTER TABLE ... SET FILEFORMAT clause. You can include an optional PARTITION (col1=val1, col2=val2, ... clause so that the file format is changed for a specific partition rather than the entire table.

Because this operation only changes the table metadata, you must do any conversion of existing data using regular Hadoop techniques outside of Impala. Any new data created by the Impala INSERT statement will be in the new format. You cannot specify the delimiter for Text files; the data files must be comma-delimited.

To set the file format for a single partition, include the PARTITION clause. Specify all the same partitioning columns for the table, with a constant value for each, to precisely identify the single partition affected by the

```
create table p1 (s string) partitioned by (month int, day int);
-- Each ADD PARTITION clause creates a subdirectory in HDFS.
alter table p1 add partition (month=1, day=1);
alter table p1 add partition (month=1, day=2); alter table p1 add partition (month=2, day=1);
alter table p1 add partition (month=2, day=2);
-- Queries and INSERT statements will read and write files
-- in this format for this specific partition.
alter table p1 partition (month=2, day=2) set fileformat parquet;
```

To add or drop partitions for a table, the table must already be partitioned (that is, created with a PARTITIONED BY clause). The partition is a physical directory in HDFS, with a name that encodes a particular column value (the partition key). The Impala INSERT statement already creates the partition if necessary, so the ALTER TABLE ... ADD PARTITION is primarily useful for importing data by moving or copying existing data files into the HDFS directory corresponding to a partition. (You can use the LOAD DATA statement to move files into the partition directory, or ALTER TABLE ... PARTITION (...) SET LOCATION to point a partition at a directory that already contains data files.

The DROP PARTITION clause is used to remove the HDFS directory and associated data files for a particular set of partition key values; for example, if you always analyze the last 3 months worth of data, at the beginning of

each month you might drop the oldest partition that is no longer needed. Removing partitions reduces the amount of metadata associated with the table and the complexity of calculating the optimal query plan, which can simplify and speed up queries on partitioned tables, particularly join queries. Here is an example showing the ADD PARTITION and DROP PARTITION clauses.

```
-- Create an empty table and define the partitioning scheme.
create table part_t (x int) partitioned by (month int);
-- Create an empty partition into which you could copy data files from some other
source.
alter table part_t add partition (month=1);
-- After changing the underlying data, issue a REFRESH statement to make the data
visible in Impala.
refresh part_t;
-- Later, do the same for the next month.
alter table part_t add partition (month=2);
-- Now you no longer need the older data.
alter table part_t drop partition (month=1);
-- If the table was partitioned by month and year, you would issue a statement like:
-- alter table part_t drop partition (year=2003,month=1);
-- which would require 12 ALTER TABLE statements to remove a year's worth of data.
-- If the data files for subsequent months were in a different file format,
-- you could set a different file format for the new partition as you create it.
alter table part_t add partition (month=3) set fileformat=parquet;
```

The value specified for a partition key can be an arbitrary constant expression, without any references to columns. For example:

```
alter table time_data add partition (month=concat('Decem','ber'));
alter table sales_data add partition (zipcode = cast(9021 * 10 as string));
```

Note:

An alternative way to reorganize a table and its associated data files is to use CREATE TABLE to create a variation of the original table, then use INSERT to copy the transformed or reordered data to the new table. The advantage of ALTER TABLE is that it avoids making a duplicate copy of the data files, allowing you to reorganize huge volumes of data in a space-efficient way using familiar Hadoop techniques.

To switch a table between internal and external:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

```
-- Switch a table from internal to external.
ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='TRUE');
-- Switch a table from external to internal.
ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='FALSE');
```

Cancellation: Cannot be cancelled.

HDFS permissions:

Most ALTER TABLE clauses do not actually read or write any HDFS files, and so do not depend on specific HDFS permissions. For example, the SET FILEFORMAT clause does not actually check the file format existing data files or convert them to the new format, and the SET LOCATION clause does not require any special permissions on the new location. (Any permission-related failures would come later, when you actually query or insert into the table.)

In general, ALTER TABLE clauses that do touch HDFS files and directories require the same HDFS permissions as corresponding CREATE, INSERT, or SELECT statements. The permissions allow the user ID that the impalad daemon runs under, typically the impala user, to read or write files or directories, or (in the case of the execute bit) descend into a directory. The RENAME TO clause requires read, write, and execute permission in the source and destination database directories and in the table data directory, and read and write permission for the data files within the table. The ADD PARTITION and DROP PARTITION clauses require write and execute permissions for the associated partition directory.

Related information:

Tables on page 151, CREATE TABLE Statement on page 174, DROP TABLE Statement on page 191, Partitioning for Impala Tables on page 379, Internal Tables on page 152, External Tables on page 152

ALTER VIEW Statement

Changes the query associated with a view, or the associated database and/or name of the view.

Because a view is purely a logical construct (an alias for a query) with no physical data behind it, ALTER VIEW only involves changes to metadata in the metastore database, not any data files in HDFS.

Syntax:

```
ALTER VIEW [database_name.]view_name AS select_statement
ALTER VIEW [database_name.]view_name RENAME TO [database_name.]view_name
```

Statement type: DDL

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata has been received by all the Impala nodes. See SYNC DDL Query Option on page 338 for details.

Cancellation: Cannot be cancelled.

Examples:

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

```
create table t1 (x int, y int, s string);
create table t2 like t1;
create view v1 as select * from t1;
alter view v1 as select * from t2;
alter view v1 as select x, upper(s) s from t2;
```

To see the definition of a view, issue a DESCRIBE FORMATTED statement, which shows the guery from the original CREATE VIEW statement:

```
[localhost:21000] > create view v1 as select * from t1;
[localhost:21000] > describe formatted v1;
Query finished, fetching results ...
                          type
                                                    comment
 # col_name
                          data_type
                                                      comment
                                                       NULL
                           NULL
                           int
                                                       None
 X
                           lint
                                                       None
 V
                           string
                                                       None
                           NULL
                                                       NULL
 # Detailed Table Information | NULL
                                                       NULL
                          views
                                                       NULL
 Database:
```

Owner:	cloudera	NULL
CreateTime:	Mon Jul 08 15:56:27 EDT 2013	NULL
LastAccessTime:	UNKNOWN	NULL
Protect Mode:	None	NULL
Retention:	0	NULL
Table Type:	VIRTUAL_VIEW	NULL
Table Parameters:	NULL	NULL
	transient_lastDdlTime	1373313387
	NULL	NULL
# Storage Information	NULL	NULL
SerDe Library:	null	NULL
InputFormat:	null	NULL
OutputFormat:	null	NULL
Compressed:	No	NULL
Num Buckets:	0	NULL
Bucket Columns:	[]	NULL
Sort Columns:	[]	NULL
	NULL	NULL
# View Information	NULL	NULL
View Original Text:	SELECT * FROM t1	NULL
View Expanded Text:	SELECT * FROM t1	NULL
Returned 29 row(s) in 0.05s	-+	-+

Related information:

Views on page 153, CREATE VIEW Statement on page 180, DROP VIEW Statement on page 192

COMPUTE STATS Statement

Gathers information about volume and distribution of data in a table and all associated columns and partitions. The information is stored in the metastore database, and used by Impala to help optimize queries. For example, if Impala can determine that a table is large or small, or has many or few distinct values it can organize parallelize the work appropriately for a join query or insert operation. For details about the kinds of information gathered by this statement, see How Impala Uses Statistics for Query Optimization on page 349.

Syntax:

The Partition clause is only allowed in combination with the INCREMENTAL clause. It is optional for COMPUTE INCREMENTAL STATS, and required for DROP INCREMENTAL STATS. Whenever you specify partitions through the Partition (partition_spec) clause in a COMPUTE INCREMENTAL STATS or DROP INCREMENTAL STATS statement, you must include all the partitioning columns in the specification, and specify constant values for all the partition key columns.

Usage notes:

Originally, Impala relied on users to run the Hive ANALYZE TABLE statement, but that method of gathering statistics proved unreliable and difficult to use. The Impala COMPUTE STATS statement is built from the ground up to improve the reliability and user-friendliness of this operation. COMPUTE STATS does not require any setup steps or special configuration. You only run a single Impala COMPUTE STATS statement to gather both table and column statistics, rather than separate Hive ANALYZE TABLE statements for each kind of statistics.

The COMPUTE INCREMENTAL STATS variation is a shortcut for partitioned tables that works on a subset of partitions rather than the entire table. The incremental nature makes it suitable for large tables with many partitions, where a full COMPUTE STATS operation takes too long to be practical each time a partition is added or dropped. See Overview of Incremental Statistics on page 350 for full usage details.

COMPUTE INCREMENTAL STATS only applies to partitioned tables. If you use the INCREMENTAL clause for an unpartitioned table, Impala automatically uses the original COMPUTE STATS statement. Such tables display false under the Incremental stats column of the SHOW TABLE STATS output.

- Note: Because many of the most performance-critical and resource-intensive operations rely on table and column statistics to construct accurate and efficient plans, COMPUTE STATS is an important step at the end of your ETL process. Run COMPUTE STATS on all tables as your first step during performance tuning for slow queries, or troubleshooting for out-of-memory conditions:
 - Accurate statistics help Impala construct an efficient query plan for join queries, improving performance and reducing memory usage.
 - Accurate statistics help Impala distribute the work effectively for insert operations into Parquet tables, improving performance and reducing memory usage.
 - Accurate statistics help Impala estimate the memory required for each query, which is important when you use resource management features, such as admission control and the YARN resource management framework. The statistics help Impala to achieve high concurrency, full utilization of available memory, and avoid contention with workloads from other Hadoop components.

HBase considerations:

COMPUTE STATS works for HBase tables also. The statistics gathered for HBase tables are somewhat different than for HDFS-backed tables, but that metadata is still used for optimization when HBase tables are involved in join queries.

Performance considerations:

The statistics collected by COMPUTE STATS are used to optimize join queries INSERT operations into Parquet tables, and other resource-intensive kinds of SQL statements. See How Impala Uses Statistics for Query Optimization on page 349 for details.

Examples:

This example shows two tables, T1 and T2, with a small number distinct values linked by a parent-child relationship between T1. ID and T2. PARENT. T1 is tiny, while T2 has approximately 100K rows. Initially, the statistics includes physical measurements such as the number of files, the total size, and size measurements for fixed-length columns such as with the INT type. Unknown values are represented by -1. After running COMPUTE STATS for each table, much more information is available through the SHOW STATS statements. If you were running a join query involving both of these tables, you would need statistics for both tables to get the most effective optimization for the query.

- 0	[localhos	now table	stats t	1	
į	#Rows	#Files	Size		
	-1	1	33B	TEXT	
-	Returned				

```
[localhost:21000] > show table stats t2;
Query: show table stats t2
| #Rows | #Files | Size | Format |
| -1 | 28 | 960.00KB | TEXT |
        -----
Returned 1 row(s) in 0.01s
[localhost:21000] > show column stats t1;
Query: show column stats t1
          ------
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
id INT -1 -1 s STRING -1 -1
                                       4 4 -1
÷------
Returned 2 row(s) in 1.71s
[localhost:21000] > show column stats t2;
Query: show column stats t2
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
parent | INT | -1 | s | STRING | -1
                     | -1
| -1
                                       -1
Returned 2 row(s) in 0.01s
[localhost:21000] > compute stats t1;
Query: compute stats t1
summary
Updated 1 partition(s) and 2 column(s).
Returned 1 row(s) in 5.30s
[localhost:21000] > show table stats t1;
Query: show table stats t1
| #Rows | #Files | Size | Format |
Returned 1 row(s) in 0.01s
[localhost:21000] > show column stats t1;
Query: show column stats t1
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
id INT 3
s STRING 3
                              \begin{vmatrix} -1 & & 4 & & 4 \\ -1 & & -1 & & -1 \end{vmatrix}
Returned 2 row(s) in 0.02s
[localhost:21000] > compute stats t2;
Query: compute stats t2
summary
Updated 1 partition(s) and 2 column(s).
Returned 1 row(s) in 5.70s
[localhost:21000] > show table stats t2;
Query: show table stats t2
+----
| #Rows | #Files | Size | Format |
| 98304 | 1 | 960.00KB | TEXT
Returned 1 row(s) in 0.03s
[localhost:21000] > show column stats t2;
Query: show column stats t2
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+----+
| parent | INT | 3
                      | -1 | 4 | 4
```

```
STRING | 6
                                       14
                                -1
                                                 9.3
Returned 2 row(s) in 0.01s
```

The following example shows how to use the INCREMENTAL clause, available in Impala 2.1.0 and higher. The COMPUTE INCREMENTAL STATS syntax lets you collect statistics for newly added or changed partitions, without rescanning the entire table.

				stats, as indica	 ated	
by -1 under #Rows and false under Incremental stats. show table stats item_partitioned;						
i_category	+ #Rows	#Files		Bytes Cached	Format	Incremental stats
Books Children Electronics Home Jewelry Men Music Shoes Sports Women Total	-1 -1 -1 -1 -1 -1 -1 -1	1 1 1 1 1 1 1 1 1 1 1 1 1	223.74KB 230.05KB 232.67KB 232.56KB 223.72KB 231.25KB 237.90KB 234.90KB 227.97KB 226.27KB 2.25MB	NOT CACHED	PARQUET	false
After the first COMPUTE INCREMENTAL STATS, all partitions have stats. compute incremental stats item_partitioned; +						
+ i_category	+ #Rows	#Files		Bytes Cached	Format	Incremental stats
Books Children Electronics Home Jewelry Men Music Shoes Sports Women Total	1733 1786 1812 1807 1740 1811 1860 1835 1783 1790 17957	1 1 1 1 1 1 1 1 1 1 1 1 1	223.74KB 230.05KB 232.67KB 232.56KB 223.72KB 231.25KB 237.90KB 234.90KB 227.97KB 226.27KB 2.25MB	NOT CACHED	PARQUET	true true true true true true true true
Add a new partition alter table item_partitioned add partition (i_category='Camping'); Add or replace files in HDFS outside of Impala, rendering the stats for a partition obsolete. !import_data_into_sports_partition.sh refresh item_partitioned; drop incremental stats item_partitioned partition (i_category='Sports'); Now some partitions have incremental stats and some don't. show table stats item_partitioned; i_category #Rows #Files Size Bytes Cached Format Incremental stats Books 1733 1 223.74KB NOT CACHED PARQUET true Camping -1 1 408.02KB NOT CACHED PARQUET false Children 1786 1 230.05KB NOT CACHED PARQUET true						
Electronics Home Jewelry Men	1812 1807 1740 1811	1 1 1	232.67KB 232.56KB 223.72KB 231.25KB	NOT CACHED NOT CACHED NOT CACHED NOT CACHED	PARQUET PARQUET PARQUET PARQUET	true true true true

Music Shoes Sports Women Total	1860 1835 -1 1790 17957	1 1 1 1 11	237.90KB 234.90KB 227.97KB 226.27KB 2.65MB	NOT CACHED NOT CACHED NOT CACHED NOT CACHED 0B	PARQUET PARQUET PARQUET PARQUET	true true false true
After another all partitions of the partitions of the partitions of the partitions of the partition and the partition an	ons have without	increment	tal stats, a al stats we:	and only the 2 re scanned.		
summary				_+		
Updated 2 pa:	rtition(s) and 21	column(s).	-+ 		
now table sta	ts item_	partition	 ed <i>;</i>	-+		
i_category	+ #Rows	+ #Files	+	Bytes Cached	Format	Incremental stat
Books Camping Children Electronics Home Jewelry Men Music Shoes	1733 5328 1786 1812 1807 1740 1811 1860 1835	1 1 1 1 1 1 1 1 1	223.74KB 408.02KB 230.05KB 232.67KB 232.56KB 223.72KB 231.25KB 237.90KB 234.90KB 237.97KB	NOT CACHED	PARQUET	true true true true true true true true

File format considerations:

The COMPUTE STATS statement works with tables created with any of the file formats supported by Impala. See How Impala Works with Hadoop File Formats on page 384 for details about working with the different file formats. The following considerations apply to COMPUTE STATS depending on the file format of the table.

The COMPUTE STATS statement works with text tables with no restrictions. These tables can be created through either Impala or Hive.

The COMPUTE STATS statement works with Parquet tables. These tables can be created through either Impala or Hive.

Note: Currently, a known issue (IMPALA-488) could cause excessive memory usage during a COMPUTE STATS operation on a Parquet table. As a workaround, issue the command SET NUM_SCANNER_THREADS=2 in impala-shell before issuing the COMPUTE STATS statement. Then issue UNSET NUM_SCANNER_THREADS before continuing with queries.

The COMPUTE STATS statement works with Avro tables, as long as they are created with SQL-style column names and types rather than an Avro-style schema specification. These tables are currently always created through Hive rather than Impala.

The COMPUTE STATS statement works with RCFile tables with no restrictions. These tables can be created through either Impala or Hive.

The COMPUTE STATS statement works with SequenceFile tables with no restrictions. These tables can be created through either Impala or Hive.

The COMPUTE STATS statement works with partitioned tables, whether all the partitions use the same file format, or some partitions are defined through ALTER TABLE to use different file formats.

Statement type: DDL

Cancellation: Certain multi-stage statements (CREATE TABLE AS SELECT and COMPUTE STATS) can be cancelled during some stages, when running INSERT or SELECT operations internally. To cancel this statement, use Ctrl-C from the impala-shell interpreter, the Cancel button from the Watch page in Hue, Actions > Cancel from the Queries list in Cloudera Manager, or Cancel from the list of in-flight queries (for a particular node) on the Queries tab in the Impala web UI (port 25000).

Restrictions:

Currently, the COMPUTE STATS statement under CDH 4 does not store any statistics for DECIMAL columns. When Impala runs under CDH 5, which has better support for DECIMAL in the metastore database, COMPUTE STATS does collect statistics for DECIMAL columns and Impala uses the statistics to optimize query performance.

Note: Prior to Impala 1.4.0, COMPUTE STATS counted the number of NULL values in each column and recorded that figure in the metastore database. Because Impala does not currently make use of the NULL count during query planning, Impala 1.4.0 and higher speeds up the COMPUTE STATS statement by skipping this NULL counting.

Internal details:

Behind the scenes, the COMPUTE STATS statement executes two statements: one to count the rows of each partition in the table (or the entire table if unpartitioned) through the COUNT(*) function, and another to count the approximate number of distinct values in each column through the NDV() function. You might see these queries in your monitoring and diagnostic displays. The same factors that affect the performance, scalability, and execution of other queries (such as parallel execution, memory usage, admission control, and timeouts) also apply to the queries run by the COMPUTE STATS statement.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read permission for all affected files in the source directory: all files in the case of an unpartitioned table or a partitioned table in the case of COMPUTE STATS; or all the files in partitions without incremental stats in the case of COMPUTE INCREMENTAL STATS. It must also have read and execute permissions for all relevant directories holding the data files. (Essentially, COMPUTE STATS requires the same permissions as the underlying SELECT queries it runs against the table.)

Related information:

DROP STATS Statement on page 187, SHOW TABLE STATS Statement on page 240, SHOW COLUMN STATS Statement on page 242, How Impala Uses Statistics for Query Optimization on page 349

CREATE DATABASE Statement

Creates a new database.

In Impala, a database is both:

- A logical construct for grouping together related tables, views, and functions within their own namespace. You might use a separate database for each application, set of related tables, or round of experimentation.
- A physical construct represented by a directory tree in HDFS. Tables (internal tables), partitions, and data files are all located under this directory. You can back it up, measure space usage, or remove it (if it is empty) with a DROP DATABASE statement.

Syntax:

```
CREATE (DATABASE | SCHEMA) [IF NOT EXISTS] database_name[COMMENT 'database_comment']
  [LOCATION hdfs_path];
```

Statement type: DDL

Usage notes:

A database is physically represented as a directory in HDFS, with a filename extension .db, under the main Impala data directory. If the associated HDFS directory does not exist, it is created for you. All databases and their associated directories are top-level objects, with no physical or logical nesting.

After creating a database, to make it the current database within an impala-shell session, use the USE statement. You can refer to tables in the current database without prepending any qualifier to their names.

When you first connect to Impala through impala-shell, the database you start in (before issuing any CREATE DATABASE or USE statements) is named default.

Impala includes another predefined database, _impala_builtins, that serves as the location for the <u>built-in</u> <u>functions</u>. To see the built-in functions, use a statement like the following:

```
show functions in _impala_builtins; show functions in _impala_builtins like '*substring*';
```

After creating a database, your impala-shell session or another impala-shell connected to the same node can immediately access that database. To access the database through the Impala daemon on a different node, issue the INVALIDATE METADATA statement first while connected to that other node.

Setting the LOCATION attribute for a new database is a way to work with sets of files in an HDFS directory structure outside the default Impala data directory, as opposed to setting the LOCATION attribute for each individual table.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 338 for details.

Hive considerations:

When you create a database in Impala, the database can also be used by Hive.

Examples:

```
create database first_db;
use first_db;
create table t1 (x int);
create database second_db;
use second db;
-- Each database has its own namespace for tables.
-- You can reuse the same table names in each database.
create table t1 (s string);
create database temp;
-- You do not have to USE a database after creating it.
-- Just qualify the table name with the name of the database.
create table temp.t2 (x int, y int);
use database temp;
create table t3 (s string);
-- You cannot drop a database while it is selected by the USE statement.
drop database temp;
ERROR: AnalysisException: Cannot drop current default database: temp
-- The always-available database 'default' is a convenient one to USE.
use default;
-- Before dropping a database, first drop all the tables inside it.
drop database temp;
ERROR: ImpalaRuntimeException: Error making 'dropDatabase' RPC to Hive Metastore:
CAUSED BY: InvalidOperationException: Database temp is not empty
show tables in temp;
name
t3
drop table temp.t3;
drop database temp;
```

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have write permission for the parent HDFS directory under which the database is located.

Related information:

<u>Databases</u> on page 150, <u>DROP DATABASE Statement</u> on page 186, <u>USE Statement</u> on page 246, <u>SHOW DATABASES</u> on page 238, Tables on page 151

CREATE FUNCTION Statement

Creates a user-defined function (UDF), which you can use to implement custom logic during SELECT or INSERT operations.

Syntax:

The syntax is different depending on whether you create a scalar UDF, which is called once for each row and implemented by a single function, or a user-defined aggregate function (UDA), which is implemented by multiple functions that compute intermediate results across sets of rows.

To create a scalar UDF, issue a CREATE FUNCTION statement:

```
CREATE FUNCTION [IF NOT EXISTS] [db_name.]function_name([arg_type[, arg_type...])
  RETURNS return_type
  LOCATION 'hdfs_path'
  SYMBOL='symbol_or_class'
```

To create a UDA, issue a CREATE AGGREGATE FUNCTION statement:

```
CREATE [AGGREGATE] FUNCTION [IF NOT EXISTS] [db_name.]function_name([arg_type[,
arg_type...])
 RETURNS return_type
 LOCATION 'hdfs_path'
 [INIT_FN='function]
 UPDATE_FN='function
 MERGE_FN='function
  [PREPARE_FN='function]
  [CLOSEFN='function]
  [SERIALIZE_FN='function]
  [FINALIZE_FN='function]
```

Statement type: DDL

Varargs notation:

If the underlying implementation of your function accepts a variable number of arguments:

- The variable arguments must go last in the argument list.
- The variable arguments must all be of the same type.
- You must include at least one instance of the variable arguments in every function call invoked from SQL.
- You designate the variable portion of the argument list in the CREATE FUNCTION statement by including . . . immediately after the type name of the first variable argument. For example, to create a function that accepts an INT argument, followed by a BOOLEAN, followed by one or more STRING arguments, your CREATE FUNCTION statement would look like:

```
CREATE FUNCTION func_name (INT, BOOLEAN, STRING ...)
 RETURNS type LOCATION 'path' SYMBOL='entry_point';
```

See Variable-Length Argument Lists on page 301 for how to code the C++ or Java function to accept variable-length argument lists.

Scalar and aggregate functions:

The simplest kind of user-defined function returns a single scalar value each time it is called, typically once for each row in the result set. This general kind of function is what is usually meant by UDF. User-defined aggregate functions (UDAs) are a specialized kind of UDF that produce a single value based on the contents of multiple rows. You usually use UDAs in combination with a GROUP BY clause to condense a large result set into a smaller one, or even a single row summarizing column values across an entire table.

You create UDAs by using the CREATE AGGREGATE FUNCTION SYNTAX. The clauses INIT_FN, UPDATE_FN, MERGE_FN, SERIALIZE_FN, FINALIZE_FN, and INTERMEDIATE ONly apply when you create a UDA rather than a scalar UDF.

The *_FN clauses specify functions to call at different phases of function processing.

- Initialize: The function you specify with the INIT_FN clause does any initial setup, such as initializing member variables in internal data structures. This function is often a stub for simple UDAs. You can omit this clause and a default (no-op) function will be used.
- **Update:** The function you specify with the UPDATE_FN clause is called once for each row in the original result set, that is, before any GROUP BY clause is applied. A separate instance of the function is called for each different value returned by the GROUP BY clause. The final argument passed to this function is a pointer, to which you write an updated value based on its original value and the value of the first argument.
- Merge: The function you specify with the MERGE_FN clause is called an arbitrary number of times, to combine intermediate values produced by different nodes or different threads as Impala reads and processes data files in parallel. The final argument passed to this function is a pointer, to which you write an updated value based on its original value and the value of the first argument.
- **Serialize:** The function you specify with the SERIALIZE_FN clause frees memory allocated to intermediate results. It is required if any memory was allocated by the Allocate function in the Init, Update, or Merge functions, or if the intermediate type contains any pointers. See the UDA code samples for details.
- Finalize: The function you specify with the FINALIZE_FN clause does any required teardown for resources acquired by your UDF, such as freeing memory, closing file handles if you explicitly opened any files, and so on. This function is often a stub for simple UDAs. You can omit this clause and a default (no-op) function will be used. It is required in UDAs where the final return type is different than the intermediate type. or if any memory was allocated by the Allocate function in the Init, Update, or Merge functions. See the UDA code samples for details.

If you use a consistent naming convention for each of the underlying functions, Impala can automatically determine the names based on the first such clause, so the others are optional.

For end-to-end examples of UDAs, see <u>Impala User-Defined Functions (UDFs)</u> on page 295.

Usage notes:

- You can write Impala UDFs in either C++ or Java. C++ UDFs are new to Impala, and are the recommended format for high performance utilizing native code. Java-based UDFs are compatible between Impala and Hive, and are most suited to reusing existing Hive UDFs. (Impala can run Java-based Hive UDFs but not Hive UDAs.)
- The body of the UDF is represented by a .so or . jar file, which you store in HDFS and the CREATE FUNCTION statement distributes to each Impala node.
- Impala calls the underlying code during SQL statement evaluation, as many times as needed to process all the rows from the result set. All UDFs are assumed to be deterministic, that is, to always return the same result when passed the same argument values. Impala might or might not skip some invocations of a UDF if the result value is already known from a previous call. Therefore, do not rely on the UDF being called a specific number of times, and do not return different result values based on some external factor such as the current time, a random number function, or an external data source that could be updated while an Impala query is in progress.
- The names of the function arguments in the UDF are not significant, only their number, positions, and data types.
- You can overload the same function name by creating multiple versions of the function, each with a different argument signature. For security reasons, you cannot make a UDF with the same name as any built-in function.

- In the UDF code, you represent the function return result as a struct. This struct contains 2 fields. The first field is a boolean representing whether the value is NULL or not. (When this field is true, the return value is interpreted as NULL.) The second field is the same type as the specified function return type, and holds the return value when the function returns something other than NULL.
- In the UDF code, you represent the function arguments as an initial pointer to a UDF context structure, followed by references to zero or more structs, corresponding to each of the arguments. Each struct has the same 2 fields as with the return value, a boolean field representing whether the argument is NULL, and a field of the appropriate type holding any non-NULL argument value.
- For sample code and build instructions for UDFs, see the sample UDFs in the Impala github repo.
- Because the file representing the body of the UDF is stored in HDFS, it is automatically available to all the Impala nodes. You do not need to manually copy any UDF-related files between servers.
- Because Impala currently does not have any ALTER FUNCTION statement, if you need to rename a function, move it to a different database, or change its signature or other properties, issue a DROP FUNCTION statement for the original function followed by a CREATE FUNCTION with the desired properties.
- Because each UDF is associated with a particular database, either issue a USE statement before doing any CREATE FUNCTION statements, or specify the name of the function as db_name.function_name.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 338 for details.

Compatibility:

Impala can run UDFs that were created through Hive, as long as they refer to Impala-compatible data types (not composite or nested column types). Hive can run Java-based UDFs that were created through Impala, but not Impala UDFs written in C++.

Restrictions:

Currently, Impala UDFs and UDAs are not persisted in the metastore database. Information about these functions is held in the memory of the catalogd daemon. You must reload them by running the CREATE FUNCTION statements again each time you restart the catalogd daemon.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Related information:

Impala User-Defined Functions (UDFs) on page 295 for more background information, usage instructions, and examples for Impala UDFs; DROP FUNCTION Statement on page 186

CREATE ROLE Statement (CDH 5.2 or higher only)

The CREATE ROLE statement creates a role to which privileges can be granted. Privileges can be granted to roles, which can then be assigned to users. A user that has been assigned a role will only be able to exercise the privileges of that role. Only users that have administrative privileges can create/drop roles. By default, the hive, impala and hue users have administrative privileges in Sentry.

Syntax:

CREATE ROLE role_name

Required privileges:

Only administrative users (those with ALL privileges on the server, defined in the Sentry policy file) can use this statement.

Compatibility:

Impala makes use of any roles and privileges specified by the GRANT and REVOKE statements in Hive, and Hive makes use of any roles and privileges specified by the GRANT and REVOKE statements in Impala. The Impala GRANT and REVOKE statements for privileges do not require the ROLE keyword to be repeated before each role name, unlike the equivalent Hive statements.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Related information:

Enabling Sentry Authorization for Impala on page 89, GRANT Statement (CDH 5.2 or higher only) on page 195, REVOKE Statement (CDH 5.2 or higher only) on page 211, DROP ROLE Statement (CDH 5.2 or higher only) on page 187, SHOW Statement on page 235

CREATE TABLE Statement

Creates a new table and specifies its characteristics. While creating a table, you optionally specify aspects such

- Whether the table is internal or external.
- The columns and associated data types.
- The columns used for physically partitioning the data.
- The file format for data files.
- The HDFS directory where the data files are located.

Syntax:

The general syntax for creating a table and specifying its columns is as follows:

Explicit column definitions:

```
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
  [(col_name data_type [COMMENT 'col_comment'], ...)]
  [COMMENT 'table_comment']
  [PARTITIONED BY (col_name data_type [COMMENT 'col_comment'], ...)]
  [WITH SERDEPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
   [ROW FORMAT row_format] [STORED AS file_format]
  [LOCATION 'hdfs_path']
  [TBLPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
  [CACHED IN 'pool_name']
```

Column definitions inferred from data file:

```
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
  LIKE PARQUET 'hdfs_path_of_parquet_file'
  [COMMENT 'table_comment']
  [PARTITIONED BY (col_name data_type [COMMENT 'col_comment'], ...)]
  [WITH SERDEPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
   [ROW FORMAT row_format] [STORED AS file_format]
  [LOCATION 'hdfs_path']
  [TBLPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
  [CACHED IN 'pool_name']
data type
  : primitive_type
```

CREATE TABLE AS SELECT:

```
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] db_name.]table_name
  [COMMENT 'table_comment']
  [WITH SERDEPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
```

```
[ROW FORMAT row_format] [STORED AS file_format]
  [LOCATION 'hdfs_path']
  [TBLPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
  [CACHED IN 'pool_name']
AS
  select statement
primitive_type
```

```
: TINYINT
   SMALLINT
   INT
   BIGINT
   BOOLEAN
   FLOAT
   DOUBLE
   DECIMAL
   STRING
   CHAR
    VARCHAR
   TIMESTAMP
row_format
  : DELIMITED [FIELDS TERMINATED BY 'char' [ESCAPED BY 'char']]
   [LINES TERMINATED BY 'char']
file_format:
    PAROUET
   TEXTFILE
   AVRO
   SEQUENCEFILE
   RCFILE
```

Statement type: DDL

Internal and external tables (EXTERNAL and LOCATION clauses):

By default, Impala creates an "internal" table, where Impala manages the underlying data files for the table, and physically deletes the data files when you drop the table. If you specify the EXTERNAL clause, Impala treats the table as an "external" table, where the data files are typically produced outside Impala and queried from their original locations in HDFS, and Impala leaves the data files in place when you drop the table. For details about internal and external tables, see <u>Tables</u> on page 151.

Typically, for an external table you include a LOCATION clause to specify the path to the HDFS directory where Impala reads and writes files for the table. For example, if your data pipeline produces Parquet files in the HDFS directory /user/etl/destination, you might create an external table as follows:

```
CREATE EXTERNAL TABLE external parquet (c1 INT, c2 STRING, c3 TIMESTAMP)
  STORED AS PARQUET LOCATION '/user/etl/destination';
```

Although the EXTERNAL and LOCATION clauses are often specified together, LOCATION is optional for external tables, and you can also specify LOCATION for internal tables. The difference is all about whether Impala "takes control" of the underlying data files and moves them when you rename the table, or deletes them when you drop the table. For more about internal and external tables and how they interact with the LOCATION attribute, see Internal Tables on page 152.

Partitioned tables (PARTITIONED BY clause):

The PARTITIONED BY clause divides the data files based on the values from one or more specified columns. Impala queries can use the partition metadata to minimize the amount of data that is read from disk or transmitted across the network, particularly during join queries. For details about partitioning, see Partitioning for Impala Tables on page 379.

Specifying file format (STORED AS and ROW FORMAT clauses):

The STORED AS clause identifies the format of the underlying data files. Currently, Impala can query more types of file formats than it can create or insert into. Use Hive to perform any create or data load operations that are not currently available in Impala. For example, Impala can create a SequenceFile table but cannot insert data into it. There are also Impala-specific procedures for using compression with each kind of file format. For details about working with data files of various formats, see How Impala Works with Hadoop File Formats on page 384.

Note: In Impala 1.4.0 and higher, Impala can create Avro tables, which formerly required doing the CREATE TABLE statement in Hive. See <u>Using the Avro File Format with Impala Tables</u> on page 402 for details and examples.

By default (when no STORED AS clause is specified), data files in Impala tables are created as text files with Ctrl-A (hex 01) characters as the delimiter. Specify the ROW FORMAT DELIMITED clause to produce or ingest data files that use a different delimiter character such as tab or |, or a different line end character such as carriage return or newline. When specifying delimiter and line end characters with the FIELDS TERMINATED BY and LINES TERMINATED BY clauses, use '\t' for tab, '\n' for newline or linefeed, '\r' for carriage return, and \0 for ASCII nul (hex 00). For more examples of text tables, see <u>Using Text Data Files with Impala Tables</u> on page 385.

The ESCAPED BY clause applies both to text files that you create through an INSERT statement to an Impala TEXTFILE table, and to existing data files that you put into an Impala table directory. (You can ingest existing data files either by creating the table with CREATE EXTERNAL TABLE ... LOCATION, the LOAD DATA statement, or through an HDFS operation such as hdfs dfs -put file hdfs_path.) Choose an escape character that is not used anywhere else in the file, and put it in front of each instance of the delimiter character that occurs within a field value. Surrounding field values with quotation marks does not help Impala to parse fields with embedded delimiter characters; the quotation marks are considered to be part of the column value. If you want to use \ as the escape character, specify the clause in impala-shell as ESCAPED BY '\\'.

Note: The CREATE TABLE clauses FIELDS TERMINATED BY, ESCAPED BY, and LINES TERMINATED BY have special rules for the string literal used for their argument, because they all require a single character. You can use a regular character surrounded by single or double quotation marks, an octal sequence such as '\054' (representing a comma), or an integer in the range '-127'..'128' (with quotation marks but no backslash), which is interpreted as a single-byte ASCII character. Negative values are subtracted from 256; for example, FIELDS TERMINATED BY '-2' sets the field delimiter to ASCII code 254, the "Icelandic Thorn" character used as a delimiter by some data formats.

Cloning tables (LIKE clause):

To create an empty table with the same columns, comments, and other attributes as another table, use the following variation. The CREATE TABLE . . . LIKE form allows a restricted set of clauses, currently only the LOCATION, COMMENT, and STORED AS clauses.

```
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name

LIKE { [db_name.]table_name | PARQUET 'hdfs_path_of_parquet_file' }

[COMMENT 'table_comment']

[STORED AS file_format]

[LOCATION 'hdfs_path']
```

Note: To clone the structure of a table and transfer data into it in a single operation, use the CREATE TABLE AS SELECT syntax described in the next subsection.

When you clone the structure of an existing table using the CREATE TABLE ... LIKE syntax, the new table keeps the same file format as the original one, so you only need to specify the STORED AS clause if you want to use a different file format, or when specifying a view as the original table. (Creating a table "like" a view produces a text table by default.)

Although normally Impala cannot create an HBase table directly, Impala can clone the structure of an existing HBase table with the CREATE TABLE ... LIKE syntax, preserving the file format and metadata from the original table.

There are some exceptions to the ability to use CREATE TABLE ... LIKE with an Avro table. For example, you cannot use this technique for an Avro table that is specified with an Avro schema but no columns. When in doubt, check if a CREATE TABLE ... LIKE operation works in Hive; if not, it typically will not work in Impala

If the original table is partitioned, the new table inherits the same partition key columns. Because the new table is initially empty, it does not inherit the actual partitions that exist in the original one. To create partitions in the new table, insert data or issue ALTER TABLE ... ADD PARTITION statements.

Prior to Impala 1.4.0, it was not possible to use the CREATE TABLE LIKE view_name syntax. In Impala 1.4.0 and higher, you can create a table with the same column definitions as a view using the CREATE TABLE LIKE technique. Although CREATE TABLE LIKE normally inherits the file format of the original table, a view has no underlying file format, so CREATE TABLE LIKE view_name produces a text table by default. To specify a different file format, include a STORED AS file format clause at the end of the CREATE TABLE LIKE statement.

Because CREATE TABLE ... LIKE only manipulates table metadata, not the physical data of the table, issue INSERT INTO TABLE statements afterward to copy any data from the original table into the new one, optionally converting the data to a new file format. (For some file formats, Impala can do a CREATE TABLE ... LIKE to create the table, but Impala cannot insert data in that file format; in these cases, you must load the data in Hive. See <u>How Impala Works with Hadoop File Formats</u> on page 384 for details.)

CREATE TABLE AS SELECT:

The CREATE TABLE AS SELECT syntax is a shorthand notation to create a table based on column definitions from another table, and copy data from the source table to the destination table without issuing any separate INSERT statement. This idiom is so popular that it has its own acronym, "CTAS".

See <u>SELECT Statement</u> on page 211 for details about query syntax for the SELECT portion of a CREATE TABLE AS SELECT statement.

The newly created table inherits the column names that you select from the original table, which you can override by specifying column aliases in the query. Any column or table comments from the original table are not carried over to the new table.

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement, any ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation potentially creates many different data files, prepared on different data nodes, and therefore the notion of the data being stored in sorted order is impractical.

For example, the following statements show how you can clone all the data in a table, or a subset of the columns and/or rows, or reorder columns, rename them, or construct them out of expressions:

```
-- Create new table and copy all data.
CREATE TABLE clone_of_t1 AS SELECT * FROM t1;
-- Same idea as CREATE TABLE LIKE, don't copy any data.
CREATE TABLE empty_clone_of_t1 AS SELECT * FROM t1 WHERE 1=0;
-- Copy some data.
CREATE TABLE subset_of_t1 AS SELECT * FROM t1 WHERE x > 100 AND y LIKE 'A%';
CREATE TABLE summary_of_t1 AS SELECT c1, sum(c2) AS total, avg(c2) AS average FROM t1
GROUP BY c2;
-- Switch file format.
CREATE TABLE parquet_version_of_t1 STORED AS PARQUET AS SELECT * FROM t1;
-- Create tables with different column order, names, or types than the original.
CREATE TABLE some_columns_from_t1 AS SELECT c1, c3, c5 FROM t1;
CREATE TABLE reordered_columns_from_t1 AS SELECT c4, c3, c1, c2 FROM t1;
CREATE TABLE synthesized_columns AS SELECT upper(c1) AS all_caps, c2+c3 AS total,
"California" AS state FROM t1;
```

As part of a CTAS operation, you can convert the data to any file format that Impala can write (currently, TEXTFILE and PARQUET). You cannot specify the lower-level properties of a text table, such as the delimiter. Although you can use a partitioned table as the source and copy data from it, you cannot specify any partitioning clauses for the new table.

CREATE TABLE LIKE PARQUET:

The variation CREATE TABLE ... LIKE PARQUET 'hdfs_path_of_parquet_file' lets you skip the column definitions of the CREATE TABLE statement. The column names and data types are automatically configured based on the organization of the specified Parquet data file, which must already reside in HDFS. You can use a data file located outside the Impala database directories, or a file from an existing Impala Parquet table; either way, Impala only uses the column definitions from the file and does not use the HDFS location for the LOCATION attribute of the new table. (Although you can also specify the enclosing directory with the LOCATION attribute, to both use the same schema as the data file and point the Impala table at the associated directory for querying.)

The following considerations apply when you use the CREATE TABLE LIKE PARQUET technique:

- Any column comments from the original table are not preserved in the new table. Each column in the new table has a comment stating the low-level Parquet field type used to deduce the appropriate SQL column type.
- If you use a data file from a partitioned Impala table, any partition key columns from the original table are left out of the new table, because they are represented in HDFS directory names rather than stored in the data file. To preserve the partition information, repeat the same PARTITION clause as in the original CREATE TABLE statement.
- The file format of the new table defaults to text, as with other kinds of CREATE TABLE statements. To make the new table also use Parquet format, include the clause STORED AS PARQUET in the CREATE TABLE LIKE PAROUET statement.
- If the Parquet data file comes from an existing Impala table, currently, any TINYINT OR SMALLINT columns are turned into INT columns in the new table. Internally, Parquet stores such values as 32-bit integers.
- When the destination table uses the Parquet file format, the CREATE TABLE AS SELECT and INSERT SELECT statements always create at least one data file, even if the SELECT part of the statement does not match any rows. You can use such an empty Parquet data file as a template for subsequent CREATE TABLE LIKE PAROUET statements.

For more details about creating Parquet tables, and examples of the CREATE TABLE LIKE PARQUET syntax, see Using the Parquet File Format with Impala Tables on page 392.

Visibility and Metadata (TBLPROPERTIES and WITH SERDEPROPERTIES clauses):

You can associate arbitrary items of metadata with a table by specifying the TBLPROPERTIES clause. This clause takes a comma-separated list of key-value pairs and stores those items in the metastore database. You can also change the table properties later with an ALTER TABLE statement. You can observe the table properties for different delimiter and escape characters using the DESCRIBE FORMATTED command, and change those settings for an existing table with alter table ... set tblproperties.

You can also associate SerDes properties with the table by specifying key-value pairs through the WITH SERDEPROPERTIES clause. This metadata is not used by Impala, which has its own built-in serializer and deserializer for the file formats it supports. Particular property values might be needed for Hive compatibility with certain variations of file formats, particularly Avro.

Some DDL operations that interact with other Hadoop components require specifying particular values in the SERDEPROPERTIES OF TBLPROPERTIES fields, such as creating an Avro table or an HBase table. (You typically create HBase tables in Hive, because they require additional clauses not currently available in Impala.)

To see the column definitions and column comments for an existing table, for example before issuing a CREATE TABLE ... LIKE OR A CREATE TABLE ... AS SELECT statement, issue the statement DESCRIBE table name. To see even more detail, such as the location of data files and the values for clauses such as ROW FORMAT and STORED AS, issue the statement DESCRIBE FORMATTED table name. DESCRIBE FORMATTED is also needed to see any overall table comment (as opposed to individual column comments).

After creating a table, your impala-shell session or another impala-shell connected to the same node can immediately query that table. There might be a brief interval (one statestore heartbeat) before the table can be queried through a different Impala node. To make the CREATE TABLE statement return only when the table is recognized by all Impala nodes in the cluster, enable the SYNC_DDL query option.

HDFS caching (CACHED IN clause):

If you specify the CACHED IN clause, any existing or future data files in the table directory or the partition subdirectories are designated to be loaded into memory with the HDFS caching mechanism. See Using HDFS Caching with Impala (CDH 5.1 or higher only) on page 358 for details about using the HDFS caching feature.

Hive considerations:

Impala queries can make use of metadata about the table and columns, such as the number of rows in a table or the number of different values in a column. Prior to Impala 1.2.2, to create this metadata, you issued the ANALYZE TABLE statement in Hive to gather this information, after creating the table and loading representative data into it. In Impala 1.2.2 and higher, the COMPUTE STATS statement produces these statistics within Impala, without needing to use Hive at all.

Column order:

If you intend to use the table to hold data files produced by some external source, specify the columns in the same order as they appear in the data files.

If you intend to insert or copy data into the table through Impala, or if you have control over the way externally produced data files are arranged, use your judgment to specify columns in the most convenient order:

- If certain columns are often NULL, specify those columns last. You might produce data files that omit these trailing columns entirely. Impala automatically fills in the NULL values if so.
- If an unpartitioned table will be used as the source for an INSERT ... SELECT operation into a partitioned table, specify last in the unpartitioned table any columns that correspond to partition key columns in the partitioned table, and in the same order as the partition key columns are declared in the partitioned table. This technique lets you use INSERT ... SELECT * when copying data to the partitioned table, rather than specifying each column name individually.
- If you specify columns in an order that you later discover is suboptimal, you can sometimes work around the problem without recreating the table. You can create a view that selects columns from the original table in a permuted order, then do a SELECT * from the view. When inserting data into a table, you can specify a permuted order for the inserted columns to match the order in the destination table.

HBase considerations:

Note:

The Impala CREATE TABLE statement cannot create an HBase table, because it currently does not support the STORED BY clause needed for HBase tables. Create such tables in Hive, then query them through Impala. For information on using Impala with HBase tables, see <u>Using Impala to Query HBase</u> Tables on page 411.

Sorting considerations: Although you can specify an order by clause in an INSERT ... SELECT statement, any ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation potentially creates many different data files, prepared on different data nodes, and therefore the notion of the data being stored in sorted order is impractical.

HDFS considerations:

The CREATE TABLE Statement for an internal table creates a directory in HDFS. The CREATE EXTERNAL TABLE statement associates the table with an existing HDFS directory, and does not create any new directory in HDFS. To locate the HDFS data directory for a table, issue a DESCRIBE FORMATTED table statement. To examine the contents of that HDFS directory, use an OS command such as hdfs dfs -ls hdfs://path, either from the OS command line or through the shell or ! commands in impala-shell.

The CREATE TABLE AS SELECT syntax creates data files under the table data directory to hold any data copied by the INSERT portion of the statement. (Even if no data is copied, Impala might create one or more empty data files.)

HDFS permissions:

Cancellation: Certain multi-stage statements (CREATE TABLE AS SELECT and COMPUTE STATS) can be cancelled during some stages, when running INSERT or SELECT operations internally. To cancel this statement, use Ctrl-C from the impala-shell interpreter, the Cancel button from the Watch page in Hue, Actions > Cancel from the Queries list in Cloudera Manager, or Cancel from the list of in-flight queries (for a particular node) on the Queries tab in the Impala web UI (port 25000).

Related information:

<u>Tables</u> on page 151, <u>ALTER TABLE Statement</u> on page 159, <u>DROP TABLE Statement</u> on page 191, <u>Partitioning for Impala Tables</u> on page 379, <u>Internal Tables</u> on page 152, <u>External Tables</u> on page 152, <u>COMPUTE STATS Statement</u> on page 164, <u>SYNC_DDL Query Option</u> on page 338, <u>SHOW TABLES Statement</u> on page 239, <u>SHOW CREATE TABLE Statement</u> on page 239, <u>DESCRIBE Statement</u> on page 181

CREATE VIEW Statement

The CREATE VIEW statement lets you create a shorthand abbreviation for a more complicated query. The base query can involve joins, expressions, reordered columns, column aliases, and other SQL features that can make a query hard to understand or maintain.

Because a view is purely a logical construct (an alias for a query) with no physical data behind it, ALTER VIEW only involves changes to metadata in the metastore database, not any data files in HDFS.

Syntax:

```
CREATE VIEW [IF NOT EXISTS] view_name [(column_list)]
AS select_statement
```

Statement type: DDL

Usage notes:

The CREATE VIEW statement can be useful in scenarios such as the following:

• To turn even the most lengthy and complicated SQL query into a one-liner. You can issue simple queries against the view from applications, scripts, or interactive queries in impala-shell. For example:

```
select * from view_name;
select * from view_name order by c1 desc limit 10;
```

The more complicated and hard-to-read the original query, the more benefit there is to simplifying the query using a view.

- To hide the underlying table and column names, to minimize maintenance problems if those names change. In that case, you re-create the view using the new names, and all queries that use the view rather than the underlying tables keep running with no changes.
- To experiment with optimization techniques and make the optimized queries available to all applications. For example, if you find a combination of WHERE conditions, join order, join hints, and so on that works the best for a class of queries, you can establish a view that incorporates the best-performing techniques. Applications can then make relatively simple queries against the view, without repeating the complicated and optimized logic over and over. If you later find a better way to optimize the original query, when you re-create the view, all the applications immediately take advantage of the optimized base query.
- To simplify a whole class of related queries, especially complicated queries involving joins between multiple tables, complicated expressions in the column list, and other SQL syntax that makes the query difficult to understand and debug. For example, you might create a view that joins several tables, filters using several where conditions, and selects several columns from the result set. Applications might issue queries against this view that only vary in their LIMIT, ORDER BY, and similar simple clauses.

For queries that require repeating complicated clauses over and over again, for example in the select list, ORDER BY, and GROUP BY clauses, you can use the WITH clause as an alternative to creating a view.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 338 for details.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Examples:

```
-- Create a view that is exactly the same as the underlying table.
create view v1 as select * from t1;
-- Create a view that includes only certain columns from the underlying table.
create view v2 as select c1, c3, c7 from t1;
-- Create a view that filters the values from the underlying table.
create view v3 as select distinct c1, c3, c7 from t1 where c1 is not null and c5 > 0;
-- Create a view that that reorders and renames columns from the underlying table.
create view v4 as select c4 as last_name, c6 as address, c2 as birth_date from t1;
-- Create a view that runs functions to convert or transform certain columns.
create view v5 as select c1, cast(c3 as string) c3, concat(c4,c5) c5, trim(c6) c6,
"Constant" c8 from t1;
-- Create a view that hides the complexity of a view query.
create view v6 as select t1.c1, t2.c2 from t1 join t2 on t1.id = t2.id;
```

The following example creates a series of views and then drops them. These examples illustrate how views are associated with a particular database, and both the view definitions and the view names for CREATE VIEW and DROP VIEW can refer to a view in the current database or a fully qualified view name.

```
-- Create and drop a view in the current database.
CREATE VIEW few_rows_from_t1 AS SELECT * FROM t1 LIMIT 10;
DROP VIEW few_rows_from_t1;
-- Create and drop a view referencing a table in a different database.
CREATE VIEW table_from_other_db AS SELECT x FROM db1.foo WHERE x IS NOT NULL;
DROP VIEW table_from_other_db;
USE db1;
-- Create a view in a different database.
CREATE VIEW db2.v1 AS SELECT * FROM db2.foo;
-- Switch into the other database and drop the view.
USE db2;
DROP VIEW v1;
USE db1;
-- Create a view in a different database.
CREATE VIEW db2.v1 AS SELECT * FROM db2.foo;
-- Drop a view in the other database.
DROP VIEW db2.v1;
```

Related information:

Views on page 153, ALTER VIEW Statement on page 163, DROP VIEW Statement on page 192

DESCRIBE Statement

The DESCRIBE statement displays metadata about a table, such as the column names and their data types. Its syntax is:

```
DESCRIBE [FORMATTED] [db_name.]table_name
```

You can use the abbreviation DESC for the DESCRIBE statement.

The DESCRIBE FORMATTED variation displays additional information, in a format familiar to users of Apache Hive. The extra information includes low-level details such as whether the table is internal or external, when it was created, the file format, the location of the data in HDFS, whether the object is a table or a view, and (for views) the text of the query from the view definition.

• Note: The Compressed field is not a reliable indicator of whether the table contains compressed data. It typically always shows No, because the compression settings only apply during the session that loads data and are not stored persistently with the table metadata.

Usage notes:

After the impalad daemons are restarted, the first query against a table can take longer than subsequent queries, because the metadata for the table is loaded before the query is processed. This one-time delay for each table can cause misleading results in benchmark tests or cause unnecessary concern. To "warm up" the Impala metadata cache, you can issue a DESCRIBE statement in advance for each table you intend to access later.

When you are dealing with data files stored in HDFS, sometimes it is important to know details such as the path of the data files for an Impala table, and the host name for the namenode. You can get this information from the DESCRIBE FORMATTED output. You specify HDFS URIs or path specifications with statements such as LOAD DATA and the LOCATION clause of CREATE TABLE or ALTER TABLE. You might also use HDFS URIs or paths with Linux commands such as hadoop and hdfs to copy, rename, and so on, data files in HDFS.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 338 for details.

Each table can also have associated table statistics and column statistics. To see these categories of information, use the SHOW TABLE STATS table_name and SHOW COLUMN STATS table_name statements. See SHOW COLUMN STATS table_name and SHOW COLUMN STATS table_name statements. See SHOW Statement on page 235 for details.

Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD DATA, OR CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a REFRESH table_name in Impala. This technique is especially important for tables that are very large, used in join queries, or both.

Examples:

The following example shows the results of both a standard DESCRIBE and DESCRIBE FORMATTED for different kinds of schema objects:

- DESCRIBE for a table or a view returns the name, type, and comment for each of the columns. For a view, if the column value is computed by an expression, the column name is automatically generated as _c0, _c1, and so on depending on the ordinal number of the column.
- A table created with no special format or storage clauses is designated as a MANAGED_TABLE (an "internal table" in Impala terminology). Its data files are stored in an HDFS directory under the default Hive data directory. By default, it uses Text data format.
- A view is designated as VIRTUAL_VIEW in DESCRIBE FORMATTED output. Some of its properties are NULL or blank because they are inherited from the base table. The text of the query that defines the view is part of the DESCRIBE FORMATTED output.
- A table with additional clauses in the CREATE TABLE statement has differences in DESCRIBE FORMATTED output. The output for T2 includes the EXTERNAL_TABLE keyword because of the CREATE EXTERNAL TABLE syntax, and different InputFormat and OutputFormat fields to reflect the Parquet file format.

```
[localhost:21000] > create table t1 (x int, y int, s string);
Query: create table t1 (x int, y int, s string)
[localhost:21000] > describe t1;
Query: describe t1
```

```
Query finished, fetching results ...
 name
        type
                 comment
         int
         int
        string
Returned 3 row(s) in 0.13s
[localhost:21000] > describe formatted t1;
Query: describe formatted t1
Query finished, fetching results ...
 name
                               type
               comment
 # col_name
                               data_type
               comment
                                NULL
                NULL
                                int
                None
                                int
                None
                                string
                None
                                NULL
                NULL
   Detailed Table Information
                                NULL
               NULL
                                describe_formatted
 Database:
                NULL
 Owner:
                                cloudera
                NULL
                                Mon Jul 22 17:03:16 EDT 2013
 CreateTime:
               NULL
                                UNKNOWN
 LastAccessTime:
                NULL
  Protect Mode:
                                None
               NULL
 Retention:
                                0
               NULL
 Location:
hdfs://127.0.0.1:8020/user/hive/warehouse/describe_formatted.db/t1 | NULL
 Table Type:
                               | MANAGED_TABLE
               NULL
 Table Parameters:
                               NULL
               NULL
                               | transient_lastDdlTime
               1374526996
                               NULL
               NULL
 # Storage Information
                               NULL
                NULL
  SerDe Library
                                org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
                NULL
 InputFormat:
                                org.apache.hadoop.mapred.TextInputFormat
               NULL
 OutputFormat:
org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
  Compressed:
                               No
                NULL
                                0
 Num Buckets:
               NULL
 Bucket Columns:
                               []
                NULL
 Sort Columns:
                               []
               NULL
Returned 26 row(s) in 0.03s
[localhost:21000] > create view v1 as select x, upper(s) from t1;
```

```
Query: create view v1 as select x, upper(s) from t1
[localhost:21000] > describe v1;
Query: describe v1
Query finished, fetching results ...
| name | type | comment |
      lint
 _cl | string |
Returned 2 row(s) in 0.10s
[localhost:21000] > describe formatted v1;
Query: describe formatted v1
Query finished, fetching results ...
                                                      comment
 name
                           type
 # col_name
                           data_type
                                                       comment
                           NULL
                                                        NULL
                            int
                                                         None
 X
 _c1
                            string
                                                         None
                            NULL
                                                         NULL
 # Detailed Table Information | NULL
                                                         NULL
                            describe_formatted
                                                         NULL
 Database:
 Owner:
                            cloudera
                                                         NITIT.
 CreateTime:
                            | Mon Jul 22 16:56:38 EDT 2013 | NULL
 LastAccessTime:
                            UNKNOWN
                                                         NULL
 Protect Mode:
                            None
                                                         NULL
 Retention:
                            0
                                                         NULL
                            VIRTUAL_VIEW
                                                         NULL
 Table Type:
                            NULL
                                                         NULL
 Table Parameters:
                            transient_lastDdlTime
                                                        1374526598
                                                         NULL
 # Storage Information
                            NULL
                                                         NULL
 SerDe Library:
                            null
                                                         NULL
                           null
                                                         NULL
 InputFormat:
 OutputFormat:
                           null
                                                         NULL
                            No
 Compressed:
                                                         NULL
 Num Buckets:
                            0
                                                         NULL
 Bucket Columns:
                            [ ]
                                                         NULL
                            []
 Sort Columns:
                                                         NULL
                            NULL
                                                         NULL
 # View Information
                            NULL
                                                         NULL
 View Original Text:
                           | SELECT x, upper(s) FROM t1
                                                         NULL
 View Expanded Text:
                           | SELECT x, upper(s) FROM t1
                                                         NULL
```

```
Returned 28 row(s) in 0.03s
[localhost:21000] > create external table t2 (x int, y int, s string) stored as parquet
 location '/user/cloudera/sample_data';
[localhost:21000] > describe formatted t2;
Query: describe formatted t2
Query finished, fetching results ...
                               type
 name
 comment
 # col_name
                               data_type
 comment
                               NULL
NULL
                                 int
 X
None
                                int
None
 S
                               string
None
                               NULL
NULL
# Detailed Table Information | NULL
 NULL
 Database:
                               describe_formatted
NULL
 Owner:
                               cloudera
 NULLI
                               | Mon Jul 22 17:01:47 EDT 2013
 CreateTime:
 NULL
 LastAccessTime:
                               UNKNOWN
 NULL
                               None
 Protect Mode:
NULL
                                 0
 Retention:
 NULL
 Location:
                               hdfs://127.0.0.1:8020/user/cloudera/sample_data
 NULL
 Table Type:
                               EXTERNAL_TABLE
NULL
 Table Parameters:
                               NULL
 NULL
                               EXTERNAL
 TRUE
                                transient_lastDdlTime
 1374526907
                               NULL
NULLI
 # Storage Information
                               NULL
 NULLI
 SerDe Library:
                               org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
 NULL
                               com.cloudera.impala.hive.serde.ParquetInputFormat
 InputFormat:
NULL
 OutputFormat:
                               com.cloudera.impala.hive.serde.ParquetOutputFormat
 NULL
 Compressed:
                                No
 NULL
 Num Buckets:
                                 0
NULLI
 Bucket Columns:
                                 []
NULL
                               []
 Sort Columns:
NULL
Returned 27 row(s) in 0.17s
```

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute permissions for all directories that are part of the table. (A table could span multiple different HDFS directories if it is partitioned. The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory based on its LOCATION attribute.)

Related information:

Tables on page 151, CREATE TABLE Statement on page 174, SHOW TABLES Statement on page 239, SHOW CREATE TABLE Statement on page 239

DROP DATABASE Statement

Removes a database from the system, and deletes the corresponding * . db directory from HDFS. The database must be empty before it can be dropped, to avoid losing any data.

Syntax:

```
______
DROP (DATABASE | SCHEMA) [IF EXISTS] database_name;
```

Statement type: DDL

Usage notes:

Before dropping a database, use a combination of DROP TABLE, DROP VIEW, ALTER TABLE, and ALTER VIEW statements, to drop all the tables and views in the database or move them to other databases.

Hive considerations:

When you drop a database in Impala, the database can no longer be used by Hive.

Examples:

See CREATE DATABASE Statement on page 169 for examples covering CREATE DATABASE, USE, and DROP DATABASE.

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have write permission for the directory associated with the database.

Related information:

<u>Databases</u> on page 150, <u>CREATE DATABASE Statement</u> on page 169, <u>USE Statement</u> on page 246, <u>SHOW DATABASES</u> on page 238

DROP FUNCTION Statement

Removes a user-defined function (UDF), so that it is not available for execution during Impala SELECT or INSERT operations.

Syntax:

```
DROP [AGGREGATE] FUNCTION [IF EXISTS] [db name.]function name(type[, type...])
```

Statement type: DDL

Usage notes:

Because the same function name could be overloaded with different argument signatures, you specify the argument types to identify the exact function to drop.

Restrictions:

Currently, Impala UDFs and UDAs are not persisted in the metastore database. Information about these functions is held in the memory of the catalogd daemon. You must reload them by running the CREATE FUNCTION statements again each time you restart the catalogd daemon.

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, does not need any particular HDFS permissions to perform this statement. All read and write operations are on the metastore database, not HDFS files and directories.

Related information:

Impala User-Defined Functions (UDFs) on page 295, CREATE FUNCTION Statement on page 171

DROP ROLE Statement (CDH 5.2 or higher only)

The DROP ROLE statement removes a role from the metastore database. Once dropped, the role is revoked for all users to whom it was previously assigned, and all privileges granted to that role are revoked. Queries that are already executing are not affected. Impala verifies the role information approximately every 60 seconds, so the effects of DROP ROLE might not take effect for new Impala queries for a brief period.

Syntax:

```
DROP ROLE role_name
L_____
```

Required privileges:

Only administrative users (initially, a predefined set of users specified in the Sentry service configuration file) can use this statement.

Compatibility:

Impala makes use of any roles and privileges specified by the GRANT and REVOKE statements in Hive, and Hive makes use of any roles and privileges specified by the GRANT and REVOKE statements in Impala. The Impala GRANT and REVOKE statements for privileges do not require the ROLE keyword to be repeated before each role name, unlike the equivalent Hive statements.

Related information:

Enabling Sentry Authorization for Impala on page 89, GRANT Statement (CDH 5.2 or higher only) on page 195 REVOKE Statement (CDH 5.2 or higher only) on page 211, CREATE ROLE Statement (CDH 5.2 or higher only) on page 173, SHOW Statement on page 235

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

DROP STATS Statement

Removes the specified statistics from a table or partition. The statistics were originally created by the COMPUTE STATS or COMPUTE INCREMENTAL STATS statement.

Syntax:

```
DROP STATS [database_name.]table_name
DROP INCREMENTAL STATS [database_name.]table_name PARTITION (partition_spec)
partition_spec ::= partition_col=constant_value
```

The PARTITION clause is only allowed in combination with the INCREMENTAL clause. It is optional for COMPUTE INCREMENTAL STATS, and required for DROP INCREMENTAL STATS. Whenever you specify partitions through

the partition (partition spec) clause in a compute incremental stats or drop incremental stats statement, you must include all the partitioning columns in the specification, and specify constant values for all the partition key columns.

DROP STATS removes all statistics from the table, whether created by COMPUTE STATS OR COMPUTE INCREMENTAL

DROP INCREMENTAL STATS only affects incremental statistics for a single partition, specified through the PARTITION clause. The incremental stats are marked as outdated, so that they are recomputed by the next COMPUTE INCREMENTAL STATS statement.

Usage notes:

You typically use this statement when the statistics for a table or a partition have become stale due to data files being added to or removed from the associated HDFS data directories, whether by manual HDFS operations or INSERT, INSERT OVERWRITE, or LOAD DATA statements, or adding or dropping partitions.

When a table or partition has no associated statistics, Impala treats it as essentially zero-sized when constructing the execution plan for a query. In particular, the statistics influence the order in which tables are joined in a join query. To ensure proper query planning and good query performance and scalability, make sure to run COMPUTE STATS or COMPUTE INCREMENTAL STATS on the table or partition after removing any stale statistics.

Dropping the statistics is not required for an unpartitioned table or a partitioned table covered by the original type of statistics. A subsequent COMPUTE STATS statement replaces any existing statistics with new ones, for all partitions, regardless of whether the old ones were outdated. Therefore, this statement was rarely used before the introduction of incremental statistics.

Dropping the statistics is required for a partitioned table containing incremental statistics, to make a subsequent COMPUTE INCREMENTAL STATS statement rescan an existing partition. See How Impala Uses Statistics for Query Optimization on page 349 for information about incremental statistics, a new feature available in Impala 2.1.0 and higher.

Statement type: DDL

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, does not need any particular HDFS permissions to perform this statement. All read and write operations are on the metastore database, not HDFS files and directories.

Examples:

The following example shows a partitioned table that has associated statistics produced by the COMPUTE INCREMENTAL STATS statement, and how the situation evolves as statistics are dropped from specific partitions, then the entire table.

Initially, all table and column statistics are filled in.

how table stat	s item_r	partition				
i_category	#Rows	#Files			Format	Incremental stats
Books	1733	1	223.74KB	NOT CACHED	PARQUET	true
Children	1786	1	230.05KB	NOT CACHED	PARQUET	true
Electronics	1812	1	232.67KB	NOT CACHED	PARQUET	true
Home	1807	1	232.56KB	NOT CACHED	PARQUET	true
Jewelry	1740	1	223.72KB	NOT CACHED	PARQUET	true
Men	1811	1	231.25KB	NOT CACHED	PARQUET	true
Music	1860	1	237.90KB	NOT CACHED	PARQUET	true
Shoes	1835	1	234.90KB	NOT CACHED	PARQUET	true
Sports	1783	1	227.97KB	NOT CACHED	PARQUET	true
Women	1790	1	226.27KB	NOT CACHED	PARQUET	true
Total	17957	10	2.25MB	0B		

Column	Type	#Distinct Values	#Nulls	Max Size	Avg Size
i_item_sk	INT	19443	-1	4	4
i_item_id	STRING	9025	-1	16	16
i_rec_start_date	TIMESTAMP	4	-1	16	16
i_rec_end_date	TIMESTAMP	3	-1	16	16
i_item_desc	STRING	13330	-1	200	100.30280303
i_current_price	FLOAT	2807	-1	4	4
i_wholesale_cost	FLOAT	2105	-1	4	4
i_brand_id	INT	965	-1	4	4
i_brand	STRING	725	-1	22	16.177600860
i_class_id	INT	16	-1	4	4
i_class	STRING	101	-1	15	7.7674999237
i_category_id	INT	10	-1	4	4
i_manufact_id	INT	1857	-1	4	4
i_manufact	STRING	1028	-1	15	11.329500198
i_size	STRING	8	-1	11	4.3345999717
i_formulation	STRING	12884	-1	20	19.979999542
i_color	STRING	92	-1	10	5.3808999061
i_units	STRING	22	-1	7	4.1869001388
i_container	STRING	2	-1	7	6.9925999641
i_manager_id	INT	105	-1	4	4
i_product_name	STRING	19094	-1	25	18.023300170
i_category	STRING	10	0	-1	-1

To remove statistics for particular partitions, use the DROP INCREMENTAL STATS statement. After removing statistics for two partitions, the table-level statistics reflect that change in the #Rows and Incremental stats fields. The counts, maximums, and averages of the column-level statistics are unaffected.

Note: (It is possible that the row count might be preserved in future after a DROP INCREMENTAL STATS statement. Check the resolution of the issue IMPALA-1615.)

	drop incrementa drop incrementa								
	show table stat	s item_	partition	ed					
	i_category	#Rows	#Files	Size	Bytes C	ached	Format	Inc	cremental stats
	Books Children Electronics Home Jewelry Men Music Shoes Sports Women Total	1733 1786 -1 1807 1740 1811 1860 1835 -1 1790	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	223.74KB 230.05KB 232.67KB 232.56KB 223.72KB 231.25KB 237.90KB 234.90KB 227.97KB 226.27KB 2.25MB	NOT CAC NOT CAC NOT CAC NOT CAC NOT CAC NOT CAC NOT CAC NOT CAC NOT CAC NOT CAC	CHED CHED CHED CHED CHED CHED CHED CHED	PARQUET	tr fa tr tr tr	rue rue rlse rue rue rue rue rue rue rue rue rue ru
1	show column sta	ats item	n_partition	ned +	+		-+	+-	
	Column		 	#Distinct	Values	#Nulls	Max Si	ze	Avg Size
	i_item_sk i_item_id i_rec_start_d i_rec_end_dat i_item_desc i_current_pri i_wholesale_d i_brand_id i_brand i_class_id i_class i_category_id	date 1	ETTING FIMESTAMP FIMESTAMP FIMESTAMP FICOAT FICOAT FITRING FITRING FITRING FITRING FITRING FITRING FITRING	19443 9025 4 3 13330 2807 2105 965 725 16 101		-1 -1 -1 -1 -1 -1 -1 -1	4 16 16 16 200 4 4 4 22 4 15 4		4 16 16 100.3028030395 4 4 4 16.17760086059 4 7.767499923706 4

i_manufact_id i_manufact i_size i_formulation i_color i_units i_container i_manager_id i_product_name i_category	INT STRING STRING STRING STRING STRING STRING STRING INT STRING	1857 1028 8 12884 92 22 2 105 19094	-1 -1 -1 -1 -1 -1 -1 0	4 15 11 20 10 7 7 7 4 25 -1	4 11.32950019836 4.334599971771 19.97999954223 5.380899906158 4.186900138854 6.992599964141 4 18.02330017089 -1

To remove all statistics from the table, whether produced by COMPUTE STATS OF COMPUTE INCREMENTAL STATS, use the DROP STATS statement without the INCREMENTAL clause). Now, both table-level and column-level statistics are reset.

ow table stat	s ite	em_pa	artitione	ed						
i_category	#Rows #Files		#Files	+ Size		ached	Format	I1	Incremental stat	
Books	-1	+-	+ 1	+ 223.74KB	NOT CAC	CHED	PAROUET	-+	alse	
Children	-1		1	230.05KB	NOT CACHED		PAROUET	: f	false	
Electronics	-1		1	232.67KB	NOT CAG	CHED	PAROUET		alse	
Home	-1		1	232.56KB	NOT CAG	CHED	PAROUET		alse	
Jewelry	-1		1	223.72KB	NOT CAG	CHED	PAROUET		alse	
Men	-1		1	231.25KB	NOT CAG	CHED	PAROUET		alse	
Music	-1		1	237.90KB	NOT CAG		PAROUET		alse	
Shoes	-1		1	234.90KB	NOT CAG		PAROUET		alse	
Sports	-1		1	227.97KB	NOT CAG		PAROUET		alse	
Women	-1		1	226.27KB	NOT CACHED		PAROUET	_	alse	
Total	-1		10	2.25MB	0B		111100011	. -	.0.100	
Column Type		#Distinct Values		#Nulls +	#Nulls Max Si		Avg Size	 -+		
i_item_sk	i item sk INT		Т	-1		-1	1 4		4	
i_item_id		ST	RING	-1		-1	-1		-1	
i_rec_start_date		TII	MESTAMP	-1		-1	16		16	
i_rec_end_dat	_date		MESTAMP	-1		-1	16		16	
i_item_desc	:em_desc		RING	-1		-1	-1		-1	
i_current_price		FL(OAT	-1		-1	4		4	
i_wholesale_cost		FL(OAT	-1		-1	4		4	
i_brand_id		IN	Т	-1		-1	4		4	
i_brand		ST	RING	-1		-1	-1		-1	
i_class_id		IN	T	-1		-1	4		4	
		ST	RING	-1		-1	-1		-1	
		IN	_	-1		-1	4		4	
i_manufact_id IN		_	-1		-1	4		4		
i_manufact STRING		RING	-1		-1	-1		-1		
i_size STRING			-1		-1	-1		-1		
	i_formulation STRING			-1		-1	-1		-1	
	STRING		-1		-1	-1		-1		
i_color		STRING		-1		-1	-1		-1	
i_color i_units					-1		1 7			
i_color i_units i_container		STI	RING	_		-1	-1		-1	
i_color i_units		STI IN	RING	-1 -1 -1		-1 -1 -1	4 -1		4 -1	

Related information:

<u>COMPUTE STATS Statement</u> on page 164, <u>SHOW TABLE STATS Statement</u> on page 240, <u>SHOW COLUMN STATS Statement</u> on page 242, <u>How Impala Uses Statistics for Query Optimization</u> on page 349

DROP TABLE Statement

Removes an Impala table. Also removes the underlying HDFS data files for internal tables, although not for external tables.

Syntax:

```
DROP TABLE [IF EXISTS] [db_name.]table_name
```

Statement type: DDL

Usage notes:

By default, Impala removes the associated HDFS directory and data files for the table. If you issue a DROP TABLE and the data files are not deleted, it might be for the following reasons:

- If the table was created with the EXTERNAL clause, Impala leaves all files and directories untouched. Use external tables when the data is under the control of other Hadoop components, and Impala is only used to query the data files from their original locations.
- Impala might leave the data files behind unintentionally, if there is no HDFS location available to hold the HDFS trashcan for the impala user. See User Account Requirements on page 24 for the procedure to set up the required HDFS home directory.

Make sure that you are in the correct database before dropping a table, either by issuing a USE statement first or by using a fully qualified name db_name.table_name.

The optional IF EXISTS clause makes the statement succeed whether or not the table exists. If the table does exist, it is dropped; if it does not exist, the statement has no effect. This capability is useful in standardized setup scripts that remove existing schema objects and create new ones. By using some combination of IF EXISTS for the DROP statements and IF NOT EXISTS clauses for the CREATE statements, the script can run successfully the first time you run it (when the objects do not exist yet) and subsequent times (when some or all of the objects do already exist).

If you intend to issue a DROP DATABASE statement, first issue DROP TABLE statements to remove all the tables in that database.

Examples:

```
create database temporary;
use temporary;
create table unimportant (x int);
create table trivial (s string);
-- Drop a table in the current database.
drop table unimportant;
-- Switch to a different database.
use default;
-- To drop a table in a different database...
drop table trivial;
ERROR: AnalysisException: Table does not exist: default.trivial
-- ...use a fully qualified name.
drop table temporary.trivial;
```

For other tips about managing and reclaiming Impala disk space, see Managing Disk Space for Impala Data on page 83.

Cancellation: Cannot be cancelled.

HDFS permissions:

For an internal table, the user ID that the impalad daemon runs under, typically the impala user, must have write permission for all the files and directories that make up the table.

For an external table, dropping the table only involves changes to metadata in the metastore database. Because Impala does not remove any HDFS files or directories when external tables are dropped, no particular permissions are needed for the associated HDFS files or directories.

Related information:

Tables on page 151, ALTER TABLE Statement on page 159, CREATE TABLE Statement on page 174, Partitioning for Impala Tables on page 379, Internal Tables on page 152, External Tables on page 152

DROP VIEW Statement

Removes the specified view, which was originally created by the CREATE VIEW statement. Because a view is purely a logical construct (an alias for a query) with no physical data behind it, DROP VIEW only involves changes to metadata in the metastore database, not any data files in HDFS.

Syntax:

```
DROP VIEW [IF EXISTS] [db_name.]view_name
```

Statement type: DDL

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Examples:

The following example creates a series of views and then drops them. These examples illustrate how views are associated with a particular database, and both the view definitions and the view names for CREATE VIEW and DROP VIEW can refer to a view in the current database or a fully qualified view name.

```
-- Create and drop a view in the current database.
CREATE VIEW few_rows_from_t1 AS SELECT * FROM t1 LIMIT 10;
DROP VIEW few_rows_from_t1;
-- Create and drop a view referencing a table in a different database.
CREATE VIEW table_from_other_db AS SELECT x FROM db1.foo WHERE x IS NOT NULL;
DROP VIEW table from other db;
-- Create a view in a different database.
CREATE VIEW db2.v1 AS SELECT * FROM db2.foo;
-- Switch into the other database and drop the view.
USE db2;
DROP VIEW v1;
USE db1;
-- Create a view in a different database.
CREATE VIEW db2.v1 AS SELECT * FROM db2.foo;
-- Drop a view in the other database.
DROP VIEW db2.v1;
```

Related information:

<u>Views</u> on page 153, <u>CREATE VIEW Statement</u> on page 180, <u>ALTER VIEW Statement</u> on page 163

EXPLAIN Statement

Returns the execution plan for a statement, showing the low-level mechanisms that Impala will use to read the data, divide the work among nodes in the cluster, and transmit intermediate and final results across the network. Use explain followed by a complete SELECT query. For example:

Syntax:

```
EXPLAIN { select_query | ctas_stmt | insert_stmt }
```

The select query is a SELECT statement, optionally prefixed by a WITH clause. See SELECT Statement on page 211 for details.

The insert stmt is an INSERT statement that inserts into or overwrites an existing table. It can use either the INSERT ... SELECT OF INSERT ... VALUES SYNTAX. See INSERT Statement on page 196 for details.

The ctas stmt is a CREATE TABLE statement using the AS SELECT clause, typically abbreviated as a "CTAS" operation. See CREATE TABLE Statement on page 174 for details.

Usage notes:

You can interpret the output to judge whether the query is performing efficiently, and adjust the query and/or the schema if not. For example, you might change the tests in the WHERE clause, add hints to make join operations more efficient, introduce subqueries, change the order of tables in a join, add or change partitioning for a table, collect column statistics and/or table statistics in Hive, or any other performance tuning steps.

The EXPLAIN output reminds you if table or column statistics are missing from any table involved in the query. These statistics are important for optimizing queries involving large tables or multi-table joins. See COMPUTE STATS Statement on page 164 for how to gather statistics, and How Impala Uses Statistics for Query Optimization on page 349 for how to use this information for query tuning.

Read the EXPLAIN plan from bottom to top:

- The last part of the plan shows the low-level details such as the expected amount of data that will be read, where you can judge the effectiveness of your partitioning strategy and estimate how long it will take to scan a table based on total data size and the size of the cluster.
- As you work your way up, next you see the operations that will be parallelized and performed on each Impala node
- At the higher levels, you see how data flows when intermediate result sets are combined and transmitted from one node to another.
- See EXPLAIN LEVEL Query Option on page 329 for details about the EXPLAIN LEVEL query option, which lets you customize how much detail to show in the EXPLAIN plan depending on whether you are doing high-level or low-level tuning, dealing with logical or physical aspects of the query.

If you come from a traditional database background and are not familiar with data warehousing, keep in mind that Impala is optimized for full table scans across very large tables. The structure and distribution of this data is typically not suitable for the kind of indexing and single-row lookups that are common in OLTP environments. Seeing a query scan entirely through a large table is common, not necessarily an indication of an inefficient query. Of course, if you can reduce the volume of scanned data by orders of magnitude, for example by using a query that affects only certain partitions within a partitioned table, then you might be able to optimize a query so that it executes in seconds rather than minutes.

For more information and examples to help you interpret EXPLAIN output, see Using the EXPLAIN Plan for Performance Tuning on page 364.

Extended EXPLAIN output:

For performance tuning of complex queries, and capacity planning (such as using the admission control and resource management features), you can enable more detailed and informative output for the EXPLAIN statement. In the impala-shell interpreter, issue the command SET EXPLAIN LEVEL=level, where level is an integer from 0 to 3 or corresponding mnemonic values minimal, standard, extended, or verbose.

When extended EXPLAIN output is enabled, EXPLAIN statements print information about estimated memory requirements, minimum number of virtual cores, and so on that you can use to fine-tune the resource management options explained in impalad Startup Options for Resource Management on page 77. (The estimated memory requirements are intentionally on the high side, to allow a margin for error, to avoid cancelling a query unnecessarily if you set the MEM_LIMIT option to the estimated memory figure.)

See EXPLAIN_LEVEL Query Option on page 329 for details and examples.

Examples:

This example shows how the standard EXPLAIN output moves from the lowest (physical) level to the higher (logical) levels. The query begins by scanning a certain amount of data; each node performs an aggregation operation (evaluating COUNT (*)) on some subset of data that is local to that node; the intermediate results are

transmitted back to the coordinator node (labelled here as the EXCHANGE node); lastly, the intermediate results are summed to display the final result.

These examples show how the extended EXPLAIN output becomes more accurate and informative as statistics are gathered by the COMPUTE STATS statement. Initially, much of the information about data size and distribution is marked "unavailable". Impala can determine the raw data size, but not the number of rows or number of distinct values for each column without additional analysis. The COMPUTE STATS statement performs this analysis, so a subsequent EXPLAIN statement has additional information to use in deciding how to optimize the distributed query.

```
hosts=1 per-host-mem=64.00MB
tuple-ids=0 row-size=4B cardinality=0
```

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute permissions for all applicable directories in all source tables for the query that is being explained. (A SELECT operation could read files from multiple different HDFS directories if the source table is partitioned.)

Related information:

SELECT Statement on page 211, INSERT Statement on page 196, CREATE TABLE Statement on page 174, Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles on page 364

GRANT Statement (CDH 5.2 or higher only)

The GRANT statement grants roles or privileges on specified objects to groups. Only Sentry administrative users can grant roles to a group.

Syntax:

```
GRANT ROLE role_name TO GROUP group_name
GRANT privilege ON object_type object_name
   TO [ROLE] roleName
   [WITH GRANT OPTION]
privilege ::= SELECT | INSERT | ALL
object_type ::= TABLE | DATABASE | SERVER | URI
```

Typically, the object name is an identifier. For URIs, it is a string literal.

Required privileges:

Only administrative users (initially, a predefined set of users specified in the Sentry service configuration file) can use this statement.

The with grant option clause allows members of the specified role to issue grant and revoke statements for those same privileges Hence, if a role has the ALL privilege on a database and the WITH GRANT OPTION set, users granted that role can execute GRANT/REVOKE statements only for that database or child tables of the database. This means a user could revoke the privileges of the user that provided them the GRANT OPTION.

Impala does not currently support revoking only the WITH GRANT OPTION from a privilege previously granted to a role. To remove the WITH GRANT OPTION, revoke the privilege and grant it again without the WITH GRANT OPTION flag.

Compatibility:

- The Impala GRANT and REVOKE statements are available in CDH 5.2 and later.
- In CDH 5.1 and later, Impala can make use of any roles and privileges specified by the GRANT and REVOKE statements in Hive, when your system is configured to use the Sentry service instead of the file-based policy mechanism.
- The Impala Grant and Revoke statements for privileges do not require the ROLE keyword to be repeated before each role name, unlike the equivalent Hive statements.
- Currently, each Impala GRANT or REVOKE statement can only grant or revoke a single privilege to or from a single role.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Related information:

Enabling Sentry Authorization for Impala on page 89, REVOKE Statement (CDH 5.2 or higher only) on page 211, CREATE ROLE Statement (CDH 5.2 or higher only) on page 173, DROP ROLE Statement (CDH 5.2 or higher only) on page 187, SHOW Statement on page 235

INSERT Statement

Impala supports inserting into tables and partitions that you create with the Impala CREATE TABLE statement, or pre-defined tables and partitions created through Hive.

Svntax:

```
[with_clause]
INSERT { INTO | OVERWRITE } [TABLE] table_name
  [(column_list)]
  [ PARTITION (partition_clause)]
{
     [hint_clause] select_statement
     | VALUES (value [, value ...]) [, (value [, value ...]) ...]
}
partition_clause ::= col_name [= constant] [, col_name [= constant] ...]
hint_clause ::= [SHUFFLE] | [NOSHUFFLE] (Note: the square brackets are part of the syntax.)
```

Appending or replacing (INTO and OVERWRITE clauses):

The INSERT INTO syntax appends data to a table. The existing data files are left as-is, and the inserted data is put into one or more new data files.

The INSERT OVERWRITE syntax replaces the data in a table. Currently, the overwritten data files are deleted immediately; they do not go through the HDFS trash mechanism.

Usage notes:

Impala currently supports:

- Copy data from another table using SELECT query. In Impala 1.2.1 and higher, you can combine CREATE TABLE and INSERT operations into a single step with the CREATE TABLE AS SELECT syntax, which bypasses the actual INSERT keyword.
- An optional with clause before the insert keyword, to define a subquery referenced in the select portion.
- Create one or more new rows using constant expressions through VALUES clause. (The VALUES clause was added in Impala 1.0.1.)
- By default, the first column of each newly inserted row goes into the first column of the table, the second column into the second column, and so on.

You can also specify the columns to be inserted, an arbitrarily ordered subset of the columns in the destination table, by specifying a column list immediately after the name of the destination table. This feature lets you adjust the inserted columns to match the layout of a SELECT statement, rather than the other way around. (This feature was added in Impala 1.1.)

The number of columns mentioned in the column list (known as the "column permutation") must match the number of columns in the SELECT list or the VALUES tuples. The order of columns in the column permutation can be different than in the underlying table, and the columns of each input row are reordered to match. If the number of columns in the column permutation is less than in the destination table, all unmentioned columns are set to NULL.

• For a partitioned table, the optional PARTITION clause identifies which partition or partitions the new values go into. If a partition key column is given a constant value such as PARTITION (year=2012) or PARTITION (year=2012, month=2), all the inserted rows use those same values for those partition key columns and you omit any corresponding columns in the source table from the SELECT list. This form is known as "static partitioning".

If a partition key column is mentioned but not assigned a value, such as in PARTITION (year, region) (both columns unassigned) or PARTITION (year, region='CA') (year column unassigned), the unassigned columns are filled in with the final columns of the SELECT list. In this case, the number of columns in the SELECT list must equal the number of columns in the column permutation plus the number of partition key columns not assigned a constant value. This form is known as "dynamic partitioning".

See Static and Dynamic Partitioning Clauses on page 380 for examples and performance characteristics of static and dynamic partitioned inserts.

An optional hint clause immediately before the SELECT keyword, to fine-tune the behavior when doing an INSERT ... SELECT operation into partitioned Parquet tables. The hint keywords are [SHUFFLE] and [NOSHUFFLE], including the square brackets. Inserting into partitioned Parquet tables can be a resource-intensive operation because it potentially involves many files being written to HDFS simultaneously, and separate large memory buffers being allocated to buffer the data for each partition. For usage details, see Loading Data into Parquet Tables on page 393.

Note:

- Insert commands that partition or add files result in changes to Hive metadata. Because Impala uses Hive metadata, such changes may necessitate a metadata refresh. For more information, see the REFRESH function.
- Currently, Impala can only insert data into tables that use the text and Parquet formats. For other file formats, insert the data using Hive and use Impala to query it.
- As an alternative to the INSERT statement, if you have existing data files elsewhere in HDFS, the LOAD DATA statement can move those files into a table. This statement works with tables of any file format.

Statement type: DML (but still affected by SYNC_DDL query option)

Usage notes:

When you insert the results of an expression, particularly of a built-in function call, into a small numeric column such as INT, SMALLINT, TINYINT, or FLOAT, you might need to use a CAST() expression to coerce values into the appropriate type. Impala does not automatically convert from a larger type to a smaller one. For example, to insert cosine values into a FLOAT column, write CAST(COS(angle) AS FLOAT) in the INSERT statement to make the conversion explicit.

Any INSERT statement for a Parquet table requires enough free space in the HDFS filesystem to write one block. Because Parquet data files use a block size of 1 GB by default, an INSERT might fail (even for a very small amount of data) if your HDFS is running low on space.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 338 for details.

Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD DATA, OF CREATE TABLE AS SELECT Statement in Impala, or after loading data through Hive and doing a REFRESH table_name in Impala. This technique is especially important for tables that are very large, used in join queries, or both.

Examples:

The following example sets up new tables with the same definition as the TAB1 table from the Tutorial section, using different file formats, and demonstrates inserting data into the tables created with the STORED AS TEXTFILE and STORED AS PARQUET clauses:

CREATE DATABASE IF NOT EXISTS file_formats; USE file_formats;

```
DROP TABLE IF EXISTS text_table;
CREATE TABLE text_table
( id INT, col_1 BOOLEAN, col_2 DOUBLE, col_3 TIMESTAMP )
STORED AS TEXTFILE;
DROP TABLE IF EXISTS parquet_table;
CREATE TABLE parquet_table
( id INT, col_1 BOOLEAN, col_2 DOUBLE, col_3 TIMESTAMP )
STORED AS PARQUET;
```

With the INSERT INTO TABLE syntax, each new set of inserted rows is appended to any existing data in the table. This is how you would record small amounts of data that arrive continuously, or ingest new batches of data alongside the existing data. For example, after running 2 INSERT INTO TABLE statements with 5 rows each, the table contains 10 rows total:

```
[localhost:21000] > insert into table text_table select * from default.tabl;
Inserted 5 rows in 0.41s
[localhost:21000] > insert into table text_table select * from default.tabl;
Inserted 5 rows in 0.46s
[localhost:21000] > select count(*) from text_table;
count(*)
10
Returned 1 row(s) in 0.26s
```

With the INSERT OVERWRITE TABLE syntax, each new set of inserted rows replaces any existing data in the table. This is how you load data to query in a data warehousing scenario where you analyze just the data for a particular day, quarter, and so on, discarding the previous data each time. You might keep the entire set of data in one raw table, and transfer and transform certain rows into a more compact and efficient form to perform intensive analysis on that subset.

For example, here we insert 5 rows into a table using the INSERT INTO clause, then replace the data by inserting 3 rows with the INSERT OVERWRITE clause. Afterward, the table only contains the 3 rows from the final INSERT statement.

```
[localhost:21000] > insert into table parquet_table select * from default.tabl;
Inserted 5 rows in 0.35s
[localhost:21000] > insert overwrite table parquet_table select * from default.tab1
limit 3;
Inserted 3 rows in 0.43s
[localhost:21000] > select count(*) from parquet_table;
count(*)
3
Returned 1 row(s) in 0.43s
```

The <u>VALUES</u> clause lets you insert one or more rows by specifying constant values for all the columns. The number, types, and order of the expressions must match the table definition.

Note: The INSERT ... VALUES technique is not suitable for loading large quantities of data into HDFS-based tables, because the insert operations cannot be parallelized, and each one produces a separate data file. Use it for setting up small dimension tables or tiny amounts of data for experimenting with SQL syntax, or with HBase tables. Do not use it for large ETL jobs or benchmark tests for load operations. Do not run scripts with thousands of INSERT ... VALUES statements that insert a single row each time. If you do run INSERT ... VALUES operations to load data into a staging table as one stage in an ETL pipeline, include multiple row values if possible within each VALUES clause, and use a separate database to make cleanup easier if the operation does produce many tiny files.

The following example shows how to insert one row or multiple rows, with expressions of different types, using literal values, expressions, and function return values:

```
create table val_test_1 (c1 int, c2 float, c3 string, c4 boolean, c5 timestamp);
insert into val_test_1 values (100, 99.9/10, 'abc', true, now());
create table val_test_2 (id int, token string);
insert overwrite val_test_2 values (1, 'a'), (2, 'b'), (-1,'xyzzy');
```

These examples show the type of "not implemented" error that you see when attempting to insert data into a table with a file format that Impala currently does not write to:

```
DROP TABLE IF EXISTS sequence_table;
CREATE TABLE sequence_table
( id INT, col_1 BOOLEAN, col_2 DOUBLE, col_3 TIMESTAMP )
STORED AS SEQUENCEFILE;
DROP TABLE IF EXISTS rc_table;
CREATE TABLE rc_table
( id INT, col_1 BOOLEAN, col_2 DOUBLE, col_3 TIMESTAMP )
STORED AS RCFILE;
[localhost:21000] > insert into table rc_table select * from default.tabl;
Remote error
Backend 0:RC_FILE not implemented.
[localhost:21000] > insert into table sequence_table select * from default.tab1;
Remote error
Backend 0:SEQUENCE_FILE not implemented.
______
```

Inserting data into partitioned tables requires slightly different syntax that divides the partitioning columns from the others:

```
create table t1 (i int) partitioned by (x int, y string);
-- Select an INT column from another table.
-- All inserted rows will have the same x and y values, as specified in the INSERT
statement.
-- This technique of specifying all the partition key values is known as static
partitioning.
insert into t1 partition(x=10, y='a') select c1 from some_other_table;
-- Select two INT columns from another table.
-- All inserted rows will have the same y value, as specified in the INSERT statement.
-- Values from c2 go into t1.x.
-- Any partitioning columns whose value is not specified are filled in
-- from the columns specified last in the SELECT list.
-- This technique of omitting some partition key values is known as dynamic partitioning.
insert into t1 partition(x, y='b') select c1, c2 from some_other_table;
-- Select an INT and a STRING column from another table.
-- All inserted rows will have the same x value, as specified in the INSERT statement.
-- Values from c3 go into t1.y.
insert into t1 partition(x=20, y) select c1, c3 from some_other_table;
```

The following examples show how you can copy the data in all the columns from one table to another, copy the data from only some columns, or specify the columns in the select list in a different order than they actually appear in the table:

```
-- Start with 2 identical tables.
create table t1 (c1 int, c2 int);
create table t2 like t1;
-- If there is no () part after the destination table name,
-- all columns must be specified, either as * or by name. insert into t2 select * from t1;
insert into t2 select c1, c2 from t1;
-- With the () notation following the destination table name,
-- you can omit columns (all values for that column are NULL
-- in the destination table), and/or reorder the values
-- selected from the source table. This is the "column permutation" feature.
insert into t2 (c1) select c1 from t1;
insert into t2 (c2, c1) select c1, c2 from t1;
-- The column names can be entirely different in the source and destination tables.
-- You can copy any columns, not just the corresponding ones, from the source table.
-- But the number and type of selected columns must match the columns mentioned in the
 () part.
alter table t2 replace columns (x int, y int);
insert into t2 (y) select c1 from t1;
-- For partitioned tables, all the partitioning columns must be mentioned in the ()
column list
-- or a PARTITION clause; these columns cannot be defaulted to NULL.
create table pt1 (x int, y int) partitioned by (z int);
-- The values from c1 are copied into the column x in the new table,
-- all in the same partition based on a constant value for z.
-- The values of y in the new table are all NULL. insert into pt1 (x) partition (z=5) select c1 from t1;
-- Again we omit the values for column y so they are all NULL.
-- The inserted x values can go into different partitions, based on
-- the different values inserted into the partitioning column z.
insert into pt1 (x,z) select x, z from t2;
```

SELECT * for a partitioned table requires that all partition key columns in the source table be declared as the last columns in the CREATE TABLE statement. You still include a PARTITION BY clause listing all the partition key columns. These partition columns are automatically mapped to the last columns from the SELECT * list.

```
create table source (x int, y int, year int, month int, day int);
create table destination (x int, y int) partitioned by (year int, month int, day int);
...load some data into the unpartitioned source table...
-- Insert a single partition of data.
-- The SELECT * means you cannot specify partition (year=2014, month, day).
insert overwrite destination partition (year, month, day) select * from source where year=2014;
-- Insert the data for all year/month/day combinations.
insert overwrite destination partition (year, month, day) select * from source;

-- If one of the partition columns is omitted from the source table,
-- then you can specify a specific value for that column in the PARTITION clause.
-- Here the source table holds only data from 2014, and so does not include a year column.
create table source_2014 (x int, y int, month, day);
...load some data into the unpartitioned source_2014 table...
insert overwrite destination partition (year=2014, month, day) select * from source_2014;
```

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement, any ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation potentially creates many different data files, prepared on different data nodes, and therefore the notion of the data being stored in sorted order is impractical.

Concurrency considerations: Each INSERT operation creates new data files with unique names, so you can run multiple INSERT INTO statements simultaneously without filename conflicts. While data is being inserted into

an Impala table, the data is staged temporarily in a subdirectory inside the data directory; during this period, you cannot issue queries against that table in Hive. If an INSERT operation fails, the temporary data file and the subdirectory could be left behind in the data directory. If so, remove the relevant subdirectory and any data files it contains manually, by issuing an hdfs dfs -rm -r command, specifying the full path of the work subdirectory, whose name ends in _dir.

VALUES Clause

The VALUES clause is a general-purpose way to specify the columns of one or more rows, typically within an INSERT statement.

Note: The INSERT ... VALUES technique is not suitable for loading large quantities of data into HDFS-based tables, because the insert operations cannot be parallelized, and each one produces a separate data file. Use it for setting up small dimension tables or tiny amounts of data for experimenting with SQL syntax, or with HBase tables. Do not use it for large ETL jobs or benchmark tests for load operations. Do not run scripts with thousands of INSERT ... VALUES statements that insert a single row each time. If you do run INSERT ... VALUES operations to load data into a staging table as one stage in an ETL pipeline, include multiple row values if possible within each VALUES clause, and use a separate database to make cleanup easier if the operation does produce many tiny files.

The following examples illustrate:

- How to insert a single row using a VALUES clause.
- How to insert multiple rows using a VALUES clause.
- How the row or rows from a VALUES clause can be appended to a table through INSERT INTO, or replace the contents of the table through INSERT OVERWRITE.
- How the entries in a VALUES clause can be literals, function results, or any other kind of expression. See <u>Literals</u> on page 133 for the notation to use for literal values, especially <u>String Literals</u> on page 135 for quoting and escaping conventions for strings. See SQL Operators on page 137 and Built-in Functions on page 246 for other things you can include in expressions with the VALUES clause.

```
[localhost:21000] > describe val example;
Query: describe val_example
Query finished, fetching results ...
| name | type | comment |
 id | int
 col_1 boolean col_2 double
[localhost:21000] > insert into val_example values (1,true,100.0);
Inserted 1 rows in 0.30s
[localhost:21000] > select * from val_example;
| id | col_1 | col_2 |
| 1 | true | 100
[localhost:21000] > insert overwrite val_example values (10,false,pow(2,5)),
(50, true, 10/3);
Inserted 2 rows in 0.16s
[localhost:21000] > select * from val_example;
| id | col_1 | col_2
```

When used in an INSERT statement, the Impala VALUES clause can specify some or all of the columns in the destination table, and the columns can be specified in a different order than they actually appear in the table. To specify a different set or order of columns than in the table, use the syntax:

```
INSERT INTO destination
(col_x, col_y, col_z)
VALUES
(val_x, val_y, val_z);
```

Any columns in the table that are not listed in the INSERT statement are set to NULL.

To use a VALUES clause like a table in other statements, wrap it in parentheses and use AS clauses to specify aliases for the entire object and any columns you need to refer to:

For example, you might use a tiny table constructed like this from constant literals or function return values as part of a longer statement involving joins or UNION ALL.

HDFS considerations:

Impala physically writes all inserted files under the ownership of its default user, typically impala. Therefore, this user must have HDFS write permission in the corresponding table directory.

The permission requirement is independent of the authorization performed by the Sentry framework. (If the connected user is not authorized to insert into a table, Sentry blocks that operation immediately, regardless of the privileges available to the impala user.) Files created by Impala are not owned by and do not inherit permissions from the connected user.

The number of data files produced by an INSERT statement depends on the size of the cluster, the number of data blocks that are processed, the partition key columns in a partitioned table, and the mechanism Impala uses for dividing the work in parallel. Do not assume that an INSERT statement will produce some particular number of output files. In case of performance issues with data written by Impala, check that the output files do not suffer from issues such as many tiny files or many tiny partitions. (In the Hadoop context, even files or partitions of a few tens of megabytes are considered "tiny".)

The INSERT statement has always left behind a hidden work directory inside the data directory of the table. Formerly, this hidden work directory was named .impala_insert_staging . In Impala 2.0.1 and later, this directory name is changed to _impala_insert_staging . (While HDFS tools are expected to treat names beginning either with underscore and dot as hidden, in practice names beginning with an underscore are more widely supported.) If you have any scripts, cleanup jobs, and so on that rely on the name of this work directory, adjust them to use the new name.

HBase considerations:

You can use the INSERT statement with HBase tables as follows:

- You can insert a single row or a small set of rows into an HBase table with the INSERT ... VALUES syntax. This is a good use case for HBase tables with Impala, because HBase tables are not subject to the same kind of fragmentation from many small insert operations as HDFS tables are.
- You can insert any number of rows at once into an HBase table using the INSERT ... SELECT syntax.

- If more than one inserted row has the same value for the HBase key column, only the last inserted row with that value is visible to Impala queries. You can take advantage of this fact with INSERT ... VALUES statements to effectively update rows one at a time, by inserting new rows with the same key values as existing rows. Be aware that after an INSERT ... SELECT operation copying from an HDFS table, the HBase table might contain fewer rows than were inserted, if the key column in the source table contained duplicate values.
- You cannot INSERT OVERWRITE into an HBase table. New rows are always appended.
- When you create an Impala or Hive table that maps to an HBase table, the column order you specify with the INSERT statement might be different than the order you declare with the CREATE TABLE statement. Behind the scenes, HBase arranges the columns based on how they are divided into column families. This might cause a mismatch during insert operations, especially if you use the syntax INSERT INTO hbase_table SELECT * FROM hdfs_table. Before inserting data, verify the column order by issuing a DESCRIBE statement for the table, and adjust the order of the select list in the INSERT statement.

See Using Impala to Query HBase Tables on page 411 for more details about using Impala with HBase.

Cancellation: Can be cancelled. To cancel this statement, use Ctrl-C from the impala-shell interpreter, the Cancel button from the Watch page in Hue, Actions > Cancel from the Queries list in Cloudera Manager, or Cancel from the list of in-flight queries (for a particular node) on the Queries tab in the Impala web UI (port 25000).

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read permission for the files in the source directory of an INSERT ... SELECT operation, and write permission for all affected directories in the destination table. (An INSERT operation could write files to multiple different HDFS directories if the destination table is partitioned.) This user must also have write permission to create a temporary work directory in the top-level HDFS directory of the destination table. An INSERT OVERWRITE operation does not require write permission on the original data files in the table, only on the table directories themselves.

Restrictions:

For INSERT operations into CHAR or VARCHAR columns, you must cast all STRING literals or expressions returning STRING to to a CHAR or VARCHAR type with the appropriate length.

Related startup options:

By default, if an INSERT statement creates any new subdirectories underneath a partitioned table, those subdirectories are assigned default HDFS permissions for the impala user. To make each subdirectory have the same permissions as its parent directory in HDFS, specify the --insert_inherit_permissions startup option for the impalad daemon.

INVALIDATE METADATA Statement

Marks the metadata for one or all tables as stale. Required after a table is created through the Hive shell, before the table is available for Impala queries. The next time the current Impala node performs a query against a table whose metadata is invalidated, Impala reloads the associated metadata before the query proceeds. This is a relatively expensive operation compared to the incremental metadata update done by the REFRESH statement, so in the common scenario of adding new data files to an existing table, prefer REFRESH rather than INVALIDATE METADATA. If you are not familiar with the way Impala uses metadata and how it shares the same metastore database as Hive, see Overview of Impala Metadata and the Metastore on page 20 for background information.

Syntax:

INVALIDATE METADATA [[db_name.]table_name]

By default, the cached metadata for all tables is flushed. If you specify a table name, only the metadata for that one table is flushed. Even for a single table, INVALIDATE METADATA is more expensive than REFRESH, so prefer REFRESH in the common case where you add new data files for an existing table.

Internal details:

To accurately respond to queries, Impala must have current metadata about those databases and tables that clients query directly. Therefore, if some other entity modifies information used by Impala in the metastore that Impala and Hive share, the information cached by Impala must be updated. However, this does not mean that all metadata updates require an Impala update.

Note:

In Impala 1.2.4 and higher, you can specify a table name with INVALIDATE METADATA after the table is created in Hive, allowing you to make individual tables visible to Impala without doing a full reload of the catalog metadata. Impala 1.2.4 also includes other changes to make the metadata broadcast mechanism faster and more responsive, especially during Impala startup. See New Features in Impala Version 1.2.4 on page 461 for details.

In Impala 1.2 and higher, a dedicated daemon (catalogd) broadcasts DDL changes made through Impala to all Impala nodes. Formerly, after you created a database or table while connected to one Impala node, you needed to issue an INVALIDATE METADATA statement on another Impala node before accessing the new database or table from the other node. Now, newly created or altered objects are picked up automatically by all Impala nodes. You must still use the INVALIDATE METADATA technique after creating or altering objects through Hive. See The Impala Catalog Service on page 18 for more information on the catalog service.

The invalidate metadata statement is new in Impala 1.1 and higher, and takes over some of the use cases of the Impala 1.0 REFRESH statement. Because REFRESH now requires a table name parameter, to flush the metadata for all tables at once, use the INVALIDATE METADATA statement.

Because REFRESH table_name only works for tables that the current Impala node is already aware of, when you create a new table in the Hive shell, you must enter INVALIDATE METADATA with no table parameter before you can see the new table in impala-shell. Once the table is known by the Impala node, you can issue REFRESH table_name after you add data files for that table.

INVALIDATE METADATA and REFRESH are counterparts: INVALIDATE METADATA waits to reload the metadata when needed for a subsequent query, but reloads all the metadata for the table, which can be an expensive operation, especially for large tables with many partitions. REFRESH reloads the metadata immediately, but only loads the block location data for newly added data files, making it a less expensive operation overall. If data was altered in some more extensive way, such as being reorganized by the HDFS balancer, use INVALIDATE METADATA to avoid a performance penalty from reduced local reads. If you used Impala version 1.0, the INVALIDATE METADATA statement works just like the Impala 1.0 REFRESH statement did, while the Impala 1.1 REFRESH is optimized for the common use case of adding new data files to an existing table, thus the table name argument is now required.

Usage notes:

A metadata update for an impalad instance is required if:

- A metadata change occurs.
- and the change is made from another impalad instance in your cluster, or through Hive.
- and the change is made to a database to which clients such as the Impala shell or ODBC directly connect.

A metadata update for an Impala node is **not** required when you issue queries from the same Impala node where you ran ALTER TABLE, INSERT, or other table-modifying statement.

Database and table metadata is typically modified by:

- Hive via Alter, Create, Drop or Insert operations.
- Impalad via CREATE TABLE, ALTER TABLE, and INSERT operations.

INVALIDATE METADATA causes the metadata for that table to be marked as stale, and reloaded the next time the table is referenced. For a huge table, that process could take a noticeable amount of time; thus you might prefer to use REFRESH where practical, to avoid an unpredictable delay later, for example if the next reference to the table is during a benchmark test.

Examples:

The following example shows how you might use the INVALIDATE METADATA statement after creating new tables (such as SequenceFile or HBase tables) through the Hive shell. Before the INVALIDATE METADATA statement was issued, Impala would give a "table not found" error if you tried to refer to those table names. The DESCRIBE statements cause the latest metadata to be immediately loaded for the tables, avoiding a delay the next time those tables are queried.

```
[impalad-host:21000] > invalidate metadata;
[impalad-host:21000] > describe t1;
[impalad-host:21000] > describe t2;
```

For more examples of using REFRESH and INVALIDATE METADATA with a combination of Impala and Hive operations, see Switching Back and Forth Between Impala and Hive on page 63.

If you need to ensure that the metadata is up-to-date when you start an impala-shell session, run impala-shell with the -r or --refresh_after_connect command-line option. Because this operation adds a delay to the next query against each table, potentially expensive for large tables with many partitions, try to avoid using this option for day-to-day operations in a production environment.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have execute permissions for all the relevant directories holding table data. (A table could have data spread across multiple directories, or in unexpected paths, if it uses partitioning or specifies a LOCATION attribute for individual partitions or the entire table.) Issues with permissions might not cause an immediate error for this statement, but subsequent statements such as SELECT or SHOW TABLE STATS could fail.

HDFS considerations:

By default, the INVALIDATE METADATA command checks HDFS permissions of the underlying data files and directories, caching this information so that a statement can be cancelled immediately if for example the impala user does not have permission to write to the data directory for the table. (This checking does not apply if you have set the catalogd configuration option --load_catalog_in_background=false.) Impala reports any lack of write permissions as an INFO message in the log file, in case that represents an oversight. If you change HDFS permissions to make data readable or writeable by the Impala user, issue another INVALIDATE METADATA to make Impala aware of the change.

Usage notes:

This example illustrates creating a new database and new table in Hive, then doing an INVALIDATE METADATA statement in Impala using the fully qualified table name, after which both the new table and the new database are visible to Impala. The ability to specify INVALIDATE METADATA table_name for a table created in Hive is a new capability in Impala 1.2.4. In earlier releases, that statement would have returned an error indicating an unknown table, requiring you to do INVALIDATE METADATA with no table name, a more expensive operation that reloaded metadata for all tables and databases.

```
$ hive
hive> create database new_db_from_hive;
Time taken: 4.118 seconds
hive > create table new_db_from_hive.new_table_from_hive (x int);
OK
Time taken: 0.618 seconds
hive> quit;
$ impala-shell
[localhost:21000] > show databases like 'new*';
[localhost:21000] > refresh new_db_from_hive.new_table_from_hive;
ERROR: AnalysisException: Database does not exist: new_db_from_hive
[localhost:21000] > invalidate metadata new_db_from_hive.new_table_from_hive;
[localhost:21000] > show databases like 'new*';
 name
```

Cancellation: Cannot be cancelled.

Related information:

Overview of Impala Metadata and the Metastore on page 20, REFRESH Statement on page 208

LOAD DATA Statement

The LOAD DATA statement streamlines the ETL process for an internal Impala table by moving a data file or all the data files in a directory from an HDFS location into the Impala data directory for that table.

Syntax:

```
LOAD DATA INPATH 'hdfs_file_or_directory_path' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]
```

When the LOAD DATA statement operates on a partitioned table, it always operates on one partition at a time. Specify the PARTITION clauses and list all the partition key columns, with a constant value specified for each.

Statement type: DML (but still affected by SYNC_DDL query option)

Usage notes:

- The loaded data files are moved, not copied, into the Impala data directory.
- You can specify the HDFS path of a single file to be moved, or the HDFS path of a directory to move all the
 files inside that directory. You cannot specify any sort of wildcard to take only some of the files from a
 directory. When loading a directory full of data files, keep all the data files at the top level, with no nested
 directories underneath.
- Currently, the Impala LOAD DATA statement only imports files from HDFS, not from the local filesystem. It
 does not support the LOCAL keyword of the Hive LOAD DATA statement. You must specify a path, not an
 hdfs://URI.
- In the interest of speed, only limited error checking is done. If the loaded files have the wrong file format, different columns than the destination table, or other kind of mismatch, Impala does not raise any error for the LOAD DATA statement. Querying the table afterward could produce a runtime error or unexpected results. Currently, the only checking the LOAD DATA statement does is to avoid mixing together uncompressed and LZO-compressed text files in the same table.
- When you specify an HDFS directory name as the LOAD DATA argument, any hidden files in that directory (files whose names start with a .) are not moved to the Impala data directory.
- The loaded data files retain their original names in the new location, unless a name conflicts with an existing data file, in which case the name of the new file is modified slightly to be unique. (The name-mangling is a slight difference from the Hive LOAD DATA statement, which replaces identically named files.)
- By providing an easy way to transport files from known locations in HDFS into the Impala data directory structure, the LOAD DATA statement lets you avoid memorizing the locations and layout of HDFS directory tree containing the Impala databases and tables. (For a quick way to check the location of the data files for an Impala table, issue the statement DESCRIBE FORMATTED table_name.)
- The PARTITION clause is especially convenient for ingesting new data for a partitioned table. As you receive new data for a time period, geographic region, or other division that corresponds to one or more partitioning columns, you can load that data straight into the appropriate Impala data directory, which might be nested several levels down if the table is partitioned by multiple columns. When the table is partitioned, you must specify constant values for all the partitioning columns.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 338 for details.

Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD DATA, OR CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a REFRESH table_name in Impala. This technique is especially important for tables that are very large, used in join queries, or both.

Examples:

First, we use a trivial Python script to write different numbers of strings (one per line) into files stored in the cloudera HDFS user account. (Substitute the path for your own HDFS user account when doing hdfs dfs

```
$ random_strings.py 1000 | hdfs dfs -put - /user/cloudera/thousand_strings.txt
$ random_strings.py 100 | hdfs dfs -put - /user/cloudera/hundred_strings.txt
$ random_strings.py 10 | hdfs dfs -put - /user/cloudera/ten_strings.txt
```

Next, we create a table and load an initial set of data into it. Remember, unless you specify a STORED AS clause, Impala tables default to TEXTFILE format with Ctrl-A (hex 01) as the field delimiter. This example uses a single-column table, so the delimiter is not significant. For large-scale ETL jobs, you would typically use binary format data files such as Parquet or Avro, and load them into Impala tables that use the corresponding file format.

```
[localhost:21000] > create table t1 (s string);
[localhost:21000] > load data inpath '/user/cloudera/thousand_strings.txt' into table
Query finished, fetching results ...
summary
| Loaded 1 file(s). Total files in destination location: 1
+-----
Returned 1 row(s) in 0.61s
[kilo2-202-961.cs1cloud.internal:21000] > select count(*) from t1;
Query finished, fetching results ...
_c0
1000
Returned 1 row(s) in 0.67s
[localhost:21000] > load data inpath '/user/cloudera/thousand_strings.txt' into table
ERROR: AnalysisException: INPATH location '/user/cloudera/thousand strings.txt' does
not exist.
```

As indicated by the message at the end of the previous example, the data file was moved from its original location. The following example illustrates how the data file was moved into the Impala data directory for the destination table, keeping its original filename:

```
$ hdfs dfs -ls /user/hive/warehouse/load_data_testing.db/t1
Found 1 items
-rw-r--r- 1 cloudera cloudera 13926 2013-06-26 15:40
/user/hive/warehouse/load_data_testing.db/t1/thousand_strings.txt
```

The following example demonstrates the difference between the INTO TABLE and OVERWRITE TABLE clauses. The table already contains 1000 rows. After issuing the LOAD DATA statement with the INTO TABLE clause, the table contains 100 more rows, for a total of 1100. After issuing the LOAD DATA statement with the OVERWRITE

INTO TABLE clause, the former contents are gone, and now the table only contains the 10 rows from the just-loaded data file.

```
[localhost:21000] > load data inpath '/user/cloudera/hundred strings.txt' into table
Query finished, fetching results ...
summary
Loaded 1 file(s). Total files in destination location: 2
Returned 1 row(s) in 0.24s
[localhost:21000] > select count(*) from t1;
Query finished, fetching results ...
_c0
1100
Returned 1 row(s) in 0.55s
[localhost:21000] > load data inpath '/user/cloudera/ten_strings.txt' overwrite into
table t1;
Query finished, fetching results ...
summary
| Loaded 1 file(s). Total files in destination location: 1 |
Returned 1 row(s) in 0.26s
[localhost:21000] > select count(*) from t1;
Query finished, fetching results ...
_c0
10
Returned 1 row(s) in 0.62s
```

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and write permissions for the files in the source directory, and write permission for the destination directory.

Related information:

The LOAD DATA statement is an alternative to the INSERT statement. Use LOAD DATA when you have the data files in HDFS but outside of any Impala table.

The LOAD DATA statement is also an alternative to the CREATE EXTERNAL TABLE statement. Use LOAD DATA when it is appropriate to move the data files under Impala control rather than querying them from their original location.

REFRESH Statement

To accurately respond to queries, the Impala node that acts as the coordinator (the node to which you are connected through <code>impala-shell</code>, JDBC, or ODBC) must have current metadata about those databases and tables that are referenced in Impala queries. If you are not familiar with the way Impala uses metadata and how it shares the same metastore database as Hive, see Overview of Impala Metadata and the Metastore on page 20 for background information.

Syntax:

```
REFRESH [db_name.]table_name
```

Usage notes:

Use the REFRESH statement to load the latest metastore metadata and block location data for a particular table in these scenarios:

- After loading new data files into the HDFS data directory for the table. (Once you have set up an ETL pipeline to bring data into Impala on a regular basis, this is typically the most frequent reason why metadata needs to be refreshed.)
- After issuing ALTER TABLE, INSERT, LOAD DATA, or other table-modifying SQL statement in Hive.

You only need to issue the REFRESH statement on the node to which you connect to issue queries. The coordinator node divides the work among all the Impala nodes in a cluster, and sends read requests for the correct HDFS blocks without relying on the metadata on the other nodes.

REFRESH reloads the metadata for the table from the metastore database, and does an incremental reload of the low-level block location data to account for any new data files added to the HDFS data directory for the table. It is a low-overhead, single-table operation, specifically tuned for the common scenario where new data files are added to HDFS.

Only the metadata for the specified table is flushed. The table must already exist and be known to Impala, either because the CREATE TABLE statement was run in Impala rather than Hive, or because a previous INVALIDATE METADATA statement caused Impala to reload its entire metadata catalog.

Note:

In Impala 1.2 and higher, the catalog service broadcasts any changed metadata as a result of Impala ALTER TABLE, INSERT and LOAD DATA statements to all Impala nodes. Thus, the REFRESH statement is only required if you load data through Hive or by manipulating data files in HDFS directly. See The <u>Impala Catalog Service</u> on page 18 for more information on the catalog service.

In Impala 1.2.1 and higher, another way to avoid inconsistency across nodes is to enable the SYNC_DDL query option before performing a DDL statement or an INSERT or LOAD DATA.

The functionality of the REFRESH statement has changed in Impala 1.1 and higher. Now the table name is a required parameter. To flush the metadata for all tables, use the INVALIDATE METADATA command.

Because REFRESH table_name only works for tables that Impala is already aware of, when you create a new table in the Hive shell, you must enter INVALIDATE METADATA with no table parameter before you can see the new table in impala-shell. Once the table is known to Impala, you can issue REFRESH table_name as needed after you add more data files for that table.

INVALIDATE METADATA and REFRESH are counterparts: INVALIDATE METADATA waits to reload the metadata when needed for a subsequent query, but reloads all the metadata for the table, which can be an expensive operation, especially for large tables with many partitions. REFRESH reloads the metadata immediately, but only loads the block location data for newly added data files, making it a less expensive operation overall. If data was altered in some more extensive way, such as being reorganized by the HDFS balancer, use INVALIDATE METADATA to avoid a performance penalty from reduced local reads. If you used Impala version 1.0, the INVALIDATE METADATA statement works just like the Impala 1.0 REFRESH statement did, while the Impala 1.1 REFRESH is optimized for the common use case of adding new data files to an existing table, thus the table name argument is now required.

A metadata update for an impalad instance is required if:

- A metadata change occurs.
- and the change is made through Hive.
- and the change is made to a database to which clients such as the Impala shell or ODBC directly connect.

A metadata update for an Impala node is **not** required after you run ALTER TABLE, INSERT, or other table-modifying statement in Impala rather than Hive. Impala handles the metadata synchronization automatically through the catalog service.

Database and table metadata is typically modified by:

- Hive through alter, create, drop or insert operations.
- Impalad through CREATE TABLE, ALTER TABLE, and INSERT operations. In Impala 1.2 and higher, such changes are propagated to all Impala nodes by the Impala catalog service.

REFRESH causes the metadata for that table to be immediately reloaded. For a huge table, that process could take a noticeable amount of time; but doing the refresh up front avoids an unpredictable delay later, for example if the next reference to the table is during a benchmark test.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 338 for details.

Examples:

Examples:

The following example shows how you might use the REFRESH statement after manually adding new HDFS data files to the Impala data directory for a table:

```
[impalad-host:21000] > refresh t1;
[impalad-host:21000] > refresh t2;
[impalad-host:21000] > select * from t1;
...
[impalad-host:21000] > select * from t2;
...
```

For more examples of using REFRESH and INVALIDATE METADATA with a combination of Impala and Hive operations, see Switching Back and Forth Between Impala and Hive on page 63.

Related impalad options:

In Impala 1.0, the -r option of impala-shell issued REFRESH to reload metadata for all tables.

In Impala 1.1 and higher, this option issues INVALIDATE METADATA because REFRESH now requires a table name parameter. Due to the expense of reloading the metadata for all tables, the impala-shell-r option is not recommended for day-to-day use in a production environment.

In Impala 1.2 and higher, the -r option is needed even less frequently, because metadata changes caused by SQL statements in Impala are automatically broadcast to all Impala nodes.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have execute permissions for all the relevant directories holding table data. (A table could have data spread across multiple directories, or in unexpected paths, if it uses partitioning or specifies a LOCATION attribute for individual partitions or the entire table.) Issues with permissions might not cause an immediate error for this statement, but subsequent statements such as SELECT OR SHOW TABLE STATS could fail.

HDFS considerations:

The REFRESH command checks HDFS permissions of the underlying data files and directories, caching this information so that a statement can be cancelled immediately if for example the impala user does not have permission to write to the data directory for the table. Impala reports any lack of write permissions as an INFO message in the log file, in case that represents an oversight. If you change HDFS permissions to make data readable or writeable by the Impala user, issue another REFRESH to make Impala aware of the change.

• Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD DATA, OR CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a REFRESH table_name in Impala. This technique is especially important for tables that are very large, used in join queries, or both.

Cancellation: Cannot be cancelled.

Related information:

Overview of Impala Metadata and the Metastore on page 20, INVALIDATE METADATA Statement on page 203

REVOKE Statement (CDH 5.2 or higher only)

The REVOKE statement revokes roles or privileges on a specified object from groups. Only Sentry administrative users can revoke the role from a group. The revocation has a cascading effect. For example, revoking the ALL privilege on a database also revokes the same privilege for all the tables in that database.

Syntax:

```
REVOKE ROLE role_name FROM GROUP group_name
REVOKE privilege ON object_type object_name
 FROM [ROLE] role_name
privilege ::= SELECT | INSERT | ALL
object_type ::= TABLE | DATABASE | SERVER | URI
```

Typically, the object name is an identifier. For URIs, it is a string literal.

Required privileges:

Only administrative users (those with ALL privileges on the server, defined in the Sentry policy file) can use this statement.

Compatibility:

- The Impala GRANT and REVOKE statements are available in CDH 5.2 and higher.
- In CDH 5.1 and higher, Impala makes use of any roles and privileges specified by the GRANT and REVOKE statements in Hive, when your system is configured to use the Sentry service instead of the file-based policy mechanism.
- The Impala GRANT and REVOKE statements do not require the ROLE keyword to be repeated before each role name, unlike the equivalent Hive statements.
- Currently, each Impala GRANT or REVOKE statement can only grant or revoke a single privilege to or from a single role.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Related information:

Enabling Sentry Authorization for Impala on page 89, GRANT Statement (CDH 5.2 or higher only) on page 195 CREATE ROLE Statement (CDH 5.2 or higher only) on page 173, DROP ROLE Statement (CDH 5.2 or higher only) on page 187, SHOW Statement on page 235

SELECT Statement

The SELECT statement performs queries, retrieving data from one or more tables and producing result sets consisting of rows and columns.

The Impala INSERT statement also typically ends with a SELECT statement, to define data to copy from one table to another.

Syntax:

```
[WITH name AS (select_expression) [, ...] ]
SELECT
  [ALL | DISTINCT]
 [STRAIGHT_JOIN]
 expression [, expression ...]
FROM table reference [, table reference ...]
```

```
[[FULL | [LEFT | RIGHT] INNER | [LEFT | RIGHT] OUTER | [LEFT | RIGHT] SEMI | [LEFT |
RIGHT] ANTI | CROSS]
  JOIN table_reference
  [ON join_equality_clauses | USING (col1[, col2 ...]] ...
WHERE conditions
GROUP BY { column | expression [ASC | DESC] [NULLS FIRST | NULLS LAST] [, ...] }
HAVING conditions
GROUP BY { column | expression [ASC | DESC] [, ...] }
LIMIT expression [OFFSET expression]
[UNION [ALL] select_statement] ...]
```

Impala SELECT queries support:

- SQL data types: BOOLEAN, TINYINT, SMALLINT, INT, BIGINT, DECIMAL FLOAT, DOUBLE, TIMESTAMP, STRING, VARCHAR, CHAR.
- An optional <u>WITH clause</u> before the <u>SELECT</u> keyword, to define a subquery whose name or column names can be referenced from later in the main query. This clause lets you abstract repeated clauses, such as aggregation functions, that are referenced multiple times in the same query.
- By default, one DISTINCT clause per query. See <u>DISTINCT Operator</u> on page 231 for details. See <u>APPX_COUNT_DISTINCT Query Option</u> on page 326 for a query option to allow multiple COUNT(DISTINCT) impressions in the same query.
- Subqueries in a FROM clause.
- WHERE, GROUP BY, HAVING clauses.
- ORDER BY. Prior to Impala 1.4.0, Impala required that queries using an ORDER BY clause also include a LIMIT clause. In Impala 1.4.0 and higher, this restriction is lifted; sort operations that would exceed the Impala memory limit automatically use a temporary disk work area to perform the sort.
- Impala supports a wide variety of JOIN clauses. Left, right, semi, full, and outer joins are supported in all Impala versions. The CROSS JOIN operator is available in Impala 1.2.2 and higher. During performance tuning, you can override the reordering of join clauses that Impala does internally by including the keyword STRAIGHT_JOIN immediately after the SELECT keyword

See <u>Joins</u> on page 213 for details and examples of join queries.

- UNION ALL.
- LIMIT.
- External tables.
- Relational operators such as greater than, less than, or equal to.
- Arithmetic operators such as addition or subtraction.
- Logical/Boolean operators AND, OR, and NOT. Impala does not support the corresponding symbols &&, ||, and !.
- Common SQL built-in functions such as COUNT, SUM, CAST, LIKE, IN, BETWEEN, and COALESCE. Impala specifically supports built-ins described in <u>Built-in Functions</u> on page 246.

Cancellation: Can be cancelled. To cancel this statement, use Ctrl-C from the impala-shell interpreter, the Cancel button from the Watch page in Hue, Actions > Cancel from the Queries list in Cloudera Manager, or Cancel from the list of in-flight queries (for a particular node) on the Queries tab in the Impala web UI (port 25000).

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read permissions for the files in all applicable directories in all source tables, and read and execute permissions for the relevant data directories. (A SELECT operation could read files from multiple different HDFS directories if the source table is partitioned.) If a query attempts to read a data file and is unable to because of an HDFS permission error, the query halts and does not return any further results.

Related information:

The SELECT syntax is so extensive that it forms its own category of statements: queries. The other major classifications of SQL statements are data definition language (see <u>DDL Statements</u> on page 157) and data manipulation language (see <u>DML Statements</u> on page 158).

Because the focus of Impala is on fast queries with interactive response times over huge data sets, query performance and scalability are important considerations. See Tuning Impala for Performance on page 340 and <u>Scalability Considerations for Impala</u> on page 374 for details.

loins

A join query is a SELECT statement that combines data from two or more tables, and returns a result set containing items from some or all of those tables. It is a way to cross-reference and correlate related data that is organized into multiple tables, typically using identifiers that are repeated in each of the joined tables.

Syntax:

Impala supports a wide variety of JOIN clauses. Left, right, semi, full, and outer joins are supported in all Impala versions. The CROSS JOIN operator is available in Impala 1.2.2 and higher. During performance tuning, you can override the reordering of join clauses that Impala does internally by including the keyword STRAIGHT_JOIN immediately after the SELECT keyword

```
SELECT select_list FROM
  table_or_subquery1 [INNER] JOIN table_or_subquery2
  table_or_subquery1 {LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]} JOIN
table_or_subquery2
  table_or_subquery1 {LEFT | RIGHT} SEMI JOIN table_or_subquery2 table_or_subquery1 {LEFT | RIGHT} ANTI JOIN table_or_subquery2
    [ ON col1 = col2 [AND col3 = col4 ...] |
      USING (col1 [, col2 ...]) ]
  [other_join_clause ...]
[ WHERE where_clauses ]
SELECT select_list FROM
  table_or_subquery1, table_or_subquery2 [, table_or_subquery3 ...]
  [other_join_clause ...]
WHERE
   col1 = col2 [AND col3 = col4 ...]
SELECT select_list FROM
 table_or_subquery1 CROSS JOIN table_or_subquery2
  [other_join_clause ...]
[ WHERE where_clauses ]
```

SQL-92 and SQL-89 Joins:

Queries with the explicit JOIN keywords are known as SQL-92 style joins, referring to the level of the SQL standard where they were introduced. The corresponding on or using clauses clearly show which columns are used as the join keys in each case:

```
SELECT t1.c1, t2.c2 FROM t1 JOIN t2
  ON t1.id = t2.id and t1.type_flag = t2.type_flag
 WHERE t1.c1 > 100;
SELECT t1.c1, t2.c2 FROM t1 JOIN t2
  USING (id, type_flag)
  WHERE t1.c1 > 100;
```

The ON clause is a general way to compare columns across the two tables, even if the column names are different. The USING clause is a shorthand notation for specifying the join columns, when the column names are the same in both tables. You can code equivalent where clauses that compare the columns, instead of on or using clauses, but that practice is not recommended because mixing the join comparisons with other filtering clauses is typically less readable and harder to maintain.

Queries with a comma-separated list of tables and subqueries are known as SQL-89 style joins. In these queries, the equality comparisons between columns of the joined tables go in the WHERE clause alongside other kinds

of comparisons. This syntax is easy to learn, but it is also easy to accidentally remove a WHERE clause needed for the join to work correctly.

```
SELECT t1.c1, t2.c2 FROM t1, t2
WHERE
t1.id = t2.id AND t1.type_flag = t2.type_flag
AND t1.c1 > 100;
```

Self-joins:

Impala can do self-joins, for example to join on two different columns in the same table to represent parent-child relationships or other tree-structured data. There is no explicit syntax for this; just use the same table name for both the left-hand and right-hand table, and assign different table aliases to use when referring to the fully qualified column names:

```
-- Combine fields from both parent and child rows.
SELECT lhs.id, rhs.parent, lhs.c1, rhs.c2 FROM tree_data lhs, tree_data rhs WHERE lhs.id
= rhs.parent;
```

Cartesian joins:

To avoid producing huge result sets by mistake, Impala does not allow Cartesian joins of the form:

```
SELECT ... FROM t1 JOIN t2;
SELECT ... FROM t1, t2;
```

If you intend to join the tables based on common values, add on or WHERE clauses to compare columns across the tables. If you truly intend to do a Cartesian join, use the CROSS JOIN keyword as the join operator. The CROSS JOIN form does not use any ON clause, because it produces a result set with all combinations of rows from the left-hand and right-hand tables. The result set can still be filtered by subsequent WHERE clauses. For example:

```
SELECT ... FROM t1 CROSS JOIN t2;
SELECT ... FROM t1 CROSS JOIN t2 WHERE tests_on_non_join_columns;
```

Inner and outer joins:

An inner join is the most common and familiar type: rows in the result set contain the requested columns from the appropriate tables, for all combinations of rows where the join columns of the tables have identical values. If a column with the same name occurs in both tables, use a fully qualified name or a column alias to refer to the column in the select list or other clauses. Impala performs inner joins by default for both SQL-89 and SQL-92 join syntax:

```
-- The following 3 forms are all equivalent.

SELECT t1.id, c1, c2 FROM t1, t2 WHERE t1.id = t2.id;

SELECT t1.id, c1, c2 FROM t1 JOIN t2 ON t1.id = t2.id;

SELECT t1.id, c1, c2 FROM t1 INNER JOIN t2 ON t1.id = t2.id;
```

An outer join retrieves all rows from the left-hand table, or the right-hand table, or both; wherever there is no matching data in the table on the other side of the join, the corresponding columns in the result set are set to NULL. To perform an outer join, include the OUTER keyword in the join operator, along with either LEFT, RIGHT, or FULL:

```
SELECT * FROM t1 LEFT OUTER JOIN t2 ON t1.id = t2.id;
SELECT * FROM t1 RIGHT OUTER JOIN t2 ON t1.id = t2.id;
SELECT * FROM t1 FULL OUTER JOIN t2 ON t1.id = t2.id;
```

For outer joins, Impala requires SQL-92 syntax; that is, the JOIN keyword instead of comma-separated table names. Impala does not support vendor extensions such as (+) or *= notation for doing outer joins with SQL-89 query syntax.

Equijoins and Non-Equijoins:

By default, Impala requires an equality comparison between the left-hand and right-hand tables, either through ON, USING, or WHERE clauses. These types of queries are classified broadly as equijoins. Inner, outer, full, and semi joins can all be equijoins based on the presence of equality tests between columns in the left-hand and right-hand

In Impala 1.2.2 and higher, non-equijoin queries are also possible, with comparisons such as != or < between the join columns. These kinds of queries require care to avoid producing huge result sets that could exceed resource limits. Once you have planned a non-equijoin query that produces a result set of acceptable size, you can code the guery using the CROSS JOIN operator, and add the extra comparisons in the WHERE clause:

```
._____
SELECT ... FROM t1 CROSS JOIN t2 WHERE t1.total > t2.maximum price;
```

Semi-joins:

Semi-joins are a relatively rarely used variation. With the left semi-join, only data from the left-hand table is returned, for rows where there is matching data in the right-hand table, based on comparisons between join columns in on or where clauses. Only one instance of each row from the left-hand table is returned, regardless of how many matching rows exist in the right-hand table. A right semi-join (available in Impala 2.0 and higher) reverses the comparison and returns data from the right-hand table.

```
SELECT t1.c1, t1.c2, t1.c2 FROM t1 LEFT SEMI JOIN t2 ON t1.id = t2.id;
```

Natural joins (not supported):

Impala does not support the NATURAL JOIN operator, again to avoid inconsistent or huge result sets. Natural joins do away with the on and USING clauses, and instead automatically join on all columns with the same names in the left-hand and right-hand tables. This kind of query is not recommended for rapidly evolving data structures such as are typically used in Hadoop. Thus, Impala does not support the NATURAL JOIN SYNTAX, Which can produce different query results as columns are added to or removed from tables.

If you do have any queries that use NATURAL JOIN, make sure to rewrite them with explicit USING clauses, because Impala could interpret the NATURAL keyword as a table alias:

```
-- 'NATURAL' is interpreted as an alias for 't1' and Impala attempts an inner join,
-- resulting in an error because inner joins require explicit comparisons between
columns.
SELECT t1.c1, t2.c2 FROM t1 NATURAL JOIN t2;
ERROR: NotImplementedException: Join with 't2' requires at least one conjunctive equality
predicate.
  To perform a Cartesian product between two tables, use a CROSS JOIN.
-- If you expect the tables to have identically named columns with matching values,
-- list the corresponding column names in a USING clause.
SELECT t1.c1, t2.c2 FROM t1 JOIN t2 USING (id, type_flag, name, address);
```

Anti-joins (Impala 2.0 / CDH 5.2 and higher only):

Impala supports the LEFT ANTI JOIN and RIGHT ANTI JOIN clauses in Impala 2.0 and higher on CDH 4, or CDH 5.2 and higher on CDH 5. The LEFT or RIGHT keyword is required for this kind of join. For LEFT ANTI JOIN, this clause returns those values from the left-hand table that have no matching value in the right-hand table. RIGHT ANTI JOIN reverses the comparison and returns values from the right-hand table. You can express this negative relationship either through the ANTI JOIN clause or through a NOT EXISTS operator with a subquery.

Usage notes:

You typically use join queries in situations like these:

When related data arrives from different sources, with each data set physically residing in a separate table. For example, you might have address data from business records that you cross-check against phone listings or census data.

- Note: Impala can join tables of different file formats, including Impala-managed tables and HBase tables. For example, you might keep small dimension tables in HBase, for convenience of single-row lookups and updates, and for the larger fact tables use Parquet or other binary file format optimized for scan operations. Then, you can issue a join query to cross-reference the fact tables with the dimension tables.
- When data is normalized, a technique for reducing data duplication by dividing it across multiple tables. This kind of organization is often found in data that comes from traditional relational database systems. For example, instead of repeating some long string such as a customer name in multiple tables, each table might contain a numeric customer ID. Queries that need to display the customer name could "join" the table that specifies which customer ID corresponds to which name.
- When certain columns are rarely needed for queries, so they are moved into separate tables to reduce overhead for common queries. For example, a biography field might be rarely needed in queries on employee data. Putting that field in a separate table reduces the amount of I/O for common queries on employee addresses or phone numbers. Queries that do need the biography column can retrieve it by performing a join with that separate table.

When comparing columns with the same names in ON or WHERE clauses, use the fully qualified names such as db_name . $table_name$, or assign table aliases, column aliases, or both to make the code more compact and understandable:

```
select t1.c1 as first_id, t2.c2 as second_id from
  t1 join t2 on first_id = second_id;

select fact.custno, dimension.custno from
  customer_data as fact join customer_address as dimension
  using (custno)
```

Note:

Performance for join queries is a crucial aspect for Impala, because complex join queries are resource-intensive operations. An efficient join query produces much less network traffic and CPU overhead than an inefficient one. For best results:

- Make sure that both table and column statistics are available for all the tables involved in a join query, and especially for the columns referenced in any join conditions. Impala uses the statistics to automatically deduce an efficient join order. Use show.column.stats table name.column.stats.column.stats.column.stats.column.stats.column.stats.column.stats.column.stats.column.stats.column.stats.column.statistics.
- If table or column statistics are not available, join the largest table first. You can check the existence
 of statistics with the SHOW TABLE STATS table_name and SHOW COLUMN STATS table_name
 statements.
- If table or column statistics are not available, join subsequent tables according to which table has the most selective filter, based on overall size and WHERE clauses. Joining the table with the most selective filter results in the fewest number of rows being returned.

For more information and examples of performance for join queries, see <u>Performance Considerations</u> <u>for Join Queries</u> on page 343.

To control the result set from a join query, include the names of corresponding column names in both tables in an ON OR USING clause, or by coding equality comparisons for those columns in the WHERE clause.

```
[localhost:21000] > select c_last_name, ca_city from customer join customer_address
where c_customer_sk = ca_address_sk;
+-----+
```

```
c_last_name | ca_city
  Lewis Fairfield
Moses Fairview
Hamilton Pleasant Valley
White Oak Ridge
Moran Glendale
   Richards Lakewood
Day Lebanon
Painter Oak Hill
Bentley Greenfield
Jones Stringtown
Returned 50000 row(s) in 9.82s
```

One potential downside of joins is the possibility of excess resource usage in poorly constructed gueries. Impala imposes restrictions on join queries to guard against such issues. To minimize the chance of runaway queries on large data sets, Impala requires every join query to contain at least one equality predicate between the columns of the various tables. For example, if T1 contains 1000 rows and T2 contains 1,000,000 rows, a query SELECT columns FROM t1 JOIN t2 could return up to 1 billion rows (1000 * 1,000,000); Impala requires that the query include a clause such as ON t1.c1 = t2.c2 or WHERE t1.c1 = t2.c2.

Because even with equality clauses, the result set can still be large, as we saw in the previous example, you might use a LIMIT clause to return a subset of the results:

```
[localhost:21000] > select c_last_name, ca_city from customer, customer_address where
 c_customer_sk = ca_address_sk limit 10;
+-----
c_last_name | ca_city
 Lewis Fairfield
Moses Fairview
Hamilton Pleasant Valley
White Oak Ridge
Moran Glendale
Sharp Lakeview
Wiles Farmington
Shipman Union
Gilbert New Hope
Brunson Martinsville
Returned 10 row(s) in 0.63s
```

Or you might use additional comparison operators or aggregation functions to condense a large result set into a smaller set of values:

```
[localhost:21000] > -- Find the names of customers who live in one particular town.
[localhost:21000] > select distinct c_last_name from customer, customer_address where
 c_customer_sk = ca_address_sk
  and ca_city = "Green Acres";
 c_last_name
 Hensley
 Pearson
 Mayer
 Montgomery
 Ricks
 Barrett
 Price
 Hill
 Hansen
 Meeks
Returned 332 row(s) in 0.97s
[localhost:21000] > -- See how many different customers in this town have names starting
```

Because a join query can involve reading large amounts of data from disk, sending large amounts of data across the network, and loading large amounts of data into memory to do the comparisons and filtering, you might do benchmarking, performance analysis, and query tuning to find the most efficient join queries for your data set, hardware capacity, network configuration, and cluster workload.

The two categories of joins in Impala are known as **partitioned joins** and **broadcast joins**. If inaccurate table or column statistics, or some quirk of the data distribution, causes Impala to choose the wrong mechanism for a particular join, consider using query hints as a temporary workaround. For details, see <u>Hints</u> on page 232.

Examples:

The following examples refer to these simple tables containing small sets of integers:

```
[localhost:21000] > create table t1 (x int);
[localhost:21000] > insert into t1 values (1), (2), (3), (4), (5), (6);

[localhost:21000] > create table t2 (y int);
[localhost:21000] > insert into t2 values (2), (4), (6);

[localhost:21000] > create table t3 (z int);
[localhost:21000] > insert into t3 values (1), (3), (5);
```

The following example demonstrates an anti-join, returning the values from T1 that do not exist in T2 (in this case, the odd numbers 1, 3, and 5):

```
[localhost:21000] > select x from t1 left anti join t2 on (t1.x = t2.y);
+---+
| x |
+---+
| 1 |
| 3 |
| 5 |
+---+
```

Related information:

See these tutorials for examples of different kinds of joins:

Cross Joins and Cartesian Products with the CROSS JOIN Operator on page 64

ORDER BY Clause

The familiar ORDER BY clause of a SELECT statement sorts the result set based on the values from one or more columns.

For distributed queries, this is a relatively expensive operation, because the entire result set must be produced and transferred to one node before the sorting can happen. This can require more memory capacity than a query without ORDER BY. Even if the query takes approximately the same time to finish with or without the ORDER BY clause, subjectively it can appear slower because no results are available until all processing is finished, rather than results coming back gradually as rows matching the WHERE clause are found. Therefore, if you only need the first N results from the sorted result set, also include the LIMIT clause, which reduces network overhead and the memory requirement on the coordinator node.

Note:

In Impala 1.4.0 and higher, the LIMIT clause is now optional (rather than required) for queries that use the ORDER BY clause. Impala automatically uses a temporary disk work area to perform the sort if the sort operation would otherwise exceed the Impala memory limit for a particular data node.

Syntax:

The full syntax for the ORDER BY clause is:

```
ORDER BY col_ref [, col_ref ...] [ASC | DESC] [NULLS FIRST | NULLS LAST]
col_ref ::= column_name | integer_literal
```

Although the most common usage is ORDER BY column_name, you can also specify ORDER BY 1 to sort by the first column of the result set, ORDER BY 2 to sort by the second column, and so on. The number must be a numeric literal, not some other kind of constant expression. (If the argument is some other expression, even a STRING value, the guery succeeds but the order of results is undefined.)

ORDER BY column number can only be used when the query explicitly lists the columns in the SELECT list, not with SELECT * queries.

Ascending and descending sorts:

The default sort order (the same as using the ASC keyword) puts the smallest values at the start of the result set, and the largest values at the end. Specifying the DESC keyword reverses that order.

Sort order for NULL values:

See NULL on page 136 for details about how NULL values are positioned in the sorted result set, and how to use the nulls first and nulls last clauses. (The sort position for null values in order by ... desc queries is changed in Impala 1.2.1 and higher to be more standards-compliant, and the NULLS FIRST and NULLS LAST keywords are new in Impala 1.2.1.)

Prior to Impala 1.4.0, Impala required any query including an ORDER BY clause to also use a LIMIT clause. In Impala 1.4.0 and higher, the LIMIT clause is optional for ORDER BY queries. In cases where sorting a huge result set requires enough memory to exceed the Impala memory limit for a particular node, Impala automatically uses a temporary disk work area to perform the sort operation.

Usage notes:

Although the LIMIT clause is now optional on ORDER BY queries, if your query only needs some number of rows that you can predict in advance, use the LIMIT clause to reduce unnecessary processing. For example, if the query has a clause LIMIT 10, each data node sorts its portion of the relevant result set and only returns 10 rows to the coordinator node. The coordinator node picks the 10 highest or lowest row values out of this small intermediate result set.

If an ORDER BY clause is applied to an early phase of query processing, such as a subquery or a view definition, Impala ignores the ORDER BY clause. To get ordered results from a subquery or view, apply an ORDER BY clause to the outermost or final SELECT level.

ORDER BY IS often used in combination with LIMIT to perform "top-N" queries:

```
______
SELECT user_id as "Top 10 Visitors", SUM(page_views) FROM web_stats
  GROUP BY page_views, user_id
  ORDER BY SUM(page_views) DESC LIMIT 10;
```

ORDER BY IS SOMETIMES USED IN COMBINATION WITH OFFSET AND LIMIT TO PAGINATE QUERY RESULTS, Although it IS relatively inefficient to issue multiple queries like this against the large tables typically used with Impala:

```
SELECT page_title as "Page 1 of search results", page_url FROM search_content
  WHERE LOWER(page_title) LIKE '%game%')
  ORDER BY page_title LIMIT 10 OFFSET 0;
```

```
SELECT page_title as "Page 2 of search results", page_url FROM search_content WHERE LOWER(page_title) LIKE '%game%')
ORDER BY page_title LIMIT 10 OFFSET 10;
SELECT page_title as "Page 3 of search results", page_url FROM search_content WHERE LOWER(page_title) LIKE '%game%')
ORDER BY page_title LIMIT 10 OFFSET 20;
```

Internal details:

Impala sorts the intermediate results of an ORDER BY clause in memory whenever practical. In a cluster of N data nodes, each node sorts roughly 1/Nth of the result set, the exact proportion varying depending on how the data matching the query is distributed in HDFS.

If the size of the sorted intermediate result set on any data node would cause the query to exceed the Impala memory limit, Impala sorts as much as practical in memory, then writes partially sorted data to disk. (This technique is known in industry terminology as "external sorting" and "spilling to disk".) As each 8 MB batch of data is written to disk, Impala frees the corresponding memory to sort a new 8 MB batch of data. When all the data has been processed, a final merge sort operation is performed to correctly order the in-memory and on-disk results as the result set is transmitted back to the coordinator node. When external sorting becomes necessary, Impala requires approximately 60 MB of RAM at a minimum for the buffers needed to read, write, and sort the intermediate results. If more RAM is available on the data node, Impala will use the additional RAM to minimize the amount of disk I/O for sorting.

This external sort technique is used as appropriate on each data node (possibly including the coordinator node) to sort the portion of the result set that is processed on that node. When the sorted intermediate results are sent back to the coordinator node to produce the final result set, the coordinator node uses a merge sort technique to produce a final sorted result set without using any extra resources on the coordinator node.

Configuration for disk usage:

By default, intermediate files used during large sort, join, aggregation, or analytic function operations are stored in the directory /tmp/impala-scratch. These files are removed when the operation finishes. (Multiple concurrent queries can perform operations that use the "spill to disk" technique, without any name conflicts for these temporary files.) You can specify a different location by starting the impalad daemon with the --scratch_dirs="path_to_directory" configuration option or the equivalent configuration option in the Cloudera Manager user interface. You can specify a single directory, or a comma-separated list of directories. The scratch directories must be on the local filesystem, not in HDFS. You might specify different directory paths for different hosts, depending on the capacity and speed of the available storage devices. Impala will not start if it cannot create or read and write files in the "scratch" directory. If there is less than 1 GB free on the filesystem where that directory resides, Impala still runs, but writes a warning message to its log.

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement, any ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation potentially creates many different data files, prepared on different data nodes, and therefore the notion of the data being stored in sorted order is impractical.

An ORDER BY clause without an additional LIMIT clause is ignored in any view definition. If you need to sort the entire result set from a view, use an ORDER BY clause in the SELECT statement that queries the view. You can still make a simple "top 10" report by combining the ORDER BY and LIMIT clauses in the same view definition:

```
8
  4
  6
  2
[localhost:21000] > select x from sorted view order by x; -- View query requires ORDER
BY at outermost level.
 X
  1
  2
  3
  4
  5
  6
  8
  9
[localhost:21000] > create view top_3_view as select x from unsorted order by x limit
[localhost:21000] > select x from top_3_view; -- ORDER BY and LIMIT together in view
definition are preserved.
X
 1
  2
 3
```

With the lifting of the requirement to include a LIMIT clause in every ORDER BY query (in Impala 1.4 and higher):

- Now the use of scratch disk space raises the possibility of an "out of disk space" error on a particular data node, as opposed to the previous possibility of an "out of memory" error. Make sure to keep at least 1 GB free on the filesystem used for temporary sorting work.
- The query options DEFAULT ORDER BY LIMIT and ABORT ON DEFAULT LIMIT EXCEEDED, which formerly controlled the behavior of ORDER BY queries with no limit specified, are now ignored.

In Impala 1.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASC queries, and at the beginning of the result set for ORDER BY ... DESC queries. In effect, NULL is considered greater than all other values for sorting purposes. The original Impala behavior always put NULL values at the end, even for ORDER BY ... DESC queries. The new behavior in Impala 1.2.1 makes Impala more compatible with other popular database systems. In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL by adding the clause NULLS FIRST or NULLS LAST at the end of the ORDER BY clause.

```
[localhost:21000] > create table numbers (x int);
[localhost:21000] > insert into numbers values (1), (null), (2), (null), (3);
[localhost:21000] > select x from numbers order by x nulls first;
 X
 NULL
 NULL
 2
[localhost:21000] > select x from numbers order by x desc nulls first;
 X
 NULL
 NULL
 3
 2
```

```
[localhost:21000] > select x from numbers order by x nulls last;
 1
 2
 NULL
 NULL
[localhost:21000] > select x from numbers order by x desc nulls last;
 3
 2
 NULL
 NULL
```

Related information:

See SELECT Statement on page 211 for further examples of queries with the ORDER BY clause.

Analytic functions use the ORDER BY clause in a different context to define the sequence in which rows are analyzed. See Impala Analytic Functions on page 282 for details.

GROUP BY Clause

Specify the GROUP BY clause in queries that use aggregation functions, such as COUNT(), SUM(), AVG(), MIN(), and MAX(). Specify in the GROUP BY clause the names of all the columns that do not participate in the aggregation operation.

For example, the following query finds the 5 items that sold the highest total quantity (using the SUM() function, and also counts the number of sales transactions for those items (using the COUNT() function). Because the column representing the item IDs is not used in any aggregation functions, we specify that column in the GROUP BY clause.

```
select
  ss_item_sk as Item,
  count(ss_item_sk) as Times_Purchased,
  sum(ss_quantity) as Total_Quantity_Purchased
from store_sales
  group by ss_item_sk
  order by sum(ss_quantity) desc
  limit 5;
 item | times_purchased | total_quantity_purchased
        372
                            19072
  9325
  4279
          357
                             18501
         371
  7507
                            18475
  5953 369
16753 375
                            18451
18446
```

The HAVING clause lets you filter the results of aggregate functions, because you cannot refer to those expressions in the WHERE clause. For example, to find the 5 lowest-selling items that were included in at least 100 sales transactions, we could use this query:

```
select
 ss_item_sk as Item,
 count(ss_item_sk) as Times_Purchased,
 sum(ss_quantity) as Total_Quantity_Purchased
from store_sales
  group by ss_item_sk
```

```
having times_purchased >= 100
order by sum(ss_quantity)
limit 5;
item | times_purchased | total_quantity_purchased
13943 | 105
                         1 4087
2992
       101
                         4176
       107
                         4204
4773
14350
       103
102
                         4260
4275
11956
```

When performing calculations involving scientific or financial data, remember that columns with type FLOAT or DOUBLE are stored as true floating-point numbers, which cannot precisely represent every possible fractional value. Thus, if you include a FLOAT or DOUBLE column in a GROUP BY clause, the results might not precisely match literal values in your query or from an original Text data file. Use rounding operations, the BETWEEN operator, or another arithmetic technique to match floating-point values that are "near" literal values you expect. For example, this query on the ss_wholesale_cost column returns cost values that are close but not identical to the original figures that were entered as decimal fractions.

```
avg(ss_quantity * ss_sales_price) as avg_revenue_per_sale
 from sales
 group by ss_wholesale_cost
 order by avg_revenue_per_sale desc
 limit 5;
ss_wholesale_cost | avg_revenue_per_sale

      96.94000244140625
      4454.351539300434

      95.93000030517578
      4423.119941283189

      98.37999725341797
      4332.516490316291

      97.97000122070312
      4330.480601655014

      98.52999877929688
      4291.316953108634
```

Notice how wholesale cost values originally entered as decimal fractions such as 96.94 and 98.38 are slightly larger or smaller in the result set, due to precision limitations in the hardware floating-point types. The imprecise representation of FLOAT and DOUBLE values is why financial data processing systems often store currency using data types that are less space-efficient but avoid these types of rounding errors.

Zero-length strings: For purposes of clauses such as DISTINCT and GROUP BY, Impala considers zero-length strings (" "), NULL, and space to all be different values.

Related information:

SELECT Statement on page 211, Impala Aggregate Functions on page 271

HAVING Clause

Performs a filter operation on a SELECT query, by examining the results of aggregation functions rather than testing each individual table row. Therefore, it is always used in conjunction with a function such as COUNT(), <u>SUM()</u>, <u>AVG()</u>, <u>MIN()</u>, or <u>MAX()</u>, and typically with the <u>GROUP BY</u> clause also.

Restrictions:

The filter expression in the HAVING clause cannot include a scalar subquery.

Related information:

SELECT Statement on page 211, GROUP BY Clause on page 222, Impala Aggregate Functions on page 271

LIMIT Clause

The LIMIT clause in a SELECT query sets a maximum number of rows for the result set. Pre-selecting the maximum size of the result set helps Impala to optimize memory usage while processing a distributed query.

Syntax:

```
LIMIT constant_integer_expression
```

The argument to the LIMIT clause must evaluate to a constant value. It can be a numeric literal, or another kind of numeric expression involving operators, casts, and function return values. You cannot refer to a column or use a subquery.

Usage notes:

This clause is useful in contexts such as:

- To return exactly N items from a top-N query, such as the 10 highest-rated items in a shopping category or the 50 hostnames that refer the most traffic to a web site.
- To demonstrate some sample values from a table or a particular query. (To display some arbitrary items, use a query with no ORDER BY clause. An ORDER BY clause causes additional memory and/or disk usage during the query.)
- To keep queries from returning huge result sets by accident if a table is larger than expected, or a WHERE clause matches more rows than expected.

Originally, the value for the LIMIT clause had to be a numeric literal. In Impala 1.2.1 and higher, it can be a numeric expression.

Prior to Impala 1.4.0, Impala required any query including an ORDER BY clause to also use a LIMIT clause. In Impala 1.4.0 and higher, the LIMIT clause is optional for ORDER BY queries. In cases where sorting a huge result set requires enough memory to exceed the Impala memory limit for a particular node, Impala automatically uses a temporary disk work area to perform the sort operation.

See ORDER BY Clause on page 218 for details.

In Impala 1.2.1 and higher, you can combine a LIMIT clause with an OFFSET clause to produce a small result set that is different from a top-N query, for example, to return items 11 through 20. This technique can be used to simulate "paged" results. Because Impala queries typically involve substantial amounts of I/O, use this technique only for compatibility in cases where you cannot rewrite the application logic. For best performance and scalability, wherever practical, query as many items as you expect to need, cache them on the application side, and display small groups of results to users using application logic.

Restrictions:

Correlated subqueries used in EXISTS and IN operators cannot include a LIMIT clause.

Examples:

The following example shows how the LIMIT clause caps the size of the result set, with the limit being applied after any other clauses such as WHERE.

```
[localhost:21000] > create database limits;
[localhost:21000] > use limits;
[localhost:21000] > create table numbers (x int);
[localhost:21000] > insert into numbers values (1), (3), (4), (5), (2);
Inserted 5 rows in 1.34s
[localhost:21000] > select x from numbers limit 100;
X
 1
 3
 4
 5
 2
Returned 5 row(s) in 0.26s
[localhost:21000] > select x from numbers limit 3;
x
```

```
1
 3
 4
Returned 3 row(s) in 0.27s
[localhost:21000] > select x from numbers where x > 2 limit 2;
l x
 3
 4
Returned 2 row(s) in 0.27s
```

For top-N and bottom-N queries, you use the ORDER BY and LIMIT clauses together:

```
-----
[localhost:21000] > select x as "Top 3" from numbers order by x desc limit 3;
top 3
 4
 3
[localhost:21000] > select x as "Bottom 3" from numbers order by x limit 3;
| bottom 3
 1
 2
 3
```

You can use constant values besides integer literals as the LIMIT argument:

```
-- Other expressions that yield constant integer values work too.
SELECT x FROM t1 LIMIT leb; -- Limit is one million.

SELECT x FROM t1 LIMIT length('hello world'); -- Limit is 11.

SELECT x FROM t1 LIMIT 2+2; -- Limit is 4
SELECT x FROM t1 LIMIT cast(truncate(9.9) AS INT); -- Limit is 9.
```

OFFSET Clause

The offset clause in a select query causes the result set to start some number of rows after the logical first item. The result set is numbered starting from zero, so OFFSET 0 produces the same result as leaving out the OFFSET clause. Always use this clause in combination with ORDER BY (so that it is clear which item should be first, second, and so on) and LIMIT (so that the result set covers a bounded range, such as items 0-9, 100-199, and so on).

In Impala 1.2.1 and higher, you can combine a LIMIT clause with an OFFSET clause to produce a small result set that is different from a top-N query, for example, to return items 11 through 20. This technique can be used to simulate "paged" results. Because Impala queries typically involve substantial amounts of I/O, use this technique only for compatibility in cases where you cannot rewrite the application logic. For best performance and scalability, wherever practical, query as many items as you expect to need, cache them on the application side, and display small groups of results to users using application logic.

Examples:

The following example shows how you could run a "paging" query originally written for a traditional database application. Because typical Impala queries process megabytes or gigabytes of data and read large data files from disk each time, it is inefficient to run a separate query to retrieve each small group of items. Use this

technique only for compatibility while porting older applications, then rewrite the application code to use a single query with a large result set, and display pages of results from the cached result set.

UNION Clause

The UNION clause lets you combine the result sets of multiple queries. By default, the result sets are combined as if the DISTINCT operator was applied.

Svntax:

```
query_1 UNION [DISTINCT | ALL] query_2
```

Usage notes:

The UNION keyword by itself is the same as UNION DISTINCT. Because eliminating duplicates can be a memory-intensive process for a large result set, prefer UNION ALL where practical. (That is, when you know the different queries in the union will not produce any duplicates, or where the duplicate values are acceptable.)

When an ORDER BY clause applies to a UNION ALL OF UNION query, in Impala 1.4 and higher, the LIMIT clause is no longer required. To make the ORDER BY and LIMIT clauses apply to the entire result set, turn the UNION query into a subquery, SELECT from the subquery, and put the ORDER BY clause at the end, outside the subquery.

Examples

First, we set up some sample data, including duplicate 1 values.

```
[localhost:21000] > create table few_ints (x int);
[localhost:21000] > insert into few_ints values (1), (1), (2), (3);
[localhost:21000] > set default_order_by_limit=1000;
```

This example shows how UNION ALL returns all rows from both queries, without any additional filtering to eliminate duplicates. For the large result sets common with Impala queries, this is the most memory-efficient technique.

```
[localhost:21000] > select x from few_ints order by x;
+---+
| x |
+---+
| 1 |
1 |
2 |
3 |
+---+
```

```
Returned 4 row(s) in 0.41s
[localhost:21000] > select x from few_ints union all select x from few_ints;
X
 1
  1
  2
  3
  1
 1
  2
 3
Returned 8 row(s) in 0.42s
[localhost:21000] > select * from (select x from few_ints union all select x from
few_ints) as t1 order by x;
x
 1
 1
  1
  2
  2
  3
 3
Returned 8 row(s) in 0.53s
[localhost:21000] > select x from few_ints union all select 10;
X
 10
 1
 1
  2
 3
Returned 5 row(s) in 0.38s
```

This example shows how the UNION clause without the ALL keyword condenses the result set to eliminate all duplicate values, making the query take more time and potentially more memory. The extra processing typically makes this technique not recommended for queries that return result sets with millions or billions of values.

```
[localhost:21000] > select x from few_ints union select x+1 from few_ints;
x
 3
 4
 1
 2
Returned 4 row(s) in 0.51s
[localhost:21000] > select x from few_ints union select 10;
x
 ----
  2
 10
 3
Returned 4 row(s) in 0.49s
[localhost:21000] > select * from (select x from few_ints union select x from few_ints)
as t1 order by x;
+---+
x
1 |
```

Subqueries

A *subquery* is a query that is nested within another query. Subqueries let queries on one table dynamically adapt based on the contents of another table. This technique provides great flexibility and expressive power for SQL queries.

A subquery can return a result set for use in the FROM or WITH clauses, or with operators such as IN OR EXISTS.

A scalar subquery produces a result set with a single row containing a single column, typically produced by an aggregation function such as MAX() or SUM(). This single result value can be substituted in scalar contexts such as arguments to comparison operators. If the result set is empty, the value of the scalar subquery is NULL. For example, the following query finds the maximum value of T2.Y and then substitutes that value into the WHERE clause of the outer block that queries T1:

```
SELECT x FROM t1 WHERE x > (SELECT MAX(y) FROM t2);
```

Uncorrelated subqueries do not refer to any tables from the outer block of the query. The same value or set of values produced by the subquery is used when evaluating each row from the outer query block. In this example, the subquery returns an arbitrary number of values from T2.Y, and each value of T1.X is tested for membership in that same set of values:

```
SELECT \times FROM t1 WHERE \times IN (SELECT \gamma FROM t2);
```

Correlated subqueries compare one or more values from the outer query block to values referenced in the WHERE clause of the subquery. Each row evaluated by the outer WHERE clause can be evaluated using a different set of values. These kinds of subqueries are restricted in the kinds of comparisons they can do between columns of the inner and outer tables. (See the following **Restrictions** item.)

For example, the following query finds all the employees with salaries that are higher than average for their department. The subquery potentially computes a different AVG() value for each employee.

```
SELECT employee_name, employee_id FROM employees one WHERE salary > (SELECT avg(salary) FROM employees two WHERE one.dept_id = two.dept_id);
```

Syntax:

Subquery in the FROM clause:

```
SELECT select_list FROM table_ref [, table_ref ...]

table_ref ::= table_name | (select_statement)
```

Subqueries in WHERE clause:

```
WHERE value comparison_operator (scalar_select_statement)
WHERE value [NOT] IN (select_statement)
WHERE [NOT] EXISTS (correlated_select_statement)
WHERE NOT EXISTS (correlated_select_statement)
```

comparison_operator is a numeric comparison such as =, <=, !=, and so on, or a string comparison operator such as LIKE or REGEXP.

Although you can use non-equality comparison operators such as < or >=, the subquery must include at least one equality comparison between the columns of the inner and outer query blocks.

All syntax is available for both correlated and uncorrelated queries, except that the NOT EXISTS clause cannot be used with an uncorrelated subquery.

Impala subqueries can be nested arbitrarily deep.

Standards compliance: Introduced in SQL:1999.

Examples:

This example illustrates how subqueries can be used in the FROM clause to organize the table names, column names, and column values by producing intermediate result sets, especially for join queries.

```
SELECT avg(t1.x), max(t2.v) FROM
  (SELECT id, cast(a AS DECIMAL(10,5)) AS x FROM raw_data WHERE a BETWEEN 0 AND 100)
 JOIN
  (SELECT id, length(s) AS y FROM raw_data WHERE s LIKE 'A%') AS t2;
 USING (id);
```

These examples show how a query can test for the existence of values in a separate table using the EXISTS() operator with a subquery.

The following examples show how a value can be compared against a set of values returned by a subquery.

```
._____
SELECT count(x) FROM t1 WHERE EXISTS(SELECT 1 FROM t2 WHERE t1.x = t2.y * 10);
SELECT x FROM t1 WHERE x IN (SELECT y FROM t2 WHERE state = 'CA');
```

The following examples demonstrate scalar subqueries. When a subquery is known to return a single value, you can substitute it where you would normally put a constant value.

```
SELECT x FROM t1 WHERE y = (SELECT max(z) FROM t2);
SELECT x FROM t1 WHERE y > (SELECT count(z) FROM t2);
```

Usage notes:

If the same table is referenced in both the outer and inner query blocks, construct a table alias in the outer query block and use a fully qualified name to distinguish the inner and outer table references:

```
-----
SELECT * FROM t1 one WHERE id IN (SELECT parent FROM t1 two WHERE t1.parent = t2.id);
```

Internal details:

Internally, subqueries involving IN, NOT IN, EXISTS, or NOT EXISTS clauses are rewritten into join queries. Depending on the syntax, the subquery might be rewritten to an outer join, semi join, cross join, or anti join.

A query is processed differently depending on whether the subquery calls any aggregation functions. There are correlated and uncorrelated forms, with and without calls to aggregation functions. Each of these four categories is rewritten differently.

Column statistics considerations:

Because queries that include correlated and uncorrelated subqueries in the WHERE clause are written into join queries, to achieve best performance, follow the same guidelines for running the COMPUTE STATS statement as you do for tables involved in regular join queries. Run the COMPUTE STATS statement for each associated tables after loading or substantially changing the data in that table. See How Impala Uses Statistics for Query Optimization on page 349 for details.

Added in: Subqueries are substantially enhanced starting in Impala 2.0 for CDH 4, and CDH 5.2.0. Now, they can be used in the where clause, in combination with clauses such as EXISTS and IN, rather than just in the FROM clause.

Restrictions:

The initial Impala support for nested subqueries addresses the most common use cases. Some restrictions remain:

- Although you can use subqueries in a query involving UNION or UNION ALL in Impala 2.1.0 and higher, currently you cannot construct a union of two subqueries (for example, in the argument of an IN or EXISTS operator).
- Subqueries returning scalar values cannot be used with the operators ANY or ALL. (Impala does not currently have a SOME operator, but if it did, the same restriction would apply.)
- For the EXISTS and NOT EXISTS clauses, any subquery comparing values from the outer query block to another table must use at least one equality comparison, not exclusively other kinds of comparisons such as less than, greater than, BETWEEN, or !=.
- Currently, a scalar subquery cannot be used as the first or second argument to the BETWEEN operator.
- A subquery cannot be used inside an OR conjunction. Expressions inside a subquery, for example in the WHERE clause, can use OR conjunctions; the restriction only applies to parts of the query "above" the subquery.
- Scalar subqueries are only supported in numeric contexts. You cannot use a scalar subquery as an argument to the LIKE, REGEXP, OR RLIKE OPERATORS, OR COMPARE IT to a value of a non-numeric type such as TIMESTAMP OR BOOLEAN.
- You cannot use subqueries with the CASE function to generate the comparison value, the values to be compared against, or the return value.
- A subquery is not allowed in the filter condition for the HAVING clause. (Strictly speaking, a subquery cannot appear anywhere outside the WITH, FROM, and WHERE clauses.)
- You must use a fully qualified name (table_namecolumn_name or database_name.table_name.column_name) when referring to any column from the outer query block within a subquery.

Related information:

EXISTS Operator on page 139, IN Operator on page 142

WITH Clause

A clause that can be added before a SELECT statement, to define aliases for complicated expressions that are referenced multiple times within the body of the SELECT. Similar to CREATE VIEW, except that the table and column names defined in the WITH clause do not persist after the query finishes, and do not conflict with names used in actual tables or views. Also known as "subquery factoring".

You can rewrite a query using subqueries to work the same as with the WITH clause. The purposes of the WITH clause are:

- Convenience and ease of maintenance from less repetition with the body of the query. Typically used with queries involving UNION, joins, or aggregation functions where the similar complicated expressions are referenced multiple times.
- SQL code that is easier to read and understand by abstracting the most complex part of the query into a separate block.
- Improved compatibility with SQL from other database systems that support the same clause (primarily Oracle Database).

Note:

The Impala WITH clause does not support recursive queries in the WITH, which is supported in some other database systems.

Standards compliance: Introduced in SQL:1999.

Examples:

```
-- Define 2 subqueries that can be referenced from the body of a longer query.
with t1 as (select 1), t2 as (select 2) insert into tab select * from t1 union all
select * from t2;
-- Define one subquery at the outer level, and another at the inner level as part of
-- initial stage of the UNION ALL guery.
with t1 as (select 1) (with t2 as (select 2) select * from t2) union all select * from
t.1;
```

DISTINCT Operator

The DISTINCT operator in a SELECT statement filters the result set to remove duplicates:

```
-- Returns the unique values from one column.
-- NULL is included in the set of values if any rows have a NULL in this column.
select distinct c_birth_country from customer;
-- Returns the unique combinations of values from multiple columns.
select distinct c_salutation, c_last_name from customer;
```

You can use <code>DISTINCT</code> in combination with an aggregation function, typically <code>COUNT()</code>, to find how many different values a column contains:

```
-- Counts the unique values from one column.
-- NULL is not included as a distinct value in the count.
select count(distinct c_birth_country) from customer;
-- Counts the unique combinations of values from multiple columns.
select count(distinct c_salutation, c_last_name) from customer;
```

One construct that Impala SQL does *not* support is using DISTINCT in more than one aggregation function in the same query. For example, you could not have a single query with both COUNT(DISTINCT c_first_name) and COUNT(DISTINCT c_last_name) in the SELECT list.

Zero-length strings: For purposes of clauses such as DISTINCT and GROUP BY, Impala considers zero-length strings (" "), NULL, and space to all be different values.

Note:

By default, Impala only allows a single COUNT(DISTINCT columns) expression in each query.

If you do not need precise accuracy, you can produce an estimate of the distinct values for a column by specifying NDV (column); a query can contain multiple instances of NDV (column). To make Impala automatically rewrite COUNT (DISTINCT) expressions to NDV(), enable the APPX COUNT DISTINCT query option.

To produce the same result as multiple COUNT (DISTINCT) expressions, you can use the following technique for queries involving a single table:

```
select v1.c1 result1, v2.c1 result2 from
  (select count(distinct col1) as c1 from t1) v1
   cross join
  (select count(distinct col2) as c1 from t1) v2;
```

Because CROSS JOIN is an expensive operation, prefer to use the NDV () technique wherever practical.

Note:

In contrast with some database systems that always return DISTINCT values in sorted order, Impala does not do any ordering of DISTINCT values. Always include an ORDER BY clause if you need the values in alphabetical or numeric sorted order.

Hints

The Impala SQL dialect supports query hints, for fine-tuning the inner workings of queries. Specify hints as a temporary workaround for expensive queries, where missing statistics or other factors cause inefficient performance.

Hints are most often used for the most resource-intensive kinds of Impala queries:

- Join queries involving large tables, where intermediate result sets are transmitted across the network to evaluate the join conditions.
- Inserting into partitioned Parquet tables, where many memory buffers could be allocated on each host to hold intermediate results for each partition.

Syntax:

You can represent the hints as keywords surrounded by [] square brackets; include the brackets in the text of the SOL statement.

```
SELECT STRAIGHT_JOIN select_list FROM
join_left_hand_table
 JOIN [{BROADCAST|SHUFFLE}]
join_right_hand_table
remainder_of_query;
INSERT insert_clauses
 [{SHUFFLE|NOSHUFFLE}]
  SELECT remainder_of_query;
```

In Impala 2.0 and higher, or CDH 5.2 and higher, you can also specify the hints inside comments that use either the /* */ or -- notation. Specify a + symbol immediately before the hint name.

```
SELECT STRAIGHT_JOIN select_list FROM
join_left_hand_table
 JOIN /* +BROADCAST | SHUFFLE */
join_right_hand_table
remainder_of_query;
SELECT select_list FROM
join_left_hand_table
 JOIN -- +BROADCAST | SHUFFLE
join_right_hand_table
remainder_of_query;
INSERT insert_clauses
  /* +SHUFFLE NOSHUFFLE */
  SELECT remainder_of_query;
INSERT insert_clauses
  -- +SHUFFLE | NOSHUFFLE
  SELECT remainder_of_query;
```

Usage notes:

With both forms of hint syntax, include the STRAIGHT_JOIN keyword immediately after the SELECT keyword to prevent Impala from reordering the tables in a way that makes the hint ineffective.

To reduce the need to use hints, run the COMPUTE STATS statement against all tables involved in joins, or used as the source tables for INSERT ... SELECT operations where the destination is a partitioned Parquet table. Do this operation after loading data or making substantial changes to the data within each table. Having up-to-date statistics helps Impala choose more efficient query plans without the need for hinting. See How Impala Uses Statistics for Query Optimization on page 349 for details and examples.

To see which join strategy is used for a particular query, examine the EXPLAIN output for that query. See Using the EXPLAIN Plan for Performance Tuning on page 364 for details and examples.

Hints for join queries:

The [BROADCAST] and [SHUFFLE] hints control the execution strategy for join queries. Specify one of the following constructs immediately after the JOIN keyword in a query:

- [SHUFFLE] Makes that join operation use the "partitioned" technique, which divides up corresponding rows from both tables using a hashing algorithm, sending subsets of the rows to other nodes for processing. (The keyword SHUFFLE is used to indicate a "partitioned join", because that type of join is not related to "partitioned tables".) Since the alternative "broadcast" join mechanism is the default when table and index statistics are unavailable, you might use this hint for queries where broadcast joins are unsuitable; typically, partitioned joins are more efficient for joins between large tables of similar size.
- [BROADCAST] Makes that join operation use the "broadcast" technique that sends the entire contents of the right-hand table to all nodes involved in processing the join. This is the default mode of operation when table and index statistics are unavailable, so you would typically only need it if stale metadata caused Impala to mistakenly choose a partitioned join operation. Typically, broadcast joins are more efficient in cases where one table is much smaller than the other. (Put the smaller table on the right side of the JOIN operator.)

Hints for INSERT ... SELECT queries:

When inserting into partitioned tables, especially using the Parquet file format, you can include a hint in the INSERT statement to fine-tune the overall performance of the operation and its resource usage:

- These hints are available in Impala 1.2.2 and higher.
- You would only use these hints if an INSERT into a partitioned Parguet table was failing due to capacity limits, or if such an INSERT was succeeding but with less-than-optimal performance.
- To use these hints, put the hint keyword [SHUFFLE] or [NOSHUFFLE] (including the square brackets) after the Partition clause, immediately before the SELECT keyword.
- [SHUFFLE] selects an execution plan that minimizes the number of files being written simultaneously to HDFS, and the number of memory buffers holding data for individual partitions. Thus it reduces overall resource usage for the INSERT operation, allowing some INSERT operations to succeed that otherwise would fail. It does involve some data transfer between the nodes so that the data files for a particular partition are all constructed on the same node.
- [NOSHUFFLE] selects an execution plan that might be faster overall, but might also produce a larger number of small data files or exceed capacity limits, causing the INSERT operation to fail. Use [SHUFFLE] in cases where an INSERT statement fails or runs inefficiently due to all nodes attempting to construct data for all partitions.
- Impala automatically uses the [SHUFFLE] method if any partition key column in the source table, mentioned in the INSERT ... SELECT query, does not have column statistics. In this case, only the [NOSHUFFLE] hint would have any effect.
- If column statistics are available for all partition key columns in the source table mentioned in the INSERT ... SELECT query, Impala chooses whether to use the [SHUFFLE] or [NOSHUFFLE] technique based on the estimated number of distinct values in those columns and the number of nodes involved in the INSERT operation. In this case, you might need the [SHUFFLE] or the [NOSHUFFLE] hint to override the execution plan selected by Impala.

Suggestions versus directives:

In early Impala releases, hints were always obeyed and so acted more like directives. Once Impala gained join order optimizations, sometimes join queries were automatically reordered in a way that made a hint irrelevant. Therefore, the hints act more like suggestions in Impala 1.2.2 and higher.

To force Impala to follow the hinted execution mechanism for a join query, include the STRAIGHT_JOIN keyword in the SELECT statement. See Overriding Join Reordering with STRAIGHT JOIN on page 344 for details. When you use this technique, Impala does not reorder the joined tables at all, so you must be careful to arrange the join order to put the largest table (or subquery result set) first, then the smallest, second smallest, third smallest, and so on. This ordering lets Impala do the most I/O-intensive parts of the query using local reads on the data nodes, and then reduce the size of the intermediate result set as much as possible as each subsequent table or subquery result set is joined.

Restrictions:

Queries that include subqueries in the WHERE clause can be rewritten internally as join queries. Currently, you cannot apply hints to the joins produced by these types of queries.

Because hints can prevent queries from taking advantage of new metadata or improvements in query planning, use them only when required to work around performance issues, and be prepared to remove them when they are no longer required, such as after a new Impala release or bug fix.

In particular, the [BROADCAST] and [SHUFFLE] hints are expected to be needed much less frequently in Impala 1.2.2 and higher, because the join order optimization feature in combination with the COMPUTE STATS statement now automatically choose join order and join mechanism without the need to rewrite the query and add hints. See Performance Considerations for Join Queries on page 343 for details.

Compatibility:

The hints embedded within -- comments are compatible with Hive queries. The hints embedded within /* */ comments or [] square brackets are not recognized by or not compatible with Hive. For example, Hive raises an error for Impala hints within /* */ comments because it does not recognize the Impala hint names.

Considerations for views:

If you use a hint in the query that defines a view, the hint is preserved when you query the view. Impala internally rewrites all hints in views to use the -- comment notation, so that Hive can guery such views without errors due to unrecognized hint names.

Examples:

For example, this query joins a large customer table with a small lookup table of less than 100 rows. The right-hand table can be broadcast efficiently to all nodes involved in the join. Thus, you would use the [broadcast] hint to force a broadcast join strategy:

```
select straight_join customer.address, state_lookup.state_name
 from customer join [broadcast] state_lookup
 on customer.state_id = state_lookup.state_id;
```

This query joins two large tables of unpredictable size. You might benchmark the query with both kinds of hints and find that it is more efficient to transmit portions of each table to other nodes for processing. Thus, you would use the [shuffle] hint to force a partitioned join strategy:

```
select straight_join weather.wind_velocity, geospatial.altitude
 from weather join [shuffle] geospatial
 on weather.lat = geospatial.lat and weather.long = geospatial.long;
```

For joins involving three or more tables, the hint applies to the tables on either side of that specific JOIN keyword. The STRAIGHT_JOIN keyword ensures that joins are processed in a predictable order from left to right. For example, this query joins £1 and £2 using a partitioned join, then joins that result set to £3 using a broadcast join:

```
select straight_join t1.name, t2.id, t3.price
  from t1 join [shuffle] t2 join [broadcast] t3
  on t1.id = t2.id and t2.id = t3.id;
```

Related information:

For more background information about join queries, see Joins on page 213. For performance considerations, see Performance Considerations for Join Queries on page 343.

SET Statement

Specifies values for guery options that control the runtime behavior of other statements within the same session.

Syntax:

```
SET [query_option=option_value]
```

SET with no arguments returns a result set consisting of all available query options and their current values.

The query option name and any string argument values are case-insensitive.

Each query option has a specific allowed notation for its arguments. Boolean options can be enabled and disabled by assigning values of either true and false, or 1 and 0. Some numeric options accept a final character signifying the unit, such as 2q for 2 gigabytes or 100m for 100 megabytes. See Query Options for the SET Statement on page 325 for the details of each query option.

Usage notes:

MEM_LIMIT is probably the most commonly used query option. You can specify a high value to allow a resource-intensive query to complete. For testing how queries would work on memory-constrained systems, you might specify an artificially low value.

Examples:

The following example sets some numeric and some Boolean query options to control usage of memory, disk space, and timeout periods, then runs a query whose success could depend on the options in effect:

```
set mem_limit=64g;
set DISABLE_UNSAFE_SPILLS=true;
set parquet_file_size=400m;
set RESERVATION_REQUEST_TIMEOUT=900000;
insert overwrite parquet_table select c1, c2, count(c3) from text_table group by c1,
c2, c3;
```

Added in: CDH 5.2.0 (Impala 2.0.0)

SET has always been available as an impala-shell command. Promoting it to a SQL statement lets you use this feature in client applications through the JDBC and ODBC APIs.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Related information:

See Query Options for the SET Statement on page 325 for the query options you can adjust using this statement.

SHOW Statement

The SHOW statement is a flexible way to get information about different types of Impala objects.

Syntax:

```
SHOW DATABASES [[LIKE] 'pattern']
SHOW SCHEMAS [[LIKE] 'pattern'] - an alias for SHOW DATABASES SHOW TABLES [IN database_name] [[LIKE] 'pattern']
SHOW [AGGREGATE | ANALYTIC] FUNCTIONS [IN database_name] [[LIKE] 'pattern']
SHOW CREATE TABLE [database_name].table_name
SHOW TABLE STATS [database_name.]table_name
SHOW COLUMN STATS [database_name.]table_name
SHOW PARTITIONS [database_name.]table_name
SHOW ROLES
SHOW CURRENT ROLES
SHOW ROLE GRANT GROUP group_name
SHOW GRANT ROLE role_name
```

Issue a SHOW object_type statement to see the appropriate objects in the current database, or SHOW object_type IN database_name to see objects in a specific database.

The optional pattern argument is a quoted string literal, using Unix-style * wildcards and allowing | for alternation. The preceding LIKE keyword is also optional. All object names are stored in lowercase, so use all lowercase letters in the pattern string. For example:

```
show databases 'a*';
show databases like 'a*';
show tables in some_db like '*fact*';
use some_db;
show tables '*dim*|*fact*';
```

Cancellation: Cannot be cancelled.

SHOW ROLES Statement

The SHOW ROLES statement displays roles. This syntax is available in CDH 5.2 and later only, when you are using the Sentry authorization framework along with the Sentry service, as described in <u>Using Impala with the Sentry Service (CDH 5.1 or higher only)</u> on page 91. It does not apply when you use the Sentry framework with privileges defined in a policy file.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new privilege for that object. See Enabling Sentry Authorization for Impala on page 89 for how to set up authorization and add privileges for specific kinds of objects.

Examples:

Depending on the roles set up within your organization by the CREATE ROLE statement, the output might look something like this:

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Related information:

Enabling Sentry Authorization for Impala on page 89

SHOW CURRENT ROLE

The SHOW CURRENT ROLE statement displays roles assigned to the current user. This syntax is available in CDH 5.2 and later only, when you are using the Sentry authorization framework along with the Sentry service, as described in <u>Using Impala with the Sentry Service (CDH 5.1 or higher only)</u> on page 91. It does not apply when you use the Sentry framework with privileges defined in a policy file.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new privilege for that object. See Enabling Sentry Authorization for Impala on page 89 for how to set up authorization and add privileges for specific kinds of objects.

Examples:

Depending on the roles set up within your organization by the CREATE ROLE statement, the output might look something like this:

```
show current roles;
role_name
role1
superuser
```

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Related information:

Enabling Sentry Authorization for Impala on page 89

SHOW ROLE GRANT Statement

The SHOW ROLE GRANT statement lists all the roles assigned to the specified group. This statement is only allowed for Sentry administrative users and others users that are part of the specified group. This syntax is available in CDH 5.2 and later only, when you are using the Sentry authorization framework along with the Sentry service, as described in <u>Using Impala with the Sentry Service (CDH 5.1 or higher only)</u> on page 91. It does not apply when you use the Sentry framework with privileges defined in a policy file.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new privilege for that object. See Enabling Sentry Authorization for Impala on page 89 for how to set up authorization and add privileges for specific kinds of objects.

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Related information:

Enabling Sentry Authorization for Impala on page 89

SHOW GRANT ROLE Statement

The SHOW GRANT ROLE statement list all the grants for the given role name. This statement is only allowed for Sentry administrative users and other users that have been granted the specified role. This syntax is available in CDH 5.2 and later only, when you are using the Sentry authorization framework along with the Sentry service, as described in <u>Using Impala with the Sentry Service (CDH 5.1 or higher only)</u> on page 91. It does not apply when you use the Sentry framework with privileges defined in a policy file.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new privilege for that object. See Enabling Sentry Authorization for Impala on page 89 for how to set up authorization and add privileges for specific kinds of objects.

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Related information:

Enabling Sentry Authorization for Impala on page 89

SHOW DATABASES

The SHOW DATABASES statement is often the first one you issue when connecting to an instance for the first time. You typically issue SHOW DATABASES to see the names you can specify in a USE <code>db_name</code> statement, then after switching to a database you issue SHOW TABLES to see the names you can specify in SELECT and INSERT statements.

The output of SHOW DATABASES includes the special _impala_builtins database, which lets you view definitions of built-in functions, as described under SHOW FUNCTIONS.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new privilege for that object. See Enabling Sentry Authorization for Impala on page 89 for how to set up authorization and add privileges for specific kinds of objects.

Examples:

This example shows how you might locate a particular table on an unfamiliar system. The DEFAULT database is the one you initially connect to; a database with that name is present on every system. You can issue SHOW TABLES IN db_name without going into a database, or SHOW TABLES once you are inside a particular database.

```
[localhost:21000] > show databases;
name
  _impala_builtins
  analyze_testing
  avro
  ctas
  d1
  d2
  d3
  default
  file formats
  hbase
  load data
 partitioning
 regexp_testing
 reports
temporary
Returned 14 row(s) in 0.02s
[localhost:21000] > show tables in file_formats;
name
| parquet_table
 rcfile_table
 sequencefile_table
textfile_table
Returned 4 row(s) in 0.01s
[localhost:21000] > use file_formats;
[localhost:21000] > show tables like '*parq*';
name
parquet_table
Returned 1 row(s) in 0.01s
```

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Related information:

Databases on page 150, CREATE DATABASE Statement on page 169, DROP DATABASE Statement on page 186, USE Statement on page 246 SHOW TABLES Statement on page 239, SHOW FUNCTIONS Statement on page 245

SHOW TABLES Statement

Displays the names of tables. By default, lists tables in the current database, or with the IN clause, in a specified database. By default, lists all tables, or with the LIKE clause, only those whose name match a pattern with * wildcards.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new privilege for that object. See Enabling Sentry Authorization for Impala on page 89 for how to set up authorization and add privileges for specific kinds of objects.

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute permissions for all directories that are part of the table. (A table could span multiple different HDFS directories if it is partitioned. The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory based on its LOCATION attribute.)

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Related information:

Tables on page 151, CREATE TABLE Statement on page 174, ALTER TABLE Statement on page 159, DROP TABLE Statement on page 191, DESCRIBE Statement on page 181, SHOW CREATE TABLE Statement on page 239, SHOW TABLE STATS Statement on page 240, SHOW DATABASES on page 238, SHOW FUNCTIONS Statement on page 245

SHOW CREATE TABLE Statement

As a schema changes over time, you might run a CREATE TABLE statement followed by several ALTER TABLE statements. To capture the cumulative effect of all those statements, SHOW CREATE TABLE displays a CREATE TABLE statement that would reproduce the current structure of a table. You can use this output in scripts that set up or clone a group of tables, rather than trying to reproduce the original sequence of CREATE TABLE and ALTER TABLE statements. When creating variations on the original table, or cloning the original table on a different system, you might need to edit the SHOW CREATE TABLE output to change things such as the database name, LOCATION field, and so on that might be different on the destination system.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new privilege for that object. See Enabling Sentry Authorization for Impala on page 89 for how to set up authorization and add privileges for specific kinds of objects.

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Examples:

The following example shows how various clauses from the CREATE TABLE statement are represented in the output of SHOW CREATE TABLE.

```
create table show_create_table_demo (id int comment "Unique ID", y double, s string)
 partitioned by (year smallint)
  stored as parquet;
show create table show_create_table_demo;
result
```

The following example shows how, after a sequence of ALTER TABLE statements, the output from SHOW CREATE TABLE represents the current state of the table. This output could be used to create a matching table rather than executing the original CREATE TABLE and sequence of ALTER TABLE statements.

Related information:

CREATE TABLE Statement on page 174, DESCRIBE Statement on page 181, SHOW TABLES Statement on page 239

SHOW TABLE STATS Statement

The SHOW TABLE STATS and SHOW COLUMN STATS variants are important for tuning performance and diagnosing performance issues, especially with the largest tables and the most complex join queries.

Any values that are not available (because the COMPUTE STATS statement has not been run yet) are displayed as -1.

SHOW TABLE STATS provides some general information about the table, such as the number of files, overall size of the data, whether some or all of the data is in the HDFS cache, and the file format, that is useful whether or not you have run the COMPUTE STATS statement. A -1 in the #ROWS output column indicates that the COMPUTE STATS statement has never been run for this table. If the table is partitioned, SHOW TABLE STATS provides this information for each partition. (It produces the same output as the SHOW PARTITIONS statement in this case.)

The output of SHOW COLUMN STATS is primarily only useful after the COMPUTE STATS statement has been run on the table. A -1 in the #Distinct Values output column indicates that the COMPUTE STATS statement has never been run for this table. Currently, Impala always leaves the #Nulls column as -1, even after COMPUTE STATS has been run.

These SHOW statements work on actual tables only, not on views.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new privilege for that object. See Enabling Sentry Authorization for Impala on page 89 for how to set up authorization and add privileges for specific kinds of objects.

Examples:

The following examples show how the SHOW TABLE STATS statement displays physical information about a table and the associated data files:

#Rows #Files Size Bytes Cached Format Incremental stats -1			store_sales			
-1 1 370.45MB NOT CACHED TEXT false show table stats customer; #Rows #Files Size Bytes Cached Format Incremental stats	#Rows	#Files	Size	Bytes Cached	Format	Incremental stats
show table stats customer;	 -1	1	370.45MB	NOT CACHED	TEXT	false
	show tabl	e stats d	customer;		· 	· +
-1 1 12.60MB NOT CACHED TEXT false	#Rows	#Files	Size	Bytes Cached	Format	Incremental stats
	-1	1	12.60MB	NOT CACHED	TEXT	false

The following example shows how, after a COMPUTE STATS OF COMPUTE INCREMENTAL STATS statement, the #Rows field is now filled in. Because the STORE_SALES table in this example is not partitioned, the COMPUTE INCREMENTAL STATS statement produces regular stats rather than incremental stats, therefore the Incremental stats field remains false.

mpute st	tats custo	omer;			
summary					
Updated	1 partit	ion(s) and	18 column(s).	+	
ow table	e stats cu	ıstomer;		т	
#Rows	#Files	Size	Bytes Cached	Format	Incremental stats
100000	+ 1	12.60MB	NOT CACHED	TEXT	false
summary		l stats sto	ore_sales; 	+ -	

+			+		
show table	stats sto	ore_sales;	+		
#Rows	#Files	Size	Bytes Cached	Format	Incremental stats
2880404	1	370.45MB	NOT CACHED	TEXT	false
r					

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute permissions for all directories that are part of the table. (A table could span multiple different HDFS directories if it is partitioned. The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory based on its LOCATION attribute.) The Impala user must also have execute permission for the database directory, and any parent directories of the database directory in HDFS.

Related information:

COMPUTE STATS Statement on page 164, SHOW COLUMN STATS Statement on page 242

See How Impala Uses Statistics for Query Optimization on page 349 for usage information and examples.

SHOW COLUMN STATS Statement

The show table stats and show column stats variants are important for tuning performance and diagnosing performance issues, especially with the largest tables and the most complex join queries.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new privilege for that object. See Enabling Sentry Authorization for Impala on page 89 for how to set up authorization and add privileges for specific kinds of objects.

Examples:

The following examples show the output of the SHOW COLUMN STATS statement for some tables, before the COMPUTE STATS statement is run. Impala deduces some information, such as maximum and average size for fixed-length columns, and leaves and unknown values as -1.

Column	Type	#Distinct Values	#Nulls	Max Size	Avg Size
c_customer_sk	INT	-1	-1	4	4
c_customer_id	STRING	-1	-1	-1	-1
c_current_cdemo_sk	INT	-1	-1	4	4
c_current_hdemo_sk	INT	-1	-1	4	4
c_current_addr_sk	INT	-1	-1	4	4
c_first_shipto_date_sk	INT	-1	-1	4	4
c_first_sales_date_sk	INT	-1	-1	4	4
c_salutation	STRING	-1	-1	-1	-1
c_first_name	STRING	-1	-1	-1	-1
c_last_name	STRING	-1	-1	-1	-1
<pre>c_preferred_cust_flag</pre>	STRING	-1	-1	-1	-1
c_birth_day	INT	-1	-1	4	4
c_birth_month	INT	-1	-1	4	4
c_birth_year	INT	-1	-1	4	4
c_birth_country	STRING	-1	-1	-1	-1
c_login	STRING	-1	-1	-1	-1
c_email_address	STRING	-1	-1	-1	-1
c_last_review_date	STRING	-1	-1	-1	-1

Column	Type	#Distinct Values	#Nulls	Max Size	Avg Size
ss_sold_date_sk	INT	-1	-1	4	4
ss_sold_time_sk	INT	-1	-1	4	4
ss_item_sk	INT	-1	-1	4	4
ss_customer_sk	INT	-1	-1	4	4
ss_cdemo_sk	INT	-1	-1	4	4
ss_hdemo_sk	INT	-1	-1	4	4
ss_addr_sk	INT	-1	-1	4	4
ss_store_sk	INT	-1	-1	4	4
ss_promo_sk	INT	-1	-1	4	4
ss_ticket_number	INT	-1	-1	4	4
ss_quantity	INT	-1	-1	4	4
ss_wholesale_cost	FLOAT	-1	-1	4	4
ss_list_price	FLOAT	-1	-1	4	4
ss_sales_price	FLOAT	-1	-1	4	4
ss_ext_discount_amt	FLOAT	-1	-1	4	4
ss_ext_sales_price	FLOAT	-1	-1	4	4
ss_ext_wholesale_cost	FLOAT	-1	-1	4	4
ss_ext_list_price	FLOAT	-1	-1	4	4
ss_ext_tax	FLOAT	-1	-1	4	4
ss_coupon_amt	FLOAT	-1	-1	4	4
ss_net_paid	FLOAT	-1	-1	4	4
ss_net_paid_inc_tax	FLOAT	-1	-1	4	4
ss_net_profit	FLOAT	-1	-1	4	4

The following examples show the output of the SHOW COLUMN STATS statement for some tables, after the COMPUTE STATS statement is run. Now most of the -1 values are changed to reflect the actual table data. The #Nulls column remains -1 because Impala does not use the number of NULL values to influence query planning.

		+			
summary					
Updated 1 partition(s) a	and 18 co	lumn(s).			
ompute stats store_sales;					
summary					
Updated 1 partition(s) a					
how column stats customer	: ;	+			
Column		+ #Distinct Values	+ #Nulls	+ Max Size	+ Avg Size
c_customer_sk c_customer_id c_current_cdemo_sk c_current_hdemo_sk c_current_addr_sk c_first_shipto_date_sk c_first_sales_date_sk c_salutation c_first_name c_last_name c_preferred_cust_flag c_birth_day c_birth_month c_birth_year c_birth_country c_login c_email_address c_last_review_date	INT STRING INT INT INT INT STRING STRING STRING INT INT INT STRING STRING STRING STRING STRING STRING STRING	139017 111904 95837 8097 57334 4374 4409 7 3887 4739 3 31 12 71 205 1 94492 349	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	4 16 4 4 4 4 4 11 13 1 4 4 4 20 0 46 7	4 4 4 4 4 3.1308 5.6356 5.9106 0.9656 4 4 4 8.4001 0 26.485 6.7561
how column stats store_sa	ales;				

ss_sold_date_sk	INT	4395	-1	4	4
ss_sold_time_sk	INT	63617	-1	4	4
ss_item_sk	INT	19463	-1	4	4
ss_customer_sk	INT	122720	-1	4	4
ss_cdemo_sk	INT	242982	-1	4	4
ss_hdemo_sk	INT	8097	-1	4	4
ss_addr_sk	INT	70770	-1	4	4
ss_store_sk	INT	6	-1	4	4
ss_promo_sk	INT	355	-1	4	4
ss_ticket_number	INT	304098	-1	4	4
ss_quantity	INT	105	-1	4	4
ss_wholesale_cost	FLOAT	9600	-1	4	4
ss_list_price	FLOAT	22191	-1	4	4
ss_sales_price	FLOAT	20693	-1	4	4
ss_ext_discount_amt	FLOAT	228141	-1	4	4
ss_ext_sales_price	FLOAT	433550	-1	4	4
ss_ext_wholesale_cost	FLOAT	406291	-1	4	4
ss_ext_list_price	FLOAT	574871	-1	4	4
ss_ext_tax	FLOAT	91806	-1	4	4
ss_coupon_amt	FLOAT	228141	-1	4	4
ss_net_paid	FLOAT	493107	-1	4	4
ss_net_paid_inc_tax	FLOAT	653523	-1	4	4
ss_net_profit	FLOAT	611934	-1	4	4

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute permissions for all directories that are part of the table. (A table could span multiple different HDFS directories if it is partitioned. The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory based on its LOCATION attribute.) The Impala user must also have execute permission for the database directory, and any parent directories of the database directory in HDFS.

Related information:

COMPUTE STATS Statement on page 164, SHOW TABLE STATS Statement on page 240

See How Impala Uses Statistics for Query Optimization on page 349 for usage information and examples.

SHOW PARTITIONS Statement

SHOW PARTITIONS displays information about each partition for a partitioned table. (The output is the same as the show Table Stats statement, but show Partitions only works on a partitioned table.) Because it displays table statistics for all partitions, the output is more informative if you have run the COMPUTE STATS statement after creating all the partitions. See COMPUTE STATS Statement on page 164 for details. For example, on a CENSUS table partitioned on the YEAR column:

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new privilege for that object. See Enabling Sentry Authorization for Impala on page 89 for how to set up authorization and add privileges for specific kinds of objects.

Examples:

[localhos] > show p		
year		:		Format
2000 2004 2008 2010 2011 2012	-1 -1 -1 -1 4	0 0 0 0 1	0B 0B 0B 0B 22B 22B	TEXT TEXT TEXT TEXT TEXT TEXT TEXT

- [2013	1	1	231B	PARQUET
1	Total	9	3	275B	
1	+	+		_+	
- 1		1	'		
- 1					

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute permissions for all directories that are part of the table. (A table could span multiple different HDFS directories if it is partitioned. The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory based on its LOCATION attribute.) The Impala user must also have execute permission for the database directory, and any parent directories of the database directory in HDFS.

Related information:

See How Impala Uses Statistics for Query Optimization on page 349 for usage information and examples.

SHOW TABLE STATS Statement on page 240, Partitioning for Impala Tables on page 379

SHOW FUNCTIONS Statement

By default, show functions displays user-defined functions (UDFs) and show aggregate functions displays user-defined aggregate functions (UDAFs) associated with a particular database. The output from SHOW FUNCTIONS includes the argument signature of each function. You specify this argument signature as part of the DROP FUNCTION statement. You might have several UDFs with the same name, each accepting different argument data types.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new privilege for that object. See Enabling Sentry Authorization for Impala on page 89 for how to set up authorization and add privileges for specific kinds of objects.

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Examples:

To display Impala built-in functions, specify the special database name _impala_builtins:

```
show functions in _impala_builtins;
+----
return type | signature
+----
BOOLEAN ifnull(BOOLEAN, BOOLEAN)
TINYINT ifnull(TINYINT, TINYINT)
SMALLINT ifnull(SMALLINT, SMALLINT)
INT ifnull(INT, INT)
show functions in _impala_builtins like '*week*';
return type | signature
 INT weekofyear(TIMESTAMP)
TIMESTAMP weeks_add(TIMESTAMP, INT)
TIMESTAMP weeks_add(TIMESTAMP, BIGINT)
TIMESTAMP weeks_sub(TIMESTAMP, INT)
TIMESTAMP weeks_sub(TIMESTAMP, BIGINT)
INT dayofweek(TIMESTAMP)
```

To search for functions that use a particular data type, specify a case-sensitive data type name in all capitals:

```
show functions in _impala_builtins like '*BIGINT*';
name
 adddate(TIMESTAMP, BIGINT)
 bin(BIGINT)
coalesce(BIGINT...)
```

Related information:

Functions on page 150, Built-in Functions on page 246, Impala User-Defined Functions (UDFs) on page 295, SHOW DATABASES on page 238, SHOW TABLES Statement on page 239

USE Statement

Switches the current session to a specified database. The current database is where any CREATE TABLE, INSERT, SELECT, or other statements act when you specify a table or other object name, without prefixing it with a database name. The new current database applies for the duration of the session or until another USE statement is executed.

Syntax:

```
USE db_name
```

By default, when you connect to an Impala instance, you begin in a database named default.

Usage notes:

Switching the default database is convenient in the following situations:

- To avoid qualifying each reference to a table with the database name. For example, SELECT * FROM t1 JOIN t2 rather than SELECT * FROM db.t1 JOIN db.t2.
- To do a sequence of operations all within the same database, such as creating a table, inserting data, and querying the table.

To start the impala-shell interpreter and automatically issue a USE statement for a particular database, specify the option -d db_name for the impala-shell command. The -d option is useful to run SQL scripts, such as setup or test scripts, against multiple databases without hardcoding a USE statement into the SQL source.

Examples:

See <u>CREATE DATABASE Statement</u> on page 169 for examples covering CREATE DATABASE, USE, and DROP DATABASE.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch and HDFS files or directories, therefore no HDFS permissions are required.

Related information:

CREATE DATABASE Statement on page 169, DROP DATABASE Statement on page 186, SHOW DATABASES on page 238

Built-in Functions

Impala supports several categories of built-in functions. These functions let you perform mathematical calculations, string manipulation, date calculations, and other kinds of data transformations directly in SELECT statements. The built-in functions let a SQL query return results with all formatting, calculating, and type conversions applied, rather than performing time-consuming postprocessing in another application. By applying function calls where practical, you can make a SQL query that is as convenient as an expression in a procedural programming language or a formula in a spreadsheet.

The categories of functions supported by Impala are:

- Impala Mathematical Functions on page 248
- Impala Type Conversion Functions on page 256
- Impala Date and Time Functions on page 256
- Impala Conditional Functions on page 262
- Impala String Functions on page 265
- Aggregation functions, explained in <u>Impala Aggregate Functions</u> on page 271.

You call any of these functions through the ${ t select}$ statement. For most functions, you can omit the ${ t from}$ clause and supply literal values for any required arguments:

```
select abs(-1);
abs(-1)
+----
1
select concat('The rain ', 'in Spain');
concat('the rain ', 'in spain')
+----+
The rain in Spain
select power(2,5);
power(2, 5)
32
```

When you use a FROM clause and specify a column name as a function argument, the function is applied for each item in the result set:

```
select concat('Country = ',country_code) from all_countries where population > 100000000;
select round(price) as dollar_value from product_catalog where price between 0.0 and
```

Typically, if any argument to a built-in function is <code>NULL</code>, the result value is also <code>NULL</code>:

```
select cos(null);
cos(null)
NULL
select power(2,null);
| power(2, null) |
NULL
select concat('a',null,'b');
concat('a', null, 'b')
NULL
```

Aggregate functions are a special category with different rules. These functions calculate a return value across all the items in a result set, so they require a FROM clause in the query:

```
select count(product_id) from product_catalog;
select max(height), avg(height) from census_data where age > 20;
```

Aggregate functions also ignore NULL values rather than returning a NULL result. For example, if some rows have NULL for a particular column, those rows are ignored when computing the AVG() for that column. Likewise, specifying COUNT(Col_name) in a query counts only those rows where col_name contains a non-NULL value.

Aggregate functions are a special category with different rules. These functions calculate a return value across all the items in a result set, so they do require a FROM clause in the query:

```
select count(product_id) from product_catalog;
select max(height), avg(height) from census_data where age > 20;
```

Aggregate functions also ignore NULL values rather than returning a NULL result. For example, if some rows have NULL for a particular column, those rows are ignored when computing the AVG() for that column. Likewise, specifying COUNT(col_name) in a query counts only those rows where col_name contains a non-NULL value.

Analytic functions are a variation on aggregate functions. Instead of returning a single value, or an identical value for each group of rows, they can compute values that vary based on a "window" consisting of of other rows around them in the result set.

Impala Mathematical Functions

Mathematical functions, or arithmetic functions, perform numeric calculations that are typically more complex than basic addition, subtraction, multiplication, and division. For example, these functions include trigonometric, logarithmic, and base conversion operations.

Note: In Impala, exponentiation uses the pow() function rather than an exponentiation operator such as **.

Related information:

The mathematical functions operate mainly on these data types: <u>INT Data Type</u> on page 124, <u>BIGINT Data Type</u> on page 110, <u>SMALLINT Data Type</u> on page 125, <u>TINYINT Data Type</u> on page 130, <u>DOUBLE Data Type</u> on page 122, <u>FLOAT Data Type</u> on page 123, and <u>DECIMAL Data Type</u> (<u>CDH 5.1 or higher only</u>) on page 114. For the operators that perform the standard operations such as addition, subtraction, multiplication, and division, see <u>Arithmetic Operators</u> on page 137.

Function reference:

Impala supports the following mathematical functions:

```
abs(numeric_type a)
```

Purpose: Returns the absolute value of the argument.

Return type: Same as the input value

Usage notes: Use this function to ensure all return values are positive. This is different than the positive() function, which returns its argument unchanged (even if the argument was negative).

```
acos(double a)
```

Purpose: Returns the arccosine of the argument.

Return type: double

asin(double a)

Purpose: Returns the arcsine of the argument.

Return type: double

```
atan(double a)
      Purpose: Returns the arctangent of the argument.
      Return type: double
bin(bigint a)
      Purpose: Returns the binary representation of an integer value, that is, a string of 0 and 1 digits.
      Return type: string
ceil(double a), ceiling(double a), ceil(decimal(p,s) a), ceiling(decimal(p,s) a)
      Purpose: Returns the smallest integer that is greater than or equal to the argument.
      Return type: int or decimal (p,s) depending on the type of the input argument
conv(bigint num, int from_base, int to_base), conv(string num, int from_base, int to_base)
      Purpose: Returns a string representation of an integer value in a particular base. The input value can be
      a string, for example to convert a hexadecimal number such as fce2 to decimal. To use the return value
      as a number (for example, when converting to base 10), use CAST() to convert to the appropriate type.
      Return type: string
cos(double a)
      Purpose: Returns the cosine of the argument.
      Return type: double
degrees(double a)
      Purpose: Converts argument value from radians to degrees.
      Return type: double
e()
      Purpose: Returns the <u>mathematical constant e</u>.
      Return type: double
exp(double a)
      Purpose: Returns the <u>mathematical constant e</u> raised to the power of the argument.
      Return type: double
floor(double a)
      Purpose: Returns the largest integer that is less than or equal to the argument.
      Return type: bigint or decimal(p,s) depending on the type of the input argument
fmod(double a, double b), fmod(float a, float b)
      Purpose: Returns the modulus of a floating-point number. Equivalent to the % arithmetic operator.
      Return type: float or double, depending on type of arguments
      Added in: Impala 1.1.1
      Usage notes:
```

Because this function operates on DOUBLE or FLOAT values, it is subject to potential rounding errors for values that cannot be represented precisely. Prefer to use whole numbers, or values that you know can be represented precisely by the DOUBLE or FLOAT types.

Examples:

The following examples show equivalent operations with the fmod() function and the % arithmetic operator, for values not subject to any rounding error.

The following examples show operations with the fmod() function for values that cannot be represented precisely by the DOUBLE or FLOAT types, and thus are subject to rounding error. fmod(9.9,3.0) returns a value slightly different than the expected 0.9 because of rounding. fmod(9.9,3.3) returns a value quite different from the expected value of 0 because of rounding error during intermediate calculations.

fnv_hash(type v),

Purpose: Returns a consistent 64-bit value derived from the input argument, for convenience of implementing hashing logic in an application.

Return type: BIGINT

Usage notes:

You might use the return value in an application where you perform load balancing, bucketing, or some other technique to divide processing or storage.

Because the result can be any 64-bit value, to restrict the value to a particular range, you can use an expression that includes the ABS() function and the % (modulo) operator. For example, to produce a hash value in the range 0-9, you could use the expression $ABS(FNV_HASH(x))$ % 10.

This function implements the same algorithm that Impala uses internally for hashing, on systems where the CRC32 instructions are not available.

This function implements the Fowler-Noll-Vo hash function, in particular the FNV-1a variation. This is not a perfect hash function: some combinations of values could produce the same result value. It is not suitable for cryptographic use.

Similar input values of different types could produce different hash values, for example the same numeric value represented as SMALLINT or BIGINT, FLOAT or DOUBLE, or DECIMAL(5,2) or DECIMAL(20,5).

Examples:

```
[localhost:21000] > create table h (x int, s string);
[localhost:21000] > insert into h values (0, 'hello'), (1,'world'),
(1234567890, 'antidisestablishmentarianism');
[localhost:21000] > select x, fnv_hash(x) from h;
x fnv_hash(x)
 [localhost:21000] > select s, fnv_hash(s) from h;
                             fnv_hash(s)
hello 6414202926103426347
world 6535280128821139475
antidisestablishmentarianism -209330013948433970
hello
[localhost:21000] > select s, abs(fnv_hash(s)) % 10 from h;
                              abs(fnv_hash(s)) % 10.0
hello
 world
antidisestablishmentarianism 4
```

For short argument values, the high-order bits of the result have relatively low entropy:

```
[localhost:21000] > create table b (x boolean);
[localhost:21000] > insert into b values (true), (true), (false), (false);
[localhost:21000] > select x, fnv_hash(x) from b;
        fnv_hash(x)
true 2062020650953872396
true 2062020650953872396
false 2062021750465500607
false 2062021750465500607
```

Added in: Impala 1.2.2

greatest(bigint a[, bigint b ...]),greatest(double a[, double b ...]),greatest(decimal(p,s) a[, decimal(p,s) b ...]), greatest(string a[, string b ...]), greatest(timestamp a[, timestamp b ...])

Purpose: Returns the largest value from a list of expressions.

Return type: same as the initial argument value, except that integer values are promoted to BIGINT and floating-point values are promoted to DOUBLE; use CAST() when inserting into a smaller numeric column

```
hex(bigint a), hex(string a)
```

Purpose: Returns the hexadecimal representation of an integer value, or of the characters in a string.

Return type: string

```
is_inf(double a),
```

Purpose: Tests whether a value is equal to the special value "inf", signifying infinity.

Return type: boolean

Usage notes:

Infinity and NaN can be specified in text data files as inf and nan respectively, and Impala interprets them as these special values. They can also be produced by certain arithmetic expressions; for example, pow(-1, 0.5) returns infinity and 1/0 returns NaN. Or you can cast the literal values, such as CAST('nan' AS DOUBLE) or CAST('inf' AS DOUBLE).

```
is_nan(double a),
```

Purpose: Tests whether a value is equal to the special value "NaN", signifying "not a number".

Return type: boolean

Usage notes:

Infinity and NaN can be specified in text data files as inf and nan respectively, and Impala interprets them as these special values. They can also be produced by certain arithmetic expressions; for example, pow(-1, 0.5) returns infinity and 1/0 returns NaN. Or you can cast the literal values, such as CAST('nan' AS DOUBLE) or CAST('inf' AS DOUBLE).

```
least(bigint a[, bigint b ...]),least(double a[, double b ...]),least(decimal(p,s) a[,
decimal(p,s) b ...]),least(string a[, string b ...]),least(timestamp a[, timestamp b ...])
```

Purpose: Returns the smallest value from a list of expressions.

Return type: same as the initial argument value, except that integer values are promoted to BIGINT and floating-point values are promoted to DOUBLE; use CAST() when inserting into a smaller numeric column

ln(double a)

Purpose: Returns the <u>natural logarithm</u> of the argument.

Return type: double

log(double base, double a)

Purpose: Returns the logarithm of the second argument to the specified base.

Return type: double

log10(double a)

Purpose: Returns the logarithm of the argument to the base 10.

Return type: double

log2(double a)

Purpose: Returns the logarithm of the argument to the base 2.

Return type: double

```
max_int(), max_tinyint(), max_smallint(), max_bigint()
```

Purpose: Returns the largest value of the associated integral type.

Return type: The same as the integral type being checked.

Usage notes: Use the corresponding min_and max_functions to check if all values in a column are within the allowed range, before copying data or altering column definitions. If not, switch to the next higher integral type or to a DECIMAL with sufficient precision.

```
min_int(), min_tinyint(), min_smallint(), min_bigint()
```

Purpose: Returns the smallest value of the associated integral type (a negative number).

Return type: The same as the integral type being checked.

Usage notes: Use the corresponding min_and max_functions to check if all values in a column are within the allowed range, before copying data or altering column definitions. If not, switch to the next higher integral type or to a DECIMAL with sufficient precision.

negative(numeric_type a)

Purpose: Returns the argument with the sign reversed; returns a positive value if the argument was already negative.

Return type: Same as the input value

Usage notes: Use -abs(a) instead if you need to ensure all return values are negative.

pi()

Purpose: Returns the constant pi.

Return type: double

```
pmod(bigint a, bigint b), pmod(double a, double b)
```

Purpose: Returns the positive modulus of a number. Primarily for HiveQL compatibility.

Return type: int or double, depending on type of arguments

Examples:

The following examples show how the fmod() function sometimes returns a negative value depending on the sign of its arguments, and the pmod() function returns the same value as fmod(), but sometimes with the sign flipped.

```
select fmod(-5,2);
fmod(-5, 2)
-1
+----+
select pmod(-5,2);
| pmod(-5, 2) |
select fmod(-5, -2);
| fmod(-5, -2) |
select pmod(-5, -2);
| pmod(-5, -2) |
| -1
select fmod(5,-2);
\mid fmod(5, -2) \mid
1
select pmod(5,-2);
pmod(5, -2)
-1
```

positive(numeric_type a)

Purpose: Returns the original argument unchanged (even if the argument is negative).

Return type: Same as the input value

Usage notes: Use abs() instead if you need to ensure all return values are positive.

```
pow(double a, double p), power(double a, double p)
```

Purpose: Returns the first argument raised to the power of the second argument.

Return type: double

precision(numeric_expression)

Purpose: Computes the precision (number of decimal digits) needed to represent the type of the argument expression as a DECIMAL value.

Usage notes:

Typically used in combination with the scale() function, to determine the appropriate DECIMAL(precision, scale) type to declare in a CREATE TABLE statement or CAST() function.

Return type: int

Examples:

The following examples demonstrate how to check the precision and scale of numeric literals or other numeric expressions. Impala represents numeric literals in the smallest appropriate type. 5 is a TINYINT value, which ranges from -128 to 127, therefore 3 decimal digits are needed to represent the entire range, and because it is an integer value there are no fractional digits. 1.333 is interpreted as a DECIMAL value, with 4 digits total and 3 digits after the decimal point.

quotient(int numerator, int denominator)

Purpose: Returns the first argument divided by the second argument, discarding any fractional part. Avoids promoting arguments to DOUBLE as happens with the / SQL operator.

Return type: int

radians(double a)

Purpose: Converts argument value from degrees to radians.

Return type: double

rand(), rand(int seed)

Purpose: Returns a random value between 0 and 1. After rand() is called with a seed argument, it produces a consistent random sequence based on the seed value.

Return type: double

Usage notes: Currently, the random sequence is reset after each query, and multiple calls to rand() within the same query return the same value each time. For different number sequences that are different

for each guery, pass a unique seed value to each call to rand(). For example, select rand(unix_timestamp()) from ...

```
round(double a), round(double a, int d), round(decimal a, int type d)
```

Purpose: Rounds a floating-point value. By default (with a single argument), rounds to the nearest integer. Values ending in .5 are rounded up for positive numbers, down for negative numbers (that is, away from zero). The optional second argument specifies how many digits to leave after the decimal point; values greater than zero produce a floating-point return value rounded to the requested number of digits to the right of the decimal point.

Return type: bigint for single float argument. double for double argument when second argument greater than zero. For DECIMAL values, the smallest DECIMAL (p,s) type with appropriate precision and scale.

scale(numeric_expression)

Purpose: Computes the scale (number of decimal digits to the right of the decimal point) needed to represent the type of the argument expression as a DECIMAL value.

Usage notes:

Typically used in combination with the precision() function, to determine the appropriate DECIMAL(precision, scale) type to declare in a CREATE TABLE statement or CAST() function.

Return type: int

Examples:

The following examples demonstrate how to check the precision and scale of numeric literals or other numeric expressions. Impala represents numeric literals in the smallest appropriate type. 5 is a TINYINT value, which ranges from -128 to 127, therefore 3 decimal digits are needed to represent the entire range, and because it is an integer value there are no fractional digits. 1.333 is interpreted as a DECIMAL value, with 4 digits total and 3 digits after the decimal point.

```
[localhost:21000] > select precision(5), scale(5);
| precision(5) | scale(5) |
               0
[localhost:21000] > select precision(1.333), scale(1.333);
| precision(1.333) | scale(1.333) |
                   3
[localhost:21000] > with t1 as
( select cast(12.34 as decimal(20,2)) x union select cast(1 as decimal(8,6)) x
 select precision(x), scale(x) from t1 limit 1;
| precision(x) | scale(x) |
```

sign(double a)

Purpose: Returns -1, 0, or 1 to indicate the signedness of the argument value.

Return type: int

sin(double a)

Purpose: Returns the sine of the argument.

Return type: double

```
sqrt(double a)
    Purpose: Returns the square root of the argument.
    Return type: double
tan(double a)
    Purpose: Returns the tangent of the argument.
    Return type: double
unhex(string a)
```

Purpose: Returns a string of characters with ASCII values corresponding to pairs of hexadecimal digits in the argument.

Return type: string

Impala Type Conversion Functions

Impala supports the following type conversion functions:

cast(expr as type)

Conversion functions are usually used in combination with other functions, to explicitly pass the expected data types. Impala has strict rules regarding data types for function parameters. For example, Impala does not automatically convert a DOUBLE value to FLOAT, a BIGINT value to INT, or other conversion where precision could be lost or overflow could occur. Use CAST when passing a column value or literal to a function that expects a parameter with a different type. For example:

```
select concat('Here are the first ',10,' results.'); -- Fails select concat('Here are the first ',cast(10 as string),' results.'); -- Succeeds
```

Impala Date and Time Functions

The underlying Impala data type for date and time data is **TIMESTAMP**, which has both a date and a time portion. Functions that extract a single field, such as hour() or minute(), typically return an integer value. Functions that format the date portion, such as date_add() or to_date(), typically return a string value.

You can also adjust a TIMESTAMP value by adding or subtracting an INTERVAL expression. See <u>TIMESTAMP Data Type</u> on page 128 for details. INTERVAL expressions are also allowed as the second argument for the date_add() and date_sub() functions, rather than integers.

Impala supports the following data and time functions:

```
add_months(timestamp date, int months),add_months(timestamp date, bigint months)
```

Purpose: Returns the specified date and time plus some number of months.

Return type: timestamp

Usage notes:

Same as months_add(). Available in Impala 1.4 and higher. For compatibility when porting code with vendor extensions.

```
adddate(timestamp startdate, int days),adddate(timestamp startdate, bigint days),
```

Purpose: Adds a specified number of days to a TIMESTAMP value. Similar to date_add(), but starts with an actual TIMESTAMP value instead of a string that is converted to a TIMESTAMP.

Return type: timestamp

```
current_timestamp()
```

Purpose: Alias for the now() function.

Return type: timestamp

date_add(timestamp startdate, int days),date_add(timestamp startdate, interval_expression)

Purpose: Adds a specified number of days to a TIMESTAMP value. The first argument can be a string, which is automatically cast to TIMESTAMP if it uses the recognized format, as described in TIMESTAMP Data Type on page 128. With an INTERVAL expression as the second argument, you can calculate a delta value using other units such as weeks, years, hours, seconds, and so on; see <u>TIMESTAMP Data Type</u> on page 128 for details.

Return type: timestamp

date_part(string, timestamp)

Purpose: Similar to EXTRACT(), with the argument order reversed. Supports the same date and time units as EXTRACT(). For compatibility with SQL code containing vendor extensions.

Return type: int

date sub(timestamp startdate, int days),date sub(timestamp startdate, interval expression)

Purpose: Subtracts a specified number of days from a TIMESTAMP value. The first argument can be a string, which is automatically cast to TIMESTAMP if it uses the recognized format, as described in TIMESTAMP Data Type on page 128. With an INTERVAL expression as the second argument, you can calculate a delta value using other units such as weeks, years, hours, seconds, and so on; see TIMESTAMP Data Type on page 128 for details.

Return type: timestamp

datediff(string enddate, string startdate)

Purpose: Returns the number of days between two dates represented as strings.

Return type: int

day(string date), dayofmonth(string date)

Purpose: Returns the day field from a date represented as a string.

Return type: int

dayname(string date)

Purpose: Returns the day field from a date represented as a string, converted to the string corresponding to that day name. The range of return values is 'Sunday' to 'Saturday'. Used in report-generating queries, as an alternative to calling <code>dayofweek()</code> and turning that numeric return value into a string using a CASE expression.

Return type: string

dayofweek(string date)

Purpose: Returns the day field from a date represented as a string, corresponding to the day of the week. The range of return values is 1 (Sunday) to 7 (Saturday).

Return type: int

dayofyear(timestamp date)

Purpose: Returns the day field from a TIMESTAMP value, corresponding to the day of the year. The range of return values is 1 (January 1) to 366 (December 31 of a leap year).

Return type: int

days_add(timestamp startdate, int days),days_add(timestamp startdate, bigint days)

Purpose: Adds a specified number of days to a TIMESTAMP value. Similar to date_add(), but starts with an actual TIMESTAMP value instead of a string that is converted to a TIMESTAMP.

Return type: timestamp

days_sub(timestamp startdate, int days),days_sub(timestamp startdate, bigint days)

Purpose: Subtracts a specified number of days from a TIMESTAMP value. Similar to date_sub(), but starts with an actual TIMESTAMP value instead of a string that is converted to a TIMESTAMP.

Return type: timestamp

extract(timestamp, string unit)extract(unit FROM timestamp)

Purpose: Returns one of the numeric date or time fields from a TIMESTAMP value.

Unit argument: The unit string can be one of year, month, day, hour, minute, second, or millisecond. This argument value is case-insensitive.

In Impala 2.0 and higher, you can use special syntax rather than a regular function call, for compatibility with code that uses the SQL-99 format with the FROM keyword. With this style, the unit names are identifiers rather than STRING literals. For example, the following calls are both equivalent:

```
extract(year from now());
extract(now(), "year");
```

Usage notes:

Typically used in GROUP BY queries to arrange results by hour, day, month, and so on. You can also use this function in an INSERT ... SELECT into a partitioned table to split up TIMESTAMP values into individual parts, if the partitioned table has separate partition key columns representing year, month, day, and so on. If you need to divide by more complex units of time, such as by week or by quarter, use the TRUNC() function instead.

Return type: int

from_unixtime(bigint unixtime[, string format])

Purpose: Converts the number of seconds from the Unix epoch to the specified time into a string in the local time zone.

Return type: string

Usage notes:

The format string accepts the variations allowed for the TIMESTAMP data type: date plus time, date by itself, time by itself, and optional fractional seconds for the time. See <u>TIMESTAMP Data Type</u> on page 128 for details.

Currently, the format string is case-sensitive, especially to distinguish m for minutes and m for months. In Impala 1.3 and later, you can switch the order of elements, use alternative separator characters, and use a different number of placeholders for each unit. Adding more instances of y, d, H, and so on produces output strings zero-padded to the requested number of characters. The exception is m for months, where m produces a non-padded value such as 3, MM produces a zero-padded value such as 03, MMM produces an abbreviated month name such as Mar, and sequences of 4 or more m are not allowed. A date string including all fields could be "yyyyy-MM-dd HH:mm:ss.SSSSSS", "dd/MM/yyyy HH:mm:ss.SSSSSS", "MMM dd, yyyy HH:mm:ss.SSSSSS", "or other combinations of placeholders and separator characters.

• Note: The more flexible format strings allowed with the built-in functions do not change the rules about using CAST() to convert from a string to a TIMESTAMP value. Strings being casted must still have the elements in the specified order and use the specified delimiter characters, as described in TIMESTAMP Data Type on page 128.

Examples:

```
[localhost:21000] > select from unixtime(1392394861, "yyyy-MM-dd");
from_unixtime(1392394861, 'yyyy-mm-dd')
2014-02-14
[localhost:21000] > select from unixtime(1392394861,"HH:mm:ss.SSSS");
from_unixtime(1392394861, 'hh:mm:ss.sss')
               _____
16:21:01.0000
[localhost:21000] > select from unixtime(1392394861, "HH:mm:ss");
from_unixtime(1392394861, 'hh:mm:ss')
16:21:01
```

unix_timestamp() and from_unixtime() are often used in combination to convert a TIMESTAMP value into a particular string format. For example:

```
select from_unixtime(unix_timestamp(now() + interval 3 days), 'yyyy/MM/dd HH:mm');
```

from_utc_timestamp(timestamp, string timezone)

Purpose: Converts a specified UTC timestamp value into the appropriate value for a specified time zone.

Return type: timestamp

Usage notes: Often used to translate UTC time zone data stored in a table back to the local date and time for reporting. The opposite of the to_utc_timestamp() function.

Examples: See discussion of time zones in <u>TIMESTAMP Data Type</u> on page 128.

hour(string date)

Purpose: Returns the hour field from a date represented as a string.

Return type: int

hours add(timestamp date, int hours), hours add(timestamp date, bigint hours)

Purpose: Returns the specified date and time plus some number of hours.

Return type: timestamp

hours_sub(timestamp date, int hours), hours_sub(timestamp date, bigint hours)

Purpose: Returns the specified date and time minus some number of hours.

Return type: timestamp

microseconds_add(timestamp date, int microseconds), microseconds_add(timestamp date, bigint microseconds)

Purpose: Returns the specified date and time plus some number of microseconds.

Return type: timestamp

microseconds_sub(timestamp date, int microseconds),microseconds_sub(timestamp date, bigint microseconds)

Purpose: Returns the specified date and time minus some number of microseconds.

Return type: timestamp

milliseconds_add(timestamp date, int milliseconds),milliseconds_add(timestamp date, bigint milliseconds)

Purpose: Returns the specified date and time plus some number of milliseconds.

```
Return type: timestamp
milliseconds_sub(timestamp date, int milliseconds),milliseconds_sub(timestamp date, bigint
milliseconds)
      Purpose: Returns the specified date and time minus some number of milliseconds.
      Return type: timestamp
minute(string date)
      Purpose: Returns the minute field from a date represented as a string.
      Return type: int
minutes_add(timestamp date, int minutes), minutes_add(timestamp date, bigint minutes)
      Purpose: Returns the specified date and time plus some number of minutes.
      Return type: timestamp
minutes_sub(timestamp date, int minutes), minutes_sub(timestamp date, bigint minutes)
      Purpose: Returns the specified date and time minus some number of minutes.
      Return type: timestamp
month(string date)
      Purpose: Returns the month field from a date represented as a string.
      Return type: int
months_add(timestamp date, int months),months_add(timestamp date, bigint months)
      Purpose: Returns the specified date and time plus some number of months.
      Return type: timestamp
months sub(timestamp date, int months), months sub(timestamp date, bigint months)
      Purpose: Returns the specified date and time minus some number of months.
      Return type: timestamp
nanoseconds_add(timestamp date, int nanoseconds), nanoseconds_add(timestamp date, bigint
nanoseconds)
      Purpose: Returns the specified date and time plus some number of nanoseconds.
      Return type: timestamp
nanoseconds_sub(timestamp date, int nanoseconds), nanoseconds_sub(timestamp date, bigint
nanoseconds)
      Purpose: Returns the specified date and time minus some number of nanoseconds.
      Return type: timestamp
now()
      Purpose: Returns the current date and time (in the local time zone) as a timestamp value.
      Return type: timestamp
      Usage notes:
      To find a date/time value in the future or the past relative to the current date and time, add or subtract
      an INTERVAL expression to the return value of now(). See <u>TIMESTAMP Data Type</u> on page 128 for examples.
second(string date)
      Purpose: Returns the second field from a date represented as a string.
```

Return type: int

seconds_add(timestamp date, int seconds), seconds_add(timestamp date, bigint seconds)

Purpose: Returns the specified date and time plus some number of seconds.

Return type: timestamp

seconds_sub(timestamp date, int seconds), seconds_sub(timestamp date, bigint seconds)

Purpose: Returns the specified date and time minus some number of seconds.

Return type: timestamp

subdate(timestamp startdate, int days), subdate(timestamp startdate, bigint days),

Purpose: Subtracts a specified number of days from a TIMESTAMP value. Similar to date_sub(), but starts with an actual TIMESTAMP value instead of a string that is converted to a TIMESTAMP.

Return type: timestamp

to_date(timestamp)

Purpose: Returns a string representation of the date field from a timestamp value.

Return type: string

to_utc_timestamp(timestamp, string timezone)

Purpose: Converts a specified timestamp value in a specified time zone into the corresponding value for the UTC time zone.

Return type: timestamp

Usage notes: Often used in combination with the now() function, to translate local date and time values to the UTC time zone for consistent representation on disk. The opposite of the from_utc_timestamp() function.

Examples: See discussion of time zones in TIMESTAMP Data Type on page 128.

trunc(timestamp, string unit)

Purpose: Strips off fields from a TIMESTAMP value.

Unit argument: The unit argument value is case-sensitive. This argument string can be one of:

- SYYYY, YYYY, YEAR, SYEAR, YYY, YY, Y: Year.
- Q: Quarter.
- MONTH, MON, MM, RM: Month.
- ww, w: Same day of the week as the first day of the month.
- DDD, DD, J: Day of the month.
- DAY, DY, D: Starting day of the week.
- HH, HH12, HH24: Hour. A TIMESTAMP value truncated to the hour is always represented in 24-hour notation, even for the HH12 argument string.
- MI: Minute.

Usage notes:

Typically used in GROUP BY queries to aggregate results from the same hour, day, week, month, quarter, and so on. You can also use this function in an INSERT ... SELECT into a partitioned table to divide TIMESTAMP values into the correct partition.

Because the return value is a TIMESTAMP, if you cast the result of TRUNC() to STRING, you will often see zeroed-out portions such as 00:00:00 in the time field. If you only need the individual units such as hour, day, month, or year, use the EXTRACT() function instead. If you need the individual units from a truncated TIMESTAMP value, run the TRUNCATE() function on the original value, then run EXTRACT() on the result.

Return type: timestamp

unix_timestamp(), unix_timestamp(string datetime), unix_timestamp(string datetime, string format), unix_timestamp(timestamp datetime)

Purpose: Returns an integer value representing the current date and time as a delta from the Unix epoch, or converts from a specified date and time value represented as a TIMESTAMP OR STRING.

Return type: int

Usage notes:

See from unixtime() for details about the patterns you can use in the format string to represent the position of year, month, day, and so on in the date string. In Impala 1.3 and higher, you have more flexibility to switch the positions of elements and use different separator characters.

unix_timestamp() and from_unixtime() are often used in combination to convert a TIMESTAMP value into a particular string format. For example:

```
select from_unixtime(unix_timestamp(now() + interval 3 days), 'yyyy/MM/dd HH:mm');
```

weekofyear(string date)

Purpose: Returns the corresponding week (1-53) from a date represented as a string.

Return type: int

weeks_add(timestamp date, int weeks), weeks_add(timestamp date, bigint weeks)

Purpose: Returns the specified date and time plus some number of weeks.

Return type: timestamp

weeks_sub(timestamp date, int weeks), weeks_sub(timestamp date, bigint weeks)

Purpose: Returns the specified date and time minus some number of weeks.

Return type: timestamp

year(string date)

Purpose: Returns the year field from a date represented as a string.

Return type: int

years_add(timestamp date, int years), years_add(timestamp date, bigint years)

Purpose: Returns the specified date and time plus some number of years.

Return type: timestamp

years_sub(timestamp date, int years), years_sub(timestamp date, bigint years)

Purpose: Returns the specified date and time minus some number of years.

Return type: timestamp

Impala Conditional Functions

Impala supports the following conditional functions for testing equality, comparison operators, and nullity:

```
CASE a WHEN b THEN c [WHEN d THEN e]... [ELSE f] END
```

Purpose: Compares an expression to one or more possible values, and returns a corresponding result when a match is found.

Return type: same as the initial argument value, except that integer values are promoted to BIGINT and floating-point values are promoted to DOUBLE; use CAST() when inserting into a smaller numeric column

Usage notes:

In this form of the CASE expression, the initial value A being evaluated for each row it typically a column reference, or an expression involving a column. This form can only compare against a set of specified values, not ranges, multi-value comparisons such as BETWEEN or IN, regular expressions, or NULL.

Examples:

Although this example is split across multiple lines, you can put any or all parts of a CASE expression on a single line, with no punctuation or other separators between the WHEN, ELSE, and END clauses.

```
select case x
   when 1 then 'one'
   when 2 then 'two'
   when 0 then 'zero'
   else 'out of range'
   from t1;
```

```
CASE WHEN a THEN b [WHEN c THEN d]... [ELSE e] END
```

Purpose: Tests whether any of a sequence of expressions is true, and returns a corresponding result for the first true expression.

Return type: same as the initial argument value, except that integer values are promoted to BIGINT and floating-point values are promoted to DOUBLE; use CAST() when inserting into a smaller numeric column

Usage notes:

CASE expressions without an initial test value have more flexibility. For example, they can test different columns in different when clauses, or use comparison operators such as BETWEEN, IN and IS NULL rather than comparing against discrete values.

CASE expressions are often the foundation of long queries that summarize and format results for easy-to-read reports. For example, you might use a CASE function call to turn values from a numeric column into category strings corresponding to integer values, or labels such as "Small", "Medium" and "Large" based on ranges. Then subsequent parts of the query might aggregate based on the transformed values, such as how many values are classified as small, medium, or large. You can also use CASE to signal problems with out-of-bounds values, NULL values, and so on.

By using operators such as OR, IN, REGEXP, and so on in CASE expressions, you can build extensive tests and transformations into a single query. Therefore, applications that construct SQL statements often rely heavily on CASE calls in the generated SQL code.

Because this flexible form of the CASE expressions allows you to perform many comparisons and call multiple functions when evaluating each row, be careful applying elaborate CASE expressions to queries that process large amounts of data. For example, when practical, evaluate and transform values through CASE after applying operations such as aggregations that reduce the size of the result set; transform numbers to strings after performing joins with the original numeric values.

Examples:

Although this example is split across multiple lines, you can put any or all parts of a CASE expression on a single line, with no punctuation or other separators between the WHEN, ELSE, and END clauses.

```
select case
   when dayname(now()) in ('Saturday', 'Sunday') then 'result undefined on
weekends'
   when x > y then 'x greater than y'
   when x = y then 'x and y are equal'
   when x is null or y is null then 'one of the columns is null'
   else null
   from t1;
```

```
coalesce(type v1, type v2, ...)
```

Purpose: Returns the first specified argument that is not NULL, or NULL if all arguments are NULL.

Return type: same as the initial argument value, except that integer values are promoted to BIGINT and floating-point values are promoted to DOUBLE; use CAST() when inserting into a smaller numeric column

decode(type expression, type search1, type result1 [, type search2, type result2 ...] [,
type default])

Purpose: Compares an expression to one or more possible values, and returns a corresponding result when a match is found.

Return type: same as the initial argument value, except that integer values are promoted to BIGINT and floating-point values are promoted to DOUBLE; use CAST() when inserting into a smaller numeric column

Usage notes:

Can be used as shorthand for a CASE expression.

The original expression and the search expressions must of the same type or convertible types. The result expression can be a different type, but all result expressions must be of the same type.

Returns a successful match If the original expression is NULL and a search expression is also NULL. the

Returns NULL if the final default value is omitted and none of the search expressions match the original expression.

Examples:

The following example translates numeric day values into descriptive names:

```
SELECT event, decode(day_of_week, 1, "Monday", 2, "Tuesday", 3, "Wednesday", 4, "Thursday", 5, "Friday", 6, "Saturday", 7, "Sunday", "Unknown day")
FROM calendar;
```

if(boolean condition, type ifTrue, type ifFalseOrNull)

Purpose: Tests an expression and returns a corresponding result depending on whether the result is true, false, or NULL.

Return type: Same as the ifTrue argument value

```
ifnull(type a, type ifNotNull)
```

Purpose: Alias for the isnull() function, with the same behavior. To simplify porting SQL with vendor extensions to Impala.

Added in: Impala 1.3.0

```
isnull(type a, type ifNotNull)
```

Purpose: Tests if an expression is NULL, and returns the expression result value if not. If the first argument is NULL, returns the second argument.

Compatibility notes: Equivalent to the nvl() function from Oracle Database or ifnull() from MySQL. The nvl() and ifnull() functions are also available in Impala.

Return type: Same as the first argument value

```
nullif(expr1,expr2)
```

Purpose: Returns NULL if the two specified arguments are equal. If the specified arguments are not equal, returns the value of *expr1*. The data types of the expressions must be compatible, according to the conversion rules from Data Types on page 109. You cannot use an expression that evaluates to NULL for *expr1*; that way, you can distinguish a return value of NULL from an argument value of NULL, which would never match *expr2*.

Usage notes: This function is effectively shorthand for a CASE expression of the form:

```
CASE
 WHEN expr1 = expr2 THEN NULL
 ELSE expr1
END
```

It is commonly used in division expressions, to produce a NULL result instead of a divide-by-zero error when the divisor is equal to zero:

```
select 1.0 / nullif(c1,0) as reciprocal from t1;
```

You might also use it for compatibility with other database systems that support the same <code>NULLIF()</code> function.

Return type: same as the initial argument value, except that integer values are promoted to BIGINT and floating-point values are promoted to DOUBLE; use CAST () when inserting into a smaller numeric column

Added in: Impala 1.3.0

nullifzero(numeric expr)

Purpose: Returns NULL if the numeric expression evaluates to 0, otherwise returns the result of the expression.

Usage notes: Used to avoid error conditions such as divide-by-zero in numeric calculations. Serves as shorthand for a more elaborate CASE expression, to simplify porting SQL with vendor extensions to Impala.

Return type: same as the initial argument value, except that integer values are promoted to BIGINT and floating-point values are promoted to DOUBLE; use CAST() when inserting into a smaller numeric column

Added in: Impala 1.3.0

nvl(type a, type ifNotNull)

Purpose: Alias for the isnull() function. Tests if an expression is NULL, and returns the expression result value if not. If the first argument is NULL, returns the second argument. Equivalent to the nvl() function from Oracle Database or ifnull() from MySQL.

Return type: Same as the first argument value

Added in: Impala 1.1

zeroifnull(numeric_expr)

Purpose: Returns 0 if the numeric expression evaluates to NULL, otherwise returns the result of the expression.

Usage notes: Used to avoid unexpected results due to unexpected propagation of NULL values in numeric calculations. Serves as shorthand for a more elaborate CASE expression, to simplify porting SQL with vendor extensions to Impala.

Return type: same as the initial argument value, except that integer values are promoted to BIGINT and floating-point values are promoted to DOUBLE; use CAST () when inserting into a smaller numeric column

Added in: Impala 1.3.0

Impala String Functions

String functions are classified as those primarily accepting or returning STRING, VARCHAR, or CHAR data types, for example to measure the length of a string or concatenate two strings together.

 All the functions that accept STRING arguments also accept the VARCHAR and CHAR types introduced in Impala 2.0.

Whenever VARCHAR or CHAR values are passed to a function that returns a string value, the return type is normalized to STRING. For example, a call to concat() with a mix of STRING, VARCHAR, and CHAR arguments produces a STRING result.

Related information:

The string functions operate mainly on these data types: <u>STRING Data Type</u> on page 126, <u>VARCHAR Data Type</u> (<u>CDH 5.2 or higher only</u>) on page 131, and <u>CHAR Data Type</u> (<u>CDH 5.2 or higher only</u>) on page 112.

Function reference:

Impala supports the following string functions:

```
ascii(string str)
```

Purpose: Returns the numeric ASCII code of the first character of the argument.

Return type: int

```
char_length(string a), character_length(string a)
```

Purpose: Returns the length in characters of the argument string. Aliases for the length() function.

Return type: int

```
concat(string a, string b...)
```

Purpose: Returns a single string representing all the argument values joined together.

Return type: string

Usage notes: concat() and concat_ws() are appropriate for concatenating the values of multiple columns within the same row, while group_concat() joins together values from different rows.

```
concat_ws(string sep, string a, string b...)
```

Purpose: Returns a single string representing the second and following argument values joined together, delimited by a specified separator.

Return type: string

Usage notes: concat() and concat_ws() are appropriate for concatenating the values of multiple columns within the same row, while group_concat() joins together values from different rows.

```
find_in_set(string str, string strList)
```

Purpose: Returns the position (starting from 1) of the first occurrence of a specified string within a comma-separated string. Returns NULL if either argument is NULL, 0 if the search string is not found, or 0 if the search string contains a comma.

Return type: int

```
group_concat(string s [, string sep])
```

Purpose: Returns a single string representing the argument value concatenated together for each row of the result set. If the optional separator string is specified, the separator is added between each pair of concatenated values.

Return type: string

Usage notes: concat() and concat_ws() are appropriate for concatenating the values of multiple columns within the same row, while group_concat() joins together values from different rows.

By default, returns a single string covering the whole result set. To include other columns or values in the result set, or to produce multiple concatenated strings for subsets of rows, include a GROUP BY clause in the query.

```
initcap(string str)
```

Purpose: Returns the input string with the first letter capitalized.

Return type: string

instr(string str, string substr)

Purpose: Returns the position (starting from 1) of the first occurrence of a substring within a longer string.

Return type: int

length(string a)

Purpose: Returns the length in characters of the argument string.

Return type: int

locate(string substr, string str[, int pos])

Purpose: Returns the position (starting from 1) of the first occurrence of a substring within a longer string, optionally after a particular position.

Return type: int

lower(string a), lcase(string a)

Purpose: Returns the argument string converted to all-lowercase.

Return type: string

lpad(string str, int len, string pad)

Purpose: Returns a string of a specified length, based on the first argument string. If the specified string is too short, it is padded on the left with a repeating sequence of the characters from the pad string. If the specified string is too long, it is truncated on the right.

Return type: string

ltrim(string a)

Purpose: Returns the argument string with any leading spaces removed from the left side.

Return type: string

parse url(string urlString, string partToExtract [, string keyToExtract])

Purpose: Returns the portion of a URL corresponding to a specified part. The part argument can be 'PROTOCOL', 'HOST', 'PATH', 'REF', 'AUTHORITY', 'FILE', 'USERINFO', OR 'QUERY'. Uppercase is required for these literal values. When requesting the QUERY portion of the URL, you can optionally specify a key to retrieve just the associated value from the key-value pairs in the query string.

Return type: string

Usage notes: This function is important for the traditional Hadoop use case of interpreting web logs. For example, if the web traffic data features raw URLs not divided into separate table columns, you can count visitors to a particular page by extracting the 'PATH' or 'FILE' field, or analyze search terms by extracting the corresponding key from the 'QUERY' field.

regexp_extract(string subject, string pattern, int index)

Purpose: Returns the specified () group from a string based on a regular expression pattern. Group 0 refers to the entire extracted string, while group 1, 2, and so on refers to the first, second, and so on (. . .) portion.

Return type: string

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from regular expressions in Perl, Python, and so on, including . *? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression patterns if necessary. See Incompatible Changes Introduced in Cloudera Impala 2.0.0 / CDH 5.2.0 on page 470 for details.

Because the impala-shell interpreter uses the \ character for escaping, use \ \ to represent the regular expression escape character in any regular expressions that you submit through impala-shell. You might prefer to use the equivalent character class names, such as [[:digit:]] instead of \d which you would have to escape as \\d.

Examples:

This example shows how group 0 matches the full pattern string, including the portion outside any () group:

```
[localhost:21000] > select regexp_extract('abcdef123ghi456jkl','.*?(\\d+)',0);

+-------+
| regexp_extract('abcdef123ghi456jkl', '.*?(\\d+)', 0) |

+-----+
| abcdef123ghi456
| +-----+
| Returned 1 row(s) in 0.11s
```

This example shows how group 1 matches just the contents inside the first () group in the pattern string:

Unlike in earlier Impala releases, the regular expression library used in Impala 2.0 and later supports the .*? idiom for non-greedy matches. This example shows how a pattern string starting with .*? matches the shortest possible portion of the source string, returning the rightmost set of lowercase letters. A pattern string both starting and ending with .*? finds two potential matches of equal length, and returns the first one found (the leftmost set of lowercase letters).

regexp_replace(string initial, string pattern, string replacement)

Purpose: Returns the initial argument with the regular expression pattern replaced by the final argument string.

Return type: string

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from regular expressions in Perl, Python, and so on, including . *? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression patterns if necessary. See Incompatible Changes Introduced in Cloudera Impala 2.0.0 / CDH 5.2.0 on page 470 for details.

Because the impala-shell interpreter uses the $\$ character for escaping, use $\$ to represent the regular expression escape character in any regular expressions that you submit through impala-shell. You

might prefer to use the equivalent character class names, such as [[:digit:]] instead of \d which you would have to escape as \\d.

Examples:

These examples show how you can replace parts of a string matching a pattern with replacement text, which can include backreferences to any () groups in the pattern string. The backreference numbers start at 1, and any \ characters must be escaped as \\.

Replace a character pattern with new text:

```
_____
[localhost:21000] > select regexp_replace('aaabbbaaa','b+','xyz');
regexp_replace('aaabbbaaa', 'b+', 'xyz')
      -----+
aaaxyzaaa
Returned 1 row(s) in 0.11s
```

Replace a character pattern with substitution text that includes the original matching text:

```
[localhost:21000] > select regexp_replace('aaabbbaaa','(b+)','<\\1>');
regexp_replace('aaabbbaaa', '(b+)', '<\\1>')
aaa<bbb>aaa
Returned 1 row(s) in 0.11s
```

Remove all characters that are not digits:

```
[localhost:21000] > select regexp_replace('123-456-789','[^[:digit:]]','');
| regexp_replace('123-456-789', '[^[:digit:]]', '') |
123456789
Returned 1 row(s) in 0.12s
```

```
repeat(string str, int n)
```

Purpose: Returns the argument string repeated a specified number of times.

Return type: string

```
reverse(string a)
```

Purpose: Returns the argument string with characters in reversed order.

Return type: string

```
rpad(string str, int len, string pad)
```

Purpose: Returns a string of a specified length, based on the first argument string. If the specified string is too short, it is padded on the right with a repeating sequence of the characters from the pad string. If the specified string is too long, it is truncated on the right.

Return type: string

```
rtrim(string a)
```

Purpose: Returns the argument string with any trailing spaces removed from the right side.

Return type: string

```
space(int n)
```

Purpose: Returns a concatenated string of the specified number of spaces. Shorthand for repeat ('

Return type: string

```
strleft(string a, int num_chars)
      Purpose: Returns the leftmost characters of the string. Shorthand for a call to substr() with 2 arguments.
      Return type: string
strright(string a, int num_chars)
      Purpose: Returns the rightmost characters of the string. Shorthand for a call to substr() with 2
      arguments.
      Return type: string
substr(string a, int start [, int len]), substring(string a, int start [, int len])
      Purpose: Returns the portion of the string starting at a specified point, optionally with a specified maximum
      length. The characters in the string are indexed starting at 1.
      Return type: string
translate(string input, string from, string to)
      Purpose: Returns the input string with a set of characters replaced by another set of characters.
      Return type: string
trim(string a)
      Purpose: Returns the input string with both leading and trailing spaces removed. The same as passing
      the string through both ltrim() and rtrim().
      Return type: string
upper(string a), ucase(string a)
      Purpose: Returns the argument string converted to all-uppercase.
```

Impala Miscellaneous Functions

Return type: string

Impala supports the following utility functions that do not operate on a particular column or data type:

```
current_database()
```

Purpose: Returns the database that the session is currently using, either default if no database has been selected, or whatever database the session switched to through a USE statement or the impalad-d option.

Return type: string

pid()

Purpose: Returns the process ID of the impalad daemon that the session is connected to. You can use it during low-level debugging, to issue Linux commands that trace, show the arguments, and so on the impalad process.

Return type: int

user()

Purpose: Returns the username of the Linux user who is connected to the impalad daemon. Typically called a single time, in a query without any FROM clause, to understand how authorization settings apply in a security context; once you know the logged-in user name, you can check which groups that user belongs to, and from the list of groups you can check which roles are available to those groups through the authorization policy file.

In Impala 2.0 and later, user() returns the the full Kerberos principal string, such as user@example.com, in a Kerberized environment.

Return type: string

version()

Purpose: Returns information such as the precise version number and build date for the impalad daemon that you are currently connected to. Typically used to confirm that you are connected to the expected level of Impala to use a particular feature, or to connect to several nodes and confirm they are all running the same level of impalad.

Return type: string (with one or more embedded newlines)

Impala Aggregate Functions

Aggregate functions are a special category with different rules. These functions calculate a return value across all the items in a result set, so they require a FROM clause in the query:

```
select count(product_id) from product_catalog;
select max(height), avg(height) from census_data where age > 20;
```

Aggregate functions also ignore NULL values rather than returning a NULL result. For example, if some rows have NULL for a particular column, those rows are ignored when computing the AVG() for that column. Likewise, specifying COUNT(col_name) in a query counts only those rows where col_name contains a non-NULL value.

APPX_MEDIAN Function

An aggregate function that returns a value that is approximately the median (midpoint) of values in the set of input values.

Syntax:

```
APPX_MEDIAN([DISTINCT | ALL] expression)
```

This function works with any input type, because the only requirement is that the type supports less-than and greater-than comparison operators.

Usage notes:

Because the return value represents the estimated midpoint, it might not reflect the precise midpoint value, especially if the cardinality of the input values is very high. If the cardinality is low (up to approximately 20,000), the result is more accurate because the sampling considers all or almost all of the different values.

Return type: Same as the input value, except for CHAR and VARCHAR arguments which produce a STRING result

The return value is always the same as one of the input values, not an "in-between" value produced by averaging.

Restrictions:

The OVER() clause is not allowed at all with this function.

Examples:

The following example uses a table of a million random floating-point numbers ranging up to approximately 50,000. The average is approximately 25,000. Because of the random distribution, we would expect the median to be close to this same number. Computing the precise median is a more intensive operation than computing the average, because it requires keeping track of every distinct value and how many times each occurs. The APPX_MEDIAN() function uses a sampling algorithm to return an approximate result, which in this case is close to the expected value. To make sure that the value is not substantially out of range due to a skewed distribution, subsequent queries confirm that there are approximately 500,000 values higher than the APPX_MEDIAN() value, and approximately 500,000 values lower than the APPX_MEDIAN() value.

<pre>[localhost:21000] > select min(x), max(x), avg(x) from million_numbers;</pre>			
min(x)	max(x)	avg(x)	
4.725693727250069	49994.56852674231	24945.38563793553	
	+	++	

The following example computes the approximate median using a subset of the values from the table, and then confirms that the result is a reasonable estimate for the midpoint.

AVG Function

An aggregate function that returns the average value from a set of numbers or TIMESTAMP values. Its single argument can be numeric column, or the numeric result of a function or expression applied to the column value. Rows with a NULL value for the specified column are ignored. If the table is empty, or all the values supplied to AVG are NULL, AVG returns NULL.

Syntax:

```
AVG([DISTINCT | ALL] expression) [OVER (analytic_clause)]
```

When the query contains a GROUP BY clause, returns one value for each combination of grouping values.

Return type: DOUBLE for numeric values; TIMESTAMP for TIMESTAMP values

Examples:

```
-- Average all the non-NULL values in a column.
insert overwrite avg_t values (2),(4),(6),(null),(null);
-- The average of the above values is 4: (2+4+6) / 3. The 2 NULL values are ignored.
select avg(x) from avg_t;
-- Average only certain values from the column.
```

```
select avg(x) from t1 where month = 'January' and year = '2013';
-- Apply a calculation to the value of the column before averaging.
select avg(x/3) from t1;
-- Apply a function to the value of the column before averaging.
-- Here we are substituting a value of 0 for all NULLs in the column,
-- so that those rows do factor into the return value.
select avg(isnull(x,0)) from t1;
-- Apply some number-returning function to a string column and average the results.
-- If column s contains any NULLs, length(s) also returns NULL and those rows are
ignored.
select avg(length(s)) from t1;
-- Can also be used in combination with DISTINCT and/or GROUP BY.
-- Return more than one result.
select month, year, avg(page_visits) from web_stats group by month, year;
-- Filter the input to eliminate duplicates before performing the calculation.
select avg(distinct x) from t1;
-- Filter the output after performing the calculation.
select avg(x) from t1 group by y having avg(x) between 1 and 20;
```

The following example shows how to use AVG() in an analytic context. It uses a table containing integers from 1 to 10. Notice how the AVG() is reported for each input value, as opposed to the GROUP BY clause which condenses the result set.

```
select x, property, avg(x) over (partition by property) as avg from int_t where property
in ('odd','even');
x | property | avg |
 ---+----
 2 | even | 6
     even
even
                6
6
 4
 6 even
8 even
10 even
1 odd
                6
                6
5
                5
 3
     odd
                5
 5
     odd
 7
                 5
     odd
                5
     odd
```

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and distributed queries can perform these operations in different order for each query, results can vary slightly for aggregate function calls such as SUM() and AVG() for FLOAT and DOUBLE columns, particularly on large data sets where millions or billions of values are summed or averaged. For perfect consistency and repeatability, use the DECIMAL data type for such operations instead of FLOAT or DOUBLE.

Related information:

Impala Analytic Functions on page 282, MAX Function on page 276, MIN Function on page 277

COUNT Function

An aggregate function that returns the number of rows, or the number of non-NULL rows.

Syntax:

```
COUNT([DISTINCT | ALL] expression) [OVER (analytic_clause)]
```

Depending on the argument, COUNT() considers rows that meet certain conditions:

- The notation COUNT(*) includes NULL values in the total.
- The notation COUNT(column_name) only considers rows where the column contains a non-NULL value.
- You can also combine COUNT with the DISTINCT operator to eliminate duplicates before counting, and to count the combinations of values across multiple columns.

When the query contains a GROUP BY clause, returns one value for each combination of grouping values.

Return type: BIGINT

Examples:

```
-- How many rows total are in the table, regardless of NULL values?
select count(*) from t1;
-- How many rows are in the table with non-NULL values for a column?
select count(c1) from t1;
-- Count the rows that meet certain conditions.
-- Again, * includes NULLs, so COUNT(*) might be greater than COUNT(col).
select count(*) from t1 where x > 10;
select count(c1) from t1 where x > 10;
-- Can also be used in combination with DISTINCT and/or GROUP BY.
-- Combine COUNT and DISTINCT to find the number of unique values.
-- Must use column names rather than * with COUNT(DISTINCT ...) syntax.
-- Rows with NULL values are not counted.
select count(distinct c1) from t1;
-- Rows with a NULL value in _either_ column are not counted. select count(distinct c1, c2) from t1;
-- Return more than one result.
select month, year, count(distinct visitor_id) from web_stats group by month, year;
```

The following example shows how to use COUNT() in an analytic context. It uses a table containing integers from 1 to 10. Notice how the COUNT() is reported for each input value, as opposed to the GROUP BY clause which condenses the result set.

Related information:

Impala Analytic Functions on page 282

Note:

By default, Impala only allows a single COUNT(DISTINCT columns) expression in each query.

If you do not need precise accuracy, you can produce an estimate of the distinct values for a column by specifying NDV(column); a query can contain multiple instances of NDV(column). To make Impala automatically rewrite COUNT(DISTINCT) expressions to NDV(), enable the APPX_COUNT_DISTINCT query option.

To produce the same result as multiple COUNT(DISTINCT) expressions, you can use the following technique for queries involving a single table:

```
select v1.c1 result1, v2.c1 result2 from
  (select count(distinct col1) as c1 from t1) v1
    cross join
  (select count(distinct col2) as c1 from t1) v2;
```

Because CROSS JOIN is an expensive operation, prefer to use the NDV() technique wherever practical.

GROUP CONCAT Function

An aggregate function that returns a single string representing the argument value concatenated together for each row of the result set. If the optional separator string is specified, the separator is added between each pair of concatenated values. The default separator is a comma followed by a space.

Syntax:

```
GROUP_CONCAT([ALL] expression [, separator])
```

Usage notes: concat() and concat_ws() are appropriate for concatenating the values of multiple columns within the same row, while group_concat() joins together values from different rows.

By default, returns a single string covering the whole result set. To include other columns or values in the result set, or to produce multiple concatenated strings for subsets of rows, include a GROUP BY clause in the query.

Return type: STRING

Restrictions:

You cannot apply the DISTINCT operator to the argument of this function.

This function does not support the OVER clause, and so cannot be used as an analytic function.

Currently, Impala returns an error if the result value grows larger than 1 GiB.

Examples:

The following examples illustrate various aspects of the GROUP_CONCAT() function.

You can call the function directly on a STRING column. To use it with a numeric column, cast the value to STRING.

```
[localhost:21000] > create table t1 (x int, s string);
[localhost:21000] > insert into t1 values (1, "one"), (3, "three"), (2, "two"), (1,
"one");
[localhost:21000] > select group_concat(s) from t1;
group_concat(s)
one, three, two, one
[localhost:21000] > select group_concat(cast(x as string)) from t1;
group_concat(cast(x as string))
1, 3, 2, 1
```

The optional separator lets you format the result in flexible ways. The separator can be an arbitrary string expression, not just a single character.

```
[localhost:21000] > select group_concat(s,"|") from t1;
group_concat(s, '|')
one three two one
[localhost:21000] > select group_concat(s,'---') from t1;
group_concat(s, '---')
one---three---two---one
```

The default separator is a comma followed by a space. To get a comma-delimited result without extra spaces, specify a delimiter character that is only a comma.

Including a GROUP BY clause lets you produce a different concatenated result for each group in the result set. In this example, the only X value that occurs more than once is 1, so that is the only row in the result set where GROUP_CONCAT() returns a delimited value. For groups containing a single value, GROUP_CONCAT() returns the original value of its STRING argument.

MAX Function

An aggregate function that returns the maximum value from a set of numbers. Opposite of the MIN function. Its single argument can be numeric column, or the numeric result of a function or expression applied to the column value. Rows with a NULL value for the specified column are ignored. If the table is empty, or all the values supplied to MAX are NULL, MAX returns NULL.

Syntax:

```
MAX([DISTINCT | ALL] expression) [OVER (analytic_clause)]
```

When the query contains a GROUP BY clause, returns one value for each combination of grouping values.

Restrictions: In Impala 2.0 and higher, this function can be used as an analytic function, but with restrictions on any window clause. For MAX() and MIN(), the window clause is only allowed if the start bound is UNBOUNDED PRECEDING

Return type: Same as the input value, except for CHAR and VARCHAR arguments which produce a STRING result

Examples:

```
-- Find the largest value for this column in the table.
select max(c1) from t1;
-- Find the largest value for this column from a subset of the table.
select max(c1) from t1 where month = 'January' and year = '2013';
-- Find the largest value from a set of numeric function results.
select max(length(s)) from t1;
-- Can also be used in combination with DISTINCT and/or GROUP BY.
-- Return more than one result.
select month, year, max(purchase_price) from store_stats group by month, year;
-- Filter the input to eliminate duplicates before performing the calculation.
select max(distinct x) from t1;
```

The following example shows how to use MAX() in an analytic context. It uses a table containing integers from 1 to 10. Notice how the MAX() is reported for each input value, as opposed to the GROUP BY clause which condenses the result set.

-	+		++
	2	even	10
	4	even	10
	6	even	10
	8	even	10
	10	even	10
	1	odd	9
	3	odd	9
	5	odd	9
	7	odd	9
	9	odd	9
_	+		++

Related information:

Impala Analytic Functions on page 282, MIN Function on page 277, AVG Function on page 272

MIN Function

An aggregate function that returns the minimum value from a set of numbers. Opposite of the MAX function. Its single argument can be numeric column, or the numeric result of a function or expression applied to the column value. Rows with a NULL value for the specified column are ignored. If the table is empty, or all the values supplied to MIN are NULL, MIN returns NULL.

Syntax:

```
MIN([DISTINCT | ALL] expression) [OVER (analytic_clause)]
```

When the query contains a GROUP BY clause, returns one value for each combination of grouping values.

Restrictions: In Impala 2.0 and higher, this function can be used as an analytic function, but with restrictions on any window clause. For MAX() and MIN(), the window clause is only allowed if the start bound is UNBOUNDED PRECEDING

Return type: Same as the input value, except for CHAR and VARCHAR arguments which produce a STRING result

Examples:

```
-- Find the smallest value for this column in the table.
select min(c1) from t1;
-- Find the smallest value for this column from a subset of the table.
select min(c1) from t1 where month = 'January' and year = '2013';
-- Find the smallest value from a set of numeric function results.
select min(length(s)) from t1;
-- Can also be used in combination with DISTINCT and/or GROUP BY.
-- Return more than one result.
select month, year, min(purchase_price) from store_stats group by month, year; -- Filter the input to eliminate duplicates before performing the calculation.
select min(distinct x) from t1;
```

The following example shows how to use MIN() in an analytic context. It uses a table containing integers from 1 to 10. Notice how the MIN() is reported for each input value, as opposed to the GROUP BY clause which condenses the result set.

```
select x, property, min(x) over (partition by property) as min from int_t where property
in ('odd','even');
 x | property | min
 2
      even
 4
      even
                 2
      even
 8
      even
                 2
 10
      even
                 2.
 1
      odd
                 1
 3
                 1
      odd
 5
      bbo
```

1		
7	odd	1
9	odd	1 1
+	-+	++

Related information:

Impala Analytic Functions on page 282, MAX Function on page 276, AVG Function on page 272

NDV Function

An aggregate function that returns an approximate value similar to the result of COUNT(DISTINCT col), the "number of distinct values". It is much faster than the combination of COUNT and DISTINCT, and uses a constant amount of memory and thus is less memory-intensive for columns with high cardinality.

Syntax:

```
NDV([DISTINCT | ALL] expression)
```

This is the mechanism used internally by the COMPUTE STATS statement for computing the number of distinct values in a column.

Usage notes:

Because this number is an estimate, it might not reflect the precise number of different values in the column, especially if the cardinality is very low or very high. If the estimated number is higher than the number of rows in the table, Impala adjusts the value internally during query planning.

Return type: DOUBLE in Impala 2.0 and higher; STRING in earlier releases

Restrictions:

The OVER() clause is not allowed at all with this function.

Examples:

The following example queries a billion-row table to illustrate the relative performance of COUNT(DISTINCT) and NDV(). It shows how COUNT(DISTINCT) gives a precise answer, but is inefficient for large-scale data where an approximate result is sufficient. The NDV() function gives an approximate result but is much faster.

The following example shows how you can code multiple NDV() calls in a single query, to easily learn which columns have substantially more or fewer distinct values. This technique is faster than running a sequence of queries with COUNT(DISTINCT) calls.

```
Fetched 1 row(s) in 34.97s
select count(distinct col1) from sample_data;
| count(distinct col1)|
100000
Fetched 1 row(s) in 20.13s
select count(distinct col2) from sample_data;
count(distinct col2)
278
Fetched 1 row(s) in 20.09s
select count(distinct col3) from sample_data;
count(distinct col3)
Fetched 1 row(s) in 19.12s
select count(distinct col4) from sample_data;
count (distinct col4)
147135880
Fetched 1 row(s) in 266.95s
```

STDDEV, STDDEV SAMP, STDDEV POP Functions

An aggregate function that standard deviation of a set of numbers.

Syntax:

```
{ STDDEV | STDDEV_SAMP | STDDEV_POP } ([DISTINCT | ALL] expression)
```

This function works with any numeric data type.

Return type: DOUBLE in Impala 2.0 and higher; STRING in earlier releases

This function is typically used in mathematical formulas related to probability distributions.

The STDDEV_POP() and STDDEV_SAMP() functions compute the population standard deviation and sample standard deviation, respectively, of the input values. (STDDEV() is an alias for STDDEV_SAMP().) Both functions evaluate all input rows matched by the query. The difference is that STDDEV_SAMP() is scaled by 1/(N-1) while STDDEV_POP() is scaled by 1/N.

If no input rows match the query, the result of any of these functions is NULL. If a single input row matches the guery, the result of any of these functions is "0.0".

Examples:

This example demonstrates how STDDEV() and STDDEV_SAMP() return the same result, while STDDEV_POP() uses a slightly different calculation to reflect that the input data is considered part of a larger "population".

```
[localhost:21000] > select stddev(score) from test_scores;
stddev(score)
28.5
[localhost:21000] > select stddev_samp(score) from test_scores;
```

This example demonstrates that, because the return value of these aggregate functions is a STRING, you must currently convert the result with CAST.

Restrictions: This function cannot be used as an analytic function; it does not currently support the OVER() clause.

Related information:

The STDDEV(), STDDEV_POP(), and STDDEV_SAMP() functions compute the standard deviation (square root of the variance) based on the results of VARIANCE(), VARIANCE_POP(), and VARIANCE_SAMP() respectively. See <u>VARIANCE_SAMP</u>, <u>VARIANCE_POP</u>, <u>VAR_SAMP</u>, <u>VAR_POP</u> Functions on page 281 for details about the variance property.

SUM Function

An aggregate function that returns the sum of a set of numbers. Its single argument can be numeric column, or the numeric result of a function or expression applied to the column value. Rows with a NULL value for the specified column are ignored. If the table is empty, or all the values supplied to MIN are NULL, SUM returns NULL.

Syntax:

```
SUM([DISTINCT | ALL] expression) [OVER (analytic_clause)]
```

When the query contains a GROUP BY clause, returns one value for each combination of grouping values.

Return type: BIGINT for integer arguments, DOUBLE for floating-point arguments

Examples:

The following example shows how to use SUM() to compute the total for all the values in the table, a subset of values, or the sum for each combination of values in the GROUP BY clause:

```
-- Total all the values for this column in the table.
select sum(cl) from t1;
-- Find the total for this column from a subset of the table.
select sum(cl) from t1 where month = 'January' and year = '2013';
-- Find the total from a set of numeric function results.
select sum(length(s)) from t1;
-- Often used with functions that return predefined values to compute a score.
```

```
select sum(case when grade = 'A' then 1.0 when grade = 'B' then 0.75 else 0) as
class_honors from test_scores;
-- Can also be used in combination with DISTINCT and/or GROUP BY.
-- Return more than one result.
select month, year, sum(purchase_price) from store_stats group by month, year;
-- Filter the input to eliminate duplicates before performing the calculation.
select sum(distinct x) from t1;
```

The following example shows how to use <code>SUM()</code> in an analytic context. It uses a table containing integers from 1 to 10. Notice how the SUM() is reported for each input value, as opposed to the GROUP BY clause which condenses the result set.

```
select x, property, sum(x) over (partition by property) as sum from int_t where property
in ('odd','even');
 X
    property sum
  2
     even
                 30
  4
      even
                 30
  6
      even
                 30
                 30
      even
  10
                 30
     even
      odd
                  25
  1
  3
      odd
                 25
                 25
  5
      odd
  7
                 25
      odd
  9
                 25
      odd
```

Related information:

Impala Analytic Functions on page 282

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and distributed queries can perform these operations in different order for each query, results can vary slightly for aggregate function calls such as SUM() and AVG() for FLOAT and DOUBLE columns, particularly on large data sets where millions or billions of values are summed or averaged. For perfect consistency and repeatability, use the DECIMAL data type for such operations instead of FLOAT or DOUBLE.

VARIANCE, VARIANCE_SAMP, VARIANCE_POP, VAR_SAMP, VAR_POP Functions

An aggregate function that returns the <u>variance</u> of a set of numbers. This is a mathematical property that signifies how far the values spread apart from the mean. The return value can be zero (if the input is a single value, or a set of identical values), or a positive number otherwise.

Syntax:

```
{ VARIANCE | VAR[IANCE]_SAMP | VAR[IANCE]_POP } ([DISTINCT | ALL] expression)
```

This function works with any numeric data type.

Return type: DOUBLE in Impala 2.0 and higher; STRING in earlier releases

This function is typically used in mathematical formulas related to probability distributions.

The VARIANCE_SAMP() and VARIANCE_POP() functions compute the sample variance and population variance, respectively, of the input values. (VARIANCE() is an alias for VARIANCE_SAMP().) Both functions evaluate all input rows matched by the query. The difference is that STDDEV_SAMP() is scaled by 1/(N-1) while STDDEV_POP() is scaled by 1/N.

The functions var_samp() and var_pop() are the same as variance_samp() and variance_pop(), respectively. These aliases are available in Impala 2.0 and later.

If no input rows match the query, the result of any of these functions is NULL. If a single input row matches the query, the result of any of these functions is "0.0".

Examples:

This example demonstrates how VARIANCE() and VARIANCE_SAMP() return the same result, while VARIANCE_POP() uses a slightly different calculation to reflect that the input data is considered part of a larger "population".

This example demonstrates that, because the return value of these aggregate functions is a STRING, you convert the result with CAST if you need to do further calculations as a numeric value.

Restrictions: This function cannot be used as an analytic function; it does not currently support the OVER() clause.

Related information:

The STDDEV(), STDDEV_POP(), and STDDEV_SAMP() functions compute the standard deviation (square root of the variance) based on the results of VARIANCE(), VARIANCE_POP(), and VARIANCE_SAMP() respectively. See STDDEV_SAMP,STDDEV_POP Functions on page 279 for details about the standard deviation property.

Impala Analytic Functions

Analytic functions (also known as window functions) are a special category of built-in functions. Like aggregate functions, they examine the contents of multiple input rows to compute each output value. However, rather than being limited to one result value per GROUP BY group, they operate on *windows* where the input rows are ordered and grouped using flexible conditions expressed through an OVER() clause.

Added in: CDH 5.2.0 (Impala 2.0.0)

Some functions, such as LAG() and RANK(), can only be used in this analytic context. Some aggregate functions do double duty: when you call the aggregation functions such as MAX(), SUM(), AVG(), and so on with an OVER() clause, they produce an output value for each row, based on computations across other rows in the window.

Although analytic functions often compute the same value you would see from an aggregate function in a GROUP BY query, the analytic functions produce a value for each row in the result set rather than a single value for each group. This flexibility lets you include additional columns in the SELECT list, offering more opportunities for organizing and filtering the result set.

Analytic function calls are only allowed in the SELECT list and in the outermost ORDER BY clause of the query. During query processing, analytic functions are evaluated after other query stages such as joins, WHERE, and

The rows that are part of each partition are analyzed by computations across an ordered or unordered set of rows. For example, COUNT() and SUM() might be applied to all the rows in the partition, in which case the order of analysis does not matter. The ORDER BY clause might be used inside the OVER() clause to defines the ordering that applies to functions such as LAG() and FIRST_VALUE().

Analytic functions are frequently used in fields such as finance and science to provide trend, outlier, and bucketed analysis for large data sets. You might also see the term "window functions" in database literature, referring to the sequence of rows (the "window") that the function call applies to, particularly when the OVER clause includes a ROWS or RANGE keyword.

The following sections describe the analytic query clauses and the pure analytic functions provided by Impala. For usage information about aggregate functions in an analytic context, see Impala Aggregate Functions on page 271.

OVER Clause

The over clause is required for calls to pure analytic functions such as LEAD(), RANK(), and FIRST_VALUE(). When you include an OVER clause with calls to aggregate functions such as MAX(), COUNT(), or SUM(), they operate as analytic functions.

Syntax:

```
function(args) OVER([partition_by_clause] [order_by_clause [window_clause]])
partition_by_clause ::= PARTITION BY expr [, expr ...]
order_by_clause ::= ORDER BY expr [ASC | DESC] [NULLS FIRST | NULLS LAST] [, expr [ASC
  DESC] [NULLS FIRST | NULLS LAST] ...]
window_clause: See <u>Window Clause</u>
```

PARTITION BY clause:

The PARTITION BY clause acts much like the GROUP BY clause in the outermost block of a query. It divides the rows into groups containing identical values in one or more columns. These logical groups are known as partitions. Throughout the discussion of analytic functions, "partitions" refers to the groups produced by the PARTITION BY clause, not to partitioned tables.

Analytic operations such as MAX() or ROW_NUMBER() then apply to each partition independently. Omit the PARTITION BY clause to apply the analytic operation to all the rows in the table.

ORDER BY clause:

The ORDER BY clause works much like the ORDER BY clause in the outermost block of a query. It defines the order in which rows are evaluated for the entire input set, or for each group produced by a PARTITION BY clause. You can order by one or multiple expressions, and for each expression optionally choose ascending or descending order and whether nulls come first or last in the sort order. Because this ORDER BY clause only defines the order in which rows are evaluated, if you want the results to be output in a specific order, also include an ORDER BY clause in the outer block of the query.

When the ORDER BY clause is omitted, the analytic function applies to all items in the group produced by the PARTITION BY clause. When the ORDER BY clause is included, the analysis can apply to all or a subset of the items in the group, depending on the optional window clause.

The order in which the rows are analyzed is only defined for those columns specified in ORDER BY clauses.

One difference between the analytic and outer uses of the ORDER BY clause: inside the OVER clause, ORDER BY 1 or other integer value is interpreted as a constant sort value (effectively a no-op) rather than referring to column 1.

Window clause:

The window clause is only allowed in combination with an ORDER BY clause. If the ORDER BY clause is specified but the window clause is not, the default window is range between unbounded preceding and current ROW. See Window Clause on page 285 for full details.

HBase considerations:

Because HBase tables are optimized for single-row lookups rather than full scans, analytic functions using the OVER () clause are not recommended for HBase tables. Although such queries work, their performance is lower than on comparable tables using HDFS data files.

Parquet considerations:

Analytic functions are very efficient for Parquet tables. The data that is examined during evaluation of the OVER () clause comes from a specified set of columns, and the values for each column are arranged sequentially within each data file.

Text table considerations:

Analytic functions are convenient to use with text tables for exploratory business intelligence. When the volume of data is substantial, prefer to use Parquet tables for performance-critical analytic queries.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example shows how to synthesize a numeric sequence corresponding to all the rows in a table. The new table has the same columns as the old one, plus an additional column ID containing the integers 1, 2, 3, and so on, corresponding to the order of a TIMESTAMP column in the original table.

```
CREATE TABLE events_with_id AS
 SELECT
  row_number() OVER (ORDER BY date_and_time) AS id,
   c1, c2, c3, c4
 FROM events;
```

The following example shows how to determine the number of rows containing each value for a column. Unlike a corresponding GROUP BY query, this one can analyze a single column and still return all values (not just the distinct ones) from the other columns.

```
SELECT x, y, z, count() OVER (PARTITION BY x) AS how_many_x
FROM t1;
```

Restrictions:

You cannot directly combine the DISTINCT operator with analytic function calls. You can put the analytic function call in a WITH clause or an inline view, and apply the DISTINCT operator to its result set.

```
WITH t1 AS (SELECT x, sum(x) OVER (PARTITION BY x) AS total FROM t1)
 SELECT DISTINCT x, total FROM t1;
```

Window Clause

Certain analytic functions accept an optional window clause, which makes the function analyze only certain rows "around" the current row rather than all rows in the partition. For example, you can get a moving average by specifying some number of preceding and following rows, or a running count or running total by specifying all rows up to the current position. This clause can result in different analytic results for rows within the same partition.

The window clause is supported with the AVG(), COUNT(), FIRST_VALUE(), LAST_VALUE(), and SUM() functions. For MAX() and MIN(), the window clause only allowed if the start bound is UNBOUNDED PRECEDING

Syntax:

```
ROWS BETWEEN [ \{m \mid \text{UNBOUNDED}\} PRECEDING | CURRENT ROW] [ AND [CURRENT ROW | \{m \mid \text{CURRENT}\} ROW | \{m \mid \text{CURRE
UNBOUNDED \mid n \mid FOLLOWING] RANGE BETWEEN [ \{m \mid \text{UNBOUNDED }\} PRECEDING | CURRENT ROW] [ AND [CURRENT ROW | \{m \mid \text{CURRENT }\}
  UNBOUNDED \mid n \mid FOLLOWING]
```

ROWS BETWEEN defines the size of the window in terms of the indexes of the rows in the result set. The size of the window is predictable based on the clauses the position within the result set.

RANGE BETWEEN does not currently support numeric arguments to define a variable-size sliding window.

Currently, Impala supports only some combinations of arguments to the RANGE clause:

- RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW (the default when order by is specified and the window clause is omitted)
- RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
- RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

When RANGE is used, CURRENT ROW includes not just the current row but all rows that are tied with the current row based on the ORDER BY expressions.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following examples show financial data for a fictional stock symbol JDR. The closing price moves up and down each day.

```
create table stock ticker (stock symbol string, closing price decimal(8,2), closing date
timestamp);
...load some data...
select * from stock_ticker order by stock_symbol, closing_date
 stock_symbol | closing_price | closing_date
                                 2014-10-02 00:00:00
2014-10-03 00:00:00
2014-10-04 00:00:00
2014-10-05 00:00:00
2014-10-06 00:00:00
2014-10-07 00:00:00
2014-10-08 00:00:00
                    12.86
  JDR
                     12.89
  JDR
                     12.94
  JDR
                     12.55
14.03
  JDR
  JDR
                     14.75
  JDR
                     13.98
  JDR
```

The queries use analytic functions with window clauses to compute moving averages of the closing price. For example, ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING produces an average of the value from a 3-day span, producing a different value for each row. The first row, which has no preceding row, only gets averaged with the row following it. If the table contained more than one stock symbol, the PARTITION BY clause would limit the window for the moving average to only consider the prices for a single stock.

```
select stock_symbol, closing_date, closing_price,
  avg(closing_price) over (partition by stock_symbol order by closing_date
    rows between 1 preceding and 1 following) as moving_average
  from stock_ticker;
```

stock_symbol	closing_date	closing_price	moving_average
JDR	2014-10-02 00:00:00	12.86	12.87
JDR	2014-10-03 00:00:00	12.89	12.89
JDR	2014-10-04 00:00:00	12.94	12.79
JDR	2014-10-05 00:00:00	12.55	13.17
JDR	2014-10-06 00:00:00	14.03	13.77
JDR	2014-10-07 00:00:00	14.75	14.25
JDR	2014-10-08 00:00:00	13.98	14.36

The clause ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW produces a cumulative moving average, from the earliest data up to the value for each day.

DENSE RANK() Function

Returns an ascending sequence of integers, starting with 1. The output sequence produces duplicate integers for duplicate values of the ORDER BY expressions. After generating duplicate output values for the "tied" input values, the function continues the sequence with the next higher integer. Therefore, the sequence contains duplicates but no gaps when the input contains duplicates. Starts the sequence over for each group produced by the PARTITIONED BY clause.

Syntax:

```
DENSE_RANK() OVER([partition_by_clause] order_by_clause)
```

The PARTITION BY clause is optional. The ORDER BY clause is required. The window clause is not allowed.

Usage notes:

Often used for top-N and bottom-N queries. For example, it could produce a "top 10" report including all the items with the 10 highest values, even if several items tied for 1st place.

Similar to ROW_NUMBER and RANK. These functions differ in how they treat duplicate combinations of values.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example demonstrates how the <code>DENSE_RANK()</code> function identifies where each value "places" in the result set, producing the same result for duplicate values, but with a strict sequence from 1 to the number of groups. For example, when results are ordered by the <code>x</code> column, both 1 values are tied for first; both 2 values are tied for second; and so on.

1			
į	1	1	odd
1	2	2	even
1	2	2	prime
į.	3	3	prime
i	3	3	odd
1	4	4	even
1	4	4	square
į.	5	5	odd
1	5	5	prime
1	6	6	
į.			even
ŀ	6	6	perfect
1	7	7	lucky
į	7	7	lucky
ŀ	7	7	lucky
1	7	7	odd
į.	7	7	prime
i .	8	8	even
ł.	9	9	square
į.	9	9	odd
į.	10	10	round
ļ.	10	10	even
1 -		 +	-+
į.			•

The following examples show how the DENSE_RANK() function is affected by the PARTITION property within the ORDER BY clause.

Partitioning by the PROPERTY column groups all the even, odd, and so on values together, and DENSE_RANK() returns the place of each value within the group, producing several ascending sequences.

```
-----
select x, dense_rank() over(partition by property order by x) as rank, property from
int_t;
x rank property
          even
          even
     3
 6
          even
 8
           even
     5
 10
           even
 7
7
           lucky
           lucky
 7
     1
           lucky
 1
           odd
 3
     2
           odd
     3
 5
7
           odd
           odd
 9
     5
           odd
 6
           perfect
 2
          prime
 3
     2
          prime
     3
 5
           prime
 7
           prime
 10
          round
 1
           square
     2
 4
           square
 9
           square
```

Partitioning by the x column groups all the duplicate numbers together and returns the place each each value within the group; because each value occurs only 1 or 2 times, DENSE_RANK() designates each x value as either first or second within its group.

```
select x, dense rank() over(partition by x order by property) as rank, property from
int_t;
x | rank | property
            odd
      2
 1
            square
 2
           even
```

2 3 3 4 4 5 5 6 6 7 7 7 7 7 8 9 9 10	2 1 2 1 2 1 2 1 1 2 1 1 1 2 3 1 1 1 2 2 1 1 2 2 1 1 1 2 2 3 1 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1	prime odd prime even square odd prime even perfect lucky lucky odd prime even odd square even round
---	---	---

The following example shows how DENSE_RANK() produces a continuous sequence while still allowing for ties. In this case, Croesus and Midas both have the second largest fortune, while Crassus has the third largest. (In RANK() Function on page 292, you see a similar query with the RANK() function that shows that while Crassus has the third largest fortune, he is the fourth richest person.)

```
select dense_rank() over (order by net_worth desc) as placement, name, net_worth from
 wealth order by placement, name;
| placement | name | net_worth
         | Solomon | 2000000000.00
| Croesus | 1000000000.00
| Midas | 1000000000.00
| Crassus | 500000000.00
| Scrooge | 80000000.00
```

Related information:

RANK() Function on page 292, ROW_NUMBER() Function on page 294

FIRST_VALUE() Function

Returns the expression value from the first row in the window. The return value is NULL if the input expression is NULL.

Syntax:

```
FIRST_VALUE(expr) OVER([partition_by_clause] order_by_clause [window_clause])
```

The PARTITION BY clause is optional. The ORDER BY clause is required. The window clause is optional.

Usage notes:

If any duplicate values occur in the tuples evaluated by the ORDER BY clause, the result of this function is not deterministic. Consider adding additional ORDER BY columns to ensure consistent ordering.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example shows a table with a wide variety of country-appropriate greetings. For consistency, we want to standardize on a single greeting for each country. The FIRST_VALUE() function helps to produce a mail merge report where every person from the same country is addressed with the same greeting.

```
select name, country, greeting from mail_merge
  name | country | greeting
 Pete USA Hello
John USA Hi
Boris Germany Guten tag
Michael Germany Guten morgen
Bjorn Sweden Hej
Mats Sweden Tja
select country, name,
   first_value(greeting)
     over (partition by country order by name, greeting) as greeting
   from mail_merge;
  country | name
                              greeting
  Germany Boris Guten tag
Germany Michael Guten tag
Sweden Bjorn Hej
Sweden Mats Hej
USA John Hi
USA Pete Hi
```

Changing the order in which the names are evaluated changes which greeting is applied to each group.

```
select country, name,
  first_value(greeting)
    over (partition by country order by name desc, greeting) as greeting
  from mail_merge;
 ______
 country | name | greeting
  Germany Michael Guten morgen
Germany Boris Guten morgen
Sweden Mats Tja
Sweden Bjorn Tja
USA Pete Hello
USA John Hello
```

Related information:

LAST_VALUE() Function on page 290

LAG() Function

This function returns the value of an expression using column values from a preceding row. You specify an integer offset, which designates a row position some number of rows previous to the current row. Any column references in the expression argument refer to column values from that prior row. Typically, the table contains a time sequence or numeric sequence column that clearly distinguishes the ordering of the rows.

Syntax:

```
LAG (expr [, offset] [, default])
  OVER ([partition_by_clause] order_by_clause)
```

The ORDER BY clause is required. The PARTITION BY clause is optional. The window clause is not allowed.

Usage notes:

Sometimes used an an alternative to doing a self-join.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example uses the same stock data created in <u>Window Clause</u> on page 285. For each day, the query prints the closing price alongside the previous day's closing price. The first row for each stock symbol has no previous row, so that LAG() value is NULL.

```
select stock_symbol, closing_date, closing_price,
    lag(closing_price,1) over (partition by stock_symbol order by closing_date) as
"yesterday closing"
  from stock_ticker
   order by closing_date;
 2014-09-13 00:00:00 | 12.86

2014-09-14 00:00:00 | 12.89

2014-09-15 00:00:00 | 12.94

2014-09-16 00:00:00 | 12.55

2014-09-17 00:00:00 | 14.03

2014-09-18 00:00:00 | 14.75

2014-09-19 00:00:00 | 13.20
  JDR
                                                                 NULL
  JDR
                                                                   12.86
                                                                  12.89
  JDR
                                                                  12.94
12.55
  JDR
  JDR
                                                                  14.03
  JDR
  JDR
                   2014-09-19 00:00:00 | 13.98
                                                                  14.75
```

The following example does an arithmetic operation between the current row and a value from the previous row, to produce a delta value for each day. This example also demonstrates how ORDER BY works independently in the different parts of the query. The ORDER BY closing_date in the OVER clause makes the query analyze the rows in chronological order. Then the outer query block uses ORDER BY closing_date DESC to present the results with the most recent date first.

```
select stock_symbol, closing_date, closing_price,
   cast(
       closing_price - lag(closing_price,1) over
         (partition by stock_symbol order by closing_date)
       as decimal(8,2)
    as "change from yesterday"
  from stock_ticker
    order by closing_date desc;
 stock_symbol | closing_date
                                            | closing_price | change from yesterday
                  2014-09-19 00:00:00 | 13.98
                                                                  -0.76
  JDR
                  2014-09-18 00:00:00 | 14.75
2014-09-17 00:00:00 | 14.03
  JDR
                                                                  0.72
                                                                  1.47
  JDR
                  2014-09-16 00:00:00 | 12.55

2014-09-15 00:00:00 | 12.94

2014-09-14 00:00:00 | 12.89

2014-09-13 00:00:00 | 12.86
  JDR
                                                                  -0.38
                                                                  0.04
  JDR
  JDR
                                                                 NULL
  JDR
```

Related information:

This function is the converse of <u>LEAD() Function</u> on page 291.

LAST_VALUE() Function

Returns the expression value from the last row in the window. This same value is repeated for all result rows for the group. The return value is NULL if the input expression is NULL.

Syntax:

```
LAST_VALUE(expr) OVER([partition_by_clause] order_by_clause [window_clause])
```

The PARTITION BY clause is optional. The ORDER BY clause is required. The window clause is optional.

Usage notes:

If any duplicate values occur in the tuples evaluated by the ORDER BY clause, the result of this function is not deterministic. Consider adding additional ORDER BY columns to ensure consistent ordering.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example uses the same MAIL MERGE table as in the example for FIRST VALUE() Function on page 288. Because the default window when order by is used is between unbounded preceding and current ROW, the query requires the UNBOUNDED FOLLOWING to look ahead to subsequent rows and find the last value for each country.

```
select country, name,
 last_value(greeting) over (
   partition by country order by name, greeting
   rows between unbounded preceding and unbounded following
  ) as greeting
 from mail_merge
 country name
                   greeting
 Germany Boris
                   Guten morgen
 Germany | Michael | Guten morgen
 Sweden
          Bjorn
Mats
                    Tja
Tja
 Sweden
                   Hello
 USA
          John
 IISA
          Pete
                    Hello
```

Related information:

FIRST_VALUE() Function on page 288

LEAD() Function

This function returns the value of an expression using column values from a following row. You specify an integer offset, which designates a row position some number of rows after to the current row. Any column references in the expression argument refer to column values from that later row. Typically, the table contains a time sequence or numeric sequence column that clearly distinguishes the ordering of the rows.

Syntax:

```
LEAD (expr [, offset] [, default])
 OVER ([partition_by_clause] order_by_clause)
```

The ORDER BY clause is required. The PARTITION BY clause is optional. The window clause is not allowed.

Usage notes:

Sometimes used an an alternative to doing a self-join.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example uses the same stock data created in Window Clause on page 285. The guery analyzes the closing price for a stock symbol, and for each day evaluates if the closing price for the following day is higher or lower.

```
select stock_symbol, closing_date, closing_price,
  case
   (lead(closing_price,1)
     over (partition by stock symbol order by closing date)
       - closing_price) > 0
   when true then "higher"
   when false then "flat or lower"
  end as "trending"
from stock_ticker
```

order by closing_date;			
stock_symbol	closing_date	closing_price	
JDR JDR JDR JDR JDR JDR JDR	2014-09-13 00:00:00 2014-09-14 00:00:00 2014-09-15 00:00:00 2014-09-16 00:00:00 2014-09-17 00:00:00 2014-09-18 00:00:00 2014-09-19 00:00:00	12.86 12.89 12.94 12.55 14.03 14.75 13.98	higher higher flat or lower higher higher flat or lower NULL

Related information:

This function is the converse of LAG() Function on page 289.

RANK() Function

Returns an ascending sequence of integers, starting with 1. The output sequence produces duplicate integers for duplicate values of the ORDER BY expressions. After generating duplicate output values for the "tied" input values, the function increments the sequence by the number of tied values. Therefore, the sequence contains both duplicates and gaps when the input contains duplicates. Starts the sequence over for each group produced by the PARTITIONED BY clause.

Syntax:

```
RANK() OVER([partition_by_clause] order_by_clause)
```

The PARTITION BY clause is optional. The ORDER BY clause is required. The window clause is not allowed.

Usage notes:

Often used for top-N and bottom-N queries. For example, it could produce a "top 10" report including several items that were tied for 10th place.

Similar to ROW_NUMBER and DENSE_RANK. These functions differ in how they treat duplicate combinations of values.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example demonstrates how the RANK () function identifies where each value "places" in the result set, producing the same result for duplicate values, and skipping values in the sequence to account for the number of duplicates. For example, when results are ordered by the x column, both 1 values are tied for first; both 2 values are tied for third; and so on.

```
select x, rank() over(order by x) as rank, property from int_t;
    | rank | property
 X
             square
              odd
  2
       3
  2
       3
              prime
  3
             prime
  3
       5
              odd
      7
  4
              even
  4
      7
              square
      9
  5
              odd
  5
      9
              prime
  6
      11
              even
  6
      11
              perfect
  7
      13
              lucky
  7
      13
              lucky
  7
      13
              lucky
      13
              odd
```

1			
1	7	13	prime
1	0	1.0	
1	8	18	even
!	9	19	square
1	-		bquarc
!	9	19	lodd
1	10	0.1	_
1	10		round
i i	10	21	even
i i	1 -0		CACII
i -		+	+
i i			

The following examples show how the RANK() function is affected by the PARTITION property within the ORDER BY clause.

Partitioning by the PROPERTY column groups all the even, odd, and so on values together, and RANK() returns the place of each value within the group, producing several ascending sequences.

```
select x, rank() over(partition by property order by x) as rank, property from int_t;
 x | rank | property
 2 | 1 | even
 4
             even
 6
             even
 8
             even
 10
      5
             even
             lucky
 7
      1
             lucky
 7
             lucky
 1
             odd
      2
 3
             odd
 5
      3
             odd
 7
      4
             odd
 9
      5
             odd
 6
      1
             perfect
 2
      1
             prime
 3
      2
            prime
 5
      3
             prime
             prime
      1
 10
             round
             square
 4
      2
             square
 9
```

Partitioning by the x column groups all the duplicate numbers together and returns the place each each value within the group; because each value occurs only 1 or 2 times, RANK() designates each x value as either first or second within its group.

```
select x, rank() over(partition by x order by property) as rank, property from int_t;
 x | rank | property
             odd
      2.
             square
             even
     2
 2
            prime
 3
      1
             odd
      2
 3
             prime
 4
             even
 4
      2
             square
 5
      1
             odd
      2
             prime
 5
 6
      1
             even
      2
 6
             perfect
 7
             lucky
 7
      1
1
             lucky
 7
             lucky
 7
      4
             odd
 7
      5
             prime
 8
             even
 9
      1
             odd
 9
             square
```

1			
-	10	1	even round
1	10	2	round
			++
1			

The following example shows how a magazine might prepare a list of history's wealthiest people. Croesus and Midas are tied for second, then Crassus is fourth.

```
select rank() over (order by net_worth desc) as rank, name, net_worth from wealth order
 by rank, name;
| rank | name | net_worth

        1
        Solomon
        2000000000.00

        2
        Croesus
        1000000000.00

        2
        Midas
        1000000000.00

        4
        Crassus
        500000000.00

        5
        Scrooge
        80000000.00
```

Related information:

DENSE RANK() Function on page 286, ROW NUMBER() Function on page 294

ROW_NUMBER() Function

Returns an ascending sequence of integers, starting with 1. Starts the sequence over for each group produced by the PARTITIONED BY clause. The output sequence includes different values for duplicate input values. Therefore, the sequence never contains any duplicates or gaps, regardless of duplicate input values.

Syntax:

```
ROW_NUMBER() OVER([partition_by_clause] order_by_clause)
```

The ORDER BY clause is required. The PARTITION BY clause is optional. The window clause is not allowed.

Usage notes:

Often used for top-N and bottom-N gueries where the input values are known to be unique, or precisely N rows are needed regardless of duplicate values.

Because its result value is different for each row in the result set (when used without a PARTITION BY clause), ROW_NUMBER() can be used to synthesize unique numeric ID values, for example for result sets involving unique values or tuples.

Similar to RANK and DENSE_RANK. These functions differ in how they treat duplicate combinations of values.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example demonstrates how ROW_NUMBER() produces a continuous numeric sequence, even though some values of x are repeated.

```
select x, row_number() over(order by x, property) as row_number, property from int_t;
 x row_number property
 1 | 1
                  odd
                  square
     3
 2
                  even
 2
                  prime
 3
     5
                  odd
 3
     6
                  prime
 4
                  even
 4
     8
                 square
 5
                  odd
 5
     10
                  prime
```

6 6 7 7 7 7 7 8	11 12 13 14 15 16 17	even perfect lucky lucky lucky odd prime even
"	18	even
9	19 20	odd square
10	21 22	even round

The following example shows how a financial institution might assign customer IDs to some of history's wealthiest figures. Although two of the people have identical net worth figures, unique IDs are required for this purpose. ROW_NUMBER() produces a sequence of five different values for the five input rows.

```
select row_number() over (order by net_worth desc) as account_id, name, net_worth
 from wealth order by account_id, name;
| account_id | name | net_worth
      2
             Midas 1000000000.00
Crassus 500000000.00
Scrooge 80000000.00
 3
 4
```

Related information:

RANK() Function on page 292, DENSE RANK() Function on page 286

Impala User-Defined Functions (UDFs)

User-defined functions (frequently abbreviated as UDFs) let you code your own application logic for processing column values during an Impala query. For example, a UDF could perform calculations using an external math library, combine several column values into one, do geospatial calculations, or other kinds of tests and transformations that are outside the scope of the built-in SQL operators and functions.

You can use UDFs to simplify query logic when producing reports, or to transform data in flexible ways when copying from one table to another with the INSERT ... SELECT syntax.

You might be familiar with this feature from other database products, under names such as stored functions or stored routines.

Impala support for UDFs is available in Impala 1.2 and higher:

- In Impala 1.1, using UDFs in a query required using the Hive shell. (Because Impala and Hive share the same metastore database, you could switch to Hive to run just those queries requiring UDFs, then switch back to Impala.)
- Starting in Impala 1.2, Impala can run both high-performance native code UDFs written in C++, and Java-based Hive UDFs that you might already have written.
- Impala can run scalar UDFs that return a single value for each row of the result set, and user-defined aggregate functions (UDAFs) that return a value based on a set of rows. Currently, Impala does not support user-defined table functions (UDTFs) or window functions.

UDF Concepts

Depending on your use case, you might write all-new functions, reuse Java UDFs that you have already written for Hive, or port Hive Java UDF code to higher-performance native Impala UDFs in C++. You can code either scalar functions for producing results one row at a time, or more complex aggregate functions for doing analysis across. The following sections discuss these different aspects of working with UDFs.

UDFs and **UDAFs**

Depending on your use case, the user-defined functions (UDFs) you write might accept or produce different numbers of input and output values:

• The most general kind of user-defined function (the one typically referred to by the abbreviation UDF) takes a single input value and produces a single output value. When used in a query, it is called once for each row in the result set. For example:

```
select customer_name, is_frequent_customer(customer_id) from customers;
select obfuscate(sensitive_column) from sensitive_data;
```

A user-defined aggregate function (UDAF) accepts a group of values and returns a single value. You use UDAFs to summarize and condense sets of rows, in the same style as the built-in COUNT, MAX(), SUM(), and AVG() functions. When called in a query that uses the GROUP BY clause, the function is called once for each combination of GROUP BY values. For example:

```
-- Evaluates multiple rows but returns a single value.
select closest_restaurant(latitude, longitude) from places;
-- Evaluates batches of rows and returns a separate value for each batch.
select most_profitable_location(store_id, sales, expenses, tax_rate, depreciation)
from franchise_data group by year;
```

 Currently, Impala does not support other categories of user-defined functions, such as user-defined table functions (UDTFs) or window functions.

Native Impala UDFs

Impala supports UDFs written in C++, in addition to supporting existing Hive UDFs written in Java. Cloudera recommends using C++ UDFs because the compiled native code can yield higher performance, with UDF execution time often 10x faster for a C++ UDF than the equivalent Java UDF.

Using Hive UDFs with Impala

Impala can run Java-based user-defined functions (UDFs), originally written for Hive, with no changes, subject to the following conditions:

- The parameters and return value must all use data types supported by Impala. For example, nested or composite types are not supported.
- Currently, Hive UDFs that accept or return the TIMESTAMP type are not supported.
- The return type must be a "Writable" type such as Text or IntWritable, rather than a Java primitive type such as String or int. Otherwise, the UDF will return NULL.
- Hive UDAFs and UDTFs are not supported.
- Typically, a Java UDF will execute several times slower in Impala than the equivalent native UDF written in C++.

To take full advantage of the Impala architecture and performance features, you can also write Impala-specific UDFs in C++.

For background about Java-based Hive UDFs, see the <u>Hive documentation for UDFs</u>. For examples or tutorials for writing such UDFs, search the web for related blog posts.

The ideal way to understand how to reuse Java-based UDFs (originally written for Hive) with Impala is to take some of the Hive built-in functions (implemented as Java UDFs) and take the applicable JAR files through the UDF deployment process for Impala, creating new UDFs with different names:

- 1. Take a copy of the Hive JAR file containing the Hive built-in functions. For example, the path might be like /usr/lib/hive-exec-0.10.0-cdh4.2.0.jar, with different version numbers corresponding to your specific level of CDH.
- 2. Use jar tf jar_file to see a list of the classes inside the JAR. You will see names like org/apache/hadoop/hive/ql/udf/UDFLower.class and org/apache/hadoop/hive/ql/udf/UDFOPNegative.class. Make a note of the names of the functions

- you want to experiment with. When you specify the entry points for the Impala CREATE FUNCTION statement, change the slash characters to dots and strip off the .class suffix, for example org.apache.hadoop.hive.ql.udf.UDFLowerandorg.apache.hadoop.hive.ql.udf.UDFOPNegative.
- 3. Copy that file to an HDFS location that Impala can read. (In the examples here, we renamed the file to hive-builtins.jar in HDFS for simplicity.)
- 4. For each Java-based UDF that you want to call through Impala, issue a CREATE FUNCTION statement, with a LOCATION clause containing the full HDFS path of the JAR file, and a SYMBOL clause with the fully qualified name of the class, using dots as separators and without the .class extension. Remember that user-defined functions are associated with a particular database, so issue a USE statement for the appropriate database first, or specify the SQL function name as db_name.function_name. Use completely new names for the SQL functions, because Impala UDFs cannot have the same name as Impala built-in functions.
- 5. Call the function from your queries, passing arguments of the correct type to match the function signature. These arguments could be references to columns, arithmetic or other kinds of expressions, the results of CAST functions to ensure correct data types, and so on.

Java UDF Example: Reusing lower() Function

For example, the following impala-shell session creates an Impala UDF my_lower() that reuses the Java code for the Hive lower(): built-in function. We cannot call it lower() because Impala does not allow UDFs to have the same name as built-in functions. From SQL, we call the function in a basic way (in a query with no WHERE clause), directly on a column, and on the results of a string expression:

```
[localhost:21000] > create database udfs;
[localhost:21000] > use udfs;
localhost:21000] > create function lower(string) returns string location
'/user/hive/udfs/hive.jar' symbol='org.apache.hadoop.hive.ql.udf.UDFLower';
ERROR: AnalysisException: Function cannot have the same name as a builtin: lower
[localhost:21000] > create function my_lower(string) returns string location
 /user/hive/udfs/hive.jar' symbol='org.apache.hadoop.hive.ql.udf.UDFLower';
[localhost:21000] > select my_lower('Some String NOT ALREADY LOWERCASE');
| udfs.my_lower('some string not already lowercase')
some string not already lowercase
Returned 1 row(s) in 0.11s
[localhost:21000] > create table t2 (s string);
[localhost:21000] > insert into t2 values ('lower'),('UPPER'),('Init cap'),('CamelCase');
Inserted 4 rows in 2.28s
[localhost:21000] > select * from t2;
s
  lower
 UPPER
 Init cap
CamelCase
Returned 4 row(s) in 0.47s
[localhost:21000] > select my_lower(s) from t2;
udfs.my_lower(s)
 lower
 init cap
camelcase
Returned 4 row(s) in 0.54s
[localhost:21000] > select my_lower(concat('ABC ',s,' XYZ')) from t2;
| udfs.my_lower(concat('abc ', s, ' xyz')) |
  abc lower xyz
  abc upper xyz
  abc init cap xyz
 abc camelcase xyz
```

```
+----+
Returned 4 row(s) in 0.22s
```

Java UDF Example: Reusing negative() Function

Here is an example that reuses the Hive Java code for the negative() built-in function. This example demonstrates how the data types of the arguments must match precisely with the function signature. At first, we create an Impala SQL function that can only accept an integer argument. Impala cannot find a matching function when the query passes a floating-point argument, although we can call the integer version of the function by casting the argument. Then we overload the same function name to also accept a floating-point argument.

```
[localhost:21000] > create table t (x int);
[localhost:21000] > insert into t values (1), (2), (4), (100);
Inserted 4 rows in 1.43s
[localhost:21000] > create function my_neg(bigint) returns bigint location
'/user/hive/udfs/hive.jar' symbol='org.apache.hadoop.hive.ql.udf.UDFOPNegative';
[localhost:21000] > select my_neg(4);
| udfs.my_neg(4)
-4
[localhost:21000] > select \ my_neg(x) \ from \ t;
| udfs.my_neg(x) |
 -4
-100
Returned 3 row(s) in 0.60s
[localhost:21000] > select my_neg(4.0);
ERROR: AnalysisException: No matching function with signature: udfs.my_neg(FLOAT).
[localhost:21000] > select my_neg(cast(4.0 as int));
udfs.my_neg(cast(4.0 as int))
-4
Returned 1 row(s) in 0.11s
[localhost:21000] > create function my_neg(double) returns double location
 /user/hive/udfs/hive.jar' symbol='org.apache.hadoop.hive.ql.udf.UDFOPNegative';
[localhost:21000] > select my_neg(4.0);
udfs.my_neg(4.0)
Returned 1 row(s) in 0.11s
```

You can find the sample files mentioned here in the Impala github repo.

Runtime Environment for UDFs

By default, Impala copies UDFs into /tmp, and you can configure this location through the --local_library_dir startup flag for the impalad daemon.

Installing the UDF Development Package

To develop UDFs for Impala, download and install the impala-udf-devel package containing header files, sample source, and build configuration files.

- 1. Start at http://archive.cloudera.com/cdh5/ for the CDH 5 package, or http://archive.cloudera.com/impala/ for the CDH 4 package.
- 2. Locate the appropriate .repo or list file for your operating system version, such as the .repo file for CDH 4 on RHEL 6.

- 3. Use the familiar yum, zypper, or apt-get commands depending on your operating system, with impala-udf-devel for the package name.
 - Note: The UDF development code does not rely on Impala being installed on the same machine. You can write and compile UDFs on a minimal development system, then deploy them on a different one for use with Impala. If you develop UDFs on a server managed by Cloudera Manager through the parcel mechanism, you still install the UDF development kit through the package mechanism; this small standalone package does not interfere with the parcels containing the main Impala code.

When you are ready to start writing your own UDFs, download the sample code and build scripts from the Cloudera sample UDF github. Then see Writing User-Defined Functions (UDFs) on page 299 for how to code UDFs, and Examples of Creating and Using UDFs on page 304 for how to build and run UDFs.

Writing User-Defined Functions (UDFs)

Before starting UDF development, make sure to install the development package and download the UDF code samples, as described in Installing the UDF Development Package on page 298.

When writing UDFs:

- Keep in mind the data type differences as you transfer values from the high-level SQL to your lower-level UDF code. For example, in the UDF code you might be much more aware of how many bytes different kinds
- Use best practices for function-oriented programming: choose arguments carefully, avoid side effects, make each function do a single thing, and so on.

Getting Started with UDF Coding

To understand the layout and member variables and functions of the predefined UDF data types, examine the header file /usr/include/impala_udf/udf.h:

```
// This is the only Impala header required to develop UDFs and UDAs. This header
// contains the types that need to be used and the FunctionContext object. The context
// object serves as the interface object between the UDF/UDA and the impala process.
```

For the basic declarations needed to write a scalar UDF, see the header file udf-sample.h within the sample build environment, which defines a simple function named Addudf ():

```
#ifndef IMPALA_UDF_SAMPLE_UDF_H
#define IMPALA_UDF_SAMPLE_UDF_H
#include <impala_udf/udf.h>
using namespace impala_udf;
IntVal AddUdf(FunctionContext* context, const IntVal& arg1, const IntVal& arg2);
```

For sample C++ code for a simple function named Addudf(), see the source file udf-sample.cc within the sample build environment:

```
#include "udf-sample.h"
// In this sample we are declaring a UDF that adds two ints and returns an int.
IntVal AddUdf(FunctionContext* context, const IntVal& arg1, const IntVal& arg2) {
 if (arg1.is_null | arg2.is_null) return IntVal::null();
 return IntVal(arg1.val + arg2.val);
// Multiple UDFs can be defined in the same file
```

Data Types for Function Arguments and Return Values

Each value that a user-defined function can accept as an argument or return as a result value must map to a SQL data type that you could specify for a table column.

Each data type has a corresponding structure defined in the C++ and Java header files, with two member fields and some predefined comparison operators and constructors:

- is_null indicates whether the value is NULL or not. val holds the actual argument or return value when it is non-NULL.
- Each struct also defines a null() member function that constructs an instance of the struct with the is_null flag set.
- The built-in SQL comparison operators and clauses such as <, >=, BETWEEN, and ORDER BY all work automatically based on the SQL return type of each UDF. For example, Impala knows how to evaluate BETWEEN 1 AND udf_returning_int(col1) or ORDER BY udf_returning_string(col2) without you declaring any comparison operators within the UDF itself.
 - For convenience within your UDF code, each struct defines == and != operators for comparisons with other structs of the same type. These are for typical C++ comparisons within your own code, not necessarily reproducing SQL semantics. For example, if the is_null flag is set in both structs, they compare as equal. That behavior of null comparisons is different from SQL (where NULL == NULL is NULL rather than true), but more in line with typical C++ behavior.
- Each kind of struct has one or more constructors that define a filled-in instance of the struct, optionally with default values.
- Each kind of struct has a null() member function that returns an instance of the struct with the is_null flag set.
- Because Impala currently does not support composite or nested types, Impala cannot process UDFs that
 accept such types as arguments or return them as result values. This limitation applies both to Impala UDFs
 written in C++ and Java-based Hive UDFs.
- You can overload functions by creating multiple functions with the same SQL name but different argument types. For overloaded functions, you must use different C++ or Java entry point names in the underlying functions.

The data types defined on the C++ side (in /usr/include/impala_udf/udf.h) are:

- IntVal represents an INT column.
- BigIntVal represents a BIGINT column. Even if you do not need the full range of a BIGINT value, it can be useful to code your function arguments as BigIntVal to make it convenient to call the function with different kinds of integer columns and expressions as arguments. Impala automatically casts smaller integer types to larger ones when appropriate, but does not implicitly cast large integer types to smaller ones.
- SmallintVal represents a SMALLINT column.
- TinyIntVal represents a TINYINT column.
- StringVal represents a STRING column. It has a len field representing the length of the string, and a ptr field pointing to the string data. It has constructors that create a new StringVal struct based on a null-terminated C-style string, or a pointer plus a length; these new structs still refer to the original string data rather than allocating a new buffer for the data. It also has a constructor that takes a pointer to a FunctionContext struct and a length, that does allocate space for a new copy of the string data, for use in UDFs that return string values.
- BooleanVal represents a BOOLEAN column.
- FloatVal represents a FLOAT column.

- DoubleVal represents a DOUBLE column.
- TimestampVal represents a TIMESTAMP column. It has a date field, a 32-bit integer representing the Gregorian date, that is, the days past the epoch date. It also has a time_of_day field, a 64-bit integer representing the current time of day in nanoseconds.

Variable-Length Argument Lists

UDFs typically take a fixed number of arguments, with each one named explicitly in the signature of your C++ function. Your function can also accept additional optional arguments, all of the same type. For example, you can concatenate two strings, three strings, four strings, and so on. Or you can compare two numbers, three numbers, four numbers, and so on.

To accept a variable-length argument list, code the signature of your function like this:

```
StringVal Concat(FunctionContext* context, const StringVal& separator,
  int num_var_args, const StringVal* args);
```

In the CREATE FUNCTION statement, after the type of the first optional argument, include . . . to indicate it could be followed by more arguments of the same type. For example, the following function accepts a STRING argument, followed by one or more additional STRING arguments:

```
[localhost:21000] > create function my_concat(string, string ...) returns string location
 '/user/test_user/udfs/sample.so' symbol='Concat';
```

The call from the SQL query must pass at least one argument to the variable-length portion of the argument

When Impala calls the function, it fills in the initial set of required arguments, then passes the number of extra arguments and a pointer to the first of those optional arguments.

Handling NULL Values

For correctness, performance, and reliability, it is important for each UDF to handle all situations where any NULL values are passed to your function. For example, when passed a NULL, UDFs typically also return NULL. In an aggregate function, which could be passed a combination of real and NULL values, you might make the final value into a NULL (as in CONCAT()), ignore the NULL value (as in AVG()), or treat it the same as a numeric zero or empty string.

Each parameter type, such as Intval or Stringval, has an is_null Boolean member. Test this flag immediately for each argument to your function, and if it is set, do not refer to the val field of the argument structure. The val field is undefined when the argument is NULL, so your function could go into an infinite loop or produce incorrect results if you skip the special handling for NULL.

If your function returns NULL when passed a NULL value, or in other cases such as when a search string is not found, you can construct a null instance of the return type by using its null() member function.

Memory Allocation for UDFs

By default, memory allocated within a UDF is deallocated when the function exits, which could be before the query is finished. The input arguments remain allocated for the lifetime of the function, so you can refer to them in the expressions for your return values. If you use temporary variables to construct all-new string values, use the StringVal() constructor that takes an initial FunctionContext* argument followed by a length, and copy the data into the newly allocated memory buffer.

Thread-Safe Work Area for UDFs

One way to improve performance of UDFs is to specify the optional PREPARE_FN and CLOSE_FN clauses on the CREATE FUNCTION statement. The "prepare" function sets up a thread-safe data structure in memory that you can use as a work area. The "close" function deallocates that memory. Each subsequent call to the UDF within the same thread can access that same memory area. There might be several such memory areas allocated on the same host, as UDFs are parallelized using multiple threads.

Within this work area, you can set up predefined lookup tables, or record the results of complex operations on data types such as STRING OF TIMESTAMP. Saving the results of previous computations rather than repeating the computation each time is an optimization known as http://en.wikipedia.org/wiki/Memoization. For example, if your UDF performs a regular expression match or date manipulation on a column that repeats the same value over and over, you could store the last-computed value or a hash table of already-computed values, and do a fast lookup to find the result for subsequent iterations of the UDF.

Each such function must have the signature:

```
void function_name(impala_udf::FunctionContext*,
impala_udf::FunctionContext::FunctionScope)
```

Currently, only THREAD_SCOPE is implemented, not FRAGMENT_SCOPE. See udf.h for details about the scope values.

Error Handling for UDFs

To handle errors in UDFs, you call functions that are members of the initial FunctionContext* argument passed to your function.

A UDF can record one or more warnings, for conditions that indicate minor, recoverable problems that do not cause the query to stop. The signature for this function is:

```
bool AddWarning(const char* warning_msg);
```

For a serious problem that requires cancelling the query, a UDF can set an error flag that prevents the query from returning any results. The signature for this function is:

```
void SetError(const char* error_msg);
```

Writing User-Defined Aggregate Functions (UDAFs)

User-defined aggregate functions (UDAFs or UDAs) are a powerful and flexible category of user-defined functions. If a query processes N rows, calling a UDAF during the query condenses the result set, anywhere from a single value (such as with the SUM or MAX functions), or some number less than or equal to N (as in queries using the GROUP BY OF HAVING clause).

The Underlying Functions for a UDA

A UDAF must maintain a state value across subsequent calls, so that it can accumulate a result across a set of calls, rather than derive it purely from one set of arguments. For that reason, a UDAF is represented by multiple underlying functions:

- An initialization function that sets any counters to zero, creates empty buffers, and does any other one-time setup for a query.
- An update function that processes the arguments for each row in the query result set and accumulates an
 intermediate result for each node. For example, this function might increment a counter, append to a string
 buffer, or set flags.
- A merge function that combines the intermediate results from two different nodes.
- A serialize function that flattens any intermediate values containing pointers, and frees any memory allocated during the init, update, and merge phases.
- A finalize function that either passes through the combined result unchanged, or does one final transformation.

In the SQL syntax, you create a UDAF by using the statement CREATE AGGREGATE FUNCTION. You specify the entry points of the underlying C++ functions using the clauses INIT_FN, UPDATE_FN, MERGE_FN, SERIALIZE_FN, and FINALIZE_FN.

For convenience, you can use a naming convention for the underlying functions and Impala automatically recognizes those entry points. Specify the <code>UPDATE_FN</code> clause, using an entry point name containing the string <code>update</code> or <code>Update</code>. When you omit the other <code>_FN</code> clauses from the SQL statement, Impala looks for entry points with names formed by substituting the <code>update</code> or <code>Update</code> portion of the specified name.

```
uda-sample.h:
```

See this file online at: https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.cc uda-sample.cc:

See this file online at: https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.h

Building and Deploying UDFs

This section explains the steps to compile Impala UDFs from C++ source code, and deploy the resulting libraries for use in Impala queries.

Impala ships with a sample build environment for UDFs, that you can study, experiment with, and adapt for your own use. This sample build environment starts with the cmake configuration command, which reads the file CMakeLists.txt and generates a Makefile customized for your particular directory paths. Then the make command runs the actual build steps based on the rules in the Makefile.

Impala loads the shared library from an HDFS location. After building a shared library containing one or more UDFs, use hdfs dfs or hadoop fs commands to copy the binary file to an HDFS location readable by Impala.

The final step in deployment is to issue a CREATE FUNCTION statement in the impala-shell interpreter to make Impala aware of the new function. See <u>CREATE FUNCTION Statement</u> on page 171 for syntax details. Because each function is associated with a particular database, always issue a USE statement to the appropriate database before creating a function, or specify a fully qualified name, that is, CREATE FUNCTION db name.function name.

As you update the UDF code and redeploy updated versions of a shared library, use DROP FUNCTION and CREATE FUNCTION to let Impala pick up the latest version of the code.

Note:

Currently, Impala UDFs and UDAs are not persisted in the metastore database. Information about these functions is held in the memory of the catalogd daemon. You must reload them by running the CREATE FUNCTION statements again each time you restart the catalogd daemon.

Prerequisites for the build environment are:

```
# Use the appropriate package installation command for your Linux distribution.
sudo yum install gcc-c++ cmake boost-devel
sudo yum install impala-udf-devel
```

Then, unpack the sample code in udf_samples.tar.gz and use that as a template to set up your build environment.

To build the original samples:

```
# Process CMakeLists.txt and set up appropriate Makefiles.
cmake .
# Generate shared libraries from UDF and UDAF sample code,
# udf_samples/libudfsample.so and udf_samples/libudasample.so
```

The sample code to examine, experiment with, and adapt is in these files:

- udf-sample.h: Header file that declares the signature for a scalar UDF (AddUDF).
- udf-sample.cc: Sample source for a simple UDF that adds two integers. Because Impala can reference multiple function entry points from the same shared library, you could add other UDF functions in this file and add their signatures to the corresponding header file.
- udf-sample-test.cc: Basic unit tests for the sample UDF.
- uda-sample.h: Header file that declares the signature for sample aggregate functions. The SQL functions will be called COUNT, AVG, and STRINGCONCAT. Because aggregate functions require more elaborate coding

to handle the processing for multiple phases, there are several underlying C++ functions such as Count Init, AvgUpdate, and StringConcatFinalize.

- uda-sample.cc: Sample source for simple UDAFs that demonstrate how to manage the state transitions as the underlying functions are called during the different phases of query processing.
 - The UDAF that imitates the COUNT function keeps track of a single incrementing number; the merge functions combine the intermediate count values from each Impala node, and the combined number is returned verbatim by the finalize function.
 - The UDAF that imitates the AVG function keeps track of two numbers, a count of rows processed and the sum of values for a column. These numbers are updated and merged as with COUNT, then the finalize function divides them to produce and return the final average value.
 - The UDAF that concatenates string values into a comma-separated list demonstrates how to manage storage for a string that increases in length as the function is called for multiple rows.
- uda-sample-test.cc: basic unit tests for the sample UDAFs.

Performance Considerations for UDFs

Because a UDF typically processes each row of a table, potentially being called billions of times, the performance of each UDF is a critical factor in the speed of the overall ETL or ELT pipeline. Tiny optimizations you can make within the function body can pay off in a big way when the function is called over and over when processing a huge result set.

Examples of Creating and Using UDFs

This section demonstrates how to create and use all kinds of user-defined functions (UDFs).

For downloadable examples that you can experiment with, adapt, and use as templates for your own functions, see the Cloudera sample UDF github. You must have already installed the appropriate header files, as explained in Installing the UDF Development Package on page 298.

Sample C++ UDFs: HasVowels, CountVowels, StripVowels

This example shows 3 separate UDFs that operate on strings and return different data types. In the C++ code, the functions are <code>HasVowels()</code> (checks if a string contains any vowels), <code>CountVowels()</code> (returns the number of vowels in a string), and StripVowels() (returns a new string with vowels removed).

First, we add the signatures for these functions to udf-sample.h in the demo build environment:

```
BooleanVal HasVowels(FunctionContext* context, const StringVal& input);
IntVal CountVowels(FunctionContext* context, const StringVal& arg1);
StringVal StripVowels(FunctionContext* context, const StringVal& arg1);
```

Then, we add the bodies of these functions to udf-sample.cc:

```
BooleanVal HasVowels(FunctionContext* context, const StringVal& input)
        if (input.is_null) return BooleanVal::null();
        int index;
        uint8_t *ptr;
        for (ptr = input.ptr, index = 0; index <= input.len; index++, ptr++)</pre>
                uint8_t c = tolower(*ptr);
                if (c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u')
                        return BooleanVal(true);
        return BooleanVal(false);
IntVal CountVowels(FunctionContext* context, const StringVal& arg1)
```

```
if (arg1.is_null) return IntVal::null();
        int count;
        int index;
        uint8_t *ptr;
        for (ptr = arg1.ptr, count = 0, index = 0; index <= arg1.len; index++, ptr++)</pre>
                uint8_t c = tolower(*ptr);
                if (c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u')
                        count++;
        return IntVal(count);
StringVal StripVowels(FunctionContext* context, const StringVal& arg1)
        if (arg1.is_null) return StringVal::null();
        int index;
        std::string original((const char *)arg1.ptr,arg1.len);
        std::string shorter("");
        for (index = 0; index < original.length(); index++)</pre>
                uint8_t c = original[index];
                uint8_t l = tolower(c);
                if (l == 'a' || l == 'e' || l == 'i' || l == 'o' || l == 'u')
                else
                {
                    shorter.append(1, (char)c);
// The modified string is stored in 'shorter', which is destroyed when this function
ends. We need to make a string val
// and copy the contents.
       StringVal result(context, shorter.size()); // Only the version of the ctor that
 takes a context object allocates new memory
       memcpy(result.ptr, shorter.c_str(), shorter.size());
       return result;
```

We build a shared library, libudfsample.so, and put the library file into HDFS where Impala can read it:

```
$ make
  0%] Generating udf_samples/uda-sample.ll
  16%] Built target uda-sample-ir
[ 33%] Built target udasample
[ 50%] Built target uda-sample-test
[ 50%] Generating udf_samples/udf-sample.ll
[ 66%] Built target udf-sample-ir
Scanning dependencies of target udfsample
[ 83%] Building CXX object CMakeFiles/udfsample.dir/udf-sample.o
Linking CXX shared library udf_samples/libudfsample.so
[ 83%] Built target udfsample
Linking CXX executable udf_samples/udf-sample-test
[100%] Built target udf-sample-test
$ hdfs dfs -put ./udf_samples/libudfsample.so /user/hive/udfs/libudfsample.so
  ______
```

Finally, we go into the impala-shell interpreter where we set up some sample data, issue CREATE FUNCTION statements to set up the SQL function names, and call the functions in some queries:

```
[localhost:21000] > create database udf_testing;
[localhost:21000] > use udf_testing;
```

```
[localhost:21000] > create function has_vowels (string) returns boolean location
 /user/hive/udfs/libudfsample.so' symbol='HasVowels';
[localhost:21000] > select has_vowels('abc');
| udfs.has_vowels('abc') |
| true
Returned 1 row(s) in 0.13s
[localhost:21000] > select has_vowels('zxcvbnm');
| udfs.has_vowels('zxcvbnm')
 ______
false
+----+
Returned 1 row(s) in 0.12s
[localhost:21000] > select has_vowels(null);
udfs.has_vowels(null)
+-----
NULL
Returned 1 row(s) in 0.11s
[localhost:21000] > select s, has_vowels(s) from t2;
s | udfs.has_vowels(s)
·
+-----
 lower true
 Init cap true
CamelCase true
Returned 4 row(s) in 0.24s
[localhost:21000] > create function count_vowels (string) returns int location
 /user/hive/udfs/libudfsample.so' symbol='CountVowels';
[localhost:21000] > select count_vowels('cat in the hat');
| udfs.count_vowels('cat in the hat')
Returned 1 row(s) in 0.12s
[localhost:21000] > select s, count_vowels(s) from t2;
s | udfs.count_vowels(s)
 UPPER
 Init cap
CamelCase 4
Returned 4 row(s) in 0.23s
[localhost:21000] > select count_vowels(null);
udfs.count_vowels(null)
  ______
NULL
Returned 1 row(s) in 0.12s
[localhost:21000] > create function strip_vowels (string) returns string location
 /user/hive/udfs/libudfsample.so' symbol='StripVowels';
[localhost:21000] > select strip_vowels('abcdefg');
| udfs.strip_vowels('abcdefg') |
bcdfa
Returned 1 row(s) in 0.11s
[localhost:21000] > select strip_vowels('ABCDEFG');
```

```
| udfs.strip_vowels('abcdefg') |
BCDFG
Returned 1 row(s) in 0.12s
[localhost:21000] > select strip_vowels(null);
udfs.strip_vowels(null)
NULL
Returned 1 row(s) in 0.16s
[localhost:21000] > select s, strip_vowels(s) from t2;
    udfs.strip_vowels(s)
 lower
UPPER
            PPR
Init cap | nt cp | CamelCase | CmlCs
Returned 4 row(s) in 0.24s
```

Sample C++ UDA: SumOfSquares

This example demonstrates a user-defined aggregate function (UDA) that produces the sum of the squares of its input values.

The coding for a UDA is a little more involved than a scalar UDF, because the processing is split into several phases, each implemented by a different function. Each phase is relatively straightforward: the "update" and "merge" phases, where most of the work is done, read an input value and combine it with some accumulated intermediate value.

As in our sample UDF from the previous example, we add function signatures to a header file (in this case, uda-sample.h). Because this is a math-oriented UDA, we make two versions of each function, one accepting an integer value and the other accepting a floating-point value.

```
void SumOfSquaresInit(FunctionContext* context, BigIntVal* val);
void SumOfSquaresInit(FunctionContext* context, DoubleVal* val);
void SumOfSquaresUpdate(FunctionContext* context, const BigIntVal& input, BigIntVal*
val);
void SumOfSquaresUpdate(FunctionContext* context, const DoubleVal& input, DoubleVal*
val);
void SumOfSquaresMerge(FunctionContext* context, const BigIntVal& src, BigIntVal* dst);
void SumOfSquaresMerge(FunctionContext* context, const DoubleVal& src, DoubleVal* dst);
BigIntVal SumOfSquaresFinalize(FunctionContext* context, const BigIntVal& val);
DoubleVal SumOfSquaresFinalize(FunctionContext* context, const DoubleVal& val);
```

We add the function bodies to a C++ source file (in this case, uda-sample.cc):

```
void SumOfSquaresInit(FunctionContext* context, BigIntVal* val) {
 val->is_null = false;
  val->val = 0;
void SumOfSquaresInit(FunctionContext* context, DoubleVal* val) {
 val->is_null = false;
 val->val = 0.0;
void SumOfSquaresUpdate(FunctionContext* context, const BigIntVal& input, BigIntVal*
val)
 if (input.is_null) return;
 val->val += input.val * input.val;
void SumOfSquaresUpdate(FunctionContext* context, const DoubleVal& input, DoubleVal*
val) {
```

```
if (input.is_null) return;
val->val += input.val * input.val;
}

void SumOfSquaresMerge(FunctionContext* context, const BigIntVal& src, BigIntVal* dst)
{
    dst->val += src.val;
}

void SumOfSquaresMerge(FunctionContext* context, const DoubleVal& src, DoubleVal* dst)
{
    dst->val += src.val;
}

BigIntVal SumOfSquaresFinalize(FunctionContext* context, const BigIntVal& val) {
    return val;
}

DoubleVal SumOfSquaresFinalize(FunctionContext* context, const DoubleVal& val) {
    return val;
}
```

As with the sample UDF, we build a shared library and put it into HDFS:

```
$ make
  0%] Generating udf_samples/uda-sample.ll
[ 16%] Built target uda-sample-ir
Scanning dependencies of target udasample
[ 33%] Building CXX object CMakeFiles/udasample.dir/uda-sample.o
Linking CXX shared library udf_samples/libudasample.so
[ 33%] Built target udasample
Scanning dependencies of target uda-sample-test
 50%] Building CXX object CMakeFiles/uda-sample-test.dir/uda-sample-test.o
Linking CXX executable udf_samples/uda-sample-test
 50%] Built target uda-sample-test
  50%] Generating udf_samples/udf-sample.ll
 66%] Built target udf-sample-ir
 83%] Built target udfsample
[100%] Built target udf-sample-test
$ hdfs dfs -put ./udf_samples/libudasample.so /user/hive/udfs/libudasample.so
           ______
```

To create the SQL function, we issue a CREATE AGGREGATE FUNCTION statement and specify the underlying C++ function names for the different phases:

```
[localhost:21000] > use udf_testing;
[localhost:21000] > create table sos (x bigint, y double);
[localhost:21000] > insert into sos values (1, 1.1), (2, 2.2), (3, 3.3), (4, 4.4);
Inserted 4 rows in 1.10s
[localhost:21000] > create aggregate function sum_of_squares(bigint) returns bigint
  > location '/user/hive/udfs/libudasample.so'
  > init_fn='SumOfSquaresInit'
  > update_fn='SumOfSquaresUpdate'
  > merge_fn='SumOfSquaresMerge'
  > finalize_fn='SumOfSquaresFinalize';
[localhost:21000] > -- Compute the same value using literals or the UDA;
[localhost:21000] > select 1*1 + 2*2 + 3*3 + 4*4;
1 * 1 + 2 * 2 + 3 * 3 + 4 * 4
Returned 1 row(s) in 0.12s
[localhost:21000] > select sum_of_squares(x) from sos;
| udfs.sum_of_squares(x) |
+----+
30
Returned 1 row(s) in 0.35s
```

Until we create the overloaded version of the UDA, it can only handle a single data type. To allow it to handle DOUBLE as well as BIGINT, we issue another CREATE AGGREGATE FUNCTION statement:

```
[localhost:21000] > select sum_of_squares(y) from sos;
ERROR: AnalysisException: No matching function with signature:
udfs.sum_of_squares(DOUBLE).
[localhost:21000] > create aggregate function sum_of_squares(double) returns double
  > location '/user/hive/udfs/libudasample.so'
  > init_fn='SumOfSquaresInit'
  > update_fn='SumOfSquaresUpdate'
  > merge_fn='SumOfSquaresMerge'
  > finalize_fn='SumOfSquaresFinalize';
[localhost:21000] > -- Compute the same value using literals or the UDA;
[localhost:21000] > select 1.1*1.1 + 2.2*2.2 + 3.3*3.3 + 4.4*4.4;
| 1.1 * 1.1 + 2.2 * 2.2 + 3.3 * 3.3 + 4.4 * 4.4 |
36.3
Returned 1 row(s) in 0.12s
[localhost:21000] > select sum_of_squares(y) from sos;
| udfs.sum_of_squares(y) |
36.3
Returned 1 row(s) in 0.35s
```

Typically, you use a UDA in queries with GROUP BY clauses, to produce a result set with a separate aggregate value for each combination of values from the GROUP BY clause. Let's change our sample table to use 0 to indicate rows containing even values, and 1 to flag rows containing odd values. Then the GROUP BY query can return two values, the sum of the squares for the even values, and the sum of the squares for the odd values:

```
[localhost:21000] > insert overwrite sos values (1, 1), (2, 0), (3, 1), (4, 0);
Inserted 4 rows in 1.24s
[localhost:21000] > -- Compute 1 squared + 3 squared, and 2 squared + 4 squared;
[localhost:21000] > select y, sum_of_squares(x) from sos group by y;
y | udfs.sum_of_squares(x)
0 20
Returned 2 row(s) in 0.43s
```

Security Considerations for User-Defined Functions

When the Impala authorization feature is enabled:

- To call a UDF in a query, you must have the required read privilege for any databases and tables used in the
- Because incorrectly coded UDFs could cause performance or capacity problems, for example by going into infinite loops or allocating excessive amounts of memory, only an administrative user can create UDFs. That is, to execute the CREATE FUNCTION statement requires the ALL privilege on the server.

See Enabling Sentry Authorization for Impala on page 89 for details about authorization in Impala.

Limitations and Restrictions for Impala UDFs

The following limitations and restrictions apply to Impala UDFs in the current release:

 Impala does not support Hive UDFs that accept or return composite or nested types, or other types not available in Impala tables.

- All Impala UDFs must be deterministic, that is, produce the same output each time when passed the same argument values. For example, an Impala UDF must not call functions such as rand() to produce different values for each invocation. It must not retrieve data from external sources, such as from disk or over the network.
- An Impala UDF must not spawn other threads or processes.
- When the catalogd process is restarted, all UDFs become undefined and must be reloaded.
- Impala currently does not support user-defined table functions (UDTFs).
- The CHAR and VARCHAR types cannot be used as input arguments or return values for UDFs.

SQL Differences Between Impala and Hive

Impala's SQL syntax follows the SQL-92 standard, and includes many industry extensions in areas such as built-in functions. See <u>Porting SQL from Other Database Systems to Impala</u> on page 312 for a general discussion of adapting SQL code from a variety of database systems to Impala.

Because Impala and Hive share the same metastore database and their tables are often used interchangeably, the following section covers differences between Impala and Hive in detail.

HiveQL Features not Available in Impala

The current release of Impala does not support the following SQL features that you might be familiar with from HiveQL:

- Non-scalar data types such as maps, arrays, structs.
- Extensibility mechanisms such as TRANSFORM, custom file formats, or custom SerDes.
- XML and JSON functions.
- Certain aggregate functions from HiveQL: covar_pop, covar_samp, corr, percentile, percentile_approx, histogram_numeric, collect_set; Impala supports the set of aggregate functions listed in Impala Aggregate Functions on page 271 and analytic functions listed in Impala Analytic Functions on page 282.
- Sampling.
- Lateral views.
- Multiple DISTINCT clauses per query, although Impala includes some workarounds for this limitation.

Note:

By default, Impala only allows a single COUNT(DISTINCT columns) expression in each query.

If you do not need precise accuracy, you can produce an estimate of the distinct values for a column by specifying NDV(column); a query can contain multiple instances of NDV(column). To make Impala automatically rewrite COUNT(DISTINCT) expressions to NDV(), enable the APPX_COUNT_DISTINCT query option.

To produce the same result as multiple COUNT(DISTINCT) expressions, you can use the following technique for queries involving a single table:

```
select v1.c1 result1, v2.c1 result2 from
(select count(distinct col1) as c1 from t1) v1
cross join
(select count(distinct col2) as c1 from t1) v2;
```

Because $\tt CROSS\ JOIN\ is\ an\ expensive\ operation,\ prefer\ to\ use\ the\ NDV()\ technique\ wherever\ practical.$

User-defined functions (UDFs) are supported starting in Impala 1.2. See <u>Impala User-Defined Functions (UDFs)</u> on page 295 for full details on Impala UDFs.

Impala supports high-performance UDFs written in C++, as well as reusing some Java-based Hive UDFs.

- Impala supports scalar UDFs and user-defined aggregate functions (UDAFs). Impala does not currently support user-defined table generating functions (UDTFs).
- Only Impala-supported column types are supported in Java-based UDFs.

Impala does not currently support these HiveQL statements:

- ANALYZE TABLE (the Impala equivalent is COMPUTE STATS)
- DESCRIBE COLUMN
- DESCRIBE DATABASE
- EXPORT TABLE
- IMPORT TABLE
- SHOW TABLE EXTENDED
- SHOW INDEXES
- SHOW COLUMNS

Semantic Differences Between Impala and HiveQL Features

This section covers instances where Impala and Hive have similar functionality, sometimes including the same syntax, but there are differences in the runtime semantics of those features.

Security:

Impala utilizes the Apache Sentry (incubating) authorization framework, which provides fine-grained role-based access control to protect data against unauthorized access or tampering.

The Hive component included in CDH 5.1 and higher now includes Sentry-enabled GRANT, REVOKE, and CREATE/DROP ROLE statements. Earlier Hive releases had a privilege system with GRANT and REVOKE statements that were primarily intended to prevent accidental deletion of data, rather than a security mechanism to protect against malicious users.

Impala can make use of privileges set up through Hive GRANT and REVOKE statements. Impala has its own GRANT and REVOKE statements in Impala 2.0 and higher. See Enabling Sentry Authorization for Impala on page 89 for the details of authorization in Impala, including how to switch from the original policy file-based privilege model to the Sentry service using privileges stored in the metastore database.

SOL statements and clauses:

The semantics of Impala SQL statements varies from HiveQL in some cases where they use similar SQL statement and clause names:

- Impala uses different syntax and names for query hints, [SHUFFLE] and [NOSHUFFLE] rather than MapJoin or StreamJoin. See Joins on page 213 for the Impala details.
- Impala does not expose MapReduce specific features of SORT BY, DISTRIBUTE BY, OR CLUSTER BY.
- Impala does not require queries to include a FROM clause.

Data types:

- Impala supports a limited set of implicit casts. This can help avoid undesired results from unexpected casting behavior.
 - Impala does not implicitly cast between string and numeric or Boolean types. Always use CAST() for these conversions.
 - Impala does perform implicit casts among the numeric types, when going from a smaller or less precise type to a larger or more precise one. For example, Impala will implicitly convert a SMALLINT to a BIGINT or float, but to convert from double to float or int to tinyint requires a call to cast() in the query.
 - Impala does perform implicit casts from string to timestamp. Impala has a restricted set of literal formats for the TIMESTAMP data type and the from unixtime() format string; see IMESTAMP Data Type on page 128 for details.

See <u>Data Types</u> on page 109 for full details on implicit and explicit casting for all types, and <u>Impala Type</u> Conversion Functions on page 256 for details about the CAST() function.

- Impala does not store or interpret timestamps using the local timezone, to avoid undesired results from unexpected time zone issues. Timestamps are stored and interpreted relative to UTC. This difference can produce different results for some calls to similarly named date/time functions between Impala and Hive. See Impala Date and Time Functions on page 256 for details about the Impala functions.
- The Impala TIMESTAMP type can represent dates ranging from 1400-01-01 to 9999-12-31. This is different from the Hive date range, which is 0000-01-01 to 9999-12-31.
- Impala does not return column overflows as NULL, so that customers can distinguish between NULL data and overflow conditions similar to how they do so with traditional database systems. Impala returns the largest or smallest value in the range for the type. For example, valid values for a tinyint range from -128 to 127. In Impala, a tinyint with a value of -200 returns -128 rather than NULL. A tinyint with a value of 200 returns 127.

Miscellaneous features:

- Impala does not provide virtual columns.
- Impala does not expose locking.
- Impala does not expose some configuration properties.

Porting SQL from Other Database Systems to Impala

Although Impala uses standard SQL for queries, you might need to modify SQL source when bringing applications to Impala, due to variations in data types, built-in functions, vendor language extensions, and Hadoop-specific syntax. Even when SQL is working correctly, you might make further minor modifications for best performance.

Porting DDL and DML Statements

When adapting SQL code from a traditional database system to Impala, expect to find a number of differences in the DDL statements that you use to set up the schema. Clauses related to physical layout of files, tablespaces, and indexes have no equivalent in Impala. You might restructure your schema considerably to account for the Impala partitioning scheme and Hadoop file formats.

Expect SQL queries to have a much higher degree of compatibility. With modest rewriting to address vendor extensions and features not yet supported in Impala, you might be able to run identical or almost-identical query text on both systems.

Therefore, consider separating out the DDL into a separate Impala-specific setup script. Focus your reuse and ongoing tuning efforts on the code for SQL queries.

Porting Data Types from Other Database Systems

- Change any VARCHAR, VARCHAR2, and CHAR columns to STRING. Remove any length constraints from the column declarations; for example, change VARCHAR(32) or CHAR(1) to STRING. Impala is very flexible about the length of string values; it does not impose any length constraints or do any special processing (such as blank-padding) for STRING columns. (In Impala 2.0 and higher, there are data types VARCHAR and CHAR, with length constraints for both types and blank-padding for CHAR. However, for performance reasons, it is still preferable to use STRING columns where practical.)
- For national language character types such as NCHAR, NVARCHAR, or NCLOB, be aware that while Impala can store and query UTF-8 character data, currently some string manipulation operations only work correctly with ASCII data. See STRING Data Type on page 126 for details.
- Change any DATE, DATETIME, or TIME columns to TIMESTAMP. Remove any precision constraints. Remove any timezone clauses, and make sure your application logic or ETL process accounts for the fact that Impala expects all TIMESTAMP values to be in Coordinated Universal Time (UTC). See TIMESTAMP Data Type on page 128 for information about the TIMESTAMP data type, and Impala Date and Time Functions on page 256 for conversion functions for different date and time formats.

You might also need to adapt date- and time-related literal values and format strings to use the supported Impala date and time formats. If you have date and time literals with different separators or different numbers of YY, MM, and so on placeholders than Impala expects, consider using calls to regexp_replace() to transform those values to the Impala-compatible format. See <u>TIMESTAMP Data Type</u> on page 128 for information about the allowed formats for date and time literals, and <u>Impala String Functions</u> on page 265 for string conversion functions such as regexp_replace().

Instead of SYSDATE, call the function NOW().

Instead of adding or subtracting directly from a date value to produce a value N days in the past or future, use an Interval expression, for example NOW() + INTERVAL 30 DAYS.

Although Impala supports INTERVAL expressions for datetime arithmetic, as shown in TIMESTAMP Data Type on page 128, INTERVAL is not available as a column data type in Impala. For any INTERVAL values stored in tables, convert them to numeric values that you can add or subtract using the functions in Impala Date and Time Functions on page 256. For example, if you had a table DEADLINES with an INT column TIME_PERIOD, you could construct dates N days in the future like so:

```
SELECT NOW() + INTERVAL time_period DAYS from deadlines;
```

- For YEAR columns, change to the smallest Impala integer type that has sufficient range. See <u>Data Types</u> on page 109 for details about ranges, casting, and so on for the various numeric data types.
- Change any DECIMAL and NUMBER types. If fixed-point precision is not required, you can use FLOAT or DOUBLE on the Impala side depending on the range of values. For applications that require precise decimal values, such as financial data, you might need to make more extensive changes to table structure and application logic, such as using separate integer columns for dollars and cents, or encoding numbers as string values and writing UDFs to manipulate them. See <u>Data Types</u> on page 109 for details about ranges, casting, and so on for the various numeric data types.
- FLOAT, DOUBLE, and REAL types are supported in Impala. Remove any precision and scale specifications. (In Impala, REAL is just an alias for DOUBLE; columns declared as REAL are turned into DOUBLE behind the scenes.) See <u>Data Types</u> on page 109 for details about ranges, casting, and so on for the various numeric data types.
- Most integer types from other systems have equivalents in Impala, perhaps under different names such as BIGINT instead of INT8. For any that are unavailable, for example MEDIUMINT, switch to the smallest Impala integer type that has sufficient range. Remove any precision specifications. See Data Types on page 109 for details about ranges, casting, and so on for the various numeric data types.
- Remove any UNSIGNED constraints. All Impala numeric types are signed. See <u>Data Types</u> on page 109 for details about ranges, casting, and so on for the various numeric data types.
- For any types holding bitwise values, use an integer type with enough range to hold all the relevant bits within a positive integer. See <u>Data Types</u> on page 109 for details about ranges, casting, and so on for the various numeric data types.

For example, TINYINT has a maximum positive value of 127, not 256, so to manipulate 8-bit bitfields as positive numbers switch to the next largest type SMALLINT.

```
[localhost:21000] > select cast(127*2 as tinyint);
cast(127 * 2 as tinyint)
[localhost:21000] > select cast(128 as tinyint);
cast(128 as tinyint)
-128
[localhost:21000] > select cast(127*2 as smallint);
```

```
cast(127 * 2 as smallint)
```

Impala does not support notation such as b'0101' for bit literals.

- For BLOB values, use STRING to represent CLOB or TEXT types (character based large objects) up to 32 KB in size. Binary large objects such as BLOB, RAW BINARY, and VARBINARY do not currently have an equivalent in
- For Boolean-like types such as BOOL, use the Impala BOOLEAN type.
- Because Impala currently does not support composite or nested types, any spatial data types in other database systems do not have direct equivalents in Impala. You could represent spatial values in string format and write UDFs to process them. See Impala User-Defined Functions (UDFs) on page 295 for details. Where practical, separate spatial types into separate tables so that Impala can still work with the non-spatial data.
- Take out any DEFAULT clauses. Impala can use data files produced from many different sources, such as Pig, Hive, or MapReduce jobs. The fast import mechanisms of LOAD DATA and external tables mean that Impala is flexible about the format of data files, and Impala does not necessarily validate or cleanse data before querying it. When copying data through Impala INSERT statements, you can use conditional functions such as CASE or NVL to substitute some other value for NULL fields; see Impala Conditional Functions on page 262 for details.
- Take out any constraints from your CREATE TABLE and ALTER TABLE statements, for example PRIMARY KEY, FOREIGN KEY, UNIQUE, NOT NULL, UNSIGNED, OR CHECK CONSTRAINTS. Impala can use data files produced from many different sources, such as Pig, Hive, or MapReduce jobs. Therefore, Impala expects initial data validation to happen earlier during the ETL or ELT cycle. After data is loaded into Impala tables, you can perform queries to test for NULL values. When copying data through Impala INSERT statements, you can use conditional functions such as CASE or NVL to substitute some other value for NULL fields; see Impala Conditional Functions on page 262 for details.

Do as much verification as practical before loading data into Impala. After data is loaded into Impala, you can do further verification using SQL queries to check if values have expected ranges, if values are NULL or not, and so on. If there is a problem with the data, you will need to re-run earlier stages of the ETL process, or do an INSERT ... SELECT statement in Impala to copy the faulty data to a new table and transform or filter out the bad values.

- Take out any CREATE INDEX, DROP INDEX, and ALTER INDEX statements, and equivalent ALTER TABLE statements. Remove any INDEX, KEY, Or PRIMARY KEY clauses from CREATE TABLE and ALTER TABLE statements. Impala is optimized for bulk read operations for data warehouse-style queries, and therefore does not support indexes for its tables.
- Calls to built-in functions with out-of-range or otherwise incorrect arguments, return NULL in Impala as opposed to raising exceptions. (This rule applies even when the ABORT_ON_ERROR=true query option is in effect.) Run small-scale queries using representative data to doublecheck that calls to built-in functions are returning expected values rather than NULL. For example, unsupported CAST operations do not raise an error in Impala:

```
select cast('foo' as int);
cast('foo' as int)
```

For any other type not supported in Impala, you could represent their values in string format and write UDFs to process them. See Impala User-Defined Functions (UDFs) on page 295 for details.

To detect the presence of unsupported or unconvertable data types in data files, do initial testing with the ABORT_ON_ERROR=true query option in effect. This option causes queries to fail immediately if they encounter disallowed type conversions. See ABORT_ON_ERROR Query Option on page 325 for details. For example:

```
set abort_on_error=true;
select count(*) from (select * from t1);
-- The above query will fail if the data files for T1 contain any
-- values that can't be converted to the expected Impala data types.
-- For example, if T1.C1 is defined as INT but the column contains
-- floating-point values like 1.1, the query will return an error.
```

SQL Statements to Remove or Adapt

Some SQL statements or clauses that you might be familiar with are not currently supported in Impala:

- Impala has no DELETE statement. Impala is intended for data warehouse-style operations where you do bulk moves and transforms of large quantities of data. Instead of using DELETE, use INSERT OVERWRITE to entirely replace the contents of a table or partition, or use INSERT ... SELECT to copy a subset of data (everything but the rows you intended to delete) from one table to another. See DML Statements on page 158 for an overview of Impala DML statements.
- Impala has no update statement. Impala is intended for data warehouse-style operations where you do bulk moves and transforms of large quantities of data. Instead of using UPDATE, do all necessary transformations early in the ETL process, such as in the job that generates the original data, or when copying from one table to another to convert to a particular file format or partitioning scheme. See DML Statements on page 158 for an overview of Impala DML statements.
- Impala has no transactional statements, such as COMMIT or ROLLBACK. Impala effectively works like the AUTOCOMMIT mode in some database systems, where changes take effect as soon as they are made.
- If your database, table, column, or other names conflict with Impala reserved words, use different names or quote the names with backticks. See Impala Reserved Words on page 431 for the current list of Impala reserved words.
 - Conversely, if you use a keyword that Impala does not recognize, it might be interpreted as a table or column alias. For example, in SELECT * FROM t1 NATURAL JOIN t2, Impala does not recognize the NATURAL keyword and interprets it as an alias for the table t1. If you experience any unexpected behavior with queries, check the list of reserved words to make sure all keywords in join and WHERE clauses are recognized.
- Impala supports subqueries only in the FROM clause of a query, not within the WHERE clauses. Therefore, you cannot use clauses such as where column in (subquery). Also, Impala does not allow EXISTS or NOT EXISTS clauses (although EXISTS is a reserved keyword).
- Impala supports union and union all set operators, but not intersect. Prefer union all over union when you know the data sets are disjoint or duplicate values are not a problem; UNION ALL is more efficient because it avoids materializing and sorting the entire result set to eliminate duplicate values.
- Within queries, Impala requires query aliases for any subqueries:

```
-- Without the alias 'contents_of_t1' at the end, query gives syntax error.
select count(*) from (select * from t1) contents_of_t1;
```

When an alias is declared for an expression in a query, that alias cannot be referenced again within the same query block:

```
-- Can't reference AVERAGE twice in the SELECT list where it's defined.
select avg(x) as average, average+1 from t1 group by x;
ERROR: AnalysisException: couldn't resolve column reference: 'average'
-- Although it can be referenced again later in the same query.
select avg(x) as average from t1 group by x having average > 3;
```

For Impala, either repeat the expression again, or abstract the expression into a WITH clause, creating named columns that can be referenced multiple times anywhere in the base query:

```
-- The following 2 query forms are equivalent.
select avg(x) as average, avg(x)+1 from t1 group by x;
with avg_t as (select avg(x) average from t1 group by x) select average, average+1
from avg_t;
```

- Impala does not support certain rarely used join types that are less appropriate for high-volume tables used for data warehousing. In some cases, Impala supports join types but requires explicit syntax to ensure you do not do inefficient joins of huge tables by accident. For example, Impala does not support natural joins or anti-joins, and requires the CROSS JOIN operator for Cartesian products. See Joins on page 213 for details on the syntax for Impala join clauses.
- Impala has a limited choice of partitioning types. Partitions are defined based on each distinct combination of values for one or more partition key columns. Impala does not redistribute or check data to create evenly distributed partitions; you must choose partition key columns based on your knowledge of the data volume and distribution. Adapt any tables that use range, list, hash, or key partitioning to use the Impala partition syntax for CREATE TABLE and ALTER TABLE statements. Impala partitioning is similar to range partitioning where every range has exactly one value, or key partitioning where the hash function produces a separate bucket for every combination of key values. See Partitioning for Impala Tables on page 379 for usage details, and CREATE TABLE Statement on page 174 and ALTER TABLE Statement on page 159 for syntax.
 - **Note:** Because the number of separate partitions is potentially higher than in other database systems, keep a close eye on the number of partitions and the volume of data in each one; scale back the number of partition key columns if you end up with too many partitions with a small volume of data in each one. Remember, to distribute work for a query across a cluster, you need at least one HDFS block per node. HDFS blocks are typically multiple megabytes, especially for Parquet files. Therefore, if each partition holds only a few megabytes of data, you are unlikely to see much parallelism in the query because such a small amount of data is typically processed by a single node.
- For "top-N" queries, Impala uses the LIMIT clause rather than comparing against a pseudocolumn named ROWNUM or ROW_NUM. See LIMIT Clause on page 223 for details.

SOL Constructs to Doublecheck

Some SQL constructs that are supported have behavior or defaults more oriented towards convenience than optimal performance. Also, sometimes machine-generated SQL, perhaps issued through JDBC or ODBC applications, might have inefficiencies or exceed internal Impala limits. As you port SQL code, be alert and change these things where appropriate:

- A CREATE TABLE statement with no STORED AS clause creates data files in plain text format, which is convenient for data interchange but not a good choice for high-volume data with high-performance queries. See How Impala Works with Hadoop File Formats on page 384 for why and how to use specific file formats for compact data and high-performance queries. Especially see **Using the Parquet File Format with Impala** Tables on page 392, for details about the file format most heavily optimized for large-scale data warehouse queries.
- A CREATE TABLE statement with no PARTITIONED BY clause stores all the data files in the same physical location, which can lead to scalability problems when the data volume becomes large.
 - On the other hand, adapting tables that were already partitioned in a different database system could produce an Impala table with a high number of partitions and not enough data in each one, leading to underutilization of Impala's parallel query features.

See Partitioning for Impala Tables on page 379 for details about setting up partitioning and tuning the performance of queries on partitioned tables.

- The INSERT ... VALUES syntax is suitable for setting up toy tables with a few rows for functional testing, but because each such statement creates a separate tiny file in HDFS, it is not a scalable technique for loading megabytes or gigabytes (let alone petabytes) of data. Consider revising your data load process to produce raw data files outside of Impala, then setting up Impala external tables or using the LOAD DATA statement to use those data files instantly in Impala tables, with no conversion or indexing stage. See External Tables on page 152 and LOAD DATA Statement on page 206 for details about the Impala techniques for working with data files produced outside of Impala; see Data Loading and Querying Examples on page 59 for examples of ETL workflow for Impala.
- If your ETL process is not optimized for Hadoop, you might end up with highly fragmented small data files, or a single giant data file that cannot take advantage of distributed parallel queries or partitioning. In this case, use an INSERT ... SELECT statement to copy the data into a new table and reorganize into a more efficient layout in the same operation. See INSERT Statement on page 196 for details about the INSERT statement.
 - You can do INSERT ... SELECT into a table with a more efficient file format (see How Impala Works with Hadoop File Formats on page 384) or from an unpartitioned table into a partitioned one (see Partitioning for Impala Tables on page 379).
- The number of expressions allowed in an Impala query might be smaller than for some other database systems, causing failures for very complicated queries (typically produced by automated SQL generators). Where practical, keep the number of expressions in the WHERE clauses to approximately 2000 or fewer. As a workaround, set the query option DISABLE_CODEGEN=true if queries fail for this reason. See DISABLE CODEGEN Query Option on page 328 for details.
- If practical, rewrite union queries to use the union all operator instead. Prefer union all over union when you know the data sets are disjoint or duplicate values are not a problem; UNION ALL is more efficient because it avoids materializing and sorting the entire result set to eliminate duplicate values.

Next Porting Steps after Verifying Syntax and Semantics

Throughout this section, some of the decisions you make during the porting process also have a substantial impact on performance. After your SQL code is ported and working correctly, doublecheck the performance-related aspects of your schema design, physical layout, and queries to make sure that the ported application is taking full advantage of Impala's parallelism, performance-related SQL features, and integration with Hadoop components.

- Have you run the COMPUTE STATS statement on each table involved in join gueries? Have you also run COMPUTE STATS for each table used as the source table in an INSERT ... SELECT OF CREATE TABLE AS SELECT statement?
- Are you using the most efficient file format for your data volumes, table structure, and query characteristics?
- Are you using partitioning effectively? That is, have you partitioned on columns that are often used for filtering in WHERE clauses? Have you partitioned at the right granularity so that there is enough data in each partition to parallelize the work for each query?
- Does your ETL process produce a relatively small number of multi-megabyte data files (good) rather than a huge number of small files (bad)?

See Tuning Impala for Performance on page 340 for details about the whole performance tuning process.

Using the Impala Shell (impala-shell Command)

You can use the Impala shell tool (impala-shell) to set up databases and tables, insert data, and issue queries. For ad hoc queries and exploration, you can submit SQL statements in an interactive session. To automate your work, you can specify command-line options to process a single statement or a script file. The impala-shell interpreter accepts all the same SQL statements listed in SQL Statements on page 157, plus some shell-only commands that you can use for tuning performance and diagnosing problems.

The impala-shell command fits into the familiar Unix toolchain:

- The -q option lets you issue a single query from the command line, without starting the interactive interpreter. You could use this option to run impala-shell from inside a shell script or with the command invocation syntax from a Python, Perl, or other kind of script.
- The -o option lets you save query output to a file.
- The -B option turns off pretty-printing, so that you can produce comma-separated, tab-separated, or other delimited text files as output. (Use the --output_delimiter option to choose the delimiter character; the default is the tab character.)
- In non-interactive mode, query output is printed to stdout or to the file specified by the -o option, while incidental output is printed to stderr, so that you can process just the query output as part of a Unix pipeline.
- In interactive mode, impala-shell uses the readline facility to recall and edit previous commands.

For information on installing the Impala shell, see Installing Impala on page 29. In Cloudera Manager 4.1 and higher, Cloudera Manager installs impala-shell automatically. You might install impala-shell manually on other systems not managed by Cloudera Manager, so that you can issue queries from client systems that are not also running the Impala daemon or other Apache Hadoop components.

For information about establishing a connection to a DataNode running the impalad daemon through the impala-shell command, see Connecting to impalad through impala-shell on page 321.

For a list of the impala-shell command-line options, see <u>impala-shell Configuration Options</u> on page 318. For reference information about the impala-shell interactive commands, see <u>impala-shell Command Reference</u> on page 323.

impala-shell Configuration Options

You can specify the following options when starting the <code>impala-shell</code> command to change how shell commands are executed. The table shows the format to use when specifying each option on the command line, or through the <code>\$HOME/.impalarc</code> configuration file.

Note:

These options are different than the configuration options for the impalad daemon itself. For the impalad options, see <u>Modifying Impala Startup Options</u> on page 46.

Summary of impala-shell Configuration Options

The following table shows the names and allowed arguments for the impala-shell configuration options. You can specify options on the command line, or in a configuration file as described in impala-shell Configuration File on page 320.

Command-Line Option	Configuration File Setting	Explanation
-B ordelimited	write_delimited=true	Causes all query results to be printed in plain format as a delimited text file. Useful for producing data files to be used with other Hadoop components. Also useful

Command-Line Option	Configuration File Setting	Explanation
		for avoiding the performance overhead of pretty-printing all output, especially when running benchmark tests using queries returning large result sets. Specify the delimiter character with the —output_delimiter option. Store all query results in a file rather than printing to the screen with the —B option. Added in Impala 1.0.1.
print_header	print_header=true	
-o filename or output_file filename	output_file=filename	Stores all query results in the specified file. Typically used to store the results of a single query issued from the command line with the $-\mathbf{q}$ option. Also works for interactive sessions; you see the messages such as number of rows fetched, but not the actual result set. To suppress these incidental messages when combining the $-\mathbf{q}$ and $-\mathbf{o}$ options, redirect stderr to /dev/null. Added in Impala 1.0.1.
output_delimiter= <i>character</i>	output_delimiter= <i>character</i>	Specifies the character to use as a delimiter between fields when query results are printed in plain format by the -B option. Defaults to tab ('\t'). If an output value contains the delimiter character, that field is quoted and/or escaped. Added in Impala 1.0.1.
-p orshow_profiles	show_profiles=true	Displays the query execution plan (same output as the EXPLAIN statement) and a more detailed low-level breakdown of execution steps, for every query executed by the shell.
-h orhelp	N/A	Displays help information.
-i hostname or impalad=hostname[:portnum]	impalad=hostname[:portnum]	Connects to the impalad daemon on the specified host. The default port of 21000 is assumed unless you provide another value. You can connect to any host in your cluster that is running impalad. If you connect to an instance of impalad that was started with an alternate port specified by thefe_port flag, provide that alternative port.
-q query orquery=query	query= <i>query</i>	Passes a query or other impala-shell command from the command line. The impala-shell interpreter immediately exits after processing the statement. It is limited to a single statement, which could be a SELECT, CREATE TABLE, SHOW TABLES, or any other statement recognized in impala-shell. Because you cannot pass a USE statement and another query, fully qualify the names for any tables outside the default database. (Or use the -f option to pass a file with a USE statement followed by other queries.)
-f <i>query_file</i> or query_file= <i>query_file</i>	query_file= <i>path_to_query_file</i>	Passes a SQL query from a file. Multiple statements must be semicolon (;) delimited.
-k orkerberos	use_kerberos=true	Kerberos authentication is used when the shell connects to impalad. If Kerberos is not enabled on the

Using the Impala Shell (impala-shell Command)

Command-Line Option	Configuration File Setting	Explanation
		instance of impalad to which you are connecting, errors are displayed.
-s kerberos_service_name or kerberos_service_name=name	kerberos_service_name= <i>name</i>	Instructs impala-shell to authenticate to a particular impalad service principal. If a kerberos_service_name is not specified, impala is used by default. If this option is used in conjunction with a connection in which Kerberos is not supported, errors are returned.
-V orverbose	verbose=true	Enables verbose output.
quiet	verbose=false	Disables verbose output.
-v orversion	version=true	Displays version information.
-С	ignore_query_failure=true	Continues on query failure.
-r or refresh_after_connect	refresh_after_connect=true	Updates Impala metadata upon connection. Same as running the INVALIDATE METADATA statement after connecting. (This option was originally named when the REFRESH statement did the extensive metadata updates now performed by INVALIDATE METADATA.)
-d default_db or database=default_db	default_db= <i>default_db</i>	Specifies the database to be used on startup. Same as running the <u>USE</u> statement after connecting. If not specified, a database named <u>DEFAULT</u> is used.
-ssl	ssl=true	Enables SSL for impala-shell.
ca_cert= <i>path_to_certificate</i>	ca_cert= <i>path_to_certificate</i>	The local pathname pointing to the third-party CA certificate, or to a copy of the server certificate for self-signed server certificates. Ifca_cert is not set, impala-shell enables SSL, but does not validate the server certificate. This is useful for connecting to a known-good Impala that is only running over SSL, when a copy of the certificate is not available (such as when debugging customer installations).
-	use_ldap=true	Enables LDAP authentication.
-u	user= <i>user_name</i>	Supplies the user name, when LDAP authentication is enabled by the -1 option. (Specify the short user name, not the full LDAP distinguished name.) The shell then prompts interactively for the password.
config_file= <i>path_to_config_file</i>	N/A	Specifies the path of the file containing impala-shell configuration settings. The default is \$HOME/.impalarc. This setting can only be specified on the command line.

impala-shell Configuration File

You can define a set of default options for your impala-shell environment, stored in the file \$HOME/.impalarc. This file consists of key-value pairs, one option per line. Everything after a # character on a line is treated as a comment and ignored.

The configuration file must contain a header label [impala], followed by the options specific to impala-shell. (This standard convention for configuration files lets you use a single file to hold configuration options for multiple applications.)

To specify a different filename or path for the configuration file, specify the argument --config_file=path_to_config_file on the impala-shell command line.

The names of the options in the configuration file are similar (although not necessarily identical) to the long-form command-line arguments to the impala-shell command. For the names to use, see Summary of impala-shell Configuration Options on page 318.

Any options you specify on the impala-shell command line override any corresponding options within the configuration file.

The following example shows a configuration file that you might use during benchmarking tests. It sets verbose mode, so that the output from each SQL query is followed by timing information. impala-shell starts inside the database containing the tables with the benchmark data, avoiding the need to issue a USE statement or use fully qualified table names.

In this example, the query output is formatted as delimited text rather than enclosed in ASCII art boxes, and is stored in a file rather than printed to the screen. Those options are appropriate for benchmark situations, so that the overhead of impala-shell formatting and printing the result set does not factor into the timing measurements. It also enables the show_profiles option. That option prints detailed performance information after each query, which might be valuable in understanding the performance of benchmark queries.

```
[impala]
verbose=true
default_db=tpc_benchmarking
write_delimited=true
output_delimiter=,
output_file=/home/tester1/benchmark_results.csv
show_profiles=true
```

The following example shows a configuration file that connects to a specific remote Impala node, runs a single query within a particular database, then exits. You would typically use this kind of single-purpose configuration setting with the impala-shell command-line option --config_file=path_to_config_file, to easily select between many predefined queries that could be run against different databases, hosts, or even different clusters. To run a sequence of statements instead of a single query, specify the configuration option query_file=path_to_query_file instead.

```
[impala]
impalad=impala-test-nodel.example.com
default_db=site_stats
# Issue a predefined query and immediately exit.
query=select count(*) from web_traffic where event_date = trunc(now(),'dd')
```

Connecting to impalad through impala-shell

Within an impala-shell session, you can only issue queries while connected to an instance of the impalad daemon. You can specify the connection information through command-line options when you run the impala-shell command, or during an impala-shell session by issuing a CONNECT command. You can connect to any DataNode where an instance of impalad is running, and that node coordinates the execution of all queries sent to it.

For simplicity, you might always connect to the same node, perhaps running impala-shell on the same node as impalad and specifying the host name as localhost. Routing all SQL statements to the same node can help to avoid issuing frequent REFRESH statements, as is necessary when table data or metadata is updated through a different node.

For load balancing or general flexibility, you might connect to an arbitrary node for each impala-shell session. In this case, depending on whether table data or metadata might have been updated through another node, you

Using the Impala Shell (impala-shell Command)

might issue a REFRESH statement to bring the metadata for all tables up to date on this node (for a long-lived session that will query many tables) or issue specific REFRESH table_name statements just for the tables you intend to query.

To connect the Impala shell to any DataNode with an impalad daemon:

1. Start the Impala shell with no connection:

```
$ impala-shell
```

You should see a prompt like the following:

```
Welcome to the Impala shell. Press TAB twice to see a list of available commands.
Copyright (c) 2012 Cloudera, Inc. All rights reserved.

(Shell
    build version: Impala Shell v2.1.x (hash) built on
    date)
[Not connected] >
```

2. Use the connect command to connect to an Impala instance. Enter a command of the form:

```
[Not connected] > connect impalad-host
[impalad-host:21000] >
```

• **Note:** Replace *impalad-host* with the host name you have configured for any DataNode running Impala in your environment. The changed prompt indicates a successful connection.

Running Commands in impala-shell

For information on available commands, see <u>impala-shell Command Reference</u> on page 323. You can see the full set of available commands by pressing TAB twice, for example:

```
[impalad-host:21000] >
connect describe explain help history insert quit refresh select
  set shell show use version
[impalad-host:21000] >
```

Note: Commands must be terminated by a semi-colon. A command can span multiple lines.

For example:

A comment is considered part of the statement it precedes, so when you enter a -- or /* */ comment, you get a continuation prompt until you finish entering a statement ending with a semicolon:

```
[localhost:21000] > -- This is a test comment
> show tables like 't*';
+-----+
| name |
```


Use the up-arrow and down-arrow keys to cycle through and edit previous commands. impala-shell uses the readline library and so supports a standard set of keyboard shortcuts for editing and cursor movement, such as Ctrl-A for beginning of line and Ctrl-E for end of line.

impala-shell Command Reference

Use the following commands within impala-shell to pass requests to the impalad daemon that the shell is connected to. You can enter a command interactively at the prompt, or pass it as the argument to the -q option of impala-shell. Most of these commands are passed to the Impala daemon as SQL statements; refer to the corresponding <u>SQL language reference sections</u> for full syntax details.

Command	Explanation
alter	Changes the underlying structure or settings of an Impala table, or a table shared between Impala and Hive. See <u>ALTER TABLE Statement</u> on page 159 and <u>ALTER VIEW Statement</u> on page 163 for details.
compute stats	Gathers important performance-related information for a table, used by Impala to optimize queries. See <u>COMPUTE STATS Statement</u> on page 164 for details.
connect	Connects to the specified instance of impalad. The default port of 21000 is assumed unless you provide another value. You can connect to any host in your cluster that is running impalad. If you connect to an instance of impalad that was started with an alternate port specified by thefe_port flag, you must provide that alternate port. See Connecting to impalad through impala-shell on page 321 for examples.
	The SET statement has no effect until the impala-shell interpreter is connected to an Impala server. Once you are connected, any query options you set remain in effect as you issue a subsequent CONNECT command to connect to a different Impala host.
describe	Shows the columns, column data types, and any column comments for a specified table. DESCRIBE FORMATTED shows additional information such as the HDFS data directory, partitions, and internal properties for the table. See DESCRIBE Statement on page 181 for details about the basic DESCRIBE output and the DESCRIBE FORMATTED variant. You can use DESC as shorthand for the DESCRIBE command.
drop	Removes a schema object, and in some cases its associated data files. See <u>DROP TABLE</u> Statement on page 191, <u>DROP VIEW Statement</u> on page 192, <u>DROP DATABASE Statement</u> on page 186, and <u>DROP FUNCTION Statement</u> on page 186 for details.
explain	Provides the execution plan for a query. EXPLAIN represents a query as a series of steps. For example, these steps might be map/reduce stages, metastore operations, or file system operations such as move or rename. See EXPLAIN Statement on page 192 and Using the EXPLAIN Plan for Performance Tuning on page 364 for details.
help	Help provides a list of all available commands and options.
history	Maintains an enumerated cross-session command history. This history is stored in the ~/.impalahistory file.

Using the Impala Shell (impala-shell Command)

Command	Explanation	
insert	Writes the results of a query to a specified table. This either overwrites table data or appends data to the existing table content. See INSERT Statement on page 196 for details.	
invalidate metadata	Updates impalad metadata for table existence and structure. Use this command after creating, dropping, or altering databases, tables, or partitions in Hive. See METADATA Statement on page 203 for details.	
profile	Displays low-level information about the most recent query. Used for performance diagnosis and tuning. The report starts with the same information as produced by the EXPLAIN statement and the SUMMARY command. See <u>Using the Query Profile for Performance Tuning</u> on page 366 for details.	
quit	Exits the shell. Remember to include the final semicolon so that the shell recognizes the end of the command.	
refresh	Refreshes impalad metadata for the locations of HDFS blocks corresponding to Impala data files. Use this command after loading new data files into an Impala table through Hive or through HDFS commands. See REFRESH Statement on page 208 for details.	
select	Specifies the data set on which to complete some action. All information returned from select can be sent to some output such as the console or a file or can be used to complete some other element of query. See SELECT Statement on page 211 for details.	
set	Manages query options for an impala-shell session. The available options are the ones listed in Query Options for the SET Statement on page 325. These options are used for query tuning and troubleshooting. Issue SET with no arguments to see the current query options, either based on the impalad defaults, as specified by you at impalad startup, or based on earlier SET statements in the same session. To modify option values, issue commands with the syntax set option=value. To restore an option to its default, use the unset command. Some options take Boolean values of true and false. Others take numeric arguments, or quoted string values.	
	The SET statement has no effect until the impala-shell interpreter is connected to an Impala server. Once you are connected, any query options you set remain in effect as you issue a subsequent CONNECT command to connect to a different Impala host.	
	In Impala 2.0 and later, SET is available as a SQL statement for any kind of application, not only through impala-shell. See <u>SET Statement</u> on page 234 for details.	
shell	Executes the specified command in the operating system shell without exiting impala-shell. You can use the ! character as shorthand for the shell command.	
	• Note: Quote any instances of the or /* tokens to avoid them being interpreted as the start of a comment. To embed comments within source or ! commands, use the shell comment character # before the comment portion of the line.	
show	Displays metastore data for schema objects created and accessed through Impala, Hive, or both. show can be used to gather information about objects such as databases, tables, and functions. See <u>SHOW Statement</u> on page 235 for details.	
summary	Summarizes the work performed in various stages of a query. It provides a higher-level view of the information displayed by the EXPLAIN command. Added in Impala 1.4.0. See Using the SUMMARY Report for Performance Tuning on page 365 for details.	

Command	Explanation
unset	Removes any user-specified value for a query option and returns the option to its default value. See <u>Query Options for the SET Statement</u> on page 325 for the available query options.
use	Indicates the database against which to execute subsequent commands. Lets you avoid using fully qualified names when referring to tables in databases other than default. See <u>USE Statement</u> on page 246 for details. Not effective with the -q option, because that option only allows a single statement in the argument.
version	Returns Impala version information.

Query Options for the SET Statement

You can specify the following options using the SET statement, and those settings affect all queries issued from that session.

Some query options are useful in day-to-day operations for improving usability, performance, or flexibility.

Other query options control special-purpose aspects of Impala operation and are intended primarily for advanced debugging or troubleshooting.

Options with Boolean parameters can be set to 1 or true to enable, or 0 or false to turn off.

Note: In Impala 2.0 and later, you can set query options directly through the JDBC and ODBC interfaces by using the SET statement. Formerly, SET was only available as a command within the impala-shell interpreter.

Related information:

SET Statement on page 234

ABORT_ON_DEFAULT_LIMIT_EXCEEDED Query Option

Now that the ORDER BY clause no longer requires an accompanying LIMIT clause in Impala 1.4.0 and higher, this query option is deprecated and has no effect.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

ABORT_ON_ERROR Query Option

When this option is enabled, Impala cancels a query immediately when any of the nodes encounters an error, rather than continuing and possibly returning incomplete results. This option is disabled by default, to help gather maximum diagnostic information when an error occurs, for example, whether the same problem occurred on all nodes or only a single node. Currently, the errors that Impala can skip over involve data corruption, such as a column that contains a string value when expected to contain an integer value.

To control how much logging Impala does for non-fatal errors when ABORT_ON_ERROR is turned off, use the MAX_ERRORS option.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Related information:

MAX_ERRORS Query Option on page 335, Using Impala Logging on page 421

ALLOW_UNSUPPORTED_FORMATS Query Option

An obsolete query option from early work on support for file formats. Do not use. Might be removed in the future.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

APPX_COUNT_DISTINCT Query Option

Allows multiple COUNT(DISTINCT) operations within a single query, by internally rewriting each COUNT(DISTINCT) to use the NDV() function. The resulting count is approximate rather than precise.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Examples:

The following examples show how the APPX_COUNT_DISTINCT lets you work around the restriction where a query can only evaluate COUNT(DISTINCT COl_name) for a single column. By default, you can count the distinct values of one column or another, but not both in a single query:

When you enable the APPX_COUNT_DISTINCT query option, now the query with multiple COUNT(DISTINCT) works. The reason this behavior requires a query option is that each COUNT(DISTINCT) is rewritten internally to use the NDV() function instead, which provides an approximate result rather than a precise count.

Related information:

COUNT Function on page 273, DISTINCT Operator on page 231, NDV Function on page 278

BATCH_SIZE Query Option

Number of rows evaluated at a time by SQL operators. Unspecified or a size of 0 uses a predefined default size. Primarily for Cloudera testing.

Type: numeric

Default: 0 (meaning 1024)

COMPRESSION_CODEC Query Option

When Impala writes Parquet data files using the INSERT statement, the underlying compression is controlled by the COMPRESSION_CODEC query option.

Note: Prior to Impala 2.0, this option was named PARQUET_COMPRESSION_CODEC. In Impala 2.0 and later, the PARQUET_COMPRESSION_CODEC name is not recognized. Use the more general name COMPRESSION CODEC for new code.

Syntax:

```
SET COMPRESSION_CODEC=codec_name;
 _____
```

The allowed values for this query option are SNAPPY (the default), GZIP, and NONE.

Note: A Parquet file created with COMPRESSION_CODEC=NONE is still typically smaller than the original data, due to encoding schemes such as run-length encoding and dictionary encoding that are applied separately from compression.

The option value is not case-sensitive.

If the option is set to an unrecognized value, all kinds of queries will fail due to the invalid option setting, not just queries involving Parquet tables. (The value BZIP2 is also recognized, but is not compatible with Parquet tables.)

Type: STRING **Default: SNAPPY**

Examples:

```
set compression_codec=gzip;
insert into parquet_table_highly_compressed select * from t1;
set compression_codec=snappy;
insert into parquet_table_compression_plus_fast_queries select * from t1;
set compression_codec=none;
insert into parquet_table_no_compression select * from t1;
set compression_codec=foo;
select * from t1 limit 5;
ERROR: Invalid compression codec: foo
```

Related information:

For information about how compressing Parquet data files affects query performance, see Snappy and GZip Compression for Parquet Data Files on page 396.

DEBUG ACTION Query Option

Introduces artificial problem conditions within queries. For internal Cloudera debugging and troubleshooting.

Type: STRING

Default: empty string

DEFAULT ORDER BY LIMIT Query Option

Now that the ORDER BY clause no longer requires an accompanying LIMIT clause in Impala 1.4.0 and higher, this query option is deprecated and has no effect.

Prior to Impala 1.4.0, Impala queries that use the ORDER BY clause must also include a LIMIT clause, to avoid accidentally producing huge result sets that must be sorted. Sorting a huge result set is a memory-intensive

Using the Impala Shell (impala-shell Command)

operation. In Impala 1.4.0 and higher, Impala uses a temporary disk work area to perform the sort if that operation would otherwise exceed the Impala memory limit on a particular host.

Type: numeric

Default: -1 (no default limit)

DISABLE_CODEGEN Query Option

This is a debug option, intended for diagnosing and working around issues that cause crashes. If a query fails with an "illegal instruction" or other hardware-specific message, try setting <code>DISABLE_CODEGEN=true</code> and running the query again. If the query succeeds only when the <code>DISABLE_CODEGEN</code> option is turned on, submit the problem to Cloudera support and include that detail in the problem report. Do not otherwise run with this setting turned on, because it results in lower overall performance.

Because the code generation phase adds a small amount of overhead for each query, you might turn on the DISABLE_CODEGEN option to achieve maximum throughput when running many short-lived queries against small tables.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

DISABLE_UNSAFE_SPILLS Query Option

Enable this option if you prefer to have queries fail when they exceed the Impala memory limit, rather than write temporary data to disk.

Queries that "spill" to disk typically complete successfully, when in earlier Impala releases they would have failed. However, queries with exorbitant memory requirements due to missing statistics or inefficient join clauses could become so slow as a result that you would rather have them cancelled automatically and reduce the memory usage through standard Impala tuning techniques.

This option prevents only "unsafe" spill operations, meaning that one or more tables are missing statistics or the query does not include a hint to set the most efficient mechanism for a join or INSERT ... SELECT into a partitioned table. These are the tables most likely to result in suboptimal execution plans that could cause unnecessary spilling. Therefore, leaving this option enabled is a good way to find tables on which to run the COMPUTE STATS statement.

See <u>SQL Operations that Spill to Disk</u> on page 375 for information about the "spill to disk" feature for queries processing large result sets with joins, ORDER BY, GROUP BY, DISTINCT, aggregation functions, or analytic functions.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

EXEC_SINGLE_NODE_ROWS_THRESHOLD Query Option

This setting controls the cutoff point (in terms of number of rows scanned) below which Impala treats a query as a "small" query, turning off optimizations such as parallel execution and native code generation. The overhead for these optimizations is applicable for queries involving substantial amounts of data, but it makes sense to skip them for queries involving tiny amounts of data. Reducing the overhead for small queries allows Impala to complete them more quickly, keeping YARN resources, admission control slots, and so on available for data-intensive queries.

Syntax:

SET EXEC_SINGLE_NODE_ROWS_THRESHOLD=number_of_rows

Type: numeric

Default: 100

Internal details:

This setting applies to query fragments where the amount of data to scan can be accurately determined, either through table and column statistics, or by the presence of a LIMIT clause. If Impala cannot accurately estimate the size of the input data, this setting does not apply.

For a query that is determined to be "small", all work is performed on the coordinator node. This might result in some I/O being performed by remote reads. The savings from not distributing the query work and not generating native code are expected to outweigh any overhead from the remote reads.

Examples:

A common use case is to query just a few rows from a table to inspect typical data values. In this example, Impala does not parallelize the query or perform native code generation because the result set is guaranteed to be smaller than the threshold value from this query option:

```
SET EXEC_SINGLE_NODE_ROWS_THRESHOLD=500;
SELECT * FROM enormous_table LIMIT 300;
```

EXPLAIN LEVEL Query Option

Controls the amount of detail provided in the output of the EXPLAIN statement. The basic output can help you identify high-level performance issues such as scanning a higher volume of data or more partitions than you expect. The higher levels of detail show how intermediate results flow between nodes and how different SQL operations such as ORDER BY, GROUP BY, joins, and WHERE clauses are implemented within a distributed query.

Type: STRING or INT

Default: 1

Arguments:

The allowed range of numeric values for this option is 0 to 3:

- 0 or MINIMAL: A barebones list, one line per operation. Primarily useful for checking the join order in very long queries where the regular EXPLAIN output is too long to read easily.
- 1 or STANDARD: The default level of detail, showing the logical way that work is split up for the distributed auerv.
- 2 or EXTENDED: Includes additional detail about how the query planner uses statistics in its decision-making process, to understand how a query could be tuned by gathering statistics, using query hints, adding or removing predicates, and so on.
- 3 or VERBOSE: The maximum level of detail, showing how work is split up within each node into "query fragments" that are connected in a pipeline. This extra detail is primarily useful for low-level performance testing and tuning within Impala itself, rather than for rewriting the SQL code at the user level.
 - **Note:** Prior to Impala 1.3, the allowed argument range for EXPLAIN_LEVEL was 0 to 1: level 0 had the mnemonic NORMAL, and level 1 was VERBOSE. In Impala 1.3 and higher, NORMAL is not a valid mnemonic value, and VERBOSE still applies to the highest level of detail but now corresponds to level 3. You might need to adjust the values if you have any older impala-shell script files that set the EXPLAIN_LEVEL query option.

Changing the value of this option controls the amount of detail in the output of the EXPLAIN statement. The extended information from level 2 or 3 is especially useful during performance tuning, when you need to confirm whether the work for the query is distributed the way you expect, particularly for the most resource-intensive operations such as join queries against large tables, queries against tables with large numbers of partitions, and insert operations for Parquet tables. The extended information also helps to check estimated resource usage when you use the admission control or resource management features explained in Integrated Resource Management with YARN on page 76. See EXPLAIN Statement on page 192 for the syntax of the EXPLAIN statement, and <u>Using the EXPLAIN Plan for Performance Tuning</u> on page 364 for details about how to use the extended information.

Using the Impala Shell (impala-shell Command)

Usage notes:

As always, read the EXPLAIN output from bottom to top. The lowest lines represent the initial work of the query (scanning data files), the lines in the middle represent calculations done on each node and how intermediate results are transmitted from one node to another, and the topmost lines represent the final results being sent back to the coordinator node.

The numbers in the left column are generated internally during the initial planning phase and do not represent the actual order of operations, so it is not significant if they appear out of order in the EXPLAIN output.

At all EXPLAIN levels, the plan contains a warning if any tables in the query are missing statistics. Use the COMPUTE STATS statement to gather statistics for each table and suppress this warning. See How Impala Uses Statistics for Query Optimization on page 349 for details about how the statistics help query performance.

The PROFILE command in impala-shell always starts with an explain plan showing full detail, the same as with EXPLAIN_LEVEL=3. After the explain plan comes the executive summary, the same output as produced by the SUMMARY command in impala-shell.

Examples:

These examples use a trivial, empty table to illustrate how the essential aspects of query planning are shown in EXPLAIN output:

```
[localhost:21000] > create table t1 (x int, s string);
[localhost:21000] > set explain_level=1;
[localhost:21000] > explain select count(*) from t1;
 Explain String
  Estimated Per-Host Requirements: Memory=10.00MB VCores=1
  WARNING: The following tables are missing relevant table and/or column statistics.
  explain_plan.t1
  03:AGGREGATE [MERGE FINALIZE]
  output: sum(count(*))
  02:EXCHANGE [PARTITION=UNPARTITIONED]
  01:AGGREGATE
   output: count(*)
  00:SCAN HDFS [explain_plan.t1]
     partitions=1/1 size=0B
[localhost:21000] > explain select * from t1;
 Explain String
  Estimated Per-Host Requirements: Memory=-9223372036854775808B VCores=0
  WARNING: The following tables are missing relevant table and/or column statistics.
  explain_plan.t1
```

```
01: EXCHANGE [PARTITION=UNPARTITIONED]
 00:SCAN HDFS [explain_plan.t1]
    partitions=1/1 size=0B
[localhost:21000] > set explain_level=2;
[localhost:21000] > explain select * from t1;
 Explain String
 Estimated Per-Host Requirements: Memory=-9223372036854775808B VCores=0
 WARNING: The following tables are missing relevant table and/or column statistics.
 explain_plan.t1
 01:EXCHANGE [PARTITION=UNPARTITIONED]
  hosts=0 per-host-mem=unavailable
  tuple-ids=0 row-size=19B cardinality=unavailable
 00:SCAN HDFS [explain_plan.t1, PARTITION=RANDOM]
    partitions=1/1 size=0B
    table stats: unavailable
    column stats: unavailable
    hosts=0 per-host-mem=0B
    tuple-ids=0 row-size=19B cardinality=unavailable
[localhost:21000] > set explain_level=3;
[localhost:21000] > explain select * from t1;
 Explain String
 Estimated Per-Host Requirements: Memory=-9223372036854775808B VCores=0
 WARNING: The following tables are missing relevant table and/or column statistics.
 explain plan.t1
 F01:PLAN FRAGMENT [PARTITION=UNPARTITIONED]
   01:EXCHANGE [PARTITION=UNPARTITIONED]
      hosts=0 per-host-mem=unavailable
      tuple-ids=0 row-size=19B cardinality=unavailable
 F00:PLAN FRAGMENT [PARTITION=RANDOM]
   DATASTREAM SINK [FRAGMENT=F01, EXCHANGE=01, PARTITION=UNPARTITIONED]
```

```
00:SCAN HDFS [explain_plan.t1, PARTITION=RANDOM]

partitions=1/1 size=0B

table stats: unavailable

column stats: unavailable

hosts=0 per-host-mem=0B

tuple-ids=0 row-size=19B cardinality=unavailable
```

As the warning message demonstrates, most of the information needed for Impala to do efficient query planning, and for you to understand the performance characteristics of the query, requires running the COMPUTE STATS statement for the table:

```
[localhost:21000] > compute stats t1;
summary
Updated 1 partition(s) and 2 column(s).
[localhost:21000] > explain select * from t1;
  ______
 Explain String
 Estimated Per-Host Requirements: Memory=-9223372036854775808B VCores=0
 F01:PLAN FRAGMENT [PARTITION=UNPARTITIONED]
   01:EXCHANGE [PARTITION=UNPARTITIONED]
      hosts=0 per-host-mem=unavailable
      tuple-ids=0 row-size=20B cardinality=0
 F00:PLAN FRAGMENT [PARTITION=RANDOM]
   DATASTREAM SINK [FRAGMENT=F01, EXCHANGE=01, PARTITION=UNPARTITIONED]
   00:SCAN HDFS [explain_plan.t1, PARTITION=RANDOM]
      partitions=1/1 size=0B
      table stats: 0 rows total
      column stats: all
      hosts=0 per-host-mem=0B
      tuple-ids=0 row-size=20B cardinality=0
```

Joins and other complicated, multi-part queries are the ones where you most commonly need to examine the EXPLAIN output and customize the amount of detail in the output. This example shows the default EXPLAIN output for a three-way join query, then the equivalent output with a [SHUFFLE] hint to change the join mechanism between the first two tables from a broadcast join to a shuffle join.

```
|--06:EXCHANGE [BROADCAST]
  02:SCAN HDFS [explain_plan.t1 three]
      partitions=1/1 size=0B
 03:HASH JOIN [INNER JOIN, BROADCAST]
  hash predicates: one.x = two.x
 |--05:EXCHANGE [BROADCAST]
  01:SCAN HDFS [explain_plan.t1 two]
      partitions=1/1 size=0B
 00:SCAN HDFS [explain_plan.t1 one]
    partitions=1/1 size=0B
[localhost:21000] > explain select one.*, two.*, three.* from t1 one join [shuffle] t1
two join t1 three where one.x = two.x and two.x = three.x;
 Explain String
 Estimated Per-Host Requirements: Memory=4.00GB VCores=3
 08:EXCHANGE [PARTITION=UNPARTITIONED]
 04: HASH JOIN [INNER JOIN, BROADCAST]
  hash predicates: two.x = three.x
 |--07:EXCHANGE [BROADCAST]
  02:SCAN HDFS [explain_plan.t1 three]
      partitions=1/1 size=0B
 03:HASH JOIN [INNER JOIN, PARTITIONED]
 | hash predicates: one.x = two.x
  |--06:EXCHANGE [PARTITION=HASH(two.x)]
```

Using the Impala Shell (impala-shell Command)

```
| 01:SCAN HDFS [explain_plan.t1 two]
| partitions=1/1 size=0B
|
05:EXCHANGE [PARTITION=HASH(one.x)]
|
00:SCAN HDFS [explain_plan.t1 one]
| partitions=1/1 size=0B
```

For a join involving many different tables, the default EXPLAIN output might stretch over several pages, and the only details you care about might be the join order and the mechanism (broadcast or shuffle) for joining each pair of tables. In that case, you might set EXPLAIN_LEVEL to its lowest value of 0, to focus on just the join order and join mechanism for each stage. The following example shows how the rows from the first and second joined tables are hashed and divided among the nodes of the cluster for further filtering; then the entire contents of the third table are broadcast to all nodes for the final stage of join processing.

HBASE_CACHE_BLOCKS Query Option

Setting this option is equivalent to calling the setCacheBlocks method of the class org.apache.hadoop.hbase.client.Scan, in an HBase Java application. Helps to control the memory pressure on the HBase region server, in conjunction with the HBASE_CACHING query option.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Related information:

Using Impala to Query HBase Tables on page 411, HBASE_CACHING Query Option on page 334

HBASE_CACHING Query Option

Setting this option is equivalent to calling the setCaching method of the class org.apache.hadoop.hbase.client.Scan, in an HBase Java application. Helps to control the memory pressure on the HBase region server, in conjunction with the HBASE_CACHE_BLOCKS query option.

Type: BOOLEAN

Default: 0

Related information:

Using Impala to Query HBase Tables on page 411, HBASE_CACHE_BLOCKS Query Option on page 334

MAX ERRORS Query Option

Maximum number of non-fatal errors for any particular query that are recorded in the Impala log file. For example, if a billion-row table had a non-fatal data error in every row, you could diagnose the problem without all billion errors being logged. Unspecified or 0 indicates the built-in default value of 1000.

This option only controls how many errors are reported. To specify whether Impala continues or halts when it encounters such errors, use the ABORT_ON_ERROR option.

Type: numeric

Default: 0 (meaning 1000 errors)

Related information:

ABORT_ON_ERROR Query Option on page 325, Using Impala Logging on page 421

MAX_IO_BUFFERS Query Option

Deprecated query option. Currently has no effect.

Type: numeric

Default: 0

MAX_SCAN_RANGE_LENGTH Query Option

Maximum length of the scan range. Interacts with the number of HDFS blocks in the table to determine how many CPU cores across the cluster are involved with the processing for a query. (Each core processes one scan range.)

Lowering the value can sometimes increase parallelism if you have unused CPU capacity, but a too-small value can limit query performance because each scan range involves extra overhead.

Only applicable to HDFS tables. Has no effect on Parquet tables. Unspecified or 0 indicates backend default, which is the same as the HDFS block size for each table.

Although the scan range can be arbitrarily long, Impala internally uses an 8 MB read buffer so that it can query tables with huge block sizes without allocating equivalent blocks of memory.

Type: numeric

Default: 0

MEM_LIMIT Query Option

When resource management is not enabled, defines the maximum amount of memory a query can allocate on each node. If query processing exceeds the specified memory limit on any node, Impala cancels the query automatically. Memory limits are checked periodically during query processing, so the actual memory in use might briefly exceed the limit without the query being cancelled.

When resource management is enabled in CDH 5, the mechanism for this option changes. If set, it overrides the automatic memory estimate from Impala. Impala requests this amount of memory from YARN on each node, and the guery does not proceed until that much memory is available. The actual memory used by the guery could be lower, since some queries use much less memory than others. With resource management, the MEM_LIMIT setting acts both as a hard limit on the amount of memory a query can use on any node (enforced by YARN and a guarantee that that much memory will be available on each node while the query is being executed. When resource management is enabled but no MEM_LIMIT setting is specified, Impala estimates the amount of memory needed on each node for each query, requests that much memory from YARN before starting the query, and then internally sets the MEM_LIMIT on each node to the requested amount of memory during

Using the Impala Shell (impala-shell Command)

the query. Thus, if the query takes more memory than was originally estimated, Impala detects that the MEM_LIMIT is exceeded and cancels the query itself.

Type: numeric

Default: 0

NUM_NODES Query Option

Limit the number of nodes that process a query, typically during debugging.

Type: numeric

Allowed values: Only accepts the values 0 (meaning all nodes) or 1 (meaning all work is done on the coordinator node).

Default: 0

Usage notes:

If you are diagnosing a problem that you suspect is due to a timing issue due to distributed query processing, you can set NUM_NODES=1 to verify if the problem still occurs when all the work is done on a single node.

You might set the NUM_NODES option to 1 briefly, during INSERT OF CREATE TABLE AS SELECT statements. Normally, those statements produce one or more data files per data node. If the write operation involves small amounts of data, a Parquet table, and/or a partitioned table, the default behavior could produce many small files when intuitively you might expect only a single output file. SET NUM_NODES=1 turns off the "distributed" aspect of the write operation, making it more likely to produce only one or a few data files.

NUM_SCANNER_THREADS Query Option

Maximum number of scanner threads (on each node) used for each query. By default, Impala uses as many cores as are available (one thread per core). You might lower this value if queries are using excessive resources on a busy cluster. Impala imposes a maximum value automatically, so a high value has no practical effect.

Type: numeric

Default: 0

• Note: Currently, a known issue (IMPALA-488) could cause excessive memory usage during a COMPUTE STATS operation on a Parquet table. As a workaround, issue the command SET NUM_SCANNER_THREADS=2 in impala-shell before issuing the COMPUTE STATS statement. Then issue UNSET NUM_SCANNER_THREADS before continuing with queries.

PARQUET_COMPRESSION_CODEC Query Option

Deprecated. Use COMPRESSION_CODEC in Impala 2.0 and later. See COMPRESSION_CODEC Query Option on page 327 for details.

PARQUET FILE SIZE Query Option

Specifies the maximum size of each Parquet data file produced by Impala INSERT statements.

Syntax:

Specify the size in bytes, or with a trailing m or g character to indicate megabytes or gigabytes. For example:

```
-- 128 megabytes.
set PARQUET_FILE_SIZE=134217728
INSERT OVERWRITE parquet_table SELECT * FROM text_table;
-- 512 megabytes.
set PARQUET_FILE_SIZE=512m;
```

```
INSERT OVERWRITE parquet_table SELECT * FROM text_table;
-- 1 gigabyte.
set PARQUET_FILE_SIZE=1g;
INSERT OVERWRITE parquet_table SELECT * FROM text_table;
```

Usage notes:

With tables that are small or finely partitioned, the default Parquet block size (formerly 1 GB, now 256 MB in Impala 2.0 and later) could be much larger than needed for each data file. For INSERT operations into such tables, you can increase parallelism by specifying a smaller PARQUET_FILE_SIZE value, resulting in more HDFS blocks that can be processed by different nodes.

Type: numeric, with optional unit specifier

Important:

Currently, the maximum value for this setting is 1 gigabyte (1g). Setting a value higher than 1 gigabyte could result in errors during an INSERT operation.

Default: 0 (produces files with a target size of 256 MB; files might be larger for very wide tables)

Related information:

For information about the Parquet file format, and how the number and size of data files affects query performance, see <u>Using the Parquet File Format with Impala Tables</u> on page 392.

QUERY_TIMEOUT_S Query Option

Sets the idle query timeout value for the session, in seconds. Queries that sit idle for longer than the timeout value are automatically cancelled. If the system administrator specified the --idle_query_timeout startup option, QUERY_TIMEOUT_S must be smaller than or equal to the --idle_query_timeout value.

Note:

The timeout clock for queries and sessions only starts ticking when the query or session is idle. For queries, this means the query has results ready but is waiting for a client to fetch the data. A query can run for an arbitrary time without triggering a timeout, because the query is computing results rather than sitting idle waiting for the results to be fetched. The timeout period is intended to prevent unclosed queries from consuming resources and taking up slots in the admission count of running queries, potentially preventing other queries from starting.

For sessions, this means that no query has been submitted for some period of time.

Syntax:

```
SET QUERY_TIMEOUT_S=seconds;
```

Type: numeric

Default: 0 (no timeout if --idle_query_timeout not in effect; otherwise, use --idle_query_timeout value)

Related information:

Setting Timeout Periods for Daemons, Queries, and Sessions on page 79

REQUEST_POOL Query Option

The pool or queue name that queries should be submitted to. Only applies when you enable the Impala admission control feature (CDH 4 or CDH 5; see Admission Control and Query Queuing on page 67), or the YARN resource

Using the Impala Shell (impala-shell Command)

management feature (CDH 5 only; see <u>Integrated Resource Management with YARN</u> on page 76). Specifies the name of the pool used by requests from Impala to the resource manager.

Formerly known as YARN_POOL during the CDH 5 beta period. Renamed to reflect that it can be used both with YARN and with the lightweight admission control feature introduced in Impala 1.3.

Type: STRING

Default: empty (use the user-to-pool mapping defined by an impalad startup option in the Impala configuration file)

RESERVATION_REQUEST_TIMEOUT Query Option (CDH 5 only)

Maximum number of milliseconds Impala will wait for a reservation to be completely granted or denied. Used in conjunction with the Impala resource management feature in Impala 1.2 and higher with CDH 5.

Type: numeric

Default: 300000 (5 minutes)

SUPPORT_START_OVER Query Option

Leave this setting at its default value. It is a read-only setting, tested by some client applications such as Hue.

If you accidentally change it through impala-shell, subsequent queries encounter errors until you undo the change by issuing UNSET support_start_over.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false

SYNC_DDL Query Option

When enabled, causes any DDL operation such as CREATE TABLE or ALTER TABLE to return only when the changes have been propagated to all other Impala nodes in the cluster by the Impala catalog service. That way, if you issue a subsequent CONNECT statement in impala-shell to connect to a different node in the cluster, you can be sure that other node will already recognize any added or changed tables. (The catalog service automatically broadcasts the DDL changes to all nodes automatically, but without this option there could be a period of inconsistency if you quickly switched to another node, such as by issuing a subsequent query through a load-balancing proxy.)

Although INSERT is classified as a DML statement, when the SYNC_DDL option is enabled, INSERT statements also delay their completion until all the underlying data and metadata changes are propagated to all Impala nodes. Internally, Impala inserts have similarities with DDL statements in traditional database systems, because they create metadata needed to track HDFS block locations for new files and they potentially add new partitions to partitioned tables.

• Note: Because this option can introduce a delay after each write operation, if you are running a sequence of CREATE DATABASE, CREATE TABLE, ALTER TABLE, INSERT, and similar statements within a setup script, to minimize the overall delay you can enable the SYNC_DDL query option only near the end, before the final DDL statement.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Related information:

DDL Statements on page 157

V_CPU_CORES Query Option (CDH 5 only)

The number of per-host virtual CPU cores to request from YARN. If set, the query option overrides the automatic estimate from Impala. Used in conjunction with the Impala resource management feature in Impala 1.2 and higher and CDH 5.

Type: numeric

Default: 0 (use automatic estimates)

The following sections explain the factors affecting the performance of Impala features, and procedures for tuning, monitoring, and benchmarking Impala queries and other SQL operations.

This section also describes techniques for maximizing Impala scalability. Scalability is tied to performance: it means that performance remains high as the system workload increases. For example, reducing the disk I/O performed by a query can speed up an individual query, and at the same time improve scalability by making it practical to run more queries simultaneously. Sometimes, an optimization technique improves scalability more than performance. For example, reducing memory usage for a query might not change the query performance much, but might improve scalability by allowing more Impala queries or other kinds of jobs to run at the same time without running out of memory.

Note:

Before starting any performance tuning or benchmarking, make sure your system is configured with all the recommended minimum hardware requirements from <u>Hardware Requirements</u> on page 23 and software settings from <u>Post-Installation Configuration for Impala</u> on page 33.

- <u>Partitioning for Impala Tables</u> on page 379. This technique physically divides the data based on the different values in frequently queried columns, allowing queries to skip reading a large percentage of the data in a table.
- Performance Considerations for Join Queries on page 343. Joins are the main class of queries that you can
 tune at the SQL level, as opposed to changing physical factors such as the file format or the hardware
 configuration. The related topics Overview of Column Statistics on page 350 and Overview of Table Statistics
 on page 349 are also important primarily for join performance.
- Overview of Table Statistics on page 349 and Overview of Column Statistics on page 350. Gathering table and column statistics, using the COMPUTE STATS statement, helps Impala automatically optimize the performance for join queries, without requiring changes to SQL query statements. (This process is greatly simplified in Impala 1.2.2 and higher, because the COMPUTE STATS statement gathers both kinds of statistics in one operation, and does not require any setup and configuration as was previously necessary for the ANALYZE TABLE statement in Hive.)
- <u>Testing Impala Performance</u> on page 363. Do some post-setup testing to ensure Impala is using optimal settings for performance, before conducting any benchmark tests.
- Benchmarking Impala Queries on page 357. The configuration and sample data that you use for initial experiments with Impala is often not appropriate for doing performance tests.
- Controlling Impala Resource Usage on page 358. The more memory Impala can utilize, the better query performance you can expect. In a cluster running other kinds of workloads as well, you must make tradeoffs to make sure all Hadoop components have enough memory to perform well, so you might cap the memory that Impala can use.

A good source of tips related to scalability and performance tuning is the <u>Impala Cookbook</u> presentation. These slides are updated periodically as new features come out and new benchmarks are performed.

Impala Performance Guidelines and Best Practices

Here are performance guidelines and best practices that you can use during planning, experimentation, and performance tuning for an Impala-enabled CDH cluster. All of this information is also available in more detail elsewhere in the Impala documentation; it is gathered together here to serve as a cookbook and emphasize which performance techniques typically provide the highest return on investment

Choose the appropriate file format for the data.

Typically, for large volumes of data (multiple gigabytes per table or partition), the Parquet file format performs best because of its combination of columnar storage layout, large I/O request size, and compression and encoding. See How Impala Works with Hadoop File Formats on page 384 for comparisons of all file formats supported by Impala, and Using the Parquet File Format with Impala Tables on page 392 for details about the Parquet file format.

Note: For smaller volumes of data, a few gigabytes or less for each table or partition, you might not see significant performance differences between file formats. At small data volumes, reduced I/O from an efficient compressed file format can be counterbalanced by reduced opportunity for parallel execution. When planning for a production deployment or conducting benchmarks, always use realistic data volumes to get a true picture of performance and scalability.

Avoid data ingestion processes that produce many small files.

When producing data files outside of Impala, prefer either text format or Avro, where you can build up the files row by row. Once the data is in Impala, you can convert it to the more efficient Parquet format and split into multiple data files using a single INSERT ... SELECT statement. Or, if you have the infrastructure to produce multi-megabyte Parquet files as part of your data preparation process, do that and skip the conversion step inside Impala.

Always use INSERT ... SELECT to copy significant volumes of data from table to table within Impala. Avoid INSERT ... VALUES for any substantial volume of data or performance-critical tables, because each such statement produces a separate tiny data file. See INSERT Statement on page 196 for examples of the INSERT ... SELECT syntax.

For example, if you have thousands of partitions in a Parquet table, each with less than 256 MB of data, consider partitioning in a less granular way, such as by year / month rather than year / month / day. If an inefficient data ingestion process produces thousands of data files in the same table or partition, consider compacting the data by performing an INSERT ... SELECT to copy all the data to a different table; the data will be reorganized into a smaller number of larger files by this process.

Choose partitioning granularity based on actual data volume.

Partitioning is a technique that physically divides the data based on values of one or more columns, such as by year, month, day, region, city, section of a web site, and so on. When you issue queries that request a specific value or range of values for the partition key columns, Impala can avoid reading the irrelevant data, potentially yielding a huge savings in disk I/O.

When deciding which column(s) to use for partitioning, choose the right level of granularity. For example, should you partition by year, month, and day, or only by year and month? Choose a partitioning strategy that puts at least 256 MB of data in each partition, to take advantage of HDFS bulk I/O and Impala distributed queries.

Over-partitioning can also cause query planning to take longer than necessary, as Impala prunes the unnecessary partitions. Ideally, keep the number of partitions in the table under 30 thousand.

When preparing data files to go in a partition directory, create several large files rather than many small ones. If you receive data in the form of many small files and have no control over the input format, consider using the INSERT ... SELECT syntax to copy data from one table or partition to another, which compacts the files into a relatively small number (based on the number of nodes in the cluster).

If you need to reduce the overall number of partitions and increase the amount of data in each partition, first look for partition key columns that are rarely referenced or are referenced in non-critical gueries (not subject to an SLA). For example, your web site log data might be partitioned by year, month, day, and hour, but if most queries roll up the results by day, perhaps you only need to partition by year, month, and day.

If you need to reduce the granularity even more, consider creating "buckets", computed values corresponding to different sets of partition key values. For example, you can use the TRUNC() function with a TIMESTAMP

column to group date and time values based on intervals such as week or quarter. See Impala Date and Time Functions on page 256 for details.

See Partitioning for Impala Tables on page 379 for full details and performance considerations for partitioning.

Use smallest appropriate integer types for partition key columns.

Although it is tempting to use strings for partition key columns, since those values are turned into HDFS directory names anyway, you can minimize memory usage by using numeric values for common partition key fields such as YEAR, MONTH, and DAY. Use the smallest integer type that holds the appropriate range of values, typically TINYINT for MONTH and DAY, and SMALLINT for YEAR. Use the EXTRACT() function to pull out individual date and time fields from a TIMESTAMP value, and CAST() the return value to the appropriate integer type.

Choose an appropriate Parquet block size.

By default, the Impala INSERT ... SELECT statement creates Parquet files with a 256 MB block size. (This default was changed in Impala 2.0. Formerly, the limit was 1 GB, but Impala made conservative estimates about compression, resulting in files that were smaller than 1 GB.)

Each file is a single block, allowing the whole file to be processed by a single node. As you copy Parquet files into HDFS or between HDFS filesystems, use hdfs dfs -pb to preserve the original block size.

If there is only one or a few data files in your Parquet table, or in a partition that is the only one accessed by a query, then you might experience a slowdown for a different reason: not enough data to take advantage of Impala's parallel distributed queries. Each data file is processed by a single core on one of the data nodes. In a 100-node cluster of 16-core machines, you could potentially process thousands of data files simultaneously. You want to find a sweet spot between "many tiny files" and "single giant file" that balances bulk I/O and parallel processing. You can set the PARQUET_FILE_SIZE query option before doing an INSERT ... SELECT statement to reduce the size of each generated Parquet file. (Specify the file size as an absolute number of bytes, or in Impala 2.0 and later, in units ending with m for megabytes or g for gigabytes.) Run benchmarks with different file sizes to find the right balance point for your particular data volume.

Gather statistics for all tables used in performance-critical or high-volume join queries.

Gather the statistics with the COMPUTE STATS statement. See Performance Considerations for Join Queries on page 343 for details.

Minimize the overhead of transmitting results back to the client.

Use techniques such as:

- Aggregation. If you need to know how many rows match a condition, the total values of matching values from some column, the lowest or highest matching value, and so on, call aggregate functions such as COUNT(), SUM(), and MAX() in the query rather than sending the result set to an application and doing those computations there. Remember that the size of an unaggregated result set could be huge, requiring substantial time to transmit across the network.
- Filtering. Use all applicable tests in the WHERE clause of a query to eliminate rows that are not relevant, rather than producing a big result set and filtering it using application logic.
- LIMIT clause. If you only need to see a few sample values from a result set, or the top or bottom values from a query using ORDER BY, include the LIMIT clause to reduce the size of the result set rather than asking for the full result set and then throwing most of the rows away.
- · Avoid overhead from pretty-printing the result set and displaying it on the screen. When you retrieve the results through impala-shell, use impala-shell options such as -B and --output_delimiter to produce results without special formatting, and redirect output to a file rather than printing to the screen. Consider using INSERT ... SELECT to write the results directly to new files in HDFS. See impala-shell Configuration Options on page 318 for details about the impala-shell command-line options.

Verify that your queries are planned in an efficient logical manner.

Examine the EXPLAIN plan for a query before actually running it. See EXPLAIN Statement on page 192 and Using the EXPLAIN Plan for Performance Tuning on page 364 for details.

Verify performance characteristics of queries.

Verify that the low-level aspects of I/O, memory usage, network bandwidth, CPU utilization, and so on are within expected ranges by examining the query profile for a query after running it. See Using the Query Profile for Performance Tuning on page 366 for details.

Performance Considerations for Join Oueries

Queries involving join operations often require more tuning than queries that refer to only one table. The maximum size of the result set from a join query is the product of the number of rows in all the joined tables. When joining several tables with millions or billions of rows, any missed opportunity to filter the result set, or other inefficiency in the query, could lead to an operation that does not finish in a practical time and has to be cancelled.

The simplest technique for tuning an Impala join query is to collect statistics on each table involved in the join using the COMPUTE STATS statement, and then let Impala automatically optimize the query based on the size of each table, number of distinct values of each column, and so on. The COMPUTE STATS statement and the join optimization are new features introduced in Impala 1.2.2. For accurate statistics about each table, issue the COMPUTE STATS statement after loading the data into that table, and again if the amount of data changes substantially due to an INSERT, LOAD DATA, adding a partition, and so on.

If statistics are not available for all the tables in the join query, or if Impala chooses a join order that is not the most efficient, you can override the automatic join order optimization by specifying the STRAIGHT_JOIN keyword immediately after the SELECT keyword. In this case, Impala uses the order the tables appear in the query to guide how the joins are processed.

When you use the STRAIGHT JOIN technique, you must order the tables in the join query manually instead of relying on the Impala optimizer. The optimizer uses sophisticated techniques to estimate the size of the result set at each stage of the join. For manual ordering, use this heuristic approach to start with, and then experiment to fine-tune the order:

- Specify the largest table first. This table is read from disk by each Impala node and so its size is not significant in terms of memory usage during the query.
- Next, specify the smallest table. The contents of the second, third, and so on tables are all transmitted across the network. You want to minimize the size of the result set from each subsequent stage of the join query. The most likely approach involves joining a small table first, so that the result set remains small even as subsequent larger tables are processed.
- Join the next smallest table, then the next smallest, and so on.
- For example, if you had tables BIG, MEDIUM, SMALL, and TINY, the logical join order to try would be BIG, TINY, SMALL, MEDIUM.

The terms "largest" and "smallest" refers to the size of the intermediate result set based on the number of rows and columns from each table that are part of the result set. For example, if you join one table sales with another table customers, a query might find results from 100 different customers who made a total of 5000 purchases. In that case, you would specify SELECT ... FROM sales JOIN customers ..., putting customers on the right side because it is smaller in the context of this query.

The Impala query planner chooses between different techniques for performing join queries, depending on the absolute and relative sizes of the tables. Broadcast joins are the default, where the right-hand table is considered to be smaller than the left-hand table, and its contents are sent to all the other nodes involved in the query. The alternative technique is known as a partitioned join (not related to a partitioned table), which is more suitable for large tables of roughly equal size. With this technique, portions of each table are sent to appropriate other

nodes where those subsets of rows can be processed in parallel. The choice of broadcast or partitioned join also depends on statistics being available for all tables in the join, gathered by the COMPUTE STATS statement.

To see which join strategy is used for a particular query, issue an EXPLAIN statement for the query. If you find that a query uses a broadcast join when you know through benchmarking that a partitioned join would be more efficient, or vice versa, add a hint to the query to specify the precise join mechanism to use. See Hints on page 232 for details.

How Joins Are Processed when Statistics Are Unavailable

If table or column statistics are not available for some tables in a join, Impala still reorders the tables using the information that is available. Tables with statistics are placed on the left side of the join order, in descending order of cost based on overall size and cardinality. Tables without statistics are treated as zero-size, that is, they are always placed on the right side of the join order.

Overriding Join Reordering with STRAIGHT_JOIN

If an Impala join query is inefficient because of outdated statistics or unexpected data distribution, you can keep Impala from reordering the joined tables by using the STRAIGHT_JOIN keyword immediately after the SELECT keyword. The STRAIGHT_JOIN keyword turns off the reordering of join clauses that Impala does internally, and produces a plan that relies on the join clauses being ordered optimally in the query text. In this case, rewrite the query so that the largest table is on the left, followed by the next largest, and so on until the smallest table is on the right.

In this example, the subselect from the BIG table produces a very small result set, but the table might still be treated as if it were the biggest and placed first in the join order. Using STRAIGHT_JOIN for the last join clause prevents the final table from being reordered, keeping it as the rightmost table in the join order.

```
select straight_join x from medium join small join (select * from big where c1 < 10)
as biq
  where medium.id = small.id and small.id = big.id;
```

Examples of Join Order Optimization

Here are examples showing joins between tables with 1 billion, 200 million, and 1 million rows. (In this case, the tables are unpartitioned and using Parquet format.) The smaller tables contain subsets of data from the largest one, for convenience of joining on the unique ID column. The smallest table only contains a subset of columns from the others.

```
[localhost:21000] > create table big stored as parquet as select * from raw_data;
summary
Inserted 1000000000 row(s)
+-----
Returned 1 row(s) in 671.56s
[localhost:21000] > desc big;
name type comment
id int val int zfill string name string assertion boolean
Returned 5 row(s) in 0.01s
[localhost:21000] > create table medium stored as parquet as select * from big limit
200 * floor(1e6);
summary
Inserted 200000000 row(s)
```

```
Returned 1 row(s) in 138.31s
[localhost:21000] > create table small stored as parquet as select id,val,name from
big where assertion = true limit 1 * floor(1e6);
summary
Inserted 1000000 row(s)
Returned 1 row(s) in 6.32s
```

For any kind of performance experimentation, use the EXPLAIN statement to see how any expensive query will be performed without actually running it, and enable verbose EXPLAIN plans containing more performance-oriented detail: The most interesting plan lines are highlighted in bold, showing that without statistics for the joined tables, Impala cannot make a good estimate of the number of rows involved at each stage of processing, and is likely to stick with the BROADCAST join mechanism that sends a complete copy of one of the tables to each node.

```
[localhost:21000] > set explain_level=verbose;
EXPLAIN_LEVEL set to verbose
[localhost:21000] > explain select count(*) from big join medium where big.id =
medium.id;
| Explain String
 Estimated Per-Host Requirements: Memory=2.10GB VCores=2
  PLAN FRAGMENT 0
    PARTITION: UNPARTITIONED
    6:AGGREGATE (merge finalize)
       output: SUM(COUNT(*))
       cardinality: 1
       per-host memory: unavailable
       tuple ids: 2
    5: EXCHANGE
       cardinality: 1
       per-host memory: unavailable
       tuple ids: 2
  PLAN FRAGMENT 1
    PARTITION: RANDOM
    STREAM DATA SINK
      EXCHANGE ID: 5
      UNPARTITIONED
    3:AGGREGATE
      output: COUNT(*)
       cardinality: 1
       per-host memory: 10.00MB
       tuple ids: 2
    2:HASH JOIN
       join op: INNER JOIN (BROADCAST)
       hash predicates:
        big.id = medium.id
       cardinality: unavailable
       per-host memory: 2.00GB
       tuple ids: 0 1
     ---4:EXCHANGE
            cardinality: unavailable
            per-host memory: 0B
            tuple ids: 1
    0:SCAN HDFS
       table=join_order.big #partitions=1/1 size=23.12GB
       table stats: unavailable
```

column stats: unavailable

```
cardinality: unavailable
       per-host memory: 88.00MB
      tuple ids: 0
 PLAN FRAGMENT 2
   PARTITION: RANDOM
   STREAM DATA SINK
     EXCHANGE ID: 4
     UNPARTITIONED
   1:SCAN HDFS
      table=join_order.medium #partitions=1/1 size=4.62GB
       table stats: unavailable
      column stats: unavailable
      cardinality: unavailable
      per-host memory: 88.00MB
      tuple ids: 1
Returned 64 row(s) in 0.04s
```

Gathering statistics for all the tables is straightforward, one COMPUTE STATS statement per table:

```
______
[localhost:21000] > compute stats small;
summary
Updated 1 partition(s) and 3 column(s).
Returned 1 row(s) in 4.26s
[localhost:21000] > compute stats medium;
summary
Updated 1 partition(s) and 5 column(s).
Returned 1 row(s) in 42.11s
[localhost:21000] > compute stats big;
summary
Updated 1 partition(s) and 5 column(s).
Returned 1 row(s) in 165.44s
```

With statistics in place, Impala can choose a more effective join order rather than following the left-to-right sequence of tables in the query, and can choose BROADCAST OF PARTITIONED JOIN Strategies based on the overall sizes and number of rows in the table:

```
[localhost:21000] > explain select count(*) from medium join big where big.id =
medium.id;
Query: explain select count(*) from medium join big where big.id = medium.id
 Explain String
 Estimated Per-Host Requirements: Memory=937.23MB VCores=2
  PLAN FRAGMENT 0
   PARTITION: UNPARTITIONED
    6:AGGREGATE (merge finalize)
      output: SUM(COUNT(*))
       cardinality: 1
      per-host memory: unavailable
      tuple ids: 2
    5: EXCHANGE
      cardinality: 1
       per-host memory: unavailable
      tuple ids: 2
```

```
PLAN FRAGMENT 1
    PARTITION: RANDOM
    STREAM DATA SINK
     EXCHANGE ID: 5
      UNPARTITIONED
    3:AGGREGATE
      output: COUNT(*)
       cardinality: 1
       per-host memory: 10.00MB
       tuple ids: 2
    2:HASH JOIN
      join op: INNER JOIN (BROADCAST)
      hash predicates:
        big.id = medium.id
      cardinality: 1443004441
      per-host memory: 839.23MB
       tuple ids: 1 0
     ---4:EXCHANGE
           cardinality: 200000000
            per-host memory: 0B
            tuple ids: 0
    1:SCAN HDFS
       table=join_order.big #partitions=1/1 size=23.12GB
       table stats: 1000000000 rows total
       column stats: all
       cardinality: 1000000000
       per-host memory: 88.00MB
       tuple ids: 1
  PLAN FRAGMENT 2
    PARTITION: RANDOM
    STREAM DATA SINK
     EXCHANGE ID: 4
      UNPARTITIONED
    0:SCAN HDFS
       table=join_order.medium #partitions=1/1 size=4.62GB
       table stats: 200000000 rows total
       column stats: all
       cardinality: 200000000
       per-host memory: 88.00MB
      tuple ids: 0
Returned 64 row(s) in 0.04s
[localhost:21000] > explain select count(*) from small join big where big.id = small.id;
Query: explain select count(*) from small join big where big.id = small.id
 Explain String
 Estimated Per-Host Requirements: Memory=101.15MB VCores=2
  PLAN FRAGMENT 0
   PARTITION: UNPARTITIONED
    6:AGGREGATE (merge finalize)
      output: SUM(COUNT(*))
       cardinality: 1
       per-host memory: unavailable
       tuple ids: 2
    5: EXCHANGE
       cardinality: 1
       per-host memory: unavailable
       tuple ids: 2
  PLAN FRAGMENT 1
```

```
PARTITION: RANDOM
    STREAM DATA SINK
      EXCHANGE ID: 5
      UNPARTITIONED
    3:AGGREGATE
      output: COUNT(*)
      cardinality: 1
      per-host memory: 10.00MB
       tuple ids: 2
    2:HASH JOIN
       join op: INNER JOIN (BROADCAST)
       hash predicates:
         big.id = small.id
       cardinality: 1000000000
       per-host memory: 3.15MB
      tuple ids: 1 0
     ----4:EXCHANGE
            cardinality: 1000000
            per-host memory: OB
            tuple ids: 0
    1:SCAN HDFS
       table=join_order.big #partitions=1/1 size=23.12GB
       table stats: 1000000000 rows total
       column stats: all
       cardinality: 1000000000
       per-host memory: 88.00MB
       tuple ids: 1
  PLAN FRAGMENT 2
    PARTITION: RANDOM
    STREAM DATA SINK
      EXCHANGE ID: 4
      UNPARTITIONED
    0:SCAN HDFS
       table=join_order.small #partitions=1/1 size=17.93MB
       table stats: 1000000 rows total
       column stats: all
       cardinality: 1000000
       per-host memory: 32.00MB
      tuple ids: 0
Returned 64 row(s) in 0.03s
```

When queries like these are actually run, the execution times are relatively consistent regardless of the table order in the query text. Here are examples using both the unique ID column and the VAL column containing duplicate values:

```
[localhost:21000] > select count(*) from big join small on (big.id = small.id);
Query: select count(*) from big join small on (big.id = small.id)
+------+
| count(*) |
+------+
| 1000000 |
+------+
Returned 1 row(s) in 21.68s
[localhost:21000] > select count(*) from small join big on (big.id = small.id);
Query: select count(*) from small join big on (big.id = small.id)
+------+
| count(*) |
+------+
| 1000000 |
+------+
Returned 1 row(s) in 20.45s
[localhost:21000] > select count(*) from big join small on (big.val = small.val);
```

```
count(*)
2000948962
Returned 1 row(s) in 108.85s
[localhost:21000] > select count(*) from small join big on (big.val = small.val);
count(*)
2000948962
Returned 1 row(s) in 100.76s
```

Note: When examining the performance of join queries and the effectiveness of the join order optimization, make sure the query involves enough data and cluster resources to see a difference depending on the query plan. For example, a single data file of just a few megabytes will reside in a single HDFS block and be processed on a single node. Likewise, if you use a single-node or two-node cluster, there might not be much difference in efficiency for the broadcast or partitioned join strategies.

How Impala Uses Statistics for Query Optimization

Impala can do better optimization for complex or multi-table queries when it has access to statistics about the volume of data and how the values are distributed. Impala uses this information to help parallelize and distribute the work for a query. The following sections describe the categories of statistics Impala can work with, and how to produce them and keep them up to date.

Originally, Impala relied on the Hive mechanism for collecting statistics, through the Hive ANALYZE TABLE statement which initiates a MapReduce job. For better user-friendliness and reliability, Impala implements its OWN COMPUTE STATS statement in Impala 1.2.2 and higher, along with the DROP STATS, SHOW TABLE STATS, and SHOW COLUMN STATS statements.

Overview of Table Statistics

The Impala query planner can make use of statistics about entire tables and partitions when that metadata is available in the metastore database. This metadata is used on its own for certain optimizations, and used in combination with column statistics for other optimizations.

To gather table statistics after loading data into a table or partition, use one of the following techniques:

- Issue the statement COMPUTE STATS in Impala. This statement, available in Impala 1.2.2 and higher, is the preferred method because:
 - It gathers table statistics and statistics for all partitions and columns in a single operation.
 - It does not rely on any special Hive settings, metastore configuration, or separate database to hold the statistics.
 - If you need to adjust statistics incrementally for an existing table, such as after adding a partition or inserting new data, you can use an ALTER TABLE statement such as:

```
_____
alter table analysis_data set tblproperties('numRows'='new_value',
'STATS_GENERATED_VIA_STATS_TASK' = 'true');
```

to update that one value numeric property rather than re-processing the whole table. (The requirement to include the STATS_GENERATED_VIA_STATS_TASK property is relatively new, as a result of the issue HIVE-8648 for the Hive metastore.)

Load the data through the INSERT OVERWRITE statement in Hive, while the Hive setting hive.stats.autogather is enabled.

Issue an ANALYZE TABLE statement in Hive, for the entire table or a specific partition.

```
ANALYZE TABLE tablename [PARTITION(partcol1[=val1], partcol2[=val2], ...)] COMPUTE
STATISTICS [NOSCAN];
```

For example, to gather statistics for a non-partitioned table:

```
ANALYZE TABLE customer COMPUTE STATISTICS;
```

To gather statistics for a store table partitioned by state and city, and both of its partitions:

```
ANALYZE TABLE store PARTITION(s_state, s_county) COMPUTE STATISTICS;
```

To gather statistics for the store table and only the partitions for California:

```
-----
ANALYZE TABLE store PARTITION(s_state='CA', s_county) COMPUTE STATISTICS;
```

To check that table statistics are available for a table, and see the details of those statistics, use the statement SHOW TABLE STATS table_name. See SHOW Statement on page 235 for details.

If you use the Hive-based methods of gathering statistics, see the Hive wiki for information about the required configuration on the Hive side. Cloudera recommends using the Impala COMPUTE STATS statement to avoid potential configuration and scalability issues with the statistics-gathering process.

Overview of Column Statistics

The Impala query planner can make use of statistics about individual columns when that metadata is available in the metastore database. This technique is most valuable for columns compared across tables in join queries, to help estimate how many rows the query will retrieve from each table. These statistics are also important for correlated subqueries using the EXISTS() or IN() operators, which are processed internally the same way as join queries.

Note:

For column statistics to be effective in Impala, you also need to have table statistics for the applicable tables, as described in Overview of Table Statistics on page 349. When you use the Impala COMPUTE STATS statement, both table and column statistics are automatically gathered at the same time, for all columns in the table.

Currently, the COMPUTE STATS statement under CDH 4 does not store any statistics for DECIMAL columns. When Impala runs under CDH 5, which has better support for DECIMAL in the metastore database, COMPUTE STATS does collect statistics for DECIMAL columns and Impala uses the statistics to optimize query performance.

Note: Prior to Impala 1.4.0, COMPUTE STATS counted the number of NULL values in each column and recorded that figure in the metastore database. Because Impala does not currently make use of the NULL count during query planning, Impala 1.4.0 and higher speeds up the COMPUTE STATS statement by skipping this NULL counting.

To check whether column statistics are available for a particular set of columns, use the SHOW COLUMN STATS table_name statement, or check the extended EXPLAIN output for a query against that table that refers to those columns. See SHOW Statement on page 235 and EXPLAIN Statement on page 192 for details.

Overview of Incremental Statistics

In Impala 2.1.0 and higher, you can use the syntax COMPUTE INCREMENTAL STATS and DROP INCREMENTAL STATS. The INCREMENTAL clauses work with incremental statistics, a specialized feature for partitioned tables that are large or frequently updated with new partitions.

When you compute incremental statistics for a partitioned table, by default Impala only processes those partitions that do not yet have incremental statistics. By processing only newly added partitions, you can keep statistics up to date for large partitioned tables, without incurring the overhead of reprocessing the entire table each time.

You can also compute or drop statistics for a single partition by including a PARTITION clause in the COMPUTE INCREMENTAL STATS or DROP INCREMENTAL STATS statement.

The metadata for incremental statistics is handled differently from the original style of statistics:

- If you have an existing partitioned table for which you have already computed statistics, issuing COMPUTE INCREMENTAL STATS without a partition clause causes Impala to rescan the entire table. Once the incremental statistics are computed, any future COMPUTE INCREMENTAL STATS statements only scan any new partitions and any partitions where you performed DROP INCREMENTAL STATS.
- The show TABLE STATS and SHOW PARTITIONS statements now include an additional column showing whether incremental statistics are available for each column. A partition could already be covered by the original type of statistics based on a prior COMPUTE STATS statement, as indicated by a value other than -1 under the #Rows column. Impala query planning uses either kind of statistics when available.
- COMPUTE INCREMENTAL STATS takes more time than COMPUTE STATS for the same volume of data. Therefore it is most suitable for tables with large data volume where new partitions are added frequently, making it impractical to run a full COMPUTE STATS operation for each new partition. For unpartitioned tables, or partitioned tables that are loaded once and not updated with new partitions, use the original COMPUTE STATS syntax.
- COMPUTE INCREMENTAL STATS uses some memory in the catalogd process, proportional to the number of partitions and number of columns in the applicable table. The memory overhead is approximately 400 bytes for each column in each partition. This memory is reserved in the catalogd daemon, the statestored daemon, and in each instance of the impalad daemon.
- In cases where new files are added to an existing partition, issue a REFRESH statement for the table, followed by a DROP INCREMENTAL STATS and COMPUTE INCREMENTAL STATS sequence for the changed partition.
- The DROP INCREMENTAL STATS statement operates only on a single partition at a time. To remove statistics (whether incremental or not) from all partitions of a table, issue a DROP STATS statement with no INCREMENTAL or partition clauses.

The following considerations apply to incremental statistics when the structure of an existing table is changed (known as **schema evolution**):

- If you use an ALTER TABLE statement to drop a column, the existing statistics remain valid and COMPUTE INCREMENTAL STATS does not rescan any partitions.
- If you use an ALTER TABLE statement to add a column, Impala rescans all partitions and fills in the appropriate column-level values the next time you run COMPUTE INCREMENTAL STATS.
- If you use an ALTER TABLE statement to change the data type of a column, Impala rescans all partitions and fills in the appropriate column-level values the next time you run COMPUTE INCREMENTAL STATS.
- If you use an ALTER TABLE statement to change the file format of a table, the existing statistics remain valid and a subsequent COMPUTE INCREMENTAL STATS does not rescan any partitions.

See COMPUTE STATS Statement on page 164 and DROP STATS Statement on page 187 for syntax details.

Detecting Missing Statistics

You can check whether a specific table has statistics using the SHOW TABLE STATS statement (for any table) or the SHOW PARTITIONS statement (for a partitioned table). Both statements display the same information. If a table or a partition does not have any statistics, the #ROWS field contains -1. Once you compute statistics for the table or partition, the #Rows field changes to an accurate value.

The following example shows a table that initially does not have any statistics. The SHOW TABLE STATS statement displays different values for #ROWS before and after the COMPUTE STATS operation.

The following example shows a similar progression with a partitioned table. Initially, #Rows is -1. After a COMPUTE STATS operation, #Rows changes to an accurate value. Any newly added partition starts with no statistics, meaning that you must collect statistics after adding a new partition.

• Note: Because the default COMPUTE STATS statement creates and updates statistics for all partitions in a table, if you expect to frequently add new partitions, use the COMPUTE INCREMENTAL STATS syntax instead, which lets you compute stats for a single specified partition, or only for those partitions that do not already have incremental stats.

If checking each individual table is impractical, due to a large number of tables or views that hide the underlying base tables, you can also check for missing statistics for a particular query. Use the EXPLAIN statement to preview query efficiency before actually running the query. Use the query profile output available through the PROFILE command in impala-shell or the web UI to verify query execution and timing after running the query.

Both the EXPLAIN plan and the PROFILE output display a warning if any tables or partitions involved in the query do not have statistics.

```
[localhost:21000] > create table no_stats (x int);
[localhost:21000] > explain select count(*) from no_stats;
 Explain String
 Estimated Per-Host Requirements: Memory=10.00MB VCores=1
 WARNING: The following tables are missing relevant table and/or column statistics.
 incremental_stats.no_stats
 03:AGGREGATE [FINALIZE]
  output: count:merge(*)
 02:EXCHANGE [UNPARTITIONED]
 01:AGGREGATE
  | output: count(*)
 00:SCAN HDFS [incremental_stats.no_stats]
    partitions=1/1 files=0 size=0B
```

Because Impala uses the *partition pruning* technique when possible to only evaluate certain partitions, if you have a partitioned table with statistics for some partitions and not others, whether or not the EXPLAIN statement shows the warning depends on the actual partitions used by the query. For example, you might see warnings or not for different queries against the same table:

```
-- No warning because all the partitions for the year 2012 have stats.
EXPLAIN SELECT ... FROM t1 WHERE year = 2012;
-- Missing stats warning because one or more partitions in this range
-- do not have stats.
EXPLAIN SELECT ... FROM t1 WHERE year BETWEEN 2006 AND 2009;
```

To confirm if any partitions at all in the table are missing statistics, you might explain a query that scans the entire table, such as SELECT COUNT(*) FROM table_name.

Keeping Statistics Up to Date

When the contents of a table or partition change significantly, recompute the stats for the relevant table or partition. The degree of change that qualifies as "significant" varies, depending on the absolute and relative sizes of the tables. Typically, if you add more than 30% more data to a table, it is worthwhile to recompute stats, because the differences in number of rows and number of distinct values might cause Impala to choose a different join order when that table is used in join queries. This guideline is most important for the largest tables. For example, adding 30% new data to a table containing 1 TB has a greater effect on join order than adding 30% to a table containing only a few megabytes, and the larger table has a greater effect on query performance if Impala chooses a suboptimal join order as a result of outdated statistics.

If you reload a complete new set of data for a table, but the number of rows and number of distinct values for each column is relatively unchanged from before, you do not need to recompute stats for the table.

If the statistics for a table are out of date, and the table's large size makes it impractical to recompute new stats immediately, you can use the DROP STATS statement to remove the obsolete statistics, making it easier to identify tables that need a new COMPUTE STATS operation. Hints on page 232

For a large partitioned table, consider using the incremental stats feature available in Impala 2.1.0 and higher, as explained in <u>Overview of Incremental Statistics</u> on page 350. If you add a new partition to a table, it is worthwhile to recompute incremental stats, because the operation only scans the data for that one new partition.

Setting Statistics Manually through ALTER TABLE

The most crucial piece of data in all the statistics is the number of rows in the table (for an unpartitioned table) or for each partition (for a partitioned table). The COMPUTE STATS statement always gathers statistics about all columns, as well as overall table statistics. If it is not practical to do an entire COMPUTE STATS operation after adding a partition or inserting data, or if you can see that Impala would produce a more efficient plan if the number of rows was different, you can manually set the number of rows through an ALTER TABLE statement:

```
create table analysis_data stored as parquet as select * from raw_data;
Inserted 100000000 rows in 181.98s
compute stats analysis_data;
insert into analysis_data select * from smaller_table_we_forgot_before;
Inserted 1000000 rows in 15.32s
-- Now there are 1001000000 rows. We can update this single data point in the stats.
alter table analysis_data set tblproperties('numRows'='1001000000');
```

For a partitioned table, update both the per-partition number of rows and the number of rows for the whole table:

```
-- If the table originally contained 1000000 rows, and we add another partition,
-- change the numRows property for the partition and the overall table.
alter table partitioned_data partition(year=2009, month=4) set tblproperties
('numRows'='30000');
alter table partitioned_data set tblproperties ('numRows'='1030000');
```

In practice, the COMPUTE STATS statement should be fast enough that this technique is not needed. It is most useful as a workaround for in case of performance issues where you might adjust the numRows value higher or lower to produce the ideal join order.

Examples of Using Table and Column Statistics with Impala

The following examples walk through a sequence of SHOW TABLE STATS, SHOW COLUMN STATS, ALTER TABLE, and SELECT and INSERT statements to illustrate various aspects of how Impala uses statistics to help optimize queries.

This example shows table and column statistics for the STORE column used in the TPC-DS benchmarks for decision support systems. It is a tiny table holding data for 12 stores. Initially, before any statistics are gathered by a COMPUTE STATS statement, most of the numeric fields show placeholder values of -1, indicating that the figures are unknown. The figures that are filled in are values that are easily countable or deducible at the physical level, such as the number of files, total data size of the files, and the maximum and average sizes for data types that have a constant size such as INT, FLOAT, and TIMESTAMP.

s_store_sk	INT	-1	-1	4	4
s_store_id	STRING	-1	-1	-1	-1
s_rec_start_date	TIMESTAMP	-1	-1	16	16
s_rec_end_date	TIMESTAMP	-1	-1	16	16
s_closed_date_sk	INT	-1	-1	4	4
s_store_name	STRING	-1	-1	-1	-1
s_number_employees	INT	-1	-1	4	4
s_floor_space	INT	-1	-1	4	4
s_hours	STRING	-1	-1	-1	-1
s_manager	STRING	-1	-1	-1	-1
s_market_id	INT	-1	-1	4	4
s_geography_class	STRING	-1	-1	-1	-1
s_market_desc	STRING	-1	-1	-1	-1
s_market_manager	STRING	-1	-1	-1	-1
s_division_id	INT	-1	-1	4	4
s_division_name	STRING	-1	-1	-1	-1
s_company_id	INT	-1	-1	4	4
s_company_name	STRING	-1	-1	-1	-1
s_street_number	STRING	-1	-1	-1	-1
s_street_name	STRING	-1	-1	-1	-1
s_street_type	STRING	-1	-1	-1	-1
s_suite_number	STRING	-1	-1	-1	-1
s_city	STRING	-1	-1	-1	-1
s_county	STRING	-1	-1	-1	-1
s_state	STRING	-1	-1	-1	-1
s_zip	STRING	-1	-1	-1	-1
s_country	STRING	-1	-1	-1	-1
s_gmt_offset	FLOAT	-1	-1	4	4
s_tax_percentage	FLOAT	-1	-1	4	4

With the Hive ANALYZE TABLE statement for column statistics, you had to specify each column for which to gather statistics. The Impala COMPUTE STATS statement automatically gathers statistics for all columns, because it reads through the entire table relatively quickly and can efficiently compute the values for all the columns. This example shows how after running the COMPUTE STATS statement, statistics are filled in for both the table and all its columns:

```
[localhost:21000] > compute stats store;
summary
Updated 1 partition(s) and 29 column(s).
Returned 1 row(s) in 1.88s
[localhost:21000] > show table stats store;
 #Rows | #Files | Size | Format |
Returned 1 row(s) in 0.02s
[localhost:21000] > show column stats store;
         Type | #Distinct Values | #Nulls | Max Size | Avg Size
s_store_sk INT 12
                                     | -1 | 4 | 4
| s_store_id | STRING | 6
                                      | -1 | 16
                                                    16
                                     | -1 | 16
s_rec_start_date | TIMESTAMP | 4
                                                    | 16
s_rec_end_date | TIMESTAMP | 3
                                      -1
                                             16
                                                    | 16
 s_closed_date_sk | INT | 3
                                      -1
                                             4
s_store_name | STRING | 8
                                      -1
                                             5
                                                     4.25
 s_number_employees | INT | 9
                                     -1
                                             4
                                                     4
```

s_floor_space	INT	10	-1	4	4
	STRING	2	-1	8	
s_manager	STRING	7	-1	15	12
s_market_id	INT	7	-1	4	4
s_geography_class	STRING	1	-1	7	7
s_market_desc	STRING	10	-1	94	55.5
s_market_manager	STRING	7	-1	16	14
s_division_id	INT	1	-1	4	4
s_division_name	STRING	1	-1	7	7
s_company_id	INT	1	-1	4	4
s_company_name	STRING	1	-1	7	7
	STRING	9	-1	3	I
s_street_name	STRING	12	-1	11	I
6.583300113677979 s_street_type 4.833300113677979	STRING	8	-1	9	I
s_suite_number	STRING	11	-1	9	8.25
s_city	STRING	2	-1	8	6.5
s_county	STRING	1	-1	17	17
s_state	STRING	1	-1	2	2
s_zip	STRING	2	-1	5	5
 s_country	STRING	1	-1	13	13
s_gmt_offset	FLOAT	1	-1	4	4
s_tax_percentage	FLOAT	5	-1	4	4
		+			+
Returned 29 row(s) i	11 U.U4S				

The following example shows how statistics are represented for a partitioned table. In this case, we have set up a table to hold the world's most trivial census data, a single STRING field, partitioned by a YEAR column. The table statistics include a separate entry for each partition, plus final totals for the numeric fields. The column statistics include some easily deducible facts for the partitioning column, such as the number of distinct values (the number of partition subdirectories).

			> describ	oe censi	 ;		1 1 1 1 1 1 1 1 1 1
1	name	type	commer				1111
	name	string smallint	į				11111
		, ,) in 0.02s		tats census	3;	11111
	year	#Rows	#Files	Size	Format	_	1
	2000 2004 2008 2010 2011	-1 -1 -1 -1 0	0 0 0 0 0	0B 0B 0B 0B 22B	TEXT TEXT TEXT TEXT TEXT TEXT		

2013	-1 -1 0	1 1 3		22B 231B 275B	TEXT PARQUE			
Returned [localhos							+	+
Column	Type	į	#Dis	tinct	Values	#Nulls	Max Size	Avg Size
name year	STRING	INT	-1 7			-1 -1	-1 2	-1 2
+ Returned	•		0.02s					

The following example shows how the statistics are filled in by a COMPUTE STATS statement in Impala.

```
[localhost:21000] > compute stats census;
summary
| Updated 3 partition(s) and 1 column(s). |
Returned 1 row(s) in 2.16s
[localhost:21000] > show table stats census;
| year | #Rows | #Files | Size | Format
 2000 | -1 | 0 | 0B | TEXT | 2004 | -1 | 0 | 0B | TEXT | 2008 | -1 | 0 | 0B | TEXT | 2010 | -1 | 0 | 0B | TEXT | 2011 | 4 | 1 | 22B | TEXT | 2012 | 4 | 1 | 22B | TEXT | 2013 | 1 | 1 | 231B | PARQUET | Total | 9 | 3 | 275B |
Returned 8 row(s) in 0.02s [localhost:21000] > show column stats census;
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
 ______
                                                  \begin{vmatrix} -1 & | & 5 & | & 4.5 \\ -1 & | & 2 & | & 2 \end{vmatrix}
           STRING 4
 name
year SMALLINT 7
Returned 2 row(s) in 0.02s
```

For examples showing how some queries work differently when statistics are available, see Examples of Join Order Optimization on page 344. You can see how Impala executes a query differently in each case by observing the EXPLAIN output before and after collecting statistics. Measure the before and after query times, and examine the throughput numbers in before and after SUMMARY or PROFILE output, to verify how much the improved plan speeds up performance.

Benchmarking Impala Queries

Because Impala, like other Hadoop components, is designed to handle large data volumes in a distributed environment, conduct any performance tests using realistic data and cluster configurations. Use a multi-node cluster rather than a single node; run queries against tables containing terabytes of data rather than tens of gigabytes. The parallel processing techniques used by Impala are most appropriate for workloads that are beyond the capacity of a single server.

When you run queries returning large numbers of rows, the CPU time to pretty-print the output can be substantial, giving an inaccurate measurement of the actual query time. Consider using the -B option on the impala-shell command to turn off the pretty-printing, and optionally the -o option to store query results in a file rather than printing to the screen. See impala-shell Configuration Options on page 318 for details.

Controlling Impala Resource Usage

Sometimes, balancing raw query performance against scalability requires limiting the amount of resources, such as memory or CPU, used by a single query or group of queries. Impala can use several mechanisms that help to smooth out the load during heavy concurrent usage, resulting in faster overall query times and sharing of resources across Impala queries, MapReduce jobs, and other kinds of workloads across a CDH cluster:

- The Impala admission control feature uses a fast, distributed mechanism to hold back queries that exceed limits on the number of concurrent queries or the amount of memory used. The queries are queued, and executed as other queries finish and resources become available. You can control the concurrency limits, and specify different limits for different groups of users to divide cluster resources according to the priorities of different classes of users. This feature is new in Impala 1.3, and works with both CDH 4 and CDH 5. See Admission Control and Query Queuing on page 67 for details.
- You can restrict the amount of memory Impala reserves during query execution by specifying the -mem_limit option for the impalad daemon. See Modifying Impala Startup Options on page 46 for details. This limit applies only to the memory that is directly consumed by gueries; Impala reserves additional memory at startup, for example to hold cached metadata.
- For production deployment, Cloudera recommends that you implement resource isolation using mechanisms such as cgroups, which you can configure using Cloudera Manager. For details, see the Static Resource Pools in the Cloudera Manager documentation.
- When you use Impala in combination with CDH 5, you can use the YARN resource management framework in combination with the Llama service, as explained in Integrated Resource Management with YARN on page 76.

Using HDFS Caching with Impala (CDH 5.1 or higher only)

HDFS caching provides performance and scalability benefits in production environments where Impala queries and other Hadoop jobs operate on quantities of data much larger than the physical RAM on the data nodes, making it impractical to rely on the Linux OS cache, which only keeps the most recently used data in memory. Data read from the HDFS cache avoids the overhead of checksumming and memory-to-memory copying involved when using data from the Linux OS cache.

For background information about how to set up and manage HDFS caching for a CDH cluster, see the CDH documentation.

Overview of HDFS Caching for Impala

On CDH 5.1 and higher, Impala can use the HDFS caching feature to make more effective use of RAM, so that repeated queries can take advantage of data "pinned" in memory regardless of how much data is processed overall. The HDFS caching feature lets you designate a subset of frequently accessed data to be pinned permanently in memory, remaining in the cache across multiple queries and never being evicted. This technique is suitable for tables or partitions that are frequently accessed and are small enough to fit entirely within the HDFS memory cache. For example, you might designate several dimension tables to be pinned in the cache, to speed up many different join queries that reference them. Or in a partitioned table, you might pin a partition holding data from the most recent time period because that data will be queried intensively; then when the next set of data arrives, you could unpin the previous partition and pin the partition holding the new data.

Setting Up HDFS Caching for Impala

To use HDFS caching with Impala, first set up that feature for your CDH cluster:

 Decide how much memory to devote to the HDFS cache on each host. Remember that the total memory available for cached data is the sum of the cache sizes on all the hosts. (Any data block is only cached on one host. Once a data block is cached on one host, all requests to process that block are routed to that same host.)

Issue hdfs cacheadmin commands to set up one or more cache pools, owned by the same user as the impalad daemon (typically impala). For example:

```
hdfs cacheadmin -addPool four_gig_pool -owner impala -limit 4000000000
```

For details about the hdfs cacheadmin command, see the CDH documentation.

Once HDFS caching is enabled and one or more pools are available, see Enabling HDFS Caching for Impala Tables and Partitions on page 359 for how to choose which Impala data to load into the HDFS cache. On the Impala side, you specify the cache pool name defined by the hdfs cacheadmin command in the Impala DDL statements that enable HDFS caching for a table or partition, such as CREATE TABLE ... CACHED IN pool or ALTER TABLE ... SET CACHED IN pool.

Enabling HDFS Caching for Impala Tables and Partitions

Begin by choosing which tables or partitions to cache. For example, these might be lookup tables that are accessed by many different join queries, or partitions corresponding to the most recent time period that are analyzed by different reports or ad hoc queries.

In your SQL statements, you specify logical divisions such as tables and partitions to be cached. Impala translates these requests into HDFS-level directives that apply to particular directories and files. For example, given a partitioned table CENSUS with a partition key column YEAR, you could choose to cache all or part of the data as follows:

```
-- Cache the entire table (all partitions).
alter table census set cached in 'pool_name';
-- Remove the entire table from the cache.
alter table census set uncached;
-- Cache a portion of the table (a single partition).
-- If the table is partitioned by multiple columns (such as year, month, day),
-- the ALTER TABLE command must specify values for all those columns.
alter table census partition (year=1960) set cached in 'pool_name';
-- At each stage, check the volume of cached data.
-- For large tables or partitions, the background loading might take some time,
-- so you might have to wait and reissue the statement until all the data
-- has finished being loaded into the cache.
show table stats census;
| year | #Rows | #Files | Size | Bytes Cached | Format
 1900 | -1 | 1 | 11B | NOT CACHED
1940 | -1 | 1 | 11B | NOT CACHED
1960 | -1 | 1 | 11B | 11B
1970 | -1 | 1 | 11B | NOT CACHED
Total | -1 | 4 | 44B | 11B
                                                       TEXT
                                                       TEXT
                                                      TEXT
                                                      TEXT
```

CREATE TABLE considerations:

The HDFS caching feature affects the Impala CREATE TABLE statement as follows:

- You can put a CACHED IN 'pool_name' clause at the end of a CREATE TABLE statement to automatically cache the entire contents of the table, including any partitions added later. The pool name is a pool that you previously set up with the hdfs cacheadmin command.
- Once a table is designated for HDFS caching through the CREATE TABLE statement, if new partitions are added later through ALTER TABLE ... ADD PARTITION statements, the data in those new partitions is automatically cached in the same pool.
- If you want to perform repetitive queries on a subset of data from a large table, and it is not practical to designate the entire table or specific partitions for HDFS caching, you can create a new cached table with

just a subset of the data by using CREATE TABLE ... CACHED IN 'pool name' AS SELECT ... WHERE When you are finished with generating reports from this subset of data, drop the table and both the data files and the data cached in RAM are automatically deleted.

See <u>CREATE TABLE Statement</u> on page 174 for the full syntax.

Other memory considerations:

Certain DDL operations, such as ALTER TABLE ... SET LOCATION, are blocked while the underlying HDFS directories contain cached files. You must uncache the files first, before changing the location, dropping the table, and so on.

When data is requested to be pinned in memory, that process happens in the background without blocking access to the data while the caching is in progress. Loading the data from disk could take some time. Impala reads each HDFS data block from memory if it has been pinned already, or from disk if it has not been pinned yet. When files are added to a table or partition whose contents are cached, Impala automatically detects those changes and performs a REFRESH automatically once the relevant data is cached.

The amount of data that you can pin on each node through the HDFS caching mechanism is subject to a quota that is enforced by the underlying HDFS service. Before requesting to pin an Impala table or partition in memory, check that its size does not exceed this quota.

Note: Because the HDFS cache consists of combined memory from all the data nodes in the cluster, cached tables or partitions can be bigger than the amount of HDFS cache memory on any single host.

Loading and Removing Data with HDFS Caching Enabled

When HDFS caching is enabled, extra processing happens in the background when you add or remove data through statements such as INSERT and DROP TABLE.

Inserting or loading data:

- When Impala performs an INSERT or LOAD DATA statement for a table or partition that is cached, the new data files are automatically cached and Impala recognizes that fact automatically.
- If you perform an INSERT or LOAD DATA through Hive, as always, Impala only recognizes the new data files after a REFRESH table_name statement in Impala.
- If the cache pool is entirely full, or becomes full before all the requested data can be cached, the Impala DDL statement returns an error. This is to avoid situations where only some of the requested data could be cached.
- When HDFS caching is enabled for a table or partition, new data files are cached automatically when they are added to the appropriate directory in HDFS, without the need for a REFRESH statement in Impala. Impala automatically performs a REFRESH once the new data is loaded into the HDFS cache.

Dropping tables, partitions, or cache pools:

The HDFS caching feature interacts with the Impala prop-partition statements as follows:

- When you issue a DROP TABLE for a table that is entirely cached, or has some partitions cached, the DROP TABLE succeeds and all the cache directives Impala submitted for that table are removed from the HDFS cache system.
- The same applies to ALTER TABLE ... DROP PARTITION. The operation succeeds and any cache directives are removed.
- As always, the underlying data files are removed if the dropped table is an internal table, or the dropped partition is in its default location underneath an internal table. The data files are left alone if the dropped table is an external table, or if the dropped partition is in a non-default location.
- If you designated the data files as cached through the hdfs cacheadmin command, and the data files are left behind as described in the previous item, the data files remain cached. Impala only removes the cache directives submitted by Impala through the CREATE TABLE or ALTER TABLE statements. It is OK to have

- multiple redundant cache directives pertaining to the same files; the directives all have unique IDs and owners so that the system can tell them apart.
- If you drop an HDFS cache pool through the hdfs cacheadmin command, all the Impala data files are preserved, just no longer cached. After a subsequent REFRESH, SHOW TABLE STATS reports 0 bytes cached for each associated Impala table or partition.

Relocating a table or partition:

The HDFS caching feature interacts with the Impala ALTER TABLE ... SET LOCATION statement as follows:

 If you have designated a table or partition as cached through the CREATE TABLE OF ALTER TABLE statements, subsequent attempts to relocate the table or partition through an ALTER TABLE ... SET LOCATION statement will fail. You must issue an ALTER TABLE ... SET UNCACHED statement for the table or partition first. Otherwise, Impala would lose track of some cached data files and have no way to uncache them later.

Administration for HDFS Caching with Impala

Here are the guidelines and steps to check or change the status of HDFS caching for Impala data:

hdfs cacheadmin command:

- If you drop a cache pool with the hdfs cacheadmin command, Impala queries against the associated data files will still work, by falling back to reading the files from disk. After performing a REFRESH on the table, Impala reports the number of bytes cached as 0 for all associated tables and partitions.
- You might use hdfs cacheadmin to get a list of existing cache pools, or detailed information about the pools, as follows:

```
hdfs cacheadmin -listDirectives # Basic info
Found 122 entries
ID POOL REPL EXPIRY PATH

123 testPool 1 never /user/hive/warehouse/tpcds.store_sales

124 testPool 1 never
/user/hive/warehouse/tpcds.store_sales/ss_date=1998-01-15
 125 testPool 1 never
/user/hive/warehouse/tpcds.store_sales/ss_date=1998-02-01
hdfs cacheadmin -listDirectives -stats # More details
Found 122 entries
 ID POOL REPL EXPIRY PATH
     BYTES_NEEDED BYTES_CACHED FILES_NEEDED FILES_CACHED
123 testPool 1 never /user/hive/warehouse/tpcds.store_sales 0 0 0 0 0
/user/hive/warehouse/tpcds.store_sales/ss_date=1998-01-15 143169
143169 1 1
125 testPool 1 never
143169
/user/hive/warehouse/tpcds.store_sales/ss_date=1998-02-01
                                                               112447
           1
112447
```

Impala SHOW statement:

 For each table or partition, the SHOW TABLE STATS or SHOW PARTITIONS statement displays the number of bytes currently cached by the HDFS caching feature. If there are no cache directives in place for that table or partition, the result set displays NOT CACHED. A value of 0, or a smaller number than the overall size of the table or partition, indicates that the cache request has been submitted but the data has not been entirely loaded into memory yet. See **SHOW Statement** on page 235 for details.

Cloudera Manager:

 You can enable or disable HDFS caching through Cloudera Manager, using the configuration setting Maximum **Memory Used for Caching** for the HDFS service. This control sets the HDFS configuration parameter dfs_datanode_max_locked_memory, which specifies the upper limit of HDFS cache size on each node.

 All the other manipulation of the HDFS caching settings, such as what files are cached, is done through the command line, either Impala DDL statements or the Linux hdfs cacheadmin command.

Impala memory limits:

The Impala HDFS caching feature interacts with the Impala memory limits as follows:

- The maximum size of each HDFS cache pool is specified externally to Impala, through the hdfs cacheadmin
- All the memory used for HDFS caching is separate from the impalad daemon address space and does not count towards the limits of the --mem_limit startup option, MEM_LIMIT query option, or further limits imposed through YARN resource management or the Linux cgroups mechanism.
- Because accessing HDFS cached data avoids a memory-to-memory copy operation, queries involving cached data require less memory on the Impala side than the equivalent queries on uncached data. In addition to any performance benefits in a single-user environment, the reduced memory helps to improve scalability under high-concurrency workloads.

Performance Considerations for HDFS Caching with Impala

In Impala 1.4.0 and higher, Impala supports efficient reads from data that is pinned in memory through HDFS caching. Impala takes advantage of the HDFS API and reads the data from memory rather than from disk whether the data files are pinned using Impala DDL statements, or using the command-line mechanism where you specify HDFS paths.

When you examine the output of the impala-shell SUMMARY command, or look in the metrics report for the impalad daemon, you see how many bytes are read from the HDFS cache. For example, this excerpt from a query profile illustrates that all the data read during a particular phase of the query came from the HDFS cache, because the BytesRead and BytesReadDataNodeCache values are identical.

```
HDFS_SCAN_NODE (id=0):(Total: 11s114ms, non-child: 11s114ms, % non-child: 100.00%)
        - AverageHdfsReadThreadConcurrency: 0.00
        - AverageScannerThreadConcurrency: 32.75
        - BytesRead: 10.47 GB (11240756479)
        - BytesReadDataNodeCache: 10.47 GB (11240756479)
        - BytesReadLocal: 10.47 GB (11240756479)
        - BytesReadShortCircuit: 10.47 GB (11240756479)
        - DecompressionTime: 27s572ms
```

For queries involving smaller amounts of data, or in single-user workloads, you might not notice a significant difference in query response time with or without HDFS caching. Even with HDFS caching turned off, the data for the query might still be in the Linux OS buffer cache. The benefits become clearer as data volume increases, and especially as the system processes more concurrent queries. HDFS caching improves the scalability of the overall system. That is, it prevents query performance from declining when the workload outstrips the capacity of the Linux OS cache.

SELECT considerations:

The Impala HDFS caching feature interacts with the SELECT statement and query performance as follows:

- Impala automatically reads from memory any data that has been designated as cached and actually loaded into the HDFS cache. (It could take some time after the initial request to fully populate the cache for a table with large size or many partitions.) The speedup comes from two aspects: reading from RAM instead of disk, and accessing the data straight from the cache area instead of copying from one RAM area to another. This second aspect yields further performance improvement over the standard OS caching mechanism, which still results in memory-to-memory copying of cached data.
- For small amounts of data, the query speedup might not be noticeable in terms of wall clock time. The performance might be roughly the same with HDFS caching turned on or off, due to recently used data being held in the Linux OS cache. The difference is more pronounced with:
 - Data volumes (for all queries running concurrently) that exceed the size of the Linux OS cache.
 - A busy cluster running many concurrent queries, where the reduction in memory-to-memory copying and overall memory usage during queries results in greater scalability and throughput.

- Thus, to really exercise and benchmark this feature in a development environment, you might need to simulate realistic workloads and concurrent queries that match your production environment.
- One way to simulate a heavy workload on a lightly loaded system is to flush the OS buffer cache (on each data node) between iterations of queries against the same tables or partitions:

```
$ echo 1 > /proc/sys/vm/drop_caches
```

- Impala queries take advantage of HDFS cached data regardless of whether the cache directive was issued by Impala or externally through the hdfs cacheadmin command, for example for an external table where the cached data files might be accessed by several different Hadoop components.
- If your query returns a large result set, the time reported for the query could be dominated by the time needed to print the results on the screen. To measure the time for the underlying query processing, query the COUNT() of the big result set, which does all the same processing but only prints a single line to the screen.

Testing Impala Performance

Test to ensure that Impala is configured for optimal performance. If you have installed Impala without Cloudera Manager, complete the processes described in this topic to help ensure a proper configuration. Even if you installed Impala with Cloudera Manager, which automatically applies appropriate configurations, these procedures can be used to verify that Impala is set up correctly.

Checking Impala Configuration Values

You can inspect Impala configuration values by connecting to your Impala server using a browser.

To check Impala configuration values:

- 1. Use a browser to connect to one of the hosts running impalad in your environment. Connect using an address of the form http://hostname:port/varz.
 - Note: In the preceding example, replace hostname and port with the name and port of your Impala server. The default port is 25000.
- 2. Review the configured values.

For example, to check that your system is configured to use block locality tracking information, you would check that the value for dfs.datanode.hdfs-blocks-metadata.enabled is true.

To check data locality:

1. Execute a query on a dataset that is available across multiple nodes. For example, for a table named MyTable that has a reasonable chance of being spread across multiple DataNodes:

```
[impalad-host:21000] > SELECT COUNT (*) FROM MyTable
```

2. After the query completes, review the contents of the Impala logs. You should find a recent message similar to the following:

```
Total remote scan volume = 0
```

The presence of remote scans may indicate impalad is not running on the correct nodes. This can be because some DataNodes do not have impalad running or it can be because the impalad instance that is starting the query is unable to contact one or more of the impalad instances.

To understand the causes of this issue:

- 1. Connect to the debugging web server. By default, this server runs on port 25000. This page lists all impalad instances running in your cluster. If there are fewer instances than you expect, this often indicates some DataNodes are not running impalad. Ensure impalad is started on all DataNodes.
- 2. If you are using multi-homed hosts, ensure that the Impala daemon's hostname resolves to the interface on which impalad is running. The hostname Impala is using is displayed when impalad starts. If you need to explicitly set the hostname, use the --hostname flag.
- **3.** Check that statestored is running as expected. Review the contents of the state store log to ensure all instances of impalad are listed as having connected to the state store.

Reviewing Impala Logs

You can review the contents of the Impala logs for signs that short-circuit reads or block location tracking are not functioning. Before checking logs, execute a simple query against a small HDFS dataset. Completing a query task generates log messages using current settings. Information on starting Impala and executing queries can be found in Starting Impala on page 45 and Using the Impala Shell (impala-shell Command) on page 318. Information on logging can be found in Using Impala Logging on page 421. Log messages and their interpretations are as follows:

Log Message	Interpretation
Unknown disk id. This will negatively affect performance. Check your hdfs settings to enable block location metadata	Tracking block locality is not enabled.
Unable to load native-hadoop library for your platform using builtin-java classes where applicable	Native checksumming is not enabled.

Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles

To understand the high-level performance considerations for Impala queries, read the output of the EXPLAIN statement for the query. You can get the EXPLAIN plan without actually running the query itself.

For an overview of the physical performance characteristics for a query, issue the SUMMARY statement in impala-shell immediately after executing a query. This condensed information shows which phases of execution took the most time, and how the estimates for memory usage and number of rows at each phase compare to the actual values.

To understand the detailed performance characteristics for a query, issue the PROFILE statement in impala-shell immediately after executing a query. This low-level information includes physical details about memory, CPU, I/O, and network usage, and thus is only available after the query is actually run.

Also, see <u>Performance Considerations for the Impala-HBase Integration</u> on page 412 for examples of interpreting EXPLAIN plans for queries against HBase tables.

Using the EXPLAIN Plan for Performance Tuning

The EXPLAIN statement gives you an outline of the logical steps that a query will perform, such as how the work will be distributed among the nodes and how intermediate results will be combined to produce the final result set. You can see these details before actually running the query. You can use this information to check that the query will not operate in some very unexpected or inefficient way.

```
03:AGGREGATE [MERGE FINALIZE]
  output: sum(count(*))
02:EXCHANGE [PARTITION=UNPARTITIONED]
01:AGGREGATE
  output: count(*)
00:SCAN HDFS [default.customer_address]
 partitions=1/1 size=5.25MB
```

Read the EXPLAIN plan from bottom to top:

- The last part of the plan shows the low-level details such as the expected amount of data that will be read, where you can judge the effectiveness of your partitioning strategy and estimate how long it will take to scan a table based on total data size and the size of the cluster.
- As you work your way up, next you see the operations that will be parallelized and performed on each Impala node.
- At the higher levels, you see how data flows when intermediate result sets are combined and transmitted from one node to another.
- See <u>EXPLAIN LEVEL Query Option</u> on page 329 for details about the <u>EXPLAIN_LEVEL</u> query option, which lets you customize how much detail to show in the EXPLAIN plan depending on whether you are doing high-level or low-level tuning, dealing with logical or physical aspects of the query.

The EXPLAIN plan is also printed at the beginning of the query profile report described in Using the Query Profile for Performance Tuning on page 366, for convenience in examining both the logical and physical aspects of the query side-by-side.

The amount of detail displayed in the EXPLAIN output is controlled by the EXPLAIN LEVEL query option. You typically increase this setting from normal to verbose (or from 0 to 1) when doublechecking the presence of table and column statistics during performance tuning, or when estimating query resource usage in conjunction with the resource management features in CDH 5.

Using the SUMMARY Report for Performance Tuning

The SUMMARY command within the impala-shell interpreter gives you an easy-to-digest overview of the timings for the different phases of execution for a query. Like the EXPLAIN plan, it is easy to see potential performance bottlenecks. Like the PROFILE output, it is available after the query is run and so displays actual timing numbers.

The SUMMARY report is also printed at the beginning of the query profile report described in Using the Query Profile for Performance Tuning on page 366, for convenience in examining high-level and low-level aspects of the guery side-by-side.

For example, here is a query involving an aggregate function, on a single-node VM. The different stages of the query and their timings are shown (rolled up for all nodes), along with estimated and actual values used in planning the query. In this case, the AVG() function is computed for a subset of data on each node (stage 01) and then the aggregated results from all nodes are combined at the end (stage 03). You can see which stages took the most time, and whether any estimates were substantially different than the actual data distribution. (When examining the time values, be sure to consider the suffixes such as us for microseconds and ms for milliseconds, rather than just looking for the largest numbers.)

```
[localhost:21000] > select avg(ss_sales_price) from store_sales where ss_coupon_amt =
avg(ss_sales_price)
37.80770926328327
[localhost:21000] > summary;
```

Operator #Hosts Avg Time Max Time #Rows Est. #Rows Peak Mem Detail	Peak Mem Est.
03:AGGREGATE 1	48.00 KB -1 B
02:EXCHANGE 1 0ns 0ns 1 1	0 B
01:AGGREGATE 1	80.00 KB 10.00
00:SCAN HDFS 1	64.05 MB 432.00
+	+

Notice how the longest initial phase of the query is measured in seconds (s), while later phases working on smaller intermediate results are measured in milliseconds (ms) or even nanoseconds (ns).

Here is an example from a more complicated query, as it would appear in the PROFILE output:

Operator Peak Mem Detail	#Hosts	Avg Time	Max Time	#Rows Es	t. #Rows	Peak Mem	Est.
09:MERGING-EXCHANGE -1.00 B UNPARTIT		79.738us	79.738us	5	5	0	
05:TOP-N 120.00 B		84.693us	88.810us	5	5	12.00 KB	
04:AGGREGATE 10.00 MB MERGE FI		5.263ms	6.432ms	5	5	44.00 KB	
08:AGGREGATE 15.11 MB MERGE				52.52K	600.12K	3.20 MB	
07:EXCHANGE 0 HASH(o_c			5.1ms	52.52K	600.12K	0	
03:AGGREGATE 15.11 MB			966.291ms	52.52K	600.12K	10.80 MB	
02:HASH JOIN 941.01 KB INNER JO			2s171ms	144.87K	600.12K	13.63 MB	
06:EXCHANGE 0 BROADCAS		8.296ms	8.692ms	57.22K	15.00K	0	
01:SCAN HDFS 176.00 MB tpch.ord		1s412ms	1s978ms	57.22K	15.00K	24.21 MB	
00:SCAN HDFS 264.00 MB tpch.lir		8s032ms	8s558ms	3.79M	600.12K	32.29 MB	

Using the Query Profile for Performance Tuning

The PROFILE statement, available in the impala-shell interpreter, produces a detailed low-level report showing how the most recent query was executed. Unlike the EXPLAIN plan described in <u>Using the EXPLAIN Plan for Performance Tuning</u> on page 364, this information is only available after the query has finished. It shows physical details such as the number of bytes read, maximum memory usage, and so on for each node. You can use this information to determine if the query is I/O-bound or CPU-bound, whether some network condition is imposing a bottleneck, whether a slowdown is affecting some nodes but not others, and to check that recommended configuration settings such as short-circuit local reads are in effect.

The <u>EXPLAIN plan</u> is also printed at the beginning of the query profile report, for convenience in examining both the logical and physical aspects of the query side-by-side. The <u>EXPLAIN_LEVEL</u> query option also controls the verbosity of the <u>EXPLAIN</u> output printed by the <u>PROFILE</u> command.

Here is an example of a query profile, from a relatively straightforward query on a single-node pseudo-distributed cluster to keep the output relatively brief.

```
[localhost:21000] > profile;
Query Runtime Profile:
Query (id=6540a03d4bee0691:4963d6269b210ebd):
Summary:
Session ID: ea4a197f1c7bf858:c74e66f72e3a33ba
Session Type: BEESWAX
Start Time: 2013-12-02 17:10:30.263067000
```

```
End Time: 2013-12-02 17:10:50.932044000
    Query Type: QUERY
    Query State: FINISHED
    Query Status: OK
    Impala Version: impalad version 1.2.1 RELEASE (build
edb5af1bcad63d410bc5d47cc203df3a880e9324)
    User: cloudera
    Network Address: 127.0.0.1:49161
    Default Db: stats_testing
    Sql Statement: select t1.s, t2.s from t1 join t2 on (t1.id = t2.parent)
    Plan:
Estimated Per-Host Requirements: Memory=2.09GB VCores=2
PLAN FRAGMENT 0
  PARTITION: UNPARTITIONED
  4: EXCHANGE
     cardinality: unavailable
     per-host memory: unavailable
     tuple ids: 0 1
PLAN FRAGMENT 1
  PARTITION: RANDOM
  STREAM DATA SINK
    EXCHANGE ID: 4
    UNPARTITIONED
  2:HASH JOIN
     join op: INNER JOIN (BROADCAST)
     hash predicates:
      t1.id = t2.parent
     cardinality: unavailable
     per-host memory: 2.00GB
     tuple ids: 0 1
   ---3:EXCHANGE
         cardinality: unavailable
          per-host memory: 0B
          tuple ids: 1
  0:SCAN HDFS
     table=stats_testing.t1 #partitions=1/1 size=33B
     table stats: unavailable
     column stats: unavailable
     cardinality: unavailable
     per-host memory: 32.00MB
     tuple ids: 0
PLAN FRAGMENT 2
 PARTITION: RANDOM
  STREAM DATA SINK
    EXCHANGE ID: 3
    UNPARTITIONED
  1:SCAN HDFS
     table=stats_testing.t2 #partitions=1/1 size=960.00KB
     table stats: unavailable
     column stats: unavailable
     cardinality: unavailable
    per-host memory: 96.00MB
     tuple ids: 1
    Query Timeline: 20s670ms
       - Start execution: 2.559ms (2.559ms)
       - Planning finished: 23.587ms (21.27ms)
       - Rows available: 666.199ms (642.612ms)
       - First row fetched: 668.919ms (2.719ms)
       - Unregister query: 20s668ms (20s000ms)
  ImpalaServer:
     - ClientFetchWaitTimer: 19s637ms
```

```
- RowMaterializationTimer: 167.121ms
 Execution Profile 6540a03d4bee0691:4963d6269b210ebd:(Active: 837.815ms, % non-child:
0.00%)
   Per Node Peak Memory Usage: impala-1.example.com:22000(7.42 MB)
     - FinalizationTimer: Ons
   Coordinator Fragment: (Active: 195.198ms, % non-child: 0.00%)
    MemoryUsage(500.0ms): 16.00 KB, 7.42 MB, 7.33 MB, 7.10 MB, 6.94 MB, 6.71 MB, 6.56
MB, 6.40 MB, 6.17 MB, 6.02 MB, 5.79 MB, 5.63 MB, 5.48 MB, 5.25 MB, 5.09 MB, 4.86 MB,
4.71 MB, 4.47 MB, 4.32 MB, 4.09 MB, 3.93 MB, 3.78 MB, 3.55 MB, 3.39 MB, 3.16 MB, 3.01
MB, 2.78 MB, 2.62 MB, 2.39 MB, 2.24 MB, 2.08 MB, 1.85 MB, 1.70 MB, 1.54 MB, 1.31 MB, 1.16 MB, 948.00 KB, 790.00 KB, 553.00 KB, 395.00 KB, 237.00 KB
     ThreadUsage(500.0ms): 1
      - AverageThreadTokens: 1.00
      - PeakMemoryUsage: 7.42 MB
      - PrepareTime: 36.144us
      - RowsProduced: 98.30K (98304)
      - TotalCpuTime: 20s449ms
      - TotalNetworkWaitTime: 191.630ms
      - TotalStorageWaitTime: Ons
     CodeGen: (Active: 150.679ms, % non-child: 77.19%)
         - CodegenTime: Ons
         - CompileTime: 139.503ms
        - LoadTime: 10.7ms
         - ModuleFileSize: 95.27 KB
     EXCHANGE NODE (id=4):(Active: 194.858ms, % non-child: 99.83%)
         - BytesReceived: 2.33 MB
        - ConvertRowBatchTime: 2.732ms
        - DataArrivalWaitTime: 191.118ms
        - DeserializeRowBatchTimer: 14.943ms
        - FirstBatchArrivalWaitTime: 191.117ms
        - PeakMemoryUsage: 7.41 MB
        - RowsReturned: 98.30K (98304)
        - RowsReturnedRate: 504.49 K/sec
          SendersBlockedTimer: Ons
        - SendersBlockedTotalTimer(*): Ons
   Averaged Fragment 1:(Active: 442.360ms, % non-child: 0.00%)
     split sizes: min: 33.00 B, max: 33.00 B, avg: 33.00 B, stddev: 0.00 completion times: min:443.720ms max:443.720ms mean: 443.720ms stddev:0ns
     execution rates: min:74.00 B/sec max:74.00 B/sec mean:74.00 B/sec stddev:0.00
/sec
     num instances: 1
      - AverageThreadTokens: 1.00
      - PeakMemoryUsage: 6.06 MB
      - PrepareTime: 7.291ms
      - RowsProduced: 98.30K (98304)
      - TotalCpuTime: 784.259ms
      - TotalNetworkWaitTime: 388.818ms
      - TotalStorageWaitTime: 3.934ms
     CodeGen: (Active: 312.862ms, % non-child: 70.73%)
        - CodegenTime: 2.669ms
        - CompileTime: 302.467ms
        - LoadTime: 9.231ms
         - ModuleFileSize: 95.27 KB
     DataStreamSender (dst_id=4):(Active: 80.63ms, % non-child: 18.10%)
        - BytesSent: 2.33 MB
        - NetworkThroughput(*): 35.89 MB/sec
        - OverallThroughput: 29.06 MB/sec
        - PeakMemoryUsage: 5.33 KB
         - SerializeBatchTime: 26.487ms
        - ThriftTransmitTime(*): 64.814ms
         - UncompressedRowBatchSize: 6.66 MB
     HASH_JOIN_NODE (id=2):(Active: 362.25ms, % non-child: 3.92%)
         - BuildBuckets: 1.02K (1024)
        - BuildRows: 98.30K (98304)
        - BuildTime: 12.622ms
         - LoadFactor: 0.00
        - PeakMemoryUsage: 6.02 MB
        - ProbeRows: 3
        - ProbeTime: 3.579ms
        - RowsReturned: 98.30K (98304)
          RowsReturnedRate: 271.54 K/sec
       EXCHANGE_NODE (id=3):(Active: 344.680ms, % non-child: 77.92%)
           - BytesReceived: 1.15 MB
```

```
- ConvertRowBatchTime: 2.792ms
          - DataArrivalWaitTime: 339.936ms
          - DeserializeRowBatchTimer: 9.910ms
          - FirstBatchArrivalWaitTime: 199.474ms
          - PeakMemoryUsage: 156.00 KB
          - RowsReturned: 98.30K (98304)
          - RowsReturnedRate: 285.20 K/sec
          - SendersBlockedTimer: Ons
          - SendersBlockedTotalTimer(*): Ons
    HDFS_SCAN_NODE (id=0):(Active: 13.616us, % non-child: 0.00%)
        - AverageHdfsReadThreadConcurrency: 0.00
        - AverageScannerThreadConcurrency: 0.00
       - BytesRead: 33.00 B
       - BytesReadLocal: 33.00 B
        - BytesReadShortCircuit: 33.00 B
       - NumDisksAccessed: 1
        - NumScannerThreadsStarted: 1
        - PeakMemoryUsage: 46.00 KB
       - PerReadThreadRawHdfsThroughput: 287.52 KB/sec
       - RowsRead: 3
       - RowsReturned: 3
        - RowsReturnedRate: 220.33 K/sec
       - ScanRangesComplete: 1
        - ScannerThreadsInvoluntaryContextSwitches: 26
        - ScannerThreadsTotalWallClockTime: 55.199ms
          - DelimiterParseTime: 2.463us
          - MaterializeTupleTime(*): 1.226us
          - ScannerThreadsSysTime: Ons
          - ScannerThreadsUserTime: 42.993ms
        - ScannerThreadsVoluntaryContextSwitches: 1
        - TotalRawHdfsReadTime(*): 112.86us
        - TotalReadThroughput: 0.00 /sec
  Averaged Fragment 2:(Active: 190.120ms, % non-child: 0.00%)
    split sizes: min: 960.00 KB, max: 960.00 KB, avg: 960.00 KB, stddev: 0.00
    completion times: min:191.736ms max:191.736ms mean: 191.736ms stddev:0ns
    execution rates: min:4.89 MB/sec max:4.89 MB/sec mean:4.89 MB/sec stddev:0.00
/sec
    num instances: 1
     - AverageThreadTokens: 0.00
      - PeakMemoryUsage: 906.33 KB
     - PrepareTime: 3.67ms
     - RowsProduced: 98.30K (98304)
     - TotalCpuTime: 403.351ms
      - TotalNetworkWaitTime: 34.999ms
      - TotalStorageWaitTime: 108.675ms
    CodeGen: (Active: 162.57ms, % non-child: 85.24%)
        - CodegenTime: 3.133ms
        - CompileTime: 148.316ms
        - LoadTime: 12.317ms
        - ModuleFileSize: 95.27 KB
    DataStreamSender (dst_id=3):(Active: 70.620ms, % non-child: 37.14%)
        - BytesSent: 1.15 MB
        - NetworkThroughput(*): 23.30 MB/sec
        - OverallThroughput: 16.23 MB/sec
       - PeakMemoryUsage: 5.33 KB
        - SerializeBatchTime: 22.69ms
        - ThriftTransmitTime(*): 49.178ms
        - UncompressedRowBatchSize:
                                    3.28 MB
    HDFS_SCAN_NODE (id=1):(Active: 118.839ms, % non-child: 62.51%)
        - AverageHdfsReadThreadConcurrency: 0.00
        - AverageScannerThreadConcurrency: 0.00
       - BytesRead: 960.00 KB
        - BytesReadLocal: 960.00 KB
        - BytesReadShortCircuit: 960.00 KB
       - NumDisksAccessed: 1
        - NumScannerThreadsStarted: 1
       - PeakMemoryUsage: 869.00 KB
       - PerReadThreadRawHdfsThroughput: 130.21 MB/sec
       - RowsRead: 98.30K (98304)
       - RowsReturned: 98.30K (98304)
        - RowsReturnedRate: 827.20 K/sec
       - ScanRangesComplete: 15
        - ScannerThreadsInvoluntaryContextSwitches: 34
```

```
- ScannerThreadsTotalWallClockTime: 189.774ms
           - DelimiterParseTime: 15.703ms
           - MaterializeTupleTime(*): 3.419ms
           - ScannerThreadsSysTime: 1.999ms
           - ScannerThreadsUserTime: 44.993ms
         - ScannerThreadsVoluntaryContextSwitches: 118
         - TotalRawHdfsReadTime(*): 7.199ms
         - TotalReadThroughput: 0.00 /sec
    Fragment 1:
      Instance 6540a03d4bee0691:4963d6269b210ebf
(host=impala-1.example.com:22000):(Active: 442.360ms, % non-child: 0.00%)
        Hdfs split stats (<volume id>:<# splits>/<split lengths>): 0:1/33.00 B
        MemoryUsage(500.0ms): 69.33 KB
        ThreadUsage(500.0ms): 1
        - AverageThreadTokens: 1.00
         - PeakMemoryUsage: 6.06 MB
         - PrepareTime: 7.291ms
         - RowsProduced: 98.30K (98304)
         - TotalCpuTime: 784.259ms
         TotalNetworkWaitTime: 388.818msTotalStorageWaitTime: 3.934ms
        CodeGen: (Active: 312.862ms, % non-child: 70.73%)
           - CodegenTime: 2.669ms
           - CompileTime: 302.467ms
           - LoadTime: 9.231ms
           - ModuleFileSize: 95.27 KB
        - NetworkThroughput(*): 35.89 MB/sec
           - OverallThroughput: 29.06 MB/sec
           - PeakMemoryUsage: 5.33 KB
           - SerializeBatchTime: 26.487ms
           - ThriftTransmitTime(*): 64.814ms
           - UncompressedRowBatchSize: 6.66 MB
        HASH_JOIN_NODE (id=2):(Active: 362.25ms, % non-child: 3.92%)
          ExecOption: Build Side Codegen Enabled, Probe Side Codegen Enabled, Hash
Table Built Asynchronously
           - BuildBuckets: 1.02K (1024)
           - BuildRows: 98.30K (98304)
           - BuildTime: 12.622ms
           - LoadFactor: 0.00
           - PeakMemoryUsage: 6.02 MB
           - ProbeRows: 3
           - ProbeTime: 3.579ms
           - RowsReturned: 98.30K (98304)
           - RowsReturnedRate: 271.54 K/sec
          EXCHANGE_NODE (id=3):(Active: 344.680ms, % non-child: 77.92%)
             - BytesReceived: 1.15 MB
             - ConvertRowBatchTime: 2.792ms
             - DataArrivalWaitTime: 339.936ms
             - DeserializeRowBatchTimer: 9.910ms
             - FirstBatchArrivalWaitTime: 199.474ms
             - PeakMemoryUsage: 156.00 KB
             - RowsReturned: 98.30K (98304)
             - RowsReturnedRate: 285.20 K/sec
             - SendersBlockedTimer: Ons
             - SendersBlockedTotalTimer(*): Ons
        HDFS_SCAN_NODE (id=0):(Active: 13.616us, % non-child: 0.00%)
          Hdfs split stats (<volume id>:<# splits>/<split lengths>): 0:1/33.00 B
          Hdfs Read Thread Concurrency Bucket: 0:0% 1:0%
          File Formats: TEXT/NONE:1
          ExecOption: Codegen enabled: 1 out of 1
           - AverageHdfsReadThreadConcurrency: 0.00
           - AverageScannerThreadConcurrency: 0.00
           - BytesRead: 33.00 B
           - BytesReadLocal: 33.00 B
           - BytesReadShortCircuit: 33.00 B
           - NumDisksAccessed: 1
           - NumScannerThreadsStarted: 1
           - PeakMemoryUsage: 46.00 KB
           - PerReadThreadRawHdfsThroughput: 287.52 KB/sec
           - RowsRead: 3
           - RowsReturned: 3
```

```
- RowsReturnedRate: 220.33 K/sec
           - ScanRangesComplete: 1
           - ScannerThreadsInvoluntaryContextSwitches: 26
           - ScannerThreadsTotalWallClockTime: 55.199ms
             - DelimiterParseTime: 2.463us
             - MaterializeTupleTime(*): 1.226us
             - ScannerThreadsSysTime: Ons
             - ScannerThreadsUserTime: 42.993ms
           - ScannerThreadsVoluntaryContextSwitches: 1
           - TotalRawHdfsReadTime(*): 112.86us
           - TotalReadThroughput: 0.00 /sec
      Instance 6540a03d4bee0691:4963d6269b210ec0
(host=impala-1.example.com:22000):(Active: 190.120ms, % non-child: 0.00%)
       Hdfs split stats (<volume id>:<# splits>/<split lengths>): 0:15/960.00 KB
         - AverageThreadTokens: 0.00
         - PeakMemoryUsage: 906.33 KB
        - PrepareTime: 3.67ms
         - RowsProduced: 98.30K (98304)
         - TotalCpuTime: 403.351ms
        - TotalNetworkWaitTime: 34.999ms
         - TotalStorageWaitTime: 108.675ms
        CodeGen: (Active: 162.57ms, % non-child: 85.24%)
           - CodegenTime: 3.133ms
           - CompileTime: 148.316ms
           - LoadTime: 12.317ms
           - ModuleFileSize: 95.27 KB
        DataStreamSender (dst_id=3):(Active: 70.620ms, % non-child: 37.14%)
           - BytesSent: 1.15 MB
           - NetworkThroughput(*): 23.30 MB/sec
           - OverallThroughput: 16.23 MB/sec
           - PeakMemoryUsage: 5.33 KB
           - SerializeBatchTime: 22.69ms
           - ThriftTransmitTime(*): 49.178ms
           - UncompressedRowBatchSize: 3.28 MB
       HDFS_SCAN_NODE (id=1):(Active: 118.839ms, % non-child: 62.51%)
         Hdfs split stats (<volume id>:<# splits>/<split lengths>): 0:15/960.00 KB
          Hdfs Read Thread Concurrency Bucket: 0:0% 1:0%
         File Formats: TEXT/NONE:15
          ExecOption: Codegen enabled: 15 out of 15
           - AverageHdfsReadThreadConcurrency: 0.00
           - AverageScannerThreadConcurrency: 0.00
           - BytesRead: 960.00 KB
           - BytesReadLocal: 960.00 KB
           - BytesReadShortCircuit: 960.00 KB
           - NumDisksAccessed: 1
           - NumScannerThreadsStarted: 1
           - PeakMemoryUsage: 869.00 KB
           - PerReadThreadRawHdfsThroughput: 130.21 MB/sec
           - RowsRead: 98.30K (98304)
           - RowsReturned: 98.30K (98304)
           - RowsReturnedRate: 827.20 K/sec
           - ScanRangesComplete: 15
           - ScannerThreadsInvoluntaryContextSwitches: 34
           - ScannerThreadsTotalWallClockTime: 189.774ms
             - DelimiterParseTime: 15.703ms
             - MaterializeTupleTime(*): 3.419ms
             - ScannerThreadsSysTime: 1.999ms
             - ScannerThreadsUserTime: 44.993ms
           - ScannerThreadsVoluntaryContextSwitches: 118
           - TotalRawHdfsReadTime(*): 7.199ms
           - TotalReadThroughput: 0.00 /sec
```

Detecting and Correcting HDFS Block Skew Conditions

For best performance of Impala parallel queries, the work is divided equally across hosts in the cluster, and all hosts take approximately equal time to finish their work. If one host takes substantially longer than others, the extra time needed for the slow host can become the dominant factor in query performance. Therefore, one of the first steps in performance tuning for Impala is to detect and correct such conditions.

The main cause of uneven performance that you can correct within Impala is skew in the number of HDFS data blocks processed by each host, where some hosts process substantially more data blocks than others. This condition can occur because of uneven distribution of the data values themselves, for example causing certain data files or partitions to be large while others are very small. (Although it is possible to have unevenly distributed data without any problems with the distribution of HDFS blocks.) Block skew could also be due to the underlying block allocation policies within HDFS, the replication factor of the data files, and the way that Impala chooses the host to process each data block.

The most convenient way to detect block skew, or slow-host issues in general, is to examine the "executive summary" information from the query profile after running a query:

- In impala-shell, issue the SUMMARY command immediately after the query is complete, to see just the summary information. If you detect issues involving skew, you might switch to issuing the PROFILE command, which displays the summary information followed by a detailed performance analysis.
- In the Cloudera Manager interface or the Impala debug web UI, click on the **Profile** link associated with the query after it is complete. The executive summary information is displayed early in the profile output.

For each phase of the query, you see an Avg Time and a Max Time value, along with #Hosts indicating how many hosts are involved in that query phase. For all the phases with #Hosts greater than one, look for cases where the maximum time is substantially greater than the average time. Focus on the phases that took the longest, for example, those taking multiple seconds rather than milliseconds or microseconds.

If you detect that some hosts take longer than others, first rule out non-Impala causes. One reason that some hosts could be slower than others is if those hosts have less capacity than the others, or if they are substantially busier due to unevenly distributed non-Impala workloads:

- For clusters running Impala, keep the relative capacities of all hosts roughly equal. Any cost savings from including some underpowered hosts in the cluster will likely be outweighed by poor or uneven performance, and the time spent diagnosing performance issues.
- If non-Impala workloads cause slowdowns on some hosts but not others, use the appropriate load-balancing techniques for the non-Impala components to smooth out the load across the cluster.

If the hosts on your cluster are evenly powered and evenly loaded, examine the detailed profile output to determine which host is taking longer than others for the query phase in question. Examine how many bytes are processed during that phase on that host, how much memory is used, and how many bytes are transmitted across the network.

The most common symptom is a higher number of bytes read on one host than others, due to one host being requested to process a higher number of HDFS data blocks. This condition is more likely to occur when the number of blocks accessed by the query is relatively small. For example, if you have a 10-node cluster and the query processes 10 HDFS blocks, each node might not process exactly one block. If one node sits idle while another node processes two blocks, the query could take twice as long as if the data was perfectly distributed.

Possible solutions in this case include:

- If the query is artificially small, perhaps for benchmarking purposes, scale it up to process a larger data set. For example, if some nodes read 10 HDFS data blocks while others read 11, the overall effect of the uneven distribution is much lower than when some nodes did twice as much work as others. As a guideline, aim for a "sweet spot" where each node reads 2 GB or more from HDFS per query. Queries that process lower volumes than that could experience inconsistent performance that smooths out as queries become more data-intensive.
- If the query processes only a few large blocks, so that many nodes sit idle and cannot help to parallelize the query, consider reducing the overall block size. For example, you might adjust the PARQUET_FILE_SIZE query option before copying or converting data into a Parquet table. Or you might adjust the granularity of data files produced earlier in the ETL pipeline by non-Impala components. In Impala 2.0 and later, the default Parquet block size is 256 MB, reduced from 1 GB, to improve parallelism for common cluster sizes and data volumes.

• Reduce the amount of compression applied to the data. For text data files, the highest degree of compression (gzip) produces unsplittable files that are more difficult for Impala to process in parallel, and require extra memory during processing to hold the compressed and uncompressed data simultaneously. For binary formats such as Parquet and Avro, compression can result in fewer data blocks overall, but remember that when queries process relatively few blocks, there is less opportunity for parallel execution and many nodes in the cluster might sit idle. Note that when Impala writes Parquet data with the query option COMPRESSION_CODEC=NONE enabled, the data is still typically compact due to the encoding schemes used by Parquet, independent of the final compression step.

Scalability Considerations for Impala

This section explains how the size of your cluster and the volume of data influences SQL performance and schema design for Impala tables. Typically, adding more cluster capacity reduces problems due to memory limits or disk throughput. On the other hand, larger clusters are more likely to have other kinds of scalability issues, such as a single slow node that causes performance problems for queries.

A good source of tips related to scalability and performance tuning is the Impala Cookbook presentation. These slides are updated periodically as new features come out and new benchmarks are performed.

Scalability Considerations for the Impala Statestore

Before CDH 5.3, the statestore sent only one kind of message to its subscribers. This message contained all updates for any topics that a subscriber had subscribed to. It also served to let subscribers know that the statestore had not failed, and conversely the statestore used the success of sending a heartbeat to a subscriber to decide whether or not the subscriber had failed.

Combining topic updates and failure detection in a single message led to bottlenecks in clusters with large numbers of tables, partitions, and HDFS data blocks. When the statestore was overloaded with metadata updates to transmit, heartbeat messages were sent less frequently, sometimes causing subscribers to time out their connection with the statestore. Increasing the subscriber timeout and decreasing the frequency of statestore heartbeats worked around the problem, but reduced responsiveness when the statestore failed or restarted.

As of CDH 5.3, the statestore now sends topic updates and heartbeats in separate messages. This allows the statestore to send and receive a steady stream of lightweight heartbeats, and removes the requirement to send topic updates according to a fixed schedule, reducing statestore network overhead.

The statestore now has the following relevant configuration flags for the statestored daemon:

-statestore_num_update_threads

The number of threads inside the statestore dedicated to sending topic updates. You should not typically need to change this value.

Default: 10

-statestore_update_frequency_ms

The frequency, in milliseconds, with which the statestore tries to send topic updates to each subscriber. This is a best-effort value; if the statestore is unable to meet this frequency, it sends topic updates as fast as it can. You should not typically need to change this value.

Default: 2000

-statestore_num_heartbeat_threads

The number of threads inside the statestore dedicated to sending heartbeats. You should not typically need to change this value.

Default: 10

-statestore_heartbeat_frequency_ms

The frequency, in milliseconds, with which the statestore tries to send heartbeats to each subscriber. This value should be good for large catalogs and clusters up to approximately 150 nodes. Beyond that, you might need to increase this value to make the interval longer between heartbeat messages.

Default: 1000 (one heartbeat message every second)

As of CDH 5.3, not all of these flags are present in the Cloudera Manager user interface. Some must be set using the Advanced Configuration Snippet fields for the statestore component.

If it takes a very long time for a cluster to start up, and impala-shell consistently displays This Impala daemon is not ready to accept user requests, the statestore might be taking too long to send the entire catalog topic to the cluster. In this case, consider adding --load_catalog_in_background=false to your catalog service configuration. This setting stops the statestore from loading the entire catalog into memory at cluster startup. Instead, metadata for each table is loaded when the table is accessed for the first time.

SQL Operations that Spill to Disk

Certain memory-intensive operations write temporary data to disk (known as spilling to disk) when Impala is close to exceeding its memory limit for a particular node.

For example, when a query uses a GROUP BY clause for columns with millions or billions of distinct values, Impala keeps a similar number of temporary results in memory, to accumulate the aggregate results for each value in the group. When large tables are joined together, Impala keeps the values of the join columns from one table in memory, to compare them to incoming values from the other table. When a large result set is sorted by the ORDER BY clause, each node sorts its portion of the result set in memory. The DISTINCT and UNION operators also build in-memory data structures to represent all values found so far, to eliminate duplicates as the query progresses.

The result is a query that completes successfully, rather than failing with an out-of-memory error. The tradeoff is decreased performance due to the extra disk I/O to write the temporary data and read it back in. Thus, while this feature improves reliability and reduces memory usage, you should optimize your queries, system parameters, and hardware configuration to make this spilling a rare occurrence.

Added in: This feature was added to the ORDER BY clause in Impala 1.4 for CDH 4, and in CDH 5.1. This feature was extended to cover join queries, aggregation functions, and analytic functions in Impala 2.0 for CDH 4, and in CDH 5.2.

Avoiding queries that spill to disk:

Because the extra I/O can impose significant performance overhead on these types of queries, try to avoid this situation by using the following steps:

- 1. Detect how often queries spill to disk, and how much temporary data is written. Refer to the following sources:
 - The output of the PROFILE command in the impala-shell interpreter. This data shows the memory usage for each host and in total across the cluster. The BlockMgr.BytesWritten counter reports how much data was written to disk during the query.
 - The Impala Queries dialog in Cloudera Manager. You can see the peak memory usage for a query, combined across all nodes in the cluster.
 - The Queries tab in the Impala debug web user interface. Select the query to examine and click the corresponding Profile link. This data breaks down the memory usage for a single host within the cluster, the host whose web interface you are connected to.
- 2. Use one or more techniques to reduce the possibility of the queries spilling to disk:
 - Increase the Impala memory limit if practical, for example, if you can increase the available memory by more than the amount of temporary data written to disk on a particular node. Remember that in Impala 2.0 and later, you can issue SET MEM_LIMIT as a SQL statement, which lets you fine-tune the memory usage for queries from JDBC and ODBC applications.
 - Increase the number of nodes in the cluster, to increase the aggregate memory available to Impala and reduce the amount of memory required on each node.
 - Increase the overall memory capacity of each data node at the hardware level.
 - On a cluster with resources shared between Impala and other Hadoop components, use resource management features to allocate more memory for Impala. See Integrated Resource Management with YARN on page 76 for details.
 - If the memory pressure is due to running many concurrent queries rather than a few memory-intensive ones, consider using the Impala admission control feature to lower the limit on the number of concurrent

Scalability Considerations for Impala

queries. By spacing out the most resource-intensive queries, you can avoid spikes in memory usage and improve overall response times. See <u>Admission Control and Query Queuing</u> on page 67 for details.

- Tune the queries with the highest memory requirements, using one or more of the following techniques:
 - Run the COMPUTE STATS statement for all tables involved in large-scale joins and aggregation queries.
 - Minimize your use of STRING columns in join columns. Prefer numeric values instead.
 - Examine the EXPLAIN plan to understand the execution strategy being used for the most resource-intensive queries. See <u>Using the EXPLAIN Plan for Performance Tuning</u> on page 364 for details.
 - If Impala still chooses a suboptimal execution strategy even with statistics available, or if it is impractical
 to keep the statistics up to date for huge or rapidly changing tables, add hints to the most
 resource-intensive queries to select the right execution strategy. See <u>Hints</u> on page 232 for details.
- If your queries experience substantial performance overhead due to spilling, enable the DISABLE_UNSAFE_SPILLS query option. This option prevents queries whose memory usage is likely to be exorbitant from spilling to disk. See <u>DISABLE_UNSAFE_SPILLS Query Option</u> on page 328 for details. As you tune problematic queries using the preceding steps, fewer and fewer will be cancelled by this option setting.

Testing performance implications of spilling to disk:

To artificially provoke spilling, to test this feature and understand the performance implications, use a test environment with a memory limit of at least 2 GB. Issue the SET command with no arguments to check the current setting for the MEM_LIMIT query option. Set the query option DISABLE_UNSAFE_SPILLS=true. This option limits the spill-to-disk feature to prevent runaway disk usage from queries that are known in advance to be suboptimal. Within impala-shell, run a query that you expect to be memory-intensive, based on the criteria explained earlier. A self-join of a large table is a good candidate:

```
select count(*) from big_table a join big_table b using (column_with_many_values);
```

Issue the PROFILE command to get a detailed breakdown of the memory usage on each node during the query. The crucial part of the profile output concerning memory is the BlockMgr portion. For example, this profile shows that the query did not quite exceed the memory limit.

```
BlockWgr:
- BlockWritesIssued: 1
- BlockWritesOutstanding: 0
- BlocksCreated: 24
- BlocksRecycled: 1
- BufferedPins: 0
- MaxBlockSize: 8.00 MB (8388608)
- MemoryLimit: 200.00 MB (209715200)
- PeakMemoryUsage: 192.22 MB (201555968)
- TotalBufferWaitTime: Ons
- TotalIntegrityCheckTime: Ons
- TotalReadBlockTime: Ons
```

In this case, because the memory limit was already below any recommended value, I increased the volume of data for the query rather than reducing the memory limit any further.

Set the MEM_LIMIT query option to a value that is smaller than the peak memory usage reported in the profile output. Do not specify a memory limit lower than about 300 MB, because with such a low limit, queries could fail to start for other reasons. Now try the memory-intensive query again.

Check if the query fails with a message like the following:

```
WARNINGS: Spilling has been disabled for plans that do not have stats and are not hinted to prevent potentially bad plans from using too many cluster resources. Compute stats on these tables, hint the plan or disable this behavior via query options to enable spilling.
```

If so, the query could have consumed substantial temporary disk space, slowing down so much that it would not complete in any reasonable time. Rather than rely on the spill-to-disk feature in this case, issue the COMPUTE STATS statement for the table or tables in your sample query. Then run the query again, check the peak memory usage again in the PROFILE output, and adjust the memory limit again if necessary to be lower than the peak memory usage.

At this point, you have a query that is memory-intensive, but Impala can optimize it efficiently so that the memory usage is not exorbitant. You have set an artificial constraint through the MEM_LIMIT option so that the query would normally fail with an out-of-memory error. But the automatic spill-to-disk feature means that the query should actually succeed, at the expense of some extra disk I/O to read and write temporary work data.

Try the query again, and confirm that it succeeds. Examine the PROFILE output again. This time, look for lines of this form:

```
- SpilledPartitions: N
```

If you see any such lines with N greater than 0, that indicates the query would have failed in Impala releases prior to 2.0, but now it succeeded because of the spill-to-disk feature. Examine the total time taken by the AGGREGATION_NODE or other query fragments containing non-zero SpilledPartitions values. Compare the times to similar fragments that did not spill, for example in the PROFILE output when the same query is run with a higher memory limit. This gives you an idea of the performance penalty of the spill operation for a particular query with a particular memory limit. If you make the memory limit just a little lower than the peak memory usage, the query only needs to write a small amount of temporary data to disk. The lower you set the memory limit, the more temporary data is written and the slower the query becomes.

Now repeat this procedure for actual queries used in your environment. Use the DISABLE_UNSAFE_SPILLS setting to identify cases where queries used more memory than necessary due to lack of statistics on the relevant tables and columns, and issue COMPUTE STATS where necessary.

When to use DISABLE_UNSAFE_SPILLS:

You might wonder, why not leave DISABLE_UNSAFE_SPILLS turned on all the time. Whether and how frequently to use this option depends on your system environment and workload.

DISABLE_UNSAFE_SPILLS is suitable for an environment with ad hoc queries whose performance characteristics and memory usage are not known in advance. It prevents "worst-case scenario" queries that use large amounts of memory unnecessarily. Thus, you might turn this option on within a session while developing new SQL code, even though it is turned off for existing applications.

Organizations where table and column statistics are generally up-to-date might leave this option turned on all the time, again to avoid worst-case scenarios for untested queries or if a problem in the ETL pipeline results in a table with no statistics. Turning on DISABLE_UNSAFE_SPILLS lets you "fail fast" in this case and immediately gather statistics or tune the problematic queries.

Some organizations might leave this option turned off. For example, you might have tables large enough that the COMPUTE STATS takes substantial time to run, making it impractical to re-run after loading new data. If you have examined the EXPLAIN plans of your queries and know that they are operating efficiently, you might leave DISABLE_UNSAFE_SPILLS turned off. In that case, you know that any queries that spill will not go overboard with their memory consumption.

Turning off the spill-to-disk feature:

You might turn off the spill-to-disk feature if you are in an environment with constraints on disk space, or if you prefer for queries that exceed the memory capacity in your cluster to "fail fast" so that you can tune and retry them.

To turn off this feature, set the following configuration options for each impalad daemon, either through the impalad advanced configuration snippet in Cloudera Manager, or during impalad startup on each data node on systems not managed by Cloudera Manager:

```
-enable_partitioned_aggregation=false
-enable_partitioned_hash_join=false
```

Limits on Query Size and Complexity

There are hardcoded limits on the maximum size and complexity of queries. Currently, the maximum number of expressions in a query is 2000. You might exceed the limits with large or deeply nested queries produced by business intelligence tools or other query generators.

If you have the ability to customize such queries or the query generation logic that produces them, replace sequences of repetitive expressions with single operators such as IN or BETWEEN that can represent multiple values or ranges. For example, instead of a large number of OR clauses:

```
WHERE val = 1 OR val = 2 OR val = 6 OR val = 100 ...
use a single IN clause:
WHERE val IN (1,2,6,100,...)
```

Scalability Considerations for Impala I/O

Impala parallelizes its I/O operations aggressively, therefore the more disks you can attach to each host, the better. Impala retrieves data from disk so quickly using bulk read operations on large blocks, that most queries are CPU-bound rather than I/O-bound.

Because the kind of sequential scanning typically done by Impala queries does not benefit much from the random-access capabilities of SSDs, spinning disks typically provide the most cost-effective kind of storage for Impala data, with little or no performance penalty as compared to SSDs.

Resource management features such as YARN, Llama, and admission control typically constrain the amount of memory, CPU, or overall number of queries in a high-concurrency environment. Currently, there is no throttling mechanism for Impala I/O.

Scalability Considerations for Table Layout

Due to the overhead of retrieving and updating table metadata in the metastore database, try to limit the number of columns in a table to a maximum of approximately 2000. Although Impala can handle wider tables than this, the metastore overhead can become significant, leading to query performance that is slower than expected based on the actual data volume.

To minimize overhead related to the metastore database and Impala query planning, try to limit the number of partitions for any partitioned table to a few tens of thousands.

Partitioning for Impala Tables

By default, all the data files for a table are located in a single directory. Partitioning is a technique for physically dividing the data during loading, based on values from one or more columns, to speed up queries that test those columns. For example, with a school_records table partitioned on a year column, there is a separate data directory for each different year value, and all the data for that year is stored in a data file in that directory. A query that includes a where condition such as YEAR=1966, YEAR IN (1989, 1999), or YEAR BETWEEN 1984 AND 1989 can examine only the data files from the appropriate directory or directories, greatly reducing the amount of data to read and test.

See Attaching an External Partitioned Table to an HDFS Directory Structure on page 61 for an example that illustrates the syntax for creating partitioned tables, the underlying directory structure in HDFS, and how to attach a partitioned Impala external table to data files stored elsewhere in HDFS.

Parquet is a popular format for partitioned Impala tables because it is well suited to handle huge data volumes. See Query Performance for Impala Parquet Tables on page 395 for performance considerations for partitioned Parquet tables.

See NULL on page 136 for details about how NULL values are represented in partitioned tables.

When to Use Partitioned Tables

Partitioning is typically appropriate for:

- Tables that are very large, where reading the entire data set takes an impractical amount of time.
- Tables that are always or almost always queried with conditions on the partitioning columns. In our example of a table partitioned by year, SELECT COUNT(*) FROM school_records WHERE year = 1985 is efficient, only examining a small fraction of the data; but <code>SELECT COUNT(*) FROM school_records</code> has to process a separate data file for each year, resulting in more overall work than in an unpartitioned table. You would probably not partition this way if you frequently queried the table based on last name, student ID, and so on without testing the year.
- Columns that have reasonable cardinality (number of different values). If a column only has a small number of values, for example Male or Female, you do not gain much efficiency by eliminating only about 50% of the data to read for each query. If a column has only a few rows matching each value, the number of directories to process can become a limiting factor, and the data file in each directory could be too small to take advantage of the Hadoop mechanism for transmitting data in multi-megabyte blocks. For example, you might partition census data by year, store sales data by year and month, and web traffic data by year, month, and day. (Some users with high volumes of incoming data might even partition down to the individual hour and minute.)
- Data that already passes through an extract, transform, and load (ETL) pipeline. The values of the partitioning columns are stripped from the original data files and represented by directory names, so loading data into a partitioned table involves some sort of transformation or preprocessing.

SQL Statements for Partitioned Tables

In terms of Impala SQL syntax, partitioning affects these statements:

- CREATE TABLE: you specify a PARTITIONED BY clause when creating the table to identify names and data types of the partitioning columns. These columns are not included in the main list of columns for the table.
- ALTER TABLE: you can add or drop partitions, to work with different portions of a huge data set. You can designate the HDFS directory that holds the data files for a specific partition. With data partitioned by date values, you might "age out" data that is no longer relevant.

Partitioning for Impala Tables

- Note: If you are creating a partition for the first time and specifying its location, for maximum efficiency, use a single ALTER TABLE statement including both the ADD PARTITION and LOCATION clauses, rather than separate statements with ADD PARTITION and SET LOCATION clauses.
- INSERT: When you insert data into a partitioned table, you identify the partitioning columns. One or more values from each inserted row are not stored in data files, but instead determine the directory where that row value is stored. You can also specify which partition to load a set of data into, with INSERT OVERWRITE statements; you can replace the contents of a specific partition but you cannot append data to a specific partition.

By default, if an INSERT statement creates any new subdirectories underneath a partitioned table, those subdirectories are assigned default HDFS permissions for the impala user. To make each subdirectory have the same permissions as its parent directory in HDFS, specify the --insert_inherit_permissions startup option for the impalad daemon.

- Although the syntax of the <u>SELECT</u> statement is the same whether or not the table is partitioned, the way queries interact with partitioned tables can have a dramatic impact on performance and scalability. The mechanism that lets queries skip certain partitions during a query is known as partition pruning; see <u>Partition Pruning for Queries</u> on page 381 for details.
- In Impala 1.4 and later, there is a SHOW PARTITIONS statement that displays information about each partition in a table. See SHOW Statement on page 235 for details.

Static and Dynamic Partitioning Clauses

Specifying all the partition columns in a SQL statement is called "static partitioning", because the statement affects a single predictable partition. For example, you use static partitioning with an ALTER TABLE statement that affects only one partition, or with an INSERT statement that inserts all values into the same partition:

```
insert into t1 partition(x=10, y='a') select c1 from some_other_table;
```

When you specify some partition key columns in an INSERT statement, but leave out the values, Impala determines which partition to insert. This technique is called "dynamic partitioning":

```
insert into t1 partition(x, y='b') select c1, c2 from some_other_table;
-- Create new partition if necessary based on variable year, month, and day; insert a
single value.
insert into weather partition (year, month, day) select 'cloudy',2014,4,21;
-- Create new partition if necessary for specified year and month but variable day;
insert a single value.
insert into weather partition (year=2014, month=04, day) select 'sunny',22;
```

The more key columns you specify in the PARTITION clause, the fewer columns you need in the SELECT list. The trailing columns in the SELECT list are substituted in order for the partition key columns with no specified value.

Permissions for Partition Subdirectories

By default, if an INSERT statement creates any new subdirectories underneath a partitioned table, those subdirectories are assigned default HDFS permissions for the impala user. To make each subdirectory have the same permissions as its parent directory in HDFS, specify the --insert_inherit_permissions startup option for the impalad daemon.

Partition Pruning for Queries

Partition pruning refers to the mechanism where a query can skip reading the data files corresponding to one or more partitions. If you can arrange for queries to prune large numbers of unnecessary partitions from the query execution plan, the queries use fewer resources and are thus proportionally faster and more scalable.

For example, if a table is partitioned by columns YEAR, MONTH, and DAY, then WHERE clauses such as WHERE Year = 2013, WHERE year < 2010, or WHERE year BETWEEN 1995 AND 1998 allow Impala to skip the data files in all partitions outside the specified range. Likewise, WHERE year = 2013 AND month BETWEEN 1 AND 3 could prune even more partitions, reading the data files for only a portion of one year.

Checking if Partition Pruning Happens for a Query

To check the effectiveness of partition pruning for a query, check the EXPLAIN output for the query before running it. For example, this example shows a table with 3 partitions, where the query only reads 1 of them. The notation #partitions=1/3 in the EXPLAIN plan confirms that Impala can do the appropriate partition pruning.

```
[localhost:21000] > insert into census partition (year=2010) values ('Smith'),('Jones');
[localhost:21000] > insert into census partition (year=2011) values
('Smith'),('Jones'),('Doe');
[localhost:21000] > insert into census partition (year=2012) values ('Smith'),('Doe');
[localhost:21000] > select name from census where year=2010;
name
 Smith
 Jones
[localhost:21000] > explain select name from census where year=2010;
 Explain String
 PLAN FRAGMENT 0
   PARTITION: UNPARTITIONED
   1:EXCHANGE
 PLAN FRAGMENT 1
   PARTITION: RANDOM
   STREAM DATA SINK
     EXCHANGE ID: 1
     UNPARTITIONED
   0:SCAN HDFS
      table=predicate_propagation.census #partitions=1/3 size=12B
```

For a report of the volume of data that was actually read and processed at each stage of the query, check the output of the SUMMARY command immediately after running the query. For a more detailed analysis, look at the output of the PROFILE command; it includes this same summary report near the start of the profile output.

What SQL Constructs Work with Partition Pruning

Impala can even do partition pruning in cases where the partition key column is not directly compared to a constant, by applying the transitive property to other parts of the WHERE clause. This technique is known as predicate propagation, and is available in Impala 1.2.2 and later. In this example, the census table includes another column indicating when the data was collected, which happens in 10-year intervals. Even though the query does not compare the partition key column (YEAR) to a constant value, Impala can deduce that only the partition YEAR=2010 is required, and again only reads 1 out of 3 partitions.

```
[localhost:21000] > drop table census;
[localhost:21000] > create table census (name string, census_year int) partitioned by
```

Partitioning for Impala Tables

```
(year int);
[localhost:21000] > insert into census partition (year=2010) values
('Smith',2010),('Jones',2010);
[localhost:21000] > insert into census partition (year=2011) values
('Smith', 2020), ('Jones', 2020), ('Doe', 2020);
[localhost:21000] > insert into census partition (year=2012) values
('Smith',2020),('Doe',2020);
[localhost:21000] > select name from census where year = census_year and
census_year=2010;
name
 Smith
 Jones
[localhost:21000] > explain select name from census where year = census_year and
census year=2010;
| Explain String
 PLAN FRAGMENT ()
   PARTITION: UNPARTITIONED
    1:EXCHANGE
 PLAN FRAGMENT 1
   PARTITION: RANDOM
   STREAM DATA SINK
     EXCHANGE ID: 1
     UNPARTITIONED
    0:SCAN HDFS
       table=predicate_propagation.census #partitions=1/3 size=22B
       predicates: census_year = 2010, year = census_year
```

If a view applies to a partitioned table, any partition pruning is determined by the clauses in the original query. Impala does not prune additional columns if the query on the view includes extra WHERE clauses referencing the partition key columns.

Partition Key Columns

The columns you choose as the partition keys should be ones that are frequently used to filter query results in important, large-scale queries. Popular examples are some combination of year, month, and day when the data has associated time values, and geographic region when the data is associated with some place.

- For time-based data, split out the separate parts into their own columns, because Impala cannot partition based on a TIMESTAMP column.
- The data type of the partition columns does not have a significant effect on the storage required, because the values from those columns are not stored in the data files, rather they are represented as strings inside HDFS directory names.
- Remember that when Impala queries data stored in HDFS, it is most efficient to use multi-megabyte files to take advantage of the HDFS block size. For Parquet tables, the block size (and ideal size of the data files) is 256 MB in Impala 2.0 and later. Therefore, avoid specifying too many partition key columns, which could result in individual partitions containing only small amounts of data. For example, if you receive 1 GB of data per day, you might partition by year, month, and day; while if you receive 5 GB of data per minute, you might partition by year, month, day, hour, and minute. If you have data with a geographic component, you might partition based on postal code if you have many megabytes of data for each postal code, but if not, you might partition by some larger region such as city, state, or country. state

Setting Different File Formats for Partitions

Partitioned tables have the flexibility to use different file formats for different partitions. (For background information about the different file formats Impala supports, see How Impala Works with Hadoop File Formats on page 384.) For example, if you originally received data in text format, then received new data in RCFile format, and eventually began receiving data in Parquet format, all that data could reside in the same table for queries. You just need to ensure that the table is structured so that the data files that use different file formats reside in separate partitions.

For example, here is how you might switch from text to Parquet data as you receive data for different years:

```
[localhost:21000] > create table census (name string) partitioned by (year smallint);
[localhost:21000] > alter table census add partition (year=2012); -- Text format;
[localhost:21000] > alter table census add partition (year=2013); -- Text format switches
to Parquet before data loaded;
[localhost:21000] > alter table census partition (year=2013) set fileformat parquet;
[localhost:21000] > insert into census partition (year=2012) values
('Smith'),('Jones'),('Lee'),('Singh');
[localhost:21000] > insert into census partition (year=2013) values
('Flores'),('Bogomolov'),('Cooper'),('Appiah');
```

At this point, the HDFS directory for year=2012 contains a text-format data file, while the HDFS directory for year=2013 contains a Parquet data file. As always, when loading non-trivial data, you would use INSERT ... SELECT OR LOAD DATA to import data in large batches, rather than INSERT ... VALUES which produces small files that are inefficient for real-world queries.

For other file types that Impala cannot create natively, you can switch into Hive and issue the ALTER TABLE ... SET FILEFORMAT statements and INSERT or LOAD DATA statements there. After switching back to Impala, issue a REFRESH table_name statement so that Impala recognizes any partitions or new data added through Hive.

Managing Partitions

You can add, drop, set the expected file format, or set the HDFS location of the data files for individual partitions within an Impala table. See ALTER TABLE Statement on page 159 for syntax details, and Setting Different File Formats for Partitions on page 383 for tips on managing tables containing partitions with different file formats.

Note: If you are creating a partition for the first time and specifying its location, for maximum efficiency, use a single ALTER TABLE statement including both the ADD PARTITION and LOCATION clauses, rather than separate statements with ADD PARTITION and SET LOCATION clauses.

What happens to the data files when a partition is dropped depends on whether the partitioned table is designated as internal or internal. For an internal (managed) table, the data files are deleted. For example, if data in the partitioned table is a copy of raw data files stored elsewhere, you might save disk space by dropping older partitions that are no longer required for reporting, knowing that the original data is still available if needed later. For an external table, the data files are left alone. For example, dropping a partition without deleting the associated files lets Impala consider a smaller set of partitions, improving query efficiency and reducing overhead for DDL operations on the table; if the data is needed again later, you can add the partition again. See Tables on page 151 for details and examples.

Impala supports several familiar file formats used in Apache Hadoop. Impala can load and query data files produced by other Hadoop components such as Pig or MapReduce, and data files produced by Impala can be used by other components also. The following sections discuss the procedures, limitations, and performance considerations for using each file format with Impala.

The file format used for an Impala table has significant performance consequences. Some file formats include compression support that affects the size of data on the disk and, consequently, the amount of I/O and CPU resources required to deserialize data. The amounts of I/O and CPU resources required can be a limiting factor in query performance since querying often begins with moving and decompressing data. To reduce the potential impact of this part of the process, data is often compressed. By compressing data, a smaller total number of bytes are transferred from disk to memory. This reduces the amount of time taken to transfer the data, but a tradeoff occurs when the CPU decompresses the content.

Impala can query files encoded with most of the popular file formats and compression codecs used in Hadoop. Impala can create and insert data into tables that use some file formats but not others; for file formats that Impala cannot write to, create the table in Hive, issue the INVALIDATE METADATA table_name statement in impala-shell, and query the table through Impala. File formats can be structured, in which case they may include metadata and built-in compression. Supported formats include:

Table 4: File Format Support in Impala

File Type	Format	Compression Codecs	Impala Can CREATE?	Impala Can INSERT?
<u>Parquet</u>	Structured	Snappy, gzip; currently Snappy by default	Yes.	Yes: CREATE TABLE, INSERT, LOAD DATA, and query.
Text	Unstructured	LZO, gzip, bzip2, Snappy	Yes. For CREATE TABLE with no STORED AS clause, the default file format is uncompressed text, with values separated by ASCII 0x01 characters (typically represented as Ctrl-A).	Yes: CREATE TABLE, INSERT, LOAD DATA, and query. If LZO compression is used, you must create the table and load data in Hive. If other kinds of compression are used, you must load data through LOAD DATA, Hive, or manually in HDFS.
Avro	Structured	Snappy, gzip, deflate, bzip2	Yes, in Impala 1.4.0 and higher. Before that, create the table using Hive.	No. Import data by using LOAD DATA on data files already in the right format, or use INSERT in Hive followed by REFRESH table_name in Impala.
RCFile	Structured	Snappy, gzip, deflate, bzip2	Yes.	No. Import data by using LOAD DATA on data files already in the right format, or use INSERT in Hive followed by REFRESH table_name in Impala.
SequenceFile	Structured	Snappy, gzip, deflate, bzip2	Yes.	No. Import data by using LOAD DATA on data files already in the right format, or use INSERT in Hive followed by REFRESH table_name in Impala.

Impala supports the following compression codecs:

- Snappy. Recommended for its effective balance between compression ratio and decompression speed. Snappy compression is very fast, but gzip provides greater space savings. Supported for text files in Impala 2.0 and higher.
- Gzip. Recommended when achieving the highest level of compression (and therefore greatest disk-space savings) is desired. Supported for text files in Impala 2.0 and higher.
- Deflate. Not supported for text files.
- Bzip2. Supported for text files in Impala 2.0 and higher.
- LZO, for text files only. Impala can query LZO-compressed Text tables, but currently cannot create them or insert data into them; perform these operations in Hive.

Choosing the File Format for a Table

Different file formats and compression codecs work better for different data sets. While Impala typically provides performance gains regardless of file format, choosing the proper format for your data can yield further performance improvements. Use the following considerations to decide which combination of file format and compression to use for a particular table:

- If you are working with existing files that are already in a supported file format, use the same format for the Impala table where practical. If the original format does not yield acceptable query performance or resource usage, consider creating a new Impala table with different file format or compression characteristics, and doing a one-time conversion by copying the data to the new table using the INSERT statement. Depending on the file format, you might run the INSERT statement in impala-shell or in Hive.
- Text files are convenient to produce through many different tools, and are human-readable for ease of verification and debugging. Those characteristics are why text is the default format for an Impala CREATE TABLE statement. When performance and resource usage are the primary considerations, use one of the other file formats and consider using compression. A typical workflow might involve bringing data into an Impala table by copying CSV or TSV files into the appropriate data directory, and then using the INSERT ... SELECT syntax to copy the data into a table using a different, more compact file format.
- If your architecture involves storing data to be queried in memory, do not compress the data. There is no I/O savings since the data does not need to be moved from disk, but there is a CPU cost to decompress the data.

Using Text Data Files with Impala Tables

Cloudera Impala supports using text files as the storage format for input and output. Text files are a convenient format to use for interchange with other applications or scripts that produce or read delimited text files, such as CSV or TSV with commas or tabs for delimiters.

Text files are also very flexible in their column definitions. For example, a text file could have more fields than the Impala table, and those extra fields are ignored during queries; or it could have fewer fields than the Impala table, and those missing fields are treated as NULL values in queries. You could have fields that were treated as numbers or timestamps in a table, then use ALTER TABLE ... REPLACE COLUMNS to switch them to strings, or the reverse.

Table 5: Text Format Support in Impala

File Type	Format	Compression Codecs	Impala Can CREATE?	Impala Can INSERT?
Text	Unstructured	LZO, gzip, bzip2, Snappy	Yes. For CREATE TABLE with no STORED AS clause, the default file format is uncompressed text, with values separated by ASCII 0x01 characters (typically represented as Ctrl-A).	LOAD DATA, and query. If LZO

File Type	Format	Compression Codecs	Impala Can CREATE?	Impala Can INSERT?
				load data through LOAD DATA,
				Hive, or manually in HDFS.

Query Performance for Impala Text Tables

Data stored in text format is relatively bulky, and not as efficient to query as binary formats such as Parquet. You typically use text tables with Impala if that is the format you receive the data and you do not have control over that process, or if you are a relatively new Hadoop user and not familiar with techniques to generate files in other formats. (Because the default format for CREATE TABLE is text, you might create your first Impala tables as text without giving performance much thought.) Either way, look for opportunities to use more efficient file formats for the tables used in your most performance-critical queries.

For frequently queried data, you might load the original text data files into one Impala table, then use an INSERT statement to transfer the data to another table that uses the Parquet file format; the data is converted automatically as it is stored in the destination table.

For more compact data, consider using LZO compression for the text files. LZO is the only compression codec that Impala supports for text data, because the "splittable" nature of LZO data files lets different nodes work on different parts of the same file in parallel. See <u>Using LZO-Compressed Text Files</u> on page 388 for details.

In Impala 2.0 and later, you can also use text data compressed in the gzip, bzip2, or Snappy formats. Because these compressed formats are not "splittable" in the way that LZO is, there is less opportunity for Impala to parallelize queries on them. Therefore, use these types of compressed data only for convenience if that is the format in which you receive the data. Prefer to use LZO compression for text data if you have the choice, or convert the data to Parquet using an INSERT ... SELECT statement to copy the original data into a Parquet table.

Creating Text Tables

To create a table using text data files:

If the exact format of the text data files (such as the delimiter character) is not significant, use the CREATE TABLE statement with no extra clauses at the end to create a text-format table. For example:

```
create table my_table(id int, s string, n int, t timestamp, b boolean);
```

The data files created by any INSERT statements will use the Ctrl-A character (hex 01) as a separator between each column value.

A common use case is to import existing text files into an Impala table. The syntax is more verbose; the significant part is the FIELDS TERMINATED BY clause, which must be preceded by the ROW FORMAT DELIMITED clause. The statement can end with a STORED AS TEXTFILE clause, but that clause is optional because text format tables are the default. For example:

```
create table csv(id int, s string, n int, t timestamp, b boolean)
 row format delimited
 fields terminated by ',';
create table tsv(id int, s string, n int, t timestamp, b boolean)
 row format delimited
  fields terminated by '\t';
create table pipe_separated(id int, s string, n int, t timestamp, b boolean)
  row format delimited
  fields terminated by '|'
  stored as textfile;
```

You can create tables with specific separator characters to import text files in familiar formats such as CSV, TSV, or pipe-separated. You can also use these tables to produce output data files, by copying data into them through the INSERT ... SELECT syntax and then extracting the data files from the Impala data directory.

In Impala 1.3.1 and higher, you can specify a delimiter character '\0' to use the ASCII 0 (nul) character for text tables:

```
create table nul_separated(id int, s string, n int, t timestamp, b boolean)
 row format delimited
 fields terminated by
 stored as textfile;
```

Note:

Do not surround string values with quotation marks in text data files that you construct. If you need to include the separator character inside a field value, for example to put a string value with a comma inside a CSV-format data file, specify an escape character on the CREATE TABLE statement with the ESCAPED BY clause, and insert that character immediately before any separator characters that need escaping.

Issue a DESCRIBE FORMATTED table_name statement to see the details of how each table is represented internally in Impala.

Data Files for Text Tables

When Impala queries a table with data in text format, it consults all the data files in the data directory for that table. Impala ignores any hidden files, that is, files whose names start with a dot. Otherwise, the file names are not significant.

Filenames for data produced through Impala INSERT statements are given unique names to avoid filename conflicts.

An INSERT ... SELECT statement produces one data file from each node that processes the SELECT part of the statement. An INSERT ... VALUES statement produces a separate data file for each statement; because Impala is more efficient querying a small number of huge files than a large number of tiny files, the INSERT ... VALUES syntax is not recommended for loading a substantial volume of data. If you find yourself with a table that is inefficient due to too many small data files, reorganize the data into a few large files by doing INSERT ... SELECT to transfer the data to a new table.

Special values within text data files:

- Impala recognizes the literal strings inf for infinity and nan for "Not a Number", for FLOAT and DOUBLE columns.
- Impala recognizes the literal string \n to represent null. When using Sqoop, specify the options --null-non-string and --null-string to ensure all NULL values are represented correctly in the Sqoop output files. By default, Sqoop writes NULL values using the string null, which causes a conversion error when such rows are evaluated by Impala. (A workaround for existing tables and data files is to change the table properties through ALTER TABLE name SET TBLPROPERTIES("serialization.null.format"="null").)

Loading Data into Impala Text Tables

To load an existing text file into an Impala text table, use the LOAD DATA statement and specify the path of the file in HDFS. That file is moved into the appropriate Impala data directory.

To load multiple existing text files into an Impala text table, use the LOAD DATA statement and specify the HDFS path of the directory containing the files. All non-hidden files are moved into the appropriate Impala data directory.

To convert data to text from any other file format supported by Impala, use a SQL statement such as:

```
-- Text table with default delimiter, the hex 01 character.
CREATE TABLE text_table AS SELECT * FROM other_file_format_table;
```

```
-- Text table with user-specified delimiter. Currently, you cannot specify
-- the delimiter as part of CREATE TABLE LIKE or CREATE TABLE AS SELECT.
-- But you can change an existing text table to have a different delimiter. CREATE TABLE csv LIKE other_file_format_table;
ALTER TABLE csv SET SERDEPROPERTIES ('serialization.format'=',', 'field.delim'=',');
INSERT INTO csv SELECT * FROM other_file_format_table;
```

This can be a useful technique to see how Impala represents special values within a text-format data file. Use the DESCRIBE FORMATTED statement to see the HDFS directory where the data files are stored, then use Linux commands such as hdfs dfs -ls hdfs_directory and hdfs dfs -cat hdfs_file to display the contents of an Impala-created text file.

To create a few rows in a text table for test purposes, you can use the INSERT ... VALUES syntax:

```
INSERT INTO text_table VALUES ('string_literal',100,hex('hello world'));
```

Note: Because Impala and the HDFS infrastructure are optimized for multi-megabyte files, avoid the INSERT ... VALUES notation when you are inserting many rows. Each INSERT ... VALUES statement produces a new tiny file, leading to fragmentation and reduced performance. When creating any substantial volume of new data, use one of the bulk loading techniques such as LOAD DATA or INSERT ... SELECT. Or, <u>use an HBase table</u> for single-row INSERT operations, because HBase tables are not subject to the same fragmentation issues as tables stored on HDFS.

When you create a text file for use with an Impala text table, specify \N to represent a NULL value. For the differences between NULL and empty strings, see NULL on page 136.

If a text file has fewer fields than the columns in the corresponding Impala table, all the corresponding columns are set to NULL when the data in that file is read by an Impala query.

If a text file has more fields than the columns in the corresponding Impala table, the extra fields are ignored when the data in that file is read by an Impala query.

You can also use manual HDFS operations such as hdfs dfs -put or hdfs dfs -cp to put data files in the data directory for an Impala table. When you copy or move new data files into the HDFS directory for the Impala table, issue a REFRESH table_name statement in impala-shell before issuing the next query against that table, to make Impala recognize the newly added files.

Using LZO-Compressed Text Files

Cloudera Impala supports using text data files that employ LZO compression. Cloudera recommends compressing text data files when practical. Impala queries are usually I/O-bound; reducing the amount of data read from disk typically speeds up a query, despite the extra CPU work to uncompress the data in memory.

Impala can work with LZO-compressed text files are preferable to files compressed by other codecs, because LZO-compressed files are "splittable", meaning that different portions of a file can be uncompressed and processed independently by different nodes.

Impala does not currently support writing LZO-compressed text files.

Because Impala can query LZO-compressed files but currently cannot write them, you use Hive to do the initial CREATE TABLE and load the data, then switch back to Impala to run queries. For instructions on setting up LZO compression for Hive CREATE TABLE and INSERT statements, see the LZO page on the Hive wiki. Once you have created an LZO text table, you can also manually add LZO-compressed text files to it, produced by the 1zop command or similar method.

Preparing to Use LZO-Compressed Text Files

Before using LZO-compressed tables in Impala, do the following one-time setup for each machine in the cluster. Install the necessary packages using either the Cloudera public repository, a private repository you establish, or by using packages. You must do these steps manually, whether or not the cluster is managed by the Cloudera Manager product.

1. Prepare your systems to work with LZO using Cloudera repositories:

On systems managed by Cloudera Manager, using parcels:

See the setup instructions for the LZO parcel in the Cloudera Manager documentation for Cloudera Manager

On systems managed by Cloudera Manager, using packages, or not managed by Cloudera Manager:

Download and install the appropriate file to each machine on which you intend to use LZO with Impala. These files all come from the Cloudera GPL extras download site. Install the:

- Red Hat 5 repo file to /etc/yum.repos.d/.
- Red Hat 6 repo file to /etc/yum.repos.d/.
- SUSE repo file to /etc/zypp/repos.d/.
- <u>Ubuntu 10.04 list file</u> to /etc/apt/sources.list.d/.
- <u>Ubuntu 12.04 list file</u> to /etc/apt/sources.list.d/.
- <u>Debian list file</u> to /etc/apt/sources.list.d/.

2. Configure Impala to use LZO:

Use one of the following sets of commands to refresh your package management system's repository information, install the base LZO support for Hadoop, and install the LZO support for Impala.

Note: The name of the Hadoop LZO package changes between CDH 4 and CDH 5. In CDH 4, the package name is hadoop-lzo-cdh4. In CDH 5, the package name is hadoop-lzo. Use the appropriate package name depending on the level of CDH in your cluster.

For RHEL/CentOS systems:

```
$ sudo yum update
$ sudo yum install hadoop-lzo-cdh4 # For clusters running CDH 4.
$ sudo yum install impala-lzo
```

For SUSE systems:

```
$ sudo apt-get update
$ sudo zypper install hadoop-lzo-cdh4 # For clusters running CDH 4.
$ sudo zypper install hadoop-lzo  # For clusters running CDH 5 or higher.
$ sudo zypper install impala-lzo
```

For Debian/Ubuntu systems:

```
$ sudo zypper update
$ sudo apt-get install hadoop-lzo-cdh4 # For clusters running CDH 4.
$ sudo apt-get install hadoop-lzo  # For clusters running CDH 5 or higher.
$ sudo apt-get install impala-lzo
```

Note:

The level of the impala-lzo-cdh4 package is closely tied to the version of Impala you use. Any time you upgrade Impala, re-do the installation command for impala-1zo on each applicable machine to make sure you have the appropriate version of that package.

3. For core-site.xml on the client and server (that is, in the configuration directories for both Impala and Hadoop), append com.hadoop.compression.lzo.LzopCodec to the comma-separated list of codecs. For example:

Note:

If this is the first time you have edited the Hadoop <code>core-site.xml</code> file, note that the <code>/etc/hadoop/conf</code> directory is typically a symbolic link, so the canonical <code>core-site.xml</code> might reside in a different directory:

```
$ ls -l /etc/hadoop
total 8
lrwxrwxrwx. 1 root root 29 Feb 26 2013 conf ->
/etc/alternatives/hadoop-conf
lrwxrwxrwx. 1 root root 10 Feb 26 2013 conf.dist -> conf.empty
drwxr-xr-x. 2 root root 4096 Feb 26 2013 conf.empty
drwxr-xr-x. 2 root root 4096 Oct 28 15:46 conf.pseudo
```

If the io.compression.codecs property is missing from core-site.xml, only add com.hadoop.compression.lzo.LzopCodec to the new property value, not all the names from the preceding example.

4. Restart the MapReduce and Impala services.

Creating LZO Compressed Text Tables

A table containing LZO-compressed text files must be created in Hive with the following storage clause:

```
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
```

Also, certain Hive settings need to be in effect. For example:

Once you have created LZO-compressed text tables, you can convert data stored in other tables (regardless of file format) by using the INSERT ... SELECT statement in Hive.

Files in an LZO-compressed table must use the .1zo extension. Examine the files in the HDFS data directory after doing the INSERT in Hive, to make sure the files have the right extension. If the required settings are not in place, you end up with regular uncompressed files, and Impala cannot access the table because it finds data files with the wrong (uncompressed) format.

After loading data into an LZO-compressed text table, index the files so that they can be split. You index the files by running a Java class, com.hadoop.compression.lzo.DistributedLzoIndexer, through the Linux command line. This Java class is included in the hadoop-lzo package.

Run the indexer using a command like the following:

```
$ hadoop jar /usr/lib/hadoop/lib/hadoop-lzo-cdh4-0.4.15-gplextras.jar
 com.hadoop.compression.lzo.DistributedLzoIndexer /hdfs_location_of_table/
  ______
```

Note: If the path of the JAR file in the preceding example is not recognized, do a find command to locate hadoop-lzo-*-gplextras. jar and use that path.

Indexed files have the same name as the file they index, with the .index extension. If the data files are not indexed, Impala queries still work, but the queries read the data from remote DataNodes, which is very inefficient.

Once the LZO-compressed tables are created, and data is loaded and indexed, you can query them through Impala. As always, the first time you start impala-shell after creating a table in Hive, issue an INVALIDATE METADATA statement so that Impala recognizes the new table. (In Impala 1.2 and higher, you only have to run INVALIDATE METADATA on one node, rather than on all the Impala nodes.)

Using gzip, bzip2, or Snappy-Compressed Text Files

In Impala 2.0 and later, Impala supports using text data files that employ gzip, bzip2, or Snappy compression. These compression types are primarily for convenience within an existing ETL pipeline rather than maximum performance. Although it requires less I/O to read compressed text than the equivalent uncompressed text, files compressed by these codecs are not "splittable" and therefore cannot take full advantage of the Impala parallel query capability.

As each bzip2- or Snappy-compressed text file is processed, the node doing the work reads the entire file into memory and then decompresses it. Therefore, the node must have enough memory to hold both the compressed and uncompressed data from the text file. The memory required to hold the uncompressed data is difficult to estimate in advance, potentially causing problems on systems with low memory limits or with resource management enabled. In Impala 2.1 and higher, this memory overhead is reduced for gzip-compressed text files. The gzipped data is decompressed as it is read, rather than all at once.

To create a table to hold gzip, bzip2, or Snappy-compressed text, create a text table with no special compression options. Specify the delimiter and escape character if required, using the ROW FORMAT clause.

Because Impala can guery compressed text files but currently cannot write them, produce the compressed text files outside Impala and use the LOAD DATA statement, manual HDFS commands to move them to the appropriate Impala data directory. (Or, you can use CREATE EXTERNAL TABLE and point the LOCATION attribute at a directory containing existing compressed text files.)

For Impala to recognize the compressed text files, they must have the appropriate file extension corresponding to the compression codec, either .gz, .bz2, or .snappy. The extensions can be in uppercase or lowercase.

The following example shows how you can create a regular text table, put different kinds of compressed and uncompressed files into it, and Impala automatically recognizes and decompresses each one based on their file extensions:

```
create table csv_compressed (a string, b string, c string)
 row format delimited fields terminated by ",";
insert into csv_compressed values
  ('one - uncompressed', 'two - uncompressed', 'three - uncompressed'), ('abc - uncompressed', 'xyz - uncompressed', '123 - uncompressed');
  ..make equivalent .gz, .bz2, and .snappy files and load them into same table
directory...
select * from csv_compressed;
a
```

```
one - snappy one - uncompressed two - uncompressed three - uncompressed abc - uncompressed xyz - uncompressed 123 - uncompressed one - bz2 two - bz2 three - bz2 abc - bz2 xyz - bz2 123 - bz2 one - gzip two - gzip three - gzip abc - gzip xyz - gzip 123 - gzip

* hdfs dfs -ls 'hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/csv_compressed/';...truncated for readability... 75

hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/csv_compressed/csv_compressed.snappy 79

hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/csv_compressed/csv_compressed_gzip.csv.gz 80

hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/csv_compressed/csv_compressed_gzip.csv.gz 116

hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/csv_compressed/csv_compressed_gzip.csv.gz 116

hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/csv_compressed/csv_compressed_gzip.csv.gz 116
```

Using the Parquet File Format with Impala Tables

Impala helps you to create, manage, and query Parquet tables. Parquet is a column-oriented binary file format intended to be highly efficient for the types of large-scale queries that Impala is best at. Parquet is especially good for queries scanning particular columns within a table, for example to query "wide" tables with many columns, or to perform aggregation operations such as SUM() and AVG() that need to process most or all of the values from a column. Each data file contains the values for a set of rows (the "row group"). Within a data file, the values from each column are organized so that they are all adjacent, enabling good compression for the values from that column. Queries against a Parquet table can retrieve and analyze these values from any column quickly and with minimal I/O.

Table 6: Parquet Format Support in Impala

File Type	Format	Compression Codecs	Impala Can CREATE?	Impala Can INSERT?
<u>Parquet</u>	Structured	Snappy, gzip; currently Snappy by default		Yes: CREATE TABLE, INSERT, LOAD DATA, and query.

Creating Parquet Tables in Impala

To create a table named PARQUET_TABLE that uses the Parquet format, you would use a command like the following, substituting your own table name, column names, and data types:

```
[impala-host:21000] > create table parquet_table_name (x INT, y STRING) STORED AS
PARQUET;
```

Or, to clone the column names and data types of an existing table:

```
[impala-host:21000] > create table parquet_table_name LIKE other_table_name STORED AS PARQUET;
```

In Impala 1.4.0 and higher, you can derive column definitions from a raw Parquet data file, even without an existing Impala table. For example, you can create an external table pointing to an HDFS directory, and base the column definitions on one of the files in that directory:

```
CREATE EXTERNAL TABLE ingest_existing_files LIKE PARQUET
'/user/etl/destination/datafile1.dat'
  STORED AS PARQUET
  LOCATION '/user/etl/destination';
```

Or, you can refer to an existing data file and create a new empty table with suitable column definitions. Then you can use INSERT to create new data files or LOAD DATA to transfer existing data files into the new table.

```
CREATE TABLE columns_from_data_file LIKE PARQUET '/user/etl/destination/datafile1.dat'
 STORED AS PARQUET;
```

The default properties of the newly created table are the same as for any other CREATE TABLE statement. For example, the default file format is text; if you want the new table to use the Parquet file format, include the STORED AS PARQUET file also.

In this example, the new table is partitioned by year, month, and day. These partition key columns are not part of the data file, so you specify them in the CREATE TABLE statement:

```
CREATE TABLE columns_from_data_file LIKE PARQUET '/user/etl/destination/datafile1.dat'
  PARTITION (year INT, month TINYINT, day TINYINT)
 STORED AS PARQUET;
```

See CREATE TABLE Statement on page 174 for more details about the CREATE TABLE LIKE PARQUET SYNTAX.

Once you have created a table, to insert data into that table, use a command similar to the following, again with your own table names:

```
[impala-host:21000] > insert overwrite table parquet_table_name select * from
other_table_name;
```

If the Parguet table has a different number of columns or different column names than the other table, specify the names of columns from the other table rather than * in the SELECT statement.

Loading Data into Parquet Tables

Choose from the following techniques for loading data into Parquet tables, depending on whether the original data is already in an Impala table, or exists as raw data files outside Impala.

If you already have data in an Impala or Hive table, perhaps in a different file format or partitioning scheme, you can transfer the data to a Parquet table using the Impala INSERT...SELECT syntax. You can convert, filter, repartition, and do other things to the data as part of this same INSERT statement. See Snappy and GZip Compression for Parquet Data Files on page 396 for some examples showing how to insert data into Parquet

When inserting into partitioned tables, especially using the Parquet file format, you can include a hint in the INSERT statement to fine-tune the overall performance of the operation and its resource usage:

- These hints are available in Impala 1.2.2 and higher.
- You would only use these hints if an INSERT into a partitioned Parguet table was failing due to capacity limits, or if such an INSERT was succeeding but with less-than-optimal performance.
- To use these hints, put the hint keyword [SHUFFLE] or [NOSHUFFLE] (including the square brackets) after the Partition clause, immediately before the SELECT keyword.
- [SHUFFLE] selects an execution plan that minimizes the number of files being written simultaneously to HDFS, and the number of memory buffers holding data for individual partitions. Thus it reduces overall resource usage for the INSERT operation, allowing some INSERT operations to succeed that otherwise would

fail. It does involve some data transfer between the nodes so that the data files for a particular partition are all constructed on the same node.

- [NOSHUFFLE] selects an execution plan that might be faster overall, but might also produce a larger number of small data files or exceed capacity limits, causing the INSERT operation to fail. Use [SHUFFLE] in cases where an INSERT statement fails or runs inefficiently due to all nodes attempting to construct data for all
- Impala automatically uses the [SHUFFLE] method if any partition key column in the source table, mentioned in the INSERT ... SELECT query, does not have column statistics. In this case, only the [NOSHUFFLE] hint would have any effect.
- If column statistics are available for all partition key columns in the source table mentioned in the INSERT ... SELECT query, Impala chooses whether to use the [SHUFFLE] or [NOSHUFFLE] technique based on the estimated number of distinct values in those columns and the number of nodes involved in the INSERT operation. In this case, you might need the [SHUFFLE] or the [NOSHUFFLE] hint to override the execution plan selected by Impala.

Any INSERT statement for a Parquet table requires enough free space in the HDFS filesystem to write one block. Because Parquet data files use a block size of 1 GB by default, an INSERT might fail (even for a very small amount of data) if your HDFS is running low on space.

Avoid the INSERT...VALUES syntax for Parquet tables, because INSERT...VALUES produces a separate tiny data file for each INSERT... VALUES statement, and the strength of Parquet is in its handling of data (compressing, parallelizing, and so on) in large chunks.

If you have one or more Parquet data files produced outside of Impala, you can quickly make the data queryable through Impala by one of the following methods:

- The LOAD DATA statement moves a single data file or a directory full of data files into the data directory for an Impala table. It does no validation or conversion of the data. The original data files must be somewhere in HDFS, not the local filesystem.
- The CREATE TABLE statement with the LOCATION clause creates a table where the data continues to reside outside the Impala data directory. The original data files must be somewhere in HDFS, not the local filesystem. For extra safety, if the data is intended to be long-lived and reused by other applications, you can use the CREATE EXTERNAL TABLE SYNTAX SO that the data files are not deleted by an Impala DROP TABLE STATEMENT.
- If the Parquet table already exists, you can copy Parquet data files directly into it, then use the REFRESH statement to make Impala recognize the newly added data. Remember to preserve the block size of the Parquet data files by using the hadoop distop -pb command rather than a -put or -cp operation on the Parquet files. See Example of Copying Parquet Data Files on page 398 for an example of this kind of operation.

Note:

Currently, Impala always decodes the column data in Parquet files based on the ordinal position of the columns, not by looking up the position of each column based on its name. Parquet files produced outside of Impala must write column data in the same order as the columns are declared in the Impala table. Any optional columns that are omitted from the data files must be the rightmost columns in the Impala table definition.

If you created compressed Parquet files through some tool other than Impala, make sure that any compression codecs are supported in Parquet by Impala. For example, Impala does not currently support LZO compression in Parquet files. Also doublecheck that you used any recommended compatibility settings in the other tool, such as spark.sql.parquet.binaryAsString when writing Parquet files through Spark.

If the data exists outside Impala and is in some other format, combine both of the preceding techniques. First, use a LOAD DATA or CREATE EXTERNAL TABLE ... LOCATION statement to bring the data into an Impala table that uses the appropriate file format. Then, use an INSERT... SELECT statement to copy the data to the Parquet table, converting to Parquet format as part of the process.

Loading data into Parquet tables is a memory-intensive operation, because the incoming data is buffered until it reaches one data block in size, then that chunk of data is organized and compressed in memory before being written out. The memory consumption can be larger when inserting data into partitioned Parquet tables, because a separate data file is written for each combination of partition key column values, potentially requiring several large chunks to be manipulated in memory at once.

When inserting into a partitioned Parquet table, Impala redistributes the data among the nodes to reduce memory consumption. You might still need to temporarily increase the memory dedicated to Impala during the insert operation, or break up the load operation into several INSERT statements, or both.

Note: All the preceding techniques assume that the data you are loading matches the structure of the destination table, including column order, column names, and partition layout. To transform or reorganize the data, start by loading the data into a Parquet table that matches the underlying structure of the data, then use one of the table-copying techniques such as CREATE TABLE AS SELECT or INSERT ... SELECT to reorder or rename columns, divide the data among multiple partitions, and so on. For example to take a single comprehensive Parquet data file and load it into a partitioned table, you would use an INSERT ... SELECT statement with dynamic partitioning to let Impala create separate data files with the appropriate partition values; for an example, see INSERT Statement on page 196.

Query Performance for Impala Parquet Tables

Query performance for Parquet tables depends on the number of columns needed to process the SELECT list and WHERE clauses of the query, the way data is divided into large data files with block size equal to file size, the reduction in I/O by reading the data for each column in compressed format, which data files can be skipped (for partitioned tables), and the CPU overhead of decompressing the data for each column.

For example, the following is an efficient query for a Parquet table:

```
select avg(income) from census_data where state = 'CA';
```

The query processes only 2 columns out of a large number of total columns. If the table is partitioned by the STATE column, it is even more efficient because the query only has to read and decode 1 column from each data file, and it can read only the data files in the partition directory for the state 'CA', skipping the data files for all the other states, which will be physically located in other directories.

The following is a relatively inefficient query for a Parquet table:

```
select * from census_data;
```

Impala would have to read the entire contents of each large data file, and decompress the contents of each column for each row group, negating the I/O optimizations of the column-oriented format. This query might still be faster for a Parquet table than a table with some other file format, but it does not take advantage of the unique strengths of Parquet data files.

Impala can optimize queries on Parquet tables, especially join queries, better when statistics are available for all the tables. Issue the COMPUTE STATS statement for each table after substantial amounts of data are loaded into or appended to it. See **COMPUTE STATS Statement** on page 164 for details.

Note: Currently, a known issue (IMPALA-488) could cause excessive memory usage during a COMPUTE STATS operation on a Parquet table. As a workaround, issue the command SET NUM_SCANNER_THREADS=2 in impala-shell before issuing the COMPUTE STATS statement. Then issue unset num_scanner_threads before continuing with queries.

Partitioning for Parquet Tables

As explained in Partitioning for Impala Tables on page 379, partitioning is an important performance technique for Impala generally. This section explains some of the performance considerations for partitioned Parquet

The Parquet file format is ideal for tables containing many columns, where most queries only refer to a small subset of the columns. As explained in How Parquet Data Files Are Organized on page 399, the physical layout of Parquet data files lets Impala read only a small fraction of the data for many queries. The performance benefits of this approach are amplified when you use Parquet tables in combination with partitioning. Impala can skip the data files for certain partitions entirely, based on the comparisons in the WHERE clause that refer to the partition key columns. For example, queries on partitioned tables often analyze data for time intervals based on columns such as YEAR, MONTH, and/or DAY, or for geographic regions. Remember that Parquet data files use a large block size, so when deciding how finely to partition the data, try to find a granularity where each partition contains 256 MB or more of data, rather than creating a large number of smaller files split among many partitions.

Inserting into a partitioned Parquet table can be a resource-intensive operation, because each Impala node could potentially be writing a separate data file to HDFS for each combination of different values for the partition key columns. The large number of simultaneous open files could exceed the HDFS "transceivers" limit. To avoid exceeding this limit, consider the following techniques:

- Load different subsets of data using separate INSERT statements with specific values for the PARTITION clause, such as PARTITION (year=2010).
- Increase the "transceivers" value for HDFS, sometimes spelled "xcievers" (sic). The property value in the hdfs-site.xml configuration file is dfs.datanode.max.transfer.threads.For example, if you were loading 12 years of data partitioned by year, month, and day, even a value of 4096 might not be high enough. This blog post explores the considerations for setting this value higher or lower, using HBase examples for illustration.
- Use the COMPUTE STATS statement to collect column statistics on the source table from which data is being copied, so that the Impala guery can estimate the number of different values in the partition key columns and distribute the work accordingly.
 - Note: Currently, a known issue (IMPALA-488) could cause excessive memory usage during a COMPUTE STATS operation on a Parquet table. As a workaround, issue the command SET NUM_SCANNER_THREADS=2 in impala-shell before issuing the COMPUTE STATS statement. Then issue unset num_scanner_threads before continuing with queries.

Snappy and GZip Compression for Parquet Data Files

When Impala writes Parquet data files using the INSERT statement, the underlying compression is controlled by the COMPRESSION_CODEC query option. (Prior to Impala 2.0, the query option name was PARQUET_COMPRESSION_CODEC.) The allowed values for this query option are snappy (the default), gzip, and none. The option value is not case-sensitive. If the option is set to an unrecognized value, all kinds of queries will fail due to the invalid option setting, not just queries involving Parquet tables.

Example of Parquet Table with Snappy Compression

By default, the underlying data files for a Parquet table are compressed with Snappy. The combination of fast compression and decompression makes it a good choice for many data sets. To ensure Snappy compression is used, for example after experimenting with other compression codecs, set the COMPRESSION_CODEC query option to snappy before inserting the data:

```
[localhost:21000] > create database parquet_compression;
[localhost:21000] > use parquet_compression;
[localhost:21000] > create table parquet_snappy like raw_text_data;
[localhost:21000] > set COMPRESSION_CODEC=snappy;
[localhost:21000] > insert into parquet_snappy select * from raw_text_data;
Inserted 1000000000 rows in 181.98s
```

Example of Parquet Table with GZip Compression

If you need more intensive compression (at the expense of more CPU cycles for uncompressing during queries), set the COMPRESSION_CODEC query option to gzip before inserting the data:

```
[localhost:21000] > create table parquet_gzip like raw_text_data;
[localhost:21000] > set COMPRESSION_CODEC=gzip;
[localhost:21000] > insert into parquet_gzip select * from raw_text_data;
Inserted 1000000000 rows in 1418.24s
```

Example of Uncompressed Parquet Table

If your data compresses very poorly, or you want to avoid the CPU overhead of compression and decompression entirely, set the COMPRESSION_CODEC query option to none before inserting the data:

```
[localhost:21000] > create table parquet_none like raw_text_data;
[localhost:21000] > set COMPRESSION_CODEC=none;
[localhost:21000] > insert into parquet_none select * from raw_text_data;
Inserted 1000000000 rows in 146.90s
```

Examples of Sizes and Speeds for Compressed Parquet Tables

Here are some examples showing differences in data sizes and query speeds for 1 billion rows of synthetic data, compressed with each kind of codec. As always, run similar tests with realistic data sets of your own. The actual compression ratios, and relative insert and query speeds, will vary depending on the characteristics of the actual data.

In this case, switching from Snappy to GZip compression shrinks the data by an additional 40% or so, while switching from Snappy compression to no compression expands the data also by about 40%:

```
$ hdfs dfs -du -h /user/hive/warehouse/parquet_compression.db
23.1 G /user/hive/warehouse/parquet_compression.db/parquet_snappy
13.5 G /user/hive/warehouse/parquet_compression.db/parquet_gzip
32.8 G /user/hive/warehouse/parquet_compression.db/parquet_none
```

Because Parquet data files are typically large, each directory will have a different number of data files and the row groups will be arranged differently.

At the same time, the less agressive the compression, the faster the data can be decompressed. In this case using a table with a billion rows, a query that evaluates all the values for a particular column runs faster with no compression than with Snappy compression, and faster with Snappy compression than with Gzip compression. Query performance depends on several other factors, so as always, run your own benchmarks with your own data to determine the ideal tradeoff between data size, CPU efficiency, and speed of insert and query operations.

```
[localhost:21000] > desc parquet snappy;
Query finished, fetching results ...
 name
            type
                       comment
id int
val int
zfill string
name string
assertion boolean
Returned 5 row(s) in 0.14s
[localhost:21000] > select avg(val) from parquet_snappy;
Query finished, fetching results ...
_c0
250000.93577915
Returned 1 row(s) in 4.29s
[localhost:21000] > select avg(val) from parquet_gzip;
```

How Impala Works with Hadoop File Formats

Example of Copying Parquet Data Files

Here is a final example, to illustrate how the data files using the various compression codecs are all compatible with each other for read operations. The metadata about the compression format is written into each data file, and can be decoded during queries regardless of the COMPRESSION_CODEC setting in effect at the time. In this example, we copy data files from the PARQUET_SNAPPY, PARQUET_GZIP, and PARQUET_NONE tables used in the previous examples, each containing 1 billion rows, all to the data directory of a new table PARQUET_EVERYTHING. A couple of sample queries demonstrate that the new table now contains 3 billion rows featuring a variety of compression codecs for the data files.

First, we create the table in Impala so that there is a destination directory in HDFS to put the data files:

```
[localhost:21000] > create table parquet_everything like parquet_snappy;
Query: create table parquet_everything like parquet_snappy
```

Then in the shell, we copy the relevant data files into the data directory for this new table. Rather than using hdfs dfs -cp as with typical files, we use hadoop distcp -pb to ensure that the special block size of the Parquet data files is preserved.

```
$ hadoop distcp -pb /user/hive/warehouse/parquet_compression.db/parquet_snappy \
    /user/hive/warehouse/parquet_compression.db/parquet_everything
...MapReduce output...
$ hadoop distcp -pb /user/hive/warehouse/parquet_compression.db/parquet_gzip \
    /user/hive/warehouse/parquet_compression.db/parquet_everything
...MapReduce output...
$ hadoop distcp -pb /user/hive/warehouse/parquet_compression.db/parquet_none \
    /user/hive/warehouse/parquet_compression.db/parquet_everything
...MapReduce output...
```

Back in the impala-shell interpreter, we use the REFRESH statement to alert the Impala server to the new data files for this table, then we can run queries demonstrating that the data files represent 3 billion rows, and the values for one of the numeric columns match what was in the original smaller tables:

```
| 250000.93577915 |
Returned 1 row(s) in 13.35s
```

Exchanging Parquet Data Files with Other Hadoop Components

Starting in CDH 4.5, you can read and write Parquet data files from Hive, Pig, and MapReduce. See the CDH 4 Installation Guide for details.

Previously, it was not possible to create Parquet data through Impala and reuse that table within Hive. Now that Parquet support is available for Hive in CDH 4.5, reusing existing Impala Parquet data files in Hive requires updating the table metadata. Use the following command if you are already running Impala 1.1.1 or higher:

```
ALTER TABLE table_name SET FILEFORMAT PARQUET;
```

If you are running a level of Impala that is older than 1.1.1, do the metadata update through Hive:

```
ALTER TABLE table_name SET SERDE 'parquet.hive.serde.ParquetHiveSerDe';
ALTER TABLE table_name SET FILEFORMAT
 INPUTFORMAT "parquet.hive.DeprecatedParquetInputFormat"
  OUTPUTFORMAT "parquet.hive.DeprecatedParquetOutputFormat";
```

Impala 1.1.1 and higher can reuse Parquet data files created by Hive, without any action required.

Impala supports the scalar data types that you can encode in a Parguet data file, but not composite or nested types such as maps or arrays. If any column of a table uses such an unsupported data type, Impala cannot access that table.

If you copy Parquet data files between nodes, or even between different directories on the same node, make sure to preserve the block size by using the command hadoop distop -pb. To verify that the block size was preserved, issue the command hdfs fsck -blocks HDFS_path_of_impala_table_dir and check that the average block size is at or near 256 MB (or whatever other size is defined by the PARQUET_FILE_SIZE query option).. (The hadoop distop operation typically leaves some directories behind, with names matching _distcp_logs_*, that you can delete from the destination directory afterward.) Issue the command hadoop distop for details about distop command syntax.

How Parquet Data Files Are Organized

Although Parquet is a column-oriented file format, do not expect to find one data file for each column. Parquet keeps all the data for a row within the same data file, to ensure that the columns for a row are always available on the same node for processing. What Parquet does is to set a large HDFS block size and a matching maximum data file size, to ensure that I/O and network transfer requests apply to large batches of data.

Within that data file, the data for a set of rows is rearranged so that all the values from the first column are organized in one contiguous block, then all the values from the second column, and so on. Putting the values from the same column next to each other lets Impala use effective compression techniques on the values in that column.

How Impala Works with Hadoop File Formats

Note:

Impala INSERT statements write Parquet data files using an HDFS block size that matches the data file size, to ensure that each data file is represented by a single HDFS block, and the entire file can be processed on a single node without requiring any remote reads.

If you create Parquet data files outside of Impala, such as through a MapReduce or Pig job, ensure that the HDFS block size is greater than or equal to the file size, so that the "one file per block" relationship is maintained. Set the dfs.block.size or the dfs.blocksize property large enough that each file fits within a single HDFS block, even if that size is larger than the normal HDFS block size.

If the block size is reset to a lower value during a file copy, you will see lower performance for queries involving those files, and the PROFILE statement will reveal that some I/O is being done suboptimally, through remote reads. See Example of Copying Parquet Data Files on page 398 for an example showing how to preserve the block size when copying Parquet data files.

When Impala retrieves or tests the data for a particular column, it opens all the data files, but only reads the portion of each file containing the values for that column. The column values are stored consecutively, minimizing the I/O required to process the values within a single column. If other columns are named in the SELECT list or WHERE clauses, the data for all columns in the same row is available within that same data file.

If an INSERT statement brings in less than one Parquet block's worth of data, the resulting data file is smaller than ideal. Thus, if you do split up an ETL job to use multiple INSERT statements, try to keep the volume of data for each INSERT statement to approximately 256 MB, or a multiple of 256 MB.

RLE and Dictionary Encoding for Parquet Data Files

Parquet uses some automatic compression techniques, such as run-length encoding (RLE) and dictionary encoding, based on analysis of the actual data values. Once the data values are encoded in a compact form, the encoded data can optionally be further compressed using a compression algorithm. Parquet data files created by Impala can use Snappy, GZip, or no compression; the Parquet spec also allows LZO compression, but currently Impala does not support LZO-compressed Parquet files.

RLE and dictionary encoding are compression techniques that Impala applies automatically to groups of Parquet data values, in addition to any Snappy or GZip compression applied to the entire data files. These automatic optimizations can save you time and planning that are normally needed for a traditional data warehouse. For example, dictionary encoding reduces the need to create numeric IDs as abbreviations for longer string values.

Run-length encoding condenses sequences of repeated data values. For example, if many consecutive rows all contain the same value for a country code, those repeating values can be represented by the value followed by a count of how many times it appears consecutively.

Dictionary encoding takes the different values present in a column, and represents each one in compact 2-byte form rather than the original value, which could be several bytes. (Additional compression is applied to the compacted values, for extra space savings.) This type of encoding applies when the number of different values for a column is less than 2**16 (16,384). It does not apply to columns of data type BOOLEAN, which are already very short. TIMESTAMP columns sometimes have a unique value for each row, in which case they can quickly exceed the 2**16 limit on distinct values. The 2**16 limit on different values within a column is reset for each data file, so if several different data files each contained 10,000 different city names, the city name column in each data file could still be condensed using dictionary encoding.

Compacting Data Files for Parquet Tables

If you reuse existing table structures or ETL processes for Parquet tables, you might encounter a "many small files" situation, which is suboptimal for query efficiency. For example, statements like these might produce inefficiently organized data files:

```
-- In an N-node cluster, each node produces a data file
-- for the INSERT operation. If you have less than
-- N GB of data to copy, some files are likely to be
-- much smaller than the default Parquet block size.
insert into parquet_table select * from text_table;
-- Even if this operation involves an overall large amount of data,
-- when split up by year/month/day, each partition might only -- receive a small amount of data. Then the data files for
-- the partition might be divided between the N nodes in the cluster.
-- A multi-gigabyte copy operation might produce files of only
-- a few MB each.
insert into partitioned_parquet_table partition (year, month, day)
  select year, month, day, url, referer, user_agent, http_code, response_time
  from web_stats;
```

Here are techniques to help you produce large data files in Parquet INSERT operations, and to compact existing too-small data files:

- When inserting into a partitioned Parquet table, use statically partitioned INSERT statements where the partition key values are specified as constant values. Ideally, use a separate INSERT statement for each partition.
- You might set the NUM_NODES option to 1 briefly, during INSERT OF CREATE TABLE AS SELECT statements. Normally, those statements produce one or more data files per data node. If the write operation involves small amounts of data, a Parquet table, and/or a partitioned table, the default behavior could produce many small files when intuitively you might expect only a single output file. SET NUM_NODES=1 turns off the "distributed" aspect of the write operation, making it more likely to produce only one or a few data files.
- Be prepared to reduce the number of partition key columns from what you are used to with traditional analytic database systems.
- Do not expect Impala-written Parquet files to fill up the entire Parquet block size. Impala estimates on the conservative side when figuring out how much data to write to each Parquet file. Typically, the of uncompressed data in memory is substantially reduced on disk by the compression and encoding techniques in the Parquet file format. The final data file size varies depending on the compressibility of the data. Therefore, it is not an indication of a problem if 256 MB of text data is turned into 2 Parquet data files, each less than 256 MB.
- If you accidentally end up with a table with many small data files, consider using one or more of the preceding techniques and copying all the data into a new Parquet table, either through CREATE TABLE AS SELECT or INSERT ... SELECT statements.

To avoid rewriting queries to change table names, you can adopt a convention of always running important queries against a view. Changing the view definition immediately switches any subsequent queries to use the new underlying tables:

```
create view production_table as select * from table_with_many_small_files;
-- CTAS or INSERT...SELECT all the data into a more efficient layout...
alter view production_table as select * from table_with_few_big_files;
select * from production_table where c1 = 100 and c2 < 50 and ...;</pre>
```

Schema Evolution for Parquet Tables

Schema evolution refers to using the statement ALTER TABLE ... REPLACE COLUMNS to change the names, data type, or number of columns in a table. You can perform schema evolution for Parquet tables as follows:

How Impala Works with Hadoop File Formats

- The Impala ALTER TABLE statement never changes any data files in the tables. From the Impala side, schema evolution involves interpreting the same data files in terms of a new table definition. Some types of schema changes make sense and are represented correctly. Other types of changes cannot be represented in a sensible way, and produce special result values or conversion errors during queries.
- The INSERT statement always creates data using the latest table definition. You might end up with data files with different numbers of columns or internal data representations if you do a sequence of INSERT and ALTER TABLE ... REPLACE COLUMNS statements.
- If you use ALTER TABLE ... REPLACE COLUMNS to define additional columns at the end, when the original data files are used in a query, these final columns are considered to be all NULL values.
- If you use ALTER TABLE ... REPLACE COLUMNS to define fewer columns than before, when the original data files are used in a query, the unused columns still present in the data file are ignored.
- Parquet represents the TINYINT, SMALLINT, and INT types the same internally, all stored in 32-bit integers.
 - That means it is easy to promote a TINYINT column to SMALLINT Or INT, or a SMALLINT column to INT. The numbers are represented exactly the same in the data file, and the columns being promoted would not contain any out-of-range values.
 - If you change any of these column types to a smaller type, any values that are out-of-range for the new type are returned incorrectly, typically as negative numbers.
 - You cannot change a TINYINT, SMALLINT, or INT column to BIGINT, or the other way around. Although the ALTER TABLE succeeds, any attempt to query those columns results in conversion errors.
 - Any other type conversion for columns produces a conversion error during queries. For example, INT to STRING, FLOAT tO DOUBLE, TIMESTAMP tO STRING, DECIMAL (9,0) to DECIMAL (5,2), and so on.

Data Type Considerations for Parquet Tables

The Parquet format defines a set of data types whose names differ from the names of the corresponding Impala data types. If you are preparing Parquet files using other Hadoop components such as Pig or MapReduce, you might need to work with the type names defined by Parquet. The following figure lists the Parquet-defined types and the equivalent types in Impala.

Primitive types:

```
BINARY -> STRING
BOOLEAN -> BOOLEAN
DOUBLE -> DOUBLE
FLOAT -> FLOAT
INT32 -> INT
INT64 -> BIGINT
INT96 -> TIMESTAMP
```

Logical types:

```
BINARY + OriginalType UTF8 -> STRING
BINARY + OriginalType DECIMAL -> DECIMAL
```

Using the Avro File Format with Impala Tables

Cloudera Impala supports using tables whose data files use the Avro file format. Impala can query Avro tables, and in Impala 1.4.0 and higher can create them, but currently cannot insert data into them. For insert operations, use Hive, then switch back to Impala to run queries.

Table 7: Avro Format Support in Impala

File Type	Format	Compression Codecs	Impala Can CREATE?	Impala Can INSERT?
Avro	Structured	Snappy, gzip, deflate, bzip2	Yes, in Impala 1.4.0 and higher. Before that, create the table using Hive.	No. Import data by using LOAD DATA on data files already in the right format, or use INSERT in Hive followed by REFRESH table_name in Impala.

Creating Avro Tables

To create a new table using the Avro file format, issue the CREATE TABLE statement through Impala with the STORED AS AVRO clause, or through Hive. If you create the table through Impala, you must include column definitions that match the fields specified in the Avro schema. With Hive, you can omit the columns and just specify the Avro schema.

Note:

Currently, Avro tables cannot contain TIMESTAMP columns. If you need to store date and time values in Avro tables, as a workaround you can use a STRING representation of the values, convert the values to BIGINT with the UNIX_TIMESTAMP() function, or create separate numeric columns for individual date and time fields using the EXTRACT() function.

The following examples demonstrate creating an Avro table in Impala, using either an inline column specification or one taken from a JSON file stored in HDFS:

```
[localhost:21000] > CREATE TABLE impala_avro_table
                 > (bool_col BOOLEAN, int_col INT, long_col BIGINT, float_col FLOAT,
> TBLPROPERTIES ('avro.schema.literal'='{
                    "name": "my_record",
                      "type": "record",
                     "fields": [
                   {"name": "nullable_int", "type": ["null", "int"]}]}');
[localhost:21000] > CREATE TABLE avro_examples_of_all_types (
                 > id INT,
                    bool_col BOOLEAN,
tinyint_col TINYINT,
smallint_col SMALLINT,
int_col INT,
bigint_col BIGINT,
float_col FLOAT,
double_col DOUBLE,
                     date_string_col STRING,
                      string_col STRING
                 > STORED AS AVRO
                     TBLPROPERTIES
('avro.schema.url'='hdfs://localhost:8020/avro_schemas/alltypes.json');
```

The following example demonstrates creating an Avro table in Hive:

```
hive > CREATE TABLE hive_avro_table
   > ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
   > STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
```

How Impala Works with Hadoop File Formats

Each field of the record becomes a column of the table. Note that any other information, such as the record name, is ignored.

• Note: For nullable Avro columns, make sure to put the "null" entry before the actual type name. In Impala, all columns are nullable; Impala currently does not have a NOT NULL clause. Any non-nullable property is only enforced on the Avro side.

Most column types map directly from Avro to Impala under the same names. These are the exceptions and special cases to consider:

- The DECIMAL type is defined in Avro as a BYTE type with the logicalType property set to "decimal" and a specified precision and scale. Use DECIMAL in Avro tables only under CDH 5. The infrastructure and components under CDH 4 do not have reliable DECIMAL support.
- The Avro long type maps to BIGINT in Impala.

If you create the table through Hive, switch back to impala-shell and issue an INVALIDATE METADATA table_name statement. Then you can run queries for that table through impala-shell.

Using a Hive-Created Avro Table in Impala

If you have an Avro table created through Hive, you can use it in Impala as long as it contains only Impala-compatible data types. It cannot contain:

- Complex types: array, map, record, struct, union other than [supported_type, null] or [null, supported_type]
- The Avro-specific types enum, bytes, and fixed
- Any scalar type other than those listed in <u>Data Types</u> on page 109

Because Impala and Hive share the same metastore database, Impala can directly access the table definitions and data for tables that were created in Hive.

If you create an Avro table in Hive, issue an INVALIDATE METADATA the next time you connect to Impala through impala-shell. This is a one-time operation to make Impala aware of the new table. You can issue the statement while connected to any Impala node, and the catalog service broadcasts the change to all other Impala nodes.

If you load new data into an Avro table through Hive, either through a Hive LOAD DATA or INSERT statement, or by manually copying or moving files into the data directory for the table, issue a REFRESH table_name statement the next time you connect to Impala through impala-shell. You can issue the statement while connected to any Impala node, and the catalog service broadcasts the change to all other Impala nodes. If you issue the LOAD DATA statement through Impala, you do not need a REFRESH afterward.

Impala only supports fields of type boolean, int, long, float, double, and string, or unions of these types with null; for example, ["string", "null"]. Unions with null essentially create a nullable type.

Specifying the Avro Schema through JSON

While you can embed a schema directly in your CREATE TABLE statement, as shown above, column width restrictions in the Hive metastore limit the length of schema you can specify. If you encounter problems with

long schema literals, try storing your schema as a JSON file in HDFS instead. Specify your schema in HDFS using table properties similar to the following:

```
tblproperties ('avro.schema.url'='hdfs//your-name-node:port/path/to/schema.json');
```

Loading Data into an Avro Table

If you already have data files in Avro format, you can also issue LOAD DATA in either Impala or Hive.

To copy data from another table, issue any INSERT statements through Hive. For information about loading data into Avro tables through Hive, see Avro page on the Hive wiki.

Enabling Compression for Avro Tables

To enable compression for Avro tables, specify settings in the Hive shell to enable compression and to specify a codec, then issue a CREATE TABLE statement as in the preceding examples. Impala supports the snappy and deflate codecs for Avro tables.

For example:

```
hive> set hive.exec.compress.output=true;
hive > set avro.output.codec=snappy;
```

How Impala Handles Avro Schema Evolution

Starting in Impala 1.1, Impala can deal with Avro data files that employ schema evolution, where different data files within the same table use slightly different type definitions. (You would perform the schema evolution operation by issuing an ALTER TABLE statement in the Hive shell.) The old and new types for any changed columns must be compatible, for example a column might start as an int and later change to a bigint or float.

As with any other tables where the definitions are changed or data is added outside of the current impalad node, ensure that Impala loads the latest metadata for the table if the Avro schema is modified through Hive. Issue a REFRESH table name or invalidate METADATA table name statement. REFRESH reloads the metadata immediately, INVALIDATE METADATA reloads the metadata the next time the table is accessed.

When Avro data files or columns are not consulted during a query, Impala does not check for consistency. Thus, if you issue SELECT c1, c2 FROM t1, Impala does not return any error if the column c3 changed in an incompatible way. If a query retrieves data from some partitions but not others, Impala does not check the data files for the unused partitions.

In the Hive DDL statements, you can specify an avro.schema.literal table property (if the schema definition is short) or an avro.schema.url property (if the schema definition is long, or to allow convenient editing for the definition).

For example, running the following SQL code in the Hive shell creates a table using the Avro file format and puts some sample data into it:

```
CREATE TABLE avro_table (a string, b string)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
\verb"OUTPUTFORMAT" 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
TBLPROPERTIES (
  'avro.schema.literal'='{
    "type": "record",
    "name": "my_record",
    "fields": [
       "name": "a", "type": "int"},
      {"name": "b", "type": "string"}
INSERT OVERWRITE TABLE avro_table SELECT 1, "avro" FROM functional.alltypes LIMIT 1;
```

How Impala Works with Hadoop File Formats

Once the Avro table is created and contains data, you can query it through the impala-shell command:

Now in the Hive shell, you change the type of a column and add a new column with a default value:

```
-- Promote column "a" from INT to FLOAT (no need to update Avro schema)

ALTER TABLE avro_table CHANGE A A FLOAT;

-- Add column "c" with default

ALTER TABLE avro_table ADD COLUMNS (c int);

ALTER TABLE avro_table SET TBLPROPERTIES (
    'avro.schema.literal'='{
        "type": "record",
        "name": "my_record",
        "fields": [
            {"name": "a", "type": "int"},
            {"name": "b", "type": "string"},
            {"name": "c", "type": "int", "default": 10}

]}');
```

Once again in impala-shell, you can query the Avro table based on its latest schema definition. Because the table metadata was changed outside of Impala, you issue a REFRESH statement first so that Impala has up-to-date metadata for the table.

Data Type Considerations for Avro Tables

The Avro format defines a set of data types whose names differ from the names of the corresponding Impala data types. If you are preparing Avro files using other Hadoop components such as Pig or MapReduce, you might need to work with the type names defined by Avro. The following figure lists the Avro-defined types and the equivalent types in Impala.

Using the RCFile File Format with Impala Tables

Cloudera Impala supports using RCFile data files.

Table 8: RCFile Format Support in Impala

File Type	Format	Compression Codecs	Impala Can CREATE?	Impala Can INSERT?
RCFile	Structured	Snappy, gzip, deflate, bzip2		No. Import data by using LOAD DATA on data files already in the right format, or use INSERT in Hive followed by REFRESH table_name in Impala.

Creating RCFile Tables and Loading Data

If you do not have an existing data file to use, begin by creating one in the appropriate format.

To create an RCFile table:

In the impala-shell interpreter, issue a command similar to:

```
create table rcfile_table (column_specs) stored as rcfile;
```

Because Impala can query some kinds of tables that it cannot currently write to, after creating tables of certain file formats, you might use the Hive shell to load the data. See <u>How Impala Works with Hadoop File Formats</u> on page 384 for details. After loading data into a table through Hive or other mechanism outside of Impala, issue a REFRESH table_name statement the next time you connect to the Impala node, before querying the table, to make Impala recognize the new data.

Important: See Known Issues in the Current Production Release (Impala 2.1.x) on page 477 for potential compatibility issues with RCFile tables created in Hive 0.12, due to a change in the default RCFile SerDe for Hive.

For example, here is how you might create some RCFile tables in Impala (by specifying the columns explicitly, or cloning the structure of another table), load data through Hive, and query them through Impala:

```
$ impala-shell -i localhost
[localhost:21000] > create table rcfile_table (x int) stored as rcfile;
[localhost:21000] > create table rcfile_clone like some_other_table stored as rcfile;
[localhost:21000] > quit;
hive> insert into table rcfile_table select x from some_other_table;
3 Rows loaded to rcfile_table
Time taken: 19.015 seconds
hive> quit;
$ impala-shell -i localhost
[localhost:21000] > select * from rcfile_table;
Returned 0 row(s) in 0.23s [localhost:21000] > -- Make Impala recognize the data loaded through Hive;
[localhost:21000] > refresh rcfile_table;
[localhost:21000] > select * from rcfile_table;
X
 1
 2
3
Returned 3 row(s) in 0.23s
```

Enabling Compression for RCFile Tables

You may want to enable compression on existing tables. Enabling compression provides performance gains in most cases and is supported for RCFile tables. For example, to enable Snappy compression, you would specify the following additional settings when loading data through the Hive shell:

```
hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> INSERT OVERWRITE TABLE new_table SELECT * FROM old_table;
```

If you are converting partitioned tables, you must complete additional steps. In such a case, specify additional settings similar to the following:

```
hive> CREATE TABLE new_table (your_cols) PARTITIONED BY (partition_cols) STORED AS new_format;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> INSERT OVERWRITE TABLE new_table PARTITION(comma_separated_partition_cols) SELECT
* FROM old_table;
```

Remember that Hive does not require that you specify a source format for it. Consider the case of converting a table with two partition columns called year and month to a Snappy compressed RCFile. Combining the components outlined previously to complete this table conversion, you would specify settings similar to the following:

```
hive> CREATE TABLE tbl_rc (int_col INT, string_col STRING) STORED AS RCFILE;
hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> INSERT OVERWRITE TABLE tbl_rc SELECT * FROM tbl;
```

To complete a similar process for a table that includes partitions, you would specify settings similar to the following:

```
hive> CREATE TABLE tbl_rc (int_col INT, string_col STRING) PARTITIONED BY (year INT) STORED AS RCFILE;
hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> INSERT OVERWRITE TABLE tbl_rc PARTITION(year) SELECT * FROM tbl;
```

Note:

The compression type is specified in the following command:

```
SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
```

You could elect to specify alternative codecs such as GzipCodec here.

Using the SequenceFile File Format with Impala Tables

Cloudera Impala supports using SequenceFile data files.

Table 9: SequenceFile Format Support in Impala

File Type	Format	Compression Codecs	Impala Can CREATE?	Impala Can INSERT?
SequenceFile	Structured	Snappy, gzip, deflate, bzip2		No. Import data by using LOAD DATA on data files already in the right format, or use INSERT in Hive followed by REFRESH table_name in Impala.

Creating SequenceFile Tables and Loading Data

If you do not have an existing data file to use, begin by creating one in the appropriate format.

To create a SequenceFile table:

In the impala-shell interpreter, issue a command similar to:

```
create table sequencefile_table (column_specs) stored as sequencefile;
```

Because Impala can guery some kinds of tables that it cannot currently write to, after creating tables of certain file formats, you might use the Hive shell to load the data. See <u>How Impala Works with Hadoop File Formats</u> on page 384 for details. After loading data into a table through Hive or other mechanism outside of Impala, issue a REFRESH table_name statement the next time you connect to the Impala node, before querying the table, to make Impala recognize the new data.

For example, here is how you might create some SequenceFile tables in Impala (by specifying the columns explicitly, or cloning the structure of another table), load data through Hive, and query them through Impala:

```
$ impala-shell -i localhost
[localhost:21000] > create table seqfile_table (x int) stored as sequencefile;
[localhost:21000] > create table seqfile_clone like some_other_table stored as
sequencefile;
[localhost:21000] > quit;
hive> insert into table seqfile_table select x from some_other_table;
3 Rows loaded to seqfile_table
Time taken: 19.047 seconds
hive> quit;
$ impala-shell -i localhost
[localhost:21000] > select * from seqfile_table;
Returned 0 row(s) in 0.23s
[localhost:21000] > -- Make Impala recognize the data loaded through Hive;
[localhost:21000] > refresh segfile table;
[localhost:21000] > select * from seqfile_table;
x
  1
  2
 3
Returned 3 row(s) in 0.23s
```

Enabling Compression for SequenceFile Tables

You may want to enable compression on existing tables. Enabling compression provides performance gains in most cases and is supported for SequenceFile tables. For example, to enable Snappy compression, you would specify the following additional settings when loading data through the Hive shell:

```
hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
```

How Impala Works with Hadoop File Formats

```
hive> SET mapred.output.compression.type=BLOCK;
hive> SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> insert overwrite table new_table select * from old_table;
```

If you are converting partitioned tables, you must complete additional steps. In such a case, specify additional settings similar to the following:

```
hive> create table new_table (your_cols) partitioned by (partition_cols) stored as new_format;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> insert overwrite table new_table partition(comma_separated_partition_cols) select
* from old_table;
```

Remember that Hive does not require that you specify a source format for it. Consider the case of converting a table with two partition columns called year and month to a Snappy compressed SequenceFile. Combining the components outlined previously to complete this table conversion, you would specify settings similar to the following:

```
hive> create table TBL_SEQ (int_col int, string_col string) STORED AS SEQUENCEFILE;
hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> INSERT OVERWRITE TABLE tbl_seq SELECT * FROM tbl;
```

To complete a similar process for a table that includes partitions, you would specify settings similar to the following:

```
hive> CREATE TABLE tbl_seq (int_col INT, string_col STRING) PARTITIONED BY (year INT) STORED AS SEQUENCEFILE;
hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> INSERT OVERWRITE TABLE tbl_seq PARTITION(year) SELECT * FROM tbl;
```

Note:

The compression type is specified in the following command:

```
SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
```

You could elect to specify alternative codecs such as GzipCodec here.

Using Impala to Query HBase Tables

You can use Impala to query HBase tables. This capability allows convenient access to a storage system that is tuned for different kinds of workloads than the default with Impala. The default Impala tables use data files stored on HDFS, which are ideal for bulk loads and queries using full-table scans. In contrast, HBase can do efficient queries for data organized for OLTP-style workloads, with lookups of individual rows or ranges of values.

From the perspective of an Impala user, coming from an RDBMS background, HBase is a kind of key-value store where the value consists of multiple fields. The key is mapped to one column in the Impala table, and the various fields of the value are mapped to the other columns in the Impala table.

For background information on HBase, see the snapshot of the Apache HBase site (including documentation) for the level of HBase that comes with CDH 4 or CDH 5. To install HBase on a CDH cluster, see the installation instructions for CDH 4 or CDH 5.

Overview of Using HBase with Impala

When you use Impala with HBase:

- You create the tables on the Impala side using the Hive shell, because the Impala CREATE TABLE statement currently does not support custom SerDes and some other syntax needed for these tables:
 - You designate it as an HBase table using the STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' clause on the Hive CREATE TABLE statement.
 - You map these specially created tables to corresponding tables that exist in HBase, with the clause TBLPROPERTIES("hbase.table.name" = "table_name_in_hbase") on the Hive CREATE TABLE statement.
 - See Examples of Querying HBase Tables from Impala on page 418 for a full example.
- You define the column corresponding to the HBase row key as a string with the #string keyword, or map it to a STRING column.
- Because Impala and Hive share the same metastore database, once you create the table in Hive, you can query or insert into it through Impala. (After creating a new table through Hive, issue the INVALIDATE METADATA statement in impala-shell to make Impala aware of the new table.)
- You issue queries against the Impala tables. For efficient queries, use WHERE clauses to find a single key value or a range of key values wherever practical, by testing the Impala column corresponding to the HBase row key. Avoid queries that do full-table scans, which are efficient for regular Impala tables but inefficient in HBase.

To work with an HBase table from Impala, ensure that the impala user has read/write privileges for the HBase table, using the GRANT command in the HBase shell. For details about HBase security, see the Security chapter in the HBase Reference Guide.

Configuring HBase for Use with Impala

HBase works out of the box with Impala. There is no mandatory configuration needed to use these two components together.

Using Impala to Query HBase Tables

To avoid delays if HBase is unavailable during Impala startup or after an INVALIDATE METADATA statement, Cloudera recommends setting timeout values as follows in /etc/impala/conf/hbase-site.xml (for environments not managed by Cloudera Manager):

```
property>
  <name>hbase.client.retries.number</name>
  <value>3</value>
</property>
property>
 <name>hbase.rpc.timeout</name>
  <value>3000</value>
</property>
```

Currently, Cloudera Manager does not have an Impala-only override for HBase settings, so any HBase configuration change you make through Cloudera Manager would take affect for all HBase applications. Therefore, this change is not recommended on systems managed by Cloudera Manager.

Supported Data Types for HBase Columns

To understand how Impala column data types are mapped to fields in HBase, you should have some background knowledge about HBase first. You set up the mapping by running the CREATE TABLE statement in the Hive shell. See the Hive wiki for a starting point, and Examples of Querying HBase Tables from Impala on page 418 for examples.

HBase works as a kind of "bit bucket", in the sense that HBase does not enforce any typing for the key or value fields. All the type enforcement is done on the Impala side.

For best performance of Impala queries against HBase tables, most queries will perform comparisons in the WHERE against the column that corresponds to the HBase row key. When creating the table through the Hive shell, use the STRING data type for the column that corresponds to the HBase row key. Impala can translate conditional tests (through operators such as =, <, BETWEEN, and IN) against this column into fast lookups in HBase, but this optimization ("predicate pushdown") only works when that column is defined as STRING.

Starting in Impala 1.1, Impala also supports reading and writing to columns that are defined in the Hive CREATE TABLE statement using binary data types, represented in the Hive table definition using the #binary keyword, often abbreviated as #b. Defining numeric columns as binary can reduce the overall data volume in the HBase tables. You should still define the column that corresponds to the HBase row key as a STRING, to allow fast lookups using those columns.

Performance Considerations for the Impala-HBase Integration

To understand the performance characteristics of SQL queries against data stored in HBase, you should have some background knowledge about how HBase interacts with SQL-oriented systems first. See the Hive wiki for a starting point; because Impala shares the same metastore database as Hive, the information about mapping columns from Hive tables to HBase tables is generally applicable to Impala too.

Impala uses the HBase client API via Java Native Interface (JNI) to query data stored in HBase. This querying does not read HFiles directly. The extra communication overhead makes it important to choose what data to store in HBase or in HDFS, and construct efficient queries that can retrieve the HBase data efficiently:

- Use HBase table for queries that return a single row or a range of rows, not queries that scan the entire table. (If a query has no where clause, that is a strong indicator that it is an inefficient query for an HBase table.)
- If you have join queries that do aggregation operations on large fact tables and join the results against small dimension tables, consider using Impala for the fact tables and HBase for the dimension tables. (Because Impala does a full scan on the HBase table in this case, rather than doing single-row HBase lookups based on the join column, only use this technique where the HBase table is small enough that doing a full table scan does not cause a performance bottleneck for the query.)

Query predicates are applied to row keys as start and stop keys, thereby limiting the scope of a particular lookup. If row keys are not mapped to string columns, then ordering is typically incorrect and comparison operations do not work. For example, if row keys are not mapped to string columns, evaluating for greater than (>) or less than (<) cannot be completed.

Predicates on non-key columns can be sent to HBase to scan as SingleColumnValueFilters, providing some performance gains. In such a case, HBase returns fewer rows than if those same predicates were applied using Impala. While there is some improvement, it is not as great when start and stop rows are used. This is because the number of rows that HBase must examine is not limited as it is when start and stop rows are used. As long as the row key predicate only applies to a single row, HBase will locate and return that row. Conversely, if a non-key predicate is used, even if it only applies to a single row, HBase must still scan the entire table to find the correct result.

Interpreting EXPLAIN Output for HBase Queries

For example, here are some queries against the following Impala table, which is mapped to an HBase table. The examples show excerpts from the output of the EXPLAIN statement, demonstrating what things to look for to indicate an efficient or inefficient query against an HBase table.

The first column (cust id) was specified as the key column in the CREATE EXTERNAL TABLE statement; for performance, it is important to declare this column as STRING. Other columns, such as BIRTH_YEAR and NEVER_LOGGED_ON, are also declared as STRING, rather than their "natural" types of INT OR BOOLEAN, because Impala can optimize those types more effectively in HBase tables. For comparison, we leave one column, YEAR_REGISTERED, as INT to show that filtering on this column is inefficient.

```
describe hbase_table;
Query: describe hbase_table
                    type comment
 cust_id | string |
 birth_year string
never_logged_on
private_email_address
year_registered int
______
```

The best case for performance involves a single row lookup using an equality comparison on the column defined as the row kev:

```
explain select count(*) from hbase_table where cust_id = 'some_user@example.com';
 Explain String
 Estimated Per-Host Requirements: Memory=1.01GB VCores=1
 WARNING: The following tables are missing relevant table and/or column statistics.
 hbase.hbase_table
 03:AGGREGATE [MERGE FINALIZE]
  output: sum(count(*))
 02:EXCHANGE [PARTITION=UNPARTITIONED]
 01:AGGREGATE
   output: count(*)
```

Using Impala to Query HBase Tables

```
00:SCAN HBASE [hbase.hbase_table]
start key: some_user@example.com
stop key: some_user@example.com\0
```

Another type of efficient query involves a range lookup on the row key column, using SQL operators such as greater than (or equal), less than (or equal), or BETWEEN. This example also includes an equality test on a non-key column; because that column is a STRING, Impala can let HBase perform that test, indicated by the hbase filters: line in the EXPLAIN output. Doing the filtering within HBase is more efficient than transmitting all the data to Impala and doing the filtering on the Impala side.

The query is less efficient if Impala has to evaluate any of the predicates, because Impala must scan the entire HBase table. Impala can only push down predicates to HBase for columns declared as STRING. This example tests a column declared as INT, and the predicates: line in the EXPLAIN output indicates that the test is performed after the data is transmitted to Impala.

The same inefficiency applies if the key column is compared to any non-constant value. Here, even though the key column is a STRING, and is tested using an equality operator, Impala must scan the entire HBase table because the key column is compared to another column value rather than a constant.

```
explain select count(*) from hbase_table where cust_id = private_email_address;
 Explain String
 01:AGGREGATE
   output: count(*)
 00:SCAN HBASE [hbase.hbase_table]
    predicates: cust_id = private_email_address
```

Currently, tests on the row key using OR or IN clauses are not optimized into direct lookups either. Such limitations might be lifted in the future, so always check the EXPLAIN output to be sure whether a particular SQL construct results in an efficient query or not for HBase tables.

```
explain select count(*) from hbase_table where
 cust_id = 'some_user@example.com' or cust_id = 'other_user@example.com';
| Explain String
01:AGGREGATE
    output: count(*)
 00:SCAN HBASE [hbase.hbase_table]
    predicates: cust_id = 'some_user@example.com' OR cust_id = 'other_user@example.com'
explain select count(*) from hbase_table where
 cust_id in ('some_user@example.com', 'other_user@example.com');
 Explain String
 01:AGGREGATE
  output: count(*)
 00:SCAN HBASE [hbase.hbase_table]
    predicates: cust id IN ('some user@example.com', 'other user@example.com')
```

Using Impala to Query HBase Tables

Either rewrite into separate queries for each value and combine the results in the application, or combine the single-row queries using UNION ALL:

```
select count(*) from hbase_table where cust_id = 'some_user@example.com';
select count(*) from hbase_table where cust_id = 'other_user@example.com';
 select count(*) from hbase_table where cust_id = 'some_user@example.com'
  union all
 select count(*) from hbase_table where cust_id = 'other_user@example.com';
 Explain String
   04:AGGREGATE
    output: count(*)
  03:SCAN HBASE [hbase.hbase_table]
       start key: other_user@example.com
       stop key: other_user@example.com\0
  10:MERGE
  02:AGGREGATE
  output: count(*)
  01:SCAN HBASE [hbase.hbase_table]
    start key: some_user@example.com
     stop key: some_user@example.com\0
```

Configuration Options for Java HBase Applications

If you have an HBase Java application that calls the setCacheBlocks or setCaching methods of the class org.apache.hadoop.hbase.client.Scan, you can set these same caching behaviors through Impala query options, to control the memory pressure on the HBase region server. For example, when doing queries in HBase that result in full-table scans (which by default are inefficient for HBase), you can reduce memory usage and speed up the queries by turning off the HBASE_CACHE_BLOCKS setting and specifying a large number for the HBASE_CACHING setting.

To set these options, issue commands like the following in impala-shell:

```
-- Same as calling setCacheBlocks(true) or setCacheBlocks(false).
set hbase_cache_blocks=true;
set hbase_cache_blocks=false;
-- Same as calling setCaching(rows).
set hbase_caching=1000;
```

Or update the impalad defaults file /etc/default/impala and include settings for HBASE_CACHE_BLOCKS and/or HBASE_CACHING in the -default_query_options setting for IMPALA_SERVER_ARGS. See Modifying Impala Startup Options on page 46 for details.

Note: In Impala 2.0 and later, these options are settable through the JDBC or ODBC interfaces using the SET statement.

Use Cases for Querying HBase through Impala

The following are popular use cases for using Impala to query HBase tables:

- Keeping large fact tables in Impala, and smaller dimension tables in HBase. The fact tables use Parquet or other binary file format optimized for scan operations. Join queries scan through the large Impala fact tables, and cross-reference the dimension tables using efficient single-row lookups in HBase.
- Using HBase to store rapidly incrementing counters, such as how many times a web page has been viewed, or on a social network, how many connections a user has or how many votes a post received. HBase is efficient for capturing such changeable data: the append-only storage mechanism is efficient for writing each change to disk, and a query always returns the latest value. An application could query specific totals like these from HBase, and combine the results with a broader set of data queried from Impala.
- Storing very wide tables in HBase. Wide tables have many columns, possibly thousands, typically recording many attributes for an important subject such as a user of an online service. These tables are also often sparse, that is, most of the columns values are NULL, O, false, empty string, or other blank or placeholder value. (For example, any particular web site user might have never used some site feature, filled in a certain field in their profile, visited a particular part of the site, and so on.) A typical query against this kind of table is to look up a single row to retrieve all the information about a specific subject, rather than summing, averaging, or filtering millions of rows as in typical Impala-managed tables.

Or the HBase table could be joined with a larger Impala-managed table. For example, analyze the large Impala table representing web traffic for a site and pick out 50 users who view the most pages. Join that result with the wide user table in HBase to look up attributes of those users. The HBase side of the join would result in 50 efficient single-row lookups in HBase, rather than scanning the entire user table.

Loading Data into an HBase Table

The Impala INSERT statement works for HBase tables. The INSERT ... VALUES syntax is ideally suited to HBase tables, because inserting a single row is an efficient operation for an HBase table. (For regular Impala tables, with data files in HDFS, the tiny data files produced by INSERT ... VALUES are extremely inefficient, so you would not use that technique with tables containing any significant data volume.)

When you use the INSERT ... SELECT syntax, the result in the HBase table could be fewer rows than you expect. HBase only stores the most recent version of each unique row key, so if an INSERT ... SELECT statement copies over multiple rows containing the same value for the key column, subsequent queries will only return one row with each key column value:

Although Impala does not have an UPDATE statement, you can achieve the same effect by doing successive INSERT statements using the same value for the key column each time:

Limitations and Restrictions of the Impala and HBase Integration

The Impala integration with HBase has the following limitations and restrictions, some inherited from the integration between HBase and Hive, and some unique to Impala:

Using Impala to Query HBase Tables

- If you issue a DROP TABLE for an internal (Impala-managed) table that is mapped to an HBase table, the underlying table is not removed in HBase. The Hive DROP TABLE statement also removes the HBase table in this case.
- The INSERT OVERWRITE statement is not available for HBase tables. You can insert new data, or modify an existing row by inserting a new row with the same key value, but not replace the entire contents of the table. You can do an INSERT OVERWRITE in Hive if you need this capability.
- If you issue a CREATE TABLE LIKE statement for a table mapped to an HBase table, the new table is also an HBase table, but inherits the same underlying HBase table name as the original. The new table is effectively an alias for the old one, not a new table with identical column structure. Avoid using CREATE TABLE LIKE for HBase tables, to avoid any confusion.
- Copying data into an HBase table using the Impala INSERT ... SELECT syntax might produce fewer new rows than are in the query result set. If the result set contains multiple rows with the same value for the key column, each row supercedes any previous rows with the same key value. Because the order of the inserted rows is unpredictable, you cannot rely on this technique to preserve the "latest" version of a particular key value.

Examples of Querying HBase Tables from Impala

The following examples create an HBase table with four column families, create a corresponding table through Hive, then insert and query the table through Impala.

Note that in HBase shell, the table name is quoted in CREATE and DROP statements. Tables created in HBase begin in "enabled" state; before dropping them through the HBase shell, you must issue a disable 'table_name' statement.

```
$ hbase shell
15/02/10 16:07:45
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 0.94.2-cdh4.2.0, rUnknown, Fri Feb 15 11:51:18 PST 2013

hbase(main):001:0> create 'hbasealltypessmall', 'boolsCF', 'intsCF', 'floatsCF', 'stringsCF'
0 row(s) in 4.6520 seconds

=> Hbase::Table - hbasealltypessmall
hbase(main):006:0> quit
```

Issue the following CREATE TABLE statement in the Hive shell. (The Impala CREATE TABLE statement currently does not support the STORED BY clause, so you switch into Hive to create the table, then back to Impala and the impala-shell interpreter to issue the gueries.)

This example creates an external table mapped to the HBase table, usable by both Impala and Hive. It is defined as an external table so that when dropped by Impala or Hive, the original HBase table is not touched at all.

The WITH SERDEPROPERTIES clause specifies that the first column (ID) represents the row key, and maps the remaining columns of the SQL table to HBase column families. The mapping relies on the ordinal order of the columns in the table, not the column names in the CREATE TABLE statement. The first column is defined to be the lookup key; the STRING data type produces the fastest key-based lookups for HBase tables.

• **Note:** For Impala with HBase tables, the most important aspect to ensure good performance is to use a STRING column as the row key, as shown in this example.

```
$ hive
Logging initialized using configuration in file:/etc/hive/conf.dist/hive-log4j.properties
Hive history file=/tmp/cloudera/hive_job_log_cloudera_201502101610_1980712808.txt
hive> use hbase;
```

```
Time taken: 4.095 seconds
hive > CREATE EXTERNAL TABLE hbasestringids (
       id string,
      bool_col boolean,
      tinyint_col tinyint,
       smallint_col smallint,
       int_col int,
       bigint_col bigint,
       float_col float,
       double_col double
       date_string_col string,
       string_col string,
       timestamp_col timestamp)
    > STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
    > WITH SERDEPROPERTIES (
        "hbase.columns.mapping" =
":key,boolsCF:bool_col,intsCF:tinyint_col,intsCF:smallint_col,intsCF:int_col,intsCF:\
       bigint_col,floatsCF:float_col,floatsCF:double_col,stringsCF:date_string_col,\
        stringsCF:string_col,stringsCF:timestamp_col'
    > TBLPROPERTIES("hbase.table.name" = "hbasealltypessmall");
OK
Time taken: 2.879 seconds
hive> quit;
```

Once you have established the mapping to an HBase table, you can issue DML statements and queries from Impala. The following example shows a series of INSERT statements followed by a query. The ideal kind of query from a performance standpoint retrieves a row from the table based on a row key mapped to a string column. An initial INVALIDATE METADATA table_name statement makes the table created through Hive visible to Impala.

```
$ impala-shell -i localhost -d hbase
Starting Impala Shell without Kerberos authentication
Connected to localhost:21000
Server version: impalad version 2.1.0-cdh4 RELEASE (build
d520a9cdea2fc97e8d5da9fbb0244e60ee416bfa)
Welcome to the Impala shell. Press TAB twice to see a list of available commands.
Copyright (c) 2012 Cloudera, Inc. All rights reserved.
(Shell build version: Impala Shell v2.1.0-cdh4 (d520a9c) built on Mon Dec 8 21:41:17
PST 2014)
Query: use `hbase`
[localhost:21000] > invalidate metadata hbasestringids;
Fetched 0 row(s) in 0.09s
[localhost:21000] > desc hbasestringids;
name type comment
                  string
                boolean
double
float
bigint
int
 bool_col
  double_col
  float_col
 bigint col
  int_col
 date_string_col | string
 string_col
                string
timestamp
 timestamp_col
Fetched 11 row(s) in 0.02s
[localhost:21000] > insert into hbasestringids values
('0001',true,3.141,9.94,1234567,32768,4000,76,'2014-12-31','Hello world',now());
Inserted 1 row(s) in 0.26s
[localhost:21000] > insert into hbasestringids values
('0002',false,2.004,6.196,1500,8000,129,127,'2014-01-01','Foo bar',now());
Inserted 1 row(s) in 0.12s
[localhost:21000] > select * from hbasestringids where id = '0001';
```

Using Impala to Query HBase Tables

• Note: After you create a table in Hive, such as the HBase mapping table in this example, issue an INVALIDATE METADATA table_name statement the next time you connect to Impala, make Impala aware of the new table. (Prior to Impala 1.2.4, you could not specify the table name if Impala was not aware of the table yet; in Impala 1.2.4 and higher, specifying the table name avoids reloading the metadata for other tables that are not changed.)

Using Impala Logging

The Impala logs record information about:

- Any errors Impala encountered. If Impala experienced a serious error during startup, you must diagnose and troubleshoot that problem before you can do anything further with Impala.
- How Impala is configured.
- Jobs Impala has completed.

Note:

Formerly, the logs contained the query profile for each query, showing low-level details of how the work is distributed among nodes and how intermediate and final results are transmitted across the network. To save space, those query profiles are now stored in zlib-compressed files in /var/log/impala/profiles. You can access them through the Impala web user interface. For example, at http://impalad-node-hostname: 25000/queries, each query is followed by a Profile link leading to a page showing extensive analytical data for the query execution.

The auditing feature introduced in Cloudera Impala 1.1.1 produces a separate set of audit log files when enabled. See <u>Auditing Impala Operations</u> on page 106 for details.

Locations and Names of Impala Log Files

- By default, the log files are under the directory /var/log/impala. To change log file locations, modify the defaults file described in Starting Impala on page 45.
- The significant files for the impalad process are impalad. INFO, impalad. WARNING, and impalad. ERROR. You might also see a file impalad. FATAL, although this is only present in rare conditions.
- The significant files for the statestored process are statestored. INFO, statestored.WARNING, and statestored. ERROR. You might also see a file statestored. FATAL, although this is only present in rare conditions.
- The significant files for the catalogd process are catalogd. INFO, catalogd. WARNING, and catalogd. ERROR. You might also see a file catalogd. FATAL, although this is only present in rare conditions.
- Examine the . INFO files to see configuration settings for the processes.
- Examine the .warning files to see all kinds of problem information, including such things as suboptimal settings and also serious runtime errors.
- Examine the .ERROR and/or .FATAL files to see only the most serious errors, if the processes crash, or queries fail to complete. These messages are also in the .WARNING file.
- A new set of log files is produced each time the associated daemon is restarted. These log files have long names including a timestamp. The . INFO, .WARNING, and .ERROR files are physically represented as symbolic links to the latest applicable log files.
- The init script for the impala-server service also produces a consolidated log file /var/logs/impalad/impala-server.log, with all the same information as the corresponding. INFO, . WARNING, and . ERROR files.
- The init script for the impala-state-store service also produces a consolidated log file /var/logs/impalad/impala-state-store.log, with all the same information as the corresponding. INFO, . WARNING, and . ERROR files.

Impala stores information using the glog_v logging system. You will see some messages referring to C++ file names. Logging is affected by:

 The GLOG_v environment variable specifies which types of messages are logged. See Setting Logging Levels on page 423 for details.

Using Impala Logging

- The -logbuflevel startup flag for the impalad daemon specifies how often the log information is written to disk. The default is 0, meaning that the log is immediately flushed to disk when Impala outputs an important messages such as a warning or an error, but less important messages such as informational ones are buffered in memory rather than being flushed to disk immediately.
- Cloudera Manager has an Impala configuration setting that sets the -logbuflevel startup option.

Managing Impala Logs through Cloudera Manager or Manually

Cloudera recommends installing Impala through the Cloudera Manager administration interface. To assist with troubleshooting, Cloudera Manager collects front-end and back-end logs together into a single view, and let you do a search across log data for all the managed nodes rather than examining the logs on each node separately. If you installed Impala using Cloudera Manager, refer to the topics on Monitoring Services (CDH 5, CDH 4) or Logs (CDH 5, CDH 4).

If you are using Impala in an environment not managed by Cloudera Manager, review Impala log files on each host, when you have traced an issue back to a specific system.

Rotating Impala Logs

Impala periodically switches the physical files representing the current log files, after which it is safe to remove the old files if they are no longer needed. Impala does not automatically remove old log files, either on its own or through Cloudera Manager. To avoid running out of disk space as the logs grow in size, consider setting up a schedule for removing or archiving old log files, using your preferred system administration tool or technique for log rotation.

Reviewing Impala Logs

By default, the Impala log is stored at /var/logs/impalad/. The most comprehensive log, showing informational, warning, and error messages, is in the file name impalad. INFO. View log file contents by using the web interface or by examining the contents of the log file. (When you examine the logs through the file system, you can troubleshoot problems by reading the impalad.WARNING and/or impalad.ERROR files, which contain the subsets of messages indicating potential problems.)

On a machine named impala.example.com with default settings, you could view the Impala logs on that machine by using a browser to access http://impala.example.com:25000/logs.

Note:

The web interface limits the amount of logging information displayed. To view every log entry, access the log files directly through the file system.

You can view the contents of the impalad. INFO log file in the file system. With the default configuration settings, the start of the log file appears as follows:

```
[user@example impalad]$ pwd
/var/log/impalad
[user@example impalad]$ more impalad.INFO
Log file created at: 2013/01/07 08:42:12
Running on machine: impala.example.com
Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg I0107 08:42:12.292155 14876 daemon.cc:34] impalad version 0.4 RELEASE (build
9d7fadca0461ab40b9e9df8cdb47107ec6b27cff)
Built on Fri, 21 Dec 2012 12:55:19 PST
I0107 08:42:12.292484 14876 daemon.cc:35] Using hostname: impala.example.com
I0107 08:42:12.292706 14876 logging.cc:76] Flags (see also /varz are on debug webserver):
--dump_ir=false
```

```
--module_output=
--be_port=22000
--classpath=
--hostname=impala.example.com
```

Note: The preceding example shows only a small part of the log file. Impala log files are often several megabytes in size.

Understanding Impala Log Contents

The logs store information about Impala startup options. This information appears once for each time Impala is started and may include:

- Machine name.
- Impala version number.
- Flags used to start Impala.
- CPU information.
- The number of available disks.

There is information about each job Impala has run. Because each Impala job creates an additional set of data about queries, the amount of job specific data may be very large. Logs may contained detailed information on jobs. These detailed log entries may include:

- The composition of the query.
- The degree of data locality.
- Statistics on data throughput and response times.

Setting Logging Levels

Impala uses the GLOG system, which supports three logging levels. You can adjust the logging levels using the Cloudera Manager Admin Console. You can adjust logging levels without going through the Cloudera Manager Admin Console by exporting variable settings. To change logging settings manually, use a command similar to the following on each node before starting impalad:

```
export GLOG_v=1
```

Note: For performance reasons, Cloudera highly recommends not enabling the most verbose logging level of 3.

For more information on how to configure GLOG, including how to set variable logging levels for different system components, see How To Use Google Logging Library (glog).

Understanding What is Logged at Different Logging Levels

As logging levels increase, the categories of information logged are cumulative. For example, GLOG_v=2 records everything GLOG v=1 records, as well as additional information.

Increasing logging levels imposes performance overhead and increases log size. Cloudera recommends using GLOG_v=1 for most cases: this level has minimal performance impact but still captures useful troubleshooting information.

Additional information logged at each level is as follows:

 GLOG v=1 - The default level. Logs information about each connection and query that is initiated to an impalad instance, including runtime profiles.

Using Impala Logging

- GLOG_v=2 Everything from the previous level plus information for each RPC initiated. This level also records query execution progress information, including details on each file that is read.
- GLOG_v=3 Everything from the previous level plus logging of every row that is read. This level is only applicable for the most serious troubleshooting and tuning scenarios, because it can produce exceptionally large and detailed log files, potentially leading to its own set of performance and capacity problems.

Troubleshooting Impala

Use the following steps to diagnose and debug problems with any aspect of Impala.

Troubleshooting Impala SQL Syntax Issues

In general, if queries issued against Impala fail, you can try running these same queries against Hive.

- If a query fails against both Impala and Hive, it is likely that there is a problem with your query or other elements of your CDH environment:
 - Review the <u>Language Reference</u> to ensure your query is valid.
 - Check Impala Reserved Words on page 431 to see if any database, table, column, or other object names in your query conflict with Impala reserved words. Quote those names with backticks (``) if so.
 - Check <u>Built-in Functions</u> on page 246 to confirm whether Impala supports all the built-in functions being used by your query, and whether argument and return types are the same as you expect.
 - Review the contents of the Impala logs for any information that may be useful in identifying the source of the problem.
- If a query fails against Impala but not Hive, it is likely that there is a problem with your Impala installation.

Impala Troubleshooting Quick Reference

The following table lists common problems and potential solutions.

Symptom	Explanation	Recommendation
Impala takes a long time to start.	Impala instances with large numbers of tables, partitions, or data files take longer to start because the metadata for these objects is broadcast to all impalad nodes and cached.	Adjust timeout and synchronicity settings.
Joins fail to complete.	There may be insufficient memory. During a join, data from the second, third, and so on sets to be joined is loaded into memory. If Impala chooses an inefficient join order or join mechanism, the query could exceed the total memory available.	Start by gathering statistics with the COMPUTE STATS statement for each table involved in the join. Consider specifying the [SHUFFLE] hint so that data from the joined tables is split up between nodes rather than broadcast to each node. If tuning at the SQL level is not sufficient, add more memory to your system or join smaller data sets.
Queries return incorrect results.	Impala metadata may be outdated after changes are performed in Hive.	Where possible, use the appropriate Impala statement (INSERT, LOAD DATA, CREATE TABLE, ALTER TABLE, COMPUTE STATS, and so on) rather than switching back and forth between Impala and Hive. Impala automatically broadcasts the results of DDL and DML operations to all Impala nodes in the cluster, but does not automatically recognize when such changes are made through Hive. After inserting data, adding a partition, or other operation in Hive, refresh the metadata for the table as described in REFRESH Statement on page 208.

Troubleshooting Impala

Symptom	Explanation	Recommendation	
Queries are slow to return results.	Some impaladinstances may not have started. Using a browser, connect to the host running the Impala state store. Connect using an address of the form http://hostname:port/metrics.	Ensure Impala is installed on all DataNodes. Start any impalad instances that are not running.	
	• Note: Replace hostname and port with the hostname and port of your Impala state store host machine and web server port. The default port is 25010.		
	The number of impalad instances listed should match the expected number of impalad instances installed in the cluster. There should also be one impalad instance installed on each DataNode		
Queries are slow to return results.	Impala may not be configured to use native checksumming. Native checksumming uses machine-specific instructions to compute checksums over HDFS data very quickly. Review Impala logs. If you find instances of "INFO util.NativeCodeLoader: Loaded the native-hadoop" messages, native checksumming is not enabled.	Ensure Impala is configured to use native checksumming as described in Post-Installation Configuration for Impala on page 33.	
Queries are slow to return results.	Impala may not be configured to use data locality tracking.	Test Impala for data locality tracking and make configuration changes as necessary. Information on this process can be found in Post-Installation Configuration for Impala on page 33.	
Attempts to complete Impala tasks such as executing INSERT-SELECT actions fail. The Impala logs include notes that files could not be opened due to permission denied.	This can be the result of permissions issues. For example, you could use the Hive shell as the hive user to create a table. After creating this table, you could attempt to complete some action, such as an INSERT-SELECT on the table. Because the table was created using one user and the INSERT-SELECT is attempted by another, this action may fail due to permissions issues.	In general, ensure the Impala user has sufficient permissions. In the preceding example, ensure the Impala user has sufficient permissions to the table that the Hive user created.	
Impala fails to start up, with the impalad logs referring to errors connecting to the statestore	A large number of databases, tables, partitions, and so on can require metadata synchronization, particularly on startup, that takes longer than the default timeout for the statestore service.	Configure the statestore timeout value and possibly other settings related to the frequency of statestore updates and metadata loading. See Increasing the Statestore Timeout on page 79 and Scalability Considerations for the Impala Statestore on page 374.	

Symptom	Explanation	Recommendation
service and attempts to re-register.		

Impala Web User Interface for Debugging

The web user interface is primarily for problem diagnosis and troubleshooting. The items listed and their format is subject to change. To monitor Impala health, particularly across the entire cluster at once, use the Cloudera Manager interface.

Debug Web UI for impalad

To debug and troubleshoot the impalad daemon using a web-based interface, open the URL http://impala-server-hostname:25000/in a browser. (For secure clusters, use the prefix https://instead of http://.) Because each Impala node produces its own set of debug information, choose a specific node that you are curious about or suspect is having problems.

Note: To get a convenient picture of the health of all Impala nodes in a cluster, use the Cloudera Manager interface, which collects the low-level operational information from all Impala nodes, and presents a unified view of the entire cluster.

Main Page

By default, the main page of the debug web UI is at http://impala-server-hostname: 25000/ (non-secure cluster) or https://impala-server-hostname: 25000/ (secure cluster).

This page lists the version of the impalad daemon, plus basic hardware and software information about the corresponding host, such as information about the CPU, memory, disks, and operating system version.

Backends Page

By default, the backends page of the debug web UI is at http://impala-server-hostname: 25000/backends (non-secure cluster) or https://impala-server-hostname: 25000/backends (secure cluster).

This page lists the host and port info for each of the impalad nodes in the cluster. Because each impalad daemon knows about every other impalad daemon through the statestore, this information should be the same regardless of which node you select. Links take you to the corresponding debug web pages for any of the other nodes in the cluster.

Catalog Page

By default, the catalog page of the debug web UI is at http://impala-server-hostname:25000/catalog (non-secure cluster) or https://impala-server-hostname: 25000/catalog (secure cluster).

This page displays a list of databases and associated tables recognized by this instance of impalad. You can use this page to locate which database a table is in, check the exact spelling of a database or table name, look for identical table names in multiple databases, and so on.

Logs Page

By default, the logs page of the debug web UI is at http://impala-server-hostname: 25000/logs (non-secure cluster) or https://impala-server-hostname: 25000/logs (secure cluster).

This page shows the last portion of the impalad. INFO log file, the most detailed of the info, warning, and error logs for the impalad daemon. You can refer here to see the details of the most recent operations, whether the

Troubleshooting Impala

operations succeeded or encountered errors. This central page can be more convenient than looking around the filesystem for the log files, which could be in different locations on clusters that use Cloudera Manager or not.

Memz Page

By default, the **memz** page of the debug web Ulis at http://impala-server-hostname:25000/memz (non-secure cluster) or https://impala-server-hostname:25000/memz (secure cluster).

This page displays summary and detailed information about memory usage by the impalad daemon. You can see the memory limit in effect for the node, and how much of that memory Impala is currently using.

Metrics Page

By default, the **metrics** page of the debug web UI is at http://impala-server-hostname:25000/metrics (non-secure cluster) or https://impala-server-hostname:25000/metrics (secure cluster).

This page displays the current set of metrics: counters and flags representing various aspects of impalad internal operation. For the meanings of these metrics, see Impala Metrics in the Cloudera Manager documentation.

Queries Page

By default, the **queries** page of the debug web UI is at http://impala-server-hostname:25000/queries (non-secure cluster) or https://impala-server-hostname:25000/queries (secure cluster).

This page lists all currently running queries, plus any completed queries whose details still reside in memory. The queries are listed in reverse chronological order, with the most recent at the top. (You can control the amount of memory devoted to completed queries by specifying the --query_log_size startup option for impalad.)

On this page, you can see at a glance how many SQL statements are failing (State value of EXCEPTION), how large the result sets are (# rows fetched), and how long each statement took (Start Time and End Time).

Each query has an associated link that displays the detailed query profile, which you can examine to understand the performance characteristics of that query. See <u>Using the Query Profile for Performance Tuning</u> on page 366 for details.

Sessions Page

By default, the **sessions** page of the debug web UI is at http://impala-server-hostname:25000/sessions (non-secure cluster) or https://impala-server-hostname:25000/sessions (secure cluster).

This page displays information about the sessions currently connected to this impalad instance. For example, sessions could include connections from the impala-shell command, JDBC or ODBC applications, or the Impala Query UI in the Hue web interface.

Threadz Page

By default, the **threadz** page of the debug web UI is at http://impala-server-hostname:25000/threadz (non-secure cluster) or https://impala-server-hostname:25000/threadz (secure cluster).

This page displays information about the threads used by this instance of impalad, and shows which categories they are grouped into. Making use of this information requires substantial knowledge about Impala internals.

Varz Page

By default, the **varz** page of the debug web UI is at http://impala-server-hostname:25000/varz (non-secure cluster) or https://impala-server-hostname:25000/varz (secure cluster).

This page shows the configuration settings in effect when this instance of impalad communicates with other Hadoop components such as HDFS and YARN. These settings are collected from a set of configuration files; Impala might not actually make use of all settings.

The bottom of this page also lists all the command-line settings in effect for this instance of impalad. See Modifying Impala Startup Options on page 46 for information about modifying these values.

Ports Used by Impala

Impala uses the TCP ports listed in the following table. Before deploying Impala, ensure these ports are open on each system.

Component	Service	Port	Access Requirement	Comment
Impala Daemon	Impala Daemon Frontend Port	21000	External	Used to transmit commands and receive results by impala-shell, Beeswax, and version 1.2 of the Cloudera ODBC driver.
Impala Daemon	Impala Daemon Frontend Port	21050	External	Used to transmit commands and receive results by applications, such as Business Intelligence tools, using JDBC and version 2.0 or higher of the Cloudera ODBC driver.
Impala Daemon	Impala Daemon Backend Port	22000	Internal	Internal use only. Impala daemons use this port to communicate with each other.
Impala Daemon	StateStoreSubscriber Service Port	23000	Internal	Internal use only. Impala daemons listen on this port for updates from the statestore daemon.
Catalog Daemon	StateStoreSubscriber Service Port	23020	Internal	Internal use only. The catalog daemon listens on this port for updates from the statestore daemon.
Impala Daemon	Impala Daemon HTTP Server Port	25000	External	Impala web interface for administrators to monitor and troubleshoot.
Impala StateStore Daemon	StateStore HTTP Server Port	25010	External	StateStore web interface for administrators to monitor and troubleshoot.
Impala Catalog Daemon	Catalog HTTP Server Port	25020	External	Catalog service web interface for administrators to monitor and troubleshoot. New in Impala 1.2 and higher.
Impala StateStore Daemon	StateStore Service Port	24000	Internal	Internal use only. The statestore daemon listens on this port for registration/unregistration requests.

Ports Used by Impala

Component	Service	Port	Access Requirement	Comment
Impala Catalog Daemon	StateStore Service Port	26000	Internal	Internal use only. The catalog service uses this port to communicate with the Impala daemons. New in Impala 1.2 and higher.
Impala Daemon	Llama Callback Port	28000	Internal	Internal use only. Impala daemons use to communicate with Llama. New in CDH 5.0.0 and higher.
Impala Llama ApplicationMaster	Llama Thrift Admin Port	15002	Internal	Internal use only. New in CDH 5.0.0 and higher.
Impala Llama ApplicationMaster	Llama Thrift Port	15000	Internal	Internal use only. New in CDH 5.0.0 and higher.
Impala Llama ApplicationMaster	Llama HTTP Port	15001	External	Llama service web interface for administrators to monitor and troubleshoot. New in CDH 5.0.0 and higher.

Impala Reserved Words

The following are the reserved words for the current release of Cloudera Impala. A reserved word is one that cannot be used directly as an identifier; you must quote it with backticks. For example, a statement CREATE TABLE select (x INT) fails, while CREATE TABLE `select` (x INT) succeeds. Impala does not reserve the names of aggregate or scalar built-in functions. (Formerly, Impala did reserve the names of some aggregate functions.)

Because different database systems have different sets of reserved words, and the reserved words change from release to release, carefully consider database, table, and column names to ensure maximum compatibility between products and versions.

aggregate all alter analytic and anti api_version as asc avro between bigint binary boolean by cached case cast change char class close_fn column columns comment compute create cross current data database databases date datetime decimal delimited desc describe distinct div double drop else end escaped exists explain external false fields fileformat finalize_fn first float following

Impala Reserved Words

for format formatted from full function functions grant group having if in incremental init_fn inner inpath insert int integer intermediate interval into invalidate is join last left like limit lines load location merge_fn metadata not null nulls offset on or order outer over overwrite parquet parquetfile partition partitioned partitions preceding prepare_fn produced range rcfile real refresh regexp rename replace returns revoke right rlike role roles row rows schema schemas select semi sequencefile serdeproperties

Impala Reserved Words

serialize_fn set show smallint stats stored straight_join string symbol table tables tblproperties terminated textfile then timestamp tinyint to true unbounded uncached union update_fn use using values varchar view when where with

Cloudera Impala Version and Download Information

The information in this section applies to CDH 4 clusters, where Impala is downloaded and installed separately from CDH itself. You can disregard this section if you are running a CDH 5 cluster. This information is included with the CDH 5 documentation for users who manage CDH 4 clusters through Cloudera Manager 5.

You can download the following releases of the Cloudera Impala product:

- Impala 2.1.0 on page 434 (latest 2.1.x, for CDH 4 or CDH 5)
- Impala 2.0.1 on page 435 (latest 2.0.x, for CDH 4 or CDH 5)
- Impala 2.0.0 on page 435
- Impala 1.4.3 on page 435 (latest 1.4.x, for CDH 4 or CDH 5)
- Impala 1.4.0 on page 436
- Impala 1.3.1 on page 436 (latest 1.3.x, for CDH 4 or CDH 5)
- Impala 1.2.4 on page 436 (latest 1.2.x, for CDH 4)
- Impala 1.2.3 on page 437 (for CDH 4; also bundled with CDH 5 beta 2)
- <u>Impala 1.2.2</u> on page 437
- Impala 1.2.1 on page 438
- Impala 1.2.0 (Beta) on page 438 (for use with CDH 5 beta 1)
- Impala 1.1.1 on page 438 (latest 1.1.x)
- <u>Impala 1.0.1</u> on page 438 (latest 1.0.x)

For installation instructions, see <u>Installing Impala</u> on page 29.

For information about new features in the latest release, and issues that are fixed or still outstanding, see the <u>Cloudera Impala Release Notes</u> on page 454.

Impala Download Information

Note: All packages are 64-bit.

Impala 2.1.0

Release Date: December 2014 Status: Production

These Impala packages work with CDH 4. For the Impala bundled with CDH 5, see <u>CDH Version and Packaging Information</u>.

Repository Type	Location	Repo or List file	
Yum RHEL 6/CentOS 6 (64-bit)	http://adriedu.deacom/mpab/lechat/6/x86_64/mpab/2/	htp://adrieducteacom/mpab/edrat/5/85/Gv/mpab/ducteaimpabepo	
Yum RHEL 5/CentOS 5 (64-bit)	http://artiedudeacom/mpde/lechet/5/x86_64/mpde/2/	htp://adrieducterom/mpab/ed-et/5/85@v/mpab/ducterimpalego	
Zypper SLES 11 (64-bit)	http://adriedudeacom/mpeh/ses/11/x86_64/mpeh/2/	htp://atrieb.dacom/mpak/sss/11/3556v/mpak/do.dacimpakepo	
Apt-Get Ubuntu 10.04 (Lucid) (64-bit)	http://adriedudeacom/mpde/ubuntu/Lid/amd64/mpde/	htp://adriedudeacom/mpale/burtu/lid/amd64/mpale/budealt	
Apt-Get Ubuntu 12.04 (Precise) (64-bit)	http://adriedudeacom/mpde/ubuntu/peise/amd64/mpde/	htp://adriedu.deacon/mpab/Lburtu/peise/amd6v/mpab/lbudett	
Apt-Get Debian (Squeeze) (64-bit)	http://adiedudeacm/mpde/ddien/sq.eeze/amd3v/mpde/	htp://advieb.deacom/mpale/db/an/sq.eee/amd/2v/mpale/db.dealt	

Impala 2.0.1

Release Date: December 2014 Status: Production

These Impala packages work with CDH 4. For the Impala bundled with CDH 5, see CDH Version and Packaging Information.

Repository Type	Location	Repo or List file
Yum RHEL 6/CentOS 6 (64-bit)	http://adrieducteacom/mpate/lechat/6/86_64/mpate/201/	htp://atrieb.deacon/mpde/ed/ed/e3/8563/mpde/dudeeimpdepo
Yum RHEL 5/CentOS 5 (64-bit)	http://adrieducbacom/mpab/lechat/5/86.64/mpab/201/	htp://atrieb.deacom/mpab/ed-at/5/2563/mpab/dudeaimpatepo
Zypper SLES 11 (64-bit)	http://adriedu.deacon/mpab/sts/11/x86_64/mpab/201/	htp://athieb.dacom/mpak/sbs/11/85/Gv/mpak/do.dacimpakepo
Apt-Get Ubuntu 10.04 (Lucid) (64-bit)	http://adniedudeacom/mpde/ubuntu/Lid/amd64/mpde/	http://adrieducleacom/mpale/Lburtu/Lid/amd5v/mpale/lbudealt
Apt-Get Ubuntu 12.04 (Precise) (64-bit)	http://adniedudeacom/mpab/ubuntu/peise/amd64/mpab/	htp://adriedu.deacom/mpab/lburtu/peise/amd7v/mpab/lbudealt
Apt-Get Debian (Squeeze) (64-bit)	http://adriedudeacom/mpde/ddien/squeee/amd64/mpde/	htp://artieb.deacon/mpab/ddian/sq.eee/and3v/mpab/db.deatt

Impala 2.0.0

Release Date: October 2014 Status: Production

These Impala packages work with CDH 4. For the Impala bundled with CDH 5, see CDH Version and Packaging Information.

Repository Type	Location	Repo or List file
Yum RHEL 6/CentOS 6 (64-bit)	http://adriedu.deacom/mpde/iechet/6/886_64/mpde/2/	htp://adriet.daacom/mpab/edrat/5/85Gv/mpab/dudaaimpakepo
Yum RHEL 5/CentOS 5 (64-bit)	http://artiedu.deacon/mpab/lechat/5/x86_64/mpab/2/	htp://adrieducterom/mpab/edrat/5/85@v/mpab/ducterimpalepo
Zypper SLES 11 (64-bit)	http://artiedudeacon/impab/sts/11/x86_64/impab/2/	htp://atrieb.deacom/mpak/sts/11/35/Gv/mpak/do.deaimpakepo
Apt-Get Ubuntu 10.04 (Lucid) (64-bit)	http://adniedudeacom/mpde/ubuntu/Lid/amd64/mpde/	htp://adriedudeacom/mpale/buntu/lid/amd54/mpale/budealt
Apt-Get Ubuntu 12.04 (Precise) (64-bit)	http://artieducteacom/mpab/ubuntu/peise/amd64/mpab/	htp://adriedu.deacom/mpab/Uburtu/peise/amd64/mpab/Ubudeatt
Apt-Get Debian (Squeeze) (64-bit)	http://artieb.deacm/mpab/datien/sq.eeze/amd6v/mpab/	htp://advieb.deacom/mpab/dbian/sq.ess/amd&/mpab/db.dealt

Impala 1.4.3

Release Date: December 2014 Status: Production

These Impala packages work with CDH 4. For the Impala bundled with CDH 5, see CDH Version and Packaging Information.

Repository Type	Location	Repo or List file
Yum RHEL 6/CentOS 6 (64-bit)	http://adrieducteacom/mpate/lechat/6/26_64/mpate/142/	htp://adriedu.deacom/mpab/edret/5/85/6v/mpab/du.dea/mpabepo
Yum RHEL 5/CentOS 5 (64-bit)	http://adriedudeacom/mpde/lechet/5/485_64/mpde/142/	htp://adriedu.deacom/mpab/edret/5/85/Gv/mpab/du.dea/mpabepo
Zypper SLES 11 (64-bit)	http://adriedu.deacom/mpze/sts/11/86.64/mpze/143/	htp://adriets.daacom/npab/sts/11/85@v/npab/sts.daeinpalepo

Cloudera Impala Version and Download Information

Repository Type	Location	Repo or List file
Apt-Get Ubuntu 10.04 (Lucid) (64-bit)	http://adriedudeacom/impale/ubuntu/Lid/amd64/impale/	http://adriedu.deacom/mpale/Lburtu/Lid/amd54/mpale/Lbudellt
Apt-Get Ubuntu 12.04 (Precise) (64-bit)	http://artierbudbacom/mpab/ubuntu/peise/amd64/mpab/	htp://adriedu.deacom/mpab/uburtu/peise/amd7v/mpab/ubudeatt
Apt-Get Debian (Squeeze) (64-bit)	http://adrieduchecom/mpsh/ddien/squeee/amd64/mpsh/	htp://arhieb.deacom/mpab/ddian/sq.eeze/amd3v/mpab/db.deatt

Impala 1.4.0

Release Date: July 2014 Status: Production

These Impala packages work with CDH 4. For the Impala bundled with CDH 5, see <u>CDH Version and Packaging Information</u>.

Repository Type	Location	Repo or List file	
Yum RHEL 6/CentOS 6 (64-bit)	http://adrieducteacom/mpate/lechat/6/86_64/mpate/140/	htp://atrieb.deacom/mpab/ed-at/5/85@v/mpab/do.deaimpabepo	
Yum RHEL 5/CentOS 5 (64-bit)	http://adriedu.deacom/mpate/lechat/5/26664/mpate/140/	htp://atrieb.deacon/mpab/ed-at/5/2563/mpab/dudaaimpakepo	
Zypper SLES 11 (64-bit)	http://adriedu.deacon/mpeb/sts/11/x86_64/mpeb/140/	htp://atriets.deacom/mpal/sts/11/35_Gv/mpal/do.deaimpalepo	
Apt-Get Ubuntu 10.04 (Lucid) (64-bit)	http://adri.edu.deacom/impele/ubuntu/Lidi/amd64/impele/	http://adriedu.deacom/mpate/lburtu/lid/amd5v/mpate/lbudeatt	
Apt-Get Ubuntu 12.04 (Precise) (64-bit)	http://adriedu.deacom/mpde/Jbuntu/peise/amd6//mpde/	htp://adriedu.deacom/mpab/lburtu/peise/amdZv/mpab/lbudeatt	
Apt-Get Debian (Squeeze) (64-bit)	http://adi.edu.deacon/mpab/dbien/sq.eeze/and5v/mpab/	htp://athieb.deacon/mpab/dt/in/sq.eeze/amdZv/mpab/db.deatr	

Impala 1.3.1

Release Date: May 2014 Status: Production

These Impala packages work with CDH 4. For the Impala bundled with CDH 5, see <u>CDH Version and Packaging Information</u>.

Repository Type	Location	Repo or List file	
Yum RHEL 6/CentOS 6 (64-bit)	http://adriedu.deacom/mpab/ledhat/6/86_64/mpab/131/	htp://adrieducteacom/mpab/edrat/5/85/Gv/mpab/ducteaimpabago	
Yum RHEL 5/CentOS 5 (64-bit)	http://adriedu.deacom/mpab/ledhat/5/86_64/mpab/131/	htp://atrieb.deacon/mpab/ed-at/5/85@v/mpab/do.dea/mpalepo	
Zypper SLES 11 (64-bit)	http://adriedu.deacon/mpze/sts/11/x86_64/mpze/131/	htp://advieto.deacom/mpate/sts/11/856v/mpate/do.deaimpatepo	
Apt-Get Ubuntu 10.04 (Lucid) (64-bit)	http://adniedudeacom/mpele/ubuntu/Lid/amd64/mpele/	http://adriedu.deacom/mpate/Lburtu/Lid/amd54/mpate/do.dealt	
Apt-Get Ubuntu 12.04 (Precise) (64-bit)	http://adriedudeacom/mpde/Lbuntu/peise/amd64/mpde/	htp://adriedu.deacom/mpab/Lburtu/peise/amd6v/mpab/lbudeltt	
Apt-Get Debian (Squeeze) (64-bit)	htp://adriedudeacm/mpab/ddien/squeee/amd6/mpab/	htp://atrieb.deacom/mpab/dbian/sq.eee/amd3v/mpab/db.deat	

Impala 1.2.4

Release Date: February 2014 Status: Production

This Impala version works with CDH 4.

Repository Type	Location	Repo or List file
Yum RHEL 6/CentOS 6 (64-bit)	http://adriedu.deacom/mpab/lechat/6/86_64/mpab/124/	htp://atrieb.deacom/mpab/ed-at/5/25/3/mpab/duda-impalepo
Yum RHEL 5/CentOS 5 (64-bit)	http://adriedu.deacom/mpab/lechat/5/26664/mpab/124/	htp://atrieb.chacm/mpab/ed-at/5/25/3/mpab/ducteaimpabepo
Zypper SLES 11 (64-bit)	http://adriedu.deacon/mpsb/sts/11/x86_64/mpsb/124/	htp://athieb.daacm/mpak/ses/11/356v/mpak/sb.daaimpakepo
Apt-Get Ubuntu 10.04 (Lucid) (64-bit)	http://adriedudeacom/mpel/ubuntu/Lid/amd5//mpel/	http://arhieb.deacom/mpae/lb.rtu/lid/amd5v/mpae/lb.deatt
Apt-Get Ubuntu 12.04 (Precise) (64-bit)	http://artierb.deacom/mpae/ubuntu/perise/amd64/mpae/	htp://adriedu.deacom/mpab/lburtu/peise/amd7v/mpab/lbudealt
Apt-Get Debian (Squeeze) (64-bit)	htp://adriedudeacm/mpab/ddien/squeee/amd64/mpab/	htp://atrieb.dacom/mpab/ddian/sq.eee/amd3/mpab/do.datr

Impala 1.2.3

Release Date: December 2013 (for CDH 4), February 2013 (for CDH 5 beta 2) Status: Production This Impala version works with CDH 4, and also comes bundled with CDH 5 beta 2.

Repository Type	Location	Repo or List file
Yum RHEL 6/CentOS 6 (64-bit)	http://adriedudeacom/mpde/lechet/6/486_64/mpde/123/	htp://atrieb.deacom/mpab/edrat/5/85/Gv/mpab/do.dea/mpabepo
Yum RHEL 5/CentOS 5 (64-bit)	http://adriedudeacom/mpde/lechet/5/86_64/mpde/123/	htp://adriet.deacom/mpab/edrat/5/85/Gv/mpab/do.deaimpalego
Zypper SLES 11 (64-bit)	http://adriedudeacon/mpeb/ses/11/x86_64/mpeb/123/	htp://atrieb.deacom/mpab/sts/11/85/6v/mpab/do.deaimpatepo
Apt-Get Ubuntu 10.04 (Lucid) (64-bit)	http://adriedudeacom/mpde/ubuntu/Lid/amd64/mpde/	htp://adriedudeacom/mpale/buntu/Lid/amd54/mpale/budealt
Apt-Get Ubuntu 12.04 (Precise) (64-bit)	http://adriedudeacom/mpde/uburtu/peise/amd64/mpde/	htp://adriedu.deacom/mpab/uburtu/peise/amd64/mpab/ubudett
Apt-Get Debian (Squeeze) (64-bit)	http://adieb.deacm/npab/ddien/sq.exe/amd6/npab/	htp://adveb.deacom/mpab/dbian/sq.ess/amd&v/mpab/db.deat

Impala 1.2.2

Release Date: December 2013 Status: Superceded by Impala 1.2.3 due to important bug fix

Repository Type	Location	Repo or List file	
Yum RHEL 6/CentOS 6 (64-bit)	http://adriedu.deacom/impab/ledhat/6/86.64/impab/122/	htp://atrieb.dacom/mpab/ed-at/5/85@v/mpab/do.da-impalepo	
Yum RHEL 5/CentOS 5 (64-bit)	http://adriedu.deacon/impab/ledhat/5/86_64/impab/122/	htp://atrieb.deacon/mpab/ed-at/5/85@v/mpab/buda-impalapo	
Zypper SLES 11 (64-bit)	http://adriedu.deacom/mpeb/sts/11/x86_64/mpeb/122/	htp://artieb.deacom/mpab/sts/11/856v/mpab/do.deaimpatepo	
Apt-Get Ubuntu 10.04 (Lucid) (64-bit)	http://adniedudeacom/mpele/ubuntu/Luid/amd64/mpele/	http://adrieducleacom/mpate/Lburtu/Lid/amd64/mpate/doucledit	
Apt-Get Ubuntu 12.04 (Precise) (64-bit)	http://adriedudeacom/mpde/ubuntu/peise/amd64/mpde/	htp://adriedu.deacom/mpab/uburtu/peise/amd6v/mpab/ubudekt	
Apt-Get Debian (Squeeze) (64-bit)	http://adriedu.deacon/impal/dation/sq.eeze/amd6v/impal/	htp://arhieb.deacom/mpal/ddian/sq.eee/amd3v/mpal/db.deat	

Cloudera Impala Version and Download Information

Impala 1.2.1

Release Date: November 2013 Status: Production

Repository Type	Location	Repo or List file
Yum RHEL 6/CentOS 6 (64-bit)	http://adrieducteacom/mpab/ledhat/6/86_64/mpab/121/	htp://adrieducterom/mpab/ed-at/5/85@v/mpab/ducterimpatero
Yum RHEL 5/CentOS 5 (64-bit)	http://adrieducbacom/mpab/ledhat/5/86_64/mpab/121/	htp://adrieb.deacom/mpab/edrat/5/85@v/mpab/do.deaimpabepo
Zypper SLES 11 (64-bit)	http://adriedu.deacon/mpab/sts/11/x86_64/mpab/121/	htp://athieb.deacom/mpak/ses/11/3556v/mpak/sb.deaimpakepo
Apt-Get Ubuntu 10.04 (Lucid) (64-bit)	http://adriedudeacom/mpale/ubuntu/Lid/amd64/mpale/	http://adrieducheacom/mpale/Lburtu/Lid/amd54/mpale/Lburbelt
Apt-Get Ubuntu 12.04 (Precise) (64-bit)	http://adriedudeacom/mpab/ubuntu/peise/amd64/mpab/	htp://adriedu.deacom/mpab/lburtu/peise/amd7v/mpab/lbudealt
Apt-Get Debian (Squeeze) (64-bit)	http://adriedu.deacom/mpab/ddien/sq.eeze/amd6v/mpab/	htp://artieb.deacom/mpab/ddian/sq.eeze/amd3v/mpab/db.deatt

Impala 1.2.0 (Beta)

Release Date: October 2013 Status: Beta, for use with CDH 5 Beta 1

CDH 5 Project	Package Version	Tarball Version	Release Notes	Changes File
Cloudera Impala	impala-1.2.0+0	(none)	<u>here</u>	<u>here</u>

Impala 1.1.1

Release Date: July 2013 Status: Production

Repository Type	Location	Repo or List file
Yum RHEL 6/CentOS 6 (64-bit)	http://adriedudeacom/mpde/lechet/6/486_64/mpde/1.11/	htp://adried.deacom/mpab/edrat/5/85/Gv/mpab/do.deaimpabepo
Yum RHEL 5/CentOS 5 (64-bit)	http://adriedudeacom/mpde/lechet/5/86_64/mpde/1.11/	htp://adrieb.deacom/mpab/edrat/5/85Gv/mpab/do.deaimpabepo
Zypper SLES 11 (64-bit)	http://adrieducteacon/mpate/sts/11/x86_64/mpate/1.1.1/	htp://adriets.deacom/npab/sts/11/85/6v/npab/do.deainpabepo
Apt-Get Ubuntu 10.04 (Lucid) (64-bit)	http://adniedudeacom/mpde/ubuntu/Lid/amd64/mpde/	htp://adriedudeacom/mpate/buntu/Lid/amd54/mpate/doudealt
Apt-Get Ubuntu 12.04 (Precise) (64-bit)	http://adrieducteacom/mpab/ubuntu/perie/amd64/mpab/	htp://adriedu.deacom/mpab/uburtu/pe ise /amd5v/mpab/du.dealt
Apt-Get Debian (Squeeze) (64-bit)	htp://adriedudeacom/mpab/ddien/squeee/amd64/mpab/	htp://atheb.deacom/mpab/dbian/sq.ese/amd3v/mpab/db.deatt

Impala 1.0.1

Release Date: June 2013 Status: Production

Repository Type	Location	Repo or List file
Yum RHEL 6/CentOS 6 (64-bit)	http://adriedu.deacon/mpde/lechet/6/86_64/mpde/101/	htp://adrieb.deacm/mpab/edrat/5/85/Gv/mpab/do.deaimpalepo
Yum RHEL 5/CentOS 5 (64-bit)	http://adriedudeacom/mpde/lechet/5/26_64/mpde/101/	htp://adriedu.deacom/mpab/edrat/5/85@v/mpab/du.dea/mpabepo

Cloudera Impala Version and Download Information

Repository Type	Location	Repo or List file
Zypper SLES 11 (64-bit)	http://adriedu.deacom/mpab/sts/11/x86_64/mpab/101/	htp://athieth.deacon/mpak/sts/11/85/Gv/mpak/th.deaimpakepo
Apt-Get Ubuntu 10.04 (Lucid) (64-bit)	http://adniedudeacom/mpde/ubuntu/Lid/amd64/mpde/	htp://adriedudeacom/mpale/Lburtu/Lid/amd5/hmpale/lbudealt
Apt-Get Ubuntu 12.04 (Precise) (64-bit)	http://adrieduchacom/mpah/ubuntu/peise/amd64/mpah/	htp://adriedu.deacom/mpale/uburtu/peise/amdZv/mpale/ubudellt
Apt-Get Debian (Squeeze) (64-bit)	http://adi.edu.deacom/mpeb/debien/sq.eeze/amd3v/mpeb/	htp://athieb.denom/mpab/ddian/sq.eee/and2v/mpab/db.dedt

Here are the categories of frequently asked questions for the Cloudera Impala product.

Trying Impala

How do I try Cloudera Impala out?

To look at the core features and functionality on Impala, the easiest way to try out Impala is to download the Cloudera QuickStart VM and start the Impala service through Cloudera Manager, then use impala-shell in a terminal window or the Impala Query UI in the Hue web interface.

To do performance testing and try out the management features for Impala on a cluster, you need to move beyond the QuickStart VM with its virtualized single-node environment. Ideally, download the Cloudera Manager software to set up the cluster, then install the Impala software through Cloudera Manager.

Does Cloudera offer a VM for demonstrating Impala?

Cloudera offers a demonstration VM called the QuickStart VM, available in VMWare, VirtualBox, and KVM formats. For more information, see the Cloudera QuickStart VM. After booting the QuickStart VM, many services are turned off by default; in the Cloudera Manager UI that appears automatically, turn on Impala and any other components that you want to try out.

Where can I find Impala documentation?

Starting with Impala 1.3.0, Impala documentation is integrated with the CDH 5 documentation, in addition to the standalone Impala documentation for use with CDH 4. For CDH 5, the core Impala developer and administrator information remains in the associated Impala documentation portion. Information about Impala release notes, installation, configuration, startup, and security is embedded in the corresponding CDH 5 guides.

- New features
- Known and fixed issues
- Incompatible changes
- Installing Impala
- Upgrading Impala
- Configuring Impala
- Starting Impala
- Security for Impala
- CDH Version and Packaging Information

Information about the latest CDH 4-compatible Impala release remains at the <u>Impala for CDH 4 Documentation</u> page.

Where can I get more information about Impala?

More product information is available here:

- O'Reilly introductory e-book: Cloudera Impala: Bringing the SQL and Hadoop Worlds Together
- O'Reilly getting started guide for developers: Getting Started with Impala: Interactive SQL for Apache Hadoop
- Blog: Cloudera Impala: Real-Time Queries in Apache Hadoop, For Real
- Webinar: Introduction to Impala
- Product website page: <u>Cloudera Enterprise RTQ</u>

To see the latest release announcements for Impala, see the <u>Cloudera Announcements</u> forum.

How can I ask guestions and provide feedback about Impala?

- Join the <u>Impala discussion forum</u> and the <u>Impala mailing list</u> to ask questions and provide feedback.
- Use the <u>Impala Jira project</u> to log bug reports and requests for features.

Where can I get sample data to try?

You can get scripts that produce data files and set up an environment for TPC-DS style benchmark tests from this Github repository. In addition to being useful for experimenting with performance, the tables are suited to experimenting with many aspects of SQL on Impala: they contain a good mixture of data types, data distributions, partitioning, and relational data suitable for join queries.

Impala System Requirements

What are the software and hardware requirements for running Impala?

For information on Impala requirements, see Cloudera Impala Requirements on page 22. Note that there is often a minimum required level of Cloudera Manager for any given Impala version.

How much memory is required?

Although Impala is not an in-memory database, when dealing with large tables and large result sets, you should expect to dedicate a substantial portion of physical memory for the impalad daemon. Recommended physical memory for an Impala node is 128 GB or higher. If practical, devote approximately 80% of physical memory to

The amount of memory required for an Impala operation depends on several factors:

- The file format of the table. Different file formats represent the same data in more or fewer data files. The compression and encoding for each file format might require a different amount of temporary memory to decompress the data for analysis.
- Whether the operation is a SELECT or an INSERT. For example, Parquet tables require relatively little memory to query, because Impala reads and decompresses data in 8 MB chunks. Inserting into a Parquet table is a more memory-intensive operation because the data for each data file (potentially hundreds of megabytes, depending on the value of the PARQUET_FILE_SIZE query option) is stored in memory until encoded, compressed, and written to disk.
- Whether the table is partitioned or not, and whether a query against a partitioned table can take advantage of partition pruning.
- Whether the final result set is sorted by the ORDER BY clause. Each Impala node scans and filters a portion of the total data, and applies the LIMIT to its own portion of the result set. In Impala 1.4.0 and higher, if the sort operation requires more memory than is available on any particular host, Impala uses a temporary disk work area to perform the sort. The intermediate result sets are all sent back to the coordinator node, which does the final sorting and then applies the LIMIT clause to the final result set.

For example, if you execute the query:

```
,_____,
select * from giant_table order by some_column limit 1000;
```

and your cluster has 50 nodes, then each of those 50 nodes will transmit a maximum of 1000 rows back to the coordinator node. The coordinator node needs enough memory to sort (LIMIT * cluster_size) rows, although in the end the final result set is at most LIMIT rows, 1000 in this case.

Likewise, if you execute the query:

```
select * from giant_table where test_val > 100 order by some_column;
```

then each node filters out a set of rows matching the WHERE conditions, sorts the results (with no size limit), and sends the sorted intermediate rows back to the coordinator node. The coordinator node might need substantial memory to sort the final result set, and so might use a temporary disk work area for that final phase of the query.

- Whether the query contains any join clauses, GROUP BY clauses, analytic functions, or DISTINCT operators. These operations all require some in-memory work areas that vary depending on the volume and distribution of data. In Impala 2.0 and later, these kinds of operations utilize temporary disk work areas if memory usage grows too large to handle. See <u>SQL Operations that Spill to Disk</u> on page 375 for details.
- The size of the result set. When intermediate results are being passed around between nodes, the amount of data depends on the number of columns returned by the query. For example, it is more memory-efficient to query only the columns that are actually needed in the result set rather than always issuing SELECT *.
- The mechanism by which work is divided for a join query. You use the COMPUTE STATS statement, and query hints in the most difficult cases, to help Impala pick the most efficient execution plan. See Performance Considerations for Join Queries on page 343 for details.

See <u>Hardware Requirements</u> on page 23 for more details and recommendations about Impala hardware prerequisites.

What processor type and speed does Cloudera recommend?

Impala makes use of SSE 4.1 instructions.

What EC2 instances are recommended for Impala?

For large storage capacity and large I/O bandwidth, consider the hs1.8xlarge and cc2.8xlarge instance types. Impala I/O patterns typically do not benefit enough from SSD storage to make up for the lower overall size. For performance and security considerations for deploying CDH and its components on AWS, see Cloudera Enterprise Reference Architecture for AWS Deployments.

Supported and Unsupported Functionality In Impala

What are the main features of Impala?

- A large set of SQL statements, including <u>SELECT</u> and <u>INSERT</u>, with <u>joins</u>, <u>Subqueries</u> on page 228, and <u>Impala Analytic Functions</u> on page 282. Highly compatible with HiveQL, and also including some vendor extensions. For more information, see <u>Impala SQL Language Reference</u> on page 109.
- Distributed, high-performance queries. See <u>Tuning Impala for Performance</u> on page 340 for information about Impala performance optimizations and tuning techniques for queries.
- Using Cloudera Manager, you can deploy and manage your Impala services. Cloudera Manager is the best way to get started with Impala on your cluster.
- Using Hue for queries.
- Appending and inserting data into tables through the <u>INSERT</u> statement. See <u>How Impala Works with Hadoop</u>
 <u>File Formats</u> on page 384 for the details about which operations are supported for which file formats.
- ODBC: Impala is certified to run against MicroStrategy and Tableau, with restrictions. For more information, see <u>Configuring Impala to Work with ODBC</u> on page 36.
- Querying data stored in HDFS and HBase in a single query. See <u>Using Impala to Query HBase Tables</u> on page 411 for details.
- Concurrent client requests. Each Impala daemon can handle multiple concurrent client requests. The effects on performance depend on your particular hardware and workload.
- Kerberos authentication. For more information, see Impala Security on page 85.

 Partitions. With Impala SQL, you can create partitioned tables with the CREATE TABLE statement, and add and drop partitions with the ALTER TABLE statement. Impala also takes advantage of the partitioning present in Hive tables. See <u>Partitioning for Impala Tables</u> on page 379 for details.

What features from relational databases or Hive are not available in Impala?

- Querying streaming data.
- Deleting individual rows. You delete data in bulk by overwriting an entire table or partition, or by dropping a
- Indexing (not currently). LZO-compressed text files can be indexed outside of Impala, as described in <u>Using</u> LZO-Compressed Text Files on page 388.
- Full text search on text fields. The Cloudera Search product is appropriate for this use case.
- Custom Hive Serializer/Deserializer classes (SerDes). Impala supports a set of common native file formats that have built-in SerDes in CDH. See How Impala Works with Hadoop File Formats on page 384 for details.
- Checkpointing within a query. That is, Impala does not save intermediate results to disk during long-running queries. Currently, Impala cancels a running query if any host on which that query is executing fails. When one or more hosts are down, Impala reroutes future queries to only use the available hosts, and Impala detects when the hosts come back up and begins using them again. Because a query can be submitted through any Impala node, there is no single point of failure. In the future, we will consider adding additional work allocation features to Impala, so that a running query would complete even in the presence of host failures.
- Encryption of data transmitted between Impala daemons.
- Hive indexes.
- Non-Hadoop data stores, such as relational databases.

For the detailed list of features that are different between Impala and HiveQL, see SQL Differences Between Impala and Hive on page 310.

Does Impala support generic JDBC?

Impala supports the HiveServer2 JDBC driver.

Is Avro supported?

Yes, Avro is supported. Impala has always been able to query Avro tables. You can use the Impala LOAD DATA statement to load existing Avro data files into a table. Starting with Impala 1.4, you can create Avro tables with Impala. Currently, you still use the INSERT statement in Hive to copy data from another table into an Avro table. See <u>Using the Avro File Format with Impala Tables</u> on page 402 for details.

How do I?

How do I prevent users from seeing the text of SQL queries?

For instructions on making the Impala log files unreadable by unprivileged users, see Securing Impala Data and Log Files on page 86.

For instructions on password-protecting the web interface to the Impala log files and other internal server information, see Securing the Impala Web User Interface on page 87.

How do I know how many Impala nodes are in my cluster?

The Impala statestore keeps track of how many impalad nodes are currently available. You can see this information through the statestore web interface. For example, at the URL

http://statestore_host:25010/metrics you might see lines like the following:

```
statestore.live-backends:3
statestore.live-backends.list:[host1:22000, host1:26000, host2:22000]
```

The number of impalad nodes is the number of list items referring to port 22000, in this case two. (Typically, this number is one less than the number reported by the statestore.live-backends line.) If an impalad node became unavailable or came back after an outage, the information reported on this page would change appropriately.

Impala Performance

Are results returned as they become available, or all at once when a query completes?

Impala streams results whenever they are available, when possible. Certain SQL operations (aggregation or ORDER BY) require all of the input to be ready before Impala can return results.

Why does my query run slowly?

There are many possible reasons why a given query could be slow. Use the following checklist to diagnose performance issues with existing queries, and to avoid such issues when writing new queries, setting up new nodes, creating new tables, or loading data.

- Immediately after the query finishes, issue a SUMMARY command in impala-shell. You can check which phases of execution took the longest, and compare estimated values for memory usage and number of rows with the actual values.
- Immediately after the guery finishes, issue a PROFILE command in impala-shell. The numbers in the BytesRead, BytesReadLocal, and BytesReadShortCircuit should be identical for a specific node. For example:

```
- BytesRead: 180.33 MB
- BytesReadLocal: 180.33 MB
- BytesReadShortCircuit: 180.33 MB
```

If BytesReadLocal is lower than BytesRead, something in your cluster is misconfigured, such as the impalad daemon not running on all the data nodes. If BytesReadShortCircuit is lower than BytesRead, short-circuit reads are not enabled properly on that node; see Post-Installation Configuration for Impala on page 33 for instructions.

- If the table was just created, or this is the first query that accessed the table after an INVALIDATE METADATA statement or after the impalad daemon was restarted, there might be a one-time delay while the metadata for the table is loaded and cached. Check whether the slowdown disappears when the query is run again. When doing performance comparisons, consider issuing a DESCRIBE table_name statement for each table first, to make sure any timings only measure the actual query time and not the one-time wait to load the table metadata.
- Is the table data in uncompressed text format? Check by issuing a DESCRIBE FORMATTED table name statement. A text table is indicated by the line:

```
InputFormat: org.apache.hadoop.mapred.TextInputFormat
```

Although uncompressed text is the default format for a CREATE TABLE statement with no STORED AS clauses, it is also the bulkiest format for disk storage and consequently usually the slowest format for queries. For data where query performance is crucial, particularly for tables that are frequently queried, consider starting

- with or converting to a compact binary file format such as Parquet, Avro, RCFile, or SequenceFile. For details, see How Impala Works with Hadoop File Formats on page 384.
- If your table has many columns, but the query refers to only a few columns, consider using the Parquet file format. Its data files are organized with a column-oriented layout that lets queries minimize the amount of I/O needed to retrieve, filter, and aggregate the values for specific columns. See Using the Parquet File Format with Impala Tables on page 392 for details.
- If your query involves any joins, are the tables in the query ordered so that the tables or subqueries are ordered with the one returning the largest number of rows on the left, followed by the smallest (most selective), the second smallest, and so on? That ordering allows Impala to optimize the way work is distributed among the nodes and how intermediate results are routed from one node to another. For example, all other things being equal, the following join order results in an efficient query:

```
select some_col from
   huge_table join big_table join small_table join medium_table
   huge_table.id = big_table.id
   and big_table.id = medium_table.id
   and medium_table.id = small_table.id;
```

See Performance Considerations for Join Queries on page 343 for performance tips for join queries.

- Also for join gueries, do you have table statistics for the table, and column statistics for the columns used in the join clauses? Column statistics let Impala better choose how to distribute the work for the various pieces of a join query. See How Impala Uses Statistics for Query Optimization on page 349 for details about gathering statistics.
- Does your table consist of many small data files? Impala works most efficiently with data files in the multi-megabyte range; Parquet, a format optimized for data warehouse-style queries, uses large files (originally 1 GB, now 256 MB in Impala 2.0 and higher) with a block size matching the file size. Use the DESCRIBE FORMATTED table_name statement in impala-shell to see where the data for a table is located, and use the hadoop fs -ls or hdfs dfs -ls Unix commands to see the files and their sizes. If you have thousands of small data files, that is a signal that you should consolidate into a smaller number of large files. Use an INSERT ... SELECT statement to copy the data to a new table, reorganizing into new data files as part of the process. Prefer to construct large data files and import them in bulk through the LOAD DATA OF CREATE EXTERNAL TABLE statements, rather than issuing many INSERT ... VALUES statements; each INSERT ... VALUES statement creates a separate tiny data file. If you have thousands of files all in the same directory, but each one is megabytes in size, consider using a partitioned table so that each partition contains a smaller number of files. See the following point for more on partitioning.
- If your data is easy to group according to time or geographic region, have you partitioned your table based on the corresponding columns such as YEAR, MONTH, and/or DAY? Partitioning a table based on certain columns allows queries that filter based on those same columns to avoid reading the data files for irrelevant years, postal codes, and so on. (Do not partition down to too fine a level; try to structure the partitions so that there is still sufficient data in each one to take advantage of the multi-megabyte HDFS block size.) See Partitioning for Impala Tables on page 379 for details.

Why does my SELECT statement fail?

When a SELECT statement fails, the cause usually falls into one of the following categories:

- A timeout because of a performance, capacity, or network issue affecting one particular node.
- Excessive memory use for a join query, resulting in automatic cancellation of the query.
- A low-level issue affecting how native code is generated on each node to handle particular WHERE clauses in the query. For example, a machine instruction could be generated that is not supported by the processor of a certain node. If the error message in the log suggests the cause was an illegal instruction, consider turning off native code generation temporarily, and trying the query again.
- Malformed input data, such as a text data file with an enormously long line, or with a delimiter that does not match the character specified in the FIELDS TERMINATED BY clause of the CREATE TABLE statement.

Why does my INSERT statement fail?

When an INSERT statement fails, it is usually the result of exceeding some limit within a Hadoop component, typically HDFS.

- An INSERT into a partitioned table can be a strenuous operation due to the possibility of opening many files and associated threads simultaneously in HDFS. Impala 1.1.1 includes some improvements to distribute the work more efficiently, so that the values for each partition are written by a single node, rather than as a separate data file from each node.
- Certain expressions in the SELECT part of the INSERT statement can complicate the execution planning and result in an inefficient INSERT operation. Try to make the column data types of the source and destination tables match up, for example by doing ALTER TABLE ... REPLACE COLUMNS on the source table if necessary. Try to avoid CASE expressions in the SELECT portion, because they make the result values harder to predict than transferring a column unchanged or passing the column through a built-in function.
- Be prepared to raise some limits in the HDFS configuration settings, either temporarily during the INSERT or permanently if you frequently run such INSERT statements as part of your ETL pipeline.
- The resource usage of an INSERT statement can vary depending on the file format of the destination table. Inserting into a Parquet table is memory-intensive, because the data for each partition is buffered in memory until it reaches 1 gigabyte, at which point the data file is written to disk. Impala can distribute the work for an INSERT more efficiently when statistics are available for the source table that is queried during the INSERT statement. See How Impala Uses Statistics for Query Optimization on page 349 for details about gathering statistics.

Does Impala performance improve as it is deployed to more hosts in a cluster in much the same way that Hadoop performance does?

Yes. Impala scales with the number of hosts. It is important to install Impala on all the data nodes in the cluster, because otherwise some of the nodes must do remote reads to retrieve data not available for local reads. Data locality is an important architectural aspect for Impala performance. See this Impala performance blog post for background. Note that this blog post refers to benchmarks with Impala 1.1.1; Impala has added even more performance features in the 1.2.x series.

Is the HDFS block size reduced to achieve faster query results?

No. Impala does not make any changes to the HDFS or HBase data sets.

The default Parquet block size is relatively large (256 MB in Impala 2.0 and later; 1 GB in earlier releases). You can control the block size when creating Parquet files using the PARQUET_FILE_SIZE query option.

Does Impala use caching?

Impala does not cache table data. It does cache some table and file metadata. Although queries might run faster on subsequent iterations because the data set was cached in the OS buffer cache, Impala does not explicitly control this.

Impala takes advantage of the HDFS caching feature in CDH 5. You can designate which tables or partitions are cached through the CACHED and UNCACHED clauses of the CREATE TABLE and ALTER TABLE statements. Impala can also take advantage of data that is pinned in the HDFS cache through the hdfscacheadmin command. See Using HDFS Caching with Impala (CDH 5.1 or higher only) on page 358 for details.

Impala Use Cases

What are good use cases for Impala as opposed to Hive or MapReduce?

Impala is well-suited to executing SQL queries for interactive exploratory analytics on large data sets. Hive and MapReduce are appropriate for very long running, batch-oriented tasks such as ETL.

Is MapReduce required for Impala? Will Impala continue to work as expected if MapReduce is stopped?

Impala does not use MapReduce at all.

Can Impala be used for complex event processing?

For example, in an industrial environment, many agents may generate large amounts of data. Can Impala be used to analyze this data, checking for notable changes in the environment?

Complex Event Processing (CEP) is usually performed by dedicated stream-processing systems. Impala is not a stream-processing system, as it most closely resembles a relational database.

Is Impala intended to handle real time gueries in low-latency applications or is it for ad hoc gueries for the purpose of data exploration?

Ad-hoc queries are the primary use case for Impala. We anticipate it being used in many other situations where low-latency is required. Whether Impala is appropriate for any particular use-case depends on the workload, data size and query volume. See Impala Benefits on page 15 for the primary benefits you can expect when using Impala.

Questions about Impala And Hive

How does Impala compare to Hive and Pig?

Impala is different from Hive and Pig because it uses its own daemons that are spread across the cluster for queries. Because Impala does not rely on MapReduce, it avoids the startup overhead of MapReduce jobs, allowing Impala to return results in real time.

Can I do transforms or add new functionality?

Impala adds support for UDFs in Impala 1.2. You can write your own functions in C++, or reuse existing Java-based Hive UDFs. The UDF support includes scalar functions and user-defined aggregate functions (UDAs). User-defined table functions (UDTFs) are not currently supported.

Impala does not currently support an extensible serialization-deserialization framework (SerDes), and so adding extra functionality to Impala is not as straightforward as for Hive or Pig.

Can any Impala query also be executed in Hive?

Yes. There are some minor differences in how some queries are handled, but Impala queries can also be completed in Hive. Impala SQL is a subset of HiveQL, with some functional limitations such as transforms. For details of the Impala SQL dialect, see SQL Statements on page 157. For the Impala built-in functions, see Built-in Functions on page 246. For the detailed list of differences between Impala and HiveQL, see SQL Differences Between Impala and Hive on page 310.

Can I use Impala to guery data already loaded into Hive and HBase?

There are no additional steps to allow Impala to query tables managed by Hive, whether they are stored in HDFS or HBase. Make sure that Impala is configured to access the Hive metastore correctly and you should be ready to go. Keep in mind that impalad, by default, runs as the impala user, so you might need to adjust some file permissions depending on how strict your permissions are currently.

See <u>Using Impala to Query HBase Tables</u> on page 411 for details about querying data in HBase.

Is Hive an Impala requirement?

The Hive metastore service is a requirement. Impala shares the same metastore database as Hive, allowing Impala and Hive to access the same tables transparently.

Hive itself is optional, and does not need to be installed on the same nodes as Impala. Currently, Impala supports a wider variety of read (query) operations than write (insert) operations; you use Hive to insert data into tables that use certain file formats. See How Impala Works with Hadoop File Formats on page 384 for details.

Impala Availability

Is Impala production ready?

Impala has finished its beta release cycle, and the 1.0, 1.1, and 1.2 GA releases are production ready. The 1.1.x series includes additional security features for authorization, an important requirement for production use in many organizations. The 1.2.x series includes important performance features, particularly for large join queries. Some Cloudera customers are already using Impala for large workloads.

The Impala 1.3.0 release is bundled with CDH 5.0.0. While most functionality with Impala 1.3 and CDH 5 is production-ready, the Llama component needed to use Impala in combination with the YARN resource manager is still in beta state.

How do I configure Hadoop high availability (HA) for Impala?

You can set up a proxy server to relay requests back and forth to the Impala servers, for load balancing and high availability. See <u>Using Impala through a Proxy for High Availability</u> on page 80 for details.

You can enable HDFS HA for the Hive metastore. See the <u>CDH4 High Availability Guide</u> <u>CDH5 High Availability</u> Guide for details.

What happens if there is an error in Impala?

There is not a single point of failure in Impala. All Impala daemons are fully able to handle incoming queries. If a machine fails however, all queries with fragments running on that machine will fail. Because queries are expected to return quickly, you can just rerun the query if there is a failure. See Impala Concepts and Architecture on page 17 for details about the Impala architecture.

The longer answer: Impala must be able to connect to the Hive metastore. Impala aggressively caches metadata so the metastore host should have minimal load. Impala relies on the HDFS NameNode, and, in CDH4, you can configure HA for HDFS. Impala also has centralized services, known as the <u>statestore</u> and <u>catalog</u> services, that run on one host only. Impala continues to execute queries if the statestore host is down, but it will not get state updates. For example, if a host is added to the cluster while the statestore host is down, the existing instances of <u>impalad</u> running on the other hosts will not find out about this new host. Once the statestore process is restarted, all the information it serves is automatically reconstructed from all running Impala daemons.

What is the maximum number of rows in a table?

There is no defined maximum. Some customers have used Impala to query a table with over a trillion rows.

Can Impala and MapReduce jobs run on the same cluster without resource contention?

Yes. See <u>Controlling Impala Resource Usage</u> on page 358 for how to control Impala resource usage using the Linux cgroup mechanism, and <u>Integrated Resource Management with YARN</u> on page 76 for how to use Impala with the YARN resource management framework. Impala is designed to run on the DataNode hosts. Any contention depends mostly on the cluster setup and workload.

For a detailed example of configuring a cluster to share resources between Impala queries and MapReduce jobs, see <u>Setting up a Multi-tenant Cluster for Impala and MapReduce</u>

Impala Internals

On which hosts does Impala run?

Cloudera strongly recommends running the impalad daemon on each DataNode for good performance. Although this topology is not a hard requirement, if there are data blocks with no Impala daemons running on any of the hosts containing replicas of those blocks, queries involving that data could be very inefficient. In that case, the data must be transmitted from one host to another for processing by "remote reads", a condition Impala normally tries to avoid. See Impala Concepts and Architecture on page 17 for details about the Impala architecture. Impala schedules query fragments on all hosts holding data relevant to the query, if possible.

How are joins performed in Impala?

By default, Impala automatically determines the most efficient order in which to join tables using a cost-based method, based on their overall size and number of rows. (This is a new feature in Impala 1.2.2 and higher.) The COMPUTE STATS statement gathers information about each table that is crucial for efficient join performance. Impala chooses between two techniques for join queries, known as "broadcast joins" and "partitioned joins". See Joins on page 213 for syntax details and Performance Considerations for Join Queries on page 343 for performance considerations.

How does Impala process join queries for large tables?

Impala utilizes multiple strategies to allow joins between tables and result sets of various sizes. When joining a large table with a small one, the data from the small table is transmitted to each node for intermediate processing. When joining two large tables, the data from one of the tables is divided into pieces, and each node processes only selected pieces. See Joins on page 213 for details about join processing, Performance Considerations for Join Queries on page 343 for performance considerations, and Hints on page 232 for how to fine-tune the join strategy.

What is Impala's aggregation strategy?

Impala currently only supports in-memory hash aggregation.

How is Impala metadata managed?

Impala uses two pieces of metadata: the catalog information from the Hive metastore and the file metadata from the NameNode. Currently, this metadata is lazily populated and cached when an impalad needs it to plan a query.

The REFRESH statement updates the metadata for a particular table after loading new data through Hive. The INVALIDATE METADATA Statement on page 203 statement refreshes all metadata, so that Impala recognizes new tables or other DDL and DML changes performed through Hive.

In Impala 1.2 and higher, a dedicated catalogd daemon broadcasts metadata changes due to Impala DDL or DML statements to all nodes, reducing or eliminating the need to use the REFRESH and INVALIDATE METADATA statements.

What load do concurrent queries produce on the NameNode?

The load Impala generates is very similar to MapReduce. Impala contacts the NameNode during the planning phase to get the file metadata (this is only run on the host the query was sent to). Every impalad will read files as part of normal processing of the query.

How does Impala achieve its performance improvements?

These are the main factors in the performance of Impala versus that of other Hadoop components and related technologies.

Impala avoids MapReduce. While MapReduce is a great general parallel processing model with many benefits, it is not designed to execute SQL. Impala avoids the inefficiencies of MapReduce in these ways:

- Impala does not materialize intermediate results to disk. SQL queries often map to multiple MapReduce jobs with all intermediate data sets written to disk.
- Impala avoids MapReduce start-up time. For interactive queries, the MapReduce start-up time becomes very noticeable. Impala runs as a service and essentially has no start-up time.
- Impala can more naturally disperse query plans instead of having to fit them into a pipeline of map and reduce jobs. This enables Impala to parallelize multiple stages of a query and avoid overheads such as sort and shuffle when unnecessary.

Impala uses a more efficient execution engine by taking advantage of modern hardware and technologies:

- Impala generates runtime code. Impala uses LLVM to generate assembly code for the query that is being run. Individual queries do not have to pay the overhead of running on a system that needs to be able to execute arbitrary queries.
- Impala uses available hardware instructions when possible. Impala uses the supplemental SSE3 (SSSE3) instructions which can offer tremendous speedups in some cases.
- Impala uses better I/O scheduling. Impala is aware of the disk location of blocks and is able to schedule the order to process blocks to keep all disks busy.
- Impala is designed for performance. A lot of time has been spent in designing Impala with sound performance-oriented fundamentals, such as tight inner loops, inlined function calls, minimal branching, better use of cache, and minimal memory usage.

What happens when the data set exceeds available memory?

Currently, if the memory required to process intermediate results on a node exceeds the amount available to Impala on that node, the query is cancelled. You can adjust the memory available to Impala on each node, and you can fine-tune the join strategy to reduce the memory required for the biggest queries. We do plan on supporting external joins and sorting in the future.

Keep in mind though that the memory usage is not directly based on the input data set size. For aggregations, the memory usage is the number of rows *after* grouping. For joins, the memory usage is the combined size of the tables *excluding* the biggest table, and Impala can use join strategies that divide up large joined tables among the various nodes rather than transmitting the entire table to each node.

What are the most memory-intensive operations?

If a query fails with an error indicating "memory limit exceeded", you might suspect a memory leak. The problem could actually be a query that is structured in a way that causes Impala to allocate more memory than you expect, exceeded the memory allocated for Impala on a particular node. Some examples of query or table structures that are especially memory-intensive are:

- INSERT statements using dynamic partitioning, into a table with many different partitions. (Particularly for tables using Parquet format, where the data for each partition is held in memory until it reaches the full block size in size before it is written to disk.) Consider breaking up such operations into several different INSERT statements, for example to load data one year at a time rather than for all years at once.
- GROUP BY on a unique or high-cardinality column. Impala allocates some handler structures for each different value in a GROUP BY query. Having millions of different GROUP BY values could exceed the memory limit.
- Queries involving very wide tables, with thousands of columns, particularly with many STRING columns.
 Because Impala allows a STRING value to be up to 32 KB, the intermediate results during such queries could require substantial memory allocation.

When does Impala hold on to or return memory?

Impala allocates memory using <u>tcmalloc</u>, a memory allocator that is optimized for high concurrency. Once Impala allocates memory, it keeps that memory reserved to use for future queries. Thus, it is normal for Impala to show high memory usage when idle. If Impala detects that it is about to exceed its memory limit (defined by

the -mem_limit startup option or the MEM_LIMIT query option), it deallocates memory not needed by the current queries.

When issuing queries through the JDBC or ODBC interfaces, make sure to call the appropriate close method afterwards. Otherwise, some memory associated with the query is not freed.

SOL

Is there an UPDATE statement?

Impala does not currently have an UPDATE statement, which would typically be used to change a single row, a small group of rows, or a specific column. The HDFS-based files used by typical Impala queries are optimized for bulk operations across many megabytes of data at a time, making traditional UPDATE operations inefficient or impractical.

You can use the following techniques to achieve the same goals as the familiar UPDATE statement, in a way that preserves efficient file layouts for subsequent queries:

- Replace the entire contents of a table or partition with updated data that you have already staged in a different location, either using INSERT OVERWRITE, LOAD DATA, or manual HDFS file operations followed by a REFRESH statement for the table. Optionally, you can use built-in functions and expressions in the INSERT statement to transform the copied data in the same way you would normally do in an UPDATE statement, for example to turn a mixed-case string into all uppercase or all lowercase.
- To update a single row, use an HBase table, and issue an INSERT ... VALUES statement using the same key as the original row. Because HBase handles duplicate keys by only returning the latest row with a particular key value, the newly inserted row effectively hides the previous one.

Can Impala do user-defined functions (UDFs)?

Impala 1.2 and higher does support UDFs and UDAs. You can either write native Impala UDFs and UDAs in C++, or reuse UDFs (but not UDAs) originally written in Java for use with Hive. See Impala User-Defined Functions (UDFs) on page 295 for details.

Why do I have to use REFRESH and INVALIDATE METADATA, what do they do?

In Impala 1.2 and higher, there is much less need to use the REFRESH and INVALIDATE METADATA statements:

- The new impala-catalog service, represented by the catalogd daemon, broadcasts the results of Impala DDL statements to all Impala nodes. Thus, if you do a CREATE TABLE statement in Impala while connected to one node, you do not need to do INVALIDATE METADATA before issuing queries through a different node.
- The catalog service only recognizes changes made through Impala, so you must still issue a REFRESH statement if you load data through Hive or by manipulating files in HDFS, and you must issue an INVALIDATE METADATA statement if you create a table, alter a table, add or drop partitions, or do other DDL statements in Hive.
- Because the catalog service broadcasts the results of REFRESH and INVALIDATE METADATA statements to all nodes, in the cases where you do still need to issue those statements, you can do that on a single node rather than on every node, and the changes will be automatically recognized across the cluster, making it more convenient to load balance by issuing queries through arbitrary Impala nodes rather than always using the same coordinator node.

Why is space not freed up when I issue DROP TABLE?

Impala deletes data files when you issue a DROP TABLE on an internal table, but not an external one. By default, the CREATE TABLE statement creates internal tables, where the files are managed by Impala. An external table is created with a CREATE EXTERNAL TABLE statement, where the files reside in a location outside the control of Impala. Issue a DESCRIBE FORMATTED statement to check whether a table is internal or external. The keyword MANAGED_TABLE indicates an internal table, from which Impala can delete the data files. The keyword

EXTERNAL TABLE indicates an external table, where Impala will leave the data files untouched when you drop the table.

Even when you drop an internal table and the files are removed from their original location, you might not get the hard drive space back immediately. By default, files that are deleted in HDFS go into a special trashcan directory, from which they are purged after a period of time (by default, 6 hours). For background information on the trashcan mechanism, see

http://archive.cloudera.com/cdh4/cdh/4/hadoop/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html. For information on purging files from the trashcan, see

http://archive.cloudera.com/cdh4/cdh/4/hadoop/hadoop-project-dist/hadoop-common/FileSystemShell.html.

When Impala deletes files and they are moved to the HDFS trashcan, they go into an HDFS directory owned by the impala user. If the impala user does not have an HDFS home directory where a trashcan can be created, the files are not deleted or moved, as a safety measure. If you issue a DROP TABLE statement and find that the table data files are left in their original location, create an HDFS directory /user/impala, owned and writeable by the impala user. For example, you might find that /user/impala is owned by the hdfs user, in which case you would switch to the hdfs user and issue a command such as:

```
hdfs dfs -chown -R impala /user/impala
```

Is there a DUAL table?

You might be used to running queries against a single-row table named DUAL to try out expressions, built-in functions, and UDFs. Impala does not have a DUAL table. To achieve the same result, you can issue a SELECT statement without any table name:

```
select 2+2;
select substr('hello',2,1);
select pow(10,6);
```

Partitioned Tables

How do I load a big CSV file into a partitioned table?

To load a data file into a partitioned table, when the data file includes fields like year, month, and so on that correspond to the partition key columns, use a two-stage process. First, use the LOAD DATA OF CREATE EXTERNAL TABLE statement to bring the data into an unpartitioned text table. Then use an INSERT ... SELECT statement to copy the data from the unpartitioned table to a partitioned one. Include a PARTITION clause in the INSERT statement to specify the partition key columns. The INSERT operation splits up the data into separate data files for each partition. For examples, see Partitioning for Impala Tables on page 379. For details about loading data into partitioned Parquet tables, a popular choice for high-volume data, see Loading Data into Parquet Tables on page 393.

Can I do INSERT ... SELECT * into a partitioned table?

When you use the INSERT ... SELECT * syntax to copy data into a partitioned table, the columns corresponding to the partition key columns must appear last in the columns returned by the SELECT *. You can create the table with the partition key columns defined last. Or, you can use the CREATE VIEW statement to create a view that reorders the columns: put the partition key columns last, then do the INSERT ... SELECT * from the view.

HBase

What kinds of Impala queries or data are best suited for HBase?

HBase tables are ideal for queries where normally you would use a key-value store. That is, where you retrieve a single row or a few rows, by testing a special unique key column using the = or IN operators.

HBase tables are not suitable for queries that produce large result sets with thousands of rows. HBase tables are also not suitable for queries that perform full table scans because the WHERE clause does not request specific values from the unique key column.

Use HBase tables for data that is inserted one row or a few rows at a time, such as by the INSERT ... VALUES syntax. Loading data piecemeal like this into an HDFS-backed table produces many tiny files, which is a very inefficient layout for HDFS data files.

If the lack of an UPDATE statement in Impala is a problem for you, you can simulate single-row updates by doing an INSERT ... VALUES statement using an existing value for the key column. The old row value is hidden; only the new row value is seen by gueries.

HBase tables are often wide (containing many columns) and sparse (with most column values NULL). For example, you might record hundreds of different data points for each user of an online service, such as whether the user had registered for an online game or enabled particular account features. With Impala and HBase, you could look up all the information for a specific customer efficiently in a single query. For any given customer, most of these columns might be NULL, because a typical customer might not make use of most features of an online service.

These release notes provide information on the new features and known issues and limitations for Impala versions up to Impala 2.1.x. For users upgrading from earlier Impala releases, or using Impala in combination with specific versions of other Cloudera software, Incompatible Changes in Impala on page 469 lists any changes to file formats, SQL syntax, or software dependencies to take into account.

Cloudera Impala Release Notes

These release notes provide information on the new features and known issues and limitations for Impala versions up to Impala 2.1.x. For users upgrading from earlier Impala releases, or using Impala in combination with specific versions of other Cloudera software, Incompatible Changes in Impala on page 469 lists any changes to file formats, SQL syntax, or software dependencies to take into account.

New Features in Impala

This release of Impala contains the following changes and enhancements from previous releases.

New Features in Impala Version 2.1.4 / CDH 5.3.4

No new features. This point release is exclusively a bug fix release. Because CDH 5.3.5 does not include any code changes for Impala, Impala 2.1.4 is included with both CDH 5.3.4 and 5.3.5.

Note: This Impala maintenance release is only available as part of CDH 5, not under CDH 4.

New Features in Impala Version 2.1.3 / CDH 5.3.3

No new features. This point release is exclusively a bug fix release.

Note: Impala 2.1.3 is available as part of CDH 5.3.3, not under CDH 4.

New Features in Impala Version 2.1.2 / CDH 5.3.2

No new features. This point release is exclusively a bug fix release.

Note: Impala 2.1.2 is available as part of CDH 5.3.2, not under CDH 4.

New Features in Impala Version 2.1.1 / CDH 5.3.1

No new features. This point release is exclusively a bug fix release.

New Features in Impala Version 2.1.0 / CDH 5.3.0

This release contains the following enhancements to query performance and system scalability:

 Impala can now collect statistics for individual partitions in a partitioned table, rather than processing the entire table for each COMPUTE STATS statement. This feature is known as incremental statistics, and is controlled by the COMPUTE INCREMENTAL STATS syntax. (You can still use the original COMPUTE STATS statement for nonpartitioned tables or partitioned tables that are unchanging or whose contents are entirely replaced all at once.) See COMPUTE STATS Statement on page 164 and How Impala Uses Statistics for Query Optimization on page 349 for details.

- Optimization for small queries lets Impala process queries that process very few rows without the unnecessary overhead of parallelizing and generating native code. Reducing this overhead lets Impala clear small queries quickly, keeping YARN resources and admission control slots available for data-intensive queries. The number of rows considered to be a "small" query is controlled by the EXEC_SINGLE_NODE_ROWS_THRESHOLD query option. See EXEC_SINGLE_NODE_ROWS_THRESHOLD Query Option on page 328 for details.
- An enhancement to the statestore component lets it transmit heartbeat information independently of broadcasting metadata updates. This optimization improves reliability of health checking on large clusters with many tables and partitions.
- The memory requirement for querying gzip-compressed text is reduced. Now Impala decompresses the data as it is read, rather than reading the entire gzipped file and decompressing it in memory.

New Features in Impala Version 2.0.4 / CDH 5.2.5

No new features. This point release is exclusively a bug fix release.

Note: Impala 2.0.4 is available as part of CDH 5.2.5, not under CDH 4.

New Features in Impala Version 2.0.3 / CDH 5.2.4

No new features. This point release is exclusively a bug fix release.

Note: Impala 2.0.3 is available as part of CDH 5.2.4, not under CDH 4.

New Features in Impala Version 2.0.2 / CDH 5.2.3

No new features. This point release is exclusively a bug fix release.

Note: Impala 2.0.2 is available as part of CDH 5.2.3, not under CDH 4.

New Features in Impala Version 2.0.1 / CDH 5.2.1

No new features. This point release is exclusively a bug fix release.

New Features in Impala Version 2.0.0 / CDH 5.2.0

The following are the major new features in Impala 2.0. This major release, available both with CDH 5.2 and for CDH 4, contains improvements to performance, scalability, security, and SQL syntax.

- Queries with joins or aggregation functions involving high volumes of data can now use temporary work areas on disk, reducing the chance of failure due to out-of-memory errors. When the required memory for the intermediate result set exceeds the amount available on a particular node, the query automatically uses a temporary work area on disk. This "spill to disk" mechanism is similar to the ORDER BY improvement from Impala 1.4. For details, see <u>SQL Operations that Spill to Disk</u> on page 375.
- Subquery enhancements:
 - Subqueries are now allowed in the WHERE clause, for example with the IN operator.
 - The EXISTS and NOT EXISTS operators are available. They are always used in conjunction with subqueries.
 - The IN and NOT IN gueries can now operate on the result set from a subguery, not just a hardcoded list of values.
 - Uncorrelated subqueries let you compare against one or more values for equality, IN, and EXISTS comparisons. For example, you might use where clauses such as where column = (SELECT MAX(some_other_column FROM table) Of WHERE column IN (SELECT some_other_column FROM table WHERE conditions).

- Correlated subqueries let you cross-reference values from the outer query block and the subquery.
- Scalar subqueries let you substitute the result of single-value aggregate functions such as MAX(),MIN(), COUNT(), or AVG(), where you would normally use a numeric value in a WHERE clause.

For details about subqueries, see <u>Subqueries</u> on page 228 For information about new and improved operators, see <u>EXISTS Operator</u> on page 139 and <u>IN Operator</u> on page 142.

- Analytic functions such as RANK(), LAG(), LEAD(), and FIRST_VALUE() let you analyze sequences of rows with flexible ordering and grouping. Existing aggregate functions such as MAX(), SUM(), and COUNT() can also be used in an analytic context. See Impala Analytic Functions on page 282 for details. See Impala Aggregate Functions on page 271 for enhancements to existing aggregate functions.
- New data types provide greater compatibility with source code from traditional database systems:
 - VARCHAR is like the STRING data type, but with a maximum length. See <u>VARCHAR Data Type</u> (CDH 5.2 or <u>higher only</u>) on page 131 for details.
 - CHAR is like the STRING data type, but with a precise length. Short values are padded with spaces on the right. See CHAR Data Type (CDH 5.2 or higher only) on page 112 for details.
- Security enhancements:
 - Formerly, Impala was restricted to using either Kerberos or LDAP / Active Directory authentication within
 a cluster. Now, Impala can freely accept either kind of authentication request, allowing you to set up some
 hosts with Kerberos authentication and others with LDAP or Active Directory. See <u>Using Multiple</u>
 Authentication Methods with Impala on page 106 for details.
 - GRANT statement. See GRANT Statement (CDH 5.2 or higher only) on page 195 for details.
 - REVOKE statement. See <u>REVOKE Statement (CDH 5.2 or higher only)</u> on page 211 for details.
 - CREATE ROLE statement. See <u>CREATE ROLE Statement (CDH 5.2 or higher only)</u> on page 173 for details.
 - DROP ROLE statement. See <u>DROP ROLE Statement (CDH 5.2 or higher only)</u> on page 187 for details.
 - SHOW ROLES and SHOW ROLE GRANT statements. See **SHOW Statement** on page 235 for details.
 - To complement the HDFS encryption feature, a new Impala configuration option, --disk_spill_encryption secures sensitive data from being observed or tampered with when temporarily stored on disk.

The new security-related SQL statements work along with the Sentry authorization framework. See <u>Enabling Sentry Authorization for Impala</u> on page 89 for details.

- Impala can now read compressed text files compressed by gzip, bzip, or Snappy. These files do not require any special table settings to work in an Impala text table. Impala recognizes the compression type automatically based on file extensions of .gz, .bz2, and .snappy respectively. These types of compressed text files are intended for convenience with existing ETL pipelines. Their non-splittable nature means they are not optimal for high-performance parallel queries. See Using gzip, or Snappy-Compressed Text Files on page 391 for details.
- Query hints can now use comment notation, /* +hint_name */ or -- +hint_name, at the same places in the query where the hints enclosed by [] are recognized. This enhancement makes it easier to reuse Impala queries on other database systems. See Hints on page 232 for details.
- A new query option, <code>QUERY_TIMEOUT_s</code>, lets you specify a timeout period in seconds for individual queries.

The working of the <code>--idle_query_timeout</code> configuration option is extended. If no <code>QUERY_OPTION_S</code> query option is in effect, <code>--idle_query_timeout</code> works the same as before, setting the timeout interval. When the <code>QUERY_OPTION_S</code> query option is specified, its maximum value is capped by the value of the <code>--idle_query_timeout</code> option.

That is, the system administrator sets the default and maximum timeout through the --idle_query_timeout startup option, and then individual users or applications can set a lower timeout value if desired through the QUERY_TIMEOUT_S query option. See Setting Timeout Periods for Daemons, Queries, and Sessions on page 79 and QUERY_TIMEOUT_S Query Option on page 337 for details.

- New functions VAR_SAMP() and VAR_POP() are aliases for the existing VARIANCE_SAMP() and VARIANCE POP() functions.
- A new date and time function, DATE_PART(), provides similar functionality to EXTRACT(). You can also call the EXTRACT() function using the SQL-99 syntax, EXTRACT(unit FROM timestamp). These enhancements simplify the porting process for date-related code from other systems. See Impala Date and Time Functions on page 256 for details.
- New approximation features provide a fast way to get results when absolute precision is not required:
 - The APPX_COUNT_DISTINCT query option lets Impala rewrite COUNT(DISTINCT) calls to use NDV() instead, which speeds up the operation and allows multiple COUNT(DISTINCT) operations in a single query. See APPX_COUNT_DISTINCT Query Option on page 326 for details.

The APPX_MEDIAN() aggregate function produces an estimate for the median value of a column by using sampling. See APPX MEDIAN Function on page 271 for details.

- Impala now supports a DECODE() function. This function works as a shorthand for a CASE() expression, and improves compatibility with SQL code containing vendor extensions. See Impala Conditional Functions on page 262 for details.
- The stddev(), stddev_pop(), stddev_samp(), variance(), variance_pop(), variance_samp(), and NDV() aggregate functions now all return DOUBLE results rather than STRING. Formerly, you were required to CAST() the result to a numeric type before using it in arithmetic operations.
- The default settings for Parquet block size, and the associated PARQUET_FILE_SIZE query option, are changed. Now, Impala writes Parquet files with a size of 256 MB and an HDFS block size of 256 MB. Previously, Impala attempted to write Parquet files with a size of 1 GB and an HDFS block size of 1 GB. In practice, Impala used a conservative estimate of the disk space needed for each Parquet block, leading to files that were typically 512 MB anyway. Thus, this change will make the file size more accurate if you specify a value for the PARQUET FILE SIZE query option. It also reduces the amount of memory reserved during INSERT into Parquet tables, potentially avoiding out-of-memory errors and improving scalability when inserting data into Parquet tables.
- Anti-joins are now supported, expressed using the LEFT ANTI JOIN and RIGHT ANTI JOIN clauses. These clauses returns results from one table that have no match in the other table. You might use this type of join in the same sorts of use cases as the NOT EXISTS and NOT IN operators. See Joins on page 213 for details.
- The SET command in impala-shell has been promoted to a real SQL statement. You can now set query options such as PARQUET FILE SIZE, MEM LIMIT, and SYNC DDL within JDBC, ODBC, or any other kind of application that submits SQL without going through the impala-shell interpreter. See SET Statement on page 234 for details.
- The impala-shell interpreter now reads settings from an optional configuration file, named \$HOME / . impalarc by default. See impala-shell Configuration Options on page 318 for details.
- The library used for regular expression parsing has changed from Boost to Google RE2. This implementation change adds support for non-greedy matches using the . *? notation. This and other changes in the way regular expressions are interpreted means you might need to re-test queries that use functions such as regexp_extract() or regexp_replace(), or operators such as REGEXP or RLIKE. See Incompatible Changes in Impala on page 469 for those details.

New Features in Impala Version 1.4.4 / CDH 5.1.5

No new features. This point release is exclusively a bug fix release.

Note: Impala 1.4.4 is available as part of CDH 5.1.5, not under CDH 4.

New Features in Impala Version 1.4.3 / CDH 5.1.4

No new features. This point release is exclusively a bug fix release for an SSL security issue.

Note: Impala 1.4.3 is available as part of CDH 5.1.4, and under CDH 4.

New Features in Impala Version 1.4.2 / CDH 5.1.3

Impala 1.4.2 is purely a bug-fix release. It does not include any new features.

• Note: Impala 1.4.2 is only available as part of CDH 5.1.3, not under CDH 4.

New Features in Impala Version 1.4.1 / CDH 5.1.2

Impala 1.4.1 is purely a bug-fix release. It does not include any new features.

New Features in Impala Version 1.4.0 / CDH 5.1.0

- The DECIMAL data type lets you store fixed-precision values, for working with currency or other fractional values where it is important to represent values exactly and avoid rounding errors. This feature includes enhancements to built-in functions, numeric literals, and arithmetic expressions.
- On CDH 5, Impala can take advantage of the HDFS caching feature to "pin" entire tables or individual partitions in memory, to speed up queries on frequently accessed data and reduce the CPU overhead of memory-to-memory copying. When HDFS files are cached in memory, Impala can read the cached data without any disk reads, and without making an additional copy of the data in memory. Other Hadoop components that read the same data files also experience a performance benefit.
- Impala can now use Sentry-based authorization based either on the original policy file, or on rules defined by GRANT and REVOKE statements issued through Hive.
- For interoperability with Parquet files created through other Hadoop components, such as Pig or MapReduce jobs, you can create an Impala table that automatically sets up the column definitions based on the layout of an existing Parquet data file.
- ORDER BY queries no longer require a LIMIT clause. If the size of the result set to be sorted exceeds the memory available to Impala, Impala uses a temporary work space on disk to perform the sort operation.
- LDAP connections can be secured through either SSL or TLS.
- The following new built-in scalar and aggregate functions are available:
 - A new built-in function, EXTRACT(), returns one date or time field from a TIMESTAMP value.
 - A new built-in function, TRUNC(), truncates date/time values to a particular granularity, such as year, month, day, hour, and so on.
 - ADD_MONTHS() built-in function, an alias for the existing MONTHS_ADD() function.
 - A new built-in function, ROUND(), rounds DECIMAL values to a specified number of fractional digits.
 - Several built-in aggregate functions for computing properties for statistical distributions: STDDEV(),
 STDDEV_SAMP(), STDDEV_POP(), VARIANCE(), VARIANCE_SAMP(), and VARIANCE_POP().
 - Several new built-in functions, such as MAX_INT(), MIN_SMALLINT(), and so on, let you conveniently
 check whether data values are in an expected range. You might be able to switch a column to a smaller
 type, saving memory during processing.
 - New built-in functions, IS_INF() and IS_NAN(), check for the special values infinity and "not a number".
 These values could be specified as inf or nan in text data files, or be produced by certain arithmetic expressions.

- The SHOW PARTITIONS statement displays information about the structure of a partitioned table.
- New configuration options for the impalad daemon let you specify initial memory usage for all queries. The initial resource requests handled by Llama and YARN can be expanded later if needed, avoiding unnecessary over-allocation and reducing the chance of out-of-memory conditions.
- Impala can take advantage of the Llama high availability feature in CDH 5.1, for improved reliability of resource management through YARN.
- The Impala CREATE TABLE statement now has a STORED AS AVRO clause, allowing you to create Avro tables through Impala.
- New impalad configuration options let you fine-tune the calculations Impala makes to estimate resource requirements for each query. These options can help avoid problems due to overconsumption due to too-low estimates, or underutilization due to too-high estimates.
- A new SUMMARY command in the impala-shell interpreter provides a high-level summary of the work performed at each stage of the explain plan. The summary is also included in output from the PROFILE command.
- Performance improvements for the COMPUTE STATS statement:
 - The NDV function is speeded up through native code generation.
 - Because the NULL count is not currently used by the Impala query planner, in Impala 1.4.0 and higher, COMPUTE STATS does not count the NULL values for each column. (The #Nulls field of the stats table is left as -1, signifying that the value is unknown.)
- Performance improvements for partition pruning. This feature reduces the time spent in query planning, for partitioned tables with thousands of partitions. Previously, Impala typically queried tables with up to approximately 3000 partitions. With the performance improvement in partition pruning, now Impala can comfortably handle tables with tens of thousands of partitions.
- The documentation provides additional guidance for planning tasks.
- The impala-shell interpreter now supports UTF-8 characters for input and output. You can control whether impala-shell ignores invalid Unicode code points through the --strict_unicode option. (Although this option is removed in Impala 2.0.)

New Features in Impala Version 1.3.3 / CDH 5.0.5

No new features. This point release is exclusively a bug fix release for an SSL security issue.

Note: Impala 1.3.3 is only available as part of CDH 5.0.5, not under CDH 4.

New Features in Impala Version 1.3.2 / CDH 5.0.4

No new features. This point release is exclusively a bug fix release for the IMPALA-1019 issue related to HDFS caching.

Note: Impala 1.3.2 is only available as part of CDH 5.0.4, not under CDH 4.

New Features in Impala Version 1.3.1 / CDH 5.0.3

This point release is primarily a vehicle to deliver bug fixes. Any new features are minor changes resulting from fixes for performance, reliability, or usability issues.

Because 1.3.1 is the first 1.3.x release for CDH 4, if you are on CDH 4, also consult New Features in Impala Version 1.3.0 / CDH 5.0.0 on page 460 for more features that are new to you.

Note:

- The Impala 1.3.1 release is available for both CDH 4 and CDH 5. This is the first release in the 1.3.x series for CDH 4.
- A new impalad startup option, --insert_inherit_permissions, causes Impala INSERT statements to create each new partition with the same HDFS permissions as its parent directory. By default, INSERT statements create directories for new partitions using default HDFS permissions. See INSERT Statement on page 196 for examples of INSERT statements for partitioned tables.
- The SHOW FUNCTIONS statement now displays the return type of each function, in addition to the types of its arguments. See SHOW Statement on page 235 for examples.
- You can now specify the clause FIELDS TERMINATED BY '\0' with a CREATE TABLE statement to use text data files that use ASCII 0 (nul) characters as a delimiter. See <u>Using Text Data Files with Impala Tables</u> on page 385 for details.
- In Impala 1.3.1 and higher, the REGEXP and RLIKE operators now match a regular expression string that occurs anywhere inside the target string, the same as if the regular expression was enclosed on each side by .*. See REGEXP Operator on page 147 for examples. Previously, these operators only succeeded when the regular expression matched the entire target string. This change improves compatibility with the regular expression support for popular database systems. There is no change to the behavior of the regexp_extract() and regexp_replace()) built-in functions.

New Features in Impala Version 1.3.0 / CDH 5.0.0

Note:

- The Impala 1.3.1 release is available for both CDH 4 and CDH 5. This is the first release in the 1.3.x series for CDH 4.
- The admission control feature lets you control and prioritize the volume and resource consumption of concurrent queries. This mechanism reduces spikes in resource usage, helping Impala to run alongside other kinds of workloads on a busy cluster. It also provides more user-friendly conflict resolution when multiple memory-intensive queries are submitted concurrently, avoiding resource contention that formerly resulted in out-of-memory errors. See Admission Control and Query Queuing on page 67 for details.
- Enhanced EXPLAIN plans provide more detail in an easier-to-read format. Now there are four levels of verbosity: the EXPLAIN_LEVEL option can be set from 0 (most concise) to 3 (most verbose). See <u>EXPLAIN Statement</u> on page 192 for syntax and <u>Understanding Impala Query Performance EXPLAIN Plans and Query Profiles on page 364 for usage information.</u>
- The TIMESTAMP data type accepts more kinds of input string formats through the UNIX_TIMESTAMP function, and produces more varieties of string formats through the FROM_UNIXTIME function. The documentation now also lists more functions for date arithmetic, used for adding and subtracting INTERVAL expressions from TIMESTAMP values. See Imput Imput Imput
- New conditional functions, NULLIF(), NULLIFZERO(), and ZEROIFNULL(), simplify porting SQL containing vendor extensions to Impala. See Impala Conditional Functions on page 262 for details.
- New utility function, CURRENT_DATABASE (). See Impala Miscellaneous Functions on page 270 for details.
- Integration with the YARN resource management framework. Only available in combination with CDH 5. This feature makes use of the underlying YARN service, plus an additional service (Llama) that coordinates requests to YARN for Impala resources, so that the Impala query only proceeds when all requested resources are available. See Integrated Resource Management with YARN on page 76 for full details.

On the Impala side, this feature involves some new startup options for the impalad daemon:

- -enable_rm
- -llama_host
- -llama_port
- llama_callback_port
- cgroup_hierarchy_path

For details of these startup options, see Modifying Impala Startup Options on page 46.

This feature also involves several new or changed query options that you can set through the impala-shell interpreter and apply within a specific session:

- MEM_LIMIT: the function of this existing option changes when Impala resource management is enabled.
- REQUEST_POOL: a new option. (Renamed to RESOURCE_POOL in Impala 1.3.0.)
- V_CPU_CORES: a new option.
- RESERVATION_REQUEST_TIMEOUT: a new option.

For details of these query options, see impala-shell Query Options for Resource Management on page 78.

New Features in Impala Version 1.2.4

- Note: Impala 1.2.4 works with CDH 4. It is primarily a bug fix release for Impala 1.2.3, plus some performance enhancements for the catalog server to minimize startup and DDL wait times for Impala deployments with large numbers of databases, tables, and partitions.
- On Impala startup, the metadata loading and synchronization mechanism has been improved and optimized, to give more responsiveness when starting Impala on a system with a large number of databases, tables, or partitions. The initial metadata loading happens in the background, allowing queries to be run before the entire process is finished. When a query refers to a table whose metadata is not yet loaded, the query waits until the metadata for that table is loaded, and the load operation for that table is prioritized to happen first.
- Formerly, if you created a new table in Hive, you had to issue the INVALIDATE METADATA statement (with no table name) which was an expensive operation that reloaded metadata for all tables. Impala did not recognize the name of the Hive-created table, so you could not do INVALIDATE METADATA new_table to get the metadata for just that one table. Now, when you issue INVALIDATE METADATA table_name, Impala checks to see if that name represents a table created in Hive, and if so recognizes the new table and loads the metadata for it. Additionally, if the new table is in a database that was newly created in Hive, Impala also recognizes the new database.
- If you issue INVALIDATE METADATA table_name and the table has been dropped through Hive, Impala will recognize that the table no longer exists.
- New startup options let you control the parallelism of the metadata loading during startup for the catalogal daemon:
 - --load_catalog_in_background makes Impala load and cache metadata using background threads after startup. It is true by default. Previously, a system with a large number of databases, tables, or partitions could be unresponsive or even time out during startup.
 - --num_metadata_loading_threads determines how much parallelism Impala devotes to loading metadata in the background. The default is 16. You might increase this value for systems with huge numbers of databases, tables, or partitions. You might lower this value for busy systems that are CPU-constrained due to jobs from components other than Impala.

New Features in Impala Version 1.2.3

Note: Impala 1.2.3 works with CDH 4 and with CDH 5 beta 2. The resource management feature requires CDH 5 beta.

Impala 1.2.3 contains exactly the same feature set as Impala 1.2.2. Its only difference is one additional fix for compatibility with Parquet files generated outside of Impala by components such as Hive, Pig, or MapReduce. If you are upgrading from Impala 1.2.1 or earlier, see New Features in Impala Version 1.2.2 on page 462 for the latest added features.

New Features in Impala Version 1.2.2

Note: Impala 1.2.2 works with CDH 4. Its feature set is a superset of features in the Impala 1.2.0 beta, with the exception of resource management, which relies on CDH 5.

Impala 1.2.2 includes new features for performance, security, and flexibility. The major enhancements over 1.2.1 are performance related, primarily for join queries.

New user-visible features include:

- Join order optimizations. This highly valuable feature automatically distributes and parallelizes the work for a join guery to minimize disk I/O and network traffic. The automatic optimization reduces the need to use guery hints or to rewrite join gueries with the tables in a specific order based on size or cardinality. The new COMPUTE STATS statement gathers statistical information about each table that is crucial for enabling the join optimizations. See Performance Considerations for Join Queries on page 343 for details.
- COMPUTE STATS statement to collect both table statistics and column statistics with a single statement. Intended to be more comprehensive, efficient, and reliable than the corresponding Hive ANALYZE TABLE statement, which collects statistics in multiple phases through MapReduce jobs. These statistics are important for query planning for join queries, queries on partitioned tables, and other types of data-intensive operations. For optimal planning of join queries, you need to collect statistics for each table involved in the join. See **COMPUTE STATS Statement** on page 164 for details.
- Reordering of tables in a join query can be overridden by the STRAIGHT_JOIN operator, allowing you to fine-tune the planning of the join query if necessary, by using the original technique of ordering the joined tables in descending order of size. See Overriding Join Reordering with STRAIGHT_JOIN on page 344 for details.
- The CROSS JOIN clause in the SELECT statement to allow Cartesian products in queries, that is, joins without an equality comparison between columns in both tables. Because such queries must be carefully checked to avoid accidental overconsumption of memory, you must use the CROSS JOIN operator to explicitly select this kind of join. See Cross Joins and Cartesian Products with the CROSS JOIN Operator on page 64 for examples.
- The ALTER TABLE statement has new clauses that let you fine-tune table statistics. You can use this technique as a less-expensive way to update specific statistics, in case the statistics become stale, or to experiment with the effects of different data distributions on query planning.
- LDAP username/password authentication in JDBC/ODBC. See Enabling LDAP Authentication for Impala on page 104 for details.
- GROUP CONCAT() aggregate function to concatenate column values across all rows of a result set.
- The INSERT statement now accepts hints, [SHUFFLE] and [NOSHUFFLE], to influence the way work is redistributed during INSERT...SELECT operations. The hints are primarily useful for inserting into partitioned Parquet tables, where using the [SHUFFLE] hint can avoid problems due to memory consumption and simultaneous open files in HDFS, by collecting all the new data for each partition on a specific node.
- Several built-in functions and operators are now overloaded for more numeric data types, to reduce the requirement to use CAST() for type coercion in INSERT statements. For example, the expression 2+2 in an

INSERT statement formerly produced a BIGINT result, requiring a CAST() to be stored in an INT variable. Now, addition, subtraction, and multiplication only produce a result that is one step "bigger" than their arguments, and numeric and conditional functions can return SMALLINT, FLOAT, and other smaller types rather than always BIGINT or DOUBLE.

- New fnv_hash() built-in function for constructing hashed values. See Impala Mathematical Functions on page 248 for details.
- The clause stored as parquet is accepted as an equivalent for stored as parquetfile. This more concise form is recommended for new code.

Because Impala 1.2.2 builds on a number of features introduced in 1.2.1, if you are upgrading from an older 1.1.x release straight to 1.2.2, also review New Features in Impala Version 1.2.1 on page 463 to see features such as the show TABLE STATS and SHOW COLUMN STATS statements, and user-defined functions (UDFs).

New Features in Impala Version 1.2.1

Note: Impala 1.2.1 works with CDH 4. Its feature set is a superset of features in the Impala 1.2.0 beta, with the exception of resource management, which relies on CDH 5.

Impala 1.2.1 includes new features for security, performance, and flexibility.

New user-visible features include:

- SHOW TABLE STATS table_name and SHOW COLUMN STATS table_name statements, to verify that statistics are available and to see the values used during query planning.
- CREATE TABLE AS SELECT syntax, to create a new table and transfer data into it in a single operation.
- OFFSET clause, for use with the ORDER BY and LIMIT clauses to produce "paged" result sets such as items 1-10, then 11-20, and so on.
- NULLS FIRST and NULLS LAST clauses to ensure consistent placement of NULL values in ORDER BY queries.
- New built-in functions: least(), greatest(), initcap().
- New aggregate function: ndv(), a fast alternative to COUNT(DISTINCT col) returning an approximate result.
- The LIMIT clause can now accept a numeric expression as an argument, rather than only a literal constant.
- The SHOW CREATE TABLE statement displays the end result of all the CREATE TABLE and ALTER TABLE statements for a particular table. You can use the output to produce a simplified setup script for a schema.
- The --idle_query_timeout and --idle_session_timeout options for impalad control the time intervals after which idle queries are cancelled, and idle sessions expire. See Setting Timeout Periods for Daemons, Queries, and Sessions on page 79 for details.
- User-defined functions (UDFs). This feature lets you transform data in very flexible ways, which is important when using Impala as part of an ETL or ELT pipeline. Prior to Impala 1.2, using UDFs required switching into Hive. Impala 1.2 can run scalar UDFs and user-defined aggregate functions (UDAs). Impala can run high-performance functions written in C++, or you can reuse existing Hive functions written in Java.
 - You create UDFs through the CREATE FUNCTION statement and drop them through the DROP FUNCTION statement. See Impala User-Defined Functions (UDFs) on page 295 for instructions about coding, building, and deploying UDFs, and CREATE FUNCTION Statement on page 171 and DROP FUNCTION Statement on page 186 for related SQL syntax.
- A new service automatically propagates changes to table data and metadata made by one Impala node, sending the new or updated metadata to all the other Impala nodes. The automatic synchronization mechanism eliminates the need to use the INVALIDATE METADATA and REFRESH statements after issuing Impala statements such as CREATE TABLE, ALTER TABLE, DROP TABLE, INSERT, and LOAD DATA.

For even more precise synchronization, you can enable the SYNC DDL query option before issuing a DDL, INSERT, or LOAD DATA statement. This option causes the statement to wait, returning only after the catalog service has broadcast the applicable changes to all Impala nodes in the cluster.

Note:

Because the catalog service only monitors operations performed through Impala, INVALIDATE METADATA and REFRESH are still needed on the Impala side after creating new tables or loading data through the Hive shell or by manipulating data files directly in HDFS. Because the catalog service broadcasts the result of the REFRESH and INVALIDATE METADATA Statements to all Impala nodes, when you do need to use those statements, you can do so a single time rather than on every Impala node.

This service is implemented by the catalogd daemon. See The Impala Catalog Service on page 18 for details.

- CREATE TABLE ... AS SELECT syntax, to create a table and copy data into it in a single operation. See **CREATE TABLE Statement** on page 174 for details.
- The CREATE TABLE and ALTER TABLE statements have new clauses TBLPROPERTIES and WITH SERDEPROPERTIES. The TBLPROPERTIES clause lets you associate arbitrary items of metadata with a particular table as key-value pairs. The with SERDEPROPERTIES clause lets you specify the serializer/deserializer (SerDes) classes that read and write data for a table; although Impala does not make use of these properties, sometimes particular values are needed for Hive compatibility. See CREATE TABLE Statement on page 174 and <u>ALTER TABLE Statement</u> on page 159 for details.
- Impersonation support lets you authorize certain OS users associated with applications (for example, hue), to submit requests using the credentials of other users. Only available in combination with CDH 5. See Configuring Per-User Access for Hue on page 100 for details.
- Enhancements to EXPLAIN output. In particular, when you enable the new EXPLAIN_LEVEL query option, the EXPLAIN and PROFILE statements produce more verbose output showing estimated resource requirements and whether table and column statistics are available for the applicable tables and columns. See EXPLAIN Statement on page 192 for details.
- SHOW CREATE TABLE summarizes the effects of the original CREATE TABLE statement and any subsequent ALTER TABLE statements, giving you a CREATE TABLE statement that will re-create the current structure and layout for a table.
- The LIMIT clause for queries now accepts an arithmetic expression, in addition to numeric literals.

New Features in Impala Version 1.2.0 (Beta)

Note: The Impala 1.2.0 beta release only works in combination with the beta version of CDH 5. The Impala 1.2.0 software is bundled together with the CDH 5 beta 1 download.

The Impala 1.2.0 beta includes new features for security, performance, and flexibility.

New user-visible features include:

• User-defined functions (UDFs). This feature lets you transform data in very flexible ways, which is important when using Impala as part of an ETL or ELT pipeline. Prior to Impala 1.2, using UDFs required switching into Hive. Impala 1.2 can run scalar UDFs and user-defined aggregate functions (UDAs). Impala can run high-performance functions written in C++, or you can reuse existing Hive functions written in Java.

You create UDFs through the CREATE FUNCTION statement and drop them through the DROP FUNCTION statement. See Impala User-Defined Functions (UDFs) on page 295 for instructions about coding, building, and deploying UDFs, and CREATE FUNCTION Statement on page 171 and DROP FUNCTION Statement on page 186 for related SQL syntax.

A new service automatically propagates changes to table data and metadata made by one Impala node, sending the new or updated metadata to all the other Impala nodes. The automatic synchronization mechanism eliminates the need to use the INVALIDATE METADATA and REFRESH statements after issuing Impala statements such as CREATE TABLE, ALTER TABLE, DROP TABLE, INSERT, and LOAD DATA.

Note:

Because this service only monitors operations performed through Impala, INVALIDATE METADATA and REFRESH are still needed on the Impala side after creating new tables or loading data through the Hive shell or by manipulating data files directly in HDFS. Because the catalog service broadcasts the result of the REFRESH and INVALIDATE METADATA statements to all Impala nodes, when you do need to use those statements, you can do so a single time rather than on every Impala node.

This service is implemented by the catalogd daemon. See The Impala Catalog Service on page 18 for details.

Integration with the YARN resource management framework. Only available in combination with CDH 5. This feature makes use of the underlying YARN service, plus an additional service (Llama) that coordinates requests to YARN for Impala resources, so that the Impala query only proceeds when all requested resources are available. See Integrated Resource Management with YARN on page 76 for full details.

On the Impala side, this feature involves some new startup options for the impalad daemon:

- -enable_rm
- -llama_host
- -llama_port
- -llama_callback_port
- cgroup_hierarchy_path

For details of these startup options, see Modifying Impala Startup Options on page 46.

This feature also involves several new or changed query options that you can set through the impala-shell interpreter and apply within a specific session:

- MEM_LIMIT: the function of this existing option changes when Impala resource management is enabled.
- YARN_POOL: a new option. (Renamed to RESOURCE_POOL in Impala 1.3.0.)
- V_CPU_CORES: a new option.
- RESERVATION_REQUEST_TIMEOUT: a new option.

For details of these query options, see <u>impala-shell Query Options for Resource Management</u> on page 78.

- CREATE TABLE ... AS SELECT syntax, to create a table and copy data into it in a single operation. See **CREATE TABLE Statement** on page 174 for details.
- The CREATE TABLE and ALTER TABLE statements have a new TBLPROPERTIES clause that lets you associate arbitrary items of metadata with a particular table as key-value pairs. See CREATE TABLE Statement on page 174 and ALTER TABLE Statement on page 159 for details.
- Impersonation support lets you authorize certain OS users associated with applications (for example, hue), to submit requests using the credentials of other users. Only available in combination with CDH 5. See Configuring Per-User Access for Hue on page 100 for details.
- Enhancements to EXPLAIN output. In particular, when you enable the new EXPLAIN_LEVEL query option, the EXPLAIN and PROFILE statements produce more verbose output showing estimated resource requirements and whether table and column statistics are available for the applicable tables and columns. See EXPLAIN Statement on page 192 for details.

New Features in Impala Version 1.1.1

Impala 1.1.1 includes new features for security and stability.

New user-visible features include:

- Additional security feature: auditing. New startup options for impalad let you capture information about Impala queries that succeed or are blocked due to insufficient privileges. To take full advantage of this feature with Cloudera Manager, upgrade to Cloudera Manager 4.7 or higher. For details, see Impala Security on page 85.
- Parquet data files generated by Impala 1.1.1 are now compatible with the Parquet support in Hive. See
 Incompatible Changes in Impala on page 469 for the procedure to update older Impala-created Parquet files
 to be compatible with the Hive Parquet support.
- Additional improvements to stability and resource utilization for Impala queries.
- Additional enhancements for compatibility with existing file formats.

New Features in Impala Version 1.1

Impala 1.1 includes new features for security, performance, and usability.

New user-visible features include:

- Extensive new security features, built on top of the Sentry open source project. Impala now supports fine-grained authorization based on roles. A policy file determines which privileges on which schema objects (servers, databases, tables, and HDFS paths) are available to users based on their membership in groups. By assigning privileges for views, you can control access to table data at the column level. For details, see Impala Security on page 85.
- Impala 1.1 works with Cloudera Manager 4.6 or higher. To use Cloudera Manager to manage authorization for the Impala web UI (the web pages served from port 25000 by default), use Cloudera Manager 4.6.2 or higher.
- Impala can now create, alter, drop, and query views. Views provide a flexible way to set up simple aliases for complex queries; hide query details from applications and users; and simplify maintenance as you rename or reorganize databases, tables, and columns. See the overview section <u>Views</u> on page 153 and the statements <u>CREATE VIEW Statement</u> on page 180, <u>ALTER VIEW Statement</u> on page 163, and <u>DROP VIEW Statement</u> on page 192.
- Performance is improved through a number of automatic optimizations. Resource consumption is also reduced for Impala queries. These improvements apply broadly across all kinds of workloads and file formats. The major areas of performance enhancement include:
 - Improved disk and thread scheduling, which applies to all queries.
 - Improved hash join and aggregation performance, which applies to queries with large build tables or a large number of groups.
 - Dictionary encoding with Parquet, which applies to Parquet tables with short string columns.
 - Improved performance on systems with SSDs, which applies to all queries and file formats.
- Some new built-in functions are implemented: translate()) to substitute characters within strings, user()) to check the login ID of the connected user.
- The new WITH clause for SELECT statements lets you simplify complicated queries in a way similar to creating a view. The effects of the WITH clause only last for the duration of one query, unlike views, which are persistent schema objects that can be used by multiple sessions or applications. See <u>WITH Clause</u> on page 230.
- An enhancement to DESCRIBE statement, DESCRIBE FORMATTED table_name, displays more detailed information about the table. This information includes the file format, location, delimiter, ownership, external or internal, creation and access times, and partitions. The information is returned as a result set that can be interpreted and used by a management or monitoring application. See DESCRIBE Statement on page 181.
- You can now insert a subset of columns for a table, with other columns being left as all NULL values. Or you can specify the columns in any order in the destination table, rather than having to match the order of the corresponding columns in the source. VALUES clause. This feature is known as "column permutation". See INSERT Statement on page 196.
- The new LOAD DATA statement lets you load data into a table directly from an HDFS data file. This technique lets you minimize the number of steps in your ETL process, and provides more flexibility. For example, you can bring data into an Impala table in one step. Formerly, you might have created an external table where

the data files are not entirely under your control, or copied the data files to Impala data directories manually, or loaded the original data into one table and then used the INSERT statement to copy it to a new table with a different file format, partitioning scheme, and so on. See LOAD DATA Statement on page 206.

- Improvements to Impala-HBase integration:
 - New query options for HBase performance: HBASE CACHE BLOCKS and HBASE CACHING.
 - Support for binary data types in HBase tables. See <u>Supported Data Types for HBase Columns</u> on page 412 for details.
- You can issue REFRESH as a SQL statement through any of the programming interfaces that Impala supports. REFRESH formerly had to be issued as a command through the impala-shell interpreter, and was not available through a JDBC or ODBC API call. As part of this change, the functionality of the REFRESH statement is divided between two statements. In Impala 1.1, REFRESH requires a table name argument and immediately reloads the metadata; the new invalidate metadata statement works the same as the Impala 1.0 REFRESH did: the table name argument is optional, and the metadata for one or all tables is marked as stale, but not actually reloaded until the table is queried. When you create a new table in the Hive shell or through a different Impala node, you must enter INVALIDATE METADATA with no table parameter before you can see the new table in impala-shell. See REFRESH Statement on page 208 and INVALIDATE METADATA Statement on page 203.

New Features in Impala Version 1.0.1

The primary enhancements in Impala 1.0.1 are internal, for compatibility with the new Cloudera Manager 4.6 release. Try out the new Impala Query Monitoring feature in Cloudera Manager 4.6, which requires Impala 1.0.1.

New user-visible features include:

- The VALUES clause lets you INSERT one or more rows using literals, function return values, or other expressions. For performance and scalability, you should still use INSERT ... SELECT for bringing large quantities of data into an Impala table. The VALUES clause is a convenient way to set up small tables, particularly for initial testing of SQL features that do not require large amounts of data. See VALUES Clause on page 201 for details.
- The -B and -o options of the impala-shell command can turn query results into delimited text files and store them in an output file. The plain text results are useful for using with other Hadoop components or Unix tools. In benchmark tests, it is also faster to produce plain rather than pretty-printed results, and write to a file rather than to the screen, giving a more accurate picture of the actual query time.
- Several bug fixes. See <u>Issues Fixed in the 1.0.1 Release</u> on page 503 for details.

New Features in Impala Version 1.0

This version has multiple performance improvements and adds the following functionality:

- Several bug fixes. See <u>Issues Fixed in the 1.0 GA Release</u> on page 504.
- ALTER TABLE statement.
- <u>Hints</u> to allow specifying a particular join strategy.
- REFRESH for a single table.
- Dynamic resource management, allowing high concurrency for Impala queries.

New Features in Version 0.7 of the Cloudera Impala Beta Release

This version has multiple performance improvements and adds the following functionality:

- Several bug fixes. See <u>Issues Fixed in Version 0.7 of the Beta Release</u> on page 507.
- Support for the Parquet file format. For more information on file formats, see <u>How Impala Works with Hadoop</u> File Formats on page 384.
- Added support for Avro.
- Support for the memory limits. For more information, see the example on modifying memory limits in Modifying Impala Startup Options on page 46.
- Bigger and faster joins through the addition of partitioned joins to the already supported broadcast joins.

- Fully distributed aggregations.
- Fully distributed top-n computation.
- Support for creating and altering tables.
- Support for GROUP BY with floats and doubles.

In this version, both CDH 4.1 and 4.2 are supported, but due to performance improvements added, we highly recommend you use CDH 4.2 or higher to see the full benefit. If you are using Cloudera Manager, version 4.5 is required.

New Features in Version 0.6 of the Cloudera Impala Beta Release

- Several bug fixes. See <u>Issues Fixed in Version 0.6 of the Beta Release</u> on page 508.
- Added support for Impala on SUSE and Debian/Ubuntu. Impala is now supported on:
 - RHEL5.7/6.2 and Centos5.7/6.2
 - SUSE 11 with Service Pack 1 or higher
 - Ubuntu 10.04/12.04 and Debian 6.03
- Cloudera Manager 4.5 and CDH 4.2 support Impala 0.6.
- Support for the RCFile file format. For more information on file formats, see <u>Understanding File Formats</u>.

New Features in Version 0.5 of the Cloudera Impala Beta Release

- Several bug fixes. See <u>Issues Fixed in Version 0.5 of the Beta Release</u> on page 509.
- Added support for a JDBC driver that allows you to access Impala from a Java client. To use this feature, follow
 the instructions in <u>Configuring Impala to Work with JDBC</u> on page 38 to install the JDBC driver JARs on the
 client machine and modify the CLASSPATH on the client to include the JARs.

New Features in Version 0.4 of the Cloudera Impala Beta Release

- Several bug fixes. See <u>Issues Fixed in Version 0.4 of the Beta Release</u> on page 510.
- Added support for Impala on RHEL5.7/Centos5.7. Impala is now supported on RHEL5.7/6.2 and Centos5.7/6.2.
- Cloudera Manager 4.1.3 supports Impala 0.4.
- The Impala debug webserver now has the ability to serve static files from \$\{IMPALA_HOME\}/www. This can be disabled by setting --enable_webserver_doc_root=false on the command line. As a result, Impala now uses the Twitter Bootstrap library to style its debug webpages, and the /queries page now tracks the last 25 queries run by each Impala daemon.
- Additional metrics available on the Impala Debug Webpage.

New Features in Version 0.3 of the Cloudera Impala Beta Release

- Several bug fixes. See <u>Issues Fixed in Version 0.3 of the Beta Release</u> on page 511.
- The state-store-service binary has been renamed statestored.
- The location of the Impala configuration files has changed from the /usr/lib/impala/conf directory to the /etc/impala/conf directory.

New Features in Version 0.2 of the Cloudera Impala Beta Release

- Several bug fixes. See <u>Issues Fixed in Version 0.2 of the Beta Release</u> on page 511.
- Added Default Query Options Default query options override all default QueryOption values when starting impalad. The format is:

-default_query_options='key=value;key=value'

Incompatible Changes in Impala

The Impala version covered by this documentation library contains the following incompatible changes. These are things such as file format changes, removed features, or changes to implementation, default configuration, dependencies, or prerequisites that could cause issues during or after an Impala upgrade.

Even added SQL statements or clauses can produce incompatibilities, if you have databases, tables, or columns whose names conflict with the new keywords.

Incompatible Changes Introduced in Cloudera Impala 2.1.4 / CDH 5.3.4

No incompatible changes. Because CDH 5.3.5 does not include any code changes for Impala, Impala 2.1.4 is included with both CDH 5.3.4 and 5.3.5.

Note: This Impala maintenance release is only available as part of CDH 5, not under CDH 4.

Incompatible Changes Introduced in Cloudera Impala 2.1.3 / CDH 5.3.3

No incompatible changes.

Note: Impala 2.1.3 is available as part of CDH 5.3.3, not under CDH 4.

Incompatible Changes Introduced in Cloudera Impala 2.1.2 / CDH 5.3.2

No incompatible changes.

Note: Impala 2.1.2 is available as part of CDH 5.3.2, not under CDH 4.

Incompatible Changes Introduced in Cloudera Impala 2.1.1 / CDH 5.3.1

No incompatible changes.

Incompatible Changes Introduced in Cloudera Impala 2.1.0 / CDH 5.3.0

Changes to Prerequisites

Currently, Impala 2.1.x does not function on CPUs without the SSE4.1 instruction set. This minimum CPU requirement is higher than in previous versions, which relied on the older SSSE3 instruction set. Check the CPU level of the hosts in your cluster before upgrading to Impala 2.1.x or CDH 5.3.x.

Changes to Output Format

The "small query" optimization feature introduces some new information in the EXPLAIN plan, which you might need to account for if you parse the text of the plan output.

New Reserved Words

New SQL syntax introduces additional reserved words: FOR, GRANT, REVOKE, ROLE, ROLES, INCREMENTAL.

Incompatible Changes Introduced in Cloudera Impala 2.0.4 / CDH 5.2.5

No incompatible changes.

Note: Impala 2.0.4 is available as part of CDH 5.2.5, not under CDH 4.

Incompatible Changes Introduced in Cloudera Impala 2.0.3 / CDH 5.2.4

Note: Impala 2.0.3 is available as part of CDH 5.2.4, not under CDH 4.

Incompatible Changes Introduced in Cloudera Impala 2.0.2 / CDH 5.2.3

No incompatible changes.

Note: Impala 2.0.2 is available as part of CDH 5.2.3, not under CDH 4.

Incompatible Changes Introduced in Cloudera Impala 2.0.1 / CDH 5.2.1

- The INSERT statement has always left behind a hidden work directory inside the data directory of the table. Formerly, this hidden work directory was named .impala_insert_staging. In Impala 2.0.1 and later, this directory name is changed to _impala_insert_staging. (While HDFS tools are expected to treat names beginning either with underscore and dot as hidden, in practice names beginning with an underscore are more widely supported.) If you have any scripts, cleanup jobs, and so on that rely on the name of this work directory, adjust them to use the new name.
- The abs() function now takes a broader range of numeric types as arguments, and the return type is the same as the argument type.
- Shorthand notation for character classes in regular expressions, such as \d for digit, are now available again in regular expression operators and functions such as regexp_extract() and regexp_replace(). Some other differences in regular expression behavior remain between Impala 1.x and Impala 2.x releases. See Incompatible Changes Introduced in Cloudera Impala 2.0.0 / CDH 5.2.0 on page 470 for details.

Incompatible Changes Introduced in Cloudera Impala 2.0.0 / CDH 5.2.0

Changes to Prerequisites

Currently, Impala 2.0.x does not function on CPUs without the SSE4.1 instruction set. This minimum CPU requirement is higher than in previous versions, which relied on the older SSSE3 instruction set. Check the CPU level of the hosts in your cluster before upgrading to Impala 2.0.x or CDH 5.2.x.

Changes to Query Syntax

The new syntax where query hints are allowed in comments causes some changes in the way comments are parsed in the impala-shell interpreter. Previously, you could end a -- comment line with a semicolon and impala-shell would treat that as a no-op statement. Now, a comment line ending with a semicolon is passed as an empty statement to the Impala daemon, where it is flagged as an error.

Impala 2.0 and later uses a different support library for regular expression parsing than in earlier Impala versions. Now, Impala uses the <u>Google RE2 library</u> rather than Boost for evaluating regular expressions. This implementation change causes some differences in the allowed regular expression syntax, and in the way certain regex operators are interpreted. The following are some of the major differences (not necessarily a complete list):

- . *? notation for non-greedy matches is now supported, where it was not in earlier Impala releases.
- By default, ^ and \$ now match only begin/end of buffer, not begin/end of each line. This behavior can be overridden in the regex itself using the m flag.
- By default, . does not match newline. This behavior can be overridden in the regex itself using the s flag.
- \z is not supported.
- < and > for start of word and end of word are not supported.

- Lookahead and lookbehind are not supported.
- Shorthand notation for character classes, such as \d for digit, is not recognized. (This restriction is lifted in Impala 2.0.1, which restores the shorthand notation.)

Changes to Output Format

In Impala 2.0 and later, user() returns the the full Kerberos principal string, such as user@example.com, in a Kerberized environment.

The changed format for the user name in secure environments is also reflected where the user name is displayed in the output of the PROFILE command.

In the output from show functions, show aggregate functions, and show analytic functions, arguments and return types of arbitrary DECIMAL scale and precision are represented as DECIMAL(*,*). Formerly, these items were displayed as DECIMAL(-1,-1).

Changes to Query Options

The PARQUET_COMPRESSION_CODEC query option has been replaced by the COMPRESSION_CODEC query option. See COMPRESSION CODEC Query Option on page 327 for details.

Changes to Configuration Options

The meaning of the --idle_query_timeout configuration option is changed, to accommodate the new QUERY_TIMEOUT_S query option. Rather than setting an absolute timeout period that applies to all queries, it now sets a maximum timeout period, which can be adjusted downward for individual queries by specifying a value for the QUERY_TIMEOUT_S query option. In sessions where no QUERY_TIMEOUT_S query option is specified, the --idle_query_timeout timeout period applies the same as in earlier versions.

The --strict_unicode option of impala-shell was removed. To avoid problems with Unicode values in impala-shell, define the following locale setting before running impala-shell:

export LC_CTYPE=en_US.UTF-8

New Reserved Words

Some new SQL syntax requires the addition of new reserved words: ANTI, ANALYTIC, OVER, PRECEDING, UNBOUNDED, FOLLOWING, CURRENT, ROWS, RANGE, CHAR, VARCHAR.

Changes to Data Files

The default Parquet block size for Impala is changed from 1 GB to 256 MB. This change could have implications for the sizes of Parquet files produced by INSERT and CREATE TABLE AS SELECT statements.

Although older Impala releases typically produced files that were smaller than the old default size of 1 GB, now the file size matches more closely whatever value is specified for the PARQUET_FILE_SIZE query option. Thus, if you use a non-default value for this setting, the output files could be larger than before. They still might be somewhat smaller than the specified value, because Impala makes conservative estimates about the space needed to represent each column as it encodes the data.

When you do not specify an explicit value for the PARQUET_FILE_SIZE query option, Impala tries to keep the file size within the 256 MB default size, but Impala might adjust the file size to be somewhat larger if needed to accommodate the layout for wide tables, that is, tables with hundreds or thousands of columns.

This change is unlikely to affect memory usage while writing Parquet files, because Impala does not pre-allocate the memory needed to hold the entire Parquet block.

Incompatible Changes Introduced in Cloudera Impala 1.4.4 / CDH 5.1.5

No incompatible changes.

Note: Impala 1.4.4 is available as part of CDH 5.1.5, not under CDH 4.

Incompatible Changes Introduced in Cloudera Impala 1.4.3 / CDH 5.1.4

No incompatible changes. The SSL security fix does not require any change in the way you interact with Impala.

• Note: Impala 1.4.3 is available as part of CDH 5.1.4, and under CDH 4.

Incompatible Changes Introduced in Cloudera Impala 1.4.2 / CDH 5.1.3

None. Impala 1.4.2 is purely a bug-fix release. It does not include any incompatible changes.

Note: Impala 1.4.2 is only available as part of CDH 5.1.3, not under CDH 4.

Incompatible Changes Introduced in Cloudera Impala 1.4.1 / CDH 5.1.2

None. Impala 1.4.1 is purely a bug-fix release. It does not include any incompatible changes.

Incompatible Changes Introduced in Cloudera Impala 1.4.0 / CDH 5.1.0

- There is a slight change to required security privileges in the Sentry framework. To create a new object, now you need the ALL privilege on the parent object. For example, to create a new table, view, or function requires having the ALL privilege on the database containing the new object.
- With the ability of ORDER BY queries to process unlimited amounts of data with no LIMIT clause, the query options DEFAULT_ORDER_BY_LIMIT and ABORT_ON_DEFAULT_LIMIT_EXCEEDED are now deprecated and have no effect.
- There are some changes to the list of reserved words. The following keywords are new:
 - API_VERSION
 - BINARY
 - CACHED
 - CLASS
 - PARTITIONS
 - PRODUCED
 - UNCACHED

The following were formerly reserved keywords, but are no longer reserved:

- COUNT
- GROUP_CONCAT
- NDV
- SUM
- The fix for issue IMPALA-973 changes the behavior of the INVALIDATE METADATA statement regarding nonexistent tables. In Impala 1.4.0 and higher, the statement returns an error if the specified table is not in the metastore database at all. It completes successfully if the specified table is in the metastore database but not yet recognized by Impala, for example if the table was created through Hive. Formerly, you could issue this statement for a completely nonexistent table, with no error.

Incompatible Changes Introduced in Cloudera Impala 1.3.3 / CDH 5.0.5

No incompatible changes. The SSL security fix does not require any change in the way you interact with Impala.

Note: Impala 1.3.3 is only available as part of CDH 5.0.5, not under CDH 4.

Incompatible Changes Introduced in Cloudera Impala 1.3.2 / CDH 5.0.4

With the fix for IMPALA-1019, you can use HDFS caching for files that are accessed by Impala.

Note: Impala 1.3.2 is only available as part of CDH 5.0.4, not under CDH 4.

Incompatible Changes Introduced in Cloudera Impala 1.3.1 / CDH 5.0.3

- In Impala 1.3.1 and higher, the REGEXP and RLIKE operators now match a regular expression string that occurs anywhere inside the target string, the same as if the regular expression was enclosed on each side by . *. See REGEXP Operator on page 147 for examples. Previously, these operators only succeeded when the regular expression matched the entire target string. This change improves compatibility with the regular expression support for popular database systems. There is no change to the behavior of the regexp_extract() and regexp_replace() built-in functions.
- The result set for the SHOW FUNCTIONS statement includes a new first column, with the data type of the return value.

Incompatible Changes Introduced in Cloudera Impala 1.3.0 / CDH 5.0.0

- The EXPLAIN LEVEL query option now accepts numeric options from 0 (most concise) to 3 (most verbose), rather than only 0 or 1. If you formerly used SET EXPLAIN LEVEL=1 to get detailed explain plans, switch to SET EXPLAIN LEVEL=3. If you used the mnemonic keyword (SET EXPLAIN LEVEL=verbose), you do not need to change your code because now level 3 corresponds to verbose.
- The keyword DECIMAL is now a reserved word. If you have any databases, tables, columns, or other objects already named DECIMAL, quote any references to them using backticks (``) to avoid name conflicts with the keyword.
 - Note: Although the DECIMAL keyword is a reserved word, currently Impala does not support DECIMAL as a data type for columns.
- The query option named YARN_POOL during the CDH 5 beta period is now named REQUEST_POOL to reflect its broader use with the Impala admission control feature.
- There are some changes to the list of reserved words.
 - The names of aggregate functions are no longer reserved words, so you can have databases, tables, columns, or other objects named AVG, MIN, and so on without any name conflicts.
 - The internal function names DISTINCTPC and DISTINCTPCSA are no longer reserved words, although DISTINCT is still a reserved word.
 - The keywords CLOSE FN and PREPARE FN are now reserved words.
- The HDFS property dfs.client.file-block-storage-locations.timeout was renamed to dfs.client.file-block-storage-locations.timeout.millis,to emphasize that the unit of measure is milliseconds, not seconds. Impala requires a timeout of at least 10 seconds, making the minimum value for this setting 10000. On systems not managed by Cloudera Manager, you might need to edit the hdfs-site.xml file in the Impala configuration directory for the new name and minimum value.

Incompatible Changes Introduced in Cloudera Impala 1.2.4

There are no incompatible changes introduced in Impala 1.2.4.

Previously, after creating a table in Hive, you had to issue the INVALIDATE METADATA statement with no table name, a potentially expensive operation on clusters with many databases, tables, and partitions. Starting in Impala 1.2.4, you can issue the statement INVALIDATE METADATA table_name for a table newly created through Hive. Loading the metadata for only this one table is faster and involves less network overhead. Therefore, you might revisit your setup DDL scripts to add the table name to INVALIDATE METADATA statements, in cases where you create and populate the tables through Hive before querying them through Impala.

Incompatible Changes Introduced in Cloudera Impala 1.2.3

Because the feature set of Impala 1.2.3 is identical to Impala 1.2.2, there are no new incompatible changes. See Incompatible Changes Introduced in Cloudera Impala 1.2.2 on page 474 if you are upgrading from Impala 1.2.1 or 1.1.x.

Incompatible Changes Introduced in Cloudera Impala 1.2.2

The following changes to SQL syntax and semantics in Impala 1.2.2 could require updates to your SQL code, or schema objects such as tables or views:

• With the addition of the CROSS JOIN keyword, you might need to rewrite any queries that refer to a table named CROSS or use the name CROSS as a table alias:

```
-- Formerly, 'cross' in this query was an alias for t1
-- and it was a normal join query.
-- In 1.2.2 and higher, CROSS JOIN is a keyword, so 'cross'
-- is not interpreted as a table alias, and the query
-- uses the special CROSS JOIN processing rather than a
-- regular join.
select * from t1 cross join t2...

-- Now if CROSS is used in other context such as a table or column name,
-- use backticks to escape it.
create table `cross` (x int);
select * from `cross`;
```

- Formerly, a DROP DATABASE statement in Impala would not remove the top-level HDFS directory for that database. The DROP DATABASE has been enhanced to remove that directory. (You still need to drop all the tables inside the database first; this change only applies to the top-level directory for the entire database.)
- The keyword PARQUET is introduced as a synonym for PARQUETFILE in the CREATE TABLE and ALTER TABLE statements, because that is the common name for the file format. (As opposed to SequenceFile and RCFile where the "File" suffix is part of the name.) Documentation examples have been changed to prefer the new shorter keyword. The PARQUETFILE keyword is still available for backward compatibility with older Impala versions.
- New overloads are available for several operators and built-in functions, allowing you to insert their result
 values into smaller numeric columns such as INT, SMALLINT, TINYINT, and FLOAT without using a CAST()
 call. If you remove the CAST() calls from INSERT statements, those statements might not work with earlier
 versions of Impala.

Because many users are likely to upgrade straight from Impala 1.2.2, also read <u>Incompatible</u> <u>Changes Introduced in Cloudera Impala 1.2.1</u> on page 475 for things to note about upgrading to Impala 1.2.x in general.

In a Cloudera Manager environment, the catalog service is not recognized or managed by Cloudera Manager versions prior to 4.8. Cloudera Manager 4.8 and higher require the catalog service to be present for Impala. Therefore, if you upgrade to Cloudera Manager 4.8 or higher, you must also upgrade Impala to 1.2.1 or higher. Likewise, if you upgrade Impala to 1.2.1 or higher, you must also upgrade Cloudera Manager to 4.8 or higher.

Incompatible Changes Introduced in Cloudera Impala 1.2.1

The following changes to SQL syntax and semantics in Impala 1.2.1 could require updates to your SQL code, or schema objects such as tables or views:

■ In Impala 1.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASC queries, and at the beginning of the result set for ORDER BY ... DESC queries. In effect, NULL is considered greater than all other values for sorting purposes. The original Impala behavior always put NULL values at the end, even for ORDER BY ... DESC queries. The new behavior in Impala 1.2.1 makes Impala more compatible with other popular database systems. In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL by adding the clause NULLS FIRST OF NULLS LAST at the end of the ORDER BY clause.

Impala 1.2.1 goes along with CDH 4.5 and Cloudera Manager 4.8. If you used the beta version Impala 1.2.0 that came with the beta of CDH 5, Impala 1.2.1 includes all the features of Impala 1.2.0 except for resource management, which relies on the YARN framework from CDH 5.

The new catalogd service might require changes to any user-written scripts that stop, start, or restart Impala services, install or upgrade Impala packages, or issue REFRESH or INVALIDATE METADATA statements:

- See <u>Installing Impala</u> on page 29, <u>Upgrading Impala</u> on page 41 and <u>Starting Impala</u> on page 45, for usage information for the catalogd daemon.
- The refresh and invalidate metadata statements are no longer needed when the create table, insert, or other table-changing or data-changing operation is performed through Impala. These statements are still needed if such operations are done through Hive or by manipulating data files directly in HDFS, but in those cases the statements only need to be issued on one Impala node rather than on all nodes. See REFRESH Statement on page 208 and INVALIDATE METADATA Statement on page 203 for the latest usage information for those statements.
- See The Impala Catalog Service on page 18 for background information on the catalogd service.

In a Cloudera Manager environment, the catalog service is not recognized or managed by Cloudera Manager versions prior to 4.8. Cloudera Manager 4.8 and higher require the catalog service to be present for Impala. Therefore, if you upgrade to Cloudera Manager 4.8 or higher, you must also upgrade Impala to 1.2.1 or higher. Likewise, if you upgrade Impala to 1.2.1 or higher, you must also upgrade Cloudera Manager to 4.8 or higher.

Incompatible Changes Introduced in Cloudera Impala 1.2.0 (Beta)

There are no incompatible changes to SQL syntax in Impala 1.2.0 (beta).

Because Impala 1.2.0 is bundled with the CDH 5 beta download and depends on specific levels of Apache Hadoop components supplied with CDH 5, you can only install it in combination with the CDH 5 beta.

The new catalogd service might require changes to any user-written scripts that stop, start, or restart Impala services, install or upgrade Impala packages, or issue REFRESH or INVALIDATE METADATA statements:

- See <u>Installing Impala</u> on page 29, <u>Upgrading Impala</u> on page 41 and <u>Starting Impala</u> on page 45, for usage information for the catalogd daemon.
- The refresh and invalidate metadata statements are no longer needed when the create table, insert, or other table-changing or data-changing operation is performed through Impala. These statements are still needed if such operations are done through Hive or by manipulating data files directly in HDFS, but in those cases the statements only need to be issued on one Impala node rather than on all nodes. See REFRESH Statement on page 208 and INVALIDATE METADATA Statement on page 203 for the latest usage information for those statements.
- See <u>The Impala Catalog Service</u> on page 18 for background information on the catalogd service.

The new resource management feature interacts with both YARN and Llama services, which are available in CDH 5. These services are set up for you automatically in a Cloudera Manager (CM) environment. For information

about setting up the YARN and Llama services, see the instructions for <u>YARN</u> and <u>Llama</u> in the *CDH 5 Documentation*.

Incompatible Changes Introduced in Cloudera Impala 1.1.1

There are no incompatible changes in Impala 1.1.1.

Previously, it was not possible to create Parquet data through Impala and reuse that table within Hive. Now that Parquet support is available for Hive 10, reusing existing Impala Parquet data files in Hive requires updating the table metadata. Use the following command if you are already running Impala 1.1.1:

```
ALTER TABLE table_name SET FILEFORMAT PARQUETFILE;
```

If you are running a level of Impala that is older than 1.1.1, do the metadata update through Hive:

```
ALTER TABLE table_name SET SERDE 'parquet.hive.serde.ParquetHiveSerDe';
ALTER TABLE table_name SET FILEFORMAT
INPUTFORMAT "parquet.hive.DeprecatedParquetInputFormat"
OUTPUTFORMAT "parquet.hive.DeprecatedParquetOutputFormat";
```

Impala 1.1.1 and higher can reuse Parquet data files created by Hive, without any action required.

As usual, make sure to upgrade the impala-lzo-cdh4 package to the latest level at the same time as you upgrade the Impala server.

Incompatible Change Introduced in Cloudera Impala 1.1

The REFRESH statement now requires a table name; in Impala 1.0, the table name was optional. This syntax change is part of the internal rework to make REFRESH a true Impala SQL statement so that it can be called through the JDBC and ODBC APIs. REFRESH now reloads the metadata immediately, rather than marking it for update the next time any affected table is accessed. The previous behavior, where omitting the table name caused a refresh of the entire Impala metadata catalog, is available through the new INVALIDATE METADATA statement. INVALIDATE METADATA can be specified with a table name to affect a single table, or without a table name to affect the entire metadata catalog; the relevant metadata is reloaded the next time it is requested during the processing for a SQL statement. See REFRESH Statement on page 208 and INVALIDATE METADATA Statement on page 203 for the latest details about these statements.

Incompatible Changes Introduced in Cloudera Impala 1.0

- If you use LZO-compressed text files, when you upgrade Impala to version 1.0, also update the impala-lzo-cdh4 to the latest level. See <u>Using LZO-Compressed Text Files</u> on page 388 for details.
- Cloudera Manager 4.5.2 and higher only supports Impala 1.0 and higher, and vice versa. If you upgrade to Impala 1.0 or higher managed by Cloudera Manager, you must also upgrade Cloudera Manager to version 4.5.2 or higher. If you upgrade from an earlier version of Cloudera Manager, and were using Impala, you must also upgrade Impala to version 1.0 or higher. The beta versions of Impala are no longer supported as of the release of Impala 1.0.

Incompatible Change Introduced in Version 0.7 of the Cloudera Impala Beta Release

■ The defaults for the -nn and -nn_port flags have changed and are now read from core-site.xml. Impala prints the values of -nn and -nn_port to the log when it starts. The ability to set -nn and -nn_port on the command line is deprecated in 0.7 and may be removed in Impala 0.8.

Incompatible Change Introduced in Version 0.6 of the Cloudera Impala Beta Release

• Cloudera Manager 4.5 supports only version 0.6 of the Cloudera Impala Beta Release. It does not support the earlier beta versions. If you upgrade your Cloudera Manager installation, you must also upgrade Impala to beta version 0.6. If you upgrade Impala to beta version 0.6, you must upgrade Cloudera Manager to 4.5.

Incompatible Change Introduced in Version 0.4 of the Cloudera Impala Beta Release

Cloudera Manager 4.1.3 supports only version 0.4 of the Cloudera Impala Beta Release. It does not support the earlier beta versions. If you upgrade your Cloudera Manager installation, you must also upgrade Impala to beta version 0.4. If you upgrade Impala to beta version 0.4, you must upgrade Cloudera Manager to 4.1.3.

Incompatible Change Introduced in Version 0.3 of the Cloudera Impala Beta Release

 Cloudera Manager 4.1.2 supports only version 0.3 of the Cloudera Impala Beta Release. It does not support the earlier beta versions. If you upgrade your Cloudera Manager installation, you must also upgrade Impala to beta version 0.3. If you upgrade Impala to beta version 0.3, you must upgrade Cloudera Manager to 4.1.2.

Known Issues and Workarounds in Impala

The following sections describe known issues and workarounds in Impala.

For issues fixed in various Impala releases, see Fixed Issues in Impala on page 481.

Known Issues in the Current Production Release (Impala 2.1.x)

These known issues affect the current release. Any workarounds are listed here. The bug links take you to the Impala issues site, where you can see the diagnosis and whether a fix is in the pipeline.

Impala requires Parquet column metadata in same order as the schema definition

Impala could read columns in incorrect order from Parquet files created by other components. Some files created using external Parquet libraries could contain column metadata written in a different order than the actual columns within the file.

Severity: High

Resolution: The Parquet libraries used by other components, and the Parquet spec itself, are being updated to match Impala behavior as part of the issue PARQUET-188.

invalid tuple_idx when combining INSERT INTO with analytic subquery

An INSERT ... SELECT statement could encounter an error if the SELECT portion included an analytic function call.

Bug: IMPALA-1737

Severity: Major

Workaround: Rewrite the statement as a CREATE TABLE AS SELECT statement.

CPU requirement for SSE4.1

Currently, Impala 2.0.x and 2.1.x do not function on CPUs without the SSE4.1 instruction set. This minimum CPU requirement is higher than in previous versions, which relied on the older SSSE3 instruction set. Check the CPU level of the hosts in your cluster before upgrading to Impala 2.0.x or 2.1.x, or CDH 5.2.x or CDH 5.3.x.

impala processes should cleanup their own old log files

Because Impala log files are not automatically deleted, you could potentially encounter disk space issues due to log file growth.

Bug: IMPALA-377

Severity: High

Workaround: Set up manual log rotation using your Linux tool or technique of choice. See Rotating Impala Logs on page 422 for details.

Can't update stats manually via alter table after upgrading to CDH 5.2

Bug: IMPALA-1420

Severity: High

Workaround: On CDH 5.2, when adjusting table statistics manually by setting the numRows, you must also enable the Boolean property STATS_GENERATED_VIA_STATS_TASK. For example, use a statement like the following to set both properties with a single ALTER TABLE statement:

```
ALTER TABLE table_name SET TBLPROPERTIES('numRows'='new_value',
'STATS_GENERATED_VIA_STATS_TASK' = 'true');
```

Resolution: The underlying cause is the issue <u>HIVE-8648</u> that affects the metastore in Hive 0.13. The workaround is only needed until the fix for this issue is incorporated into a CDH release.

Memory leak using zlib on CentOS6 (and possibly other platforms)

Unreleased memory could accumulate as more and more queries are run. The cause is thought to be a bug in version 1.2.3 of the zlib library, which is used in CentOS 6.4 and possibly other Linux releases. Impala uses this library internally to compress query profiles.

Bug: IMPALA-1194

Severity: High

Resolution: Under investigation

Memory Limit Exceeded Error when running with multiple clients

Out-of-memory errors could occur if multiple concurrent queries utilize the "spill to disk" mechanism because of memory pressure from other queries.

Bug: IMPALA-1385

Severity: High

Workaround: Either run such queries concurrently using a mechanism such as admission control, or reduce the memory limit for each query so that the spilling operation is triggered sooner. For example, if two queries are encountering this issue when running with MEM_LIMIT=4g, reduce the memory limit for each query by half, to 2 GB.

ORDER BY rand() does not work.

Because the value for rand() is computed early in a query, using an ORDER BY expression involving a call to rand() does not actually randomize the results.

Bug: IMPALA-397

Severity: High

Impala BE cannot parse Avro schema that contains a trailing semi-colon

If an Avro table has a schema definition with a trailing semicolon, Impala encounters an error when the table is queried.

Bug: IMPALA-1024

Severity: High

Process mem limit does not account for the JVM's memory usage

Some memory allocated by the JVM used internally by Impala is not counted against the memory limit for the impalad daemon.

Bug: IMPALA-691

Severity: High

Workaround: To monitor overall memory usage, use the top command, or add the memory figures in the Impala web UI /memz tab to JVM memory usage shown on the /metrics tab.

Impala Parser issue when using fully qualified table names that start with a number.

A fully qualified table name starting with a number could cause a parsing error. In a name such as db. 571 market, the decimal point followed by digits is interpreted as a floating-point number.

Bug: IMPALA-941

Severity: High

Workaround: Surround each part of the fully qualified name with backticks (``).

CatalogServer should not require HBase to be up to reload its metadata

If HBase is unavailable during Impala startup or after an INVALIDATE METADATA statement, the catalogd daemon could go into an error loop, making Impala unresponsive.

Bug: IMPALA-788

Severity: High

Workaround: For systems not managed by Cloudera Manager, add the following settings to /etc/impala/conf/hbase-site.xml:

```
property>
 <name>hbase.client.retries.number
  <value>3</value>
</property>
cproperty>
 <name>hbase.rpc.timeout</name>
  <value>3000</value>
</property>
```

Currently, Cloudera Manager does not have an Impala-only override for HBase settings, so any HBase configuration change you make through Cloudera Manager would take affect for all HBase applications. Therefore, this change is not recommended on systems managed by Cloudera Manager.

Kerberos tickets must be renewable

In a Kerberos environment, the impalad daemon might not start if Kerberos tickets are not renewable.

Workaround: Configure your KDC to allow tickets to be renewed, and configure krb5.conf to request renewable tickets.

Avro Scanner fails to parse some schemas

Querying certain Avro tables could cause a crash or return no rows, even though Impala could DESCRIBE the table.

Bug: IMPALA-635

Severity: High

Workaround: Swap the order of the fields in the schema specification. For example, ["null", "string"] instead of ["string", "null"].

Resolution: Not allowing this syntax agrees with the Avro specification, so it may still cause an error even when the crashing issue is resolved.

Configuration needed for Flume to be compatible with Impala

For compatibility with Impala, the value for the Flume HDFS Sink hdfs.writeFormat must be set to Text, rather than its default value of Writable. The hdfs.writeFormat setting must be changed to Text before creating data files with Flume; otherwise, those files cannot be read by either Impala or Hive.

Severity: High

Resolution: This information has been requested to be added to the upstream Flume documentation.

Impala does not support running on clusters with federated namespaces

Impala does not support running on clusters with federated namespaces. The impalad process will not start on a node running such a filesystem based on the org.apache.hadoop.fs.viewfs.ViewFs class.

Bug: IMPALA-77

Severity: Undetermined

Anticipated Resolution: Limitation

Workaround: Use standard HDFS on all Impala nodes.

Deviation from Hive behavior: Out of range values float/double values are returned as maximum allowed value of type (Hive returns NULL)

Impala behavior differs from Hive with respect to out of range float/double values. Out of range values are returned as maximum allowed value of type (Hive returns NULL).

Severity: Low

Workaround: None

Deviation from Hive behavior: Impala does not do implicit casts between string and numeric and boolean types.

Severity: Low

Anticipated Resolution: None Workaround: Use explicit casts.

If Hue and Impala are installed on the same host, and if you configure Hue Beeswax in CDH 4.1 to execute Impala queries, Beeswax cannot list Hive tables and shows an error on Beeswax startup.

Hue requires Beeswaxd to be running in order to list the Hive tables. Because of a port conflict bug in Hue in CDH4.1, when Hue and Impala are installed on the same host, an error page is displayed when you start the Beeswax application, and when you open the **Tables** page in Beeswax.

Severity: High

Anticipated Resolution: Fixed in an upcoming CDH4 release

Workarounds: Choose one of the following workarounds (but only one):

- Install Hue and Impala on different hosts. OR
- Upgrade to CDH4.1.2 and add the following property in the beeswax section of the /etc/hue/hue.ini configuration file:

beeswax_meta_server_only=9004

OR

If you are using CDH4.1.1 and you want to install Hue and Impala on the same host, change the code in this file:

```
/usr/share/hue/apps/beeswax/src/beeswax/management/commands/beeswax_server.py
```

```
str(beeswax.conf.BEESWAX_SERVER_PORT.get()),
```

With this line:

```
'8004',
```

Beeswaxd will then use port 8004.

Note:

If you used Cloudera Manager to install Impala, refer to the Cloudera Manager release notes for information about using an equivalent workaround by specifying the beeswax_meta_server_only=9004 configuration value in the options field for Hue. In Cloudera Manager 4, these fields are labelled Safety Valve; in Cloudera Manager 5, they are called Advanced Configuration Snippet.

Impala should tolerate bad locale settings

If the LC_* environment variables specify an unsupported locale, Impala does not start.

Bug: IMPALA-532

Severity: Low

Workaround: Add LC_ALL="C" to the environment settings for both the Impala daemon and the Statestore daemon. See Modifying Impala Startup Options on page 46 for details about modifying these environment settings.

Resolution: Fixing this issue would require an upgrade to Boost 1.47 in the Impala distribution.

Log Level 3 Not Recommended for Impala

The extensive logging produced by log level 3 can cause serious performance overhead and capacity issues.

Severity: Low

Workaround: Reduce the log level to its default value of 1, that is, GLOG_v=1. See Setting Logging Levels on page 423 for details about the effects of setting different logging levels.

Fixed Issues in Impala

The following sections describe the major issues fixed in each Impala release.

For known issues that are currently unresolved, see Known Issues and Workarounds in Impala on page 477.

Issues Fixed in the 2.1.4 Release / CDH 5.3.4

This section lists the most significant Impala issues fixed in Impala 2.1.4 for CDH 5.3.4. Because CDH 5.3.5 does not include any code changes for Impala, Impala 2.1.4 is included with both CDH 5.3.4 and 5.3.5.

For the full list of Impala fixed issues in Impala 2.1.4 for CDH 5.3.4, see Known Issues Fixed in CDH 5.3.4.

Note: This Impala maintenance release is only available as part of CDH 5, not under CDH 4.

Crash: impala::TupleIsNullPredicate::Prepare

When expressions that tested for NULL were used in combination with analytic functions, an error could occur. (The original crash issue was fixed by an earlier patch.)

Bug: IMPALA-1519

Severity: High

Expand parsing of decimals to include scientific notation

DECIMAL literals could include e scientific notation. For example, now CAST(1e3 AS DECIMAL(5,3)) is a valid expression. Formerly it returned NULL. Some scientific expressions might have worked before in DECIMAL context, but only when the scale was 0.

Bug: IMPALA-1952

Severity: High

INSERT/CTAS evaluates and applies constant predicates.

An INSERT OVERWRITE statement would write new data, even if a constant clause such as WHERE 1 = 0 should have prevented it from writing any rows.

Bug: IMPALA-1860

Severity: High

Assign predicates below analytic functions with a compatible partition by clause

If the PARTITION BY clause in an analytic function refers to partition key columns in a partitioned table, now Impala can perform partition pruning during the analytic query.

Bug: IMPALA-1900

Severity: High

FIRST_VALUE may produce incorrect results with preceding windows

A query using the <code>FIRST_VALUE</code> analytic function and a window defined with the <code>PRECEDING</code> keyword could produce wrong results.

Bug: IMPALA-1888

Severity: High

FIRST_VALUE rewrite fn type might not match slot type

A query referencing a DECIMAL column with the FIRST_VALUE analytic function could encounter an error.

Bug: IMPALA-1559

Severity: High

AnalyticEvalNode cannot handle partition/order by exprs with NaN

A query using an analytic function could encounter an error if the evaluation of an analytic ORDER BY OF PARTITION expression resulted in a NaN value, for example if the ORDER BY OF PARTITION contained a division operation where both operands were zero.

Bug: IMPALA-1808

AnalyticEvalNode not properly handling nullable tuples

An analytic function containing only an OVER clause could encounter an error if another part of the query (such as a join) produced all-NULL tuples.

Bug: IMPALA-1562 Severity: High

Issues Fixed in the 2.1.3 Release / CDH 5.3.3

This section lists the most significant issues fixed in Impala 2.1.3.

For the full list of fixed issues in Impala 2.1.3, see the CDH 5.3.3 release notes.

Note: Impala 2.1.3 is available as part of CDH 5.3.3, not under CDH 4.

Add compatibility flag for Hive-Parquet-Timestamps

When Hive writes TIMESTAMP values, it represents them in the local time zone of the server. Impala expects TIMESTAMP values to always be in the UTC time zone, possibly leading to inconsistent results depending on which component created the data files. This patch introduces a new startup flag,

-convert_legacy_hive_parquet_utc_timestamps. for the impalad daemon. Specify

-convert_legacy_hive_parquet_utc_timestamps=true to make Impala recognize Parquet data files written by Hive and automatically adjust TIMESTAMP values read from those files into the UTC time zone for compatibility with other Impala TIMESTAMP processing.

Bug: IMPALA-1658

Severity: High

Use snprintf() instead of lexical_cast() in float-to-string casts

Converting a floating-point value to a STRING could be slower than necessary.

Bug: IMPALA-1738

Severity: High

Fix partition spilling cleanup when new stream OOMs

Certain calls to aggregate functions with STRING arguments could encounter a serious error when the system ran low on memory and attempted to activate the spill-to-disk mechanism. The error message referenced the function impala::AggregateFunctions::StringValGetValue.

Bug: IMPALA-1865

Severity: High

Impala's ACLs check do not consider all group ACLs, only checked first one.

If the HDFS user ID associated with the impalad process had read or write access in HDFS based on group membership, Impala statements could still fail with HDFS permission errors if that group was not the first listed group for that user ID.

Bug: IMPALA-1805

Severity: High

Fix infinite loop opening or closing file with invalid metadata

Truncating a file in HDFS, after Impala had cached the file metadata, could produce a hang when Impala queried a table containing that file.

Bug: IMPALA-1794

Severity: High

external-data-source-executor leaking global jni refs

Successive calls to the data source API could result in excessive memory consumption, with memory allocated but never freed.

Bug: IMPALA-1801

Severity: High

Spurious stale block locality messages

Impala could issue messages stating the block locality metadata was stale, when the metadata was actually fine. The internal "remote bytes read" counter was not being reset properly. This issue did not cause an actual slowdown in query execution, but the spurious error could result in unnecessary debugging work and unnecessary use of the INVALIDATE METADATA statement.

Bug: IMPALA-1712

Severity: High

Issues Fixed in the 2.1.2 Release / CDH 5.3.2

This section lists the most significant issues fixed in Impala 2.1.2.

For the full list of fixed issues in Impala 2.1.2, see this report in the JIRA system.

• Note: Impala 2.1.2 is available as part of CDH 5.3.2, not under CDH 4.

Impala incorrectly handles double numbers with more than 19 significant decimal digits

When a floating-point value was read from a text file and interpreted as a FLOAT or DOUBLE value, it could be incorrectly interpreted if it included more than 19 significant digits.

Bug: IMPALA-1622

Severity: High

unix_timestamp() does not return correct time

The unix_timestamp() function could return an incorrect value (a constant value of 1).

Bug: IMPALA-1623

Severity: High

Row Count Mismatch: Partition pruning with NULL

A query against a partitioned table could return incorrect results if the WHERE clause compared the partition key to NULL using operators such as = or !=.

Bug: IMPALA-1535

Severity: High

Fetch column stats in bulk using new (Hive .13) HMS APIs

The performance of the COMPUTE STATS statement and queries was improved, particularly for wide tables.

Bug: IMPALA-1120

Issues Fixed in the 2.1.1 Release / CDH 5.3.1

This section lists the most significant issues fixed in Impala 2.1.1.

For the full list of fixed issues in Impala 2.1.1, see this report in the JIRA system.

IMPALA-1556 causes memory leak with secure connections

impalad daemons could experience a memory leak on clusters using Kerberos authentication, with memory usage growing as more data is transferred across the secure channel, either to the client program or between Impala nodes. The same issue affected LDAP-secured clusters to a lesser degree, because the LDAP security only covers data transferred back to client programs.

Bug: https://issues.cloudera.org/browse/IMPALA-1674 IMPALA-1674

Severity: High

TSaslServerTransport::Factory::getTransport() leaks transport map entries

impalad daemons in clusters secured by Kerberos or LDAP could experience a slight memory leak on each connection. The accumulation of unreleased memory could cause problems on long-running clusters.

Bug: IMPALA-1668

Severity: High

Issues Fixed in the 2.1.0 Release / CDH 5.3.0

This section lists the most significant issues fixed in Impala 2.1.0.

For the full list of fixed issues in Impala 2.1.0, see this report in the JIRA system.

Kerberos fetches 3x slower

Transferring large result sets back to the client application on Kerberos

Bug: IMPALA-1455

Severity: High

Compressed file needs to be hold on entirely in Memory

Queries on gzipped text files required holding the entire data file and its uncompressed representation in memory at the same time. SELECT and COMPUTE STATS statements could fail or perform inefficiently as a result. The fix enables streaming reads for gzipped text, so that the data is uncompressed as it is read.

Bug: IMPALA-1556

Severity: High

Cannot read hbase metadata with NullPointerException: null

Impala might not be able to access HBase tables, depending on the associated levels of Impala and HBase on the system.

Bug: IMPALA-1611

Severity: High

Serious errors / crashes

Improved code coverage in Impala testing uncovered a number of potentially serious errors that could occur with specific query syntax. These errors are resolved in Impala 2.1.

Bug: IMPALA-1553, IMPALA-1528, IMPALA-1526, IMPALA-1524, IMPALA-1508, IMPALA-1493, IMPALA-1501 , IMPALA-1483

Severity: High

Issues Fixed in the 2.0.3 Release / CDH 5.2.4

This section lists the most significant issues fixed in Impala 2.0.3.

For the full list of fixed issues in Impala 2.0.3, see this report in the JIRA system.

Note: Impala 2.0.3 is available as part of CDH 5.2.4, not under CDH 4.

Anti join could produce incorrect results when spilling

An anti-join query (or a NOT EXISTS operation that was rewritten internally into an anti-join) could produce incorrect results if Impala reached its memory limit, causing the query to write temporary results to disk.

Bug: IMPALA-1471

Severity: High

Row Count Mismatch: Partition pruning with NULL

A query against a partitioned table could return incorrect results if the WHERE clause compared the partition key to NULL using operators such as = or ! =.

Bug: IMPALA-1535

Severity: High

Fetch column stats in bulk using new (Hive .13) HMS APIs

The performance of the COMPUTE STATS statement and queries was improved, particularly for wide tables.

Bug: IMPALA-1120

Severity: High

Issues Fixed in the 2.0.2 Release / CDH 5.2.3

This section lists the most significant issues fixed in Impala 2.0.2.

For the full list of fixed issues in Impala 2.0.2, see this report in the JIRA system.

Note: Impala 2.0.2 is available as part of CDH 5.2.3, not under CDH 4.

GROUP BY on STRING column produces inconsistent results

Some operations in queries submitted through Hue or other HiveServer2 clients could produce inconsistent results.

Bug: IMPALA-1453

Severity: High

Fix leaked file descriptor and excessive file descriptor use

Impala could encounter an error from running out of file descriptors. The fix reduces the amount of time file descriptors are kept open, and avoids leaking file descriptors when read operations encounter errors.

Severity: High

unix_timestamp() does not return correct time

The unix_timestamp() function could return a constant value 1 instead of a representation of the time.

Bug: IMPALA-1623

Severity: High

Impala should randomly select cached replica

To avoid putting too heavy a load on any one node, Impala now randomizes which scan node processes each HDFS data block rather than choosing the first cached block replica.

Bug: IMPALA-1586

Severity: High

Impala does not always give short name to Llama.

In clusters secured by Kerberos or LDAP, a discrepancy in internal transmission of user names could cause a communication error with Llama.

Bug: IMPALA-1606

Severity: High

accept unmangled native UDF symbols

The CREATE FUNCTION statement could report that it could not find a function entry point within the .so file for a UDF written in C++, even if the corresponding function was present.

Bug: IMPALA-1475

Severity: High

Issues Fixed in the 2.0.1 Release / CDH 5.2.1

This section lists the most significant issues fixed in Impala 2.0.1.

For the full list of fixed issues in Impala 2.0.1, see this report in the JIRA system.

Queries fail with metastore exception after upgrade and compute stats

After running the COMPUTE STATS statement on an Impala table, subsequent queries on that table could fail with the exception message Failed to load metadata for table: default.stats_test.

Bug: https://issues.cloudera.org/browse/IMPALA-1416 IMPALA-1416

Severity: High

Workaround: Upgrading to CDH 5.2.1, or another level of CDH that includes the fix for HIVE-8627, prevents the problem from affecting future COMPUTE STATS statements. On affected levels of CDH, or for Impala tables that have become inaccessible, the workaround is to disable the hive.metastore.try.direct.sql setting in the Hive metastore hive-site.xml file and issue the INVALIDATE METADATA statement for the affected table. You do not need to rerun the COMPUTE STATS statement for the table.

Issues Fixed in the 2.0.0 Release / CDH 5.2.0

This section lists the most significant issues fixed in Impala 2.0.0.

For the full list of fixed issues in Impala 2.0.0, see <u>this report in the JIRA system</u>.

Join Hint is dropped when used inside a view

Hints specified within a view query did not take effect when the view was queried, leading to slow performance. As part of this fix, Impala now supports hints embedded within comments.

Bug: IMPALA-995"

WHERE condition ignored in simple query with RIGHT JOIN

Potential wrong results for some types of queries.

Bug: IMPALA-1101"

Severity: High

Query with self joined table may produce incorrect results

Potential wrong results for some types of queries.

Bug: IMPALA-1102"

Severity: High

Incorrect plan after reordering predicates (inner join following outer join)

Potential wrong results for some types of queries.

Bug: IMPALA-1118"

Severity: High

Combining fragments with compatible data partitions can lead to incorrect results due to type incompatibilities (missing casts).

Potential wrong results for some types of queries.

Bug: IMPALA-1123"

Severity: High

Predicate dropped: Inline view + DISTINCT aggregate in outer query

Potential wrong results for some types of queries.

Bug: IMPALA-1165"

Severity: High

Reuse of a column in JOIN predicate may lead to incorrect results

Potential wrong results for some types of queries.

Bug: IMPALA-1353"

Severity: High

Usage of TRUNC with string timestamp reliably crashes node

Serious error for certain combinations of function calls and data types.

Bug: IMPALA-1105"

Severity: High

Timestamp Cast Returns invalid TIMESTAMP

Serious error for certain combinations of function calls and data types.

Bug: IMPALA-1109"

Severity: High

IllegalStateException upon JOIN of DECIMAL columns with different precision

DECIMAL columns with different precision could not be compared in join predicates.

Bug: IMPALA-1121"

Severity: High

Allow creating Avro tables without column definitions. Allow COMPUTE STATS to always work on Impala-created Avro tables.

Hive-created Avro tables with columns specified by a JSON file or literal could produce errors when queried in Impala, and could not be used with the COMPUTE STATS statement. Now you can create such tables in Impala to avoid such errors.

Bug: IMPALA-1104"

Severity: High

Ensure all webserver output is escaped

The Impala debug web UI did not properly encode all output.

Bug: IMPALA-1133"

Severity: High

Queries with union in inline view have empty resource requests

Certain queries could run without obeying the limits imposed by resource management.

Bug: IMPALA-1236"

Severity: High

Impala does not employ ACLs when checking path permissions for LOAD and INSERT

Certain INSERT and LOAD DATA statements could fail unnecessarily, if the target directories in HDFS had restrictive HDFS permissions, but those permissions were overridden by HDFS extended ACLs.

Bug: IMPALA-1279"

Severity: High

Impala does not map principals to lowercase, affecting Sentry authorisation

In a Kerberos environment, the principal name was not mapped to lowercase, causing issues when a user logged in with an uppercase principal name and Sentry authorization was enabled.

Bug: IMPALA-1334"

Severity: High

Issues Fixed in the 1.4.4 Release / CDH 5.1.5

For the list of fixed issues, see Known Issues Fixed in CDH 5.1.5 in the CDH 5 Release Notes.

Note: Impala 1.4.4 is available as part of CDH 5.1.5, not under CDH 4.

Issues Fixed in the 1.4.3 Release / CDH 5.1.4

Impala 1.4.3 includes fixes to address what is known as the POODLE vulnerability in SSLv3. SSLv3 access is disabled in the Impala debug web UI.

Note: Impala 1.4.3 is available as part of CDH 5.1.4, and under CDH 4.

Issues Fixed in the 1.4.2 Release / CDH 5.1.3

This section lists the most significant issues fixed in Impala 1.4.2.

For the full list of fixed issues in Impala 1.4.2, see this report in the JIRA system.

Note: Impala 1.4.3 is available as part of CDH 5.1.4, and under CDH 4.

Issues Fixed in the 1.4.1 Release / CDH 5.1.2

This section lists the most significant issues fixed in Impala 1.4.1.

For the full list of fixed issues in Impala 1.4.1, see this report in the JIRA system.

Note: Impala 1.4.1 is only available as part of CDH 5.1.2, not under CDH 4.

impalad terminating with Boost exception

Occasionally, a non-trivial query run through Llama could encounter a serious error. The detailed error in the log was:

```
boost::exception_detail::clone_impl
    <boost::exception_detail::error_info_injector<boost::lock_error> >
```

Severity: High

Impalad uses wrong string format when writing logs

Impala log files could contain internal error messages due to a problem formatting certain strings. The messages consisted of a Java call stack starting with:

```
jni-util.cc:177] java.util.MissingFormatArgumentException: Format specifier 's'
```

Severity: High

Update HS2 client API.

A downlevel version of the HiveServer2 API could cause difficulty retrieving the precision and scale of a DECIMAL value.

Bug: IMPALA-1107

Severity: High

Impalad catalog updates can fail with error: "IllegalArgumentException: fromKey out of range" at com.cloudera.impala.catalog.CatalogDeltaLog

The error in the title could occur following a DDL statement. This issue was discovered during internal testing and has not been reported in customer environments.

Bug: IMPALA-1093

Severity: High

"Total" time counter does not capture all the network transmit time

The time for some network operations was not counted in the report of total time for a query, making it difficult to diagnose network-related performance issues.

Bug: IMPALA-1131

Impala will crash when reading certain Avro files containing bytes data

Certain Avro fields for byte data could cause Impala to be unable to read an Avro data file, even if the field was not part of the Impala table definition. With this fix, Impala can now read these Avro data files, although Impala queries cannot refer to the "bytes" fields.

Bug: IMPALA-1149

Severity: High

Support specifying a custom Authorization Provider in Impala

The --authorization_policy_provider_class option for impalad was added back. This option specifies a custom AuthorizationProvider class rather than the default HadoopGroupAuthorizationProvider. It had been used for internal testing, then removed in Impala 1.4.0, but it was considered useful by some customers.

Bug: IMPALA-1142

Severity: High

Issues Fixed in the 1.4.0 Release / CDH 5.1.0

This section lists the most significant issues fixed in Impala 1.4.0.

For the full list of fixed issues in Impala 1.4.0, see this report in the JIRA system.

Failed DCHECK in disk-io-mgr-reader-context.cc:174

The serious error in the title could occur, with the supplemental message:

num_used_buffers_ < 0: #used=-1 during cancellation HDFS cached data</pre>

The issue was due to the use of HDFS caching with data files accessed by Impala. Support for HDFS caching in Impala was introduced in Impala 1.4.0 for CDH 5.1.0. The fix for this issue was backported to Impala 1.3.x, and is the only change in Impala 1.3.2 for CDH 5.0.4.

Bug: IMPALA-1019

Severity: High

Workaround: On CDH 5.0.x, upgrade to CDH 5.0.4 with Impala 1.3.2, where this issue is fixed. In Impala 1.3.0 or 1.3.1 on CDH 5.0.x, do not use HDFS caching for Impala data files in Impala internal or external tables. If some of these data files are cached (for example because they are used by other components that take advantage of HDFS caching), set the query option DISABLE_CACHED_READS=true. To set that option for all Impala queries across all sessions, start impalad with the -default_query_options option and include this setting in the option argument, or on a cluster managed by Cloudera Manager, fill in this option setting on the Impala Daemon options page.

Resolution: This issue is fixed in Impala 1.3.2 for CDH 5.0.4. The addition of HDFS caching support in Impala 1.4 means that this issue does not apply to any new level of Impala on CDH 5.

impala-shell only works with ASCII characters

The impala-shell interpreter could encounter errors processing SQL statements containing non-ASCII characters.

Bug: IMPALA-489

Severity: High

The extended view definition SQL text in Views created by Impala should always have fully-qualified table names

When a view was accessed while inside a different database, references to tables were not resolved unless the names were fully qualified when the view was created.

Bug: IMPALA-962

Severity: High

Impala forgets about partitions with non-existant locations

If an ALTER TABLE specified a non-existent HDFS location for a partition, afterwards Impala would not be able to access the partition at all.

Bug: IMPALA-741
Severity: High

CREATE TABLE LIKE fails if source is a view

The CREATE TABLE LIKE clause was enhanced to be able to create a table with the same column definitions as a view. The resulting table is a text table unless the STORED AS clause is specified, because a view does not have an associated file format to inherit.

Bug: IMPALA-834
Severity: High

Improve partition pruning time

Operations on tables with many partitions could be slow due to the time to evaluate which partitions were affected. The partition pruning code was speeded up substantially.

Bug: <u>IMPALA-887</u>
Severity: High

Improve compute stats performance

The performance of the COMPUTE STATS statement was improved substantially. The efficiency of its internal operations was improved, and some statistics are no longer gathered because they are not currently used for planning Impala queries.

Bug: IMPALA-1003
Severity: High

When I run CREATE TABLE new_table LIKE avro_table, the schema does not get mapped properly from an avro schema to a hive schema

After a CREATE TABLE LIKE statement using an Avro table as the source, the new table could have incorrect metadata and be inaccessible, depending on how the original Avro table was created.

Bug: IMPALA-185
Severity: High

Race condition in loMgr. Blocked ranges enqueued after cancel.

Impala could encounter a serious error after a query was cancelled.

Bug: IMPALA-1046
Severity: High

Deadlock in scan node

A deadlock condition could make all impalad daemons hang, making the cluster unresponsive for Impala queries.

Bug: IMPALA-1083

Issues Fixed in the 1.3.3 Release / CDH 5.0.5

Impala 1.3.3 includes fixes to address what is known as the POODLE vulnerability in SSLv3. SSLv3 access is disabled in the Impala debug web UI.

Note: Impala 1.3.3 is only available as part of CDH 5.0.5, not under CDH 4.

Issues Fixed in the 1.3.2 Release / CDH 5.0.4

This backported bug fix is the only change between Impala 1.3.1 and Impala 1.3.2.

Note: Impala 1.3.3 is only available as part of CDH 5.0.5, not under CDH 4.

Failed DCHECK in disk-io-mgr-reader-context.cc:174

The serious error in the title could occur, with the supplemental message:

num_used_buffers_ < 0: #used=-1 during cancellation HDFS cached data</pre>

The issue was due to the use of HDFS caching with data files accessed by Impala. Support for HDFS caching in Impala was introduced in Impala 1.4.0 for CDH 5.1.0. The fix for this issue was backported to Impala 1.3.x, and is the only change in Impala 1.3.2 for CDH 5.0.4.

Bug: IMPALA-1019

Severity: High

Workaround: On CDH 5.0.x, upgrade to CDH 5.0.4 with Impala 1.3.2, where this issue is fixed. In Impala 1.3.0 or 1.3.1 on CDH 5.0.x, do not use HDFS caching for Impala data files in Impala internal or external tables. If some of these data files are cached (for example because they are used by other components that take advantage of HDFS caching), set the query option DISABLE_CACHED_READS=true. To set that option for all Impala queries across all sessions, start impalad with the -default_query_options option and include this setting in the option argument, or on a cluster managed by Cloudera Manager, fill in this option setting on the Impala Daemon options page.

Resolution: This issue is fixed in Impala 1.3.2 for CDH 5.0.4. The addition of HDFS caching support in Impala 1.4 means that this issue does not apply to any new level of Impala on CDH 5.

Issues Fixed in the 1.3.1 Release / CDH 5.0.3

This section lists the most significant issues fixed in Impala 1.3.1.

For the full list of fixed issues in Impala 1.3.1, see this report in the JIRA system. Because 1.3.1 is the first 1.3.x release for CDH 4, if you are on CDH 4, also consult <u>Issues Fixed in the 1.3.0 Release / CDH 5.0.0</u> on page 495.

Impalad crashes when left joining inline view that has aggregate using distinct

Impala could encounter a severe error in a query combining a left outer join with an inline view containing a COUNT(DISTINCT) operation.

Bug: IMPALA-904

Severity: High

Incorrect result with group by query with null value in group by data

If the result of a GROUP BY operation is NULL, the resulting row might be omitted from the result set. This issue depends on the data values and data types in the table.

Bug: IMPALA-901

Drop Function does not clear local library cache

When a UDF is dropped through the DROP FUNCTION statement, and then the UDF is re-created with a new .so library or JAR file, the original version of the UDF is still used when the UDF is called from queries.

Bug: IMPALA-786

Severity: High

Workaround: Restart the impalad daemon on all nodes.

Compute stats doesn't propagate underlying error correctly

If a COMPUTE STATS statement encountered an error, the error message is "Query aborted" with no further detail. Common reasons why a COMPUTE STATS statement might fail include network errors causing the coordinator node to lose contact with other impalad instances, and column names that match Impala reserved words. (Currently, if a column name is an Impala reserved word, COMPUTE STATS always returns an error.)

Bug: IMPALA-762

Severity: High

Inserts should respect changes in partition location

After an ALTER TABLE statement that changes the LOCATION property of a partition, a subsequent INSERT statement would always use a path derived from the base data directory for the table.

Bug: IMPALA-624

Severity: High

Text data with carriage returns generates wrong results for count(*)

A COUNT(*) operation could return the wrong result for text tables using nul characters (ASCII value 0) as delimiters.

Bug: IMPALA-13

Severity: High

Workaround: Impala adds support for ASCII O characters as delimiters through the clause FIELDS TERMINATED BY '\0'.

10 Mgr should take instance memory limit into account when creating io buffers

Impala could allocate more memory than necessary during certain operations.

Bug: IMPALA-488

Severity: High

Workaround: Before issuing a COMPUTE STATS statement for a Parquet table, reduce the number of threads used in that operation by issuing SET NUM_SCANNER_THREADS=2 in impala-shell. Then issue UNSET NUM_SCANNER_THREADS before continuing with queries.

Impala should provide an option for new sub directories to automatically inherit the permissions of the parent directory

When new subdirectories are created underneath a partitioned table by an INSERT statement, previously the new subdirectories always used the default HDFS permissions for the impala user, which might not be suitable for directories intended to be read and written by other components also.

Bug: IMPALA-827

Resolution: In Impala 1.3.1 and higher, you can specify the --insert_inherit_permissions configuration when starting the impalad daemon.

Illegal state exception (or crash) in query with UNION in inline view

Impala could encounter a severe error in a query where the FROM list contains an inline view that includes a UNION. The exact type of the error varies.

Bug: IMPALA-888 Severity: High

INSERT column reordering doesn't work with SELECT clause

The ability to specify a subset of columns in an INSERT statement, with order different than in the target table, was not working as intended.

Bug: IMPALA-945 Severity: High

Issues Fixed in the 1.3.0 Release / CDH 5.0.0

This section lists the most significant issues fixed in Impala 1.3.0, primarily issues that could cause wrong results, or cause problems running the COMPUTE STATS statement, which is very important for performance and scalability.

For the full list of fixed issues, see this report in the JIRA system.

Inner join after right join may produce wrong results

The automatic join reordering optimization could incorrectly reorder queries with an outer join or semi join followed by an inner join, producing incorrect results.

Bug: IMPALA-860

Severity: High

Workaround: Including the STRAIGHT_JOIN keyword in the query prevented the issue from occurring.

Incorrect results with codegen on multi-column group by with NULLs.

A query with a GROUP BY clause referencing multiple columns could introduce incorrect NULL values in some columns of the result set. The incorrect NULL values could appear in rows where a different GROUP BY column actually did return NULL.

Bug: IMPALA-850 Severity: High

Using distinct inside aggregate function may cause incorrect result when using having clause

A query could return incorrect results if it combined an aggregate function call, a DISTINCT operator, and a HAVING clause, without a GROUP BY clause.

Bug: IMPALA-845 Severity: High

Aggregation on union inside (inline) view not distributed properly.

An aggregation query or a query with ORDER BY and LIMIT could be executed on a single node in some cases, rather than distributed across the cluster. This issue affected queries whose FROM clause referenced an inline view containing a UNION.

Bug: IMPALA-831

Severity: High

Wrong expression may be used in aggregate query if there are multiple similar expressions

If a GROUP BY query referenced the same columns multiple times using different operators, result rows could contain multiple copies of the same expression.

Bug: IMPALA-817

Severity: High

Incorrect results when changing the order of aggregates in the select list with codegen enabled

Referencing the same columns in both a COUNT() and a SUM() call in the same query, or some other combinations of aggregate function calls, could incorrectly return a result of 0 from one of the aggregate functions. This issue affected references to TINYINT and SMALLINT columns, but not INT or BIGINT columns.

Bug: IMPALA-765

Severity: High

Workaround: Setting the query option DISABLE_CODEGEN=TRUE prevented the incorrect results. Switching the order of the function calls could also prevent the issue from occurring.

Union queries give Wrong result in a UNION followed by SIGSEGV in another union

A union query could produce a wrong result, followed by a serious error for a subsequent union query.

Bug: IMPALA-723

Severity: High

String data in MR-produced parquet files may be read incorrectly

Impala could return incorrect string results when reading uncompressed Parquet data files containing multiple row groups. This issue only affected Parquet data files produced by MapReduce jobs.

Bug: IMPALA-729

Severity: High

Compute stats need to use quotes with identifiers that are Impala keywords

Using a column or table name that conflicted with Impala keywords could prevent running the COMPUTE STATS statement for the table.

Bug: IMPALA-777

Severity: High

COMPUTE STATS child gueries do not inherit parent guery options.

The COMPUTE STATS statement did not use the setting of the MEM_LIMIT query option in impala-shell, potentially causing problems gathering statistics for wide Parquet tables.

Bug: IMPALA-903

Severity: High

COMPUTE STATS should update partitions in batches

The COMPUTE STATS statement could be slow or encounter a timeout while analyzing a table with many partitions.

Bug: IMPALA-880

Severity: High

Fail early (in analysis) when COMPUTE STATS is run against Avro table with no columns

If the columns for an Avro table were all defined in the TBLPROPERTIES or SERDEPROPERTIES clauses, the COMPUTE STATS statement would fail after completely analyzing the table, potentially causing a long delay. Although the COMPUTE STATS statement still does not work for such tables, now the problem is detected and reported immediately.

Bug: IMPALA-867

Severity: High

Workaround: Re-create the Avro table with columns defined in SQL style, using the output of SHOW CREATE TABLE. (See the JIRA page for detailed steps.)

Issues Fixed in the 1.2.4 Release

This section lists the most significant issues fixed in Impala 1.2.4. For the full list of fixed issues, see this report in the JIRA system.

The Catalog Server exits with an OOM error after a certain number of CREATE statements

A large number of concurrent CREATE TABLE statements can cause the catalogd process to consume excessive memory, and potentially be killed due to an out-of-memory condition.

Bug: IMPALA-818

Severity: High

Workaround: Restart the catalogd service and re-try the DDL operations that failed.

Catalog Server consumes excessive cpu cycle

A large number of tables and partitions could result in unnecessary CPU overhead during Impala idle time and background operations.

Bug: IMPALA-821

Severity: High

Resolution: Catalog server processing was optimized in several ways.

Query against Avro table crashes Impala with codegen enabled

A query against a TIMESTAMP column in an Avro table could encounter a serious issue.

Bug: IMPALA-828

Severity: High

Workaround: Set the query option DISABLE_CODEGEN=TRUE

Statestore seems to send concurrent heartbeats to the same subscriber leading to repeated "Subscriber '*hostname*' is registering with statestore, ignoring update" messages

Impala nodes could produce repeated error messages after recovering from a communication error with the statestore service.

Bug: IMPALA-809

Join predicate incorrectly ignored

A join query could produce wrong results if multiple equality comparisons between the same tables referred to the same column.

Bug: <u>IMPALA-805</u>

Severity: High

Query result differing between Impala and Hive

Certain outer join queries could return wrong results. If one of the tables involved in the join was an inline view, some tests from the where clauses could be applied to the wrong phase of the query.

Severity: High

ArrayIndexOutOfBoundsException / Invalid query handle when reading large HBase cell

An HBase cell could contain a value larger than 32 KB, leading to a serious error when Impala queries that table. The error could occur even if the applicable row is not part of the result set.

Bug: IMPALA-715

Severity: High

Workaround: Use smaller values in the HBase table, or exclude the column containing the large value from the result set.

select with distinct and full outer join, impalad coredump

A query involving a DISTINCT operator combined with a FULL OUTER JOIN could encounter a serious error.

Bug: <u>IMPALA-735</u>
Severity: High

Workaround: Set the query option DISABLE_CODEGEN=TRUE

Impala cannot load tables with more than Short.MAX_VALUE number of partitions

If a table had more than 32,767 partitions, Impala would not recognize the partitions above the 32K limit and query results could be incomplete.

Bug: IMPALA-749
Severity: High

Various issues with HBase row key specification

Queries against HBase tables could fail with an error if the row key was compared to a function return value rather than a string constant. Also, queries against HBase tables could fail if the WHERE clause contained combinations of comparisons that could not possibly match any row key.

Severity: High

Resolution: Queries now return appropriate results when function calls are used in the row key comparison. For queries involving non-existent row keys, such as $where row_key is null or where the lower bound is greater than the upper bound, the query succeeds and returns an empty result set.$

Issues Fixed in the 1.2.3 Release

This release is a fix release that supercedes Impala 1.2.2, with the same features and fixes as 1.2.2 plus one additional fix for compatibility with Parquet files generated outside of Impala by components such as Hive, Pig, or MapReduce.

Impala cannot read Parquet files with multiple row groups

The parquet-mr library included with CDH4.5 writes files that are not readable by Impala, due to the presence of multiple row groups. Queries involving these data files might result in a crash or a failure with an error such as "Column chunk should not contain two dictionary pages".

This issue does not occur for Parquet files produced by Impala INSERT statements, because Impala only produces files with a single row group.

Bug: IMPALA-720 Severity: High

Issues Fixed in the 1.2.2 Release

This section lists the most significant issues fixed in Impala 1.2.2. For the full list of fixed issues, see this report in the JIRA system.

Order of table references in FROM clause is critical for optimal performance

Impala does not currently optimize the join order of queries; instead, it joins tables in the order in which they are listed in the FROM clause. Queries that contain one or more large tables on the right hand side of joins (either an explicit join expressed as a JOIN statement or a join implicit in the list of table references in the FROM clause) may run slowly or crash Impala due to out-of-memory errors. For example:

```
_____
SELECT ... FROM small_table JOIN large_table
```

Severity: Medium

Anticipated Resolution: Fixed in Impala 1.2.2.

Workaround: In Impala 1.2.2 and higher, use the COMPUTE STATS statement to gather statistics for each table involved in the join query, after data is loaded. Prior to Impala 1.2.2, modify the query, if possible, to join the largest table first. For example:

```
SELECT ... FROM small_table JOIN large_table
```

should be modified to:

```
SELECT ... FROM large_table JOIN small_table
```

Parquet in CDH4.5 writes data files that are sometimes unreadable by Impala

Some Parquet files could be generated by other components that Impala could not read.

Bug: IMPALA-694

Severity: High

Resolution: The underlying issue is being addressed by a fix in the CDH Parquet libraries. Impala 1.2.2 works around the problem and reads the existing data files.

Deadlock in statestore when unregistering a subscriber and building a topic update

The statestore service cound experience an internal error leading to a hang.

Bug: IMPALA-699 Severity: High

IllegalStateException when doing a union involving a group by

A UNION query where one side involved a GROUP BY operation could cause a serious error.

Bug: IMPALA-687

Severity: High

Impala Parquet Writer hit DCHECK in RleEncoder

A serious error could occur when doing an INSERT into a Parquet table.

Bug: IMPALA-689
Severity: High

Hive UDF jars cannot be loaded by the FE

If the JAR file for a Java-based Hive UDF was not in the CLASSPATH, the UDF could not be called during a query.

Bug: IMPALA-695
Severity: High

Issues Fixed in the 1.2.1 Release

This section lists the most significant issues fixed in Impala 1.2.1. For the full list of fixed issues, see <u>this report</u> in the JIRA system.

Scanners use too much memory when reading past scan range

While querying a table with long column values, Impala could over-allocate memory leading to an out-of-memory error. This problem was observed most frequently with tables using uncompressed RCFile or text data files.

Bug: IMPALA-525

Severity: High

Resolution: Fixed in 1.2.1

Join node consumes memory way beyond mem-limit

A join query could allocate a temporary work area that was larger than needed, leading to an out-of-memory error. The fix makes Impala return unused memory to the system when the memory limit is reached, avoiding unnecessary memory errors.

Bug: IMPALA-657
Severity: High

Resolution: Fixed in 1.2.1

Excessive memory consumption when query tables with 1k columns (Parquet file)

Impala could encounter an out-of-memory condition setting up work areas for Parquet tables with many columns. The fix reduces the size of the allocated memory when not actually needed to hold table data.

Bug: IMPALA-652

Severity: High

Resolution: Fixed in 1.2.1

Issues Fixed in the 1.2.0 Beta Release

This section lists the most significant issues fixed in Impala 1.2 (beta). For the full list of fixed issues, see <u>this</u> report in the JIRA system.

Issues Fixed in the 1.1.1 Release

This section lists the most significant issues fixed in Impala 1.1.1. For the full list of fixed issues, see this report in the JIRA system.

Unexpected LLVM Crash When Querying Doubles on CentOS 5.x

Certain queries involving DOUBLE columns could fail with a serious error. The fix improves the generation of native machine instructions for certain chipsets.

Bug: IMPALA-477

Severity: High

"block size is too big" error with Snappy-compressed RCFile containing null

Queries could fail with a "block size is too big" error, due to NULL values in RCFile tables using Snappy compression.

Bug: IMPALA-482 Severity: High

Cannot query RC file for table that has more columns than the data file

Queries could fail if an Impala RCFile table was defined with more columns than in the corresponding RCFile data files.

Bug: IMPALA-510

Severity: High

Views Sometimes Not Utilizing Partition Pruning

Certain combinations of clauses in a view definition for a partitioned table could result in inefficient performance and incorrect results.

Bug: IMPALA-495

Severity: High

Update the serde name we write into the metastore for Parquet tables

The SerDes class string written into Parquet data files created by Impala was updated for compatibility with Parquet support in Hive. See <u>Incompatible Changes Introduced in Cloudera Impala 1.1.1</u> on page 476 for the steps to update older Parquet data files for Hive compatibility.

Bug: IMPALA-485

Severity: High

Selective queries over large tables produce unnecessary memory consumption

A query returning a small result sets from a large table could tie up memory unnecessarily for the duration of the query.

Bug: IMPALA-534

Severity: High

Impala stopped to query AVRO tables

Queries against Avro tables could fail depending on whether the Avro schema URL was specified in the TBLPROPERTIES OR SERDEPROPERTIES field. The fix causes Impala to check both fields for the schema URL.

Bug: IMPALA-538

Impala continues to allocate more memory even though it has exceed its mem-limit

Queries could allocate substantially more memory than specified in the impalad -mem_limit startup option. The fix causes more frequent checking of the limit during query execution.

Bug: IMPALA-520 Severity: High

Issues Fixed in the 1.1.0 Release

This section lists the most significant issues fixed in Impala 1.1. For the full list of fixed issues, see this report in the JIRA system.

10-20% perf regression for most queries across all table formats

This issue is due to a performance tradeoff between systems running many queries concurrently, and systems running a single query. Systems running only a single query could experience lower performance than in early beta releases. Systems running many queries simultaneously should experience higher performance than in the beta releases.

Severity: High

planner fails with "Join requires at least one equality predicate between the two tables" when "from" table order does not match "where" join order

A query could fail if it involved 3 or more tables and the last join table was specified as a subquery.

Bug: IMPALA-85 Severity: High

Parquet writer uses excessive memory with partitions

INSERT statements against partitioned tables using the Parquet format could use excessive amounts of memory as the number of partitions grew large.

Bug: IMPALA-257 Severity: High

Comments in impala-shell in interactive mode are not handled properly causing syntax errors or wrong results

The impala-shell interpreter did not accept comment entered at the command line, making it problematic to copy and paste from scripts or other code examples.

Bug: IMPALA-192 Severity: Low

Cancelled gueries sometimes aren't removed from the inflight guery list

The Impala web UI would sometimes display a query as if it were still running, after the query was cancelled.

Bug: IMPALA-364 Severity: High

Impala's 1.0.1 Shell Broke Python 2.4 Compatibility (AttributeError: 'module' object has no attribute field size limit)

The impala-shell command in Impala 1.0.1 does not work with Python 2.4, which is the default on Red Hat 5.

For the impala-shell command in Impala 1.0, the -o option (pipe output to a file) does not work with Python 2.4.

Bug: IMPALA-396 Severity: High

Issues Fixed in the 1.0.1 Release

This section lists the most significant issues fixed in Impala 1.0.1. For the full list of fixed issues, see this report in the JIRA system.

Impala parquet scanner can not read all data files generated by other frameworks

Impala might issue an erroneous error message when processing a Parquet data file produced by a non-Impala Hadoop component.

Bug: IMPALA-333 Severity: High Resolution: Fixed

Impala is unable to query RCFile tables which describe fewer columns than the file's header.

If an RCFile table definition had fewer columns than the fields actually in the data files, queries would fail.

Bug: IMPALA-293 Severity: High Resolution: Fixed

Impala does not correctly substitute _HOST with hostname in --principal

The _HOST placeholder in the --principal startup option was not substituted with the correct hostname, potentially leading to a startup error in setups using Kerberos authentication.

Bug: IMPALA-351 Severity: High Resolution: Fixed

HBase query missed the last region

A query for an HBase table could omit data from the last region.

Bug: IMPALA-356 Severity: High **Resolution:** Fixed

Hbase region changes are not handled correctly

After a region in an HBase table was split or moved, an Impala query might return incomplete or out-of-date results.

Bug: IMPALA-300 Severity: High Resolution: Fixed

Query state for successful create table is EXCEPTION

After a successful CREATE TABLE statement, the corresponding query state would be incorrectly reported as EXCEPTION.

Bug: IMPALA-349
Severity: High
Resolution: Fixed

Double check release of JNI-allocated byte-strings

Operations involving calls to the Java JNI subsystem (for example, queries on HBase tables) could allocate memory but not release it.

Bug: IMPALA-358
Severity: High
Resolution: Fixed

Impala returns 0 for bad time values in UNIX_TIMESTAMP, Hive returns NULL

Impala returns 0 for bad time values in UNIX_TIMESTAMP, Hive returns NULL.

Impala:

```
impala> select UNIX_TIMESTAMP('10:02:01') ; impala> 0
```

Hive:

```
hive> select UNIX_TIMESTAMP('10:02:01') FROM tmp;
hive> NULL
```

Bug: IMPALA-16
Severity: Low

Anticipated Resolution: Fixed

INSERT INTO TABLE SELECT < constant > does not work.

Insert INTO TABLE SELECT <constant> will not insert any data and may return an error.

Severity: Low

Anticipated Resolution: Fixed

Issues Fixed in the 1.0 GA Release

Here are the major user-visible issues fixed in Impala 1.0. For a full list of fixed issues, see this report in the public issue tracker.

Undeterministically receive "ERROR: unknown row bach destination..." and "ERROR: Invalid query handle" from impala shell when running union query

A query containing both UNION and LIMIT clauses could intermittently cause the impalad process to halt with a segmentation fault.

Bug: IMPALA-183
Severity: High
Resolution: Fixed

Insert with NULL partition keys results in SIGSEGV.

An INSERT statement specifying a NULL value for one of the partitioning columns could cause the impalad process to halt with a segmentation fault.

Bug: IMPALA-190 Severity: High Resolution: Fixed

INSERT queries don't show completed profiles on the debug webpage

In the Impala web user interface, the profile page for an INSERT statement showed obsolete information for the statement once it was complete.

Bug: IMPALA-217 Severity: High Resolution: Fixed

Impala HBase scan is very slow

Queries involving an HBase table could be slower than expected, due to excessive memory usage on the Impala nodes.

Bug: IMPALA-231 Severity: High Resolution: Fixed

Add some library version validation logic to impalad when loading impala-Izo shared library

No validation was done to check that the impala-lzo shared library was compatible with the version of Impala, possibly leading to a crash when using LZO-compressed text files.

Bug: IMPALA-234 Severity: High Resolution: Fixed

Workaround: Always upgrade the impala-lzo library at the same time as you upgrade Impala itself.

Problems inserting into tables with TIMESTAMP partition columns leading table metadata loading failures and failed dchecks

INSERT statements for tables partitioned on columns involving datetime types could appear to succeed, but cause errors for subsequent queries on those tables. The problem was especially serious if an improperly formatted timestamp value was specified for the partition key.

Bug: IMPALA-238 Severity: Critical Resolution: Fixed

Ctrl-C sometimes interrupts shell in system call, rather than cancelling query

Pressing Ctrl-C in the impala-shell interpreter could sometimes display an error and return control to the shell, making it impossible to cancel the query.

Bug: IMPALA-243 Severity: Critical

Resolution: Fixed

Empty string partition value causes metastore update failure

Specifying an empty string or NULL for a partition key in an INSERT statement would fail.

Bug: IMPALA-252

Severity: High

Resolution: Fixed. The behavior for empty partition keys was made more compatible with the corresponding

Hive behavior.

Round() does not output the right precision

The round() function did not always return the correct number of significant digits.

Bug: IMPALA-266
Severity: High
Resolution: Fixed

Cannot cast string literal to string

Casting from a string literal back to the same type would cause an "invalid type cast" error rather than leaving the original value unchanged.

Bug: IMPALA-267
Severity: High
Resolution: Fixed

Excessive mem usage for certain queries which are very selective

Some queries that returned very few rows experienced unnecessary memory usage.

Bug: IMPALA-288
Severity: High
Resolution: Fixed

HdfsScanNode crashes in UpdateCounters

A serious error could occur for relatively small and inexpensive queries.

Bug: IMPALA-289
Severity: High
Resolution: Fixed

Parquet performance issues on large dataset

Certain aggregation queries against Parquet tables were inefficient due to lower than required thread utilization.

Bug: IMPALA-292
Severity: High
Resolution: Fixed

impala not populating hive metadata correctly for create table

The Impala CREATE TABLE command did not fill in the owner and tbl_type columns in the Hive metastore database.

Bug: IMPALA-295

Severity: High

Resolution: Fixed. The metadata was made more Hive-compatible.

impala daemons die if statestore goes down

The impalad instances in a cluster could halt when the statestored process became unavailable.

Bug: IMPALA-312 Severity: High Resolution: Fixed

Constant SELECT clauses do not work in subqueries

A subquery would fail if the SELECT statement inside it returned a constant value rather than querying a table.

Bug: IMPALA-67 Severity: High Resolution: Fixed

Right outer Join includes NULLs as well and hence wrong result count

The result set from a right outer join query could include erroneous rows containing NULL values.

Bug: IMPALA-90 Severity: High Resolution: Fixed

Parquet scanner hangs for some queries

The Parquet scanner non-deterministically hangs when executing some queries.

Bug: IMPALA-204 Severity: Medium **Resolution:** Fixed

Issues Fixed in Version 0.7 of the Beta Release

Impala does not gracefully handle unsupported Hive table types (INDEX and VIEW tables)

When attempting to load metadata from an unsupported Hive table type (INDEX and VIEW tables), Impala fails with an unclear error message.

Bug: <u>IMPALA-167</u>

Severity: Low

Resolution: Fixed in 0.7

DDL statements (CREATE/ALTER/DROP TABLE) are not supported in the Impala Beta Release

Severity: Medium Resolution: Fixed in 0.7

Avro is not supported in the Impala Beta Release

Severity: Medium

Resolution: Fixed in 0.7
Workaround: None

Impala does not currently allow limiting the memory consumption of a single query

It is currently not possible to limit the memory consumption of a single query. All tables on the right hand side of JOIN statements need to be able to fit in memory. If they do not, Impala may crash due to out of memory errors.

Severity: High

Resolution: Fixed in 0.7

Aggregate of a subquery result set returns wrong results if the subquery contains a 'limit' and data is distributed across multiple nodes

Aggregate of a subquery result set returns wrong results if the subquery contains a 'limit' clause and data is distributed across multiple nodes. From the query plan, it looks like we are just summing the results from each slave.

Bug: <u>IMPALA-20</u>

Severity: Low

Resolution: Fixed in 0.7

Partition pruning for arbitrary predicates that are fully bound by a particular partition column

We currently can't utilize a predicate like "country_code in ('DE', 'FR', 'US')" to do partitioning pruning, because that requires an equality predicate or a binary comparison.

We should create a superclass of planner. ValueRange, ValueSet, that can be constructed with an arbitrary predicate, and whose isInRange(analyzer, valueExpr) constructs a literal predicate by substitution of the valueExpr into the predicate.

Bug: IMPALA-144
Severity: Medium

Resolution: Fixed in 0.7

Issues Fixed in Version 0.6 of the Beta Release

Impala reads the NameNode address and port as command line parameters

Impala reads the NameNode address and port as command line parameters rather than reading them from core-site.xml. Updating the NameNode address in the core-site.xml file does not propagate to Impala.

Severity: Low

Resolution: Fixed in 0.6 - Impala reads the namenode location and port from the Hadoop configuration files, though setting -nn and $-nn_port$ overrides this. Users are advised not to set -nn or $-nn_port$.

Queries may fail on secure environment due to impalad Kerberos ticket expiration

Queries may fail on secure environment due to impalad Kerberos tickets expiring. This can happen if the Impala -kerberos_reinit_interval flag is set to a value ten minutes or less. This may lead to an impalad requesting a ticket with a lifetime that is less than the time to the next ticket renewal.

Bug: <u>IMPALA-64</u>
Severity: Medium

Concurrent queries may fail when Impala uses Thrift to communicate with the Hive Metastore

Concurrent queries may fail when Impala is using Thrift to communicate with part of the Hive Metastore such as the Hive Metastore Service. In such a case, the error get_fields failed: out of sequence response" may occur because Impala shared a single Hive Metastore Client connection across threads. With Impala 0.6, a separate connection is used for each metadata request.

Bug: IMPALA-48 Severity: Low

Resolution: Fixed in 0.6

impalad fails to start if unable to connect to the Hive Metastore

Impala fails to start if it is unable to establish a connection with the Hive Metastore. This behavior was fixed, allowing Impala to start, even when no Metastore is available.

Bug: IMPALA-58 Severity: Low

Resolution: Fixed in 0.6

Impala treats database names as case-sensitive in some contexts

In some queries (including "USE database" statements), database names are treated as case-sensitive. This may lead queries to fail with an IllegalStateException.

Bug: IMPALA-44 Severity: Medium Resolution: Fixed in 0.6

Impala does not ignore hidden HDFS files

Impala does not ignore hidden HDFS files, meaning those files prefixed with a period '.' or underscore '_'. This diverges from Hive/MapReduce, which skips these files.

Bug: IMPALA-18 Severity: Low

Resolution: Fixed in 0.6

Issues Fixed in Version 0.5 of the Beta Release

Impala may have reduced performance on tables that contain a large number of partitions

Impala may have reduced performance on tables that contain a large number of partitions. This is due to extra overhead reading/parsing the partition metadata.

Severity: High

Resolution: Fixed in 0.5

Backend client connections not getting cached causes an observable latency in secure clusters

Backend impalads do not cache connections to the coordinator. On a secure cluster, this introduces a latency proportional to the number of backend clients involved in query execution, as the cost of establishing a secure connection is much higher than in the non-secure case.

Bug: IMPALA-38 Severity: Medium

Resolution: Fixed in 0.5

Concurrent queries may fail with error: "Table object has not been been initialised: `PARTITIONS`"

Concurrent queries may fail with error: "Table object has not been been initialised: `PARTITIONS`". This was due to a lack of locking in the Impala table/database metadata cache.

Bug: IMPALA-30
Severity: Medium

Resolution: Fixed in 0.5

UNIX_TIMESTAMP format behaviour deviates from Hive when format matches a prefix of the time value

The Impala UNIX_TIMESTAMP(val, format) operation compares the length of format and val and returns NULL if they do not match. Hive instead effectively truncates val to the length of the format parameter.

Bug: IMPALA-15
Severity: Medium

Resolution: Fixed in 0.5

Issues Fixed in Version 0.4 of the Beta Release

Impala fails to refresh the Hive metastore if a Hive temporary configuration file is removed

Impala is impacted by Hive bug <u>HIVE-3596</u> which may cause metastore refreshes to fail if a Hive temporary configuration file is deleted (normally located at /tmp/hive-<user>-<tmp_number>.xml). Additionally, the impala-shell will incorrectly report that the failed metadata refresh completed successfully.

Severity: Medium

Anticipated Resolution: To be fixed in a future release

Workaround: Restart the impalad service. Use the impalad log to check for metadata refresh errors.

Ipad/rpad builtin functions is not correct.

The lpad/rpad builtin functions generate the wrong results.

Severity: Mild

Resolution: Fixed in 0.4

Files with .gz extension reported as 'not supported'

Compressed files with extensions incorrectly generate an exception.

Bug: IMPALA-14
Severity: High

Resolution: Fixed in 0.4

Queries with large limits would hang.

Some queries with large limits were hanging.

Severity: High

Order by on a string column produces incorrect results if there are empty strings

Severity: Low

Resolution: Fixed in 0.4

Issues Fixed in Version 0.3 of the Beta Release

All table loading errors show as unknown table

If Impala is unable to load the metadata for a table for any reason, a subsequent query referring to that table will return an unknown table error message, even if the table is known.

Severity: Mild

Resolution: Fixed in 0.3

A table that cannot be loaded will disappear from SHOW TABLES

After failing to load metadata for a table, Impala removes that table from the list of known tables returned in SHOW TABLES. Subsequent attempts to query the table returns 'unknown table', even if the metadata for that table is fixed.

Severity: Mild

.

Resolution: Fixed in 0.3

Impala cannot read from HBase tables that are not created as external tables in the hive metastore.

Attempting to select from these tables fails.

Severity: Medium

Resolution: Fixed in 0.3

Certain gueries that contain OUTER JOINs may return incorrect results

Queries that contain OUTER JOINs may not return the correct results if there are predicates referencing any of the joined tables in the WHERE clause.

Severity: Medium

Resolution: Fixed in 0.3.

Issues Fixed in Version 0.2 of the Beta Release

Subqueries which contain aggregates cannot be joined with other tables or Impala may crash

Subqueries that contain an aggregate cannot be joined with another table or Impala may crash. For example:

```
SELECT * FROM (SELECT sum(col1) FROM some_table GROUP BY col1) t1 JOIN other_table ON (\dots);
```

Severity: Medium

An insert with a limit that runs as more than one query fragment inserts more rows than the limit.

For example:

INSERT OVERWRITE TABLE test SELECT * FROM test2 LIMIT 1;

Severity: Medium

Resolution: Fixed in 0.2

Query with limit clause might fail.

For example:

SELECT * FROM test2 LIMIT 1;

Severity: Medium

Resolution: Fixed in 0.2

Files in unsupported compression formats are read as plain text.

Attempting to read such files does not generate a diagnostic.

Severity: Medium

Resolution: Fixed in 0.2

Impala server raises a null pointer exception when running an HBase query.

When querying an HBase table whose row-key is string type, the Impala server may raise a null pointer exception.

Severity: Medium