SUCCOTASH when α and τ are known, but Σ is "estimated".

David Gerard

December 14, 2015

Abstract

Here, I compare SUCCOTASH to LEAPP when the assumed Σ is a noisy version of the true $\Sigma.$

1 Model Description

$$Y_{p\times 1} = \beta_{p\times 1} + \alpha_{p\times k} Z_{k\times 1} + E_{p\times 1},\tag{1}$$

such that

- α is known.
 - $E \sim N_p(0, \Sigma), \Sigma = \operatorname{diag}\{\sigma_1^2, \dots, \sigma_p^2\}.$

2 Procedure

- p = 100,
- $k \in \{5, 10, 50\},\$
- $\beta_j \sim N(0, \tau_k^2)$ w.p. π_k ,
- $\tau_k^2 = 0, 1, 100$ for k = 0, 1, 2 when we have a three mixture and $\tau_k = 0, 100$ for k = 0, 1 when we have a two mixture model,
- $\pi \in \{(0.5, 0.5), (0.9, 0.1), (1, 0, 0), (0.9, 0.1, 0), (0.9, 0, 0.1), (0.5, 0.5, 0), (0.5, 0, 0.5), (0.5, 0.25, 0.25)\}$
- $Z_j \stackrel{i.i.d.}{\sim} N(0,1),$
- $\alpha_{ij} \stackrel{i.i.d.}{\sim} N(0,1),$
- 400 iterations for each π by k combination, sampling a new Z and α at each iteration.
- The true Σ I used to generate the data is $\Sigma = I_p$.
- I drew $\hat{\Sigma} = \text{diag}\{\hat{\sigma}_1, \dots, \hat{\sigma}_p\}$ from $\hat{\sigma}_i \sim \sigma_i^2 \chi_5^2 / 5$. This roughly corresponds to having a sample size of 7 (if we are just estimating a slope and intercept). I used this $\hat{\Sigma}$ when estimating β and Z in (1). But again, $\sigma_i^2 = 1$ for all $i = 1, \dots, p$.
- I did not regularize the estimates of π for SUCCOTASH.
- At each iteration, I calculated the Sum of Squared Errors (SSE) for the posterior means under SUCCOTASH, and the estimates of β given by the second step of LEAPP.
- I also calculated the SSE when using just Y to estimate β (called OLS in Figures and Tables below).
- I also calculated $\hat{\pi}_0$ given by SUCCOTASH and LEAPP at each iteration.

• LEAPP uses an L_1 penalty, so I called its $\hat{\pi}_0$ to just be the proportion of elements of β it sets to 0.

3 Results

SUCCOTASH beats LEAPP in every scenario (Table 1). It also seems to estimate π_0 fairly comparably to the case when Σ is known (Table 2). There is only one scenario studied where there is a noticable difference. When k=50 and $\pi=(0.5,0.5)$ with $\tau^2=(0,100)$, the mean SUCCOTASH estimate of π_0 is 0.52 when Σ is known. But with the "estimated" Σ , the mean SUCCOTASH estimate of π_0 is 0.65.

\overline{k}	π_0	π_1	π_2	SUC	LEAPP	OLS
5	.5	-	.5	9.8	12.5	24.6
5	.9	-	.1	6.1	6.4	25.0
5	1	0	0	1.6	4.0	24.8
5	.9	.1	0	3.7	5.2	24.3
5	.9	0	.1	6.7	7.1	25.2
5	.5	.5	0	5.9	8.0	24.6
5	.5	0	.5	10.3	12.4	25.2
5	.5	.25	.25	7.5	8.5	23.7
10	.5	-	.5	11.2	23.9	32.7
10	.9	-	.1	5.8	6.2	32.8
10	1	0	0	0.9	3.1	32.9
10	.9	.1	0	3.6	5.3	33.4
10	.9	0	.1	6.1	6.5	33.3
10	.5	.5	0	6.3	8.6	33.4
10	.5	0	.5	10.8	22.6	32.7
10	.5	.25	.25	9.4	12.3	33.0
50	.5	-	.5	54.1	99.1	71.7
50	.9	-	.1	10.0	99.8	71.5
50	1	0	0	0.7	101.0	71.1
50	.9	.1	0	3.3	98.8	71.0
50	.9	0	.1	7.4	99.2	71.2
50	.5	.5	0	7.8	98.4	71.3
50	.5	0	.5	54.2	99.4	70.8
50	.5	.25	.25	25.8	99.7	71.9

Table 1: Average Sum of Squared Errors for SUCCOTASH, LEAPP, and OLS at given k and π values.

\overline{k}	π_0	π_1	π_2	SUC	SUC Sig Known	LEAPP
5	.5	-	.5	.50	.51	.60
5	.9	-	.1	.89	.90	.92
5	1	0	0	1.00	.98	.99
5	.9	.1	0	.95	.92	.99
5	.9	0	.1	.88	.86	.92
5	.5	.5	0	.60	.57	.96
5	.5	0	.5	.49	.48	.61
5	.5	.25	.25	.64	.57	.78
10	.5	-	.5	.51	.52	.54
10	.9	-	.1	.89	.91	.91
10	1	0	0	1.00	.98	.99
10	.9	.1	0	.97	.94	.98
10	.9	0	.1	.89	.88	.91
10	.5	.5	0	.63	.65	.96
10	.5	0	.5	.51	.50	.55
10	.5	.25	.25	.67	.61	.76
50	.5	-	.5	.65	.52	.16
50	.9	-	.1	.92	.90	.22
50	1	0	0	1.00	1.00	.20
50	.9	.1	0	1.00	1.00	.19
50	.9	0	.1	.92	.93	.20
50	.5	.5	0	.99	1.00	.22
50	.5	0	.5	.67	.68	.18
_50	.5	.25	.25	.79	.81	.19

Table 2: Mean $\hat{\pi}_0$ for SUCCOTASH and LEAPP at given k and π values. Also included are mean π_0 estimates when Σ is known.

4 SSE Plots

$$\pi_0 = (0.5, 0.5), \, \tau^2 = (0, 100), \, k = 5$$

$$\pi_0 = (0.9, 0.1), \, \tau^2 = (0, 100), \, k = 5$$

$$\pi_0 = (1,0,0), \ \tau^2 = (0,1,100), \ k = 5$$

$$\pi_0 = (0.9, 0.1, 0), \, \tau^2 = (0, 1, 100), \, k = 5$$

$$\pi_0 = (0.9, 0, 0.1), \, \tau^2 = (0, 1, 100), \, k = 5$$

$$\pi_0 = (0.5, 0.5, 0), \, \tau^2 = (0, 1, 100), \, k = 5$$

$$\pi_0 = (0.5, 0, 0.5), \ \tau^2 = (0, 1, 100), \ k = 5$$

$$\pi_0 = (0.5, 0.25, 0.25), \, \tau^2 = (0, 1, 100), \, k = 5$$

$$\pi_0 = (0.5, 0.5), \, \tau^2 = (0, 100), \, k = 10$$

$$\pi_0 = (0.9, 0.1), \, \tau^2 = (0, 100), \, k = 10$$

$$\pi_0 = (1,0,0), \, \tau^2 = (0,1,100), \, k = 10$$

$$\pi_0 = (0.9, 0.1, 0), \, \tau^2 = (0, 1, 100), \, k = 10$$

$$\pi_0 = (0.9,0,0.1), \ \tau^2 = (0,1,100), \ k = 10$$

$$\pi_0 = (0.5, 0, 0.5), \, \tau^2 = (0, 1, 100), \, k = 10$$

$$\pi_0 = (0.5, 0.25, 0.25), \, \tau^2 = (0, 1, 100), \, k = 10$$

$$\pi_0 = (0.5, 0.5), \, \tau^2 = (0, 100), \, k = 50$$

$$\pi_0 = (0.9, 0.1), \, \tau^2 = (0, 100), \, k = 50$$

$$\pi_0 = (1,0,0), \, \tau^2 = (0,1,100), \, k = 50$$

Succotash leapp ols

$$\pi_0 = (0.9,0,0.1), \, \tau^2 = (0,1,100), \, k = 50$$

$$\pi_0 = (0.5, 0.5, 0), \, \tau^2 = (0, 1, 100), \, k = 50$$

$$\pi_0 = (0.5, 0, 0.5), \, \tau^2 = (0, 1, 100), \, k = 50$$

$$\pi_0 = (0.5, 0.25, 0.25), \, \tau^2 = (0, 1, 100), \, k = 50$$

$\hat{\pi}_0$ Plots

$$\pi_0 = (0.5, 0.5), \, \tau^2 = (0, 100), \, k = 5$$

$$\pi_0 = (0.9, 0.1), \, \tau^2 = (0, 100), \, k = 5$$

$$\pi_0 = (1,0,0), \, \tau^2 = (0,1,100), \, k = 5$$

$$\pi_0 = (0.9, 0.1, 0), \ \tau^2 = (0, 1, 100), \ k = 5$$

$$\pi_0 = (0.9, 0, 0.1), \, \tau^2 = (0, 1, 100), \, k = 5$$

$$\pi_0 = (0.5, 0.5, 0), \, \tau^2 = (0, 1, 100), \, k = 5$$

$$\pi_0 = (0.5, 0, 0.5), \, \tau^2 = (0, 1, 100), \, k = 5$$

$$\pi_0 = (0.5, 0.25, 0.25), \, \tau^2 = (0, 1, 100), \, k = 5$$

$$\pi_0 = (0.5, 0.5), \, \tau^2 = (0, 100), \, k = 10$$

$$\pi_0 = (0.9, 0.1), \, \tau^2 = (0, 100), \, k = 10$$

$$\pi_0 = (1,0,0), \ \tau^2 = (0,1,100), \ k = 10$$

$$\pi_0 = (0.9, 0.1, 0), \ \tau^2 = (0, 1, 100), \ k = 10$$

$$\pi_0 = (0.9,0,0.1), \ \tau^2 = (0,1,100), \ k = 10$$

$$\pi_0 = (0.5, 0.5, 0), \, \tau^2 = (0, 1, 100), \, k = 10$$

$$\pi_0 = (0.5, 0, 0.5), \, \tau^2 = (0, 1, 100), \, k = 10$$

$$\pi_0 = (0.5, 0.25, 0.25), \, \tau^2 = (0, 1, 100), \, k = 10$$

$$\pi_0 = (0.5, 0.5), \, \tau^2 = (0, 100), \, k = 50$$

$$\pi_0 = (0.9, 0.1), \, \tau^2 = (0, 100), \, k = 50$$

$$\pi_0 = (1,0,0), \ \tau^2 = (0,1,100), \ k = 50$$

$$\pi_0 = (0.9,0,0.1), \, \tau^2 = (0,1,100), \, k = 50$$

$$\pi_0 = (0.5, 0.5, 0), \, \tau^2 = (0, 1, 100), \, k = 50$$

$$\pi_0 = (0.5,0,0.5), \, \tau^2 = (0,1,100), \, k = 50$$

SUCCOTASH

$$\pi_0 = (0.5, 0.25, 0.25), \, \tau^2 = (0, 1, 100), \, k = 50$$

LEAPP

