EECS240 - Spring 2010

Lecture 9: Amplifiers

Elad Alon Dept. of EECS

How about Capacitive Feedback?

- · At low frequency:
- No loading from feedback network (|Z_f| = ∞)
- · Gain drops at high frequency
 - · But this happens in all amplifiers
- Does this really work?
 - Hint: what happens if you simulate this in SPICE?

EECS240 Lecture 9

OpAmps and OTAs

OpAmp

+

- High voltage gain, high input impedance
- Voltage source output (low impedance)

FFCS240

Lecture 9

OTA

- High "voltage" gain, high input impedance
- Current source output (high impedance)

EECS240 Lecture 9

Capacitive Feedback cont'd

- Charge on $\boldsymbol{v}_{\boldsymbol{x}}$ is undefined needs to be reset to known value
- Can we just do this once at start-up?
 - Depends how long you want to use the amplifier...
- · Usually do this "reset" every cycle
 - Why each cycle instead of only once every N cycles?

Resistive Feedback

- Open-loop gain: ∞
- (Independent of R_f)
- V_i-W_o-V_o
 - Open-loop gain: G_mR_f
 - Feedback loads the OTA
 - How about large R_f?
 - Lots of area, parasitic poles
 - Need a different solution...

EECS240

Lecture 9

Switched-Capacitor Gain Stage

- Many possible topologies one example shown
 here
- Clocks generally non-overlapping

EECS240

Lecture 9

9

