Onde Fluidi e Termodinamica

Riassunto da:

"FISICA: Meccanica e Termodiamica - P. Mazzoldi, M. Nigro, C. Voci"

corso A Università degli studi di Torino, Torino Maggio 2024

Indice

1	Ond		4
•	1.1	Onde meccaniche	4
	1.1	1.1.1 Onde in una sbarra solida	6
		1.1.2 Onde in una corda tesa	8
		1.1.3 Onde nei gas	9
		Densità	9
		Pressione	9
		Forza	10
		Modulo di compressibilità adiabatica	10
	1.2	Onde piane armoniche	11
	1.2	1.2.1 Propagazione dell'energia in una barra solida	12
		Energia per unità di volume	12
		Intensità dell'onda	13
		1.2.2 Propagazione dell'energia in una corda tesa	13
		Energia per unità di lunghezza	14
	1.3	Onde sonore	14
	1.0	1.3.1 Pressione	14
		1.3.2 Potenza	15
		1.3.3 Intensità	15
		1.3.4 Fonometria	15
		Livello sonoro	16
	1.4	Onde in più dimensioni	16
		1.4.1 Onde elastiche in una membrana tesa	16
		1.4.2 Onde sferiche	 17
		Intensità	 18
	1.5	Onde cilindriche	 18
		1.5.1 Assorbimento dell'energia	19
	1.6	Pacchetti d'onde	20
		1.6.1 Velocità di fase e velocità di gruppo	 20
	1.7	Effetto Doppler	 22
		1.7.1 Sorgente in moto	 22
		1.7.2 Rivelatore in moto	
		1.7.3 Espressione generale	 23
		1.7.4 Onda d'urto	 23
	1.8	Interferenza	 24
		1.8.1 Interferenza con stessa ampiezza	 24
		1.8.2 Interferenza costruttiva e distruttiva	 25
		1.8.3 Interferenza con ampiezze diverse	 25
		1.8.4 Interferenza costruttiva e distruttiva	 26
		1.8.5 Sorgenti puntiformi	 26
	1.9	Riflessione e trasmissione	 27
	1 10	Ondo stazionario	20

		1.10.1 Corda tesa con due estremi fissi 2 1.10.2 Corda tesa con un estremo fisso 2 1.10.3 Onde stazionarie in una colonna di gas 3	29
		1.10.4 Timbro	
2	Flui	dodinamica 3	31
_			31
			31
		•	33
		•	33
	2.2		33
	2.3	•	34
	2.4	•	35
			36
			36
		•	37
			88
			38
			39
		· · · · · · · · · · · · · · · · · · ·	
3			1
	3.1		11
			11
	3.2	1	12
			14
			14
	3.3	1	14
			15
			15
			16
	3.4		17
			18
		1	18
			19
		O	19
	3.5		19
		3.5.1 Conduzione	
		3.5.2 Convezione	
			52
		3.5.4 Calore tra solido e fluido	52
4	Gas	ideali e reali	53
-	Gus		53
			53
			53
		•	54
			54
	4.1	·	54
			55
	4.2		55
	4.3	•	55
	4.4		55
	4.5		55
	4.6		55
	4.7		55
		<u> </u>	

	4.8	Teoria cinetica dei gas ideali		 	 	 	 55
5	Ter	modinamica - II principio					56
	5.1	Secondo principio della termodinamica		 	 	 	 56
		5.1.1 Enunciato di Kelvin-Plank		 	 	 	 56
		5.1.2 Enunciato di Clausius		 	 	 	 56
		Ciclo monotermo		 	 	 	 57
	5.2	Teorema di Carnot - espressione matematica	a	 	 	 	 57
		Studio del rendimento massimo		 	 	 	 58
		5.2.1 Teorema di Clausius		 	 	 	 58
		5.2.2 Temperatura termodinamica assoluta	1	 	 	 	 59
	5.3	Entropia					
		5.3.1 Principio di aumento dell'entropia .					
		5.3.2 Calcoli di variazione di entropia					
		Scambi di calore con sorgenti					
		Scambi di calore tra corpi					
		-					

Onde

1.1 Onde meccaniche

Se in casi come il pendolo o un corpo attaccato ad una molla l'oscillazione è **macroscopica** perché tutto il sistema oscilla, in corpi continui elastici possono prodursi moti oscillatori locali, provocati in una zona specifica del corpo. Questa oscillazione indotta localmente si **propaga nel mezzo** con una certa velocità costituendo così un'**onda**.

Definizione: Onda

Un'onda è una perturbazione locale impulsiva e periodica che si porpaga in un mezzo (corpo continuo ed elastico) con una certa velocità v. Nel caso unidimensionale parliamo di **onda piana** $\xi(x,t)$ la cui deformazione è costante in tutti i punti con stessa x

Per descrivere l'andamento di un'onda possiamo: **fissare un istante** *t* e osservare la deformazione su tutto lo spazio *x*, come se fosse una foto dell'onda; oppure **fissare un punto dello spazio** *x* e osservare al variare del tempo come varia la forma dell'onda, come se fosse un filmato.

inserire grafici

Vediamo ora come possiamo scrivere l'equazione che descrive la perturbazione in funzione della posizione \mathbf{x} e del tempo \mathbf{t} : per farlo serviamoci di un sistema di riferimento $\mathbf{0}$ solidale con l'istante t=0 e un sistema di riferimento $\mathbf{0}'$ solidale con lo spostamento dell'onda che viaggia a velocità v.

Possiamo quindi descrivere la posizione l'andamento di un'onda piana tramite una funzione del tipo

$$\begin{cases} x' = x \pm vt \\ \xi' = \xi \end{cases} \Rightarrow \xi(x, t) = \mathbf{f}(\mathbf{x} \pm \mathbf{vt})$$

Una funzione del tipo $\mathbf{f}(\mathbf{x} \pm \mathbf{vt})$ soddisfa l'equazione differenziale detta **equazione delle onde** o **equazione** di d'Alembert:

$$\nabla_{\xi}^{2} - \frac{1}{v^{2}} \frac{\partial^{2} \xi}{\partial t^{2}} = 0 \quad \Rightarrow \quad \boxed{\frac{\partial^{2} \xi}{\partial x^{2}} = \frac{1}{v^{2}} \frac{\partial^{2} \xi}{\partial t^{2}}}$$

- dimostrazione-

$$\mathbf{z} = \mathbf{x} - \mathbf{v} \mathbf{t} \iff \boxed{\frac{\partial z}{\partial x} = 1} \qquad \boxed{\frac{\partial z}{\partial t} = -v} \iff \mathbf{f} = \mathbf{f}(\mathbf{z})$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial z} \frac{\partial z}{\partial x} \right) = \frac{\partial^2 f}{\partial z^2}$$

$$\frac{\partial^2 f}{\partial t^2} = \frac{\partial}{\partial t} \left(\frac{\partial f}{\partial t} \right) = \frac{\partial}{\partial t} \left(\frac{\partial f}{\partial z} \frac{\partial z}{\partial t} \right) = \frac{\partial}{\partial t} \left(-v \frac{\partial f}{\partial z} \right) = -v \frac{\partial}{\partial z} \left(-v \frac{\partial f}{\partial z} \right) = v^2 \frac{\partial^2 f}{\partial z^2}$$

$$\frac{\partial^2 \xi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \xi}{\partial t^2}$$

Il passaggio più ambiguo è quello evidenziato in ciano, in cui viene cambiata variabile di derivazione da t a z. Trattando una funzione qualsiasi, la derivata di qualsiasi funzione rispetto a t è uguale a -v derivata rispetto a z (-v rappresenta il dz che va a moltiplicare).

Notare che l'equazione delle onde è soddisfatta solo per funzioni che hanno come argomento combinazioni lineari di x e t ($\xi(x\pm vt)$); è perciò **l'argomento che importa e non la funzione in sè**. Una combinazione lineare di soluzioni è ancora soluzione dell'equazione, la soluzione generale ha forma

$$G(x, t) = f(x - vt) + g(x + vt)$$