CS 373 Notes

15 March 2012

Contents

1	General							
	1.1	Starting off	1					
	1.2	Strings	1					
	1.3	Language	2					
2	Reg	ular Languages	2					
	2.1	Deterministic Finite Automotas	2					
	2.2	Non-Deterministic Finite Automotas (NFA)	3					
	2.3	Regular Expressions	4					
	2.4	Generalized NFA (GNFA)	4					
	2.5	Pumping Lemma for regular languages	5					
	2.6	Substitutions	5					
		2.6.1 Substution simple definition	5					
		2.6.2 Homomorphism	5					
		2.6.3 Inverse Homorphism	5					
	2.7	DFA Minimization	5					
		2.7.1 Theory	5					
		2.7.2 Algorithm	6					
	2.8	Reg Operations (closed under the Reg languages)	6					
3	Context Free Grammars 7							
	3.1	Formal Definition:	7					
	3.2	Chomsky Normal form (CNF)	7					
	3.3	Deterministic Push Down Automotas	8					
	3.4	Non-Deterministic Push Down Automotas (PDA)	8					
	3.5	Relating PDA to CFL	8					
	3.6	Pumping Lemma for CFL's	8					
	3.7	Closure Properties of CFL's	8					

	3.7.1 Theorems for Closure								8
3.8	CYK algorithm								9

1 General

Sizes	Examples	Countable?
Finite	{a,b}	yes
Countable Infinite	N,Z,Q	yes
Uncountable Infinity	R, Pow(R)	no

name	description	Machine
regular	LRk	D PDA
context free language	CFG	PDA

1.1 Starting off

- 1. Alphabet(Σ) = finite non empty set
- 2. N in this class starts at 0
- 3. A set X is countably infinite iff \exists a bijection $f:\mathbb{N}\to X$

1.2 Strings

- 1. String(w) = sequence of characted in Σ
- 2. w: $\{c_i \in \Sigma \mid 0 <= i <= n\}$
- 3. |w| = n = length of the string
- 4. $|\mathbf{w}| = 0 \rightarrow w = \epsilon$
- (a) Careful $\sigma \neq \emptyset$
- 5. Substring subsequence of characters in w
- 6. Concatination: $\mathbf{w}_1 \cdot \mathbf{w}_2$
- 7. Reverse: \mathbf{w}^r
- 8. Palindrum: $\mathbf{w} = \mathbf{w}^r$

1.3 Language

- 1. Language(L) = set of strings
- 2. $\Sigma^n = \{ w : |w| = n \}$
- 3. $\Sigma^0 = \{ \epsilon \}$
- 4. $\Sigma^* = \bigcup_{i=0}^n \Sigma^i$, Language of all strings

2 Regular Languages

2.1 Deterministic Finite Automotas

- 1. Finite state machine (M)
- 2. Takes a string of inputs
- 3. 2 types of states
 - (a) Accept
 - (b) Deny
- 4. There is 1 start state
- 5. The set of all strings accepted by language of M or L(A)
- 6. Formal Definition
 - (a) a Language A $\in \Sigma^*$ is called regular iff there exists a DFA ,M, s.t. L(M) = A
 - (b) DFA is a 5 tuple \$ M = (Q, Σ , δ , q₀, F)\$
 - i. Q is a finte set of states
 - ii. Σ is a finite alphabet
 - iii. $\delta: Q \times \Sigma \to Q$ is the transition function
 - iv. $q_0 \in Q$ is the inital state
 - v. $F \subset Q$ is the set of accept states
 - (c) $L(M) \equiv \text{language of all accepted strings}$
- 7. Closure properties/Regular Operations on languages
 - (a) A_1 and A_2 are regular

- (b) Union: $A_1 \cup A_2 = A_3$
- (c) Concatenate: $A_1 A_2 = A_3$
- (d) Star: $A_1^* = A_3$

2.2 Non-Deterministic Finite Automotas (NFA)

- 1. Formal Definition
 - (a) $M = (Q, \Sigma, \delta, q_0, F)$
 - i. Q = finite set of states
 - ii. Σ is a finate alphabet
 - iii. $\delta = Q \times \Sigma_{\epsilon} \to Pow(Q)$
 - A. $\Sigma_{\epsilon} = \Sigma \cup \epsilon$
 - iv. $q_0 = \text{start state}$
 - v. $F \subset Q$
 - (b) NFA accepts w If we can write $w = y_1y_2...y_ny_i \in \Sigma_{\epsilon}$ s.t. there exists a sequence of states path $R = r_0, r_1, ...$
 - i. $r_0 = q_0$
 - ii. $r_{i+1} \in \delta(r_i, y_{i+1})$ for i = 0, 1...m 1
 - iii. $r_m \in F$
- 2. Useful Lemma: For all NFA, M, there exists an DFA ,N, s.t. L(m) = L(n)

2.3 Regular Expressions

- 1. Def: R is a regex over a fixed alphabet iff one of the following is true:
 - (a) $R = a \in \Sigma$
 - (b) $R = \sigma$
 - (c) $R = \emptyset$
 - (d) $R = R_1 \cup R_2$, given $R_1 \wedge R_2$ are regex
 - (e) $R = R_1 R_2$, given $R_1 \wedge R_2$ are regex
 - (f) $R = R^*$
- 2. Order of operations

- (a) star
- (b) concatination
- (c) union
- 3. Identities
 - (a) $a\emptyset = \emptyset$
 - (b) $a\sigma = \sigma$
 - (c) $\emptyset^* = \sigma$

2.4 Generalized NFA (GNFA)

- 1. Definition
 - (a) Q = set of all states
 - (b) $Q^0 = Q q_s tart, q_a ccept$
 - (c) The start state has out edges to every $q \in Q q_s tart$, and no in edges
 - (d) The accept state has inedges from every $q \in Q q_a ccept$, and no outedges
 - (e) An edege exists from every $q_1 \in Q^0$ to every $q_2 \in Q^0$ even if $q_1 = q_2$
 - (f) Every edge is labed with a regex
- 2. Useful lemma: Any NFA can be written as a GNFA
- 3. lemma: Given a GNFA, M, with 2 states, the regex between the 2 states describes the language of M $\,$

2.5 Pumping Lemma for regular languages

If A is regular, then $\exists p \in \mathbb{N} \text{ s.t. } \forall s \in A \text{ for which } |s| >= p, s \text{ can be written}$ as xyz and satisfy the following condition:

- 1. $\forall i >= 0, xy^i z \in A$
- 2. |y| > 0 i.e. $y \neq \epsilon$
- 3. |xy| <= p

P is called the "pumping length

2.6 Substitutions

2.6.1 Substution simple definition

- A is a reg language and $A \mapsto f(A), A \subseteq E^*$
- A s described w. a regex and R_a is a regex using Γ
- $\forall a \in \Sigma a \mapsto R_a$
- $\epsilon \mapsto \epsilon$ and $\emptyset \mapsto \emptyset$

2.6.2 Homomorphism

- \bullet $A \mapsto h(A)$
- $a \mapsto w, w \in \Gamma^*, a \in \Sigma$

2.6.3 Inverse Homorphism

•
$$h^{-1}(A) = \{ w \in \Sigma^* | h(w) \in A \}$$

2.7 DFA Minimization

2.7.1 Theory

Problem: Given a DFA, M, with L(M) = A, find another DFA, M_{2c} , s.t. $L(M) = L(M_2)$ and $|Q_2|$ is as small as possible

• $\$\delta: Q \times \Sigma \to Q\$$ $\delta(q, w)q \in Q, w \in \Sigma^*$ $\delta(q, w) \equiv \text{ interative call on delta for all } w_i \text{ in w}$ If $\exists w \in \Sigma^* \text{ s.t. } [\delta(p, w) \in F \text{ and } \delta q, w \notin F] \text{ or } [\delta(p, w) \notin F \text{ and } \delta q, w \in F] \text{ then p and q are distrguishable}$

2.7.2 Algorithm

for (p,q) in Q^2:
 if (p in F) and (not q in F):
 A.push((p,q)) # marked list
 else:
 B.push((p,q)) # unmarked list
for (p,q) in B:

```
if (delta(p,a),delta(q,a)) in B:
    A.push((p,q))
```

2.8 Reg Operations (closed under the Reg languages)

- 1. $A_1 \cup A_2$
- 2. $A_1 A_2$
- 3. $\bar{A}_1 = \Sigma^* A_1$
- 4. $A_1 \cap A_2$
- 5. Symmetric Diff
- 6. A_1A_2
- 7. A_1^*
- 8. A^r
- 9. Reg langagues are clased under substitution
- 10. Reg langagues are clased under homomorphism
- 11. Reg langagues are clased under inverse homorphism
- 12. Reg langagues are clased under

3 Context Free Grammars

3.1 Formal Definition:

- 1. (V, Σ, R, S)
 - (a) $V = \text{Finite set of } \underline{\text{variables}} \text{ or "non-terminals"}$
 - (b) $\Sigma = \text{finite set of } \underline{\text{terminals}}$
 - i. $\Sigma \cap V = \emptyset$
 - ii. Convention: Variables are uppercase, symbols are lowercase
 - (c) R = finite set of <u>rules</u> or "substitution rules" or "productions" 1. Rules: examples
 - i. $A \rightarrow aaBc|a$

A. This means the for an A you can replace it with aaBc or

ii.
$$A \Rightarrow OA1 \Rightarrow 00A11 \Rightarrow 001A011 \Rightarrow 001011$$

- (d) S is the start variable
- 2. $L(G) = \{ w \in \Sigma^* | S \Rightarrow^* w \}$
- 3. Notation:
 - (a) Variables: A,B,C...
 - (b) Terminal: $a, b, c, ... 0, 1, \$ \epsilon \$$
 - (c) $U \Rightarrow^* V$ is defined as \exists sequence $U_1..U_k$, s.t. $U \Rightarrow U_1 \Rightarrow U_2 \Rightarrow ... \Rightarrow U_k \to V$

3.2 Chomsky Normal form (CNF)

- All rules have the form
 - $-A \rightarrow BC$, where B, C cannot be S
 - $-A \rightarrow a$
 - if $A \to \epsilon$ then A = S
- Lemma: Any CFG can be written in CNF

3.3 Deterministic Push Down Automotas

• $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$

$$- \delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to Q \times \Gamma_{\epsilon}$$

- 3.4 Non-Deterministic Push Down Automotas (PDA)
 - $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$

$$- \ \delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to Pow(Q \times \Gamma_{\epsilon})$$

3.5 Relating PDA to CFL

- A language is context free iff \exists a PDA that recognizes it
 - Lemma: If A is CF, then \exists a PDA, M, s.t. A = L(M)
 - Lemma: \forall PDA, M, \exists CFL, G, s.t. L(G) = L(M)
 - * Proof Idea: Make a conical PDA (while preserving acceptance) as follows
 - 1. 1 accept states
 - 2. Stack is empty when accepting
 - 3. Every transition either push or pops but not both

3.6 Pumping Lemma for CFL's

3.7 Closure Properties of CFL's

- 1. $A_1 \cap A_2$
- 2. $A_1 \cdot A_2$
- 3. A_1^*
- 4. Closure under substituion

3.7.1 Theorems for Closure

Let $G_i = (V_i, \Sigma_i, R_i, S_i)$ for i=1,2 and $A_i = L(G_i)$ Without loss of generality, assume $V_1 \cap V_2 = \emptyset \wedge S_3$

• Theorem: If A_1 and A_2 are CFL's, then $A_1 \cup A_2$ is a CFL

Proof:

Let
$$G_i = (V_i, \Sigma_i, R_i, S_i)$$
 for $i=1,2$ and $A_i = L(G_i)$
Without loss of generality, assume $V_1 \cap V_2 = \emptyset \wedge S_3 \notin V_1 \cup V_2$
Construct $G_3 = (V_1 \cup V_2 \cup \{S_3\}, \Sigma_1 \cup \Sigma_2, R_3, S_3)$ with $R_3 = R_1 \cup R_2 \cup \{S_3 \rightarrow S_1 | S_2\}$. \square

• Theorem: If A_1 and A_2 are CFL's then $A_1 \cdot A_2$ is a CFL

Proof:

$$\notin V_1 \cup V_2$$
 Construct $G_3 = (V_1 \cup V_2 \cup \{S_3\}, \, \Sigma_1 \cup \Sigma_2, \, R_1 \cup R_2 \cup \{S_3 \to S_1 S_2\}, \, S_3)$

 \bullet Theorem: If A_1 and A_2 are CFL's then ${A_1}^\star$ is a CFL

Proof: Construct G₃ = (V₁ \cup {S₃}, Σ_1 , R₁ \cup {S₂ \rightarrow S₁ S₂ | ϵ })

3.8 CYK algorithm