NETWORK THEORY (EC2001)

Assignment 1

1. Problems on the Time Constant

Q.1 Determine the time constants of the following circuits

2. Problems on the Source Free Circuit

Q.2 Determine $i_L(0^+)$, $V(0^+)$, $i_L(t)$ for $t \ge 0$ for the following circuits. Consider the switch is closed for a long time and it is opened at t = 0 for each case.

Q.3(i) Determine $V_C(0^+)$, $i(0^+)$, $V_C(t)$ for $t \ge 0$ for the following circuits. Consider the switch is opened for a long time and it is closed at t = 0 for each case.

a) 505 0.1A 1=0 (1) 0.1A 2000 1/2 1/2

Q.3(ii) Determine V_C and i_C for $t \ge 0$

Q.4 Determine $V_C,\,i_C,\,i_R$, V_S for $t\geq 0$

Q.5 Determine V_C , i_L for $t \ge 0$

b) In the above problem, if the excitation is 20u(-t) mA ($^{\spadesuit}$) then i_L and V_C for $t \ge 0$

9f tin = 0.4 t 4 for + 70 then Vin (t) | +=1sec =?

Q.7

Q.8 Determine i(t)

Q.9

Det. the current through the battery at
$$t=0^{\dagger}$$
 and at $t\to\infty$ solution in $\frac{1}{10^{\circ}}$ and $\frac{1}{10^{\circ}}$ at $\frac{1}{10^{\circ}}$ and $\frac{1}{10^{\circ}}$ and $\frac{1}{10^{\circ}}$ and $\frac{1}{10^{\circ}}$ at $\frac{1}{10^{\circ}}$ and $\frac{1}{10^{\circ}}$ and $\frac{1}{10^{\circ}}$ and $\frac{1}{10^{\circ}}$ are current.

Q.10

S.S. vollages across the capacitors Determine

Q.12 Det. ic (o+)

Q.13

Q.14

11(0+)

Q.15 a)

$$\frac{dir(t)}{dt}\Big|_{t=0}^{t} = 0$$
 & $\frac{dvi(t)}{dt}\Big|_{t=0}^{t}$ are

b)

Problem above Repeat

