Circuit Creation

Making boolean expressions

So how would you represent boolean expressions using logic gates?

Y = (A or B) and (not A or not B) or C

Like so:

Creating complex circuits

- What do we do in the case of more complex circuits, with several inputs and more than one output?
 - If you're lucky, a truth table is provided to express the circuit.
 - Usually the behaviour of the circuit is expressed in words, and the first step involves creating a truth table that represents the described behaviour.

Circuit example

 The circuit on the right has three inputs (A, B and C) and two outputs (X and Y).

- What logic is needed to set X high when all three inputs are high?
- What logic is needed to set Y high when the number of high inputs is odd?

Combinational circuits

Small problems can be solved easily.

- Larger problems require a more systematic approach.
 - <u>Example:</u> Given three inputs A, B, and C, make output Y high in the case where all of the inputs are low, or when A and B are low and C is high, or when A and C are low but B is high, or when A is low and B and C are high.

6

Creating complex logic

- How do we approach problems like these (and circuit problems in general)?
- Basic steps:
 - 1. Create truth tables.
 - 2. Express as boolean expression.
 - 3. Convert to gates.
- The key to an efficient design?
 - Spending extra time on Step #2.

Now you are here

Assembly Language

Processors
Arithmetic Finite State
Logic Units Machines
Devices Flip-flops
Circuits
Gates
Transistors

Lecture Goals

- After this lecture, you should be able to:
 - Create a truth table that represents the behaviour of a circuit you want to create.
 - Translate the minterms from a truth table into gates that implement that circuit.
 - Use Karnaugh maps to reduce the circuit to the minimal number of gates.

Example truth table

- Consider the following example:
 - "Given three inputs A, B, and C, make output Y high wherever any of the inputs are low, except when all three are low or when A and C are high."
- This leads to the truth table on the right.
 - Is there a better way to describe the cases when the circuit's output is high?

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Minterms

- An easier way to express circuit behaviour is to assume the standard truth table format, and then list which input rows cause high output.
 - These rows are referred to as minterms.

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

13

Minterms and maxterms

- A more formal description:
 - Minterm = an AND expression with every input present in true or complemented form.
 - Maxterm = an OR expression with every input present in true or complemented form.
 - For example, given four inputs (A, B, C, D):
 - Valid minterms:
 - $A \cdot \overline{B} \cdot C \cdot D$, $\overline{A} \cdot B \cdot \overline{C} \cdot D$, $A \cdot B \cdot C \cdot D$
 - Valid maxterms:
 - $A+\overline{B}+C+D$, $\overline{A}+B+\overline{C}+D$, A+B+C+D
 - Neither minterm nor maxterm:
 - A ·B+C ·D, A ·B ·D, A+B

14

Creating boolean expressions

- While we're talking about notation...
 - AND operations are denoted in these expressions by the multiplication symbol.
 - e.g. $A \cdot B \cdot C$ or $A * B * C \approx A \wedge B \wedge C$
 - OR operations are denoted by the addition symbol.
 - e.g. A+B+C ≈ A∨B∨C
 - NOT is denoted by multiple symbols.
 - e.g. $\neg A$ or A' or \overline{A}
 - XOR occurs rarely in circuit expressions.
 - e.g. $\mathbb{A} \oplus \mathbb{B}$

15

Back to minterms

- Circuits are often described using minterms or maxterms, as a form of logic shorthand.
 - Given n inputs, there are 2ⁿ minterms and maxterms possible (same as rows in a truth table).
 - Naming scheme:
 - Minterms are labeled as $\rm m_{_{\rm X}\prime}$ maxterms are labeled as $\rm M_{_{\rm X}}$
 - The $\mathbf x$ subscript indicates the row in the truth table.
 - x starts at 0 (when all inputs are low), and ends with 2^n-1 .
 - Example: Given 3 inputs
 - Minterms are m_0 ($\overline{A} \cdot \overline{B} \cdot \overline{C}$) to m_7 ($A \cdot B \cdot C$)
 - Maxterms are M_0 (A+B+C) to M_7 ($\overline{A}+\overline{B}+\overline{C}$)

Quick Exercises Given 4 inputs A, B, C and D write: Mode of Mode of

Using minterms and maxterms

- What are minterms used for?
 - A single minterm indicates a set of inputs that will make the output go high.
 - Example: m₂
 - Output only goes high in third line of truth table.

A	В	С	D	m ₂
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Using minterms and maxterms

- What happens when you OR two minterms?
 - Result is output that goes high in both minterm cases.
 - For m₂+m₈, both third and ninth lines of truth table result in high output.

A	В	С	D	m ₂	m ₈	m ₂ +m ₈
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	1	0	1
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	0	1	1
1	0	0	1	0	0	0
1	0	1	0	0	0	0
1	0	1	1	0	0	0
1	1	0	0	0	0	0
1	1	0	1	0	0	0
1	1	1	0	0	0	0
1	1	1	1	0	0	0

Creating boolean expressions

- Two canonical forms of boolean expressions:
 - Sum-of-Minterms (SOM):
 - Since each minterm corresponds to a single high output in the truth table, the combined high outputs are a union of these minterm expressions.
 - Expressed in "Sum-of-Products" form.
 - Product-of-Maxterms (POM):
 - Since each maxterm only produces a single low output in the truth table, the combined low outputs are an intersection of these maxterm expressions.
 - Expressed in "Product-of-Sums" form.

20

_	m_2	2 +	m	6 +	m_7	+ m	10 (SOM
A	В	С	D	m ₂	m ₆	m ₇	m ₁₀	Y
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	1	0	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0
0	1	1	0	0	1	0	0	1
0	1	1	1	0	0	1	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0
1	0	1	0	0	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0

Using Sum-of-Minterms

- Sum-of-Minterms is a way of expressing which inputs cause the output to go high.
 - Assumes that the truth table columns list the inputs according to some logical or natural order.
- Minterm and maxterm expressions are used for efficiency reasons:
 - More compact than displaying entire truth tables.
 - Sum-of-minterms are useful in cases with very few input combinations that produce high output.
 - Product-of-maxterms useful when expressing truth tables that have very few low output cases...

■ Z	=	Μ	· 3	M	5 · M	[₇ ·	M_{10}	. 1	1 ₁₄	(PC	M)
	A	В	С	D	M ₃	M ₅	M ₇	M ₁₀	M ₁₄	z	
	0	0	0	0	1	1	1	1	1	1	
	0	0	0	1	1	1	1	1	1	1	
	0	0	1	0	1	1	1	1	1	1	
	0	0	1	1	0	1	1	1	1	0	
	0	1	0	0	1	1	1	1	1	1	
	0	1	0	1	1	0	1	1	1	0	
	0	1	1	0	1	1	1	1	1	1	
	0	1	1	1	1	1	0	1	1	0	
	1	0	0	0	1	1	1	1	1	1	
8	1	0	0	1	1	1	1	1	1	1	
	1	0	1	0	1	1	1	0	1	0	
	1	0	1	1	1	1	1	1	1	1	
	1	1	0	0	1	1	1	1	1	1	
	1	1	0	1	1	1	1	1	1	1	
	1	1	1	0	1	1	1	1	0	0	
	1	1	1	1	1	1	1	1	1	1	,,

2-input XOR gate (SOM, POM)

- m_x = M_x[']
 - Minterm x is the complement of maxterm x.
 - e.g., $m_o = A'B'$ while $M_o = A + B$
- 2-input XOR gate in SOM and POM form.
 - Sum-Of-Minterms: $F = m_1 + m_2$
 - Product-Of-Maxterms : $F = M_O \cdot M_3$
- Write F' in Sum-Of-Minterms form:
 - $\, {\scriptstyle \square} \,$ We need to include the minterms not present in F.
 - F' = mo + m₃

27

2-input XOR gate (SOM, POM)-cont'd

- Write F' in Sum-Of-Minterms form:
 - We need to include the minterms not present in F.
 - $F' = m_0 + m_3$
- Now let's take the complement of F'.
 - $(F')' = F = (m_0 + m_3)' = m_0' m_3'$
 - $^{\circ}$ But m_o ' is M_o and m_3 ' is M_3
 - Therefore, $F = M_o \cdot M_3$
- The canonical representations SOM and POM for a given function are equivalent! ©

Boolean algebra review

Axioms:

$$0 \cdot 0 = 0$$
 $0 \cdot 1 = 1 \cdot 0 = 0$
 $1 \cdot 1 = 1$ if $x = 1$, $\overline{x} = 0$

• From this, we can extrapolate:

Other Boolean identities

Commutative Law:

$$x \cdot y = y \cdot x$$
 $x+y = y+x$

Associative Law:

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

 $x + (y + z) = (x \cdot y) \cdot z$

Distributive Law:

$$x \cdot (y+z) = x \cdot y + x \cdot z$$
 $x+(y\cdot z) = (x+y) \cdot (x+z)$
Does this hold in conventional algebra?

■ Consensus Law Proof -Venn diagram

Consensus Law:

$$x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z$$

Proof by Venn diagram:

- x ⋅ y
- X · Z
- y · z
- Already covered!

34

Consensus Law Proof -Venn diagram

Consensus Law:

$$x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z$$

- Proof by Venn diagram:
 - x ⋅ y
 - X · Z
 - y · Z
 - Already covered!

25

Other boolean identities

Absorption Law:

$$x \cdot (x+y) = x$$
 $x+(x \cdot y) = x$

■ De Morgan's Laws:

$$\overline{x} \cdot \overline{y} = \overline{x+y} \\
\overline{x} + \overline{y} = \overline{x} \cdot \overline{y}$$

Converting to NAND gates

- De Morgan's Law is important because out of all the gates, NANDs are the cheapest to fabricate.
 - a Sum-of-Products circuit could be converted into an equivalent circuit of NAND gates:

• This is all based on de Morgan's Law:

Reducing boolean expressions

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Assuming logic specs at left, we get the following:

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot C$$

Now start combining terms, like the last two:

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C}$$

28

Reducing boolean expressions

- Different final expressions possible, depending on what terms you combine.
- For instance, given the previous example:

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

• If you combine the end and middle terms...

$$Y = B \cdot C + A \cdot \overline{C}$$

• Which reduces the number of gates and inputs!

39

Reducing boolean expressions

- What is considered the "simplest" expression?
 - In this case, "simple" denotes the lowest gate cost
 (G) or the lowest gate cost with NOTs (GN).
 - To calculate the gate cost, simply add all the gates together (as well as the cost of the NOT gates, in the case of the GN cost).

Reducing boolean expressions

- How do we find the "simplest" expression for a circuit?
 - Technique called Karnaugh maps (or K-maps).
 - Karnaugh maps are a 2D grid of minterms, where adjacent minterm locations in the grid differ by a single literal.
 - Values of the grid are the output for that minterm.

	B·€	B·C	в∙с	B⋅C
Ā	0	0	1	0
A	1	0	1	1

42

Karnaugh maps

 Karnaugh maps can be of any size, and have any number of inputs.

inputs.

i.e. the 4-input example here.

	<u>c</u> . <u>p</u>	<u>c</u> ⋅D	C ·D	c · <u>D</u>
Ā·B	$\rm m_{\rm o}$	m_1	m ₃	m_2
Ā·B	m ₄	m ₅	m ₇	m ₆
A·B	m ₁₂	m ₁₃	m ₁₅	m ₁₄
A·B	m ₈	m ₉	m ₁₁	m ₁₀

 Since adjacent minterms only differ by a single value, they can be grouped into a single term that omits that value. Using Karnaugh maps

- Once Karnaugh maps are created, draw boxes over groups of high output values.
 - Boxes must be rectangular, and aligned with map.
 - Number of values contained within each box must be a power of 2.
 - $\ ^{\square}$ Boxes may overlap with each other.
 - Boxes may wrap across edges of map.

	<u>B</u> ⋅ <u>C</u>	B·c	в∙с	в∙Շ
Ā	0	0	1	0
A	1	0	1	1

44

Using Karnaugh maps

	B·C	B·C	в∙с	B⋅C
Ā	0	0	1	0
A	1	0	1	1

- Once you find the minimal number of boxes that cover all the high outputs, create boolean expressions from the inputs that are common to all elements in the box.
- For this example:
 - □ Vertical box: B · C
 - □ Horizontal box: A · C
 - Overall equation: $Y = B \cdot C + A \cdot \overline{C}$

Karnaugh maps and maxterms

Can also use this

	9
•	Karnaugh maps
	with maxterms
	involves grouping

technique to	A+B	${\rm M}_{\odot}$	$\rm M_1$	M ₃	M
group maxterms together as well.	A+B	M ₄	M ₅	M ₇	M
	Ā+B	M ₁₂	M ₁₃	M ₁₅	М
Karnaugh maps with maxterms	Ā+B	M ₈	M ₉	M ₁₁	М
:					

C+D

C+D

C+D

C+D

the zero entries together, instead of grouping the entries with one values.

Quick Exercise

	C'D'	C'D	CD	CD'
A' B'	0	0	1	1,
A'B	1	1	0	0
AB	1	1	0	0
AB′	0	0	0	0

 $F = B \cdot C' + A' \cdot B' \cdot C$