FOUNDATIONS OF REPRESENTATION THEORY

4. Exercise sheet

Jendrik Stelzner

November 7, 2013

Exercise 13:

Exercise 14:

Exercise 15:

$$\neg(ii) \Rightarrow \neg(i)$$

Assume that $V=U\oplus C$ is a direct sum decomposition with U simple.

Claim. C is maximal in V.

With this we find that

$$U \subseteq \operatorname{soc}(V)$$
 and $\operatorname{rad}(V) \subseteq C$

because U is simple and C is maximal in V. Because U nonzero with $U \cap C = 0$, this implies that $soc(V) \not\subseteq rad(V)$.

Proof of the claim. Let $C' \subseteq V$ be a submodule with $C \subseteq C' \subseteq V$. Let $C'' := C' \cap U$. Because V is simple we know that C'' = 0 or C'' = U. If C'' = 0 then

$$C = C + C'' = C + (U \cap C') = (C + U) \cap C' = V \cap C' = C'.$$

If C'' = U we get

$$U = C'' = C' \cap U$$
, so $V = U \cap C \subseteq C'$, so $C' = V$.

$$(ii) \Rightarrow (i)$$

Assume that V does not have a simple direct summand. If V has no maximal submodule, then $\mathrm{soc}(V)\subseteq\mathrm{rad}(V)=V$ is trivial. If V does have at least one maximal submodule it is easy to see that

$$\operatorname{soc}(V) \subseteq \operatorname{rad}(V) \Leftrightarrow S \subseteq U$$
 for all $S \subseteq V$ simple and all $U \subseteq V$ maximal.

Assume that $S\subseteq V$ is simple and $U\subseteq W$ is maximal with $S\nsubseteq U$. Then $S\cap U\neq S$ and $S\subsetneq S+U$. Because S is simple this implies $S\cap U=0$, and because U is maximal it implies S+U=V. So $V=S\oplus U$. This is a contradiction to the assumption that V does not have a simple direct summand. So $S\subseteq U$ for all for all $S\subseteq V$ simple and all $U\subseteq V$ maximal.

Exercise 16:

(i)

 $0\subseteq K[T]$ is the only small submodule in $(K[T],T\cdot)$: Let $0\subsetneq U\subseteq K[T]$ be a small submodule. We know that U=(a) for some $a\in K[T]$; because K[T] has to be nonzero and proper we know that $\deg a\geq 1$. We find an irreducible polynomial $p\in K[T]$ with $p\nmid a$. So (a)+(p)=(1)=K[T]. Because (p) proper submodule of $(K[T],T\cdot)$ this shows that U is not small.

In $N(\infty)$ all nonzero submodules are small: For all nonzero submodules $V, V' \subseteq N(\infty)$ we have $N(1) \subseteq V, V'$ as a nonzero submodule, so $V \cap V' \supseteq N(1)$ is nonzero.

(ii)

Both modules are uniform:

Let $U, U' \subseteq K[T]$ be nonzero submodules. We know that U = (a) and U' = (b) for $a, b \in K[T] \setminus \{0\}$. Thus (ab) is a nonzero submodule of both U and U' (because K[T] has no zero divisors), so $U \cap U' \supseteq (ab)$ is nonzero.

Let $V, V' \subseteq N(\infty)$ be nonzero submodules. We know that V = N(i) and V' = N(j) for $i, j \in \mathbb{N} \setminus \{0\}$. So $V \cap V' \supseteq N(1)$ is nonzero.

(iii)

Let $V=N(\infty)$ and $U:=N(1)\subseteq V$. U is large in V: For every nonzero submodule $U'\subseteq V$ we have $N(1)\subseteq U'$, so $U\cap U'\supseteq N(1)$ is nonzero. U is also small: For every proper submodule $U''\subseteq V$ we have U''=N(i) for some $i\in\mathbb{N}$. So $U+U''=N(1)+N(i)=N(\max 1,i)$ is a proper submodule of V.