

# Signals and Systems Tutorial 5



#### **Tutorial 1**



Problems: 4.8,4.9,4.23.4.39,4.40



#### **Tutorial 1**

#### TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

| Section | Property | Aperiodic signal | Fourier transform |
|---------|----------|------------------|-------------------|
|         |          | x(t)             | $X(j\omega)$      |
|         |          | y(t)             | $Y(j\omega)$      |



|                                                    |                                                                                                             | <i>x</i> ( <i>t</i> ) <i>y</i> ( <i>t</i> )                                                      | $X(j\omega)$<br>$Y(j\omega)$                                                                                                                                                                                                                |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.3.1<br>4.3.2<br>4.3.6<br>4.3.3<br>4.3.5<br>4.3.5 | Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time and Frequency Scaling Convolution | $ax(t) + by(t)$ $x(t - t_0)$ $e^{j\omega_0 t}x(t)$ $x^*(t)$ $x(-t)$ $x(at)$                      | $aX(j\omega) + bY(j\omega)$ $e^{-j\omega t_0}X(j\omega)$ $X(j(\omega - \omega_0))$ $X^*(-j\omega)$ $X(-j\omega)$ $\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$ $X(j\omega)Y(j\omega)$                                                      |
| 4.5                                                | Multiplication                                                                                              | x(t)y(t)                                                                                         | $\frac{1}{2\pi} \int_{0}^{+\infty} X(j\theta)Y(j(\omega-\theta))d\theta$                                                                                                                                                                    |
| 4.3.4                                              | Differentiation in Time                                                                                     | $\frac{d}{dt}x(t)$                                                                               | $j\omega X(j\omega)$                                                                                                                                                                                                                        |
| 4.3.4<br>4.3.6                                     | Integration Differentiation in                                                                              | $\int_{-\infty}^{t} x(t)dt$ $tx(t)$                                                              | $\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$ $j\frac{d}{d\omega}X(j\omega)$                                                                                                                                                       |
| 4.3.3                                              | Frequency  Conjugate Symmetry for Real Signals                                                              | x(t) real                                                                                        | $\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \\ \Im m\{X(j\omega)\} = -\Im m\{X(-j\omega)\} \\  X(j\omega)  =  X(-j\omega)  \\ \not \propto X(j\omega) = - \not \propto X(-j\omega) \end{cases}$ |
| 4.3.3                                              | Symmetry for Real and<br>Even Signals                                                                       | x(t) real and even                                                                               | $ \langle X(j\omega) = -\langle X(-j\omega) \rangle $ $ X(j\omega) \text{ real and even} $                                                                                                                                                  |
| 4.3.3                                              | Symmetry for Real and<br>Odd Signals                                                                        | x(t) real and odd                                                                                | $X(j\omega)$ purely imaginary and odd                                                                                                                                                                                                       |
| 4.3.3                                              | Even-Odd Decompo-<br>sition for Real Sig-<br>nals                                                           | $x_e(t) = \mathcal{E}v\{x(t)\}$ [ $x(t)$ real]<br>$x_o(t) = \mathcal{O}d\{x(t)\}$ [ $x(t)$ real] | $\Re e\{X(j\omega)\}$<br>$j \Im m\{X(j\omega)\}$                                                                                                                                                                                            |



#### **Tutorial 1**

| Signal                                                                                                                       | Fourier transform                                                                     | (if periodic)                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| $\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$                                                                            | $2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$                           | $a_k$                                                                                                                  |
| $e^{j\omega_0 t}$                                                                                                            | $2\pi\delta(\omega-\omega_0)$                                                         | $a_1 = 1$ $a_k = 0$ , otherwise                                                                                        |
| $\cos \omega_0 t$                                                                                                            | $\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$                                | $a_1 = a_{-1} = \frac{1}{2}$<br>$a_k = 0$ , otherwise                                                                  |
| $\sin \omega_0 t$                                                                                                            | $\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$                      | $a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{ otherwise}$                                                            |
| x(t) = 1                                                                                                                     | $2\pi\delta(\omega)$                                                                  | $a_0 = 1$ , $a_k = 0$ , $k \neq 0$<br>(this is the Fourier series representation for any choice of $T > 0$             |
| Periodic square wave $x(t) = \begin{cases} 1, &  t  < T_1 \\ 0, & T_1 <  t  \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$ | $\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$ | $\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$ |
| $\sum_{n=-\infty}^{+\infty} \delta(t-nT)$                                                                                    | $\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$  | $a_k = \frac{1}{T}$ for all $k$                                                                                        |
| $x(t)$ $\begin{cases} 1, &  t  < T_1 \\ 0, &  t  > T_1 \end{cases}$                                                          | $\frac{2\sin\omega T_1}{\omega}$                                                      | _                                                                                                                      |
| $\frac{\sin Wt}{\pi t}$                                                                                                      | $X(j\omega) = \begin{cases} 1, &  \omega  < W \\ 0, &  \omega  > W \end{cases}$       | _                                                                                                                      |
| $\delta(t)$                                                                                                                  | 1                                                                                     | _                                                                                                                      |
| u(t)                                                                                                                         | $\frac{1}{j\omega} + \pi \delta(\omega)$                                              | _                                                                                                                      |
| $\delta(t-t_0)$                                                                                                              | $e^{-j\omega t_0}$                                                                    | _                                                                                                                      |
| $e^{-at}u(t)$ , $\Re e\{a\}>0$                                                                                               | $\frac{1}{a+j\omega}$                                                                 | _                                                                                                                      |
| $te^{-at}u(t)$ , $\Re e\{a\}>0$                                                                                              | $\frac{1}{(a+j\omega)^2}$                                                             | _                                                                                                                      |
| $\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re e\{a\}>0$                                                                          | $\frac{1}{(a+j\omega)^n}$                                                             | _                                                                                                                      |





#### The CT Fourier Transform Pair



$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt \qquad -FT$$
Fourier Transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega \quad \text{Inverse } FT$$
Inverse Fourier Transform

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$
 
$$\mathcal{F}(x(t)) = X(j\omega)$$
 
$$x(t) = \mathcal{F}^{-1}(X(j\omega))$$



### **Linearity and Time Shifting**



Linearity 
$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega), y(t) \stackrel{F}{\longleftrightarrow} Y(j\omega)$$
  
 $ax(t) + by(t) \stackrel{F}{\longleftrightarrow} aX(j\omega) + bY(j\omega)$ 

$$x(t-t_0) \longleftrightarrow e^{-j\omega t_o} X(j\omega)$$



### **Time/Frequency Scaling**



$$x(at) \longleftrightarrow \frac{1}{|a|} X \left( j \frac{\omega}{a} \right)$$
  $E.g. \ a > 1 \to at > t$   $compressed in time  $\Leftrightarrow$   $tomp = -1$   $tomp = -1$$ 

stretched in frequency

### **Differentiation/Integration**



$$\frac{dx(t)}{dt} \longleftrightarrow j\omega X(j\omega)$$

$$\int_{-\infty}^{t} x(\tau) d\tau \xleftarrow{F} \frac{1}{j\omega} X(j\omega) + \pi X(j0) \delta(\omega)$$
DC term







#### **4.8.** Consider the signal

$$x(t) = \begin{cases} 0, & t < -\frac{1}{2} \\ t + \frac{1}{2}, & -\frac{1}{2} \le t \le \frac{1}{2}. \\ 1, & t > \frac{1}{2} \end{cases}$$

- (a) Use the differentiation and integration properties in Table 4.1 and the Fourier transform pair for the rectangular pulse in Table 4.2 to find a closed-form expression for  $X(j\omega)$ .
- **(b)** What is the Fourier transform of  $g(t) = x(t) \frac{1}{2}$ ?



### Problem 4.8 (a)



Differentiation/Integration

$$\frac{dx(t)}{dt} \stackrel{F}{\longleftrightarrow} j\omega X(j\omega)$$

$$\int_{-\infty}^{t} x(\tau) d\tau \stackrel{F}{\longleftrightarrow} \frac{1}{j\omega} X(j\omega) + \pi X(j0) \delta(\omega)$$
DC term







2020/6/4

#### Answer 4.8 (a)



**4.8** (a) The signal x(t) is as shown in Figure S4.8.

We may express this signal as

$$x(t) = \int_{-\infty}^{t} y(t)dt$$





Where y (t) is the rectangular pulse shown in S4.8 Using the integration property of FT we have

$$\mathbf{x}(\mathbf{t}) \xleftarrow{FT} \mathbf{X}(\mathbf{j}\,\omega) = \frac{1}{j\omega} Y(j\omega) + \pi Y(j0)\sigma(\omega)$$

we know from 4.2 that

$$Y(j\omega) = \frac{2\sin(w/2)}{w}$$

Therefore 
$$X(j \omega) = \frac{2\sin(w/2)}{jw^2} + \pi\sigma(\omega)$$

(b) if g(t)=x(t)-(1/2) 
$$\pi\sigma(\omega) = \frac{2\sin(w/2)}{jw^2}$$





### **Answer 4.8 (b)**



#### 4.8. Consider the signal

$$x(t) = \begin{cases} 0, & t < -\frac{1}{2} \\ t + \frac{1}{2}, & -\frac{1}{2} \le t \le \frac{1}{2}. \\ 1, & t > \frac{1}{2} \end{cases}$$

- (a) Use the differentiation and integration properties in Table 4.1 and the Fourier transform pair for the rectangular pulse in Table 4.2 to find a closed-form expression for  $X(j\omega)$ .
- **(b)** What is the Fourier transform of  $g(t) = x(t) \frac{1}{2}$ ?

$$ax(t) + by(t) \longleftrightarrow aX(j\omega) + bY(j\omega)$$

$$x(t) = 1$$
  $\longleftrightarrow$   $2\pi \delta(\omega)$ 







#### **4.9.** Consider the signal

$$x(t) = \begin{cases} 0, & |t| > 1\\ (t+1)/2, & -1 \le t \le 1 \end{cases}$$

- (a) With the help of Tables 4.1 and 4.2, determine the closed-form expression for  $X(j\omega)$ .
- (b) Take the real part of your answer to part (a), and verify that it is the Fourier transform of the even part of x(t).
- (c) What is the Fourier transform of the odd part of x(t)?



### Answer 4.9 (a)



**4.9** (a) the signal x(t) is plotted in figure

$$x(t) = \int_{-\infty}^{t} y(t)dt - u(t-1)$$

$$X(j \omega) = \frac{\sin \omega}{j\omega^{2}} - \frac{e^{-j\omega}}{j\omega}$$



$$u(t) \stackrel{F}{\longleftrightarrow} \frac{1}{j\omega} + \pi \delta(\omega) \quad \chi(t - t_0) \stackrel{F}{\longleftrightarrow} e^{-j\omega t_0} \chi(j\omega)$$



#### **Answer 4.9 (b)**



(b) Take the real part of your answer to part (a), and verify that it is the Fourier transform of the even part of x(t).

Even part 
$$\{x(t)\} = \frac{1}{2} [x(t) + x(-t)]$$

$$X(j \omega) = \frac{\sin \omega}{j\omega^2} - \frac{e^{-j\omega}}{j\omega}$$

(b) the even part of x(t) is given by

$$\varepsilon v\{x(t)\} = (x(t)+x(-t))/2$$

This is as shown in the 4.9

Therefore

$$FT\{\varepsilon v\{x(t)\}\} = \frac{\sin \omega}{\omega}$$

Now the real part of answer to part (a) is

$$\operatorname{Re}\left\{-\frac{e^{j\omega}}{j\omega}\right\} = \frac{1}{\omega}\operatorname{Re}\left\{j(\cos\omega - j\sin j\omega)\right\} = \frac{\sin\omega}{\omega}$$





#### **Answer 4.9**



- (c) What is the Fourier transform of the odd part of x(t)?
- (c) the FT of the odd part of x(t) is same as j times imaginary part of the answer to part (a), we have

$$\operatorname{Im}\left\{\frac{\sin\omega}{j\omega^{2}} - \frac{e^{-j\omega}}{j\omega}\right\} = -\frac{\sin\omega}{\omega^{2}} + \frac{\cos\omega}{\omega}$$

Therefore, the desired result is

$$FT{Odd part of}x(t)$$
 =  $\frac{\sin \omega}{j\omega^2} - \frac{\cos \omega}{j\omega}$ 





#### **4.23.** Consider the signal

$$x_0(t) = \begin{cases} e^{-t}, & 0 \le t \le 1\\ 0, & \text{elsewhere} \end{cases}.$$

Determine the Fourier transform of each of the signals shown in Figure P4.23. You should be able to do this by explicitly evaluating *only* the transform of  $x_0(t)$  and then using properties of the Fourier transform.











$$x_0(t) = \begin{cases} e^{-t}, & 0 \le t \le 1 \\ 0, & \text{elsewhere} \end{cases} \longleftrightarrow X_0(j\omega) = \frac{1 - e^{-(1 + j\omega)}}{1 + j\omega}$$





# **Answer 4.23** (a)

**4.23**. For the given signal  $x_0(t)$ , we use the Fourier transform analysis eq.(4.8) to evaluate the corresponding Fourier transform

$$X_0(j\omega) = \frac{1-e^{-(1+j\omega)}}{1+j\omega}$$

we know that

$$x_1(t) = x_0(t) + x_0(-t)$$

Using the linearity and time reversal properties of the Fourier transform we have

$$X_1(j\omega) = X_0(j\omega) + X_0(-j\omega) = \frac{2-2e^{-1}\cos\omega - 2\omega e^{-1}\sin\omega}{1+\omega^2}$$





# **Answer 4.23 (b)**



(ii) we know that

$$x_2(t) = x_0(t) - x_0(-t)$$

Using the linearity and time reversal properties of Fourier transform we have

$$X_2(j\omega) = X_0(j\omega) - X_0(-j\omega) = \frac{-2\omega + 2e^{-1}\sin\omega + 2\omega e^{-1}\cos\omega}{1 + \omega^2}$$





## **Answer 4.23 (c)**

(iii) we know that

$$x_3(t) = x_0(t) + x_0(t+1)$$

Using the linearity and time shifting properties of Fourier transform we have

$$X_3(j\omega) = X_0(j\omega) + e^{j\omega}X_0(j\omega)$$



$$x(t-t_0) \longleftrightarrow e^{-j\omega t_o} X(j\omega)$$



# **Answer 4.23** (d)





$$x4(t)=tx(t)$$

Using the differentiation frequency property  $X_4(j\omega) = j\frac{d}{d\omega}X_0(j\omega)$ 

Therefore,

$$X_4(j\omega) = \frac{1 + j\omega e^{-1 - j\omega}}{(1 + j\omega)^2}$$

$$tx(t)$$
  $\leftarrow$   $F$   $j\frac{d}{d\omega}X(j\omega)$ 





**4.39.** Suppose that a signal x(t) has Fourier transform  $X(j\omega)$ . Now consider another signal g(t) whose shape is the same as the shape of  $X(j\omega)$ ; that is,

$$g(t) = X(jt).$$

(a) Show that the Fourier transform  $G(j\omega)$  of g(t) has the same shape as  $2\pi x(-t)$ ; that is, show that

$$G(j\omega) = 2\pi x(-\omega).$$

**(b)** Using the fact that

$$\mathfrak{F}\{\delta(t+B)\} = e^{jB\omega}$$

in conjunction with the result from part (a), show that

$$\mathfrak{F}\{e^{jBt}\}=2\pi\,\delta(\omega-B).$$



#### **Answer 4.39 (a)**



**4.39.** Suppose that a signal x(t) has Fourier transform  $X(j\omega)$ . Now consider another signal g(t) whose shape is the same as the shape of  $X(j\omega)$ ; that is,

$$g(t) = X(jt).$$

(a) Show that the Fourier transform  $G(j\omega)$  of g(t) has the same shape as  $2\pi x(-t)$ ; that is, show that

$$G(j\omega) = 2\pi x(-\omega).$$

**4.39**. (a) From the Fourier analyses equation. We have

$$G(j\omega) = \int_{-\infty}^{\infty} g(t)e^{-j\omega t}dt = \int_{-\infty}^{\infty} X(jt)e^{-j\omega t}dt$$

(S4.39-1)

Also from the Fourier transform equation, we have

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

Switching the variables t and  $\omega$ , we have

$$x(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(jt)e^{j\omega t} dt$$

We may also write this equation as

$$2\pi x(-\omega) = \int_{-\infty}^{\infty} X(jt)e^{-j\omega t}dt$$

Substituting this equation in eq. (S4.39-1), we obtain

$$G(j\omega) = 2\pi x(-\omega)$$



### **Answer 4.39 (b)**



**4.39.** Suppose that a signal x(t) has Fourier transform  $X(j\omega)$ . Now consider another signal g(t) whose shape is the same as the shape of  $X(j\omega)$ ; that is,

$$g(t) = X(jt).$$

(a) Show that the Fourier transform  $G(j\omega)$  of g(t) has the same shape as  $2\pi x(-t)$ ; that is, show that

$$G(j\omega) = 2\pi x(-\omega).$$

(b) Using the fact that

$$\mathfrak{F}\{\delta(t+B)\} = e^{jB\omega}$$

in conjunction with the result from part (a), show that

$$\mathfrak{F}\{e^{jBt}\}=2\pi\;\delta(\omega-B).$$

(b) If in part (a) we have 
$$x(t) = \delta(t+B)$$
, then we would have  $g(t) = X(jt) = e^{jBt}$  and  $G(j\omega) = 2\pi x(-\omega) = 2\pi\delta(-\omega+B) = 2\pi\delta(\omega-B)$ 





**4.40.** Use properties of the Fourier transform to show by induction that the Fourier transform of

$$x(t) = \frac{t^{n-1}}{(n-1)!}e^{-at}u(t), \ a > 0,$$

is

$$\frac{1}{(a+j\omega)^n}$$
.



#### Answer 4.40

#### **Mathematical Induction**



$$x(t) = \frac{t^{n-1}}{(n-1)!}e^{-at}u(t), \ a > 0, \qquad F \qquad \rightarrow \qquad \frac{1}{(a+j\omega)^n}$$

**4.40.** When n=1,  $x_1(t) = e^{-at}u(t)$  and  $X_1(j\omega) = 1/(a+j\omega)$ 

When n=2,  $x_2(t) = e^{-at}u(t)$  and  $X_2(j\omega) = 1/(a+j\omega)^2$ 

Now, let us assume that the given statement is true when n=m, that is,

$$X_m(t) = \frac{t^{m-1}}{(m-1)!} e^{-at} u(t) \longleftrightarrow X_m(jw) = \frac{1}{(a+j\omega)^m}$$

For n=m+1 we may use the differentiation in frequency property to write,

$$x_{m+1}(t) = \frac{t}{m} x_m(t) \stackrel{FS}{\longleftrightarrow} X_{m+1}(j\omega) = \frac{1}{m} j \frac{dX_m(j\omega)}{d\omega} = \frac{1}{(a+j\omega)^{m+1}}$$

This shows that if we assume that the given statement is true for n=m, then it is true for n=m+1. Since we also shown that the given statement is true for n=2, we may argue that it is true for n=2+1=3, n=3+1=4, and so on. Therefore, the given statement is true for any n.







# Thank you for listening

