Machine Learning: Fisher's Linear Discriminant

Lecture 05

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Supervised Learning

- Task = learn an (unkown) function $t : X \to T$ that maps input instances $x \in X$ to output targets $t(x) \in T$:
 - Classification:
 - The output $t(\mathbf{x}) \in T$ is one of a finite set of discrete categories.
 - Regression:
 - The output $t(\mathbf{x}) \in T$ is continuous, or has a continuous component.
- Target function $t(\mathbf{x})$ is known (only) through (noisy) set of training examples:

$$(\mathbf{x}_1,t_1), (\mathbf{x}_2,t_2), \dots (\mathbf{x}_n,t_n)$$

Three Parametric Approaches to Classification

- 1) Discriminant Functions: construct $f: X \to T$ that directly assigns a vector \mathbf{x} to a specific class C_k .
 - Inference and decision combined into a single learning problem.
 - Linear Discriminant: the decision surface is a hyperplane in X:
 - Fisher 's Linear Discriminant
 - Perceptron
 - Support Vector Machines

Three Parametric Approaches to Classification

- 2) Probabilistic Discriminative Models: directly model the posterior class probabilities $p(C_k \mid \mathbf{x})$.
 - Inference and decision are separate.
 - Less data needed to estimate $p(C_k | \mathbf{x})$ than $p(\mathbf{x} | C_k)$.
 - Can accommodate many overlapping features.
 - Logistic Regression
 - Conditional Random Fields

Three Parametric Approaches to Classification

3) Probabilistic Generative Models:

- Model class-conditional $p(\mathbf{x} | C_k)$ as well as the priors $p(C_k)$, then use Bayes's theorem to find $p(C_k | \mathbf{x})$.
 - or model $p(\mathbf{x}, C_k)$ directly, then marginalize to obtain the posterior probabilities $p(C_k \mid \mathbf{x})$.
- Inference and decision are separate.
- Can use $p(\mathbf{x})$ for outlier or novelty detection.
- Need to model dependencies between features.
 - Naïve Bayes.
 - Hidden Markov Models.

Generative vs. Discriminative

Left-hand mode has no effect on posterior class probabilities.

Linear Discriminant Functions: Two classes (K = 2)

• Use a linear function of the input vector:

• Decision:

$$\mathbf{x} \in C_1$$
 if $y(\mathbf{x}) \ge 0$, otherwise $\mathbf{x} \in C_2$.
 \Rightarrow decision boundary is hyperplane $y(\mathbf{x}) = 0$.

- Properties:
 - w is orthogonal to vectors lying within the decision surface.
 - $-w_0$ controls the location of the decision hyperplane.

Linear Discriminant Functions: Two Classes (K = 2)

Linear Discriminant Functions: Multiple Classes (K > 2)

- 1) Train K or K-1 one-versus-the-rest classifiers.
- 2) Train K(K-1)/2 one-versus-one classifiers.
- 3) Train K linear functions:

$$y_k(\mathbf{x}) = \mathbf{w}_k^T \varphi(\mathbf{x}) + w_{k0}$$

• Decision:

 $\mathbf{x} \in C_k \text{ if } y_k(\mathbf{x}) > y_j(\mathbf{x}), \text{ for all } j \neq k.$

- \Rightarrow decision boundary between classes C_k and C_j is hyperplane defined by $y_k(\mathbf{x}) = y_j(\mathbf{x})$ i.e. $(\mathbf{w}_k \mathbf{w}_j)^T \varphi(\mathbf{x}) + (w_{k0} w_{j0}) = 0$
- ⇒ same geometrical properties as in binary case.

Linear Discriminant Functions: Multiple Classes (K > 2)

4) More general ranking approach:

$$y(\mathbf{x}) = \arg \max_{t \in T} \mathbf{w}^T \varphi(\mathbf{x}, t)$$
 where $T = \{c_1, c_2, ..., c_K\}$

- It subsumes the approach with K separate linear functions.
- Useful when T is very large (e.g. exponential in the size of input x), assuming inference can be done efficiently.

Linear Discriminant Functions: Two Classes (K = 2)

- What algorithms can be used to learn $y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \varphi(\mathbf{x}) + w_0$? Assume a training dataset of $N = N_1 + N_2$ examples in C_1 and C_2 .
 - Fisher's Linear Discriminant
 - Perceptron:
 - Voted/Averaged Perceptron
 - Kernel Perceptron
 - Support Vector Machines:
 - Linear
 - Kernel

- Discriminant function $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ can be interpreted as follows:
 - 1. Project D-dimensional x down to one dimension \Rightarrow w^Tx
 - 2. Use a threshold $-w_0$ to classify $\mathbf{x} \Rightarrow \mathbf{x} \in C_1$, if $\mathbf{w}^T \mathbf{x} \ge -w_0$ $\mathbf{x} \in C_2$, otherwise.
 - Fisher's idea:
 - Maximize the between-class separation of projected dataset.
 - Minimize the within-class variance of projected dataset.

Line joining the class means vs. Line inferred with Fisher's criterion.

1) Measure of the separation between the classes is the between class variance:

$$\mathbf{m}_{1} = \frac{1}{N_{1}} \sum_{n \in C_{1}} \mathbf{x}_{n}$$

$$\mathbf{m}_{2} = \frac{1}{N_{2}} \sum_{n \in C_{2}} \mathbf{x}_{n}$$

$$\Longrightarrow m_{2} - m_{1} = \mathbf{w}^{T} (\mathbf{m}_{2} - \mathbf{m}_{1}) \Longrightarrow (m_{2} - m_{1})^{2}$$

2) Measure of the within-class variance:

$$S_{1}^{2} = \sum_{n \in C_{1}} (\mathbf{w}^{T} \mathbf{x}_{n} - m_{1})^{2}$$

$$S_{2}^{2} = \sum_{n \in C_{2}} (\mathbf{w}^{T} \mathbf{x}_{n} - m_{2})^{2}$$

$$\Rightarrow S_{1}^{2} + S_{2}^{2}$$

• Maximize the between-class separation and minimize the within-class variance ⇒ Fisher's criterion:

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} J(\mathbf{w})$$
, where $J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$

• The objective function can be rewritten as:

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_{\mathrm{B}} \mathbf{w}}{\mathbf{w}^T \mathbf{S}_{\mathrm{W}} \mathbf{w}}$$

where

$$\mathbf{S}_{\mathrm{B}} = (\mathbf{m}_{2} - \mathbf{m}_{1})(\mathbf{m}_{2} - \mathbf{m}_{1})^{\mathrm{T}}$$

$$\mathbf{S}_{\mathrm{W}} = \sum_{n \in C_{1}} (\mathbf{x}_{n} - \mathbf{m}_{1})(\mathbf{x}_{n} - \mathbf{m}_{1})^{\mathrm{T}} + \sum_{n \in C_{2}} (\mathbf{x}_{n} - \mathbf{m}_{2})(\mathbf{x}_{n} - \mathbf{m}_{2})^{\mathrm{T}}$$

Optimization formulation:

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} J(\mathbf{w}) = \arg\max_{\mathbf{w}} \frac{\mathbf{w}^T \mathbf{S}_{\mathrm{B}} \mathbf{w}}{\mathbf{w}^T \mathbf{S}_{\mathrm{W}} \mathbf{w}}$$

Solution:

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = 0 \Rightarrow (\mathbf{w}^T \mathbf{S}_{\mathbf{w}} \mathbf{w}) \mathbf{S}_{\mathbf{B}} \mathbf{w} = (\mathbf{w}^T \mathbf{S}_{\mathbf{B}} \mathbf{w}) \mathbf{S}_{\mathbf{w}} \mathbf{w}$$
$$\Rightarrow \mathbf{S}_{\mathbf{B}} \mathbf{w} = \frac{\mathbf{w}^T \mathbf{S}_{\mathbf{B}} \mathbf{w}}{\mathbf{w}^T \mathbf{S}_{\mathbf{W}} \mathbf{w}} \mathbf{S}_{\mathbf{w}} \mathbf{w} \Rightarrow \mathbf{S}_{\mathbf{B}} \mathbf{w} = \lambda \mathbf{S}_{\mathbf{w}} \mathbf{w}$$

• If S_w is nonsingular:

generalized eigenvalue problem

$$\Rightarrow S_{W}^{-1}S_{B}\mathbf{w} = \lambda \mathbf{w}$$
Lecture 03

conventional eigenvalue problem

• No need to solve the eigenvalue problem:

$$\mathbf{S}_{\mathrm{B}}\mathbf{w} = (\mathbf{m}_{2} - \mathbf{m}_{1})(\mathbf{m}_{2} - \mathbf{m}_{1})^{\mathrm{T}}\mathbf{w}$$
 is a vector in the direction $(\mathbf{m}_{2} - \mathbf{m}_{1})$

• The norm of w is immaterial, only its direction is important.

 \Rightarrow can take

$$\mathbf{w} = \mathbf{S}_{\mathrm{W}}^{-1}(\mathbf{m}_{2} - \mathbf{m}_{1})$$

- How to find w_0 :
 - Assume $p(\mathbf{w}^T\mathbf{x}|C_1)$ and $p(\mathbf{w}^T\mathbf{x}|C_2)$ are Gaussians.
 - Estimate means and variances using maximum likelihood.
 - Use decision theory to find \mathbf{w}_0 i.e. $p(-\mathbf{w}_0|C_1) = p(-\mathbf{w}_0|C_2)$

Supplementary Reading

- PRML Section 1.4 (The Curse of Dimensionality).
- PRML Section 1.5 (Decision Theory).
- PRML Section 4 (Linear Models for Classification):
 - 4.1.1 to 4.1.4.