Algorithmic Game Theory

Daniele Avolio

A.A. 2023/2024

Contents

1	Introduzione				
2	Cos	s'è la Game Theory — Teoria dei giochi	4		
-	2.1	E cosa significa Algorithmic Game Theory?	4		
	2.2	Coalition Games	4		
	2.3	Non-Cooperative Games	5		
	2.4	Tree Decomposition	5		
	2.5	Computational Social Choice	5		
	2.6	Mechanism Design	6		
	$\frac{2.0}{2.7}$	Fair Division of Indivisible Goods	6		
	2.8	Cake Cutting	6		
3	Gio	ochi di Coalizione e Concetti di Soluzione	7		
		3.0.1 Tassonomia dei giochi cooperativi	8		
	3.1	Concetti di soluzione	10		
		3.1.1 Cosa fare quando il nucleo è vuoto?	12		
	3.2	Concetti di soluzione avanzati	13		
		3.2.1 Nucleolus	13		
	3.3	Shapley Value	14		
		3.3.1 Proprietà del valore di Shapley	15		
4	Inti	roduzione alla teoria dell'utilità e decision making	17		
Ť	4.1	Concetti di base	17		
		4.1.1 ALTERNATIVE	17		
		4.1.2 PREFERENZE	17		
		4.1.3 Relazione di Preferenza	17		
		4.1.4 Rappresentare le preferenze come utilità	18		
	4.2	Le lotterie	18		
	4.3	Utilità di Von Neumann-Morgenstern	19		
	4.4	Atteggiamento verso il rischio	20		
	4.5	Applicazioni: Condivisione del rischio	21		
	4.6	Applicazione: Assicurazione	21		
	4.0	Applicazione. Assiculazione	21		
5	Teo	ria dei giochi coalizionali	22		
	5.1	Superadditività	23		
	5.2	Core o Nucleo	23		
	۲ 9	Chapley Value	22		

1 Introduzione

Definizione esame: Solitamente lo schema delle lezioni sarà

$$LezioneTeoria \implies LezioneLaboratorio$$
 (1)

La lezione di Lab sarà fatta praticamente spesso in Python.

2 Cos'è la Game Theory — Teoria dei giochi

La **teoria dei giochi** è una disciplina che studia il comportamento decisionale multi-persona, usato per fare predizioni su come **agenti razionali multipli** interagiscono o si comportano in situazioni di *cooperazione* o in situazione di *conflitto*.

Alcune definizioni di termini:

- Conflitto: le azioni dei giocatori hanno effetto sugli Algorithmic
- Cooperazione: I giocatori possono collaborare per raggiungere un obiettivo
- Comportamento razionale: I giocatori vogliono massimizzare la loro utilità attesa expected utility
- **Predizione**: Il nostro obiettivo è sapere cosa faranno i giocatori, utilizzando solution concepts concetti di soluzione

2.1 E cosa significa Algorithmic Game Theory?

Possiamo dire che algorithmic game theory è un punto d'incontro tra **game** theory e algorithm design che punta a *progettare algoritmi* che permettono deglle strategie in specifici ambienti.

2.2 Coalition Games

La **coalition game theory** è una branca della game theory che studia le interazioni tra gruppi di giocatori, che **collaborano** per *raggiungere un obiettivo comune*.

Nota - Shapley Values: Il concetto di Shapley Values è un concetto che permette di *spiegare*, circa, come un algoritmo di **machine learning** ha preso una decisione. Ad esempio, mostra le *feature* che hanno avuto un impatto maggiore nella decisione finale della predizione. In pratica mostra i vari *Join* — *Coalizioni* di features.

Quali sono le domande più importanti in questa sezione?

- Quale coalizione è più probabile che venga formata?
- In che modo i giocatori devono dividere il premio? (Payoff)

2.3 Non-Cooperative Games

In questo tipo di giochi, i giocatori **non hanno coalizioni** o comunque non ne hanno bisogno.

Alcuni giochi che fanno parte di questa categoria:

- Scacchi
- Sasso-Carta-Forbice
- Il dilemma del prigioniero

	Giocatore 1		
Giocatore 2	Collabora	Tradisci	
Collabora	(-1,-1)	(-5,0)	
Tradisci	(0,-5)	(-3,-3)	

Figure 1: Esempio di dilemma del prigioniero

In questo gioco, la **strategia** migliore per il singolo è quella di **tradire** l'altro giocatore, in quanto è quella che massimizza la sua utilità, precisamente andrebbe a **perdere 0 punti**, mentre l'altro giocatore ne perderebbe 5.

2.4 Tree Decomposition

Alcuni problemi sui grafi hanno una complessità di **NP-HARD** su dei grafi arbitrari, e hanno bisogno di alcune soluzioni che avranno implementazioni complesse e **programmazione dinamica.**

■ 2.5 Computational Social Choice

Questa sezione parla di computazione di risultati risultanti da **regole di voto**— **voting rules** e quali problemi ci possono essere nel rappresentare le preferenze dei giocatori.

		Verdetto	
	Evidenza1	Evidenza2	Colpevole
Giudice1	1	0	Innocente
Giudice2	0	1	Innocente
Giudice3	1	1	Colpevole

Figure 2: Esempio di votazione

Maggiore è il numero di persone che votano, maggiore è la probabilità che il risultato sia corretto.

2.6 Mechanism Design

E' un tipo di **reverse game theory**. Invece di analizzare come i giocatori si comportano in un gioco, lo scopo del *mechanism design* è quello di **creare un gioco** per portare i giocatori a *comportarsi in un modo specifico* che *vogliamo noi*. Un esempio molto semplice è il *maccanismo di asta di Ebay*. Altro esempio è quello dei *carrelli dei supermecati*. Il fatto di dover utilizzare una moneta per utilizzare il carrello **porta la persona** a dover riportare il carrello nello stesso posto, invece di lasciarlo in un luogo qualsiasi del supermercato.

2.7 Fair Division of Indivisible Goods

In questa sezione si parla di come dividere delle risorse in modo **fair** tra i giocatori. Ok?

2.8 Cake Cutting

In questa sezione si parla di come dividere dei **beni continui** in bsae alle *preferenze dei giocatori*.

- 1. Fairness
- 2. Proportionality
- 3. Envy-freeness

3 Giochi di Coalizione e Concetti di Soluzione

Spesso la **teoria dei giochi** fa riferimento a tipologie di giochi in cui gli agenti **non collaborano**, ma **competono** tra loro. In questi casi si parla di **gioco non cooperativo**.

Parliamo di un ambiente in cui degli agenti interagiscono tra loro, e ogni agente ha un suo **obiettivo** da raggiungere.

Definizione 3.1 (Gioco non cooperativo) Un gioco non cooperativo è un gioco in cui gli agenti non collaborano tra loro.

- Un set di agenti $N = \{1, \ldots, n\}$.
- Ogni agente $i \in N$ ha un set di azioni S
- Ogni agnete $i \in N$ ha una funzione di utilità $u_i : S_1 \times S_2 \cdots S_n \to \mathcal{R}$

Definizione 3.2 (Gioco cooperativo) Il contrario di giochi non cooperativi sono, banalmente, i giochi cooperatvi, in cui gli agenti collaborano tra loro.

Domanda: In quale caso le coalizioni appaiono nella teoria dei giochi cooperativi?

- Allocazioni di task
- Allocazione di risorse
- Esperienza degli agenti complementare tra loro

Esempio di gioco cooperativo: Immaginiamo di avere 9 agenti. Ora, gli agenti devono sceliere:

- Con chi allearsi
- Come agire
- Come dividere il premio

Immaginiamo di avere $p_1, p_2, p_3, c_1, c_2, c_3, e_1, e_2, e_3$. Immaginiamo queste 3 coalizioni:

- $C_1\{c_1,e_3,p_3\}$
- $C_2\{c_3,e_2,p_2\}$
- $C_3\{c_2,e_1,p_1\}$

Una struttura di coalizione è del tipo: $CS = \langle C_1, C_2, C_3 \rangle$.

Definiamo anche il vettore azioni $a = \langle a_{c_1}, a_{c_2}, a_{c_3} \rangle$.

Allora possiamo avere un'allocazione di risorse

$$u(C_3|a_{c_3}) = 30 \implies Allocatione : < p_1 = 12, c_2 = 3, e_1 = 15 >$$
 (2)

Quindi, diciamo che nei giochi collaborativo:

- I giocatori formano coalizioni
- Ogni coalizione ha associato un worth
- Alla fine c'è un total worth da distribuire

♦ 3.0.1 Tassonomia dei giochi cooperativi

Quando parliamo di giochi cooperativi parliamo di giochi in cui i giocatori tra loro collaborano, fanno azioni insiee, e si formano dei vincoli tra loro. Ma dobbiamo differenziare due tipi di **utility games**

Definizione 3.3 (Transferable Utility Games) La paga viene data al gruppo e si divide tra loro.

Definizione 3.4 (Non Transferable Utility Games) L'azione del gruppo fornisce la paga ai singoli giocatori in modo individuale.

Esempio di Transferable Utility Games:

Hai N bambini, ognuno dei quali ha una certa quantità di denaro: il bambino i-esimo ha b_i dollari.

Sono in vendita tre tipi di vaschette di gelato:

- Tipo 1 costa \$7 e contiene 500g.
- Tipo 2 costa \$9 e contiene 750g.
- Tipo 3 costa \$11 e contiene 1kg.

I bambini hanno una preferenza per il gelato e non si preoccupano del denaro.

Il risultato ottenuto da ciascun gruppo è la quantità massima di gelato che i membri del gruppo possono acquistare unendo il loro denaro. Il gelato può essere condiviso liberamente all'interno del gruppo.

Formalizzazione dei giochi cooperativi:

Un gioco di utilità trasferibile è una coppia (N, v), dove:

- $N = \{1, ..., n\}$ è l'insieme dei giocatori (anche chiamato coalizione grandiosa).
- $v: 2^N \to \mathbb{R}$ è la funzione caratteristica.
- Per ogni sottoinsieme di giocatori C, v(C) è l'importo che i membri di C possono guadagnare lavorando insieme.

Facciamo delle assunzioni. Solitamente diciamo che v è **normalizzato**, cioé $v(\emptyset)=0$. Ci sono altri due casoi però:

- Non-negativo: $v(C) \ge 0$ per ogni $C \subseteq N$.
- Monotono: $v(C) \le v(D)$ per ogni C, D t.c $C \subseteq D$.

Tutto questo non è sempre uguale e dipende sempre dallo scenario. Esempio del gioco dl gelato: Abbiamo tre giocatori:

- 1. C con 6
- 2. M con 4
- 3. P con 4

Ora, abbiamo 3 tipi di gelato con:

- Gelato 1: w = 500 e p = 7
- Gelato 2: w = 750 e p = 9
- Gelato 3: w = 1000 e p = 11

Cosa possiamo dire? Innanzitutto, **nessuno può comprare niente da solo.** Quindi, se vogliamo che qualcuno compri qualcosa, dobbiamo formare una coalizione. Le domande da fare sono: *Quali azioni dobbiamo compiere? In quale modo ci dividiamo il premio?*.

$$\begin{split} v(\emptyset) &= v(\{C\}) = v(\{M\}) = v(\{P\}) = 0 \\ v(\{C,M\}) &= 750 \\ v(\{C,P\}) &= 750 \\ v(\{M,P\}) &= 500 \\ v(\{C,M,P\}) &= 1000 \end{split}$$

Definizione 3.5 (Outcome) Un outcome (o risultato) di un gioco di utilità trasferibile G = (N, v) è una coppia (CS, x), in cui:

- $CS = (C_1, ..., C_k)$ è una struttura di coalizione, cioè una partizione di N.
- $\bigcup_i C_i = N, C_i \cap C_j = \emptyset \text{ per } i \neq j.$
- $x = (x_1, ..., x_n)$ è un vettore di pagamento che distribuisce il valore di ciascuna coalizione in CS.
- $\sum_{i \in C} x_i = v(C)$ per ogni C in CS (Efficienza).

Supponiamo che $v(\{1,2,3\}) = 9$ e $v(\{4,5\}) = 4$. Quindi, ((1,2,3,4,5),(3,3,3,3,1)) è un **risultato**.

Invece, ((1, 2, 3, 4, 5), (2, 3, 2, 3, 3)) non è un risultato.

I trasferimenti tra coalizioni non sono consentiti. Un risultato (CS, \underline{x}) è chiamato imputazione se soddisfa la razionalità individuale: $x_i \geq v(\{i\})$ per tutti $i \in N$.

Definizione 3.6 (Giochi superaddittivi) Un gioco di utilità trasferibile G = (N, v) è chiamato superadditivo se $v(C \cup D) \ge v(C) + v(D)$ per qualsiasi due coalizioni disgiunte $C \in D$.

Esempio:
$$v(C) = |C|^2$$
; $v(C \cup D) = (|C| + |D|)^2 \ge |C|^2 + |D|^2 = v(C) + v(D)$.

Nei giochi superadditivi, due coalizioni possono sempre fondersi senza perdere denaro; quindi, possiamo assumere che i giocatori formino la coalizione grandiosa.

Praticamente, quando due coalizioni collaborando ottengono un risultato che è almeno pari alla somma dei risultati che avrebbero ottenuto se avessero agito da sole.

Un esempio è il seguente:

$$\begin{split} v(\emptyset) &= v(\{C\}) = v(\{M\}) = v(\{P\}) = 0\\ v(\{C, M\}) &= 750\\ v(\{C, P\}) &= 750\\ v(\{M, P\}) &= 500\\ v(\{C, M, P\}) &= 1000 \end{split}$$

In questo caso si vede che è un gioco superadditivo perché la collaborazione porta ad un risultato migliore.

3.1 Concetti di soluzione

Assumiamo che la grande coalizione N sia formata. Quindi:

$$x = (x_1, x_2, \dots, c_n)$$
$$x_i \ge 0 \forall i \in N$$
$$x_1 + x_2 + \dots x_n = v(N)$$

Considera il gioco del gelato con la seguente funzione caratteristica. Si tratta di un gioco superadditivo in cui gli esiti sono vettori di pagamento (modi per dividere 1000).

Come dovrebbero i giocatori condividere il gelato?

Se lo dividono come (200, 200, 600), Charlie e Marcie possono ottenere più gelato acquistando una vaschetta da 750g da soli e dividendo equamente. L'esito (200, 200, 600) **non è stabile**!

Definizione 3.7 (Core O Nucleo) Il nucleo o core di un gioco è l'insieme di tutti gli esiti che sono stabili, cioé quegli esiti che no vengono scartati da nessuna coalizione.

$$core(G) = \{(CS, \underline{x}) | \sum_{i \in C} x_i \ge v(C) \text{ for any } C \subseteq N \}$$

Nota: $\mathbf{x}(\mathbf{c})$ si identifica come la somma dei valori $\sum_{i \in C} x_i$. *Possiamo accorciare* in:

- $x \in \mathbb{R}^n$ è un nucleo se $x(c) \ge v(c) \forall C \subseteq N$
- x(N) = v(N)

Torniamo al nostro esempio. Ora vediamo il concetto di nucleo applicato

- (200, 200, 600) **non è** nel nucleo:
- $v(\{C, M\}) > x_C + x_M$
- (500, 250, 250) **è nel** nucleo:

nessun sottogruppo di giocatori può deviare in modo che ciascun membro del sottogruppo ottenga di più. Un vettore (x_C, x_M, x_P) è nel nucleo se e solo se soddisfa le seguenti condizioni:

- $x_C + x_M \ge v(\{C, M\})$ (stabilità)
- $x_C + x_P \ge v(\{C, P\})$ (stabilità)
- $x_P + x_M \ge v(\{P, M\})$ (stabilità)
- $x_C \ge v(\{C\})$ (razionalità individuale)
- $x_P \ge v(\{P\})$ (razionalità individuale)
- $x_M \ge v(\{M\})$ (razionalità individuale)
- $x_C + x_P + x_M = v(\{C, M, P\})$ (efficienza)

Queste 3 proprietà sono importanti.

Definizione 3.8 (Giochi con nucleo vuoto) Il concetto di nucleo è molto attraente come concetto di soluzione. Purtroppo, ci sono alcuni giochi che hanno un nucleo vuoto.

Consideriamo il gioco $G = (\{1, 2, 3\}, v)$ con la seguente funzione caratteristica v:

$$v(C) = \begin{cases} 1 & se \ |C| > 1 \\ 0 & altrimenti \end{cases}$$

Considera un risultato $(CS, \underline{\mathbf{x}})$: Supponi che $CS = (\{1\}, \{2\}, \{3\})$.

- In questo caso, la coalizione grandiosa può deviare.
- $x_1 + x_2 + x_3 = v(\{1\}) + v(\{2\}) + v(\{3\}) < v(\{1, 2, 3\}).$

Cioè, non è stabile. Guarda la disequazione. Supponi che $CS = (\{1, 2\}, \{3\})$.

- In questo caso, o 1 o 2 ottengono meno di 1, quindi possono deviare con 3.
- $x_1 + x_3 = x_1 + 0 < 1 < v(\{1, 3\}).$

Collaborando devono **dividere** questo **1** che ottengono. Quindi, 1 o 2 prenderò meno dell'altro e l'altro potrebbe deviare con il 3.

Supponi che $CS = (\{1, 2, 3\}).$

- In questo caso, $x_i > 0$ vale per alcuni i, diciamo i = 3.
- Quindi, $x(\{1,2\}) < 1$, ma $v(\{1,2\}) = 1$.

Quindi in ogni caso qualcuno potrebbe cercare una coalizione migliore di quella in cui si trova attualmente. Questo porta ad avere un nucleo vuoto.

♦ 3.1.1 Cosa fare quando il nucleo è vuoto?

Questa situazione prende il nome di $\epsilon-Core$. In questo casi si vuole approssimare un esito stabile.

Bisogna rilassare il concetto di nucleo:

- Nucleo: $(CS, x) : x(C) \ge v(C)$ per ogni $C \subseteq N$
- ϵ -nucleo: $(CS, x) : x(C) \ge v(C) \epsilon$ per ogni $C \subseteq N$

Solitamente questa nozione è definita solo per giochi superadditivi.

Per esempio, consideriamo il gioco $G = (\{1, 2, 3\}, v)$, con v(C) = 1 se |C| > 1, v(C) = 0 altrimenti:

- Il $\frac{1}{3}$ -nucleo non è vuoto: $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \in \frac{1}{3}$ -nucleo
- Il ϵ -nucleo è vuoto per qualsiasi $\epsilon < \frac{1}{3}$:
- $-x_i \ge \frac{1}{3}$ per qualche i = 1, 2, 3; quindi $x(N\{i\}) \le \frac{2}{3}$, ma $v(N\{i\}) = 1$.

Definizione 3.9 (Nucleo minimo) Definiamo $\epsilon^*(G)$ come inf $\{\epsilon | \epsilon\text{-core di } G \text{ non } \hat{\epsilon} \text{ vuoto}\}.$

• Si può dimostrare che $\epsilon^*(G)$ -core non è vuoto.

La definizione di $\epsilon^*(G)$ -core è il nucleo minimo di G.

• $\epsilon^*(G)$ è chiamato il valore del nucleo minimo.

Nel contesto del gioco $G=(\{1,2,3\},v)$ con la funzione caratteristica v(C) definita come segue:

- v(C) = 1 se |C| > 1
- v(C) = 0 altrimenti
- Il 1/3-core non è vuoto: $(1/3, 1/3, 1/3) \in 1/3$ -core
- Il ϵ -core è vuoto per qualsiasi $\epsilon < 1/3$:
 - $x_i \geq 1/3$ per qualche i=1,2,3, quindi $x(N\{i\}) \leq 2/3,$ ma $v(N\{i\}) = 1$

3.2 Concetti di soluzione avanzati

Ci sono in particolare due che sono molto importanti: shapy value e il Nucleolus

Più sofisticate considerazioni sulla stabilità

- Nucleolus: Il nucleolus è un concetto utilizzato nella teoria dei giochi cooperativi per valutare la giustizia nella distribuzione dei guadagni tra i giocatori.
- Bargaining set: L'insieme di contrattazione è un concetto che si riferisce agli insiemi di risultati in cui i giocatori trovano equo e ragionevole partecipare, dati i poteri di contrattazione.
- Kernel: Il nucleo è un sottoinsieme del nucleo in cui i giocatori non possono migliorare il proprio risultato cooperando in modo diverso.

Concetto di fairness

- Shapley value: Il valore di Shapley è una soluzione per assegnare un valore a ciascun giocatore in modo equo, tenendo conto del loro contributo marginale a ogni possibile coalizione.
- Banzhaf index: L'indice di Banzhaf è una misura del potere di voto di ciascun giocatore in un gioco di voto ponderato.

♦ 3.2.1 Nucleolus

Definiamo ora il concetto di eccesso

Definizione 3.10 (Eccesso) E' una misura che indica quanto la coalizione è insoddisfatta.

$$e(S,x) = v(S) - x(S) \tag{3}$$

Facciamo un esempio numerico:

- $v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$
- $v(\{1,2\}) = v(\{1,3\}) = v(\{2,3\}) = 1$
- $v(\{1,2,3\}) = 3$

Minimizzare la insoddisfazione di ogni possibile coalizione. Applichiamo

•
$$\mathbf{x} = (0,0,3) \implies e(\{1,2\},x) = v(\{1,2\}) - (x_1 + x_2) = 1 - 0 = 1$$

•
$$x = (1,2,0) \implies e(\{1,2\},x) = v(\{1,2\}) - (x_1 + x_2) = 1 - 3 = -2$$

Ritorniamo alla definizione di Nucleolus.

Definizione da Schmeidler: Il nucleolus $\mathcal{N}(\mathcal{G})$ di un gioco \mathcal{G} è l'insieme:

$$\mathcal{N}(\mathcal{G}) = \{ x \in \mathcal{X}(\mathcal{G}) | \nexists y \in \mathcal{X}(\mathcal{G}) \ t.c \ \theta(y) \prec \theta(X) \}$$

Che significa proprio che non esiste un altro vettore di pagamento che è preferito da tutti i giocatori rispetto a x. Quindi, il nucleolus è un concetto di soluzione che è **stabile**.

3.3 Shapley Value

Stability vs Fairness

Consideriamo il gioco $G = (\{1, 2\}, v)$ con le seguenti caratteristiche:

- $v(\emptyset) = 0$
- $v(\{1\}) = v(\{2\}) = 5$
- $v(\{1,2\}) = 20$

Nel nucleo del gioco, abbiamo l'allocazione (15,5). In altre parole, il giocatore 1 riceve 15 e il giocatore 2 riceve 5. È importante notare che il nucleo rappresenta una situazione in cui nessun giocatore può ottenere un risultato migliore deviando unilateralmente. In questo caso, il giocatore 2 non può ottenere un risultato migliore deviando.

La domanda principale è: l'allocazione (15, 5) è equa? La giustizia in un contesto di gioco può essere soggettiva e dipendere dalle aspettative e dagli accordi tra i giocatori. Quindi, se l'allocazione è considerata equa o meno potrebbe variare in base al contesto e alle aspettative dei giocatori.

No! Poiché 1 e 2 sono risultati simmetrici nel core possono essere ingiusti! Come facciamo a dividere i pagamenti in modo equo?

Pensiamo a questo. Un risultato equo dovrebbe premiare ciascun agente in base al loro contributo. Nel primo tentativo, dato un gioco G=(N,v), impostiamo $x_i=v(\{1,\ldots,i-1,i\})-v(\{1,\ldots,i-1\})$. In altre parole, il pagamento per ciascun giocatore è il loro contributo marginale alla coalizione dei loro predecessori. Otteniamo $x_1+\ldots+x_n=v(N)$; x è un vettore di pagamento.

Tuttavia, questo metodo non funziona poiché il pagamento di ciascun giocatore dipende dall'ordine. Ad esempio, consideriamo il gioco $G=(\{1,2\},v)$, con $v(\emptyset)=0,\ v(\{1\})=v(\{2\})=5,\ e\ v(\{1,2\})=20.$ In questo caso, $x_1=v(1)-v(\emptyset)=5$ e $x_2=v(\{1,2\})-v(\{1\})=15.$

Notiamo che i risultati non sono gli stessi, indipendentemente dall'ordine. Pertanto, questa formulazione non produce risultati equi.

Un'idea per eliminare la dipendenza dall'ordine è quella di calcolare una media su tutte le possibili permutazioni degli ordini di arrivo.

Ad esempio, consideriamo il gioco $G=(\{1,2\},v)$, con $v(\emptyset)=0$, $v(\{1\})=v(\{2\})=5$, e $v(\{1,2\})=20$. Iniziamo calcolando i pagamenti per due ordini diversi:

- Per l'ordine (1, 2): $x_1 = v(1) v(\emptyset) = 5$ e $x_2 = v(\{1, 2\}) v(\{1\}) = 15$.
- Per l'ordine (2, 1): $y_2 = v(2) v(\emptyset) = 5$ e $y_1 = v(\{1, 2\}) v(\{2\}) = 15$.

Ora, calcoliamo i pagamenti mediando tra i due ordini:

- $z_1 = (x_1 + y_1)/2 = (5+15)/2 = 10$
- $z_2 = (x_2 + y_2)/2 = (15 + 5)/2 = 10$

Il risultato ottenuto è equo, poiché ciascun giocatore riceve 10, indipendentemente dall'ordine in cui sono considerati.

Una permutazione di $\{1,\dots,n\}$ è una corrispondenza uno a uno da $\{1,\dots,n\}$ a se stessa.

Denotiamo con P(N) l'insieme di tutte le permutazioni di N.

Denotiamo con $S_{\pi}(i)$ l'insieme dei predecessori di i in una permutazione $\pi \in P(N)$.

Per $C \subseteq N$, definiamo $\delta_i(C) = v(C \cup \{i\}) - v(C)$ come il contributo marginale del giocatore i a C.

Il valore di Shapley del giocatore i in un gioco G=(N,v) con |N|=n è dato da:

$$\varphi_i(G) = \frac{1}{n!} \sum_{\pi: \pi \in P(N)} \delta_i(S_{\pi}(i))$$

Supponiamo di scegliere una permutazione dei giocatori in modo uniforme e casuale tra tutte le possibili permutazioni di N. In questo contesto, il valore di Shapley φ_i rappresenta il contributo marginale atteso del giocatore i alla coalizione dei suoi predecessori.

3.3.1 Proprietà del valore di Shapley

Definizione 3.11 (Proprietà 1) In qualsiasi gioco G, la somma dei valori di Shapley di tutti i giocatori, ossia $\varphi_1 + \ldots + \varphi_n$, è uguale al valore totale del gioco v(N).

Definizione 3.12 (Proprietà 2) Un giocatore i è definito un giocatore fittizio (dummy) se $v(C) = v(C \cup \{i\})$ per qualsiasi insieme $C \subseteq N$.

Proposizione: Se un giocatore i è un giocatore fittizio, allora il suo valore di Shapley φ_i è uguale a 0.

Definizione 3.13 (Proprietà 3) Due giocatori i e j sono definiti simmetrici se $v(C \cup \{i\}) = v(C \cup \{j\})$ per qualsiasi insieme $C \subseteq N \setminus \{i, j\}$.

Proposizione: Se i e j sono giocatori simmetrici, allora i loro valori di Shapley φ_i e φ_j sono uguali.

Definizione 3.14 (Proprietà 4) Siano G1 = (N, u) e G2 = (N, v) due giochi con lo stesso insieme di giocatori. Allora G = G1 + G2 è il gioco con l'insieme di giocatori N e la funzione caratteristica w definita come w(C) = u(C) + v(C) per tutti gli insiemi $C \subseteq N$.

Proposizione: Il valore di Shapley di un giocatore i nel gioco G1 + G2 è uguale alla somma dei valori di Shapley di i nei giochi G1 e G2, ossia $\varphi_i(G1 + G2) = \varphi_i(G1) + \varphi_i(G2)$.

Proprietà riassunte:

- 1. Efficienza: $\varphi_1 + \ldots + \varphi_n = v(N)$
- 2. **Dummy:** Se *i* è un giocatore fittizio, allora $\varphi_i = 0$
- 3. Simmetria: Se i e j sono giocatori simmetrici, allora $\varphi_i = \varphi_j$
- 4. Additività: $\varphi_i(G1+G2) = \varphi_i(G1) + \varphi_i(G2)$

Teorema: Il valore di Shapley è l'unico schema di distribuzione dei pagamenti che soddisfa le proprietà 1-4.

E' possibile scrivere la formula anche in questo modo:

$$\phi(i,\nu) = \sum_{C \subseteq N} \frac{(|N| - |C|)! \times (|C| - 1)!}{|N|!} (\nu(C) - \nu(C \setminus \{i\}))$$

Appunti di Laboratorio

Introduzione alla teoria dell'utilità e decision making

4.1 Concetti di base

♦ 4.1.1 ALTERNATIVE

Parliamo di *agenti* che devono scegliere un'*alternativa* da un'insieme \mathcal{X} di alternative. Questo insieme di alternative ha degli elementi che possono essere **esaustivi** o **mutualmente esclusivi**.

```
Esepmio: § {
DL = Deep Learning
AGT = Algorithmic Game Theory
DLAGT = Deep Learning Algorithmic Game Theory
N = None
```

♦ 4.1.2 PREFERENZE

}

Con il termine **preferenze** identifichiamo una relazione \succeq su \mathcal{X} , che è un sottoinsieme di $\mathcal{X} \times \mathcal{X}$. Le preferenze possono essere:

- complete se $\forall x, y \in \mathcal{X}$ vale $x \succcurlyeq y$ oppure $y \succcurlyeq x$
- transitive se $\forall x, y, z \in \mathcal{X}$ vale $x \succcurlyeq y$ e $y \succcurlyeq z$ allora $x \succcurlyeq z$

♦ 4.1.3 Relazione di Preferenza

Una preferenze è una **relazione di preferenza** se è sia **completa** che **transitiva**

```
Si chiama preferenza stretta se x \succ y \iff x \succcurlyeq y e x \not\succeq y.
Si chiama indifferenza se x \sim y \iff x \succcurlyeq y e x \preccurlyeq y.
```

♦ 4.1.4 Rappresentare le preferenze come utilità

Una relazione di preferenza puà essere tradotta in una funzione di utilità del tipo $u: \mathcal{X} \to \mathbb{R}$. Si può fare in questo modo:

$$x \succcurlyeq y \iff u(x) \ge u(y) \quad \forall x, y \in \mathcal{X}$$
 (4)

Esempio: Se un agente dovesse trovare x almeno buono quanto y, allora la funzione di utilità u(x) deve essere almeno alta quanto u(y). Cioè l'agente è come se stesse **massimizzando** il valore di u(var).

Teorema 4.1 (Rappresentazione Ordinale)

Sia \mathcal{X} un insieme finito di alternative e sia \succcurlyeq una relazione di preferenza su \mathcal{X} . Allora una preferenza può essere rappresentata come una funzione di utilità $u: \mathcal{X} \to \mathbb{R}$ se e solo se è **completa** e **transitiva**. In più, se $f: \mathcal{R} \to \mathcal{R}$ è una funzione monotona crescente, allora $f \circ u$ rappresenta la stessa preferenza di $u \succcurlyeq$

Nota: dall'ultimo statement, l'ordine ha rilevanza. Per essere valido ci sono 2 condizioni necessarie:

- Transitività: Cioè, dato $\mathcal{X} = \{a, b, c\}$, suponiamo che $a \succ b \succ c \succ a \implies u(a) > u(b) > u(c) > u(a)$. Questo sarebbe **assurdo**.
- Completezza: Se abbiamo preferenze incomplete, allora al massimo possiamo costruire un ordine per un sottoinsieme di \mathcal{X} .

Dimostrazione

La transitività e la completezza sono necessarie e sufficienti. Supponiamo di avere l'insieme $X = \{X_1, \ldots, X_n\}$. Possiamo suddividere gli elementi di X in k classi di indifferenza C_1, \ldots, C_k tali che $C_1 \succ C_2 \succ \ldots \succ C_k$. In questo modo, possiamo definire la funzione di utilità u in modo che:

$$u(x) = k \quad \forall x \in C_1,$$

 $u(x) = k - 1 \quad \forall x \in C_2,$
 \dots
 $u(x) = 1 \quad \forall x \in C_k.$

In questo contesto, ≻ rappresenta la relazione di preferenza.

4.2 Le lotterie

Una lotteria è una tupla $\mathcal{L} = (p_1, x_1; p_2, x_2 \dots, p_n, x_n).$

- Con prezzo monetario $x_1, x_2, \ldots, x_n \in X \subseteq R$.
- Distribuzione di probabilità (p_1, p_2, \ldots, p_n) .

Quindi con \mathcal{L} viene definito l'insieme delle lotterie semplici. Un esempio di lotteria è il seguente:

$$L = (0.3, 10; 0.2, 5; 0.1, 0; 0.4, -5)$$

Possiamo calcolare il valore atteso per la lotteria come:

$$\mathbb{E}(L) = \sum_{i=1}^{n} p_i x_i$$

$$\mathbb{E} = 0.3 \times 10 + 0.2 \times 5 + 0.1 \times 0 + 0.4 \times (-5) = 2$$

Definizione 4.1 (Utilità attesa) Data una relazione di preferenza \succeq su \mathcal{L} , una funzione di utilità $U: \mathcal{L} \to \mathbb{R}$ è funzione di utilità attesa se può ssere scritta come:

$$U(L) = \sum_{i=1}^{n} p_i u(x_i)$$

dove p_i è la probabilità che l'evento x_i accada e u è la funzione di utilità di Bernoulli.

per un qualche funzione $u: R \to R$.

Questa funzione u viene chiamata funzione di utilità di Bernoulli

4.3 Utilità di Von Neumann-Morgenstern

I due matematici Von Neumann e Morgenstern hanno dimostrato che se una relazione di preferenza \succeq su \mathcal{L} soddisfa le seguenti proprietà, allora può essere rappresentata come una funzione di utilità:

- Assioma 1 (Ordine di preferenza): ≽ è completa e transitiva
- Assioma 2 (Continuità): Se $L \succ M \succ N$ allora esiste $p \in [0,1]$ tale che $pL + (1-p)N \sim M$
- Assioma 3 (Indipendenza): Per una qualsiasi lotteria N e $p \in [0,1], L \succcurlyeq M \iff pL+(1-p)N \succcurlyeq pM+(1-p)N$

Teorema 4.2 (Teorema di VNM) Una relazione binaria \succ su \mathcal{L} ha una rappresentazione utilità attesa se e solo se soddisfa gli assiomi da 1 a 3. Ancora, se U e V sono rappresentazioni di utilità attesa di \succ , allora esistono delle costanti $a, b \in \mathbb{R}$ tale che $U(\cdot) = aV(\cdot) + b$.

Che detto in parole italiane, significa che se una relazione binaria è completa, transitiva, continua e indipendente, allora può essere rappresentata come una funzione di utilità attesa.

Andremo a fare la **dimostrazione** in due fasi:

- 1. Dimostriamo che $U(L) \sum_{i=1}^{n} p_i u(x_i)$
- 2. Dimostriamo che $L \succ M \iff U(L) \succ U(M)$ con $L, M \in \mathcal{L}$

Dimostrazione 4.1 (Parte 1)

Supponiamo di avere n risultati o_1, \ldots, o_n .

Per la **completezza** e per la **transitività** possiamo ordinare i nostri risultati dal peggiore al migliorare

$$o_1 \curlyeqprec \cdots \curlyeqprec o_n$$

Sia $u(0_1) = 0$ e $u(o_n) = 1$.

Per ogni provabilità $p \in [0,1]$, definiamo una lotteria $\mathcal{L}(p) = p \cdot o_n + (1-p) \cdot o_1$. Per l'assioma di continuità c'è una probabilità $q_1 \in [0,1]$, per ogni risultati, tale che $L(q_i) = o_i$ e $u(o_i) = q_i$

Segue che l'utilità della lotteria $\mathbb{M} = \sum_i p_i o_i$ è il valore atteso di u.

$$u(M) = u(\sum_{i} p_i o_i) = \sum_{i} p_i u(o_i) = \sum_{i} p_i q_i$$

Dimostrazione 4.2 (Parte 2)

Supponiamo che L'succM, possiamo definire L' e M' come segue:

$$L' = U(L) \cdot o_n + (1 - U(L)) \cdot o_1$$

$$M' = U(M) \cdot o_n + (1 - U(M)) \cdot o_1$$

Abbiamo il seguente ordine: $\mathcal{L}' \sim L \succ M \sim M'$.

Poiché $L' \succ M' \implies U(L) > U(M)$.

Questo implica $L \succ M \iff U(L) > U(M)$.

■ 4.4 Atteggiamento verso il rischio

 \mathbf{C}

Consideriamo una lotteria giusta $\mathcal{L} = p \cdot x + (1 - p) \cdot y = 0$ Allora:

- Un giocatore è **neutrale al rischio** \iff la sua funzione di utilità è **lineare**. Cioè: u(x) = ax + b. Si dice che un giocatore neutrale al rischio sia neutrale con le lotterie giuste
- Un giocatore è **propenso al rischio** \iff la sua funzione di utilità è **convessa**. Un giocatore propenso al rischio gioca a tutte le lotterie giuste

Figure 3: Rappresentazione grafica del rischio

■ 4.5 Applicazioni: Condivisione del rischio

Immaginiamo di avere due giocatori A e B che sono avversi al rischio con $u(x) = \sqrt(x)$ e due assets $A_1, A_2 = (0.5, 100; 0.5, 0)$. Supponiamo che A_1 e A_2 siano indipendenti.

L'utilità di A_1 e A_2 è : $u(A_1)0u(A_2) = 0.5 \times \sqrt{(100)} = 5$

Se i due giocatori formassero un **fondo comune** dove ogni giocatore ha una quota della metà, ogni giocatore ha l'asset $A_m = (0.25, 100; 0.5, 50; 0.25, 0)$.

L'utilità di un gioatore è:

$$u(A_m) = 0.25 \times \sqrt{(100)} + 0.5 \times \sqrt{(50)} \approx 6.$$

Questo perché il giocatore ha una probabilità del 50% di avere 100 e una probabilità del 50% di avere 50. Quindi la media è 75 e la radice è 6.

■ 4.6 Applicazione: Assicurazione

Supponiamo di avere un giocatore A che è avverso al rischio con $u(x) = \sqrt{(x)}$ e un asset A = (0.5, 100; 0.5, 0).

Immaginiamo di avere una compagnia di assicurazione neutrale al rischio con tantissimi soldoni.

Quale premium P pagherebbe il giocatore per assicurare il suo asset?

$$u(100-P) \ge 0.5 \times u(100) + 0.5 \times u(0) \to \sqrt{(100-P)} \ge 5 \to 100 - P \ge 25 \to -P \ge -100 + 25 \to P \ge 75$$

Quale premium pagherebbe la compagnia assicurativa per assicurarsi l'asset del giocatore?

$$P > 0.5 \times 100 + 0.5 \times 0 \rightarrow P > 50$$

Allora, entrambi guadagnerebbero soldi se la compagnia assicurasse l'asset del player per un premium $P \in [50, 75]$.

5 Teoria dei giochi coalizionali

Definizione 5.1 (Giochi coalizionali)

Un gioco coalizionale (cioè con utilità trasferibile) è una coppia del tipo G=(N,v) con:

- $N = \{1, ..., n\}$ l'insieme dei giocatori
- $\nu: 2^N \to \mathbb{R}$ la funzione caratteristica

Per ogni sotto-insieme di giocatori C, $\nu(C)$ è la quantità che i membri di C possono ottenere se lavorassero insieme.

Definizione 5.2 (Funzione caratteristica)

La funzione caratteristica è un mapping tra ogni coalizione $C \subseteq N$ o il suo rispettivo valore (cioè l'utilità).

Esempio 5.1 (Gelati)

Insieme dei giocatori N:

- A: 6\$
- B: 3\$
- C: 3\$

Insieme degli assets: Gelati

- 500g: 7\$
- 750g: 9\$
- 1000g: 11\$

Ora, abbiamo i ν che sono i valori di ogni coalizione:

- Cardinalità 1: $\nu(\emptyset) = \nu(\{A\}) = \nu(\{B\}) = \nu(\{C\}) = 0$
- Cardinalità 2: $\nu(\{A, B\}) = 750; \nu(\{A, C\}) = 750; \nu(\{B, C\}) = 0$
- Cardinalità 3: $\nu(\{A, B, C\}) = 1000$

5.1 Superadditività

Un gioco a funzione di caratteristica $G(N, \nu)$ è detto **superadditivo** se soddisfa:

$$\nu(C_1 \cup C_2) \ge \nu(C_1) + \nu(C_2) \forall C_1, C_2 \subset N \text{ t.c. } C_1 \cap C_2 = \emptyset$$

Cioè, in italiano, significa che,

Definizione 5.3 (Superadditività) Dato un gruppo di giocatori C_1 e un gruppo di giocatori C_2 , se dovessero unirsi, il valore della coalizione risultante è maggiore o uguale alla somma dei valori delle due coalizioni.

- Cardinalità 1: $\nu(\emptyset) = \nu(\{A\}) = \nu(\{B\}) = \nu(\{C\}) = 0$
- Cardinalità 2: $\nu(\{A, B\}) = 750; \nu(\{A, C\}) = 750; \nu(\{B, C\}) = 0$
- Cardinalità 3: $\nu(\{A, B, C\}) = 1000$

Prendiamo per esempio $\nu(\{A, B\})$.

$$\nu(\{A, B\}) \ge \nu(\{A\}) + \nu(\{B\}) \implies 750 \ge 0$$
 (5)

Questo vale anche per $\nu(\{A,C\})$:

$$\nu(\{A,C\}) \ge \nu(\{A\}) + \nu(\{C\}) \implies 750 \ge 0$$
 (6)

E anche per $\nu(\{B,C\})$:

$$\nu(\{B,C\}) \ge \nu(\{B\}) + \nu(\{C\}) \implies 0 \ge 0$$
 (7)

5.2 Core o Nucleo

Il core o nucleo è definito come:

$$Core(G) = Xt.c \begin{cases} x_i \ge 0 \forall i \in N \\ \sum_{i \in N} x_i \le \nu(N) \\ \sum_{i \in C} x_i \ge \nu(C) \forall C \subseteq N \end{cases}$$
 (8)

5.3 Shapley Value

Lo shapleu value di un giocatore i è la contribuzione marginale media del player i su tutte le possibili coalizioni.

$$\phi(i,\nu) = \frac{1}{|N|!} \sum_{\pi \in \Pi} \nu(B(\pi,i)) \cup \{i\} - \nu(B(\pi,i))$$
(9)

con:

• \prod_N è l'insieme di tutte le possibili permutazioni di N

• $B(\pi, i)$ è l'insieme di tutti i predecessori di i nella perutazione π .

Esempio 5.2 (Shapley value con giocatore A)

- Cardinalità 1: $\nu(\{A\}) = \nu(\{B\}) = \nu(\{C\}) = 0$
- Cardinalità 2: $\nu(\{A, B\}) = 750; \nu(\{A, C\}) = 750; \nu(\{B, C\}) = 0$
- Cardinalità 3: $\nu(\{A, B, C\}) = 1000$

Ora, calcoliamo le computazioni per A.

- $\pi_1 = (A, B, C) \implies \nu(\{A\}) \nu(\emptyset) = 0 0 = 0$
- $\pi_2 = (A, C, B) \implies \nu(\{A\}) \nu(\emptyset) = 0 0 = 0$
- $\pi_3 = (B, A, C) \implies \nu(\{A, B\}) \nu(\{B\}) = 750 0 = 750$
- $\pi_4 = (B, C, A) \implies \nu(\{A, B, C\}) \nu(\{B, C\}) = 1000 0 = 1000$
- $\pi_5 = (C, A, B) \implies \nu(\{A, C\}) \nu(\{C\}) = 750 0 = 750$
- $\pi_6 = (C, B, A) \implies \nu(\{A, B, C\}) \nu(\{B, C\}) = 1000 0 = 1000$

In totale, allora, abbiamo:

$$\phi(A,\nu) = \frac{1}{6}(0+0+750+1000+750+1000) = 583.\overline{33}$$

 ${f Nota:}$ Lo shapley value può essere anche calcolato utilizzando questa formula:

$$\phi(i,\nu) = \sum_{C \subseteq N} \frac{(|N| - |C|)! \times (|C| - 1)!}{|N|!} (\nu(C) - \nu(C \setminus \{i\}))$$