Review of Math 1: Derivatives

- · Debnition via limits
- · How to Calculate
- · Applications

How to Culculate

Product Pule
$$\frac{d}{dx} \left[f(x) \cdot g(x) \right] = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

ex $\frac{d}{dx} \left[\chi^2 \cdot \sin x \right] = 2x \cdot \sin x + \chi^2 \cdot \cos x$

· Chan Pute
$$\frac{d}{dx} [f(g(x))] = f'(g(x)) \cdot g'(x)$$

ex
$$\frac{d}{dx} \left[\sin(x^2) \right] = \cos(x^2) \cdot 2x$$

Applications

· tangent lines

· maxima and minima via critical points

· Pates of Change: $V = \frac{4}{3}\pi r^3$

16 $\frac{dr}{dt} = 2$ m/s how fast is the Volume growing when r = 10 m. ?

$$\frac{dV}{dt} = \frac{4}{3}\pi S r^2 \frac{dr}{dt} = 4\pi (10m)^2 \cdot 2^{m} s = 800 \pi \frac{m^3}{s}$$

Mush 2: Integrals

Debinition via limits $\int_{a}^{b} f(x) dx = \lim_{N \to \infty} \sum_{i=1}^{N} f(X_{i}) \Delta X_{i}$

How to Calculate . substitution

- · by parts
- . trig methods

Applications Area, distance, lengths, volume

Antiderivatives: Q: Cineu f(x) = x2 + 5 does there exist

a function F(x) such that F'(x) = f(x) ?

If so F(x) is called the autidecivative of S(x).

A: In this case, YES, with F(x)= $\frac{\chi^3}{3}$ + 5 X

Q: Is this function F(x) unique, i.e. does there exist $G(x) \neq F(x)$ with G'(x) = G(x).

A: YES, let G(X) = F(X) + C, where C is any constant.

examples of auxidenivatives (see pg 345).

function	autideireme
V _N	XN+1
cos X	5M X
GN X	- 604 X
ex	ex
$\frac{1}{X}$	/w /x/