RSA-Verschlüsselung

Schlüsselerzeugung

1) Man wählt (in der Praxis sehr große) Primzahlen p und q.

2)
$$\boxed{\mathbf{n} := \mathbf{p} \cdot \mathbf{q}}, \quad \boxed{\mathbf{m} := \varphi(\mathbf{n}) = (\mathbf{p} - 1) \cdot (\mathbf{q} - 1)}$$

- 3) e wird so gewählt, dass ggT(e, m) = 1 ist.
- 4) d sei die modulare Inverse von e zum Modul m: $d := e^{-1} \pmod{m}$
- 5) (n, e) ... öffentlicher Schlüssel,

(n, d) ... geheimer Schlüssel (geheim ist nur d),

p, q und m werden nicht mehr benötigt, bleiben aber unbedingt geheim!

Verschlüsselung

Zu verschlüsseln ist eine (vorher in geeigneter Weise als Zahl codierte) zu n teilerfremde Nachricht a. Die Verschlüsselung erfolgt durch Potenzieren

mit e:
$$b := a^e \pmod{n}$$
. b ist der Geheimtext, der gesendet wird.

Entschlüsselung

Der Empfänger und Besitzer des geheimen Schlüssels bildet $b^d \pmod{n}$ und erhält $b^d \equiv a \pmod{n}$, denn es gilt nach dem Satz von EULER:

$$\mathbf{b}^d \equiv (a^e)^d \equiv a^{e \cdot d} \equiv a^{1+k \cdot m} \equiv a^{1+k \cdot \phi(n)} \equiv a \cdot (a^{\phi(n)})^k \equiv a \pmod{n}$$

Beispiel: Übungsaufgabe A 2.4 (Lösung)

a)
$$n = p \cdot q = 13 \cdot 19 = \underline{\underline{247}}$$
 , $m = \phi(n) = (p-1) \cdot (q-1) = 12 \cdot 18 = \underline{\underline{216}}$

Bestimmung der Inversen von e = 11 zum Modul m = 216:

		11 = 0.216 + 1.11
216 : 11 = 19 Rest 7	7 = 216 - 19.11	7 = 1.216 - 19.11
11: 7 = 1 Rest 4	4 = 11 - 7	4 = -1.216 + 20.11
7: 4 = 1 Rest 3	3 = 7 - 4	$3 = 2 \cdot 216 - 39 \cdot 11$
4: 3 = 1 Rest 1	1 = 4 - 3	1 = -3.216 + 59.11

 \Rightarrow <u>d = 59</u> ist die modulare Inverse von e zum Modul m = 216.

b)
$$a^e \equiv 5^{11} \equiv 177 \pmod{247}$$
, d.h. Geheimtext $b = 177$.

Entschlüsselung (zur Kontrolle): $b^d \equiv 177^{59} \equiv 5 \pmod{247}$.

c)
$$b^d \equiv 2^{59} \equiv 241 \pmod{247}$$
, d.h. Entschlüsselung $a = 241$.

Bemerkung: Die Restberechnungen in b) und c) können entweder mit einem Rechner mit mod-Funktion erfolgen oder durch Aufspaltung in kleinere

Potenzen, z.B.
$$2^{59} \equiv (2^8)^7 \cdot 2^3 \equiv 256^7 \cdot 8 \equiv 9^7 \cdot 8 \equiv 38263752 \equiv 241 \pmod{247}$$
.