Lecture 9 - PMFs and PDFs

uesday. February 25, 2020 2:00 PM

Defin: Identically Distributed R.V.S

$$X \stackrel{d}{=} Y$$
 if $P(X \in A) = P(Y \in A)$
for all $A \subset S$

Ex. X = # heads in 3 flips

Y = # tails in 3 flips

es. $P(X=1) = \frac{3}{8} = P(Y=1)$

haverer

HTT X = 1 ad Y = 2.

Theorem: X = Y iff $F_X = F_Y$

Ex. Toss coins (independently) until a Happears.

| S = 20

let p be the prob. of getting a H on my flip.

and, X = # of flips to get a H.

S

Q: What is the CDF of
$$X$$
?
$$F(x) = P(X \in x)$$

To determe F, lets casider

then 11x=x"=T, T2T3---Tx-1 Hx

80
$$P(\chi = \chi) = P(T_1, T_2 - \cdots T_{\chi-1} H_{\chi})$$

$$= P(T_1)P(T_2) - \cdots P(T_{\chi H})P(H_{\chi})$$
 independence
$$= (1-p)(1-p) - \cdots (1-p)p$$

$$= (1-p)^{\chi-1}$$

$$= (1-p)^{\chi-1}$$

disjoint mian $||\chi \leq \chi|| = \omega_1 \cup \omega_2 \cup \cdots \cup \omega_r$ $F(x) = P(\chi \leq \chi) = P(\omega_1 \cup \omega_2 \cup \cdots \cup \omega_{\chi})$ $=\sum_{i=1}^{\chi}P(w_i)$ $\sum_{i=0}^{\infty}r^i=\frac{1}{1-r^i}$ $=\frac{1}{2}P(\chi=i)$ $=\frac{1}{2}ri$ $=\frac{1-r}{1-r}$ $=\sum_{i=0}^{\infty}(1-p)^{i-1}$ $= P = (1-p)^{i} \qquad r=1-p$ $= p \frac{1 - (1-p)^{x}}{1 - (1-p)}$ $= (-(1-p)^{\chi} = F(\chi)$ F(7) We call this type of random variable a Greametric V. U. We calculated the CDF by breaking it down into a sum of P(X=X) for each X Pefn: Probabily Mass Function (PMF) For a discrete random variable we call

$$f(x) = P(X = x)$$
the PMF. (Called the distribution of X)

$$Ex. \quad \text{for the geometric r.v.}$$

$$f(x) = P(X = x) = (1 - p)^{x-1}p$$

$$f(x) \quad \text{"stick plst"}$$

$$\text{"the distribution of X"}$$

Theorem.

$$F(x) = \sum_{i \leq x} f(i)$$

$$P(x = i)$$

More generally
$$A \in \mathbb{R}$$
 sum of pmf
$$P(X \in A) = \sum_{x \in A} f(x)$$
 are values in A

$$P(2 \le x < 5)$$

= $P(x \in \{2,3,43\})$

=
$$\sum_{\chi=2,3,4} f(\chi) = \sum_{\chi=2,3,4} f(\chi) = 3/n$$

$$ex.$$
 $P(\chi \in \{1, 7, 3\}) = \frac{\sum_{h=1,7,3}}{\chi_{=1,7,3}}$

lets derive the PMF.

$$f(x) = P(X=x) = prob. I roll x (os in 60 rolls)$$

$$f(0) = P(X=0) = (5/6)(5/6)(5/6) \cdot (5/6)$$

$$= (5/6)^{60}$$

$$f(1) = P(X=1) = 60 (\%) (\%) \cdots (\%) (\%)$$

$$= (60) (\%) (\%) (\%)$$

$$f(2) = P(X=2) = (60) (\%) (\%) (\%)$$

$$= (60) (\%) (\%) (\%)$$

$$= (60) (\%) (\%) (\%)$$

$$= (60) (\%) (\%) (\%)$$

$$= (60) (\%) (\%) (\%)$$
We call this a Binomial random variable.

I do n experiments each independent $\%$ a prob. p of success.

$$X = 4 \text{ of successes} \quad \text{above:} \quad n=60$$
Then $X \sim Bin(n,p) \quad p=\%$
What is prob. of getting an even # of 6s.

$$P(X \text{ is even})$$

$$= P(X=2,4,6,8,...,58,60)$$

$$P(a < X \leq b) = F(b) - F(a)$$

$$P(X=\chi) = \lim_{\epsilon \downarrow 0} P(\chi - \epsilon < X \leq \chi)$$

$$\frac{1}{x-\varepsilon} \frac{((//////))}{x}$$

$$= \lim_{\varepsilon \to 0} \left[F(x) - F(x-\varepsilon) \right]$$

$$= \sup_{\varepsilon \to 0} = P(x=x)$$

Another was!

$$F(x) = \sum_{i \in X} f(i)$$

Same agriment for cts r. V.S.

Defn: Probability Density Function (PDF)
Analog of PMF for cts.

The pdf is a function of so that $F(x) = \int f(t) dt$ Notice the Fundamental thearem of Cake $\frac{d}{dx}F(x) = \frac{d}{dx}\int_{-\infty}^{\infty} f(t) dt = f(x).$ $f(x) = \frac{d}{dx} F(x).$ discrete Continua density of prob. at X

NOT P(X=x).

Lectures 2 Page 10