Problem 1

a) if
$$D_A = 255$$
, $D_B = 255 = k \cdot 215 \cdot 215$

$$\Rightarrow k = \frac{1}{255}$$
b) $\partial_B = \frac{1}{255} D_A^2$

$$\int_{B} (D_B) = \int_{B} 255 D_B$$

$$H_B(D_B) = \frac{H_A(f^{-1}(D_B))}{f'(f^{-1}(D_B))} = \frac{H_A(\sqrt{255D_B})}{\frac{1}{2} \cdot \sqrt{265}(P_B)^{\frac{1}{2}}} = \frac{2\sqrt{D_B} H_A(\sqrt{255D_B})}{\sqrt{255}}$$

()
$$H_B(D_B) = \frac{2 \sqrt{D_B} H_A(\sqrt{1255D_B})}{\sqrt{1255}} = \frac{2 \sqrt{D_B} \cdot \frac{1}{255}}{\sqrt{1255}} = \frac{2 \sqrt{D_B}}{\sqrt{1255}} = \frac$$

Problem 2:
a)
$$f_{1}(D_{N}) = \frac{D_{m}}{A_{0}} \int_{0}^{D_{A}} H_{A}(u)du$$

$$= \frac{D_{m}}{A_{0}} \int_{0}^{D_{A}} \frac{2A_{0}u}{D_{m}^{2}} du$$

$$= \frac{D_{m}}{A_{0}} \cdot \frac{2A_{0}}{D_{m}^{2}} \cdot \int_{0}^{D_{n}} u du$$

$$= \frac{2}{D_{m}} \cdot \frac{D_{A}^{2}}{2}$$

$$= \frac{D_{A}^{2}}{D_{m}} = \frac{D_{A}^{2}}{255}$$

b)
$$\int_{0}^{Dm} k \left(u - \frac{257}{2}\right)^{2} du$$

$$= k \cdot \int_{0}^{255} \left(u - \frac{255}{2}\right)^{2} du = k \cdot \left(\frac{1}{3} \left(\frac{257}{2}\right)^{3} + \frac{1}{3} \left(\frac{257}{2}\right)^{3}\right)$$

$$= k \cdot \frac{2}{3} \left(\frac{257}{2}\right)^{3}$$

$$= A_{0}$$

()
$$\int_{1}^{1} (D_{A}) = \frac{D_{A}^{2}}{255}$$
 $\int_{2}^{2} (D_{C}) = \left(\frac{2}{255}\right)^{2} \cdot \left(D_{C} - \frac{255}{2}\right)^{3} + \frac{207}{2}$
 $D_{B} = \int_{1}^{1} (D_{A})$
 $D_{B} = \int_{2}^{1} (D_{B}) = \int_{2}^{1} \left(D_{B} - \frac{255}{2}\right) \cdot \left(\frac{255}{2}\right)^{2} + \frac{255}{2}$

$$= \sqrt[3]{\left(\frac{D_{1}^{2}}{255} - \frac{255}{2}\right) \cdot \left(\frac{255}{2}\right)^{2}} + \frac{255}{2}$$

Problem 3.

em 3.

a)
$$D_B = f(D_A) = \frac{D_m}{AD} \sum_{b}^{Q_A} H_A(b)$$

D _m = 7	A0 =	163284		
Dc	Helle)	De	D _B	Po=f (PD)
0	0	0	1	o o
2 3	4096 4096	2 4	2 3	2 2
4	4096 4096	5	4	3 LL
6	0	7	6	4
	U			5

DA	HALDA)	DB	Dc		DA	Dc
0	609	U	0		0	0
1	3298	2	2		_	2
2	2150	2	2	=7	2	2
3	3979	4	3		3	3
4	312	4	3		4	3
5	1768	5	4		5	4
6	¥26	5	Ü.		6	IL.
7	3842	7	5		7	5

6)	set	out put	as	e

DA	HALDA)		De	14(0)
0	609		0	He(De) 609
1	3298		0	
			'	0
2	2150	=>	2	5446
	3979			4291
4	312		4	2194
S	1768		S	3842
6	426		6	0
7	3842		7	0

The output histogram has some characteristics of the target histogram, but it is not a perfect match.

Because the two histograms processed are **discrete**, the point operation will only make the histograms as similar as possible, but the **number of pixels** on each gray level **cannot be changed**.

0)

edge of the image after using a boxcar filter.
This phenomenon is because the values of the images at the edges are averaged to a lower level, i.e., darker after boxcar filtering after the outer

edge has been zero-padding.

