Statistical Data Analysis

Jana de Wiljes

wiljes@uni-potsdam.de
 www.dewiljes-lab.com

January 2, 2023

Dimension reduction

Dimension reduction

Goal: reducing the number of given features in a data set $x_i \in \mathcal{S}$ with $i \in \{1, ..., N\}$

- lacksquare choose model class for the encoder $e \in \mathcal{E}$ and for the decoder $d \in \mathcal{D}$
- and appropriate loss functional I(x, d(e(x)))

Dimension reduction problem

For a given data ${\mathcal S}$ and fixed families of functions ${\mathcal E}$ and ${\mathcal D}$

$$(e^*, d^*) = \arg\min_{(e,d) \in \mathcal{E} \times \mathcal{D}} I(x, d(e(x)))$$
 (1)

1

Orthogonal Projection

Orthogonal basis

Definition: Let V be a vector space with scalar product $\langle \cdot, \cdot \rangle$ and $\{v_j\}_{j \in J}$ a family of vectors.

- $\{v_j\}_{j\in J}$ is a **orthogonal system**, if $\langle v_j, v_k \rangle = 0 \ \forall j \neq k \in J$ and if $v_j \neq 0 \ \forall j \in J$.
- $\{v_j\}_{j\in J}$ is a **Orthonormalsystem**, if additionally: $\langle v_j, v_j \rangle = 1 \ \forall j \ (\Leftrightarrow ||v_j|| = 1)$, in other words if: $\langle v_i, v_k \rangle = \delta_{jk} \ \forall j, k \in J$.
- An orthogonal- respectively -normal system is called a orthogonal basis bzw. orthonormal basis, if the vectors of the systems are forming a basis of the vector space.

Example:

- the canonical unit vectors $e_j \in K^n$ are forming an orthonormal basis of the vector space K^n wrt. the standard scalar product.
- the columns v_i an orthogonal respectively unitary $n \times n$ -matrix A form an orthogonal system, since:

$$(\langle v_j, v_k \rangle)_{j=1,\ldots,n, k=1,\ldots,n} = \overline{A}^t A = E.$$

Gram-Schmidt-Algorithm

Theorem: Let V be a K-vector space with scalar product and w_1, \ldots, w_n a family of linearly independent vectors. Particularly

$$\dim\langle w_1,\ldots,w_k\rangle=k\ \forall k=1,\ldots,n.$$

Then vectors v_1, \ldots, v_n in V exist with $\langle v_i, v_j \rangle = \delta_{ij}$ für $i, j \in \{1, 2, \ldots, n\}$, so that:

$$\langle v_1,\ldots,v_k\rangle=\langle w_1,\ldots,w_k\rangle$$
 für $k=1,\ldots,n.$

Proof: we are showing the result via induction

- Choose $v_1 := \frac{w_1}{\|w_1\|}$. Then v_1 is an unity vector and $\langle v_1 \rangle = \langle w_1 \rangle$.
- Given v_1, \ldots, v_{k-1} we set

$$u_k := w_k - \sum_{j=1}^{k-1} \langle v_j, w_k \rangle v_j.$$

4

Proof

The following holds:

$$\langle v_I, u_k \rangle = \langle v_I, w_k \rangle - \sum_{i=1}^{k-1} \langle v_j, w_k \rangle \langle v_I, v_j \rangle = 0, \quad I = 1, 2, \dots, k-1,$$

in other words $u_k \perp \langle v_1, \dots, v_{k-1} \rangle$ and $u_k \neq 0$, since

$$w_k \not\in \langle v_1, \dots, v_{k-1} \rangle = \langle w_1, \dots, w_{k-1} \rangle.$$

Then we define

$$v_k := \frac{u_k}{\|u_k\|},$$

so that v_1, \ldots, v_k is an **orthonormal system**. Further:

$$\langle w_1,\ldots,w_k\rangle=\langle v_1,\ldots,v_k\rangle.$$

We consider $V=\mathbb{R}^4$ with the standard-scalar product and the basis:

$$w_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, w_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, w_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, w_4 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

To obtain an **orthonormal basis** from the given basis we use the Gram-Schmidt-Method:

$$v_1 = rac{1}{2}w_1 = w_1 = egin{pmatrix} rac{1}{2} \ rac{1}{2} \ rac{1}{2} \ rac{1}{2} \ rac{1}{2} \end{pmatrix}, ext{ da } 2 = \sqrt{4} = \|w_1\|.$$

Now we can determine v_2 :

$$u_2 = w_2 - \langle v_1, w_2 \rangle \cdot v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} - 1 \cdot \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}, \text{ yielding } v_2 = \frac{u_2}{\|u_2\|}.$$

The third vector v_3 is determined as follows:

$$u_3 = w_3 - \langle v_1, w_3 \rangle v_1 - \langle v_2, w_3 \rangle v_2$$
, so $v_3 = \frac{u_3}{\|u_3\|} = \begin{pmatrix} \frac{2}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$.

Finally we determine

$$u_4 = w_4 - \langle v_1, w_4 \rangle v_1 - \langle v_2, w_4 \rangle v_2 - \langle v_3, w_4 \rangle v_3$$
 (2)

$$= \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} \frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2} \end{pmatrix} - \frac{1}{2} \begin{pmatrix} \frac{1}{2}\\\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2} \end{pmatrix} - \frac{1}{2} \begin{pmatrix} \frac{1}{2}\\-\frac{1}{2}\\\frac{1}{2}\\-\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{4}\\-\frac{1}{4}\\-\frac{1}{4}\\\frac{1}{4} \end{pmatrix}$$
(3)

yielding

$$v_4 = \frac{u_4}{\|u_4\|} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}.$$

7

Writing the vectors in the column in a matrix:

Representation via orthonormal basis

Theorem: Let $\{v_j\}_{j=1,...,n}$ be an orthonormal basis of the vector space V and $w \in V$ an additional vector. The the following holds:

$$w = \langle v_1, w \rangle v_1 + \cdots + \langle v_n, w \rangle v_n.$$

Proof: We compute the difference $u = w - \sum_{j=1}^{n} \langle v_j, w \rangle v_j$, and apply the scalar product $\langle v_k, \cdot \rangle$:

$$\begin{aligned} \langle v_k, u \rangle &= \langle v_k, w \rangle - \sum_{j=1}^n \langle v_k, \langle v_j, w \rangle v_j \rangle \\ &= \langle v_k, w \rangle - \sum_{j=1}^n \langle v_j, w \rangle \langle v_k, v_j \rangle = \langle v_k, w \rangle - \langle v_k, w \rangle = 0. \end{aligned}$$

It follows that u is orthogonal to v_1, \ldots, v_n and consequently orthogonal to every linear combination of jv_1, \ldots, v_n . Since v_1, \ldots, v_n generates the vector space V the following holds

$$\langle u, u \rangle = 0 \Rightarrow ||u|| = 0 \Rightarrow u = 0.$$

orthogonale Untervektorraum

Definition: Let V be a vector space with scalar product $\langle \cdot, \cdot \rangle$ and $U \subseteq V$ a subvector space. Then

$$U^{\perp} := \{ v \in V \mid \langle v, u \rangle = 0 \ \forall u \in U \}$$

is called the subvector space orthogonal to $\,U$ or orthogonal complement of $\,U$.

Remark: It holds that:

$$U^{\perp} \cap U = 0$$
.

since only the vector of zeros is orthogonal to itself. If dim $V < \infty$, the following holds:

$$U^{\perp} \oplus U = V$$
,

since dim $U^{\perp} = \dim V - \dim U$. Further

$$(U^{\perp})^{\perp}=U.$$

Orthogonal subvector space

Definition: Let $U \subseteq V$ be a subvector space. A map $\varphi \colon V \to U$ is called a **projection of** V **on** U, falls für jedes $u \in U$ gilt: $\varphi(u) = u$. A projection is called an **orthogonal projection on the subvector space** U, if for every vector $v \in V$ the following holds:

$$(\varphi(v)-v)\perp U.$$

Theorem: Let V be a K-vector space with scalar product and $U \subseteq V$ a finite dimensional subspace. Let $\{u_1, \ldots, u_k\}$ be a orthonormal basis of U. Then the maps

$$\operatorname{pr}_U \colon V o U, \quad v \mapsto \sum_{j=1}^k \langle u_j, v \rangle u_j$$

and

$$\operatorname{pr}_{U^{\perp}} \colon V o U^{\perp}, \quad v \mapsto v - \sum_{j=1}^k \langle u_j, v \rangle u_j$$

are orthogonal Projektions onto the respective subspaces.

Proof

Proof: firstly we realise

- $\operatorname{pr}_{U}(v) \in U$
- $\mathbf{v} = \operatorname{pr}_{U}(v) + \operatorname{pr}_{U^{\perp}}(v)$
- $\operatorname{\mathsf{pr}}_U(u) = u \ \forall u \in U \ \text{and} \ \operatorname{\mathsf{pr}}_{U^\perp}(w) = w \ \forall w \in U^\perp$

Then we consider

$$\langle u_l, w \rangle = \langle u_l, v \rangle - \sum_{j=1}^k \langle u_j, v \rangle \langle u_l, u_j \rangle = 0, \quad l = 1, \ldots, k.$$

which yields: $w = \operatorname{pr}_{U^{\perp}}(v) \in U^{\perp} = \langle u_1, \dots, u_k \rangle^{\perp}$. Further $u := \operatorname{pr}_{U}(v)$ implies $v = u + w \in U \oplus U^{\perp}$ and $u \perp w$. pr_{U} . Then $\operatorname{pr}_{U^{\perp}}$ are orthogonal projections onto U and U^{\perp} respectively. Further $U \oplus U^{\perp} = V$.

Visualisation in 2 dimensions

1. Let $V = \mathbb{R}^n$ and $U = \langle e_1, \dots, e_k \rangle$. Then $U^{\perp} = \langle e_{k+1}, \dots, e_n \rangle$ and further the following holds for $x = (x_1, \dots, x_n)^t$:

$$\operatorname{pr}_{U}(x) = (x_{1}, \dots, x_{k}, 0, \dots, 0)^{t} = \sum_{j=1}^{k} \langle e_{j}, x \rangle e_{j},$$

 $\operatorname{pr}_{U^{\perp}}(x) = (0, \dots, 0, x_{k+1}, \dots, x_{n})^{t} = x - \operatorname{pr}_{U}(x).$

2. Let $L \subset \mathbb{R}^n$ be a line through the origin in direction v. Without loss of generality we can choose $\|v\|=1$. Then the orthogonal projektions onto L or L^\perp respectively are:

$$\operatorname{pr}_{L} \colon \mathbb{R}^{n} \to L, \quad x \mapsto \langle v, x \rangle v,$$
$$\operatorname{pr}_{L^{\perp}} \colon \mathbb{R}^{n} \to L^{\perp}, \quad x \mapsto x - \langle v, x \rangle v.$$

Consider the concrete example:

$$L = \langle (1, \dots, 1)^t \rangle \subset \mathbb{R}, \text{ d.h. } v = \frac{1}{\sqrt{n}} (1, \dots, 1)^t.$$

1. Es ergeben sich: $L^{\perp} = \{x \mid \sum x_i = 0\}$ und $\langle v, x \rangle = \frac{1}{\sqrt{n}} \sum x_i = \sqrt{n} \cdot \overline{x}$, wobei $\overline{x} = \frac{1}{n} \sum x_i$ das **arithmetische Mittel** der Komponenten von x ist. Die beiden Projektionen sind also:

$$pr_{L} \colon \mathbb{R}^{n} \to L, \quad x \mapsto (\overline{x}, \dots, \overline{x}),$$

$$pr_{L^{\perp}} \colon \mathbb{R}^{n} \to L^{\perp}, \quad x \mapsto x - (\overline{x}, \dots, \overline{x}).$$

Tatsächlich ist für $y = pr_{L^{\perp}}(x)$:

$$\sum y_i = \sum x_i - n \cdot \overline{x} = \sum x_i - \sum x_i = 0,$$

d.h. $y \in L^{\perp}$.

Approximation theorem

Theorem: Let V be a \mathbb{R} -vector space with a scalar product and the corresponding norm $\|\cdot\|$. Let U be a subvector space. For every $v \in V$ $\operatorname{pr}_U(v)$ is the best approximation of v in U, i.e.,:

$$||v - \operatorname{pr}_{U}(v)|| < ||v - u|| \ \forall u \in U \text{ with } u \neq \operatorname{pr}_{U}(v).$$

Proof: Since the Pythagorean theorem holds for $x, y \in V$, i.e.,

$$||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2,$$

follows that

$$\|v - u\|^2 = \|\underbrace{v - \operatorname{pr}_U(v)}_{\in U^{\perp}} + \underbrace{\operatorname{pr}_U(v) - u}_{\in U}\|^2$$
 (4)

$$= \|v - \operatorname{pr}_{U}(v)\|^{2} + \|\operatorname{pr}_{U}(v) - u\|^{2}$$
(5)

$$\geq \|\mathbf{v} - \mathsf{pr}_{U}(\mathbf{v})\|^{2}.\tag{6}$$

Equality is obtain if $u = pr_{IJ}(v)$.

Matrix

Definition: Let K a field. A $m \times n$ matrix with entries in K ist a table

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \in K^{m \times n}$$

of elements $a_{ij} \in K$. m is the number of rows and n the number of columns of A. Let $A = (a_{ij}) \in K^{m \times n}$ and $B = (b_{jk}) \in K^{n \times r}$ be two matrices, so that the column number of A coincides with the number of rows of B. Then the product

$$C = A \cdot B = (c_{ik}) \in K^{m \times r}$$

is given via

$$c_{ik} = \sum_{j=1}^n a_{ij} b_{jk}.$$

Principal Component Analysis

Principal Component Analysis (PCA)

Goal: reducing the number of given features in a data set $x_i \in S$ with $i \in \{1, ..., N\}$ via a linear projection

- choose model class such that the combination of the encoder and decoder is $\{d(e(x)) = \sum_{j=1}^k \langle u_j, x \rangle u_j | u_1, \dots, u_k \text{ orthonomal basis of } U \}$ where U is k-dimensional subspace
- loss functional $I(x, d(e(x))) = ||x d(e(x))||^2$

Optimisation Problem: For a given data $S = \{x_1, \dots, x_N\}$ where $x_i \in \mathbb{R}^d$ the associated optimisation problem is defined by

$$Q^* = \arg \min_{Q \in \mathbb{R}^{d \times k} \min_{\text{with } Q^\top Q = I} \frac{1}{N} \sum_{i=1}^{N} \left\| x_i - \sum_{j=1}^{k} \langle u_j, x_i \rangle u_j \right\|^2$$

where
$$Q = \begin{pmatrix} | & & | \\ u_1 & \dots & u_k \\ | & & | \end{pmatrix}$$
.

Principal Component Analysis (PCA)

Given: data $S = \{x_1, \dots, x_N\}$ where $x_i \in \mathbb{R}^d$

Consider: the following optimisation problem

$$Q^* = \arg \min_{Q \in \mathbb{R}^{d \times k}, \ Q^{\top} Q = I} \frac{1}{N} \sum_{i=1}^{N} \|x_i - \sum_{j=1}^{k} \langle u_j, x_i \rangle u_j \|^2$$

$$= \arg \min_{Q \in \mathbb{R}^{d \times k}, \ Q^{\top} Q = I} \frac{1}{N} \sum_{i=1}^{N} \|x_i - \sum_{j=1}^{k} u_j^{\top} x_i u_j \|^2$$

$$= \arg \min_{Q \in \mathbb{R}^{d \times k}, \ Q^{\top} Q = I} \frac{1}{N} \sum_{i=1}^{N} \|x_i - \sum_{j=1}^{k} \langle u_j, u_j \rangle x_i \|^2$$

$$= \arg \min_{Q \in \mathbb{R}^{d \times k}, \ Q^{\top} Q = I} \frac{1}{N} \sum_{i=1}^{N} \|x_i - (\sum_{j=1}^{k} u_j^{\top} u_j) x_i \|^2$$

$$= \arg \min_{Q \in \mathbb{R}^{d \times k}, \ Q^{\top} Q = I} \frac{1}{N} \sum_{i=1}^{N} \|x_i - QQ^{\top} x_i \|^2$$