

Take Test: Quiz 2.2

Test Information

Description

Instructions

Multiple Attempts This test allows multiple attempts.

Force Completion This test can be saved and resumed later.

QUESTION 1

1 points

Saved

Which of the following is NOT a Laplace transform pair?

$$0 \mathbf{1}(t) \leftrightarrow \frac{1}{s}$$

$$cap t \mathbf{1}(t) \leftrightarrow \frac{1}{s^2}$$

$$e^{-at} \leftrightarrow \frac{1}{s+a}$$

QUESTION 2

1 points

Saved

Since $\sin(\omega t) \leftrightarrow \frac{\omega}{s^2 + \omega^2}$, it is also true that

$$2\sin(\omega t) \leftrightarrow 2\frac{\omega}{s^2 + \omega^2}$$

$$\circ$$
 sin(2\omega t) $\leftrightarrow \frac{2\omega}{s^2 + \omega^2}$

$$\circ$$
 sin(ωt) + 2 $\leftrightarrow \frac{\omega}{s^2 + \omega^2}$ + 2

QUESTION 3

1 points

Saved

For a signal x(t) with Laplace transform X(s), and with x(0) = 3, the time-derivative of the signal is described by

$$\mathcal{L}\left\{\frac{dx}{dt}\right\} = sX(s)$$

$$\mathcal{L}\left\{\frac{dx}{dt}\right\} = 3X(s)$$

$$\mathcal{L}\left\{\frac{dx}{dt}\right\} = \frac{X(s)}{s}$$

$$\mathcal{L}\left\{\frac{dx}{dt}\right\} = sX(s) - 3$$

QUESTION 4

1 points

Saved

For a signal X(t) with Laplace transform X(s), its integral is described by

 r^{t}

▼ Question Completion Status:

$$\mathcal{L}\left\{\int_0^t x(\tau)d\tau\right\} = X(s)/s$$

$$\mathcal{L}\left\{\int_0^t x(\tau)d\tau\right\} = X(s)/s - X(s)$$

Click Save and Submit to save and submit. Click Save All Answers to save all answers.

Save All Answers

Save and Submit