6. Операторы физических величин

Перед тем как приступить к чтению данного раздела, советуем освежить знания относительно эрмитовых операторов и их свойств.

Пусть микросистема обладает наблюдаемой A и находится в состоянии $|\psi\rangle$. Например, рассмотрим пучок света (фотонов), прошедший поляризатор в оптической системе на рис. 4. Роль наблюдаемой в такой микросистеме выполняет интенсивность, а состояние пучка описывается вектором $|\gamma(\alpha)\rangle$.

В результате детектирования квантового ансамбля при помощи макроприбора, обладающего набором символов измерения $\{\hat{\mathcal{P}}_{a_i}\}$, стало известно, что наблюдаемая A обладает спектром значений $\{a_j\}$, а вероятность измерения каждого значения спектра равна w_j . Вероятности w_j , очевидно, зависят как от типа измерительного прибора, так и от состояния микросистемы $|\psi\rangle^{24}$. На рис. 4 роль макроприбора играет призма Николя, разделяющая начальный пучок на необыкновенный и обыкновенный лучи с вероятностями $w_e = \cos^2\alpha$ и $w_o = \sin^2\alpha$ соответственно. Необыкновенный и обыкновенный лучи, получившиеся после прохождения пучка линейно поляризованного света через николь, также являются примерами микросистем, каждая из которых описывается вектором состояния $|e\rangle$ и $|o\rangle$ соответственно. Для них макроприборами являются Φ ЭУ.

 $^{^{24}}$ Естественно предположить, что для определения спектра значений наблюдаемой A используется макроприбор, символы измерения которого удовлетворяют условию $\sum_i \hat{\mathcal{P}}_{a_i} = \hat{1}.$ Оче-

видно, что число значений a_j не превышает числа символов измерения $\hat{\mathcal{P}}_{a_i}$, однако эти числа не обязательно совпадают между собой. Действительно, нескольким различным символам измерения может соответствовать одно и то же значение спектра. Поясним сказанное простым примером. Пусть измеряется импульс нерелятивистской частицы \vec{p}_i , а в качестве наблюдаемой выбирается кинетическая энергия $T=\vec{p}^2/2m$. Тогда символам измерения импульсов $\vec{p}_1=\vec{P}$ и $\vec{p}_2=-\vec{P}$ соответствует одно и тоже значение в спектре кинетической энергии $T=\vec{P}^2/2m$.

Среднее значение наблюдаемой A в состоянии $|\,\psi\,\,\rangle$ можно найти по хорошо известной формуле

$$\langle A \rangle_{\psi} = \sum_{j} w_{j} a_{j}, \tag{38}$$

то есть суммированием по всему спектру наблюдаемой A, где каждое значение спектра a_j берется со своей вероятностью (иначе говорят, со своим весом) w_j .

Задача. Обоснуйте эту формулу в корпускулярном подходе при помощи частотного определения вероятности.

Согласно Постулату №4 и формуле (34) выражение для $\langle \, A \, \rangle_{\psi}$ можно переписать в следующей форме:

$$\langle A \rangle_{\psi} = \sum_{j} |C_{j}|^{2} a_{j} = \sum_{j} \langle \psi | a_{j} \rangle \langle a_{j} | \psi \rangle a_{j} =$$

$$= \sum_{j} \langle \psi | a_{j} \rangle a_{j} \langle a_{j} | \psi \rangle =$$

$$= \langle \psi | \left(\sum_{j} |a_{j} \rangle a_{j} \langle a_{j} | \right) | \psi \rangle = \left\langle \psi | \hat{A} | \psi \right\rangle,$$

где $\hat{A} = \sum_j \mid a_j \mid a_j \mid a_j \mid a_j \mid$ оператор, который в квантовой теории должен

быть сопоставлен наблюдаемой A. Оператор \hat{A} действует в гильбертовом пространстве векторов состояния данной микросистемы. Поскольку вектор $|a_j\rangle$ и число a_j , очевидно, коммутируют между собой, то оператор \hat{A} может быть переписан через проекционные операторы $\hat{P}_{a_j} = |a_j\rangle\langle a_j|$ в виде

$$\hat{A} = \sum_{i} a_{i} \, \hat{P}_{a_{j}}.$$

Докажем, что \hat{A} — **эрмитов оператор**. Очевидно, что проекционный оператор является частным случаем эрмитового оператора. Кроме того, величины a_i

суть действительные числа, поскольку их значения измеряются в эксперименте, а стрелка макроприбора или макроскопический цифровой датчик могут показать только действительную величину. Тогда

$$\hat{A}^{\dagger} = \sum_{j} \left(a_{j} \, \hat{P}_{a_{j}} \right)^{\dagger} = \sum_{j} \hat{P}_{a_{j}}^{\dagger} \, a_{j}^{*} = \sum_{j} \hat{P}_{a_{j}} \, a_{j} = \sum_{j} a_{j} \, \hat{P}_{a_{j}} = \hat{A},$$

что и требовалось доказать.

Задача. Докажите, что векторы $|a_j\rangle$ являются собственными векторами оператора \hat{A} , отвечающими собственным значениям a_j .

Поэтому оператор, отвечающий любой наблюдаемой характеристике микросистемы A, обладает точно такими же свойствами, какими обладает эрмитов оператор. Еще раз перечислим важнейшие из этих свойств:

- 1. Собственные векторы оператора любой наблюдаемой физической величины образуют базис в гильбертовом пространстве векторов состояния рассматриваемой квантовой системы. Очевидно, что большинство микросистем имеет сразу несколько наблюдаемых. Поэтому в пространстве векторов состояния может быть построено несколько различных базисов (или представлений), по которым можно разложить любой вектор состояния микросистемы $|\psi\rangle$.
- **2.** Средние значения любой наблюдаемой A в любом допустимом состоянии микросистемы $|\psi\rangle$ являются действительными числами. Это утверждение следует из свойств эрмитового оператора \hat{A} . Например, начальная интенсивность пучка линейно поляризованных фотонов I_i в эксперименте на рис. 4 всегда действительная (более того, в данном конкретном примере всегда неотрицательная) величина, каково бы ни было состояние $|\gamma(\alpha)\rangle$.

Утверждение о том, что каждой наблюдаемой в квантовой механике соответствует эрмитов оператор, было доказано практически без использования «очевидных допущений», взятых из эксперимента. Самым большим таким допуще-

нием стало условие действительности коэффициентов a_j . Поскольку мы стремимся построить квантовую теорию не на основании «очевидных допущений», а на основе некоторого количества четко сформулированных аксиом, то суммируем результаты этого раздела в виде очередного постулата квантовой механики.

Постулат №5, или постулат о соответствии наблюдаемых величин и операторов. Любая микросистема обладает хотя бы одной экспериментально наблюдаемой и измеряемой физической величиной, которая для краткости называется наблюдаемой. В квантовой механике любой наблюдаемой A ставится в соответствие эрмитов оператор \hat{A} , так что среднее значение этой наблюдаемой в любом допустимом состоянии $|\psi\rangle$ определяется по формуле

$$\langle A \rangle_{\psi} = \left\langle \psi \middle| \hat{A} \middle| \psi \right\rangle. \tag{39}$$

В заключение сделаем еще три замечания. **Первое**. Если известно среднее значение наблюдаемой A, то можно найти среднее значение любой гладкой функции от этой наблюдаемой. **Второе**. Формула (39) справедлива только в том случае, когда микросистема замкнута, а все измерительные приборы абсолютно идеальные. Наконец, **третье**. Формула (39) дает рецепт вычисления среднего наблюдаемой A. Но без конкретизации вида оператора \hat{A} и вектора состояния $|\psi\rangle$ (например, в виде дифференциальных операторов и функций или в виде матриц и столбцов) невозможно провести ни одного вычисления для конкретных микросистем. Поиск явного вида операторов координаты, импульса, энергии, орбитального момента и спина, равно как и состояний, на которые они действуют, представляет собой нетривиальную задачу. Ее решению будут посвящены другие учебные пособия этого курса.

Задача. Показать, что формула (39) может быть переписана в виде

$$\langle A \rangle_{\psi} = \text{Tr} \left(\hat{P}_{\psi} \, \hat{A} \right).$$
 (40)

Задача. Рассмотрим наблюдаемую A, спектр которой состоит всего из двух значений $a_1=5$ и $a_2=1/6$. Этим значениям отвечают базисные векторы $|\,a_1\,\rangle$ и $|\,a_2\,\rangle$ соответственно. Пусть некоторая квантовая система находится в состоянии $|\,\psi\,\rangle\,=\,\frac{1}{\sqrt{10}}\,\,(|\,a_1\,\rangle\,+\,3\,|\,a_2\,\rangle)$. При помощи определения (39) вычислить, чему равны:

- а) среднее значение наблюдаемой A в состоянии $|\psi\rangle$;
- б) дисперсия наблюдаемой A, которая задается формулой

$$D_A = \sqrt{\left\langle \left(\hat{A} - \left\langle A \right\rangle_{\psi} \right)^2 \right\rangle_{\psi}}.$$

Задача. В базисе векторов $|a_1\rangle$ и $|a_2\rangle$ из предыдущей задачи найти явный вид проектора \hat{P}_{ψ} и вычислить $\langle A\rangle_{\psi}$ при помощи выражения (40).

Задача. Как надо модифицировать формулу (40), чтобы вычислить $\langle A^2 \rangle_{\psi}$?