Identificación de dispositivos IoT a través de huellas hardware

Autor: Sergio Marín Sánchez Tutores:
Gregorio Martínez
Pérez
Pedro Miguel Sánchez

UNIVERSIDAD DE MURCIA

SÁNCHEZ

Índice

- 1 Introducción
- 2 Estado del arte
- 3 Diseño
- 4 Experimentos
- 5 Resultados
- 6 Conclusiones y vías futuras

- ► Los dispositivos IoT traen consigo numerosos riesgos de seguridad.
- ▶ Métodos tradicionales de identificación:
 - Dirección IP.
 - Dirección MAC.
 - ▶ Certificados digitales.
- ► Limitaciones:
 - Direccionamiento dinámico.
 - ▶ Modificaciones del usuario.
 - ▶ Robo de credenciales.

Introducción

- ▶ Identificación individual de los dispositivos.
 - ▶ Mayor seguridad.
- ▶ Diferencias en la fabricación de los dispositivos.
 - Diferentes tiempos en realizar un mismo proceso.
 - ▷ Desviaciones en el reloj interno.
- ▶ Objetivos de este trabajo:
 - ▷ Diseñar una arquitectura para este sistema.
 - ▶ Recolectar marcas de tiempo de los dispositivos.
 - ▶ Generar huellas estadísticas de los dispositivos.
 - ▶ Machine Learning para evaluar el proceso de identificación.

Referencia	Tipo de identificación	Enfoque	Tipo de aprendizaje	Resultados		
Pascal Oser et al.	Tipo de dispositivo	Machine Learning	Supervisado	99.76% de accuracy y $97.03%$ de precisión		
Salma Hamad et al.	Individual	Machine Learning	Supervisado	89% de accuracy		
Ahmet Aksoy et al.	Tipo y modelo del dispositivo	Machine Learning	Supervisado	Entre 42.2 % y 100 % de accuracy, con un promedio de 82 %		
Hossein Jafari et al.	Individual	Machine Learning	Supervisado	96.3% de accuracy en DNN, 94.7% de accuracy en CNN y 76% de accuracy en LSTM		
Fabian Lanze et al.	Modelo del dispositivo	Análisis estadístico (regresión lineal)	-	Método no válido para identificar unívocamente un dispositivo.		
Yair Meidan et al.	Tipo y modelo	Machine Learning	Supervisado	99.28% de accuracy		
Loh Chin Choong Desmond et al.	Individual	Machine Learning	No supervisado	Entre un 70 % y 80 % de accuracy		
Este trabajo	Individual	Machine Learning	Supervisado y No supervisado	99.38 % de Accuracy, 99.39 % de Recall y 99.38 % de f-score		

Tabla: Resultados en el estado del arte

Estado del arte

- al. para identificar modelos. al. para identificar dispositivos.
- (a) Propuesta de Ahmet Aksoy et (b) Propuesta de Salma Hamad et

► Arquitectura propuesta.

Topología

► Topología de la red.

Recolección de datos

- ▶ La marca de tiempo relativa a cada mensaje desde el inicio, $t_i t_{start}$.
- ▶ La marca de tiempo absoluta del observador t_i .
- ▶ La marca de tiempo absoluta del dispositivo t'_i .
- ▶ La desviación del reloj del dispositivo respecto al del observador, $t_i t'_i$.

Evaluación de los resultados

- ► Evaluación de los resultados.
 - > Algoritmos de ML supervisados para clasificación.
 - ➤ Algoritmos de ML no supervisados para detección de anomalías.

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Recall = \frac{TP}{TP + FN}$$

$$TNR = \frac{TN}{TN + FP}$$

Comparativa de los experimentos

time	TSrock	TSrasp	offset	device
292	119238112796030	104592709716803	-14645403079227	192.168.1.111
1001191222	119239113986960	104593710167425	-14645403819535	192.168.1.111
2001485862	119240114281600	104594710453699	-14645403827901	192.168.1.111
:	:	:	:	:

Tabla: Ejemplo de los datos obtenidos de cada dispositivo

(a) Desviación acumulada muestra (b) Desviación acumulada muestra secuencial paralela

UNIVERSIDAD DE

Comparativa de los experimentos

- (a) Desviación muestra secuencial (b) Desviación muestra paralela

Generación de estadísticas y reducción de la dimensionalidad

_	Sum	Mean	Median	Mode	Std	IQR	Kurtosis	Skew	Max	Min	Device
1	-284.0	-4.733333333333333	-203.0	-10750.0	6531.321744049499	8739.5	-0.8026364427898236	0.266444555013173	12077.0	-10750.0	Disp. 1
2	-65895.0	-1098.25	106.5	-13344.0	3926.559099283938	2519.75	1.4605213340303709	-1.1040127142547507	7616.0	-13344.0	Disp. 2
3	96179.0	1602.98333333333333	815.0	-8136.0	5010.092595279735	6575.5	-0.39715065367509084	0.2484646585713819	12831.0	-8136.0	Disp. 3
4	109162.0	1819.366666666666	2016.5	-10485.0	6159.084454763058	8290.5	-0.7264084617343212	-0.3858981208999922	11469.0	-10485.0	Disp. 4
5	-81317.0	-1355.28333333333333	-2127.0	-6378.0	3665.051390911538	2616.5	2.701193448053943	1.7089231615691112	10383.0	-6378.0	Disp. 5
6	19928.0	332.1333333333333	-147.0	-10750.0	6613.483928825726	10212.0	-0.8404647945245984	0.23473423365399895	12077.0	-10750.0	Disp. 1
	:	:	:		3	:	:	:	:		

Tabla: Datos estadísticos muestra paralela

Figura: Correlación entre las variables estadísticas

Particionamiento de los datos

(a) Particionamiento para clasificadores

(b) Particionamiento para la detección de anomalías

Resultados

Comparativa de algoritmos

Figura: Algoritmos de clasificación

		Isolatio	on Forest	Local Out	tlier Factor	OneClass-SVM		
		Recall	TNR	Recall	TNR	Recall	TNR	
Disp	. 1	95.12 %	10.36 %	98.99 %	10.68 %	49.48 %	58.24 %	
Disp	. 2	94.98%	28.87%	98.45%	57.74 %	50.90%	70.36%	
Disp	. 3	94.80%	13.90 %	98.73%	13.64%	49.84%	52.65%	
Disp	. 4	95.80%	16.61 %	98.88%	8.74 %	50.54%	64.66%	
Disp	. 5	94.89%	46.99 %	98.63%	77.98%	49.53%	94.59%	

Tabla: Algoritmos de detección de anomalías

Resultados

Resultados finales

Resultados:

► Accuracy: 99.38 %

 \blacktriangleright f-score: 99.38 %

► Recall: 99.39 %

► Conclusiones:

- ▶ Se ha diseñado un sistema capaz de reconocer dispositivos individuales.
- ▶ Los resultados obtenidos son similares a los del estado del arte.
- ▷ Se ha conseguido haciendo uso únicamente de una característica hardware.

► Vías futuras:

- ▶ Extender el sistema fuera de red local.
- ▶ Mecanismos de identificación a tiempo real.
 - Generar huellas estadísticas de todos los dispositivos.
 - Actualización a modelos capaz de actualizarse.

Gracias por su atención. ¿Alguna pregunta?