XIV. Photometry [v1.3.4]

A. Overview

- The starting point of nearly all observational inquiry in Astronomy is photometry
 - ♦ Establishes the existence of an object
 - ♦ Establishes the flux of a given object
 - ♦ Establishes (often crudely) the object's spectral energy distribution (SED)
 - ♦ Gives the first clues to the object's origin/nature
- High-precision photometry is an art (and science)
 - ♦ Obtaining high quality imaging is only the start
 - Calibration is challenging
 - Aperture choice is often subjective
- Variability abounds
 - ♦ Do not presume your object has a constant flux
 - ♦ Many phenomena change on days to year timescales
 - ♦ This includes the location of the source!
- References

B. Luminosity (L)

- The physical quantity of Photometry
 - ♦ Describes the energetics of the phenomenon
 - ♦ Direct insight into the mechanism(s) that power it
- Bolometric luminosity
 - ♦ Total energy emitted per unit time
 - ♦ erg/s
 - \diamond Example: An idealized star (black body) with radius R

$$L = \sigma T^4 4\pi R^2 \tag{1}$$

- ♦ A few known sources
 - Arr Sun: $L_{\odot} = 3.9 \times 10^{33} \, \mathrm{erg/s}$
 - ▲ M87 galaxy: $L_{\rm M87} \approx 10^{43} \, \rm erg/s$
 - ▲ 3C273 (quasar): $L \approx 10^{45} \, \mathrm{erg/s}$
 - ▲ GRB: $L \approx 10^{53} \, \mathrm{erg/s}$ [if isotropic!]
- Specific luminosity
 - ♦ Energy emitted per unit time per unit energy interval
 - $ightharpoonup L_{\lambda}$: erg/s/Å

- **▲** Equivalence: $L_{\nu}d\nu = L_{\lambda}d\lambda$
- ♦ The specific luminosity is often the only quantity we can measure (not Bolometric)

C. Flux

- One of the fundamental observables of astronomy
 - ♦ We observe only a portion of the Luminosity emitted by a source
 - ♦ Proportional to the area of our telescope
 - \diamond cm⁻²
- Bolometric flux f_B
 - \diamond Almost never measure f_B for a continuum source (i.e. something emitting at a wide range of frequencies)
 - ♦ May be reported for an emission line
- Specific flux f_{λ} (or f_{ν})
 - ♦ Standard result of spectroscopic observations
 - ♦ Also what one measures in a filtered image
 - \blacktriangle e.g. R-band refers to flux at $\lambda \approx 6000 \text{Å}$
 - ▲ The measurement is truly a convolution of f_{λ} of the source with the transmission of the filter T_{λ}
- Converting to Luminosity (Local universe)
 - \diamond Simple, isotropic source at a physical distance r

$$f_B = \frac{L_B}{4\pi r^2} \qquad f_\lambda = \frac{L_\lambda}{4\pi r^2} \tag{2}$$

- \diamond Anisotropic source at a physical distance r
 - ▲ Photons are not uniformly emitted
 - \blacktriangle Define $f(\theta)$ and integrate over the sky

$$L = r^2 \int f(\theta) d\Omega \tag{3}$$

- Cosmological distance $(r \gg 1 \,\mathrm{Mpc})$
 - ♦ Expansion of the Universe matters!
 - ▲ Sets the distance
 - ▲ And redshifts the photons!

$$\lambda_{\text{observed}} = (1+z)\lambda_{\text{emitted}}$$
 (4)

- \diamond Introduce the luminosity distance D_L
 - ▲ It is set by the cosmology of the universe
 - ▲ And the redshift of the source

▲ It is defined to evaluate the Bolometric luminosity:

$$L_B = f_B 4\pi D_L^2 \tag{5}$$

▲ It may be calculated by integrating the inverse of Hubble's expansion parameter

$$D_L(z) = c(1+z) \int_0^z \frac{1}{H(z')} dz'$$
 (6)

 \diamond D_L may also be used for the Specific luminosity:

$$L_{\nu} = \frac{f_{\nu} \, 4\pi D_L^2}{1+z} \tag{7}$$

- \blacktriangle Extra (1+z) factor is for the energy interval in L_{ν}
- Subtleties of the r^{-2} law
 - For essentially all astronomical sources, they are far enough away to treat as a point source
 - ♦ Can ignore the fact that one part of the object may be closer to us than another

D. Magnitudes

- A painful, astronomer-driven approach to expressing fluxes and luminosities
 - ♦ Driven by our eyeballs (logarithmic sensitivity)
 - ♦ Perhaps a little more convenient
 - $f_{\lambda} = 2.7 \times 10^{-16} \text{ erg/s/Å at } 5000 \text{Å vs } m_V = 18 \text{ mag}$
 - ♦ Warning: Smaller magnitudes means brighter sources
- AB magnitudes (the most physical)
 - ♦ Apparent (i.e. observed flux)
 - ▲ Specific flux (defined at a specific frequency or wavelength)

$$m_{AB} = -2.5\log_{10}(f_{\nu}) - 48.6 \tag{8}$$

▲ Inverting

$$f_{\nu} = 10^{-0.4(m_{AB} + 48.6)} \, (\text{erg s}^{-1} \, \text{cm}^{-2} \, \text{Hz}^{-1})$$
 (9)

- ♦ Absolute: Value one would measure if the source were at 10 pc
- Color
 - ♦ Simple difference of any two magnitudes
 - ▲ This means a ratio of two fluxes
 - ▲ Relative energy output at two frequencies
 - ♦ Useful for describing the spectral shape of the source
 - ▲ Is it a blackbody?

- ▲ Or a power-law?
- ▲ Or some combination?
- ♦ Convention is to subtract the redder band from the bluer
 - \blacktriangle e.g. $m_U m_B$
 - **▲** e.g. $m_8 m_{24}$
 - ▲ Positive values imply a red source
- Vega magnitudes
 - ♦ Traditional system for magnitudes
 - \diamond Defined so that the star Vega has a value of m=0 at all wavelengths!

$$m_{Vega} = -2.5 \log_{10} \left[\frac{\int f_{\lambda}^{Source} T_{\lambda} d\lambda}{\int f_{\lambda}^{Vega} T_{\lambda} d\lambda} \right]$$
 (10)

- \diamond In the visual band $(V; \lambda \approx 5000\text{Å}), m_{AB}(V) = m_{Vega}(V)$
- Instrumental magnitudes
 - ♦ It is common to convert the measured counts (or electrons) of a source (per second) into a magnitude

$$m_I = -2.5 \log_{10} N \tag{11}$$

- ♦ This gives the relative fluxes for objects in your image
- Zeropoint (ZP) magnitude
 - $\diamond m_{ZP}$
 - ♦ AB Magnitude of a source that would give one count per second for your experimental design
 - ▲ Derived from calibration stars
 - ▲ Provides the conversion from instrumental magnitudes to physical fluxes

$$m_{AB} = m_I + m_{ZP} \tag{12}$$

- Errors
 - ♦ Poisson error in the counts gives a Poisson error in the flux
 - ♦ Other sources of error will contribute
 - ▲ Error from sky background
 - ▲ Detector noise
 - ▲ Zeropoint (calibration) error
 - Simple propagation of error

$$\sigma^{2}(m) = [2.5 \ln(10)]^{2} \frac{\sigma^{2}(N)}{N_{\text{source}}^{2}}$$

$$\sigma^{2}(N) = N_{\text{source}} + N_{\text{sky}} + \sigma_{detector}^{2}$$

$$(13)$$

$$\sigma^2(N) = N_{\text{source}} + N_{\text{sky}} + \sigma_{detector}^2 \tag{14}$$

E. Filters

- Photometry is almost always performed through a custom-made filter
 - ♦ Designed to isolate a specific range of wavelengths (energies)
 - ♦ Even without one, the observed light will be limited to a modest range of energy
 - ▲ Telescope, atmosphere, detector, coatings impose an effective passband
- Characteristics of the filter
 - \diamond Transmission curve: T_{λ}
 - ▲ Percentage of light that the filter transmits

- \diamond Passband: FWHM or $\Delta\lambda$
 - ▲ Approximate width of the filter (in Angstroms)
 - ▲ Usually defined as the range where $T_{\lambda} = max(T_{\lambda})/2$
- \diamond Effective wavelength: $\lambda_{\rm eff}$
 - ▲ Approximately the central wavelength of the passband
 - ▲ More formally

$$\lambda_{\text{eff}} = \frac{\int T_{\lambda} d\lambda}{\int d\lambda} \tag{15}$$

- Filter Flux
 - \diamond A source observed through a filter will give a specific flux that is modulated by T_{λ}
 - \diamond Explicitly, for an R-band filter:

$$f_R = \frac{\int f_{\lambda}^{Source} T_{\lambda}^R d\lambda}{\int T_{\lambda}^R d\lambda}$$
 (16)

 \diamond Therefore, this specific flux corresponds to an average over a small range of wavelengths

• Standard filter sets

 \diamond Kron-Cousins: UBVRI

 \diamond SDSS: ugriz \diamond Washington \diamond Near-IR: JHK

♦ Bessel

• Fabricating filters

- ♦ Transmissive (broad-band)
- ♦ Reflective (narrow-band)

F. Point Spread Function (PSF)

• Definition

- ♦ Observed distribution of light for an expected, infinitely small source
- ♦ a.k.a. a point source
- \diamond Includes the effects of telescope, camera, atmosphere, and detector

• Telescope PSF

- ♦ Diffraction limits the spatial resolution of the image
- \diamond Ideal: Airy function with size $\theta = \lambda/D$
- ♦ Design of primary and secondary (if there is one) affect the image quality
- ♦ Aberrations

• Camera optics

- ♦ Additional lenses further affect the image quality
- ♦ Generally improve it by reducing aberrations

• Detector PSF

♦ Finite pixel size discretizes the image

- ♦ Generally a minor issue if the pixels are sufficiently small
- Atmospheric PSF
 - ♦ Blurring of the image by scintillation in the atmosphere (Seeing)
 - ▲ Gaussian process (roughly)
 - ▲ Characterized by a FWHM (in arcseconds)
 - ▲ Yields a Moffat profile when convolved with the Airy function

- For well-designed telescopes + cameras, the atmospheric effects dominate
 - ♦ Of course, not true for space satellites
 - ♦ Nor for Adaptive Optics (AO) systems

G. Aperture Photometry

- Formally, the light from any object is smeared out across the entire detector
 - And beyond!
 - ♦ Never can measure all of the photons
 - ♦ In practice, the wings of the PSF usually fall off exponentially
- Simplest approach: Define an angular aperture and measure the flux within it
 - ♦ Choose a large enough aperture to mitigate seeing
 - \diamond Choose a large enough aperture to capture most of the light (> 90%)
- Trade-offs
 - ♦ Want to avoid neighboring objects
 - ♦ Larger aperture means more noise from the detector and the sky
- Standard aperture

- ♦ Several arcsecond, circular aperture
- ♦ Fixed for all (small) objects in the image

H. Isophotal Photometry

- Many sources are extended
 - ♦ One to many arcseconds
 - ♦ Assymetric morphology
- Isophotes
 - ♦ Series of contours, of constant surface brightness, that trace the light profile
 - ♦ Often ellipsoids fitted to the data
- Isophotal photometry
 - ♦ Measure the flux within the isophotal contours
 - ♦ Maximizes the signal to noise over a simple circular contour
 - ♦ Allows one to estimate the amount of light beyond the measurement
 - ▲ Extrapolation!
 - ▲ Always a dangerous business

I. Surface Brightness (μ)

- Often, one chooses to characterize the light emitted from portions of an extended source
 - ♦ e.g., the brightness of a galaxy bulge vs. its disk
 - ♦ e.g., the brightness of a nebula as a function of position
- Definition
 - ♦ Flux per unit area
 - \diamond Typically defined in angular area (e.g., one square arcsecond: \square'')
 - ♦ Almost always a Specific flux
 - ▲ Usually expressed in magnitudes
 - \blacktriangle e.g. $\mu_R = 26 \,\mathrm{mag}/\Box''$

J. Background Subtraction

- The observed flux in any aperture includes (at least) two terms
 - ♦ Source
 - ♦ Sky backgrounds
 - ♦ (This assumes you have removed signatures of the detector!)
- Scientifically, we are usually only interested in the Source
 - ♦ Need to assess the sky background
 - ♦ And then remove (subtract) it!

- "Sky Pixels"
 - ♦ Most images have pixels with sources and pixels without
 - ▲ Of course, the regions without obvious sources may still contain faint sources that are below our detection limit
 - ▲ These contribute to our sky background estimate
 - ♦ We refer to pixels from the non-source regions as Sky Pixels
 - ▲ These are used to estimate the sky background
- Assessing the sky background: Off-source
 - (a) Take a series of exposures off the field
 - (b) Assume the off-source field has a similar sky background
 - (c) Measure the level (or generate a sky image)
 - (d) Subtract
- Assessing the sky background: Global
 - ♦ Preferred approach for images of very large sources
 - ♦ Crudest method: Take the mode of the full image
 - ▲ Restricting to sky pixels
 - ▲ This is a simple, but relatively stable approach
 - ♦ More careful: Fit a 2D surface to the sky pixels
 - ▲ One always observes spatial variations in the sky background
 - Some of these are physical (in the sky)
 - Some of these are due to camera optics
 - Some of these are due to the detector
 - ▲ Mitigated by fitting a spatially varying function for the sky level
- Assessing the sky background: Local
 - ♦ Idea: Measure the sky background using sky pixels very close to your source
 - ▲ Minimizes the spatial variations noted above
 - ▲ Much simpler than fitting 2D models
 - ▲ This is the preferred approach for small, faint sources
 - Methodology
 - ▲ Measure the sky background flux around the source
 - i.e. in an annulus large enough to have good statistics
 - Use median/mode statistics to ignore outliers
 - ▲ Subtract

K. Calibration

- How do we convert the detected electrons into flux units?
- Idealized
 - \diamond Calculate the efficiency η of our system and proceed
 - ♦ ie., following the Signal-to-Noise Lecture

$$f_{\lambda} = \frac{S_{\lambda}}{\eta_{\lambda} t} \frac{h\nu}{A_{\text{eff}}} \tag{17}$$

- Complications with idealized approach
 - \diamond Very difficult to measure η from first-principles
 - ♦ Instrument/telescope evolve in time
 - ▲ e.g. Mirror coatings degrade
 - ▲ e.g. Detector may degrade

- ♦ Clouds change the transparency of the sky
- ♦ Atmosphere isn't stable either
- Empirical
 - ♦ Observe a source with a known flux
 - ▲ Using your identical system (telescope, camera, filter, etc.)
 - ▲ On the same night
 - ▲ Ideally, near your source (spatially and temporally)
 - \diamond Analyze to determine η_{λ}
 - \blacktriangle a.k.a. the zeropoint magnitude (m_{ZP})
- Standard approach
 - ♦ Image a standard star field
 - ♦ "Landolt" is the standard reference
 - ▲ Decades of careful observation
 - ▲ But only in a limited set of filters
 - ▲ Note: He uses 7" circular apertures!
 - ♦ Make a relative measurement:

$$\frac{f_{\text{object}}}{N_{\text{object}}} = \frac{f_{\text{standard}}}{N_{\text{standard}}} \tag{18}$$

- Catalogs
 - ♦ A growing portion of the sky has been imaged at high precision
 - ♦ These are being calibrated
 - ♦ Examples:
 - ▲ SDSS
 - ▲ 2Mass
 - ▲ USNO (not preferred)
 - ▲ PanStarrs
- Single sources
 - ♦ Some energies have very few calibrated sources
 - ♦ Limited to observing this handful of objects
 - ♦ Examples
 - ▲ Crab Nebula (high energies)
 - ▲ Quasars (radio sources)
- Calibration Issues (1st order effects)
 - ♦ Color terms
 - \blacktriangle The standard sources each have their own spectrum f_{λ}^{S}
 - ▲ Because T_{λ} of the filters is complex, two sources with identical f_{λ} at $\lambda = 5000 \text{Å}$ will give different f_{V}

- This is true for galaxies vs. individual stars
- o And even more true for peculiar objects like quasars
- ▲ Typically, one applies color corrections to account for the differences between the Source and the calibration stars

♦ Airmass

- ▲ As discussed in the *Atmosphere* Lecture, the extinction by the atmosphere is significant $[I = I_0 \exp(-\tau)]$
 - And, wavelength dependent
 - And, it scales with the Zenith Angle (ZA)
 - And, it can vary from night to night!
- \blacktriangle Approach: measure it empirically on a given night by observing standard stars at a range of AM