Introduction, Insertion Sort, and Loop Invariance

Joe Song

January 23, 2020

The lecture notes are mostly based on Chapter 2 of Cormen, Leiserson, Rivest, and Stein. Introduction to Algorithms. 3rd Ed. 2009. MIT Press. Cambridge, Massachusetts.

Contents

1	Motivation						
	1.1 Example. Big Data Sources		Example. Big Data Sources	2			
	1.2	Next Generation Sequencing (NGS)	3				
2	Inse	ertion-Sort	4				
	2.1	The proof technique of loop invariant					
	2.2	Correctness proof by loop invariant					
		2.2.1 Correctness of the outer for -loop	5				
		2.2.2 Correctness of the inner while -loop	6				
	2.3	Running time analysis	8				
3	Sun	nmary (Generalization)	9				

1 Motivation

- 1. Understanding the complexity of algorithms is used to be a more theoretical branch of computer science
- 2. Big data applications beg for efficient algorithms!
- 3. Job interviews now frequently test on
 - algorithmic details
 - implementations

1.1 Example. Big Data Sources

Name/Symbol		Short Scale	Adoption Year		
yotta / Y	1000^{8}	10^{24}	1,000,000,000,000,000,000,000,000	septillion	1991
zetta / Z	1000^{7}	10^{21}	1,000,000,000,000,000,000,000	sextillion	1991
exa / E	1000^{6}	10^{18}	1,000,000,000,000,000,000	quintillion	1975
peta / P	1000^{5}	10^{15}	1,000,000,000,000,000	quadrillion	1975
tera / T	1000^{4}	10^{12}	1,000,000,000,000	trillion	1960
giga / G	1000^{3}	10^{9}	1,000,000,000	billion	1960

Source: Wikipedia

Data Phase	<u>Astronomy</u>	Twitter	YouTube	Genomics
Acquisition	25 zetta-bytes/year	0.5-15 billion tweets/year	500-900 million hours/year	1 zetta-bases/year
Storage	1 EB/year	1-17 PB/year	1-2 EB/year	2-40 EB/year
Analysis	In situ data reduction	Topic and sentiment mining	Limited requirements	Heterogeneous data and analysis
	Real-time processing	Metadata analysis		Variant calling, ~2 trillion central processing unit (CPU) hours
	Massive volumes			All-pairs genome alignments, ~10,000 trillion CPU hours
Distribution	Dedicated lines from antennae to server (600 TB/s)	Small units of distribution	Major component of modern user's bandwidth (10 MB/s)	Many small (10 MB/s) and fewer massive (10 TB/s) data movement

doi:10.1371/journal.pbio.1002195.t001

References: Stephens et al., (2015) Big Data: Astronomical or Genomical? PLoS Computational Biology. DOI: 10.1371/journal.pbio.1002195

1.2 Next Generation Sequencing (NGS)

http://www.genome.gov/sequencingcosts/

http://en.wikipedia.org/wiki/European_Nucleotide_Archive

Reference: Richter BG, Sexton DP (2009) Managing and Analyzing Next-Generation Sequence Data. PLoS Comput Biol 5(6): e1000369. doi:10.1371/journal.pcbi.1000369

Some of the techniques and manufacturers include

- sequencing by synthesis as used by the Solexa Genome Analyzer II (GAII) by Illumina,
- sequencing by ligation as used by the ABI SOLiD sequencer and by the polony sequencing technique developed by the Church Lab at Harvard Medical School,
- sequencing by hybridization as used by Affymetrix, and
- single molecule sequencing as used by Helicos, VisiGen, and Pacific Biosciences.

2 Insertion-Sort

• Demonstrate the idea of Insertion-Sort by an example

$$A = \langle 5, 2, 4, 6, 1, 3 \rangle$$

• Derive the pseudo-code of Insertion-Sort

Assume the array index starts with 1.

```
Insertion-Sort(A)
   for j = 2 to length[A]
2
       key = A[j]
3
       // Insert A[j] to the sorted sequence A[1..j-1]
4
       i = j - 1
       while i > 0 and A[i] > key
5
           A[i+1] = A[i]
6
7
           i = i - 1
       A[i+1] = key
8
```

2.1 The proof technique of loop invariant

Come up with a good loop invariant statement.

Initialization: The loop-invariant is true prior to the first iteration.

Maintenance: If loop-invariant is true before each iteration, it remains true before the next iteration.

Termination: When the loop terminates, the invariant gives a useful property that helps to show the algorithm is correct.

2.2 Correctness proof by loop invariant

Apply loop invariant to the proof of Insertion-Sort. Best done by illustrating using a diagram.

What is the logic of correctness proof of loops? Similar to mathematical induction.

2.2.1 Correctness of the outer for-loop

Loop invariant: "At the start of j-th **for** loop, elements in A[1..j-1] are sorted."

Initialization: A[1] is sorted (array with only one element)

Maintenance: Before each loop j, A[1...j-1] is sorted.

After each loop j, A[1...j] is sorted because key is inserted to the right position (assuming the inner loop is correct).

Termination: Let n = length[A].

When the loop terminates, j = n + 1. According to loop-invariant, A[1..j-1] is sorted, which is exactly A[1..n].

2.2.2 Correctness of the inner while-loop

After the **while**-loop, the sub array A[1...j] will be sorted.

Loop invariant: At the start of each **while** iteration i ($i \le j - 2$):

- 1. A[i+2...j] contains the largest j-i-1 elements in the original A[1...j-1],
- 2. A[i+2...j] is sorted,
- 3. A[i+2] > key.

Initialization: The base will start after the first loop:

• Before the first loop: i = j - 1,

- After the first loop: A[j] = A[j-1] > key.
 - 1. Since A[1..j-1] was already sorted and A[j-1] > key, A[j..j] now contains the largest element in the original A[1..j-1].

2. A[i+2...j] = A[j...j] is always sorted with a single element.

3. Evidently A[j] > key.

After i = i - 1, i = j - 2. Thus, we have A[i + 2] = A[j] > key.

• Before the second loop:

Maintenance:

If A[i+2...j] is sorted and if the loop does not terminate, i.e., (i>0, A[i]>key), then

$$key < A[i] < A[i+2]$$

The 2nd "<" is due to the fact that A[i+2...j] contains the largest elements in the original array A[1...j-1].

After line 6, A[i+1..j] is sorted and contains the largest j-i elements in the original array A[1..j-1] and A[i+1] > key

After line 7 i = i - 1, we have A[i + 2...j] contains the largest j-i-1 elements in the original array A[1...j-1] and A[i+2] > key.

We have just shown that the loop-invariant maintains after an iteration.

Termination: There are three cases to cover for termination.

- If the loop terminates before the 1st iteration, we have $A[j-1] \le A[j]$. Since A[1..j-1] is sorted, it follows that A[1..j] is sorted.
- If the loop terminates due to i == 0, then we have A[2..j] sorted and A[2] > key based on the loop-invariant. After line 8, we get A[1] = key, it leads to the sorted A[1..j].
- If the loop terminates due to $A[i] \le key$, then A[i+2...j] is sorted with the largest j-i-1 in the original A[1...j-1]. Evidently, A[1...i] has the smallest i elements sorted in the original A[1...j-1] since they are not touched by the loop. After line 8, we have

$$A[1..i] \le A[i+1] = key < A[i+2..j]$$

where the first " \leq " was based on the while loop termination comparison, and the second "<" was based on the loop invariant. Since both A[1..i] and A[i+2..j] are sorted, we have A[1..j] sorted.

2.3 Running time analysis

• General rules for time analysis: constants are used to denote the running time of statement independent of input size.

- Count the cost of each statement and the times of execution.
- Solve the total running time

Let t_j be the number of iterations in the while-loop when A[j] is being processed.

```
Insertion-Sort(A)
                                                                     cost * times
    for j = 2 to length[A]
                                                                     c_1 * n
2
         key = A[i]
                                                                     c_2 * (n-1)
         // Insert A[j] to the sorted sequence A[1..j-1]0*(n-1)
3
4
         i = j - 1
                                                                     c_4*(n-1)
                                                                    c_5 * \sum_{j=2}^{n} t_j
c_6 * \sum_{j=2}^{n} (t_j - 1)
c_7 * \sum_{j=2}^{n} (t_j - 1)
5
         while i > 0 and A[i] > key
              A[i+1] = A[i]
6
              i = i - 1
7
8
         A[i+1] = key
                                                                     c_8 * (n-1)
```

Best case: when A is already sorted $t_i = 1$ for any j

$$T(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

Worst case: when A is sorted in reverse order, $t_i = j$

$$T(n) = 0.5(c_5 + c_6 + c_7)n^2 + 0.5(2c_1 + 2c_2 + 2c_4 + c_5 - c_6 - c_7 + 2c_8)n - (c_2 + c_4 + c_5 + c_8)$$
(1)

which is a **quadratic function** of n.

3 Summary (Generalization)

What do we do in algorithm design and analysis?

• Design: Come up with an strategy to solve a problem.

- incremental approach
- divide-and-conquer
- greedy algorithms
- dynamic programming
- graph algorithms
- Correctness: Argue logically whether an algorithm solves or does not solve a problem correctly
 - loop invariance
 - contrapositives
 - by counter example
- Time analysis: Explain how the running time of an algorithm grows as a function of the input size.
 - efficient: running time is at most a polynomial function of input size

E.g.,
$$n^2$$
, $\log n$, \sqrt{n} , n^{100} .

- NP-complete: a class of problems whose worst-case running time remains unclear they could be solved efficiently in polynomial time. The biggest actively pursued open problem in theoretical computer science.
- inefficient: running time is at least an exponential function of input size

E.g.,
$$e^n$$
, 2^n , $n!$

- Why are we interested in efficient algorithm design?
 - * An intellectual pursuit.

Joe Song CS 570

* Practical application demands. E.g. Human and mouse genomes each has 3 billion (3×10^9) letters in it.

A short chromosome has about 50 million letters.

An optimal alignment algorithm to align a human chromosome and a mouse chromosome each at 50 M long will take

$$50,000,000 \times 50,000,000 \approx 2.5 \times 10^{15}$$

We assume a computer can process 10G instructions per second. It is going to take 2.5×10^5 seconds which is about 3 days to finish.

If one can find a linear algorithm to do it, i.e., the running time is 50,000,000, it is going to take only 5 milliseconds.

However, no one knows how to do it exactly in linear time! (though linear-time approximate solutions do exist and are widely used! – BLAST)