

COMS 4030A/7047A Adaptive Computation and Machine Learning

Hima Vadapalli

Semester I, 2022

Adaptive Computation and Machine Learning

Course Logistics

Introduction

Course Objective

To provide a broad overview of the machine learning paradigms along with an in-depth review of specific learning algorithms in supervised, unsupervised, and reinforcement learning categories.

Learning Outcomes:

- Good understanding of the fundamental issues and challenges of machine learning
- Good understanding of the strengths and weaknesses of many popular machine learning approaches
- Appreciation of the underlying mathematical relationships within and across Machine Learning algorithms and the paradigms of supervised and unsupervised learning
- Practical experience of designing and implementing various machine learning algorithms in a range of real-world applications

Course Prerequisites:

- Familiarity with Python programming
- Familiarity with basic linear algebra
- Familiarity with basic calculus
- Familiarity with basic probability theory

Course breakdown:

- Introduction to Machine Learning
- Supervised Learning
- Unsupervised Learning (Semi-supervised Learning)
- Computational Learning Theory
- Reinforcement Learning
- Introduction to Deep Learning

Course events:

- Lectures
- Labs/tutorials

Course sites:

<u>COMS4030A - Adaptive Computation and Machine Learning-2021-SM1 (wits.ac.za)</u>

COMS7047A - Adaptive Computation and Machine Learning-2021-SM1 (wits.ac.za)

Assessments:

- Class test (20%)
- Assignments (20%)
- Open ended Project (25%)
- Final exam (35%)

Textbooks

Machine Learning

Authors: Tom Mitchell

Publisher: McGraw Hill, 1997

Authors repository

http://www.cs.cmu.edu/~tom/mlbook.html

Textbooks

The Elements of Statistical Learning

Authors: Trevor Hastie, Robert Tibshirani,

Jerome Friedman

Publisher: Springer, 2009

Author's repository

https://web.stanford.edu/~hastie/Papers/ESLII.pdf

Textbooks

Pattern Recognition and Machine Learning

Authors: Christopher M. Bishop

Publisher: Springer, 2006

Online Copy

http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%

Textbooks

Deep Learning

Authors: Ian Goodfellow, Yoshua Bengio and

Aaron Courville

Publisher: MIT Press, 2016

Author's repository

https://www.deeplearningbook.org/

Questions?

Post them on the discussion forum

Machine Learning - Introduction

Machine Learning - Introduction

What is machine learning?

Arthur Samuel (1959)

Machine learning: "Field of study that gives computers the ability to learn without being explicitly programmed"

- Samuels wrote a checkers playing program
 - Had the program play 10000 games against itself
 - Work out which board positions were good and bad depending on wins/losses
- Tom Michel (1999)

Well posed learning problem: "A computer program is said to learn from experience **E** with respect to some class of tasks **T** and performance measure **P**, if its performance at tasks in **T**, as measured by **P**, improves with experience **E**."

- The checkers example,
 - E = 10000s games
 - T is playing checkers
 - P if you win or not

Learning Algorithms

- Several types of learning algorithms
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning

- In this course, we
 - Look at practical advice as to when to apply learning algorithms (when?)
 - Learning a set of tools and how to apply them (how?)

Supervised Learning

Teach the computer how to do something, then let it use it; use new found knowledge to do it

Housing Price Prediction

- Figure Given: a dataset that contains n samples $(x^{(1)}, y^{(1)}), ...(x^{(n)}, y^{(n)}); x \rightarrow sqft, y \rightarrow price$
- \triangleright Task: if a residence has x square feet, predict its price?

> next lectures: fitting linear/quadratic functions to the dataset

More Features

- Suppose we also know the lot size
- Task: find a function that maps

(size, lot size)

price

features/input

 $x \in \mathbb{R}^2$

label/output $y \in \mathbb{R}$

 \rightarrow Dataset: $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})$ where $x^{(i)} = (x \ _{1}^{i} \ \chi \ _{2}^{i})_{2}^{(i)}$

 \triangleright "Supervision" refers to $y^{(1)}, ..., y^{(n)}$

High-dimensional Features

- $x \in \mathbb{R}^d$ for large d
- E.g.,

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_d \end{bmatrix}$$
 --- living size --- lot size --- # floors --- condition --- price --- zip code \vdots

next lectures : infinite dimensional features, select features based on the data

Regression vs Classification

- regression: if $y \in \mathbb{R}$ is a continuous variable
 - e.g., price prediction
- classification: the label is a discrete variable
 - e.g., the task of predicting the types of residence

(size, lot size) → house or townhouse?

Supervised Learning in Computer Vision

- Image Classification
 - x = raw pixels of the image, y = the main object

ImageNet Large Scale Visual Recognition Challenge. Russakovsky et al.'2015

Supervised Learning in Computer Vision

- Object localization and detection
 - x = raw pixels of the image, y = the bounding boxes

kit fox

croquette

frog

ImageNet Large Scale Visual Recognition Challenge. Russakovsky et al.'2015

Supervised Learning in Natural Language Processing

Machine translation

Note: supervised learning algorithms that we cover may be not enough for solving hard vision or NLP problems.

Unsupervised Learning

Let the computer learn how to do something, and use this to determine structure and patterns in data

Unsupervised Learning

- Dataset contains no labels: $x^{(1)}, ..., x^{(n)}$
- Goal (vaguely-posed): to find interesting structures in the data

unsupervised

Finding patterns

Finding patterns

> next lectures: k-mean clustering, etc

Clustering Genes

Identifying Regulatory Mechanisms using Individual Variation Reveals Key Role for Chromatin Modification. [Su-In Lee, Dana Pe'er, Aimee M. Dudley, George M. Church and Daphne Koller. '06]

Latent Semantic Analysis (LSA)

documents

Image credit: https://commons.wikimedia.org/wiki/File:Topic_ detection_in_a_document-word_matrix.gif

Reinforcement Learning

learning to walk to the right

Iteration 10

learning to walk to the right

Iteration 80

learning to walk to the right

Iteration 210

Reinforcement Learning

The algorithm can collect data interactively

Improve the strategy based on the feedbacks

Other Tools/Topics In This Course

Deep learning basics

- Introduction to learning theory
 - Bias variance tradeoff
 - Feature selection
 - ML advice
- Broader aspects of ML
 - Robustness/fairness

Readings and next lecture

- Material on pre-regs:
 - Chapter 2 : Linear Algebra (Goodfellow et. al)
 - Chapter 3: Probability and Information theory (Goodfellow et. al)
 - Lectures on scientific computing with Python
 - https://github.com/jrjohansson/scientific-python-lectures
- Readings:
 - Chapter 1: Tom Mitchell
 - Chapter 1 : Christopher Bishop
 - Chapter 2: Hastie et. al.
- Next lecture : Supervised learning