EECS 376: Foundations of Computer Science

Chris Peikert 13 March 2023

Today's Agenda

- 1) Recap: NP and Cook-Levin Theorem
- 2) NP-Completeness and mapping reductions
- 3) Some more NP-Complete languages

The Class NP

- * Definition: A decision problem L is efficiently verifiable if there exists an algorithm V(x,c), called a verifier, satisfying:
- 1. V(x,c) is *efficient* with respect to x, i.e., polynomial time in |x|.
- 2. For every $x \in L$, there <u>exists</u> some c such that V(x, c) accepts.
- 3. For every $x \notin L$, V(x,c) rejects for <u>all</u> c.

Given 1, conditions 2+3 are equivalent to:

$$x \in L \iff \exists c \text{ s.t. } V(x,c) \text{ accepts.}$$

Definition: the class **NP** = the set of all efficiently verifiable languages.

I.e.: $L \in \mathbb{NP}$ if L is efficiently verifiable.

Two Amazing Works (Given Turing Awards)

Cook-Levin (1971): SAT is "NP-hard." In particular: If SAT is in P, then all of NP is in P, i.e., P=NP. (Easy: if SAT is not in P, then $P \neq NP$.)

So, to resolve P vs. NP, we "just" need to determine the status of SAT!

Karp (1972): TSP, Ham-Cycle, Subset Sum, ... all of these are "equivalent" to SAT.

Either all of them are in P (so P=NP), or none are (so P \neq NP).

Boolean Formulas and SAT

- * A Boolean *formula* is a formula involving Boolean literals and operators, e.g., $\phi(x,y,z) = (\neg x \lor y) \land (\neg x \lor z) \land (y \lor z) \land (x \lor \neg z)$
- * An *assignment* is a map from variables to truth values, e.g., x = 0, y = 1, z = 0.
- * A *satisfying assignment* for φ is an assignment that makes φ evaluate to *true*.
- * A formula ϕ is **satisfiable** if it has a satisfying assignment.
- * $SAT = \{ \phi : \phi \text{ is a satisfiable Boolean formula} \}$

Cook-Levin Outline

- * Theorem [Cook-Levin]: If SAT \in P, then NP \subseteq P.
- * Let D_{SAT} be an efficient decider for SAT.
- * Let $L \in NP$, so L has an efficient verifier V.
- * Goal: L \in P via efficient decider D_L that uses D_{SAT} & V.
- * $D_L(x)$:
 - * Efficiently construct a poly-sized Boolean formula $\phi_{V,x}$ so that:
 - * $x \in L \iff \phi_{V,x} \text{ is satisfiable.}$
 - * Output $D_{\mathsf{SAT}}(\phi_{\mathsf{V},\mathsf{x}})$.

Reductions, Then and Now

* Recall:

- * We proved that L_{BARBER} is **undecidable** by an ingenious ad-hoc argument.
- * We proved that many other languages ($L_{\rm HALT}, L_{\rm EQ}, \ldots$) are undecidable via *Turing reductions*. E.g., $L_{\rm ACC} \leq_T L_{\rm HALT}$ shows that $L_{\rm HALT}$ is also undecidable.

* Now:

- * We proved that SAT is "NP-hard" by an ingenious ad-hoc argument.
- * We will prove that other languages are **NP**-hard by a special kind of reduction: **polynomial-time mapping reduction**.

Poly-Time Mapping Reductions

- * Theorem [Cook-Levin]: For any $L \in \mathbf{NP}$, there is a polytime algorithm f such that $x \in L \iff f(x) \in \mathsf{SAT}$.
- * **Definition:** Language A is **polynomial-time mapping reducible** to language B, written $A \leq_p B$, if there is a polynomial-time algorithm f such that:

No "flipping" the answer; $x \in A \iff f(x) \in B$.

- * Recall: If $A \leq_T B$ and B is decidable then so is A.
- * Theorem: If $A \leq_p B$ and $B \in \mathbf{P}$ then $A \in \mathbf{P}$.
- * Proof: given x, run B-decider on f(x).

$A \leq_p B$

* Remark: f need not be injective nor surjective!

NP-Completeness

- * Theorem [Cook-Levin]: For every $A \in \mathbb{NP}$, $A \leq_p \mathsf{SAT}$.
- * **Definition:** Language B is NP-Hard if $A \leq_p B$ for all $A \in NP$.
- * **Definition:** Language *B* is **NP-Complete** if:
 - 1. $B \in \mathbf{NP}$
 - 2. B is **NP**-Hard
- * We saw:
 - * SAT \in **NP**
 - * SAT is NP-Hard
 - * Thus, SAT is **NP**-Complete.

NP-Hard and -Complete

NP-Hard NP-Complete = $NP \cap NP$ -Hard NP

 $P \subset NP$

P = NP

NP-Hard

P = NP $\approx NP\text{-Complete}$

More NP-Complete Languages

- * Question: To prove that B is NP-Hard, must we redo Cook-Levin?
- * Answer: No, because \leq_p is a transitive relation! Just show SAT $\leq_p B$.
- * Claim: If $A \leq_p B$ and $B \leq_p C$, then $A \leq_p C$.
- * Proof: HW...
- * Example 1: 3SAT
- * **Definition:** A *3CNF clause* is an OR of 3 literals, e.g., $(x \lor \neg y \lor z)$.
- * **Definition:** A **3**CNF formula is an AND of 3CNF clauses, e.g., $(x \lor \neg y \lor z) \land (\neg x \lor z \lor w) \land \dots$
- * **Definition:** $3SAT = \{\phi : \phi \text{ is a satisfiable 3CNF formula}\}$

More NP-Complete Languages

- * **Definition:** $3SAT = \{\phi : \phi \text{ is a satisfiable 3CNF formula}\}$
- * Theorem: $SAT \leq_p 3SAT$ (proof given in the notes)
- * Conclusion: 3SAT is **NP**-Hard.
- * Proof: Let $A \in \mathbb{NP}$. We know from Cook-Levin that $A \leq_p \mathsf{SAT} \leq_p \mathsf{3SAT}$. By transitivity: $A \leq_p \mathsf{3SAT}$.
- * We also can show that $3SAT \in \mathbb{NP}$: given (ϕ, c) check that ϕ is in 3CNF format, and that c satisfies ϕ .
- * Thus, 3SAT is **NP**-Complete.

More NP-Complete Languages

- * In general: To show that a language B is NP-Complete:
 - 1. Show that $B \in \mathbf{NP}$.
 - * Write a verifier V for B, show that it is correct and efficient.
 - 2. Show that $A \leq_p B$ for some <u>known</u> **NP**-Complete A.
 - * Write a procedure f mapping instances of A to instances of B, show that it is efficient and correct:
 - * $x \in A \iff f(x) \in B$ (both directions!)
 - * Does <u>NOT</u> require converting instances of B to instances of A! Typically, many valid instances of B will *not* be output by f. (I.e., f is not surjective.)

Example: Clique Problem

(Friendship problem)

- * Recall: Given a group of people and their (non-)friendships, are there k people that are \underline{mutual} friends?
 - * CLIQUE = $\{(G, k) : G \text{ is a graph with a clique of size } k\}$
- * Straightforward to see that $CLIQUE \in \mathbf{NP}$. We now show that it is \mathbf{NP} -Hard via reduction: $3SAT \leq_p CLIQUE$.

Goal: " $\underline{transform}$ " 3CNF formula φ into (G, k) such that:

- ϕ satisfiable \iff G has a k-clique
- * Consider the following example formula:

$$\phi = (x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z)$$

- * Think of each clause as a "house." Is there a group of three "friends," each one living in a different house?
 - * Each literal is a "person."
 - * Two people/literals are compatible ("friends") if they live in different houses, and can both assigned *true* simultaneously.
 - * x in clause 1 is compatible with x in clause 3
 - * x in clause 1 is compatible with $\neg y$ in clause 2
 - * x in clause 1 is <u>not</u> compatible with $\neg x$ in clause 2

Goal: " $\underline{transform}$ " 3CNF formula φ into (G, k) such that:

- ϕ satisfiable \iff G has a k-clique
- * Consider the following example formula:

$$\phi = (x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z)$$

* Result:

Goal: " $\underline{transform}$ " 3CNF formula φ into (G, k) such that:

- ϕ satisfiable \iff G has a k-clique
- * Example that is not satisfiable:

$$\phi = (x \lor x \lor y) \land (\neg x \lor \neg x \lor y) \land (\neg y \lor \neg y \lor \neg y)$$

* Result:

Goal: " $\underline{transform}$ " 3CNF formula φ into (G, k) such that:

- ϕ satisfiable \iff G has a k-clique
- * To show $3SAT \leq_p CLIQUE$, we need to:
 - * Define an f that converts a formula ϕ to a some (G, k).
 - * Show that f is correct: $\phi \in 3SAT \iff (G, k) \in CLIQUE$.
 - * Show that f is efficient.

- 1. $G \leftarrow \text{empty graph}$
- 2. for each literal $l_i \in \phi$: add a vertex v_i to G
- 3. for each pair of literals l_i , l_j from distinct clauses of ϕ :
- 4. if $l_i \neq \neg l_i$: add the edge (v_i, v_j) to G
- 5. **return** (G, k) where k is the number of clauses in ϕ

Correctness Analysis (1/2)

- 1. $G \leftarrow \text{empty graph}$
- 2. for each literal $l_i \in \Phi$: add a vertex v_i to G
- 3. for each pair of literals l_i, l_j from distinct clauses of ϕ :
- 4. if $l_i \neq \neg l_j$: add the edge (v_i, v_j) to G
- 5. **return** (G, k) where k is the number of clauses in φ

- * Direction 1: $\phi \in 3SAT \Longrightarrow (G, k) \in CLIQUE$
- * Suppose that $\phi = C_1 \wedge C_2 \wedge ... \wedge C_k$ has k clauses C_i .
- * Consider any satisfying assignment α of ϕ .
- * Since φ is satisfied by α , for $1 \le i \le k$, each C_i (e.g., $x \lor y \lor z$) has some literal \mathcal{C}_i that is true under α .
- * We claim that $\{\ell_1, \ell_2, ..., \ell_k\}$ is a k-clique in G.
 - * Consider any two literals \mathcal{C}_i and \mathcal{C}_j from different clauses.
 - * If $\ell_i = \ell_j$, then there's an edge between them in G.
 - * Otherwise, ℓ_i and ℓ_j must refer to <u>different variables!</u> (Why?)
 - * Hence, they also have an edge between them.

Correctness Analysis (2/2)

- 1. $G \leftarrow \text{empty graph}$
- 2. for each literal $l_i \in \Phi$: add a vertex v_i to G
- 3. for each pair of literals l_i , l_j from distinct clauses of ϕ :
- 4. if $l_i \neq \neg l_j$: add the edge (v_i, v_j) to G
- 5. **return** (G, k) where k is the number of clauses in φ

- * Direction 2: $(G, k) \in CLIQUE \Longrightarrow \phi \in 3SAT$
- * Suppose that $\{\ell_1,\ell_2,...\ell_k\}$ is a k-clique in G.
- * Define an assignment α of φ by taking each literal \mathcal{C}_i and setting the underlying variable so that \mathcal{C}_i is true (and set any remaining variables arbitrarily).
- * By construction of G and that $\{\ell_1, ..., \ell_k\}$ is a clique:
 - * There are <u>no conflicts</u> in setting the variables this way.
 - * For any edge (ℓ_i, ℓ_j) , either $\ell_i = \ell_j$ or they refer to different variables.
 - * The literals \mathcal{C}_i are from distinct clauses. (Why?)
- * Since α satisfies each clause of ϕ , it satisfies ϕ !

Runtime Analysis

- 1. $G \leftarrow \text{empty graph}$
- 2. for each literal $l_i \in \phi$: add a vertex v_i to G
- 3. for each pair of literals l_i , l_i from distinct clauses of ϕ :
- 4. if $l_i \neq \neg l_j$: add the edge (v_i, v_j) to G
- 5. **return** (G, k) where k is the number of clauses in ϕ

- * Claim: transformFormula is efficient.
- * Say that $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ has k clauses.
- * The input size is $\geq k$.
- * Step 1 takes constant time.
- * Step 2 takes O(k) time.
- * Steps 3-4 take $O(k^2)$ time.
- * So, runtime is polynomial in the input size.

Vertex Cover

("Starbucks Problem")

- * Given a city, is it possible to put stores on k street corners so that *every* street is "covered" by some store?
- * Formally: A vertex cover of a graph G = (V, E) is a set $C \subseteq V$ s.t. for all $(u, v) \in E$: $u \in C$ or $v \in C$ (or both). (all edges are "covered" by C)
 - * VERTEXCOVER = $\{(G, k) : G \text{ is an undirected} \}$

VERTEXCOVER is NP-C

- * Claim: VERTEXCOVER is **NP**-Complete
- * Proof: General Strategy:
 - 1. $VERTEXCOVER \in \mathbb{NP}$ (Exercise)
 - 2. $A \leq_p \text{VERTEXCOVER}$ for <u>some</u> **NP**-C language A
- * We will show that $3SAT \leq_p VERTEXCOVER$.
- * **Detailed Goal:** Show an algorithm f
 - 1. $f:\{3CNF\ formula\} \rightarrow \{(graph,\ k)\}$ (CGraph f(formula phi);) $f(\varphi)=(G,k)$
 - 2. f is efficient
 - 3. ϕ is satisfiable \iff G has a vertex cover of size k

* Proof idea:

- * Given a 3CNF formula ϕ with n variables, m clauses:
- * Make subgraphs ("gadgets") that represent variables and clauses.
- * Connect the gadgets together in the right way.

- * Include the edge (u, v) if:
 - * u is in a <u>variable gadget</u> and v is in a <u>clause gadget</u> AND
 - * u and v have the <u>same variable label</u> (e.g., x, $\neg z$, etc.)
- * Example:

$$(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z)$$

n variables x $\neg x$

m clauses

- * Include the edge (u, v) if:
 - * u is in a <u>variable gadget</u> and v is in a <u>clause gadget</u> AND
 - * u and v have the <u>same variable label</u> (e.g., x, $\neg z$, etc.)
- * Example:

$$(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z)$$

- * Include the edge (u, v) if:
 - * u is in a <u>variable gadget</u> and v is in a <u>clause gadget</u> AND
 - * u and v have the <u>same variable label</u> (e.g., x, $\neg z$, etc.)
- * Example:

$$(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z)$$

$$f(\phi) = (G, n + 2m)$$

- * Claim: Let ϕ be a 3CNF with n variables and m clauses; then
 - 1. The graph G is constructible in time O(mn).
 - 2. ϕ is satisfiable iff G has a V.C. of size k = n + 2m.

- * Observation: Any vertex cover has size $\geq n + 2m$.
 - * Needs ≥ 1 node per variable gadget and ≥ 2 nodes per clause
- * Example:

$$(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z)$$

- * If ϕ satisfiable: Let α be a satisfying assignment (e.g., (1,0,0)).
 - * For each variable gadget: take x if $\alpha_x = 1$ and $\neg x$ if $\alpha_x = 0$.
 - * Each clause has ≥ 1 literal covered.
- * Example:

$$(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z)$$

- * If ϕ satisfiable: Let α be a satisfying assignment.
 - * For each variable gadget: take x if $\alpha_x = 1$ and $\neg x$ if $\alpha_x = 0$.
 - * Each clause has ≥ 1 literal covered, so take ≤ 2 more.
- * Example:

$$(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z)$$

* Conclusion/Claim 1:

$$\phi \in 3SAT \Longrightarrow (G, n + 2m) \in VERTEXCOVER$$

- * Claim 2: $\phi \in 3SAT \longleftarrow (G, n + 2m) \in VERTEXCOVER$
 - * A vertex cover of size n + 2m must include the following:
 - * Exactly 1 vertex from each variable gadget, to cover its edge.
 - * Exactly 2 vertices from each clause gadget, to cover its 3 edges.
 - * The 2 vertices from a clause gadget cover only 2 of the crossing edges.
 - * The 3rd crossing edge must be covered by the variable gadget's vertex.
 - * Setting the literals from the selected vertices of the *variable* gadgets to "true" satisfies every clause, so the whole formula is satisfied.

