Air Quality and Climate Impact of Charcoal Use in Africa

^aA.S. Bockarie, ^bE.A. Marais, ^aA.R. MacKenzie

- ^a School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- ^b Department of Physics and Astronomy, University of Leicester, Leicester, UK

Charcoal supply chain

Kilns combustion efficiency < 20%

Large source of CO, NMVOCs, OC, CH₄

Production in rural areas

Unregulated and outdated diesel trucks.

Rural to urban transport

Large source of NO_x and BC

Includes burning of plastic to initiate combustion. Prevalent in slums. Source of HCI

Use in densely populated urban centres

Charcoal Production and Use Trends in Africa (2000 - 2014)

YEAR	CHARCOAL PRODUCTION	[Tg]
2014	41.7	
2030	82.7	

Data source: United Nations energy statistics database (UN, 2017)

Developing emission inventory

Emission = Activity Data x Emission Factor

Mapping emission activity locations

Production:

5-15 km from main roads.

Consumption:

Urban extent determined using road network data

Plastic burning limited to slums.

Trucks:

Mapped around urban centres proportional to population

Spatial distribution of pollutants from the charcoal value chain in 2014

Emission of Black Carbon

Spatial distribution of pollutants from the charcoal value chain in 2014

Emission of Black Carbon

Spatial distribution of pollutants from the charcoal value chain in 2014

Emission of Black Carbon

Contribution of the charcoal activity to pollutant emission

Chemical transport modelling

3D Chemical transport model driven by MERRA -2 meteorology

Grid Resolution: $2^0 \times 2.5^0$

Contribution of Charcoal to PM_{2.5} and O₃ in 2014

 $PM_{2.5}$ and O_3 concentrations from charcoal are highest in East and West Africa, with peak values of 1.2 μg m⁻³ and 0.2 ppbv respectively.

Radiative forcing of charcoal in 2014

Peak direct aerosol forcing from the charcoal emissions in Africa in 2014 is -0.2 Wm⁻².

Mapping production zones

Production:

mapped 5 to 15 km from primary roads (Campbell, 1996). We also account for vegetation distribution and protected areas

Mapping consumption zones

Mapping truck zones

OSM Roads + Population Density Grid

Truck zones and routes in Sierra Leone

Truck zone (purple), truck route (green), main roads (orange)

Developing emission inventory

Collecting activity data

BC = black carbon

OC = organic carbon

CO = carbon monoxide

SO4 = sulphate

NOx = nitrogen oxide

 SO_2 = sulphur dioxide

VOC = volatile organic compound

 $NO_3 = nitrate$

 $O_3 = Ozone$

 H_2SO_4 = sulphuric acid

 HNO_3 = nitric acid

 NH_4 = ammonium

BC = black carbon

OC = organic carbon

CO = carbon monoxide

SO4 = sulphate

NOx = nitrogen oxide

 SO_2 = sulphur dioxide

VOC = volatile organic compound

 NO_3 = nitrate

 $O_3 = Ozone$

 H_2SO_4 = sulphuric acid

 HNO_3 = nitric acid

 NH_4 = ammonium

BC = black carbon

OC = organic carbon

CO = carbon monoxide

NOx = nitrogen oxide

 SO_2 = sulphur dioxide

VOC = volatile organic compound

 HNO_3 = nitric acid

 H_2SO_4 = sulphuric acid

