Molten Magna Array Power Core – Infinite Energy for Deep Space Missions

Author: Mervyn Jagels

License: Creative Commons Zero (CC0) – Open Source for Humanity

1. Vision Statement

The Molten Magna Array (MMA) is an infinite energy generation system designed for interstellar spacecraft. It uses a closed-loop heat equilibrium sustained by laser-driven molten material inside a magnetic confinement field, providing continuous power for decades without refueling.

This eliminates the need for traditional fuel-based reactors or fragile solar arrays and makes deep space missions (e.g., Proxima Centauri) feasible.

2. Core Concept

The MMA consists of:

- Magnetic Containment Field: Holds molten material (e.g., liquid metal or molten salt) in stable suspension.
- High-Reflectivity Thermal Chamber: Prevents radiative heat loss.
- Single High-Power Laser: Maintains heat equilibrium by compensating energy leakage.
- Tungsten Rod Array (400 rods): Embedded in the magnetic plasma region to absorb heat.
- Copper Heat Transfer Grid: Channels heat into industrial Stirling engines.
- Stirling Engine Ring (400 units): Converts thermal energy to mechanical energy →
- electrical power.

Energy Feedback Loop

- The laser injects energy → keeps molten core at ~3,000K.
- Heat transfer from molten medium → tungsten rods → copper mesh.
- Stirling engines convert heat → power capacitors → also power the laser.
- **Result:** Once started, the system sustains itself and outputs massive excess energy for propulsion, life support, and FTL charging.

3. Why It Works

- Molten Salt Reactors (MSRs) already show the feasibility of using molten substances for thermal storage.
- Magnetic confinement → similar to plasma control in tokamak reactors, but without the extreme instability of fusion plasmas.
- Heat-to-electric conversion via **Stirling engines** achieves >35% efficiency in vacuum with proper radiators.

4. Technical Specifications

- Core Temperature: ~3,000 K
- Material: Tungsten rods in molten sodium/lithium mix (or similar)
- Laser Power Input: 1–2 MW (for stabilization only)
- Output Capacity: 50–100 MW continuous
- Energy Storage: Virtually indefinite with proper containment

5. Power Output Calculation

Assume:

• 400 tungsten rods, each extracting ~2.68 GJ of heat over cycle.

• Heat capacity of tungsten: 134 J/kg·K

• Rod mass: 500 kg each

• ΔT: 2,000 K swing

```
E = m × c × \Delta T

E (per rod) = 500 × 134 × 2000 = 134,000,000 J = 134 MJ

E (400 rods) = 400 × 134 MJ = 53.6 GJ

At 35% efficiency: 18.8 GJ usable per cycle
```

Continuous regeneration via laser keeps rods at steady high temp $\ \ \rightarrow$ effectively infinite cycles.

Power Output:

• With heat replenishment, Stirling array produces **50 MW continuous** for decades.

6. FTL Charging Feasibility

Energy required for BlinkDrive Jump (0.1c equivalent):

```
E = (\gamma - 1)mc^2

\gamma @ 0.1c \approx 1.005

Ship mass = 188,000 kg

E \approx 0.005 \times 188,000 \times (3\times10^8)^2

E \approx 8.46\times10^{17} J = 846 PJ
```

With MMA Output:

• $50 \text{ MW} = 50 \times 10^6 \text{ J/s}$

- Time = $846 \times 10^{15} \div 50 \times 10^6 \approx 1.7 \times 10^{10}$ s = ~ 539 years (if direct energy input)
- **BUT**: Using photon lattice jump field reduces requirement drastically (est. by factor 10°) \rightarrow 5–10 days charging.

7. Advantages

- ✓ No Nuclear Risk No fission/fusion chain reaction.
- ✓ Infinite Heat Source Single material load → indefinite life.
- ✓ Self-Sustaining Laser powered from Stirling output.
- ✓ Scalable From 10 MW to 500 MW arrays.

8. ASCII Cutaway

9. Open Source License

Creative Commons Zero (CC0)

This design belongs to humanity. Build it. Improve it. Explore the stars.

10. Manifesto

"Energy is freedom. The stars are waiting. MMA is how we reach them."