Lesson OA: Probability & Statistic (Yn Linng) Probability Rules O Complement Rule $P(A) = I - P(\overline{A}) \quad (\overline{A} = A^{C} = -\Omega \backslash A)$ Conditional Probability P(A/B) = P(AB) / P(B)Conjuction Rule $P(AB) = P(A/B) \cdot P(B)$ $= P(B/A) \cdot P(A)$ P (AB) = P(A). P(B) if A is not Correlated with B

posterior prior; B ayes Rule $P(A/B) = P(AB) - P(B/A) \cdot P(A)$ P(B)Marginal Rule (2) $P(A) = \sum_{\forall y} P(A, B=y)$ Chain Rule n $P(A, A_2 \cdot A_n) = \prod_{i=1}^{n} P(A_i/parents(A_i))$ (6)

Lage	V		senior	-	
remide	young	middle	otal	3/	
suv	0.1	0.2	0./		
CAR	0.05	0, 1	0.05		
-					
Pickup.	0.05	0.2	0.15.	_	
	t.		1		
	0.2				
	1				
P (a	ge='young')=	E P (ve	hicle, age =	(young')	A
1		Vvehicl			· .
	=	P (vehicl = SUV)	age='you	·9') +	
		P (vehicl = c4)	R age = you	mg') +	
_			, ,	V	

$$= 0.1 + 0.05 + 0.05$$

$$= 0.2.$$

Statistics: Concepts: N: # of Observations. M: mean of population X: mean of Observations N: (0, 1): Normal Distribution N: (M, 6): Normal Distribution 6° : variance 5 : standard deviation covxy: co-variance of x & y

3,)

	Random variable	is discrete	
	population	Sample	Chirage Change
expected .	$M = \sum_{i=1}^{N} x_i \cdot P(x_i)$	N N N N N N N N N N N N N N N N N N N	F(x)= Sb x. f(x). dx. probablity clansity probablity
variance	1 (X) X) X	$\frac{2}{\sqrt{2}} \left(\frac{x_1 - x_2}{x_1 - x_2} \right) = \frac{2}{\sqrt{2}}$	$= \frac{\mathbb{E}(x - \mathbb{E}(x))^{2}}{\mathbb{E}(x)^{2}}$ $= \int_{a}^{b} (x - \mathbb{E}(x))^{2} \cdot \mathbb{E}(x)^{2}$
Standerd devivetor	O II	$\frac{\zeta-\sqrt{\sum(x_{i}-\overline{x})^{2}}}{\sqrt{\lambda-1}}$	SD(X) = Nvar(X)
co-	$Cov(x,y) = \sum_{i=1}^{N} (x_i - x_i)(y_i - y_i)$	$\sum_{i=1}^{N} (x_i - \overline{x}) (y_i - \overline{y}) = \frac{1}{N}$	E ((x-E(x)) + (y-E(4))).
correlation	\$ Corr(x, y) - Cov(x, y) - 6x . 6y.	= Cov(x, b) Sx. \$7	= (x) (x) (4) = (x) (x) (4) = (4, x) (4)

Normal Distribution.

-\frac{1}{2} \bigg(\frac{x-\hspace}{5}\bigg)^2

N (M, G): \frac{1}{2} \bigg(\frac{x-\hspace}{5}\bigg)^2 f(x) 1 カラグ. M-36 M+26 10-25 M+6 M-5 M 68.277 ... 95.45 68 - 95 - 99.7 rules