Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

- Les questions peuvent présenter une ou plusieurs réponses valides.
- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
- En cas d'erreur, utilisez du « blanco ».
- Soyez très vigilant, avant de répondre à une question, de cocher la bonne ligne dans la grille.
- N'oubliez pas vos nom, prénom et login (p62xxx). Par exemple, p62375 s'encode ainsi :

Bon courage!

1. Ci-dessous apparaît le graphe d'une fonction f. Quel est le seul développement limité qui soit possible?

2. On considère $f(x) = \cos(x)$ au voisinage de 0. Cocher les affirmations correctes.

$$\begin{array}{ll} (1) \square & f(x) = 1 + x + \frac{x^2}{2} + o(x^2) \\ (2) \square & f(x) = 1 - x + \frac{x^2}{2} + o(x^2) \\ (3) \square & f(x) = 1 - x + \frac{x^2}{2} - \frac{x^4}{24} + o(x^4) \\ (4) \square & f(x) = 1 + x + \frac{x^2}{2} + \frac{x^4}{24} + o(x^4) \\ (5) \square & \text{aucune des réponses précédentes n'est correcte.} \end{array}$$

- 3. La valeur de la limite $\lim_{x\to 0} \frac{e^{x^2}-\cos(x)}{x^2}$ est ...
 - $_{(1)}\Box$ 0 $_{(2)}\Box$ 1 $_{(3)}\Box$ $\frac{3}{2}$ $_{(4)}\Box$ $\frac{1}{2}$

 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

- 4. Soit $f(x) = \sin(x^2)$. Déterminer son développement limité en 0 à l'ordre 6, s'il existe.
 - (1) $f(x) = 1 + x^2 + \frac{x^6}{2} + o(x^6)$
 - (2) $f(x) = 1 x^2 + \frac{x^6}{2} + o(x^6)$
 - (3) $\Box f(x) = x \frac{x^5}{5} + o(x^6)$ (4) $\Box f(x) = x^2 \frac{x^6}{6} + o(x^6)$

 - aucune des réponses précédentes n'est correcte.
- 5. Soit $1 + \frac{3}{4}(t-1) + \frac{1}{4}(t-1)^2 + o((t-1)^2)$ le développement limité d'une fonction au voisinage de 1. Quel est le graphe de la fonction au voisinage de 1?

(4)

(5)

(3)

- 6. La formule de Taylor-Young à l'ordre n au voisinage de 0 pour une fonction $f \in \mathcal{C}^n$ s'écrit :
 - $f(x) = f(0) + xf'(x) + \frac{x^2}{2}f''(0) + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$
 - $f(x) = xf'(x) + \frac{x^2}{2}f''(0) + \dots + \frac{f^{(n)}(0)}{n!}x^n + x^n o(x)$
 - $_{(3)}\Box \qquad f(x) = f(0) + xf'(x) + \frac{x^2}{2}f''(0) + \ldots + \frac{f^{(n)}(0)}{n!}x^n + x^n\varepsilon(x)$
 - $f(x) = xf'(x) + \frac{x^2}{2}f''(0) + \dots + \frac{f^{(n)}(0)}{2}x^n + x\varepsilon(x^n)$
 - aucune des réponses précédentes n'est correcte. (5)

- 7. La valeur de la limite $\lim_{x\to 0} \frac{\ln(1+x)-\sin(x)}{x}$ est ...

- $_{(1)}\Box \ \ 0 \ \ \ _{(2)}\Box \ \ 1 \ \ \ _{(3)}\Box \ \ -1 \ \ \ _{(4)}\Box \ \ +\infty$

 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

8. On considère $f(x) = \ln(2+x)$ au voisinage de 0. Cocher les affirmations correctes.

(1)
$$f(x) = x - \frac{x^2}{2} + o(x^2)$$

$$f(x) = \ln(2)(x - \frac{x^2}{2} + o(x^2))$$

$$\begin{array}{ll} (3)\square & f(x)=\ln(2)+1+x+\frac{x^2}{2}+o(x^2)\\ (4)\square & f(x)=\ln(2)+x-\frac{x^2}{2}+o(x^2)\\ (5)\square & \text{aucune des réponses précédentes n'est correcte.} \end{array}$$

(4)
$$f(x) = \ln(2) + x - \frac{x^2}{2} + o(x^2)$$

9. Ci-dessous apparaît le graphe d'une fonction f. Quel est le seul développement limité qui soit possible pour f?

- (1) $\ln(2) + \frac{1}{2x} + o\left(\frac{1}{x}\right)$
- $_{(2)}\square$ $\ln(2) \frac{1}{2x} + o\left(\frac{1}{x}\right)$
- $\ln(3)$ $\ln(2) + 2x 8x^2 + o(x^2)$
- $\ln(2) 2x 8x^2 + o(x^2)$

aucune des réponses précédentes n'est correcte. (5)

10. Sauriez-vous donner l'expression de la fonction représentée sur le graphe de la question précédente?

$$f(x) = \ln(2+x)$$
 $f(x) = \ln\left(2+\frac{1}{x}\right)$ $f(x) = \ln(1+x)$ $f(x) = \ln\left(1+\frac{1}{x}\right)$ aucune des réponses précédentes n'est correcte.

11. Soit $f(x) = \sin(x)$. Déterminer son développement limité en $\frac{\pi}{2}$ à l'ordre 5, si il existe.

$$f(x) = \frac{(x - \frac{\pi}{2})^3}{3!} - \frac{(x - \frac{\pi}{2})^5}{5!} + o((x - \frac{\pi}{2})^5)$$

$$f(x) = \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5)$$

$$f(x) = 1 - \frac{(x - \frac{\pi}{2})^2}{2} + \frac{(x - \frac{\pi}{2})^4}{4!} + o((x - \frac{\pi}{2})^5)$$

$$_{(4)}\Box \qquad f(x) = 1 - \frac{(x - \frac{\pi}{2})^3}{3!} + \frac{(x - \frac{\pi}{2})^5}{5!} + o((x - \frac{\pi}{2})^5)$$

(5)aucune des réponses précédentes n'est correcte.

12. Soit $F = \frac{X^2 + 1}{X - 2}$ une fraction rationnelle à coefficients dans \mathbb{C} . Cocher la(les) affirmation(s) correcte(s).
$_{(1)}\Box$ F n'a pas de zéros.
$_{(2)}\square$ 2 est un pôle de F . $_{(3)}\square$ Le degré de F est 2.
$ \begin{array}{ccc} \text{(3)} & \text{Le degré de } F \text{ est } 2.\\ \text{(4)} & \text{Le degré de } F' \text{ est } 1. \end{array} $
$_{(5)}\square$ aucune des réponses précédentes n'est correcte.
13. Soit le polynôme $P = X^6 - 3X^4 + 3X^2 - 1$. Cocher les affirmations correctes.
$_{(1)}\square$ $(X-1)$ divise P .
$(X-1)^2$ divise P $(X-1)^3$ divise P
$ \begin{array}{ccc} \text{(3)} & \text{(X & I)} & \text{divise } I \\ \text{(4)} & \text{(X - 1)}^4 & \text{divise } P \end{array} $
$_{(5)}\square$ aucune des réponses précédentes n'est correcte.
14. On considère le polynôme $P(X) = X^6 - 1$. Cocher les affirmations correctes.
$_{(1)}\square$ P est irréductible sur $\mathbb R$
P est irréductible sur \mathbb{C} (3) La décomposition de P sur \mathbb{C} est $\prod_{k=0}^{5} (X - e^{\frac{ik\pi}{3}})$
(3) La décomposition de P sur \mathbb{R} est $\prod_{k=0}^{6} (X - e^{\frac{ik\pi}{3}})$
$_{(5)}^{(4)}\Box$ aucune des réponses précédentes n'est correcte.
15. Soit $F(X) = \frac{X^3}{X^3 + 1}$ une fraction rationnelle. Le degré de F est
$_{(1)}\Box$ 1 $_{(2)}\Box$ 0 $_{(3)}\Box$ $-\infty$ $_{(4)}\Box$ $+\infty$ $_{(5)}\Box$ aucune des réponses précédentes n'est correcte.
16. Soit le polynôme $P=2X^5+5X^4+2X^3-4X^2-4X-1$ et -1 une racine de $P.$ Quel est l'ordre de multiplicité de P ?
$_{(1)}\Box$ 0 $_{(2)}\Box$ 1 $_{(3)}\Box$ 2 $_{(4)}\Box$ 3 $_{(5)}\Box$ aucune des réponses précédentes n'est correcte.
17. On considère le polynôme $P(X) = X^3 - 2X^2 - 5X + 6$. Cocher les affirmations correctes.
$_{(1)}\Box$ P est irréductible sur $\mathbb R$
La décomposition de P sur \mathbb{R} est $(X^2 - X - 6)(X - 1)$ La décomposition de P sur \mathbb{R} est $(X - 3)(X - 2)(X - 1)$
La décomposition de P sur \mathbb{R} est $(X-3)(X-2)(X-1)$ La décomposition de P sur \mathbb{C} est $(X-3)(X-2)(X-1)$
$_{(5)}\Box$ aucune des réponses précédentes n'est correcte.
18. P et Q sont deux polynômes à coefficients dans $\mathbb R.$ Cocher les affirmations correctes.
${}_{(1)}\square \frac{P}{Q} \in \mathbb{R} \qquad {}_{(2)}\square \frac{P}{Q} \in \mathbb{R}[X] \qquad {}_{(3)}\square \frac{P}{Q} \in \mathbb{R}(X) \qquad {}_{(4)}\square \frac{P}{Q} \in \mathbb{R}[X] \times \mathbb{R}[X]$
$_{(5)}\Box$ aucune des réponses précédentes n'est correcte.
19. On considère le polynôme $P(X) = X^2 + X + 1$. P est irréductible sur

 ${}_{(1)}\square\quad \mathbb{Z}\qquad {}_{(2)}\square\quad \mathbb{Q}\qquad {}_{(3)}\square\quad \mathbb{R}\qquad {}_{(4)}\square\quad \mathbb{C}\qquad {}_{(5)}\square\quad \text{aucune des réponses précédentes n'est correcte.}$

- 20. Soient F et G deux fractions rationnelles. Cocher la(les) affirmation(s) correcte(s).
 - Si ${\cal F}$ a degré nul, alors est une constante. (1)
 - (2) \square (3) \square $\deg(F \circ G) = \deg F \times \deg G$
 - $\deg F' = \deg F 1$
 - (4) $\deg(FG) = \! \deg F \times \deg G$
 - (5)aucune des réponses précédentes n'est correcte.