

รายงานประมวลความรู้รายวิชา DSI204

เรื่องการทำนาย

นำเสนอ

ผศ.คร.บุญฤทธิ์ ชูประดิษฐ์

สมาชิก

นายธนารักษ์ ลีนานนท์	6524650030
นายศิรภพ จุลละภมร	6524650089
นายวัชรนันท์ พันมูล	6524650071
นายวสันต์ อารัมภ์สกุล	6524651400
นายณิชพน รัถยาบัณฑิต	6524651244

รายงานนี้เป็นส่วนหนึ่งของการศึกษารายวิชา DSI204 Probability Thinking ตามหลักสูตรวิทยาศาสตร์บัณฑิต สขาวิทยาศาสตร์และนวัตกรรมข้อมูล วิทยาลัยสหวิทยาการ มหาวิทยาลัยธรรมศาสตร์

การพยากรณ์ปริมาณการปลดปล่อยก๊าซ Co2 ในประเทศแคนาดา

1.ลักษณะของกลุ่มข้อมูล (Meta Data)

Data set ที่ทางกลุ่มคณะผู้จัดทำได้นำมาศึกษาและทำการทดลองคือ Co2 Emission_Canada หรือปริมาณ การปลดปล่อย Co2 โดยรถยนต์สันดาปประเภทต่างๆในประเทศแคนาดา ซึ่งมีเนื้อหาข้อมูลเกี่ยวกับรายการ องค์ประกอบของเครื่องยนต์, ประเภทเชื้อเพลิง, รุ่นของรถยนต์และองค์ประกอบอื่นๆ เป็นต้น โดยกลุ่มคณะ ผู้จัดทำได้เลือกใช้โปรแกรม R-studio ในการทำการทดลองและวิเคราะห์หาประเด็นสำคัญต่างๆในชุดข้อมูล นำชุดข้อมูลมาจาก

https://www.kaggle.com/datasets/debajyotipodder/co2-emission-by-vehicles

โดย Data set ที่นำมาชื่อว่า Co₂ Emission_Canada ซึ่งมีรายละเอียดดังนี้

- Make = ชื่อบริษัทที่เป็นผู้ผลิตของรถยนต์
- Model = ชื่อ Model ของรถประจำบริษัทที่ผลิตนั้นๆ ซึ่งประกอบไปด้วย
 - \bigcirc 4WD/4X4 = Four-wheel Drive
 - O AWD = All-wheel drive
 - O FFV = Flexible-fuel vehicle
 - O SWB = Short wheelbase
 - O LWB = Long wheelbase
 - O EWB = Extended wheelbase
- Vehicle Class = ประเภทของยานพาหนะซึ่งอ้างอิงตามประโยชน์ใช้สอย, ความจุและน้ำหนัก
- Engine size = ขนาดของเครื่องยนต์โดยใช้หน่วยเป็นลิตร
- Cylinders = จำนวนลูกสูบ
- Transmission = ประเภทเกียร์และจำนวน
 - O A = Automatic
 - O AM = Automated manual
 - O AS = Automatic with select shift
 - O AV = Continuously variable

- O M = Manual
- \bigcirc 3 10 = Number of gears
- Fuel Type = ประเภทเชื้อเพลิง
 - O X = Regular gasoline
 - O Z = Premium gasoline
 - O D = Diesel
 - O E = Ethanol (E85)
 - O N = Natural gas
- Fuel consumption in city roads (L/100 Km) = อัตราสิ้นเปลืองเชื้อเพลิงบนถนนในเมือง (ลิตร/100 กม.)
- Fuel consumption in highways (L/100 km) = อัตราสิ้นเปลืองเชื้อเพลิงบนทางหลวง (ลิตร/100 กม.)
- Fuel Consumption Comb (mpg) = อัตราสิ้นเปลืองเชื้อเพลิงแบบผสม (ในเมือง 55% ทางหลวง 45%)
 แสดงเป็น L/100 กม
- Co_Emission = ปริมาณการปลดปล่อยก๊าซ Co_

การใช้สถิติพรรณนา (Descriptive statistics) เพื่อหาประเด็นสำคัญต่างๆ

ทางกลุ่มคณะผู้จัดทำได้มีการใช้สถิติพรรณนาในเรื่องของการวัดตำแหน่งข้อมูล โดยกลุ่มคณะผู้จัดทำ รายงานได้เลือกใช้ Quartile และ Inter Quartile Range (IQR) มาเป็นหลักการในการกำจัดค่านอกเกณฑ์ (Outlier) ของ Feature data ที่ชื่อว่า Engine size และตรวจสอบลักษณะของข้อมูลลว่ามีการแจกแจงแบบปกติ มาตรฐานหรือไม่โดยใช้กราฟฮิส โทแกรม

$$Q_r = \frac{r}{4} \times (n+1)$$

$$IQR = Q_3 - Q_1$$

$$Outlier = (Q1 - 1.5IQR) \cup (Q3 + 1.5IQR)$$

ตัวอย่าง code ภาษา R

```
> q
25% 75%
2.0 3.7
> iqr
75%
1.7
>
```

ทำให้เราทราบว่าใน Feature Engine size มี Q1 = 2.0 และ Q3 = 3.7 และ IQR = 1.7 ทำการกำจัด Outlier จะพบว่าชุดข้อมูลจะเหลือ 7248 records จาก 7385 records หลังจากทำการ cleaned outlier นำมา plot histogram เพื่อดูการกระจายตัวที่เกิดขึ้น

```
hist(df$Engine.Size.L.,
data = df,
xlab = "Car Make",
ylab = "CO2 Emissions (g/km)",
main = "CO2 Emissions by Car Make (Cleaned Outlier)")
```

CO2 Emissions by Car Make (Cleaned Outlier)

3.Data preparation

จากกราฟฮิสโทแกรมที่เกิดขึ้นทำให้ทางกลุ่มคณะผู้จัดทำทราบว่าชุดข้อมูลนี้ไม่มีการกระจายตัวเป็นปกติ มาตรฐานเพื่อให้สามารถใช้เทคนิคการถดถอย(regression) ได้ทางคณะผู้จัดทำจึงต้องมีการสร้าง data frame ชุด ใหม่ขึ้นมาโดยเรียกว่า X และ Y ซึ่งมีรายละเอียดดังนี้

X คือ data frame ที่ประกอบไปด้วย feature ดังนี้ fuel.type, engine.size.L, fuel consumption ทั้ง 3 รูปแบบ Y คือ data frame ที่เป็น Labeled data ที่มีชื่อว่า Co2.Emission.g.km ทำการแปลง X ที่ไม่ใช่ Numeric feature ให้เป็น Dummy variable

ทำการPlot เพื่อดูสหสัมพันธ์(Correlation) ระหว่าง $X,\,Y$

4. Feature selection

จาก correlation ที่เกิดขึ้นทำให้เราสามารถเลือก X ที่ส่งผลกับ Y ได้โดยอิงจากค่า correlation ที่เกิดขึ้น ตรวจสอบค่าความสัมพันธ์ที่เกิดขึ้นหากตัด feature fuel.type, engine.size.L, fuel consumption ทั้ง 3 รูปแบบ ออกและสร้างเป็นคอลัมน์ใหม่ที่ทับค่าคอลัมน์เดิม

จาก correlation ที่เกิดขึ้นทำให้เราสามารถสร้าง data frame ชุดใหม่ที่สามารถนำไปใช้ต่อในเทคนิค regression ได้และหากนำไปตรวจสอบความ linearity จะได้ดังนี้

5. Regression

ใช้เทคนิค linear regression โดยอิงข้อมูลจาก new_df ในการแบ่งส่วน train-test แบบ 70:30

ทำการสร้าง model linear regression จะได้ว่า

```
Call:
lm(formula = y \sim ., data = new_df)
Residuals:
                  Median
 -67.221
         -2.685
Coefficients:
                                       Estimate Std. Error
                                                              t value Pr(>|t|)
                                                                        < 2e-16 ***
(Intercept)
                                        6.12994
                                                    0.32271
                                                               18.995
                                                                        < 2e-16 ***
Fuel.Consumption.Comb..L.100.km.
                                       22.74454
                                                    0.02738
                                                               830.632
                                                                         < 2e-16 ***
Fuel.TypeD
                                       30.46087
                                                     0.43334
                                                                70.292
                                                                        < 2e-16 ***
Fuel.TypeE
                                     -114.54174
                                                             -336.328
                                                                        < 2e-16 ***
Fuel.TypeN
                                      -81.98560
                                                     5.51360
                                                              -14.870
Fuel.TypeX
                                       -0.37966
                                                    0.13865
                                                               -2.738
                                                                        0.00619 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.513 on 7242 degrees of freedom
Multiple R-squared: 0.9903, Adjusted R-squared: 0.9903
F-statistic: 1.474e+05 on 5 and 7242 DF, p-value: < 2.2e-16
```

สมการรูปทั่วไปของ Linear regression คือ

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

ซึ่งสมการที่เกิดขึ้นของ data set ชุดข้อมูล train เป็นดังนี้

กำหนดให้

 $\label{eq:fuel_consumption} Fuel. Consumption. Comb.. L. 100. Km = X_1 Fuel. TypeD = X_2 Fuel. TypeE = X_3 Fuel. TypeN = X_4 Fuel. TypeX = X_5$

เราจึงสามารถเขียนสมการรูปทั่วไปของโมเคลได้ดังนี้

$$\hat{y} = 6.12994 + 22.74454x_1 + 30.46087x_2 - 114.54171x_3 - 81.98560x_4 - 0.37966x_5$$

ซึ่งสามารถตีความผลได้ดังนี้

b0 =เมื่อให้ตัวแปรอิสระ \mathbf{x}_1 - \mathbf{x}_5 มีค่าเป็น 0 จะส่งผลให้ y มีค่าเพิ่มขึ้น 6.12994 b1 =เมื่อ Fuel.Consumption.Comb..L.100.Km มีค่าเพิ่มขึ้น 1 หน่วยจะส่งผลให้ y มีค่าเพิ่มขึ้น 22.74454 b2 =เมื่อ Fuel.TypeD มีค่าเพิ่มขึ้น 1 หน่วยจะส่งผลให้ y มีค่าเพิ่มขึ้น 30.46087 b3 =เมื่อ Fuel.TypeE มีค่าเพิ่มขึ้น 1 หน่วยจะส่งผลให้ y มีค่าลดลง 114.54171 b4 =เมื่อ Fuel.TypeN มีค่าเพิ่มขึ้น 1 หน่วยจะส่งผลให้ y มีค่าลดลง 81.98560 b5 =เมื่อ Fuel.TypeX มีค่าเพิ่มขึ้น 1 หน่วยจะส่งผลให้ y มีค่าลดลง 0.37966

หากใช้ชุดข้อมูล test (model ไม่เคยเห็นชุดข้อมูลนี้มาก่อน) จะได้ผลดังนี้

Metrics	value
MSE	30.55181
RMSE	5.527369
R-squared	0.9902685

- 1.R-squared หมายถึง ตัวแปรอิสระX1,X2,X3,X4,X5 สามารถอธิบาย y ได้อย่างถูกต้องร้อยละ99.02% ส่วนที่ เหลือสามารถอธิบายได้ด้วยปัจจัยอื่นๆ
- 2.MSE หมายถึง ผลรวมค่าเฉลี่ยสัมบูรณ์ของ Residuals มีค่าอยู่ที่ 30.55181หรือประมาณตามหลักนัยสำคัญคือ 31
- 3.RMSE หมายถึง ผลรวมค่าเฉลี่ยสัมบูรณ์ที่ไม่ถูกยกกำลังสองของ ของ Residuals มีค่าอยู่ที่ 5.527369หรือ ประมาณตามหลักนัยสำคัญคือ 6

เพื่อพิสูจน์ Consumption ทางกณะผู้จัดทำรายงานจึงได้ทำการใช้ Shapiro-wilk test และ plot residual ซึ่งได้ ผลลัพธ์ดังนี้

```
# Plot the residuals
resid <- y_pred - test$y

res_df <- data.frame(resid)

# plot residuals with horizontal line at 0
ggplot(res_df, aes(x = 1:nrow(res_df), y = resid)) +
    geom_point() +
    geom_hline(yintercept = 0, color = "red") +
    ggtitle("Residual plot with horizontal line at 0")

shapiro.test(resid)
hist(resid)
qqnorm(model$residuals)
qqline(model$residuals)</pre>
```


6.สรุปผล

จะพบว่าโมเคลของเราสามารถใช้ได้เนื่องจาก residuals มีการกระจายตัวอย่างเป็นปกติมาตรฐาน(Normal Distribution) ซึ่งแปลว่าโมเคลนี้ผ่าน Assumption ในเบื้องต้น และจากสมการรูปทั่วไปทำให้เราทราบว่าปัจจัยที่ มีผลต่อการปลดปล่อยก๊าซ Co2 มากที่สุดคือ Fuel type D หรือ *Diesel*