

Algorithmen II Vorlesung am 31.10.2013

Flussalgorithmus von Goldberg und Tarjan (1988)

- Basiert nicht auf erhöhenden Wegen sondern auf zwei Operationen: PUSH und RELABEL.
- Fluss in Zwischenschritten nicht unbedingt gültig (Flusserhaltung nicht garantiert).

- Im Beispiel nur Push-Operation veranschaulicht: Drückt den Fluss zum nächsten Knoten und erzeugt dort gegebenfalls Überschuss, der zurück geführt werden muss.
- RELABEL-Operation garantiert, dass Fluss in die richtige Richtung gedrückt wird.
 - im Beispiel darf der Fluss nicht von a über c nach s zurück gedrückt werden.

- Basiert nicht auf erhöhenden Wegen sondern auf zwei Operationen: PUSH und RELABEL.
- Fluss in Zwischenschritten nicht unbedingt gültig (Flusserhaltung nicht garantiert).

- Im Beispiel nur Push-Operation veranschaulicht: Drückt den Fluss zum nächsten Knoten und erzeugt dort gegebenfalls Überschuss, der zurück geführt werden muss.
- RELABEL-Operation garantiert, dass Fluss in die richtige Richtung gedrückt wird.
 - im Beispiel darf der Fluss nicht von a über c nach s zurück gedrückt werden.

- Basiert nicht auf erhöhenden Wegen sondern auf zwei Operationen: PUSH und RELABEL.
- Fluss in Zwischenschritten nicht unbedingt gültig (Flusserhaltung nicht garantiert).

- Im Beispiel nur Push-Operation veranschaulicht: Drückt den Fluss zum nächsten Knoten und erzeugt dort gegebenfalls Überschuss, der zurück geführt werden muss.
- RELABEL-Operation garantiert, dass Fluss in die richtige Richtung gedrückt wird.
 - im Beispiel darf der Fluss nicht von a über c nach s zurück gedrückt werden.

- Basiert nicht auf erhöhenden Wegen sondern auf zwei Operationen: PUSH und RELABEL.
- Fluss in Zwischenschritten nicht unbedingt gültig (Flusserhaltung nicht garantiert).

- Im Beispiel nur Push-Operation veranschaulicht: Drückt den Fluss zum nächsten Knoten und erzeugt dort gegebenfalls Überschuss, der zurück geführt werden muss.
- RELABEL-Operation garantiert, dass Fluss in die richtige Richtung gedrückt wird.
 - im Beispiel darf der Fluss nicht von a über c nach s zurück gedrückt werden.

- Basiert nicht auf erhöhenden Wegen sondern auf zwei Operationen: PUSH und RELABEL.
- Fluss in Zwischenschritten nicht unbedingt gültig (Flusserhaltung nicht garantiert).

- Im Beispiel nur Push-Operation veranschaulicht: Drückt den Fluss zum nächsten Knoten und erzeugt dort gegebenfalls Überschuss, der zurück geführt werden muss.
- RELABEL-Operation garantiert, dass Fluss in die richtige Richtung gedrückt wird.
 - im Beispiel darf der Fluss nicht von a über c nach s zurück gedrückt werden.

- Basiert nicht auf erhöhenden Wegen sondern auf zwei Operationen: PUSH und RELABEL.
- Fluss in Zwischenschritten nicht unbedingt gültig (Flusserhaltung nicht garantiert).

- Im Beispiel nur Push-Operation veranschaulicht: Drückt den Fluss zum nächsten Knoten und erzeugt dort gegebenfalls Überschuss, der zurück geführt werden muss.
- RELABEL-Operation garantiert, dass Fluss in die richtige Richtung gedrückt wird.
 - im Beispiel darf der Fluss nicht von a über c nach s zurück gedrückt werden.

Anpassung

Gegeben: Netzwerk (*D*, *s*, *t*, *c*)

Erweitere c von $c \colon E \to \mathbb{R}_0^+$ auf $c \colon V \times V \to \mathbb{R}_0^+$, indem

$$c(v, w) := \begin{cases} \text{bisheriger Wert} & (v, w) \in E \\ 0 & (v, w) \notin E \end{cases}$$

Konstruiere aus D = (V, E) neuen Graphen D' = (V, E'):

$$E' := E \cup \{(v, w) \in V \times V \mid (w, v) \in E \text{ und } (v, w) \notin E\}$$

 $(u, v) \in V \times V$ mit $(u, v) \not\in E$ und $(v, u) \not\in E$ werden nicht dargestellt.

Erweiterte Flussdefinition

Definition: Gegeben ein Netzwerk (D,s,t,c) mit angepasster Gewichtsfunktion, dann ist ein *Fluss* eine Abbildung $f: V \times V \to \mathbb{R}$ mit

- 1. Kapazitätsbedingung: für alle $(v, w) \in V \times V$ gilt $f(v, w) \leq c(v, w)$
- 2. Antisymmetrie: für alle $(v, w) \in V \times V$ gilt f(v, w) = -f(w, v)
- 3. Flusserhaltung: für alle $v \in V \setminus \{s, t\}$ gilt $\sum_{u \in V} f(u, v) = 0$

Wert eines Flusses:
$$w(f) = \sum_{v \in V} f(s, v) = \sum_{v \in V} f(v, t)$$

Fluss/Kapazität

Präfluss

Definition: Ein *Präfluss* ist eine Abbildung $f: V \times V \to \mathbb{R}$, welche die Kapazitätbedingung und die Antisymmetriebedingung erfüllt sowie

für alle
$$v \in V \setminus \{s\}$$
 $\sum_{u \in V} f(u, v) \ge 0$

In Knoten b fließt mehr hinein als hinaus.

Flussüberschuss und Restkapazität

Definition: Sei *f* ein Präfluss.

Flussüberschuss: $e(v) := \sum_{v \in V} f(u, v) \text{ mit } v \in V \setminus \{t\}$

 $u \in V$

Restkapazität: Abbildung $r_f: E' \to \mathbb{R}$ sodass $\forall (u, v) \in E'$ gilt $r_f(u, v) \coloneqq c(u, v) - f(u, v)$

Beispiel:

$$r_{f}(u, v) = 10 - 4 = 6$$

$$r_{f}(v, u) = 0 - (-4) = 4$$

$$r_{f}(w, v) = 3 - 3 = 0$$

$$r_{f}(v, w) = 0 - (-3) = 3$$

$$2/6$$

$$-2/0$$

$$0/0$$

$$0/3$$

Flussüberschuss und Restkapazität

Definition: Eine Kante $(u, v) \in E'$ heißt *Residualkante* bezüglich eines Präflusses f, falls $r_f(u, v) > 0$.

Der *Residualgraph* zu f ist gegeben durch $D_f(V, E_f)$ mit $E_f := \{(u, v) \in E' \mid r_f(u, v) > 0\}$

Flussüberschuss und Restkapazität

Definition: Eine Kante $(u, v) \in E$ heißt

- nicht saturiert, falls $0 \le f(u, v) < c(u, v)$, und
- nicht leer, falls $0 < f(u, v) \le c(u, v)$

Beispiel:

(u, v) ist nicht saturiert.

(w, v) ist saturiert.

(*u*, *v*) ist nicht leer.

(v, y) ist leer.

Residualkanten

Zulässige Markierung

Definition: Eine Abbildung $dist: V \to \mathbb{N}_0 \cup \{\infty\}$ heißt *zulässige Markierung* bzgl. eines Präflusses f, falls:

- dist(s) = |V| und dist(t) = 0 und
- für alle $v \in V \setminus \{t\}$ und alle $(v, w) \in E_t$ gilt $dist(v) \leq dist(w) + 1$

Ein Knoten $v \in V \setminus \{t\}$ heißt *aktiv* im Laufe des Algorithmus, wenn e(v) > 0 und $dist(v) < \infty$.

Erinnerung: e(v) ist der Flussüberschuss von v.

- Zu Beginn wird dist(s) := |V| und dist(v) := 0 für alle $v \in V \setminus \{s\}$ gesetzt.
- dist(v) wird geändert, aber stets zulässig gehalten.
- Es gilt stets:
 - \bullet dist(s) = |V|
 - Falls dist(v) < |V| für $v \in V$, so ist dist(v) eine untere Schranke für den Abstand von v zu t im Residualgraph D_f .
 - Falls dist(v) > |V|, so ist t von v in D_f nicht erreichbar und dist(v) |V| ist untere Schranke für Abstand von v zu s in D_f .

Push-Operation

Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1.

Effekt: Flussüberschuss wird von v nach w über Kante (v, w) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Beispiel:

RELABEL-Operation

Operation Relabel(D, f, v, dist)

Vorbedingung: v ist aktiv und für alle w mit $r_f(v, w) > 0$ gilt $dist(v) \le dist(w)$

$$dist(v) = \begin{cases} \infty, & \text{falls } \{w \mid r_f(v, w) > 0\} = \emptyset, \\ \min\{dist(w) + 1 \mid r_f(v, w) > 0\} & \text{sonst.} \end{cases}$$

Algorithmus von Goldberg und Tarjan

Für alle $(v, w) \in V \times V$ mit $(v, w) \notin E$ setze:

 $c(v, w) \leftarrow 0$

Für alle $(v, w) \in V \times V$ setze:

- $f(v, w) \leftarrow 0$
- $r_f(v, w) \leftarrow c(v, w)$

Setze $dist(s) \leftarrow |V|$

Für alle $v \in V \setminus \{s\}$ setze:

- $f(s, v) \leftarrow c(s, v), r_f(s, v) \leftarrow 0$
- $dist(v) \leftarrow 0$
- $e(v) \leftarrow c(s, v)$

Eingabe: Netzwerk (D, s, t, c) mit D =

(V, E) und $c: E o \mathbb{R}_0^+$

Ausgabe: Maximaler Fluss *f*.

Solange es aktiven Knoten gibt:

- Wähle beliebigen aktiven Knoten v.
- Führe für v eine zulässige Operation Push oder Relabel aus.

Ausgeführte Operation:

Initialisierung

Anstehende Operation:

RELABEL(a)

dist(v)

Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1.

Effekt: Flussüberschuss wird von *v* nach *w* über Kante (*v*, *w*) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Operation Relabel(D, f, v, dist)

Vorbedingung: v ist aktiv und für alle w mit $r_f(v, w) > 0$ gilt $dist(v) \le dist(w)$

$$dist(v) = \begin{cases} \infty, & \text{falls } \{w \mid r_f(v, w) > 0\} = \emptyset, \\ \min\{dist(w) + 1 \mid r_f(v, w) > 0\} & \text{sonst.} \end{cases}$$

Ausgeführte Operationen:

Initialisierung RELABEL(a)

Anstehende Operationen:

Push(a, b) mit $\Delta = 8$

Push(a, c) mit $\Delta = 10$

Push(a, d) mit $\Delta = 13$

Operation Push(D, f, v, w)

dist(v)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1.

Effekt: Flussüberschuss wird von *v* nach *w* über Kante (*v*, *w*) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $f(v, w) \leftarrow f(v, w) + \Delta, f(w, v) \leftarrow f(w, v) \Delta$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Operation Relabel(D, f, v, dist)

Vorbedingung: v ist aktiv und für alle w mit $r_f(v, w) > 0$ gilt dist(v) < dist(w)**Effekt:** *dist(v)* wird erhöht.

 ∞ , falls $\{\min\{dist(w)+1\mid r_f(v,w)>0\}$ sonst. falls $\{w \mid r_f(v, w) > 0\} = \emptyset$,

Ausgeführte Operationen:

Initialisierung

RELABEL(a)

Push(a, b) mit $\Delta = 8$

Push(a, c) mit $\Delta = 10$

Push(a, d) mit $\Delta = 13$

Anstehende Operation:

RELABEL(a)

dist(v)

Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1.

Effekt: Flussüberschuss wird von *v* nach *w* über Kante (*v*, *w*) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $f(v, w) \leftarrow f(v, w) + \Delta, f(w, v) \leftarrow f(w, v) \Delta$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Operation Relabel(D, f, v, dist)

Vorbedingung: v ist aktiv und für alle w mit $r_f(v, w) > 0$ gilt dist(v) < dist(w)

$$dist(v) = \begin{cases} \infty, & \text{falls } \{w \mid r_f(v, w) > 0\} = \emptyset, \\ \min\{dist(w) + 1 \mid r_f(v, w) > 0\} & \text{sonst.} \end{cases}$$

Ausgeführte Operationen:

Initialisierung

RELABEL(a)

Push(a, b) mit $\Delta = 8$

Push(a, c) mit $\Delta = 10$

Push(a, d) mit $\Delta = 13$

RELABEL(a)

Anstehende Operation:

Push(a, s) mit $\Delta = 7$

Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1.

Effekt: Flussüberschuss wird von v nach w über Kante (v, w) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Operation Relabel(D, f, v, dist)

Vorbedingung: v ist aktiv und für alle w mit $r_f(v, w) > 0$ gilt $dist(v) \le dist(w)$ **Effekt:** dist(v) wird erhöht.

 $dist(v) = \begin{cases} \infty, & \text{falls } \{w \mid r_f(v, w) > 0\} = \emptyset, \\ \min\{dist(w) + 1 \mid r_f(v, w) > 0\} & \text{sonst.} \end{cases}$

Ausgeführte Operationen:

Initialisierung

RELABEL(a)

Push(a, b) mit $\Delta = 8$

Push(a, c) mit $\Delta = 10$

Push(a, d) mit $\Delta = 13$

RELABEL(a)

Push(a, s) mit $\Delta = 7$

$\longrightarrow dist(v)$ $\longrightarrow Überschuss <math>e(v)$

Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1.

Effekt: Flussüberschuss wird von *v* nach *w* über Kante (*v*, *w*) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Operation Relabel(D, f, v, dist)

Vorbedingung: v ist aktiv und für alle w mit $r_f(v, w) > 0$ gilt $dist(v) \le dist(w)$ **Effekt:** dist(v) wird erhöht.

$$dist(v) = \begin{cases} \infty, & \text{falls } \{w \mid r_f(v, w) > 0\} = \emptyset, \\ \min\{dist(w) + 1 \mid r_f(v, w) > 0\} & \text{sonst.} \end{cases}$$

Korrektheitsbeweis des Algorithmus von Goldberg und Tarjan

Beweisstruktur

1. Schritt: Wenn Algorithmus terminiert und die Markierungen endlich bleiben, dann ist das Ergebnis ein Maximalfluss.

- a) Solange aktiver Knoten vorhanden, kann Operation Push oder Operation Relabel angewendet werden.
- b) Es gilt stets: f ist Präfluss und dist ist bezüglich f zulässige Markierung.
- c) t ist im Residualgraph D_f des Präflusses f von s aus nicht erreichbar.

2. Schritt: Algorithmus terminiert und Markierungen bleiben endlich:

- a) Finde obere Schranke für dist.
- b) Finde obere Schranke für Anzahl Aufrufe von RELABEL.
- c) Finde obere Schranke für Anzahl Aufrufe von Push.

Bezeichne f die Abbildung, die schrittweise konstruiert wird.

Zulässigkeit der Operationen

Lemma 4.20: Sei f ein Präfluss auf D, die Funktion dist eine bezüglich f zulässige Markierung auf V und $v \in V$ ein aktiver Knoten. Dann ist entweder eine Push-Operation von v oder eine Relabel-Operation von v zulässig.

Beweis:

Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1.

Effekt: Flussüberschuss wird von v nach w über Kante (v, w) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Operation Relabel(D, f, v, dist)

Vorbedingung: v ist aktiv und für alle w mit $r_f(v, w) > 0$ gilt $dist(v) \leq dist(w)$

$$dist(v) = \begin{cases} \infty , & \text{falls } \{w \mid r_f(v, w) > 0\} = \emptyset , \\ \min\{dist(w) + 1 \mid r_f(v, w) > 0\} & \text{sonst.} \end{cases}$$

Zulässigkeit der Operationen

Lemma 4.20: Sei f ein Präfluss auf D, die Funktion dist eine bezüglich f zulässige Markierung auf V und $v \in V$ ein aktiver Knoten. Dann ist entweder eine Push-Operation von v oder eine Relabel-Operation von v zulässig.

Beweis: Erinnerung: Knoten v ist aktiv wenn e(v) > 0 und $dist(v) < \infty$. dist(v) nach Annahme zulässig, d.h. insbesondere:

 $dist(v) \leq dist(w) + 1$ für alle w mit $r_f(v, w) > 0$.

Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1.

Effekt: Flussüberschuss wird von v nach w über Kante (v, w) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Operation Relabel(D, f, v, dist)

Vorbedingung: v ist aktiv und für alle w mit $r_f(v, w) > 0$ gilt $dist(v) \leq dist(w)$

$$dist(v) = \begin{cases} \infty , & \text{falls } \{w \mid r_f(v, w) > 0\} = \emptyset , \\ \min\{dist(w) + 1 \mid r_f(v, w) > 0\} & \text{sonst.} \end{cases}$$

Zulässigkeit der Operationen

Lemma 4.20: Sei f ein Präfluss auf D, die Funktion dist eine bezüglich f zulässige Markierung auf V und $v \in V$ ein aktiver Knoten. Dann ist entweder eine Push-Operation von v oder eine Relabel-Operation von v zulässig.

Beweis: Erinnerung: Knoten v ist aktiv wenn e(v) > 0 und $dist(v) < \infty$. dist(v) nach Annahme zulässig, d.h. insbesondere:

$$dist(v) \leq dist(w) + 1$$
 für alle w mit $r_f(v, w) > 0$.

Falls Push(v,w) für kein w mit $r_f(v,w) > 0$ zulässig ist, dann gilt:

$$dist(v) \leq dist(w)$$
 für alle w mit $r_f(v, w) > 0$.

 \longrightarrow RELABEL(v) ist zulässig.

Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1.

Effekt: Flussüberschuss wird von v nach w über Kante (v, w) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Operation Relabel(D, f, v, dist)

Vorbedingung: v ist aktiv und für alle w mit $r_f(v, w) > 0$ gilt $dist(v) \le dist(w)$

$$dist(v) = \begin{cases} \infty \ , & \text{falls} \left\{ w \mid r_f(v,w) > 0 \right\} = \emptyset \ , \\ \min \left\{ dist(w) + 1 \mid r_f(v,w) > 0 \right\} & \text{sonst.} \end{cases}$$

Lemma 4.21: Während des Ablaufs des Algorithmus von Goldberg und Tarjan ist *f* stets ein Präfluss und *dist* stets eine bezüglich *f* zulässige Markierung.

Lemma 4.21: Während des Ablaufs des Algorithmus von Goldberg und Tarjan ist *f* stets ein Präfluss und *dist* stets eine bezüglich *f* zulässige Markierung.

Beweis durch Induktion über Anzahl k zulässiger Operationen.

IA: Behauptung ist aufgrund der Initialisierung richtig.

→ Annahme: Behauptung gilt nach k-ter Operation.

Für alle $(v, w) \in V \times V$ mit $(v, w) \notin E$ setze:

$$c(v, w) \leftarrow 0$$

Für alle $(v, w) \in V \times V$ setze:

$$f(v, w) \leftarrow 0$$

$$r_f(v, w) \leftarrow c(v, w)$$

Setze $dist(s) \leftarrow |V|$

Für alle $v \in V \setminus \{s\}$ setze:

$$f(s, v) \leftarrow c(s, v), r_f(s, v) \leftarrow 0$$

$$f(v,s) \leftarrow -c(s,v), r_f(v,s) \leftarrow c(v,s) - f(v,s)$$

•
$$dist(v) \leftarrow 0$$

$$e(v) \leftarrow c(s, v)$$

dist heißt zulässig wenn

• dist(s) = |V| und dist(t) = 0 und

 $\forall v \in V \setminus \{t\} \text{ und } \forall (v, w) \in E_f: dist(v) \leq dist(w) + 1$

Lemma 4.21: Während des Ablaufs des Algorithmus von Goldberg und Tarjan ist *f* stets ein Präfluss und *dist* stets eine bezüglich *f* zulässige Markierung.

Beweis durch Induktion über Anzahl k zulässiger Operationen.

IA: Behauptung ist aufgrund der Initialisierung richtig.

 \rightarrow Annahme: Behauptung gilt nach k-ter Operation.

IS: (k+1)-te Operation ist PUSH(v,w): dist bleibt unverändert, f ändert sich

Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1. **Effekt:** Flussüberschuss wird von v nach w über Kante (v, w) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

dist heißt zulässig wenn

- dist(s) = |V| und dist(t) = 0 und
- $\forall v \in V \setminus \{t\} \text{ und } \forall (v, w) \in E_f: dist(v) \leq dist(w) + 1$

Lemma 4.21: Während des Ablaufs des Algorithmus von Goldberg und Tarjan ist f stets ein Präfluss und *dist* stets eine bezüglich *f* zulässige Markierung.

Beweis durch Induktion über Anzahl *k* zulässiger Operationen.

IA: Behauptung ist aufgrund der Initialisierung richtig.

 \rightarrow Annahme: Behauptung gilt nach k-ter Operation.

IS: (k+1)-te Operation ist PUSH(v,w): dist bleibt unverändert, f ändert sich

- 1. Präfluss bleibt offensichtlich erhalten.
- 2. Betrachte Zustand nach Ausführung von Push(v, w):
 - **1. Fall,** $r_f(v, w) = 0$: *dist* bleibt trivialerweise zulässig.
 - **2. Fall,** $r_f(w, v) > 0$: dist bleibt zulässig, denn für Ausführung von Push muss gelten: $dist(w) = dist(v) - 1 \le dist(v) + 1$

Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1. **Effekt:** Flussüberschuss wird von *v* nach *w* über Kante (*v*, *w*) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $f(v, w) \leftarrow f(v, w) + \Delta, f(w, v) \leftarrow f(w, v) \Delta$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$

dist heißt zulässig wenn

- dist(s) = |V| und dist(t) = 0 und
- $\forall v \in V \setminus \{t\} \text{ und } \forall (v, w) \in E_t : dist(v) < dist(w) + 1 \quad e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Lemma 4.21: Während des Ablaufs des Algorithmus von Goldberg und Tarjan ist *f* stets ein Präfluss und *dist* stets eine bezüglich *f* zulässige Markierung.

Beweis durch Induktion über Anzahl k zulässiger Operationen.

IA: Behauptung ist aufgrund der Initialisierung richtig.

 \rightarrow Annahme: Behauptung gilt nach k-ter Operation.

IS: (k+1)-te Operation ist Relabel(v): dist wird verändert, f bleibt unverändert

Operation Relabel(D, f, v, dist)

Vorbedingung: v ist aktiv und für alle w mit $r_f(v, w) > 0$ gilt $dist(v) \leq dist(w)$

Effekt: *dist(v)* wird erhöht.

• dist(s) = |V| und dist(t) = 0 und

 $\forall v \in V \setminus \{t\} \text{ und } \forall (v, w) \in E_t : dist(v) \leq dist(w) + 1$

Lemma 4.21: Während des Ablaufs des Algorithmus von Goldberg und Tarjan ist *f* stets ein Präfluss und *dist* stets eine bezüglich *f* zulässige Markierung.

Beweis durch Induktion über Anzahl *k* zulässiger Operationen.

IA: Behauptung ist aufgrund der Initialisierung richtig.

→ Annahme: Behauptung gilt nach k-ter Operation.

IS: (k+1)-te Operation ist Relabel(v): *dist* wird verändert, f bleibt unverändert

Vor Relabel(ν) gilt:

$$dist(v) \leq dist(w)$$
 für alle w mit $r_f(v, w) > 0$.

Relabel(v) setzt:

$$dist(v) = min\{dist(w) + 1 \mid r_f(v, w) > 0\}$$

Folglich: *dist* wieder zulässig.

Operation RELABEL(*D*, *f*, *v*, *dist***)**

Vorbedingung: v ist aktiv und für alle w mit $r_f(v, w) > 0$ gilt $dist(v) \leq dist(w)$

- dist(s) = |V| und dist(t) = 0 und
- $\forall v \in V \setminus \{t\} \text{ und } \forall (v, w) \in E_t : dist(v) < dist(w) + 1$

Lemma 4.22: Sei f ein Präfluss und dist bezüglich f zulässig. Dann ist t im Residual-graph D_f von s aus nicht erreichbar (es gibt also keinen gerichteten s-t-Weg in D_f).

Lemma 4.22: Sei f ein Präfluss und dist bezüglich f zulässig. Dann ist t im Residual-graph D_f von s aus nicht erreichbar (es gibt also keinen gerichteten s-t-Weg in D_f).

Beweis: Annahme es gibt einen solchen Weg $s = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_\ell = t$ in D_f

Es gilt also:

$$r_f(v_i, v_{i+1}) > 0$$
 für $0 \le i \le \ell - 1$

Da dist zulässig ist gilt deshalb:

$$dist(v_i) \leq dist(v_{i+1}) + 1$$
 für $0 \leq i \leq \ell - 1$

dist heißt zulässig wenn

- dist(s) = |V| und dist(t) = 0 und
- $\forall v \in V \setminus \{t\}$ und $\forall (v, w) \in E_t$: $dist(v) \leq dist(w) + 1$

Lemma 4.22: Sei f ein Präfluss und dist bezüglich f zulässig. Dann ist t im Residual-graph D_f von s aus nicht erreichbar (es gibt also keinen gerichteten s-t-Weg in D_f).

Beweis: Annahme es gibt einen solchen Weg $s = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_\ell = t$ in D_f

Es gilt also:

$$r_f(v_i, v_{i+1}) > 0$$
 für $0 \le i \le \ell - 1$

Da dist zulässig ist gilt deshalb:

$$dist(v_i) \leq dist(v_{i+1}) + 1$$
 für $0 \leq i \leq \ell - 1$

Aus
$$dist(s) \leq dist(t) + \ell$$
, $dist(t) = 0$ und $\ell \leq |V| - 1$ folgt:

dist heißt zulässig wenn

- dist(s) = |V| und dist(t) = 0 und
- $\forall v \in V \setminus \{t\}$ und $\forall (v, w) \in E_t$: $dist(v) \leq dist(w) + 1$

Partielle Korrektheit des Algorithmus

Satz 4.23: Falls der Algorithmus von Goldberg und Tarjan terminiert und am Ende alle Markierungen endlich sind, dann ist der konstruierte Präfluss ein Maximalfluss im Netzwerk (D; s, t; c).

Partielle Korrektheit des Algorithmus

Satz 4.23: Falls der Algorithmus von Goldberg und Tarjan terminiert und am Ende alle Markierungen endlich sind, dann ist der konstruierte Präfluss ein Maximalfluss im Netzwerk (D; s, t; c).

Beweis: Sei f Ergebnis des Algorithmus

- 1. Nach **Lemma 4.21** ist f Präfluss.
- 2. Nach Lemma 4.20 bricht Algorithmus ab, wenn kein aktiver Knoten exisiert.
- 3. Nach Voraussetzung und Lemma 4.20 gilt

$$e(v) = 0$$
 für alle $v \in V \setminus \{s, t\}$

→ f ist ein Fluss.

Partielle Korrektheit des Algorithmus

Satz 4.23: Falls der Algorithmus von Goldberg und Tarjan terminiert und am Ende alle Markierungen endlich sind, dann ist der konstruierte Präfluss ein Maximalfluss im Netzwerk (D; s, t; c).

Beweis: Sei f Ergebnis des Algorithmus

- 1. Nach **Lemma 4.21** ist f Präfluss.
- 2. Nach Lemma 4.20 bricht Algorithmus ab, wenn kein aktiver Knoten exisiert.
- 3. Nach Voraussetzung und Lemma 4.20 gilt

$$e(v) = 0$$
 für alle $v \in V \setminus \{s, t\}$

f ist ein Fluss.

Nach **Lemma 4.22** gibt es keinen Weg von *s* nach *t*.

 \longrightarrow Es gibt keinen bezüglich f erhöhenden Weg von s nach t in D.

f ist Maximalfluss im Netzwerk (D; s; t; c)

Beweisstruktur

1. Schritt: Wenn Algorithmus terminiert und die Markierungen endlich bleiben, dann ist das Ergebnis ein Maximalfluss.

- a) Solange aktiver Knoten vorhanden, kann Operation Push oder Operation Relabel angewendet werden.
- b) Es gilt stets: f ist Präfluss und dist ist bezüglich f zulässige Markierung.
- c) t ist im Residualgraph D_f des Präflusses f von s aus nicht erreichbar.

2. Schritt: Algorithmus terminiert und Markierungen bleiben endlich:

- a) Finde obere Schranke für dist.
- b) Finde obere Schranke für Anzahl Aufrufe von RELABEL.
- c) Finde obere Schranke für Anzahl Aufrufe von Push.

Bezeichne f die Abbildung, die schrittweise konstruiert wird.

Lemma 4.24: Sei f ein Präfluss auf D. Wenn für v gilt, dass e(v) > 0, so ist s in D_f von v aus erreichbar.

Lemma 4.24: Sei f ein Präfluss auf D. Wenn für v gilt, dass e(v) > 0, so ist s in D_f von v aus erreichbar.

Beweis: Sei S_V die Menge der Knoten, die in D_f von V aus erreichbar sind.

Annahme: s ist nicht in S_v enthalten.

Lemma 4.24: Sei f ein Präfluss auf D. Wenn für v gilt, dass e(v) > 0, so ist s in D_f von v aus erreichbar.

Beweis: Sei S_v die Menge der Knoten, die in D_f von v aus erreichbar sind.

Annahme: s ist nicht in S_v enthalten.

Da f Präfluss ist und $s \not\in S_v$, gilt

$$\sum_{w \in S_{v}} e(w) \geq 0$$

Da $v \in S_v$, gilt

$$\sum_{w \in S_{v}} e(w) > 0$$

Lemma 4.24: Sei f ein Präfluss auf D. Wenn für v gilt, dass e(v) > 0, so ist s in D_f von v aus erreichbar.

Beweis: Sei S_V die Menge der Knoten, die in D_f von V aus erreichbar sind.

Annahme: s ist nicht in S_v enthalten.

Da f Präfluss ist und $s \not\in S_v$, gilt

$$\sum_{w \in S_v} e(w) \ge 0$$

Da $v \in S_v$, gilt

$$\sum_{w \in S_{\nu}} e(w) > 0$$

 $\begin{array}{c|c} \hline S & S_V \\ \hline r_f(u,w) > 0 & e(v) > 0 \\ \hline w & V \\ \hline \end{array}$

Damit gibt es eine Kante (u, w) mit $u \notin S_v$, $w \in S_v$ und f(u, w) > 0.

Die Gegenkante (w, u) besitzt also Restkapazität $r_f(w, u) > 0$.

Widerspruch zu: u ist nicht in D_f von v aus erreichbar.

Lemma 4.25: Während des gesamten Algorithmus gilt

$$\forall v \in V \ dist(v) \leq 2|V|-1$$
.

Lemma 4.25: Während des gesamten Algorithmus gilt

$$\forall v \in V \ dist(v) \leq 2|V| - 1$$
.

Beweis:

Initialisierung: Behauptung gilt offensichtlich.

Beliebiger Zeitpunkt wenn dist(v) von v geändert wird:

Operation RELABEL(*D*, *f*, *v*, *dist***)**

Vorbedingung: v ist aktiv und für alle w mit $r_f(v, w) > 0$ gilt $dist(v) \le dist(w)$

Effekt: *dist(v)* wird erhöht.

$$-dist(v) = \begin{cases} \infty, & \text{falls } \{w \mid r_f(v, w) > 0\} = \emptyset, \\ \min\{dist(w) + 1 \mid r_f(v, w) > 0\} & \text{sonst.} \end{cases}$$

dist heißt zulässig wenn

• dist(s) = |V| und dist(t) = 0 und

■ $\forall v \in V \setminus \{t\} \text{ und } \forall (v, w) \in E_f : dist(v) \leq dist(w) + 1$

Lemma 4.25: Während des gesamten Algorithmus gilt

$$\forall v \in V \ dist(v) \leq 2|V|-1$$
.

Beweis:

Initialisierung: Behauptung gilt offensichtlich.

Beliebiger Zeitpunkt wenn dist(v) von v geändert wird:

Knoten v ist aktiv, d.h. e(v) > 0.

Nach **Lemma 4.24**: s ist von v in D_f erreichbar:

$$V = V_0 \rightarrow V_1 \rightarrow \cdots \rightarrow V_\ell = S$$

mit $dist(v_i) \leq dist(v_{i+1}) + 1$ für $1 \leq i \leq \ell - 1$

Operation RELABEL(*D*, *f*, *v*, *dist***)**

Vorbedingung: v ist aktiv und für alle w mit $r_f(v, w) > 0$ gilt $dist(v) \leq dist(w)$

Effekt: *dist(v)* wird erhöht.

$$-dist(v) = \begin{cases} \infty, & \text{falls } \{w \mid r_f(v, w) > 0\} = \emptyset, \\ \min\{dist(w) + 1 \mid r_f(v, w) > 0\} & \text{sonst.} \end{cases}$$

dist heißt zulässig wenn

- dist(s) = |V| und dist(t) = 0 und
- $\forall v \in V \setminus \{t\} \text{ und } \forall (v, w) \in E_f : dist(v) \leq dist(w) + 1$

Lemma 4.25: Während des gesamten Algorithmus gilt

$$\forall v \in V \ dist(v) \leq 2|V|-1$$
.

Beweis:

Initialisierung: Behauptung gilt offensichtlich.

Beliebiger Zeitpunkt wenn dist(v) von v geändert wird:

Knoten v ist aktiv, d.h. e(v) > 0.

Nach **Lemma 4.24**: s ist von v in D_f erreichbar:

$$v = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_\ell = s$$

mit $dist(v_i) \leq dist(v_{i+1}) + 1$ für $1 \leq i \leq \ell - 1$

Wegen $\ell \leq |V| - 1$ folgt:

$$dist(v) \leq dist(s) + \ell \leq 2|V| - 1$$

Operation Relabel(D, f, v, dist)

Vorbedingung: v ist aktiv und für alle w mit $r_f(v, w) > 0$ gilt $dist(v) \le dist(w)$

Effekt: *dist(v)* wird erhöht.

$$dist(v) = \begin{cases} \infty, & \text{falls } \{w \mid r_f(v, w) > 0\} = \emptyset, \\ \min\{dist(w) + 1 \mid r_f(v, w) > 0\} & \text{sonst.} \end{cases}$$

dist heißt zulässig wenn

- dist(s) = |V| und dist(t) = 0 und
- $\forall v \in V \setminus \{t\}$ und $\forall (v, w) \in E_f$: $dist(v) \leq dist(w) + 1$

Lemma 4.25: Während des gesamten Algorithmus gilt

$$\forall v \in V \ dist(v) \leq 2|V| - 1$$
.

Beweis:

Initialisierung: Behauptung gilt offensichtlich.

Beliebiger Zeitpunkt wenn dist(v) von v geändert wird:

Knoten v ist aktiv, d.h. e(v) > 0.

Nach **Lemma 4.24**: s ist von v in D_f erreichbar:

$$v = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_\ell = s$$

 $mit \ dist(v_i) \leq dist(v_{i+1}) + 1 \ für \ 1 \leq i \leq \ell - 1$

Wegen $\ell \leq |V| - 1$ folgt:

$$dist(v) \leq dist(s) + \ell \leq 2|V| - 1$$

Es folgt:

Lemma 4.26: Im Laufe der Ausführung werden pro Knoten höchstens 2|V|-1 RELABEL-Operationen ausgeführt. Die Gesamtzahl der RELABEL-Operationen ist also höchstens $2|V|^2$.

Beweisstruktur

1. Schritt: Wenn Algorithmus terminiert und die Markierungen endlich bleiben, dann ist das Ergebnis ein Maximalfluss.

- a) Solange aktiver Knoten vorhanden, kann Operation Push oder Operation Relabel angewendet werden.
- b) Es gilt stets: f ist Präfluss und dist ist bezüglich f zulässige Markierung.
- c) t ist im Residualgraph D_f des Präflusses f von s aus nicht erreichbar.

2. Schritt: Algorithmus terminiert und Markierungen bleiben endlich:

- a) Finde obere Schranke für dist.
- b) Finde obere Schranke für Anzahl Aufrufe von RELABEL.
- c) Finde obere Schranke für Anzahl Aufrufe von Push.

Bezeichne f die Abbildung, die schrittweise konstruiert wird.

Abschätzung Push-Operationen

Definition 4.27: Eine Operation Push(v, w) heißt saturierend, wenn danach $r_f(v, w) = 0$ gilt. Ansonsten heißt Push(v, w) nicht saturierend.

Lemma 4.28: Während des Algorithmus werden höchstens 2|V||E| saturierende PUSH ausgeführt.

Lemma 4.29: Während des Algorithmus werden höchstens $4|V|^2|E|$ nicht saturierende Push ausgeführt.

Abschätzung Push-Operationen

Definition 4.27: Eine Operation Push(v, w) heißt saturierend, wenn danach $r_f(v, w) = 0$ gilt. Ansonsten heißt Push(v, w) nicht saturierend.

Damit ergibt sich:

Satz 4.30: Der Algorithmus von Goldberg und Tarjan terminiert nach $\mathcal{O}(|V|^2|E|)$ Ausführungen zulässiger PUSH- oder RELABEL-Operationen.

ausgeführt.

Lemma 4.29: Während des Algorithmus werden höchstens $4|V|^2|E|$ nicht saturierende Push ausgeführt.

Lemma 4.28: Während des Algorithmus werden höchstens 2|V||E| saturierende PUSH ausgeführt.

Lemma 4.28: Während des Algorithmus werden höchstens 2|V||E| saturierende PUSH ausgeführt.

Beweis: Betrachte saturierendes PUSH(v, w):

Es gilt: $r_f(v, w) > 0$ und dist(v) = dist(w) + 1

Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1. **Effekt:** Flussüberschuss wird von v nach w über Kante (v, w) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $f(v, w) \leftarrow f(v, w) + \Delta, f(w, v) \leftarrow f(w, v) \Delta$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

 $Push_1(v, w)$

 $Push_1(w, v)$

Lemma 4.28: Während des Algorithmus werden höchstens 2|V||E| saturierende PUSH ausgeführt.

Beweis: Betrachte saturierendes PUSH(v, w):

Es gilt: $r_f(v, w) > 0$ und dist(v) = dist(w) + 1

ightharpoonup Erneutes PUSH(v, w) nur möglich, wenn in der Zwischenzeit Push(w, v).

Für Push(w, v) musste aber dist(w) = dist(v) + 1 gelten.

Nach Ausführung vom zweiten Push(v, w):

 $Push_2(v, w)$

dist(v) und dist(w) wurden um mindestens zwei erhöht.

Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1. **Effekt:** Flussüberschuss wird von *v* nach *w* über Kante (*v*, *w*) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $f(v, w) \leftarrow f(v, w) + \Delta, f(w, v) \leftarrow f(w, v) \Delta$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Lemma 4.28: Während des Algorithmus werden höchstens 2|V||E| saturierende Push ausgeführt.

Beweis: Betrachte saturierendes PUSH(v, w):

Es gilt: $r_f(v, w) > 0$ und dist(v) = dist(w) + 1

Erneutes PUSH(v, w) nur möglich, wenn in der Zwischenzeit Push(w, v).

Für Push(w, v) musste aber dist(w) = dist(v) + 1 gelten.

 $Push_1(v, w)$

. . .

 $Push_1(w, v)$

. . .

 $Push_2(v, w)$

Nach Ausführung vom zweiten Push(v, w):

dist(v) und dist(w) wurden um mindestens zwei erhöht.

Nach Lemma 4.25:

 $dist(v) \leq 2|V| - 1$ und $dist(w) \leq 2|V| - 1$.

Für Kante (v, w) maximal 2|V| - 1 viele saturierende Push-Operationen.

Insgesamt:

Maximal 2|V||E| viele saturierende Push-Operationen.

Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1. **Effekt:** Flussüberschuss wird von v nach w über Kante (v, w) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Lemma 4.29: Während des Algorithmus werden höchstens $4|V|^2|E|$ nicht saturierende Push ausgeführt.

Lemma 4.29: Während des Algorithmus werden höchstens $4|V|^2|E|$ nicht saturierende Push ausgeführt.

Beweis: Betrachte Veränderung von

$$\mathcal{D} = \sum_{\substack{v \in V \setminus \{s,t\},\\ v \text{ aktiv}}} dist(v)$$

Initialisierung: $\mathcal{D} = 0$ (Es gilt immer $\mathcal{D} \geq 0$)

Auswirkungen der Operationen auf ${\mathcal D}$

Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1.

Effekt: Flussüberschuss wird von v nach w über Kante (v, w) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $f(v, w) \leftarrow f(v, w) + \Delta, f(w, v) \leftarrow f(w, v) \Delta$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Lemma 4.29: Während des Algorithmus werden höchstens $4|V|^2|E|$ nicht saturierende Push ausgeführt.

Beweis: Betrachte Veränderung von

$$\mathcal{D} = \sum_{\substack{v \in V \setminus \{s,t\},\\ v \text{ aktiv}}} dist(v)$$

Initialisierung: $\mathcal{D} = 0$ (Es gilt immer $\mathcal{D} \geq 0$)

Auswirkungen der Operationen auf ${\mathcal D}$

Nicht saturiendes Push setzt \mathcal{D} um mind. 1 herab, denn:

v ist danach nicht aktiv und dist(w) = (v) - 1

Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1.

Effekt: Flussüberschuss wird von v nach w über Kante (v, w) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Lemma 4.29: Während des Algorithmus werden höchstens $4|V|^2|E|$ nicht saturierende Push ausgeführt.

Beweis: Betrachte Veränderung von

$$\mathcal{D} = \sum_{\substack{v \in V \setminus \{s,t\},\\ v \text{ aktiv}}} dist(v)$$

Initialisierung: $\mathcal{D} = 0$ (Es gilt immer $\mathcal{D} \geq 0$)

Auswirkungen der Operationen auf ${\mathcal D}$

Nicht saturiendes Push setzt \mathcal{D} um mind. 1 herab, denn:

v ist danach nicht aktiv und dist(w) = (v) - 1

Saturiendes Push erhöht \mathcal{D} um max. 2|V|-1 (Lemma 4.25).

 \rightarrow saturiende PUSH-Operationen erhöhen \mathcal{D} um max. $(2|V|-1)\cdot 2|V||E|$ (Lemma 4.28)

Relabel-Operationen erhöhen \mathcal{D} um max. $(2|V|-1) \cdot |V|$ (Lemma 4.26).

=B Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1. **Effekt:** Flussüberschuss wird von v nach w über Kante (v, w) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $f(v, w) \leftarrow f(v, w) + \Delta, f(w, v) \leftarrow f(w, v) \Delta$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Lemma 4.29: Während des Algorithmus werden höchstens $4|V|^2|E|$ nicht saturierende Push ausgeführt.

Beweis: Betrachte Veränderung von

$$\mathcal{D} = \sum_{\substack{v \in V \setminus \{s,t\},\\ v \text{ aktiv}}} dist(v)$$

Initialisierung: $\mathcal{D} = 0$ (Es gilt immer $\mathcal{D} \geq 0$)

Auswirkungen der Operationen auf ${\mathcal D}$

Nicht saturiendes Push setzt \mathcal{D} um mind. 1 herab, denn:

v ist danach nicht aktiv und dist(w) = (v) - 1

Saturiendes Push erhöht \mathcal{D} um max. 2|V|-1 (Lemma 4.25).

 \longrightarrow saturiende Push-Operationen erhöhen \mathcal{D} um max. $(2|V|-1)\cdot 2|V||E|$ (Lemma 4.28)

Relabel-Operationen erhöhen \mathcal{D} um max. $(2|V|-1) \cdot |V|$ (Lemma 4.26).

Anzahl nicht saturierender Push:

maximal
$$B + A \le 4|V|^2|E|$$

B Operation Push(D, f, v, w)

Vorbedingung: v ist aktiv, $r_f(v, w) > 0$ und dist(v) = dist(w) + 1. **Effekt:** Flussüberschuss wird von v nach w über Kante (v, w) geschoben.

- $\Delta \leftarrow \min\{e(v), r_f(v, w)\}$
- $f(v, w) \leftarrow f(v, w) + \Delta, f(w, v) \leftarrow f(w, v) \Delta$
- $r_f(v, w) \leftarrow r_f(v, w) \Delta, r_f(w, v) \leftarrow r_f(w, v) + \Delta$
- $e(v) \leftarrow e(v) \Delta, e(w) \leftarrow e(w) + \Delta$

Terminierung des Algorithmus

Satz 4.30: Der Algorithmus von Goldberg und Tarjan terminiert nach $\mathcal{O}(|V|^2|E|)$ Ausführungen zulässiger PUSH- oder RELABEL-Operationen.

Implementation

Laufzeit hängt stark von Wahl der aktiven Knoten ab:

- **FIFO-Implementierung:** Wähle aktive Knoten entsprechend *first-in-first-out*-Prinzip: $\mathcal{O}(|V|^3)$ Laufzeit.
 - Mit dynamischen Bäumen: $\mathcal{O}(|V||E|\log\frac{|V|^2}{|E|})$
- **Highest-Label:** Für Push wähle aktiven Knoten mit höchstem *dist*-Wert: $\mathcal{O}(|V|^2|E|^{\frac{1}{2}})$
- **Excess-Scaling:** Für Push(v,w) wird die Kante (v, w) so gewählt, dass v aktiv, e(v) geeignet groß und e(w) geeignet klein ist: $\mathcal{O}(|E| + |V|^2 \log C)$, mit $C = \max_{(u,v) \in E} c(u,v)$