崇明区 2019 学年第一学期教学质量调研测试卷

九年级数学答案及评分参考 2020.1

一、选择题(本大题共6题,每题4分,满分24分)

3, **C** 4, C 5, **B** 6, **B**

二、填空题(本大题共12题,每题4分,满分48分)

$$7, \frac{5}{2}$$

8. $4\sqrt{5}-4$ 9. 70

10, 50

15, 2 16, 6 17, 10

18. $\frac{28}{5}\sqrt{2}$ $\pm \frac{4}{5}\sqrt{2}$

三、解答题: (本大题共7题,满分78分)

$$= 3 + \sqrt{3} - \frac{1}{2} \qquad 3 \Rightarrow$$

$$=\frac{5}{2}+\sqrt{3}$$
 2 \Rightarrow 2 \Rightarrow

20、(1)
$$:: AD//BC$$
, $BC = 2AD$

$$\therefore \frac{AO}{OC} = \frac{AD}{BC} = \frac{1}{2}$$

$$\therefore \frac{AO}{AC} = \frac{1}{3} \quad \text{RP } AO = \frac{1}{3}AC \qquad 15$$

$$\therefore \overrightarrow{AO} = \frac{1}{3}\overrightarrow{b} + \frac{2}{3}\overrightarrow{a} \qquad \cdots \qquad 1 \ \text{?}$$

(2) 略, 画图正确得 4 分, 结论正确得 1 分

$$\therefore BE = DE = \frac{1}{2}BD = 4 \qquad 12$$

联结 OB , 设 $\bigcirc O$ 的 半径 为 x , 则 OA = OB = x

∴ $(x-2)^2 + 4^2 = x^2$ 解得 x = 5∴ ⊙ 0 的半径为 5 ------2 分 (2) ::在 $Rt\triangle CEB$ 中, $CE^2 + BE^2 = BC^2$ $:: OB = OC \cup OF \perp BC$ $\therefore BF = CF = \frac{1}{2}BC = 2\sqrt{5} \qquad \cdots \qquad 1 \text{ }$:: $\triangle Rt \triangle OFB$ \Rightarrow $OF^2 + BF^2 = OB^2$ 22、(1) 解: 过点 B 作 $BH \perp DE$, 垂足为 H $\angle ABH = \angle DHB = 90^{\circ}$ $\angle DBH = 150^{\circ} - 90^{\circ} = 60^{\circ}$ 1 $\frac{1}{12}$ ∴ $\triangleq Rt \triangle DHB + \sin \angle DBH = \frac{DH}{DB} = \frac{DH}{40} = \frac{\sqrt{3}}{2}$ $∴ DE = 20\sqrt{3} + 5(cm)$ (2) 解: 过点C作 $CG \perp BH$, $CK \perp DE$,垂足分别为 $G \setminus K$ 由题意可得: BC = CD = 20cm, CG = KH∴在 $Rt\triangle CGB$ 中, $sin\angle CBH = \frac{CG}{RC} = \frac{CG}{20} = \frac{\sqrt{3}}{2}$ ∴ $CG = 10\sqrt{3}cm$ ∴ $KH = 10\sqrt{3}cm$ 1 分 $\therefore \angle BCG = 90^{\circ} - 60^{\circ} = 30^{\circ} \qquad \therefore \angle DCK = 150^{\circ} - 90^{\circ} - 30^{\circ} = 30^{\circ} \cdots 1$ ∴ $\pm Rt\triangle DCK + \sin \angle DCK = \frac{DK}{DC} = \frac{DK}{20} = \frac{1}{2}$ $\therefore DK = 10cm$

$$2^{\circ} \angle AOD = \angle ACB$$

 $\therefore tan \angle AOD = tan \angle ACB = 2$

$$\therefore \frac{-x^2 - 2x + 3}{-x} = 2 \qquad \text{解得 } x_1 = -\sqrt{3} \;, \quad x_2 = \sqrt{3} \quad (舍去) \; \cdots \cdots 1 \; \text{分}$$

综上所述: 当 $\triangle AOE$ 与 $\triangle ABC$ 相似时,

点
$$D$$
的坐标为 $(\frac{1-\sqrt{13}}{2}, \frac{3\sqrt{13}-3}{2})$ 或 $(-\sqrt{3}, 2\sqrt{3})$.

$$\therefore \angle ADC = \angle B + \angle BAD$$
 $\square \angle ADE + \angle CDE = \angle B + \angle BAD$

$$\therefore$$
 ∠ADE = ∠B \therefore ∠BAD = ∠CDE \dots 1 \Rightarrow

$$\therefore \frac{AB}{CD} = \frac{BD}{CE} \qquad \therefore AB \cdot CE = BD \cdot CD \quad \cdots \quad 1 \text{ }$$

$$\therefore \angle CDE = \angle BAD$$
 $\therefore \angle ADE = \angle BAD$

$$∴ DF//AB \qquad ∴ \frac{AE}{AC} = \frac{BD}{BC} \qquad \cdots 1$$

$$\therefore \angle ADE = \angle B = \angle C \qquad \therefore \angle BAD = \angle C$$

又:
$$\angle B$$
 是公共角 $\therefore \triangle BDA$ $\hookrightarrow \triangle BAC$ $\cdots 1$ 分

$$\therefore \frac{AE}{10} = \frac{\frac{25}{4}}{16} \qquad \therefore AE = \frac{125}{32} \qquad \cdots \qquad 1 \,$$

(3) 过点 A 作 $AH \perp BC$,垂足为 H

$$AB = AC$$
, $AH \perp BC$ $BH = CH = \frac{1}{2}BC = 8$

由勾股定理得出
$$AH = 6$$
 $\therefore tan B = \frac{3}{4}$

$$\therefore \angle ADE = \angle B$$
, $AF \perp AD$ $\therefore tan \angle ADF = \frac{AF}{AD} = \frac{3}{4}$

设
$$AF = 3k$$
 , 则 $AD = 4k$, $DF = 5k$ $\therefore \triangle BDA \hookrightarrow \triangle CED$ $\therefore \frac{AD}{DE} = \frac{AB}{CD}$

①点F 在线段DE 的延长线上,当 $\triangle AEF$ 是等腰三角形时,存在以下三种情况:

$$1^{\circ}$$
 $FA = FE = 3k$, 则 $DE = 2k$

$$\therefore \frac{10}{CD} = \frac{4k}{2k} \qquad \therefore CD = 5 \qquad \therefore BD = 16 - 5 = 11 \quad \dots \quad 2 \implies$$

 2° EA = EF 则 DE = 2.5k

$$\therefore \frac{10}{CD} = \frac{4k}{2.5k} \qquad \therefore CD = \frac{25}{4} \qquad \therefore BD = 16 - \frac{25}{4} = \frac{39}{4} \qquad \cdots 2 \implies 2$$

$$3^{\circ} AE = AF = 3k \quad \text{ of } DE = \frac{7}{5}k$$

$$\therefore \frac{10}{CD} = \frac{4k}{\frac{7}{5}k} \qquad \therefore CD = \frac{7}{2} \qquad \therefore BD = 16 - \frac{7}{2} = \frac{25}{2} \qquad \cdots 2$$

②点F 在线段DE上,当 $\triangle AEF$ 是等腰三角形时,

$$\therefore \angle AFE = 90^{\circ} + \angle ADF$$
 $\therefore \angle AFE$ 是一个钝角

∴ 只存在 FA = FE = 3k 这种可能,则 DE = 8k

$$\therefore \frac{10}{CD} = \frac{4k}{8k}$$
 $\therefore CD = 20 > 16$,不合题意,舍去

综上所述,当 $\triangle AEF$ 是等腰三角形时,BD的长 11 或 $\frac{39}{4}$ 或 $\frac{25}{2}$.

(做对 1 种情况 2 分,做对 2 种情况 4 分,做对 3 种情况但没有讨论在线段 DE 上的这种可能 5 分,做对 3 种情况并分类讨论出不存在的情况 6 分)