Міністерство освіти та науки України Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики Кафедра обчислювальної математики

Звіт до лабораторної роботи №5 на тему: "Найкраще середньоквадратичне наближення"

> Виконав студент групи ОМ-3 Скибицький Нікіта

Зміст

1	Пос	Постановка задачі													
	1.1	Найкраще середньоквадратичне наближення													
	1.2	Метод найменших квадратів													
	1.3	Кубічні згладжувальні сплайни													
2	Теоретична частина														
	2.1	Найкраще середньоквадратичне наближення													
	2.2	Метод найменших квадратів													
	2.3	Кубічні згладжувальні сплайни													
3	Практична частина														
	3.1	Найкраще середньоквадратичне наближення													
		3.1.1 Тригонометрична система функцій													
		3.1.2 Поліноми Чебишева													
	3.2	Метод найменших квадратів													
	3.3	Кубічні згладжувальні сплайни													

1 Постановка задачі

Усі завдання будуть виконані для функції f вигляду:

$$f(x) = \frac{|x-4| + |x+4|}{2}, \quad a = -10 \le x \le 10 = b.$$

Також задамо n=4, m=20. У всіх підзадачах необхідно побудувати графіки функцій f(x) та отриманого наближення, обчислити відхилення.

1.1 Найкраще середньоквадратичне наближення

Побудувати поліном найкращого середньоквадратичного наближення $Q_n(x)$ для функції f(x) на проміжку [a,b], вибравши в якості лінійно незалежних функцій систему функцій $\varphi_i(x)$, для $i=\overline{0,n}$. Системи функцій які будуть розглянуті:

- 1. $\varphi_i(x) = T_i(x)$ поліноми Чебишова;
- 2. тригонометрична.

1.2 Метод найменших квадратів

Функція y = f(x) задана таблицею значень y_0, y_1, \ldots, y_m у точках x_0, x_1, \ldots, x_m . Використовуючи метод найменших квадратів (МНК), знайти поліном $Q_n(x) = a_0 + a_1 \cdot x + \ldots + a_n \cdot x^n$ найкращого середньоквадратичного наближення оптимального степеня $n = n^*$. За оптимальне значення n^* будемо вважати той степінь поліному, починаючи з якого величина

$$\sigma_n = \sqrt{\frac{1}{m-n} \cdot \sum_{k=0}^{m} (Q_n(x_k) - y_k)^2}$$

стабілізується або починає зростати.

1.3 Кубічні згладжувальні сплайни

Побудувати кубічний згладжувальний сплайн для функції f(x) на проміжку [a,b] за її значеннями у вузлах $x_i = a + i \cdot h$, для $i = \overline{0,m}$, де h = (b-a)/m, а $m \gg n$.

2 Теоретична частина

2.1 Найкраще середньоквадратичне наближення

Наблизимо функцію $f: \mathcal{H} \to \mathbb{R}$ з гільбертового простору \mathcal{H} функціями зі скінченновимірного підпростору M_n простору \mathcal{H} . Скалярний добуток у просторі \mathcal{H} ми будемо позначати як (u, v), відповідну норму – як $||u|| = \sqrt{(u, u)}$.

Нехай $\{\varphi_i\}_{i=0}^{\infty}$ — лінійно-незалежна система функцій $\mathcal{H} \to \mathbb{R}$. Розглянемо її скінченну підсистему $\{\varphi_i\}_{i=0}^n$. Позначимо лінійну оболонку цієї підсистеми за $M_n \subset \mathcal{H}$.

Нагадаємо визначення ЕНН Ф:

$$||f - \Phi|| = \sqrt{(f - \Phi, f - \Phi)} = \inf_{\varphi \in M_n} ||f - \varphi||.$$

Якщо Φ — ЕНН, то $(f - \Phi, \varphi) = 0$ для довільного $\varphi \in M_n$, тому можна записати $f = \Phi + \psi$, де $\Phi \in M_n$, $\psi \in M_n^\perp$, тому будемо шукати наближення у вигляді

$$\Phi = \sum_{i=0}^{n} c_i \cdot \varphi_i.$$

Для виконання $(f - \Phi, \varphi) = 0$ достатньо, щоб

$$(f - \Phi, \varphi_j) = 0, \quad j = \overline{0, n},$$

що у свою чергу дає

$$\left(f - \sum_{i=0}^{n} c_i \cdot \varphi_i, \varphi_j\right) = 0, \quad j = \overline{0, n}.$$

Звідси маємо СЛАР на c_i :

$$\sum_{i=0}^{n} c_i \cdot (\varphi_i, \varphi_j)_{\rho} = (f, \varphi_j)_{\rho}, \quad j = \overline{0, n}.$$

Матриця цієї СЛАР — $G = \|g_{ij}\|_{i,j=1}^n$, де $g_{ij} = (\varphi_i, \varphi_j)_\rho$ — матриця Грамма лінійно-незалежної системи функцій $\{\varphi_i\}_{i=0}^n$, що доводить існування та єдиність ЕНН. Оскільки $G^T = G$, то для розв'язування цієї СЛАР використовують метод квадратних коренів. У багатьох випадках матриця G погано обумовлена, у цих випадках систему функцій вибирають ортогональною з ваговим коефіцієнтом ρ , де для поліномів Чебишова

$$\rho(x) = \frac{1}{\sqrt{1 - x^2}}.$$

Тоді СЛАР на c_i набуває наступний вигляд:

$$\begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_{n-1} \\ c_n \end{pmatrix} \cdot \begin{pmatrix} (\varphi_1, \varphi_1)_{\rho} & 0 & 0 & \cdots & 0 & 0 \\ 0 & (\varphi_2, \varphi_2)_{\rho} & 0 & \cdots & 0 & 0 \\ 0 & 0 & (\varphi_3, \varphi_3)_{\rho} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & (\varphi_{n-1}, \varphi_{n-1})_{\rho} & 0 \\ 0 & 0 & 0 & \cdots & 0 & (\varphi_n, \varphi_n)_{\rho} \end{pmatrix} = \begin{pmatrix} (f, \varphi_1)_{\rho} \\ (f, \varphi_2)_{\rho} \\ (f, \varphi_3)_{\rho} \\ \vdots \\ (f, \varphi_{n-1})_{\rho} \\ (f, \varphi_n)_{\rho} \end{pmatrix}$$

Явно запишемо розв'язок цієї СЛАР:

$$c_i = \frac{(f, \varphi_i)_{\rho}}{(\varphi_i, \varphi_i)_{\rho}},$$

тоді

$$\Phi = \sum_{i=0}^{n} \frac{(f, \varphi_i)_{\rho}}{(\varphi_i, \varphi_i)_{\rho}} \cdot \varphi_i,$$

звідки у випадку ортонормованої системи функцій маємо наступний вираз відхилення:

$$\Delta^{2}(f) = \|f - \Phi\|^{2} = \|f\| - \|\Phi\|^{2} = \|f\| - \sum_{i=0}^{n} c_{i}^{2}.$$

У випадку ортогональної але не нормалізованої системи відхилення шукається наступним чином:

$$\Delta^{2}(f) = \|f - \Phi\|^{2} = \|f\| - \|\Phi\|^{2} = \|f\| - \sum_{i=0}^{n} c_{i}^{2} \cdot \|\varphi_{i}\|^{2}. \tag{2.1}$$

2.2 Метод найменших квадратів

Нехай в результаті вимірювань функції f(x) маємо таблицю значень:

$$y_i \approx f(x_i), \quad x_i \in [a, b], \quad i = \overline{0, m}.$$

За даними цієї таблиці треба побудувати аналітичну формулу $\Phi(x; a_1, a_2, \dots, a_n)$ таку, що

$$\varphi(x_i; a_1, a_2, \dots, a_n) \approx y_i, \quad i = \overline{0, m}.$$

Розв'язувати цю задачу інтерполюванням (тобто задавати "=" замість " \approx ") не раціонально, адже $m \gg n$ і отримана система буде перевизначена, її розв'язки як правило не існують.

Параметри a_1, a_2, \ldots, a_n визначають з міркувань

$$I(a_1, a_2, \dots, a_n) = \sum_{i=0}^{m} (y_i - \varphi(x_i; a_1, a_2, \dots, a_n)^2) \to \min,$$

тому метод і називається методом найменших (суми) квадратів (відхилень).

Для досягнення мінімуму достатньо $\partial I/\partial a_i=0$, для $i=\overline{0,n}$. Зокрема, якщо φ лінійно залежить від параметрів a_1,a_2,\ldots,a_n , то отримаємо СЛАР

$$\sum_{j=0}^{n} a_j \cdot \varphi_j(x_i) = y_i, \quad i = \overline{0, m},$$

яку називають системою умовних рівнянь.

МНК рівносильний знаходженню ЕНН у гільбертовому просторі функцій $f: X \to \mathbb{R}$ над дискретною множиною $X = \{x_0, x_1, \dots, x_m\}$, у якому скалярний добуток визначається наступним чином:

$$(u,v) = \sum_{i=0}^{m} u(x_i) \cdot v(x_i).$$

Якщо відомі оцінки похибок ε_i для значень y_i то скалярний добуток задають у вигляді

$$(u,v) = \sum_{i=0}^{m} \frac{u(x_i) \cdot v(x_i)}{\varepsilon_i^2}.$$

2.3 Кубічні згладжувальні сплайни

Розглянемо функціонал:

$$\Phi_1(u) = \Phi(u) + \sum_{i=0}^n \rho \left(\tilde{f}_i - u(x_i) \right)^2,$$

де $\rho_i > 0$ — деякі числа, та

$$\Phi(u) = \int_a^b (u''(x))^2 \, \mathrm{d}x.$$

Згладжуючим сплайном назвемо функцію g, яка ϵ розв'язком задачі:

$$\Phi_1(g) = \inf_{u \in W_2^2(a,b)} \Phi_1(u).$$

Позначимо

$$\mu_i = g(x_i), \quad i = \overline{0, n}, \quad m_i = g''(x_i), \quad i = \overline{1, n-1}.$$

Позначимо:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \frac{h_1 + h_2}{3} & \frac{h_2}{6} & 0 & \cdots & 0 & 0 \\ 0 & \frac{h_2}{6} & \frac{h_2 + h_3}{3} & \frac{h_3}{6} & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \frac{h_{n-2}}{6} & \frac{h_{n-2} + h_{n-1}}{3} & \frac{h_{n-1}}{6} \\ 0 & 0 & 0 & \cdots & 0 & \frac{h_{n-1}}{6} & \frac{h_{n-1} + h_n}{3} \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

а також

$$H = \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \frac{1}{h_1} & -\left(\frac{1}{h_1} + \frac{1}{h_2}\right) & \frac{1}{h_2} & 0 & \cdots & 0 & 0 \\ 0 & \frac{1}{h_2} & -\left(\frac{1}{h_2} + \frac{1}{h_3}\right) & \frac{1}{h_3} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \frac{1}{h_{n-1}} & -\left(\frac{1}{h_{n-1}} + \frac{1}{h_n}\right) & \frac{1}{h_n} \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Якби значення μ_i були б відомі, то для побудови g достатнью було б розв'язати систему

$$A\vec{m} = H\vec{\mu} \tag{2.2}$$

та записати g(x) за формулою:

$$g(x) = m_i \cdot \frac{(x_{i+1} - x)^3}{6h_i} + m_{i+1} \cdot \frac{(x - x_i)^3}{6h_i} + \left(\mu_i - \frac{m_i \cdot h_i^2}{6}\right) \cdot \frac{x_{i+1} - x}{h_i} + \left(\mu_{i+1} - \frac{m_{i+1} \cdot h_i^2}{6}\right) \cdot \frac{x - x_i}{h_i}, \quad (2.3)$$

де $x \in [x_i, x_{i+1}], h_i = x_{i+1} - x_i, i = \overline{0, n-1}.$

3 умови мінімізації функціоналу Φ_1 отримуємо систему рівнянь

$$2(H^T m)_i + 2\rho_i(\mu_i - \tilde{f}_i) = 0.$$

Позначимо $R={
m diag}\,
ho_i$ (діагональна матриця), тоді попередню формулу можна записати у матричному вигляді як

$$H^T \cdot \vec{m} + R \cdot \vec{\mu} = R \cdot \vec{f}$$
.

Помноживши зліва на $H \cdot R^{-1}$, отримаємо

$$H \cdot R^{-1} \cdot H^T \cdot \vec{m} + H \cdot \vec{\mu} = H \cdot \vec{f}.$$

Враховуючи співвідношення (2.2) маємо СЛАР на m:

$$(A + H \cdot R^{-1} \cdot H^T) \cdot \vec{m} = H \cdot \vec{f}.$$

Після цього можемо знайти $\vec{\mu}$ за формулою:

$$\vec{\mu} = \vec{f} - R^{-1} \cdot H^T \cdot \vec{m}.$$

В результаті отримуємо сплайн що згладжує за формулою (2.3):

$$g(x) = m_i \cdot \frac{(x_{i+1} - x)^3}{6h_i} + m_{i+1} \cdot \frac{(x - x_i)^3}{6h_i} + \left(\mu_i - \frac{m_i \cdot h_i^2}{6}\right) \cdot \frac{x_{i+1} - x}{h_i} + \left(\mu_{i+1} - \frac{m_{i+1} \cdot h_i^2}{6}\right) \cdot \frac{x - x_i}{h_i},$$
 де $x \in [x_i, x_{i+1}], \ h_i = x_{i+1} - x_i, \ i = \overline{0, n-1}.$

3 Практична частина

3.1 Найкраще середньоквадратичне наближення

3.1.1 Тригонометрична система функцій

Система функцій $\{1, \sin x, \cos x, \sin 2x, \cos 2x, \ldots\}$, ортогональні без вагового множника на $[-\pi, \pi]$.

Порахуємо відхилення на $[-\pi,\pi]$ за формулою (2.1) та отримуємо:

$$\Delta^2(f) = 0.10740063553045082.$$

Відхилення на [-10, 10] дорівнює:

$$\Delta^2(f) = 0.341866841.$$

3.1.2 Поліноми Чебишева

Система функцій — $\varphi_n(x) = \cos(n \cdot \arccos(x))$, ортогональні з множником $\rho(x) = \frac{1}{\sqrt{1-x^2}}$ на [-1,1].

Порахуємо відхилення на [-1,1] за формулою (2.1) та отримуємо:

$$\Delta^2(f) = \texttt{0.135158947199864}.$$

Відхилення на [-10, 10] дорівнює:

$$\Delta^2(f) = 1.35158947199864.$$

3.2 Метод найменших квадратів

Нехай дано точки що ділить відрізок [-10, 10] на 20 рівних частин та значення функції в них:

i		0	1		2 3		4		5	6	7	8	9
x_i		-10	- 9	-8	-7	7	-6	-	-5	-4	-3	-2	-1
y_i		10	9	8	7		6		5	4	4	4	4
i	,	10	11	12	13	14	1	5	16	17	18	19	20
x	i	0	1	2	3	4	-	<u> </u>	6	7	8	9	10
y	i	4	4	4	4	4	-)	6	7	8	9	10

Знайдемо значення похибки для різних n:

n	σ_n
1	0.2456140350877193000
2	0.0044225627749655220
3	0.0046827135264340820
4	0.0049553959299550900
5	0.0052857556586187624
6	0.0024510823676256372
7	0.0026396271651353016
8	0.0008506324753000206
9	0.0009279627003272911
10	0.0007896501165176935
11	0.0008773890183529924
12	0.0008200149552223944
13	0.0009371599488255855
14	0.0004570848289908443

Поліном найкращого середньоквадратичного наближення оптимального степеня та отримуємо, що $m=m^{\star}=8$, тобто з моменту коли наступна величина стабілізується або почне зростати:

$$\sigma^2 = \sqrt{\frac{1}{n-m} \sum_{k=0}^{n} (P_m(x_k) - y_k)^2}.$$

Відповідна "похибка" (у лапках бо взята із ваговим коефіцієнтом):

$$\sigma_2 = 0.0008506324753000206.$$

3.3 Кубічні згладжувальні сплайни

Будуємо кубічний сплайн для n=15 та різних ρ .

Відхилення на [-10, 10] дорівнює:

$$\Delta^2(f) = \texttt{0.15336142100936748}.$$

Відхилення на [-10, 10] дорівнює:

$$\Delta^2(f) = \textbf{18.429578862891297}.$$

Відхилення на [-10, 10] дорівнює:

$$\Delta^2(f) = \texttt{0.012596258104766956}.$$