In []:

In [112]:

```
# IMPORT LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [113]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\Salesworkload1.csv")
a
```

Out[113]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	Hours
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	
7653	06.2017	9.0	Sweden	29650.0	Gothenburg	12.0	Checkout	6322.323	
7654	06.2017	9.0	Sweden	29650.0	Gothenburg	16.0	Customer Services	4270.479	
7655	06.2017	9.0	Sweden	29650.0	Gothenburg	11.0	Delivery	0	
7656	06.2017	9.0	Sweden	29650.0	Gothenburg	17.0	others	2224.929	
7657	06.2017	9.0	Sweden	29650.0	Gothenburg	18.0	all	39652.2	

7658 rows × 14 columns

4

In [114]:

a=a.head(10)

Out[114]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	0.0
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	0.0
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	0.0
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	0.0
5	10.2016	1.0	United Kingdom	88253.0	London (I)	6.0	Meat	8270.316	0.0
6	10.2016	1.0	United Kingdom	88253.0	London (I)	13.0	Food	16468.251	0.0
7	10.2016	1.0	United Kingdom	88253.0	London (I)	7.0	Clothing	4698.471	0.0
8	10.2016	1.0	United Kingdom	88253.0	London (I)	8.0	Household	1183.272	0.0
9	10.2016	1.0	United Kingdom	88253.0	London (I)	9.0	Hardware	2029.815	0.0
4 (•

In [115]:

```
# to find
a.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 14 columns):
    # Column Non-Null Count Data
```

#	Column	Non-Null Count	Dtype
0	MonthYear	10 non-null	object
1	Time index	10 non-null	float64
2	Country	10 non-null	object
3	StoreID	10 non-null	float64
4	City	10 non-null	object
5	Dept_ID	10 non-null	float64
6	Dept. Name	10 non-null	object
7	HoursOwn	10 non-null	object
8	HoursLease	10 non-null	float64
9	Sales units	10 non-null	float64
10	Turnover	10 non-null	float64
11	Customer	0 non-null	float64
12	Area (m2)	10 non-null	object
13	Opening hours	10 non-null	object
			-

dtypes: float64(7), object(7)

memory usage: 1.2+ KB

In [116]:

```
# to display summary of statastic
a.describe()
```

Out[116]:

	Time index	StoreID	Dept_ID	HoursLease	Sales units	Turnover	Customer
count	10.0	10.0	10.000000	10.0	1.000000e+01	1.000000e+01	0.0
mean	1.0	88253.0	5.800000	0.0	6.543725e+05	1.978511e+06	NaN
std	0.0	0.0	3.614784	0.0	9.914003e+05	2.861420e+06	NaN
min	1.0	88253.0	1.000000	0.0	5.491500e+04	2.904000e+05	NaN
25%	1.0	88253.0	3.250000	0.0	1.034225e+05	4.033612e+05	NaN
50%	1.0	88253.0	5.500000	0.0	2.615525e+05	5.770455e+05	NaN
75%	1.0	88253.0	7.750000	0.0	4.284400e+05	1.518067e+06	NaN
max	1.0	88253.0	13.000000	0.0	3.107935e+06	8.714679e+06	NaN

In [117]:

```
# to display colum heading
a.columns
```

Out[117]:

In [118]:

sns.pairplot(a)

Out[118]:

<seaborn.axisgrid.PairGrid at 0x20b06f67c10>

In [119]:

```
sns.displot(a["HoursOwn"])
```

Out[119]:

<seaborn.axisgrid.FacetGrid at 0x20b0ad88610>

In [120]:

Out[120]:

	MonthYear	Time index	StoreID	Dept_ID	Sales units	Turnover
0	10.2016	1.0	88253.0	1.0	398560.0	1226244.0
1	10.2016	1.0	88253.0	2.0	82725.0	387810.0
2	10.2016	1.0	88253.0	3.0	438400.0	654657.0
3	10.2016	1.0	88253.0	4.0	309425.0	499434.0
4	10.2016	1.0	88253.0	5.0	165515.0	329397.0
5	10.2016	1.0	88253.0	6.0	1713310.0	5617137.0
6	10.2016	1.0	88253.0	13.0	3107935.0	8714679.0
7	10.2016	1.0	88253.0	7.0	213680.0	1615341.0
8	10.2016	1.0	88253.0	8.0	54915.0	290400.0
9	10.2016	1.0	88253.0	9.0	59260.0	450015.0

In [121]:

```
sns.heatmap(b.corr())
```

Out[121]:

<AxesSubplot:>

In [123]:

In [124]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [125]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[125]:

LinearRegression()

In [126]:

```
lr.intercept_
```

Out[126]:

-615.501770111332

In [127]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[127]:

Co-efficient

MonthYear 0.000000e+00

Time index -1.141877e-08

StoreID -7.954593e-10

Dept_ID 2.824382e+02

Sales units 7.103682e-04

Turnover 1.236540e-03

In [128]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[128]:

<matplotlib.collections.PathCollection at 0x20b0c513af0>

In [129]:

```
lr.score(x_test,y_test)
```

Out[129]:

-0.1897424986365066

In [130]:

```
lr.score(x_train,y_train)
```

Out[130]:

0.9797989937763778

```
In [131]:
from sklearn.linear_model import Ridge,Lasso
In [132]:
rr=Ridge(alpha=10)
rr.fit(x_test,y_test)
Out[132]:
Ridge(alpha=10)
In [133]:
rr.score(x_test,y_test)
Out[133]:
1.0
In [134]:
la=Lasso(alpha=10)
la.fit(x_test,y_test)
Out[134]:
Lasso(alpha=10)
In [135]:
la.score(x_test,y_test)
Out[135]:
0.999999966322987
In [ ]:
```