Лабораторная работа 4.3.3 Исследование разрешающей способности микроскопа методом Аббе

М.Шлапак

Содержание:

- 1. Введение
- 2. Теоретическая часть
- 3. Экспериментальная установка
- 4. Результаты эксперимента
- 5. Заключение

1. Введение

Цель работы:

определение дифракционного предела разрешения методом Аббе

В работе используются:

лазер, кассета с набором сеток разного периода, линзы, щель с микрометрическим винтом, оптический стол, экран, линейка

Разрешающая способность объектива иммерсионного микроскопа при некогерентном освещении:

$$l_{\min} = \ rac{0,61\lambda}{n\,\sin\,A}$$

где A - апертурный угол объектива микроскопа, n - показатель преломления иммерсионной жидкости микроскопа.

Предмет - когерентно освещенная периодическая структура (дифракционная решётка)

Рис. 1. Образование изображения в объективе микроскопа

Р1 - плоскость предмета, F - задняя фокальная плоскость объектива, Р2 - плоскость, сопряженная с предметной плоскостью.

Минимальное разрешаемое объективом расстояние:

где D - диаметр диафрагмы.

В нашей работе используется двумерная решётка, то есть сетка = две скрещенные решётки.

Главные максимумы возникают при одновременном выполнении двух условий:

$$d\sin\Theta_x = m_x\lambda$$
 $d\sin\Theta_y = m_y\lambda$ (3)

где m_x и m_y - целые числа, характеризующие порядки дифракционных максимумов, θ_x и θ_y - направления на главные дифракционные максимумы в горизонтальной и вертикальной плоскостях соответственно.

Максимумы, удовлетворяющие условию θ_x и θ_y < A создают в задней фокальной плоскости F картину дифракции Фраунгофера - первичное изображение (рис. 2)

Рис. 2. Дифракция Фраунгофера на двумерной решётке

- 1) вертикальная щель в фокальной плоскости F, пропускающая m_x = 0, m_y = 0, +- 1 +- 2
 - изображение решётки с горизонтально расположенными штрихами
- 2) горизонтальная щель в фокальной плоскости F, пропускающая m_y = 0, m_x = 0, +- 1 +- 2
 - изображение решётки с вертикально расположенными штрихами

таким образом реализуется явление пространственной фильтрации - выделение различных структур в изображении

3. Экспериментальная установка

Рис. 3. Схема экспериментальной установки - модель проекционного микроскопа

сетка С, линза Л1 - объектив микроскопа, линза Л2 - окуляр микроскопа, но смотреть туда не надо во избежание микротравм глаза (!)

запишем параметры нашей установки:

F2 = 25 мм, F1 = 85 мм, длина волны лазера - 532 нм.

4.1 Определение периода решёток по их пространственному спектру

Рис. 4. Дифракция Фраунгофера для различных сеток

4.1 Определение периода решёток по их пространственному спектру

Выразим из формулы (3) значение периода решётки d:

$$d = \frac{m \lambda}{\sin \Theta}$$
 $\sin \Theta \approx \frac{l/n}{L}$ (4)

где I - расстояние между n максимумами, L - расстояние от сетки до экрана, в нашем опыте L = 140 см и m = 1

4.1 Определение периода решёток по их пространственному спектру

Рассчитаем с помощью формулы (4) период каждой из пяти сеток:

номер сетки	1	2	3	4	5
период d, мкм	22,7	33,7	67,7	124	171
σ_d , MKM	0,8	1,1	4,5	8	18

4.2 Определение периода решёток по изображению, увеличенному с помощью модели микроскопа

Соберем экспериментальную установку с рис.3. Определим расстояния a1, b1, a2, b2:

$$a_1 = (125, 0 \pm 0, 5)$$
 mm

$$a_2 = (25, 0 \pm 0, 5)$$
 mm

$$b_1 = (1115 \pm 1) \,\,{
m MM}$$

$$b_2 = (265 \pm 0, 5)$$
 mm

4.2 Определение периода решёток по изображению, увеличенному с помощью модели микроскопа

Увеличение всей системы:

$$\Gamma = rac{b_1 b_2}{a_1 a_2} pprox (94, 5 \pm 0, 8)$$

Периоды решёток, измеренные по увеличенному изображению, считаются по формуле:

$$d = \frac{l/n}{\Gamma}$$
 (5)

4.2 Определение периода решёток по изображению, увеличенному с помощью модели микроскопа

Рассчитаем с помощью формулы (5) период каждой из 5 сеток:

номер сетки	1	2	3	4	5
период d, мкм	20,3	31,4	63,1	122	170
σ_d , MKM	0,7	1,1	4,2	8	17

4.3 Определение периода решётки по оценке разрешающей способности микроскопа

Поместим щелевую диафрагму с микрометрическим винтом в фокальную плоскость F линзы Л1. И определим для каждой сетки минимальный размер диафрагмы D, при котором на экране еще видно изображение решётки.

Из формулы (2) следует, что

$$d pprox l_{min} = rac{2\lambda f}{D}$$

4.3 Определение периода решётки по оценке разрешающей способности микроскопа

номер сетки	1	2	3	4	5
Dmin, мм	4	3,5	1,8	1,15	0,62
d , мм	22,6	25,8	50,2	79	146
$\sigma_{d,\;MM}$	0,6	0,7	2,8	7	24

4.3 Определение периода решётки по оценке разрешающей способности микроскопа

Проверим справедливость теории Аббе. Для этого построим график зависимости d = f(1/D), где значения d возьмём из пункта 4.1

4.3 Определение периода решётки по оценке разрешающей способности микроскопа

Исходя из формулы (2), угловой коэффициент прямой $k=2f\lambda$

$$2f\lambda$$
 = 90,4 нм

k = 109 нм, $\sigma_k = 11$ нм, поэтому можно считать, что теория сходится в пределах двух сигм.

4.4 Пространственная фильтрация

Наклоним щель под углом 45 градусов, когда пропускаются только максимумы $m_x = m_y$ и увидим наклонную решетку - периодическую структуру, которой нет в исходном объекте.

Рис. 6. Пространственная фильтрация

5. Заключение

Период каждой решётки набора из пяти штук был измерен 3 различными способами, также удостоверились в правильности теории Аббе.

номер решетки	1	2	3	4	5
d1, мкм	22,7±0,8	33,7±1,1	67,7±4,5	124±8	171 ±18
d2, мкм	20,3±0,7	31,4 <u>+</u> 1,1	63,1 <u>+</u> 4,2	122 <u>+</u> 8	170 ±17
d3, мкм	22,6 ±0,6	25,8±0,7	50,2 ±2,8	79±7	146 ±24

Использованная литература:

- 1. Д.В.Сивухин, Оптика, Том 4
- 2. А.В.Максимычев, лабораторный практикум по общей физике, Оптика, Том 2