数学分析习题课6

2017.10.30

1 函数的连续与间断

定义 1 (连续性)设函数 f(x) 在 $U(x, \delta_0)(\delta_0 > 0)$ 内有定义。若有 $\lim_{x\to x_0} f(x) = f(x_0)$,则称 f(x) 在 x_0 点连续,否则称在 x_0 处间断。

定义 2 (右连续性) 设函数 f(x) 在 $U^+(x,\delta_0)$ 内有定义。若有 $f(x_0+) = f(x_0)$,则称 f(x) 在 x_0 点右连续。

定义 3 (右连续性) 设函数 f(x) 在 $U^{-}(x,\delta_{0})$ 内有定义。若有 $f(x_{0}-)=f(x_{0})$,则称 f(x) 在 x_{0} 点左连续。

函数在 x_0 点处连续等价于在 x_0 点出左连续且右连续。注意函数极限在某点存在,是左右极限都存在且相等。

定义 4 (区间上的连续性) 设函数 f(x) 在 [a,b] 内有定义。若对任意的 $x \in (a,b)$, f(x) 在点 x 处连续,则称 f(x) 在 (a,b) 上连续,记为 $f(x) \in C(a,b)$; 进一步,若 f(x) 在 a 处右连续,在 b 处左连续,则称 f(x) 在 [a,b] 上连续,记为 $f(x) \in C[a,b]$.

函数的连续延拓;

可去间断点 (左右极限存在且相等,但不等于函数在那一点的值);跳跃间 断点 (左右极限存在,但不相等);第二类间断点 (左右极限至少有一个不存 在).

1.0.1 连续函数的性质

1. 连续函数是局部有界的;

- 2. 局部保号性;
- 3. 连续函数经过四则运算后仍然是连续的。
- 4. 复合函数的连续性;
- 5. 反函数的连续性;
- 6. 初等函数的连续性。

2 闭区间上连续函数的基本性质

定理 1 (有界性) 设函数 $f(x) \in C[a,b]$, 则 f(x) 在区间 [a,b] 上有界.

定理 2 (最值定理) 设 $f(x) \in C[a,b]$, 则 f(x) 在 [a,b] 上必有最大值和最小值。

定理 3 (介值定理) 设 $f(x) \in C[a,b]$, 记 $m = min_{x \in [a,b]} \{ f(x) \}, M = max_{x \in [a,b]} \{ f(x) \}$, 则 f([a,b]) = [m,M], 即对 $\forall \eta \in (m,M), \exists \xi \in [a,b],$ 使得 $f(\xi) = \eta$.

定义 5 (一致连续) 设函数 f(x) 在区间 I 上有定义。若 $\forall \epsilon > 0, \exists \delta > 0$,当 $x_1, x_2 \in I$ 且 $|x_1 - x_2| < \epsilon$ 时,有 $|f(x_1) - f(x_2)| < \epsilon$,则称 f(x) 在 I 上一致连续。

定理 4 (康托尔定理) 闭区间上的连续函数一定是绝对连续的。

3 无穷小量与无穷大量的阶

定义 6 设函数 f(x) 在 $U_0(x_0, \delta_0)$ 上有定义. 若 $\lim_{x\to x_0} f(x) = 0$, 则称 f(x) 为 $x\to x_0$ 时的无穷小量;若 $\lim_{x\to x_0} f(x) = \infty$, 则称 f(x) 为 $x\to x_0$ 时的无穷大量。

高阶无穷小量 $f(x) = o(g(x))(x \to x_0)$; 同阶无穷小量; 等价无穷小量; $f(x) = O(g(x))(x \to x_0)$.