Spis treści

1.	Proj	ekt	2
2.	Labo	oratorium	3
	2.1.	Poprawność podanego punktu pracy	3
	2.2.	Eksperymentalne wyznaczenie odpowiedzi skokowych	4
		2.2.1. Odpowiedzi skokowe	4
		2.2.2. Charakterystyka statyczna	5
	2.3.	Testy klasycznych regulatorów PID i DMC	6
		2.3.1. Klasyczny algorytm PID	6
		2.3.2. Klasyczny algorytm DMC	7
	2.4.	Testy rozmytych regulatorów PID	8
		2.4.1. Funkcje przynależności	8
		2.4.2. Implementacja rozmytego algorytmu PID	9
		2.4.3. Dobór parametrów lokalnych regulatorów PID	10
	2.5.	Testy rozmytych regulatorów DMC	11
			11
		2.5.2. Implementacja rozmytego algorytmu DMC	12
		2.5.3. Wyniki eksperymentów	13
	2.6.	Dobór parametrów lambda lokalnych regulatorów DMC	14
		2.6.1. Wyniki eksperymentów	14

1. Projekt

2.1. Poprawność podanego punktu pracy

Sprawdzono możliwość sterowania i komunikacji ze stanowiskiem.

Rys. 2.1. Punkt pracy obiektu

Ustalona wartość wyjścia obiektu wynosi średnio T1 = 40,1°C.

2.2. Eksperymentalne wyznaczenie odpowiedzi skokowych

Przeprowadzono eksperyment mający na celu określenie wzmocnienia sterowania. Ustawiono kolejno wartości sterowania równe: $20, 30, 40, \ldots, 80, 90$, a następnie pozyskano wartości ustabilizowanego sygnału wyjściowego.

2.2.1. Odpowiedzi skokowe

Rys. 2.2. Przebieg serii skoków sterowania

2.2.2. Charakterystyka statyczna

Na podstawie przebiegów uzyskano charakterystykę statyczną oraz dokonano jej aproksymacji

Rys. 2.3. Charakterystyka statyczna obiektu

Charakterystyka statyczna pokazuje, że właściwości statyczne obiektu nie są liniowe, wartości sygnału wyjściowego w zależności od sygnały wejściowego nie zachowują się liniowo.

2.3. Testy klasycznych regulatorów PID i DMC

Regulatory PID oraz DMC opracowane na laboratorium 1 dla obiektu liniowego zostały przetestowane dla obiektu nieliniowego. Ustawiono trajektorię zmian sygnałów zadanych T=39.4,44.4,54.439.4

2.3.1. Klasyczny algorytm PID

Rys. 2.4. Test klasycznego regulatora PID

2.3.2. Klasyczny algorytm DMC

Rys. 2.5. Test klasycznego regulatora DMC

2.4. Testy rozmytych regulatorów PID

W tym samym programie zaimplementowac rozmyty algorytm PI lub PID. Dla tej samej trajektorii zmian sygnału wartosci zadanej spróbowac dobrac parametry lokalnych algorytmów PI (PID) w taki sposób, aby osiagnac lepsza jakosc regulacji w porównaniu z regulatorem klasycznym (pojedynczym). Wykonac eksperymenty dla 3 regulatorów lokalnych. Omówic proces doboru parametrów i zamiescic uzyskane przebiegi regulacji.

2.4.1. Funkcje przynależności

Rys. 2.6. Funkcje rozmycia

${\bf 2.4.2.}$ Implementacja rozmytego algorytmu PID

2.4.3. Dobór parametrów lokalnych regulatorów PID

Rys. 2.7. Testy rozmytych regulatorów PID

2.5. Testy rozmytych regulatorów DMC

W tym samym programie zaimplementowac rozmyty algorytm DMC w najprostszej wersji analitycznej, o parametrach Nu=N=D i lambda = 1. Dla powyzszej trajektorii zmian sygnału wartosci zadanej wykonac eksperymenty dla róznej 3 regulatorów lokalnych. Zamiescic wyniki eksperymentów.

2.5.1. Funkcje przynależności

Rys. 2.8. Funkcje rozmycia

${\bf 2.5.2.}$ Implementacja rozmytego algorytmu DMC

2.5.3. Wyniki eksperymentów

Rys. 2.9. Testy rozmytych regulatorów DMC

2.6. Dobór parametrów lambda lokalnych regulatorów DMC

Spróbowac dobrac parametry okreslajace kare za przyrosty sterowania lokalnych algorytmów DMC metoda eksperymentalna. Zamiescic wybrane wyniki eksperymentów.

2.6.1. Wyniki eksperymentów