Аннотация

Лекции по линейной алгебре и аналитической геометрии для 1 курса потока бакалавров ВМК МГУ. Лектор — Леонид Владимирович Крицков.

Составитель — Андрей Тихонов (tiacorpo@gmail.com).

Выражаю благодарность за полные и написанные разборчивым почерком конспекты Валентине Глаголевой и Никите Баруздину.

Оглавление

Ι	Матрицы и определители	9				
1	Понятие матрицы 1.1 Квадратные матрицы 1.2 Ступенчатые матрицы 1.3 Блочная (клеточная) структура	4 !				
2	Операции над матрицами 2.1 Равенство матриц 2.2 Сложение матриц 2.3 Умножение матрицы на число 2.4 Умножение матриц 2.5 Транспонирование матриц 2.5 Некоторые дополнительные особенности операции умножения матриц					
3	Элементарные преобразования матриц. Основной процесс	10				
4	Определители 4.1 Перестановки и их свойства 4.2 Понятие определителя n-го порядка 4.3 Свойства определителя 4.4 Метод Гаусса вычисления определителя 4.4 Метод Гаусса вычисления определителя 4.5 Миноры и алгебраические дополнения 4.6 Определитель квазитреугольной матрицы 4.7 Определитель произведения матриц	12 13 13 13 15 16 17				
5	б Обратная матрица					
Η	Геометрические векторы. Вещественное линейное пространство	21				
6	Направленный отрезок и свободный вектор	22				
7	Линейные операции над векторами 7.1 Сложение	23 23 23 24				
8	Линейная зависимость 8.1 Теоремы о линейной зависимости 8.2 Геометрический смысл динейной зависимости	20 20 27				

9	нг матрицы	28
	Арифметическое линейное пространство	. 28
	Понятие ранга	. 28
	Теорема о базисном миноре	
	Следствия из теоремы о базисном миноре	
	Метод Гаусса вычисления ранга	
III	Системы линейных алгебраических уравнений	31
10	становка задачи	32
11	стемы с квадратной матрицей	34
12	стемы общего вида	35
	Системы с верхней трапецевидной матрицей	. 35
	Системы с верхней ступенчатой матрицей	
	Случай общей матрицы	
	Критерий совместности и определённости СЛАУ	
13	метрические свойства решений систем	37
	Однородные системы	. 37
	Неоднородные системы	
IV	Остальные части выложены в группе в виде сканов Валиных лекций	40

Часть I Матрицы и определители

Понятие матрицы

Определение. *Матрицей размера* $m \times n$ называют набор из mn чисел, упорядоченых в прямоугольную таблицу, состоящую из m строк и n столбцов. Эти числа - **элементы** этой матрицы.

Записывается это так: $A^{m \times n} = (a_{ij}) \in \mathbb{R}^{m \times n}$

Eсли m=n, то матрица — κ вадратная.

Для матрицы A:

 a_i' — i-я $cmpo\kappa a$

 a_i — i-й столбец

 $A_{m imes 1} -$ вектор-столбец

 $A_{1 \times n}$ — вектор-строка

Определение. Главная диагональ — совокупность элементов, расположенных в строках и столбцах с одинаковыми номерами.

Эти элементы — **диагональные**.

Определение. Матрица, в которой все элементы равны нулю, называется **нулевой** и обозначается $\Theta_{m \times n}$

1.1 Квадратные матрицы

Квадратные матрицы делят на:

- Верхние треугольные
- Нижние треугольные
- Диагональные
- Скалярные
- Единичные

Определение. Верхними треугольными называются квадратные матрицы, в которых для $\forall i > j \ a_{ij} = 0$, то есть матрицы, в которых все элементы ниже главной диагонали — нулевые:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

Определение. Нижними треугольными называются квадратные матрицы, в которых для $\forall i < j \ a_{ij} = 0$, то есть матрицы, в которых все элементы выше главной диагонали — нулевые:

$$\begin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Определение. Диагональными называются квадратные матрицы, в которых для $\forall i \neq j \ a_{ij} = 0$, то есть матрицы, в которых все элементы, не лежащие на главной диагонали, нулевые:

$$\begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

Диагональные матрицы обозначаются символом Λ , или $diag(a_{11},\ldots,a_{nn})$.

Определение. *Скалярными* называются диагональные матрицы, в которых все диагональные элементы равны:

$$\begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda \end{pmatrix}$$

Определение. Единичными называются скалярные матрицы, в которых диагональные элементы равны 1:

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

$$E$$
диничные матрицы обозначаются символом $I=(e_1,\ldots,e_n)=egin{pmatrix} e'_1 \ dots \ e'_n \end{pmatrix}.$

1.2 Ступенчатые матрицы

Матрицы любого размера принято делить на верхние и нижние ступенчатые.

Определение. Признак верхней ступенчатой матрицы:

В каждой строке отметим позицию, в которой находится первый ненулевой элемент.

- 1) Если какая-либо строка нулевая, то все последующие строки тоже нулевые
- 2) Местоположение первых ненулевых элементов каждой строки таково, что номера столбцов, в которых они располагаются, образуют возрастающую последовательность.

Если в этом определении поменять ролями строки и столбцы, то получится определение **нижней ступен**чатой матрицы. Eсли в верхней ступенчатой матрице a_{kj_k} (первые ненулевые элементы) таковы, что $j_k = k$, то это верхняя трапецевидная матрица.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

1.3 Блочная (клеточная) структура

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{21} & A_{22} & A_{23} \end{pmatrix}$$

Определение. Если при некотором делении матрицы на клетки получилось так, что клетки, стоящие на главной диагонали, являются квадратными матрицами, а клетки, стоящие под главной диагональю - нулевые, то говорят, что эта матрица является **(верхней) квазитреугольной**.

Аналогично определяются нижсняя квазитреугольная и квазидиагональная матрицы.

Операции над матрицами

2.1 Равенство матриц

$$A = (a_{ij}) \in \mathbb{R}^{m \times n}$$
$$B = (b_{ij}) \in \mathbb{R}^{m \times n}$$

Определение. $A \ u \ B$ называюся **равными**, если $\forall i, j \ a_{ij} = b_{ij}$.

2.2 Сложение матриц

Определение. Матрица $C=(a_{ij}+b_{ij})\in\mathbb{R}^{m\times n}$ называется **суммой** матриц $A\ u\ B.$

Теорема 1. Свойства операции сложения.

Для любых мартиц одинакового размера выполнено:

- 1) A + B = B + A (коммутативность сложения)
- (A+B)+C=A+(B+C) (ассоциативность сложения)
- $\beta)\; A+\Theta =A\; ($ нулевая матрица является нейтральным элементом относительно сложения)
- 4) $\forall A \ \exists (-A): \ A + (-A) = \Theta$ (существование противоположного элемента)

Определение. Матрица $C = (a_{ij} - b_{ij}) \in \mathbb{R}^{m \times n}$ называется **разностью** матриц $A \ u \ B$.

2.3 Умножение матрицы на число

Определение. $Mampuya\ (\alpha A) = (\alpha a_{ij}) \in \mathbb{R}^{m \times n}$ называется **произведением матрицы** A **на число** α . Операция умножения матрицы на число выполнима всегда.

Теорема 2. Свойства операции умножения матрицы на число

Для любых мартиц соответствующего размера выполнено:

- 1) 1A = A
- 2) $\alpha(\beta A) = (\alpha \beta) A$ (ассоциативность умножения на число)
- 3) $(\alpha + \beta)A = \alpha A + \beta A$ (дистрибутивность умножения относительно сложения)
- $4) \ \alpha(A+B) = \alpha A + \alpha B \ (дистрибутивность сложения относительно умножения)$

Доказательство. Справедливость всех этих свойств вытекает непосредственно из определения операции сложения и свойств рациональных чисел. □

Замечания

• -A = (-1)A

• Любая скалярная матрица
$$A=\begin{pmatrix} \alpha & 0 & \dots & 0 \\ 0 & \alpha & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \alpha \end{pmatrix}=\alpha I$$

Определение. Линейной комбинацией матриц A_1,\ldots,A_k с коэффициентами α_1,\ldots,α_k называется матрица $B = \sum_{i=1}^{\kappa} \alpha_i A_i$

Умножение матриц 2.4

Определение. *Произведением матриц* $A \in \mathbb{R}^{m \times n}$ u $B \in \mathbb{R}^{k \times l}$ называется матрица $C \in \mathbb{R}^{m \times l}$ такая, что $c_{ij} = \sum_{r=1}^{\kappa} a_{ip} b_{pj}$

3амечание. Операция умножения определена только в том случае, когда A и B согласованны, т.е. n=k. Пусть AB определена. Тогда:

- BA может быть неопределена $(m \neq l)$
- Даже если BA определена, то AB и BA могут быть разного размера.
- Даже если AB и BA одинакового размера (m=n=k=l), результаты умножения могут быть разными. Пример:

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}; \ B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \ \Rightarrow \ AB = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}; \ BA = \begin{pmatrix} 1 & 1 \\ 4 & 4 \end{pmatrix}$$

Определение. Перестановочными (коммутирующими) называются матрицы $A\ u\ B\ makue,\ что\ AB=$

Известно, что для $\forall i,j \in \mathbb{R}, ab=0 \Rightarrow \begin{vmatrix} a=0\\b=0 \end{vmatrix}$. В случае с матрицами это неверно. Пример: $A=\begin{pmatrix} 1&0\\0&0 \end{pmatrix}$; $B = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \Rightarrow AB = \Theta, \text{ Ho } A, B \neq \Theta.$

Определение. Матрицы A и B такие, что $AB = \Theta$, называются **делителями нуля**.

Теорема 3. Свойства операции умножения

Для любых матриц A, B, C подходящего размера выполнено:

- 1) (AB)C = A(BC) (ассоциативность умножения матрии)
- 2) $\alpha(AB) = (\alpha A)B$
- $(A+B)C = AC + BC \ ($ Дистрибутивность умножения относительно сложения)

Доказательство. 1) Если операция в левой части этого равенства определена, то определена операция в правой части равенства и результирующие матрицы правой и левой частей совпадают.

Части равенства и результирующих магули пусть $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times k} \Rightarrow AB \in \mathbb{R}^{m \times k}; C \in \mathbb{R}^{k \times l}.$ Тогда: $(AB)C \in \mathbb{R}^{m \times l}, BC \in \mathbb{R}^{n \times l}, A(BC) \in \mathbb{R}^{m \times l},$ следовательно, размеры правой и левой части совпадают.

Дано:
$$\{(AB)C\}_{ij} = \sum_{p=1}^{k} (AB)_{cp}C_{pj} = \sum_{p=1}^{k} (\sum_{q=1}^{n} a_{iq}b_{qp})c_{pj} = \sum_{p=1}^{k} \sum_{q=1}^{n} a_{iq}b_{qp}c_{pj} = \sum_{q=1}^{n} \sum_{p=1}^{k} a_{iq}b_{qp}c_{pj} = \sum_{p=1}^{n} (AB)_{cp}C_{pj} = \sum_{p=1}^{k} (AB)_{cp}C_{p$$

$$=\sum_{q=1}^n a_{iq}(\sum_{p=1}^k b_{qp}c_{pj})=\sum_{q=1}^n a_{iq}\{BC\}_{qj}=\{A(BC)\}_{ij},\text{ т.о., для }\forall\ i,j\ \{(AB)C\}_{ij}=\{A(BC)\}_{ij},\text{ т.е. }$$

(AB)C = A(BC) по определению.

2 и 3 части - аналогично

Замечание. Большинство формул сокращенного умножения для матриц имеют другой, более сложный, вид. a) $(a-b)(a+b) = a^2 - b^2$, HO $(A-B)(A+B) = A^2 - BA + AB - B^2$.

б) $(a \pm b)^2 = a^2 \pm 2ab + b^2$, но $(A \pm B)^2 = A^2 \pm AB \pm BA + B^2$.

Однако, эти формулы верны и для матриц, если A и B — перестановочные.

2.5 Транспонирование матриц

Определение. Матрица B называется транспонированием κ матрице $A \in \mathbb{R}^{m \times n}$, если $B \in \mathbb{R}^{n \times m}$ и для $\forall i, j \ b_{ij} = a_{ji}$. Это обозначается $B = A^T$.

Замечание. Если $A^T = A$, то A — симметрическая.

Теорема 4. Для \forall A, B подходящих размеров выполнены следующие свойства:

1)
$$(A^T)^T = A$$

$$2) (A + B)^T = A^T + B^T$$

3)
$$(\alpha A)^T = \alpha A^T$$

3)
$$(\alpha A)^T = \alpha A^T$$

4) $(AB)^T = B^T A^T$

Доказательство. 1,2,3) - очевидно, доказательство по определению.

4) Пусть
$$A = (a_{ij}) \in \mathbb{R}^{m \times n}$$
, $B = (b_{ij}) \in \mathbb{R}^{n \times k}$. Тогда $(AB)^T \in \mathbb{R}^{k \times m}$, $B^T \in \mathbb{R}^{k \times n}$, $A^T \in \mathbb{R}^{n \times m}$, $B^T A^T \in \mathbb{R}^{k \times m}$.

$$\{(AB)^T\}_{ij} = \{(AB)\}_{ji} = \sum_{p=1}^n A_{jp}B_{pi} = \sum_{p=1}^n \{A^T\}_{pj}\{B^T\}_{ip} = \sum_{p=1}^n \{B^T\}_{ip}\{A^T\}_{pj} = \{B^TA^T\}_{ij}$$
 Т.о., для \forall i,j $\{(AB)^T\}_{ij} = \{B^TA^T\}_{ij}$, т.е. $(AB)^T = B^TA^T$ по определению.

Т.о., для
$$\forall i, j \{(AB)^T\}_{ij} = \{B^TA^T\}_{ij}$$
, т.е. $(AB)^T = B^TA^T$ по определению.

2.6 Некоторые дополнительные особенности операции умножения матриц

1) $Ae_i = a_i, e'_i A = a'_i$

2) Пусть
$$b = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$
, тогда $Ab = A(\beta_1 e_1 + \dots + \beta_n e_n) = \beta_1 A e_1 + \dots + \beta_n A e_n = \beta_1 a_1 + \dots + \beta_n a_n$

Произведение матрицы на столбец является линейной комбинацией столбцов этой матрицы.

Аналогично, произведение матрицы на строку является линейной комбинацией строк этой матрицы.

3)
$$AB = A b_1 | \cdots | b_k | = Ab_1 | \cdots | Ab_k |$$
; $BA = \begin{vmatrix} b'_1 \\ \vdots \\ b'_l \end{vmatrix} A = \begin{vmatrix} b'_1 A \\ \vdots \\ b'_l A \end{vmatrix}$

Столбцы произведения AB являются линейной комбинацией столбцов A.

Строки произведения BA являются линейной комбинацией строк A.

І является нейтральным элементом относительно операции умножения как справа, так и слева.

Элементарные преобразования матриц. Основной процесс

Элементарные преобразования (ЭП) матриц - преобразование строк или столбцов матрицы.

ЭП строк бывают:

I типа - перестановка 2-х строк матрицы местами

II типа - умножение какой-либо строки матрицы на число, отличное от нуля

III типа - прибавление к какой-либо строке матрицы другой строки этой матрицы, умноженной на любое число Аналогично для столбцов.

Определение. Основной процесс — приведение матрицы κ верхнему ступенчатому виду, используя только $Э \Pi$ строк I и III типа.

Теорема 5. (Об основном процессе).

Любая ненулевая матрица путем элементарных преобразований только строк может быть приведена к верхнему ступенчатому виду.

Доказательство. 1) Так как матрица ненулевая, то есть хотя бы один ненулевой столбец. Пусть k_1 - номер первого ненулевого столбца. Выполним, при необходимости, ЭП I рода так, чтобы элемент в позиции (1,k) был ненулевым. Этот элемент — «ведущий элемент первого шага».

2) Для $\forall i > 1$ из i-й строки вычтем первую, умноженную на a_{ik_1} и разделенную на a_{1k_1} . Получим матрицу такого вида:

Θ	a_{1k_1}	$a_{1k_1+1} \cdots a_{1n}$	
Θ	Θ	A'	

3) Перейдем к 1 пункту, но будем рассматривать не A, а A'. Так как размер рассматриваемой матрицы каждый раз уменьшается, то этот процесс конечен.

Теорема 6. Любое $\Im\Pi$ строк матрицы A может быть описано как умножение её слева на специальным образом подобранную матрицу.

$$A \xrightarrow{\mathcal{O}\Pi} A' = SA$$

Аналогично, для столбцов:

$$A \xrightarrow{\mathcal{D}\Pi} A' = AS$$

Доказательство. ЭП I типа:
$$A = \begin{bmatrix} a_1' \\ a_2' \\ a_3' \\ \vdots \end{bmatrix} \xrightarrow{\text{Строк}} A' = \begin{bmatrix} a_2' \\ a_1' \\ a_3' \\ \vdots \end{bmatrix} = \begin{bmatrix} s_1' \\ s_2' \\ s_3' \\ \vdots \end{bmatrix} A = \begin{bmatrix} s_1' A \\ s_2' A \\ s_3' A \\ \vdots \end{bmatrix} \Rightarrow s_1' = (0, 1, 0, \dots) \equiv e_2'$$

$$S = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

ЭП II типа:
$$A = \begin{bmatrix} a_1' \\ a_2' \\ a_3' \\ \vdots \end{bmatrix} \xrightarrow[\text{строк}]{2\Pi} A' = \begin{bmatrix} a_1' \\ \alpha a_2' \\ a_3' \\ \vdots \end{bmatrix} = \begin{bmatrix} s_1' \\ s_2' \\ s_3' \\ \vdots \end{bmatrix} A = \begin{bmatrix} s_1'A \\ s_2'A \\ s_3'A \\ \vdots \end{bmatrix} \Rightarrow s_1' = (1,0,0,\ldots) \equiv e_1'$$

$$\Rightarrow s_2' = (0,\alpha,0,\ldots) \equiv \alpha e_2'$$

$$\vdots \qquad s_3' = e_3', \ldots$$

$$S = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & \alpha & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

ЭП III типа:
$$A = \begin{bmatrix} a_1' \\ a_2' \\ a_3' \\ \vdots \end{bmatrix} \xrightarrow{\text{Строк}} A' = \begin{bmatrix} a_1' \\ \alpha a_1' + a_2' \\ a_3' \\ \vdots \end{bmatrix} = \begin{bmatrix} s_1' \\ s_2' \\ s_3' \\ \vdots \end{bmatrix} A = \begin{bmatrix} s_1'A \\ s_2'A \\ s_3'A \\ \vdots \end{bmatrix} \quad s_1' = (1,0,0,\ldots) \equiv e_1'$$

$$\Rightarrow s_2' = (\alpha,1,0,\ldots) \equiv \alpha e_1' + e_2'$$

$$\vdots \quad s_3' = e_3', \ldots$$

$$S = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ \alpha & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Т.о., для каждого типа преобразований мы сформировали специальную матрицу, умножение на которую эквивалентно применению этого $\Theta\Pi$; произведение таких матриц эквивалентно последовательному применению нескольких $\Theta\Pi$.

Для столбцов - аналогично.

Замечание. Применим теорему к единичной матрице $A=I:A\xrightarrow{\Im\Pi}A'=SA=SI=S,\ A\xrightarrow{\Im\Pi}C$ толбцов A'=SA=IS=S

Т.о., чтобы построить матрицу S, соответствующую $\Im\Pi$, необходимо это $\Im\Pi$ применить к единичной матрице. S — матрицы перехода.

Определители

4.1 Перестановки и их свойства

Определение. Перестановкой из множества M называется упорядоченная совокупность чисел из M $(\alpha_1,\alpha_2,\ldots,\alpha_n)$, в которой в разных позициях стоят разные числа $(\forall \ i\neq j \ \alpha_i\neq\alpha_j)$ $(1,2,\ldots,n)$ — натуральная перестановка

Теорема 7. Всего существует n! перестановок из n первых чисел.

Доказательство. На первое место можно поставить n чисел, на второе — n-1 остальных чисел, . . ., на последнее место можно поставить одно оставшееся число. Итого вариантов $n \cdot (n-1) \cdot \ldots \cdot 1 = n!$

Определение. Если α_i и α_j таковы, что $\alpha_i > \alpha_j$ при i < j, то говорят, что они образуют **инверсию**, иначе — **порядок**.

Количество инверсий в перестановке обзоначается так: $\sigma(\alpha_1,\cdots,\alpha_n)$

$$\sigma(1, 2, \cdots, n) = 0$$

$$\sigma(n, n - 1, \cdots, 1) = \frac{n(n-1)}{2}$$

Определение. Будем говорить, что перестановка **чётная**, если количество инверсий в ней чётное, и **нечётная** — в противном случае.

Определение. Преобразование, при котором два элемента перестановки меняются местами, называется **транспозицией**.

Теорема 8. Любая транспозиция в перестановке меняет ее чётность.

Доказательство. Рассмотрим два случая:

- 1) поменялись местами два соседних элемента очевидно, что количество инверсий изменилось на $1 \Rightarrow$ чётность изменилась.
- 2) поменялись местами два несоседних элемента. Тогда перегоним первый элемент ко второму, поменяем их местами и перегоним второй на место первого. Итого 2(j-i-1)+1 транспозиций соседних элементов \Rightarrow чётность менялась 2(j-i-1)+1 раз это нечётное число \Rightarrow чётность изменилась.

Лемма. Пусть $(\alpha_1, \dots, \alpha_n)$ - перестановка с S инверсиями. Запишем числа этой перестановки в порядке возрастания. Тогда их индексы в исходной последовательность будут образовывать новую перестановку с тем же количеством (S) инверсий.

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \\ 1 & 2 & \dots & n \end{bmatrix} \xrightarrow[\text{столбцов}]{\text{перестановка}} \begin{bmatrix} 1 & 2 & \dots & n \\ \beta_1 & \beta_2 & \dots & \beta_n \end{bmatrix}$$

Доказательство. Рассмотрим два элемента: α_i и α_j , i < j. Если в исходной перестановке они образовывали порядок, т. е. $\alpha_i < \alpha_j$, тогда их индексы в новой перестановке тоже будут образовывать порядок, т. к. их взаимное расположение не изменится. Если в исходной перестановке они образовывали инверсию, т. е. $\alpha_i > \alpha_j$, тогда их индексы в новой перестановке тоже будут образовывать инверсию, т. к. их взаимное расположение изменится. Итого для любых двух элементов отношение их индексов в новой перестановке такое же, как отношение самих элементов в исходной $\Rightarrow \sigma(\alpha_1, \alpha_2, \dots, \alpha_n) = \sigma(\beta_1, \beta_2, \dots, \beta_n)$

4.2 Понятие определителя *n*-го порядка

Пусть $A = (a_{ij}) \in \mathbb{R}^{n \times n}$. Определителем n-го порядка называется число, сопоставленное этой матрице по определенному правилу. Обозначение: |A|, det A.

Определение. Определителем называется алгебраическая сумма произведений элементов матрицы A, взятых по одному из каждой строки и каждого столбца матрицы A; знак произведения определяется по следующему правилу: если сомножители в нем упорядочить по возрастанию номеров строк, то знак ставится в зависимости от четности перестановки, образованной номерами столбцов. Если она чётная, то знак плюс, иначе — минус.

$$n=2:|A|=\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}=a_{11}a_{22}-a_{12}a_{21}\\(1,2)&(2,1)$$

$$n=3:|A|=\begin{vmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{vmatrix}=a_{11}a_{22}a_{33}-a_{12}a_{21}a_{33}-a_{11}a_{23}a_{32}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31}\\(1,2,3)&(2,1,3)&(1,3,2)&(2,3,1)&(3,1,2)\end{aligned}$$

$$\det A=\sum_{\alpha=(\alpha_1,\alpha_2,\ldots,\alpha_n)}(-1)^{\sigma(\alpha)}a_{1\alpha_1}a_{2\alpha_2}\cdots a_{n\alpha_n} \ (*)-n! \text{ слагаемыx}$$

4.3 Свойства определителя

1. Определитель треугольной матрицы равен произведению элементов главной диагонали.

Доказательство. Все остальные слагаемые обязательно содержат нулевые элементы.

2. Определитель квадратной матрицы не меняется при её транспонировании.

Доказательство.
$$\det A^T = \sum_{\beta=(\beta_1,\beta_2,...,\beta_n)} (-1)^{\sigma(\beta)} \{A^T\}_{1\beta_1} \{A^T\}_{2\beta_2} \cdots \{A^T\}_{n\beta_n} = \sum_{\beta(\beta_1,\beta_2,...,\beta_n)} (-1)^{\sigma(\beta)} \overbrace{a_{\beta_1 1} a_{\beta_2 2} \cdots a_{\beta_n n}}^{\text{переупорядочим сомножители}}$$

$$\begin{pmatrix} \beta_1 & \beta_2 & \dots & \beta_n \\ 1 & 2 & \dots & n \end{pmatrix} \xrightarrow{\text{перестановка}} \begin{pmatrix} 1 & 2 & \dots & n \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix}$$

По лемме, $\sigma(\beta) = \sigma(\alpha)$. Значит, у каждого слагаемого одинаковые знаки

Замечание. В силу того, что при транспонировании матрицы каждый столбец переводится в соответствующую строку, а строка — в столбец, то во всех свойствах определителя строки и столбцы равноправны, т. е. каждое свойство о строках определителя имеет аналог для столбцов.

3. Если в квадратной матрице есть нулевая строка, то ее определитель равен нулю.

Доказательство. В сумме (*) в каждое слагаемое обязательно входит элемент из той строки, которая нулевая \Rightarrow все слагаемые равны нулю. □

4. Если все элементы какой-либо строки квадратной матрицы умножить на число α , то определитель также умножится на α .

Доказательство. Пусть на α умножится i-я строка. В сумме (*) в каждом слагаемом есть элемент из i-й строки ⇒ вместо него стоит $\alpha a_{i\alpha_i}$. Из каждого слагаемого можно вынести α ⇒ весь определитель умножится на α .

Замечание. $|\alpha A| = \alpha^n |A|$, где n — размер матрицы.

5. Если какая-либо строка квадратной матрицы является суммой двух строк, то определитель этой матрицы равен сумме двух определителей, в которых вместо рассматриваемой сроки стоит соответственно 1-я и 2-я слагаемая строка.

Доказательство. В сумме (*) вместо элемента, соответсвующего выбранной строке, каждый раз стоит сумма двух чисел, поэтому каждое слагаемое в сумме представимо в виде суммв двух произведений. С учетом определения определителя, каждая из двух сумм является определителем соответствующей матрицы. □

6. При перестановке двух строк квадратной матрицы её определитель меняет знак.

Доказательство. В произведениях четность перестановок номеров столбцов элементов новой матрицы относительно исходной матрицы изменится на противоположную ⇒ знак каждого слагаемого в сумме изменится ⇒ знак суммы изменится. □

7. Если в квадратной матрице есть две одинаковые строки, то ее определитель равен нулю.

Доказательство. Переставим эти две местами, при этом матрица не изменится. По свойству имеем:

$$|A| = -|A| \Rightarrow |A| = 0.$$

8. Если какая-либо строка квадратной матрицы является линейной комбинацией других строк этой матрицы, то определитель матрицы равен нулю.

Доказательство. Не ограничивая общности, будем считать, что таковой является первая строка.

$$\begin{vmatrix} a_1' \\ a_2' \\ \vdots \\ a_n' \end{vmatrix} = \begin{vmatrix} \alpha_2 a_2' + \dots + \alpha_n a_n' \\ a_2' \\ \vdots \\ a_n' \end{vmatrix} = \begin{vmatrix} \alpha_2 a_2' \\ a_2' \\ \vdots \\ a_n' \end{vmatrix} + \dots + \begin{vmatrix} \alpha_n a_n' \\ a_2' \\ \vdots \\ a_n' \end{vmatrix} = \alpha_2 \begin{vmatrix} a_2' \\ a_2' \\ \vdots \\ a_n' \end{vmatrix} + \dots + \alpha_n \begin{vmatrix} a_n' \\ a_2' \\ \vdots \\ a_n' \end{vmatrix}$$

В каждом определителе есть одинаковые строки, следовательно, |A| = 0.

9. Если к какой-либо строке квадратной матрицы прибавить линейную комбинацию других строк этой матрицы, то её определитель не изменится.

Доказательство.
$$\begin{vmatrix} a_1' + \alpha_2 a_2' + \dots + \alpha_n a_n' \\ a_2' \\ \vdots \\ a_n' \end{vmatrix} = \begin{vmatrix} a_1' \\ a_2' \\ \vdots \\ a_n' \end{vmatrix} + \begin{vmatrix} \alpha_2 a_2' + \dots + \alpha_n a_n' \\ a_2' \\ \vdots \\ a_n' \end{vmatrix} = \begin{vmatrix} a_1' \\ a_2' \\ \vdots \\ a_n' \end{vmatrix}$$

Замечание. Свойства 4 и 5 принято называть свойством линейности определителя относительно выбранной строки.

Свойства 4,6 и 9 показывают, как меняется определитель при элементарных преобразованиях матрицы:

• І типа: определитель меняет знак.

• II типа: определитель умножается на коэффициент.

• III типа: определитель не меняется.

Так как коэффициент α в ЭП II типа отличен от нуля, то изменение определителя при ЭП контролируемо.

$$|A| \xrightarrow{\Im\Pi} \begin{cases} \text{I tun:} & \alpha|A| \ (\alpha \neq 0) \\ \text{II tun:} & -|A| \\ \text{III tun:} & |A| \end{cases}$$

4.4 Метод Гаусса вычисления определителя

$$A \xrightarrow[\text{строк}]{\Theta\Pi}$$
 верхняя треугольная матрица

При всех преобразованиях в этом процессе det меняется контролируемым образом. При этом при вычислении определителя по определению приходится выполнять порядка n! умножений, а методом Гаусса — порядка $\frac{1}{2}n^3$.

4.5 Миноры и алгебраические дополнения

Определение. $A=(a_{ij})\in\mathbb{R}^{m\times n};\,k\in\mathbb{N}:1\leq k\leq min(m,n)$

Выберем в A произвольные k строк и k столбцов.

Строки $i_1 < i_2 < \ldots < i_k$, столбцы $j_1 < j_2 < \ldots < j_k$.

На пересечении выбранных строк и столбцов расположены k^2 элементов. Упорядочим их в матрицу. Определитель этой матрицы называется (основным) минором k-го порядка, расположенным в выбранных строках и столбцах.

Обозначается так: $M_{j_1\cdots j_k}^{i_1\cdots i_k}$

Определение. Пусть теперь $A-\kappa$ вадратная. Из нее можно исключить выбранные строки и столбцы целиком. Определитель оставшейся матрицы называется **дополнительным минором** κ минору, построенному на предыдущем этапе.

Обозначается так: $\tilde{M}^{i_1...i_k}_{j_1...j_k}$

Определение. $A^{i_1\cdots i_k}_{j_1\cdots j_k}=(-1)^{i_1+\cdots+i_k+j_1+\cdots+j_k}\tilde{M}^{i_1\cdots i_k}_{j_1\cdots j_k}$ называется алгебраическим дополнением κ основному минору.

Теорема 9. Теорема Лапласа(строчный вариант)

Пусть $A = (a_{ij}) \in \mathbb{R}^{n \times n}$, $k \in \mathbb{N} : 1 \le k \le n-1$ и в A выбраны какие-либо k строк $i_1 < i_2 < \ldots < i_k$. Тогда $\det A$ равен сумме всевозможных произведений миноров k-го порядка, расположенных в выбранных строках, на их алгебраические дополнения.

$$|A| = \sum_{1 \le j_1 < \dots < j_k \le n} M_{j_1 \dots j_k}^{i_1 \dots i_k} A_{j_1 \dots j_k}^{i_1 \dots i_k}$$

Доказательство. На потоке бакалавров теорема идет без доказательства.

Теорема 10. Следствие из теоремы Лапласа (разложение определителя по строке/столбцу) Строчный вариант:

Пусть в $A \in \mathbb{R}^{n \times n}$ выбрана какая-либо (i-я) строка. Тогда $\det A = \sum\limits_{j=1}^n a_{ij}A^i_j$

Столбцовый вариант:

Пусть в $A \in \mathbb{R}^{n \times n}$ выбрана какой-либо (j-й) столбец. Тогда $\det A = \sum\limits_{i=1}^n a_{ij} A^i_j$

Доказательство. Докажем строчный вариант.

$$\det A = \sum_{i=1}^{n} a_{ij} A_j^i \tag{1}$$

1. Пусть
$$i=1$$
. det $A=\sum_{j=1}^n a_{1j}(-1)^{1+j}\tilde{M}_j^1$ (2)

Каждая часть (2) является алгебраической суммой. Левая часть — в силу определения \det , а правая — так как является линейной комбинацией $\det n - 1$ —го порядка.

Для обоснования (2):

- Одинаковое количество слагаемых в обоих частях
- Любое произведение из левой части есть в правой части и наоборот
- Любое произведение из левой части имеет такой же знак в правой

Обоснование:

- Слева n! слагаемых, справа n(n-1)! = n! слагаемых
- Слагаемое из левой части:

$$\underbrace{a_{1\alpha_1}}_{j=\alpha_1}\underbrace{a_{2\alpha_2}\dots a_{n\alpha_n}}_{\operatorname{B} M_i^1}$$

Слагаемое из правой части:

$$a_{1j}a_{2\beta_2}\dots a_{n\beta_n}$$

$$(j, \beta_2, \dots, \beta_n)$$
 — перестановка

• Рассмотрим слагаемое из правой части при j=1:

Рассмотрим слагаемое из правой части с $\forall j > 1$:

$$(-1)^{1+j+\sigma(\alpha_2,\ldots,\alpha_n)}$$

В левой части:

$$(-1)^{\sigma(j,\alpha_2,\ldots,\alpha_n)}$$

В
$$(\alpha_2,\ldots,\alpha_n)$$
 есть все числа от 1 до $j-1\Rightarrow\sigma(j,\alpha_2,\ldots,\alpha_n)=(j-1)+\sigma(\alpha_2,\ldots,\alpha_n)$

2. Пусть $i \geq 2$. Введем дополнительную матрицу \tilde{A} , которая является матрицей A, в которой поменяли местами 1 и i строки. Выведем разложение (1) с помощью (2):

$$\det A = (-1)^{i-1} \det \tilde{A} = (-1)^{i-1} \sum_{j=1}^{n} a_{ij} (-1)^{1+j} \tilde{M}_{j}^{i}$$

4.6 Определитель квазитреугольной матрицы

Теорема 11. Определитель квазитреугольной матрицы равен произведению определителей диагональных клеток.

Доказательство. Выделим столбцы, которые попадают в первую диагональную клетку. В этих столбцах имеется только один минор, который может быть ненулевым - угловой.

$$|A| = |A_1|(-1)^{2(1+\dots+k)}|A_2| = |A_1||A_2|$$

4.7 Определитель произведения матриц

Теорема 12. Определитель произведения матриц равен произведению определителей сомножителей.

Доказательство. Воспользуемся вспомогательной матрицей:

Обратная матрица

Определение. Матрица B называется **обратной** κ A, если AB = BA = I. Обозначение: $B = A^{-1}$

 ${\it Замечаниe}.$ Известно, что если A,B - перестановочны, то обе матрицы A и B — квадратные одного размера. Понятие корректности:

- 1. Существование объекта
- 2. Однозначная определенность (единственность)

Теорема 13. Критерий обратимости.

Kвадратная матрица A имеет обратную тогда и только тогда, когда $\det A \neq 0$

 \mathcal{A} оказательство. \Rightarrow . $AA^{-1}=I\Rightarrow |AA^{-1}|=1\Rightarrow |A||A^{-1}|=1\Rightarrow \begin{cases} \det A\neq 0 \ (\text{и}\ \det A^{-1}\neq 0) \\ \det A^{-1}=\frac{1}{\det A} \end{cases}$ \Leftarrow . Алгоритм построения обратной матрицы.

- 1. Заменим каждый элемент матрицы A на его алгебраическое дополнение: $a_{ij} \to A_{ij}$
- 2. Транспонируем полученную матрицу
- 3. Получится матрица $\hat{A}: \hat{A}_{ij} = A_i^i$

$$A\hat{A}_{kk} = \sum_{j=1}^{n} a_{kj} A_j^k = |A|I$$

$$A\hat{A}_{ij} = \sum_{k=1}^{n} a_{ik} A_j^k$$

Лемма. О фальшивом разложении определителя.

В любой квадратной матрице сумма произведений элементов какой-либо строки на соответствующие алгебраические дополнения другой строки равно нулю.

$$\forall i \neq j \sum_{k=1}^{n} a_{ik} A_{jk} = 0 \ (*)$$

Доказательство. Построим дополнительную матрицу, в которой заменим j—ю строку на i—ю. Заметим, что разложение её определителя по j-й строке равно (*). В этой матрице две одинаковых строки \Rightarrow ее определитель равен нулю \Rightarrow (*) = 0

По лемме, все элементы, не лежащие на главной диагонали, равны нулю.

$$A\hat{A} = \begin{pmatrix} |A| & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & |A| \end{pmatrix} = |A|I \Rightarrow \frac{1}{|A|}A\hat{A} = I \Rightarrow \begin{cases} A(\frac{1}{|A|}\hat{A}) = I \\ (\frac{1}{|A|}\hat{A})A = I \end{cases}$$
$$A^{-1} = \frac{1}{|A|}\hat{A}$$

Теорема 14. Если обратная матрица существует, то она определена единственным образом.

Доказательство. Предположим противное: $\exists \ B_1, B_2, \ B_1 \neq B_2 : \begin{cases} AB_1 = B_1A = I \\ AB_2 = B_2A = I \end{cases}$ $AB_1 = I = AB_2 \Rightarrow B_1(AB_1) = B_1(AB_2) \Rightarrow (B_1A)B_1 = (B_1A)B_2 \Rightarrow IB_1 = IB_2 \Rightarrow B_1 = B_2$, что противоречит предположению.

Теорема 15. Свойства обратной матрицы:

1.
$$\det A^{-1} = \frac{1}{\det A}$$

2.
$$(A^T)^{-1} = (A^{-1})^T$$

3.
$$(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}, \forall \ \alpha \neq 0$$

4.
$$(A^{-1})^{-1} = A$$

5.
$$I^{-1} = I$$

6.
$$(AB)^{-1} = B^{-1}A^{-1}$$

Замечание. Перечисленные свойства понимаются следующим образом: если левая часть определена, то имеет смысл и правая часть и обе части совпадают.

Доказательство. 1. По теореме о критерии обратимости

- 2. Очевидно, выводится по определениям
- 3. Очевидно, выводится по определениям
- 4. Очевидно, выводится по определениям
- 5. Очевидно, выводится по определениям
- 6. Пусть AB обратима $\Rightarrow |AB| \neq 0 \Rightarrow |A||B| \neq 0 \Rightarrow A, B$ обратимы правая часть определена. Докажем, что матрица $B^{-1}A^{-1}$ является обратной к (AB) $(AB)(B^{-1}A^{-1}) = ABB^{-1}A^{-1} = AA^{-1} = I$ $(B^{-1}A^{-1})(AB) = B^{-1}A^{-1}AB = B^{-1}B = I$

Метод Гаусса-Жорданна вычисления обратной матрицы

1. Пусть $A \in \mathbb{R}^{n \times n}$, $|A| \neq 0$. Покажем:

$$A \xrightarrow[\text{строк}]{\Theta\Pi} I$$

$$A \xrightarrow[\text{строк}]{\Theta\Pi}$$
 верхний ступенчатый вид

Если A — квадратная, то верхняя ступенчатая матрица — квадратная \Rightarrow она является треугольной матрицей

Квадратная $A \xrightarrow[\text{строк}]{\Theta\Pi}$ верхняя треугольная матрица

- (а) Смена знака
- (b) Умножение на $\alpha \neq 0$
- (с) Неизменность

Если $|A| \neq 0$, то и у получившейся верхней треугольной матрицы $\det \neq 0$.

$$\begin{pmatrix} a_{11} & * & \cdots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix} \xrightarrow[\text{CTpok}]{\exists \Pi} \begin{pmatrix} 1 & * & \cdots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & 1 \end{pmatrix} \xrightarrow[\text{CTpok}]{\exists \Pi \text{CTpok}} \begin{pmatrix} 1 & * & \cdots & * & 0 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & * & \vdots \\ \vdots & \ddots & \ddots & * & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix} \xrightarrow[\text{CTpok}]{\exists \Pi \text{CTpok}} I$$

$$A \xrightarrow{\Theta\Pi} A' \iff A' = SA$$

Таким образом,
$$A \xrightarrow{\mathfrak{I}\Pi} I \Longleftrightarrow I = S_k \cdots S_1 A; I = SA \Rightarrow IA^{-1} = SAA^{-1} \Rightarrow S = A^{-1}$$

Проведем те же ЭП строк и в том же порядке с I: получим матрицу $B = S_k \cdots S_1 I = S = A^{-1}$

$$(A|I) \xrightarrow{\Theta\Pi} (I|A^{-1})$$

Часть II

Геометрические векторы. Вещественное линейное пространство

Направленный отрезок и свободный вектор

Определение. Направленный отрезок — упорядоченная пара точек на плоскости.

Определение. Длина \vec{AB} - длина отрезка AB, если A и B различны, и число θ в противном случае.

Определение.
$$\vec{AB}$$
 параллелен прямой (плоскости), если $\begin{bmatrix} A=B\\ A \neq B,\ (AB) \ ||\ прямой (плоскости) \end{bmatrix}$

Определение. Направленные отрезки $\vec{A_1B_1}, \vec{A_2B_2}, \vec{A_3B_3}$ называются коллинеарными (компланарными), если существует прямая (плоскость), которой они параллельны.

Замечание. Нулевой направленный отрезок коллинеарен и компланарен любому направленному отрезку.

Определение. Два ненулевых направленных отрезка $\vec{A_1B_1}$ и $\vec{A_2B_2}$ называются сонаправленными (противоположно направленными), если они коллинеарны и лучи $[A_1; B_1)$ и $[A_2, B_2)$ сонаправлены (противоположно направлены).

Определение. 2 направленных отрезка
$$\vec{AB}$$
 и \vec{CD} называются **равными**, если $\vec{AB} = \vec{0}, \ \vec{CD} = \vec{0}$ $\vec{AB} \neq \vec{0}, \ \vec{CD} \neq \vec{0}, \ |\vec{AB}| = |\vec{CD}|, \ \vec{AB} \uparrow \uparrow \vec{CD}$

 $\it 3амечание.$ Можно дать компактное эквивалентное определение: 2 направленных отрезка называются равными, если середины обычных отрезков $\it AD$ и $\it BC$ совпадают.

Определение. Свободный вектор (просто вектор) — множество всех равных между собой направленных отрезков. Если говорят, что вектор порождается направленным отрезком \vec{AB} , то пишут $\bar{a} = \vec{AB}$ и $\bar{a} = \{$ все направленнык отрезки $\vec{CD} = \vec{AB} \}$. Все нулевые направленные отрезки называются нулевым вектором и обозначаются $\bar{0}$.

Для свободных векторов вводятся все термины, связанные с направленными отрезками: длина, параллельность прямой и плоскости, коллинеарность и компланарность, сонаправленность и противоположнонаправленность.

Линейные операции над векторами

7.1 Сложение

Определение. Суммой \bar{a} и \bar{b} называется \bar{c} , определяемый по следующим правилам: (тут рисунок с правилом треугольника)

Теорема 16. Операция сложения векторов обладает следующими свойствами:

1. $\bar{a} + \bar{b} = \bar{b} + \bar{a}, \ \forall \ \bar{a}, \bar{b}$

2. $(\bar{a} + \bar{b}) + \bar{c} = \bar{a} + (\bar{b} + \bar{c})$

3. $\forall \ \bar{a} : \bar{a} + \bar{0} = \bar{a}$

4. $\forall \ \bar{a} \ \exists \ (-\bar{a}) : \bar{a} + (-\bar{a}) = \bar{0}$

Доказательство. Доказывается построением.

Определение. $extbf{\it Pashocmbo}$ $ar{b}$ u $ar{a}$ называется $ar{x}$: $ar{a}+ar{x}=ar{b}$

 ${\it 3ame \, uanue}$. Для любых ${ar a}, {ar b}$ разность всегда существует и определена единственным образом.

Доказательство. 1. $\bar{x} = \bar{b} + (-\bar{a})$: $\bar{a} + (\bar{b} + (-\bar{a})) = \bar{b}$

2. Пусть \bar{c} — тоже разность \bar{b} и \bar{a} $\bar{c} = \bar{c} + \bar{0} = \bar{c} + (\bar{a} + (-\bar{a})) = (\bar{c} + \bar{a}) + (-\bar{a}) = \bar{b} + (-\bar{a})$

7.2 Умножение на число

Определение. Вектор $\bar{b} = \alpha \bar{a}$:

1. $|\bar{b}| = |\alpha||\bar{a}|$

2. Если $\bar{b}\neq \bar{0}$, то если $\alpha>0$: $\bar{a}\uparrow\uparrow \bar{b}$, иначе $\bar{a}\uparrow\downarrow \bar{b}$

Теорема 17. Операция умножения вектора на число обладает следующими свойствами:

1. $\forall \ \bar{a} : 1\bar{a} = \bar{a}$

2. $\alpha(\beta \bar{a}) = (\alpha \beta) \bar{a}$

3. $(\alpha + \beta)\bar{a} = \alpha\bar{a} + \beta\bar{a}$

4. $\alpha(\bar{a} + \bar{b}) + \alpha\bar{a} + \alpha\bar{b}$

- 2. По определению
- 3. По геометрическим соображениям
- 4. По геометрическим соображениям

7.3 Векторы как элементы вещественного линейного пространства

Пусть $\mathbb{V} \neq \emptyset$, и на \mathbb{V} задано соответствие:

 $\forall \ (a,b) \in \underbrace{\mathbb{V} \times \mathbb{V}}_{\text{Декартово произведение}} \longmapsto c \in \mathbb{V}$ называется алгебраической операцией или внутренним законом компо-

зиции.

c = a * b

 $c = a \cdot b$

c = a + b — абстрактное сложение.

 $\forall \ \alpha \in \mathbb{R}, \ a \in \mathbb{V} \longmapsto b \in \mathbb{V}$ — внешний закон композиции

 $b = \alpha a$ — абстрактное умножение.

Определение. Множество с введенными на нём внутренним и внешним законом композиции называется вещественным линейным пространством \mathbb{V} , если эти операции обладают следующими свойствами: $\forall \ a,b,c\in\mathbb{V},\alpha,\beta\in\mathbb{R}$

1. a + b = b + a

2. (a+b) + c = a + (b+c)

3. $\exists \Theta \in \mathbb{V}: a + \Theta = a$

4. $\exists (-a) \in \mathbb{V} : a + (-a) = \Theta$

5. 1a = a

6. $\alpha(\beta a) = (\alpha \beta)a$

7. $(\alpha + \beta)a = \alpha a + \beta a$

8. $\alpha(a+b) = \alpha a + \alpha b$

Определение. V — векторное пространство, если

ullet элементы \mathbb{V} — векторы

ullet \mathbb{V} — вещественное линейное пространство

 \bullet Θ — нулевой вектор

 \bullet (-a) — противоположный вектор

Теорема 18. Простейшие свойства:

1. Θ определен однозначно, $\forall \ a \in \mathbb{V} \ (-a)$ определен однозначно

2. $\forall a \in \mathbb{V} : 0a = \Theta, \forall \alpha \in \mathbb{R} : \alpha\Theta = \Theta$

3. из равенства $\alpha a = \Theta$ следует : $\begin{bmatrix} \alpha = 0 \\ a = \Theta \end{bmatrix}$

4. $\forall a \in \mathbb{V}: -a = (-1)a$

Доказательство. 1. Пусть $\exists \Theta_1, \Theta_2 \in \mathbb{V}$

$$\forall a \in \mathbb{V}: a + \Theta_1 = a, a + \Theta_2 = a$$

$$\Theta_1 = \Theta_1 + \Theta_2 = \Theta_2 + \Theta_1 = \Theta_2$$

Пусть
$$\exists a \in \mathbb{V} : \exists (-a)_1, (-a)_2 \in \mathbb{V}$$

$$\Theta = a + (-a)_1 = a + (-a)_2$$

$$(-a)_1 + (a + (-a)_1) = (-a)_1 + (a + (-a)_2)$$

$$\underbrace{((-a)_1 + a)}_{\Theta} + (-a)_1 = \underbrace{((-a)_1 + a)}_{\Theta} + (-a)_2$$

2.
$$a + 0a = 1a + 0a = (1+0)a = 1a = a$$
, t. o., $a + \underbrace{0a}_{\Theta} = a$

$$\alpha\Theta = \alpha(0a) = (\alpha 0)a = 0a = \Theta$$

3.
$$\alpha a = \Theta \Rightarrow \begin{bmatrix} \alpha = 0 \\ \alpha \neq 0 \Rightarrow \frac{1}{\alpha} (\alpha a) = \frac{1}{\alpha} \Theta \Rightarrow a = \Theta \end{bmatrix}$$

4.
$$(-1)a + a = (-1)a + 1a = (-1+1)a = 0a = \Theta$$
; по единственности $(-a)$ $(-1)a = -a$

Линейная зависимость

Определение. Рассмотрим линейную комбинацию элементов:

$$\alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_k a_k$$

Eсли $\alpha_1 = \alpha_2 = \ldots = \alpha_k = 0$, то эта линейная комбинация называется **тривиальной**. Eсли $\exists \ a_j \neq 0$, то эта линейная комбинация — **нетривиальная**.

Определение. Система векторов $a_1, a_2, \ldots, a_k \in \mathbb{V}$ называется **линейно зависимой**, если существует нетривиальная линейная комбинация этих векторов, равная Θ .

Определение. Система векторов $a_1, a_2, \ldots, a_k \in \mathbb{V}$ называется **линейно независимой**, если только тривиальная линейная комбинация этих векторов равна Θ .

Замечание. 1. k = 1

Система $\pi/3 \Leftrightarrow a_1 = \Theta$

2. Если в системе векторов есть Θ , то эта система л/з.

8.1 Теоремы о линейной зависимости

Теорема 19. Система из более, чем одного вектора линейно зависима тогда и только тогда, когда хотя бы один вектор линейно выражается через остальные (является их линейной комбинацией).

Доказательство.
$$\iff a_k = \beta_1 a_1 + \dots + \beta_{k-1} a_{k-1}$$

 $\beta_1 a_1 + \dots + \beta_{k-1} a_{k-1} + (-1) a_k = \Theta$
нетривиальная ЛК

$$\Rightarrow \exists \alpha_1, \dots, \alpha_k \in \mathbb{R}, \ a_j \neq 0$$

$$\alpha_1 a_1 + \dots + \alpha_j a_j + \dots + \alpha_k a_k = \Theta$$

$$a_j = \sum_{i \neq j} (-\frac{\alpha_i}{\alpha_j}) a_i$$

Теорема 20. Если в системе a_1, \ldots, a_k есть n/3 подсистема, то и вся система n/3.

Доказательство. Пусть a_1, \ldots, a_s $(s < k) - \pi/3 \Rightarrow \exists$ нетривиальная π/κ $\alpha_1 a_1 + \cdots + \alpha_s a_s + 0 a_{s+1} + \cdots + 0 a_k = \Theta$ Следствие: если система a_1, \ldots, a_k $\pi/\text{нез}$, то любая её подсистема $\pi/\text{нез}$.

Теорема 21. Система a_1, \ldots, a_k л/нез тогда и только тогда, когда любой вектор, являющийся их линейной комбинацией, выражается через них единственным образом.

Доказательство. \Longrightarrow Предположим противное: $\exists \ b \in \mathbb{V}$: $b = \alpha_1 a_1 + \dots + \alpha_k a_k$; $b = \beta_1 a_1 + \dots + \beta_k a_k$ ($\exists \ \alpha_j \neq \beta_j$) $\Rightarrow \Theta = (\alpha_1 - \beta_1)a_1 + \dots + (\alpha_k - \beta_k)a_k$, $\alpha_j - \beta_j \neq 0 \Rightarrow$ система $\pi/3 \Rightarrow$ противоречие \Leftarrow Нулевой вектор заведомо является линейной комбинацией этих векторов: $\Theta = 0\alpha_1 + \dots + 0\alpha_k$; это тривиальная комбинация \Rightarrow система $\pi/4$ нез

8.2 Геометрический смысл линейной зависимости

Теорема 22. 2 геометрических вектора л/з тогда и только тогда, когда они коллинеарны

Доказательство.
$$\Longrightarrow \bar{a}_2=\beta \bar{a}_1 \Rightarrow \bar{a}_1, \bar{a}_2$$
 — коллинеарны \Longleftrightarrow а)
$$\begin{bmatrix} \bar{a}_1=\bar{0}\Rightarrow \bar{a}_1=0\bar{a}_2\\ \bar{a}_2=\bar{0}\Rightarrow \bar{a}_2=0\bar{a}_1 \end{bmatrix}$$

б) $\bar{a}_1, \bar{a}_2 \neq \bar{0}$

$$\bar{a}_{1} \uparrow \uparrow \bar{a}_{2} \Rightarrow \frac{\bar{a}_{1}}{|\bar{a}_{1}|} = \frac{\bar{a}_{2}}{|\bar{a}_{2}|} \Rightarrow \bar{a}_{1} = \frac{|\bar{a}_{1}|}{|\bar{a}_{2}|} \bar{a}_{2}$$

$$\bar{a}_{1} \uparrow \downarrow \bar{a}_{2} \Rightarrow \frac{\bar{a}_{1}}{|\bar{a}_{1}|} = -\frac{\bar{a}_{2}}{|\bar{a}_{2}|} \Rightarrow \bar{a}_{1} = -\frac{|\bar{a}_{1}|}{|\bar{a}_{2}|} \bar{a}_{2}$$

Теорема 23. 3 геометрических вектора л/з тогда и только тогда, когда они компланарны

Доказательство.
$$\Longrightarrow \bar{a}_1 = \beta_2 \bar{a}_2 + \beta_3 \bar{a}_3$$

параллелен плоскости, определяемой \bar{a}_2 и \bar{a}_3

 \longleftarrow а) один вектор $\bar{0}=\bar{a}_1\Rightarrow \bar{a}_1=0\bar{a}_2+0\bar{a}_3$

б) все вектора $\neq \bar{0}$

$$ar{a}_3=ec{AD}+ec{AB}=lpha_1ar{a}_1+lpha_2ar{a}_2\Rightarrowar{a}_1,ar{a}_2,ar{a}_3-$$
л/з

Теорема 24. 4 геометрических вектора всегда n/3

 $\ \ \, \mathcal{A}$ оказательство. a) $a_1, \bar{a}_2, \bar{a}_3$ — компланарны \Rightarrow они л/з \Rightarrow вся система л/з

б) $a_1, \bar{a}_2, \bar{a}_3$ — некомпланарны.

$$\bar{a}_4 = \vec{AB} + \vec{AC} + \vec{AD} = \alpha_1 \bar{a}_1 + \alpha_2 \bar{a}_2 + \alpha_3 \bar{a}_3 \Rightarrow a_1, \bar{a}_2, \bar{a}_3, \bar{a}_4 - \pi/3$$

Ранг матрицы

9.1 Арифметическое линейное пространство

Определение. Элементами **арифметического линейного пространства** являются упорядоченные совокупности из n вещественных чисел. Обозначается это так: \mathbb{R}^n Нетрудно убедиться, что арифметические линейные пространства — вещественные линейные пространства ($\mathbb{R}^{1 \times n}, \mathbb{R}^{n \times 1}$)

9.2 Понятие ранга

Определение. Рангом ненулевой матрицы A называется максимальный размер $e\ddot{e}$ ненулевых миноров. Нулевая матрица считается матрицей ранга 0. Обозначается так: $rang\ A = rk\ A = rg\ A$

Определение. B любой ненулевой матрице ранга r **базисный минор** — любой ненулевой минор порядка r.

Определение. *Базисные строки(столбцы)* — *строки(столбцы)* матрицы, в которых расположен базисный минор.

9.3 Теорема о базисном миноре

Теорема 25. (строчный вариант) В ненулевой матрице $A \in \mathbb{R}^{m \times n}$:

- 1. базисные строки л/нез
- 2. любая строка матрицы А линейно выражается через базисные строки

Замечание. Любая строка матрицы A $(a_{i1}, a_{i2}, \dots, a_{in})$ — элемент арифметического линейного пространства \mathbb{R}^n

 \mathcal{A} оказательство. $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ Пусть базисный минор — M_r .

- 1. Предположим противное, т.е. $a_1', a_2', \dots, a_k' \pi/3 \Rightarrow \exists \ a_k' = \sum_{i \neq k} \alpha_i a_i' \Rightarrow k$ -я строка минора линейно выражается через другие строки базового минора $\Rightarrow M_r = 0$
- 2. Нужно показать: $a_k' = \sum_{i=1}^n \beta_i a_i'$

(a)
$$1 \le k \le r$$
 $a'_k = \underbrace{\cdots}_{\text{коэф}=0} + 1a'_k + \underbrace{\cdots}_{\text{коэф}=0}$

(b) k > r

Окаймим минор:

$$\detegin{bmatrix} a_{11} & \cdots & a_{1r} & a_{1j} \ dots & \ddots & dots & dots \ a_{r1} & \cdots & a_{rr} & a_{rj} \ a_{k1} & \cdots & a_{kr} & a_{kj} \end{bmatrix} = 0$$
 для $orall j$

Почему: если $1 \le j \le r$, то в матрице 2 одинаковых столбца; если j > r и детерминант не равен нулю, то ранг равен r+1, что противоречит условию.

$$0 = a_{1j}A_1 + a_{2j}A_2 + \dots + a_{rj}A_r + a_{kj}M_r$$

определяется только первыми г

столбцами вспомогательной матрицы,

а потому не зависит от \mathbf{j}

$$a_{kj} = -\frac{A_1}{M_r} a_{1j} - \frac{A_2}{M_r} a_{2j} - \dots - \frac{A_r}{M_r} a_{rj} \ \forall \ j : 1 \le j \le n \Rightarrow a_k' = -\frac{A_1}{M_r} a_1' - \frac{A_2}{M_r} a_2' - \dots - \frac{A_r}{M_r} a_r' - \frac{A_2}{M_r} a_2' - \dots - \frac{A_r}{M_r} a_r' - \frac{A_2}{M_r} a_2' - \dots - \frac{A_r}{M_r} a_1' - \frac{A_2}{M_r} a_2' - \dots - \frac{A_r}{M_r} a_1' - \frac{A_2}{M_r} a_2' - \dots - \frac{A_r}{M_r} a_2' - \dots - \frac{A_r}{M_r} a_1' - \frac{A_2}{M_r} a_2' - \dots - \frac{A_r}{M_r} a_1' - \frac{A_2}{M_r} a_2' - \dots - \frac{A_r}{M_r} a_2' - \dots - \frac{A_r}{M_r} a_1' - \frac{A_2}{M_r} a_2' - \dots - \frac{A_r}{M_r} a_1' - \frac{A_2}{M_r} a_2' - \dots - \frac{A_r}{M_r} a_2' - \dots - \frac{A_r}{M_r} a_1' - \frac{A_2}{M_r} a_1' - \frac{A_2}{M_r} a_1' - \frac{A_2}{M_r} a_2' - \dots - \frac{A_r}{M_r} a_1' - \frac{A_2}{M_r} a_1'$$

9.4 Следствия из теоремы о базисном миноре

Определение. *Матрица называется* **вырожденной**, если $e\ddot{e}$ det pasen θ , u **невырожденной** — в npomushoм cлучаe.

Теорема 26. Критерий невырожденности.

Определитель матрицы равен нулю тогда и только тогда, когда её строки (столбцы) л/нез.

Доказательство. \Longrightarrow Пусть $|A| \neq 0$ и её строки л/з \Rightarrow существует строка, линейно выражающаяся через другие $\Rightarrow |A| = 0$

 \Leftarrow Пусть $|A|=0 \Rightarrow rgA \leq n-1 \Rightarrow$ базисными строками будут не все строки $A\Rightarrow$ существует строка, являющаяся линейной комбинацией остальных \Rightarrow строки A л/з.

Теорема 27. Основная теорема о линейной зависимости.

Пусть $\mathbb{V}-B\Pi\Pi$; рассмотрим 2 системы векторов: $\{a_1,\ldots,a_k\},\{b_1,\ldots,b_m\},\ m>k$. Тогда если любой b_j линейно выражается через векторы первой системы, то вторая система $-\pi/3$.

Другая формулировка: Если большая система линейно выражается через меньшую, то большая - n/3.

Доказательство. Пусть

$$b_{1} = \alpha_{1}a_{1} + \cdots + \alpha_{k}a_{k}$$

$$b_{2} = \beta_{1}a_{1} + \cdots + \beta_{k}a_{k}$$

$$\vdots$$

$$b_{m-1} = \gamma_{1}a_{1} + \cdots + \gamma_{k}a_{k}$$

$$b_{m} = \delta_{1}a_{1} + \cdots + \delta_{k}a_{k}$$

$$\left\{\begin{array}{ccc} \alpha_{1} & \dots & \alpha_{k} \\ \beta_{1} & \dots & \beta_{k} \end{array}\right.$$

$$m \left\{\begin{array}{ccc} \alpha_{1} & \dots & \gamma_{k} \\ \vdots & \vdots & \vdots \\ \gamma_{1} & \dots & \gamma_{k} \\ \delta_{1} & \dots & \delta_{k} \end{array}\right.$$

 $m>k\Rightarrow$ базисных строк не больше $k\Rightarrow$ существует строка (пускай последняя), которая линейно выражается через остальные.

$$(\delta_1, \dots, \delta_k) = \lambda_1(\alpha_1, \dots, \alpha_k) + \lambda_2(\beta_1, \dots, \beta_k) + \dots + \lambda_{m-1}(\gamma_1, \dots, \gamma_k)$$

$$\lambda_1 b_1 + \lambda_2 b_2 + \dots + \lambda_{m-1} b_{m-1} = \delta_1 a_1 + \delta_2 a_2 + \dots + \delta_k a_k = b_m \Rightarrow \pi/3.$$

Теорема 28. Другое определение ранга

Ранг ненулевой матрицы равен максимальному числу её л/нез строк и/или столбцов.

Доказательство. Пусть $rgA = r \ge 1$. Докажем, что r равно максимальному количеству л/нез строк, т.е.:

- 1. $\exists r$ л/нез строк
- 2. Любой набор из большего количества строк $\pi/3$.
- 1. r базисных строк $\pi/$ нез по теореме о базисном миноре
- 2. Возьмём k > r строк. Все они линейно выражаются через r базисных \Rightarrow в силу основной теоремы о линейной зависимости выбранные k строк л/з.

Следствие. $rg A^T = rg A$

Теорема 29. Пусть $A, B - \partial$ ве матрицы с одинаковым количеством столбцов (строк). Пусть любая строка B линейно выражается через строки A. Тогда rg $B \le rg$ A

Доказательство. Пусть rg A = r и rg B > r.

Рассмотрим в B базисные строки (их больше r). Они все линейно выражаются через строки A, а строки A линейно выражаются через r базисных строк $A \Rightarrow$ базисные строки B линейно выражаются через r базисных строк $A \Rightarrow$ базисные строки B л/з, что противоречит теореме о базисном миноре.

Теорема 30. $rg\ AB \leq min(rg\ A, rg\ B)$

Доказательство.
$$\begin{cases} \text{Столбцы } AB \text{ являются } \pi/\kappa \text{ столбцов } A \\ \text{Строки } AB \text{ являются } \pi/\kappa \text{ строк } B \end{cases} \Rightarrow \begin{cases} rg \ AB \leq rg \ A \\ rg \ AB \leq rg \ B \end{cases} \Rightarrow rg \ AB \leq min(rg \ A, rg \ B) \quad \Box$$

Теорема 31. Если $B-\kappa$ вадратная невырожденная матрица, то $\begin{cases} rg\ AB=rg\ A\\ rg\ BA=rg\ A \end{cases}\ \forall\ A$

Доказательство. $rg\ AB \le rg\ A$ $A = (AB)B^{-1}$ $rg\ [(AB)B^{-1}] \le rg\ AB$

 $egin{array}{ll} rg \; [(AB)B^{-\epsilon}] \leq rg \; AB \ rg \; AB = rg \; A \end{array}$

9.5 Метод Гаусса вычисления ранга

Теорема 32. Элементарные преобразования не меняют ранг матрицы.

Доказательство. А $\xrightarrow{\mbox{\em 9\Pi}\mbox{\em Tpok}}$ $\tilde{A}=SA$

$$A \xrightarrow[\text{столбцов}]{\widetilde{A}} \tilde{\tilde{A}} = AS$$

Заметим, что S — невырожденная.

I тип: |S| = -1II тип: $|S| = \lambda$ III тип: |S| = 1

S — невырожденная, квадратная $\Rightarrow \Im\Pi$ не меняют ранг.

Метод Гаусса вычисления ранга.

 $A \xrightarrow[\text{строк}]{\Theta\Pi} B$ — верхняя ступенчатая матрица, $rg \ A = rg \ B$

Ранг верхней ступенчатой матрицы равен числу её ненулевых строк.

Часть III

Системы линейных алгебраических уравнений

Постановка задачи

Определение. Системой линейных алгебраических уравнений (СЛАУ) с n неизвестными x_1, \ldots, x_n будем называть систему:

$$\begin{cases}
a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\
\dots \\
a_{m1}x_1 + \dots + a_{mn}x_n = b_m
\end{cases}$$
(1)

Определение. *Решение* (1) - это упорядоченная совокупность чисел (c_1, \ldots, c_n) , которые после подстановки $x_1 = c_1; \ldots; x_n = c_n$ обращают каждое уравнение в тождество.

Определение. Говорят, что система (1) **совместна**, если у не \ddot{e} есть хотя бы одно решение, и **несовместна** — в противном случае.

Определение. Говорят, что система (1) **определена**, если у неё ровно одно решение, и **неопределена**, если у неё несколько решений.

Определение. Исследовать и решить систему (1) значит

- 1. Выяснить, совместна ли она
- 2. В случае совместности описать множество всех решений

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} = A - \text{матрица коэффициентов}$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x - \text{столбец неизвестных}$$

$$\begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} = b - \text{столбец ответов}$$

$$Ax = b - \text{матричная форма записи}$$

$$a_1x_1 + \cdots + a_mx_m = b - \text{векторная форма записи}$$

Теорема 33. (О структуре множества решений СЛАУ)

СЛАУ либо не имеет решений, либо имеет единственное решение, либо имеет бесконечное количество решений.

Доказательство. Пусть СЛАУ имеет более 1 решения. Значит, существуют как минимум 2 различных столбца $x^{(1)},\ x^{(2)},\$ что $Ax^{(1)}=b,\ Ax^{(2)}=b$ $x=\alpha x^{(1)}+(1-\alpha)x^{(2)},\ \forall\ \alpha\in\mathbb{R}$

Покажем:

- 1. Этот вектор-столбец всегда является решением
- 2. При различных α его значения разные

1.
$$Ax = A(\alpha x^{(1)} + (1 - \alpha)x^{(2)}) = \alpha Ax^{(1)} + (1 - \alpha)x^{(2)} = \alpha b + (1 - \alpha)b = b$$

2.
$$x' = \alpha' x^{(1)} + (1 - \alpha') x^{(2)}$$

 $x'' = \alpha'' x^{(1)} + (1 - \alpha'') x^{(2)}$
 $x'' - x' = (\alpha'' - \alpha') x^{(1)} + (\alpha' - \alpha'') x^{(2)} = \underbrace{(\alpha' - \alpha'')}_{\neq 0} \underbrace{(x^{(2)} - x^{(1)})}_{\neq 0} \neq 0 \Rightarrow x'' \neq x'$

Системы с квадратной матрицей

 $Ax = b, A \in \mathbb{R}^{n \times n}$. (1) Пусть $|A| \neq 0$. Тогда существует A^{-1} .

- 1. Если x решение (1), то $A^{-1}Ax = A^{-1}b \Rightarrow x = A^{-1}b$
- 2. Рассмотрим $x = A^{-1}b$: $A(A^{-1}b) \equiv b$

Теорема 34. Если $|A| \neq 0$, то система (1) совместна и имеет ровно 1 решение: $x = A^{-1}b$.

Доказательство. От противного. (Очевидно, на лекциях его не было)

Теорема 35. Если $|A| \neq 0$, то единственное решение (1) может быть найдено по следующим формулам (формулам **Крамера**): $x = (x_1, \dots, x_n)^T$, еде $x_i = \frac{|A_i|}{|A|}$, A_i получается из A заменой i-го столбца на столбец ответов.

Доказательство.
$$x_i = \{A^{-1}b\}_i = \sum_{j=1}^n \{A^{-1}\}_{ij}b_j = \frac{1}{|A|}\sum_{j=1}^n \{\hat{A}\}_{ij}b_j = \frac{1}{|A|}\sum_{j=1}^n A_{ji}b_j = \frac{|A_i|}{|A|}$$

 $|A|=0\,\vee\,A\in\mathbb{R}^{m\times n},\,m\neq n$

Определение. Ax = 0 - однородная СЛАУ.

Однородные СЛАУ всегда совместны.

Определение. $x = (0, ..., 0)^T$ — тривиальное решение однородной СЛАУ; $x = (x_1, ..., x_n)^T$, $\exists x_i \neq 0$ — нетривиальное решение однородной СЛАУ.

Теорема 36. Однородная СЛАУ с квадратной матрицей имеет нетривиальное решение тогда и только тогда, когда |A|=0

Доказательство.
$$|A|=0 \Leftrightarrow$$
 столбцы A л/з $\Leftrightarrow \exists c_1,\ldots,c_n \in \mathbb{R}, \ \exists c_j \neq 0: \ c_1a_1+\cdots+c_na_n=0,$ $x=(c_1,\ldots,c_n)^T$ — решение системы.

Замечание. $Ax = \Theta$, $|A| = 0 \Rightarrow$ существует бесконечное количество решений.

Системы общего вида

 $Ax = b, A \in \mathbb{R}^{m \times n}$

12.1 Системы с верхней трапецевидной матрицей

- а) Если среди b_{r+1}, \ldots, b_m есть ненулевые, то эта СЛАУ несовместна.
- б) Пусть $b_{r+1} = \ldots = b_m = \Theta$, тогда эта СЛАУ равносильна СЛАУ из первых r уравнений; более того, она имеет решение.

Если r=n, то

$$\begin{aligned} a_{rr}x_r &= b_r \Rightarrow x_r = \frac{b_r}{a_{rr}} \\ a_{r-1,r-1}x_{r-1} + a_{r-1,r}x_r &= b_{r-1} \\ x_{r-1} &= \frac{1}{a_{r-1,r-1}} \left(b_{r-1} - \frac{a_{r-1,r}}{a_{rr}} b_r \right) \end{aligned}$$

и т. д. Таким образом, построено решение. Если r < n, то перенесём во всех уравнениях слагаемые с x_{r+1}, \ldots, x_n в правую часть. Тогда для \forall наперёд заданных значений x_{r+1}, \ldots, x_n остальные неизвестные определяются однозначно:

$$x_1 = f_1(x_{r+1}, \dots, x_n)$$

$$\vdots$$

$$x_r = f_r(x_{r+1}, \dots, x_n)$$

Определение. x_{r+1},\ldots,x_n — свободные неизвестные

Определение. $x_1, ..., x_r$ — главные неизвестные

12.2 Системы с верхней ступенчатой матрицей

 x_{k_1} - номер первого ненулевого элемента в первой строчке;

... x_{k_r} - номер первого ненулевого элемента в r-той строчке; далее действуем аналогично прошлому пункту, только роль x_1,\ldots,x_r играют x_{k_1},\ldots,x_{k_r} .

12.3 Случай общей матрицы

$$Ax = b \xrightarrow[\text{строк}]{\Theta \Pi} (B C \text{туп} \Phi) \tilde{A}x = \tilde{b}$$

Ax=b и $\tilde{A}x=\tilde{b}$ — эквивалентны, если они совместны. Множество их решений совпадает.

 $\Theta\Pi$ строк приводит к эквивалентной системе уравнений.

Метод Гаусса исследования и решения СЛАУ — очевидно.

12.4 Критерий совместности и определённости СЛАУ

$$(A|b) \xrightarrow[\text{строк}]{\Theta\Pi} \left(\tilde{A} | \tilde{b} \right) \ (*)$$

1. ЭП строк расширенной матрицы приводят к эквивалентной системе.

Совместна $Ax = b \iff$ совместна (*).

2. ЭП строк не меняют ранги основной и расширенной матриц.

Таким образом, совместность системы может быть выражена следующим образом.

Совместность (*) означает, что rg основной матрицы равен количеству ненулевых строк \tilde{A} и равен rg расширенной матрицы \to нет ненулевых элементов среди b_{r+1}, \ldots, b_n .

Теорема 37. Кронекера-Капелли (критерий совместности)

$$Ax = b$$
 совместна \iff $rg(A|b) = rgA$

Доказательство. См. выше

Теорема 38. Критерий определённости

Совместная система Ax = b имеет единственное решение \iff $rg\ A = n$ - количество неизвестных

Следствие: система Ax=b имеет единственное решение $\iff rg\ (A|b)=rg\ A=n$ Рассмотрим $Ax=\Theta,\ A\in\mathbb{R}^{m\times n}$

- а) Всегда совместна
- б) Определена $\iff rg \ A = n$

Информации о n и m недостаточно для того, чтобы сделать вывод о количестве решений системы.

Геометрические свойства решений систем

13.1 Однородные системы

$$Ax = \Theta, A \in \mathbb{R}^{m \times n}$$

Теорема 39. Множество решений однородной системы $Ax = \Theta$ образует линейное пространство арифметических векторов из $\mathbb{R}^n \colon \mathbb{N} = \{x \in \mathbb{R}^n | Ax = \Theta\}$

Доказательство. \mathbb{N} - вещественное линейной пространство. Сложение, умножение на число не выводят из \mathbb{N} . Аксиомы:

- 1. *
- 2. *
- 3. $\Theta \in \mathbb{N}$, так как $Ax = \Theta$ всегда имеет тривиальное решение.
- 4. если $x \in \mathbb{N}$ $Ax = \Theta \Rightarrow A(-x) = \Theta \Rightarrow A(-x) \in \mathbb{N}$
- 5. *
- 6. 1*x=x
- 7. *
- 8. *

* - аксиома не проверяется, так как множество всех векторов из
$$\mathbb{R}^n$$
 этим аксиомам удовлетворяет. $x^{(1)}, x^{(2)} \in \mathbb{N} \Longrightarrow Ax^{(1)} = \Theta, \ Ax^{(2)} = \Theta \Longrightarrow A(x^{(1)} + x^{(2)}) = Ax^{(1)} + Ax^{(2)} = \Theta + \Theta = \Theta \Longrightarrow (x^{(1)} + x^{(2)}) \in \mathbb{N}$ $A(\alpha x) = \alpha (Ax) = \alpha \Theta = \Theta \Longrightarrow (\alpha x) \in \mathbb{N} \ \forall \ \alpha \in \mathbb{R}$

 ${\it 3ame \, uahue}$. Другими словами, в теореме показано, что множество $\mathbb N$ является линейным подпространством в $\mathbb R^n$

Пусть $Ax = \Theta$ имеет не только тривиальное решение. $(rg \ A \equiv r < n)$

Определение. Упорядляенная совокупность $e_1, \dots, e_k \in \mathbb{R}^n$ называется фундаментальной системой решений (ΦCP), если:

- 1. $\forall j \in [1, k] Ae_j = \Theta$
- $2. e_1, \ldots, e_k$ линейно независимы
- 3. \forall решение $x: Ax = \Theta$ линейно выражается через $e_1, \ldots, e_k: x = \alpha_1 e_1 + \ldots + \alpha_k e_k$

Теорема 40. Если в $Ax = \Theta$ $r \equiv rg$ A < n, то для этой системы \exists ΦCP , причём она состоит из (n-r) векторов.

Доказательство. Не ограничивая общности будем считать, что x_1, \ldots, x_r – главные неизвестные, а x_{r+1}, \ldots, x_n – свободные неизвестные. (n-r>0)

$x_1 \dots x_r$	x_{r+1}	x_{r+2}	• • •	x_n	
$c_{11}\ldots c_{1r}$	1	0		0	e_1
$c_{21} \dots c_{2r}$	0	1		0	e_2
				0	
$c_{k1} \dots c_{kr}$	0	0		1	e_k

 $k \equiv n - r$

$$\alpha_1 \dots \alpha_r, \alpha_{r+1} \dots \alpha_n$$

- $1. \ e_1, \ldots, e_k$ линейно независимы, так как матрица в постоенной таблице имеет ранг, равный k.
- 2. рассмотрим \forall решение $Ax = \Theta$

По последним неизвестным $x = (\alpha_1, \dots, \alpha_r, \alpha_{r+1}, \dots, \alpha_n) x_{r+1}, \dots, x_n$ выполнено "равенство".

$$\alpha_{r+1}e_1 + \ldots + \alpha_n e_k = (\alpha_1, \ldots, \alpha_n) \equiv x$$

Покажем, что это равенство верно и по неизвестным x_1, \ldots, x_r

$$y = x - (\alpha_{r+1}e_1 + \dots + \alpha_n e_k) = (\dots, \underbrace{0, \dots, 0}_{n-r})$$

Множество решений - линейное пространство $\Rightarrow y$ – решение Ax=0, в котором все свободные неизвестные равны нулю. Так как главные элементы определяются по свободным однозначно и Θ – решение, то y – тривиальное решение, а $x=\alpha_{r+1}e_1+\ldots+\alpha_ne_k$

Замечание. Конец предыдущего доказательства я не вкурил, поэтому оно может быть неправильным. Уточню на консультации.

Геометрический смысл понятия ФСР

 \dots становится ясен, если рассмотреть однородное решение $Ax=\Theta,\ n=3.$ $rg\ A=0,1,2,3$

- 1. $rg\ A = 3 \Rightarrow$ есть только тривиальное решение
- 2. $rg\ A=2\Rightarrow \exists\ \Phi \text{CP}$ из n-r=1 вектора $e_1\colon e_1\neq \Theta,\ e_1=(\alpha_1,\alpha_2,\alpha_3);$ общее решение имеет вид $x=\alpha_1e_1,\ \forall\ \alpha_1\in\mathbb{R}$ это уравнение прямой, проходящей через начало координат.
- 3. $rg\ A=1\Rightarrow \exists\ \Phi \text{CP}$ из n-r=2 векторов e_1,e_2 линейно независимы, т.е. компланарны; общее решение $x=\alpha_1e_1+\alpha_2e_2$, это уравнение плоскости, проходящей через начало координат.
- 4. $rg\ A=0\Rightarrow\Theta x=\Theta\iff$ множество решений \mathbb{R}^3 , т. е. все пространство.

13.2 Неоднородные системы

 $Ax=b,\ A\in\mathbb{R}^{m\times n},\ b\neq\Theta$, система совместна. Множество решений $\mathbb{M}=\{x\in\mathbb{R}^m|Ax=b\}$ не образует линейное пространство:

$$x^{(1)}, x^{(2)}: Ax^{(1)} = b, \ Ax^{(2)} = b \Longrightarrow A(x^{(1)} + x^{(2)}) = Ax^{(1)} + Ax^{(2)} = b + b = 2b \neq b$$

Теорема 41. $\mathbb{M} = \mathbb{N} + x_{\star}$ — множество решений неоднородной СЛАУ; $\mathbb{N} = \{x \in \mathbb{R}^n | Ax = \Theta\}$; $Ax_{\star} = b$

Доказательство.
$$x_{\star} + \mathbb{N} \subset \mathbb{M} \colon \forall \ x \in \ x_{\star} + \mathbb{N} \colon x_{\star} + \dot{x}, \ A\dot{x} = \Theta, \ Ax = A(x_{\star} + \dot{x}) = Ax_{\star} + A\dot{x} = b + \Theta = b \implies x \in \mathbb{N}$$
 $M \subset x_{\star} + \mathbb{N} \colon \forall \ x \in \mathbb{M} \colon Ax = b \colon x = x_{\star} + (x - x_{\star}), \ A(x - x_{\star}) = Ax - Ax_{\star} = b - b = \Theta \implies x - x_{\star} \in \mathbb{N}$

ФСР для неоднородной системы $Ax = b, \ b \neq \Theta$ вводить не имеет смысла. Однако для описания множества $\{x|Ax = b\}$ можно использовать ФСР однородной системы $\{x|Ax = \Theta\}$ $\mathbb{M} = \mathbb{N} + x_\star \implies x = x_\star + \alpha_1 e_1 + \ldots + \alpha_k e_k; \ x$ – частное решение $Ax = b; \ \alpha_1 e_1 + \ldots + \alpha_k e_k$ – линейная комбинация ФСР $Ax = \Theta$.

Часть IV

Остальные части выложены в группе в виде сканов Валиных лекций