Number Theory Homework.

- 1. The Theorems of Fermat, Euler, and Wilson.
- 1.1. **Fermat's Theorem.** The following is a special case of a result we have seen earlier, but as it will come up several times in this section, we repeat it here.

Proposition 1. Let p be a prime and let a be an integer such that $p \nmid a$. Then

$$ax \equiv ay \mod p \qquad \Longrightarrow \qquad x \equiv y.$$

Proof. If $ax \equiv ay \mod p$, then $p \mid a(y-x)$. As p is prime this implies $p \mid a$ or $p \mid (y-x)$. But $\nmid a$ and therefore $p \mid (y-x)$ which implies $x \equiv y \mod p$.

Proposition 2. If p is prime, then $p \nmid (p-1)!$.

Problem 2. It is important that p is prime in the last result. Give an example where n is positive and composite and $n \mid (n-1)!$. More generally Show that if $n \geq 6$ and n is composite, then $n \mid (n-1)!$.

The following is anther result we have seen before.

Proposition 3. If p is prime and $p \nmid a$, then after maybe reordering, the list of residue classes of

$$a, 2a, 3a, \ldots, (p-1)a$$

is the same as the list of residue classes of

$$1, 2, 3, \ldots, (p-1).$$

More explicitly we can reorder the set $\{1, 2, 3, \dots, (p-1)\}$ as $r_1, r_2, r_3, \dots, r_{p-1}$ in such a way that

$$a \equiv r_1 \mod p$$
, $2a \equiv r_2 \mod p$, ... $(p-1)a \equiv r_{p-1} \mod p$.

Proof. Let $1 \leq j \leq (p-1)$. Then $p \nmid j$ and by assumption $p \nmid a$. Therefore $p \nmid ja$. Using the division to divide p into ja we get

$$ja = q_j p + r_j$$
 where $1 \le r_j \le (p-1)$.

(The reason that $r_j \neq 0$ is that p does not divide ja and therefore the remainder is not 0.) Then

$$ja \equiv r_j \mod p$$

If $r_i = r_j$, then $ia \equiv r_i = r_j \equiv ja \mod p$. That is $aj \equiv ai \mod p$. By Proposition 1 this implies $i \equiv j \mod p$. But $1 \le i, j \le (p-1)$ and therefore $i \equiv j \mod p$ implies i = j. Thus $r_i = r_j$ implies i = j. This implies that $r_1, r_2, \ldots, r_{p-1}$ is a list of the (p-1) distinct elements of $\{1, 2, \ldots, (p-1)\}$ a set of size (p-1). Therefore the set $r_1, r_2, \ldots, r_{p-1}$ is a list of the elements

of the set $\{1,2,\ldots,(p-1)\}$ where each element appears exactly once in the list.

Let us look at an example related to these ideas. Let p=11 and a=4. Then Proposition 3 gives that

$$1 \cdot 4, \ 2 \cdot 4, \ 3 \cdot 4, \ 4 \cdot 4, \ 5 \cdot 4, \ 6 \cdot 4, \ 7 \cdot 4, \ 8 \cdot 4, \ 9 \cdot 4, \ 10 \cdot 4$$

are congruent mod 11 to to the elements of the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ in some order. And we can be specific

$$1 \cdot 4 \equiv 4, \qquad 2 \cdot 4 \equiv 8, \qquad 3 \cdot 4 \equiv 1, \qquad 4 \cdot 4 \equiv 5, \qquad 5 \cdot 4 \equiv 9,$$

$$6 \cdot 4 \equiv 2$$
, $7 \cdot 4 \equiv 6$, $8 \cdot 4 \equiv 10$, $9 \cdot 4 \equiv 3$, $10 \cdot 4 \equiv 7$,

where all the congruences are mod 11. Now someone clever, mostly likely Fermat or Euler, had the idea of multiplying these all together to get

$$(1 \cdot 4)(2 \cdot 4)(3 \cdot 4)(4 \cdot 4)(5 \cdot 4)(6 \cdot 4)(7 \cdot 4)(8 \cdot 4)(9 \cdot 4)(10 \cdot 4)$$

$$\equiv 4 \cdot 8 \cdot 1 \cdot 5 \cdot 9 \cdot 2 \cdot 6 \cdot 10 \cdot 3 \cdot 7 \mod 11$$

By changing the order in the product we see

$$4 \cdot 8 \cdot 1 \cdot 5 \cdot 9 \cdot 2 \cdot 6 \cdot 10 \cdot 3 \cdot 7 = 10!.$$

Also

$$(1 \cdot 4)(2 \cdot 4)(3 \cdot 4)(4 \cdot 4)(5 \cdot 4)(6 \cdot 4)(7 \cdot 4)(8 \cdot 4)(9 \cdot 4)(10 \cdot 4) = 10! 4^{10}$$

Combining these gives

$$10!4^{10} \equiv 10! \mod 11.$$

But $11 \nmid 10!$ and therefore by Proposition 1 we can cancel the 10! to conclude

$$4^{10} \equiv 1 \mod 11.$$

There was nothing special about the prime 11 or the number 4 in this. Let us do anther example, this time with p=7 and a any integer with $7 \nmid a$. Then by Proposition 3 the numbers

are $\equiv \mod 7$ to the numbers

in some order. As the order of numbers in a product does not matter we thus have

$$(a)(2a)(3a)(4a)(5a)(6a) \equiv (1)(2)(3)(4)(5)(6) \mod 7$$

which implies

$$6! a^6 \equiv 6! \mod 7.$$

As $7 \nmid 6!$ we can cancel the 6! to get

$$a^6 \equiv 1 \mod 7$$

for all integers a such that $7 \nmid a$.

At this point you may have already conjectured the following:

Theorem 4 (Fermat's little Theorem). Let p be a prime and a an integer with $p \nmid a$. Then

$$a^{p-1} \equiv 1 \mod p$$
.

Problem 3. Prove this. *Hint:* Here is an argument motivated by the examples above. Let $r_1, r_2, \ldots, r_{p-1}$ be as in Proposition 3. In particular this means that $r_1, r_2, \ldots, r_{p-1}$ a listing of the set $\{1, 2, \ldots, (p-1)\}$ and

$$a \equiv r_1 \mod p$$
, $2a \equiv r_2 \mod p$, ... $(p-1)a \equiv r_{p-1} \mod p$.

These can be multiplied to get

$$a(2a)(3a)\cdots((p-1)a) \equiv r_1r_2r_3\cdots r_{p-1} \mod p.$$

(a) Explain why

$$r_1r_2r_3\cdots r_{p-1}=(p-1)!.$$

(b) Show

$$a(2a)(3a)\cdots((p-1)a) = (p-1)! a^{p-1}.$$

(c) Put these pieces together to conclude

$$(p-1)! a^{p-1} \equiv (p-1)! \mod p$$

Now you should be able to use Propositions 1 and 2 to finish the proof. \Box

Fermat's theorem is often stated in a slightly different form:

Theorem 5 (Fermat's little Theorem). If p is a prime, then for any integer a

$$a^p \equiv a \mod p$$
.

Problem 4. Prove this. *Hint:* We are trying to show $a^p - a = a(a^{p-1} - 1) \equiv 0 \mod p$. Now consider two cases $p \mid a$ (so that $a \equiv 0 \mod p$) and $p \nmid a$ (where the first form of Fermat's Theorem applies).

Example 6. What is the remainder when 16^{205} is divided by 23? From Fermat's Little Theorem we know

$$16^{22} \equiv 1 \mod 23.$$

If we divide 22 into 205 the result is

$$205 = 9(22) + 7.$$

Therefore

$$16^{205} = 16^{9(22)+7} = (16^{22})^9 (16)^7 = (1)^9 (16)^7 = 16^7.$$

Now

$$16^2 = 256 \equiv 3 \mod 23$$
, $16^4 = (16^2)^2 \equiv 3^2 \equiv 9 \mod 23$.

Thus

$$16^{205} \equiv 16^7 \equiv 16 \cdot 16^2 \cdot 16^4 \equiv 16 \cdot 3 \cdot 9 \equiv 16 \cdot 4 \equiv 18 \mod 23$$

where at one step we used $3 \cdot 9 = 27 \equiv 4 \mod 23$. Thus the remainder when 16^{205} is divided by 23 is 18.

Problem 5. Compute the following: (a) The remainder when 10^{45} is divided by 13. (b) The remainder when 605^{67} is divided by 7 (for this you may want to start by noting $605 \equiv 3 \mod 7$). (c) The remainder when 23^{307} is divided by 31.

Example 7. Find the remainder when 7^{23} is divided by 15. Here Fermat's Theorem does not apply directly, but the Chinese Remainder Theorem can help us out. Noting $15 = 3 \cdot 5$. Let us find the remainder when 7^{23} is divided by 3. In this case this is almost too easy:

$$7^{23} \equiv 1^{23} \equiv 1 \mod 3.$$

Now we have $7^{23} \equiv 2^{23} \mod 5$ and by Fermat's Theorem $2^4 \equiv 1 \mod 5$. Thus

$$7^{23} \equiv 2^{23} \equiv (2^4)^5 (2)^3 \equiv 1^5 2^3 \equiv 8 \equiv 3 \mod 5.$$

Therefore 7^{23} is a solution to the Chinese Remainder Problem

$$x \equiv 1 \mod 3$$

 $x \equiv 3 \mod 5$.

We solve this and find the least positive solution is x = 13. The solution to this Chinese Remainder Problem is unique modulo the product $3 \cdot 5 = 15$. Thus

$$7^{23} \equiv 13 \mod 15$$

and therefore the remainder when 7^{23} is divided by 15 is 13.

Problem 6. Use the method of the last example to find the remainder when 9^{45} is divided by 21.

Problem 7. Find the remainder when 6^{273} is divided by $5 \cdot 7 \cdot 11 = 385$ by finding the remainders when it is divided by 5, 7, and 11 and then using the Chinese Remainder Theorem.

Here is a more interesting application of Fermat's Theorem.

Proposition 8. Let p be a prime and a an integer with $p \nmid a$. Then $\widehat{a} := a^{p-2}$ is an inverse of a modulo p. That is

$$\widehat{a}a \equiv 1 \mod p$$

Problem 8. Prove this. *Hint:* $\hat{a}a = a^{p-1}$.

1.2. Binomial coefficients and anther proof of Fermat's Theorem. To motivate this recall the binomial theorem for n = 3:

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3.$$

If we view this modulo 3 and use that $3 \equiv 0 \mod 3$ we find

$$(x+y)^3 \equiv x^3 + y^3 \mod 3$$

holds for all integers x and y. Now let a be an integer such that

$$a^3 \equiv a \mod 3$$
.

Then

$$(a+1)^3 \equiv a^3 + 1^3 \mod 3$$

 $\equiv a+1 \mod 3 \qquad \text{(Using } a^3 \equiv a \mod 3\text{)}.$

Therefore we have that for any integer a

$$a^3 \equiv a \mod 3 \qquad \Longrightarrow \qquad (a+1)^3 \equiv (a+1) \mod 3$$

and we have a "base case" of a = 0:

$$0^3 \equiv 0 \mod 3.$$

Thus by induction we have that $a^3 \equiv a \mod 3$ for all $a \geq 0$. If a < 0 then b = -a > 0 and so $b^3 \equiv b \mod 3$. Thus

$$a^3 \equiv (-b)^3 \equiv -b^3 \equiv -b \equiv a \mod 3$$

and it follows that $a^3 \equiv a$ for all integers a.

Next consider

$$(x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5.$$

The coefficients of all but the first and last term are divisible by 5 which implies

$$(x+y)^5 \equiv x^5 + y^5 \mod 5.$$

Therefore we can do similar inductive proof to show that $a^5 \equiv a \mod 5$ for all a.

As one more example

$$(x+y)^7 = x^7 + 7x^6y + 21x^5y^2 + 35x^4y^3 + 35x^3y^4 + 21x^2y^5 + 7xy^6 + y^7$$

and again all the coefficients other than the first and last are divisible by 7 leading to

$$(x+y)^7 \equiv x^7 + y^7 \mod 7$$

for all integers x and y.

So what we would like to be true is

Proposition 9. Let p be a prime and $1 \le k \le p-1$. Then the binomial coefficient $\binom{p}{k}$ is divisible by p. That is

$$\binom{p}{k} \equiv 0 \mod p \qquad \textit{for} \qquad 1 \le k \le p.$$

Lemma 10. If p is a prime and k < p then $p \nmid k!$.

Problem 9. Prove this. *Hint:* Towards a contradiction assume that $p \mid k! = 1 \cdot 2 \cdot 3 \cdots k$. Then, as p is prime, p must divide one of the factors in this product.

Proof of Proposition 9. Let p be prime and $1 \le k \le (p-1)$.

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}.$$

This implies

$$p! = k!(p-k)!\binom{p}{k}$$

and in particular that p divides $k!(p-k)!\binom{p}{k}$. As p is prime this implies

$$p \mid k!$$
, $p \mid (p-k)!$, or $p \mid \binom{p}{k}$.

But k < p so by that last lemma $p \nmid k!$. As $k \ge 1$ we have (p - k) < p so the last lemma again applies and $p \nmid (n - k)!$. This only leaves $p \mid \binom{p}{k}$.

Proposition 11. If p is prime then for any integers x and y

$$(x+y)^p \equiv x^p + y^p \mod p.$$

More generally for any integers x_1, x_2, \ldots, x_m the congruence

$$(x_1 + x_2 + \dots + x_m)^p = x_1^p + x_2^p + \dots + x_n^p$$

holds.

Problem 10. Prove this. *Hint:* To prove the first congruence start with

$$(x+y)^p = \sum_{k=0}^p \binom{p}{k} x^{n-k} y^k$$

and use $\binom{p}{k} \equiv 0 \mod p$ for $k = 1, 2, \dots, p-1$ to see that when this is viewed mod p all but the first and last terms vanish. The second congruence follows form the first by an easy induction.

Problem 11. Use the last proposition to show for any prime p and any integer a

$$a^p \equiv a \mod p \implies (a+1)^p \equiv (a+1) \mod p$$

and use this to give an induction proof of Fermat's Theorem that $a^p \equiv a \mod p$. Hint: This can be done along the lines of the proof we gave in the case of p=3 above.

Problem 12. Here is another way to prove Fermat's theorem, although it is closely related to proof in the last problem. Let p be a prime. Then by Proposition 11 we have for any integers x_1, x_2, \ldots, x_n that

$$(x_1 + x_2 + \dots + x_n)^p \equiv x_1^p + x_2^p + \dots + x_n^p \mod p.$$

If a is a positive integer let n = a and $x_1 = x_2 = \cdots = x_n = 1$. Then this congruence becomes

$$(\underbrace{1+1+\cdots+1}_{a \text{ terms in the sum}})^p \equiv \underbrace{1^p+1^p+\cdots+1^p}_{a \text{ terms in the sum}} \mod p$$

and you should be able to reduce this to $a^p \equiv a \mod p$. Now show it also holds for negative a.

Problem 13. Show that the following identities do *not* hold.

$$(x+y)^4 \equiv x^4 + y^4 \mod 4$$

 $(x+y)^6 \equiv x^6 + y^6 \mod 6$
 $(x+y)^8 \equiv x^8 + y^8 \mod 8$
 $(x+y)^9 \equiv x^9 + y^9 \mod 9$.

Recreational Extra Credit Problem. Show that if $n \geq 2$ is an integer such that

$$(x+y)^n \equiv x^n + y^n \mod n$$

for all integers x and y, then n is a prime number.

1.3. **Euler's Theorem.** Euler's theorem is a generalization of Fermat's theorem to moduli that are not prime. Our first proof of Fermat's theorem was to take a prime p and a number a with a with $\gcd(a,p)=1$ and note that $1,2,3,\ldots,(p-1)a$ and $a,2a,2a,\ldots,(p-1)a$ when viewed modulo p were just rearrangements taking the products of these two sets of numbers would be congruent mod p which leads to $(p-1)! \equiv (p-1)! \, a^{n-1}$ and $\gcd(p,(p-1)!) = 1$ so that we can cancel to get $1 \equiv a^{p-1} \mod p$.

We can try the same thing with a composite n. If gcd(a, n) = 1, then it will still be the case that $a, 2a, 3a, \ldots, (n-1)a$ when viewed mod n will be a rearrangement of $1, 2, 3, \ldots, (n-1)$ and so the products of the elements of the two lists will be congruent modulo n which leads to

$$(n-1)!a^{n-1} \equiv (a)(2a)\cdots((n-1)a) \equiv (1)(2)\cdots(n-1)! \mod n.$$

But if n is not prime we no longer have gcd(n, (n-1)!) = 0. In fact

Problem 14. Show that if $n \ge 5$ is composite then $n \mid (n-1)!$. Thus 4

But if $n \mid (n-1)!$ the congruence $(n-1)!a^{n-1} \equiv (n-1)!$ reduces to $0 \equiv 0 \mod n$, which is true but not very interesting.

To get an interesting result we need to get a product of numbers that is relatively prime to n so that we can cancel. This suggests introducing the set following numbers.

$$U(n) := \{k : 1 \le k \le n \text{ and } \gcd(k, n) = 1\}.$$

(We are using the notation U(n) because a number k has an inverse modulo n if and only if gcd(a,k)=1. Thus the residue classes of elements U(n) are the elements of \mathbb{Z}/p that have inverses. In ring theory elements with inverses are called units.) The following function will be important in much of what follows.

Definition 12. If n is a positive integer then the *Euler phi function* (or just the *phi function*) is

$$\phi(n) = \#U(n) = \text{number of elements in } U(n).$$

Here are $\phi(n)$ and U(n) for some small values of n.

```
\phi(n) \mid U(n)
 1
         1
             {1}
 2
         1
             {1}
 3
         2
             \{1, 2\}
         2
 4
             \{1, 3\}
             \{1, 2, 3, 4\}
 6
         2
             \{1, 5\}
 7
         6
             \{1, 2, 3, 4, 5, 6\}
 8
             \{1, 3, 5, 7\}
         4
 9
         6
             \{1, 2, 4, 5, 7, 8\}
10
             \{1, 3, 7, 9\}
         4
11
        10
             \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}
12
         4
             \{1, 5, 7, 11\}
13
             \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}
        12
14
             \{1, 3, 5, 9, 11, 13\}
             \{1, 2, 4, 7, 8, 11, 13, 14\}
15
         8
16
             \{1, 3, 5, 7, 9, 11, 13, 15\}
17
             \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}
        16
18
         6
             \{1, 5, 7, 11, 13, 17\}
19
             \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18\}
        18
20
             \{1, 3, 7, 9, 11, 13, 17, 19\}
21
        12
             \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}
22
        10
             \{1, 3, 5, 7, 9, 13, 15, 17, 19, 21\}
23
        22
             \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22\}
24
             \{1, 5, 7, 11, 13, 17, 19, 23\}
25
             \{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24\}
        20
26
             \{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}
        12
27
             \{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26\}
        12 \mid \{1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27\}
```

If p is a prime then gcd(p, k) = 1 for $k = 1, 2, 3, \dots, (p-1)$. Thus

Proposition 13. If p is prime, then $\phi(p) = p-1$ and $U(p) = \{1, 2, \dots, p-1\}$.

Now back to generalizing Fermat's theorem. To start

Proposition 14. Let $n \geq 2$ be a positive integer and a an integer with gcd(a, n) = 1. Then when reduced modulo n the set

$$aU(n) := \{ak : k \in U(n)\}$$

is a rearrangement of U(n). That is if $U(n) = \{k_1, k_2, \ldots, k_{\phi(n)}\}$, then when the elements of the set $aU = \{ak_1, ak_2, \ldots, ak_{\phi(n)}\}$ are reduced mod n, they are a rearrangement if $\{k_1, k_2, \ldots, k_{\phi(n)}\}$.

Problem 15. Prove this. *Hint*: If $ak_1, ak_2 \in aU(n)$ and $ak_1 \equiv ak_2 \mod n$, then, and gcd(a,n)-1 we can cancel the a to get $k_1 \equiv k_2$. As $1 \leq k_1, k_2 \neq n$ this implies $k_1 = k_2$. Thus aU(n) and U(n) have the same number of elements Also if $ak \in aU(n)$, then then the least positive residue of ak, call it b, will satisfy $0 \leq b \leq n-1$ and gcd(n,b)=1. Therefore $b \in U(n)$. Thus when the elements of aU(n) are reduces modulo n the result is in U(n). Put these facts together to get that the reductions of aU(n) are just the elements of U(n).

And here is the generalization of Theorem 4.

Theorem 15 (Euler's Theorem). Let n be a positive integer and a an integer with gcd(a, n) = 1. Then

$$a^{\phi(n)} \equiv 1 \mod n$$
.

Problem 16. Prove this. *Hint:* This clearly holds for n = 1 so we assume $n \ge 2$. Let

$$U(n) = \{k_1, k_2, \dots, k_{\phi(n)}\}.$$

Then, with the notation of Proposition 14.

$$aU(n) = \{ak_1, ak_2, \dots, ak_{\phi(n)}\}\$$

and by Proposition 14 when the numbers $ak_1, ak_2, \ldots, ak_{\phi(n)}$ are reduced modulo n the result is a rearrangement of $k_1, k_2, \ldots, k_{\phi(n)}$. Therefore the products of the numbers in these two lists will be congruent modulo n, that is

$$(ak_1)(ak_2)\cdots(ak_{\phi(n)})\equiv (k_1)(k_2)\cdots(k_{\phi(n)})\mod n$$

and therefore

$$k_1 \cdot k_2 \cdots k_{\phi(n)} a^{\phi(n)} \equiv k_1 \cdot k_2 \cdots k_{\phi(n)} a^{\phi(n)} \mod n.$$

Now explain why we can cancel $k_1 \cdot k_2 \cdots k_{\phi(n)}$ from the congruence to finish the proof.

We have seen that $\phi(p) = p - 1$ when p is prime. We now compute $\phi(p^k)$ for p prime.

Proposition 16. If p is prime and k is a positive integer, then

$$\phi(p^k) = p^k - p^{k-1}.$$

Problem 17. Prove this. *Hint:* Let $a \in \{1, 2, ..., p^k\}$. Then $a \notin U(p^k)$ if and only if $p \mid a$. Use this fact to show that the set of elements of $\{1, 2, ..., p^k\}$ are not in $U(p^k)$ is $\{tp : 1 \le t \le p^{k-1}\}$.

Proposition 17. Let m and n be positive integers with gcd(m, n) = 1. For each $a \in U(m)$ and $b \in U(n)$ let f(a, b) be the unique solution to the Chinese remainder problem

$$f(a,b) \equiv a \mod m$$

 $f(a,b) \equiv b \mod n$.

with

$$1 \le f(a,b) < mn$$
.

Then f is a one to one onto function between $U(m) \times U(n)$ and the set U(mn). (Here $U(m) \times U(n) := \{(a,b) : a \in U(m), b \in U(n)\}$.) Therefore $U(m) \times U(n)$ and U(mn) have the same number of elements.

To see what this means for the example where m = 5 and n = 6. Then mn = 30 and

$$U(5) = \{1, 2, 3, 4\}$$

$$U(6) = \{1, 5\}$$

$$U(30) = \{1, 7, 11, 13, 17, 19, 23, 29\}$$

and $U(5) \times U(6)$ is the set of ordered pairs:

$$U(5) \times U(6) = \{(1,1), (1,5), (2,1), (2,5), (3,1), (3,5), (4,1), (4,5)\}.$$

To compute f(1,1) we solve the Chinese remainder problem

$$f(1,1) \equiv 1 \mod 5$$
, $f(1,1) \equiv 1 \mod 6$

which gives

$$f(1,1) = 1.$$

To find f(3,5) we have to solve

$$f(3,5) \equiv 3 \mod 5$$
, $f(3,5) \equiv 5 \mod 6$

which gives

$$f(3,5) = 23.$$

Here are the values of f(a,b) for all values $(a,b) \in U(5) \times U(6)$:

$$f(1,1) = 1,$$
 $f(1,5) = 11,$ $f(2,1) = 7,$ $f(2,5) = 17,$ $f(3,1) = 13,$ $f(3,5) = 23,$ $f(4,1) = 19,$ $f(4,5) = 29,$

which does give us all the values in U(30) exactly once each. This is a case where the example is not very enlightening as to why the general case is true.

Lemma 18. Let m and n be positive integers with gcd(m, n) = 1 and a and b integers with

$$gcd(a, m) = gcd(b, n) = 1.$$

Let c be an integer with

$$c \equiv a \mod m$$
 and $c \equiv b \mod n$.

Then

$$\gcd(c, mn) = 1.$$

Problem 18. Prove this. *Hint:* Towards a contradiction, assume that $gcd(c, mn) \neq 1$. Then there will be a prime p with $p \mid gcd(c, mn)$. This implies $p \mid c$ and $p \mid mn$. As p is prime, we have $p \mid m$ or $p \mid n$. Without loss of generality we may assume $p \mid m$. Thus $p \mid gcd(c, m)$. But, as $a \equiv c \mod m$, we have gcd(a, m) = gcd(c, m). Now explain why this leads to a contradiction.

Lemma 19. Let m and n be positive integers and c an integer with gcd(c, mn) = 1. If $a \equiv c \mod m$, show gcd(a, m) = 1. (And so by symmetry if $b \equiv c \mod n$, then gcd(b, n) = 1. You do not have to give a separate proof of this.)

Problem 19. Prove this. □

Problem 20. Prove Proposition 17. *Hint:* Verify the following steps.

- (a) If $(a,b) \in U(m) \times U(n)$ use Lemma 18 to show $\gcd(f(a,b),mn)=1$ and therefore $f(a,b) \in U(mn)$.
- (b) Use the uniqueness part of the Chinese Remainder Theorem to show f is one to one.
- (c) Show f is onto. (If $c \in U(mn)$ then let a and b be such that $a \equiv c$ with $1 \leq a \leq m$ and let $b \equiv c \mod n$ with $1 \leq b \leq n$. Use 19 to show $a \in U(m)$ and $b \in U(n)$ explain why this shows f is onto.)

Definition 20. Let f be a function from the positive integers $\mathbb{Z}_+ = \{1, 2, 3, \ldots\}$ to the real numbers. Then f is **multiplicative** iff for all positive integers m and n

$$gcd(m, n) = 1$$
 \Longrightarrow $f(mn) = f(m)f(n)$.

Theorem 21. The Euler ϕ function is multiplicative.

Proof. This follows at once from the definition of ϕ and Proposition 17. \square

A straightforward induction now yields:

Proposition 22. Let $n_1, n)2, \ldots, n_k$ be positive integers with $gcd(m_i, m_j) = 1$ for $i \neq j$. Then

$$\phi(n_1 n_2 \cdots n_k) = \phi(n_1)\phi(n_2)\cdots\phi(n_k).$$

Problem 21. Give at least three examples of positive integers m and n such that $\phi(mn) \neq \phi(m)\phi(n)$.

If $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ with p_1, p_2, \dots, p_k distinct primes and each $\alpha_i \geq 1$ we have

$$\phi(n) = \prod_{i=1}^k \phi(p_i^{\alpha_i})$$
$$= \prod_{i=1}^k (p_i^{\alpha_i} - p_i^{\alpha_1 - 1}).$$

Thus

$$\phi(60) = \phi(2^2 \cdot 3 \cdot 5) = \phi(2^2)\phi(3)\phi(5) = (4-2)(2)(4) = 16.$$

A larger example:

$$\phi(113,400) = \phi(2^3 \cdot 3^4 \cdot 5^2 \cdot 7) = \phi(2^3)\phi(3^4)\phi(5^2)\phi(7) = (4)(54)(20)(6) = 25,920.$$

Problem 22. Show that it n is divisible by an odd prime, then $\phi(n)$ is even.

Problem 23. Find all positive integers n such that $\phi(n)$ is odd. Prove that you have found them all.

Problem 24. If n is odd, prove that
$$\phi(2n) = \phi(n)$$
.

Proposition 23. If n is a positive integer, then

$$\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

where the product is taken over all primes that divide p that divide n.

Problem 25. Prove this. *Hint:* As a start note that if p is a prime and k is a positive integer

$$\phi(p^k) = p^k - p^{k-1} = \left(1 - \frac{1}{p}\right)p^k.$$

As an example of the last Proposition note that the primes that divide 6! = 720 are just the primes ≤ 6 , that is 2, 3, and 5. Thus

$$\phi(720) = 720 \prod_{p|720} \left(1 - \frac{1}{p} \right) = 720 \left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{3} \right) \left(1 - \frac{1}{5} \right) = 192.$$