

DEMO PRESENTATION

Mentor: Belma Ibrahimović Intern: Mehmed Kadrić

TABLE OF CONTENTS

- TASK 1: Python for Data Science
- TASK 2: Classification in Data Science
- TASK 3: Anomaly Detection
- Conclusion

PYTHON FOR DATA SCIENCE

- Important for DS
- Easy to use language
- Most common libraries used in data science:
 - Numpy
 - Pandas
 - Scikit-learn
 - Matplotlib

CLASSIFICATION IN DATA SCIENCE

- Use-case scenario:
 - Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and crew (32% survival rate)
 - Latest discovery have shown that there were additional 10 passengers
- Goal:
 - Create the system which would predict probability of their survival
- Dataset was given

TITANIC

- Supervised learning
- Preprocessing:
 - 1303 examples, 4 features

	Name	PClass	Age	Sex	Survived
1	Allen, Miss Elisabeth Walton	1st	29	female	1

- Missing values in Age column and PClass column
- Only one outlier in PClass column
- Dimensionality reduction

	Title	PClass	LifeStage	Survived
1	Miss	1st	2	1

TITANIC

- There are many classification algorithms such as: Logistic Regression, Naive Bayes classifier, SVM, KNN, Decision Trees, etc.
- Support Vector Machine Classifier gave the best results

Actual output	Model output	Probability 0	Probability 1
0	0	0.98511669	0.01488331
0	0	0.98511669	0.01488331
1	0	0.78656724	0.21343276
0	0	0.96557864	0.03442136
0	0	0.99201528	0.00798472
0	0	0.99201528	0.00798472
1	1	0.19527331	0.80472669
1	0	0.78665345	0.21334655
1	1	0.15862112	0.84137888
1	1	0.21237841	0.78762159

Accuracy Precision Recall F1-score

Anomaly detection

- Anomalies are patterns in data that do not conform to a well defined notion of normal behavior
- Anomaly detection techniques:
 - Classification based
 - Nearest Neighbor based
 - Clustering based
 - Statistical
 - Information theoretic
 - Spectral

Anomaly detection

- Develop system which can be used for smart production monitoring and fault detection in manufacturing processes
- Given dataset: 1567 instances, 591 features
- Unbalanced dataset: 104 fails
- Only numeric values
- Missing values
- Outliers

Anomy detection

- DBSCAN (Density-based spatial clustering of applications with noise) algorithm
 - Core point
 - Border point
 - Noise point

- Advantages:
 - Does not require number of clusters
 - Can find arbitrarily shaped clusters
 - Requires two parameters
- Disadvantages:
 - border points that are reachable from more than one cluster can be part of either cluster, depending on the order the data are processed
 - Can't cluster data sets well with large differences in densities

Anamaly detection

- Parameter tuning:
 - In DBSCAN learning algorithm, thare are two parameters: eps and minPts

Eps = 1.45

minPts = 6

Anomaly detection

• Unbalanced dataset – accuracy is not a good measure

	Precision	Recall	F1-score	Support
-1	0.07	0.51	0.13	104
0	0.94	0.54	0.69	1463
Avg/total	0.88	0.54	0.65	1567

Manage detection

- Possible applications:
 - Fraud detection
 - Fault detection
 - System health monitoring

THANK YOU!