

Silicon N-Channel Power MOSFET

$V_{ m DSS}$	600	V
I_D	12	A
$P_D(T_C=25^{\circ}C)$	140	W
$R_{DS(ON)}$	0.55	Ω

Features

- Fast Switching
- ESD Improved Capability
- Low Gate Charge (Typical Data:58nC)
- Low Reverse transfer capacitances(Typical:90pF)
- 100% Single Pulse avalanche energy Test

Applications

Power switch circuit of adaptor and charger.

PIN Connection TO-220F

Marking Diagram

Y = Year

A = Assembly Location

WW = Work Week
FIR12N60F = Specific Device Code

Absolute(Tc= 25°C unless otherwise specified)

Symbol	Parameter	Rating	Units
V_{DSS}	Drain-to-Source Voltage	600	V
т	Continuous Drain Current	12	A
I_{D}	Continuous Drain Current T _C = 100 °C	7.2	A
I_{DM}^{a1}	Pulsed Drain Current	48	A
V_{GS}	Gate-to-Source Voltage	± 20	V
E_{AS}^{a2}	Single Pulse Avalanche Energy	320	mJ
E _{AR} a1	Avalanche Energy ,Repetitive	33	mJ
I _{AR} a1	Avalanche Current	8.0	A
dv/dt ^{a3}	Peak Diode Recovery dv/dt	5.5	V/ns
	Power Dissipation	140	W
$P_{\rm D}$	Derating Factor above 25°C	1.1	W/℃
V _{ESD(G-S)}	Gate source ESD (HBM-C= 100pF, R=1.5kΩ)	4000	V
T _J , T _{stg}	Operating Junction and Storage Temperature Range	150, -55 to 150	$^{\circ}$
$T_{\rm L}$	MaximumTemperature for Soldering	300	$^{\circ}$

Electrical Characteristics (Tc= 25°C unless otherwise specified)

OFF Characteristics						
Symbol	Parameter	Test Conditions	Rating			Units
Symbol	Farameter	Test Conditions	Min.	Тур.	Max.	Ullits
$V_{ m DSS}$	Drain to Source Breakdown Voltage	$V_{GS}=0V, I_{D}=250\mu A$	600			V
Δ BV _{DSS} / Δ T _J	Bvdss Temperature Coefficient	ID=250uA,Reference25℃		0.74		V/℃
		$V_{DS} = 600 \text{V}, V_{GS} = 0 \text{V},$ $T_a = 25 ^{\circ}\text{C}$			25	
I_{DSS}	Drain to Source Leakage Current	$V_{DS} = 480V, V_{GS} = 0V,$ $T_a = 125 ^{\circ}\text{C}$			250	μА
V_{GSO}	Gate Source Breakdown Voltage	I _{GS} = ±1mA (Open Drain)	±20			V
$I_{GSS(F)}$	Gate to Source Forward Leakage	V _{GS} =+20V			10	μΑ
$I_{GSS(R)}$	Gate to Source Reverse Leakage	$V_{GS} = -20V$			-10	μА

ON Characteristics							
Symbol	nbol Parameter Test Conditions				Rating		
Symbol	1 arameter	Test Conditions	Min.	Тур.	Max.	Units	
R _{DS(ON)}	Drain-to-Source On-Resistance	V _{GS} =10V,I _D =6A		0.55	0.75	Ω	
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.0	3.0	4.0	V	
Pulse width $tp \le 380 \mu s$, $\delta \le 2\%$							

Dynamic Characteristics							
Symbol	Parameter	Test Conditions	Rating			Units	
Symbol			Min.	Тур.	Max.	Units	
\mathbf{g}_{fs}	Forward Transconductance	V_{DS} =15V, I_{D} =6.0A		9.2		S	
C_{iss}	Input Capacitance			1730			
C_{oss}	Output Capacitance	$V_{GS} = 0V V_{DS} = 25V$ f = 1.0MHz		180		pF	
C_{rss}	Reverse Transfer Capacitance			90			

Resistive Switching Characteristics						
Symbol	Parameter	Test Conditions	Rating			Lleita
Symbol	1 at attleter	Test Conditions	Min.	Тур.	Max.	Units
$t_{d(ON)}$	Turn-on Delay Time			20		
tr	Rise Time	$I_D = 12.0A$ $V_{DD} = 300V$		28		
$t_{d(OFF)}$	Turn-Off Delay Time	$V_{GS} = 10V R_G = 4.7\Omega$		55		ns
$t_{ m f}$	Fall Time			30		
Q_{g}	Total Gate Charge			58	65	
Q_{gs}	Gate to Source Charge	$I_D = 12.0A$ $V_{DD} = 480V$ $V_{GS} = 10V$		14		nC
Q_{gd}	Gate to Drain ("Miller")Charge			32		

Source-Drain Diode Characteristics							
Symbol	Parameter	Test Conditions	Rating			Units	
Symbol	1 diameter	Test Conditions	Min.	Тур.	Max.	Units	
I_S	Continuous Source Current (Body Diode)				12	A	
I_{SM}	Maximum Pulsed Current (Body Diode)				48	A	
V_{SD}	Diode Forward Voltage	I _S =12.0A,V _{GS} =0V			1.5	V	
trr	Reverse Recovery Time	$I_{S}=12.0A, T_{i}=25^{\circ} C$		600		ns	
Qrr	Reverse Recovery Charge	$dI_F/dt=100A/us$,		4.3		nC	
I_{RRM}	Reverse Recovery Current	$V_{GS}=0V$		15		A	
Pulse width $tp \le 380 \mu s$, $\delta \le 2\%$							

Symbol	Parameter	Тур.	Units
R в JC	Junction-to-Case	0.89	°C/W
R _{θ JA}	Junction-to-Ambient	100	°C/W

 $^{^{}a1}$: Repetitive rating; pulse width limited by maximum junction temperature a2 : L=10.0mH, I_D =12A, Start T_J =25°C a3 : I_{SD} =12A,di/dt \leqslant 100A/us, V_{DD} \leqslant B V_{DS} , Start T_J =25°C

Electrical Characteristics Curves

Fig. 3 $R_{DS(ON)}$ - I_D

Fig. 5 Capacitance - V_{DS}

Fig. 2 I_D - V_{GS}

Fig. 4 I_S - V_{SD}

Fig. 6 V_{GS} - Q_G

Electrical Characteristics Curves (Continue)

Fig. 11 Gate Charge Test Circuit & Waveform

Fig. 12 Resistive Switching Test Circuit & Waveform

Fig. 13 E_{AS} Test Circuit & Waveform

Fig. 14 Diode Reverse Recovery Time Test Circuit & Waveform

Package Dimensions

TO-220F

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH
 3. 221D-01 THRU 221D-02 OBSOLETE, NEW STANDARD 221D-03.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.617	0.635	15.67	16.12
В	0.392	0.419	9.96	10.63
C	0.177	0.193	4.50	4.90
D	0.024	0.039	0.60	1.00
F	0.116	0.129	2.95	3.28
G	0.100 BSC		2.54	BSC
Н	0.118	0.135	3.00	3.43
J	0.018	0.025	0.45	0.63
K	0.503	0.541	12.78	13.73
L	0.048	0.058	1.23	1.47
N	0.200 BSC		5.08	BSC
Q	0.122	0.138	3.10	3.50
R	0.099	0.117	2.51	2.96
S	0.092	0.113	2.34	2.87
U	0.239	0.271	6.06	6.88