AMENDMENTS TO THE CLAIMS

1. (Original) A 3-trifluoromethylpicolinic acid anilide of the formula I,

$$\begin{array}{c|c}
R^1 & W & \\
N & N \\
R^2 & CF_3
\end{array}$$

$$\begin{array}{c}
K^2 & K^3 & K^4 & K^5
\end{array}$$

$$\begin{array}{c}
K^3 & K^4 & K^5
\end{array}$$

in which the substituents are as defined below:

X is O, S or a direct bond;

W is O or S;

R¹, R², R³ independently of one another are hydrogen, halogen, nitro, CN, C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₁-C₄-alkoxy, where some or all of the hydrogen atoms in the 4 lastmentioned groups may be substituted by halogen;

R⁴ is hydrogen, OH, C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, where some or all of the hydrogen atoms in the 3 lastmentioned groups may be substituted by halogen;

R⁵ is unsubstituted C_4 - C_{12} -alkyl, C_3 - C_{12} -cycloalkyl, C_3 - C_{12} -alkenyl, C_5 - C_{12} -cycloalkenyl, C_3 - C_{12} -alkynyl, C_3 - C_{12} -cycloalkyl- C_1 - C_4 -alkyl, where the 5

 R^7

Docket No.: 0690-0131PUS1

lastmentioned groups may in each case have 1, 2 or 3 substitutents R⁹, and where some or all of the hydrogen atoms in the 5 lastmentioned groups may be substituted by halogen;

 C_1 - C_{12} -haloalkyl, C_1 - C_{12} -alkyl which has 1, 2 or 3 substituents R^{11} , a group - $C(R^{10})$ =NOR⁸, a group - $C(O)NR^{13}R^{14}$; phenyl, phenyl- C_1 - C_6 -alkyl, phenyl- C_2 - C_6 -alkenyl, phenyl- C_2 - C_6 -alkynyl, phenyloxy- C_1 - C_6 -alkyl, phenyloxy- C_2 - C_6 -alkenyl, phenyloxy- C_2 - C_6 -alkynyl, where the alkyl, alkenyl- and the alkynyl moiety in the 6 lastmentioned groups may have 1, 2, 3 or 4 substituents R^{11} and the phenyl ring in the 7 lastmentioned groups may carry 1, 2, 3 or 4 radicals R^7 ;

R⁶ has the meanings mentioned for R¹ which are different from hydrogen;

is C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkoxy, C_2 - C_4 -alkenyl, C_2 - C_4 -alkynyloxy, where some or all of the hydrogen atoms in these 7 groups may be substituted by halogen, is OH, halogen, nitro, CN, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulfonyl, $-C(O)R^{12}$, $NR^{13}R^{14}$, $-C(O)NR^{13}R^{14}$, $-C(S)NR^{13}R^{14}$, $-C(R^{10})$ = NOR^8 , phenyl, which may have 1, 2, 3 or 4 of the groups mentioned under R^6 , phenoxy, which may have 1, 2, 3 or 4 of the groups mentioned under R^6 , C_1 - C_6 -alkyl-phenyl, where some or all of the hydrogen atoms of the alkyl moiety may be substituted by halogen and the phenyl ring may have 1, 2, 3 or 4 of the groups mentioned under R^6 , where two radicals R^7 attached to adjacent carbon atoms may also be CH=CH-CH=CH or an alkylene chain having 3 to 5 members in which 1 or 2 not adjacent CH₂

groups may also be replaced by oxygen or sulfur and in which some or all of the hydrogen atoms may be replaced by halogen;

- is C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, where some or all of the hydrogen atoms in these 4 groups may be substituted by halogen, phenyl or phenyl-C₁-C₆-alkyl, where phenyl in the two lastmentioned radicals may have 1, 2, 3 or 4 of the groups mentioned under R⁶;
- R^9 is C_1 - C_4 -alkyl, C_1 - C_8 -alkoxy, C_2 - C_8 -alkenyloxy, C_2 - C_8 -alkynyloxy, C_1 - C_4 -alkoxy- C_1 - C_8 -alkoxy, where some or all of the hydrogen atoms in these groups may be substituted by halogen;
- $R^{10} \hspace{1cm} \text{is hydrogen, halogen, C_1-C_8-alkoxy, C_2-C_8-alkenyloxy, C_2-C_8-alkynyloxy, C_1-C_4-alkoxy-C_1-C_8-alkoxy, C_1-C_{12}-alkyl, C_3-C_{12}-cycloalkyl, C_2-C_{12}-alkenyl, C_5-C_{12}-cycloalkenyl, C_3-C_{12}-cycloalkyl-C_1-C_4-alkyl, where some or all of the hydrogen atoms in the 9 lastmentioned groups may be substituted by halogen; phenyl which may have 1, 2, 3 or 4 of the groups mentioned under R^7,$
- $R^{11} \hspace{1cm} is \ halogen, C_1-C_4-alkyl, C_1-C_8-alkoxy, C_1-C_8-alkoxy-C_1-C_8-alkoxy, C_2-C_8-alkoxy, C_1-C_4-alkoxy-C_1-C_8-alkoxy, where some or all of the hydrogen atoms in these groups may be substituted by halogen; \\$
- R¹² is hydrogen, OH, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₂-C₄-alkenyloxy, C₂-C₄-alkynyloxy, C₁-C₄-alkoxy-C₁-C₄-alkoxy, where some or all of the hydrogen atoms in the 7 lastmentioned groups may be substituted by halogen;

R¹³, R¹⁴ independently of one another are hydrogen, C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, where some or all of the hydrogen atoms in these groups may be substituted by halogen;

or an agriculturally useful salt of I.

- 2. (Original) The anilide of the formula I according to claim 1 in which R^1 , R^2 and R^3 independently of one another are hydrogen, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl.
- 3. (Original) The anilide of the formula I according to claim 1 in which R¹, R² and R³ are each hydrogen.
- 4. (Currently amended) The anilide of the formula I according to any of the preceding elaims claim 1 in which R⁴ is selected from the group consisting of hydrogen, methyl, OH and methoxy.
- 5. (Original) The anilide of the formula I according to claim 4 in which R⁴ is hydrogen.
- 6. (Currently amended) The anilide of the formula I according to any of the preceding elaims claim 1 in which R⁵ has one of the meanings below:

- unsubstituted C₄-C₁₂-alkyl, C₃-C₁₂-cycloalkyl, C₂-C₁₂-alkenyl, C₅-C₁₂-cycloalkenyl, C₂-C₁₂-alkynyl, where some or all of the hydrogen atoms in the four lastmentioned groups may be substituted by halogen and some or all of the hydrogen atoms in C₃-C₁₂-cycloalkyl may be substituted by C₁-C₄-alkyl,

- C_1 - C_{12} -haloalkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -haloalkoxy- C_1 - C_4 -alkyl;
- phenyl, phenyl- C_1 - C_6 -alkyl, where the phenyl ring may be substituted by 1, 2, 3 or 4 radicals R^7 ; or
- C(C₁-C₄-alkyl)=NO-R⁸, where some or all of the hydrogen atoms of the C₁-C₄-alkyl group may be substituted by halogen.
- 7. (Currently amended) The anilide of the formula I according to any of the preceding elaims claim 1 in which R⁶ has the following meanings: C₁-C₄-alkyl, C₁-C₄-alkoxy, where these groups may be substituted by halogen, or halogen.
- 8. (Currently amended) The anilide of the formula I according to any of the preceding elaims claim 1 in which R¹, R² and R³ each represent hydrogen and the group X-R⁵ is attached in the ortho or meta position to the amide nitrogen.
- 9. (Currently amended) The anilide of the formula I according to any of the preceding elaims claim 1 in which X is a direct bond or oxygen.

10. (Previously presented) The anilide of the formula I according to claim 9 in which the group X is oxygen or a direct bond and R⁵ has one of the meanings below:

- unsubstituted C₄-C₁₂-alkyl, C₃-C₁₂-cycloalkyl, C₂-C₁₂-alkenyl, C₅-C₁₂-cycloalkenyl, C₂-C₁₂-alkynyl, where some or all of the hydrogen atoms in the four lastmentioned groups may be substituted by halogen and some or all of the hydrogen atoms in C₃-C₁₂-cycloalkyl may be substituted by C₁-C₄-alkyl;
- C_1 - C_{12} -haloalkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -haloalkoxy- C_1 - C_4 -alkyl;
- phenyl, phenyl- C_1 - C_6 -alkyl, where the phenyl ring may be substituted by 1, 2, 3 or 4 radicals R^7 ; or
- C(C₁-C₄-alkyl)=NO-R⁸, where some or all of the hydrogen atoms of the C₁-C₄-alkyl group may be substituted by halogen.
- 11. (Currently amended) The use of the 3-trifluoromethylpicolinic acid anilide of the formula I and the agriculturally acceptable salt thereof according to any of the preceding elaims claim 1 for controlling harmful fungi.
- 12. (Currently amended) A fungicidal composition, comprising a fungicidally effective amount of at least one 3-trifluoromethylpicolinic acid anilide of the formula I or the agriculturally acceptable salt of I according to any of claims 1 to 10 claim 1.

13. (Currently amended) A method for controlling harmful fungi, which method comprises treating the harmful fungi, their habitat or the plants, areas, materials or spaces to be kept free from them with at least one fungicidally effective amount of the 3-trifluoromethylpicolinic acid anilide of the formula I or the agriculturally acceptable salt of I according to any of claims 1 to 10 claim 1.

- 14. (New) The anilide of the formula I according to claim 2 in which R⁴ is selected from the group consisting of hydrogen, methyl, OH and methoxy.
- 15. (New) The anilide of the formula I according to claim 3 in which R⁴ is selected from the group consisting of hydrogen, methyl, OH and methoxy.
- 16. (New) The anilide of the formula I according to claim 2 which R⁵ has one of the meanings below:
 - unsubstituted C₄-C₁₂-alkyl, C₃-C₁₂-cycloalkyl, C₂-C₁₂-alkenyl, C₅-C₁₂-cycloalkenyl, C₂-C₁₂-alkynyl, where some or all of the hydrogen atoms in the four lastmentioned groups may be substituted by halogen and some or all of the hydrogen atoms in C₃-C₁₂-cycloalkyl may be substituted by C₁-C₄-alkyl,
 - C_1 - C_{12} -haloalkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -haloalkoxy- C_1 - C_4 -alkyl;
 - phenyl, phenyl- C_1 - C_6 -alkyl, where the phenyl ring may be substituted by 1, 2, 3 or 4 radicals R^7 ; or

 $-C(C_1-C_4-alkyl)=NO-R^8$, where some or all of the hydrogen atoms of the C_1-C_4 -alkyl group may be substituted by halogen.

- 17. (New) The anilide of the formula I according to claim 3 in which R⁵ has one of the meanings below:
 - unsubstituted C₄-C₁₂-alkyl, C₃-C₁₂-cycloalkyl, C₂-C₁₂-alkenyl, C₅-C₁₂-cycloalkenyl, C₂-C₁₂-alkynyl, where some or all of the hydrogen atoms in the four lastmentioned groups may be substituted by halogen and some or all of the hydrogen atoms in C₃-C₁₂-cycloalkyl may be substituted by C₁-C₄-alkyl,
 - C_1 - C_{12} -haloalkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -haloalkoxy- C_1 - C_4 -alkyl;
 - phenyl, phenyl- C_1 - C_6 -alkyl, where the phenyl ring may be substituted by 1, 2, 3 or 4 radicals R^7 ; or
- $-C(C_1-C_4-alkyl)=NO-R^8$, where some or all of the hydrogen atoms of the $C_1-C_4-alkyl$ group may be substituted by halogen.
- 18. (New) The anilide of the formula I according to claim 4 in which R⁵ has one of the meanings below:
 - unsubstituted C₄-C₁₂-alkyl, C₃-C₁₂-cycloalkyl, C₂-C₁₂-alkenyl, C₅-C₁₂-cycloalkenyl, C₂-C₁₂-alkynyl, where some or all of the hydrogen atoms in the four

lastmentioned groups may be substituted by halogen and some or all of the hydrogen atoms in C_3 - C_{12} -cycloalkyl may be substituted by C_1 - C_4 -alkyl,

- C_1 - C_{12} -haloalkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -haloalkoxy- C_1 - C_4 -alkyl;
- phenyl, phenyl- C_1 - C_6 -alkyl, where the phenyl ring may be substituted by 1, 2, 3 or 4 radicals R^7 ; or
- $-C(C_1-C_4-alkyl)=NO-R^8$, where some or all of the hydrogen atoms of the C_1-C_4 -alkyl group may be substituted by halogen.
- 19. (New) The anilide of the formula I according to claim 5 in which R⁵ has one of the meanings below:
 - unsubstituted C₄-C₁₂-alkyl, C₃-C₁₂-cycloalkyl, C₂-C₁₂-alkenyl, C₅-C₁₂-cycloalkenyl, C₂-C₁₂-alkynyl, where some or all of the hydrogen atoms in the four lastmentioned groups may be substituted by halogen and some or all of the hydrogen atoms in C₃-C₁₂-cycloalkyl may be substituted by C₁-C₄-alkyl,
 - C_1 - C_{12} -haloalkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -haloalkoxy- C_1 - C_4 -alkyl;
 - phenyl, phenyl- C_1 - C_6 -alkyl, where the phenyl ring may be substituted by 1, 2, 3 or 4 radicals \mathbb{R}^7 ; or
- $-C(C_1-C_4-alkyl)=NO-R^8$, where some or all of the hydrogen atoms of the $C_1-C_4-alkyl$ group may be substituted by halogen.

20. (New) The anilide of the formula I according to claim 2 in which R^6 has the following meanings: C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, where these groups may be substituted by halogen, or halogen.