Cluster Analysis: Discovery Winter Institute in Data Science

Ryan T. Moore

2024 - 01 - 10

Supervised and Unsupervised Learning

Hierarchical Clustering

Partitional Clustering

Selecting k

Exercise

▶ matrix: rectangular array with a few more restrictions than data.frame

- ▶ matrix: rectangular array with a few more restrictions than data.frame
- ▶ list: more general type of array that can be rectangular, but need not be. A data.frame is an example of a list

- ▶ matrix: rectangular array with a few more restrictions than data.frame
- ▶ list: more general type of array that can be rectangular, but need not be. A data.frame is an example of a list

- ▶ matrix: rectangular array with a few more restrictions than data.frame
- ▶ list: more general type of array that can be rectangular, but need not be. A data.frame is an example of a list

In base R, can extract variable v1 from data frame df with

► df\$v1

- ▶ matrix: rectangular array with a few more restrictions than data.frame
- ▶ list: more general type of array that can be rectangular, but need not be. A data.frame is an example of a list

- ► df\$v1
- df[["v1"]]

- ▶ matrix: rectangular array with a few more restrictions than data.frame
- ▶ list: more general type of array that can be rectangular, but need not be. A data.frame is an example of a list

- ► df\$v1
- ▶ df[["v1"]]
- ▶ df[[6]]

- ▶ matrix: rectangular array with a few more restrictions than data.frame
- ▶ list: more general type of array that can be rectangular, but need not be. A data.frame is an example of a list

- ► df\$v1
- ▶ df[["v1"]]
- ▶ df[[6]]

- ▶ matrix: rectangular array with a few more restrictions than data.frame
- ▶ list: more general type of array that can be rectangular, but need not be. A data.frame is an example of a list

- ► df\$v1
- ▶ df[["v1"]]
- ▶ df[[6]] (if v1 is 6th variable)

- ▶ matrix: rectangular array with a few more restrictions than data.frame
- ▶ list: more general type of array that can be rectangular, but need not be. A data.frame is an example of a list

- ► df\$v1
- ▶ df[["v1"]]
- ▶ df[[6]] (if v1 is 6th variable)
- ▶ df[, "v1"]

- ▶ matrix: rectangular array with a few more restrictions than data.frame
- ▶ list: more general type of array that can be rectangular, but need not be. A data.frame is an example of a list

- ► df\$v1
- ▶ df[["v1"]]
- ▶ df[[6]] (if v1 is 6th variable)
- ▶ df[, "v1"]
- ▶ df[, 6]

- ▶ matrix: rectangular array with a few more restrictions than data.frame
- ▶ list: more general type of array that can be rectangular, but need not be. A data.frame is an example of a list

- ► df\$v1
- df[["v1"]]
- ▶ df[[6]] (if v1 is 6th variable)
- ▶ df[, "v1"]
- ▶ df[, 6]
- ▶ df["v1"]

- ▶ matrix: rectangular array with a few more restrictions than data.frame
- ▶ list: more general type of array that can be rectangular, but need not be. A data.frame is an example of a list

- ► df\$v1
- ▶ df[["v1"]]
- ▶ df[[6]] (if v1 is 6th variable)
- ▶ df[, "v1"]
- ▶ df[, 6]
- ▶ df["v1"]

- ▶ matrix: rectangular array with a few more restrictions than data.frame
- ▶ list: more general type of array that can be rectangular, but need not be. A data.frame is an example of a list

- ► df\$v1
- ▶ df[["v1"]]
- ▶ df[[6]] (if v1 is 6th variable)
- ▶ df[, "v1"]
- ▶ df[, 6]
- ▶ df["v1"] (keeps col name)

1. Describe list 11 created below:

```
v1 <- 1:8
v2 <- letters[1:5]
m <- matrix(1:9, 3, 3)
l1 <- list(x = v1, y = v2, z = m)
```

- 2. What is 11\$y?
- 3. What is 11[[1]]?
- 4. What is 11[[3]][2, 2]?

Distance Matrix for Clustering

Each cell is a *distance* between unit row and unit column:

	a	b	С	d
a	0	1	2	3
b	1	0	6	7
\mathbf{c}	2	6	0	8
d	3	7	8	0

Distance Matrix for Clustering

Each cell is a *distance* between unit row and unit column:

	a	b	С	d
a	0	1	2	3
b	1	0	6	7
\mathbf{c}	2	6	0	8
d	3	7	8	0

So,
$$||(c,d)|| > ||(a,b)||$$
, e.g., $(8 > 1)$

Supervised and Unsupervised Learning

Supervised and Unsupervised Learning

Supervised: Modeling with **known** outcomes

Supervised and Unsupervised Learning

Supervised: Modeling with **known** outcomes

Unsupervised: Discovery w/ unknown outcomes

► Linear regression (LS)

- ► Linear regression (LS)
- Generalized linear regression (logistic, probit, Poisson, beta)

- ► Linear regression (LS)
- ► Generalized linear regression (logistic, probit, Poisson, beta)
- ► Bayesian modeling

- ► Linear regression (LS)
- Generalized linear regression (logistic, probit, Poisson, beta)
- ► Bayesian modeling
- ► LASSO

- ► Linear regression (LS)
- Generalized linear regression (logistic, probit, Poisson, beta)
- ► Bayesian modeling
- ► LASSO
- ► Neural networks (CNNs)

- ► Linear regression (LS)
- Generalized linear regression (logistic, probit, Poisson, beta)
- ► Bayesian modeling
- ► LASSO
- ► Neural networks (CNNs)
- ▶ NLP (predict "bot?" 0/1 from matx of word indicators)

- ► Linear regression (LS)
- Generalized linear regression (logistic, probit, Poisson, beta)
- ► Bayesian modeling
- ► LASSO
- ► Neural networks (CNNs)
- ▶ NLP (predict "bot?" 0/1 from matx of word indicators)
- ▶ Decision trees, forests, etc.

- ► Linear regression (LS)
- Generalized linear regression (logistic, probit, Poisson, beta)
- ► Bayesian modeling
- ► LASSO
- ► Neural networks (CNNs)
- ▶ NLP (predict "bot?" 0/1 from matx of word indicators)
- ▶ Decision trees, forests, etc.

- ► Linear regression (LS)
- Generalized linear regression (logistic, probit, Poisson, beta)
- ► Bayesian modeling
- ► LASSO
- ► Neural networks (CNNs)
- ▶ NLP (predict "bot?" 0/1 from matx of word indicators)
- ▶ Decision trees, forests, etc.

If you have y = f(X), it's "supervised".

▶ Network analysis (community detection)

- ▶ Network analysis (community detection)
- ▶ Principal components analysis (PCA)

- ▶ Network analysis (community detection)
- ▶ Principal components analysis (PCA)
- ► (Some neural networks)

- ► Network analysis (community detection)
- ▶ Principal components analysis (PCA)
- ► (Some neural networks)
- ▶ NLP (derive topics from documents)

- ▶ Network analysis (community detection)
- ▶ Principal components analysis (PCA)
- ► (Some neural networks)
- ▶ NLP (derive topics from documents)
- ► Clustering algorithms (most)

▶ Networks: "community detection"

- ▶ Networks: "community detection"
 - no predefined community labels

- ▶ Networks: "community detection"
 - no predefined community labels
- ▶ Roll call voting: party/faction detection

- ▶ Networks: "community detection"
 - no predefined community labels
- ▶ Roll call voting: party/faction detection
 - no predefined party/faction labels

- ▶ Networks: "community detection"
 - no predefined community labels
- ▶ Roll call voting: party/faction detection
 - ▶ no predefined party/faction labels
 - ▶ (e.g., NE's nonpartisan "Unicameral")

- ▶ Networks: "community detection"
 - no predefined community labels
- ▶ Roll call voting: party/faction detection
 - ▶ no predefined party/faction labels
 - ► (e.g., NE's nonpartisan "Unicameral")
- ► Geographic clustering: daily activities

- ▶ Networks: "community detection"
 - no predefined community labels
- ▶ Roll call voting: party/faction detection
 - ▶ no predefined party/faction labels
 - ► (e.g., NE's nonpartisan "Unicameral")
- ► Geographic clustering: daily activities
 - ▶ no "home"/"work"/"leisure" labels

► Hierarchical clustering

- ► Hierarchical clustering
 - ▶ Find best groups at many levels

- ► Hierarchical clustering
 - Find best groups at many levels
 - ▶ Units in one cluster at each level of hierarchy

- ► Hierarchical clustering
 - Find best groups at many levels
 - Units in one cluster at each level of hierarchy
- ► Partitional clustering

- ► Hierarchical clustering
 - ► Find best groups at many levels
 - Units in one cluster at each level of hierarchy
- ▶ Partitional clustering
 - ► Find splits in full set

- ► Hierarchical clustering
 - ► Find best groups at many levels
 - Units in one cluster at each level of hierarchy
- ► Partitional clustering
 - ► Find splits in full set
 - ▶ Units in only one cluster

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

Divisive clustering

ightharpoonup Start at $\{a, b, c, d, e\}$

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

- \triangleright Start at $\{a, b, c, d, e\}$
- ightharpoonup Find $\{a,b,d\}$ and $\{c,e\}$

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

- \triangleright Start at $\{a, b, c, d, e\}$
- ightharpoonup Find $\{a,b,d\}$ and $\{c,e\}$
- ▶ Find $\{a, b\}$, $\{d\}$, and $\{c, e\}$

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

- ightharpoonup Start at $\{a, b, c, d, e\}$
- ightharpoonup Find $\{a,b,d\}$ and $\{c,e\}$
- ▶ Find $\{a, b\}$, $\{d\}$, and $\{c, e\}$
- **>** ...

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

- \triangleright Start at $\{a, b, c, d, e\}$
- ightharpoonup Find $\{a,b,d\}$ and $\{c,e\}$
- ▶ Find $\{a, b\}$, $\{d\}$, and $\{c, e\}$
- **.**...
- ▶ End at $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{e\}$

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

- \triangleright Start at $\{a, b, c, d, e\}$
- ightharpoonup Find $\{a,b,d\}$ and $\{c,e\}$
- ▶ Find $\{a, b\}$, $\{d\}$, and $\{c, e\}$
- **.** . . .
- ▶ End at $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{e\}$

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

Divisive clustering

- \triangleright Start at $\{a, b, c, d, e\}$
- ightharpoonup Find $\{a,b,d\}$ and $\{c,e\}$
- ▶ Find $\{a, b\}$, $\{d\}$, and $\{c, e\}$
- **.** . . .
- ► End at $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{e\}$

Divisive clustering is "top-down"

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

Agglomerative clustering

▶ Start at $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{e\}$

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

- ▶ Start at $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{e\}$
- ▶ Find $\{a, b\}$ and leave $\{c\}$, $\{d\}$, $\{e\}$

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

- ► Start at $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{e\}$
- ▶ Find $\{a, b\}$ and leave $\{c\}$, $\{d\}$, $\{e\}$
- ightharpoonup Find $\{a,b\}$, $\{c,e\}$, and leave $\{d\}$

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

- ▶ Start at $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{e\}$
- ▶ Find $\{a, b\}$ and leave $\{c\}$, $\{d\}$, $\{e\}$
- ightharpoonup Find $\{a,b\}$, $\{c,e\}$, and leave $\{d\}$
- **.** . . .

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

- ▶ Start at $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{e\}$
- ▶ Find $\{a, b\}$ and leave $\{c\}$, $\{d\}$, $\{e\}$
- ightharpoonup Find $\{a,b\}$, $\{c,e\}$, and leave $\{d\}$
- **.**..
- ightharpoonup End at $\{a, b, c, d, e\}$

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

- ▶ Start at $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{e\}$
- ▶ Find $\{a, b\}$ and leave $\{c\}$, $\{d\}$, $\{e\}$
- ightharpoonup Find $\{a,b\}$, $\{c,e\}$, and leave $\{d\}$
- **.**..
- ightharpoonup End at $\{a, b, c, d, e\}$

Consider a set of units open to cluster discovery, $\{a,b,c,d,e\}$

Agglomerative clustering

- ▶ Start at $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{e\}$
- ▶ Find $\{a, b\}$ and leave $\{c\}$, $\{d\}$, $\{e\}$
- \blacktriangleright Find $\{a,b\}$, $\{c,e\}$, and leave $\{d\}$
- **.**..
- ightharpoonup End at $\{a, b, c, d, e\}$

Agglomerative clustering is "bottom-up"

Each unit is in a clustering at every level.

Agglomerative Hierarchical Clustering

Complete linkage clustering: greedily create clusters

Agglomerative Hierarchical Clustering

Complete linkage clustering: greedily create clusters

1. Merge closest pair (into, say, $\{a,b\}$)

Agglomerative Hierarchical Clustering

Complete linkage clustering: greedily create clusters

- 1. Merge closest pair (into, say, $\{a, b\}$)
- 2. Update dist: delete rows/cols for a, b; add row for $\{a,b\}$ (with max)
- 3. Merge closest "pair"
- 4. Update dist
- 5. ...

Agglomerative Hierarchical Complete Linkage Clusters

_				
	a	b	\mathbf{c}	d
a	0	1	2	3
b	1	0	6	7
\mathbf{c}	2	6	0	8
d	3	7	8	0

Agglomerative Hierarchical Complete Linkage Clusters

a	0	1	2	3
1				0
b	1	0	6	7
\mathbf{c}	2	6	0	8
d	3	7	8	0

	(a,b)	c	d
(a,b)	0	6	7
\mathbf{c}	6	0	8
d	7	8	0

Agglomerative Hierarchical Complete Linkage Clusters

a 0	1	_	
a σ	1	2	3
b 1	0	6	7
c 2	6	0	8
d 3	7	8	0

	(a,b)	c	d
(a,b)	0	6	7
\mathbf{c}	6	0	8
d	7	8	0

("friends of friends")

pairs(USArrests)

Delaware

Florida

Georgia ## Hawaii

Illinois

Indiana

Idaho

Iowa

##		Alabama	Alaska	Arizona	Arkansas	Californ
##	Alaska	37				
##	Arizona	63	47			
##	Arkansas	47	77	109		
##	California	56	45	23	98	

## HINAHSAS	41	1.1	103		
## California	56	45	23	98	
## Colorado	42	66	90	37	

## California	56	45	23	98	
## Colorado	42	66	90	37	
## Connecticut	128	150	185	25	

77 / 13722

d > round(0)

d <- dist(USArrests, method = "euclidean")</pre>

```
hag <- hclust(d, method = "complete")
plot(hag)</pre>
```

```
hag <- hclust(d, method = "complete")
plot(hag)</pre>
```


Recluster w/ Alternative Distance Metric: Mahalanobis

Recluster w/ Alternative Distance Metric: Mahalanobis

First, define function to make distance matrix:

```
mahal <- function(q, vc){
  storage <- matrix(NA, nrow(q), nrow(q))
  q <- as.matrix(q)
  for(i in 1:nrow(q)){
    storage[row(q), i] <- mahalanobis(x = q,
                                       center=q[i, ],
                                       cov = vc)
  }
  return(sqrt(storage))
```

Recluster w/ Alternative Distance Metric: Mahalanobis d_mah <- mahal(USArrests, cov(USArrests))</pre> row.names(d_mah) <- colnames(d_mah) <- row.names(USArrests) d mah <- as.dist(d mah)</pre>

d mah |> round(1)

Delaware

Florida

Georgia

Illinois

Hawaii ## Idaho

-	•		` '							
##				Alabam	a	Alaska	Arizona	Arkansas	Cali	forn
##	Alas	ka		4.	4					
				_	_					

ππ		ATaballa	нтарка	AI IZUIIa	ALValleas	Calliuli
## Alask	αa	4.4				
## Arizo	ona	3.2	3.9			
## Arkan	ısas	1.4	3.5	2.7		
## Calif	fornia	3.5	3.6	1.7	3.3	
## Color	rado	3.3	2.8	2.6	2 9	1

##	Alaska	4.4				
##	Arizona	3.2	3.9			
##	Arkansas	1.4	3.5	2.7		
##	California	3.5	3.6	1.7	3.3	
##	Colorado	3.3	2.8	2.6	2.9	1
##	Connecticut	2.8	5.4	2.9	2.6	3

2.2 5.4

3.5 5.6

5.0

3.8

4.9

4.6 2.3

1.7

5.0

4.5

2.5

2.1

2.6

2.5

3.3

3.8

1.5

2.4

3

82 / 1372

##	Alaska	4.4				
##	Arizona	3.2	3.9			
##	Arkansas	1.4	3.5	2.7		
##	California	3.5	3.6	1.7	3.3	
##	Colorado	3.3	2.8	2.6	2.9	

3.0 1.8

2.7

2.0

ππ	ATADAMA	итариа	ALIZUIIA	AI Nalibab	Callion
## Alaska	4.4				
## Arizona	3.2	3.9			
## Arkansas	1.4	3.5	2.7		
## California	a 3.5	3.6	1.7	3.3	

Recluster w/ Alternative Distance Metric: Mahalanobis

```
hag <- hclust(d_mah, method = "complete")
plot(hag)</pre>
```

Recluster w/ Alternative Distance Metric: Mahalanobis

```
hag <- hclust(d_mah, method = "complete")
plot(hag)</pre>
```

Cluster Dendrogram

► Small differences in Assault get over-weighted if euclidean dist

- ► Small differences in Assault get over-weighted if euclidean dist
- ► (Assault has large variance, and cor w/ UrbanPop)

- ► Small differences in Assault get over-weighted if euclidean dist
- ► (Assault has large variance, and cor w/ UrbanPop)
- ▶ Mahalanobis dist allows vars on different scales to all contribute.

- ► Small differences in Assault get over-weighted if euclidean dist
- ► (Assault has large variance, and cor w/ UrbanPop)
- ▶ Mahalanobis dist allows vars on different scales to all contribute.
- ► E.g., euclidean clusters

- ► Small differences in Assault get over-weighted if euclidean dist
- ► (Assault has large variance, and cor w/ UrbanPop)
- ▶ Mahalanobis dist allows vars on different scales to all contribute.
- ► E.g., euclidean clusters

- ► Small differences in Assault get over-weighted if euclidean dist
- ► (Assault has large variance, and cor w/ UrbanPop)
- ▶ Mahalanobis dist allows vars on different scales to all contribute.
- ► E.g., euclidean clusters

##		Murder	Assault	UrbanPop	Rape
##	Ohio	7.3	120	75	21.4
##	Utah	3.2	120	80	22.9

- ➤ Small differences in Assault get over-weighted if euclidean dist
- ► (Assault has large variance, and cor w/ UrbanPop)
- ► Mahalanobis dist allows vars on different scales to all contribute.
- ► E.g., euclidean clusters

```
## Murder Assault UrbanPop Rape
## Ohio 7.3 120 75 21.4
## Utah 3.2 120 80 22.9
```

versus

##		Murder	${\tt Assault}$	UrbanPop	Rape
##	Indiana	7.2	113	65	21.0
##	Ohio	7.3	120	75	21.4

Partitional Clustering

k-means

- 0. Standardize variables, or ensure comparable scales. A difference of 1 unit on x should be comparable to a difference of 1 unit on y.
- 1. Choose k, the number of clusters to identify.
- 2. Select the location of a center for each cluster.
- 3. Assign each observation to the cluster defined by the center closest to it.
- 4. Relocate each cluster's center to the mean of the observations currently in that cluster.
- 5. Repeat 3. and 4. until no observations gets assigned to a new cluster.

Suppose we have a set of points measured in a two-dimensional space, with $\mathtt{X1}$ and $\mathtt{X2}$ on comparable scales.

We will find k = 2 clusters. Ideas?

2. Let's randomly select two centroids:

Where "should" this point go?

3. Find (Euclidean) distance between each point and the centroids; assign each point to closer centroid:

4. Relocate centroids to the mean $(\mathtt{X1},\,\mathtt{X2})$ value for each cluster:

3. Reassign each observation to the closer centroid:

4. Recalculate the centroid locations ...

3. Reassign points to clusters ...

Standardization: Why, before clustering?

Suppose we have prior turnout [0,1] and education (yrs):


```
k2 <- kmeans(df2, centers = 2)
names(k2)
## [1] "cluster"
                    "centers"
                                  "totss"
                                                  "within
## [6] "betweenss" "size"
                                  "iter"
                                                  "ifault
table(k2$cluster)
##
## 1 2
## 57 43
k2$centers
```

```
## educ priorTurnout
## 1 12.841805 0.7007953
## 2 6.740813 0.3477128
```


Standardized:

```
df2.standard <- data.frame(scale(df2))
ggplot(df2.standard, aes(educ, priorTurnout)) +
  geom_point() + geom_smooth()</pre>
```


educ priorTurnout ## 1 -0.7388515 -0.7791249 ## 2 0.8331730 0.8785876

Selecting k

How do we select k?

Quick quiz:

Given y = (4, 2, 5, 9, 10), calculate

$$\sum_{i=3}^{4} y_i$$

•

Total within-cluster sum of squares:

$$TSS_{\text{Within}} = \sum_{\text{(Clusters) (Obs in Cluster}_i)} \sum_{\text{(Distance (Obs - Cluster Mean))}}$$

Total within-cluster sum of squares:

$$TSS_{\text{Within}} = \sum_{\text{(Clusters)}} \sum_{\text{(Obs in Cluster}_i)} (\text{Distance}(\text{Obs} - \text{Cluster Mean}))$$

$$= \sum_{i=1}^k \sum_{x_j \in C_i} (\text{Distance}(x_j - \mu_i))^2$$

$$= \sum_{i=1}^k \sum_{x_j \in C_i} ||x_j - \mu_i||^2$$

Total within-cluster sum of squares:

$$TSS_{\text{Within}} = \sum_{\text{(Clusters)}} \sum_{\text{(Obs in Cluster}_i)} (\text{Distance}(\text{Obs} - \text{Cluster Mean}))$$

$$= \sum_{i=1}^k \sum_{x_j \in C_i} (\text{Distance}(x_j - \mu_i))^2$$

$$= \sum_{i=1}^k \sum_{x_i \in C_i} ||x_j - \mu_i||^2$$

 $ightharpoonup TSS_{Within}$ should always decrease with more clusters

Total within-cluster sum of squares:

$$TSS_{\text{Within}} = \sum_{\text{(Clusters)}} \sum_{\text{(Obs in Cluster}_i)} (\text{Distance}(\text{Obs} - \text{Cluster Mean}))$$

$$= \sum_{i=1}^k \sum_{x_j \in C_i} (\text{Distance}(x_j - \mu_i))^2$$

$$= \sum_{i=1}^k \sum_{x_i \in C_i} ||x_j - \mu_i||^2$$

- $ightharpoonup TSS_{Within}$ should always decrease with more clusters
 - ▶ (But what's the point of 200 obs, 200 clusters?)

Total within-cluster sum of squares:

$$TSS_{\text{Within}} = \sum_{\text{(Clusters)}} \sum_{\text{(Obs in Cluster}_i)} (\text{Distance}(\text{Obs} - \text{Cluster Mean}))$$

$$= \sum_{i=1}^k \sum_{x_j \in C_i} (\text{Distance}(x_j - \mu_i))^2$$

$$= \sum_{i=1}^k \sum_{x_i \in C_i} ||x_j - \mu_i||^2$$

- $ightharpoonup TSS_{Within}$ should always decrease with more clusters
 - ▶ (But what's the point of 200 obs, 200 clusters?)
- ▶ Select k s.t. additional cluster yields $\downarrow \downarrow \downarrow$ in TSS_{Within}

```
max_k <- 10 # maximum number clusters to test
tot_within_ss <- vector("numeric", length = max_k - 1)
for(idx_k in 2:max_k){
   k_out <- kmeans(df2.standard, centers = idx_k)
   tot_within_ss[idx_k - 1] <- k_out$tot.withinss</pre>
```

```
max_k <- 10 # maximum number clusters to test
tot_within_ss <- vector("numeric", length = max_k - 1)
for(idx_k in 2:max_k){
   k_out <- kmeans(df2.standard, centers = idx_k)
   tot_within_ss[idx_k - 1] <- k_out$tot.withinss
}</pre>
```

Output:

```
tot_within_ss
```

```
## [1] 67.98793 47.78783 36.69742 29.07892 31.99645 21
## [9] 12.42197
```

A Scree Plot

```
plot(2:max_k, tot_within_ss, xlab = "Number of Clusters, k"
    ylab = "Total Within Sum of Squares", type = "b")
```



```
max k <- 10 # maximum clusters to test
tot within ss <- vector("numeric", length = max k - 1)
for(idx k in 2:max k){
 k out <- kmeans(df2.standard,
                  centers = idx k,
                  nstart = 10
 tot within ss[idx k - 1] <- k out$tot.withinss
```

tot within ss

```
max k <- 10 # maximum clusters to test
tot within ss <- vector("numeric", length = max k - 1)
for(idx k in 2:max k){
 k out <- kmeans(df2.standard,
                  centers = idx k,
                  nstart = 10
 tot within ss[idx k - 1] <- k out$tot.withinss
```

```
## [1] 67.98793 47.78783 36.69742 29.02215 23.33501 18
## [9] 12.19779
```

A Better Scree Plot

An Even Better Scree Plot

Other applications: Geolocations

Figure 1: Clusters of Geolocations

Other applications: Regimes

Figure 2: Comparative Regime Types

Other applications: Senate Speeches

Other applications: Senate Speeches

Figure 3: Senate Speeches

Density-based clustering

1. Find each point's neighbors

- 1. Find each point's neighbors
- 2. ID *core* points with enough neighbors

- 1. Find each point's neighbors
- 2. ID *core* points with enough neighbors
- 3. Connect nearby core points

- 1. Find each point's neighbors
- 2. ID *core* points with enough neighbors
- 3. Connect nearby core points
- 4. Assign non-core points to near clusters (or noise)

Other applications:

Figure 4: CLARANS: Not Great!

Other applications:

Figure 5: DBSCAN: Great!

Congress Clusters

```
congress.url <- "http://j.mp/302nedz"
congress <- read_csv(congress.url)</pre>
dwnom80 <- cbind(congress$dwnom1[congress$congress == 80],</pre>
                  congress$dwnom2[congress$congress == 80])
dwnom112 <- cbind(congress$dwnom1[congress$congress == 112]</pre>
                   congress$dwnom2[congress$congress == 112]
k80two.out <- kmeans(dwnom80, centers = 2)
k112two.out <- kmeans(dwnom112, centers = 2)
k80four.out <- kmeans(dwnom80, centers = 4)
k112four.out <- kmeans(dwnom112, centers = 4)
\lim <- c(-1.5, 1.5)
xlab <- "Econ Lib/Cons"</pre>
ylab <- "Racial Cons/Lib"</pre>
```


Exercise

Exercise

1. Checkout CRAN Task View for Clustering:

https://cran.r-project.org/web/views/Cluster.html

2. Discover clusters in your final project data!

(Use 2 predictors to visualise; more predictors to discover higher-dim clusters.)