Ele.II summer15 mt3 Name:

SurName:

Number:

P1 V_{BE1} = V_{BE2} =0.6V, β_{F1} = β_{F2} =100, V_{T} =25mV are given for the Transistors in the figure.

Pla) Find I_{E2Q}.(2p)

WEZZ = 3 - 2.0,6V=1,8V

I = 22 = 1/8V = IMA = I (24

imza:

Answer-1a IE2Q= ImA

P1b) Find ac model of the circuit excluding the source and the load.(3p)

The equivalent translator

No Tole//John 1012

3706//John 1012

3706//John

√0 = - Smir. (4.h.//11h) = -60 = -16 √1 = 1+8mir. 0,2h

1= 104/1704/1812=214 10= RC=44

1512=AF12. (==+0,24)=2,5M, 211= \$16.24 th

P1c) Find ac gain of the circuit (vo/vg) by using the ac model obtained in part b.(2p)

Answer-1c (vo/vg)=

2 John 2 2 mm 2 2 mm

\$16.V; = 21 (16). 12 = -8

P2 For the MOSFETs in the figure, k_p '= $\mu_p c_{ox}$ =40 μ A/V², k_n '= $\mu_n c_{ox}$ =80 μ A/V², V_{An} = V_{Ap} =40V, $V_{Th,p}$ = -0.8V, $V_{Th,n}$ = 0.6V are given. Vin1=Vin2=0 for DC case.

P2a) Find the differential gain of the circuit {vo/(vin1-vin2)}.(4p)

495	9m1 (601)
Vid	2

L(um)	W(um)
0.7	28
0.7	28
0.7	7
0.7	7
0.7	7
0.7	7
0.7	7
	0.7 0.7 0.7 0.7 0.7 0.7

Answer-2a

601 = 800k / Vo - fus.

A STATE OF THE PROPERTY OF THE
155 -V2.10, 80M.01M .40
1-0,4m.400h
1/0
-

P2b) Find CMRR of the circuit. (2p)

Answer-2b CMRR=

CMAR = 9m1. RSS = Rm1. PSS = 0,56m1. 200h = 112 = 412A

P2c) Design the current source lk by using one transistor operating together with the current mirror structure. (2p)