Systematic way to solve linear equations

Rohit Budhiraja, IITK

Applied Linear Algebra for Wireless Communications

Recap and agenda for today's class

- Discussed the following in the last lecture
 - solution of "linear" equations
- Discuss the following today
 - systematic way to solve "linear" equations'
- Reference for today's class Chap 2.2 of the book

The Idea of Elimination (1)

- Systematic way to solve linear equations is called "elimination"
- We understand it using a 2 by 2 example

Before
$$\begin{array}{c} x-2y=1\\ 3x+2y=11 \end{array}$$
 After $\begin{array}{c} x-2y=1\\ 8y=8 \end{array}$ (subtract to eliminate 3x)

- Before elimination, x and y appear in both equations
- After elimination, the first unknown x has disappeared from 2nd equation
- System is solved from bottom up (back substitution) x = 3 and y = 1
- Important point: Original equations have the same solution x=3 and y=1

The Idea of Elimination (2)

- Figure shows two systems as a pair of lines, intersecting at point (3,1)
- After elimination, lines still meet at the same point equations

The Idea of Elimination (3)

Before
$$x-2y=1 \ 3x+2y=11$$
 After $x-2y=1 \ 8y=8$ (subtract to eliminate 3x)

- Ask ourself how that multiplier l = 3 was found.
 - First equation contains 1x: first pivot was 1 (coefficient of x)
- Second equation contains 3x, so the multiplier was 3
- Then subtraction 3x 3x produced the zero and the triangle
- Pivot = first nonzero in the row that does the elimination
- Multiplier = (entry to eliminate) divided by (pivot) = $\frac{3}{1}$
- Pivots are on the diagonal of the triangle after elimination

Breakdown of Elimination

Before
$$x-2y=1 \ 3x+2y=11$$
 After $x-2y=1 \ 8y=8$ (subtract to eliminate $3x$)

- We could have solved those equations for x and y without reading this book
- It is an extremely humble problem, but we stay with it a little longer
- Even for a 2 by 2 system, elimination might break down
- By understanding possible breakdown (when we can't find a full set of pivots)
 - we will understand the whole process of elimination
- Normally, elimination produces pivots that take us to solution
- But failure is possible at some point, method might ask us to divide by zero
 - We can't do it process has to stop

Breakdown of Elimination - first example (1)

- There might be a way to adjust and continue or failure may be unavoidable
- Consider the following example

$$x-2y=1$$
 Subtract 3 times $x-2y=1$
 $3x-6y=11$ eqn. 1 from eqn. 2 $x-2y=1$
 $0y=8$.

- There is no solution to 0y = 8
 - Normally we divide the right side 8 by the second pivot
 - But this system has no second pivot (Zero is never allowed as a pivot!)
- If there is no solution, elimination will discover that fact
 - For example, by reaching an equation like 0y = 8

Breakdown of Elimination - first example (2)

• Row and column pictures in figure show why failure was unavoidable

- Row picture of failure shows parallel lines-which never meet
 - Solution must lie on both lines with no meeting point, eqs have no solution
- Column picture shows the two columns (1, 3) and (-2, -6) in same direction
 - All combinations of columns lie along a line
- But the column from the right side is in a different direction (1, 11)
- No combination of columns can produce this right side no solution

Breakdown of Elimination - second example (1)

Instead of no solution, second example has infinitely many solutions

$$x - 2y = 1$$
 Subtract 3 times $3x - 6y = 3$ eqn. 1 from eqn. 2

$$x - 2y = 1$$
 Still only one pivot.

- Every y satisfies 0y = 0
 - There is really only one equation x 2y = 1
- Unknown y is "free"
 - After y is freely chosen, x is determined as x = 1 + 2y

Breakdown of Elimination - second example (2)

- In the row picture, the parallel lines have become the same line
 - Every point on the line satisfies both eqs we have a whole line of solutions
- In the column picture, b = (1,3) is now the same as column 1
 - So we can choose x=1 and y=0 and also x=0 and $y=\frac{-1}{2}$
- Every (x, y) that solves the row problem also solves the column problem

Breakdown of Elimination - third example

- Failure: for *n* equations we do not get *n* pivots
- Elimination leads to an equation
 - $0 \neq 0$ (no solution) or 0 = 0 (many solutions)
- Success comes with n pivots. But we may have to exchange the n equations
- Temporary failure (zero in pivot). A row exchange produces two pivots:

Permutation
$$0x + 2y = 4$$
Exchange the
$$3x - 2y = 5$$
Exchange the
$$3x - 2y = 5$$
$$2y = 4.$$

- Last equation gives y = 2, and then the first equation gives x = 3
- Row picture is normal (two intersecting lines)
- Column picture is also normal (column vectors not in the same direction)
- Pivots 3 and 2 are normal-but a row exchange is required

Breakdown of Elimination -conclusion

- Examples 1 and 2 are singular-there is no second pivot
- Example 3 is nonsingular there is a full set of pivots and exactly one solution
- Singular equations have no solution or infinitely many solutions
- Pivots must be nonzero because we have to divide by them

Three Equations in Three Unknowns (1)

• To understand Gaussian elimination, we consider a 3 by 3 system

$$2x + 4y - 2z = 2
4x + 9y - 3z = 8
-2x - 3y + 7z = 10$$

- First pivot is the boldface 2, and below that pivot we want to eliminate 4
 - First multiplier is 4/2 = 2. Multiply pivot equation by $l_{21} = 2$ and subtract
 - Subtraction removes 4x from the second equation
- Step 1: Subtract 2 times Eq. (1) from Eq. (2)
 - New equation is y + z = 4
- We also eliminate -2x from equation 3-still using the first pivot
- Quick way is to add equation 1 to equation 3
 - Rule in this book is to subtract rather than add

Three Equations in Three Unknowns (2)

- Systematic pattern has multiplier $l_{31} = -2/2 = -1$
- Step 2: Subtract −1 times Eq. 1 from Eq. 3
 - This leaves y + 5z = 12
- Two new equations involve only y and z. Second pivot (in boldface) is 1

- We have reached a 2 by 2 system. Final step eliminates y to make it 1 by 1:
- Step 3: Subtract Eq 2_{new} from 3_{new} Multiplier is 1/1 = 1. Then 4z = 8

Three Equations in Three Unknowns (3)

• Original $A\mathbf{x} = \mathbf{b}$ has been converted into an upper triangular $U\mathbf{x} = \mathbf{c}$

$$2x + 4y - 2z = 2$$
 $2x + 4y - 2z = 2$
 $4x + 9y - 3z = 8$ has become $1y + 1z = 4$
 $-2x - 3y + 7z = 10$ $4z = 8$

- Goal is achieved-forward elimination is complete from A to U
- Notice the pivots 2, 1, 4 along the diagonal of U
- Pivots 1 and 4 were hidden in the original system
- Elimination brought them out. $U\mathbf{x} = \mathbf{c}$ is ready for back substitution

Elimination from A to U

- For a an n by n problem, elimination proceeds in the same way
 - Column 1. Use the first equation to create zeros below the first pivot
 - Column 2. Use the new equation 2 to create zeros below the second pivot
 - Columns 3 to n. Keep going to find all n pivots and the upper triangular U

After column 2 we have
$$\begin{bmatrix} \mathbf{x} & x & x & x \\ 0 & \mathbf{x} & x & x \\ 0 & 0 & x & x \\ 0 & 0 & x & x \end{bmatrix}.$$
 We want
$$\begin{bmatrix} \mathbf{x} & x & x & x \\ \mathbf{x} & x & x \\ \mathbf{x} & x \end{bmatrix}.$$

- The result of forward elimination is an upper triangular system
- It is nonsingular if there is a full set of n pivots (never zero!)

Review of key ideas

- A linear system $A\mathbf{x} = \mathbf{b}$ becomes upper triangular $(U\mathbf{x} = \mathbf{c})$ after elimination
- We subtract l_{ij} times equation j from equation i, to make (i, j) entry zero
- Multipher is $l_{ij} = \frac{\text{entry to eliminate in row i}}{\text{pivot in row j}}$. Pivots can not be zero!
- When zero is in pivot position, exchange rows if there is a nonzero below it
- Upper triangular $U\mathbf{x} = \mathbf{c}$ is solved by back substitution (starting at bottom)
- When breakdown is permanent, $A\mathbf{x} = \mathbf{b}$ has no solution or infinitely many.

