MEMORANDUM REPORT BRL-MR-3597

BLAST PARAMETRIC STUDY USING A 1:57 SCALE SINGLE DRIVER MODEL OF A LARGE BLAST SIMULATOR

GEORGE A. COULTER

JUNE 1987

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

US ARMY BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed. Do not return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

Ouets	assilieu			
CURITY	CLASSIFICATION	OF	THIS	PAGE

REPORT C	OCUMENTATIO	N PAGE		ON	rm Approved MB No. 0704-0188 p. Date: Jun 30, 1986	
1a. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE	MARKINGS			
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution				
2b. DECLASSIFICATION/DOWNGRADING SCHEDU	LE	is unlimit	ed.			
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION	REPORT NUMB	ER(S)	
6a. NAME OF PERFORMING ORGANIZATION Ballistic Research Laboratory	6b. OFFICE SYMBOL (If applicable) SLCBR-TB-B	7a. NAME OF MO	ONITORING ORG	SANIZATION		
6c. ADDRESS (City, State, and ZIP Code)	21005-5066	7b. ADDRESS (Cit	y, State, and Zi	IP Code)		
8a. NAME OF FUNDING/SPONSORING ORGANIZATION USA Harry Diamond Laboratory	8b. OFFICE SYMBOL (If applicable) SLCHD-TI	9. PROCUREMEN	TINSTRUMENT	IDENTIFICATION	I NUMBER	
8c. ADDRESS (City, State, and ZIP Code)	OBGRE 11	10. SOURCE OF	FUNDING NUME	BERS		
Adelphi, MD 20783-1197		PROGRAM ELEMENT NO.	PROJECT NO. 1L162120	TASK NO.	WORK UNIT ACCESSION NO	
16. SUPPLEMENTARY NOTATION						
17. COSATI CODES FIELD GROUP SUB-GROUP 20 04	18. SUBJECT TERMS Air Blast Blast Simulate BRL-Q1D Hydro	Cold Cor or Driver code Impuls	as Pressure	Shock To Scaling	block number) ssure ube Model Techniques or Blast	
A 1:57 scale, single cold air operated in a driver overpress 10-225 kPa range for the given tive impulse, cold gas arriva measured at stations 7-28 diam cold gas arrival at the test factor of two at the 220 kPa dicted by the BRL-Q1D Code single form. Because of the large cabove 100 kPa, it is recommen Due to the side-on overpressum nozzle recompression fan, a si	driver model of sure range of 30 and drag enhanced along the stations was for input level. Sometiment of gas dynamic ded that a hot the sure positive dur	f a large bla 00-1800 kPa. res. Blast p ncement, and e test section und to enhand imilar, although cts of driver range are pro- s drag enhand gas driver be ation decreas	recompression of the second the dynough larger length, esented in cement at the used for second caused	sion fan a simulator amic drag r enhancem volume, an tabular a test secti the full- by arrival	rrival were model. The pressure by a ent was pre- d throat baffl nd graphical on pressures size simulator of the throat	
full-scale simulator. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT ☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS		21. ABSTRACT S Unclassi	ECURITY CLASS	IFICATION		
22a. NAME OF RESPONSIBLE INDIVIDUAL George A. Coulter		22b. TELEPHONE (301) 278-			-TB-B	

DD FORM 1473, 84 MAR

All other editions are obsolete.

Unclassified

The following page is blank.

ACKNOWLEDGMENTS

The author wishes to acknowledge the excellent mechanical design work on the model test section and the stagnation probe installation by Mr. Robert Peterson. Also, to thank Mr. Peter Muller, the electrical engineer in charge of the instrumentation facility, for the setup and operation of the data acquisition system. Also, Mr. Gerald Bulmash and Mr. John Simansky for their help in the data processing from analog to digital form for plotting and analysis with the BRL-QID code.

1,2

TABLE OF CONTENTS

		Page
	ACKNOWLEDGMENTS	. lii
	LIST OF ILLUSTRATIONS	. vii
	LIST OF TABLES	. ix
1	INTRODUCTION	. 1
1.1	Background	. 1
1.2	Objectives	. 1
2	TEST PROCEDURES	. 1
2.1	Simulator Model	. 1
2.2	Instrumentation	. 1
2.3	Test Matrix	. 5
3	RESULTS	. 5
3.1	Test Station Pressure as a Function of Driver	
	Parameters	. 5
3.2	Hydrocode Results	. 21
3.3	Cold Gas/Recompression Fan Effects	. 43
4	ANALYSIS	. 65
4.1	Yield Predictions as a Function of Driver	1 125
		. 65
4.2		. 79
		. 79
		. 85
	DISTRIBUTION LIST.	. 87
	1.1 1.2 2 2.1 2.2 2.3 3 3.1 3.2 3.3	LIST OF ILLUSTRATIONS. LIST OF TABLES INTRODUCTION Background Objectives TEST PROCEDURES. Instrumentation Instrumentation Test Matrix. RESULTS. RESULTS. Test Station Pressure as a Function of Driver Parameters Cold Gas/Recompression Fan Effects ANALYSIS ANALYSIS Throat Baffle Effects. SUMMARY AND CONCLUSIONS. LIST OF REFERENCES.

				9
				Wr.
		ě		X
			M.	
· ·				
	±-			

LIST OF ILLUSTRATIONS

			Page
FIGURE	1.	Sketch of 1:57 Scale Single Driver Model of Large	
	o.	Blast Simulator	2
	2.	Schematic of Data Acquisition/Reduction Sytems	3
	3.	Pressure-Time Records from Test Section - Short	
		Driver, 314 kPa	9
	4.	Pressure-Time Records from Test Section - Short	9.3
	-	Driver, 1124 kPa	11
	5.	Pressure-Time Records from Test Section - Short	1.0
	,	Driver, 4413 kPa	13
	6.	Pressure-Time Records from Test Section - Short	
	-	Driver, 14479 kPa	16
	7.	Side-On Shock Overpressure Along Test Section -	10.00
		Short Driver	19
	8.	Side-On Shock Overpressure Along Test Section -	
	4	Long Driver	20
	9.	Test Station Overpressure as a Function of Driver	
	10	Pressure	22
	10.	Pressure-Time Records from Test Section - Long	0.0
		Driver, 4220 kPa	23
	11.	Pressure-Time Records from Test Section - Long	0.0
	10	Driver, 5171 kPa	26
	12.	Pressure-Time Records from Test Section - Long	20
	10	Driver, 7481 kPa	29
	13.	Pressure-Time Records from Test Section - Long	20
		Driver, 13169 kPa	32
	14.	Hydrocode Predictions - Short Driver, 314 kPa	39
	15.	Hydrocode Predictions - Short Driver, 1124 kPa	40
	16.	Hydrocode Predictions - Short Driver, 4413 kPa	41
	17.	Hydrocode Predictions - Short Driver, 14480 kPa	42
	18.	Hydrocode Side-On Overpressure Predictions - Long	
	19.	Driver; 2034, 3103, and 4220 kPa	44
	19.	Hydrocode Stagnation Overpressure Predictions - Long Driver; 2034, 3103, and 4220 kPa	46
	20.	Hydrocode Side-On Overpressure Predictions - Long	40
	200	Driver; 7480, 10963, and 13169 kPa	48
	21.	Hydrocode Stagnation Overpressure Predictions - Long	40
	~	Driver; 7480, 10963, and 13169 kPa	50
	22.	Hydrocode Dynamic Overpressure Predictions - Long	30
	220	Driver; 7480, 10963, and 13169 kPa	52
	23.	Arrival Time of Cold Gas, after Shock Front Arrival	32
	25	at Test Station	56
	24.	Drag Enhancement Ratio - Caused by Cold Gas Arrival	30
	20 7 0	at Test Station	57
	25.	Arrival Time of Recompression Fan after Shock Front	31
	236	Arrival at Test Station	58
	26.	Comparison of Cold Gas Effects for Different Driver	30
	200	Configurations	59
	27.	Experimental Results Scaled to Full-Size; Yields for	2)
		Station at 20 Diameters - 16:1 Throat Ratio	68

			Page
FIGURE		Experimental Results Scaled to Full-Size; Yields for Stations at 7 or 20 Diameters - 33:1 Throat Ratio Full-Scale Impulse vs Side-On, Overpressure at 20	72
	29.	Diameters; for Different Driver Lengths, 16:1 Throat Ratio	76
	30.	Diameters; for Different Driver Lengths, 33:1 Throat Ratio	77
	31.	Impulse vs Side-On Overpessure for 1 kt Surface Burst	78
	32.	Predicted Yield as a Function of Driver Length, 16:1	2.0
	33.		80
		Throat Ratio	81
	34.	Experimental Baffle Effects Scaled to Full-Size	82
	35.	Effect of Throat Baffle on Driver Length	83

LIST OF TABLES

			Page
TABLE 1	l. Test Matrix	G	 6
2	2. Blast Wave Parameters vs Driver Parameters; Test		
	Section to Throat Area Ratio of 16:1		 35
3	3. Blast Wave Parameters vs Driver Parameters; Test		
	Section to Throat Area Ratio of 33:1	•	 37
4	4. Blast Wave Parameters vs Driver Parameters; Test		
	Section to Throat Area Ratio of 64:1		 38
5	5. Comparison of Computer Code Simulation with Measured		7.0
	Parameters; 288 cm Driver, 16:1 Throat Ratio	•	 54
6	6. Predicted Yield from Experimental Side-On Overpressure	ž	
	Impulse	•	 66

.

1. INTRODUCTION

- 1.1 <u>Background</u>. The work being reported is part of a current research task at the Ballistic Research Laboratory (BRL) to design a large blast/thermal simulator for multiservice use. The simulator is to be large enough to conduct full-size vehicle tests throughout a broad spectrum of blast/thermal effects, simulating a range of blast and thermal from nuclear environments. The simulator facility is to be similar to the French facility of Gramat (Reference 1), but is to have expanded operational capabilities, both in size and in the simulation ranges. Previous phases of the task at BRL have been reported in Reference 2, 3, and 4.
- 1.2 Objectives. The experiments reported here were designed to answer some questions concerning the basic shock parameters necessary to the design of the full-size blast simulator. These parameters are: the test station pressure as a function of driver pressure, the driver length/volume needed to produce the desired range of yields, the cold gas driver effect, and the effect of the recompression fan from the expansion of the divergent throat nozzle. These effects were to be examined both experimentally and by hydrocode simulation. References 2, 4, and 5 describe the BRL-QlD hydrocode used for the computer simulation.

2. TEST PROCEDURES

The experimental parameter study task consisted first, of the design and fabrication of a 1:57 scale, single cold air driver model of the anticipated full-size blast simulator; secondly, of a selection of a range of driver/throat baffle configurations to produce the desired test pressure/yield levels, and to record the pressure-time results as a function of test section location. The model is described in the next section.

2.1 Simulator Model. The 1:57 scale for the model was chosen for the experiments, primarily because of the ready availability of the steel pipe components of the simulator model. A sketch of the shock tube model is shown in Figure 1. The drivers consisted of assorted lengths (6.05-288.0 cm) of 10.16 cm inside diameters, smooth thick-walled pipe. This was attached to the long test section (.254 I.D. by 17.14 m long - closed at end) through a converging throat or baffle to the diaphragm section. A diverging section expanded to near the inside diameter of the test section. Cold compressed air was used for the driver gas. Mylar, aluminum, and copper diaphragms were used to contain the monitored driver pressure until the diaphragm self-ruptured.

Stations for pressure transducers (side-on and stagnation probes) were located along the test section at 7, 15, 20, 24, and 28 test section diameters as noted on the drawing in Figure 1. The stations are listed on the pressure-time plots as 70-280, respectively, in the Results section.

The recording and data reduction instrumentation is described in the next section.

2.2 <u>Instrumentation</u>. Two separate sets of recording instrumentation were used for the experimental shots. Figures 2-A and 2-B describe the two

- (1) DIMENSIONS IN CENTIMETERS
- (2) NOT TO SCALE
- (3) DIAPHRAGMS WERE MYLAR, AL or Cu
- (4) DIMENSIONS ARE FOR INSIDE

Figure 1. Sketch of 1:57 Scale Single Driver Model of Large Blast Simulator.

N

A. Tape System

Figure 2. Schematic of Data Acquisition/Reduction Systems.

B. Oscillograph System

Figure 2. Schematic of Data Acquisition/Reduction Systems (Cont'd).

types used. Both were used to record the output generated by the PCB Model 113A24 quartz pressure transducers (Reference 6). The tape recording systems (Figure 2-A) was used for the initial multi-station recording. Later in the test program only two stations were used, so the second system (Figure 2-B) with the digitizing oscilloscope was used.

Both systems recorded the output from the transducers coupled through power supply interface cards and data amplifiers to the recorders. On-site comparisons of the pressure-time plots were made directly from the hard copies produced. Final data processing was completed with the computer, printer, and plotter. Plots of pressure-time records for various driver configurations are shown in the Results section.

2.3 <u>Test Matrix</u>. A variety of shots were fired with the various driver configurations. The test matrix is given in Table 1 for several shot conditions. The shots are listed by number, with driver parameters, ambient test conditions, and test section overpressure at Station 70 (7 dia.) listed for reference.

The driver lengths varied from a minimum of 6.05 cm to 288 cm for the maximum "long" driver. The inside diameter of the drivers remained constant at 10.16 cm. The pressure in the driver varied from about 300 kPa to a little over 18000 kPa. Throat baffles at the diaphragm section varied from a test section to throat baffle area ratio of 16.1 to 64:1. Sample pressure—time records and a discussion of their characteristics are given in the Results section.

3. RESULTS

The primary results from the test program are the pressure-time records and their impulses from the test stations for the various test configurations. This section will discuss the change of pressure-time records (side-on, stagnation, and dynamic) as the driver parameters were changed. Stations at 7 and 20 diameters, in particular, will be compared with computer code predictions. Both short (11.16 cm) and long (288 cm) drivers will be used for the comparisons. Finally, particular examples of cold gas/recompression fan effects will be shown.

3.1 Test Station Pressure as a Function of Driver Parameters. The first set of records shown in Figure 3-6 illustrate the decay of peak pressure along the test section for a short driver (11.12 cm) as a function of driver pressure. The driver pressure was varied within the range 314 kPa to 14479 kPa for this series of shots. These values are plotted in the graph of Figure 7. Initial test section pressures (20-225 kPa) measured at 7 diameters decay with distance along the test section to a station at 28 diameters. Decays of about 25 to 43% were measured over this distance. The hydrocode predicted similar decays, but for driver pressure above 3000-4000 kPa the predicted shock overpressure was higher than the experimental values. Below this driver range the predicted values varied both above and below the experimental values.

It can be seen from the family of curves plotted from the long driver data and shown in Figure 8, that there is very little attenuation of the

TABLE 1. TEST MATRIX

						Shock
Shot	Driver	Driver	Test Section to	Ambient	Ambient	Overpressure
Number	Pressure	Length	Throat Area Ratio	Pressure	Temperature ok	Station 70
	kPa	cm		kPa	k	kPa
4	314	11.13	16:1	102.4	294.8	20.0
5	617	0.00.00		102.3	295.0	32.6
5 6	1124			102.2	295.2	49.3
7	2055			102.1	296.6	75.0
7 8 9	3137			102.1	297.1	96.6
9	4413	Same	Same	101.9	296.0	118.2
10	5240			103.2	292.9	137.0
11	7757			103.3	294.2	169.6
12	11273			103.3	294.2	188.0
13	14479			103.3	295.4	225.0
14	5171	288	16:1	102.9	295.2	131.5
15	7481			102.2	297.9	155.0
16	3103			102.2	297.7	88.0
17	603			102.2	297.7	23.5
18	300			102.2	298.1	13.3
19	1138	Same	Same	102.0	297.7	38.0
20	2034			101.9	297.5	60.4
21	4220			102.0	297.0	106.5
22	10963			102.0	297.3	193.0
23	13169			101.7	297.7	215.0
29	1103	11.13	64:1	102.5	297.2	29.2
30	2034			102.5	297.4	39.1
31	3103			102.3	298.2	56.6
32	8618			102.5	297.5	107.0

0

TABLE 1. TEST MATRIX (CONT'D)

Shot	Driver	Driver	Test Section to	Ambient	Ambient	Shock	
Number	Pressure	Length	Throat Area Ratio	Pressure	Temperature	Overpressure	
	kPa	cm		kPa	Temperature k	kPa	
						1000	
33	565	11.13	33:1	102.2	297.9	26.1	
34	1069			102.2	298.3	36.2	
35	2027			102.2	297.5	54.3	
36	3130			102.2	297.6	74.2	
37	5192	Same	Same	102.2	298.1	99.6	
38	8618		3,444	102.2	298.8	137.2	
39	10515			102.6	298.9	156.2	
40	14479			102.6	298.6	195.3	
					2,0.0	19000	
45	13617	26.36	16:1	102.1	298.6	217.9	
46	13962	33.98	16:1	102.0	298.9	205.5	
47	317		4.7	101.1	297.5	18.3	-
48	579			101.1	297.2	27.0	
49	1096			101.0	296.5	43.5	
50	2054			101.0	296.5	76.0	
				101.0	290.5	10.0	
51	607	67.0	64:1	102.5	298.5	16.3	
52	690	89.86	64:1	102.5	298.5	22.8	
53	338	425000	16:1	101.7	297.6	14.6	
54	710		64:1	101.5	297.1	15.5	
55	359	178.76	16:1	101.4	297.0	14.3	
56	359	206.70		102.2	296.7	13.3	
57	352	237.18		102.2	297.5		
58	614	125.42	64:1	102.2	296.6	13.2 10.0	
59	324	B-67 0E	16:1	102.2	297.9		
60	703		64:1	102.6	296.7	17.9	
61	896		33:1	102.6	296.7	10.0	
62	717		33:1	102.5	296.7	20.0	
63	510		33:1		A CONTRACTOR OF THE PROPERTY O	20.0	
93	3,10		22.1	102.7	296.7	15.0	

Shot	Driver	Driver	Test Section to	Ambient	Ambient	Shock
Number	Pressure	Length	Throat Area Ratio	Pressure	Temperature k	Overpressure
	kPa	cm		kPa	k	kPa
64	17754	33.98	16:1	102.6	296.4	262.0
65	17582	6.05	4.00	102.5	296.4	200.0
66	13962	18.74		102.2	298.0	222.7
67	13962	26.36	Same	102.1	297.9	224.8
68	14307	33.98		102.0	298.0	237.5
69	3137	33.70		102.1	298.0	106.5
70	5171			102.1	298.0	147.2
71	8446			102.2	298.1	180.0
72	11549			102.2	298.0	225.0
73	13445	102.57		103.0	298.0	220.0
74	13169	72.09		103.0	298.4	221.3
75	3137	72.09		103.0	297.9	110.0
77	3123	110.18	16:1	103.0	298.1	106.0
78	1117	110.18		102.9	297.8	47.2
79	1124	72.09		102.7	297.9	48.5
80	1145	145.74		102.6	297.6	49.5
81	483	33.99	33:1	101.8	298.4	19.3
82	1827	33433		101.7	298.5	47.5
83	5199			101.7	298.4	103.0
84	14789			101.7	298.4	200.2
85	483	67.01	Same	101.6	298.2	20.0
86	1827	22 700		101.6	297.9	46.8
87	5240			101.6	297.9	108.0
88	14651			101.5	297.9	200.0
89	496	94.95		101.7	298.7	14.6
90	1834	94.95		101.6	297.9	40.8
91	545	145.75		101.6	298.0	15.0
92	490	11.13		101.8	297.9	19.5
93	18271	6.05		101.9	298.4	172.5
94	903	74.62	64:1	102.7	298.0	13.8

Figure 3. Pressure-Time Records from Test Section - Short Driver, 314 kPa.

B. Stagnation Overpressure

Figure 3. Pressure-Time Records from Test Section - Short Driver, 314 kPa (Cont'd).

Figure 4. Pressure-Time Records from Test Section - Short Driver, 1124 kPa.

Figure 4. Pressure-Time Records from Test Section - Short Driver, 1124 kPa (Cont'd).

Figure 5. Pressure-Time Records from Test Section - Short Driver, 4413 kPa.

Figure 5. Pressure-Time Records from Test Section - Short Driver, 4413 kPa (Cont'd).

Figure 5. Pressure-Time Records from Test Section - Short Driver, 4413 kPa (Cont'd).

Figure 6. Pressure-Time Records from Test Section - Short Driver, 14479 kPa.

Figure 6. Pressure-Time Records from Test Section - Short Driver, 14479 kPa (Cont'd).

Figure 6. Pressure-Time Records from Test Section - Short Driver, 14479 kPa (Cont'd).

Figure 7. Side-On Shock Overpressure Along Test Section - Short Driver.

Figure 8. Side-On Shock Overpressure Along Test Section - Long Driver.

overpressure in traveling from 7 to 28 test section diameters since "flattop" shock waves have only viscous attenuation. The hydrocode has no program for viscous attenuation and, therefore, shows no decay at all.

Figure 9 is an operating curve showing the peak overpressure to be expected at the two important stations (7 and 20 dia.) as a function of the driver pressure. The values plotted in Figures 8 and 9 were taken from the pressure-time records shown in Figures 10-13. Typical examples of pressure-time records of side-on overpessure, stagnation overpressure, and their subtraction (the dynamic pressure) are shown for the long driver of 288 cm.

Generally, between 3000 and 4000 kPa driver pressure, the predicted (computer code simulation) and experimental shock overpressures deviated. At the extreme high end for 13500 kPa, the predicted value of pressure was about 270 kPa. Experimentally, the value was 215 kPa. The lower experimental values may be explained by the thicker diaphragm needed at the higher driver pressures. Opening times are finite. Obviously, there is not a complete diaphragm removal at zero-time as was assumed by the hydrocode. Incomplete breaking of the diaphragm also occurred. All these factors tended to produce lower test section pressures than predicted from the BRL-QID code for the 3000-4000 kPa range. Below this range, the predicted values varied above and below the experimental values.

Tables 2-4 summarize the experimental data according to driver length and pressure. Representative values of the blast parameters are given for the two test stations at 7 and 20 diameters. Additionally, scaled-up values of the parameters for the full-size simulator are given in the last four columns of the tables. These values were obtained by multiplying by the scale factor of 57. The last column of the tables display the equivalent high explosive yield for the full-size conditions. The scaling calculations will be discussed in some detail in the Analysis section.

3.2 <u>Hydrocode Results</u>. One of the basic research efforts at BRL is to computationally model shock tube processes. The BRL-QID code used for these predictions is an adiabatic, inviscid eulerian computer algorithm adapted at BRL for this purpose. See References 2, 4, 5, and 7 for additional descriptions and uses of the code. All references to hydrocode computations refers to the BRL Quasi-one-dimensional code (BRL-QID).

The one-dimensional computational modeling used had the advantages that it was inexpensive to run, had capability to perform parametric studies quickly, and was useful for obtaining good engineering approximations to the simulator design. Its obvious disadvantage was that the one-dimensional analysis was necessarily an approximation. As is seen later, the BRL-QlD code did predict appearance of the cold driver gas and the recompression fan from the diverging nozzle, but mispredicted the magnitude of both effects and their arrival after the shock front at a particular test station.

Figures 14-17 show typical records obtained for the short driver (11.13 cm). Stations 1, 2, and 3 of the computer runs correspond to Stations 70, 150, and 200 in the experimental records. As noted above in Section 3.1 of the Results, the code predicted higher peak overpressure in the test section for driver pressures in the 3000-4000 kPa range. Below this range,

Figure 9. Test Station Overpressure as a Function of Driver Pressure.

Figure 10. Pressure-Time Records from Test Section - Long Driver, 4220 kPa.

Figure 10. Pressure-Time Records from Test Section - Long Driver, 4220 kPa (Cont'd).

Figure 10. Pressure-Time Records from Test Section - Long Driver, 4220 kPa (Cont'd).

Figure 11. Pressure-Time Records from Test Section - Long Driver, 5171 kPa.

Figure 11. Pressure-Time Records from Test Section - Long Driver, 5171 kPa (Cont'd).

Figure 11. Pressure-Time Records from Test Section - Long Driver, 5171 kPa (Cont'd).

Figure 12. Pressure-Time Records from Test Section - Long Driver, 7481 kPa.

B. Stagnation Overpressure

Figure 12. Pressure-Time Records from Test Section - Long Driver, 7481 kPa (Cont'd).

Figure 12. Pressure-Time Records from Test Section - Long Driver, 7481 kPa (Cont'd).

Figure 13. Pressure-Time Records from Test Section - Long Driver, 13169 kPa.

Figure 13. Pressure-Time Records from Test Section - Long Driver, 13169 kPa (Cont'd).

Figure 13. Pressure-Time Records from Test Section - Long Driver, 13169 kPa (Cont'd).

35

TABLE 2. BLAST WAVE PARAMETERS VS DRIVER PARAMETERS; TEST SECTION TO THROAT AREA RATIO OF 16:1

				,			Ful1	Size	
Shot Number-	Driver Pressure	Driver Length	Side-On Overpressure	Positive Duration	Positive Impulse	Driver Length	Driver Volume	Positive Impulse	Yield*
Station	kPa	cm	kPa	ms	kPa-ms	m	m ³	kPa-s	kt
4-70	314	11.13	20.0	3.7	22.5	6.34	166.93	1.28	0.08
200		7.4.5.00	17.0	4.5	22.8			1.30	0.12
5-70	617		33.1	4.7	45.0			2.57	0.27
200			24.9	5.8	45.0			2.57	0.36
6-70	1124		49.9	6.0	75.1			4.28	0.65
200		same	34.1	6.9	77.3			4.41	1.29
8-70	3137	0.0.0.0	100.1	5.1	170.1			9.70	3.0
200	3137		66.7	7.3	185.5			10.57	6.3
13-70	14479		226.2	7.6	573.9			32.71	67.0
200	14412		155.8	12.2	710.9			40.52	161.0
67-70	13962	26.36	224.8	8.5	803.9	15.03	395.74	45.82	185.0
200	13702	20.30	209.6	18.0	1249.3			71.21	732.0
47-70	317	33.98	18.6	8.4	54.5	19.37	510.01	3.11	1.4
200	317	33173	16.5	8.8	56.1			3.20	1.9
49-70	1096		43.4	13.8	173.5			9.89	9.9
200	1050		49.1	16.5	168.7			9.62	7.6
69-70	3137		106.2	12.3	376.7			21.47	31.0
200	3137		94.6	15.0	421.4			24.02	49.0
	11549		224.8	12.0	830.4			47.33	205.0
72-70 200	11347		202.5	20.3	1317.5			75.09	882.0

^{*}Yields are based on full size driver diameter of 5.79 m, area of 26.33 m^2 , and are calculated from side-on overpressure impulse. Last four columns are for full size for Tables 2-4.

TABLE 2. BLAST WAVE PARAMETERS VS DRIVER PARAMETERS; TEST SECTION TO THROAT AREA RATIO OF 16:1 (CONT.)

							Full S	Size	
Shot	Driver	Driver	Side-On	Positive	Positive	Driver	Driver	Positive	
Number-	Pressure	Length	Overpressure	Duration	Impulse	Length	Volume	Impulse	Yield
Station	kPa	cm	kPa	ms	kPa-ms	m	m ³	kPa-s	kt
79-70	. 1124	72.09	48.5	29.0	351.7	41.09	1081.89	20.04	74.0
200			42.5	30.5	359.6			20.50	91.0
75-70	3137		110.0		850.6			48.48	344.0
200			94.0		857.5		rec	48.88	411.0
74-70	13169		221.3	9.5	1319.5			75.21	831.0
200			233.0	30.8	2571.3		2.00	146.56	5869.0
53-70	338	89.86	13.5	19.2	118.0	51.22	1348.60	6.73	27.0
200			14.0	20.2	131.0			7.47	34.0
73-70	13445	102.57	220.0	10.3	1412.0	58.46	1539.24	80.48	1022.0
200			224.8	43.2	3800.0			216.60	19553.0
78-70	1117	110.18	47.2	41.4	512.2	62.81	1653.77	29.20	232.0
200			40.5	44.8	505.9			28.84	278.0
77-70	3123		106.0		1350.0			76.95	1424.0
200			99.0	57.3	1274.8			72.66	1275.0
80-70	1145	144.97	49.5	57.0	700.0	83.07	2187.20	38.18	473.0
200			45.0	56.0	720.0			41.04	677.0
59-70	324	125.42	17.9	26.0	173.1	71.49	1882.32	9.87	49.0
200			16.6	39.4	180.7			10.30	64.0
55-70	359	178.76	14.2	37.3	265.0	101.93	2683.79	15.11	275.0
200			13.0	38.5	272.8			15.55	365.0
57-70	352	237.18	13.2	48.7	328.8	135.19	3559.52	18.74	618.0
200			13.0	48.5	327.4			18.66	632.0

TABLE 3. BLAST WAVE PARAMETERS VS DRIVER PARAMETERS; TEST SECTION TO THROAT AREA RATIO OF 33:1

							Full S		
Shot	Driver	Driver	Side-On	Positive	Positive	Driver	Driver	Positive	
Number-	Pressure	Length	Overpressure	Duration	Impulse	Length	Volume	Impulse	Yield
Station	kPa	cm	kPa	ms	kPa-ms	m	m ³	kPa-s	kt
93-70	18271	6.05	172.5	7.3	523.1	3.45	90.84	29.82	61.0
200			135.0	11.3	558.3			31.82	84.0
92-70	490	11.13	19.5	6.0	30.5	6.34	166.93	1.74	0.22
200			15.0	7.5	32.1			1.83	0.44
35-70	2027		54.3	11.3	120.0			6.84	2.3
200			39.0	13.8	120.0			6.84	4.0
37-70	5192		99.6	9.1	232.5			13.25	7.7
200			83.4	11.0	271.0			15.45	14.9
40-70	14479		195.3	8.3	567.9			32.37	72.0
200			142.4	14.4	636.5			36.28	121.0
81-70	483	33.99	19.3	20.8	88.0	19.37	510.01	5.02	5.5
200			15.7	18.5	84.4			4.81	7.3
82-70	1827		47.5	33.8	284.9			16.24	39.0
200			39.3	35.3	293.7			16.74	58.0
83-70	5199		103.0	43.5	686.2			39.11	192.0
200			88.9	36.3	659.6			37.60	198.0
84-70	14789		200.2	17.7	937.2			53.42	321.0
200			200.0	25.5	1525.6			89.96	1386.0
85-70	483	67.01	20.0	34.2	153.1	38.19	1005.53	8.73	27.0
200			15.7	34.3	159.5			9.09	51.0
86-70	1827		46.8	80.5	560.0			31.92	304.0
200			40.6	63.3	550.0			31.35	356.0
87-70	5240		108.0		1275.0			72.68	1181.0
200			94.9		1300.0			74.10	1415.0
88-70	14651		191.7	15.0	1450.0			82.65	1218.0
200			200.0	41.0	2640.0			150.48	7180.0
89-70	496	94.95	14.6	47.0	200.0	54.12	1424.97	11.40	114.0
200			13.5	47.5	202.0			11.51	138.0
90-70	1834		40.8	80.0	726.0			41.38	804.0
200			39.8		720.0			41.04	771.0
63-70	510	125.42	15.0	39.4	277.9	71.49	1882.32	15.84	288.0
200			13.8	67.3	314.9			17.95	508.0
91-70	545	145.75	15.2	69.0	315.0	83.07	2187.21	17.96	414.0
200	242		15.0	72.3	363.0	10000	Some period	20.69	641.0

TABLE 4. BLAST WAVE PARAMETERS VS DRIVER PARAMETERS; TEST SECTION TO THROAT AREA RATIO OF 64:1

									Full Size				
Shot Number-	Driver Pressure	Driver Length	Side-On Overpressure	Positive Duration	Positive Impulse	Driver Length	Driver Volume	Positive Impulse	Yield				
Station	kPa	cm	kPa	ms	kPa-ms	m	m ³	kPa-s	kt				
29-70	1103	11.13	29.2	28.5	76.8	6.34	166.93	4.38	1.8				
200			21.8	33.8	84.0			4.79	4.1				
30-70	2034		39.1	21.6	112.8			6.53	3.6				
200			28.8	33.2	134.0			7.64	9.7				
31-70	3103		56.6	25.8	187.5			10.69	10.4				
200			39.6	34.0	177.0			10.09	13.1				
32-70	8618		107.0	42.1	418.4			23.85	62.8				
200			86.9	35.1	451.7			25.75	94.7				
94-70	903	74.62	13.8	>85.0	300.0	42.54	1120.07	17.10	444.0				
200			13.0	>85.0	329.9			18.80	681.0				
54-70	710	89.86	15.5	86.0	257.0	51.22	1348.61	14.65	224.0				
200			13.8	86.0	283.5			16.16	371.0				

Figure 14. Hydrocode Predictions - Short Driver, 314 kPa.

Figure 15. Hydrocode Predictions - Short Driver, 1124 kPa.

Figure 16. Hydrocode Predictions - Short Driver, 4413 kPa.

Figure 17. Hydrocode Predictions - Short Driver, 14480 kPa.

the predicted pressures from the code varied both above and below the experimental values. The general decay along the test section was similar to the measured experimental values.

The positive durations predicted were 5 to 10 percent smaller than the experimental records showed. Station 3 should not be compared here (except for peak pressure) since it was near the open end of the computational shock tube. The rarefaction from the open end shortened the positive duration. The experiments used a long test section with a closed end so no rarefactions could occur.

The agreement in negative phase between the code and experimental values was not nearly as close. The code values of negative pressure were anywhere from 30 to 100% lower (Station 1, 7 diameters; before open end rarefaction arrived at station) than was actually measured. Overall, the code predictions were quite useful to predict the general pressure—time waveforms from the various driver configurations, given the limitations discussed.

3.3 Cold Gas/Recompression Fan Effects. Figures 18-22 show some of the code predictions of pressure-time records for the long driver. As was noted earlier, side-on overpressure begins to be predicted too high for driver pressures of about 3000 kPa. Both the cold gas and recompression fan (backward facing shock) arrival are very apparent. Table 5 summarizes and compares the code results with that of the test data. Figures 23-25 display these comparisons in graphical form.

Theoretically, the cold gas should not appear on side-on overpressure records at all. It does, however, appear on the experimental records although the code cannot predict it for the side-on records. It does, of course, predict it for the stagnation records. See Figure 21. Experimentally, the cold gas region tends to diffuse and be quite turbulent in nature. The code, instead, predicts very smooth pressure change upon the cold gas arrival; and it predicts a slower arrival than experimentally recorded. The cold gas average drag enhancement is predicted by the code to be higher than the data suggests. It should be noted that higher spikes do exist on the data records. Only average ratio values obtained from the impulse data were used to plot Figure 24 from Table 5-C. It should be noted that the enhancement is about constant along the test section for a given driver pressure.

The second effect that changed the pressure-time waveform (and hence yield) is shown by the code results in Figure 20. Notice the very sharp cutoff of the positive phase and the relatively low, and extensive negative phase of the records. This effect shows up sooner on the data records and is more of a rarefaction decay than a discontinuous drop as the code suggests. Experimentally, the cold gas and recompression fan effects move back from the shock front with travel along the test section. The data show that Station 70 (7 dia.) cannot be used with a cold driver operation above, perhaps, 100 kPa side-on overpressure at the station.

A shorter driver, and shorter duration record, ought to minimize the cold gas/recompression fan effects. Figure 26 shows a comparison of records from the long, 288 cm, driver with those obtained from a short,

Figure 18. Hydrocode Side-On Overpressure Predictions - Long Driver; 2034, 3103, and 4220 kPa.

Figure 18. Hydrocode Side-On Overpressure Predictions - Long Driver; 2034, 3103, and 4220 kPa (Cont'd).

Figure 19. Hydrocode Stagnation Overpressure Predictions - Long Driver; 2034, 3103, and 4220 kPa.

Figure 19. Hydrocode Stagnation Overpressure Predictions - Long Driver; 2034, 3103, and 4220 kPa (Cont'd).

Figure 20. Hydrocode Side-On Overpressure Predictions - Long Driver; 7480, 10963, and 13169 kPa.

B. Station at 20 Diameters

Figure 20. Hydrocode Side-On Overpressure Predictions - Long Driver; 7480, 10963, and 13169 kPa (Cont'd).

Figure 21. Hydrocode Stagnation Overpressure Predictions - Long Driver; 7480, 10963, and 13169 kPa.

Figure 21. Hydrocode Stagnation Overpressure Predictions - Long Driver; 7480, 10963, and 13169 kPa (Cont'd).

Figure 22. Hydrocode Dynamic Overpressure Predictions - Long Driver; 7480, 10963, and 13169 kPa.

Figure 22. Hydrocode Dynamic Overpressure Predictions - Long Driver; 7480, 10963, and 13169 kPa (Cont'd).

S

TABLE 5. COMPARISON OF COMPUTER CODE SIMULATION WITH MEASURED PARAMETERS; 288 CM DRIVER, 16:1 THROAT RATIO

		Appendix and the Control of the Cont		
Α.	Cl !-	L'mant	Overpressure.	1-10-
Α.	SHOUR	PUULL	UVEL DIESSITE	K PA

		A. Shock Front Overpressure, kra										
Shot	Driver		Experiment									
Number	Pressure		RL-Q1D Co Station	Station								
	kPa	70	150	200	240 .	280	70	150	200	240	280	
18	300	13.1		Same			13.8		13.2	13.3	13.0	
17	603	24.4		Same	1		23.5	22.8	23.2	23.0	22.0	
19	1138	35.6		Same			38.0	38.3	38.0	37.6	37.0	
20	2034	57.5		Same	1		60.4	60.0	61.2	60.4	57.0	
16	3103	92.5		Same			88.0	85.0	86.5	82.5	82.5	
21	4220	120.0		Same			106.5	100.0	100.0	100.0	93.0	
14	5171	44.57.5		No Run				122.5	120.5	111.8	110.0	
15	7480	180.8		Same			155.0	156.0	153.8	155.0	150.0	
22	10963	238.5		Same			193.0	193.0	190.0	191.0	177.5	
23	13169	257.7		Same			215.0	212.0	212.0	210.0	203.0	
				В. (Cold Gas	Arrival A	After Shoo	k Front,	ms			
20	2034	10.1	Territoria.									
16	3103	5.7					5.0					
21	4220	4.2	9.2	12.8			4.2					
14	5171	(1.5.2)	No				2.8	7.3	10.4			
15	7480	2.6	6.3	8.4	9.7	11.6	2.2	6.1	8.5	10.7		
22	10963	1.7	4.0	5.1	6.8	8.0	1.8	4.7.	6.0	7.6	8.8	
23	13169	1.6	3.7	4.7	5.5	6.6	1.7	4.3	5.2	6.6	7.5	

TABLE 5. COMPARISON OF COMPUTER CODE SIMULATION WITH MEASURED PARAMETERS; 288 CM DRIVER, 16:1 THROAT RATIO (CONT'D)

					C. Cold	Gas Drag E	nhancement	Ratio			
Shot	Driver								Experiment	1	
	Pressure			Stat	ion				Station		
	kPa	70	150	200	240	280	70	150	200	240	280
20	2034	1.33									
	3103	1.51									
		1.75	1.77								
				No Run							1.06
		2.42	2.27	2.27	2.22			1.48		1.50	1.26
		3.04	2.95	2.95	2.90	2.92		1.58		1.60	1.63
23	13169	3.33	3.48	3.45	3.45	3.36		1.80	1.90	1.90	1.90
				D. Reco	ompressio	n Fan Arri	ival After	Shock	Front, ms		
21	4220						4.2				
				No Run			3.5				
		8.0	17.6	29.5			3.5	14.0			
					20.0	25.2	3.2	10.0			
			9.8	12.6	16.0	19.7	3.8	10.1	12.9	18.0	
	Shot Number 20 16 21 14 15 22 23 21 14 15 22 23	Number Pressure kPa 20 2034 16 3103 21 4220 14 5171 15 7480 22 10963 23 13169 21 4220 14 5171 15 7480 22 10963	Number Pressure kPa 70 20 2034 1.33 16 3103 1.51 21 4220 1.75 14 5171 15 15 7480 2.42 22 10963 3.04 23 13169 3.33 21 4220 14 5171 5171 15 7480 8.0 22 10963 5.3	Number Pressure kPa 70 150 20 2034 1.33 16 3103 1.51 21 4220 1.75 1.77 14 5171 1.77 1.77 15 7480 2.42 2.27 22 10963 3.04 2.95 23 13169 3.33 3.48 21 4220 14 5171 1.5 7480 8.0 17.6 22 10963 5.3 11.3	Shot Number Driver Pressure kPa BRL-QIT State State State RPa 70 150 200 20 2034 1.33 -	Shot Number Driver Pressure kPa BRL-Q1D Code Station 20 2034 1.33	Shot Number Driver Pressure kPa BRL-Q1D Code Station 20 2034 1.33	Shot Number Driver Pressure kPa BRL-Q1D Code Station 20 2034 1.33	Shot Number Driver Pressure kPa BRL-Q1D Code Station 20 2034 1.33	Number Pressure kPa 70 150 200 240 280 70 150 200 20 2034 1.33	Shot Number Driver Pressure kPa BRL-Q1D Code Station Experiment Station 20 2034 1.33 —

Figure 23. Arrival Time of Cold Gas after Shock Front Arrival at Test Station.

Figure 24. Drag Enhancement Ratio - Caused by Cold Gas Arrival at Test Station.

SINGLE DRIVER-10.16 cm DIA. × 288 cm LONG , 16:1 TEST SECTION TO THROAT AREA RATIO

Figure 25. Arrival Time of Recompression Fan after Shock Front Arrival at Test Station.

A. Long Driver - Station 70, 16:1 Throat Ratio

Figure 26. Comparison of Cold Gas Effects for Different Driver Configurations.

B. Long Driver - Station 200, 16:1 Throat Ratio

Figure 26. Comparison of Cold Gas Effects for Different Driver Configurations (Cont'd).

C. Short Driver - Station 70, 16:1 Throat Ratio

Figure 26. Comparison of Cold Gas Effects for Different Driver Configurations (Cont'd).

D. Short Driver - Station 200, 16:1 Throat Ratio

Figure 26. Comparison of Cold Gas Effects for Different Driver Configurations (Cont'd).

E. Short Driver - Station 70, 33:1 Throat Ratio

Figure 26. Comparison of Cold Gas Effects for Different Driver Configurations (Cont'd).

F. Short Driver - Station 200, 33:1 Throat Ratio

Figure 26. Comparison of Cold Gas Effects for Different Driver Configurations (Cont'd).

 $11.13~\rm cm$, driver. Indeed, the shorter driver does show the lesser effects on the records but are still unacceptable for a correct simulation of field yields at this pressure level if taken at 7 diameters. Station 200 (20 dia.) does show an improvement with acceptable records as seen in Figure 26-D and 26-F.

Accordingly, the full-size predictions for a single, cold gas driver simulator as presented in the next section are generally for the 20 diameter station.

4. ANALYSIS

The analysis includes a discussion of the full-size simulator yield predictions as calculated from side-on overpressure impulse scaled from Reference 8 data, and the effects of changing the throat baffle ratio at the diaphragm section.

4.1 Yield Predictions as a Function of Driver Configurations. As shown in the Test Matrix of Table 1, a series of drivers from 6.05 cm to 288 cm was used on the model for a driver pressure range of about 300 kPa to 1800 kPa. Side-on overpressures at 7 diameters varied from about 10 kPa to 225 kPa.

Reference 9 presents scaling laws relating the blast parameters between explosive yields. The treatment of yield here will consider ground bursts and the impulse available at a given overpressure from a certain yield in kilotons (kt).

The calculations of predicted yield for the full-size simulator were made by first scaling up the impulse from the model experiments, by multiplying by the scale factor of 57. At the same time, driver configurations were scaled in the same way. Table 6 lists the full-size predicted peak overpressure and impulse as a function of driver pressure and configuration. Predicted records of pressure versus time and impulse versus time for stations at 7 to 20 diameters for the full-size simulator are shown in Figures 27 and 28. Figures 29 and 30 summarize the full-scale impulse as a function of driver parameters. Driver lengths and volumes are noted on each curve.

Values of full-scale impulse from Table 6 were then compared to the values given in Figure 31. This figure is a plot of data taken from the Defense Nuclear Agency (DNA) blast program listed in Reference 8. The yields were then found from Equation 1.

$$I_1/I_2 = (W_1/W_2)^{1/3}, (1)$$

where \mathbf{I}_1 is the impulse for a given reference yield, \mathbf{W}_1 , (in this case, 1 kt) and \mathbf{I}_2 is the impulse at the same pressure level for the predicted yield, \mathbf{W}_2 . Impulse is given in kPa-s and yield in kt for simulation of nuclear explosions.

It should be noted that for other field scenerios, other yields may be calculated for height-of-bursts (HOB), or for dynamic overpressure impulse,

TABLE 6. PREDICTED YIELD FOR FULL-SIZE FROM EXPERIMENTAL SIDE-ON OVERPRESSURE IMPULSE

Shot Number-	Driver Pressure	Driver Length	Driver Volume	Throat Baffle Ratio	Side-on Overpressure	Impulse	Yield
Station	kPa	m	m ³	2.200.000	kPa	kPa-ms	kt
4-200	314	6.34	166.9	16:1	17.0	1.30	0.1
47-200	317	19.37	510.0		18.6	3.20	1.9
53-200	338	51.22	1348.6		14.0	7.47	34.0
55 – 200	359	101.93	2683.8		13.0	15.55	365.0
57 – 200	352	135.19	3559.5		13.0	18.66	632.0
6 – 200	1124	6.34	166.9		34.1	4,41	1.3
49 – 200	1096	19.37	510.0		49.1	9.62	7.6
79 – 200	1124	41.09	1081.9		42.5	20.50	91.0
78 – 200	1117	62.81	1653.8		40.5	28.84	178.0
80 – 200	1145	83.07	2187.2		45.0	41.04	677.0
8-200	3137	6.34	166.9		66.7	10.57	6.3
69-200	3137	19.37	510.0		94.6	24.02	49.0
70 – 200	5171	19.37	510.0		127.0	36.54	132.0
75 – 200	3137	41.09	1081.9		94.0	48.88	411.0
77 – 200	3123	62.81	1653.8		99.0	72.66	1275.0
11–200	8274	6.34	166.9		113.4	23.95	44.0
71–200	8486	19.37	510.0		172.4	56.68	419.0
72–200	11549	19.37	510.0		202.5	75.09	882.0
13–200	14479	6.34	166.9		155.8	40.52	67.0
66 – 200	13962	10.68	281.2		192.0	60.00	466.0
65 – 70	17582	3.44	90.6		200.0	25.98	37.0
65–200	17582	3.44	90.6		141.0	30.78	74.0

TABLE 6. PREDICTED YIELD FOR FULL-SIZE FROM EXPERIMENTAL SIDE-ON OVERPRESSURE IMPULSE (CONT.)

Shot Number-	Driver Pressure	Driver Length	Driver Volume	Throat Baffle Ratio	Side-on Overpressure	Impulse	Yield
Station	kPa	m	m ³		kPa	kPa-ms	kt
81-200 85-200 89-200 91-200 35-200 82-200 86-200 90-200 37-200 83-200 40-70	483 496 545 2027 1827 1827 1834 5192 5199 5240	19.37 38.19 54.12 83.07 6.34 19.37 38.19 54.12 6.34 19.37 38.19 6.34	510.0 1005.5 1425.0 2187.2 166.9 510.0 1005.5 1425.0 166.9 510.0 1005.5 166.9	33:1	15.7 15.7 13.5 15.0 39.0 39.3 40.6 39.8 83.4 88.9 94.9	4.81 9.09 11.51 20.69 6.84 16.74 31.35 41.04 15.45 37.60 74.10	7.3 51.0 138.0 641.0 4.0 58.0 356.0 771.0 14.9 198.0 1415.0 72.0
40-200 84-200 94-200	14479 14789 903	6.34 19.37 42.54	166.9 510.0 1120.1	64:1	142.4 200.0 13.0	36.28 86.96 18.80	121.0 1386.0 681.0

Figure 27. Experimental Results Scaled to Full-Size; Yields for Station at 20 Diameters - 16:1 Throat Ratio.

Figure 27. Experimental Results Scaled to Full-Size; Yields for Station at 20 Diameters - 16:1 Throat Ratio (Cont'd).

Figure 27. Experimental Results Scaled to Full-Size; Yields for Station at 20 Diameters - 16:1 Throat Ratio (Cont'd).

D. 140-200 kPa

Figure 27. Experimental Results Scaled to Full-Size; Yields for Station at 20 Diameters - 16:1 Throat Ratio (Cont'd).

Figure 28. Experimental Results Scaled to Full-Size; Yields for Stations at 7 or 20 Diameters - 33:1 Throat Ratio.

Figure 28. Experimental Results Scaled to Full-Size; Yields for Stations at 7 or 20 Diameters - 33:1 Throat Ratio (Cont'd).

C. 90 kPa

TIME, MSEC

Figure 28. Experimental Results Scaled to Full-Size; Yields for Stations at 7 or 20 Diameters - 33:1 Throat Ratio (Cont'd).

Figure 28. Experimental Results Scaled to Full-Size; Yields for Stations at 7 or 20 Diameters - 33:1 Throat Ratio (Cont'd).

Figure 29. Full-Scale Impulse vs Side-On Overpressure at 20 Diameters; for Different Driver Lengths, 16:1 Throat Ratio.

Figure 30. Full-Scale Impulse vs Side-On Overpressure at 20 Diameters; for Different Driver Lengths, 33:1 Throat Ratio.

Figure 31. Impulse vs Side-On Overpressure for 1 kt Surface Burst.

if desired. The method of yield calculation would be the same, but impulses would be compared to another impulse-yield curve instead of Figure 31.

The yields as a function of side-on overpressure and driver/throat ratio configuration are presented in Figures 32 and 33. Data are plotted from both Tables 3 and 6 in order to compare Stations 7 and 20. These curves are ordered very well except for points on the 223 kPa set at the high yield end. There, the recompression fan has shortened the positive wave duration and the corresponding yield for a particular driver configuration. As a result, the curve turns away from the left axis to the right - indicating a longer driver is needed.

Table 6, above, lists the calculated full-size yields in the last column, as a function of the various test station pressure levels and the driver configurations used in the tests. The table illustrates the range of yields available for a single, cold gas driver design. Most are adequate except at low yields (below 50 kt) for test station pressures above 200 kPa. The decay rate caused by the relatively short positive durations needed, will be substantial. The driver pressure then would have to be increased to achieve the desired test station pressure level. This would add additional expensive material design constraints on the driver. A heated driver design would probably be a better trade-off for a large simulator than designing for the expected increased driver pressure needed.

4.2 Throat Baffle Effects. A major element in the design of the driver configuration is the test section to throat baffle area ratio (baffle ratio). As noted in the tables and graphs, throat ratios of 16:1, 33:1, and 64:1 were listed for this set of experiments. The throat baffle size is most important when designing for large yields (600 kt/at low test pressures (13-15 kPa in these tests)). Values from Table 6 show the effect of the change in throat baffle ratio. Figure 34 illustrates the similarity of waveforms obtained by varying the driver length, the driver pressure, and the baffles ratio. To summarize, the increasing baffle ratio (smaller area baffle) restricts the driver flow to add more duration to a waveform produced by a given driver length. The peak overpressure produced becomes a smaller value at the same time.

Figure 34 illustrates the results of three baffle ratios used. The maximum driver length needed at the 13-15 kPa overpressure was 42.5 m (full-size) when it was used with the 64:1 baffle ratio; whereas, a 135 meter length is needed for the 16:1 baffle ratio. A penalty in increased driver pressure must be paid, however, for the shortened driver as is seen from Figure 35. The driver pressure (noted in parenthesis) must be roughly doubled for a throat ratio increase of two times if the test section pressure is to be maintained. At low driver pressures, the smaller length driver probably will still be a cost effective design for the full-size simulator.

5. SUMMARY AND CONCLUSIONS

Experimental data have been obtained and compared with BRL-Q1D hydro-code predictions of blast effects obtained for a 1:57 scale shock tube model of a single cold air driver for large blast thermal simulator.

SINGLE DRIVER, 16:1 TEST SECTION TO THROAT AREA RATIO

Figure 32. Predicted Yield as a Function of Driver Length, 16:1 Throat Ratio.

Figure 33. Predicted Yield as a Function of Driver Length, 33:1 Throat Ratio.

Figure 34. Experimental Baffle Effects Scaled to Full-Size.

Figure 35. Effect of Throat Baffle on Driver Length.

Thermal effects were not a part of this study. BRL has the task of preparing a design for the Army of a large simulator capable of full-size multi-service equipment tests to simulate the blast and thermal effects from nuclear events. The experiments and code comparisons reported here were designed to give insight into a number of blast parameters fundamental to the design of such a simulator.

Parameters studied were: blast wave decay, overpressure in the test section as a function of driver pressure, blast wave duration and impulse as a function of driver/throat baffle configuration, and effects of the cold air driver gas/recompression fan arrival at a particular test station.

It was concluded that a station at 20 test section diameters was needed to minimize the cold gas/recompression fan effects, at test station pressures of, and above, 100 kPa. A pressure decay problem was also evident above this pressure for low yields (short duration, blast waves). This could be corrected with the use of still higher driver pressures. The suggested preliminary large simulator design had not provided for these higher pressures.

A heated driver to replace the cold driver design should probably be considered. Nearer test stations might possibly be utilized in the heater driver design. Acceptable levels of recompression fan and peak pressure decay effects, hopefully, could be obtained with such a design. Cold gas effects would, of course, have been eliminated by the heated driver. Throat baffles would still be needed to minimize the driver length at the low pressure/high yield end of the simulator's operating range.

The BRL-Q1D code was quite helpful in predicting the general waveforms for the various driver/baffle configurations tested. The predicted enhancement of the drag because of cold gas/recompression fan effects from the code were higher than actually measured. Also, the code predicted more test time to be available before the cold gas or recompression fan arrived at a given test station. The Q1D code did furnish some helpful guidelines for a very complicated blast parameter study; it did it efficiently and at a low cost. Further computations utilizing two-dimensional hydrocodes, accounting for the real gas effects present experimentally, would of course, provide better experimental agreement. This would be done at greater costs in both computing time and effort, however.

LIST OF REFERENCES

- 1. Crosnier, J. R. and Monsac, J. B. G., "Large Diameter High Performanc Blast Simulator," Seventh MABS, Medicine Hat, Alberta, Canada, 13-17 July 1981.
 - Kingery, Charles N. and Coulter, George A., "Rarefaction Wave Eliminator Concepts for a Large Blast/Thermal Simulator," BRL-TR-2634, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, February 1985 (AD A153073).
 - 3. Hisley, Dixie M., Gion, Edmund J., and Bertrand, Brian P., "Performance and Predictions for a Large Blast Simulator Model," BRL-TR-2647, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1985.
 - 4. Opalka, Klaus O. and Mark, A., "The BRL-Q1D Code: A Tool for the Numerical Simulation of Flows in Shock Tubes with Variable Cross-Sectional Area," BRL-TR-2763, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, October 1986.
 - 5. Coulter, George A., Bulmash, Gerald, and Kingery, Charles, "Feasibility Study of Shock Wave Modification in the BRL 2.44 m Blast Simulator," ARBRL-MR-03339, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, March 1984 (AD A139631).
 - "Quartz Sensors," Catalog 884, PCB Piezotronics, Inc., Depew, NY, 1984.
 - 7. Coulter, George A., Bulmash, Gerald and Kingery, Charles N. "Experimental and Computational Mdoeling of Rarefaction Wave Eliminators Suitable for the BRL 2.44 m Shock Tube," ARBRL-TR-02503, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, June 1983 (AD A131894).
 - 8. Jordan, Douglas and Welsh, Leland M., "Blast Effects Program for the IBM PC and PC/XT, Version 2.1," Report No. DNA-EH-84-02-G, HTI-5DR-84-227, Defense Nuclear Agency, Washington, DC 20305-1000, December 7, 1984.
 - 9. Gladstone, Samuel and Dolan, Philip J. Editors, "The Effects of Nuclear Weapons," Department of Army Pamphlet No. 50-3, HQ, Department of Army, March 1977.

			pr.
			7-
100			
		,	
			6.
			6.

No. of	F	No. o	f
Copies		Copie	
			- y
12	Administrator	4	Director
	Defense Technical Info Center		Defense Nuclear Agency
	ATTN: DTIC-FDAC		ATTN: SPTD, Mr. T.E.Kennedy
	Cameron Station		DDST (E), Dr. E.Sevin
14	Alexandria, VA 22304-6145		OALG, Mr. T.P.Jeffers LEEE, Mr. J. Eddy
1	Office Secretary of Defense		Washington, DC 20305
-	ADUSDRE (R/AT) (ET)		war in the same
	ATTN: Mr. J. Persh, Staff	1	Commander
	Specialist, Materials		Field Command
	and Structures		Defense Nuclear Agency
	Washington, DC 20301		ATTN: Tech Lib, FCWS-SC
	madulingeon,		Kirtland AFB, NM 87115
1	Under Secretary of Defense		
	for Research and Engineering	1	Chairman
	Department of Defense		Department of Defense
	Washington, DC 20301		Explosives Safety Board
			2461 Eisenhower Avenue
1	Director of Defense Research		Alexandria, VA 22331
	and Engineering		
	Washington, DC 20301	1	HODA (DAMA-ART-M)
			Washington, DC 20310
1	Assistant Secretary of		
	Defense (Atomic Energy)	1	HODA (DAEN-ECE-T/
	ATTN: Document Control		Mr. R. L. Wright)
	Washington DC 20301		Washington, DC 20310
1	Assistant Secretary of	1	HQDA (DAEN-MCC-D,
	Defense (MRA&L)		Mr. L. Foley)
	ATTN: EO&SP		Washington, DC 20310
	Washington, DC 20301		
		1	HQDA (DAEN-RDL,
1	Director		Mr. Simonini)
	Defense Advanced Research		Washington, DC 20310
	Projects Agency		
	1400 Wilson Boulevard	1	HQDA (DAEN-RDZ-A,
	Arlington, VA 22209		Dr. Choromokos)
			Washington, DC 20310
1	Director		
	Defense Intelligence Agency	1	HQDA (DALO-SMA)
	ATTN: DT-1B, Dr. J. Vorona		ATTN: COL W. F. Paris II
	Washington, DC 20301		Washington, DC 20310
2	Chairman	i	HODA (DAMA-CSM-CA)
	Joint Chiefs of Staff		Washington, DC 20310
	ATTN: J-3, Operations		an annual contract of the cont
	J-5, Plans & Policy	1	HQDA (DAMA-AR; NCL Div)
	(R&D Division)		Washington, DC 20310
	Washington, DC 20301		and the state of t

No. o	of	No.	of
Copie	Organization	Copie	es Organization
1	HQDA (DAMA-NCC, COL R. D. Orton) Washington, DC 20310	1	Commander US Army Materiel Command ATTN: AMCSF 5001 Eisenhower avenue
1	HODA (DAPE-HRS) Washington, DC 20310		Alexandria, VA 22333-0001
	a.	2	Commander
3	Director Institute for Defense Analyses ATTN: Dr. H. Menkes Dr. J. Bengston Tech Info Ofc 1801 Beauregard St. Alexandria, VA 22311		US Army Armament Material Readiness Command ATTN: Joint Army-Navy-Air Force Conventional Ammunition Prof Coord GP/El Jordan Rock Island, IL 61299
1	Commander US Army Ballistic Missile Defense Systems Command ATTN: J. Veeneman P. O. Box 1500, West Station Huntsville, AL 35807	1	Commander US Army Armament Research, Development and Engineering Center ATTN: SMCAR-MSI Dover, NJ 07801-5001
1	Director US Army Ballistic Missile Defense Systems Command Advanced Technology Center ATTN: M. Whitfield P. O. Box 1500 Huntsville, AL 35807-3801	2	Commander US Army Armament Research, Development and Engineering Center ATTN: SMCAR-TDC SMCAR-LCM-SPC Dover, NJ 07801-5001
2	Director US Army Engineer Waterways Experimental Station ATTN: WESNP K. Davis P. O. Box 631 Vicksburg, MS 39180-0631	1	Commander US Army Development and Employment Agency ATTN: MODE-ORO Fort Lewis, WA 98433-5000 Commander
	Commander US Army Materiel Command ATTN: AMCDRA-ST 5001 Eisenhower Avenue Alexandria, VA 22333-0001	1	US Army Armament, Munitions and Chemical Command ATTN: AMSMC-IMP-L Rock Island, IL 61299-7300 Commander Pine Bluff Arsenal Pine Bluff, AR 71601

No. of Copies	Organization	No. of Copies	Organization
copies	organization .	copies	Organización
I	Commander JS Army Rock Island Arsenal Rock Island, IL 61299	Ra	ommander dford Army Ammunition Plant dford, VA 24141
A R	Commanding General JS Army Armament Command ATTN: AMSAR-SA Rock Island Arsenal Rock Island, IL 61201	1 Co Ra	mmander venna Army Ammunition Plant venna, OH 44266
U B A	Commander US AMCCOM ARDEC CCAC Benet Weapons Laboratory ATTN: SMCAR-CCB-TL Uatervliet, NY 12189-4050	US AT 43	mmander Army Aviation Systems Command TN: AMSAV-ES OO Goodfellow Blvd Louis, MO 63120-1798
I	Commander Indiana Army Ammunition Plant Charlestown, IN 47111	US	rector Army Aviation Research and Technology Activity ses Research Center
J	ommander foliet Army Ammunition Plant foliet, IL 60436	Mo 2 Di	ffett Field, CA 94035-1099 rector
K	ommander ansas Army Ammunition Plant arsons, KS 67357	US Le	wis Directorate Army Air Mobility Research and Development Laboratory wis Research Center TN: Mail Stop 77-5
	ommander one Star Army Ammunition Plant	21	000 Brookpark Road eveland, OH 44135
1 C	exarkana, TX 75502 ommander onghorn Army Ammunition Plant arshall, TX 75671	US E AT	mmander Army Communications – lectronics Command TN: AMSEL-ED rt Monmouth, NJ 07703-5301
L	ommander ouisiana Army Ammunition Plant hreveport, LA 71102	CE AT	mmander COM R&D Technical Library TN: AMSEL-IM-L (Reports Section) B. 2700 rt Monmouth, NJ 07703-5000
M	ommander ilan Army Ammunition Plant ilan, TN 38358	1 Cor US AT	mmander Army Harry Diamond Lab. TN: SLCHD-TI 00 Powder Mill Road elphi, MD 20783-1197

No. o	f	No. of	
Copie	s Organization	Copies	Organization
1	Director AMC, ITC ATTN: Dr. Chiang Red River Depot Texarkana, TX 75501	1	Commander Dugway Proving Ground ATTN: STEDP-TO-H, Mr. Miller Dugway, UT 84022 Commander
1	Commander US Army Missile Command ATTN: AMSMI-R, Mr. Rob Cobb Redstone Arsenal, AL 35898 Commander		US Army Foreign Science and Technology Center ATTN: Research & Data Branch Federal Office Building 220-7th Street, NE Charlottesville, VA 22901
	US Army Missile Command Research, Development, and Engineering Center ATTN: AMSMI-RD Redstone Arsenal, AL 35898-5245	1	Commander US Army Laboratory Command Materials Technology Laboratory ATTN: AMXMR-ATL Watertown, MA 02172-0001
1	Commander US Army Missile Command ATTN: AMSMI-RR, Mr. L. Lively Redstone Arsenal, AL 38598	1	Commander US Army Research Office P. O. Box 12211 Research Triangle Park
1	Commander US Army Missile Command ATTN: AMSMI-RX, M. W. Thauer Redstone Arsenal, AL 35898-5249	1	NC 27709-2211 Commander US Army Engineer Div. Europe ATTN: EUDED, Dr. Roger Crowson APO New York, NY 09757
1	Director US Army Missile and Space Intelligence Center ATTN: AIAMS-YDL Redstone Arsenal, AL 35898-5500	1	Division Engineer US Army Engineer Division Fort Belvoir, VA 22060 US Army Engineer Division
1	Commander US Army Natick Research and Development Laboratories		ATTN: Mr. Char P. O. Box 1600 Huntsville, AL 35807
	ATTN: AMDNA-D, Dr. D. Seiling Natick, MA 01760	1	Commandant US Army Engineer School ATTN: ATSE-CD
1	Commander US Army Tank Automotive Command ATTN: AMSTA-TSL Warren, MI 48397-5000		Fort Belvoir, VA 22060

No. o		No. of	200000000000000000000000000000000000000
Copie	S Organization	Copies	Organization
1	Commander US Army Construction Engineering Research Lab P. O. Box 4005 Champaign, IL 61820	Nava ATTN	ander 1 Sea Systems Command : SEA-Q6H M. R. Van Slyke ington, DC 20362
1	Director US Army TRADOC System Analysis Activity ATTN: ATOR-TSL White Sands Missile Range, NM 88002-5502	Nava ATTN Wash	ander 1 Sea Systems Command : SEA-0333 ington, DC 20362 ander d W. Taylor Naval Ship
1	Commandant US Army Infantry School ATTN: ATSH-CD-CS-OR Fort Benning, GA 31905-5400	Re	search and Development inter
3	Commander US Army Belvoir Research and Development Center ATTN: STRBE-NN Fort Belvoir, VA 22060-5606	1 Comπ Nava	Code 17 desda, MD 20084-5000 mander 1 Ship Research and
1	Assistant Secretary of the Navy (Research and Development) Navy Development Washington, DC 20350	ATTN Unde Di Port	velopment Center : Mr. Lowell T. Butt rwater Explosions Research vision smouth, VA 23709
, 3	Chief of Naval Operation ATTN: OP-411, C. Ferraro, Jr. CPT R. L. Wernsman OP-41B Washington, DC 20350	Nava Dah1 ATTN	ander 1 Surface Weapons Center gren Laboratory 1: E-23, Mr. J. J. Walsh gren, VA 22448
1	Commander Naval Air Systems Command ATTN: AIR 532 Washington, DC 20360	Nava ATTN	ander 1 Surface Weapons Center 1: Dr. Leon Schindel Dr. Victor Dawson Dr. P. Huange er spring, MD 20902-5000
1	Commander Naval Facilities Engineering Command ATTN: Code 04T5 Washington, DC 22360	2 Comm Nava Whit ATTN	ander 1 Surface Weapons Center e Oak Laboratory

No.	of	No. o	f
Copi	<u>Organization</u>	Copie	s Organization
1	Commander	1	AFTAWC (OA)
	Naval Weapons Center ATTN: Code 0632,		Eglin AFB, FL 32542
	Mr. G. Ostermann China Lake, CA 93555	1	Air Force Armament Laboratory ATTN: AFATL/DOIL (Technical Information Center)
1	Commanding Officer		Eglin AFB, FL 32542-5438
	Naval Weapons Support Center (Code 502)	1	Commander
	Crane, IN 47522		Air Force Armament Laboratory ATTN: DLYV, Mr. R. L. McGuire
1	Officer-in-Charge Naval EOD Facility		Eglin AFB, FL 32542
	ATTN: Code D,	1	AFRPL
	Mr. L. Dickenson Indian Head, MD 20640		Edwards AFB, CA 93523
	annada mani in Borne	1	Ogden ALC/MMWRE
1	Commander		ATTN: (Mr. Ted E. Comins)
	Naval Weapons Evaluation Facility		Hill AFB, UT 84056
	ATTN: Document Control	1	AFWL/SUL
	Kirtland AFB Albuquerque, NM 87117		Kirtland AFB, NM 87117
	mibuducique, in orizi	1	Director of Aerospace Safety
1	Commander		HO, USAF
	Naval Research Laboratory		ATTN: JDG/AFISC (SEVV), COL
	ATTN: Code 2027, Tech 11b		J. E. McQueen
	Washington, DC 20375		Norton AFB, CA 92409
1	Officer-in-Charge (Code L31)	2	HO, USAF
	Civil Engineering Laboratory		ATTN: IDG/AFISC,
	ATTN: Code L51,		(SEW) W. F. Gavitt, Jr.
	Mr. W. A. Keenan		(SEV) Mr. K. R. Gopher
	Naval Construction Battalion Center		Norton AFB, CA 92409
	Port Hueneme, CA 93041	2	Director Joint Strategic Target
1	HO USAF (AFNIE-CA)		Planning Staff
	Washington, DC 20330		ATTN: JLTW; TPTP
			OFFUTT AFB
3	HQ USAF (AFRIDQ; AFRODXM; AFRDPM)		Omaha, NE 68113
	Washington, DC 20330	1	HO AFESC/RDC Walter Buckholtz
1	Air Force Systems Command ATTN: IGFG		Tyndall AFB, FL 32403
	Andrews AFB		
	Washington, DC 20334		

No.	of	No. o	f
Copie	Organization	Copie	<u>Organization</u>
3	AFESC/RDC Tyndall AFB, FL 32403 AFML (LNN, Dr. T. Nicholas; MAS; MBC, Mr. D. Schmidt) Wright-Patterson AFB,	1	Mr. Richard W. Watson Director, Pittsburgh Mining & Safety Research Center Bureau of Mine, Dept of the Interior 4800 Forbes Avenue Pittsburgh, PA 15213
Ť	OH 45433 AFWAL Wright-Patterson AFB, OH 45433	1	Director Lawrence Livermore Laboratory Technical Information Division P. O. Box 808 Livermore, CA 94550
2	AFLC (MMWM/CPT D. Rideout; IGYE/K. Shopker) Wright-Patterson AFB, OH 45433	1	Director Los Alamos Scientific Lab ATTN: Dr. J. Taylor P. O. Box 1663
1	FTD (ETD) Wright-Patterson AFB, OH 45433	2	Los Alamos, NM 87544 Director
1	Headquarters Department of Energy Office of Military Application Washington, DC 20545		Sandia National Laboratories ATTN: Info Dist Div Dr. W. A. von Riesemann (Div 6442) Albuquerque, NM 87115
1	Director Office of Operational and Environmental Safety US Department of Energy Washington, DC 20545	1	Director National Aeronautics and Space Administration George C. Marshall Space Flight Center Huntsville, AL 35812
1	Albuquerque Operations Office US Department of Energy ATTN: Div. of Operational Safety P. O. Box 5400 Albuquerque, NM 87115	2	Director National Aeronautics and Space Administration Aerospace Safety Research and Data Institute 21000 Brook Park Road
1	Director AMC Field Safety Activity ATTN: AMXOS-OES Charlestown, IN 47111-9669		Lewis Research Center Cleveland, OH 44135

No. o Copie		No. of Copies	
OOPIC	organizateron.		
1	Director National Aeronautics and Space Administration Scientific and Technical Information Facility P. O. Box 8757	1	Ammann & Whitney ATTN: Mr. N. Dobbs Suit 1700 Two World Trade Center New York, NY 10048
	Baltimore/Washington International Airport, MD 21240	1	Black & Veatch Consulting Engineers ATTN: Mr. H. L. Callahan 1500 Meadow Lake Parkway
1	National Academy of Science ATTN: Mr. D. G. Groves		Kansas City, MO 64114
	2101 Constitution Avenue, NW Washington, DC 20418	1	Dr. Wilfred E. Baker Wilfred Baker Engineering P. O. Box 6477
10	Central Intelligence Agency OIR/DB/Standard		San Antonio, TX 78209
	GE47 HQ Washington, DC 20505	1	Aeronautical Research Associates of Princeton, Inc.
1	DNA Information and Analysis Center Kaman Tempo ATTN: DASIAC 816 State Street		ATTN: Dr. C. Donaldson 50 Washington Road, P.O.Box 2229 Princeton, NJ 08540
	P.O. Drawer OQ Santa Barbara, CA 93102	1	Applied Research Associates, Inc. ATTN: Mr. J. L. Drake
1	Institute of Makers of Explosives ATTN: Mr. F. P. Smith, Jr.,		1204 Openwood Street Vicksburg, MS 39180
	Executive Director 1575 Eve St., N.W., Suite 550 Washington, DC 20005	1	J. G. Engineering Research Associates 3831 Menlo Drive Baltimore, MD 21215
1	Aberdeen Research Center ATTN: Mr. John Keefer 30 Diamond St. P. O. Box 548 Aberdeen, MD 21001	2	Kaman-AviDyne ATTN: Dr. N.P.Hobbs Mr. S. Criscione Northwest Industrial Park
1	Agbabian Associates ATTN: Dr. D. P. Reddy		83 Second Avenue Burlington, MA 01803
	250 N. Nash Street El Segundo, CA 90245	3	Kaman-Nuclear ATTN: Dr. F. H. Shelton Dr. D. Sachs Dr. R. Keffe
			1500 Garden of the Gods Road Colorado Springs, CO

No. o		No. of	dates a traces
Copie	organization 0	Copies	Organization
1	Knolls Atomic Power Laboratory ATTN: Dr. R. A. Powell Schenectady, NY 12309	A B	ercules, Inc. TTN: Billings Brown ox 93 agna, UT 84044
1	McDonnell Douglas Astronautics Western Division ATTN: Dr. Lea Cohen 5301 Bosla Avenue Huntington Beach, CA 92647	P P	ason & Hanger-Silas Mason Co., Inc. lantex Plant . O. Box 647 marillo, TX 79117
1	Physics International 2700 Merced Street San Leandro, CA 94577	A'	ovelace Research Institute TTN: Dr. E. R. Fletcher . O. Box 5890
1	R&D Associates ATTN: Mr. John Lewis P. O. Box 9695 Marina del Rey, CA 90291	1 M	lbuquerque, NM 87115 assachusetts Institute of Technology
1	R&D Associates ATTN: G. P. Ganong P. O. Box 9335 Albuquerque, NM 87119	A	eroelastic and Structures Research Laboratory TTN: Dr. E. A. Witmar ambridge, MA 02139
2	The Boeing Company Aerospace Division ATTN: Dr. Peter Grafton Dr. D. Strome	M. A	onsanto Research Corporation ound Laboratory TTN: Frank Neff iamisburg, OH 45342
	Mail Stop 8C-68 P. O. Box 3707 Seattle, WA 98124	1	cience Applications, Inc. Suite 310 216 Jefferson Davis Highway rlington, VA 22202
2	AVCO Corporation Structures and Mechanics Dept. ATTN: Dr. William Broding Dr. J. Gilmore 201 Lowell Street Wilmington, MA 01887	A'	attelle Memorial Institute TTN: Dr. L. E. Hulbert Mr. J. E. Backofen, Jr. 05 King Avenue olumbus, OH 43201
1	Aerospace Corporation P.O. Box 92957 Los Angeles, CA 90009	A 2	eorgia Institute of Tech TTN: Dr. S. Atluri 25 North Avenue, NW tlanta, GA 30332
1	General American Transportation Corp. General American Research Div. ATTN: Dr. J. C. Shang 7449 N. Natchez Avenue Niles, IL 60648	A 1	IT Research Institute TTN: Mrs. H. Napadensky O West 35 Street hicago, IL 60616

No. of		No. of
Copies	Organization	Copies Organization
1	Southwest Research Institute ATTN: Dr. H. N. Abramson Dr. U. S. Lindholm 8500 Culebra Road San Antonio, TX 78228	University of Delaware Department of Mechanical and Aerospace Engineering ATTN: Prof. J. R. Vinson Newark, DE 19711
I A	Brown University Division of Engineering ATTN: Prof. R. Clifton Providence, RI 02912	Aberdeen Proving Ground
I A	Florida Atlantic University Dept. of Ocean Engineering ATTN: Prof. K. K. Stevens Boca Raton, FL 33432	Dir, USAMSAA ATTN: AMXSY-D AMXSY-MP, H. Cohen Cdr, USATECOM ATTN: AMSTE-SI-F Cdr, CRDC, AMCCOM
D	Cexas A&M University Department of Aerospace Engineering TTN: Dr. James A. Stricklin	ATTN: SMCCR-RSP-A SMCCR-MU SMCCR-SPS-IL Cdr, US Army Toxic and
	College Station, TX 77843	Hazardous Materials Agency ATTN: AMXTH-TE
A P	niversity of Alabama TTN: Dr. T. L. Cost . O. Box 2908	,

University, AL 35486

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Rep	port Number	Date of Report
2. Date Re	eport Received	
3. Does the other area	his report satisfy a need? of interest for which the	(Comment on purpose, related project, or report will be used.)
4. How spedata, proce	ecifically, is the report bedure, source of ideas, etc	eing used? (Information source, design
as man-hour	rs or dollars saved, operat	t led to any quantitative savings as far ing costs avoided or efficiencies achieved
		ink should be changed to improve future zation, technical content, format, etc.)
	Name	
CURRENT	Organization	
ADDRESS	Address	
	City, State, Zip	
7. If indic New or Corre	cating a Change of Address ect Address in Block 6 abov	or Address Correction, please provide the e and the Old or Incorrect address below.
	Name	
OLD ADDRESS	Organization	
	Organización	
	Address	

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)

- FOLD HERE ---

Director
US Army Ballistic Research Laboratory
ATTN: DRXBR-OD-ST

Aberdeen Proving Ground, MD 21005-5066

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 12062 WASHINGTON, DC

POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

Director
US Army Ballistic Research Laboratory
ATTN: DRXBR-OD-ST
Aberdeen Proving Ground, MD 21005-9989

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

