PREPAS INTERNATIONALES 2020/2021

Contrôle d'analyse $N^{\circ}4$ (3h) Date : 30/01/2021

Exercice 1/9pts Cet exercice comprend trois parties indépendantes.

- 1. On définit la suite (u_n) par $u_0 = 5$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2}u_n + 3$.
 - (a) De quel type de suite s'agit-il? 0,5pt
 - (b) Exprimer (u_n) en fonction de n tout en justifiant. 1,5pt
 - (c) Etudier la nature de (u_n) . 1pt
- 2. On définit la suite (v_n) par $v_0 = 3$ et $\forall n \in \mathbb{N}, v_{n+1} = \frac{2v_n 2}{v_n 1}$.
 - (a) De quel type de suite s'agit-il? 0,5pt
 - (b) Exprimer (v_n) en fonction de n tout en justifiant. 1,5pt
 - (c) Etudier la nature de (v_n) . 1pt
- 3. On définit la suite (w_n) par $w_0 = 3$, $w_1 = -1$ et $\forall n \in \mathbb{N}, w_{n+2} = 3w_{n+1} 2w_n$.
 - (a) De quel type de suite s'agit-il? 0,5pt
 - (b) Exprimer (w_n) en fonction de n tout en justifiant. 1,5pt
 - (c) Etudier la nature de (w_n) . 1pt

Exercice $2/10 \mathrm{pts}$

1. Déterminer la dérivée de chacune des fonctions suivantes de la variable réelle $x:1pt\times3=3pts$

$$F(x) = x^{2}e^{-3x} \qquad G(x) = \frac{\cos(x)}{1 + \sin^{2}(x)} \qquad H(x) = \arctan\left(\frac{2x}{x+1}\right)$$

2. La fonction f est définie sur $\mathbb R$ par

$$f(x) = \begin{cases} 2x - x^2 & \text{si} \quad x \ge 0 \\ 2e^x & \text{si} \quad x < 0 \end{cases}$$

- (a) La fonction f est-elle continue en 0 à droite? à gauche? Pourquoi? 1,5pt
- (b) Etudier la continuité et la dérivabilité de f en 0. 1pt
- (c) Déterminer l'image par f des intervalles [-1, +1] et \mathbb{R} .

Exercice 3/4pts

Pour tout entier naturel $n \ge 1$, on pose $p_n(x) = 1 - 2nx - x^{2n-1}$.

- 1. Montrer que p_n est une bijection de $[0, +\infty[$ vers un intervalle à déterminer. **1pt**
- 2. En déduire que l'équation $(E_n): p_n(x) = 0$ admet sur $[0, +\infty[$ une unique racine a_n ; puis déterminer a_1 .
- 3. Montrer que la suite (a_n) est strictement monotone. 1pt
- 4. Montrer que $0 < a_n < \frac{1}{2n}$; puis en déduire la limite et la nature de (a_n) .