

Minimizing Contamination in Cell Culture

Overview

- ► Introduction
- Different types of contamination
- Sources of contamination
- Laboratory sanitation
 - Hygiene
 - ► Laboratory methods and skills

Contamination

- Contamination is a staple problem in cell culture
- All cell culture laboratories and workers have experienced contamination
- Affects both the use of cultures and research quality
- Most apparent consequences of contamination:
 - Time
 - Money
 - **Effort**
 - Erratic experimental results

Consequences of contamination

- ► Loss of resources
 - **Time**
 - Money
 - **Effort**

Consequences of contamination

- Reproducibility crisis
 - Mycoplasma contamination
 - very difficult to detect via ocular inspection
 - may lead to undetected contamination that may affect the current results
 - Cross-contamination
 - difficult to detect, unless PCR is done to confirm the identity of cells
 - Cross-contaminated or misidentified cells lead to erroneous and irreproducible results.

Types of Contamination

- Microbial Contamination
 - Fungi
 - Yeast
 - Bacteria
 - Mycoplasma

Cross-contamination

Microbial Contamination

- Three most common microbial contaminants:
 - Fungi
 - Yeast
 - Bacteria
- Most common type of contamination
- Can be easily detected through microscopy by checking the medium:
 - ► Turbidity of the medium
 - Presence of particles in suspension
 - Rapid decline in pH (yellow color, indicates acidity)

Mycoplasma

- Smallest bacteria
- Lack cell wall
 - Resistant to common antibiotics
 - Parasitic
- Cannot be detected through microscopy
- Presence of mycoplasma must be checked through PCR
- Not benign in cell culture; can alter the host's cell function, growth, metabolism, etc.
- Can grow to high densities without any visible signs of contamination

Cross-contamination

- Cross-contamination of one cell line with another cell line
- Results from mishandling of cell lines during experiments and maintenance
- May lead to the replacement of the original cell with the contaminant, especially when the contaminant proliferates faster than the original cell line

Sources of Contamination

- Indirect sources of contamination
 - Laboratory
 - Equipment
 - Personnel
- Direct sources of contamination
 - Reagents
 - ► Cell lines and primary cells

Each possible source has a possible risk of transferring different types of contamination.

Laboratory

- ► Air-borne contaminants
 - ► Ventilation, doors, windows
- Water
 - Sink, water bath, incubator pan
 - ▶ Water microbes
 - ► Air-borne water microbes
- Dirt and dust
 - ► House germs

Personnel

- Potential transfer of contaminants
 - Mouth and nose
 - Mycoplasmas, bacteria, viruses
 - Clothes
 - ► Bacteria, fungi, yeast
 - ► Hands
 - ► Bacteria, fungi, yeast
 - Mycoplasma
 - Shoes
 - ► Bacteria, fungi, yeast

Reagents

- Culture medium is sterile when delivered
- ► FBS was one of the main sources of mycoplasma contamination
- Growth factors, peptides, antibodies could also be contam sources
- Secondary contamination may be present in aliquots prepared in the laboratory.

Cell lines

- Newly bought cell lines might be delivered contaminated
 - Mycoplasma and other microbes
 - Cross contamination
- Untested old cell lines might have contamination
 - Mycoplasma and other microbes
 - Cross contamination
- Primary cells may be contaminated from "semi-sterile" tissue preparation
 - Mycoplasma and other microbes

Laboratory sanitation

- Indirect sanitation
 - ► Laboratory and equipment
 - Personnel
- Direct sanitation
 - Reagents
 - Cell lines and primary cells

Cell culture facilities and labs must be sterile.

Cell culture laboratory

- Dedicated air filtration system
 - Positive pressure to keep microbes out of the lab
- **PPE**
 - ► Lab gown, gloves, shoes
 - Gowning rooms
- High cleaning frequency
- Sufficient sanitizers and disinfectants

CO₂ Incubators

- Fast recovery time after door openings
- Sterile surface
- Minimize door openings
- Inner doors
 - Reduce entry of microbes
 - Keep pH, temperature, humidity constant

Cleaning and Maintenance of CO₂ Incubators

- Decontaminate incubators at least once a month
- Clean the incubator once a month.
 - Disassemble and clean the inner parts
 - Clean the inner walls
 - Rinse parts with distilled water
- Consider the use of copper chamber
 - Inhibits bacterial growth better than stainless steel

Humidity pan – CO2 Incubators

- Air-borne microbes might proliferate in the humidity pan
- ► Fan-less design can minimize the distribution of microbes in the chamber
- Autoclaved water must be used
- Antibiotics may be added to the water to inhibit germ growth

Water bath

- Used for thawing cells, warming of media and other reagents
- ► A significant hub of microbes
 - Ensure that the water bath has lid
 - Clean regularly once a week
 - Use supplements such as antibiotics to prevent growth of germs
 - ▶ Disinfect flasks, tubes, bottles well after removal from water bath and before using for aseptic techniques

Pipettes and pipette tips

- Designate pipettes to be used in the cell culture lab only
- Wipe pipettes before using inside the biological safety cabinet
- Disassemble and clean the pipettes regularly to prevent germ growth
- Check for the accuracy of the pipettes through calibration at least once every year
- Dispose pipette tips properly
 - Do not leave used tips inside the biological safety cabinet

Other lab equipment

- Wipe off surfaces daily if possible
- Check if the lids of equipment not in used are closed
- Immediately clean all spills
 - ► Autoclave rotors of centrifuges

ESCO

Personnel

- Wash hands thoroughly before entry into the cell culture lab
- Ensure PPE (Personal Protection Equipment) immediately
 - Lab gown
 - ► Gloves
 - Shoes
 - Mask (if needed, depends on BSC design)
- Wash hands before leaving the cell culture lab

Cell lines and primary cells

Acquire cell lines only from authenticated and reliable sources

- European Collection of Authenticated Cell Cultures (ECACC)
- American Type Culture Collection (ATCC)
- Quarantine cells when testing
 - Bacteria, fungi, yeast (in culture)
 - Mycoplasma (PCR)
 - Cross-contamination (STR service for human cell lines)
- Primary cells must be maintained in a separate incubator

Biological safety cabinets

- Regular cleaning and maintenance
- Disinfect the surface before use
- Disinfect materials before transfer
- Arrange materials inside the BSC strategically
 - Only needed materials should be placed inside the BSC
 - ► Enough working space must be maintained
- Spray disinfectant after use

Proper pipetting

Aspirate liquid

- Vertical hold
- Aspirate slowly for precision and to avoid pipette contamination

Release liquid

- Maintain a 45°C for sterility
- Release at medium speed to avoid droplets

Filtered micropipette tips

- ► Filter tips for increased protection
 - Protects both pipette and culture from contamination
 - Use particularly for important cell culture steps, such as cell banking

Vessels

- Lids of flasks can be an easy contamination route
 - Place lids safely when working outside the BSC
 - Upside up or upside down both allowed inside the BSC when done properly

Labeling

- ► Label flasks, dishes, plates, and tubes clearly
 - Prevents cross-contamination
- ► Ethanol-resistant pen must be used
 - Prevents loss of label when disinfecting

Safe transport

- Slightly tilt the culture flasks upwards to avoid medium contact
- Avoid spillage when transporting plates and dishes

Prevent contamination before it's too late!

Life science tools and equipment for your cell culture laboratory.