

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12N 15/12, C07K 14/47, G01N 33/50, C12Q 1/68, C07K 16/18		A2	(11) International Publication Number: WO 00/44902 (43) International Publication Date: 3 August 2000 (03.08.00)
(21) International Application Number: PCT/US00/00503		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 28 January 2000 (28.01.00)			
(30) Priority Data: 60/118,078 29 January 1999 (29.01.99) US			
(71) Applicant (<i>for all designated States except US</i>): G.D. SEARLE & CO. [US/US]; Corporate Patent Department, P.O. Box 5110, Chicago, IL 60680-5110 (US).			
(72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>): BUNCH, Roderick, T. [US/US]; 1540 W. Dempster, Apt. 203, Mt. Prospect, IL 60056 (US). CURTIS, Sandra, W. [US/US]; 255 Creiner Court, Ellisville, MO 63021 (US). RODI, Charles, P. [US/US]; 706 E. Pacific Avenue, St. Louis, MO 63119 (US). MORRIS, Dale, L. [US/US]; 1754 Highview Circle Court, Ballwin, MO 63021 (US).		Published <i>Without international search report and to be republished upon receipt of that report.</i>	
(74) Agents: WILLIAMS, Roger, A. et al.; G.D. Searle & Co., Corporate Patent Department, P.O. Box 5110, Chicago, IL 60680-5110 (US).			

(54) Title: BIOMARKERS AND ASSAYS FOR CARCINOGENESIS

(57) Abstract

The present invention relates to carcinogenesis biomarkers produced by phenobarbital-treated rat hepatocytes, nucleic acid molecules that encode carcinogenesis biomarkers or a fragment thereof and nucleic acid molecules that are useful as probes or primers for detecting or inducing carcinogenesis, respectively. The invention also relates to applications of the factor or fragment such as forming antibodies capable of binding the carcinogenesis biomarkers or fragments thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Fjnnland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korca	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

BIOMARKERS AND ASSAYS FOR CARCINOGENESIS

5

Field of the Invention

The present invention relates to genes differentially regulated by phenobarbital, nucleic acid molecules or fragments thereof that act as biomarkers for carcinogenesis, and nucleic acid molecules that are useful as probes or primers 10 for detecting or inducing carcinogenesis, respectively. The invention also relates to applications such as forming antibodies capable of binding carcinogenesis biomarkers or fragments thereof.

Background

In the field of toxicology, high resolution assays now make it possible to 15 discover differences in gene expression brought on by exposure to a particular xenobiotic. Such high-throughput, high-resolution molecular biology methods can be used to determine virtually all toxicant-induced changes in gene expression. A catalog of toxicant-induced gene expression changes would be useful to better predict animal toxicity in order to reduce costs, timelines, and animal use by 20 enhancing the probability that product candidates chosen for further development will pass regulatory testing requirements. Such a catalog would also enable scientists to better predict human toxicity, resulting in fewer compounds failing in clinical trials while better safeguarding human health.

The basis for these types of investigations is the expectation that 25 toxicological endpoints (e.g. tumor formation) are the result of earlier molecular events. For example, by creating a catalog of changes in rat liver gene expression following treatment with phenobarbital, one can test whether early gene expression

is as predictive as later readouts in assessing the nongenotoxic carcinogenicity of this compound in rats.

The power of transcriptional genomic analyses is that they can measure changes in the expression of thousands of genes, and a comprehensive catalog of 5 expression changes can be envisioned. Using the same catalog of changes, other known nongenotoxic carcinogens (NGCs) could be assessed, as well as compounds known not to be NGCs in rats. Analysis of correlations between the changes and carcinogenesis, as well as analysis of the biological significance of the genes, should indicate whether there are specific genes or gene-expression patterns that 10 predict carcinogenesis. Thus, there is a need in the art for catalogs or panels of predictive markers. Such panels of expressed genes would allow one to examine a greater number of candidate compounds in a shorter period of time prior to selecting a lead compound for traditional testing. As a result of this screening approach, the success rate of compounds in pre-clinical trials should improve 15 dramatically.

These panels of predictive markers could also be used to assess the use of primary rat hepatocytes in high-throughput cell-based assays of toxicity and carcinogenicity. This would further increase the number of compounds that could be assessed, perhaps to the point where entire compound libraries could be assayed, 20 and scores for potential toxicities could be created for each compound. Further, parallel analyses using both animal and human genes could be used to correlate the results from pre-clinical in vivo and in vitro data (using both cultured animal and cultured human cells) with human clinical data to create assays that better predict human toxicity.

25

Summary Of The Invention

It is an object of the present invention to provide a catalog or panel of changes in gene expression that are predictive of carcinogenicity. The catalog

includes substantially-purified nucleic acid sequences that have been discovered.

In one embodiment, the present invention relates to a substantially-purified nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ NO: 1 through SEQ NO: 580 or fragments, substantial homologues, and substantial complements thereof.

5 In another embodiment, the present invention relates to a substantially-purified carcinogenesis biomarker or fragment thereof encoded by a first nucleic acid molecule which substantially hybridizes to a second nucleic acid molecule, the second nucleic acid molecule comprising a nucleic acid sequence selected from the 10 group consisting of SEQ NO:1 through SEQ NO:580 and complements thereof.

It is another object of the present invention to provide an assay for toxicity to predict the carcinogenicity of a composition. In a further embodiment, the present invention relates to a method for measuring the carcinogenicity of a composition comprising exposing a mammal to the composition; and determining 15 the presence or absence of mRNA which substantially hybridizes to a nucleic acid sequence selected from the group consisting of SEQ NO:1 through SEQ NO:580 and complements thereof.

It is a further object of the present invention to provide a quantitative and qualitative method of detection of carcinogenesis-related proteins or peptides of the 20 present invention. In one embodiment, antibodies, proteins, peptides, or fusion proteins that specifically bind to one or more of the proteins encoded by the nucleic acid molecules of the present invention can be used to measure the carcinogenesis-related proteins.

Various other objects and advantages of the present invention will become 25 apparent from the following figures and description of the invention.

Brief Description of the Drawings

Figure 1 shows a comparison of mRNA levels of differentially expressed transcripts.

5

Detailed Description Of The Invention

A. General Concepts and Definitions

These detailed descriptions are presented for illustrative purposes only and are not intended as a restriction on the scope of the invention. Rather, they are merely some of the embodiments that one skilled in the art would understand from the entire contents of this disclosure. All parts are by weight and temperatures are in Degrees centigrade unless otherwise indicated.

Abbreviations and Definitions

The following is a list of abbreviations and the corresponding meanings as used interchangeably herein:

15 IMDM = Iscove's modified Dulbecco's media

mg = milligram

ml or mL = milliliter

μ g or ug= microgram

μ l or ul = microliter

20 ODNs= oligonucleotides

PCR= polymerase chain reaction

RP-HPLC = reverse phase high performance liquid chromatography

The following is a list definitions of various terms used herein:

25 The term "altered" means that expression differs from the expression response of cells or tissues not exhibiting the phenotype.

The term "amino acid(s)" means all naturally occurring L-amino acids.

The term "**biologically active**" means activity with respect to either a structural or a catalytic attribute, which includes the capacity of a nucleic acid to hybridize to another nucleic acid molecule, or the ability of a protein to be bound by an antibody (or to compete with another molecule for such binding), among others. Catalytic attributes involve the capacity of the agent to mediate a chemical reaction or response.

5 The term "**cluster**" means that BLAST scores from pairwise sequence comparisons of the member clones are similar enough to be considered identical with experimental error.

10 The term "**complement**" means that one nucleic acid exhibits complete complementarity with another nucleic acid.

The term "**complementarity**" means that two molecules can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional high stringency conditions.

15 The term "**complete complementarity**" means that every nucleotide of one molecule is complementary to a nucleotide of another molecule.

The term "**degenerate**" means that two nucleic acid molecules encode for the same amino acid sequences but comprise different nucleotide sequences (see US Patent 4,757,006).

20 The term "**exogenous genetic material**" means any genetic material, whether naturally occurring or otherwise, from any source that is capable of being inserted into any organism.

The term "**expression response**" means the mutation affecting the level or pattern of the expression encoded in part or whole by one or more nucleic acid molecules.

25 The term "**fragment**" means a nucleic acid molecule whose sequence is shorter than the target or identified nucleic acid molecule and having the identical, the

substantial complement, or the substantial homologue of at least 7 contiguous nucleotides of the target or identified nucleic acid molecule.

The term "**fusion protein**" means a protein or fragment thereof that comprises one or more additional peptide regions not derived from that protein. Such molecules

- 5 may be derivatized to contain carbohydrate or other moieties (such as keyhole limpet hemocyanin, etc.).

The term "**hybridization probe**" means any nucleic acid capable of being labeled and forming a double-stranded structure with another nucleic acid over a region large enough for the double stranded structure to be detected.

- 10 The term "**isolated**" means an agent is separated from another specific component with which it occurred. For example, the isolate material may be purified to essential homogeneity, as determined by PAGE or column chromatography, such as HPLC. An isolated nucleic acid can comprise at least about 50, 80, or 90% (on a molar basis) of all macromolecular species present. Some of these methods described later lead to degrees of purification appropriate to identify single bands in electrophoresis gels. However, this degree of purification is not required.

15 The term "**marker nucleic acid**" means a nucleic acid molecule that is utilized to determine an attribute or feature (e.g., presence or absence, location, correlation, etc.) of a molecule, cell, or tissue.

- 20 The term "**mimetic**" refers to a compound having similar functional and/or structural properties to another known compound or a particular fragment of that known compound.

25 The term "**minimum complementarity**" means that two molecules can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional low stringency conditions.

The term "**PCR probe**" means a nucleic acid capable of initiating a polymerase activity while in a double-stranded structure with another nucleic acid. For

example, Krzesicki, *et al.*, *Am. J. Respir. Cell Mol. Biol.* 16:693-701 (1997), incorporated by reference in its entirety, discusses the preparation of PCR probes for use in identifying nucleic acids of osteoarthritis tissue. Other methods for determining the structure of PCR probes and PCR techniques have been described.

- 5 The term "**phenotype**" means any of one or more characteristics of an organism, tissue, or cell.

The term "**polymorphism**" means a variation or difference in the sequence of the gene or its flanking regions that arises in some of the members of a species.

- 10 The term "**primer**" means a single-stranded oligonucleotide which acts as a point of initiation of template-directed DNA synthesis under appropriate conditions (e.g., in the presence of four different nucleoside triphosphates and an agent for polymerization, such as, DNA or RNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature. The appropriate length of a primer depends on the intended use of the primer, but typically ranges from 15 to 30
- 15 nucleotides. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template. A primer need not reflect the exact sequence of the template, but must be sufficiently complementary to hybridize with a template.

- 20 The term "**probe**" means an agent that is utilized to determine an attribute or feature (e.g. presence or absence, location, correlation, etc.) of a molecule, cell, tissue, or organism.

- 25 The term "**product score**" refers to a formula which indicates the strength of a BLAST match using the fraction of overlap of two sequences and the percent identity. The formula is as follows:

$$\text{Product Score} = \frac{\text{BLAST Score} \times \text{Percent Identity}}{5 \times \min\{\text{length(Seq1)}, \text{length(Seq2)}\}}$$

The term "**promoter region**" means a region of a nucleic acid that is capable, when located in *cis* to a nucleic acid sequence that encodes for a protein or peptide, of functioning in a way that directs expression of one or more mRNA molecules.

5 The term "**protein fragment**" means a peptide or polypeptide molecule whose

amino acid sequence comprises a subset of the amino acid sequence of that protein.

The term "**protein molecule/peptide molecule**" means any molecule that comprises five or more amino acids.

The term "**recombinant**" means any agent (e.g., DNA, peptide, etc.), that is, or results from, however indirectly, human manipulation of a nucleic acid molecule.

10 The recombination may occur inside a cell or in a tube.

The term "**selectable marker**" means a gene who's expression can be detected by a probe as a means of identifying or selecting for transformed cells.

The term "**specifically bind**" means that the binding of an antibody or peptide is not competitively inhibited by the presence of non-related molecules.

15 The term "**specifically hybridizing**" means that two nucleic acid molecules are capable of forming an anti-parallel, double-stranded nucleic acid structure.

The term "**substantial complement**" means that a nucleic acid sequence shares at least 80% sequence identity with the complement.

20 The term "**substantial fragment**" means a fragment which comprises at least 100 nucleotides.

The term "**substantial homologue**" means that a nucleic acid molecule shares at least 80% sequence identity with another.

The term "**substantial identity**" means that 70% to about 99% of a region or fragment in a molecule is identical to a region of a different molecule. When the

25 individual units (e.g., nucleotides or amino acids) of the two molecules are schematically positioned to exhibit the highest number of units in the same position over a specific region, a percentage identity of the units identical over the total

number of units in the region is determined. Numerous algorithmic and computerized means for determining a percentage identity are known in the art. These means may allow for gaps in the region being considered in order to produce the highest percentage identity.

- 5 The term "**substantially hybridizes**" means that two nucleic acid molecules can form an anti-parallel, double-stranded nucleic acid structure under conditions (e.g. salt and temperature) that permit hybridization of sequences that exhibit 90% sequence identity or greater with each other and exhibit this identity for at least a contiguous 50 nucleotides of the nucleic acid molecules.
- 10 The term "**substantially purified**" means that one or more molecules that are or may be present in a naturally occurring preparation containing the target molecule will have been removed or reduced in concentration.

Agents of the Invention

15 A. Nucleic Acid Molecules

The present invention relates to nucleic acid sequences selected from the group consisting of SEQ NO:1 through SEQ NO: 580, substantial fragments thereof, substantial homologues thereof, and substantial complements thereof. By creating a catalog of changes in rat liver gene expression following treatment with phenobarbital, substantially-purified nucleic acid sequences selected from the group consisting of SEQ NO: 1 through SEQ NO: 580 have been discovered. These sequences are useful as biomarkers of carcinogenesis.

The present invention also relates to nucleic acid sequences derived from the one or more sequences identified in SEQ NOS:1-580. Fragment nucleic acids may encompass significant portion(s) of, or indeed most of, these sequences. For example, a fragment nucleic acid can encompass an carcinogenesis biomarker gene homolog or fragment thereof. Alternatively, the fragments may comprise smaller

oligonucleotides, for example an oligonucleotide having from about 10 to about 250 nucleotides or from about 15 to about 30 nucleotide.

A variety of computerized means for identifying sequences derived from the SEQ NO.: 1-580 exists. These include the five implementations of BLAST, three designed for nucleotide sequences queries (BLASTN, BLASTX, and TBLASTX) and two designed for protein sequence queries (BLASTP and TBLASTN), as well as FASTA and others (Coulson, *Trends in Biotechnology* 12:76-80 (1994); Birren *et al.*, *Genome Analysis* 1:543-559 (1997)). Other programs which use either individual sequences or make models from related sequences to further identify sequences derived from SEQ NO 1- SEQ NO 580 exist. Model building and searching programs includes HMMer (Eddy), MEME (Bailey and Elkan, *Ismb* 3: 21-29 (1995)) and PSI-BLAST (Altschul *et al.*, *Nucleic Acids Res* 25: 3389-3402 (1997)). Another set of programs which use predicted, related, or known protein structures to further identify sequences derived from SEQ NO 1- SEQ NO 580 exists. Structure-based searching programs includes ORF and PROSITE. Other programs which use individual sequences or related groups of sequences relying on pattern discovery to further identify sequences derived from SEQ NO:1-580 exist. Pattern recognition programs include Teiresias (Rigoutsos, I. and A. Floratos, *Bioinformatics* 1: (1998)). These programs can search any appropriate database, such as GenBank, dbEST, EMBL, SwissProt, PIR, and GENES. Furthermore, computerized means for designing modifications in protein structure are also known in the art (Dahiyat and Mayo, *Science* 278:82-87 (1997)).

Nucleic acids or fragments thereof of the present invention are capable of specifically hybridizing to other nucleic acids under certain circumstances. The present invention further relates to nucleic acid sequences that will specifically hybridize to one or more of the nucleic acids set forth in SEQ NO: 1 through SEQ NO: 580, or complements thereof, under moderately stringent conditions, for

example at about 2.0 X SSC and about 65°C. Alternatively, the nucleic acid sequences of the present invention may specifically hybridize to one or more of the nucleic acids set forth in SEQ NO:1 through SEQ NO: 580, or complements thereof, under high stringency conditions.

5 The present invention also relates to nucleic acid sequences that share between 100% and 90% sequence identity with one or more of the nucleic acid sequences set forth in SEQ NO: 1 through to SEQ NO: 580 or complements thereof. In a further aspect of the invention, nucleic acid sequences of the invention share between 100% and 95% sequence identity with one or more of the nucleic acid sequences set forth in SEQ NO: 1 through SEQ NO: 580, or complements thereof. Alternatively, nucleic acid sequences of the present invention may share between 100% and 98% or between 100% and 99% sequence identity with one or more of the nucleic acid sequences set forth in SEQ NO: 1 through SEQ NO: 580, or complements thereof.

10 A region or fragment in a molecule with "substantial identity" to a region of a different molecule can be represented by a ratio. In a preferred embodiment, a 10 nucleotide in length nucleic acid region or fragment of the invention has a percentage identity of about 70% to about 99% with a nucleic acid sequence existing within one of SEQ NO.: 1-580 or a complement of SEQ NO.: 1-580.

15 The invention also provides a computer-readable medium having recorded thereon the sequence information of one or more of SEQ NO:1 through SEQ NO:580, or complements thereof. In addition, the invention provides a method of identifying a nucleic acid comprising providing a computer-readable medium of the invention and comparing nucleotide sequence information using computerized means.

i. Nucleic Acid Primers and Probes

The present invention also relates to nucleic acid primers and probes derived from the nucleic acid sequences set forth in SEQ NO: 1 through SEQ NO: 580. The nucleic acid primers and probes of the invention may be derived from the disclosed sequences, such as a fragment of 10 nucleotides or more or a sequence with 70% to 99% identity to a fragment of at least 10 nucleotides. Numerous methods for defining or identifying primers and probes for nucleic acid or sequence based analysis exist. Examples of suitable primers include, but are not limited to, the nucleic acid sequences set forth in SEQ NO: 519 through SEQ NO: 580.

10 Examples of 5' primers (from the 5' to 3' direction) include, but are not limited to, SEQ NO: 550-580. Examples of 3' primers (from the 5' to 3' direction) include, but are not limited to, SEQ NO: 519-549. Examples of suitable probes include, but are not limited to, the nucleic acid sequences set forth in SEQ NO: 490 through SEQ NO: 518. The genes that corresponds to the primer and probe sequences

15 (SEQ NO: 490-580) are described in Table 7.

Conventional stringency conditions are described by Sambrook, *et al.*, *Molecular Cloning. A Laboratory Manual*, 2nd Ed., Cold Spring Harbor Press, Cold Spring Harbor, New York (1989), and by Haymes, *et al. Nucleic Acid Hybridization, A Practical Approach*, IRL Press, Washington, DC (1985), the entirety of both is herein incorporated by reference. Departures from complete complementarity are therefore permissible, as long as such departures do not completely preclude the capacity of the molecules to form a double-stranded structure. Thus, in order for a nucleic acid molecule to serve as a primer or probe it need only be sufficiently complementary in sequence to be able to form a stable double-stranded structure under the particular solvent and salt concentrations employed.

Appropriate stringency conditions that promote DNA hybridization, for example, 6.0 X sodium chloride/sodium citrate (SSC) at about 45°C, followed by a wash of 2.0 X SSC at 50°C, are known to those skilled in the art or can be found in Ausubel, et al., *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y. (1989) (see especially sections 6.3.1-6.3.6). [This reference and the supplements through January 2000 are specifically incorporated herein by reference and can be relied to make or use any embodiment of the invention.] For example, the salt concentration in the wash step can be selected from a low stringency of about 2.0 X SSC at 50°C to a high stringency of about 0.2 X SSC at 50°C. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22°C, to high stringency conditions at about 65°C. Temperature and salt conditions may be varied independently.

Primers and probes of the present invention can be used in hybridization assays or techniques, in a variety of PCR-type methods, or in computer-based searches of databases containing biological information. Exemplary methods include a method of identifying a nucleic acid which comprises the hybridization of a probe of the invention with a sample containing nucleic acid and the detection of stable hybrid nucleic acid molecules. Also included are methods of identifying a nucleic acid comprising contacting a PCR probe of the invention with a sample containing nucleic acid and producing multiple copies of a nucleic acid that hybridizes, or is at least minimally complementary, to the PCR probe.

The primers and probes of the invention may be labeled with reagents that facilitate detection (e.g., fluorescent labels, Prober et al., Science 238: 336-340 (1987), Albarella et al., EP 144914; chemical labels, Sheldon et al., U.S. Patent 4,582,789, Albarella et al., U.S. Patent 4,563,417; and modified bases, Miyoshi et al., EP 119448) all of which are incorporated by reference in their entirety)).

ii. Nucleic Acids Comprising Genes, Fragments, or Homologs Thereof

This invention also provides genes corresponding to the cDNA sequences disclosed herein, also called carcinogenesis biomarkers. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. The methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials.

In another preferred embodiment, nucleic acid molecules having SEQ NO: 1 through SEQ NO: 580, or complements and fragments of either, can be utilized to obtain homologues equivalent to the naturally existing homologues.

In a further aspect of the present invention, one or more of the nucleic acid molecules of the present invention differ in nucleic acid sequence from those encoding a homologue or fragment thereof in SEQ NO: 1 through SEQ NO: 580, or complements thereof, due to the degeneracy in the genetic code in that they encode the same protein but differ in nucleic acid sequence. In another further aspect of the present invention, one or more of the nucleic acid molecules of the present invention differ in nucleic acid sequence from those encoding an homologue or fragment thereof in SEQ NO: 1 through SEQ NO: 580, or complements thereof, due to fact that the different nucleic acid sequence encodes a protein having one or more conservative amino acid residue. Examples of conservative substitutions are set forth below. Codons capable of coding for such conservative substitutions are well known in the art.

	<u>Original Residue</u>	<u>Conservative Substitutions</u>
	Ala	ser
	Arg	lys
	Asn	gln; his
5	Asp	glu
	Cys	ser; ala
	Gln	asn
	Glu	asp
	Gly	pro
10	His	asn; gln
	Ile	leu; val
	Leu	ile; val
	Lys	arg; gln; glu
	Met	leu; ile
15	Phe	met; leu; tyr
	Ser	thr
	Thr	ser
	Trp	tyr
	Tyr	trp; phe
20	Val	ile; leu

Genomic sequences can be screened for the presence of protein homologues utilizing one or a number of different search algorithms have that been developed, such as the suite of BLAST programs. The BLASTX program allows the comparison of nucleic acid sequences in this invention to protein databases.

In a preferred embodiment of the present invention, the homologue protein or fragment thereof exhibits a BLASTX probability score of less than 1E-30,

alternatively a BLASTX probability score of between about 1E-30 and about 1E-12 or a BLASTX probability score of greater than 1E-12 with a nucleic acid or gene of this invention. In another preferred embodiment of the present invention, the nucleic acid molecule encoding the gene homologue or fragment thereof exhibits a 5 % identity with its homologue of between about 25% and about 40%, or alternatively between about 40% and about 70%, or from 70% and about 90%, or from about 90% and 99%. In another embodiment, the gene homologue or fragment has a single nucleotide difference from its homologue.

The resulting product score of a BLAST program ranges from 0 to 100, 10 with 100 indicating 100% identity over the entire length of the shorter of the two sequences, and 0 representing no shared identity between the sequences. The homologue protein or fragment thereof may also exhibit a product score of 100. Alternatively, the product score is between about 49 and about 99. The protein or fragment may also exhibit a product score of 0. Alternatively, the homolog or 15 fragment exhibits a product score between about 1 and about 49.

The sequences of the present invention were searched for sequence similarity and given biological annotations based on that similarity.

Table 1: Sequences down-regulated at least 1.7-fold by 13 weeks of treatment with phenobarbital are shown with their corresponding annotation.

20 **Table 2:** Sequences up-regulated at least 1.7-fold by 13 weeks of treatment with phenobarbital are shown with their corresponding annotation.

Table 3: Sequences down-regulated at least 1.7-fold by 5 weeks of treatment with phenobarbital are shown with their corresponding annotation.

25 **Table 4:** Sequences upregulated at least 1.7-fold by 5 weeks of treatment with phenobarbital are shown with their corresponding annotation.

iv. Vectors and Host Cells Containing Nucleic Acid Molecules

The present invention also relates to recombinant DNA molecules comprising a nucleic acid sequence of the invention and a vector. The invention further relates to host cells (mammalian and insect) that containing the recombinant 5 DNA molecules. Methods for obtaining such recombinant mammalian host cell, comprising introducing exogenous genetic material into a mammalian host cell are also provided by the invention. The present invention also relates to an insect cell comprising a mammalian cell containing a mammalian recombinant vector. The present invention also relates to methods for obtaining a recombinant mammalian 10 host cell, comprising introducing into a mammalian cell exogenous genetic material.

A recombinant protein may be produced by operably linking a regulatory control sequence to a nucleic acid of the present invention and putting it into an expression vector. Regulatory sequences include promoters, enhancers, and other 15 expression control elements which are described in Goeddel (*Heme Expression Technology: Methods in Enzymology* 185. Academic Press, San Diego, CA (1990)). For example, the native regulatory sequences or regulatory sequences native to the transformed host cell can be used. One of skill in the art is familiar 20 with numerous examples of these additional functional sequences, as well as other functional sequences, that may optionally be included in an expression vector. The design of the expression vector may depend on such factors as the choice of the host cell to be transformed, and/or the type of protein desired. Many such vectors are commercially available, including linear or enclosed elements (see for example, Broach, et al., *Experimental Manipulation of Gene Expression*, ed. M. Inouye, 25 Academic Press, (1983); Sambrook, et al., *Molecular Cloning, A Laboratory Manual*, 2nd Ed., Cold Spring Harbor Press, Cold Spring Harbor, New York (1989)). Typically, expression constructs will contain one or more selectable

markers, including the gene that encodes dihydrofolate reductase and the genes that confer resistance to neomycin, tetracycline, ampicillin, chloramphenicol, kanamycin and streptomycin resistance.

Prokaryotic and eukaryotic host cells transfected by the described vectors
5 are also provided by this invention. For instance, cells which can be transfected with the vectors of the present invention include, but are not limited to, bacterial cells such as *E. coli* (e.g., *E. coli* K 12 strains), *Streptomyces*, *Pseudomonas*, *Serratia marcescens* and *Salmonella typhimurium*, insect cells (baculovirus), including *Drosophila*, fungal cells, such as yeast cells, plant cells, and ovary cells
10 (CHO), and COS cells.

One may use different promoter sequences, enhancer sequences, or other sequences which will allow for enhanced levels of expression in the expression host.. Thus, one may combine an enhancer from one source, a promoter region from another source, a 5'- noncoding region upstream from the initiation
15 methionine from the same or different source as the other sequences, and the like. One may provide for an intron in the non-coding region with appropriate splice sites or for an alternative 3'- untranslated sequence or polyadenylation site. Depending upon the particular purpose of the modification, any of these sequences may be introduced, as desired.

20 Where selection is intended, the sequence to be integrated will have an associated marker gene, which allows for selection. The marker gene may conveniently be downstream from the target gene and may include resistance to a cytotoxic agent, e.g. antibiotics, heavy metals, resistance or susceptibility to HAT, gancyclovir, etc., complementation to an auxotrophic host, particularly by using an auxotrophic yeast as the host for the subject manipulations, or the like. The marker gene may also be on a separate DNA molecule, particularly with primary mammalian cells. Alternatively, one may screen the various transformants, due to

the high efficiency of recombination in yeast, by using hybridization analysis, PCR, sequencing, or the like.

For homologous recombination, constructs can be prepared where the amplifiable gene will be flanked, normally on both sides, with DNA homologous 5 with the DNA of the target region. Depending upon the nature of the integrating DNA and the purpose of the integration, the homologous DNA will generally be within 100 kb, usually 50 kb, preferably about 25 kb, of the transcribed region of the target gene, more preferably within 2 kb of the target gene. Where modeling of the gene is intended, homology will usually be present proximal to the site of the 10 mutation. The term gene is intended to encompass the coding region and those sequences required for transcription of a mature mRNA. The homologous DNA may include the 5'-upstream region outside of the transcriptional regulatory region, or comprise any enhancer sequences, transcriptional initiation sequences, adjacent sequences, or the like. The homologous region may include a portion of the coding 15 region, where the coding region may be comprised only of an open reading frame or combination of exons and introns. The homologous region may comprise all or a portion of an intron, where all or a portion of one or more exons may also be present. Alternatively, the homologous region may comprise the 3'-region, so as to comprise all or a portion of the transcriptional termination region, or the region 3' 20 of this position. The homologous regions may extend over all or a portion of the target gene or be outside the target gene comprising all or a portion of the transcriptional regulatory regions and/or the structural gene.

Thus, the nucleic acid molecules described can be used to produce a recombinant form of the protein via microbial or eukaryotic cellular processes. 25 Ligating the polynucleic acid molecule into a gene construct, such as an expression vector, and transforming or transfecting into hosts, either eukaryotic (yeast, avian, insect, plant, or mammalian) or prokaryotic (bacterial cells), are standard

procedures used in producing other well known proteins. Similar procedures, or modifications thereof, can be employed to prepare recombinant proteins according to the present invention by microbial means or tissue-culture technology.

Accordingly, the invention pertains to the production of encoded proteins or

5 polypeptides by recombinant technologies.

B. Proteins and Polypeptides

The present invention also relates to proteins, peptides and polypeptides encoded by the nucleic acid sequences of the invention. Protein and peptide

10 molecules can be identified using known protein or peptide molecules as a target sequence or target motif in the BLAST programs of the present invention. These

proteins, peptides and polypeptides of the invention can be made using the nucleic acids or derived from the sequence information of the nucleic acids are also disclosed in the present invention. This invention also provides a compound or

15 composition comprising one or more polypeptides, which comprise: 1) at least one fragment, segment, or domain of at least 15-1,000 contiguous amino acids, with at least one portion encoded by one or more of SEQ NOS: 1-580; 2) at least one amino acid sequence selected from those encoding at least one of SEQ NOS: 1-580; or 3) at least one modification corresponding to fragments, segments, or domains

20 within one of SEQ NOS: 1- 580. The proteins, peptides and polypeptides of the invention can be made recombinantly as described above. Alternatively, the proteins, peptides and polypeptides of the invention can be produced synthetically.

Protein fragments or fusion proteins may be derivatized to contain carbohydrate or other moieties (such as keyhole limpet hemocyanin, etc.). A fusion 25 protein or peptide molecule of the present invention is preferably produced via recombinant means.

Modifications can be naturally provided or deliberately engineered into the nucleic acids, proteins, and polypeptides of the invention to generate variants. For example, modifications in the peptide or DNA sequences can be made by those skilled in the art using known techniques, such as site-directed mutagenesis.

5 Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of one or more selected amino acid residues. For example, one or more cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Additional cysteine residues can also be added as a substitute at sites to promote disulfide

10 bonding and increase stability. Techniques for identifying the sites for alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art. Techniques for making alterations, substitutions, replacements, insertions or deletions (see, e.g., U.S. Pat. No. 4,518,584) are also well known in the art. Preferably, any modification of a protein, polypeptide, or nucleic acid of the

15 invention will retain at least one of the structural or functional attributes of the molecule.

The polypeptide or protein can also be tagged to facilitate purification, such as with histidine- or methionine-rich regions [His-Tag; available from LifeTechnologies Inc, Gaithersburg, MD] that bind to metal ion affinity chromatography columns, or with an epitope that binds to a specific antibody [Flag, available from Kodak, New Haven, CT].

A number of purification methods or means are also known and can be used. For example, reverse-phase high performance liquid chromatography (RP-HPLC).

25 C. Antibodies

This invention also provides an antibody, polyclonal or monoclonal, that specifically binds at least one epitope found in or specific to a carcinogenesis

biomarker protein or polypeptide or a protein or polypeptide, of fragment or variant thereof, of this invention. Antibodies can be generated by recombinant, synthetic, or hybridoma technologies. One aspect of the present invention concerns antibodies, single-chain antigen binding molecules, or other proteins that 5 specifically bind to one or more of the protein or peptide molecules of the present invention and their homologues, fusions or fragments. Such antibodies may be used to quantitatively or qualitatively detect the protein or peptide molecules of the present invention.

Nucleic acid molecules that encode all or part of the protein of the present 10 invention can be expressed, by recombinant means, to yield protein or peptides that can in turn be used to elicit antibodies that are capable of binding the expressed protein or peptide. Such antibodies may be used in immunoassays for that protein or peptide. Such protein-encoding molecules or their fragments may be a "fusion" molecule (*i.e.*, a part of a larger nucleic acid molecule) such that, upon expression, 15 a fusion protein is produced. It is understood that any of the nucleic acid molecules of the present invention may be expressed, by recombinant means, to yield proteins or peptides encoded by these nucleic acid molecules.

The antibodies that specifically bind proteins and protein fragments of the present invention may be polyclonal or monoclonal, and may comprise intact 20 immunoglobulins, or antigen binding portions of immunoglobulins (such as (F(ab')₁, F(ab')₂ fragments), or single-chain immunoglobulins producible, for example, via recombinant means. Conditions and procedures for the construction, manipulation and isolation of antibodies (see, for example, Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Press, Cold Spring Harbor, New York 25 (1988), the entirety of which is herein incorporated by reference) are well known in the art.

As discussed below, such antibody molecules or their fragments may be used for diagnostic purposes. Where the antibodies are intended for diagnostic purposes, it may be desirable to derivatize them, for example with a ligand group (such as biotin) or a detectable marker group (such as a fluorescent group, a 5 radioisotope or an enzyme).

The ability to produce antibodies that bind the protein or peptide molecules of the present invention permits the identification of mimetic compounds of those molecules. Combinatorial chemistry techniques, for example, can be used to produce libraries of peptides (see WO 9700267), polyketides (see WO 960968), 10 peptide analogues (see WO 9635781, WO 9635122, and WO 9640732), oligonucleotides for use as mimetic compounds derived from this invention.

Mimetic compounds and libraries can also be generated through recombinant DNA-derived techniques. For example, phage display libraries (see WO 9709436), DNA shuffling (see US Patent 5,811,238) other directed or random mutagenesis 15 techniques can produce libraries of expressed mimetic compounds. It is understood that any of the agents of the present invention can be substantially purified and/or be biologically active and/or recombinant.

Uses of the Invention

The present invention also provides methods for identifying carcinogen 20 compounds. The nucleic acids, peptides and proteins of the invention can be useful in predicting the toxicity of test compounds. Nucleic acids represent biomarkers which are correlated to an altered cellular state. These markers, individually or in combination, can be measured in response to compounds to screen for those compounds that suppress or activate the genes and thus alter the state of the cell in 25 an undesired manner. Specifically, the nucleic acids, peptides and proteins can be used directly in numerous methods well known in the art to identify or detect the presence of specific nucleic acid or amino acid sequences.

- Carcinogens can be identified by contacting an animal, tissue from a mammal, or a mammalian cell, such as a rat hepatocyte, with a compound, under conditions allowing production of mRNA by the cell. The resulting mRNA is then separated and its presence or absence detected. Differential expression of these biomarkers can be monitored in tissues and fluids at the mRNA level using methods well known in the art such as Northern hybridizations, RNAase protection, NMR, rt-PCR, and *in situ* hybridizations. *In vitro* techniques can also be used to detect differential expression of genomic DNA such as, for example, Southern hybridizations.
- Similarly, differential expression of these biomarkers can be monitored at the protein level using, for example, enzyme linked immunosorbent assays (ELISAs), Western blots, HPLC-liquid chromatography, NMR, immunoprecipitations and immunofluorescence. Protein identification can also be performed using new techniques including biomolecular interaction analysis (BIA) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF). (Nelson *et al.*, Interfacing biomolecular interaction analysis with mass spectrometry and the use of bioreactive mass spectrometer probe tips in protein characterization, in Techniques in Protein Chemistry VIII, p. 493-504, 1997; Karlsson *et al.*, Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors, *J. Immun. Meth.*, 220, 121-133, 1997; Krone *et al.*, BIA/MS: Interacting biomolecular interaction analysis with mass spectrometry, *Anal. Chem.* 244, 124-132, 1997; and Wong *et al.*, Validation parameters for a novel biosensor assay which simultaneously measures serum concentrations of a humanized monoclonal antibody and detects induced antibodies, *J. Immun. Meth.*, 209, 1-15, 1997.)

Using the catalog of the present invention, one skilled in the art can predict with the tested compound is a carcinogen. Compounds that results in the

production of nucleic acids, peptides or protein from the catalog, or a subset of catalog, are carcinogenic. To be able to predict carcinogenic, one need not use all of the nucleic acids or peptides of the present invention. For example, if one tested for all of the disclosed biomarkers and found 20% or more to be differentially expressed this would predict that the test compound is a carcinogen. Alternatively, one could use a sub-set of the biomarkers, such as, for example, 20-30 of the nucleic acids. With such a sub-set one would expect 70-80% to be differentially expressed when the test compound is a carcinogen. In addition, one could select only a few of the biomarkers, for example, 10, and look for 100% of them to be differentially expressed as an indication of a carcinogen.

~~mRNA, protein, or genomic DNA of the invention can be detected in biological samples including, for example, tissues, cells, or biological fluids from a subject such as blood, urine, or liver and thyroid tissue.~~

Various microarrays, beads, glass or nylon slides, membranes or other repeatable assay apparati can be constructed using the nucleic acids, peptides, and proteins of the present invention. These apparati can then be used to detect differential expression of these biomarkers. A non-limiting description of selected methods follows.

A. Microarrays

In one embodiment, the nucleic acids of the invention can be used to monitor expression. A microarray-based method for high-throughput monitoring of gene expression may be utilized to measure carcinogenesis biomarker hybridization targets. This 'chip'-based approach involves using microarrays of nucleic acids as specific hybridization targets to quantitatively measure expression of the corresponding genes (*Schena et al., Science 270:467-470 (1995)*, the entirety of which is herein incorporated by reference; *Shalon, Ph.D. Thesis, Stanford University (1996)*, the entirety of which is herein incorporated by reference). Every

nucleotide in a large sequence can be queried at the same time. Hybridization can also be used to efficiently analyze nucleotide sequences.

Several microarray methods have been described. One method compares the sequences to be analyzed by hybridization to a set of oligonucleotides or cDNA molecules representing all possible subsequences (Bains and Smith, *J. Theor. Biol.* 135:303 (1989), the entirety of which is herein incorporated by reference). A second method hybridizes the sample to an array of oligonucleotide or cDNA probes. An array consisting of oligonucleotides or cDNA molecules complementary to subsequences of a target sequence can be used to determine the identity of a target sequence, measure its amount, and detect differences between the target and a reference sequence. Nucleic acid microarrays may also be screened with protein molecules or fragments thereof to determine nucleic acids that specifically bind protein molecules or fragments thereof.

The microarray approach may also be used with polypeptide targets (see, U.S. Patent Nos. 5,800,992, 5,445,934; 5,143,854, 5,079,600, 4,923,901, all of which are herein incorporated by reference in their entirety). Essentially, polypeptides are synthesized on a substrate (microarray) and these polypeptides can be screened with either protein molecules or fragments thereof or nucleic acid molecules in order to screen for either protein molecules or fragments thereof or nucleic acid molecules that specifically bind the target polypeptides (Fodor *et al.*, *Science* 251:767-773 (1991), the entirety of which is herein incorporated by reference).

B. Hybridization Assays

Oligonucleotide probes, whose sequences are complementary to that of a portion of the nucleic acids of the invention, such as SEQ NO.:1-580, can be constructed. These probes are then incubated with cell extracts of a patient under conditions sufficient to permit nucleic acid hybridization. The detection of double-

stranded probe-mRNA hybrid molecules is indicative of biomarkers of carcinogenesis or sequences derived from rat liver hepatocytes treated with a nongenotoxic carcinogen. Thus, such probes may be used to ascertain the level and extent of carcinogenesis or the production of certain proteins. The nucleic acid 5 hybridization may be conducted under quantitative conditions or as a qualitative assay.

C. PCR Assays

A nucleic acid of the invention, such as one of SEQ NO.:1-580 or complements thereof, can be analyzed for use as a PCR probe. A search of 10 databases indicates the presence of regions within that nucleic acid that have high and low regions of identity to other sequences in the database. Ideally, a PCR probe will have high identity with only the sequence from which it is derived. In that way, only the desired sequence is amplified. Computer generated searches using programs such as MIT Primer3 (Rozen and Skaletsky (1996, 1997, 1998)), 15 or GeneUp (Pesole, *et al.*, *BioTechniques* 25:112-123 (1998)), for example, can be used to identify potential PCR primers.

The PCR probes or primers can be used in methods such as described in Krzesicki, *et al.*, *Am. J. Respir. Cell Mol. Biol.* 16:693-701 (1997) (incorporated by reference in its entirety) to identify or detect sequences expressed in carcinogenesis. 20

These detailed descriptions are presented for illustrative purposes only and are not intended as a restriction on the scope of the invention. Rather, they are merely some of the embodiments that one skilled in the art would understand from the entire contents of this disclosure. All parts are by weight and temperatures are 25 in Degrees centigrade unless otherwise indicated.

EXAMPLES

The following examples will illustrate the invention in greater detail, although it will be understood that the invention is not limited to these specific examples. Various other examples will be apparent to the person skilled in the art after reading the present disclosure without departing from the spirit and scope of 5 the invention. It is intended that all such other examples be included within the scope of the appended claims.

Example 1

Rats were treated with phenobarbital for thirteen weeks or in a separate experiment, for 5 days. Liver mRNAs were extracted and probed for those mRNAs 10 specifically altered by phenobarbital treatment by comparing with mRNA expression in untreated rats. The relative abundance of cellular mRNAs in rat liver was determined using PE GenScope's AFLP (Amplified Fragment Length Polymorphism)-based Transcript Imaging technology. The mRNA is converted into double-stranded cDNA, which is then cut with restriction enzymes. The 15 resulting restriction fragments are tagged with specific adapters of known sequences, which allows for subsequent amplification of the fragments under highly stringent conditions. Similar technology has been used in plants (Money, T. et al., Nucleic Acids Res. 24:2616-2617 (1996), incorporated by reference in its entirety).

20 Specifically, rats were treated by oral gavage for 88 days in the 13 week experiment, or for 5 days with 200 mg/kg phenobarbital or control vehicle. The average expression levels of mRNAs for three phenobarbital-induced genes (P450 2B1, P450 3A1, and UDP-glucuronosyl transferase) were measured using RT-PCR, and showed substantial induction of mRNA expression levels as compared to 25 control rats.

In one study, ten differentially expressed transcript derived fragments (TDF's) were isolated and cloned. For each TDF, four or five colonies were picked

and their sequences determined using standard sequencing techniques. In each case, all colonies sequenced contained the same sequences. This is a reflection of the ability to reduce the complexity of the AFLP gel profile by using primers with additional selective nucleotides. The ten TDF sequences were BLASTed against 5 GenBank. The identities of the bands were consistent with what one might predict would be altered by treatment with phenobarbital. PCR analysis of the samples confirmed that these genes are differentially expressed following treatment.

Example 2

10 Validation of AFLP Biomarkers by rt-PCR (Taqman)

After AFLP experiments were conducted, and results analyzed, the effects of phenobarbital on the expression of several biomarkers were validated. RNA was extracted from the same liver samples used in the AFLP study, in addition to liver 15 samples from rats treated with phenobarbital for 2-weeks, followed by reverse transcription reactions to generate cDNA, followed by PCR, using Taqman technology. The genes analyzed for phenobarbital-induced alterations, and the corresponding AFLP sequence numbers are listed in Table 5, and a graph and a chart of the actual results are in Table 6 and Figure 1.

20 The results indicate that AFLP technology can find biomarkers. Eleven of the 17 (65%) genes analyzed were also determined to be differentially expressed using rt-PCR. However, this is based on comparisons at the same timepoint (13 weeks). When the rt-PCR analyses performed on the 2 week samples are considered, another marker (S-033) is found to be differentially expressed.
25 Theoretically, differences in sensitivity and/or specificity between the two techniques could be accounted for these minor discrepancies. However, S-033 is an example of how AFLP has identified biomarkers which are optimal for carcinogen detection at timepoints other than 13 weeks.

As noted above, the specific examples should not be interpreted as a limitation to the scope of the invention. Instead, they are merely exemplary embodiments one skilled in the art would understand from the entire disclosure of this invention.

TABLE 1

<u>SEQ NO</u>	<u>Annotation*</u>
275	rat mRNA for (S)-2-hydroxy acid oxidase
276	human NADH-ubiquinone oxidoreductase
277	rat mRNA organic anion transporter 3
278	Ula-1 RNA from transformed mouse cell line
279	rat hemoglobin alpha chain gene
280	rat mRNA for calcium binding protein
281	rat heat shock protein 27
282	rat mRNA for 50-kDa bone sialic acid
283	rat mRNA for lactate dehydrogenase
284	rat ribonuclease 4 mRNA
285	mouse Src-associated adaptor protein
286	rat mRNA for plasminogen protein
287	rat gene 33 DNA
288	rat mRNA for 50-kDa bone sialic acid
289	mouse glycolate oxidase mRNA
290	rat mRNA for cytochrome b5
291	mouse mRNA for tripeptidyl peptidase II
292	human eukaryotic protein synthesis init.
293	rat fatty liver acid binding protein
294	rat mRNA for ATP-stimulated glucocorticoid receptor translocation promoter
295	mouse apolipoprotein A-I/CIII mRNA
296	rat fibronectin (cell-, heparin-, and fibrin-binding domains)
297	rat mRNA encoding liver fatty acid binding
298	rat RoBo-1 mRNA
299	rat mRNA for pre-alpha-inhibitor, heavy chain
300	rat pancreatic secretory trypsin inhibitor
301	rat apolipoprotein A-IV mRNA
302	rat apolipoprotein A-IV mRNA
303	rat lecithin: cholesterol acyltransferase
304	mouse mRNA for very-long-chain acyl-CoA
305	rat Cyp3a locus
306	rat gene for alpha-fibrinogen
307	mouse protein phosphatase-1 binding protein
308	novel human mRNA similar to rat 45 kDa secretory protein
309	
310	rat retinol dehydrogenase type III mRNA
311	rat mRNA for lecithin-cholesterol acyltransferase
312	rat oxidative 17 beta hydroxysteroid dehydrogenase
313	rat hydroxysteroid sulfotransferase mRNA
314	mouse major histocompatibility locus cla
315	mouse ubiquitinating enzyme E2-230 kDA mRNA
316	mouse fatty acid transport protein 5 mRNA
317	rat (TSC-22) mRNA
318	rat SMP30 mRNA for senescence marker protein

TABLE 2

<u>SEQ NO</u>	<u>Annotation</u>
319	rat cytochrome P450
320	rat cytochrome P450b
321	rat cytochrome P450
322	
323	rat cytochrome P450 mRNA, 3' end
324	rat mRNA for carboxylesterase precursor
325	rat cytochrome P450e
326	rat aldehyde dehydrogenase (ALDH) mRNA
327	rat mRNA for carboxylesterase precursor
328	rat aldehyde dehyrdogenase (ALDH) mRNA
329	rat lipoprotein lipase mRNA
330	rat cytochrome P450IIB3
331	rat mRNA for P450IIA23 protein
332	rat aflatoxin B1 aldehyde reductase
333	rat ,RNA for cytochrome P450 3A
334	rat testosterone 6-beta-hydroxylase (CYP 3A1) mRNA
335	rat mRNA for amyloidogenic glycoprotein
336	rat cytochrome P50 PB1 (PB1 allele) mRNA
337	rat epoxide hydrolase mRNA
338	rat mRNA for P450IIA23 protein
339	rat CYP 3A1 mRNA
340	rat mRNA for hydroxysteroid sulfotransferase
341	rat mRNA for cytochrome P450
342	rat NADPH-cytochrome P450 reductase mRNA
343	
344	rat liver glutathione-S-transferase Yb-1
345	rat cytochrome P450 processed pseudogene
346	rat mRNA for glutathione S-transferase
347	rat NADPH-cytochrome P450 reductase mRNA
348	rat mRNA for P450IIA23 protein
349	rat delta-aminolevulinate synthase mRNA
350	rat mRNA for glutathione S-transferase
351	rat mRNA for amyloidogenic glycoprotein
352	human GSTT1 mRNA
353	rat cytochrome P450IIB3
354	rat mRNA for glutathione transferase subunit 8
355	rat cytochrome P450IIB3
356	rat NADPH-cytochrome P450 reductase mRNA
357	rat glutathione S-transferase mRNA
358	rat NADPH-cytochrome P450 oxidoreductase
359	mouse mRNA for glutathione S-transferase
360	glutathione S-transferase
361	rat mRNA for glutathione transferase subunit 8
362	rat NADPH-cytochrome P450 oxidoreductase
363	rat cytochrome P450 PB1 (PB1 allele) mRNA
364	rat cytochrome P450 PB1 (PB1 allele) mRNA

365 glutathione S-transferase Yc1 subunit
366 rat 5-aminolevulinate synthase mRNA
367 rat cytochrome P450f mRNA
368 rat mRNA for polyubiquitin, 5' end
369 M. aureus mRNA for cytochrome P450IIC
370 preprocathepsin B (mouse, B16a melanoma)
371 rat phosphoglucomutase mRNA
372 rat malic enzyme gene, exon 4
373 rat mRNA for glutathione S-transferase
374 rat cytochrome P450 mRNA
375 rat cytochrome P450 mRNA
376 rat cytochrome P450 mRNA
377
378 human mitochondrial prostatein C3 subunit homolog
379 rat cytochrome P450 3A9 mRNA
380 rat cytochrome P450-1/PB- (ps) gene, exon
381 rat Hsp70-1 gene
382 rat cytochrome P450 mRNA
383
384 human mRNA for transcription factor BTF
385 mesocricetus auratus mRNA for carboxylesterase
386 rat aromatic L-amino acid decarboxylase
387 rat mRNA for putative progesterone binding protein
388 rat Y-b3 glutathione S-transferase mRNA
389 rat NADPH-cytochrome P450 reductase mRNA
390 rat cytochrome PB23 mRNA
391 UGT2B4, UDP-glucuronosyltransferase 2B4
392 rat glutathione S-transferase A3 subunit
393 rat mRNA for cytochrome b5
394 rat mRNA for glutathione S-transferase
395 rat cytochrome P450 3A9 mRNA
396 glutathione s-transferase Yc1 subunit
397 bilirubin-specific UDP-glucuronosyltransferase
398 rat cytochrome P450 mRNA
399 rat p450Md mRNA for cytochrome P450
400 mouse glutathione S-transferase class mu
401
402
403 rat mRNA for beta-tubulin T beta15
404 human micosomal glutathione s-transferase
405 rat transketolase mRNA
406 rat cytochrome P450 (female-specific and growth hormone-inducible) mRNA
407 rat cytochrome P450 (female-specific and growth hormone-inducible) mRNA
408 NPT4, sodium phosphate transporter
409 rah- ras-related homolog (mouse, HT4 neuro)
410 human mRNA for 16G2
411 rat mRNA for analicular multidrug resistance
412 rat UDP-glucuronosyltransferase UGT1A7 mRNA

- 413 human sodium phosphate transporter (NPT4)
- 414 rat liver apolipoprotein A-I mRNA
- 415 rat UDP-glucuronosyltransferase mRNA
- 416 rat apolipoprotein A-I gene
- 417 mouse gene encoding tetranectin
- 418 mouse COP9 complex subunit 7a (COPS7a) mRNA

TABLE 3

<u>SEQ NO</u>	<u>Annotation</u>
419	rat mRNA for hydroxysteroid sulfotransferase
420	Zfp-29 gene for zinc finger protein
421	human HFREP-1 mRNA
422	mouse ATP sulfurylase/APS kinase 2
423	
424	mouse secreted apoptosis-related protein
425	human zinc finger gene ZNF2
426	rat angiotensinogen (PAT) gene, exon 2
427	
428	mouse methyltransferase (Cyt19)
429	mouse activin beta-c precursor gene
430	
431	
432	
433	
434	rat mRNA for hepatic lipase
435	
436	human (H326) mRNA
437	human mRNA for KIAA00181 gene
438	
439	mouse mRNA for paladin gene
440	
441	mouse activin beta-c precursor gene
442	rat orphan receptor RLD-1 (rld-1) mRNA
443	mouse oncomodulin gene (exon 1)
444	rat kallistatin mRNA mRNA
445	
446	rat gonadotropin-releasing hormone
447	URP- nuclear calmodulin-binding protein gb113vrtp
448	mouse Jun co-activator Jab1 (Jab 1) mRNA
449	rat zinc finger binding protein mRNA
450	mouse inhibitor of apoptosis protein 2 mRNA
451	
452	rat mRNA for glutathione peroxidase I
453	mouse CRBPI mRNA for cellular retinol
454	mouse wagneri mRNA for heat shock
455	mouse NPC1 (Npc1) mRNA
456	
457	

TABLE 4

<u>SEQ NO</u>	<u>Annotation</u>
458	rat UDP-glucuronosyltransferase-2 (UDPGT)
459	rat ribosomal protein S12 mRNA
460	rat ornithine decarboxylase (ODC) mRNA
461	rat cytokeratin 8 polypeptide mRNA
462	rat mRNA for cathepsin L
463	human rho GDI mRNA
464	rat CLP36 (clp36) mRNA
465	annexin II, 36 kDa calcium-dependent phos.
466	
467	rat ribosomal protein S18 mRNA
468	rat ornithine decarboxylase (ODC) mRNA
469	mouse (C57BL/6) GB-like mRNA
470	cyclic protein-2, cathepsin L proenzyme
471	human p27 mRNA
472	rat c-myc oncogene and flanking regions
473	rat mRNA for canalicular multispecific
474	mouse ctna-2-beta mRNA homolog
475	rat 3-hydroxy-3-methylglutaryl CoA reductase
476	rat stathmin mRNA
477	rat mRNA for Mx1 protein
478	
479	rat mRNA for protein phosphatase-2A catalytic subunit
480	rat mRNA for Mx2 protein
481	human mRNA for MUF1 protein
482	mouse MA-3 (apoptosis-related gene) mRNA
483	human BRCA2 region, mRNA sequence CG012
484	
485	pre-mtHSP70, 70 kDa heat shock protein
486	
487	house mouse mRNA for MAP kinase, kinase 3B
488	rat mRNA for 14-3-3 protein gamma-subtype, putative protein kinase C
489	human homolog of the Aspergillus nidulans sudD gene product

* ANNOTATIONS REPRESENT THE PREDICTION OF THE BIOLOGICAL FUNCTIONS OF THE SEQUENCES BASED ON SIMILARITY TO KNOWN SEQUENCES.

TABLE 5

SEQ. NO.	Gene
3	Rat P-450
4	Rat aldehyde dehydrogenase
6	Rat UDPGT1.1
10	Rat vitamin D-binding protein
179	Rat UDPGT
25	Rat cytochrome B
114	Rat delta-aminolevulinate synthase
129	Glutathione S-transferase
34	Rat liver catalase
38	Rat alpha-2u globulin
40	Rat NADP-dep.isocitrate dehydrogenase
42	Mouse JAK1 (protein tyrosine kinase)
230	Rat carboxylesterase
46	Rat cathepsin B
52	(s)-2-hydroxy acid oxidase
116	Estrogen sulfotransferase
92	Rat nicotinic receptor alpha 7 subunit

TABLE 6

SEQ NO.	Fold Change		
	2-week	13-week	AFLP
3	1.34	1.85	2.3
4	16.36	12.88	8.2
6	0.93	1.5	4.6
10	0.66	0.79	1.7
179	14.11	9.05	10.5
25	1.85	0.75	4.2
114	1.22	4.03	3.8
129	2.52	4.03	4
34	0.79	0.45	1.6
38	0.35	0.03	0.04
40	0.88	1.14	2.5
42	0.8	0.83	1.9
230	4.24	5.74	1.3
46	0.87	1.41	2.3
52	0.31	0.09	0.3
116	0.81	0.15	0.32
92	0.45	0.72	6.3

SUBSTITUTE SHEET (RULE 26)

TABLE 7

Gene Description	5' Primer Sequence 5' to 3'	3' Primer Sequence 5' to 3'	Taqman Probe Sequence
Rat liver catalase	550	519	490
Rat Carboxylesterase	551	520	491
Rat cathepsin B	552	521	492
canalicular multidrug resistance protein	553	522	493
(s)-2-hydroxy acid oxidase	554	523	494
estrogen sulfotransferase	555	524	495
protective protein (heat shock protein 90A)	556	525	496
Rat hepatic alp-2u globulin	557	526	497
Rat transferrin	558	527	498
Cytochrome P450	559	528	499
Aldehyde dehydrogenase, rat	560	529	500
3-methylcholanthrene-inducible UDP gluc.trans	561	530	501
rat senescence marker	562	531	502
Vitamin D binding protein, Rat	563	532	503
RB binding protein 2	564	533	
UDP-glucuronosyltransferase 1	565	534	504
mitochondrial gene fragment, Rat	566	535	505
Rat delta-aminolevulinate synthase	567	536	506
human flavoprotein	568	537	507
alpha-2u globulin, Rat	569	538	508
glutathione-S-transferase	570	539	509
rat cytosolic NADP-dependent isocitrate	571	540	510
Protein tyrosine kinase	572	541	511
hepatic steroid hydroxylase	573	542	512
Nicotinic receptor, alpha sub. unit	574	543	513
Alpha B-crystallin, heart	575	544	514
Bos Taurus aldehyde oxidase	576	545	515
lambda-crystallin	577	546	516
Vav2	578	547	517
MDM2	579	548	518
DADI	580	549	

WE CLAIM:

1. A substantially-purified nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ NO: 1 through SEQ NO: 580 or fragments thereof, substantial homologues thereof, and substantial complements thereof.
2. The nucleic acid molecule according to claim 1, wherein said nucleic acid molecule has a nucleic acid sequence of a fragment of one of SEQ NO: 1 through SEQ NO: 580 or a substantial homologue thereof or a substantial complement thereof and contains at least 40 nucleotides.
3. The nucleic acid molecule according to claim 2, wherein said fragment has at least 60 nucleotides.
4. The nucleic acid molecule according to claim 3, wherein said fragment has at least 100 nucleotides.
5. The nucleic acid molecule according to claim 2, wherein said fragment has a sequence that is identical or complementary to at least 50 contiguous nucleotides in one of SEQ NO: 1 through SEQ NO: 580.
6. The nucleic acid molecule according to claim 1, wherein said substantial homologues share at least 90% sequence identity with at least one of SEQ NO: 1 through SEQ NO: 580.
7. The nucleic acid molecule according to claim 6, wherein said substantial homologues share at least 95% sequence identity with at least one of SEQ NO: 1 through SEQ NO: 580.

8. The nucleic acid molecule according to claim 1, wherein said substantial homologues differ in sequence identity from at least one of SEQ NO: 1 through SEQ NO: 580 by no more than 5 nucleotides.
9. The nucleic acid molecule according to claim 8, wherein said substantial homologues differ in sequence identity from at least one of SEQ NO: 1 through SEQ NO: 580 by no more than 3 nucleotides.
10. The nucleic acid molecule according to claim 1, wherein said substantial complements share at least 90% sequence identity with at least one completely complementary sequence of SEQ NO: 1 through SEQ NO: 580.
11. The nucleic acid molecule according to claim 10, wherein said substantial complements share at least 95% sequence identity with at least one completely complementary sequence of SEQ NO: 1 through SEQ NO: 580.
12. The nucleic acid molecule according to claim 1, wherein said substantial complements differ in sequence identity from at least one completely complementary sequence of SEQ NO: 1 through SEQ NO: 580 by no more than 5 nucleotides.
13. The nucleic acid molecule according to claim 12, wherein said substantial complements differ in sequence identity from at least one completely complementary sequence of SEQ NO: 1 through SEQ NO: 580 by no more than 3 nucleotides.
14. The nucleic acid molecule according to claim 1, wherein said nucleic acid molecule shares between 95% and 100% sequence identity with at least one nucleic acid sequence selected from the group consisting of SEQ NO: 1 through SEQ NO: 580 and complements thereof.

15. The nucleic acid molecule according to claim 14, wherein said nucleic acid molecule shares between 98% and 100% sequence identity with at least one nucleic acid sequence selected from the group consisting of SEQ NO: 1 through SEQ NO:580 and complements thereof.
16. The nucleic acid molecule according to claim 1, wherein said nucleic acid molecule is a carcinogenesis biomarker nucleic acid molecule selected from the group consisting of SEQ NO:1 though SEQ NO:580.
17. An amplification primer selected from the group consisting of SEQ NO: 519 though SEQ NO: 580.
18. A detection probe selected from the group consisting of SEQ NO: 490 though SEQ NO: 519.
19. A substantially-purified carcinogenesis biomarker or fragment thereof encoded by a first nucleic acid molecule which substantially hybridizes to a second nucleic acid molecule, said second nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ NO:1 through SEQ NO:580 and complements thereof.
20. The carcinogenesis biomarker or fragment thereof according to claim 19, wherein said nucleic acid sequence is a carcinogenesis biomarker encoded by a first nucleic acid molecule which substantially hybridizes to a second nucleic acid molecule, said second nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ NO:1 through SEQ NO:580 and complements thereof.
21. A substantially-purified polypeptide encoded by SEQ NO: 1 through SEQ NO: 580.

22. A method of measuring the carcinogenicity of a compound comprising:
- a) exposing an animal to the compound; and
 - b) determining the presence or absence of a polypeptide encoded by SEQ NO:1 through SEQ NO:580.
23. A substantially-purified antibody or fragment thereof, said antibody or fragment thereof capable of specifically binding to the carcinogenesis biomarker or fragment thereof of claim 21.
24. A method of claim 22 wherein said carcinogenesis measurement is determined using a substantially-purified antibody or fragment thereof, said antibody capable of specifically-binding to a substantially-purified polypeptide encoded by SEQ NO:1 through SEQ NO:580.
25. A method for determining a level or pattern of a carcinogenesis biomarker in a cell comprising:
- (A) incubating, under conditions permitting nucleic acid hybridization, a marker nucleic acid molecule, said marker nucleic acid molecule having a nucleic acid sequence selected from the group consisting of SEQ NO:1 through SEQ NO:580 or complements thereof, with a complementary nucleic acid molecule obtained from said cell, wherein nucleic acid hybridization between said marker nucleic acid molecule, and said complementary nucleic acid molecule obtained from said cell permits the detection of said carcinogenesis biomarker;
 - (B) permitting hybridization between said marker nucleic acid molecule and said complementary nucleic acid molecule obtained from said cell; and

- (C) detecting the level or pattern of said complementary nucleic acid, wherein the detection of said complementary nucleic acid is predictive of the level or pattern of said carcinogenesis biomarker.
26. The method of claim 25, wherein said level is predictive of said carcinogenesis biomarker.
27. The method of claim 25, wherein said pattern is predictive of said carcinogenesis biomarker.
28. The method of claim 25, wherein said level or pattern is detected by *in situ* hybridization.
29. A method of isolating a nucleic acid that encodes a carcinogenesis biomarker or fragment thereof comprising:
- (A) incubating under conditions permitting nucleic acid hybridization, a first nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ NO:1 through SEQ NO:580 or complements thereof with a complementary second nucleic acid molecule obtained from a cell;
 - (B) permitting hybridization between said first nucleic acid molecule and said second nucleic acid molecule obtained from said cell; and
 - (C) isolating said second nucleic acid molecule.
30. A method of isolating a nucleic acid that encodes a carcinogenesis biomarker or fragment thereof comprising:
- (A) incubating under conditions permitting nucleic acid hybridization, a first nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of a nucleic acid molecule encoding for a

- carcinogenesis biomarker or complement thereof, with a complementary second nucleic acid molecule obtained from a cell;
- (B) permitting hybridization between said first nucleic acid molecule and said second nucleic acid molecule obtained from said cell; and
- (C) isolating said second nucleic acid molecule.
31. A method for measuring the carcinogenicity of a composition comprising:
- (a) culturing a cell line;
- (b) exposing said cell line to said composition; and
- (c) determining the presence or absence of mRNA which substantially hybridizes to an at least one nucleic acid sequence selected from the group consisting of SEQ NO:1 through SEQ NO:580 and complements thereof.
32. A method for measuring the carcinogenicity of a composition comprising:
- (a) exposing a cell, tissue sample, or test mammal to said composition; and
- (b) determining the presence or absence of mRNA which substantially hybridizes to an at least one nucleic acid sequence selected from the group consisting of SEQ NO:1 through SEQ NO:580 and complements thereof.
33. The method of claim 32, wherein said mammal is a rat.

FIGURE 1**SUBSTITUTE SHEET (RULE 26)**

<110>

<120> CARCINOGENESIS_BIOMARKERS

<130>

<160> 580

<210> 1

<211> 271

<212> DNA

<213> Rattus norvegicus

<400> 1

gatccaccta acaagaagcc caaagtctag acgtcgccctt ttgcctgtga tgatttgta
60

ctgcaggta gccagcgtct gtctgatact aagtggtaaa tgaactacgt gtttttatgg
120

gaaacaaaaa tattttgtat atcatcaaattt ttatacttagc tatctgggtg ttagcatatc
180

tagtaattat gagtctagaa taatttttac atattttat attattgtcc tctcagttac
240

tgaatggatg gaaaacaatc atgttggttt a
271

<210> 2

<211> 206

<212> DNA

<213> Rattus norvegicus

<400> 2

gatccaagac cctcgctgac tccgtctgaa tttttggttt cagttggta cccgaagctg
60

cgcggcgcgt ctgcttggta cttgttgac tggtaattt gtttgccttc tttgtgaccc
120

gactgtggtt ttctggacgt gttgtgtctg ttatgtcttt tttgactttt gtttcgtgtt
180

tgaatttggta ctgacgactg tggta
206

<210> 3

<211> 74

<212> DNA

<213> Rattus norvegicus

<400> 3

gatccatgat actgcgtatgc agattttcat gtgaatattc tgattgttcg atgttgttg
60

cctgttttg ttta
74

<210> 4
<211> 207
<212> DNA
<213> Rattus norvegicus

<400> 4

gatccatggt caaacaatac cgagtgtatgg agacattttc acttttacga gacgtgaacc
60

tattgggttg tggccaaa tcatcccttg gaattttcca ctgcttatgt tcatttgaa
120

gatagccctg ccctcagctg tggaaacaca gtggtcgtca agccagcaga gcaaactcct
180

ctcactgctc ttcacatggc atcttta
207

<210> 5
<211> 147
<212> DNA
<213> Rattus norvegicus

<400> 5

gatccacaat gggcagaagt tagtggttcc caggattgct gggagcatgg cactgtcaaa
60

tcaactaccgc tctgaagatt tattagacgt tgacactgct gccggaggat tcagcagaga
120

cagggactga actactgtct cccttta
147

<210> 6
<211> 366
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 6

gatccatggt ctcagagatt ccagagaaga aagcgatgg aatcgctgag gctttggca
60

gaattcctcn agacggtcct gtggcngcta cacnngggaa ctagaccatc gaaccttgca
120

aagaacacta ttcttgcata atggctaccc caaaacgatc tgcttggta tccaaaggct
180

cggcggtca tcacacactc ccggttccca tggatttat gaaggaatat gcaatgggt
240

tcccaatggat gatgatgccccc ttgtttggtg atcagatgga caacgccaag cgcatggaaa
300

ctcggggagc tggggtgacc ctgaatgtcc tgaaaaatgac tgccgatgat ttggaaaacg
360

ccctta

366

<210> 7

<211> 156

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 7

gatccactga agncatcctt gaccgatagg natcaccccg gacttcgatg caccagaggg
60

cgcaaagcat gagggctggg agaggaccnn ggtgtttgcc tggccagtgt gaagcagtca
120

caaggaggta actggacaaa ctagcatgtg gcctta
156

<210> 8

<211> 103

<212> DNA

<213> Rattus norvegicus

<400> 8

gatccaggca agttgggaga atatgacgct agtatacataa acagggtgcc aggaaaatcc
60

actattacca aacattccaa tgactcctat agctgttgcc tta
103

<210> 9

<211> 127

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 9

gatccaaaag ttcttcgggc aacacgtcct tcagtctgga ggcttaactct aaatagtgtg
60

accatgtang acagagtaaa gggcagggag tgaatttagag aagaagttgg aattggtctg
120

gggattta
127

<210> 10

<211> 400

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 10

gatccaaagg gattggccga tcagtttcta ttcgaatatt ccagcaatta cggacaagct
60

cncctgccac ttttagttgg gttcacaccaa gagttatctc tctatggtcg gtcctgctg
120

tacttctgca aaacccaactg tgtgcttttt gaaggagaga ctccagatga aacagttatc
180

actttctcacc actatgtcaa acagagtctg ctcacaatat gctgcataatg gaaaggaaaa
240

atcaaggatg agccatctca taaaacttagc ccaaaaagta ccaactgcta acctggagga
300

tgttctgcca ctcgctgaag accttactga aatcctgtcc agatgttgta agtctacctc
360

agaagactgc atggccagag agctgcctga acacacatta
400

<210> 11

<211> 57

<212> DNA

<213> Rattus norvegicus

<400> 11

gatccagaaa cttctgctaa gacttcttca atggaaaaga gctgaataag agcatta
57

<210> 12

<211> 231

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations
<400> 12

gatccccagt ttcatcagtg tccctgttagc tttctgcagc actcttgggc tggacagagc
60

tcctggaaac atttcaaaag atcactnccc ttaccctgcc cttccttggg gtccacctgg
120

tgctccagtg ggattgcaca agaatgtctg tgcagaagca aagacagcct ttttaccagt
180

gtggccaaag cttcacaca tacgggtacc tgtttacac tgtgatgttt a
231

<210> 13
<211> 295
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 13

gatcccacag cacagttgcc ttttgaacaa cacaagttgc tgcagcattt gaaacaccaa
60

cagcagtgca tacgaacaag atagtggcaa gggccatgcc aagccttcac cttccaaggg
120

ctaaataggc caccaagtga cagcaaaatg gtgccaaagn tctactacag cactgctaag
180

aaccgacagc tgagaagccg gatacgctt gacctagagt gcacacaccc aagtccctcaa
240

ctggaccttg atagccaaca aatgggagca gtgtcttgc tctttacac ctta
295

<210> 14
<211> 188
<212> DNA
<213> Rattus norvegicus

<400> 14

gatcccgag gccgaggcta gagactattc tgtcaactcct ggtatccctt cagaagttgc
60

ctgtacgatt gcctgaagga gaagcactgc agtgtttgc acgacgtgtc atgagttggc
120

aagatagagc acgacaagct ttagccacag atgaactgtc ttctgccctg gccaaactct
180

ctgtgtta
188

<210> 15
<211> 194
<212> DNA
<213> Rattus norvegicus

<400> 15

gatccccttt cccagtgata cccagatgg atttgattgc ccgttttgtt ccatgttgtt
60

atagggttggaa atgggtgagca atatcagaga accatgtttt ctctcaggac actttctgtg
120

ctggggtagc acaggctgtc atgctcagca taggtgctcg ctctgctaca ctatcccttc
180

aaagtcgtgg ctta
194

<210> 16
<211> 164
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 16

gatccngact gagaagagtn tcaacacggc cccctacata gtgggcttca acaagcaaga
60

gtttggctgg atcattccaa cgatgatggg aaatctactc tctgaaggca gaatgaatga
120

gaaaatggcc agttctttct tgaagagggtt cagccctaac ctta
164

<210> 17
<211> 43
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 17

gatccctgag atgccctaga tcaatgnat gactatgaca tta
43

<210> 18
<211> 426
<212> DNA

<213> Rattus norvegicus
<400> 18
gatccgtggc ccatgagaac acatccaatg ctgagacctg tggaggagtc agcaactggg
60
attgaaaagga tcagcagggt tagaccacat ggagctgttag ctggccacag ctaagactca
120
gaagaccata ggcctgacac aggatgtcag tcaatgtcac agaatggatt tgaacactct
180
gtagtggact gtgtacggct aaacacaggg actcttctac aaccaggaa tgctggagct
240
gttctctgtg aaggccacac ccctgagtgt ccagtccttc cctgggctcc tcataatgaga
300
gctaggcatt gtctgatgtg gtgaccctgc agggacagcc ctttgttctt gacagccaca
360
gccttcagtg agcctggatt tcctgtgtgc tttccttagga agttctccct ggatgactgc
420
tggtta
426

<210> 19
<211> 212
<212> DNA
<213> Rattus norvegicus
<400> 19
atccgttttgc tccgcgaggg aaacagagcc gttgaccatg gttgcaacgg gcagtttgag
60
cagtaagaac acggccagca tttcagagtt gctggacggt ggctctcacc ctgggagtct
120
gctaagtgtat ttcgactact gggattatgt cgtccccgag cccaacctca acgaggtgg
180
gtttgaagag acaacatgcc agaatttggta
212

<210> 20
<211> 215
<212> DNA
<213> Rattus norvegicus
<400> 20

gatccgagag taggtccacc ctgctggctc tgtgactgcg gggcttggat ttataacagg
60

agaaaaaaggc ggccggctgat cttctaggct gcaaacgggt gtctctggcc atccctggat
120

actggctgga gaggagacag cgtttcaca gttgtacttg tagccttcac aggtcaggct
180

gcgtctgccc actcctgtcc attgtacgtg cgta
215

<210> 21

<211> 286

<212> DNA

<213> Rattus norvegicus

<400> 21

gatcctaaag gcggtcacat ggttcctgct gaccaaggga catggctctg aagatgatga
60

ggctggttac tcagcaggag tagctgagct gagctggccc tggaggcctg gagcctggag
120

gccctggagt agggcccagg atgcaggtgc taatgtctat ccccgccgct cttttccccg
180

actctaccat gggatgtaac tccaggaccc ctgccatctc cggtaccaaaa agactgtggc
240

tccgtgtct actcagaaaat cagttctact tcgtaaacag tgttta
286

<210> 22

<211> 227

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 22

gatcctaagg agtaaattga gaaaccaaga gtgggggaga tgaggcgcaa cccaagaaaag
60

atgctgtat ctctgaaggg acaactctaa aatcaaagtg ctggaaaggtt ggctccatcc
120

tgagntnctc ttgcattgc aagtgttgtg tttgtcctgt gccttatgct cttctctcat
180

acctgcaaag gatgcattgt tacttgcattc tcaactcctc ctgttta
227

<223> unsure at all n locations
<400> 26

gatcctgaac aaccttccac tcctgcagga ctaaattcaa cagcgaaaat cctgaaacca
60

tcaagttcct gcaaagccgt tgagagagtc acagaccacc tccttacgga tctcagacct
120

ggacagagaa cagttcaaac tcngggagat gcaaagccgg tatgagcaac ctgcatta
178

<210> 27
<211> 275
<212> DNA
<213> Rattus norvegicus

<400> 27

gatctacctg cgtctaaaa agctccaata atcttgacag cacaagacag ctccaacagc
60

atgctgtctg ccatttgtct ttctgtcagt cactttgtc cccactccat ctgctcacat
120

ctcattcttt ctttcacct tggcacccac caccacccctt ctgctgtgct tctggcttcc
180

ttgtctgtca gtctttctat ctcgacttctt ggaatttcta cctgcttttc tctctacctg
240

gcccttaccc gacttcatgt ttgaccccttga cctta
275

<210> 28
<211> 69
<212> DNA
<213> Rattus norvegicus

<400> 28

gatctcaatt tgatgtcatt ctcgcagatg ctgtgggtcc ctgtggtgag ctgctagcta
60

gaatgctta
69

<210> 29
<211> 48
<212> DNA
<213> Rattus norvegicus

<400> 29

gatctctcta tagaccagaa acatgatatg tggaccatgc tggcctta
48

<210> 30
<211> 308
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 30

gatctcagag acggccatga tcttcgcgg cgtggatgtc accaaggagc ccattccagt
60

ccttcccact gtgcattaca acatgggcgg gnntcccact aactacaagg gacaggtgct
120

gaagcacgtg aacggccagg atcagattgt gcctggtctg tacgcctgtg gggaggctgc
180

ctgcgcctca gtgcattgtc ccaaccggct tggagcaaac tctctttgg accttgcgt
240

ctttggccga gcctgtgcccg tgagcattgc agaatcttgc aggccctggag ataaagttcc
300

tccgattta
308

<210> 31
<211> 221
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 31

gatctccaac tgcatgccag agtaacggag agactttgac agcccaaggat atcacagtgc
60

ctgctgttgc cactcagctc tcctatatgt ttttccactg gagttatgag ctgcctgtcc
120

ttctgtcctg tggattcaa aacaaacttt ccttctgcag tgtgcacttg ggggcgggttc
180

ttgggnntant gaggagacag cctgtcagcc tctgcccatt a
221

<210> 32
<211> 186
<212> DNA
<213> Rattus norvegicus

<400> 32

gatctccgtg atgtcaagat ttgactccgg ttttcaactaa acctgacctt tacagtgtc
60

aactctgcct acagggtgct tgcttattga tagtgaattha tcatttcctg tggtgtcttc
120

atccatgtct ataactttct tagaacatca tgaaaatgggtt actttactac atgatttata
180

acatta
186

<210> 33

<211> 146

<212> DNA

<213> Rattus norvegicus

<400> 33

gatctcatcc tcccggaaagg gttgcttaggc ttctgtgtgg aaactgtggc gtcagcagcc
60

agagcacatg ctcttgcccc agggctctca ggctcaactct cacctcatgt attttgtctc
120

tgctcgtagg aaaatcatcg tcatta
146

<210> 34

<211> 125

<212> DNA

<213> Rattus norvegicus

<400> 34

gatctcgagg gccataatcc gggcttcct gtgcaagtct tcctgcctct tcaacaggca
60

agttttttagt gccctggta gtcttgtaat ggaacttgca gtacactgcc tctccattcg
120

catta
125

<210> 35

<211> 49

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 35

gatctgacac tctcccgaga cacccacaaa gaggatngtg ctgtgttta
49

<210> 36
<211> 193
<212> DNA
<213> Rattus norvegicus

<400> 36

gatctgagga gtgtacagca aaggcttga ctttccttg tggtggaagg atttggttt
60

ttcattggcc acggaacgac tacaatagt ggcgagatgc tgccctctgg tggcccggaaa
120

cgttgaactc gtttgtata gttggattgtat tacaacagtc aactcccagg gtctgacttt
180

ctaattccgcg tta
193

<210> 37
<211> 205
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 37

gatctgagtt cagacatcaa ggaaaagttt gcaaaactat gtgtggcaca tggaaatcact
60

agggacaata tcattgacct aaccaagact gatcgctgtc tccaggcccc aggttgaaga
120

aaggcctgag cctccagatt gcagggcaag atccagttag agcaagantg cttctctgtc
180

cagaagtcaa tccaagaagt gctta
205

<210> 38
<211> 177
<212> DNA
<213> Rattus norvegicus

<400> 38

gatctgagtt cagacatcaa ggaaaagttt gcaaaactat gtgtggcaca tggaaattcac
60

tagggacaat atcattgacc taaccaagac tgatcgctgt ctccaggccc gaggttgaag
120

aaaggcctga gcctccagag tgcctctctg tccagaagtc aatccaagaa gtgctta
177

<210> 39
<211> 157
<212> DNA
<213> Rattus norvegicus

<400> 39

gatctggtca tggtgctggt gctcaactctc acctgtctta ttctcctgtc aatctggaga
60

cagagttctg ggagagggaaa gctccccag gcctattcct ctcccaatta ttggcaatat
120

ctttcagcta aatgtgaaga acatcaccca atcctta
157

<210> 40
<211> 413
<212> DNA
<213> Rattus norvegicus

<400> 40

gatctggtat gaacacaggg tcatacatatga catggtgccc caggctatga aatcagaagg
60

aggcttcatc tgggcctgtta agaactatga tggtgatgtg cagtcagact cagtagccca
120

aggttatggc tcccttggca tcatgaccag tgtgctgatt tgtccagatg gtaagacgg
180

agaagcagag gctgcccattg gcactgtcac acgtcaatc cgcattgtacc agaaaggaca
240

ggagacgtcc accaatccca ttgcttccat ttttgcctgg tcccgagggt tagcccacag
300

agcaaagctt gacaacaata ctgagctcag cttctttgca aatgctttgg aagaagtctg
360

cattgagacc attgaggctg gctttatgac taaggacttg gctgcttgca tta
413

<210> 41
<211> 346
<212> DNA
<213> Rattus norvegicus

<400> 41

gatctgggtt aaccaaaggc ggccttgaa tttgccacgt agctgaggct ggccttgaac
60

tccttaccct cttgcctcta tagagaaaagt gctgggattg cagggagatg acacacctgt
120

ccaacaactg gttcataaaag gcagatgcag ggtacttcac acacactggg ctggcagct
180

gggactgcca gggagaggc cttagcatac atgaaagtgg acagggacag ctctgggtt
240

taggcaggaa tagacaaagg tgacaagcct cacgacctca gggacaggag tccctgtgag
300

ggccctgcct acctcctgta tctccccctct cccctgtcag ccatta
346

<210> 42
<211> 292
<212> DNA
<213> **Rattus norvegicus**

<400> 42

gatcttacgg aacttctacc acgagaacat tgtgaagtat aaaggaatct gcatggaaga
60

cgaggaaat ggtatcaagc tcattcatgga gtttctgcct tcggaaagcc taaaggaata
120

tctgccaaag aataagaaca aaatcaacct caaacagcag ctaaaatatg ccatccagat
180

ttgttaagggg atggactatc tgggtctcg gcaatatgtt caccggact tagcagcaag
240

aaatgtcctt gttgagagtg aacaccaagt gaagatcgga gactttgggt ta
292

<210> 43
<211> 239
<212> DNA
<213> **Rattus norvegicus**

<400> 43

gatcccattg gcaggagagg gaggtgcct ttgctacgaa acaagccatc cccagactca
60

acagctaacc aagtattcac gtacccgtga ttctgtgggt tagctaagct cctttgagca
120

gctctactag tggggcctgg tcctgctcat gagcccagtc acttctca cttagctgggg
180

ctggtttaggc tggggtcacc cagccattgt agcaagtgtt ggttgcatcg gcttgggta
239

<210> 44
<211> 121
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 44

gatcccaagg ggcgctcctg tcagacagca ttggcggaan tctggatgtg ttggccggtt
60

cttttgcgc cggtttcct tcacttggca gaagaagtgtt gccagcacat cccctacgtt
120

a
121

<210> 45
<211> 117
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 45

gatcccaacg tcaagtcaat ctttgtcacc tgtggagacn ggacttgaaa gtcatgcttc
60

caggccagtg ccattattta ggcttgcagt ggccggattt cttcaaggag tggatta
117

<210> 46
<211> 105
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 46

gatccagttc caggatgtgt gtccttgate cttctctttt gcctgctggc actgacnagt
60

gccccatgaca agccttcctt tcaccactgt cggacgacat gatta
105

<210> 47
<211> 52

<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 47

gatccatatgt gtctcnaaga ataagcacac tcagactaac acagtcccat ta
52

<210> 48
<211> 442
<212> DNA
<213> Rattus norvegicus

<400> 48

gatctcgaga cggatagcct cattcagacg accatccgaa aggagttctc ccagtgcacg
60

gtcatcacca tcgctcacag gctgcacacc atcatggaca gtgacaagat aatggtccta
120

gacaacggga agattgtcga gtagggcagt cctgaagaac tgctgtccaa cagaggttcc
180

ttcttatctga tggccaagga agccggcatt gaaaatgtga atcacacaga agctctagca
240

gctggttccg tggctggcgg gactataaga acagtttcta ttatggctt tgggtttctg
300

tgactgtgct cttaggtgcaa agacacatat tttgttcccg ttgctcaggc tgggcctcaa
360

actctaaggc ccagcaatct ctggtctcag ccagagacct gtaaaaatag acacttcaa
420

gattatcatg aataaaatatt ta
442

<210> 49
<211> 227
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 49

gatctacgga ggacggcaga gaaacggtgt caggcccagc cacttcagca gaggctctaa
60

gagtgtggcc cgccgggtcc tccaagccct ggangggctg aaaatggtgg aaaaggacca
120

agatggggcc gcaagctaac acctcaggga cagagagatc tggacaggat cgccggacag
180

gtggcatgct gccacaacaaga agcattagaa caaaggatgc tgggtta
227

<210> 50
<211> 248
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 50

gatccacccc nngctaactn tttnacgannn tgccggagccc ctataaagtg cctntgacca
60

acggacacaa gaggaatatac cccttggaaatgt gaaccaagtg gaaagaatga gctgtgagac
120

tggatagttt tggtgccctca agctgatcct tctgagtggg cggggcttagc accccagtgt
180

ccatcaagca aggtcttatcc ttcttggatgtgg gcaggcttagc actccagtgtt ccagnnattc
240

cagtctta
248

<210> 51
<211> 113
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 51

gatccaacctt nnccagnnaan tgggagctan ctatctggaa tccacagctt gatgatttt
60

acatcgaaaa gtactttggg aggntttgg agtattttntt gattcaagcc tta
113

<210> 52
<211> 198
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 52

gatccctaca agaggnagac aanacttcaa catagtgtgt gagctattct cttcggtccg
60

atcataccta gtagtttgag ccctctaccc tgagaaaatcc agatggatga agaaaagata
120

gctaacagct accagagggt gcatttggat gaaggaataa catctaattgt tntacaggat
180

aacnntaact gacaatta
198

<210> 53
<211> 166
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 53

gatcccacatcg ctcangcngc anntcaggtg cantcctgga gagagatccc aaaattcttc
60

aggcaacacc tccttcagtc tggagnnaac tctaaatagt gtgaccatgt aggacagagt
120

aaagggcagg gagtgaatta gagaagagtt ggnngtctgg ggatta
166

<210> 54
<211> 190
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 54

gatccgagga catnctnctg gattcacaac tcttcaacct caggacggcg acgtcgctca
60

atggggattg gtttttcgat tgtcgtggcc tctgacaaaa gagaaaagat agaagagaac
120

ggcagcatga gagttttgt gcagcacatc gatgtcttgg agaattcctt aggctncnag
180

tccgtatata
190

<210> 55
<211> 178
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 55

gatcctagtt cagggnnnggc tgnaggtaaa agctgttcta cagtcactct cttccataata
60

cagtgcgtg acgtnacttc taatagacga naattagana cagcctgctt gcccataaca
120

ggaaagtgtat cactgagatg atagcgtgtc catttgatgg gccncctcag caacgtta
178

<210> 56
<211> 240
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 56

gatcctatgt tccgnccgaa cataacctgtg tgagtgaaat atgnanttct gaaaggatng
60

gctcaacaac tacagaacgc acctcccggt ctctctgctc taagatgcta aatatgaaag
120

ccagngtttc acagcccaga tcatccacng cactgctta ctgattcgga agtttctctt
180

gaggatactc cagatacacc tgagacatta tanatcatat atcaannngc acaaataatta
240

<210> 57
<211> 222
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 57

gatctacagg angancaagc ttngtnang tattgtatgag gatgatccta ctgtggatga
60

taccaggct gctgttaactg aagaaatgcc acccctggaa ggagatgatg acacatcacg
120

catggaagaa gtagactagg cttcaccagn actatgtgtt tgatgcttac cttcattcct
180

tctgatnata tattttccat gatttngnt ttatTTTGT ta
222

<210> 58
<211> 112
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 58

gatctagaaa gcacnnncag tttctggant tatagcacaa atccacttgt attatctctt
60

tcatatnaca atttatgnnc cttgtgtca ttgtgnnccc attcctgagt ta
112

<210> 59
<211> 176
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 59

gatctccttg cangcttgac cctgtngcag taggcaccaa ggagaattac agtctcctga
60

gaagaaaagct agnacaaaatg cagaagaaaag atgtctgatc tgcccttcatt gttgngagtt
120

tgtgagtgta tgcatgangc ctctgttcag atcntgtgct nnngtttagc cattta
176

<210> 60
<211> 91
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 60

gatctcagnt tccgcctgtc tgtggaaaag gcaaaaaggc ccggtaatgg ctaccattgg
60

ggtgacacacgg ggcttggnnn acacaacatt a
91

<210> 61
<211> 332
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 61

gatctggacg ctgntgnctt cagtgantng ctgcctctgt gccattgaca tccacaacna
60

aacactctat cacatcacan tgtggacatt cctccttgcc ctgggacact tcntctcgaa
120

gttggggta tttgggnacag cggctccac agttgggtgtg ctggcaccct tgatggtagc
180

aagtttctca atcctgggta tgctagttgg gctccggcac ctanaagcag aaccagtatc
240

cagacagaag naaagaaatt gaggccancc ttgnncagctc tgatacatca tggtnntcca
300

cctttgtctt ntttanncac tctctgtcct ta
332

<210> 62
<211> 274
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 62

gatctgattc agaccaagga aaatatgcaa aatatgtgag ggcgcatgga atcactaggg
60

acaatatcat tgatctaacc aagactgatc gctgtctcca ggcccggagga tgaagaaagg
120

cctgaggcctc cagtggnnnn nnnnnnnnnn nncaccagga ctctagcatc accatttcct
180

gtccatggag catcctgaga caaattctgc gatctgatgt ccattctctg tcacagaaaa
240

gtgcaatcct gtctctccag ctcttcccta atta
274

<210> 63
<211> 70
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 63

gatcttaat tacnnngtgn atgctactca accctgaata nanttcatag acagnccagt
60

tatctgctta
70

<210> 64
<211> 280
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 64

gatcttgggg ggnccctnnnc cccctctggt ggccctgacc angcatagca gtcagaggct
60

ggccacttac tataaggtnat aaggtaactg tgnccctcag caggnccaag cactgcattgt
120

aggaaaggaa gggtccagga gctgtccaga gcgcattta gcttccttc tgtttaggaa
180

ataaagacag agtgtgcaaa gagaggcagt cagcactccc tcntgctcag ggaaccctgg
240

acagctgtgg acaggcatgg ggtannncta ctcttcatta
280

<210> 65
<211> 202
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 65

gatcttgctg ctannnagat cagcatctat gacaaacttt cagagactgt tgatttggtg
60

agacagacag gccatcagtg tggaatgtcc gagaaggcga ttgaaaagtt tatcagacag
120

ctactcgaaa agaatgactc aaagggacca ccccagtacc ctctccttat agccatgtat
180

aagtcnnctn actctggat ta
202

<210> 66
<211> 162
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 66

gatcttggg ncagtnatgt ccattctaac atttgagact gaagccgang ttctggagcg
60

ggccaatgac accacgttng gactagcagc tgggtcttt accaggacat tcagaggcgc
120

acaggtggcg gctgagctnc aggccgcnaa cgtgctacat ta
162

<210> 67
<211> 57
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 67

gatctttata gacatgaatg cacaactcat tgaatggcaa gaannttcct gtcatta
57

<210> 68
<211> 131
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 68

gatcttgca aacnnccaaa ttctcctac cagagagtat ataattactt gagtttcttc
60

ttagtagaaan agagaatgtc tttagtgtggt tgtgagtgac agtgaardttc aatgnccnnta
120

aaaggacatt a
131

<210> 69
<211> 77
<212> DNA
<213> Rattus norvegicus

<400> 69

gatccacttc taatctggat gctgagctgg gaagacacac ccctttatca ggtcttgagt
60

gagaagacac ctgttta
77

<210> 70
<211> 353
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 70

gatccccctg tctccgcctc ctctgtgctgg gataaagctg tgcgtccagc ccccagctag
60

acactttgga actgggtggg tagccctcag tatcatctt aacaccagg ttgggctccctg
120

cagtgcctt tggcttcac tgggtttgg acgaaggact gaggcccctg cttcctgtca
180

tgttagtgact gtagtgtgct gcgtgactat ctggtaaag tcccgtaaag aagatgaaag
240

tccacagcaa aaggcangtt cgattccag tgccgtctca cagctgcctg tatcttgatc
300

tgcagggac cctgtgcctc tggttctgt ggataacaat gtgtatgcc tta
353

<210> 71

<211> 187

<212> DNA

<213> *Rattus norvegicus*

<400> 71

gatccggaga aagcttaggg agctgcagtt gagaaattgt ctgcgtattc ttatggggga
60

gctcttaat caccacgacc atcacatga attctgcctt atgccttgac ttcggtcatt
120

tccccctgaga ttcatactgt gattccgct gtattcctag cccttgcatt ttcctgacat
180

gccttta

187

<210> 72

<211> 116

<212> DNA

<213> *Rattus norvegicus*

<400> 72

gatccgagcc tcttgcgt actgtgacac agaacagata tcaccagact ggagcccatc
60

atctgagccc caatgctctc tacacaccag aattcttatct ttttagcagtg acttta
116

<210> 73

<211> 147

<212> DNA

<213> *Rattus norvegicus*

<400> 73

gatccggtat ctattgtctt cataaacacctt ggctcccaag acttgattgt gaatgactag
60

gttatttagca gaatgaaggta tggcctcaaa cgaagaaaaga tgcacacccc tcgaggctct
120

tcagaatgct ggatagagggc ttactta
147

<210> 74
<211> 195
<212> DNA
<213> Rattus norvegicus

<400> 74

gatcctgggt gaccctccctt gaagcagtga gcaccacagg ttctgctgtg gaccagagcc
60

ccccctgtggaa gagggagaaaa gaaaggggag ccgctgacctt gcagggatac agaccttccc
120

cacagcctgg cagccgccccg tttgttgcag cttattatca gactgtgggc tatcatagtt
180

catgctcgtt tctta
195

<210> 75
<211> 100
<212> DNA
<213> Rattus norvegicus

<400> 75

gatcctagcc acatctgaag ccatgaacat aattctcatt cttacagaca cataccagcc
60

ttgaacaact tattttcctt gtatcgatag agggtgctta
100

<210> 76
<211> 395
<212> DNA
<213> Rattus norvegicus

<400> 76

gatctaccac tgca~~gt~~tgacc tgactgactg tgctcagctc ttgcctcta tgaaatgtgc
60

ctgcctggtc tgtctcatcc tgccttctga gagcgtggtt cacagacctt gtgtctgagt
120

gaagggaacc caggttcaga ttccgttct ctgcttctgt cttttctca gcagcagggt
180

aggaacaggc cttttgtgca cataacaacag atgaagccca tgatgagtct gtgggaaaca
240

ccaacactca tgcaccctgt gggtgaccct ccctacacag cgcatagcag agagagcccg
300

ggaggtgctg caggcttcac tgagcttcc ttgcccagac tggcaaccga ctttgctctc
360

ttttgaaaga ctctagctaa agtcagcggtt gttta
395

<210> 77

<211> 56

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 77

gatctacagg atgatcaagc ttggtctagg taaattgcag gntacgtgtt cattta
56

<210> 78

<211> 164

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 78

gatctacgaa gccatattacc acggggtccn natggtgggc attccatgt ttggtgatca
60

gccttacaac atcgctcaca tggaggccaa gggagcagcc gtgaaagtgc ccatcaacac
120

gatgaccagc gcagatgtc tcagtgcctt gagagcggtc atta
164

<210> 79

<211> 207

<212> DNA

<213> Rattus norvegicus

<400> 79

gatctccacc gaactggta agagcaagct cagggagacc actggggcag cctgcaaata
60

tggggccttt gggctgccca ccactgttgc ccacgtggat ggtaaaacct acatgttatt
120

tgggtctgac cgcatggagt tgctagctta cctgcttagga gagaagtggaa tggccctgt
180

gcccccaacc ctgaatgccca gacttta
207

<210> 80

<211> 112

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 80

gatctccgtc atttcttggg tgcttcacct tgagttggga actgacacat ttccaacttc
60

atgacacatc ccgggagttg ccacactagc aagagcctgg ctgnntccctt ta
112

<210> 81

<211> 183

<212> DNA

<213> Rattus norvegicus

<400> 81

gatctccaaa ggccagaatt tccacagaca atctttcac aactgtttgg aaggcattta
60

gcacaattcc tgtgtgagtt ggaatgatgt atttgcttac caaagctcaa gatcatccac
120

aggacaacca cagagtccac atcaaaggag agaggtggtc tttgttgatc cagactggcc
180

tta

183

<210> 82

<211> 118

<212> DNA

<213> Rattus norvegicus

<400> 82

gatctcctgg ttttctaaaaa gactgaccaa taattttca catgtcagaa tctgttatgt
60

ttgtctgacc tccatgggag attttggatc tggctaaaat aaaggctaaa taagctta
118

<210> 83
<211> 264
<212> DNA
<213> **Rattus norvegicus**

<223> unsure at all n locations
<400> 83

gatctcgaa gagctctggg tctcacttgt tttccata gactgaccat ccagggccc
60

tgtggtaga tggggacagg agttttctc cttgcctt ctggggatgg agaagggcta
120

aaccaagncc atgttgtctg gagaggtgca cccaggggtg aaggggtctg agaggcctc
180

cacctaccct cagagagcct ggttcctca gggctcagt gggcagcac tttttttat
240

tgtcgata agttcgtagc atta
264

<210> 84
<211> 60
<212> DNA
<213> **Rattus norvegicus**

<400> 84

gatctccag gactcaagac accagttggc agaggaagag cttggcttcg ttggcatta
60

<210> 85
<211> 136
<212> DNA
<213> **Rattus norvegicus**

<400> 85

gatctggtg agtgtcacct ttttatattt ttgtttttc gagacagggt ttcttctgta
60

tagccctggc tgtcttgaa ctcttagac tgggctggct tctgactcag agctctgcct
120

gcctctgctg ggatta
136

<210> 86
<211> 85
<212> DNA

<213> Rattus norvegicus
<400> 86
gatccaaagg atgaagacgc agagtaaacc ctcagttatc aaacggaaaa agatggcag
60
ctaagatgca tataaagggg agcta
85

<210> 87
<211> 145
<212> DNA
<213> Rattus norvegicus

<400> 87
gatccaaaga tttctaactt ggctcccttg ggcattcctc gaaggattat caagaacaca
60
accttccgtg gettcttcct ccccaagggc accgatgtgt tccatatatt aggttctctg
120

~~atgacagacc caaagttctt cccta~~
145

<210> 88
<211> 346
<212> DNA
<213> Rattus norvegicus

<400> 88
gatccagtaa attctttca attccctgta gatttactaa gtgaccaccc atttcctgcc
60
ctcactaagt gacaataacct tccctgcaga cccactaata caegcttcct tcataccct
120
ctcaggaagt gaccatgtca actgagccct tctgactgac tgtccgactg tccttgtcaa
180
ttgccactct catgtcccct ccctctctca ctgccacact cctccatcag catgttagaga
240
gtgtctttt caactttggt ctttcctttt gtggacaaca tttctgcaaa agagcaaggg
300
tctggaaactt gccctggcct ctgacccttg gatgtgtgtg ctgcta
346

<210> 89
<211> 205
<212> DNA

<213> Rattus norvegicus
<400> 89
gatccagagt tcaaggtag cctggatac atatgcgtt ccagaccaac ctgggatata
60
ggagacccca tctcaaaaaa acaaaccaac cctgccctcc agtaaccgtc caggagagtg
120
tggtggtgca ggctgagccg ctctataccc agcctctgag aactttgtcc tctcggaac
180
ttgatagcct gcgggtgggt ggcta
205

<210> 90
<211> 211
<212> DNA
<213> Rattus norvegicus
<400> 90
gatccagaag acatcacaaa taatcctctt gaatagtctt tgggcaactg ggccttcctg
60
acctgtatca gagagaattc tggggggctt cgaggcaccc tacactccat gctccagttt
120
tcagccgccc ccacacctacc cccatctctt tagtcttacc tgaggttggt tgacagcctg
180
cctatgtttt ctctgttgc ttcctaccct a
211

<210> 91
<211> 166
<212> DNA
<213> Rattus norvegicus
<400> 91
gatccatagt atagtcctcg tcccacatgg aggaataggc agataaaaaa tattgaggcg
60
ccgttggcgt gtaggtatcg gattagtcag ccgttagttt cgtctcggca gatgtgggtg
120
actgatgaaa atgctgttat ggtatcagac gtgttagtgta ttgcta
166

<210> 92
<211> 148
<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations
<400> 92

gatccattac actggatga gagagactca atgattttt gatcagccct tctacatcg
60

tgaggttcc tcattgcattg cgatagggtg atcatgattt ccccaactaac tcattttctg
120

gctggccctct ttataganac tcgccccaa
148

<210> 93
<211> 52
<212> DNA
<213> Rattus norvegicus

<400> 93

gatccatgga ggtggactaa taatagcgga gcatcacccat atagtgtgac ta
52

<210> 94
<211> 43
<212> DNA
<213> Rattus norvegicus

<400> 94

gatccatttc tttagcagtt gaaacagctg gccattgtaa cta
43

<210> 95
<211> 228
<212> DNA
<213> Rattus norvegicus

<400> 95

gatcccagcc gtcgtggatc ctctcaccat tacttcttcc ctgtcatcg atggagtcct
60

cactgtgaat ggaccaagga aacaggccctc tggccctgag cgccaccatcc ccatcaccccg
120

tgaagagaag cctgctgtca ctgcagcccc taagaagtag attcccttcc ctcgttgcat
180

tttttaagac aaggaagttt cccatcagcg aatgaacatc tgtgacta
228

<210> 96
<211> 103
<212> DNA
<213> Rattus norvegicus

<400> 96

gatccccaaag actgtggact ggagagaaaa gggttgtgtg actcctgtga agaatcaggg
60

ccagtgtggt tcttgctggg cttagcgc atcgggttgc cta
103

<210> 97
<211> 343
<212> DNA
<213> Rattus norvegicus

<400> 97

gatccccggg aacaatcttg ctcaggccc ctcccccga actccctgcg atgccccatc
60

cccccttgccct tgaaagccct tctaagctcg gcctgagaac tcctcctcac cttcaccc
120

tcccagccca aggctccgag ggtcccatca gtgctgatga gtctggcctt tgagctttc
180

ttgacaattc ctaatggttc taaaggctgg agccccggg aactgtgagc taaggagaca
240

tagcacaaaa tcataaatga gttgcgggga gaggctggaa acagtgtgca agaaatacag
300

gccaggggtt gggatttag ctcagcggta gagcgcttgc cta
343

<210> 98
<211> 50
<212> DNA
<213> Rattus norvegicus

<400> 98

gatccccatt agcttgtgcc tgtggccaga aaaggccaaa gccagcccta
50

<210> 99
<211> 48
<212> DNA
<213> Rattus norvegicus

<400> 99

gatccctggg gcttgctggc cagccagaag ctgcacatgt gagctcta
48

<210> 100
<211> 72
<212> DNA
<213> *Rattus norvegicus*

<400> 100

gatccctaca agaggaagac aagacttcaa catagtgtgt gagcctattc ttcttcggtc
60

cgatcataacc ta
72

<210> 101
<211> 200
<212> DNA
<213> *Rattus norvegicus*
<400> 101

gatccctgcc atctgcgaca tccccaccga gatgcacatt tctttttgc ccccatccga
60

acactcaaac accctgttat catctaaggg tctgggagag tctgggtgt tcctggctg
120

ttcggtattt tttgcacatcc atgacgcagt gagggcagcg cggcaggaga gaggcatctc
180

tggaccatgg aagctcacta
200

<210> 102
<211> 143
<212> DNA
<213> *Rattus norvegicus*

<400> 102

gatccgagag aagcaagcag caaacaaaaa ctcccttc tctgtgcattg acaaccgcca
60

ctgttttag aactccggat actacttga ctctggcttg gggcgaagga agtgcacccc
120

agatcaaaag caacacatcc cta
143

<210> 103

<211> 343
<212> DNA
<213> *Rattus norvegicus*

<400> 103

gatccgaagc aggttagccct gagtcattat ggcgctctct gacttcagca atcagcagcc
60

cttacaatcc tgcaaggatt ccacccaagt cagcagcagt cacgggcctc cttaactgat
120

gtgtgttctg cctgctcagc ccctgccaca gaggcctgga ggtgtggag tgtggctaa
180

gcacagtctg ccattccttga ccgcagacct cttggaccca cccccactcc ctccagacac
240

tggtaagaga agccttcctg caacatgtcc tgcctcagg aggtgagaca gcagagtgt
300

tccattcact cgatgacccc attttgctc ttcccttggg cta
343

<210> 104
<211> 41
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 104

gatccgagnc aatgcgtggc atttccctct cattggccct a
41

<210> 105
<211> 67
<212> DNA
<213> *Rattus norvegicus*

<400> 105

gatccggagg aactacagag acatggatat ctacgtcaca gccaatggca ttgatgatct
60

tgctcta
67

<210> 106
<211> 192
<212> DNA
<213> *Rattus norvegicus*

<400> 106

gatccggag cattccctt gcagtgtcat agataccgaa gtaggcagca cggttagatga
60

taatgccctg cactgacaca ttaaaggcctt ggtacaggcc cttaatccca tcagatttg
120

agatcttaac cagggcgtca ccaaggcctt tgaattccct ttcagctcca gctttgccc
180

catcagctgc ta
192

<210> 107

<211> 97

<212> DNA

<213> Rattus norvegicus

<400> 107

gatccatga tcctgaacgg cagcctgtgc tctctgtcta ccagccagag gacaaccctg
60

gaggctctcc cgagactccc tgtactcacc cctgcta
97

<210> 108

<211> 42

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 108

gatcctatcg tgacctgttg gacangaagg gagtgttgc ta
42

<210> 109

<211> 67

<212> DNA

<213> Rattus norvegicus

<400> 109

gatcctatct taaaatgatcaa tgaaatctag ggttggggat ttagctcagt ggttagagcac
60

ttgccta
67

<210> 110

<211> 207

<212> DNA

<213> Rattus norvegicus
<400> 110
gatcctcacc gtggaggacc actactatga aggtggcata ggcgaggcag tatctgctgc
60
ggtagtggc gaacctggag tcacagtcac tcgcctggcg gtcagccaag taccacgaag
120
tggaaagcca gctgagctgc tgaagatgtt tggtattgac aaagacgcca ttgtgcaagc
180
tgtgaaggc cttgtcacca agggcta
207

<210> 111
<211> 271
<212> DNA
<213> Rattus norvegicus
<400> 111
gatccat gacaaggaa caggaagaaa tgataatatg aatggtgat catgaatatac
60
ttcacaaatct ttccctgtga tgaattagca tctccagctc tctgcctata tagtagatat
120
ggaccacaaa gaagtaaata atggtgtca attttgc aggaatctt agaggcccac
180
acaattccaa attctcaatt catgtcagag attgaatgtat tgaaaagctt tctgcagtaa
240
attatttacc ctatttctt agcatgtact a
271

<210> 112
<211> 415
<212> DNA
<213> Rattus norvegicus
<400> 112
gatcctaaa gtggctcagg aacacttgg caaaggcaa tcaaaagact tccaaactgtt
60
cggtctcct cttggaaag acctgctgtt taaggattct gccttggc tggtacgggt
120
gcccccaagg atggactaca ggctgtacct cggccacagc tatgtcaactg ccattcgaaa
180

tcagcgggaa ggcgtgtgcc cggagggctc catcgacagc gcgccagtga aatggtgtgc
240

actgagtcac caagagagag ccaagtgtga tgagtggagc gtcagcagca atgggcagat
300

agagtgtgag tcagcagaga gcactgagga ctgcattgac aagattgtga atggagaagc
360

agatgccatg agcttggatg gaggtcatgc ctacatagca ggccagtgtg gacta
415

<210> 113

<211> 152

<212> DNA

<213> Rattus norvegicus

<400> 113

gatcctctca gaacaccagt ctgtgccaat gagggagcag catggcctct gagtgaggag
60

gtgctgggtg taagaccaca ccctccagag ggaagaaaagg ctcctctctg gtttgtgcgc
120

tgactttctt atactgctcc cttgtgccac ta
152

<210> 114

<211> 295

<212> DNA

<213> Rattus norvegicus

<400> 114

gatcctgaag agcaatgagg gacgtgcct ttcgcccgc gcaccagcgc aatgtcaagc
60

ttatgaggca gatgctaatg gacgctggcc ccccagtcat ccactgcccc agccacatca
120

tccctgtgcg gtttgcctga tgctgctaaa aacacagaaa tctgtatga agttgtatgac
180

caggcataat atctacgtcc aggccattaa ttaccaaca gtgcctcgatg gggaggagct
240

cctccggatc gcccccaccc cgccaccacac accgcagatg atgaacttct tccta
295

<210> 115

<211> 76

<212> DNA

<213> Rattus norvegicus

<400> 115
gatccttgcc tgccactatt tctgtgatct caatgttttgc ttttcttcctg acttctgaca
60
ccaagctgat ttgcta
76

<210> 116
<211> 290
<212> DNA
<213> *Rattus norvegicus*
<223> unsure at all n locations
<400> 116

gatctaaaag tatcgcccttt catgagaaag ggaattgttag gagactggag gaaccacctc
60

cctgaagccc tgagggagag atttgaggag cactaccagc ggcataatgaa ggactgccct
120

gtgaagttta gagcagagact ctgagacact tccttgtgtc tgaaatttggaa gtagtctcca
180

atttatcctt cagttttctt tgttttgaat tcagtagaaag tagaagtctt ttgaagactg
240

atggtttaaa ttcattctgg tttttaaac naacntttat tttaatctac
290

<210> 117
<211> 228
<212> DNA
<213> *Rattus norvegicus*
<400> 117

gatctaacca agactgatcg ctgtctccag gcccggaggat gaagaaaggc ctgagccctcc
60

agtgcgtgagt ggagacttctt caccaggact ccagcatcac catttcgtt ccatggagca
120

tcctgagaca aattctgcga tctgatttcc atcctctctc acagaaaaagt gcaatcccg
180

tctctccagc atcttcccta gttaccagg acaacacatc gagaatta
228

<210> 118
<211> 93
<212> DNA

<213> Rattus norvegicus

<400> 118

gatctactta aaaactgcct cgtgacaaaa accacacctg aagaaaatttt aagaatttgg
60

cacagtttagt cactttgtgt caccggaaat cta
93

<210> 119

<211> 145

<212> DNA

<213> Rattus norvegicus

<400> 119

gatctacacc acagtttcta acagtagcaa cattacagcc atgaagtgc agtgaaaata
60

acttgatggc ggggggaatc accagaatat gaggaactgt attaaagggt cgcgacattc
120

ggaagggttga gaagccactg ggcta
145

<210> 120

<211> 34

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 120

gatctacatt ggaaggcgtn gacaactanc acta
34

<210> 121

<211> 45

<212> DNA

<213> Rattus norvegicus

<400> 121

gatctaggcc ccttcctcc tctaacccttc tttctctcct gccta
45

<210> 122

<211> 363

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 122

gatctcattg gtgcagggac agagacaatg agcacaacat tgagatatgc ttcctgttt
60

ctgatgaagt accncacatg tcacagctaa agtccaggaa gagattgacc gtgtgattgg
120

cagacatcgc agccccgtca tgcaggatag aaaacacatg ccctacacag atgccatgt
180

tcatgaggta ncagagattc attaactttt tcccgcacaa cctgccccat gcagtgaccc
240

gtgacattaa attcaggaac tacctcatcc cgaagggAAC aaaagtgtta acatcactga
300

catcagtgt gcatgacagc aaggagttcc ccancancana gatgtttgcc cnanccactt
360

cta
363

<210> 123

<211> 132

<212> DNA

<213> Rattus norvegicus

<400> 123

gatctcaggg gaggtatgt taaggccaga gctttccctc agtatttgat tttccagtg
60

tttgttttt taaaaactga caggtgtcac atttctatct gttggtttca attctgccat
120

atttcatgtc ta
132

<210> 124

<211> 89

<212> DNA

<213> Rattus norvegicus

<400> 124

gatctcagca gcctgggtgt cacagttagaa taagaatggc tggccttaac ctccctgtg
60

agtgacgtga atgaatgcct acctggcta
89

<210> 125

<211> 206

<212> DNA
<213> Rattus norvegicus

<400> 125

gatctcattg atcacagcct gggtaggg catcttcatg tggcctcat actgaggctg
60

tcggttcctg ccgatcacct gctcaatttc ctcatggacc ttggcctcca catctggatg
120

c当地tcatgagt agaaggaagc cgtacgttag tggagctg actgtctcag acccagcaa
180

gaaggaggctt agtgttgc taacta
206

<210> 126
<211> 71
<212> DNA
<213> Rattus norvegicus

<400> 126

gatctccag atcaagtcct ctttgcatac tccatttcga gccacaacag catgagaagg
60

gatccgggct a
71

<210> 127
<211> 129
<212> DNA
<213> Rattus norvegicus

<400> 127

gatctcccg ggagtgtatgc tgaaagaaag gcaaagccag aaactcaata aagtatgacg
60

ttaaacgtgt ggcctccagg tgctttctta ctgtttgccaa aattgagct gcctcaagac
120

aaggtacta
129

<210> 128
<211> 247
<212> DNA
<213> Rattus norvegicus

<400> 128

gatctctccc gagagacaca gccagaatac agcaaataca taggcaaatg ccagcagcaa
60

accaccgAAC taaaaacggg acccccgtt aaggaatcag agaaaggact ggaagagctt
120

gaaggggctt gagacccat atgaacaatg ccaagcaacc agagcttcca gaaactaagc
180

cactacccaa agactgtaaa tggactgacc ctgggctcca acctcatagg tagcaatgaa
240

tagccta
247

<210> 129

<211> 347

<212> DNA

<213> Rattus norvegicus

<400> 129

gatctctgcc tacatgaaga gcagccgcta cctctcaaca cctatatttt cgaagtggc
60

ccaatggagt aacaagttagg cccttgctac actgggcact cacagagagg acctgtccac
120

attggatcct gcaggcaccc tggccttctg cactgtggtt ctctctcctt cctgctccct
180

tctccagctt tgtcagcccc atctcctcaa ctcacccca gtcatgccca catagtctc
240

attctccccca ctttcttca tagtggtccc cttctttatt gacaccttaa cacaacctca
300

cagtcctttt ctgtgatttg aggtctgccc tgaactcagt ctcccta
347

<210> 130

<211> 431

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 130

gatctgactg aaatgattat gcaattggta atatgtcccc cagaccaaaa agaagccaaag
60

accgccttgg caaaagacag gaccaaaaac cggtacttgc ctgccttga aaaggtgttg
120

aagagccatg gccaaagacta cctttaggt aacaggctga cccgggtaga catccacctg
180

ctggaacttc tcctctatgt tgaagagttt gatgccagcc ttctgacctc tttccctctg
240

ctgaaggcct tcaagagcag aatcagcagc ctccccatg tgaagaagtt cctgcagcct
300

ggcagtcaga gaaagttcc cgtggatgca aaacaaatcg aagaagcang gaagatttc
360

aagttttagc ggagctgcac tgtccaattt ctttatgctt tgcanaaaat gagaagcaat
420

tgttgatcct a
431

<210> 131

<211> 180

<212> DNA

<213> Rattus norvegicus

<400> 131

gatctggatg aaatagttct ccattaccct tacattcccc ctggggagaa agaggcaagt
60

cttgccaaaa tcaaggacaa agcaaggaac cgttactttc ctgccttga aaaggtgtg
120

aagagccatg gacaagatta tctcggtggc aataggctga gcaggcgtga tgtttaccta
180

<210> 132

<211> 156

<212> DNA

<213> Rattus norvegicus

<400> 132

gatcttactg tgcacagctt tagatcatga tgtttagcag attgttaactt ccattcatga
60

gaagaaaactg cacaaaccat ctcattcctg tcttatctt attgtattgg aagctttctt
120

taagttacca tatttttagag cgttgttagt gcccta
156

<210> 133

<211> 187

<212> DNA

<213> Rattus norvegicus

<400> 133

gatcttcagt taattcagtc agctatggat acactgtacc cacaaggcca gcctcagaaa
60

gctctgcaac aatgaagtat tttgactaaa tgttgaccgt acttattggg agggtaacat
120

gttttctaag gcttctgtgt taattcatat agacatgact catgaggaat tgctggatg
180

ccatcta

187

<210> 134

<211> 295

<212> DNA

<213> Rattus norvegicus

<400> 134

gatcttgta acctgacgga agcacagaga ctgcagaatg ttggcaatgc cagagaatat
60

gttcctgtgg gaaaggccc agatacacac tccagagcta actctgaaac gtcaagaaat
120

caaagcccg aatctcggtt aggcaatgg agactcccc aaggacacga aacagctgtt
180

aaagtagcgg gcagtgtgtc cgagaagctg ccctccagca gcctgctcat ggacagagct
240

gaagcagcca gccttgacaca gtcggcaggc cacgaggact gggaaatggt gtcta
295

<210> 135

<211> 93

<212> DNA

<213> Rattus norvegicus

<400> 135

gatcttgca agggaaatgg tcagcatcg ccctgtcct cagcctgtgc tttgagtctt
60

tgtccccatc cctcacactt tccctccatg cta
93

<210> 136

<211> 156

<212> DNA

<213> Rattus norvegicus

<400> 136

gatcttgaga ggtgcctgg gatgaatgcc gtttacagtg tgcatgtcct ttgaggtgtg
60

ttggaaaaagt gcagcgaatt ttaacgtatg tgcgtccca tgctgtaaa acactattgg
120

gatacctccc ctgtgacggt attggaggtt tggcta
156

<210> 137

<211> 73

<212> DNA

<213> Rattus norvegicus

<400> 137

gatcttgttc atcacatgac ctcttgcgtt ggtcacaggg agtaaaaatg tgtccctgtc
60

ctgttgtcag cta

73

<210> 138

<211> 137

<212> DNA

<213> Rattus norvegicus

<400> 138

gatcttgaag ttttcatgat ttttaagagt cagaatcttt tgtgatgatt cacagtacgc
60

ttagaataag gtgatttttg ttttagccac agactcatgg gagtagatta gtgtaagtta
120

ggatgaacctt cacccta

137

<210> 139

<211> 125

<212> DNA

<213> Rattus norvegicus

<400> 139

gatccaggct ccagttgtca tggctgttt gatgagccct ttccccaaaga cttgctttag
60

tttgggtctgg agttcaaagt tctgcagccc tccgtgcaca gagatgagaa gtttggaaag
120

ctcta
125

<210> 140
<211> 103
<212> DNA
<213> Rattus norvegicus

<400> 140

gatccatgga ggtgcactgg ttataggcat ggcttcattt tatgtatggct ccatgctggc
60

agccatggag aatgttagtgg tggtcactat ccaataccgc cta
103

<210> 141
<211> 172
<212> DNA
<213> Rattus norvegicus

<400> 141

gatccaacca caaacaccaca gggtgacacaca ctggatgtct ctttcctcta cctggaggct
60

gaggaaaaga aactggtggt cctgccttgc cctgggaagg aacagcgctc ccctgagtgc
120

cggggccccg aaaagcaaag aacccctga tgctccccgc tgagactcac ta
172

<210> 142
<211> 238
<212> DNA
<213> Rattus norvegicus

<400> 142

gatccgtgct ggccacaccc agagcaccaa ggatggggag ctcaggccat atggccaagc
60

atgtgtggat gacagcaaag gtcagaagct actgcctgcc cctctggttt agatggttgc
120

tcaggagccc agacttcgac tcatggtgtc ccagggaggg ctggggacaa cagggggtcc
180

cttcccaggc ccatctgctg ccccacactg atctgcctgt cttttctgtc gctctcta
238

<210> 143
<211> 104

<212> DNA
<213> Rattus norvegicus

<400> 143

gatccgtatc tggctgttagc ttgcgtcctc agcaaacaga ggcgcctatga aagccccat
60

ggatgtccctt ccgattatgt ccacggggat gccacattct gcta
104

<210> 144
<211> 178
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 144

gatccgggac agtgcagggc agaaggcac tggaaagtgg acggccatct ccgcgtgg
60

gtacggcatg cctgtcaccc tcatcgaga agctgtcttt gtcgggtgt tgccttctct
120

gaaggaggag cgagttcagg ccagcagana gctgaaggc cccaaatgg tccagcta
178

<210> 145
<211> 157
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 145

gatcctaaag cgcaaagtca tagagaaagc gcaacagatt caggttctgc agaaagacgt
60

ccgggatcag ctgatagaca tgaagcgcct gnaggttaagc ctgaggcnnc ggccccatt
120

tgtcttgac taagaaaaaa ggaatangaa cactcta
157

<210> 146
<211> 207
<212> DNA
<213> Rattus norvegicus

<400> 146

gatcctccgg gttatagatc aagagcttca tggggtagg atggcatcct gccaaaatat
60

ctccgtggc tggatcaaca gtcaggttat ccactaaggc gcccagctga attaccttca
120

ctggagttaa atcccaatta ttgtgtttt tcattatgtg aatgttctta gctgttacat
180

cagctacata gacatacttc tggctca
207

<210> 147

<211> 453

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 147

gatccttagc ccatgcagca gtgttcttc cgttcgtgtt ttccaggaca gtctgggtct
60

tcacaaaggc tacgtctccc ttctcaacga ggcactggaa agccccctgta taaccattat
120

atcccctctct gtgttccgga gcacattttg ctggggcaat acacaggtca cagagggtgg
180

aattcttctt atagccagga gcacagcctt gactgaaaaa ttcatcgaac ttgcagtgg
240

tgatcctgct gaacagcagg cccataggga tgttccagcc ggccggttctg tctactccag
300

tatggcagga cttcttgcc ttcaggttgt tccagttgat gctggagtct gatgccttca
360

ccacagccac ggcataatac cctttaggaa agacatctga ttgtgggttt gtacacgaaag
420

agatatcata gttctctgcc atgacnggca cta
453

<210> 148

<211> 140

<212> DNA

<213> Rattus norvegicus

<400> 148

gatctatttc ttcatccttt gttctataca atagaatgcc tctctgtctt gaagtcagtc
60

caagaaatgc ttaatgggtt cctgtattct ttcttcctgg attactcagt gctgagtgg
120

gacttctcac caggactcta
140

<210> 149
<211> - 258
<212> DNA
<213> Rattus norvegicus

<400> 149

gatctacgca accgactcgg gcagtaccgc aacgaggtaa acaccatgct gggccagagc
60

acagaggagc tgcggtcgcg cctctccaca cacctgcgca agatgcgcaa ggcgcctgatg
120

cgggatgcgg atgatctgca gaagcgcctg gcggtgtaca aggccggggc acaggagggc
180

gccgagcgcg gtgtgagtgc tatccgtgag cgcctggggc cactggtgga gcagggtcgt
240

cagcgcacag ccaaccta
258

<210> 150
<211> 98
<212> DNA
<213> Rattus norvegicus

<400> 150

gatctagaag gcaagagtaa tctcggtgct gacgctccac atcagaacgg tgaatgccac
60

cctaatgaga agggctctgt cagcatggac ctggacta
98

<210> 151
<211> 64
<212> DNA
<213> Rattus norvegicus

<400> 151

gatctagatg acacggagga gccccaggac cttccctgag gtgatttcac cttggtgcc
60

acta
64

<210> 152
<211> 136

<212> DNA
<213> **Rattus norvegicus**

<400> 152

gatctccaca tcagtaatac aatggctatg agaaaggcct gcaagcttgc tccatggaca
60

aacacctggg ccacggcttc gctccgcagg tagatatttt ccatcttttc tggagctatg
120

tactctcctt gggcta
136

<210> 153
<211> 132
<212> DNA
<213> **Rattus norvegicus**

<400> 153

gatctccgga ggtgcgggtgc ctctggttgt aagaccagct ttgaagcact cctacagagc
60

catctgagca gaggggcctg gcactccagg caggcgagcg atgctcaagc ttgttaccag
120

tctggtctcc ta
132

<210> 154
<211> 218
<212> DNA
<213> **Rattus norvegicus**

<400> 154

gatctccacc gaactggtga agagcaagct cagggagacc actggggcag cctgcaaata
60

tgggtaagc aactacatgt gtattccag tccctgtcta aagatagaga cgtcatgttg
120

ccatagctgc tcacgctcct gtgagctgcc ttctccccat cctaagtcct cctcagctt
180

cctaaacacc tcatccactc cttccccc taagccta
218

<210> 155
<211> 124
<212> DNA
<213> **Rattus norvegicus**

<223> unsure at all n locations
<400> 155

gatctccatc agaaaaccaaa atgatcagag agactgagtc ggggttcagc aatcccatgt
60

tactggcttc gttcagaatg aaaattgctc tcagcagncc tcattgatat ttgtgcctcc
120

acta
124

<210> 156
<211> 218
<212> DNA
<213> Rattus norvegicus

<400> 156

gatctccccc agcagcagct ccaccacaat cagaagcttg tgcaccgtct gtttgaagcc
60

aactgctgtg tgctgtggtg ctttcgaag ggcattggtc atcggtctcc gggcttcaga
120

gtactccagt tggatagcct tgattcgccc tgtgttagtag aggtacctgg cccactcatt
180

gttgttagcc tggcgaaaa acacagactt ggacacta
218

<210> 157
<211> 43
<212> DNA
<213> Rattus norvegicus

<400> 157

gatctcattt taacccgtaa ccagtctata tgtgtttgga cta
43

<210> 158
<211> 357
<212> DNA
<213> Rattus norvegicus

<400> 158

gatctgaagc aggaagactt ccagctgctg tgccctgatg gtaccaagaa gcctgttaacc
60

gagttcgcca cctgccacct ggcccaagct ccaaaccatg ttgtggtctc acgaaaagag
120

aaggcagccc gggtagcac tgtgctgact gcccagaagg atttattttg gaaaggtgac
180

aaggactgca ctggcaattt ctgtttgttc cggctttcca ccaaggacct tctgttcaga
240

gatgacacca agtgtttgc taaacttcca gaaggtacca catatgaaga gtacttagga
300

gcagagtaact tgcaagctgt tgaaaacata aggaagtgtt caacctcacg actccta
357

<210> 159

<211> 47

<212> DNA

<213> Rattus norvegicus

<400> 159

gatcttggcc ttcacgttct cgatgggtgc actgggctcc acctcta
47

<210> 160

<211> 113

<212> DNA

<213> Rattus norvegicus

<400> 160

gatcttatca caccagccag caaagtaccg gaaggtctgg atggacatgc ccacgtgcgt
60

cttcagggcc agcgtgtaga cggcacctgc atccagggcc tcaatggtgg cta
113

<210> 161

<211> 163

<212> DNA

<213> Rattus norvegicus

<400> 161

gatcttggat gatgacaatt ttctggagc tgagaatgcc tttaacttgt ttgtgtgtca
60

gaaggacagt gctgccacca ctgatgagga gcggcagcac ctacaggagg ttggctctt
120

ccacctgggc gagtttgtca atgtgttctg ccatggctcc cta
163

<210> 162

<211> 180

<212> DNA
<213> Rattus norvegicus

<400> 162

gatcttggtg accatgtac cctgaagagg tccccaggag attgcaagag tgcccaact
60

acagaggaga ctcgcaggct gtctcaggcc atgatggctt ttactactga cctgttctcc
120

ctgggtggccc aaacatccac cagctccaac cttgtcctgt caccccttag tgtggcccta
180

<210> 163
<211> 179
<212> DNA
<213> Rattus norvegicus

<400> 163

gatcttaact gcagattcta cacatttctc atcctcta at ggcttcctct ggctgccagg
60

ctgaagaaac ttcttcactg tggggagggtt gctgactctg gttctcaggc cttcagcag
120

agggaaagttg gccaaagcgc tgggtccag ctcttccaca tggtagagaa cttgaacta
179

<210> 164
<211> 217
<212> DNA
<213> Rattus norvegicus

<400> 164

aattcacagc tgaggaatgc taaatggctg agaagcacct aaagaaatgt tcaacatTTT
60

tagtcataag gaaaaatgcaa atcaaaacaa ccctgagatt ctacctcaca ccagtcagaa
120

tggctaaat caaaaactca ggtgacagca aatgctggaa aggatgtgga gaaagaggaa
180

caactcctcca tttttggtgg gattacagaa tggttta
217

<210> 165
<211> 197
<212> DNA
<213> Rattus norvegicus

<400> 165

aattcacaga gacggctgcc atatggaaag atggctccag ggaggatgac attgatgtgg
60

tcatcttgc cacaggctac agctttgcct ttcctttct tgaggactct gtcaaagtag
120

tccaaaacaa ggtctccttg tataaaaagg tctttcccc taacctggaa aaaccaactc
180

ttgcaatcat cggttta
197

<210> 166

<211> 419

<212> DNA

<213> Rattus norvegicus

<400> 166

aattcagttt acatcttggc cacagccat ctctctcctc ttccttagtc ccatccttgc
60

cagatccctg tcccaattgc cccctccact tgggtaccac ctaaccctgg gacatctgct
120

tcatgttagta ctatctat cttttctcac tgaggcctaa ccaggcagtc ttggtaagga
180

tgagatccaa tgcttaggaac tatagactga gacaacccca gttctgtgg gagcagctaa
240

agatggcacf acatccagtg gtctttgtg gtatacaacc ataacatggg tatatacgca
300

tgtccctggc cttcttctgg catttacaag gccaggggtga taagcatgtc aataaggat
360

ctcacacccca accaatcctc agaaggacaa gtttacagcc actgcctgtt ttgtactta
419

<210> 167

<211> 159

<212> DNA

<213> Rattus norvegicus

<400> 167

aattcagtct tatcaatgaa ggtcagagcc attggaaag gtgaagtggg ggagccctgt
60

catcgatccc aactgggtcg gaaccctccc aegcatgact caattcagag ctgtttccca
120

ggaggcgtgg gcgggatgca gacagattcc aacacctta
159

<210> 168
<211> 110
<212> DNA
<213> Rattus norvegicus

<400> 168

aattcagcag aactccttga gggaaaatca tgatccagtt atgatttcat cccgtggcac
60

aacctttaga ataatgggtt ttgttggttg aagaagtccct tgtctgctta
110

<210> 169
<211> 199
<212> DNA
<213> Rattus norvegicus

<400> 169

aattcatacgtaaatggactc ctcaacaaaa agtctggatg ctgcgacaca aatctgaccc
60

tggtgaaaga atactccttg gtgtcaaacc tcatacgac tatccaagtc agcatctgca
120

aacacaatgc aaggcgtctt tcccccaagc tccagggtga ccctcttcag attgctttc
180

cctgcagctt cttgatta
199

<210> 170
<211> 380
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 170

aattcctagg gaagtcggaa ccagagcgcc agcaactgagc ctggcccgtg aaggagcatg
60

gagaccacc ttccttccct tctccctgaa cagcagtctg gcacccagaa gctcagatg
120

ccaccacctg tggtgctcag gagccagcc tagaaagagg actccgacac agcgggcagn
180

ggctccacag acggatctat gagaaaaata cgggggcagg cangcaggca ggcgaccccc
240

tgaccctctg gtggccgcgtg tatctgagcc cttttggaa ggcttataga caacaggtgg
300

agcccatacg ctgggcatacg ggagcctggg aagggctcag gagctcagga ccactccagg
360

ctctctagca ccaccgctta
380

<210> 171

<211> 366

<212> DNA

<213> Rattus norvegicus

<400> 171

aattccctgg cttggcagac gtcaccatcg cagaagtggc ctgcaccgct gagcgtggtg
60

tttgcagcaa gtactcggtt cgaggctacc ccacattgtct gctttccgg gggaggttag
120

aaagtgggtg agcacaatgg aggcagagac ctcgactctc tacacagctt tttctgcgc
180

caggcaaagg atgaactcta agaaccctgg tgaagccgtc atccaccctg gccttatgca
240

ccccgtgcattt aggagtgacc tcacatggac atgcgtatct tcactgtggtagt cagaac
300

gctgaatgta ttgagcttgtt gttgcttgct gtgtgccctt tgagccacca cacactacgg
360

acctta

366

<210> 172

<211> 339

<212> DNA

<213> Rattus norvegicus

<400> 172

aattccatca gtaaagctaa agcagctacg tctggtccgg tctttttttt atctgtttct
60

agatatggaa gcagctacag ggcaggaggt cgagctatgt ttagaatgca tcgaatgggc
120

caaatcagag aaaagaacct tcttacgcca agcattggag gcaaggctgg ttttttttggta
180

ttttgatacc aagaggccc aggaagcatt acattgggt tctagctgc ttcgggagtt
240

aaaaaaagatg gatgataaag ctctttgggt gaagtacagc ttttagaaag caaaacttac
300

catgctctga gtaatctgcc gaaagcccgaa gctgcctta
339

<210> 173

<211> 290

<212> DNA

<213> Rattus norvegicus

<400> 173

aattccaaga gttcgaggtg gtggcaccca ccgttctggc cagggtgcct ttggaaacat
60

gtgtcgtgga ggccgcgtgt ttgcaccaac caaaacctgg cgtcggtggc atcgcagagt
120

gaacacaact cagaaacgat atgcacatctg ttctgcctcg gctgcctcg ccttaccagc
180

tttggtgatg tctaaaggc atcgtgtga ggaagttcct gaactgcctt tggtggttga
240

agataaaagtt gaaagttata agaagaccaa ggaggctgtt cagctgctta
290

<210> 174

<211> 199

<212> DNA

<213> Rattus norvegicus

<400> 174

aattcctaact actcaggc tcggcgtggg cttggctgca ggacagcgac ttgactccat
60

gacttgactc cacccagct tccacctgg ccggactgc tctaccctgt gagccaaaca
120

cttttaggtgt aagtaggtac actttgtat gtcactgacc tagtgtaccc tttcttttt
180

catatctata ctgacacctta
199

<210> 175

<211> 165

<212> DNA

<213> Rattus norvegicus

<400> 175

aattcccaagc aacagataca atgaggggct gcgcgtgagct cttcctgcc a aaggcagacc
60

atcttctcac ggcatccctc atctcacaag tgtccaggac catggggaca ttgcattcaa
120

agcacccgtac ctgctttcta attgatggtc aaggttatat gctta
165

<210> 176

<211> 46

<212> DNA

<213> Rattus norvegicus

<400> 176

aattccagca ataagaaatg aacaaagatt ggagctgaag acctta
46

<210> 177

<211> 39

<212> DNA

<213> Rattus norvegicus

<400> 177

aattccgaat gtggatttg atttcctgc ttccactta
39

<210> 178

<211> 283

<212> DNA

<213> Rattus norvegicus

<400> 178

aattccaccc aaggctgctg ggtctgactg gttctacaga acaagtggcc catgctagtc
60

gcaactaccg tgcatactac agcgctggtc ccaaggacga ggaccaggac tatattgtgg
120

accattccat tgccatctac ttgctcaacc cagatggct cttcaactgat tactatggtc
180

gtagcaggc agcagagcag atcgttagaga gtgtactgcc ggcacatagc tgccttccat
240

agcatactgc cctgaactgt gtactgccta ggccctgtca tta
283

<210> 179
<211> 223
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 179

aattccacag aagggtgtat ggagatttga tggtaagaaa ccagataacct taggatctaa
60

cactcggttg tacaagtggc tccccagaa tgacnttctt ggtcatccna aaaaccnnaaa
120

gcttttgttag ctcatggtgg aacaaatggc atctatgagg caatctacca tggcattcct
180

attgttggta ttcccttgg tgcagatcaa ccggataaca tta
223

<210> 180
<211> 182
<212> DNA
<213> Rattus norvegicus

<400> 180

aattccctgg ctttctgggt ctagagtgtt ctgtgcctcc aaggactgtc tagcgatgac
60

tgttattggc caccaactgt agatgtatat acgggtgcct tctgatgcta agactccaga
120

ccttccttgg ttttgcgtgc ttttctgat ttataccaa ctgtgtggac taagatgcat
180

ta
182

<210> 181
<211> 189
<212> DNA
<213> Rattus norvegicus

<400> 181

aattcctcat tggcatgtc accgaaggcg ttcatctcca tggtaaagcc gtgcttcccg
60

tgcgttact cccattgtg tagctggatc atcctcatgt tcttctccca cactgctctc
120

ctccactctt ctcattcgt gccatacagt cttctgtgtg tggacttcca ctggtgccac
180

tgtgcatta
189

<210> 182
<211> 160
<212> DNA
<213> Rattus norvegicus
<400> 182

aattcggggt cctctgaaag ctacccaggg ttctcatctt cccttagagct tgtagtgtaa
60

agtgacagct agtgtgtgcg cgcgctctct cgctctctct ccttctccct ctctctctcc
120

ctattccctc ccctcccttc ctctgccccct tcctgggat
160

<210> 183
<211> 287
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 183

aattcggggt gaagnagaag ccgatataca tcaatgtcgt cagggaccga ttgagaggct
60

agtttcctac tattactttc tgaggtttgg agatgattac agnccgggac taaggaggcg
120

gacacaagga gacaagaaga cttcgatga atgcgtggct gagggccgctc agactgtgct
180

ccagagaagc tctggcttca gatcccgttc ttctgtggcc actagctcag aatgctggaa
240

tgttggaaagc agatgggcga tggatcaagc taagtacanc ctggat
287

<210> 184
<211> 135
<212> DNA
<213> Rattus norvegicus

<400> 184

aattcgtcaa agcagcacca ggccccgac tgtgccaaac cactgaagaa gcgccccatc
60

atctgaaagg caagcaaagc tgatcaactt caggctgcct tgggttcatt ctctaaccatt
120

cataatctag agtta
135

<210> 185
<211> 79
<212> DNA
<213> Rattus norvegicus
<400> 185

aattcgacag tgtcccatgc agacattact aattgattct gtttttatta tggAACCTTT
60

tggctggcca ggtgtgtta
79

<210> 186
<211> 413
<212> DNA
<213> Rattus norvegicus
<400> 186

aattcgttagg aagcttcaaa accaaacaag acttcataga tttgattgaa gtcatctacc
60

ggggagctat gcgaggaaaa cttattgttc aaagtccatat tgaccccaag aacataacca
120

aatacgacct cctctatcaa gacattttagc actcgctgct gttggagaga agagaggcac
180

aggctgaagc agaacctgaa ctcagagagc ctgtggtctg gagttccatca gagacatgt
240

cactgcctga gcaaagaggt ttcataggcc tgtaatcaac ggccccctctg cagaagcccc
300

agtgcctccca gaatggagat gcctgagcgc ccattctctg agagcctcag agcagtgagc
360

gagtgacagg tggcattgta acggaccctt tatcttgact gtctttcccc tta
413

<210> 187
<211> 362
<212> DNA
<213> Rattus norvegicus
<223> unsure at all n locations
<400> 187

aattcgggca gggcatcatg gtccataaac atgagggat gaaggtctt gtgccactg
60

gctttcagc cttcccttcc gagctactgc atgccccaga aaagtgggtg aaggtcaagt
120

ccccaaactc atctcctatt cctacatgga acgtggggc cncttgctg cctttgaaga
180

gccaagctt ctggcccagg acatccgcaa gttcggtcc ctggctgagc tgcagtagtg
240

acactggata ccaactgtgg ctttagcagc agccctggtt cctcccaagt cacacttatg
300

gaagatgacc ccttctnag gaataagttt gttccctgac cacactcgag gaccagact
360

ta
362

<210> 188

<211> 74

<212> DNA

<213> *Rattus norvegicus*

<400> 188

aattcggggc tgtttcagat ttcctacact ctgattggta ggtgtgtcca tctggacagt
60

ttattcttagc ctta
74

<210> 189

<211> 267

<212> DNA

<213> *Rattus norvegicus*

<223> unsure at all n locations

<400> 189

aattcggggc gccgttgggc ttcacggcga tgctgatcct gctgcctgcc accatgtcc
60

acctgcttct ggccggccgc tcgggtccgg cgccgcctcct ggcctacca gcctatctgc
120

ctgggctgga ggagctgtgg agcccacggg ctctgctgct gttgttcatac tggctcggcc
180

tgcaggtggc gctctatgg ctgcctgcac gcaaggtggc cgaggggctg ganctgaagg
240

acaagagtcg cctgcgtac cctatta
267

<210> 190
<211> 192
<212> DNA
<213> Rattus norvegicus

<400> 190

aattctaaac atatgccatt gtggaagaag caaagccacg gagatagcag gccagtgcag
60

attcactgat gtgacaactg cattctctca gtttaggaca ttggtggaag gagcctctgc
120

acttatgggc tggtagcta tggAACCTT gtacttcctg ccaattttgc tctgaaactc
180

aaactgcctt ta
192

<210> 191
<211> 83
<212> DNA
<213> Rattus norvegicus

<400> 191

aattctagat ttcttgtaa actatcaaactgtatgt atgtaataaa gtgtctaattg
60

ctaggagttt attggaaggt tta
83

<210> 192
<211> 56
<212> DNA
<213> Rattus norvegicus

<400> 192

aattctcaga aactatataa tacattctgc tggccaa tgcaaagtgt acttta
56

<210> 193
<211> 42
<212> DNA
<213> Rattus norvegicus

<400> 193

aattcttcag aaatgtggtg tctaagaaca ccagaccctt ta
42

<210> 194
<211> 133
<212> DNA
<213> Rattus norvegicus

<400> 194

aattctatgc attgatttac atgtactgaa ccatacttct ttgactgtaa tggagccaac
60

tttgtgtaaa tggttatttt catatgttct tgacttgata tgaaatattt tactataaac
120

ttttcatatg tta
133

<210> 195
<211> 79
<212> DNA
<213> Rattus norvegicus

<400> 195

aattctgacc acatgagctt cctagacaga gtgaagaata tgcttatcc tgtgccatgg
60

atgtatTTTt gccatgtta
79

<210> 196
<211> 65
<212> DNA
<213> Rattus norvegicus

<400> 196

aattctcctt gtagtagcgt tgggaggaga caatggttcc tgtcgccag tagatcatga
60

tgtta
65

<210> 197
<211> 64
<212> DNA
<213> Rattus norvegicus

<400> 197

aattcttcag aaggtagtg aagctatgg cattaataaa taaactgcta agattgtcat
60

gtta
64

<210> 198
<211> 41
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 198

aattctgcga nnaagttcaa atacaatagt gctggcagtt a
41

<210> 199
<211> 36
<212> DNA
<213> Rattus norvegicus

<400> 199

aattctgcaa attgccttac agactagcca tactta
36

<210> 200
<211> 218
<212> DNA
<213> Rattus norvegicus

<400> 200

aattctctac catctgttac aggctgtggg atgtcagagg aaggaacggg gtttgggtgg
60

ggtagccagg gcaggaccga gcagcaggat tcccgcaaga gaaaggaggc agatgggcct
120

tcaagagct ttaggaagcg actaacagca gagtgctgg gaacatacga atcagtctct
180

tgcattttgt aataaaccua acacaagact cgccatta
218

<210> 201
<211> 151
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 201

aattcagcct gaggagggaaa tcagtctatg gtntacttcg tcctgcctct tagttctgt
60

acctgcttgc cacatttgca cctatgagtc aagacatgtt tgttaccttt attttgattt
120

atttctatta caattcaatt tttttccctt a
151

<210> 202
<211> 63
<212> DNA
<213> *Rattus norvegicus*

<400> 202

aattcagtca cggaacttat gccttgaaa gttgtcacca ttttattgtc accctccatc
60

tta
63

<210> 203
<211> 221
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 203

aattcctctt atcaactgca tacaaagtgt ntcaataaca atttttccg tataaaaata
60

ctgggaaaaa ttgataaaata acaggttaaga gaaagatatt tctaggcaat taggatttt
120

gggacagtga gtcctgtggg gtgtttggac acagccacag gacaggcctc ctgacagtgc
180

tgcagatcag acggcaaaag aaagcagaac tgtctggttt a
221

<210> 204
<211> 178
<212> DNA
<213> *Rattus norvegicus*

<400> 204

aattcctcca tcattgcaga ccggattgca ctcaagctgg ttggccctga gggctttgta
60

gtgacagaag caggattcg agcagacata ggaatggaaa agttttcaa catcaagtgc
120

cggtattctg gtctccagcc tcatgtggtg gttttgttg ccactgtcag ggctctta
178

<210> 205
<211> 233
<212> DNA
<213> Rattus norvegicus

<400> 205

aattccagaa gaaaaaggca ggatcacagt cctagtgggg aagctgcttc ctggtccacc
60

cgaagacacc aagttcaacc accgtccatc cagaaatgag aagaacaata ccctagagca
120

aagtcatcca cacccagtac acactccgct gctaacctga aatgcataaa cagaaaccca
180

~~tagtatttat gcccctctag gcaggtgtcc acaataaaat tgtgagcagc tta~~
233

<210> 206
<211> 74
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 206

aattcggaaag gaactctcca acnnntcggt cagggagata tagccgcttt ctatctaaaa
60

gactcattac ttta
74

<210> 207
<211> 54
<212> DNA
<213> Rattus norvegicus

<400> 207

aattctccag ataatggtca ttaagacaat tctttccagc atgctcaagg gtta
54

<210> 208
<211> 240
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 208

aattcacggg aaatgncttg tgcttagcat ggagaagaag gaagtggaaag ggaatgggga
60

tcaaactctt ctaacattgc aatatgctaa tattgttaga ctgctacaga tgcactgaaa
120

cacagaatat gatcttttaa ggggccaaaa atgctacggt gtgaaaatat cacaatgact
180

gtcttncct taaaaaaagtc acataaaatg cagtttagaa caaggngaaa cataggtcta
240

<210> 209
<211> 147
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 209

aattcagggat atgnnnnngtg gntataaaagt acatttctgt agtgtgtgtg ctaccttagt
60

ttnatgttct ttatgaaaaa ttaaaaacct ccccctccac aactttcctc ttgctttgaa
120

tataggttaag atcataacat ctatcta
147

<210> 210
<211> 67
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 210

aattcatgga aaacnnntat gttatTTTA atacataatg ttcaaaataa nnatatgttc
60

tactcta
67

<210> 211
<211> 41
<212> DNA
<213> Rattus norvegicus

<400> 211

aattcattct gtttttttaa tctaactttt atatcaatct a
41

<210> 212
<211> 99
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 212

aattcatctc ctccngaaag caaaggtagt actattctt ttcacagatc aaattacaag
60

gggactaata gtgatgtaat ggnaccatg ccctgccta
99

<210> 213
<211> 141
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 213

aattccatgt ctatggnttc caagtcnna gagaancacn nggatgactg ccaggaggac
60

ccaggtttcc agtgtgagag ctgaaancag gtccatccct gcttgtctgt cancaaatta
120

ctcctcggtg ttctccctct a
141

<210> 214
<211> 134
<212> DNA
<213> Rattus norvegicus

<400> 214

aattcctcca ccatttaatt cagctccaat caatttcaa tattgtctac actgtccct
60

gcaaaccat accatthaag atttatgact attcctccta ccctgtttcg cttgctgtgc
120

cacgtgctaa tcta
134

<210> 215
<211> 121
<212> DNA

<213> Rattus norvegicus
<223> unsure at all n locations
<400> 215

aattccccga cccagagata tttgaccctg gccactttt agatggaaat ggaaagttta
60
agaaaaagtga ctatccatg ccttcctcag caggaaaacg gatgtnnncag ganagggtct
120
a
121

<210> 216
<211> 254
<212> DNA
<213> Rattus norvegicus
<223> unsure at all n locations
<400> 216

aattccgtaa agaaataata ttctccttca aaaagaggct ggcccattc caccgaagga
60
aagagatgga aaaaaacaaa caaaccatcc tgaagtcagc ttctccatgt actgtcacaa
120
tgagagactc aattgcctcg tgagtgtggg ggagggagga aaaagggttc atacctgcct
180
cattaggaag agcagaacta tggtaagan cacagtggac tggatgttac actcantnnn
240
ccacttaata gcta
254

<210> 217
<211> 107
<212> DNA
<213> Rattus norvegicus
<223> unsure at all n locations
<400> 217

aattccgnnc cgaacaaggc cacangtgan ncttactgga ntccatgctg ccattttttt
60
gtctgaaaat gtcagtactt aaaagtatcc aggnAACACT cgagcta
107

<210> 218
<211> 37
<212> DNA

<213> Rattus norvegicus

<400> 218

aattccttgg tattcggtat cagtaggaat ggggcta
37

<210> 219

<211> 291

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 219

aattcctgac cantgnnggt ctgganaaga ncccagagga gatccaacgc ctgtncagg
60

anaagaaggt ggacntgtcc aagcccttgg taagccacat gcggctccgg tgtcacagcc
120

tgccacgtgg tcctgggggc cttcctctgt ggcaaaccgg atgtgcctgt ctacgatggc
180

tcctgggtgg agtggtacat gcgtgcccaa ccggagcacg tcatntntca gggccggggg
240

aagaccctgt gaangacaca gtgcagctt ggtgacacccg gaaccatcct a
291

<210> 220

<211> 289

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 220

aattcctgga aaaagacata tcagaggaan ttcttaataa aatcatctac cacacctcct
60

ttgatgtaat gaaggaaaac ccaatggcca actataccac tctaccctcc agtatcatgg
120

accactctat atctccttcc atgagggaaag ggatgcctgg agactggaan aactacttta
180

ctgtggcaca aagtgaggat tttgatgaag actaccggag gaagatggca gggagcaata
240

ttaccttccg cacagagatc tgagagcagt gaggnagagg ganncccta
289

<210> 221

<211> 91
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 221

aattccaggc cagctnnntca antaagatcc tatcttaaag tanaatgaaa tagggttggg
60

gathtagcta cantgnnana gcacttgccc a
91

<210> 222
<211> 166
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 222

aattcccaaa acctnnnacg aagtctccgg antgagtcaa ctataccgct ttcttggcat
60

gagtcagag gcctccgact ccacagagan cagctcagtn ttcgtcttta ctgcgctaca
120

cgtagaaagag ctaagaaatg gagccggtn ncagaccccn ggacta
166

<210> 223
<211> 112
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 223

aattccagan tcagcaccaa nngacagacc attctaaaat gggcaaagga ctgaacggat
60

gntccggatt gacagtgacc acacagccca tganganccc acaggaccac ta
112

<210> 224
<211> 65
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 224

aattcgtaaa gaggannctc acnntgaaaa cataaactgc cacagtaagn ncacaaacct
60

gtcta
65

<210> 225
<211> 44
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 225

aattcgccaa gagcgtttga ntgacagctc tttgtgtatg tcta
44

<210> 226
<211> 105
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 226

aattcgatgt gggnnccata naaagtangg aaaaatatgg ggttgtntga tggtcaaatg
60

cctctgtttg ccatcacnga cacagaaatg ancaagaatg tgcta
105

<210> 227
<211> 110
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 227

aattcgagac ccaanncahn aaccnaaaacc cacaaccaca acagtaacna gaacaagaag
60

aaagaaaagca aaagggttgg gattnagntc agtggnagag cgcttgccct
110

<210> 228
<211> 392
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 228

aattcgggag tgnngnnccct tctgantctt gcancaaaga ggctnttcta tagcatgnnc
60

nangatgctg gcttggtgta aacnnatctc tggcatatct gatgangatg cangnccagg
120

atcccantgt ccangnatga nccagcaacc ctggaaacct acactccccca gagaaaaacc
180

anaaaattgaa agaanancaa actaaaagga ngcnaaacac ataaagcata antcacagtt
240

tgnnccagcc tngatctgac ntcgaanaag cctgaagaca gatgtgcccc ncttcanaca
300

cgtctggctt ctggcaccac ttgtgagctn cctgaaagtc accannctn tgctgtntcc
360

caanncaang nnatgagnnc ccnaacacac ta
392

<210> 229

<211> 81

<212> DNA

<213> Rattus norvegicus

<400> 229

aattcggaaag gactctccaa tgtcggttag ggagatatacg ccgctttcta tctaagaaca
60

tcattacttt aacaagtact a
81

<210> 230

<211> 203

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 230

aattctggac caagactctg ccccagaaga tccaagagct aaagggttct caggacaatc
60

acacagagct ataatgtcct gtgtcaagaa aactgtgttag acttgangta cagggttct
120

gaaggctcta aagtctacac ttgaatggat atatcacatc tggtggatga ccctgcaatt
180

aagggttgaag tcgaccatgt cta
203

<210> 231

<211> 110

<212> DNA
<213> *Rattus norvegicus*

<400> 231

aattctgctc tgtgtatcct gatccaccaa gcagtcactt ggttagcagaa aagtggcttt
60

atgtctgctc ttaactgtgg tggcgcttct gggactgtct tccagctcta
110

<210> 232
<211> 252
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 232

aattctggaa taagannctt gttttaaaaa aaggaactgc cgcaatctga aagacttcca
60

aagaangtta gagcacagta catactaccc ctgcccgtct cccaccaccc gctctccaca
120

accctcccccc atgtgcaact gacactcctc cccagtcgtat gtccttaccc acctttcaggc
180

ccacgtcatt cgttagtgtcc atcttgtnaa gccctgttgtt gccacacagt ntaacnngcc
240

ccccctgcagc ta
252

<210> 233
<211> 120
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 233

aattctgtgt gaaaancctc anaccacttc tcctgggncc tttaaactcc tggaggttta
60

gggaggccag tttccatccg cactgaattt gggagaanaa aactggnccc aattacgcta
120

<210> 234
<211> 47
<212> DNA
<213> *Rattus norvegicus*

<400> 234

aattctaagc cgagtttaac atgttcaaga tatctccgtt tcagcta
47

<210> 235
<211> 121
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 235

aattctccga cccgggnata tttgaccctg gccactttt agatggaaat ggaaagttt
60

agaaaagtga ctatttcatg ctttctcag caggaaaacg gatgtgtncg ggagaggcct
120

a
121

<210> 236
<211> 65
<212> DNA
<213> Rattus norvegicus

<400> 236

aattcatcca caccaactgg acatgcccac ggtggcagtg tgtcgccctc ttcatacaat
60

gccta
65

<210> 237
<211> 49
<212> DNA
<213> Rattus norvegicus

<400> 237

aattccctac acagaccaga actggctttt aactctacca ctacgtcta
49

<210> 238
<211> 48
<212> DNA
<213> Rattus norvegicus

<400> 238

aattccctgg gtgcctttct ttacaaaatg ggttcaataa ataagcta
48

<210> 239
<211> 74
<212> DNA
<213> *Rattus norvegicus*

<400> 239

aattccatat gtaataggat gcaagtctaa gcgtttcatg tggacataaa tgtatctaaa
60

taaaaacttcc ccta
74

<210> 240
<211> 142
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 240

aattccaggc tgggnttgcc tttctctgct ttcatgacct cttgacccca acgagctgat
60

gttaggacca caacactggt aggtggtaa aaaacaagca acaagggctg gggattttagc
120

tcagtggtag agcgcttacc ta
142

<210> 241
<211> 184
<212> DNA
<213> *Rattus norvegicus*

<400> 241

aattccaaga gtgacttgct ccctccccct tctccaccga aaaccacccca aagtggaaa
60

tgaatctctt caccagcacc cctctggcca caggcaaagt atgccacagg cctctgacat
120

actttggaca gactgccagc taacacccac caccccccattg ttaagacaca tctctggatc
180

ccta
184

<210> 242
<211> 71
<212> DNA

<213> Rattus norvegicus
<400> 242
aattcccaag gtcaaatgcg gtttagctgct gtggacttcg atatggaaca tgttacctct
60
ccctttgcct a
71

<210> 243
<211> 391
<212> DNA
<213> Rattus norvegicus
<400> 243
aattcccta cacattggat taatcttact aacatgacaa aaaattgctc cactataat
60
tctataccaa ttttatcaac tcctaagccc aactatcacc accattctcg caatttcatc
120
agtctttgtt ggccgcctgag gaggacttaa ccagacccaa acacgaaaaa tcatacgata
180
ttcatcaatt gcccacatag gatgaataac agcaatcctt ccataacaacc ctaacttaac
240
cctcctaaac ttaacaattt acatcctact tactgttcca atattcatca cactcataac
300
aaactcagca acaacaatca acacactctc actcgcatga aataaaaactc ccataatcct
360
aaccatagca tccatcatcc tcctatcact a
391

<210> 244
<211> 175
<212> DNA
<213> Rattus norvegicus
<400> 244
aattcgccct gtcgggatga gagagtggga gactgagtaa ccatggctcc gccgtgccct
60
cactggctct tttccgtgta gcatctctgg gcaagtgagg gaggcatatt agtttccatt
120
tgccagggtgtg gaacactgag cccccagaaag gacaagaaga ctcattcagt agcta
175

<210> 245
<211> 194
<212> DNA
<213> **Rattus norvegicus**

<400> 245

aattcgccaa ggatgactcc gatacatga gccgaagaca gacttcttat tctaacaacc
60

ggagcccaac gaacagcact gggatgtgga aggactcgcc caaatcttcc aaatccatca
120

gattcattcc tgtctccact tgagccccac gttcacgcag cccgactctt gggagggact
180

tttgtgtcca gcta
194

<210> 246

<211> 44

<212> DNA

<213> **Rattus norvegicus**

<223> unsure at all n locations
<400> 246

aattcgggct ggggatttag ctcagtggan aaacgcttgg ccta
44

<210> 247

<211> 198

<212> DNA

<213> **Rattus norvegicus**

<400> 247

aattctggag atggcacacg aggtcgtttt caaggtcatc ctttagctact cactgcata
60

taagttttag gtctgcctgt gctacatgag accgagggag agaaaggagg ggaaggagtc
120

aagcggtagt tgccttaat cgccgcattt gggagggaga ggcagggtgga tctctcggtt
180

tgaggccagc ctggtcta
198

<210> 248

<211> 332

<212> DNA

<213> **Rattus norvegicus**

<400> 248

gatccgcac tccttctgca tacatgtcga tgagggctct ctccttcatg tccttccat
60

agaggttgc tttggtggca atgtagttga gaatggctct ggtctgcacc agcttcatcc
120

catcaatctc caccatggc acttgctgga acatcaaact cccatcatc cttagcctgg
180

ccaggtcatac ccgagtttc agaaattgtt cttcaaactc tactccagct gcagccagga
240

gccaccggat gggctccatt ctccccctgc catcgaagta gtgaaggact ggcttcccg
300

gcatggcagc aattgcttga gttctttgt ta
332

<210> 249

<211> 481

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 249

gatcctgggt gttcgcagca cagtcctggg tcactggccc agaggagccg tggtatcaag
60

gcacaaaatg aggaagtggt cctgggaggg gcggggggcgg ggcagctccg agctcaggca
120

gtagggcaact catggtacca tgagggtggc cagtctgcag gaggcatgga gtgaaggcca
180

gtgctggctc cacttggaa gaaaggctt acagagcccc ggagtccgag gcagttggtc
240

tctgccancc atggcgtatc caagcctcct atccattccc cctgtacctc tggagatacg
300

ctgtccataa gatggctgtc ctgcctact gggccactt gaagaacaaa atgtcatttt
360

attctcttga gaaaagaaaa agagggaaatc atttttgcctt ctgcttggat gcctagaagt
420

ctaataagcc tcattacaaa aagacgtttt ctgggtctca tctggcgttt tctttggctt
480

a
481

<210> 250
<211> 441
<212> DNA
<213> Rattus norvegicus

<400> 250

gatcctgtgg taggagtctt gaaatgcccg ttgaactgct gagaggatac tccacactcc
60

accatcgact tccgtaggct tctcagcaac ttggaattgt tcttgatctt caggttttgt
120

gaccaccatg tgctgtgagag gagtgcacaaa attgtacttg agtgacaagt tcagaacttg
180

ggcctcgagg gcctctaact cagctcctga ggctgaaatc ctctgctcca gctgttgctg
240

tatggtcagc aacgcccaga gtctctccat aaagttatga aagatgtact taggaccctg
300

gaactctttc tcttggggg ctatgctggc ctccgtttgg aaagtgtatgt tctgcaggtg
360

catctgcccc catgactttgg ctaagaggac atcagggccc tggtccccga cttcccagcc
420

accaccatct ctgagccctt a
441

<210> 251
<211> 193
<212> DNA
<213> Rattus norvegicus

<400> 251

gatccacaca accaaaccaa catgagtgaa agagtttagca acacggcctg tggttcgcc
60

atgtttgggt gtcttgagc aaagctgcta tggagaaatg tgcaggtgcc taggggatgc
120

tgtactgctc tagaggatgt aactcaactc acagggtgac ttttgatgc ctgacccaat
180

tactagttga tta
193

<210> 252
<211> 156
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 252

gatccctggga ggatgttgcac cacacccttg ggaatgccag ctttcagtgt cagctcgca
60

aacttcaagg ntgtgagtggtt ggtcacctgg gcaggcttga tcaccacgggt gttcccagcc
120

gccaggcagg ctgcatttc caggatacca tcatta
156

<210> 253
<211> 101
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 253

gatccgaacc caagaggtaa aaaccttccc gcgcgaccag aagtgtccga ggctttcccc
60

gaggcggtgg gacttacttt cccaaagaana aagcaggatt a
101

<210> 254
<211> 228
<212> DNA
<213> Rattus norvegicus

<400> 254

gatctgcacc gtttgaagg aggaattcta ccacagctat ttgcccgtgt gccgcagccc
60

acatcagggg agtaaatcct tcttcatccg tgtgatttat aacattttct tgttcaatac
120

gagtagccag gttagagcatc tctccctgag ctgccaactg gtgaacagac agagaatttg
180

ctaacagagg tgtgggtggag acctcgtttc ccctgtgctt gttgggtta
228

<210> 255
<211> 177
<212> DNA
<213> Rattus norvegicus

<400> 255

gatcttacg tggggctct ttaggttagtg gacttttatt tactcccaag ggcattat
60

caaactctcc ccctcttgggt gaaaagtttag attccacagc aggtgctgat agtacaacca
120

tgtccatttc ataacaatat ttaggatgtt tgatcttcaa gttggtaat gctgtta
177

<210> 256

<211> 447

<212> DNA

<213> Rattus norvegicus

<400> 256

gatcttgggg tgtggtagg gatccagg gtgaaggttag attatttatt agggtggaa
60

tgttcattt acatgaagag gaatatgcc aaaaaaaaaaaaaatggggaa
120

agaggaagtt gaatctgtaa tctggccata agttatgtga ctttcctcagg aggatttctg
180

gggttacagg caggagtggc tgattggtaa taacagtacc taatttatcat atggtggaa
240

ggactgagtg ggatgtatgt gctgaacctt gtggcacttg caggaagctt tgtgcaaggc
300

cattctctag ataaggtag gcacttgtgc tttagaacact ttccagataa gattgggaa
360

aggagagggaa accccactga gaaaggagt ctccatccc gcaccagggtt cagagagctt
420

atcttagacat ggtcgacttc aaccta
447

<210> 257

<211> 350

<212> DNA

<213> Rattus norvegicus

<400> 257

gatctaaaat acctcgggaa tacatgtcaa tcagggctct ctccttcatg tcctccccat
60

agaggtcata ttgggtggcg atgttagttga gaatggctct ggtctgtgcc agcttcatcc
120

cgtcaatctc caccatgggc acttggtcaa acatcaaatt cccgtcttcc tttagcttt
180

ccaagtcttc tggactctgt ataaaacttct cttcaaactc cactcctgct gcagccagga
240

gccaccggat gcactccatt ctgccccggg cattgaagta gtgaagcact ggcttcccag
300

acatagcagc aactgtgctt tcactgtcta gcgagaatcg tggcttctta
350

<210> 258

<211> 155

<212> DNA

<213> Rattus norvegicus

<400> 258

gatcttacc attggggttc ccagttcttg caaagttggc ccagtacttc atcacccctcc
60

tcttcagcag ctccctcctcc tcagtgaggt caaaggcat gccccacaag taggagccaa
120

agacaaagag aatgtcatca ccattggcttg cctta
155

<210> 259

<211> 37

<212> DNA

<213> Rattus norvegicus

<400> 259

gatccgtacc ctaggtcaga gctgtgatct ctgctta
37

<210> 260

<211> 40

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 260

gatcctggng atcagtgtgg ggctcacctc caatgggtta
40

<210> 261

<211> 224

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 261

gatccttatgg gctccgtggt cagctagcct agccagcata nggagctcca ggttcagtga
60

gaagacttgt ctcaaaaata agagggaaaa agcaaattgag gttgtcacaa atgtgtactc
120

gtcatacataaa tgccatccat gcaaattgtat acacacacac actcacacac tcacacacac
180

acacacacac acanacanac acacacacnc ncnnatacc atta
224

<210> 262

<211> 31

<212> DNA

<213> **Rattus norvegicus**

<400> 262

gatcttgaaa agactgttcc ttcatgatt a
31

<210> 263

<211> 53

<212> DNA

<213> **Rattus norvegicus**

<400> 263

gatcttcgaa ctaaacgctg gggcgccac ctccgaatcc caatttctaa tta
53

<210> 264

<211> 63

<212> DNA

<213> **Rattus norvegicus**

<400> 264

gatcctaact cattagtgta aacgaccctc tccagcgtcc ctgcgcacat ctttctgtcc
60

tta

63

<210> 265

<211> 105

<212> DNA

<213> **Rattus norvegicus**

<400> 265

gatcctattg aggcgagcag ggacctggct ggacaaggac acacttaaaa cccgatttg
60

ttccaaattc tggaaacat agacattaa ctctgaagat gccta
105

<210> 266
<211> 66
<212> DNA
<213> Rattus norvegicus

<400> 266

gatctaaagg accaaggagt atgtcagtag ttgttaacgt agcagtagct gtctgtctgt
60

atgcta
66

<210> 267
<211> 137
<212> DNA
<213> Rattus norvegicus

<400> 267

gatcttggcc acaaaggcgc cccctggctt caagacatga gtagcaatgt taagggcgcc
60

aagcagaagc tgggcctgca tgtactcatc tacatcatgg aggccagtga catcaggagc
120

cccgtcacac actacta
137

<210> 268
<211> 197
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 268

gatccagtc cctccagctc tgacntgcta ctgctcagcc aggctccata cctgacaggt
60

tgtttcttgg ctccctcttt gtcatctcac ttgtcctgcc ttctcctgac agtaacagct
120

gttcntcagg tcaactggat caggccccca tgcctctaa ggagcaggaa gtcctcctac
180

ctaccctacc caccccta
197

<210> 269
<211> 40
<212> DNA
<213> Rattus norvegicus

<400> 269

gatccgcctc tcccaggagc atcaagccta ccgctggcta
40

<210> 270
<211> 109
<212> DNA
<213> Rattus norvegicus

<400> 270

gatcctattg gagctggta aataggcat tttcttatca agaaaaacaa cttctgaaga
60

cagggtttca cacatctcag gattggccat gaactcacta tgcagccta
109

<210> 271
<211> 51
<212> DNA
<213> Rattus norvegicus

<400> 271

aattcacaag gaaggagctt agaacagaca tctatttctt actgattgtt a
51

<210> 272
<211> 36
<212> DNA
<213> Rattus norvegicus

<400> 272

aattctacag aaccgtgtt atgatacagc cgttta
36

<210> 273
<211> 36
<212> DNA
<213> Rattus norvegicus

<400> 273

aattcagcct tagaaaaaaa taaaattgct gcctta
36

<210> 274
<211> 67
<212> DNA
<213> Rattus norvegicus

<400> 274

gatccacttt tattaggaac aaatgcaatc tcaaattcagt acaatttaggc ttcaagagtt
60

gatatta
67

<210> 275
<211> 287
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 275

ggcaatgaac cactgttagcg gggcttgca ttgctggctc tacctacagc tattactggt
60

catttggaaaga ccttagagtc agaatcttct tgtgttaagag ccctgaatgn tgtgaccaac
120

cccagtgtct acagcatctt tgcagctgtt aatctcaactg ttctcggtcc tattgaagaa
180

attactggcc cagaaatgcc tttggtgtgt ttggcagact ttaaggcaca tgcgcaaaag
240

cagctgtcta agacccctg ggacttattg aaggagaagc tgacgac
287

<210> 276
<211> 260
<212> DNA
<213> Rattus norvegicus

<400> 276

ggctccagct ggaagggttga atattgagtg tcctgggagg tcacattgct gtcagacatg
60

gctgctggac atggcacgca acacggacat ggtcatggta aaatggaaact tccagattac
120

agacagtggaa aatttgaagg gacgccatata gaagcaatgc agaagaagct tgctgcacga
180

gggctgaggg atccatggc tcgcaatgag gcttggagat acatggcg cttgcagaca
240

atatcacctt cacgagcgta
260

<210> 277
<211> 299
<212> DNA
<213> Rattus norvegicus

<400> 277

ctacaacagc accagagaca ccattgtgat agagtggac ttggtgtgca gtccaacaaa
60

ctgaaggaga tggcccagtc gatcttcatg gcaggcatac tggttggagg acctgtgatt
120

ggagaactgt cagacaggtt tggccgcaag cctatcctga cctggagttt tctcatgctg
180

gcagccagcg gctctggtgc tgccttcagt cccagccctcc ctgtctatat gatcttccga
240

tccctgtgtg gctgcagcat ctcggcatt tctctgagca ccgttatctt gaatgtgga
299

<210> 278
<211> 139
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 278

gngagataacc atgatcacga aggtggttt cccagggcga ggcttatcca ttgcactccg
60

gatgtgctga cccctgcgat ttccccaaat gcggaaaact cgactgcata atttgtggta
120

gtgggggact gcgttcgct
139

<210> 279
<211> 328
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 279

gatagactca ggaagcaatc atggtgctct ctgcagatga caaaaccaac atcaagaact
60

gctggggaa gattggccat ggtggtaat atggcgagga ggccctacag aggatgttcg
120

ctgccttccc caccaccaag acctacttct ctcacattga tgtaagcccc ggctctgccc
180

aggtaaggc tcacggcaag aaggttgctg atgccttggc caaagctgca gaccacgtcg
240

aagacctgcc tggtgccctg tccactctga gcgactgcat gcccacaaact gcgtgtggat
300

cctgtcantt cagttcctga gccatgct
328

<210> 280

<211> 312

<212> DNA

<213> Rattus norvegicus

<400> 280

ttaacaaccca ggtgtggatg ctggagtgtt tcctttgtct tctattttaa agatatcttg
60

aaaaaaaaacct gtcactgtcc ttttcctgct accatgtctt ccatcaagat tgaatgtgtt
120

ttaagggaga actacaggtg tggggagtcc cctgtgtggg aggaggcatac aaagtgtctg
180

ctgtttgttag acatcccttc aaagactgtc tgccgatggg attcgatcag caatcgagtg
240

cagcgagttg gtgttagatgc cccagtcagt tcagtgccat tcgacagtca ggaggctatg
300

ttgccaccat gg
312

<210> 281

<211> 289

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 281

ccttgaacgg acatgacnct ganaagttag aaatgagctc agggacccgg agacccgcnt
60

cattctccct agcctgcntc tcttgccccg naacgcgggg ngcagggttg ctccctaaaan
120
ctctgtgcat cttcgatgat aaggaccaac agctgggggt gtagctcagg gcagagtctt
180
gcctggnaag cccggatgcn ttgaggcctt gaccaccncn agcacanana naaaatgaag
240
gaagacccaa ggnacttct ggaagacctc atccccaaan aagcaagtg
289

<210> 282
<211> 250
<212> DNA
<213> **Rattus norvegicus**

<400> 282

actgactgta ctggtcagga ggtcacagat ccagccaaat gcaacctgct ggccagaaaaag
60

caatatggct tctgcaaggc gactctcatc cacagacttg gtggggaaaga ggtttcagtg
120

gcctgcgcct gtagccccac cagctggccc acctgaatcc gtggtggtag gacccgtggc
180

agttcctcta ggacttccag accacccaac ccaccatgac ctacggcatg cttctctcc
240

tgtggcttct
250

<210> 283
<211> 285
<212> DNA
<213> **Rattus norvegicus**

<223> unsure at all n locations
<400> 283

agccactgtn gccgatctcg cgcacgcnaa ctgctgctgn tngcacgtag tcccccatcg
60

tgcannaanc ggtcncaaaa gattcnaann caagatggna gcccncnacg aacaggncat
120

tgtgaatgtn cttaaggaag aacaggttncc ccanaacaan atnaaagttg ttgggggtgg
180

tgtgntggca ngggttgtgc catcagnanc tcaangaang actgggtgat gagntgcccc
240

ttgttgatgn cacacaagan aanctaaacn gagagangan cgatc
285

<210> 284
<211> 266
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 284

gaccctgtnt ccaggagcca acagcttagac tggtcccagt cagacgnagg aaacctggnc
60

cagctttgc actttcnang tgacgatggn cntacagagg acccaatcct tgcttctgct
120

ctgttgcga ccctgctggg gtttagggttg tacagccctc ctatggccaa gatagaatgt
180

accaacggtt ccttagacag catgtggacc ctgaggggac aggcggcagg acaactactg
240

caacgtgatg atgcagagac ggaggt
266

<210> 285
<211> 250
<212> DNA
<213> Rattus norvegicus

<400> 285

gtagctttcc ccttttgcg gcacagaagt ctgtccatct gcaagcgctt tggAACACAG
60

actgcctgga gccaccccttcc tttgggagac cttcctgcct cagctgtcgt cctgtgtcgt
120

cattcaactaa agctcctgac gtcagattaa gcaaggcagtg atgggttaca ttagagacaa
180

gccgcagaga taaggcctgt tgctgtttcg cagataatga tgagtttaa ttacccactg
240

gtttgtatgg
250

<210> 286
<211> 118
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations

<400> 286

gtangactng catcggaag ggctacagag gaaccatgtn caagacaaag actggtgtta
60

ccnnntncaat agtggagtga gcacgtgcc cccacgtagc ccaaanaactc ccccaggc
118

<210> 287

<211> 262

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 287

gagagnacct ttgtctcgga gtaactccc taccccaagt cctaaaaagcc ttccgtctta
60

cctcaatggg gtcatgcctc caacacagag ctttgcccccc gaccccaagt atgtcagcag
120

caaagccctg cagaganaga gcagcgaagg gtctgccaag gccccctgca tcctgcccatt
180

ncattgagaa tggaaagaag gtcagctcca gcnttattca cctactacct gagcggacgg
240

cancacccctg ncaaataatga gc

262

<210> 288

<211> 282

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 288

ttagctgcnc ctgacatttg tccatctccc aaannctctc tggagcancc ntngaagtcc
60

ctngtcctgc tcctttnnnt tgctcagatt ctagagctgc caatcagctc cacaagggtgc
120

agggctgggt tttcgagaat tggcttnat gacccggaaa aaaanccntt nanctttgat
180

agccgtggac tacctaata aacatcttct tcagggattc aggcagatct tgaatcagat
240

gacaaagtaa ggtgtggctc cggcggccct tcgganaggt gt
282

<210> 289
<211> 265
<212> DNA
<213> *Rattus norvegicus*

<400> 289

catagaccca tctctcagct gggatgatat taaatggctc agacggttga cctcaactgcc
60

cattgttgta aaggaaattt tgagaggtga ttagtgccttga aacatggtgt
120

ggatgggatc ttatgttcga atcatggggc acgacaactg gatggggtgc cagctactat
180

ttagtgccttga ccagagatcg ttgaggctgt ggaagggaaag gtagaagtct tcctggatgg
240

gggagtcagg aaaggcacccg atgtt
265

<210> 290
<211> 199
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 290

ccctgcaagc tgtgttgcag ggcccggaag gctcaactgtt ccgaaatggc cgacagtcag
60

acaaggatgt gagatacact ctggagagat cagagacaag cacaganact gtgtcnact
120

agtgnccgttg cagtcnaac atctgtggag atcnanncan tggtnnntna ctggcnccgan
180

ncgtncnatg caaannacg
199

<210> 291
<211> 285
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 291

tacgcaccat ggacacangc acangcctca tcaganctat gcatagttgt ntaaaatcana
60

agtgtgatct tggtcaacta cagttatgga gaagcaactc attggccagn ttctgggaga
120

ntttgtgnng tanttaatgc agcngtatgg naacnnaata cnatttangt ttcnnggtgct
180

gntantaatg gtcnatgcct tctacagtgg gttgtccann nggantactt ccancgnnat
240

aggngntgga gcntatgttc tcgcccata ganggttgcn gngta
285

<210> 292

<211> 268

<212> DNA

<213> **Rattus norvegicus**

<223> unsure at all n locations
<400> 292

ccacgctgga gcbaanacca ttgctcgtga gcacatgggg agactgctgc accagctact
60

ctgcgcaggg cacctctcta ctgtccagta ctaccaaggg ctgtatgaaa cactagaatt
120

ggctgaggac atggaaatcg acatccctca tgtatggctt tacctggcag aactgataac
180

acctattctt caggaagacg gggtaaccat gggagagctc ttttagggaaa ttacgaagcc
240

tctgagaccc atggcaaag ccacttct
268

<210> 293

<211> 185

<212> DNA

<213> **Rattus norvegicus**

<223> unsure at all n locations
<400> 293

ctcattgcca ccatgaactt ctccggcaag taccaagtgc agagccaaga gaactttgag
60

cccttcatga agggcgtgg gtctgctgag gacttcatcc nagaaaggga aggacntcaa
120

gggggtntnn gaatncngcn nnnanggaag aaantnnaac tcnccatcan ctannggncc
180

aangt

185

<210> 294

<211> 286
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 294

agctaagttag aaaaatatgt gtgaataaag ccaataatat ctcccanatg ttattaccaa
60

ttaataagat gttctatccc ctggtatgtat ataaaattat ctctacttaa tgcataact
120

ggcaaaaaaaaaaa aaactatcat tgcaaatgcc tcccagtgaa accaataact tctcanatat
180

ttagaattat tggttataac tcactaacct agtttcctaa natcantta anatttgatt
240

tatngtanag cantggnnnaa tcatgtccnct ctnatgttgt ttnnac
286

<210> 295
<211> 225
<212> DNA
<213> Rattus norvegicus

<400> 295

gcctccccggc ttgcctgccc agtttatcc ctagaaggcag ctagctactc caggtgcaca
60

ggtgccatgc agccccgaat gctcctcatac gtggccctcg tggctctcct ggcctctgcc
120

cgagctgatg agggagaggg atccttgctg ctgggctcta tgcagggcta catggaacaa
180

gcctccaaga cggtccagga tgcactaagc agcatgcagg agtct
225

<210> 296
<211> 278
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 296

acaccatcna cctgtatgcn gtnactggcc gtgnnggacat tccagccagc agcaagccat
60

nttccatcaa ntatcanaca naaattgaca agccatccca natgcangtg acggntgtcc
120

aggacaacag catcagtgtc aggtggctgc cttcaattct nctgtggaca ggtaccgagg
180

nccagcggtt ccncaaaaant gggtaactgac naacanaatc tcaaactgtc nagtccagat
240

canacagaga tgnccattga aggntgcaac ccaccgtg
278

<210> 297

<211> 290

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations
<400> 297

gtggaaagga aacctcatcg ccaccatgaa cttctccggc aagtaccaag tgcagagcca
60

agagaagttc gaggtggana ggaaacctca ttgccaccat gaacttctcc ggcaagtacc
120

aagtgcagag ccaagagaac tttgagccct tcatgaaggn nanngnctg nctnaggnc
180

tcatncngaa angganggnc atcaaggggg tgtcagntat nctgcatgan ggganctcnt
240

caaatnanca ncactatgng tncaagtgtat cnaatgagtt cacttggggc
290

<210> 298

<211> 296

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations
<400> 298

agcaaggcta tttctgactg gnctgctgtc cagaatctag accactggca gtgggtgaca
60

gcccagttga ggttaatcga agtctcgctcg caggctctgc tgtaagtctg gcctcttggc
120

ctcacatctt ctttgtggga tccttccta tctccagctt cctcagctgg tcagggagat
180

ttggtccaga actagaagcc ttaataatct gagcaggtaa gagaggagta aaatgtacag
240

tcttggacat tgactaaagg gtcctgcaga ggatatcaag gtaagtggct tggagg
296

<210> 299
<211> 277
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 299

ggtggccctg ccttgtcttg gctctgtct ctggcttggaa gacctctggc tttccaagga
60

gtccccctccg gctgcttggg aaacggagcc ttccagaagg ggtggtggat gcattgagat
120

ctacagcacc aagatcagct gcaaggtgac ctcccgcctt gtcacaatg ttgtcaccac
180

aagggctgtc aaccgtgcag acaaggccaa gaagtttcct ttgatgtggaa ctgccccaa
240

cagcctncat caccaacttc accttgatat ngatggg
277

<210> 300
<211> 287
<212> DNA
<213> Rattus norvegicus

<400> 300

ctcagtttctt gaagagaagc accctggcac agttcttctg agttttggac ctaggtctac
60

aaccatgaag gtagcaatta tctttcttct cagtggcttt ggccctgctc aatttagcag
120

gtaacactac agctaaggtg attggaaaa aggctaattt ccctaataca cttgttggat
180

gccccaggga ttatgatcct gtgtgtggta ctgacggaaa aacttacgcc aatgaatgca
240

ttctatgctt tgaaaacagg aaatttggaa catctatccg cattcag
287

<210> 301
<211> 85
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 301

tttcttctga cgctaggnaa cattccagtg tagctgaggc tgtccaaac ccagtgaggn
60

gccaggatg ttcctgaaag ggctg
85

<210> 302
<211> 295
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 302

gcgacacagg tgaaccatnt ctncgtacgc taggaaacat ccagtgtac tgaggctgac
60

ccaaccagt gaggagccca ggatgtncn gaaggctgtg gtgctgaccg tggccctgg
120

ggccatcacc gggacccagg ctgaggtcac ttccgacccng gtggccaatg tcatgtgg
180

ctacttcacc cagcnaagca acaatgccaa ggaggctgtg gaacaactgc agaagacaga
240

tgtcactcaa cagctcaata ccctcttcca ggacaaactt ggaacattaa cacct
295

<210> 303
<211> 279
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 303

cttcatctct cttggggccc catggggcggttccatcaag cccatgcggatccctggc
60

aggtgacaac cagggcatcc cgatcatgtc caacataaag ctgagagaag aacagcgc
120

aaccacaact tccccctgga tgtttccagtc accacacgtg tggcctgaag accacgtgt
180

catttccaca ccaaacttca cnacacaggc caagacttgc agcgaaaaatgc
240

cattttgaag aaggctggca catgtttcta cagtctcg
279

<210> 304
<211> 306

<212> DNA
<213> Rattus norvegicus

<400> 304

cttgggagtc ctcggctgct tacaacttgg agccacctgt gtcctggccc ccaagttctc
60

tgcttcccga tactgggctg agtgccggca gtacagtgtg acagtggtcc tgtatgtggg
120

tgaagtccctg cgataacttgt gtaatgtccc agggcaacca gaagacaaga aacatacagt
180

gcggttcgca ttgggcaatg gacttcgggc agacgtgtgg gaaaacttcc agcaacgatt
240

tggtcccatt cagatctggg aactctacgg ctccacagag ggcaacgtgg gcttaatgaa
300

tatggg
306

<210> 305
<211> 296
<212> DNA
<213> Rattus norvegicus

<400> 305

gggtttctct gtatTTACCC ctacaagatc cctggatggt gtctctgggt tcttccaagg
60

ggcTTTCTG CTCAGTCTAT TTCTGGTGCT GTCAGGCA GTCCAATTCT ACTTACGAAG
120

GCAATGGCTG CTCAAGGCC CGAGAAGTT CCCATCCACG CCTTCCCACT GGCTTTGGGG
180

CCACGACCTG AAGGACAGAG ATTCCAGCA GGTTCTTACG TGGGTAGAGA ATTCCCAGG
240

TGCCTGCTTA CAGTGGCTCT CAGGGAGCAA AACACGAGTC CTGCTCTATG ACCCTG
296

<210> 306
<211> 147
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 306

TCAGCTTCGG TGCTTCCAT GAGNCNTCCC TGCAATCAGN AACTATGCTT TCCCTGAGGG
60

tcnccctgctt catcctnagc ttggccagca cagtctggac tgcagacacc ggcaccacaa
120

ttgaattcat anaaggcagga ggnnata
147

<210> 307
<211> 312
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 307

gcatccgcta agtgcgtggc gcgaactgnc gctgggtgcg gttgtcgccgg tcgccactgc
60

ctctcggtcc aatgagctgc accaggatga tccacgtgct ggatccacga cctttgacaa
120

gttcagtcat gcccggtggac atggccatga ggatttgctt ggcacattca ccacccctga
180

agagtttcct gggtccttac aatggtcttc agcgaagaca ttttgtgaat aaaccgaagc
240

ccttgaaaacc gtgtctcagc gtcaaggcagg aagccaaatc acagaaggaa tggaaagagcc
300

cacacagcca ag
312

<210> 308
<211> 284
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 308

gtcagtttca ctgtggaggt cctgcttcca gacaaagcag cagaagagaa gttgaatcag
60

cagggggcag tcaccccaa ataacatctc cctcctgcag caggcctggc ccccctcagt
120

gtcttcctgt cagtttcttt atagtcattt tcctacaacc tattagccca aagaaactgg
180

gctggaggga agacttcaga ctggacggag cacccgttca gagtcagaag cgataanta
240

gctagagggg tcctccncat cagaatacta aagggtctcc agag
284

<210> 309
<211> 293
<212> DNA
<213> *Rattus norvegicus*

<400> 309

gtagccactc taactagggg cgtgctgaga caagaccacc tcattcctct gctgcttttc
60

agacaggact gtcctgccga cccaccatga tccaggctgc actgttcctt ggctgtatct
120

tactgtcctc ggtgaccgccc ttccatgga agactcagga tggtgccctg ccccatcagc
180

cagctggcac agaaaactgag cctacacaac tgctctacag caagagtccct cctccgaccc
240

ccagtagctg tcggaacctc ctaagcatgg cgccccctgcc ccctgttagtc ctc
293

<210> 310
<211> 208
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 310

gtccctgang cctacaccat cctgcgttag agatgcccgt ctcatttga ctcagagtct
60

gtccctctgc ttgtcttctn caagccatnt ggctctaccc gctggcaactg gtggggccctgt
120

ggaacctccct gcgcttgttc agggagngga nnngtggtnag cnatctccaa gacaagtatg
180

tcttcatcac gggctgttat caggctt
208

<210> 311
<211> 280
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 311

ggctgttatg gggctgcctg gctcccccggc gcagtgggtg ctgttgctgt tggggctact
60

gctccctcct gccaccnnc tctggctcct caatgtgctc ttccccccgc acaccacgcc
120

caaggctgaa ctcagtaacc acacacggcc tgtcatcctc gtgcctggct gcatgggaa
180

ccggctagaa gccaagcttg ataaacccaa tgtggtaaac tggctgtgct accgaaaanac
240

agaggatttt ttaccacngn ctggattcan anntttcnnc
280

<210> 312

<211> 181

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 312

ctggaacact ttaattctgt ccacaaggc agagtgnacn aactcccagc aatcttaggac
60

tncaacacctt agccttttagc ctcactcctg agggttatgg tgatcaattt tcctggatct
120

gaagacttgg acatggactg agacctcagt tacagacagc ctgttgtgag acttctcagc
180

c

181

<210> 313

<211> 174

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 313

cacnaagcta tntataatgg ccagactata ctgggttga aggaataacct tttcatgcct
60

tgggatgc cnaaganaac tttgaaaaat gtttgaata aagtttgtgg tgaaanacga
120

agatggatt tcattggctt atcccaagtc aggaacgacg cgccggctcg naat
174

<210> 314

<211> 289

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations
<400> 314

atttttgttt acccaactcga gaagtaagcg ccaaaggggc tagtaagaga acagacagcg
60

ctgggtggtgg ctatttgctc caggcctaac cagtggggaa gtggatttgc gggacacgtg
120

tctcaggcctg gacacttagg ggttcttagc ttgtgaagcc aatccnngtg gaaccgatgt
180

ggatnaggnt gcantgnnc tctgtttccc cccaaacttc cccagtaacc tttgggcaag
240

gtggatgaac ncagngattt ttgaaaagtc aaaaacttcg gtttgtta
289

<210> 315
<211> 309
<212> DNA
<213> Rattus norvegicus

<400> 315

gcccagtgtt ctagggacca tgccatggag gacccagaca agaaaggggga agccagagcc
60

gggagcgaag tagggtctgc cagccccgag gagcaacttg acggatcagc cagcccagtg
120

gagatgcagg atgagggatc agaggagctt cacgagacag gagagccccct gcccccccttc
180

ctgctgaagg agggtggaga tgagggcta cactcggcag agcaggatgc cgatgtatgag
240

gcagctgatg atacagatga caccagctcg gtgacccctct ctgccagtct accacccct
300

ctcagagtg
309

<210> 316
<211> 211
<212> DNA
<213> Rattus norvegicus

<400> 316

cagacctcca ggagaacctg gaagaagtcc ttcccaagct gctagctgag aacattcgat
60

gcttctacct tggccacagc tcacccactc cgggcgtaga ggctctagga gctgccctgg
120

acgctgcacc ttctgaccca gtgcctgcca agttcggtc taatataaaag tggaaatccc
180

cagccatatt catctataact tcagggacca c
211

<210> 317
<211> 282
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 317

agccggcagc cgagtcggat tgngctgctg cagacgcccag gccactccag ccagcaactgc
60

cgttttacg ccccggtgc agacagctag gaggcttat ctagttgaa ccaggctgct
120

ggagctcgct ctttccctct cttttttcc acgaggctgt ttttttattt ggctgcattgc
180

atgaaatccc aatggtgttag accagtggcg atggatctag gagtttacca actgagacat
240

ttttcaattt ctttcttgcgt gtttttgctg ggaatgaaaaa cg
282

<210> 318
<211> 261
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 318

aaggagaga aatcaatgaa tttcaatct tgtttttta atgaggcagt gatattatag
60

catggtaaaa ctgcttaat ttacactttt gattgggtgc tggggataaa acctaaagca
120

tggcatatta atgaagaaca tatggtaacc atgaactcca tctctggatt ctttatcgg
180

cnattttta aaggttgaat attcgcacca gagaatgaca agtggtttg acaacatact
240

ctaggcccttc tattaaaaac a
261

<210> 319

<211> 273
<212> DNA
<213> *Rattus norvegicus*

<400> 319

cgtggttaca ccaggaccat ggagcccaagt atcttgctcc tccttgctct cctcgtgggc
60

ttcttggtaac tcttagtcag gggacaccca aagtcccgtg gcaacttccc accaggacct
120

cgtcccccttc ccctcttggg gaacccctcg cagttggaca gagggggcct cctcaattcc
180

ttcatgcagc ttcgagaaaa atatggagat gtgttcacag tacacctggg accaaggcct
240

gtggtcatgc tatgtgggac agacaccata aag
273

<210> 320
<211> 205
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 320

ccaggaccat ggagcccaagt atcttgctcc tccttgctct ccttgggt tcttgtaact
60

cttagtcagg ggacaccnaa attccntggg aaatttccna caagnacttg nnccctttcc
120

cntntngggg aacncntgaa ntggaaana ggaggcncntcc tnantncntt cangnagtt
180

cgcgaaaaat atgganatgt ntnca
205

<210> 321
<211> 289
<212> DNA
<213> *Rattus norvegicus*

<400> 321

caccaggacc atggagccca gtatcttgct ctccttgct ctccctgtgg gcttcttgtt
60

actcttagtc aggggacacc caaagtccccg tggcaacttc ccaccaggac ctcgtcccct
120

tccccctttg gggAACCTCC tgcagttgga cagaggaggc ctcctaatt cttcatgca
180

gtttcgcgaa aaatatggag atgtgttac agtacacctg ggaccaaggc ctgtggtcat
240

gctatgtggg acagacacca taaaggaggc tctggggc caagctgaa
289

<210> 322

<211> 265

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 322

gccatttggc tcccaaggac attgaccta cgcccaagga gagtggcatt ggaaaaatac
60

ctccaaacgta ccagatctgc ttctcagctc ggtgatccgg ctgaggcagc catgtgcccc
120

agttctgttg ggaatggcct catgtttctg cctctggggg acctgctgaa aaccaggc
180

aaggccactg ctcacatctt cctattgcag ttctccaaag tcccaaggct tttcntatt
240

cctgtgaatg gcactgaaga agtca
265

<210> 323

<211> 234

<212> DNA

<213> Rattus norvegicus

<400> 323

gtaaaatgcc atacactgat gcagttatcc atgagattca gaggtttca gatcttgtcc
60

ctattggagt accacacaga gtcaccaaag acaccatgtt ccgagggtac ctgcttccca
120

agaacactga agtgtacccc atcctgagtt cagctctcca tgaccacag tactttgacc
180

acccagacag cttcaatcct gaacacttcc tggatccaa tggggcactg aaaa
234

<210> 324

<211> 235

<212> DNA

<213> Rattus norvegicus
<223> unsure at all n locations
<400> 324

gaaacttggc cattcttagca gcacagantic agaactgaga actggccatg gcacggaaac
60

aaccacatacg ctggctgaan gctgtgtct ttgggctcct gcttattctt atccatgtgt
120

ggggtcagga ctcaccagag tccagctcca tcaggaccac acaanatann attnanaaaan
180

gnaagcttga cnacgtgagg gacactaaag ctgggttcca nacaacanaa ngttc
235

<210> 325
<211> 263
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 325

aaagtcccaa ggnttggttct tattcctgtg aatggcactg aagaagtcaa tcgactgtct
60

tattttgaca tgtgaacaga gatttcatga gtacacatct catgctgagt cacttcctc
120

tccctcccaa tagcccacgt ccccacttat cagccctcca tggctgtga tctgtgctaa
180

tggactctgt atatggtctc agtgctatgt ctacagactt acatagttatg tatggttcag
240

gtaaacagat cacagagtgt gtg
263

<210> 326
<211> 300
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 326

gtgcagaaaag actgaaggag ccagaaanta tcaatgccag ggaaactgtc ttgcagaccc
60

aacaggaact gatacacgag ccaaaccagc aatgtttcc cctgcacagc ctgcagttcc
120

tgccccactg gccaacttga agattcaaca caccaagatc tttnataaaaca atgaatggca
180

tgattcagtg atggcaagna attacctgtc ctttaaccctg caatgaggag gtcatctgac
240

atgtggaaga agggacaagg cagatgttga caagctgtga agccgcaaga caggcttcc
300

<210> 327

<211> 350

<212> DNA

<213> Rattus norvegicus

<400> 327

attgggtgtta acacagatga gtactgttgc accattccta tggtcatggg cactgctcaa
60

ataataaaagg agctatccag agagaacctg caggctgttc taaaggatac agcagcacaa
120

atgatgcttc ctccctgagtg tggtgacctg ctcatggaag agtacatggg gaacactgtat
180

gattcccaga ccctacaaat acagtacaca gagatgatgg gagacttcct gtttgtgatc
240

cctgcactcc aagtagcaca ctttcagcgt tcccatgccc ctgtctactt ctatgagttc
300

caacatgcac ccagctattc aagaatgtca ggccacccca gtgaaggtga
350

<210> 328

<211> 258

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 328

agantgtnga gcgagcnaag naatatgtcc ttgganancc tctgnnccaa gnaatanatc
60

agggccctca gattnacaag gagcaacatg ataaaatcct tgatctcant gagagtggga
120

agaangaagg agccaanctn gagtggtgn taggacgcng ggggnacaaa ggcttcnttg
180

tccanccnn agtcatctcc aatgtgacng atgagatgng cattnccnaa gagngatat
240

ttggancagn gcaacaaa
258

<210> 329
<211> 245
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 329

gaaatgtatgt ggccaggttc atcaacttgtt tggagggnaga atttaactac ccccttagaca
60

atgtccacacct cttagggtagc agtcttggag cccatgctgc tggcgtggca ggaagtctga
120

ccaacagaag gtcaatagaa ttactggctt ggatccagct gggcctaact ttgagttatgc
180

agaagccccct agtcgccttt ctccctgatga tgcggatttc gtagatgtct tacacacatt
240

tacca
245

<210> 330
<211> 191
<212> DNA
<213> Rattus norvegicus

<400> 330

gattatttgt agccaccatg agagactttg ggataggaaa gcagagtggt gaggatcaga
60

taaaggagga ggccaaatgt ttagtggagg aactgaagaa tcatcaggga gtctccctgg
120

acccaacgtt cctcttccag tgcgtcacag gcaacataat ctgctccatt gtctttggag
180

agcgctttga c
191

<210> 331
<211> 265
<212> DNA
<213> Rattus norvegicus

<400> 331

aggaagccccct gcagagcatc agaggcccag ctagagggac aacacagagg agtaatttgc
60

tgacagacct gcagggatgg acctgcttc agctctcaca ctggaaacct gggccctcct
120

ggcagtgcgc ctggtgctcc tctacggatt tgggaccgc acacatggac ttttcaagaa
180

acaggggatt cctgggccca aacctctgcc ttttttggc actgtgctga attactata
240

gggttatgg aaattcgatg tggag
265

<210> 332

<211> 296

<212> DNA

<213> Rattus norvegicus

<400> 332

gactgctgga accaacgtcc tctcttaccc tccaccttct tctgtcacct ctaccacgg
60

caccatgtcg caagccccgc ctgcccactgt gctgggtgcc atggagatgg gtcgcccgc
120

ggatgtgacc tccagctccg cgtcggtgcg cgccttcctg cagcgcggcc acacggagat
180

agacaccggcc ttctgttatg cgaacggtca gtctgagacc atccttaggag acctggggct
240

cggactgggc cgcagcggct gcaaagtaaa aattgccacc aaggctgccc caatgt
296

<210> 333

<211> 214

<212> DNA

<213> Rattus norvegicus

<400> 333

gagatgttcc ctgtcatcga acagtatgga gacatttgg taaaatactt gaggcaagag
60

aaaggccaaac ctgtccctgt gaaagaagtg tttggtgctt acagcatgga tgtgatcacc
120

agcacatcat ttggagtgaa ttttgattcc ctcaacaacc cgaaggatcc ttttgtggag
180

aaagccaaaga agctcttaag aattgattt ttg
214

<210> 334
<211> 183
<212> DNA
<213> *Rattus norvegicus*

<400> 334

ggcagcattg atccttatgt atatctgcc tttggaaatg gacccaggaa ctgcattggc
60

atgaggtttg ctctcatgaa tatgaaaactc gctctcacta aagttctgca aaacttctcc
120

ttccagcctt gtaaggaaac acagataacct ctgaaatcaa gcagacaagg acttcttcaa
180

cca
183

<210> 335
<211> 174
<212> DNA
<213> *Rattus norvegicus*

<400> 335

attggcacca aggagggaaat cctgcagtac tgccaagagg tctaccctga actgcagatc
60

acaaacgtgg tggaagccaa ccagccagtg accatccaga actggtgcaa gcggggccgc
120

aagcagtgca agacgcacac ccacatcgtg attcttaccc gtgccttagtt ggtg
174

<210> 336
<211> 241
<212> DNA
<213> *Rattus norvegicus*

<400> 336

atttggcat gggaaaagg aacattgagg atcgtgttca agaggaagca cggtgccttg
60

tggaggaact gagaaaaacc aatggctcac cctgtgaccc cacgttatac ctgggctgtg
120

ctccttgcaa tgtcatctgc tccattattt tccagaatcg ttttgattat aaagatcagg
180

atttcttaa cttgatggaa aaactcaatg agaacatgaa gattttgagc agtccctgga
240

C
241

<210> 337
<211> 289
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 337

atgaaggtct ttgtgccac tggctttca gccttccctt ccgagctact gcatgccca
60

aaaaaaagtgg gtgaaggtca agtacccaa actcatctcc tattcctaca tggaacgtgg
120

gggccacttt gctgccttg aagagccaa gcttctggcc aggacatccg caagttcgta
180

tccctggctg agctgnagta ntnacggntt annaaaantgt ggctttagna naancctgg
240

tccccanagn aannttgggn aaccccccctn gggaaaaant tntcccccc
289

<210> 338
<211> 243
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 338

tgggcagaaa ggaagccctg cagagcatca gangcccagc tagagggaca acacagagga
60

gtaatttgct gacagacctg cagggatgga cctgctttca gctctcacac tggaaacctg
120

ggtcctcctg gcagtcgtcc tggtgctcct ctacggattt gggacccgca cacatggact
180

tttcaagaaa caggggattc ctgggccaa acctctgcct tttttggca ctgtgctgaa
240

tta
243

<210> 339
<211> 289
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 339

gcagaaaagga agccctgcag agcatcagag gcccagnac agggacaaca cagaggagta
60

atttgctgaa cagacctgca gggatggacc tgcttcage tctcacactg gaaacctggg
120

tcctcctggc agtcgtcctg gtgctcctct acggatttgg gacccgcaca catggacttt
180

ncaagaaaaca ggggattcct gggcccaaac ctctgccttt ntttggcatg tgctgaattn
240

ctatatgggt ttatggaaat tcgatgtgga gtgccataaa aagtatgga
289

<210> 340
<211> 289
<212> DNA
<213> Rattus norvegicus

<400> 340

attnaaggta atctatctca tcagaaaatcc cagagatgtt cttgtttctg gttattattt
60

ctggggtaag acaactcttg cgaagaagcc agactcaactg ggaacgtatg ttgaatgggg
120

cctcaaagga aatgttccgt atggatcatg gttttagcac atccgtgcct ggctgtctat
180

gcgagaatta gacaacttct tgttactgta ctatgaagac ataaaaaagg atacaatggg
240

aaccataaag aagatatgtg acttcctggg gaaaaaatta gagccagat
289

<210> 341
<211> 278
<212> DNA
<213> Rattus norvegicus

<400> 341

atgaaatacc tggatatggg gttgaatgaa accctcagat tgtatccat tggtaataga
60

ctttagagag tctgtaaaaa agatgtgaa atcaatggtg tgtttatgcc caaagggtca
120

gtggtcatga ttccatctta tgctttcac cgtatccac agcactggcc agagcctgag
180

gaatttcgcc cagaaagggtt cagcaaggag aacaagggca gcattgatcc ttatgtatat
240

ctgccctttg gaaatggacc caggaactgc attggcat
278

<210> 342

<211> 312

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 342

cggtcggta cggagagcgc aggttgtatc accaacatgg gggactctca cgaagacacc
60

agtgccacca tgcctgangc cgtggctgaa gaagtgtctc tattcagcac gacggacatg
120

gttctgtttt ctctcatctgt gggggcctg acctactggt tcatcttttag aaagaagaaa
180

gaagagatac cggagttcaag caagatccaa acaacggccc caccctgtcaa agagagcagc
240

ttcgtggaaa agatgaagaa aacgggaagg aacattatcg tattctatgg ctcccagacg
300

ggaaccgctg ag

312

<210> 343

<211> 287

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 343

agcttagtgag gcctctgggg ctgcgaccta cctcgagag gggtttgcac taaggcgctg
60

ggcgccgtga ctccgggcgc tgtggaccat ggctccgccc caggcgcccc acagggacccg
120

tgcangccag gaggatgagg accgttgaaa acacgggggg accgcaaggc ccggaaagccc
180

ctgggtggaga agaagcgacg cgcgccgatc aacgagatc ttcaggagtt gcggctgctg
240

ctagcgggca ccgnngtgcag gccaaagctag agaacgcccga ggtgctg

287

<210> 344
<211> 232
<212> DNA
<213> *Rattus norvegicus*

<400> 344

cattcttgac cagtaccaca ttttgagcc caagtgcctg gacgccttcc caaacacctgaa
60

ggacttcctg gcccgcttg agggcctgaa gaagatctct gcctacatga attgcagccg
120

ctacacctca acacctataat tttcgaagtt ggcccaatgg agtaacaagt aggcccattgc
180

tacactggca ctcacagaga ggacctgtcc acattggatc ctgcaggcac cc
232

<210> 345
<211> 223
<212> DNA
<213> *Rattus norvegicus*

<400> 345

tgtctgcaag cacaacatg aatcagtaac agttgtcagg gtttgtgact gccccatggaa
60

tggatctttt attcatgagc aattcagccc caaatgaat ttggaaaact tttgcctgaa
120

gtacttattg aaatacaatc aagagacctg ctgaatattt tgatgcgttc tcaaaagtgt
180

atggcctgtt atttactctt tactttggca tgaagccac tgt
223

<210> 346
<211> 278
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 346

atggagtaac aagttaggccc ttgctacact ggcactcaca gagaggacct gtccacattg
60

gatcctgcag gcaccctggc cttctgcact gtggttctct ctccttcctg ctcccttc
120

cagctttgtc agccccatct cctcaacctc accccagtca tgcccacata gtcttcattc
180

tccccacttt ctttcatagt ggnccccttc tttattgaca ccttaacaca acctcacagt
240

cctttctgt gattgaggte tgccctgaac tcagtctc
278

<210> 347

<211> 295

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 347

gcggggccgtg ggtgatctgg tcggtaaccgg agagcgcagg ttgtatcacc aacatggggg
60

actctcacga agacaccagt gccaccatgc ctgaggccgt ggctgaagaa gtgtcttat
120

~~tcagcacgac ggacatggtt ctgtttctc tcatcggtgg ggtctgacc tactggttca~~
180

tcttagaaa gaagaaagaa gagataccgg agttcagcaa gatccaaaca acggcccac
240

ccgtcaaaga gagcagcttc gtggaaaaga tgaagaaaac gggaaangaac ttatc
295

<210> 348

<211> 230

<212> DNA

<213> Rattus norvegicus

<400> 348

tcagtgacag aacaggaact taaccttgg tgattctcat gggactacct ccatccacat
60

ctggttgtct ctgttaattt cttttgatag taaccttgc tctgttaattt gatcaagaat
120

ttttcatgaa aatgtgaact attgtgacaa ctttaattgt agatttggta tcagatgtt
180

tagatgcatt attctacact aaatgttaca tggaaaaaat gtgaataaac
230

<210> 349

<211> 282

<212> DNA

<213> Rattus norvegicus
<223> unsure at all n locations
<400> 349

cccggtctta tattaggcca acagcggccc tagccgaggc tgttcgtgaa gaagggcact
60

ggtcggttta gcgtcctccg ctgcngtgcc caccgccgtc tcgtcgagag cccgcgcagg
120

acccgggaca ctttgcagac atggagactg tcgttcgcag atgcccattc ttatcccag
180

tccctcaggc ntttctgcag aaggcaggga aatctctgtt gttctatgtt caaaaactgcc
240

ccaagatgat ggaagtcccc gccaagccgg ctccctcggac cg
282

<210> 350
<211> 280
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 350

ccgaggcagt tcacccgagg ccgatctccg aggtctgccca gcggctactt cccacagcct
60

ccgccatggg tctggagctt ctacctggac ctgatgtccc agcnntgccg tgccgtctac
120

atcttcgccca agaagaacgg catcccttc cagctgcgtt ccatcgagct gcttaaaggt
180

cagcattaca ctgatgcctt tgcccagggtt naccctttga ggaaggtgcc ggctttgaag
240

gatggggact tcgtcttggc agagagtgtt ccatcttgc
280

<210> 351
<211> 309
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 351

tcttagccaa catgatcagt gaaccaggaa tcagttacgg caacgatgct ctcatgcctt
60

ctttgactga nacgaagacc actgtggagc tccttccgt gaatggcgaa ttcagcctgg
120

atgatctcca accgtggcat cctttgggg tggactctgt gccagccaat acagaaaatg
180

aagggtctgg gttgacaaac atcaagacag aagagatctc agaagtgaag atggatgcgg
240

agttcggaca tgattcangc ttcaaatccg ccataaaaa ctggtggtct tgcagaagng
300

tgggtcaaa
309

<210> 352

<211> 228

<212> DNA

<213> Rattus norvegicus

<400> 352

gctggctgca aaatcttcga gagccgaccc aaactggctg cgtggcgtca gcgggtggaa
60

gccgcagtgg gggagagcct cttccaggag gccatgaag tcgtcctgaa ggccaaagat
120

atgcctccct tgatggaccc gacttgaag gagaaactga agctctctgt tcaatgcctg
180

ctgcactgag ggaacagcct gaagtcaagg gaaacttggt gtgtgcgt
228

<210> 353

<211> 298

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 353

caggatcatg gatacttagtg tccttctcct ctttgctgtc ctcctcagct tcttgctatt
60

cctggtcaga ggccatgcaa aagttcatgg tcatcttcca ccaggacccc gtcccttacc
120

cctcttggga aacctttgc agatggacag aggaggctt cgtaagtctt tcattcagct
180

tcaagaaaaa cacggagatg tttcacagt atactttgga cctaggcctg tggtcatgt
240

gtgtggaca cagaccataa gggaggctct ggtggacatg ctgaggnttc tctggcgg
298

<210> 354
<211> 326
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 354

gacaaaatcc cagaataagg aaactctgaa ccaggagtca tggaagtcaa acccaagctc
60

tactacttcc aaggcagggg aaggatggag tcgatccgct ggctgctggc tacagctgga
120

gtggagtttg aagaagaatt tcttgagacg agagaacaat atgagaagtt gcaaaaggat
180

ggatgcctgc ttttggcca agtcccattg gtggaaatag acgggatgct actgacacag
240

accagagcca tcctcagcta cctggcgcc aagtacaact tgtatggaa ggacctgaan
300

gagagagtca ggattgacat gtatgc
326

<210> 355
<211> 274
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 355

tccttcctt ccttgctgtc ctccctcagct tcttgctatt cctggtcaga ggccatgcaa
60

aagttcatgg tcatcttcca ccaggacccc gtcccntacc cctcttggaa aaacncttg
120

aagaatggac agaggaggct ttgttaagtct ttcattnagc ttcaagaaaa acacggagat
180

gtgttcacaa gtatacttgg aactaggcct gtggtcatgc tgtgtggac acagaccata
240

agggaggctc tggtggacat gctgangctt ctct
274

<210> 356
<211> 148

<212> DNA
<213> Rattus norvegicus
<223> unsure at all n locations
<400> 356

cggccccact gcctcagaga cctacaggac cgcgggnncgt gggtgatctg gtcggtaaccg
60

gagagcgcag gttgtatcac caacatgggg gactctcacg aagacaccag tgccaccatg
120

cctgaggccg tggctgaaga agtgtctc
148

<210> 357
<211> 302
<212> DNA
<213> Rattus norvegicus

<400> 357

ttagatctga ctgaaatgat tatccaattt gtaatatgtc ccccagacca aagagaagcc
60

aagaccgcct tggcaaaaga caggacaaa aaccggtaact tgcctgcctt tgaaaagggtg
120

ttgaagagcc atggccaaga ctaccttcta ggtaacagggc tgacccgggt agacatccac
180

ctgctggaac ttctcctcta ttttgaagag tttgatgcca gccttctgac ctctttccct
240

ctgctgaagg ctttcaagag cagaatcagc agcctccca atgtgaagaa gttcctgcag
300

cc
302

<210> 358
<211> 286
<212> DNA
<213> Rattus norvegicus

<400> 358

cggaaagtcaa ccaaggcact gagcggcata taatgcacct ggagttggac atctcagact
60

ccaagatcag gtatgaatct ggagatcagc tggctgtta cccagccaat gactcagccc
120

tggtcaacca gattggggag atcctgggag ctgacctgga tgtcatcatg tctctaaaca
180

atctcgatga ggagtcaaac aagaagcata cgttcccttg ccccaccacc taccgcacgg
240

ccctcaccta ctacctggac atcactaacc cgccacgcac caatgt
286

<210> 359

<211> 320

<212> DNA

<213> Rattus norvegicus

<400> 359

caagttcctg cagaacaagg ctttcctaac aggacccat atctccgtgg ctgacttgg
60

ggccatcaca gaactgatgc atcctgtcag tgctggctgc aaaatcttcg agagccgacc
120

caaactggct gcgtggcgtc aggggtggaa gccgcagtgg gggagagcct cttccaggag
180

gcccatgaag tcgtcctgaa ggccaaagat atgcctccct tcatggaccc gaccttgaag
240

gagaaaactga agtctctgtt caatgctgct gcatgaggga acagcctgaa gtcaaggaa
300

acttgtgtgt gcgtgtgtgt

320

<210> 360

<211> 288

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 360

tngcctctgt ccaccgaggc agttcaccccg aggccgatct ccgaggtctg ccagcggcta
60

cttccccacag cctccgcccgtt gggctggag ntctacctgg actgatgtcc cagccctgcc
120

gtgccgtcta catcttcgcn aagaagaacg gcatcccttc cagctgcgtta ccatcgagct
180

gcttaaaggc cagcattaca tcatgcnttg cncaggtgaa cttttgnngaa aggtgcggc
240

tttgaagcng gagattcgtc ttgccaanna tgtggcanan tgctgtat
288

<210> 361
<211> 272
<212> DNA
<213> Rattus norvegicus

<400> 361

gaactctgct caacagcctc tttctctagt tcctgcagac aaaatcccag aataaggaaa
60

ctctgaacca ggagtcatgg aagtcaaacc caagctctac tactttcaag gcaggggaag
120

gatggagtcg atccgctggc tgctggctac agctggagtg gagtttgaag aagaatttct
180

tgagacgaga gaacaatatg agaagttgca aaaggatgga tgcctgcttt ttggccaagt
240

cccatggtg gaaatagacg ggatgctact ga
272

<210> 362

<211> 286

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations
<400> 362

ggcccatgga gcacacccag gctgtggact atgttaagaa gctgatgacc aagggccgct
60

actcactaga tgtgtggagt aggagctacc accctccac ccctcgctcc ctgtaatcac
120

ctaactctg ccgacacctca cctctggtgg ttcctgcctg gcctggacac agggaggccc
180

agggactgac tcctggcctg agtntgtccc tcctggccc ctaagcagag tccggtccat
240

tgtatcaggc agccagccc caaggcacat ggcaagaggg attgac
286

<210> 363

<211> 288

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations
<400> 363

gtaaaagang ccttgcattga tcatggggag gagtttgctg aaagaggaag cttcccagta
60

gctgaaaaaaaaa ttaataaaaga ccttggaaattt gtttttagcc atggaaaatag atggaaaagaa
120

-

ataagacgct taccctcactg actctgcggat atttgggcat gggganaagg aacattgagg
180

ntcgtgttca anaggcaanc ccgggnancct nggggaggac ctgnggaaan ccatgggcn
240

caccgtgnna ccccangtnt atccctggc tgngcnccctt gnannacc
288

<210> 364
<211> 237
<212> DNA
<213> *Rattus norvegicus*

<400>

tcacagctaa agtccaggaa gagattgatc gtgtggttgg caaacatcg agcccttgca
60

tgcaggacag gagccgcatg ccctacacag atgccatgtat tcatagggttc cagaggttca
120

ttgacctcat tccttaccaac ctgccacatg cggtgacctg tgacattaaag ttcaggaaact
180

acctaataacc caagggaaca acaataataa catcaactctc atcagtgcgtg catgaca
237

<210> 365
<211> 304
<212> DNA
<213> *Rattus norvegicus*

<400> 365

ggagaatgga gcccatccgg tggctcctgg ctgcagctgg agtagagttt gaagaacaat
60

ttctgaaaac tcgggatgac ctggccaggc taaggaatga tgggagtttg atgttccagc
120

aagtggccat ggtggagatt gatgggatga agctggtgca gaccagagcc attctcaact
180

acattgccac caaaatacaac ctctatggga aggacatgaa ggagagagcc ctcatcgaca
240

tgtatgcaga aggagtgccg gatctggatg aaatagttct ccattaccct tacattcccc
300

ctgg
304

<210> 366
<211> 218
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 366

ggcactggtc ggtttagcgt cctccgctcg agtgcccacc gncgtctcgt acgagagccc
60

gcgcaggacc cggcgacact ntgcagacnt ggagactgtc gtttgcaga tgcccatct
120

tatcccgagt ccctcaggcn tttctgcaga aggcaaggaa atctctgctg ttctatgctc
180

aaaactgccc caagatgtatg gaatcggggc naanccgg
218

<210> 367
<211> 269
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 367

ggtcnccatg gatctggtca ctttccttgtt acttactctc tcctctctca ttctcctctc
60

actctggaga nagnnccgct aggagaagga agtcnctcc tggccccact cctctccna
120

ttatcgtaa tttccctccn gatagatgtg aagaacatca gccaatccta accaagttt
180

caaaaaccta tggccctgtg ttcactctgt atttgggctc acagcccnct gtcataattgc
240

atggatntga agcnataaaag gagctctgt
269

<210> 368
<211> 270
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 368

gagaccggcca gttccgtctc tactctttg tgaggactgc agccaacacc gctgacaatg
60

cagatcttg tgaaaacctt aactggtaag accatcaccc tggaggtcga gcccagtgac
120

accattgaaa atgtcaaggc aaagatccag gacaaggagg gcataaaaaa tgaccagcag
180

aggctgatct ttgcaggcaa gcagctggaa gatggccgca ccctgttcag actacaacat
240

ccagaaggag tccaccntgc acctggtcct
270

<210> 369

<211> 238

<212> DNA

<213> Rattus norvegicus

<400> 369

ggaagcaatg attcttaggtg tgtttctggg gctttttcta acatgtctgc ttctccttgc
60

actgtggaag cagaattttc agagaagaaa ctttcctcct ggccccacac ctttccatat
120

cattggaaat attcttcaga tagatcttaa ggacatcagc aaatctctga ggaatttttc
180

aaaagcttat ggccctgtgt tcaccctgta ctttggcagg aagcctgctg tggtgtta
238

<210> 370

<211> 260

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 370

aaaggaccag ttctgtattt gtggtagta ggctacgttg tcatggtggc ctctggcaac
60

ccaggtacct gaaaaccagt ttcagggaca gcagtggaga acatactcta ggcaaacata
120

ctggcctgtt tccattataa caagataacct aaggccaact actttnttta ccaagagaag
180

aggtttgtta cagcacaaga tgaggtggcc ccgtcgtag cccttggagg gcccattgtgga
240

aaataaacacg tggtgaggga
260

<210> 371
<211> 283
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 371

cgcgcgtccc ttaccccggtt ggctgcggcg atgcgtacga tgagctggat ggccctcggtc
60

atgtagaagc gaccgtccnc gcccacacaacc agcgtggcct cctgcctcaa cgccggctcc
120

acgggtggaga cgatgctttg gatgaaattc tccgcatagt tagcgttgcc ctggaacacacc
180

tncactcgct tccgcaaccc gctggcgccc ggcttctgtat ccggntatgc ctgcgtcttc
240

actgtcacga tcttcaccat ggtggccggg gctgcgnngc gac
283

<210> 372
<211> 273
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 372

aaaaagttca tgcctatcgt ttacactncc acngngngtc ntgcatgnca gcaatacagt
60

tggcattccg gaagccaaga ngcctttta tcagnatcca cganaaaggg natattgctt
120

cagttctgaa cgcatggcca gaagatgttg tnanngctat tgtggtgact gatgggatag
180

nggatcctnc ggntngggcg acctttgtnn tannggggtg ggcacnccctg gggtgtaaag
240

ggtccctgna aacaggttng gggggtnat ccc
273

<210> 373
<211> 301
<212> DNA
<213> Rattus norvegicus

<400> 373

tacggaaagta gttcccgctg cttatgccat ggtcctggaa ctgtacacctgg atctgctgtc
60

gcagccctgt ccgcgttatt tataatcttcg ccaagaagaa caatatcccg ttccagatgc
120

atactgtgga gctgcgcaag ggtgaggcacc tcagcgatgc ctttgcccag gtgaacccca
180

tgaagaaggt accagccatg aaggatggtg gcttcacctt gtgtgagagt gtggccatcc
240

tgctctaccc ggccgcacaag tataagggttc ctgaccactg gtaccccaa gacctgcagg
300

c
301

<210> 374

<211> 309

<212> DNA

<213> Rattus norvegicus

<400> 374

gggtctccat ggatctggtc actttcctgg tacttactct ctcctctctc attctcctct
60

cactctggag acagagctct aggagaagga agctccctcc tggccccact cctctcccaa
120

ttattggtaa tttcctccag atagatgtga agaacatcag ccaatccta accaagttt
180

caaaaaaccta tggccctgtg ttcactctgt atttgggctc acagcccaact gtcataattgc
240

atggatatga agcaataaaag gaagctctga ttgataacgg ggagaagttt tctggtagag
300

gaagctatac
309

<210> 375

<211> 298

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 375

gtaccacat gtcacagcta aagtccagga agagattgac cgtgtgattg gcagacatcg
60

cagcccctgc atgcaggata gaaaacacat gccctacaca gatgccatga ttcatgaggt
120

acagagattc attaacttg tcccgaccaa cctgccccat gcagtgacct gtgacattaa
180

attcaggaac tacctcatcc cgaaggaaca aaagtgttaa catcaactgac atcagtgctg
240

catgacagca aggagttccc naaccaggag atgtttgacc ctggccactt tctagatg
298

<210> 376

<211> 234

<212> DNA

<213> Rattus norvegicus

<400> 376

cagacatcgc agccccctgca tgcaggatag aaaacacatg ccctacacag atgccatgat
60

tcatgaggga acaaaagtgt taacatcaact gacatcagtg ctgcatacaca gcaaggagtt
120

ccccaaaccca gagatgtttg accctggcca ctttcttagat gagaatggaa actttaagaa
180

aagtgactac ttttgcctt tctcagcagg aaaacgagct tgtgttggag aggg
234

<210> 377

<211> 267

<212> DNA

<213> Rattus norvegicus

<400> 377

gtcctgacca ggctacgatc tggcacggcg gatgtctatt gtctatgcac taggcgcctg
60

gtcggtgctg ggctcgccga ttttccttac acgaaaacccg aagatgtcag actatggga
120

aaatgaagag gatgactcaa gcaatgaaat gccttttct acaagtgaag actctgattt
180

agcgatggaa agggctgagc ctattaaagg gttttatacg aagacaattg taaagtattc
240

agaaaaattct gttccattac tcagagg

267

<210> 378
<211> 249
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 378

aatccgg nag aggatccacc tgagacctga ggnccctta ttcttcttg tcaacaacac
60

tatccctccc accagtgc ta ccatggaca gctgtatgag gacaaccatg aggaagacta
120

tttctgtat gtggcctaca gtgatgaaag tgtctacggg aaatgaggca gaagcccagc
180

agatgggagc gcctggactt gggggtaggg gaggggtgcg tgtggactt ggggaaccag
240

agggagggc
249

<210> 379
<211> 292
<212> DNA
<213> *Rattus norvegicus*

<400> 379

gaagggagct cagcacgttc agccctgcaa ggggcagtac aaaaaattga gagtaaagct
60

cgaagagaga ctgtttaaa gaaaacggca atggatttga tcccaaactt ttccatggaa
120

acctggctgc tcctggttat cagcctggtg ctcctctacc tatatggAAC tcattcacat
180

ggaattttta aaaagttggg aattcctggg cccaaacctt tgcccttctt ggggacgatt
240

ctgcttacag gaaaggctct ggaaattgac aaatactgcc ataaaaaata tg
292

<210> 380
<211> 168
<212> DNA
<213> *Rattus norvegicus*

<400> 380

ctagccccgt a tggagttatt ttatccctg accacgatt tacaaaactt taagctgaaa
60

tctgtacttc acccaaagga tatcgataca actccagttt tcaatggatt tgcctctctg
120

ccaccatttt atgagctgtg cttcattcct ctctaaagag atcaaatt
168

<210> 381

<211> 298

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations
<400> 381

accagttct ggttccactc gcagagaagc agagaagcgg agnaagcggc gcgttccaga
60

acctncgggc aagaccagcc tctcccagag catccccacc gcgaaggcan actttctcca
120

gagcataccc cagcggagcg nacccttccc cagagcatcc ccgcggccaa ggcacaccc
180

ccagaagcag agagcggcga catggccaag aaaacagcga tcggcatcga cctgggcacc
240

acctactcgt gcgtgggcgt gttccagcac ggcaaggtgg agatcatcgc caacgacc
298

<210> 382

<211> 297

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations
<400> 382

ananaataga agaacaccag gaatcattgg atgttacaaa ccctcgtgat tttgttatt
60

attacctgat taaacaaaaa caggcaaaca acatcgaaca atcagaatat tcacatgaaa
120

atctgacatg cagtatcatg gatctcattg gtgcagggac agagacaatg agcacaacat
180

tgagatatgc tctcctgctt ctgatgaagt acccacatgt cacagctaaa gtccaggaag
240

agattgaccg tgtgattggc agacatcgca gcccctgcat gcaggataga aaacaca
297

<210> 383

<211> 234

<212> DNA
<213> *Rattus norvegicus*
<400> 383

aacgcagcc 60
aacgcagcc -tctqca -cgttgc attgccatgt caggaatgtt atggaaatc tttgtgtgc
tccttgcggg cggcatcatt agtgaagccc tcgggtggcc ctttgtctt tataatcttg
gaagtattgg tgggtctgc tgccctctct ggctcattct ggtttatgtat gaccctgtct
180
ctcacccatg gataaggtagc ccagaaaagg agtataatttt atcctccctg gacc
234

<210> 384
<211> 299
<212> DNA
<213> *Rattus norvegicus*
<223> unsure at all n locations
<400> 384

agctgccatc ttgcgtcccc gcgtgtgtgc gccttatctc agctggtctg cccgagacnc
60
tctgagcgtg aaccttagtc ccccgcgccg ccccatttcc actccgacaa gatgaaagaa
120
acgatcatga accagaaaaa actcgccaaa ctgcaggcac aagtgcgcac tggggaaa
180
ggactgctc gtagaaagaa gaaggtggtt cacagaacag ccacagcaga cgataaaaaa
240
ctgcagttct cttaaagaa gtagggta aacaatatct ctgtattgaa gaggtgaac
299

<210> 385
<211> 291
<212> DNA
<213> *Rattus norvegicus*
<400> 385

ctgacgttgt ctatagaaca gtggccaacc tttctggatg tgagcaggcg gactccaagg
60
ctctggtgaa ctgtctacga ggcaagagcg aggaagagat tatgtctatt aacaaggcct
120
tcaggatcat ctctggcata gtggatggta tcttccttcc cagacatccc aaggagctgt
180

tggcctctgc tgactttcac cccattccca gcattattgg tgtcaacaat gatgagtatg
240

gctggatcat tccctcgagc atgaccacca ctgactccaa gaagaaaatg g
291

<210> 386
<211> 304
<212> DNA
<213> Rattus norvegicus

<400> 386

actgagtgga cctgtgaaga atccaaattc caaacaattt tcaacatgga ttcccgtgaa
60

ttccggagaa gagggaaagga gatggtgat tatatactg actatctgga cggcatttag
120

ggacgtccag tgtaccctga cgtggaggct ggctaccttc gggccctgat cccccaccact
180

ccccccagg agccagaaac atatgaggac ataatcagag acattgaaaa gataatcatg
240

ccagggtcac acactggcac agccctact tcttcgctta cttccccagg ccagctccta
300

ccca
304

<210> 387
<211> 264
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 387

gnccggagga agccgactgt tccggatctc tgcatacgag ggcccaacct ttgtccana
60

gatcatggct gccgaggatg tggtggcgac tggngncgac cccagcgagc tggagggcgg
120

cgggctgctt caanagatnt tcacgnecn tctcaacctg ctgctccttg gccatgcattc
180

tccctgctt acaagatcga tcgcngggac cagcccggtg ccaatgggaa caacnactcc
240

gacgagnnng ccncgctgnc ncng
264

<210> 388
<211> 267
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 388

cggaacagtc gaggctagat tgacacagct gtccgttcag accccagcac catgccatg
60

acactgggtt actgganat ccgtgggct agcgcatgcc atccgcctgc tcctggaata
120

cacagactcg agctatgagg agaagagata caccatggga gacgctccc actttgacag
180

aagccagtgg ctgaatgaga agttcaaact gggcctggac ttccccaaatc tgccctactt
240

aattgatgga tcacacaaga cacccag
267

<210> 389
<211> 307
<212> DNA
<213> *Rattus norvegicus*

<400> 389

gtgccctcac gcagcttaat gtggcctttt cccgggagca ggcccacaag gtctatgtcc
60

agcaccttct gaagagagac aggaaacacc tgtggaaagct gatccacgag ggcggtgccc
120

acatctatgt gtgcgggat gctgaaaata tggccaaaga tgtgcaaaac acattctatg
180

acattgtggc ttagttcggg cccatggagc acacccaggc tgtggactat gttaaaaagc
240

tgatgaccaa gggccgctac tcactagatg tgtggagcta ggagcttacc aacctccac
300

ccctcg
307

<210> 390
<211> 248
<212> DNA
<213> *Rattus norvegicus*

<400> 390

tcttgagaa ggcattgccc gaagtgaatt gttccttgc ttcactacca tcctccagaa
60

ctactcagtg tccagccctg tggatcctaa caccattgtat atgactccca aggagagtg
120

attagccaaa gtagccccag tgtacaagat ttgctttgtat gcccgtgtat tgtgctgagg
180

cagtcagccg actcacttct gttcaaaatg gccccatttt tctgattctg ggagacctgc
240

tggagacc
248

<210> 391

<211> 283

<212> DNA

<213> Rattus norvegicus

<400> 391

atggtttgg accctgtcat tccctgtgga gagctgggtgg cagaagtaact tcagatccct
60

tttgtaaaca cattgagggtt cagcatgggc tactccatgg agaaatactg cggccaactt
120

ccagttccac ttctgtatgt accgggtgtc agggtaact aacagaccat atgaccttta
180

cagagaggggt gaaaaatatg atgcttcac tgaaaaatggc gttttggctc cagcaatatg
240

actttgcatt ctgggatcag ttttacagta aaactctagg aag
283

<210> 392

<211> 290

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 392

ggactatctc cccttaagtg ggaagggtt agtcaaattgc agtanagagc tataaaacac
60

cgagaactct tgatgtgttg tgaaacttag agggagcagc ttttaacaa gagaactcaa
120

gcaattgctg ccatgccggg gaagccagtc cttcactact tcgatggcag ggggagaatg
180

gagcccatcc ggtggctcct ggctgcagct ggagtagagt ttgaagaaca atttctgaaa
240

actcgggatg acctggccag gctaaggaat gatgggagtt tgatgttcca
290

<210> 393

<211> 281

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 393

ttgcactacc ctgcaaggct gtgtgcagg gcccgaaagg ctcactgttc cgaaatggcc
60

gagcagtcag acaaggatgt gaagtactac actctggang gagattcaga agcacaaaga
120

cagcaagagc acctgggtga tcctacatca taagtgtacg atctgaccaa gtttctcgaa
180

gagcatcctg gtgggaaaga agtcctaaga gagcaagctg ggggtgatgc tactgagaac
240

ttgaggacgt ccgggcaactc taacggatgc acgagaactg t
281

<210> 394

<211> 287

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 394

ccgctgccta tgccatggtc ctggaactgt acctggatct gctgtcgac ccctgtcgcg
60

ctatttatat cttcgccaag aagaacaata tcccnnntcca gatgcataact gtggagctgc
120

gcaagggtga gcacctcagc gatgcttgc ccagtgaacc ccatgaagaa ggtaccagcc
180

atgaaggatg gtggcttcac cttgtgtgag agtgtggcca tcctgctcta cctggcgcac
240

aagtataagg ttcctgacca ctggtaaaaa caagactgca ggccccgt
287

<210> 395

<211> 293

<212> DNA
<213> Rattus norvegicus

<400> 395

aagagaatcg cattaaagag aaagaaaagc aaagaatgga ctttcttcag ctgatgataa
60

actcccgagaa ttccaaagtc aaagactctc ataaaggcatt atccgatgtg gagattgtgg
120

cccagtcagt tatcttcatt tttgccggct atgagaccac tagcagtgtc ctttccttg
180

ttttgtatcc gctggccatt caccctgata tacagaagaa actgcaggat gaaattgtgg
240

cagctctccc caataaggca catgcacccat atgataccct gctacaaatg gag
293

<210> 396
<211> 266
<212> DNA
<213> Rattus norvegicus

<400> 396

gttggcctcc caataaggtag ggtcaacatt tagtcaaaat atgcgattgt tgcaaagctt
60

tcgaaggctg gctttgtggg tacagtgtat ccatacatgc ctgaattaac tgaagatctt
120

aactgcagat tctacacatt tctcatcctc taatggcttc ctctggctgc ccagggctga
180

agaaaacttct tcactgtggg gaggttgctg actctggttc tccagggcct cagcagaggg
240

aagttggcca aagcgtgggg tccact
266

<210> 397
<211> 259
<212> DNA
<213> Rattus norvegicus

<400> 397

gtcaaatggc taccggaaaa cgatctgctt ggtcatccaa aggctcgggc gttcatcaca
60

cactccgggtt cccatggtat ttatgaagga atatgcaatg gggttccaaat ggtgatgtgg
120

cccttgggg gtgatcagat ggacaacgcc aagcgcatgg aaactcgaaaa agctggggtg
180

accctgaatg tcctggaaat gactgccat gatttggaaa acgccttaa aactgtcata
240

aataacaaga gttacaagg
259

<210> 398
<211> 252
<212> DNA
<213> Rattus norvegicus

<400> 398

gaaacttaa gaaaagtgc tacttttgc ctttcagc aggaaaacga gcttgtgttg
60

gagagggcct ggcccgcatg cagttgttc tatttttgc aaccattttt cagaacttt
120

acctgaaatc tctggttcac ccaaaggaca ttgatacgat gccagttctg aatggtttg
180

cctctctgcc acccaacttac cagctctgct tcatttccttc ctgaatagat caggcatttt
240

ggctctactg tg
252

<210> 399
<211> 272
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 399

gngagccaat ggcnctttc attttctgg ggatttggcn ttcttnnnn gtttttntt
60

ttctatngaa tcagcaccat gtcagangga agctcccacc ngtcccaact cctctaccaa
120

tttttggcaa tattttgcaa ntgggtgtta aaaatatcg caaatctatg tgcacgnag
180

cgaaagagta cggccctggc tcaccatgtc tctggcatg aagcccactg tggtgctgt
240

tggatatgaa gtattgaaag aagctctgat tg
272

<210> 400
<211> 294
<212> DNA
<213> Rattus norvegicus
<400> 400

catccgtggg ctggctcacg ccattcgccct gttcctggag tatacagaca caagctatga
60

ggacaagaag tacagcatgg gggatgctcc cgactatgac agaagccagt ggctgaggta
120

gaagttcaaa ctgggcctgg acttccccaa tctgcccac ttaattgatg ggtcacacaa
180

gatcacccag agcaatgcc a cctgcgcta cttggccgg aagcacaacc tttgtgggga
240

gacagaggag gagaggattc gtgtggacgt tttggagaac caggctatgg acac
294

<210> 401
<211> 276
<212> DNA
<213> Rattus norvegicus
<400> 401

gctgcgagca ggtctgaccc attgctctct ctgctcagag ttccccaggt ctgaagtctg
60

cctgaaaagat gtcagccctc aaagctgtct tccagtacat tgacgaaaac caggaccgct
120

ttgtcaagaa acttgcagaa tgggtggcca tccagagcgt gtccgcgtgg ccggagaaga
180

gaggagagat cagaaggatg acggaagcgg cagtgcagat gtccagaggc tggggggatc
240

tgtggagctg gtggatatcg ggaaggcagaa gctccc
276

<210> 402
<211> 271
<212> DNA
<213> Rattus norvegicus
<223> unsure at all n locations
<400> 402

ctgacctgac ccatgatgta agggncgta ggggagcattc accactgcaa aggctgacta
60

aggncgtttn ggctaaaggt cnctttgaag cccagtgtct anagtcacac cttctttgct
120

ctgggcccaag gaggcctact tcttctttt ctgcnggaat cctggaatct taaagataaa
180

agaacctaga aagaaaatca aaccacttt cttgtgggg cagatggtaa tatggactg
240

agaacagcaa acctgggtc ttggagagga g
271

<210> 403
<211> 253
<212> DNA
<213> Rattus norvegicus

<400> 403

cgcactgctc ctagggcaag agcttcacc tcttctacag ccaacaccat gcgcgagatc
60

gtgcacatcc aggccccca atgcggcaac cagatcgccg ctaaggcaac aaatatgtac
120

ctcggccat cctagtggac ctggagccag gcaccatgga ctcagtgagg tcgggaccat
180

tccggccagat cttcaggcca gacaacttg tgccgggtca gagtggtgca ggaaataact
240

gggcaaaggg cca
253

<210> 404
<211> 312
<212> DNA
<213> Rattus norvegicus

<400> 404

cagctggctt cctacataca gttctgtgaa agagatcaga gagtgaaaga aagatggcgg
60

gggattcaag ccgtgggtc gcagtctccc ttctctctgc ctgtcagcaa agttatgg
120

ctttgcaagt cggacgagta agattaaaat acaagatcgc acctccagca gtcacggct
180

ctctggagtt tgagagaata ttgcgcac agaaaaactc tttggagttt tattccgtat
240

tcatcatatc gctgtggatg gctggatggt atttcaatca agttttgca acctgtctgg
300

gtctcctgta ca
312

<210> 405
<211> 245
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 405

ctgccggtcg cttcctgagc ctccctctggc tctgtgtctc tgtcctcagc ttccacgtcc
60

tcgcccgacn gcgccatgga gggttaccat aagccagatc agcagaagct ccaggccctg
120

aaggacacag ccaatcgct gcgcattcagc atccanncca ggccaccacc gccccggcg
180

nggacacccc acatcttgna gtgcgcngn cggagagcng gtcgnnctgn tatnnnnnac
240

caggc
245

<210> 406
<211> 299
<212> DNA
<213> Rattus norvegicus

<400> 406

tcatacccaa gggAACAGCA gtactaacat cacttacatc agtgctgcat gacagtaagg
60

aattcccaa cccAGAGATG tttgaccCAG gtcactttct agatgagaat ggaaacttta
120

agaaaAGTGA ctacttcATG CCTTTCTCAG CAGGAAAACG gaaatgtgtg ggagaggGCC
180

ttGCCAGTAT ggagctgttt ttgttcctGA ccaccatTTT acagaatttc aaactgaaat
240

ctctgtctGA tccAAAGGAC atcgatataa actcaatacg ttctgagttt tcatcaatc
299

<210> 407
<211> 290
<212> DNA
<213> Rattus norvegicus

<400> 407

ggaaggggaa gaatgccagt ttttggaaag gctactaaag gactggcat tagtttagc
60

cgtggaaatg tatggagagc cacaagacat ttcacagtca ataccctgag gagtttggc
120

atggggaaac ggaccattga gatcaaagtg caagaggaag cagagtggct agtgatggaa
180

ctgaagaaaa ccaaaggctc accctgttat cccaaattca tcataaggatg tgctccctgc
240

aatgtcatct gctccattat cttccagaat cgtttcgatt ataaagataa
290

<210> 408

<211> 221

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 408

catcagttct gtgttcaaag ttaacatcg agataatggg ctctgnncnt cnccntccnt
60

ttttgnngc tngggcantg gnaaccnnga agnccnnntgg agantccan aaaagaaaaa
120

attttaggggc acaaatgtga gaaaaancnt cacaancnn gggnanannncccctgnngc
180

gcctnttgtg gggctgcccct atgtccaatc cagctatatt g
221

<210> 409

<211> 116

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 409

attttgagat ggaacgattt gaagtcttgg gtgtccccctt cagtctccaa ctttggaca
60

ctgctggtca ggagaggttc aagtgcacatcg cttccacacaca acatangagn gnnatt
116

<210> 410

<211> 275

<212> DNA

<213> Rattus norvegicus
<223> unsure at all n locations
<400> 410

cacagccctt accagcnac cctccataac tgcaccaaga ggatctatcc aacacccccc
60

tgagcaggag gaggctgaag actccaaggaa aaagagtcct gaggaaccct ttccctgtca
120

gctggatcta accacaaacc cacagggta cacactggat gtctccttcc tctacctgga
180

gcctgaggaa aagaaaactgg tggtcctgcc tttccctggg aaggaacagc gctccctgaa
240

gtccccgggg cccgaaaagc aaagaacccc ctgat
275

<210> 411
<211> 300
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 411

ccctcttcaa tatcctacgc ttccctctgt ccatgcttcc catggtncc tcatcgatcc
60

tccaggccag tgtttctgtg gaccggctgg agaggtattt gggaggagac gatttagaca
120

catctgccat tcgcccgcgc agcaatttg ataaagctgt gaagtttca gaggcctt
180

ttacttgggc ccggacttgg aagccacaat ccaagatgtg aacctggaca taaagccagg
240

ccaatggtgg ctgtggtggg cacttagct ctggaaatc ctctttggta tcagccatgt
300

<210> 412
<211> 286
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 412

cnagaaggta gtggagtaact tgaaggcagag ttcgttgatg ctgtgtttct ggatcccttt
60

gatgtgtgtg ggctaactgg tgccaaatgtac tttctctccc gtcagtggtc ttcagcaggg
120

ggatatttgc tcactatctt gaagaangct cccagtgcgc cagtcctcct tcataatgtcc
180

ccagaggtat cttgaaaactc acagatacca tgactttcaa ggaaagagtg tggaaacttct
240

ttcctaattgg gggagcatgc attctgtccc agttttcaa aactgc
286

<210> 413

<211> 272

<212> DNA

<213> Rattus norvegicus

<400> 413

agagaaggct gctgagggaaa cactggaaag ctttacactca ggcactaagt tgaaggaaaa
60

acgacaatgg ccacaatggt agaactgagc ctttacaatgt agcagtgtga gtttgtccct
120

ggctgtccag tgaataagaa gaccctccc cggaaagtcc cgagtttatg ttccatgcgc
180

tattcaatag ctttcatcgc acatatctgc aacttcacat tgatagcaca gaattccatc
240

ataaggcatca ccatggtagc catggtaac aa
272

<210> 414

<211> 103

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 414

agctccgggg gaggtcgccc acatccttca ggntgaaagc tgcagtgttg gctgtggccc
60

tggtcttcct gacaggttgc caagcttggg agttctggca gca
103

<210> 415

<211> 273

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 415

aacgcctta aaactgtcat caataacaag agttacaagg agaacatcat ggcctctcc
60

agcctcaca aggaccgtcc tatcgacccct ctggacctgg ctgtgttctg ggtggagtag
120

gtgatgagggc acaaggnggc gccacacctg cggccggccg cccacgacct cacctggtag
180

cagtaccact cttggacgt gattggcttt ctctggcca tcgtgttgac ggtggcttc
240

attgtctata aaagttgtgc ctatggctgc cggt
273

<210> 416

<211> 106

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 416

gaagannac ctggacaccc agactgttgg agancntccg ggggatgtcg ctcacatcct
60

tcaggatgaa anctgcagtg gtggctgnag gnncctggct ncctga
106

<210> 417

<211> 294

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 417

cactaaagca aagcagacaa ctccagctct ccacacagct ggtctctgac accttgggg
60

acacaagggc cctagctatg gagtgcgat tccacagaca cctatggta cttggatac
120

tgcctaaaact cttaaataca tggactttta cctcagaaac ttgtttcag atatcctgtt
180

aatcttcagt ttttgttgt ttttgtttt nggaggaagg cctctctcta tgtagctatg
240

gctgtcctag aatcactctg tagatcaggc tggcctcaga ctcatgcctc tgct
294

<210> 418
<211> 262
<212> DNA
<213> Rattus norvegicus

<400> 418

cgaggcttcc aggttagcggt cggtcgcagt ctgtcccagg gtacgacccg gccttggca
60

cagattcgcg gacccggggc tgcctttta agggaggggg tggagccacg agtgaggatc
120

gaaaagctcc agaaaacttg aggccagagc cccgcaccag ggtgcagcca tgagtgcgga
180

ggtaaggtg acagggcaga accaggagca atttctgctc cttgccaagt cggctaaggg
240

ggcagcactg gccacactca tc
262

<210> 419
<211> 145
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 419

acacaaagcn atttanantg ccagactata ctggtttaa aggaataacct tttcatgnct
60

ctgggattca aaagncaatt tnccaaaatg tnnggnaana attttgtggn cnanccccga
120

tttcatntga ncggcttanc ccagt
145

<210> 420
<211> 271
<212> DNA
<213> Rattus norvegicus

<400> 420

ctccaacctg gtgcgccacc agcggctgca caccggggaa aagccgtatg tctgcagcca
60

gtgtggcaag gccttcatct ggagctctgt gctcatcgaa caccagcgca ttcacacagg
120

cgagaagccc tacaagtgtg aagactgcgg caaggccttc cgaggacggt cgcatttctt
180

ccggcactta cggacccaca cgggcgagaa gcccttctcc tgtggctcct gtggcaaagc
240

gtttggccag agctctcagc tcatccagca c
271

<210> 421
<211> 282
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 421

cagttagaag ttccctgggna ggccctgtgt agacccagcc tagctgagta ctgattcatt
60

ttgatgttag tgggaagaat gggggagatt cgcaagcttg tcctcatcac tggatgtctg
120

attctgggca aggagagctg ggccctcgga gatgagaact gtttgcagga gcaggtgagg
180

ctcaggggctc aggtgcgcaca gctttagacc cgggtcaaac aacaacgggt ggtgattgca
240

cagctttgc acgagaagga ggtccagttc ctggatagag ga
282

<210> 422
<211> 222
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 422

ctgaagacca acttgtcctc agtgagcgac tgtgtgcage aggtggtgga gcttctgcaa
60

gancagagca ttgttccccca caccaccatc aaaggcatcc atgaactctt tgtgccggaa
120

aacaaaattg atcaaatccg agctgagttt gagactctcc catcaactacc aattaccaag
180

ctggatctgc agtgggtgca gattctgagc gaaggctggg cc
222

<210> 423
<211> 275
<212> DNA
<213> Rattus norvegicus

<400> 423

gagaaaggcc accacctagc taggtgaggt gtgccagcat ggtcctgggg gtctcactgt
60

ccccagccct gggacgctgg ttccgccatg caatcccttt cgctatcttc acgctgttac
120

ttctttatat cagtgtatgg ctcttccatg agtggccctt tgagttgcca gctcaaagaa
180

ctcagcagtc cggcctgtgg gaactcaagc tctttctcc ttctccagcc ctcacacctc
240

tgcttcctgt cacctcaggt gttttacaag gctga
275

<210> 424

<211> 279

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 424

atccctcatt gcatgatgcc ttcaaataaa gggcaacgtg aatacagttt ataaatcaac
60

gagttttta agccttgttt aaaacatctt ttactccan nnnnnnnnnn nnnnnnnnnn
120

nncaaactaa atcattgttag ctaacctgta atatacgttag tagttgacct ggaaaagtgg
180

taaaaatatn gcttaaccg acacgtaaat atttcagata aacattatat tctttgtata
240

taaaanaaaag aaaannangn caatggnnng atnaactct
279

<210> 425

<211> 288

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 425

gtgttcgcag gttcccagca ctcttgccga aggactcttg tccttctcta ccagagcagc
60

atangaggga atggctgccg tgtctccacc taccagatgt caggcatcggtgacgttga
120

agatgtggct gtgaccttca cagatgacga gtggaagcgt ctggtaaccca tgcagagagc
180

actctacaag accgtgatgc tggagaacta tgagagcatc atctctctgg ggcttcccg
240

tcctcgacct gatgtgattc ttcaagttcaa gagaaggggc gaatcctg
288

<210> 426

<211> 286

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 426

gtctgggctg gagctaaagg acacacagna gcaagtccac agatccgtga tgagtcccac
60

ggggggcaggc ctganggccca ccatcttctg catcctgacc tgggtcagcc tgacagctgg
120

ggaccgcgta tacatccacc ccttcatct cctctactac agcaaganca nctgcgcccc
180

gctggagaac cccagtgtgg agacgctccc agagccaacc tttgagcctg tgccattca
240

ggccaagacc tccccgtgg atgagaagac cctgcgagat aagtctg
286

<210> 427

<211> 235

<212> DNA

<213> Rattus norvegicus

<400> 427

gaggattcac tcacatttgc ttcccgctgg ccatgagtga gctgccttt ctgagtcac
60

agggagccag agggcctcac aacaacagag ggtctcagag ctccctggag gaaggctcag
120

ttacaggctc agaggctcg cacagcttag gtgtcctgaa tgtgtccttc agcgtcagaa
180

ccgtgtcgaa ccctggtgga acatcaaatac atgccagcag aagtgggaca ggaaa
235

<210> 428

<211> 249

<212> DNA

<213> Rattus norvegicus
<400> 428
ccctggttct ggaagtggag atcgtgagtc atggctgctc cccgagacgc agagatccac
60
aaggacgttc agaactacta tggaaatgta ctgaagacat ctgcagacct ccagactaat
120
gcttgtgtca ccccagccaa gggggccct gagtacatcc ggaaaagtct gcagaatgta
180
catgaagaag ttatccag gtattatggc tgcggctcg tggtgcctga gcatctggaa
240
aactgccgg
249

<210> 429
<211> 233
<212> DNA
<213> Rattus norvegicus
<400> 429
ctgaacttga ccaaagggag actcaggttg gaaacaaaat cccagggatg atacacggaa
60
aaactccatt aggcacagtg acatacatgt gtaattcaaa cgctgcactt gagagactga
120
ggcaggagga gatctatcga aaggttgaga ccaacttagct gtaggctagc ctgggctatg
180
ctgttaagac cttgtcacaa agtacaagaa gggagaataa aagaatattt cct
233

<210> 430
<211> 287
<212> DNA
<213> Rattus norvegicus
<223> unsure at all n locations
<400> 430
tcaagagcat atgtgcggca cagagtggac ntgatggctt ttgttgttgt tttgttatgt
60
gtgcacatct atgtttcat atctaccgtt tgggtatgcc tttgtccctg gtagggact
120
ggctctctgg acaagtagat gtcctgttag cctgcagaca tcacatgact ctcagaacg
180

aatcgtgtat cctggtcctt gtcctgtgc atgcacatcc ccctcctctg tcccgaggca
240

gaggcaaggg tgtgtgaggc ctatggcag aggccatatt gtgaaga
287

<210> 431
<211> 183
<212> DNA
<213> Rattus norvegicus

<400> 431

ctaaaattaa gatagagtga atgagacaga tatctgtaga cactgtatcc tcttgtgtga
60

ttagatctag tgtggtggat gatagaagtt gaacttgctt tattgtatg tgtaaaaata
120

ttttgttgc attaaatggc ctattgaaat gctttctgt tcctataata aaataacctg
180

atg
183

<210> 432
<211> 287
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 432

tcaagagcat atgtgcggca cagagtggac ntgatggctt ttgttgttgc tttgttatgt
60

gtgcacatct atgtttcat atctaccgtt tgggtatgcc tttgtccctg gtagggact
120

ggctctctgg acaagttagat gtcctgttag cctgcagaca tcacatgact ctcaagaacg
180

aatcgtgtat cctggtcctt gtcctgtgc atgcacatcc ccctcctctg tcccgaggca
240

gaggcaaggg tgtgtgaggc ctatggcag aggccatatt gtgaaga
287

<210> 433
<211> 283
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations

<400> 433

ctgggntcan cacgttntgc tgagnannng gctgntgtgt acccccagag atccctnctg
60

ttggacatc accagtcncg gggnggctgg gactcccaca cctcaagccc gagctatgac
120

ttacattcca ctgctggag aagagaggcg gggcccagag tatcctgccc ttgggagtca
180

aagaccctag gngccaggct ggcacaggga tggggaggct ggnctttat aaatatnata
240

tgcaganna aagannaaaa naagggcggc cnccgacaag nna
283

<210> 434
<211> 295
<212> DNA
<213> Rattus norvegicus

<400> 434

aagatcgaa gaatcacagg gctggaccct gcaggaccta tggggagg aacttcccc
60

aacgagcgcc ttctccaga tcatgcataat ttgtggatg ctattcatac ctttaccagg
120

gagcacatgg gtctgagtgt gggcatcaaa cagcccatgg cccactatga cttctacccc
180

aacgggggct cttccagcc tggctgccac ttcctggagc tctacaaaca cattgcagag
240

catgggctta aatgccataa cccagaccat caaatgtgcc catgagcggtt ctgtg
295

<210> 435
<211> 133
<212> DNA
<213> Rattus norvegicus

<400> 435

ccctgattct ttgtgttat agccctggat gtgtatgca gacattatct aactgtgtgt
60

ggtaaccttg acatcacaga actgcttagtg aacgaggtaa aaataataaa ggtacaacca
120

gtgcatcgca aaa
133

<210> 436
<211> 212
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 436

accaccagg t cgaagctgg ccggcttgc ctttaggtcga tggtaagac aacggcatct
60

tcaccagccg acaggaacgt gcagggagag tctggttcta gggccaactt gtgggatgt
120

cccttgagct gggccacacg cttgggttcc ttgcagcact gtgtacang cttctcctgc
180

gactcgacc tgccatccc ggcacacata gc
212

<210> 437
<211> 291
<212> DNA
<213> Rattus norvegicus

<400> 437

ttaataacg taatgacgac gtcctttcc taatccctaa aaacctgtct cataaagtgt
60

aatggggag cagccctttt ggtgttgcaa aatgaagttc caggcttcta aaatgttgcc
120

atgtattgaa aggagctaat gccattgtaa atgttatttag tttcacattt cttgagcagc
180

ctagagtaca gggtaacat ttgttagatct tgtaatgtatg tattgtgctg tggaaagtact
240

gtgtgtaat agcagtagtg gggcaaaaag caatcttgc attgaaatgt a
291

<210> 438
<211> 262
<212> DNA
<213> Rattus norvegicus

<400> 438

ggataaaatga gacggctcg gtcgagtgca ttgcaggggg actcgggttt ggttcccagc
60

gtccacgttg ggcagcacac aagtgtccgt aactctagct ctatggatc tgacccattt
120

ctggcctctt cagcacctgc acaaatgtgg cagacacata tacgcttaag taaaataat
180

aaaaaaaaaac gaatctttaa aacattttt aaaagaagtg atggagtgaa ttccctgcctt
240

atggcctgct ggaaatggaa ca
262

<210> 439
<211> 272
<212> DNA
<213> Rattus norvegicus

<400> 439

tgggcttctt tcactgggac acttggaca ccgctgagtt actaacagct ttgtttacac
60

attaggaaga ggggcataga gagctgtgcc tctatggta gcctctggga ctgaagtttg
120

ccacgactag tggttggaca cctggaggc tggctaccta cctgtcttac tccctgaagg
180

acagggttga atctctgggt tccagtcctt agggagatgg agtactgtct gtcagctgct
240

ggctgtgctt tttgaagagg ccaaattgtt tc
272

<210> 440
<211> 284
<212> DNA
<213> Rattus norvegicus

<400> 440

acagaaccca acctgctact aatcacggag aagaatgtgg aggacaagaa taaggctaga
60

agccagagca agtgaggact gagcaaggga agggagaacc gattgccatc ggccttcatg
120

ctctggtag ggtgaggttg gggccaagag gactgggcct ggcagatctt caagtcatg
180

ggaagatggg gataccactg taggggtgaa caccggaga cctaggagat cccctcccc
240

ccctttctct tggcctccga ttcactcctg tcccgttccc tgac
284

<210> 441
<211> 233
<212> DNA
<213> Rattus norvegicus

<400> 441

ctgaacttga ccaaagggag actcaggttg gaaacaaaat cccagggatg atacacggaa
60

aaactccatt aggcacagtg acatacatgt gtaattcaaa cgctgcactt gagagactga
120

ggcaggagga gatctatcga aaggttgaga ccaactagct gtaggctagc ctgggctatg
180

ctgttaagac cttgtcacaa agtacaagaa gggagaataa aagaatattt cct
233

<210> 442
<211> 273
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 442

accgactgat gttcccacgg atgctaatga agctggtgag cctccggact ttgagcagcg
60

tccattcaga gcaagtgttt gcncattcgcc tgaggacaa aaaacttccc cctctgctct
120

ccgagatctg ggatgtccac gaatgactgt ttctccgtgt cctcngtgtt ggcaaggcag
180

ctgaagttac nganngcttc nnngaanggg nanannctgg ggagagaaaa nnntncagggg
240

gnccgaggaaa agagacnctt nttnnnngnaan aag
273

<210> 443
<211> 264
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 443

gnaagaagga aggttctctc ttcacctgct tctatttact tgccagcaca tctgttggga
60

tctactaacc ttgtgagatg gagcaactac tagatccttg gacttccac tcatactga
120

tcattgttag ggggttggac tacagactgt aaatcatcat aacaaactcc cttactgtat
180

agaggctatc cataagttct gtgactctag agaacccctga ctactacaga ccctgttca
240

aaaaagaagc aaaagttagc tggg
264

<210> 444

<211> 283

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations
<400> 444

gaggaatcca attttctgag ctccacaagc cactctgcan nntcagatag tcaccaggt
60

cactacagga ggaattgttc catctgagag acccagcatg cattatactc gctgtctgct
120

gcttctcctg gctggactct tggaaactctc tcacagtca g cagaccaag aagagcctga
180

caatacaacc aaccaaacct acagttgttc tcacagcaga acatctccag ctaccagatt
240

gcctctggna atgccaactt tgccctccgc ctctaccacc tga
283

<210> 445

<211> 290

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations
<400> 445

gaaattcaat ttgggttttc aaaattgatt cttaaganan atatacccc ataaggaaat
60

aatatcacaa tctcataagg natgggaaat acagacnagg tacnntttca ggcacattca
120

gtgtaaatat atgttagtcat ttatactgnn atattaaata atattatatt tgtgaagaca
180

gagatttatg tcttacaatg taaatganaa acagacaaac ctaatcagat atctggctgg
240

tgaagccatt ggtcagtgtt aggaattcc agtcaggaga agaccctcta
290

<210> 446
<211> 165
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 446

ggggaaacac attcaaagaa gaatcaggaa gagggatgtg atagggtgct tatggatggg
60

aaaccgagaa agganataac atttgaaatg taaatgaaaa atatccaatt aaaaaaaaaa
120

aancaaacc c tgcccagant tttgccngng ngacaaaaan agaga
165

<210> 447
<211> 173
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 447

gggagggngcc ct ttttccca ccaccagaag agtttgtgtt catccatgct gtacctgttg
60

aggaacgtgt gcggactgca gtcctccca agaccataga ggagtgtgag gtgattctga
120

tggtgggact tcctggatct ggaaagaccc agtgggcact gaaatatgca aaa
173

<210> 448
<211> 189
<212> DNA
<213> Rattus norvegicus

<400> 448

gttattaagg ataaactgtt taatcaaatt aacgttgctt agttactgct gagtactctt
60

cctcagagct ggcgtgcgga aggagaagaa gctcaaggaa cattctaacc cagttaccag
120

aactcagata gaagactaag gtgctgtgtg acgtcctgag tattagcact gtaataaaac
180

tgtcacatg
189

<210> 449
<211> 165
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 449

gtattncc agancaganc gtgtattgaa acataaacgt atgtgccatg aaaatcacga
60

caaaaaacta nnncngatgtn ccattcaaann gtggccttct gtacatcana ggnagattct
120

ggctttctac ggcaccagaa gntgtttcac tggcnanaan aaant
165

<210> 450
<211> 184
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 450

cnggggaca attaaaggga ctgtgcgtac gtttctctca tgaatgaagg aagctgtctg
60

aacaaagaat tactgattca gctacgcagc agaacatatg tgctctactc tttcaagatt
120

aataatcttg ctttatgtca tattgtatat ttaatcttag tctgttgeng gggagggct
180

atgc
184

<210> 451
<211> 271
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 451

tgcagccct cctccggggg cattctgttt ccagnccact tcgggctatg tagtcctctc
60

ttctgtgctg aggccctggcc cacgtcacaa gcatttcctt ccagacccac aacctccagg
120

gactgggaca aactggggca ggatgatttg ccacttgctt ggcccgtga tcccagcccg
180

atacctctcc tctctactct cccaggagac tctcaggccc agtgtgaccc tggggcttgg
240

ctgagaagct gacccagccc cagggccagc a
271

<210> 452
<211> 103
<212> DNA
<213> **Rattus norvegicus**

<223> unsure at all n locations
<400> 452

caaggagaag cagataaaga agcaaacggc tnctcgctga gctggtgaaa cancaagccc
60

aaggccccaca gaagattcag ctgaagacgg tgatgggtga tct
103

<210> 453
<211> 284
<212> DNA
<213> **Rattus norvegicus**

<223> unsure at all n locations
<400> 453

gccacagtcc cagcganc c acagccgct cccgccttct ccgtgtcggg cgatccccag
60

tctgtcccca aaatgcctgt ggacttcaac gggtaactgga agatgctgag caacgagaat
120

ttcgaggagt acctgcgtgc gctcgatgtc aacgtggcct tgcgaaaaat cgccaaacttg
180

ctgaagccgg acaaagagat cgtgcaggat ggcgaccaca tgatcatccg cacgctgagc
240

acttttcgaa actatatcat ggacttccaa gttggaaagg agtt
284

<210> 454
<211> 277
<212> DNA
<213> **Rattus norvegicus**

<223> unsure at all n locations
<400> 454

ttctgcataa gggcttcca aattaagtct gtccagtaga gtgatttgct ttattattac
60

caagaataca acagctagtg aaccgttaga gcatgcgaag aggggctgta actatcacca
120

tacatgcact gtcccggtgaa ggtgtgacac gggagacgtg tggatcatgt gatcattgtg
180

aacacccgtt gagctttaaa ataaagtcca ccctgtggtg tcaaaaaana aaaaananaa
240

nannaggagn nannannncn ggattangga ccncccc
277

<210> 455

<211> 155

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 455

aatggaaacc catgaggaat gccaccaaag gctgcaacga gtctgttagat gaggtccaca
60

nggccatgta gctgccagga ctgctctgcc gtctgcngtc ccaaacccta tccccaccaa
120

tccctgacac actaataaaag gctttgtgac ctcaa
155

<210> 456

<211> 277

<212> DNA

<213> Rattus norvegicus

<400> 456

ggggatttagc tctatctgac accttctgta tcttcattct aaagtgggtt catgctttta
60

ggggtgtgtgt ggccgggtgcc atggaagtgg taatgcattgt gttgatgcag ggattatgca
120

agctgaaact ttttctcagg ggccatgtca gatgtgtgag aataacctgga ctccctggttt
180

tcctccatag taaaggggtg ttctcccact ctctacaagt ctcttcattgc cagagggttt
240

tcaagactcc catttagtgg ccaggaggat ttcttattg
277

<210> 457

<211> 277

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations
<400> 457

cgangatctt gagactggtg tttctgtggt cactggtgga caggatgtat gtagcgtgcg
60

cgtgtgtgtta agtgtgggtg tgtgtgcgtg ctctgctcat ctctagggaa cttcgagggtg
120

ggaagtggga ggtgggaggt ggagggaccc agtagtgaga agaacttagga ggtgaggcct
180

aatgggccgc agattggtca tgtttggtg ctgatgacag agggggcagt cccaggggag
240

gaggcttngc gggccnactt tnttgtctcc tgtcgna
277

<210> 458

<211> 233

<212> DNA

<213> Rattus norvegicus

<400> 458

cctcattgaa catggctcca atgaattcac tatgttctga agacatgcaa gatttcatgc
60

caaatatata ttcaagtgcata aaaaaacaaa atcctgtgtt cagtttagaa tgttttgatg
120

tagctgagaa gctttgccc acaacaataa ctgaagctac tgttagttcat aaagttcaca
180

tggctttata gcctttgcaa aacatatcta taaatcaatt acttttgaa aat
233

<210> 459

<211> 294

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 459

gttccgcgga ggcggaagct cggggtgagt ccgaactaaa ccttgcgttc aagattcggc
60

gtcacccgta atccaccgccc ctggccgagg aaggcatagc tgctggaggt gtaatggacg
120

tcaacactgc tctacaagag gtgctgaaga ccgcctcat ccacgatggc ctagcacgtg
180

gcatacgcga agtgccaaag ccttagacaa gcgccaagcc catctctgcg tgcttgcata
240

caatgtgatg agcccatgta tgtcaagctg gtgnnggcct ttttnccgaa caaa
294

<210> 460
<211> 300
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 460

atctggccat aatttaattc catctctagg ttttctgtct tattgtttca gaggcacatc
60

gagaaccaac catgggcagc tttactaagg aagagttgac tgccatatcc tcgatgaagg
120

nttcactgct aaggacattc tggaccaaaa aatcaatgaa gttctcctct gatgataagg
180

atgctttcta tggcgac ctcggagacg ttctaaagaa gcatctgagg tggctgaaag
240

tctccccgt gtactccctt ctagctgtca gtgtatgaca gcgagccata gtgagcacct
300

<210> 461
<211> 121
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 461

cngctccgct cgctctcgaa cctcngtctt cagctcaactg cttcaactcc agacttcacc
60

atgtccgtca gggtgacnca gaaatcctan aagangtcca ctcnggtcc ccgggacttc
120

a
121

<210> 462
<211> 133
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 462

cggggatccg agttgcagac nacgtgnngtgc ncangagcc acctcnggag tttgaaccan
60

gaccctata actccnnnag gctgtcctca gcttgngnac agcctnagcc actccaaant
120

tngatcaaac gtt
133

<210> 463
<211> 281
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 463

cnngcggcgg acgacgttcg tcatttggtg cgggaggng cgcgagangg tgcgtcgagc
60

ctccgggtgtc ccaaactaga ggtgagcatg gcagaacagg aaccactgc tgagcagctc
120

gctcagatag ctggagagaa tgaggaagac gagcactctg tgaactacaa gcctccagcc
180

cagaagagca tccaggagat ccaggaactg gacaaggatg atgaaagcct tcgaaagtac
240

aaggnggccc tgctgggccc agtagctgtc tctgcagacc c
281

<210> 464
<211> 264
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 464

gctccggng cnctgcgcgc cngngnttc tgtgncttgc ngtctgttc cctccgattg
60

tgcctancaa tgaccaccca gcagantgtt ctccaggcc cgggaccnng ggtttccga
120

ntcgtggcgc gcaaggactt tgagcaacct ctcgcattt cccgggtcac tcccgggagc
180

aaggntgnta tagctaactt atgcatacga gattnatca cagccattga tgggnagat
240

accancagta tgacaaatnn gaag
264

<210> 465
<211> 277
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 465

gcttctaggg aggctctctg caatagggtgc ccggcccaagc tttttttca aaatgtctac
60

tgtccacgaa atcctgtgca acnctcagct tggagggtga tcattctaca cccccaaagt
120

ccnatgggtc ggtcaaacc tacaccaact tcgacgntga gagggatgct ttgaacattg
180

aaacagcaat caagaccaaa ggctggacg aggtcaccat tgtcaacatt ctgactaacc
240

gcagcaatgc acagaggcag gacattgcct tcgccta
277

<210> 466
<211> 249
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 466

tgggatcccc aggggctaat gggcatcctg ttcttgacg agggnactgt gagaaagtct
60

ctcacccgtga ccaagtttct ctgagtgtcc agccaaccca ggctcaccag ctcccctcnag
120

ctaccgcncg tccatcaggt caactgccaa ccccaggctg aanaccaaacc ccagctatga
180

gctcctggag gcatgactcc ctcagggcca gcagctccga tccctcccaag tagtgatcat
240

gggcnaggg
249

<210> 467
<211> 253
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 467

tacacgcccgc cgcttgncc gccgccatgt cccttagtgat ccccgagaag tttcagcaca
60

tcctgcgagt actccaacac caacatcgat gggcgccgga aaatagcctt cgctatcact
120

gccattaagg ttctggccaa cggtctagac aacaagctgc gtgaggacct ggagcggctg
180

aagaaaaatcc gagcccatacg agggctgcgc cactttggg gccttcgtgt ccggggtcag
240

cacaccaaga cat

253

<210> 468

<211> 301

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 468

gctttctatg ttgcggacct cgagacgtt ctaaagaagc atctgaggtg gctganagta
60

cttccccgtg ttactccctt ctatgctgtc aagtgtaatg acagcagagc catagtgagc
120

accctggctg ccattgggac aggatttgat tgtgcaagca agactgaaat acagttggtg
180

caggggcttg gggtgtcctcc agagaggatt atctatgcaa atccttgtaa gcnagtgtct
240

cagatcaagt atgctgccag taatggagtc cagatgtatg ctttgacag tgaaattgag
300

t

301

<210> 469

<211> 136

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 469

ttccggcgga ggccgcttt tcttttctc cgcaagggtgc gcgggtggcag ccgctgcggt
60

gcttggctcc ctaagctatc cggtgccatc cttgtcgntg cggcgacact cgcaacatct
120

gcagccatga ccgagc
136

<210> 470
<211> 147
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 470

attaaggaaa atggaggtct ggactcagag gaagtcttat cccnatgaag caaaaggatg
60

gatcnntgta aatacagagc tgagtatgnc tngtggctaa acgancacag ggtntgtggt
120

atccccctcng caaagagtna ngccttc
147

<210> 471
<211> 294
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 471

gctaccagga cagctcatca tgtggggaga aatgttgggc gctgctatag gaggagttgt
60

ggctgtncgc agctgcaccc gnccgtcctg tctgccgtgg gcttcactgg gtcaggcatt
120

ggcagctgca tcccatagcg ggncaagatg atgtctgctg cagcagttgc caacgggggc
180

ggagtcgnncn caggaagcct tggtagccan actacagtcc antangtgta tttggnnntn
240

tccaacatna ancAACnATC catcttgggg tcttttggng naanccatna gagt
294

<210> 472
<211> 300
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 472

attccagcga gagacagagg gagtgagcgg gcgggttggaa agagcccagt gtgcagagcc
60

ccactccggg cttccttagga aggcaagctct ggagtgagaa gggctttgcc tccaggcttg
120

ctgcctccctc gacccaatcc tccccgtgac ccaacatca gggcgcaac cctcgccgcc
180

tctggaaac tttgccatt gcaacgggca gacacttctc actggaactt acaatctgcg
240

agccaggaca ggatccccag gcgcaggan ggaattttgt ctattggac agtgttctct
300

<210> 473

<211> 276

<212> DNA

<213> Rattus norvegicus

<400> 473

gtccctcage agtcctggat tcagaatgga accatcaaag acaacatcct gtttgggtcc
60

gaatacaatg aaaagaagta ccagcaagtt ctcaaagcat gcgcctctt cccagacttg
120

gaaatattgc ctggaggaga catggctgag atcggagaga agggataaa tctcagtgg
180

ggtcagaagc agcgagtca gctggccaga gctgcctatc aagatgctga catctatatt
240

ctggacgatc ccctgtcggc tgtggatgct catgtg

276

<210> 474

<211> 155

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 474

aacagctctc tgacacctga gagggatca gcaagatca agtcgtgggc ttgattgtaa
60

catcagaata gcctaagagt gaagcaanca ctctgccatt acttgggant cttctgcctc
120

ccgtgtgaga ggatgtgtcg gagaggttca ccagc
155

<210> 475

<211> 282

<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 475

gggnccggctt ggtggcctcn attgagatnc ngaggatcna aggactgtgt anctacaatg
60

ttgtcaagac tttccgtat gtatggnctc tttgnggtgt ctcatncnng ggaggttaatt
120

gtgggaacgg tgacacttac tatctgtatg atgnccatga acatgttcac cggcaacaac
180

aagatctgtg gttggaatta tgagtgccca nnatttgaag angacgtgct gancagcgac
240

atcatcancc tcagganaan ccggtnatcg ccatccgtac at
282

<210> 476
<211> 225
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 476

ggcggctcg actgagcagg gcttccttg ccagtggatt gttagatgt tacagccagt
60

ctcttgtctt ctgtccaaca tggcatcttc tgatattcag gtgaaatgct tccggccagg
120

ctttgagtga tccagcctcg atcaaaagaa ttgtcccag tccccttcc cccaaagaga
180

ggnccttcctg agaatcagag aatagantga agaaaganct agaca
225

<210> 477
<211> 296
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 477

aggacaccga gattgagatc tcgcacnctt cactggtaga aaggaaaatc aataaagccc
60

agaacttgat ngctggggaa gggtaaga ttagctctga tctcattagc ttggaggtta
120

gctctccaca tgtcccagac ctnactctga ttgaccttcc tggtatcaca agagtggctg
180

tgggtgacca gcctgcagac atcgaacaca agatcaagan acttatactt gaatacatcc
240

agaaaacagga gaccatcaac ctggtggtgg tccccagcaa tgtggcattt ccacca
296

<210> 478

<211> 294

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 478

gacagcactc tgcatggctt agagagcagc tccccctctt ccccaactgtc agccagtgcg
60

cagtttcaacctt ctgtgggctg cggagcacctt ctgccgcagc ccagacatct tccctgagca
120

gaggcagaac aagcataggc gcttcagaa tacccttagcc gtcctccgga agtctggttt
180

gntgggaatc actctgaaag ccaaggagtt gattcgtag aaccaagcaa ctnaggtgna
240

actggaccag ctgaaggagc aaaccagatg ttnatagagg ccaccaagac aggg
294

<210> 479

<211> 281

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 479

aaatccctgac aaaagaatct aatgttcagg aggttcgatg tccagtcact gtgtgtggag
60

atgtgcattgg gcaatttcat gacctcatgg aactcttttag aattgggtggt aaatcacaga
120

tacaaattac ttgtttatgg gagactatgt ggacagagga tattactcg ttgaaacagt
180

tacactgctt gtagctctta aggttcgtta ccgagagcgt atcaccatac tccganggaa
240

tcacgagagc agacagatca cacaagttta tggtttctac g
281

<210> 480
<211> 293
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 480

ggcggagcag tcactgttg angagctctg agcnctggca gctgcacact tcagttcacc
60

aacccaggag ctttctctct gnggaagggg tgganatagc tgtaaaaga cactgcaacc
120

agaaaagccaa gcattctgtc actaaggcagg anactgagtg cccacttgga agaagaaaata
180

aaagatggtt cttagcacag aggaaaacag gagtgttgat tttagtcaact tacccagtgt
240

cccactgccc gatggagagg ctggcgtagg ggagaacaac gggattcctt gna
293

<210> 481
<211> 298
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 481

ctccagctag ctcagtctca cagcctaagc ccttaaagcg tttcaaacga gctacagggg
60

agaaaaggccc ccgcacccgt caggggtctg gtgcagagtc tgaagnccctg tatgactttg
120

tttttattgt ggctggtgag aaataggatg gtgaagagat ggagattggg gaagtagctt
180

gcgggaactc tggatngatc aatnccacgc tngtttgggg gttccnagcc anaagaggca
240

nnccccagnng attcgnnaat ttgnncacnc ctggagctgt cnacaattcc tcttccnc
298

<210> 482
<211> 65
<212> DNA
<213> *Rattus norvegicus*

<223> unsure at all n locations
<400> 482

ggtgangtga agctgctaaa ccccattttg gctgctgctg tggagatgct gtgcttttag
60

agtta
65

<210> 483
<211> 270
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 483

ggccggccgt gaggnngcgct ggagctgccg gtactggttt tggatttagga atggttttct
60

ccctcacctt cttaagaga agaaagtggc cattagcctt tggttctggc gtgggactgg
120

ggatggccta ctccaactgt cagcatgaet ttcaaggctcc atatcttcta catggaaaaat
180

atgtcaaaga gcagtgactt atgctangaa catcccagcg ggagaaaaaga gaaggctcgt
240

ttattcctca ggaataactga agtgccctgg
270

<210> 484
<211> 277
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 484

gggaagctac ctatccggta gacagctccc cctgcaccta cggctgccat gacttccgca
60

ctgaccgaag ggctggaaacg aatccagac cagcttggct acctggtgct gagcgaagg
120

gcagtgctag cgtcatctgg ggatctttag aacgatgagc aggccagccag cgccatctna
180

gagctggtca gcacagcctg tggctccgg ctgcaccatg gcacgaacat cccttcaag
240

cgcctgtctg tggctttgg tgaacacacg ctgctgg
277

<210> 485
<211> 279

<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 485

caatgactca cagcgacagg gccactaagg atgctggcca gataatctggg ctaaatgtgc
60

tccgagtat caacgagcct acagctgcag ctctggctta cggtctggac aaatccgaag
120

acaaagtcat tgctgtatat gatttagtg gaggaacctt tgacatttct atcctggaaa
180

ttcagaaagg agtgtttnan gtgaaatcca ccaatgggga cactttctta ggaggtgaag
240

actttgacca agctttgtta cggcacattt tcaaggagt
279

<210> 486
<211> 204
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 486

ggggttacnn cttgcagtcn gtccgctgtt tgcaaataatt gcgtgggctc ngcgcgctgc
60

gggctgcggg anggtccgga cccggcgtcc gattgcagcg ccatccagtt tgcatgaaac
120

tttacactgc gtcggggga acagtttctg ctccgactcc tgatcggtca cttccctgtt
180

ttccccgacag cggggactgt cttt
204

<210> 487
<211> 290
<212> DNA
<213> Rattus norvegicus

<223> unsure at all n locations
<400> 487

gccgccccgcc tcggacgctt ggnactgtcg cgtctgtgtc gcctgtcgcc catcgccctgc
60

cgccgctgcc acccaccaggc aaccatgagc gcgccccggcc ccgggtgttagt ctgctgtcct
120

ctagattagt gctctcctcc gcgacggtcc gcagcatgga gtcgcccgcg cccagccgc
180

cggccagctt gcctcagacc aaaggaaaat ccaaaaggaa aagggattta cgaatatcct
240

gtgtgtccaa gccacccgtg tccaacccca caccccccgg aaactggact
290

<210> 488

<211> 166

<212> DNA

<213> Rattus norvegicus

<223> unsure at all n locations

<400> 488

gacagccata catgacacca agccatttgt tctgagttt ccttgatcca gtcggcttta
60

cgtctgtgtc caggtcggtc tggctgtcca tcagctctcg tcatngggag agtcagcttc
120

ccggagggttt tggttgatgg gcgcttggca ggtnngctgtt ggggaa
166

<210> 489

<211> 262

<212> DNA

<213> Rattus norvegicus

<400> 489

gtggaagaaa gaacacagca agaatggaaa actttgcacc tggctttcag gttggagatg
60

gaatttggaaat ggatttaaaa ctatccaacc acgttttaa tgcttaaaa caacatgcct
120

actcggaga acgtcgaagt gcccgtctcc atgagaagaa ggaacattcc accgctgaaa
180

aagcagttga tcctaagaca cgcttactta tgtataaaaat ggtcaactct ggaatgttgg
240

agacaatcac tggctgtatt ag

262

<210> 490

<211> 25

<212> DNA

<213> Rattus norvegicus

<400> 490

ctctccctcct cattcaacac cttcg
25

<210> 491
<211> 21
<212> DNA
<213> Rattus norvegicus

<400> 491

ctgaaggctc taaagtctac a
21

<210> 492
<211> 22
<212> DNA
<213> Rattus norvegicus

<400> 492

ctctgtctgc catccctccc ac
22

<210> 493
<211> 27
<212> DNA
<213> Rattus norvegicus

<400> 493

ctcacacctag atcctttgtg tgtctgg
27

<210> 494
<211> 25
<212> DNA
<213> Rattus norvegicus

<400> 494

tccgatcata cctagtagtt tgagc
25

<210> 495
<211> 25
<212> DNA
<213> Rattus norvegicus

<400> 495

ccttcatttg ctgctggtag tgctc
25

<210> 496
<211> 26
<212> DNA
<213> **Rattus norvegicus**

<400> 496

cctactgtgg atgataccag tgctgc
26

<210> 497
<211> 25
<212> DNA
<213> **Rattus norvegicus**

<400> 497

tcgccatcct ctggcgttt gtagg
25

<210> 498
<211> 24
<212> DNA
<213> **Rattus norvegicus**

<400> 498

tcccttctca tgctgttg tgctc
24

<210> 499
<211> 27
<212> DNA
<213> **Rattus norvegicus**

<400> 499

ctctcctgct tctgatgaag tacccac
27

<210> 500
<211> 23
<212> DNA
<213> **Rattus norvegicus**

<400> 500

cctctcactg ctcttcacat ggc
23

<210> 501
<211> 27
<212> DNA
<213> *Rattus norvegicus*

<400> 501

cactattctt gtcaaatggc tacccca
27

<210> 502
<211> 24
<212> DNA
<213> *Rattus norvegicus*

<400> 502

ccttgtaaat gccagataac gcca
24

<210> 503
<211> 22
<212> DNA
<213> *Rattus norvegicus*

<400> 503

ctcccacatag gcgggaaatt gc
22

<210> 504
<211> 25
<212> DNA
<213> *Rattus norvegicus*

<400> 504

cctcatagat gccatttgtt ccacc
25

<210> 505
<211> 24
<212> DNA
<213> *Rattus norvegicus*

<400> 505

catcctcccc ttcattatcg ccgc
24

<210> 506
<211> 22
<212> DNA
<213> Rattus norvegicus

<400> 506

cacgtccctc attgctcttc ag
22

<210> 507
<211> 25
<212> DNA
<213> Rattus norvegicus

<400> 507

ccgatccctg tcctcccac cgtgc
25

<210> 508
<211> 24
<212> DNA
<213> Rattus norvegicus

<400> 508

ccaagactga tcgctgtctc cagg
24

<210> 509
<211> 25
<212> DNA
<213> Rattus norvegicus

<400> 509

ctgccctact taattgatgg atcgc
25

<210> 510
<211> 29
<212> DNA
<213> Rattus norvegicus

<400> 510

cctctgcttc taccgtctta ccatctgga
29

<210> 511
<211> 27

<212> DNA
<213> Rattus norvegicus

<400> 511

ccaaagtctc cgatttcac ttgatgc
27

<210> 512
<211> 28
<212> DNA
<213> Rattus norvegicus

<400> 512

cccggttctca gttcagtgggt gtgctcct
28

<210> 513
<211> 24
<212> DNA
<213> Rattus norvegicus

<400> 513

cctccgcccgc cgagccgact tcct
24

<210> 514
<211> 27
<212> DNA
<213> Rattus norvegicus

<400> 514

cctctcacca ttacttcttc cctgtca
27

<210> 515
<211> 27
<212> DNA
<213> Rattus norvegicus

<400> 515

cccatcatca gcaagaatcc caaaggc
27

<210> 516
<211> 22
<212> DNA
<213> Rattus norvegicus

<400> 516
ctctatgaca ttgagcaaca gc
22

<210> 517
<211> 20
<212> DNA
<213> Rattus norvegicus

<400> 517
catctacgac tgtgtcccgt
20

<210> 518
<211> 26
<212> DNA
<213> Rattus norvegicus

<400> 518
ccagagtctt gttgacttac aaccac
26

<210> 519
<211> 21
<212> DNA
<213> Rattus norvegicus

<400> 519
gagcatcttt caggtggttg g
21

<210> 520
<211> 20
<212> DNA
<213> Rattus norvegicus

<400> 520
gtgcttagaa cactttccag
20

<210> 521
<211> 20
<212> DNA
<213> Rattus norvegicus

<400> 521

ctggaaaagc atcggtttag
20

<210> 522
<211> 23
<212> DNA
<213> *Rattus norvegicus*

<400> 522

tcaactgtcca tcatgggttg cag
23

<210> 523
<211> 21
<212> DNA
<213> *Rattus norvegicus*

<400> 523

tggcatgtca caccagatgt a
21

<210> 524
<211> 22
<212> DNA
<213> *Rattus norvegicus*

<400> 524

ggagactact ccaatttcag ac
22

<210> 525
<211> 24
<212> DNA
<213> *Rattus norvegicus*

<400> 525

tgagtcaagc cttagatgtac acag
24

<210> 526
<211> 22
<212> DNA
<213> *Rattus norvegicus*

<400> 526

agagcaccat cagctggaaag gt
22

<210> 527
<211> 20
<212> DNA
<213> Rattus norvegicus

<400> 527

ccaagaggag agccgaacag
20

<210> 528
<211> 20
<212> DNA
<213> Rattus norvegicus

<400> 528

gcatctgtgt agggcatgtg
20

<210> 529
<211> 18
<212> DNA
<213> Rattus norvegicus

<400> 529

gccacaccttgc ccacatcc
18

<210> 530
<211> 20
<212> DNA
<213> Rattus norvegicus

<400> 530

agtgtgtgat gaacgccccga
20

<210> 531
<211> 19
<212> DNA
<213> Rattus norvegicus

<400> 531

gagcggtctaa agacggcac
19

<210> 532
<211> 17
<212> DNA
<213> *Rattus norvegicus*

<400> 532

cctgaacgcc tcacaga
17

<210> 533
<211> 16
<212> DNA
<213> *Rattus norvegicus*

<400> 533

cgctggctca acacag
16

<210> 534
<211> 19
<212> DNA
<213> *Rattus norvegicus*

<400> 534

ctcctttggc taccatgtg
19

<210> 535
<211> 18
<212> DNA
<213> *Rattus norvegicus*

<400> 535

cggagttaa tcctgtgg
18

<210> 536
<211> 18
<212> DNA
<213> *Rattus norvegicus*

<400> 536

gcgtccatta gcatctgc
18

<210> 537
<211> 20
<212> DNA
<213> *Rattus norvegicus*

<400> 537

caccatgtac cgagggcacag
20

<210> 538
<211> 20
<212> DNA
<213> *Rattus norvegicus*

<400> 538

ctcagcacgg agtaaatccag
20

<210> 539
<211> 20
<212> DNA
<213> *Rattus norvegicus*

<400> 539

ggtagcgcat tatggcattg
20

<210> 540
<211> 20
<212> DNA
<213> *Rattus norvegicus*

<400> 540

ctgtccttgc tggtagatgc
20

<210> 541
<211> 20
<212> DNA
<213> *Rattus norvegicus*

<400> 541

cggagcgtac cagaacactg
20

<210> 542
<211> 23

<212> DNA
<213> **Rattus norvegicus**

<400> 542

gagagacaca gccagaatac agc
23

<210> 543
<211> 20
<212> DNA
<213> **Rattus norvegicus**

<400> 543

gtcgcttacc catgatctca
20

<210> 544
<211> 19
<212> DNA
<213> **Rattus norvegicus**

<400> 544

acgggtgatg ggaatggtg
19

<210> 545
<211> 20
<212> DNA
<213> **Rattus norvegicus**

<400> 545

gcagtctatc tcaaccctgg
20

<210> 546
<211> 19
<212> DNA
<213> **Rattus norvegicus**

<400> 546

aaccatgatg agagagagc
19

<210> 547
<211> 18
<212> DNA
<213> **Rattus norvegicus**

<400> 547

tgtcgtcttc ggtagtc
18

<210> 548

<211> 22

<212> DNA

<213> Rattus norvegicus

<400> 548

tccttcaggt cactcccacc tt
22

<210> 549

<211> 17

<212> DNA

<213> Rattus norvegicus

<400> 549

ccaggaacctt gttctgg
17

<210> 550

<211> 22

<212> DNA

<213> Rattus norvegicus

<400> 550

ctcccaacta ctaccccaac ag
22

<210> 551

<211> 20

<212> DNA

<213> Rattus norvegicus

<400> 551

gtcctgtgtc aagaaaaactg
20

<210> 552

<211> 19

<212> DNA

<213> Rattus norvegicus

<400> 552

cctacatcct agcctctcc
19

<210> 553
<211> 22
<212> DNA
<213> Rattus norvegicus

<400> 553

ctgaccatca ttccccagga cc
22

<210> 554
<211> 22
<212> DNA
<213> Rattus norvegicus

<400> 554

gtccagacct gattcagtcc tc
22

<210> 555
<211> 23
<212> DNA
<213> Rattus norvegicus

<400> 555

cagcagagct agtagacaga atc
23

<210> 556
<211> 24
<212> DNA
<213> Rattus norvegicus

<400> 556

ccagacacat gctaacagga tcta
24

<210> 557
<211> 22
<212> DNA
<213> Rattus norvegicus

<400> 557

ggaacctcga tgtggctaag ct
22

<210> 558
<211> 22
<212> DNA
<213> Rattus norvegicus

<400> 558

tgccacagaa ggctgacagg ga
22

<210> 559
<211> 22
<212> DNA
<213> Rattus norvegicus

<400> 559

ggacagagac aatgagcaca ac
22

<210> 560
<211> 18
<212> DNA
<213> Rattus norvegicus

<400> 560

cacagtggtc gtcaagcc
18

<210> 561
<211> 18
<212> DNA
<213> Rattus norvegicus

<400> 561

tcctcagacg ctcctgtg
18

<210> 562
<211> 19
<212> DNA
<213> Rattus norvegicus

<400> 562

cctctaagga ttgggtggag
19

<210> 563
<211> 20
<212> DNA
<213> *Rattus norvegicus*

<400> 563

atcccaactg ctatgacacc
20

<210> 564
<211> 20
<212> DNA
<213> *Rattus norvegicus*

<400> 564

ccaggctaga gactattctg
20

<210> 565
<211> 19
<212> DNA
<213> *Rattus norvegicus*

<400> 565

ccacagaagg ttgttatgga
19

<210> 566
<211> 19
<212> DNA
<213> *Rattus norvegicus*

<400> 566

tcgaatgact ctgaggagg
19

<210> 567
<211> 18
<212> DNA
<213> *Rattus norvegicus*

<400> 567

ggatacattg ccagcacg
18

<210> 568
<211> 21
<212> DNA
<213> Rattus norvegicus

<400> 568

cagagacagc catgatcttc g
21

<210> 569
<211> 18
<212> DNA
<213> Rattus norvegicus

<400> 569

gcaaaactat gtgtggca
18

<210> 570
<211> 15
<212> DNA
<213> Rattus norvegicus

<400> 570

ccgatccgcc tgctc
15

<210> 571
<211> 19
<212> DNA
<213> Rattus norvegicus

<400> 571
tcccttggc

19

<210> 572
<211> 21
<212> DNA
<213> Rattus norvegicus

<400> 572

tgccatccag atttgtaagg g
21

<210> 573
<211> 21
<212> DNA
<213> Rattus norvegicus

<400> 573

gctcttacac tcctttcgct g
21

<210> 574

<211> 18

<212> DNA

<213> Rattus norvegicus

<400> 574

gcttccactg tgccccac
18

<210> 575

<211> 18

<212> DNA

<213> Rattus norvegicus

<400> 575

cacggcaagc acgaagag
18

<210> 576

<211> 21

<212> DNA

<213> Rattus norvegicus

<400> 576

aggatgcttg tcagacttt c
21

<210> 577

<211> 19

<212> DNA

<213> Rattus norvegicus

<400> 577

gctatgctgt ttgccagtg
19

<210> 578

<211> 18

<212> DNA

<213> Rattus norvegicus

<400> 578

acgatgacga tgtctacc
18

<210> 579
<211> 21
<212> DNA
<213> *Rattus norvegicus*

<400> 579

gagaaggcagc agcacattgt g
21

<210> 580
<211> 18
<212> DNA
<213> *Rattus norvegicus*

<400> 580

gatgatctgg agcagcag
18

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 August 2000 (03.08.2000)

PCT

(10) International Publication Number
WO 00/44902 A3

(51) International Patent Classification⁷: C12N 15/12, C07K 14/47, G01N 33/50, C12Q 1/68, C07K 16/18

(74) Agents: WILLIAMS, Roger, A. et al.; G.D. Searle & Co., Corporate Patent Department, P.O. Box 5110, Chicago, IL 60680-5110 (US).

(21) International Application Number: PCT/US00/00503

(81) Designated States (*national*): AE, AL, AM, AT, AU, AZ,

(22) International Filing Date: 28 January 2000 (28.01.2000)

BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK,

(25) Filing Language: English

DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,

(26) Publication Language: English

IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,

(30) Priority Data:
60/118,078 29 January 1999 (29.01.1999) US

LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,

(71) Applicant (*for all designated States except US*): G.D.
SEARLE & CO. [US/US]; Corporate Patent Department,
P.O. Box 5110, Chicago, IL 60680-5110 (US).

RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA,

(72) Inventors; and

UG, US, UZ, VN, YU, ZA, ZW.

(75) Inventors/Applicants (*for US only*): BUNCH, Roderick,
T. [US/US]; 1540 W. Dempster, Apt. 203, Mt. Prospect, IL
60056 (US). CURTIS, Sandra, W. [US/US]; 255 Creiner
Court, Ellisville, MO 63021 (US). RODI, Charles, P.
[US/US]; 706 E. Pacific Avenue, St. Louis, MO 63119
(US). MORRIS, Dale, L. [US/US]; 1754 Highview Circle
Court, Ballwin, MO 63021 (US).

(84) Designated States (*regional*): ARIPO patent (GH, GM,

KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent

(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent

(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,

GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
— With international search report.

(88) Date of publication of the international search report:
8 March 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: BIOMARKERS AND ASSAYS FOR CARCINOGENESIS INDUCED BY PHENOBARBITOL

WO 00/44902 A3

(57) Abstract: The present invention relates to carcinogenesis biomarkers produced by phenobarbitol-treated rat hepatocytes, nucleic acid molecules that encode carcinogenesis biomarkers or a fragment thereof and nucleic acid molecules that are useful as probes or primers for detecting or inducing carcinogenesis, respectively. The invention also relates to applications of the factor or fragment such as forming antibodies capable of binding the carcinogenesis biomarkers or fragments thereof.

INTERNATIONAL SEARCH REPORT

International Application No

PCT US 00/00503

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C12N15/12 C07K14/47 G01N33/50 C12Q1/68 C07K16/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C07K C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE EMEST7 [Online] EMBL, Heidelberg, Germany ID/AC AI179686, 12 October 1998 (1998-10-12) LEE N H ET AL.: "Rat spleen cDNA clone RSPCK43" XP002140091 abstract ---	1-16, 19, 20, 25, 29, 30
X	WO 96 01324 A (INST NAT SANTE RECH MED ;BERLIOZ CLARISSE (FR); JACQUEMOUD SANDRIN) 18 January 1996 (1996-01-18) the whole document ---	1-7, 10, 11, 14, 19, 20, 25, 29, 30

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *Z* document member of the same patent family

Date of the actual completion of the international search

14 June 2000

Date of mailing of the international search report

25.09.00

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentiaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Oderwald, H

INTERNATIONAL SEARCH REPORT

International Application No

PL US 00/00503

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>ROCKETT J C ET AL.: "Molecular profiling of non-genotoxic hepato-carcinogenesis using differential display reverse transcription-polymerase chain reaction (ddRT-PCR)"</p> <p>EUROPEAN JOURNAL OF DRUG METABOLISM AND PHARMACOKINETICS, vol. 22, no. 4, October 1997 (1997-10), pages 329-333, XP000914670 the whole document</p> <p>---</p>	
A	<p>FORESTIER M AT EL.: "Application of mRNA differential display to liver cirrhosis: reduced fetuin expression in biliary cirrhosis in the rat"</p> <p>BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 225, 1996, pages 377-383, XP002140089 ISSN: 0006-291X the whole document</p> <p>---</p>	
A	<p>FRUEH F W ET AL.: "Extent and character of phenobarbital-mediated changes in gene expression in the liver"</p> <p>MOLECULAR PHARMACOLOGY, vol. 51, no. 3, March 1997 (1997-03), pages 363-369, XP000914669 the whole document</p> <p>---</p>	
A	<p>FRIEDBERG T ET AL.: "Isolation and characterization of cDNA clones for cytochrome P-450 immunochemically related to rat hepatic P-450 form PB-1"</p> <p>BIOCHEMISTRY, vol. 25, 1986, pages 7975-7983, XP002140090 the whole document</p> <p>---</p>	
A	<p>CLARKE L AND WAXMAN D J: "Oxidative metabolism of cyclophosphamide: identification of the hepatic monooxygenase catalysts of drug activation"</p> <p>CANCER RESEARCH, vol. 49, no. 9, 1 May 1989 (1989-05-01), pages 2344-2350, XP000914667 the whole document</p> <p>---</p>	
A	<p>RIEGL A G ET AL.: "Selective localization of P450 enzymes and NADPH-P450 oxidoreductase in rat basal ganglia using anti-peptide antisera"</p> <p>BRAIN RESEARCH, vol. 743, 1996, pages 324-328, XP000914666 the whole document</p> <p>---</p>	

-/-

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 00/00503

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	OMIECINSKI C J ET AL.: "Developmental expression and in situ localization of the phenobarbital-inducible rat hepatic mRNAs for cytochromes CYP2B1, CYP2B2, CYP2C6, and CYP3A1" MOLECULAR PHARMACOLOGY, vol. 38, no. 4, October 1990 (1990-10), pages 462-470, XP000914665 the whole document -----	

INTERNATIONAL SEARCH REPORT

I. national application No.
PCT/US 00/00503

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Claims 1-16, 19-33 (all partially)

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: Invention 1: {1-16, 19-33 all partially}

A nucleic acid molecule comprising SEQ ID NO:1, fragments, homologues and complements thereof. A carcinogenesis biomarker, a polypeptide, methods of diagnosis and isolating a nucleic acid, an antibody utilizing said nucleic acid molecule.

2. Claims: Invention 2: {1-16, 19-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 2.

3. Claims: Invention 3: {1-16, 19-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 3.

4. Claims: Invention 4: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 4, and primers and probes SEQ ID NO: 500, 529 and 560.

5. Claims: Invention 5-33: {1-16, 19-33 all partially}

Idem as subject 1 but limited to each of SEQ ID NO: 5-33, wherein invention 5 is limited to SEQ ID NO: 5, invention 6 is limited to SEQ ID NO: 6,....., invention 33 is limited to SEQ ID NO: 33.

6. Claims: Invention 34: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 34, and primers and probes SEQ ID NO: 490, 519 and 550.

7. Claims: Invention 35: {1-16, 19-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 35.

8. Claims: Invention 36: {1-16, 19-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 36.

9. Claims: Invention 37: {1-16, 19-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 37.

10. Claims: Invention 38: {1-33 all partially}

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Idem as subject 1 but limited to SEQ ID NO: 38, and primers and probes SEQ ID NO: 508, 538 and 569.

11. Claims: Invention 39-113: {1-16, 19-33 all partially}

Idem as subject 1 but limited to each of SEQ ID NO: 39-113, wherein invention 39 is limited to SQ ID NO: 39, invention 40 is limited to SEQ ID NO: 40,....., invention 113 is limited to SEQ ID NO: 113.

12. Claims: Invention 114: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 114, and primers and probes SEQ ID NO: 506, 536 and 567.

13. Claims: Invention 115-128: {1-16, 19-33 all partially}

Idem as subject 1 but limited to each of SEQ ID NO: 115-128, wherein invention 115 is limited to SQ ID NO: 115, invention 116 is limited to SEQ ID NO: 116,....., invention 128 is limited to SEQ ID NO: 128.

14. Claims: Invention 129: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 129, and primers and probes SEQ ID NO: 509, 539 and 570.

15. Claims: Invention 130-229: {1-16, 19-33 all partially}

Idem as subject 1 but limited to each of SEQ ID NO: 130-229, wherein invention 130 is limited to SQ ID NO: 130, invention 131 is limited to SEQ ID NO: 131,....., invention 229 is limited to SEQ ID NO: 229.

16. Claims: Invention 230: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 230, and primers and probes SEQ ID NO: 491, 520 and 551.

17. Claims: Invention 231-489: {1-16, 19-33 all partially}

Idem as subject 1 but limited to each of SEQ ID NO: 231-489, wherein invention 231 is limited to SQ ID NO: 231, invention 232 is limited to SEQ ID NO: 232,....., invention 489 is limited to SEQ ID NO: 489.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

18. Claims: Invention 490: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 492, 521 and 552.

19. Claims: Invention 491: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 493, 522 and 553.

20. Claims: Invention 492: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 494, 523 and 554.

21. Claims: Invention 493: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 495, 524 and 555.

22. Claims: Invention 494: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 496, 525 and 556.

23. Claims: Invention 495: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 497, 526 and 557.

24. Claims: Invention 496: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 498, 527 and 558.

25. Claims: Invention 497: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 499, 528 and 559.

26. Claims: Invention 498: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 501, 530 and 561.

27. Claims: Invention 499: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 502, 531 and 562.

28. Claims: Invention 500: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 503, 532 and 563.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

29. Claims: Invention 501: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 533 and 564.

30. Claims: Invention 502: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 504, 534 and 565.

31. Claims: Invention 503: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 505, 535 and 566.

32. Claims: Invention 504: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 507, 537 and 568.

33. Claims: Invention 505: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 510, 540 and 571.

34. Claims: Invention 506: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 511, 541 and 572.

35. Claims: Invention 507: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 512, 542 and 573.

36. Claims: Invention 508: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 513, 543 and 574.

37. Claims: Invention 509: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 514, 544 and 575.

38. Claims: Invention 510: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 515, 545 and 576.

39. Claims: Invention 511: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 516, 546 and 577.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

40. Claims: Invention 512: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 517, 547 and 578.

41. Claims: Invention 513: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 518, 548 and 579.

42. Claims: Invention 514: {1-33 all partially}

Idem as subject 1 but limited to SEQ ID NO: 549 and 580.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT US 00/00503

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9601324	A 18-01-1996	FR	2722208 A	12-01-1996
		AU	707874 B	22-07-1999
		AU	2929595 A	25-01-1996
		CA	2194155 A	18-01-1996
		EP	0769062 A	23-04-1997
		JP	10503644 T	07-04-1998
		US	5925565 A	20-07-1999

