MATHEMATICS ACTIVITIES FOR S6

1. Solve: a)
$$3^{2x+1} - 3^{x+1} - 3^x + 1 = 0$$

b) Use matrix inverse method to solve the following systems

$$\begin{cases} 4x + y - z = 1 \\ x - 3y + z = 2 \\ 5x - 2y = 4 \end{cases}$$

2. Solve the simultaneous equations :
$$\begin{cases} z_1 + z_2 = 8\\ 4z_1 - 3iz_2 = 26 + 8i \end{cases}$$

Using values of z_1 and z_2 , Find the modulus and argument of $z_1 + z_2 - z_1 z_2$

3.Differentiate
$$y = \left[2x^2 + \sqrt[3]{(3x-1)^4}\right]^n$$
, n is any constant.

4. Find the first derivative of
$$f(x) = (sinx)^{logx}$$

5.Event A and B are such that
$$P(A) = 0.3$$
, $P(B) = 0.8$ and $P(A \cap B) = 0.4$ State ,giving a reason in each case whether events A and B are : **a**) independent **b**) mutually exclusive.

6.Let the binary operation *be defined on Z (ring of integers) by x * y = x + xy + y

- b) Determine whether * is commutative, associative or neither.
- c)Determine whether or not there exist an identity for * /1Mrk

7.A and B are points whose position vectors are a = 2i + k and b = i - j + 3k respectively, Determine the position vector of the point p that divided AB in the ratio 4:1

8.Given that $sinx + siny = \omega_1$ and $cosx + cosy = \omega_2$. show that

$$\tan\left(\frac{x+y}{2}\right) = \frac{w_1}{w_2}$$

9. The line x+2y intersects the curve xy+18=0 at the points A and B. Find the coordinates of A and B. 10. Find the angle between planes $\pi \equiv x + y + z = 1$ and $\beta \equiv x - 2y + 3z = 1$ 11.a) Let $f(x) = \frac{4x}{(3x+1)(x+1)^2}$

i) Express f(x) in partial fractions.

12. Obtain the regression equation of x on y and y on x taking the origin as 2 and 200 for x and y respectively:/15Marks

X	1	2	3	4	5
Y	166	184	142	180	338

13.Let f be be a linear transformation so that f(x) = (x + 2y, 3x - 3y) and g(x) = (x + y, y) find:

- i) fg(x,y)
- ii) gof(x, y)gf(x, y)
- ii) $f^{-}(x, y)f^{-}(x, y)$
- 14.a) Determine the domain of the function $f(x) = \sqrt{4 x^2} + \frac{1}{x}$
 - b) Find the period of the function $f(x) = tna(4\pi^2 \frac{\pi}{3})$
- 15. Solve in \mathbb{R} the following equation : $(x + \sqrt{x})^4 (x + \sqrt{x})^2 = 159600$ 16. a) Find the Cartesian equation of the plane α which passes through the plane p = (2, -3, 4) and perpendicular to the line defined by the points a = (1,5,7) and b = (-2,2,3) b) for what value of λ are the vectors $\vec{i} + 2\vec{j} 3\vec{k}$, $3\vec{i} + \lambda \vec{j} + \vec{k}$ and $\vec{i} + 2\vec{j} + 3\vec{k}$ coplanar?
- 17. Consider the following figure

ABCD is a square, $CE=AE, \overline{BD}=X$. Find

 $sin\alpha$, $cos\alpha$ and $tan\alpha$.

- 18.a) show that $c_{n-1,p-1+c_{n-1,p}=c_{n,p}}$ o $\leq p \leq n$
- b) Solve the equation $c_{n-1,n-5} = 3c_{n-3,n-7}$ in the set of positive integers.
- 19.Evaluate the following limits:

a)
$$\lim_{x \to \pm \infty} \sqrt{x^2 + x + 2} - \sqrt{x^2 - x + 3}$$

b)
$$\lim_{x\to 0} \frac{x^2 - x\sin x}{x^2 - \sin^2 x}$$

20. Consider the vectors $\vec{u} = (1, -3.2) \ \vec{v} = (2, -1.1) \ \text{of } \mathbb{R}^3$

a) If
$$\vec{w} = (1,7,-4)$$
 is $\{\vec{u},\vec{v},\vec{w}\}$ a basis of \mathbb{R}^3 ?

- b) For what value of real number k, the vector (1,k,5) is a linear combination of \vec{u} and \vec{v} ? s
- 21. Consider the following linear mapping defined on \mathbb{R}^3 by f(x, y, z) = (4x 2z, 2x + y, z +
- y). Calculate its matrix relative to the basis $(\{\vec{e_1} = (1,1,1), \vec{e_2} = (-1,0,1) \text{ and } \vec{e_3} = (0,1,1)\}$
- 22. Use matrix inverse method to solve this system

$$\begin{cases} 4x + y - z = 1 \\ x - 3y + z = 2 \\ 5x - 2y = 4 \end{cases}$$

- 23.a) Find the equation of sphere which passes through the points (1,2,3), (0,-2,4), (4,-4,2) and (3,1,4)
 - b) Find the center and radius of the sphere:

$$x^2 + y^2 + z^2 - 22x - 6y + 66$$

- 24. The coefficient of x^5 in the expansion of $(1 + 5x)^5$ is equal to the coefficient of x^4 in the expansion of $(a + 5x)^7$. Find the value of .
- 25. the perimeter of rectangle is 36cm.
 - a) What are the dimensions (length and width) of that rectangle?
- b) What is its greatest possible area?
- 26. In a physics experiment, a bottle of milk was brought from a cool room into a warm room. Its temperature y^0c , was recorded at t minutes after it was brought in ,for 11 different values of t. the results are summarized as: $\sum t = 44$, $\sum y = 205$, $\sum t^2 = 180.4$, $\sum ty = 824.5$
- (i) Calculate the equation of the line of regression of y on t in the form y = a + bt.
- (ii) Explain the practical significance of the value of a.
- (iii) Use your equation to estimate the values of y at t = 4.5

GOOD-LUCK