DATA 1010 In-class exercises Samuel S. Watson

05 November 2018

Problem 1

Suppose that $f : [a, b] \to \mathbb{R}$ is a smooth function whose values on a grid of points $xs = a : \epsilon : b$ are stored in a vector v. Write a Julia expression which approximates $\int_a^b f$.

Solution

We sum the function's values and multiply by the grid increment: sum(v)*step(xs). Each of the terms in this sum represent the area of a rectangle whose base is step(xs) and whose height is the value of the function at the corresponding grid point, so this is a Riemann sum approximation of the integral.

Problem 2

Suppose that $f:[a,b]\to\mathbb{R}$ is a probability density function whose values on xs=a:e:b are stored in a vector v. Write a Julia expression which approximates $\mathbb{E}[X]$, where X is a random variable whose density is f.

Solution

The integral we seek to approximate is $\int_a^b x f(x) \, dx$, so we calculate either $sum(x \cdot *v)*step(xs)$ (following the previous example) or $sum(x \cdot *v)/sum(v)$ (thinking of the values of v as weights in a weighted average).

These expressions yield approximately the same result since sum(v)*step(xs) is approximately $\int_a^b f$, which is 1 since f is a PDF.

Problem 3

Given a flower randomly selected from a field, let X_1 be its petal width in centimeters, X_2 its petal length in centimeters, and $Y \in \{R, G, B\}$ its color. Let

Suppose that the joint distribution of X_1 , X_2 , and Y has the property that for any $A \subset \mathbb{R}^2$ and color $c \in \{R, G, B\}$, we have

$$\mathbb{P}(A\times\{c\})=p_c\int_{\mathbb{R}^2}f_c(x_1,x_2)\,\mathrm{d}x_1\,\mathrm{d}x_2,$$

where $(p_R, p_G, p_B) = (1/3, 1/6, 1/2)$ and f_c is the multivariate normal density with mean μ_c and covariance matrix $A_c A'_c$.

Find the best predictor of Y given $(X_1, X_2) = (x_1, x_2)$ (using the 0-1 loss function), and find a way to estimate that predictor using the given samples.

Solution

See the course text (second volume) for a solution.