Introduction to Bioinformatics and Computational Biology

2021-03-23

Contents

1	Cou	urse information	11
	1.1	Contributors	11
2	Inti	roduction	13
	2.1	Brief history of bioinformatics	13
	2.2	Should I take this course?	13
	2.3	Course information	13
	2.4	Lab 1	13
3	Hig	h throughput sequencing	15
	3.1	Three generations of sequencing technologies	15
	3.2	FASTQ and FASTQC	15
	3.3	Early sequence alignment (1 with 1) $\dots \dots \dots \dots$	15
	3.4	Sequence search algorihtms (1 with many)	16
	3.5	Borrow-Wheeler Aligner (many with many)	16
	3.6	Alignment output	16
4	RN	A-seq Quantification	17
	4.1	Introduction to RNA-seq experiment	17
	4.2	RNA quality control and experimental design	17
	4.3	Alignment	17
	4.4	RNA-seq QC	17
	4.5	RNA-seq expression index	17
	4 6	RSEM and Salmon	17

	4.7	RNA-seq read distribution	17
	4.8	$\operatorname{Lab} 2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	17
5	Diff	erential expression, FDR, GO, and GSEA	19
	5.1	DESeq2 library normalization	19
	5.2	DESeq2 variance stabilization	19
	5.3	Multiple hypotheses testing and False Discovery Rate	19
	5.4	DESeq2 gene filtering	20
	5.5	Gene Ontology (GO analysis)	20
	5.6	Gene Set Enrichent Analysis (GSEA)	20
	5.7	DESeq2 tutorial	20
3	Clu	stering	21
	6.1	Heatmap and clustering quality	21
	6.2	Hierarchical cluster	21
	6.3	K means cluster	21
	6.4	Pick K and consensus clustering	21
	6.5	Batch effect removal	21
	6.6	Lab3	21
,	Din	nension Reduction	23
	7.1	Principal Component Analysis: idea behind PCA	23
	7.2	Principal Component Analysis: PCA applications	23
	7.3	Multidimensional Scaling (MDS)	23
	7.4	Linear discriminant Analysis (LDA) $\ \ldots \ \ldots \ \ldots \ \ldots$	24
3	Clas	ssification	25
	8.1	$Introduction \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	25
	8.2	Supervised learning	25
	8.3	Cross validation	26
	8.4	Regression	26
	8.5	Regularization	26
	8.6	KNN	26

CONTENTS	5

	8.7	Decision trees	26
	8.8	Random forest	26
	8.9	SVM	26
	8.10	Lab 4	26
9	Mod	dule I Review	27
	9.1	Module I review	27
	9.2	Analysis Scenario 1	27
	9.3	Analysis Scenario 2	27
10	Trai	nscription Factor Motif Finding	29
	10.1	Transcription regulation	29
	10.2	Motif representation \dots	29
	10.3	$\mathrm{EM} \ldots \ldots$	29
	10.4	Gibbs sampler	29
	10.5	Gibbs intuition	29
	10.6	Motif finding in eukaryotes	29
	10.7	Known motif database	29
11	ChI	P-seq, Expression Integration	31
	11.1	Motif finding in eukaryotes, and ChIP-seq $\ \ldots \ \ldots \ \ldots$	31
	11.2	MACS and ChIP-seq QC \hdots	31
	11.3	Identify TF interactions from ChIP-seq motifs	31
	11.4	TF target genes and expression integration \hdots	31
	11.5	Lab 5	31
12	Epig	genetics, DNA Methylation	33
	12.1	Intro to DNA Methylation	33
	12.2	DNA Methylation Pattern and Function	33
	12.3	DNA Methylation in Diseases	33
	12.4	Techniques to Measure DNA Methylation	33

6 CONTENTS

13 His	tone Modifications, Chromatin Accessibility	35
13.1	Nucleosome Positioning	35
13.2	2 Introduction to Histone Modifications	35
13.5	3 Infer Transcription Factor Binding from Histone Mark Dynamics	35
13.4	Using Histone Marks to Infer Gene Functions	35
13.5	Introduction to DNase-seq and ATAC-seq	35
13.6	infer TF from Differential Genes Using LISA	35
13.7	Caution on DNase/ATAC-seq footprint analysis	35
13.8	Summary of Epigenetics and Chromatin	36
13.9	Lab 6	36
14 Hi	lden Markov Model	37
14.1	Markov Chain	37
14.2	Hidden Markov Model	37
14.5	Hidden Markov Model Forward Procedure	37
14.4	Hidden Markov Model Backward Procedure	37
14.5	HMM Forward-Backward Algorithm	37
14.6	Viterbi Algorithm	37
14.7	Baum Welch Algorithm Intuition	37
14.8	HMM Bioinformatics Applications	37
15 Hi		39
15.1	Introduction to Chromatin Interaction and Organization	39
15.2	Methods to Investigate 3D Genome Organization	39
15.3	3 Topologically Associating Domains	39
15.4	TAD Function and Loop Anchors	39
15.5	Chromatin Compartments	39
15.6	Computational Methods to Call Chromatin Loops	39
15.7	Variations of Chromatin Interaction Technologies	39
15.8	Resources for Exploring 3D Genomes	39
15.9	Lab 7	40

CONTENTS	7
----------	---

16	Module II Review	41
	16.1 Module II Review	41
	16.2 Module II Analysis Scenarios	41
17	SNP and GWAS	43
	17.1 SNP, LP, and Association Studies	43
	17.2 GWAS Studies and eQTL Analysis	43
	17.3 Lab 8	43
18	GWAS and Epigenomics	45
	18.1 Intro Functional Annotate GWAS $\ \ldots \ \ldots \ \ldots \ \ldots$	45
	18.2 GWAS Functional Enrichment	45
	18.3 Find Causal SNPs	45
	18.4 Predict disease risk	45
19	Single-cell RNA-seq (1)	47
	19.1 Intro to scRNA-seq	47
	19.2 scRNA seq techniques	47
	19.3 scRNA seq preprocessing and QC	47
	19.4 Cleaning up expression matrix	47
20	Single-cell RNA-seq (2)	49
	20.1 Annotate scRNA-seq clusters	49
	20.2 Differential expression	49
	20.3 Batch effect removal	49
	20.4 Pseudotime	49
	20.5 Overload 10X	49
	$20.6 \ \ Other \ applications \ (CITE-seq, \ multi-seq, \ spatial \ transcriptomics)$	49
21	scATAC-seq	51
	21.1 Intro to scATAC-seq	51
	21.2 Sample and cell QC \hdots	51
	21.3 Dimension reduction, clustering & visualization	51

	21.4	Differential peaks and annotations $\ \ldots \ \ldots \ \ldots \ \ldots$	51
	21.5	Integration with scRNA-seq	51
22	Mod	dule III Review	53
	22.1	Module III Review	53
23	Can	cer Genome Sequencing, Mutation analyses	55
	23.1	Intro to TCGA	55
	23.2	Cancer mutation characterization	55
	23.3	Cancer mutation patterns $\dots \dots \dots \dots \dots \dots$	55
	23.4	Tumor purity and clonality \ldots	55
	23.5	Interpret tumor mutations	55
	23.6	Find cancer genes	55
	23.7	Summary and future	55
24	Can	cer Subtyping, Survival Analyses	57
	24.1	TCGA expression	57
	24.2	Tumor subtypes	57
	24.3	Survival analysis	57
	24.4	GoF Oncogenes and LoF TS	57
	24.5	Chromatin regulator mutations in cancer	57
	24.6	DNA methylation and CIMP $\ \ldots \ \ldots \ \ldots \ \ldots$	57
2 5	Targ Scre	geted Therapy, Drug Resistance, Compound and Genetic eens	59
	25.1	Hallmarks of cancer	59
	25.2	Chemo vs targeted therapy	59
	25.3	Drug resistance	59
	25.4	Synthetic lethality	59
	25.5	Precision medicine	59
	25.6	Tumor (bulk vs scRNA-seq), mice, cell lines	59
		Compound screens	59
		Genetic screens	59
		Tumor heterogeneity	60

CONTENTS	9
----------	---

26	Can	cer Immunotherapy (1)	61
	26.1	Systemic immunotherapy	61
	26.2	Personalized immunotherapy \dots	61
	26.3	HLA and neoantigens	61
	26.4	Tumor immune deconvolution	61
	26.5	T cell signaling (PD1/PDL1, etc)	61
	26.6	Other immune-cells (scRNA-seq) $\ \ldots \ \ldots \ \ldots \ \ldots$	61
27	Can	cer Immunotherapy (2)	63
	27.1	TCR analysis	63
	27.2	BCR analysis	63
	27.3	$\label{eq:Microbiome} \mbox{Microbiome} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	63
	27.4	Immunotherapy response biomarkers	63
	27.5	Targeted the rapy as immune-modulators	63
	27.6	Epigenetic therapy as immune-modulators	63
2 8	CRI	SPR Screens	65
	28.1	CRISPR and KO	65
	28.2	CRISPRa and CRISPRi	65
	28.3	CRISPR design and outcome	65
	28.4	CRISPR screens & DepMap	65
	28.5	CRISPR screen analysis	65
	28.6	CRISPR screens in drug response	65
	28.7	CRISPR screens in immunology	65
	28.8	Enhancer CRISPR screen	65
	28.9	CRISPR screens $+$ scRNA-seq \dots	65
29	Mod	lule IV Review and Course Review	67
	29.1	Module IV Review	67
	20.2	Course Poview	67

10 CONTENTS

Course information

This is the course material for STAT115/215 BIO/BST282 at Harvard University.

All the YouTube videos in this course are organized under the 2021 STAT115 playlist.

1.1 Contributors

Xiaole Shirley Liu Harvard University and Dana-Farber Cancer Institute Joshua Starmer StatQuest
Martin Hemberg Wellcome Sanger Institute
Ting Wang Washington University
Feng Yue Northwestern University
Gad Getz Harvard University and Broad Institute

Ming Tang Yang Liu Bo Yuan Jack Kang Scarlett Qian Jiazhen Rong Phillip Nicol Maartin De Vries

We thank many colleagues in the community, who helped Dr. Liu in prepare the STAT115/215 BIO/BST282 course over the years. Some of the lecture slides acknowledged their contributions, but these contributors are not individually acknowledged here.

Introduction

2.1	Brief	history	of	bioin	formatic	\mathbf{S}
-----	-------	---------	----	-------	----------	--------------

- 2.1.1 Protein structure wave
- 2.1.2 Gene expression wave
- 2.1.3 Genome sequencing wave
- 2.1.4 Big data challenge from sequencing
- 2.2 Should I take this course?
- 2.2.1 Bioinformatics vs computational biology
- 2.2.2 Is this class for me?
- 2.3 Course information
- 2.3.1 Logistics
- 2.3.2 X Shirley Liu lab introduction
- 2.4 Lab 1

- 2.4.1 Introduction
- 2.4.2 Introduction to R
- 2.4.3 Introduction to Bash
- 2.4.4 Getting started with Cannon

High throughput sequencing

3.1 Three generations of sequencing technologies

First generation sequencing is Sanger sequencing. It is the technology that was used to obtain the first human genome sequence.

Second generation sequencing is also called next generation sequencing (NGS) and is the start of high throughput sequencing. It is what scientists use most often nowadays, and Illumina is the market leader. Most of the rest of this course will cover data analysis using second generation sequencing.

Third generation sequencing is single-molecule sequencing. There are many new technologies still under active development, although none has reached market penetration.

3.2 FASTQ and FASTQC

NGS generates FASTQ files. FASTQC is an computational approach to evaluate the quality of your NGS data.

3.3 Early sequence alignment (1 with 1)

In the early days (1970s), scientists were not worried about having to align too many sequences. They wanted to find the best alignment between two sequences. Many bioinformatics courses start with learning these, although it is not the main focus of our course. We included two videos in case you are interested.

The Needlemen-Wunsch algorithm is the earliest algorithm to find the alignment between two sequences and score their similarity.

When two sequences are long, and only a portion of them can align well with each other, the Smith-Waterman algorithm can find the best local sequence alignment. It is still considered the best alignment approach, although it is slow.

3.4 Sequence search algorithms (1 with many)

With more and more sequences available in the public in the 1980s, scientists were interested in finding whether their newly sequenced string has been sequenced before in the public database. Therefore, the fast search algorithm BLAST was developed, using one sequence as the query to find similar sequences from a database.

3.5 Borrow-Wheeler Aligner (many with many)

With NGS, scientists need much faster search (aka mapping) algorithms in order to align the millions of sequences to the reference genome. The current best algorithm is called Borrow-Wheeler Aligner or BWA.

In order to understand BWA, we first need to introduce Borrows-Wheeler transformation and LF mapping

The basic idea of Borrows-Wheeler alignment

3.6 Alignment output

NGS raw data is in FASTQ. Alignment gives you SAM (alignment) or BAM (binary version of SAM) files which contain the sequence information in FASTQ and the mapping locations. BED file is the simpliest, although there is information loss.

RNA-seq Quantification

- 4.1 Introduction to RNA-seq experiment
- 4.2 RNA quality control and experimental design
- 4.3 Alignment
- 4.4 RNA-seq QC
- 4.5 RNA-seq expression index
- 4.6 RSEM and Salmon
- 4.7 RNA-seq read distribution
- 4.8 Lab 2
- 4.8.1 STAR tutorial
- 4.8.2 RSeQC tutorial
- 4.8.3 RSEM/Salmon Tutorial

Differential expression, FDR, GO, and GSEA

DESeq2 is a popular and accurate computational algorithm to detect differential gene expression from RNA-seq data. It includes many elegant quantitative considerations, such as:

- Normalize the gene read counts by library size and composition
- Model gene read counts with negative binomial distribution
- Use hierarchical modeling to stabilize the gene variance
- Use Benjamini-Hochberg to calculate control for false discovery rate of calling differentially expressed genes
- Filter lowly expressed genes to reduce the number of hypotheses to be tested
- 5.1 DESeq2 library normalization
- 5.2 DESeq2 variance stabilization
- 5.3 Multiple hypotheses testing and False Discovery Rate

- 5.4 DESeq2 gene filtering
- 5.5 Gene Ontology (GO analysis)
- 5.6 Gene Set Enrichent Analysis (GSEA)
- 5.7 DESeq2 tutorial

Clustering

- 6.1 Heatmap and clustering quality
- 6.2 Hierarchical cluster
- 6.3 K means cluster
- 6.4 Pick K and consensus clustering
- 6.5 Batch effect removal
- 6.6 Lab3
- 6.6.1 PCA tutorial
- 6.6.2 Clustering tutorial
- 6.6.3 Combat tutorial
- 6.6.4 DESeq2 Tutorial
- 6.6.5 DAVID/GSEA Tutorial

Dimension Reduction

RNA-seq samples have tens of thousands of genes, although many genes might not vary much between samples and many others have correlated gene expression. Dimension reduction techniques aim to reduce the dimension of representing each sample with tens of thousands of genes to much fewer demensions, e.g. 2 to 100.

7.1 Principal Component Analysis: idea behind PCA.

PCA / SVD automatically outputs PC1, PC2, PC3, etc, with earlier PCs capturing the highest level of variability in the original data. Each PC is a linear combination of raw gene expression, and is orthogonal to all other PCs.

7.2 Principal Component Analysis: PCA applications.

PCA is a widely used method to project samples with high dimensions (e.g. with gene expression data) onto two dimensions for better visualization. It is an intuitive way to identify sample clusters, and identify batch effect.

7.3 Multidimensional Scaling (MDS)

MDS can use differential ways to calculate pair-wise distance, then use lower dimensions to satisfy the pair-wise distance. PCA is a special case of MDS.

7.4 Linear discriminant Analysis (LDA)

LDA is not only a dimension reduction method, but also a supervised machine learning method.

Classification

8.1 Introduction

Imagine you have RNA-seq of a collection of labeled normal lung and lung cancer tissues. Given a new sample of RNA-seq from the lung with unknown diagnosis, will you be able to predict based on the existing labeled samples and the expression data whether the new sample is normal or tumor? This is a sample classification problem, and it could be solved using **unsupervised** and **supervised** learning approaches.

Unsupervised learning is basically clustering or dimension reduction. You can use hierarchical clustering, MDS, or PCA. After clustering and projection the data to lower dimensions, you examine the labels of the known samples (hopefully they cluster into separate groups by the label). Then you can assign label to the unknown sample based on its distance to the known samples.

Supervised learning considers the labels with known samples and tries to identify features that can separate the samples by the label. Cross validation is conducted to evaluate the performance of different approaches and avoid over fitting.

StatQuest has done an amazing job with machine learning with a full playlist of well organized videos. While the full playlist is worth a full course, for the purpose of the course, we will just highlight a number of widely used approaches. They include logistic regression (this is considered statistical machine learning), K nearest neighbors, random forest, and support vector machine (these are considered computer science machine learning).

8.2 Supervised learning

- 8.3 Cross validation
- 8.4 Regression
- 8.5 Regularization
- 8.5.1 Ridge regression
- 8.5.2 LASSO regression
- 8.5.2.1 LASSO tutorial in R
- 8.6 KNN
- 8.7 Decision trees
- 8.8 Random forest
- 8.9 SVM
- 8.10 Lab 4
- 8.10.1 K-Nearest Neighbors tutorial
- 8.10.2 Regression/Ridge/LASSO Tutorial
- 8.10.3 Logistic Regression Tutorial
- 8.10.4 Support Vector Machine Tutorial
- 8.10.5 Random Forest Tutorial

Module I Review

- 9.1 Module I review
- 9.2 Analysis Scenario 1
- 9.3 Analysis Scenario 2

Transcription Factor Motif Finding

- 10.1 Transcription regulation
- 10.2 Motif representation
- 10.3 EM
- 10.4 Gibbs sampler
- 10.5 Gibbs intuition
- 10.6 Motif finding in eukaryotes
- 10.7 Known motif database

ChIP-seq, Expression Integration

- 11.1 Motif finding in eukaryotes, and ChIP-seq
- 11.2 MACS and ChIP-seq QC
- 11.3 Identify TF interactions from ChIP-seq motifs
- 11.4 TF target genes and expression integration
- 11.5 Lab 5
- 11.5.1 MACS Tutorial
- 11.5.2 ChIP-seq QC Tutorial
- 11.5.3 TF Motif Finding Tutorial
- 11.5.4 TF Collaborator Tutorial

Epigenetics, DNA Methylation

- 12.1 Intro to DNA Methylation
- 12.2 DNA Methylation Pattern and Function
- 12.3 DNA Methylation in Diseases
- 12.4 Techniques to Measure DNA Methylation

Histone Modifications, Chromatin Accessibility

- 13.1 Nucleosome Positioning
- 13.2 Introduction to Histone Modifications
- 13.3 Infer Transcription Factor Binding from Histone Mark Dynamics
- 13.4 Using Histone Marks to Infer Gene Functions
- 13.5 Introduction to DNase-seq and ATAC-seq
- 13.6 Infer TF from Differential Genes Using LISA
- 13.7 Caution on DNase/ATAC-seq footprint analysis

- 13.8 Summary of Epigenetics and Chromatin
- 13.9 Lab 6
- 13.9.1 ChIP-seq Expression Integration
- 13.9.2 Cistrome-GO Tutorial
- 13.9.3 ATAC-seq Analysis and LISA Tutorial

Hidden Markov Model

- 14.1 Markov Chain
- 14.2 Hidden Markov Model
- 14.3 Hidden Markov Model Forward Procedure
- 14.4 Hidden Markov Model Backward Procedure
- 14.5 HMM Forward-Backward Algorithm
- 14.6 Viterbi Algorithm
- 14.7 Baum Welch Algorithm Intuition
- 14.8 HMM Bioinformatics Applications

HiC

15.1	Introduction to Chromatin Interaction and
	Organization

- 15.2 Methods to Investigate 3D Genome Organization
- 15.3 Topologically Associating Domains
- 15.4 TAD Function and Loop Anchors
- 15.5 Chromatin Compartments
- 15.6 Computational Methods to Call Chromatin Loops
- 15.7 Variations of Chromatin Interaction Technologies
- 15.8 Resources for Exploring 3D Genomes

- 15.9 Lab 7
- 15.9.1 BS-seq and Bismark Tutorial
- 15.9.2 Tutorial on Associating DNA Methylation with Expression
- 15.9.3 HiC Analysis Tutorial

Module II Review

- 16.1 Module II Review
- 16.2 Module II Analysis Scenarios

SNP and GWAS

- 17.1 SNP, LP, and Association Studies
- 17.2 GWAS Studies and eQTL Analysis
- 17.3 Lab 8
- 17.3.1 HW4 FAQ & cooler
- 17.3.2 Pikachu&HiGlass
- 17.3.3 HMM

GWAS and Epigenomics

- 18.1 Intro Functional Annotate GWAS
- 18.2 GWAS Functional Enrichment
- 18.3 Find Causal SNPs
- 18.4 Predict disease risk

Single-cell RNA-seq (1)

- 19.1 Intro to scRNA-seq
- 19.2 scRNA seq techniques
- 19.3 scRNA seq preprocessing and QC
- 19.4 Cleaning up expression matrix

Single-cell RNA-seq (2)

- 20.1 Annotate scRNA-seq clusters
- 20.2 Differential expression
- 20.3 Batch effect removal
- 20.4 Pseudotime
- 20.5 Overload 10X
- 20.6 Other applications (CITE-seq, multi-seq, spatial transcriptomics)

scATAC-seq

- 21.1 Intro to scATAC-seq
- 21.2 Sample and cell QC
- 21.3 Dimension reduction, clustering & visualization
- 21.4 Differential peaks and annotations
- 21.5 Integration with scRNA-seq

Module III Review

22.1 Module III Review

Cancer Genome Sequencing, Mutation analyses

- 23.1 Intro to TCGA
- 23.2 Cancer mutation characterization
- 23.3 Cancer mutation patterns
- 23.4 Tumor purity and clonality
- 23.5 Interpret tumor mutations
- 23.6 Find cancer genes
- 23.7 Summary and future

Cancer Subtyping, Survival Analyses

- 24.1 TCGA expression
- 24.2 Tumor subtypes
- 24.3 Survival analysis
- 24.4 GoF Oncogenes and LoF TS
- 24.5 Chromatin regulator mutations in cancer
- 24.6 DNA methylation and CIMP

Targeted Therapy, Drug Resistance, Compound and Genetic Screens

- 25.1 Hallmarks of cancer
- 25.2 Chemo vs targeted therapy
- 25.3 Drug resistance
- 25.4 Synthetic lethality
- 25.5 Precision medicine
- 25.7 Compound screens
- 25.8 Genetic screens

25.9 Tumor heterogeneity

Cancer Immunotherapy (1)

- 26.1 Systemic immunotherapy
- 26.2 Personalized immunotherapy
- 26.3 HLA and neoantigens
- 26.4 Tumor immune deconvolution
- 26.5 T cell signaling (PD1/PDL1, etc)
- 26.6 Other immune-cells (scRNA-seq)

Cancer Immunotherapy (2)

- 27.1 TCR analysis
- 27.2 BCR analysis
- 27.3 Microbiome
- 27.4 Immunotherapy response biomarkers
- 27.5 Targeted therapy as immune-modulators
- 27.6 Epigenetic therapy as immune-modulators

CRISPR Screens

28.1	CRISPR	and KC
40.1	CUISEL	and NU

- 28.2 CRISPRa and CRISPRi
- 28.3 CRISPR design and outcome
- 28.4 CRISPR screens & DepMap
- 28.5 CRISPR screen analysis
- 28.6 CRISPR screens in drug response
- 28.7 CRISPR screens in immunology
- 28.8 Enhancer CRISPR screen
- 28.9 CRISPR screens + scRNA-seq

Module IV Review and Course Review

- 29.1 Module IV Review
- 29.2 Course Review