

Grado en Informática y Mátematicas Métodos Numéricos I. Curso 2012/13.

Prueba Final (04-07-2013):

ALUMNO:	D.N.I.:

Parte de Teoría

1. Ejercicios

1. 2 puntos Considera el problema de interpolación siguiente:

Hallar $p(x) \in \mathbb{P}_2$ tal que $p(1) = z_1$, $p'(-1) = z_2$, $p'(2) = z_3$ donde $z_i \in \mathbb{R}$.

Se pide,

- a) Deduce la matriz de Gram, G, asociada al problema y base canónica de \mathbb{P}_2 y prueba que única el problema admite solución.
- b) Para $z_1 = 1$, $z_2 = -1$, $z_3 = 2$; calcula el interpolante a partir de la descomposición de Doolittle para G.
- c) Considera como base de \mathbb{P}_2 los polinomios formados por las componentes del producto,

$$(1, x, x^2) \cdot U^{-1}$$

siendo U la matriz (triangular superior) de la descomposición calculada en b). ¿Se puede decir que ésta sería una base tipo Newton para el problema aquí tratado?. Justifica tu respuesta.

2. **2 puntos** Los datos medidos por distintos controles radar sobre tiempos, distancias y velocidades de una motocicleta que se dirige al circuito de Jerez por la A-92 son los siguientes:

$t_i(horas)$	0	0.1	0.2
$e_i(km)$	0	10	20
$v_i(km/hora)$	90	60	60

Con el método a trozos, calcula el spline cúbico clase 1 que interpola los datos de la tabla y determina si se ha sobrepasado la velocidad máxima permitida en el segundo tramo medido.

- 3. **2 puntos** Dado el sistema de ecuaciones lineales: $\begin{pmatrix} 4 & -2 & 0 \\ -2 & 10 & 3 \\ 0 & 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ -6 \\ 5 \end{pmatrix}$
 - a) ¿Es definida positiva la matriz de coeficientes?. En caso afirmativo, realiza la descomposición de Choleski a partir de la de Crout.
 - b) Escribe las ecuaciones del método iterativo de Gauss-Seidel para aproximar la solución del sistema y calcula 2 iteraciones desde la inicial: x = 0, y = -1, z = 0.
 - c) Justifica, razonadamente, que el método es convergente.
- 4. 2 puntos Calcula el spline lineal, $s(x) \in S_1(-2,0,2)$, mejor aproximación m.c. continua para la función $f(x) = x^3$ (nota: el intervalo de trabajo es: [-2,2])

2. Cuestiones

2 puntos En cada una de las cuestiones siguientes, marca con una X la o las opciones correctas (no es necesario justificación). (Nota: responde sólo a 5) 1. Sea u_1 la m.a. de f en H_1 y u_2 la m.a. de f en H_2 (con $H_2 \subset H_1$). Sean $E_i = \|f - u_i\|$ i = 1, 2 los errores cometidos; entonces, \Box E_1 y E_2 no están relacionados; \square E_2 no es menor que E_1 ; \Box E_1 y E_2 son iguales; ninguna de las afirmaciones anteriores es cierta. 2. la función a trozos, $f(x) = \begin{cases} 3x - 1 & -1 \le x < 0 \\ \alpha x^3 + 3x - 1 & 0 \le x < 1 \\ 3x^2 & 1 \le x < 2 \end{cases}$ \neg es un spline cúbico si $\alpha = 1$ es un spline cúbico natural si $\alpha = 0$ es una función continua cualquiera que sea el valor de α ninguna de las anteriores afirmaciones es correcta. 3. Si calculamos el valor de \sqrt{e} usando el interpolante de Lagrange en los nodos $x_i := \{0,1\}$; entonces, el error cometido en valor absoluto es mayor que 0.5 es menor que 0.4 está entre 0.4 y 0.5 4. La m.a.m.c. continua y la m.a.m.c. continua con peso w(x) = 3 para f(x) son iguales. Verdadero Falso 5. Si una matriz invertible, \mathbf{A} , admite descomposición del tipo $\mathbf{A} = \mathbf{U} \cdot \mathbf{L}$ siendo U triangular superior (con $u_{ii} = 1 \quad \forall i$) y L triangular inferior; entonces, dicha descomposición puede calcularse a partir de, la descomposición de Doolittle para A^t la descomposición de Crout para A^t la descomposición de Crout para A^{-1} la descomposición de Doolittle para A^{-1} 6. Toda matriz real de orden 3×3 , A, con valores propios $\lambda_i := -1, 2, 1$ cumple, su traza y determinante son iguales la matriz A^2 sólo tiene dos valores propios distintos. tiene discos de Gershgorin disjuntos las matrices A + I y A - I no tienen inversa

Grado en Informática y Mátematicas Métodos Numéricos I. Curso 2012/13.

Prueba Final (04-07-2013):

ALUMNO:	D.N.I.:

Cuestiones de los trabajos 0.25 puntos sobre nota final

Responde a una de las cuestiones que no sea del tema correspondiente a tu grupo.

1. (**Tema 1**) Completa la tabla que permite obtener el valor del interpolante en x=2 para los datos $x_i -1 0 1 y_i 2 -1 3$

$x-x_i$	x_i	y_i	$grado\ 1$	grado 2
3	-1	2		
2	0	-1		
1	1	3		

- 2. (**Tema 2**) Si s(x) es un spline cuadrático que pasa por los puntos, $(x_i, y_i) := \{(-1, 2); (0, 3); (1, 5)\}$ cuyo primer trozo es, $s_1(x) = 3 + x$, ¿cuál es el segundo trozo de spline?
- 3. (**Tema 3**) A partir de la red de control formada por los puntos P_0, P_1, P_2 de la figura, traza el punto de la curva Bézier asociada que corresponde al valor del parámetro t = 1/3 (recuerda que para t = 0 se obtiene el punto P_0 y para t = 1 se consigue el punto P_2)

Figura 1: Red de control de la curva Bézier

- 5. (**Tema 5**) Escribe una condición suficiente que permita asegurar que la matriz, $A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix}$ admite descomposición de Doolittle.
- 6. (**Tema 6**) Calcula el polinomio característico de la matriz $A = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$, usando el método de Souriau