BUNDESREPUBLIK DEUTSCHLAND

EP 99/17 2.9

PRIUKITY

DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 1.0 MAY 1999
WIPO PCT

5 09/646986

Bescheinigung

Die Hoechst Marion Roussel Deutschland GmbH in Frankfurt am Main/ Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Miniaturisierte Mikrotiterplatte für das HTS-Screening"

am 12. August 1998 beim Deutschen Patent- und Markenamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole B 01 L und G 01 N der Internationalen Patentklassifikation erhalten.

München, den 25. Januar 1999

Deutsches Patent- und Markenamt

Der Präsident

()ele

Im Auftrag

Wehner

Aktenzeichen: <u>198 36 505.5</u>

Beschreibung

5 Miniaturisierte Mikrotiterplatte für das HTS-Screening

Die Erfindung betrifft eine miniaturisierte Mikrotiterplatte für das HTS-Screening (High Throughput Screening).

Bei diesem Screening ist es wünschenswert, den Verbrauch von
Assaykomponenten sowie von den Substanzen aus den Screening-Libraries
möglichst niedrig zu halten und den Durchsatz von Screeningassays möglichst
hoch. Dies kann durch eine Miniaturisierung von Screeningassays erreicht werden.
Hierbei ist es jedoch notwendig, entsprechende Mikrotiterplatten zu befüllen, die ein
Assayvolumen von etwa 1 bis 2 µl aufweisen. Verfügbar sind bisher erst wenige
Prototypen, die nur von bestimmten Analysengeräten verarbeitet werden können.
Benötigt werden jedoch Mikrotiterplatten, die eine Analyse mit sehr empfindlichen
Detektoren (mit konvokaler Optik) ermöglichen und die die Befüllung mit
"Nanodispensern" erlauben. Ferner wünschenswert ist zudem ein
Verdunstungsschutz.

Bekannt sind Mikrotiterplatten der Fa. Greiner, 64943 Hirschberg, (Micro-Assay-Plate, 1536 wells). Hier ist das Arbeitsvolumen der Probenträger relativ hoch (4-8 µl) und sie erlauben keine "Single Molecule Detection". Das Arbeitsvolumen der Mikrotiterplatten von Corning Costar (Corning Costar Deutschland, 55924 Bodenheim) liegt zwar zwischen 1 bis 2 µl, allerdings ist der Rahmen der Mikrotiterplatten zu dünn, so daß übliche Robotersysteme die Mikrotiterplatten nicht transportieren können. Auch hier ist eine "Single Molecular Detection" nicht möglich.

30 Hier will die Erfindung Abhilfe schaffen.

Erfindungsgemäß geschieht dies durch eine miniaturisierte Mikrotiterplatte mit einer Größe von 12,7 x 8,5 cm, die dadurch gekennzeichnet ist, daß die Mikrotiterplatte (Körper aus Kunststoff, Boden aus Glas), 1536 Gefäße (Wells) hat, der Durchmesser der Gefäße (Wells) ungefähr 1,2 bis 1,5 mm ist, der Boden der Mikrotiterplatte aus Glas besteht und eine Schichtdicke von 0,07 - 0,2 mm, bevorzugt 0,14 mm, aufweist und die Mikrotiterplatte einen Deckel als Verdunstungsschutz hat.

Die Form der Gefäße (Wells) ist variabel. So können beispielsweise runde, eckige oder abgerundet eckige Gefäße verwendet werden. Bevorzugt sind runde Gefäße.

Bei der Herstellung von Mikrotiterplatten ist es wichtig, das richtige Material zu verwenden. Der Körper der Mikrotiterplatte besteht aus Kunststoff, wie z.B. Polystyrol, Polypropylen, Polycarbonat, Vectra, Hostalen. Die Mikrotiterplatten werden in der Regel im Spritzgußverfahren hergestellt. Nach dem Spritzen kühlt der Kunststoff ab. Dabei kann sich die Mikrotiterplatte verbiegen (da die Abkühlung lokal unterschiedlich schnell erfolgt). Somit ist es günstig ein Material zu verwenden, das nur eine sehr geringe "Verkrümmung" erzeugt.

- Der Deckel der Mikrotiterplatte ist ebenfalls aus Kunststoff und sitzt auf der Mikrotiterplatte formschlüssig auf. Die Schichtdicke des Bodens (Material: Glas) der Mikrotiterplatte (0,07 0,20 mm) als auch der Durchmesser der Gefäße (ca. 1,2 1,5 mm) erlauben die Analyse der Mikrotiterplatte mit Hilfe einer konvokalen Optik. Die Verwendung einer konvokalen Optik hat folgende Vorteile:
- Die Sensitivität ist sehr hoch (im Vergleich zu nicht konvokalen Optiken), da
 U. U. sogar einzelne Moleküle detektiert werden können (Single Molecule Detection)
 - 2. Aufgrund der hohen Sensitivität kann die Meßzeit niedriger sein und somit die gesamte Analysegeschwindigkeit einer Mikrotiterplatte erhöht werden (im Vergleich zu vielen nicht konvokalen Optiken).
- 3. Da der Focus einer konvokalen Optik sehr klein ist (meist deutlich unter 10 µm), ist die Detektion von Hintergrundsignalen stark reduziert und somit das Signal/Rauschverhältnis besser (im Vergleich zu nicht konvokalen Optiken).

Der Boden der Mikrotiterplatte, der aus Glas besteht, kann mit unterschiedlichen chemischen und biologischen Substanzen beschichtet werden, um unspezifische Bindungen zu unterdrücken. Ebenfalls sollte der Boden biologische Moleküle tragen können, die spezifisch andere Substanzen binden. Letzteres ist bedeutsam für den Einsatz im Pharmascreening, z.B. für Sandwich-Assays.

Die Anzahl der Gefäße (Wells) der miniaturisierten Mikrotiterplatte kann auch variieren.

Im folgenden werden mögliche Ausgestaltungen der erfindungsgemäßen Mikrotiterplatte anhand der Figuren 1 bis 3 näher beschrieben.

Fig. 1: Perspektivische Darstellung der Mikrotiterplatte mit abgehobenem Deckel

Fig. 2: Schnitt gemäß Ebene II-II aus Fig. 1

5

10

15

25

30

Fig. 3: Schnitt gemäß Ebene III-III aus Fig. 1

In Fig. 1 ist die Mikrotiterplatte mit den Gefäßen (3) perspektivisch dargestellt. Der Rahmen (1) hat eine Länge von a = 127 mm und eine Breite von b = 85 mm. Der Deckel (4) mit den Vorsprüngen (5) ist in abgehobenem Zustand gezeigt.

Fig. 2 ist ein Schnitt gemäß Ebene II-II dargestellt. Der Glasboden (2) ist unter der ikrotiterplatte befestigt. Der Randabstand (a1) beträgt 3 - 8 mm, bevorzugt 6 mm, und der Abstand (a2) 6 - 11 mm, bevorzugt 9,5 mm. Der entsprechende Randabstand (b1) in Fig. 3 beträgt ebenfalls 3 - 8 mm, bevorzugt 6 mm, und der Abstand (b2) 4 - 9 mm, bevorzugt 6,5 mm. Die Rahmenhöhe der Mikrotiterplatte beträgt c = 6 - 15 mm, bevorzugt 6 mm, und die Innenhöhe c1 3 - 12 mm, bevorzugt 3 mm. Der Gefäßdurchmesser (d) liegt zwischen 1,0 und 1,5 mm, bevorzugt bei 1,3 mm, der Gefäßabstand (a3) bei 2,25 mm und die Gefäßhöhe (h) zwischen 2,0 und 7,0 mm.

Patentanspruch:

Miniaturisierte Mikrotiterplatte mit einer Größe von 12,7 x 8,5 cm, dadurch gekennzeichnet, daß die Mikrotiterplatte (Körper aus Kunststoff, Boden aus Glas), 1536 Gefäße (Wells) (3) hat, der Durchmesser der Gefäße (Wells) (d) 1,2 bis 1,5 mm ist, der Boden der Mikrotiterplatte (2) aus Glas besteht und eine Schichtdicke von 0,07 - 0,2 mm aufweist und die Mikrotiterplatte einen Deckel (4) als
 Verdunstungsschutz hat.

HMR 1998/L053

Zusammenfassung

5 Miniaturisierte Mikrotiterplatte für das HTS-Screening

Es ist eine miniaturisierte Mikrotiterplatte mit einer Größe von 12,7 x 8,5 cm beschrieben. Die Mikrotiterplatte hat einen Körper aus Kunststoff und einen Boden aus Glas, 1536 Gefäße (Wells) (3) und einen Deckel (4) als Verdunstungsschutz.

Der Durchmesser der Gefäße (Wells) (d) beträgt 1,2 bis 1,5 mm. Der Boden der Mikrotiterplatte (2) weist eine Schichtdicke von 0,07 - 0,2 mm auf.

Hig: 2

