Reduplication without segments

Verb doubling as prosodic repair

Bronwyn Bjorkman Queen's University @ Kingston

In phonology, reduplication often occurs as a prosodic repair

• To meet minimal word requirements, provide syllable onsets, etc. (McCarthy and Prince, 1993, Yu, 2005, Saba Kirchner, 2010, a.o.)

A parallel in syntax: verb doubling for the purposes of providing an otherwise unsupported clitic with a host.

- Ingush (Peterson, 2001) preverbal enclitic *?a* requires a vP-internal host. If none is available, the verb doubles.
- **Breton** (Jouitteau, 2010, 2012) finite verb follows *rannig* finiteness element in V2 position. If nothing else precedes the rannig, verb doubles (or DO-support)—but element before the rannig can be in any of several positions.

(2) and (4) \longrightarrow

- ullet Not affixal reduplication \to no reduplicative morpheme.
- ullet Not multiple copy realization o trigger for doubling is prosody, not independently motivated syntactic movement

(Nunes, 2004; Kandybowicz, 2008; Aboh and Dyakonova, 2009)

• Not **syntactic** repair—satisfying a **linear** wellformedness requirement.

(cf. Conathan and Good 2000)

Proposal: Prosodic verb doubling is indeed reduplication, but prior to vocabulary insertion

non-segmental reduplication.

- Syntax produces a **non-linear** representation: \sqrt{roots} + [F]
- Linearization is *prior* to Vocabulary Insertion—but at this stage **phrasal prosody** must be satisfied.
- Elements can be doubled to provide clitics with hosts
- Motivated by similar constraint interactions to prototypical reduplicative repairs.

Syntax \longrightarrow Linearization \longrightarrow VI \longrightarrow Segmental Phonology

- Multiple "levels" of phonology, but different levels operate over different units:
- → linearization over syntactic atoms + hierarchy
- \rightarrow segmental phonology over segments + strings.

(contrast Stratal OT, Kiparsky, 2000, 2007)

- Like Minimal reduplication (Saba Kirchner, 2010), but unlike "syntactic reduplication": not the result of morphosyntactic movement.
- Different profiles for reduplication arise from differences in the stage of the derivation at which it applies.
- In all cases, reduplication is an optimal resolution of conflicting requirements.

Constraints:

- PROSODIC SUPPORT: An enclitic requires a prosodic word to its right. (Franks, 2000)
- CLITIC-V: Family of constraints governing position of clitic and V.
- INTEGRITY: No element of S_1 has multiple correspondents in S_2 .

(Saba Kirchner 2010:190)

Ranking:

Linearization is constraint-based, and it causes some verb doubling as a prosodic repair, before vocabulary insertion.

DATA

Ingush: Clitic = ?a is second-position within vP.

- Verb doubles when no other vP-internal host available.
- (2) jett [laq =?a laq-aa]b-el-ar.

 cow [go.dry=& go.dry-ACV] AGR-die-PAST

 "The cow stopped giving milk and died."

Breton: Rannig is second-position within CP.

- (3) [D'ar jardin] =ez an.[P DET garden] =R go.1sG."I am going into the garden."
- Verb doubles when no other host available.
- (4) Mont =a yan d'ar jardin.

 go =R go.1sg P DET garden

 "I am going into the garden."

TABLEAUS

$PP[_{FinP} = R[\sqrt{go} - T[=(3)]]$	Pros. Supp.	CLITIC-V	INTEGRITY
$^{\mbox{\ensuremath{\ensuremath{\wp}}}}$ a. PP=R + \sqrt{go} -T			
b.PP + \sqrt{go} -T=R		*!	
c. PP + \sqrt{go} =R + \sqrt{go} -T			*!

$[F_{inP} = R [\sqrt{go} - T [=(4)]]$	Pros. Supp.	CLITIC-V	INTEGRITY
$a. = R + \sqrt{go} - T \dots$	*!		
b. √ <i>go</i> -T=R		*!	
$\mathbb{C} \cdot \sqrt{go} = \mathbb{R} + \sqrt{go} - \mathbb{T} \dots$		 	*

