UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9709 MATHEMATICS

9709/43

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9709	43

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9709	43

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9709	43

1	a = g	gsin30°	B1		
		$V_1^2 = 2(g\sin 30^\circ)0.9$	M1		For using $v^2 = 2as$
		$mv_1^2 = mg(0.9\sin 30^\circ)$			or $1/2 \text{ mv}^2 = \text{mgh}$
	or (i	i) $v_2 = (g \sin 30^\circ) 0.8$			or $v = at$
		Speed is 3 ms ⁻¹ or (ii) Speed is 4ms ⁻¹	A1		
	(ii)	Speed is 4ms ⁻¹ or (i) Speed is 3 ms ⁻¹	B1	[4]	
2	(i)	$[\frac{1}{2} \text{ v}^2 = 10\text{x}1.8]$ Speed is 6 ms^{-1}	M1 A1	[2]	For using $\frac{1}{2}$ mv ² = mgh
			111	(-)	
	(ii)	$[WD = \frac{1}{2}x0.5(6^2 - 5^2) \text{ or}$	M1		For using WD = loss of KE
	()	$0.5 \times 10 \times 1.8 = \frac{1}{2} \times 0.5 \times 5^{2}$			or $KE_A + PE_A - WD = KE_C + PE_C$
		Work done is 2.75 J	A1	[2]	A A C C
3	(i)	$[2T\cos 30^{\circ} = 3\sqrt{3}$	M1		For expressing resultant in terms of T and equating with value
		or $T/\sin 30^{\circ} = 3\sqrt{3}/\sin 120^{\circ}$			or for using sine rule
		or $T^2 = T^2 + (3\sqrt{3})^2 - 2T(3\sqrt{3})\cos 30^\circ$			or for using cosine rule
		or $\sqrt{\{(T\cos 30^{\circ})^2 + (T + T\cos 60^{\circ})^2\}} = 3\sqrt{3}$			or for finding Rx and Ry and equating
		(110000)			resultant to $3\sqrt{3}$
		Tension is 3 N	A1	[2]	AG
		Tension is 314	711	[-]	710
	(ii)	$[T = F + mg \sin 30]$	M1		For resolving forces on Q parallel to AC
		$R = mg \cos 30$	B1		
			M1		For using $F = \mu R$
		$3 = 0.75(10\cos 30^{\circ}) \mathrm{m} + 10 \mathrm{m} \sin 30^{\circ}$	A1		
		Mass is 0.2611ss	A 1	[5]	
		Mass is 0.261 kg			
4	(i)	v(4) = 0.75x4	B1		
4	(i)	v(4) = 0.75x4			
4	(i)	v(4) = 0.75x4 v(54) = v(4) and $v(60) = v(54) - 0.5(60 - 54)Velocity is 3 ms-1 when t = 4 and 0 when$	B1 B1 B1		
4	(i)	v(4) = 0.75x4 v(54) = v(4) and $v(60) = v(54) - 0.5(60 - 54)$	B1		Graph consists of 3 straight line
4	(i)	v(4) = 0.75x4 v(54) = v(4) and $v(60) = v(54) - 0.5(60 - 54)Velocity is 3 ms-1 when t = 4 and 0 when$	B1 B1		segments with 1 st and 3 rd having +ve
4	(i)	v(4) = 0.75x4 v(54) = v(4) and $v(60) = v(54) - 0.5(60 - 54)Velocity is 3 ms-1 when t = 4 and 0 when$	B1 B1		segments with 1 st and 3 rd having +ve and -ve slopes respectively; v is single
4	(i)	v(4) = 0.75x4 v(54) = v(4) and $v(60) = v(54) - 0.5(60 - 54)Velocity is 3 ms-1 when t = 4 and 0 when$	B1 B1		segments with 1 st and 3 rd having +ve and -ve slopes respectively; v is single valued and continuous throughout, and
4	(i)	v(4) = 0.75x4 v(54) = v(4) and $v(60) = v(54) - 0.5(60 - 54)Velocity is 3 ms-1 when t = 4 and 0 whent = 60$	B1 B1		segments with 1 st and 3 rd having +ve and -ve slopes respectively; v is single valued and continuous throughout, and $v(0) = 0$.
4	(i)	$v(4) = 0.75x4$ $v(54) = v(4) \text{ and } v(60) = v(54) - 0.5(60 - 54)$ $Velocity \text{ is } 3 \text{ ms}^{-1} \text{ when } t = 4 \text{ and } 0 \text{ when } t = 60$ $2^{nd} \text{ segment has zero slope; end points of}$	B1 B1		segments with 1 st and 3 rd having +ve and -ve slopes respectively; v is single valued and continuous throughout, and
4	(i)	v(4) = 0.75x4 v(54) = v(4) and $v(60) = v(54) - 0.5(60 - 54)Velocity is 3 ms-1 when t = 4 and 0 whent = 60$	B1 B1	[5]	segments with 1 st and 3 rd having +ve and -ve slopes respectively; v is single valued and continuous throughout, and $v(0) = 0$.
4		$v(4) = 0.75x4$ $v(54) = v(4) \text{ and } v(60) = v(54) - 0.5(60 - 54)$ $Velocity \text{ is } 3 \text{ ms}^{-1} \text{ when } t = 4 \text{ and } 0 \text{ when } t = 60$ $2^{nd} \text{ segment has zero slope; end points of segments are seen to be correct}\{(0,0), (4,3$	B1 B1 M1	[5]	segments with 1 st and 3 rd having +ve and –ve slopes respectively; v is single valued and continuous throughout, and $v(0) = 0$. ft incorrect value(s) for v(4) and v(60)
4		v(4) = 0.75x4 v(54) = v(4) and $v(60) = v(54) - 0.5(60 - 54)Velocity is 3 ms-1 when t = 4 and 0 when t = 602^{nd} segment has zero slope; end points of segments are seen to be correct \{(0,0), (4,3), (54,3), (60,0)\}[XY = \frac{1}{2}(60 + 50)x3] or$	B1 B1 M1	[5]	segments with 1 st and 3 rd having +ve and –ve slopes respectively; v is single valued and continuous throughout, and $v(0) = 0$. It incorrect value(s) for $v(4)$ and $v(60)$. For using area property for distance or $s_1 = \frac{1}{2} a_1 t_1^2$, $s_2 = u_2 t_2$, $s_3 = \frac{1}{2} a_3 t_3^2$
4		v(4) = 0.75x4 v(54) = v(4) and $v(60) = v(54) - 0.5(60 - 54)Velocity is 3 \text{ ms}^{-1} when t = 4 and 0 when t = 602^{\text{nd}} segment has zero slope; end points of segments are seen to be correct \{(0,0), (4,3), (54,3), (60,0)\}$	B1 B1 M1	[5]	segments with 1 st and 3 rd having +ve and –ve slopes respectively; v is single valued and continuous throughout, and $v(0) = 0$. ft incorrect value(s) for $v(4)$ and $v(60)$.

www.studyguide.pk
Syllabus Paper
9709 43 Page 5 Mark Scheme: Teachers' version GCE AS/A LEVEL - October/November 2010

_	<i>(</i> *)	FF ² 27.5 ² + (24) ² 1) / 1		$\mathbf{F}_{\mathbf{r}} = \mathbf{F}_{\mathbf{r}}^{2} + \mathbf{V}_{\mathbf{r}}^{2} + \mathbf{V}_{\mathbf{r}}^{2}$
5	(1)	$[F^2 = 27.5^2 + (-24)^2]$	M1		For using $F^2 = X^2 + Y^2$ (may be scored in (ii))
		F = 36.5	A 1		
		$[\tan \alpha^{\circ} = -(-24/27.5)]$	M1		For using $\tan \alpha^{\circ} = -Y/X$
		$\alpha = 41.1$	A1	[4]	
	(ii)	R = 94.9	B1		
		$[\alpha^{\circ} + \theta^{\circ} = \tan^{-1}(87.6/36.5);$	M1		For using $tan(\alpha^{\circ} + \theta^{\circ}) = 87.6/F$
		or $(\alpha^{\circ} + \theta^{\circ}) = \cos^{-1}(36.5/94.9)$			or $\cos(\alpha^{\circ} + \theta^{\circ}) = F/R$
		or $\theta^{\circ} = \tan^{-1}(87.6\sin 48.9^{\circ} - 24)/(27.5 + 1)$			or $\tan \theta^{\circ} = Y/X$
		87.6cos48.9°)]			
		θ = 26.3	A1ft	[3]	ft 67.4 – incorrect α
6	(i)		M1		For using $a(t) = \dot{v}(t)$
	()	$a_1(t) = 1.44t - 0.288t^2$, $a_2(t) = 2.4 - 0.48t$	A1		,
		$[a_1 = 1.44x5 - 0.288x25, a_2 = 2.4 - 0.48x5]$	M1		For evaluating $a_1(5)$ and $a_2(5)$
		$a_1 = a_2 (= 0)$ no instantaneous change	A1	[4]	8 1(1) 11 11 12(1)
	(ii)		M1		For using $s = \int v dt$
		$s_1 = 0.24t^3 - 0.024t^4$, $s_2 = 1.2t^2 - 0.08t^3$	A1		•
		$ [\{(0.24x5^3 - 0.024x5^4) - (0-0)\} + $	M1		For using limits 0 to 5 and 5 to 10 or
		$\{(1.2x10^2 - 0.08x10^3) - (1.2x5^2 - 0.08x5^3)\}$	1411		equivalent
		Distance is 35 m	A1	[4]	oqui varont
		2.5.4		[-]	
7	(i)	DF = 24000/20	B1		
′	(1)	[DF - R = 1250x0.32]	M1		For using Newton's second law (3 terms)
		R = 800	A1	[3]	1 of using free ton's second law (3 terms)
		K 000	711	[2]	
	(ii)	24000/29.9 - 800 = 1250a	B1		
		Acceleration is $0.002 \mathrm{ms}^{-2}$	B1	[2]	
	(222)	F. = (24000/20	 N 1 1		Fan Gading a subanya 20 an Gara
	(111)	[a = (24000/30 - 800)/1250	M1		For finding a when $v = 30$ or for using
		$24000/v - 800 > 0 \rightarrow v < 30$			a > 0 to obtain an inequality for v
		Car not accelerating when $v = 30$ or	A 1	[2]	A.C.
		Speed cannot reach 30 ms ⁻¹	A1	[2]	AG
	(iv)	$29.9 \le v < 30$ → speed approximately			
	(-1)	constant	B1	[1]	
	(v)	$30 \mathrm{ms}^{-1}$ (max error 0.1) or $29.95 \mathrm{ms}^{-1}$			
	` '	$(\max \text{ error } 0.05) \text{ or } 29.9 \text{ms}^{-1} (\max \text{ error } 0.1)$	B1	[1]	
	(vi)	(a) $[24 = 1200/T]$	M1		For using $P = \Delta WD/\Delta t$
		Time taken is 50 s	A 1		
		(b) $[s = 30x50 \text{ or } 29.95x50 \text{ or } 29.9x50]$	M1		For using $s = vt$
		Distance BC is 1500 m or 1500 m or			
		1495 m	A1	[4]	
				. 1	

Page 6 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9709	43

AL	TERNATIVE FOR PART (vi)		
(b)	$[1200\ 000 = 800d]$	M1	For using 'no change in KE' → WD by car's engine = WD against resistance' (may be implied)
	Distance BC is 1500 m	A1	r and a contract of
(a)	[t = 1500/30 or 1500/29.95 or 1500/29.9] Time taken is 50 s or 50.1 s or 50.2 s	M1 A1	For using $t = s/v$

