QUIZ de MATHÉMATIQUES N°4

25/11/2016

Durée: 40 minutes.

Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

Les questions peuvent présenter une ou plusieurs réponses valides. Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.

Question 41. Soit A la matrice suivante :

$$A = \begin{bmatrix} 0 & 3 & 1 \\ 1 & 9 & 4 \end{bmatrix}$$

Qu'est-ce qui est vrai à propos de la matrice A:

- 1. A a taille 2×3 2. $a_{21} = 3$ 3. $3A = \begin{bmatrix} 0 & 9 & 3 \\ 3 & 27 & 12 \end{bmatrix}$ 4. $A^T = A$

Question 42. $A \in M_{p,n}(\mathbb{R}), B \in M_{p,q}(\mathbb{R})$ et $C \in M_{n,q}(\mathbb{R})$, où n, p, q sont trois entiers naturels distincts non nuls. On peut donc réaliser le calcul :

- 1. $A \times B$
- $2. A \times C$
- 3. $C \times B$
- 4. $C \times B + A$ 5. $A \times C + B$

Question 43. On définit les trois matrices

$$A = \begin{bmatrix} 1 & -2 \\ -1 & 0 \\ 4 & -3 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 4 & 0 \\ 2 & 3 & -2 \\ 1 & -5 & 3 \\ 0 & 2 & 1 \end{bmatrix} \quad C = \begin{bmatrix} 0 & -2 & -2 \\ 1 & 3 & 3 \end{bmatrix}$$

Cocher les produits faisable

- 1. $A \times B$

- 2. $B \times A$ 3. $A \times C$ 4. $C \times A$ 5. $C \times B^T$

Question 44. Soit $A,B \in M_3(\mathbb{R})$ telles que $A \times B = 0$. On peut affirmer que :

- 1. $(A+B)^2 = A^2 + BA + B^2$ 2. $(A+B)(A-B) = A^2 B^2$ 3. ou A=0 ou B=0

- 5. aucune des réponses précédentes n'est correcte.

Question 45. Évaluer le produit AB des deux matrices suivantes :

$$A = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 1 \\ 3 & -2 \end{bmatrix}$$

- 1. $A = \begin{bmatrix} -1 & 4 \\ -3 & 2 \end{bmatrix}$ 2. $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 3. $A = \begin{bmatrix} 2 & 0 \\ 6 & -5 \end{bmatrix}$ 4. $A = \begin{bmatrix} -1 & 4 \\ 3 & -2 \end{bmatrix}$ 5. $A = \begin{bmatrix} 2 & 6 \\ 0 & -5 \end{bmatrix}$

Question 46. Que vaut le déterminant de cette matrice :

$$A = \begin{bmatrix} 1 & 2 \\ 2 & -3 \end{bmatrix}$$

- 1. -7 2. -5
- 3. -4
- 4. 1
- 5. aucune des réponses précédentes n'est correcte.

Question 47. Que vaut le déterminant de cette matrice :

$$A = \begin{bmatrix} -2 & 2 & 2\\ 2 & -2 & 2\\ 2 & 2 & -2 \end{bmatrix}$$

1. 1 $2. -2^3$

$$-2^3$$
 3. 2

$$3. 2^3 4. 2^5$$

5.
$$-2^5$$

Question 48. On considère

$$|D| = \begin{vmatrix} 1 & 2 & 1 \\ 0 & 3 & 2 \\ 1 & 2 & 0 \end{vmatrix}$$

- 1. En développant selon la première colonne, $|D| = \begin{vmatrix} 3 & 2 \\ 2 & 0 \end{vmatrix} \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix}$
- 2. En développant selon la dernière ligne, $|D| = \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} \begin{vmatrix} 1 & 2 \\ 0 & 4 \end{vmatrix}$
- 3. En remplaçant la troisième ligne par la troisième moins la première, $|D| = \begin{vmatrix} 1 & 2 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & -1 \end{vmatrix}$
- 4. En permutant les colonnes : $|D| = \begin{vmatrix} 2 & 1 & 1 \\ 3 & 2 & 0 \\ 2 & 0 & 1 \end{vmatrix}$
- 5. Par la règle de Sarrus : |D| = 0 + 4 + 0 3 4 0

Question 49. Soient a, b, c trois réels. On considère

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$

2.
$$|A| = a^2b^2c^2$$

3.
$$|A| = 1$$

1.
$$|A| = abc$$
 2. $|A| = a^2b^2c^2$ 3. $|A| = 1$ 4. $|A| = (b-a)(c-b)(c-a)$

5. aucune des réponses précédentes n'est correcte.

Question 50. Soit $A \in M_n$ et diagonale. Alors

- 1. A est inversible
- 2. A est symétrique.
- 3. $A = A^{T}$
- 4. $A = -A^T$
- 5. aucune des réponses précédentes n'est correcte.

Question 51. Soient A et B deux matrices de taille $n \times n$.

1.
$$tr(A + B) = tr(A) + tr(B)$$

2.
$$tr(A \times B) = tr(B \times A)$$

3.
$$(A \times B)^T = A^T \times B^T$$

- 4. Si $A^T = A$, alors A est symétrique.
- 5. aucune des réponses précédentes n'est correcte.

Question 52. Soit $A \in M_4(\mathbb{R})$ et inversible. Qu'est-ce qui ne change pas lorsqu'on multiplie A par -1?

- 1. $\operatorname{rang}(A)$
- 2. A^{-1} 3. $\det(A)$ 4. A^{T}
- 5. aucune des réponses précédentes n'est correcte.

Question 53. On considère la matrice A suivante :

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Soit I la matrice identité à deux lignes et deux colonnes.

- 1. L'inverse de A est égal à A.
- 2. L'inverse de A a des coefficients non entiers.
- 3. La matrice $\frac{1}{2}(A+A^{-1})$ est égal à I.
- 4. La matrice $A + A^{-1}$ est diagonale.
- 5. aucune des réponses précédentes n'est correcte.

Question 54. On considère la matrice A suivante :

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

- 1. A est de rang 1.
- 2. A est de rang 2.
- 3. A est de rang 3.
- 4. A est inversible.

5. aucune des réponses précédentes n'est correcte.

Question 55. Soit le système

$$\begin{cases} 2y + 3x = 1 \\ 5x + 4y = -1 \end{cases}$$

Ce système s'écrit sous forme de matrice AX = B avec

$$1. \ A = \begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix}$$

1.
$$A = \begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix}$$
 2. $A = \begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix}$ 3. $X = \begin{bmatrix} x & y \end{bmatrix}$ 4. $B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ 5. $B = \begin{bmatrix} 1 & -1 \end{bmatrix}$

$$3. X = \begin{bmatrix} x & y \end{bmatrix}$$

4.
$$B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

5.
$$B = \begin{bmatrix} 1 & -1 \end{bmatrix}$$

Question 56. Le système IX = Y, où I est la matrice identité d'ordre 2, $X = \begin{bmatrix} x \\ y \end{bmatrix}$ et $Y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ a pour solution :

1.
$$X = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$2. X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

3.
$$X = -1 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$4. \ X = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

1. $X = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 2. $X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 3. $X = -1 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 4. $X = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 5. Le système n'a pas de solutions.

Question 57. On considère le système linéaire suivant :

$$\begin{cases} x & -2y = 2 \\ 5x & +3y = 3 \end{cases}$$

On note D le déterminant du système.

1.
$$x = -\frac{1}{D} \begin{vmatrix} 2 & -2 \\ 3 & 3 \end{vmatrix}$$
 2. $y = -\frac{1}{D} \begin{vmatrix} 1 & 2 \\ 5 & 3 \end{vmatrix}$ 3. $x = \frac{1}{D} \begin{vmatrix} 2 & -2 \\ 3 & 3 \end{vmatrix}$ 4. $y = \frac{1}{D} \begin{vmatrix} 1 & 2 \\ 5 & 3 \end{vmatrix}$ 5. $y = \frac{1}{D} \begin{vmatrix} 1 & -2 \\ 5 & 3 \end{vmatrix}$

2.
$$y = -\frac{1}{D} \begin{vmatrix} 1 & 2 \\ 5 & 3 \end{vmatrix}$$

3.
$$x = \frac{1}{D} \begin{vmatrix} 2 & -2 \\ 3 & 3 \end{vmatrix}$$

$$4. \quad y = \frac{1}{D} \begin{vmatrix} 1 & 2 \\ 5 & 3 \end{vmatrix}$$

$$5. \ y = \frac{1}{D} \begin{vmatrix} 1 & -2 \\ 5 & 3 \end{vmatrix}$$

Question 58. Après avoir exécuté l'algorithme du pivot de Gauss, il me reste le système suivant avec a, b, c, dréels:

$$\left[\begin{array}{ccc|c} 1 & 0 & 0 & a \\ 0 & -2 & 0 & b \\ 0 & 0 & 2 & c \\ 0 & 0 & 0 & d \end{array}\right]$$

On en déduit que ...

- 1. il y a exactement une solution
- 2. il n'y a aucune solution
- 3. il y a une infinité de solutions
- 4. il y a une infinité ou aucune solution
- 5. aucune des réponses précédentes n'est correcte

Question 59. La matrice ci-dessous a un déterminant nul:

$$\left[\begin{array}{ccccccc}
1 & -1 & 0 & 0 \\
5 & 0 & 1 & 4 \\
-2 & -2 & 3 & -7 \\
0 & -1 & 1 & -2
\end{array}\right]$$

Que peut-on dire du système d'équations linéaires suivant ?

$$\begin{cases} x & -y & +z & = a \\ 5x & +z & +4t & = b \\ -2x & -2y & +3z & -7t & = c \\ -y & +z & -2t & = d \end{cases}$$

- 1. il ne possède aucune solution
- 2. il possède une unique solution
- 3. il possède une infinité de solutions
- 4. soit il ne possède aucune solution, soit il en possède une infinité
- 5. le nombre de solution(s) dépend des paramètres a, b, c, d.

Question 60. On admet que la matrice ci-dessous est inversible :

$$\begin{bmatrix}
-4 & 5 & -3 & 1 \\
1 & -1 & 1 & 0 \\
-3 & 3 & 0 & -1 \\
-2 & 2 & -1 & 0
\end{bmatrix}$$

On remarque que $2L_2 + L_4 = [0\ 0\ 1\ 0]$ où L_2 et L_4 représentent la deuxième et la quatrième ligne de la matrice. Que peut-on en déduire sur l'inverse ?

1. Si on multiplie à gauche par l'inverse on a :

$$\begin{bmatrix} . & . & . & . & . \\ . & . & . & . & . \\ a & b & c & d \\ . & . & . & . & . \end{bmatrix} \times \begin{bmatrix} -4 & 5 & -3 & 1 \\ 1 & -1 & 1 & 0 \\ -3 & 3 & 0 & -1 \\ -2 & 2 & -1 & 0 \end{bmatrix} = \begin{bmatrix} . & . & . & . \\ . & . & . & . \\ 0 & 0 & 1 & 0 \\ . & . & . & . \end{bmatrix}$$

- 2. la troisième ligne de la matrice inverse est [0 2 0 1]
- 3. la troisième ligne de la matrice inverse est [0 1 2 0]
- 4. la deuxième ligne de la matrice inverse est [0 1 0 2]
- 5. la quatrième ligne de la matrice inverse est [1 2 0 0]