# Prediction as a service with Ensemble Model trained in SparkML and Python ScikitLearn on 1Bn observed flight prices daily

#### Josef Habdank

Lead Data Scientist & Data Platform Architect at INFARE



in www.linkedin.com/in/jahabdank





Leading provider of Airfare Intelligence Solutions to the Aviation Industry



Collect and processes

1.2 billion distinct
airfares daily

150 Airlines & Airports

7 offices worldwide

https://www.youtube.com/watch?v=h9cQTooY92E















### What is this talk about?



- Ensemble approach for large scale DataScience
  - Online learning for huge datasets
  - thousands simple models are better than one very complex
  - N-billion rows/day machine learning system architecture
    - Implementation of parallel online training of tens of thousands of models in Spark Streaming and Python ScikitLearn



# Ensemble approach on billions of rows



### **Batch vs Online model training**

Batch Bn 
$$\begin{cases} x_{11} & \cdots & x_{1p} \\ x_{21} & \cdots & x_{2p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{cases}$$
 • Large variety of option reasons) • Often more accurate • Does not scale well • Model might be miss

- Large variety of options available (historical

- Model might be missing critical latest information

#### Online can stream

SPARK SUMMIT

EUROPE 2016



- Train on microbatches or individual observations
- Relies on Learning Rate and Sample Weighing
- Can be used in horizontally scalable environments
- Model can be as up to date as possible

Especially critical in prediction of volatile signals

### Ensemble approach to prediction in BigData





traditional ensemble mixes multiple models for one prediction, here we simply select one best for the data segment

### Segmenting the space



- Entire space consists of 1.2Bn time series
- Best results obtained when division is done using combination of knowledge (manual division) and clustering methods
- Optimal number of slices/clusters is between few thousand to hundreds of thousands
- Clustering methods need dimensionality reduction if subspace has still too many dimensions



### Gaussian Mixture Model



(showing only 2 first parameters)

- Fuzzy clustering method which gives probability of a point being in the cluster
- The probability could be used as a model weight, in case of model mixing

SparkML: org.apache.spark.ml.clustering.GaussianMixture http://spark.apache.org/docs/latest/ml-clustering.html#gaussian-mixture-model-gmm



### Gaussian Mixture Model Results





### Feature and model selection

- OneHotEncoder:
  - can capture any nonlinear behavior
  - explodes exponentially dims
  - can reduce your problem to a hypercube
- Try assigning values to labels which carry information
  - $hour \in [0, 1, ..., 23]$  →  $hour' \in [0.22, 0.45, ..., 0.03]$
- Try to capture nonlinear behavior using linear model, by adding meta-features

- Classification vs regression
  - if your problem can be converted into classification, try this as a first attempt
- Linear online models in Python:
  - sklearn.linear\_model.SGDClassifier
     http://scikt-leam.org&table/modules/penerated/sklearn.linear\_model.SGDClassifier.htm
  - sklearn.linear\_model.SGDRegressor
     http://scikit-leam.org/stable/modules/generated/sklearn.linear\_model.SGDRegressor.html
- Other interesting models:
  - whole sklearn.svm package
  - Kalman and ARIMA models
  - Particle Predictor (wrote own library)



### **Prediction results**





## N-billion rows/day machine learning architecture using DataBricks



# N-billion rows/day machine learning architecture using DataBricks



# Training models in parallel in Spark Streaming





### Grouping in Spark DataFrames with collect\_list()

```
> # FLight TimeSeries DataFrame
fltsdf = dspmin \
    .groupBy("cluster_id") \
    .agg(|
        expr("collect_list(days_before_departure) as
days_before_departure_list"),
        expr("collect_list(price_inc) as price_inc_list"),
        expr("count(price_inc) as price_count"),
        expr("min(days_before_departure) as days_before_departure_min"),
        expr("max(days_before_departure) as days_before_departure_max")
        )
```

| SPARK<br>EUROP | cluster_id | days_before_departure | price_inc | price_exc |
|----------------|------------|-----------------------|-----------|-----------|
|                | 345130379  | 18                    | 404       | 380       |
|                | 345130379  | 24                    | 60        | 34        |
|                | 345130379  | 26                    | 128       | 102       |
|                | 345130379  | 29                    | 240       | 214       |
|                | 345130379  | 40                    | 352       | 326       |
|                | 345130379  | 42                    | 124       | 100       |
|                | 345130379  | 86                    | 270       | 244       |
|                | 345130379  | 103                   | 242       | 216       |
|                |            | 104                   | 218       | 194       |



| cluster_id  | days_before_departure_list               | price_inc_list                               | price_exc_list                              |
|-------------|------------------------------------------|----------------------------------------------|---------------------------------------------|
| 1780823700  | ▶ [0,1,2,3,4,5,8,7,8,9,10,11,12,1        | ▶ [158,134,112,112,92,62,52,                 | ► [156,134.112,112,92,62,52                 |
| 268037612   | ▶[0,1,2,5,6,7,8,9,12,13,14,15,1          | ▶ [55,46,46,46,18,18,18,18,18                | ▶ [66,46,46,46,18,18,18,18,                 |
| -2009081663 | ▶[0,1,4,5,6,7,8,11,12,13,14,15,          | ▶ [240,134,92,66,66,66,46,32                 | ▶[240,134,92,66,66,66,46,3                  |
| -634839582  | <b>▶</b> [0,1,2,3,4,5,8,7,6,9,10,11,12,1 | ▶ [68,34,28,28,32,18,16,14,1-                | ▶ [66,34,28,28,32,18,16,14,                 |
| 1411515385  | ▶[0,3,4,5,6,7,10,11,12,13,14,16          | ▶[190,112,112,92,92,92,78,6                  | ▶ [190,112,112,92,92,92,78,                 |
| -286460299  | ▶[0,1,2,3,6,7,8,9,10,13,14,15,1          | <ul><li>[240,240,240,158,92,92,78,</li></ul> | ▶[240,240,240,158,92,92,7                   |
| -610713405  | ▶[0,3,4,5,6,7,10,11,12,13,14,17          | F [134,66,66,60,34,34,32,28,3                | ▶[134,68,68,80,34,34,32,26                  |
| 1190364950  | ▶[0,3,4,5,6.7,10,11,12,13,14,17          | ▶ [158,158,134,112,78,92,66,                 | <ul><li>[158,158,134,112,78,92,60</li></ul> |

### Wrapping model training in UDF

```
sgdlinreg_models = flt \
.withColumn("sgdlinreg", sgdlinreg_udf(
    flt.cluster_id,
    flt.price_inc_list_zoh,
    flt.price_inc_list_lag1,
    flt.price_inc_list_lag2,
    flt.price_inc_list_lag3,
    flt.price_inc_list_lag4,
    flt.price_inc_list_lag5,
    flt.price_inc_list_lag6,
    flt.price_inc_list_lag7
))

display(sgdlinreg_models.select("sgdlinreg"))
```

|            | cluster_id  | days_before_departure_list price_inc_list                        | price_exc_list    |
|------------|-------------|------------------------------------------------------------------|-------------------|
| <b>k</b> \ | 1780623700  | ▶ [0,1,2,3,4,5,6,7,8,9,10,11,12,1 ▶ [158,134,112,112,92,62,52,   | ▶ [158,134,112,11 |
|            | 268037612   | ▶ [0,1,2,5,6,7,8,9,12,13,14,15,10   [66,46,46,46,18,18,18,18,18] | ▶[66,46,46,46,18  |
|            | -2009081663 | ▶ [0,1,4,5,6,7,8,11,12,13,14,15, → [240,134,92,66,66,66,46,32    | ▶ [240,134,92,66, |
|            | -634639582  | ▶ [0,1,2,3,4,5,6,7,8,9,10,11,12,1 ▶ [66,34,28,28,32,18,16,14,1-  | ▶ [66,34,28,28,32 |
|            | 1411515385  | ▶ [0,3,4,5,6,7,10,11,12,13,14,15) [190,112,112,92,92,92,78,6     | ▶ [190,112,112,92 |
|            | -286460299  | ▶ [0,1,2,3,6,7,8,9,10,13,14,15,10 € [240,240,240,158,92,92,78]   | ► [240,240,240,1! |
|            | -610713405  | ▶ [0,3,4,5,6,7,10,11,12,13,14,17] [134,66,66,60,34,34,32,26,;    | ► [134,66,66,60,3 |
| SPARK      |             |                                                                  |                   |

EUROPE 2016



#### sgdlinreg

▶ [0.312164452051516,0.2500195199688649,0.14696794292077753,0.07397744845
 ▶ [0.13338744526183177,0.12112968431128747,0.11130912766696988,0.10185600
 ▶ [0.23559433475348757,0.19604764243883754,0.1619729900436198,0.123211434
 ▶ [-0.10016315603086957,-0.16458613496443103,-0.27811271711971636,-0.331335
 ▶ [0.14668838712780405,0.13123599721355966,0.12017499750599304,0.09930765
 ▶ [1.168599501383796,0.4523697946893281,0.5174869129611258,0.494670248345
 ▶ [0.15681717241410567,0.13897152879352645,0.11634114582885006,0.10410808

### Wrapping model training in UDF

```
> def sgdlinreg(cluster_id, x0, x1, x2, x3, x4, x5, x6, x7):
                                                               Prepare the Matrix with inputs
                                                               for model training
   # create a data matrix from columns
   X = np.transpose(np.matrix([x1, x2, x3, x4, x5]))
                                                              Normalize the data using normalization
   # normalize the data
                                                               defined for this particular cluster
   X = normalize_using_db_norm(cluster_id, X)
   Y = np.reshape(normalize_using_db_norm(cluster_id, x0)[0]
                 (1, len(x0)))[0]
                                                               Generate sample weights which enable
                                                               controlling the learning rate
   # generate sample weights to adjust the learni
   sample_weights = generate_sample_weights(X)
                                                               Get the current model from DB
   # get the model:
                                                               (use in memory DB for fast response)
   sgd_model = get_sgdregressor_from_db(cluster_id)
   # model train
                                                              Preform partial fit using the sample weights
   sgd_model.partial_fit(X, Y, sample_weights);
   # copy the coeffs (list of numpy floats) into native list
                                                               Important trick:
   # of python doubles (for Spark type compatibility)
                                                              Converts numpy.ndarray[numpy.float64]
                                                              into native python list[float] which then
   [retval.append(p.item()) for p in sgd_model.coef_]
                                                              can be autoconverted to Spark List[Double]
   return(retval)
                                                              Register UDF which returns Spark List[Double]
 sgdlinreg_udf = udf(sgdlinreg, ArrayType(DoubleType()))
```

### Time Series Prediction as a Service



SPARK SUMMIT

- Provided the labels identify time series and lookup the model
- Get historical data (performance is the key)
- Recursively predict next price, shifting the window for the desired length

$$f\begin{pmatrix} x_{n-l} \\ \vdots \\ x_n \end{pmatrix} = x_{n+1} \Rightarrow f\begin{pmatrix} x_{n-l+1} \\ \vdots \\ x_{n+1} \end{pmatrix} = x_{n+2} \Rightarrow \dots$$

 The same workflow for any model: SGDClassifier, SGDRegressor, ARIMA, Kalman, Particle Predictor



### Summary

- Spark + Python is AWESOME for DataScience ©
- Large scale DataScience needs correct infrastructure (Kafka-Kinesis, Spark Streaming, in memory DB, Notebooks)
- It is much easier to work with large volumes of models, then very few ones
- Gaussian Mixture is great for fuzzy clustering, has very mature and fast implementations
- Spark DataFrames with UDF can be used to efficiently palletize the model training in tens and even hundreds of thousands models



# Want to work with cutting edge 100% Apache Spark + Python projects? We are hiring!!!

Senior Data Scientist, working with

Apache Spark + Python doing Airfare/price forecasting



Senior Big Data Engineer/Senior Backend Developer, working with Apache Spark/S3/MemSql/Scala + MicroAPIs

job@infare.com http://www.infare.com/jobs/



### THANK YOU!

Q/A

Remember, we are hiring!

#### Josef Habdank

Lead Data Scientist & Data Platform Architect at INFARE

- jha@infare.com www.infare.com
- in www.linkedin.com/in/jahabdank
- 🟏 @jahabdank

