PASCAL'S THEOREM Binomial Expansion

Try this ...

· Calculate the following:

 $_{3}C_{0}$ $_{3}C_{1}$ $_{3}C_{2}$ $_{3}C_{3}$

Does this look familiar?
 It is Row 3 of Pascal's Triangle.

Pascal's Triangle

Pascal's Triangle (Cont)

- Now that you are familiar with combinations, there is another important pattern that you can recognize.
- Each term in Pascal's triangle corresponds to a value of ${}_{n}C_{r}$.

Pascal's Triangle

We know that ${}_{3}C_{1} + {}_{3}C_{2} = {}_{4}C_{2}$. Identify a new pattern.

$${}_{1}C_{0}$$
 ${}_{1}C_{1}$
 ${}_{2}C_{0}$ ${}_{2}C_{1}$ ${}_{2}C_{2}$
 ${}_{3}C_{1}$ ${}_{3}C_{2}$ ${}_{3}C_{3}$
 ${}_{4}C_{1}$ ${}_{4}C_{2}$ ${}_{4}C_{3}$ ${}_{4}C_{4}$

$${}_{5}C_{0}$$
 ${}_{5}C_{1}$ ${}_{5}C_{2}$ ${}_{5}C_{3}$ ${}_{5}C_{4}$ ${}_{5}C_{5}$
 ${}_{6}C_{0}$ ${}_{6}C_{1}$ ${}_{6}C_{2}$ ${}_{6}C_{3}$ ${}_{6}C_{4}$ ${}_{6}C_{5}$

 $_4C_1$

Pascal's Theorem

· In general, we can say that

$$_{n}C_{r} + _{n}C_{r+1} = _{n+1}C_{r+1}$$

- · Example:
 - 1. Rewrite the following using Pascal's Theorem:
 - a) $_{19}C_4 =$ _____+
 - b) $_{8}C_{7} + _{8}C_{6} =$
 - c) $_{13}C_8 _{12}C_8 =$
 - d) $_{20}C_6 _{19}C_5 =$ _____

Expanding Binomials

• Expand and simplify $(a + b)^2$.

• Expand and simplify $(a + b)^3$.

Do these look familiar?
 The coefficients are found in Pascal's triangle.

Binomial Expansion

Examples

1. Use combinations to expand $(a + b)^6$.

Examples (continued)

- 2. Use Pascal's triangle to expand the following:
 - a) $(2x 1)^4$

b) $(3x - 2y)^5$

Homework

· Page 293 #1 - 4, 9abc, 12