Разработка системы диспетчеризации автоматической промывки подачи жидких химикатов на целлюлозно-бумажном предприятии

А. В. Арефьева¹, А. Б. Петроченков²

Пермский национальный исследовательский политехнический университет ¹arefewa@bk.ru, ²zav@msa.pstu.ac.ru

Аннотация. В статье описывается процесс разработки системы. В качестве исследуемого технологического объекта была выбрана система подачи жидких химикатов на целлюлозно-бумажном предприятии. Предприятия формируют высокие требования к надежности функционирования технологических систем на современном уровне развития. Эта проблема является актуальной на сегодняшний день и одним из способов ее разрешения является автоматизация и оптимизация технологического процесса. Поэтому целью исследования является разработка систем автоматической промывки подачи жидких химических реагентов на целлюлозно-бумажном предприятии. Преимуществами для разработки такой системы являются: снижение энергозатрат, снижение эксплуатационных издержек, снижение человеческого фактора, увеличение безопасности, а также упрощение управление системой в целом. В ходе работы был исследован и описан объект управления. Кроме того, в ходе исследования были выбраны ключевые моменты для сбора информации о технологических параметрах, которые влияют на технологический процесс. Разработан алгоритм автоматической промывки подачи жидких химических веществ с учетов специфики используемых датчиков и измерительных приборов, органов управления и ПЛК. Подсистема автоматической промывки жидких химических веществ интегрирована в автоматизированную систему диспетчерского управления предприятия. Эта реализация также позволит достичь уровня единой интеллектуальной среды для управления технологическим процессом всего предприятия.

Ключевые слова: система диспетчеризации; целлюлознобумажное предприятие; алгоритм; FBD; автоматическая промывка подачи жидких химикатов

І. Введение

Современный уровень развития производств формирует высокие требования надежности функционирования технологических систем. непредвиденная остановка выпуска продукции по причине выхода из строя элемента технологического оборудования приводит к значительным материальным потерям, нарушения ритмичности производства и проведение ремонтных работ. На целлюлозно-бумажном предприятии актуальным является предотвращение возникновения внештатных ситуаций, развитие которых может привести к серьезным авариям и экологическим катастрофам.

На современном уровне развития информационных и автоматизированных систем добиться безаварийной ритмичной работы производства возможно лишь с помощью автоматизации и оптимизации технологического процесса.

Таким образом, разработка и применение автоматизированных систем управления позволяет повысить эффективность и надежность работы всех служб, снизить износ оборудования, производить контроль действия персонала, упрощать управление системой, и, как следствие, предупреждать и предотвращать аварийные ситуации и позволять составлять индивидуальные программы работы для каждой подсистемы.

Целью исследования является разработка системы диспетчеризации автоматической промывки подачи жидких химикатов на целлюлозно-бумажном предприятии.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- исследовать объект управления;
- разработать алгоритм автоматизированного функционирования и выявления аварийных ситуаций;
- интегрировать подсистему автоматической промывки жидких химикатов в систему автоматизированного диспетчерского управления.

Участок подачи жидких химикатов, является ключевым для производства бумажной массы, от контролируемых параметров технологического процесса на данном этапе напрямую зависит ход последующих технологических операций, и качество выпускаемой продукции в целом.

Система должна учитывать порядка 30 технологических параметров в режиме реального времени. Сбор и обработка этих параметров — достаточно трудоемкий процесс, как с точки зрения построения информационной системы, так и с позиции физической системы (дорогостоящее оборудование, различные программные и аппаратные интерфейсы).

Для решения поставленной задачи использовались методы теории автоматического управления, моделирования, Проведены алгоритмизации. экспериментальные исследования использованием технологических средств контроля И управления технологическим оборудованием (на основе, используемой на предприятии программы и методики испытаний аппаратных средств программных и контрольных параметров) [3].

При практической реализации алгоритмов автоматизированного моделирования использовались методы структурного и объектно-ориентированного программирования [4], тематические исследования, языки программирования Pascal, программная среда PMD BlockBuilder, язык FBD [5].

II. АВТОМАТИЧЕСКАЯ ПРОМЫВКА ПОДАЧИ ЖИДКИХ ХИМИЧЕСКИХ ВЕЩЕСТВ

Объектом исследования является подача жидких химикатов на целлюлозно-бумажном предприятии (рис. 1). Схема реализована в программном продукте HMIWebBuilder. На мнемосхеме представлены такие химические реагенты как бентонит (БЕ), амфотерные и катионные дисперсии (АКД), катионный крахмал (КК), полиакриламид (ППА).

Реагенты хранятся в виде порошка. Затем они поступают в баки, в которых они перемешиваются с водой, и полученная консистенция по трубам поступает на участок подачи химических реагентов. Кроме того, на мнемосхеме представлены: насосы перекачки, клапана подачи (под цифрами 1), клапана промывки (под цифрами 2).

Рис. 1. Мнемосхема подачи жидких химикатов

III. АЛГОРИТМ

На рис. 2 представлен разработанный алгоритм функционирования автоматической промывки подачи жидких химикатов.

Рассмотрим алгоритм более подробно:

После выполнения каждого шага происходит выдержка в 2 секунды. Это нужно для того, чтобы шаг успел получить сигнал с контроллера и завершиться.

Шаг 1: На данном шаге происходит проверка работы насосов перекачки химикатов, таких как насос БЕ, насос КК, насос АКД и насос ПАА, и подачи самих реагентов. Если условия выполнились, то происходит переход на следующий шаг.

При условии, что насосы перекачки включены система находится в нормальном режиме работы. Это означает, что в системе не возникает аварийных ситуаций и все оборудование исправно работает.

Шаг 2: Если насосы перекачки выключены и подача прекращена, то происходит переход на следующий шаг.

Шаг 3: Сначала элементы системы переводятся в автоматический режим. Переход элементов системы нужен для их управления и отслеживания с диспетчерской станции при возникновении ошибок и потери сигнала.

После перевода системы, закрываются клапана подачи химических реагентов. Далее происходит проверка закрытия данных клапанов с помощью условия: Если клапана закрылись, то ожидание 2 секунды и переход на следующий шаг, иначе ожидание 10 секунд. В случае, если

по истечению времени клапана так и не закрылись, алгоритм останавливается. Затем элементы системы переводятся в ручной режим работы, и оператор вызывает ремонтную бригаду для устранения проблемы.

Шаг 4: Сперва клапана промывки переводят в автоматический режим работы. Затем им поступает сигнал на открытие. Происходит проверка открытия клапанов аналогично условиям из шага 3.

В случае, если условия выполнились, то производится промывка труб в течении 5 минут. По истечении этого времени алгоритм переходит на следующий шаг.

Шаг 5: Закрытие клапанов промывки химических реагентов. Проверка закрытия аналогично условиям из

шага 3. Если условия выполнились, то переход на следующий шаг.

Шаг 6: Открытие клапанов подачи химикатов. Проверка открытия происходит аналогично условиям из шага 3. Если условия выполнились, то переход на следующий шаг.

Шаг 7: Сначала запускаются насосы перекачки жидких химикатов. Затем система ждет заполнения баков с реагентами до допустимого уровня. После того как пришел сигнал о допустимом уровне, алгоритм переходит к следующему шагу.

Шаг 8: Включение подачи жидких химикатов и переход в нормальный режим работы системы.

Рис. 2. Алгоритм автоматической промывки подачи жидких химикатов

IV. Внедрение

Как уже отмечалось, рассматриваемый объект является очень ответственным.

С точки зрения подходов к построению систем сбора и обработка информации на объектах такого класса известны работы [6, 7]. Например, в работе Д.В. Шиляева рассматривается внедрение автоматизированной системы

[8]. Общей управления тепловым пунктом чертой подходов рассматриваемых является надлежащее «размещение» ответственного оборудования в «правильных» точках и реализация соответствующего алгоритма для них. Выбор оборудования является прерогативой предприятия и не рассматривался в этом исследовании. С точки зрения алгоритмизации подход, основанный на FBD-диаграммах, кажется универсальным [9].

Рис. 3. Реализация алгоритма

А. Построение логической модели

На рис. 3 представлена часть логической модели алгоритма, которая реализована в программном продукте PMD BlockBuilder на языке программирования FBD. Данный рисунок соответствует шагу 3 в алгоритме, представленном на рис. 2. FBD—это графический язык программирования, предназначенный для программирования программируемых логических контроллеров (ПЛК) [10].

На схеме располагаются различные входные и выходные сигналы (пины), а также различные стандартные блоки, с помощью которых осуществляется построение логической модели. Цифры с правой стороны у блоков означают очередность выполнения действий логической модели.

Разработанный алгоритм относится к известному классу пошаговых алгоритмов [11]. Новизна заключается в быстродействующих контроллеров использовании технологических параметров представлении агрегированном темпе технологического процесса, ориентированного преимущественно на автоматический режим (при более точном учете «ручных» параметров, например, как в работе [12-14], будем иметь дело с более перекрестными связями и с наличием более мощных вычислительных ресурсов).

В. Решение задачи

Сперва выполняется работа блоков SENDX. Они предназначены для управления передачей данных в модулях и между модулями по отдельности для каждого пина.

На рис. 3 первый блок SENDX используется для перевода системы в автоматический режим. Это осуществляется с помощью входного пина MDE объекта FEED-VALVE. Второй блок SENDX используется для автоматического закрытия клапанов химических реагентов. Автоматическому закрытию соответствует входной пин ACL объекта FEED-VALVE.

Далее выполнение действий логической модели переходит к блоку SWAIT, который является временем ожидания. Работа данного блока состоит в двухсекундном ожидании для того, чтобы предыдущий блок успел завершиться.

После чего алгоритм переходит к проверке действий выполнения шага. Для этого используется блок AND, который предопределен для суммирования входных сигналов. Пины co1, co2, co3, co4 соответствуют сигналам химических реагентов объекта FEED-VALVE, которые устанавливаются по ссылкам на верхнем уровне логической модели.

Алгоритм переходит на следующий шаг с помощью пина jmp модели при условии, что клапана химических реагентов закрылись, и вышло время ожидания.

Следующими выполняются блоки MOVE. В нашем исследовании, в первом случае, данный блок осуществляет выдержку времени в 10 секунд для выполнения действий шага.

Во втором случае, блок используется для перехода алгоритма на следующий шаг. На входной сигнал устанавливается номер шага через константу, а выходной сигнал привязывается к пину Nxt модели. Пин nxt модели осуществляет переход на следующий шаг при условии, что все блоки выполнили свою работу.

С. Аспекты реализации

Данный алгоритм может работать в автоматическом и ручном режиме. При автоматическом режиме алгоритм запускается при аварийной ситуации, например, отключение насосов подачи, снижение уровня реагентов в баках, повышения давления в трубах. В ручном режиме алгоритм может запускаться операторами с диспетчерской станции и управляться по месту.

Ограничениями исследования является, что данное преимущественно ориентировано исследование автоматический режим работы, а не на «ручной», и не исключает человеческий фактор. Любое отклонение от нормы может вызвать затруднения в работе алгоритма. неправильная установка и калибровка Например, оборудования ремонтной бригады после плановых ремонтных работ по заданному регламенту предприятия может вызвать затруднения при переходе системы в автоматический режим. В таком случае, алгоритм не сможет завершить все шаги самостоятельно и будет необходимо завершать работу алгоритма в «ручную» рабочим персоналом. Утвержденный регламент по настройке и установке оборудования предприятия записан в код программного обеспечения.

V. ЗАКЛЮЧЕНИЕ

Описанные в предыдущем разделе ограничения модели, по сути, не являются таковыми. Разработанная система является первым шагов поддержки автоматизации подачи жидких химикатов. Элементы ручного управления остаются на данном этапе, как с точки зрения байпаса, так и с точки зрения понимания наращивания системы диспетчеризации [15].

В статье рассматривается разработка системы диспетчеризации, направленной на разработку автоматической промывки подачи жидких химических веществ. Кроме того, в исследовании выбраны ключевые точки сбора информации о технологических параметрах, влияющих на технологический процесс. Разработан

алгоритм автоматической промывки подачи жидких химических веществ с учетом специфики применяемых датчиков и измерительных средств, средств управления и ПЛК.

Bo случае, подсистема автоматической всяком промывки подачи жидких химических веществ интегрирована автоматизированную систему диспетчерского управления предприятия. Разработанный алгоритм может использоваться не только для программ, ориентированных на FBD, но и легко адаптироваться к другим программам ПЛК.

Данная реализация также позволит выйти на уровень единой интеллектуальной среды управления технологическим процессом всего предприятия.

Список литературы

- D.Nguyen, M.J.Bagajewicz, "New sensor network design and retrofit method based on value of information", AIChE Journal, vol. 57, Issue 8, pp. 2136-2148, August 2011.
- [2] L.Cochrane, "Smart Energy Reference Architecture," Microsoft Worldwide Utilities Industry, March 2013.
- [3] "Automation and control solution", Noheywell International Inc., March 2008.
- [4] C.Larman, "Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development", Hardcover; Lebanon, Indiana, U.s.a.: Prentice Hall PTR, October 20, 2004.
- [5] Sejin Jung, Junbeom Yoo, Young-Jun Lee, "A PLC platform-independent structural analysis on FBD programs for digital reactor protection systems", Annals of Nuclear Energy, vol. 103, pp. 454-469, May 2017.
- [6] M. Wcislik, K. Suchenia, M. Laskawski, "Programming of sequential control systems using functional block diagram language", IFAC-PapersOnLine, vol. 48, pp.330-335, 2015.
- [7] Joseph-Jean Paques, Rene Benoit, "Safety and Design of Control System in Quebec Pulp and Paper Industries: Preliminary Study", IFAC Proceedings Volumes, vol. 31, pp. 999-1003, June 1998.
- [8] A.B. Bilalov, D.Y. Shilyaev, A.B. Petrochenkov, O.A. Bilous, "The introduction of the automated control system of thermal point", Fundamental research № 8, pp. 87-92 2015.
- [9] Ephrem Ryan Alphonsus, Mohammad Omar Abdullah, "A review on the applications of programmable logic controllers (PLCs)", Renewable and Sustainable Energy Reviews, vol. 60, pp. 1185-1205, July 2016.
- [10] [10] IEC 61131-3:2013 Programmable controllers Part 3: Programming languages.
- [11] D.Darvas, E.B.Vinuela, I.Majzik, "PLC code generation based on a formal specification language", IEEE International Conference on Industrial Informatics (INDIN) № 7819191, pp. 389-396, 2017.
- [12] [12] Prof. Sirkka-Liisa Jämsä-Jounela, "Future trends in process automation", IFAC Proceedings Volumes, vol. 40, pp. 1-10, 2007.
- [13] Sennai Mesfun, Andrea Toffolo, "Integrating the processes of a Kraft pulp and paper mill and its supply chain", Energy Conversion and Management, vol. 103, pp. 300-310, October 2015.
- [14] L.Grigoriev, A.Kostogryzov, A.Tupysev, "Automated dispatch control; problems and details of modeling", IFAC Proceedings Volumes, vol. 46, pp.1123-1127, 2013.
- [15] Willis Harmon Ray, "Advanced Process Control", Butterworths, 1981.