

Real-time Data Analysis Curriculum

Master in Big Data Solutions

1 Subject description

Subject: Real Time Data Analysis

Year: 2020-2021 **Quarter:** 2nd & 3rd

Degree: Master in Big Data Solutions

Number of credits: 5 / Hours of class: 48 / Hours of homework: 48

Teaching Staff:

Name: Joan Gasull Jolis Email: joan.gasull@bts.tech

Linkedin: https://www.linkedin.com/in/joan-gasull-jolis-592239123/

Schedule:

• 4-hour sessions from 9:00 – 13:00

• Weekly home work: 4 hours

2 Subject introduction and goals

There are several applications to process an enormous volume of data and to process it as quick as possible.

Natural phenomena predictions (hurricanes, tsunamis, etc), with delays, can cost human's lives. Delays in processing new content via video, audio, twitter and news report can provoke wrong trading decisions. Delays in traffic jam prediction cost extra time. Credit card fraud detection needs accurate results in fractions of seconds.

The two operatives in the previous examples are velocity and latency, and that's where classical distributed big data batch processing systems (like Hadoop map reduce) fall short. They are designed to deliver in batch mode and can't operate at a latency of nanoseconds/milliseconds.

This course studies in depth the spark framework as a modern approach to deal with the complexity of processing real-time big data taking advantages of both batch and streaming processing methods.

The goal of the course is to enable students to characterize the real time data analysis processing problems arising on big data and solve them using the techniques, algorithms and tools implemented on Spark framework. Also by following a test driven development approach, to get good practices on software development for big data systems.

3 Teaching methodology

This course will have focus in both theory and practice, putting a special effort on the real-word problem solving.

The teaching methodologies will depend on the subject being studied and include the following:

- Teaching with Discussions (Lectures, Lecture-demonstration)
- Student-centered (Analysis and discussion of case studies, Presentations by student panels, Student-group reports, Individual reading and research with oral presentation)

Everyday classes are complemented with assignments and topics to review, oriented to be developed both individually or as a team. In most of the cases the students will participate in the evaluation and co-evaluation of their learning.

4 Contents

- 1. Parallel programming on large scale data processing.
- 2. Parallel programming using Spark framework.
- 3. Batch processing on Spark:
 - Structured data processing on pyspark, Spark SQL.
- 4. Machine learning pipelines on spark, MLIB.
- 5. Stream processing:
 - Outlook
 - Structure Streaming with Twitter
 - Web Scraping stocks and newspapers
- 6. Lambda Structure

2 Schedule of contents and activities

Session	Activity at class (4 hours)	Activity at home (4 hours)
Session	Content	Quiz about basics of parallel and distributed
1 8-mar	Computer science foundations on parallel and distributed programming. Introduction to Spark Framework. Spark context, resilient distributed data-set (RDD).	programming and RDDs
	Activity Setup programming environment. First overview of pyspark	

Session	Content	Individual Home Work
2	Transformations, actions and basic	To solve basic problems using pyspark
15-mar	operations in pyspark	To solve basic problems asing pyspark
15-iiiai	operations in pyspark	Bibliography:
	Activity	https://spark.apache.org/docs/latest/rdd-
	To solve basic problems using	programming-guide.html
	pyspark	programming-guide.ncm
	Explore new transformations and	
	actions	
Session	Content	Individual Home Work
3	More transformations, actions and	To build basic data-processing programs on
12-apr	operations in pyspark. First contact	spark.
%	with Dataframes	
	Activity	
	Basic spark programs. RDD	
	Programming with Transformations	
	and actions.	
Session	Content	Individual Assignment (GRADED)
4	Advanced RDD operations on spark:	To solve data analysis problem on batch
19-apr	Joins, Shuffle, Shared variables.	processing spark task. SQL-Datasets
	Activity	
	To build batch processing spark	
	task.	
	Working on a database	
Session	Content	Individual Home Work
5	Working on a database. Spark	To solve data analysis problem on batch
26-apr	SQL. Using data sources. Basic	processing spark task using data sources.
	Statistics	
	A salt size .	
	Activity	
	To solve data analysis problem on	
	batch processing spark.	
Session	Content	Individual Home Work
6	Machine learning on spark (MLIB).	Implementing machine learning pipelines on
03-may	ML Pipelines. Extracting,	spark.
05 may	transforming and selecting features.	Spark.
	Activity	
	Implementing machine learning	
	pipelines on spark.	
Session	Content	Individual Home Work
7	MLIB: Machine Learning algorithms	Implementing ML solutions on pyspark
10-may	& Clustering.	
	Activity	
	Build application to solve classical	
	clustering problems using "MLIB	
	Clustering"	
	İ	1

Session 8 17-may	Content More Machine Learning algorithms. Functional programming Activity Build application to solve Regression/Classification problems.	Individual Assignment (Graded) Machine learning implementation in pyspark
Session 9 31-may	Content Fundamentals of streaming analysis. Case 1: Implementing an automatic emailing solution. Activity To build basic email solution based on dataset	Individual Home Work Self study: To build basic stream processing pipelines using TDD. https://spark.apache.org/docs/latest/streaming-programming-guide.html
Session 10 07-jun	Content Coding Hackathon. Case 2: Scraping the web in real time. Activity Coding Hackathon	Individual Home Work Improve the solution presented in class
Session 11 14-jun	Content Lambda Architecture Case 3: Spider to find articles in a newspaper Activity Build the solution	Individual Home Work Implement a similar solution to explore the web
Session 12 21-jun	Content Applying pyspark/real time processing to the final project Case 4: Studying twitter profiles	Group/Individual Assignment (Graded) Practical implementation of full Lambda architecture in a real world example // Integrate it in the final project.

The Schedule of activities can (and most likely, will) be modified according to the program needs. Assignments evaluation mode will be specified on Virtual Campus.

3 Qualification system

Participation: 10%

Active participation at class is expected during the subject.

Assignments: 90%

Continuous assessment by delivery of individual exercises and group exercises. All the assignments will have several deliver item different levels of complexity that define the final grade of it.

There will be a total of 3 assignments. Each of them weights a 30%.

Conditions to recover the subject

If the final mark is below 5, students will be able to deliver a final assignment.

*The 85% of attendance to each subject is required to pass the Master.

4 Bibliography

Basic:

Big Data	https://www.manning.com/books/big-data
Principles and best practices of scalable realtime data systems	
PySpark	https://spark.apache.org/docs/latest/api/python/index.html
Streaming	https://spark.apache.org/docs/latest/streaming-
	<u>programming-guide.html</u>
Beautiful Soup	https://www.crummy.com/software/BeautifulSoup/bs4/doc/

Complementary:

Real-Time Big Data	https://www.amazon.co.uk/Real-Time-Data-Analytics-
Analytics	Sumit-Gupta/dp/1784391409
Fast Data Processing with Spark	https://www.packtpub.com/big-data-and-business- intelligence/fast-data-processing-spark

Other academic resources:

Spark web site.	https://spark.apache.org/docs/latest/index.html
Applying the Lambda Architecture with Spark	https://databricks.com/session/applying-the-lambda- architecture-with-spark
Predictions on streaming	https://www.youtube.com/watch?v=fPlgoTLJh38
Lambda Architecture with spark	https://blog.knoldus.com/2017/01/31/twitters-tweets-analysis-using-lambda-architecture/https://github.com/knoldus/Lambda-Arch-Sparkhttps://www.youtube.com/watch?v=fPlgoTLJh38

Bibliography and other academic resources will be detailed and updated in the Campus.