Arytmetyka Komputerowa

Krystian Madej, 28.02.2024

1. Treść zadania

Dana jest zależność rekurencyjna $3x_{k-1}-10x_k+3x_{k+1}=0$. Wartości początkowe $x_0=1$, $x_1=1/3$. Wyznaczyć wartości x_k i x_{k+1} dla k=45. Następnie korzystając z wyznaczonych wartości x_k i x_{k+1} obliczyć x_1 i x_0 , wykonując rekurencję w tył. Porównać wyznaczone wartości x_1 i x_0 z dokładnymi wartościami początkowymi 1 i 1/3. Wykonać obliczenia dla różnej precyzji zmiennych (float, double, long double). Skomentować różnice. Co będzie, jeśli wszędzie liczbę 3 zastąpimy przez liczbę 2 lub 20, lub 30?

2. Środowisko obliczeń

Obliczenia zostały wykonane przy pomocy języka **C++20** na systemie Ubuntu 22.04.3 (WSL2 na Windows 11), procesor **64-bitowy** Intel Core i5-11400H 2.70GHz, kod kompilowany kompilatorem **g++** (wersja 13.1).

3. Użyte biblioteki i programy pomocnicze

W rozwiązaniu użyto następnujących plików nagłówkowych (wszystkie należą do biblioteki standardowej):

- <vector> tablica dynamiczna
- <format> łatwe formatowanie
- <cfloat> predefiniowane stałe opisujące typy zmiennoprzecinkowe
- <fstream> zapis wyników do plików
- <iostream> operacje wyjścia

Do rysowania wykresów użyto programu Excel z pakietu MS Office. Do wyznaczania wzorów jawnych niektórych ciągów użyto usługi Wolfram Alpha.

4.1. Typy zmiennoprzecinkowe w obliczeniach

Obliczenia były wykonywane na następujących typach zmiennoprzecinkowych:

- float
 - zgodny ze standardem IEEE 754
 - rozmiar w pamięci: 4 bajty
 - Mantysa: 23 bity
 - Wykładnik: 8 bity
 - Znak: 1 bit
- double
 - zgodny ze standardem IEEE 754
 - rozmiar w pamięci: 8 bajtów
 - Mantysa: 52 bity
 - Wykładnik: 11 bity
 - Znak: 1 bit
- long double
 - zgodny ze standardem IEEE 754
 - rozmiar w pamięci: 16 bajtów (10 faktycznych)
 - Mantysa: 63 bity
 - Wykładnik: 15 bity
 - Znak: 1 bit

4.2. Implementacja obliczeń

Na początek przekształcono równanie $3x_{k-1} - 10x_k + 3x_{k+1} = 0$ (1) do postaci $x_{k+1} = 10/3x_k - x_{k-1}$ (2). Zależność rekurencyjną w tej postaci przepisano do języka C++. W celu zmniejszenia ilości powtarzanego kodu użyto funkcji i zmiennych szablonowych. Zainicjalizowano vector o rozmiarze k+2 (aby można było się odwołać do elementu o indeksie k+1), a jego dwie pierwsze wartości ustawiono na 1 i 1/3. Następnie obliczano resztę wartości formułą: (F)10 / a<F> * get_x<F>(k - 1) - get_x<F>(k - 2), gdzie F jest typem szablonowym. W analogiczny sposób obliczano wartości x_0 i x_1 , tym razem z użyciem formuły $x_{k-1} = 10/3x_k - 10/3x_k$

 x_{k+1} (3).

Wyniki obliczeń są zapisywane w plikach xn.txt, x0.txt, x1.txt, xk.txt, xkp1.txt.

4.3. Wyniki obliczeń

Obliczenia rekurencyjne \mathbf{x}_k i \mathbf{x}_{k+1} .

		xk		xk+1			
а	float	double	long double	a	float	double	long double
2	2.6519E+29	2.6519E+29	2.6519E+29	2	1.2706E+30	1.2706E+30	1.2706E+30
3	1.7086E+13	25437.4825	3.13546993	3	5.1257E+13	76312.4476	9.40640978
4	-5.864E+12	-5.864E+12	-5.864E+12	4	-1.173E+13	-1.173E+13	-1.173E+13
5	-35.000046	-35	-35	5	-35.800049	-35.8	-35.8
6	-0.793156	-0.793154	-0.793154	6	-1.407807	-1.4078064	-1.4078064
7	-0.685644	-0.685643	-0.685643	7	0.275806	0.27580728	0.27580728
8	-1.18686	-1.1868604	-1.1868604	8	-0.710378	-0.7103787	-0.7103787
9	0.875934	0.87593343	0.87593343	9	-0.112066	-0.1120672	-0.1120672
10	-1	-1	-1	10	-0.1	-0.1	-0.1
11	0.983662	0.98366264	0.98366264	11	0.844541	0.8445403	0.8445403
12	0.147449	0.14744967	0.14744967	12	-0.897486	-0.8974855	-0.8974855
13	-1.03976	-1.0397606	-1.0397606	13	-0.559814	-0.5598135	-0.5598135
14	-0.435474	-0.4354738	-0.4354738	14	0.732523	0.7325236	0.7325236
15	0.662266	0.66226608	0.66226608	15	0.975829	0.97582924	0.97582924
16	1.029637	1.02963683	1.02963683	16	0.231085	0.23108506	0.23108506
17	0.603565	0.6035647	0.6035647	17	-0.620027	-0.6200277	-0.6200277
18	-0.130099	-0.1301	-0.1301	18	-1.014199	-1.0141993	-1.0141993
19	-0.732802	-0.7328023	-0.7328023	19	-0.882233	-0.8822325	-0.8822325
20	-1.006158	-1.0061581	-1.0061581	20	-0.420116	-0.4201161	-0.4201161
21	-0.949703	-0.9497028	-0.9497028	21	0.132749	0.13274885	0.13274885
22	-0.661609	-0.661609	-0.661609	22	0.602155	0.60215563	0.60215563
23	-0.26137	-0.2613706	-0.2613706	23	0.901252	0.90125161	0.90125161
24	0.150976	0.15097619	0.15097619	24	1.01256	1.01256015	1.01256015
25	0.508327	0.50832709	0.50832709	25	0.960467	0.96046657	0.96046657
26	0.775093	0.77509275	0.77509275	26	0.787911	0.78791105	0.78791105
27	0.939869	0.93986821	0.93986821	27	0.540922	0.54092207	0.54092207
28	1.007182	1.00718186	1.00718186	28	0.260182	0.26018157	0.26018157
29	0.990517	0.99051694	0.99051694	29	-0.022457	-0.0224569	-0.0224569
30	0.907221	0.90722113	0.90722113	30	-0.284471	-0.284471	-0.284471

 $\label{eq:table_table} \mbox{Tabela 1.} \\ \mbox{Wartości } x_k \mbox{ i } x_{k+1} \mbox{ dla a} \in [2; \mbox{ 30}] \\$

Jak
dla małych a żaden z typów zmiennoprzecinkowych nie
poradził sobie z dokładnymi obliczeniami. Na przykład

można wykazać, że wzór jawny formuły (1) to 3^{-n} . Wartości x_{45} i x_{46} obliczone tym wzorem to odpowiednio $3.384882*10^{-22}$ i $1.128294*10^{-22}$, które znacząco różnią się od wyników w tabeli 1, które w dodatku są znacząco różne w zależności od typu zmiennoprzecinkowego. Inaczej jest w przypadku a=4 i a=5. Wolfram Alpha wyznaczył wzory jawne w takich przypadkach na odpowiednio $(7*2^{-n-1}-2^{n-1})/3$ i 1-4/5*n. Używając takich wzorów jawnych otrzymujemy wartości $x_k \approx -5.864*10^{12}$ i -35, oraz wartości $x_{k+1} \approx -1.173*10^{13}$ i -35.8. Wartości te sa bliskie wynikom z

 $\mathbf{x}_{k+1} \approx$ **-1.173*10**¹³ i **-35.8.** Wartości te są bliskie wynikom z tabeli 1.

W przypadku gdy a=20 Wolfram Alpha wyznaczył wzór jawny na $1/75 * 2^{-2n-1} * ((75 - 4iV(15))(1 - iV(15))^n + (75 + 4iV(15))(1 + iV(15))^n)$, a wartości tego wzoru dla n=45 i n=46 są bliskie odpowiednio -1.00616 i -0.420116, które są bliskie wartościom z tabeli 1.

W przypadku gdy a=30 Wolfram Alpha wyznaczył wzór jawny na $1/350 * ((175 - 4iv(35))(1/6 * (1 - iv(35)))^n + (175 + 4iv(35))(1/6 * (1 + iv(35)))^n)$, a wartości tego wzoru dla n=45 i n=46 są bliskie odpowiednio **0.907221** i **-0.284471**, które są bliskie wartościom z tabeli 1.

Obliczenia rekurencyjne x_0 i x_1 .

		х0			x1				
			long			long			
а	float	double	double	faktyczna	a	float	double	double	faktyczna
2	nan	-7.704E+43	-1.735E+40	1	2	nan	-1.608E+43	-3.621E+39	0.5
3	-8.214E+26	-8.799E+09	-351.51014	1	3	-2.738E+26	-2.933E+09	-117.17005	0.333333
4	1.2298E+19	1.1453E+10	11184810.5	1	4	6.1489E+18	5726623061	5592405	0.25
5	1.000092	1	1	1	5	0.200089	0.2	0.2	0.2
6	1	1	1	1	6	0.166667	0.16666667	0.16666667	0.166667
7	1	1	1	1	7	0.142857	0.14285714	0.14285714	0.142857
8	1	1	1	1	8	0.125	0.125	0.125	0.125
9	1	1	1	1	9	0.111111	0.11111111	0.11111111	0.111111
10	1	1	1	1	10	0.1	0.1	0.1	0.1
11	1	1	1	1	11	0.090909	0.09090909	0.09090909	0.090909
12	1	1	1	1	12	0.083333	0.08333333	0.08333333	0.083333
13	1	1	1	1	13	0.076923	0.07692308	0.07692308	0.076923
14	1	1	1	1	14	0.071429	0.07142857	0.07142857	0.071429
15	1	1	1	1	15	0.066667	0.06666667	0.06666667	0.066667
16	1	1	1	1	16	0.0625	0.0625	0.0625	0.0625
17	1	1	1	1	17	0.058824	0.05882353	0.05882353	0.058824
18	1	1	1	1	18	0.055556	0.0555556	0.0555556	0.055556
19	1	1	1	1	19	0.052631	0.05263158	0.05263158	0.052632
20	1	1	1	1	20	0.05	0.05	0.05	0.05
21	1	1	1	1	21	0.047619	0.04761905	0.04761905	0.047619
22	1	1	1	1	22	0.045455	0.04545455	0.04545455	0.045455
23	1	1	1	1	23	0.043478	0.04347826	0.04347826	0.043478
24	1	1	1	1	24	0.041667	0.04166667	0.04166667	0.041667
25	1	1	1	1	25	0.04	0.04	0.04	0.04
26	1	1	1	1	26	0.038462	0.03846154	0.03846154	0.038462
27	1	1	1	1	27	0.037037	0.03703704	0.03703704	0.037037
28	1	1	1	1	28	0.035714	0.03571429	0.03571429	0.035714
29	1	1	1	1	29	0.034483	0.03448276	0.03448276	0.034483
30	1	1	1	1	30	0.033333	0.03333333	0.03333333	0.033333

 $\label{eq:tabela 2.} \mbox{Wartości } x_0 \mbox{ i } x_1 \mbox{ dla a} \in \mbox{ [2; 30]}$

W przypadku \mathbf{x}_0 i \mathbf{x}_1 znane są wartości oczekiwane obliczeń, równe odpowiednio $\mathbf{1}$ i $\mathbf{1/a}$. Podobnie jak poprzednio, żaden typ zmiennoprzecinkowy nie poradził sobie z małymi wartościami \mathbf{a} , a typ float dla $\mathbf{a=2}$ zwrócił wartość \mathbf{NaN} . Dla $\mathbf{a=5}$ błąd był bardzo mały, a dla kolejnych \mathbf{a} zanikł. Duży wkład w to miały w miarę dokładne wartości \mathbf{x}_k i \mathbf{x}_{k+1} obliczone wcześniej.

 $\label{eq:wykres 3.} \mbox{Wartości } x_0 \mbox{ i } x_1 \mbox{ dla a} \in \mbox{ [5; 30]}$

Wykres 4. Wartości x₀ i x₁ dla a ∈ [5; 30]

Obliczenia x_n dla a=3.

xn. dla a = 3

xn, dla a = 3								
			long					
n	float	double	double	faktyczna wartość				
0	1	1	1	1				
1	0.333333	0.33333333	0.33333333	0.33333333				
2	0.111111	0.11111111	0.11111111	0.11111111				
3	0.037037	0.03703704	0.03703704	0.03703704				
4	0.012346	0.01234568	0.01234568	0.01234568				
5	0.004117	0.00411523	0.00411523	0.00411523				
6	0.001376	0.00137174	0.00137174	0.00137174				
7	0.00047	0.00045725	0.00045725	0.00045725				
8	0.00019	0.00015242	0.00015242	0.00015242				
9	0.000165	5.0805E-05	5.0805E-05	5.0805E-05				
10	0.000358	1.6935E-05	1.6935E-05	1.6935E-05				
11	0.00103	5.645E-06	5.645E-06	5.645E-06				
12	0.003075	1.8817E-06	1.8817E-06	1.8817E-06				
13	0.009221	6.2724E-07	6.2723E-07	6.2723E-07				
14	0.027662	2.0912E-07	2.0908E-07	2.0908E-07				
15	0.082984	6.9815E-08	6.9692E-08	6.9692E-08				
16	0.248952	2.3601E-08	2.3231E-08	2.3231E-08				
17	0.746857	8.8555E-09	7.7437E-09	7.7435E-09				
18	2.240572	5.917E-09	2.5816E-09	2.5812E-09				
19	6.721715	1.0868E-08	8.6163E-10	8.6039E-10				
20	20.165144	3.0309E-08	2.905E-10	2.868E-10				
21	60.495434	9.0162E-08	1.067E-10	9.5599E-11				
22	181.486298	2.7023E-07	6.5172E-11	3.1866E-11				
23	544.458862	8.1061E-07	1.1054E-10	1.0622E-11				
24	1633.37647	2.4318E-06	3.0329E-10	3.5407E-12				
25	4900.12891	7.2954E-06	9.0042E-10	1.1802E-12				
26	14700.3867	2.1886E-05	2.6981E-09	3.9341E-13				
27	44101.1602	6.5659E-05	8.0933E-09	1.3114E-13				
28	132303.469	0.00019698	2.428E-08	4.3712E-14				
29	396910.406	0.00059093	7.2839E-08	1.4571E-14				
30	1190731.13	0.00177278	2.1852E-07	4.8569E-15				
31	3572193.25	0.00531835	6.5555E-07	1.619E-15				
32	10716580	0.01595504	1.9666E-06	5.3966E-16				
33	32149738	0.04786511	5.8999E-06	1.7989E-16				
34	96449216	0.14359533	1.77E-05	5.9962E-17				
35	289347648	0.430786	5.3099E-05	1.9987E-17				
36	868042944	1.292358	0.0001593	6.6625E-18				
37	2604128768	3.87707401	0.0001333	2.2208E-18				
38	7812385792	11.631222	0.00143369	7.4027E-19				
39	2.3437E+10	34.893666	0.00143303	2.4676E-19				
40	7.0311E+10	104.680998	0.01290317	8.2253E-20				
41	2.1093E+11	314.042994	0.03870951	2.7418E-20				
42	6.328E+11	942.128983	0.11612852	9.1392E-21				
43	1.8984E+12	2826.38695	0.34838555	3.0464E-21				
44	5.6952E+12	8479.16085	1.04515664	1.0155E-21				
45	1.7086E+13	25437.4825	3.13546993	3.3849E-22				
46	5.1257E+13	76312.4476	9.40640978	1.1283E-22				
70	Tabela 3.							

Tabela 3. Wartości x_n dla a = 3

Wykres 5. Wartości x_n dla a = 3

Na tabeli 3 i wykresie 5 wyraźnie widać, kiedy który typ zmiennoprzecinkowy zaczyna odchodzić od faktycznej wartości. Dla float jest to n=7, dla double jest to n=17, a dla long double jest to n=21.

5. Wnioski

Jak pokazały powyższe przykłady, komputery mają ograniczone możliwości prowadzenia operacji zmiennoprzecinkowych. Mały błąd w jednej operacji przenosi się na kolejne działania, które też same z siebie mogą dawać błędne wyniki. W ten sposób błąd rośnie wykładniczo, co widać na tabeli 3 i wykresie 5. W przypadku takim, jak w tym zadaniu, błędy można zniwelować porzucając typy zmiennoprzecinkowe na rzecz specjalnych klas reprezentujących ułamki zwykłe.