- (1a) Prove that the (d-1)-dimensional simplex \triangle^{d-1} has $\binom{d}{k}$ faces of dimension (k-1), for $0 \le k \le d$.
- (1b) Using the simple form $n! \approx (\frac{n}{e})^n$ of Stirling's formula, show that $\varphi_d(x) := \log \binom{d}{xd}$ is asymptotically proportional to $-x \log x (1-x) \log (1-x)$, for $x \in (0,1)$ and $d \to \infty$. Discuss the real function φ_d on [0,1].
- (2a) Prove that the d-dimensional cube \Box^d has $2^{d-k} \binom{d}{k}$ faces of dimension k, for $0 \le k \le d$.
- (2b) Using the simple form $n! \approx (\frac{n}{e})^n$ of Stirling's formula, show that $\psi_d(x) := d(1-x) + \log \binom{d}{xd}$ is asymptotically proportional to $1-x-x\log x-(1-x)\log(1-x)$, where $\log = \log_2$ denotes the binary logarithm. Find an approximation to the maximum of this function on (0,1).