Исследование гальванометра.

Дмитрий Павлов, 790 17 декабря 2018 г.

Содержание

1.	Вступление.	3
	1.1. Цель работы	Ş
	1.2. Оборудование	3
	1.3. Экспериментальная установка	3
2.	Словарь.	3
3.	Практическая часть.	5
	3.1. Определение динамической постоянной	5
	3.2. Определение критического сопротивления гальванометра	
	3.3. Определение баллистической постоянной и критического сопротивления галь-	
	ванометра, работающего в баллистическом режиме	6
4.	Вывол	7

1. Вступление.

1.1. Цель работы.

Изучение работы высокочувствительного зеркального гальванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда.

1.2. Оборудование.

- Зеркальный гальванометр с осветителем и шкалой;
- Источник постоянного напряжения;
- Делитель напряжения;
- Магазин сопротивлений;
- Эталонный конденсатор;
- Вольтметр;
- Переключатель;
- Ключи;
- Линейка.

1.3. Экспериментальная установка.

Баллистический гальванометр состоит из подвешенной на вертикальной нити рамки, помещенной в поле постоянного магнита. Скрепленное с рамкой зеркальце служит для измерения угла поворота рамки. К рамке прикреплен полый цилиндр, который сильно увеличивает момент инерции и, следовательно, период колебаний подвижной системы, не очень ее утяжеляя.

Баллистический гальванометр позволяет измерять как постоянный ток (стационарный режим), так и заряд, протекший через рамку за некоторое время (баллистический режим).

2. Словарь.

1) ЭДС индукции.

$$\mathcal{E}_{\text{инд}} = -rac{d\Phi}{dt}.$$

2) Уравнение движения рамки:

$$\ddot{\varphi} + 2\gamma\dot{\varphi} + \omega_0^2 \varphi = KI, \tag{1}$$

где γ - коэффициент затухания, ω_0 - собственная частота колебаний рамки.

3) Динамическая постоянная гальванометра:

$$C_1 = \frac{I}{\varphi}.$$

4) Свободные колебания рамки.

Движение в отсутствии внешних источников тока, I=0.

Начальные условия: $t=0, \varphi=0, \dot{\varphi}=\dot{\varphi}_0.$

При этом уравнение движения приобретает вид:

$$\ddot{\varphi} + 2\gamma\dot{\varphi} + \omega_0^2 \varphi = 0. \tag{2}$$

5) Колебательный режим $\gamma < \omega_0$. Решение уравнения 1 имеет вид:

$$\varphi = \frac{\dot{\varphi}}{\omega} e^{-\gamma t} \sin \omega t,\tag{3}$$

где $\omega^2 = \omega_0^2 - \gamma^2$.

Период колебаний равен:

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\omega_0^2 - \gamma^2}}. (4)$$

Если затухание мало, то

$$\varphi = \frac{\dot{\varphi}}{\omega_0} \sin \omega_0 t,\tag{5}$$

6) Критический режим $\gamma = \omega_0$.

Решение уравнения 2 в этом случае имеет вид:

$$\varphi = \dot{\varphi}_0 t e^{-\gamma t}. \tag{6}$$

Движение не имеет колебательного характера: отклоненная подвижная система после отброса почти экспоненциально приближается к нулю.

7) Затухание велико, $\gamma > \omega_0$.

Решение 2 в этом случае имеет вид:

$$\varphi = \frac{\dot{\varphi}}{\kappa} e^{-\gamma t} \sinh \kappa t, \tag{7}$$

где $\kappa^2 = \gamma^2 - \omega_0^2$.

8) Баллистическая постоянная гальванометра.

$$C_Q = \frac{q}{\varphi_{max}}.$$

9) Отношение баллистических постоянных:

$$\frac{C_{Q_{\rm Kp}}}{C_{Q_{\rm CB}}} = e.$$

3. Практическая часть.

3.1. Определение динамической постоянной.

Рис. 1. Схема установки для работы гальванометра в стационарном режиме.

Найдем динамическую постоянную гальванометра. Для этого определим зависимость тока I от координаты светового пятна x.

$\sigma_R = 1\mathrm{Om}, \sigma_x = 1\mathrm{mm}, \sigma_U = 0.01\mathrm{B}$										
	1	2	3	4	5	6	7	8		
$R, \Omega \cdot 10^3$	8	16	24	32	40	48	56	64		
x, MM	198	91	57	40	29	23	19	15		
$I, A \cdot 10^{-8}$	7.76	4.00	2.69	2.03	1.63	1.36	1.17	1.02		

Остальные параметры:

- $U_0 = 1.32 \text{ B};$
- $R_1/R_2 = 1/2000$;
- $R_2 = 10 \text{ kOm};$
- $R_0 = 500 \text{ Om}.$
- $L = 120 \pm 1$ cm.

Построим график зависимости:

По полученному уравнению прямой находим динамическую постоянную гальванометра:

$$C_I = \frac{2aI}{x} = (88 \pm 3) \cdot 10^{-9} \frac{A}{\text{MM/M}}.$$
 (9)

3.2. Определение критического сопротивления гальванометра.

Рассчитаем логарифмический декремент затухания Θ и построим график зависимости $1/\Theta^2$ от $(R+R_0)^2$ и по наклону прямой определим критическое сопротивление.

	0	1	2	3	4	5	6
$R, \mathrm{Om} \cdot 10^3$	21	27	30	33	36	41	50
x_1 , MM	68	54	49	44	40	35	28
x_2 , MM	5	9	10	10	10	10	11
Θ	2.6	1.79	1.59	1.48	1.39	1.25	0.9 3

Построим график зависимости:

По полученному уравнению прямой находим критическое сопротивление:

$$R_{cr} = (7000 \pm 900)\Omega. \tag{10}$$

3.3. Определение баллистической постоянной и критического сопротивления гальванометра, работающего в баллистическом режиме.

	0	1	2	3	4	5	6	7	8	9	10	11
$R, \mathrm{Om} \cdot 10^3$	18	16	14	12	8	6	4	3	2.5	2	1.5	1
x, MM	140.0	135.0	131.0	127.0	109.0	90.0	71.0	58.0	50.0	46.0	37.0	29.0

Остальные параметры:

- $x_{max} = 27 \text{ cm};$
- $C=2 \text{ MK}\Phi$

Определим
$$x_{\rm kp}=99$$
 мм и $C_{Q{\rm kp}}=2a\frac{R_1}{R_2}\frac{U_0C}{l_{max{\rm kp}}}=(91\pm9)\cdot 10^{-8}\frac{{\rm K}\pi}{{\rm MM/M}}.$

Построим график зависимости x от $1/(R_0 + R)$. Так как у нас получается нелинейная зависимость, то рассмотрим хорошо аппроксимирующие точки начала кривой.

Из получившегося уравнения прямой получаем критическое сопротивление

$$R_{\rm Kp} = (6900 \pm 700) \text{OM}.$$
 (11)

4. Вывод

Определили характеристики баллистического гальванометра: $C_I = (88\pm3)\cdot 10^{-9}\frac{A}{\text{мм/см}}, C_{Q\kappa p} = (91\pm9)\cdot 10^{-8}\frac{\text{K}_{J}}{\text{мм/м}}$. Также определили критическое сопротивление двумя различными способами, которые согласуются с экспериментом.

Эксперимент	~ 7000 Ом
Динамический способ	$(7000 \pm 900) \text{ Om}$
Баллистический способ	$(6900 \pm 700) \text{ Om}$