CHAPTER

7

Redox Reactions

Normality Vs Molarity

Molarity (M)		Normality (N)	
1.	No. of moles of solute present in one litre of solution.	1.	No. of equivalents of solute present in one litre of solution
2.	No. of moles = $\frac{W}{M}$	2.	No. of equivalents = $\frac{W}{E}$
3.	$\frac{W}{M} \times 1000 = \text{No. of millimoles}$	3.	$\frac{W}{E} \times 1000 = \text{No. of equivalents}$
4.	Molarity V(in mL) = No. of millimoles	4.	Normality V(in mL) = No. of equivalents
5.	$Molarity = \frac{milli \ moles}{Volume \ of \ solution \ in \ mL}$	5.	Normality = $\frac{\text{milli equivalents}}{\text{Volume of solution in mL}}$

Table: Some Redox Titratrion Excluding Iodometric/ Iodimetric

	Estimation of	By titrating with	Reaction	Relation* between OA and RA
1.	Fe ²⁺	MnO ₄	$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	$5\text{Fe}^{2+} \equiv \text{MnO}_4^-$
			$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	Eq. wt. of $Fe^{2+} = M/1$
2.	Fe ²⁺	Cr ₂ O ₇ ²⁻	$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	$6Fe^{2+} \equiv Cr_2O_7^{2-}$
			$\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6\text{e}^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$	Eq. wt. of $Cr_2O_7^{2-} = M/6$
3.	$C_2O_4^{2-}$	MnO_4^-	$C_2O_4^{2-} \to 2CO_2 + 2e^-$	$5C_2O_4^{2-} \equiv 2MnO_4^{-}$
			$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	Eq. wt. of $C_2 O_4^{2-} = M/2$
4.	H ₂ O ₂	MnO_4^-	$H_2O_2 \rightarrow 2H^+ + O_2 + 2e^-$	$5H_2O_2 \equiv 2MnO_4^-$
			$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	Eq. wt. of $H_2O_2 = M/2$
5.	As ₂ O ₃	MnO_4^-	$As_2O_3 + 5H_2O \rightarrow 2AsO_4^{3-} + 10H^+ + 4e^-$	Eq. wt. of $As_2O_3 = M/4$
			$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	
6.	AsO ₃ ³ -	BrO ₃	$AsO_3^{3-} + H_2O \rightarrow AsO_4^{3-} + 2H^+ + 2e^-$	Eq. wt of $AsO_3^{3-} = M/2$
			$BrO_3^- + 6H^+ + 6e^- \rightarrow Br^- + 3H_2O$	Eq. wt. of $BrO_3^- = M/6$

Iodimetric Titrations

Estimation of	Reaction	Relation between O.A. and R.A.
H ₂ S (in acidic medium)	$H_2S + I_2 \rightarrow S + 2I^- + 2H^+$	$H_2S \equiv I_2 \equiv 2I^-$ Eq. wt. of $H_2S = M/2$
SO ₃ ²⁻ (in acidic medium)	$SO_3^{2-} + I_2 + H_2O \rightarrow SO_4^{2-} + 2I^- + 2H^+$	$SO_3^{2-} \equiv I_2 \equiv 2I^-$ Eq. wt. of $SO_3^{2-} = M/2$
Sn ²⁺	$\mathrm{Sn^{2+}} + \mathrm{I_2} \rightarrow \mathrm{Sn^{4+}} + 2\mathrm{I^-}$	Sn^{2+} $I_2 \equiv 2I^-$ Eq. wt. of $Sn^{2+} = M/2$
As (III) (at $pH = 8$)	$H_2AsO_3^- + I_2 + H_2O \rightarrow HAsO_4^{2-} + 2I^{-1} + 2H^+$	$H_2AsO_3^- \equiv I_2 \equiv 2I^-$ Eq. wt. of $H_2AsO_3^- = M/2$
N_2H_4	$N_2H_4 + 2I_2 \rightarrow N_2 + 4H^+ + 4I^-$	$N_2H_4 \equiv 2I_2 \equiv 4I^-$ Eq. wt. of $N_2H_4 = M/4$
I_2	$I_2 + 2Na_2S_2O_3 \rightarrow 2Nal + Na_2S_4O_6$ or $I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$	$I_2 = 2I \equiv 2Na_2S_2O_3$
CuSO_4	$\begin{aligned} 2\text{CuSO}_4 + 4\text{KI} &\rightarrow 2\text{Cu}_2\text{I}_2 + 2\text{K}_2\text{SO}_4 + \text{I}_2 \\ \text{Cu}^{2+} + 4\text{I}^- &\rightarrow \text{Cu}_2\text{I}_2 + \text{I}_2 \\ \text{(White ppt.)} \\ \text{CaOCl}_2 + \text{H}_2\text{O} &\rightarrow \text{Ca(OH)}_2 + \text{Cl}_2 \end{aligned}$	$2\text{CuSO}_4 \equiv \text{I}_2 \equiv 2\text{I}^- \equiv 2\text{Na}_2\text{S}_2\text{O}_3$ Eq. wt. of $\text{CuSO}_4 = \text{M}/1$
CaOCl ₂	$\begin{aligned} \text{Cl}_2 + 2\text{KI} &\rightarrow 2\text{KCl} + \text{I}_2 \\ \text{Cl}_2 + 2\text{I}^- &\rightarrow 2\text{Cl}^- + \text{I}_2 \\ \text{MnO}_2 + 4\text{HCl (conc)} &\stackrel{\Delta}{\longrightarrow} \text{MnCl}_2 + \text{Cl}_2 + 2\text{H}_2\text{O} \\ \text{Cl}_2 + 2\text{KI} &\rightarrow 2\text{KCl} + \text{I}_2 \end{aligned}$	
MnO_2	$\begin{array}{c} {\rm MnO_2 + 4H^+ + 2Cl^- \rightarrow Mn^{2+} + 2H_2O + Cl_2} \\ {\rm Cl_2 + 2I^- \rightarrow I_2 + 2Cl^-} \end{array}$	$MnO_2 \equiv Cl_2 \equiv I_2 \equiv 2I \equiv 2Na_2S_2O_3$ Eq. wt. of $MnO_2 = M/2$
IO ₃ ⁻	$IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$	$IO_3^- \equiv 3I_2 \equiv 6I \equiv 6Na_2S_2O_3$ Eq. wt. of $IO_3^- = M/6$

