DS°8 (le 23/03/2013)

EXERCICE

Pour $n \in \mathbb{N}$, on considère les équations différentielles

$$(E_n)$$
 $x^2y'' + (n-n^2-x^2)y = 0$,

où x désigne une variable réelle et y = y(x) une fonction deux fois dérivable. On remarque que (E_0) et (E_1) sont les mêmes équations.

- **1.** On prend n = 0 et on étudie l'équation différentielle (E_0) .
 - a) Déterminer les solutions de (E_0) sur chacun des intervalles $]-\infty,0[$, $]0,+\infty[$.
 - **b)** L'équation (E_0) a-t-elle des solutions sur \mathbb{R} ?
- 2. On prend $n \ge 2$ et on suppose que l'équation différentielle (E_n) a une solution développable en série entière $y(x) = \sum_{k=0}^{+\infty} u_k x^k$, de rayon de convergence R > 0.
 - a) Calculer u_0 et u_1 .
 - **b)** Pour $k \ge 2$, donner une relation entre u_k et u_{k-2} .
 - c) Calculer les coefficients u_k pour $k \in [0, n-1]$.
 - **d)** Pour $p \in \mathbb{N}$, calculer les coefficients u_{n+2p+1} .
 - e) Pour $p \in \mathbb{N}$, calculer les coefficients u_{n+2p} en fonction de u_n .
 - f) Déterminer le rayon de convergence R de la série entière.
 - **g**) Que peut-on dire de l'ensemble des solutions de (E_n) développables en série entière au voisinage de 0?

PROBLÈME

Préliminaires

On considère la suite $(\alpha_i)_{i\in\mathbb{N}}$ définie par :

$$\forall i \in \mathbb{N}, \ \alpha_i = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin u)^i du.$$

- 1. Établir une relation de récurrence entre α_i et α_{i+2} , pour tout entier naturel i.
- 2. En déduire que :

$$\alpha_i = \begin{cases} 1 & \text{si } i = 0, \\ 0 & \text{si } i \text{ impair,} \\ \frac{(i-1)(i-3)\dots 1}{i(i-2)\dots 2} & \text{si } i \text{ est pair et non nul.} \end{cases}$$

Dans tout le problème I désigne l'intervalle]-1,1[. On considère l'équation différentielle :

$$(1 - x^2)y' - xy = f(x) \quad (\mathcal{E}_f)$$

où f désigne une une fonction réelle de classe \mathscr{C}^{∞} sur I.

Partie I

- **1.** Soit $y_0 \in \mathbb{R}$; justifier qu'il existe une et une seule solution φ de (\mathcal{E}_f) définie sur I et telle que $\varphi(0) = y_0$. On énoncera avec précision le théorème utilisé.
- 2. Montrer que toutes les solutions de (\mathcal{E}_f) sont de classe \mathscr{C}^∞ sur I.
- 3. a) Résoudre l'équation différentielle homogène associée;

$$(1 - x^2)y' - xy = 0$$
 (\mathcal{E}_0)

b) Étant donné un réel y_0 , démontrer que l'unique solution φ de l'équation différentielle (\mathcal{E}_f) telle que $\varphi(0)=y_0$ peut s'exprimer de la façon suivante :

$$\forall x \in I, \ \varphi(x) = \frac{1}{\sqrt{1 - x^2}} \left(\int_0^x \frac{f(t)}{\sqrt{1 - t^2}} dt + y_0 \right).$$

c) Dans le cas particulier où l'équation différentielle est :

$$(1-x^2)y'-xy=1$$
 (\mathcal{E}_1) ,

déterminer les solutions sur I.

Partie II

Pour $m \in \mathbb{N}$, on note $\mathbb{R}_m[X]$ l'ensemble des polynômes de degré inférieur ou égal à m. On rappelle que c'est un \mathbb{R} -espace vectoriel de dimension m+1.

Dans la suite du problème, on assimilera un polynôme P et sa fonction polynôme $x \mapsto P(x)$. Pour tout polynôme P, on note P' son polynôme dérivé. On définit :

$$\forall x \in \mathbb{R}, \ \Delta(P)(x) = (1 - x^2)P'(x) - xP(x).$$

- **1.** Soit $P \in \mathbb{R}_m[X]$. Démontrer que $\Delta(P)$ est un polynôme dont on exprimera le degré en fonction de celui de P.
- 2. Démontrer que $P \mapsto \Delta(P)$ induit une application linéaire de $\mathbb{R}_m[X]$ dans $\mathbb{R}_{m+1}[X]$. On note Δ_m cette application linéaire.
- **3.** Démontrer que Δ_m est injective.
- **4.** Déterminer le rang de Δ_m . Que peut-on en déduire pour l'image de Δ_m ?
- 5. Exprimer la matrice A_m de Δ_m relativement aux bases canoniques de $\mathbb{R}_m[X]$ et $\mathbb{R}_{m+1}[X]$.

On cherche dans cette partie pour quelles applications f, l'équation différentielle (\mathcal{E}_f) admet une solution polynomiale, c'est-à-dire une solution de la forme $x \mapsto P(x)$, où P désigne un polynôme à coefficients réels.

- 6. Soit f une fonction réelle de classe \mathscr{C}^{∞} sur I; montrer que si l'équation différentielle (\mathcal{E}_f) admet sur I une solution polynomiale $x \mapsto P(x)$, f est nécessairement une fonction polynomiale que l'on exprimera en fonction de $\Delta(P)$.
- 7. Soit Q un polynôme à coefficients réels et de degré n non nul. On pose $Q = \sum_{k=0}^{n} q_k X^k$.

On note V le vecteur colonne de \mathbb{R}^{n+1} de coordonnées q_0, q_1, \ldots, q_n . On a ainsi :

$$V = \begin{pmatrix} q_0 \\ q_1 \\ \vdots \\ q_n \end{pmatrix}$$

a) Soit $P \in \mathbb{R}_{n-1}[X]$. On pose $P = \sum_{k=0}^{n-1} p_k X^k$. Soit U le vecteur colonne de \mathbb{R}^n de coordonnées $p_0, p_1, \ldots, p_{n-1}$.

Démontrer que la fonction $x \mapsto P(x)$ est solution de l'équation différentielle (\mathcal{E}_Q) si et seulement si on a l'égalité $A_{n-1}U = V$.

- b) En déduire que les trois assertions ci-dessous sont équivalentes :
 - (i) L'équation différentielle $(\mathcal{E}_{\mathrm{O}})$ admet une solution polynomiale.
 - (ii) Il existe $P \in \mathbb{R}_{n-1}[X]$ tel que $Q = \Delta_{n-1}(P)$,
 - (iii) Le système linéaire $A_{n-1}S = V$ admet une solution S dans \mathbb{R}^n .
- c) On suppose dans cette question que n = 4.
 - i) Écrire précisément le système $A_3S = V$.
 - ii) Montrer que ce système admet une solution si et seulement si les coefficients du polynôme Q vérifient l'égalité : $3q_4 + 4q_2 + 8q_0 = 0$.
 - iii) En supposant cette condition satisfaite, résoudre ce système et en déduire l'expression de la solution polynomiale P de (\mathcal{E}_Q) , en fonction de q_0 , q_1 , q_3 et q_4 (q_2 étant exclu).
 - iv) Que représente la relation $3q_4 + 4q_2 + 8q_0 = 0$ pour l'image de Δ_3 ?
- d) On revient au cas où n est un entier naturel non nul quelconque. On introduit sur $\mathbb{R}_n[X]$ une application λ_n définie par :

$$\forall \mathbf{R} \in \mathbb{R}_n[\mathbf{X}], \ \lambda_n(\mathbf{R}) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathbf{R}(\sin(u)) du.$$

- i) Démontrer que λ_n est une forme linéaire non nulle.
- ii) Démontrer que, pour tout P dans $\mathbb{R}_{n-1}[X]$, on a : $\lambda_n(\Delta_n(P)) = 0$.
- iii) En déduire que l'image de Δ_n et le noyau de λ_n sont égaux.
- iv) Expliciter une équation de l'image de Δ_n (on utilisera la suite $(\alpha_i)_{i\in\mathbb{N}}$ étudiée dans les préliminaires).
- e) Déterminer en fonction de q_0 , q_n une condition nécessaire et suffisante pour que l'équation (\mathcal{E}_Q) admette une solution polynomiale.
- f) Retrouver le résultat de la question 7(c)ii.

Partie III

On considère maintenant que f est définie par une série entière de rayon de convergence R>1 :

$$\forall x \in]-R, R[, f(x) = \sum_{k=0}^{+\infty} b_k x^k$$

- **1. a)** Montrer que les solutions de (\mathcal{E}_f) sur]-1,1[sont développables en série entière avec un rayon de convergence au moins égal à 1 (on pourra utiliser le résultat de I.3.(b)).
 - **b)** Soit $\sum_{k=0}^{+\infty} a_k x^k$ l'une de ces solutions;
 - i) Exprimer, pour $k \ge 1$, a_{k+1} en fonction de a_{k-1} et b_k .
 - ii) En déduire, pour $k \ge 1$, une relation vérifiée par $\frac{a_{2k}}{\alpha_{2k}}$, $\frac{a_{2(k-1)}}{\alpha_{2(k-1)}}$ et $\frac{b_{2k-1}}{(2k-1)\alpha_{2(k-1)}}$ (on utilisera la question 1. des préliminaires).
 - iii) En déduire, pour $p \in \mathbb{N}$, a_{2p} sous forme de sommes dépendant de a_0 , des α_{2k} et des b_{2k-1} , avec $1 \le k \le p$.
 - iv) De même, déduire de la question (i) ci-dessus, pour $k \geqslant 1$, une relation vérifiée par

$$(2k+1)a_{2k+1}\alpha_{2k}$$
, $(2k-1)a_{2k-1}\alpha_{2(k-1)}$ et $b_{2k}\alpha_{2k}$.

- v) En déduire, pour $p \in \mathbb{N}$, a_{2p+1} sous forme de sommes dépendant des α_{2k} et et des b_{2k} , avec $1 \le k \le p$.
- 2. Dans tout ce qui suit, φ désigne la fonction définie, pour tout $x \in]-1$, 1 [, par :

$$\varphi(x) = \frac{1}{\sqrt{1 - x^2}} \int_{1}^{x} \frac{f(t)}{\sqrt{1 - t^2}} dt.$$

- a) Justifier l'existence de $\varphi(x)$ pour tout $x \in]-1,1[$.
- **b)** Montrer que φ est une solution de (\mathcal{E}_f) sur]-1,1[.
- c) On veut démontrer que $\varphi(x)$ admet -f(1) pour limite lorsque x tend vers 1 par valeurs inférieures.
 - i) Soit $x \in]-1,1[$ et soit $\theta \in]0,\pi[$ tel que $x = \cos(\theta)$. Démontrer que :

$$\varphi(x) = \frac{-1}{\sin(\theta)} \int_0^{\theta} f(\cos(u)) du.$$

ii) Soit F la fonction définie par :

$$\forall \theta \in]-\pi, \pi[, F(\theta) = \int_0^{\theta} f(\cos(u)) du.$$

Justifier la dérivabilité de F sur $]-\pi,\pi[$ et déterminer sa fonction dérivée F'. On énoncera avec précision le théorème utilisé.

iii) Conclure.

d) On pose maintenant, pour tout $k \in \mathbb{N}$ et pour tout $x \in]-1,1[$:

$$\varphi_k(x) = \frac{1}{\sqrt{1-x^2}} \int_1^x \frac{t^k}{\sqrt{1-t^2}} dt.$$

- i) Expliciter φ_0 et φ_1 .
- ii) Montrer que pour tout $k \ge 2$ et pour tout $x \in]-1,1[$:

$$\varphi_k(x) = -\frac{x^{k-1}}{k} + \frac{k-1}{k} \varphi_{k-2}(x).$$

- iii) Soit $p \in \mathbb{N}$; montrer que φ_{2p+1} est une fonction polynomiale de degré 2p.
- iv) Montrer que pour tout $p \in \mathbb{N}$, il existe un polynôme P_{2p} de degré 2p-1 tel que :

$$\forall x \in]-1,1[, \ \varphi_{2p}(x) = P_{2p}(x) + \alpha_{2p}\varphi_0(x).$$

- v) Quelles sont les valeurs de k, pour lesquelles les fonctions φ_k admettent une limite finie lorsque x tend vers 1 par valeurs inférieures?
- e) Montrer que la série de fonctions $\sum_{k>0} b_k \varphi_k$ converge simplement vers φ sur]-1,1[.

