Série 2

L'exercise 1 sera discuté pendant le cours le lundi 3 octobre. L'exercice $10~(\star)$ peut être rendu le jeudi 6 octobre aux assistants jusqu'à 15h.

Exercice 1 - QCM

(a)

(b)

Dete	erminer si les énoncés proposés sont vrais ou faux.			
•	Soient $A, B \in M_{n \times n}(\mathbb{R})$. Si A et B commutent, alors A^T et B	\mathbf{g}^T commu	tent.	
		O vrai	O faux	
•	Soient $A, B, C \in M_{n \times n}(\mathbb{R})$. Si A et B commutent, et B et C A et C commutent.	commute	ent, alors	
		O vrai	○ faux	
•	Soient $A, B, C \in M_{n \times n}(\mathbb{R})$. Alors $(ABC)^T = C^T A^T B^T$.			
		O vrai	O faux	
•	Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice à la fois symétrique et antisy est une matrice diagonale non nulle.	métrique.	Alors A	
		🔾 vrai	○ faux	
•	Si $A \in M_{n \times n}(\mathbb{R})$ est diagonale, et si tous ses coefficients di nuls, alors A est inversible.	agonaux s	sont non	
		O vrai	O faux	
•	Soit $A \in M_{3\times 3}(\mathbb{R})$. Si A est inversible, alors la sous-matrice principale $A(\{1,2\},\{1,2\})$ est inversible.			
		🔾 vrai	○ faux	
•	• Soit $A \in M_{4\times 4}(\mathbb{R})$ une matrice triangulaire supérieure. Si A est inversible, alor la sous-matrice principale $A(\{1,2\},\{1,2\})$ est inversible.			
		🔾 vrai	○ faux	
Determiner les énoncés corrects. Pour chaque question il n'y a qu'une seule réponse correcte.				
1.	Pour calculer le produit d'une matrice $m \times n$ par une matrice de $2mnp$ opérations arithmétiques (additions et multiplicatio		a besoin	
	pient $A_1 \in M_{n_1 \times n_2}(\mathbb{R}), A_2 \in M_{n_2 \times n_3}(\mathbb{R}), A_3 \in M_{n_3 \times n_4}(\mathbb{R})$. En utilisant l'asso- ativité de la multiplication, le produit $C = A_1 A_2 A_3$ peut être obtenu de deux anières différentes :			
	i) d'abord calculer $B_1 = A_1 A_2$, et puis $C_1 = B_1 A_3$. Ou			
	ii) d'abord calculer $B_2 = A_2 A_3$, et puis $C_2 = A_1 B_2$.			
	Laquelle des assertions suivantes est correcte?			

- O Les deux possibilités nécessitent toujours le même nombre d'opérations.
- O Une possibilité peut nécessiter plus d'opérations que l'autre. Cela dépend de n_1, n_2, n_3 .
- \bigcirc Les deux possibilités ne donnent pas la même matrice ; C_1 peut être différente de C_2 . Cela dépend de n_1, n_2, n_3 .
- 2. Soient $A, B \in M_{n \times n}(\mathbb{R})$, où B est inversible, et $k \geq 1$ un entier naturel. Alors,

$$\bigcirc (B^{-1}AB)^k = B^{-1}A^kB, \text{ où } C^k = \overbrace{C \cdot C \cdots C}^{k \text{ fois}}, \text{ pour } C \in M_{n \times n}(\mathbb{R}).$$

- $\bigcirc (B^{-1}A)^k = (B^{-1})^k A^k.$
- O Aucun des énoncés ci-dessus n'est correct.

Exercice 2

Considérons les matrices suivantes :

$$A = \begin{pmatrix} -1 & -3 & 2 \\ 4 & 2 & -5 \\ 2 & -2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 1 & 3 \\ 3 & 2 \end{pmatrix}, \quad x = \begin{pmatrix} 0 \\ -4 \\ 2 \end{pmatrix}, \quad y = \begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix}.$$

Calculer les produits suivants s'ils existent et s'ils n'existent pas, expliquer pourquoi.

$$AB$$
, BA , Ax , $A^2 := AA$, $B^2 := BB$, y^Tx , yx , xy^T , B^Ty , y^TB .

Exercice 3

Écrire le système suivant sous la forme Ax = b:

$$8 = x_1 + x_2$$

$$x_2 + x_4 = 3 + x_3$$

$$5 - x_4 = x_5$$

$$x_1 - 6 + x_5 = 0.$$

Exercice 4

(a) Calculer l'inverse (s'il existe) des matrices suivantes :

$$(i) \quad A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \qquad (ii) \quad B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(b) On considère le vecteur

$$b = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Écrivez les systèmes linéaires Ax = b et Bx = b correspondants aux matrices du point (a). Que peut-on dire de leur(s) solution(s)?

Exercice 5

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice 2×2 . Si $ad - bc \neq 0$, montrer que l'inverse de A est donné par

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Exercice 6

En deux dimensions, les matrices de rotation $Q(\varphi) \in M_{2\times 2}(\mathbb{R})$ ont la forme suivante

$$Q(\varphi) = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix},$$

où $\varphi \in \mathbb{R}$ est l'angle de rotation.

- (i) Calculer l'inverse de $Q(\varphi)$.
- (ii) Montrer que le produit matriciel $Q(\varphi_1)Q(\varphi_2)$ de deux matrices de rotation est aussi une matrice de rotation $Q(\varphi)$ et déterminer l'angle de rotation associé φ par rapport aux angles φ_1, φ_2 .

Exercice 7

Soit $A \in M_{n \times n}(\mathbb{R})$. Montrer que A commute avec toutes les matrices $n \times n$ si et seulement si A est scalaire.

Exercice 8

Trouver des matrices $A, B, C, D, E, F \in M_{2\times 2}(\mathbb{R})$ telles que

- (i) $A^2 = -I_2$,
- (ii) $B^2 = 0$, mais $B \neq 0$,
- (iii) CD = -DC, mais $CD \neq 0$,
- (iv) EF = 0, mais aucun élément de E n de F n'est nul.

On note la matrice d'identité en dimension 2 par $I_2 \in M_{2\times 2}(\mathbb{R})$ et 0 est une matrice 2×2 complètement nulle.

Exercice 9

Lesquelles des matrices suivantes valent l'expression $(A + B)^2$?

$$(B+A)^2$$
, $A^2 + 2AB + B^2$, $A(A+B) + B(A+B)$, $(A+B)(B+A)$, $A^2 + AB + BA + B^2$.

Exercice 10 (\star)

Soient A,B,C des matrices à coefficients dans \mathbb{R} . Dans chaque cas ci-dessous donner les dimensions des matrices afin que les sommes et produits soient bien définis puis montrer les égalités suivantes

(i)
$$A(B+C) = AB + AC$$
,

(ii)
$$(AB)^T = B^T A^T$$
.

Exercice 11

Soit $A \in M_{n \times n}(\mathbb{R})$. Montrer que A peut s'écrire comme somme d'une matrice symétrique et d'une matrice antisymétrique.