1. Comportamiento del amplificador operacional no inversor

A lo largo de esta sección se procederá a analizar el comportamiento ideal y real del amplificador operacional LM324 conectado como se muestra en la figura 1. Considerando los valores de los componentes como se observa en la tabla ??.

Figura 1: Circuito B

Se implementó en $Altium\ Designer\ como$ se muestra en las figuras 2 y 3.

Figura 2: Esquemático del circuito implementado

Figura 3: PCB del circuito implementado

1.1. Análisis de la transferencia

Comenzando por el análisis ideal, se pidió calcular y graficar la relación $\frac{V_{out}}{V_{in}}$, esto quiere decir, considerando a_0 finito y $A(\omega)$ con polo dominante. Considerando las ecuaciones descriptas a continuación y operando correctamente, se llega a que la relación $\frac{V_{out}}{V_{in}}$ está dada por la ecuación (1).

$$\begin{cases} \frac{V_i - V^+}{R_3} = \frac{V^+}{R_4} \\ \frac{V_o - V^-}{R_2} = \frac{V^-}{R_1} \\ V_o = A(\omega)(V^+ - V^-) \end{cases}$$

$$H(s) = \frac{R_4 \omega_p a_0 (R_1 + R_2)}{(R_3 - R_4) (R_1 \omega_p a_0 + (R_1 + R_2) (\omega_p + s))}$$

$$H(s) = \frac{414 \times 10^9}{110 \times 10^3 s + 47 \times 10^9} \quad Caso 1$$

$$H(s) = \frac{75 \times 10^9}{20 \times 10^3 s + 47 \times 10^9} \quad Caso 2$$

$$H(s) = \frac{414 \times 10^9}{110 \times 10^3 s + 471 \times 10^9} \quad Caso 3$$

Figura 4: Comportamiento del circuito para el caso 1

Figura 5: Análisis Montecarlo del caso 1

Figura 6: Comportamiento del circuito para el caso 2

Figura 7: Análisis Montecarlo del caso 2

Figura 8: Comportamiento del circuito para el caso 3

Figura 9: Análisis Montecarlo del caso 3

Como se puede observar, los circuitos siguen dentro de los parámetros adecuados, y considerando capacidades, inductancias y resistencias parásitas, las simulaciones y la transferencias calculadas. Las diferencias entre la transferencia calculada y la simulación se deben a las puntas de los osciloscopios, que generan polos de 2^{do} orden, sumados a los polos de los capacitores internos a los transistores de juntura bipolar, que provocan que la pendiente de atenuacion del circuito se mayor a la calculada, y a su vez, que el cambio de fase no sea de 90° , sino de 180° .

1.2. Análisis de la impedancia de entrada

Consecuentemente, se instó a calcular la impedancia de entrada vista por el generador hacia el circuito. Nuevamente, se utilizo el *Circuit Solver* creado en Python para calcular las expresiones de las impedancias de entrada. La ecuación que describe la impedancia de entrada se detalla en la ecuación (2).

$$Z_{inp} = R_3 + R_4 \tag{2}$$

Por lo tanto, las impedancias de entrada para cada caso serán:

$$Z_{inp} = 50(k\Omega) \ Caso 1$$

$$Z_{inp} = 50(k\Omega) \ Caso 2$$

$$Z_{inp} = 500(k\Omega) \ Caso 3$$

Teniendo en cuenta estos resultados, y a diferencia de lo visto previamente en el análisis del circuito inversor, se puede observar como la impedancia de entrada permanece constante frente a cambios de frecuencia en la tensión de entrada.

Figura 10: Simulación de la impedancia de entrada para el caso 1

Figura 11: Medición de la impedancia de entrada para el caso 1

Figura 12: Simulación de la impedancia de entrada para el caso 2

Figura 13: Medición de la impedancia de entrada para el caso 2

Figura 14: Simulación de la impedancia de entrada para el caso 3

Figura 15: Medición de la impedancia de entrada para el caso 3

Observando los gráficos de las simulaciones y comparandolos con las ecuación (2), se puede observar como prácticamente la impedancia de entrada permanece constante para todas las frecuencias. El hecho de que la impedancia de entrada tenga una pequeña variación en módulo y fase en la simulación se debe a que para hacer el análisis de la impedancia de entrada se consideró el amplificador operacional ideal, es decir, $R_{id} \longrightarrow \infty$ y $R_o \longrightarrow 0$ por lo tanto, no se tienen en cuenta el efecto de esas resistencias, como a su vez sus inductancias y capacidades intrínsecas del amplificador. Sin embargo, considerando la ecuación propuesta, y observando los resultados simulados, se puede observar que prácticamente no hay problema en aproximar la impedancia de entrada como constante en ninguno de los tres casos (considerando un 10 % de error en el ultimo caso).

Por otro lado, si se analizan las mediciones, se puede ver que para frecuencias mayores a 10(kHz), el modelo se aleja bastante de los resultados empíricos. Esto se explica debido a las capacidades parásitas que se generaron a la hora de medir la impedancia de entrada, que considerando a $Z_{inp} = R_3 + R_4$ generan un circuito pasabajos de primer orden, obteniendo así los resultados vistos en las mediciones. Si se simula el circuito, considerando las capacidades parásitas, comienza a ser observable el efecto pasabajos que se genera, y se pone en evidencia los resultados empíricos.

Figura 16: Simulación de impedancia de entrada para el caso 1, considerando una capacidad parásita de 10(pF)

Figura 17: Simulación de impedancia de entrada para el caso 2, considerando una capacidad parásita de 10(pF)

Figura 18: Simulación de impedancia de entrada para el caso 3, considerando una capacidad parásita de 10(pF)

1.3. Análisis de alinealidades

1.3.1. Análisis de saturación y polo dominante

Teniendo en cuenta que la salida del amplificador operacional no podrá ser en módulo mayor a V_{cc} , se calculó, como se explico en la sección anterior, el máximo valor de la tensión de entrada dependiente de la frecuencia de entrada para el cual el circuito no satura.

$$|H(f)| \times V_{in} = \frac{R_4 \omega_p a_0 (R_1 + R_2)}{(R_3 + R_4) \sqrt{4f^2 \pi^2 (R_1 + R_2)^2 + (R_1 \omega_p a_0 + \omega_p (R_1 + R_2))^2}} \times V_{in} \le V_{cc}$$

$$V_{in} \leq \frac{Vcc\left(R_{3}+R_{4}\right)\sqrt{4\pi^{2}f^{2}\left(R_{1}+R_{2}\right)^{2}+\left(R_{1}\omega_{p}a_{0}+R_{1}\omega_{p}+R_{2}\omega_{p}\right)^{2}}}{R_{4}\omega_{p}a_{0}\left(R_{1}+R_{2}\right)}$$

$$V_{in} \leq 2.4 \cdot 10^{-12} Vcc\sqrt{48,4 \times 10^{9} \pi^{2} f^{2} + 2.2 \cdot 10^{21}} \ Caso \ 1$$

$$V_{in} \le 1.3 \cdot 10^{-11} V cc \sqrt{1.6 \times 10^9 \pi^2 f^2 + 2.2 \cdot 10^{21}} \ Caso 2$$

$$V_{in} \le 2.4 \cdot 10^{-12} V_{cc} \sqrt{48.4 \times 10^9 \pi^2 f^2 + 2.2 \cdot 10^{23}} \ Caso 3$$

Observando estas ecuaciones y graficandolas para cada caso, se puede ver que en general, para grandes frecuencias, el efecto de saturación no se hace presente debido al comportamiento pasabajos del circuito analizado.

Figura 19: Tensión de entrada máxima respecto de la frecuencia de entrada para que no ocurra saturación en el caso 1

Figura 20: Tensión de entrada máxima respecto de la frecuencia de entrada para que no ocurra saturación en el caso 2

Figura 21: Tensión de entrada máxima respecto de la frecuencia de entrada para que no ocurra saturación en el caso 3

Figura 22: Tensión de entrada máxima respecto de la frecuencia de entrada para que no ocurra saturación

1.3.2. Análisis de Slew Rate

Por otro lado, se analizó el efecto Slew Rate de la misma manera que se lo hizo en la seccion anterior, es decir, $\frac{\partial V_{out}}{\partial t} \leq SR$, por lo tanto, tenemos que, $v_{in}(t) = V_p sin(2\pi ft)$, por ende, $V_{out}(t) = |H(f)| V_p 2\pi f \cos(2\pi ft + \phi(f))$. A su vez, el coseno siempre es menor a 1, por ende:

$$\begin{split} \frac{\partial V_{out}}{\partial t} &\leq |H(f)| \, V_p 2\pi f \leq SR \\ \Rightarrow V_p &\leq \frac{SR}{|H(f)| \, f 2\pi} \end{split} \tag{3}$$

Reemplazando en la inecuación (3), se tiene que;

$$V_{in} \leq \frac{SR\left(R_{3} + R_{4}\right)\sqrt{4\pi^{2}f^{2}\left(R_{1} + R_{2}\right)^{2} + \left(R_{1}\omega_{p}a_{0} + R_{1}\omega_{p} + R_{2}\omega_{p}\right)^{2}}}{2\pi R_{4}\omega_{p}a_{0}f\left(R_{1} + R_{2}\right)}$$

$$V_{in} \leq \frac{1,2 \times 10^{-12} SR \sqrt{48,2 \times 10^{9} \pi^{2} f^{2} + 2,2 \times 10^{21}}}{\pi f} \ Caso \ 1$$

$$V_{in} \le \frac{6.6 \times 10^{-12} SR \sqrt{16 \times 10^9 \pi f^2 + 2.2 \times 10^{21}}}{\pi f} Caso 2$$

$$V_{in} \le \frac{1,2 \times 10^{-12} SR \sqrt{48,4 \times 10^9 \pi^2 f^2 + 2,2 \times 10^{23}}}{\pi f} Caso 3$$

Ahora reemplazando para cada caso $SR=0,55836\left(\frac{V}{\mu s}\right)$ (como fue calculado en la sección anterior para el LM324), y se grafica la amplitud de entrada máxima frente a la frecuencia de entrada, nos quedan las Figuras 23, 24, 25 y 26.

Figura 23: Tensión de entrada máxima respecto de la frecuencia de entrada para que no ocurra el efecto de Slew Rate en el caso 1

Figura 24: Tensión de entrada máxima respecto de la frecuencia de entrada para que no ocurra el efecto de Slew Rate en el caso 2

Figura 25: Tensión de entrada máxima respecto de la frecuencia de entrada para que no ocurra el efecto de Slew Rate en el caso 3

Figura 26: Tensión de entrada máxima respecto de la frecuencia de entrada para que no ocurra el efecto de Slew Rate

1.3.3. Conclusiones

Por último, si se tiene en cuenta los efectos alinealies del *Slew Rate*, saturación y *Crossover Distortion* (el último explicado en la sección anterior), pueden ser armadas unas figuras mostradas a continuación que muestran la máxima amplitud de una señal de entrada al circuito para cada caso, para que no se encuentren efectos alineales indeseados en las mediciones. Estas son las figuras 27, 28, 29 y 30.

Figura 27: Tensión máxima de entrada para que no ocurran alinealidades en el caso 1

Figura 28: Tensión máxima de entrada para que no ocurran alinealidades en el caso $2\,$

Figura 29: Tensión máxima de entrada para que no ocurran alinealidades en el caso 3

Figura 30: Tensión máxima de entrada para que no ocurran alinealidades

1.4. Análisis del DC Sweep

A continuación se procede a realizar un DC Sweep para cada caso del circuito, los resultados se muestran a continuación.

Figura 31: DC Sweep caso 1

Figura 32: DC Sweep caso 2

Figura 33: DC Sweep caso 3

Como se puede observar no hay grandes diferencias entre lo simulado y lo medido.

2. Conclusiones

Es determinante tener en cuenta las alinealidades que provoca un amplificador operacional, ya sea por saturación, Slew Rate o Crossover Distortion, ya que es muy importante para proceder a hacer mediciones sobre los mismos. Estas alinealidades afectan en gran medida el comportamiento del amplificador operacional, por lo tanto, si no se las tiene en cuenta, es altamente probable que se cometan errores en mediciones y resultados esperados.

Sumado a esto, es muy importante tener en cuenta los efectos de los instrumentos de medición, ya sea osciloscopios, multimetros, analizadores de impedancias, etc. ya que las capacidades, inductancias y resistencias parásitas afectan en gran medida el comportamiento de nuestro circuito.

Por último, se pudo observar que a un mismo $Gain\ Bandwidth\ Product\ (GBP)$, podemos cambiar el circuito para que trabaje más idealmente a altas frecuencias. Es decir que para un caso A con ganancia β , y una frecuencia de corte f_0 , y un caso B con ganancia β' y una frecuencia de corte f_0' , se tiene que $\beta' \leq \beta$ y $f_0 \leq f_0'$, por lo tanto, se podrá en el caso B trabajar idealmente a mayores frecuencias, pero con menos ganancia, y por el contrario, en el caso A se trabajará con mas ganancia pero a menores frecuencias.