Kontinuierliche Wahrscheinlichkeitsräume

Mihir, Noah, Alfred

June 30, 2022

Contents

1	Kor	$_{ m tinuie}$	rliche Zufallsvariablen	2		
	1.1	Defini	tion 79	2		
		1.1.1	Verteilungsfunktion:	2		
	1.2	2 Kolmogorov-Axiome und σ -Algebren				
		1.2.1	σ -Algebren	2		
		1.2.2	1.3.2 Kolmogorov-Axiome	2		
		1.2.3	Lemma 84	3		
	1.3	1.3 Rechnen mit Kontinuierlichen Zufallsvariablen				
		1.3.1	1.4.1Funktionen kontinuierlicher Zufallsvariablen	3		
		1.3.2	Kontinuierliche Zufallsvariablen als Grenzwerte diskreter			
			Zufallsvariablen	3		
		1.3.3	Erwartungswert und Varianz:	4		
2	Wichtige Stetige Verteilungen					
	2.1	Gleich	nverteilung	4		
	2.2					
		2.2.1	Verteilungsfunktion:	5		
		2.2.2		5		
		2.2.3		5		
		2.2.4	Satz 95	5		
	2.3	2.3 Ex	xponentialverteilung	5		
		2.3.1	Satz 97 (Skalierung exponentialverteilter Variablen)	5		
	2.4	Satz 9	98 (Gedächtnislosigkeit)	6		
3	Mehrere kontinuierliche Zufallsvariablen					
	3.1	Mehro	limensionale Dichten	6		
		3.1.1	Randverteilung	6		
		3.1.2	Unabhängigkeit	6		

1	Zen	traler Grenzwertsatz	7
	0.0	fallsvariablen	7
	3.5	3.4.1 Satz 106 (Additivit¨at der Normalverteilung) 3.5 Momenterzeugende Funktionen f¨ur kontinuierliche Zu-	7
	3.4	Summen von Zufallsvariablen	
	3.3	Poisson-Prozess	6
	3.2	3.3 Warteprobleme mit der Exponentialverteilung	6

1 Kontinuierliche Zufallsvariablen

1.1 Definition 79

Eine kontinuierliche oder auch stetige Zufallsvariable X und ihr zugrunde liegender kontinuierlicher (reeller) Wahrscheinlichkeitsraum sind definiert durch eine integrierbare Dichte(-funktion)

$$f_X: \mathbb{R} \to \mathbb{R}_0^+$$
 mit der Eigenschaft $\sum_{-\infty}^{+\infty} f_X(x) dx = 1$

1.1.1 Verteilungsfunktion:

$$F_X(x) := Pr[X \le x] = Pr[\{t \in R | t \le x\}] = \int_{-\infty}^x f_X(t) dt.$$

1.2 Kolmogorov-Axiome und σ -Algebren

1.2.1 σ -Algebren

- 1. Definition 82 Sei Ω eine Menge. Eine Menge $A \subseteq P(\Omega)$ heißt σ -Algebra über Ω , wenn folgende Eigenschaften erfüllt sind:
 - (E1) $\Omega \in A$.
 - (E2) Wenn $A \in A$, dann folgt $\bar{A} \in A$.
 - (E3) Für $n \in \mathbb{N}$ sei $A_n \in A$. Dann gilt auch $\bigcup_{n=1}^{\infty} A_n \in A$

1.2.2 1.3.2 Kolmogorov-Axiome

Sei Ω eine beliebige Menge und A eine σ -Algebra über Ω . Eine Abbildung $Pr[.]:A\to [0,1]$

heißt Wahrscheinlichkeitsmaß auf A, wenn sie folgende Eigenschaften besitzt:

• (W1)
$$Pr[\Omega] = 1$$

• (W2) A1, A2, . . . seien paarweise disjunkte Ereignisse. Dann gilt $Pr[\bigcup_{i=1}^\infty A_i] = \sum_{i=1}^\infty Pr[A_i]$

1.2.3 Lemma 84

Sei (Ω, A, Pr) ein Wahrscheinlichkeitsraum. Für Ereignisse $A, B, A_1, A_2, ..., A_n$ gilt

- $\bullet \ Pr[\emptyset] = 0, Pr[\Omega] = 1$
- $0 \le Pr[A] \le 1$
- $Pr[\bar{A}] = 1Pr[A]$
- Wenn $A \subseteq B$, so folgt $Pr[A] \leq Pr[B]$.
- Bei paarweisen disjunkten Ereignissen A,B gilt $Pr[A \cup B] = Pr[A] + Pr[B]$

1.3 Rechnen mit Kontinuierlichen Zufallsvariablen

1.3.1 1.4.1 Funktionen kontinuierlicher Zufallsvariablen

Sei Y := g(X) mit einer Funktion $g : R \to R$. Die Verteilung von Y erhalten wir durch $F_Y(y) = Pr[Y \le y] = Pr[g(X) \le y] = \int_C f_X(t) dt$ Hierbei bezeichnet $C := t \in R|g(t) \le y$

1.3.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen

Wir können aus einer kontinuierlichen Zufallsvariable X leicht eine diskrete Zufallsvariable konstruieren, indem wir für ein festes $\delta>0$ definieren

$$X_{\delta} = n\delta \iff X \in [n\delta, (n+1)\delta[\text{ für } n \in \mathbb{Z}.$$

Für X_δ gilt

$$Pr[X_{\delta} = n_{\delta}] = F_X((n+1)\delta)F_X(n\delta)$$

Für $\delta \to 0$ nähert sich die Verteilung von X_δ der Verteilung von X immer mehr an.

1.3.3 Erwartungswert und Varianz:

- $E[X] = \int_{-\infty}^{\infty} t * f_X(t) dt$ sofern $\int_{-\infty}^{\infty} |t| * f_X(t) dt$ endlich ist
- $Var[X] = E[(X E[X])^2] = \int_{-\infty}^{\infty} (t E[X])^2 * f_X(t) dt$ sofern $E[(X E[X])^2]$ existiert

Für
$$Y = g(X)$$
 gilt:
 $E[Y] = \int_{-\infty}^{\infty} g(t) * f_X(t) dt$

2 Wichtige Stetige Verteilungen

2.1 Gleichverteilung

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & sonst \end{cases}$$

$$F(x) = \int_{-\infty}^x f(t)dt = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

$$E[X] = \frac{a+b}{2}$$

$$Var[X] = \frac{(a-b)^2}{12}$$

2.2 Normalverteilung

Eine Zufallsvariable X mit Wertebereich $W_X = R$ heißt normalverteilt mit den Parametern $\mu \in \mathbb{R}$ und $\sigma \in \mathbb{R}^+$, wenn sie die Dichte

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} * exp(-\frac{(x-\mu)^2}{2\sigma^2}) =: \varphi(x; \mu, \sigma)$$

In Zeichen schreiben wir $X \sim N(\mu, \sigma^2)$.

N(0,1) heißt Standardnormalverteilung. Die zugehörige Dichte $\varphi(x;0,1)$ kürzen wir $\varphi(x)$ ab

2.2.1 Verteilungsfunktion:

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} * \int_{-\infty}^{x} exp(-\frac{(t-\mu)^2}{2\sigma^2})dt =: \Phi(x; \mu, \sigma)$$

2.2.2 Satz 93 (Lineare Transformation der Normalverteilung)

Sei X eine normalverteilte Zufallsvariable mit $X \sim N(\mu, \sigma^2)$. Dann gilt für beliebiges

 $a \in \mathbb{R} \setminus 0$ und $b \in \mathbb{R}$, dass Y = aX + b normal verteilt ist mit $Y \sim N(a\mu + b, a^2\sigma^2)$.

2.2.3 Satz 94

X sei N(0,1) -verteilt. Dann gilt E[X] = 0 und Var[X] = 1.

2.2.4 Satz 95

Xsei $N(\mu,\sigma^2)$ -verteilt. Dann gilt $E[X]=\mu$ und $Var[X]=\sigma^2$.

2.3 Exponential verteilung

$$f(x) = \begin{cases} \lambda * e^{-\lambda x} & x \ge 0\\ 0 & sonst \end{cases}$$

$$F(x) = 1 - e^{-\lambda x} \text{ für } x \ge 0$$

$$E[X] = \frac{1}{\lambda}$$

$$Var[X] = \frac{1}{\lambda^2}$$

2.3.1 Satz 97 (Skalierung exponentialverteilter Variablen)

Wenn X exponential vertielt ist mit λ , so ist auch Y=aX mit a>0 exponential vertielt mit Parameter λ/a

2.4 Satz 98 (Gedächtnislosigkeit)

Eine (positive) kontinuierliche Zufallsvariable X mit Wertebereich \mathbb{R}^+ ist genau dann exponentialverteilt, wenn für alle x,y>0 gilt, dass Pr[X>x+y|X>y]=Pr[X>x]

3 Mehrere kontinuierliche Zufallsvariablen

3.1 Mehrdimensionale Dichten

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx \ dy = 1$$

3.1.1 Randverteilung

$$F_X(x) = Pr[X \le x] = \int_{-\infty}^x \left[\int_{-\infty}^\infty f_{X,Y}(u,v) dv \right] du$$
 analog
$$f_X(x) = \int_{-\infty}^\infty f_{X,Y}(x,v) dv$$

3.1.2 Unabhängigkeit

$$\begin{aligned} & Pr[X \leq x, Y \leq y] = Pr[X \leq x] * Pr[Y \leq y] \\ & \text{gleichbedeutend} \\ & F_{X,Y}(x,y) = F_X(x) * F_Y(y) \\ & \text{Differentiation ergibt} \\ & f_{X,Y}(x,y) = f_X(x) * f_Y(y) \end{aligned}$$

3.2 3.3 Warteprobleme mit der Exponentialverteilung

Die Zufallsvariablen $X_1, ..., X_n$ seien unabhängig und exponentialverteilt mit den Parametern $\lambda_1, ..., \lambda_n$. Dann ist auch $X := min\{X_1, ..., X_n\}$ exponentialverteilt mit dem Parameter $\lambda_1 + ... + \lambda_n$.

3.3 Poisson-Prozess

- Wenn der zeitliche Abstand der Treffer geometrisch verteilt ist, so ist ihre Anzahl in einer festen Zeitspanne binomialverteilt.
- Wenn man Ereignisse zählt, deren zeitlicher Abstand exponentialverteilt ist, so ist die Anzahl dieser Ereignisse in einer festen Zeitspanne Poissonverteilt.

3.4 Summen von Zufallsvariablen

Seien X und Y unabhängige kontinuierliche Zufallsvariablen. Für die Dichte von Z:=X+Y gilt

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) * f_Y(zx) dx$$

3.4.1 Satz 106 (Additivit at der Normalverteilung)

Die Zufallsvariablen $X_1, ..., X_n$ seien unabhängig und normalverteilt mit den Parametern $\mu_i, \sigma_i (1 \le i \le n)$

Es gilt: Die Zufallsvariable

$$Z := a_1 X_1 + \dots + a_n X_n$$

ist normalverteilt mit Erwartungswert $\mu = a_1\mu_1 + ... + a_n\mu_n$ und Varianz $\sigma^2 = a_1^2\sigma_1^2 + ... + a_n^2\sigma_n^2$

3.5 Momenterzeugende Funktionen f"ur kontinuierliche Zufallsvariablen

Für diskrete Zufallsvariablen X haben wir die momenterzeugende Funktion $M_X(s) = E[e^{Xs}]$ eingeführt. Diese Definition kann man unmittelbar auf kontinuierliche Zufallsvariablen übertragen. Die für $M_X(s)$ gezeigten Eigenschaften bleiben dabei erhalten.

$$M_X^{(k)}(0) = E[X^k]$$

4 Zentraler Grenzwertsatz

Die Zufallsvariablen $X_1,...,X_n$ besitzen jeweils dieselbe Verteilung und seien unabhängig. Erwartungswert und Varianz von X_i existieren für i=1,...,n und seien mit μ bzw. σ^2 bezeichnet ($\sigma^2>0$). Die Zufallsvariablen Y_n seien definiert durch $Yn:=X_1+...+X_n$ für $n\geq 1$. Dann folgt, dass die Zufallsvariablen

$$Z_n := \frac{Y_n n \mu}{\sigma \sqrt{n}}$$

asymptotisch standardnormalverteilt sind, also $Z_n \sim N(0,1)$ für $n \to \infty$