2(a) Given:

$J(\theta)$ =	$CE(\mathbf{y}, \widehat{\mathbf{y}}) = -\sum_{i=1}^{5} \left(y_i \log(y_i) \right)$	(1)
$\mathbf{h} =$	$tanh(\mathbf{x}^{(t)}\mathbf{W} + \mathbf{b_1})$	(2)
Let $\mathbf{z}_1 =$	$\mathbf{x}^{(t)}\mathbf{W} + \mathbf{b_1}$	(3)
$\widehat{\mathbf{y}} =$	$softmax(\mathbf{hU} + \mathbf{b_2})$	(4)
Let $\mathbf{z_2} =$	$\mathbf{hU} + \mathbf{b_2}$	(5)

$$\frac{\partial J}{\partial \mathbf{U}} = \frac{\partial J}{\partial \mathbf{z}_{2}} \frac{\partial \mathbf{z}_{2}}{\partial \mathbf{U}} \tag{6}$$

$$\frac{\partial J}{\partial \mathbf{z}_{2}} = -\frac{\partial}{\partial \mathbf{z}_{2}} \sum_{i} \left(y_{i} \log(y_{i}) \right) \tag{7}$$

$$= \hat{\mathbf{y}} \cdot \mathbf{y} \text{ from Assignment 1 2(b), by substituting } \mathbf{z}_{2} \text{ for } \mathbf{\theta} \tag{8}$$

$$\frac{\partial \mathbf{z}_{2}}{\partial \mathbf{U}} = \mathbf{h} \tag{9}$$

$$\frac{\partial J}{\partial \mathbf{U}} = \mathbf{h}^{\mathbf{T}} (\hat{\mathbf{y}} \cdot \mathbf{y}) \tag{10}$$

$$\frac{\partial J}{\partial \mathbf{b}_{2}} = \begin{vmatrix} \frac{\partial J}{\partial \mathbf{z}_{2}} \frac{\partial \mathbf{z}_{2}}{\partial \mathbf{b}_{2}} \\ \frac{\partial J}{\partial \mathbf{z}_{2}} = \begin{vmatrix} \hat{\mathbf{y}} \cdot \mathbf{y} & \text{from Equation (8)} \\ \frac{\partial \mathbf{z}_{2}}{\partial \mathbf{b}_{2}} = \end{vmatrix}^{1}$$
(11)
$$\frac{\partial J}{\partial \mathbf{b}_{2}} = \begin{vmatrix} (\hat{\mathbf{y}} \cdot \mathbf{y}) \end{vmatrix}$$
(12)
$$\frac{\partial J}{\partial \mathbf{b}_{2}} = \begin{vmatrix} (\hat{\mathbf{y}} \cdot \mathbf{y}) \end{vmatrix}$$
(13)

$$\frac{\partial J}{\partial \mathbf{h}} = \frac{\partial J}{\partial \mathbf{z}_2} \frac{\partial \mathbf{z}_2}{\partial \mathbf{h}} \tag{15}$$

$$\frac{\partial J}{\partial \mathbf{z}_2} = \hat{\mathbf{y}} \cdot \mathbf{y} \text{ from Equation (8)} \tag{16}$$

$$\frac{\partial \mathbf{z}_2}{\partial \mathbf{h}} = \mathbf{U} \tag{17}$$

$$\frac{\partial J}{\partial \mathbf{b}_2} = (\hat{\mathbf{y}} \cdot \mathbf{y}) \mathbf{U}^{\mathrm{T}} \tag{18}$$

$$\frac{\partial J}{\partial \mathbf{W}} = \frac{\partial J}{\partial \mathbf{h}} \frac{\partial \mathbf{h}}{\partial \mathbf{W}}$$

$$= \mathbf{x}^{(t)T} \left(\frac{\partial J}{\partial \mathbf{h}} \odot \tanh'(\mathbf{x}^{(t)} \mathbf{W} + \mathbf{b}_1) \right)$$
(20)

$$\frac{\partial J}{\partial \mathbf{b_1}} = \frac{\partial J}{\partial \mathbf{h}} \frac{\partial \mathbf{h}}{\partial \mathbf{b_1}}$$

$$= \left(\frac{\partial J}{\partial \mathbf{h}} \odot \tanh'(\mathbf{x}^{(t)} \mathbf{W} + \mathbf{b_1})\right) \tag{22}$$

$$\frac{\partial J}{\partial \mathbf{x}^{(t)}} = \frac{\partial J}{\partial \mathbf{h}} \frac{\partial \mathbf{h}}{\partial \mathbf{x}^{(t)}}$$

$$= \left(\frac{\partial J}{\partial \mathbf{h}} \odot \tanh'(\mathbf{x}^{(t)} \mathbf{W} + \mathbf{b_1})\right) \mathbf{W}^{\mathrm{T}}$$
(23)

$\frac{\partial CE}{\partial \mathbf{W_2}} =$	$\frac{\partial CE}{\partial \mathbf{z}_2} \frac{\partial \mathbf{z}_2}{\partial \mathbf{W}_2}$	(25)
=	$\boldsymbol{\delta_1} \frac{\partial \left(\mathbf{h}\mathbf{W}_2 + \mathbf{b}_2\right)}{\partial \mathbf{W}_2}$	(26)
=	$\mathbf{h}^{T} \mathbf{\delta}_{1}$	(27)

$$\frac{\partial CE}{\partial \mathbf{b}_{2}} = \frac{\partial CE}{\partial \mathbf{z}_{2}} \frac{\partial \mathbf{z}_{2}}{\partial \mathbf{b}_{2}}$$

$$= \delta_{1} \frac{\partial (\mathbf{h} \mathbf{W}_{2} + \mathbf{b}_{2})}{\partial \mathbf{b}_{2}}$$

$$= \mathbf{1}^{T} \delta_{1}$$
(28)
$$(29)$$

$$\frac{\partial CE}{\partial \mathbf{W}_{1}} = \frac{\partial CE}{\partial \mathbf{h}} \frac{\partial \mathbf{h}}{\partial \mathbf{z}_{1}} \frac{\partial \mathbf{z}_{1}}{\partial \mathbf{W}_{1}}$$

$$= \delta_{1} \mathbf{W}_{2}^{\mathrm{T}} \sigma'(\mathbf{z}_{1}) \frac{\partial (\mathbf{x} \mathbf{W}_{1} + \mathbf{b}_{1})}{\partial \mathbf{W}_{1}}$$

$$= \mathbf{x}^{\mathrm{T}} \delta_{1} \mathbf{W}_{2}^{\mathrm{T}} \sigma'(\mathbf{z}_{1})$$
(31)
$$(32)$$

$$\frac{\partial CE}{\partial \mathbf{b}_{1}} = \frac{\partial CE}{\partial \mathbf{h}} \frac{\partial \mathbf{h}}{\partial \mathbf{z}_{1}} \frac{\partial \mathbf{z}_{1}}{\partial \mathbf{b}_{1}}$$

$$= \delta_{1} \mathbf{W}_{2}^{\mathsf{T}} \sigma'(\mathbf{z}_{1}) \frac{\partial (\mathbf{x} \mathbf{W}_{1} + \mathbf{b}_{1})}{\partial \mathbf{b}_{1}}$$

$$= \mathbf{1}^{\mathsf{T}} \delta_{1} \mathbf{W}_{2}^{\mathsf{T}} \sigma'(\mathbf{z}_{1})$$
(34)
$$(35)$$