Package 'fitCTVARMx'

July 26, 2024
Title Fit the Continuous-Time Vector Autoregressive Model
Version 0.0.0.9000
Description Fit the continuous-time vector autoregressive model using the 'OpenMx' package.
<pre>URL https://github.com/jeksterslab/fitCTVARMx,</pre>
https://jeksterslab.github.io/fitCTVARMx/
<pre>BugReports https://github.com/jeksterslab/fitCTVARMx/issues</pre>
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
VignetteBuilder knitr
Depends R ($>= 3.0.0$), OpenMx
Imports stats
Suggests knitr, rmarkdown, testthat, simStateSpace
RoxygenNote 7.3.2
NeedsCompilation no
Author Ivan Jacob Agaloos Pesigan [aut, cre, cph]
(<https: 0000-0003-4818-8420="" orcid.org="">)</https:>
Maintainer Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com></r.jeksterslab@gmail.com>
Contents
coef.fitctvaridmx
coef.fitctvarmx
FitCTVARIDMx
FitCTVARMx
print.fitctvaridmx
print.fitctvarmx
summary.fitctvaridmx
summary.fitctvarmx
vcov.fitctvaridmx
VCOV HICIVATHIX

2 coef.fitctvarmx

Index 14

coef.fitctvaridmx Parameter Estimates

Description

Parameter Estimates

Usage

```
## S3 method for class 'fitctvaridmx'
coef(object, iota = FALSE, sigma = FALSE, theta = FALSE, ...)
```

Arguments

object	Object of class fitctvaridmx.
iota	Logical. If iota = TRUE, include estimates of the iota vector, if available. If iota = FALSE, exclude estimates of the iota vector.
sigma	Logical. If sigma = TRUE, include estimates of the sigma matrix, if available. If sigma = FALSE, exclude estimates of the sigma matrix.
theta	Logical. If theta = TRUE, include estimates of the theta matrix, if available. If theta = FALSE, exclude estimates of the theta matrix.
	additional arguments.

Value

Returns a list of vectors of parameter estimates.

Author(s)

Ivan Jacob Agaloos Pesigan

fitctvarmx Parameter Estimates
armx <i>Parameter Estim</i>

Description

Parameter Estimates

Usage

```
## S3 method for class 'fitctvarmx'
coef(object, iota = FALSE, sigma = FALSE, theta = FALSE, ...)
```

Arguments

object	Object of class fitctvarmx.
iota	Logical. If iota = TRUE, include estimates of the iota vector, if available. If iota = FALSE, exclude estimates of the iota vector.
sigma	Logical. If sigma = TRUE, include estimates of the sigma matrix, if available. If sigma = FALSE, exclude estimates of the sigma matrix.
theta	Logical. If theta = TRUE, include estimates of the theta matrix, if available. If theta = FALSE, exclude estimates of the theta matrix.
	additional arguments.

Value

Returns a vector of parameter estimates.

Author(s)

Ivan Jacob Agaloos Pesigan

FitCTVARIDMx	Fit the First Order Continuous-Time Vector Autoregressive Model by
	ID

Description

Fit the First Order Continuous-Time Vector Autoregressive Model by ID

Usage

```
FitCTVARIDMx(
  data,
  observed,
  id,
  time,
  iota_fixed = TRUE,
  iota_start = NULL,
  iota_lbound = NULL,
  iota_ubound = NULL,
  phi_start = NULL,
  phi_lbound = NULL,
  phi_ubound = NULL,
  sigma_diag = TRUE,
  sigma_start = NULL,
  sigma_lbound = NULL,
  sigma_ubound = NULL,
  theta_fixed = TRUE,
  theta_start = NULL,
```

```
theta_lbound = NULL,
theta_ubound = NULL,
mu0_fixed = TRUE,
mu0_start = NULL,
mu0_lbound = NULL,
sigma0_fixed = TRUE,
sigma0_diag = TRUE,
sigma0_start = NULL,
sigma0_lbound = NULL,
sigma0_lbound = NULL,
try = 1000,
ncores = NULL)
```

Arguments

data	Data frame. A data frame object of data for potentially multiple subjects that contain a column of subject ID numbers (i.e., an ID variable), and at least one column of observed values.
observed	Character vector. A vector of character strings of the names of the observed variables in the data.
id	Character string. A character string of the name of the ID variable in the data.
time	Character string. A character string of the name of the TIME variable in the data.
iota_fixed	Logical. If iota_fixed = TRUE, the dynamic model intercept vector iota is fixed at zero. If iota_fixed = FALSE, the dynamic model intercept vector iota is estimated.
iota_start	Optional starting values for iota. If iota_fixed = TRUE, iota_start will be used as fixed values. If iota_fixed = FALSE, iota_start will be used as starting values.
iota_lbound	Optional lower bound for iota. Ignored if iota_fixed = TRUE.
iota_ubound	Optional upper bound for iota. Ignored if iota_fixed = TRUE.
phi_start	Numeric matrix. Optional starting values for phi.
phi_lbound	Numeric matrix. Optional lower bound for phi.
phi_ubound	Numeric matrix. Optional upper bound for phi.
sigma_diag	Logical. If sigma_diag = TRUE, sigma is a diagonal matrix.
sigma_start	Numeric matrix. Optional starting values for sigma.
sigma_lbound	Numeric matrix. Optional lower bound for sigma.
sigma_ubound	Optional upper bound for sigma.
theta_fixed	Logical. If theta_fixed = TRUE, the measurement error matrix theta is fixed to zero. If theta_fixed = FALSE, estimate the diagonal measurement error matrix theta.
theta_start	Optional starting values for theta. Ignored if theta_fixed = TRUE.

theta_lbound	Optional lower bound for theta. Ignored if theta_fixed = TRUE.
theta_ubound	Optional upper bound for theta. Ignored if theta_fixed = TRUE.
mu0_fixed	Logical. If mu0_fixed = TRUE, initial mean vector mu0 is fixed. If mu0_fixed = FALSE, initial mean vector mu0 is estimated.
mu0_start	Optional starting values for mu0. If mu0_fixed = TRUE, mu0_start will be used as fixed values. If mu0_fixed = FALSE, mu0_start will be used as starting values.
mu0_lbound	Optional lower bound for mu0. Ignored if mu0_fixed = TRUE.
mu0_ubound	Optional upper bound for mu0. Ignored if mu0_fixed = TRUE.
sigma0_fixed	Logical. If sigma0_fixed = TRUE, initial mean vector sigma0 is fixed. If sigma0_fixed = FALSE, initial mean vector sigma0 is estimated.
sigma0_diag	Logical. If sigma0_diag = TRUE, sigma0 is a diagonal matrix.
sigma0_start	Optional starting values for sigma0. If sigma0_fixed = TRUE, sigma0_start will be used as fixed values. If sigma0_fixed = FALSE, sigma0_start will be used as starting values.
sigma0_lbound	Optional lower bound for sigma0. Ignored if sigma0_fixed = TRUE.
sigma0_ubound	Optional upper bound for sigma0. Ignored if sigma0_fixed = TRUE.
try	Positive integer. Number of extra optimization tries.
ncores	Positive integer. Number of cores to use.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Hunter, M. D. (2017). State space modeling in an open source, modular, structural equation modeling environment. *Structural Equation Modeling: A Multidisciplinary Journal*, 25(2), 307–324. doi:10.1080/10705511.2017.1369354

Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. *Psychometrika*, 81(2), 535–549. doi:10.1007/s1133601494358

See Also

Other CTVAR Functions: FitCTVARMx()

Examples

```
## Not run:
# Generate data using the simStateSpace package-----
set.seed(42)
phi_mu <- matrix(
   data = c(
        -0.357, 0.771, -0.450,
        0.0, -0.511, 0.729,</pre>
```

```
0, 0, -0.693
 ),
 nrow = 3
)
phi_sigma <- diag(3 * 3)</pre>
phi <- simStateSpace::SimPhiN(</pre>
 n = 5,
 phi = phi_mu,
 vcov_phi_vec_l = t(chol(phi_sigma))
)
sim <- simStateSpace::SimSSMOUIVary(</pre>
 n = 5,
 time = 100,
 delta_t = 0.10,
 mu0 = list(rep(x = 0, times = 3)),
 sigma0_1 = list(t(chol(diag(3)))),
 mu = list(rep(x = 0, times = 3)),
 phi = phi,
 sigma_l = list(t(chol(diag(3)))),
 nu = list(rep(x = 0, times = 3)),
 lambda = list(diag(3)),
 theta_l = list(matrix(data = 0, nrow = 3, ncol = 3))
)
data <- as.data.frame(sim)</pre>
# Fit the model------
library(fitCTVARMx)
fit <- FitCTVARIDMx(</pre>
 data = data,
 observed = c("y1", "y2", "y3"),
 id = "id"
)
print(fit)
summary(fit)
coef(fit)
vcov(fit)
## End(Not run)
```

FitCTVARMx

Fit the First-Order Continuous-Time Vector Autoregressive Model

Description

Fit the First-Order Continuous-Time Vector Autoregressive Model

Usage

FitCTVARMx(

```
data,
  observed,
  id,
  time,
  iota_fixed = TRUE,
  iota_start = NULL,
  iota_lbound = NULL,
  iota_ubound = NULL,
  phi_start = NULL,
  phi_lbound = NULL,
 phi_ubound = NULL,
  sigma_diag = TRUE,
  sigma_start = NULL,
  sigma_lbound = NULL,
  sigma_ubound = NULL,
  theta_fixed = TRUE,
  theta_start = NULL,
  theta_lbound = NULL,
  theta_ubound = NULL,
 mu0_fixed = TRUE,
 mu0_start = NULL,
 mu0\_lbound = NULL,
 mu0\_ubound = NULL,
  sigma0_fixed = TRUE,
  sigma0_diag = TRUE,
  sigma0_start = NULL,
  sigma0_lbound = NULL,
  sigma0_ubound = NULL,
  try = 1000,
 ncores = NULL
)
```

Arguments

data	Data frame. A data frame object of data for potentially multiple subjects that contain a column of subject ID numbers (i.e., an ID variable), and at least one column of observed values.
observed	Character vector. A vector of character strings of the names of the observed variables in the data.
id	Character string. A character string of the name of the ID variable in the data.
time	Character string. A character string of the name of the TIME variable in the data.
iota_fixed	Logical. If iota_fixed = TRUE, the dynamic model intercept vector iota is fixed at zero. If iota_fixed = FALSE, the dynamic model intercept vector iota is estimated.
iota_start	Optional starting values for iota. If iota_fixed = TRUE, iota_start will be used as fixed values. If iota_fixed = FALSE, iota_start will be used as starting values.

iota_lbound	Optional lower bound for iota. Ignored if iota_fixed = TRUE.
iota_ubound	Optional upper bound for iota. Ignored if iota_fixed = TRUE.
phi_start	Numeric matrix. Optional starting values for phi.
phi_lbound	Numeric matrix. Optional lower bound for phi.
phi_ubound	Numeric matrix. Optional upper bound for phi.
sigma_diag	Logical. If sigma_diag = TRUE, sigma is a diagonal matrix.
sigma_start	Numeric matrix. Optional starting values for sigma.
sigma_lbound	Numeric matrix. Optional lower bound for sigma.
sigma_ubound	Optional upper bound for sigma.
theta_fixed	Logical. If theta_fixed = TRUE, the measurement error matrix theta is fixed to zero. If theta_fixed = FALSE, estimate the diagonal measurement error matrix theta.
theta_start	Optional starting values for theta. Ignored if theta_fixed = TRUE.
theta_lbound	Optional lower bound for theta. Ignored if theta_fixed = TRUE.
theta_ubound	Optional upper bound for theta. Ignored if theta_fixed = TRUE.
mu0_fixed	Logical. If mu0_fixed = TRUE, initial mean vector mu0 is fixed. If mu0_fixed = FALSE, initial mean vector mu0 is estimated.
mu0_start	Optional starting values for mu0. If mu0_fixed = TRUE, mu0_start will be used as fixed values. If mu0_fixed = FALSE, mu0_start will be used as starting values.
mu0_lbound	Optional lower bound for mu0. Ignored if mu0_fixed = TRUE.
mu0_ubound	Optional upper bound for mu0. Ignored if mu0_fixed = TRUE.
sigma0_fixed	Logical. If sigma0_fixed = TRUE, initial mean vector sigma0 is fixed. If sigma0_fixed = FALSE, initial mean vector sigma0 is estimated.
sigma0_diag	Logical. If sigma0_diag = TRUE, sigma0 is a diagonal matrix.
sigma0_start	Optional starting values for sigma0. If sigma0_fixed = TRUE, sigma0_start will be used as fixed values. If sigma0_fixed = FALSE, sigma0_start will be used as starting values.
sigma0_lbound	Optional lower bound for sigma0. Ignored if sigma0_fixed = TRUE.
sigma0_ubound	Optional upper bound for sigma0. Ignored if sigma0_fixed = TRUE.
try	Positive integer. Number of extra optimization tries.
ncores	Positive integer. Number of cores to use.

Value

Returns an object of class fitctvarmx which is a list with the following elements:

call Function call.

args List of function arguments.

fun Function used ("FitCTVARMx").

output A fitted OpenMx model.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Hunter, M. D. (2017). State space modeling in an open source, modular, structural equation modeling environment. *Structural Equation Modeling: A Multidisciplinary Journal*, 25(2), 307–324. doi:10.1080/10705511.2017.1369354

Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. *Psychometrika*, *81*(2), 535–549. doi:10.1007/s1133601494358

See Also

Other CTVAR Functions: FitCTVARIDMx()

Examples

```
## Not run:
# Generate data using the simStateSpace package-----
set.seed(42)
sim <- simStateSpace::SimSSMOUFixed(</pre>
 n = 5,
 time = 100,
 delta_t = 0.10,
 mu0 = rep(x = 0, times = 3),
 sigma0_1 = t(chol(diag(3))),
 mu = rep(x = 0, times = 3),
 phi = matrix(
   data = c(
     -0.357, 0.771, -0.450,
     0.0, -0.511, 0.729,
     0, 0, -0.693
   ),
   nrow = 3
 ),
 sigma_l = t(chol(diag(3))),
 nu = rep(x = 0, times = 3),
 lambda = diag(3),
 theta_l = matrix(data = 0, nrow = 3, ncol = 3)
)
data <- as.data.frame(sim)</pre>
# Fit the model------
library(fitCTVARMx)
fit <- FitCTVARMx(</pre>
 data = data,
 observed = c("y1", "y2", "y3"),
 id = "id"
print(fit)
```

10 print.fitctvarmx

```
summary(fit)
coef(fit)
vcov(fit)
## End(Not run)
```

print.fitctvaridmx

Print Method for Object of Class fitctvaridmx

Description

Print Method for Object of Class fitctvaridmx

Usage

```
## S3 method for class 'fitctvaridmx'
print(x, means = TRUE, ...)
```

Arguments

x an object of class fitctvaridmx.

means Logical. If means = TRUE, return means. Otherwise, the function returns raw

estimates.

... further arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

print.fitctvarmx

Print Method for Object of Class fitctvarmx

Description

Print Method for Object of Class fitctvarmx

Usage

```
## S3 method for class 'fitctvarmx' print(x, ...)
```

Arguments

x an object of class fitctvarmx.

... further arguments.

summary.fitctvaridmx 11

Author(s)

Ivan Jacob Agaloos Pesigan

summary.fitctvaridmx Summary Method for Object of Class fitctvaridmx

Description

Summary Method for Object of Class fitctvaridmx

Usage

```
## S3 method for class 'fitctvaridmx'
summary(object, means = TRUE, ...)
```

Arguments

object an object of class fitctvaridmx.

means Logical. If means = TRUE, return means. Otherwise, the function returns raw

estimates.

... further arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

summary.fitctvarmx

Summary Method for Object of Class fitctvarmx

Description

Summary Method for Object of Class fitctvarmx

Usage

```
## S3 method for class 'fitctvarmx'
summary(object, ...)
```

Arguments

object an object of class fitctvarmx.
... further arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

12 vcov.fitctvarmx

110011	fitcty	aridmy
VCOV	TITCTV	arıamx

Sampling Covariance Matrix of the Parameter Estimates

Description

Sampling Covariance Matrix of the Parameter Estimates

Usage

```
## S3 method for class 'fitctvaridmx'
vcov(object, iota = FALSE, sigma = FALSE, theta = FALSE, ...)
```

Arguments

object	Object of class fitctvaridmx.
iota	Logical. If iota = TRUE, include estimates of the iota vector, if available. If iota = FALSE, exclude estimates of the iota vector.
sigma	Logical. If sigma = TRUE, include estimates of the sigma matrix, if available. If sigma = FALSE, exclude estimates of the sigma matrix.
theta	Logical. If theta = TRUE, include estimates of the theta matrix, if available. If theta = FALSE, exclude estimates of the theta matrix.
	additional arguments.

Value

Returns a list of sampling variance-covariance matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

vcov.fitctvarmx

Sampling Covariance Matrix of the Parameter Estimates

Description

Sampling Covariance Matrix of the Parameter Estimates

Usage

```
## S3 method for class 'fitctvarmx'
vcov(object, iota = FALSE, sigma = FALSE, theta = FALSE, ...)
```

vcov.fitctvarmx 13

Arguments

object	Object of class fitctvarmx.
iota	Logical. If iota = TRUE, include estimates of the iota vector, if available. If iota = FALSE, exclude estimates of the iota vector.
sigma	Logical. If sigma = TRUE, include estimates of the sigma matrix, if available. If sigma = FALSE, exclude estimates of the sigma matrix.
theta	Logical. If theta = TRUE, include estimates of the theta matrix, if available. If theta = FALSE, exclude estimates of the theta matrix.
	additional arguments.

Value

Returns a list of sampling variance-covariance matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

Index

```
* CTVAR Functions
    FitCTVARIDMx, 3
    FitCTVARMx, 6
* fitCTVARMx
    FitCTVARIDMx, 3
    FitCTVARMx, 6
* fit
    FitCTVARIDMx, 3
    FitCTVARMx, 6
* methods
    coef.fitctvaridmx, 2
    coef.fitctvarmx, 2
    print.fitctvaridmx, 10
    print.fitctvarmx, 10
    summary.fitctvaridmx, 11
    summary.fitctvarmx, 11
    vcov.fitctvaridmx, 12
    vcov.fitctvarmx, 12
coef.fitctvaridmx, 2
coef.fitctvarmx, 2
FitCTVARIDMx, 3, 9
FitCTVARMx, 5, 6
print.fitctvaridmx, 10
print.fitctvarmx, 10
summary.fitctvaridmx, 11
summary.fitctvarmx, 11
vcov.fitctvaridmx, 12
vcov.fitctvarmx, 12
```