$$f:A \longrightarrow B$$
 $g:B \longrightarrow C$
 $f = g \circ f:A \longrightarrow C$

$$f,g \stackrel{(1)}{ih} jective \stackrel{?}{\longrightarrow} h \stackrel{iMjectime}{\Longrightarrow} h \stackrel{iMjectime}{\Longrightarrow} h \stackrel{iMjectime}{\Longrightarrow} h \stackrel{iMjectime}{\Longrightarrow} h$$

(1) suppose
$$h(a) = h(a')$$

 $a,a' \in A \Rightarrow g(f(a)) = g(f(a))$
 $\Rightarrow f(a) = f(a') = a = a'$

(2) (
$$\{ f \in C \} = a \in A \}$$

so the first $f(a) = c$

Let $c \in C$

gruppective \Rightarrow
 $f \in B$ so the $g(b) = c$
 $f \in B$ so the $f(a) = b$
 $f(a) = g(f(a)) = g(b) = c$

Problem 9
$$f: N \rightarrow N$$

 $f(f(f(n))) + f(f(n)) + f(n) = 3n$
 $\forall n \in N$

Solution

if
$$f(a) = f(h)$$
 \longrightarrow
 $3a = f_2(a) + f_2(a) + f(a)$
 $= f_2(h) + f_2(h) + f(h) = 7b$

(>) $a = h$ \longrightarrow f is injective

\$(\$4(1)) P(1))] 1000: $f_1(1) + f_2(1) + f(1) = 3$ $\Rightarrow 4(1) = 1$ Now we prove by induce that Pln)=n + nEIN. n=1 r.ve

Suppose f(1)=1,f(1)=2,...,f(n-1)=n-1for some $n \ge 2$

by injectivity: 1+m)>n Hm2n(x) $(:f(m) \in IV ; f(m) \neq f(r) = k$ $A \leq K \leq n$ (*) 4(n) 7/1 =) P(P(n)) > n (*) P(P(M)) >n => 3n=F(n)+f(4m)/73n -> equality one holds -> f(n)=n + n \in N which is indeed a solulion

Problem 11) $f: \mathbb{R} \to \mathbb{R}$ f(f(x)) = (x-1)f(x) + 2 $\xrightarrow{\longrightarrow} f \text{ not surjective}$

Solution | Suppose of Surjace

if
$$f(a) = f(b) \neq 0$$

=> $(\alpha - 1) f(a) = (b - 1) f(b)$

=> $\alpha = b$ (*)

Pick t st $f(t) = 0$

=) $f(0) = 2$

Plug $x = 1$ =) $f(f(1)) = 2$

= $f(0)$ $\neq 0$

=> $f(1) = 0$ (: (*)

NAW Pick
$$s$$
 $s-t$ $f(s)=1$
 $\Rightarrow 0 = (s-1) + 2$
 $\Rightarrow s = -1$ $(f(-1)=1)$

NAW Pick r $s+t$ $f(r)=-1$
 $\Rightarrow 1 = -(r-1) + 2 \Leftrightarrow r = 2$
 $(f(2)=-1)$

NAW Plug $\chi = 0$ \Rightarrow
 $-1 = (-1)2 + 2 = 0$

Problem 10/ $f: |R^{+} \rightarrow R^{+}$ $(x+y) f(yf(x)) = x^{2}(f(x) + f(y))$ $4 \times 4 > 0$

Solution First we prove that I is injective. if f(a) = f(b) nrw P(a,y), P(b,y) =>

$$f(yf(a)) = \frac{a^2}{a+y} (f(a)+f(y))$$

$$f(yf(b)) = \frac{b^2}{b+y} (f(b)+f(y))$$

$$\Rightarrow \frac{a+y}{a^2} = \frac{b+y}{b^2} \quad \forall y>0$$

$$\frac{1}{a} + \frac{1}{a^2}y = \frac{1}{b} + \frac{1}{b^2}y$$

 $\Rightarrow \alpha = 1 \implies f \text{ injective}$

$$|f(1)| \Rightarrow 2 f(1)| = 2 f(1)$$

$$|f(1)| = 2 f(1)$$

$$|f(1)| = 1$$

$$|f(1)| =$$

Problem 12 | f:
$$\mathbb{R} \rightarrow \mathbb{R}$$

 $f(LxJy) = f(x) [f(y)]$
 $\forall x, y$ (IMO 2010)
Solution
 $P(0, x) = f(0) = f(0) [f(x)]$

are 1:
$$f(0) \neq 0 \Rightarrow [f(x)] = 1$$

 $\forall x \in \mathbb{R} \cdot p(x, y)$
 $f(Lx)y) = f(x)$, $\forall x, y$
 $P(1,x) \Rightarrow f(x) = f(1) \forall x$

$$\Rightarrow f(x) = c \quad \forall x \quad sol 1$$

$$\omega \text{ here } [c] = 1$$

$$P(t,x)$$
 set $o < t < 1$

$$\Rightarrow 0 = f(t) [f(x)]$$

$$\Rightarrow$$
 $O = f(t) [f(t)]$

$$\longrightarrow (x) Lf(t)]=0 \forall 0 \leq t \leq 1$$

Now
$$P(x,t)$$
, $o < t < 1$

(*)

 $\Rightarrow f(x)t) = 0$
 $\Rightarrow f(nt) = 0$
 $\forall n \in \mathbb{Z}$, $o < t < 1$

Let $x \in \mathbb{R}$; $\exists n \in \mathbb{Z}$

such that $o \le \frac{2n}{n} < 1$
 $\Rightarrow f(x) = f(n \cdot \frac{n}{n}) = 0$ $\forall x$

Therefore, we have one solution:

$$f(x) = c \quad \forall x \in \mathbb{R},$$

where $c = 0$ or $[c] = 1$

is constant