Федеральное государственное бюджетное образовательное учреждение высшего образования

«Уфимский государственный авиационный технический университет»

Кафедра	Информатики												
	100	1	2	3	4	5	6	7	8	9	10	11	12
	90												
	80												
	70												
	60												
	50												
	40												
	30												
	20												
	10												
	0												
	OTU	Æ	Γ										
по лабор				оте	No7	7							
«Расчет крыла							КИ>	>					
						1 2							
													_
по писниппине Основ						_				~			

по дисциплине Основы конструкции объектов ОТС

1306.558708.000 ПЗ

(обозначение документа)

Группа СТС-407	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Гараев Д.Н.			
Консультант	Минасов Ш. М.			
Принял				

Содержание

ОТЧЕТ7
Введение 3
1 Ход работы5
1.1 Определение максимальной эксплуатационной перегрузки и
установление коэффициента безопасности5
1.2 Определение внешних расчетных нагрузок, действующих на крыло. 6
1.2.1 Распределение аэродинамической нагрузки по размаху крыла 7
1.2.2 Распределение инерционных (массовых) нагрузок по размаху крыла
8
1.2.3 Определение величин нагрузок от сосредоточенных сил грузов,
находящихся в крыле или подвешенных к нему
1.2.1 Распределение нагрузок по хорде крыла
Заключение
Список литературы

					1306.558708.000 ПЗ			
Изм	Лист	№ докум	Подп	Дата				
Раз	раб	Гараев Д.Н			F-CNo7	Лит	Лист	Листов
Прс	вер.	Минасов Ш. М.			Лабораторная работа №7 «Расчет крыла на статические		2	16
					«гасчетт крыла на статические нагрузки»			
Н. к	онтр				пасрузка»	УГА	ТУ, СТ	C-407
Ут	3							

Введение

Целью лабораторной работы является закрепление знаний и приобретение практических навыков расчета на прочность авиационных конструкций.

В рамках данной лабораторной работы необходимо выполнить следующие задачи:

- 1. Определить максимальную эксплуатационную перегрузку для данного типа самолета и расчетного случая А'. Установить коэффициент безопасности.
 - 2. Определить внешние расчетные нагрузки на крыло $q^{p}_{a_{3p}}, q^{p}_{\kappa p}, G^{p}_{rp}$.
 - 3. Построить эпюры $M^{p}_{u3\Gamma}$, $M^{p}_{\kappa p}$, $Q^{p}_{пр}$.
- 4. Произвести проверочный расчет заданного сечения крыла: определить нормальные и касательные напряжения в элементах крыла и сравнить их с максимально допустимыми для данных элементов.
- 5. Получить коэффициент запаса прочности для каждого конструктивного элемента крыла.
 - 6. Произвести проверку расчета касательных напряжений Исходные данные:

Таблица 1 - Исходные данные

m_0 , $_{ m T}$	$\overline{m}_{\partial s}$	\overline{m}_m	\overline{m}_{u}	n_y°	$S_{\kappa p}$, M^2	l, м	$D_{\phi,\mathcal{M}}$	b_0 , M	$b_{\kappa p,\mathcal{M}}$
18	0,10	0,26	0,5	3	60	20,50	2,0	4,35	1,24
$\overline{b}_{\partial s}$, %	\overline{b}_{u} , %	$\overline{b}_{npe\partial}$, %	$\overline{b}_{\scriptscriptstyle \mathfrak{I}\!\mathit{APP}}$, %	$\overline{b}_{o\kappa}$, %	$\overline{b}_{3a\kappa p}$, %	ψ	α		
80	75	6,0	25	23	25	-2	+2		

Форма профиля несущей поверхности (в % от хорды).

Таблица 2 - Данные несимметричного профиля 2312

\overline{x}	2,5	10	15	20	30	40	50	70	100
\overline{y}_e	3,11	5,86	6,89	7,54	8,00	7,77	7,14	5,02	0
$\overline{\mathcal{Y}}_{\scriptscriptstyle H}$	3,16	3,52	3,82	3,82	4,00	3,84	3,45	2,31	0

			·	·
Изм.	Лист	№ докум	Подп	Дата

Рисунок 1 - Консоль (очк) крыла административного самолета

Изм.	Лист	№ докум	Подп	Дата

1 Ход работы

1.1 Определение максимальной эксплуатационной перегрузки и установление коэффициента безопасности

Все самолеты в зависимости от полетной массы и скорости полета могут быть разбиты на три класса.

Класса А – маневренные самолеты.

Класс Б – ограниченно маневренные самолеты.

Класс В –неманевренные самолеты.

Для каждого типа самолета в зависимости от полетной массы G и максимального скоростного напора q_{max} задается величина максимальной эксплуатационной перегрузки n'_{max} .

Следовательно: $n_{max}^{'max}$

где G - полетная масса самолета;

 $q \frac{\rho \cdot V_{max}^2}{2}$ максимальный скоростной напор при горизонтальном полете.

Величины эксплуатационных перегрузок для каждого типа самолета задаются «Нормами прочности».

Для ориентировочного выбора эксплуатационных перегрузок n'_{max} пассажирских и учебных тренировочных самолетов применяют таблицу эксплуатационные перегрузки.

Таблица 3 - Эксплуатационные перегрузки

Тип самолета	n'max
Легкий учебный тренировочный самолет	89
Легкий скоростной пассажирский самолет	46
Средний пассажирский самолет	34
Тяжелый пассажирский самолет	23

В данной задаче $n'_{max} = 3$.

Коэффициент безопасности показывает, во сколько раз разрушающая нагрузка больше максимально возможной эксплуатационной нагрузки, действующей на самолет:

Изм.	Лист	№ докум	Подп	Дата

$$f = \frac{P_p}{P_{max}^{9} \frac{Y_{pa3p}}{Y_{max}^{9}}}$$
$$P_{pa3p} = P_{max}^{9_{pa3p} \frac{9^{3}_{max}}{max}}$$

где $P_{\text{разр}}$ — разрушающая (расчетная) нагрузка; P_{max}^{9} — максимально возможная эксплуатационная нагрузка; f — коэффициент безопасности.

Опыт эксплуатации самолетов и вышесказанное говорит о том, что коэффициент безопасности f следует выбирать в пределах 1,5...2,0. Если внешняя нагрузка, действующая на самолет, часто повторяется и действует продолжительное время, то f=2,0. Если нагрузка повторяется часто, но действует кратковременно, то f=1,65...1,8. Если нагрузка возникает редко и действует кратковременно, то f=1,5.

Для расчетного случая A' принято брать f = 1,5.

Таким образом, мы определили максимальную эксплуатационную перегрузку $n^{9}_{ymax}=3$ и установили коэффициент безопасности f=1,5.

1.2 Определение внешних расчетных нагрузок, действующих на крыло

На крыло самолета действуют следующие нагрузки:

- аэродинамические распределенные нагрузки $q^p_{aэp}$;
- массовые распределенные нагрузки от собственного веса крыла $q^p_{\kappa p}$ и веса топливных баков $q^p_{\ \ T}$, расположенных в крыле;
 - силы от веса грузов, находящихся внутри или вне крыла $G^p_{\ \ rp}$.

Рисунок 2 - Внешние нагрузки, действующие на крыло

Изм.	Лист	№ докум	Подп	Дата

Для расчета на прочность необходимо определить величину этих нагрузок, характер распределения их по размаху крыла, место приложения по хорде крыла и направление их действия.

1.2.1 Распределение аэродинамической нагрузки по размаху крыла

Аэродинамическая погонная нагрузка по размаху плоского крыла распределяется пропорционально относительной циркуляции прямого крыла:

$$q_{a\ni p}^{p} = \frac{G_0 \cdot n_y^{\ni} \cdot f}{L} \cdot \overline{\Gamma}_{np},$$

где L — размах крыла, $\overline{\varGamma}_{np}$ - циркуляция прямого крыла.

 $\overline{\varGamma}_{np}$ выбирается в зависимости от удлинения λ и сужения η крыла:

Рисунок 3 - Зависимость относительной циркуляции

Если крыло стреловидное, необходимо учитывать влияние стреловидности на распределение аэродинамической нагрузки по размаху:

$$q_{a \ni p}{}^{p} = \frac{G_{0} \cdot n_{y}{}^{9} \cdot f}{L} \cdot (\overline{\Gamma}_{np} + \Delta \overline{\Gamma}_{cmp}),$$

$$\Delta \overline{\Gamma}_{cmp} = \Delta \overline{\Gamma}_{45^{\circ}} \cdot \frac{\chi^{\circ}}{45^{\circ}}$$

где $\Delta \overline{\varGamma}_{45^{\circ}}$ — изменение относительной циркуляции по размаху крыла при угле стреловидности $\chi=45^{\circ}$ ().

Изм.	Лист	№ докум	Подп	Дата

Рисунок 4 - Изменение относительной циркуляции по размаху крыла

При полете на малых углах атаки необходимо, кроме того, учитывать влияние фюзеляжа и мотогондол на распределение аэродинамической нагрузки. При полетах на больших углах атаки, что соответствует нашему расчетному случаю А, влияние фюзеляжа и гондол двигателя незначительно, и поэтому его учитывать не будем.

Таким образом, для нашего расчетного случая аэродинамическая распределенная нагрузка будет равна:

$$q_{a\ni p}{}^{p} = \frac{G_{0} \cdot n_{y}{}^{9} \cdot f}{L} \cdot (\overline{\Gamma}_{np} + \Delta \overline{\Gamma}_{cmp}).$$

Далее будет приведена сводная таблица с результатами всех вычислений.

1.2.2 Распределение инерционных (массовых) нагрузок по размаху крыла

Нагрузки от веса конструкции крыла можно приближенно распределить по размаху пропорционально хордам крыла:

$$q_{\kappa p}^p = rac{G_{\kappa p} n^{\scriptscriptstyle 3} f}{S_{\kappa p}} b_{cey}$$

где $G_{\kappa p}$ – вес крыла. В среднем относительная масса конструкции крыла – $m_{\kappa p} \approx 0,08...0,12$, что составляет 30...40% массы конструкции самолета.

Массовые силы от веса топлива следует распределять в виде погонных нагрузок на длине тех участков, которые заняты под баки. Распределение нагрузок по сечениям производиться пропорционально ширине бакового отсека:

$$q_T^p = \frac{G_T n_y^3 f}{S_\delta} b_{ce^q \delta'}$$

где S_{δ} – площадь бака в плане.

Изм.	Лист	№ докум	Подп	Дата

В первом приближении считаем, что топливо в крыле не размещается и, таким образом, его не учитываем.

1.2.3 Определение величин нагрузок от сосредоточенных сил грузов, находящихся в крыле или подвешенных к нему

Как правило, нагрузки от «сосредоточенных грузов» не распределяются по размаху крыла, а прикладываются к крылу в местах своего расположения. Эти нагрузки определяются по формуле:

$$q_{zp}^p = G_{zp} n_y^{\vartheta} f.$$

Все результаты приведены ниже в Таблица 1. С помощью них можно построить эпюру $q^p_{\scriptscriptstyle \Sigma}$.

Таблица 4 - Данные для построения эпюры

0	1						
	1	2	3	4	5		
10,25	9,225	8,2	7,175	6,15	5,125		
1	0,9	0,8	0,7	0,6	0,5		
0	0,5	0,7	0,8	0,95	1,1		
0	0,8	0,12	0,15	0,12	0,1		
0	1,3	0,82	0,95	1,07	1,2		
1,24	1,551	1,862	2,173	73 2,484 2,795			
0	128202,75	135020,196	144840,471	,471 163136,109 182956,384			
4123	5157,075	6191,15	7225,225	8259,3	8259,3 9293,375		
4123	203359,83	131211,346	152065,696	171395,409	192249,759		
,		№ сечени	Я				
6	7	8	9	10			
4,1	3,075	2,05	1,025	0			
0,4	0,3	0,2	0,1	0			
1,15	1,25	1,3	1,35	1,4			
0,05	-0,05	-0,1	-0,2	-0,3			
1,2	1,2	1,2	1,15	1,1			
	1 0 0 0 1,24 0 4123 4123 6 4,1 0,4 1,15 0,05	1 0,9 0 0,5 0 0,8 0 1,3 1,24 1,551 0 128202,75 4123 5157,075 4123 203359,83 6 7 4,1 3,075 0,4 0,3 1,15 1,25 0,05 -0,05	1 0,9 0,8 0 0,5 0,7 0 0,8 0,12 0 1,3 0,82 1,24 1,551 1,862 0 128202,75 135020,196 4123 5157,075 6191,15 4123 203359,83 131211,346 № сечения 6 7 8 4,1 3,075 2,05 0,4 0,3 0,2 1,15 1,25 1,3 0,05 -0,05 -0,1	1 0,9 0,8 0,7 0 0,5 0,7 0,8 0 0,8 0,12 0,15 0 1,3 0,82 0,95 1,24 1,551 1,862 2,173 0 128202,75 135020,196 144840,471 4123 5157,075 6191,15 7225,225 4123 203359,83 131211,346 152065,696 № сечения 6 7 8 9 4,1 3,075 2,05 1,025 0,4 0,3 0,2 0,1 1,15 1,25 1,3 1,35 0,05 -0,05 -0,1 -0,2	1 0,9 0,8 0,7 0,6 0 0,5 0,7 0,8 0,95 0 0,8 0,12 0,15 0,12 0 1,3 0,82 0,95 1,07 1,24 1,551 1,862 2,173 2,484 0 128202,75 135020,196 144840,471 163136,109 4123 5157,075 6191,15 7225,225 8259,3 4123 203359,83 131211,346 152065,696 171395,409 № сечения 6 7 8 9 10 4,1 3,075 2,05 1,025 0 0,4 0,3 0,2 0,1 0 1,15 1,25 1,3 1,35 1,4 0,05 -0,05 -0,1 -0,2 -0,3		

Изл	л Лист	№ докум	Подп	Дата

b_{cey}	3,106	3,417	3,728	4,039	4,35
$q_{a eg p}$	182956,384	182956,384	182956,384	175333,201	167710,019
$q_{\kappa p}$	10327,45	11361,525	12395,6	13429,675	14463,75
q_{Σ}	193283,834	194317,909	195351,984	188762,876	182173,769

1.2.1 Распределение нагрузок по хорде крыла

Распределение аэродинамических нагрузок по хорде крыла зависит от двух параметров: угла атаки α и числа M, то есть центр давления — место приложения аэродинамических нагрузок — $\overline{x}_{\mathcal{I}} = f(\alpha, M)$.

Приближенно координату центра давления можно определить по формуле:

$$\overline{x}_{\partial} = \frac{C_{m_{ceu}}}{C_{y_{ceu}}}.$$

Массовые нагрузки конструкции крыла прилагаются в центре масс профильного сечения, положение которого зависит от формы крыла в плане и расположения продольных силовых элементов. При определении действительного положения центра тяжести сечения необходимо производить расчет в каждом конкретном случае. В целях сокращения вычислений можно приближенно принимать центр тяжести в следующих пределах: $x_m = (0.42..0.45)$.

Массовые нагрузки сосредоточенных грузов прикладываются в центре масс этих грузов.

Принимают, что массовые и аэродинамические нагрузки параллельны и направлены противоположно.

В общем, крыло работает на изгиб и кручение. При расчете свободнонесущее крыло рассматривается как тонкостенная оболочка, лежащая на двух опорах. Опорами служат узлы крепления крыла к фюзеляжу.

Изм.	Лист	№ докум	Подп	Дата

Исходными данными для расчета крыла на прочность являются эпюры перерезывающих сил Q, изгибающих и крутящих моментов M_{use} и $M_{\kappa p}$, построенные по размаху крыла.

В качестве суммы грузов имеем основное шасси, расположенное в крыльях.

При построении эпюр крыло представляют как двухопорную балку с консолями, нагруженную распределёнными и сосредоточенными силами. Опорами являются узлы крепления крыла к фюзеляжу.

Реакция опор определяется следующим образом:

$$R_{\phi}^{p} = 0.5 \left(G_{0} - G_{\kappa p} - G_{T} - \sum_{i=1}^{m} G_{\varepsilon p_{i}} \right) n_{y}^{9} f.$$

Расчетные перерезывающая сила и изгибающий момент в любом сечении крыла определяются по формулам:

$$Q_X = \int_{L/2}^z q_{\Sigma}^p dz - \sum_{i=1}^n G_{i\ \varrho p}^p;$$
 $M_X = \int_{L/2}^z Q_X dz,$

где $q_{\Sigma}^{\rm p}=q_{\rm asp}^{\rm p}-q_{\rm kp}^{\rm p}$ - суммарная расчетная погонная нагрузка, действующая на крыло; $G_{i_{\ \ rp}}^{p}=G_{i_{\ \ rp}}n^{\circ}f$ - расчетная масса груза, находящегося в крыле или подвешенного к нему.

В практике расчетов для определения величин перерезывающих сил и изгибающих моментов применяют способ графического интегрирования (способ трапеций). Разбиваем полуразмах крыла на n отсеков длиной Δz . Для каждого участка находят приращение перерезывающей силы:

$$\Delta Q_{y_i}^p = \left(q_i^p + q_{i+1}^p\right) \frac{\Delta z}{2}.$$

Суммируя $\Delta Q_{y_i}^p$ от свободного конца и учитывая значения сосредоточенных грузов и реакций фюзеляжа, получим значение силы в произвольном сечении крыла:

Изм.	Лист	№ докум	Подп	Дата

$$\Delta Q_{y_k}^p = \sum_{i=1}^K \Delta \overline{Q}_{y_i}^p - \sum_{i=1}^n \Delta G_{zp_i}^p - R_{\phi}^p.$$

Аналогично определяется значение изгибающего момента в любом сечении:

$$\Delta M_{use_i}^p = \frac{\overline{Q}_i^p + \overline{Q}_{i+1}^p}{2} \Delta z,$$

$$M_{u_{3\mathcal{E}_k}}^p = \sum_{i=1}^K \Delta M_{u_{3\mathcal{E}_i}}^p.$$

Погонный крутящий момент в любом сечении относительно произвольной оси определяется следующим образом:

$$m_i^p = q_{a \ni p}^p a_{u \cdot \partial} - (q_{\kappa p}^p + q_T^p) a_{u \cdot m}$$

Полный крутящий момент будет:

$$M_{\kappa pi}{}^p = \int_{l/2}^z m_i{}^p dz \pm \sum_{i=1}^n G_{\epsilon pi}{}^p a_{\epsilon pi}$$

Далее приведена Таблица 5 с результатами расчетов для построения эпюр.

Таблица 5 - Расчеты для построения эпюр

No	$q^p_{arSigma}$	ΔQ_i	Q_k	$\Delta~M_{\scriptscriptstyle M3\Gamma~i}$	М _{изг к}
0	-4123	0	0	0	0
1	193045,675	96822,87	96822,87	49621,72	49621,72
2	118829,046	159835,8	179715,81	191347,79	240969,51
3	137615,246	131427,7	221327,65	205534,7	446504,21
4	154876,809	149902,18	419726,1	328540,05	775044,26
5	173663,009	168376,66	454616,98	448100,83	1223145,1
6	172628,934	177474,62	479181,47	478571,71	1701716,8
7	171594,859	176414,7	511602,63	507776,85	2209493,7
8	170560,784	175354,77	545599,79	541816,24	2751309,9
9	161903,526	170387,96	528202,68	550323,77	3293126,1
10	153246,269	161514,27	532997,09	543864,88	3836990,9

Изм	Лист	№ докум	Подп	Дата

HING.	При помо	ощи про	дела	нных рас	четов мох	кно пост	роить эг	іюры, п	оказанн	ые
ниже:										
\vdash					1306	6.5587	708.0	00 Г	13	Лисі
Изм Лист	№ докум	Подп	Дата							13

Заключение

В ходе выполнения лабораторной работы были закреплены знания и приобретены практические навыки расчета на прочность авиационных конструкций.

А именно были решены следующие задачи:

- определена максимальная эксплуатационная перегрузка для данного типа самолета;
- установлен коэффициент безопасности;
- определены внешние расчетные нагрузки на крыло;
- построены эпюры распределенной нагрузки, перерезывающих сил, изгибающих и крутящих моментов по размаху крыла;
- произведен поверочный расчет.

Изм.	Лист	№ докум	Подп	Дата

Список литературы
1. Чепурных И.В. Прочность конструкций летательных аппаратов: учеб. пособие – Комсомольск-на-Амуре: ФГБОУ ВПО «КнАГТУ», 2013. – 137 с.
nocoone – Romeomoniser-ha-Amype. Of BO3 Bito (RhAi 13%, 2013. – 137 c.
1306.558708.000 ПЗ

Подп

Изм.Лист № докум

16