Econometría

Diplomado Banco Central de Honduras

Instituto de Economía

Pontificia Universidad Católica de Chile

Juan Ignacio Urquiza — Junio 2022

¿Qué es la econometría?

- Es una disciplina que emplea la teoría económica y los métodos estadísticos para estudiar relaciones económicas, contrastar distintas teorías, pronosticar variables, y evaluar políticas en forma cuantitativa, utilizando bases de datos.
- Combina elementos de la teoría económica, las matemáticas y la estadística.
- Es una aplicación del método científico en economía.

Función de Esperanza Condicional

 $lue{}$ Se define a la función de esperanza condicional (FEC) para una variable Y_i como su valor esperado cuando X_i está fijo:

FEC:
$$E(Y_i|X_i)$$

- \square Dado que X_i es una variable aleatoria, entonces la FEC es también aleatoria.
- \square También se puede definir la FEC para un valor particular de X_i . Por ejemplo:

$$E(Y_i|X_i=x)$$

Ley de Esperanzas Iteradas

□ La LEI es un complemento importante, que permite obtener el valor esperado de Y_i a partir del promedio de todas las FEC.

$$E(Y_i) = E[E(Y_i|X_i)]$$

Por lo tanto, nos permite descomponer a cualquier variable aleatoria tal que:

$$Y_i = E(Y_i | X_i) + \varepsilon_i$$

donde $E(\varepsilon_i|X_i)=0$ y ε_i es ortogonal a cualquier función de X_i .

Descomposición de la FEC

- Esto implica que siempre podemos representar a una variable aleatoria Y_i como la suma de su esperanza condicional a X_i más algo que no está relacionado a X_i .
- □ Además, se puede demostrar que la FEC es el mejor predictor de Y_i dado X_i menor error cuadrático medio.
- \square Por lo tanto, la FEC es una buena manera de caracterizar la relación entre X_i e Y_i .

Función de Regresión Poblacional

- □ ¿Cuál es la relación entre la FCE y la función de regresión poblacional (FRP)?
- Podemos pensar en la FRP como un acercamiento a la FEC.
- □ En particular, se puede demostrar que:
 - Si la FEC es lineal, entonces la FEC es la FRP.
 - \blacksquare La FRP es el mejor predictor lineal de Y_i dado X_i .
 - La FRP es la mejor aproximación lineal de la FEC.

Modelo de Regresión Lineal Simple

MRL Simple:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Y: variable dependiente, explicada, predicha, de respuesta, regresando...
- X: variable independiente, explicativa, predictora, de control, regresor...
- \square β_0 , β_1 : parámetros poblacionales desconocidos.
- ε: término de error o perturbación inobservable.
 - Representa factores distintos de X que afectan a Y.

- □ Ecuación de salarios:
 - Y: salario
 - X: años de educación
 - E: experiencia laboral, capacidad/habilidad innata, años de antigüedad en la empresa...
- Rendimiento y fertilizante:
 - Y: rendimiento de un cultivo
 - X: cantidad de fertilizante
 - □ E: calidad de la tierra, lluvia, sol...

Modelo de Regresión Lineal Múltiple

MRL Múltiple:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_K X_K + \varepsilon$$

donde β_0 es la constante o el intercepto y $\beta_{i\neq 0}$ es el parámetro de pendiente asociado a una de las K variables explicativas.

- Note que hay K+1 parámetros poblacionales desconocidos.
- Es importante destacar que el análisis de regresión no se aplica para determinar causalidad sino para ver si dos variables guardan una relación positiva o negativa.

Interpretación

- \square Los parámetros de la FRP muestran la relación entre X_j e Y, manteniendo todo lo demás constante.
- Es decir, los parámetros de pendiente representan el cambio esperado en Y ante un cambio en X_i, manteniendo todo lo demás constante:

$$\Delta E(Y|X_1, X_2, \dots, X_K) = \beta_j \Delta X_j$$

Por lo tanto,

$$\beta_j = \frac{\Delta E(Y|X_1, X_2, \dots, X_K)}{\Delta X_j}$$

Sea el modelo de regresión lineal (MRL) simple:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Nuestro objetivo consiste en estimar los parámetros poblacionales a partir de una muestra aleatoria.
- $\hfill\square$ Para cada observación de la muestra $\{i=1,2,\ldots,n\}$ se cumple que:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

donde ε_i es el término de error para la observación i.

- Al análogo muestral del término de error se lo conoce como "residual o residuo".
- <u>Definición</u>: llamaremos residuo a la diferencia entre el "valor observado" y el "valor ajustado":

$$\widehat{\varepsilon}_i = Y_i - \widehat{Y}_i = Y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 X_i)$$

 Los estimadores de Mínimos Cuadrados Ordinarios (MCO) son los argumentos que minimizan la suma de los residuos al cuadrado:

$$\sum_{i=1}^{n} \widehat{\varepsilon}_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \widehat{\beta}_{0} - \widehat{\beta}_{1} X_{i})^{2}$$

Valor observado vs. ajustado

- Este criterio penaliza más a los residuos más grandes.
- □ CPO:

$$\sum_{i} \widehat{\varepsilon}_{i} = 0 \quad \Rightarrow \quad \widehat{\beta}_{0} = \overline{Y} - \widehat{\beta}_{1} \overline{X}$$

$$\sum_{i} X_{i} \widehat{\varepsilon}_{i} = 0 \quad \Rightarrow \quad \widehat{\beta}_{1} = \frac{\sum_{i} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i} (X_{i} - \overline{X})^{2}}$$

- Implicancia:
 - \square Si en la muestra X e Y se correlacionan positivamente (negativamente), entonces $\hat{\beta}_1$ es positivo (negativo).

Forma matricial

Sea el modelo de regresión lineal (MRL) múltiple:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_K X_K + \varepsilon$$

En términos matriciales, se puede representar de la siguiente manera:

$$y = X\beta + \varepsilon$$

En este caso, las letras minúsculas representan vectores y las mayúsculas matrices.

Forma matricial

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \beta_0 \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} + \beta_1 \begin{bmatrix} x_{1,1} \\ x_{2,1} \\ \vdots \\ x_{n,1} \end{bmatrix} + \beta_2 \begin{bmatrix} x_{1,2} \\ x_{2,2} \\ \vdots \\ x_{n,2} \end{bmatrix} + \dots + \beta_k \begin{bmatrix} x_{1,k} \\ x_{2,k} \\ \vdots \\ x_{n,k} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,k} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & x_{n,2} & \dots & x_{n,k} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

$$y = X\beta + \varepsilon$$

- Se debe minimizar la suma de cuadrados residuales.
- □ ¿Cómo?

$$\Rightarrow SCR = \hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}} = (\boldsymbol{y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}})'(\boldsymbol{y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}) \\
= \boldsymbol{y}'\boldsymbol{y} - \hat{\boldsymbol{\beta}}'\boldsymbol{X}'\boldsymbol{y} - \boldsymbol{y}'\boldsymbol{X}\widehat{\boldsymbol{\beta}} + \hat{\boldsymbol{\beta}}'\boldsymbol{X}'\boldsymbol{X}\widehat{\boldsymbol{\beta}} \\
= \boldsymbol{y}'\boldsymbol{y} - 2\boldsymbol{y}'\boldsymbol{X}\widehat{\boldsymbol{\beta}} + \hat{\boldsymbol{\beta}}'\boldsymbol{X}'\boldsymbol{X}\widehat{\boldsymbol{\beta}}$$

puesto que, tratándose de escalares, $(\widehat{m{\beta}}' X' y) = (y' X \widehat{m{\beta}})$.

Reglas para la diferenciación:

$$\frac{\partial A\widehat{\beta}}{\partial \widehat{\beta}} = A'$$

$$\frac{\partial \widehat{\beta}' C \widehat{\beta}}{\partial \widehat{\beta}} = 2C \widehat{\beta}$$

Sea el MRL múltiple en notación matricial:

$$y = X\beta + \varepsilon$$

Se debe minimizar la suma de cuadrados de residuales.

$$\min_{\widehat{\beta}} SCR = \min_{\widehat{\beta}} (y - X\widehat{\beta})' (y - X\widehat{\beta})$$
$$= y'y - 2y'X\widehat{\beta} + \widehat{\beta}'X'X\widehat{\beta}$$

□ CPO:

$$\frac{\partial SCR}{\partial \widehat{\boldsymbol{\beta}}} = \mathbf{0} \quad \rightarrow \quad -2X'y + 2(X'X)\widehat{\boldsymbol{\beta}} = \mathbf{0}$$

Por lo tanto, tenemos que:

$$\widehat{\beta} = (X'X)^{-1}X'y$$

- \square El vector $\widehat{m{\beta}}$ recibe el nombre de estimador de MCO.
- Para que esta solución sea efectivamente un mínimo es necesario que:

$$\frac{\partial SCR}{\partial \widehat{\boldsymbol{\beta}} \partial \widehat{\boldsymbol{\beta}}'} = 2(\boldsymbol{X}'\boldsymbol{X})$$

sea definida positiva.

 \square Puesto que X es de rango completo (RLM.3), entonces $\widehat{\beta}$ es único y minimiza la suma de cuadrados residuales.

Usted dispone de los siguientes datos muestrales:

\boldsymbol{x}	y
0	4
1	6
2	7
3	9
4	11

$$n = 5, k = 1.$$

□ Estime la regresión simple de Y sobre X por MCO.

□ Caracterización de X e y:

$$X = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} , y = \begin{bmatrix} 4 \\ 6 \\ 7 \\ 9 \\ 11 \end{bmatrix}$$

Estimador de MCO:

$$\widehat{\boldsymbol{\beta}} = (X'X)^{-1}(X'y)$$

□ Cómputo de la matriz (X'X)⁻¹:

$$X'X = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$
$$X'X = \begin{bmatrix} 5 & 10 \\ 10 & 30 \end{bmatrix}$$
$$(X'X)^{-1} = \begin{bmatrix} 0.6 & -0.2 \\ -0.2 & 0.1 \end{bmatrix}$$

□ Cómputo del vector X'y:

$$X'y = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & 6 \\ 7 & 9 \\ 11 \end{bmatrix}$$

$$X'y = \begin{bmatrix} 37 \\ 91 \end{bmatrix}$$

Cálculo de los estimadores:

$$\widehat{\boldsymbol{\beta}} = \begin{vmatrix} \widehat{\beta_0} \\ \widehat{\beta_1} \end{vmatrix} = \begin{bmatrix} 0.6 & -0.2 \\ -0.2 & 0.1 \end{bmatrix} \begin{bmatrix} 37 \\ 91 \end{bmatrix} = \begin{bmatrix} 4 \\ 1.7 \end{bmatrix}$$

Propiedades algebraicas

- Las propiedades algebraicas se derivan de las llamadas ecuaciones normales para MCO.
- □ Recuerde que:

$$-X'y + (X'X)\widehat{\beta} = 0$$

$$-X'(y - X\widehat{\beta}) = 0$$

$$-X'\widehat{u} = 0 \rightarrow X'\widehat{u} = 0$$

- Esto implica que los residuos suman cero y que son ortogonales a los regresores.
- $oxed{\Box}$ Además, implica que: $\widehat{oldsymbol{eta}}' X' \widehat{oldsymbol{u}} = \widehat{oldsymbol{y}}' \widehat{oldsymbol{u}} = 0.$

 \Box Curva de regresión muestral: $\hat{y} = \widehat{\beta_0} + \widehat{\beta_1} x$

\boldsymbol{x}	y	$\widehat{\mathbf{y}}$	$\widehat{u} = y - \widehat{y}$	$x * \widehat{u}$	$\widehat{y} * \widehat{u}$
0	4	4	0	0	0
1	6	5,7	0,3	0,3	1,71
2	7	7,4	-0,4	-0,8	-2,96
3	9	9,1	-0,1	-0,3	-0,91
4	11	10,8	0,2	0,8	2,16
		SUMA=	0	0	0

Descomposición de la varianza

□ Sea SCT la suma de cuadrados totales:

$$SCT = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Sea SCE la suma de cuadrados explicados:

$$SCE = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$$

Sea SCR la suma de cuadrados residuales:

$$SCR = \sum_{i=1}^{n} \hat{u}_i^2$$

Bondad del ajuste

□ Entonces, se puede demostrar que:

$$SCT = SCE + SCR$$

 \square A partir de esta descomposición, se define el R^2 o coeficiente de determinación como:

$$R^2 = \frac{SCE}{SCT} = 1 - \frac{SCR}{SCT}$$

- □ Dado que $0 \le SCE \le SCT$, entonces $0 \le R^2 \le 1$.
- Corresponde a la proporción de la variación muestral de y que es explicada por la regresión de MCO.

Bondad del ajuste

- \square Resulta interesante destacar que el \mathbb{R}^2 nunca disminuye cuando se agregan variables explicativas al modelo.
- Esto ocurre incluso si las variables que se agregan no son relevantes en el modelo poblacional.
- Se necesita de una medida que ajuste por la cantidad de regresores. Se define entonces al R² ajustado como:

$$\bar{R}^2 = 1 - \frac{(n-1)}{(n-k-1)} \times \frac{SCR}{SCT}$$

 El principal atractivo es que penaliza por el número de regresores. Nótese que incluso podría ser negativo.

. reg testscr str

Source	SS df	MS		Number of obs	
Model (7794.11004 1 7794	1.11004		F(1, 418) Prob > F	= 22.58 = 0.0000
Residual (144315.484 418 345.	252353			= 0.0512
				Adj R-squared	
Total (152109.594 419 363.	030056		Root MSE	= 18.581
testscr	Coef. Std. Err.	t E	P> t	[95% Conf.	Interval]
str	-2.279808 .4798256	-4.75	0.000	-3.22298	-1.336637
cons	698.933 9.467491	73.82	0.000	680.3231	717.5428
. reg testscr	str el pct expn stu				
Source	SS df	MS		Number of obs	= 420
				F(3, 416)	= 107.45
Model	66409.8837 3 2213	86.6279		Prob > F	= 0.0000
Residual (008918		R-squared (
				Adj R-squared	
Total (152109.594 419 363.	030056		Root MSE	= 14.353
10001	1022031031	00000		1000 1102	111000
testscr	Coef. Std. Err.	t E	P>ItI	[95% Conf.	Intervall
str	2863992 .4805232	-0.60 0	0.551	-1.230955	. 658157
el pct	6560227 .0391059	-16.78	0.000	7328924	5791529
expn stu	.0038679 .0014121		0.006	.0010921	.0066437
cons	649.5779) 15.20572		0.000		679.4676
	10120012			025.0000	3.5.20.0