

PHOTOGRAPH THIS SHEET								
AD A 0 8 0 9 4.5	LEVEL AR F.E.	INC Research Corp. Publication 1326-01-7-1873 PAR Ret. No. EM-79-1 DOCUMENT IDENTIFICATION Dtd. April 1979 DISTRIBUTION STATEMENT A						
a l		Approved for public release; Distribution Unlimited						
		DISTRIBUTION STATEMENT						
ACCESSION FOR								
NTIS GRA&I DTIC TAB UNANNOUNCED JUSTIFICATION		SELECTE SEB 2 1 1980						
BY DISTRIBUTION /		D						
AVAILABILITY CODI	AND/OR SPECIAL	DATE ACCESSIONED						
A								
DISTRIBUT	DISTRIBUTION STAMP							
	D	ATE RECEIVED IN DTIC						
	PHOTOGRAPH TH	IS SHEET AND RETURN TO DTIC-DDA-2						
DTIC FORM 70A		DOCUMENT PROCESSING SHEET						

DIIC OCT 79 /UA

AD A O 8 O 9 4 5

AVIONICS COST DEVELOPMENT FOR CIVIL APPLICATION OF GLOBAL POSITIONING SYSTEM

FINAL REPORT

S. Kowalski

April 1979

PREPARED FOR

U.S. DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION

Office of Systems Engineering Management Washington, D.C. 20591

80-0057

230008

80 2 21 053

Technical Report Documentation Page

1. Report No.	2. Government Acces	sion No.	3. Recipient's Catalog N	
	z. oovenmen Acces		o. Recipient a conding to	
FAA-EM-79-1				
4. Title and Subtitle			5. Report Date	
Avionics Cost Development	for		April 1979	
Civil Application of Global Positioning System			6. Performing Organization	on Code
			B. Performing Organization	on Report No.
7. Author's) S. H. Kowalski			1326-01-7-187	
9. Performing Organization Name and Addres	s		10. Work Unit No. (TRAI	S)
ARINC Research Corporation	n			
a Subsidiary of Aeronautic 2551 Riva Road	cal Radio, inc	•	 Contract or Grant No DOT-FA76WA-37 	
Annapolis, Maryland 21401	1		13. Type of Report and P	eriod Covered
12. Sponsoring Agency Name and Address				
U.S. Department of Transpo			Final Report	
Federal Aviation Administr			14. Sponsoring Agency C	ode
Office of Systems Engineer Washington, D.C. 20591	ring Managemen	t	apomoning riginity o	
15. Supplementary Notes				
This report presents in support of the civil a	application of	the Global Pos	itioning System	(GPS). The
This report presents	application of alysis was cho ed the necessa cs were develo	the Global Pos sen because of ry data for cos	itioning System the advanced sta t evaluations.	(GPS). The ate of
This report presents in support of the civil a design considered for and development which provide The costs of avionic	application of alysis was cho ed the necessa cs were develo	the Global Pos sen because of ry data for cos	itioning System the advanced sta t evaluations.	(GPS). The ate of
This report presents in support of the civil a design considered for and development which provide The costs of avionic	application of alysis was cho ed the necessa cs were develo	the Global Pos sen because of ry data for cos	itioning System the advanced sta t evaluations.	(GPS). The
This report presents in support of the civil a design considered for and development which provide The costs of avionic	application of alysis was cho ed the necessa cs were develo	the Global Pos sen because of ry data for cos	itioning System the advanced sta t evaluations.	(GPS). The
This report presents in support of the civil a design considered for and development which provide The costs of avionic	application of alysis was cho ed the necessa cs were develo	the Global Pos sen because of ry data for cos	itioning System the advanced sta t evaluations.	(GPS). The ate of
This report presents in support of the civil a design considered for and development which provide The costs of avionic	application of alysis was cho ed the necessa cs were develo	the Global Pos sen because of ry data for cos	itioning System the advanced sta t evaluations.	(GPS). The
This report presents in support of the civil a design considered for and development which provide The costs of avionic	application of alysis was cho ed the necessa cs were develo	the Global Pos sen because of ry data for cos	itioning System the advanced sta t evaluations.	(GPS). The ate of
This report presents in support of the civil a design considered for and development which provide The costs of avionic	application of alysis was cho ed the necessa cs were develo	the Global Pos sen because of ry data for cos	itioning System the advanced sta t evaluations.	(GPS). The ate of
This report presents in support of the civil a design considered for and development which provide The costs of avionic	application of alysis was cho ed the necessa cs were develo	the Global Pos sen because of ry data for cos	itioning System the advanced sta t evaluations.	(GPS). The ate of
This report presents in support of the civil a design considered for and development which provide The costs of avionic	application of alysis was cho ed the necessa cs were develo	the Global Pos sen because of ry data for cos	itioning System the advanced sta t evaluations.	(GPS). The ate of
This report presents in support of the civil a design considered for and development which provide The costs of avionic	application of alysis was cho ed the necessa cs were develo	the Global Pos sen because of ry data for cos	itioning System the advanced sta t evaluations.	(GPS). The
This report presents in support of the civil a design considered for and development which provide The costs of avionic	application of alysis was cho ed the necessa cs were develo	the Global Pos sen because of ry data for cos	itioning System the advanced sta t evaluations.	(GPS). The
This report presents in support of the civil a design considered for and development which provide The costs of avionic	application of alysis was cho ed the necessa cs were develo	the Global Pos sen because of ry data for cos	itioning System the advanced sta t evaluations.	(GPS). The ate of
in support of the civil a design considered for ana development which provide The costs of avionic accounting methods of cos	application of alysis was cho ed the necessa cs were develo	the Global Pos sen because of ry data for cos ped using both	itioning System the advanced st t evaluations. the parametric	(GPS). The ate of
This report presents in support of the civil a design considered for and development which provide The costs of avionic accounting methods of costs.	application of alysis was cho ed the necessa cs were develo	the Global Possen because of ry data for cosped using both	itioning System the advanced st t evaluations. the parametric of	(GPS). The ate of
This report presents in support of the civil a design considered for and development which provide The costs of avionic accounting methods of cos	application of alysis was cho ed the necessa cs were develo	the Global Possen because of ry data for cosped using both 18. Distribution Statem Document is	itioning System the advanced st t evaluations. the parametric of available to the	(GPS). The ate of
This report presents in support of the civil a design considered for and development which provide The costs of avionic accounting methods of costs.	application of alysis was cho ed the necessa cs were develo	the Global Possen because of ry data for cosped using both 18. Distribution Statem Document is through the	ent available to the National Technical System ent available to the National System ent available to the Nat	(GPS). The ate of
This report presents in support of the civil a design considered for and development which provide The costs of avionic accounting methods of costs.	application of alysis was cho ed the necessa cs were develo	the Global Possen because of ry data for cosped using both 18. Distribution Statem Document is through the Information	ent available to the National Technics Service, Spring	(GPS). The ate of
This report presents in support of the civil a design considered for and development which provide The costs of avionic accounting methods of costs.	application of alysis was cho ed the necessa cs were develo	the Global Possen because of ry data for cosped using both 18. Distribution Statem Document is through the	ent available to the National Technics Service, Spring	(GPS). The ate of
This report presents in support of the civil a design considered for and development which provide The costs of avionic accounting methods of costs.	application of alysis was cho ed the necessa cs were develo	the Global Possen because of ry data for cosped using both 18. Distribution Statem Document is through the Information Virginia 2	ent available to the National Technics Service, Spring	(GPS). The ate of
This report presents in support of the civil a design considered for and development which provide The costs of avionic accounting methods of costs. 17. Key Words GPS	application of alysis was chosed the necessates were develost estimating.	the Global Possen because of ry data for cosped using both between the statem of the s	ent available to tl National Techn: Service, Spring 2161	(GPS). The ate of

I

Page

ACKNOWLEDGEMENT

Throughout this study to develop avionics costs for civil application of the Global Positioning System, ARINC Research Corporation received enthusiastic and invaluable support from the management and engineering departments of the USAF Space and Missile Systems Organization and the Advanced Products Division of the Magnavox Corporation. The Federal Aviation Administration provided the overall guidance for the study, while the other organizations supplied necessary technical and economic data.

SUMMARY

The avionics cost development for civil use of the Global Positioning System (GPS), performed for the Federal Aviation Administration (FAA) Office of Systems Engineering Management (OSEM), was based on two accepted costestimating methods: parametric and accounting. The parametric method was employed to obtain early indication of the probable cost of the GPS civil avionics. The more detailed accounting method, which is based on actual production bills of materials, was exercised to refine the parametrically predicted cost of avionics that duplicate the performance of the system evaluated.

The system evaluated is the military-developed "Z" set modified to meet the packaging requirements of air carrier and general-aviation avionics. Consideration of the "Z" set was mandated by the advanced state of development of this design and the availability of data necessary for cost evaluation. The signal format, signal acquisition, and frequency-conversion techniques, as well as data processing and display, are identical to those in the military "Z" set, assuring that the system's performance will be the same as that provided by the "Z" set. Instead of evaluating the applicability of the "Z" set performance to civil navigation requirements, the study merely developed the cost of avionics for a civil system with comparable performance.

The civil GPS system requires a receiver, control and display unit, antenna, and preamplifier. High-performance aircraft would probably have at least one set of each installed in conventional locations within the airframe. In many cases a second, fully redundant system would be provided. Low-performance aircraft would probably use a combined antenna-preamplifier package, with the receiver remotely mounted and the control in the console of the aircraft. The expected cost of these equipments for the highperformance aircraft is presented in Table S-1. The results are presented in 1977 dollars, with no escalation during the manufacturing period. The 1977 dollar was used to maintain consistency with the cost and design data contained in the critical design review of the "Z" set conducted in December 1977. Separate data have been presented for air carrier and generalaviation users to account for large-volume procurement of fleet owners buying from the manufacturers and the limited-quantity purchase of the private aircraft owner, who is expected to subsidize distribution costs. In addition, separate data have been presented for the two methods of cost estimating to allow comparison of results. The parametric method estimates both the development and production costs, which together constitute the

		Cost (Do	ollars) by 1	User Categor	гу	
Equipment		Parametric	Method		Accounti	ng Method
	Development Only	Production Only	Air Carrier*	General* Aviation	Air Carrier	General Aviation
Receiver	681	9,131	9,812	12,756	8,811	11,454
Control and Display	92	1,208	1,300	1,690	1,223	1,589
Preamplifier	56	671	727	945	708	920
Antenna	25	205	230	299	2 30	299
Total Cost	854	11,215	12,069	15,690	10,972	14,262

factory selling price of the system (shown as the cost to air carriers). The accounting method of estimating the cost of high-performance aircraft avionics, however, considers only the production costs. Comparison of results developed by the two methods used must be based on the production data. This comparison shows that the two methods of cost estimating produce results on the cost of GPS civil avionics that are within two percent.

Table S-2 presents the results of the evaluation for low-performance aircraft GPS avionics. Both methods of cost estimating can be considered as including development costs and are directly comparable. The results are within 12 percent, with the accounting method showing the higher expected costs. This variation has been examined and attributed to the unequal sensitivity of the cost-estimating methods for design-peculiar characteristics of several modules that make up the GPS receiver. It is believed that lower costs could be realized if the systems were redesigned by the engineering departments of the general-aviation manufacturers. However, the redesign was not attempted during this study so that the performance specified for the "Z" set could be maintained.

Table S-2. ACQUISI AIRCRAF	TION COST OF LOW-PE T GPS AVIONICS	CRFORMANCE
	Cost (Dollars) fo Aircraft	
Equipment	Parametric Method	Accounting Method
Receiver	2,746	3,194
Control and Display	724	702
Antenna with Preamplifier	150	150
Total Cost	3,620	4,046

CONTENTS

Performant Englishment Sections

E

I

	Pag	је
ACKNOWLEDGEMENT	ii	ii
SUMMARY		v
CHAPTER ONE: INTRODUCTION	1-	-1
1.1 Background		-1
1.2 Project Overview	1-	-1
1.3 Organization of the Report	1-	-2
CHAPTER TWO: GLOBAL POSITIONING SYSTEM (GPS) CIVIL	L AVIONICS 2-	-1
2.1 High-Performance Aircraft Avionics	2-	-1
2.1.1 GPS Receiver	2-	-2
2.1.2 GPS Control and Display Unit		-3
2.1.3 GPS Preamplifier		-3
2.2 Low-Performance Aircraft Avionics		-3
		-3
2.2.1 GPS Receiver		-3 -4
2.2.2 GPS Control and Display Unit	2-	-4
CHAPTER THREE: COST-ESTIMATING METHODOLOGY	3-	-1
3.1 Parametric Method	3-	-1
3.1.1 The PRICE Model	3-	-2
3.1.2 Model Input Data		-2
3.1.3 Model Output Data		-2
3.2 Accounting Method		-4
3.2.1 Input Data		-4
3.2.2 Output Data		-5
CHAPTER FOUR: PARAMETRIC METHOD OF AVIONICS COST !	DEVELOPMENT 4-	-1
4.1 Avionics Cost Development, High-Performan	nce Aircraft 4	-1
4.1.1 GPS Receiver	4-	-1
4.1.2 GPS Control and Display		-4
4.1.3 GPS Preamplifier	4-	-4
4.1.4 GPS Antenna		-4
4.1.5 Cost Summary	4-	-5

CONTENTS (continued)

						Page
4.2	Avioni	cs Cost Development, Low-Performance Aircraft .				4-7
		GPS Receiver		•		4-9
CHAPTER F	IVE: A	CCOUNTING METHOD OF AVIONICS COST DEVELOPMENT .				5-1
5.1	Avioni	cs Cost Development, High-Performance Aircraft	•			5-1
	5.1.2 5.1.3	GPS Receiver	:		•	5-1 5-3 5-3 5-3
5.2	Avioni	cs Cost Development, Low-Performance Aircraft .				5-3
		GPS Receiver				
CHAPTER S	IX: RE	SULTS OF EVALUATION				6-1
6.1 6.2		t Evaluated				
APPENDIX A	A: RCA	PRICE MODEL INPUT PARAMETERS	•			A-1
APPENDIX	B: SYS	TEM PARTS LISTS AND COST-DEVELOPMENT DATA SHEET	S			B-1

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

The Global Positioning System (GPS) is being developed for the military to provide, from a satellite-based positioning information system, accurate worldwide positioning capability that may have application as a navigation system for civil use.

As part of the ongoing program of the Federal Aviation Administration (FAA) to review new candidates for navigation, the Office of Systems Engineering Management (OSEM) is examining the GPS concept and has tasked ARINC Research Corporation, under Contract DOT-FA76WA-3788, to develop probable costs of civil GPS avionics.

This study addresses only issues relating to the economic feasibility of of a civil GPS concept by developing expected costs of avionics required for GPS operation.

1.2 PROJECT OVERVIEW

The objective of the analysis is to develop an independent assessment of the cost of avionics required to implement the GPS concept in the civil aviation community on the basis of designs being developed for the military. To meet this objective, it is necessary to analyze the various types of GPS avionics equipments being developed, identify the military-peculiar tactical requirements (e.g., high dynamics), and eliminate, where possible, military-peculiar capabilities that would not be required in civil applications.

ARINC Research Corporation developed the cost of civil GPS avionics using both the traditional accounting method of cost estimating and a parametric method based on a commercially available pricing model. This report presents the results of the evaluation, the constraints applied to ensure uniformity in the development of avionics costs, and a comparison of the results obtained by the two cost-estimating methods. The study results are presented in 1977 dollars, consistent with the technology and available data on which the estimates were based. Software development costs necessary for the GPS receiver operation have not been estimated

since it is believed that the software will have been developed under Government sponsorship before introduction of the system to civil applications.

1.3 ORGANIZATION OF THE REPORT

The six chapters of this report address the evaluated concept, describe the techniques used in estimating the costs of the system designs, and present the results of the evaluation.

Chapter Two identifies the GPS concept and defines the avionics considered in the evaluation.

Chapter Three identifies the two methodologies used in estimating costs of avionics.

Chapter Four presents the results of the evaluation using the parametric method of cost estimating.

Chapter Five presents the results of the evaluation using the accounting method of cost estimating.

Chapter Six presents the conclusions regarding the expected costs of GPS avionics, obtained by comparing the results of the two cost-estimating methods.

CHAPTER TWO

GLOBAL POSITIONING SYSTEM (GPS) CIVIL AVIONICS

The military design that exhibits capabilities closest to that suitable for civil applications on a worldwide basis and incorporates area navigation (RNAV) capability is the medium-dynamic system referred to as the "Z" set. This set, designed for nontactical cargo aircraft and tactical bombers and tankers, has been chosen for cost comparison for civil applications. This design requires the minimum hardware modification when defining a civilian airborne GPS navigation set. However, it may not meet the minimum air navigation performance requirements for other than level flight because of the update rates, reacquisition times when transferring from one satellite to another, and other performance characteristics. Consideration of this design was mandated by the advanced state of development of the "Z" set, and the availability of data necessary for cost evaluation. The signalformat, signal-acquisition, and frequency-conversion techniques, as well as data processing and display, have been retained without modification to assure the same performance as will be provided by the original equipment. Where additional capability was incorporated in modules of the "Z" set, such as the detection of both the P and C/A codes, the capability was retained in the analysis. Packaging techniques and environmental considerations have been altered to reflect the particular requirements of the commercial air carriers and general aviation. This chapter describes the civil equivalent of the military "Z" set, identifying the packaging design modifications for both the high-performance and low-performance classes of aircraft.

2.1 HIGH-PERFORMANCE AIRCRAFT AVIONICS

The avionics required by high-performance aircraft using GPS as the navigation system consist of an antenna, preamplifier, receiver, and control and indicator panel (see Figure 2-1). The antenna is assumed to be similar to that developed for military applications. All equipments of the GPS system are based on definitions obtained from details in the critical design review report* and information provided by the engineering departments of the Space and Missile Systems Organization (SAMSO) and Magnavox.

^{*}NAVSTAR Global Positioning System, Phase I: ser Equipment, Set Z, Critical Design Review, 13 December 1977, Magnavox APS General Dynamics.

Figure 2-1. GPS AVIONICS FOR HIGH-PERFORMANCE AIRCRAFT

2.1.1 GPS Receiver

The "Z" set can be adapted to air carrier use by employing a standard 1/2 ATR short ARINC specification enclosure to house the 11 printed circuit boards and the RF assembly. Inputs to the receiver and outputs to the control and display device would be through a rear-mounted DPX connector. The boards constitute the receiver signal conditioning, the data processor, and the power supply with appropriate regulators. For evaluation purposes, none of the boards was redesigned or changed in physical appearance. However, the board-mounting technique and board-interconnect configuration were modified to reflect the standard practice of the airline industry. The component parts used in air carrier avionics meet the temperature requirements of military standards, although continuous unpressurized operation at high altitudes is not required. The resultant repackaged GPS receiver is less shock-proof than the original "Z" set counterpart but will meet the applicable environmental requirements of RTCA Document DO-160.

The oscillator, which provides the timing for the receiver, is a critical module of the electronic package. The oscillator chosen for the civil version of the GPS "Z" set is an oven-controlled unit with a stability of 5×10^{-8} correctable to 3×10^{-9} by use of a voltage controlled oscillator (VCO). Comparison with data in the critical design review shows this oscillator to be adequate in meeting the timing requirements of the "Z" set.

2.1.2 GPS Control and Display Unit

The control and display unit recommended for air carrier application is functionally identical and physically similar to the unit developed for military applications. Packaging requirements have been modified to reflect the normal practice of air carrier avionics manufacturing. The unit consists of eight 7-segment light-emitting diodes (LEDs), two 5 × 7 dot-matrix LEDs, 10 waypoint number readouts (including 0 for present position), keyboard for data entry, rotary data selector switch, and miscellaneous secondary control and indicator functions. However, the unit does not have a coarse deviation indicator (CDI); thus other flight instruments must be used to maintain proper bearing to position waypoints. An estimated position-error readout selectable as a control function can be used to assist in maintaining proper bearing. Four printed circuit boards included in the housing provide the necessary drivers, displays, control, power regulation, and interface with the receiver. The unit is designed for mounting in a prominent location on the forward pedestal of a flight deck.

2.1.3 GPS Preamplifier

The preamplifier required for GPS operations is a remotely mounted (at antenna), RFI-sealed, low-noise-figure device with bandpass cavity filters and an active gain stage. The active elements in the unit are powered through the RF cables from the GPS receiver. Packaging of the preamplifier is unrestricted since it is not mounted in standard racks or panels. However, the enclosure quality will have to be comparable to the military design unit, except that it will not require pressurization.

2.2 LOW-PERFORMANCE AIRCRAFT AVIONICS

The avionics required by low-performance aircraft using GPS as the navigation system consist of an antenna with built-in preamplifier, a remotely mounted receiver, and a console-mounted control and display unit. The design of the GPS system is based on details contained in the critical design review report, but with packaging practices of the general-aviation manufacturers consistent with the quality and functional features of the general-aviation community. This section identifies the design details of the receiver and the control unit. The antenna, with a built-in preamplifier, is assumed to be similar in complexity, and therefore in cost, to a unit developed for MLS applications. The GPS navigation package in typical general-aviation configuration is shown in Figure 2-2.

2.2.1 GPS Receiver

The GPS receiver expected to be used by single-engine and light twinengine aircraft contains all the electronics required for signal conversion, frequency conversion, data processing, power supplies, and information generation to drive the display unit. The electronics will be mounted on plug-in printed circuit cards arranged to perform the receiver IF functions, processing, frequency synthesizing, and power supply regulation. Six plugin cards, in addition to the enclosed RF module, are envisioned to perform

ANTENNA/PREAMPLIFIER

Figure 2-2. GPS AVIONICS FOR LOW-PERFORMANCE AIRCRAFT

all the functions detailed for the high-performance receiver. Because of lower shock and vibration requirements for general-aviation avionics, the cards can be larger and can accommodate more functions per card than their high-performance equivalents. A low-cost oscillator will be used -- one that meets the stability requirements of GPS oscillators but not the environmental requirements of high-performance units. The packaging of the receiver is unrestricted, typical of the enclosures and the practice of general-aviation manufacturers.

2.2.2 GPS Control and Display Unit

The control and display unit recommended for the low-performance general aviation aircraft is functionally identical to that described in Subsection 2.1.2, but the packaging and quality of components is consistent with the practice of the general-aviation manufacturers. The unit would be designed for installation in the flight console of aircraft for easy access and readability. Electronics required for lamp drivers, displays, input data processing, power regulation, and interface with the receiver would be mounted on four printed circuit cards housed in the unit.

CHAPTER THREE

COST-ESTIMATING METHODOLOGY

The equipment costs developed in this study will provide the basis for comparing various concepts intended to improve navigation accuracy in the next generation of Air Traffic Control (ATC) systems. Careful development of these data is an essential step in the overall analysis of the alternatives. To increase the probability of accurate cost estimating, two methods of pricing avionics costs are employed in the study: the parametric method, and the accounting method.* This chapter describes the two methods.

3.1 PARAMETRIC METHOD

The model chosen for the parametric method of pricing, the RCA Programmed Review of Information for Costing and Evaluation (PRICE), requires a set of parametric data inputs that properly define the module, or system, to be priced. The model was chosen because of its wide acceptance by military branches of the Federal Government as a computer-based pricing model. Of the many input parameters required, the most critical cost-driving ones are the weight, volume, and structural-electronic division; manufacturing complexities; and markups for overhead, G&A, and profit. Since manufacturing complexities vary among manufacturers in different fields (e.g., avionics for ARINC class or general-aviation class equipments), a detailed characterization is necessary for each manufacturer expected to produce avionic equipment.

ARINC Research has studied the manufacturing complexities of several key manufacturers of avionics by thoroughly reviewing existing avionics, collecting data at various avionics plants, and frequently exercising the PRICE model to establish the typical values for manufacturing complexities. To ensure accuracy in characterizations of existing equipment, all modules of a specific item of avionics were measured and weighed. The process was repeated on numerous types of avionics to enhance the accuracy of the parametric analyses.

The results were compiled and stored in ARINC Research data files, and they were used in estimating the cost of the avionics considered in this study.

^{*}Both methods use common factors of 20 percent for General and Administrative expense and 10 percent for profit.

3.1.1 The PRICE Model

PRICE is a computerized parametric cost-modeling technique developed by RCA. It estimates development and production costs on the basis of physical and economic descriptors of the systems evaluated and compares new requirements with industry-wide data bases on analogous systems. PRICE efficiently stores, retrieves, and uses the historical information. Effective use of such empirical data allows classifying new designs by relating them to past similar design efforts. The method provides the means of reducing great quantities of empirical data to a relatively small number of principal variables that can be adjusted to match the economic and technological characteristics of the specific system.

3.1.2 Model Input Data

The model requires up to 40 parametric data inputs describing the physical and economic characteristics of the system or subassembly to be evaluated. When operated in the subassembly mode, the model requires similar inputs for all subassemblies and provides the means for final test and integration of the system. In general, the latter mode was employed for the cost estimates in this study.

The physical descriptors included such key features as weight of structure and electronics, packaging densities, volumes, quantities to be produced, manufacturing complexities, and degree of new design. Since the model is structured to provide a cost-per-pound based on densities and complexities, an accurate determination of the probable weight and volume of the subassembly being evaluated is essential.

The economic descriptors include such features as year of production, escalation rates, engineering schedules, production schedules, and management activities required during development and production. Schedules must be carefully selected because the final costs developed by the model are affected by the complexity of a product and the time allowed for its development and production. Other costs, such as those for management, tooling, or test equipment, have been normalized to the RCA data bank and are altered through sensitivity analyses and adaptation to specific manufacturers.

The key input parameters are listed in Table 3-1 in the format used throughout the study. Abbreviations and acronyms used are defined to provide an insight into the parametric data employed by the model. Appendix A provides a complete list of input parameters used by the model.

3.1.3 Model Output Data

The RCA PRICE model performs a series of evaluations based on the input parametric data and provides costs as a function of the elements associated with engineering and manufacturing for both development and production of a system or subassembly. Engineering costs include the cost of drafting, design, system management, project management, and data

	Table 3-1. KEY PRICE PHYSICAL AND ECONOMIC DESCRIPTORS					
Descriptor Acronym or Abbreviation						
QTY	Total quantity to be produced					
WT	Weight of assembly (subassembly) in pounds					
VOL	Volume of assembly (subassembly) in cubic feet					
WS	Weight of structure (nonelectronic) of assembly in pounds					
MCPLXS	Manufacturing complexity for structure					
NEWST	Percent of new design required for structure					
MCPLXE	Manufacturing complexity for electronics					
NEWEL	Percent of new design required for electronics					
CMPNTS Number of electronic components						
ECMPLX Engineering complexity of assembly (subassembly)						
PRMTH	PRMTH Production period in months					
LCURVE	LCURVE Production learning curve					
ECNE	Engineering change orders for electronics, in percent					
ECNS	Engineering change orders for structure, in percent					
YEAR	Year of technology (usual start of design/production)					
ESC	Escalation rate in percent					
PROJCT	Degree of project management support during engineering					
DATA	Degree of data requirements					
TLGTST	Degree of special tools and test equipment required for development					
PLTFM	Factor for reliability testing, specification severity					
SYSTEM	Degree of system engineering required					
PPROJ	Degree of project management support during production					
PDATA	Degree of data required during production					
PTLGTS	Degree of special tools and test equipment required for production					

pushed Treatment Treatment

handers bearing bestern

Total bases

documentation required during system development and production. The costs are presented for the entire production quantity for the development and production period on the basis of the data input parameter set; they include the effect of learning. Manufacturing is concerned primarily with the production of a system, but it also includes costs for prototype development and special tools or test equipment that might be required during development. As in the case of engineering, the output costs are for the entire production quantity with no escalation.

During program execution, the model frequently compares schedules, packaging densities, and other key input parameters with historical data in the RCA data banks. Abnormal inputs, such as too short development periods, are flagged and brought to the attention of the operator.

The output data sheet contains in the header all the information used as the parametric input to the model; it also provides the key parameters used in the derivation of the costs as a means to check the reasonableness of the results. Finally, the output data sheet provides the expected cost estimated by the program, bounded by approximately two-sigma level-of-confidence costs. The confidence intervals, although available from the model results, are omitted from this study to keep it similar to other economic analysis reports used in the evaluation of future ATC alternatives. A copy of a typical model output data sheet is provided in Appendix A.

3.2 ACCOUNTING METHOD

The technique chosen for an alternate cost evaluation is the industry standard accounting method of estimating production costs based on estimates of the numbers and types of piece parts. The method requires detailed bills of material and associated labor units, schematic diagrams, mechanical and electronic module layouts, and total quantity of units to be manufactured. Material costs are based on original equipment manufacturer (OEM) price lists in quantities of 1,000 or greater, and allowances are made for large parts procurements common to equipment manufacturers. Finally, the accounting structures of potential manufacturers must be known to allow for labor, overhead charges, quality control costs, general and administrative expenses, and the normal profits experienced in the avionics industry. This section presents the typical data inputs required in preparing cost-estimating worksheets and the rationalization for the development of the output data worksheets.

3.2.1 Input Data

The data necessary for the preparation of the accounting method of cost-estimating worksheets are usually taken directly from engineering bills of material. The component part numbers are identified and quantities entered on the worksheets. Procurement costs of the components are obtained either from OEM price lists or, in cases where the component is unique or in a high-cost category, through direct quotes provided by OEM distributors. Labor associated with fabrication or assembly of components is estimated in

terms of hours per 1,000 units in a mass production assembly line. Historical data maintained by most manufacturers provide the average labor estimates for both manual and automatic insertion processes. These data provide the average labor associated with assembly of components configured in a module (e.g., printed circuit card) or subassembly. The total labor hours are subjected to a comparative evaluation to determine the relative complexity of the assembly in comparison with the historical data. If the module is complex, in terms of having high component density or requiring printed circuit boards with multiple layers, a compensating complexity factor is applied to the labor estimate. The resultant material costs and labor estimates provide the data necessary for development of the cost-estimating output sheets.

3.2.2 Output Data

The worksheets used in developing total equipment costs are structured to provide cost information on individual modules (or subassemblies) and total avionics units. The rationalization for this method of presentation is to provide information that is useful in evaluating life-cycle costs where module stockage and associated costs are necessary for determining the recurring and nonrecurring logistics costs. Total avionics unit costs include unit assembly, test, and integration costs incurred when the avionics package is completed.

Costs are developed by considering the expense of materials, material handling charges, labor at either known or estimated hourly rates, average overhead obtained from a sampling of avionics manufacturers, and factory inspection costs during production. For air carriers only, an allowance of 25 percent of these direct costs is made to cover production engineering and quality control, resulting in the factory cost of the subassembly or avionics unit. The addition of general and administrative costs, together with a reasonable profit, provides the OEM or selling price of the unit. This is the cost expected to be paid by distributors handling the product or large fleet owners buying avionics at quantity prices. Private aircraft owners usually purchase avionics from distributors and pay an additional distributor handling markup of 30 percent for the ARINC quality units and 100 percent for the general-aviation quality units.

The output data sheets are also structured to permit easy reevaluation of the expected costs of avionics by substituting different labor, overhead, G&A, profit, and markup rates if there is sufficient concern over the data used or if a manufacturer prefers to use the exact factory rates rather than the average of the industry.

CHAPTER FOUR

PARAMETRIC METHOD OF AVIONICS COST DEVELOPMENT

Equipment costs were developed on subassembly levels and combined, by the PRICE model, to identify the expected cost of the GPS avionics. Two types of systems were estimated: the ARINC quality avionics intended for high-performance aircraft, and the general-aviation quality intended for the low-performance single-engine and twin-engine aircraft. This chapter presents the results of the evaluation by the parametric costestimating method and identifies the parameters used as inputs to the model.

Parameter values describing the physical configurations of each sub-assembly were obtained from information furnished by SAMSO and the Magnavox Corporation, while parameter values describing the proposed avionics manufacturers were extracted from the ARINC Research data bank. The data bank was compiled through extensive evaluations of existing avionics and calibration of the PRICE model to reflect the advertised costs of avionics available from avionics manufacturers.

4.1 AVIONICS COST DEVELOPMENT, HIGH-PERFORMANCE AIRCRAFT

4.1.1 GPS Receiver

The GPS receiver consists of 12 modules integrated into an enclosure and chassis. An oscillator complementing the 12 modules is mounted in the chassis, although its cost is treated as a separate item. Table 4-1 presents the physical and economic descriptors of the GPS receiver. Critical parameters, such as the electronic and structural complexity data, were derived by first reconstructing the military version of the "Z" set in PRICE terminology and exercising the model to obtain the cost data presented in the critical design review docume..t.* The key parameters of the "Z" set were then compared with empirical RCA data files to identify the degree of higher or lower complexity than those in the ARINC Research files. As a final step, ARINC Research data were accordingly modified where more complex manufacturing practices were identified through the comparison of the "Z" set and empirical data. Economic descriptors used in the analysis are those which have been developed in past applications of the PRICE model to air carrier type avionics manufacturing.

^{*}Ibid.

Table	e 4-1.		PARAMETER		VALUES F	FOR GE	GPS RE	RECEIVER,		GH-PE	HIGH-PERFORMANCE		AIRCRAFT	AFT
		-					Pa	Parameter Value	Value					
			/	/		PUE	~	/	\	/				5.155.04
Parameter	Par Card	or Card	Pare	0/1 26	Control	Paseb 16	, o	,	Serrace	PINPO	30275	TIAM	Alddne	Pue est
	Proces	EPRON	MOR43	Memory Vertory	Receir	Receiv	000 K/2	ODU IN	AT AN	Synthe	RE ASS	YOWOY SOMOY	nsotowa	\
VII.Q	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	
WT	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	1.0	1.0	0.422	8.826	
TOA	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.01	0.03	0.03	0.005	0.212	
MS	-	-	-	-	-	1 .	-	-	,	0.483	0.483	-	8.826	
MCPLXS	-	-	-	1	-	1	-		,	6.341	6.341		6.141	
NEWST	ī	-	1	1	-		ı	-	,	1	1	1	0.5	
MCPLXE	8.606	8.817	7.789	8.12	8.926	7.726	8.104	7.331	8.951	8.167	8.253	7.445		
NEWEL	1	1	1	1	1	1	1	1	1	1	1	0.5	-	
CMPNTS	65	57	76	95	369	127	131	28	123	333	9	249	-	
ECMPLX	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.5	1.5	6.0	6.0	
PRMTH	36	36	36	36	36	36	36	36	36	36	36	36	36	
LCURVE	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	
ECNE	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01		
ECNS	1	1	1	1	1	1	1	,	1	0.01	0.01	1	0.01	
YEAR	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	
ESC	0	0	0	0	0	0	0	0	0	0	0	0	0	
PROJCT	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
DATA	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
TLGTST	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
PLTFM	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	
SYSTEM	6.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
PPROJ	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
PDATA	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
PTLGTS	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	

Production quantities per manufacturer were set at 3,000 units over a three-year period to maintain a consistent base for comparison with other cost estimates developed for the FAA in the evaluation of alternatives. These quantities were considered sufficient to develop a typical avionics production learning curve and amortize development and start-up costs. The results of the analysis are presented in 1977 dollars with zero inflation over the period of development and manufacturing.

Table 4-2 summarizes the PRICE outputs by subassembly cost for development and production and gives cumulative costs. The oscillator module is considered a purchase item and not subject to manufacturer's development

Table 4-2. GPS RECEIVER, HIGH-PERFORMANCE AIRCRAFT (1977 DOLLARS)						
		Cost Factors				
Equipment	Development (Dollars/Unit)	Production (Dollars/Unit)	Total (Dollars)			
Processor Card	60.87	834.62	895			
EPROM Card	70.57	1,015.69	1,086			
Receiver I/O	41.78	406.78	449			
Memory Control	51.95	545.77	598			
Receiver Baseband	73.06	1,119.55	1,193			
Receiver Control	39.97	384.69	425			
C/A Coder	51.48	538.06	590			
CDU Interface	35.09	271.25	306			
RF/IF Module	81.69	1,149.73	1,231			
Synthesizer	63.89	591.32	655			
RF Assembly	67.09	632.37	699			
Power Supply	17.35	223.75	241			
Oscillator	-	225.00	225			
Enclosure and Chassis	17.36	875.54	893			
Test and Integration	9.64	316.63	326			
Factory Sell Price	681.79	9,130.75	9,812			
Distributor Markup (3	0 percent)		2,944			
List Price			12,756			

costs. The last equipment entry, Test and Integration, is a mandatory input when a system cost is developed by subassemblies. Test and Integration accounts for the final assembly of a unit, machining of interface components, provision of power connections, alignment and tuning of electrical subsystems, and performance of the final functional test of the system. (Software development and processor programming, necessary for the GPS receivers, are not included in the costs developed in this study.*) The factory price is the cost of manufacturing with appropriate G&A and profit included; it is the expected selling price to air carriers and distributors. The selling (list) price is the normal cost to owners of private aircraft buying limited quantities of high-performance aircraft product.

4.1.2 GPS Control and Display

The control and display unit consists of four subassemblies housed in an enclosure designed for mounting in pedestals of large aircraft flight decks. Table 4-3 presents the physical and economic descriptors required by the PRICE model for evaluation of the control and display unit. The same procedure used for the GPS receiver has been followed in developing critical parametric data for the unit. Enclosure and chassis data were developed from information for similar control units documented in ARINC Research data banks.

Table 4-4 gives the results of the PRICE evaluation. Production quantities are consistent with the assumption that only one unit will be required with each receiver.

4.1.3 GPS Preamplifier

The preamplifier required for GPS operation is a remotely mounted (at antenna), RFI-sealed, low-noise-figure device with bandpass cavity filters and an active gain stage. The unit receives power for the active elements through the RF cables from the GPS receiver. The PRICE parametric data descriptors class the unit as predominantly a structural device, and it has been evaluated as a single assembly. Economic parameters used are the same as those applied to the receiver and control assemblies. The results of the PRICE analysis of the preamplifier for production quantities of 3,000 units are given in the summary table of the GPS avionics system cost.

4.1.4 GPS Antenna

The antenna required for GPS operation by high-performance aircraft is assumed to be the same as that used by the military in deploying the "Z" set. Costs used in this study are those proposed by Magnavox to SAMSO except as affected by application of a learning curve for large production quantity.

^{*}The assumption is that the U.S. Government will have underwritten these costs by the time production begins.

Table 4	Table 4-3. PARAMETER VALUES FOR CONTROL AND DISPLAY, HIGH-PERFORMANCE AIRCRAFT							
				Paramet	er Valu	е		
Parameter	Aegula,	01.801.0r	Prive Pours	Board Board	Bridge St.	Tre and Chasses		
QTY	3000	3000	3000	3000	3000			
TW	0.233	0.234	0.234	0.234	2.785			
VOL	0.008	0.003	0.003	0.003	0.082			
WS	-	-	-	-	2.785			
MCPLXS	-	-	-	-	6.294			
NEWST	-	-	-	-	0.8			
MCPLXE	7.056	7.791	7.755	8.239	-			
NEWEL	0.3	1	1	1	-			
CMPNTS	6	19	42	41	-			
ECMPLX	0.4	0.9	0.7	1.0	0.9			
PRMTH	36	36	36	36	36			
LCURVE	0.865	0.865	0.865	0.865	0.865			
ECNE	0.01	0.01	0.09	0.12	-			
ECNS	-		-		0.03			
YEAR	1977	1977	1977	1977	1977			
ESC	0	0	0	0	0			
PROJCT	0.5	0.5	0.5	0.5	0.5			
DATA	0.5	0.5	0.5	0.5	0.5			
TLGTST	0.3	0.3	0.3	0.3	0.3			
PLTFM	1.7	1.7	1.7	1.7	1.7			
SYSTEM	0.3	0.3	0.3	0.3	0.3			
PPROJ	0.5	0.5	0.5	0.5	0.5			
PDATA	0.5	0.5	0.5	0.5	0.5			
PTLGTS	0.3	0.3	0.3	0.3	0.3			

4.1.5 Cost Summary

topics towns towns towns

Second C

A CONTRACT

The cost of avionics required by high-performance aircraft for implementation of the GPS navigation system is given in Table 4-5. The cost factors shown are the total development dollars for each piece of avionics and the per unit production costs of the equipment as computed by the PRICE model. The "Total" column gives the production cost and development cost amortized over 3,000 units of production. The factory price is the expected cost of a single (nonredundant) system purchased by an air carrier or

Table 4-4. GPS CONTROL AND DISPLAY, HIGH-PERFORMANCE AIRCRAFT (1977 DOLLARS)

	Cost Factors				
Equipment	Development (Dollars/Unit)	Production (Dollars/Unit)	Total (Dollars)		
Regulator	2.70	95.43	98		
Display Board	23.35	190.73	214		
Driver Board	19.24	181.62	201		
Control Board	35.69	282.41	318		
Enclosure and Chassis	9.64	392.62	402		
Test and Integration	1.75	64.86	67		
Factory Sell Price	92.37	1,207.67	1,300		
Distributor Markup (30 percent)		390		
List Price			1,690		

Table 4-5. GPS AVIONICS, HIGH-PERFORMANCE AIRCRAFT, SINGLE SYSTEM (1977 DOLLARS)

	Cost Factors					
Equipment	Development* (Dollars)	Production (Dollars/Unit)	Total (Dollars/Unit)			
Receiver	2,045,370	9,131	9,812			
Control and Display	277,110	1,208	1,300			
Preamplifier	170,597	671	727			
Antenna	75,000	205	230			
Factory Sell Price	2,568,077	11,215	12,069			
Distributor Markup	(30 percent)		3,621			
List Price			15,690			

^{*}Development costs assumed amortized over 3,000-unit production quantity.

distributors. The list price includes a markup for distribution and is the expected cost to single aircraft owners requiring high-performance avionics.

4.2 AVIONICS COST DEVELOPMENT, LOW-PERFORMANCE AIRCRAFT

4.2.1 GPS Receiver

The receiver consists of seven subassemblies housed in an enclosure and chassis. An oscillator module complementing the subassemblies is mounted in the chassis, but this is not included in the chassis cost. Table 4-6 gives the physical and economic descriptors of the GPS receiver. Critical

Tai	ble 4-		ARAMET					CEIVER	۲,
		7			Parame	ter Val	ue		
Paramet	er A	L L L L L L L L L L L L L L L L L L L	14 John John John John John John John John	\$ 100 dd	Synthics #3	45 A A A A A A A A A A A A A A A A A A A	or John John John John John John John John	1700 July 1700 J	Chassis
QTY	3000	3000	3000	3000	3000	3000	3000	3000	
WT	0.63	0.63	0.63	0.63	0.48	0.48	0.4	3.0	
VOL	0.023	0.023	0.023	0.023	0.008	0.008	0.005	0.203	
WS	-	-	-	-	0.1	0.1	0.005	3.0	
MCPLXS	-	-	-	-	4.321	4.321	4.321	4.68	
NEWST	-	-	-	-	0.1	0.1	0.1	0.2	
MCPLXE	6.037	6.299	6.299	6.299	6.788	6.037	5.714	-	
NEWEL	1	1	1	1	0.7	0.7	0.3	-	•
CMPNTS	228	387	295	236	186	81	31	-	
ECMPLX	1.0	1.5	1.0	0.9	0.7	0.7	0.4	0.3	
PRMTH	36	36	36	36	36	36	36	36	
LCURVE	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	
ECNE	0.05	0.05	0.05	0.05	0.05	0.05	0.005	-	
ECNS	-	-	-	-	0.005	0.005	0.005	0.01	
YEAR	1977	1977	1977	1977	1977	1977	1977	1977	
ESC	0	0	0	0	0	0	0	0	
PROJCT	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
DATA	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
TLGTST	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	
PLTFM	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	
SYSTEM	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
PPROJ	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
PDATA	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
PTLGTS	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	

parameters, such as electronic and structural complexity data, were developed in comparison with RCA empirical data and with ARINC Research data files for typical general-aviation avionics, and appropriate corrective upgrading was applied to reflect the degree of complexity associated with GPS. The economic descriptors used in the analysis are those developed in past applications of the PRICE model for this class of avionics manufacturing.

The results of the PRICE analysis of the low-performance GPS receiver are shown in Table 4-7. The development costs are shown for each module; they have been amortized over a production quantity of 3,000 units. The oscillator is considered to be an outside-purchased item, not requiring development. Test and integration costs reflect the expense of final assembly and factory testing of the completed GPS receiver. The factory sell price is the cost to distributors handling the product. A typical distributor markup of 100 percent has been applied to the sell price to estimate the list price, which private aircraft owners would pay for a GPS receiver.

	RECEIVER, LOW-P 77 DOLLARS)	ERFORMANCE AIRCR	AFT
	(Cost Factors	
Equipment	Development (Dollars/Unit)	Production (Dollars/Unit)	Total (Dollars)
Receiver	21.98	109.37	131
Processor #1	55.07	232.45	287
Processor #2	23.38	137.38	161
Processor #3	23.38	137.38	161
Synthesizer	13.30	144.59	158
RF Module	11.21	78.81	90
Oscillator	-	118.57	119
Power Supply	3.61	54.21	58
Enclosure and Chassis	1.12	110.29	111
Test and Integration	2.49	94.59	97
Factory Sell Price	155.54	1,217.64	1,373
Distributor Markup			1,373
List Price			2,746

4.2.2 GPS Control and Display

The control unit consists of four subassemblies housed in an enclosure designed for mounting in the aircraft control panel. Table 4-8 presents the physical and economic descriptors required by the PRICE model for evaluation of the control and display unit. The same procedure as that used for the receiver has been followed in developing critical parametric data for the control and display unit. Enclosure and chassis data were developed from information related to similar units documented in ARINC Research data banks.

able 4						NTROL AND E AIRCRAF
		1				
Paramet	er /	o, deligible	Para Bara	PAR BOARD	17. Co. 180 A. Co. 180	The State of the S
		\$ 5	14 6		Sp. Co.	
QTY	3000	3000	3000	3000	3000	
WT	0.233	0.234	0.234	0.234	1.785	
VOL	0.008	0.003	0.003	0.003	0.082	
WS	-	-		-	1.785	
MCPLXS	-	-	-	-	4.833	
NEWST	-	-	-	-	0.8	
MCPLXE	5.288	6.023	5.967	6.471	-	
NEWEL	0.3	1	1	1	-	
CMPNTS	6	19	42	41	-	
ECMPLX	0.4	0.9	0.7	1.0	0.9	
PRMTH	36	36	36	36	36	
LCURVE	0.865	0.865	0.865	0.865	0.865	
ECNE	0.01	0.05	0.05	0.06	-	
ECNS	-	-	-	-	0.05	
YEAR	1977	1977	1977	1977	1977	
ESC	0	0	0	0	0	
PROJCT	0.3	0.3	0.3	0.3	0.3	
DATA	0.3	0.3	0.3	0.3	0.3	
TLGTST	0.2	0.2	0.2	0.2	0.2	
PLTFM	1.6	1.6	1.6	1.6	1.6	
SYSTEM	0.3	0.3	0.3	0.3	0.3	
PPROJ	0.3	0.3	0.3	0.3	0.3	
PDATA	0.3	0.3	0.3	0.3	0.3	
PTLGTS	0.2	0.2	0.2	0.2	0.2	

The results of the evaluation appear in Table 4-9. Production quantities are based on the assumption that only one unit will be required with each receiver. The list price shown includes the normal markup for distribution and is the expected cost to private aircraft owners.

Table 4-9. CONTI	ROL AND DISPL RAFT (1977 DO		DRMANCE
		Cost Factors	
Equipment	Development (Dollars/Unit)	Production (Dollars/Unit)	Total (Dollars)
Regulator	1.76	25.28	27
Display Board	16.60	48.77	65
Driver Board	13.60	46.53	60
Control Board	19.94	71.29	91
Enclosure and Chassis	4.84	85.00	90
Test and Integration	0.76	28.05	29
Factory Sell Price	57.50	304.92	362
Distributor Markup			362
List Price			724

4.2.3 Cost Summary

quantity.

The cost of avionics required by low-performance aircraft for implementation of the GPS navigation system is presented in Table 4-10. Total development costs, unit production costs, and factory sell prices with

SINO	GLE SYSTEM	(1977 DOLLARS)
		Cost Factors	
Equipment	Development* (Dollars)	Production (Dollars/Unit)	Total (Dollars/Unit)
Receiver	466,620	1,218	1,373
Control and Display	172,500	305	362
Antenna with Preamplifier	15,000	70	75
Factory Sell Price	654,120	1,593	1,810
Distributor Markup			1,810
List Price			3,620

development amortized over the 3,000-unit production quantity are shown for the three subsystems making up the GPS concept. The cost of the antenna with built-in preamplifier is based on a similar system recently developed for general-aviation application. The list price of \$3,620 per aircraft is the expected acquisition cost to single-engine and light twin-engine aircraft owners to obtain the navigational capability defined by the military "Z" set.

CHAPTER FIVE

ACCOUNTING METHOD OF AVIONICS COST DEVELOPMENT

Equipment costs were developed on subassembly levels and combined to identify the expected cost of the avionics. As in the parametric method of cost estimating, documented in Chapter Four, both the high-performance and low-performance aircraft avionics were estimated. This chapter presents the results of the accounting method. Information necessary to describe the equipment was obtained from SAMSO and the Magnavox Corporation. The latter provided a production bill of material on the "Z" set. This bill of material is the dominant driver in developing costs of subassemblies, although some latitude was taken to eliminate military specifications and replace components with similar-function but lower cost components. In all cases where substitutions were made the components chosen met the environmental specifications of DO-160 of the Radio Technical Commission for Aeronautics (RTCA).

5.1 AVIONICS COST DEVELOPMENT, HIGH-PERFORMANCE AIRCRAFT

5.1.1 GPS Receiver

The GPS receiver consists of 12 modules integrated into an enclosure and chassis. The RF assembly, which constitutes the 12th module, is integrated in the RF/IF subassembly. An oscillator complementing the 12 modules is mounted in the chassis, although its cost is treated as a purchased item rather than one produced by the avionics manufacturer. Table 5-1 presents cost development of the subassemblies based on material and labor estimates of each subassembly. Detailed parts lists and labor data are presented in Appendix B of this report. A material-handling charge of 25 percent of material cost is added to cover inventory management and component testing before delivery to the assembly lines. The labor rate of \$13 per hour combined with a 135 percent overhead reflects the average 1977 hourly rate of several avionics manufacturers. The selling price indicated in Table 5-1 is the expected cost of the subassembly to distributors and large fleet owners, such as the commercial air carriers. Small fleet owners and private owners of high-performance aircraft must purchase avionics from distributors, who increase the cost 30 percent over the list price. The assembly and test cost column reflects the cost of integrating the subassemblies into a working avionics unit and the cost associated with burn-in and final testing of the unit to ensure operational readiness. The total cost of the receiver, \$8,811, is the expected factory selling price without the antenna, preamplifier, or controls.

			Table 5-1.	GPS	RECEIVER COST DEVELOPMENT,	ST DEVEL		HIGH-PERFORMANCE AIRCRAFT	ANCE AIRCRA	NFT (1977 DOLLARS)	LARS)			
							Module	Module Cost in Dollars	llars					
Cost Element	CDU I/O	CPU	Memory Control	Memory	Receiver I/O	C/A Coder	Receiver	Baseband	RF/IF	Synthesizer	Power Supply	Chassis	Assembly and Test	Totals
Material Cost	45.04	149.38	264.20	324.54	112.28	225.45	145.49	416.15	308.69	251.83	120.15	313.25	1	2,676.45
Material Handling (25%)	11.26	37.35	99.02	81.40	28.07	56.36	36.37	104.04	77.17	62.96	30.04	54.31*		645.38
Labor (\$13.00/ Hour)	26.52	30.65	50.75	33.62	37.13	46.36	46.36	77.61	134.36	76.67	41.60	64.94	57.07	723.64
Burden (135% Labor)	35.80	41.38	68.52	45.38	50.12	62.58	62.58	104.77	181.38	103.51	56.16	87.66	77.04	976.88
Inspection (5% Labor and Burden)	3.12	3.60	5.96	3,95	4.36	5.45	5.45	9.12	15.79	9.01	4.89	7.63	6.71	85.04
Subtotal	121.74	262.36	455.48	488.89	231.96	396.20	296.25	711.69	717.39	503.98	252.84	527.79	140.82	5,107.39
Engineering and QC (25%)	30.44	65.59	113.87	122.22	57.99	99.05	74.06	177.92	179.35	126.00	63.21	131.95	35.20	1,276.85
Factory Cost	152.18	327.95	569.35	611.11	289.95	495.25	370.31	19.688	896.74	629.98	316.05	659.74	176.02	6,384.24
G&A (20%)	30.44	65.59	113.87	122,22	57.99	99.05	74.06	177.92	179.35	126.00	63.21	131.95	35.20	1,276.85
Total Direct Cost	182.62	393.54	683.22	733.33	347.94	594.30	444.37	1,067.53	1,076.09	755.98	379.26	791.69	211.22	7,661.09
Profit (15%)	27.39	29.53	102.48	110.00	52.19	89.15	99.99	160.13	161.41	113.40	26.90	118.75	31.68	1,149.67
Selling Price	210.01	453.07	785.70	843.33	400.13	683.45	511.03	1,227.66	1,237.50	869.38	436.16	910.44	242.90	8,810.76
Distribution (30%)														2,643.23
List Price														11,453.99
*Material handling of the oscillator, that is included in the chassis module, is at 10 percent rate.	lling of	the osci	llator, t	that is i	ncluded in	the cha	ssis modul	e, is at l	0 percent	rate.				

5.1.2 GPS Control and Display

The control and display unit consists of four subassemblies housed in an enclosure designed for mounting in pedestals of large aircraft flight decks. Table 5-2 presents the cost development of the subassemblies based on material and labor estimates of each subassembly. Detailed parts lists and labor data are presented in Appendix B. The development of unit cost is the same as described for the receiver in the preceding Subsection 5.1.1. The selling price of \$1,223 reflects the cost of final assembly and testing and is the expected cost of acquisition by distributors and large fleet owners.

5.1.3 GPS Preamplifier

The preamplifier required for GPS operations is a remotely mounted (at antenna), RFI-sealed, low-noise-figure device with band pass cavity filters and an active gain stage. Table 5-3 presents the cost development of the preamplifier based on material and labor estimates identified in Appendix B. Packaging of the preamplifier is unrestricted since it is mounted in the frame of an aircraft, and not in either standard electronics bays or control consoles.

5.1.4 GPS Antenna

The cost of the antenna was assumed to be the same as in Chapter Four.

5.1.5 Cost Summary

The cost of avionics required by high-performance aircraft for implementation of the GPS navigation system is given in Table 5-4. The cost factors shown are the per unit production costs of the equipment, assuming large-quantity manufacturing (i.e., 1,000 units per year). System development costs and production tooling costs are not included. The list price includes a markup of 30 percent for distribution and is the expected cost to single aircraft owners requiring high-performance avionics.

5.2 AVIONICS COST DEVELOPMENT, LOW-PERFORMANCE AIRCRAFT

5.2.1 GPS Receiver

The receiver consists of seven subassemblies housed in an enclosure and chassis. An oscillator module complementing the subassemblies is mounted in the chassis. Table 5-5 presents the cost development of each subassembly and total unit cost. The total cost includes final assembly and functional testing of the receiver. Subassembly costs are based on material and labor estimates documented in Appendix B. Materials are either the commercial equivalents of components identified in the Magnavox production bill of material or lower-cost functional equivalents commonly used in general-aviation equipments (e.g., microprocessors). The Factory Sell Price of \$1,597 is the cost of manufacturing a GPS receiver in large quantities with

Table 5-2. GPS CC (1977	SPS CONTROL AND (1977 DOLLARS)	INDICAT	OR COST D	EVELOPME	GPS CONTROL AND INDICATOR COST DEVELOPMENT, HIGH-PERFORMANCE AIRCRAFT (1977 DOLLARS)	ORMANCE AII	RCRAFT
			Module	Cost	in Dollars		
Cost Element	Display	Driver	Control	Power Supply	Enclosure and Chassis	Assembly and Test	Totals
Material Cost	52.33	82.76	106.56	23.53	60.75	-	325.93
Material Handling (25%)	13.08	20.69	26.64	5.88	15.19	-	81.48
Labor (\$13.00/Hour)	17.54	19.73	20.40	15.74	20.12	28.60	122.13
Burden (135% Labor)	23.67	26.64	27.54	21.25	27.17	38.61	164.88
Inspection (5% Labor and Burden)	2.06	2.32	2.40	1.85	2.36	3.36	14.35
Subtotal	108.68	152.14	183.54	68.25	125.59	70.57	708.77
Engineering and QC (25%)	27.17	38.03	45.89	17.06	31.40	17.64	177.19
Factory Cost	135.85	190.17	229.43	85.31	156.99	88.21	96.588
G&A (20%)	27.17	38.03	45.89	90.71	31.40	17.64	177.19
Total Direct Cost	163.02	228.20	275.32	102.37	188.39	105.85	1,063.15
Profit (15%)	24.45	34.23	41.30	15.36	28.26	15.88	159.48
Selling Price	187.47	262.43	316.62	117.73	216.65	121.73	1,222.63
Distribution (30%)							366.79
List Price							1,589.42

	ENT, HIGH- NCE AIRCRAFT
Cost Element	Dollar Amount
Material Cost	215.85
Material Handling (25%)	53.96
Labor (\$13.00/Hour)	56.91
Burden (135% Labor)	76.83
Inspection (5% Labor and Burden)	6.69
Subtotal	410.24
Engineering and QC (25%)	102.56
Factory Cost	512.80
G&A (20%)	102.56
Total Direct Cost	615.36
Profit (15%)	92.30
Selling Price	707.66
Distribution (30%)	212.30
List Price	919.96

G&A and profit included. This is the expected purchase price to distributors who resell to aircraft owners.

5.2.2 GPS Control and Display

The control unit consists of four subassemblies housed in an enclosure designed for mounting in the aircraft control panel. Table 5-6 presents the cost development of the subassemblies and the total cost of the unit, including final assembly and testing. Material and labor estimates used in the cost development are documented in Appendix B. The "Selling Price" of \$351 is the expected cost of the control and display unit to equipment distributors.

Table 5-4. GPS AVIONICS, HIGH-PERFORMANCE AIRCRAFT, SINGLE SYSTEM (1977 DOLLARS) Equipment Dollar Amount Receiver 8,811 Control and Display 1,223 Preamplifier 708 Antenna 230 Factory Sell Price 10,972 Distributor Mark-Up 3,290

5.2.3 Cost Summary

List Price

The cost of avionics required by low-performance aircraft for implementation of the GPS navigation system is presented in Table 5-7. The cost of the antenna with built-in preamplifier is based on a similar system recently developed for general-aviation application. Cost data on all equipments making up the GPS navigation system are based on production quantities typical of the general-aviation manufacturers when new systems are introduced. Development costs are normally included in the factory prices and amortized over the large production quantities typical of the general-aviation manufacturer. Software development and chip programming costs have not been included in this analysis.

14,262

	Tal	Table 5-5. GP	S RECEIVER	COST DEVELOR	PMENT,	GPS RECEIVER COST DEVELOPMENT, LOW-PERFORMANCE AIRCRAFT (1977 DOLLARS)	CE AIRCR	AFT (1977 DOL	LARS)		
					Mod	Module Cost in Dollars	ollars				
Cost Element	Receiver	Processor 1	Processor 2	Processor 3	RF/IF	Synthesizer	Power Supply	Enclosure and Chassis	Oscillator	Assembly and Test	Totals
Material Cost	201.89	229.08	64.60	96.61	32.34	87.74	18.19	24.10	71.40	-	825.95
Material Handling (10%)	20.19	22.91	6.46	99.6	3.23	8.77	1.82	2.41	7.14	-	82.59
Labor (\$4.00/Hour)	21.94	13.75	9.12	. 13.21	8.43	15.17	4.10	9.63	-	10.50	105.85
Burden (135% Labor)	29.62	18.56	12.31	17.84	11.38	20.48	5.53	13.00	-	14.18	142.90
Subtotal	273.64	284.30	92.49	137.32	55.38	132.16	29.64	49.14	78.54	24.68	1,157.29
G&A (20%)	54.73	56.86	18.50	27.46	11.08	26.43	5.91	9.83	15.71	4.94	231.35
Total Direct Cost	328.37	341.16	110.99	164.78	66.46	158.59	35.45	58.97	94.25	29.62	1,388.64
Profit (15%)	49.26	51.17	16.65	24.72	76.6	23.79	5.32	8.85	14.14	4.44	208.31
Selling Price	377.63	392.33	127.64	189.50	76.43	182.38	40.77	67.82	108.39	34.06	1,596.95
Distribution (100%)											1,596.95
List Price											3,193.90

transfer territorial betterad

Butterston

b department of

Total Indian

			Modu	le Cost	in Dollars		
Cost Element	Display	Driver	Control	Power Supply	Enclosure and Chassis	Assembly and Test	Totals
Material Cost	19.33	35.83	58.38	10.93	26.96	-	151.43
Material Handling (10%)	1.93	3.58	5.84	1.09	2.70	- ;	15.14
Labor (\$4.00/Hour)	5.40	6.07	6.28	3.67	6.69	9.10	37.21
Burden (135% Labor)	7.28	8.20	8.47	4.96	9.03	12.29	50.23
Subtotal	33.94	53.68	78.97	20.65	45.38	21.39	254.01
G&A (20%)	6.79	10.74	15.79	4.13	9.08	4.28	50.81
Total Direct Cost	40.73	64.42	94.76	24.78	54.46	25.67	304.82
Profit (15%)	6.11	9.66	14.21	3.72	8.17	3.85	45.72
Selling Price	46.84	74.08	108.97	28.50	62.63	29.52	350.54
Distribution (100%)	46.84	74.08	108.97	28.50	62.63	29.52	350.54
List Price	93.68	148.16	217.94	57.00	125.26	59.04	701.08

Table 5-7. GPS AVIONICS, PERFORMANCE A CRAFT, SINGLE SYSTEM (1977 DOLLARS)	
Equipment	Cost
Receiver	1,597
Control and Display	351
Antenna with Preamplifier	75
Factory Sell Price	2,023
Distributor Mark-Up	2,023
List Price	4,046

CHAPTER SIX

RESULTS OF EVALUATION

This study has developed costs of avionics on the basis of a uniform parametric approach to estimating costs with the assistance of a pricing model. Concurrently, an accounting method of cost estimating was employed to provide additional confidence in the results through comparison of the costs developed by the parametric method with costs developed by the traditional cost-estimating methods. The system data used in both analyses were provided by SAMSO and Magnavox, the developers of the GPS concept; the production data were developed through detailed analyses of several leading avionics manufacturers producing either high-performance aircraft equipment or low-performance aircraft equipment. This chapter summarizes the results of the evaluation of the GPS concept and compares the results obtained through the parametric cost-estimating method with those obtained through the accounting cost-estimating method.

6.1 CONCEPT EVALUATED

The adaptation of the military-developed "Z" set as a candidate for civil application of GPS has resulted in a navigation-system that will provide positioning information to aircraft in flight as well as the functional capabilities equivalent to an area navigation (RNAV) system. No attempt was made in this analysis to ascertain whether the "Z" set meets the civil requirements of a navigational system. The "Z" set was chosen for analysis because of the advanced development status of the system, which was sufficiently detailed to permit adaptation to civil applications. The results developed in this analysis provide insight into the probable cost of civil avionics based on the performance specifications of the military "Z" set.

6.2 COST OF CONCEPT EVALUATED

The avionics costs for high-performance aircraft developed by application of the parametric and accounting methods are summarized in Table 6-1. The values indicate the probable selling price per item of avionics to the air carriers and to high performance general-aviation aircraft owners. Appropriate markups for distribution have been included in the general-aviation totals on the basis of known or expected practices of the avionics manufacturers. All costs are based on the 1977 dollar without inflation.

		Cost (Do	ollars) by t	User Categor	· Y	
Equipment		Parametric	Method		Accounti	ng Method
	Development Only	Production Only	Air Carrier*	General* Aviation	Air Carrier	General Aviation
Receiver	681	9,131	9,812	12,756	8,811	11,454
Control and Display	92	1,208	1,300	1,690	1,223	1,589
Preamplifier	56	671	727	945	708	920
Antenna	25	205	230	299	230	299
Total Cost	854	11,215	12,069	15,690	10,972	14,262

The total cost of the GPS navigation system acquisition for a user category appears to be different depending on the cost-estimating method used. However, the parametric method includes development and production tooling whereas the accounting method does not. On the basis of production costs only the two techniques provide expected system costs that vary by 2 percent.

The avionics costs for low-performance aircraft developed by the two methods of cost estimating are summarized in Table 6-2. Since development costs are considered in both techniques, a direct comparison of results is possible. The 12 percent increase in system costs experienced in the results of the accounting method are traceable to the design of subassemblies and the associated parts lists supporting the design, as provided by Magnavox. Both the receiver module and the frequency synthesizer are considered overdesigned for the intended application since they contain provisions for both the P code and C/A code of GPS. Since the accounting method is dependent on the bill of material, which includes components necessary for detection of both codes, a slightly higher manufacturing cost can be anticipated. Redesign of these units by general-aviation manufacturers would eliminate the P code provisions and reduce the cost of these subassemblies so that the results would compare more closely with the results of the parametric method. The detailed design of the GPS receiver was intentionally not altered so that performance comparable to that specified for the military "Z" set would be ensured.

Table 6-2. ACQUISIT	FION COST OF LOW-PE F GPS AVIONICS	RFORMANCE
	Cost (Dollars) fo Aircraft	
Equipment	Parametric Method	Accounting Method
Receiver	2,746	3,194
Control and Display	724	702
Antenna with Preamplifier	150	150
Total Cost	3,620	4,046

Name of Street

Permenta

Representation of the least of

Name of the last o

To the second

APPENDIX A

RCA PRICE MODEL INPUT PARAMETERS

This appendix presents a listing of the input parameters used by the RCA PRICE model. Figure A-1 is a typical input worksheet and Figure A-2 is an example of a typical model output data sheet.

PRICE System Input Worksheet

REA Government and Commercial Systems

EPROM	CARD			Date	
	QTY	PROTOS	wt	VOL	MODE
	3000	3	.601	.0144	,
eneral	QTYSYS	INTEGE	INTEGS	AMULTE	AMULTM (*=)
	1	.3	. 3	138000	138000
	ws	MCPLXS	PRODS	NEWST	DESRPS
lechanical/ tructural	.001	6.2	0	0	٥
	USEVOI	MCP ₁ KE	PRODE	NE .VE L	DESRPE
Leatronica	.99	8.817	0	1.0	2
lectronics	PWR	CMPINT	CMPID	PWRFAC.	CMPEFF
	6.0	57	0	0	0
	ENMTHS	ENM	ENMORE	EC WDF x	PRNF
ngineering	,	12	14	1.0	.3
	PRMIHS	PRM*	15 W2 vt	ECM	ECNS
Production	12	48	.865	.01	.01
	ws	BVCOST	(CDPVE		MODES
Purchased Item Mode 3)	ws	M∩Pi €	M PLKS	. W 11 W	MODIFIED PUR HISEM MODIFIED GES OLM PARADYN I MITEMITAL WISE DESSEN
GFE Mode 4)				i mitaxiisi	
	MCONST	METP	WECE	TARCST Mode 10 d	inly)
Additional Data (Modes 9 & 10)					
	YEAR	ESC	PROJC1	DATA	TLGTST
Global	1977	O	.5	.5	•3
Giobai	PLTFM	SYSTEM	PPROJ	PDATA	PTLGTS
	1.7	,3	.5	.5	.3
Notes:	C POST A W. C CHARACTER C CVI				

GC 1595 2/75

Figure A-1. TYPICAL INPUT WORKSHEET

PROCESSOR EPROM			
INPUT DATA			
ELECTRONICS USEVOL 0.990 MCPLXE PWR 6.000 CMPNTS	8.817 PRODE 57. CMPID		DESRPE 2.000 CMPEFF 0.000
ENGINEERING ENMTHS 1.0 ENMTHP	12.0 ENMTHT	14.0 ECMPLX 1.000	PRNF 0.300
PRODUCTION PRMTHS 12.0 PRMTHF	48.0 LCURVE	0.865 ECME 0.010	ECNS 0.010
GLOBAL YEAR 1977. ESC PLATFM 1.700 SYSTEM			TLGTST 0.300 PTLGTS 0.30
PROGRAM COST	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING DRAFTING DESIGN SYSTEMS PROJ MGMT DATA SUBTOTAL (ENG)	40475. 134050. 5461. 9441. 2565. 191992.	433. 1467. 0. 74544. 3090. 79534.	40908. 135517. 5461. 83985. 5655. 271525.
MANUFACTURING PRODUCTION PROTOTYPE TOOL-TEST EQ SUBTOTAL(MFG)	0. 18737. 969. 19706.	2870753. 0. 96777. 2967530.	2870753. 18737. 97745. 2987235.
TOTAL COST	211697.	3047064.	3258761.
VOL 0.014 AVCOST WT 0.601 ECNE	956.92 TOTAL 0.010 ECMS	AV PROD COST 1015.69 0.010 DESRPE 0.159	
MECH/STRUCT WS 0.001 WSCF ELECTRONICS	0.069 MECID	0.000 PRODS %.525	MCPLXS 6.200
WE 0.600 WECF PWR 6.000 CMPNTS	42.088 CMPID 57.	0.000 PPODE 4.847 PWRFAC 0.565	MCPLXE 8.817 CMPEFF 3.550
SCHEDULES ENMTHS 1.000 ENMTHP PRMTHS 12.000 PRMTHF		14.000 ECMPLX 1.000 PROD RATE PER MONTH	
COST RANGES FROM CENTER TO	DEVELOPMENT 192431. 211697. 237871.	PPODUCTION 2696027. 3047064. 3459016.	TOTAL COST 2888458. 3258761. 3696888.

Figure A-2. TYPICAL MODEL OUTPUT DATA SHEET

APPENDIX B

SYSTEM PARTS LISTS AND COST-DEVELOPMENT DATA SHEETS

This appendix contains the work-sheets used to develop costs of modules and systems employed in the various options. These costs were the basis for the calculations presented in Chapter Five of the report. The sheets are grouped by system configuration in the five sections of this appendix.

				Page
B-1	-	GPS Receiver, High-Performance Aircraft		B-3
B-2	-	GPS Control and Display, High-Performance		
		Aircraft	 	B-25
B-3	-	GPS Preamplifier, High-Performance Aircraft		B-33
B-4	-	GPS Receiver, Low-Performance Aircraft	 	B-35
		GPS Control and Display, Low-Performance Aircraft		

APPENDIX B-1

GPS RECEIVER, HIGH-PERFORMANCE AIRCRAFT

1

SHEET 1 OF 20

SYSTEM GPS Receiver
SUB-ASSEMBLY CDU I/O

TTEM NAME OF	O.T.V	TINT	TOTA	SETMI GOOD GEG SGIND BORKT	SHIMIN OOOL	arm.		
CATEGORY	<u>.</u>	COST	COST	Nat chook model	SILINO DOOL	FAILURE	FAILURE	x UNIT COST
				MANUFACTURING	ASSEMBLY	RATE	RATE	
4040	1	2.43	2.43		10			
4069	2	.64	1.28		16			
54LS03	1	.65	.65		æ			
54LS27	2	.65	1.30		16			
54LS74	1	1.32	1.32		8			
54LS240	2	3.41	6.82		24			
55116	1	4.47	4.47		10	!		
6402	1	20.60	20.60		20			
Resistors	7	.03	.21		35			
Capacitor-T	5	.18	06.		25			
Capacitor-Disc	1	90.	90.		5			
P.C. Board	1	5.00	5.00		25			
Board Process				333	485			
TOTALS			45.04	333x2= 666	687 x 2 = 1374			
						-		

П

SYSTEM GPS Receiver SUB-ASSEMBLY CPU

OF 20

2

SHEET

To the last of the

No. of the last

-

Contract of

I

QTY x FAIL.RATE x UNIT COST TOTAL FAILURE RATE UNIT FAILURE RATE LABOR HOURS PER 1000 UNITS 846×2 = 1692 ASSEMBLY 30 32 ω 10 25 10 8 12 9 65 20 10 8 MANUFACTURING 333 x 2 = 666 333 TOTAL 149.38 83.00 30.45 6.30 2.22 1.56 2.98 2.24 .46 6.25 1.69 5.70 .30 .18 .93 .12 5.00 10.15 UNIT 83.00 6.30 2.22 .39 2.98 6.25 1.12 .13 .46 .95 .18 90. 2.00 .93 .03 OTY Set 7 13 2 Resistor Network ITEM NAME OR CATEGORY Capacitor-Disc Board Process LSI-11 CUP P.C. Board Capacitor Resistors ULN2001A TOTALS 2N3467 1N4454 54C02 54C14 70097 4015 4515 4528 7870

为是为。这种

OF 20

SHEET 3

SYSTEM GPS Receiver SUB-ASSEMBLY Memory Control

ITEM NAME OR	УТД	TINU	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL.RATE
CATEGORY		COST	TSO	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
2102	16	3.95	63,20		320			
2114	16	8.50	136.00		320			
54LS00	3	.64	1.92		24			
54LS02	1	.64	.64		8			
54LS04	3	ι.	2.13		24			
54LS05	1	.71	. 71		8			
54LS08	1	.64	.64		8			
54LS10	1	.64	.64		8			
54LS11	1	.64	.64		8			
54LS30	2	.64	1.28		16			
54LS32	. 4	.64	2.56		32			
54LS74	1	1.28	1.28		10			
54LS75	1	4.68	4.68		10			
54LS109	1	1.28	1.28		10			
54LS138	1	2.27	2.27		10			
54LS240	4	3.41	13.64		80			
54LS373	2	8.00	16.00		40			
54C902	2	.93	1.86		20			
1N4454	3	.13	.39		15			
MA78MG	1	5.00	5.00.		8			
Resistors	4	.03	.12		20			
Capacitors	22	90.	1.32		110			
TOTALS								,

SHEET 4 OF 20

Tanana a

SYSTEM GPS Receiver
SUB-ASSEMBLY Memory Control (Cont'd)

SHEET 5 OF 20

SYSTEM GPS Receiver

SUB-ASSEMBLY Memory

ITEM NAME OR	QTY	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	RATE	FAILURE	X UNIT COST
54LS242	4	3.34	13.36		40			
54LS244	2	3.41	6.82		40			
54LS138	2	2.27	4.54		20			
93453	12	24.45	293.40		240			
1N645	3	.13	.39		15			
Resistors	2	.03	. 90.		10			
Capacitors	17	90.	1.02		85			
P.C. Board	1	5.00	5.00		25			
Board Process				333	485			
TOTALS			324.54	333 x 2 = 666	960 × 2 = 1920			

IJ

SYSTEM GPS Receiver
SUB-ASSEMBLY Receiver I/O

OF 20

SHEET 6

Prostilings benefits benefits to be defining a

ITEM NAME OR	QTY	TINU	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL.RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
25LS148	1	5.03	5.03		10			
4001	2	.64	1.28		16			
4011	2	.64	1.28		16			
4013	2	1.28	6.40		40			
4035	2	2.68	5.36		20			
4040	1	2.43	2.43		10			
4068	1	.64	.64		8			
4069	2	.64	1.28		16			
4093	1	3.44	3.44		8			
54LS00	1	.64	.64		8			
54LS04	3	.71	2.13		24			
54LS05	1	.71	.71		8			
54LS08	2	.64	1.28		16			
54LS11	1	.64	.64		8			
54LS12	1	.80	.80		8			
54LS20	1	.64	.64		8			
54LS27	1	.64	.64		8			
54LS74	3	4.20	12.60		24			
54LS138	4	2.27	80.6		40			
54LS164	1	2.74	2.74		8			
54LS175	3	2.54	7.62		30			
54LS240	2	3.41	17.05		70			
TOTALS								

SHEET 7 OF 20

SYSTEM GPS Receiver
SUB-ASSEMBLY Receiver I/O (Con'd)

ITEM NAME OR	QTY	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CATEGORI		Teon	Teor	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
54LS244	1	3.41	3.41		10			
54LS273	1	2.46	2.46		16			
70097	3	4.53	13.59		24			
1N4454	1	.13	.13		5			
Res. Network	3	.95	2.85		24			
Resistor 5%	10	.05	. 50		50			
Resistors	3	.03	60.		15			
Capacitors	6	90.	.54		45			
P.C. Board	1	5.00	5.00		25			
Board Process				333	485			
TOTALS		-	112.28	333 x 2 = 666	1095 × 2 = 2190			

- International

Contraction of the last

H

SYSTEM GPS Receiver SUB-ASSEMBLY C/A Coder

20 OF

SHEET 8

ITEM NAME OR	QTY	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
CA3026	1	09.	09.		10			7
4025	1	.64	. 64		8			
4050	1	1.28	1.28		10			
4075	2	.64	1.28		16			
4094	3	2.15	6.45		30			
54C00	1	2.72	2.72		8			
54C02	2	2.72	5.44		16			
54C04	2	2.72	5.44		16			
54008	2	2.72	5.44		16			
54C74	4	4.53	18.12		32			
54C107	4	5.38	21.52		32			
54C162	2	7.58	15.16		20			
54C163	5	7.58	37.90		50			
54C174	2	98.6	19.72		20			
54C221	1	6.44	6.44		20			
70C97	2	4.53	22.65		50			
54500	1	3.77	3.77		8			
54LS10	2	.64	1.28		16			
548112	1	7.08	7.08		10			
91.500	3	.64	1.92		24			
91.502	2	.64	1.28		16			
91.504	3	17.	2.13		24			
TOTALS								

SHEET 9 OF 20

SYSTEM GPS Receiver
SUB-ASSEMBLY C/A Coder (Cont'd)

ITEM NAME OR	УТQ	TINU	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL.RATE
CAIEGORI		Ison	Ison	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
91.511	1	.64	.64		8			
9LS27	1	.64	.64		8			
9LS32	1	.64	. 64		8			
15576	1	.64	.64		8			
9LS74	3	1.28	3.84		24			
9 LS1 12	5	1.28	6.40		50			
96L02	1	1.56	1.56		8			
25LS162	1	2.49	2.49		10			
25LS163	1	2.49	2.49		10			
25LS275	1	2.54	2.54		10			
25LS195	1	2.54	2.54		10			
2N3251A	2	.53	1.06		10			
5082-2800	2	.22	.44		10			
Res. Network	2	.35	.70		16			
Resistors	23	.03	69.		115			
Capacitors	25	90.	1.50		125			
Inductors	3	90.	.18		18			
Transformer	1	2.25	2.25		15			
RF Connector	1	.95	.95		25			
P.C. Board	1	2.00	5.00		25			
Board Process				333	485			
TOTALS			225.45	333 × 2 = 666	1450 x 2 = 2900			

N

SHEET 10 OF 20

Anapara paragas program

Total Control

SYSTEM GPS Receiver
SUB-ASSEMBLY UTC

ITEM NAME OR	VTQ	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY × FAIL. RATE
CATEGORY		Iso	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
4013	4	1.28	5.12		32			
4070	1	.64	.64		8			
4075	2	.64	1.28		16			
4076	13	3.50	45.50		130			
40097	2	1.41	2.82		20			
40162	2	2.56	5.12		20			
40163	3	2.56	7.68		30			
40174	4	2.22	88.88		40			
00516	2	. 64	1.28		16			
91.508	τ	1.73	1.73		8			
91.551	τ	.64	.64		8			
9LS74	5	1.28	6.40		40			
9LS112	5	1.28	6.40		50			
9LS04	4	.71	2.84		32			
25LS163	3	2.49	7.47		30			
25LS194	1	3.32	3.32		10			
54810	1	.64	19.		8			
25LS162	1	2.49	2.49		10			
54S112	τ	7.08	7.08		10			
54C02	1	2.72	2.72		8			
54C20	1	2.72	2.72		8			
54004	1	2.72	2.72		8			
TOTALS								

SVSTEM GSP Receiver
SUB-ASSEMBLY UTC (Cont'd)

OF 20

SHEET 11

ITEM NAME OR	УТУ	TINU	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CAIEGORI		COST	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
54C107	2	5.38	10.76		16			
Res. Network	1	.35	.35		8			
Resistors	22	.03	99.		110			
Capacitors	31	90.	1.86		155			
Inductor	4	90.	.24		24			
Inductor-Tun	1	.18	.18		10			
RF Conn.	1	.95	.95		25			
P.C. Board	1	5.00	5.00		25			
Board Process				333	485			
TOTALS			145.49	333 x 2 = 666	1400 x 2 = 2800			

OF 20

SHEET 12

SYSTEM GPS Receiver SUB-ASSEMBLY Baseband

ITEM NAME OR	QTY	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL.RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	RATE	RATE	X UNII COST
MC1596	2	5.15	10.30		20			
ГН0070	2	6.50	13.00		20			
LM193	4	5.00	20.00		40			
8023	7	8.53	17.65		70			
LM4250	4	00.9	24.00		24			
LF155	2	8.50	17.00		16			
LM108	2	7.32	14.64		16			
LM113	2	7.50	15.00		16			
LH24250	1	16.95	16.95		20			
CD4001	1	.64	.64		8			
CD4011	1	.64	.64		8			
CD4096	1	.64	.64		8			
CD40174	2	2.22	4.44		20			
54C221	2	5.72	11.44		20			
CD4075	1	.64	.64		8			
AD537	. 1	18.00	18.00		10			
AD532	2	32.50	65.30		20			
2N3251A	5	.53	2,65		30			
2N3799	2	2.35	4.70		12			
2N3811	2	7.25	14.50		12			
1N3595	14	96.	13.44		70			
1N4099	9	2.90	17.40		30			
TOTALS								

SHEET 13 OF 20

SVSTEM GPS Receiver
SUB-ASSEMBLY Baseband (Cont'd)

ITEM NAME OR	QTY	TINU	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL.RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
1N4100	2	2.90	5.80		10			
1N4101	4	2.90	11.60		20			
1N4454	13	.13	1.69		65			
Res. Network	13	.35	4.55		104			
Resistors	139	.03	4.17		695			
Trim Pot	5	1.35	6.75		75			
Inductor	3	.75	2.25		45			
Capacitor-T	55	.18	9.90		275			
Capacitor-Disc	56	90.	1.56		130			
Switch D/SPST	1	1.75	1.75		25			
Switch D/DPST	1	1.95	1.95		25			
Switch T/SPST	9	2.25	13.50		150			
Switch	1	.95	56.		25			
P.C. Board	1	2.00	2.00		25			
Board Process				333	485			
			9					
TOTALS			416.15	333 x 2 = 666	2652 x 2 = 5304			

SHEET 14

OF 20

SYSTEM GPS Receiver SUB-ASSEMBLY RF/IF

ITEM NAME OR	QTY	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL.RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	RATE	RATE	X UNIT COST
54LS74	τ	1.28	1.28		8			
MC1590	1	3.75	3.75		8			
LM139	1	7.98	7.98		8			
180265	ι	39.75	39.75		10			
TO-CBD-113	1	29.00	29.00		10			
к-снр-113	1	39.00	39.00		10			
MA78MG	1	5.00	5.00		8			
HYTR2101	2	.72	1.44		12			
MRF904	4	2.75	11.00		60			
2N2857	3	1.85	5.55		18			
2N4416	1	.72	.72		9			
3N200	2	.65	1.30		12			
HA2-2700	1	4.00	4.00		9			
GC4215	7	1.25	8.75		35			
5082-2835	2	.35	04.		10			
1N831B	2	2.25	4.50		10			
1N914	2	.13	. 26		10			
1N5416	1,	.35	.35		5			
Pluristor	3	1.93	62.3		. 81			
Crystals	4	5.00	20.00		09			
Filter-Conn	1	15.00	15.00		45			
Filter	10	1.38	13.80		100			
TOTALS								

SYSTEM GPS Receiver

OF 20

SHEET 15

SUB-ASSEMBLY RF/IF (Cont'd)

ITEM NAME OR	QTY	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL.RATE
CAIEGORI		COST	Ison	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
Transformer	3	7.50	22.50		45			
Inductor	28	.50	14.00		168			
Resistors	130	.03	3.90		650			
Capacitor-T	37	.18	99.9		185			
Capacitor-Disc	99	90.	3.96		330			
Cap. Variable	5	.35	1.75		75			
Connector	2	1.50	3.00		30			
Stripline	1	20.00	20.00	485	25			
Cast Enclosure	1	2.50	2,50	450	25			
Cover	1	1.50	1.50	184	20			
Misc-Hardware	Lot	5.00	5.00		150			
P.C. Board	1	5.00	5.00		25			
Board Process				333	485			
TOTALS			308,69	1452 x 2.5 = 3630	2682 x 2.5 = 6705			

SHEET 16 OF 20

SYSTEM GPS Receiver SUB-ASSEMBLY Synthesizer

Table 1

ITEM NAME OR	QTY	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
TWO PAIN		1603	Teo.	MANUFACTURING	ASSEMBLY	RATE	FAILURE	x UNIT COST
CA3026	9	.60	3.60		48			
CA3049	2	06.	1.80		16			
MA78MG	1	5.00	5.00		8			
Crystal Filter	2	24.13	120.65		125			
Crystal Filter	2	9.00	18.00		50			
5082-,2800	2	.90	1.80		10			
2N2222A	2	.13	. 26		12			
Pwr Divider	2	00.9	12.00		16			
Inductor-Var.	11	1.65	18.15		165			
Transformer-Var	20	.95	19.00		300			
Transformer	2	1.35	2.70		30			
Choke	3	.35	1.05		18			
Inductor	2	.18	.36		12			
Resistor	124	.03	3.72		620			
Capacitor-T	82	.18	9.84		410			
Capacitor-Disc	65	90.	3.90		325			
Cap W/seal	3	1.50	4.50		30			
Connector	6	1.50	13.50		135			
Cast Enclosure	1	2.50	2,50	450	25			
Cover	1	1.50	1.50	184	20			
Misc. Hardware	Lot	3.00	3.00		100			
P.C. Board	1	5.00	5.00	333	510			
TOTALS			251.83	967 x 1.5 = 1450	2985 x 1.5 = 4478			

SHEET 17 OF 20

SYSTEM GPS Receiver

SUB-ASSEMBLY Power Supply

ITEM NAME OR	ŶŢŎ	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY × FAIL. RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	RATE	RATE	X UNIT COST
MA78MG	2	2.00	10.00		16			
6100-1032	1	1.71	1.71		8			
LM567	1	7.50	7.50		8			
5474	1	1.39	1.39		8			
DS0026	1	7.75	7.75		8			
NA74.7	1	5.45	5.45		8			
NA 79MG	1	5.00	5.00		8			
LM139	3	2.00	00.9		24			
2N2907A	1	.32	.32		9			
6100-1042	2	1.43	2.86		12			
6100-1068	2	2.21	4.42		12			
2N2222A	2	.40	08.		12			
SCR	1	3.00	3.00		9			
Zener	2	1.02	2.04		10			
1N751	1	.40	.40		5			
1N823	2	2.50	2.00		10			
1N758A	1	2.20	2.20		5			
4N24	1	.75	.75		8			
1N6080	4	.74	2.96		20			
1N4454	15	.20	3.00		75			
1N6073	8	.38	3.04		40			
Diode	9	1.01	90.9		30			
TOTALS								

Table Services

Total Section

SHEET 18 OF 20

Parameter

-

SYSTEM GPS Receiver
SUB-ASSEMBLY Power Supply (Cont'd)

ITEM NAME OR	QTY	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL.RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	RATE	RATE	X ONII COSI
1N4938	2	.10	.20		10			
Diode Assembly	3	2.50	7,50		36			
Bridge Rectifier	1	4.23	4.23		15			
Bridge Rectifier	1	1.12	1.12		15			
Varactor	1	3.59	3.59		10			
Beads	36	.05	1.80		180			
Resistors	52	.03	2.25		375			
Capacitors-T	57	.18	12.51		285			
Capacitors-Disc	5	90.	.30		25			
P.C. Board	1	2.00	5.00		25			
Board Process				333	485			
TOTALS			120.15	333 × 1.5 = 500	1800 × 1.5 = 2700			

SHEET 19 OF 20

SYSTEM GPS Receiver
SUB-ASSEMBLY Enclosure & Chassis

ITEM NAME OR	QT.	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CAIBGONI		COST	1603	MANUFACTURING	ASSEMBLY	RATE	FAILURE	x UNIT COST
Oscillator	1	1.60	1.60		35			
Chassis	1	4.50	4.50	184	44			
Enclosure	1	2.50	2.50	247	88			
Front Plate	1	1.50	1.50	74	22			
P.C. Connectors	11	1.55	17.05		275			
Rear Connector	2	40.00	. 00.08		50			
Wiring	Lot	7.50	7.50		2000			
Conn. Plate	2	.25	.50		50			
Conn. Brackets	22	.10	2.20	90	550			
Power Transf.	1	15.00	15.00		615			
Stand-Off	2	.75	1.50	118	æ			
RF Cables	7	1.50	10.50		210			
Nameplate	1	.50	.50	09	15			
Misc. Hardware	Lot	10.00	10.00		300			
TOTALS			313.25	733	4262			

II

STATE OF THE PERSON NAMED IN

Total Control

SYSTEM GPS Receiver

OF 20

SHEET 20

-

Total Control

SUB-ASSEMBLY Assembly & Test

ITEM NAME OR	QTY	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
CDU 1/0					25			
CPU					25			
Memory Control					25			
Memory					25			
Receiver I/O					25			
CA Coder					25			
RX Control					25			
Baseband					25			
RF/IF					25			
Synthesizer					25			
Power Supply					40			
Chassis					100			
Burn-In					1000			
Functional Test					3000			
TOTALS					4390			

APPENDIX B-2

GPS CONTROL AND DISPLAY, HIGH-PERFORMANCE AIRCRAFT

I

SYSTEM Control Indicator
SUB-ASSEMBLY Display

OF

SHEET

ITEM NAME OR	QTY	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY × FAIL. RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
54C175	8	1.86	14.88		80			
4013	1	1.28	1.28		10			
55116	1	5.84	5.84		10			
6402	1	21.20	21.20		10			
Resistor Pack	4	.95	3.80		32			
Capacitors	5	90.	. 30		20			
Resistor	1	.03	.03		5			
P.C. Board	1	5.00	5.00		25			
Board Process				333	485			
TOTALS			52.33	333	677 x 1.5 = 1016			

SYSTEM Control Indicator SUB-ASSEMBLY Driver	ndicator						SHEET	OF
ITEM NAME OR	QTY	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
541310	1	. 64	.64		8			
54LS138	2	2.27	4.54		20			
14532	2	3.13	6.26		20			
70097	2	.93	1.86		20			
54C901	1	.93	.93		10			
54C175	1	1.86	1,86		10			
4028	2	2.05	4.10		16			
4071	1	.64	.64		8			
555	1	2.50	2.50		8			
1N4454	4	.30	1.20		20			
2N5327	5	9.25	46.25		30			
Resistor Pack	5	.95	4.75		40			
Cap T	4	.18	.72		20			
Cap D	3	90.	.18		15			
2N2907A	5	. 26	1.30		30			
Resistor	1	.03	.03		5			
P.C. Board	1	5.00	5.00		25			
Board Process				333	485			
TOTALS			82.76	333	790 × 1.5 = 1185			

Table 1

SYSTEM Control Indicator
SUB-ASSEMBLY Control

OF

SHEET

ITEM NAME OR	QTY	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	TINU	TOTAL	QTY × FAIL. RATE
CALEGORI		1600	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	× UNIT COST
54LS00	1	.64	.64		8			
54LS10	1	.64	.64		8			
54LS109	1	1.28	1.28		10			
54LS14S	1	3.11	3.11		10			
54LS123	1	1.57	1.57		10			
54LS04	1	.71	.71		8			
54LS175	1	2.54	2.54		10			
5402	1	.85	.85		8			
MC12561	1	5.91	5.91		14			
54C161	1	2.12	2.12		10			
4040	1	2.43	2.43		10			
6800	1	19.00	19.00		14			
6561	2	8.40	16.80		28			
MCM68308	3	10.10	30.30		30			
3467	1	8.00	8.00		10			
1N4454	1	.30	.30		5			
Resistor Pack	2	.95	1.90		16			
Capacitors	14	90.	.84		70			
Resistors	4	.03	.12		20			
Crystal-10mHz	1	2.50	2.50		15			
P.C. Board	1	5.00	5.00		25			
Board Process				333	485			
TOTALS			106.56	333	824 x 1.5 = 1236			

Total Control

SYSTEM Control Indicator SUB-ASSEMBLY PWE Sup.

-

-

Table 1

OF

ITEM NAME OR	QTY	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
LAS-14U	1	12.00	12.00		25.00			
· MZ5555	1	3.60	3.60		15.00			
Potentiometer	1	1.80	1.80		15.00			
Capacitor-E	1	. 95	.95		15.00			
Capacitor-T	1	.18	.18		5.00			
P.C. Board	1	5.00	5.00		25.00			
Board Process				333	485.00			
	,							
TOTALS			23.53	333	585 x 1.5 = 878			

SYSTEM Control Indicator SUB-ASSEMBLY End & Chassis

OF

SHEET

ITEM NAME OR	QTY	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CATEGORY		cost	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
Front Panel	1	2.00	5.00	74	22			
Keyboard	1	4.35	4.35		25			
Sel. Switch	1	4.39	4.39		15			
LED Display	11	1.05	11.55		110			
LED Lights	5	.22	1.10		25			
Potentiometer	1	1.80	1.80		15			
Toggle Switch	1	35	.35		15			
Chassis	1	3.50	3.50	184	44			
Cover	1	2.00	2.00	334	5			
P.C. Connectors	4	1.95	7.80		09			
MS Conn.	1	6.78	6.78		25			
LED Sockets	1	7.15	7.15		25			
LED Bezel	1	3.15	3.15		15			
Resistors	11	.03	.33		55			
Wiring	Lot	1.50	1.50		500			
TOTALS			60.75	592	956			

SYSTEM Control Indicator
SUB-ASSEMBLY Assembly & Test

Total Control

Total Control

ITEM NAME OR	QTY	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
Display P.C.	1				25			
Driver P.C.	1				25			
Control P.C.	1				25			
Pwr. Sup. P.C.	1				25			
End & Chassis	1				100			
Functional Test					1000			
Burn-In					1000			
			•					
TOTALS					2200			

APPENDIX B-3

GPS PREAMPLIFIER, HIGH-PERFORMANCE AIRCRAFT

Tonas de la constante de la co

No.

SYSTEM Preamplifier
SUB-ASSEMBLY

OF

ITEM NAME OR	QTY	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CALEGORI		iens	CUSI	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
HXTR-2101	1	12.00	12.00		9			
-6104	1	120.00	120.00		12			
-6105	1	36.00	36.00		12			
2N3486A	3	4.60	13.80		18			
Capacitors	21	90.	1.26		105			
Resistors	15	.03	.45		75			
Filter	1	2.30	2,30		25			
Capacitor-F-T1.2	4	.45	1.80		40			
Connector-RF	2	1.37	2.74		50			
Housing	1	2.50	2.50	184	44			
Cover	1	1.50	1.50	48	20			
P.C. Board	1	5.00	5.00		25			
Board Process				333	485			
Misc. Hardware	Lot	1.50	1.50		100			
, Burn-In					200			
Functional Test					1000			
Isolator	1	15.00	15.00		25			
TOTALS			215.85	565	2542 x 1.5 = 3813			

APPENDIX B-4

GPS RECEIVER, LOW-PERFORMANCE AIRCRAFT

Towns .

SHEET

SYSTEM GPS-GA SUB-ASSEMBLY Receiver

ITEM NAME OR	QTY	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CAIEGORI		Ison	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	× UNIT COST
74810	1	.49	.49		8			
74LS162	1	1.49	1.49		10			
74S112	1	1.11	1.11		10			
9LS00	2	.27	. 54		16			
9LS08	1	.27	.27		8			
9LS74	5	.43	2.15		40			
9LS51	1	.27	.27		8			
9LS112	5	.43	2.15		50			
74LS194	1	2.87	2.87		10			
9LS04	4	.30	1.20		32			
74C02	1	.27	.27		8			
74C20	1	.27	.27		8			
74C04	1	.30	.30		80			
74C107	2	1.26	2.52		16			
40162	2	1.42	2.84		20			
40163	8	1.42	11.36		80			
4013	4	92.	3.04		32			
4076	13	1.88	24.44		130			
40174	4	1.28	5.12		40			
4070	1	.35	.35		8			
40097	2	.83	1.66		20			
4075	2	.32	.64		16			
TOTALS								

I

N

OF SHEET SUB-ASSEMBLY Receiver

SYSTEM GPS-GA

Total Control

QTY × FAIL.RATE × UNIT COST TOTAL FAILURE RATE UNIT FAILURE RATE LABOR HOURS PER 1000 UNITS ASSEMBLY 32 16 16 16 16 8 20 20 10 20 24 30 20 20 MANUFACTURING TOTAL 7.00 .32 3.00 5.30 3.80 29.75 4.80 7.98 2.00 2.40 .35 .35 2.56 2.90 7.30 1.40 4.70 2.40 13.44 .35 UNIT .40 4.25 1.20 3.50 3.99 1.00 1.20 .35 .35 1.28 1.45 .32 3.00 3.50 .35 2.35 .40 96 2.65 1.25 .95 .35 OTY 4 'n 4 14 2 1 ~ ~ ~ ~ 2 7 2 8 ITEM NAME OR CATEGORY AD537 mod AD532 mod 2N3811 eq TOTALS 2N3799 1N5235 LM4250 1N5237 1N3595 MC1596 74C221 1M108 LM329 40174 LM747 LF155 LM741 8023 8021 4011 4001 4069 4075

SYSTEM GPS-GA

OF

SHEET

SUB-ASSEMBLY Receiver

ITEM NAME OR	QTY	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CATEGORY		Ison	TSO	MANUFACTURING	ASSEMBLY	RATE	FAILURE	x UNIT COST
1N958	2	.40	.80		10			
2N3251	5	.30	1.50		30			
1N4454	13	.13	1.69		65			
Switch D/SPST	1	. 44	.44		25			
Switch D/DPST	1	.88	.88		25			
Switch T/SPST	9	06.	5.40		150			
Switch	1	.30	.30		25			
Trim Pot	5	.35	1.75		75			
Connector-RF	1	.85	.85		25			-
Inductors	8	90.	.48		48			
Capacitors	112	90.	6.72		260			
Resistors	161	.03	4.83		805			
PC Board	1	5.00	5.00		25			
Board Process	1	1		333	485			
TOTALS			201.89	333	3435 x 1.5 = 5153			

I

I

OF

SHEET

SYSTEM GPS-GA SUB-ASSEMBLY Processor #1

ITEM NAME OR	QTY	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL.RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
MM2114N	. 91	4.15	66.40		320			
MM2102	16	2.15	34.40		320			
74LS00	3	.27	.81		24			
74LS02	1	.27	.27		8			
74LS04	3	.30	.90		24			
74LS05	1	.30	.30		8			
74LS11	1	.27	.27		8			
74LS30	2	.27	.54		16			
74LS32	4	.28	1.12		32			
74LS10	1	.27	.27		8			
74LS74	1	.43	.43		10			
74LS109	1	.43	.43		10			
74LS240	4	1.73	6.92		80			
74LS75	1	.39	. 39		10			
74S373	2	4.30	8.60		40			
74LS08	1	.27	.27		8			
74LS138	3	1.28	3.84		30			
74C902	2	.71	1.42		20			
74LS244	2	1.73	3.46		40			
74LS242	4	1.67	89.9		40			
MCM6560	12	08.9	81.60		240			
1N645	3	.13	.39		15			
TOTALS								

SHEET SUB-ASSEMBLY Processor #1 SYSTEM GPS-GA

OF.

ITEM NAME OR	ŶŢŶ	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CATEGORY		COST	LSO	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
1N4454	3	.13	.39		15			
UA78MGHC	1	1.46	1.46		8			
Capacitors	39	90.	2.34		195			
Resistors	9	.03	.18		30			
P.C. Board	1	5.00	5.00		25			
Board Process	-	+		333	485			
TOTALS			229.08	333	2069 x 1.5 = 3104			

SYSTEM GA-GPS
SUB-ASSEMBLY Processor #2

OF

ITEM NAME OR	ŶŢŶ	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	TIND	TOTAL	QTY × FAIL. RATE
CATEGORY		COST	LSON	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
(MM5303) 6402	-	3.25	3.25		20			
74LS240	2	1.73	3.46		24			
74LS27	2	.27	. 54		16			
74LS03	1	.27	.27		8			
74LS74	1	.43	.43		8			
91155	1	4.47	4.47		10			
4040	1	1.35	1.35		10			
4069	2	.35	.70		16			
7870	1	1.75	1.75		10			
4015	3	1.28	3.84		30			
4528	1	1.28	1.28		10			
4515	1	3.50	3.50		10			
74C14	1	.78	.78		8			
70C97	1	.93	.93		8			
74002	4	.35	1.40		32			
CPU (IPC-16A)	1	26.00	26.00		20			
2N2001A	2	1.12	2.24		12			
2N3467	1	.46	.46		9			
1N4454	13	.13	1.69		99			
Resistors	24	.03	.72		120			
Capacitors	6	90.	. 54		45			
P.C. Board	1	5.00	5.00	333	485			
TOTALS			64.60	333	973 x 2 = 1946			

SYSTEM GPS-GA

OF

SHEET

SUB-ASSEMBLY Processor #3

CALEGORI	112	TINO	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL.RATE
		COST	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
70097	3	.93	2.79		24			
74LS240	5	1.73	8.65		70			
74LS244	1	1.73	1.73		10			
4069	2	.35	.70		16			
4035	2	1.49	2.98		20			
4040	1	1.35	1.35		10			
4013	. 5	92.	3.80		40			
4093	1	1.46	1.46		8			
74LS27	1	.27	.27		8			
4011	2	.35	.70		16			
4068	1	.35	.35		8			
74LS04	5	.30	1.50		40			
74LS08	4	.27	1.08		32			
74LS05	1	.30	.30		8			
74LS138	4	1.28	5.12		40			
74LS273	1	2.04	2.04		16			
74LS74	7	.43	3.01		56			
74LS175	3	1.28	3.84		30			
74LS12	1	. 29	. 29		8			
74LS11	1	.27	.27		8			
4001	2	.35	.70		16			
25LS148	1	1.37	1.37		10			
TOTALS								

SYSTEM GPS-GA
SUB-ASSEMBLY Processor #3 (con'd)

OF

SHEET

I

1

1

1

1

I

I

ITEM NAME OR	QTY	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
74LS20	1	.27	.27		8			
74LS00	3	.27	.81		24			
74LS164	1	1.34	1.34		8			
. 3026	τ	09.	09.		10			
4025	1	.32	.32		8			
4050.	1	.76	. 92.		10			
4075	2	.32	.64		16			
4094	3	1.60	4.80		30			
74C02	2	.26	.52		16			
74LS107	\$.44	1.76		32			
74LS162	2	1.49	2.98		20			
74LS163	5	1.49	7.45		50			
74LS174	2	1.28	2,56		20			
74LS221	1	1.20	1.20		20			
70097	5	.93	4.65		05			
74LS10	2	.27	.54		16			
74LS112	1	.43	.43		10			
9LS00	3	.27	.81		24			
91.802	. 7	.27	¥5.		16			
96L02	1	62.	62.		8			
91.504	3	.30	, 06*		24			
91.511	1	.27	.27		8			
TOTALS								

SHEET SYSTEM GPS-GA SUB-ASSEMBLY Processor #3 (cont'd)

OF

QTY × FAIL.RATE	x ONII COSI																				
TOTAL	RATE																				
UNIT	RATE																				
1000 UNITS	ASSEMBLY	8	8	8	24	50	10	10	5	10	18	170	190	12	25	25	485				1980 x 1.5 = 2970
LABOR HOURS PER 1000 UNITS	MANUFACTURING																333				333
TOTAL	1003	.27	. 28	.27	1.29	2.15	1.49	1.28	.13	. 44	.18	2.04	1.14	1.06	.35	5.00					96.61
TIM	1600	.27	. 28	.27	.43	.43	1.49	1.28	.13	.22	90.	90.	.03	.53	.35	5.00	1				
QTY		1	1	1	3	5	1	1	1	2	3	34	38	2	1	1					
ITEM NAME OR	CAIEGORI	91.527	9LS32	91.551	9LS74	9LS112	25L\$162	25LS175	1N4454	5082-2800	Inductors	Capacitors	Resistors	2N3251A	RF Conn.	P.C. Board	Board Process				TOTALS

Parameter 1

QTY × FAIL.RATE × UNIT COST OF TOTAL FAILURE RATE SHEET UNIT FAILURE RATE 1094×1.5 = 1641 LABOR HOURS PER 1000 UNITS ASSEMBLY 140 18 18 45 12 ω 20 90 12 25 485 24 22 22 MANUFACTURING 333 92 466 TOTAL 4.50 1.60 5.31 2.85 1.05 .36 2.34 .46 1.30 2.28 1.08 .84 . 26 1.16 5.00 .75 .50 . 70 32.34 UNIT 4.50 1.77 1.30 .57 .03 .13 1.16 2.00 .75 . 50 .35 .80 .95 .35 90 . 78 .23 SUB-ASSEMBLY RF Module QTY es 4 18 28 9 7 ٦ 7 ٦ Trans. (L.O.Inpu Hot Carrier Diod ITEM NAME OR CATEGORY SYSTEM GPS-GA Board Process Transformers Trans. Mixer Capacitors P.C. Board Resistors Connector TOTALS ULN2136 Chassis 2N5172 2N5138 SRF462 Filter SRF215 MMT74 Coils Cover

. .

SYSTEM GPS-GA SUB-ASSEMBLY Synthesizer

OF

ITEM NAME OR	QTY	TINU	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	TIND	TOTAL	QTY × FAIL.RATE
CAIEGORI		Ison	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
Ind - VAR	11	.46	5.06		330			
Trans - VAR	20	.37	7.40		800			
Trans - Fixed	2	.35	07.		80			
F.Hers, XTAL	7	4.94	34.58		105			
5082 - 2800	2	.13	.26		10			
Choke	3	.51	1.53		75			
Inductor	1	.52	.52		5			
2N2222A	2	.35	.70		12			
CA3026	9	1.46	8.76		48			
CA3049	2	1.05	2.10		12			
78MG	1	1.46	1.46		8			
Capacitors	150	90.	9.00		750			
Resistors	124	.03	3.72		620			
Connector	12	.35	4.20		300			
P.C. Board	1	5.00	5.00		25			
Board Process	1	-		333	485			
Chassis	1	.75	.75	92	24			
Cover	1	.50	.50	41	22			
Misc. Hardware	Lot	1.50	1.50		100			
TOTALS			87.74	466	3326			
				The state of the s				

QTY × FAIL.RATE × UNIT COST OF TOTAL FAILURE RATE SHEET UNIT FAILURE RATE LABOR HOURS PER 1000 UNITS ASSEMBLY 9 2 2 2 50 20 15 35 169 MANUFACTURING 333 333 TOTAL 4.50 1.10 .21 .95 .90 .19 .13 .70 18.19 09. .18 3.00 UNIT 1.10 .95 4.50 .19 .35 3.00 5.25 90. .21 .90 .13 .18 SUB-ASSEMBLY Power Supply QTY 7 ITEM NAME OR CATEGORY SYSTEM GPS-GA Potentiometers Board Process Resistors TOTALS PC Board 1N4733A MC1563G 2N4911 MC1569G 2N5089 2N3055 1N457A IN4003 2N4899 2N5086 Cap. C

SYSTEM GPS-GA
SUB-ASSEMBLY Enclosure & Chassis

OF

ITEM NAME OR	QTY	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CATEGORI		Teno	COST	MANUFACTURING	ASSEMBLY	FAILURE	FALLURE	x UNIT COST
Chassis	1	2.50	2.50	184	44			
Cover-L-R	2	.50	1.00	50	22			
Panel F-R	2	1.50	3.00	148	44			
P.C. Board Assbl	, 1	1.25	1.25	150	75			
Cover Top	1	.50	.50	25	111			
Cover, Bottom	1	.50	. 50	25	11			
Connector-RF	1	.95	. 95		15			
Connector, Cable	1	.95	. 95		25			
Connector, PCBd	7	.35	2.45		175			
Support Bracket	2	.50	1.00	92	24			
Retaining Strap	2	.75	1.50	28	10			
Misc. Hardware	Lot	3.50	3.50		250			
Wiring	Lot	5.00	5.00		1000			
						4		
TOTALS			24.10	702	1706			

SVSTEM GPS-GA SUB-ASSEMBLY Assembly & Test

OF

SHEET

1

1

I

Ī

I

ITEM NAME OR	QTY	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CAIEGORI		1800	Teor	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
Receiver	1				50			
Processor #1	1				25			
Processor #2	1				25			
Processor #3	1				25			
RF/IF	1				25			
Synthesizer	1				25			
Power Supply	1				25			
Enclosure & Chassis	s 1				100			
P.S. Alignment					100			
Rx Alignment					200			
Burn-In					1000			
Functional Test					.1000			
Oscillator	1				25			
TOTALS					2625			

APPENDIX B-5

1

Name of the least

GPS CONTROL AND DISPLAY, LOW-PERFORMANCE AIRCRAFT

SYSTEM GPS-GA Control SUB-ASSEMBLY Display Board

OF

ITEM NAME OR	VTQ	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	TIND	TOTAL	QTY × FAIL. RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	FAILUNE	FALLURE	x UNIT COST
74175	·8	61.	6.32		80			
4013	1	92.	92.		10			
75116	1	1.87	1.87		10			
5303	1	3.25	3.25		10			
Resistor Pack	4	.45	1.80		32			
Capagitors	5	90.	. 30		20			
Resistor	1	.03	.03		5			
PC Board	1	5.00	5.00		25			
Board Process	-	-	-	333	485			
TOTALS			19.33	333	677x1.5 = 1016			

SYSTEM GPS-GA Control SUB-ASSEMBLY Driver

method property beginning transmiss

STANSFERM CHARACTER

OF

ITEM NAME OR	QTY	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
74LS10	- 1	.27	.27		8			
74LS138	2	1.28	2.56		20			
14532	2	1.74	3.48		20			
70:007	2	.93	1.86		20			
74C901	1	.71	17.		10			
4028.	2	1.17	1.17		10			
4071	1	1.14	2.28		16			
555	1	.35	.35		8			
IN4454	4	.30	1.20		20			
2N5324	5	2.44	12.20		30			
Resistor Pack	5	.45	2.25		40			
Cap T	4	.18	.72		20			
Cap D	3	90.	.18		15			
2N2907A	2	.26	1.30		30			
Resistor	1	.03	.03		5			
PC Board	1	5.00	5.00		25			
Board Process	-	1		333	485			
TOTALS			35.83	333	790x1.5 = 1185			

SYSTEM GPS-GA Control
SUB-ASSEMBLY Control

OF

SHEET

ITEM NAME OR	QTY	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL.RATE
CATEGORY		COST	TSOO	MANUFACTURING	ASSEMBLY	FAILURE	FALLURE	x UNIT COST
74LS00	τ	.27	.27		8			
74LS10	1	.27	.27		8			
74LS109	1	.43	.43		10			
74LS145	1	1.01	1.01		10			
74LS123	1	.81	.81		10			
74LS04	1	.30	. 30		8			
74LS175	. 1	1.28	1.28		10			
7402	1	.35	.35		8			
MC12061	1	2.87	2.87		14			
74C161	1	1.18	1.18		10			
4040	1	1.35	1.35		10			
8080A	1	8.70	8.70		14			
5230	2	5.88	11.76		28			
5242	3	5.88	17.64		30			
3467	τ	1.50	1.50		10			
1N4454	τ	.30	.30		5			
Resistor Pack	2	.45	06.		16			
Capacitors	14	90.	.84		70			
Resistors	4	.03	.12		20			
Crystal-10mHz	1	1.50	1.50		15			
PC Board	1	5.00	5.00		25			
Board Process		-	1	333	485			
TOTALS			58.33	333	824x1.5 = 1236			
	-	-						

OF SHEET SYSTEM GPS-GA Control SUB-ASSEMBLY POWEr Supply

Name of Street, or other Persons of Street, or other Persons or other Pers

and the second

ITEM NAME OR	OTY	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CATEGORY		COST	COST			FAILURE	FAILURE	x UNIT COST
				MANUFACTURING	ASSEMBLY	RATE	RATE	
Volt Regulator	1	4.50	4.50		25			
MZ5555	1	3.60	3.60		15			
Potentiometer	1	. 35	.35		15			
Capacitor - E	1	.30	.30		15			
Capacitor - T	1	.18	.18		5			
PC Board	1	2.00	2.00		25			
Board Process	1	-	•	333	485			
TOTALS			10.93	333	585			

SYSTEM GPS-GA Control SUB-ASSEMBLY Enclosure & Chassis

OF

ITEM NAME OR	QT.Y	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL.RATE
CATEGORY		COST	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
Front Panel	1	1.00	1.00	74	22			
Keyboard	1	2.75	2.75		25			
Sel Switch	1	1.35	1.35		15			
Led Display	11	1.05	11.55		110			
Led Lights	5	.22	1.10		25			
Potentiometer	1	.35	.35		15			
Toggle Switch	1	.28	.28		15			
Chassis	1	1.25	1.25	184	44			
Cover	1	.50	.50	334	5			
PC Connector	4	.35	1.40		09			
Cable Connector	1	.95	.95		25			
Led Sockets	1	1.10	1.10		25			
Led Bezel	1	.55	.55		15			
Resistors	11	.03	.33		55			
Wiring	Lot	1.50	1.50		500			
Misc. Hardware	Lot	1.00	1.00		125			
TOTALS			26.96	265	1081			

AD-A080 945

ARINC RESEARCH CORP ANNAPOLIS MD

AVIONICS COST DEVELOPMENT FOR CIVIL APPLICATION OF GLOBAL POSIT--ETC(U)

APR 79 S H KOWALSKI

1326-01-7-1873

FAA-EM-79-1

NL

UNCLASSIFIED

ENIT

OF

I

OF

SHEET

LABOR HOURS PER 1000 INTER

TOTAL

UNIT

PTY

ITEM NAME OR

SUB-ASSEMBLY

90945

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

SUB-ASSEMBLY							SHEET	or or
ITEM NAME OR	QTY	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE
CATEGORI		rost	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	× UNIT COST
Display Board	1				25			
Driver Board	1				25			
Control Board	1				25			
Power Supply	1				50			
Chassis	ï				50			
Front Panel	1				100			
Burn-In	-				1000			
Functional Test	-				1000			
TOTALS					2275			
			Company of the Compan		-			