

Correlação Linear Felipe Figueiredo

Correlação

Linear

Felipe

Figueiredo

Correlação Linear

Associação de duas amostras (quantitativa)

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Variância (Revisão)

- Relembrando: a variância (assim como o desvio-padrão) é uma medida da dispersão da amostra
- Medida sumária que resume o quanto os dados se desviam da média
- Podemos usar um raciocínio análogo para comparar quanto uma amostra se desvia em relação à outra

Interpretação

Quanto maior a variância, maior a dispersão em relação ao centro.

Sumário

Correlação Linear

Felipe Figueiredo

Visualização - Variância "pequena"

Visualização - Variância "média"

Correlação Linear Felipe Figueiredo

Visualização - Variância "grande"

Linear Felipe Figueiredo

Correlação

Variância em cada eixo

Correlação Linear Felipe Figueiredo

- Como vamos medir a variância entre duas variáveis, devemos considerar a variância de cada uma delas
- Exemplos anteriores, variância no eixo horizontal
- Vamos rever, agora na vertical
- (e aproveitar para incrementar a visualização de uma variância)

Visualização - Variância "pequena" - boxplot

Visualização - Variância "média" - boxplot

Correlação Linear Felipe Figueiredo

Visualização - Variância "grande" - boxplot

Correlação Linear Felipe Figueiredo

Covariância entre duas amostras

Correlação Linear Felipe Figueiredo

Definition

A covariância entre duas variáveis X e Y é uma medida de quanto ambas variam juntas (uma em relação à outra).

- Um único número que representa a variação conjunta entre as duas variáveis
- Pode assumir qualquer valor (positivo, negativo, etc)
- Magnitude absoluta (desconsiderando o sinal) indica o grau de dependência
- Obs: duas variáveis independentes tem covariância igual a zero!

Covariância

Covariância Correlação Linear Felipe Figueiredo R R R R R Correlação Linear Felipe Figueiredo

Luz.. Câmera... Ação!

Correlação Linear

> Felipe Figueiredo

Normalização

Correlação Linear Felipe Figueiredo

Teoria x Prática

A covariância é útil para entender a força (e direção) da associação entre duas variáveis, mas o fato de ela não ter uma escala definida a torna difícil de usar na prática.

Precisamos de uma medida semelhante de associação, mas que fique em uma escala restrita (digamos, sempre entre -1 e 1).

O nome desta solução é coeficiente de correlação r.

Tipos de variáveis envolvidas

Correlação Linear Felipe Figueiredo

- Considere duas amostras X e Y, de dados numéricos contínuos.
- Vamos representar os dados em pares ordenados (x,y) onde:
 - X: variável independente (ou variável explanatória)
 - Y: variável dependente (ou variável resposta)

Medidas de associação

- Como definir (e mensurar!) o grau de associação entre duas amostras?
- Se uma amostra é dependente de outra, é razoável assumir que isso possa ser observável por estatísticas sumárias
- Como resumir esta informação em uma única grandeza numérica?

Medidas de associação

Correlação Linear Felipe Figueiredo

- Quando uma associação é forte, podemos identificá-la subjetivamente
- Para isto, analisamos o gráfico de dispersão dos pares (x,y)
- Um gráfico deste tipo é feito simplesmente plotando os pontos no plano cartesiano

(a) Positive correlation between x and y (b) Strong positive correlation between x and y (c) Perfect positive correlation between x and y (Fonte: Triola)

Coeficiente de correlação

Correlação Linear Felipe Figueiredo

> Correlação Linear

> > Felipe

Figueiredo

Definition

O coeficiente de correlação r é a medida da direção e força da associação entre duas variáveis.

Propriedades:

- É um número entre −1 e 1.
- Mede a associação linear entre duas variáveis.
 - Diretamente proporcional, inversamente proporcional, ou ausência de proporcionalidade.

IC e Teste de significância

- Se tivéssemos os dados de toda a população, poderíamos calcular o parâmetro ρ
- Na prática, só podemos calcular a estatística r da amostra
- Utilizamos r como estimador para ρ , e testamos a significância estatística da forma usual

Correlação

Correlação Linear Felipe Figueiredo

- Uma forte associação positiva corresponde a uma correlação próxima de 1.
- Uma forte associação negativa corresponde a uma correlação próxima de -1.
- A ausência de associação corresponde a uma correlação próxima de 0.

Exemplo

Correlação Linear Felipe

Pearson's product-moment correlation data: G and G t = 355110000, df = 28, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 1 1 sample estimates: cor

Exemplo

Correlação Linear Felipe Figueiredo

Example

Pesquisadores queriam entender por que a insulina varia tanto entre indivíduos. Imaginaram que a composição lipídica das células do músculo afetam a sensibilidade do músculo para a insulina. Para isto, eles injetaram insulina em 13 jovens adultos, e determinaram quanta glicose eles precisariam injetar nos sujeitos para manter o nível de glicose sanguínea constante. A quantidade de glicose injetada para manter o nível sanguíneo constante é, então, uma medida da sensibilidade à insulina. (Fonte: Motulsky, 1995)

Example

Exemplo

Os pesquisadores fizeram uma pequena biópsia nos músculos para aferir a fração de ácidos graxos poli-insaturados que tem entre 20 e 22 carbonos (%C20-22). Como variável resposta, mediram o índice de sensibilidade à insulina.

Valores tabelados a seguir.

Exemplo

	Table 17.1.	Correlation	Between	%C20-22	and		
Insulin Sensitivity							

% C20–22 Polyunsaturated Fatty Acids	Insulin Sensitivity (mg/m²/min)
17.9	250
18.3	220
18.3	145
18.4	115
18.4	230
20.2	200
20.3	330
21.8	400
21.9	370
22.1	260
23.1	270
24.2	530
24.4	375

Correlação Linear Felipe Figueiredo

Exemplo: Diagrama de dispersão dos dados

Correlação

Linear

Felipe

Figueiredo

Correlação Linear Felipe Figueiredo

Obs: na verdade, r = 0.77.

Exemplo

- Correlação Linear
- Felipe Figueiredo

- O tamanho da amostra foi n = 13
- (Antigamente) consultáva-se o valor crítico de r na tabela
- H₀ : não há relação entre as variáveis na população ($H_0: \rho = 0$).
- Observe: Quais são as informações necessárias para se consultar a tabela?

TABLE A-6		Critical Values of the Pearson Correlation Coefficient <i>r</i>		
n		$\alpha = .05$	$\alpha = .01$	
4	.950		.999	
5	.878		.959	
6		.811	.917	
7	.754		.875	
8	.707		.834	
9	.666		.798	
10	.632		.765	
11	.602		.735	
12	.576		.708	
13	.553		.684	
14		.532	.661	
15	.514		.641	
16	.497		.623	
17	.482		.606	
18	.468		.590	

Exemplo

Correlação Linear Felipe

Figueiredo

- Pode-se também calcular o p-valor para o coeficiente de correlação r.
- Para este exemplo, teríamos p = 0.0021.
- Interpretação: se não houver relação entre as variáveis (H_0) , existe apenas 0.21% de chance de observamos uma correlação tão forte com um estudo deste tamanho

Exemplo

Correlação Linear Felipe Figueiredo

- O valor crítico da tabela para uma amostra de tamanho 13 é $r_c = 0.553$
- A correlação calculada para esta amostra foi r = 0.77
- Como a correlação é maior que o valor crítico, a relação é estatisticamente significativa
- Conclusão: há evidências para rejeitar a H₀ que não há relação entre as variáveis.

Exemplo

Felipe Figueiredo

Por que as duas variáveis são tão correlacionadas? Considere 4 possibilidades:

- o conteúdo lipídico das membranas determina a sensibilidade à insulina
- 2 A sensibilidade à insulina de alguma forma afeta o conteúdo lipídico
- 3 tanto o conteúdo lipídico quanto a sensibilidade à insulina estão sob o efeito de algum outro fator (talvez algum hormônio)
- as duas variáveis não são correlacionados na população, e a estimativa observada nessa amostra é mera coincidência

Interpretando o r

Correlação Linear Felipe Figueiredo

- Nunca devemos ignorar a última possibilidade (erro tipo I)!
- o p-valor indica quão rara é essa coincidência
- neste caso, em apenas 0.21% dos experimentos não haveria uma correlação real, e estaríamos cometendo um erro de interpretação

Interpretação

Correlação Linear Felipe Figueiredo

- Se a correlação é 0, então X e Y não variam juntos (independentes)
- Se a correlação é positiva, então quando uma aumenta, a outra aumenta em proporção direta (linear)
- Se a correlação é negativa, então quando uma aumenta, a outra diminui em proporção inversa (linear)

Cuidado!

- Duas variáveis podem parecer correlacionadas pois são influenciadas por uma terceira variável
- Ex: em alguns países a mortalidade infantil é negativamente correlacionada com o número de telefones per capita
- Mas comprar mais telefones não vai salvar crianças!
- Explicação alternativa: a melhoria da condições financeiras pode afetar ambas as variáveis

Correlação Linear Felipe Figueiredo

Causa x efeito

- Se há uma relação de causalidade entre as duas variáveis, a correlação será não nula (positiva ou negativa)
- Quanto maior for a relação de dependência entre as variáveis, maior será o módulo da correlação.
- Se as variáveis não são relacionadas, a correlação será nula.

Causalidade?

Correlação Linear Felipe Figueiredo

- Mas não podemos inverter a afirmativa lógica do slide anterior!
- Isto é, ao observar uma forte correlação, gostaríamos de concluir que uma variável causa este efeito na outra
- Infelizmente isto não é possível!
- Lembre-se: a significância do teste indica a probabilidade de se cometer um erro do tipo I (falso positivo).

Repita várias vezes mentalmente

Correlação não implica em causalidade.

Correlação Linear

Felipe

Figueiredo

Exemplo

Produção de mel x Prisões por posse de maconha

Correlação: -0.933389

(Fonte: Spurious correlations)

Exemplo

Correlação Linear Felipe Figueiredo

Gasto com C&T (EUA) x Suicídios por enforcamento

Correlação: 0.992082

(Fonte: Spurious correlations)

Exemplo

Correlação Linear Felipe Figueiredo

Correlação: 0.666004

(Fonte: Spurious correlations)

Causa e efeito

Correlação Linear Felipe

Figueiredo

Ao encontrar uma forte correlação, deve-se sempre se perguntar:

- Há uma relação direta de causa e efeito entre as variáveis? (X causa Y?)
- 2 Há uma relação inversa de causa e efeito entre as variáveis? (Y causa X?)
- Sé possível que a relação entre as variáveis possa ser causada por uma terceira variável (ou mais) que não foi analisada?
- é possível que a relação entre duas variáveis seja uma coincidência?

INTO

Correlação Linear

Felipe Figueiredo

Leitura pós-aula e exercícios selecionados

Leitura obrigatória

- Capítulo 17, pular as seções:
 - o cálculo do r, do IC, do p-valor
 - correlação de Spearman, e seu cálculo
 - Interpretação do r²

Exercícios

Capítulo 17, problemas 1, 3 e 5.

Problema 6, usar:

 $r = 0.8868, IC95\% = [0.4856, 0.9794], p = 0.0033. r^2 = ?$

Leitura recomendada

Capítulo 17: Interpretação do r^2 e Correlação de Spearman

Resumo

- É necessário investigar a relação entre as variáveis!
- O que pode explicar a relação observada?
- Qual proporção (porcentagem) da variabilidade pode ser explicada pelas variáveis analisadas?
- Quão bem a reta regressora se ajusta aos dados?