BASES DE DONNÉES AVANCÉES

Université du Maine – Licence SPI Sem 6

Contenu du module

- Conception d'une base de données
 - Introduction
 - Modèle entité-association
- Implémentation d'une base de données
 - Passage du MEA au MR
 - Présentation générale d'un SGBD
- Manipulation des données
 - Langage SQL et SQL avancé
 - SGBD par la pratique : PostgreSQL

Plateforme UMTICE

- □ Cours : L3 SPI Bases de données avancées
 - http://umtice.univ-lemans.fr/enrol/self/edit.php? courseid=374
 - Supports de cours
 - Supports de TD... quelques corrections
 - Supports de TP
 - Plateforme de dépôt du TP noté
- □ Clé d'inscription : L3BdDa2014

Évaluations

- Modalités de contrôle des connaissances du module
 - CC1 (coeff.0,5)
 - 1h écrit le 21 février 2014
 - Questions de cours modélisation/implémentation + modélisation Entité-Association
 - CC2 (coeff. 1,5)
 - 2h écrit le 21mai 2014
 - De la modélisation Entité-Association à l'implémentation en base de données relationnelle avec requêtes SQL
 - TP (coeff. 1)
 - 2h sur machine (seul) le 14 mars 2014
 - Requêtes SQL pg/plsql

5 Introduction

Une donnée

- Définition
 - Une donnée est la représentation codée d'une information quelconque du monde réel

- Information du monde réel
 - Un fait sur un « objet »
 - « Cette personne s'appelle Tony »
 - Une relation entre « objets »
 - " Tony joue au basket ball ">

Base de Données

- Définition générale
 Un ensemble organisé d'informations avec un objectif commun.
 - \rightarrow Ex : annuaire
- Base de données informatisée
 - Un ensemble structuré de données enregistrées sur des supports accessibles par l'ordinateur pour consultation ou mise à jour.

« Ensemble de données modélisant les objets d'une partie du monde réel et servant de support à une application informatique » (Gardarin 2001)

Enjeux des bases de données

- La gestion des données
 - De plus en plus de données (web!)
 - Gestion des données en mémoire secondaire
 - Bases de données distribuées
 - Accès rapide, sur et efficace
 - Accès multi-utilisateurs
 - **-** ...
- Besoin d'une application performante!

Système de Gestion de Bases de Données

- Ensemble de procédures
 - Accès à la base de données
 - Gestion (ajout/modification) des données
 - Recherche par critères de données
- Hébergement de plusieurs bases de données
 - Thématiques différentes
- Architecture client/serveur (souvent)
 - Accès multiples, concurrentiels
 - Cohérence des données

Objectifs d'un SGBD

→ Masquer la représentation physique des données et assurer la protection et la cohérence des données dans un environnement multi-utilisateurs.

- Indépendance physique/logique
- Accès optimisé aux données
- Intégration des données
- Non redondance des données
- Cohérence des données
- Partage des données
- Sécurité des données
- Résistance aux pannes

Architecture ANSI/SPARC

- Modélisation standard abstraite proposée en 1975 par la commission SPARC de l'ANSI
- Objectif:
 - séparation entre
 - Vision de l'utilisateur
 - Représentation physique

^{*} American National Standards Institute

^{**}Standards Planning And Requirements Committee

Modèle 3-couches ANSI/SPARC

- Niveau physique (interne)
 - Organisation physique des fichiers et des méthodes d'accès (gestion des fichiers, des index...)
 - Fortement dépendant du SGBD
- Niveau conceptuel
 - Implémentation du schéma conceptuel des données
 - Indépendante du niveau physique
- Niveau externe
 - Vision de tout ou partie de la BDD par un utilisateur, indépendamment des autres (vues)
 - Indépendant de la complexité du schéma conceptuel de la BDD

Conséquences et avantages

- Vues personnalisées indépendantes
 - Chacun sa vue! modification indépendante entre vues
 - → Modification du schéma conceptuel => transparent pour l'utilisateur.
- Non-préoccupation du stockage physique
 - Travail sur des données, peu importe où, comment, celles-ci sont stockées.
 - → Modification sur le stockage par l'administrateur sans modification des vues.

Principaux SGBD

- Logiciels commerciaux
 - □ Oracle (45%*)
 - □ IBM DB2 (21%*)
 - Microsoft SQL Server (19%*)
 - Sybase (3,5%*)
- Logiciels libres
 - MySQL
 - PostgreSQL

Conception d'une base de données

Concevoir une BD

- Description des données du monde réel pour stockage, mises à jour et accessibilité par ordinateur
- Formalisation par le schéma conceptuel
- Efficacité si au minimum:
 - Pas de perte d'information
 - Non redondance des données
 - Intégrité des données

Composants du schéma conceptuel

Objet

Objet distinct, concret ou abstrait du monde réel

Entité

- Ensemble d'objets possédant la même sémantique et des propriétés communes (abstraction de l'objet)
- Propriétés (caractéristiques, attributs)
 - Caractéristiques décrivant un objet
- Liens (associations)
 - Modélisation des contraintes existant sur les propriétés et les entités

Contraintes d'intégrité

 Entités et liens y sont soumis pour garantir la vraisemblance avec le monde réel

Modèles conceptuels

- Historiques
 - Années 60 : Modèle hiérarchique
 - Structure arborescente (lien 1:n uniquement)
 - Besoin de connaître le chemin d'une donnée
 - Très lié à l'organisation des fichiers sur l'ordinateur
 - □ Fin années 60 : Modèle réseau
 - Extension du modèle hierarchique (possibilité n:m)
 - Toujours trop lié à la structure physique
 - □ 1970 : Modèle relationnel

Modèle relationnel

- Introduit par E.F. Codd en 1970
 - Mathématicien au centre de recherche IBM San-José
 - A Relational Model of Data for Large Shared Data Banks
- Pourquoi?
 - Non satisfait des modèles
 - Utilisation d'une branche spécifique des mathématiques
- Objectifs
 - Accès performants à de grandes quantités de données
 - Réponse au problème de redondance ou d'intégrité des données
 - Séparation entre structure logique et mise en oeuvre physique

Modèle relationnel

- □ À la base de la grande majorité des SGBD actuels
- Fin années 90 : Extension avec le modèle relationnelobjet
- Représentation de l'information selon
 - Une seule et unique structure de données : la relation
 - Des contraintes : spécification des règles que doit respecter la base de données
 - Notamment des types
 - Un langage non procédural
 - manipulation, interrogation et mise à jour des données

Domaine de valeurs

- Définition
 - Ensemble d'instances d'un type élémentaire
 - Défini en intention :
 - Ex : entiers, réels, chaînes de caractères, ...
 - Défini en extention :
 - Ensemble fini de valeurs
- En pratique
 - Ensemble de définition des valeurs d'un attribut
 - Exemples sur les pilotes:
 - Date de naissance : type date
 - Ville de rattachement: {"Marseille", "Toulouse", "Lyon", ...}

Relation

- Aussi appelée TABLE
- Définition
 - Sous-ensemble fini du produit cartésien d'une liste de domaines
- Exemple:
 - soient D1={Cathy, Paul, Xavier, Géraldine} et D2={Le Mans, Marseille, Nantes}

Relation "Est Né à "

"Est Né à"	DI	D2
	Cathy	Le Mans
	Paul	Le Mans
	Xavier	Le Mans
	Géraldine	Nantes

Attributs

- Colonne d'une relation caractérisée par un nom
 - Nom porteur de sens vis à vis de son contenu
 - Toujours associé à un domaine de valeurs
 - Référence pour effectuer des opérations
 - Exemple:

	"Est Né à "	Prénom	Ville natale
Relation "Est Né à "		Cathy	Le Mans
	·•	Paul	Le Mans
		Xavier	Le Mans
		Géraldine	Nantes

N-uplets

- Définition
 - Liste des valeurs des attributs (!domaine)
- Aussi appelé ENREGISTREMENT, correspond aux lignes d'une table
- Règles
 - Ordre des tuples dans la relation sans importance

Prénom

Cathy

Géraldine

Ville natale

Le Mans

Le Mans

Le Mans

Nantes

- Aucun doublon possible
- Exemple:

	Cauty
Relation	Paul
'Est Né à "	Xavier

"Est Né à"

Schéma de relation

- Définitions
 - Nom de la relation suivi de la liste des attributs et de la définition de leurs domaines

R(A1:D1,A2:D2,...An:Dn)

Degré d'une relation : nombre d'attributs

- Exemple:
 - EST_NÉ(Prénom:CHARVAR, VilleNatale:CHARVAR)

Représentations de relation

- Représentation en INTENTION de la relation
 - Un schéma de relation représente les propriétés communes et invariantes des tuples qu'elle est susceptible de contenir.

- Représentation en EXTENTION de la relation
 - Une table propose une vue des tuples que la relation contient à un instant donné.

Bien concevoir une Base de données

- □ Rappel en relationnel : 1 seule structure
 - Entités et liens sont représentés par des relations
- Conception d'une BDR
 - Représenter au mieux le monde réel en définissant un ensemble de schémas de relations
 - Comment?
 - Plusieurs possibilités...

Conception de schémas relationnels

- Exemple : Voyages par avion
 - Choix 1: 1 relation Voyage

```
VOYAGE (NUMPIL, NOMPIL, ADRPIL, NUMAV, NOMAV, CAPAV, LOCAV, NUMVOL, V-D, V-A, H-D, H-A)
```

Choix 2: 3 relations

```
AVION (NUMAV, NOMAV, CAPAV, LOCAV)

PILOTE (NUMPIL, NOMPIL, ADRPIL)

VOL (NUMVOL, PILOTE, AVION, V-D, V-A, H-D, H-A)
```

Conception de schémas relationnels

Choix 1 (projection sur 10 attr. par manque de place ...)

NumVo I	NomPi I	AdrPil	NomAv	CapA v	LocAv	V-D	V-A	H-D	H-A
V001	Jean	Arles	B747	500	Paris	Paris	Nice	8:00	9:00
V023	Jean	arles	A300	300	Antibes	Nice	Pau	13:00	13:45
V045	Arthur	Nantes	B747	500	Nice	Nice	Paris	11:00	12:00

- Représentation des pilotes en vacances? des avions en révision?
- Problème de redondance? Risque de perte ? Risque d'incohérence?

Conception de schémas relationnels

□ Choix 2

NumPil	NomPil	AdrPil
Pil1	Jean	arles
Pil2	Jean	Arles
Pil3	Arthur	Nantes

NumAv	NomAv	CapAv	LocAv
Av1	B747	500	Paris
Av1	A300	300	Antibes
1v2	B747	500	Nice

NumVol	NumPil	NumAv	V-D	V-A	H-D	H-A
V001	Pil1	Av1	Paris	Nice	8:00	9:00
V023	Pil1	Av1	Nice	Pau	13:00	13:45
V045	Pil2	Av2	nice	Paris	11:00	12:00

Comment être certain que tous les critères sont remplis?

Normalisation

- Relation universelle
 - Relation composée de tous les attributs des entités et liens à modéliser par la BD
- Approche par décomposition
 - Objectif: Décomposer la relation universelle en sous relations n'ayant pas les anomalies signalées précédemment
 - Application de l'algèbre relationnel
 - Étude des dépendances fonctionnelles et multi-valuées
 - Formes normales ...

Modèle entité-association

- Proposé en 1976 par Chen
- Représentation graphique permettant de modéliser le monde réel
 - Selon les concepts d'entité et d'association
 - Indépendamment du logiciel utilisé pour l'implémentation
 - Description graphique intelligible
- Synonyme:
 - entité-relation (mal traduit de l'anglais : entityrelationship)

Méthode MERISE

- Préoccupations définies selon une démarche en 3 niveaux :
 - Niveau conceptuel
 - Description du monde réel selon les entités et les associations
 - Niveau logique
 - Choix du modèle conceptuel et mapping MEA/MC (MR dans notre cas)
 - Niveau physique
 - Choix du SGBD

À quoi ça ressemble?

Type-entité et entité

- □ Entité (ou objet) :
 - Objet concret ou abstrait du monde réel
 - Ex: mon stylo rouge, le vol Paris-Lyon
 - Correspond à un tuple dans une BDR
- □ Type-entité:
 - Regroupement nommé cohérent d'entités
 - Ex: stylo, voiture, vol

Attention à l'abus Type-entité /Entité ...

Exemples de type-entité

Exemple

- Type-entité Article
 - Dans une entreprise, les articles vendus peuvent être regroupés dans un même type-entité car les informations d'un article à l'autre ne changent pas (désignation, prix,...)
- Type-entité Article-Client ?
 - Dans une entreprise on ne regroupera pas des articles et des clients au sein d'un même type-entité car leurs informations ne sont pas homogènes : un article n'a pas d'adresse, un client n'a pas de prix

Les attributs du type-entité

- Attribut
 - □ Caractéristique/propriété de l'entité
 - Associé à un type-entité
- Donnée élémentaire
 - Pas d'attribut calculé
- Unicité de l'attribut dans le modèle
 - □ Pas de clé étrangère
 - Deux attributs ne peuvent représenter la même caractéristique

Les valeurs

- Valeur
 - Chaque attribut est associé à un domaine de valeurs
 - Une valeur compatible pour chaque attribut de chaque entité
- Pas de valeurs possibles car non-sens?
 - Revoir sa modélisation!

Identifiant (clé) du type-entité

- Ensemble minimal d'attributs du type-entité permettant d'identifier de manière unique chaque entité
 - Notion de clé primaire en MR
 - Impossibilité pour 2 entités d'un même type-entité d'avoir la même valeur d'identifiant
- Chaque Type-entité possède obligatoirement un identifiant, éventuellement composé de plusieurs attributs

Formalisme du type-entité

- Un rectangle
- □ Le nom encadré en haut
- L'identifiant souligné
- Les attributs

- □ Exemple sur l'entité
 - Nom : voiture
 - Identifiant: id_voiture
 - Autre attribut : couleur

Voiture

Id_voiture

Couleur

Mauvaise conception d'un type-entité

□ Exemple 1 : 2 types-entités au sein d'une seule

Clients

- -Id_Client
- -Nom_Client
- -Prénom
- -Adresse

Articles

- -Id_Article
- -Désignation
- -Prix_Unitaire
- -Id_Fournisseur
- -Nom_Fournisseur

Clients

- -Id_Client
- -Nom_Client
- -Prénom
- -Adresse

Articles

- -Id_Article
- -Désignation
- -Prix_Unitaire

Fournisseurs

- -Id_Fournisseur
- -Nom_Fournisseur
- -Téléphone
- -Adresse

Mauvaise conception d'un type-entité

Exemple 2 : Factorisation de 2 types-entités

Etudiant

- -Id_Etudiant
- -Nom
- -Prénom

Enseignant

- -Id_Enseignant
- -Nom
- -Prénom

Personne

- -IdPersonne
- -Nom
- -Prénom

Généralistes

- -Id_Généraliste
- -Nom
- -Prénom
- -Adresse

Dentistes

- -ld_dentiste
- -Nom
- -Prénom
- -Adresse

Ophtalmo

- -ld_Ophtalmo
- -Nom
- -Prénom
- Adresse

Médecins

- -Id_Médecin
- -Nom
- -Prénom
- -Adresse
- -Type

Type-association et association

- Association
 - Lien sémantique existant entre plusieurs entités
 - Lie généralement 2 ou plus entités
 - Ex: François commande un iphone
- Type-association
 - □ Ensemble *nommé* d'associations de mêmes caractéristiques
 - Description d'un lien entre plusieurs types-entités

Type-association et association

- Participant
 - Type-entité impliqué dans le type-association
- Collection
 - Ensemble des participants du type-association
- □ Arité
 - Nombre de "pattes" du type-association
- Attribut
 - Possibilité d'avoir des attributs uniquement si dépendance avec tous les participants
 - Ex: François a commandé son iphone le 5 février 2012

Cardinalité du type-association

Cardinalité

- Nombre de fois au minimum et au maximum où l'entité du type-entité intervient dans l'association du typeassociation, avec généralement :
 - Minimum $\subseteq \{0,1\}$
 - $Maximum \in \{1,n\}$
- Indication obligatoire !!!
- Sens de lecture
 - !! Différent de l'UML ...

Cardinalités admises

- O,1: Une entité participe une fois au plus à l'association. Elle existe même si elle n'est pas impliquée dans la relation.
- O,n: Une entité participe ou non sans limitation de nombre à l'association
- 1,1: Une entité participe obligatoirement une fois à l'association. Elle n'existe pas sinon.
- 1,n: Une entité n'existe que si elle participe au moins une fois à l'association.

Formalisme du type-association

- Formalisme
 - Un ovale
 - Un nom
 - Des pates de liaison
 - Des cardinalités

Exemple

Un propriétaire possède de 0 à n voitures. Une voiture n'a qu'un seul et unique propriétaire.

Classement des types-associations

- Type-association hiérarchique
 - \Box 1,1 0 | 1,n
 - □ Arité: 2
 - Aucun attribut dans le type-association
 - □ Le type-entité 1,1 est le type-entité inférieur
 - □ Le type-entité 0 | 1,n est le type-entité supérieur

Classement des types-associations

- Type-association non-hiérarchique (maillée)
 - \Box 0 | 1,n 0 | 1,n
 - □ Arité: 2 à n
 - Possibilité d'attributs dans le type-association
- Type-association semi-hiérarchique
 - \Box 0,1 0 | 1,n
 - □ Arité: 2
 - Possibilité d'attributs dans le type-association

Classement des types-associations

Tableau récapitulatif

Cardinalités	Arité	Туре	Attributs?
1,1 - 0,1	2	Hiérarchique	non
1,1 - 0 1,n	2	Hiérarchique	non
0,1 - 0 1,n	2	Semi-hiérarchique	oui/non
0 1,n — 0 1,n	2 à n	Non-hiérarchique	oui/nom
1,1 — 1,1	śś	śś	śś

Type-association plurielle

- Le type-association *Ecrire* modélise que des personnes écrivent des livres
- Le type-association Critiquer modélise que des personnes critiquent des livres
- !! Auteur et Critique modélisent une personne, peut-être la même??

 Factorisation

Type-association plurielle

 Deux mêmes types-entités peuvent être impliqués dans plusieurs types-associations

- Une même personne peut être à la fois auteur et critique
- L'association détermine le rôle de l'entité

Spécialisation

- Type-association « EtreUn »
 - Type-entité générique
 - Type-entité spécialisé
 - Type association de cardinalité 0,1 − 1,1
 - Chaque entité générique est associée à au plus une entité spécifique
 - Chaque entité spécifique est associée à exactement une entité générique
 - Conséquence : L'entité spécialisée n'a pas besoin d'identifiant propre...

Spécialisation

Type-association réflexif

 Un type-association peut être lié plusieurs fois au même type-entité

- Tout employé est dirigé par un autre employé (sauf le directeur général)
- Un employé peut diriger plusieurs autres employés

Type-association réflexif

- Quelques remarques :
 - Spécification des rôles sur les pattes
 - Un type-association réflexif n'entraîne pas que ces instances soient réflexives
 - Un type association peut être symétrique
 - Ex:être frère
 - Dans ce cas, pas de spécification du rôle

Identifiant absolu ou relatif

- Identifiant absolu
 - Composé uniquement d'attributs propres
- Identifiant relatif
 - Composé au minimum d'un attribut qui ne lui est pas propre
 - Pas de représentation particulière
- Lien identifiant
 - □ Lien particulier avec une patte 1,1 du côté de l'agrégé
 - Symbolisé par des parenthèses

Identifiant absolu ou relatif

Exemple

- La dépendance forte entre l'existence du bâtiment et de la salle est modélisée
- Deux salles de deux bâtiments distincts pourront avoir le même identifiant Id Salle

Décomposition d'un type-association n-aire

- □ Type-association n-aire : plus de 2 pattes
- □ À vérifier obligatoirement car souvent non valide
- □ Conseil : décomposition
 - Créer un type-entité à la place du type-association
 - Identifiant explicite non obligatoire
 - Créer des types-associations binaires à la place de chaque patte
 - □ Cardinalités (1,1) du côté de l'ex-type-association

Décomposition d'un type-association n-aire

Exemple

Décomposition d'un type-association n-aire

Exemple

Vérification du MEA

- □ Ai-je bien modéliser le problème?
 - Règles syntaxiques
 - Règles sémantiques
 - Formes normales

Vérifications syntaxiques

- Unicité de tout nom : type-entité, type-association ou d'attribut
- □ Clé primaire :
 - Une clé primaire pour chaque type-entité
 - Un seul attribut pour clé primaire dans un type-entité
 - Aucune clé étrangère
- Attribut :
 - Aucun attribut dans un type-association hiérarchique
 - Aucun type-association hiérarchique avec arité>2
 - Normalisation des attributs multiples et/ou composites

Vérifications sémantiques

- Clé primaire:
 - Dépendance fonctionnelle de chaque attribut avec la clé primaire de son type-entité
 - Type de la clé primaire non chaine de caractères
- Attribut
 - Apparition unique de chaque attribut
 - Deux attributs ne peuvent désigner la même réalité
 - Aucun attribut calculé à partir d'autres attributs (sauf si nécessaire à la compréhension)
- □ Type-entité:
 - Factoriser si nécessaire/possible

1 NF: Tout attribut est atomique, non décomposable

 2 NF: 1NF + Tout attribut non clé ne doit pas dépendre que d'une partie de la clé

Nom_Produit
Nom_Fournisseur
Adr_fournisseur

Article

Id_Article

Nom_Produit

Nom_Fournisseur

Adr_fournisseur

 3 NF: 2NF + Tout attribut non clé ne doit pas dépendre d'un attribut non clé

 BCNF: Toute dépendance est de la forme clé primaire détermine attribut

Etapes de conception d'un MEA

- □ Inventaire de l'ensemble des données à considérer
- Analyse de l'information
 - Créations des attributs
 - Redondance?
- Types-entités?
 - Clé primaire?
- Types-associations?
 - Cardinalités?
- Vérification du modèle

- À partir d'une modélisation en entité-association : obtenir l'ensemble des relations (tables) à implémenter
 - Représentation logique indépendante du stockage physique
- La normalisation devrait être faite avant ...

Application de 4 règles

- □ Règle 1 − Type-entité:
 - Tout type-entité devient un schéma de relation
 - Tout attribut du type-entité devient attribut du schéma de relation
 - L'identifiant du type-entité devient clé primaire du schéma de relation
 - Attention aux types-entités spécifiques ou agrégés

□ Règle 1 — Exemple

Batiment(Id_Salle,Id_Batiment, Nom_Batiment, Adresse)

- □ Règle 2 Type-association non hiérarchique:
 - Le type-association devient un schéma de relation
 - Tout attribut du type-association devient attribut du schéma de relation
 - Les clés primaires des types-entités de la collection deviennent clés étrangères dans le schéma de relation
 - La détermination de la clé primaire n'est pas automatique
 - Souvent : concaténation des clés primaires des types-entités participant

□ Règle 2 − Exemple

Ecriture(#Id_Livre,#Id_Auteur)

- □ Règle 3 Type-association hiérarchique
 - □ Clé primaire du type-entité "0 | 1,n" devient clé étrangère du type-entité "1,1"
 - Contrainte : not null
 - Cas d'un type-association réflexif:
 - ajout d'un nouvel attribut dans le type-entité
 - Cas d'un type-association « EtreUn »:
 - La clé étrangère doit être rajouté dans la clé primaire

□ Règle 3 — Exemple :

Salle(Id_Salle, #Id_Batiment^Ø, NomSalle)

- □ Règle 4 Type-association semi-hiérarchique
 - □ Si attributs : cas non-hiérarchique
 - Si pas attributs : cas hiérarchique avec contrainte not null non obligatoire