DIPARTIMENTO DI MATEMATICA E INFORMATICA

Ι

Sia S un semigruppo numerico e sia $x \in S$. Provare che $S \setminus \{x\}$ è un semigruppo numerico se e solo se x appartiene al sistema minimale di generatori di S.

II

Provare che l'intersezione di un numero finito di semigruppi numerici è un semigruppo numerico. Mostrare con un esempio che il risultato non vale per una intersezione infinita.

III

Siano S e T due semigruppi numerici e sia $m \in S \cap T$ con $m \neq 0$. Provare che se $Ap(S,m) = \{0,u_1,\ldots,u_{m-1}\}$ e $Ap(T,m) = \{0,v_1,\ldots,v_{m-1}\}$ (con u_i,v_i i più piccoli elementi congruenti ad i modulo m in S e T, rispettivamente), allora $Ap(S \cap T,m) = \{0, \max\{u_1,v_1\},\ldots,\max\{u_{m-1},v_{m-1}\}.$

IV

Siano S e T due semigruppi numerici. Provare che:

- i) S + T è un semigruppo numerico.
- ii) S+T è il più piccolo semigruppo numerico contenente $S\cup T$.
- iii) Se A e B sono insiemi di generatori di S e T, rispettivamente, allora $A \cup B$ è un insieme di generatori di S + T.

Dare un esempio di due semigruppi numerici con insieme minimale di generatori A e B e tale che $A \cup B$ non è un insieme minimale di generatori di $\langle A \cup B \rangle$.