Probabilistic sample (or random sample, sample): One realizable phenomenon from the probabilistic problem you want to solve Or one sampled case Sample space Ω : Set which contains all possible samples Task of defining sample sapce: Define which phenomenon is possible to occur and which phenomenon is impossible to occur Sample space when you toss the coin $\Omega = \{H, T\}$ ______ Some cases has set of entire real numbers as sample space $\Omega = \mathbf{R}$ _____ Possible events: possible sub sets of sample space Ω Sample space $\Omega = \{H, T\}$ Possible events: ϕ , $\{H\}$, $\{T\}$, $\{H,T\}$ _____ Probability is function which takes all events and which outputs number P(A) = 0.1P() is function P A is event 0.1 is probability value Kolmogorov's axioms 1. $P(\text{all_events}) \ge 0$ 2. $P(\Omega) = 1$ 3. If $A \cap B = \phi$, then $P(A \cup B) = P(A) + P(B)$ Interpretion about probability value: 1. Frequentist

2. Baysian
