

0.1 Non ramifiée, modérément, sauvagement, totalement ramifié

Pour le vocabulaire : Avec L/K extension de corps de valuations discrètes, i.e. v_K discrète fixée.

- 1. Non ramifié : Pour chaque $i, e_i = 1$ et k_{L_i}/k_K est séparable.
- 2. Modérément ramifié : pour chaque $i, p \nmid e_i$ et k_{L_i}/k_K est séparable.
- 3. Sauvagement ramifié : il existe un i tq $p \mid e_i$ ou k_{L_i}/k_K inséparable.
- 4. Totalement ramiifié : [L:K] = e et $\tilde{\mathcal{O}}_K = \mathcal{O}_L$. (On a la condition de finitude)

Attention y'a pas toujours l'égalité $\sum e_i f_i = [L:K]$, dans la plupart des cas qui m'intéressent si quand même.

0.2 Lien entre liberté dans k_K, k_L et dans L/K

On regarde $L = K(\alpha)$ et $P = \mu_{\alpha}$ unitaire dans $\mathcal{O}_{K}[X]$. Si $\overline{Q(\alpha)} = 0$ (liberté de (α^{i})) on a $Q(\alpha) \in \mathfrak{m}_{L}$ et pas dans \mathfrak{m}_{K} . D'où on peut pas directement comparer les libertés dans ce sens ! À l'inverse, si $(\bar{e}_{i})_{i}$ est libre dans $k_{L} - k_{K}$ et qu'on a $\sum a_{i}e_{i} = 0 \mod \mathfrak{m}_{L}$ alors $a_{i} \in \mathfrak{m}_{L} \cap \mathcal{O}_{K} = \mathfrak{m}_{K}$. Si y sont tous non nuls $0 < |(\sum a_{i}e_{i})| < 1$ on a un problème.

0.3 Factorisation de \bar{P} et e.f

Même contexte, dans le cas complet c'est plus simple : Par Hensel $\bar{P} = F^d$ et $\deg(F) \mid f$ parce que F se scinde dans k_L vu que P se scinde dans \mathcal{O}_L . En particulier on peut faire descendre la racine. On déduit

$$e.f = \deg(P) = d.\deg(F)$$

d'où $e \mid d$ et $\deg(F) \mid f$.

Remarque 1. Comme Vincent m'a fait remarquer pas d'égalité vu que par exemple si $K[\alpha]/K$ est non ramifiée et α engendre l'extension résiduelle alors $\pi_L^d P(X/\pi_L)$ annule $\pi_L \alpha$ mais $F = X^d$, donc on est dans le pire cas.

0.4 Polynômes d'eisenstein et extensions totalement ramifiées

(1)

Si $P(X) = X^d + \sum a_i X^i$ avec $v_K(a_0) = 1$ et $v_K(a_i) \ge 1$ alors L = K[X]/(P(X)) est totalement ramifiée et X est une uniformisante. Si α est une racine dans L de P:

Y'a deux points, $B = \mathcal{O}_K[\alpha]$ a un seul idéal maximal car a_0 et α sont dans le même idéal maximal et y contiennent tous a_0 (!) puis $(a_0, \alpha) = \alpha B$ est maximal (via le quotient!). Ça prouve que B est local et principal donc un DVR, i.e. $\tilde{\mathcal{O}}_K = B$. Pour la valuation e = d = [L:K] directement, d'où le résultat.

(2)

Si L/K est totalement ramifiée, alors π_L est annulé par un Eisenstein. L'idée c'est que si P l'annule, alors si $a_{i_0} \notin \mathfrak{m}_K$ alors :

$$\pi_L^{i_0}(a_{i_0}/\pi_L^{i_0} + \sum_{i=i_0}^n a_i \pi_L^{i-i_0})$$

est de valuation i_0 . Si $v_K(a_j) > 0$ pour $j < i_0$ alors la valuation est strictement plus grande que $e = v_L(\pi_K)$. Sauf que

$$\sum_{i=0}^{i_0-1} a_i \pi_L^i = \pi_L^{i_0} (a_{i_0} / \pi_L^{i_0} + \sum_{i=i_0}^n a_i \pi_L^{i-i_0})$$

d'où c'est eisenstein. En plus

$$a_0/\pi_L^n = -1 + \sum a_i \pi_L^i / \pi_L^n$$

d'où $v_L(a_0/\pi_L^n) = 0$ vu que $v_L(a_i) \ge e$ et n = e.

0.4 Polynômes d'eisenstein et extensions totalement ramifiées

Chapitre 1

Cas complet

1.1 Extension totalement modérément ramifiée

Cette fois on peut trouver π_L et π_K tels que $P(X) = X^e - \pi_K$. Déjà

$$\mathcal{O}_K/\mathfrak{m}_K o \mathcal{O}_L/\mathfrak{m}_L$$

est un iso et donc si $u\pi_L^e = \pi_K$, on regarde u = v dans k_L (car c'est là que u vit) avec $v \in \mathcal{O}_K$. D'où $u = v + \epsilon$, $\epsilon \in \mathfrak{m}_L$ (car c'est dans k_L l'égalité). Ensuite $u = v(1 + v^{-1}\epsilon)$. Sauf que $1 + v^{-1}\epsilon$ a une racine e-ème par Hensel, ζ . D'où $(\pi_L\zeta)^e = \pi_K/v$.

1.2 Trouver les extensions totalement modérement ramifiées

En gros dans L/K finie complète telle que $k_K - k_L$ est purement inséparable (c'est juste une généralisation), On regarde presque le corps engendré par $\pi_L^{e/e'}$. On choisit $e' \mid e/p_p^v(e)$, il existe $k_L^{p^r} \subset k_K$ alors $ap^r + be' = 1$ et

$$\bar{u} = (\bar{u}^{p^r})^a (\bar{u}^b)^{e'} \mod \mathfrak{m}_L$$

et ducoup on relève $u=\lambda^a(\bar{u}^b)^{e'}(1+\epsilon)$ avec $\lambda\in\mathcal{O}_K^{\times}$ puis comme d'hab le truc à droite a une racine e'-ème par hensel, disons ζ . D'où en notant $\pi_{e'}=u^b\zeta\pi_L^{e/e'}$ c'est une racine e'-ème de π_K/λ^a . Alors

$$K(\pi_{e'})$$

est totalement ramifiée vu que engendrée par un eisenstein.

1.2.1 Unicité

C'est pas très satisfaisant.

Apparté

Si on regarde $\mathcal{O}_K \to \mathcal{O}_L/\mathfrak{m}_L$ ça induit $i \colon k_K \to k_L$. En particulier dire que $u \in k_L$ est en fait dans k_K ça veut dire que $u + \mathfrak{m}_L = v + \mathfrak{m}_L$ avec $v \in \mathcal{O}_K$.

Preuve

Concrètement, $\lambda = (\pi_1 \pi_2^{-1})^{e'} \in \mathcal{O}_K^{\times}$ et en regardant dans k_L ça engendrerait une sous-extension de degré premier à p^r , i.e 1. D'où $\bar{u} = \bar{v} \in k_K$ et $(\bar{v})^{e'}(1 + \epsilon) = \lambda$ sauf que $(1 + \epsilon) = \lambda/(\bar{v})^{e'}$ d'où est dans \mathcal{O}_K puis $1 + \mathfrak{m}_K$ c'est que des puissances e'-ème. On obtient que $(\pi_1 \pi_2^{-1})^{e'} = (v')^{e'}$ avec $v' \in \mathcal{O}_K \times$. En particulier comme les racines e'-ème de l'unité sont dans \mathcal{O}_K $\pi_1 = u\pi_2$ avec $u \in \mathcal{O}_K^{\times}$ d'où unicité.

Remarque 2. En résumé, pour tout $e' \mid e/p^{v_p(e)}$, on a une sous-extension $K - L_{e'} - L$, dans le cas complet sous l'hypothèse d'extension résiduelle purement inséparable.

1.3 Trouver les sous-extensions non ramifiée

En dessous de K - L on regarde $k_K - k - k_L$ avec $k_K - k$ séparable. On a une correspondance entre k et $K - K_k - L$ où la première est non ramifiée.

1.3.1 Existence

 $k_K^{sep} = k_K(\bar{\theta})$. Comme **tout se passe dans** k_L on lift un polynôme $P \in \mathcal{O}_L[X]$ de même degré. **Par hensel**, θ en est une racine et il est **scindé séparable** dans L. On regarde $K(\theta)$, c'est séparable vu que \bar{P} est séparable **via la dérivée** mod \mathfrak{m}_L (!). Et c'est non ramifié vu que $f = \deg(\bar{P}) = \deg(P) = [K(\theta) : K]$.

1.3.2 Unicité

Donc le détail encore c'est qu'on plonge k dans k_L . I.e. on peut faire Hensel QUE dans $\mathcal{O}_L[X]$. D'où si F est une autre sous-extension de L

Chapitre 2
Cas galoisien