()

INTERSTATE COUNCIL FOR STANDARDIZATION. METROLOGY AND CERTIFICATION (ISC)

34,13— 2018


```
1.0—2015 «
                  1.2—2015 «
                          »
                »)
     2
                                                             26 «
     3
        29
                  2018 . 54)
                               :
             31 ) 004-97
                                    31 ) 004-97
                                     AM
KG
                                     RU
                                     TJ
2018 . N? 1062-
                                                     34.13—2018
                                              1
                                                     2019 .
     5
                                                                    34.13—2015
     6
                       28147—89
                                                   2 «
                                                                                          3 «
                                                                              »:
                        4 «
                                                                              5 «
             »:
                                                      ».
          (www.gost.ni)
                                                               ©
                                                                                              . 2018
```

PF

1				 	 	1
2	,		***************************************	 	 	1
2.1				 	 	1
2.2				 	 	3
3						
4						
4.1				 	 	4
4.2				 	 	4
4.3				 	 	8
5				 	 	Ę
5.1				 	 	
5.2	&			 	 	6
5.3						
5.4				 	 	ć
5.5					1	
5.6				 	 1	3
	()		 	 	(
					_	2

•

•

/ 9797-1 (1], / 10116 (2J. / 10118-1 [3], / 18033-1 [4]. / 14888-1 [5].

IV

— 2019—06—01

Information technology. Cryptographic data security.

Modes of operation for block ciphers

1 2 2.1 (encryption algorithm): 2.1.1 18033-1 [4]. 2.1.2 (decryption algorithm): 18033-1 [4]. 2.1.3 (basic block cipher): 2.1.4): 18033-1 [4]. 2.1.5 (block cipher): 18033-1 [4]. 2

```
34.13—2018
2.1.6
                   (padding):
                               / 10118-1 [3].
2.1.7
                           (block chaining):
2.1.8
                       (encryption):
                                        18033-1 (4].
2.1.9
                      (message authentication code):
                                        9797-1 [1].
2.1.10
              (key):
                           18033-1 [4].
).
2.1.11
                              (starting variable):
                                        10116 (2].
                        (plaintext):
2.1.12
                                        10116 [2].
2.1.13
                         (decryption):
                           18033-1 (4].
2
2.1.14
                                                        (symmetric cryptographic technique):
                                        16033-1 (4].
2.1.15
                          (initializing value):
2.1.16
                   (message):
                                        14888-115].
2.1.17
                 (counter):
                                        10118 [2].
2.1.18
              (cipher):
```

16033-1 (4].

— / 10116 (2].

(ciphertext):

2

2.1.19

```
2.2
 6
 II-
                                                                                                                                                                                                                                                                                                                                                                                                2
   2^, —
                                                                                                                                                                                                                                                    2s:
 tb<sub>s</sub> —
                                                                                                                                                                                                                                                         Z?,;
           mod/ —
  MSB_s.V(JV<->V_s —
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       mis,
                                                                                                                             v_s = v_s - \frac{2}{2s} \cdot \frac{1^{2} \cdot 1^{2}}{10^{2} \cdot 1^{2}} \cdot \frac{1^{2}}{10^{2}} \cdot \frac{1^{2}}{10^
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2 .<sub>1</sub>|...|2,|^<sub>)</sub>. mas.
                                                                    Poty_s: -> GF(2)[x] —
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  z« (z_e , |..|2^{\wedge}) e V_s
                                                                                                                                                                           Polys(z)ȣz.x';
Vto, z_2, \rightarrow v_s -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Z_{21}
                                                                                                                                       z • ^) + 2 2, + ... + 2<sup>s</sup>" Z<sub>s v</sub>
                                                                                                                                                                                                                                                                                                                     z. {0.1}. i « ..., s-1.
                                                                                                                                         Vec<sub>e</sub>(2)«2<sub>a-1</sub>|[..|2<sub>1</sub>|2<sub>0</sub>:
  int/Vj-tZ?, —
                                                                                                                                                                                                                                                                                                                                                                             {\sf Vec}_{\sf s}, \ . \ . \ {\sf Int}_{\sf s} {\sf ``Vec}_{\sf e}';
  3
                                                                                                                                                                                                                                                     . Electronic Codebook);
                                                                                                                                                                        (CTR.
                                                                                                                                                                                                                                               . Counter):
                                                                                                                                                                                                                                                                                                                                                                                                (OFB.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   . Output Feedback);
                                                                                                                                                                                                                                                                                                                                                                       . Cipher Block Chaining);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    . Cipher Feedback);
                                                                                                                                                                                                                                                                                                                                                                                                                              (CFB.
                                                                                                                                                                                                                                                                                       . Message Authentication Code algorithm).
```

```
34.13—2018
4
4.1
4.1.1
                                                                 (
                                                                                                        )
                                                                       )
                              /.
4.1.2
        r*|P|mod/.
                                                                        0,
                                                     |0'
                                                                                                 pJ = / < J -1
                                                                                 P_{v}
         \mathbf{P_t}\parallel\mathbf{0}
4.1.3
                      2
        z«|P|mod/.
                                                   ' ||1|0-'\
                                                  /.
4.1.4
           «|P|mod/.
           < I,
                                                 2.
                                                                                   (5.6)
                       (5.1—5.5).
2
4.2
                                                     m
                                                                    \nu V_m
                                                                                     IV.
```

):

4

2'< :

IV

```
),
       4.3
       8
                                                                                                                s.ssn.c
                       I_s - MSB_s, . .
       5
       5.1
       5.1.1
                                                )
               )
      5.1.2
                                                                                   Pt/<sub>( | |»</sub>
p-p.hi
                  / 12.....q.
                                                                                                                    , =e_{K}(P,)./=tZ )
                                                             - ,| <sub>2</sub>|..| ".
                                                                                        1.
       5.1.3
                                                    : - ,|| <sub>2</sub> ...|| ,, . V<sub>n</sub>,i- 1.2.... q.
                                                   p.<sub>e</sub>d<sub>K</sub>(C,)./«1.2.....q.
                                                                                                                                    (2)
                    (
                                       )
                                                           = 1|| 2||...|| ,.
```

» At

5.2

5.2.1 . 0 < *• s

, CTR, 6 V , i = 1.2.....

$$CTR_y$$
 *1 (/) = / ||02.
Add: V_n —

 $AddtCTR,) * Vec_{fl}(Int_{JJ}(CTR_{l})ffi_{/l}1).$ (3)

5.2.2 $V^* \qquad \qquad |_{_2}|\text{-|}^{\wedge}. \qquad \qquad / \ \ t2_t....q\text{-IP}_qeV'_f.rSs.$:

(C_J.^©T₅(e_K(C7-RJ)./-IZ....Q-I

5.2.3 : $C_t \parallel_2 1. \mid \cdot$, , V_s . /«1,2.g-1 $C_Q e V_s$. £ s. = (5((?₍», *l.* t < j-t (5) P'.C'QT^CTR')). p'p.hLjp,' 4.

5.3

5.3.1

\$ m. *Q*<*sin*, m * - , 21 —

/Ve V_m. ()

IV. R

5.3.2 P,bV_s , -12..... Q-1, $P_qbV_v r^*s$.

, = IV,

 $V,Be_{K}(MS8_{n}(RJ).$ »,>. ,(/-1,<**7**-1 (6) $R_{i+1} = \mathsf{LSB}_{m-n}(R_i) | Y_i$ $Y_q = \mathbf{e}_K(\mathsf{MSB}_n(R_q)),$ $C_q = P_q \oplus \mathsf{T}_r(Y_q).$

5.3.3 : ^ . |C_Q. *C-<=.V_s, /«*12.....Q-1,

R, - IV.

^-e_K(MSB,,{R,)).

 Ve_{K} <MSB,,(R_{q})),

^-c,eT_r(y_g).

TMSCT !

p=p,hi h

5.4

5.4.1

-2. 2 £ 1 — .

,

. () /Ve V_m .

R . IV

·

5.4.2 PbV*. | | *q.*

, - *IV. C,*^*e_K*(*P_t* ©MSBJR,)).

/«1,Z....<j-t

c₉«MP₉®^{MSB},W>-

g

:

5.4.3 $\mbox{CjC^1-} \mid \ _{9}. \quad _{f} \quad \ \ \, , \ \ \, ...q.$: $\label{eq:cjC^1-} , \ \ \, - \ \, IV,$

 $\begin{aligned} & & f\text{-}lZ....q\text{-}l \\ & \text{K,n-LSB}_{m-n} \!\!<\! R_1)|\text{C,.} \end{aligned}$

:

p-p,hi h

.

5.5.3 : ,| $_2$ |...| , $C_{\mathcal{E}}V_{S'}$, /«1,2,.... -t ,, $V_{\mathcal{H}}$ s s. :

, = IV, , « , $@T_e(e_K(MSB_n(R_i)))$, «... = LSB , ,, < «, • (11)

9.

 P_Q » C_9 ®T,(e_K (MSB,,(R_4))).

p=p,hi-ip«-

5.6

5.6.1

1 (

ISO

[

[1]). () 0 < s £ .

5.6.2

_

R«e_K<0");

MSB,(R) =0,

¹ *|(/?«1) 8,,.

MSB,(K₁)»0,

*2 " {(, <1)©0,,.

₄«0 |11011. ₁₂ «0¹²°|10000111.

64 128.

GF(2) .

f,,{x)

(2)[]/(/ ()}, ®. ^oly^PolyJPISx), (12) rPoly^Poly^PJSx2). R 5.6.3 0": MAC : p=p.hi h Pj^{N}_{n} , z' = IZ....g-1 P_{q} e V,. rin. g-l (13) $\mathsf{MAC} = \mathsf{T}_{\mathsf{s}}(\mathsf{e}_{\mathsf{K}}(\mathsf{P}_{\mathsf{i}}; \mathsf{C}_{\mathsf{i}\mathsf{f}-\mathsf{1}}\mathsf{C}\mathsf{K}')).$... |P_q|» . P_q — 3. 5.1—5.5.

12 —

13— « —

()

.

· , ,

s , , V*. 4. , (*|)*) . . .

,). ; {0.1....9, a. b. c.d.e.f}. i 0.1 ...,r-1. = 128 (« »), ...
-64 (« »).

.2 = 128

AJ.1

= 8899aabbccddeeff0011223344556677fedcba98765432100123456789abcde(.

— 128- :

, = 1122334455667700ffeeddccbbaa9988.

2 - 00112233445566778899 abbcceeffOa, - - 11223344556677&899 (00.

4 = 2233445566778899aabbcceeff0a0011.

.2.2

.1 —

1122334455667 700ffeeddccbbaa9988	71679d90bebc24305a468d42b9d4edod
00112233445566778899	b429912c6e0032f9285452d76718d08b
112233445566778899	(0ca33549d247ceef3f5a5313bd4b157
2233445566778899aabbcceeff0a0011	d0b09ccde830b9eb3a02c4c5aa8ada98

.2.3

.2.3.1

s-n- 128.

IV-1234567890abcef.

.2 —

1	1	2
p,	11223344556677OOffeeddec 9988	00112233445566778899aabbcceeff0a
	1234567890 »00000000000000000	1234567890abcef000000000000000000000000000000000000
	e0b7ebfa9468a6db2a95826efb173830	85fTc500b2f4582a7ba54e08f0ab21
,	1195d8bec10ed1dbd57b5fa240bda1b8	85eee733f6a13e5df33ce4b33c45dee4

t	3	4
,	112233445566778899 0 00	2233445566778899aabbcceeff0a0011
	1234567890 00 00000000000002	1234567890abcef00000000000000003
	Mc8dbcfb353195b4c42cc3ddb9ba9a5	e9a2bee4947b32217b7d1db6dfb7ba62
,	a5eae88be6356ed3d5e877f 13564	cb91 faM f20cbab6d 1 c6d15820bdba73

.2. .2

. IV

,. %. 3. +.

.2.4

.2.4.1

s = n=128, = 2 = 256.

IV = 12345 7890 1 2 4 5 011223344556677889901213141516171819.

r	1	2
p>	1122334455667700Reeddccbbaa9988	00112233445566778899aabbcceeR0a
	1234567890abcef0a1b2c3d4e5f00112	23344556677889901213141516171819
	90a2391de4e25c2400f1a49232d0241d	ed4a659440d99cc3072c8b8d517dd9b5
,	81800a59b1842b24R1f795e897abd95	ed5b47a7048cfab48fb521369d9326bf

i	3	4
Р,	112233445566778899aabbcceeR0a00	2233445566778899aabbcceeROaOO11
	90a2391de4e25c2400f1a49232d0241d	ed4a659440d99cc3072c8b8d517dd9b5
	778064e869c6cf3951 a55c30fed78013	020dff9500640ef90a92eead099a3141
,	66a257ac3ca0b8b1c80fe7fc10288a13	203ebbc066138660a0292243f6903150

.2.4.2

. IV

,. ₂. 3. +.

.2.5 .2.5.1

= 2 = 256,

IV = 1234567890abcef0a1b2c3d4e5f0011223344556677889901213141516171819.

.4 —

r	1	2
p,	1122334455667700Reeddccbbaa9988	00112233445566778899aabbcceeR0a
	0316653cc5cdb9f05e5c1e185e5a989a	23256765232defe79a8abeaedaf9e713
	689972d4a085fa4d90e52e3d6d7doc27	2826e661 b4 78eca6af 1 e8e448d5ea5ac
,	689972d4a085fa4d90e52e3d6d7dcc27	2826e661 b4 78eca6af 1 e8e448d5ea5ac

i	3	4
P,	112233445566778899aabbcceeff0a00	2233445566778699aabbcceelT0a0011
	79bb419015e38dc5 094f95f18382c627	0a16a234d20f643f05a542aa7254a5bd
	fe7babf 1e91999e85640e8b«49d90d0	167688O65a895c631 a2d9a1560b63970
,	1e7babf1e91999e85640e8b0f49d90d0	167688065aB95c631a2d9a1560b63970

.2.5.2 , IV P_{V 2¹ 3}, 4² .2.6 .2.6.1

IV-1234567890abcef0a1b2c3d4e5f0011223344556677889901213141516171819.

.5 —

5 = = 128. m = 2 = 256,

i	1	2
Р,	1122334455667700ffeed dec bbaa9988	00112233445566778899aabbcceeff0a
	1234567890abcef0a1b2c3d4e5f00112	23344556677889901213141516171819
	90a2391de4e25c2400f 1a49232d0241d	ed4a659440d99cc3072c8b8d517dd9b5
,	81800a59M842b241T1f795e897abd95	ed5b47a7O48cfab481b521369d9326bf

.5

i	3	4
P.	112233445566778899aabbcceeff0a00	2233445566778899aabbcceeff0a0011
	81800a59M842b241T1f795e897abd95	ed5b47a7O48cfab48fb521369d9326W
	68d09baf09a0fab01 d879d82795d32b5	6dcdfa9828e5a57(6de01533bbf 114c0
,	79f2a8eb5cc68d38842d264e97a238b5	4ffebeod4e922de6c75bd9dd441bf4d1

.2.6.2 ,. 2 .2.7.1

R-94bec15e269cf1e506f02b994c0a8ea0.

MSB,(R)=t

, »R<ieS_A

= 297d82bc4d39e3ca0de0573298151dc7.

 $\mathsf{MSB,(K,)}=\mathbf{0,}$

 $\mathsf{K_2} = \mathsf{K_1} \\ ^{\mathrm{v}} \\ 1 = 297 \\ \mathrm{d} \\ 22 \\ \mathrm{b} \\ \mathrm{c} \\ \mathrm{d} \\ 39 \\ \mathrm{3c} \\ \mathrm{30de} \\ 0573298151 \\ \mathrm{d} \\ \mathrm{c} \\ < 1 = 52 \\ \mathrm{fb} \\ 05789 \\ \mathrm{a} \\ 73 \\ \mathrm{c} \\ 7941 \\ \mathrm{bc} \\ 0ae \\ 65302 \\ \mathrm{a} \\ 3b8e.$

 $|P_r| = n$. K'= K_r

A.2.7.2

s = 64.

.6—

i	1	2
,	1122334455667700ffeeddccbbaa9988	00112233445566778899aabbcceeff0a
	1122334455667700ffeeddccbbaa9988	7f76Wa3fae94247d2df2719753a12c7
	7f679d90t»bc24305a468d42b9d4edcd	1ac9d976f83636f55ae9ef305e7c90d2

.6

r	3	4
ρ,	112233445566778899aabbcceeff0a00	2233445566778899aabbcceeffOaOO11
	0beba32ad50417dc34354fcb0839ad2	1 e2a9c1 d8cc03bfa0cb340971252fe24
	15645af4a78e50a9abe8db4b754de3f2	33614d296059fbe34ddeb35b37749c67

MAC - 336f4d2960591be3.

. = 64

 $K = ffeeddccbbaa 9988776655443322110 CM0f1f2f3f4f5 \{6f7f8f9fafbfc1dfefl.$

-- 64-

, = 92def06b3c130a59.

 $P_2 = db54c704(8189d20.$

₃ = 4a98fb2e67a8024c.

₄ = 8912409 17 57 41.

.3.2

.7 —

92def06b3c130a59	2b073f0494f372a0
db54c704lB189d20	6e70e715d3556e48
4a98fb2e67a8024c	11 d8d9e9eacfbc1 e
8912409b17b57e41	7c68260996c67efb

.3.3

. .3.1

S = -64.

IV-12345678.

.8—

r	1	2	
p,	92def06b3c130a59	db54c704f8189d20	
	1234567800000000	1234567800000001	
	dc46e167aba4b365	e571ca972ef0c049	
,	4 98110 97 7 93	3e250d93d6e85d69	

i		4
,	4a98fb2e67a8024c	8912409 7 57 41
	1234567800000002	1234567800000003
	59fS7da6601ad9a3	d(9cf61bbce7df6c
,	136d868807b2dbef	568eb6B0ab52a12d

.3.3.2

. fV

,, ₂. \$, .

.3.4

.3.4.1

s = n = 64, = 2 = 128.

IV - 1234567890abcdef234567890abcdef1.

.9 —

>		2	
•	92def06b3c130a59	db54c704f8189d20	
	1234567890abcdef	234567890abcdef1	
	49e910895a8336da	d612a348e78295bc	
,	<jb37e0e266903c83< th=""><th>0d46644c1f9a089c</th></jb37e0e266903c83<>	0d46644c1f9a089c	

.9

i	3	4	
P'	4 98< 2 67 8024	8912409 7 57 41	
	49e910895a8336da	d612a348e78295bc	
	60 4 24 63032	4136af23aafaa544	
,	a0f83062430e327e	c824e(b8bd4fdb05	

.3.4.2

. IV

₃, \$, .

A.3.S

.3.5.1

= 3 = 192,

IV = 1234567890abcdef234567890abcde(134567890abcdef 12.

.10 —

>		2	
•	92def06b3c130a59	db54c704f8189d20	
	80 61 8 7 6	f811a08df2a443d1	
	96d1b05eea683919	«76129 937 9	
,	96d1b05eea683919	76129 937 9	

. 10

i	3	4	
P_t	4 98< 2 67 8024	8912409 7 57 41	
	7ece83beoc65ed5e	1fc3f0c5fddd4758	
	5058b4a1c4bc0019	20b78b1a7od7e667	
,	5058b4a1c4bc0019	20b78b1a7od7e667	

.11 —

i	1	2	
,	92def06b3c130a59	db54c704fS189020	
	1234567890abcdef	234567890abcdef1	
	49e910895a8336da	d612a348e78295bc	
,	db37e0e266903c83	0646644c1f9a089c	

.11

i	3	4	
P>	4a98fb2e67a8024c	8912409 7 57 41	
	db37e0e266903c83	0d46644c1f9a089c	
	6e25292d34bdd1c7	35d2728f36b22b44	
,	24bdd2035315d38b	bcc0321421075505	

.3.6.2

. IV

,. %. ₃. ₄.

.3.7

.3.7.1

P = 2fa2cd99a129Oa12.

 $\mathsf{MSB,(``)} \ ``0.\ \mathsf{X,=R} < 1 = 51459 \mathsf{b} 3342521424,$

 $MSB,(K_n) = 0.$

K₂= , < 1= 8 366684 42848.

 $| \cdot | = K_t$

.3.7.2

s-32.

.12—

t	1	2	
p,	92def06b3c130a59	db54c70418189d20	
	92def0€b3c130a59	1053f8006cebef80	
	2b073f0494f372a0	c89ed814fd5e18e9	
	.12		
r	3	4	
p,	4a98fb2e67a8024c	8912409 17 57 41	
	8206233a9af61aa5	216e6a2561cff165	
	1739M8d34289b00	154e72102030c5bb	

MAC - 154 7210.

-		1	(-
)	* ,		·
(11 / 9797-1:2011			
(ISO/IEC 9797-1^011)	(MAC). 1.		(Information technology -
	Security techniques — Me using a block cipher)	essage Authentication Codes	(MACs) — Part 1: Mechanisms
(2J / 10116:2017		•	•
(ISO/IEC 10116:2017)		-	(Information
	technology — Security tech	nniques — Modes of operation f	or an -bit block cipher)
[3] / 10118-1:2016		•	1.
(ISO/IEC 10118-1:2016)	(Inform	ation technology— Security tec	hniques — Hash-functions —
•	Part 1: General)		•
[4] / 18033-1:2015		•	
(ISO/IEC 18033-1:2005)	. 1.	(Information techn	nology— Security techniques —
,	Encryption algorithms — Pa	ari 1: General)	
[5] / 14888-1:2008			
(ISO/IEC 14888-1:2008)	1.	(Information technology -	– Security techniques — Digita
,	signatures with annendix —	`	, ,

*

681.3.06:006.354 35.040

1—2019/64

> « », 115419. , . . . 11. www.jurietzdal.ru y-book@mailnj

> > « »
> > .
> > 117416 . - , .31. .2.
> > www.postinfo.ru info@gostinfo.ru