

Implementation Guide

Issuer Host implementation Guide For EMV Contact

Version 1.3 Date: 13-June-2019

Ta	h	le	of	Co	nte	nts

 Introdu 	ction	7
2. Purpos	e	7
3. Scope		7
4. Audien		7
	ew of EMV Contact Transaction	7 8
	responsibilities sing Requirements for Host	9
7.1.	Visa	9
7.1.1.	Field 22- PoS Entry Mode	9
7.1.2.	Field 23 – PAN Sequence Number	9
7.1.3.	Field 55 – ICC Related Data	10
7.1.4.	Issuer Authentication Data	12
7.1.5.	Third bitmap Fields	13
7.2.	Mastercard	14
7.2.1.	Field 22- PoS Entry Mode	14
7.2.2.	Field 23 – PAN Sequence Number	14
7.2.3.	Field 55 – ICC Related Data	15
7.2.4.	Issuer Authentication Data	17
7.3.	RuPay	18
7.3.1.	Field 22- PoS Entry Mode	18
7.3.2.	Field 23 – PAN Sequence Number	18
7.3.3.	Field 55 – ICC Related Data	18
7.3.4.	Issuer Authentication Data	21
8. Fallbac	k Transaction	21
-	anagement System	22
9.1.	Symmetric Key Management	22
9.2. 9.2.1.	Keys Categories Issuer Master Key Generation	22 23
9.2.1.1.	Application Cryptogram (AC) Master Key Activity	23
9.2.1.2.	MAC Master Key	24
9.2.1.3.	Encryption Master Key	24
9.2.2.	ICC Master Key Derivation	25
9.2.2.1.	Option A	25
9.2.2.2.	Option B	26
9.2.2.3.	Option C	26
9.2.3.	Session Key Derivation	27
9.2.3.1.	EMV Common Session Key Method	27

,

9.2.3.2.	Mastercard Proprietary SKD method	28
9.2.3.3.	EMV 2000 SKD for MasterCard	29
9.2.3.4.	XOR Session Key Derivation Method	30
10. Crypto 10.1. 10.1.1.	31 31 32	
10.1.1.1.	Standard EMV method	32
10.1.1.2.	Common Core Definition Method	33
10.1.2.	Visa	33
10.1.2.1.	ARQC for CVN 10 (HEX = 0A)	33
10.1.2.2.	ARQC for CVN 18 (HEX = 12)	34
10.1.3.	Mastercard	34
10.1.3.1.	ARQC for CVN 10, CVN 12 and CVN 14 (Without counters)	34
10.1.3.2.	ARQC for CVN 11, CVN 13 and CVN 15 (With counters)	35
10.1.4.	RuPay	36
10.1.4.1.	ARQC for CVN 5	36
10.1.4.2.	ARQC for CVN 6	36
10.1.4.3.	ARQC for CVN 01	37
10.1.4.4.	ARQC for CVN 02	37
10.2. 10.2.1.	Overview of Authorisation Response Cryptogram (ARPC) ARPC Method 1	38 38
10.2.1.1.	Applying the Triple-DES algorithm	38
10.2.1.2.	Applying AES	39
10.2.2.	ARPC Method 2	39
10.2.2.1.	Applying the Triple-DES algorithm	40
10.2.3.	VISA	41
10.2.3.1.	ARPC for CVN 10	41
10.2.3.2.	ARPC for CVN 18	41
10.2.4.	Mastercard	42
10.2.5.	RuPay	43
10.2.5.1.	ARPC for CVN 5 & 6	43
10.2.5.2.	ARPC for CVN 1 & 2	44
10.3.	HSM Commands Interaction	44
10.3.1.	ARQC validation & ARPC generation for EMV 4.X	44
10.3.2.	Mastercard	45
10.3	3.2.1. Command Message for Mastercard CVN (14,15,12,13)	45

10.3.	10.3 3.	.2.2. Visa	Command Message for Mastercard CVN 10 & 11	46 48
	10.3	.3.1.	Command Message for Visa CVN 18	48
	10.3	.3.2.	Command Message for Visa CVN 10	49
10.3.	4.	RuPay		50
	10.3	.4.1.	Command Message for RuPay CVN 05 & 06	50
10.3.	5.	Sampl	e HSM Message	52
11. <i>A</i>	Author	ization F	Processing	52
11.		Overvi	-	52
11.	2.	Online	Card Authorization	52
11.	3.	Issuer	Risk Management	53
11.			verification	54
11.			Authentication Data	54
11.		-	Processing	54
11.6.	1.	Comm	and Structure	55
11.6.	2.	Messa	ge Authentication Code (MAC)	56
11.6.	3.	List of	Issuer Script Commands	57
	11.6	.3.1.	Application Block Command	57
	11.6	.3.2.	Application Unblock Command	57
	11.6	.3.3.	Card Block Command	58
	11.6	.3.4.	PIN Change/Unblock Command	58
11.6.	4.	VISA		59
	11.6	.4.1.	PUT Data Command	59
	11.6	.4.2.	Update Record Command	60
11.6.	5.	Master	•	60
	11.6	.5.1.	PUT Data Command	61
	11.6	.5.2.	Update Record Command	62
11.6.	6.	RuPay	1	63
	11.6	.6.1.	PUT Data Command	63
	11.6	.6.2.	Update Record Command	64
	11.6		Card Block Command	65
12. F	ailure	Scenar		65
12.			validation failed by Issuer	65
12.			'alidation Failed	66
12.			action Declined by Issuer basis CVR Validation	66
12.			lid not receive AAC / TC	66
12.			ejected after online Issuer Approval	67
			suer Application Data	67
13. 13.		,	ICB, CUP	67
			rcard, RuPay	68 69
			erminal Verification Results erso File format	71
	Refere		order no romat	77
	Slossa			77
		,		• •

Table of Figures

Table 1: Decimalization for Master Key Derivation	26
Table 2: Minimum Set of Data Elements for Application Cryptogram Generation	
Table 3 : Supported CVN's	33
Table 4: Additional data for ARQC with CVN 10	
Table 5: Additional data for ARQC with CVN 5	36
Table 6: Additional data for ARQC with CVN 6	36
Table 7: Additional data for ARQC with CVN 01	37
Table 8: Additional data for ARQC with CVN 02	37
Table 9: Input Data for ARPC Method 1	38
Table 10: Input data for ARPC Method 2	39

Document Control

Date	version no.	Author	Revision
02-Mar-2019	1.0	PayHuddle	First Draft
10-Apr- 2019	1.1	PayHuddle	Updated with other sections
15-Apr -2019	1.2	PayHuddle	Script processing, Appendix added
13-June-2019	1.3	PayHuddle	Updated

1. Introduction

EMVCo has specified standards to secure payment transactions from counterfeiting card. Every issuer should issue and process EMV card and transaction in order to provide payment security to the consumer. Every payment scheme implements and ensures EMVCo standards for their stakeholders with some specific business requirement changes. Innova solution having issuer host intend to migrate to EMV for chip card transaction processing. This document shall guide them to implement EMV in Innova Solution host.

2. Purpose

The purpose of this document is to guide the host developers to implement EMV to process chip transactions.

3. Scope

This document shall depict the implementation requirement in issuer host to process EMV transaction in accordance to EMV 4.3 for below payment schemes to process contact transaction.

- Visa
- Mastercard
- RuPay

4. Audience

The audience of this document shall be

- Issuer Host Developer
- Issuer service provider

5. Overview of EMV Contact Transaction

An EMV transaction is secured and differentiated from normal magstripe transaction because of below reasons

- Card authentication
- Issuer authorization
- Issuer authentication by card.

Issuer plays major role in chip card transaction by controlling chip card with EMV level security and cross authentication of the transaction by both issuer host and card in terminal.

EMV uses cryptography method to secure transaction by generating unique cryptogram for every transaction request and response which gets validated by issuer and card respectively.

Figure 1: EMV Transaction Flow

6. Issuer responsibilities

In an EMV transaction issuer performs authorization and authentication of transactions. In general issuer performs below responsibilities

- Receiving and processing request message (0200/0100)
- Perform PIN validation
- Perform account and balance validation
- · Perform risk management
- Perform Authorization request cryptogram validation
- Generate Authorization response cryptogram validation
- Prepare issuer script if any to update data in card for taking action like blocking or unblocking application.
- Prepare issuer authentication data.
- · Sends response

7. Processing Requirements for Host

EMV transaction is processed and authorized by issuer based on the chip information received. The information from card and terminal are transported to issuer by some dedicated fields in ISO 8583 message. Chip data are represented in TLV (Tag Length Value) format. Every payment scheme has set of mandatory tags to be sent in request to issuer in order to enable issuer to verify and authorize transaction after performing EMV security evaluation.

There are three data elements in ISO 8583 carries EMV transaction information. The fields are 22, 23 and 55.

Field 22 helps to identify if it is chip transaction. This field has defined value to identify chip transaction.

Field 23 carries Pan sequence Number

Field 55 carries EMV tags i.e. Chip data.

7.1. Visa

7.1.1. Field 22- PoS Entry Mode

Attributes	Attributes						
Length	4						
Format	Numeric						
Position	Position 1-2 Position 3 Position 4						
Subfields	PAN entry mode	PIN Entry capability	Fill				
	05- Chip read at terminal	1- Terminal can accept PIN					
Values	95 – Chip read but data unreliable	2 – Terminal cannot accept PIN	0				
	90 – Fallback to magstripe	8 – Terminal PIN pad down					

7.1.2. Field 23 – PAN Sequence Number

PAN sequence number is used to differentiate card when multiple card has same PAN. PAN sequence number is personalized in card in Tag 5F34 and travels in request message to issuer.

PAN sequence number is also required to derive UDK from ICC Master key to validate ARQC.

Issuer shall send PAN sequence number along with PAN to HSM to validate ARQC for a particular transaction.

If PAN sequence number is absent in request received by Issuer shall fill with zero and send to HSM.

Attributes	
Length	3
Format	Numeric
Values	000-099
Presence	Mandatory for chip transaction (DE22- 05X / 95X)

7.1.3. Field 55 - ICC Related Data

Attributes						
Length	1-byte Binary +	1-byte Binary + 255 Bytes Variable				
Format	Hex	Hex				
Position	Byte 1	Byte 2	Byte 3 -4	Byte 5-256		
Subfield	Length	Data set ID	Dataset Length	Chip data in TLV format		
Presence	Mandatory for chip transaction (DE22- 05X / 95X)					

Length (Byte 1) – This is one-byte binary subfield that contains number of bytes present after the length subfield.

Dataset ID – This is one-byte binary identifier given to each data set. The value is hexadecimal 01

Dataset length - This is 2 bytes binary subfield that contains the total length of TLVs.

Chip Data – This maximum 252-byte hexadecimal field where all EMV tags populated in Tag length and value format.

Tag – An EMV tag can be of one byte or two byte long. Whether the tag is of one byte or two bytes can be known from the last five bits of (bits 4 -8) of the first byte. If all the five bits are set to 1 then next byte is part of the tag, else not.

For example: -

Tag 9F06 – Here 9F in binary 10011111. So, bit 1 to 5 is set to 1. So, 06 is part of the tag. So full tag is 9F06

Tag 95 – Here 95 in binary 10010101. So, bit 4 to 8 is not set to 1. So, tag is 95.

Length- Length of the tag is represented in 1 byte or 2 bytes. Most EMV tag length are represented in 1 byte only.

When bit b8 of the most significant byte of the length field is set to 0, the length field consists of only one byte. Bits b7 to b1 code the number of bytes of the value field. The length field is within the range 1 to 127. When bit b8 of the most significant byte of the length field is set to 1, the subsequent bits b7 to b1 of the most significant byte code the number of subsequent bytes in the length field. The subsequent bytes code an integer representing the number of bytes in the value field. Two bytes are necessary to express up to 255 bytes in the value field

Value- Value of the tag (chip card data) in hexadecimal format.

Tag	Description	Length	MTI	Presence
9F02	Amount Authorized	Fixed length	0100 / 0200 /0120/	М
		12 N, 4-bit BCD	0220/ 0400/ 0420/	
		(unsigned packed)	0422	
		6 bytes		
9F03	Amount Other	Fixed length	0100 / 0200 /0120/	М
		12 N, 4-bit BCD	0220/ 0400/ 0420/	
		(unsigned packed);	0422	
		6 bytes		

5F2A	Transaction Currency code	Fixed length 3N, 4-bit BCD,	0100 / 0200 /0120/ 0220/ 0400/ 0420/	М
		2 bytes	0422	
82	Application Interchange profile	Fixed length 16-bit string; 2 bytes	0100 / 0200 /0120/ 0220/ 0400/ 0420/ 0422	M
95	Terminal Verification result	Fixed length 5 bytes;	0100 / 0200 /0120/ 0220/ 0400/ 0420/ 0422	M
9A	Transaction Date	Fixed length 6N, 4-bit BCD; 3 bytes	0100 / 0200 /0120/ 0220/ 0400/ 0420/ 0422	М
9C	Transaction Type	Fixed length 2N, 4-bit BCD 1 byte	0100 / 0200 /0120/ 0220/ 0400/ 0420/ 0422	М
9F10	Issuer Application Data	Variable length Length 1-byte binary + Up to 32 bytes of value	0100 / 0200 /0120/ 0220/ 0400/ 0420/ 0422	М
9F1A	Terminal country code	Fixed length 3N, 4-bit BCD; 2 bytes	0100 / 0200 /0120/ 0220/ 0400/ 0420/ 0422	M
9F26	Application Cryptogram	Fixed length 16 hexadecimals digits; 8 bytes	0100 / 0200 /0120/ 0220/ 0400/ 0420/ 0422	M
9F33	Terminal Capability	Fixed length 3 bytes	0100 / 0200 /0120/ 0220/ 0400/ 0420/ 0422	M
9F36	Application Transaction Counter	Fixed length 4 hexadecimal digits, 2-byte binary value	0100 / 0200 /0120/ 0220/ 0400/ 0420/ 0422	М
9F37	Unpredictable Number	Fixed length 8 hexadecimal digits; 4 bytes	0100 / 0200 /0120/ 0220/ 0400/ 0420/ 0422	М
9F27	Cryptogram Information Data	Fixed length 1-byte length + 1 byte of Value	0100 / 0200 /0120/ 0220/ 0400/ 0420/ 0422	С
9F34	CVM results	Fixed length 1-byte length + 3 bytes of Value	0100 / 0200 /0120/ 0220/ 0400/ 0420/ 0422	С
9F35	Terminal Type	Fixed length 1-byte length + 1 byte of Value	0100 / 0200 /0120/ 0220/ 0400/ 0420/ 0422	С
84	Dedicated file name	Variable length 1-byte Binary(length) + 5 bytes to 16 bytes value	0100 / 0200 /0120/ 0220/ 0400/ 0420/ 0422	М
91	Issuer Authentication Data	Variable length 1-byte Binary(length) + 8 byes to 16 bytes value	0110 /0210 / 0120	M

71	Issuer Script Template 1	Variable length	0110 / 0210	С
		1 byte +		
		510 hexadecimals		
		digits, maximum		
		256 bytes		
72	Issuer Script template 2	Variable length	0110 / 0210	С
		1 byte +		
		510 hexadecimals		
		digits, maximum		
		256 bytes		
9F5B	Issuer script result	Variable length	0400/ 0420	С
		1-byte binary (length) +		
		40 hexadecimals;		
		Maximum 20 bytes of		
		value		
C0	Secondary PIN block	8 bytes	0100 / 0200	С

Note: Tag 9F03 shall be present for cashback transaction with cashback amount. For other transaction type tag 9F03 may be absent or populated with Zero. If tag 9F03 is absent issuer shall consider tag 9F03 value as zero and send to HSM for ARQC validation.

Note:

- 1. The hexadecimal representation is given here. Every two positions of hexadecimal data are one byte of binary data.
- 2. Lengths are in binary format.
- 3. The Total Sub Element Length is the sum of the sub element's ID, length, and data subfields.
- 4. Issuer shall be able to process any other valid tags coming in request message other than tags mentioned in above table.

7.1.4. Issuer Authentication Data

Issuer authentication data is represented in Tag 91 and populated in DE55 in response by issuer. Issuer shall populate tag 91 when issuer authentication is performed by validating ARQC and generating ARPC. There are several ways to build tag 91 after receiving response from HSM with ARPC.

Length	10 bytes			
Format	16 hexadecimal	digits + 2 AN EBCDIC (ARC)	
Position	Type of VSDC Card		Byte Content	
	VIS (CVNs: 10, 12, 50–59)	ARPC cry	/ptogram	ARPC response code
	CCD or	ARPC cryptogram	CSU	ARPC response code
	VIS CVN 18	Bytes 1–4	Bytes 5–8	This crosponie code
		Bytes	1–8	Bytes 9–10

This issuer authentication data shall be populated in DE55 Tag 91 and De 139.

7.1.5. Third bitmap Fields

Other than above fields Visa also transports EMV tags in dedicated ISO fields. Acquirer and Issuer supporting third bitmap sends these fields populating value from DE55 tags.

Issuer shall not decline transaction if transaction request is received without these fields.

But Issuer shall be able to process and store these fields while sent in request messages.

Field	Format	DE 55 Tag	Mandatory MTI	Optional
130	Fixed length, 3	Tag 9F33	0100 , 0200, 0220,	0120
	bytes	_	0420, 0620	
131	Fixed length, 5	Tag 95	0200,0100, 0220,	0422, 0220
	bytes		0620, 0420	
132	Fixed Length, 4	Tag 9F37	0100	0120
	Bytes			
134 , Format 1	variable length	Tag 9F10	0100, 0200,	0120, 0422
	1-byte binary +			
	Up to 15 bytes of			
	data;			
134, Format 2	variable length	Tag 9F10	0100, 0400, 0200,	0120
	1-byte binary +		0420	
	Up to 32 bytes of			
405	data;	T 0540 J	0400 0000	0400
135	variable length	Tag 9F10 Issuer	0100, 0200	0120
	1-byte binary length	Discretionary data		
	Up to 15 bytes of			
	data;			
136	fixed length	Tag 9F26	0200,0220,0100	0120
	16 hexadecimal	1 49 01 20	0200,0220,0100	0.20
	digits; 8 bytes			
137	fixed length	Tag 9F36	0100, 0200	0120,0422
	4 hexadecimal			
	digits; a 2-byte			
	binary value			
138	fixed length	Tag 82	0100,0200	0120, 0422, 0220
	16 hexadecimal			
	digits; 8 bytes			
139	fixed length	Tag 91	0110, 0210,0220	
	16 hexadecimal			
	digits +			
4.40	2 AN EBCDIC;	T 0550	0.400.0000.0400	
143	variable length	Tag 9F5B	0420,0620, 0400	
	1-byte binary + 40 hexadecimal			
	40 hexadecimal digits; Up to 20			
	bytes of data			
144	fixed length	Tag 9C	0100, 0200, 0220	0422
177	2N, 4-bit BCD	1 49 50	0100, 0200, 0220	U722
	(unsigned packed);			
	1 byte			
	. 2,10		l	l

145	fixed length	Tag 9F1A	0100, 0200,	
	3N, 4-bit BCD; 2			
	bytes			
146	fixed length	Tag 9A	0100, 0200	
	6N, 4-bit BCD; 3			
	bytes			
147	fixed length	Tag 9F02	0100, 0200	
	12N, 4-bit BCD			
	(unsigned packed);			
	6 bytes			
148	fixed length	Tag 5F2A	0100,0200	
	3N, 4-bit BCD; 2			
	bytes			
149	fixed length	Tag 9F03	0100, 0200	
	12N, 4-bit BCD			
	(unsigned packed);			
	6 bytes			
152	fixed length	Tag C0	0100,0200 (For	
	64 N, bit string; 8		PIN change	
	bytes		transaction)	

7.2. Mastercard

7.2.1. Field 22- PoS Entry Mode

Attributes			
Length	3		
Format	Numeric		
Position	Position 1-2	Position 3	
Subfields	PAN entry mode	PIN Entry capability	
	05- Chip read at terminal	1 - Terminal can accept PIN	
Values	80 – Fallback to magstripe	2 – Terminal cannot accept PIN	
values	95 – Unreliable CVV (Visa)	8 – Terminal PIN pad down	
		0 – Unknown Capability	

7.2.2. Field 23 – PAN Sequence Number

PAN sequence number is used to differentiate card when multiple card has same PAN. PAN sequence number is personalized in card in Tag 5F34 and travels in request message to issuer.

PAN sequence number is also required to derive UDK /MDK from Issuer/ ICC master key to validate ARQC. Issuer shall send PAN sequence number along with PAN to HSM to validate ARQC for a particular transaction.

If PAN sequence number is absent in request received by Issuer shall fill with zero and send to HSM.

Attributes	
Length	3
Format	Numeric
Values	000-099
Presence	Mandatory for Chip transaction (DE22 = 05X)

,

7.2.3. Field 55 - ICC Related Data

Attributes	
Format	b255 LLLVAR
Presence	Mandatory for chip transactions (DE 22 = 05X / 95X)

Length (position 1-3) - This represents DE 55-total length. This comes in ASCII.

Sub element ID or Tag – First sub element ID, in binary representation; the length is either one or two positions depending on the definition of the sub element.

Sub element or Tag length - This represents the length of the tag value. This is 1 byte.

Sub element data – this represents the value of the tag. This is variable based on the defined tag length.

Tag – An EMV tag can be of one byte or two byte long. Whether the tag is of one byte or two bytes can be known from the last five bits of (bits 4 -8) of the first byte. If all the five bits are set to 1 then next byte is part of the tag, else not.

For example: -

Tag 9F06 – Here 9F in binary 10011111. So, bit 1 to 5 is set to 1. So, 06 is part of the tag. So full tag is 9F06

Tag 95 – Here 95 in binary 10010101. So, bit 4 to 8 is not set to 1. So, tag is 95.

Length- Length of the tag is represented in 1 byte or 2 bytes. Most EMV tag length are represented in 1 byte only.

When bit b8 of the most significant byte of the length field is set to 0, the length field consists of only one byte. Bits b7 to b1 code the number of bytes of the value field. The length field is within the range 1 to 127. When bit b8 of the most significant byte of the length field is set to 1, the subsequent bits b7 to b1 of the most significant byte code the number of subsequent bytes in the length field. The subsequent bytes code an integer representing the number of bytes in the value field. Two bytes are necessary to express up to 255 bytes in the value field

Value- Value of the tag (chip card data) in hexadecimal format.

Tag	Description	Length	MTI	Presence
9F02	Amount Authorized	Fixed length	0100 / 0200 /0120/	М
		12 N, 4-bit BCD	0220/ 0400/ 0420/	
		(unsigned packed)	0422	
		6 bytes		
9F03	Amount Other	Fixed length	0100 / 0200 /0120/	М
		12 N, 4-bit BCD	0220/ 0400/ 0420/	
		(unsigned packed);	0422	
		6 bytes		
5F2A	Transaction Currency code	Fixed length	0100 / 0200 /0120/	М
		3N, 4-bit BCD,	0220/ 0400/ 0420/	
		2 bytes	0422	
82	Application Interchange profile	Fixed length	0100 / 0200 /0120/	М
		16 bit string; 2 bytes	0220/ 0400/ 0420/	

			0422	
95	Terminal Verification result	Fixed length	0100 / 0200 /0120/	М
		5 bytes;	0220/ 0400/ 0420/	
			0422	
9A	Transaction Date	Fixed length	0100 / 0200 /0120/	М
		6N, 4 bit BCD; 3 bytes	0220/ 0400/ 0420/	
			0422	
9C	Transaction Type	Fixed length	0100 / 0200 /0120/	М
		2N, 4 bit BCD	0220/ 0400/ 0420/	
		1 byte	0422	
9F10	Issuer Application Data	Variable length	0100 / 0200 /0120/	М
		Length 1 byte binary +	0220/ 0400/ 0420/	
		Up to 32 bytes of value	0422	
9F1A	Terminal country code	Fixed length	0100 / 0200 /0120/	M
		3N, 4 bit BCD; 2 bytes	0220/ 0400/ 0420/	
	_		0422	
9F26	Application Cryptogram	Fixed length	0100 / 0200 /0120/	M
		16 hexadecimals	0220/ 0400/ 0420/	
		digits; 8 bytes	0422	
9F33	Terminal Capability	Fixed length	0100 / 0200 /0120/	M,
		1 byte binary length +	0220/ 0400/ 0420/	Optional
0500		3 bytes	0422	for US
9F36	Application Transaction	Fixed length	0100 / 0200 /0120/	М
	Counter	4 hexadecimal digits,	0220/ 0400/ 0420/	
0007	Llower distable Niverbox	2 byte binary value	0422	N 4
9F37	Unpredictable Number	Fixed length	0100 / 0200 /0120/	М
		8 hexadecimal digits;	0220/ 0400/ 0420/ 0422	
9F27	Cryptogram Information Data	4 bytes Fixed length	0100 / 0200 /0120/	M
31 21	Cryptogram information bata	1 byte length +	0220/ 0400/ 0420/	IVI
		1 byte of Value	0422	
9F34	CVM results	Fixed length	0100 / 0200 /0120/	M
31 34	O VIVI TOSUILS	1 byte length +	0220/ 0400/ 0420/	IVI
		3 bytes of Value	0422	
9F35	Terminal Type	Fixed length	0100 / 0200 /0120/	0
0.00		1 byte length +	0220/ 0400/ 0420/	
		1 byte of Value	0422	
84	Dedicated file name	Variable length	0100 / 0200 /0120/	M
	1 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	1 byte Binary(length) +	0220/ 0400/ 0420/	
		5 bytes to 16 bytes	0422	
		value		
9F1E	IFD serial number	Fixed length	0100 / 0200/0120/	0
		1 byte length +	0220/ 0400/ 0420/	
		8 byte of Value	0422	
9F53	Transaction category code	Fixed length	0100 / 0200/0120/	0
		1 byte length +	0220/ 0400/ 0420/	
		1 byte of Value	0422	
9F09	Analization Manaina access on	Fixed length	0100 / 0200/0120/	0
Í	Application Version number	i ixea ierigiii		
	Application Version number	1 byte length +	0220/ 0400/ 0420/	

`

9F41	Transaction sequence counter	Variable length	0100 / 0200/0120/	0
		1 byte Binary(length) +	0220/ 0400/ 0420/	
		2 bytes to 4 bytes	0422	
		value		
91	Issuer Authentication Data	Variable length	0110 /0210 / 0120	М
		1 byte Binary(length) +		
		8 byes to 16 bytes		
		value		
71	Issuer Script Template 1	Variable length	0110 / 0210	С
		1 byte binary length +		
		510 hexadecimals		
		digits, maximum		
		256 bytes		
72	Issuer Script template 2	Variable length	0110 / 0210	С
		1 byte +		
		510 hexadecimals		
		digits, maximum		
		256 bytes		
9F5B	Issuer script result	Variable length	0400/ 0420	С
		1 byte binary (length) +		
		40 hexadecimals;		
		Maximum 20 bytes of		
		value		

Note:

- 1. The hexadecimal representation is given here. Every two positions of hexadecimal data are one byte of binary data.
- 2. Lengths are in binary format.
- 3. The Total Sub Element Length is the sum of the sub element's ID, length, and data subfields.
- 4. Issuer shall be able to process any other valid tags coming in request message other than tags mentioned in above table.

7.2.4. Issuer Authentication Data

Issuer authentication data is represented in Tag 91 and populated in DE55 in response by issuer. Issuer shall populate tag 91 when issuer authentication is performed by validating ARQC and generating ARPC. There are several ways to build tag 91 after receiving response from HSM with ARPC.

Attributes		
Length	10 bytes	
Format	20 hexadecimal digits (10 bytes binary)	
Position	Byte 1- 8	Byte 9 -10
Values	ARPC	ARPC Response code

7.3. RuPay

7.3.1. Field 22- PoS Entry Mode

Attributes			
Length	3		
Format	Numeric		
Position	Position 1-2	Position 3	
Subfields	PAN entry mode	PIN Entry capability	
	05- Chip read at terminal	1 - Terminal can accept PIN	
Values	80 – Fallback to magstripe	2 – Terminal cannot accept PIN	
values	95 – Unreliable CVV (Visa)	8 – Terminal PIN pad down	
		0 – Unknown Capability	

7.3.2. Field 23 – PAN Sequence Number

PAN sequence number is used to differentiate card when multiple card has same PAN. PAN sequence number is personalized in card in Tag 5F34 and travels in request message to issuer.

PAN sequence number is also required to derive UDK or ICC r=derived key from ICC Master key to validate ARQC.

Issuer shall send PAN sequence number along with PAN to HSM to validate ARQC for a particular transaction.

If PAN sequence number is absent in request received by Issuer shall fill with zero and send to HSM.

Attributes	
Length	3
Format	Numeric
Values	000-099
Presence	Mandatory for Chip transaction (DE22 = 05X / 95X)

7.3.3. Field 55 - ICC Related Data

Attributes	
Formats	b255 LLLVAR
Presence	Mandatory for chip transactions (DE 22 = 05X / 95X)

Length (position 1-3) - This represents DE 55 total length. This comes in ASCII.

Tag – First sub element ID, in binary representation; the length is either one or two positions depending on the definition of the sub element.

Tag length - This represents the length of the tag value. This is 1 byte.

Tag data – this represents the value of the tag. This is variable based on the defined tag length.

Tag – An EMV tag can be of one byte or two byte long. Whether the tag is of one byte or two bytes can be known from the last five bits of (bits 4 -8) of the first byte. If all the five bits are set to 1 then next byte is part of the tag, else not.

For example: -

Tag 9F06 - Here 9F in binary 10011111. So, bit 1 to 5 is set to 1. So, 06 is part of the tag. So full tag is 9F06

Tag 95 – Here 95 in binary 10010101. So, bit 4 to 8 is not set to 1. So, tag is 95.

Length- Length of the tag is represented in 1 byte or 2 bytes. Most EMV tag length are represented in 1 byte only.

When bit b8 of the most significant byte of the length field is set to 0, the length field consists of only one byte. Bits b7 to b1 code the number of bytes of the value field. The length field is within the range 1 to 127. When bit b8 of the most significant byte of the length field is set to 1, the subsequent bits b7 to b1 of the most significant byte code the number of subsequent bytes in the length field. The subsequent bytes code an integer representing the number of bytes in the value field. Two bytes are necessary to express up to 255 bytes in the value field

Value- Value of the tag (chip card data) in hexadecimal format.

Tag	Description	Length	MTI	Presence
9F02	Amount Authorized	Fixed length	0100 / 0200 /0120/	M
		12 N, 4 bit BCD	0220/ 0400/ 0420/	
		(unsigned packed)	0422	
		6 bytes		
9F03	Amount Other	Fixed length	0100 / 0200 /0120/	M
		12 N, 4 bit BCD	0220/ 0400/ 0420/	
		(unsigned packed);	0422	
		6 bytes		
5F2A	Transaction Currency code	Fixed length	0100 / 0200 /0120/	M
		3N, 4 bit BCD,	0220/ 0400/ 0420/	
		2 bytes	0422	
82	Application Interchange profile	Fixed length	0100 / 0200 /0120/	M
		16 bit string; 2 bytes	0220/ 0400/ 0420/	
			0422	
95	Terminal Verification result	Fixed length	0100 / 0200 /0120/	М
		5 bytes;	0220/ 0400/ 0420/	
			0422	
9A	Transaction Date	Fixed length	0100 / 0200 /0120/	М
		6N, 4 bit BCD; 3 bytes	0220/ 0400/ 0420/	
			0422	
9C	Transaction Type	Fixed length	0100 / 0200 /0120/	М
		2N, 4 bit BCD	0220/ 0400/ 0420/	
		1 byte	0422	
9F10	Issuer Application Data	Variable length	0100 / 0200 /0120/	М
		Length 1 byte binary +	0220/ 0400/ 0420/	
		Up to 32 bytes of value	0422	
9F1A	Terminal country code	Fixed length	0100 / 0200 /0120/	М
		3N, 4 bit BCD; 2 bytes	0220/ 0400/ 0420/	
			0422	
9F26	Application Cryptogram	Fixed length	0100 / 0200 /0120/	М

		16 hexadecimals	0220/ 0400/ 0420/	
		digits; 8 bytes	0422	
9F33	Terminal Capability	Fixed length	0100 / 0200 /0120/	M,
		1 byte binary length +	0220/ 0400/ 0420/	Optional
		3 bytes	0422	for US
9F36	Application Transaction	Fixed length	0100 / 0200 /0120/	М
	Counter	4 hexadecimal digits,	0220/ 0400/ 0420/	
		2 byte binary value	0422	
9F37	Unpredictable Number	Fixed length	0100 / 0200 /0120/	М
		8 hexadecimal digits;	0220/ 0400/ 0420/	
		4 bytes	0422	
9F27	Cryptogram Information Data	Fixed length	0100 / 0200 /0120/	М
		1 byte length +	0220/ 0400/ 0420/	
		1 byte of Value	0422	
9F34	CVM results	Fixed length	0100 / 0200 /0120/	0
		1 byte length +	0220/ 0400/ 0420/	
		3 bytes of Value	0422	
9F35	Terminal Type	Fixed length	0100 / 0200 /0120/	0
		1 byte length +	0220/ 0400/ 0420/	
		1 byte of Value		
84	Dedicated file name	Variable length	0100 / 0200 /0120/	0
		1 byte Binary(length) +	0220/ 0400/ 0420/	
		5 bytes to 16 bytes		
		value		
9F06	AID Terminal	Variable length	0100 / 0200 /0120/	0
		1 byte Binary(length) +	0220/ 0400/ 0420/	
		5 bytes to 16 bytes		
		value		
9F07	Application Usage control	Fixed length	0100 / 0200 /0120/	0
		1 byte length +	0220/ 0400/ 0420/	
		2 bytes of Value		
9F1E	IFD serial number	Fixed length	0100 / 0200/0120/	0
		1 byte length +	0220/ 0400/ 0420/	
		8 bytes of Value	0422	
9F53	Transaction category code	Fixed length	0100 / 0200/0120/	0
		1 byte length +	0220/ 0400/ 0420/	
		1 byte of Value	0422	
9F09	Application Version number	Fixed length	0100 / 0200/0120/	0
		1-byte length +	0220/ 0400/ 0420/	
		2 bytes of Value	0422	
9F41	Transaction sequence counter	Variable length	0100 / 0200/0120/	0
		1 byte Binary(length) +	0220/ 0400/ 0420/	
		2 bytes to 4 bytes	0422	
		value		
91	Issuer Authentication Data	Variable length	0110 /0210 / 0120	М
		1 byte Binary(length) +		
		8 byes to 16 bytes		
		value		
71	Issuer Script Template 1	Variable length	0110 / 0210	С
		1 byte binary length +		

`

		510 hexadecimals		
		digits, maximum		
		256 bytes		
72	Issuer Script template 2	Variable length	0110 / 0210	С
		1 byte +		
		510 hexadecimals		
		digits, maximum		
		256 bytes		
9F5B	Issuer script result	Variable length	0400/	С
		1 byte binary (length) +	0420/0120/0220	
		40 hexadecimals;		
		Maximum 20 bytes of		
		value		

Note:

- 1. The hexadecimal representation is given here. Every two positions of hexadecimal data are one byte of binary data.
- 2. Total length of DE 55 shall be in ASCII
- 3. Tag Length Value (Chip Data) coded in BCD.
- 4. The Total Sub Element Length is the sum of the sub element's ID, length, and data subfields.
- 5. Issuer shall be able to process any other valid tags coming in request message other than tags mentioned in above table.

7.3.4. Issuer Authentication Data

Issuer authentication data is represented in Tag 91 and populated in DE55 in response by issuer. Issuer shall populate tag 91 when issuer authentication is performed by validating ARQC and generating ARPC. There are several ways to build tag 91 after receiving response from HSM with ARPC.

Attributes	Attributes				
Length	10 bytes				
Format	20 hexadecimal digits (10 bytes binary)				
Position	Byte 1- 8 Byte 9 -10				
Values	ARPC CSU / ARC				

8. Fallback Transaction

When a Chip Card is presented at an EMV Chip enabled terminal, the transaction should be completed as a Chip Card Transaction. If the transaction cannot be completed with Chip due to chip malfunction or reader malfunction or unknown AID, the transaction shall "fall back" to a magnetic stripe transaction and is submitted to the Issuer for authorization as a magnetic stripe transaction.

Fallback transactions shall always go online for authorization

- Fall back transactions shall be indicated in the Financial / Authorization request message by setting DE 22 (POS Entry Mode) to '80X'
- DE 55 and DE 23 shall be absent in request message for fallback transaction.

** Fallback may not be allowed in few countries. Issuers should contact the Payment System regional representative for the rules in market.

9. Key Management System

Key management system plays main role when it comes to perform security evaluation of EMV standard. EMV contact transaction security is managed through symmetric key management involving creation of multiple level of keys which are explained in subsequent sections.

9.1. Symmetric Key Management

This section describes the different keys that an Issuer shall generate and manage to process chip card transaction. To process chip card transaction there are various cryptogram like ARQC, ARPC & MAC are derived and validated using symmetric set of keys.

These keys can be securely managed through an HSM, but if issue wish to implement as software HSM they can do so by developing algorithms mentioned in subsequent sections.

9.2. Keys Categories

In EMV transaction scenario there are three broad categories of keys

- Application Cryptogram Keys (AC Key)
- MAC Keys or secure messaging for integrity (SMI) key
- Encryption keys or secure messaging for confidentiality (SMC) keys.

Each of the above key has a master key, derived key and session key.

Chip keys can be be divided into three categories, as follows:

- Issuer Master Keys; Length = 16 Bytes
 - Application Cryptogram Master Keys
 - MAC Master keys (SMI)
 - Encryption Master Keys (SMC)
- Derived Unique Keys / ICC Master keys; Length = 16 Bytes
 - ICC AC Master keys
 - ICC MAC Master keys
 - ICC Encryption Master Keys
- Session Keys; Length = 16 Bytes
 - AC Session keys
 - MAC session keys
 - Encryption session keys

Master Keys also referenced as Issuer Master Key (IMK)is property of issuer. Each master key shall have a

unique key index which shall be used to identify the key. This key index shall be personalized in the CHIP card & is sent to issuer during the authorization process as part of chip data in data element DE55 in Tag 9F10. Issuer Master Keys are generated by the Issuer are stored in host systems / HSMs for personalization and authorizations.

Each 16 Byte key has two 8 Bytes part and shall be referenced, throughout this document, first part (left most part) as Key A & second part (right most part) as Key B.

Issuer master keys used to derive unique keys, also referenced as ICC Derived Unique Master Keys (RuPay), Unique Derivation key (Visa) and Master Derivation Key (MasterCard), which are the keys personalized on the chip card

- ICC Application Cryptogram (AC) Master Key / UDK / MDK
- ICC MAC Master Key
- ICC Encryption Master Key

Usage of Keys

- 1. The key derived from Application Master Key is used to generate AC and ARPC & is referenced as ICC Application Master Key (ICCMAC)
- 2. The key derived from MAC Master Key is used for Secure Messaging for Integrity & is referenced as ICC MAC Master Key (ICCMSMI)
- 3. The key derived from Encryption Master Key is used for Secure Messaging for Confidentiality & is referenced as ICC ENC Master Key (ICCMSMC)

Using the ICC Derived Unique Master Keys, Session keys are generated during the transaction processing and are unique per transaction. Session keys are further categorized into three types

- Application Session Key
- MAC Session Key
- Encryption Session Key

9.2.1. Issuer Master Key Generation

Issuer master key can be generated in HSM or through any software implementation. It is completely Issuer discretion to use any master key and then encrypt the master key under LMK in HSM. Sample HSM command is given below.

9.2.1.1. Application Cryptogram (AC) Master Key Activity

Creation

Online-AUTH>fk

Enter key length [1,2,3]: 2 Enter key type: 109

Enter key scheme: u

Enter component type [X,H,T,E,S]: x Enter number of components [1-9]: 1

Enter component 1: 111111111111111111111111111111 - Clear Application Cryptogram (AC) Master

,

Key

Encrypted key: output – Encrypted Application Cryptogram (AC) Master Key

Key check value: output

Exporting

Online-AUTH>key Enter key type: 109 Enter key scheme: x

Enter ZMK: Issuer ZMK - Encrypted ZMK

Enter ZMK variant: 00

Enter key: Output of previous step - Encrypted Application Cryptogram (AC) Master Key Key under ZMK: output – Exported Application Cryptogram (AC) Master Key under ZMK

Key check value: output

9.2.1.2. MAC Master Key

Creation

Online-AUTH>fk

Enter key length [1,2,3]: 2 Enter key type: 209 Enter key scheme: u

Enter component type [X,H,T,E,S]: x Enter number of components [1-9]: 1

Enter component 1: 333333333333333333333333333 - Clear MAC Master Key

Encrypted key: output - Encrypted MAC Master Key

Key check value: output

Exporting

Online-AUTH>key Enter key type: 209 Enter key scheme: x

Enter ZMK: Issuer ZMK – Encrypted ZMK

Enter ZMK variant: 00

Enter key: Output of previous step - Encrypted MAC Master Key

Key under ZMK: Output – Exported MAC Master Key

Key check value: output

9.2.1.3. Encryption Master Key

Creation

Online-AUTH>fk

Enter key length [1,2,3]: 2

Enter key type: 309Enter key scheme: u Enter component type [X,H,T,E,S]: x Enter number of components [1-9]: 1

Encrypted key: output - Encrypted Encryption Master Key

Key check value: output

Exporting

Online-AUTH>key

`

Page 24 / 77

Enter key type: 309 Enter key scheme: x

Enter ZMK: Issuer ZMK - Encrypted ZMK

Enter ZMK variant: 00

Enter key: output of previous step – Encrypted Encryption Master Key

Key under ZMK: output – Exported Encryption Master Key

Key check value: output

9.2.2.ICC Master Key Derivation

As per EMV 4.3 there are three options to derive ICC master keys from Issuer master key which are used for below functions to perform.

- · Application Cryptogram generation,
- Issuer authentication.
- Secure messaging.

The first two methods use the 8-byte block cipher Triple DES in ECB mode and the third method uses the 16-byte block cipher AES in ECB mode. The AES method supports 128-bit, 192-bit and 256-bit keys.

To generate ICC master key from Issuer master key below inputs are required.

Input	Source
PAN	DE 2
PAN Sequence Number	DE 23
Issuer Master Key	Stored in Issuer Host / HSM

Option A and B methods are only applicable when the block cipher is Triple DES.

9.2.2.1. Option A

This option is applicable in case PAN is equal to or less than 16 decimal digits.

- 1. Concatenate from left to right the decimal digits of the Application PAN with the PAN Sequence Number (if the PAN Sequence Number is not present, then it is replaced by a '00' byte).
- 2. If the result X is less than 16 digits long, pad it to the left with hexadecimal zeros in order to obtain an 8-byte number Y in numeric format.
- 3. If X is greater than 16 digits long, then Y consists of the 16 rightmost digits of X in numeric format.
- 4. Compute the two 8-byte numbers
 - ZL := DES3(IMK)[Y]

- ZR := DES3(IMK)[Y ('FF'||'FF'||'FF'||'FF'||'FF'||'FF')]
- Z := (ZL || ZR)

The 128-bit ICC Master Key MK is then equal to Z, with the exception of the least significant bit of each byte of Z which is set to a value that ensures that each of the 16 bytes of MK has an odd number of nonzero bits (this to conform with the odd parity requirements for DES keys).

9.2.2.2. Option B

This option is applicable in case PAN is greater than 16 decimal digits

- 1. Concatenate from left to right the decimal digits of the Application PAN and the PAN Sequence Number (if the PAN Sequence Number is not present, it is replaced by a '00' byte).
- 2. If the result is less than 16 digits long, pad it to the left with hexadecimal zeros in order to obtain an 8-byte number in numeric format.
- 3. Hash the result of the concatenation using the SHA-1 hashing algorithm to obtain the 20-byte hash result X.
- 4. Select the first 16 decimal digits (0 to 9) starting from the left side of the 20-byte (40-nibble) hash result Y and use as the value Z. If this does not provide for 16 decimal digits in Y, convert the non-decimal nibbles in Y to decimal digits by means of the following decimalization table:

Input nibble of X	А	В	С	D	Е	F
Decimalized nibble	0	1	2	3	4	5

Table 1: Decimalization for Master Key Derivation

5. Add the converted digits starting from the left side of X to the end of Y until Y contains 16 digits.

Example 1: Hash result X contains 16 or more decimal digits

X = '12 30 AB CD 56 78 42 D4 B1 79 F2 CA 34 5D 67 89 A1 7B 64 BB' Y = first 16 decimal digits of X i.e. '12 30 56 78 42 41 79 23'

Example 2: Hash result X contains less than 16 decimal digits

'B', 'C', and 'A'), giving: Y = '13 68 41 24 78 17 61 20'

X = '1B 3C AB CD D6 E8 FA D4 B1 CD F2 CA D4 FD C7 8F A1 7B 6E BB'Y = decimal digits from X = '13 68 41 24 78 17 6' plus the required number of converted digits '1 20' (from

6. Continue with the processing specified for Option A starting at Step 4.

9.2.2.3. Option C

This method is only applicable when the n-byte block cipher is AES.

1. Concatenate from left to right the decimal digits of the Application PAN with the PAN Sequence Number (if the PAN Sequence Number is not present, then it is replaced by a '00' byte). Pad it to

the left with hexadecimal zeros in order to obtain a 16-byte number Y in numeric format.

The 16-byte ICC Master Key MK is then equal to

• In the case k = 8n:

MK := AES(IMK)[Y]

• In the case 16n ≥ k > 8n:

MK := Leftmost k-bits of {AES(IMK)[Y] || AES(IMK)[Y*]} where Y* = Y \oplus ('FF'||'FF'||'FF'||'FF'||'FF'||'FF'||'FF'||'FF'||'FF'|

9.2.3. Session Key Derivation

There are essentially two methods for session key derivation as per EMV 4.X.

- The EMV CSK method.
- EMV 2000 Method

Other than EMV methods there are two scheme specific methods are also used for MasterCard and JCB.

- The MasterCard Proprietary SKD method
- XOR Session key method

9.2.3.1. EMV Common Session Key Method

The common session key derivation option generates a unique session key for each transaction performed by the application. It does this by enciphering an n-byte diversification value with the k-bit ICC Master Key (MK) to produce a k-bit ICC Session Key (SK) using an n-byte block cipher algorithm ALG in ECB mode.

The *n*-byte diversification value is represented as $R = R0 \parallel R1 \parallel R2 \parallel ... \parallel Rn-1$.

For the session key used to generate and verify the Application Cryptogram and the ARPC, the diversification value is the ATC followed by *n*-2 bytes of '00':

R: = ATC || '00' || '00' || ... || '00' || '00' || '00'.

Value	Source	Tag	Length
Application Transaction Counter (ATC)	DE 55	9F36'	2

For the session keys used for secure messaging, the diversification value R is the Application Cryptogram present in authorization request DE55 Tag 9F26 followed by n-8 bytes of '00':

R:= Application Cryptogram ... || '00' || '00' || '00'.

Value	Source	Tag	Length
Application Cryptogram (ARQC)	DE 55	9F26'	8

Page 27 / 77

For an *n*-byte block cipher ALG using a *k*-bit key where k = 8n (AES with k=128) the derivation function F is computed as follows:

```
SK := ALG (MK) [ R ].
```

For an *n*-byte block cipher ALG using a *k*-bit key where $16n \ge k > 8n$ (Triple DES with k=128 or AES with k=192 or 256) R is used to create two *n*-byte blocks as follows:

```
 F1 = R0 \mid\mid R1 \mid\mid 'F0' \mid\mid ... \mid\mid Rn-1.   F2 = R0 \mid\mid R1 \mid\mid '0F' \mid\mid ... \mid\mid Rn-1.  and  SK := \text{Leftmost } \textit{k-bits of } \{ALG (MK) [F1] \mid\mid ALG (MK) [F2] \}.
```

ALG denotes Triple DES or AES.

MK denotes ICC Master key or UDK or MDK

The same session key is used for all commands in a single transaction.

Example:

For the session key used to generate and verify the cryptograms, TC, ARQC, AAC and ARPC, the diversification value is the ATC followed by 6 bytes of '00':

```
R := ATC || '00' || '00' || '00' || '00' || '00' || '00'
```

The application computes SK according to the following steps,

1. Compute SKL, the left hand 8 bytes of SK,

```
SKL := DES3 (MK) [ATC || 'F0' || '00' || '00' || '00' || '00' || '00']
```

2. Compute SKR, the right hand 8 bytes of SK,

```
SKR := DES3 (MK) [ATC || '0F' || '00' || '00' || '00' || '00' || '00']
```

3. SK is the concatenation of SKL and SKR.

```
SK := SKL || SKR
```

9.2.3.2. Mastercard Proprietary SKD method

The MasterCard Proprietary SKD method is a special algorithm for deriving session keys for computing Application Cryptograms (ARQC, TC, AAC) and secure messaging cryptograms.

This algorithm follows EMV Common Session key method but with different diversification value R

For AC session key derivation:

```
R:= (ATC || '00' || '00' || UN)
```

Page 28 / 77

SKAC: = SKD(MKAC)[(ATC || '00' || '00' || UN)].

Value	Source	Tag	Length
Application Transaction Counter (ATC)	DE 55	9F36'	2
Unpredictable Number (UN)	DE 55	9F37	4

For Secure Messaging a new session key is derived for each script within a session:

Secure Messaging session keys SKSMI and SKSMC are derived using an eight-byte number R filled with a new value (RAND) for each script command.

For the first script command processed in the transaction, RAND or the diversification value is the ARQC Received in authorization message De 55 Tag 9F26. For subsequent script commands, RAND is obtained by incrementing the RAND used for the previous command by 1.

Specifically, RAND, as a multi-byte counter, is incremented in the same way as the two-byte ATC. Therefore, incrementing RAND when its least significant byte is 0xFF results in the next least significant byte being incremented and the least significant byte being set to 0x00. In the unlikely event that all the bytes of RAND equal 0xFF, the RAND is incremented by setting all its bytes to 0x00 (i.e. the RAND counter wraps around).

R = RAND

SKSMI: = SKD(MKSMI)[R]

SKSMC: = SKD(MKSMC)[R].

RAND is same for SMI and SMC MAC computation.

9.2.3.3. EMV 2000 SKD for MasterCard

The algorithm for deriving session keys (SKAC, SKSMI, SKSMC) used for computing application cryptograms, validating scripts received with secure messaging, and for verifying ARPCs is defined below.

Structure of the Session Key

This method uses as derivation data the two-byte Application Transaction Counter (ATC) of the ICC and the Session Key Derivation (EMV2000) function defined in EMV2000:

SK := SKDEMV2000(MK)[(ATC||'00'||'00'||'00'|| '00'||'00'|)]

Initializing Value

The initializing value IV of the EMV2000 session key derivation is a 16-byte string of binary zeros:

Data Elements

Value	Source	Tag	Length
Application Transaction Counter (ATC)	DE 55	9F36'	2

First Session Key Derivation

,

Page 29 / 77

Depending on the card personalization, the very first session key derivation could have no preceding session key. In this case, this first session key should be derived by the card in the same way as the issuer derives session keys (i.e., from the appropriate ICC Master key and IV). To compute subsequent session keys, the ICC uses the key token (GP, P, ATC_{SK}). The value of the new key token must be stored in secure memory. Specifically:

GP := IKH-2, ATCsk/b2 P := IKH-1, ATCsk/b

where "/" denotes integer division, H is the height of the tree and b is the branch factor. For M/Chip implementation, the height of the tree H is 8 and the branch factor b is 4.

Other Session Key Derivations

Depending on the value of the ATC compared to the ATCSK stored on the ICC, the following cases are possible:

- If ATC > ATC_{SK} then the session key can be derived as described in Section 9.2.3.3. When this is done, the values of GP and P stored in the ICC must be updated and ATC_{SK} must be set to ATC.
- If ATC _{SK} = ATC_{SK} then the session key has already been derived and does not require to be derived again.
- If ATC < ATC_{SK} then session key derivation must fail.

Secure Messaging Session Key

For Secure Messaging a new session key is derived at the beginning of a new session and is used for all the script commands of the same session provided the session key derivation method is not changed during the session.

The session key is computed as follows:

SK_{SMI} := SKD_{EMV2000}(MK_{SMI}) [(ATC || '00' || '00' || '00' || '00' || '00' || '00' || '00')]

 $SK_{SMC} := SKD_{EMV2000}(MK_{SMC}) [(ATC || '00' || '00' || '00' || '00' || '00' || '00' || '00')]$

9.2.3.4. XOR Session Key Derivation Method

This section defines the session key generation method for JCB

Derivation of first left most part of session key i.e. key A shall be performed as described below:

- Create an 8-byte data by concatenating 6 bytes of '00's and the latest ATC (2 bytes) in that order.
- Session key A is retrieved with XORing the data created in (1) with the 8-byte unique key A. Here, unique key A refers to the ICC Derived Unique Master Key A (i.e. either Application Cryptogram or MAC or Encryption/Decryption key, depending on the intended use)

Derivation of session key B shall be performed as described below:

- Create an 8-byte data by concatenating 6 bytes of '00' and the inverted data of the latest ATC (2 bytes) in that order. Inversion is performed at the bit level, where each bit with '1' is set to '0' and each bit with value '0' is set to '1'
- Session key B is retrieved with performing XOR to the data created in (1) with the 8-byte unique key B. Here, unique key B refers to the Application Unique Key B, the MAC Unique Key B or the

Message encryption Unique Key B, depending on the intended use

The same session key, where ever applicable, is used for all commands in a single transaction.

10. Crypto Generation and Validation

Cryptography has been used to provide data confidentiality and includes additional functions such as data integrity, authentication.

Cryptography can be categorised in two categories:

- Authorisation Request Cryptogram (ARQC)
- Authorisation Response Cryptogram (ARPC)

Card and Issuer shall be authenticating each other when the online transaction takes place.

ARQC: This is a cryptogram which is generated by the ICC and sent to issuer

This shall be used by issuer to authenticate the ICC

ARPC: This is a cryptogram which is generated by the issuer and sent to ICC.

This shall be used by ICC to authenticate the issuer.

Crypto	Message Type	Tag	Generated By	Validated By
ARQC	Request MSG (0100/0200)	9F26	ICC	Issuer HSM
ARPC	Response MSG (0110/0210)	91	Issuer HSM	ICC

10.1. Overview of Authorisation Request Cryptogram (ARQC)

During the execution of an ICC Transaction, the Chip Card may request the Terminal to forward an authorization request to the card Issuer.

The Issuer shall be able to authenticate the card by validating the ARQC received in request message. If the verification of the ARQC is successful, the Issuer host confirms that the ICC used for the transaction is genuine else issuer shall decline the transaction.

The recommended minimum set of data elements to be included to generate the Application request Cryptogram, are specified below:

Data Element	TAG Name	Length in Bytes	Source	
Amount, Authorised (Numeric)	9F02	6		
Amount, Other (Numeric)	9F03	6	-	
Terminal Country Code	9F1A	2		
Terminal Verification Results	95	5		
Transaction Currency Code	5F2A	2	DE 55	
Transaction Date	9A	3		
Transaction Type	9C	1		
Unpredictable Number	9F37	4		
Application Interchange Profile	82	2		
Application Transaction Counter	9F36	2		

Table 2: Minimum Set of Data Elements for Application Cryptogram Generation

10.1.1. ARQC Algorithm

10.1.1.1. Standard EMV method

Figure 2: Standard EMV

- Concatenate the data as per the sequence mentioned in Table 2, to get a data block D.
- Pad the data block D by adding first byte as '80' or '00' byte (as per payment scheme) to the right of D, and then adding the least number of '00' bytes to the right such that the length of resulting data block is a multiple of 8 bytes.
- Divide the result of padding D, into 8-byte blocks D1, D2, . . . , Dn
- Use the 16-byte Application Cryptogram Session Key / Unique Key depending upon the Cryptogram Version Number in use as per respective payment scheme card specification and described in subsequent section.
- Divide the key in two 8-byte parts, called left and right.
- Using these two set of keys (Key A & Key B) generate the 8-byte cryptogram with the data blocks (D1, D2, . . . , Dn) applying data encryption algorithm. There are two types of data encryption algorithm called 3DES and AES.

Note: The algorithm is chosen based on the Cryptogram Version Number in use as per respective payment scheme card specification and described in subsequent section.

10.1.1.2. Common Core Definition Method

EMV common core definition method takes below data extra appended at the end of Table 2.

Data Element	TAG Name	Source
Issuer Application Data	9F10	DE 55

Preparation of data block.

- Concatenate the data as per the sequence mentioned in Table 2, to get a data block D.
- Pad the data block D by adding first byte as '80' byte (as per payment scheme) to the right of D, and then adding the least number of '00' bytes to the right such that the length of resulting data block is a multiple of 8 bytes.
- Divide the result of padding D, into 8-byte blocks D1, D2, . . . , Dn
- Derive MAC session key as per method mentioned in section 9.2.3.1 for EMV Common session key derivation.
- Compute the ARQC following algorithm as per section 10.1.1.1

10.1.2. Visa

The variation in input data over and above Table 2 and types of DEA used for generating the application cryptograms are dependent on Cryptogram Version Number.

Visa currently supports the following CVNs for generating an Application Cryptogram generation.

Supported CVN	Defined by
CVN 10	Visa specification
CVN 18	Visa specification
CVN 12 & 50 - 59	Issuer proprietary

Table 3: Supported CVN's

10.1.2.1. ARQC for CVN 10 (HEX = 0A)

The data set needed for to generation of an Application Cryptogram for CVN 10 is the sequence in which they need to be arranged, is provided in Table 2.

Along with the tags mentioned in Table 2, Visa additionally uses CVR for CVN 10 to compute ARQC which will be added at the last of sequence mentioned in Table 2.

Data Element	TAG Name	Source
Card Verification Results	9F10 (Bytes 4–7)	DE 55

Table 4: Additional data for ARQC with CVN 10

To compute ARQC for CVN 10

- The algorithm mentioned in Section 10.1.1 shall be followed to compute ARQC.
- Pad the data block D by adding '00' bytes to the right such that the length of resulting data block is a multiple of 8 bytes.
- Use triple DEA encipherment with Unique DEA key / ICC master key in the algorithm mentioned in section 10.1.1 to compute ARQC.

10.1.2.2. ARQC for CVN 18 (HEX = 12)

The data set needed for generation of an Application Cryptogram using CVN 18 is the sequence in which they need to be arranged, is provided in Table 2.

Along with the tags mentioned in Table 2, Visa additionally uses tag 9F10 for CVN 18 to compute ARQC which will be added at the last of sequence mentioned in Table 2.

Data Element	TAG Name	Source
Issuer Application Data	9F10	DE 55

Table 3: Additional data for ARQC with CVN 18

To compute ARQC for CVN 18

- The algorithm mentioned in Section 10.1.1.2 shall be followed to compute ARQC.
- For CVN 18, the data is padded with a mandatory '80' byte and the remaining right- most bits in the last data block are zero filled.
- Use triple DEA encipherment with MAC session key in the algorithm mentioned in section 10.1.1.2 to compute ARQC.

10.1.3. Mastercard

ARQC generation algorithm for Mastercard is differentiated with combination of input data and session key derivation method. There are 3 session key derivation method mentioned in section 9.2.3.

The combination of input data and session key derivation method is indicated by below CVNs.

Supported CVN	Meaning
CVN 12	Specified by Mastercard
CVN 13	Specified by Mastercard
CVN 10	Specified by Mastercard
CVN 11	Specified by Mastercard
CVN 14	Specified by Mastercard
CVN 15	Specified by Mastercard

Figure 4 : List of Mastercard CVNs

Please refer section 9.2.3 for respective session key derivation method.

10.1.3.1. ARQC for CVN 10, CVN 12 and CVN 14 (Without counters)

The data set needed for generation of an Application Cryptogram using CVN 10, CVN 12 and CVN 14 is the sequence in which they need to be arranged, is provided in Table 2

Along with the tags mentioned in Table 2, Mastercard additionally uses tag 9F10 (Byte 3 -8) for CVN 10 , CVN 12 and CVN 14 to compute ARQC which will be appended at the last of sequence mentioned in Table 2.

Data Element	TAG Name	Source
Issuer Application Data (CVR)	9F10 (Byte 3- 8)	DE 55

Table 5: Additional data for ARQC with CVN 10, 12 & 14

`

There are 3 methods for session key derivation for Mastercard to be used in computation of ARQC. The methods are differentiated by CVN.

Supported CVN	SKD
CVN 10	MasterCard Proprietary SKD
CVN 12	EMV 2000 SKD
CVN 14	EMV CSK

To compute ARQC for CVN 10, 12 and 14:

- The algorithm mentioned in Section 10.1.1 shall be followed to compute ARQC.
- The input data is padded with a mandatory '80' byte and the remaining right- most bits in the last data block are zero filled to make the string as multiple of 8 bytes.
- Use triple DEA encipherment with session key in the algorithm mentioned in section 10.1.1.1 to compute ARQC.

10.1.3.2. ARQC for CVN 11, CVN 13 and CVN 15 (With counters)

The data set needed for generation of an Application Cryptogram using CVN 11, CVN 13 and CVN 15 is the sequence in which they need to be arranged, is provided in Table 2.

Along with the tags mentioned in Table 2, Mastercard additionally uses tag 9F10 Byte 3 -8 and Byte 11 -18 for CVN 13 to compute ARQC which will be added at the last of sequence mentioned in Table 2.

Data Element	TAG Name	Source
Issuer Application Data (CVR +Counters)	9F10 (Byte 3- 8) + (Byte 11 - 18, If available)	DE 55

Table 6: Additional data for ARQC with CVN 11,13, 15

There are 3 methods for session key derivation for Mastercard to be used in computation of ARQC. The methods are differentiated by CVN.

Supported CVN	SKD
CVN 11	Mastercard Proprietary SKD
CVN 13	EMV 2000 SKD
CVN 15	EMV CSK

To compute ARQC for CVN 11, 13 and 15

- The algorithm mentioned in Section 10.1.1 shall be followed to compute ARQC.
- The input data is padded with a mandatory '80' byte and the remaining right- most bits in the last data block are zero filled to make the data string as multiple of 8 bytes.
- Use triple DEA encipherment with session key derived as per above table in the algorithm mentioned in section 10.1.1.1 to compute ARQC.

10.1.4. RuPay

The variation in input data over and above Table 2 and types of DEA used for generating the application cryptograms are dependent on Cryptogram Version Number.

RuPay currently supports the following CVNs for generating an Application Cryptogram generation.

Supported CVN	Meaning
CVN 1	Defined by JCB
CVN 2	Defined by JCB
CVN 5	Defined by DPAS
CVN 6	Defined by DPAS

The minimum set of data elements that shall be included in the calculation of the ARQC, & the sequence in which they need to be arranged, are provided in.

10.1.4.1. ARQC for CVN 5

The data set needed for generation of an Application Cryptogram using CVN 5 is the sequence in which they need to be arranged, is provided in Table 2.

Along with the tags mentioned in Table 2, RuPay additionally uses Tag 9F10 (Issuer Application Data) for CVN 5 to compute ARQC which will be added at the last of sequence mentioned in Table 2.

Data Element	TAG Name	Source
Issuer Application Data	9F10	DE 55

Table 5: Additional data for ARQC with CVN 5

To compute ARQC for CVN 5

- The algorithm mentioned in Section 10.1.1 shall be followed to compute ARQC.
- Pad the data block D by adding '80' bytes to the right such that the length of resulting data block is a multiple of 8 bytes.
- Use triple DEA encipherment with session key derived from EMV Common session key derivation method (Section 9.2.3.1) in the algorithm mentioned in section 10.1.1 to compute ARQC.

10.1.4.2. ARQC for CVN 6

The data set needed for generation of an Application Cryptogram using CVN 6 is the sequence in which they need to be arranged, is provided in Table 2.

Along with the tags mentioned in Table 2, RuPay additionally uses Tag 9F10 (Issuer Application Data) for CVN 6 to compute ARQC which will be added at the last of sequence mentioned in Table 2.

Data Element	TAG Name	Source
CVR	9F10 (Byte 3 – Byte 8)	DE 55

Table 6: Additional data for ARQC with CVN 6

To compute ARQC for CVN 6

• The algorithm mentioned in Section 10.1.1 shall be followed to compute ARQC.

Page 36 / 77

- Pad the data block D by adding '80' bytes to the right such that the length of resulting data block is a multiple of 8 bytes.
- Use triple DEA encipherment with session key derived from EMV Common session key derivation method (Section 9.2.3.1) in the algorithm mentioned in section 10.1.1 to compute ARQC.

10.1.4.3. ARQC for CVN 01

The data set needed for generation of an Application Cryptogram using CVN 01 is the sequence in which they need to be arranged, is provided in Table 2.

Along with the tags mentioned in Table 2, RuPay additionally uses Legacy CVR for CVN 01 to compute ARQC which will be added at the last of sequence mentioned in Table 2.

Data Element	TAG Name	Source
CVR	9F10 (Byte 4- Byte 7)	DE 55

Table 7: Additional data for ARQC with CVN 01

To compute ARQC for CVN 01

- The algorithm mentioned in Section 10.1.1 shall be followed to compute ARQC.
- Pad the data block D by adding '00' bytes to the right such that the length of resulting data block is a multiple of 8 bytes.
- Use triple DEA encipherment with Application Unique key / ICC master key in the algorithm mentioned in section 10.1.1 to compute ARQC.

10.1.4.4. ARQC for CVN 02

The data input to generation of an Application Cryptogram using CVN 02 is the sequence in which they need to be arranged, is provided in Table 2.

Along with the tags mentioned in Table 2, RuPay additionally uses Legacy CVR for CVN 02 to compute ARQC which will be added at the last of sequence mentioned in Table 2.

Data Element	TAG Name	Source
CVR	9F10 (Byte 4- Byte 7)	DE 55

Table 8: Additional data for ARQC with CVN 02

To compute ARQC for CVN 02

- The algorithm mentioned in Section 10.1.1 shall be followed to compute ARQC.
- Pad the data block D by adding '00' bytes to the right such that the length of resulting data block is a multiple of 8 bytes.
- Use triple DEA encipherment with JCB Session key derived as per section 9.2.3.4 in the algorithm mentioned in section 10.1.1 to compute ARQC.

10.2. Overview of Authorisation Response Cryptogram (ARPC)

A cryptogram used for a process called Online Issuer Authentication. It is sent to the card in the authorization response. The card validates the ARPC to ensure that it is communicating with the valid issuer.

Two methods are supported for generation of the ARPC used for issuer authentication as per EMV 4.3. Each method can use either Triple DES or AES.

10.2.1. ARPC Method 1

In this method generation of an 8-byte ARPC can be achieved by applying the Triple-DES algorithm or AES. The input data required for generation of ARPC are below

Data	Length
ARQC	8 bytes
Authorisation Response Code (ARC)	2 bytes

Table 9: Input Data for ARPC Method 1

10.2.1.1. Applying the Triple-DES algorithm

Follow the below step

- 1. Pad the 2-byte ARC with six zero bytes to obtain the 8-byte number
 - a. X := (ARC || '00'|| '00' || '00' || '00' || '00' || '00')
- 2. Compute $Y := ARQC \oplus X$.
- 3. The 8-byte ARPC is then obtained by

ARPC := DES3(SKAC)[Y]

SKAC := Session key generated as per CVN.

4. Issuer Authentication Data: = 8 Byte ARPC || 2-byte ARC

10.2.1.2. Applying AES

This is identical to the ARPC Method 1 using Triple DES (above) except that in step 3 the 8-byte ARPC is computed using AES and is defined to be the leftmost 8 bytes of:

AES(SKAC)[Y || Y0]

Where

 $Y0 := ('00' \mid | '00' \mid | '00').$

10.2.2. ARPC Method 2

In this method generation of a 4-byte ARPC can be achieved by applying the Triple-DES algorithm or AES. The input data required for generation of ARPC are below

Data	Length
ARQC	8 bytes
Card Status Update (CSU)	4 bytes
Proprietary Issuer authentication Data	0-8 byte

Table 10: Input data for ARPC Method 2

The below CSU can be coded by issuer based on validation performed.

CSU Byte 1

b8	b7	b6	b5	b4	b3	b2	b1	Meaning
1								Proprietary Authentication Data Included
	0	0	0					RFU
				X	X	X	X	PIN Try Counter

CSU Byte 2

b8	b7	b6	b5	b4	b3	b2	b1	Meaning
1								Issuer Approves Online Transaction
	1							Card Block
		1						Application Block
			1					Update PIN Try Counter
				1				Set Go Online on Next Transaction
					1			CSU Created by Proxy for the Issuer
						Х	Х	Update Counters
						0	0	Do Not Update Offline Counters
						0	1	Set Offline Counters to Upper Offline Limits
						1	0	Reset Offline Counters to Zero
						1	1	Add Transaction to Offline Counter

CSU Byte 3

b8	b7	b6	b5	b4	b3	b2	b1	Meaning
0	0	0	0	0	0	0	0	RFU

CSU Byte 4

b	8	b7	b6	b5	b4	b3	b2	b1	Meaning
	X	X	X	X	X	Χ	X	X	Issuer-Discretionary

10.2.2.1. Applying the Triple-DES algorithm

Using the Application Cryptogram Session Key SKAC (Table 2) in the following way:

1. Concatenate the ARQC, the CSU, and the Proprietary Authentication Data.

Y := ARQC || CSU || Proprietary Authentication Data

If issuer proprietary data is not available it shall be considered as 8 byte zero.

,

- 2. Generate a MAC over the data Y by applying the MAC algorithm specified in 10.1.1.2, to the data defined above using the Application Cryptogram Session Key derived when computing the ARQC.
- 3. ARPC := MAC := MAC algorithm (SKAC)[Y]
- 4. The Issuer Authentication Data (tag '91') is formed by concatenating the resulting 4-byte ARPC, the 4-byte CSU, and the Proprietary Authentication Data.
- 5. Issuer Authentication Data: = ARPC || CSU || Proprietary Authentication Data

10.2.3. **VISA**

10.2.3.1. ARPC for CVN 10

Visa uses ARPC method 1 described for CVN 10 mentioned in section 10.2.1.1 with triple DEA encipherment using unique DEA key / ICC master key.

The issuer authentication data is constructed as below:

Issuer Authentication Data: = 8 Byte ARPC || 2-byte ARC

10.2.3.2. ARPC for CVN 18

- Visa uses ARPC method 2 described for CVN 18 mentioned in section 10.2.2.1 with triple DEA encipherment using unique DEA key / ICC master key.
- The default value for Proprietary Authentication Data is zero.
- If the 'Proprietary Authentication Data Included' bit in the CSU has the value 0b, then the length of Proprietary Authentication Data included in generation and validation of the ARPC shall be 0 bytes.
- If the 'Proprietary Authentication Data Included' bit in the CSU has the value 1b, then the Proprietary Authentication Data included in the Issuer Authentication Data shall be used in generation and validation of the ARPC.
- Use session key generated during ATQC validation for CVN 18
- The issuer authentication data is constructed as below:
- Issuer Authentication Data: = 4 bytes ARPC || 4 bytes CSU || 1- 8 bytes Proprietary Authentication Data

10.2.4. Mastercard

- MasterCard uses ARPC Method 1 mentioned in section 10.2.2 for all CVNs.
- Mastercard Uses 2-byte ARPC response code instead of ARC. The ARPC response code is encoded as per below bits.

Byte 1

b8	b7	b6	b5	b4	b3	b2	b1	Meaning
X	X	X	X					Reserved
0	0	0	0					Other value RFU
				X	X	X	X	PIN Try Counter

Byte 2

b8	b7	b6	b5	b4	b3	b2	b1	Meaning
X	X	X						Reserved
0	0	0						Other value RFU
			X					Approve online transaction
			0					Do not approve online transaction
			1					Approve online transaction
				X				Update PIN Try Counter
				0				Do not update PIN Try Counter
				1				Update PIN Try Counter
					X			Set go online on next transaction
					0			Reset go online on next transaction
					1			Set go online on next transaction
						X	X	Update counters
						0	0	Do not update offline counters
						1	0	Reset counters to zero
						0	1	Set counters to upper offline limits
						1	1	Add transaction to counter

- The Session key generated during ARQC generation as per CVN mentioned in section 10.1.3 shall be used for triple DES encipherment.
- The issuer authentication data is constructed as below:

Issuer Authentication Data: = 8 Byte ARPC || 2-byte ARPC Response Code

10.2.5. RuPay

RuPay uses ARPC Method 1 mentioned in section 10.2.2 for all CVNs.

10.2.5.1. ARPC for CVN 5 & 6

• RuPay uses 2-byte CSU coded as per below bits instead of ARC for CVN 5 & 6.

Byte 1	Value	Desc	cripti	on						
b8	0									
b7	0	RFU								
b6	0									
b5	0									
b4	Х									
b3	Х	DINI.	Tn/C	ounter						
b2	X	PIIN	ITY C	ounter						
b1	Х									
Byte 2	Value	Desc	cripti	on						
b8	0	RFU								
b7	0	MO								
b6	1	1 OD	I TOV	Reset Script Counter						
b5	1	Issue	er Ap	proves Online Transaction						
b4	1	Upd	ate P	IN Try Counter. If the PTC value in CSU B1b4-						
		b1 >	PTL	then PTC is updated with PTL value						
b3	1	Set (Go O	nline on next transaction						
b2 b1	X	Upda	ate C	ounters						
		X	X							
		0	0	Do Not Update Offline Counters						
		0	0 1 Set Offline Counters to Upper Limits							
		1	1 0 Reset Offline Counters to Zero							
		1	1	Reset Offline Counters in all profiles						
		to Zero								

• Use application session key derived as per EMV common session key derivation method mentioned in section 9.2.3.1.

The issuer authentication data is constructed as below:

Issuer Authentication Data: = 8 Byte ARPC || 2-byte CSU

10.2.5.2. ARPC for CVN 1 & 2

- For CVN 1 use ARPC method 1 with ICC master key / Unique DEA key.
- For CVN 2 use ARPC method 1 with JCB session key derived as mentioned in section 9.2.3.4.

•

The issuer authentication data is constructed as below:

Issuer Authentication Data: = 8 Byte ARPC || 2-byte ARC

10.3. HSM Commands Interaction

Issuer can manage all ARQC validation and ARPC generation through an HSM. An HSM aka Host Security Module is a hardware which comes with inbuilt key management and cryptogram generation facility with utmost security in place.

Issuer using HSM shall send the transaction data as per HSM format after required data padding as per payment scheme CVN for ARQC validation and ARPC generation.

In this section all the required commands for ARQC validation and ARPC generation are described as per payment scheme requirement.

It is considered that Issuer is using Thales HSM

10.3.1. ARQC validation & ARPC generation for EMV 4.X

The validation of ARQC and generation of ARPC involves various algorithms for derivations of keys and crypto methodologies. These different methods are communicated to HSM through some designated command along with required input data.

The command structures for every CVN is described in subsequent section.

Format notations

Notation	Description									
L	Encrypted PIN length. Set at installation.									
m	Message header length. Set at installation.									
n	Variable length field.									
	Alphanumeric (can include any non-control type)									
Α	characters.									
Н	Hexadecimal character ('0''9', 'A''F').									
N	Numeric Field ('0''9').									
С	Control character.									
В	Binary data (byte) (X'00X'FF).									
D	Binary coded decimal (BCD) character ('0''9').									

.

10.3.2. Mastercard

10.3.2.1. Command Message for Mastercard CVN (14,15,12,13)

Request Command

Field	Length & Type	Details	
Message header	m A	Message header length	
Command code	2 A	KW	
Mode Flag	1 H	'1': Perform ARQC verification	ation and EMV 4.x Method
Scheme ID	1 N	CVN 14 & 15	CVN 12 & 13
		2': Option A ICC Master Key Derivation and EMV Common Session Key Derivation	'0' : Option A ICC Master Key Derivation and EMV2000 Session Key Derivation
MK-AC	32 H or 1 A + 32 H or 1 A + n A	For a Variant LMK, the 'Ml under LMK pair 28-29 vari	
IV- AC	16B	Only present for Scheme I "00"	ID = '0'. 16 bytes zero
		IV for EMV 2000 Session	Key Derivation
PAN length	2N	NA	
PAN+PAN Sequence number	8 B or n B	For Scheme ID = '0' or '2', bytes, and should contain PAN/PAN Sequence No	
		It is the responsibility of the that the PAN/PAN Sequer appropriately padded.	
Delimiter	1A	NA	
Branch / Height Parameters	1 N	Only present for Scheme I	ID = '0'
		'0' : Branch factor 2; Tree	_
Application transaction counter	2 B	Received from DE55.tag 9	9F36
Transaction data length	2 H	Present	
Transaction data	n B	Present with 80 padding	
Delimiter	1 A	Present to indicate end of	
ARQC/TC/AAC	8 B	ARQC received in DE 55.	Tag 9F26
ARC	2 B	ARPC response code	
CSU	4 B	NA	
Proprietary authentication data length	1 N	NA	
Proprietary authentication data	0 8 B	NA	
Delimiter	1 A	Value '%'. Optional; if pres must be present.	sent, the following field
LMK identifier	2 N	LMK identifier; min value = defined by issuer; must be	
		Delimiter is present	

		Value X'19.
Message trailer	n A	Optional. Maximum length 32 characters

Field	Length & Type	Details
Message header	m A	Message header length
Response code	2 A	KX
Error Code	2 A	'00' : No error
		'01' : ARQC/TC/AAC verification failure
		'04' : Unrecognized Mode Flag
		'05' : Unrecognized Scheme ID
		'10' : MK parity error
		'52' : Invalid Branch/Height
		'68' : Command disabled
		or a standard error code.
ARPC	8 B	Calculated ARPC
Diagnostic data	8 B	Calculated ARQC/TC/AAC returned only if the error
		code is '01' and the HSM is in Authorized State
End message delimiter	1 C	Must be present if a message trailer is present.
		Value X'19.
Message trailer	n A	Optional. Maximum length 32 characters

10.3.2.2. Command Message for Mastercard CVN 10 & 11

Request Command

Field	Length & Type	Details
Message header	m A	Message header length
Command code	2 A	KQ
Mode Flag	1 H	'1' : Perform ARQC verification and ARPC generation
Scheme ID	1 N	'1' : Mastercard
MK-AC	32 H or 1 A + 32 H or 1 A + n A	For a Variant LMK, the 'MK-AC' must be encrypted under LMK pair 28-29 variant 1.
PAN+PAN Sequence number	8 B or n B	Preformatted PAN and PAN sequence number. It is the responsibility of the host system to ensure that the PAN/PAN Sequence Number is appropriately padded.
Application transaction counter	2 B	Received from DE55.tag 9F36
Unpredictable Number	4 B	Received in DE55.Tag 9F37
Transaction data length	2 H	Present
Transaction data	n B	Present with 00 padding

Delimiter	1 A	Present to indicate end of transaction data
ARQC/TC/AAC	8 B	ARQC received in DE 55.Tag 9F26
ARC	2 B	2-byte ARC
Proprietary authentication data	1 N	Present if any
length		
Proprietary authentication data	0 8 B	Present if length is not zero
Delimiter	1 A	Value '%'. Optional; if present, the following field
		must be present.
LMK identifier	2 N	LMK identifier; min value = '00'; max value is
		defined by issuer; must be present if the above
		Delimiter is present
End message delimiter	1 C	Must be present if a message trailer is present.
		Value X'19.
Message trailer	n A	Optional. Maximum length 32 characters

Field	Length & Type	Details
Message header	m A	Message header length
Response code	2 A	KR
Error Code	2 A	'00' : No error
		'01' : ARQC/TC/AAC verification failure
		'04' : Unrecognized Mode Flag
		'05' : Unrecognized Scheme ID
		'10' : MK parity error
		'68' : Command disabled
		or a standard error code.
ARPC	8 B	Calculated ARPC
Diagnostic data	8 B	Calculated ARQC/TC/AAC returned only if the error
		code is '01' and the HSM is in Authorized State
End message delimiter	1 C	Must be present if a message trailer is present.
		Value X'19.
Message trailer	n A	Optional. Maximum length 32 characters

10.3.3. Visa

10.3.3.1. Command Message for Visa CVN 18

Request Command

Field	Length & Type	Details
Message header	m A	Message header length
Command code	2 A	KW
Mode Flag	1 H	'3' : Perform ARQC verification and EMV 4.x Method 2 ARPC generation
Scheme ID	1 N	3' : Option B ICC Master Key Derivation and EMV Common Session Key Derivation
MK-AC	32 H or 1 A + 32 H or 1 A + n A	For a Variant LMK, the 'MK-AC' must be encrypted under LMK pair 28-29 variant 1.
IV- AC	16B	NA
PAN length	2N	present
PAN+PAN Sequence number	8 B or n B	As per length mentioned in PAN length.
Delimiter	1A	Present
Branch / Height Parameters	1 N	NA
Application transaction counter	2 B	Received from DE55.tag 9F36
Transaction data length	2 H	Present
Transaction data	n B	Present with 80 padding
Delimiter	1 A	Present to indicate end of transaction data
ARQC/TC/AAC	8 B	ARQC received in DE 55.Tag 9F26
ARC	2 B	NA
CSU	4 B	4-byte CSU
Proprietary authentication data length	1 N	Present if any
Proprietary authentication data	0 8 B	Present if length is not zero
Delimiter	1 A	Value '%'. Optional; if present, the following field must be present.
LMK identifier	2 N	LMK identifier; min value = '00'; max value is defined by issuer; must be present if the above Delimiter is present
End message delimiter	1 C	Must be present if a message trailer is present. Value X'19.

Field	Length & Type	Details
Message header	m A	Message header length
Response code	2 A	KX
Error Code	2 A	'00' : No error
		'01' : ARQC/TC/AAC verification failure
		'04' : Unrecognized Mode Flag
		'05' : Unrecognized Scheme ID
		'10' : MK parity error
		'52' : Invalid Branch/Height
		'68' : Command disabled
		or a standard error code.
ARPC	8 B	Calculated ARPC
Diagnostic data	8 B	Calculated ARQC/TC/AAC returned only if the error
		code is '01' and the HSM is in Authorized State
End message delimiter	1 C	Must be present if a message trailer is present.
		Value X'19.
Message trailer	n A	Optional. Maximum length 32 characters

10.3.3.2. Command Message for Visa CVN 10

Request Command

Field	Length & Type	Details
Message header	m A	Message header length
Command code	2 A	KQ
Mode Flag	1 H	'1': Perform ARQC verification and ARPC generation
Scheme ID	1 N	'0' : Visa
MK-AC	32 H or 1 A + 32 H or 1 A + n A	For a Variant LMK, the 'MK-AC' must be encrypted under LMK pair 28-29 variant 1.
PAN+PAN Sequence number	8 B or n B	Preformatted PAN and PAN sequence number. It is the responsibility of the host system to ensure that the PAN/PAN Sequence Number is appropriately padded.
Application transaction counter	2 B	Received from DE55.tag 9F36
Unpredictable Number	4 B	Received in DE55.Tag 9F37
Transaction data length	2 H	Present
Transaction data	n B	Present with 00 padding
Delimiter	1 A	Present to indicate end of transaction data
ARQC/TC/AAC	8 B	ARQC received in DE 55.Tag 9F26
ARC	2 B	2-byte ARC
Proprietary authentication data	1 N	Present if any

length		
Proprietary authentication data	0 8 B	Present if length is not zero
Delimiter	1 A	Value '%'. Optional; if present, the following field must be present.
LMK identifier	2 N	LMK identifier; min value = '00'; max value is defined by issuer; must be present if the above Delimiter is present
End message delimiter	1 C	Must be present if a message trailer is present. Value X'19.
Message trailer	n A	Optional. Maximum length 32 characters

Field	Length & Type	Details
Message header	m A	Message header length
Response code	2 A	KR
Error Code	2 A	'00' : No error
		'01' : ARQC/TC/AAC verification failure
		'04' : Unrecognized Mode Flag
		'05' : Unrecognized Scheme ID
		'10' : MK parity error
		'68' : Command disabled
		or a standard error code.
ARPC	8 B	Calculated ARPC
Diagnostic data	8 B	Calculated ARQC/TC/AAC returned only if the error
		code is '01' and the HSM is in Authorized State
End message delimiter	1 C	Must be present if a message trailer is present.
		Value X'19.
Message trailer	n A	Optional. Maximum length 32 characters

10.3.4. RuPay

10.3.4.1. Command Message for RuPay CVN 05 & 06

Request Command

Field	Length & Type	Details
Message header	m A	Message header length
Command code	2 A	KW
Mode Flag	1 H	'5' : Perform ARQC verification and DPAS Method 1 ARPC generation
Scheme ID	1 N	2': Option A ICC Master Key Derivation and EMV Common Session Key Derivation
MK-AC	32 H or 1 A + 32 H or 1 A + n A	For a Variant LMK, the 'MK-AC' must be encrypted under LMK pair 28-29 variant 1.

L

IV- AC	16B	NA
PAN length	2N	NA
PAN+PAN Sequence number	8 B or n B	For Scheme ID = '0' or '2', this field will be fixed at 8 bytes, and should contain the pre-formatted PAN/PAN Sequence No
		It is the responsibility of the host system to ensure that the PAN/PAN Sequence Number is appropriately padded.
Delimiter	1A	NA
Branch / Height Parameters	1 N	NA
Application transaction counter	2 B	Received from DE55.tag 9F36
Transaction data length	2 H	Present
Transaction data	n B	Present with 80 padding
Delimiter	1 A	Present to indicate end of transaction data
ARQC/TC/AAC	8 B	ARQC received in DE 55.Tag 9F26
ARC	2 B	NA
CSU	4 B	For D-PAS (CVN 5 and 6), the CSU is a 2-byte value and must be right-padded with 0s.
Proprietary authentication data length	1 N	NA
Proprietary authentication data	0 8 B	NA
Delimiter	1 A	Value '%'. Optional; if present, the following field must be present.
LMK identifier	2 N	LMK identifier; min value = '00'; max value is defined by issuer; must be present if the above Delimiter is present
End message delimiter	1 C	Must be present if a message trailer is present. Value X'19.
Message trailer	n A	Optional. Maximum length 32 characters

Field	Length & Type	Details
Message header	m A	Message header length
Response code	2 A	KX
Error Code	2 A	'00' : No error
		'01' : ARQC/TC/AAC verification failure
		'04' : Unrecognized Mode Flag
		'05' : Unrecognized Scheme ID
		'10' : MK parity error
		'52' : Invalid Branch/Height
		'68' : Command disabled
		or a standard error code.
ARPC	8 B	Calculated ARPC

Diagnostic data	8 B	Calculated ARQC/TC/AAC returned only if the error code is '01' and the HSM is in Authorized State
End message delimiter	1 C	Must be present if a message trailer is present. Value X'19.
Message trailer	n A	Optional. Maximum length 32 characters

10.3.5. Sample HSM Message

Comma	nd request to HSM	
0000	00 00 0c 07 ac 11 18 03 73 a5 ff 17 08 00 45 00	sE.
0010	00 9a 11 39 40 00 80 06 00 00 c0 a8 e2 e2 c0 a8	9@
0020	b3 2c c6 0c 05 dc a2 ea f6 2b 6c 85 f7 84 50 18	.,+lP.
0030	fd 5c 17 ed 00 00 00 70 30 30 30 32 4b 57 31 32	.\p0002KW12
0040	55 36 35 30 37 44 38 37 45 37 35 41 44 37 30 44	U6507D87E75AD70D
0050	42 45 39 42 30 46 44 30 39 41 30 39 30 31 43 45	BE9B0FD09A0901CE
0060	42 00 00 00 00 00 00 19 01 00 22 33 30 00 00 00	B"30
0070	04 00 00 00 00 00 00 00 03 56 40 00 04 80 00	V@
0080	03 56 13 05 28 00 f6 ba 2c e2 58 00 00 22 01 05	.V(,.X"
0090	80 00 03 04 00 00 80 00 00 00 00 00 00 3b a6 21	;.!
00a0	46 2a 4e c7 3b ec 00 14	F*N.;
Comma	nd Response from HSM	
0000	18 03 73 a5 ff 17 cc ef 48 26 90 3f 08 00 45 00	sH&.?E.
0010	00 3a 40 a3 00 00 1a 06 48 bb c0 a8 b3 2c c0 a8	.:@H,
0020	e2 e2 05 dc c6 0c 6c 85 f7 84 a2 ea f6 9d 50 18	lP.
0030	0f a0 f2 20 00 00 00 10 30 30 30 32 4b 58 30 30	0002KX00
0040	05 6f 5d d7 08 f1 84 eb	.0]

11. Authorization Processing

11.1. Overview

Issuer process EMV transactions of the cards issued by itself. Issuer receives online transaction in the form ISO 8583 message format defined by respective payment schemes.

Transaction performed offline in the terminal does not come to issuer in the form of ISO 8583. Issuer received those transaction during clearing from acquirer bank through payment scheme.

The authorization and authentication decision parameters for offline transactions are pre-configured in card at the time of personalization.

11.2. Online Card Authorization

Issuer performs online authorization for transaction coming online in ISO 8583 format with all required fields. Once the transaction is received issuer performs below activity to authorize the transactions.

- PIN validation
- Account validation
- Balance validation

- iCVV validation
- Risk management

After performing all the above validation issuer performs EMV level validations by validating request cryptogram and generating response cryptogram.

11.3. Issuer Risk Management

Issuer performs risk management by validating terminal verification result and card verification result against pre-decided denial bytes of Issuer action code and card action code.

This process is optional and based on the arrangement with respective payment scheme.

The Terminal Verification Results (TVR) is a mandatory data element forwarded in authorization messages in DE 55. Tag 95. The TVR may be used by Chip Card Issuers, in their authorization decision process, to check transaction processing results from the Terminal. Some of the checking are

- Offline Data Authentication processing results (not performed, failed)
- Whether the card was on the Terminal exception file
- · Processing restrictions results
- Cardholder Verification processing results
- Reasons the Transaction was sent online for authorization
- Processing results during the previous Transaction (Issuer authentication failed; script failed)

The Card Verification Result (CVR) is a mandatory data element forwarded in authorization messages in DE 55. Tag 9F10. The CVR may be used by Chip Card Issuers, in their authorization decision process, to check transaction processing results from the card. Some of the checking are

- Offline PIN versification performed
- Offline PIN verification failed
- PIN try limit exceeded
- Issuer authentication performed but failed
- DDA failed
- Application blocked, because PIN try limit exceeded.

Issuer should maintain individual denial bits for Terminal Action Code and Card Action Code for each payment scheme.

Each bit of Terminal action code is compared with terminal verification result (TVR) received in DE55.Tag 95.

Each bit of Card Action code is compared with CVR received in Tag 9F10.

If a particular bit in TVR and TAC is equals to 1, TVR validation fails.

```
The pseudo logic would be
if RISK ANALYSIS = TRUE
{

Match all bits of TVR with TAC - Denial
If any MATCH found (both bit == 1)
Set response code == Decline
```



```
Match all bits of CVR Byte 4 and Byte 5 with 2 Byte CAC- Denial

If any MATCH found (both bit == 1)

Set response code == Decline
}
```

11.4. ARQC verification

Issuer performs ARQC validation after validating PIN, account, balance and risk if any. Based on these validation performed, Issuer prepares 2 byte ARC or 4 byte CSU as mentioned in section 10.2 and sends to HSM for ARQC validation along with the cryptogram received in DE55.Tag 9F26.

If ARQC validation is failed Issuer updates ARC or CSU bits accordingly before preparation of Issuer authentication data with the default cryptogram returned by HSM.

11.5. Issuer Authentication Data

Once every validation is performed issuer has to prepare issuer authentication data to be sent in DE55. Tag 91.

Issuer authentication data can be prepared in two ways based on ARPC method used as per defined CVNs in respective payment schemes.

- Issuer Authentication Data: = 8 Byte ARPC || 2-byte ARC
- Issuer Authentication Data: = ARPC || CSU || Proprietary Authentication Data

11.6. Script Processing

Issuer can control the chip card performing some action without getting the physical card back from customer. EMV allows issuer to do so by sending Issuer scripts.

An issuer may provide command scripts to be sent to the ICC by the terminal in order to perform functions that are not necessarily relevant to the current transaction but are important for the continued functioning of the application present in the ICC. Multiple scripts may be provided with an authorization response & each tag may contain multiple number of Issuer Script Commands.

Tag 71 is used when the Issuer sends Issuer Script Commands to the card in the response to be applied to the current transaction.

Tag 72 is used when the Issuer sends Issuer Script Commands to the card in the response to be applied to the next consecutive transaction.

The total length of all the Issuer Scripts in the response shall be less than or equal to 128 bytes. In the case where only one Issuer Script is sent & no Issuer Script Identifier is used, the maximum length of the Issuer Script Command (Tag '86') is limited to 124 bytes.

The below two tables illustrate the structure of Issuer script commands:

Tag	Length	Tag	Length	Script ID	Commands
'71' or '72'	L(Σdata, including Script ID, tags, and lengths)	'9F18'	'04'	Identifier (4 Bytes)	See below table

T1	L1	V1	T2	L2	V2	T3	L3	V3
'86'	L(V1)	Command	'86'	L(V2)	Command	'86'	L(V3)	Command

Script identified Tag 9F18 is optional in case single script command is present.

It is possible for multiple Issuer Scripts to be delivered with a single authorisation response with following rules

- Issuer Script Commands shall be separated using the BER-TLV coding of the data objects defining the commands (tag '86').
- Each command shall be constructed as a command APDU in the sequence in which it appeared in the Issuer Script.

11.6.1. Command Structure

Each command is sent as Application protocol data unit (APDU). The command Application Protocol Data Unit (APDU) consists of a mandatory header of four bytes followed by a conditional body of variable length.

CLA	INS	P1	P2	Lc	Data	Le
Mandatory Header			Conditiona	l Bytes		

CLA = Class Byte of the Command Message

INS = Instruction Byte of Command Message

P1 = Parameter 1

P2 = Parameter 2

Lc = Length of command data field

Le = Length of expected data

Example 1: Issuer Script Command Format with single script command 710F860D8424000008792480EAF02285B8

- 71 Script tag
- 0F total length
- 86 Script command
- 0D Script length
- 84 CLA
- 24 INS
- 00 P1
- 00 P2
- 08 Lc

792480EAF02285B8 – Data (MAC)

Example 2: Issuer Script Command Format with three script command:

72CE9F18044142434486841E0000087E3DC7B967D2E4B586841E0000080A853270D75DCC18 86841E000008F7D01DD065C8575786841E0000086FFF0CC88E34A6C386841E000008F1B6628D20FA2 6F786841E00000841DFE039B9F39CC286841E000008AAFB2E0E58CE8448

- 72- Tag
- CE Total Length
- 9F18 Script identifier tag
- 04 Identifier length
- 41424344 Identifier
- 841E0000087E3DC7B967D2E4B5 Script Command with Issuer scripts
- 841E0000080A853270D75DCC18 Script Command with Issuer scripts
- 841E000008F7D01DD065C85757- Script Command with Issuer scripts
- 841E0000086FFF0CC88E34A6C3 Contd..

11.6.2. Message Authentication Code (MAC)

A symmetric cryptographic transformation of data that protects the sender and the recipient of the data against forgery by third parties.

MAC is computed as mentioned in the section 10.1.1.2 along with the MAC Session Key derived as mentioned in section 9.2.3.1.

SI no	Parameters	VISA	Mastercard	RuPay
1	Secure Messaging Format	Format 2	Format 2	Format 2
2	Input data	CLA, INS, P1, P2, Lc ATC	CLA, INS, P1, P2, Lc ATC An eight-byte data field RAND ²¹	CLA, INS, P1, P2, Lc ATC An 8-byte unpredictable value R ²¹
3	MAC Length	4 or 8 bytes	8 bytes	8 bytes
4	Session Key	XOR session key (section 9.2.3.4)	MasterCard Proprietary SKD approach or EMV CSK approach (Section 9.2.3) based on CVN	EMV CSK (Section 9.2.3.1)

²¹ An 8-byte **RAND** (Random Number) or unpredictable value '**R**' is used to generate a number as explained below. For this explanation, let's call the number as 'R'.

For the 1st Issuer Script Command, **R** is the Application Cryptogram provided by the card in response to the 1st Generate AC command. If more than one Issuer Script command is sent, then all of the next consecutive Issuer Script commands generated & sent in this session uses the previous value of **R** + 1.

For Example, if 'R' is the Application Cryptogram = '1234 1234 1234 1234', then,

- For the 1st Issuer Script in this session, R = '1234 1234 1234 1234'
- For the 2nd Issuer Script in this session, R = '1234 1234 1234 1235'

- For the 3rd Issuer Script in this session, R = '1234 1234 1234 1236'

11.6.3. List of Issuer Script Commands

List of Issuer Script Commands supported by EMV is as described below:

- 1. Application Block Command
- 2. Application Unblock Command
- 3. Card Block Command
- 4. PIN Change/Unblock Command

11.6.3.1. Application Block Command

The Application Block Command is a post-issuance command that invalidates or blocks the currently selected application.

Code	Value
CLA	'8C' or '84'; coding according to the secure messaging (Format 1 or Format 2)
INS	'1E'
P1	'00'; all other values are RFU
P2	'00'; all other values are RFU
Lc	Number of data bytes
Data	Message Authentication Code (MAC) data component; coding according to the secure messaging
Le	Not present

Structure of the Command: 841E0000 + Lc + MAC Data = 841E000008F9F2F1A6B581490D

11.6.3.2. Application Unblock Command

The Application Unblock Command is a post-issuance command that rehabilitates or restores the currently selected application.

Code	Value
CLA	'8C' or '84'; coding according to the secure messaging (Format 1 or Format 2)
INS	'18'
P1	'00'; all other values are RFU
P2	'00'; all other values are RFU
Lc	Number of data bytes

Data	Message Authentication Code (MAC) data component; coding according to the secure messaging
Le	Not present

Structure of the Command: 84180000 + Lc + MAC Data = 8418000008F9F2F1A6B581490D

11.6.3.3. Card Block Command

The Card Block Command is a post-issuance command that permanently disables all applications in the ICC.

Code	Value
CLA	'8C' or '84'; coding according to the secure messaging (Format 1 or Format 2)
INS	'16'
P1	'00'; all other values are RFU
P2	'00'; all other values are RFU
Lc	Number of data bytes
Data	Message Authentication Code (MAC) data component; coding according to the secure messaging
Le	Not present

Structure of the Command: 84160000 + Lc + MAC Data = 8416000008F9F2F1A6B581490D

11.6.3.4. PIN Change/Unblock Command

The PIN Change/Unblock Command is a post-issuance command that provides Issuer the capability either to unblock the PIN or to simultaneously change & unblock the reference PIN.

Note: The reference PIN is the PIN which is stored in the card & which is associated with the application & which the card uses to check the Transaction PIN Data transmitted within the Verify Command.

Code	Value
CLA	'8C' or '84'; coding according to the secure messaging (Format 1 or Format 2)
INS	'24'
P1	'00'
P2	'00', '01', or '02'
Lc	Number of data bytes
Data	Enciphered PIN data component, if present, and Message Authentication Code (MAC) data component; coding

	according to the secure messaging
Le	Not present

Structure of the Command: 84240000 + Lc + Enciphered PIN data (If present) + MAC Data = 8424000008F9F2F1A6B581490D

If P2 is equal to '00', the reference PIN is unblocked & the PIN Try Counter is reset to the PIN Try Limit & there is no PIN update, since the command does not contain a new PIN value.

The usage of P2 equal to '01' or '02' is reserved for payment systems.

11.6.4. VISA

Apart from list of Issuer Script Commands mentioned in section 11.6.3, as specified by EMV, VISA supports below mentioned Issuer Script Commands:

- A. PUT Data Command
- B. Update Record Command

Apart from PUT Data & Update Record Command, rest all the commands are used by VISA as per EMV specified Issuer Scripting command formats. The PUT Data & Update Record Command Issuer Scripts used by VISA are explained further below.

11.6.4.1. PUT Data Command

The PUT Data Command is a post-issuance command that updates specific primitive & constructed data objects which are stored in the card. The data objected can be updated with this command only if the command has a tag associated with it.

Code	Value
CLA	'04'
INS	'DA'
P1 P2	If '0000' then the data fields contain one or more primitive data objects (in BER-TLV format) to be updated
	All other values indicate the tag of the primitive data object or template tag of the constructed data object to be updated
Lc	Number of data bytes
Data	Data to be updated (Explained below) and Message Authentication Code (MAC) data component; coding according to the secure messaging
Le	Not present

Structure of the Command: 04DA0000 + Lc + Data to be updated (Explained below) + MAC Data = 04DA0000DCA06DF0104B0FFFCE67C9E63B4

Data:

.

If P1P2 contains the tag of a primitive data object, Data will be;

- The new value for a primitive data object
- Followed by a 4 or 8-Byte MAC. The MAC value is not preceded by a tag or length

If P1P2 contains 0000, Data will be;

- One or more primitive data objects to be updated, each in BER-TLV format
- Followed by a 4 or 8-Byte MAC. The MAC value is not preceded by a tag or length

If P1P2 contains the template tag for a constructed data object, Data will be;

- One or more primitive data elements, each in BER-TLV format & identified by a tag
- Followed by a 4 or 8-Byte MAC. The MAC value is not preceded by a tag or length

11.6.4.2. Update Record Command

The Update Record Command is a post-issuance command used to update a record in a file with the data provided in the command data field.

Code	Value
CLA	'04'
INS	,DC,
P1	Record number to be updated
P2	Reference control parameter
Lc	Number of data bytes
Data	Record data and Message Authentication Code (MAC) data component; coding according to the secure messaging
Le	Not present

Structure of the Command: 04DCP1P2 + Lc + Record Data + MAC Data = DC03141A70108E0E0000000000000000440342031F0392C354B8847E467

The command data consists of the new record contents followed by 4- or 8-byte MAC generated using Format 2

11.6.5. MasterCard

MasterCard allows the Issuer to provide a post-issuance command to be sent to the ICC. Apart from list of Issuer Script Commands mentioned in section 11.6.3 as specified by EMV, MasterCard supports below mentioned Issuer Script Commands:

.

- A. PUT Data Command
- B. Update Record Command

Apart from PUT Data & Update Record Command, the rest all the commands are used by MasterCard as per EMV specified Issuer Scripting command formats. The PUT Data & Update Record Command Issuer Scripts used by MasterCard are explained below.

11.6.5.1. PUT Data Command

Code	Value
CLA	'84'
INS	'DA'
P1 P2	Tag
Lc	Number of data bytes
Data	Data to be updated and Message Authentication Code (MAC) data component; coding according to the secure messaging
Le	Not present

Structure of the Command = 84DA + Tag + Lc + Data to be updated + MAC Data = 84DA00820A6400DF0104B0FFFCE67C

Single byte tags are preceded with a leading '00' byte to fill P1/P2

Below mentioned tag values are supported for PUT Data:

P1/P2	Data Element	Length
'00D5'	Application Control	2
'00D6'	Default ARPC Response Code	2
'9F14'	Lower Consecutive Offline Limit	1
'9F23'	Upper Consecutive Offline Limit	1
'00CA'	Lower Cumulative Offline Transaction Amount	6
'00CB'	Upper Cumulative Offline Transaction Amount	6
'00C4'	Card Issuer Action Code – Default	3
'00C5'	Card Issuer Action Code – Online	3
'00C3'	Card Issuer Action Code – Decline	3
'00C9'	CRM Currency Code	2
'00D1'	Currency Conversion Table	25
'00C8'	CRM Country Code	2
'0094'	Application File Locator	var ²⁷

'0082'	Application Interchange Profile	2	
'00C7'	CDOL 1 Related Data Length	1	
'00D3'	Additional Check Table	18	
'DF01'	Security Limits	6	
27 A manager and a state of at least 20 bytes must be available for the			

 $^{^{27}}$ = A memory space of at least 32 bytes must be available for the Application File Locator.

11.6.5.2. Update Record Command

Code	Value
CLA	'84'
INS	,DC,
P1	Record Number
P2	Reference Control Parameter
Lc	Number of data bytes
Data	Data to be updated and Message Authentication Code (MAC) data component; coding according to the secure messaging
Le	Not present

Structure of the Command = 84DC + P1P2 + Lc + Data to be updated + MAC Data = 84DC03141A70108E0E0000000000000000440342031F0392C354B8847E467 Below table specifies the coding of the Reference Control Parameter:

b8	b7	b6	b5	b4	b3	b2	b1	Meaning
Х	Х	Х	Х	Х				SFI
					Х	Х	Х	
					1	0	0	P1 is a record number

11.6.6. RuPay

RuPay allows the Issuer to provide a post-issuance command to be sent to the ICC. RuPay supports Issuer Script Template 2 (Tag '72)

Apart from list of Issuer Script Commands mentioned in section 11.6.311.6.3 as specified by EMV, RuPay supports below mentioned Issuer Script Commands:

- A. PUT Data Command
- B. Update Record Command
- C. Card Block Command (Platform Optional)

Apart from PUT Data & Update Record Command, the rest all the commands are used by RuPay as per EMV specified Issuer Scripting command formats. The PUT Data & Update Record Command Issuer Scripts used by RuPay are explained below.

11.6.6.1. PUT Data Command

Code	Value
CLA	'84' or '80'
INS	'DA'
P1 P2	Data Object (See Table below)
Lc	Number of data bytes
Data	Data Object Value and Message Authentication Code (MAC) data component; coding according to the secure messaging
Le	Not present

Structure of the Command = 84DA + Data Object + Lc + Data Object Value + MAC Data = 84DA00D00DCA06DF0104B0FFFCE67C9E63B4

Below are the supported Data Objects in PUT Data:

P1P2	Data Element	Length
'0082'	Application Interchange Profile	2
'0094'	Application File Locator	Var.
'00C1'	Application Configuration Options	2
'00C3'	Currency Conversion Code 1	5
'00C4'	Currency Conversion Code 2	5
'00C5'	Card Action Code – Denial	2
'00C6'	Card Action Code – Default	2
'00C7'	Card Action Code – Online	2

'00C8'	Lower Cumulative Offline Amount (LCOA)	6
'00C9'	Upper Cumulative Offline Amount (UCOA)	6
'00CA'	Single Transaction Amount (STA) limit	6
'00CB'	Lower Consecutive Offline Limit (LCOL)	1
'00CC'	Upper Consecutive Offline Limit (UCOL)	1
'00D0'	Issuer Application Data Object List	Var.
'00D2'	CRM Country Code	2
'00D3'	CRM Currency Code	2
'DF01' - 'DF0A'	Issuer Defined Data Tag (IDDT) 0 – 9	Var.
'DF10'	PDOL Check Table – Denial	Var.
'DF11'	PDOL Check Table – Profile	Var.
'DF12'	PDOL Check Table – Online	Var.
'DF20' – 'DF2F'	Transaction Profile Objects (0 – 15)	62 bytes each

11.6.6.2. Update Record Command

Code	Value
CLA	'84'
INS	,DC,
P1	Record Number
P2	Reference Control Parameter
Lc	Number of data bytes
Data	Data Object Value and Message Authentication Code (MAC) data component; coding according to the secure messaging
Le	Not present

Structure of the Command = 84DC + P1P2 + Lc + Data to be updated + MAC Data = 84DC03141A70108E0E0000000000000000440342031F0392C354B8847E467

Below is the table for Reference Control Parameter Definition

Bits	Value
b8-b4	SFI
b3-b1	100 (binary value)

.

11.6.6.3. Card Block Command

Code	Value
CLA	'84'
INS	'16'
P1	'00'
P2	'00'
Lc	Number of data bytes
Data	Message Authentication Code (MAC) data component; coding according to the secure messaging
Le	Not present

Structure of the Command: **84160000 + Lc + MAC Data** = 841600001031B2C75ED3128854 A019FD61B4A564BE

12. Failure Scenarios

There are different failure scenarios in EMV transaction where transaction is declined based EMV validations. An EMV transaction can be declined for below reasons

- ARQC validation failed by Issuer
- · Risk Management failed by Issuer
- Transaction declined by card
- · Card has not received response.

12.1. ARQC validation failed by Issuer

When ARQC validation is failed at issuer end, the transaction shall be declined by Issuer with valid response code.

Scheme	MTI	Field	Code	Description	Action
VISA	0210/0110	DE 39	05	Do not honour	D
Mastercard	0210/0110	DE 39	57	Cryptographic failure	D
RuPay	0210/0110	DE 39	E3	ARQC validation failed by Issuer	D

12.2. TVR Validation Failed

Terminal verification results are sent in Tag 95 to issuer, and the transaction can be rejected by Issuer based on the TVR validation.

TVR Values may be used by Issuers during processing the transactions, to check results from the Terminal, including:

- Offline Data Authentication processing results
- If the card appears in the Terminal exception file
- · Processing restrictions
- Cardholder Verification results
- TRM
- Script information.

The issuer however, may or may not decline only on the basis of the details available in the TVR. This is optional.

Scheme	MTI	Field	Cod	Description	
			е		
VISA	0210/0110	DE 39	05	Do not honour	D
Mastercard	0210/0110	DE 39	05	Do not honour	D
RuPay	0210/0110	DE 39	E4	Transaction Declined by Issuer basis TVR Validation	D

12.3. Transaction Declined by Issuer basis CVR Validation

Card verification results are sent in Tag 9F10 to issuer, and the transaction can be rejected by Issuer based on the CVR validation.

Scheme	MTI	Field	Code	Description						Action
VISA	0200/0100	DE 39	05	Transaction Validation	Declined	by	Issuer	basis	CVR	D
Mastercard	0200/0100	DE 39	05	Transaction Validation	Declined	by	Issuer	basis	CVR	D
RuPay	0200/0100	DE 39	E5	Transaction Validation	Declined	by	Issuer	basis	CVR	D

12.4. Card did not receive AAC / TC

This scenario occurs if the card is removed from the terminal before completion of the transaction. In this case card terminal will not find card to pass the final decision command after receiving response from issuer. Terminal generates a reversal message in this scenario with below response code in DE-39, if issuer has approved the transaction.

Scheme	MTI	Field	Code	Description	Action
VISA	0400/0420	DE 39	22	Card rejected after online Issuer Approval	D
Mastercard	0400/0420	DE 39	17	Card rejected after online Issuer Approval	D
RuPay	0400/0420	DE 39	E2	Card rejected after online Issuer Approval	D

12.5. Card rejected after online Issuer Approval

In an EMV transaction card has the ultimate authority to take decision on approving or rejecting transaction. So, card may decline the transaction based on the validation of ARPC received in response.

Terminal generates a reversal message in this scenario if issuer has approved the transaction, but card has rejected the transaction.

Scheme	MTI	Field	Code	le Description	
VISA	0400/0420	DE 39	22	Card rejected after online Issuer Approval	D
Mastercard	0400/0420	DE 39	17	Card rejected after online Issuer Approval	D
RuPay	0400/0420	DE 39	E1	Card rejected after online Issuer Approval	D

13. Appendix A: Issuer Application Data

The Issuer application data is represented in tag 9F10 of DE 55. Issuer application data contains below components with variable length up to 32 bytes.

- Derivation Key Index (DKI) 1 byte
- Cryptogram Version Number (CVN) 1 byte
- Card Verification Results (CVR) 4 Bytes 6 bytes.
- Issuer Discretionary Data (Optional) rest of the bytes.

13.1. Visa, JCB, CUP

The issuer application data structure for Visa consists of below

- Visa Discretionary Data
 - Length Indicator 1 byte: This includes total length of DKI+CVN+4-byte CVR equals to 06.
 - Derivation Key Index (DKI) 1 byte
 - o Cryptogram Version Number (CVN) − 1 byte
 - o Card Verification Results (CVR) 4 Bytes
- Issuer Discretionary Data (Optional) 8th Byte to 32nd Byte.

Example - 9F100706010A03A41000

- 9F10 Tag
- 07 Total length
- 06 Length Indicator
- 01 DKI
- 0A CVN
- 03A41000 CVR

Page 67 / 77

13.2. Mastercard, RuPay

The issuer application data structure for Mastercard and RuPay consists of below

- Derivation Key Index (DKI) 1 byte
- Cryptogram Version Number (CVN) 1 byte
- Card Verification Results (CVR) 6 Bytes
- Issuer Discretionary Data (Optional) 9th Byte to 32nd Byte.

Example - 9F1008010503A410000000

- 9F10 Tag
- 08 Total length
- 01 DKI
- 05 CVN
- 03A410000000 CVR

14. Appendix B: Terminal Verification Results

The Terminal Verification results bits as per EMV depicted below. The same is considered as Issuer action code.

TVR Byte 1: (Leftmost)

b8	b7	b 6	b 5	b4	b3	b2	b1	Meaning
1	Х	Х	Х	Х	Х	Х	Х	Offline data authentication was not performed
X	1	Х	Χ	X	Χ	Х	Х	SDA failed
X	Х	1	Х	X	Χ	Х	X	ICC data missing
X	Х	Х	1	X	Х	Х	Х	Card appears on terminal exception file 22
X	Х	Х	Х	1	Х	Х	Х	DDA failed
X	Х	Χ	Х	X	1	Х	X	CDA failed
X	Х	Х	Х	Х	Х	0	Х	RFU
X	Х	Х	Х	Х	Х	Х	0	RFU

TVR Byte 2:

b8	b7	b 6	b 5	b4	b3	b2	b1	Meaning
1	Х	Х	Х	Х	Х	Х	X	ICC and terminal have different application versions
Х	1	х	Х	Х	Χ	Х	Х	Expired application
Х	х	1	Х	Х	Х	Х	Х	Application not yet effective
Х	Х	Х	1	Х	Х	Х	Х	Requested service not allowed for card product
Х	Х	х	Х	1	Χ	Х	Х	New card
Х	х	х	Х	Х	0	Х	Х	RFU
Х	Х	Х	Х	Х	Х	0	Х	RFU
Х	Х	х	Х	Х	Х	Х	0	RFU

TVR Byte 3:

b8	b7	b 6	b 5	b4	b3	b2	b1	Meaning
1	Х	Х	Х	Х	Х	Х	Х	Cardholder verification was not successful
Х	1	Х	Х	Х	Χ	Х	Х	Unrecognised CVM
Х	х	1	X	X	Х	х	Х	PIN Try Limit exceeded
Х	Х	Х	1	Х	Х	Х	Х	PIN entry required and PIN pad not present or not working
Х	Х	Х	Х	1	Х	Х	Х	PIN entry required, PIN pad present, but PIN was not entered
Х	Х	X	X	Х	1	Х	Х	Online PIN entered
X	Х	X	X	X	Х	0	Х	RFU
Х	Х	X	X	X	Χ	Х	0	RFU

TVR Byte 4:

b8	b7	b6	b5	b4	b3	b2	b1	Meaning
1	Х	Х	Х	Х	Х	Х	Х	Transaction exceeds floor limit
X	1	Х	Х	Х	Х	Х	Х	Lower consecutive offline limit exceeded
X	Х	1	Х	Х	Х	Х	Х	Upper consecutive offline limit exceeded
X	Х	Х	1	Х	Х	Х	Х	Transaction selected randomly for online processing
Х	Х	X	X	1	Х	Χ	Х	Merchant forced transaction online
Х	Х	X	X	Х	0	Х	Х	RFU
Х	х	X	X	Х	Х	0	Х	RFU
Х	Х	X	X	Х	Х	Χ	0	RFU

TVR Byte 5 (Rightmost):

b8	b7	b 6	b 5	b4	b3	b2	b1	Meaning
1	Х	X	Х	Χ	X	Χ	Х	Default TDOL used
X	1	Х	Х	Х	Х	Χ	Х	Issuer authentication failed
Х	Х	1	Х	X	Х	Х	Х	Script processing failed before final GENERATE AC
Х	Х	Х	1	Х	Х	Х	Х	Script processing failed after final GENERATE AC
X	х	Х	Х	0	х	Х	Х	RFU
X	Х	Х	Х	Х	0	Х	Х	RFU
X	Х	Х	Х	Х	Х	0	Х	RFU
X	X	Х	X	X	Х	X	0	RFU

15. Appendix C: Perso File format

Issuer shall communicate personalization profile in below format to personalization bureau to create personalization file for EMV chip card. A profile either can be a standard profile based on respective payment scheme defined profiles or Issuer can have their own customized profile.

In personalization file all data to be personalized shall be given to personalization bureau. The bureau then creates a personalization file based on his proprietary format or in XML format which needs to be sent to the card.

Magnetic Stripe data

Data Element	Value
Track 1 data	%B6174841230000011^BASIC CARD/IMAGE 01 ^2612620990A61646861617200000000?0
Track 2 data	;6174841230000011=2612620990000000000000000000000000000000
CVD2	123

SFI 01 REC 01

Data Element	Tag	Length	Value
Track 2 Equivalent Data	57	12	60 74 84 12 30 00 00 23 D2 61 26 20 19 10 00 00 00 0F
Cardholder Name	5F20	13	52 55 50 41 59 20 43 41 52 44 2F 49 4D 41 47 45 20 30 31 (BASIC CARD/IMAGE 01)
Track 1 Discretionary Data	9F1F	18	31 39 31 41 36 31 36 34 36 38 36 31 36 31 37 32 30 30 30 30 30 30 30 30

SFI 02 REC 01

Data Element	Tag	Length	Value
Issuer Public Key Certificate	90	F8	99 9C B6 A2 33 FD 95 B1 52 AA 03 4D 20 50 E1 6E 51 C3 81 6A 82 E2 C4 F2 AD 32 AE 70 63 0C 15 21 05 10 69 8B 54 DC 6E EF 00 4C F8 73 F9 AC F9 7D 13 26 3A 2D 4B 23 57 46 9D 26 B5 CF EA 79 45 1A B2 BD 04 C5 71 E7 E8 1B 91 4D 6D A9 A3 B2 C7 4C 5A 52 1C B0 1B B8 63 1F 79 46 FF B8 44 E6 96 45 1D FF 12 B3 16 AB E9 D4 3E C8 8E 2D C8 FC E9 D8 59 70 7C 7B 07 A8 88 37 07 D0 4D 1E 94 99 C0 98 68 34 14 48 09 5E 75 4D 1C 16 06 9E 56 70 05 B8 1D 29 A3 53 A7 91 60 E2 63 22 A8 2E 2D A8 B7 69 9A 88 4D F2 83 FE CF 52 8C 52 64 7F FA D3 C4 05 76 9D 08 88 DD 12 11 D6 9C 81 00 A2 52 89 CC C0 D5 9D 7A 7C 14 8C 2A DF 3F C4 94 8A 76 85 C1 98 5D 90 6A 1D 7A 51 45 81 F5 03 C4 86 FE E8 98 FA 9A 66 85 F6 02 59 F0 95 67 D8 FD 96 78 98 16 A6 EF 3F EC 48 49 AD 87 4E

SFI 02 REC 02

Data Element	Tag	Length	Value
Issuer Public Key Exponent	9F32	01	03
Issuer Public Key Remainder	92	22	FB F8 61 48 D4 18 3F C5 AD 8E 29 D7 19 E9 49 A7 1C D4 CB 5A 62 CA 13 E4 16 0A A0 17 E2 1E 64 1F 1D FB
CA Public Key Index	8F	01	6D

SFI 02 REC 03

Data Element	Tag	Length	Value
Signed Static Application Data	93	F6	02 38 EC C7 D7 75 8F D0 12 76 87 22 04 B4 00 FC 63 DE A1 AC 06 AE 51 CB 83 11 8C DA 87 E3 F8 F5 04 B6 A1 02 DF 1E 7C 13 D6 4F 12 6A A3 8E 22 71 63 A7 30 4C ED F1 13 81 56 3C 36 01 4C E5 42 50 AC 88 4A 1B 75 28 3C 02 D8 13 37 C4 0A 40 8F D2 95 79 81 D5 B6 A9 34 E0 41 28 D7 2C 36 4F 7A 48 35 A6 15 D6 E3 24 CE 20 2C 7D AB C2 6F FF 4D 14 93 F9 08 00 30 7C 22 FA 12 CA 5B 29 00 7B B3 AE 02 24 76 2A 16 F8 EF 7F 52 3E 1D 77 38 07 C7 EF 3B A8 57 7D B1 CB E3 7E 5E AB BF FA 76 9F D9 62 F7 49 14 17 2B A5 97 CF BB 7C F9 8B 9A CC 3B 8B 1D D5 A5 10 9D 7E 55 DB 34 FB 59 1A DA D5 C8 FE AF 0C 0A 58 06 E4 B1 D4 40 8B F5 8C A1 5E 34 4D 86 42 E4 A9 C4 84 60 F6 96 9D 3A 87 30 22 DA 57 3F A6 A2 D7 86 F6 CB 69 FE D3 11 A3 24 0D AD 35 A5 CF CA AD EF CA

SFI 03 REC 01

Data Element	Tag	Length	Value
Application Primary Account Number	5A	08	61 74 84 12 30 00 00 11
Application PAN Sequence Number	5F34	01	01
Application Effective Date	5F25	03	13 01 01
Application Expiration Date	5F24	03	26 12 31

Application Usage Control	9F07	02	FF 80
Issuer Country Code	5F28	02	03 56
CVM List	8E	10	00 00 00 00 00 00 00 00 42 01 42 03 5E 03 1F 03
CDOL1	8C	1B	9F 02 06 9F 03 06 9F 1A 02 95 05 5F 2A 02 9A 03 9C 01 9F 37 04 9F 35 01 9F 34 03
CDOL2	8D	09	91 0A 8A 02 95 05 9F 37 04
IAC Default	9F0D	05	F0 40 C4 28 00
IAC Denial	9F0E	05	00 10 00 00 00
IAC Online	9F0F	05	F0 68 DC F8 00

SFI 03 REC 02

Data Element	Tag	Length	Value
Application Currency Exponent	9F44	01	02
Application Currency Code	9F42	02	03 56
SDA Tag List	9F4A	01	82
Service Code	5F30	02	06 20
Application Version Number	9F08	02	00 01

Card Internal Data Elements

Data Element	Tag	Length	Value			
CRM Country Code	D2	02	03 56			
CRM Currency Code	D3	02	03 56			
Application Configuration Options	C1	02	05 00			

Log Format 9F4	F	1A	9F 02 06 5F 2A 02 9A 03 9F 36 02 9F 34 03 9F 52 06 9F 1A 02 95 05 9C 01 8A 02
----------------	---	----	--

Issuer Application Data (IAD)

Data Element	Length	Value
Derivation Key Index (DKI)	01	01
Cryptogram Version Number (CVN)	01	05
Card Verification Results (CVR)	06	xx xx xx xx xx xx(xx is the dynamically generated value by card during the transaction.)

Security limits

Data Element	Tag	Length	Value
Failed MAC limit	-	01	FF
Lifetime MAC Limit	-	03	FF FF FF
Session MAC Limit	-	01	FF

Default 'Profile 0' Resources

Data Element	Tag	Length	Value
Profile identifier (Profile 0)	DF20	-	-
AIP	82	02	58 00
AFL	94	0C	08 01 01 00 10 01 03 00 18 01 02 01
CAC-Default	C6	02	03 6B
CAC-Denial	C5	02	01 00
CAC-Online	C7	02	B2 7F
LCOL (Lower Consecutive Offline Limit)	СВ	01	07
UCOL (Upper Consecutive Offline Limit)	СС	01	09
LCOA (Lower Cumulative Offline Amount) limit	C8	06	00 00 00 01 00 00 (₹100.00)

UCOA (Upper Cumulative Offline Amount) limit	C9	06	00 00 00 01 50 00 (₹150.00)
STA (Single Transaction Amount) limit	CA	06	00 00 00 01 00 00 (₹100.00)

3DES keys

Data Element	Length	Value
Master Key for Cryptogram Generation	10	0E F2 29 68 6E 46 FD F4 4C 26 A4 97 C2 2F E9 91
Master Key for Secure Messaging INTEGRITY	10	B5 2A F7 7A 1C A7 9E BC 86 91 38 A7 20 13 25 04
Master Key for Secure Messaging ENCRYPT	10	B0 15 57 A7 15 34 EC 7A 3E 43 04 CB 79 AE 04 29

SELECT Command Response (FCI)

OLLL	SELECT Command Response (FCI)						
Tag		Description Length		Value			
6F				FCI template	-	-	
	84			DF Name (Main Application)	07	A0 00 00 05 24 10 10	
	A5			FCI Proprietary Template	-	-	
		50		Application Label	0B	52 75 50 61 79 20 44 65 62 69 74 (Basic Debit)	
		87		Application Priority Indicator	01	01	
		BF0C		FCI Issuer Discretionary Data	-	-	
			9F4D	Transaction Log Entry	02	0B04	

16. References

SL No	Scheme	Document name	Versio n
1	EMV	EMV_v4.3_Book_2_Security_and_Key_Management_20120607061 923900	4.3
2	EMV	EMV_v4.3_Book_3_Application_Specification_20120607062110791	
3		Visa Integrated Circuit Card Specification	1.5
4	Visa	Base 1 Technical specification Vol- 1	2018
5		SMS ATM technical specification Vol 1	2018
6		M/Chip Card Application Cryptographic Algorithms	2010
7		M/Chip 4 Version 1.1 Security & Key Management	1.1
8	Mastercard	M/Chip 4 Version 1.1 Card Application Specifications for Debit and Credit	1.1
9		Customer Interface Specification	2018
10		Single Message system specification 2018	2018
11	RuPay	RuPay-Online Switching Interface Specification_V1.8.5	1.8.5
12 RuPay		D-PAS Card Specification v1.1	1.1

17. Glossary

Acronyms	Abbreviation
AAC	Application Authorization Cryptogram
AC	Application Cryptogram
AES	Advanced Encryption Standard
ASCII	American Standard Code for Information Interchange
ARQC	Authorization Request Cryptogram
ARPC	Authorization Response Cryptogram
BER	Basic Encoded Rules
BCD	Binary Coded Decimal
CVR	Card Verification result
DES	Data Encryption Standard
DKI	Derivation Key Index
DPAS	Discover Payment Application Specification
EMV	Europay Mastercard Visa
EBCDIC	Extended Binary Coded Decimal Interchange Code
HSM	Hardware Security Module
IMK	Issuer Master Key
JCB	Japan Credit Bureau
MAC	Message Authentication Code
MDK	Master Derivation Key
SMI	Secure Messaging for Integrity
SMC	Secure Messaging for confidentiality
TC	Transaction Certificate
TVR	Terminal Verification Result
UPI	Union Pay International
UDK	Unique Derivation Key

----- End of Document -----