Reactions in Aqueous Solutions

Molarity or Concentration

Water as a Polar Solvent

- Water is a polar molecule
 - since it has uneven electron distribution
 - and a bent molecular shape.

 Due to its polar nature, water interacts strongly with its solutes and often plays an active role in aqueous reactions.

CI⁻ ion surrounded by H₂O

NaCl crystal

Na⁺ ion surrounded by H₂O

Molarity or Concentration

 The concentration of a solution is given by the quantity of solute present in a given quantity of solution.

Molarity (M) is often used to express concentration. It is the number of moles of solute dissolved per liter of solution.

$$M = \frac{\text{mol}}{L}$$

What amount (mol) of each ion is in 35 mL of 0.84 M zinc chloride?

SOLUTION

moles
$$2nQ_2 = M \times V = 0.84M \times \frac{35}{1000} L$$

= 0.0294 moles

"Isotonic saline" is a 0.15 *M* aqueous solution of NaCl. How many liters of 6.0 *M* stock solution would you need to prepare 0.80 L of isotonic saline?

SOLUTION

moles before dilution = # moles after dilution
$$M_{1} V_{1} = M_{2} V_{2}$$

$$G.OM \times V_{1} = 0.15M \times 0.80L$$

$$V_{1} = \frac{0.15M \times 0.80L}{(.0 M)}$$

$$= 0.02 L.$$

Total and Net Ionic Equations

Total and Net Ionic Equations

$$2AgNO_3(aq) + Na_2CrO_4(aq) \rightarrow Ag_2CrO_4(s) + 2NaNO_3(aq)$$

The total ionic equation shows all soluble ionic substances dissociated into ions.

$$2Ag^{+}(aq) + 2NO_{3}^{-}(aq) + 2Na^{+}(aq) + CrO_{4}^{2-}(aq) \rightarrow Ag_{2}CrO_{4}(s) + 2Na^{+}(aq) + 2NO_{3}^{-}(aq)$$

Spectator ions are not involved in the actual chemical change. Spectator ions appear unchanged on both sides of the total ionic equation.

$$2Ag^{+}(aq) + 2NO_{3}^{-}(aq) + 2NA^{+}(aq) + CrO_{4}^{2-}(aq) \rightarrow Ag_{2}CrO_{4}(s) + 2NA^{+}(aq) + 2NO_{4}^{2}(aq)$$

The net ionic equation eliminates the spectator ions and shows only the actual chemical change.

$$2Ag^{+}(aq) + CrO_4^{2-}(aq) \rightarrow Ag_2CrO_4(s)$$

Note: Solid, liquid and gas remain in their same form. They can not be broken down into ions. e.g. $CaCO_3(s)$, $H_2O(I)$, $CO_2(g)$, etc.

Precipitation Reaction

Precipitation Reaction

In a precipitation reaction two soluble ionic compounds react to give an insoluble product, called a precipitate.

$$2AgNO_3(aq) + Na_2CrO_4(aq) \rightarrow Ag_2CrO_4(s) + 2NaNO_3(aq)$$

 A precipitation reaction is also known as a metathesis or double displacement reaction.

SOLUBILITY GUIDELINES

Soluble Ionic Compounds	Insoluble Ionic Compounds
1. Group 1A(1) ions (Li ⁺ , Na ⁺ , K ⁺ , etc.) and	1. OH ⁻ <i>except</i> with Group 1A(1), NH ₄ ⁺ , Sr ²⁺ ,
ammonium (NH ₄ ⁺)	Ba ²⁺ , and Ca ²⁺ (low solubility)
2. NO ₃ ⁻ , CH ₃ COO ⁻ , and ClO ₄ ⁻	2. CO ₃ ²⁻ except with Group 1A(1) and NH ₄ ⁺
	3. PO_4^{3-} except with Group 1A(1) and NH_4^+
4. F except with Pb ²⁺ and Group 2A(2)	4. S ²⁻ except with Group 1A(1) and NH ₄ ⁺
5. SO ₄ ²⁻ except with Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Ag ⁺ , and Pb ²⁺	5. $C_2O_4^{2-}$ except with Group 1A(1) and NH ₄ ⁺

1 1 H 1,01	2 IIA													15 VA	16 VIA	17 VIIA	18 VIIIA 2 He 4.00
3 Li 6.94	4 Be 9.01											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19,00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 IB	12 IIB	13 Al 26,98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
19 K 39.1	20 Ca 40.08	21 Sc 44.96	22 Ti 47,88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63,55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95,94	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121,76	52 Te 127.6	53 I 126.9	54 Xe 131,29
55 Cs 132.9	56 Ba 137.3	57 La* 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac^ (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (264)	108 Hs (265)	109 Mt (268)	110 Ds (271)	111 Rg (272)							

*	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
- 1	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
1	90	91	92	93	94	95	96	97	98	99	100	101	102	103
^	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
1	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

The following molecular views show reactant solutions for a precipitation reaction (with H₂O molecules omitted for clarity).

- a) Which compound is dissolved in beaker A: KX, Ag SO₄, MgBr₂, or Na₂SO₂?
- b) Which compound is dissolved in beaker B: NH₄NO₃, MgSO₄ Ba(NO₃)₂, or Calc₂?
- **c)** Name the precipitate and spectator ions when solutions A and B are mixed, and write balanced **molecular**, **total ionic**, and **net ion equations** for this process.

SOLUTION

$$Na_{2}SO_{44}(aq) + Ba(NO_{3})_{2}(aq) \longrightarrow 2 Na NO_{3}(aq) + Ba SO_{4}(s)$$

$$Total: 2 Ma^{2}(aq) + SO_{4}^{2-}(aq) + Ba^{2+}(aq) + 2 NO_{3}(aq) + Ba SO_{4}(s)$$

$$\longrightarrow 2 Na^{2}(aq) + Ba SO_{4}(s)$$

$$Net: SO_{4}^{2-}(aq) + Ba^{2+}(aq) \longrightarrow Ba SO_{4}(s)$$

Acid-Base Neutralization

Acid-Base Neutralization

An acid is a substance that produces H⁺ ions when dissolved in H₂O.

$$HX \xrightarrow{H_2O} H^+(aq) + X^-(aq)$$

A base is a substance that produces OH⁻ ions when dissolved in H₂O.

$$MOH \xrightarrow{H_2O} M^+(aq) + OH^-(aq)$$

 An acid-base reaction is also called a neutralization reaction. A salt and water are produced.

HCL (ag) + NaOH (ag)
$$\longrightarrow$$
 NaCL (ag) + H2O(L)
acid base Sult Water
Net: H⁺(ag) + OH⁻(ag) \longrightarrow H2O(L)

Strong Acid or Strong Base:Dissociates completely into ions

Weak Acid or Weak Base: Does NOT dissociate completely

Acids

Strong

Hydrochloric acid, HCl Hydrobromic acid, HBr Hydriodic acid, HI Nitric acid, HNO₃ Sulfuric acid, H₂SO₄ Perchloric acid, HClO₄

Weak (a few of many examples)

Hydrofluoric acid, HF Phosphoric acid, H₃PO₄ Acetic acid, CH₃COOH (or HC₂H₃O₂)

Bases

Strong

Group 1A(1) hydroxides:
Lithium hydroxide, LiOH
Sodium hydroxide, NaOH
Potassium hydroxide, KOH
Rubidium hydroxide, RbOH
Cesium hydroxide, CsOH

Heavy Group 2A(2) hydroxides: Calcium hydroxide, Ca(OH)₂ Strontium hydroxide, Sr(OH)₂ Barium hydroxide, Ba(OH)₂

Weak (one of many examples)

Ammonia, NH₃

Acids and Bases as Electrolytes

Strong acids and strong bases dissociate completely into ions in aqueous solution. They are **strong electrolytes** and conduct well in solution.

Weak acids and weak bases dissociate very little into ions in aqueous solution. They are *weak electrolytes* and conduct poorly in solution.

Write balanced, total and net ionic equations for the following reactions:

- a) hydriodic acid (aq) + calcium hydroxide $(aq) \rightarrow$
- **b)** potassium hydroxide (aq) + propanoic acid $(aq) \rightarrow$

SOLUTION

(a)
$$2 \text{ H I } (\alpha_0) + C_n (0 \text{ H})_2 (\alpha_0) \longrightarrow C_n I_2 (\alpha_0) + 2 H_2 O (R)$$

 $T_0 + \alpha_1 : 2 H^+(\alpha_0) + 2 T^-(\alpha_0) + C_n^2 (\alpha_0) + 2 O H^-(\alpha_0) \longrightarrow C_n^2 (\alpha_0) + 2 H_2 O (R)$
 $Net: 2 H^+(\alpha_0) + 2 O H^-(\alpha_0) \longrightarrow 2 H_2 O (R)$
 $Net: 2 H^+(\alpha_0) + 2 O H^-(\alpha_0) \longrightarrow 2 H_2 O (R)$

Acid-Base Titrations

In a *titration*, the concentration of one solution is used to determine the concentration of another.

 An acid-base indicator has different colors in acid and base, and is used to monitor the progress of a titration experiment.

At the equivalence point, the mol of H+ from the acid equals the mol of OH⁻ ion produced by the base. i.e. pH of the solution = 7

The end point occurs when there is a slight excess of base and the indicator changes color permanently. i.e. pH is slightly greater than 7

A 50.00 mL sample of HCl is titrated with 0.1524 *M* NaOH. The buret containing NaOH reads 0.55 mL at the beginning and 33.87 mL at the end point. Find the molarity of the HCl solution.

$$\frac{M_{\rm A} \times V_{\rm A}}{n_{\rm A}} = \frac{M_{\rm B} \times V_{\rm B}}{n_{\rm B}}$$

$$H Cl(n_{\rm A}) + N_{\rm A} O H(n_{\rm A}) \longrightarrow N_{\rm A} Cl(n_{\rm A}) + H_{\rm A} O P$$

$$H^{\dagger} Cl^{-}$$

Ans: 0.102 M

CLASS ACTIVITY

Problem 4.37

Barium nitrate solution reacts with aqueous sodium carbonate to form a solid precipitate of barium carbonate and aqueous sodium nitrate. Write down (a) the balanced chemical equation, (b) total ionic equation, and (c) net ionic equation.

Problem 4.44 a)

Potassium carbonate solution reacts with aqueous barium hydroxide to form a solid precipitate of barium carbonate and aqueous potassium hydroxide. Write down (a) the balanced chemical equation, (b) total ionic equation, and (c) net ionic equation.

Problem 4.45 b)

Ammonium sulfate solution reacts with aqueous barium chloride to form a solid precipitate of barium sulfate and aqueous ammonium chloride. Write down (a) the balanced chemical equation, (b) total ionic equation, and (c) net ionic equation.

Reduction-Oxidation (Redox) Reaction

Reduction-Oxidation (Redox) Reactions

- Oxidation is the *loss* of electrons while reduction is the *gain* of electrons.
- Alternatively, oxidation refers to the increase in oxidation number while reduction refers to the decrease in oxidation number.
- Simple mnemonic: OIL RIG
- ✓ OIL → Oxidation Is Loss
- ✓ RIG → Reduction Is Gain
- A reducing agent loses electrons and gets oxidized.
- An oxidizing agent gains electrons and gets reduced.
- A redox reaction involves electron transfer. Oxidation and reduction occur together.

Rules for Assigning an Oxidation Number (O.N.)

General rules

- **1.** For an atom in its elemental form (Na, O_2 , Cl_2 , etc.): O.N. = 0
- **2.** For a monoatomic ion: O.N. = ion charge
- **3.** The sum of O.N. values for the atoms in a compound equals zero. The sum of O.N. values for the atoms in a polyatomic ion equals the ion's charge.

Rules for Specific Atoms or Periodic Table Groups

1. For Group 1A(1): O.N. = +1 in all compounds

2. For Group 2A(2): O.N. = +2 in all compounds

3. For hydrogen: O.N. = +1 in combination with nonmetals

O.N. = -1 in combination with metals and boron O.N. = -1 in all compounds

4. For fluorine: O.N. = -1 in all compounds

5. For oxygen: O.N. = -1 in peroxides

O.N. = -2 in all other compounds(except with F)

6. For Group 7A(17): O.N. = -1 in combination with metals, nonmetals

(except O), and other halogens lower in the group

Determine the oxidation number of each element in these species: (a) zinc chloride (b) sulfur trioxide (c) nitric acid (d) dichromate ion

SOLUTION

Use oxidation numbers to decide whether the following is a redox reaction. If so, then identify the *oxidizing agent* and the *reducing agent*.

a)
$$2AI(s) + 3H_2SO_4(aq) \rightarrow AI_2(SO_4)_3(aq) + 3H_2(g)$$

$$+6 - 8 + 6 + 18 - 24$$

Reducing agent: Al is oxidized $0 \rightarrow +3$

Oxidizing agent: H is reduced $+1 \rightarrow 0$

Use oxidation numbers to decide whether the following is a redox reaction. If so, then identify the oxidizing agent and the reducing agent.

Reducing agent: Not a redox reaction. Oxidizing agent:

Use oxidation numbers to decide whether the following is a redox reaction. If so, then identify the *oxidizing agent* and the *reducing agent*.

c) PbO(s) + CO(g)
$$\rightarrow$$
 Pb(s) + CO₂(g) \rightarrow +4 - 4

Types of Redox Reactions

Combination Reaction

 \triangleright Two or more reactants combine to form a new compound: $X + Y \rightarrow Z$

Decomposition Reaction

A single compound decomposes to form two or more products: $\mathbb{Z} \to \mathbb{X} + \mathbb{Y}$

Displacement Reaction

- \triangleright metathesis or double displacement: $AB + CD \rightarrow AD + CB$
- \rightarrow single displacement: $X + YZ \rightarrow XZ + Y$

Combustion Reaction

 \triangleright the process of burning in O_2

Classify the following redox reaction as a *combination*, *decomposition*, or *displacement* reaction. Write a balanced molecular equation, and identify the oxidizing and reducing agents.

hydrogen peroxide(I) \rightarrow water(I) + oxygen gas

SOLUTION $2 + 1 - 1 \\ 2 + 2 - 2 \\ 1 - 2 + 2 - 2 \\ 1 - 2 + 2 - 2$ Decomposition Reaction

Disproportionation reaction

Classify the following redox reaction as a *combination*, *decomposition*, or *displacement* reaction. Write a balanced molecular equation, and identify the oxidizing and reducing agents.

 $aluminum(s) + lead(II) nitrate(aq) \rightarrow aluminum nitrate(aq) + lead(s)$

SOLUTION

Reactivity Series of Metals

A Trick to Remember the Reactivity Series

po-ca-so-m-al-z-i-l-hy-co-m-si

```
po \rightarrow Potassium (K)
```

$$ca \rightarrow Calcium (Ca)$$

$$m \rightarrow Magnesium (Mg)$$

$$al \rightarrow Aluminum (Al)$$

$$z \rightarrow Zinc(Zn)$$

$$i \rightarrow Iron (Fe)$$

$$l \rightarrow Lead (Pb)$$

hy → Hydrogen (H)

$$co \rightarrow Copper (Cu)$$

$$\mathbf{m} \rightarrow \mathbf{M}$$
ercury (Hg)

$$si \rightarrow Silver (Ag)$$

Examples of displacement reactions

$$K(s) + Mg(NO5)2(o4) -> KNO3(o4)+ Mg(s)$$

Thank you.

Any Questions?

