Exam Questions/Data Analysis for Risk and Security Management *Prof. Dr. Dirk Drechsler*

#1 (Total 30 Points)

(1)

	# remote logins	LL[95%]	UL[95]	# remote logi	ns
	24	22,86	28,14		
	21	22,86	28,14	Mittelwert	25,5
	25	22,86	28,14	Standardfehler	1,118033989
	29	22,86	28,14	Median	25,5
	30	22,86	28,14	Modus	#NV
	22	22,86	28,14	Standardabweichung	3,16227766
	27	22,86	28,14	Stichprobenvarianz	10
	26	22,86	28,14	Kurtosis	-1,024
				Schiefe	1,89994E-17
Mittelwert	25,50			Wertebereich	9
				Minimum	21
Standardabweichung	3,16			Maximum	30
				Summe	204
T.INV.2S[0,95;7)	2,36			Anzahl	8
				Konfidenzniveau(95,0%)	2,643730284
				LL[95%]	22,86
				UL[95]	28,14

$$\bar{x} = \frac{1}{n} * \sum_{i=1}^{n} x_i = \frac{1}{8} * (24 + \dots + 26) = 25,50$$

$$s = \sqrt{\frac{1}{n-1} * \sum_{i=1}^{n} (x_i - \bar{x})^2} = \sqrt{\frac{1}{8-1} * [(24 - 25,560)^2 + \dots + (26 - 25,50)^2]} = 3,16$$

$$\bar{x} \pm t_{(\alpha/2)}^{[n-1]} * \left(\frac{s}{\sqrt{n}}\right) = \left[25,50 \pm 2,36 * \left(\frac{3,16}{\sqrt{8}}\right)\right] = [22,86;28,16]$$

Exam Questions/Data Analysis for Risk and Security Management *Prof. Dr. Dirk Drechsler*

(2)

	# remote logins	Z-Value	Bins	Bins	Frequency
	24	-0,47	-2	-2	C
	21	-1,42	-1	-1	2
	25	-0,16	0	0	2
	29	1,11	1	1	2
	30	1,42	2	2	2
	22	-1,11		and greater	C
	27	0,47			
	26	0,16			
Mittelwert	25,50				
Standardabweichung	3,16				
T.INV.2S[0,95;7)	2,36				

Interval	# of items
$-2 \le value < -1$	2
$-1 \le value < 0$	2
$0 \le value < 1$	2
$1 \le value < 2$	2

(3)

Most of the statistical analyses assume that the data follow a certain distribution. This is, in our case, the normal distribution.