Il foto accoppiatore

IL PWM SEGUE:

158

Timer	Frequenza di base	Comparatore di uscita		Uscita di Arduino	Frequenza automatica
TCCR0	62,500 Hz	OC0	OC0A	6	976 Hz
	62,500 Hz 62,500 Hz		OC0B	5	976 Hz
TCCR1	31,250 Hz	OC1	OC1A	9	488 Hz
	31,250 Hz	001	OC1B	10	488 Hz
TCCR2	31,250 Hz 31,250 Hz	OC2	OC2A	11	488 Hz
	31,250 Hz		OC2B	3	488 Hz

Esiste il modo per cambiare la frequenza del PWM che si escrive nel "setup()":

setPwmFrequency(10,8);

Il timer zero è anche utilizzato dalla funzione "millis()" e "delay()" e da alcune librerie come la "Servo" ed è meglio non cambiarlo.

Il servomotore

Positivo di	Negativo di	Segnale di		
elimentazione	elimentazione	controllo		

Il servomotore

PROGRAMMAZIONE

161

La classe "Servo" si trova nelle librerie del IDE e si carica come una libreria normale.

Questa classe aggiunge alcune funzioni che ci facilitano la vita:

attach() nella parentesi scriviamo dove è collegato il servomotore
attached() controlla se un servomotore è collegato
detach() scollega un servomotore
read() legge la posizione angolare del servomotore scritta col "write"
write() scrive la posizione del servomotore
writeMicrosecond() è la velocità del servomotore da 1,000 a 2,000

PROGRAMMAZIONE

```
1 #include < Servo. h>
 2 Servo servomotorel; // nomino il mio servo "servomotorel"
 3 int gradi=0: // memorizzo i gradi dell'asse del servomotore
 5 void setup() {
     servomotorel.attach(11); // scrivo dove ho collegato il servomotorel
 6
 7
 8
 9
10 woid loop() {
11
     gradi=analogRead(0)/3.8; // leggo il potenziometro e divido per 3.8 per sapare i gradi
12
                               // di giro del potenziometro
13
     gradi = gradi - 45; // tolgo 45 gradi
14
     if (gradi < 0) gradi=0; // se i gradi sono minori di zero matto a zero i gradi
     if (gradi > 180) gradi = 180; // se i gradi sono maggiori di 180 metto a 180 i gradi
15
16
     servomotorel.write(gradi); // scrivo i gradi nel servomotorel
17
     delay(15); // aspetto un tempo per permettere al servomotore di posizionarsi
18
19 }
```

PROGRAMMAZIONE

fritzing

I CONDENSATORI

164

La capacità di carica dei condensatori si misura in Farad che si scrive con una "F" maiuscola.

```
micro Farad (\mu F) = 1F / 1,000,000
nano Farad (nF) = 1F / 1,000,000,000
pico Farad (pF) = 1F / 1,000,000,000
```

$$pF * 1000 = nF$$
 $\mu F / 1000 = nF$ $nF * 1000 = \mu F$ $nF / 1000 = pF$

Simbolo elettrico del Simbolo elettrico del condensatore non polarizzato condensatore variable

Simbolo elettrico del condensatore elettrolitico

1,0 pF	10 pF	100 pF	1.000 pF	10.000 pF	100.000 pF	1,0 microF
1,2 pF	12 pF	120 pF	1.200 pF	12.000 pF	120.000 pF	1,2 microF
1,5 pF	15 pF	150 pF	1.500 pF	15.000 pF	150.000 pF	1,5 microF
1,8 pF	18 pF	180 pF	1.800 pF	18.000 pF	180.000 pF	1,8 microF
2,2 pF	22 pF	220 pF	2.200 pF	22.000 pF	220.000 pF	2,2 microF
2,7 pF	27 pF	270 pF	2.700 pF	27.000 pF	270.000 pF	2,7 microF
3,3 pF	33 pF	330 pF	3.300 pF	33.000 pF	330.000 pF	3,3 microF
3,9 pF	39 pF	390 pF	3.900 pF	39.000 pF	390.000 pF	3,9 microF
4,7 pF	47 pF	470 pF	4.700 pF	47.000 pF	470.000 pF	4,7 microF
5,6 pF	56 pF	560 pF	5.600 pF	56.000 pF	560.000 pF	5,6 microF
6,8 pF	68 pF	680 pF	6.800 pF	68.000 pF	680.000 pF	6,8 microF
8,2 pF	82 pF	820 pF	8.200 pF	82.000 pF	820.000 pF	8,2 microF
						1


```
1 void setup() {
2 Serial.begin(9600);
3
4}
5
6 void loop() {
7 Serial.println(analogRead(0));
8 delay(30);
9
10 }
```


Mettendo in serie due condensatori otteniamo un valore di capacità minore del condensatore più piccolo.

Mettendo in parallelo due condensatori la capacità si somma ma la tensione di lavoro si dimezza.

Il servomotore

