Microprocessor 8-bit

Generated by Doxygen 1.6.3

Wed Apr 11 09:49:17 2012

Contents

1	Desi	gn Unit Index	1
	1.1	Design Unit Hierarchy	1
2	Desi	gn Unit Index	3
	2.1	Design Unit List	3
3	File	Index	5
	3.1	File List	5
4	Clas	s Documentation	7
	4.1	AC Entity Reference	7
	4.2	ALU Entity Reference	9
	4.3	B_Reg Entity Reference	10
	4.4	behave Architecture Reference	11
	4.5	behave Architecture Reference	12
	4.6	behave Architecture Reference	13
	4.7	behave Architecture Reference	14
	4.8	behave Architecture Reference	15
	4.9	behave Architecture Reference	16
		4.9.1 Member Function Documentation	16
		4.9.1.1 PROCESS_8	16
	4.10	behave Architecture Reference	17
	4.11	behave Architecture Reference	18
	4.12	behave Architecture Reference	19
	4.13	CU Entity Reference	20
	4.14	fsm Architecture Reference	22
		IR Entity Reference	23
		IRDec Entity Reference	25
		MAR Entity Reference	26

ii CONTENTS

	4.18	MP Entity Reference	27
		4.18.1 Member Data Documentation	28
		4.18.1.1 ieee	28
	4.19	O Entity Reference	29
	4.20	PC Entity Reference	30
	4.21	ROM_16_8 Entity Reference	31
	4.22	struct Architecture Reference	32
_			٥-
5	File l		35
	5.1	src/ac_behave.vhd File Reference	35
		5.1.1 Detailed Description	35
	5.2	src/alu_behave.vhd File Reference	36
		5.2.1 Detailed Description	36
	5.3	src/b_reg_behave.vhd File Reference	37
		5.3.1 Detailed Description	37
	5.4	src/control_unit_fsm.vhd File Reference	38
		5.4.1 Detailed Description	38
	5.5	src/ir_behave.vhd File Reference	39
		5.5.1 Detailed Description	39
	5.6	src/irdec_behave.vhd File Reference	40
		5.6.1 Detailed Description	40
	5.7	src/mar_behave.vhd File Reference	41
		5.7.1 Detailed Description	41
	5.8	src/MP_struct.vhd File Reference	42
		5.8.1 Detailed Description	42
	5.9	src/o_behave.vhd File Reference	43
		5.9.1 Detailed Description	43
	5.10	src/pc_behave.vhd File Reference	44
		5.10.1 Detailed Description	44
	5.11	src/rom_16_8_behave.vhd File Reference	45
		5.11.1 Detailed Description	45

Chapter 1

Design Unit Index

1.1 Design Unit Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

MP	7
struct	2
AC	7
behave	4
ALU	9
behave	2
B_Reg	0
behave	7
CU	0
fsm	2
IR 2	3
behave	5
IRDec	5
behave	8
MAR 20	
behave	
PC	
behave	-
ROM_16_8	
behave	_
0	
hohovo 1	

2 Design Unit Index

Chapter 2

Design Unit Index

2.1 Design Unit List

Here is a list of all design unit members with links to the Entities and Packages they belong to:

entityAC
entityALU
entityB_Reg
architecturebehave
entityCU 2
architecturefsm
entityIR
entityIRDec
entityMAR
entityMP
entityO
entityPC 3
entityROM_16_8
architecturestruct 3

4 Design Unit Index

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

src/ac_behave.vhd (Accumulator (AC))
src/alu_behave.vhd (Arithmetic Logic Unit (ALU))
src/b_reg_behave.vhd (B register (B))
src/control_unit_fsm.vhd (Controller-Sequencer (CU))
src/ir_behave.vhd (Instruction Register (IR))
src/irdec_behave.vhd (Instruction Register Decoder (IRDec))
src/mar_behave.vhd (Memory Address Register (MAR))
src/MP_struct.vhd (This is the top-level design for a simple 8-bit microprossesor)
src/o_behave.vhd (Output Register (O))
src/pc_behave.vhd (Program Counter (PC))
src/rom_16_8_behave.vhd (Read Only Memory)

6 File Index

Chapter 4

Class Documentation

4.1 AC Entity Reference

Inheritance diagram for AC:

Architectures

• behaveArchitecture

Libraries

• ieee

Packages

- std_logic_1164
- std_logic_arith
- std_logic_unsigned

Ports

• d in std_logic_vector (7 downto 0)

8-bit input data to AC from W-bus

• q_alu out std_logic_vector (7 downto 0)

8-bit output data to AC from W-bus

• q_data out std_logic_vector (7 downto 0)

8-bit output data to Adder-Subtractor block

• clk in std_logic

Rising edge clock.

• ea in std_logic

Active high enable AC control input signal.

• clr in std_logic

Active high asynchronous clear.

• la in std_logic

Active low load AC control input signal.

The documentation for this class was generated from the following file:

• src/ac_behave.vhd

4.2 ALU Entity Reference

Inheritance diagram for ALU:

Architectures

• behaveArchitecture

Libraries

• ieee

Packages

- std_logic_1164
- std_logic_arith
- std_logic_unsigned

Ports

• A in std_logic_vector (7 downto 0)

ALU A input 8-bit from AC.

• B in std_logic_vector (7 downto 0)

ALU B input 8-bit from B-register.

• S out std_logic_vector (7 downto 0)

ALU output 8-bit to W-bus.

• Su in std_logic

Low Add, High Sub.

• Eu in std_logic

Active low enable ALU (tri-state).

The documentation for this class was generated from the following file:

• src/alu_behave.vhd

4.3 B_Reg Entity Reference

Inheritance diagram for B_Reg:

Architectures

• behaveArchitecture

Libraries

• ieee

Packages

• std_logic_1164

Ports

• d in std_logic_vector (7 downto 0)

8-bit B input from W-bus

• q out std_logic_vector (7 downto 0)

8-bit B output to Adder-Subtractor

• clk in std_logic

Rising edge clock.

• clr in std_logic

Active high asynchronous clear.

• lb in std_logic

Active low load B content into output.

The documentation for this class was generated from the following file:

• src/b_reg_behave.vhd

4.4 behave Architecture Reference

Inheritance diagram for behave:

Processes

• PROCESS_7(clr , ep , cp , clk , count)

Signals

• count std_logic_vector (3 downto 0)

The documentation for this class was generated from the following file:

• src/pc_behave.vhd

4.5 behave Architecture Reference

Inheritance diagram for behave:

Processes

• PROCESS_1(A, B, Su, Eu)

Signals

- sub std_logic_vector (7 downto 0)
- sum std_logic_vector (7 downto 0)

The documentation for this class was generated from the following file:

• src/alu_behave.vhd

4.6 behave Architecture Reference

Inheritance diagram for behave:

Processes

• PROCESS_6(clr , clk , lo , d)

The documentation for this class was generated from the following file:

• src/o_behave.vhd

4.7 behave Architecture Reference

Inheritance diagram for behave:

Processes

• PROCESS_0(clr , clk , la , ea , d)

The documentation for this class was generated from the following file:

• src/ac_behave.vhd

4.8 behave Architecture Reference

Inheritance diagram for behave:

Processes

• PROCESS_3(clr , clk , li , ei)

The documentation for this class was generated from the following file:

• src/ir_behave.vhd

4.9 behave Architecture Reference

Inheritance diagram for behave:

Processes

• PROCESS_8(read , address)

Types

• mem array (0 to 15) of std_logic_vector (7 downto 0)

Signals

• rom mem

4.9.1 Member Function Documentation

4.9.1.1 PROCESS_8(read, address) [Process]

```
This program works as follow:

Load 5 to AC (memory content of 9)

Output 5 (content of AC)

Add 7 (memory content of 10) to 5 (AC content)

Output 12 (content of AC)

Add 3 (memory content of 11) to 12 (AC content)

Subtract 4 (memory content of 12) from 15 (AC content)

Output 11 (content of AC)
```

The documentation for this class was generated from the following file:

• src/rom_16_8_behave.vhd

4.10 behave Architecture Reference

Inheritance diagram for behave:

Processes

• PROCESS_2(clr , clk , lb)

The documentation for this class was generated from the following file:

• src/b_reg_behave.vhd

4.11 behave Architecture Reference

Inheritance diagram for behave:

Processes

• PROCESS_4(q_c)

Signals

• instruction std_logic_vector (5 downto 0)

The documentation for this class was generated from the following file:

• src/irdec_behave.vhd

4.12 behave Architecture Reference

Inheritance diagram for behave:

Processes

• PROCESS_5(CLR, CLK, Lm, D)

The documentation for this class was generated from the following file:

• src/mar_behave.vhd

4.13 CU Entity Reference

Inheritance diagram for CU:

Architectures

• fsmArchitecture

Libraries

• ieee

Packages

- std_logic_1164
- std_logic_arith
- std_logic_unsigned

Ports

• ADD in std_logic

Add instruction.

• CLK in std_logic

Positive edge trigger clock.

• CLR in std_logic

Active high asynchronous clear.

• LDA in std_logic

Load Accumulator instruction.

• O in std_logic

Out instruction.

• SUB in std_logic

Sub instruction.

• CON out std_logic_vector (11 downto 0)

12-bit control word forming control bus \sim \sim \sim \sim \sim \sim CpEpLmCE LiEiLaEa SuEuLbLo

The documentation for this class was generated from the following file:

• src/control_unit_fsm.vhd

4.14 fsm Architecture Reference

Inheritance diagram for fsm:

Processes

- clocked(CLK , CLR)
- nextstate(ADD , CLR , LDA , O , SUB , current_state)

Types

• STATE_TYPE (s0, s1, s2, s3, s4, s5, s6, s8, s9, s10, s11, s12)

Signals

- current_state STATE_TYPE
- next_state STATE_TYPE

The documentation for this class was generated from the following file:

• src/control_unit_fsm.vhd

4.15 IR Entity Reference

Inheritance diagram for IR:

Architectures

• behaveArchitecture

Libraries

• ieee

Packages

• std_logic_1164

Ports

• clk in std_logic

Rising edge clock.

• clr in std_logic

Active high asynchronous clear.

• li in std_logic

Active low load instruction into IR.

• ei in std_logic

Active low enable IR output.

• d in std_logic_vector (7 downto 0)

IR 8-bit input data word from W-bus.

• q_w out std_logic_vector (3 downto 0)

IR 4-bit output data word to W-bus.

• q_c out std_logic_vector (3 downto 0)

IR 4-bit output control word to Control-Sequencer block.

The documentation for this class was generated from the following file:

• src/ir_behave.vhd

4.16 IRDec Entity Reference

Inheritance diagram for IRDec:

Architectures

• behaveArchitecture

Libraries

• ieee

Packages

• std_logic_1164

Ports

- q_c in std_logic_vector (3 downto 0)
- LDA out std_logic
- ADD out std_logic
- SUB out std_logic
- OUTPUT out std_logic
- HLT out std_logic

The documentation for this class was generated from the following file:

• src/irdec_behave.vhd

4.17 MAR Entity Reference

Inheritance diagram for MAR:

Architectures

• behaveArchitecture

Libraries

• ieee

Packages

- std_logic_1164
- std_logic_arith
- std_logic_unsigned

Ports

• CLK in std_logic

Rising edge clock.

• CLR in std_logic

Active high asynchronous clear.

• Lm in std_logic

Active low load MAR.

• D in std_logic_vector (3 downto 0)

MAR 4-bit address input.

• Q out std_logic_vector (3 downto 0)

MAR 4-bit address output.

The documentation for this class was generated from the following file:

• src/mar_behave.vhd

4.18 MP Entity Reference

Inheritance diagram for MP:

Architectures

• structArchitecture

Libraries

• ieee

Packages

- std_logic_1164
- std_logic_arith

Ports

• clk in std_logic

Active high asynchronous clear.

• clr in std_logic

Rising edge clock.

hlt out std_logic

Halt signal to stop processing data.

• q3 out std_logic_vector (7 downto 0)

8-bit output

4.18.1 Member Data Documentation

4.18.1.1 ieee library [Library]

Reimplemented from AC.

The documentation for this class was generated from the following file:

• src/MP_struct.vhd

4.19 O Entity Reference

Inheritance diagram for O:

Architectures

• behaveArchitecture

Libraries

• ieee

Packages

• std_logic_1164

Ports

- d in std_logic_vector (7 downto 0)

8-bit O input from W-bus

• q out std_logic_vector (7 downto 0)

8-bit O output

• clk in std_logic

Rising edge clock.

• clr in std_logic

Active high asynchronous clear.

• lo in std_logic

Active low load O content into output.

The documentation for this class was generated from the following file:

• src/o_behave.vhd

4.20 PC Entity Reference

Inheritance diagram for PC:

Architectures

• behaveArchitecture

Libraries

• ieee

Packages

- std_logic_1164
- std_logic_unsigned

Ports

• ep in std_logic

Active high otuput enable from PC, or tri-state.

• clr in std_logic

Active high asynchronous clear.

• clk in std_logic

Falling edge clock.

• cp in std_logic

Active high enable PC to count.

• q out std_logic_vector (3 downto 0)

4-bit PC output

The documentation for this class was generated from the following file:

• src/pc_behave.vhd

4.21 ROM_16_8 Entity Reference

Inheritance diagram for ROM_16_8:

Architectures

• behaveArchitecture

Libraries

• ieee

Packages

- std_logic_1164
- std_logic_arith
- std_logic_unsigned

Ports

• read in std_logic

Active low enable ROM signal, (tri-state).

• address in std_logic_vector (3 downto 0)

4-bit ROM address bits from MAR

• data_out out std_logic_vector (7 downto 0)

8-bit ROM output word to W-bus

The documentation for this class was generated from the following file:

• src/rom_16_8_behave.vhd

4.22 struct Architecture Reference

Inheritance diagram for struct:

Components

- **AC**
- ALU
- B_Reg
- CU
- IR
- IRDec
- MAR
- PC
- ROM_16_8
- O

Signals

• Ce std_logic

Chip select for ROM.

• D std_logic_vector (3 DOWNTO 0)

MAR 4-bit address input.

• Eu std logic

Enable ALU.

• Lm std_logic

Content of PC are latched into MAR on the next +ve edge (LOW).

• Q2 std_logic_vector (3 DOWNTO 0)

MAR 4-bit address output.

• Su std_logic

Add or Sub.

• W std_logic_vector (7 DOWNTO 0)

W-bus the major internal data bus.

• add std_logic

IR decoder add control signal.

• con std_logic_vector (11 DOWNTO 0)

Control word bus.

• Cp std_logic

Chip select PC.

• d1 std_logic_vector (7 DOWNTO 0)

 $8\hbox{-}bit\ output\ data\ to\ Adder-Subtractor\ block}$

• Ea std_logic

Enable AC.

• Ei std_logic

Enable IR.

• Ep std_logic

Enable PC.

• La std_logic

Load Accumulator AC.

• Lb std_logic

Load B Register B.

• lda std_logic

Load Accumulator instruction.

34 Class Documentation

• Li std_logic

Load Instruction Register IR.

• Lo std_logic

Load Output Register O.

output std_logic

Output the result.

• q std_logic_vector (3 DOWNTO 0)

4-bit PC output

• q1 std_logic_vector (7 DOWNTO 0)

ALU B input 8-bit from B-register.

• q_alu std_logic_vector (7 DOWNTO 0)

ALU A input 8-bit from AC.

• q_c std_logic_vector (3 DOWNTO 0)

IR 4-bit output control word to Control-Sequencer block.

• q_w std_logic_vector (3 DOWNTO 0)

IR 4-bit output data word to W-bus.

• sub std_logic

IR decoder sub control signal.

Component Instantiations

- AccumulatorAC
- AddSubALU
- BRegB_Reg
- CPUCU
- IRRegIR
- IRDecoderIRDec
- MemoryAddressRegMAR
- ProgramCounterPC
- **ROMROM_16_8**
- ORegO

The documentation for this class was generated from the following file:

• src/MP_struct.vhd

Chapter 5

File Documentation

5.1 src/ac_behave.vhd File Reference

Accumulator (AC).

Architectures

- ACEntity
- behaveArchitecture

5.1.1 Detailed Description

Accumulator (AC). is a buffer register that stores intermediate amswers during a computer run. It is connected directly to the W-bus (3-state) and Adder-Subtractor/ALU (2-state).

5.2 src/alu_behave.vhd File Reference

Arithmetic Logic Unit (ALU).

Architectures

- **ALUEntity**
- behaveArchitecture

5.2.1 Detailed Description

Arithmetic Logic Unit (ALU). It just perform addition and subtraction operation.

It is asynchronous block.

5.3 src/b_reg_behave.vhd File Reference

B register (B).

Architectures

- B_RegEntity
- behaveArchitecture

5.3.1 Detailed Description

B register (B). It is another buffer register. It is used in arithmetic operations.

Its input connected to the W-bus, it transfer the data in when Lb is low.

Its output connected to ALU B input.

5.4 src/control_unit_fsm.vhd File Reference

Controller-Sequencer (CU).

Architectures

- **CUEntity**
- fsmArchitecture

5.4.1 Detailed Description

Controller-Sequencer (CU). The output is 12-bit form a word controlling the rest of the processor.

It is called the contol bus.

CON = Cp Ep nLm nCE nLi nEi nLa Ea Su Eu nLb nLo

The control word determines how the registers will react to the next clock edge.

P.S. n for activ low signal

5.5 src/ir_behave.vhd File Reference

Instruction Register (IR).

Architectures

- **IREntity**
- behaveArchitecture

5.5.1 Detailed Description

Instruction Register (IR). It is a part of the control unit.

The output of the IR is 8-bit word. It is divided into two nibbles.

Upper Nibble Lower Nibble

2-state 3-state

CU W-bus

The provided instruction set is:

LDA 0000 Load Accumulator with corresponding memory content

ADD 0001 Add the content of the AC to the content of the memory adder

SUB 0010 Subtract the content of the memory location from the AC

OUT 1110 Transfer the AC content to the output port

HLT 1111 Stop processing data

Fetch = 3 cycles Execute = 3 cycles

5.6 src/irdec_behave.vhd File Reference

Instruction Register Decoder (IRDec).

Architectures

- IRDecEntity
- behaveArchitecture

5.6.1 Detailed Description

Instruction Register Decoder (IRDec). It is equivelent to a ring counter driving the CU.

5.7 src/mar_behave.vhd File Reference

Memory Address Register (MAR).

Architectures

- MAREntity
- behaveArchitecture

5.7.1 Detailed Description

Memory Address Register (MAR). It is part of the processor memory. During a computer run, the address in the PC is latched into the MAR.

A bit later, the MAR applies this 4-bit address to the RAM, where a read operation is performed.

5.8 src/MP_struct.vhd File Reference

This is the top-level design for a simple 8-bit microprossesor.

Architectures

- MPEntity
- structArchitecture

5.8.1 Detailed Description

This is the top-level design for a simple 8-bit microprossesor. This is a 8-bit microprocessor which is know as SAP-1 or Simple-As-Possible Computer. It is described in [1].

Author

Ahmed Shahein ahmed.shahein@ieee.org

See also

[1] Malvino, A.P. and Brown, J.A., "Digital computer electronics", Glencoe/McGraw-Hill, 1992.

5.9 src/o_behave.vhd File Reference

Output Register (O).

Architectures

- OEntity
- behaveArchitecture

5.9.1 Detailed Description

Output Register (O). This buffer is used to transfer the answer to the probelm being solved to the outside world.

At high Ea and low Lo at next clock edge the content of the AC is loaded into the O register.

5.10 src/pc_behave.vhd File Reference

Program Counter (PC).

Architectures

- PCEntity
- behaveArchitecture

5.10.1 Detailed Description

Program Counter (PC). The PC is reset to 0000 before the processor runs. Then the PC send the address 0000 to the RAM/ROM,

to fetch and exectute the corresponding instruction. After the first instruction is fetched and exectuted the PC sends the following address 0001 to the RAM/ROM, and so on.

The PC is part of the conrtol unit, it counts from 0000 to 1111.

It is called pointer; it points to a memory location where instruction is stored.

It work as 4-bit counter.

5.11 src/rom_16_8_behave.vhd File Reference

Read Only Memory.

Architectures

- ROM_16_8Entity
- behaveArchitecture

5.11.1 Detailed Description

Read Only Memory. It is used to store the program on it. It replaces a RAM on the original design.

Index

```
AC, 7
AC::behave, 14
ALU, 9
ALU::behave, 12
B_Reg, 10
B_Reg::behave, 17
CU, 20
CU::fsm, 22
ieee
    MP, 28
IR, 23
IR::behave, 15
IRDec, 25
IRDec::behave, 18
MAR, 26
MAR::behave, 19
MP, 27
    ieee, 28
MP::struct, 32
O, 29
O::behave, 13
PC, 30
PC::behave, 11
PROCESS_8
    ROM_16_8::behave, 16
ROM_16_8, 31
ROM_16_8::behave, 16
    PROCESS_8, 16
src/ac_behave.vhd, 35
src/alu_behave.vhd, 36
src/b_reg_behave.vhd, 37
src/control_unit_fsm.vhd, 38
src/ir_behave.vhd, 39
src/irdec_behave.vhd, 40
src/mar_behave.vhd, 41
src/MP_struct.vhd, 42
src/o_behave.vhd, 43
src/pc_behave.vhd, 44
src/rom_16_8_behave.vhd, 45
```