Национальный исследовательский университет «МЭИ» Институт Радиотехники и электроники им. В.А. Котельникова Кафедра Основ радиотехники

Типовой расчет
По электродинамике

Студент: Жеребин В.Р.

Группа: ЭР-15-15

Часть 1. Плоские волны

Плоская электромагнитная волна с линейной поляризацией распространяется в среде с потерями вдоль оси \mathbf{x} в сторону увеличения координаты. Известны и приведены в таблице: относительные диэлектрическая и магнитная проницаемости среды ε и μ , удельная проводимость среды σ , частоты $f\mathbf{1}$ и $f\mathbf{2}$. Для различных вариантов \mathbf{B} начале координат заданы: а) начальная фаза колебаний проекции вектора \mathbf{H} или вектора \mathbf{E} на некоторую ось; б) средняя плотность мощности потерь p_{cp} или средняя плотность потока мощности Π_{cp} или средняя плотность энергии электрического поля $\mathbf{w}_{\mathbf{3}cp}$ или средняя плотность энергии электрического поля $\mathbf{w}_{\mathbf{3}cp}$ или средняя плотность энергии магнитного поля $\mathbf{w}_{\mathbf{M}cp}$ (для частоты $f\mathbf{1}$).

Ось	3	μ	σ См/м	f1, ГГц	f2, ГГц	φ(0)	$p_{\rm cp}$, ${ m MBT/M}^3$
X	6,5	2,5	0,002	0,08	0,0015	$\phi_{\text{Hy}}=-\pi/4$	5

Падение из воздуха в среду.

1. Найдите тангенс угла потерь и угол потерь на частотах f1 и f2.

$$\begin{split} \sigma &:= 0.002 & \text{pm:} = 3.14 \\ f1 &:= 0.08 \cdot 10^9 & \text{pm:} = 6.5 \\ f2 &:= 0.0015 \cdot 10^9 & \text{pm:} = 2.5 \end{split} \qquad \epsilon0 := \frac{10^{-9}}{36\pi} = 8.846 \times 10^{-12} \\ tg\delta1 &:= \frac{\sigma}{f1 \cdot 2 \cdot \pi \cdot \epsilon \cdot \epsilon 0} = 0.069 \qquad \qquad \delta1 := 3.947^\circ \\ tg\delta2 &:= \frac{\sigma}{f2 \cdot 2 \cdot \pi \cdot \epsilon \cdot \epsilon 0} = 3.692 \qquad \qquad \delta2 := 74.845^\circ \end{split}$$

2. Рассчитайте и постройте частотные зависимости коэффициента фазы, коэффициента ослабления, длины волны и фазовой скорости по точным формулам (жирная линия) в диапазоне частот, в котором тангенс угла потерь изменяется в пределах от 0.02 до 50. Используйте логарифмический масштаб по оси частот. На этих же графиках покажите кривые, полученные: а) по приближенным формулам для среды с малыми потерями (тонкая линия, в диапазоне, где $tg\delta=0.02..1$); б) по приближенным формулам для хорошо проводящей (металлоподобной) среды (тонкая штриховая линия, в диапазоне, где $tg\delta=1..50$). По графикам определите частотные области, в которых приближенные формулы дают погрешность не выше 5%.

Расчет по полным формулам:

$$\begin{split} \beta_{\text{точн.}}(\mathbf{f}) &\coloneqq \frac{2\pi \cdot \mathbf{f}}{c} \sqrt{\mu \cdot \varepsilon} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \cdot \sqrt{1 + \left(\frac{\sigma}{2\pi \mathbf{f} \cdot \varepsilon \cdot \varepsilon_0}\right)^2}} - \text{коэффициент фазы} \\ \alpha_{\text{точн.}}(\mathbf{f}) &\coloneqq \frac{2\pi \cdot \mathbf{f}}{c} \sqrt{\mu \cdot \varepsilon} \cdot \sqrt{\frac{-1}{2} + \frac{1}{2} \cdot \sqrt{1 + \left(\frac{\sigma}{2\pi \mathbf{f} \cdot \varepsilon \cdot \varepsilon_0}\right)^2}} - \text{коэффициент ослабления} \\ \lambda_{\text{точн.}}(\mathbf{f}) &\coloneqq \frac{2\pi}{\beta_{\text{точн.}}(\mathbf{f})} & - \text{длина волны} \\ V_{\text{точн.}}(\mathbf{f}) &\coloneqq \frac{2\pi \cdot \mathbf{f}}{\beta_{\text{точн.}}(\mathbf{f})} & - \text{фазовая скорость} \end{split}$$

Расчет по приближенным формулам для сред с малыми потерями:

$$\begin{split} \beta_{M.\Pi.}(f) &\coloneqq \frac{2\pi \cdot f}{c} \sqrt{\mu \cdot \epsilon} \\ \alpha_{M.\Pi.}(f) &\coloneqq \frac{\sigma}{2} \cdot Z_0 \cdot \sqrt{\frac{\mu}{\epsilon}} \\ \lambda_{M.\Pi.}(f) &\coloneqq \frac{c}{f \cdot \sqrt{\epsilon \cdot \mu}} \\ V_{M.\Pi.}(f) &\coloneqq \frac{c}{\sqrt{\mu \cdot \epsilon}} \end{split}$$

Расчет по приближенным формулам для магнитодиэлектрических сред без потерь:

$$\begin{split} \beta_{6.\pi.}(\mathbf{f}) &\coloneqq \sqrt{\frac{2 \cdot \pi \cdot \mathbf{f} \cdot \mu \cdot \mu_0 \cdot \sigma}{2}} \\ \alpha_{6.\pi.}(\mathbf{f}) &\coloneqq \sqrt{\frac{2 \cdot \pi \cdot \mathbf{f} \cdot \mu \cdot \mu_0 \cdot \sigma}{2}} \\ \lambda_{6.\pi.}(\mathbf{f}) &\coloneqq 2\pi \cdot \sqrt{\frac{2}{2\pi \cdot \mathbf{f} \cdot \mu \cdot \mu_0 \cdot \sigma}} \\ V_{6.\pi.}(\mathbf{f}) &\coloneqq \sqrt{\frac{(4\pi \cdot \mathbf{f})}{\mu \cdot \mu_0 \cdot \sigma}} \end{split}$$

Расчет диапазона частот:

$$\begin{split} \text{tg}\delta 1 &:= 0.02 \qquad \text{f}_{\text{MW}}^1 := \frac{\sigma}{\text{tg}\delta 1 \cdot 2 \cdot \pi \cdot \epsilon \cdot \epsilon_0} = 2.769 \times 10^8 \\ \text{tg}\delta 2 &:= 1 \qquad \text{f}_{\text{MW}}^2 := \frac{\sigma}{\text{tg}\delta 2 \cdot 2 \cdot \pi \cdot \epsilon \cdot \epsilon_0} = 5.538 \times 10^6 \\ \text{tg}\delta 3 &:= 50 \qquad \text{f}_{\text{MW}}^3 := \frac{\sigma}{\text{tg}\delta 3 \cdot 2 \cdot \pi \cdot \epsilon \cdot \epsilon_0} = 1.108 \times 10^5 \end{split}$$

2. Для частот f1, f2 и f3 рассчитайте и сведите в таблицу значения коэффициента фазы, коэффициента ослабления, длины волны, модуля и фазы характеристического сопротивления среды. Получите общие формулы (для Вашего случая) и формулы с конкретными числовыми параметрами (на частотах f1, f2 и f3) для зависимостей комплексных амплитуд векторов E и H и плотности потока мощности от пространственной координаты и для зависимостей мгновенных значений векторов E и H от пространственной координаты и от времени. Для частот f1 и f2 рассчитайте и постройте зависимости амплитуды и мгновенных (при t=0) значений проекций векторов E, H а также модуля вектора Π_{CP} от пространственной координаты распространения волны в пределах от 0 до 1,5 λ . **Примечание.** Графики для амплитуды совместите с графиками для мгновенных значений. **Для каждой частоты** все графики приведите на одной странице один под другим в одинаковом масштабе по горизонтали.

f	80 МГц	1.5 МГц	10.95 МГц
$\beta(f)$	6.758	0.197	0.952
$\alpha(f)$	0.234	0.151	0.227
$\lambda(f)$	0.93	31.941	6.598
$ Z_{c}(f) $	233.521	119.539	220.866
$arg(Z_c(f))$	1.98	37.423	13.41

Зависимости амплитуды и мгновенного значения для частоты f1.

Зависимости амплитуды и мгновенного значения для частоты f2.

Зависимости амплитуды и мгновенного значения для частоты f3.

Зависимость плотности потока мощности от координаты распространения: для частоты f1.

для частоты f2.

для частоты f3.

Вывод:

1)При частоты ниже 1 МГц лучше использовать формулы для среды с большими потерями, а при частотах выше 10 МГц — для среды с малыми потерями. На частотах от 1 МГц до 10 МГц приближенные формулы дают большую погрешность. Это объясняется тем, что $tg\delta$ обратно пропорционален частоте волны.

2)В среде с потерями временной сдвиг фаз между магнитной и электрической состоявяющими поля определяется фазой характеристического сдвига среды $\frac{\delta}{2}$ и частотой ω и равен $\frac{\delta}{2\omega}$.

Пространственный сдвиг между E и H определяется фазой характеристического сопративления среды $\frac{\delta}{2}$ и коэффициентом фазы β и равен $\frac{\delta}{2 \cdot \beta}$. Таким образом, пространственный и временной сдвиги между E и H обратно пропорциональны частоте.

3)На расстоянии λ затухание волны обратно пропорционально частоте.