LISTING OF CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in this application.

What is claimed is:

1. (previously presented) A tool comprising:

a drive shaft having proximal and distal ends, an intermediate portion, an outer sleeve engaging

portion and a length;

a handle portion associated with the drive shaft proximal end,

a fastener engaging portion associated with the drive shaft distal end, the fastener engaging

portion comprising a first surface configured to axially engage a fastener and a second surface

configured to rotationally engage the fastener; and

an outer sleeve associated with the drive shaft intermediate portion, the sleeve comprising a drive

shaft engaging portion,

wherein the outer sleeve engaging portion and the drive shaft engaging portion are configured to

coact to allow at least a portion of the drive shaft to translate linearly within the sleeve.

2. (previously presented) The tool of claim 1, wherein the drive shaft comprises a cannulated

fastener driving portion and an inner shaft portion, at least a portion of the inner shaft portion disposed

2

SSL-DOCS1 1801372v1

within the fastener driving portion, the inner shaft portion configured to axially engage the fastener and the driving portion configured to rotationally engage the fastener.

3. (withdrawn) The tool of claim 2, wherein the fastener driving portion further comprises:

a driving sleeve having a distal end comprising a fastener driving end and a bore having an inner surface, and

a shaft portion comprising a distal end having a driving sleeve cooperating portion, and a cannulation for receiving the inner shaft portion of the drive shaft,

wherein the distal end of the shaft portion is slidably received within the bore of the driving sleeve, and the bore and the driving sleeve cooperating portion are configured such that rotating the inner sleeve rotates the driving sleeve.

- 4. (withdrawn) The tool of claim 3, wherein the inner shaft further comprises a radial groove, the shaft portion of the fastener driving portion further comprises a slot, and the driving sleeve further comprises a pin bore, wherein a pin disposed within the pin bore and extending through the slot to engage the radial groove fixes the inner shaft and the driving sleeve axially with respect to each other.
- 5. (withdrawn) The tool of claim 4, wherein when the inner shaft axially engages the fastener, the driving sleeve also engages the fastener.

6. (currently amended) The tool of claim 2 [1], wherein the inner shaft portion is tapered and the cannulated fastener driving portion is configured to slidingly receive the tapered inner shaft.

7. (previously presented)The tool of claim 1, wherein the axial fastener-engagement portion comprises a thread.

8. (previously presented) The tool of claim 1, wherein the first surface comprises at least one radial member configured to axially engage a recess in the head of a bone fastener.

9. (previously presented) The tool of claim 8, wherein the first surface comprises a plurality of radial members, each of which is configured to axially engage corresponding recesses in a fastener head.

10. (withdrawn) The tool of claim 1, wherein the axial fastener-engagement portion grips the fastener about an outside surface of the fastener head.

11. (previously presented) The tool of claim 1, wherein the sleeve engaging portion and drive shaft engaging portions comprise complementary threads.

12. (previously presented) The tool of claim 1, further comprising an inner shaft having a fastener engaging surface at one end, the drive shaft further comprising a cannulation configured and sized to accept at least a portion of the inner shaft, wherein when the inner shaft is disposed within the cannulation the fastener engaging surface extends distally beyond the distal end of the drive shaft.

13. (previously presented) The tool of claim 1, wherein at least a portion of the sleeve has a roughened outer surface.

14. (previously presented) The tool of claim 1, the fastener engaging portion further comprising

a locking clip expanding portion, the fastener disposed within a fastener hole in a plate, the fastener hole

further provided with an expandable locking clip configured to engage a portion of the fastener to

prevent the fastener from being backed out of the fastener hole, and wherein the locking clip expanding

portion is configured to expand the locking clip.

15. (previously presented) The tool of claim 14, wherein the locking clip expanding portion is

configured to expand the locking clip to a dimension greater than an outer diameter of the fastener head.

16. (previously presented) The tool of claim 14, wherein the locking clip expanding portion is

configured to expand the locking clip to a dimension smaller than an outer diameter of the fastener head.

17. (previously presented) The tool of claim 16, wherein at least a portion of the fastener is

configured to expand the locking clip to a dimension substantially equal to the outer diameter of the

fastener head when the tool is engaged with the fastener and the tool is operated to remove the fastener

from the bone plate.

18. (previously presented) The tool of claim 1, wherein the sleeve has a distal end configured to

engage a bone surface.

19. (previously presented) The tool of claim 1, wherein the sleeve has a distal end configured to

engage a surface of a bone plate.

5

SSL-DOCS1 1801372v1

20. (withdrawn) The tool of claim 1, wherein the sleeve comprises first and second pieces, the first piece configured to threadably engage the sleeve engaging portion of the drive shaft and

the second piece comprising an end configured to engage the surface of a bone plate or bone.

21. (withdrawn / currently amended) The tool of claim 20 19, wherein the first and second pieces

are rotatable with respect to each other.

22. (withdrawn) A bone plate, tool and fastener system comprising:

the tool of claim 1, further comprising at least one radial member,

a fastener having a radially deformable head and a threaded body, the head having a

circumferential groove for engaging a bone plate locking element, and configured to receive the radial

member to axially engage the tool with the fastener, and

a bone plate having at least one bone screw hole, the at least one bone screw hole having a

locking element disposed at least partially within the hole and configured to engage at least a portion of

the fastener head groove to axially retain the bone screw within the bone screw hole,

wherein when the fastener is retained within the bone screw hole by the locking element and the

tool is axially engaged with the fastener, an axial removal force applied to the fastener by the tool causes

the fastener head to radially deform to thereby disengage the fastener from the locking element.

23. (withdrawn) The system of claim 22, wherein the fastener head is rendered radially

compressible by at least one longitudinal slot disposed in the head.

6

24. (withdrawn) The system of claim 22, wherein the fastener head is rendered radially

compressible by a hollow portion disposed in the head.

25. (previously presented) A tool comprising:

a drive shaft having a fastener engaging end and a sleeve engaging portion, the fastener engaging

end comprising a rotational engagement portion and an axial engagement portion,

a sleeve disposed about at least a portion of the drive shaft, the sleeve comprising a drive shaft

engaging portion,

wherein the sleeve engaging portion and the drive shaft engaging portion comprise

complementary threads configured to allow the drive shaft to translate linearly within the sleeve when

the drive shaft is rotated relative to the sleeve.

26. (previously presented) The tool of claim 25, wherein the drive shaft comprises a cannulated

fastener driving portion and an inner shaft portion, at least a portion of the inner shaft disposed within

the driving portion, the inner shaft portion configured to axially engage a fastener and the driving

portion configured to rotationally engage the fastener.

27. (previously presented) The tool of claim 26, wherein the inner shaft portion is tapered and

the cannulated fastener driving portion is configured to slidingly receive the tapered inner shaft.

28. (previously presented) The tool of claim 25, the fastener engaging end further comprising a

locking clip expanding portion, the fastener engaging end of the drive shaft configured to engage a

7

fastener disposed within a fastener hole in a plate, the plate having an expandable locking clip disposed within the fastener hole, the clip configured to engage a portion of the fastener to prevent the fastener from backing out of the fastener hole, wherein the fastener engaging end is configured to expand the

fastener locking clip when the drive shaft engages the fastener.

29. (previously presented) The tool of claim 28, wherein the locking clip engaging portion is

configured to expand the locking clip to a dimension greater than an outer diameter of the fastener head.

30. (previously presented) The tool of claim 28, wherein the locking clip engaging portion is

configured to expand the locking clip to a dimension smaller than an outer diameter of the fastener head.

31. (previously presented) The tool of claim 30, wherein when the tool is engaged with the

fastener and the tool is operated to remove the fastener from the bone plate, an axial removal force

applied by the tool is greater than a fastener locking force of the locking clip.

32. (previously presented) The tool of claim 25, wherein the sleeve has a distal end configured

to engage a bone surface.

33. (previously presented) The tool of claim 25, wherein the sleeve has a distal end configured

to engage a surface of a bone plate.

34. (withdrawn) The tool of claim 25, wherein the sleeve comprises first and second

pieces, the first piece configured to threadably engage the sleeve engaging portion of the drive shaft and

the second piece comprising an end configured to engage the surface of a bone plate or bone.

8

SSL-DOCS1 1801372v1

35. (withdrawn) The tool of claim 34, wherein the second piece further comprises an inwardly-extending spring element configured to engage an outer surface of the drive shaft to provisionally retain the second piece at a selected location on the drive shaft.

36. (withdrawn) The tool of claim 35, wherein the first and second pieces are rotatable with respect to each other.

37. (withdrawn) The tool of claim 25, wherein the rotational engagement and axial engagement portions comprise a single screw thread element configured to engage and retain at least a portion of a fastener seated in bone.

38. (withdrawn) The tool of claim 37, wherein when the tool is engaged with the fastener and the tool is rotated to remove the fastener from the bone, the rotation serves to increase engagement of the screw thread element with the fastener.

39.-42. (canceled)