Universidad Nacional de Colombia Sede Bogotá

Departamento de Matemáticas TALLER SOBRE CONJUNTOS

I. Sean $A = \{0, \{0\}, \{0, 1\}\}\$ y $B = \{0, 1, \{0\}, \{0, 1\}, A\}$.

Determine si los siguientes enunciados son falsos o verdaderos. Justifique.

- (a) $\{0,1\} \in A$
- (b) $\{0,1\} \subseteq A$
- (c) $A \in B$

- (d) $A \subseteq B$
- (e) $\{1\} \in B$
- (f) $\{1\} \subseteq B$

- (g) $\{0,1\} \subseteq B$
- (h) $B \subseteq A$
- (i) $A \cup B \subseteq B$

- (j) $B A \in A$
- (k) $B A \subseteq A$ (l) $A B \subseteq A$.

II. Considere los conjuntos A, B y C subconjuntos arbitrarios de un universo U y determine si las siguientes proposiciones son verdaderas o falsas. Justifique completamente.

Recuerde que A^c denota el complemento del conjunto A, es decir $A^c := U - A$.

Se define el conjunto $A \triangle B$, diferencia simétrica entre A y B como sigue

$$A \triangle B = (A - B) \cup (B - A)$$

- 1) Si $A \cup B = C \cup B$, entonces A = C.
- 2) $A \cap (B C) = (A \cap B) (A \cap C)$.
- 3) $(A B) \cup B = A$.
- 4) Si $A \cap B = \emptyset$, entonces $A = \emptyset$ o $B = \emptyset$.
- 5) Existen conjuntos A y B tales que $(A B)^c = (B A)^c$.
- 6) $A \cup B = \emptyset$ implica que $A = \emptyset$ o $B = \emptyset$.
- 7) $A B = \emptyset$, si y sólo si, A = B.
- 8) $A \subseteq B$, si y sólo si, $A^c \cup B = U$.
- 9) Para todo par de conjuntos A y B se cumple que $(A B) \cup (B A) = A$.
- 10) $A \subseteq B$, si y sólo si, $A \cap B^c = \emptyset$.
- 11) Si $A \cup B = U$, entonces $B = A^c$.
- 12) $B^c \subseteq A^c$ implica que $B \subseteq A$.
- 13) Hay conjuntos A, B, y C tales que A (B C) = (A B) C.
- 14) Si A, B, y C son conjuntos, entonces se cumple que A-(B-C)=(A-B)-C.
- 15) Si $A \cup B = A$ entonces $B = \emptyset$.
- 16) $A (B \cup C) = (A B) \cup (A C)$.
- 17) Existen conjuntos A y B tales que $A \triangle B = A \cup B$.
- 18) Hay conjuntos A y B para los cuales $\wp(A \cup B) = \wp(A) \cup \wp(B)$.
- 19) Dados dos conjuntos A y B existe un conjunto C tal que $A \cup C = B$.
- 20) $A \triangle B \triangle C = (A \cup B \cup C) (A \cap B \cap C)$.

III. En cada uno de los siguientes casos encuentre, si es posible, condiciones necesarias (pero no suficientes), suficientes (pero no necesarias), y, necesarias y suficientes para que se cumpla la igualdad.

1)
$$A \cap B = A$$

$$2) A \cup B = A$$

3)
$$A^c \cap U = \emptyset$$

1)
$$A \cap B = A$$
 2) $A \cup B = A$
3) $A^c \cap U = \emptyset$ 4) $(A \cap B)^c = B^c$.

IV. Sean $U = \{x \in \mathbb{N} \mid 0 \le x \le 10\}, A = \{x \in U \mid x \text{ es primo}\},$ $B = \{x \in U \mid x \text{ es impar}\},\ describa por extensión y por comprensión los con$ juntos:

$$A^c$$
, $B-A$

$$(A\cap B)^c$$
,

$$B-A$$
, $(A\cap B)^c$, $A-(B\cup A^c)$, $A\triangle B$.

$$A \triangle B$$
.

V. Considere como universo los puntos del plano cartesiano. Dados los siguientes subconjuntos:

A: La colección de puntos cuya abscisa es un número natural.

B: La colección de puntos cuya ordenada es mayor que 3 y menor o igual que

C: La colección de puntos cuya distancia al punto (2,2) es menor o igual que 4.

D: La colección de puntos para los cuales la suma de sus coordenadas es igual a 1.

Determine y haga una representación gráfica de:

1)
$$A \cup B$$

2)
$$A \cap B^{\alpha}$$

3)
$$A \cup (B \cap C)$$

4)
$$B \triangle C$$

2)
$$A \cap B^c$$
 3) $A \cup (B \cap C)$ 4) $B \triangle C$ 5) $(B \triangle C) \cap D$

VI. Si
$$A = \{1, 2, \{1, 2\}\}, B = \{1, \{2\}, 3\} \text{ y } C = \{2\}$$

a) Determine por extensión:

1)
$$\wp(A)$$
 2)

$$2) \wp(B)$$

3)
$$\wp(A \cap B)$$

3)
$$\wp(A \cap B)$$
 4) $\wp(A) \cap \wp(B)$ 5) $\wp(A \cup B)$

5)
$$\omega(A \sqcup B)$$

6)
$$\wp(A) \cup \wp(B)$$

7)
$$\wp(A-C)$$

6)
$$\wp(A) \cup \wp(B)$$
 7) $\wp(A-C)$ 8) $\wp(A) - \wp(C)$.

b) Llene el espacio vacío con los símbolos
 \in o $\not\in,$ \subseteq o $\not\subseteq,$ de manera que se obtenga una proposición verdadera, justificando su respuesta.

1)
$$\{1,2\} \dots A$$

2)
$$\{1,2\}$$
 ___B

1)
$$\{1,2\} \dots A$$
 2) $\{1,2\} \dots B$ 3) $\{\{\{\}\}\} \dots \wp(\wp(\wp(A)))$

4)
$$\{\{2\}\}$$
 ___ $\wp(A)$ 5) $\{\{2\}\}$ ___ $\wp(B)$.

$$(5)\{\{2\}\} = \wp(B).$$