[LS combinations] - the cases of 2p3p and 2p2

• Equivalent and Nonequivalent Electrons

Nonequivalent electrons are those differing in either n or l values, whereas equivalent electrons have the same n and l values.

- For instance, consider the combination of two *p* electrons.
- (1) If they have different values of n (i.e., if they are nonequivalent electrons), then the combination is simple (e.g., 2p3p).

$$S=0,1, \quad L=0,1,2 \quad \rightarrow \quad {}^1S, {}^1P, {}^1D, {}^3S, {}^3P, {}^3D$$

$$\rightarrow \quad 6 \text{ spectroscopic terms}$$

$$\rightarrow \quad {}^1S_0, {}^1P_1, {}^1D_2, {}^3S_1, {}^3P_{0,1,2}, {}^3D_{1,2,3}$$

$$\rightarrow \quad 10 \text{ spectroscopic levels}$$

We can have (2J+1) states for each J value. Therefore, we have 36 states available in total.

$$\rightarrow 1 + 3 + 5 + 3 + 9 + 15 = 36$$

$$(= 3^2 \times 2^2) \text{ distinguishable states}$$

There are two possible states $m_s = \pm 1/2$ for spin of each electron, and three possible states $m_l = -1,0,1$ for orbital angular momentum of each electron. Therefore, we can expect that there are $2^2 \times 3^2 = 36$ distinguishable states.

(2) If two p electrons have the same *n* values and thus equivalent. Then all the 36 states are not available: some are ruled out by the Pauli exclusion principle, and some are ruled out because they are not distinguishable from others.

There are two ways to obtain the spectroscopic terms:

The first way is to use a table, as in the right-hand side.

• We can find there are 15 distinguishable states allowed. The following table shows the states that are excluded by Pauli's exclusion principle and labels only distinguishable states.

m_{l1}	m_{l2}	m_{s1}	m.2	Label	m_{l1}	m_{l2}	$m_{ullet 1}$	m_{*2}	Label
+1	+1	+1/2 +	+1/2	OUT 1 1 OUT	0	-1	+ +	+ - + -	11 12 13 14
+1	0	+ +	+ + -	2 3 4 5	-1	+1	+ +	+ - + -	6 8 7 9
+1	-1	+ +	+ - + -	6 7 8 9	-1	0	+ +	+ - + -	11 13 12 14
0	+1	+ +	+ - + -	2 4 3 5	1	-1	+ +	+ - + -	OUT 15 15 OUT
0	0	+ + - -	+ - + -	OUT 10 10 OUT					

OUT : Pauli excluded states.

Only distinguishable states are labelled.

Label	Ms	ML	MJ	Level
1	0	+2	+2	(1) ¹ D ₂
2	+1	+1	+2	(2) ³ P ₂
3	0	+1	+1	(1) ¹ D ₂
4	0	+1	+1	(2) ³ P ₂
5	-1	+1	0	(2) ³ P ₂
6	+1	0	+1	(3) ³ P ₁
7	0	0	0	(1) ¹ D ₂
8	0	0	0	(3) ³ P ₁
9	-1	0	-1	(3) ³ P ₁
10	0	0	0	(5) ¹ S ₀
11	+1	-1	0	(4) ³ P ₀
12	0	-1	-1	(1) ¹ D ₂
13	0	-1	-1	(2) ³ P ₂
14	-1	-1	-2	(2) ³ P ₂
15	0	-2	-2	(1) ¹ D ₂

- We must now compare these states with the states expected in the *LS* multiplet: ${}^{1}S_{0}$, ${}^{1}P_{1}$, ${}^{1}D_{2}$, ${}^{3}S_{1}$, ${}^{3}P_{0,1,2}$, ${}^{3}D_{1,2,3}$.
- Of theses, we immediately see that 3D_3 state cannot be present, since this would require M_1 values of +3 and -3. This in turn rules out the presence of 3D_2 and 3D_1 , since if one possible combination of a given L and S is present, all must be.
- State 1 can come only from an LS term having $L \ge 2$ and $S \ge 0$; from this we conclude that the ${}^{1}D_{2}$ term must be present.
- State 2 requires the present of an LS term with $L \ge 1$ and $S \ge 1$. Of the available combinations, this requires that ${}^{3}P_{0,1,2}$ be present.
- We now found how may independent LS terms are known to be present. We have from ${}^{3}P_{0,1,2}$, 1+3+5 = 9 states; from ${}^{1}D_{2}$, 5 states; a total of 14.
- Those states requires M_J values of +2, +1, 0, -1, -2; +1, 0, -1; 0; and +2, +1, 0, -1, -2, respectively.
- These account for all of the M_J values in the table except for one, whose M_J value is zero. This then requires 1S_0 , to be present.
 - \Rightarrow Finally, we obtain ${}^{1}S_{0}$, ${}^{1}D_{2}$, ${}^{3}P_{0,1,2}$.

The second method is to use the Pauli principle.

This is much simpler than the above method.

Recall that the Pauli principle states that **the total eigenfunction must be antisymmetric with respect to the exchange of two particles.** Therefore, we can have only two distinct cases:

- (a) symmetric function for the spin + antisymmetric function for the orbital angular momentum \Rightarrow ³P
- (b) antisymmetric function for the spin + symmetric function for the orbital angular momentum $\Rightarrow {}^{1}S, {}^{1}D$

Note that among the six terms ${}^{1}S, {}^{1}P, {}^{1}D, {}^{3}S, {}^{3}P, {}^{3}D$, the following terms are all excluded.

 ^{1}P is antisymmetric for both spin and orbital angular momenta

 ^{3}S is symmetric for both spin and orbital angular momenta

 3D is also symmetric for both spin and orbital angular momenta

Because

 $S = 0 \rightarrow s_1 = 1/2, \ s_2 = -1/2$: Product of

: Product of two spin functions are antisymmetric w.r.t. the exchange

 $S=1 \rightarrow s_1 = 1/2, \ s_2 = 1/2$

: Product of two spin functions are symmetric.

 $L = 1 \rightarrow l_1 = 1, \ l_2 = 0$

: The first wavefunction is antisymmetric and the second one is symmetric.

Therefore, their product is antisymmetric w.r.t. the exchange.

 $L=2 \to l_1 = 1, \ l_2 = 1$

: Both are antisymmetric. Therefore, their product is symmetric.