Business Case - LoanTap - Logistic Regression

Context

LoanTap is an online platform committed to delivering customized loan products to millennials. They innovate in an otherwise dull loan segment, to deliver instant, flexible loans on consumer friendly terms to salaried professionals and businessmen.

The data science team at LoanTap is building an underwriting layer to determine the creditworthiness of MSMEs as well as individuals.

LoanTap deploys formal credit to salaried individuals and businesses 5 main financial instruments:

Personal Loan **EMI Free Loan** Personal Overdraft Advance Salary Loan

This case study will focus on the underwriting process behind Personal Loan only

Business Problem

Given a set of attributes for an Individual, determine if a credit line should be extended to them. If so, what should the repayment terms be in business recommendations?

Column Profiling

- loan amnt: The listed amount of the loan applied for by the borrower. If at some point in time, the credit department reduces the loan amount, then it will be reflected in this value.
- term : The number of payments on the loan. Values are in months and can be either 36 or 60.
- · int rate: Interest Rate on the loan
- installment: The monthly payment owed by the borrower if the loan originates.
- · grade: LoanTap assigned loan grade
- sub grade : LoanTap assigned loan subgrade
- emp_title :The job title supplied by the Borrower when applying for the loan.*
- emp length: Employment length in years. Possible values are between 0 and 10 where 0 means less than one year and 10 means ten or more years.
- home ownership: The home ownership status provided by the borrower during registration or obtained from the credit report.
- annual inc : The self-reported annual income provided by the borrower during registration.
- verification status: Indicates if income was verified by LoanTap, not verified, or if the income source was verified
- issue_d : The month which the loan was funded
- · loan status: Current status of the loan Target Variable
- purpose: A category provided by the borrower for the loan request.
- · title: The loan title provided by the borrower
- dti: A ratio calculated using the borrower's total monthly debt payments on the total debt obligations, excluding mortgage and the requested LoanTap loan, divided by the borrower's self-reported monthly income.

- earliest cr line: The month the borrower's earliest reported credit line was opened
- open acc: The number of open credit lines in the borrower's credit file.
- pub_rec : Number of derogatory public records
- · revol bal: Total credit revolving balance
- revol util: Revolving line utilization rate, or the amount of credit the borrower is using relative to all available revolving credit.
- total acc: The total number of credit lines currently in the borrower's credit file
- initial list status: The initial listing status of the loan. Possible values are W, F
- application type: Indicates whether the loan is an individual application or a joint application with two coborrowers
- · mort_acc: Number of mortgage accounts.
- · pub rec bankruptcies: Number of public record bankruptcies
- · Address: Address of the individual

In [160]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
```

In [161]:

```
## importing packages for linear regression
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn import linear_model
```

In [162]:

```
df = pd.read_csv("logistic_regression.csv")
```

In [163]:

df.head().T

Out[163]:

	2	1	0	
720	15600.0	8000.0	10000.0	loan_amnt
36 mor	36 months	36 months	36 months	term
6	10.49	11.99	11.44	int_rate
220	506.97	265.68	329.48	installment
	В	В	В	grade
	В3	B5	B4	sub_grade
Client Advoc	Statistician	Credit analyst	Marketing	emp_title
6 уе	< 1 year	4 years	10+ years	emp_length
RE	RENT	MORTGAGE	RENT	home_ownership
5400	43057.0	65000.0	117000.0	annual_inc
Not Veri	Source Verified	Not Verified	Not Verified	verification_status
Nov-20	Jan-2015	Jan-2015	Jan-2015	issue_d
Fully F	Fully Paid	Fully Paid	Fully Paid	loan_status
credit_c	credit_card	debt_consolidation	vacation	purpose
Credit c refinanc	Credit card refinancing	Debt consolidation	Vacation	title
	12.79	22.05	26.24	dti
Sep-20	Aug-2007	Jul-2004	Jun-1990	earliest_cr_line
	13.0	17.0	16.0	open_acc
	0.0	0.0	0.0	pub_rec
547	11987.0	20131.0	36369.0	revol_bal
2	92.2	53.3	41.8	revol_util
1	26.0	27.0	25.0	total_acc
	f	f	w	initial_list_status
INDIVIDU	INDIVIDUAL	INDIVIDUAL	INDIVIDUAL	application_type
	0.0	3.0	0.0	mort_acc
	0.0	0.0	0.0	pub_rec_bankruptcies
823 F Ford\r\nDelacruzs MA 008	87025 Mark Dale Apt. 269\r\nNew Sabrina, WV 05113	1076 Carney Fort Apt. 347\r\nLoganmouth, SD 05113	0174 Michelle Gateway\r\nMendozaberg, OK 22690	address

Checking Shape and Column Names

```
In [164]:
```

```
df.shape
```

Out[164]:

```
(396030, 27)
```

There are 396030 data points and 27 columns of data

In [165]:

```
#checking column names
df.columns
```

Out[165]:

```
'verification_status', 'issue_d', 'loan_status', 'purpose', 'title', 'dti', 'earliest_cr_line', 'open_acc', 'pub_rec', 'revol_bal', 'revol_util', 'total_acc', 'initial_list_status', 'application_type',
         'mort_acc', 'pub_rec_bankruptcies', 'address'],
       dtype='object')
```

In [166]:

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 396030 entries, 0 to 396029 Data columns (total 27 columns):

Column # Non-Null Count Dtype -----_ _ _ ---------0 loan_amnt 396030 non-null float64 1 term 396030 non-null object 2 int_rate 396030 non-null float64 3 installment 396030 non-null float64 4 grade 396030 non-null object 5 396030 non-null object sub_grade 6 emp_title 373103 non-null object 377729 non-null object 7 emp_length home_ownership 396030 non-null object 8 9 annual inc 396030 non-null float64 10 verification_status 396030 non-null object 11 issue_d 396030 non-null object 396030 non-null object loan_status 12 13 purpose 396030 non-null object 14 title 394275 non-null object 15 dti 396030 non-null float64 16 earliest_cr_line 396030 non-null object 396030 non-null float64 17 open_acc 18 pub_rec 396030 non-null float64 396030 non-null float64 19 revol_bal 395754 non-null float64 20 revol_util 21 total acc 396030 non-null float64 22 initial_list_status 396030 non-null object 396030 non-null object 23 application_type 358235 non-null float64 24 mort_acc 25 pub_rec_bankruptcies 395495 non-null float64 26 address 396030 non-null object

dtypes: float64(12), object(15)

memory usage: 81.6+ MB

In [167]:

df.describe().T

Out[167]:

	count	mean	std	min	25%	50%	7:
loan_amnt	396030.0	14113.888089	8357.441341	500.00	8000.00	12000.00	20000
int_rate	396030.0	13.639400	4.472157	5.32	10.49	13.33	16
installment	396030.0	431.849698	250.727790	16.08	250.33	375.43	567
annual_inc	396030.0	74203.175798	61637.621158	0.00	45000.00	64000.00	90000
dti	396030.0	17.379514	18.019092	0.00	11.28	16.91	22
open_acc	396030.0	11.311153	5.137649	0.00	8.00	10.00	14
pub_rec	396030.0	0.178191	0.530671	0.00	0.00	0.00	0
revol_bal	396030.0	15844.539853	20591.836109	0.00	6025.00	11181.00	19620
revol_util	395754.0	53.791749	24.452193	0.00	35.80	54.80	72
total_acc	396030.0	25.414744	11.886991	2.00	17.00	24.00	32
mort_acc	358235.0	1.813991	2.147930	0.00	0.00	1.00	3
pub_rec_bankruptcies	395495.0	0.121648	0.356174	0.00	0.00	0.00	0

In [168]:

df.describe(include = "object").T

Out[168]:

	count	unique	top	freq
term	396030	2	36 months	302005
grade	396030	7	В	116018
sub_grade	396030	35	B3	26655
emp_title	373103	173105	Teacher	4389
emp_length	377729	11	10+ years	126041
home_ownership	396030	6	MORTGAGE	198348
verification_status	396030	3	Verified	139563
issue_d	396030	115	Oct-2014	14846
loan_status	396030	2	Fully Paid	318357
purpose	396030	14	debt_consolidation	234507
title	394275	48817	Debt consolidation	152472
earliest_cr_line	396030	684	Oct-2000	3017
initial_list_status	396030	2	f	238066
application_type	396030	3	INDIVIDUAL	395319
address	396030	393700	USS Johnson\r\nFPO AE 48052	8

[•] It can be seen that all the numerical variables have very high maximum values in comparison to 50 and 75 percentile and therefore there is outliers.

In [169]:

```
df.isnull().sum()
```

Out[169]:

loan_amnt	0
term	0
int_rate	0
installment	0
grade	0
sub_grade	0
emp_title	22927
emp_length	18301
home_ownership	0
annual_inc	0
verification_status	0
issue_d	0
loan_status	0
purpose	0
title	1755
dti	0
earliest_cr_line	0
open_acc	0
pub_rec	0
revol_bal	0
revol_util	276
total_acc	0
initial_list_status	0
application_type	0
mort_acc	37795
<pre>pub_rec_bankruptcies</pre>	535
address	0
dtype: int64	

In [170]:

Displaying Columns with Missing Values along with Percentage of Record Count as of Entire df.isna().sum()[df.isna().sum()>0].mul(100)/len(df)

Out[170]:

emp_title	5.789208
emp_length	4.621115
title	0.443148
revol_util	0.069692
mort_acc	9.543469
<pre>pub_rec_bankruptcies</pre>	0.135091
dtype: float64	

In [171]:

```
df.duplicated().sum()
```

Out[171]:

Observations

• There are missing values in the data - emp title, emp length, title, revol util, mort acc and pub_rec_bankrupcties

2

7 35

11

6 27197

3

9

393700

· There are no duplicate rows in the data

Unique Values Check

In [172]:

annual inc

verification_status

<pre>df.nunique()</pre>	
Out[172]:	

1397 loan_amnt term int rate 566 installment 55706 grade sub_grade emp_title 173105 emp_length home_ownership

issue d 115 loan_status 2 14 purpose 48817 title dti 4262 earliest_cr_line 684 open_acc 61 pub_rec 20 revol_bal 55622 revol util 1226 118 total_acc initial_list_status 2 3 application_type mort_acc 33

It can be seen that some of the categorical variables like Employment Title, Loan Title, Address has large number of unique values.

Graphical Analysis

pub_rec_bankruptcies

```
In [173]:
```

address dtype: int64

```
# Creating separate sets of numerical and categorical columns
numerical_columns = set(df.select_dtypes(['number']).columns)
categorical_columns = set(df.columns) - numerical_columns
```

Loan Status analysis with Numerical Columns

In [179]:

```
# Visualizing Distributions & Outliers Through Box Plot
fig, axes = plt.subplots(len(numerical_columns), 2, figsize=(20,len(numerical_columns)*5))
for i, each in enumerate(numerical_columns):
   sns.kdeplot(data=df, x=each, hue = 'loan_status', ax=axes[i][0])
   sns.boxplot(data=df, y=each, x='loan_status', ax=axes[i][1])
plt.show()
```


- · Columns like Mortgage Account, Public Record, Public Record Bankruptcies can be encoded as 0 (if value is 0) and 1 (if value is greater than 1).
- Variables like Annual Income, Installment, Open Account is skewed and we may use techniques like IQR to remove outliers.

Loan Status analysis with Categorical Columns

In [175]:

```
cols_to_check_with = ['verification_status', 'grade', 'sub_grade', 'emp_length','initial_l
                      'application_type', 'home_ownership', 'term']
# Plotting Percentage Values for Various Categories Per Loan Status
fig, axes = plt.subplots(len(cols_to_check_with)//2, 2, figsize=(20,len(cols_to_check_with))
percentage_count_dfs = []
for i, each in enumerate(cols_to_check_with):
    percentage_count_dfs.append(pd.DataFrame(df.groupby(by=[each])['loan_status'].value_cou
    percentage_count_dfs[i].columns = ['Percentage of the Category']
    percentage_count_dfs[i].reset_index(inplace=True)
    if i%2 == 1:
        sns.barplot(data=percentage_count_dfs[i],
        x=each,
        y='Percentage of the Category',
        hue='loan_status',
        ax=axes[i//2][1])
        axes[i//2][1].set_title(f'Percentage of Loan Belonging to a Loan Status for Each {e
        plt.grid()
        plt.xticks(rotation=45)
    else:
        sns.barplot(data=percentage_count_dfs[i],
        y='Percentage of the Category',
        hue='loan_status',
        ax=axes[i//2][0]
        axes[i//2][0].set_title(f'Percentage of Loan Belonging to a Loan Status for Each {e
        plt.xticks(rotation=45)
        plt.grid()
plt.show()
```


In [177]:

```
cols_to_check_with = ['sub_grade', 'purpose']
fig, axes = plt.subplots(2, 1, figsize=(20, 10))
percentage_count_dfs = []
for i, each in enumerate(cols_to_check_with):
    percentage_count_dfs.append(pd.DataFrame(df.groupby(by=[each])['loan_status'].value_cou
    percentage_count_dfs[i].columns = ['Percentage']
    percentage_count_dfs[i].reset_index(inplace=True)
    percentage_count_dfs[i].columns = [each, 'Loan Status', 'Percentage']
    sns.barplot(data=percentage_count_dfs[i],
    x=each,
    y='Percentage',
    hue='Loan Status',
    ax=axes[i])
    axes[i].set_title(f'Percentage of Loan Belonging to a Status for Each {each.capitalize(
plt.show()
```


In [90]:

```
# Displaying Absolute Counts of the Loan Extended for Each Home Ownership
df.home ownership.value counts()
```

Out[90]:

MORTGAGE 198348 159790 RENT OWN 37746 **OTHER** 112 NONE 31 ANY 3

Name: home_ownership, dtype: int64

- We see some Loans extended to be charged of across all the categories except Home Ownership = 'ANY', in which case there were only 3 credit lines extended, which is not substantial to make any inferences.
- But there is an interesting trend observed for the category Grade, where, as the Grade moves from A to G we see percentage of credit lines extended as charged off increasing from around 5% to 50%.

 Across other categories too we see some high number of charged off Loans such as for Direct Pay Application Type and 60 Months of Tenure as well.

Correlation Check

In [95]:

```
# Plotting Heat Map to Check for Correlation
plt.figure(figsize=(15,10))
sns.heatmap(df.corr(), annot=True)
plt.show()
```


There is high correlation between Loan Amount and Installment.

Handling of Outliers in data

We can transform the columns Public Record, Public Record Bankruptcies, Mortgage Account as having values 0 or 1 which will also handle outliers.

In [96]:

```
# Columns for which flag transforamtion will be applied
flag_cols = ['pub_rec', 'pub_rec_bankruptcies', 'mort_acc']
```

In [97]:

```
# Defining the function for flag transformation
def transform_flag_columns(x):
   if pd.isna(x):
        return x
   elif int(x)==0:
        return 0
   return 1
# Performing the transformation
for each in flag_cols:
   df[each] = df[each].apply(transform_flag_columns)
   df[each] = df[each].astype(pd.StringDtype())
```

Date Based Columns

In [98]:

```
# Creating a curr_date column with current date value and then store difference in years fo
df['curr_date'] = pd.to_datetime(pd.to_datetime('today').date())
df['issued_years_ago'] = df.curr_date.apply(lambda x:x.year) - pd.to_datetime(df.issue_d).a
df['credit_age_in_years'] = df.curr_date.apply(lambda x:x.year) - pd.to_datetime(df.earlies
# Dropping the unnecessary columns
df.drop(columns=['issue_d', 'earliest_cr_line', 'curr_date'], inplace=True)
```

Cleaning String Based Columns & Employment Length

In [99]:

```
# Defining the function to trim and capitalize each word of the sentence
def transform_title_like(x):
    if pd.isna(x):
        return x
    return x.strip().title()
# Defining the function to transform the employment length
def transform_employment_length(x):
    if pd.isna(x):
        return x
    elif x.strip()=='< 1 year':</pre>
        return 0
    elif x.strip()=='10+ years':
        return 10
    return x.strip()[0]
# Initializing the columns for which trimming has to be done
cols_to_clean = ['term', 'grade', 'sub_grade', 'emp_title', 'home_ownership','verification_
# Performing the trimming
for each in cols_to_clean:
    df[each] = df[each].apply(transform_title_like)
# Transforming Employment Length
df['emp_length'] = df['emp_length'].apply(transform_employment_length)
df['emp_length'] = df['emp_length'].astype('Float32')
df['emp_length'] = df['emp_length'].astype(pd.Int8Dtype())
```

Transforming Address

```
In [ ]:
```

```
# Defining the function to extract zipcode
def get_zip_code(x):
    if pd.isna(x):
        return x
    return x[-5:]
# Extracting Zipcode
df['zipcode'] = df['address'].apply(get_zip_code)
# Dropping the address column
df.drop(columns='address', inplace=True)
```

Outlier Removal

```
In [104]:
```

```
# Creating separate sets of numerical and categorical columns
numerical_columns = set(df.select_dtypes(['number']).columns)
categorical_columns = set(df.columns) - numerical_columns
```

In [105]:

```
# Creating a dictionary to store column wise permitted lower limit and upper limit values
col limit val dict = {}
for each in numerical_columns:
   q1 = df[each].quantile(0.25)
   q3 = df[each].quantile(0.75)
   iqr = q3-q1
   11 = q1 - 1.5*iqr
   ul = q3 + 1.5*iqr
   col_limit_val_dict[each] = (ll,ul)
```

In [106]:

```
# Removing the rows that don't fit the criteria
for key,value in col_limit_val_dict.items():
    df = df[(df[key] >= value[0]) & (df[key] <= value[1])]
```

In [107]:

```
# Displaying the update row count post outlier removal
df.shape
```

```
Out[107]:
```

(312962, 28)

There is about 21% reduction in the row count post outlier removal.

Non-Graphical Analysis

In [108]:

```
df.describe().T
```

Out[108]:

	count	mean	std	min	25%	50%	75
loan_amnt	312962.0	13051.963497	7344.075681	1000.00	7500.00	12000.00	18000.0
int_rate	312962.0	13.547710	4.294021	5.32	10.49	13.33	16.2
installment	312962.0	396.993180	208.978979	19.87	243.36	357.58	521.₄
emp_length	312962.0	5.883801	3.628737	0.00	3.00	6.00	10.0
annual_inc	312962.0	65494.998340	28237.885154	4080.00	45000.00	60000.00	81000.0
dti	312962.0	17.235020	7.985544	0.00	11.29	16.79	22.7
open_acc	312962.0	10.662100	4.264979	1.00	8.00	10.00	13.0
revol_bal	312962.0	12285.685620	8652.208885	0.00	5702.00	10253.00	17008.0
revol_util	312962.0	53.718745	24.138235	0.00	36.00	54.60	72.4
total_acc	312962.0	23.779845	10.273687	2.00	16.00	23.00	30.0
issued_years_ago	312962.0	8.366699	1.378224	6.00	7.00	8.00	9.(
credit_age_in_years	312962.0	22.991354	6.039240	9.00	19.00	22.00	27.(
4							•

Missing Value check

In [109]:

```
df.isna().sum()[df.isna().sum()>0].mul(100)/len(df)
```

Out[109]:

title 0.392060 8.917057 mort_acc

dtype: float64

Earlier we had missing values in six of the columns, removing outliers brought it down to 3 such columns.

Graphical Analysis again

In [110]:

```
numerical_columns
```

```
Out[110]:
{'annual_inc',
 'credit_age_in_years',
 'dti',
 'emp_length',
 'installment',
 'int_rate',
 'issued_years_ago',
 'loan_amnt',
 'open_acc',
 'revol_bal',
 'revol_util',
 'total_acc'}
```

In [119]:

```
df.emp_length=df.emp_length.astype(int)
```

In [121]:

```
# Visualizing Distributions & Outliers Through Box Plot
fig, axes = plt.subplots(len(numerical_columns), 2, figsize=(20,len(numerical_columns)*5))
for i, each in enumerate(numerical_columns):
    sns.kdeplot(data=df, x=each, hue = 'loan_status', ax=axes[i][0])
    sns.boxplot(data=df, y=each, x='loan_status', ax=axes[i][1])
plt.show()
```


In [130]:

```
cols_to_check_with = ['application_type', 'grade', 'home_ownership','initial_list_status',
                     fig, axes = plt.subplots(len(cols_to_check_with)//2, 2, figsize=(20,len(cols_to_check_with)
percentage_count_dfs = []
for i, each in enumerate(cols_to_check_with):
   percentage_count_dfs.append(pd.DataFrame(df.groupby(by=[each])['loan_status'].value_cou
   percentage_count_dfs[i].columns = ['Percentage']
   percentage_count_dfs[i].reset_index(inplace=True)
   percentage_count_dfs[i].columns = [each, 'Loan Status', 'Percentage']
   if i%2 == 1:
       sns.barplot(data=percentage_count_dfs[i],
       x=each,
       y='Percentage',
       hue='Loan Status',
       ax=axes[i//2][1]
       axes[i//2][1].set_title(f'Percentage of Loan Belonging to a Status for Each {each.c
       sns.barplot(data=percentage_count_dfs[i],
       x=each,
       y='Percentage',
       hue='Loan Status',
       ax=axes[i//2][0]
       axes[i//2][0].set_title(f'Percentage of Loan Belonging to a Status for Each {each.c
plt.show()
```


In [132]:

```
cols_to_check_with = ['purpose', 'sub_grade']
fig, axes = plt.subplots(2, 1, figsize=(20, 10))
percentage_count_dfs = []
for i, each in enumerate(cols_to_check_with):
    percentage_count_dfs.append(pd.DataFrame(df.groupby(by=[each])['loan_status'].value_cou
    percentage_count_dfs[i].columns = ['Percentage']
    percentage_count_dfs[i].reset_index(inplace=True)
    percentage_count_dfs[i].columns = [each, 'Loan Status', 'Percentage']
    sns.barplot(data=percentage_count_dfs[i],
    x=each,
    y='Percentage',
    hue='Loan Status',
    ax=axes[i])
    axes[i].set_title(f'Percentage of Loan Belonging to a Status for Each {each.capitalize(
plt.show()
```


Based on the the zipcode plot, zipcodes like 11650, 86630, 93700 every loan has been charged off. Also, for certain zipcodes like 00813, 05113, 29597 the entire loan percentage is for fully paid

Data Pre-Processing for Model Building

In [133]:

```
# Printing the percentage of row count per class label
print(df.loan_status.value_counts(normalize=True).mul(100))
# Printing the absolute row count per class label
print(df.loan_status.value_counts())
```

Fully Paid 80.743669 Charged Off 19.256331

Name: loan_status, dtype: float64

Fully Paid 252697 Charged Off 60265

Name: loan_status, dtype: int64

Train, Test & Validate Split

In [134]:

```
# Importing Necessary Module for splitting teh records
from sklearn.model_selection import train_test_split
```

We will perform a 60-20-20 split.

In [136]:

```
# Creating the feature variable X and target variable y
X = df.drop(columns='loan status')
y = df['loan_status'].apply(lambda x: 1 if x=='Fully Paid' else 0)
```

In [137]:

```
# Splitting the train, test and validation data into 60:20:20 ratio
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=3)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.25, random_
```

In [138]:

```
# Validating the split by displaying the shape of splitted dataset
print(f'X_train shape: {X_train.shape}, y_train shape: {y_train.shape}')
print(f'X val shape: {X val.shape}, y val shape: {y val.shape}')
print(f'X_test shape: {X_test.shape}, y_test shape: {y_test.shape}')
```

```
X_train shape: (187776, 27), y_train shape: (187776,)
X_val shape: (62593, 27), y_val shape: (62593,)
X_test shape: (62593, 27), y_test shape: (62593,)
```

In [139]:

```
# Displaying the class label split for train, test and validation data
print(y_train.value_counts(normalize=True).mul(100))
print(y_val.value_counts(normalize=True).mul(100))
print(y_test.value_counts(normalize=True).mul(100))
```

1 80.776031 0 19.223969 Name: loan_status, dtype: float64 1 80.520186 19.479814 Name: loan status, dtype: float64 1 80.870065 19.129935 Name: loan_status, dtype: float64

Missing Value Imputation

We have already seen that we have missing values in three columns and all of them are categorical. We will keep it simple perform a modal imputation here.

In [140]:

```
# Performing modal imputation for the the required columns on train, test and validation da
for each in ['emp_title', 'title', 'mort_acc']:
   train_modal_value = X_train[each].mode()[0]
   val_modal_value = X_val[each].mode()[0]
   test_modal_value = X_test[each].mode()[0]
   X_train[each] = X_train[each].fillna(train_modal_value)
   X_val[each] = X_val[each].fillna(val_modal_value)
   X_test[each] = X_test[each].fillna(test_modal_value)
```

In [141]:

```
# Validating the missing value count for train, test and validate dataset
print(X train.isna().sum()[X train.isna().sum()>0].mul(100)/len(df))
print(X_val.isna().sum()[X_val.isna().sum()>0].mul(100)/len(df))
print(X_test.isna().sum()[X_test.isna().sum()>0].mul(100)/len(df))
Series([], dtype: float64)
Series([], dtype: float64)
```

Encoding

Series([], dtype: float64)

```
In [145]:
```

```
# Importing Module for Encoding
import category_encoders as ce
```

In [146]:

```
# Changing the type of flag transformed columns from object to integer
for each in flag_cols:
   X_train[each] = X_train[each].astype(pd.Float32Dtype())
   X train[each] = X_train[each].astype(pd.Int8Dtype())
   X_val[each] = X_val[each].astype(pd.Float32Dtype())
   X_val[each] = X_val[each].astype(pd.Int8Dtype())
   X_test[each] = X_test[each].astype(pd.Float32Dtype())
   X_test[each] = X_test[each].astype(pd.Int8Dtype())
```

In [147]:

```
# Creating separate lists of column that has to be one hot encoded and target encoded
ohe_cols = ['application_type', 'grade', 'home_ownership','initial_list_status', 'purpose',
            'verification_status', 'zipcode']
target_encoding_cols = ['emp_title', 'region', 'title']
```

In [148]:

```
# Performing One Hot Encoding
ohe = ce.OneHotEncoder(cols=ohe_cols)
X_train = ohe.fit_transform(X_train)
X_val = ohe.transform(X_val)
X test = ohe.transform(X test)
```

In [149]:

```
# Performing Target Encoding
te = ce.TargetEncoder(cols=target encoding cols)
X_train = te.fit_transform(X_train, y_train)
X val = te.transform(X val)
X_test = te.transform(X_test)
```

Model Building

In [150]:

```
# Importing modules for training the model and metrics
import numpy as np
from numpy import argmax
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn import metrics
from sklearn.metrics import classification report, confusion matrix, f1 score, roc curve, ro
```

In [152]:

```
# Without Class Weights
# Hyperparameter Tuning for Regularization Value
# Initializing lists to store training and validation F1-Scores for various lambda (regular
nw_train_scores = []
nw_val_scores = []
scaler = StandardScaler()
# Initializing values for iterating over various lambda values
1=0.01
h= 10000.0
d=100.0
for lamda in np.arange(1,h,d):
    nw_std_lr = make_pipeline(scaler, LogisticRegression(C=1/lamda))
    nw_std_lr.fit(X_train, y_train)
    nw_train_y_pred = nw_std_lr.predict(X_train)
    nw_val_y_pred = nw_std_lr.predict(X_val)
    nw_train_scores.append(f1_score(y_train, nw_train_y_pred))
    nw_val_scores.append(f1_score(y_val, nw_val_y_pred))
```

In [153]:

```
# Plotting training and validation F1-Scores for various lambda
plt.figure()
plt.plot(list(np.arange(l,h,d)), nw_train_scores, label="train")
plt.plot(list(np.arange(1,h,d)), nw_val_scores, label="validation")
plt.legend()
plt.xlabel("lambda")
plt.ylabel("F1-Score")
plt.grid()
plt.show()
```


In [154]:

```
# Pick the best lambda value
nw_best_idx = np.argmax(nw_val_scores)
print(f'Best Validation F1-Score: {nw_val_scores[nw_best_idx]}')
nw_lambda_best = l+(d*nw_best_idx)
print(f'Best Lambda: {nw_lambda_best}')
# Test F1-Score by using the best Lambda
nwf_std_lr = make_pipeline(scaler, LogisticRegression(C=1/nw_lambda_best))
nwf_std_lr.fit(X_train, y_train)
nw_test_y_pred = nwf_std_lr.predict(X_test)
print(f'Test F1-Score: {f1 score(y test, nw test y pred)}')
# Print the classification report
nw_classification_report = metrics.classification_report(y_test, nw_test_y_pred)
print(nw_classification_report)
# Print the confusion matrix
print(metrics.confusion_matrix(y_test, nw_test_y_pred))
```

```
Best Validation F1-Score: 0.9346162460803344
Best Lambda: 7100.01
Test F1-Score: 0.9350900699717136
              precision
                          recall f1-score
                                              support
           0
                   0.94
                             0.45
                                       0.61
                                                11974
           1
                   0.88
                             0.99
                                       0.94
                                                50619
                                       0.89
                                                62593
    accuracy
   macro avg
                   0.91
                             0.72
                                       0.77
                                                62593
                   0.89
                             0.89
                                       0.87
                                                62593
weighted avg
[[ 5369 6605]
   371 50248]]
```

If we look at this model which has overall F1-Score of 0.93 (which is great) is not really great as explained below:

- For class label 1 (Fully Paid) most of the metrics look fine but precision (of total +ve identification how many were actually positive) has suffered, because we have identified more than half of the class label 0 as 1 which contributed more to the total number of predicted positives.
- For class label 0, the recall (0.45) is horrible, because for more than half of the cases we wrongly predicted that the loan would be paid off where as those were charged off.

Although our F1-Score is pretty good, but the metrics for class label 0 (Charged Off) is not great. Let's introduce some weight and re-train our model. Since the data consists the class labels in the ratio 4:1 (Fully Paid: Charged Off), let's try this ratio.

In [155]:

```
# With Class Weights
w_train_scores = []
w_val_scores = []
scaler = StandardScaler()
1=0.01
h= 100000.0
d=1000.0
for lamda in np.arange(1,h,d):
    w_std_lr = make_pipeline(scaler, LogisticRegression(C=1/lamda,class_weight={0:0.8, 1:0.
    w std lr.fit(X train, y train)
    w_train_y_pred = w_std_lr.predict(X_train)
    w_val_y_pred = w_std_lr.predict(X val)
    w_train_scores.append(f1_score(y_train, w_train_y_pred))
    w_val_scores.append(f1_score(y_val, w_val_y_pred))
```

In [156]:

```
# Plotting F1-Scores
plt.figure()
plt.plot(list(np.arange(l,h,d)), w_train_scores, label="train")
plt.plot(list(np.arange(l,h,d)), w_val_scores, label="validation")
plt.legend()
plt.xlabel("lambda")
plt.ylabel("F1-Score")
plt.grid()
plt.show()
```


In [157]:

```
# Picking Best Lambda and Calculating Test Metrics
w_best_idx = np.argmax(w_val_scores)
print(f'Best Validation F1-Score: {w_val_scores[w_best_idx]}')
w_lambda_best = l+(d*w_best_idx)
print(f'Best Lambda: {w_lambda_best}')
# Test F1-Score
wf_std_lr = make_pipeline(scaler, LogisticRegression(C=1/w_lambda_best,class_weight={0:0.8,
wf_std_lr.fit(X_train, y_train)
w_test_y_pred = wf_std_lr.predict(X_test)
print(f'Test F1-Score: {f1_score(y_test, w_test_y_pred)}')
w_classification_report = metrics.classification_report(y_test, w_test_y_pred)
print(w_classification_report)
print(metrics.confusion_matrix(y_test, w_test_y_pred))
```

```
Best Validation F1-Score: 0.8975566887051778
Best Lambda: 20000.01
Test F1-Score: 0.8967241045103501
             precision
                         recall f1-score
                                             support
          0
                  0.56
                            0.71
                                      0.63
                                               11974
           1
                  0.93
                            0.87
                                      0.90
                                               50619
   accuracy
                                      0.84
                                               62593
                  0.74
                            0.79
                                      0.76
  macro avg
                                               62593
weighted avg
                  0.86
                            0.84
                                      0.85
                                               62593
[[ 8522 3452]
 [ 6671 43948]]
```

Introducing weights to address class imbalance still yielded 0.89 as overall F1-Score, and is better as explained below: - The recall for class label improved from 0.45 to 0.71 (i.e. out of total charged off, how many were identified as charged off). - And the metrics for class label 1 hasn't degraded too much.

ROC & PR Curve

In [158]:

```
nw test y pred prob = nwf std lr.predict proba(X test)
nw_test_y_pred_prob = nw_test_y_pred_prob[:,1]
w_test_y_pred_prob = wf_std_lr.predict_proba(X_test)
w_test_y_pred_prob = w_test_y_pred_prob[:,1]
nw_fpr, nw_tpr, _ = metrics.roc_curve(y_test, nw_test_y_pred_prob)
nw_roc_auc_val = metrics.roc_auc_score(y_test, nw_test_y_pred_prob)
w_fpr, w_tpr, _ = metrics.roc_curve(y_test, w_test_y_pred_prob)
w_roc_auc_val = metrics.roc_auc_score(y_test, w_test_y_pred_prob)
nw_precision, nw_recall, _ = precision_recall_curve(y_test, nw_test_y_pred_prob)
w_precision, w_recall, _ = precision_recall_curve(y_test, w_test_y_pred_prob)
fig, axes = plt.subplots(1,2, figsize=(16,5))
axes[0].plot(nw_fpr, nw_tpr, label='Imbalanced Class ROC curve (AUC = %0.3f)' %nw_roc_auc_v
axes[0].plot(w_fpr, w_tpr, label='Balanced Class ROC curve (AUC = %0.3f)' %w_roc auc val)
axes[0].plot([0, 1], [0, 1], 'k--', label='Random Prediction Curve')
axes[0].legend(loc='lower right')
axes[0].grid()
axes[0].set_xlabel('FPR')
axes[0].set_ylabel('TPR')
axes[1].plot(nw_recall, nw_precision, label='Imbalanced Class PR Curve')
axes[1].plot(w recall, w precision, label='Balanced Class PR Curve')
axes[1].legend()
axes[1].grid()
axes[1].set_xlabel('Recall')
axes[1].set_ylabel('Precision')
plt.show()
```


Considering Charged Off as an equally important class, we should go ahead and pick second model (with weights) even though it has slightly less (not significant) area under ROC curve.

Actionable Insights & Recommendations

- There is an interesting trend for people belonging to different Grades and Sub- grades. As the Grades move from A to G and Subgrades move from A1 to G5, the precentage of charge off loan status rises. So this is a must have data whileaccepting loan application and it should be ensured to have it.
- Another interesting observation is based on Zipcodes, certain zipcodes (mentioned earlier in the analysis) hvae entire loan as charged off and some of them has entire loan as fully paid. So various new loan schemes can be launched for the latter zipcodes since those have very trust worthy applicants and hence better business and ROI or interest generation on the credit line extended.

- Alternatively, two sets of models can used for prediction:
- Stricter (more weightage to the class label 'Charged Off') if the bank wants to play safe, let's say in the regions where charged off percentage is high.
- Bit Leniant (where class imbalance is not addressed) if the bank wants to be aggressive, let's say in the regions where fully paid percentage is high.

In []:		