Embeddings-Based Clustering for Target Specific Stances: The Case of a Polarized Turkey

Ammar Rashed, Mucahid Kutlu, Kareem Darwish, Tamer Elsayed,

Introduction

- On June 24, 2018, Turkey underwent early elections for the presidency and the parliament.
- We collected +108M stance-laden tweets and manually annotated ~6k users with party-level stances.
- Our assumption is that users with similar stances tweet in a semantically similar manner.
- Our novel unsupervised stance detection approach outperforms previous SOTA in both accuracy and speed.
- We provide a comprehensive framework to analyze finegrained polarization between groups over various topics.

Data

- Election Data (ED): tweets including keywords pertaining to Turkish elections, between April 29, 2018 and June 23, 2018.
 - **Manual Labeling:** users explicitly specifing their party affiliation in their twitter handles or screen names.
 - **Label Propagation**: automatically labels users based on the tweets that they retweet.

• Timeline Data (TD):

• On Dec. 28, 2018, we collected \sim 98.7M tweets from the timelines of \sim 86K pro, and \sim 115M by \sim 82K anti users.

Supporters	Users	Tweets
pro-Erdoğan	1,772	561,510
anti-Erdoğan w/o party affiliation	2,115	516,166
pro-CHP	29	171,201
pro-IYI	890	168,442
pro-HDP	354	61,274
Total	5,960	1,478,593

Manually labeled users

• Trump Dataset:

• Oct. 25-27, 2018, tweets of 7,421 pro- and 6,310 anti-Trump users. (Darwish et al., 2019)

Conclusion

- We provide a novel fine-grained unsupervised stance detection approach.
- We provide a large Turkish stance detection dataset.
- We quantitatively and qualitatively analyze polarization between Twitter users in the 2018 Turkish elections.

Approach

- User tweets are encoded with Multilingual Universal Sentence Encoder then averaged per user.
- User embeddings are projected into a 2D space using UMAP and then clustered with HDBSCAN.

Results

• Detected stances were aligned with manually labeled party affiliations, without inputting # of clusters.

	Trump	ED
UnSup	0.83	0.86
Ours	0.86	0.84

Macro F1 with previous SOTA

Can we infer the stance on a topic from a different topic?

Adjusted mutual information between the clusters of different topics

