Forward Kinematics & Inverse Kinematics

2024 Computer Animation and Special Effects

Outline

- Overview
- Objective
- Report
- Scoring
- Submission

Overview

Forward kinematics

More amc files you can find in http://mocap.cs.cmu.edu/

Demo link: https://youtu.be/CUQRCwjztrQ

Overview (cont.)

Inverse kinematics

Demo Link: https://youtu.be/CUQRCwjztrQ?si=h1e-s2eqCPDsbYUQ&t=24

Demo

Demo link: https://youtu.be/CUQRCwjztrQ

Objective

- In FK part, only one function you need to implement
 - in kinematics.cpp
 - void forwardSolver(...)

- void forwardSolver(...)
 - Convert motion data from joint space to the Cartesian space
 - set each bone's global start and end position and rotation
 - Hint
 - review "kinematics.pptx" from p.1 p.19
 - review "acclaim_FK_IKnote.pdf" from p.1 p.4
 - read local coordinate data from posture first
 - you can probably use DFS or BFS to traverse all bones
 - you can check
 - struct Posture in posture.h
 - struct Bone in bone.h

- Pose example
- Each bone has
 - local coordinate
 - start position
 - end position

Objective

- Because IK also use forwardSolver function, we strongly recommend you to complete FK part first.
- In IK part, there are two function you need to implement in this homework
 - in kinematics.cpp
 - Eigen::VectorXd pseudoInverseLinearSolver(...)
 - bool inverseJacobianIKSolver(...)

- VectorXd pseudoInverseLinearSolver(...)
 - Goal
 - Find solution of linear least squares system, which will be needed for inverse kinematics
 - i.e. find x which min(| jacobian * x target |)
 - o Hint
 - You might use some pseudo-inverse methods such as SVD
 - There are some built-in functions in Eigen that you can use
 - Eigen::Matrixs4Xf means a matrix with 4 rows and unknown columns
 - Eigen::Matrix4Xf m(4, 10); // A matrix with 3 rows and 10 columns
 - Eigen::VectorXf means a vector with unknown size
 - Eigen::VectorXf v(10); // A vector with 10 elements

- bool inverseJacobianIKSolver(...)
 - Goal
 - Implement inverse kinematics
 - We use inverse-Jacobain method in this homework
 - Hint
 - Review "kinematics.pptx" from p.20 p.50
 - Review "acclaim_FK_IKnote.pdf" Inverse Kinematics part
 - Traverse each chain by jointChains[chainIdx], boneChain[chainIdx]
 - Make *jointChains[chainIdx][0] touch the ball (target_pos[chainIdx])
 - Joint i and i+1 are the endpoints of bone i
 - You can check struct Bone in bone.h

To achieve root movement, we employed the following methods.

• To achieve root movement, we employed the following methods.

 We will pass the corresponding chain as parameters into the inverseJacobianIKSolver() based on the currently dragged target.

```
std::vector<std::vector<Eigen::Vector4d*>> &jointChains
std::vector<std::vector<acclaim::Bone*>> &boneChains
```


Report

- Suggested outline
 - Introduction/Motivation
 - Fundamentals
 - Describe local and global coordinates in your words
 - Implementation
 - Result and Discussion
 - IK part : How different step and epsilon affect the result
 - Bonus (Optional)
 - Conclusion
 - Demo link (Google Drive, Youtube)
 - Show your FK and IK result
 - Up to 1 min

Scoring

- Forward kinematics (40%)
- Inverse kinematics (40%)
- Report (20%)
- Bonus (up to 20%)
 - Any creativity

Submission

- Please upload kinematics.cpp and report_< your student ID>.pdf respectively
 - If you make any modifications to other codes, you will need to upload them and discuss them in the report.
- Late policies
 - Penalty of 10 points on each day after deadline
- Cheating policies
 - 0 points for any cheating on assignments
- Deadline
 - Sunday, 2024/05/05, 23:59