

• • agent of innovation • • •

Learning Semantic Models of Data Sources using Probabilistic Graphical Models

USC University of Southern California

Binh Vu, Craig A. Knoblock and Jay Pujara

Overview

- Problem: harvesting information from data sources can be challenging because data is published in different data formats and using different conventions
- Goal: build a semantic model that describes the data source
- Input:
 - □ A set of domain ontologies *o*
 - \square A target data source $s(a_1, a_2, ..., a_n)$: a_i is a source attribute
- Output:
 - \square A semantic model sm(s)

 Application: automatically convert data sources to RDF triples to publish to knowledge graphs

Overall search-based approach

- Use beam search to find the most probable semantic model
- Navigate in the combinatorial space using a transition function f
 - Rank and select modeling options using a graphical model g

How to navigate in the search space

Construct a space of possible semantic models (G_{int})

Transition function f: merge new attribute to existing semantic model according to G_{int}

How to rank semantic models

- Likelihood of a semantic model $P(\forall y \in y; y = \text{true}|x)$ indicates the quality of the model
- Estimate the likelihood using a conditional random field (CRF)
 - $P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x}_c)} \prod_{C_p \in \mathbf{C}'} \prod_{\Psi_c \in C_p} \Psi_c(\mathbf{y}_c, \mathbf{x}_c; \theta_p)$
 - $Z(\mathbf{x}_c) = \sum_{\mathbf{y}} \prod_{C_p \in \mathbf{C}'} \prod_{\Psi_c \in C_p} \Psi_c(\mathbf{y}_c, \mathbf{x}_c; \theta_p)$
 - $\Psi_c(\mathbf{y}_c, \mathbf{x}_c; \theta_p) = \exp\{\sum_k \theta_{pk} f_{pk}(\mathbf{y}_c, \mathbf{x}_c)\}$
- Features:
 - Link confidence
- Cardinality relationships between source attributes
- Structural similarity

Training the Graphical Model

- Create labeled data from sample of possible semantic models
- Train to identify correct/incorrect links in the models

Evaluation

- Datasets: museum-crm and museum-edm (Taheriyan 2016)
- **Semantic labelers**: DSL (Pham et al. 2016), SemTyper (Ramnandan et al. 2015), Serene (Rummele et al. 2018)

Dataset	SemTyper	DSL	Serene	
ds _{edm}	0.830	0.886	0.912	
ds _{crm}	0.628	0.896	0.910	

• Baselines: (Taheriyan et al. 2016), Serene (Una et al. 2018)

Methods	ds _{edm}			ds _{crm}				
	SemTyper	DSL	Serene	Oracle	SemTyper	DSL	Serene	Oracle
Taheriyan	0.712	0.635	0.803	0.887	0.618	0.695	0.774	0.857
Serene	0.693	0.719	0.789	0.885	0.663	0.698	0.753	0.840
PGM-SM	0.768	0.815	0.829	0.935	0.725	0.844	0.880	0.944

Conclusion and Future Work

- By exploiting relationships within the data sources and semantic models, our approach:
 - generates better semantic models
 - is more robust to noise
- Future work:
 - Minimize user effort by leveraging Linked Open Data
 - End-to-end system from web extraction to semantic model
 - Integrate with interactive modeling system (Karma)