

DB921050.08697

PC. 1

***************************************	15hn		SV40 OR	IGIN=332bp		
LINKER #1 GACGTCGCGG	CCGCTCTAGG		AGCCTCCTCA	CTACTTCTGG		60
	_ :			TAGTCAGCCA		120
				GCGGAGTTAG		180
ATGGTTGCTG	ACTAATTGAG	ATGCATGCTT	TGCATACTTC	TGCCTGCTGG	GGAGCCTGGG	240
GACTTTCCAC	ACCTGGTTGC	TGACTAATTG	AGATGCATGC	TTTGCATACT	TCTGCCTGCT ER #2=13bp	300
				TCCACAGAAT	TAATTCCCCT 360 1	360
AGTTATTAAT	AGTAATCAAT	TACGGGGTCA	TTAGTTCATA	GCCCATATAT	GGAGTTCCGC	420
GTTACATAAC	TTACGGTAAA			CCAACGACCC	CCGCCCATTG	480
		TCCCATAGTA		GGACTITULA		540
TGGGTGGACT	ATTTACGGTA	AACTGCCCAC	TTGGCAGTAC	ATCAAGTGTA	TCATATGCCA	600
AGTACGCCCC	CTATTGACGT	CAATGACGGT	AAATGGCCCG	CCTGGCATTA	TGCCCAGTAC	660
				TATTAGTCAT		720
ATGGTGATGC	GGTTTTGGCA	GTACATCAAT	GGGCGTGGAT	AGCGGTTTGA	CTCACGGGGA	780
TTTCCAAGTC	TCCACCCCAT	TGACGTCAAT	GGGAGTTTGT	TTTGGCACCA	AAATCAACGG	840
GACTTTCCAA	AATGTCGTAA	CAACTCCGCC	CCATTGACGC	AAATGGGCGG	TAGGCGTGTA	900
		TIMED	$\mu q - 76hn$	GTCAGATCGC	CTGGAGACGC	960
Bg CATCAC <u>AGA</u> 1	I II		GCTCAGCTCC	LEADER=60b TGGGGCTCCT	GCTGCTCTGG	1020
CTCCCAGGT	97819 1 CACGATGTGA 1038 9	-1 101102 A TGGTACCAAC	GTGGAAATCÃ	107 108 A AA <u>CGTACG</u> GT 062 3 Bsi WI	GGCTGCACCA	1080
TCTGTCTTC	A TCTTCCCGC	ATCTGATGA(G CAGTTGAAA	T CTGGAACTGC	CTCTGTTGTG	1140
TECCTECTE	A ATAACTTCT	A TCCCAGAGA(GCCAAAGTAG	C AGTGGAAGGT	GGATAACGCC	1200
		TOTAL NOTE OF A B-	107 AMINO	ACID & STOP	CODON A CAGCACCTAC	1260
					A AGTCTACGCC	1320
TGCGAAGTC					A CAGGGGAGAG	1380
	C AGATCCGTT	A ACGGTTACC			T GACAACATGC	
GGCCGTGAT	A TCTACGTAT	G ATCAGCCTC	G ACTGTGCCT	T CTAGTTGCC	A GCCATCTGTT	1500

STOP BETA LACTAMASE L GAAGTITTAA ATCAATCIAA AGTATATATG AGTAAACTIG GTCTGACAGT TACCAATGCT 7560 TAATCAGTGA GGCACCTATC TCAGCGATCT GTCTATTTCG TTCATCCATA GTTGCCTGAC 7620 TCCCCGTCGT GTAGATAACT ACGATACGGG AGGGCTTACC ATCTGGCCCC AGTGCTGCAA 7680 TGATACCGCG AGACCCACGC TCACCGGCTC CAGATITATC AGCAATAAAC CAGCCAGCCG 7740 BETA LACTAMASE=861bp GAAGGGCCGA GCGCAGAAGT GGTCCTGCAA CTTTATCCGC CTCCATCCAG TCTATTAATT 7800 286 AMINO ACID & STOP CODON
GTTGCCGGGA AGCTAGAGTA AGTAGTTCGC CAGTTAATAG TTTGCGCAAC GTTGTTGCCA 7860 TTGCTACAGG CATCGTGGTG TCACGCTCGT CGTTTGGTAT GGCTTCATTC AGCTCCGGTT 7920 CCCAACGATC AAGGCGAGTT ACATGATCCC CCATGTTGTG CAAAAAAGCG GTTAGCTCCT 7980 TCGGTCCTCC GATCGTTGTC AGAAGTAAGT TGGCCGCAGT GTTATCACTC ATGGTTATGG 8040 CAGCACTGCA TAATTCTCTT ACTGTCATGC CATCCGTAAG ATGCTTTTCT GTGACTGGTG 8100 AGTACTCAAC CAAGTCATTC TGAGAATAGT GTATGCGGCG ACCGAGTTGC TCTTGCCCGG 8160 CGTCAATACG GGATAATACC GCGCCACATA GCAGAACTTT AAAAGTGCTC ATCATTGGAA 8220 AACGTTCTTC GGGGCGAAAA CTCTCAAGGA TCTTACCGCT GTTGAGATCC AGTTCGATGT 8280 AACCCACTCG TGCACCCAAC TGATCTTCAG CATCTTTTAC TTTCACCAGC GTTTCTGGGT 8340 GAGCAAAAAC AGGAAGGCAA AATGCCGCAA AAAAGGGAAT AAGGGCGACA CGGAAATGTT 8400 START BETA LACTAMASE

GAATACTCAT ACTCTTCCTT TITCAATATT ATTGAAGCAT TTATCAGGGT TATTGTCTCA 8460 TGAGCGGATA CATATTTGAA TGTATTTAGA AAAATAAACA AATAGGGGTT CCGCGCACAT 8520 TTCCCCGAAA AGTGCCACCT

FIG. 2F

HUMAN I	KAPPA CONS	TANT=324bp= GGAGAGTGTC	=107 AMINO A	ACID & STOP ACAGCAAGGA	CODON CAGCACCTAC	1560
AGCCTCAGCA G	CACCCTGAC	GCTGAGCAAA	GCAGACTACG	AGAAACACAA	AGTCTACGCC	1620
GCGAAGTCA C	CCATCAGGG	CCTGAGCTCG	CCCGTCACAA	AGAGCTTCAA	CAGGGGAGAG	1680
STOP						
CH <u>AIN Eco</u> RI GTITGAATTC A	GATCCGTTA	LINKER ACGGTTACCA	ACTACCTAGA	CTGGATTCGT	GACAACATGC	1740
1646 7 GGCCGTGATA T	CTACGTATG	ATCAGCCTCG	ACTGTGCCTT	CTAGTTGCCA	GCCATCTGTT	1800
GTTTGCCCCT C	ССССБТБСС	TTCCTTGACC	CTGGAAGGTG	CCACTCCCAC	TGTCCTTTCC	1860
τλαταδάδις Α	AGGAAATTGC	ATCGCATTGT	CTGAGTAGGT	GTCATTCTAT	TCTGGGGGGT	1920
BOVII GGGGTGGGGC 4			\ T	OM DECIDES	33 L D D	1980
GCGGTGGGCT (TATGGAACC					
ACGTCAATGA (بايت					
TTCCTACTTG (ΤΔΓΩΤΑΤΤΑΩ	TCATCGCTA	T TACCATGGT(ATGCGGTTTT	2.160
GGCAGTACAT	CAATGGGCGT	GGATAGCGGT	r TTGACTCACI	J GGGATTICC		2290
CCATTGACGT	CAATGGGAGT	TTGTTTTGG	C ACCAAAATC	A ACGGGACTT	T CCAAAATGTC	2280
					G GAGGTCTATA Sal I	
TAACCACAGC	NKER #6=7b TGGGTACGTC	PI CTCACATTC	A GTGATCAGC	A CTGAACACA	G ACCCGTCGAC	2400
START 235 HEAVY CHAIN ATGGGTTGGA	1 2 2358 9 SYN GCCTCATCTT	NTHETIC & N GCTCTTCCT	ATURAL LEAD T GTCGCTGTT	ER Mlu I G CTACGCGTG	2457 8 T CCTGTCCCAU -3 -2 -1 +1	2460 ز
12401						
GTACAACTGC	AGCAGCCTGC	GGCTGAGCT	G GTGAAGCCI	6 GGGCCTCAG	T GAAGATGTC	T 2590
					A ACAGACACC	
GGTCGGGGCC	TGGAATGGA	T IGGAGCIAI	I TATCCCGG	AMINO ACID AA ATGGTGATA	C TTCCTACAA	T 2640
CAGAAGTTCA	AAGGCAAGG	C CACATTGAC	T GCAGACAA	AT CCTCCAGCA	C AGCCTACAT	G 2700
CAGCTCAGCA	GCCTGACAT	C TGAGGACTO	T GCGGTCTA	TT ACTGTGCAA	AG ATCGACTTA	.C 2760
TACGGCGGTG	ACTGGTACT	T CAATGTCTC	G GGCGCAGG(SA CCACGGTCA	AC CGTCTCTGC	(4 2820
<u>Nhe I</u> GCTAGCACCA	AGGGCCCAT	c GGTCTTCC	CC CTGGCACC	CT CCTCCAAGA	AG CACCTCTGG	iG 2880
GGCACAGCGG	CCCTGGGCT	G CCTGGTCA	AG GACTACTT	CC CCGAACCG	ST GACGGTGTC	G 2940
					CT ACAGTCCTC	

FIG. 3B

330 AMINO ACID & STOP CODON
GGACTCTACT CCCTCAGCAG CGTGGTGACC GTGCCCTCCA GCAGCTTGGG CACCCAGACC 3060 TACATCTGCA ACGTGAATCA CAAGCCCAGC AACACCAAGG TGGACAAGAA AGCAGAGCCC 3120 AAATCTTGTG ACAAAACTCA CACATGCCCA CCGTGCCCAG CACCTGAACT CCTGGGGGGA 3180 CCGTCAGTCT TCCTCTTCCC CCCAAAACCC AAGGACACCC TCATGATCTC CCGGACCCCT 3240 GAGGTCACAT GCGTGGTGGT GGACGTGAGC CACGAAGACC CTGAGGTCAA GTTCAACTGG 3300 TACGTGGACG GCGTGGAGGT GCATAATGCC AAGACAAAGC CGCGGGAGGA GCAGTACAAC 3360 AGCACGTACC GTGTGGTCAG CGTCCTCACC GTCCTGCACC AGGACTGGCT GAATGGCAAG 3420 GAGTACAAGT GCAAGGTCTC CAACAAAGCC CTCCCAGCCC CCATCGAGAA AACCATCTCC 3480 AAAGCCAAAG GGCAGCCCCG AGAACCACAG GTGTACACCC TGCCCCCATC CCGGGATGAG 3540 CTGACCAAGA ACCAGGTCAG CCTGACCTGC CTGGTCAAAG GCTTCTATCC CAGCGACATC 3600 GCCGTGGAGT GGGAGAGCAA TGGGCAGCCG GAGAACAACT ACAAGACCAC GCCTCCCGTG 3560 CTGGACTCCG ACGGCTCCTT CTTCCTCTAC AGCAAGCTCA CCGTGGACAA GAGCAGGTGG 37.20 CAGCAGGGGA ACGTCTTCTC ATGCTCCGTG ATGCATGAGG CTCTGCACAA CCACTACACG 3780 LINKER #7=81bp TTAACGGTTA CCAACTACCT 3840 STOP HEAVY CHAIN Bam HI TC TCCGGGTAAA TGAGGATCCG CAGAAGAGCC TCTCCCTGTC AGACTGGATT CGTGACAACA TGCGGCCGTG ATATCTACGT ATGATCAGCC CTTCTAGTTG CCAGCCATCT GTTGTTTGCC CCTCCCCCGT GCCTTCCTTG ACCCTGGAAG 3960 GTGCCACTCC CACTGTCCTT TCCTAATAAA ATGAGGAAAT TGCATCGCAT TGTCTGAGTA 4020 BOVINE GROWTH HORMONE POLYADENYLATION REGION=231bp GGTGTCATTC TATTCTGGGG GGTGGGGTGG GGCAGGACAG CAAGGGGGAG GATTGGGAAG 4080 ACAATAGCAG GCATGCTGGG GATGCGGTGG GCTCTATGGA ACCAGC GCTGGATCTC CCGATCCCCA GCTTTGCTTC TCAATTTCTT ATTTGCATAA TGAGAAAAAA 4200 AGGAAAATTA ATTTTAACAC CAATTCAGTA GTTGATTGAG CAAATGCGTT GCCAAAAAGG 4260 MOUSE BETA GLOBIN MAJOR PROMOTER=366bp TCTGCACAGA TAAGGACAAA CATTATTCAG AGGGAGTACC 4320 ATGCTTTAGA GACAGTGGTC CAGAGCTGAG ACTCCTAAGC CAGTGAGTGG CACAGCATTC TAGGGAGAAA TATGCTTGTC 4380 ATCACCGAAG CCTGATTCCG TAGAGCCACA CCTTGGTAAG GGCCAATCTG CTCACACAGG 4440 ATAGAGAGGG CAGGAGCCAG GGCAGAGCAT ATAAGGTGAG GTAGGATCAG TTGCTCCTC4 4500

CATTTCCTTC	TCACATAGIT	LINKER #9	=19bP <u>[5' U</u>	<u>NTRANSLATED</u> TIGGACAGCI	DHFR=82bp CAGGGCTGCG	4560
		4525 6		4044 0		
		GCAATCCTAG	CGTGAAGGCT	GGTAGGATTT	TATLLLLGLT	4620
GCCATCATGG 4626 7					GGGGATTGGC	4680
AAGAACGGAG	ACCTACCCTG	GCCTCCGCTC	AGGAACGAGT	TCAAGTACTT	CCAAAGAATG	4740
ACCACAACCT					GAAAACCTGG	4800
	CTGAGAAGAA	TCGACCTTTA		HAATATAGI	TCTCAGTAGA	
GAACTCAAAG	AACCACCACG	AGGAGCÍCAT	TTTCTTGCCA	AAAGTTTGGA	TGATGCCTTA	4920
AGACTTATTG	AACAACCGGA	ATTGGCAAGT	AAAGTAGACA	TGGTTTGGAT	AGTCGGAGGC	4980
AGTTCTGTTT	ACCAGGAAGC	CATGAATCAA	CCAGGCCACC	TTAGACTCTT	TGTGACAAGG	5040
ATCATGCAGG	AATTTGAAAG	TGACACGTTT	TTCCCAGAAA	TTGATTTGGG	GAAATATAAA	5100
CTTCTCCCAG	AATACCCAGG	CGTCCTCTCT			CATCAAGTAT	5160
AAGTTTGAAG	TCTACGAGAA	STOP DHFR GAAAGACTAA 5140	3' UNTE CAGGAAGATG 1	RANSLATED DH CTTTCAAGTT	FR=82bp CTCTGCTCCC LINKER #10	5220
CTCCTAAAGC	TATGCATTTT	TATAAGACCA	TGGGACTTTT	GCTGGCTTTA 52		5280
=10bp _j GACTGTGCCT	TCTAGTTGCC	AGCCATCTGT	TGTTTGCCCC	TCCCCCGTGC	CTTCCTTGAC	5340
COTEGAAGGT	BOVINE GROV	TH HORMON	E POLYADENY	LATION=231br GAGGAAATTG	CATCGCATTG	5400
					AGGGGGAGGA	5460
				: TCTATGGAAC	LINKER #11 CAGCTGGGGC	5520
=17bp TCGAGCTACT	AGCTTTGCTT			•	5513'4 AAGGAAAATT	5580
5530		AGTTGATTGA	GCAAATGCGT	TGCCAAAAAG	GATGCTTTAG	5640
	MOTICE D	ETA CIODINI I	MATOR PROMO	TER=366hp		
					CATCACCGAA	
					CATCACCGAA	
					GATAGAGAGG	
GCAGGAGCCA	GGGCAGAGCA				ACATTTGCTT	5880
	2886 7	GCTTGGATCC	3917 0	J GTTGAACAAC	ATGGATTGCA	
CGCAGGTTCT	CCGGCCGCTT	GGGTGGAGAC	GCTATTCGG	TATGACTGGG	CACAACAGAC	6000

AATCGGCTGC	TCTGATGCCG	CCGTGTTCCG	GCTGTCAGCG	CAGGGGGGGCCC	CGGTTCTTTT	6060
NEOMYCIN TGTCAAGACC	PHOSPHOTRAN GACCTGTCCG	NSFERASE=799 GTGCCCTGAA	5bP=264 AMIN TGAACTGCAG	NO ACID & ST GACGAGGCAG	OP CODON CGCGGCTATC	6120
<u> GTGGCTGGCC</u>	ACGACGGGCG	TTCCTTGCGC	AGCTGTGCTC	GACGTTGTCA	CTGAAGCGGG	6180
AAGGGACTGG	CTGCTATTGG	GCGAAGTGCC	GGGGCAGGAT	CTCCTGTCAT	CTCACCTTGC	6240
TCCTGCCGAG	AAAGTATCCA	TCATGGCTGA	TGCAATGCGG	CGGCTGCATA	CGCTTGATCC	F300
GGCTACCTGC	CCATTCGACC	ACCAAGCGAA	ACATCGCATC	GAGCGAGCAC	GTACTCGGAT	6360
GGAAGCCGGT	CTTGTCGATC	AGGATGATCT	GGACGAAGAG	CATCAGGGGC	TCGCGCCAGC	642.0
CGAACTGTTC	GCCAGGCTCA	AGGCGCGCAT	GCCCGACGGC	GAGGATCTCG	TCGTGACCCA	£430
TGGCGATGCC	TGCTTGCCGA	ATATCATGGT	GGAAAATGGC	CGCTTTTCTG	GATTCATCGA	6540
CTGTGGCCGG	CTGGGTGTGG	CGGACCGCTA ⁻	TCAGGACATA	GCGTTGGCTA	CCCGTGATAT	6600
TGCTGAAGAG	CTTGGCGGCG	AATGGGCTGA	CCGCTTCCTC			6660
TCCCGATTCG	CAGCGCATCG	CCTTCTATCG	CCTTCTTG/:C	STOP 1 GAGTTCTTCT 67		6720
CTGGGGTTCG	AAATGACCGA				TTTCGATTCC	6780
ACCGCCGCCT	3° TCTATGAAAG	UNTRANSLAT GTTGGGCTTC	TED NEO=1731 GGAATCGTTT	tccgggacac	CGGCTGGATG	6840
ATCCTCCAGC	GCGGGGATCT	CATGCTGGAG	TTCTTCGCCC	ACCCCAACTT 6885 6	GTTTATTGCA	€900
GCTTATAATG	GTTACAAATA				AGCATTTTTT	6960
	CTAGTTGTGG	Y POLYADENY TTTGTCCAAA	CTCATCAATC	ON=133bp TATCTTATCA	TGTCTGGATC 7018 9	7020
LINKER #1 GCGGCCGCGA	TCCCGTCGAG			ATAGCTGTTT	CCTGTGTGAA	7080
ATTGTTATCC	GCTCACAATT	CCACACAACA	C 19 TACGAGCCGG	AAGCATAAAG	TGTAAAGCCT	7140
GGGGTGCCTA	ATGAGTGAGC	TAACTCACAT	TAATTGCGTT	GCGCTCACTG	CCCGCTTTCC	7200
AGTCGGGAAA	CCTGTCGTGC	CAGCTGCATT	AATGAATCGG	CCAACGCGCG	GGGAGAGGCG	7260
GTTTGCGTAT	TGGGCGCTCT	TCCGCTTCCT	CGCTCACTGA	CTCGCTGCGC	TOGGTOGTTO	7320
GGCTGCGGCG	AGCGGTATCA	GCTCACTCAA	AGGCGGTAAT	ACGGTTATCC	ACAGAATCAG	7380
GGGATAACGC					AACCGTAAAA	7440
ACCOCCCTT	7461=B	ACTERIAL ORI	GIN OF REPL	ICATION		7500

GACGETCAAG TEAGAGGTGG EGAAACEEGA CAGGAETATA AAGATACEAG GEGTTTEEEE 7560 CTGGAAGCTC CCTCGTGCGC TCTCCTGTTC CGACCCTGCC GCTTACCGGA TACCTGTCCG 7620 CCTTTCTCCC TTCGGGAAGC GTGGCGCTTT CTCAATGCTC ACGCTGTAGG TATCTCAGTT 7680 CGGTGTAGGT CGTTCGCTCC AAGCTGGGCT GTGTGCACGA ACCCCCCGTT CAGCCCGASC 7740 GCTGCGCCTT ATCCGGTAAC TATCGTCTTG AGTCCAACCC GGTAAGACAC GACTTATCGC 7800 CACTGGCAGC AGCCACTGGT AACAGGATTA GCAGAGCGAG GTATGTAGGC GGTGCTACAG 7860 AGTICITGAA GIGGIGGCCI AACIACGGCI ACACIAGAAG GACAGIATII GGIATCIGCG 7920 CTCTGCTGAA GCCAGTTACC TTCGGAAAAA GAGTTGGTAG CTCTTGATCC GGCAAACAAA 7980 CCACCGCTGG TAGCGGTGGT TITTTTGTTT GCAAGCAGCA GATTACGCGC AGAAAAAAA 8040 GATCTCAAGA AGATCCTTTG ATCTTTTCTA CGGGGTCTGA CGCTCAGTGG AACGAAAACT 8100 CACGTTAAGG GATTTTGGTC ATGAGATTAT CAAAAAGGAT CTTCACCTAG ATCCTTTTAA 8160 ATTAAAAATG AAGTTTTAAA TCAATCTAAA GTATATATGA GTAAACTTGG TCTGACAGTT 8220 BETA LACTAMASE ACCAATGETT AATCAGTGAG GCACCTATET CAGCGATETG TETATTTEGT TEATECATAG 8280 TTGCCTGACT CCCCGTCGTG TAGATAACTA CGATACGGGA GGGCTTACCA TCTGGCCCCA 8340 GTGCTGCAAT GATACCGCGA GACCCACGCT CACCGGCTCC AGATTTATCA GCAATAAACC 8400 BETA LACTAMASE=861bp=286 AMINO ACID & STOP CODON AGCCAGCCGG AAGGGCCGAG CGCAGAAGTG GTCCTGCAAC TTTATCCGCC TCCATCCAGT 8460 CTATTAATIG TIGCCGGGAA GCTAGAGTAA GTAGTICGCC AGTTAATAGT TIGCGCAACG 8520 TTGTTGCCAT TGCTACAGGC ATCGTGGTGT CACGCTCGTC GTTTGGTATG GCTTCATTCA 8580 GCTCCGGTTC CCAACGATCA AGGCGAGTTA CATGATCCCC CATGTTGTGC AAAAAAGCGG 8540 TTAGCTCCTT CGGTCCTCCG ATCGTTGTCA GAAGTAAGTT GGCCGCAGTG TTATCACTCA 8700 TGGTTATGGC AGCACTGCAT AATTCTCTTA CTGTCATGCC ATCCGTAAGA TGCTTTTCTG 8760 TGACTGGTGA GTACTCAACC AAGTCATTCT GAGAATAGTG TATGCGGCGA CCGAGTTGCT 8820 CTTGCCCGGC GTCAATACGG GATAATACCG CGCCACATAG CAGAACTTTA AAAGTGCTCA 8880 TCATTGGAAA ACGTTCTTCG GGGCGAAAAC TCTCAAGGAT CTTACCGCTG TTGAGATCCA 8940 GGTCGATGTA ACCCACTCGT GCACCCAACT GATCTTCAGC ATCTTTTACT TTCACCAGCG 9000 TTTCTGGGTG AGCAAAAACA GGAAGGCAAA ATGCCGCAAA AAAGGGAATA AGGGCGACAC 9060 GGAAATGTTG AATACT<u>CAT</u>A CTCTTCCTTT TICAATATTA TIGAAGCATT TATCAGGGTT **9120** ATTGTCTCAT GAGCGGATAC ATATTTGAAT GTATTTAGAA AAATAAACAA ATAGGGGTTC 9180 CGCGCACATT TCCCCGAAAA GTGCCACCT

FIG. 3F

LEADER

FRAM	1E 1	Met AŢĞ	Asp GAT	-20 Phe TTT 987	Gln CAG	Val GTG	Gln CAG 996	Ile ATT	AIC	Ser AGC 1005	Phe TTC	CIU	Leu CTA 1014	-10 Ile ATC	HUI	Ala GCT 1023	Ser TCA	Vạl GTC	.51
-5 Ile ATA	ATG	Ser TCC 1038	Arg AGA	Gly GGA	1	Ile ATT	GTT	Leu CTC 1056	Ser TCC	CAG	Sen TCT 1065	Pro CCA	GCA	10 Ile ATC 1074	Leu CTG	TCT	Ala GCA 1083	Ser TCT	
Pro CCA	GGG	Glu GAG 1095	Lys AAG	GTC	20 Thr ACA 1104	Met ATG	ACT	Cys	AGG	Ala. GCC	Ser	Ser	Ser	29 Val GTA 1131	30 Ser AGT	Tyr TAC	Ile ATC 1140	34 His CAC	
Trp	TTC	FR2 Gln CAG 1152	Gln CAG	Lys AAG	40 Pro CCA 1161	Gly GGA	TCC	Ser TCC 1170	Pro CCC	AAA	Pro CCC 1179	Trp TGG	ATT	49 Tyr TAT 1188	Ala GCC	Thr	Ser TCC 1197	Asn AAC	
Leu CTG	Ala GCT	56 Ser TCT 1209	Gly GGA	Val GTC	Pro CCT 1218	Val	Arg CGC	FR: Phe TTC 1227	Ser AGT	GGC	65 Ser AGT 1235	Gly GGG	TCT	G!.y GGG 1245	Thr ACT	TCT	Tyr TAC 1254	Sen TCT	
Leu CTC	ACC	75 Ile ATC 1266	Ser AGC	AGA	Val GTG 1275	Glu GAG	GCT	GAA	GAT	GCT	Ala GCC 1293	ACT	TAT	Tyr TAC 1302	88 Cys TGC	Gln	90 Gln CAG 1311	Trp TGG	
Thr ACT	Ser AGT	OR3 Asn AAC 1323	95 Pro CCA	Pro CCC	97 Thr ACG 1332	Phe TTC	Gly GGA	100 Gly GGG 1341	Gly	Thr ACC	Lys AAG 1350	Leu	GAA	Ile	107 Lys AAA				

FIG. 4

LEADER

	-19				-15					-10					-5		
FRAME 1	Met	Gly	Trp	Ser	Leu	Ile	Leu	Leu	Phe	Leu	Val	Ala	Val	Ala	Thr	Arg	Val
	ATG		TGG	AGC								GCT 2436	GTT		ACG 2445	וטט	שונ
	μ <u>ς</u>	ć	2409		ć	2418		â	242/		c	2436	,	<u>ر</u>			
-1	约+1		FR1							10			Ç	200	15		-
Leu Ser	Gln	Val	Gln	Leu	Gln	Gln	Pro	Gly	Ala	Glu	Leu	Val	Lys(Ala	GCCC.	Ala	26r
CTG TCC	CAG 2460	GIA		469	CAG		2478	uuu	601	2487	CIG	2	2496	GCT	, ;	2505	10.1
	400		_	.407			_ 1, 0		•	_ , .						25	
	20	•	6 -		A1 -	25	Ci.,	Tue	Tho	Pho		31		DR1	Mo+		36 Trn
Val Lys GTG AAG	Met	Jer Jer	TGC	Lys	GCT	TCT	GGC	TAC	ACA	TTT	ACC	AGT	TAC	AAT	ATG	CAC	TGG
	2517	100		526		í			í	2544		1	2553		á	2562	j
		40	FR2				45				49	50		52 !	52A	53	54
Val Lys	Gln		Pro	Glv	Ara	Gly		Glu	Trp	Ile			Ile				
GTA AAA	CAG	ACA	CCT	GGT	cGG	GGC	CTG	GAA	TGG	ATT	GGA	GCT	ATT	TAT	CCC	CGA	AAT
	2574			583			2592			2601		1	2610			2619	
55		CDR	2	60						66				70			
Glv Asp	Thr	Ser	Tvr	Asn	Gln	Lys	Phe	Lys	Gly	l.ys	Ala	Thr	Leu	Thr	Ala	Asp	Lys
Gly Asp GGT GAT	ACT	Ser	Tyr TAC	Asn AAT	Gln CAG	AAG	TTC	Lys AAA	Gly GGC	L.ys AAG	Ala GCC	Thr ACA	TTG	Thr	GCA	GAL	Lys AAA
Gly Asp GGT GAT	Thr ACT 2631	Ser	Tyr TAC	Asn	Gln CAG	AAG	TTC 2649	AAA	Gly GGC	l.ys AAG 2658	Ala GCC	Thr ACA	2667	Thr	GCA	Asp GAC 2676	Lys AAA
Gly Asp GGT GAT 2	ACT 2631	Ser TCC	Tyr TAC	Asn AAT 2640	CAG 80	AAG	TTC 2649 82	AAA 82A	Gly GGC 82B	l.ys AAG 2658 820	Ala GCC 83	Thr ACA	2667 85	Thr ACT	GCA	цас 2676	AAA
Gly Asp GGT GAT 2 75 Ser Ser	ACT 2631 Ser	Ser TCC	Tyr TAC 2	Asn AAT 2640	CAG 80 Met	AAG Gln	TTC 2649 82 Leu	AAA 82A Ser	Gly GGC 82B Ser	L.ys AAG 2658 82C Leu	Ala GCC 83 Thr	Thr ACA Ser	2667 85 Glu	Thr ACT Asp	Ser	6AC 2676 Ala	Val
Gly Asp GGT GAT 75 Ser Ser TCC TCC	ACT 2631 Ser AGC	Ser TCC	Tyr TAC 2 Ala GCC	Asn AAT 2640 Tyr TAC	CAG 80 Met	Gln CAG	TTC 2649 82 Leu CTC	AAA 82A Ser	Gly GGC 82B Ser AGC	L.ys AAG 2658 82C Leu	Ala GCC 83 Thr	Thr ACA Ser TCT	2667 85 Glu	Thr ACT Asp	Ser TCT	6AC 2676 Ala	Val
Gly Asp GGT GAT 75 Ser Ser TCC TCC	ACT 2631 Ser	Ser TCC	Tyr TAC Ala GCC	Asn AAT 2640 Tyr TAC 2697	CAG 80 Met	Gln CAG	TTC 2649 82 Leu CTC 2706	82A Ser AGC	Gly GGC 82B Ser AGC	L.ys AAG 2658 82C Leu CTG 2715	Ala GCC 83 Thr ACA	Thr ACA Ser TCT	85 Glu GAG 2724	Thr ACT Asp GAC	Ser TCT	4AC 2676 Ala GCG 2733	Val GTC
Gly Asp GGT GAT 75 Ser Ser TCC TCC	Ser AGC 2688	Ser TCC Thr ACA	Tyr TAC Ala GCC	Asn AAT 2640 Tyr TAC 2697	80 Met ATG	Gln CAG	TTC 2649 82 Leu CTC 2706	82A Ser AGC	Gly GGC 82B Ser AGC	Lys AAG 2658 82C Leu CTG 2715	Ala GCC 83 Thr ACA	Thr ACA Ser TCT	2667 85 Glu GAG 2724	Thr ACT Asp GAC	Ser TCT	41a GCG 2733	Val GTC
Gly Asp GGT GAT 75 Ser Ser TCC TCC 90	Ser AGC 2688	Ser TCC Thr ACA	Tyr TAC Ala GCC 94	Asn AAT 2640 Tyr TAC 2697 95 Ser	80 Met ATG	Gln CAG CDR	TTC 2649 82 Leu CTC 2706	82A Ser AGC	Gly GGC 82B Ser AGC 100 Gly	L.ys AAG 2658 82C Leu CTG 2715 100A Asp	Ala GCC 83 Thr ACA 100E Trp	Thr ACA Ser TCT 3 10 Tyr	2667 85 Glu GAG 2724 0C 1 Phe	Thr ACT Asp GAC	Ser TCT 101 Val	41a 2676 Ala GCG 2733 102 Trp	Val GTC 103 Gly
Gly Asp GGT GAT 75 Ser Ser TCC TCC 90 Tyr Tyr TAT TAC	Ser AGC 2688	Ser TCC Thr ACA	Ala GCC 94 Arg AGA	Asn AAT 2640 Tyr TAC 2697 95 Ser	80 Met ATG	Gln CAG CDR Tyr	TTC 2649 82 Leu CTC 2706	82A Ser AGC Gly	Gly GGC 82B Ser AGC 100 Gly GGT	L.ys AAG 2658 82C Leu CTG 2715 100A Asp	Ala GCC 83 Thr ACA 100E Trp	Thr ACA Ser TCT 3 10 Tyr TAC	2667 85 Glu GAG 2724 0C 1 Phe	Thr ACT Asp GAC	Ser TCT 101 Val	41a 2676 Ala GCG 2733 102 Trp	Val GTC 103 Gly
Gly Asp GGT GAT 75 Ser Ser TCC TCC 90 Tyr Tyr TAT TAC	Ser AGC 2688 Cys TGT	Ser TCC Thr ACA	Ala GCC Arg Arg	Asn AAT 2640 Tyr TAC 2697 95 Ser TCG	80 Met ATG	Gln CAG CDR Tyr	TTC 2649 82 Leu CTC 2706 3 Tyr	82A Ser AGC Gly	Gly GGC 82B Ser AGC 100 Gly GGT	L.ys AAG 2658 82C Leu CTG 2715 100A Asp GAC	Ala GCC 83 Thr ACA 100E Trp	Thr ACA Ser TCT 3 10 Tyr TAC	2667 85 Glu GAG 2724 0C 1 Phe	Thr ACT Asp GAC	Ser TCT 101 Val	GAC 2676 Ala GCG 2733 102 Trp TGG	Val GTC 103 Gly
Gly Asp GGT GAT 75 Ser Ser TCC TCC 90 Tyr Tyr TAT TAC 105 FR4 Aia Giy	Ser AGC 2688 Cys TGT 2745	Ser TCC Thr ACA Ala GCA	Ala GCC 94 Arg AGA	Asn AAT 2640 Tyr TAC 2697 95 Ser TCG 2754 110 Thr	80 Met ATG Thr ACT	Gln CAG CDR Tyr TAC	TTC 2649 82 Leu CTC 2706 3 Tyr TAC 2763 113 Ala	82A Ser AGC Gly GGC	Gly GGC 82B Ser AGC 100 Gly GGT	L.ys AAG 2658 82C Leu CTG 2715 100A Asp GAC	Ala GCC 83 Thr ACA 100E Trp	Thr ACA Ser TCT 3 10 Tyr TAC	2667 85 Glu GAG 2724 0C 1 Phe	Thr ACT Asp GAC	Ser TCT 101 Val	GAC 2676 Ala GCG 2733 102 Trp TGG	Val GTC 103 Gly
Gly Asp GGT GAT 75 Ser Ser TCC TCC 90 Tyr Tyr TAT TAC 105 FR4 Aia Giy GCA GGG	Ser AGC 2688 Cys TGT 2745	Ser TCC Thr ACA Ala GCA	Ala GCC Arg Arg AGA Val GTC	Asn AAT 2640 Tyr TAC 2697 95 Ser TCG 2754 110 Thr	80 Met ATG Thr ACT	GIN CAG CDR Tyr TAC	TTC 2649 82 Leu CTC 2706 3 Tyr TAC 2763 113 Ala	82A Ser AGC Gly GGC	Gly GGC 82B Ser AGC 100 Gly GGT	L.ys AAG 2658 82C Leu CTG 2715 100A Asp GAC	Ala GCC 83 Thr ACA 100E Trp	Thr ACA Ser TCT 3 10 Tyr TAC	2667 85 Glu GAG 2724 0C 1 Phe	Thr ACT Asp GAC	Ser TCT 101 Val	GAC 2676 Ala GCG 2733 102 Trp TGG	Val GTC 103 Gly

FIG. 7

FIG. 8

FIG. 9A

FIG. 10

