Singular Value Decomposition

Singular Value Decomposition I

- ▼ Keywords
 - ▼ Singular value decomposition

SVD (Singular Value Decomposition)

- 1. SVD
 - a. given a matrix A (m x n) where m > n
 - b. SVD gives $A = U \Sigma V^T$
- 2. SVD as sum of outer products

a.
$$A = U \Sigma V^T = \Sigma_{1 \leq i \leq n} \sigma_i u_i v_i^T$$

i.
$$\sigma_1 \geq \sigma_2 \geq ...\sigma_n$$

3. Another perspective of SVD

a.
$$Av_i = \sigma_i u_i (i=1,...,n)$$

$$\text{b. } V^{-1} = V^T$$

i. V (n x n) has orthonormal columns

ii. thus,
$$AV = U\Sigma(A = U\Sigma V^T)$$

Singular Value Decomposition II

- ▼ Keywords
 - ▼ Spectral theorem
 - ▼ Symmetric matrix
 - ▼ Positive definite matrix

Computing SVD

1. Form AA^T (m x m) and A^TA (n x n) and compute eigendecomposition of each

a.
$$AA^T = U\Sigma V^T V\Sigma^T U^T = U\Sigma \Sigma^T U^T = U\Sigma^2 U^T$$

b.
$$A^TA = V\Sigma^TU^TU\Sigma V^T = V\Sigma^T\Sigma V^T = V\Sigma^2V^T$$

- 2. Find the following facts
 - a. orthogonal eigenvector matrices \boldsymbol{U} and \boldsymbol{V}
 - b. eigenvalues in Σ^2 that are all positive
 - c. eigenvalues in Σ^2 that are shared by AA^T and A^TA
 - i. AA^T and A^TA are symmetric positive (semi-)definite
 - Symmetric

$$\circ (AA^T)^T = AA^T$$

$$\circ \ (A^TA)^T = A^TA$$

· Positive (semi-)definite

$$x^T A A^T x = (A^T x)^T (A^T x) = ||A^T x||^2 \ge 0$$

$$x^T A^T A x = (Ax)^T (Ax) = ||Ax||^2 \ge 0$$

Diagonalization of Symmetric Matrices

1. A (n x n) is diagonalizable if and only if n linearly independent eigenvectors exist

a.
$$(AA^T)^T = AA^T$$

- 2. symmetric matrix S (n x n) where $S^T=S$ is always diagonalizable
 - a. S is orthogonally diagonalizable
 - b. i.e., eigenvectors are not only linearly independent, but also orthogonal to each other

Spectral Theorem of Symmetric Matrices

- 1. Consider a symmetric matrix S (n x n) where $S^T=S$
- 2. S has n real eigenvalues, counting multiplicities
- 3. The dimension of the eigenspace for each eigenvalue equals the multiplicity of λ as a root of the characteristic equation
 - a. det 각 근의 중근의 개수 (algebraic multiplicity)
 - b. 이에 해당하는 eigenspace 의 basis 의 개수 (geometric multiplicity)
 - c. 위의 두 multiplicity 의 개수가 똑같아야 max 값인 n개의 eigenvalues 를 구할 수 있음

- 4. The eigenspaces are mutually orthogonal
 - a. i.e., eigenvectors corresponding to different eigenvalues are orthogonal
- 5. To sum up, S is orthogonally diagonalizable

Spectral Decomposition

1. Eigendecomposition of a symmetric matrix is known as spectral decomposition

a.
$$S=UDU^{-1}=UDU^T=\lambda_1u_1u_1^T+\lambda_2u_2u_2^T+...+\lambda_nu_nu_n^T$$

i. $\lambda_i u_j u_j^T$ can be viewed as a projection matrix onto the subspace spanned by u_j , scaled by its eigenvalue λ_i

Positive Definite Matrices

- 1. A (n x n) is positive definite if and only if the eigenvalues of A are all positive
 - a. A (n x n) is positive definite if $x^TAx>0$
 - b. A (n x n) is positive semi-definite if $x^TAx \geq 0 (x
 eq 0)$
- 2. Symmetric positive definite matrices
 - a. if S (n x n) is symmetric and positive-definite, then the spectral decomposition will have all positive eigenvalues

i.
$$S=UDU^T=\lambda_1u_1u_1^T+\lambda_2u_2u_2^T+...+\lambda_nu_nu_n^T$$
 where $\lambda_j>0 (j=1,...,n)$

Things to Note

- 1. Given any rectangular matrix A (m x n), its SVD always exists
- 2. Given a square matrix A (n x n), its eigendecomposition does not always exist, but its SVD always exists
- 3. Given a square, symmetric positive (semi-)definite matrix S (n x n), its eigendecomposition always exists, and it is actually the same as its SVD

Eigen Decomposition & Singular Value Decomposition in ML

- ▼ Keywords
 - ▼ Principal component analysis

- ▼ Gram matrix
- ▼ Low-rank approximation
- ▼ Dimension-reducing transformation

Eigendecomposition in Machine Learning

- 1. In machine learning, usually handle symmetric positive (semi-)definite matrix
- 2. Given a (feature-by-data item) matrix A (m x n)
- 3. A^TA represents a (data item-by-data item) similarity matrix between all paris of data items, where the similarity is computed as an inner product
 - a. correlation 값이 높다 == inner product 값이 크다
- 4. AA^T represents a (feature-by-feature) similarity matrix between all pairs of features, indicating a kind of correlations between features
 - a. covariance matrix in principal component analysis
 - b. gram matrix in style transfer

Low-Rank Approximation of a Matrix

1. SVD of a rectangular matrix A (m x n) can be represented as the sum of outer products

a.
$$A = U \Sigma V^T = \Sigma_{1 \leq i \leq n} \sigma_i u_i v_i^T$$

- 2. The problem of the best low-rank approximation
 - a. $\hat{A}_r = argmin_{A_r} ||A A_r||_F$ subject to $rank(A_r) \leq r$
 - i. F는 frobenius norm 을 의미함
 - ii. norm 을 matrix 단위로 확장한 것으로, 모든 matrix 의 element 를 제곱해서 더한 값이 됨
- 3. The optimal solution is given as

a.
$$\hat{A}_r = \Sigma_{1 \leq i \leq r} \sigma_i u_i v_i^T$$

4. Approximate A as A_r

Dimension-Reducing Transformation

- 1. Given a (feature-by-data item) matrix X (m x n)
- 2. Consider the linear transformation, $G^T: x o y$

- a. 최적의 솔루션은 orthonormal 한 세 개의 projection vector
- b. 이 벡터들은 SVD에서 u_i 들을 모아서 row vector로 만든 matrix 가 됨

3. Goal

- a. pairwise similarity matrix 정보를 가장 잘 보존하도록 하는 차원 축소된 버전의 표 현형을 얻는 것
- b. $\hat{G} = argmin_G ||S X^T G G^T X||_F$ subject to $G^T G = I_K$
 - a. given $X = U \Sigma V^T = \Sigma_{1 \leq i \leq n} \sigma_i u_i v_i^T$
 - b. optimal solution is $\hat{G}=U_r$