

Ingénierie Logicielle

Adrian NEGRUTA

Dorian FORNALI

Dorian GIRARD

Pierre-Adrien VASSEUR

Yannick ASCARI

Sommaire

Contexte

01

Architecture

04

Besoins

02

Démonstration

05

Hypothèses de travail

03

Prise de recul

06

Contexte

Plateforme de santé destinée à aider les personnes âgées à rester chez elles tout en étant surveillées

- Patient équipé d'un capteur
 - Détection des urgences
- Suivi de la santé du patient

Analyse des données par des professionnels de santé

Besoins

- Remplir un formulaire de santé mentale/physique
- Planifier un rendez-vous à domicile avec une infirmière
- Recevoir des instructions de l'infirmière

Docteur

- Consulter des rapports de santé sur mes patients
- Planifier des rendez-vous avec mes patients
- Avoir accès à l'ensemble des données de santé des patients

- Être notifiée des anomalies sur les données de santé
- Planifier des rendez-vous avec mes patients
- Accès à un bilan de santé global du patient

Besoins

Proche du patient

- Avoir accès aux coordonnées du corps médical
- Voir en temps réel un récapitulatif de l'état de santé du patient

Administrateur

- Déclencher la notification de mise à jour de l'application de la montre et du smartphone
- Avoir accès à toutes les informations utilisateurs (sauf santé)

Concepteur

- Avoir accès à un tableau de bord de suivi du système
- Avoir un accès au système pour pouvoir effectuer d'éventuelles opérations de maintenance

Hypothèses de travail

- Chaque patient est équipé d'une montre connectée type Apple Watch
 - Agit comme un capteur de différentes données de santé
 - Oxygénation du sang
 - Pression artérielle
 - Température
- Notre système sera utilisé par 1% des personnes âgées en France
 - → ~ 200 000 patients
- 40.1 Ko par jour par personne donc ~8Go pour l'ensemble des patients par jour

Vue haut niveau

Zoom sur la maison

- La smartwatch envoie ses données en continu vers le smartphone
- Le smartphone stocke ces données et les transmet au cloud une fois par jour
- If failed try again later
- Système de détection d'alerte

Zoom sur le AWS cloud

- Choix d'AWS pour le cloud
- WAF par lequel passeront toutes nos requêtes, applique des règles de sécurité
- Kubernetes comme orchestrateur
- Bastion pour le DevSecOps

Architecture Frontend

Zoom sur le front

Zoom sur le back

- Approche par microservices
- Bases de données (PostgreSQL, InfluxDB)
- Approche orientée événement pour la communication entre services
- Message Broker Kafka (possibilité de prioriser les messages)

Zoom sur la pipeline

- Vérifier la qualité des données
- Normalisation des formats de données
- Détection d'événements
- Filtrer et agréger les données
- Ajout de métadonnées

Exemple de fonctionnement

Collecte et traitement

Exemple de fonctionnement

Urgence

Sequence diagram - Event Driven - Flow Emergency Detection

Analyse des risques

Étape du processus	Mode de défaillance potentielle	Effet de défaillance potentielle	Sévérité	Causes potentielles	Contrôles des processus actuels	Action recommandée
Collecte de données des capteurs	Perte de connexion avec la montre connectée ou le smartphone	Données manquantes pour le suivi de santé	9	Mauvaise connectivité réseau, montre non rechargée	Transfert via Wifi ou réseaux mobiles selon la disponibilité	Ajouter un mécanisme de notification pour réagir en cas de perte de données depuis X heures.
Stockage des données dans la DB NoSQL	Corruption des données	Inaccessibilité des données vitales	10	Mauvaise gestion des écritures	Sauvegardes récurrentes	Augmenter la fréquence des sauvegardes, validation des écritures en base
Envoi d'alertes d'urgence	Retard ou absence de l'alerte	Risque pour la santé du patient	10	Défaillance du système de notification	Monitoring continu	Monter un service secondaire si le principal tombe

Prise de recul

- Choix d'une montre connectée comme capteur
 - Onéreux d'équiper tous les patients
 - Nécessité de maintenir le software de la montre

- Parti pris d'envoyer les données du smartphone une fois par jour, hors nuit
 - Que se passe-t-il côté cloud la nuit ?

Prise de recul

Smartphone

- Mobilité
- Développement et maintenance de l'appli
- Facilité d'installation de l'appli

Raspberry PI

- Autonomie
- Devoir fournir l'équipement
- Pas de gestion par l'utilisateur

Merci d'avoir écouté!