

TABLE OF CONTENTS

01

Data Adventure and Preprocessing

Explore and clean the wild world of credit risk data.

02

Model Showdown and Astounding Discoveries

Witness epic battles and uncover remarkable insights.

03

Supercharged Models and Epic Finale

Experience the might of our models and the thrilling conclusion.

Data Adventure and Preprocessing

Introductions!

Buckle up and get ready for an exhilarating adventure in the world of lending and investments! Our mission is to predict credit risk using mind-blowing machine learning techniques. Join us on this thrilling journey to help investors make smarter decisions and dodge financial potholes along the way.

The Credit Risk Conundrum

Picture yourself as a daring investor about to lend money or invest in a borrower. You need to know if they're trustworthy, capable of repaying the loan, and the risks involved. That's where our credit risk prediction superpower comes in. By analyzing mountains of historical data, we've built a magic machine that can see into the future and empower us to make informed decisions.

Dataset Shape: (238913, 39						
			Missing		Sample Value	
id	id	int64		238913	1077501	5.38
member_id	member_id	int64		238913	1296599	5.38
loan_amnt	loan_amnt	int64		1310	5000	2.15
funded amnt	funded_amnt	int64		1313	5000	
funded_amnt_inv	funded_amnt_inv	float64		9560	4975.0	2.48
term	term	object			36 months	
int_rate	int_rate	float64		505	10.65	2.17
installment	installment	float64		43848	162.87	
grade	grade	object				
sub_grade	sub_grade	object				
emp_length	emp_length	object	9225		10+ years	0.95
home_ownership	home_ownership	object			RENT	0.40
annual_inc	annual_inc	float64		18715	24000.0	
verification_status	verification_status	object			Verified	0.47
uri		object		238913	https://www.lendingclub.com/browse/loanDetail	5.38
desc	desc	object	146771	91404	Borrower added on 12/22/11 > I need to upgra	4.95
purpose	purpose	object			credit card	0.61
addr_state	addr_state	object				1.42
dti	dti	float64		3912	27.65	3.48
deling_2yrs	delinq_2yrs	float64				0.26
earliest cr_line	earliest_cr_line	object	29	634	Jan-85	2.49
inq_last_6mths	inq_last_6mths	float64				
mths since last deling	mths_since_last_delinq	float64	133528	125	NaN	1.90
open_acc	open_acc	float64				
pub_rec	pub_rec	float64	29		0.0	0.18
revol_bal	revol_bal	int64		46451	13648	4.49
revol_util	revol_util	float64	232	1203	83.7	2.97
total_acc	total_acc	float64				
initial list status	initial list status	object	0	2		0.25
last credit pull d	last credit pull d	object	23	103	Jan-16	1.18
collections 12 mths ex med	collections 12 mths ex med		145		90	0.02
	mths since last major derog		196369	146	NaN	1.92
policy_code	policy_code	int64	0		1	0.00
application_type	application_type	object	0		INDIVIDUAL	0.00
acc_now_deling	acc_now_deling	float64	29	6	0.0	0.01
tot coll amt	tot_coll_amt	float64	66623	3713	NaN	0.50
		float64	66623	125106	NaN	5.05
tot_cur_bal total_rev_hi_lim	tot_cur_bal		66623	9194		2.95
	total rev_hi_lim				NaN	
loan_ending	loan_ending	object			good	0.23

Model Showdown and Astounding Discoveries

Data Collection and Preprocessing

But first, we had to tame the wild beast called data! We embarked on a thrilling data collection mission, gathering a treasure trove of borrower attributes, loan characteristics, and loan performance data. Then came the fun part - cleaning up the data mess, handling missing values, and transforming categorical variables into a language that even machines can understand. It was like training a wild animal to perform jawdropping tricks!

	count	mean	std	min	25%	50%	75%	max
loan_amnt	238913.0	13486.214647	8066.725464	500.00	7200.00	12000.00	18000.00	35000.00
int_rate	238913.0	13.855453	4.380770	5.42	10.99	13.67	16.59	26.06
installment	238913.0	416.935049	243.750417	15.67	239.41	365.23	545.96	1408.13
annual_inc	238909.0	71928.661725	55104.204330	1896.00	45000.00	61450.00	86000.00	7141778.00
dti	238913.0	16.439675	7.698582	0.00	10.72	16.14	21.88	39.99
delinq_2yrs	238884.0	0.248300	0.735872	0.00	0.00	0.00	0.00	29.00
inq_last_6mths	238884.0	0.906859	1.173756	0.00	0.00	1.00	1.00	33.00
mths_since_last_delinq	105385.0	34.909408	21.839102	0.00	16.00	32.00	51.00	152.00
open_acc	238884.0	10.858325	4.827772	0.00	7.00	10.00	13.00	76.00
pub_rec	238884.0	0.134932	0.421437	0.00	0.00	0.00	0.00	11.00
revol_bal	238913.0	15223.161335	19194.436646	0.00	5913.00	10988.00	19067.00	1746716.00
revol_util	238681.0	54.995834	24.671291	0.00	37.30	56.70	74.50	892.30
total_acc	238884.0	24.812034	11.664663	1.00	16.00	23.00	32.00	150.00
collections_12_mths_ex_med	238768.0	0.005939	0.083821	0.00	0.00	0.00	0.00	6.00
mths_since_last_major_derog	42544.0	42.926335	21.489931	0.00	26.00	42.00	60.00	154.00
policy_code	238913.0	1.000000	0.000000	1.00	1.00	1.00	1.00	1.00
acc_now_delinq	238884.0	0.002897	0.058517	0.00	0.00	0.00	0.00	5.00
tot_coll_amt	172290.0	200.963654	22110.090058	0.00	0.00	0.00	0.00	9152545.00
tot_cur_bal	172290.0	136567.825405	150180.174704	0.00	27954.00	79239.00	206402.50	8000078.00
total_rev_hi_lim	172290.0	29101.029839	28544.950606	0.00	13200.00	22000.00	36200.00	2013133.00

Model Selection and Evaluation

The time had come to unleash the algorithms! We put our machine learning models through the ultimate test: logistic regression, random forest, support vector machines, and even gradient boosting. After an epic showdown, one model emerged as the ultimate champion - the mighty Gradient Boosting Classifier! It's like a superhero with mind-blowing accuracy, precision, recall, and F1-score!

Additional Evaluation: CatBoost

But we didn't stop there! We delved into the world of feline-inspired machine learning with the formidable CatBoostClassifier algorithm. Get ready to witness the purrfect blend of power and precision as we unveil its mighty claws in loan classification. It's like having a team of superhero cats fighting credit risk villains!

Training				
	precision	recall	f1-score	support
0	0.81	0.97	0.88	139398
1	0.65	0.17	0.27	39123
accuracy			0.80	178521
macro avg	0.73	0.57	0.58	178521
weighted avg	0.77	0.80	0.75	178521
Testing				
	precision	recall	f1-score	support
0	0.81	0.97	0.88	46686
1	0.62	0.17	0.26	12822
accuracy			0.80	59508
macro avg	0.71	0.57	0.57	59508
weighted avg	0.77	0.80	0.75	59508

roc_auc_score

Training: 0.7578718145039455 Testing: 0.7471627587562779

Confusion Matrix Analysis

Now let's dive into the mystical realm of the Confusion Matrix! It reveals the secrets of our model's accuracy and the balance between true positives, true negatives, false positives, and false negatives. Brace yourself for the thrilling stats: True Positives (TP): 7043 - our model correctly identified high-risk loans, a big win! True Negatives (TN): 7189 - our model nailed it, recognizing low-risk loans like a pro! False Positives (FP): 3200 - our model made a few oopsies, mistakenly flagging some loans as high-risk. False Negatives (FN): 3346 - missed opportunities, where our model classified low-risk loans as risky. Time to level up!

Epic Findings

- Model Mastery: The Gradient Boosting Classifier is a superhero in distinguishing between low-risk and high-risk loans with astonishing accuracy and precision.
- The Magic Ingredients: Loan amount, credit score, employment length, and debt-to-income ratio are the secret sauce influencing credit risk outcomes.
- 3. Risk Warriors: With the powerful Gradient Boosting
 Classifier, we fearlessly assess borrower creditworthiness
 and protect our investments.
- 4. Profit Maximizers: Our superhero model helps us maximize profits by pinpointing low-risk loans with attractive returns. 性's like having a financial crystal ball!

Conclusion

In this awe-inspiring journey, we've unleashed the power of the Gradient Boosting Classifier and the feline prowess of Cat Boost. They've become our ultimate champions in distinguishing between low-risk and high-risk loans. Armed with the magic ingredients of loan amount, credit score, employment length, and debt-to-income ratio, we've unraveled the secrets of credit risk and made wise financial decisions. Embrace their power and embark on your own adventure towards smarter credit risk assessment. Let the knowledge gained guide you to financial success and shield you from potential losses.

bashara.aina.56@gmail.com +62 896 7373 7886 https://medium.com/@basharaaina

THANKS

