MACM 201 - Discrete Mathematics

Graph Theory 6 - Hamiltonian paths/cycles

Department of Mathematics

Simon Fraser University

Hamiltonian

Definition

Let G be a graph. A path of G is **Hamiltonian** if it contains every vertex of G. Similarly, a cycle of G is **Hamiltonian** if it contains every vertex of G.

Examples:

Note

The definition of Hamiltonian is very similar to Eulerian except that each vertex appears exactly once instead of each edge appearing once.

Necessary and sufficient conditions

Definition

Let P be a property of graphs and let C be a set of conditions.

- (1) C is **necessary** for P if every graph satisfying P also satisfies C.
- (2) \mathcal{C} is sufficient for P if every graph that satisfies \mathcal{C} also satisfies P.
- (3) If \mathcal{C} is both necessary and sufficient for P, then a graph G satisfies P if and only if G satisfies \mathcal{C} . In this case \mathcal{C} characterizes when P is satisfied.

Examples

- (1) It is necessary for a graph to be connected to have a Hamiltonian path.
- (2) Being a complete graph is a sufficient condition to have a Hamiltonian path.
- (3) It is necessary and sufficient to be connected and have all vertices of even degree in order to have an Euler circuit.

Hamiltonian vs. Eulerian

Although the properties of having a Hamiltonian cycle or having an Euler circuit look superficially similar, they are actually quite different.

- (1) There is a fast algorithm that takes a graph G = (V, E) and determines if it has an Euler circuit, where the running time is a linear function of |V| + |E|.
- (2) The problem of deciding if a graph has a Hamiltonian path/cycle is NP-complete. So, it is widely believed that there does not exist an algorithm that takes an arbitrary graph G = (V, E) and determines if G has a Hamiltonian path/cycle where the running time is bounded by a polynomial function of |V| + |E|.

Note

Assuming there is no polynomial time algorithm to decide if a graph has a Hamiltonian path/cycle, there will not be a "nice" set of conditions $\mathcal C$ so that

Every graph has a Hamiltonian cycle if and only if it satisfies C.

Therefore, we will content ourselves with finding some necessary conditions and some sufficient conditions, but will not attempt to find a characterization.

Necessary conditions

Theorem

If G = (V, E) is a graph with a Hamiltonian cycle, then G - v is connected for every $v \in V$.

Proof.

Theorem

Let G = (V, E) be a bipartite graph with bipartition (V_1, V_2) . If G has a Hamiltonian cycle, then $|V_1| = |V_2|$.

Proof.

A sufficient condition

Theorem

Let G = (V, E) be a loopless graph with |V| = n. If the following condition is satisfied, then G has a Hamiltonian path.

$$\deg(x) + \deg(y) \ge n - 1$$
 for all $x, y \in V$ with x not adjacent to y and $x \ne y$.

Proof.

A sufficient condition

Proof (continued)

Corollary

If G = (V, E) is a graph with |V| = n and $\deg(v) \ge \frac{n-1}{2}$ holds for every $v \in V$, then G has a Hamiltonian path.

Proof. In this case G satisfies the condition from the previous theorem since for all $x,y\in V$ we have $\deg(x)+\deg(y)\geq \frac{n-1}{2}+\frac{n-1}{2}=n-1$.

This corollary is tight in the sense that the statement becomes false when the degree bound is weakened to $\deg(v) \geq \frac{n-2}{2}$. Here is a graph with n=2k vertices for which all vertices have degree $\frac{n-2}{2}=k-1$ but there is no Hamiltonian path.