Ukuran Pemusatan Data

Saat paparan dari sekumpulan data numerik hasil pengamatan, adalah umum untuk menunjukan suatu nilai yang mewakili sekumpulan data hasil pengamatan. Seperti ukuran menggambarkan kira-kira dimana letak data atau dimana yang "berpusat" di sepanjang garis bilangan. Ukuran yang mewakili sekumpulan data tersebut dikenal dengan nama ukuran pemusatan data. Contoh, catatan jumlah penumpang kereta yang dihimpun sepanjang tahun 2011 diberikan seperti pada tabel berikut:

Jumlah Penumpang Kereta Api, 2011(000 Orang)

		Jawa			
Bulan	Jabotabek	Non Jabotabek	Jabotabek + Non Jabotabek	Sumatera	Total
(1)	(2)	(3)	(4)	(5)	(6)
Januari	10,354	6,092	16,446	445	16,891
Februari	9,270	5,249	14,519	371	14,89
Maret	10,733	5,851	16,584	394	16,978
April	10,188	5,843	16,031	410	16,441
Mei	10,513	6,505	17,018	504	17,522
Juni	10,147	6,659	16,806	459	17,265
Juli	10,749	6,883	17,632	500	18,132
Agustus	9,678	4,814	14,492	354	14,846
September	9,692	6,661	16,353	568	16,921
Oktober	10,152	5,910	16,062	399	16,461
November	9,852	5,913	15,765	414	16,179
Desember	9,777	6,556	16,333	478	16,811

Sumber: PT Kereta Api Indonesia

Andaikan paparan dari data diatas kita fokuskan pada kolom ke 2 , kita akan dapatkan nilai/ukuran pemusatan yang mewakili data yaitu:

➤ Rata-rata penumpang per bulan = 10092.

➤ Median = 10150.

Ukuran Pemusatan Data

Ukuran pemusatan adalah nilai tunggal yang mewakili suatu kumpulan data dan menunjukkan karakteristik dari data. Ukuran pemusatan menunjukkan pusat dari nilai data. Bentuk ukuran pemusatan yang umum digunakan :

- Rata-rata hitung (mean)
- Median
- Modus
- Rata-rata hitung

Jika

x= variabel sampel data

x_i = variabel sampel data ke i

n = jumlah sampel

 \overline{x} = rata-rata hitung populasi

 μ = rata-rata hitung populasi

N = jumlah populasi

maka,

Rata-Rata Hitung populasi dan sampel dirumuskan sebagai berikut.

o Data non group

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N} \qquad \text{dan} \qquad \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Contoh:

1. Misalkan diketahui di kota "Industri" terdapat 8 pabrik masing-masing tercatat mempunyai banyak pekerja sebagai berikut :

1850, 700, 3150, 2250, 1750, 1900,600,680.

- 2. Setiap 12 jam sekali bagian QC pabrik minuman ringan memeriksa 6 kaleng contoh untuk diperiksa kadar gula sintetisnya (%). Berikut adalah data 6 kaleng minuman contoh yang diperiksa :
 - 13.5
- 12.5
- 13
- 12
- 11.5 12.5

Soal pertama menyatakan populasi, perhitungan rata-rata adalah sebagai berikut

$$\mu = \frac{\sum_{1}^{8} x_i}{8} = \frac{12880}{8} = 1610$$

Soal kedua menyatakan sample, perhitungan rata-rata adalah sebagai berikut

$$\overline{x} = \frac{\sum_{1}^{6} x_i}{6} = \frac{75}{6} = 12.5 \%$$

- o Data group
 - Nilainya merupakan pendekatan

Biasanya berhubungan dengan rata-rata hitung sampel

$$\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}$$

sehingga:

$$\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{n}$$

 \overline{x} : rata-rata hitung sampel

n : ukuran Sampel

fi : frekuensi di kelas ke-i

x_i: Titik Tengah Kelas ke-i

Kelas	Nilai Tengah Kelas	Frekuensi	fi xi
	(xi)	(fi)	
16-23	19.5	10	195
24-31	27.5	17	467.5
32-39	35.5	7	248.5

40-47	43.5	10	435
48-55	51.5	3	154.5
56-63	59.5	3	178.5
Jumlah		50	1679
(Σ)			

Jawab:
$$\bar{x} = \frac{1679}{50} = 33.58$$

Selain dengan rumus tersebut, dapat dicari dengan suatu nilai dugaan (M)

$$\overline{x} = M + \frac{\sum_{i=1}^{n} f_i d_i}{n}$$

d_i: Nilai Tengah (x_i) - M

Kelas	Nilai	M	di	Frekuensi(fi)	fi di
	Tengah				
16-23	19.5	39.5	-20	10	-200
24-31	27.5	39.5	-12	17	-204
32-39	35.5	39.5	-4	7	-28
40-47	43.5	39.5	4	10	40
48-55	51.5	39.5	12	3	36
56-63	59.5	39.5	20	3	60
Jumlah			0	50	-296
(Σ)					

Jawab:

$$\overline{x} = M + \frac{\sum_{i=1}^{n} f_i d_i}{n} = 39.5 + \frac{-295}{50} = 39.5 - 5.92 = 33.58$$

Note: M dapat ditentukan dari Nilai Tengah Kelas (x;) dengan ketentuan.

- jika banyak kelas (k) ganjil maka ambil (x_i) pada kelas ke $\frac{k}{2}+1$ (kelas yang di tengah-tengah)
- jika banyak kelas (k) genap maka gunakan (x_i) pada kelas ke $\frac{k}{2}$ dan kelas ke $\frac{k}{2}+1$ selanjutnya kedua nilai (x_i) tersebut dibagi dua

Median

Median adalah salah satu ukuran pemusatan yang sering digunakan. Median dari gugus data yang telah diurutkan dari yang terkecil sampai yang terbesar atau dari terbesar sampai terkecil adalah data pengamatan yang tepat di tengah-tengah bila banyaknya pengamatan itu ganjil, atau rata-rata kedua pengamatan yang di tengah bila banyaknya pengamatan genap.

Contoh:

Berikut adalah tabel yang telah di urutkan berdasarkan jumlah penumpang

Bulan	Jumlah	
Februari	9,273	
Agustus	9,678	
September	9,692	
Desember	9,777	
November	9,852	
Juni	10,147	
Oktober	10,152	
April	10,188	
Januari	10,354	

Mei	10,513
Maret	10,733
Juli	10,749

Median dari data adalah = (10147+10152)/2 = 10149,5

Modus

Nilai yang paling sering muncul atau nilai yang frekuensinya paling tinggi

Modus untuk Ungrouped Data

Contoh:

Hasil test statistik mahasiswa 75 60 75 60 65 75 75 80 80 90 55 75

Modus = 75

Modus untuk Group Data

Kelas Modus: Kelas di mana Modus berada atau kelas dengan frekuensi tertinggi.

TBB kelas ke-i = BB kelas ke-i + BA kelas ke (i-1)

2

TBA kelas ke-i = BA kelas ke-i + BB kelas ke (i+1)

2

Modus = TBB Kelas Modus + i $\left(\frac{d_1}{d_1 + d_2}\right)$

di mana: TBB: Tepi Batas Bawah

 $d_1\;$: Beda Frekuensi Kelas Modus dengan Frekuensi Kelas sebelumnya

 $d_2\;$: Beda Frekuensi Kelas Modus dengan Frekuensi Kelas sesudahnya

i: interval kelas.

Kelas	Frekuensi (fi)
16-23	10
24-31	17
32-39	7
40-47	10
48-55	3
56-63	3
Jumlah (Σ)	50

- Kelas Modus = 24 31
- TBB Kelas Modus = 23.5
- i = 8
- frek. kelas Modus = 17
- frek, kelas sebelum kelas Modus = 10
- frek. kelas sesudah kelas Modus = 7
- $d_1 = 17 10 = 7$
- $d_2 = 17 7 = 10$

Modus =
$$23.5 + 8\left(\frac{7}{7+10}\right) = 23.5 + 8\left(\frac{7}{17}\right) = 23.5 + 8(0.41176...) = 23.5 + 3.2941...$$

Ukuran Letak Data

Ukuran letak adalah ukuran yang menunjukkan pada bagian mana data tsb terletak pada suatu data yang sudah diurutkan. Bentuk ukuran letak yang umum digunakan :

Kuartil

Seperti yang sudah dibahas sebelumnya, bahwa median membagi data yang telah diurutkan menjadi dua bagian yang sama banyak. Kuartil membagi data yang telah diurutkan menjadi empat bagian yang sama banyak.

Dimana:

 X_{min} = data terkecil

 $X_{max} = data terbesar$

 $Q_1 = \text{kuartil ke -1}$

 Q_2 = kuartil ke -2

 Q_3 = kuartil ke -3

Quartil data nongroup

Letak dari Qi dirumuskan sebagai berikut :

$$Q_i = \text{data ke}\left[\frac{i(n+1)}{4}\right]$$

 $Q_i = kuartil ke i$

n = banyak data

contoh : Tentukan Q_1 , Q_2 , dan Q_3 dari data : 3, 4, 7, 8, 7, 4, 8, 4, 9, 10, 8, 3, 7, 12.

Jawab:

Data yang telah diurutkan: 3, 3, 4, 4, 4, 7, 7, 7, 8, 8, 8, 9, 10, 12.

$$Q_1 = \frac{1(14+1)}{4} = 3\frac{3}{4}$$
$$= 4 + \frac{3}{4}(4-4) = 4$$

$$Q_2 = \frac{2(14+1)}{4} = 7\frac{1}{2}$$

$$= 7 + \frac{1}{2}(7-7) = 7$$

Dengan cara yang sama didapat $Q_3 = 8,25$

Quratil data group

Menentukan letak kuartil untuk data bergolong, caranya sama dengan data tunggal.Nilai kuartil dirumuskan sebagai berikut.

$$Q_i = b_i + 1 \left(\frac{\frac{1}{4}N - F}{f} \right)$$

Keterangan: Qi = kuartil ke-i (1, 2, atau 3)

b_i = tepi bawah kelas kuartil ke-i

N = banyaknya data

F = frekuensi kumulatif kelas sebelum kelas kuartil

1 = lebar kelas

f = frekuensi kelas kuartil

Contoh:

Tentukan kuartil data berikut

Nilai	frekuensi
40 – 49	4
50 – 59	5
60 – 69	14
70 – 79	10
80 – 89	4
90 – 99	3

Penyelesaian

		F
Nilai	frekuensi	kumulatif
40 – 49	4	4
50 – 59	5	9
60 – 69	14	23
70 – 79	10	33
80 – 89	4	37
90 – 99	3	40

Letak Q_1 pada frekuensi = $1/4 \times 40 = 10$ ada di kelas 60 - 69.

$$Q_1 = b_i + 1 \left(\frac{\frac{1}{4}N - F}{f}\right) = 59.5 + 10 \left(\frac{\frac{1}{4}(1.40) - 9}{14}\right) = 59.5 + 0.07 = 59.57$$

Dengan cara yang sama didapat $Q_2 = 67,36$ dan $Q_2 = 76,5$

Desil

Jika median membagi data menjadi dua bagian dan kuartil membagi data menjadi empat bagian yang sama, maka desil membagi data menjadi sepuluh bagian yang sama besar.

Letak
$$D_i$$
 di urutan data ke - $\frac{i(n+1)}{10}$

$$D_i$$
 = Desil ke- i
 $i = 1, 2, 3, ..., 99$
 $n =$ banyaknya data

Contoh:

Tentukan desil ke 2 dan ke 4 data berikut

Penyelesaian

4, 5, 5, 6, 7, 7, 8, 9, 10, 11 (data setelah diurutkan)

Letak desil ke
$$-2\frac{2(10+1)}{10} = \frac{22}{10} = 2,2$$

$$D_2 = x_2 + 0.2(x_3 - x_2)$$

= 5 + 0.2(5-5) = 5

Dengan cara yang sama didapat desil $4 D_4 = 6,4$

• Persentil.

Jika data dibagi menjadi 100 bagian yang sama, maka ukuran itu disebut persentil.Letak persentil dirumuskan dengan.

Letak
$$P_i$$
 di urutan data ke - $\frac{i(n+1)}{100}$

$$P_i$$
 = persentil ke- i

$$i = 1, 2, 3, \ldots, 99$$

n =banyaknya data

Contoh:

Dengan menggunakan data pada contoh desil

Letak persentil ke -30
$$\frac{30(10+1)}{100} = \frac{330}{100} = 3.3$$

$$P_{30} = x_3 + 0.3(x_4 - x_3) = 5 + 0.3(6-5) = 5.3$$

Dengan cara yang sama didapat P₇₅= 9,25

Soal

- 1. Berdasarkan tabel "Penumpang Kereta 2011" non jabotabek (kolom 3). Tentukan.
 - a. Rata-rata penumpang
 - b. Mendian
 - c. Modus
 - d. Kuartil 1 dan 2
 - e. Desil 3
 - f. Persentil 60
- 2. Buat tebel distribusi "Penumpang Kereta 2011" non jobtabek (kolom 3).

Tentukan:

- a) Rata-rata penumpang
- b) Mendian
- c) Modus
- d) Kuartil 1 dan 2
- e) Desil 3
- f) Persentil 60