CLASSIFICATION

EXAMPLES

- Binary Classification
 - Is email spam or not?
 - Is credit card transaction fraudulent?
 - Is a user male or female?
- Multi-level classification
 - Safety standard of a car.
 - Activity is associated with acceleration data from smartphone.
 - What kind of flower is shown in a picture?

THE CLASSIFICATION PROBLEM

- Given
 - $X = (X_1, \dots, X_p)^T$ random *input* variables.
 - \circ Output variable G, taking values in set $\mathcal G$ with k different values, labeled $1,2,\ldots,K$.
- Task
 - \circ Given a training set $(g_i, x_i), i = 1, \dots, N$
 - \circ Find a good approximation for $G(x) = \mathrm{E}(G|X=x)$
 - \circ Usually among the lines of maximizing $\sum_i \log \Pr[G=g_i|X=x_i; heta]$, where heta are model parameters.

DECISION BOUNDARIES

Decision boundaries are hypersurfaces where

$${x | \Pr(G = k | X = x) = \Pr(G = l | X = x)}.$$

LINEAR CLASSIFICATION

The classification problem is linear if the decision boundaries between any two classes k, l,

$$\{x | \Pr(G = k | X = x) = \Pr(G = l | X = x) \}$$

are *linear* in x.

DISCRIMINANT FUNCTIONS

- Popular approach.
- Define discriminant functions $\delta_k(x)$ $k=1,\ldots,K$.
- ullet Classify to $G(x) = \operatorname{argmax}_k \delta_k(x)$.
 - \circ Could e.g. model $\Pr(G=k|X=x)$ directly.
- Decision boundaries are *linear* in x if $\delta_k(x)$ are.
- The same holds true for $\Pr(G = k | X = x)$.

EXAMPLE: MULTIVARIATE NORMAL

$$f(x) = rac{\exp\left(-rac{1}{2}(x-\mu_l)^T\Sigma^{-1}(x-\mu_l)
ight)}{\sqrt{(2\pi)^d|\Sigma|}}$$

DENSITIES

LINEAR BOUNDARIES

ACTUALLY ...

... it's enough to have

$$\{x \mid f(\Pr[G = k | X = x]) = f(\Pr[G = l | X = x])\}$$

linear in x / a hyperplane / affine space for some *monotone* f.

EXAMPLE

$$\logigg(rac{\Pr[G=k|X=x]}{\Pr[G=l|X=x]}igg) = heta_0 + heta^T x$$

VARIABLES

- ullet Of course we can still have $X_i=X_j^2$ or $X_i=X_k\,X_l.$
- Decision boundaries can still be seen as linear in new variables.

CATEGORICAL INPUT DATA

- Naïve approach: Convert to numeric.
 - Generally bad idea.
 - Defining a metric on categoricals tricky.
- Usual approach: One-hot encoding.
 - \circ For a K-level categorical, introduce K-1 new variables X_1,\ldots,X_k ,

$$x_i = \left\{egin{array}{ll} 1 & ext{if } g_i = k \ 0 & ext{else} \end{array}
ight.$$

 \circ Effect of k-th variable is the effect of having $g_i=k$ instead of $g_i=K$.

TRAINING DATA

- Need to make sure all *classes* are represented.
- What if one (or more) classes are over-represented?
 - o Different priors?
 - o Data collection artifact?
 - Re-balance training data?

ORDERED TARGETS

- What if we have ordered categoricals?
- Sometimes a bit of a moving target ...

RED WINE QUALITY

CATEGORICAL OR NOT?

- Pros
 - Don't have to think (too much) about metric.
 - Don't have to think (too much) about subjectivity.
- Cons
 - Using e.g. linear regression, you can answer
 - How many quality points per additional per cent alcohol do we earn?
 - Information about order is lost.
 - Sometimes gives less variance.

METHODS

LINEAR REGRESSION

• Write an indicator variable $Y=(Y_0,\ldots,Y_K)$.

$$\circ \; Y_l = \left\{ egin{array}{ll} 1 & ext{if } G = l \,, \ 0 & ext{else}. \end{array}
ight.$$

Fit a linear model

$$\hat{f}_l = \hat{ heta}_{0,l} + \hat{ heta}_l x^T.$$

to each Y_l

- ullet Classify $\hat{G}(x) = \operatorname{argmax}_{k \in \mathcal{G}} \hat{f}_k(x).$
- Can have disastrous results.

LINEAR DISCRIMINANT ANALYSIS

Use Bayes' theorem

$$egin{aligned} \Pr(G=l|X=x) &= rac{\Pr(X=x|G=l)\Pr(G=l)}{\Pr(X=x)} \ &= rac{f_l(x)\pi_l}{\sum_m f_m(x)\pi_m} \,. \end{aligned}$$

HOW TO MODEL THE JOINT DISTRIBUTION?

The choice of f_l determines whether LDA is in fact linear.

LDA

$$f_l(x) \propto \exp \left(-rac{1}{2}(x-\mu_l)^T \Sigma^{-1}(x-\mu_l)
ight)$$

QDA

$$f_l(x) \propto \expigg(-rac{1}{2}(x-\mu_l)^T\Sigma_l^{-1}(x-\mu_l)igg)$$

COMPUTING LDA

$$egin{aligned} \hat{\pi}_{l} &= rac{N_{l}}{N} \ \hat{\mu}_{l} &= rac{1}{N_{l}} \sum_{i,g_{i}=l} x_{i} \ \hat{\Sigma} &= rac{1}{N-K} \sum_{l} \sum_{i,g_{i}=l} (x_{i} - \hat{\mu}_{l}) (x_{i} - \hat{\mu}_{l})^{T} \ \hat{\Sigma}_{l} &= rac{1}{N_{l} - 1} \sum_{i,g_{i}=l} (x_{i} - \hat{\mu}_{l}) (x_{i} - \hat{\mu}_{l})^{T} \end{aligned}$$

DISCRIMINANT FUNCTIONS FOR LDA

One can now use

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - rac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$

or

$$\delta_k(x) = -rac{1}{2} \mathrm{log} \left| \Sigma_k
ight| - rac{1}{2} (x-\mu_k)^T \Sigma_k^{-1} (x-\mu_k) + \mathrm{log} \, \pi_k$$

to classify

$$G(x) = \operatorname{argmax}_k \, \delta_k(x)$$
 .

SOME WORDS ON QDA

- Using Σ_l does **not** yield linear decision boundaries.
- What if we have one class l, such that $X_i=0$ for all i such that $g_i=l$?
- Won't be able to compute Σ_l^{-1} !
- Has many more parameters
 - \circ LDA (K-1)(p+1)
 - \circ QDA (K-1)(p(p+3)//2+1)

REGULARIZED DISCRIMINANT ANALYSIS

In some cases (one example: incomplete rank of Σ_k), it can be beneficial to use

$$\hat{\Sigma}_k(lpha) = lpha \hat{\Sigma}_k + (1-lpha) \hat{\Sigma}, \quad 0 \leq lpha \leq 1 \, .$$

The regularization

$$\hat{\Sigma}(\gamma) = \gamma \hat{\Sigma} + (1-\gamma)\sigma^2 I$$

is also sometimes used.

WHY SHOULD YOU USE LDA?

PROS

- Simple.
- Fast.
- Powerful.
- Stable.

CONS

- No confidence intervals.
- More work to get predictor importance.

LOGISTIC REGRESSION

Model posteriors via linear functions in x

$$egin{split} \logigg(rac{\Pr[G=1|X=x]}{\Pr[G=K|X=x]}igg) &= heta_{10} + heta_1^T x \ \logigg(rac{\Pr[G=2|X=x]}{\Pr[G=K|X=x]}igg) &= heta_{20} + heta_2^T x \end{split}$$

$$\logigg(rac{\Pr[G=K-1|X=x]}{\Pr[G=K|X=x]}igg) = heta_{(K-1)0} + heta_{K-1}^T x$$

LOGISTIC REGRESSION

This gives us

$$ext{Pr}(G = k | X = x) = rac{\expig(heta_{k0} + heta_k^T xig)}{1 + \sum_{l=1}^{K-1} \expig(heta_{l0} + heta_l^T xig)}, \quad k = 1, \dots, K-1, \ ext{Pr}(G = K | X = x) = rac{1}{1 + \sum_{l=1}^{K-1} \expig(heta_{l0} + heta_l^T xig)}$$

HOW TO EXTRACT THE PARAMETERS?

Maximum likelihood estimation with

$$l(heta) = \sum_{i=1}^N \log \Pr(G = g_i | X = x_i; heta)\,,$$

Find θ using

$$heta = rgmax_{ heta} l(heta)$$

via e.g. the Newton-Rhapson method

$$heta_{ ext{new}} = heta_{ ext{old}} - \left(rac{\partial^2 l(heta)}{\partial heta \partial heta^T}
ight)^{-1} rac{\partial l(heta)}{\partial heta}$$

EVALUATION OF BINARY CLASSIFIERS

- True positive (TP)
 - Predicted 1, actually 1.
- True negative (TN)
 - Predicted 0, actually 0.
- False positive (FP)
 - Predicted 1, actually 0.
- False negative (FN)
 - Predicted 0, actually 1.

OBJECTIVES

- Sensitivity (true positive rate, hit rate, recall)
 - $\circ TPR = TP/P = TP/(TP + FN)$
 - Want to optimize e.g. for tests for disease.
 - \circ Similarly: FPR = FP/N = FP/(TN + FP).
- Specicifity (true negative rate)
 - $\circ TNR = TN/N = TN/(TN + FP)$
 - Want to optimize e.g. in credit risk.
- Precision (positive predictive value)
 - PPV = TP/(TP + FP)
 - Want to optimize this e.g. for credit card fraud.

ROC

The receiver operating characteristic plots TPR vs. FPR.

AUC

The area under the (ROC) curve (AUC) is a scalar value for some measure of model quality (for some value of quality).