# Chapter 7: Naming & Addressing

#### Goals of this chapter

- This short chapter looks at non-standard options for denoting the senders/receivers of messages
  - Traditional (fixed, wireless, ad hoc): Denote individual nodes by their identity
  - WSN: Content-based addresses can be a good complement
- When addresses are not given a priori, they have to be determined "in the field"
  - Some algorithms are discussed

#### Names vs. addresses(1)

- *Name:* Denote/refer to "things"
  - Nodes, networks, data, transactions, ...
  - Often, but not always, unique (globally, network-wide, locally)
  - Ad hoc: nodes WSN: Data!
- \* Addresses: Information needed to find these things
  - Street address, IP address, MAC address
  - Often, but not always, unique (globally, network-wide, locally)
  - Addresses often hierarchical, because of their intended use in,
     e.g., routing protocols

#### Names vs. addresses(2)

- Services to map between names and addresses
  - E.g., DNS (mapping user-friendly names to the IP address)
- Sometimes, same data serves as name and address
  - IP addresses are prominent examples

# Use of address and names in sensor networks (1)

- Unique node identifier (UID):
  - combination of
    - Vendor name,
    - a product name
    - a serial number
    - assigned at manufacturing time

# Use of address and names in sensor networks (2)

- MAC address:
  - used to distinguish between one-hop neighbors of a node
  - Application:
    - Contention-based MAC protocol: unicast
    - Overhearing avoidance for energy saving

## Overhearing

- Overhear
  - In a unicast: one source, one destination
    - Wireless medium is a broadcast medium,
    - All the source's neighbors that are in receive state
    - Hear a packet and drop it when it is not destined to them

#### Transceiver states

- Transceivers can be put into different operational *states*, typically:
  - Transmit
  - Receive
  - *Idle* ready to receive, but not doing so
  - *Sleep* significant parts of the transceiver are switched off
    - Not able to immediately receive something
    - Recovery time and startup energy to leave sleep state can be significant

# Use of address and names in sensor networks (3)

- Network address:
  - Denote over multiple hops
  - Application:
    - routing

# Use of address and names in sensor networks (4)

- Network Identifiers:
  - Geographically overlapping wireless networks
  - Work in the same frequency band
  - Application:
    - Sensor data belonging to different patient

# Use of address and names in sensor networks (5)

- Resource Identifiers:
  - A name
  - Application:
    - www.xemacs.org

# Use of address and names in sensor networks (6)

- Binding
  - Map between addresses used by different protocol layers
  - E.g., IP addresses are bound to MAC address by ARP (Address Resolution Protocol)

## Issues in address management(1)

#### • Address allocation:

- Assign an address to an entity from a given pool of possible addresses
- Distributed address assignment (centralized like DHCP(Dynamic Host Configuration Protocol ) does not scale)

## Issues in address management(2)

- Address deallocation:
  - Once address no longer used, put it back into the address pool
  - Because of limited pool size
  - Graceful deallocation: a node explicitly send out control packet to give up its address
  - Abrupt deallocation: the node disappears or crashes



15

#### Deallocation or not?







## Issues in address management(3)

- Address representation
  - A format for representing addresses

#### Issues in address management(4)

- Conflict detection & resolution
   (Duplicate Address Detection)
  - What to do when the same address is assigned multiple times?
  - Can happen e.g. when two networks merge

#### Uniqueness of address(1)

- Globally unique:
  - IEEE MAC address used in Ethernet and Token Ring
- Network wide unique:
  - a and b can't communicate if  $a \in A$  and  $b \in B$ , with  $A \le B$

#### Uniqueness of address(2)

- Locally unique:
  - For MAC address, they are unique only within a two-hop neighborhood



• A and C can't have the same address

#### Uniqueness of address(3)

- Locally unique:
  - For MAC address, they are unique only within a two-hop neighborhood



- A and C can't have the same address
- No two same type sensor nodes have the same address.

#### Address allocation and assignment

- Priori:
  - During manufacturing process...
- On demand
  - By using an address assignment protocol

#### On demand address assignment

- Centralized
  - One single authority/node taking care of the address pool
  - When network partition, ...
- Distributed
  - All nodes play the same role in address assignment

#### Problems with centralized scheme

- Centralized solution do not scale well
  - Significant traffic
- Not reachable when network partition
- Periodically to detect abrupt deallocation

#### Distributed address assignment (1)

- Not always possible to guarantee network wide uniqueness
- Solution:
  - Live with few address conflicts
  - Detect conflicts and resolve

#### Duplicate address detection(1)

Strong DAD (duplicate address detection)

```
If node a (b) assigned address at time t_0 (t_1),

Then,

this duplicate assignment must be detected latest at time t_1 + T,

where T is some fixed time bound
```

#### Duplicate address detection(2)

- Weak DAD (duplicate address detection)
  - Duplicate addresses are tolerated as long as they do not distort ongoing session
  - E.g.,



#### Distributed address assignment(2)

approach 1: (Naïve approach)random address assignment

Conflict-free assignment probability:

$$P(n,k) = 1.\frac{n-1}{n}...\frac{n-k+1}{n} = \frac{k!}{n^k}.\binom{n}{k}$$

#### Distributed address assignment(3)

Naïve approach: random address assignment

$$P(n,k) = 1 \cdot \frac{n-1}{n} \cdot \frac{n-k+1}{n} = \frac{k!}{n^k} \binom{n}{k}$$

 $N=2^{14}=16384$ 

| Node# | Probability without conflict |
|-------|------------------------------|
| 50    | 0.9                          |
| 100   | 0.72                         |
| 150   | 0.5                          |
| 200   | 0.3                          |
| 250   | 0.15                         |

## Distributed address assignment(4)

• Approach 2: Avoid addresses used in local neighborhood

#### Distributed address assignment(5)



#### Distributed address assignment(6)

Approach 3: Repair any observed conflicts

#### Distributed address assignment(7)

- Example 1 of approach 3:
  - Each node carry a temporary address and a proposed fixed address
  - Send an address request:
  - Try to find a path to a node having the same fixed address
  - If there exists such a node, an address reply packet is generated and sent back to temporary address
  - Delay bound

## Distributed address assignment(8)

- Example 2 of approach 3:
  - Initiator: already have an address
    - keep a table of all known address assignment
  - Requester contacts a neighboring initiator
    - Initiator Pick an unused address
    - Initiator disseminates the proposed new address to all nodes in network
    - Each node receive the message check its own table

#### Distributed address assignment(9)

- Other approach:
  - Hierarchical address auto-configuration algorithm for IPv6 intended for MANETs
    - Some nodes in the network become leader nodes and assign addresses to other nodes
  - Clustering

#### Addressing Overhead

- The frequency with which address are used
- The size of their representation

### Address selection and representation

- Address selection is greedy.
  - Select the lowest possible nonconflicting address
  - Lower address have a higher relative frequency and have a nonuniform address distribution

### Length of address is not uniform

Relative frequencies of MAC address under the greedy algorithm

| Frequen-<br>cy | Address |       |       |       |       |      |    |
|----------------|---------|-------|-------|-------|-------|------|----|
| Density        | 0       | 10    | 20    | 30    | 40    | 50   | 60 |
| 4              | 0.2     | 0.01  | 0     | 0     | 0     | 0    | 0  |
| 6              | 0.12    | 0.04  | 0     | 0     | 0     | 0    | 0  |
| 10             | 0.065   | 0.05  | 0.01  | 0     | 0     | 0    | 0  |
| 15             | 0.04    | 0.038 | 0.03  | 0.01  | 0     | 0    | 0  |
| 30             | 0.02    | 0.019 | 0.017 | 0.015 | 0.013 | 0.01 | 0  |

### Length of address is not uniform

Non-uniform address assignment is useful

when

we can determine the relative frequencies/address distribution of MAC address

### Length of address is not uniform

To implement non-uniform address assignment,

The receiver has to parse the variable-length address and find the remaining packet.

### Huffman coding

- Each code can be uniquely decoded
- To accomplish this, Huffman coding creates what is called a "Huffman tree", which is a binary tree
  - Prefix free
  - No code word is a prefix of any other code word.



42



Figure 3: Example of address selection frequency

| Frequency | Address |       |       |       |       |       |         |    |
|-----------|---------|-------|-------|-------|-------|-------|---------|----|
| Strategy  | 0       | 5     | 10    | 15    | 20    | 25    |         | 30 |
| Lowest    | 0.06    | 0.055 | 0.048 | 0.038 | 0.02  | 0.005 |         | 0  |
| Range     | 0.055   | 0.055 | 0.055 |       | 0.022 | 0.015 |         |    |
| based     |         |       | 0.038 | 0.038 | 0.038 | 0.008 |         | 0  |
|           |         | 4 bit |       | 5 bit | 6 bit | 7 bit | 8 bit   |    |
| 44        |         |       |       |       |       |       | 98/4/17 |    |

| Addr size | Network size N |            |           |            |  |
|-----------|----------------|------------|-----------|------------|--|
| density   | 101            | $10^2$     | $10^3$    | 104        |  |
| 5         | 2.5            | 3.4        | 3.5       | 3.6        |  |
| 10        | 3.25           | 4.25       | 4.5       | 4.7        |  |
| 15        | 3.5            | 4.85 (5.4) | 5.1 (5.6) | 5.2 (5.75) |  |
| 20        | 3.5            | 5.2 (5.7)  | 5.5 (6.1) | 5.6 (6.2)  |  |



#### Content-based addresses

- Recall:
  - Paradigm change from id-centric to data-centric networking in WSN
- Supported by content-based names/addresses
  - Do not described involved nodes (not known anyway), but the *content* itself the interaction is about

# Content-based addressing: Describe interests

- Interests describe relevant data/event
  - Used, e.g., by directed diffusion (see later chapter)
  - Nodes match these interests with their locally observed data

# Content-based addressing: Describe interests

- Format: Attribute-Value-Operation
  - <attribute, value, operation>, e.g.: <TEMP, 20° C, GE>
  - Attributes: temperature, pressure, concentration, ...
  - Operations:

| Operator name | Meaning                                              |
|---------------|------------------------------------------------------|
| EQ            | Matches if actual value is equal to value            |
| NE            | Matches if actual value is not equal to value        |
| LT            | Matches if actual value is smaller than value        |
| GT            | Matches if actual value is greater than value        |
| LE            | Matches if actual value is smaller or equal to value |
| GE            | Matches if actual value is larger or equal to value  |
| EQ_ANY        | Matches anything, value is meaningless               |
| IS            | Specifies a literal attribute                        |

### Matching algorithm

• Check whether an interest matches the locally available data

```
parameters: attribute sets A and B
   // A corresponds to the interest, B to the data message
foreach attribute a in A where a.op is formal {
  matched = false
  foreach attribute b in B where
          a.key == b.key and b.op is actual {
    if b. val satisfies condition
       expressed by a.key and a.val then {
      matched = true
  if (not matched) then {
    return false
return true; // matching successful!
```

## Geographic addressing

- Express addresses by denoting physical position of nodes
  - Can be regarded as a special case of content-based addresses
  - Attributes for x and y coordinates (and maybe z)

## Geographic addressing

- Options
  - Single point
  - Circle or sphere centered around given point
  - Rectangle by two corner points
  - Polygon/polytope by list of points
  - . . .

#### Conclusion

- Addresses can be assigned distributedly
- Non-id-centric addresses give additional expressiveness, enables new interaction patterns than only using standard addresses
- These addresses have to be supported by specific protocols, in particular, routing protocols