New Algorithms for Classes of Mean-Payoff Games

Anna Hauschild

Institute for Algorithms and Complexity

June 17, 2022

Contents

- Mean Payoff Games
 - Introduction
 - Central Idea
- 2 Algorithm
 - Implementation of the Functions
 - Example
- 3 Testing Results
 - Initialization
 - Testing Results

Figure: Graph G₁

- Two players Min and Max
- vertex set $V = V_+ \cup V_-$
 - $V_+ = \{v_1, v_2\}$
 - $V_- = \{v_3, v_4\}$

Figure: Graph G₁

- Two players Min and Max
- Vertex set $V = V_+ \cup V_-$

•
$$V_+ = \{v_1, v_2\}$$

•
$$V_- = \{v_3, v_4\}$$

- Edge set $E = \{(v_1, v_2), (v_2, v_1), (v_2, v_3), (v_3, v_1)\}$
- Cost function $\mu(v, w)$ i.e. $\mu(v_2, v_3) = -1$

Figure: Graph G₁

 $\bullet \ \ \mathsf{Game} \ \pi_1 = \{ \textit{v}_1 \}$

Figure: Graph G₁

• Game $\pi_1 = \{v_1, v_2\}$

3 / 25

Figure: Graph G₁

• Game $\pi_1 = \{v_1, v_2, v_1, ...\}$

Figure: Graph G₁

- Game $\pi_1 = \{v_1, v_2, v_1, ...\}$
- Game $\pi_2 = \{v_3\}$

Figure: Graph G₁

- Game $\pi_1 = \{v_1, v_2, v_1, ...\}$
- Game $\pi_2 = \{v_3, v_1\}$

Figure: Graph G₁

- Game $\pi_1 = \{v_1, v_2, v_1, ...\}$
- Game $\pi_2 = \{v_3, v_1, v_2\}$

Figure: Graph G₁

- Game $\pi_1 = \{v_1, v_2, v_1, ...\}$
- Game $\pi_2 = \{v_3, v_1, v_2, v_1, ...\}$

Figure: Graph G₁

Characteristic value

$$\chi(\pi) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mu(v_i, v_{i+1})$$

- $\begin{array}{cccc} \bullet \ \chi(\pi) > 0 & \Rightarrow & \textit{Max} \ \text{wins,} \\ \chi(\pi) < 0 & \Rightarrow & \textit{Min} \ \text{wins,} \\ \chi(\pi) = 0 & \Rightarrow & \text{Draw} \end{array}$
- Introduced by Ehrenfeucht and Mycielski^a

^aEhrenfeucht and Mycielski, "Positional strategies for mean payoff games".

Figure: Graph G₁

- Sink:= vertex without outgoing edges
- $v_n \in V_+$ Min wins, $v_n \in V_-$ Max wins

Figure: Graph G₁

- Winning sets
 - W_+ for Max,
 - W_ for Min,
 - W₀ for Draw
- $W_+ = \{v_4\}$
- W_− = ∅
- $W_0 = \{v_1, v_2, v_3\}$

Anna Hauschild

Central Idea

- Existing algorithm in $\mathcal{O}(|V|^3 \cdot |E| \cdot W)^1$
- Instead of solving the whole graph solve small part of it
- Extend winning sets by applying a reachability game
- Especially games with a signature of a potential can be solved in linear time²

¹Zwick and Paterson, "The complexity of mean payoff games on graphs".

²Akian et al., "Mean payoff games with signature of a potential". () > () > ()

- 1 Mean Payoff Games
 - Introduction
 - Central Idea
- 2 Algorithm
 - Implementation of the Functions
 - Example
- 3 Testing Results
 - Initialization
 - Testing Results

```
function MAIN(V_+, V_-, E, \mu)
F \coloneqq Obsolete(\#V_+ \# + V_-, V_+, V_-, E, \mu)
while F \neq \emptyset do
E \coloneqq E - F
F \coloneqq Obsolete(\#V_+ + V_-, V_+, V_-, E, \mu)
end while
W_+ = W_- = W_0 \coloneqq \emptyset
if V = \emptyset then
r \coloneqq 0
else
r \coloneqq 1
end if
X_1 \coloneqq V
while r > 0 do
...
end while
return (W_+, W_-, W_0)
```

- 1 Remove obsolete edges
- 2 Decompose graph into components
- 3 Solve one component
- 4 Check reachability for vertices outside the winning sets

³Akian et al., "Mean payoff games with signature of a potential". < ₹ > < ₹ > ○ ₹ ○ ○ ○

```
while r > 0 do
   (s, X_r, ..., X_{r+s-1}) := StrConnComp(X, E)
end while
```

- 1 Remove obsolete edges
- 2 Decompose graph into components
- 3 Solve one component
- 4 Check reachability for vertices outside the winning sets

³Akian et al., "Mean payoff games with signature of a potential". < ₹ > < ₹ > 0 < ?

```
while r > 0 do
   (Y_+, Y_-, Y_0) := SolveMPG(X_r, V_+, V_-, E, \mu)
end while
```

- 1 Remove obsolete edges
- 2 Decompose graph into components
- 3 Solve one component
- 4 Check reachability for vertices outside the winning sets

³Akian et al., "Mean payoff games with signature of a potential". ← ★ → ← ★ → ◆ ◆ ◆ ◆

```
while r > 0 do
   W_{+} := Reach(W_{+}, +, V_{+}, V_{-}, E)
   W_{-} := Reach(W_{-}, -, V_{+}, V_{-}, E)
end while
```

- 1 Remove obsolete edges
- 2 Decompose graph into components
- 3 Solve one component
- 4 Check reachability for vertices outside the winning sets

³Akian et al., "Mean payoff games with signature of a potential". ← ★ → ← ★ → ◆ ◆ ◆ ◆

$$e(v)\sum_{i=0}^{r-1}\mu(v_i,v_{i+1})<-e(v)\mu(v,w).$$

Figure: Obsolete edges

7 / 25

```
for e \in \{+, -\} and v \in V_e do
               for i = 0, ..., k - 1 do \eta_i(v) = 0
               end for
               for w \in (V_+ \cup V_-) - \{v\} do \eta_0(w) := e \cdot \infty
              for i = 1, ..., k - 1 do
                    for w \in (V_+ \cup V_-) - \{v\} do
                         \eta_i(w) := \epsilon(w) \cdot \max\{\epsilon(w) \cdot (\mu(w, u) + \eta_{i-1}(u)) \mid (w, u) \in E\}
10:
               for (v, w) \in E do
                    if e \cdot \eta_{k-1}(w) < -e \cdot \mu(v, w) then F := F \cup \{(v, w)\}
14:
               end for
```

$$\eta_i(w) := \epsilon(w) \cdot \max\{\epsilon(w) \cdot (\mu(w, u) + \eta_{i-1}(u)) \mid (w, u) \in E\}$$

Figure: Graph G₃

9 / 25

$$\eta_i(w) := \epsilon(w) \cdot \max\{\epsilon(w) \cdot (\mu(w, u) + \eta_{i-1}(u)) \mid (w, u) \in E\}$$

Figure: Graph G₃

9 / 25

$$\eta_i(w) := \epsilon(w) \cdot \max\{\epsilon(w) \cdot (\mu(w, u) + \eta_{i-1}(u)) \mid (w, u) \in E\}$$

Figure: Graph G₃

$$\eta_i(w) := \epsilon(w) \cdot \max\{\epsilon(w) \cdot (\mu(w, u) + \eta_{i-1}(u)) \mid (w, u) \in E\}$$

Figure: Graph G₃

$$\eta_i(w) := \epsilon(w) \cdot \max\{\epsilon(w) \cdot (\mu(w, u) + \eta_{i-1}(u)) \mid (w, u) \in E\}$$

Figure: Graph G₃

If
$$e \cdot \eta_{k-1}(w) < -e \cdot \mu(v, w)$$
 then $F := F \cup \{(v, w)\}$

$$\eta \big(v_1 \big) = \begin{matrix} i = 0 \\ i = 1 \\ i = 2 \\ i = 3 \\ i = 4 \end{matrix} \begin{pmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \\ 0 & \infty & \infty & \infty & \infty \\ 0 & \infty & \infty & \infty & -3 \\ 0 & \infty & -8 & \infty & -3 \\ 0 & \infty & -8 & -18 & -3 \\ 0 & -13 & -8 & -18 & -3 \end{matrix} \right)$$

$$1 \cdot \eta_4(v_2) < (-1) \cdot \mu(v_1, v_2)$$

 $1 \cdot (-13) < (-1) \cdot 8$

Figure: Graph G₃

$$F = \{(v_1, v_2), (v_2, v_3), (v_2, v_4), (v_4, v_3)\}\$$

Figure: Graph G₃

Figure: Graph G'_3 after removing obsolete edges

Input: X, E

Output: $s, Y_s, ..., Y_1$

Figure: G₄ decomposed into it's strongly connected components

Input: X, E

Output: $s, Y_s, ..., Y_1$

Figure: G_4 decomposed into its strongly connected components

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7]$$
$$m = [1, 2]$$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}]$$

 $m = [1, 2, 3]$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}]$$

 $m = [1, 1, 1]$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}, v_{12}]$$

 $m = [1, 1, 1, 2]$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}, v_{12}, v_{10}]$$

 $m = [1, 1, 1, 2, 3]$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}, v_{12}, v_{10}, v_8]$$

 $m = [1, 1, 1, 2, 3, 4]$

Figure: G_4 decomposed into its strongly connected components

12 / 25

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}, v_{12}, v_{10}, v_8]$$

 $m = [1, 1, 1, 1, 1, 1]$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}, v_{12}, v_{10}, v_8, v_4]$$

 $m = [1, 1, 1, 1, 1, 1, 2]$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}, v_{12}, v_{10}, v_8, v_4, v_2]$$

$$m = [1, 1, 1, 1, 1, 1, 2, 3]$$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}, v_{12}, v_{10}, v_8, v_4, v_2, v_1]$$

$$m = [1, 1, 1, 1, 1, 1, 2, 3, 4]$$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}, v_{12}, v_{10}, v_8, v_4, v_2]$$

$$m = [1, 1, 1, 1, 1, 1, 2, 3]$$

No outgoing edge \Rightarrow First component found

$$Y_1 = \{v_1\}$$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}, v_{12}, v_{10}, v_8, v_4, v_2]$$

$$m = [1, 1, 1, 1, 1, 1, 2, 2]$$

$$Y_1 = \{v_1\}$$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}, v_{12}, v_{10}, v_8]$$

 $m = [1, 1, 1, 1, 1, 1]$

No outgoing edge for component $\{v_2, v_4\} \Rightarrow$ Second component found

$$Y_1 = \{v_1\} \\ Y_2 = \{v_2, v_4\}$$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}, v_{12}, v_{10}, v_8, v_5]$$

$$m = [1, 1, 1, 1, 1, 1, 2]$$

$$Y_1 = \{v_1\}$$

$$Y_2 = \{v_2, v_4\}$$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}, v_{12}, v_{10}, v_8, v_5, v_3]$$

$$m = [1, 1, 1, 1, 1, 1, 2, 3]$$

$$Y_1 = \{v_1\}$$

$$Y_2 = \{v_2, v_4\}$$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}, v_{12}, v_{10}, v_8, v_5, v_3]$$

$$m = [1, 1, 1, 1, 1, 1, 2, 2]$$

$$Y_1 = \{v_1\}$$

$$Y_2 = \{v_2, v_4\}$$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_9, v_7, v_{11}, v_{12}, v_{10}, v_8]$$

 $m = [1, 1, 1, 1, 1, 1]$

Edges lead to already allocated nodes ⇒ Third component found

$$Y_1 = \{v_1\}$$

 $Y_2 = \{v_2, v_4\}$
 $Y_3 = \{v_3, v_5\}$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = []$$
 $m = []$

Edges lead to already allocated nodes \Rightarrow Fourth component found

$$\begin{aligned} Y_1 &= \{v_1\} \\ Y_2 &= \{v_2, v_4\} \\ Y_3 &= \{v_3, v_5\} \\ Y_4 &= \{v_9, v_7, v_{11}, v_{12}, v_{10}, v_8\} \end{aligned}$$

Input: X, E

Output: $s, Y_s, ..., Y_1$

$$v = [v_6]$$

$$m = [1]$$

$$Y_1 = \{v_1\}$$

$$Y_2 = \{v_2, v_4\}$$

$$Y_3 = \{v_3, v_5\}$$

$$Y_4 = \{v_9, v_7, v_{11}, v_{12}, v_{10}, v_8\}$$

Input: X, E

Output: $s, Y_s, ..., Y_1$

No other vertices left ⇒ Fifth component found

$$\begin{aligned} Y_1 &= \{v_1\} \\ Y_2 &= \{v_2, v_4\} \\ Y_3 &= \{v_3, v_5\} \\ Y_4 &= \{v_9, v_7, v_{11}, v_{12}, v_{10}, v_8\} \\ Y_5 &= \{v_6\} \end{aligned}$$

Input: X, V_+, V_-, E, μ Output: Y_+, Y_-, Y_0

Two ways of ending a game:

- Finite game: ends in a sink
- Infinite game: ends in a loop

Input: X, V_+, V_-, E, μ Output: Y_+, Y_-, Y_0

• Finite game: ends in a sink

Function SolveMPG(
$$X$$
, V_+ , V_- , E , μ) is $Y_+ = Y_- = Y_0 := \emptyset$ $C := \{(v, w) \in E \mid v, w \in X\}$ if $C = \emptyset$ and $X \subset V_+$ then $Y_- := X$ if $C = \emptyset$ and $X \subset V_-$ then $Y_+ := X$

Figure: pseudo code: finite game

Input: X, V_+, V_-, E, μ **Output:** Y_+, Y_-, Y_0

• Infinite game: ends in a loop

Input: X, V_+, V_-, E, μ **Output:** Y_+, Y_-, Y_0

- Infinite game: ends in a loop
 - Optimal positional strategy
 - Characteristic value

Input: X, V_+, V_-, E, μ Output: Y_+, Y_-, Y_0

Figure: Subgraph of graph G₄

Input: X, V_+, V_-, E, μ **Output:** Y_+, Y_-, Y_0

Characteristic value $\chi(v) < 0 \quad \forall \ v \in \{v_7, ..., v_{12}\}$

Figure: Subgraph of graph G₄

Input: X, V_+, V_-, E, μ **Output:** Y_+, Y_-, Y_0

Characteristic value $\chi(v) = 0 \quad \forall \ v \in \{v_7, ..., v_{12}\}$

Figure: Subgraph of graph G_4

Input: X, V_+, V_-, E, μ **Output:** Y_+, Y_-, Y_0

Anna Hauschild

$$Y_{-} = \{v_7, v_8, v_9, v_{10}, v_{11}, v_{12}\}, Y_{+} = \emptyset, Y_0 = \emptyset$$

Figure: Subgraph of graph G₄

Mean Payoff Games

13 / 25

Reachability

```
function REACH(X, e, V_+, V_-, E)

2: for (v, w) \in E with v \notin X and w \in X do

if v \in V_e or u \in X for all (v, u) \in E then

4: X := X \cup \{v\}

end if

6: end for

return X

8: end function
```

Reachability

Figure: Finding additional winning vertices of Max via reachability

Reachability

Figure: Additional draw positions for Max

Figure: Graph G_5

• $(s, X_r, ..., X_{r+s-1}) := StrConnComp(X, E)$

Figure: Strongly connected components

•
$$(Y_+, Y_-, Y_0) := SolveMPG(X_r, V_+, V_-, E, \mu)$$

$$\begin{array}{c|c}
v_5 \\
- \\
-1 \\
\end{array}$$

$$\begin{array}{c}
1 \\
X_5 \\
+ \\
v_6
\end{array}$$

Figure: Subgraph of G₅

$$Y_{+} = Y_{-} = \emptyset, \ Y_{0} = \{v_{5}, v_{6}\}$$

• $W_0 := W_0 \cup Y_0 = \{v_5, v_6\}$

Figure: v_5 and v_6 assigned to W_0

• $(Y_+, Y_-, Y_0) := SolveMPG(X_r, V_+, V_-, E, \mu)$

• $W_+ := Reach(W_+, +, V_+, V_-, E)$

Figure: Reachability game

• $(s, X_r, ..., X_{r+s-1}) = (3, X_3, X_4, X_5) := StrConnComp(X, E)$

Figure: Third run of StrConnComp

Figure: Resulting winning sets W_+ and W_0

- Mean Payoff Games
 - Introduction
 - Central Idea
- - Implementation of the Functions
 - Example
- Testing Results
 - Initialization
 - Testing Results

Initialization

Figure: Graph G₁

$$E = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ v_2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mu = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ -\infty & 0 & -\infty & -\infty \\ 0 & -\infty & -1 & -\infty \\ -2 & \infty & \infty & \infty \\ 0 & \infty & \infty & \infty \end{pmatrix}$$

$$V_+ = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$V_+ = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$V_- = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Graph generator

- Program to create a random graph⁴
- The number of vertices and degrees can be specified or arise randomly
- The graph is stored in a text file
- Option to check and create a signature of a potential

⁴Manish Bhojasia. access on 27.05.22. URL: https://www.sæmfoundry.⊛om/≥ ∽ac

Experiment 1

Simultaneously increasing number of nodes and max. degree

#Vertices	max degree	Time[s]
10	10	0.37
50	50	0.51
100	100	2.00
200	200	43.11
500	500	2047.86

Table: Simultaneously increasing vertices and degrees

Figure: Simultaneously increasing vertices and degrees

4 ロ ト 4 意

The degree

Decreasing degree while number of vertices is fixed to 100

max degree	#Components
100	2
50	2
30	3
20	6
10	17
5	46
2	77
1	83
0	100

Table: #Components in relation to degree in a graph with 100 vertices

Experiment 2

• Repeat first experiment with a lower maximal degree of 5

Figure: Comparison arbitrary degree to constant maximal degree 5

990

Conclusion

- The function *Obsolete* that should normally improve the algorithm claims most of the time
- Already a slightly larger degree leads to a graph with very few components which contradicts the idea of the algorithm
- Observation: the slightly larger degree leads to the result that all nodes belong to the same winning set

Akian, Mariane et al. "Mean payoff games with signature of a potential". 2021.

Bhojasia, Manish. access on 27.05.22. URL: https://www.sanfoundry.com/.

Ehrenfeucht, A. and J. Mycielski. "Positional strategies for mean payoff games". In: International Journal of Game Theory 8.2 (1979), pp. 109-113. ISSN: 1432-1270. DOI: 10.1007/BF01768705.

Zwick, Uri and Mike Paterson. "The complexity of mean payoff games on graphs". In: Theoretical Computer Science 158.1 (1996), pp. 343–359. ISSN: 0304-3975. DOI: https://doi.org/10.1016/0304-3975(95)00188-3. URL:

https://www.sciencedirect.com/science/article/pii/ 0304397595001883.