

Programozási alapismeretek

- > További programozási tételek
- ➤ <u>Másolás</u> függvényszámítás
- Kiválogatás
- > Szétválogatás
- > Metszet
- > Unió
- ➤ Programozási tételek visszatekintés

További programozási tételek

Mi az, hogy programozási tétel?

Típusfeladat általános megoldása.

- >Sorozat → érték
- >Sorozat → sorozat
- \triangleright Sorozat \rightarrow sorozatok
- >Sorozatok → sorozat

Feladatok:

- Egy számsorozat tagjainak adjuk meg az abszolút értékét!
- Egy szöveget alakítsunk át csupa kisbetűssé!
- > Számoljuk ki két vektor összegét!
- > Készítsünk függvénytáblázatot a sin(x) függvényről!
- > Ismerünk N dátumot 'éé.hh.nn' alakban, adjuk meg 'éé. hónapnév nn' alakban!

Feladatok:

- Egy számsorozat tagjainak adjuk meg az abszolút értékét!
- > Egy szöveget alakítsunk át csupa kisbetűssé!
- > Számoljuk ki két vektor összegét!
- Készítsünk függvénytáblázatot a sin(x) függvényről!
- Ismerünk N dátumot ,éé.hh.nn' alakban, adjuk meg ,éé. hónapnév nn' alakban!

Mi bennük a közös?

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad. Az elemeken operáló függvény ugyanaz.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

$$X_{1..N} \in \mathbb{H}_1^N$$

$$f:H_1 \rightarrow H_2$$

 \triangleright Kimenet: $Y_{1..N} \in \mathbb{H}_2^N$

➤ Előfeltétel: –

 \rightarrow Utófeltétel: $\forall i(1 \le i \le N)$: $Y_i = f(X_i)$

Másként: $Y_{1..N} = f(X_{1..N})$

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad.

Algoritmus:

Specifikáció:

> Bemenet: $N \in \mathbb{N}$, $X \in H_1^N$ $f: H_1 \rightarrow H_2$

- \gt Kimenet: $Y \in H_2^N$
- > Előfeltétel: –
- \gt Utófeltétel: $\forall i (1 \le i \le N)$: $Y_i = f(X_i)$

Megjegyzés: nem feltétlenül kell ugyanaz az i index a két tömbhöz, pl.:

Utófeltétel: $\forall i (1 \le i \le N): Y_{p(i)} = f(X_i)$

$$i=1..N$$
 $i:Egész$
 $Y[p(i)]:=f(X[i])$

p(i) lehet pl. 2*i, N-i+1, ... (megfelelő Y tömb mérettel, ill. indexintervallummal definiálva)

Specifikáció (egy gyakori speciális eset)₁:

 \triangleright Bemenet: $N \in \mathbb{N}$

$$X_{1..N} \in H^{N}$$

$$g: H \rightarrow H$$

$$T: H \rightarrow L$$

- \triangleright Kimenet: $Y_{1..N} \in \mathbb{H}^N$
- ➤ Előfeltétel: –
- \rightarrow Utófeltétel: $\forall i (1 \le i \le N)$: $Y_i = f(X_i)$
- > Definíció: $f(x) = \begin{cases} g(x), & \text{ha } T(x) \\ x, & \text{egyébként} \end{cases}$

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad.

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$, $X \in \mathbb{H}_1^N$
 - $f:H_1 \rightarrow H_2$
- \gt Kimenet: $Y \in H_2^N$
- > Előfeltétel: –
- \rightarrow Utófeltétel: $\forall i(1 \le i \le N)$: $Y_i = f(X_i)$

f:H—H

Specifikáció (egy gyakori speciális eset)₁:

 \triangleright Bemenet: $N \in \mathbb{N}$

$$X_{1 N} \in \mathbb{H}^N$$

 $g:H\to H$

 $T:H \rightarrow L$

- \succ Kimenet: $Y_{1..N} \in \mathbb{H}^N$
- ➤ Előfeltétel: –
- ➤ Utófeltétel: ∀i(1≤i≤N):

$$(T(X_i) \rightarrow Y_i = g(X_i)$$
 és nem $T(X_i) \rightarrow Y_i = X_i$)

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad.

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$, $X \in H_1^N$
 - $f:H_1 \rightarrow H_2$
- \gt Kimenet: $Y \in H_2^N$
- ➤ Előfeltétel: –
- \rightarrow Utófeltétel: $\forall i(1 \le i \le N)$: $Y_i = f(X_i)$

Algoritmus₁:

Specifikáció (egy gyakori speciális eset):

> Bemenet: $N \in \mathbb{N}$ $X \in \mathbb{H}^{\mathbb{N}}$

 $G:H \rightarrow H$

 $T:H \rightarrow L$

- > Kimenet: Y∈H^N
- ➤ Előfeltétel: –
- > Utófeltétel: ∀i(1≤i≤N):

$$(T(X_i) \rightarrow Y_i = G(X_i)$$
 és
nem $T(X_i) \rightarrow Y_i = X_i$)

 $nem T(X_i) \to Y_i = X_i)$

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad.

Specifikáció (egy másik speciális eset)₂:

 \triangleright Bemenet: $N \in \mathbb{N}$

$$X_{1..N} \in \mathbb{H}^N$$

- \succ Kimenet: $Y_{1..N} \in \mathbb{H}^N$
- ➤ Előfeltétel: –
- \gt Utófeltétel: $\forall i (1 \le i \le N)$: $Y_i = X_i$

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad.

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}$,
 - $X \in H_1^N$ $f: H_1 \rightarrow H_2$
- \gt Kimenet: $Y \in H_2^N$
- > Előfeltétel: −
- > Utófeltétel: $\forall i (1 \le i \le N)$: $Y_i = f(X_i)$

Megjegyzés:

nincs f függvény, helyesebben identikus (f(x):=x).

Algoritmus₂:

Specifikáció: \triangleright Bemenet: $N \in \mathbb{N}$. $X \in H_1^N$ $f:H_1 \rightarrow H_2$ \triangleright Kimenet: $Y \in H_2^N$ ➤ Előfeltétel: –

➤ Utófeltétel: $\forall i(1 \le i \le N)$: $Y_i = f(X_i)$

Megjegyzés:

Az Y:=X értékadással helyettesíthető, ha a két tömb azonos méretű. Kivéve, ha az indexek különbözőek.

Specifikáció:

» Számoljuk ki két vektor összegét!

 \triangleright Bemenet: $N \in \mathbb{N}$

$$P_{1..N}, Q_{1..N} \in \mathbb{R}^N$$

$$\mathbf{f}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \mathbf{f}((p_i, q_i)) := p_i + q_i$$

- > Kimenet: $R_1 \in \mathbb{R}^N$
- ➤ Előfeltétel: –
- \rightarrow Utófeltétel: $\forall i (1 \le i \le N)$: $R_i = P_i + Q_i$

Specifikáció:

 $(P,Q) \in (R \times R)^N$

- \triangleright Bemenet: $N \in \mathbb{N}$,
 - $X \in H_1^N$ $f: H_1 \rightarrow H_2$
- \gt Kimenet: $Y \in H_2^N$
- > Előfeltétel: –
- > Utófeltétel: $\forall i(1 \le i \le N)$: $Y_i = f(X_i)$

Algoritmus:

$$R[i] := P[i] + Q[i]$$

Változó i:Egész

Feladatok:

- > Adjuk meg egy osztály kitűnő tanulóit!
- > Adjuk meg egy természetes szám összes osztóját!
- > Adjuk meg egy mondat magas hangrendű szavait!
- > Adjuk meg emberek egy halmazából a 180 cm felettieket!
- > Adjuk meg egy év azon napjait, amikor délben nem fagyott!
- Soroljuk föl egy szó magánhangzóit!

Mi bennük a közös?

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt!

Feladatok:

- > Adjuk meg egy osztály kitűnő tanulóit!
- Adjuk meg egy természetes szám összes osztóját!
- Adjuk meg egy mondat magas hangrendű szavait!
- Adjuk meg emberek egy halmazából a 180 cm felettieket!
- Adjuk meg egy év azon napjait, amikor délben nem fagyott!
- > Soroljuk föl egy szó magánhangzóit!

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_1 \in \mathbb{H}^N$

 $T:H\rightarrow L$

- \triangleright Kimenet: $Db \in \mathbb{N}, Y_1 \in \mathbb{N}^{\mathbb{N}}$
- ➤ Előfeltétel: –
- Vtófeltétel:Db= $\sum_{i=1}^{\infty} 1_{X_i}$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$

 $Y\subseteq(1,2,...,N)$

Másképp: (Db, Y) = Kiválogat i $\underset{T(X_i)}{\overset{N}{\text{Misology}}}$

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt!

> Az első Db elemet használya

L. Megszámolás tételt!

Megjegyzés:

A sorszám általánosabb, mint az érték. Ha mégis érték kellene, akkor Y[Db]:=X[i] szerepelne. (Ekkor a specifikációt is módosítani kell! Lásd <u>később</u>!)

Értékek kiválogatása (tömören): Specifikáció₂:

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt!

- \triangleright Kimenet: $Db \in \mathbb{N}, Y_{1..N} \in \mathbb{H}^{\mathbb{N}}$
- > Utófeltétel: Db = $\sum_{i=1}^{N} 1$ és $T(X_i)$

$$\forall i (1 \le i \le Db): T(Y_i) \text{ és } Y \subseteq X$$

Másképp: (Db, Y) = Kiválogat
$$X_i$$

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}$
 - $X \in H^N$
 - T:H→L
- > Kimenet: $Db \in N$ $Y \in N^{Db}$
- > Előfeltétel: -

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, H_{1,N} \in \mathbb{R}^{N},$

 $Poz:\mathbb{R} \to \mathbb{L}, Poz(x):=x>0$

 \triangleright Kimenet: $Db \in \mathbb{N}, NF_{1,N} \in \mathbb{N}^{\mathbb{N}}$

> Előfeltétel:

> Utófeltétel₁: $Db = \sum_{i=1}^{n} 1$ $H_{i} > 0$

> $\forall i (1 \le i \le Db): H_{NF} > 0$ és $NF \subseteq (1,2,...,N)$

➤ Utófeltétel₂: (Db, NF) = Kiválogat i $H_i > 0$

 Adjuk meg egy év azon napjait, amikor délben nem fagyott!

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

 $X \in H^N$

T:H→L

- \gt Kimenet: $Db \in \mathbb{N}$ $Y \in N^{Db}$
- ➤ Előfeltétel: –
- \triangleright Utófeltétel: Db= $\sum 1$

 $\forall i(1 \le i \le Db)$: $T(X_{y_i})$ és

 $Y\subseteq(1,2,...,N)$

i:Egész

Algoritmus:

Db:=0

i=1...N

Db:=Db+1

Y[Db]:=i

T(X[i])

8. Kiválogatás helyben

Specifikáció:

- > Bemenet: $N \in \mathbb{N}, X_{1,N} \in \mathbb{H}^N$
- \triangleright Kimenet: $Db \in \mathbb{N}, Y_1 \in \mathbb{N}$
- ➤ Előfeltétel: –

> Utófeltétel: Db = $\sum_{\substack{i=1\\T(X_i)}} 1$ és $Y_{1..Db}$ ⊆X és $\forall i(1 \le i \le Db)$: T(Y)

Programparaméterek:

Konstans

MaxN:**Egész**(???)

Típus

THk=**Tömb**[1..MaxN:TH]

Változó

N:**Egész**, X:THk

Itt a bemenetben szereplő X és a kimenetben szereplő Y lehet a programban ugyanaz a változó. Jelöljük ezt pl. X-szel.

Teljesülni kell rá a megálláskor (meghagyva a specifikációbeli

műveleteket): $X^{\text{kimeneti}} \subseteq X^{\text{bemeneti}}$ és $\forall i (1 \le i \le Db)$: $T(X^{\text{kimeneti}})$

8. Kiválogatás helyben

Ötlet:

Itt olyan helyre tesszük a kiválogatott elemet, amelyre már nincs szükségünk.

Algoritmus:

Specifikáció:

- ▶ Bemenet: N∈N, X∈H^N
- > Kimenet: Db∈N, X'∈H^N
- > Előfeltétel: -
- > Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és $X'_{1..Db} \subseteq X$ és $\forall i (1 \le i \le Db): T(X'_i)$

Speciális sorozat típus: dinamikus tömb

A programozás a tömb típuson kívül sokféle sorozat típust ismer. Közülük az egyik egy olyan indexelhető típus, aminek az elemszáma futás közben növelhető (ebből a szempontból a szöveg típusra hasonlít).

Műveletei:

- ➤ Hossz(S) az S sorozat elemei száma
- Végére(S,x) az S sorozat végére egy új elemet, az x-et illeszti
- ➤ S[i] az S sorozat i-edik eleme
- További műveletek is lehetnek, most nem térünk ki rá.
- Figyelem: e típus indokolatlan használata jelentősen megnövelheti egy program futási idejét!

8. Kiválogatás dinamikus tömbbe

 $T(X_i)$

Specifikáció:

► Bemenet: $N \in \mathbb{N}, X_1 \in \mathbb{N}^N$

 $T: \mathbb{H} \to \mathbb{I}$

 \triangleright Kimenet: $Y \in \mathbb{N}^*$

➤ Előfeltétel: –

összes, adott T tulajdonsággal rendelkezőt!

Annyi elemet használva, amennyit kell.

N darab "valami" közül kell megadni az

> Utófeltétel: Hossz(Y)=
$$\sum_{y \in Y} 1$$
 és Y⊆(1,2,...,N) és $\forall y \in Y$: T(X_y)

8. Kiválogatás dinamikus tömbbe

Algoritmus:

Megjegyzés:

A sorszám általánosabb, mint az érték. Ha mégis **érté**k kellene, akkor Végére(Y,X[i]) szerepelne. (Ekkor a specifikációt is módosítani kell!)

Feladatok:

- Adjuk meg egy számsorozatból a páros és a páratlan számokat is!
- Adjuk meg egy év azon napjait, amikor délben fagyott és amikor nem fagyott!
- Adjuk meg egy angol szó magán- és mássalhangzóit!
- > Adjuk meg emberek egy halmazából a 140 cm alattiakat, a 140 és 180 cm közöttieket és a 180 cm felettieket!
- Adjuk meg emberek egy halmazából a télen, tavasszal, nyáron, illetve ősszel születetteket!

Feladatok:

- Adjuk meg egy számsorozatból a páros és a páratlan számokat is!
- Adjuk meg egy év azon napjait, amikor délben fagyott és amikor nem fagyott!
- Adjuk meg egy angol szó magán- és mássalhangzóit!
- Adjuk meg emberek egy halmazából a 140 cm alattiakat, a 140 és 180 cm közöttieket és a 180 cm felettieket!
- Adjuk meg emberek egy halmazából a télen, tavasszal, nyáron, illetve ősszel születetteket!

Mi bennük a közös?

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt, illetve nem rendelkezőt! Azaz az összes bemeneti elemet "besoroljuk" a kimenet valamely sorozatába.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

$$X_1 \in \mathbb{H}^N$$

 $T:H\rightarrow L$

 \triangleright Kimenet: $Db \in \mathbb{N}$

$$Y_1 \in \mathbb{N}^N, Z_1 \in \mathbb{N}^N$$

➤ Előfeltétel: –

➤ Utófeltétel: Db= $\sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$

 $\forall i (1 \le i \le N - Db)$: nem $T(X_{Z_i})$ és

 $Y\subseteq(1,2,...,N)$ és $Z\subseteq(1,2,...,N)$

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt, illetve nem rendelkezőt!

Specifikáció₂:

➤ Utófeltétel₂:

$$(Db, Y, Z) = Sz\acute{e}tv\acute{a}logat i$$

Értékek szétválogatása esetén:

$$(Db, Y, Z) = Sz\acute{e}tv\acute{a}logat X_i$$

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt, illetve nem rendelkezőt!

Algoritmus:

```
Specifikáció:

> Bemenet: N \in \mathbb{N}
X \in H^N
T: H \to L

> Kimenet: Db \in \mathbb{N}
Y \in \mathbb{N}^{Db}, Z \in \mathbb{N}^{N-Db}

> Előfeltétel: -

> Utófeltétel: Db = \sum_{\substack{i=1 \ T(X_i)}}^{N} 1 és
\forall i(1 \le i \le Db): T(X_{Y_i}) és
\forall i(1 \le i \le N-Db): nem T(X_{Z_i}) és
Y \subseteq (1,2,\ldots,N) és Z \subseteq (1,2,\ldots,N)
```


Megjegyzés:

Itt is szerepelhetne := i helyett := X[i], ha csak az értékekre lenne szükségünk. (A specifikáció is módosítandó!)

Probléma:

Y-ban és Z-ben együtt csak N darab elem van, azaz elég lenne egyetlen N-elemű tömb.

Megoldás:

 \triangleright Bemenet: $N \in \mathbb{N}, X_{1,N} \in \mathbb{H}^N$

 \triangleright Kimenet: $Db \in \mathbb{N}, Y_1 \in \mathbb{N}^{\mathbb{N}}$

➤ Előfeltétel: –

2018.10.06. 11:49

> Utófeltétel: Db= $\sum_{i=1 \text{ T(X_i)}}^{i} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$

 $\forall i(Db+1\leq i\leq N)$: nem $T(X_{Y_i})$ és

 $Y \in Permutáció(1,2,...,N)$

Specifikáció:

> Bemenet: $N \in N$ $X \in H^N$

 $T: H \rightarrow L$ $Db \in N$

➤ Kimenet: Db∈N V∈NDb 7

 $Y \in \mathbb{N}^{Db}$, $Z \in \mathbb{N}^{N-Db}$

Előfeltétel: –

➤ Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$

 $\forall i (1 \le i \le N - Db)$: nem $T(X_{Z_i})$ és

 $Y\subseteq (1,2,...,N)$ és $Z\subseteq (1,2,...,N)$

Specifikáció₂:

➤ Utófeltétel₂:

$$(Db, Y) = Sz\acute{e}tv\acute{a}logat_{2}i$$

Értékek szétválogatása esetén:

$$(Db, Y) = Sz\acute{e}tv\acute{a}logat_2 X_i$$

- > Bemenet: $N \in \mathbb{N}$, $X \in H^{\mathbb{N}}$ > Kimenet: $Db \in \mathbb{N}$, $Y \in \mathbb{N}^{\mathbb{N}}$
- > Előfeltétel: > Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ \'es}$ $\forall i (Db+1 \le i \le N): \text{ nem } T(X_{Y_i}) \text{ \'es}$ $Y \in \text{Permut\'aci\'o}(1,2,...,N)$

i:Egész

Algoritmus:

 \triangleright Bemenet: N \in N, X \in H^N \triangleright Kimenet: Db \in N, Y \in N^N ➤ Előfeltétel: – \triangleright Utófeltétel: Db= $\sum 1$ $\forall i (1 \le i \le Db): T(X_{v_i}) \text{ és}$ $\forall i(Db+1 \le i \le N)$: nem $T(X_{Y_i})$ és Y∈Permutáció(1,2,...,N)

		Változó
Db:=0 [≅elölről index]		ind2, i:Egés
ind2:=N+1 [≅hátulról index]		
i=1N		
T(X[i])		7
Db:=Db+1	ind2:=ind2-1	
Y[Db]:=i	Y[ind2]:=i	

Megjegyzés: Itt célszerű egy segédváltozó arra, hogy hol tartunk Y-ban hátulról: ind2.

10. Szétválogatás dinamikus tömbökbe

A kiválogatáshoz hasonlóan itt is használhatunk az eredmények tárolásához bővíthető elemszámú sorozatokat.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

$$X_1 \in H^N$$

$$T:H\rightarrow L$$

 \triangleright Kimenet: $Y \in \mathbb{N}^*, Z \in \mathbb{N}^*$

➤ Előfeltétel: –

ightharpoonup Utófeltétel: hossz(Y)= \sum 1 és Y \subseteq (1,2,...,N) és \forall y \in Y: T(X_y) és

$$hossz(Z) = \sum_{N=1}^{N}$$

 $hossz(Z) = \sum_{z=1}^{\infty} 1 \text{ és } Z \subseteq (1,2,...,N) \text{ és } \forall z \in Z : nem } T(X_z)$

nem $T(X_i)$

N darab "valami" közül kell megadni az

illetve nem rendelkezőt!

összes, adott T tulajdonsággal rendelkezőt,

10. Szétválogatás dinamikus tömbökbe

Algoritmus:

10. Szétválogatás helyben

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_1 \in \mathbb{N}^N$

 \triangleright Kimenet: $Db \in \mathbb{N}, Y_1 \in \mathbb{N}$

➤ Előfeltétel: –

> Utófeltétel: Db = $\sum_{i=1}^{n} 1$ és Y∈Permutáció(X)

 $T(X_{:})$

és $\forall i (1 \le i \le Db)$: $T(Y_i)$ és $\forall i (Db+1 \le i \le N)$: nem $T(Y_i)$

Megjegyzés: bemenetben szereplő X és a kimenetben szereplő Y lehet a programban ugyanaz az X változó!

Programparaméterek:

Konstans

MaxN:**Egész**(???)

Típus

THk=**Tömb**[1..MaxN:TH]

Változó

N:**Egész**, X:THk

. . .

Algoritmikus ötlet:

- 1. Vegyük ki (másoljuk le) a sorozat első elemét:
- 2. Keresünk hátulról egy elemet, aminek elől a helye (mert T tulajdonságú, nem odavaló):

3. A megtalált elemet tegyük az előbb keletkezett lyukba:

 \otimes x x x x x x X O x x x x x

A lyuk mögött és az 1. elemmel már rendben vagyunk.

4. Most keletkezett egy lyuk hátul. Az előbb betöltött lyuktól indulva előlről keressünk hátra teendő (nem odavaló: nem T-tulajdonságú) elemet:

5. A megtalált elemet tegyük a hátul levő lyukba, majd újra hátulról kereshetünk!

$$\otimes$$
 x x O x x \otimes x x x x x

Az elől keletkezett lyuk előttiek és a hátrébb mozgatott elemmel kezdve rendben vagyunk.

- 6. ... és így tovább ...
- 7. Befejezzük a keresést, ha valahonnan elértük a lyukat. x x x x O x x x x x x x x
- 8. Erre a helyre a kivettet visszatesszük.

Utófeltétel pontosítása:

Teljesülni kell az X vektorra a megálláskor (meghagyva a specifikációbeli műveleteket): $X^{\text{kimeneti}} = \text{permutáció}(X^{\text{bemeneti}})$ és $\forall i (1 \le i \le Db)$: $T(X^{\text{kimeneti}})$ és $\forall i (Db^{1.N} + 1 \le i \le N)$: nem $T(X^{\text{kimeneti}})$

Változó

y:TH

e,u:**Egész**

Van**:Logikai**

Algoritmus:

▶ Utófeltétel: Db = $\sum_{i=1}^{N} 1$ és X'∈Permutáció(X)

és \forall i(1≤i≤Db): T(X'_i)

és \forall i(Db+1≤i≤N): nem T(X';)

e:=1 [a szétválogatandók elsője]				
u:=N [a szétválogatandók utolsója]				
y	=X[e]			
	e <u< td=""><td></td></u<>			
Н	HátulrólKeres(e, <mark>u,Van</mark>)			
L	Van			N
L	X[e]:=X[u]			
ı	e:=e+1			
	ElölrőlKeres(e,u,Van)			
	Van N			
	X[u]:=X[e]			
	u:=u-1			

Specifikáció:

> Előfeltétel: -

> Bemenet: N∈N, X∈H^N > Kimenet: Db∈N, X'∈H^N

Algoritmus:

Megjegyzés: Az X változóról az algoritmus végrehajtása közben különböző állításokat mondhatunk:

- 1. kezdetben a bemenetbeli sorozat;
- 2. a futás végén a bemeneti X permutációja a szétválogatás utófeltétele szerint; Ún. ciklusinvariáns
- 3. közben E-ig T tulajdonságú elemek, U-tól nem T tulajdonságú elemek, köztük nem vizsgált elemek.

ElölrőlKeres(e,u:**Egész**, Van:**Logikai**)

e<u és T(X[e])

e = e + 1

Van:=e<u

HátulrólKeres(e,**u:Egész, Van:Logikai**)

e<u és nem T(X[u])

u:=u-1

Van:=e<u

Feladatok:

- A télen és a nyáron megfigyelhető madarak alapján adjuk meg a nem költöző madarakat!
- ➤ Két ember szabad órái alapján mondjuk meg, hogy mikor beszélgethetnek egymással!
- Adjuk meg azokat az állatfajokat, amelyeket a budapesti és a veszprémi állatkertben is megnézhetünk!
- Három virágárusnál kapható virágok közül adjuk meg azokat, amelyek mindegyiknél kaphatóak!

Feladatok:

- Adjuk meg két természetes szám közös osztóit!
- A télen és a nyáron megfigyelhető madarak alapján adjuk meg a nem költöző madarakat!
- Két ember szabad órái alapján mondjuk meg, hogy mikor beszélgethetnek egymással!
- Adjuk meg azokat az állatokat, amelyeket a budapesti és a veszprémi állatkertben is megnézhetünk!

Mi bennük a közös?

Ismerünk két halmazt (tetszőleges, de azonos típusú elemekkel), meg kell adnunk azokat az elemeket, amelyek mindkét halmazban szerepelnek! A több halmaz visszavezethető a két halmaz esetére.

Specifikáció:

► Bemenet: $N,M \in \mathbb{N}, X_{1.N} \in \mathbb{H}^N, Y_{1.M} \in \mathbb{H}^M$

 \gt Kimenet: $Db \in \mathbb{N}, Z_{1..min(N,M)} \in \mathbb{H}^{min(N,M)}$

➤ Előfeltétel: HalmazE(X) és HalmazE(Y)

> Utófeltétel: Db = $\sum_{X_i \in Y}^{N} 1$ és

 $\forall i (1 \le i \le Db): (Z_i \in X \text{ \'es } Z_i \in Y) \text{ \'es }$

HalmazE(Z)

Az elemtartalmazás egyértelmű-e.

Az első Db elemet használya

Ismerünk két halmazt (tetszőleges típusú elemekkel), meg kell adnunk azokat az elemeket, amelyek mindkét halmazban szerepelnek!

Specifikáció₃:

> Utófeltétel₂:

(Db,Z)=Metszet(N,X,M,Y)
Másképp: (Db,Z)=Kiválogat
$$X_i$$

Ismerünk két halmazt (tetszőleges típusú elemekkel), meg kell adnunk azokat az elemeket, amelyek mindkét halmazban szerepelnek!

Specifikáció:

- \gt Bemenet: N,M \in N, X \in H^N, Y \in H^M
- \gt Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- ➤ Előfeltétel: HalmazE(X) és HalmazE(Y)
- \rightarrow Utófeltétel: Db= $\sum 1$ és $\forall i(1 \le i \le Db): (Z_i \in X \text{ és } Z_i \in Y) \text{ és}$ HalmazE(Z)

Algoritmus:

Specifikáció:

- \triangleright Bemenet: N,M \in N, X \in H^N, Y \in H^M
- \gt Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- ➤ Előfeltétel: HalmazE(X) és HalmazE(Y)
- ➤ Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és $\forall i (1 \le i \le Db) \colon (Z_i \in X \text{ és } Z_i \in Y) \text{ és }$ HalmazE(Z)

Kiválogatás tétel!

Eldöntés tétel!

Megjegyzés:

A megoldás egy kiválogatás és egy eldöntés.

Változó

Algoritmus:

Az eldöntés tétel, mivel logikai értéket ad, szerepelhetne az elágazás feltételében:

Specifikáció:

- \triangleright Bemenet: N,M \in N, X \in H^N, Y \in H^M
- \triangleright Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- ➤ Előfeltétel: HalmazE(X) és HalmazE(Y)
- > Utófeltétel: Db= $\sum 1$ és

 $\forall i (1 \le i \le Db)$: $(Z_i \in X \text{ és } Z_i \in Y) \text{ és}$ HalmazE(Z)

Hogyan lehet megoldani? Függvényt írunk!

Feladatvariációk:

- ➤ Ismerünk két halmazt, meg kell adnunk a közös elemek számát!
- ➤ Ismerünk két halmazt, meg kell adnunk, hogy van-e közös elemük!
- ➤ Ismerünk két halmazt, meg kell adnunk egyet közös elemeik közül!

Feladatok:

- A télen és a nyáron megfigyelhető madarak alapján adjuk meg, hogy a milyen madarakat figyeltek meg!
- > Két ember szabad órái alapján mondjuk meg, hogy mikor tudjuk elérni valamelyiket!
- Három szakkör tanulói alapján soroljuk fel a szakkörre járókat!
- > Adjuk meg azokat az állatfajokat, amelyeket a budapesti vagy a veszprémi állatkertben megnézhetünk!

Feladatok:

- Két szakkör tanulói alapján adjuk meg a szakkörre járókat!
- A télen és a nyáron megfigyelhető madarak alapján adjuk meg a megfigyelhető madarakat!
- Két ember szabad órái alapján mondjuk meg, hogy mikor tudjuk elérni valamelyiket!
- Adjuk meg azokat az állatokat, amelyeket a budapesti vagy a veszprémi állatkertben megnézhetünk!

Mi bennük a közös?

Ismerünk két halmazt (tetszőleges, de azonos típusú elemekkel), meg kell adnunk azokat az elemeket, amelyek legalább az egyik halmazban szerepelnek!

A több halmaz visszavezethető a két halmaz esetére.

Specifikáció:

► Bemenet: $N,M \in \mathbb{N}, X_{1.N} \in \mathbb{H}^N, Y_{1.M} \in \mathbb{H}^M$

> Kimenet: $Db \in \mathbb{N}, Z_{1,N+M} \in \mathbb{H}^{N+M}$

➤ Előfeltétel: HalmazE(X) és HalmazE(Y)

$$ightarrow Utófeltétel:Db=N+\sum_{\substack{j=1\\Y_i \notin X}}^{M}1$$
 és

Az első Db elemet használya

 $\forall i (1 \le i \le Db): (Z_i \in X \text{ vagy } Z_i \in Y) \text{ és}$

HalmazE(Z)

Ismerünk két halmazt (tetszőleges típusú elemekkel), meg kell adnunk azokat az elemeket, amelyek legalább az egyik halmazban szerepelnek!

Specifikáció₂:

> Utófeltétel₂:

Ismerünk két halmazt (tetszőleges típusú elemekkel), meg kell adnunk azokat az elemeket, amelyek legalább az egyik halmazban szerepelnek!

(Db,Z)=Uni
$$\acute{o}$$
(N,X,M,Y)

Másképp:

(Db,Z)=X+Kiválogat
$$Y_{j}$$

Specifikáció:

- > Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}, Y \in \mathbb{H}^{\mathbb{M}}$
- \gt Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- > Előfeltétel: HalmazE(X) és HalmazE(Y)
- > Utófeltétel: $Db=N+\sum_{i=1}^{n}1$ és

 $\forall i(1 \le i \le Db): (Z \in X \text{ vagy } Z \in Y) \text{ és}$ HalmazE(Z)

i,j:Egész

Algoritmus:

Specifikáció:

- ► Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}, Y \in \mathbb{H}^{\mathbb{M}}$
- \triangleright Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- ➤ Előfeltétel: HalmazE(X) és HalmazE(Y)
- > Utófeltétel: Db=N+ $\sum 1$

 $\forall i(1 \le i \le Db): (Z_i \in X \text{ vagy } Z_i \in Y) \text{ és}$ HalmazE(Z)

Kiválogatás tétel!

Eldöntés tétel!

Feladatvariációk:

- Ismerünk két halmazt, meg kell adnunk az elemek együttes számát!
- ➤ Ismerünk két halmazt, meg kell adnunk a különbségüket (X\Y)!
- \gt Ismerünk két halmazt, meg kell adnunk azon elemeket, amelyek pontosan az egyikben vannak! (X\Y \cup Y\X)

Programozási tételek

- ➤ Sorozat → sorozat
- 7. Másolás függvényszámítás
- 8. Kiválogatás
- 9. Rendezés (később lesz)
- ➤ Sorozat → sorozatok
- 10. Szétválogatás
- ➤ Sorozatok → sorozat
- 11. Metszet
- 12. Unió

