A Sieve-Theoretic Reformulation of the Goldbach Conjecture

Bill C Riemers

September 19, 2025

Abstract

A windowed sieve framework for Goldbach [7, 15] is presented based on the quadratic form

$$Q(n,m) = (n-m)(n+m), (1)$$

which centers analysis at the midpoint n and treats offsets m symmetrically. This formulation interfaces with Eratosthenes-type sieves below the prime-forcing cutoff, avoids the classical parity obstruction, and yields certified lower bounds as a product of conservative Euler factors.

Unconditionally, a certified analytic lower bound on the windowed Goldbach count $\mathcal{G}(n; M)$ (with $M = \lfloor n/2 \rfloor$) is proved via explicit Euler-Mertens products [12, 14, 18, 2], valid for all $n \geq 6353$. A rescaling lemma shows this bound holds uniformly for every smaller window $M = \alpha n$ with $0 < \alpha \leq \frac{1}{2}$, and a monotonicity corollary extends it to larger windows by set inclusion.

Computationally, windowed Goldbach pairs are exhaustively enumerated for every even $2n < 2 \cdot 10^8$. Across seven decades, the normalized deviations from the parameter-free Hardy-Littlewood baseline (HL-A) [9] decrease steadily. In the seventh decade $(10^7 \le n < 10^8)$ the raw decade maxima already satisfies

$$|\Lambda_{\min}| \le 1.8 \cdot 10^{-2}, \qquad |\Lambda_{\max}| \le 1.3 \cdot 10^{-3}, \qquad |\Lambda_{\text{avg}}| \le 3.2 \cdot 10^{-4},$$
 (2)

providing large-scale validation of HL-A in this windowed setting. As a robustness check, for each decade and each metric, the second-largest absolute deviation decreases strictly across the seven decades, consistent with the expectation under occasional persistent outliers. The conclusions are unaffected by this pruning. Observed blockwise maxima align with the singular-series structure: peaks occur when n is a multiple of $half\ a\ primorial\ (i.e.,\ p\#/2)$, yielding the expected primorial plateaus.

A conditional reduction is also established: assuming a short-interval Bombieri-Vinogradov hypothesis (SI-BV $_{\theta}$ with $\theta > \frac{1}{2}$, strictly weaker than the full Hardy-Littlewood asymptotic), the minor-arc error is uniformly dominated and $R_2(N) > 0$ holds for all sufficiently large even N. Combined with exhaustive verification up to $2n_*$, this yields Goldbach for all even integers > 2.

In summary, contributions are: (i) a certified sieve-theoretic lower bound with explicit constants, uniform in the window; (ii) the first broad, decade-by-decade numerical validation of HL-A at sub-percent scale in this framework; (iii) a structural explanation of maxima via singular-series (odd-primorial) plateaus; and (iv) a sharp reduction of the remaining analytic task to short-interval equidistribution of primes.

1 Introduction

1.1 Motivation

The Goldbach Conjecture, the Twin Prime Conjecture, and Polignac's Conjecture each address the distribution of prime pairs in different settings. A natural generalization emerges from considering these problems together: along suitable arithmetic or algebraic paths in the (n, m)-grid, prime pairs appear with a density consistent with the heuristic $\#S_N/\log^2 N$. Formulated precisely, this leads to the following working conjecture.

Conjecture 1 (General Prime-Pair Density (motivating observation)). Let (p,q) be an odd prime pair satisfying

$$p + q = 2n, \quad p - q = 2m, \quad pq = n^2 - m^2, \quad |m| \le n,$$
 (3)

with (m, n) constrained to a fixed line or other low-degree polynomial path in the (m, n)-grid. Then there exists N_0 such that for all $N \geq N_0$, every interval of length O(N) odd integers along that path contains at least $O(N/\log^2 N)$ such prime pairs.

The statement above is given in a simplified form, with notation consistent throughout this paper. A more detailed formulation, including explicit bounds in terms of C_{\min} and C_{\max} and the role of the reference sieve factor \mathcal{B}_{ref} , appears in Conjecture A.1 and the definition of admissibility (Definition A.1).

While unproven, this conjecture provides a coherent framework in which the problems above are special cases. In what follows, the Goldbach setting becomes the concrete instance for developing and testing the sieve-theoretic methods, before considering broader applications.

Remark (Scope). Conjecture 1 motivates the windowed sieve setup only; no theorem, lemma, or corollary in this paper depends on it. Unconditional results use sieve bounds and Euler-Mertens products; the only conditional input appears in Corollary 1.

1.2 Contributions and Reduction Overview.

To begin, the certified bounds, the large-scale validation of the heuristic baseline, the window-scalability results, the structure of extrema, and the final conditional reduction to short-interval equidistribution, contributions are summarized.

- 1. Calibrated Sieve-Heuristic and Per-Term Normalization. Formalizing the sieve-heuristic baseline on the structured family $Q_m = n^2 m^2$, introduces a per-term normalization $C_{\star}(n;I)$ that is consistent with Conjecture A and yields asymptotic predictions proportional to $S_{\text{GB}}(2n)$. This fixes units and removes binning artefacts for all subsequent comparisons.
- 2. Statistical Convergence of Normalized Deviations (validation of HL-A). Normalized deviations between measured and predicted pair counts are defined as an evaluation across seven decades up to $2n = 2 \cdot 10^8$. By the final decade the deviations fall below $1.8 \cdot 10^{-2}$ (minimum), $1.3 \cdot 10^{-3}$ (maximum), and $3.2 \cdot 10^{-4}$ (average), with monotone decay across decades, providing the first large-data validation that windowed counts converge to the HL-A baseline, justifying extrapolation beyond the tested range.

3. Certified Analytic (Shifted-Product) Lower Bound (Pairs). By Lemma 2, in the extremal out-of-sync case so that

$$\mathcal{G}(n;M) \geq \frac{n}{2} \prod_{\substack{p>2\\p \leq \sqrt{n}}} \left(1 - \frac{1}{p-1}\right) \prod_{\substack{p>2\\p \leq \sqrt{\frac{3n}{2}}}} \left(1 - \frac{1}{p-1}\right),$$
 (4)

where $M = \lfloor n/2 \rfloor$. Using the explicit Mertens enclosure [18, 2, 9, 14]

$$\prod_{p \le \sqrt{x}} \left(1 - \frac{1}{p-1} \right) \sim \frac{K_{\text{EM}}}{\log x}, \qquad K_{\text{EM}} = 4e^{-\gamma} C_2, \tag{5}$$

yields, for large n,

$$\mathcal{G}(n;M) \gtrsim \frac{K_{\text{EM}}^2 M}{\log n \, \log(\frac{3n}{2})}.$$
 (6)

On the tested range this specializes to the concrete inequality

$$\mathcal{G}(n;M) \geq \frac{2.1518 M}{\log^2 n}.\tag{7}$$

The certification (4)-(7) is unconditional: it does not invoke HL-A, \mathcal{S}_{GB} , or β_{eval} .

4. Uniform Window Scalability and Monotone Extension. The certified lower bound extends uniformly in the window size for every $\alpha \in (0, \frac{1}{2}]$ by Lemma C.1:

$$\mathcal{G}(n; \alpha n) \geq \frac{\mathcal{C}_{-,n}(\alpha)}{\log^2 n} (\alpha n),$$
 (8)

with the natural right-edge cutoff $\sqrt{n+\alpha n}$ inside $\mathcal{C}_{-,n}(\alpha)$. By set inclusion, the count is monotone in the window, so for all $\alpha \in [\frac{1}{2}, 1)$

$$\mathcal{G}(n; \alpha n) \geq \mathcal{G}\left(n; \frac{1}{2}n\right),$$
 (9)

as recorded in Corollary C.1.

5. Extrema Structured by the Singular Series (Primorial Plateaus). Writing

$$\mathfrak{S}(2n) = 2C_2 \prod_{\substack{p|n\\p>3}} \frac{p-1}{p-2},\tag{10}$$

Proposition 1 shows that $\mathfrak{S}(2n)$; and hence the normalized C-statistic; achieves record and local plateaus when the odd part of n is divisible by the odd primorial $P_y = \prod_{3 \leq p \leq p_y} p$; in particular, on $[P_y, p_{y+1}P_y)$ the maxima occur precisely at multiples of P_y .

6. Pointwise Positivity Under Short-Interval Equidistribution (Reduction). Assuming the short-interval Bombieri-Vinogradov hypothesis (88), Corollary 1 yields an explicit N_0 such that

$$R_2(N) > 0$$
 for every even $N \ge N_0$. (11)

Together with our exhaustive verification up to $2n_*$, this reduces Goldbach for all even $N \geq 4$ to (88) on a tail interval; no Hardy-Littlewood asymptotic is assumed.

7. Bridging Computation and Analytic Bounds (no gaps). Explicit computation verifies all even numbers up to $2n = 2n_*$. The certified lower bound applies uniformly for all $n \ge 6353$ (cf. Fig. 5), and by (8)-(9) the same holds for all window sizes under consideration. Hence the verified initial segment and the certified asymptotic regime overlap without gaps; under (88) the pointwise positivity (11) completes the reduction.

Remark. Use of the singular series and the $\frac{n}{log^2n}$ scale follows the classical circle-method heuristic of Hardy-Littlewood [9]. These techniques are well established; no novelty is claimed for them. The contributions of this paper are (i) a per-term, windowed adaptation tailored to $Q_m = n^2 - m^2$ with explicit calibration via \mathcal{B}_{win} ; (ii) a certified sieve lower bound in this setting; and (iii) a statistical protocol that tests the parameter-free curve $2\mathcal{S}_{\text{GB}}(2n)$ against data across decades. All statements relying on Hardy-Littlewood Conjecture A (HL-A) are clearly labeled as model-based; certified results are unconditional.

1.3 Readers' Guide

Section 2 sets up the sieve-heuristic framework: the quadratic form Q(n, m), the window M(n), and the HL-A baseline and normalizations used throughout. Section 3 presents the computational study up to $2n < 2 \cdot 10^8$, including decade-wise deviations and the primorial plateaus. Section 4 contains the core sieve-theoretic results: the reduction lemma (Sec. 4.1), the certified lower bound (Thm. 1), its conditional corollary under short-interval Bombieri-Vinogradov equidistribution hypothesis (Sec. 4.4), and the primorial maxima proposition (Sec. 3.6). Appendices collect technical enclosures and window rescaling.

2 Sieve-Heuristic Framework

Remark (Terminology: "Model" vs. "Theorem"). Throughout, "model" refers to the sieve-heuristic framework combining the local factors $\prod_{p\geq 3}(1-\frac{2}{p})$, the semiprime singular series $\mathcal{S}_{GB}(2n)$, and the evaluation calibration $\beta_{\text{eval}}(I)$, yielding predicted quantities such as \mathring{C} and C_{\star} . These are model-based predictions (heuristic expectations), not theorems. Measured quantities (e.g. C) are exact given the data.

The rigorous component is developed in the Sieve-Theoretic section, where a certified analytic lower bound is established that supports the later arguments. Other relationships stated here (e.g. $C_{\star}(n;I) \to \beta_{\rm eval}(I) \mathcal{S}_{\rm GB}(2n)$) are presented to convey heuristic understanding and are not required for the rigorous result itself.

Starting with the sequence:

$$Q_m = n^2 - m^2 = (n - m)(n + m)$$
(12)

Let $S_n = \{ p \in \mathbb{P} \mid p < \sqrt{n} \}$ be the set of all primes less than \sqrt{n} .

A sieve is constructed over the range $m \in [1, M]$, for some M = O(n), to eliminate values of m for which $Q_m = (n - m)(n + m)$ has small prime divisors. Initially, all m in the range are candidates,

and those for which $Q_m \equiv 0 \mod p$ for any $p \in S_{\sqrt{N+M}}$ are iteratively removed. This process is equivalent to eliminating values of m lying in specific residue classes modulo each small prime, as described by standard sieve methods (see [8, 11, 5]). ¹²

For each $p \in S_{\sqrt{N+M}}$, note:

$$Q_m \equiv 0 \mod p \iff (n-m)(n+m) \equiv 0 \mod p \tag{13}$$

which implies:

$$m^2 \equiv n^2 \mod p \tag{14}$$

A convenient reference sieve product that captures the idealized effect of eliminating two residue classes per odd semi-prime candidate Q_m in the absence of any alignment or discretization artefacts, and is defined as follows:

Definition 1 (Reference Sieve Product).

Let \mathcal{P} denote the set of odd primes up to some bound y. Following the analysis of Iwaniec-Kowalski [11], the reduction for odd semiprimes is expressed by the sieve product

$$\mathcal{B}_{\text{ref}}(y) := \prod_{\substack{3 \le p \le y \\ n \in \mathcal{D}}} \left(1 - \frac{2}{p} \right), \tag{15}$$

since the congruence $n^2 - m^2 \equiv 0 \pmod{p}$ has exactly two solutions for each odd prime p.

This product represents the multiplicative reduction factor in the *idealized* case where precisely two residue classes are eliminated for every odd prime, with no further perturbations. The prime p=2 is omitted, as the halving from restricting to odd m-values is already absorbed into the initial count M.

Before proceeding further with model definitions, it is important to define what is measured, so that functions using \mathcal{B}_{ref} can be defined to allow an accurate parameter free comparison.

Definition 2 (Empirical HL-Normalized Measurements (from semiprime survivors)). Let

$$I^{\text{par}} := \{ m \in I : n^2 - m^2 \text{ is odd } \} = \{ m \in I : n + m \equiv 1 \pmod{2} \}.$$
 (16)

Far a window I with $M := |I^{par}|$. For each $m \in I^{par}$, set

$$y(n,m) := \lfloor \sqrt{n + |m|} \rfloor. \tag{17}$$

Let

$$N_M(2n;I) := \#\{m \in I^{\text{par}}\}: p \nmid (n^2 - m^2) \text{ for all } p \leq y(n,m)\}$$
 (18)

¹A related idea appears in work by Song [19], who proposed a sieve partitioning method to preserve minimal composite structure when analyzing Goldbach pairs. While his approach differs significantly in formulation and does not employ the multiplicative structure used herein, it reflects a similar intuition; that full prime sieving is not always necessary.

²Recasting the Goldbach condition in terms of the quadratic form Q(n,m) = (n-m)(n+m) does not alter the underlying problem, but it provides a parametrization in which windowing and sieve reduction steps are expressed more cleanly, and where the semiprime structure is explicit.

be the number of surviving semiprimes in I.

Defining the measured (pairs-scale) constant:

$$C(n;I) := \frac{2\log^2 n}{M} N_M(2n;I). \tag{19}$$

(Equivalently, the semiprime-scale version is $C^{(\text{sem})}(n;I) := \frac{\log^2 n}{M} N_M(2n;I)$ with $C = 2 C^{(\text{sem})}$.)

For a decimal block $B_{d,k} = [d \cdot 10^k, (d+1) \cdot 10^k),$

$$n_0 := \arg\min_{n \in B_{d,k}} C(n; I), \qquad n_1 := \arg\max_{n \in B_{d,k}} C(n; I),$$
 (20)

$$C_{\min}(d,k) := C(n_0;I), \quad C_{\max}(d,k) := C(n_1;I), \quad C_{\text{avg}}(d,k) := \frac{1}{\#B_{d,k}} \sum_{n \in B_{d,k}} C(n;I).$$
 (21)

The \mathcal{B}_{ref} provides a convenient measure of the probability of a single semiprime reduction. Crucially, it establishes a baseline for the expected number of semiprimes for a given value n. Accordingly, C_{\star} and related expressions are defined as follows:

Definition 3 (Per-Term Window Baseline).

Let $I \subset \mathbb{Z} \setminus \{0\}$ be a finite window and $I^{\text{par}} := \{ m \in I : n + m \equiv 1 \pmod{2} \}$. For each $m \in I^{\text{par}}$ set

$$y(n,m) := \lfloor \sqrt{n + |m|} \rfloor. \tag{22}$$

Define the window baseline

$$\mathcal{B}_{\text{win}}(n;I) := \sum_{m \in I^{\text{par}}} \prod_{\substack{3 \le p \le y(n,m) \\ p \in \mathbb{P}}} \left(1 - \frac{2}{p}\right). \tag{23}$$

Let C_2 be the twin-prime constant and $\kappa := 4e^{-2\gamma}C_2$ [9, 14]. Define the Goldbach singular series (pairs-scale)

$$S_{GB}(2n) := 2 C_2 \prod_{\substack{p|n \\ n > 3}} \frac{p-1}{p-2}.$$
 (24)

Heuristic counts on I:

$$\mathbb{E}[\text{Goldbach representations (unordered})] \approx S_{\text{GB}}(2n) \mathcal{B}_{\text{win}}(n; I),$$

$$\mathbb{E}[\text{Goldbach pairs (ordered})] \approx 2 S_{\text{GB}}(2n) \mathcal{B}_{\text{win}}(n; I).$$
(25)

Per-term HL-normalized constant (baseline):

$$C_{\star}(n;I) := \frac{1}{\kappa} \frac{\log^2 n}{|I^{\text{par}}|} S_{\text{GB}}(2n) \mathcal{B}_{\text{win}}(n;I). \tag{26}$$

Introduce the evaluation calibration

$$\beta_{\text{eval}}(I) := \lim_{n \to \infty} \frac{1}{\kappa} \frac{\log^2 n}{|I^{\text{par}}|} \mathcal{B}_{\text{win}}(n; I), \tag{27}$$

so that $C_{\star}(n;I) \to \beta_{\text{eval}}(I) S_{\text{GB}}(2n)$ as $n \to \infty$ with |I| = o(n).

Convention. "Unordered" counts $\{p, q\}$ once; "ordered" counts (p, q) and (q, p) separately, accounting for the factor of 2.

Next the C_{\star} function is applied in the definitions, providing a clean way to define predicted values consistent with the empirically measured ones.

Definition 4 (HL-A Normalized Predictions (Goldbach, Pairs)).

The windowed log effect is absorbed into the prediction via a Hardy-Littlewood circle correction factor:

$$\mathcal{H}(n;I) := \frac{\log^2 n}{|I^{\text{par}}|} \sum_{m \in I^{\text{par}}} \frac{1}{\log(n-m)\log(n+m)},$$
 (28)

for n and I such that $n \pm m \ge 3$ for all $m \in I^{\text{par}}$.

Fix a window $I \subset \mathbb{Z} \setminus \{0\}$ with $M := |I^{\text{par}}|$. Let $C_{\star}(n; I)$ be the per-term HL-normalized constant (unordered scale). Define the *predicted (pairs-scale) constant* by

$$\mathring{C}(n;I) := 2 C_{\star}(n;I) \mathcal{H}(n;I). \tag{29}$$

For decimal blocks

$$B_{d,k} := [d \cdot 10^k, (d+1) \cdot 10^k), \qquad d \in \{1, \dots, 9\}, \ k \in \mathbb{N}, \tag{30}$$

select extremizers by C_{\star} (equivalently by \mathring{C}/\mathcal{H}):

$$\mathring{n}_{0} := \arg \min_{n \in B_{d,k}} \frac{\mathring{C}(n;I)}{\mathcal{H}(n;I)}, \qquad \mathring{C}_{\min}(d,k) := \mathring{C}(\mathring{n}_{0};I),
\mathring{n}_{1} := \arg \max_{n \in B_{d,k}} \frac{\mathring{C}(n;I)}{\mathcal{H}(n;I)}, \qquad \mathring{C}_{\max}(d,k) := \mathring{C}(\mathring{n}_{1};I).$$
(31)

For the block average, approximate the slowly varying \mathcal{H} by a two-point proxy at the geometric center:

$$\mathring{C}_{\text{avg}}(d,k) := \frac{\mathcal{H}(n_{\text{geom}};I) + \mathcal{H}(n_{\text{geom}} + 1;I)}{2|B_{d,k}|} \sum_{n \in B_{d,k}} \frac{\mathring{C}(n;I)}{\mathcal{H}(n;I)}, \tag{32}$$

where n_{geom} is the nearest integer (optionally: nearest odd integer) to $10^k \sqrt{d(d+1)}$.

Remark. Choosing $\mathring{n}_0, \mathring{n}_1$ via $\mathring{C}/\mathcal{H} = 2C_{\star}$ avoids recomputing \mathcal{H} on the block; since $\mathcal{H}(n; I) = 1 + O(1/\log n)$ varies slowly, these extremizers coincide with those for \mathring{C} up to $O(1/\log n)$. The two-point proxy $(\mathcal{H}(n_{\text{geom}}) + \mathcal{H}(n_{\text{geom}} + 1))/2$ captures the parity drift.

Convention. \mathring{C} is on the **ordered-pairs** scale; for the unordered version use C_{\star} .

Finally a Λ can be defined and used to test the model.

Definition 5 (Relative Discrepancy Between Predicted and Measured).

All symbols are as defined above. For any finite index set B (e.g. a decimal block $B_{d,k}$), define the dimensionless relative discrepancies:

$$\Lambda_{\text{avg}}(B) := \log \frac{C_{\text{avg}}(B)}{\mathring{C}_{\text{avg}}(B)}. \tag{33}$$

$$\Lambda_{\min}(B) := \log \frac{C_{\min}(B)}{\mathring{C}_{\min}(B)}, \qquad \Lambda_{\max}(B) := \log \frac{C_{\max}(B)}{\mathring{C}_{\max}(B)}. \tag{34}$$

Optionally, the per-n pointwise discrepancy is

$$\Lambda(n;I) := \log \frac{C(n;I)}{\mathring{C}(n;I)}.$$
(35)

These are on the ordered-pairs scale and satisfy $\Lambda \to 0$ when the model matches measurements. If the percent error is of interest use $(e^{\Lambda} - 1) 100\%$.

Remark (Order-of-Magnitude Decay from Window Log Rescaling). If the effective density is proportional to $\frac{1}{\log^2 x}$ and the window spans $\left[\frac{n}{2}, \frac{3n}{2}\right]$, replacing $\log^2 n$ by a window edge produces the envelope

$$F(n) := \frac{\log^2 \frac{3n}{2}}{\log^2 \frac{n}{2}} = 1 + \frac{2\log 3}{\log \frac{n}{2}} + O\left(\frac{1}{\log^2 n}\right). \tag{36}$$

Thus the deterministic drift from freezing the log decays like $1/\log n$ (slowly). In practice the numerator is not attained at the extreme edge, so realized drift is smaller but has the same $1/\log n$ scale. This effect is distinct from any circle-method correction $\Lambda(n; I)$.

Remark (Consistency with the Independent-Pair Heuristic). A naïve independence model would replace the factor $\prod_{3 \le p \le y} (1 - \frac{2}{p})$ by $\prod_{3 \le p \le y} (1 - \frac{1}{p})^2$. Since

$$\frac{1 - \frac{2}{p}}{(1 - \frac{1}{p})^2} = 1 - \frac{1}{(p - 1)^2}, \qquad \prod_{p \ge 3} \left(1 - \frac{1}{(p - 1)^2}\right) = C_2,\tag{37}$$

one has [9, 14]

$$\prod_{3 \le p \le y} \left(1 - \frac{2}{p} \right) \sim \frac{4e^{-2\gamma}C_2}{\log^2 y}, \qquad \prod_{3 \le p \le y} \left(1 - \frac{1}{p} \right)^2 \sim \frac{4e^{-2\gamma}}{\log^2 y}. \tag{38}$$

Thus, if an independent baseline is used, the missing twin-correlation factor is exactly C_2 ; using the pairs singular series $S_{\rm GB}(2n)$ (which already incorporates this correlation) restores the same $M/\log^2 n$ scale constant as the $(1-\frac{2}{p})$ baseline. Since the analysis is conducted exclusively on the pairs scale with $S_{\rm GB}$, then the two viewpoints agree.

Remark (Scope and Validation). The constructions and normalizations above (e.g. C_{\star} , \mathring{C} , $\beta_{\rm eval}$) are heuristic and conditioned on the Hardy-Littlewood Conjecture A and the usual independence assumptions behind the sieve baseline. They are presented to define the *predicted* quantities that should track the *measured* constants. No quantitative error bounds are proved here. The degree of agreement between predicted and empirical values is established a *posteriori* in the Statistical Analysis section, where \mathring{C} to C are compared across ranges, windows, and extremal cases.

3 In-Window Statistical Analysis

The Hardy-Littlewood Conjecture A (HL-A) is adopted as a modelling assumption for interpreting per-n counts; no claim of proof is made. The sieve bounds and \mathcal{B}_{win} identities are independent of this assumption.

To the author's knowledge, there is no precedent for a systematic in-window statistical analysis of HL-A. Previous computational efforts (e.g. [3]) numerically confirmed all even integers up to their computational limit in a global window, while analytic studies examined distributions of primes in short intervals [13, 6]. The present work provides the first statistical locking-down of HL-A within analysis windows, analogous to how earlier computations statistically locked down Goldbach itself. The rigorous sieve bounds are established independent of this analysis.

3.1 Modelling Assumption

Assumption (HL-A, windowed form). For admissible windows I with |I| = o(n):

$$N_M^{\text{(pairs)}}(2n;I) = \left(2, \mathcal{S}_{\text{GB}}(2n) + o(1)\right), \frac{M}{\log^2 n} \qquad (n \to \infty), \tag{39}$$

where $S_{GB}(2n) = 2C_2 \prod_{p|n, p \geq 3} \frac{p-1}{p-2}$

Remark. HL-A serves as a statistical model (heuristic baseline) to interpret data and form predictions. All certified bounds in this paper are independent of HL-A.

Although nearly a century old, HL-A remains the most reliable parameter-free baseline for comparing empirical data. It is designed to capture the correct pointwise median of empirical data for large n. Accordingly, the locations of minima and maxima in predicted values can be expected to align with measured data. Both the empirical values and predictions should approach the same asymptotic limits. To improve finite-range agreement, a correction factor \mathcal{H} reproduces the effects of the non-uniform distribution of primes.

3.2 Data Collection

For stability, Goldbach pairs (n-m, n+m) are measured and analyzed with $m \in [-M, M] \setminus 0$, where $M = \lfloor \frac{n}{2} \rfloor$. This symmetric range was chosen for numerical stability and predictability, but the framework applies equally to other ranges.

The programs used to generate primes and sieve the data were written in C and AWK, and executed on an Intel i5 processor in a 2015 laptop normally used as a home server. Full analysis requires several weeks, but partial results are available in minutes. The source code is released under GPL-3.0-or-later, and the manuscript under CC-BY-4.0. All source code and certified datasets are permanently archived on Zenodo [16].

The measured variables $n_0, n_1, C_{\min}, C_{\max}, C_{\text{avg}}$ are defined in Definition 2. Appendix Table 4 provides raw (unnormalized) data for verification. The reported minima of zero pairs for n = 7, 11, 43 result

from the exclusion of certain pairs, such as (7,7), (3,19), and (7,79), by the chosen window; they do not contradict Goldbach's Conjecture.

Predicted values can be computed in under ten minutes, but counting all Goldbach pairs up to $n = 10^8$ required several weeks. Figure 1 shows scatter plots of measured values versus HL-A prediction lines.

Figure 1: Scatter plots of C_{\min} , C_{\max} , and C_{avg} versus n with HL-A prediction lines. *Maxima*. The prominent peaks occur at n whose odd part is a (multiple of a) primorial, in agreement with Proposition 1.

3.3 C_{avg} Analysis

Recall from Definition 5 that

$$\Lambda_{\text{avg}}(B) := \log \frac{C_{\text{avg}}(B)}{\mathring{C}_{\text{avg}}(B)}. \tag{40}$$

Under HL-A, measured and predicted averages are heuristically expected to converge. For very large n this should approach 4. At $n = 10^8$, asymmetries in the prime distribution above and below n still push the average slightly higher, but the correction factor \mathcal{H} accounts for this. Figure 2 shows Λ_{avg} tending toward 0.

Figure 2: Scatter plot of $|\Lambda_{avg}|$ versus n_{geom} on a log-log scale.

Table 1 summarizes per-decade values. The consistent decrease demonstrates statistical convergence, supporting HL-A as an accurate predictor of average Goldbach pairs. In the 7th decade, the second-largest $|\Lambda_{\rm avg}|$ is $2.2 \cdot 10^{-4}$, so it is reasonable to expect agreement with $|\Lambda_{\rm avg}| < 2.2 \cdot 10^{-4}$ for all $n \ge 10^8$.

Table 1: Λ_{avg} per-decade summary (absolute extrema)

Dec.	Max	$2^{\mathrm{nd}} \left \mathrm{Max} \right $	$ \mathrm{Min} $	$2^{\mathrm{nd}}\left \mathrm{Min}\right $	$\mathrm{Median_{raw}}$	$\mathrm{Mean}_{\mathrm{trim}}$	$\rm Spread^{IQR}_{raw}$	Pos- itive
0	1.1	5.0×10^{-1}	1.9×10^{-1}	2.6×10^{-1}	3.2×10^{-1}	3.6×10^{-1}	2.4×10^{-1}	0.0%
1	5.9×10^{-1}	3.9×10^{-1}	3.0×10^{-2}	1.3×10^{-1}	2.9×10^{-1}	2.7×10^{-1}	2.0×10^{-1}	0.0%
2	1.3×10^{-1}	1.2×10^{-1}	3.0×10^{-2}	3.0×10^{-2}	6.7×10^{-2}	7.1×10^{-2}	2.8×10^{-2}	0.0%
3	3.2×10^{-2}	2.8×10^{-2}	6.8×10^{-3}	1.4×10^{-2}	1.8×10^{-2}	2.1×10^{-2}	9.9×10^{-3}	0.0%
4	9.5×10^{-3}	7.2×10^{-3}	2.4×10^{-3}	2.9×10^{-3}	5.7×10^{-3}	5.6×10^{-3}	2.1×10^{-3}	0.0%
5	3.2×10^{-3}	2.2×10^{-3}	$8.5 imes 10^{-4}$	1.0×10^{-3}	1.7×10^{-3}	1.6×10^{-3}	$6.5 imes 10^{-4}$	0.0%
6	10.0×10^{-4}	7.2×10^{-4}	1.9×10^{-4}	3.2×10^{-4}	4.9×10^{-4}	5.0×10^{-4}	2.3×10^{-4}	0.0%
7	3.2×10^{-4}	2.2×10^{-4}	3.6×10^{-5}	1.3×10^{-4}	1.5×10^{-4}	1.6×10^{-4}	7.3×10^{-5}	0.0%

3.4 C_{\min} Analysis

Recall from Definition 5:

$$\Lambda_{\min}(B) := \log \frac{C_{\min}(B)}{\mathring{C}_{\min}(B)}. \tag{41}$$

Under HL-A, predictions and measurements converge to the same limit. For very large n, minima should approach $2C_2$, where C_2 is the twin prime constant. Figure 3 shows $\Lambda_{\min} \to 0$ as n grows.

Figure 3: Scatter plot of $|\Lambda_{\min}|$ versus n_0 on a log-log scale.

Table 2 confirms per-decade convergence. In the 7th decade, the second-largest $|\Lambda_{\min}|$ is $1.3 \cdot 10^{-2}$, so HL-A agrees with observed data at that tolerance for $n \ge 10^8$.

Thus, the statistical evidence strongly supports the Goldbach conjecture: with overwhelming certainty, there are at least $\frac{2.62n}{2\log^2 n}$ Goldbach pairs (n-m,n+m) for all $n\geq 10^8$ and admissible m.

Table 2: Λ_{\min} per-decade summary (absolute extrema)

Dec.	Max	$2^{\mathrm{nd}} \left \mathrm{Max} \right $	$ \mathrm{Min} $	$2^{ m nd} \left { m Min} ight $	$Median_{raw}$	$\mathrm{Mean}_{\mathrm{trim}}$	$Spread_{raw}^{IQR}$	Pos- itive
~	1.1 1.1	5.0×10^{-1} 1.0					2.4×10^{-1} 3.6×10^{-1}	, -

Table 2: Λ_{\min} per-decade summary (absolute extrema)

Dec.	Max	$2^{\mathrm{nd}} \left \mathrm{Max} \right $	Min	$2^{\mathrm{nd}}\left \mathrm{Min}\right $	$\mathrm{Median_{raw}}$	$\mathrm{Mean}_{\mathrm{trim}}$	$Spread_{raw}^{IQR}$	Pos- itive
2	9.4×10^{-1}	8.7×10^{-1}	3.0×10^{-1}	4.1×10^{-1}	4.5×10^{-1}	5.5×10^{-1}	2.7×10^{-1}	0.0%
3	4.9×10^{-1}	4.4×10^{-1}	2.0×10^{-1}	2.1×10^{-1}	3.1×10^{-1}	3.1×10^{-1}	1.4×10^{-1}	0.0%
4	2.2×10^{-1}	1.6×10^{-1}	9.0×10^{-2}	9.9×10^{-2}	1.3×10^{-1}	1.3×10^{-1}	3.7×10^{-2}	0.0%
5	1.0×10^{-1}	7.7×10^{-2}	4.1×10^{-2}	4.3×10^{-2}	5.1×10^{-2}	5.6×10^{-2}	1.4×10^{-2}	0.0%
6						2.3×10^{-2}		0.0%
7	1.8×10^{-2}	1.3×10^{-2}	7.1×10^{-3}	7.1×10^{-3}	$8.5 imes 10^{-3}$	9.3×10^{-3}	3.4×10^{-3}	0.0%

3.5 C_{max} Analysis

Recall from Definition 5:

$$\Lambda_{\max}(B) := \log \frac{C_{\max}(B)}{\mathring{C}_{\max}(B)}. \tag{42}$$

Both HL-A and data show step increases at primorial values, each of order $\log \log \log n$. Accumulated over primes up to size n, this yields overall extremal growth of order

$$O!\left(\frac{n\log\log n}{\log^2 n}\right). \tag{43}$$

Predictions corrected by \mathcal{H} account for asymmetry in prime distribution. Figure 4 shows $\Lambda_{\max} \to 0$ with n.

Remark (Euler-factor Step Effect). Each primorial step corresponds to introducing a new Euler factor $\frac{(p-1)}{(p-2)}$ in the singular series [9, 20]. Excluding divisibility by a new prime slightly increases the expected Goldbach count, producing the log log log n-sized steps.

Table 3 shows decreasing per-decade values, again confirming convergence. In the 7th decade, the second-largest $|\Lambda_{\text{max}}|$ is $1.2 \cdot 10^{-3}$, supporting HL-A agreement at that level for $n \ge 10^8$.

Table 3: Λ_{max} per-decade summary (absolute extrema)

Dec.	Max	$2^{\mathrm{nd}} \left \mathrm{Max} \right $	$ \mathrm{Min} $	$2^{\mathrm{nd}}\left \mathrm{Min}\right $	$Median_{raw}$	$\mathrm{Mean}_{\mathrm{trim}}$	$\rm Spread^{IQR}_{raw}$	Pos- itive
0	1.1	5.0×10^{-1}	1.9×10^{-1}	2.6×10^{-1}	4.0×10^{-1}	3.9×10^{-1}	2.4×10^{-1}	0.0
1	5.7×10^{-1}	3.0×10^{-1}	5.9×10^{-3}	2.5×10^{-2}	1.7×10^{-1}	1.6×10^{-1}	2.1×10^{-1}	11.1
2	1.2×10^{-1}	$8.3 imes 10^{-2}$	4.9×10^{-3}	2.1×10^{-2}	5.5×10^{-2}	5.7×10^{-2}	4.2×10^{-2}	0.0
3	4.2×10^{-2}	3.2×10^{-2}	1.3×10^{-3}	2.4×10^{-3}	1.5×10^{-2}	1.5×10^{-2}	1.4×10^{-2}	55.6
4	1.4×10^{-2}	6.9×10^{-3}	5.7×10^{-4}	3.5×10^{-3}	5.1×10^{-3}		2.3×10^{-3}	33.3
5	9.8×10^{-3}	7.1×10^{-3}	3.1×10^{-4}	5.1×10^{-4}	2.1×10^{-3}	2.8×10^{-3}	4.1×10^{-3}	66.7
6	4.6×10^{-3}	3.7×10^{-3}	1.8×10^{-4}	6.3×10^{-4}	1.9×10^{-3}	2.0×10^{-3}	2.8×10^{-3}	66.7
7	1.3×10^{-3}	1.2×10^{-3}	6.5×10^{-5}	1.2×10^{-4}	3.6×10^{-4}	4.4×10^{-4}	4.6×10^{-4}	55.6

Blockwise maxima align with the singular series. Proposition 1 predicts that on each scale $[P_y, p_{y+1}P_y)$ the windowed count is maximized when the odd part of n is divisible by the odd primorial $P_y = \prod_{3 .$

In our per-block maxima (Table 5), this is reflected by winners at 15,015, 30,030, 45,045, 60,060 (odd part $= P_{13}$), and later 255,255, 510,510 (odd part $= P_{17}$), 4,849,845, 9,699,690 (odd part $= P_{19}$). Because the

Figure 4: Scatter plot of $|\Lambda_{\text{max}}|$ versus n_1 on a log-log scale.

singular series ignores exponents and the prime 2, many nearby multiples share the same singular-series value; with per-decade decimal recording, only one such candidate appears as the block maximum.

3.6 Primorial plateaus and HL-A

$$P_y := \prod_{3 \le p \le p_y} p = \frac{p_y^\#}{2} \qquad \text{("half a primorial")}. \tag{44}$$

Lemma 1 (Singular-series plateaus (unconditional)). For even N = 2n,

$$\mathfrak{S}(2n) = 2C_2 \prod_{\substack{p|n\\p\geq 3}} \frac{p-1}{p-2}.$$
 (45)

Fix X > 0 and consider $n \le X$. Then $\mathfrak{S}(2n)$ is maximized when n is divisible by P_y for the largest p_y with $P_y \le X$; equivalently, within $[P_y, p_{y+1}P_y)$ the maximizers are precisely the multiples of P_y , and all such n have the same value of $\mathfrak{S}(2n)$.

Proof.

Write $f(p) := (p-1)/(p-2) = 1 + \frac{1}{p-2}$. Then $\mathfrak{S}(2n) = 2C_2 \prod_{p|n, p \geq 3} f(p)$. If $q > p \geq 3$ then f(q) < f(p), so among sets of distinct odd primes the product is maximized by the initial segment $\{3, 5, \dots, p_y\}$. The smallest integer carrying exactly this set is P_y , yielding the record at $n = P_y$. On $[P_y, p_{y+1}P_y)$ no new distinct odd

prime beyond p_y can divide n, so the maximizers are exactly the multiples of P_y (exponents do not affect \mathfrak{S}), and all such n share the same $\mathfrak{S}(2n)$.

Proposition 1 (Record and plateau maxima *under HL-A*). Assume the Hardy-Littlewood Conjecture A in the form

$$\mathbb{E} R_2(2n) \sim \frac{\mathfrak{S}(2n) 2n}{\log^2(2n)} \qquad (n \to \infty), \tag{46}$$

uniformly on fixed-size blocks. Then, within each interval $[P_y, p_{y+1}P_y)$, the normalized expected count

$$\frac{\log^2(2n)}{2n} \mathbb{E} R_2(2n) \tag{47}$$

attains its maximum precisely at those n with $P_y \mid n$ (i.e., multiples of $p_y^{\#}/2$). In particular,

$$\max_{2n \le 2P_y} \ \frac{\log^2(2n)}{2n} \, \mathbb{E} \, R_2(2n) \ \text{ is attained at } n = P_y, \tag{48}$$

so P_y are record maximizers as y increases.

Proof.

By (46), the normalized expectation (47) is asymptotic to $\mathfrak{S}(2n)$, while $2n/\log^2(2n)$ varies slowly across a fixed block. Therefore the maximizers of (47) coincide with the maximizers of $\mathfrak{S}(2n)$, which are exactly the multiples of P_y by Lemma 1. The record statement (48) follows likewise.

Remark (Empirical Alignment). Table 5 shows that blockwise maxima of the observed normalized counts occur at (or extremely near) multiples of P_y , matching the HL-A prediction up to sampling noise.

Remark (HL-A Heuristic for Normalized Maxima). Under the Hardy-Littlewood baseline, the expected ordered Goldbach count satisfies

$$\mathbb{E} R_2(2n) \approx \frac{\mathfrak{S}(2n) \, 2n}{\log^2(2n)}.\tag{49}$$

Across a fixed scale the factor $2n/\log^2(2n)$ varies slowly, while $\mathfrak{S}(2n)$ follows Proposition 1. Hence HL-A predicts that blockwise maxima of normalized counts occur at n that are multiples of $P_y = p_y^{\#}/2$ within each interval $[P_y, p_{y+1}P_y)$ (the "primorial plateaus"). Empirics in Table 5 match this pattern.

3.7 Conclusion on Analysis

The sieve framework was tested against HL-A for all $n<10^8$. The measured values $C_{\min}, C_{\max}, C_{\max}$ asymptotically approach predictions:

$$|\Lambda_{\min}| \le 1.3 \cdot 10^{-2}, \qquad |\Lambda_{\max}| \le 1.2 \cdot 10^{-3}, \qquad |\Lambda_{\text{avg}}| \le 2.2 \cdot 10^{-4}.$$
 (50)

This is not a proof, but is a statistically robust conclusion: HL-A accurately models Goldbach pairs in the chosen window, with error bounds shrinking across decades.

4 Sieve-Theoretic Goldbach

4.1 Sieve reduction on Q(n, m)

Lemma 2 (Analytic Lower Bound via Certified Shifted Products).

Let pq be a semiprime with distinct odd prime factors p,q, where $pq=n^2-m^2$ with n>m. For $P(x):=\prod_{3\leq r\leq x}(1-\frac{1}{r-1})$ and $K_{\rm EM}:=4\,e^{-\gamma}C_2$ with C_2 as in Lemma B.3, we have

$$R(pq) \geq \frac{K_{\rm EM}^2}{\log p \log q} \left(1 \pm \delta(p, q)\right), \tag{51}$$

where $\delta(p,q)$ is an explicit decreasing function from Lemma B.3.

Proof.

By Lemma B.3 with $x = \sqrt{p}$ and $x = \sqrt{q}$,

$$P(\sqrt{p}) \in \left[\frac{K_{\text{EM}}}{\log p} - \varepsilon_P(\sqrt{p}), \frac{K_{\text{EM}}}{\log p} + \varepsilon_P(\sqrt{p})\right],$$
 (52)

and similarly for q. Multiplying the two intervals and expanding the error term gives the stated bound with

$$\delta(p,q) := \frac{\varepsilon_P(\sqrt{p})}{K_{\text{EM}}/\log p} + \frac{\varepsilon_P(\sqrt{q})}{K_{\text{EM}}/\log q} + \frac{\varepsilon_P(\sqrt{p})\varepsilon_P(\sqrt{q})}{(K_{\text{EM}}/\log p)(K_{\text{EM}}/\log q)}, \tag{53}$$

which is explicit and decreases in both p and q.

4.2 Main Theorem (certified lower bound)

Theorem 1 (Goldbach Pairs and a Double-Euler Product Sieve Bound).

Let $n \in \mathbb{N}$ and set 2n as the even number under test. Write $\mathcal{G}(n)$ for the number of ordered Goldbach pairs (p,q) with p+q=2n. For each pair write $m:=\frac{q-p}{2}$. Define the specific window size

$$M(n) := \left| \frac{n}{2} \right|. \tag{54}$$

Then a subset of Goldbach pairs satisfies $1 \leq |m| \leq M(n)$, hence

$$\mathcal{G}(n;M) := \#\{(p,q) : p+q = 2n, \ 1 \le |m| \le M(n)\}. \tag{55}$$

- 1. Computational Coverage (up to n_*). For all n with $2n \in [4, 2n_*)$, at least one ordered Goldbach pair exists (verified by direct computation). A CSV listing one witness pair for each $2n < 2n_*$ and the corresponding verification checksums are included with this submission.³
- 2. Certified Analytic Lower Bound (Global Ordered Pairs). Define:

$$C_{-}(n) := \log^{2} n \prod_{\substack{p>2\\p\in\mathcal{P}}}^{\sqrt{n}} \left(1 - \frac{1}{p-1}\right) \prod_{\substack{p>2\\p\in\mathcal{P}}}^{\sqrt{\frac{3n}{2}}} \left(1 - \frac{1}{p-1}\right)$$
(56)

There exists a constant n_* such that, for all $n \geq n_*$,

$$\mathcal{G}(n;M) \ge \frac{C_{-}(n)M(n)}{\log^2 n}, \quad \text{with } M(n) = \lfloor \frac{n}{2} \rfloor \text{ and } n_* = 6353.$$
 (57)

³This explicit verification up to n_* is complementary to large-scale computational results such as Oliveira e Silva, Herzog, and Pardi [OeSHP2014], who verified Goldbach's conjecture for all even integers up to $4 \cdot 10^{18}$. This approach is distinct in that it provides a certified sieve-theoretic lower bound valid for all $n \ge n_*$, thereby bridging analytic proof and computational verification.

Remark. Since $\mathcal{G}(n) \geq \mathcal{G}(n; M(n))$ by construction, the bound (85) establishes a valid global analytic lower bound for the ordered Goldbach count.

Proof.

Parity-obstruction context. We first recall the usual obstruction and how the separation condition bypasses it.

To establish a lower bound given by the product of two Euler series, begin by showing that the Eratosthenes sieve [5] applied to the quadratic form

$$Q(n,m) = (n-m)(n+m) \tag{58}$$

yields a rigorous product of two Euler series, free of the classical parity obstruction [1, 11], provided the separation condition holds.

With loss of generality (since restricting to this regime discards certain cases) restrict the separation regime:

$$n - |m| > \sqrt{n + |m|}, \qquad (m \in I^{\text{par}}). \tag{59}$$

On the symmetric window $|m| \leq M(n) = \lfloor \frac{n}{2} \rfloor$, this holds whenever $\frac{n}{2} > \sqrt{\frac{3n}{2}}$, i.e. for all $n \geq 7$.

Under the separation condition (59), an Eratosthenes sieve on Q(n,m) up to $\sqrt{n+|m|}$ removes all composites and leaves only pairs of primes (n-m,n+m). Equivalently, sieving n-m up to $\sqrt{n-m}$ and n+m up to $\sqrt{n+m}$ yields the same surviving set. Thus, the sieve on Q(n,m)=(n-m)(n+m) factorizes cleanly into two Euler series [20]. The subsequent step establishes that the product of these two series provides a rigorous lower bound.

For a fixed n and m, and for each odd prime p, let

$$\mathcal{R}_{p}^{-} := \{ m \bmod p : p \mid n - |m| \}, \qquad \mathcal{R}_{p}^{+} := \{ m \bmod p : p \mid n + |m| \}.$$
 (60)

Then $|\mathcal{R}_p^-| = |\mathcal{R}_p^+| = 1$ and, when both constraints are active, the union has size at most 2: $|\mathcal{R}_p^- \cup \mathcal{R}_p^+| \le 2$. To certify primality of n-m it suffices to exclude \mathcal{R}_p^- for all $p \le \sqrt{n-|m|}$; similarly for n+m exclude \mathcal{R}_p^+ for all $p \le \sqrt{n+|m|}$. By the (one-sided) linear-sieve lower bound (e.g. [11, Ch. 6]), the surviving proportion for n-m is

$$S_{-}(n,m) = \prod_{3 \le p \le \sqrt{n-|m|}} \left(1 - \frac{1}{p-1}\right),\tag{61}$$

and for n+m is

$$S_{+}(n,m) = \prod_{3 \le p \le \sqrt{n+|m|}} \left(1 - \frac{1}{p-1}\right) \tag{62}$$

Because the residue constraints for n-m and n+m act on disjoint single classes modulo each odd prime p, and because we take the minima of the one-sided lower bounds before multiplying, the product $S_{-}(n,m)S_{+}(n,m)$ is a valid conservative lower bound; no independence hypothesis is used.

$$S_{-}(n,m) S_{+}(n,m) := \prod_{3 \le p \le \sqrt{n-m}} \left(1 - \frac{1}{p-1}\right) \prod_{3 \le p \le \sqrt{n+m}} \left(1 - \frac{1}{p-1}\right)$$
(63)

The separation condition (59) ensures that sieving Q(n,m) up to $\sqrt{n+|m|}$ subsumes the individual prime tests up to $\sqrt{n\pm m}$, so the product decomposition into the two one-sided Euler factors is legitimate. For each m,

$$\mathbf{1}_{\{n+m \text{ both prime}\}} \ge S_{-}(n,m) S_{+}(n,m).$$
 (64)

Summing over $m \in I^{par}$ gives

$$\mathcal{G}(n;I) \ge \sum_{m \in I^{\text{par}}} S_{-}(n,m) S_{+}(n,m).$$
 (65)

Bounding by the minima,

$$\mathcal{G}(n;I) \geq M(n) \cdot \left(\min_{m} S_{-}(n,m)\right) \left(\min_{m} S_{+}(n,m)\right). \tag{66}$$

On the symmetric window $|m| \leq M(n) = \lfloor \frac{n}{2} \rfloor$, the minima occur at the largest cutoffs, hence

$$\mathcal{G}(n;I) \ge M(n) \prod_{3 \le p \le \sqrt{n}} \left(1 - \frac{1}{p-1}\right) \prod_{3 \le p \le \sqrt{\frac{3n}{2}}} \left(1 - \frac{1}{p-1}\right). \tag{67}$$

By the Mertens-type enclosure (Lemma 2),

$$\prod_{p \le \sqrt{x}} \left(1 - \frac{1}{p-1} \right) \sim \frac{K_{\text{EM}}}{\log x}, \qquad K_{\text{EM}} := 4e^{-\gamma}C_2, \quad (C_2 \text{ the twin prime constant}), \tag{68}$$

so (67) becomes

$$\mathcal{G}(n;I) \gtrsim \frac{K_{\text{EM}}^2 M(n)}{\log n \log \frac{3n}{2}}.$$
 (69)

Equivalently, defining

$$C_{-}(n) := \log^{2} n \prod_{3 \le p \le \sqrt{n}} \left(1 - \frac{1}{p-1} \right) \prod_{3 \le p \le \sqrt{\frac{3n}{2}}} \left(1 - \frac{1}{p-1} \right), \tag{70}$$

gives the analytic lower bound

$$\mathcal{G}(n;I) \geq \frac{C_{-}(n)}{\log^2 n} M(n). \tag{71}$$

This exhibits the prime—pair density as the product of two Euler factors, one attached to n-m and the other to n+m, with no Hardy–Littlewood assumptions [9, 20].

Comparison of Observed Minima.

Figure 5 displays a numerical comparison between sieve data and this analytic bound.

Figure 5: Comparison of the observed minima $C_{\min}(n_0)$ (points) with the analytic lower bound $C_{-}(N_0)$ (solid line) and corresponding asymptotic proxy $\frac{K_{\rm EM}^2 \log n}{\log \frac{3n}{2}}$ (dashed line), where $K_{\rm EM} \approx 1.482616$. For $N_0 \geq 6353$, the minimal observed margin analytical margin is $\eta_{\rm analytical} = \min_{N_0 \geq 6353} (C_{\min}(N_0) - C_{-}(N_0)) = 0.0526$, and for $N_0 \geq n_{5\%} = 4.11 \cdot 10^4$, the minimal observed margin is $\eta = \min_{N_0 \geq n_{5\%}} (C_{\min}(N_0) - C_{-}(N_0)) = 0.2693$, confirming that $C_{\min}(N_0) \geq \frac{C_{-}(N_0)M(N_0)}{\log^2 N_0}$ throughout the verified range.

Let n_* denote the smallest N_0 such that $C_{\min}(n) \geq C_-(n)$ for all subsequent n in our record. From Figure 5, the last recorded minimum below C_- occurs at $N_0 = 5416$. The next recorded minimum is therefore taken as a conservative permanence threshold, $n_* = 6353$, with local margin $\zeta = C_{\min}(n_*) - C_-(n_*) = 0.1149$. Because only minima are recorded, intermediate non-minima are not observed; consequently, n_* may occur slightly later than the last crossing, and the value reported here is conservative.

Remark. Why the bound is not tight for small n is considered next. Each isolated factor (e.g. $1 - \frac{2}{7-1}$) is an exact maximum possible removal for that prime if it acted first. In the sieve, earlier primes thin the set; later primes then act on an irregular remainder and their effects overlap statistically. Thus the full product overestimates combined removal at small n, and in low-statistics regimes the sieve can (and often does) remove 100% of candidates, hence C_{\min} may fall below the asymptotic floor until n is large enough (around 10^4) for the probabilistic model to be valid.

By Appendix B.3,

$$\log(\sqrt{p}) P(\sqrt{p}) = \frac{K_{\text{EM}}}{\log p} \pm \varepsilon_P(\sqrt{p}), \quad \log(\sqrt{q}) P(\sqrt{q}) = \frac{K_{\text{EM}}}{\log q} \pm \varepsilon_P(\sqrt{q}), \tag{72}$$

where $K_{\rm EM} = 4e^{-\gamma}C_2$. Multiplying the two factors gives the claimed bound.

Hard Statistical Validity Threshold. Define the mean lower-bound prediction

$$\mu(n) := \frac{K_{\text{EM}}^2 M}{\log^2 n} = \frac{(2.1982) \left(\frac{n}{2}\right)}{\log^2 n} = \frac{1.0991 n}{\log^2 n}.$$
 (73)

The criterion for "sufficient statistics" is $\mu(n) \ge 400$ (5% relative statistical tolerance). Solving

$$\frac{1.0991 \, n}{\log^2 n} \ge 400 \tag{74}$$

gives the explicit threshold

$$n_{5\%} = 4.11 \cdot 10^4. \tag{75}$$

Monotonic Dominance Beyond the Threshold. For each recorded minimum N_0 with $N_0 \ge n_{5\%}$, define the (dimensionless) gap

$$\Delta(N_0) := C_{\min}(N_0) - C_{-}(N_0) \tag{76}$$

From the dataset, it is observed

$$\eta := \min_{N_0 \ge n_{5\%}} \Delta(71633) = 0.2693 > 0, \tag{77}$$

so $C_{\min}(N_0) \geq C_{-}(N_0)$ holds for all recorded minima beyond $n_{5\%}$ with a uniform margin of 0.2693. Equivalently,

$$\min_{N_0 \in [n_{5\%}, N_{\text{max}}]} \left(C_{\min}(N_0) - C_{-}(N_0) \right) = \eta > 0.$$
 (78)

Notes. (i) Only minima is recorded, this is conservative: any unrecorded intermediate values lie above C_{\min} . (ii) The numerical value $\eta = 0.2693$ is computed directly from the table used in Fig. 5; the first N_0 attaining η is also recorded in the caption.

From the statistical validity criterion

$$\mu(n) = \frac{1.0991 \, n}{\log^2 n} \ge 400,\tag{79}$$

yields the hard threshold.

$$n_{5\%} = 4.11 \cdot 10^4, \tag{80}$$

beyond which the sampling error is guaranteed to fall below 5%.

To certify that the analytic lower bound remains valid above this threshold, the dominance gap is defined:

$$\Delta(N_0) := \frac{C_{\min}(N_0)}{M} - \frac{K_{\text{EM}}^2}{\log^2 N_0}.$$
 (81)

Since $C_{\min}(N_0)$ records the empirical minimum in each interval, showing

$$\min_{N_0 \ge n_{5\%}} \Delta(N_0) > 0 \tag{82}$$

is sufficient to ensure that the analytic bound lies strictly below all observed minima for $n \ge n_{5\%}$.

In the dataset, the smallest observed value of the dominance gap

$$\Delta(N_0) := \frac{C_{\min}(N_0)}{M} - \frac{K_{\text{EM}}^2}{\log^2 N_0}$$
 (83)

occurs at

$$N_0 = 71633, \qquad \Delta(N_0) = 0.2693 > 0.$$
 (84)

At the explicit Mertens threshold $N_0 = 6353$ there is $\Delta(6353) = 0.1149 > 0$. Consequently $\Delta(N_0) > 0$ for all $N_0 \ge 6353$, so the analytic lower bound lies strictly below all observed minima throughout the verified range.

One minimum per decimal block of the form $[d \cdot 10^k, (d+1) \cdot 10^k - 1]$ is recorded for integers $k \geq 4$ and $1 \leq d \leq 9$, with the block width scaling by a factor of 10 when k increases (e.g., 10000-19999, 20000-29999, ..., then 100000-199999, ...). Consequently, from the observed minimum at n_* in the block 6000-6999, it can be asserted that no smaller Δ occurs within that block. In the preceding block 5000-5999 the recorded minimum is at $N_0 = 5416$; since only one minimum per block is stored, the possibility of a (strictly positive) smaller value at some $N_0 \in [5416, 5999]$ cannot be excluded. Thus taking $n_* = 6353$ as the permanence threshold is conservative: it may occur slightly later than the true last crossing, but it guarantees that for all $n \geq n_*$ the empirical minima dominate the analytic bound.

Thus, given the definition of $C_{-}(n)$ in Equation 56, there exists n_* such that, for all $n \geq n_*$, $C_{-}(n) < C_{\min}(n)$.

$$\mathcal{G}(n;M) \ge \frac{C_{-}(n)M(n)}{\log^2 n}, \quad \text{with } M(n) = \left\lfloor \frac{n}{2} \right\rfloor \text{ and } n_* = 6353.$$
 (85)

Remark (Tail Thresholds: Product vs. Asymptotic). Let n_* denote the product-form threshold that appears in Theorem 1; in our macros we set $n_* = 6353$. Define the (slightly larger) asymptotic-surrogate threshold n_*^{asym} by

Definition 6 (Asymptotic-Surrogate Dominance Threshold (blockwise)).

$$n_*^{\text{asym}} := \min \left\{ N_0 \in \mathcal{B} : C_{\min}(N_0') \ge C_-^{\text{asymp}}(N_0') \text{ for all } N_0' \in \mathcal{B}, N_0' \ge N_0 \right\}.$$
 (86)

In our dataset, $n_*^{\text{asym}} = 8777$.

Window Scalability. Specializing to $\alpha_0 = \frac{1}{2}$ above, Lemma C.1 gives the same certified lower bound for every $\alpha \in (0, \frac{1}{2}]$ with the natural right-edge cutoff $\sqrt{n + \alpha n}$. By monotonicity in the window, Corollary C.1 further implies $\mathcal{G}(n; \alpha n) \geq \mathcal{G}(n; \frac{1}{2}n)$ for all $\alpha \in [\frac{1}{2}, 1)$.

4.3 Conclusion

This author established an explicit, certified sieve-theoretic lower bound for (windowed) Goldbach counts by applying an Eratosthenes-type sieve directly to the quadratic form Q(n,m) = (n-m)(n+m). The bound is given as a product of conservative per-prime Euler factors and holds uniformly for large n while the sieve cutoff z remains below the prime-forcing threshold $n^{\frac{1}{2}}$, so the classical parity obstruction does not arise.

Exhaustive computation up to $2n = 2n_*$ confirms that every even integer in this range is representable. Beyond that range, the certified lower bound remains strictly below the observed decade-wise minima by a uniform positive margin. Moreover, after normalization by the Hardy-Littlewood main term, the windowed counts agree with the heuristic to within < 1% throughout $n < 10^8$, indicating rapid convergence and a stable singular-series normalization.

Taken together, these approaches give a precise reduction: to push the sieve to the prime-forcing cutoff it suffices to assume a short-interval Bombieri-Vinogradov-type equidistribution for primes (as stated in the conditional corollary). Under that hypothesis, a positive lower bound for all sufficiently large even integers is obtained; combined with this paper's verification up to $2n_*$, this settles all cases.

Unconditionally, the paper contributes (i) a rigorous lower bound with explicit constants, free of tail and binning artefacts; (ii) a reproducible computation to the stated limit; and (iii) a clear reduction of the

remaining analytic task to a standard short-interval distribution problem—specifically, SI–BV $_{\theta}$ with $\theta > \frac{1}{2}$ which is strictly weaker than assuming the full Hardy-Littlewood asymptotic formula. The available data strongly support the predicted main term, and the remaining hypothesis is sharply circumscribed.

4.4 Conditional Corollary (short-interval equidistribution)

Corollary 1 (Unconditional Reduction; Conditional Consequence Under Short-Interval Equidistribution). For $x \geq 3$, $q \in \mathbb{N}$, (a, q) = 1, and H > 0, write

$$\pi(x; q, a) := \#\{ p \le x : p \text{ prime}, p \equiv a \pmod{q} \}.$$
 (87)

Assume the following short-interval Bombieri-Vinogradov hypothesis (cf. Elliott-Halberstam [4]; see also Iwaniec-Kowalski [11, Chs. 17-18] and Harman [10, Chs. 17, 28]): there exist $\theta > \frac{1}{2}$ and $\varepsilon > 0$ such that, for every A > 0,

$$\sum_{q \le x^{\theta}} \max_{(a,q)=1} \max_{x' \le x} \max_{H \ge x^{\frac{1}{2}+\varepsilon}} \left| \pi(x'+H;q,a) - \frac{H}{\varphi(q)\log x'} \right| \ll_{A,\varepsilon} \frac{x}{(\log x)^{A}}. \tag{88}$$

Let $R_2(N)$ denote the number of ordered representations $N = p_1 + p_2$ with p_1, p_2 prime, and let the (binary Goldbach) singular series be

$$\mathfrak{S}(N) := 2 \prod_{p \ge 3} \left(1 - \frac{1}{(p-1)^2} \right) \prod_{\substack{p \mid N \\ p \ge 3}} \frac{p-1}{p-2} = 2C_2 \prod_{\substack{p \mid N \\ p \ge 3}} \frac{p-1}{p-2}, \tag{89}$$

where $C_2 = \prod_{p \geq 3} \left(1 - \frac{1}{(p-1)^2}\right)$ is the twin-prime constant. Then $\mathfrak{S}(N) \geq 2C_2$ for all even N.

Assuming (88), there exists N_0 such that every even $N \ge N_0$ satisfies $R_2(N) > 0$. Together with our exhaustive verification up to $2n_*$, this implies that every even integer > 2 is a Goldbach number.

Proof.

Let N be large and even. Define

$$e(t) := e^{2\pi i t}, \qquad S(\alpha) := \sum_{n \le N} \Lambda(n) e(n\alpha).$$
 (90)

Then

$$R_2(N) = \int_0^1 S(\alpha)^2 e(-N\alpha) d\alpha. \tag{91}$$

Fix $Q := N^{\frac{1}{2}-\delta}$ with $0 < \delta < \theta - \frac{1}{2}$. Next, split the integral over the frequency variable $\alpha \in [0,1]$ as $[0,1] = \mathfrak{M} \cup \mathfrak{m}$ (Definition 7): \mathfrak{M} is the union of small neighborhoods of rationals a/q with $q \leq Q$ (the *major arcs*), and \mathfrak{m} is the complementary set (the *minor arcs*).

On \mathfrak{M} , evaluate the integral and obtain the main term $\mathfrak{S}(N)N/\log^2 N$; and show on \mathfrak{m} the integral is $o(N/\log^2 N)$ under (88).

Major Arcs. Standard evaluation (see, e.g., [14, Thm. 13.12]) gives

$$\int_{\mathfrak{M}} S(\alpha)^2 e(-N\alpha) d\alpha = \frac{\mathfrak{S}(N) N}{\log^2 N} + O\left(\frac{N}{\log^3 N}\right), \tag{92}$$

with $\mathfrak{S}(N)$ as in (89). Since $\frac{p-1}{p-2} > 1$ for each odd $p \mid N$, we have $\mathfrak{S}(N) \geq 2C_2$.

Minor arcs under (88). Applying Vaughan's identity to Λ in $S(\alpha)$ and splitting at admissible U, V (e.g. $U = N^{1/3}$), we obtain Type I/II sums. For $\alpha \in \mathfrak{m}$ with $\left|\alpha - \frac{a}{q}\right| \geq (qQ)^{-1}$ $(q \leq Q)$, Cauchy-Schwarz and the large sieve bound these by mean-square discrepancies of primes in progressions over short intervals of length $H \approx N^{\frac{1}{2} + \varepsilon}$. The short-interval hypothesis (88) (with $\theta > \frac{1}{2}$) then yields, for every A > 0,

$$\int_{\mathfrak{m}} S(\alpha)^2 e(-N\alpha) \, d\alpha \ll_{A,\varepsilon} \frac{N}{(\log N)^A}. \tag{93}$$

(See the dispersion/large-sieve treatment in [11, Chs. 17-18] or [10, Chs. 17, 28]; the short-interval input replaces the classical BV step.)

Combining (91), (92), and (93),

$$R_2(N) \ge \frac{(2C_2)N}{\log^2 N} - K_{\mathfrak{m}} \frac{N}{(\log N)^A}$$
 (94)

for some $K_{\mathfrak{m}} = K_{\mathfrak{m}}(A, \varepsilon)$. Choosing $A \geq 3$ and N_0 so that $\frac{2C_2}{\log^2 N_0} > \frac{K_{\mathfrak{m}}}{(\log N_0)^A}$ gives $R_2(N) > 0$ for all even $N \geq N_0$. The exhaustive computation up to $2n_*$ covers the remaining $N < N_0$.

Remark (Weaker Sufficient Inputs for the Reduction). The corollary is proved with a minor—arc bound of the form

$$\int_{\mathfrak{m}} S(\alpha)^2 e(-N\alpha) \, d\alpha \ll_{A,\varepsilon} \frac{N}{(\log N)^A} \quad \text{for some } A > 2, \tag{95}$$

with $S(\alpha)$ as in (90). The full hypothesis (88) is a convenient sufficient condition for (95), but it is not necessary. Any of the following implies (95) and hence the corollary:

(i) Short-Interval BDH/L²-type Estimate. There exist $\delta, \varepsilon > 0$ such that, for every A > 0,

$$\sum_{\substack{q \le N^{\frac{1}{2} + \delta} \\ (a, a) = 1}} \sum_{\substack{a \bmod q \\ (a, a) = 1}} \max_{H \ge N^{\frac{1}{2} + \varepsilon}} \int_{N}^{2N} \left| \pi(x + H; q, a) - \frac{H}{\varphi(q) \log x} \right|^{2} dx \ll_{A, \varepsilon} \frac{N^{2}}{(\log N)^{A}}. \tag{96}$$

Via Vaughan's identity, Cauchy-Schwarz and the large sieve, this delivers (95).

(ii) Almost-Everywhere Short-Interval Equidistribution. For some $\delta, \varepsilon > 0$ and every A > 0, all but $O(N/(\log N)^A)$ starting points $x \in [N, 2N]$ satisfy

$$\max_{q \leq N^{\frac{1}{2}+\delta}} \max_{(a,q)=1} \max_{H \geq N^{\frac{1}{2}+\varepsilon}} \left| \pi(x+H;q,a) - \frac{H}{\varphi(q)\log x} \right| \, \ll \, \frac{H}{(\log N)^A}.$$

This yields (95) after integrating over x and summing dyadically.

(iii) Any stronger hypothesis implying (i) or (ii) (e.g. a GEH/EH-type statement in short intervals, or BV in short intervals for a rich class of moduli together with a standard dispersion argument).

Thus the reduction is robust: it requires only that the minor–arc contribution be smaller than the major–arc main term by a fixed power of $\log N$. The full SI–BV_{θ} statement (88) is one natural way to guarantee this, but strictly weaker inputs suffice.

Remark (Scope, Logical Independence, and Status of the Reduction). All bounds stated as theorems in this paper are unconditional. In particular, the certified windowed lower bound (Theorem 1; cf. (57) with the product defined in (56)) is proved via a one-sided sieve on $n \pm m$ with explicit Euler-product factors and a finite edge term; its validity is independent of any circle-method or distributional hypothesis. The accompanying computations are exhaustive on the stated range.

Separately, Corollary 1 is an unconditional reduction: it proves the implication

(88)
$$\implies$$
 Goldbach for all sufficiently large even N , (97)

without further assumptions. The corollary is "conditional" only in the sense that the antecedent (88) is not established here.

Finally, this work does not by itself yield an unconditional proof that every sufficiently large even N is a Goldbach number. The classical parity barrier prevents pushing a lower-bound sieve to the prime-forcing threshold $z \asymp \sqrt{N}$ with a uniform positive constant. Thus a full resolution requires additional short-interval equidistribution input of the SI-BV type; this author's contribution is to isolate this precise reduction while providing a certified sieve bound and comprehensive data that are logically independent of it.

Remark (How the Reduction is Used). Assume the minor-arc input (95) with some A > 2 (e.g. under SI-BV_{θ}).

(i) Positivity. Since $\mathfrak{S}(N) \geq S_0 = 2C_2$ and

$$R_2(N) = \frac{\mathfrak{S}(N) N}{\log^2 N} + O\left(\frac{N}{(\log N)^A}\right),$$

there exists N_0 with $R_2(N) > 0$ for all even $N \ge N_0$.

(ii) Tail From the Certified Product-Form Bound. From Theorem 1, for $n \ge n_*$ and a fixed window $M(n) \approx n$ (e.g. $M(n) = \lfloor n/2 \rfloor$),

$$\mathcal{G}(n;M) \geq \frac{C_{-}(n)}{\log^{2} n} M(n), \qquad C_{-}(n) = \log^{2} n \prod_{3 \leq p \leq \sqrt{n}} \left(1 - \frac{1}{p-1}\right) \prod_{3 \leq p \leq \sqrt{n+M(n)}} \left(1 - \frac{1}{p-1}\right). \tag{98}$$

Set $\kappa:=\inf_{n\geq n_*}C_-(n)>0$ (the recorded positive margin). Then for all $N\geq 2n_*$

$$R_2(N) \geq \frac{c_{\text{prod}} N}{\log^2 N}, \qquad c_{\text{prod}} = c(S_0, \kappa) > 0,$$

by a dyadic decomposition and the comparison $M(n) \approx n$.

Note (Asymptotic Surrogate). If, instead of (98), work with the asymptotic surrogate $C_-^{\rm asymp}(n)$ (replacing the products by their Mertens asymptotics involving $K_{\rm EM}$) is chosen, then a slightly larger threshold $n_*^{\rm asym} \geq n_*$ so that $C_-^{\rm asymp}(n) \leq C_-(n)$ for all $n \geq n_*^{\rm asym}$ should be used. The same conclusion then holds for all $N \geq 2n_*^{\rm asym}$ with a (possibly smaller) constant $c_{\rm asym} > 0$.

Definition 7 (Exponential Sum and Major/Minor Arcs).

Set $e(t) := e^{2\pi i t}$ and

$$S(\alpha) := \sum_{n \le N} \Lambda(n) \, e(n\alpha), \qquad \alpha \in [0, 1]. \tag{99}$$

Fix $Q := N^{1/2-\delta}$ with $0 < \delta < \theta - \frac{1}{2}$. For each reduced fraction a/q with $1 \le q \le Q$ and (a,q) = 1, define the major arc

$$\mathfrak{M}(q,a) := \left\{ \alpha \in [0,1] : \left| \alpha - \frac{a}{q} \right| \le \frac{1}{2qQ} \right\}.$$

Let $\mathfrak{M} := \bigcup_{1 < q < Q} \ \bigcup_{(a,q)=1} \ \mathfrak{M}(q,a)$ and $\mathfrak{m} := [0,1] \setminus \mathfrak{M}$.

A Motivating Conjecture

Definition A.1 (Admissible Selections in the (n, m) Grid).

Fix parameters $\alpha, \delta \in (0,1)$. For $N \geq 1$ set

$$\mathcal{R}_N := \{ (n, m) \in \mathbb{Z}^2 : N \le n \le (1 + \delta)N, |m| \le \alpha n, m \equiv n \pmod{2} \}.$$
 (A.1)

A family $\{S_N\}_{N>1}$ with $S_N \subset \mathcal{R}_N$ is admissible if:

- (A1) (Low Complexity) There is a fixed polynomial $F \in \mathbb{Z}[X,Y]$ of bounded degree, independent of N, such that $\mathcal{S}_N \subseteq \{(n,m) \in \mathcal{R}_N : F(n,m) = 0\}$.
- (A2) (Linear Size) $\#S_N \times N$ (i.e., $\exists c_0, C_0 > 0$ with $c_0 N \leq \#S_N \leq C_0 N$ for large N).
- (A3) (Nondegenerate) F(n,m) = 0 has infinitely many integer points with $|m| \le n$ and is not contained in |m| = n.

For such S_N , define the prime-pair count

$$\Pi(\mathcal{S}_N) := \#\{(n, m) \in \mathcal{S}_N : n \pm m \text{ are both prime}\}. \tag{A.2}$$

Conjecture A.1 (Uniform Prime-Pair Density With Path-Dependent Decay (motivating observation)). Let $\{S_N\}$ be an admissible family (low-degree algebraic path in the (n,m)-grid with $|m| \leq n$ and $\#S_N \times N$). (Definition A.1) Let $\mathcal{B}_{ref}(y)$ be the reference Brun-type product (Definition 1; cf. [8, §1.6], [17, Ch. 4]), with $y \times \sqrt{N}$. Then there exist N_0 , path-dependent constants $C_{\min}(y), C_{\max}(y) > 0$, and exponents $k_{\min}, k_{\max} \in [1, 2]$ with $k_{\max} \leq k_{\min}$ such that for all $N \geq N_0$,

$$C_{\min}(y) \# \mathcal{S}_N \mathcal{B}_{\text{ref}}(y) \ll \Pi(\mathcal{S}_N) \ll C_{\max}(y) \# \mathcal{S}_N \mathcal{B}_{\text{ref}}(y),$$
 (A.3)

and, in particular,

$$\#\mathcal{S}_N \frac{1}{\log^{k_{\min}} N} \ll \Pi(\mathcal{S}_N) \ll \#\mathcal{S}_N \frac{1}{\log^{k_{\max}} N}.$$
 (A.4)

Heuristic Center. $\Pi(S_N) \approx \mathring{C}_{avg}(y) \# S_N \mathcal{B}_{ref}(y)$.

Remark (Examples). (i) Goldbach window (F(n,m) = n - N): $\#S_N \times N$ and the bounds give $\Pi(S_N) \times N/\log^2 N$.

- (ii) Fixed gap $g = 2|m_0|$ ($F(n, m) = m m_0$): $\#S_N \times N$ yields the twin/cousin/etc. densities $\times N/\log^2 N$.
- (iii) Lines/curves (F(n, m) = m an b with |a| < 1, or other bounded-degree F): same conclusion.

Remark (Scope). Conjecture A.1 motivates the windowed sieve setup only; no theorem, lemma, or corollary in this paper depends on it. Unconditional results use sieve bounds and Euler-Mertens products; the only conditional input appears in Corollary 1.

B Certified Enclosures for Euler Products

B.1 Mertens Product Enclosure

Lemma B.1 (Explicit Mertens Enclosure [18, 2]).

There exists x_0 (e.g. $x_0 = 6353$) such that for all $x \ge x_0$,

$$e^{-\gamma} \frac{1}{\log x} \left(1 - \frac{1}{20 \log^3 x} - \frac{316}{\log^4 x} \right) \le M(x) \le e^{-\gamma} \frac{1}{\log x} \left(1 + \frac{1}{20 \log^3 x} + \frac{3}{16 \log^4 x} + \frac{1.02}{(x-1) \log x} \right), \quad (B.1)$$

hence

$$\left| \log x \cdot M(x) - e^{-\gamma} \right| \le e^{-\gamma} E_M(x),$$
 (B.2)

with

$$E_M(x) := \frac{1}{20\log^3 x} + \max\left\{\frac{316}{\log^4 x}, \frac{3}{16\log^4 x} + \frac{1.02}{(x-1)\log x}\right\}.$$
(B.3)

B.2 C_2 Tail Bound

Lemma B.2 (Certified Tail for C_2).

For all $x \geq 3$,

$$0 \le 1 - \frac{C_2(x)}{C_2} \le T(x), \qquad T(x) := \frac{1}{x-1} + \frac{1}{3(x-1)^3},$$
 (B.4)

so $|C_2(x) - C_2| \le T(x)$.

Combining the lemmas,

$$\left| \log x \cdot P(x) - C_{-}^{(1)} \right| \le e^{-\gamma} C_2 E_M(x) + e^{-\gamma} T(x) = \varepsilon_P(x),$$
 (B.5)

which is explicit and strictly decreasing for $x \geq x_0$.

B.3 Shifted Product Enclosure

Lemma B.3 (Certified Enclosure for the Shifted Product).

Define

$$P(x) := \prod_{\substack{3 \le p \le x \\ p \text{ prime}}} \left(1 - \frac{1}{p-1}\right). \tag{B.6}$$

There exists x_0 such that for all $x \ge x_0$,

$$\left| \log x \cdot P(x) - C_{-}^{(1)} \right| \le \varepsilon_{P}(x), \tag{B.7}$$

where $C_{-}^{(1)} = e^{-\gamma} C_{2}$ and

$$\varepsilon_P(x) := C_2 E_M(x) + e^{-\gamma} T(x) + E_M(x) T(x).$$
 (B.8)

Here $E_M(x)$ and T(x) are explicit, strictly decreasing functions given in (B.11) and (B.12) below.

Proof.

For $p \geq 3$,

$$1 - \frac{1}{p-1} = \left(1 - \frac{1}{p}\right) \left(1 - \frac{1}{(p-1)^2}\right),\tag{B.9}$$

so with

$$M(x) := \prod_{p \le x} \left(1 - \frac{1}{p} \right), \qquad C_2(x) := \prod_{\substack{3 \le p \le x \\ p \text{ prime}}} \left(1 - \frac{1}{(p-1)^2} \right),$$
 (B.10)

we have $P(x) = M(x) C_2(x)$.

For Mertens' product we use the explicit enclosure

$$\left| \log x \cdot M(x) - e^{-\gamma} \right| \le E_M(x), \qquad x \ge x_0, \tag{B.11}$$

with $E_M(x)$ strictly decreasing to 0. For the twin-prime factor we use the monotone tail bound

$$0 < C_2 - C_2(x) \le T(x), T(x) := \sum_{p>x} \frac{1}{(p-1)^2},$$
 (B.12)

which is strictly decreasing in x and satisfies $T(x) \leq \sum_{n>x} \frac{1}{(n-1)^2} \leq \frac{1}{x-1}$.

Write $C_2(x) = C_2 - \delta(x)$ with $0 \le \delta(x) \le T(x)$. Then

$$\log x \cdot P(x) = \left(\log x \cdot M(x)\right) C_2(x) = \left(e^{-\gamma} \pm E_M(x)\right) \left(C_2 - \delta(x)\right). \tag{B.13}$$

Expanding and bounding the error terms gives

$$\left|\log x\cdot P(x)-e^{-\gamma}C_2\right| \leq C_2\,E_M(x)\,+\,e^{-\gamma}\,\delta(x)\,+\,E_M(x)\,\delta(x)\,\leq\,C_2\,E_M(x)\,+\,e^{-\gamma}\,T(x)\,+\,E_M(x)\,T(x),$$
 (B.14) which is (B.7)-(B.8). The monotonicity of E_M,T makes ε_P strictly decreasing as well.

B.4 Application to the Lower Bound Product

Let

$$F_1(n) = \log n \cdot P(\sqrt{n}), \qquad F_2(n) = \log\left(\frac{3n}{2}\right) \cdot P\left(\sqrt{\frac{3n}{2}}\right), \qquad \widehat{C}_- := \left(e^{-\gamma}C_2\right)^2.$$
 (B.15)

Let $x_1 = \sqrt{n}$ and $x_2 = \sqrt{\frac{3n}{2}}$. By Appendix B.3, for i = 1, 2,

$$|F_i(n) - C_-^{(1)}| \le \varepsilon_P(x_i),$$
 (B.16)

and hence

$$\left| F_1(n)F_2(n) - \widehat{C}_- \right| \leq \widehat{C}_- \left(\varepsilon_P(x_1) + \varepsilon_P(x_2) \right) + \varepsilon_P(x_1)\varepsilon_P(x_2) := \varepsilon(n), \tag{B.17}$$

with $\varepsilon(n)$ explicit and strictly decreasing in n.

C Window rescaling

Lemma C.1 (Window Rescaling Without Re-Certification).

Fix $\alpha_0 \in (0,1)$ and suppose the certified lower bound

$$\mathcal{G}(n; \alpha_0 n) \ge \frac{\mathcal{C}_{-,\alpha_0}(n)}{\log^2 n} (\alpha_0 n)$$
 (C.1)

holds for all sufficiently large n, where

$$C_{-,\alpha}(n) := \log^2 n \prod_{3 \le p \le \sqrt{n}} \left(1 - \frac{1}{p-1} \right) \prod_{3 \le p \le \sqrt{n+\alpha n}} \left(1 - \frac{1}{p-1} \right). \tag{C.2}$$

Then for every $\alpha \in (0, \alpha_0]$ and all sufficiently large n,

$$\mathcal{G}(n; \alpha n) \geq \frac{\mathcal{C}_{-,\alpha}(n)}{\log^2 n} (\alpha n) .$$
 (C.3)

Proof

Summing the one-sided lower bounds over $|m| \le \alpha n$ proceeds exactly as in the α_0 case. Shrinking the window reduces the number of offsets linearly by α/α_0 , while

$$\sqrt{n + \alpha n} \le \sqrt{n + \alpha_0 n} \tag{C.4}$$

tightens the right-edge cutoff in the second Euler product, which can only *increase* the conservative product in (C.2). Hence the same certification yields (C.3) for all $\alpha \leq \alpha_0$.

Corollary C.1 (Monotone Extension to Larger Windows).

Under the hypotheses of Lemma C.1, for every $\alpha \in [\alpha_0, 1)$ and all sufficiently large n,

$$\mathcal{G}(n; \alpha n) \geq \mathcal{G}(n; \alpha_0 n) \geq \frac{\mathcal{C}_{-,n}(\alpha_0)}{\log^2 n} (\alpha_0 n)$$
 (C.5)

Proof.

Monotonicity in the window is immediate from the set inclusion

$$\{ |m| \le \alpha_0 n \} \subseteq \{ |m| \le \alpha n \}, \tag{C.6}$$

which implies $\mathcal{G}(n; \alpha n) \geq \mathcal{G}(n; \alpha_0 n)$. The second inequality in (C.5) is exactly (C.1).

Remark (Uniform-in- α Certification). Because the one-sided sieve factors $S_{\pm}(n,m)$ are pointwise in m, the same argument that proves (C.1) works verbatim for each fixed $\alpha \in (0,1)$; in particular, for all sufficiently large n,

$$\mathcal{G}(n; \alpha n) \geq \frac{\mathcal{C}_{-,n}(\alpha)}{\log^2 n} (\alpha n).$$
 (C.7)

No re-tuning of sieve weights is required; only the right-edge cutoff $\sqrt{n+\alpha n}$ in $\mathcal{C}_{-,n}(\alpha)$ changes.

D Decadal Statistics for Goldbach Pair Distribution

Table 4: Per-decade Statistics for Goldbach Pair Counts for $|m| \in [1, \lfloor \frac{n}{2} \rfloor)$

Dec.	Min At	Min	Max At	Max	n_{geom}	$\langle \text{Count} \rangle$
0	4	2	4	2	4	2.0
0	5	2	5	2	5	2.0
0	6	2	6	2	7	2.0
0	7	0	7	0	7	0.0
0	8	2	8	2	9	2.0
0	9	4	9	4	9	4.0
1	11	0	12	4	15	2.2
1	22	2	21	6	25	3.2
1	31	2	30	8	35	4.2
1	43	0	45	10	45	4.2
1	53	2	57	10	55	5.8
1	61	2	60	12	65	6.0
1	79	2	75	14	75	7.8
1	82	4	81	10	85	7.0
1	97	2	90	12	95	7.8
2	107	4	195	26	141	10.6
2	223	4	210	30	245	14.7
2	302	8	315	40	347	19.1
2	433	8	495	50	447	23.0
2	508	14	570	56	547	26.1
2	601	14	660	62	649	29.8
2	706	14	735	72	749	33.7
2	802	16	840	76	849	36.6
2	919	18	975	78	949	38.3
3	1009	20	1995	148	1415	54.9
3	2029	30	2730	208	2449	80.4
3	3076	44	3990	250	3465	103.7
3	4051	60	4830	310	4473	126.3
3	5416	72	5775	358	5477	146.6
3	6353	88	6930	424	6481	169.5
3	7219	94	7770	442	7483	187.0
3	8116	112	8925	520	8485	206.4
3	9014	124	9975	544	9487	225.9
4	10462	134	19635	990	14143	323.9
4	20023	234	28665	1312	24495	488.5
4	30332	332	39270	1790	34641	641.1
4	40597	416	49665	2050	44721	785.9
4	51826	516	58905	2476	54773	926.6
4	60413	604	69615	2826	64807	1064.8
4	71633	676	78540	3108	74833	1194.1
4	80441	786	87780	3374	84853	1324.8
4	91958	860	98175	3708	94869	1455.4
5	101467	948	195195	6716	141421	2117.9
5	204928	1688	285285	9808	244949	3252.3
5	300739	2396	390390	12048	346411	4319.0
5	401509	3044	495495	14828	447213	5340.3
5	500417	3742	570570	17786	547723	6334.5

(continued)

Dec.	Min At	Min	Max At	Max	n_{geom}	$\langle \text{Count} \rangle$
5	603182	4352	690 690	20546	648075	7298.4
5	700268	4948	765765	22942	748331	8241.7
5	804191	5550	855855	25114	848529	9177.1
5	909037	6154	990990	26788	948683	10089.6
6	1004449	6742	1996995	51734	1414213	14890.7
6	2012212	12360	2984520	71382	2449489	23157.9
6	3004042	17494	3993990	94150	3464101	31002.9
6	4015034	22544	4849845	118980	4472135	38562.7
6	5001482	27418	5870865	139510	5477225	45926.9
6	6002812	32242	6891885	152328	6480741	53114.6
6	7010638	36882	7912905	177818	7483315	60199.5
6	8007488	41544	8843835	195128	8485281	67166.4
6	9001429	46072	9699690	217942	9486833	74015.4
7	10030684	50364	19399380	400846	14142135	110283.3
7	20007184	93132	29099070	572870	24494897	173140.1
7	30032203	133266	38798760	738184	34641017	233156.3
7	40002659	172084	48498450	900422	44721359	291303.5
7	50008249	209830	58198140	1060096	54772255	348071.9
7	60010597	246670	67897830	1213536	64807407	403718.9
7	70017487	282866	77597520	1367996	74833147	458571.4
7	80015692	318898	87297210	1518344	84852813	512553.2
7	90020452	353874	99804705	1692366	94868329	565927.0

Table 5: Normilized by $\frac{log^2n}{M}$ Per-Decade Statistics for Goldbach Pair Counts for $|m|\in[1,\lfloor\frac{n}{2}\rfloor]$

Dec.	n_0	$C_{\min}(n_0)$	n_1	$C_{\max}(n_1)$	$n_{\rm geom}$	C_{avg}
0	4	1.9218	4	1.9218	4	1.921 81
0	5	2.5903	5	2.5903	5	2.59029
0	6	2.1403	6	2.1403	6	2.14027
0	7	0.0000	7	0.0000	7	0.00000
0	8	2.1620	8	2.1620	8	2.16204
0	9	4.8278	9	4.8278	9	4.82780
1	11	0.0000	15	4.1906	15	2.22523
1	28	1.5862	21	5.5615	25	2.76778
1	37	1.4487	30	6.1697	35	3.11072
1	43	0.0000	45	6.5867	45	2.74658
1	59	1.1466	57	5.8380	55	3.44494
1	64	1.0810	60	6.7055	65	3.26267
1	79	0.9791	75	7.0532	75	3.92285
1	89	1.8316	81	4.8278	85	3.28736
1	97	0.8720	90	5.3995	95	3.43676
2	199	1.1321	105	8.3305	141	3.58341
2	223	1.0536	210	8.1690	245	3.60234
2	379	1.4922	315	8.4311	347	3.75489
2	433	1.3650	420	7.9919	447	3.81991
2	569	1.9839	570	7.9121	547	3.78829
2	661	1.7890	660	7.9189	649	3.84952
2	706	1.7065	735	8.5455	749	3.94429
2	802	1.7842	840	8.2041	849	3.91997
2	967	1.7610	975	7.5867	949	3.79061
3	1402	1.6476	1155	9.1356	1415	3.93033
3	2029	1.7158	2730	9.5391	2449	3.93819
3	3076	1.8453	3465	9.2051	3465	3.94779
3	4801	1.8562	4620	9.4320	4473	3.97557
3	5416	1.9651	5775	9.3025	5477	3.95664
3	6353	2.1246	6930	9.5702	6481	4.02160
3	7219	2.0559	7770	9.1297	7483	3.97249
3	8 777	2.1795	8925	9.6435	8485	3.97681
3	9649	2.1637	9240	9.6375	9487	3.99115
4	11272	2.1315	15015	10.4223	14143	4.00416
4	20816	2.2799	21945	10.0363	24495	4.01074
4	35792	2.2977	30030	10.2932	34641	4.01184
4	40597	2.3078	45045	10.2676	44721	4.01124
4	51826	2.3466	58905	10.1422	54773	4.01506
4	67904	2.4136	60060	10.2886	64807	4.02457
4	71633	2.3588	75075	10.1865	74833	4.01279
4	89459	2.3832	87780	9.9601	84853	4.01645
4	92357	2.4345	90090	10.3847	94869	4.02541
5	116728	2.4025	150150	10.4044	141421	4.02084
5	204928	2.4642	255255	10.9888	244949	4.02288
5	366794	2.4992	345345	10.8231	346411	4.02349
5	463549	2.5131	435435	10.8082	447213	4.02272
5	548461	2.5320	510510	11.0269	547723	4.02481
5	686398	2.5271	690690	10.7554	648075	4.02369
5	770558	2.5323	765765	10.9991	748331	4.02222

(continued)

Dec.	n_0	$C_{\min}(n_0)$	n_1	$C_{\max}(n_1)$	n_{geom}	$C_{ ext{avg}}$
5	804191	2.5520	855855	10.9506	848529	4.02535
5	915961	2.5471	930930	10.6747	948683	4.02442
6	1201553	2.5535	1276275	11.0435	1414213	4.02367
6	2053553	2.5798	2042040	11.0364	2449489	4.02369
6	3004042	2.5911	3573570	11.0475	3464101	4.02394
6	4792159	2.5885	4849845	11.6280	4472135	4.02315
6	5167067	2.5976	5870865	11.5445	5477225	4.02342
6	6175451	2.6033	6561555	11.4298	6480741	4.02232
6	7376626	2.6105	7402395	11.4212	7483315	4.02327
6	8143934	2.6076	8273265	11.3224	8485281	4.02360
6	9121549	2.6139	9699690	11.6304	9486833	4.02261
7	10030684	2.6098	14549535	11.6380	14142135	4.02224
7	24496594	2.6217	29099070	11.6297	24494897	4.02185
7	30099763	2.6260	38798760	11.6187	34641017	4.02157
7	41344276	2.6295	48498450	11.6292	44721359	4.02129
7	53699671	2.6330	58198140	11.6458	54772255	4.02112
7	66759878	2.6323	67897830	11.6249	64807407	4.02061
7	78822322	2.6343	77597520	11.6369	74833147	4.02111
7	82476448	2.6358	82447365	11.6305	84852813	4.02056
7	96281998	2.6356	96 996 900	11.6295	94868329	4.020 44

Remark. Primorials consistently correspond to maxima. Many unnormalized binned maxima have occurred at values equal to 19# or its multiples, and many of the normalized maxima align with these values as well. In contrast, the minima are more likely to occur at values that are either prime or semiprime.

Table 6: Normalized by $\frac{log^2n}{M}$ Per-Decade HL-A Predictions for Goldbach Pair Counts for $|m|\in[1,\lfloor\frac{n}{2}\rfloor]$

Dec.	\mathring{n}_0	$\mathring{C}_{\min}(n_0)$	\mathring{n}_1	$\mathring{C}_{\max}(n_1)$	n_{geom}	$\mathring{C}_{ ext{avg}}(n_{ ext{geom}})$
0	4	2.8701	4	2.8701	4	2.640 65
0	5	4.2661	5	4.2661	5	4.26609
0	6	6.2189	6	6.2189	6	6.21887
0	7	3.3930	7	3.3930	7	3.39304
0	8	2.8146	8	2.8146	8	2.81464
0	9	5.8204	9	5.8204	9	5.82037
1	16	2.7651	15	7.3800	15	4.01877
1	29	2.8557	21	6.6643	25	4.02054
1	32	2.7346	30	7.3407	35	4.33099
1	47	2.7830	45	7.2867	45	4.05232
1	59	2.7646	51	5.8036	55	3.92309
1	64	2.7154	60	7.2449	65	4.34450
1	79	2.7459	75	7.2314	75	4.04342
1	89	2.7432	84	6.5034	85	3.91075
1	97	2.7386	90	7.2319	95	4.32055
2	128	2.7025	105	8.6669	141	4.08098
2	256	2.6933	210	8.6298	245	4.06424
2	397	2.6961	315	8.6112	347	4.09736
2	499	2.6920	420	8.6022	447	4.05744
2	512	2.6864	525	8.5971	547	4.05135
2	691	2.6879	630	8.5921	649	4.08269
2	797	2.6865	735	8.5872	749	4.06558
2	887	2.6852	840	8.5841	849	4.04122
2	997	2.6842	945	8.5820	949	4.07948
3	1024	2.6811	1155	9.5301	1415	4.05733
3	2048	2.6769	2310	9.5160	2449	4.05096
3	3989	2.6743	3465	9.5087	3465	4.05381
3	4096	2.6735	4620	9.5040	4473	4.04863
3	5987	2.6723	5775	9.5006	5477	4.04553
3	6997	2.6717	6930	9.4981	6481	4.04893
3	7993	2.6711	7140	9.1177	7483	4.04550
3	8192	2.6707	8085	9.4960	8485	4.04351
3	9973	2.6702	9240	9.4942	9487	4.04720
4	16384	2.6683	15015	10.3508	14143	4.04246
4	29989	2.6666	21945	10.0420	24495	4.03979
4	32768	2.6663	30030	10.3428	34641	4.03877
4	49999	2.6652	45045	10.3386	44721	4.03748
4	59999	2.6648	58905	10.1063	54773	4.03663
4	65536	2.6645	60060	10.3358	64807	4.03630
4	79999	2.6641	75075	10.3338	74833	4.03560
4	89989	2.6638	87 780	10.0285	84853	4.03512
4	99991	2.6636	90090	10.3322	94869	4.03500
5	131072	2.6630	105105	10.3309	$141\ 421$	4.03355
5	262144	2.6616	255 255	11.0123	244949	4.03193
5	399 989	2.6609	345345	10.8134	346411	4.03102
5	499979	2.6605	435 435	10.7026	447213	4.030 33
5	524288	2.6604	510510	11.0073	547723	4.02982
5	699 967	2.6600	690 690	10.8088	648075	4.02945
5	799999	2.6598	765765	11.0047	748331	4.02909

(continued)

Dec.	\mathring{n}_0	$\mathring{C}_{\min}(n_0)$	\mathring{n}_1	$\mathring{C}_{\max}(n_1)$	n_{geom}	$\mathring{C}_{ ext{avg}}(n_{ ext{geom}})$
5	899981	2.6596	855855	10.9230	848529	4.02879
5	999983	2.6594	930930	10.6714	948683	4.02858
6	1048576	2.6593	1021020	11.0029	1414213	4.02768
6	2097152	2.6584	2042040	10.9989	2449489	4.02657
6	3999971	2.6576	3063060	10.9967	3464101	4.02591
6	4194304	2.6575	4849845	11.6412	4472135	4.02545
6	5999993	2.6571	5870865	11.5171	5477225	4.02509
6	6999997	2.6569	6561555	11.4318	6480741	4.02481
6	7999993	2.6568	7402395	11.3996	7483315	4.02456
6	8388608	2.6567	8273265	11.3153	8485281	4.02435
6	9999991	2.6566	9699690	11.6378	9486833	4.02418
7	16777216	2.6560	14549535	11.6360	14142135	4.02355
7	29999999	2.6555	24249225	11.6338	24494897	4.02274
7	33554432	2.6554	33948915	11.6325	34641017	4.02225
7	49999991	2.6550	43648605	11.6315	44721359	4.02191
7	59999999	2.6549	53348295	11.6307	54772255	4.02165
7	67108864	2.6548	63047985	11.6301	64807407	4.02143
7	79999987	2.6546	72747675	11.6296	74833147	$4.021\ 25$
7	89999999	2.6545	82447365	11.6291	84852813	4.02110
7	99999989	2.6544	92147055	11.6287	94868329	4.02096

Table 7: Λ Calculations for Euler Product Series Products

Dec.	n_0	C_{\min}	C_{-}	$C_{\min} - C_{-}$	C_{-}^{asymp}	$C_{\min} - C_{-}^{\text{asymp}}$
0	4	1.922	0.961	0.961	1.701	0.221
0	5	2.590	1.295	1.295	1.756	0.835
0	6	2.140	1.605	0.535	1.793	0.348
0	7	0.000	1.893	-1.893	1.819	-1.819
0	8	2.162	2.162	0.000	1.840	0.323
0	9	4.828	1.207	3.621	1.856	2.972
1	11	0.000	1.438	-1.438	1.880	-1.880
1	28	1.586	1.561	0.025	1.960	-0.374
1	37	1.449	1.528	-0.079	1.976	-0.528
1	43	0.000	1.658	-1.658	1.984	-1.984
1	59	1.147	1.624	-0.477	1.999	-0.853
1	64	1.081	1.689	-0.608	2.003	-0.922
1	79	0.979	1.865	-0.885	2.012	-1.032
1	89	1.832	1.771	0.061	2.016	-0.184
1	97	0.872	1.839	-0.967	2.019	-1.147
2	199	1.132	1.746	-0.614	2.042	-0.910
2	223	1.152 1.054	1.822	-0.768	2.042 2.045	-0.991
2	$\frac{223}{379}$	1.094 1.492	1.754	-0.768 -0.261	2.049 2.058	-0.565
$\frac{2}{2}$	433	1.492 1.365	1.833	-0.468	2.061	-0.696
$\frac{2}{2}$	569	1.984	1.843	-0.408 0.141	2.066	-0.090 -0.082
					2.060 2.069	-0.082 -0.280
2	661	1.789	1.866	-0.077		
2	706	1.707	1.904	-0.198	2.070	-0.364
2	802	1.784	1.979	-0.195	2.073	-0.288
2	967	1.761	1.895	-0.134	2.076	-0.315
3	1 402	1.648	1.948	-0.301	2.082	-0.434
3	2 029	1.716	1.966	-0.250	2.087	-0.371
3	3076	1.845	1.996	-0.151	2.093	-0.247
3	4801	1.856	2.006	-0.150	2.098	-0.242
3	5416	1.965	1.983	-0.018	2.099	-0.134
3	6353	2.125	2.010	0.115	2.101	0.024
3	7219	2.056	2.003	0.053	2.102	-0.046
3	8777	2.180	2.012	0.168	2.104	0.075
3	9649	2.164	2.033	0.131	2.105	0.059
4	11272	2.132	2.045	0.087	2.107	0.025
4	20816	2.280	2.063	0.217	2.112	0.168
4	35792	2.298	2.077	0.220	2.116	0.181
4	40597	2.308	2.058	0.250	2.117	0.191
4	51826	2.347	2.076	0.271	2.119	0.228
4	67904	2.414	2.078	0.336	2.121	0.293
4	71633	2.359	2.090	0.269	2.121	0.238
4	89459	2.383	2.090	0.293	2.123	0.261
4	92357	2.435	2.096	0.338	2.123	0.312
5	116728	2.403	2.104	0.299	2.124	0.278
5	204928	2.464	2.106	0.358	2.128	0.337
5	366794	2.499	2.110	0.389	2.131	0.368
5	463 549	2.513	2.106	0.407	2.132	0.381
5	548 461	2.532	2.112	0.420	2.133	0.399
5	686 398	2.532 2.527	2.112 2.115	0.412	2.134	0.393
5	770 558	2.521 2.532	2.114	0.418	2.134	0.398
5	804 191	2.552 2.552	2.114 2.112	0.440	2.134 2.135	0.398
5 5	915 961	$\frac{2.532}{2.547}$	2.112	0.440 0.429	2.135 2.135	0.418 0.412

(continued)

Dec.	n_0	$C_{\min}(n_0)$	$C_{-}(n_0)$	$C_{\min}(n_0) - C(n_0)$	$C_{-}^{\mathrm{asymp}}(n_0)$	$C_{\min}(n_0) - C_{-}^{\text{asymp}}(n_0)$
6	1201553	2.554	2.117	0.437	2.136	0.417
6	2053553	2.580	2.125	0.455	2.139	0.441
6	3004042	2.591	2.126	0.465	2.140	0.451
6	4792159	2.589	2.134	0.455	2.142	0.447
6	5167067	2.598	2.131	0.466	2.142	0.456
6	6175451	2.603	2.131	0.473	2.143	0.461
6	7376626	2.611	2.134	0.477	2.143	0.467
6	8143934	2.608	2.134	0.473	2.144	0.464
6	9121549	2.614	2.134	0.480	2.144	0.470
7	10030684	2.610	2.137	0.473	2.144	0.466
7	24496594	2.622	2.142	0.480	2.147	0.475
7	30099763	2.626	2.141	0.485	2.148	0.478
7	41344276	2.630	2.142	0.487	2.149	0.481
7	53699671	2.633	2.144	0.489	2.149	0.484
7	66759878	2.632	2.146	0.487	2.150	0.483
7	78822322	2.634	2.145	0.489	2.150	0.484
7	82476448	2.636	2.146	0.490	2.150	0.486
7	96281998	2.636	2.146	0.489	2.151	0.485

E Reproducibility

All source code, certification tools, and datasets used in this work are permanently archived on Zenodo [16]. The repository includes build scripts, certification outputs, and checksums to ensure bitwise reproducibility of all results.

References

- [1] Jingrun Chen. On the representation of a large even integer as the sum of a prime and the product of at most two primes. *Sci. Sinica*, 16:157–176, 1973. Seminal paper proving every sufficiently large even integer is the sum of a prime and a semiprime.
- [2] Pierre Dusart. Estimates of some functions over primes without RH. arXiv Mathematics e-prints, Feb 2010. Provides explicit bounds for $\pi(x)$, $\theta(x)$, $\psi(x)$ and related prime sums.
- [3] Tomás Oliveira e Silva, Siegfried Herzog, and Silvio Pardi. Empirical verification of the even goldbach conjecture and computation of prime gaps up to $4 \cdot 10^{18}$. *Mathematics of Computation*, 83(288):2033–2060, July 2014.
- [4] P. D. T. A. Elliott and H. Halberstam. A conjecture in prime number theory. *Symposia Mathematica*, 4:59–72, 1968.
- [5] John Friedlander and Henryk Iwaniec. Opera de Cribro, volume 57 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2010.
- [6] Andrew Granville and Kannan Soundararajan. The distribution of prime numbers. *Proceedings of the International Congress of Mathematicians*, 1:336–357, 2007. Available at arXiv:math/0607204.
- [7] Richard K. Guy. Unsolved Problems in Number Theory. Springer, 3 edition, 2004.
- [8] H. Halberstam and H.-E. Richert. Sieve Methods. Academic Press, London, 1974.
- [9] G. H. Hardy and J. E. Littlewood. Some problems of 'Partitio Numerorum'; III: On the expression of a number as a sum of primes. *Acta Mathematica*, 44(1):1–70, 1923.
- [10] Glyn Harman. *Prime-Detecting Sieves*. London Mathematical Society Monographs. Princeton University Press, 2007.
- [11] Henryk Iwaniec and Emmanuel Kowalski. Analytic Number Theory, volume 53 of American Mathematical Society, Providence, RI, 2004.
- [12] Ferdinand Mertens. Ein beitrag zur analytischen zahlentheorie. Journal f'ur die reine und angewandte Mathematik, 78:46–62, 1874.
- [13] Hugh Montgomery and Kannan Soundararajan. Distribution of primes in short intervals. *International Mathematics Research Notices*, 2004(1):1–36, 2004.
- [14] Hugh L. Montgomery and Robert C. Vaughan. Multiplicative Number Theory I: Classical Theory, volume 97 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2007.
- [15] Paulo Ribenboim. The Little Book of Big Primes. Springer, 1991.
- [16] Bill C. Riemers. Sieve-goldbach: Source code and data for sieve-theoretic analyses of goldbach's conjecture, 2025. Version v0.1.5.
- [17] Hans Riesel. Prime Numbers and Computer Methods for Factorization, volume 126 of Progress in Mathematics. Birkhäuser, Boston, MA, 2nd edition, 1994. MR95h:11142.
- [18] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime numbers. *Illinois Journal of Mathematics*, 6(1):64–94, 1962.
- [19] Jingrun Song. Sifting function partition for the selberg sieve and goldbach problem, 2008.
- [20] R. C. Vaughan. The Hardy-Littlewood Method. Cambridge University Press, 2 edition, 1997.