

《自动控制实践 A》实验报告

2021 年秋季学期

实验项目: _	步进电机销性实验
学生学号:	190410102
 学生姓名: ₋	方尧
评阅教师: _	
报告成绩:	

实验与创新实践教育中心印制

一、简述实验原理

川频电机的位置控制

斑电机筒粉油

海距南风二号,短南风二<u>机</u> (2)转射数,N为扩散) 西相识后式频进电机的单相运行顺时针: A>B->A>B、连时针通电缆序A>B->A>B 两相激励的线组AB→AB→AB→AB(临时针),AB→AB→AB→AB(近时针)

步8E的 Ob = 360 年m2 知频特性;步进电机分的一定旋转下,动态转发E和运行脉冲频率的关系 比频机矩频特性 称效E频特性、转矩型的方程如下 Mm(t)=Jdwntt)+ML(t),与n根纸 n=60t

1.3 频映机的慢量匹配

2.1 斑电机的位置控制

- ①新超动控制卡马端子板连接。②连接电原、设置电压 ③设定驱动器 细发 田给或没在供电、输烟源"output". ①给定和的负载 @打开Matlab实对控制程序,
- ⑦设置参数,编译运行图给起RisePos和PropPos 乡东中值、分别新的实验管果图,记录数据 (Rise pos 分别为 5e5, 1e6, 1.5e6, 2e6, 2.5e6; Drop Pos 为Rise pose 机酸红)

2、2. 步进电机的矩频特性

- ① 连接运动校长, 连接电源, 设置驱动器佃品数 ② 给没备供电 ③ 给定4X1户负载
- 田打开Mathab 密封塑耀序 图设置参数,编译站于图绘定加速度设定值的图的100, 250,500,750,1000,1250,1500,1750,2000,2350,2500,2750,3000,记录各加速度下最大速度V. 计解对矩下和最大的冲频率于, 批合得到转矩速度特性曲代和矩频特性曲代,

2.3 罗地地加的慢星区配

- ① 连接运动机中,直接电源, 险量驱动器佃钱的多2000, ② 给股金铁电 ③给定3×2009负载 @打开Mathab, 设置 Rise Pos 为1200000, Drop pos 3-1200000. 速度设置为300 Hmin 力o进度设置为200 rpmls ①编译运行 ①拨动形,使增强向下,向上运行。①倚止维持 得到电机速度曲线,包给数据进行傅里叶变换,观察低次谐波振幅峰值
- ①在电机轴电鱼安装 6X429 慢量块, 重复上述操作, 得到加慢量块之后的速度规划, 傅里叶 频谱图和电机速度曲成图.

三、实验结果分析 (附图表)

- 3.1 步进电机的位置控制实验分析
- (1) 步进电机的位置控制实验中,自行设置 5 组电机轴指定位置脉冲,记录给定控制器脉冲数 Rise Pos (pulse)、监视数据框 Encoder Axis Pos Value 的输出轴角位移和 pulse 读出的脉冲数。记录数据如下表 1:

表 1

	电机轴指定位置脉冲设置 Rise Pos(pulse)	输出轴角位移 (degree)	输出轴脉冲数 (pulse)
1	500000	310.9	34540
2	1000000	621,5	690 <i>6</i> 0
3	1500000	932	103560
4	2000000	1243	138090
5	2500000	1554	172610

(2) 据第一组设定的参数和记录的数据结果,计算电机与输出轴的传动比;在已知传动比的情况下,再通过设定的其他参数,通过理论计算预测电机的指定位置,然后再通过实验记录数据,验证对比理论与实测结果是否符合,并得出结论。

电机与输出轴的传动比
$$i = \frac{u \eta \# \eta \psi \psi \psi \psi}{\beta u \pi \psi \psi \psi} = \frac{500000}{34540} = 14.48$$

由输出轴角位移计算实际电机轴位置脉冲公式如下:

由输出脉冲数计算实际电机轴位置脉冲公式如下:

实际电机轴位置脉冲 = 输出轴脉冲数 × 传动比

根据公式计算得到结果如下表 2:

表 2

	电机轴指定位 置脉冲设置 Rise Pos(pulse)	实际输出轴脉 冲-角位移计算 (pulse)	绝对误差 (pulse)	相对误差	实际输出轴 脉冲-脉冲数 计算 (pulse)	绝对误差 (pulse)	相对误差 (‰)
1	500000	500065	65	-0. 131	500001	1	-0, 002
2	1000000	999648	352	0. 352	999713	287	0. 288
3	1500000	1499070	930	0. 620	1499135	865	0. 577
4	2000000	1999296	704	0. 352	1998991	1009	0, 505
5	2500000	2499523	477	0. 191	2498847	1153	0. 461

分析可知,实际与理论误差小,相对误差均小于千分之一,说明步进电机位置控制性能极好。但从实验中可以看出 2-5 组实验绝对误差都大于一个最小分辨力,故步进电机仍有位置控制误差。

综上,实验中步进电机位置控制性能极好,但仍有极小的位置控制误差。

3.2 步进电机的矩频特性实验分析

(1) 按表 4-2 中格式根据给定的初始加速度,记录电机最大速度,计算电机在砝码负载下的转矩,计算电机运行最大脉冲频率。

电机转矩的计算式为 $T(t) = J \times \alpha_m + T_L(t)$, 整个系统折算到电机轴的转动惯量

$$J = J_1 + J_2 + J_3 + J_4 = 159.586 + 6.734 + 0.062 + \left(\frac{1}{16}\right)^2 (159.586 + 4 \times 12.5^2 = 1.6945 \times 10^{-4} kg \cdot m^2)$$

负载阻力扭矩: $T_L(t) = 0.031 N \cdot m$ 脉冲频率计算式为: $f = \frac{v}{60} \times 40000$

计算电机运行转矩 T 和电机脉冲频率 f 如下表 3:

表 3

	加速度α	最大速度 v	电机扭矩 T	脉冲频率ƒ	
	(rpm/s)	(r/min)	(N • m)	(Hz)	
1	100	222	0.0324	148000	
2	250	169. 2	0. 0351	112800	
3	500	116. 2	0. 0395	77467	
4	750	88	0. 0439	58666	
5	1000	71. 2	0.0484	47467	
6	1250	60. 3	0. 0528	40200	
7	1500	52. 3	0, 0572	34867	
8	1750	46	0.0617	30667	
9	2000	41. 9	0.0661	27933	
10	2250	37. 35	0. 0706	24900	
11	2500	35	0. 0750	23333	
12	2750	32. 5	0. 0794	21667	
13	3000	29.8	0. 0839	19867	

(2) 按表 4-2 填写好内容后,对数据进行拟合得到转矩速度特性曲线、矩频特性曲线。分析实验结果说明了什么,按照自己的理解去阐述。

转矩速度特性曲线、矩频特性曲线如下:

结果:步进电机的动态转矩随脉冲频率的升高而降低,这种情况类似于功率管的功率和频率一样,存在相互制约的关系。

3.3 步进电机的惯量匹配实验分析

(1) 惯量匹配计算

①计算不加惯量块时系统的惯量比 J_d/J_m 。

电机转子转动惯量为: J_m = 55kg·mm²

不加惯量块时系统折算到电机轴转动惯量为: $J_d = 169.45 kg \cdot mm^2$

不加惯量块时系统惯量比 $\frac{J_d}{J_m} = \frac{169.45}{55} = 3.08 < 5$

②计算加 6 个 42g 惯量块之后系统的惯量比 J_d/J_m 。

小惯量块对电机轴转动惯量

$$J_{z1} = \frac{1}{2}mR^2 + md^2 = \frac{1}{2} \times 0.006 \times 5^2 + 0.006 \times 35^2 = 7.43kg \cdot mm^2$$

大惯量块对电机轴转动惯量

$$J_{z2} = \frac{1}{2}mR^2 + md^2 = \frac{1}{2} \times 0.042 \times 10^2 + 0.042 \times 35^2 = 53.55kg \cdot mm^2$$

加 6×42 g 惯量块时系统惯量比 $\frac{J_d + 6 \times J_{z2}}{J_m} = \frac{169.45 + 53.55 \times 6}{55} = 8.92 > 5$

此时惯量不匹配,转动惯量大导致振动时加速度小,波动平稳。

(2) 结合上一步计算结果,阐述惯量匹配、速度频谱分析的目的与意义。

惯量匹配、速度频谱分析的目的与意义是调整机械系统的振动频率,使得振动频率与速度规划的振动 频率避开,避免产生共振,影响系统;

通过对速度的频谱分析可以得到系统的信号带宽,从而更好的调整惯量,避免共振。 不加惯量块电机速度曲线:

加入 6×42g 惯量块后电机速度曲线:

可知,加入惯量块后,毛刺变小,振动更小。

从傅里叶变换结果可知,加入惯量块后低频分量变得更小,即振幅更小,故从速度曲线上可以看到加入惯量块之后波动变小、毛刺减少。