Aufgalox 1)

En. Bil

QR-Gaus

mit Tabelle best

$$\frac{1}{1} = \sqrt{\frac{1}{1000}}$$

$$\frac{1}{1000} = \sqrt{\frac{1}{1000}}$$

$$\frac{1}{1000} = \sqrt{\frac{1}{1000}}$$

$$\frac{1}{1000} = \sqrt{\frac{1}{1000}}$$

$$\Delta E = m_2 u_2 - m_1 u_1 = \Delta m_i \cdot h_i - Qaus 12$$

mn: (u2-u1) + Qaus12 = Ama(hi-u2) 292.35 ~ up(100°c) = 418.34 / 83.96 292.95 N

e) $\Delta S_n = m_2 S_2 - m_1 S_1 = m_1 \cdot (S_2 - S_1) + \Delta m_{12} \cdot S_2$ Table $\Delta S_2 = m_2 S_2 - m_1 S_1 = m_1 \cdot (S_2 - S_1) + \Delta m_{12} \cdot S_2$ $\Delta S_n = 1127 \cdot 26 \, \text{FJ}$ $\Delta S_n = 1127 \cdot 26 \, \text{FJ}$ $\Delta S_n = 1127 \cdot 26 \, \text{FJ}$

Dex str = ex stro- exstro = h6-h0, -To (S6-S0) + Ake 1 2 fürku 2 fürku 2 1 /mg 2 1 /mg 217.297 kg = 1ke 1 exstr = 229.455 Ng d) Exergibil: rechire mit 100kg weiter für sexstr exist $E_{XYPT} = -\Delta e_{XSFT} + (1 - \frac{T_0}{T_0}) \cdot \cancel{Q} = 0$ aus c $100 \times \frac{1}{100} = 243.15 \times \frac{1}{100} = 1289 \times \frac{1}{100}$ = Achtung es wird nur auf auf 1/15.293 a die warme g übertragen =) $exvert = - Dexstr + (1-To) \cdot \frac{9}{1+5.798}$ exvert = 54.073

Aufgabe 3)

a)
$$p \cdot V = R \cdot T$$
 $R = \frac{R}{M} = 0.16528 \frac{J}{Kg}$
 $p \cdot V = M \cdot R \cdot T$
 $mol \cdot Kg$
 $m = f$
 $p \cdot V = M \cdot R \cdot T$
 $mol \cdot Kg$
 $mol \cdot K$

Gv. (T2-T1)

b) mrusta En Bilanz um Vordichter:

$$0 = m \cdot (h_2 - h_3) - W_{tn}$$

 $m = \frac{W_{tn}}{h_2 - h_3} - 28W$

adiabat & reversibel: $S_2 = S_3$ and Entr. Bil.

e) Die Temperatur würde weiter abnehmen, da nenn Warme rausfliesst diese nicht mehr in Form innerer E vohanden ist Thimmet ab.