#### **FULL CONTROLLED BRIDGE (Two Quadrant Converter)**



- LOAD CURRENT IS CONSTANT & RIPPLE FREE
- IN THE +VE HALF  $T_1T_2$  ARE F.B. & -VE HALF  $T_3T_4$  ARE F.B.

 $T_1T_2$  continue to conduct till  $T_3T_4$  are triggered (:  $I_0$  is continuous)



$$\alpha$$
 to  $(\pi + \alpha)$ 

$$V_0 = V_i = V_m \sin \omega t$$

$$i_s = I_L$$

at  $\omega t = \pi + \alpha$   $T_3 \& T_4$  ARE TRIGGERED

POT. OF A < POT. OF C

WHEN  $T_3$  STARTS CONDUCTING

$$V_{\kappa} = POT.C$$



⇒ TURNS OFF

 $\Rightarrow$  SIMILARLY  $T_2$  TURNS OFF IN THE LOWER ARM

$$i_s = i_L$$

 $\gamma$  for each device is  $\pi$  rads

There are 2 pulses per cycle  $\rightarrow$  Two pulse converter





$$V_0 = \frac{2}{2\pi} \int_{\alpha}^{\pi+\alpha} V_m \sin \omega t \, d\omega t = \frac{2V_m}{\pi} \cos \alpha$$

- $\Rightarrow V_0$  +ve For  $0 < \alpha < \pi/2$ 
  - -ve For  $\pi/2 < \alpha < \pi$
- $\Rightarrow I_L$  is unidirectional
- ⇒2quadrant converter
- $\Rightarrow$ 0< $\alpha$ < $\pi$ /2:1<sup>st</sup> quadrant operation Input Power=+ve $\rightarrow$ Converter
- $\Rightarrow \pi/2 < \alpha < \pi : 4^{th}$  quadrant operation





FULL CONTROLLED BRIDGE ( $\alpha > 90$ )



 $T_1T_2$  are triggered in the +ve half At steady State

Assume I<sub>L</sub> is continuous (constant and ripple free)

 $T_3T_4$  will conduct till  $T_1T_2$  are triggered in the +ve half



In  $0 < \omega t < \pi$ 

Pot. of Pt.B < Pot. of Pt. A

$$\therefore V_0 = V_{BA}(-ve)$$

At  $\omega t = \alpha^{+}$  (Immediately after  $T_1$  and  $T_2$  are triggered)



(Assumed to be instantaneous turn ON and OFF)

$$V_0 = V_{AB} \rightarrow + \text{ ve till } \alpha < \omega t < \pi$$

$$\rightarrow$$
-ve for  $\pi < \omega t < \alpha + \pi$ 







#### Input Power=-ve→Inversion

$$\theta_1 = \alpha$$

 $Cos\theta_1 = Cos(-\alpha)$  (lagging)

$$I_{rms} of I_{s1} = \frac{2\sqrt{2}}{\pi} I_0$$

RMS value of  $I_s = I_0$ 



$$P.F. = \frac{2\sqrt{2}}{\pi}Cos\alpha = \frac{V_{s1}I_{s1}Cos\alpha}{V_{rms}I_{rms}} = \frac{2\sqrt{2}}{\pi}Cos\alpha$$

 $\rightarrow$  lagging

#### What sort of a load?

Assuming that 'I<sub>L</sub>' is continuous

$$\Rightarrow$$
 Avg.  $V_0 = \frac{2V_m}{\pi} \cos \alpha$  is valid

if 
$$I_L$$
 is discontinuous  $V_0 \neq \frac{2V_m}{\pi} \cos \alpha$ 

 $\Rightarrow$  Avg. value of  $V_0$  is determined by integrating the o/p  $V_0$ 

[ouput V<sub>0</sub> now dependent on load ]

Avg.  $V_0 \rightarrow -ve$ 

 $I_L = always + ve (can not reverse)$ 

: SCR's are unidirectional

Avg. Power I/P = 
$$V_{o(avg)}I_{L(avg)}$$

For Load = 
$$R$$

I/P Power = always +ve

Consumes power  $\rightarrow$  dissipates as heat

For Load = L

For steady state 
$$(L\frac{di}{dt})_{avg} = 0$$

If 
$$(L\frac{di}{dt})_{avg} > 0 \rightarrow \frac{di}{dt}$$
 is  $\uparrow$ 

(recall Full wave diode rectifier feeding pure 'L'

load, 'i' goes on 1 till ......)

$$(L\frac{di}{dt})_{avg}$$
 can never be -ve

- $\Rightarrow$  if load is passive =  $V_{o(avg)}I_{L(avg)} \ge 0$
- $\Rightarrow$  If the load is R-L-E
- Either a battery or a DC- motor
- ⇒ Power can be fed back to the source
- Both can supply or absorb power.
- For DC-motor:If power i/p is +ve ⇒motor
- if power i/p is -ve ⇒generator

For the m/c: To operate as a generator 'I<sub>a</sub>' should leave terminal 'A'(It enters 'A' during motoring)



If 
$$|E_b| > |V_{in}|$$

⇒'l<sub>a</sub>' leaves 'A' terminal

For the Converter fed DC machine:

'I' can not reverse but 'V' can reverse.

 $T_e \rightarrow -ve \rightarrow either' \phi' or' I_{\alpha}' should reverse$ 

Consider DC M/C:-

Developed Torque  $T_e = K \phi I_a$ 

$$\frac{d\omega}{dt} = \left(\frac{T_e - T_L}{J}\right), T_L \text{ is load torque.}$$

- $\Rightarrow$  Assume that motor has attained a steady state and running at  $\omega$ .
- ⇒ Want to stop the motor

Casel: Switch off the supply to the motor

$$T_E = 0$$

 $\Rightarrow -\frac{d\omega}{dt}$  depends on mechanical time constant

$$T_{\rm m} = \frac{J}{B}$$

#### Stored energy is dissipated as heat

$$\Rightarrow$$
 How to  $\uparrow - \frac{d\omega}{dt}$ 

 $\Rightarrow$  Make  $T_e$  -ve

$$\frac{d\omega}{dt} = -\frac{\left(T_e + T_L\right)}{J}$$

⇒ Faster deceleration

$$\Rightarrow$$
  $T_e \rightarrow -ve$ 

**Sign Convention:** 

- +ve for motoring
- -ve for Generating
- ⇒ Energy is fedback to the source
- ⇒ Regenerative breaking

### For la reversal:

Interchange armature terminals

- ⇒i/p to the bridge is -ve
- ⇒Motor current has reversed



- ⇒No mechanical i/p
- ⇒. speed & . E, ↓
- ⇒In order to maintain constant I<sub>a</sub> ↓V<sub>in</sub>
- ⇒↓αtowards 90°



#### **Discontinuous Conduction: R-L-E Load**

#### Case I:

'i' is finite

When T<sub>1</sub> T<sub>2</sub> are triggered

 $T_3 \& T_4$  were conducting

Instantaneous  $V_0$  is -ve(: is  $V_{BA}$ )

 $\rightarrow T_1 \& T_2$  are triggered at ' $\alpha$ '

$$V_i < E :: \frac{di}{dt}$$
 is -ve



- $\rightarrow$  'i' becomes zero before  $\omega$ t =  $\sin^{-1}(\frac{E}{V_m})$
- $\rightarrow Till 'i'$  is present,  $V_0 = V_i$



From the instant i=0 till 
$$\omega t = \sin^{-1}(\frac{E}{V_m})$$

$$V_0 = E$$

Beyond this instant SCR's are F.B

→ If gate pulse is present it starts conducting from this instant

#### Case II:

$$\alpha > \sin^{-1}(\frac{E}{V_m})$$

$$I_L = 0 \quad 0 < \omega t < \sin^{-1}(\frac{E}{V_m})$$

Prior to triggering  $T_1T_2$ ,  $T_3T_4$  were conducting till  $I_1 = 0$ ,

 $V_i = V_{AB}$  (—ve in the +ve half) From this instant to  $\alpha$ ,  $V_0 = E$ 

At ' $\alpha$ ',  $T_1$  &  $T_2$  are conducting,

$$V_0 = V_m \sin \alpha > E$$



#### Case 1:

$$\alpha > 90^{\circ}$$

Can I be continuous?

 $\Rightarrow$  If I<sub>1</sub> is continuous

$$V_0 = \left(\frac{Ldi}{dt}\right)_{av} = -ve$$

⇒ Not possible

$$\Rightarrow$$
 If  $\alpha = 110^{\circ}$ 

$$T_1$$
  $T_2$  will turn off( ::  $i_1 = 0$ )

 $\Rightarrow$  I<sub>L</sub> is just continuous at  $\alpha$ =90°

Av 
$$V_0 = \frac{2V_m}{\pi} \cos \alpha = 0$$





$$\alpha < 90^{\circ}$$

I will be continuous till

Av V<sub>0</sub>=+ve

$$\Rightarrow \left(L\frac{di}{dt}\right)_{av} = +ve$$

No steady state

I goes on † till.....

