工程热力学

武俊梅

工程默分學 Engineering Thermodynamics

正循环

逆循环

第十一章 制冷循环

- 🗼 11-1 概述
- ▲ 11-2 气体压缩制冷循环
- ▲ 11-3 蒸气压缩制冷循环

11-1 概述

一、制冷循环和热泵循环

都是逆循环。<mark>但目的不同:</mark>

热泵循环: 不断地向高温热源提供热

量,以维持其高温。

制冷循环: 不断地从低温热源取走热

量,以维持其低温。

热泵 循环

环境

制冷 循环

二、经济性指标

制冷系数

$$\frac{\varepsilon}{q_2}$$

供热系数

$$\varepsilon' = \frac{q_1}{w_{net}}$$

工作性能系数COP

Coefficient of performance

能效比*EER* (energy efficiency ratio)

工程銀行等 Engineering Thermodynamics

❖如何选购冰箱、空调(属于白色家电)?

中国能效标识 1、2、3、4、5共5个等级

BCD-169CM(E)

BCD-190CM(E)

空天工程系

工程銀分學 Engineering Thermodynamics

KFR-35GW 1.5匹 ¥ 2800

_	能效等级	3级	能效等级	3级	
N	三频 电轴加热	支持	变频 电轴加热	支持	
	适用面积(平方米)	约16-24㎡	适用面积(平方米)	约16-24㎡	
	制冷量(W)	3500	制冷量(W)	3500(450-3800)	
	制冷功率(W)	1075	制冷功率(W)	1110(160-1450)	
	制热量(W)	3850	制热量(W)	4500(800-5100)	
	制热功率(W)	1120	制热功率(W)	1500(190 -1755)	
	电辅加热功率(W)	1000	电辅加热功率(W)	1000	
	内机噪音(dB(A)	(静音档-高档)24.5-37	内机噪音(dB(A)	(静音档-高档) 19-38	ļ
	外机噪音(dB(A)	≤51	外机噪音(dB(A)	≤51	
	定频机能效比	3.25	变频机能效比	APF 3.53 SEER 3.99	
	循环风,量(m3/h)	630	循环风量(m3/h)	630	

最理想制冷循环——逆卡诺循环

$$\varepsilon_{\rm C} = \frac{q_c}{w_{\rm net}} = \frac{q_c}{q_0 - q_c} = \frac{T_c}{T_0 - T_c}$$

$$T_0$$
不变, $T_{\rm c}$ $\epsilon_{\rm C}$

$$T_{\rm c}$$
不变, T_0 $\varepsilon_{\rm C}$

制冷系数<1,>1, or =1; 环境温度越高或制冷温度越低, 制冷系数越小。

卡诺逆循环-热泵循环

$$\varepsilon_{C}' = \frac{q_{H}}{w_{\text{net}}} = \frac{q_{H}}{q_{H} - q_{0}} = \frac{T_{H}}{T_{H} - T_{0}} = \frac{1}{1 - \frac{T_{0}}{T_{H}}}$$

$$T_{\mathrm{H}}$$
不变, T_{0} $\mathcal{E}'_{\mathrm{C}}$ $\mathcal{E}'_{\mathrm{C}}$ $\mathcal{E}'_{\mathrm{C}}$

供热系数恒大于1; 环境温度越低或供热温度 越高,供热系数越小。

工程競步等 Engineering Thermodynamics

压缩式制冷 (气体压缩制冷(空气) √ 压缩式制冷 (蒸气压缩制冷(制冷剂) √

制冷循 环种类 吸收式制冷 吸附式制冷 蒸汽喷射制冷 半导体制冷 热声制冷,磁制冷

工程說分學 Engineering Thermodynamics

11-2 气体压缩制冷循环

一、气体压缩制冷循环——<mark>逆布雷顿循环</mark>

飞机空调系统、列车空调、环境 试验室、石油化工、食物保鲜及 快速冷冻等领域。

工质: 理想气体

四个主要部件:

压 气 机:绝热压缩

冷 却 器:放热过程

透平膨胀机: 绝热膨胀

冷室换热器: 吸热过程

Heat exchanger Q_{in} Cold region at T_C

Turbine

Warm region at T_H

Heat exchanger

 Q_{out}

Compressor

西安交通大学

工程競力等 Engineering Thermodynamics

简化处理: ①理想气体; ②定比热; ③可逆;

- 1-2 可逆绝热压缩
- 2-3 等压冷却

循环增压比

$$\pi = \frac{p_2}{p_1}$$

- 3-4 可逆绝热膨胀
- 4-1 等压吸热

 T_0 : 取决于环境的温度;

 T_{C} : 取决于冷室的温度。

Engineering Thermodynamics

二、循环分析

放热量:
$$q_0 = h_2 - h_3$$

吸热量(单位制冷量): $q_c = h_1 - h_4$

$$q_{\rm c} = h_1 - h_2$$

净功量:

$$w_{net} = w_C - w_T = q_0 - q_c$$

= $h_2 - h_1 - (h_3 - h_4) = (h_2 - h_3) - (h_1 - h_4)$

制冷系数:

$$\varepsilon = \frac{q_{c}}{w_{net}} = \frac{h_{1} - h_{4}}{(h_{2} - h_{3}) - (h_{1} - h_{4})} = \frac{T_{1} - T_{4}}{(T_{2} - T_{3}) - (T_{1} - T_{4})}$$

$$= \frac{1}{\pi^{\frac{\kappa-1}{\kappa}} - 1} = \frac{T_1}{T_2 - T_1}$$

定值比热

$$= \frac{T_1 - T_4}{(T_2 - T_3) - (T_1 - T_4)}$$

$$\pi = \frac{p_2}{n}$$

$$T_2 = T_1 \pi^{\frac{\kappa - 1}{\kappa}}$$

$$T_3 = T_4 \pi^{\frac{\kappa - 1}{\kappa}}$$

讨论:

1) 相同温度的 T_0 和 T_C 之间

$$\varepsilon = \frac{T_1}{T_2 - T_1} < \frac{T_C}{T_0 - T_C} = \varepsilon_c$$

 $\pi\downarrow$, $q_c\downarrow$, $\epsilon\uparrow$.

三、气体压缩制冷循环特点

优点:选用空气时,工质无毒,无味,不怕泄漏。非常适合飞机空调。

缺点:

- 1. 无法实现定温吸、放热过程**,** $\varepsilon << \varepsilon_{\rm C}$
- 2. $q_c = c_p(T_1 T_4)$,空气 c_p 很小, $(T_1 T_4)$ 不能太大,单位制冷量 q_c 很小。

若
$$(T_1$$
- T_4 $) \uparrow$, $\pi \uparrow$, $\epsilon \downarrow$.

3. 采用活塞式压气机时,流量小,制冷量 $Q_c=m q_c$ 小。

四、提高气题压缩制冷循环制冷量的方法

回热:用冷室出来的低温气体与冷却器出来的高温气体 进行内部热交换。

工程默切等 Engineering Thermodynamics

回热与非回热循环的比较

比较原则: T_0 、 T_C 、压气机出口温度相等。

非回热循环: 1-3'-5'-6-1 回热循环: 2-3-4-5-6-1-2

工程默力等 Engineering Thermodynamics

相等

不变

回热循环

非回热循环

放热量:

$$q_{0R} = c_p (T_3 - T_4)$$

$$q_0 = c_p(T_{3'} - T_{5'})$$

单位制冷量:

$$q_{cR} = c_p(T_1 - T_6)$$

 $q_{\rm c} = c_p (T_1 - T_6)$

所以:

$$arepsilon_{ ext{odd}} = arepsilon_{ ext{#lob}}$$

但:

$$\pi_R = \frac{p_3}{p_2} < \pi = \frac{p_{3'}}{p_1}$$

回热的好处:

- 1) 小增压比为使用大流量叶轮式压气机创造了条件,以增大制冷量。小增压比也可以减小压缩过程不可逆损失。
- 2) 可以获得很低的制冷温度 T_c ,用于液化和低温工程中。

气体压缩制冷循环的缺点:

- 1) 不能实现定温吸热、放热,因此偏离逆卡诺循环较远,制冷系数低;
- 2) $q_c = c_p(T_1 T_4)$, 空气 c_p 很小, $(T_1 T_4)$ 不能太大,

单位制冷量 q_c 很小。虽然采用回热结合使用叶轮式压气机可以提高总的制冷能力,但不能大大提高。在需要大制冷量场合,需要选用蒸汽压缩制冷装置,其中用到的工质称为制冷剂,需要按实际气体处理。

可以实现:

- 蒸气在两相区易实现定温过程;
- 汽化潜热大,可以获得大的制冷量。

工程競力等 Engineering Thermodynamics

水能用否用于制冷?

水在0℃以下凝固不能流动。

一般需用低沸点工质,如氟利昂、氨

沸点: $T_s(p=1atm)$

水 100℃

R22 −40.8°C

R134a −26.1°C

氨 −33.5°C

11-3 蒸气压缩制冷循环

完全在两相区进行:

理论上可以实现逆卡诺循环, 是最理想的。

但是:

- 1. 压气机压缩湿蒸汽,不安全、效率低;
- 2. 膨胀机中液体不易膨胀,得不偿失。

需要改进。

11-3 蒸气压缩制冷循环

一、工作流程及主要设备

四大件:

压缩机、冷凝器

蒸发器、节流阀(毛细管)

过程简化:

压缩机:定熵压缩过程

冷凝器: 定压放热过程

节流阀:绝热节流过程

蒸发器: 定压吸热过程

二、蒸气压缩制冷循环 123451 特点 相当于逆朗肯循环。

与逆卡诺循环3467比较

$$\varepsilon < \varepsilon_c$$

压缩过程:

逆卡诺 7-3 发生湿蒸气压缩 "液击"现象。

实际 1-2 蒸气压缩——干压缩, 既安全, 又增加了单位质量工质的制冷量7-1。

二、蒸气压缩制冷循环 123451 特点 相当于逆朗肯循环。

与逆卡诺循环3467比较

$$\varepsilon < \varepsilon_c$$

节流阀代替了膨胀机

- 1) 省掉膨胀机,设备简化;
- 2) 节流阀开度可调, 以调节蒸发温度;

思考题:

空气压缩制冷使用节流阀是否合适?

理想气体,等温节流

三、制冷系数 ε

蒸发器中吸热量(单位制冷量) $q_c = h_1 - h_5 = h_1 - h_4$

冷凝器中放热量

$$q_0 = h_2 - h_4$$

制冷系数

四、提高制冷系数的途径

- 提高蒸发温度
 一一受限于制冷温度
- 2. 降低冷凝温度 ——受限于环境温度
- 3. 采用节流前液态制冷剂过冷 ——4—4′ 制冷量增大,耗功不变。
- 4. 减小压缩过程不可逆损失

本章要求

- 1. 在掌握逆卡诺循环的基础上,理解制冷循环、热泵循环;
- 2. 掌握制冷系数、供热系数的定义;
- 3. 空气压缩制冷循环的主要部件及热力过程;
- 4. 蒸气压缩制冷循环的主要部件及热力过程;
- 5. 提高制冷循环经济性的途径。

工程競力學 Engineering Thermodynamics

作业:

P316, 思考题 9-5

9-7

9-9

9-10

