# MEAN SOUNDINGS FOR THE WEST INDIES AREA

By C. L. Jordan

U. S. Weather Bureau<sup>1</sup>

(Manuscript received 29 August 1957)

#### ABSTRACT

Mean aerological data for the West Indies area have been prepared from ten-year records for three stations. Mean monthly height, temperature and relative humidity data are tabulated for constant pressure surfaces. More detailed information, including density, potential temperature and specific humidity, is shown for the mean annual and the mean "hurricane season" soundings. The mean data are compared with those previously presented and some of the interesting climatological features are discussed.

#### 1. Introduction

In the tropics, departures from the officially adopted standard atmospheres are so large that mean soundings lose much of their usefulness as a reference. For purposes of altimetry the standard atmospheres are used in the tropics despite their limitations but special mean soundings have been prepared for use in synoptic meteorology (Schacht, 1946; U. S. Weather Bureau, 1948; Colón, 1953). These soundings were prepared primarily for use in connection with tropical cyclones and, accordingly, used data only from the summer and autumn months. Consequently, in using these soundings during the colder months the synoptic meteorologist encounters the same type of difficulty as in using the U. S. Standard Atmosphere.

The new set of aerological data presented in this report provides mean data for all seasons of the year. This has been done by computing mean monthly soundings which can be used individually or combined into seasonal means in any way that may be appropriate for the purpose at hand. In this report, detailed data are presented for mean annual and mean "hurricane season" soundings.

In addition to providing data on a seasonal basis, the new set of mean soundings have other features which recommend their use in preference to those previously prepared. A considerably longer period of record has been used in computing the means and use has been made of observations during recent years when soundings have reached the upper tropospheric and lower stratospheric levels with much greater regularity. These data from recent years have permitted the extension of the mean soundings to the 30-mb surface (roughly 78,000 ft).

### 2. Processing of data

The mean monthly aerological records for the tenyear period 1946–1955 for Miami, Florida; San Juan, Puerto Rico and Swan Island—the same stations selected by Schacht (1946)—have been used in preparing the mean soundings for the West Indies area. Only the night time soundings (0300 GCT) have been used because of inhomogeneities in the daytime data arising from the different methods of correcting for radiation effects during the ten-year period. Mean values of the temperature and humidity have been computed for each month of the year at the standard levels used in the climatological records. The interval between levels is 50 mb between 1000 and 200 mb and progressively decreases at the higher levels.

Soundings prepared from the mean temperature and humidity data were used for the determination of the heights of the standard pressure surfaces. The mean 1000-mb height has been used as the beginning point in computing the mean pressure-height data. The computation was handled in this way because the three stations were at different elevations so that the surface pressure could not be simply averaged. Some of the comparisons made below indicate that the use of the 1000-mb height could not have introduced significant errors.

Processing of the humidity data required special consideration because of the fact that reports are always missing when the humidity is low. For the climatological records mean monthly humidities are computed for individual months if as many as sixteen observations are available and, in addition, statistical values are used in the cases where the humidity was low enough that the radiosonde was "motorboating." The values used in these cases are the average threshold values for "motorboating" at the appropriate tem-

<sup>&</sup>lt;sup>1</sup> Present affiliation: Florida State University.

peratures. The preparation of humidity data for the mean soundings made use of an arbitrary procedure similar to that employed in the computation of the monthly means. Averages were computed only if there were values for six or more years out of the ten-year period; also, in computing means, the missing years were assigned the lowest value during the period of record appropriate to the level and month. The use of statistical values in computing the means was directed at reducing the bias introduced by the lack of observations in all cases of low humidity. Bias of this type arises mainly at levels above 700 mb where the moisture content has only a very small effect on the height computations.

## 3. The mean aerological data

The monthly and annual temperature, height, and relative humidity data for the West Indies area for the ten-year period are shown in tables 1–3.2 Data in more detail, including density, potential temperature, specific humidity and equivalent potential temperature, are presented for the mean annual West Indies sounding in table 4. A similar detailed tabulation of mean data for the "hurricane season," arbitrarily defined as the four-month period July through October, is shown in table 5. These tabulations contain the essential information which this report intends to con-

vey. The following discussion outlines various limitations of the data, compares the results with previous computations of mean conditions in the tropics, and points out some of the more interesting climatological features shown by the mean soundings.

The combination of aerological data to form averages for some area and time period often results in mean soundings which are not typical of conditions throughout the area used. For example, the soundings made at many individual stations in the United States bear little resemblance to the U. S. Standard Atmosphere during any season of the year. The smaller geographical and seasonal variability in the tropics makes mean soundings for these areas much more representative of the conditions that may be expected at any given time and place.

Mean conditions in summer are quite similar at the three stations used in this study and there is little doubt that the averages for the West Indies area (table 1–3) approximate quite closely the mean which might have been obtained had there been a large number of stations uniformly spaced over the area. However, the means are somewhat less representative in winter because of geographical differences. For example, the differences between the warmest and coldest month at middle tropospheric levels were as great at 6C at Miami compared to 1 to 2C variations at the other stations. Thus, use of another station as far north as Miami instead of San Juan or Swan Island would have resulted in somewhat different mean values for the winter months. This type of limitation, which is com-

Table 1. Mean temperature (°C) at standard pressure surfaces for West Indies area.

All values above the dashed line are negative.

|            | Jan. | Feb. | Mar. | Apr. | May  | June | July | Aug. | Sept. | Oct. | Nov. | Dec.         | Annua |
|------------|------|------|------|------|------|------|------|------|-------|------|------|--------------|-------|
| <b>'30</b> | 58.3 | 57.2 | 55.7 | 54.1 | 53.6 | 52.6 | 53.5 | 53.7 | 54.0  | 55.0 | 55.3 | 56,1         | 54.9  |
| 40         | 61.6 | 61.7 | 60.9 | 58.4 | 57.2 | 56.5 | 56.6 | 56.6 | 57.7  | 58.3 | 59.2 | 60.2         | 58.7  |
| 50         | 66.1 | 66.1 | 66.3 | 63.4 | 61.3 | 60.3 | 60.0 | 60.2 | 60.8  | 61.5 | 62.5 | 64.9         | 62.7  |
| 60         | 70.8 | 71.2 | 71.4 | 68.6 | 65.2 | 63.9 | 63.2 | 63.2 | 64.0  | 65.3 | 66.7 | 70.0         | 66.9  |
| 80         | 77.7 | 77.1 | 76.8 | 75.0 | 72.9 | 70.1 | 68.9 | 69.1 | 69.4  | 72.0 | 75.2 | 77.0         | 73.4  |
| 100        | 76.1 | 75.7 | 75.6 | 74.3 | 74.8 | 72.9 | 71.3 | 72.8 | 73.9  | 75.9 | 76.5 | 76.0         | 74.6  |
| 125        | 70.6 | 70.3 | 70.2 | 70.3 | 72.1 | 72.4 | 70.8 | 71.5 | 72.9  | 73.6 | 72.8 | 71.1         | 71.5  |
| 150        | 65.2 | 64.8 | 65.0 | 66.0 | 67.0 | 68.3 | 67.7 | 67.2 | 67.7  | 67,9 | 67.7 | 66.2         | 66.7  |
| 175        | 59.9 | 59.6 | 60.0 | 60.9 | 61.1 | 62.1 | 62.1 | 61.3 | 61.3  | 61.4 | 61.6 | 61.1         | 61.0  |
| 200        | 55.2 | 54.8 | 55.1 | 55.6 | 55.2 | 55.7 | 55.9 | 55.0 | 54.9  | 54.9 | 55.5 | 55.7         | 55.3  |
| 250        | 45.6 | 45.3 | 45.3 | 45.0 | 43.8 | 43.7 | 44.0 | 43.2 | 42.8  | 43.2 | 44.1 | 45.0         | 44.2  |
| 300        | 36.4 | 36.3 | 36.0 | 35.3 | 34.1 | 33.6 | 33.9 | 33.1 | 32.7  | 33.2 | 34.2 | 35.4         | 34.5  |
| 350        | 28.1 | 28.1 | 27.8 | 26.9 | 25.8 | 25.1 | 25.4 | 24.7 | 24.3  | 24.8 | 25.8 | 27.0         | 26.1  |
| 400        | 20.6 | 20.9 | 20.2 | 19.7 | 18.7 | 18.1 | 18.2 | 17.6 | 17.3  | 17.7 | 18.6 | 19.8         | 18.9  |
| 450        | 14.2 | 14.3 | 13.5 | 13.5 | 12.7 | 12.3 | 12.4 | 11.8 | 11.6  | 11.8 | 12.5 | 13.5         | 12.8  |
| 500        | 8.5  | 8.7  | 7.9  | 8.0  | 7.6  | 7.3  | 7.4  | 6.8  | 6.7   | 6.7  | 7.3  | 8.0          | 7.6   |
| 550        | 3.7  | 3.8  | 3.1  | '3.3 | 3.1  | 2.9  | 3.1  | 2.4  | 2.3   | 2.4  | 2.8  | 3.3          | 3.0   |
| 600        | 0.4  | 0.3  | 1.1  | 0.7  | 0.8  | 1.1  | 0.8  | 1.5  | 1.7   | 1.6  | 1.2  | 0.8          | 1.0   |
| 650        | 4.0  | 3.8  | 4.7  | 4.2  | 4.5  | 4.8  | 4.6  | 5,1  | 5.5   | 5.2  | 4.8  | 4.4          | 4.6   |
| 700        | 6.9  | 6.7  | 7.7  | 7.3  | 7.8  | 8.4  | 8.3  | 8.8  | 8.9   | 8.5  | 8.0  | 7.4          | 7.9   |
| 750        | 9.3  | 9.1  | 10.0 | 10.0 | 10.8 | 11.6 | 11.6 | 12.0 | 12.1  | 11.5 | 10.7 | 10.0         | 10.7  |
| 800        | 11.1 | 10.9 | 11.9 | 12.4 | 13.5 | 14.4 | 14.5 | 14.9 | 14.9  | 13.9 | 13.1 | 1 <b>1.9</b> | 13.1  |
| 850        | 13.1 | 12.9 | 14.1 | 14.8 | 16.2 | 17.1 | 17.1 | 17.6 | 17.7  | 16.9 | 15.4 | 14.0         | 15.6  |
| 900        | 15.9 | 15.6 | 16.6 | 17.5 | 19.0 | 19.8 | 19.9 | 20.5 | 20.5  | 19.7 | 18.1 | 16.8         | 18.3  |
| 950        | 19.0 | 18.7 | 19.3 | 20.4 | 21.8 | 22.6 | 22.8 | 23.4 | 23.4  | 22.6 | 21.1 | 19.9         | 21.2  |
| 000        | 22.1 | 21.8 | 22.6 | 23.6 | 24.8 | 25.6 | 26.1 | 26.4 | 26.2  | 25.5 | 24.0 | 23.0         | 24.3  |
| Sfc.       | 22.4 | 22.3 | 23.2 | 24.3 | 25.4 | 26,2 | 26.5 | 26.8 | 26.4  | 25.6 | 24.1 | 23.0         | 24.7  |

<sup>&</sup>lt;sup>2</sup> Mean temperature and relative humidity data for the individual stations were given in the preprinted version of this article (Jordan, 1957).

mon to all mean soundings, should be recognized in making use of the data for the cooler months. In particular, it places restrictions on the use of the mean West Indies data as a standard for other tropical areas.

The smaller number of reports at the upper tropospheric levels which went into the computation of the monthly means in the early years raises the question whether these values should have been given equal weight with those from recent years when the observations have been more numerous. In fact, mean temperatures for levels above 100 mb are based almost entirely on observations made during the last five years of the period. At the three stations only about 30 per cent of the daily soundings reached the 100-mb surface in 1949, compared to 60 per cent in 1952 and 80 per cent in 1955. The number of soundings reaching the 30-mb surface increased from less than 15 per cent in 1949 to about 30 per cent in 1955. A definite bias could have been introduced by giving equal weight to

all years if the few soundings in early years tended to attain the higher levels more frequently during periods when the upper tropospheric temperatures were warmest. However, averages of the 200-, 150- and 100-mb data for the months January, April, July, and October for the five-year period 1951–1955 revealed differences from the 10-yr means of 0.3C or less. This check suggests that the use of the monthly averages based on relatively few observations had a minor effect on the 10-yr means. However, during some months at the highest levels the values in table 1 are based on data from only three years from each station. For this reason all values at levels above 60 mb are probably somewhat different than might be obtained from a longer and more complete record.

The mean height data presented in table 3 were prepared by working up the soundings obtained from the mean temperature and humidity data. A check was made at three levels (700, 500, and 200 mb) to deter-

TABLE 2. Mean humidity (per cent) at standard pressure surfaces for West Indies area.

|      | Jan. | Feb. | Mar. | Apr. | May | June | July     | Aug. | Sept. | Oct. | Nov. | Dec. | Annua |
|------|------|------|------|------|-----|------|----------|------|-------|------|------|------|-------|
| 400  |      |      |      |      |     | 45   |          |      | 44    |      |      |      |       |
| 450  |      | 1    |      |      |     | 45   | 44       | 40   | 45    |      |      |      |       |
| 500  |      |      | •    |      |     | 46   | 46       | 43   | 49    | 42   |      |      |       |
| 550  |      |      |      |      | 37  | 48   | 47       | 45   | 51    | 46   |      |      |       |
| 600  |      |      |      |      | 41  | 50   | 49       | 50   | 54    | 49   |      |      |       |
| 650  |      |      |      |      | 44  | 52   | 52       | 53   | 56    | 53   |      |      |       |
| 700  |      |      |      | 38   | 47  | 55   | 53       | 56   | 60    | 58   | 46   | 42   | 47    |
| 750  | 41   | 41   | 39   | 45   | 55  | 58   | 53<br>57 | 59   | 64    | 64   | 53   | 49   | 52    |
| 800  | 57   | 56   | 52   | 57   | 62  | 64   | 65       | 66   | 70    | 71   | 65   | 61   | 62    |
| 850  | 71   | 69   | 64   | 66   | 69  | 72   | 74       | 73   | 74    | 76   | 73   | 71   | 71    |
| 900  | 77   | 75   | 72   | 73   | 75  | 77   | 79       | 78   | 79    | 79   | 78   | 76   | 77    |
| 950  | 78   | 77   | 77   | 77   | 79  | 81   | 81       | 81   | 81    | 81   | 79   | 78   | 79    |
| 1000 | 76   | 76   | 76   | 77   | 79  | 81   | 81       | 81   | 81    | 81   | 79   | 77   | 79    |
| Sfc. | 79   | 79   | 77   | 78   | 80  | 83   | 83       | 83   | 84    | 84   | 82   | 80   | 81    |

Table 3. Mean heights of standard pressure surfaces (tens of feet) for West Indies area. Sea-level pressure (SLP) is expressed in millibars as deviations from 1000.

|      | Jan. | Feb. | Mar. | Apr. | May  | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Annua |
|------|------|------|------|------|------|------|------|------|-------|------|------|------|-------|
| 30   | 7774 | 7780 | 7794 | 7818 | 7843 | 7869 | 7874 | 7877 | 7864  | 7842 | 7816 | 7793 | 7830  |
| 40   | 7185 | 7189 | 7200 | 7218 | 7242 | 7265 | 7271 | 7275 | 7264  | 7244 | 7219 | 7200 | 7233  |
| 50   | 6736 | 6740 | 6750 | 6763 | 6783 | 6804 | 6811 | 6815 | 6805  | 6787 | 6764 | 6748 | 6777  |
| 60   | 6381 | 6382 | 6392 | 6400 | 6415 | 6434 | 6441 | 6445 | 6437  | 6420 | 6399 | 6388 | 6412  |
| 80   | 5831 | 5832 | 5841 | 5844 | 5851 | 5865 | 5870 | 5874 | 5866  | 5855 | 5840 | 5836 | 5851  |
| 100  | 5411 | 5410 | 5419 | 5419 | 5423 | 5433 | 5435 | 5441 | 5436  | 5428 | 5418 | 5414 | 5424  |
| 125  | 4983 | 4982 | 4989 | 4990 | 4996 | 5003 | 5003 | 5011 | 5008  | 5002 | 4992 | 4986 | 4996  |
| 150  | 4624 | 4622 | 4629 | 4630 | 4639 | 4648 | 4646 | 4655 | 4654  | 4647 | 4637 | 4628 | 4638  |
| 175  | 4312 | 4309 | 4318 | 4319 | 4329 | 4340 | 4338 | 4346 | 4346  | 4339 | 4328 | 4318 | 4328  |
| 200  | 4035 | 4033 | 4041 | 4043 | 4054 | 4066 | 4064 | 4071 | 4070  | 4063 | 4053 | 4043 | 4053  |
| 250  | 3558 | 3554 | 3563 | 3566 | 3575 | 3586 | 3586 | 3592 | 3589  | 3583 | 3574 | 3565 | 3574  |
| 300  | 3153 | 3148 | 3156 | 3158 | 3165 | 3176 | 3176 | 3181 | 3177  | 3172 | 3164 | 3158 | 3165  |
| 350  | 2797 | 2792 | 2799 | 2800 | 2804 | 2816 | 2815 | 2819 | 2815  | 2811 | 2804 | 2799 | 2806  |
| 400  | 2478 | 2473 | 2479 | 2479 | 2481 | 2493 | 2493 | 2495 | 2491  | 2488 | 2482 | 2479 | 2484  |
| 500  | 1923 | 1918 | 1923 | 1923 | 1924 | 1933 | 1934 | 1935 | 1930  | 1928 | 1924 | 1922 | 1926  |
| 600  | 1451 | 1447 | 1450 | 1450 | 1450 | 1459 | 1461 | 1460 | 1456  | 1453 | 1450 | 1450 | 1453  |
| 700  | 1041 | 1036 | 1038 | 1038 | 1038 | 1046 | 1049 | 1046 | 1042  | 1039 | 1038 | 1038 | 1040  |
| 800  | 678  | 674  | 674  | 674  | 673  | 679  | 682  | 678  | 674   | 673  | 672  | 674  | 675   |
| 850  | 510  | 507  | 506  | 506  | 505  | 509  | 513  | 509  | 505   | 503  | 504  | 506  | 507   |
| 900  | 350  | 348  | 347  | 346  | 344  | 348  | 352  | 347  | 343   | 342  | 344  | 347  | 347   |
| 1000 | 52   | 51   | 49   | 46   | 43   | 46   | 49   | 45   | 40    | 39   | 43   | 48   | 46    |
| SLP  | 18.5 | 18.0 | 17.1 | 16.3 | 15.0 | 15.9 | 17.1 | 15.4 | 14.0  | 13.8 | 15.2 | 16.8 | 16.3  |

mine the magnitude of the difference between these computed heights and the heights obtained by simply averaging the height data for the individual months. Nearly all differences were ten feet or less and the maximum value was only 25 ft. Similarly, the computed heights shown for the mean "hurricane season"

sounding (table 5) did not deviate from the average of the July-October heights by as much as 15 ft at any level. These checks suggest that, at least over a long period of record, both the height and temperature data may be averaged in the preparation of mean soundings without introducing significant inconsistencies.

Table 4. Mean annual West Indies sounding data for isobaric surfaces. Mean values of height (H), temperature (T), density  $(\rho)$ , potential temperature  $(\theta)$ , equivalent potential temperature  $(\theta_E)$ , relative humidity (f), and specific humidity (q) are tabulated.

| P<br>(mb) | (m)              | H (ft) | T<br>(°C)        | $(kg/m^3)$ | θ<br>(°A) | $({}^{\theta_B}_{})$ | (%) | q<br>(g/kg) |
|-----------|------------------|--------|------------------|------------|-----------|----------------------|-----|-------------|
| 30        | · 23,867         | 78,305 | -54.9            | 0.048      | 594       |                      |     |             |
| 40        | 22.047           | 72,335 | -58.7            | 0.065      | 538       |                      |     |             |
| 50        | 20,658<br>19,546 | 67,775 | -62.7            | 0.083      | 495       |                      |     |             |
| 60        | 19,546           | 64,125 | -66.9            | 0.101      | 461       |                      |     |             |
| 80        | 17,836           | 58,515 | -66.9<br>-73.4   | 0.140      | 411       |                      |     |             |
| 100       | 16,535           | 54,245 | -74.6            | 0.175      | 383       |                      |     |             |
| 125       | 15,227           | 49,955 | -71.5            | 0.216      | 365       |                      |     |             |
| 150       | 14,137           | 46,380 | -66.7            | 0.253      | 355       |                      |     |             |
| 175       | 13,193           | 43,285 | -61.0            | 0.287      | 349       |                      |     |             |
| 200       | 13,193<br>12,353 | 40,530 | $-61.0 \\ -55.3$ | 0.319      | 345       |                      |     |             |
| 250       | 10,894           | 35,740 | -44.2            | 0.380      | 340       |                      |     |             |
| 300       | 9647             | 31,650 | -34.5            | 0.438      | 337       |                      |     |             |
| 350       | 8553             | 28,060 | -26.1            | 0.493      | 334       |                      |     |             |
| 400       | 7573             | 24,845 | -18.9            | 0.548      | 330       |                      |     |             |
| 450       | 6682             | 21,925 | -12.8            | 0.602      | 327       |                      |     |             |
| 500       | 5870             | 19,260 | -7.6             | 0.656      | 324       |                      |     |             |
| 550       | 5123             | 16,810 | - 3.0            | 0.709      | 320       |                      |     |             |
| 600       | 4427             | 14,530 | 1.0              | 0.762      | 317       |                      |     |             |
| 650       | 3779             | 12,400 | 4.6              | 0.814      | 314       |                      |     |             |
| 700       | 3171             | 10,405 | 7.9              | 0.865      | 311       | 323                  | 42  | 4.5         |
| 750       | 2599             | 8525   | 10.7             | 0.917      | 308       | 324                  | 52  | 5.6         |
| 800       | 2058             | 6750 . | 13.1             | 0.970      | 305       | 325                  | 62  | 7.3         |
| 850       | 1545             | 5070   | 15.6             | 1.020      | 302       | 328                  | 71  | 9.3         |
| 900       | 1057             | 3470   | 18.3             | 1.070      | 300       | 331                  | 77  | 11.5        |
| 950       | 590              | 1935   | 21.2             | 1.116      | 299       | 334                  | 79  | 13.2        |
| 1000      | 141              | 465    | 24.3             | 1.161      | 298       | 336                  | 79  | 15.2        |
| 1016.3    | 0                | 0      | 24.7             | 1.180      | 297       | 337                  | 81  | 15.6        |

Table 5. Mean West Indies sounding data for "hurricane season" (July-October). Data are shown in the same form as in table 4.

| P<br>(mb) | (m)    | f (ft)           | (°C)             | $(kg/m^3)$ | (°A) | $^{	heta_E}_{(^{\circ}\mathrm{A})}$ | f<br>(%) | q<br>(g/kg) |
|-----------|--------|------------------|------------------|------------|------|-------------------------------------|----------|-------------|
| 30        | 23,971 | 78,645           | -54.0            | 0.048      | 597  |                                     |          |             |
| 40        | 22,139 | 72,635           | -57.3            | 0.065      | 542  |                                     |          |             |
| 50        | 20,743 | 68,055           | -60.6            | 0.082      | 500  |                                     |          |             |
| 60        | 19,620 | 64.370           | -63.9            | 0.100      | 468  |                                     |          |             |
| 80        | 17.883 | 58,670<br>54,355 | $-69.8 \\ -73.5$ | 0.137      | 418  |                                     |          |             |
| 100       | 16,568 | 54,355           | -73.5            | 0.174      | 386  |                                     |          |             |
| 125       | 15,260 | 50,065           | -72.2            | 0.217      | 364  |                                     |          |             |
| 150       | 14,177 | 46,510           | -67.6            | 0.254      | 354  |                                     |          |             |
| 175       | 13,236 | 43,425           | -61.5            | 0.288      | 348  |                                     |          |             |
| 200       | 12,396 | 40,670           | -55.2            | 0.320      | 345  |                                     |          |             |
| 250       | 10,935 | 35,875<br>31,765 | $-43.3 \\ -33.2$ | 0.379      | 342  |                                     |          |             |
| 300       | 9682   | 31.765           | -33.2            | 0.434      | 338  |                                     |          |             |
| 350       | 8581   | 28,155           | -24.8            | 0.490      | 335  |                                     |          |             |
| 400       | 7595   | 24,920           | -17.7            | 0.545      | 332  |                                     |          |             |
| 450       | 6703   | 21,990           | -11.9            | 0.599      | 328  | 333                                 | 42       | 1.4         |
| 500       | 5888   | 19,315           | <b>-</b> 6.9     | 0.653      | 324  | 332                                 | 45       | 2.1         |
| 550       | 5138   | 16.855           | <b>-</b> 2.5     | 0.707      | 321  | 331                                 | 47<br>50 | 3.2         |
| 600       | 4442   | 14,575           | 1.4              | 0.760      | 318  | 328                                 | 50       | 3.6         |
| 650       | 3792   | 12,440           | 5.1              | 0.811      | 315  | 328                                 | 54       | 4.6         |
| 700       | 3182   | 10,440           | 8.6              | 0.862      | 312  | 329                                 | 57       | 5.8         |
| 750       | 2609   | 8560             | 11.8             | 0.913      | 309  | 330                                 | 61       | 7.1         |
| 800       | 2063   | 6770             | 14.6             | 0.964      | 307  | 331                                 | 68       | 8.4         |
| 850       | 1547   | 5075             | 17.3             | 1.013      | 304  | 334                                 | 74       | 11.0        |
| 900       | 1054   | 3460             | 19.8             | 1.062      | 302  | 338                                 | 79       | 13.0        |
| 950       | 583    | 1915             | 23.0             | 1.108      | 300  | 341                                 | 81       | 15.3        |
| 1000      | 132    | 435              | 26.0             | 1.152      | 299  | 345                                 | 81       | 17.6        |
| 1015.1    | 0      | 0                | 26.3             | 1.167      | 298  | 345                                 | 84       | 18.2        |

## 4. Comparative results

Colón (1953) prepared a mean sounding for the rainy season of the western Pacific and carried out a rather detailed comparison with the mean data presented by Schacht (1946). For this purpose, it was necessary to convert Schacht's mean data, which were given at one-km levels, to make them applicable to the standard pressure surfaces. The following comparison makes use of the converted data prepared by Colón.

The mean data prepared by Schacht (1946) were based on soundings made during August, September and October of the years 1941–1944 at the same three stations used in this study. Therefore, for comparison, averages were computed for the period August through October from the data presented in tables 1–3.3

The deviations of the mean August–October temperature values from those computed by Schacht were less than 0.5C through a deep layer of the troposphere extending from 850 to 150 mb (fig. 1). The apparent increase in the mean temperature near the surface between the two periods was not evident from the climatological records of surface conditions at the three stations. Apparently, changes in local conditions at the radiosonde observation sites contributed to such differences. For example, the transfer of the station at San Juan from downtown to the airport and a considerable clearing of forest near the Swan Island site may have been important.



Fig. 1. Deviations of the mean August-October temperature and pressure-height data (tables 1, 3) from Schacht's mean data.

The largest temperature deviations shown by fig. 1 occur at the highest levels. The number of reports available to Schacht which reached the 100- and 80-mb levels must have been very small since even in the years 1946–1948 less than 25 per cent of the months had as many as five soundings reaching the 100-mb level and less than ten per cent of the monthly records listed 80-mb data. In contrast, in the period 1952–1955 from 50 to 90 per cent of the daily observations reached the 80-mb level during the individual months. Therefore, there can be little doubt that the means provided by the new set of data are more reliable at these higher levels.

Differences between the relative humidities given by the Schacht and the August-October averages from table 2 were quite small. The new set of data gave slightly higher values at all levels but the maximum deviation was only four per cent.

# 5. Climatological features

The mean monthly data provide an opportunity for a rather detailed examination of seasonal variations at various levels in the troposphere and lower stratosphere. The seasonal trends were quite similar at the three stations; therefore, the month-to-month variations shown by the mean West Indies data reflect, at least to a large extent, true seasonal changes for the area.

The total range in mean monthly temperature is shown by fig. 2 on which the mean annual sounding has been plotted along with the maximum and minimum values at each level and the months of their occurrence. At levels up to 250 mb the maximum temperatures were found in August and September and the minimum values in January and February. A nearly complete reversal is shown in the upper troposphere with the maximum in February and March and the minimum in June and July. In the stratosphere the pattern is similar to that in the lower and middle troposphere except that the warmest values are attained in June and July rather than in August and September.

The range in the mean monthly temperature is smallest at the 600-mb and 200-mb levels with magnitudes of less than 1.5C Relative maxima occur at 850 and 350-mb with spreads of almost 4C. The spread increases to somewhat larger values at levels above 200-mb and the absolute maximum of almost 9C is found at 80-mb. There is a gradual decrease above this level but the spread is still larger than at any of the tropospheric levels.

An analysis of the anomalies of the monthly temperatures (fig. 3) brings out more clearly some of the features discussed in connection with fig. 2 and, in particular, shows the complicated character of the

 $<sup>^3</sup>$  This set of data showed only very small differences from the ''hurricane season'' sounding (table 5).

seasonal changes of temperature as a function of altitude.

The seasonal variations at the highest and lowest levels are not too different from what might be obtained from fig. 2 by assuming linear changes between the warmest and coldest months. However, at some of the intermediate levels there is a definite tendency for flat maxima and minima with deviations of the same sign persisting for more than half the year. The seasonal change patterns are most complicated in the 150- to 80-mb layer where the major tropopause variations occur. The tropopause in the West Indies region is highest and coldest in the winter months (Riehl, 1954) as indicated by the anomaly pattern at the 100mb surface. The lower and somewhat sharper tropopauses found during the summer months account for the negative anomalies shown in the vicinity of the 150-mb level at this season.

A definite irregularity in the seasonal trend in late spring and early summer is shown by the anomalies at most tropospheric levels (fig. 3). This reversal of the normal trend was also noted in the temperature data for all three stations and apparently is a significant climatological feature. It is interesting that this anomaly in the seasonal temperature trend coincides with a rather large decrease in mean monthly rainfall throughout much of the West Indies area.



Fig. 2. Tephigram plot of mean annual temperature data (table 1). The maximum and minimum monthly values and the months of occurrence are shown at each level.



Fig. 3. Monthly temperature anomalies (C) from the annual means for West Indies area.

The temperature variations which arise from seasonal variations in the heights of the pressure surfaces contribute to some of the minor irregularities shown by fig. 3. However, to a large extent, the height field shows seasonal variations in phase with those of the temperature field. The interrelationship of these fields is readily apparent from a comparison of the monthly height anomalies (fig. 4) with the temperature anomalies (fig. 3). At levels above 700-mb, a definite annual oscillation is indicated with maximum heights in August; minimum heights are shown in February in the troposphere and in January in the stratosphere. The height field shows a complicated pattern in the lower levels which is not closely associated with the seasonal temperature changes. At these levels, there are maxima in January and July and minima in April-May and October-November. The amplitude of the seasonal oscillation of the height values increases from 850-mb upward and a relative maximum amounting



Fig. 4. Monthly pressure-height anomalies (tens of feet) from the annual means for West Indies area.

to nearly 400 ft is attained at the 200-mb level. The inverse temperature variation in the upper troposphere leads to a reduction in the amplitude of the seasonal height between 200 and 100 mb, but at higher levels the normal trend is again established and the range increases with height and attains an amplitude of over 1000 ft at the 30-mb surface.

The mean relative humidity data (table 2) show relatively small seasonal changes in the lower levels with maximum values in October and minimum values in March. The range in the mean monthly values increases from less than ten per cent at the surface to 25 per cent at the highest levels with complete data. The increase of moisture at the middle troposphere levels during the summer months is quite marked. At these levels the maximum values are attained in June and again in September in close agreement with the months of maximum rainfall over much of the area.

# 6. Application of results in other areas

The temperatures shown for the mean "hurricane season" sounding (table 5) depart only slightly, throughout most of the troposphere, from the mean values for the rainy season of the western Pacific (June—September), prepared by Colón (1953). In fact, below 200 mb there are no differences as great as 0.5C between the two sets of data. However, in the vicinity of the tropopause the Pacific temperatures were over 4C colder. Apparently this feature arises because of differences in latitude of the stations used in preparing the two sets of mean data. The fact that the Pacific stations were 10° latitude further south also contributed toward lower surface pressures and somewhat higher relative humidities.

In general, it would appear that the mean data pre-

sented in this report could be used, at least during the summer months, as a good approximation to the mean conditions in similar climatic regimes in other parts of the tropics. Clearly, the mean monthly soundings for the West Indies area are representative of a much broader latitude belt in summer than in winter. Significant differences from the West Indies soundings could be expected in the eastern portion of tropical oceans where low level temperatures are colder and lapse rates are more stable. Near the equator, fairly large temperatures deviations are likely in the vicinity of the tropopause and systematic differences in the pressure-height values should be expected because of the lower sea level pressures in these areas.

Acknowledgments.—The compilation of the basic aerological data used in this report was handled by Mr. Russell E. Johnson while on detail to the National Hurricane Research Project. The computations were made by Mrs. Bonnie R. True and the drafting by Mr. Charles H. True of the Project Staff. Several members of the professional staff of the Project made contributions to the organization of this study and in the preparation of the report.

#### REFERENCES

Colón, J. A., 1953: The mean summer atmosphere of the rainy season over the western tropical Pacific Ocean. Bull. Amer. meteor. Soc., 34, 333-334.

Jordan, C. L., 1957: A mean atmosphere for the West Indies area. National Hurricane Research Project, Report No. 6, U. S. Weather Bureau.

Riehl, H., 1954: Tropical meteorology. McGraw-Hill, New York, 392 pp.

Schacht, E. J., 1946: A mean hurricane sounding for the Caribbean area. Bull. Amer. meteor. Soc., 27, 324-327.

U. S. Weather Bureau, 1948: Hurricane notes, U. S. Weather Bureau Training Paper No. 1.