Computing with Signals

Instructors: Neeraj Sharma

$$g(x,t)=\frac{1}{\sqrt{2\pi t}}e^{\frac{-x^2}{2t}},\ t>0$$

Dirac Delta

$$g(x,t)=\frac{1}{\sqrt{2\pi t}}e^{\frac{-x^2}{2t}},\ t>0$$

As t tends to 0, g(x,t) approximates a pulse of infinite height and infinitesimal width. Such a signal is referred to as the Dirac Delta.

Fourier Transform of some typical signals

$$\Pi(t) = \begin{cases} 1 & |t| < 1/2 \\ 0 & |t| \ge 1/2 \end{cases}$$

$$\Pi(t) = \begin{cases} 1 & |t| < 1/2 \\ 0 & |t| \ge 1/2 \end{cases}$$

$$\hat{f}(s) = \int_{-\infty}^{\infty} e^{-2\pi i s t} f(t) dt$$

$$\Pi(t) = \begin{cases} 1 & |t| < 1/2 \\ 0 & |t| \ge 1/2 \end{cases}$$

$$\widehat{\Pi}(s) = \int_{-\infty}^{\infty} e^{-2\pi i s t} \Pi(t) dt = \int_{-1/2}^{1/2} e^{-2\pi i s t} \cdot 1 dt = \frac{\sin \pi s}{\pi s}$$

$$\Pi(t) = \begin{cases} 1 & |t| < 1/2 \\ 0 & |t| \ge 1/2 \end{cases}$$

$$\widehat{\Pi}(s) = \int_{-\infty}^{\infty} e^{-2\pi i s t} \Pi(t) dt = \int_{-1/2}^{1/2} e^{-2\pi i s t} \cdot 1 dt = \frac{\sin \pi s}{\pi s}$$

$$\Lambda(x) = \begin{cases} 1 - |x| & |x| \le 1\\ 0 & \text{otherwise} \end{cases}$$

$$\hat{f}(s) = \int_{-\infty}^{\infty} e^{-2\pi i s t} f(t) dt$$

$$\Lambda(x) = \begin{cases} 1 - |x| & |x| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\hat{f}(s) = \int_{-\infty}^{\infty} e^{-2\pi i s t} f(t) dt$$

$$\mathcal{F}\Lambda(s) = \int_{-\infty}^{\infty} \Lambda(x)e^{-2\pi i s x} \, dx = \int_{-1}^{0} (1+x)e^{-2\pi i s x} \, dx + \int_{0}^{1} (1-x)e^{-2\pi i s x} \, dx$$

$$= \left(\frac{1+2i\pi s}{4\pi^{2}s^{2}} - \frac{e^{2\pi i s}}{4\pi^{2}s^{2}}\right) - \left(\frac{2i\pi s - 1}{4\pi^{2}s^{2}} + \frac{e^{-2\pi i s}}{4\pi^{2}s^{2}}\right)$$

$$= -\frac{e^{-2\pi i s}(e^{2\pi i s} - 1)^{2}}{4\pi^{2}s^{2}} = -\frac{e^{-2\pi i s}(e^{\pi i s}(e^{\pi i s} - e^{-\pi i s}))^{2}}{4\pi^{2}s^{2}}$$

$$= -\frac{e^{-2\pi i s}e^{2\pi i s}(2i)^{2}\sin^{2}\pi s}{4\pi^{2}s^{2}} = \left(\frac{\sin\pi s}{\pi s}\right)^{2} = \operatorname{sinc}^{2}s.$$

Linearity

$$\mathcal{F}(f+g)(s) = \int_{-\infty}^{\infty} (f(x) + g(x))e^{-2\pi i s x} dx$$
$$= \int_{-\infty}^{\infty} f(x)e^{-2\pi i s x} dx + \int_{-\infty}^{\infty} g(x)e^{-2\pi i s x} dx = \mathcal{F}f(s) + \mathcal{F}g(s).$$

Shifting the signal

$$\int_{-\infty}^{\infty} f(t+b)e^{-2\pi i s t} dt = \int_{-\infty}^{\infty} f(u)e^{-2\pi i s (u-b)} du$$
(substituting $u = t + b$; the limits still go from $-\infty$ to ∞)
$$= \int_{-\infty}^{\infty} f(u)e^{-2\pi i s u}e^{2\pi i s b} du$$

$$= e^{2\pi i s b} \int_{-\infty}^{\infty} f(u)e^{-2\pi i s u} du = e^{2\pi i s b} \hat{f}(s).$$

Scaling the signal

$$\int_{-\infty}^{\infty} f(at)e^{-2\pi i st} dt = \int_{-\infty}^{\infty} f(u)e^{-2\pi i s(u/a)} \frac{1}{a} du$$
(substituting $u = at$; the limits go the same way because $a > 0$)
$$= \frac{1}{a} \int_{-\infty}^{\infty} f(u)e^{-2\pi i (s/a)u} du = \frac{1}{a} \mathcal{F} f\left(\frac{s}{a}\right)$$

Periodizing a function

$$\rho_p(x) = \sum_{k=-\infty}^{\infty} \rho(x - kp)$$

Periodizing a function using Diracs

$$\rho_p(x) = \sum_{k=-\infty}^{\infty} \rho(x - pk)$$

Periodizing a function using Diracs

$$\rho_p(x) = \sum_{k=-\infty}^{\infty} \rho(x - pk)$$

$$= \sum_{k=-\infty}^{\infty} \delta(x - kp) * \rho(x)$$

Periodizing a function using Diracs

$$\rho_p(x) = \sum_{k=-\infty}^{\infty} \rho(x - pk)$$

$$= \sum_{k=-\infty}^{\infty} \delta(x - kp) * \rho(x)$$

$$= \left(\sum_{k=-\infty}^{\infty} \delta(x - kp)\right) * \rho(x)$$

Periodizing a function
$$\rho_p(x) = \sum_{k=-\infty} \rho(x-kp)$$

- Shah function
- Comb function
- Train of Diracs

$$III_p(x) = \sum_{k=-\infty}^{\infty} \delta(x - kp)$$

$$\rho_p = \prod_p * \rho .$$

$$\Pi_p(x) = \sum_{k=-\infty}^{\infty} \delta(x - kp) \quad \text{or} \quad \Pi_p = \sum_{k=-\infty}^{\infty} \delta_{kp}$$

$$\langle \text{III}_p, \varphi \rangle = \left\langle \sum_{k=-\infty}^{\infty} \delta_{kp}, \varphi \right\rangle = \sum_{k=-\infty}^{\infty} \langle \delta_{kp}, \varphi \rangle = \sum_{k=-\infty}^{\infty} \varphi(kp)$$

$$\Pi_p(x) = \sum_{k=0}^{\infty} \delta(x - kp) \quad \text{or} \quad \Pi_p = \sum_{k=0}^{\infty} \delta_{kp}$$

Periodizing any function using the Shah function:

$$(f * \mathbf{III}_p)(t) = \sum_{k=-\infty}^{\infty} f(t - pk)$$

Periodizing any function using the Shah function:

$$(f * \mathbf{III}_p)(t) = \sum_{k = -\infty} f(t - pk)$$

Of special interest when f is zero for $|t| \ge p/2$ as then,

$$\Pi_p f = f$$

$$f = \Pi_p (f * \Pi_p)$$

Example

$$(f * \mathbf{III}_p)(t) = \sum_{k=-\infty}^{\infty} f(t - pk)$$

Can you recall we used this approach in earlier classes?

$$\Pi(t) = \begin{cases} 1 & |t| < 1/2 \\ 0 & |t| \ge 1/2 \end{cases}$$

The Shah function also provides one way sampling a function

$$f(x)\mathbf{III}(x) = \sum_{k=-\infty}^{\infty} f(x)\delta(x-k) = \sum_{k=-\infty}^{\infty} f(k)\delta(x-k)$$

The Shah function provides one way to periodizing a function

$$(f * \mathbf{III}_p)(t) = \sum_{k=-\infty}^{\infty} f(t - pk)$$

Sampling at arbitrary but regularly spaced points

$$f(x)\coprod_{p}(x) = \sum_{k=-\infty}^{\infty} f(kp)\delta(x-kp)$$

Scaling the Shah function

$$III_p(x) = \sum_{k=-\infty}^{\infty} \delta(x - kp)$$

$$III(px) = \sum_{k=-\infty}^{\infty} \delta(px - k)$$

Fourier Transform of Shah function

$$\mathbf{III}(x) = \sum_{k=-\infty}^{\infty} \delta(x-k)$$

$$\mathcal{F} \mathbf{III}(s) = \sum_{k=-\infty}^{\infty} e^{-2\pi i k s} = \sum_{k=-\infty}^{\infty} e^{2\pi i k s} = \mathbf{III}$$

Fourier Transform of Shah function

$$\mathbf{III}(x) = \sum_{k=-\infty}^{\infty} \delta(x-k)$$

$$\mathcal{F} \mathbf{III}(s) = \sum_{k=-\infty}^{\infty} e^{-2\pi i k s} = \sum_{k=-\infty}^{\infty} e^{2\pi i k s} = \mathbf{III}$$

$$\sum_{n=-N}^{N} e^{2\pi i n t}$$

$$\mathcal{F} \mathbf{III}_{p}(s) = \frac{1}{p} \mathcal{F} \left(\mathbf{III} \left(\frac{x}{p} \right) \right)$$

$$= \frac{1}{p} p \mathcal{F} \mathbf{III}(ps) \quad \text{(stretch theorem)}$$

$$= \mathbf{III}(ps)$$

$$= \frac{1}{p} \mathbf{III}_{1/p}(s)$$

$$\mathbf{III}(x) = \sum_{k=-\infty} \delta(x-k)$$

$$= \frac{1}{p} p \mathcal{F} \mathbf{III}(ps) \quad \text{(stretch theorem }$$

$$= \mathbf{III}(ps)$$

$$= \frac{1}{p} \mathbf{III}_{1/p}(s)$$

 $k=-\infty$

 $\mathcal{F} \mathbb{I} \mathbb{I}(s) = \sum_{i=1}^{n} e^{-2\pi i k s} = \sum_{i=1}^{n} e^{2\pi i k s} = \mathbb{I} \mathbb{I}$

 $k=-\infty$

 $\mathcal{F}f = \Pi_p(\mathcal{F}f * \Pi_p)$

$$\mathcal{F}f = \Pi_p(\mathcal{F}f * \Pi_p)$$

 $f(t) = \mathcal{F}^{-1}\mathcal{F}f(t)$

$$f(t) = \mathcal{F}^{-1}\mathcal{F}f(t) = \mathcal{F}^{-1}(\Pi_p(\mathcal{F}f*\Pi_p))(t)$$

$$\begin{split} f(t) &= \mathcal{F}^{-1}\mathcal{F}f(t) = \mathcal{F}^{-1}(\Pi_p(\mathcal{F}f*\Pi_p))(t) \\ &= \mathcal{F}^{-1}\Pi_p(t)*\mathcal{F}^{-1}(\mathcal{F}f*\Pi_p)(t) \\ &\quad (\text{taking } \mathcal{F}^{-1} \text{ turns multiplication into convolution}) \end{split}$$

$$f(t) = \mathcal{F}^{-1}\mathcal{F}f(t) = \mathcal{F}^{-1}(\Pi_p(\mathcal{F}f * \Pi_p))(t)$$

$$= \mathcal{F}^{-1}\Pi_p(t) * \mathcal{F}^{-1}(\mathcal{F}f * \Pi_p)(t)$$
(taking \mathcal{F}^{-1} turns multiplication into convolution)

 $= \mathcal{F}^{-1}\Pi_p(t) * (\mathcal{F}^{-1}\mathcal{F}f(t) \cdot \mathcal{F}^{-1}\Pi_p(t))$

(ditto, except it's convolution turning into multiplication)

$$f(t) = \mathcal{F}^{-1}\mathcal{F}f(t) = \mathcal{F}^{-1}(\Pi_p(\mathcal{F}f * \mathbf{III}_p))(t)$$

$$= \mathcal{F}^{-1}\Pi_p(t) * \mathcal{F}^{-1}(\mathcal{F}f * \mathbf{III}_p)(t)$$

$$(\text{taking } \mathcal{F}^{-1} \text{ turns multiplication into convolution})$$

$$= \mathcal{F}^{-1}\Pi_p(t) * (\mathcal{F}^{-1}\mathcal{F}f(t) * \mathcal{F}^{-1}\mathbf{III}_p(t))$$

 $= p \operatorname{sinc} pt * (f(t) \cdot \frac{1}{p} \operatorname{III}_{1/p}(t))$

 $= \mathcal{F}^{-1}\Pi_p(t) * (\mathcal{F}^{-1}\mathcal{F}f(t) \cdot \mathcal{F}^{-1}\Pi_p(t))$ (ditto, except it's convolution turning into multiplication)

$$f(t) = \mathcal{F}^{-1}\mathcal{F}f(t) = \mathcal{F}^{-1}(\Pi_p(\mathcal{F}f * \Pi_p))(t)$$
$$= \mathcal{F}^{-1}\Pi_p(t) * \mathcal{F}^{-1}(\mathcal{F}f * \Pi_p)(t)$$

(taking
$$\mathcal{F}^{-1}$$
 turns multiplication into convolution)
= $\mathcal{F}^{-1}\Pi_{p}(t) * (\mathcal{F}^{-1}\mathcal{F}f(t) \cdot \mathcal{F}^{-1}\Pi_{p}(t))$

(ditto, except it's convolution turning into multiplication)

$$= p \operatorname{sinc} pt * (f(t) \cdot \frac{1}{p} \operatorname{III}_{1/p}(t))$$

$$= \operatorname{sinc} pt * \sum_{k=-\infty}^{\infty} f\left(\frac{k}{p}\right) \delta\left(t - \frac{k}{p}\right) \quad \text{(the sampling property of } \Pi_p)$$

$$f(t) = \mathcal{F}^{-1}\mathcal{F}f(t) = \mathcal{F}^{-1}(\Pi_p(\mathcal{F}f * \Pi_p))(t)$$
$$= \mathcal{F}^{-1}\Pi_p(t) * \mathcal{F}^{-1}(\mathcal{F}f * \Pi_p)(t)$$

(taking
$$\mathcal{F}^{-1}$$
 turns multiplication into convolution)
= $\mathcal{F}^{-1}\Pi_p(t) * (\mathcal{F}^{-1}\mathcal{F}f(t) \cdot \mathcal{F}^{-1}\Pi_p(t))$

$$= p\operatorname{sinc} pt * (f(t) \cdot \frac{1}{p} \Pi_{1/p}(t))$$

$$= \operatorname{sinc} pt * \sum_{k=-\infty}^{\infty} f\left(\frac{k}{p}\right) \delta\left(t - \frac{k}{p}\right) \quad \text{(the sampling property of } \mathbf{III}_{p}\text{)}$$

$$f\left(\frac{k}{r}\right)\operatorname{sinc} pt * \delta\left(t - \frac{k}{r}\right)$$
(the sampling property of $f\left(\frac{k}{r}\right)\operatorname{sinc} pt * \delta\left(t - \frac{k}{r}\right)$

$$= \sum_{k=-\infty}^{\infty} f\left(\frac{k}{p}\right) \operatorname{sinc} pt * \delta\left(t - \frac{k}{p}\right)$$

$$= \mathcal{F}^{-1}\Pi_p(t) * \mathcal{F}^{-1}(\mathcal{F}f * \Pi_p)(t)$$
(taking \mathcal{F}^{-1} turns multiplication into convolution)

 $f(t) = \mathcal{F}^{-1}\mathcal{F}f(t) = \mathcal{F}^{-1}(\Pi_n(\mathcal{F}f * \Pi_n))(t)$

$$= \mathcal{F}^{-1}\Pi_p(t) * (\mathcal{F}^{-1}\mathcal{F}f(t) \cdot \mathcal{F}^{-1}\Pi_p(t))$$

$$= p \operatorname{sinc} pt * (f(t) \cdot \frac{1}{p} \operatorname{III}_{1/p}(t))$$

$$= \operatorname{sinc} pt * \sum_{k=-\infty}^{\infty} f\left(\frac{k}{p}\right) \delta\left(t - \frac{k}{p}\right) \quad \text{(the sampling property of } \operatorname{III}_{p}\text{)}$$

$$= \sum_{k=-\infty}^{\infty} f\left(\frac{k}{p}\right) \operatorname{sinc} pt * \delta\left(t - \frac{k}{p}\right)$$

$$= \sum_{k=-\infty}^{\infty} f\left(\frac{k}{p}\right) \operatorname{sinc} p\left(t - \frac{k}{p}\right) \quad \text{(the sifting property of } \delta)$$

$$f(t) = \sum_{k=-\infty}^{\infty} f\left(\frac{k}{p}\right) \operatorname{sinc} p\left(t - \frac{k}{p}\right)$$
 (the sifting property of δ)

$$f(t) = \sum_{k=-\infty}^{\infty} f(t_k) \operatorname{sinc} p(t - t_k)$$
 , $t_k = \frac{k}{p}$

- Shannon Sampling Theorem (1949)
- Whittaker Sampling Formula (1915, 1935)

$$f(t) = \sum_{k=-\infty}^{\infty} f(t_k) \operatorname{sinc} p(t - t_k)$$
 , $t_k = \frac{k}{p}$

$$f(t) = \sum_{k=-\infty}^{\infty} f(t_k) \operatorname{sinc} p(t-t_k)$$
 , $t_k = rac{k}{p}$
Discrete samples Interpolating Bandwidth of of $f(t)$ function $f(t)$

Discrete instants at which f(t) was sampled

Enables switching between the discrete, $f(t_k)$, and continuous world, f(t). Without any error!

$$f(t) = \sum_{k=-\infty}^{\infty} f(t_k) \operatorname{sinc} p(t - t_k), \qquad t_k = \frac{k}{p}$$

- Nyquist Sampling
- Shannon Sampling Theorem, 1940s
- Whittaker Sampling Formula

$$f(t) = \sum_{k=-\infty}^{\infty} f(t_k) \operatorname{sinc} p(t - t_k), \qquad t_k = \frac{k}{p}$$

- Nyquist Sampling
- Shannon Sampling Theorem, 1940s
- Whittaker Sampling Formula

Sampling and Interpolation

through visualizations

time-domain

frequency-domain

Perfect

reconstruction

Aliasing (undersampling)

Oversampling

$$f(t) = \sum_{k=-\infty}^{\infty} f(t_k) \operatorname{sinc} p(t - t_k), \qquad t_k = \frac{k}{p}$$

- Nyquist Sampling
- Shannon Sampling Theorem, 1940s
- Whittaker Sampling Formula

Example: we captured only its samples

Example: reconstruct using sinc()

$$f(t) = \sum_{k=-\infty}^{\infty} f(t_k) \operatorname{sinc} p(t - t_k) \qquad t_k = \frac{1}{2}$$

Example: reconstruct using sinc()

$$f(t) = \sum_{k=-\infty}^{\infty} f(t_k) \operatorname{sinc} p(t - t_k)$$
 $t_k = \frac{1}{2}$

Summary

- Sampling story
 - uniform sampling at lower rate leads to incorrect interpretation of captured data
- Mathematical concepts:
 - Dirac impulse
 - Train of Diracs
 - Spectrum of Diracs
 - Periodization and sampling using train of Diracs

Summary

- Shannon sampling and reconstruction formula
 - Math and visualization
- Ways to avoid aliasing
 - Sample at higher and higher frequency (oversampling)
 - How do you decide? Physics? Experiments? Domain knowledge can help.
 - Use anti-aliasing filter
 - Don't capture the full spectrum but what whatever is captured does not exist

- Metropolis Algorithm for Monte Carlo
- Simplex Method for Linear Programming
- Krylov Subspace Iteration Methods
- The Decompositional Approach to Matrix Computations
- The Fortran Optimizing Compiler
- QR Algorithm for Computing Eigenvalues
- Quicksort Algorithm for Sorting
- Fast Fourier Transform
- Integer Relation Detection
- Fast Multipole Method

- Metropolis Algorithm for Monte Carlo
- Simplex Method for Linear Programming
- Krylov Subspace Iteration Methods
- The Decompositional Approach to Matrix Computations
- The Fortran Optimizing Compiler
- QR Algorithm for Computing Eigenvalues
- Quicksort Algorithm for Sorting
- Fast Fourier Transform
- Integer Relation Detection
- Fast Multipole Method

Fourier Transform

$$\hat{f}(s) = \int_{-\infty}^{\infty} e^{-2\pi i s t} f(t) dt$$

Fourier Transform

$$\hat{f}(s) = \int_{-\infty}^{\infty} e^{-2\pi i s t} f(t) dt$$

Can we discretize f(t) and $\hat{f}(s)$?

Enables computing the Fourier transform with computers

An Algorithm for the Machine Calculation of Complex Fourier Series

By James W. Cooley and John W. Tukey

An efficient method for the calculation of the interactions of a 2^m factorial experiment was introduced by Yates and is widely known by his name. The generalization to 3^m was given by Box et al. [1]. Good [2] generalized these methods and gave elegant algorithms for which one class of applications is the calculation of Fourier

1940

1900

1920

Discrete Fourier Transform

How do we proceed? This will be discretized? Can this be Use Finite samples? Integral to discretized? summation?

Discrete Fourier Transform

Let's proceed through visualization

truncation

truncation

periodization

sampling

truncation

sampling

truncation

Steps

sampling

truncation

periodization

Result

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT)

$$F(s_m) = \sum_{n=0}^{N-1} f(t_n) e^{-2\pi i s_m t_n}$$

$$= \sum_{n=0}^{N-1} f(t_n) e^{-2\pi i n m/2BL}$$

$$= \sum_{n=0}^{N-1} f(t_n) e^{-2\pi i n m/N}$$

Assumptions:

- f(t) is (effectively) finite length in time and frequency
- Duration (length): L
- Bandwidth = 2B (-B to +B)

$$t_n = nT_s$$
, $T_s = L/N = 1/2B$

Vector representation

DFT

$$F(s_m) = \sum_{n=0}^{N-1} f(t_n) e^{-2\pi i s_m t_n}$$

$$=\sum_{n=0}^{N-1} f(t_n)e^{-2\pi i n m/N}$$

Notation,

$$\omega = e^{2\pi i/N}$$

DFT

$$F(s_m) = \sum_{n=0}^{N-1} f(t_n) e^{-2\pi i s_m t_n}$$

$$= \sum_{n=0}^{N-1} f(t_n) e^{-2\pi i n m/N}$$

Notation,

$$\omega = e^{2\pi i/N}$$

$$\boldsymbol{\omega}^k = (1, \omega^k, \omega^{2k}, \dots, \omega^{(N-1)k})$$

Additional notation,

$$\omega^{-k} = (1, \omega^{-k}, \omega^{-2k}, \dots, \omega^{-(N-1)k})$$

Notation,

$$F(s_m) = \sum_{n=0}^{N-1} f(t_n) e^{-2\pi i s_m t_n}$$

$$\omega = e^{2\pi i/N}$$

$$\begin{array}{c}
 \sum_{n=0}^{\infty} s(n) \\
 N-1 \\
 \sum_{n=0}^{\infty} s(n)
\end{array}$$

$$= \sum_{n=0}^{N-1} f(t_n)e^{-2\pi i n m/N}$$

$$\boldsymbol{\omega}^k = (1, \omega^k, \omega^{2k}, \dots, \omega^{(N-1)k})$$

$$\mathbf{F}[m] = \sum_{k=0}^{N-1} \mathbf{f}[k] \omega^{-km} = \sum_{k=0}^{N-1} \mathbf{f}[k] e^{-2\pi i km/N}$$
 Additional notation, $\omega^{-k} = (1, \omega^{-k}, 0)$

Additional notation,
$$\pmb{\omega}^{-k}=(1,\omega^{-k},\omega^{-2k},\ldots,\omega^{-(N-1)k})$$

DFT

$$\mathbf{F}[m] = \sum_{k=0}^{N-1} \mathbf{f}[k] \omega^{-km} = \sum_{k=0}^{N-1} \mathbf{f}[k] e^{-2\pi i km/N}$$

DFT

$$\mathbf{F}[m] = \sum_{k=0}^{N-1} \mathbf{f}[k] \omega^{-km} = \sum_{k=0}^{N-1} \mathbf{f}[k] e^{-2\pi i km/N}$$

$$\begin{pmatrix} F[0] \\ F[1] \\ F[2] \\ \vdots \\ F[N-1] \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{-1\cdot 1} & \omega^{-1\cdot 2} & \cdots & \omega^{-(N-1)} \\ 1 & \omega^{-2\cdot 1} & \omega^{-2\cdot 2} & \cdots & \omega^{-2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-(N-1)\cdot 1} & \omega^{-(N-1)\cdot 2} & \cdots & \omega^{-(N-1)^2} \end{pmatrix} \begin{pmatrix} f[0] \\ f[1] \\ f[2] \\ \vdots \\ f[N-1] \end{pmatrix}.$$

Discrete Fourier Transform vector

DFTSquare Matrix

Data vector

DFT Computation

N	DFT (real multiplies)	DFT (real additions) $2N(2N-1)$	
	4 <i>N</i> ²		
2	16	12	
4	64	56	
8	256	240	
16	1,024	992	
32	4,096	4,032	
64	16,384	16,256	
128	65,536	65,280	
256	262,144	261,632	
512	1,048,576	1,047,552	
1,024	4,194,304	4,192,256	

- A lot of multiplications and additions as the signal length increase.
- Is there a way to compute it efficiently?

DFT Computation using FFT

N	DFT (real multiplies)	DFT (real additions)	FFT (real multiplies)	FFT (real additions)
	4 <i>N</i> ²	2N(2N-1)	$2N \log_2 N$	$3N \log_2 N$
2	16	12	4	6
4	64	56	16	24
8	256	240	48	72
16	1,024	992	128	192
32	4,096	4,032	320	480
64	16,384	16,256	768	1,152
128	65,536	65,280	1,792	2,688
256	262,144	261,632	4,096	6,144
512	1,048,576	1,047,552	9,216	13,824
1,024	4,194,304	4,192,256	20,480	30,720

FFT: Fast Fourier Transform

An algorithm for faster computation of DFT.

Proceeds by making group of even and odd indices in the input

An Algorithm for the Machine Calculation of Complex Fourier Series

By James W. Cooley and John W. Tukey

Visualizing the Real [DFT]

- Cooley-Tukey algorithm calculates the DFT directly with fewer summations
- The trick to the Cooley-Tukey algorithm is recursion.
- Split the matrix we wish to perform the FFT on into two parts: one for all elements with even indices and another for all odd indices.
- We then proceed to split the array again and again until we have a manageable array size to perform a DFT (or similar FFT) on.
- We can also perform a similar re-ordering by using a bit reversal scheme, where we
 output each array index's integer value in binary and flip it to find the new location of
 that element.
- Complexity to ~O(N logN)

https://vanhunteradams.com/FFT/FFT.html

Summary

$$\begin{pmatrix} F[0] \\ F[1] \\ F[2] \\ \vdots \\ F[N-1] \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{-1\cdot 1} & \omega^{-1\cdot 2} & \cdots & \omega^{-(N-1)} \\ 1 & \omega^{-2\cdot 1} & \omega^{-2\cdot 2} & \cdots & \omega^{-2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-(N-1)\cdot 1} & \omega^{-(N-1)\cdot 2} & \cdots & \omega^{-(N-1)^2} \end{pmatrix} \begin{pmatrix} f[0] \\ f[1] \\ f[2] \\ \vdots \\ f[N-1] \end{pmatrix}$$
 Fourier Transform Square Matrix Square Matrix

- Matrix multiplication is $O(N^2)$ computations
- This is a lot of computation for N>>1, as usual case
- Linear scaling is desired in most applications
- Fast Fourier Transform (FFT) algorithm enables computing DFT in O(N logN)

Resources

Gauss and the History of the Fast Fourier Transform

Michael T. Heideman Don H. Johnson C. Sidney Burrus

INTRODUCTION

THE fast Fourier transform (FFT) has become well known as a very efficient algorithm for calculating the discrete Fourier Transform (DFT) of a sequence of N numbers. The

coefficients of Fourier series were developed at least a century earlier than had been thought previously. If this year is accurate, it predates Fourier's 1807 work on harmonic analysis. A second reference to Gauss' algorithm was found in a stickle in the Encyklopidin der Mathemati-

Paper

Book

How the FFT Gained Acceptance

James W. Cooley

1. Introduction

The fast Fourier transform (FFT) has had a fascinating history, filled with ironies and enigmas. Even more appropriate for this meeting and its sponsoring professional society, it speaks not only of numerical analysis but also of the importance of the functions performed by professional societies.

Paper