Ehrhart Theory and Graph Colorings

Esme Bajo

University of California, Berkeley

May 5, 2024

My collaborators!

Matthias Beck
San Francisco State University

Andrés R. Vindas Meléndez University of California, Berkeley (and Harvey Mudd College)

Outline

1. Classical Ehrhart theory

2. Graph colorings

3. The q-analog connection

Lattice polytopes

A polytope is the convex hull of finitely many points in \mathbb{R}^d , equivalently a bounded intersection of finitely many halfspaces.

For P a lattice polytope (i.e. with vertices in \mathbb{Z}^d), we consider

$$\operatorname{ehr}_P(n) = \left| nP \cap \mathbb{Z}^d \right|.$$

Example:

$$\Delta = \bigcup_{(0,0)}^{(0,1)} {}_{(1,0)}$$

$$\operatorname{ehr}_{\Delta}(n) = |\{(x, y) \in \mathbb{Z}^2 : x, y \ge 0, x + y \le n\}|$$
$$= \binom{n+2}{2} = \frac{1}{2}n^2 + \frac{3}{2}n + 1$$

Ehrhart polynomials and series

For any d-dimensional lattice polytope $P \subseteq \mathbb{R}^d$, $\operatorname{ehr}_P(n)$ is a polynomial of degree d, called the **Ehrhart polynomial**.

The **Ehrhart series** of *P* is its generating function

$$\mathsf{Ehr}_P(z) = \sum_{n \geq 0} \mathsf{ehr}_P(n) z^n.$$

Ehrhart theory of unimodular simplices

If Δ is a d-dimensional unimodular simplex with k missing facets (for some $0 \le k \le d+1$),

$$\mathsf{Ehr}_{\Delta}(z) = \frac{z^k}{(1-z)^{d+1}}.$$

Ehrhart theory of order polytopes

The **order polytope** of a poset $\Pi = ([d], \preceq)$ is

$$\mathcal{O}(\Pi) = \{(x_1, \dots, x_d) \in [0, 1]^d : x_i \le x_j \text{ if } i \le j\},\$$

which has a disjoint unimodular triangulation

$$\mathcal{O}(\Pi) = \bigcup_{\sigma \in \mathcal{L}(\Pi)} \left\{ 0 \le x_{\sigma_1} \le \ldots \le x_{\sigma_d} \le 1, \ x_{\sigma_i} < x_{\sigma_{i+1}} \ \text{if} \ i \in \mathsf{Des}(\sigma) \right\}.$$

Therefore,

$$\mathsf{Ehr}_{\mathcal{O}(\Pi)}(z) = \frac{\sum_{\sigma \in \mathcal{L}(\Pi)} z^{\mathsf{des}(\sigma)}}{(1-z)^{d+1}}.$$

Proper colorings

A proper n-coloring of a graph

$$G = (V, E)$$
 is a function

$$c:V \to [n]$$
 such that

$$c(v) \neq c(w)$$
 if $\{v, w\} \in E$.

The number of proper n-colorings of a graph G agrees with a polynomial of degree |V|, called the **chromatic polynomial** $\chi_G(n)$ of G.

The chromatic polynomial of a tree

If T is a tree on d vertices, then $\chi_T(n) = n(n-1)^{d-1}$.

Proper colorings as lattice points

A coloring $c:[d] \rightarrow [n]$ of G=([d],E) can be thought of as a point

$$(c(1),\ldots,c(d))\in\mathbb{Z}^d.$$

The proper n-colorings of G are points in

$$((0, n+1)^d \cap \mathbb{Z}^d) \setminus (\bigcup \mathcal{H}_G),$$

where $\mathcal{H}_{\mathcal{G}}$ is the **graphical hyperplane arrangement**

$$\mathcal{H}_G = \{x_i = x_j : \{i, j\} \in E\}.$$

Proper colorings as lattice points, continued

Consider the path on two vertices, $P_2 = \bigcirc$

5-colorings of P_2 :

Proper 5-colorings of P_2 :

Proper colorings as lattice points, continued

 $((0, n+1)^d \cap \mathbb{Z}^d) \setminus (\bigcup \mathcal{H}_G)$ has a region for each *acyclic* orientation ρ of G, given by

$$(0, n+1)^d \cap \left(\bigcap_{(i,j)\in\rho} \{x_i < x_j\}\right).$$

The region corresponding to ρ contains the proper colorings of G that "obey" ρ , i.e. for which c(i) < c(j) if $(i,j) \in \rho$.

The chromatic polynomial is a sum of Ehrhart polynomials

Each region is the (n+1)st dilate of the open order polytope of the poset induced by ρ , which we call Π_{ρ} , therefore

$$\chi_G(n) = \sum_{\rho \in \mathcal{A}(G)} \mathsf{ehr}_{\mathcal{O}(\Pi_\rho)^\circ}(n+1)$$

$$= \sum_{\rho \in \mathcal{A}(G)} \sum_{\sigma \in \mathcal{L}(\Pi_\rho)} \binom{n + \mathsf{des}(\sigma)}{d}.$$

The linear extensions are of a *natural labeling* of the poset, not the vertex labels.

An example: the path on 3 vertices

Acyclic Orientation ρ	Induced Poset $\Pi_{ ho}$	Linear Extensions $\mathcal{L}(\Pi_{ ho})$
$\stackrel{\circ \longrightarrow \circ}{\longrightarrow} \circ$		123
$\circ \longrightarrow \circ \longleftarrow \circ$		123, <u>2</u> 13
$\circ \hspace{-0.4cm} \longrightarrow \hspace{-0.4cm} \circ$	V	123, 1 <u>3</u> 2
0		123

$$\chi_{P_3}(n) = 4\binom{n}{3} + 2\binom{n+1}{3} = n(n-1)^2$$

The chromatic symmetric function

Stanley's symmetric function generalization:

$$X_G(x_1, x_2,...) = \sum_{\substack{\text{proper colorings} \\ c: V \to \mathbb{Z}^+}} x_1^{|c^{-1}(1)|} x_2^{|c^{-1}(2)|} x_3^{|c^{-1}(3)|} ...$$

$$X_{P_4}(x_1, x_2, 0, 0, \ldots) = 2x_1^2x_2^2$$

$$X_{S_4}(x_1, x_2, 0, 0, \ldots) = x_1^3 x_2 + x_1 x_2^3$$

The big picture

Stanley's chromatic symmetric function $X_G(x_1, x_2,...)$:

- Stanley: Distinguishes non-isomorphic trees?
- Loehr-Warrington: So does $X_G(q, q^2, ..., q^n, 0, 0...)$?

Chromatic polynomial $\chi_G(n)$:

- Polytopes perspective
- Deletion-contraction
- Does not distinguish trees

Chapoton's q-analog Ehrhart theory

Theorem. (Chapoton) If $P \subseteq \mathbb{R}^d$ is a d-dimensional lattice polytope and $\lambda : \mathbb{Z}^d \to \mathbb{Z}$ is a linear form that is nonnegative on the vertices of P.

$$\mathsf{ehr}^\lambda_P(q,n) = \sum_{x \in nP \cap \mathbb{Z}^d} q^{\lambda(x)}$$

agrees with a polynomial $\widetilde{\operatorname{ehr}}_P^\lambda(q,x) \in \mathbb{Q}(q)[x]$, evaluated at

$$x = [n]_q := 1 + q + q^2 + \dots + q^{n-1}.$$

If
$$\lambda((x_1,\ldots,x_d))=x_1+\cdots+x_d$$
, we omit it.

We are ignoring a condition called "genericity" that is needed, but we will not have to worry about it for the polytopes we are working with!

An example of ehr!

$$P = conv\{(0,0), (1,0), (1,1), (2,1)\}$$

$$\mathsf{Ehr}_{P}(q,z) = \frac{1}{(1-z)(1-qz)(1-q^2z)} + \frac{q^3z}{(1-qz)(1-q^2z)(1-q^3z)}$$
$$= \frac{1-q^3z^2}{(1-z)(1-qz)(1-q^2z)(1-q^3z)}$$

$$\widetilde{\text{ehr}}_P(q, x) = \frac{q^4 - q^3}{q+1}x^3 + \frac{3q^3 - q^2}{q+1}x^2 + \frac{3q^2 + q}{q+1}x + 1$$

The weighted connection between Ehrhart theory and graph colorings

$$X_G(q,q^2,\ldots,q^n,0,\ldots) = \sum_{\substack{\mathsf{proper} \ c:[d] o [n]}} q^{|c^{-1}(1)|+2|c^{-1}(2)|+\cdots+n|c^{-1}(n)|}$$

counts q raised to the sum of the colors of each vertex for each proper coloring, which is

$$\chi_{\mathcal{G}}(q,n) := \sum_{
ho \in \mathcal{A}(\mathcal{G})} \mathsf{ehr}_{\mathcal{O}(\Pi_{
ho})^{\circ}}(q,n+1).$$

Therefore,

$$X_G(q,q^2,\ldots,q^n,0,\ldots) = \sum_{\rho \in \mathcal{A}(G)} \sum_{\sigma \in \mathcal{L}(\Pi_\rho)} q^{\binom{d+1}{2} - \mathsf{comaj}(\sigma)} \begin{bmatrix} n + \mathsf{des}(\sigma) \\ d \end{bmatrix}_q$$

Some examples of $\chi_T(q, n)$ in the "h*-basis"

$$8q^{10} \begin{bmatrix} n \\ 4 \end{bmatrix}_q + (4q^9 + 6q^8 + 4q^7) \begin{bmatrix} n+1 \\ 4 \end{bmatrix}_q + 2q^6 \begin{bmatrix} n+2 \\ 4 \end{bmatrix}_q$$

$$8q^{10} \begin{bmatrix} n \\ 4 \end{bmatrix}_q + (5q^9 + 4q^8 + 5q^7) \begin{bmatrix} n+1 \\ 4 \end{bmatrix}_q + (q^7 + q^5) \begin{bmatrix} n+2 \\ 4 \end{bmatrix}_q$$

The *q*-analog chromatic polynomial

There exists a polynomial $\widetilde{\chi}_G(q,x) \in \mathbb{Q}(q)[x]$, which we call the q-analog chromatic polynomial, such that

$$\widetilde{\chi}_G(q,[n]_q) = \chi_G(q,n) \quad (= X_G(q,q^2,\ldots,q^n,0,\ldots)).$$

Theorem.

$$\widetilde{\chi}_G(q,x) = q^d \sum_{\mathsf{flats}\ S \subseteq E} \mu(\varnothing,S) \prod_{\lambda_i \in \lambda(S)} \frac{1 - (1 + (q-1)x)^{\lambda_i}}{1 - q^{\lambda_i}}$$

Some examples of $[d]_q! \cdot \widetilde{\chi}_T(q, x)$

$$(2q^{8} + 4q^{7} + 6q^{6} + 4q^{5} + 8q^{4})x^{4} +$$

$$(-6q^{8} - 10q^{7} - 18q^{6} - 18q^{5} - 20q^{4})x^{3} +$$

$$(4q^{8} + 10q^{7} + 20q^{6} + 22q^{5} + 16q^{4})x^{2} +$$

$$(-4q^{7} - 8q^{6} - 8q^{5} - 4q^{4})x$$

$$(q^{9} + 6q^{7} + 4q^{6} + 5q^{5} + 8q^{4})x^{4} +$$

$$(-q^{9} - 3q^{8} - 14q^{7} - 14q^{6} - 21q^{5} - 19q^{4})x^{3} +$$

$$(3q^{8} + 12q^{7} + 18q^{6} + 24q^{5} + 15q^{4})x^{2} +$$

$$(-4q^{7} - 8q^{6} - 8q^{5} - 4q^{4})x$$

Conjecture. The *leading coefficient* distinguishes trees.

3 ways to compute: h^* -basis, Möbius inversion, deletion-contraction

The q, λ -analog chromatic polynomial

Chapoton's weighted Ehrhart theory applies to general linear forms λ , so we can also define:

$$egin{aligned} \chi_G^\lambda(q,n) :&= \sum_{\substack{\mathsf{proper} \ c:[d]
ightarrow [n]}} q^{\lambda_1 c(1) + \cdots + \lambda_d c(d)} \ &= \sum_{
ho \in \mathcal{A}(G)} \mathsf{ehr}_{\mathcal{O}(\Pi_
ho)^\circ}^\lambda(q,n+1). \end{aligned}$$

The bad news: For general λ , χ_G^{λ} is not a necessarily an instance of the chromatic symmetric function.

Why care about χ_G^{λ} (and $\widetilde{\chi}_G^{\lambda}$)?

Deletion-Contraction Lemma. Let G = ([d], E) be a graph with $e = \{1, 2\} \in E$. Then

$$\chi_{G}^{(\lambda_{1},\ldots,\lambda_{d})}(q,n) = \chi_{G \setminus e}^{(\lambda_{1},\ldots,\lambda_{d})}(q,n) - \chi_{G/e}^{(\lambda_{1}+\lambda_{2},\ldots,\lambda_{n})}(q,n).$$

$$\chi_{\mathcal{S}}^{\lambda}(q,n) \neq \chi_{T}^{\lambda}(q,n).$$

- F. Chapoton. q-analogues of Ehrhart polynomials. Proc. Edinb. Math. Soc.,
 59 (2016), no. 2, 339–358.
- 2. R. P. Stanley. A symmetric function generalization of the chromatic polynomial of a graph. *Adv. Math.*, 111(1):166–194, 1995.
- 3. N. A. Loehr and G. S. Warrington. A rooted variant of Stanley's chromatic symmetric function. (arXiv:2206.05392)

Thank you!! :)