Neural Machine Translation Decoding

Philipp Koehn

Inference

• Given a trained model

... we now want to translate test sentences

• We only need execute the "forward" step in the computation graph

Word Prediction

Selected Word

Embedding

Distribution of Word Predictions

Select Best Word

Select Second Best Word

Select Third Best Word

Use Selected Word for Next Predictions

Select Best Continuation

Select Next Best Continuations

Continue...

Beam Search

Best Paths

Beam Search Details

- Normalize score by length
- No recombination (paths cannot be merged)

Output Word Predictions

Input Sentence: *ich glaube aber auch , er ist clever genug um seine Aussagen vage genug zu halten , so dass sie auf verschiedene Art und Weise interpretiert werden können .*

Best		Alternatives
but	(42.1%)	however (25.3%), I (20.4%), yet (1.9%), and (0.8%), nor (0.8%),
I	(80.4%)	also (6.0%), , (4.7%), it (1.2%), in (0.7%), nor (0.5%), he (0.4%),
also	(85.2%)	think (4.2%), do (3.1%), believe (2.9%), , (0.8%), too (0.5%),
believe	(68.4%)	think (28.6%), feel (1.6%), do (0.8%),
he	(90.4%)	that (6.7%), it (2.2%), him (0.2%),
is	(74.7%)	's (24.4%), has (0.3%), was (0.1%),
clever	(99.1%)	smart (0.6%),
enough	(99.9%)	
to	(95.5%)	about (1.2%), for (1.1%), in (1.0%), of (0.3%), around (0.1%),
keep	(69.8%)	maintain (4.5%), hold (4.4%), be (4.2%), have (1.1%), make (1.0%),
his	(86.2%)	its (2.1%) , statements (1.5%) , what (1.0%) , out (0.6%) , the (0.6%) ,
statements	(91.9%)	testimony (1.5%), messages (0.7%), comments (0.6%),
vague	(96.2%)	v@@ (1.2%), in (0.6%), ambiguous (0.3%),
enough	(98.9%)	and (0.2%),
so	(51.1%)	, (44.3%), to (1.2%), in (0.6%), and (0.5%), just (0.2%), that (0.2%),
they	(55.2%)	that (35.3%), it (2.5%), can (1.6%), you (0.8%), we (0.4%), to (0.3%),
can	(93.2%)	may (2.7%), could (1.6%), are (0.8%), will (0.6%), might (0.5%),
be	(98.4%)	have (0.3%), interpret (0.2%), get (0.2%),
interpreted	(99.1%)	interpre@@ (0.1%), constru@@ (0.1%),
in	(96.5%)	on (0.9%) , differently (0.5%) , as (0.3%) , to (0.2%) , for (0.2%) , by (0.1%) ,
different	(41.5%)	a (25.2%), various (22.7%), several (3.6%), ways (2.4%), some (1.7%),
ways	(99.3%)	way (0.2%), manner (0.2%),
	(99.2%)	(0.2%), , (0.1%),
	(100.0%)	

ensembling

Ensembling

- Train multiple models
- Say, by different random initializations

• Or, by using model dumps from earlier iterations

(most recent, or interim models with highest validation score)

Decoding with Single Model

Combine Predictions

Ensembling

- Surprisingly reliable method in machine learning
- Long history, many variants: bagging, ensemble, model averaging, system combination, ...
- Works because errors are random, but correct decisions unique

reranking

Right-to-Left Inference

• Neural machine translation generates words right to left (L2R)

the
$$\rightarrow$$
 cat \rightarrow is \rightarrow in \rightarrow the \rightarrow bag \rightarrow .

• But it could also generate them right to left (R2L)

the
$$\leftarrow$$
 cat \leftarrow is \leftarrow in \leftarrow the \leftarrow bag \leftarrow .

Obligatory notice: Some languages (Arabic, Hebrew, ...) have writing systems that are right-to-left, so the use of "right-to-left" is not precise here.

Right-to-Left Reranking

- Train both L2R and R2L model
- Score sentences with both
 - ⇒ use both left and right context during translation
- Only possible once full sentence produced → re-ranking
 - 1. generate n-best list with L2R model
 - 2. score candidates in n-best list with R2L model
 - 3. chose translation with best average score