Corso di Laurea in Informatica Calcolo Numerico Esame dell'11/9/2018

1. Si supponga di dover calcolare

$$f(x) = \cos^2 x - \cos^2 2x$$

per piccoli valori di x.

- (a) Determinare (e discutere) il condizionamento del problema del calcolo di f(x).
- (b) Studiare l'errore di arrotondamento nei seguenti algoritmi per il calcolo di f(x):
- (a1): $x \mapsto c1 := \cos x$, $c2 := \cos 2x \mapsto q1 := c1 \cdot c1$, $q2 := c2 \cdot c2 \mapsto y1 := q2 q1$
- (a2): $x \mapsto c1 := \cos x$, $c2 := \cos 2x \mapsto s := c2 + c1$, $d := c2 c1 \mapsto y2 := s \cdot d$
- (a3): $x \mapsto s := \sin x \mapsto s2 := s \cdot s \mapsto f1 := 4 \cdot s2 3 \mapsto y3 := f1 \cdot s2$

2. Determinare una sequenza di rotazioni di Givens che porti il vettore

Determinate that sequenza di rotazioni di Givens che porti il vettore
$$\begin{pmatrix} 2 \\ 0 \\ -1 \\ 0 \\ -2 \end{pmatrix} \text{ nella forma } \begin{pmatrix} 0 \\ 0 \\ m \\ 0 \\ 0 \end{pmatrix}, \text{ con } m \text{ opportuno (esplicitare le matrici le$$

di rotazione). Dare inoltre un'interpretazione geometrica dell'esercizio svolto.

3.

4. Determinare i parametri α, β, γ della funzione scritta nella forma $g(x)=\alpha+\beta x+\frac{\gamma}{x}$ che approssima ai minimi quadrati i seguenti dati:

Dare inoltre un'interpretazione geometrica dell'esercizio svolto.

5. Calcolare gli autovalori e le relative molteplicità algebriche e geometriche della matrice 8×8

Studiare la convergenza del metodo delle potenze applicato alla matrice ${\cal A}.$

6. Che relazione c'è tra la SVD di una matrice $A \in \mathbf{R}^{m \times n}$, il suo rango, il suo nucleo $\mathcal{N}(A)$ e la sua immagine $\mathcal{R}(A)$?

Nel seguito, sia A una matrice 9×4 di rango 2.

- (a) Determinare la dimensione delle matrici U, Σ, V della SVD di A.
- (b) Determinare in funzione di U, Σ, V la SVD di A^t . .
- (c) Determinare il rango della matrice A^t .
- (d) Determinare in funzione delle colonne di U e V una base degli spazi $\mathcal{N}(A),\,\mathcal{R}(A^t)$ e $\mathcal{N}(A)\cap\mathcal{R}(A^t)$.