ENSF 593/594 Data Structures – Heaps and Heapsort

Mohammad Moshirpour

Outline

- Heap
 - Max heap
 - Min heap
- Enqueue
- Dequeue
- Re-organizing an array into a heap
- Heapsort

Goal

• In this lecture we will learn about heap trees which are another organization of node in a tree. We will learn about how to make them and how to use them to sort data in array.

Heaps

- A max heap is a binary tree where:
 - The value of each node is ≥ the values of its children
 - The tree is complete
 - The tree is perfectly balanced
 - The leaf nodes in the last level are all pushed to the left
 - Height is $O(\lg n)$

Heaps

□ E.g.

Examples of (a) heaps and (b-c) nonheaps

- The largest element is always the root node
- A min heap is similar except the value of each node is ≤ the values of its children
 - The root contains the smallest element
- Heaps are not perfectly ordered
 - The above properties ensure only that order is maintained through linear lines of descent
 - Lateral lines may be out of order

E.g.

Different heaps constructed with the same elements

- Heaps are normally implemented using arrays (or vectors)
 - Elements are stored sequentially in the array:
 - Level by level from top to bottom, and
 - From left to right at each level

□ E.g.

 15
 11
 12
 9
 10
 8
 3
 4
 5

 0
 1
 2
 3
 4
 5
 6
 7
 8

- The root node is always at position 0
- The position of the left child of a node at i is:

2i + 1, where the position is < n

• The position of the right child is:

2i + 2, where position is < n

• The position of the parent of a node at i is:

$$(i-1) / 2$$
, where $1 < i < n$

Note: assumes integer division

- Heaps are often used to implement priority queues
 - More efficient than linear structures
 - *O*(lg *n*) vs. *O*(*n*)
 - Enqueue procedure:
 - Add the new element to the end of the heap
 - i.e. At the end of the array
 - If necessary, restore the heap property by swapping the element with its parent
 - Repeat until proper position found, or is at the root

E.g.

Enqueuing an element to a heap

- Dequeue procedure:
 - Remove the root element
 - Always has the highest priority
 - Replace it with the last leaf node
 - If necessary, restore the heap property by swapping the root with its larger child
 - Repeat until proper position found, or it becomes a leaf node

□ E.g.

Dequeuing an element from a heap

- Sometimes we need to reorganize the contents of an array into a heap
 - E.g. For the heapsort
 - Top-down method:
 - Start with empty heap
 - Sequentially enqueue new elements
 - Is $O(n \lg n)$ in the worst case

E.g.

Organizing an array as a heap With a top-down method

- Bottom-up method:
 - Is O(n) in the worst case
 - 1) Start with the last non-leaf node
 - Is at position n/2-1
 - Set index to this position
 - 2) If necessary, restore the heap property by swapping with largest child
 - Repeat until proper place found, or becomes a leaf node
 - 3) Repeat step 2 after decrementing index
 - Stop once the root has been processed

□ E.g.

Transforming the array
[2 8 6 1 10 15 3 12 11] into a heap
with a bottom-up method

Heapsort

- Is an in-place sort of an array
- Procedure:
 - Reorganize the array into a heap
 - Bottom-up method is quickest
 - for (i = n-1; i > 0; i--)
 - Swap root with element i
 - Puts the largest element at the end of the array, so is no longer considered
 - Restore heap property for elements 0 to i-1

□ E.g.

Transforming the array [2 8 6 1 10 15 3 12 11] into a heap

E.g.

Execution of heap sort on the array [15 12 6 11 10 2 3 1 8], which is the heap constructed in the previous slide

- Is $O(n \lg n)$ in worst and average cases
- Is O(n) in the best case for an array containing identical elements

Summary

- Max (min) heap:
 - □ The value of each node is \geq (\leq) the values of its children
 - The tree is complete
- Heap used to implement priority queue
 - Enqueue procedure starts by adding the new element to the end of the heap
 - Dequeue procedure starts by removing elements from root
- Heap sort on an arbitrary array:
 - Reorder arrays element to make a heap
 - Applying heap sort algorithm

Review Questions

- What is the difference between max heap and min heap?
- How can you store a heap tree in a array?
- Explain about enqueue and dequeue procedure in a heap.
- Explain how to perform a heap sort on a arbitrary array?

Any questions?