The Travelling Salesperson Problem

Informally:

A Travelling Salesperson wants to start from home, visit every city on their list, then return home for as cheaply as possible.

Definition

The *Travelling Salesperson Problem*, or TSP, is the following. Given a weighted graph G (usually G is the complete graph), what is the Hamiltonian cycle (i.e. closed walk visit every vertex) of cheapest weight?

The TSP is Hard

The TSP is at least as hard as finding Hamiltonian cycles

Let G be a graph n and vertex set V and edge set E. Suppose we want to determine whether G has a Hamiltonian cycle. Weight a complete graph on the vertex set V as follows: make every edge in G have weight 1, and every edge not in G have slightly higher weight:

$$w(uv) = egin{cases} 1 & uv \in E \ 1 + arepsilon & uv
otin E \end{cases}$$

Then, G has a Hamiltonian cycle if and only if there is a solution to the TSP with weight n.

Bound the TSP instead of solving it

Can almost solve TSP in practice

Programs such as *Concorde* use sophisticated ideas to get solutions to TSP within a few percentage points on large data sets.

From TSP Art
by
Craig S Kaplan
and
Robert Bosch

To get an upper bound on TSP, find the weight of any Hamiltonian cycle

One greedy algorithm: nearest neighbour Keeping going to the closest city you haven't been to

Why might nearest neighbour be bad?

Better heuristics exist:

- ▶ Nearest insertion: grow loop by inserting nearest city
- ► Christofide's Algorithm finds a Hamiltonian cycle at most 3/2 as expensive as the cheapest

These are more involved than nearest neighbour and still don't solve problem

To get a lower bound on TSP, can't use a cycle

Any Hamiltonian cycle has length greater than solution to TSP.

To find lower bound to TSP

- ▶ Pick a vertex $v \in G$
- lacktriangle Find a minimum weight spanning tree ${\mathcal T}$ on ${\mathcal G}\setminus {\mathcal V}$
- ightharpoonup Find the two cheapest edges e_1 and e_2 out of v
- $w(T) + w(e_1) + w(e_2)$ is a lower bound

Need to be able to prove this gives lower bound...

Prove that $w(T) + w(e) + w(f) \leq TSP$

Suppose that C was the Hamiltonian cycle of minimum weight. We split the C into two pieces: the two edges f_1 and f_2 adjacent to v, and the rest, which we'll call R.

Edges adjacent to v:

 e_1 and e_2 were the two cheapest edges next to v, so:

$$w(f_1) + w(f_2) \ge w(e_1) + w(e_2)$$

The rest:

- ▶ C a cycle, so $R = C \setminus v$ is a path
- ▶ Paths are special cases of trees
- ▶ R visits every vertex of $G \setminus v$
- ▶ Hence R a spanning tree and $w(R) \ge w(T)$

Example from the 2006 Exam

The following table encodes distances between towns in km:

Find lower and upper bounds to the TSP.