МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 26 Пространственные характеристики излучения полупроводникового инжекционного лазера

Салтыкова Дарья Б04-104

Цель работы

- Экспериментальное исследование диаграмм направленности излучения полупроводникового инжекционного лазера (ПИЛ) в двух взаимно перпендикулярных плоскостях.
- Определение геометрических размеров активного слоя ПИЛ на основе анализа угловой расходимости излучения.
- Сравнение характеристик ПИЛ и светодиода.

Теоретическое введение

Полупроводниковые инжекционные лазеры (ПИЛ) представляют собой компактные источники когерентного излучения, работающие на принципе вынужденного излучения в активной области p-n перехода. При подаче прямого напряжения происходит инжекция носителей заряда в активную зону, где их рекомбинация сопровождается излучением фотонов.

Оптический резонатор ПИЛ, образованный зеркалами с коэффициентами отражения R_1 и R_2 , описывается условием генерации:

$$g_{\text{nop}} \ge \alpha - \frac{\ln(R_1 R_2)}{2L} \tag{1}$$

где $g_{\text{пор}}$ - пороговый коэффициент усиления, α - коэффициент потерь, L - длина резонатора.

Активная область ПИЛ функционирует как диэлектрический волновод. Условие волноводного режима:

$$n_2 > n_1, n_3 \tag{2}$$

где n_2 - показатель преломления активного слоя, n_1 и n_3 - показатели преломления окружающих слоев.

Распределение электрического поля в волноводе для ТЕ-мод описывается:

$$\frac{\partial^2 E_y}{\partial x^2} + (n_2^2 k_0^2 - \beta^2) E_y = 0 \tag{3}$$

где $k_0=\frac{2\pi}{\lambda_0}$ - волновое число в вакууме, β - постоянная распространения.

Диаграмма направленности излучения в дальней зоне определяется преобразованием Фурье распределения поля на выходной грани:

$$F(\theta) = \mathcal{F}\{E(x)\} = \int_{-d/2}^{d/2} E(x)e^{ikx\sin\theta}dx \tag{4}$$

Интенсивность излучения:

$$I(\theta) \sim |F(\theta)|^2$$
 (5)

Для основной моды (m=0) связь между толщиной активного слоя d и угловой расходимостью на уровне 0.6 от максимума интенсивности $\theta_{0.6}$:

$$d = \frac{\lambda}{2\sin\theta_{0.6}} \tag{6}$$

При наличии высших мод $(m \ge 1)$ диаграмма направленности приобретает дополнительные максимумы, а угловая расходимость увеличивается. Условие поперечного резонанса:

$$2k_0 n_2 d \sin \theta_m - \varphi_1 - \varphi_3 = 2\pi m \tag{7}$$

где φ_1 и φ_3 - фазовые набеги при отражении от границ волновода.

Экспериментальная установка

Рис. 1: Блок-схема экспериментальной установки: (1) – образец, (2) – импульсный трансформатор, (3) – генератор импульсов, (4) – осциллограф, (5) – фотоприемник, (6) – микровольтметр, (7) – блок питания

Блок-схема экспериментальной установки приведена на рис. (1). Сначала образец был ориентирован таким образом, чтобы плоскость p-n перехода располагалась параллельно входной щели измерительной системы. Измерения выполнялись при фиксированном токе накачки, значение которого контролировалось по падению напряжения на эталонном сопротивлении. Угловое сканирование осуществлялось в диапазоне \pm 15° с шагом 1°, при этом для каждого углового положения фиксировалось среднее значение сигнала, регистрируемое узкополосным усилителем, настроенным на частоту импульсов накачки. Точность позиционирования обеспечивалась прецизионной поворотной платформой с механическим лимбом. Затем образец поворачивался на 90° для проведения измерений в перпендикулярной плоскости.

Результаты измерений

На рисунке 2 представлены диаграммы направленности излучения $\Pi U \Pi$ при токе накачки 75 мк Λ в двух взаимно перпендикулярных плоскостях.

Произведем количественную оценку геометрических параметров активного слоя. Учтем, что длина волны излучения $\lambda = 635$ нм.

Для лазера при токе накачки 75 мкА в плоскости ZY (параллельной активному слою) угловая расходимость на уровне 0.6 от максимума интенсивности составила $\varphi_{0.6}^{ZY} \approx 17.2^{\circ}$. Расчетная ширина активного слоя:

$$d_{ZY}^{75} = \frac{635\,\mathrm{HM}}{2 imes\sin{17.2^\circ}} pprox 1.09\,\mathrm{MKM}$$

В перпендикулярной плоскости XZ измеренный угол $\varphi_{0.6}^{XZ} \approx 6.8^\circ$ соответствует толщине

$$d_{XZ}^{75} = rac{635\,\mathrm{HM}}{2 imes\sin6.8^\circ} pprox 2.69\,\,\mathrm{MKM}$$

Рис. 2: Диаграммы направленности лазера при токе накачки 75 мкА

Рис. 3: Диаграммы направленности лазера при токе накачки 60 мкА

На рисунке 3 показаны соответствующие зависимости для тока накачки 60 мкА. В этом режиме также наблюдалось снижение угловой расходимости. В плоскости ZY угол $\varphi_{0.6}^{ZY} \approx 16.9^\circ$ дает оценку ширины:

$$d_{ZY}^{60} = \frac{635 \, \text{hm}}{2 \times \sin 16.9^{\circ}} \approx 1.09 \, \text{mkm}$$

В плоскости XZ для этого режима $\varphi^{XZ}_{0.6} \approx 6.4^{\circ},$ что соответствует:

$$d_{XZ}^{60}=rac{635\,\mathrm{HM}}{2 imes\sin6.4^\circ}pprox2.89\,\mathrm{MKM}$$

Наблюдаемая разница в диаграммах направленности ПИЛ между плоскостями ZY и XZ (в среднем в 2.5 раза) может свидетельствовать о некоторой анизотропии структуры активной области. В плоскости p-n перехода (ZY) излучение испытывает более сильную дифракционную расходимость из-за малой толщины активного слоя, тогда как в перпендикулярной плоскости (XZ) расходимость меньше благодаря большей ширине активной области.

При уменьшении тока накачки с 75 мкА до 60 мкА угловая расходимость в обеих плоскостях незначительно снижается (не более 7 %), что может быть связано с изменением модового состава излучения. Однако это изменение недостаточно существенно, чтобы говорить о принципиальном изменении характеристик излучения.

На рисунке 4 представлены диаграммы направленности светодиода для двух различных токов накачки. Следует учитывать принципиально иную природу формирования диаграммы направленности в данном случае, это делает неприменимым рас-

Рис. 4: Диаграммы направленности светодиода при токах накачки 90 и 70 мкА

чет геометрических характеристик излучающей области p-n перехода, которые мы использовали ранее для ПИЛ.

Выводы

В ходе работы были исследованы пространственные характеристики излучения полупроводникового инжекционного лазера и светодиода. В случае ПИЛ выявлена существенная разница в диаграммах направленности между плоскостями ZY и XZ, что объясняется анизотропией активного слоя. Наблюдаемое незначительное уменьшение угловой расходимости при снижении тока накачки свидетельствует о стабильности модовой структуры излучения. Для светодиода зафиксированы узкие диаграммы направленности ($\approx 7^{\circ}$), принципиально отличающиеся от лазерных из-за иного механизма формирования излучения. При понижении тока накачки ширина диаграммы увеличивается.

Приложение

Таблица 1: Диаграмма направленности ПИЛ (ток накачки 75 мкA)

ZY		XZ	
Угол, °	U, мВ	Угол, °	U, мВ
0	120	0	190
1	115	1	150
2	110	2	125
3	110	3	90
4	108	4	66
5	100	5	36
6	105	6	13.5
8	92	7	5.4
9	74	8	3
10	32	9	2.8
-1	120	-1	200
-2	122	-2	200
-3	125	-3	175
-4	122	-4	143
-5	115	-5	105
-6	115	-6	60
-7	110	-7	33
-8	86	-8	15
-9	0	-9	8.5
		-10	3

Таблица 2: Диаграмма направленности ПИЛ (ток накачки 60 мкA)

ZY		XZ	
Угол, °	U, мВ	Угол, °	U, мВ
0	40	0	40
1	40	1	34
2	40	2	22
3	40	3	16
4	39	4	9
5	39	5	4.8
6	37	6	3.6
7	36	7	3.4
8	35	8	3
9	33	9	3
10	30	-1	46
-1	39	-2	46
-2	38	-3	44
-3	38	-4	38
-4 -5	37	-5	26
-5	4	-6	12
		-7	6.2
		-8	4.5
		-9	4

Таблица 3: Диаграмма направленности светодиода (ток накачки 90 мкА)

Угол, °	U, мВ	Угол, °	U, мВ
0	215	-1	120
1	210	-2	94
2	200	-3	87
3	190	-4	54
4	170	-5	30
5	125	-6	24.5
6	115	-7	21
7	75	-8	17
8	35	-9	14
9	22	-10	11.5
10	18.5	-11	10
11	14	-12	9.6
12	12.5	-13	9.2
13	10	-14	8.5
14	8	-15	8.2
15	7.2	-16	8
16	6.9	-17	7.8
17	6.5	-18	7.8
18	5.6		
19	5.5		
20	4.8		

Таблица 4: Диаграмма направленности светодиода (ток накачки 70 мк
А)

Угол, °	U, мВ	Угол, °	U, мВ
0	100	-1	92
1	100	-2	76
2	100	-3	65
3	100	-4	34
4	95	-5	23.5
5	74	-6	19
6	56	-7	16.5
7	42	-8	15
8	24	-9	12.5
9	16.5	-10	10
10	12.5	-11	8.4
11	11	-12	8
12	9	-13	7.5
13	7.8	-14	7
14	6.5	-15	6.8
15	5.8	-16	6.8
16	5		