

PreOM 2023 - 20.03.2023 Dzień 2

PreOM 2023 - Dzień 2

Zadanie 1. Niech $n \ge 2$. Na szachownicy $n \times n$ zaznaczono 2n pól. Udowodnij, że istnieje takie k > 1, że można wybrać 2k różnych zaznaczonych pól a_1, a_2, \ldots, a_{2k} , w taki sposób, że dla każdego i pola a_i, a_{i+1} są albo w tej samej kolumnie albo w tym samym wierszu oraz jeśli a_i, a_{i+1} są w tym samym wierszu, to następna para a_{i+1}, a_{i+2} jest w tej samej kolumnie i na odwrót, jeśli a_i, a_{i+1} są w tej samej kolumnie, to a_{i+1}, a_{i+2} są w tym samym rzędzie. (Oczywiście $a_{2k+1} = a_1, a_{2k+2} = a_2$)

Rozwiązanie:

Tworzymy graf dwudzielny z grupami wierzchołków A i B, gdzie wierzchołki w A reprezentują numery kolumn, a wierzchołki w B numery wierszy. W grafie istnieje krawędź, pomiędzy wierzchołkami A_i i B_j jeśli pole (i,j) na szachownicy jest zaznaczone. Teza jest równoważna z tym, że w takim grafie istnieje cykl, a ponieważ mamy 2n wierzchołków i tyle samo krawędzi, to tak jest.

Zadanie 2. Niech $a_1, a_2, \ldots, a_{2n+1}$ będzie multizbiorem liczb całkowitych o takiej własności, że jeśli usuniemy dowolny jego element pozostałe 2n elementów można podzielić na dwa multizbiory po n elementów każdy, w taki sposób, że sumy tych multizbiorów są równe. Udowodnij, że $a_1 = a_2 = \ldots = a_{2n+1}$.

Rozwiązanie:

Bez straty ogólności przyjmijmy $a_1 \le a_2 \le ... \le a_{2n+1}$. Zauważmy, że jeśli multizbiór $a_1, ..., a_{2n+1}$ ma własność z treści zadania (tj. po usunięciu dowolnego elementu pozostałe można podzielić na dwa n-elementowe multizbiory o równych sumach), to własność tę ma również multizbiór powstały przez odjęcie od każdego elementu a_1 , tj. multizbiór $0, a_2 - a_1, ..., a_{2n+1} - a_1$.

Rozważmy teraz wszystkie multizbiory spełniające warunek z treści zadania, takie że ich najmniejszy element to 0 i któryś inny element jest niezerowy. Spośród nich wybierzmy taki multizbiór $0 = b_1 \leqslant b_2 \leqslant ... \leqslant b_{2n+1}$, że $b_1 + ... + b_{2n+1}$ jest minimalne. Zgodnie z treścią zadania, jeśli usuniemy b_1 , czyli 0, to pozostałe elementy możemy podzielić na multizbiory o równych sumach, zatem $b_1 + ... + b_{n+1}$ jest liczbą parzystą. Jeśli teraz usuniemy dowolne b_i , to pozostała suma również musi być parzysta, bo musi rozdzielić się między dwa multiziobry o tej samej sumie elementów. Zatem każdy element multizbioru jest parzysty, zatem multizbiór $\frac{b_1}{2}, \frac{b_2}{2}, ..., \frac{b_{2n+1}}{2}$ spełnia warunek zadania. Jednak, skoro któraś liczba b_i była niezerowa, to $\frac{b_1}{2} + \frac{b_2}{2} + ... + \frac{b_{2n+1}}{2} < b_1 + ... + b_{2n+1}$. Ta sprzeczność dowodzi, że jedyny multizbiór spełniający warunki zadania, którego najmniejszym elementem jest 0 to 0,0,...,0.

Skoro każdy multizbiór spełniający warunki zadania możemy sprowadzić do multizbioru spełniającego warunki zadania i zawierającego 0, o którym wiemy już, że musi zawierać same 0, poprzez odjęcie stałej od każdego elementu, to mamy $a_1 = a_2 = \dots = a_{2n+1}$.

Zadanie 3. Niech ABCD będzie czworokątem wypukłym. Przypuśćmy, że proste AB i CD przecinają się w punkcie E, a punkt B leży między A i E. Przypuśćmy, że proste AD i BC przecinają się w punkcie F, a punkt D leży między A i F. Załóżmy, że okręgi opisane na

Dzień 2

trójkątach BEC i CFD przecinają się w punkcie C oraz P. Udowodnij, że $\triangleleft BAP = \triangleleft CAD$ wtedy i tylko wtedy, gdy $BD \parallel EF$.

Rozwiązanie:

Z twierdzenia o Punkcie Miquela wiemy, że przez P przechodza również okregi opisane na trójkatach AED i ABF.

Zauważmy, że (na mocy tw. sinusów):

$$\frac{AD}{\sin(\angle ACD)} = \frac{CD}{\sin(\angle DAC)} \tag{1}$$

$$\frac{CD}{\sin(\angle DFC)} = \frac{DF}{\sin(\angle DCF)}.$$
 (2)

Stad:

$$\frac{AD}{DF} = \frac{\sin(\angle ACD) \cdot \sin(\angle DFC)}{\sin(\angle DAC) \cdot \sin(\angle DCF)}.$$
 (3)

Analogicznie:

$$\frac{AB}{BE} = \frac{\sin(\angle AEP) \cdot \sin(\angle APB)}{\sin(\angle BAP) \cdot \sin(\angle BPE)}.$$
 (4)

Załóżmy najpierw, że $\angle BAP = \angle CAD$. Mamy dodatkowo następujące równości kątów: $\angle DCF =$ $\angle BCE = \angle BPE; \angle DFC = \angle AFB = \angle APB$ oraz $\angle ADE = \angle APE$. Skoro zaś $\angle EAP = \angle APE$ $\angle CAD$ i $\angle ADC = \angle APE$, to $\angle AEP = \angle ACD$. Zatem $\frac{AD}{DF} = \frac{AB}{BE}$, co dowodzi równoległości BD i EF.

Załóżmy teraz, że BD i EF są równoległe. Nadal prawdziwe są równości $\angle DFC = \angle APB$ oraz $\angle BPE = \angle DCF$, skoro zaś dodatkowo $\frac{AD}{DF} = \frac{\dot{A}B}{BE}$, to:

$$\frac{\sin(\angle ACD)}{\sin(\angle DAC)} = \frac{\sin(\angle AEP)}{\sin(\angle BAP)}.$$
 (5)

Stąd (twierdzenie sinusów) mamy $\frac{AD}{DC} = \frac{AP}{EP}$.

Łaczac powyższy rezultat z równością $\angle APE = \angle ADC$ mamy podobieństwo trójkatów $\triangle DAC \sim$ $\triangle PAE$. Stad $\angle PAB = \angle DAC$.

Zadanie 4. Niech p będzie liczbą pierwszą, a a_1, \ldots, a_p będą liczbami całkowitymi. Pokaż, że istnieje liczba całkowita k taka, że liczby $a_1 + k, a_2 + 2k, \ldots, a_p + pk$ dają co najmniej $\frac{p}{2}$ różnych reszt modulo p.

Rozwiązanie:

Niech $G_k = (V, E_k)$ dla k = 0, ..., p-1 będzie nieskierowanym grafem o wierzchołkach V = $\{1,2,...,p\}$, i krawędziach $\{i,j\}\in E_k\iff i\neq j\land a_i+ik\equiv a_j+jk\pmod p$. Chcemy pokazać, że istnieje takie k, że G_k ma co najmniej $\frac{1}{2}p$ spójnych składowych.

Zauważmy, że:

$$i \neq j \land a_i + ik \equiv a_j + jk \pmod{p} \iff k \equiv -(a_i - a_j)(i - j)^{-1} \pmod{p}.$$
 (6)

PreOM 2023 - 20.03.2023 Dzień 2

Zatem krawędź łącząca różne liczby i oraz j istnieje w grafie G_k dla dokładnie jednego k. Skoro zaś mamy łącznie $\binom{p}{2}$ krawędzi i p grafów, to istnieje graf z co najwyżej $\frac{1}{2}(p-1)$ krawędziami. Taki graf ma co najmniej $p-\frac{1}{2}(p-1)=\frac{p+1}{2}>\frac{p}{2}$ spójnych składowych.