1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Suma,	those age called the entrementica tealer as sinds. (cos 2 = 2 + Ey then trigonometeric an as z (cos 2 = at z + a z tem 2 = sinz = at z + a z (cos 2 = at
UNITT - OH (Function of Complex wearlows) Let Phys) subsect in complex of the left of maleer an angle of the left of maleer an angle of the left of maleer and open of the left of them x = om = OP (cos of the left of them x = om = OP (cos of the left of the left of them as Hadius of the left o	O = ten-1 (4/3) Tore terbue ag a 20 frainciple value ag Z = x + ily = 2. Experiential gxn ag a The experiential gx defined as a = 1 + Z + Z Leapesty ag Experient	$a^{x+y} = a^{x+y} = a^{x} (aay + c syny)$ $a^{x+y} = 1 + (x+iy) + (a+iy)^{2} + (a+iy)^{3} + \dots$ $a^{c} = 1 + iy + (iy)^{2} + (iy)^{3} + \dots$ $a^{c} = 1 + iy + (iy)^{2} + (iy)^{3} + \dots$ $= 1 + iy + (iy)^{2} + (iy)^{3} + \dots$ $= 1 + iy + (iy)^{2} + (iy)^{3} + \dots$ $= (1 - y^{2} + y^{4} + \dots) + (iy - y^{3} + \dots)$ $= (1 - y^{2} + y^{4} + \dots) + (iy - y^{3} + \dots)$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 (ate - a ce -	+402e RHS = 3 gir - 0-62 - 0-6
(Stail) - selve gas 1000 & imaginacy wells (Stail) = 16 + 30 i (Stail) = 16 i (S	# Teigenemetry Identity -> gz & 25 a Cemplea washale tonen () 25m 12 = 15mz (c22 Tabe RHS 125m Z (c22 = 1 2 x 2 z - 2 z z 2 z - 2 z z 26 2 2 2 2 z 2 z 2 z 2 z 2 z 2 z 2 z 2 z	$\frac{2}{2} = \frac{2}{2} \cdot \left(\frac{2^{12}}{2} + 2^{12} \right)^{2} - 1$ $= \frac{2^{12}}{2} + 2^{-12} + 2^{-12} + 2^{-12} - 1$ $= \frac{2^{12}}{2} + 2^{-12} + 3^{-12} + 3^{-12} - 3$ $= \frac{2^{12}}{2} + 2^{-21} - 3$

Barra Cara	82 m 65 m 60 (3 + 122+1) 82 m 65 m 60 (3 + 122+1) 82 m 65 m 60 (3 + 122+1) 82 m 65 m 60 (3 + 132+1) 83 m 60 13 = 800 (3 + 132+1) 84 m 60 13 = 800 (3 + 132+1) 85 m 60 13 = 800 (3 + 132+1) 85 m 60 13 = 800 (3 + 132+1) 85 m 60 13 = 800 (3 + 132+1)	2 + 1 = 0 2 + 1 = 0 4 + 1 = 0 4 - 1 + 1 = 0 2 - 1 + 1 = 0 8 (3 + 1 = 0 8 (3 + 1 = 0)
3 tun 4 2 1 tun 4 2	2 - 2 - 3 - 3 - 2 - 2 - 2 - 2 - 2 - 2 -	(cat hr) -

	Sin Diy = (cos) - (3) Bin20 = (cos) sin Biy Sin20 = (cos) xin Biy Sin20 = (cos) xin Bix	(45° 2) = Sino 21 = (45° (5° (5° 0)) ⁴ (45° 0 (5° 0) (5° 0) (5° 0) (45° 0 (5° 0) (5° 0) (5° 0) (5° 0) (45° 0 (5° 0) (5° 0) (5° 0) (5° 0) (5° 0) (45° 0 (5° 0) (5° 0) (5° 0) (5° 0) (5° 0) (5° 0) (45° 0 (5° 0) (5	8ênce, 8 = 8ûn 8-1 (8ûn a) ² - 8ênce, 8 = 2ûn 8-1 (8ûn a) ² - 8ên 8-1 x = 0eg (3+15c+1) 86 y = 8eg (18ina + 11+2mo) v	(i) Ten bru = ten (Try + Cr, 1) then percue that (ii) Ten bru = ten C (iii) Ten bru = ten C (iv) Ten bru = ten (Try + Cr, 1) (iv) (cos h.u = ten (Try + Cr, 1) (iv) (cos h.u = ten (Try + Cr, 1) (iv) (cos h.u = ten (Try + Cr, 1) (iv) (cos h.u = ten (Try + Cr, 1) (iv) (cos h.u = ten (Try + Cr, 1)	appey (ampenenda & diesdenda ia : wir = p = u. A + ten % A + ten %. tan & u Tenas - tenas tan & u Tenas - tenas Tenas - tenas Tenas
Policy of the state of the stat	-+ posace ten s-2 - 1 Rog (1+x) Descong -+ Cet y - ten so-1 x 2	+ 3 3 1 B	9 99	Signate wate sead and imaginary pasts Set sin' ((coo + i sina) = x + i y (coo + i sin (coi + i y) = sin x (coi + i sin y (coi) = sin x (coi + i sin y (coi) = sin x (coin + i sin y (coi) (coin + i sin x (coin + i sin y (coi) = sin x (coin + i sin y (coi) (coin + i sin x (coin + i sin y (coin + i sin x (coin +	1-2012 = 2012 1 2012 1 2012 1 2012 1 2012 1 2012 1 2012 1 2012 1 2012 1 2012 1 2012 20

d @ = Kas hu. & y = = Sing.	sin a	عدد (هارها الله الله الله الله الله الله الله	8 + 4 + 4 (3) 1	8in²α = 8in²α 8in²α = ± 8inα
(1) Two 1 HS (co) 1 + tun hi h h h h h h h h h h h h h h h h h h	1 - ten sus = + ten sus = + ten sus = + ten sus = + ten	28 (cos hu + (cos hu = sel 28 (cos hu + (cos hu = 2 + ly cos xt + yt = - 1 (cos u sinte	- 20 + 1 2 = (00 10 + 10) = (00) (1 1 + 10) = (00	Squasing & adding & y. I / / sinhi.

* =	100 100 general 100 100 general 100 100 100 100 100 100 100 100 100 10	Ch 2 = H 2 = H 2 + 4 (1) - BJT [2n + ±] + C - BJT (4m + 1)/2 Cα -
# Legeeitemic gr ag Lemples receives [ING. -> 0 96 = 2 + iy & us = u+ ie les tues Lemples receives such that o = z then U is said to be legerithmic as to base & O legesithmic as a compless receives is miles.	Dog Z Synce Catil	1. + Reg (1. + Reg (2. + R

# Analytic gxn s # Analytic gxn s Linnit _ a kemplen No 'e' is soid to he denoted by gim g(z) = a denoted by gim g(z) = a denoted by 2 = 2 = 2 (a) good evening E > 0 threse exist 670 5.T.	A gxr g(z) in soid to be right aist g(z) exist g(z) = g(zo) the gxr g(z) in soid to be being boint Zo in it is demain - g(zo) exists	4) Analyticity -> let g(z) be the single ealust gx" in demain the gx" g(z) is raid to be analytic at point zoig 'g' is devisable "g seme neighbour hoad on every point "g seme neighbour hoad of zo "he analytic gx" is also binouen as "y An analytic gx" is also binouen as "y An analytic gx" is also binouen as "y alouetion g(z) which is analytic every- "aloue is alled entite gx".
\$6 \alpha^2 + \beta^2 = \alpha - \beta^2 \psi \alpha \extrem{ \alpha \infty} \beta \infty \\ \alpha \infty \\\ \alpha \infty \\ \alpha \infty \\ \alpha \infty \\ \alpha \infty \\ \alpha \infty	Ower Perace Leg (4+3i) = 2nsti + log (4+3i) - p but h = sico = 2 shing 16 + 9 = sic : [ig = 5] 16 + 9 = sic : [ig = 5] 16 g(4+3i) = 2nsti + log (4 for 16) = 1 for (4 for 16) = 2nsti + log (5 for 16) = 2nsti + log 5 for 16 = 2nsti + log 6 for 18 = 2nsti + l	

and C	The sece and Imaginas are (alled conjugate gx g g(z) = u(x,y) + is(x,y) clemain 1) then it & sece secon	and ove cicled Gramonic gx" 4 Appellation to glove proclems 9 w = g(z) = p(x,y) + i p(x,y) supresent the potentice gx" wohre b(x,y) + i p(x,y) is welleath potentice gx" wohre b(x,y) is stream gx" on going gy" 2 w = g(z) = p(x,y) + i p(x,y) supresents the gran dx" is lated them potentice gx" or wheat glove pattern them p(x,y) is celled isotherned gx" gx" is prefit glove gx".	Owe cletesmine tore combytic ax neglose sear point is 2x (2(2) = 14 + ice be the onelytic gx neglose 4 = 2x (2(2) = 14 + ice be the onelytic gx neglose 3u = 2x (2x (68)2y - y sin 2y + (68)2y) 3u = 2x (2x sin 2y + sin 2y + 2y (68)2y) 4 dy 8 du = -2x (2x sin 2y + sin 2y + 2y (68)2y) 6 du = -2x (2x sin 2y + sin 2y + 2y (68)2y) 1 e du = die du = die du = -die 2x dy 3x dy 3y = -die
Dode Dode	Carelibran - Riemann Equation -> Carelibran gor a gunition and si La lee analytic in a region R	34 36 30 3 30	30 34 (919,00) o'0 00 00 00 00 00 00 00 00 00 00 00 00 0

100 C = 21-4 + 1 C = (25-4)(2x) - 3x+4-2-23x+3	= -2 +42 + 2xy = -2 +42 + 2xy (2(+42)) - (3(-42)(2y)22	$8^{3}m_{0} = -x^{2} + y^{2} - 2xy$ $8^{3}m_{0} = 8(z) = u + i e$ $8^{4}(z) = 3e - e 3e$ $9y = 3x$ $-x^{2} + y^{2} - 2xy$	(3c) + 12 + (2c) (3c) (3c) (3c) (3c) (3c) (3c) (3c) (3	integrate wat z $ \begin{cases} sin (z) = -(1-i) \\ sin (z) dz \end{cases} = \begin{cases} -(+i-i) & dz \end{cases} + c $ $ \begin{cases} sin (z) = -(-i) & z^{-2} \\ -(-i) & z^{-2} + i \end{cases} + c $	
12 - 24 - 24 - 24 8in 24 + (ex.	Integrate wet & Samzy + Blood + O(x) 10 - 22x 32 Simzy + Blood + R Simzy 21 - 22x 32x 8 Simzy + Blood + R Simzy 22 - 22x 32x 8 Simzy + Blood + R Simzy 23x 3x 5x	= - 24 = 24 (22) + 3m/2y + 4/2 = 25/4 + 4/4 = 25/2 = 25/2 + 3m/2y + 8/22/2y +	# Milne thomson is Meterad # Milne thomson is Meterad # Milne thomson is Meterad # 098 with allegen Rind of 2 - 21.	and of 18 is given 16/2) = 36 - 636 3 Replace 21 by 2 and 4 be 0 in	Out gind store underthe ax wence imaginary part is

() 2 2 2 2 3 2 3 3 3 3	Agree $g(z) = u + \hat{u}e$ $g'(z) = 3u + \hat{u}e$ $g'(z) = 3u + \hat{u}e$ $g''(z) = u + \hat{u}e$ $g''(z) =$	Sums 38 8(2) = 4 + 6 = 15 an ancounting 8xn ag 2 cond 11 - 6 = (cos) + sin x - e y 4 (2) = 44 + 64 2 (cos) = 44 + 64 4 (2) = 44 + 64 4 (2) = 44 + 64 8(2)(1+1) = 14 - 18 8
means Harmonic Bx" 2) Los a sugular Bx" of 2 10 (3 + 3) (10(2)) = 4 (8(2)) (3x - 3y ²)	2) = (L+ 2) = (L) E	are all barren eagines are all all all all all all all all all al

