Follow the Sun and Go with the Wind: Carbon-Footprint Optimized Timely E-Truck Transportation

Junyan Su, Qiulin Lin, Minghua Chen City University of Hong Kong

06/20/2022

US Trucking Industry: A Top-20 Economy with High Environmental Impact

- □ U.S. Trucking Industry is a top-20 economy
 - Freight revenue: \$875.5B in 2021
 - ranks 18th against countries' GDP worldwide
 - Freight tonnage: 11B (72% of all freight), 2021

- ☐ Carbon emission: **456.6M** tons, 2019
 - 25% in the transportation sector.
 - 8.8% of all carbon emissions.

Rank	Country	GDP (USD billion)
1	United States	23,315
2	China	17,734
3	Japan	4,940
18	Saudi Arabia	833
19	Turkey	815
20	Switzerland	812

E-Truck: A Future Direction for Better Environment

- ☐ High energy efficiency
 - Electric motor: ~95%, 1.8 kWh/mile
 - Internal combustion engine (ICE): ~35%, 4.7 kWh/mile
- □ Electric trucks have zero direct emissions.
- ☐ However, the **carbon footprint** of an electric truck is non-zero.
 - E-truck: 1.8 kg/mile (if electricity all from coal)
 - E-truck: 0.7 kg/mile (if electricity all from natural gas)
 - ICE truck: 1.3 kg/mile
- ☐ We use the **carbon intensity** (kg/kWh) to measure the cleanness of the electricity.

	Coal	Natural gas	Petroleum	Renewable
Carbon Intensity (kg/kWh)	1.02	0.39	0.91	0
Total emission (tons)	7.86×10^{8}	6.35×10^{8}	1.6×10^{7}	0
Electricity (kWh)	7.73×10^{11}	1.62×10^{12}	1.75×10^{10}	7.92×10^{11}

Carbon Footprint Optimization (CFO) Problem

	Carbon footprint (kg)	Energy (kWh)	Distance (miles)	Time (hours)
FAST	1022.0	1633.7	919.9	19.3
ENERGY	637.3	1239.7	879.8	24.0
CARBON	413.6	1487.5	946.9	24.0

Objective:

Carbon footprint incurred at each charging station.

Decisions:

- Path planning
- Speed planning
- Charge planning

Constraints:

- State of Charge (SoC) constraints
- Deadline constraint.

Fundamental Challenges

☐ The problem is **NP-hard** even just to find a feasible solution.

□ Positive battery State of Charge (SoC) constraints.

□ Non-convex carbon footprint objective.

□ **Enormous** geographical and temporal charging options with diverse carbon intensity.

Contribution

Important and Challenging Problem

 We identify and study an important and challenging problem Carbon Footprint Optimization (CFO).

□ Novel Formulation

- We provide a novel problem formulation based on a stage-expanded graph.
- It reveals a special problem structure and has a low model complexity.

□ Efficient Approach with Performance Guarantee

 (i) convergence rate, (ii) polynomial time complexity, and (iii) performance bound.

□ Insights:

Carbon-optimized solutions save up to 28% carbon as compared to baselines.

Comparison with Conceivable Alternatives

						_
Graph Model in Formulation	Problem	Model Complexity	Algorithm	Complexity	Optimality	_
Original graph	MIP	$O\left(\left \mathcal{V}\right +\left \mathcal{E}\right \right)$	Branch and bound	Exponential to $ \mathcal{V} $ and $ \mathcal{E} $	Optimal	2
Battery-expanded graph	MILP [†]	$O\left(B/\epsilon\left(\mathcal{V} + \mathcal{E} \right)\right)$	Branch and cut	Exponential to $ \mathcal{V} , \mathcal{E} , ext{ and } B/\epsilon$	$O(\epsilon)$ to optimal	
Time-expanded and battery-expanded graph	Shortest Path	$\left((T\cdot B)/\epsilon^2\right)\left(\mathcal{V} + \mathcal{E} \right)$	Bellman-Ford	Polynomial to $ \mathcal{V} , \mathcal{E} , T/\epsilon$ and B/ϵ	$O(\epsilon)$ to optimal	-
Our stage-expanded graph	Generalized RSP‡	$O(N(\mathcal{E} + \mathcal{V}))$ 1	Dual subgradient	Polynomial to $ \mathcal{V} , \mathcal{E} , \text{ and } N$	Posterior bound	2

^{†:} Provided that the carbon intensity function is approximated by a piecewise linear function. ‡: RSP stands for restricted shortest path.

Message 1: Our stage-expanded graph has a low model complexity as compared to battery-expanded graphs. Because the number of charging stops $N \le 10$ in practice.

Message 2: Our formulation reveals an elegant problem structure that leads to an efficient algorithm with favorable performance in both theory and experiments.

System Model: Graph and Charging Station

- $\Box \quad G = (V, E):$
 - − V: the set of nodes, E: the set of edges
- $c_e(t_e): [t_e^{lb}, t_e^{ub}] \to \mathcal{R}$: the (convex) energy consumption function
- □ **Decision**: travel time $t_e \in [t_e^{lb}, t_e^{ub}]$.

- \Box $V_c \subset V$ the set of charging stations
- \Box $\Phi_{\rm V}(t)$: the (concave) charge function
- Decisions: Wait time $t_w \in [t_w^{lb}, t_w^{ub}]$ and charge time $t_c \in [0, t_c^{ub}]$

System Model: Carbon Intensity and Objective

Problem Formulation: A Stage-expanded Graph

- **Property 1:** The stages are connected by virtual charging edges.
- **Property 2:** The time duration of each stage is variable.

- □ N: we allow e-truck to charge at most N times.
- \Box *s*, *d*: the source and the destination.

Benefits:

- Incorporates arrival time and SoC information.
- Low model complexity.
- Reveals problem structure.

Problem Formulation

CFO:
$$\min \sum_{i=1}^{N} \sum_{v \in \mathcal{V}_c} y_v^i F_v(t_c^{i,v}, t_w^{i,v}, \beta_v^i, \tau_v^i)$$
 (10a) The carbon footprint objective s.t. $\delta_i^{\tau}(\vec{x}, \vec{y}, \vec{t}, \vec{\tau}) \leq 0$, $\forall i \in \{1, ..., N+1\}$ (10b) Deadline and scheduling Constraint with dual λ_i^{τ} $\delta_i^{\beta}(\vec{x}, \vec{y}, \vec{t}, \vec{\beta}) \leq 0$, $\forall i \in \{1, ..., N+1\}$ (10c) SoC lower bound constraint with dual λ_i^{β} var. $(\vec{x}, \vec{y}) \in \mathcal{P}, \vec{\beta} \in \mathcal{S}_{\alpha}, \vec{\tau} \in \mathcal{T}_{\tau}, \vec{t} \in \mathcal{T}$. (10d)

x: the path selection variable y: the charge location selection variable \mathcal{P} : the path selection set.

 β_i : the arrival SoC at stage i. τ_i : the arrival time at stage i.

 t^{i} : the travel time at stage i. t_{w}^{i} : the wait time at stage i. t_{c}^{i} : the charge time at stage i.

Dual Based Method: High Level Idea

☐ We aim to solve the dual problem:

$$\max_{\vec{\lambda} \geq 0} D(\vec{\lambda}) = \max_{\lambda \geq 0} \min_{(\vec{x}, \vec{y}) \in \mathcal{P}, \vec{t} \in \mathcal{T}} L(\vec{x}, \vec{y}, \vec{t}, \vec{\lambda})$$

- \Box Given $\vec{\lambda}$, we can compute $D(\vec{\lambda})$ by decompose the problem.
 - we can assign cost to each road segment and charging station with $ec{\lambda}$
 - $-\lambda_i^{\beta}$ is the cost for battery underflow at stop i.
 - $-\lambda_i^{\tau}$ is the delay cost for the charging scheduling at stop i.
- \Box We can then update $\vec{\lambda}$ by checking its corresponding constraints and re-solve $D(\vec{\lambda})$ with less constraint violation.

Dual Based Method: The Dual Problem

$$\max_{\vec{\lambda} \geq 0} D(\vec{\lambda}) = \max_{\lambda \geq 0} \min_{(\vec{x}, \vec{y}) \in \mathcal{P}, \vec{t} \in \mathcal{T}} L(\vec{x}, \vec{y}, \vec{t}, \vec{\lambda})$$

$$D(\vec{\lambda}) = D_1(\vec{\lambda}) + \min_{(\vec{x}, \vec{y}) \in \mathcal{P}} \left(\sum_{i=1}^{N+1} \sum_{e \in \mathcal{E}} x_e^i \min_{\substack{t_e^i \in [t_e^{lb}, t_e^{ub}] \\ t_e^i \in [t_e^{lb}, t_e^{ub}]}} g_e^i(\vec{\lambda}, t_e^i) \right) \leftarrow \text{Single-variable convex optimization for speed planning}$$

$$+ \sum_{i=1}^{N} \sum_{v \in \mathcal{V}_c} y_v^i \min_{\substack{t_c^i, v \geq 0, t_w^i, v \geq t_w^0, \\ \beta_v^i \in [0, B], \tau_v^i \in [0, T]}} h_v^i(\vec{\lambda}, t_c^{i, v}, t_w^{i, v}, \beta_v^i, \tau_v^i) \right) \leftarrow \text{4-variable non-convex optimization for charge planning}$$

$$=D_1(\vec{\lambda}) + \min_{(\vec{x}, \vec{y}) \in \mathcal{P}} \sum_{i=1}^{N+1} \sum_{e \in \mathcal{E}} w_e^i(\vec{\lambda}) x_e^i + \sum_{i=1}^N \sum_{v \in \mathcal{V}_c} \sigma_v^i(\vec{\lambda}) y_v^i$$

Weight for each road segment

Cost for each charging station

 \mathcal{P} : Find N charging stops and N+1 sub-paths such that the overall cost is minimized.

CFO: min
$$\sum_{i=1}^{N} \sum_{v \in \mathcal{V}_c} y_v^i F_v(t_c^{i,v}, t_w^{i,v}, \beta_v^i, \tau_v^i)$$
 (10a)

s.t.
$$\delta_i^{\tau}(\vec{x}, \vec{y}, \vec{t}, \vec{\tau}) \le 0, \forall i \in \{1, ..., N+1\}$$
 (10b)

$$\delta_i^{\beta}(\vec{x}, \vec{y}, \vec{t}, \vec{\beta}) \le 0, \ \forall i \in \{1, ..., N+1\}$$
 (10c)

var.
$$(\vec{x}, \vec{y}) \in \mathcal{P}, \vec{\beta} \in \mathcal{S}_{\alpha}, \vec{\tau} \in \mathcal{T}_{\tau}, \vec{t} \in \mathcal{T}.$$
 (10d)

Solving the Path Selection Problem

- □ We consider an extended graph $\tilde{G} = (\tilde{V}, \tilde{E})$ which contains N copies of charging stations and $\{s, d\}$ $\tilde{V} = \{v^i : v \in V_c, i \in \{1, ..., N\}\} \cup \{s, d\}$
- □ For each pair (u^i, v^{i+1}) , we construct an edge between them with the cost: $\sigma_u^i + SP^{i+1}(u, v)$
 - $SP^{i+1}(u, v)$ denotes the cost of shortest path between u, v with weight w_e^{i+1} on the original graph.
 - Similarly, we construct an edge between (s, u^1) and (u^N, d) for all $u \in V_c$.
- $\ \square$ Then we can apply the shortest path from s to d to the extended graph.

The Dual Subgradient Method

$$\max_{\vec{\lambda} \geq 0} D(\vec{\lambda}) = \max_{\lambda \geq 0} \min_{(\vec{x}, \vec{y}) \in \mathcal{P}, \vec{t} \in \mathcal{T}} L(\vec{x}, \vec{y}, \vec{t}, \vec{\lambda})$$

- \Box We know how to compute $D(\vec{\lambda})$, the next thing is to update $\vec{\lambda}$
- \square We update $\vec{\lambda}$ based on the subgradient of $D(\vec{\lambda})$ at iteration k.

$$\lambda_i^{\tau}[k+1] = [\lambda_i^{\tau}[k] + \alpha_k \delta_i^{\tau}[k]]^{+}$$

$$\lambda_i^{\beta}[k+1] = [\lambda_i^{\beta}[k] + \alpha_k \delta_i^{\tau}[k]]^{+}$$
Constraint violations
$$\lambda_i^{\beta}[k+1] = [\lambda_i^{\beta}[k] + \alpha_k \delta_i^{\beta}[k]]^{+}$$

- Here α_k is the step size.
- □ Basically, we increase constraint penalty if there is a constraint violation.

Performance Analysis

- \square Convergence rate of $O(\frac{1}{\sqrt{k}})$ to the dual optimal $D(\lambda^*)$.
 - where k is the number of iterations.
- ☐ **Time complexity** per iteration is

$$O(N|V_c||V||E| + N|V_c|\frac{M^4}{\epsilon_1^4})$$

- Here, $M = \{t_c^{ub}, t_w^{ub}, B, T\}$ and ϵ_1 is the required accuracy for the subproblems
- □ Bound on optimality gap.

$$ALG - OPT \le -\sum_{i=1}^{N+1} \left(\lambda_i^{\beta} \delta_i^{\beta} + \lambda_i^{\tau} \delta_i^{\tau} \right)$$

Simulation Results

- Message 1: The carbon-optimized solutions save up to 28% carbon as compared to FAST, and 9% as compared to ENERGY.
- Message 2: Carbon-optimized solutions are also energy-efficient.

Concluding Remarks

Important and Challenging Problem

 We identify and study an important and challenging problem Carbon Footprint Optimization (CFO).

□ Novel Formulation

We provide a novel problem formulation based on a novel stage-expanded graph.

□ Efficient Approach with Performance Guarantee

- We provide an efficient dual-based method for solving the challenging CFO problem with favorable performance
- It is applicable to many other applications.
- Insights: carbon-optimized solutions are necessary.