

P-channel Enhanced mode SOP-8 MOSFET

Features

- Low $R_{DS(ON)}$ (Typ 43.5 m Ω)@ V_{GS} =-10V
- Low $R_{DS(ON)}$ (Typ 64m Ω)@ V_{GS} =-4.5V Low Gate Charge (Typ 19nC)
- Application: DC-DC Converter, Motor Control

BV_{DSS} : -30V : -5.3A

 $R_{DS(ON)}$: 43.5 m Ω @ V_{GS} =-10V

General Description

This power MOSFET is produced with advanced technology of SAMWIN. This technology enable the power MOSFET to have better characteristics, including fast switching time, low on resistance, low gate charge and especially excellent avalanche characteristics.

Order Codes

Item	Sales Type	Marking	Package	Packaging
1	SWK 9435	SW9435	SOP-8	REEL

Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DSS}	Drain to source voltage	-30	V	
I _D	Continuous drain current (@T _C =25°C)	-5.3*	А	
I _{DM}	Drain current pulsed (note 1)	-20	А	
V _{GS}	Gate to source voltage	±20	V	
P _D	Total power dissipation (@T _C =25°C)	1.92	W	
	Derating factor above 25°C	0.015	W/ºC	
T_{STG},T_{J}	Operating junction temperature & storage temperature	-55 ~ + 150	°C	

^{*.} Drain current is limited by junction temperature.

Thermal characteristics

Symbol	Parameter	Value	Unit	
R _{thja}	Thermal resistance, Junction to ambient	65	°C/W	

^{*.} The data tested bysurface mounted on a 1 inch2 FR-4 board with 2OZ copper.

Electrical characteristic ($T_C = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Off charac	teristics			•	•	
BV _{DSS}	Drain to source breakdown voltage	V _{GS} =0V, I _D =-250uA	-30			V
I _{DSS}	Drain to source leakage current	V _{DS} =-24V, V _{GS} =0V			-1	uA
I _{GSS}	Gate to source leakage current, forward	V _{GS} =-20V, V _{DS} =0V	6	5)	100	nA
	Gate to source leakage current, reverse	V _{GS} =20V, V _{DS} =0V		9	-100	nA
On charac	teristics					<u>. </u>
$V_{GS(TH)}$	Gate threshold voltage	V _{DS} =V _{GS} , I _D =-250uA	-1		-3	V
R _{DS(ON)}		V _{GS} =-10V, I _D = -5.3A		43.5	50	mΩ
	Drain to source on state resistance	V _{GS} =-4.5V, I _D = -4.2A		64	90	mΩ
Dynamic c	haracteristics	11)			•	
C _{iss}	Input capacitance			845		
C _{oss}	Output capacitance	V _{GS} =0V, V _{DS} =-15V, f=1MHz		150		pF
C _{rss}	Reverse transfer capacitance			100		
$t_{d(on)}$	Turn on delay time			24		- ns
t _r	Rising time	V_{DD} =-15V, $R_L = 15\Omega$, I_D =-1A,		39		
$t_{\text{d(off)}}$	Turn off delay time	V_{GEN} =-10V , R_{G} =6 Ω (note 2,3)		155		
t _f	Fall time]		143		
Q_g	Total gate charge			19		nC
Q_{gs}	Gate-source charge	V _{DS} =-25V, V _{GS} =-10V, I _D =-5.3A (note 2,3)		2		
Q_{gd}	Gate-drain charge			6		

^{※.} Notes

Repeatitive rating : pulse width limited by junction temperature. Pulse Test : Pulse Width \leq 300us, duty cycle \leq 2% 1.

^{2.}

Essentially independent of operating temperature. 3.

Fig. 1. On-state characteristics

Fig. 3. Gate charge characteristics

Fig. 5. Capacitance Characteristics

Fig. 2. On-resistance variation vs. drain current and gate voltage

Fig. 4. Maximum safe operating area

Fig. 6. Transient thermal response curve

Fig. 7. Gate charge test circuit & waveform

Fig. 8. Switching time test circuit & waveform

DISCLAIMER

- * All the data & curve in this document was tested in XI'AN SEMIPOWER TESTING & APPLICATION CENTER.
- * This product has passed the PCT,TC,HTRB,HTGB,HAST,PC and Solderdunk reliability testing.
- * Qualification standards can also be found on the Web site (http://www.semipower.com.cn)
- \boxtimes
- * Suggestions for improvement are appreciated, Please send your suggestions to samwin@samwinsemi.com