Jak sobie radzić z etykietami, gdy eksperci są mało wiarygodni?

Łukasz Czekaj

Plan prezentacji

- Etykiety dostarczone przez "tłum" (crowdsourcing)
- Modelowanie jakości "ekspertów"
- Uczenie z uwzględnieniem modelu eksperta

- Coś trudniejszego niż klasyfikacja kot vs pies, np. analiza danych medycznych
- Problem ze znalezieniem eksperta:
 - lekarze są za drodzy; nie mają czasu; nie chcą wykonywać żmudnej i rutynowej pracy;
 - technicy mniej wykwalifikowani ale tańsi i łatwiej dostępni

- Eksperci nie są zgodni:
 - różne szkoły, różne progi (czułość, precyzja)
- Eksperci też się mylą:
 - zmęczenie, motywacja
- Nie do końca możemy ufać etykietom

- Masowe etykietowanie danych:
 - Amazon Mechanical Turk
 - Figure Eight (CrowedFlower)
 - Zooniverse

Etykiety dostarczone przez "tłum" Zgodność między ekspertami

- Model danych:
 - {(X_i,{y_{i,i}}_i,z_i=?)}_i
 - i indeks przykładu uczącego
 - j indeks eksperta
 - X_i wektor cech
 - $y_{i,j}$ etykieta którą ekpert j przydzielił dla przykładu i, $y_{i,j} = \emptyset$ jeśli ekspert nie j nie etykietował przykładu i
- Jeden przykład może mieć przypisane wiele etykiet
- Etykiety nie muszą być zgodne
- Nie wiemy jaka jest "prawdziwa" etykieta z,

Etykiety dostarczone przez "tłum" Alokacja pracy

- Zbiór treningowy:
 - Wielokrotne adnotacje każdego przykładu mniej przykładów treningowych
 - Pojedyncze adnotacje każdego przykładu mniejsza jakość etykiet

[Sheng, Victor et all. Get Another Label? Improving Data Quality and Data Mining Using Multiple, Noisy Labelers. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 614-622. 10.1145/1401890.1401965.]

 Uczenie aktywne (ale to temat na zupełnie inną opowieść)

Etykiety dostarczone przez "tłum" Alokacja pracy

- Zbiór testowy (jak ustalamy "prawdziwe" etykiety):
 - Wielokrotne adnotacje każdego przykładu liczba osób w zależności od jakości adnotujących (3-7), mniejsza liczba przykładów niż w zbiorze treningowym
 - Każdy przykład adnotują 2 osoby, w razie niezgodności konflikt rozwiązuje "super ekspert" - mniejsze koszty
 - Konsensus każdy przykład testowy jest omawiany na panelu ekspertów, etykieta na podstawie wypracowanego konsensusu

Etykiety dostarczone przez "tłum" Alokacja pracy

Jak to robi Adnrew Ng?

[https://arxiv.org/pdf/1707.01836.pdf]

- Trening: 64,121 ECG zapisów; 29,163 pacjentów; 30s każdy; etykiety dostarczane przez pojedynczego eksperta;
- Testy: 336 zapisów; 328 pacjentów; etykiety na podstawie konsensusu (dyskusja) 3 ekspertów;

Modelowanie jakości eksperta (tylko etykiety, brak X)

Estymacja macierz konfuzji p_i(Y|Z)

[A. P. Dawid and A. M. Skene, Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm (1997)]

• Prawdziwe etykiety (Z_i) są znane: $p(\{dane\}) = p(\{\{Y_{i,j}\},Z_i\}) = \prod_{i,j} p_j(Y_{i,j}|Z_i)$ $p_j(\{Y_{i,j}\},Z_i) - rozkład Bernoulliego$ $\alpha_j = p_j(Y=1|Z=1)$ $\beta_j = p_j(Y=0|Z=0)$ MLE: $argmax\{\alpha_i,\beta_i\}$ $p(\{\{Y_{i,i}\},Z_i\})$

Modelowanie jakości eksperta (tylko etykiety, brak X)

Estymacja macierz konfuzji p_i(Y|Z)

[A. P. Dawid and A. M. Skene, Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm (1997)]

- Prawdziwe etykiety (Z_i) nie są znane: p({dane})= p({{ $\{Y_{i,j}\}\}}$)= $\Pi_{i,j}\sum_{z}p_{j}(Y_{i,j}|Z_i)p_{i}(Z_i)$
- Wiele adnotacji dla jednego przykładu
- $p_i \in [0,1] => Bayes (montecarlo)$
- $p_i \in \{0,1\} => algorytm EM$:
 - Inicjalizacja: losowo przypisujemy {0,1} do p_i
 - M: argmax $\{\alpha_i, \beta_i\}$ p($\{\{Y_{i,i}\}, Z_i\}$); ustalone p_i
 - E: argmax{p_i} p({{Y_{i,j}},Z_i}); ustalone α_j , β_j

Estymacja macierz konfuzji $p_j(Y|Z)$ lub $p_j(Y|Z,X)$

Estymacja klasyfikatora p(Z|X)

[V. C. Raykar, etal., Learning From Crowds (2010); Yan Yan, etal., Modeling annotator expertise: Learning when everybody knows a bit of something (2010); Ashish Khetan, etal., Learning from noisy singly-labeled data (2018);

- Prawdziwe etykiety (Z_i) nie są znane
- Estymujemy etykiety (Z_i) na podstawie modelu
 p_i(Z_i|X_i)
- Wystarczą pojedyncze adnotacje

Estymacja macierz konfuzji $p_j(Y|Z)$ lub $p_j(Y|Z,X)$

Estymacja klasyfikatora p(Z|X)

[V. C. Raykar, etal., Learning From Crowds (2010); Yan Yan, etal., Modeling annotator expertise: Learning when everybody knows a bit of something (2010); Ashish Khetan, etal., Learning from noisy singly-labeled data (2018);]

- Macierz konfuzji zależy tylko od klasy przykładu (Z_i) p({dane})= p({X_i,{Y_{i,i}}})= $\Pi_{i,i}$ p_i(Y_{i,i}|Z_i)p_i(Z_i|X_i)
- Dla każdej klasy są przykłady trudniejsze i łatwiejsze p({dane})= $p(\{X_i, \{Y_{i,j}\}\})=\Pi_{i,j}p_j(Y_{i,j}|Z_i,X_i)p_i(Z_i|X_i)$

Estymacja macierz konfuzji $p_j(Y|Z)$ lub $p_j(Y|Z,X)$

Estymacja klasyfikatora p(Z|X)

[V. C. Raykar, etal., Learning From Crowds (2010); Yan Yan, etal., Modeling annotator expertise: Learning when everybody knows a bit of something (2010); Ashish Khetan, etal., Learning from noisy singly-labeled data (2018);]

- Algorytm EM:
 - M: MLE dla p_j, p(Z|X);
 proste modele analitycznie
 bardziej złożone (xgboost) numerycznie
 - E: $p_i(Z_i), p_{i,j}(Z_{i,j})$ na podstawie tw. Bayesa

Estymacja macierz konfuzji $p_j(Y|Z)$ lub $p_j(Y|Z,X)$

Estymacja klasyfikatora p(Z|X)

[V. C. Raykar, etal., Learning From Crowds (2010); Yan Yan, etal., Modeling annotator expertise: Learning when everybody knows a bit of something (2010); Ashish Khetan, etal., Learning from noisy singly-labeled data (2018);]

- Algorytm EM:
 p_i(Z_i), p_{i,i}(Z_{i,i}) => modyfikacja funkcji straty p(Z|X)
 - { X_i,Y_{i,j},w =max{Y_{i,j}(p_{i,j}(1)-p_{i,j}(0)),0} } dla każdego przykładu wiele adnotacji
 - { X_i,Z^{est}_i,w =max{Z^{est}_i(p_i(1)-p_i(0)),0} } pojedyncze adnotacje dla przykładu
 - $\{X_i, 0, w = p_i(0)\}, \{X_i, 1, w = p_i(1)\} p.$ a posteriori

Estymacja macierzy konfuzji p(Y|Z) w epoce DeepLearning CrowdLayer (uczenie w jednym etapie, bez EM)

[F. Rodrigues, F. Pereira, Deep learning from crowds, arXiv:1709.01779 (2017)]

Uczenie z uwzględnieniem modelu Eksperta

Sieci Głębokie – p(Y|X) + głosowanie (uczenie 2 etapowe oparte na "reprezentacji ukrytej")

[M. Y. Guan, V. Gulshan, A. M. Dai, G. E. Hinton, Who Said What: Modeling Individual Labelers Improves Classification, arXiv:1703.08774v2 (2018)]

Uczenie z uwzględnieniem modelu Eksperta

XGBoost – p(Y|X, i) + głosowanie (identyfikator eksperta jako parametr modelu)

[L. Czekaj, W. Ziembla, P. Jezierski, P. Swiniarski, A. Kolodziejak, P. Ogniewski, P. Niedbalski, A. Jezierska, D. Wesierski; Labeler-hot Detection of EEG Epileptic Transients, arXiv:1903.04337 (2019)]

Uczenie z uwzględnieniem modelu Eksperta

Strategie zbierania danych, modelowanie eksperta vs konsensus

[L. Czekaj, W. Ziembla, P. Jezierski, P. Swiniarski, A. Kolodziejak, P. Ogniewski, P. Niedbalski, A. Jezierska, D. Wesierski; Labeler-hot Detection of EEG Epileptic Transients, arXiv:1903.04337 (2019)]

Podsumowanie

Integracja etykiet od wielu ekspertów

- Niska zgodność ekspertów;
- Eksperci etykietują różne przykłady, nie możemy ich bezpośrednio porównać;
- Za dużo ekspertów, żeby "ręcznie" oceniać ich jakość;
- Duża rozbieżność między jakością ekspertów największy zysk z modelu – model automatycznie wyłapuje słabych;
- Równoległe etykietowanie proces nie pozwala na wyłączenie słabych ekspertów w trakcie zbierania danych – więc warto czegoś się od nich nauczyć;