Neural Networks

Introduction (1)

Neural Network

Simple Mathematical Model (2)

- Simple mathematical model of neurons-con'd
 - First function: Weighted summation of inputs

$$S = X_1W_1 + X_2W_2 + ... + X_nW_n$$

Second function: Non-linear threshold

$$y = f(s)$$

$$y = \begin{cases} 1 & \sum_{i=1}^{n} x_i w_i > 0 \\ 0 & otherwise \end{cases}$$

Simple Mathematical Model (3)

- Simple mathematical model of brains
 - Brain is a network of neurons
 - So, let's simply connects artificial neurons and call it artificial neural network

J.H. Lee, Dept. of Software, Sungkyunkwan Univ.

Simple Mathematical Model (4)

Simple mathematical model of brains-con'd

What a stupid it is!!

 $y = \begin{cases} 1 & \sum_{i=1}^{n} x_i w_i > 0 \\ 0 & otherwise \end{cases}$

- What can it do?
 - Everything a Pentium can do!!

What a perceptron does

$$y = \begin{cases} 1 & \sum_{i=1}^{n} x_i w_i > 0 \\ 0 & otherwise \end{cases}$$

If an input is above the line output 1 else output 0

What a Perceptron Can Do? (2)

- What a perceptron can do
 - And operation

		And the second second	
X ₁	X ₂	Σ	У
0	0	-1.5	0
0	1.	-0.5	0
1	0	-0.5	0
1	1	0.5	1

What a Perceptron Can Do? (3)

- What a perceptron can do con'd
 - OR operation

$$w1=1.0$$
, $w2=1.0$, $w3=-0.5$

X ₁	X ₂	Σ	у
0	0	-0.5	0
0	1	0.5	1 1
1	0	0.5	1
1	1	1.5	1

What a Perceptron Can Do? (4)

- What a perceptron can do con'd
 - NOT operation

$$w1=-1.0$$
, $w2=0.5$

X ₁	Σ	у
0	0.5	1
1	-0.5	0

What a Neural Network Can Do? (1)

- What a neural network can do
 - A neural network can solve non-linearly separable problems
 - Example: XOR operation

What a Neural Network Can Do? (2)

- What a neural network can do— con'd
 - XOR operation

What a Neural Network Can Do? (3)

- What a neural network can do— con'd
 - XOR operation

$$w_{11}=1.0, w_{12}=1.0, w_{13}=-1.5$$

X ₁	X ₂	Σ	y ₁
0	0	-1.5	0
0	1	-0.5	0
1	0	-0.5	0
1	1	0.5	1

$$w_{11}=1.0, w_{12}=1.0, w_{13}=-1.5$$
 $w_{21}=1.0, w_{22}=1.0, w_{23}=-0.5$

X ₁	X ₂	Σ	y ₂
0	0	-0.5	0
0	1	0.5	1
1	0	0.5	1
1	1	1.5	1

У1	y ₂	Σ	У
0	0	-0.5	0
0	1*	0.5	1
0	1	0.5	1
1	1	-0.5	0

12/23

Multilayer Perceptron (1)

- Structure of Multilayer Perceptron
 - Here, we focus on a special type of neural networks
 - Layered structures

Multilayer Perceptron (2)

- Structure of Multilayer Perceptron con'd
 - Input layer
 - Simply pass the input values to the next layer
 - # of nodes = # of inputs
 - Hidden layer
 - There can be several hidden layers
 - # of nodes should be given
 - Output layer
 - # of nodes = # of outputs

ANN for $y=f(x_1,x_2)$

Multilayer Perceptron (3)

- What a multilayer perceptron can do con'd
 - Anything digital computers can do
 - Boolean function: 2-layer perceptron
 - Continuous function: 2-layer perceptron
 - Arbitrary function: 3-layer perceptron
 - We can build a multi-layer perceptron which satisfies given input-output pairs