МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

ОТЧЁТ

по дисциплине "Введение в авиационную и ракетно-космическую технику" на тему "Выход из атмосферы на космических кораблях Восток - 1 и Союз - 2.1б, сравнение показателей их высоты и скорости в зависимости от времени"

Оценка: Подпись преподавателя:

Выполнили:

Группа М8О-106БВ-24

Попов Е.А.

Савельев А.С.

Пупыкин Т.Д.

Бакиров И.Э.

ВВЕДЕНИЕ

Название команды:

Tundra

Тема миссии:

Исследование показателей высоты и скорости ракет в зависимости от времени.

Задачи миссии

- 1. Создание физико-математической модели миссии
- 2. Конструирование моделей ракет
- 4. Моделирование траектории полёта
- 5. Запуск симуляции
- 6. Сравнение математической модели и результатов симуляции
- 7. Проведение правок
- 8. Анализ полученных результатов
- 9. Написание отчета по ГОСТу

План работы

- 1) Распределение обязанностей внутри команды
- 2) Обсуждение плана работы
- 3) Изучение физики выхода из атмосферы
- 4) Построение математической модели
- 5) Построение графиков различных показателей ракет во время выполнения операции
- 6) Симуляция операции в KSP

Описание команды

- · Пупыкин Т.Д. тимлид, программист, KSP, математик, физик
- Попов Е.А. технический писатель, математик
- · Савельев А.С. математик, KSP, программист
- Бакиров И.Э. монтажёр, технический писатель, математик

ОПИСАНИЕ МИССИИ ВОСТОК-1

«Восток-1» («Восток») — советский космический корабль из серии «Восток», первый в мире космический аппарат, поднявший на своём борту человека на околоземную орбиту.

На корабле «Восток» 12 апреля 1961 года лётчик-космонавт СССР майор ВВС Юрий Алексеевич Гагарин совершил первый в мире пилотируемый полёт в космическое пространство. Старт корабля состоялся с советского космодрома Байконур в 9 часов 7 минут по московскому времени. Корабль выполнил один оборот вокруг Земли и совершил посадку в 10 часов 53 минуты в районе деревни Смеловка Саратовской области. Длительность полёта составила 106 минут. Корабль стал и первым в мире управляемым космическим аппаратом, позволившим совершить полёт в космос.

Полёт Юрия Гагарина часто сравнивают с такими важными событиями, ставшими историческими вехами, как плавание Христофора Колумба, приведшее к открытию Америки, или первый перелёт через Атлантический Океан, совершённый Джоном Олкоком и Артуром Брауном.

В Советском Союзе успешное осуществление первого пилотируемого космического полёта также рассматривалось как большой триумф в холодной войне против Соединённых Штатов.

Запуск космического корабля «Восток» 12 апреля 1961 года подтвердил высокий технический и научный уровень СССР и ускорил развитие космической программы в США. Полёт показал возможность нормального пребывания человека в космическом пространстве. Юрий Алексеевич Гагарин стал одним из самых известных людей планеты.

Устройство аппарата

Космический корабль.

Общая масса космического корабля достигала 4,73 тонны, длина (без антенн) — 4,4 м, а максимальный диаметр — 2,43 м.

Корабль состоял из сферического спускаемого аппарата (массой 2,46 тонны и диаметром 2,3 м) также выполняющего функции орбитального отсека, и конического приборного отсека (массой 2,27 тонны и максимальным диаметром 2,43 м). Масса теплозащиты от 1,3 тонны до 1,5 тонн. Отсеки механически соединялись между собой при помощи металлических лент и пиротехнических замков.

Масса спускаемого аппарата составляла 2460 кг, диаметр — 2,3 м. Корпус изготовлялся из алюминиевых сплавов.

Спускаемый аппарат имел два иллюминатора, один из которых размещался на входном люке, чуть выше головы космонавта, а другой, оснащённый специальной системой ориентации, в полу у его ног. Космонавт, одетый в скафандр, размещался в специальном катапультируемом кресле. На последнем этапе посадки, после торможения спускаемого аппарата в атмосфере, на высоте 7 км, космонавт катапультировался из кабины и совершал приземление на парашюте. Кроме того, была предусмотрена возможность приземления космонавта внутри спускаемого аппарата. Спускаемый аппарат имел собственный парашют, однако не был оснащён средствами выполнения мягкой посадки, что грозило оставшемуся в нём человеку серьёзным ушибом при совместном приземлении.

Ракета-носитель.

Трёхступенчатая ракета-носитель для запуска космических кораблей; на всех ступенях используется жидкое топливо.

На активном участке полёта двигатель центрального и бокового блоков работают разновременно. После израсходования топлива боковых блоков их двигатели отключаются, а сами блоки отделяются от центрального. При этом двигатель центрального блока (2-й ступени) продолжает работать.

После прохождения плотных слоёв атмосферы сбрасывается головной обтекатель. После израсходования топлива центрального блока происходит его отделение и запуск двигателя блока 3-й ступени. При достижении расчётной скорости двигатель отключается и космический аппарат отделяется от блока 3-й ступени. Выключение ракетного двигателя 3-й ступени и подача команды на отделение космического корабля производятся системой управления при достижении расчётной скорости, соответствующей выведению космического корабля на заданную орбиту.

План полёта Восток-1

1. Взлёт

Полёт начался с запуска ракеты-носителя "Восток-К" с космодрома Байконур в Казахстане в 09:07 по московскому времени. После старта ракета начала набирать высоту и скорость, двигаясь по заранее рассчитанной траектории. Основными движущими силами были тяга двигателей первой ступени (боковые и центральный двигатели) ракеты и постепенное уменьшение силы тяжести по мере увеличения высоты.

2. Отделение ступеней

Ракета-носитель состояла из нескольких ступеней. По мере расходования топлива ступени отстреливались, облегчая массу ракеты. Это позволило экономить топливо и увеличить скоростПервая ступень была отделена на высоте около 42 км, после чего включилась вторая ступень для дальнейшего подъема и разгона.

3. Разгон до орбитальной скорости

Важнейшей задачей было достижение первой космической скорости (около 7,9 км/с) для выхода на орбиту. Ракета двигалась по пологой траектории, постепенно повышая высоту и скорость, пока не достигла заданной орбитальной скорости. На высоте около 150 км началась работа третьей ступени, которая обеспечила заключительный разгон, позволив капсуле "Восток" выйти на околоземную орбиту.

4. Выход на орбиту

После достижения необходимой скорости и высоты третья ступень ракеты отделилась, и космический корабль "Восток-1" оказался на орбите.

Орбита полёта была эллиптической с параметрами: апогей около 327 км, перигей — 169 км. Один полный оборот вокруг Земли занял примерно 89 минут.

На орбите Юрий Гагарин провел краткие наблюдения и описания, передавая сообщения на Землю о своем состоянии и условиях внутри корабля.

ОПИСАНИЕ МИССИИ СОЮЗ-2.1Б

Ракета-носитель «Союз-2.1б» разработана на базе серийной ракеты-носителя «Союз-У» с применением усовершенствованных жидкостных ракетных двигателей РД-107А на первой, РД-108А на второй и РД-0124 на третьей ступенях и современной системы управления и измерений российского производства, что существенно повысило точность выведения и увеличило выводимую массу полезных грузов на низкие орбиты.

Ракеты-носители «Союз-2» в сочетании с разгонным блоком «Фрегат» предназначены для запусков космических аппаратов на околоземные орбиты различных высот и наклонений, включая геопереходные и геостационарную, а также отлетные траектории.

Устройство аппарата

Конструктивно ракеты-носители «Союз-2», как и все ракеты семейства «Союз», выполнены по схеме продольно-поперечного деления ракетных ступеней:

на первом этапе полёта работают двигатели четырех боковых и центрального блоков;

на втором, после отделения боковых блоков, только двигатель центрального блока.

Стартовая масса: 306 - 313 тонн

Количество ступеней: 3

Компоненты топлива: кислород-керосин

Маршевый двигатель первой ступени: 4 х РД-107А

Маршевый двигатель второй ступени: РД- 108А

Маршевый двигатель третьей ступени: РД-0124

Математическая модель

Так как Союз-2.1б участвовала в миссиях не только по запуску на околоземную орбиту, как Восток - 1, то корректнее сравнивать именно выход из атмосферы двух ракет.

Так как физический смысл производной графика x(t) - это скорость, а производная от скорости это ускорение, то мы можем выразить нашу высоту через дифференциальное уравнение

$$h''(t) = a(t)$$

А ускорение мы можем выразить через второй закон ньютона:

$$F = m * a$$

$$a = \frac{F}{m}$$

Так как на нашу ракету действует несколько сил и ракета летит под определённым углом на каждом промежутке времени, то нужно их учесть:

$$a = \frac{F_m * cos(90 - \alpha) - F_g - F_d}{m(t)}$$
, где

 F_{d}^{-} - сила сопротивления воздуха, вычисляется по формуле:

$$F_d = \frac{p(h) * V^2 * C_d * A}{2}$$
, где

p(h) - плотность воздуха на высоту

 C_d - аэродинамический коэффициент

А - плотность поперечного сечения

$$V^2$$
 - скорость ракеты

$$F_m$$
 - сила тяги

 F_{g} - сила притяжения, вычисляется по формуле:

$$F_g = \frac{\eta * m}{R^2}$$
, где

η - гравитационный параметр

т - масса ракеты

R - расстояние от центра массы объекта ($R_{_{_{3}}}+h$)

m(t) - масса ракеты, в зависимости от времени полёта, вычисляется по формуле:

$$m(t) = m_0 - m^* * t$$
, где

 $m_{_{
m O}}$ - начальная масса ракеты

m - расход топлива двигателями в минуту

$$m^{\cdot} = \frac{P}{I_{yd}}$$
, где

Р - тяга двигателя

 $I_{\rm yg}$ - удельный импульс

Итоговая система уравнений

$$egin{cases} h''(t) = a(t) \ a = rac{Fm*cos(90-)-Fg-Fd}{m(t)} \ Fd = rac{p(h)*V2*Cd*A}{2} \ Fg = rac{\mu*m(t)}{R^2} \ m(t) = m0 - m.*t \ m. = rac{P}{I_{
m YJ}} \end{cases}$$

Эта система позволяет моделировать изменение скорости и высоты на каждом этапе полета, что даёт полное описание движения космического корабля от старта до выхода из атмосферы.

Сравнение полученных данных

Для подсчета результатов математической модели была разработана программа на языке Python, результатом работы которой является построение графиков зависимости высоты и скорости полета от времени.

Из-за нехватки вычислительных мощностей дифференциальное уравнение не удалось посчитать программно, поэтому мы решили упростить математическую модель с помощью данных формул:

$$h = h_0 + v * t$$

 $v = v_0 + a * t$

В результате применения математической модели было получено значение высоты и скорости полета космического аппарата в определенный промежуток времени на всем временном промежутке полета летательного аппарата до выхода из атмосферы.

Для проверки правильности разработанной математической модели были построены графики зависимости высоты и скорости от времени полета летательного аппарата. График синего цвета отражает результаты, полученные в ходе миссии в Kerbal Space Program. График на рисунке жёлтого цвета отражает результаты, полученные в ходе расчета математической модели.

График для Востока-1:

График для Союза-2.16:

В графиках наблюдаются незначительные различия значений высоты и скорости. Это объясняется упрощённой моделью силы сопротивления

воздуха и выше упомянутым упрощением математической модели. В результате применения математической модели и сравнения полученных данных с данными, представленными после выполнения миссии в КSP, можно сделать вывод о корректности разработанной математической модели.

График сравнения миссий Восток-1 и Союз-2.16:

На графиках наблюдаются серьёзные различия значений высоты и скорости. Это объясняется тем, что во время запуска ракеты Союз-2.1б был выбран груз массой равной массе на Восток - 1: одноместный полётный модуль, который весил 4,725 кг. А Союз 2.1б расчитан на поднятия груза массой до 9200 кг, что и повлияло на такое сильное различие на графике.

Программная реализация

Программная реализация доступна по ссылке:

https://github.com/AI-AVENGER-S/Improve.git

Симуляция

Видео запуска доступно по ссылке:

ЗАКЛЮЧЕНИЕ

В результате выполнения проекта были построены и рассчитаны с помощью программных средств (язык программирования Python) математические модели максимальной скорости аппаратов и траектория их полета.

Также были смоделированы миссии Восток-1 и Союз-2.1б в Kerbal Space Program, где были воспроизведены этапы выхода из атмосферы реальных миссий.

Список источников

- https://ru.wikipedia.org/wiki/%D0%92%D0%BE%D1%81%D1%82%D0 %BE%D0%BA-1
- https://www.roscosmos.ru/36316/
- https://krpc.github.io/krpc/tutorials/launch-into-orbit.html
- https://matplotlib.org/stable/index.html

•