Assignment 8

1.

Iteration	Steps	Multiplicand Register	Multiplier Register	Product Register
0	Initial Values	0111	0101	0000
1	1. Test Multiplier M ₀ = 1 1a. Add Multiplicand to Product 2. sll Multiplicand 3. srl Multiplier	1110	0010	0000+0111= 0111
2	1. Test Multiplier M ₀ = 1 2. sll Multiplicand 3. srl Multiplier	1 1100	0001	0111
3	Test Multiplier M ₀ = 1 1a. Add Multiplicand to Product 2. sll Multiplicand 3. srl Multiplier	11 1000	0000	00 0111+11 100= 10 0011
4	1. Test Multiplier M ₀ = 1 2. sll Multiplicand 3. srl Multiplier	111 0000	0000	10 0011

Iteration	Steps	Quotient Register	Divisor Register	Remainder Register
0	Initial Values	0000	(sll to 8-bit) 0110 0000	(Dividend) 0111 1010
1	1. Subtract Divisor from Remainder 2a. srl Quotient and set Q ₀ to 1 3. srl Divisor	0001	0011 0000	01111010-0110 0000= 0001 1010
2	1. Subtract Divisor from Remainder 2b. Add Divisor back to Remainder and srl Quotient and set Q ₀ to 0 3. srl Divisor	0010	0001 1000	00011010-0011 0000= 11101010 11101010+001 10000= 0001 1010
3	1. Subtract Divisor from Remainder 2a. srl Quotient and set Q ₀ to 1 3. srl Divisor	0101	0000 1100	00011010-0001 1000= 0000 0010
4	1. Subtract Divisor from Remainder 2b. Add Divisor back to Remainder and srl Quotient and set Q ₀ to 0 3. srl Divisor	1010	0000 0110	00000010-000 01100= 11110110 11110110+000 00110= 0000 0010
5	1. Subtract Divisor from Remainder 2b. Add Divisor back to Remainder and srl Quotient and set Q ₀ to 0 3. srl Divisor	1 0100	0000 0011	00000010-000 00011= 11111111 11111111+0000 0011= 0000 0010

3.
$$(-3965)_{10} = -(2^{11} + 2^{10} + 2^9 + 2^8 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^0) =$$
 $-0000\ 0000\ 0000\ 0000\ 0000\ 1111\ 0111\ 1101 =$
 $1111\ 1111\ 1111\ 1111\ 1111\ 0000\ 1000\ 0001$
 $+0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001$
 $(1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 0000\ 1000\ 0011)_2$

- 5. a. $(31655.31640625)_{10} = (111101110100111.01010001)_2$ b. $(-1)^0 * 1.1110111010011101010001 * 2^{14}$
 - c. Biased Exponent = $14 + 127 = (141)_{10} = (10001101)_2$ d. (0100 0110 1111 0111 0100 1110 1010 0010)₂ = (46F74EA2)₁₆
- 6. a. $(-5737.390625)_{10} = -(1011001101001.011001)_2$ b. $(-1)^1 * 1.011001101001011001 * 2^{12}$
 - c. Biased Exponent = $12 + 127 = (139)_{10} = (10001011)_2$
 - d. $(1100\ 0101\ 1011\ 0011\ 0100\ 1011\ 0010\ 0000)_2 = (C5B34B20)_{16}$
- 7. Given $0xC6533720 = (1100\ 0110\ 0101\ 0011\ 0011\ 0011\ 0010\ 0000)_2$ Sign = 1, Biased Exponent = 140, Original Exponent = 140 - 127 = 13 Normalized Format = (-1) * 1.101001100110111001 * 2^{13} Original Binary = -11010011001101.11001 = $-(2^{13} + 2^{12} + 2^{10} + 2^7 + 2^6 + 2^3 + 2^2 + 2^0).(2^{-1} + 2^{-2} + 2^{-5}) = -13517.78125 = -1.351778125 * <math>10^4$
- 8. 1.1011 * 2⁻⁸ + 1.0111 * 2⁻¹⁰
 Step 1: 1.0111 * 2⁻¹⁰ shifts to 0.010111 * 2⁻⁸
 Step 2: 0.010111
 + 1.101100
 10.000011 * 2⁻⁸
 Step 3: 1.0000011 * 2⁻⁷ and -126 <= -7 <= 127

Step 4: **1.0000 * 2**⁻⁷

```
9. (1.1011 * 2^{-8}) * (1.0111 * 2^{-10})
    Step 1: -8 + (-10) = -18
    Step 2: 1.1011
        • <u>1.0111</u>
            000011011
            000110110
            001101100
            000000000
            110110000
+
            10.01101101 * 2<sup>-18</sup>
    Step 3: 1.001101101 * 2<sup>-17</sup>
    Step 4: 1.0011 * 2<sup>-17</sup>
10. 8.97 * 10^7 + 7.68 * 10^5 = 8.97 * 10^7 + 0.0768 * 10^7
    a. 8.97
    +0.0768
      9.0468 = 9.05 * 10^7
    b. 8.97
    +0.07
      9.04 * 10^7
```