Actividad 1

Andrés Ignacio Rodríguez Mendoza

Las matemáticas de péndulos son, en general, bastante complicadas. Se realizan supuestos para simplificar el modelo, que en el caso del péndulo simple permite a las ecuaciones de movimientos ser resueltas analíticamente para oscilaciones pequeñas.

Péndulo simple

El llamado "péndulo simple" es una idealización de un "péndulo real" en un sistema aislado usando los siguientes supuestos:

- Se considera una cuerda sin masa, inextensible y siempre tensa.
- El objeto es una masa puntual.
- El movimiento ocurre en dos dimensiones.
- Se desprecia fricción o resistencia al aire.
- el campo gravitacional es uniforme.
- El soporte está fijo.

La ecuación diferencial que representa el movimiento de un péndulo simple es

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\sin\theta = 0\tag{1}$$

donde g es la aceleración debido a la gravedad, l es la longitud de la cuerda, y θ es el desplazamiento angular.

Figura 1: Péndulo simple

Aproximación para ángulos pequeños

La ecuación diferencial no es resuelta tan facilmente como considerando ángulos más pequeños que un radián, es decir, $\theta \ll 1$, por lo cual, $\sin \theta \approx \theta$. Reemplazando esto en la ecuación diferencial, queda,

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\theta = 0. (2)$$

Dadas las condiciones iniciales $\theta(0) = \theta_0$ y $d\theta/dt(0) = 0$, la solución es

$$\theta(t) = \theta_0 \cos\left(\sqrt{\frac{g}{l}t}\right) \tag{3}$$

El movimiento es un movimiento armónico simple, donde θ_0 es la semiamplitud de oscilación. El periodo del movimiento es,

$$T_0 = 2\pi \sqrt{\frac{l}{g}}. (4)$$

Periodo de amplitud arbitraria

Para amplitudes más grandes que la aproximación a ángulos pequeños, se puede calcular el periodo invirtiendo la ecuación de la velocidad angular,

$$\frac{dt}{d\theta} = \frac{l}{2q} \frac{1}{\sqrt{\cos\theta - \cos\theta_0}} \tag{5}$$

e integrando sobre un ciclo completo,

$$T = t(\theta_0 \to 0 \to -\theta_0 \to 0 \to \theta_0),$$

o dos veces un medio ciclo,

$$T = 2t(\theta_0 \to 0 \to -\theta_0),$$

o cuatro veces un cuarto de ciclo,

$$T=2t(\theta_0\to 0),$$

que nos lleva a

$$T = 4\sqrt{\frac{l}{2g}} \int_0^{\theta_0} \frac{1}{\sqrt{\cos\theta - \cos\theta_0}} d\theta.$$
 (6)

Nótese que esta integral diverge como θ_0 se aproxime a la vertical. Así, con la energía adecuada, un péndulo en su máximo podría tomar un tiempo arbitrariamente largo para caer.