Lec. 5 (10/06/2022) Affine/Linear Combination Examples Affine Set If $x_1, x_2 \in S$ then $\theta x_1 + (1-\theta) x_2 \in S$ $\mathbb{R}^{\mathsf{n}}(\mathcal{V})$ $S \subseteq \mathbb{R}^{N}$ is affine Y O E R S If $x_1, x_2, \dots, x_k \in S$ Hum: $\theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$ $+\theta_1,\theta_2,\ldots,\theta_k \in \mathbb{R}$ 8.t. $\theta_1+\theta_2+\ldots+\theta_k=1$

 $R'_+(x)$ S" (V) Deg: (Subspace) If S is an affine set and $x \in S$, then the set $) := S - x_o = \left\{ x - x_o \middle| x \in S \right\}$ is called a subspace.

Notice that a subspace V is closed under Sum & scalar multiplication:

If $\underline{v}_{1},\underline{v}_{2} \in \mathcal{V}$ then $\underline{x}\underline{v}_{1}+\underline{\beta}\underline{v}_{2} \in \mathcal{V}$ $\underline{v}_{1},\underline{v}_{2} \in \mathcal{V}$

Affine Set = Subspace + Offset

$$S = V + Z_0$$

$$= \{ 2 + Z_0 \mid 0 \in V \}$$
Example: Solution set of linear matrix-vector equations
$$A = 0$$

$$R^{mxn} R^n + R^n$$
Question:
$$S := \{ x \in R^n \mid Ax = b \} \text{ affine } \}$$

Yes, because if
$$\underline{x}$$
, \underline{x} $\in S$ \Leftrightarrow $A\underline{x}$, $=\underline{b}$, $A\underline{x}$ $=\underline{b}$
then $\forall \theta \in \mathbb{R}$, we get:

$$A(\theta \underline{x}, + (1-\theta) \underline{x}_2) = \theta A\underline{x} + (1-\theta) A\underline{x}_2$$

$$= \theta \underline{b} + (1-\theta) \underline{b}$$

$$= \underline{b}$$

$$\theta \underline{x}, + (1-\theta) \underline{x} \in S \forall \theta \in \mathbb{R}$$

Substace = $\{x \in \mathbb{R}^n \mid A = 0 \\ m \times 1 \}$ example.

Suppose & = IR" is NOT Affine hall of 8: Offine. allies bull $= \left\{ \theta_1 \times + \dots + \theta_2 \times | \times_1, \dots, \times_k \in S \right\}$

affine hull
$$0 \in \mathbb{R}^2$$

0, ..., 0k = R3 Smallest affirme set containing & $S \subseteq aff(8)$

Examples: • $S = \{ z_1, z_2 \} \subset \mathbb{R}^2$ aff (8), in the case, is the collection of 2 points in \mathbb{R}^2)

entire structure. aff (s), in this case, is the entire straigle line connecting x, & x, K7, 3 points in R2. aff(8) = Setraight line is all points are collinear \mathbb{R}^2 if the points are noneoflower

aff (8) = { the streeth line if prints are collinear R² if points are coplarer R³ else

Convex set: If
$$\forall z_1, z_2 \in S$$
, $0 \le \theta \le 1$,

($\partial e_1^{z_1}$) $\partial z_1 + (1-\theta) z_2 \in S$

then S is a convex set.

 $z_1, z_2 \in S$ or element of this line segment.

· & = { 2, , ..., 2 L} - R3

Convex combination of Z,,..., Zk: Any point $z = 0, 2, + \dots + \theta_{\kappa} z_{\kappa}$ is called a convex combinedion of $\{z_1,...,z_k\}$ Convex hull = conv (& possibly nonconvex to begin with = Smallest convex Set that contains the original set & $S \subseteq Conv(S)$

Example:

S= Finite Collection of points in IR2

conv (8)

Cones: We say a set S is a cone if Y = S and S = S we have S = S

Cone is a set that is closed under nonneg. Scaling.

Examples: PR+ -> Come (V) Convex (V) 1St avadrant 3nd quadrant Convex come: Cone that is also convex. Nomeonver (come (v) $\forall x, x_2 \in \mathcal{S}$ $\forall \theta_1, \theta_2 > 0$

Example 2D pie/pizza slice > Convex come { convex (V) a R_ ν^T (ΘX, + (1-θ) X₂) υ · S"+ CONVEX(V) =0 \(\bar{n}_{\pi} \times \) \(\bar{n}_{\pi} \ Cone (V) = ... St. is a convex come [A [TO, I] $\theta \ (\geqslant 0) + (1-\theta) \ (\geqslant 0)$ = > 0

Nonnegative combination of points x, , x 2 of the torn; Conte Combination: $\underline{x} = \theta_1 \underline{x}_1 + \theta_2 \underline{x}_2 \text{ where } \theta_1, \theta_2/0$ Smallest (convex) come containing & Conic hull: $\begin{cases} \theta, x, + \dots + \theta_{\kappa} x_{\kappa} \middle| x \in S \\ \text{convex hall} & \theta : > 0, \end{cases}$ $for all i = 1, \dots, \kappa \end{cases}$ 2D Examples: in come hull

Example: Euclidean
$$/2$$
-norm cone:

 $S := \{ (x,t) \in \mathbb{R}^{N+1} | || x||_2 \leq t^2 \}$
 $= \{ (x,t) \in \mathbb{R}^{N+1} | || x||_2 \leq t^2 \}$
 $= \{ (x,t) \in \mathbb{R}^{N+1} | (x,t) \in \mathbb{R}^{N+1} || x||_2 \leq t^2 \}$

is a cone because

is a cone because

if
$$(\frac{x}{t}) \in S$$
 then $(\frac{y}{t}) := (\frac{\theta}{t}) \in S$.

$$(\frac{x}{t}) = (\frac{x}{t}) + (\frac{x}{t}) + (\frac{x}{t}) + (\frac{x}{t}) + (\frac{x}{t}) \in S$$
.

Then $(\frac{x}{t}) + (\frac{x}{t}) + (\frac{x}{t}) + (\frac{x}{t}) \in S$.