Latent Semantic Indexing Lecture 12

Information Retrieval

Lecture 12

Issues in the VSM

- Assumes terms are independent
 - Some terms are likely to appear together
 - synonyms, related words
 - spelling mistakes?
 - Terms can have different meanings depending on context
- Term-document matrix has a very high dimensionality
 - are there really that many important features for each document and term?

Latent Semantic Indexing

- Compute singular value decomposition of a term-document matrix
 - D, a representation of M in r dimensions
 - T, a matrix for transforming new documents
 - diagonal matrix Σ gives relative importance of dimensions

LSI Term matrix T

- T matrix
 - gives a vector for each term in LSI space
 - multiply by a new document vector to "fold in" new documents into LSI space
- LSI is a rotation of the term-space
 - original matrix: terms are d-dimensional
 - new space has lower dimensionality
 - dimensions are groups of terms that tend to cooccur in the same documents
 - synonyms, contextually-related words, variant endings

Singular Values

- Σ gives an ordering to the dimensions
 - values drop off very quickly
 - singular values at the tail represent "noise"
 - cutting off low-value dimensions reduces noise and can improve performance

Truncating Dimensions in LSI

Document matrix D

- D matrix
 - coordinates of documents in LSI space
 - same dimensionality as T vectors
 - can compute the similarity between a term and a document

http://lsi.research.telcordia.com/

Improved Retrieval with LSI

- New documents and queries are "folded in"
 - multiply vector by TΣ⁻¹
- Compute similarity for ranking as in VSM
 - compare queries and documents by dot-product
- Improvements come from
 - reduction of noise
 - no need to stem terms (variants will co-occur)
 - no need for stop list
 - stop words are used uniformly throughout collection, so they tend to appear in the first dimension
 - No speed or space gains, though...

LSI in TREC-3

- LSI space computed from a sample of the document collection
- Documents and queries folded into LSI space for comparison
- Improvement in AP with LSI: 5%
 - Improvements up to 20% seen in smaller collections

Other LSI Applications

- Text classification
 - by topic
 - dimension reduction -> good for clustering
 - by language
 - languages have their own stop words
 - by writing style
- Information Filtering
- Cross-language retrieval

N-gram indexing recap

- Index all *n* character sequences
 - language-independent
 - resistant to noisy text
 - no stemming
 - easy to do
- Document ⇒
 array of n-gram
 frequencies

$$n = 5$$

Hello World

Hello World

Hello World

Hello World

Why N-grams?

- N-grams capture pairs of words
 - Brings out phraseology and word choice
- LSI using n-grams might cluster documents by writing style and/or author
 - a lot of what makes style is word choices and stop word usage
- Small experiment
 - Three biblical Hebrew texts: Ecclesiastes, Song of Songs, Book of Daniel
 - used 3-grams in original Hebrew

Conclusion

- LSI can be a useful technique for reducing the dimensionality of an IR problem
 - reduction can improve effectiveness
 - reduction can find surprising relationships!
- SVD can be expensive to compute on large matrices
- Available tools for working with LSI
 - MATLAB or Octave (small data sets only)
 - SMART (an IR system) with SVDPACK