A Rebooting
Computing Tour of
Energy Efficiency
Approaches

Tom Conte Georgia Tech and vice chair, IRDS conte@gatech.edu

Potential Approaches vs. Disruption in Computing Stack

Evolution of Device Architectures

Power scaling in CMOS (IRDS roadmap)

- CMOS moves to Gate All Around (GAA) by 2028, true 3D by 2031
 - Makes power density worse
- Some mitigations: System/Technology Co-optimization
 - Backside power (wafer PDN)
 - Move away from Copper routing, especially system level
 - Integrate memory on-die and chiplet-based systems
- New switches ...

Emerging Logic and Information Processing Devices

Level 1: More Moore

- No silver bullet from the device world
- CMOS goes to monolithic 3D ~ 2028
 - Power improvements then stall
 - But, CMOS will remain relevant
- Beyond CMOS: my money is on CNFETs

Potential Approaches vs. Disruption in Computing Stack

Low Power But *Unreliable* Switches

Idea: keep lowering V_{DD}

Redundant Residue Numbers (RRNS): Correct Errors *After Computation*

		Range = 3*5*2*7 = 210			Redundant		
	decimal	mod 3	mod 5	mod 2	mod 7	mod 11	mod 13
	13	1	3	1	6	2	0
	14	2	4	0	0	3	1
add case 1	27	0	2	1	6	7 ->5	1
add case 2	27	0	1->2	1	6	5	1
add case 3	27	0	1->2	1	6	7 ->5	1

	Chinese Remainder Theorem	X' 11 & X' 13	X' mc == X mc ?	How to correct?		
Case 1	(0,2,1,6) ⇔27 ; X' = 27;	27 11 = 5; 27 13 = 1	X' m5 = 5 X m5 = 7 X' m6 = 1 X m6 = 1	replace X m5 with X' m5		
Case 2	(0,1,1,6) ⇔111 ; X' = 111;	111 11 = 1; 111 13 = 7	X' m5 = 1 X m5 = 5 X' m6 = 7 X m6 = 1	check error correction table		
Case 3	Two errors; Double Errors Detection algorithm could be used to detect errors. But unable to correct.					

Demonstrators of RRNS Cores

B. Deng, et al., "Computationally-redundant energy-efficient processing for y'all (CREEPY)," Proceedings of the 2016 IEEE International Conference on Rebooting Computing (ICRC), (San Diego, CA), Oct. 17-19, 2016.

Problems:

- Not enough demonstrators exist
- Need new floating point beyond 754

Superconducting Logic

Superconducting logic vs. CMOS

- w/o refrigeration
- w/ refrigeration

Superconducting WIRES vs. CMOS

Level-2 ex 2: Superconducting

- Superconducting computing wins on the wires
 But:
- Need better cryostats
- Feature size must come down (~200nm today)
- Memory scarce: can get ~10s of kilobytes at 4 K
- Logic families are immature, EDA still lags
- Need demonstrators at scale
- Luckily riding along on massive investment in QC

Reversible Logic

Reversible challenges

- Need experimental demonstrators at scale
- EDA tools lag (even when compared to superconducting's sad tool situation)
- Effects of tuning "Degree of Reversibility" needs study
 - One extreme: only portions of datapath are reversible, reducing benefit
 - The other extreme: entirely reversible algorithms needed

Level 2: Not CMOS, but "hidden" from the programmer

Potential for significantly lower-energy computation Programmer (mostly) won't know / care Massive amount of R&D and demonstrators needed

Potential Approaches vs. Disruption in Computing Stack

Hardware Accelerators: Remove Overhead

Hardware Accelerators: Remove overhead

Accelerators: Problem: Amdahl's Law

- Hardware acceleration will give us huge gains, and then we're done
- Or in other words: after we accelerate all the kernels, what do we do next?
 - **Can't let other approaches atrophy in the interim**

Level 3, ex#2: Avoid Moving Data

- Moving data is an energy-consuming "fact of live"
 - But not all data needs to move
- What about moving the computation instead?
 - Examples: Emu Chick, Lucata Pathfinder, FORZA

Example -PGAS and threads can only access their local zone memory

Example - PGAS and threads can only access their local zone memory

Ex: Thread 2 wants to work on data in Zone 1

Thread Migration: Move Computation to the Data

Hazard: Ping-ponging across zones consumes more energy than conventional approaches

Or...Ask for a Favor: Remote Zone ALU Operations

For light-weight tasks, don't migrate, instead operate remotely at-a-distance More potential if RZA operations are programmable

Level 3: ex 3: Monolithic integration

Cerebras WSE-3

4 trillion transistors

46,225 mm² silicon

900,000 cores optimized for sparse linear algebra

5nm TSMC process

125 petaflops of Al compute

44 gigabytes of on-chip memory

21 PByte/s memory bandwidth

214 Pbit/s fabric bandwidth

Level 3: Architectural changes

- Accelerators shouldn't consume all the oxygen
- Save energy by removing overheads & not moving bits
- Or, go cold! Superconducting deserves more attention

• For all level 3, programmer pain but for significant gain

Potential Approaches vs. Disruption in Computing Stack

Quantum Computing: Energy Advantage?

Bernstein-Vazirani (QC's "hello world!")

- Can you teach an undergrad CS major to think up new algorithms in this language?
 - (No, not easily)
- Need new layers of abstraction

Non-von ex 2: Analog (physical) Computing

Problems: Conversion (DAC/ADC) and Precision

Non-von ex 2: Thermodynamic Computing

- TDCs work at the theoretical limit of energy efficiency
- Problems: Programming and Demonstrators

Hylton, T., Conte, T.M., Hill, M. D., A Vision to Compute like Nature: Thermodynamically, CACM, v.64, n.6, 1 June 2021

Level 4: Non-von Neumann

- (Very) immature technologies...
- ...but HUGE potential for energy savings
- Low investment so far (except for QC!)
- Need new algorithms, programmability, demonstrators

Potential Approaches vs. Disruption in Computing Stack

Most significant bits

- Need investment in experimental demonstrators
 - Industry is too risk adverse to make this
 - EDA needs to keep up with experimental technologies
- Software is highly important
 - Level 2 is the most attractive, Level 3 somewhat less so
 - Level 4: These systems need to become easily programmable
- For my money:
 - level 2: Superconducting Computing (Including Reversible)
 - level 3: Accelerate Everything and Move Compute To Data
 - level 4: Thermodynamic And Probabilistic Computing

