Lecture 4: Backpropagation and Neural Networks

Computational graphs

- Computational graphs
 - : 계산과정을 그래프로 나타낸 것. 노드와 엣지로 표현. # 노드= 연산, 엣지= 데이터가 흘러가는 방향
- computational graph를 사용해서 함수를 표현 => backpropagation 가능
- 위 식은 단순해서 괜찮지만 하나하나 다 계산하는 것은 추천하지 X

ex)

=> 딥러닝의 다른 종류인 neural turing machine의 computational graph. 몹시 복잡하다.

● backpropagation: gradient 계산 위해 computational graph 내부의 모든 변수에 대해 chain rule을 재귀적으로 사용

- 각 노드의 local input, output => <u>local gradient</u> 계산 가능 (= 들어오는 입력에 대한 출력의 기울기)
- z에 대한 L (최종 loss)의 gradient를 이미 구해놓음 (=gradients)
- gradients와 local gradient를 곱해 직전노드에 대한 gradient 계산 가능
- Backpropagation 중 gate에 대한 gradient의 특성

- 1) 덧셈게이트 gradient 나눠줌. 앞 노드의 gradient를 똑같이 여러 개에 전달
- 2) 맥스게이트 더 큰 입력값을 가진 노드에게 gradient 그대로 전달, 더 작은 입력값 가진 노드에게는 0 전달
- 3) 곱셈게이트 ex) X*Y의 경우 X에 대한 gradient는 Y*upstream gradient Y에 대한 gradient는 X*upstream gradient가 되기 때문에 곱셈게이트를 gradient switcher 라고 함

● 지금까지는 X,Y (input)가 스칼라일 경우의 gradient 살펴보았고, 이제부터는 input이 벡터인 경우 (다변수인 경우)

=> gradient가 <u>자코비안 행렬</u>이라는 차이점 = 다변수 벡터 함수의 도함수행렬

- ex) 4096차원의 벡터 입력 => 요소별로 0과 비교해 최대값을 취하는 노드 => 4096차원의 출력 => 이때 자코비안 행렬의 사이즈 = 4096 * 4096 (자코비안 행렬의 각 행 = 입력에 대한 출력의 편미분)
- => 만약 100개의 입력을 동시에 받는 배치 사용 => 기존 사이즈*100 => size = 409600 * 409600 => 그러나 실제로는 이렇게 큰 자코비안 행렬을 계산하지 X
- => 여기선 어떤 구조를 볼 수 있는가?
 - : 요소별로 보기 때문에 입력의 각 요소(첫 번째 차원)는 오직 출력의 해당요소에만 영향
 - => 자코비안 행렬은 대각행렬이 됨
 - => 전체 자코비안 행렬을 작성하고 공식화할 필요 X
- => 출력에 대한 X의 영향, 이 값을 사용하는 것에 대해서만 알면 된다.

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \\ 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix}$$

$$\begin{bmatrix} 0.22 \\ 0.4 \\ 0.104 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.22 \\ 0.44 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.116 \\ 1.00 \end{bmatrix}$$

$$\begin{bmatrix} 0.2 \\ 0.4 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.4 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.4 \\ 0.52 \end{bmatrix}$$

$$\frac{\partial f}{\partial q_i} = 2q_i$$

$$\begin{bmatrix} \nabla_q f = 2q \end{bmatrix}$$

$$\frac{\partial f}{\partial w_{i,j}} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial w_{i,j}}$$

$$= \sum_k (2q_k)(\mathbf{1}_{k=i}x_j)$$

$$= 2q_ix_j$$

$$\mathbf{\nabla}_W f = 2q \cdot x^T$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$\frac{\partial f}{\partial x_i} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial x_i}$$

$$= \sum_k 2q_k W_{k,i}$$

$$\nabla_x f = 2W^T \cdot q$$

- # 주의: 변수에 대한 gradient가 변수의 모양과 같은지 항상 체크.
- # gradient의 요소는 변수의 각 요소가 최종출력에 얼마나 영향을 미치는지 정량화

Neural Network

- # 뉴런 자극이 들어오면 axon 거쳐서 다른 뉴런으로 들어감
- # neural network- input 들어오면 그것에 대한 w 곱하고 어떤 활성화함수 통해 거쳐 output으로 나감

● 활성화함수

1) tanh (Hyperbolic Tangent)

: sigmoid function 보완하기 위해 나온 함수 (Gradient Vainishing 문제)

: 입력신호를 (-1,1) 사이의 값으로 normalizing

: sigmoid보단 덜하지만 gradient vanishing 문제 여전히 발생

2) Maxout

: Dropout의 효과를 극대화시키기 위해 고안한 활성함수. 성능이 좋은 편.

: ReLU의 장점 다 가지고 있으면서 Dying ReLU 현상을 완전히 회복

= 음의 값을 가질 경우 0을 출력해 weight가 업데이트 X

$$h_i(x) = \max_{j \in [1,k]} z_{ij}$$

 $z_{ij} = x^T W_{...ij} + b_{ij}$

함수 h = hidden layer. 입력값 중 최대값을 취함. W와 b는 학습 통해 결정되는 파라미터

: 일반적으로 hidden layer가 1개의 layer로 구성되는 것과 달리 Maxout hidden layer는 2개의 layer로 구성.

=> 녹색영역은 전통적인 활성함수가 아닌 affine function

= (단순하게 입력 x를 각각의 weight에 곱해서 더하는 형식)

=> 위 그림 보면 k개의 column이 있는데 동일 위치에 있는 것 중 가장 큰 값을 파란색 영역에서 취해 최종적으로 m개의 결과가 나오게 된다.

● maxout의 의미

ex) 입력=2, 출력=1, k=3인 maxout unit

=> 이 3개의 유닛 이용해서 $f(x) = x^2$ 를 근사시킨다고 하면 아래와 같은 형태

- => f(x)를 3개의 직선으로 근사 시킬 경우 나오는 모양.
- => k값이 클수록 구간이 더 세분화 되면서 원래 곡선과 비슷한 형태를 갖게 된다.
- => 여기서는 직선으로 근사해서 오차가 커보이지만 affine 함수가 갖는 다양한 표현력 고려하면 k값이 크지 않아도 convex한 함수를 거의 표현할 수 있다.
- => 그런 의미에서 Maxout은 universal approximator라고 볼 수 있다.
- => Maxout은 affine 함수 부분과 최댓값 선택하는 부분 이용해서 임의의 convex한 함수를 piecewise linear approximation하는 것이라 할 수 있다.

Lecture 5. CNN

Convolutional Neural Networks (CNN)

Neural Network의 역사

- Frank Rosenblatt 1957: Mark I Perceptron
 - 対 perceptron algorithm
 - 이때 사용한 Machine은 사진기에 연결되어 400 픽셀 이미지를 출력.
 - 스코어 함수 wx+b와 비슷하고 → 출력 값은
 0 또는 1

$$f(x) = \begin{cases} 1 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

- 여기서 w를 결정해주는 update rule은 back propagation과 비슷함
- Widrow and Hoff, ~1960: Adaline/Madaline
 - Linear layer perceptron network를 multi-layer perceptron network로 쌓기 시작 함
 - 이때도 여전히 backpropagation을 통해 학습하여 weight을 구하는 방법 은 사용하지 않았음

- Rumelhart et al. 1986:
 - Chain rule을 이용한back propagation이 사용되기 시작함

- Hinton and Salakhutdinov 2006:
 - Deep Neural Network를 효과적으로 학습할 수 있다는 것을 보여 중
 - 하지만 back propagation을 사용하 려면 initialization이 까다로웠음.
 - Pre-training stage
 - 각 은닉 층을 Restricted Botlzmann Machines을 통해 모델링하고, 각 layer를 iteration을 통해 학습한 뒤 은닉 층을 이용해 full neural network를 초기화해서 back propagation을 수행함.
- First strong results: Neural Network 2010, 2012
 - Neural Network를 이용하여 음성인식 (2010)과 이미지 분류 (2012) 수행
 - Error을 많이 줄일 수 있었음
 - Classification의 benchmark
 - 이때 이후 CNN에 널리 사용됐다.

CNN 개요

- CNN의 idea는 Hubel & Wiesel의 실 험 아이디어로부터 나옴
 - 고양이에 다양한 모양의 시각적 자극을 준 뒤, neuron이 어떻게 반응했는지 측정함
 - Neuron이 위계적 구조를 가진다 는 것을 발견 (세포가 더 깊은 층으로 갈수록 더 복잡한 구조 에 반응)
 - Retinal ganglion cell: 동그란 자국에 반응
 - Simple cells: 명암과 반응
 - Complex cells: 명암과 동작에 반응

- Hypercomplex cells: 더 복잡한 구조에 반응 (모서리와, 색칠된 부분 구분)
- CNN은 어디에서나 사용된다.
 - Classification
 - Image retrieval (사진 복구)

- Detection (탐지)
 - 사진 속 사물을 파악하고 bounding box (경계 박스)를 그림
- Segmentation
 - Bounding box 보다 정교하게 사물의 윤곽까지 pixel 단위로 파악할 수 있다.

- 자율주행자동차
 - Parallel processing을 하여 CNN을 학습하는 GPU를 사용
- 얼굴 인식
 - 얼굴을 input으로 넣고 output으로 누구인지 파악

- 영상 분류
- 포즈 인식

■ 의료 사진 분석 및 진단

- [201] 01 011 20
- 은하계 분류
- 전광판 분류
- 고래 인식
- 지도에서 도로 분류
- Image captioning: 이미지를 input, 이미지를 표현하는 문장을 출력

No errors

Minor errors

Somewhat related

A white teddy bear sitting in the grass

A man in a baseball uniform throwing a ball

A man riding a wave on top of a surfboard

A cat sitting on a suitcase on the floor

A woman standing on a beach holding a surfboard

- 예술
 - 환각 이미지
 - Neural style: 이미지를 input, output을 반 고흐 스타일 이미지로 출력

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

- 32x32x3 이미지 → 모든 픽셀을 3072x1 벡터로 늘려서 input으로 넣는다
- Input x를 weight 행렬 W로 곱하고 (벡터 내적 이용) output을 activation이라고 한다.

Convolution Layer

- **공간 구조를 유지**한다는 점에서 Fully Connected Layer와 다르다
- 32x32x3 이미지 형태를 그대로 유지하고, weight로 작은 필터를 사용하여 이미지를 훑어가며 내적을 수행한다.

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

- ex) 5x5x3 filter의 각 요소와 대응되는 32x32x3 이미지의 각 요소를 곱해 서 더해준다.
- 필터와 그에 대응하는 픽셀 판에 element-wise multiplication 수행
- 이는 필터와 해당하는 이미지 픽셀 판을 벡터로 만들어 내적한 것과 같다.
- Filter의 깊이는 항상 input의 깊이와 같아야 한다
- 두 signal (여기서는 필터와 이미지) 간의 convolution은 수학적으로 다음 과 같이 표현

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1,n_2] \cdot g[x - n_1,y - n_2]$$

- 어떻게 훑는가?
 - 왼쪽 위에서 시작 → 각 위치마다 dot product 수행하여 하나의 값 →

이미지 전체를 훑어가며 (convolve/slide over) convolution 수행

- Value of that filter at every spatial location
- Activation map
 - Convolution을 전체 input에 수행을 해서 나온 결과를 activation map이라고 함.

Convolutional Network (ConvNet)

- 각 layer에서 convolution, ReLU (activation function), pooling layer 등 수행함
 - 여기서 나온 output은 다음 layer의 input이 됨
- Layer마다 필터도 여러 개 있고, 따라서 activation map도 여러 장이다

- ConvNet에 여러 장의 layer가 있으면 위계를 갖는 filter를 학습하게 된다.
 - 초기 Layer에서는 가장자리와 같이 low-level 특성을 학습.
 - 중간 Layer에서는 색칠된 부분 또는 모서리와 같이 조금 더 복잡한 특성을 학습
 - 상위 Layer에서는 더 복잡한 개념을 학습
 - Layer가 깊어질수록 Simple → Complex features
 - 고양이 뉴론 실험과 비슷한 구조
- Layer를 얼마나 깊게 쌓을 것인지는 설계자의 선택에 따라 다르다
 - 모델 성능을 보고 경험적으로 판단
 - Size of filter, stride 등 선택
- Conv_1: 첫 번째 Convolution Layer
 - 작은 상자 한 개는 뉴론 한 개 → Back propagation을 수행해 해당 뉴론 의 activation 값을 최대화하는 input이 상자 안에 이미지다

- 위 사진은 자동차 모서리를 학습하며 각 필터가 생성한 activation map을 보여준다
 - 우측 상단은 5x5 filter를 나열
 - 아래는 activation map: 각 필터가 강조하는 부분(orientation)은 더 높은 값(흰색)으로 출력

[Filter 의 적용]

7*7 입력에 3*3 필터를 적용했다고 해 보자.

7

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

- 위같이 필터를 이미지 왼쪽 상단부터 적용하여, 해당 값의 내적을 시행한다.
- 움직여가면서 내적을 시행하면 결국 5*5 출력을 얻게된다.
- 이 경우 좌우방향 5번 수행 가능하므로 5*5 의 ouput을 얻게된다.
- 움직이는 칸을 stride 라 한다. stride = 1 이면 한칸씩만 움직인다.
- slide 가 2 이면 2칸씩 움직인다. 위 경우에 stride 가 2 이면 출력은 2가 된다.

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

•주의 : 위 예시에서 stride 가 3이면 모든 이미지를 cover 하지 못한다. 이는 맨 끝의 edge 정보를 이용하지 못하게 되기 때문에 불균형한 결과를 낳을 수 있다.

이런 불균형한 결과를 사전에 방지할 수 있는 방법이 없을까?

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3: stride 1 => (7 - 3)/1 + 1 = 5 stride 2 => (7 - 3)/2 + 1 = 3

stride $3 \Rightarrow (7 - 3)/3 + 1 = 2.33$:\

• 위 경우처럼 모든 output size를 계산할 수 있는 좋은 공식이 있다.

- N 은 이미지의 크기이고 F는 필터의 크기이다. stride(보폭의 크기라고 이해하면 쉽다)와 함께 3개의 값을 이용해 ouput size 의 크기를 알아볼 수 있다.
- stride = 3을 대입해보면 2.33 이 나옴을 알 수 있다. 즉 잘 떨어지지 않는 경우는 filter 가 전체 이미지에 딱 맞게 적용되지 않는다는 의미고, 이는 불균형한 결과를 낳을 수 있다.

[Q. 각 필터는 어떻게 적용해야할까?]

각 필터는 모든 depth 에 대해 ouput 의 depth 는 우리가 가진 필터의 개수가 된다. 7*7*3 의 input 에 3*3 filter를 10개 적용하면 그 output 은 7*7*10 이 된다.

[Q. 이미지가 정사각행렬이 아니라 다른 모양이면 filter 도 다른모양을 사용하나요?] 이미지 모양이 달라도 보통 정사각형 모양의 filter를 사용한다.

[Zero padding]

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

 $F = 5 \Rightarrow zero pad with 2$

 $F = 7 \Rightarrow \text{ zero pad with } 3$

Stanford

- 제로패딩은 내가 원하는 출력을 얻고싶을 때 사용한다.
- 주로 출력과 입력의 사이즈를 유지하기 위해 사용하고, 그 때의 패딩값은 (F-1)/2 가 된다.

[Q. 왜 zeropadding을 사용할까?]

- padding을 하게되면 출력 사이즈를 유지시켜주고 필터의 중앙이 닿지 않는곳도 연산할 수 있다.
- 일반적으로
- 3*3 filter stride 1
- 5*5 filter stride 2
- 7*7 filter stride 3 을 쓴다.
- 레이어가 여려겹 쌓이고, zero padding을 하지 않는다면, 출력사이즈는 매우 빨리 줄게된다.

- 위 예시를 보면 32 -> 28 -> 24 ... 로 매우 빨리 줄어들고 있음을 볼 수 있다.
- activation map 이 점점 줄어들게되고, 그러면 각 코너의 정보를 충분히 학습하기 전에 잃게 되는것이고 원본 이 미지를 충분히 학습할 수 없을 것이다.

[Q. 0을 padding 하면 쓸데없는 정보가 추가되는것이 아닐까?]

padding을 하는 이유중 하나는 모서리부분에서 값을 얻고자 함이다. 그래서 필터가 닿지 않는 모서리 부분에서 값을 얻게하려는 것. 물론 값을 extend(맨 끝의 값을 늘린다)하는 방식도 할 수 있다. 0 padding 은 약간의 인위적인 방식이지만, 그래도 잘 작동된다.

[중간요약]

아래 그림은 위 내용을 총 정리한 것이다.

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K.
 - their spatial extent F.
 - · the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $\circ H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - D₂ = K
- With parameter sharing, it introduces F · F · D₁ weights per filter, for a total of (F · F · D₁) · K weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.
- n 차원의 입력에 대해서 몇 개 필터를 쓸것인지, 필터의 크기는 어떻게 정할것인지, stride의 크기, zero padding의 크기 등등은 알아서 결정해야한다.
- 필터 사이즈는 3*3 / 5*5 / 7*7을 자주 사용한다.
- 보통 필터의 개수는 2 제곱수로 한다. 16 32 이는 그냥 관습이라고 한다.

[Examples]

예시를 풀면서 위 내용들을 정리해보자.

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

•input 이 32*32*3, 10개의 5*5 filter with stride 1, padding size 2를 쓰게 된다면 ouuput size 는 32*32*10(filter의 수) 가 된다.

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params

=> 76*10 = **760**

• 위 예시는 pramater 의 수를 계산하는 것이다. 각 filter는 5*5*3 개의 가중치와 1개(bias) 로 가지고 있으므로 76 개의 parameter를 가지고 있다. 또 이는 총 10개이므로 760개

[1*1 Convolution]

- 필터는 depth 만큼 연산을 수행한다. 즉 전체 depth 에 대한 내적을 수행하는것과 같다.
- 슬라이딩하면서 연산을 하지만 1*1 이기에 공간적인 정보는 없다. 그저 전체 depth에 대한 내적을 수행한다.
- 입력은 56 *56 * 64 이고 여기에 32개의 filter를 적용하면 56 56 32 의 출력값이 나온다. (parameter를 크게 줄일 수 있음)

[Q. stride를 선택하는데 가질수 있는 직관이 있나요?]

stride를 크게 할수록 출력은 점점 작아진다. -> 즉 이미지를 downsampling 하는 역할이다. activation map 의 사이즈를 줄이는 것은 모델의 전체 파라미터의 개수에도 영향을 끼친다. 만약 stride를 심하게 주면 convlayer 의 출력이 너무 작아져 fc 가 이용할 수 있는 정보가 적을 것 파라미터 수 모델사이즈 오버피팅 등은 서로 trade off 가 있고, stride를 몇으로 할지는 이와 동시에 고려되어야 한다.

[Compare With NN]

- 이미지의 일부분과 filter가 겹치는 부분에서 내적을 구하는 것과 같은 방식은 NN의 관점에서 각각의 x에대해 w이라는 weight를 줘서 내적을 구하는 것과 동일
- NN과 conv의 차이점은, conv에서는 뉴런이 local connectivity를 가진다는 점, 즉, entire input에 대해 각각의 뉴런이 연결되어있는 것이 아니라, filter가 지나는 이미지의 일부분에 대해 뉴런이 연결되어있다고 생각하면 됨.
- * 잠깐! 용어상식 [receptive field]
- 한 뉴런이 한번에 수용할 수 있는 영역
- 5*5 필터가 있다 -> 한 뉴런의 receptive field (한 뉴런이 한번에 수용할 수 있는 영역) 가 5*5 라는 것

The brain/neuron view of CONV Layer

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

- 필터가 5종류이면 출력은 28*28*5 가 된다.
- 한 점을 찍어서 depth 방향으로 바라보면 (파란색 map 안의 5개의 점) 5개의 점은 같은 지점에서 추출된 서로 다른 특징이다. 즉 각 필터는 이미지에서 같은 지역을 돌더라도 서로 다른 특징을 뽑아낼 수 있다.
- 동일 depth 내의 뉴런들은 parameter sharing, 동일 위치의 뉴런들은 input 이미지의 같은 곳을 쳐다보게 된다.

[Fully Connected Layer]

- Fc layer 는 32*32*3를 모두 1자로 편 다음에 사용한다.
- conv 는 local 한 정보를 이용하는것 과는 대비되는 특성이다.

[Pooling Layer]

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

- 풀링 레이어는 RESRESENTATION을 더 작고 관리하기 쉽게 만든다.
- 작아지면 파라미터의 수가 줄고, 공간을 줄여준다. 즉 downsampling을 해준다.
- depth 에는 아무짓도 하지 않는다.
- conv layer가 했던 것처럼 슬라이딩하면서 수행된다.
- stride가 존재하며 filter size도 존재한다..
- max pooling이 주로 사용된다

[Q, pooling을 할 때 겹치지않는 것이 일반적인가요?]

기본적으로 Downsample을 하고싶은 것이기 때문에 겹치지 않는 것이 일반적이다.

[Q. Maxpooling이 왜 Average pooling 보다 좋은가요?]

MAX를 사용하는지에 대한 직관은, 우리가 다루는 값은 이 뉴런이 얼마나 활성화되었는지를 알고싶은데, 큰 값은 신호에 대해 얼마나 그 필터가 더 많이 활성화되었는지를 알려준다. 그래서 maxpooling을 사용하게 된다. 그 값이 어디에 있었는지보다는 그 값이 얼마나 큰지가 중요한 것.

물론 average pooling을 사용할수도 있다.

[Q. Pooling 의 Stride 나 똑같은 역할을 하고있는것 아닌가요?]

둘다 Downsampling 의 한 종류라고 할 수 있다. 요즘에는 Pooling 보다는 conv 층의 stride로 down sampling 기법을 많이 사용

아래는 위에서 pooling layer의 ouput size 연산과정이다.

• 위 공식을 통해 Filter size 를 정해줄 수 있다. W - Filtersize / stride + 1

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires three hyperparameters:
 - their spatial extent F,
 - the stride S.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F)/S + 1$
 - $H_2 = (H_1 F)/S + 1$
 - $D_2 = D_1$
- · Introduces zero parameters since it computes a fixed function of the input
- · Note that it is not common to use zero-padding for Pooling layers
- pooling layer에서는 padding을 하지 않는다. 왜냐하면 우리는 downsampling 하고싶을 뿐이며, conv 때처럼 코너의 값을 계산못하지 않기 때문이다.
- 가장 널리 쓰이는 필터사이즈는 2*2, 3*3 이고 stride 는 둘다 2로 동일하게 쓴다.

[Summary]

- 기본적으로는 conv , pooling을 쌓아 올리다가 마지막에 fc layer로 끝이난다.
- 네트워크의 필터는 점점 작아지고 아키텍처는 점점 깊어지는 경향
- 요즘에는 pooling / fc layer를 없애고 cov layer 만 깊게 쌓는 추세이다.
- class score를 구성하기 위해 맨 마지막에 softmax 가 사용된다.
- 마지막 conv layer의 출력은 3차원 volume 으로 이루어진다.
- 이 값을 전부 펴서 1차원 벡터로 만든다. conv net의 모든 것을 사용해서 Fc layer 의 입력으로 사용한다.
- 마지막 layer 에서는 전부다 하나로 통합시키고 최종적 추론을 하기 떄문에 공간적 구조를 신경쓰지 않는다.

[Q. 각 열들을 어떻게 해석해야하나요?]

각 열들의 사진들은 하나의 layer 에 대한 결과들이다. 시간이 지날수록 복잡한 패턴들을 찾아내고. 마지막에 이런 값들을 가지고 FC가 해석하고 결과(확률)을 낸다.

[Q. 어떻게 구조를 구성해야하는가?]

각자 어느정도의 직관을 가지고 구조를 직접 구성해보면서 비교해야한다. 다양한 pooling size , fiilter size 등을 가지고 cross validation을 해 본다, 어떤 하이퍼 파라미터가 좋을지는 문제에 따라 달라진다.