Prova P3 – Eletrônica Básica - EE530 Prof. Gustavo Fraidenraich 04/11/2009

- 1) Para o circuito abaixo, considere V_{CC} =10 Volts, R_1 =27 K Ω , R_2 =15 K Ω , R_E =1.5 K Ω , R_C =3 K Ω , β =100 e capacitâncias infinitas .
 - a) O amplificador abaixo opera em qual configuração?
 - b) Se R_{sig} =15 $K\Omega$ e R_L =1 $K\Omega$, substitua o amplificador pelo seu modelo de pequenos sinais (assuma r_0 infinito) e encontre os valores de R_{in} , R_{out} e o ganho de tensão v_0/v_{sig} .

2) Dado o circuito abaixo com $V_{DD}=1.8V$, $R_1=4k\Omega$, $R_2=10k\Omega$, $R_S=1k\Omega$, $V_{TH}=0.5V$, $\mu_n C_{ox}=100\mu A/V^2$, W/L=5/0.18 e $\lambda=0$ Qual é o máximo valor de R_D para que M_1 permaneça na saturação?

RD < 3.25Ks