The needge product of alternating multilinear functions

A: Ae(V) × Ae(V) -> Apre(V), V finite dim Revertor space

Recall: frq = \frac{1}{\text{r.e.}} A(\text{80g})

Explicitly: \frac{1}{\text{r.g.}} (V_1,...V_{\text{r.e.}}) = \frac{1}{\text{r.e.}} \geq \frac{2}{\text{s.e.}} \geq \frac{1}{\text{r.e.}} \geq \frac{1}{\tex

Prop. The wedge product is associative:

(frg), h = fr(g,h)

for fe Am(v), g & Ae(v), he Am(v).

Lemma For felp(v) and gele(v), we have (i) A(A(4)@g) = k! A(40g) (ii) A (f@A(g)) = l! A (f@g). Proof Check (i) A(Alt) $\otimes g$) = A(Z(sgn(z)) ef) $\otimes g$) = Z A(sgnz ef) $\otimes g$). For each $z \in S_k$: A ((squ(x) xx) @g) = Z squ(o) o (legu(x) xx)@g) = Z egn(o) egn(v) or (vule) (føg)
of spee = 2 sgm(o(xu1e1) o(xu1e) (fog) () = () o () o () = A (f e g)

The proof of (ii) is similar

Droof Khat (frg) rh = fr(grm) (frg) v/v = (k+6); mi A(frg) & h) = (k+6); mi A (fog) & h) z lexelimi kili A (A(Løg) Øh) (by lemma) = (kedjm! k! l! (kelt A ((føg) &h) = k! l! mi A (føg) &h). Similarly, fragah) = k! e!m! A(fogsh) Rem We have spraved Khut franh = ki limi A(2090h).

Rtop Suppose f, GAR(V),.., freArr(V). Then $f_{1}, \dots, f_{N} = \frac{1}{k! \dots k!} A(f_{1}, \dots, g_{N}, \dots)$ in $A_{k, t \dots t k p}(V)$. Proof By induction: f. N. N & = (f. N. N fr. 1) N fr = (k. + + k. p. 1) | k. p. | A((f. n. n. f. p. 1)) | f. p. | = (k = . * k p 1 | k p 1 | A (k p 1 | A (f 0 . 8 f p - 1) & f p] = (k,+..+kx.1! kx! k,!..kx.1! A(A(f, 00..00 fv...) 00 fv.) = k1.... kn; A(f, ∞... ∞ fn), again using the lemmer.

Ex Given covectors d',-, de eA,(v)=v'(d:V->12). Then d'r... d & A k(V) is given by $a' \wedge ... \wedge d^k = A(d'\otimes ... \otimes d^k) = \sum_{\sigma \in S_k} sgu(\sigma) \sigma(a'\otimes ... \otimes d^k).$ Giren Vi,... Vx & V, we get

= $\sum_{r \in S_k} sgn(x) a'(v_{\sigma(x)}) d'(v_{\sigma(x)}) \cdots a'(v_k)$ = $\det \left(a'(v_i) a'(v_2) \cdots a'(v_k) \right) = \det \left(a'(v_i) \right)$ $d_k(v_i) d_k(v_2) \cdots d_k(v_k)$

Del A groched 12-olgebra A={A(k):k20} is a collection of PR vector spaces ACR), together with · unt 1 c L LO) · bilinear multiplication · : A(k) × A(l) -> A(k+1), (a,b) +> a.b. such that the multiplication is

• unital: $\alpha \cdot 1 = \alpha$, $1 \cdot \alpha = \alpha$. • associative: $A(k) \times A(l) \times A(m) \longrightarrow A(k+l) \times A(m)$ that $(a \cdot b) \cdot C = a \cdot (b \cdot c)$.

A is anticommentative if a.b=(-)* b.a, acA(k), bcA(b) We proved: A=(V) = {Ak(V):k>0} is an unhicomm. graded algebra. This is the exterior algebra of V.

suppose Vis finite dimensional with basis e..., en. Good: Find a bosis for each Ak(V). Let $d', ..., d^k \in A_1(V) = V'$ be the dual books: $a^i(e_i) = \begin{cases} 1 & i=i \\ 0 & i\neq i \end{cases}$. Given $T = (i, ..., i_k)$ with each $i, \in \{1, ..., n\}$. Write dI = din... rdik, e_ = (e;,..,e;k) Lemma Let I = (i., -, ik), 1 \(i \), \(i \) Then $d^{2}(e_{J}) = \begin{cases} 1 & \text{if } I = J \\ 0 & \text{if } I \neq J \end{cases}$ Proof Have checked , ai(es,) di(es) ... di(es) d^I(e_i) = dⁱ_{h.n.d}ⁱⁿ(e_s,...e_{se}) = det dⁱⁿ(e_s) dⁱⁿ(e_{se}) ...dⁱⁿ(e_{se}) for I=J thus is the identity me hix, so det = 1. For I + I she matrix has a zero row, so det = 0.

Prop The wedge products { d^{I} : $1 \in i, c... ci_{k} \leq N^{2}$ form. a bases of $A_{k}(v)$ Proof Linearly independent: suppose $\sum_{i} c_{I}d^{I} = 0$, $C_{I} \in \mathbb{R}$.

Apply to e_ for get 0 = \(\int \text{cappose} \) = C_ for all \(\int \text{Generalors} \) Given fe Arly), (ef $C_I = f(e_I)$

Claim: $f = \sum_{x} C_x d^x$.

Rute An alternating k-linear function f is uniquely determined by the values $f(e_J)$, $1 \le 1, < ... < 1 \le n$. We have $\sum_{T} c_{T} d^{T}(e_{J}) = c_{J} = f(e_{J})$ for all J, by the previous temma.

Corollary Suppose din V = N.

· din A_E(V) = (R) for 0 < R < N

· Ae(v) =0 for k>n.

Proof The basis elements for $A_{k}(v)$ $d^{i}_{\lambda_{-},\lambda_{-}}d^{ik}$ are defined by choosen a subset $E_{i,-,ik}$ of $E_{i,-,ik}$ of $E_{i,-,ik}$.

Rem Given $d^{i}_{\lambda_{-},\lambda_{-}}d^{ik}$, $1 \leq i_{\lambda_{-}} \leq i_{k} \leq k$ for k > n.

Then $i_{s} = i_{s+i}$ and hence $d^{i_{s}}_{\lambda_{-}}d^{i_{s+i}} = 0$ by auhicommutativity.

Differential lorms Recall We have iclentified Tolk with the veeter space of point desirations D: Co (124) -> 12. Canonical bress & Exip, -, Exip? Let OCIRh be open A co rector field on U has the form $X = \hat{\Sigma} a^i \hat{\partial}_{X^i}$ where ai: U -> 1/2 one co functions, $x_p = \tilde{\Xi}$ ai(p) $\frac{\partial}{\partial x_i}|_{P}$ Des A coverbor frelct is a collection of coverbore w = { wp6(Tp1R")": P6U? For each PEU, there is a bilinear function

 $\forall PR'' \times C_P(R'') \rightarrow R, (X_P, f) \mapsto X_P(f).$

Hence a confinction f: U > 12 défines a covedor field df = { dfp ettp R") ": PEUZ, where dfp(Xp)=Xp(f) This is the differential of & Let x',... x" be the coordinate functions on U Gives corector fields dx1, dx on U Prop For each peu, dxp, dxp is the dual basts associated to the boets { \frac{\theta}{\theta \times \left{\theta \theta \thet $(dx_i^2) \left(\frac{\partial x_i}{\partial x_i}\right) = \frac{\partial x_i}{\partial x_i} = \frac{\partial x_i}{\partial x_i}$

Consequence A coverbor field w on v can be written uniquely $w = \sum_{i=1}^{\infty} a_i dx^i$, where $a_i : v \to \mathbb{R}$ are functions for i = 1, ..., n.

Del wis a coree bor freld il each a: is con