

EXAMEN De Transmissions de Donnée

2^{ème} année F1, F5 7 Décembre 2010

Durée: 2 heures, documents autorisés

M. Cheminat

Exercice 1

On veut transmettre quatre informations différentes $e_k(t)$ (k=1 à 4). Pour simplifier on admettra que les $e_k(t)$ sont purement sinusoïdaux : $e_k(t) = E_k \cos(\omega_k t)$ avec $E_k = k$ E et $\omega_k = k$ ω . On prendra E=1 V et ω telle que f=100 Hz.

Un oscillateur fournit une porteuse sinusoïdale $p(t) = P \cos(\omega_0 t)$.

- 1. Donner le spectre, en respectant l'échelle des amplitudes et des fréquences du signal $s_1(t)$ obtenu en sortie du montage de la figure 1. Les ronds avec une croix représentent des multiplieurs de gain 1 V^{-1} , les carrés des additionneurs ou des soustracteurs (selon les signes) et les blocs $-\pi/2$ des déphaseurs.
- 2. Un signal $s_2(t)$ est obtenu en remplaçant $e_1(t)$ par $e_3(t)$ et $e_2(t)$ par $e_4(t)$ dans le montage de la figure 1. Donner l'expression de $s_2(t)$.
- 3. Donner l'expression du signal v(t) obtenu en sortie du montage de la figure 2.

Le bloc N est un multiplieur de fréquence (N = 200). A sa sortie le signal vaut donc :

P cos (Ωt) = P cos (N
$$\omega_0$$
 t)

- 4. Dessiner le spectre de v(t) en repérant les différentes fréquences et leurs amplitudes relatives.
- 5. Quel est l'encombrement spectral de v(t)?

Exercice 2

1. Pour les trois constellation suivantes (1, 2 et 3), donner le type de modulation, si il y a ou non présence d'un filtrage de Nyquist et comparer leur rapport signal sur bruit.

2. Associer à ces trois modulations les diagrammes de l'œil suivants (A, B et C).

Exercice 3

Tracer les chronogrammes sur l'annexe (à rendre avec la copie):