Question de cours Donnez un algorithme qui calcul un couplage de cardinal maximum dans un graphe biparti. Quelle est sa complexité ?

Exercice 2 (Théorème de Mantel) On dit qu'un graphe non orienté G = (S, A) est sans triangle si $\forall u \in S, \ \forall v \in \mathcal{N}(u), \ \mathcal{N}(v) \cap \mathcal{N}(u) = \emptyset$ Soit G un graphe sans triangle.

Question 1 Montrer que $\forall uv \in A, d(u) + d(v) \leq n$.

Question 2 Montrer que $\sum_{uv \in A} (d(u) + d(v)) = \sum_{u \in S} d(u)^2$

Question 3 Montrer que le nombre d'arêtes dans un graphe sans triangle est majoré par $\frac{n^2}{4}$

Exercice 2 (Théorie de Ramsey) Pour $n \in \mathbb{N}$, on note K_n le graphe complet à n éléments. Pour $l, m \in \mathbb{N}$, on note R(l, m) le plus petit entier naturel n tel que toute coloration des arêtes de K_n en bleu et rouge admet K_l aux arêtes bleues ou K_m aux arêtes rouges comme sous-graphe induit. Les R(l, m) sont appelés les nombres de Ramsey.

Question 1 Montrer que R(l, m) = R(m, l)

Question 2 Montrer que R(2, l) = l

Question 3 Montrer que R(3,3) = 6

Question 4 Montrer que $R(l,m) \le R(l-1,m) + R(l,m-1)$

Question 5 En déduire que $R(l,m) \leq {l+m-2 \choose l-1}$.