Escape Room

Yashasvi Sriram, Levi Mathwig, Yaseen Khan

What?

Given a robot placed in a room the task is to

- 1. Escape the room
- Sense and avoid hitting static obstacles (viz. walls)
- 3. Sense and avoid hitting **dynamic** obstacles (viz. humans)

Why?

- Has sensing, planning and acting components.
- 2. Building blocks for building more sophisticated robots.
- 3. Sort of like a "basis set" for the "robot problem space". :)

CSci 5551 relevance

- 1. Deals with the basic math behind robots in the aspects of sensing, planning and acting, which is the essence of CSci 5551
- 2. Uses ROS

Roadmap

- Assume static obstacles are known and no dynamic obstacles and plan for this
 - Build configuration space with obstacles
 - Build a Probabilistic Roadmap
 - Use A* like search to find a path from start to finish positions
 - Move the Turtlebot along the path
- Get static obstacle information from sensors
 - Use laser scan for detecting obstacles
 - Keep track of them
 - Plan using currently known obstacles, replan if new ones found on path (spirit of D*Lite)
- Have dynamic obstacles
 - Assume friendly behaviour
 - Use repulsive force methods to avoid collision from dynamic obstacles

Progress

- Assume static obstacles are known and no dynamic obstacles and plan for this
 - Build configuration space with obstacles
 - Build a Probabilistic Roadmap
 - Use A* like search to find a path from start to finish positions
 - Move the Turtlebot along the path
- Get static obstacle information from sensors
 - Use laser scan for detecting obstacles
 - Keep track of them
 - Plan using currently known obstacles, replan if new ones found on path (spirit of D*Lite)
- Have dynamic obstacles
 - Assume friendly behaviour
 - Use repulsive force methods to avoid collision from dynamic obstacles

Results: Path generation for known obstacles

Results: With trajectory optimization

Results: With trajectory optimization

Challenges: Building a configuration space

Taking extent of walls and turtlebot into account

Challenges: CSpace edges of walls

Simplifying assumption - rectangular CSpace obstacles

Challenges: Detecting edges intersect that obstacles

Challenges: Moving the robot on path

Simple strategy orient and move

Challenges: Too many maneuvers

Use trajectory optimization

Challenges - ROS/Gazebo

- Installing ROS and Gazebo
- Getting comfortable with ROS/rviz/Gazebo
- Gazebo is a resource hog!!

Final project should...

- Break "known" static obstacles assumption
 - Use laser scan for detecting obstacles
 - Keep track of them
 - Plan using currently known obstacles, replan if new ones found on path (spirit of D*Lite)
- Plan with dynamic obstacles
 - \circ May have to assume that the robot knows the position of humans
 - Assume friendly behaviour
 - Use repulsive force methods to avoid collision from dynamic obstacles

The potential

- Use better explorative techniques like RRTs
- Use better dynamic obstacle collision avoidance like TTC or RVO

RRT example

RVO example

Thank you!