Řešení			-
L			

Příklad (4.2)

Ukažte, že pro libovolné vektory $\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ platí rovnost

$$(\mathbf{x} \times \mathbf{y}) \cdot (\mathbf{u} \times \mathbf{v}) = \det \begin{pmatrix} \mathbf{x} \cdot \mathbf{u} & \mathbf{x} \cdot v \\ \mathbf{y} \cdot \mathbf{u} & \mathbf{y} \cdot \mathbf{v} \end{pmatrix}.$$

Důkaz

Determinant je lineární v každém sloupci / řádku matice a skalární součin je bilineární zobrazení, tedy tento je lineární vůči \mathbf{x}, \mathbf{y} (řádky) a \mathbf{u}, \mathbf{v} (sloupce). Stejně tak skalární i vektorový součin jsou bilineární, tedy levá strana rovnice je také lineární vůči všem vektorům, tedy nám tvrzení stačí ověřit pro kanonickou bázi \mathbb{R}^3 : $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$.

Pokud $\mathbf{x} = \mathbf{y}$, resp. $\mathbf{u} = \mathbf{v}$, tak vektorový součin $\mathbf{x} \times \mathbf{y}$, resp. $\mathbf{u} \times \mathbf{v}$, je nulový a matice vpravo má shodné řádky, resp. sloupce, tedy je singulární, tj. má determinant 0.

Pokud vlevo budou vektorové součiny různých dvojic vektorů, pak jejich výsledek budou jiné ± 1 krát bázové vektory, tedy jejich skalární součin bude 0. Stejně tak vpravo, BÚNO $\mathbf{x} \neq \mathbf{u}, \, \mathbf{x} \neq \mathbf{v}$, bude mít matice první řádek nulový, tj. bude singulární a determinant bude 1.

Jestliže prohodíme \mathbf{x} a \mathbf{y} (resp. \mathbf{u} a \mathbf{v}), tak se vlevo změní znaménko příslušného vektorového součinu, tedy i celého skalárního součinu a vpravo se prohodí řádky (resp. sloupce), tedy determinant také změní znaménko. Proto nám zbývá dokázat, že věta platí pro $\mathbf{x} = \mathbf{u} = \mathbf{e}_i, \mathbf{y} = \mathbf{v} = \mathbf{e}_j, i \neq j$. Vlevo potom dostáváme skalární součin $(\pm \mathbf{e}_k) \cdot (\pm \mathbf{e}_k) = 1$ a vpravo je jednotková matice, která má determinant také 1.

Důkaz	-