- MIPS rate= f/CPI*10⁶ = 40/ 1.55*10⁶ = 40*10⁶/1.55*10⁶ = 25.8
- Given f=40 MHz $\rightarrow \tau = 1/40$

 $T = Ic * CPI * \tau$

= 100000*1.55*1/40

= 100000*1.55*0.025

= 3875

= 3.875 ms

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

5

Q2:

3 enhancement with the following speed up are proposed for a new architecture

- Speedup $_1 = 30$
- Speedup $_2$ = 20
- Speedup $_3 = 15$

If enhancement 1 and 2 are each usable for 25% of the time, what fraction of the time must enhancement 3 be used to achieve an overall speed up of 10?

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

Important Problematic Questions for University Exam

EDULINE

Prepared By Mr. EBIN PM, AP, IESCE

MODULE 1 Q1: A benchmark program is run on a 40 MHz processor. The executed program consists of 100,000 instruction executions, with the following instruction mix and clock cycle count: Instruction Instruction Cycles per Count Instruction Type Integer 45.000 1 arithmetic Data transfer 32.000 Floating point 15.000 2 Control 8000 transfer Determine the effective CPI, MIPS rate, and execution time for this program.

Prepared By Mr.EBIN PM, AP, IESCE

nstruction Type	Instruction Count	Cycles per Instruction	cycles
Integer arithmetic	45,000	1	45000
Data transfer	32,000	2	64000
Floating point	15,000	2	30000
Control transfer	8000	2	16000

- Total no: of cycles required to execute complete program
 - **→** 45000+64000+30000+16000
 - → 155000 cycles

C=155000 cycles

• Effective CPI= C/Ic

→ 155000/100000

CPI = 1.55

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

 $Total cost = C_1S_1 + C_2S_2 + C_3S_3$

 $= 1.25 \times 512 + 0.2 \times 32 \times 10^{3} + 39.8 \times 0.0002 \times 10^{6}$

= 640+6400+7960

= \$15000

EDULINE

12

MODULE 4

Prepared By Mr. EBIN PM, AP, IESCE

Q1:

Consider the execution of a program of **15,000** instructions by a linear pipeline processor with a clock rate of **25** Mhz. Assume that the instruction pipeline has five stages and that one instruction is issued per clock cycle. The penalties due to branch instructions and out-of sequence executions are ignored.

- Calculate the speedup factor using this pipeline to execute the program as compared with the use of an equivalent non-pipelined processor with an equal amount of flow-through delay.
- what are the efficiency and throughput of this pipelined processor?

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

Ans: Information we get are: $\sigma = 15,000 \text{ instructions or tasks.}$ $\sigma = f = 25 \text{ MHz.}$ $\sigma = k = 5 \text{ stages.}$ $\sigma = 1 - \text{issued processor.}$ The Speedup (S_k) , Efficiency, (E_k) , and Throughput (H_k) factors are: $S_k = \frac{T_1}{T_k} = \frac{nk\tau}{k\tau + (n-1)\tau} \qquad H_k = \frac{nf}{k + (n-1)} \qquad E_k = \frac{S_k}{k}$ $= \frac{nk}{k + (n-1)} \qquad = \frac{(15,000)(25)}{5 + (15,000 - 1)} \qquad = \frac{4,999}{5}$ $= \frac{(15,000)(5)}{5 + (15,000 - 1)} \qquad = \frac{375,000}{15,004}$ $= \frac{75,000}{15,004} \qquad = 24,99 \text{ MIPS}$ = 4,999Prepared By Mr.EBIN PM, AP, IESCE

Q2:

Suppose the time delay of 4 stage are $\tau_1 = 60$ ns, $\tau_2 = 50$ ns, $\tau_3 = 90$ ns, $\tau_4 = 80$ ns and the interface latch has a delay of **d**= 10ns. Find the clock period and frequency of this pipeline?

$$\tau = \tau_{max} + d = 90* 10^{-9} + 10* 10^{-9} = 100* 10^{-9}$$

This means that the clock frequency of the pipeline can be set to

$$f = \frac{1}{T} = \frac{1}{100 * 10^{-9}} = 10 \text{ MHz}$$

EDULINE

16

Prepared By Mr.EBIN PM, AP, IESCE

Q3:

Determine the frequency of the pipeline if the stage delays are $\tau 1 = 3$ ns, $\tau 2 = \tau 3 = 5$ ns and $\tau 4 = 8$ ns and the latch delay is 1 ns.

Prepared By Mr.EBIN PM, AP, IESCE

$$\tau_{max} = 8 \text{ns}$$
 $d = 1 \text{ns}$
 $\tau = \tau_{max} + d = 8 \cdot 10^{-9} + 1 \cdot 10^{-9} = 9 \cdot 10^{-9}$

$$f = \frac{1}{\tau} = \frac{1}{9 \cdot 10^{-9}} = 111.11 \text{ MHz}$$

EDULINE