Changes in functional trait diversity over space and time

Vanessa Buzzard Lindsey Sloat

March 7, 2012

Diversity and traits

- Traits interact with and respond to the environment
- Mechanistic hypotheses testing about geographic distribution of biodiversity should consider traits.
- Now technology can allow us to address this question across spatial scales

Changes in trait diversity over space and time

Continental level

- Swenson et al. 2012 GEB
- Stevens et al. 2006 Oikos

Community level

- Swenson et al. 2012 Ecology
- Ding et al. 2011 Oikos

Species richness maps for (a) all the species, (b) bats only and (c) all species other than bats, showing how bats influence the overall latitudinal diversity gradient.

Can you just replace species with traits?

Can functional trait
ecology teach us
something NEW about
latitudinal diversity
gradients?

60 118 258

Buckley L B et al. Proc. R. Soc. B doi:10.1098/rspb.2010.0179

Stevens et. al 2006

Changes in phenetic diversity of bats with latitude and species richness

Methods- measured 7 morphological features in 32 bat communities in the new world. Decomposed into PCA and then measured "functional diversity" metrics then regressed these metrics with latitude and species richness.

Stevens et. al 2006

Functional Diversity Metrics

Range – the amount of phenetic variation in a community

STD – uniformity of species

NND – local packing

PCA

Favorability hypothesis: in climatically difficult regions abiotic filtering should produce a regional assemblage that is less functionally diverse than expected given the species richness and the global pool of traits.

- Abiotic filtering Environmental filtering is expected to constrain the overall distribution of function observed within assemblages with the greatest amount of filtering occurring in the least favorable locations along local-scale gradients.
- Biotic filtering Biotic interactions become more important in more favorable abiotic conditions, thereby giving rise to a reduction in functional similarity between species within a local assemblage

Favorability hypothesis: in climatically difficult regions abiotic filtering should produce a regional assemblage that is less functionally diverse than expected given the species richness and the global pool of traits.

- 1) How functional traits vary across environmental gradients
- 2) Functional over and under trait dispersion at large geographic scales

- FD functional diversity
- PW mean pair-wise functional trait distance
- NN mean nearest neighbor distance
- Traits used: Foliar %N and %P and SLA, max height, wood density
- Methods: Matched species occurrences with mean trait values in one degree grid cells. Used trait dendrograms to calculate FD, PW, and NN. Compares to null distribution to calculates SES.

Conclusion

 Functional trait diversity in the tropics is higher than expected given the global pool of traits and observed species richness. This supports the favorability hypothesis • EXTRA SLIDES:

Climate correlations

Trait	Metric	Latitude	Altitude	MAT	TS	TR	AP	PS
	SES FD	-0.132	-0.153	0.249	-0.189	-0.202	0.273	-0.099
Maximum height	SES PW	-0.127	-0.152	0.242	-0.181	-0.194	0.273	-0.113
	SES NN	0.133	-0.018	0.094	-0.163	-0.172	0.125	0.114
	SES FD	0.107	-0.160	0.062	0.011	-0.006	0.213	0.242
Leaf % N	SES PW	-0.431	-0.271	0.463	-0.417	-0.437	0.572	0.106
	SES NN	0.062	-0.016	-0.103	0.124	0.123	0.001	0.124
Leaf % P	SES FD	0.428	-0.039	-0.398	-0.465	-0.462	0.322	0.238
	SES PW	0.347	0.045	-0.313	-0.422	-0.404	0.230	0.295
	SES NN	0.097	-0.035	-0.103	-0.075	-0.079	0.044	0.046
Seed mass	SES FD	-0.350	-0.131	0.342	-0.310	-0.311	0.254	0.049
	SES PW	-0.366	-0.125	0.344	-0.246	-0.274	0.221	0.010
	SES NN	0.131	-0.002	0.089	-0.153	-0.160	0.114	0.092
Specific leaf area	SES FD	-0.121	-0.149	0.107	-0.052	-0.083	0.236	0.232
	SES PW	-0.262	-0.166	0.362	-0.336	-0.353	0.499	0.174
	SES NN	-0.154	-0.043	-0.121	0.178	0.164	-0.088	0.118
Wood density	SES FD	-0.543	-0.112	0.546	-0.619	-0.602	0.274	0.438
	SES PW	-0.565	-0.135	0.587	-0.629	-0.612	0.288	0.418
	SES NN	-0.374	-0.071	0.367	-0.413	-0.400	0.214	0.187

Compare terms

Stevens	Swenson
Phenetic	Functional
Range	FD
STD	PW
NND	NN
?	SES
Minimum spanning tree (using WHAT distance metric?)	Trait dendrogram (hierarchical clustering using WHAT distance metric)

