Paweł Rajba <u>pawel@cs.uni.wroc.pl</u> <u>http://pawel.ii.uni.wroc.pl/</u>

SQL Server Optymalizacja

Agenda

- Wprowadzenie
- Optymalizacja struktury tabel
 - W tym postacie normalne
- Wykonywanie zapytań
- Statystyki
- Plan wykonania
- Indeksy
- Pomocne narzędzia

Wprowadzenie

- Optymalizację można realizować na wielu poziomach
- Bardzo ważne jest poznanie wymagań, żeby wiedzieć co optymalizować.
 - Zwykle nie da zoptymalizować wszystkiego np. SELECT vs. INSERT

Optymalizacja struktury tabel

- Wielkie tabele, z dużą liczbą kolumn nie sprzyjają wykonywaniu szybkich zapytań
- Uporządkowaniu danych sprzyja wprowadzenie postaci normalnych
- Wyróżniamy następujące postaci normalne:
 - 1NF, 2NF, 3NF, BCNF, 4NF, 5NF
 chociaż w praktyce stosowane głównie postacie 1-3

Pierwsza postać normalna (1NF)

- Wszystkie wartość w komórkach tabel są atomowe, czyli żadnych list, kolekcji, itp.
- Nie zawiera powtarzających się grup informacji
 - np. nie może być kolumn "Składnik1" "Składnik2", "Składnik3"
- Kolejność wierszy może być dowolna
 - Znaczenie danych nie zależy od kolejności wierszy np. priorytet incydentów, czy kolejka zdarzeń do obsługi

Pierwsza postać normalna (1NF)

Przykład:

Przed:

Płeć	lmię
Męska	Jan, Piotr, Zenon
Żeńska	Anna, Maria, Zofia

Po:

Płeć	lmię
Męska	Jan
Męska	Piotr
Męska	Zenon
Żeńska	Anna
Żeńska	Maria
Żeńska	Zofia

Pierwsza postać normalna (1NF)

Mniej oczywisty przykład

	NrPozycji	NumerZam	NazwaKlienta	Adres	KodPocztowy	Miasto	Wojewodztwo	DataZamowienia	Element Zamowienia	llosc	CenaJedn	WartZamNetto	Vat	WartZamBrutto
1	1	101	Jan Kowalski	ul. Jana Pawła 12	61-600	Poznań	Wielkopolskie	2012-01-02 00:	Opony 205 R16	4	300,00	1200,00	23	1476,00
2	2	102	Anna Dymna	ul. Staszica 1	30-600	Kraków	Małopolskie	2012-03-22 00:	Alufelgi Silver	4	550,00	2200,00	23	2706,00
3	3	103	Piotr Wawrzyniak	al. Niepodległości 1	30-600	Kraków	Małopolskie	2012-03-22 00:	Alufelgi Silver	4	550,00	2200,00	23	2706,00
4	4	104	Jan Kowalski	ul. Jana Pawła 12	61-600	Poznań	Wielkopolskie	2012-10-22 00:	Komplet żarówek	1	80,00	80,00	23	98,40
5	5	105	Jan Kowalski	ul. Poznańska 8	21-120	Wrocław	Dolnośląskie	2012-05-22 00:	Płyn do spryskiwacza	1	10,00	15,00	23	18,45
6	6	105	Jan Kowalski	ul. Poznańska 8	21-120	Wrocław	Dolnośląskie	2012-05-22 00:	Trójkąt ostrzegawczy	1	5,00	15,00	23	18,45

Druga postać normalna (2NF)

- Mamy 1NF +
 - Żadna kolumna nie kluczowa nie jest częściowo funkcyjnie zależna od jakiegokolwiek klucza kandydującego (potencjalnego)
 - Lub inaczej: żadna informacja w wierszu nie może zależeć tylko od części klucza podstawowego (głównego)
 - Mniej formalnie:
 - W tabeli powinny być dane dotyczące tylko określonego rodzaju obiektu
 - Cel: eliminacja powtarzających się danych

Druga postać normalna (2NF)

Przykład 1

lmię	Nazwisko	Stanowisko	Stawka za godzinę
Antoni	Anonim	Stolarz	10 zł
Natalia	Niewiadoma	Sekretarka	20 zł
Alina	Enigma	Sekretarka	20 zł

lmię	Płeć
Antoni	Męska
Natalia	Żeńska
Alina	Żeńska

Druga postać normalna (2NF)

Przykład 2

6 105

	Results 🛅	ts 🖟 Messages Klient Detale zamówienia												
	NrPozycji	NumerZam	NazwaKlienta	Adres	KodPocztowy	Miasto	Wojewodztwo	DataZamowienia	Element Zamowienia	llosc	CenaJedn	WartZamNetto	Vat	WartZamBrutto
1	1	101	Jan Kowalski	ul. Jana Pawła 12	61-600	Poznań	Wielkopolskie	2012-01-02 00:	Opony 205 R16	4	300,00	1200,00	23	1476,00
2	2	102	Anna Dymna	ul. Staszica 1	30-600	Kraków	Małopolskie	2012-03-22 00:	Alufelgi Silver	4	550,00	2200,00	23	2706,00
3	3	103	Piotr Wawrzyniak	al. Niepodległości 1	30-600	Kraków	Małopolskie	2012-03-22 00:	Alufelgi Silver	4	550,00	2200,00	23	2706,00
4	4	104	Jan Kowalski	ul. Jana Pawła 12	61-600	Poznań	Wielkopolskie	2012-10-22 00:	Komplet żarówek	1	80,00	80,00	23	98.40
5	5	105	Jan Kowalski	ul. Poznańska 8	21-120	Wrocław	Dolnośląskie	2012-05-22 00:	Płyn do spryskiwacza	1	10,00	15,00	23	18,45
6	6	105	Jan Kowalski	ul. Poznańska 8	21-120	Wrocław	Dolnośląskie	2012-05-22 00:	Trójkąt ostrzegawczy	1	5,00	15,00	23	18,45

5.00

Trzecia postać normalna (3NF)

Mamy 2NF

- + każda kolumna nie będąca częścią klucza, zależy od niego bezpośrednio (a nie przechodnio)
 - Lub inaczej: żadna informacja w kolumnie, która nie jest kluczem podstawowym, nie może zależeć od niczego innego, jak tylko od klucza podstawowego.
- Cel: Eliminowanie danych, które nie zależą od klucza

Trzecia postać normalna (3NF)

Przykład

Co daje dojście do 3NF?

- Usunięcie redundancji danych
- Łatwiej dane utrzymywać
- ... ale aby wyciągnąć komplet danych, trzeba łączyć tabele

Kilka uwag na temat struktury tabel

- Jeżeli kolumna nie będzie używana, czy na pewno powinna być w tabeli?
- Jeśli mamy kolumny rzadko używane, może warto je wyciągnąć do osobnej tabeli?
- Czasami warto też trzymać przeliczone wartości, które są redundantne
- W pewnych sytuacjach również warto naruszyć
 3NF, aby uniknąć zbyt wielu złączeń
- Tworząc strukturę trzeba jednak pamiętać, jakie operacje będą na tej strukturze wykonywane
 - Wrócimy do tego przy tworzeniu agregatów w DDD

Wykonywanie zapytań

Wykonywanie zapytań

- Istotnym i najtrudniejszym etapem jest optymalizacja wykonania zapytania
- Przy optymalizacji SQL Server rozpatruje m.in.
 - Statystyki tabel
 - Indeksy, które można wykorzystać
 - Czasami nawet opłaca się przejrzeć tabelę zamiast indeksu
 - Różne kolejności i sposoby złączeń tabel
- Rozpatrywany koszt to głównie
 - Operacje WE/WY
 - Czas procesora

Statystyki

- Są to obiekty przechowujące informacje statystyczne tabel
 - Np. liczba wierszy, gęstości, rozkład wartości
- Do obejrzenia statystyk można
 - Użyć polecenia DBCC SHOW_STATISTICS
 - Np. dbcc show_statistics ("SalesLT.SalesOrderHeader", PK_SalesOrderHeader_SalesOrderID)
 - Mgmt Studio → Tabela → Statistics
- Ważnym elementem związanym z optymalizacją jest częstość odświeżania statystyk
 - Domyślnie odświeżanie jest automatyczne i zarządzane przez SQL Server
 - Można też zarządzać statystykami "ręcznie"
- Więcej:
 - https://msdn.microsoft.com/en-us/library/ms190397.aspx

DEMO

- Odpalamy
 - dbcc show_statistics
 ("SalesLT.SalesOrderHeader",
 PK_SalesOrderHeader_SalesOrderID)
- Oglądamy statystyki w Mgmt Studio

- Plany wykonania dzielimy na:
 - Szacowane (estimated)
 - Faktyczne (actual)
- Plany można zobaczyć w formie
 - Graficznej
 - Tekstowej
 - XML

- Plany wykonania są przechowywane w buforze
- Przed wykonaniem zapytania:
 - Jeśli plan już jest, zostaje wykorzystany
 - Jeśli go nie ma, zostaje utworzony i zachowany
- SQL Server zarządza tym buforem
- Kilka wybranych przyczyn rekompilacji planu
 - zmiana struktury tabeli lub widoku (ALTER)
 - odświeżenie statystyk (ręcznie lub automatycznie)
 - usunięcie indeksu wykorzystywanego w planie
 - wywołanie procedury sp_recompile
 - duże zmiany w zawartości tabeli (INSERT, DELETE)

- W planie wykonania mamy
 - Elementy języka (zielone)
 - Operatory fizyczne/logiczne (niebieskie)
 - Operacje związane z kursorem (żółte)
- Plan wykonania jest w postaci drzewa
 - Drzewa, które powstaje po sparsowaniu zapytania
- Po najechaniu na węzeł dostajemy sporo dodatkowych szczegółów
- Może się zdarzyć, że SQL Server zasugeruje w planie faktycznym utworzenie indeksu

Pobranie informacji o planie wykonania

Szacowany	Faktyczny
SET SHOWPLANTEXT {ON OFF}	SET STATISTICS PROFILE {ON OFF}
SET SHOWPLAN_XML {ON OFF}	SET STATISTICS XML {ON OFF}
Display Estimated Execution Plan (Management Studio)	Include Actual Execution Plan (Management Studio)

- Dodatkowo możemy uzyskać statystyki
 - Czasu: SET STATISTICS TIME {ON|OFF}
 - Operacji WE/WY: SET STATISTICS IO {ON|OFF}
- Bardzo ciekawą opcją są Live Query Statistics
 - Więcej:
 - https://msdn.microsoft.com/en-us/library/dn831878.aspx
 - https://blogs.technet.microsoft.com/cansql/2017/02/28/live-query-statistics-in-sql-server-2016/

DEMO

Oglądamy plany dla zapytania

DBCC FREEPROCCACHE -- wyczyszczenie bufora planów wykonania

```
USE Northwind;
GO
SELECT DISTINCT(ShipCity) FROM Orders;
GO
DECLARE c CURSOR FOR SELECT TOP 2 ShipCity FROM Orders;
OPEN c;
FETCH NEXT FROM c;
WHILE @@FETCH_STATUS = o
BEGIN
 FETCH NEXT FROM c;
END
CLOSE c;
DEALLOCATE c;
```

DEMO

Oglądamy plany dla zapytań

```
DBCC FREEPROCCACHE
SELECT DISTINCT(a.City) FROM SalesLT.SalesOrderHeader o JOIN
SalesLT.Address a ON o.ShipToAddressID = a.AddressID WHERE
o.SubTotal>30000
GO
DECLARE c CURSOR FOR SELECT TOP 3 a.City FROM
SalesLT.SalesOrderHeader o JOIN SalesLT.Address a ON
o.ShipToAddressID = a.AddressID;
OPEN c;
FETCH NEXT FROM c;
WHILE @@FETCH_STATUS = 0
BEGIN
    FETCH NEXT FROM c;
END
CLOSE c;
DEALLOCATE c:
```

- Indeks to struktura danych mająca na celu przespieszenie pobierania danych
 - Indeksy są przechowywane w strukturze B-drzewa
- Jest związana z tabelą lub widokiem oraz jej/jego wybranymi kolumnami
 - Indeksować można prawie wszystko oprócz głównie LOB (np. images, text, varchar(max))
- Dobór odpowiednich indeksów jest balansem pomiędzy
 - Szybkością pobierania danych
 - Kosztem związanym z jego utrzymaniem (CRUD)

- Indeks zgrupowany (clustered index)
 - Może być tylko jeden w tabeli
 - Wyznacza on porządek danych w samej tabeli

- Indeks niezgrupowany (nonclustered index)
 - Może być ich wiele w tabeli
 - Nie zawiera danych tylko referencje do nich
 - Na poziomie liści można dołączyć tzw. included columns, które nie są indeksowane

- Kolejne rodzaje indeksów
 - Złożony (composite)
 - kiedy zawiera więcej niż jedną kolumnę
 - Unikalny (unique)
 - wszystkie wartości muszą być różne)
 - Kryjący (covering)
 - Kiedy zawiera wszystkie kolumny dla wybranego zapytania
 - Filtrowany (filtered)
 - Tylko dla non-clustered
 - Indeksowane są tylko wybrane dane

- Zwykle każda tabela zawiera jakiś indeks
 - Przykładowo: przy tworzeniu primary key lub definiując ograczenie "unique" tworzony jest indeks
- Jeśli jednak tabela nie ma indeksu, wtedy ma strukturę sterty (heap)

Tworzenie indeksu

```
CREATE [ UNIQUE ] [ CLUSTERED | NONCLUSTERED ] INDEX index_name
ON <object> ( column [ ASC | DESC ] [ ,...n ] )
    [ INCLUDE ( column_name [ ,...n ] ) ]
    [ WHERE <filter_predicate> ]
    [ WITH ( <relational_index_option> [ ,...n ] ) ]
```

Usuwanie indeksu

DROP INDEX index_name

- Indeksy niezgrupowane można utworzyć tak, żeby przy zapytaniu nie było potrzeby odwoływać się do stron z danymi
- Zasady dotyczące takich indeksów
 - indeks musi zawierać wszystkie kolumny wyniku
 - Można zastosować included columns
 - zastosowanie indeksowanych widoków może prowadzić do indeksowania częściowych sum itp., co z kolei może dać duży wzrost wydajności

Jak tworzyć indeksy?

- Jest cała masa artykułów i opracowań
- Kilka wybranych wskazówek
 - Poziom modyfikacji
 - Dużo → indeksy trzeba tworzyć ostrożnie
 - Dla indeksu zgrupowanego kolumna powinna być mała i najlepiej liczbowa
 - Dlatego też zwykle PK to indeks zgrupowany, chociaż nie zawsze będzie to optymalne
 - Unikalność wartości indeksu wpływa na wydajność
 - Dla indeksów złożonych kolejność kolumn ma znaczenie
 - Częściej używane (np. te w WHERE powinny być wcześniej)
 - Im bardziej unikalne wartości, tym wcześniej na liście
 - Indeksować: wyszukiwane kolumny, biorące udział w złączeniach

Zrobienie kopii bazy danych

- Bardzo pomocne do testów z indeksami
- Główne etapy
 - Uruchamiamy usługę SQL Server Agent

- Odpalamy kreatora kopiowania bazy danych
 - I klikamy dalej

DEMO

DBCC FREEPROCCACHE

USE AdventureWorks2012_new; CREATE NONCLUSTERED NDEX IX_PurchaseOrderDetail_RejectedQty ON AdventureWorks2012_new.Purchasing.PurchaseOrderDetail(RejectedQty DESC, ProductID ASC, DueDate, OrderQty); USE AdventureWorks2012; GO SELECT RejectedQty, ((RejectedQty/OrderQty)*100) AS RejectionRate, ProductID, DueDate FROM Purchasing.PurchaseOrderDetail ORDER BY RejectedQty DESC, ProductID ASC; USE AdventureWorks2012_new; GO SELECT RejectedQty, ((RejectedQty/OrderQty)*100) AS RejectionRate, ProductID, DueDate FROM Purchasing.PurchaseOrderDetail ORDER BY Rejected Oty DESC, ProductID ASC; GŎ -- 2 --USE AdventureWorks2012; SELECT SalesOrderDetailID, UnitPrice, UnitPriceDiscount FROM Sales. SalesOrderDetail s WHERE UnitPrice>1000 GO USE AdventureWorks2012_new; SELECT SalesOrderDetaillD, UnitPrice, UnitPriceDiscount FROM Sales. SalesOrderDetail s WHERE UnitPrice>1000 GO USE AdventureWorks2012_new; DROP INDEX IF EXISTS Sales. Sales Order Detail. IX_Sales Order Details_UnitPrice; CREATE INDEX IX_SalesOrderDetails_UnitPrice ON AdventureWorks2012_new.Sales.SalesOrderDetail (UnitPrice) INCLUDE (UnitPriceDiscount) WHERE UnitPrice>1000

Pomocne narzędzia

SQL Server Profiler

Database Engine Tuning Advisor

Literatura

Postacie normalne

- https://pq.edu.pl/documents/1403427/1bacfc1e-012d-4800-b6b2-4foc4cce3c99
- https://devszczepaniak.pl/postaci-normalne/
- https://mst.mimuw.edu.pl/lecture.php?lecture=bad&part=Ch6
- https://home.agh.edu.pl/~horzyk/lectures/db/BazyDanychAccess-Normalizacja.pdf
- https://edu.pjwstk.edu.pl/wyklady/rbd/scb/rW5.htm

Podstawy optymalizacji

- http://pdf.ebookpoint.pl/sql14o/sql14o.pdf
- https://msdn.microsoft.com/pl-pl/library/encyklopedia-sql--t-sql-optymalizacja-zapytan.aspx
- http://wss.geekclub.pl/baza-wiedzy/kurs-transact-sql-czesc-4-optymalizacja-zapytan,773
- https://www.mssqltips.com/sqlservertutorial/2250/graphical-query-plan-tutorial/
- http://sqlmag.com/sitefiles/sqlmag.com/files/archive/sqlmag.com/content/content/144603/top_10_tips_for_optimiz ing-final.pdf.pdf

Literatura

Statystyki

- https://msdn.microsoft.com/en-us/library/ms190397.aspx
- https://msdn.microsoft.com/en-us/library/ms174384.aspx
- https://msdn.microsoft.com/pl-pl/library/ms187348(v=sql.110).aspx
- https://msdn.microsoft.com/en-us/library/dn831878.aspx

Plany wykonania

- https://technet.microsoft.com/en-us/library/ms181055(v=sql.105).aspx
- https://www.simple-talk.com/sql/performance/execution-plan-basics/
- https://www.simple-talk.com/sql/performance/graphical-execution-plans-for-simple-sql-queries/
- https://www.simple-talk.com/sql/performance/understanding-more-complex-query-plans/

- https://technet.microsoft.com/en-us/library/aa964133(v=sql.90).aspx
- https://technet.microsoft.com/pl-pl/library/jj835095(v=sql.110).aspx
- https://msdn.microsoft.com/en-us/library/ms175049.aspx
- https://www.simple-talk.com/sql/learn-sql-server/sql-server-index-basics/
- https://msdn.microsoft.com/pl-pl/library/ms190806(v=sql.110).aspx
- https://msdn.microsoft.com/pl-pl/library/cc280372(v=sql.110).aspx
- https://www.simple-talk.com/sql/performance/introduction-to-sql-server-filtered-indexes/
- http://www.sqlskills.com/blogs/kimberly/indexes-just-because-you-can-doesnt-mean-you-should/