BLOC 6. Gasos

6.1. Gas Ideal

- **6.1.1.** a) Massa del gas d' O_2 = 1.291 g, Massa del gas d' N_2 = 4.521 g; b) P = 1.610 bar = 1610 hPa = 1.589 atm; c) P_{O2} = 0.3219 bar, P_{N2} = 1.288 bar; d) V_{O2} = 0.6003 L, V_{N2} = 2.400 L.
- **6.1.2.** a) $P_y = 0.009$ bars; b) 78.1% de N_2 , 21.0% de O_2 i 0.9% de y; c) y = 39.60 g/mol, argó.
- **6.1.3.** a) P = 2.354 bars; b) T = 293.1 °C; c) V = 10.0 L; d) l'equació d'estat dels gasos ideals no depèn de la massa molecular

6.2. Teoria cinètica dels gasos ideals. Llei de Graham

- **6.2.1.** a) Requereix la mateixa energia escalfar un mol de He o un mol de Ne; b) Requereix més energia escalfar un gram de He.
- **6.2.2.** El dipòsit de H_2 ; el dipòsit d' O_2 tardarà aproximadament 4 vegades més temps a buidar-se que el de H_2
- **6.2.3.** a) $\langle v \rangle = 378.7$ m/s, $(\langle v^2 \rangle)^{1/2} = 411.1$ m/s, $v^* = 335.6$ m/s, $\langle v \rangle v^* = 43.1$ m/s; b) $\langle v \rangle = 423.7$ m/s, $(\langle v^2 \rangle)^{1/2} = 459.9$ m/s, $v^* = 375.5$ m/s, $\langle v \rangle v^* = 48.2$ m/s; c) $\langle v \rangle = 1767.8$ m/s, $(\langle v^2 \rangle)^{1/2} = 1918.8$ m/s, $v^* = 1566.7$ m/s, $\langle v \rangle v^* = 201.1$ m/s.

6.3. Gas de Van der Waals

- **6.3.1.** a) P = 2.358 bars; b) P = 2.361 bars; c) La diferència augmenta amb la mida de la molècula
- **6.3.2.** a) P = 18.01 bars; b) P = 16.80 bars; c) La pressió final és més baixa quan hi ha ponts de hidrogen