Facebook Friend Recommender

By Harsha Malireddy

Problem

- Networking & connecting with others is one of the most important features among many social media platforms
- Facebook and other social media platforms need people to be able to connect users based on their common interests, degrees of separation, etc.

http://www.fmsasg.com/socialnetworkanalysis/facebook/

Data

- https://snap.stanford.edu/data/ego-Facebook.html
- [Number] corresponds to file names: '0','107','348','414','686','698','1684','1912','3437','3980'
- 1. facebook_combined.txt -> Gives all of the connected node pairs
- 2. [Number].featnames -> Gives the feature type, semicolon, followed by specific feature value characterized by a number
- 3. [Number].feat -> Gives the row of '1's or '0's for each node indicating whether the node has a feature or not in the corresponding [Number].featnames file rows 2.

	Node 1	Node 2			
0	0	1			
1	0	2			
2	0	3			
3	0	4			
4	0	5			
88229	4026	4030			
88230	4027	4031			
88231	4027	4032			
88232	4027	4038			
88233	4031	4038			
88234 rows × 2 columns					

	Feature Names			
0	0 birthday;anonymized feature 0			
1	1 birthday;anonymized feature 1			
2	2 birthday;anonymized feature 2			
3	3 birthday;anonymized feature 3			
4	4 birthday;anonymized feature 4			
219	219 work;start_date;anonymized feature 170			
220	220 work;start_date;anonymized feature 171			
221	221 work;start_date;anonymized feature 203			
222	222 work;start_date;anonymized feature 204			
223	223 work; with; id; anonymized feature 205			
224 rows × 1 columns				

		J.	
			Node Features
0	100000	000000000	0000000
1	200000	000000000	0000000
2	300000	001000000	10000000
3	400000	000000000	0000000
4	500000	000000000	0 0 0 0 0 0 0 0
342	343 0 1 0 0	000000000	00000000
343	344 0 0 0 0	000000000	00000000
344	345 0 0 0 0	000000000	00000000
345	346 0 0 1 0	000000000	01000000
346	347 0 0 0 0	000000000	01000000
347 r	ows × 1 col	umns	

Data Wrangling

• I discovered there were 21 unique feature types by parsing through the [no.].featnames files

```
21 Unique Features:
{'location;id', 'work;end_date', 'hometown;id', 'work;position;id', 'first_name', 'education;year;id', 'education;with;id', 'education;type', 'locale', 'work;location;id', 'languages;id', 'gender', 'education;school;id', 'work;employer;id', 'work;start_date', 'last_name', 'education;degree;id', 'birthday', 'work;with;id', 'education;concentration;id', 'education;classes;id'}
```

• I iterated through different node files and their attributes & values and linked them together in a dictionary. I then used the dictionary to create a graph using the networkx library.

```
{1: {'gender': [77], 'locale': [127]}, 2: {'education; school; id': [35], 'education; type': [
53, 55], 'education; year; id': [57], 'gender': [78], 'languages; id': [92, 98], 'last_name':
[114], 'locale': [126], 'location; id': [135]}, 3: {'birthday': [7], 'education; concentratio
n; id': [14], 'education; school; id': [34, 50], 'education; type': [53, 55], 'education; year; i
d': [59, 65], 'gender': [78], 'languages; id': [92], 'locale': [127], 'location; id': [137],
'work; end_date': [168, 170], 'work; location; id': [137], 'work; start_date': [164, 202]}, 4:
{'education; school; id': [50], 'education; type': [53, 55], 'education; with; id': [56], 'gende
r': [78], 'locale': [127]}, 5: {'education; school; id': [49, 50], 'education; type': [53, 54],
, 'education; year; id': [65], 'gender': [78], 'locale': [127]}, 6: {'birthday': [1], 'education; type': [53, 55], 'education; year; id': [62], 'gender': [78], 'last_name': [111], 'locale
': [127], 'work; end_date': [157], 'work; start_date': [157]}, 7: {'education; concentration; id': [13], 'education; school; id': [25, 43, 50], 'education; type': [53, 54, 55], 'education; year; id': [59], 'gender': [78], 'last_name': [107], 'locale': [127], 'location; id': [137], 'work; employer; id': [141, 144], 'work; start_date': [196]}, 8: {'gender': [78], 'locale': [127], 'locale': [12
```

Exploratory Data Analysis

• Image of a spring layout graph of the network of people

Node2Vec Pre-Processing

- The goal was to generate features for the model to be able to use with a supervised learning model to predict if a pair of nodes are connected or not
- The Node2Vec algorithm generates features for a node and needs to learn how to generate those features
- To do this, Node2Vec needs to understand a previous version of the graph to generate the appropriate features for new connected or unconnected edges

- Node2Vec Process
- Node2vec generates numerical representations of nodes in the graph via 2nd order (biased) random walk.
- First order random walk is done by sampling nodes on the graph along the edges of the graph, and each step depends only on the current state. Second order random walk is a modified version of the first order random walk that depends not only on the current state but also the previous state
- A corpus of random walks is generated using each node in the network as a starting point. This corpus is then fed through word2vec to generate final node embeddings

Node2Vec Pre-Processing

- 1. Found the negative samples (unconnected edges / node pairs) with nodes at max path length of 2 from one another to get samples that are possibly more likely to form a connection due to more common neighbors
- 2. Found the positive samples (removable edges / node pairs) edges that can be removed while preserving the base graph structure (not eliminating nodes & not splitting the graph)
- 3. Found the remaining edges by removing the positive edges from the list of connected edges so we can train the Node2Vec Model on those remaining edges (base structure of the graph)
- 4. Combined negative & positive samples into final dataframe after reducing the # of negative samples to balance the final dataset to about equal positive & negative samples to be used for more accurate modeling
- 5. Used the trained Node2Vec model to generate features for each node in a pair & sum them for a final set of features for that pair. Then, I test train split data for modeling.

NetworkX Link Prediction Pre-Processing

- Used the NetworkX library link prediction algorithms to calculate the link metric for each pair in the list of unconnected (negative samples) & removable edges (positive samples) to generate features that will be applied to a supervised learning approach to predict probabilities of each node pairs in forming a connection
- Used the following link prediction algorithms: common_neighbors, jaccard_coefficient, resource_allocation index, adamic adar index, & preferential attachment
- Created & scaled the training set and testing set of data to create the final data below to be used for modeling:

	Node 1	Node 2	Connected	Common Neighbors	Jaccard Coefficient	Resource Allocation Index	Adamic Adar Index	Preferential Attachment
0	0	364	0	-0.688733	-0.940612	-0.639678	-0.704201	-0.371761
1	0	906	0	-0.688733	-0.942633	-0.871550	-0.733825	1.547445
2	0	961	0	-0.688733	-0.940750	-0.871550	-0.733825	-0.260503
3	0	970	0	-0.688733	-0.940818	-0.871550	-0.733825	-0.204874
4	0	978	0	-0.688733	-0.943233	-0.871550	-0.733825	2.270625
169191	4020	4030	1	-0.665866	-0.600397	-0.545057	-0.672454	-0.609909
169192	4020	4031	1	-0.597264	0.621218	0.571919	-0.502564	-0.615039
169193	4021	4026	1	-0.574396	0.936068	0.460927	-0.483467	-0.614157
169194	4023	4031	1	-0.597264	-0.034718	0.638937	-0.497499	-0.606222
169195	4027	4031	1	-0.620131	0.306369	0.240177	-0.556099	-0.615921

NetworkX Link Prediction Pre-Processing

1. Common_neighbors

common_neighbors (G, u, v) [source]

Return the common neighbors of two nodes in a graph.

2. Jaccard_coefficient

Jaccard coefficient of nodes u and v is defined as

$$\frac{|\Gamma(u)\cap\Gamma(v)|}{|\Gamma(u)\cup\Gamma(v)|}$$

where $\Gamma(u)$ denotes the set of neighbors of u.

3. Resource_allocation index

Resource allocation index of u and v is defined as

$$\sum_{w \in \Gamma(u) \cap \Gamma(v)} rac{1}{|\Gamma(w)|}$$

where $\Gamma(u)$ denotes the set of neighbors of u.

4. Adamic_adar_index

Adamic-Adar index of u and v is defined as

$$\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(w)|}$$

where $\Gamma(u)$ denotes the set of neighbors of u. This index leads to zero-division for nodes only connected via self-loops. It is intended to be used when no self-loops are present.

5. Preferential_attachment

Preferential attachment score of u and v is defined as

$$|\Gamma(u)||\Gamma(v)|$$

where $\Gamma(u)$ denotes the set of neighbors of u.

Node2Vec & NetworkX LP Modeling

- I trained & tested 4 ML models to predict my binary classification of 1 or 0 representing connected status of connected or not connected respectively. I used logistic regression, Random Forest Classifier, Gradient Boosting Classifier, and a Multi-Layer Perceptron Classifier
- I wanted a simple & quick classifier so I picked a logistic regression classifier. Also, tree based classifiers
 like random forest & gradient boosting & a neural network classifier like mlp to try more complex and
 generally more accurate models even though they take more time to train.
- I took the following 5 steps to implement each of the 4 ML models:
 - 1. I used GridSearchCV for hyperparameter tuning to pick the best model version
 - o 2. I fit the model and made predictions for the test set
 - 3. Printed the classification report displaying the accuracy, precision, recall, and F1-scores.
 - 4. Calculated the accuracy, precision, recall, F1-score, log loss score, and ROC-AUC (area under the curve) for the model
 - 5. Lastly, displayed the confusion matrix to see the distribution of predictions being made across all genres

MLP Classification Report

	precision	recall	f1-score	support
0	0.95	0.88	0.91	17000
1	0.88	0.96	0.92	16840
accuracy			0.92	33840
macro avg	0.92	0.92	0.92	33840
weighted avg	0.92	0.92	0.92	33840

MLP Confusion Matrix

Node2Vec Model Comparison

- The best model is the Multilayer Perceptron Classifier (Neural Network Classifier)
- The accuracy, precision, recall, and F1 scores are compared for all 4 models.
- The delta between the best and worst model in accuracy: 17%, precision: 18%, recall: 17%, f1: 17%

Node2Vec Model Comparison

 The lowest Log Loss score was 0.35 for the Multilayer Perceptron Classifier model The ROC curves and the area under the curve (AUC) is the largest at 0.92 for the Multilayer Perceptron Classifier model

NetworkX LP Model Comparison

- The best models were the Multilayer Perceptron Classifier (Neural Network Classifier) & Gradient Boosting Classifier
- The accuracy, precision, recall, and F1 scores are compared for all 4 models
- The delta between the best and worst model in accuracy: 3%, precision: 2%, recall: 3%, f1: 3%

NetworkX LP Model Comparison

 The lowest Log Loss score was 0.24 for the Multilayer Perceptron Classifier & Gradient Boosting Classifier models

 The ROC curves and the area under the curve (AUC) is the largest at 0.96 for the GB model and 0.95 for the Multilayer Perceptron Classifier model & the LR model

Node2Vec & NetworkX LP Recommender Functions

 Recommed_friends function gets probabilities for each unconnected pair that includes the user requested user # and prints the top k as requested by the user

Function Steps

- Prompts to pick the user # to recommend friends for
- 2. Prompts the user for # of recommendations
- Uses MLP classifier & 'predict_proba' method to get the probabilities of all unconnected node pairs being connected
- 4. Ranks the probabilities and prints out the requested number of recommended friends user #s

Node2Vec Function

```
Please enter the user (0-4038) to get friend recommendations for:
Please enter the k number of friend recommendations out of 22 that you
User 168 at 82.56% chance of a future link
User 221 at 73.65% chance of a future link
User 315 at 66.85% chance of a future link
User 56 at 62.53% chance of a future link
User 274 at 54.61% chance of a future link
User 75 at 53.54% chance of a future link
User 325 at 53.07% chance of a future link
User 3 at 48.2% chance of a future link
User 30 at 42.2% chance of a future link
User 73 at 29.01% chance of a future link
User 234 at 18.27% chance of a future line
User 229 at 17.61% chance of a future link
User 55 at 13.17% chance of a future link
User 92 at 10.66% chance of a future link
User 195 at 10.35% chance of a future link
User 177 at 4.59% chance of a future link
User 139 at 3.42% chance of a future link
User 167 at 0.55% chance of a future link
User 81 at 0.35% chance of a future link
User 93 at 0.32% chance of a future link
User 216 at 0.21% chance of a future link
User 6 at 0.03% chance of a future link
```

NetworkX LP Function

```
In [104]: 1 recommend friends nx()
          Please enter the user (0-4038) to get friend recommendations for:
          Please enter the k number of friend recommendations out of 22 that you would like to recieve:
          Friend recommendations for user 65 are:
          User: 56.0 at 81.09% chance of a future link
          User: 325.0 at 74.75% chance of a future link
          User: 315.0 at 63.15% chance of a future link
          User: 168.0 at 51.07% chance of a future link
          User: 55.0 at 35.69% chance of a future link
          User: 221.0 at 5.89% chance of a future link
          User: 73.0 at 5.85% chance of a future link
          User: 3.0 at 5.69% chance of a future link
          User: 216.0 at 1.55% chance of a future link
          User: 234.0 at 1.55% chance of a future link
          User: 81.0 at 1.49% chance of a future link
          User: 229.0 at 1.35% chance of a future link
          User: 6.0 at 1.35% chance of a future link
          User: 167.0 at 1.32% chance of a future link
          User: 93.0 at 1.28% chance of a future link
          User: 195.0 at 1.26% chance of a future link
          User: 139.0 at 1.26% chance of a future link
          User: 177.0 at 1.21% chance of a future link
          User: 75.0 at 1.15% chance of a future link
          User: 274.0 at 1.15% chance of a future link
          User: 30.0 at 1.1% chance of a future link
          User: 92.0 at 1.06% chance of a future link
```

Takeaways

 In the Node2Vec & NetworkX features creation pre-processing approaches, the Multi-layer perceptron classifier was the best model & the gradient boosting classifier as well on the NetworkX LP approach

Model	Hyperperameters	Accuracy	Precision	Recall	F1-Score	Log Loss	ROC-AUC
Node2Vec: MLP Classifier (Multi-layer Perceptron Classifier)	activation='tanh', max_iter=1000, random_state=0, solver='sgd'	0.85	0.86	0.85	0.85	0.35	0.92
NetworkX: MLP Classifier (Multi-layer Perceptron Classifier)	activation='tanh', max_iter=1000, random_state=0, solver='sgd'	0.92	0.92	0.92	0.92	0.24	0.95
NetworkX: Gradient Boosting Classifier	learning_rate=0.05, random_state=0	0.92	0.92	0.92	0.92	0.24	0.96

 The features generated by node2vec don't work for predicting links as well as the features generated by the NetworkX library like prediction algorithms

Further Research

 I would try to implement different approaches to get link predictions other than the Similarity-Based Local Approaches (NetworkX LP) & Path & Walk-Based Method (Node2Vec)

