Des exemples

Donner deux exemples différents dans chacune des situations suivantes :

- \square une suite décroissante positive dont le terme général ne tend pas vers 0.
- □ une suite bornée non convergente.
- \square une suite positive non bornée ne tendant pas vers $+\infty$.
- \square une suite non monotone qui tend vers 0.
- \square une suite positive qui tend vers 0 et qui n'est pas décroissante.

Vrai ou Faux? $\mathbf{2}$

Dire si les assertions suivantes sont vraies ou fausses. On justifiera les réponses avec une démonstration ou un contre-exemple.

- \square Toute suite non-majorée tend vers $+\infty$.
- \square Soit $(u_n)_{n\geq 0}$ une suite à termes positifs convergeant vers 0. Alors, (u_n) est décroissante à partir d'un certain rang.
- \square Si (u_n) est une suite géométrique de raison $q \neq 0$, alors $\left(\frac{1}{u_n}\right)$ est une suite géométrique de raison
- \square Soit (u_n) une suite croissante et $\ell \in \mathbb{R}$. Si pour tout $N \in \mathbb{N}$, il existe $n_0 \geq N$ tel que $u_{n_0} > \ell$, alors (u_n) ne converge pas vers ℓ .
- \square Si $f: \mathbb{R} \to \mathbb{R}$ est croissante et que (u_n) vérifie $u_{n+1} = f(u_n)$ pour tout entier n, alors (u_n) est
- \square Si u est divergente, alors u est non bornée.
- \square Si $u_n \to \ell$ et f continue, alors $f(u_n) \to f(\ell)$

Étude de suites

Etudier la nature des suites suivantes, et déterminer un équivalent simple :

a)
$$u_n = \frac{\sin(n) + 3\cos(n^2)}{\sqrt{n}}$$
 d) $u_n = \sqrt{2n+1} - \sqrt{2n-1}$ g) $u_n = \frac{n!}{45^n}$

d)
$$u_n = \sqrt{2n+1} - \sqrt{2n-1}$$

g)
$$u_n = \frac{n!}{45^n}$$

b)
$$u_n = \frac{2n + (-1)^n}{5n + (-1)^{n+1}}$$
 e) $u_n = 3^n e$

$$u_n = \frac{n}{2^n}$$

f)
$$u_n = \frac{n}{2^n}$$

e) $u_n = 3^n e^{-3n}$.

$$h) u_n = \frac{n!}{n^n}$$

c)
$$u_n = \frac{n^3 + 5n}{4n^2 + \sin(n) + \ln(n)}$$

i)
$$u_n = \frac{n^3 + 2^n}{n^2 + 3^n}$$
.

Plus difficile

Étudier la nature des suites suivantes, et déterminer un équivalent simple :

a)
$$u_n = \ln(2n^2 - n) - \ln(3n + 1)$$

b) $u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$
c) $u_n = \frac{a^n - b^n}{a^n + b^n}, a, b \in]0, +\infty[$

d)
$$u_n = \frac{\ln(n + e^n)}{n}$$

b)
$$u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n^2}$$

e)
$$u_n = \frac{\ln(1+\sqrt{n})}{\ln(1+n^2)}$$
.

c)
$$_{n} = \frac{a^{n} - b^{n}}{a^{n} + b^{n}}, a, b \in]0, +\infty[$$

Formule de Stirling

- a) Soit (x_n) une suite de réels et soit (y_n) définie par $y_n = x_{n+1} x_n$. Démontrer que la série $\sum_n y_n$ et la suite (x_n) sont de même nature.
- b) On pose (u_n) la suite définie par $u_n = \frac{n^n e^{-n} \sqrt{n}}{n!}$. Donner la nature de la série de terme général $v_n = \ln\left(\frac{u_{n+1}}{u_n}\right).$
- c) En déduire l'existence d'une constante C>0 telle que :

$$n! \sim_{+\infty} C\sqrt{n}n^n e^{-n}$$

Télescopiques

- a) Déterminer deux réels a et b tels que $\frac{1}{k^2-1} = \frac{a}{k-1} + \frac{b}{k+1}$.
- b) En déduire la limite de la suite $u_n = \sum_{k=2}^n \frac{1}{k^2 1}$.
- c) Sur le même modèle, déterminer la limite de la suite $v_n = \sum_{k=0}^n \frac{1}{k^2 + 3k + 2}$
- d) Montrer que, pour tout $n \in \mathbb{N}^*$, on a $\sqrt{n+1} \sqrt{n} \leq \frac{1}{2\sqrt{n}}$
- e) En déduire le comportement de la suite (u_n) définie par $u_n = 1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}}$.

Séries numériques

Paramètres

Soit $a, b \in \mathbb{R}$. Pour $n \ge 1$, on pose $u_n = \ln(n) + a \ln(n+1) + b \ln(n+2)$.

- a) Pour quelle(s) valeur(s) de (a,b) la série $\sum u_n$ est-elle convergente?
- b) Dans le(s) cas où la série converge, déterminer $\sum_{n=1}^{+\infty} u_n$.

Avec l'exponentielle

Sachant que $e = \sum_{n \geq 0} \frac{1}{n!}$, déterminer la valeur des sommes suivantes :

- a) $\sum_{n\geq 0} \frac{n+1}{n!}$ b) $\sum_{n\geq 0} \frac{n^2-2}{n!}$
- c) $\sum_{n>0} \frac{n^3}{n!}$.