1 Eccaciones de movimiento 11 = 5(140)2 + 42-9 $\int_{3} = \sqrt{(x-\alpha)^{2} + y^{2}} - q$ $\int_{3} = \sqrt{x^{2} + (y+\alpha)^{2}} - q$ $l_{y} = \sqrt{\chi^{2} + (\gamma - \alpha)^{2}} - \alpha$ Frenza en x para el resorte 1 $F_{X_1} = -K_1 \left(\frac{1}{x_1} + \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_2} \right)$ $m\ddot{x} = -h_1\left(\frac{(x+a)(1+1-a)}{(x+a)(1+1-a)} + \frac{(x-a)(1+1-a)}{(x+1)} + \frac{x(1+1-a)}{(x+1)} + \frac{x(1+1-a)}{(x+2)}\right)$ $m\ddot{y} = -K_1 \left(\frac{Y(x_1 - a)}{x_1} + \frac{Y(x_2 - a)}{x_2} \right) - K_2 \left(\frac{(y_1 - a)(x_2 - a)}{x_1} + \frac{(y_2 - a)(x_2 - a)}{x_2} \right)$

2. Eccacione	es para pegceños	oscilacion	es		
x <a< th=""><th>y y eq</th><th></th><th></th><th></th><th></th></a<>	y y eq				
mx = -2	Y				
my = -2k	52Y				
3. Diferención	pico (K ₁ ‡ K ₂	otiópico (K1 = K2)	y el	
· Caso is	cliópico				
w ₁ = w ₂	$w_1 = \sqrt{\frac{2k_1}{m}}$	wz =,	2K2		
· Caso an	isotiópico				
$w_1 \neq w$)2				
				Transfer of the second	