Power of Ordered Hypotheses Testing (Supplementary Material)

Lihua Lei

Department of Statistics, University of California, Berkeley

William Fithian

Department of Statistics, University of California, Berkeley

Appendix A: Proof of Theorem 1

Let \mathcal{F}_k be the σ field generated by all non-null pvalues as well as $\{I(p_i \leq s), I(p_i > \lambda) : i \geq k\}$. Then \hat{k} is a stopping time with respect to the backward filtration $\mathcal{F}_n \subset \mathcal{F}_{n-1} \subset \cdots \subset \mathcal{F}_1$. Recall that $V(s,k) = \sum_{i \leq k, i \notin \mathcal{H}_0} I(p_i \leq s)$ and $R(s,k) = \sum_{i \leq k} I(p_i \leq s)$, it holds that

$$\begin{split} \text{FDP} &= \frac{V(s,\hat{k})}{R(s,\hat{k})\vee 1} = \frac{V(s,\hat{k})}{1+\sum_{i\leq \hat{k}}I(p_i>\lambda)} \cdot \frac{1+\sum_{i\leq \hat{k}}I(p_i>\lambda)}{R(s,\hat{k})\vee 1} \\ &\leq \frac{V(s,\hat{k})}{1+\sum_{i\in\mathcal{H}_0,i\leq \hat{k}}I(p_i>\lambda)} \cdot \frac{1+\sum_{i\leq \hat{k}}I(p_i>\lambda)}{R(s,\hat{k})\vee 1} \\ &\leq \frac{V(s,\hat{k})}{1+\sum_{i\in\mathcal{H}_0,i\leq \hat{k}}I(p_i>\lambda)} \cdot \frac{1-\lambda}{s}q. \end{split}$$

Let

$$M(k) = \frac{V(s,k)}{1 + \sum_{i \in \mathcal{H}_0} \sum_{i \le k} I(p_i > \lambda)}.$$

Now we prove that M(k) is a backward martingale with respect to the filtration $\{\mathcal{F}_k : k = n, n-1, \dots, 1\}$. In fact, let

$$V^{+}(k) = V(s, k) = \sum_{i \in \mathcal{H}_{0}, i \le k} I(p_{i} \le s), \quad V^{-}(k) = \sum_{i \in \mathcal{H}_{0}, i \le k} I(p_{i} > \lambda).$$

The notations here is comparable to Barber and Candès (2015). Then

$$M(k) = \frac{V^{+}(k)}{1 + V^{-}(k)}.$$

If $n \in \mathcal{H}_0^c$ is non-null, then M(k-1) = M(k). If n is null, let $(I_1, I_2) = (I(p_k \le s), I(p_k > \lambda))$. Since $\{p_i : i \in \mathcal{H}_0\}$ are i.i.d., by symmetry,

$$P(I_1 = 1, I_2 = 0 | \mathcal{F}_k) = \frac{V^+(k)}{|\mathcal{H}_0 \cap \{1, \dots, k\}|}, \quad P(I_1 = 0, I_2 = 1 | \mathcal{F}_k) = \frac{V^-(k)}{|\mathcal{H}_0 \cap \{1, \dots, k\}|},$$
$$P(I_1 = 0, I_2 = 0 | \mathcal{F}_k) = 1 - \frac{V^+(k) + V^-(k)}{|\mathcal{H}_0 \cap \{1, \dots, k\}|}.$$

Thus,

$$\begin{split} &\mathbb{E}(M(k-1)|\mathcal{F}_{k}) \\ &= \frac{V^{+}(k)-1}{1+V^{-}(k)} \cdot \frac{V^{+}(k)}{|\mathcal{H}_{0} \cap \{1,\ldots,k\}|} + \frac{V^{+}(k)}{V^{-}(k) \vee 1} \cdot \frac{V^{-}(k)}{|\mathcal{H}_{0} \cap \{1,\ldots,k\}|} + \frac{V^{+}(k)}{1+V^{-}(k)} \cdot \left(1 - \frac{V^{+}(k)+V^{-}(k)}{|\mathcal{H}_{0} \cap \{1,\ldots,k\}|}\right) \\ &\leq \frac{V^{+}(k)-1}{1+V^{-}(k)} \cdot \frac{V^{+}(k)}{|\mathcal{H}_{0} \cap \{1,\ldots,k\}|} + \frac{V^{+}(k)}{|\mathcal{H}_{0} \cap \{1,\ldots,k\}|} + \frac{V^{+}(k)}{1+V^{-}(k)} \cdot \left(1 - \frac{V^{+}(k)+V^{-}(k)}{|\mathcal{H}_{0} \cap \{1,\ldots,k\}|}\right) \\ &= \frac{V^{+}(k)}{1+V^{-}(k)} \cdot \frac{V^{+}(k)+V^{-}(k)}{|\mathcal{H}_{0} \cap \{1,\ldots,k\}|} + \frac{V^{+}(k)}{1+V^{-}(k)} \cdot \left(1 - \frac{V^{+}(k)+V^{-}(k)}{|\mathcal{H}_{0} \cap \{1,\ldots,k\}|}\right) \\ &= \frac{V^{+}(k)}{1+V^{-}(k)} = M(k). \end{split}$$

In summary,

$$\mathbb{E}(M(k-1)|\mathcal{F}_k) \le M(k)$$

which shows that M_k is a backward super-martingale. Notice that $M(k) \leq n$ is bounded, it follows from optimal stopping time theorem that

$$\mathbb{E}M(\hat{k}) \leq \mathbb{E}M(n) = \mathbb{E}\left(\frac{\sum_{i \in \mathcal{H}_0} I(p_i \leq s)}{1 + \sum_{i \in \mathcal{H}_0} I(p_i > \lambda)}\right).$$

It is easy to see that

$$\mathcal{L}\left(\sum_{i\in\mathcal{H}_0} I(p_i \leq s) \middle| \sum_{i\in\mathcal{H}_0} I(p_i \leq \lambda) = m\right) = Binom\left(m, \frac{F_1(s)}{F_1(\lambda)}\right)$$

and hence

$$\mathbb{E}\left(\frac{\sum_{i\in\mathcal{H}_0} I(p_i \leq s)}{1+\sum_{i\in\mathcal{H}_0} I(p_i > \lambda)}\right) = \mathbb{E}\left(\mathbb{E}\left(\frac{\sum_{i\in\mathcal{H}_0} I(p_i \leq s)}{1+\sum_{i\in\mathcal{H}_0} I(p_i > \lambda)}\Big| \sum_{i\in\mathcal{H}_0} I(p_i \leq \lambda)\right)\right)$$

$$= \frac{F_1(s)}{F_1(\lambda)} \cdot \mathbb{E}\left(\frac{\sum_{i\in\mathcal{H}_0} I(p_i \leq \lambda)}{1+\sum_{i\in\mathcal{H}_0} I(p_i > \lambda)}\right)$$

$$\leq \frac{F_1(s)}{1-F_1(\lambda)}$$

where the last assertion follows from the fact that for any binomial random variable $X \sim N(r, p)$,

$$\mathbb{E}\frac{X}{r+1-X} \le \frac{s}{1-\lambda}.\tag{1}$$

In fact,

$$\mathbb{E}\frac{X}{r+1-X} = \sum_{i=0}^{n} \frac{i}{r+1-i} \cdot \binom{r}{i} p^{i} (1-p)^{r-i}$$

$$= \sum_{i=1}^{r} \frac{r!}{(i-1)!(r+1-i)!} \cdot p^{i} (1-p)^{r-i}$$

$$= \frac{p}{1-p} \cdot \sum_{i=0}^{r-1} \binom{r}{i} p^{i} (1-p)^{r-i}$$

$$\leq \frac{p}{1-p}.$$

Since $p_i \succeq U[0,1]$, it holds that $F_1(s) \leq s$ and $F_1(\lambda) \leq \lambda$. Thus, by Optional Stopping Theorem,

$$\mathbb{E}M(\hat{k}) \le \mathbb{E}M(n) = \mathbb{E}\left(\frac{\sum_{i \in \mathcal{H}_0} I(p_i \le s)}{1 + \sum_{i \in \mathcal{H}_0} I(p_i > \lambda)}\right) \le \frac{s}{1 - \lambda}.$$

and hence

$$FDR(\hat{k}) = \mathbb{E}\left(\frac{V(s,\hat{k})}{R(s,\hat{k})\vee 1}\right) \le \frac{s}{1-\lambda} \cdot \frac{1-\lambda}{s}q = q.$$

Appendix B: Proof of Theorem 2

Lemma 1. Let $B_i \sim Ber(1, p_i)$ are independent Bernoulli random variables. Then for some positive integer r and positive real number ν ,

$$P\left(\sup_{k\geq r}\left|\frac{\sum_{i=1}^{k}(B_i-p_i)}{k}\right| > \nu\right) \leq \left(2 + \frac{4}{\nu^2}\right)e^{-\frac{r\nu^2}{2}}.$$

Proof. Notice that $B_i - p_i$ is subgaussian with parameter 1, we have

$$P\left(\left|\frac{\sum_{i=1}^{k}(B_i - p_i)}{k}\right| > \nu\right) \le 2e^{-\frac{k\nu^2}{2}}.$$

Then

$$P\left(\sup_{k\geq r} \left| \frac{\sum_{i=1}^{k} (B_i - p_i)}{k} \right| > \nu \right) \leq 2\sum_{k\geq r} e^{-\frac{k\nu^2}{2}} \leq \frac{2e^{-\frac{r\nu^2}{2}}}{1 - e^{-\frac{\nu^2}{2}}} \leq \left(2 + \frac{4}{\nu^2}\right) e^{-\frac{r\nu^2}{2}},$$

where the last step uses the fact that

$$1 - e^{-\frac{\nu^2}{2}} = 1 - \frac{1}{e^{\frac{\nu^2}{2}}} \ge 1 - \frac{1}{1 + \frac{\nu^2}{2}} = \frac{1}{1 + \frac{2}{\nu^2}}.$$

Proposition 1. For a VCT model with instantaneous non-null probability $\pi(t)$,

$$\max_{k=a_n, a_n+1, \dots, n} \left| \frac{\#\{i \le k : i \notin \mathcal{H}_0\}}{k} - \Pi\left(\frac{k}{n}\right) \right| \le \epsilon_n \tag{2}$$

holds with probability converging to 1 for properly chosen sequences $\{a_n\}$ and $\{\epsilon_n\}$ such that

$$a_n/n \to 0, \ a_n \to \infty, \ \epsilon_n \to 0.$$

In particular we can set $a_n = \lceil (\log n)^2 \rceil$ and $\epsilon_n = \frac{1}{\sqrt{\log n}}$.

Remark 1. The condition (12) of Li and Barber (2015) sets $a_n = 0$, which cannot be true. As will be shown later, a growing sequence a_n suffices for our asymptotic analysis.

Proof of Proposition 1. Let $P_n(x)$ be the step function with $P_n(x) = \frac{\lfloor nx \rfloor}{n}$. For any given k,

$$\left| \frac{\#\{i \le k : i \notin \mathcal{H}_0\}}{k} - \Pi\left(\frac{k}{n}\right) \right|$$

$$\le \left| \frac{\sum_{i=1}^k (I(i \notin \mathcal{H}_0) - \pi(\frac{i}{n}))}{k} \right| + \left| \int_0^{\frac{k}{n}} \pi(x) d(P_n(x) - x) \right|$$

$$\le \left| \frac{\sum_{i=1}^k (I(i \notin \mathcal{H}_0) - \pi(\frac{i}{n}))}{k} \right| + \frac{1}{n} \cdot \int_0^{\frac{k}{n}} \pi(x) dx$$

$$\le \left| \frac{\sum_{i=1}^k (I(i \notin \mathcal{H}_0) - \pi(\frac{i}{n}))}{k} \right| + \frac{1}{n}.$$

Let $\nu_n = \epsilon_n - \frac{1}{n}$. By Lemma 1,

$$P\left(\sup_{k\geq a_n} \left| \frac{\sum_{i=1}^k (I(i\not\in\mathcal{H}_0) - \pi(\frac{i}{n}))}{k} \right| > \nu_n \right) \leq \left(2 + \frac{4}{\nu_n^2} e^{-\frac{a_n \nu_n^2}{2}}\right) \triangleq \delta_n \to 0.$$

Thus with probability $1 - \delta_n$,

$$\sup_{k \ge a_n} \left| \frac{\#\{i \le k : i \notin \mathcal{H}_0\}}{k} - \Pi\left(\frac{k}{n}\right) \right| \le \epsilon_n.$$

Proof of Theorem 2. Note that when F_1 is strictly concave,

$$\frac{1 - F_1(\lambda)}{1 - \lambda} = \frac{F_1(1) - F_1(\lambda)}{1 - \lambda} \le \frac{F_1(1) - F_1(0)}{1 - 0} = 1 \le \frac{F_1(s) - F_1(0)}{s - 0} = \frac{F_1(s)}{s}.$$

We will use this result throughout the proof. Select $a_n = \lceil (\log n)^2 \rceil$ and $\epsilon_n = \frac{1}{\sqrt{\log n}}$ and let

$$\delta_n \triangleq \left(2 + \frac{4}{\nu_n^2}\right) \cdot e^{-\frac{a_n \nu_n^2}{2}}.$$

Then $\delta_n \to 0$ and by Lemma 1, with probability $1 - 2\delta_n$,

$$\sup_{k \ge a_n} \left| \frac{\sum_{i=1}^k I(p_i > \lambda)}{k} - \frac{\sum_{i=1}^k \mathbb{E}I(p_i > \lambda)}{k} \right| \le \nu_n,$$

and

$$\sup_{k \ge a_n} \left| \frac{\sum_{i=1}^k I(p_i \le s)}{k} - \frac{\sum_{i=1}^k \mathbb{E}I(p_i \le s)}{k} \right| \le \nu_n.$$

On the other hand, by Proposition 1,

$$\left| \frac{\sum_{i=1}^{k} \mathbb{E}I(p_{i} > \lambda)}{k} - \left(\left[1 - \Pi\left(\frac{k}{n}\right) \right] (1 - \lambda) + \Pi\left(\frac{k}{n}\right) (1 - F_{1}(\lambda)) \right) \right|$$

$$= \left| \frac{\#\{i \leq k : i \notin \mathcal{H}_{0}\}}{k} - \Pi\left(\frac{k}{n}\right) \right| \cdot |F_{1}(\lambda) - \lambda| \leq \epsilon_{n}.$$

Similarly,

$$\left| \frac{\sum_{i=1}^{k} \mathbb{E}I(p_i \le s)}{k} - \left(\left[1 - \Pi\left(\frac{k}{n}\right) \right] s + \Pi\left(\frac{k}{n}\right) F_1(s) \right) \right| \le \epsilon_n.$$

These imply that with probability $1 - 2\delta_n$, it holds uniformly for $k \ge a_n$ that

$$\begin{split} \widehat{\text{FDP}}_{AS}(k) &\leq \frac{\left[1 - \Pi\left(\frac{k}{n}\right)\right] (1 - \lambda) + \Pi\left(\frac{k}{n}\right) (1 - F_1(\lambda)) + \epsilon_n + \nu_n + \frac{1}{a_n}}{\left[1 - \Pi\left(\frac{k}{n}\right)\right] s + \Pi\left(\frac{k}{n}\right) F_1(s) - \epsilon_n - \nu_n} \\ \Longrightarrow &\frac{1 + \sum_{i=1}^k I(p_i > \lambda)}{1 \vee \sum_{i=1}^k I(p_i \leq s)} - \frac{\left[1 - \Pi\left(\frac{k}{n}\right)\right] (1 - \lambda) + \Pi\left(\frac{k}{n}\right) (1 - F_1(\lambda))}{\left[1 - \Pi\left(\frac{k}{n}\right)\right] s + \Pi\left(\frac{k}{n}\right) F_1(s)} \\ &\leq \left(\epsilon_n + \nu_n + \frac{1}{a_n}\right) \cdot \frac{\left[1 - \Pi\left(\frac{k}{n}\right)\right] (1 - \lambda) + \Pi\left(\frac{k}{n}\right) (1 - F_1(\lambda)) + \left[1 - \Pi\left(\frac{k}{n}\right)\right] s + \Pi\left(\frac{k}{n}\right) F_1(s)}{\left(\left[1 - \Pi\left(\frac{k}{n}\right)\right] s + \Pi\left(\frac{k}{n}\right) F_1(s) - \epsilon_n - \nu_n\right)^2} \\ &\leq \left(\epsilon_n + \nu_n + \frac{1}{a_n}\right) \cdot \frac{1 - F_1(\lambda) + F_1(s)}{(s - \epsilon_n - \nu_n)^2} \end{split}$$

and

$$\widehat{\text{FDP}}_{AS}(k) \ge \frac{\left[1 - \Pi\left(\frac{k}{n}\right)\right] \left(1 - \lambda\right) + \Pi\left(\frac{k}{n}\right) \left(1 - F_1(\lambda)\right) - \epsilon_n - \nu_n + \frac{1}{a_n}}{\left[1 - \Pi\left(\frac{k}{n}\right)\right] s + \Pi\left(\frac{k}{n}\right) F_1(s) + \epsilon_n + \nu_n}$$

$$\Longrightarrow \frac{1 + \sum_{i=1}^k I(p_i > \lambda)}{1 \vee \sum_{i=1}^k I(p_i \le s)} - \frac{\left[1 - \Pi\left(\frac{k}{n}\right)\right] \left(1 - \lambda\right) + \Pi\left(\frac{k}{n}\right) \left(1 - F_1(\lambda)\right)}{\left[1 - \Pi\left(\frac{k}{n}\right)\right] s + \Pi\left(\frac{k}{n}\right) F_1(s)}$$

$$\ge -\left(\epsilon_n + \nu_n\right) \cdot \frac{\left[1 - \Pi\left(\frac{k}{n}\right)\right] \left(1 - \lambda\right) + \Pi\left(\frac{k}{n}\right) \left(1 - F_1(\lambda)\right) + \left[1 - \Pi\left(\frac{k}{n}\right)\right] s + \Pi\left(\frac{k}{n}\right) F_1(s)}{\left(\left[1 - \Pi\left(\frac{k}{n}\right)\right] s + \Pi\left(\frac{k}{n}\right) F_1(s)\right)^2}$$

$$\ge -\left(\epsilon_n + \nu_n\right) \cdot \frac{1 - F_1(\lambda) + F_1(s)}{s^2}$$

Since $\epsilon_n, \nu_n \to 0$, we have

$$\lim_{n \to \infty} \sup_{k \ge a_n} \left| \widehat{\text{FDP}}_{AS}(k) - \frac{\left[1 - \Pi\left(\frac{k}{n}\right)\right](1 - \lambda) + \Pi\left(\frac{k}{n}\right)(1 - F_1(\lambda))}{\left[1 - \Pi\left(\frac{k}{n}\right)\right]s + \Pi\left(\frac{k}{n}\right)F_1(s)} \right| = 0 \quad a.s.$$
 (3)

Recall that

$$FDR_{AS}^{*}(t) = \frac{1 - \Pi(t) + \Pi(t) \frac{1 - F_1(\lambda)}{1 - \lambda}}{1 - \Pi(t) + \Pi(t) \frac{F_1(\lambda)}{s}},$$

then

$$\frac{d \mathrm{FDR}_{AS}^*(t)}{d \Pi(t)} = \frac{\frac{F_1(s)}{s} - \frac{1 - F_1(\lambda)}{1 - \lambda}}{\left(\frac{F_1(s)}{s} - 1\right) \left(1 + \left(\frac{F_1(s)}{s} - 1\right) \Pi(t)\right)} \leq \frac{\frac{F_1(s)}{s} - \frac{1 - F_1(\lambda)}{1 - \lambda}}{\frac{F_1(s)}{s} - 1} \triangleq L$$

and hence ${\rm FDR}_{AS}^*(t)$ is $LL_{\Pi}{\rm Lipschitz}$ where L_{Π} is the Lipschitz constant of Π . This entails that

$$\sup_{k \le n} \sup_{|t - \frac{k}{n}| < \frac{1}{n}} \left| \text{FDR}_{AS}^*(t) - \text{FDR}_{AS}^*\left(\frac{k}{n}\right) \right| \le \frac{LL_{\Pi}}{n}. \tag{4}$$

(4) together with (3) implies that

$$\lim_{n \to \infty} \sup_{t \ge a_n/n} |\widehat{\text{FDP}}_{AS}(\lfloor nt \rfloor) - \text{FDR}_{AS}^*(t)| = 0 \quad a.s.$$
 (5)

Since $a_n/n \to 0$, for any c > 0,

$$\lim_{n \to \infty} \sup_{t > c} |\widehat{\text{FDP}}_{AS}(\lfloor nt \rfloor) - \text{FDR}_{AS}^*(t)| = 0 \quad a.s.$$
 (6)

If $\mathrm{FDR}_{AS}^*(0) \geq q$, then for any c>0 and $x\geq c$, $\mathrm{FDR}_{AS}^*(t) \geq \mathrm{FDR}_{AS}^*(c) > \mathrm{FDR}_{AS}^*(0) \geq q$. (6) implies that

$$\liminf_{n\to\infty}\inf_{t>c}\widehat{\mathrm{FDP}}_{AS}(\lfloor nt\rfloor)\geq \mathrm{FDR}^*_{AS}(c)>q\quad a.s.$$

By definition,

$$\widehat{\text{FDP}}_{AS}\left(\hat{k}_{AS}\right) \leq q$$

and hence $\hat{k}/n \leq c$ almost surely. This holds for arbitrary c>0, therefore, $\hat{k}/n \stackrel{a.s.}{\to} 0 = t_{AS}^*$. In this case,

$$\operatorname{Pow}_{AS} = \frac{\#\{i \le \hat{k} : i \notin \mathcal{H}_0, p_i \le s\}}{\#\{i \le n : i \notin \mathcal{H}_0\}} \le \frac{\hat{k}}{n} \cdot \frac{n}{\#\{i \le n : i \notin \mathcal{H}_0\}} \stackrel{a.s.}{\to} 0$$

since \hat{k}/n a.s. $b \to 0$ and

$$\frac{n}{\#\{i \le n : i \notin \mathcal{H}_0\}} \stackrel{a.s.}{\to} \frac{1}{\Pi(1)} < \infty.$$

If $FDR_{AS}^*(1) \leq q$, similar to the above argument, we have

$$\limsup_{n \to \infty} \widehat{\text{FDP}}_{AS}(\lfloor n(1-c) \rfloor) \le \text{FDR}_{AS}^*(1-c) < \text{FDR}_{AS}^*(1) \le q$$

for arbitrary c>0. This implies that $\hat{k}/n\geq 1-c$ almost surely. Thus, $\hat{k}/n\stackrel{a.s.}{\to}1=t_{AS}^*$. In this case,

$$Pow_{AS} = \frac{\#\{i \leq \hat{k} : i \notin \mathcal{H}_{0}, p_{i} \leq s\}}{\#\{i \leq n : i \notin \mathcal{H}_{0}\}}$$

$$= \frac{\#\{i \leq \hat{k} : i \notin \mathcal{H}_{0}, p_{i} \leq s\}}{\#\{i \leq \hat{k} : i \notin \mathcal{H}_{0}\}} \cdot \frac{\hat{k}}{\hat{k}} \cdot \frac{\hat{k}}{n} \cdot \frac{n}{\#\{i \leq n : i \notin \mathcal{H}_{0}\}}$$
(7)

Since $\hat{k}/n \stackrel{a.s.}{\to} 1 > 0$, $\hat{k} \ge a_n$ almost surely and hence

$$\Pi\left(\frac{\hat{k}}{n}\right) - \epsilon_n \ge \frac{\#\{i \le \hat{k} : i \notin \mathcal{H}_0\}}{\hat{k}} \ge \Pi\left(\frac{\hat{k}}{n}\right) - \epsilon_n.$$

This implies that

$$\frac{\#\{i \le \hat{k} : i \not\in \mathcal{H}_0\}}{\hat{k}} \to \Pi(1) \quad a.s.$$

and as a byproduct, we know $\#\{i \leq \hat{k} : i \notin \mathcal{H}_0\} \stackrel{a.s.}{\to} \infty$. By Law of Large Number,

$$\frac{\#\{i \leq \hat{k} : i \notin \mathcal{H}_0, p_i \leq s\}}{\#\{i \leq \hat{k} : i \notin \mathcal{H}_0\}} \stackrel{a.s.}{\to} F_1(s).$$

Therefore,

$$\operatorname{Pow}_{AS} \to \Pi(1) \cdot F_1(s) \cdot 1 \cdot \frac{1}{\Pi(1)} = F_1(s) \quad a.s.$$

If $\mathrm{FDR}_{AS}^*(0) < q < \mathrm{FDR}_{AS}^*(1)$, then $t_{AS}^* = \mathrm{FDR}_{AS}^{*-1}(q)$. For any c > 0, (6) implies that

$$\limsup_{n \to \infty} \widehat{\mathrm{FDP}}_{AS}(\lfloor n(t_{AS}^* - c) \rfloor) \le \mathrm{FDR}_{AS}^*(t_{AS}^* - c) < \mathrm{FDR}_{AS}^*(t_{AS}^*) = q,$$

and

$$\liminf_{n\to\infty} \sup_{t\geq t_{AS}^*+c} \widehat{\mathrm{FDP}}_{AS}(\lfloor nt \rfloor) \geq \mathrm{FDR}_{AS}^*(t_{AS}^*+c) > \mathrm{FDR}_{AS}^*(t_{AS}^*) = q.$$

Thus,

$$t_{AS}^* - c \le \frac{\hat{k}}{n} \le t_{AS}^* + c \quad a.s.$$

Since c is arbitrary, we have $\hat{k}/n \stackrel{a.s.}{\to} t_{AS}^*$. In this case, notice that $\liminf_{n\to\infty} \hat{k}/n > 0$, we can apply the same argument as above and it follows from (7) that

$$\text{Pow}_{AS} \to \Pi(t_{AS}^*) \cdot F_1(s) \cdot t_{AS}^* \cdot \frac{1}{\Pi(1)} = \frac{t_{AS}^* \Pi(t_{AS}^*) F_1(s)}{\Pi(1)}.$$

References

Barber, R. F., & Candès, E. J. (2015). Controlling the false discovery rate via knockoffs. *The Annals of Statistics*, 43(5), 2055–2085.

Li, A., & Barber, R. F. (2015). Accumulation tests for fdr control in ordered hypothesis testing. *arXiv preprint* arXiv:1505.07352.