2.26 Theorem. Let p be a prime number and let a be an integer. Then p does not divide a if and only if (a, p) = 1.

Proof. Suppose p / |a|, then (a, p) = 1. By its contrapositive, suppose (a, p) > 1, then p | a. Since p is prime, a is an integer, and its gcd is greater than 1, (a, p) = p. Thus, p | a. Since the contrapositive is true, Then p does not divide a if (a, p) = 1.

Now suppose (a, p) = 1, then $p \not| a$. Since a, p are co-primes, they do not have any prime factors. Thus, $p \not| a$.

Since both directions of the biconditional statement are true, p does not divide a if and only if (a, p) = 1.