explore likelihood

Victor Møller Poulsen

load data

```
# check data
d <- read_csv("/work/50114/MAG/data/modeling/psych_replication_matched.csv") %>%
 mutate(log_teamsize = log(n_authors),
        condition_coded = ifelse(condition == "experiment", 1, 0),
        condition_fct = as_factor(condition),
        teamsize_scaled = (n_authors-min(n_authors))/(max(n_authors)-min(n_authors)),
        days_after_2010_scaled = days_after_2010/max(days_after_2010),
        id_fct = as_factor(PaperId)) %>% # because min = 0
 glimpse()
## Rows: 1560 Columns: 6
## -- Column specification -------
## Delimiter: ","
## chr (1): condition
## dbl (5): match_group, n_authors, PaperId, days_after_2010, c_5
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
## Rows: 1,560
## Columns: 12
## $ match_group
                        <dbl> 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,~
## $ condition
                         <chr> "experiment", "control", "control", "experiment~
                        <dbl> 3, 3, 1, 1, 4, 4, 5, 5, 2, 2, 2, 2, 3, 3, 5, 5,~
## $ n authors
                        <dbl> 2330249536, 2003350634, 2385753682, 2395494269,~
## $ PaperId
## $ days_after_2010
                        ## $ c 5
                        <dbl> 10, 0, 0, 0, 310, 0, 2, 17, 0, 13, 2, 13, 0, 0,~
## $ log_teamsize
                         <dbl> 1.0986123, 1.0986123, 0.0000000, 0.0000000, 1.3~
## $ condition coded
                        <dbl> 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ~
                        <fct> experiment, control, control, experiment, exper~
## $ condition_fct
## $ teamsize_scaled
                        <dbl> 0.03333333, 0.03333333, 0.00000000, 0.00000000,~
## $ id_fct
                         <fct> 2330249536, 2003350634, 2385753682, 2395494269,~
```

read models (from fit_likelihood.Rmd)

```
zip_prior <- readRDS("/work/50114/MAG/modeling/models/zip_prior.rds")
zip_post <- readRDS("/work/50114/MAG/modeling/models/zip_post.rds")
negbin_prior <- readRDS("/work/50114/MAG/modeling/models/negbin_prior.rds")
negbin_post <- readRDS("/work/50114/MAG/modeling/models/negbin_post.rds")
zinegbin_prior <- readRDS("/work/50114/MAG/modeling/models/zinegbin_prior.rds")
zinegbin_post <- readRDS("/work/50114/MAG/modeling/models/zinegbin_post.rds")</pre>
```

prior predictive checks

ZIP prior

```
prior_check(zip_prior, 100, "zip prior (x cutoff: 25)", 25)

## Warning: Removed 2 rows containing non-finite values (stat_density).

## Warning: Removed 253 rows containing non-finite values (stat_density).
```


negative binomial prior

```
prior_check(negbin_prior, 100, "negative binomial prior (x cutoff: 25)", 25)
```

- ## Warning: Removed 19 rows containing non-finite values (stat_density).
- ## Warning: Removed 253 rows containing non-finite values (stat_density).

negative binomial prior (x cutoff: 25)

zero-inflated negative binomial prior

```
prior_check(zinegbin_prior, 100, "zero-inflated negative binomial prior (x cutoff: 25)", 25)
## Warning: Removed 56 rows containing non-finite values (stat_density).
## Warning: Removed 253 rows containing non-finite values (stat_density).
```


plot traces

reasonable for negative binomial and for zero-inflated negative binomial

plot(zip_post, N = 3) # gives weird stuff

check posterior sampling

https://mc-stan.org/bayesplot/articles/graphical-ppcs.html

```
y <- d$c_5
y_zip <- posterior_predict(zip_post, draws = 500)
y_negbin <- posterior_predict(negbin_post, draws = 500)
y_zinegbin <- posterior_predict(zinegbin_post, draws = 500)</pre>
```

overlay & histogram

ZIP

we see the key issue again here... we have two distributions which is not reflective of the actual data.

```
ppc_dens_overlay(y, y_zip[1:50, ]) + xlim(0, 50)
```

Warning: Removed 198 rows containing non-finite values (stat_density).

Warning: Removed 111 rows containing non-finite values (stat_density).

ppc_hist(y, y_zip[1:5,]) + xlim(-1, 50)

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Warning: Removed 126 rows containing non-finite values (stat_bin).

Warning: Removed 12 rows containing missing values (geom_bar).

negative binomial

looks really good. has a hard time figuring out the correct number of 0s.

```
ppc_dens_overlay(y, y_negbin[1:50, ]) + xlim(01, 50)
```

Warning: Removed 22597 rows containing non-finite values (stat_density).

Warning: Removed 411 rows containing non-finite values (stat_density).


```
ppc_hist(y, y_negbin[1:5, ]) + xlim(-1, 50)
```

- ## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
- ## Warning: Removed 801 rows containing non-finite values (stat_bin).
- ## Warning: Removed 12 rows containing missing values (geom_bar).

zero-inflated negative binomial

looks really good. very similar to negbin.

```
ppc_dens_overlay(y, y_zinegbin[1:50, ]) + xlim(-1, 50)
```

- ## Warning: Removed 6480 rows containing non-finite values (stat_density).
- ## Warning: Removed 111 rows containing non-finite values (stat_density).

Warning: Removed 706 rows containing non-finite values (stat_bin).

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Warning: Removed 12 rows containing missing values (geom_bar).

more PPC

ability of models to produce zeros

All models pretty good at producing the right amount of zeros.

```
prop_zero <- function(x) mean(x == 0)
ppc_stat(y, y_zip, stat = "prop_zero", binwidth = 0.005)</pre>
```


ppc_stat(y, y_negbin, stat = "prop_zero", binwidth = 0.005)

ability to generate max

Both negative binomial and zero-inflated negative binomial has some crazy outliers here, but looks pretty reasonable.

```
ppc_stat(y, y_zip, stat = "max")
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

by group

They all predict "too much" of the same for each group (although might be good that they are more sceptical). Best model seems to be the negative binomial.

```
ppc_stat_grouped(y, y_zip, group = d$condition_fct, stat = "prop_zero") # predicts same for groups
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
```


'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

check summary

Only "interesting" thing here is that large teamsize seems to have a stronger effect for replication studies. Probably nothing (as we will see later) & definitely not significant. However, there has been a lot of attention on the large replication studies (e.g. ManyLabs).

summary(zip_post)

```
Family: zero_inflated_poisson
##
    Links: mu = log; zi = identity
##
## Formula: c_5 ~ 0 + condition_fct + condition_fct:teamsize_scaled
##
      Data: d (Number of observations: 1560)
     Draws: 2 chains, each with iter = 2000; warmup = 0; thin = 1;
##
            total post-warmup draws = 4000
##
##
## Population-Level Effects:
##
                                            Estimate Est.Error 1-95% CI u-95% CI
                                                           0.01
                                                                    2.99
                                                                             3.03
## condition_fctexperiment
                                                3.01
## condition_fctcontrol
                                                2.76
                                                           0.01
                                                                    2.73
                                                                             2.78
## condition_fctexperiment:teamsize_scaled
                                                2.42
                                                           0.05
                                                                    2.32
                                                                             2.52
## condition_fctcontrol:teamsize_scaled
                                                1.76
                                                           0.09
                                                                    1.58
                                                                             1.94
##
                                            Rhat Bulk_ESS Tail_ESS
## condition_fctexperiment
                                            1.00
                                                      3193
                                                               2646
## condition_fctcontrol
                                                     2683
                                                               2836
                                            1.00
```

```
## condition fctexperiment:teamsize scaled 1.00
                                                     2886
                                                              2894
## condition_fctcontrol:teamsize_scaled
                                                     2685
                                                              2534
                                            1.00
## Family Specific Parameters:
##
      Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## zi
                    0.01
                             0.17
                                      0.21 1.00
          0.19
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
summary(negbin_post)
   Family: negbinomial
    Links: mu = log; shape = identity
## Formula: c_5 ~ 0 + condition_fct + condition_fct:teamsize_scaled
      Data: d (Number of observations: 1560)
##
     Draws: 2 chains, each with iter = 2000; warmup = 0; thin = 1;
##
##
            total post-warmup draws = 4000
##
## Population-Level Effects:
                                           Estimate Est.Error 1-95% CI u-95% CI
## condition_fctexperiment
                                                                            2.96
                                                2.83
                                                          0.07
                                                                   2.70
## condition_fctcontrol
                                                2.35
                                                          0.07
                                                                   2.22
                                                                            2.49
## condition_fctexperiment:teamsize_scaled
                                                2.95
                                                          0.66
                                                                   1.67
                                                                            4.23
## condition_fctcontrol:teamsize_scaled
                                                3.19
                                                          0.75
                                                                   1.73
                                                                            4.67
                                           Rhat Bulk_ESS Tail_ESS
##
## condition_fctexperiment
                                            1.00
                                                     2253
                                                              2354
## condition_fctcontrol
                                            1.00
                                                     2198
                                                              1986
## condition_fctexperiment:teamsize_scaled 1.00
                                                     2141
                                                              2418
## condition_fctcontrol:teamsize_scaled
                                            1.00
                                                     2281
                                                              2578
##
## Family Specific Parameters:
         Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
##
             0.45
                       0.02
                                0.42
                                         0.48 1.00
                                                        2671
## shape
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
summary(zinegbin_post)
## Family: zero_inflated_negbinomial
    Links: mu = log; shape = identity; zi = identity
## Formula: c_5 ~ 0 + condition_fct + condition_fct:teamsize_scaled
##
      Data: d (Number of observations: 1560)
##
     Draws: 2 chains, each with iter = 2000; warmup = 0; thin = 1;
            total post-warmup draws = 4000
##
##
## Population-Level Effects:
##
                                           Estimate Est.Error 1-95% CI u-95% CI
## condition_fctexperiment
                                                2.83
                                                          0.07
                                                                   2.70
                                                                            2.96
```

condition_fctcontrol

2.37

2.23

0.07

2.50

```
## condition fctexperiment:teamsize scaled
                                                2.96
                                                           0.66
                                                                    1.70
                                                                              4.29
## condition_fctcontrol:teamsize_scaled
                                                3.20
                                                           0.76
                                                                    1.77
                                                                              4.71
##
                                            Rhat Bulk ESS Tail ESS
## condition_fctexperiment
                                                      2080
                                                               2612
                                            1.00
## condition_fctcontrol
                                            1.00
                                                      2659
                                                               2666
## condition fctexperiment:teamsize scaled 1.00
                                                      2012
                                                               2619
## condition fctcontrol:teamsize scaled
                                                      2697
                                                               2801
##
## Family Specific Parameters:
         Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
##
## shape
             0.46
                        0.02
                                 0.43
                                          0.50 1.00
                                                         3317
                                                                  2879
             0.01
                        0.01
                                          0.03 1.00
                                                         2373
                                 0.00
                                                                  1547
## zi
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
```

plot model fit (focus on negative binomial)

notes

effect of interaction probably driven by the one outlier (more data and/or robust model?).

could also consider doing something else to teamsize (e.g. log) - would make sense that it is not a linear relationship.

also consider what McElreath does with forcing it through origin.

```
add fitted draws() is now add epred draws().
```

https://mjskay.github.io/tidybayes/reference/add predicted draws.html

fitted draws

Clear that there is a lot of weight for two large studies, where the "control" is not cited & the experiment is cited a lot. Really seems to drive the (probably spurious) effect.

```
# with draws
d %>%
group_by(condition_fct) %>%
data_grid(teamsize_scaled = seq_range(teamsize_scaled, n = 101)) %>%
add_epred_draws(negbin_post, ndraws = 100) %>% # same as fitted
ggplot(aes(x = teamsize_scaled, y = c_5, color = ordered(condition_fct))) +
geom_line(aes(y = .epred, group = paste(condition_fct, .draw)), alpha = 0.25) +
geom_point(data = d)
```


fitted CI

```
d %>%
  group_by(condition_fct) %>%
  data_grid(teamsize_scaled = seq_range(teamsize_scaled, n = 101)) %>%
  add_epred_draws(negbin_post) %>% # same as fitted
  ggplot(aes(x = teamsize_scaled, y = c_5, color = ordered(condition_fct))) +
  stat_lineribbon(aes(y = .epred), .width = c(.95, .8, .5), alpha = 0.25) +
  geom_point(data = d) +
  scale_fill_brewer(palette = "Greys")
```


predicted draws

Zero is the most common value for almost any value of teamsize & condition. Not super informative here. Perhaps more interesting with draws?

```
# does a poor job predicting (but makes sense that 0 is always the value to predict...)
d %>%
   group_by(condition_fct) %>%
   data_grid(teamsize_scaled = seq_range(teamsize_scaled, n = 101)) %>%
   add_predicted_draws(negbin_post) %>% # same as fitted
   ggplot(aes(x = teamsize_scaled, y = c_5, color = ordered(condition_fct))) +
   stat_lineribbon(aes(y = .prediction), .width = c(.8, .5), alpha = 0.25) +
   geom_point(data = d) +
   scale_fill_brewer(palette = "Greys")
```


HDI for parameters

```
mcmc_hdi(negbin_post, "negative binomial HDI")
```


model comparison

negbin_post

zip_post

zinegbin_post

0.0

-1.8

-19106.5

0.0

0.6

3067.5

consider criterion, i.e. waic, loo, bayes_R2 (I think the latter is for stacking weights?). best at the moment is actually the zero-inflated negative binomial, but very close to negative binomial. should probably keep both in mind moving forward (as they both looked reasonable).

Check influential observations (pareto k)

check recoded (of rethinking)