Übung 05

Einmalige und mehrperiodige Bestandsentscheidungen

Aufgabe 1: Das Newsvendor-Problem

Ein Event-Veranstalter plant den Verkauf von T-Shirts für ein einmaliges Open-Air-Konzert. Die Nachfrage nach den T-Shirts ist unsicher und wird als normalverteilt mit einem Erwartungswert von 800 Stück und einer Standardabweichung von 150 Stück geschätzt.

Kostendaten:

- Einkaufspreis pro T-Shirt: 10 GE
- Verkaufspreis pro T-Shirt: 25 GE
- Rückkaufpreis (Restwert) pro nicht verkäuflichem T-Shirt: 4 GE (Der Lieferant nimmt unverkäufliche Ware zurück)

Ihre Aufgaben:

- 1. **Underage- und Overage-Kosten:** Bestimmen Sie die Underage-Kosten (c_U) und die Overage-Kosten (c_O) .
 - c_U : Kosten pro Einheit, die man zu wenig bestellt hat (entgangener Gewinn).
 - c_O : Kosten pro Einheit, die man zu viel bestellt hat (Verlust pro übrig gebliebenem T-Shirt).
- 2. Kritisches Verhältnis: Berechnen Sie das kritisches Verhältnis (Critical Ratio).
- 3. **Optimale Bestellmenge:** Bestimmen Sie die optimale Bestellmenge (x_{opt}) , die der Veranstalter ordern sollte, um den erwarteten Gewinn zu maximieren.
- 4. **Sicherheitsbestand:** Wie hoch ist der resultierende Sicherheitsbestand?

Aufgabe 2: Newsvendor mit diskreter Nachfrage

Ein Bäcker muss morgens entscheiden, wie viele eines speziellen Kuchens er für den Tag backen soll. Die Herstellungskosten pro Kuchen betragen 5 GE, der Verkaufspreis liegt bei 12 GE. Nicht verkaufte Kuchen können am Ende des Tages nicht mehr verkauft werden und haben einen Restwert von 0 GE.

Die Nachfrage nach diesem Kuchen ist erfahrungsgemäß wie folgt verteilt:

Nach- frage (Y)	8 Kuchen	9 Kuchen	10 Kuchen	11 Kuchen	12 Kuchen
Wahrschein- lichkeit P(Y)	0.10	0.20	0.35	0.25	0.10

Ihre Aufgaben:

- 1. **Underage- und Overage-Kosten:** Berechnen Sie die Underage- (c_U) und Overage-Kosten (c_O) .
- 2. Kritisches Verhältnis: Berechnen Sie das kritische Verhältnis.
- 3. **Tabelle der kumulierten Wahrscheinlichkeiten:** Erstellen Sie eine Tabelle mit der kumulierten Wahrscheinlichkeit F(x) für jede mögliche Bestellmenge x.
- 4. **Optimale Bestellmenge:** Bestimmen Sie die optimale Bestellmenge x_{opt} , die der Bäcker backen sollte.

Aufgabe 3: Periodische Lagerhaltungspolitik (r, S)

Ein Fachgeschäft für Wander-Ausrüstung verkauft einen speziellen Typ Wanderstiefel. Die Nachfrage ist annähernd normalverteilt. Der Bestand wird alle 4 Wochen (r=4) überprüft. Die Lieferzeit vom Hersteller beträgt konstant 2 Wochen (L=2).

Daten zur wöchentlichen Nachfrage:

- Erwartungswert (μ_D): 20 Paar
- Standardabweichung (σ_D): 8 Paar

Das Geschäft strebt einen β -Servicegrad von 98% an. Das bedeutet, dass 98% der gesamten Nachfrage direkt aus dem Lager bedient werden soll.

Ihre Aufgaben:

- 1. **Risikozeitraum:** Bestimmen Sie den Risikozeitraum für diese (r, S)-Politik.
- 2. **Nachfrageparameter:** Berechnen Sie den Erwartungswert und die Standardabweichung der Nachfrage während des gesamten Risikozeitraums.
- 3. **Optimales Bestellniveau:** Bestimmen Sie das optimale Bestellniveau S_{opt} , analog zur Vorlesung.

Aufgabe 4: Bestellpunkt-Politik (s, q) mit Undershoot

Ein Händler für Elektronikbauteile verwendet für ein bestimmtes Bauteil eine (s,q)-Politik. Die tägliche Nachfrage D ist normalverteilt mit $\mu_D=100$ und $\sigma_D=20$. Die Wiederbeschaffungszeit beträgt L=5 Tage. Es wird eine feste Bestellmenge von q=800 Stück verwendet.

Das Unternehmen möchte einen β -Servicegrad von 99% erreichen.

Ihre Aufgaben:

- 1. **Undershoot:** Berechnen Sie den Erwartungswert $\mathrm{E}\{U\}$ und die Varianz Var $\{U\}$ des Undershoots. Nehmen Sie an, dass die Nachfrageverteilung normalverteilt ist.
- 2. Nachfrage im Risikozeitraum: Berechnen Sie den Erwartungswert μ_Y und die Varianz σ_Y^2 der Nachfrage im gesamten Risikozeitraum ($Y = Y^{(L)} + U$).
- 3. **Optimaler Bestellpunkt:** Bestimmen Sie den optimalen Bestellpunkt s_{opt} , der für den angestrebten Servicegrad nötig ist. Nehmen Sie an, dass der Fehlbestand am Anfang eines Zyklus vernachlässigbar klein ist $(G_Y^{(1)}(s+q)\approx 0)$.