Colorindo

Iniciante - Difícil

Nome do arquivo fonte: colorir.c, colorir.cpp, colorir.pas, colorir.java, ou colorir.py

A Sociedade Brasileira das Cores (SBC) é uma editora de livros de colorir. As crianças adoram os livros da SBC porque suas figuras, depois de pintadas, ficam muito coloridas e bonitas. Isso acontece porque a SBC se preocupa em não deixar grandes regiões contínuas em suas figuras, que devem ser pintadas com uma cor só.

Até agora, o processo de verificar se uma figura tinha uma região contínua grande era completamente visual, mas a SBC resolveu automatizar esse processo e você foi contratado para programar uma parte desse sistema.

Uma figura é representada por uma grade, de dimensão N por M. Cada quadrado dessa grade é representado por uma coordenada (i,j), com $1 \le i \le N$ e $1 \le j \le M$. Por exemplo, a coordenada (1,5) representa o quadrado na primeira linha e quinta coluna, enquanto que a coordenada (3,7) representa o quadrado na terceira linha e sétima coluna. As linhas são contadas de baixo para cima e as colunas da esquerda para a direita.

Cada quadrado pode estar vazio ou cheio. Assumimos que uma criança só vai pintar sobre quadrados vazios e se ela pintar um quadrado de uma cor, ela irá pintar os oito vizinhos da mesma cor, desde que eles estejam vazios e que ela não saia da área da figura.

Dada a figura e a coordenada onde uma criança vai começar a pintar, sua tarefa é descobrir quantos quadrados ela irá pintar.

Entrada

A primeira linha da entrada contém 5 números inteiros, N, M, X, Y e K. Os números inteiros N e M são respectivamente o número de linhas e colunas da grade, enquanto que (X,Y) é a coordenada onde a criança vai começar a pintar e K é o número de quadrados cheios na figura.

Seguem se K linhas, cada uma com dois inteiros A e B, que são as coordenadas de um quadrado cheio.

Garantimos que o quadrado na posição (X, Y) está sempre vazio.

Saída

Seu programa deve imprimir uma linha contendo o número de quadrados pintados pela criança.

Restrições

- 1 < N, M < 200.
- $1 \le K \le 10000$.
- $1 \le X, A \le N$.
- $1 \le Y, B \le M$.

${\bf Exemplos}$

1 5 1 2 2 1 1 1 4	

Entrada	Saída	
5 5 3 3 7	18	
2 2		
2 3		
2 4		
3 2		
3 4		
4 2		
4 3		

Neste exemplo de caso de teste, temos uma figura de dimensões 5×5 . A criança começa a pintar na posição (3,3). Na figura abaixo ilustramos este caso. A posição que a criança inicia está marcada com a letra "X", e os quadrados que a criança consegue pintar estão destacandos em cinza claro. Note que ela consegue pintar o quadrado (4,4), pois este quadrado é um dos quadrados que ela consegue pintar após ter pintado o quadrado (3,3).

Entrada	Saída
10 10 5 5 22	20
2 2	
2 3	
2 4	
2 5	
2 6	
2 7	
2 8	
3 2	
3 8	
4 2	
4 8	
5 2	
5 8	
6 2	
6 8	
7 2	
7 3	
7 4	
7 5	
7 6	
7 7	
7 8	

Neste exemplo de caso de teste, temos uma figura de dimensões 10×10 . A criança começa a pintar na posição (5,5). Na figura abaixo ilustramos este caso. A posição que a criança inicia está marcada com a letra "X", e os quadrados que a criança consegue pintar estão destacandos em cinza claro.

