Hausaufgaben 1: Petrinetze

Version vom: 17. März 2014

Übungsaufgabe 1.1 P/T-Netze

Die Größe eines P/T-Netzes $\mathcal{N} = \langle P, T, F, W, m_0 \rangle$ sei definiert durch $|\mathcal{N}| := |P| + |T| + |F|$ (d.h. die Kantengewichte und die Anfangsmarkierung zählen nicht mit). Geben Sie jeweils ein P/T-Netz minimaler Größe, aber mit $|\mathcal{N}| > 0$ an, bei dem

- a) keine Transition schalten kann,
- b) eine Transition genau einmal schalten kann,
- c) eine Transition beliebig oft schalten kann, die Gesamtmarkenzahl aber beschränkt bleibt.
- d) eine Transition beliebig oft schalten kann, die Gesamtmarkenzahl aber nicht beschränkt bleibt

Geben Sie den Errreichbarkeitsgraphen an.

Übungsaufgabe 1.2 Sei das folgende P/T-Netz gegeben:

- 1. Bestimme die Nachfolgemarkierung m', wenn t in der Markierung $m=4'p_1+2'p_2+2'p_4$ schaltet.
- 2. Bestimme die Menge aller Markierungen, für die t im Netz aktiviert ist. Ist die Menge endlich?
- 3. Bestimme die Menge aller Markierungen, für die t im Netz nicht aktiviert ist. Ist die Menge endlich?

1)
$$m(p) \ge \sim W(p,t) \land m'(p) = m(p) - \sim W(p,t) + \sim W(t,p))$$

p1 4 3 1 4 3 0
p2 2 2 0 2 2 0
p3 0 0 4 0 0 4
p4 2 0 9 2 0 7

- Aktiviert, wenn ∀p ∈ *t m(p) ≥ W(p,t) unendlich, ab
 p1 ≥ 3 Markierungen hat und p2 ≥ 2 Markierungen hat
- 3) p1 < 3 Markierungen und/oder p2 < 2 Markierungen $\exists p \in {}^*t \cdot m(p) \le W(p,t)$

Übungsaufgabe 1.3 Angenommen, wir haben einen Algorithmus A(N, p), der zu einem beliebigen P/T-Netz N und einer Stelle p entscheidet, ob N eine Markierung \mathbf{m} mit $\mathbf{m}(p) = 0$ erreichen kann.

Zeige, wie man mit Hilfe von Algorithmus A(n,p) einen Algorithmus B(N) konstruiert, der zu einem beliebigen P/T-Netz N entscheidet, ob N die leere Markierung \emptyset erreichen kann.

Tipp: Es ist notwendig, die Eingabe N von B(N,m) in ein Netz N' zu transformieren, das man dann an A weiterreicht.

Übungsaufgabe 1.4 Gegeben sei das folgende P/T Netz N. Sei $m_1 = 3'a + 2'b + 4'c + d$.

- 1. Gilt $m_1 \stackrel{u}{\rightarrow} ?$
- 2. Für welche m' gilt $m_1 \xrightarrow{u} m'$? Gibt es mehrere?
- 3. Für welche $k \in \mathbb{N}$ gilt $(m_1 \{k'a\}_b) \xrightarrow{u} ?$
- 4. Für welche $k \in \mathbb{N}$ gilt $(m_1 \{k'c\}_b) \xrightarrow{u} ?$
- 5. Bestimme die Menge aller Markierungen, für die die Transition u nicht aktiviert ist.

1)	$m(p) \ge \frac{1}{2}$	~W(p,u) ^ m'(p)	$= m(u) \cdot$	- ~W(p,u)	+ ~W(u	,p))
a	3	2	2	3	1	0	
b	2	1	1	2	1	0	
С	4	0	6	4	0	2	
d	1	0	5	1	0	4	
JA!							

- 2) s.o.
- 3) $k \in \{0,1\}$
- 4) $k \in NI$
- 5) $\{k'a\}\{l'b\}\{m'c\}\{n'd\}$. $k' < 2 \lor l' < 1$