Tema 7

2.46 Definición. Se dice que una sucesión $\{x_n\}$ satisface la **condición de Cauchy**, si para cada número positivo, $\varepsilon > 0$, existe un número natural m_{ε} , tal que para todos $p, q \in \mathbb{N}$ con $p \ge m_{\varepsilon}$ y $q \ge m_{\varepsilon}$ se verifica que $|x_p - x_q| < \varepsilon$.

La demostración *rigurosa* de la *suficiencia* de esta condición no es fácil, ya que debe probarse la *existencia* de un límite y ello no puede hacerse sin un *conocimiento profundo de la estructura de los números reales* el cual no llegaría hasta 1872 gracias a los trabajos de Weierstrass, Cantor y Dedekind.

2.47 Teorema (Teorema de complitud de \mathbb{R}). *Una sucesión de números reales es convergente si, y sólo si, verifica la condición de Cauchy.*

Demostración. Supongamos que $\{x_n\}$ verifica la condición de Cauchy. Probemos primero que $\{x_n\}$ está acotada. Tomando $\varepsilon=1$, la condición de Cauchy implica que hay $m_0\in\mathbb{N}$ tal que $|x_p-x_{m_0}|<1$ para todo $p\geqslant m_0$. Como $|x_p|\leqslant |x_p-x_{m_0}|+|x_{m_0}|$, deducimos que $|x_p|<1+|x_{m_0}|$ para $p\geqslant m_0$. En consecuencia si definimos $M=\max\{|x_1|,|x_2|,\ldots,|x_{m_0}|,1+|x_{m_0}|\}$, cuya existencia está garantizada por ser un conjunto finito, obtenemos que $|x_n|\leqslant M$ para todo $n\in\mathbb{N}$. Hemos probado así que $\{x_n\}$ está acotada.

El teorema de Bolzano-Weierstrass nos dice que $\{x_n\}$ tiene una sucesión parcial convergente $\{x_{\sigma(n)}\} \to x$. Probaremos que $\{x_n\} \to x$. Dado $\varepsilon > 0$, por la condición de Cauchy, existe $m_1 \in \mathbb{N}$ tal que para todos $p,q \geqslant m_1$ se verifica que $|x_p - x_q| < \varepsilon/2$. También existe $m_2 \in \mathbb{N}$ tal que para todo $n \geqslant m_2$ se verifica que $|x_{\sigma(n)} - x| < \varepsilon/2$. Sea $m = \max\{m_1, m_2\}$. Para todo $n \geqslant m$ se verifica que:

$$|x_n - x| \le |x_n - x_{\sigma(n)}| + |x_{\sigma(n)} - x| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Lo que prueba que $\{x_n\}$ converge a x.

Recíprocamente, si $\{x_n\}$ es convergente y lím $\{x_n\}=x$, dado $\varepsilon>0$, hay un número $m_{\varepsilon}\in\mathbb{N}$ tal que para todo número natural $n\geqslant m_{\varepsilon}$ se tiene que $|x_n-x|<\varepsilon/2$. Deducimos que si p,q son números naturales mayores o iguales que m_{ε} entonces

$$|x_p - x_q| \le |x_p - x| + |x - x_q| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Por tanto la sucesión $\{x_n\}$ verifica la condición de Cauchy.

2.4.2. Límites superior e inferior

Sea $\{x_n\}$ una sucesión **acotada** y para cada $n \in \mathbb{N}$ definamos

$$A_n = \{x_p : p \geqslant n\}$$

Como $A_n \subseteq A_1$ y, por hipótesis, A_1 es un conjunto acotado, A_n también está acotado. Definamos

$$\alpha_n = \inf(A_n), \qquad \beta_n = \sup(A_n)$$

Como $A_{n+1} \subseteq A_n$ se tiene que $\alpha_n \le \alpha_{n+1}$, $\beta_{n+1} \le \beta_n$. Por tanto la sucesión $\{\alpha_n\}$ es creciente y $\{\beta_n\}$ es decreciente. Además $\alpha_1 \le \alpha_n \le \beta_n \le \beta_1$, para todo $n \in \mathbb{N}$, y concluimos, por el teorema 2.14, que ambas sucesiones son convergentes. El número $\alpha = \lim \{\alpha_n\}$ se llama **límite inferior**

de la sucesión $\{x_n\}$ y se representa por lím inf $\{x_n\}$ y también $\underline{\text{lím}}\{x_n\}$. El número $\beta = \text{lím}\{\beta_n\}$ se llama **límite superior de la sucesión** $\{x_n\}$ y se representa por lím sup $\{x_n\}$ y también por $\overline{\text{lím}}\{x_n\}$. Nótese que $\alpha \leq \beta$ y además α y β vienen dados por:

$$\alpha = \lim \{\alpha_n\} = \sup \{\alpha_n : n \in \mathbb{N}\}, \qquad \beta = \lim \{\beta_n\} = \inf \{\beta_n : n \in \mathbb{N}\}$$

2.61 Teorema. Una sucesión acotada es convergente si, y sólo si, su límite superior y su límite inferior son iguales, en cuyo caso ambos coinciden con el límite de la sucesión.

Demostración. Sea $\{x_n\}$ acotada, $\alpha = \liminf\{x_n\}$, $\beta = \limsup\{x_n\}$. Supongamos que $\{x_n\}$ es convergente con $\lim\{x_n\} = x$. Dado $\varepsilon > 0$, existe $m_0 \in \mathbb{N}$ tal que para todo $p \ge m_0$ es $x - \varepsilon/2 < x_p < x + \varepsilon/2$. Por tanto $x - \varepsilon/2$ es un minorante de $A_{m_0} = \{x_p : p \ge m_0\}$ y, en consecuencia, $x - \varepsilon/2 \le \alpha_{m_0}$. También, por análogas razones, $\beta_{m_0} \le x + \varepsilon/2$. Como además $\alpha_{m_0} \le \alpha \le \beta \le \beta_{m_0}$, resulta que:

$$x - \varepsilon/2 \leqslant \alpha_{m_0} \leqslant \alpha \leqslant \beta \leqslant \beta_{m_0} \leqslant x + \varepsilon/2 \tag{2.12}$$

De donde se sigue que $\beta - \alpha \le \varepsilon$. Hemos probado que para todo $\varepsilon > 0$ es $\beta \le \alpha + \varepsilon$ lo que, como ya sabemos, implica que $\beta \le \alpha$ y, en consecuencia $\alpha = \beta$. Deducimos ahora de las desigualdades 2.12 que, para todo $\varepsilon > 0$, $x - \varepsilon/2 \le \alpha = \beta \le x + \varepsilon/2$ y, por tanto, $x \le \alpha = \beta \le x$, o sea, $x = \alpha = \beta$.

Recíprocamente, si $\alpha = \beta$, como para todo $n \in \mathbb{N}$ se verifica que $\alpha_n \leqslant x_n \leqslant \beta_n$, podemos aplicar el principio de las sucesiones encajadas y deducimos que $\{x_n\}$ es convergente y $\lim \{x_n\} = \alpha = \beta$.

- **2.62 Definición.** Sea $\{x_n\}$ una sucesión de números reales.
- i) Si $\{x_n\}$ no está mayorada definimos $\limsup \{x_n\} = +\infty$.
- ii) Si $\{x_n\}$ no está minorada definimos $\liminf\{x_n\} = -\infty$.
- iii) Si $\{x_n\}$ está mayorada, $\beta_n = \sup\{x_p : p \ge n\}$, y $\{\beta_n\} \to \beta \in \mathbb{R} \cup \{-\infty\}$, definimos lím $\sup\{x_n\} = \beta$.
- iv) Si $\{x_n\}$ está minorada, $\alpha_n = \inf\{x_p : p \ge n\}$, y $\{\alpha_n\} \to \alpha \in \mathbb{R} \cup \{+\infty\}$, definimos $\liminf\{x_n\} = \alpha$.

Para todo $x \in \mathbb{R}$ se conviene que $-\infty < x < +\infty$.

2.63 Proposición. Sea $\{x_n\}$ una sucesión cualquiera de números positivos. Se verifica que:

$$\underline{\lim} \left\{ \frac{x_{n+1}}{x_n} \right\} \leqslant \underline{\lim} \left\{ \sqrt[n]{x_n} \right\} \leqslant \overline{\lim} \left\{ \sqrt[n]{x_n} \right\} \leqslant \overline{\lim} \left\{ \frac{x_{n+1}}{x_n} \right\}$$
 (2.13)