Advanced Micro II - Problem set 2 due date: May, 15th

Problem 1 (2p) A risk averse agent (entrapreneur) considers a project with investment I. Agents has no money and must get them from the principal. Return on investment is random and equal to \bar{V} with probability $\pi(e)$ or \underline{V} with probability $1 - \pi(e)$, where $e \in \{0,1\}$ is agent's effort. Assume $\bar{V} > \underline{V}$ and $\pi(1) > \pi(0)$. A contract specifies $\{\bar{z},\underline{z}\}$, i.e. an amount to give back as a function of project's outcome. Agents utility is u(x) - e, where x is his net income. Outside option is equal to \tilde{u} .

- write the principal's problem that wants to implement e = 1.
- characterize the optimal contract.
- now assume principal wants to implement e=1 but under limited liability, i.e. such that only nonnegative payments are allowed (in all cases). What is the highest I, that he would like to lend? Compare with the FB.

Problem 2 (2p) For a continuum of actions prove that if f(q|a) has MLRP then $\frac{f_a(q|a)}{f(q|a)}$ is increasing with q.

Problem 3 (3p) Consider the hidden information problem as analyzed during classes but with three types $\{\underline{\theta}, \hat{\theta}, \overline{\theta}\}$ with probabilities $\underline{\lambda}, \hat{\lambda}, \overline{\lambda}$ summing up to 1. For simplicity assume $\overline{\theta} - \hat{\theta} = \hat{\theta} - \underline{\theta} = \Delta \theta$. Redo the first and second best calculations. In the second best when analyzing (6) IC constraints think carefully which of them would be binding.

Problem 4 (3p) Consider the hidden information problem as analyzed during classes. Redo the first and second best calculations for the more general utility function of the agent: $u(w) - C(q, \theta)$, where u is strictly increasing, strictly concave and differentiable, while differentiable C satisfies: $C'_q > 0$, $C''_{q,q} > 0$, $C'''_{q,q} > 0$, $C'''_{q,q,\theta} > 0$. Check first, wether the Spence-Mirrlees conditions is satisfied.