2025. március 19-i gyakorlat ¹

Kétmintás paraméteres próbák és ANOVA

1. Az angliai New Dumber golflabdagyárában egy újfajta golflabda borítást fejlesztettek ki. A tesztek azt mutatták, hogy ez az új borítás jóval ellenállóbb, mint a hagyományos. Felmerült azonban a kérdés hogy az új borítás nem változtatja-e meg az átlagos ütéstávolságot. Ennek eldöntésére 42 labdát próbáltak ki, 26 hagyományosat és 16 labdát az újak közül. A labdákat géppel lőtték ki, elkerülve ezzel az emberi tényező okozta szóródást. A yardban mért ütéstávolságok összesítő adatait, mely távolságokat mindkét esetben normális eloszlásúnak tételezzük fel, az alábbi táblázat tartalmazza:

Borítás	Mintaelemszám	Mintaátlag	Korrigált empirikus szórásnégyzet
Hagyományos	26	271.4	35.58
Új	16	268.7	48.47

- (a) 10%-os szignifikancia szinten (90%-os megbízhatósági szinten) igazoljuk, hogy nincs különbség az ütéstávolságok szórása között!
- (b) Az (a) pontbeli szinten vizsgáljuk meg, hogy az új borítás megváltoztatja-e az átlagos ütéstávolságot!
- 2. Informatikus hallgatók a Programozás 1. tantárgy keretein belül választhattak a félév elején, hogy melyik nyelven szeretnének megtanulni programozni. A csoport egyik része a Python, a másik fele a Java nyelvet választotta. Az első zárthelyi dolgozat alkalmával ugyanazon feladat elvégzésére képes kódot kellett megírnia a hallgatóknak. Az alábbi táblázat 6 véletlenszerűen kiválasztott Python nyelven programozó és 4 Java-t tanuló hallgató kódjának futási sebességeit tartalmazza:

Programozási nyelv	Futási idő (sec)					
Phyton	0.025	0.03	0.002	0.021	0.011	0.025
Java	0.001	0.0011	0.00012	0.00012		

Hipotéziseit pontosan megfogalmazva döntsön 5%-os szignifikancia szinten (azaz 95%-os megbízhatósági szinten), hogy a Python nyelven kódoló hallgatók futási idejének átlaga magasabb-e, mint a Java-t preferálóké! A futási időről feltehetjük, hogy normális eloszlást követ. (A szöveg kissé eltér a forrásként használttól, ami a megoldás menetét is befolyásolja.)

SPSS: Analyze \rightarrow Compare Means \rightarrow Independent-Samples T Test

- 3. Egy áruházból kifelé menet 500 főt, köztük 350 nőt és 150 férfit kérdeztek meg véletlenszerűen arról, hogy vásároltak-e. A nők közül 210-en, a férfiak közül 60-an válaszoltak igennel. Ellenőrizze 5%-os szignifikanciaszinten azt a feltevést, hogy a nők legalább 10%-ponttal nagyobb arányban vásárolnak, mint a férfiak!
- 4. Az egyik országos közvélemény-kutató cég 1000 elemű független, azonos eloszlású mintával dolgozik. Két, egymás után 1 hónapos eltéréssel megismételt közvélemény-kutatás eredménye szerint valamely politikust a lakosság 32%-a, illetve 38%-a tartotta rokonszenvesnek. Vizsgáljuk meg 5%-os szignifikanciaszinten azt a feltevést, hogy adott politikus iránt nőtt-e a rokonszenv!

¹A feladatok Dr. Baran Sándor "Feladatok a hipotézisvizsgálat témaköréből" című oktatási segédanyagából, Pecsora Sándor Statisztika 2 fóliáiról és korábbi ZH feladatokból származnak.

5. Az Debreceni Egyetemen az egyik statisztika szemináriumvezető minden hétfőn, szerdán és pénteken autóval jár ki a Tócóskertből a város másik végén fekvő Kassai úti campusra. Otthonról mindig azonos időben indul el és ugyanazon az útvonalon autózik. Úgy érzi azonban, hogy a menetideje függ attól, hogy a hét melyik napján van órája. Ezért aztán márciusban, áprilisban és májusban véletlenszerűen kiválasztott 5-5 hétfőt, szerdát és pénteket és lejegyezte a menetidőket. Adatainak összegzését az alábbi táblázat tartalmazza:

Nap	Menetidő				Összeg	Négyzet összeg	
			(x)			$(\sum x)$	$(\sum x^2)$
Hétfő	28	34	29	34	30	155	4837
Szerda	24	27	25	25	22	123	3039
Péntek	25	28	27	26	21	127	3255
Összesen						405	11 131

(a) Töltse ki a szórásfelbontó táblázatot!

A szóródás oka	Eltérés négyzetösszeg	df	σ^2 becslése	F
Utazás napja	SSK =	M-1=	$s_k^2 =$	$s_k^2/s_b^2 =$
Hiba	SSB =	n-M=	$s_b^2 =$	
Összesen	SST $=$	n-1=		

(b) Hipotéziseit pontosan megfogalmazva döntsön 1%-os szinten, igaz-e a szemináriumvezető sejtése!

SPSS: Analyze \rightarrow Compare Means \rightarrow One-Way ANOVA