Оптика.			
Закон преломления:	$n_1 \sin \varphi_1 = n_2 \sin \varphi_2$	Электромагнитное поле сферической волны:	$ec{H} = k^2 (ec{n} imes ec{p_0}) rac{e^{i(kr - \omega t)}}{r}, \ ec{E} = ec{H} imes ec{n}, k = rac{\omega}{r}, ec{n} = rac{ec{r}}{r}$
Закон отражения:	Угол падения равен углу отраже-		V
	ния.		
Формула тонкой линзы:	$\frac{1}{F} = \frac{1}{f} + \frac{1}{d}$ $\frac{1}{F} = (n-1)(\frac{1}{R_1} + \frac{1}{R_2}) («-» пе-$		
Фокусное расстояние че-	$\frac{1}{F} = (n-1)(\frac{1}{R_1} + \frac{1}{R_2})$ («-» пе-		
рез радиусы кривизны:	ред $\frac{1}{R_i}$, если соответствующая по-		
	верхность вогнутая)		
Фокусное расстояние двух линз:	$\frac{1}{F} = \frac{1}{F_1} + \frac{1}{F_2} - \frac{1}{F_1 F_2}$		
Волновое уравнение:	$\frac{1}{v^2} \frac{\partial^2 \vec{E}}{\partial t^2} - \Delta \vec{E} = 0, \frac{1}{v^2} \frac{\partial^2 \vec{H}}{\partial t^2} - \Delta \vec{H} = 0$		
Скорость света в среде:	$v = \frac{c}{n} = \frac{c}{\sqrt{\epsilon \mu}}$		
Уравнение Гельмгольца:	$v = \frac{c}{n} = \frac{c}{\sqrt{\epsilon \mu}}$ $\Delta \vec{E} + \frac{\omega^2}{v^2} \vec{E} = 0, \Delta \vec{H} + \frac{\omega^2}{v^2} \vec{H} = 0$		
Плоская волна:	$\vec{E}(x,t) = \vec{E}_1 \cos((\vec{k},\vec{x}) - \omega t + \varphi_1)$		
Комплексная амплитуда:	$\vec{E}(x,t) = \vec{E_0} \exp(i(\vec{k},\vec{x}) - \omega t)$		
Волновое число:	$ \vec{k} = \frac{\omega}{v} = \frac{\omega}{c} n, \vec{k}$ задаёт направле-		
	ние распространения волны.		
Фазовая скорость волны:	$v = \frac{\omega}{k} = \frac{c}{n}$ $\lambda = vT = \frac{C}{nV} = \frac{2\pi c}{n\omega} = \frac{\lambda_0}{n}, \lambda_0 - \frac{\lambda_0}{n}$		
Длина волны:	$\lambda = vT = \frac{C}{nV} = \frac{2\pi c}{n\omega} = \frac{\lambda_0}{n}, \lambda_0 - \mu$ длина волны в вакууме.		
Фаза волны:	$\varphi = (\vec{k}, \vec{r}) - \omega t$		
Связь амплитуд \vec{H} и \vec{E} :	$\sqrt{\varepsilon}E_0 = \sqrt{\mu}H_0$		
Уравнения Максвелла для плоских волн:	$ \sqrt{\varepsilon}E_0 = \sqrt{\mu}H_0 $ $ \vec{k} \times \vec{E} = \frac{\omega}{c}\vec{B}, (\vec{k}, \vec{D}) = 0, $ $ \vec{k} \times \vec{H} = \frac{\omega}{c}\vec{D}, (\vec{k}, \vec{B}) = 0 $ $ A = A_0 \frac{e^{ikr - i\omega t}}{c} $		
Расходящаяся сфериче- ская волна:	,		
Сходящаяся сферическая волна:	$A = A_0 \frac{e^{-ikr - i\omega t}}{r}$		