Study Week Report 5

Paper Review

Regularized Policy Gradients: Direct Variance Reduction in Policy Gradient Estimation

• ACML 2015

Author

- Tingting Zhao & Jucheng Yang, Tianjin University of Science and Technology
- Gang Niu, The University of Tokyo
- Ning Xie, Tongji University

Content

- the author stress that in policy gradient, the **estimate of gradient** is of high variance. So they propose a direct method to decrease the vairance, that put the variance of gradient into evalution function as a punishment term. The common policy gradient loss function is $E(R_{\tau})$, and they change it into $E_{\theta}[R_{\tau}] \lambda \cdot Var(\nabla_{\theta} E_{\theta}[R_{\tau}])$.
- Author design three experiments to testify the algorithm : A manmade function , Mountain Car , Stoke Based Rendering System

Thoughts

- its aim is to decrease the variance of the gradient estimate, and may have similar effect as directly decrease variance.
- the last experiment , Stoke Based Rendering System, is impressive

Two methods for policy gradient

Solving Linear equation

• $f(x) = f(x_s) + (x - x_s) \cdot \nabla f(x_s) + o(x - x_s)^2$ when $x - > x_s$ we can take it as $f(x) = f(x_s) + (x - x_s) \cdot \nabla f(x_s)$. Thus to calculate $\nabla f(x)$ we just need to get $f(x_s + \delta_i)$ for n times. and we can get n equations with the form $f(x_s + \delta_i) - f(x_s) = \nabla \cdot \delta_i$. calculate its inverse is suffice to get its gradient.

Sampling

• to calculate $\nabla(\int_{\tau} p_{\theta}(\tau) \cdot R_{\tau}) = \int_{\tau} p_{\theta}(\tau) \cdot \nabla log(p_{\theta}(\tau)) \cdot R_{\tau} = E(log(p_{\theta}(\tau)) \cdot R_{\tau})$. And just to sample according this formula to get the gradient.

Proposed Method

Optimize with hard constraint

First We try to use the KKT to convert the variance limit but failed.

Formalization consider the start point s_0 , $Max(E(R_{s_0}))$ s.t. $Var(R_{s_0}) \leq C$. By KKT of lagarian, we can have the equal form of set of equation

$$\nabla [E(R_{s_0}) - \lambda (Var(R_{s_0}) - C)] = 0, \ \lambda \cdot [Var(R_{s_0}) - C] = 0, \ Var(R_{s_0}) - C \le 0$$

and if we limit the answer to be interior of the possible solution we can relax the condition to $\nabla E(R_{s_0}) = 0$, $Var(R_{s_0}) - C < 0$ However it's not trivial to solve $\nabla E(R_{s_0}) = 0$.

Penalty Item soft constriant

Then we consider the soft bound

Notice that different from ordinary Reinforcement Learning, we are now specifically optimizing $E(R_{s_0})$ and $Var(R_{s_0})$ s_0 is the start point, and the other states is of no concern to us.

Now we try to optimize
$$max(E(R_{s_0}) - \lambda \sqrt{E(R_{s_0}^2) - E(R_{s_0})^2})$$

Given a ϵ -greedy θ parameterized strategy π_{θ} , we directly sample the gradient and then take the gradient of it, Pay attention we are optimizing the ϵ -greedy policy. and we decrease the ϵ as progressing further.

Mathmatical Calculations

let the benifit function
$$J(\theta) = \int_{\tau} p_{\theta}(\tau) \cdot R_{\tau} - \lambda \sqrt{\int_{\tau} p_{\theta}(\tau) \cdot R_{\tau}^2 - (\int_{\tau} p_{\theta}(\tau) \cdot R_{\tau})^2}$$

$$\nabla_{\theta}J(\theta) = \int_{\tau} (p_{\theta}(\tau)\nabla log(p_{\theta}(\tau))\cdot R_{\tau}) - \lambda \cdot \frac{\int_{\tau} (p_{\theta}(\tau)\nabla log(p_{\theta}(\tau))\cdot R_{\tau}^2) - 2\int_{\tau} (p_{\theta}(\tau)\nabla log(p_{\theta}(\tau))\cdot R_{\tau})\cdot \int_{\tau} p_{\theta}(\tau)\cdot R_{\tau}}{2\sqrt{\int_{\tau} p_{\theta}(\tau)\cdot R_{\tau}^2 - (\int_{\tau} p_{\theta}(\tau)\cdot R_{\tau})^2}}$$

writing into expectation form
$$\nabla J(\theta) = E(log(p_{\theta}(\tau)) \cdot R_{\tau}) - \lambda \frac{E[log(p_{\theta}(\tau)) \cdot R_{\tau}^2] - 2E[R_{\tau}] \cdot E[log(p_{\theta}(\tau)) \cdot R_{\tau}]}{2\sqrt{E[R_{\tau}^2] - E[R_{\tau}]^2}}$$

Thus, we need to sample four quantities in one turn.

Mathmatical Interpretation for λ

- by Chipchoff's inequality $P(|X-E(X)|>\epsilon)<\frac{Var(X)}{\epsilon^2}$
- we take outcome by pessimistic result less than $E(x)-\lambda$ with probability at most $\frac{Var(X)}{\epsilon^2}$ this bound is tight without other information besides second momentum

Designed Experiment

Aim of experiment

To show that use our algorithm will get a better worst-case reward.

- 1. A man-made MDP with a high-risk act that averagely benefits more. And an act that gain with a lower risk but gain less reward
- 2. ...