PADPy 2020/2021

Praca domowa nr 1 (max. = 15 p.)

W ramach niniejszego projektu zaimplementujesz i przetestujesz algorytm spektralny analizy skupień (*spectral clustering*) oparty na grafie kilku najbliższych sąsiadów punktów z wejściowego zbioru danych.

Termin oddania pracy: 23.11.2020, godz. 10:00.

Prace domowe należy przesłać za pośrednictwem platformy Moodle – jedno archiwum .zip¹ o nazwie typu Nazwisko_Imie_NrAlbumu_Nick_pd1.zip. W archiwum znajdować się powinien jeden katalog, Nazwisko_Imie_NrAlbumu_Nick_pd1, dopiero w którym umieszczone zostaną następujące pliki:

- plik spectral.py zawierający implementacje funkcji Mnn(), Mnn_graph(), Laplacian_eigen(), spectral clustering() itd.; [12 p.]
- plik testy.ipynb i testy.html testy poprawności zaimplementowanych metod na przynajmniej trzech własnych zbiorach danych z \mathbb{R}^2 lub \mathbb{R}^3 (z ilustracjami m.in. w postaci wykresów); [3 p.]

Nazwy plików nie powinny zawierać polskich liter diakrytyzowanych (przekształć $a \rightarrow a$ itd.).

W nazwach plików wynikowych, Nazwisko_Imie_NrAlbumu_Nick_pd1.zip, Nick oznacza wybrany przez Państwa pseudonim, którego będziemy używać do publikowania wyników (inny niż nazwa użytkownika na platformie Github).

1 Zadanie analizy skupień

Niech dana będzie macierz $\mathbf{X} \in \mathbb{R}^{n \times d}$ reprezentująca n punktów $\{x_1, \ldots, x_n\}$ w \mathbb{R}^d . Zadanie analizy skupień² (ang. cluster analysis) jest przykładem uczenia bez nadzoru. W dużym uproszczeniu, jego celem jest automatyczne znalezienie takiego podziału zbioru danych na k > 1 (dane z góry) parami rozłącznych i niepustych podzbiorów – zwanych skupieniami – tak by obserwacje należące do tego samego skupienia były do siebie jak najbardziej podobne (np. leżały "blisko" siebie), zaś obserwacje z dwóch różnych skupień były możliwie jak najbardziej od siebie odmienne.

2 Ocena jakości podziału

Wynikiem działania wszystkich rozpatrywanych tutaj algorytmów analizy skupień będzie ciąg $\mathbf{z} \in \{1, \dots, k\}^n$, taki że z_i określa, do którego z k skupień należy punkt x_i . Zachodzi oczywiście $(\forall j = 1, \dots, k)$ $(\exists i)$ $z_i = j$.

Zakładamy tutaj, że algorytm analizy skupień jest *dobry*, jeśli generuje podziały podobne do referencyjnych etykiet. Do oceny podobieństwa dwóch *k*-podziałów moga Państwo użyć następujących miar:

¹A więc nie: .rar, .7z itp.

² Zob. np. [Koronacki J., Ćwik J., Statystyczne systemy uczące się, EXIT, 2008, rozdz. 9] lub [Hastie T., Tibshirani R., Friedman J., The Elements of Statistical Learning, Springer, 2017, rozdz. 14.3] – http://web.stanford.edu/~hastie/ElemStatLearn/

- indeks Fowlkesa-Mallowsa (FM)³, zob. sklearn.metrics.fowlkes mallows score();
- skorygowany indeks Randa (AR)⁴, zob. sklearn.metrics.adjusted_rand_score().

Każdy z powyższych indeksów zwraca wartość równą 1, jeśli dwa dane k-podziały są równoważne. Im ich wartość jest dalej od 1, tym bardziej są one od siebie różne.

Uwaga 1: Brana będzie pod uwagę jakość kodu. Na przykład kod należy zamknąć w dobrze udokumentowane, wyspecjalizowane funkcje, tak by uniknąć powtórzeń itp. Kod powinien być dobrze udokumentowany (docstringi, komentarze). Algorytm, który Państwo implementują będzie wykrzystywany przy pracy domowej nr 4. Dlatego warto zadbać o jakość kodu i jego czytelność tak by za kilka miesięcy mogli się Państwo nim bez problemu posłużyć.

Uwaga 2: Mogą Państwo napisać własne klasy lub nie, zdefiniować dodatkowe funkcje pomocnicze itd. Mogą Państwo korzystać z pakietu numpy do reprezentacji macierzy (o pakiecie numpy opowiemy na wykładzie 9.11.2020).

Uwaga 3: Ponieważ Python stosuje indeksowanie od 0, dla wygody możesz założyć, że skupienia i punkty numerujemy od 0 do k-1.

Uwaga 4: Jeśli nie potrafisz czegoś zaimplementować samodzielnie, posłuż się gotowcem (w szczególności metoda spektralna jest już gdzieś zaimplementowana...) – uzyskasz przynajmniej choć kilka punktów (oraz poćwiczysz pisanie raportu). Własne trzy zbiory benchmarkowe też możesz wygenerować bez implementacji poniższych.

3 Algorytm spektralny i jego implementacja

Algorytm spektralny w wersji, którą tutaj zaimplementujesz, polega na zastosowaniu "zwykłej" procedury k średnich na odpowiednio zmodyfikowanej (poddanej różnym przekształceniom określonym przez widmo macierzy "bliskości" analizowanych punktów) macierzy \mathbf{X} .

Napisz funkcję spectral_clustering(X, k, M), która dla $\mathbf{X} \in \mathbb{R}^{n \times d}$, $k \geq 2$ oraz $M \in \mathbb{N}$ zwraca k-podział zbioru danych \mathbf{X} wyznaczony przy użyciu opisanych niżej podprocedur:

- 1. znajdowanie M najbliższych sąsiadów wszystkich punktów;
- 2. stworzenie grafu "sąsiedztwa" i uspójnienie go;
- 3. wyznaczenie odpowiednich k wektorów własnych jego laplasjanu;
- 4. zastosowanie algorytmu k średnich w nowej przestrzeni danych.

3.1 Macierz najbliższych sąsiadów

Napisz funkcję Mnn(X, M) (*M-nearest neighbors*), która dla $\mathbf{X} \in \mathbb{R}^{n \times d}$ oraz $M \in \mathbb{N}$ wyznacza macierz $\mathbf{S} \in \mathbb{N}^{n \times M}$, taką że $s_{i,j}$ jest indeksem *j*-tego najbliższego sąsiada x_i względem metryki euklidesowej.

W szczególności ma zachodzić $(\forall i)$ $s_{i,1} = \arg\min_{j \neq i} ||x_i - x_j||$ (przy założeniu, że odległości się nie powtarzają).

3.2 Macierz sąsiedztwa

Napisz funkcję Mnn_graph(S), która jako argument przyjmuje macierz $\mathbf{S} \in \mathbb{N}^{n \times M}$ wygenerowaną przy użyciu powyższej funkcji.

Funkcja ta generuje symetryczną macierz $\mathbf{G} \in \{0,1\}^{n \times n}$, taką że $g_{i,j} = 1$, jeśli $(\exists u) \ s_{i,u} = j$ lub $s_{j,u} = i$.

³ [Fowlkes E.B., Mallows C.L., A Method for Comparing Two Hierarchical Clusterings, Journal of the American Statistical Association 78(383), 1983, 553–569]

⁴[por. Hubert L., Arabie P., Comparing Partitions, Journal of the Classification 2, 1985, 193–218]

 ${f G}$ jest więc macierzą sąsiedztwa reprezentującą graf nieskierowany \tilde{G} o n wierzchołkach, taki że i-ty wierzchołek jest połączony z j-tym, jeśli x_i jest wśród M najbliższych sąsiadów x_j lub x_j jest wśród M najbliższych sąsiadów x_i .

Z oczywistych względów n nie może być zbyt duże (powiedzmy większe niż 50,000). W praktyce funkcja Mnn_graph(S) powinna zwracać macierz rzadką, zob. scipy.sparse w Pythonie lub pakiet Matrix (klasa dsRMatrix) w R. W niniejszym projekcie nie jest to wymogiem, ale zachęcam do poszerzenia swojej wiedzy i rozwoju nowych umiejętności.

Należy wykryć wszystkie składowe spójne (na przykład przy użyciu algorytmu przeszukiwania wszerz (BFS) lub w głąb (DFS). Jeśli graf \tilde{G} jest spójny, zwracamy \mathbf{G} bez dalszych modyfikacji.

Mogą Państwo wykorzystać gotowe implementacje tych algorytmów z pakietów Python-a.

W przeciwnym przypadku, zakładając, że w \tilde{G} jest p składowych spójnych, należy dodać do \tilde{G} dokładnie p-1 (nieskierowanych) krawędzi (w dowolny poprawny sposób), tak by \tilde{G} uspójnić. Dopiero tak zmodyfikowaną macierz sąsiedztwa zwracamy w wyniku działania funkcji.

3.3 Laplasjan i jego wektory własne

Funkcja Laplacian eigen(G, k) dla k > 1 i macierzy G jak wyżej:

- 1. wyznacza laplasjan grafu \tilde{G} , tj. $\mathbf{L} = \mathbf{D} \mathbf{G}$, gdzie \mathbf{D} jest macierzą diagonalną taką, że $d_{i,i}$ jest stopniem *i*-tego wierzchołka w \tilde{G} ;
- 2. wyznacza macierz $\mathbf{E} \in \mathbb{R}^{n \times k}$, której kolumny składają się z wektorów własnych macierzy \mathbf{L} odpowiadających 2., 3., . . . , (k+1) najmniejszej wartości własnej;
- 3. zwraca E jako wynik.

Do wyznaczania wektorów własnych używamy oczywiście funkcji "wbudowanej".

3.4 Algorytm k-średnich

Na tak wyznaczonej macierzy \mathbf{E} , należy uruchomić algorytm k-średnich. Jego gotową implementację znajdziesz w jednej z bibliotek.