Problem Chosen MCM Problem A

2021 MCM/ICM Summary Sheet

Team Control Number 2125756

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Team 2125756 Page 1

1 Hook

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2 Introduction

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

3 Model formulation

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec non-ummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam.

Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

3.1 Assumptions

- Scheduling
 - Only the minimum supplies required daily are delivered to delivery locations, i.e. no rotating schedules and stockpiling of supplies to avoid needing to deliver to each daily
 - Additional time for operations is not considered: no time is needed to be spent in between flights for loading supplies or recharging the drones, and no time is needed to land and deliver supplies at delivery locations

Packing

- Elements can be stacked in any configuration without structural limitations
- Flight path routing
 - Paths are perfectly straight
 - Every path only has either the delivery location or storage container as origin and destination
 - Paths are modeled in two dimensions
 i.e. no altitude changes are considered
 - Not considering effects of having multiple drones flying at once
- Environmental effects
 - Influences from wind are neglected

Team 2125756 Page 2

- The drones are assumed to be unobstructed by terrain
- The drones do not experience any malfunctions
- The earth's curve is neglected

3.2 Flight Path Sub-model

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

3.3 Packing Sub-model

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

3.4 Storage Location Determination

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue

quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

$$L_n = \sum_{i=1}^{m} p_i(x_i, y_i) / \sum_{i=1}^{m} p_i$$

where L_n = Location number within grouping n being number of distinct locations (1 to 3)

i = hospitals in the group

p = package demand of hospital i

x, y = longitude, latitude of hospital i

The output lists a discrete set of groupings of the hospitals with the corresponding locations of the storage containers for each hospital group. In figure 1, one potential combination of hospitals grouped to specific storage locations is shown.

3.5 Cost Function

I've copied the ten diff eqs from Numerical Prediction Model for Fungal Growth Coupled with Hygrothermal Transfer in Building Materials here:

$$\frac{\partial u}{\partial t} = \nabla \cdot (D_u \nabla u) + \theta f(u, n) - a(u, n)u - \gamma u \quad (1)$$

$$\frac{\partial v}{\partial t} = \nabla \cdot (D_v \nabla v) + a(u, n)u \tag{2}$$

$$D_u = \sigma_1 \cdot u \cdot n \tag{3}$$

$$\sigma_1 = \sigma_1(1+\delta), -0.5 < \delta < 0.5$$
 (4)

$$f(u,n) = \sigma_2 \left(\frac{f_1 n}{1 + f_2 n} \right) \cdot u \cdot \zeta(T, \phi) \tag{5}$$

Team 2125756 Page 3

$$\zeta(T,\phi) = a_1 exp(a_2\phi^2 + a_3T^2 + a_4\phi * T + a_5\phi + a_6T + a_7)$$
(6)

$$a(u,n) = \sigma_3 \cdot \frac{1}{\left(1 + \frac{u}{a_1}\right) \cdot \left(1 + \frac{n}{a_2}\right)} \tag{7}$$

$$\frac{\partial n}{\partial t} = D_n \nabla^2 n - f(u, n) \tag{8}$$

hygrothermal equations:

$$\frac{dH}{dT} \cdot \frac{\partial T}{\partial t} = \nabla \cdot (\lambda \nabla T) + h_v \nabla \cdot (\delta_p \nabla (\phi p_{sat})) \quad (9)$$

$$\frac{dw}{d\phi} \cdot \frac{\partial \phi}{\partial t} = \nabla \cdot (D_{\phi} \nabla \phi + \delta_p \nabla \phi p_{sat})) \tag{10}$$

Where P represents the total medpacks delivered, $\sum t$ is an estimate of the time for all the flights to occur, and S represents the space left after packing all the drones (computed via the packing algorithm). Also, C is our cost function output, the cost. The factor of 100000 dividing S is there to adjust the units of S (it being on the order of 10^5 while $\frac{P}{\nabla t}$ is on the order of 10^0) The time estimates are computed via the basic kinematic equation assuming constant speed, $\sum t = \sum \frac{d}{v_d}$ summed over all drone flights in the given plan. Here d is distance traveled in a specified flight and v_d is the max speed of the drone flying. This estimate of the time taken for a flight is assuming the drone is flying at max speed the whole way, and assuming equality of the time taken to fly to the hospital, and the time to fly back. The assumption of perfectly sequential ordering of the flights allows us to sum the times of individual flights to get the total time.

Results and Analysis

4.1 Model output

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean

faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus $\zeta(T,\phi) = a_1 exp(a_2\phi^2 + a_3T^2 + a_4\phi*T + a_5\phi + a_6T + a_7)$ eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Parameter sensitivity

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Limitations/ Further Work 4.3

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Team 2125756 Page 4

Figure 2: caption 1