Конструктивные модули ВТ

к.т.н. Никаноров А.В.

Содержание лекции

- Назначение конструктивных модулей (КМ)
- Составные части и уровни КМ

Рамы и стойки

Блоки и панели

Субблоки

Многокристальные модули

Назначение Конструктивных модулей

• Обеспечение физических процессов функционирования и защита от дестабилизирующих факторов.

- В конструктивных модулях (КМ) осуществляется:
 - электрическая коммутация
 - механическое крепление входящих в них КМ нижнего уровней.

Уровни конструктивных модулей

- 1. Многокристальные модули
- 2. Субблоки
- 3. Блоки и панели
- 4. Рамы и стойки

1. Многокристальные модули (многокристальные микросборки)

Пример многокристального модуля на керамическом основании для применений высокой надежности

2. Субблоки

Субблоки конструктивно объединяют на одной или нескольких монтажных платах исходные схемотехнические компоненты — микросхемы разной степени интеграции и электрорадиоэлементы.

1 – металлический каркас;

2 – печатная плата;

3 – винты;

4 - разъем;

5 – штыри-ловители

При высоких требованиях к постоянству температурного градиента и большой удельной мощности, выделяемой микросхемами, в качестве прокладки можно применять металлическую пластину (heat spreader)

Вычислительный субблок с кондуктивным охлаждением

Субблоки с кондуктивным охлаждением

2.1. Каркас

Каркасные конструкции субблоков применяют в ЭВМ, работающих в условиях интенсивных механических воздействий, или в многоплатных субблоках.

Количество плат в субблоках зависит от объема реализуемой схемы, плотности ее компоновки и допустимых размеров печатных плат. Для упрощения конструкции субблоки рекомендуется делать одноплатными.

Каркасы используют штампованные из стали или литые из алюминиевых сплавов.

Каркасы субблоков

2.2. Монтажная плата

Предназначена для установки схемотехнических компонентов и их электросоединения.

Основной метод геометрической компоновки микросхем – плоскостной многорядный.

Микросхемы со штырьковыми выводами устанавливают с одной стороны печатной платы,

с планарными выводами и бескорпусные — допускается устанавливать с двух сторон

монтажной платы.

Элементы стыковки и расстыковки

Если усилие расчленения велико, на лицевой панели монтируют специальное устройство для облегчения установки и съема типового элемента замены.

1 — рычаг; 2 — печатная плата; 3 — лицевая панель

Смонтированный субблок

3. Блоки и панели 28

- Блоки и панели <u>предназначены</u> для размещения модулей предыдущего уровня
- и представляют собой пространственную сборную или сварную конструкцию, на которой устанавливают:
- □ ответные части разъемов и узлы подвода питания и «земли»,
- **Принарматиче и межблочного монтажа.**
- В качестве последних можно использовать многослойные печатные и соединительные платы, разъемы, переходные колодки, плоские кабели, объемный монтаж.

Блоки и панели:

- должны быть удобными в сборке, наладке и эксплуатации;
- **≻удовлетворять требованию ремонтопригодности**;
- >обеспечивать защиту от внешних воздействий;
- >обеспечивать возможность внутреннего
- монтажа до их установки в раму или стойку;
- >обладать достаточной прочностью и
- жесткостью;
- >иметь минимальную массу.

3.1. Блоки и панели стационарных ЭВМ Блок с выдвижными субблоками

Монтажная панель (backplain)

3.3.2. Блоки и панели нестационарных ЭВМ

В нестационарных ЭВМ типовым элементом замены является, как правило, блок.

ATR (Aviation Transport Rack)

4. Рамы и стойки

Определения

• Рама

- Конструктивная единица, служащая для размещения и механического крепления одной или нескольких панелей
- Стойка (шкаф)
 - Закрытая конструкция, служащая для размещения рам с панелями и некоторого числа дополнительных устройств

ГОСТ 25122-82. Единая система электронных вычислительных машин. Конструкции базовые технических средств. Основные размеры

4.1. Рамы

Используются для размещения, крепления и электрического соединения блоков или панелей. Несущая деталь рамы — сварной или сборный каркас нормализованного профиля.

1 – сварной каркас;

2 – перемычка каркаса;

3 –

направляющие;

4 – крышки;

5 – блок

вентиляторов;

6 - кронштейн;

7 - разъем;

8 - панели

4.2. Стойки

- Стойка это несущая конструкция, предназначенная для:
- установки КМ, деталей и агрегатов, входящих в нее;
- объединения их электрическими и другими связями;
- подсоединения к внешним цепям;
- механической защиты.
 - 1 выходные разъемы стойки;
 - 2 кабельный ствол

Каркас стойки для установки вычислительных блоков

- 1. Верхняя панель
- 2. Вентиляционная панель (на заказ)
- 3. Поперечный монтажный профиль
- 4. Съемная боковая панель
- 5. Алюминиевый каркас
- 6. 19" монтажный профиль
- 7. Передняя дверь из высокопрочного стекла
- 8. Замок
- 9. Нижняя панель
- 10. Регулируемые ножки
- 11. 2" ролики
- 12. Перфорированная задняя

Каркас стойки для установки вычислительных блоков

- 1. Верхняя панель
- 2. Вентиляционная панель (на заказ)
- 3. Поперечный монтажный профиль
- 4. Съемная боковая панель
- 5. Алюминиевый каркас
- 6. 19" монтажный профиль
- 7. Передняя дверь из высокопрочного стекла
- 8. Замок
- 9. Нижняя панель
- 10. Регулируемые ножки
- 11. 2" ролики
- 12. Перфорированная задняя дверь

Схема выполнения межрамных и межстоечных связей кабелем

- 1 межстоечный монтаж;
- 2 межрамный монтаж;
- 3 кабельный ствол

