

$\begin{array}{c} {\rm ENIB\ semestre\ S3P:} \\ {\rm Electronique\ -\ Circuits\ numeriques} \end{array}$

Réalisation et analyse de machines d'états:

Réalisation d'un système d'ouverture de coffre et analyse d'un télémètre acoustique

Florian PASCO Yanis SOYEZ

Version 1.0: 04 Juin 2022

Table des matières

I.	Cahier des charges
II.	Graphe d'état(Conception de Moore)
III.	
	1. Table de transition
	2. Table de Karnaugh
IV.	
V.	Simulation et test du système sur LTSpice
_	ude d'un télémètre acoustique le des figures
_	le des figures
– [abl	le des figures Graphe d'état associé au système
Γ abl $rac{1}{2}$	le des figures Graphe d'état associé au système
– [abl	le des figures Graphe d'état associé au système
Γ abl $rac{1}{2}$	le des figures Graphe d'état associé au système
- Γ abl	le des figures Graphe d'état associé au système
	le des figures Graphe d'état associé au système
	le des figures Graphe d'état associé au système
	le des figures Graphe d'état associé au système

1: Conception de la partie commande de l'ouverture d'un coffre

I. Cahier des charges

Le système est entièrement synchrone et toutes les impulsions ont une durée plus longue que la période d'horloge. Il a les caractéristiques suivantes :

4 Entrée:

- 3 Boutons poussoirs "BP0", "BP1", "BP2" servant à écrire un code
- 1 entrée de verrouillage du coffre "V" (V=1 reverrouille le coffre).
 - Attention cette entrée ne provoque rien si le coffre n'est pas ouvert

1 Sortie:

— 1 signal d'ouverture du coffre (S=1 : Ouvre le coffre)

4 Etats:

— E0 : pas de bouton pressé

— E1 : "BP0" observé

— E2 : "BP0 BP1" observé

— E3 : "BP0 BP1 BP2" observé / Coffre ouvert

ATTENTION: La saisie du code doit être recommencé si 2 boutons sont appuyés en même temps (Le système associe ceci à une erreur).

ATTENTION bis : Par erreur de lecture, les boutons ne sont pas "BP1", "BP2", "BP3" comme dans le cahier des charges originel mais "BP0", "BP1", "BP2".

II. Graphe d'état(Conception de Moore)

Voici le graphe d'état associé au système :

FIGURE 1 – Graphe d'état associé au système

III. Obtention de l'expression des entrées des bascules et de la sortie

1. Table de transition

A partir du graphe d'état précédent, on obtient la table de transition suivante :

Etat	bit Etat	Entrée	bit Etat Juliur	Etat	Sorkie
actuel	en eo	V BP2 BP1 BP0	en est	fok,	S
EO	00	X O O O	00	EO	0
EO	00	X 0 1 0	00	EO	0
EO	00	X100	00	EO	0
EO	0 0	X O O A	01	E1	0
E1	01	X000	01	EJ	0
E1	01	X001	01	EI	0
E1	01	X 1 0 0	01	E1	0
El	01	X 0 1 0	10	E2	0
E2	10	X O O O	10	E2	0
E2	10	X O O 1	10	E2	0
E2	10	NOIOX	10	E2	0
E2	10	X 1 0 0	11	E3	Λ
E3	11	0000	11	E3	٨
E3	11	0001	11	E3	Λ
E3	11	0010	11	E3	1
E3	11	0100	11	E3	1
E3	11	XXXX	00	EO	0
X	XX	X O 1 1	00	EO	0
X	XX	X101	00	EO	0
X	X X	X110	00	EO	0
Х	XX	X1 1 1	00	EO	0

FIGURE 2 – Table de transition associée au système

2. Table de Karnaugh

a. Table de Karnaugh de e_0^+ A partir de la table de transition précédente, on obtient la table de Karnaugh de e_0^+ :

FIGURE 3 – Table de Karnaugh de e_0^+

b. Table de Karnaugh de e_1^+ A partir de la table de transition précédente, on obtient la table de Karnaugh de e_1^+ :

FIGURE 4 – Table de Karnaugh de e_1^+

c. Obtention de l'expression de la sortie Par lecture de de la table de transition précédente, on peut rapidement déduire que l'équation de la sortie S est $S = e_0.e_1$

IV. Conception du systèmes avec des bascules D

A partir des équations précédentes, on réalise le circuit suivant :

Figure 5 – Partie du circuit dédié à la génération de e_0

FIGURE 6 – Partie du circuit dédié à la génération de e_1

Figure 7 – Partie du circuit dédié à la génération de S

V. Simulation et test du système sur LTSpice

Afin de tester le circuit précédent on élabore un scénario de test menant à la production de la simulation suivante :

FIGURE 8 – Test du circuit via la simulation d'un scénario

Voici le scénario de test (les étapes liés au texte sont notézs sur la simulation précédente) :

— Etape (1):

L'opérateur appuie sur "BP0", on passe bien dans E1 ($e_1 = 0ete_1 = 1$). Puis l'opérateur appuie sur "V" rien ne se passe comme prévu puisque V ne doit rien provoqué si le coffre n'est pas ouvert.

- Etape (2):

On est toujours E1 ($e_1 = 0ete_1 = 1$). L'opérateur appuie sur "BP0" et "BP1" au même moment, on retourne dans E0 ($e_1 = 0ete_1 = 0$). Le circuit a détecté une erreur, il faut recommencer le code.

— Etape (3):

- L'opérateur appuie sur "BP0", on passe bien dans E1 $(e_1 = 0ete_1 = 1)$.
- L'opérateur appuie sur "BP1", on passe bien dans E2 $(e_1 = 1ete_1 = 0)$.
- L'opérateur appuie sur "BP2", on passe bien dans E3 $(e_1 = 1ete_1 = 1)$ et le coffre est ouvert (S=1).

— Etape (4):

V est mise à l'état haut, on retourne dans E0 $(e_1 = 0ete_1 = 0)$, le coffre est fermé et S=0.

2 : Étude d'un télémètre acoustique

On doit ici corrigé le graphe d'états suivant :

FIGURE 9 – Graphe d'états à corriger

Il y a donc 2 erreurs dans ce système :

- Erreur (1) : " \overline{Ir} " au lieu de "Ir" : On souhaite réaliser le chargement lorsque l'on reçoit Ir
- Erreur (2): "IeIr" au lieu de "Ie \overline{Ir} ": On reprend le comptage lorsque une impulsion Ie a été envoyée et que l'on ne reçoit plus d'impulsion Ir.