THE SOUTH AFRICAN MATHEMATICS OLYMPIAD

organised by the SOUTH AFRICAN ACADEMY OF SCIENCE AND ARTS in collaboration with OLD MUTUAL, AMESA and SAMS

SPONSORED BY OLD MUTUAL SECOND ROUND 1998

SENIOR SECTION: GRADES 10, 11 AND 12 (STANDARDS 8, 9 AND 10)

26 MAY 1998

TIME: 120 MINUTES
NUMBER OF QUESTIONS: 20

Instructions:

- 1. Do not open this booklet until told to do so by the invigilator.
- 2. This is a multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
- 3. Scoring rules:
 - 3.1 Each correct answer is worth 3 marks in Part A, 5 marks in Part B and 7 marks in Part C.
 - 3.2 There is no penalty for an incorrect answer or any unanswered questions.
- 4. You must use an HB pencil. Rough paper, ruler and rubber are permitted. Calculators and geometry instruments are not permitted.
- 5. Diagrams are not necessarily drawn to scale.
- 6. Give your answers on the sheet provided.
- 7. When the invigilator gives the signal, start attempting the problems. You will have 120 minutes working time for the question paper.

DO NOT TURN THE PAGE OVER UNTIL YOU ARE TOLD TO DO SO.

KEER DIE BOEKIE OM VIR AFRIKAANS

P.O. BOX 538, PRETORIA, 0001 TEL: (012-) 328-5082 FAX: (012-) 328-5091

PRACTICE EXAMPLES

	(A) 2	(B) 3	(C) 4	(D) 5	(E) 6.				
2. The circumference of a circle with radius 2 is									
	(A) π	(B) 2π	(C) 4π	(D) 6π	(E) 8π .				
3.	The sum of th	nbers							
	$0,5129;\ 0,9;\ 0,89;\ \mathrm{and}\ 0,289$								
	is								
	(A) 1,189	(B) 0,8019	(C) 1,428	(D) $1,179$	(E) 1,4129.				

1. If 3x - 15 = 0, then x is equal to

DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO DO SO.

PART A: 3 marks each

1.	Successive discounts of 10% and 20% are equivalent to a single discount of							
	(A) 30%	(B) 15%	(C) 72%	(D) 28%	(E) None	of these.		
2.	m and n are integers with $m > n$. The number of integers between (but not including) m and n , is							
	(A) $m-n$	(B) $m - n - 1$	(C) $m - n - 1$	+1 (D) m	+ n (E) n	n + n - 1		
3.	Recall that 1 litre is 1 000 cubic centimetres. A hosepipe is 20m long with an inside diameter of 15mm. The amount of water (in litres) that it takes to fill the hosepipe is closest to							
	(A) 0.45	(B) 3,5	(C) 4,	5 (I	O) 35	(E) 45		
4.	The perimeter of a square is four times the perimeter of another square. What is the ratio of their areas?							
	(A) 2:1	(B) 4:1	(C) 8:1	(D) 1	 3:1	(E) 64:1		
5.	If n is a natural number then we define $n!$ to be the product $n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$. For example $4! = 4 \times 3 \times 2 \times 1 = 24$. If $6! = a! \times b!$ where $a > 1$ and $b > 1$, then $a + b$ is							
6.						(E) 4 pattern?		
	fig 1		fig 2		fig 3			
	(A) 403	(B) 365	(C) 481	(D)	421	(E) 225		

Part B: 5 marks each

ABCD is a rectangle. The area of the shaded rectangle is

- (A) 10
- (B) 14
- (C) 15
- (D) 16
- (E) 18
- 8. Let p be a solution of the equation $x^6 2 = 0$. Then the value of $(p-1)(p^{12} + p^{13} +$ $\cdots + p^{41}$) is
 - (A) 124
- (B) 144
- (C) 192
- (D) 212
- (E) 252
- If m and n are natural numbers such that $\sqrt{7+\sqrt{48}}=\sqrt{m}+\sqrt{n}$ then m^2+n^2 equals
 - (A) 25
- (B) 37
- (C) 29
- (D) 40
- (E) 41

10. In $\triangle ABC$, AY = AZ, BZ = BX and CX =CY. The length of BC is a, that of CA is b and BA is c. The length of AY is

- (A) $\frac{1}{2}(a+c-b)$ (B) $\frac{1}{2}(a+b-c)$ (C) $\frac{1}{2}(b+c-a)$ (D) $\frac{1}{4}(2b+a-c)$ (E) $\frac{1}{4}(2b+c-a)$

- 11. ABCDEFGH is a regular octagon (an 8-sided figure). The angle HBC is
 - (A) $112\frac{1}{2}^{o}$
- (B) 108^{o}
- (C) 90°
- (D) 105°
- (E) $97\frac{1}{2}^{o}$

(C) 2

16. If $s = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots$, then $1 + \frac{1}{9} + \frac{1}{25} + \frac{1}{49} + \cdots$ equals

(B) 190

Part C: 7 marks each

ABCD is a trapezium with AD parallel to BC. The diagonals AC and BD

intersect at O. If the area of triangle AOD is x, and the area of triangle BOC is y

(A) 2(x+y) (B) $4\sqrt{xy}$ (C) $\frac{8xy}{x+y}$ (D) $(\sqrt{x}+\sqrt{y})^2$ (E) None of these.

(A) $\frac{1}{2}s$ (B) $\frac{3}{4}s$ (C) $s - \frac{1}{4}$ (D) $s - \frac{1}{2}$ (E) Cannot be determined

(C) 210

17. f is a function for which f(1) = 1 and f(n) = n + f(n-1) for each natural number

(A) 0

(A) 171

15.

(B) 1

then the area of the trapezium is

 $n \geq 2$. The value of f(19) is

(D) 3

(D) 241

(E) More than 3.

(E) 255

The houses and trees in the diagram are all in a straight line. In each of the six houses lives a child. At which tree should the children meet so that the sum of the distances they walk to that tree is a minimum?

- (A) A
- (B) B
- (C) C
- (D) D
- (E) Impossible to determine.
- 19. The tune 'Twinkle, Twinkle Little Star' has 7 notes in its first line, CCGGAAG. All notes are held the same length of time. If the notes are rearranged at random, how many different melodies can be composed?

- (A) 5040
- (B) 210
- (C) 105
- (D) 72
- (E) 12
- **20.** P(x) is a polynomial of degree 1998 such that $P(k) = \frac{1}{k}$ for $k = 1, 2, \dots, 1999$. The value of $P(2\ 000)$ is
 - (A) $\frac{1}{1000}$
- (B) $\frac{1}{999}$
- (C) $\frac{1}{2000}$ (D) $\frac{1}{1999}$
- (E) $\frac{1}{4,000}$