МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Построение и анализ алгоритмов»

Тема: Поиск с возвратом

Студентка гр. 9382

Балаева М.О.

Преподаватель

Фирсов М.А.

Санкт-Петербург 2021

Цель работы.

Реализовать программу, основанную на рекурсивном бэктрекинге. Исследовать время выполнения алгоритма от параметра, прописанного в задании., проследить зависимость количества операций для решения поставленной задачи от входных данных.

Задание.

Вар. 2р. Рекурсивный бэктрекинг. Исследование времени выполнения от размера квадрата.

У Вовы много квадратных обрезков доски. Их стороны (размер) изменяются от 1 до N-1, и у него есть неограниченное число обрезков любого размера. Но ему очень хочется получить большую столешницу - квадрат размера N . Он может получить ее, собрав из уже имеющихся обрезков(квадратов).

Например, столешница размера 7×7 может быть построена из 9 обрезков.

Внутри столешницы не должно быть пустот, обрезки не должны выходить за пределы столешницы и не должны перекрываться. Кроме того, Вова хочет использовать минимально возможное число обрезков.

Входные данные

Размер столешницы - одно целое число $N (2 \le N \le 20)$.

Выходные данные

Одно число K, задающее минимальное количество обрезков(квадратов), из которых можно построить

столешницу(квадрат) заданного размера N. Далее должны идти K строк, каждая из которых должна содержать три целых числа x,у и w, задающие координаты левого верхнего угла $(1 \le x, y \le N)$ и длину стороны соответствующего обрезка(квадрата).

Пример входных данных

7

Соответствующие выходные данные

9

1 1 2

1 3 2

3 1 1

4 1 1

3 2 2

5 1 3

444

153

3 4 1

Описание алгоритма.

В начале проверяются входные данные, в зависимости от их значения, ответ и размещение «вложенных» квадратов сразу же записывается (Использованные оптимизации пункт 2), или размещаются начальные 3 квадрата. Далее с помощью алгоритма Бэктрекинга находится минимальное количество «вложенных» квадратов и их размещение.

Создается матрица N на N, в которой натуральными числами будут отмечаться где(то есть верхний левый угол) и какой длины вставлен квадрат. Далее происходит поиск свободного места и определяется максимальная длина квадрата, который будет размещен в найденной области. При достижении условия возврата , то есть если текущее количество вложенных квадратов не является минимальным или было найдено количество меньше, возвращаемся к последнему квадрату, размер которого не равен 1, его длина уменьшается на 1, и строятся последующие комбинации. Если в процессе выполнения алгоритма будет найдено число квадратов меньше текущего минимального, оно заменится на новое . Когда будет найдено минимальное количество «вложенных» квадратов , записывается это число и разбиение для него, алгоритм завершится.

Использованные оптимизации.

- Матрицу перебора изначально можно заполнить на 75% тремя квадратами размеров N//2 , N//2 -1 соответственно, то поиск свободной клетки, куда можно поставить квадрат, можно осуществлять только в оставшихся 25% квадрата.
- Квадрат с четной стороной имеет постоянное решение 4 квадрата.
 Для квадратов наименьший простой множитель, которых равен трем,
 не производится перебор , а сразу выводится ответ 6. Поэтому можно
 не осуществлять перебор для таких квадратов, а сразу выводить ответ.

- Сжатие квадрата. Квадрат с размером N, можно сжать до размера значения наименьшего простого делителя числа N.
- Поскольку 75% квадрата заполнены, то максимальный размер квадрата, который можно поставить в матрицу перебора N // 2.

Описание функций и структур данных.

Класс Table – класс, предназначенный для выполнения поставленной задачи. Поля класса:

- 1. size длина стороны квадрата.
- 2. std::vector<std::vector<int>> table матрица квадрата.
- 3. Count переменная, показывающая количество "вложенных" квадратов.

void constTable() - Метод класса Table , который в зависимости от длины квадрата вызываются методы best_ или insertTable. best_ вызывается, если сторона кратна 2 или 3, insertTable вызывается в остальных случаях. Если длина квадрата не кратна ни 2, ни 3, то происходит размещение 3х гарантированных квадратов(Использованные оптимизации пункт 1).

int getnumber() - метод класса Table, возвращающий количество расположенных "вложенных" квадратов.

void best_(int k) — метод класса Table , записывает количество «вложенных» квадратов для случаев, когда сторона кратна 2 или 3.

Аргументы:

int k — число принимающее значения 2 или 3 в зависимости от того, которому из этих чисел кратна сторона исходного квадрата(k=2, при длине стороны кратной 2 и k=3, при длине стороны кратной 3).

int getsize() - метод класса Table, возвращающий длину стороны квадрата bool isPossible(int i, int j, int n) — метод класса Table, показывающий можно ли разместить еще один квадрат, это необходимо для выполнения алгоритма. і и ј являются координатами верхнего левого угла квадрата. Аргументы:

- 1. і координата по у.
- 2. ј координата по х.
- 3. п-длина рассматриваемого квадрата.

void insertTable(int i, int j, int n) — Метод , наносящий квадрат на карту, также считает количество "вложенных" квадратов. i и j являются координатами верхнего левого угла квадрата.

5

Аргументы:

- 1. i координата по у.
- 2. ј координата по х.
- 3. п длина рассматриваемого квадрата.

bool checkSpace(int i) – метод класса Table, показывающий есть ли на карте еще свободные места.

Аргументы:

1. i - координата по у.

int findi(int i) - метод, возвращающий координату по у.

Аргументы:

1. i – координата по у.

int findj(int i) - метод, возвращающий координату по х.

Аргументы:

1. i – координата по у

void deleteTable(int i, int j) — метод , удаляющий(«зануляющий») матрицу. void result() - метод , выводящий результат.

void shower_table — метод класса Table, заполняющий итоговую карту, в зависимости от значения длины исходного квадрата.

Таble backTracking(Table table, int i, int j, int pr)— основная рекурсивная функция необходимая для реализации алгоритма, на вход, которой подается экземпляр класса Table, хранящий в себе необходимые данные, то есть size − размер текущего квадрата, std::vector<std::vector<int>>> table — матрица, в которой будет содержаться заполнение «вложенными квадратами», count − переменная, отвечающая за текущее количество вложенных квадратов. int i, int j — координаты верхнего левого угла квадрата. int pr — счетчик нужный для корректной печати промежуточных данных. Table table, int i, int j — аргументы, передача, которых необходима для корректного и однозначного определения квадрата, участвующего в алгоритме. Функция возвращает экземпляр класса Table − best, с зафиксированными:

1) Наименьшим количеством «вложенных» квадратов - bestNum

2) Лучшим заполнением матрицы.

В main() производится проверка выделенных случаев(наименьшие делители 2 и 3 соответственно), вызов всех необходимых функций и методов.

Оценка сложности алгоритма по времени.

Поскольку используется довольно большое количество оптимизаций, посчитать точную сложность алгоритма сложно, поэтому произведем оценку алгоритма сверху.

N- длина стороны квадрата. Имеется N^2 свободных клеток, также N размеров квадрата, которые будем перебирать. Таким образом , получаем , что сложность алгоритма по времени равна $O((N^2)! * N^N)$.

Оценка сложности алгоритма по памяти.

Матрица квадрата , хранящаяся в экземпляре класса Table , при каждом рекурсивном проходе копируется, поэтому мы возьмем максимальное количество единичных квадратов в матрице, оно равняется N*N и умножается на количество рекурсивных проходов. В процессе рекурсивного прохода, скопированные экземпляры класса удаляются , поэтому за максимум можно считать проход по матрице — N*N. Следовательно сложность алгоритма по памяти — $O(N^4)$.

Тестирование.

Таблица 1. Результаты работы программы

№ попытки	Входные данные	Выходные данные без
		промежуточного вывода
1	3	6
		1 1 2
		1 3 1
		2 3 1
		3 1 1
		3 2 1
		3 3 1
2	5	8
		1 1 3
		1 4 2
		3 4 1
		3 5 1
		4 1 2
		4 3 1
		4 4 2
		5 3 1
3	2	4
		1 1 1
		2 1 1
		1 2 1
		2 2 1
4	9	6
		1 1 6
		173
		473
		7 1 3
		7 4 3
		773
5	11	11
		1 1 6
		175

		671
		681
		693
		7 1 5
		7 6 1
		772
		8 6 1
		963
		993
6	12	4
		116
		7 1 6
		176
		776
7	19	13
		1 1 10
		1 11 9
		10 11 1
		10 12 1
		10 13 2
		10 15 5
		11 1 9
		11 10 2
		11 12 1
		12 12 3
		13 10 2
		15 10 5
		15 15 5

Исследование.

В данном варианте необходимо исследовать зависимость времени от размера квадрата, чтобы это сделать посчитаем время выполнения алгоритма для каждой длины стороны квадрата(от 2 до 20) .

Результаты времени выполнения алгоритма от размера главного квадрата представлены в Таблице 2.

Таблица 2. Зависимость времени от размера квадрата.

Длина стороны квадрата(N)	Время (с)
2	0.000157
3	0.000114
4	0.000199
5	0.000281
6	0.000123
7	0.00301
8	0.000134
9	0.000182
10	0.000118
11	0.049306
12	0.000139
13	0.100369
14	0.000153
15	0.000176
16	0.000137
17	0.911326
18	0.000103
19	3.10129
20	0.000127

Исходя из графика, можно сделать вывод, что из-за оптимизаций, время выполнения программы сокращается. Время выполнения программы при нечетных значениях растет экспоненциально, что видно из графика.

Выводы.

В ходе работы были изучены методы бэктрекинга, написана программа для поиска минимального количества квадратов для заполнения заданного с помощью рекурсивного бэктрекинга, практически освоены решения по возможным оптимизациям и исследована зависимость времени выполнения алгоритма от размера квадрата.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.cpp #include <vector> #include <ctime> #include <iostream> int bestNum = 0; class Table // исходный квадрат { int size; std::vector<std::vector <int>> table; int count; public: Table(int size): size(size), table(size, std::vector<int>(size, 0)), count(0) { if(size != 0) { constTable(); } Table(Table const &other): size(other.size),

table(other.size,

```
std::vector<int>(other.siz
e, 0)), count(other.count)
{
           for (int i = 0; i
< size; i++)
            for (int j = 0;
j < size; j++)
                table[i][j]
= other.table[i][j];
       }
                  Table&
operator=(Table
                    const
&other){
             if(&other !=
this){
                    Table
tmp(other);
                  count =
tmp.count;
                   size =
tmp.size;
             table.swap(t
mp.table);
          }
          return *this;
       }
       ~Table(){}
       void best_(int k){
          if(k==2){
              bestNum =
4;
```

```
else if (k==3)
         {
              bestNum =
6;
         }
       }
        void constTable()
{
              int temp =
size/2;
         if(size%2==0){
            best_(2);
              else if(size
%3==0){
            best_(3);
         } else{
            insertTable(0
0, temp + 1);
            insertTable(0
, temp + 1, temp);
            insertTable(t
emp + 1, 0, temp);
         }
       }
       int getnumber(){
```

```
return count;
        int getsize(){
          return size;
        }
        bool isPossible(int
i, int j, int n){
           if((i + n) > size
\parallel (j+n) > size) \{
             return false;
           }
            for(int y = i; y
< i + n; y++)
             for (int x = j;
x < j + n; x++)
                if(table[y]
[x] != 0){
                     return
false;
                }
          return true;
        }
                       void
insertTable(int i, int j, int
n){
            for(int y = i; y
<ii+n; y++){}
             for (int x = j;
x < j + n; x++)
                table[y][x]
```

```
= n;
                std::cout<
<"The coordinates of the
upper-left corner of the
inserted square: (";
                std::cout<
                       "<<
<y<<"
x<<")"<<std::endl;
                std::cout<
<"the current side of the
square: "<<n<<std::endl;
            }
          ++count;
           std::cout \!\!<\!\!<\!\!"Cu
rrent
                      best
partition:"<<count<<std::
endl;
       }
                      bool
checkSpace(int i){
           for(int y = i; y
< size; y++)
            for (int x = 0;
x < size; x++)
                if(table[y]
[x] == 0
                    return
true;
                    return
false;
       }
       int findi(int i){
```

```
for (int y = i; y
< size; y++)
             for (int x = 0;
x < size; x++)
               if (table[y]
[x] == 0){
                  return y;
                }
        }
       int findj(int i){
           for (int y = i; y
< size; y++)
             for (int x = 0;
x < size; x++)
               if (table[y]
[x] == 0){
                  return x;
                }
        }
                      void
deleteTable(int i, int j){
                 int val =
table[i][j];
           for (int y = i; y
< i + val; y++)
             for (int x = j;
x < j + val; x++)
                table[y][x]
= 0;
        void result(){
```

```
for(int i = 0; i <
size; i++){
             for(int j = 0;
j < size; j++){
                if(table[i]
[j] != 0){
                  std::cou
t << i + 1 << " " << j + 1
<< " " << table[i][j] <<
std::endl;
               }
             }
       }
                      void
shower_table(){
          if(size%2==0){
             insertTable(0
,0, size/2);
             insertTable(0
,size/2, size/2);
             insertTable(s
ize/2, size/2, size/2);
             insertTable(s
ize/2,0, size/2);
          }
               else if(size
%3==0){
             insertTable(0
,0, (2*size)/3);
             insertTable((
```

```
2*size)/3, 0, size/3);
              insertTable(0
, (2*size)/3, size/3);
               insertTable((
2*size)/3,
                 (2*size)/3,
size/3);
               insertTable(s
ize/3, (2*size)/3, size/3);
               insertTable((
2*size)/3, size/3, size/3);
              }
             for (int i = 0; i
< size; ++i) {
               std{::}cout{<<}"\setminus
n";
               for (int j = 0;
j < size; ++j)  {
                  std::cout<
<\!\!table[i][j]<\!<\!"";
               std{::}cout{<<}"\backslash
n";
      };
```

Table best(0);

Table

```
backTracking(Table
table, int i, int j, int pr){
           for(int n =
table.getsize() / 2; n > 0;
n--){
     for(int l=0; 1 < pr; 1+
+)
       std::cout << " ";
         std::cout<<"The
considered length of the
square ="<<n<<std::endl;
     if(table.getnumber()
> bestNum){
        for(int l=0; l < pr;
1++)
         std::cout << " ";
         std::cout<<"The
current option is not
minimal"<<std::endl;
       return table;
     }
     Table shape = table;
     if(shape.isPossible(i,
j, n))\{
        for(int l=0; l < pr;
1++)
         std::cout << " ";
       std::cout<<"establ
ished
         square:"<<
<<std::endl;
       shape.insertTable(
```

```
i, j, n);
       if(shape.checkSpa
ce(i)){
           for(int 1=0; 1 <
pr; 1++)
             std::cout <<
" ";
          std::cout<<"Ent
ering
recursion"<<std::endl;
                 shape =
backTracking(shape,
shape.findi(i),
shape.findj(i),pr+1);
          shape.shower_t
able();
           for(int 1=0; 1 <
pr; 1++)
             std::cout <<
" ";
          std::cout<<"Exi
ting
recursion"<<std::endl;
         else if(bestNum
>= shape.getnumber()){
         best = shape;
              bestNum =
shape.getnumber();
       } else{
       }
     }
```

```
}
  return table;
}
void res (int size, int k){
  if(k==2){
    int temp = size/2;
     std::cout << "4" <<
std::endl;
      std::cout << "1 1 "
<< temp << std::endl;
     std::cout << temp+1
<< " 1 " << temp <<
std::endl;
     std::cout << "1 " <<
temp+1 << " " << temp
<< std::endl;
     std::cout << temp+1
<< " " << temp+1 << "
"<< temp << std::endl;
  }
  else if(k==3){
    int temp = size/3;
     std::cout << "6" <<
std::endl;
    std::cout << "1" << "
1 " << temp*2 <<
std::endl;
     std::cout << "1 " <<
1+temp*2 << " " << temp
<< std::endl;
```

```
" << temp << std::endl;
           std::cout <<
1+temp*2 << " 1 " <<
temp << std::endl;</pre>
            std::cout <<
1+temp*2 << " " <<
1+temp << " " << temp
<< std::endl;
            std::cout <<
1+temp*2 << " " <<
1+temp*2 << " " << temp
<< std::endl;
  }
}
int main(){
  int size = 0;
  std::cin >> size;
  clock t start = clock();
  bestNum = size * size;
  Table A(size);
   A = backTracking(A,
A.findi(0), A.findj(0),0;
  clock_t end = clock();
     std::cout << "Lead
time: " << (double )(end -
```

std::cout << 1+temp

<< " " << 1+temp*2 << "

```
start)
CLOCKS_PER_SEC <<
"\n";
if(size%2==0){
  res(size, 2);
} else if(size%3==0){
  res(size, 3);
} else {
     std::cout << "Best
partition:"<<
               bestNum
<< std::endl;
  best.result();
if(size%2==0 || size
%3==0){
  A.shower_table();
}
else\{
  best.shower_table();
}
  return 0;
}
```