DISCRETE DISTRIBUTIONS

	1	I		ı	I		I
	y	PARAMETERS	p(y)	F(y)	$\mathbb{E}\left[Y\right]$	$\mathbb{V}\left[Y ight]$	m(t)
Bernoulli(p)	{0,1}	$p \in (0,1)$	$p^y(1-p)^{1-y}$		p	p(1-p)	$1 - p + pe^t$
Binomial(n,p)	$\{0, 1,, n\}$	$n \in \mathbb{Z}^+, p \in (0,1)$	$\binom{n}{y} p^y (1-p)^{n-y}$		np	np(1-p)	$(1 - p + pe^t)^n$
$Poisson(\lambda)$	$\{0, 1, 2,\}$	$\lambda \in \mathbb{R}^+$	$\frac{e^{-\lambda}\lambda^y}{y!}$		λ	λ	$\exp\left\{\lambda\left(e^{t}-1\right)\right\}$
Geometric(p)	$\{1,2,\ldots\}$	$p \in (0,1)$	$(1-p)^{y-1}p$	$1 - (1-p)^y$	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$	$\frac{pe^t}{1 - e^t(1 - p)}$
NegBinomial(r,p)	$\{r,r+1,\ldots\}$	$r \in \mathbb{Z}^+, p \in (0,1)$	$ \begin{pmatrix} y-1 \\ r-1 \end{pmatrix} p^r (1-p)^{y-r} $		$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{pe^t}{1 - e^t(1 - p)}\right)^r$
or	$\{0,1,2,\}$	$r \in \mathbb{Z}^+, p \in (0,1)$	$\binom{r+y-1}{r-1}p^r(1-p)^y$		$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left \left(\frac{p}{1 - e^t(1 - p)} \right)^r \right $
Hypergeom(N,r,n)	$\{\max\{0, n - N + r\}, \dots$ $\dots, \min\{n, r\}\}$	$N \ge r, n$	$\frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}}$		$n\left(\frac{r}{N}\right)$	$n\left(\frac{r}{N}\right)\left(1-\frac{r}{N}\right)\left(\frac{N-n}{N-1}\right)$	
or			$\frac{\binom{n}{y}\binom{N-n}{r-y}}{\binom{N}{r}}$				

CONTINUOUS DISTRIBUTIONS										
	У	PARAMETERS	p(y)	F(y)	$\mathbb{E}\left[Y\right]$	$\mathbb{V}\left[Y ight]$	m(t)			
$Uniform(\theta_1, \theta_2)$	(θ_1, θ_2)	$\theta_1 < \theta_2 \in \mathbb{R}$	$\frac{1}{ heta_2- heta_1}$	$\frac{y-\theta_1}{\theta_2-\theta_1}$	$\frac{(\theta_1 + \theta_2)}{2}$	$\frac{(\theta_2 - \theta_1)^2}{12}$	$\frac{e^{\theta_2 t} - e^{\theta_1 t}}{t \left(\theta_2 - \theta_1\right)}$			
(standard model $\theta_1 = 0, \theta_2 = 1$)			-				\/			
$Exponential(\beta)$	\mathbb{R}^+	$\beta \in \mathbb{R}^+$	$\frac{1}{\beta}e^{-y/\beta}$	$1 - e^{-y/\beta}$	β	eta^2	$\left(\frac{1}{1-\beta t}\right)$			
(standard model $\beta = 1$)										
Gamma(lpha,eta)	\mathbb{R}^+	$\alpha,\beta\in\mathbb{R}^+$	$\frac{1}{\beta^{\alpha}\Gamma(\alpha)}y^{\alpha-1}e^{-y/\beta}$		lphaeta	$lphaeta^2$	$\left(\frac{1}{1-\beta t}\right)^{\alpha}$			
$(\text{standard model } \beta = 1)$			where $\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy$							
$Normal(\mu, \sigma^2)$	\mathbb{R}	$\mu \in \mathbb{R}$, $\sigma \in \mathbb{R}^+$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{(y-\mu)^2}{2\sigma^2}\right\}$		μ	σ^2	$\left \exp \left\{ \mu t + \frac{\sigma^2 t^2}{2} \right\} \right $			
(standard model $\mu = 0, \sigma = 1$)										
Beta(lpha,eta)	(0,1)	$\alpha, \beta \in \mathbb{R}^+$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}y^{\alpha-1}(1-y)^{\beta-1}$		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$				
Weibull(lpha,eta)	\mathbb{R}^+	$\alpha, \beta \in \mathbb{R}^+$	$lpha eta y^{lpha-1} e^{-eta y^{lpha}}$	$1 - e^{-\beta y^{\alpha}}$	$\frac{\Gamma\left(1+1/\alpha\right)}{\beta^{1/\alpha}}$	$\frac{\Gamma\left(1+2/\alpha\right)-\Gamma\left(1+1/\alpha\right)^{2}}{\beta^{2/\alpha}}$				
(standard model $\beta = 1$)										
Student(u)	\mathbb{R}	$ u \in \mathbb{R}^+ $	$\frac{\Gamma\left((\nu+1)/2\right)}{\Gamma\left(\nu/2\right)\sqrt{\pi\nu}\left\{1+y^2/\nu\right\}^{(\nu+1)/2}}$		0 (if $\nu > 1$)	$\frac{\nu}{\nu-2} \text{(if } \nu > 2\text{)}$				
$Pareto(\theta, \alpha)$	\mathbb{R}^+	$\theta, \alpha \in \mathbb{R}^+$	$\frac{\alpha\theta^{\alpha}}{\left(\theta+y\right)^{\alpha+1}}$	$1 - \left(\frac{\theta}{\theta + y}\right)^{\alpha}$	$\frac{\theta}{\alpha - 1} \ (\text{if } \alpha > 1)$	$\frac{\alpha\theta^2}{(\alpha-1)(\alpha-2)} \text{ (if } \alpha > 2)$				

For linear transformation $X = \mu + \sigma Y$

$$p_X(x) = p_Y\left(\frac{x-\mu}{\sigma}\right)\frac{1}{\sigma} \qquad F_X(x) = F_Y\left(\frac{x-\mu}{\sigma}\right) \qquad m_X(t) = e^{\mu t}m_Y(\sigma t) \qquad \mathbb{E}[X] = \mu + \sigma \mathbb{E}[Y] \qquad \mathbb{V}[X] = \sigma^2 \mathbb{V}[Y]$$