Implementation of Higher-order Multiplexers using Lower-order Multiplexers

Implementation of 8x1 Multiplexer using 4x1 Multiplexers and 2x1 Multiplexer

Selection Inputs			Output
S ₂	S ₁	S ₀	Υ
0	0	0	I ₀
0	0	1	I ₁
0	1	0	I ₂
0	1	1	l ₃
1	0	0	14
1	0	1	15
1	1	0	16
1	1	1	I ₇

Implementation of Higher-order Multiplexers using Lower-order Multiplexers (cont.)

Implementation of 16x1 Multiplexer using 8x1 Multiplexers and 2x1 Multiplexer

Selection Inputs				Output
S ₃	S ₂	S ₁	S_0	Υ
0	0	0	0	I ₀
0	0	0	1	I ₁
0	0	1	0	I ₂
0	0	1	1	l ₃
0	1	0	0	14
0	1	0	1	I ₅
0	1	1	0	16
0	1	1	1	17
1	0	0	0	I ₈
1	0	0	1	l ₉
1	0	1	0	I ₁₀
1	0	1	1	I ₁₁
1	1	0	0	I ₁₂
1	1	0	1	I ₁₃
1	1	1	0	I ₁₄
1	1	1	1	I ₁₅

Implementing Boolean Functions with Multiplexers

- Any Boolean function of n variables can be implemented using a 2ⁿ-to-1 multiplexer.
- The SELECT signals generate the minterms of the function.

Implementing Boolean Functions with Multiplexers (cont.)

Implementation of $f(A, B, C) = \sum (1, 4, 6, 7)$

	Α	\mathbf{B}	$^{\rm C}$	f
0	0	0	0	0
1	0	0	1	1
1 2 3	0	1	0	0
	0	1	1	0
4 5 6	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Implementing Boolean Functions with Multiplexers (cont.)

Implementation of Half Adder using 4x1 Muxes

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Implementing Boolean Functions with Multiplexers (cont.)

Implementation of Full Adder using 8x1 Muxes

A	В	Cin	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

