Lab 1 Report

吳俊青 108598014 2020/03/21

1 Test Plan

1.1 Test requirements

The Lab 1 requires to

- (1) select **15 methods** from **6 classes** of the SUT (GeoProject),
- (2) design Unit test cases based on the experience or intuition for theselected methods,
- (3) develop test scripts to implement the test cases,
- (4) execute the test script on the selected methods, and
- (5) report the test results.

In particular, based on the statement coverage criterion, the **test requirements** for Lab 1 are to design test cases for each selected method so that "each statement of the method will be covered by <u>at least one test case</u> and the <u>minimum</u> statement coverage is 40%".

1.2 Strategy

To satisfy the test requirements listed in Section 1, I decided to use the following strategy.

- (1) Select those <u>public</u> methods that are easy to understand and have <u>primitive</u> <u>types</u> of input and output parameters (if possible).
- (2) Set the objective of the minimum statement coverage to be 50% initially and (if necessary) adjust the objective based on the time available.
- (3) Learn the necessary skills and tools as soon as possible.
- (4) design the test cases for those selected methods by considering
 - i. the possible **valid values** and **combinations** of the <u>input parameters</u>.
 - ii. the **boundary values** of the input parameters.

1.3 Test activities

To implement the proposed strategy, the following activities are planned to perform.

No.	Activity Name	Plan hours	Schedule Date
1	Study GeoProject	2	2020/03/14
2	Learn JUnit	1	2020/03/14

3	Design test cases for the selected methods	3	2020/03/15
4	Implement test cases	6	2020/03/17
5	Perform test	1	2020/03/17
6	Refactor test cases	2	2020/03/22
7	Complete Lab1 report	1	2020/03/22

1.4 Success criteria

All test cases designed for the selected methods must pass (or "90% of all test cases must pass) and <u>the statement coverage should have achieved at least 50%</u>.

2 Test Design

To fulfill the test requirements listed in section 1.1, the following methods are selected and corresponding test cases are designed.

No	Class	Method	Test Objective	Inputs	Expected Outputs
				1.i=922337203 6854775807L 2.i=922337203	1."7zzzzzzzzzz z"
1-1	Base32	encodeBase32() padLeftWithZeros ToLength()	Boundary value 能夠產生正確 output	6854775807L,I enth=14	2."07zzzzzzzzz zz"
				3.i=-92233720 36854775808L ,lenth=9	3800000000 000
			Boundary value	1.hash="7zzzzz zzzzzzz"	1.9223372036 854775807L
1-2	Base32	decodeBase32() getCharIndex()	ecodeBase32() 能夠產生正確 2.hash="-8000	2.hash="-8000 000000000"	29223372036 854775808L
			生預期 throw	3.hash="-037a 4ry"	3. expected = IllegalArgumen tException.clas s
			利用不同建構式	1.Coverage({"0 37k4ry","37k4r y","7k4ry"}, 2.2)	1."Coverage [hashes=[37k4 ry, 037k4ry, 7k4ry], ratio=2.2]"
2-1	Coverage	toString()	產生物件,並取得正確 output	2.CoverageLon gs({108, 598, 140}, 3, 1.7976931348 623157E308)	2. "Coverage [hashes=[0000 00,000000000 006,00000000 0008],ratio=1. 797693134862 3157E308]"

2-2	Coverage	getHashLength()	利用不同建構式 產生物件,並取 得正確 output	1.Coverage({"0 37k4ry","37k4r y","7k4ry"}, 2.2) 2.CoverageLon gs({108, 598, 140}, 3, 1.7976931348 623157E308) 3.Coverage({}, 2.2)	1. 6 2. 6 3. 0
2-3	Coverage	getRatio()	利用不同建構式 產生物件·並取 得正確 output	1.Coverage({"0 37k4ry","37k4r y","7k4ry"}, 2.2) 2.CoverageLon gs({108, 598, 140}, 3, 1.7976931348 623157E308)	1. 2.2 2.1.797693134 8623157E308
2-4	Coverage	getHashes()	利用不同建構式 產生物件·並取 得正確 output	1.Coverage({"0 37k4ry","37k4r y","7k4ry"}, 2.2) 2.CoverageLon gs({108, 598, 140}, 3, 1.7976931348 623157E308)	1." [37k4ry, 037k4ry, 7k4ry]" 2."[000000,00 0000000006,0 000000000008]
3-1	Coverage Longs	getHashes()	依照建構式所傳 入值·取得預期 output	1.CoverageLon gs({108,598,14 0}, 3, 2.2)	1.{108,598,140 }
3-2	Coverage Longs	getRatio()	依照建構式所傳 入值·取得預期 output	1.CoverageLon gs({108,598,14 0}, 3, 2.2)	1. 2.2
3-3	Coverage Longs	getHashLength()	依照建構式所傳入值並特別建立 Count為0的物件 確保額外處理· 取得預期 output	1.CoverageLon gs({108,598,14 0}, 3, 2.2) 2.CoverageLon gs({108,598,14 0}, 0, 2.2)	1. 12 2. 0
3-4	Coverage Longs	toString()	依照建構式所傳 入值·取得預期 output	1.CoverageLon gs({108,598,14 0}, 3, 2.2)	1. "Coverage [hashes=" & " ratio=2.2]"
3-5	Coverage Longs	getCount()	依照建構式所傳 入值·取得預期 output	1.CoverageLon gs({108,598,14 0}, 3, 2.2)	1. 3
4-1	Direction	Opposite()	經過執行 method 後·取得預期 output	1.Direction.RIG HT.opposite() 2.Direction.LEF T.opposite()	1.Direction.LEF T 2.Direction.RIG HT 3.Direction.TO

				3.Direction.BO TTOM.opposit e()	P 4.Direction.BO TTOM
				4.Direction.TOP .opposite()	
5-1	LanLong	getLat()	依照建構式所傳入值·取得預期 output	1.LatLong(1.79 769313486231 57E308, 4.9E-324)	1. 1.7976931348 623157E308
5-2	LanLong	getLon()	依照建構式所傳入值·取得預期 output	1.LatLong(1.79 769313486231 57E308, 4.9E-324)	1. 4.9E-324
5-3	LanLong	add()	依照建構式所傳入值並執行 method後,取得 預期 output	1.LatLong(1.79 769313486231 57E308, 4.9E-324) & deltaLat=1 deltaLon=-1	1.LatLong(1.79 769313486231 57E308 + 1, 4.9E-324 - 1)
5-4	LanLong	toString()	依照建構式所傳入值·取得預期 output	1.LatLong(1.79 769313486231 57E308, 4.9E-324)	1."LatLong [lat=1.7976931 348623157E30 8,lon=4.9E-324]"
6-1	GeoHash	fromLongToString ()	傳入例外值·並 取得預期 throw	1.hash=0	Expected = IllegalArgumen tException.clas s
6-2	GeoHash	adjacentHash()	傳入例外值·並取得預期 throw·傳入正常值·取得預期 output	1."STV" 2."STV" 3."STV" 4."STV" 5.null 6.""	1."stt" 2."gzz" 3."stu" 4."bpb" 5. expected = IllegalArgumen tException.clas s 6. expected = IllegalArgumen tException.clas

3 Test Implementation

The design of test cases specified in Section 2 was implemented using JUnit 4. The test scripts of 26 selected test cases are given below. The rest of test script implementations can be found in the <u>link</u> (or JUnit files).

No.	Test method	Source code
1	encodeBase32WithOnlyNum ()	Base32Test.java
2	encodeBase32WithPositiveN	Base32Test.java

	umAndBiggerLength()	
	encodeBase32WithNegative	
3	NumAndNormalLength()	Base32Test.java
	decodeBase32WithPositiveH	
4	ash()	Base32Test.java
	decodeBase32WithNegative	
5	Hash()	Base32Test.java
	decodeBase32WithInvalidCh	
6	aracter()	Base32Test.java
7	toStringTest()	<u>CoverageTest.java</u>
8	getHashLengthTest()	CoverageTest.java
9	getHashLengthTestWithZeroS ize()	<u>CoverageTest.java</u>
10	getRatioTest()	CoverageTest.java
11	getHashesTest()	CoverageTest.java
12	getCountTest()	<u>CoverageLongsTest.java</u>
13	toStringTest()	<u>CoverageLongsTest.java</u>
14	getHashLengthTest()	<u>CoverageLongsTest.java</u>
15	getHashLengthTestWithZeroS ize()	<u>CoverageLongsTest.java</u>
16	getRatioTest()	CoverageLongsTest.java
17	getHashesTest()	CoverageLongsTest.java
18	opposite()	<u>DirectionTest.java</u>
19	getLat()	<u>LatLongTest.java</u>
20	getLon()	<u>LatLongTest.java</u>
21	add()	<u>LatLongTest.java</u>
22	testToString()	<u>LatLongTest.java</u>
23	fromLongToStringWithInvalid	GeoHashTest.java
23	Long()	Geonasinest.java
24	adjacentHashWithNullHash()	GeoHashTest.java
25	adjacentHashWithEmptyHas	GeoHashTest.java
23	h()	Georiasiriestijava
26	testAdjacentWithDifferentDir	GeoHashTest.java
	ection()	<u> </u>

4 Test Results

4.1 JUnit test result snapshot

Test Summary

4.2 Code coverage snapshot

Coverage of each selected method

• Total coverage

geo

Element	\$ N	Missed Instructions \$	Cov.	Missed Branches		Missed	Cxty \$	Missed	Lines 0	Missed	Methods \$	Missed \$	Classes
com.github.davidmoten.geo			66%		51%	70	149	129	348	24	68	2	10
# com.github.davidmoten.geo.men	<u>n</u> I		0%	=	0%	30	30	61	61	20	20	3	3
com.github.davidmoten.geo.util			68%	1	75%	1	4	1	6	0	2	0	1
Total	1	1,008 of 2,326	56%	100 of 186	46%	101	183	191	415	44	90	5	14

com. github. david moten. geo

Element +	Missed Instructions ÷	Cov.	Missed Branches +	Cov.	Missed	Cxty	Missed +	Lines 🕈	Missed 0	Methods	Missed	Classes
⊙ <u>GeoHash</u>		53%		39%	62	95	111	227	20	36	0	1
⊙ GeoHash.LongSet	1	0%	I	0%	5	5	13	13	2	2	1	1
⊙ <u>GeoHash.HashHeights</u>	1	0%	I	0%	3	3	5	5	2	2	1	1
⊕ <u>Base32</u>		100%		100%	0	17	0	43	0	6	0	1
⊙ Coverage	E	100%	I	100%	0	8	0	16	0	6	0	1
⊙ CoverageLongs	1	100%	I	100%	0	7	0	14	0	6	0	1
⊙ <u>Direction</u>	1	100%	I	100%	0	5	0	9	0	2	0	1
⊙ <u>LatLong</u>	1	100%		n/a	0	5	0	14	0	5	0	1
<u> ○ Parity</u>	1	100%		n/a	0	1	0	2	0	1	0	1
⊙ <u>GeoHash.HashWidths</u>	1	100%	I	100%	0	3	0	5	0	2	0	1
Total	670 of 1,975	66%	79 of 162	51%	70	149	129	348	24	68	2	10

4.3 CI result snapshot (4 iterations for CI)

• CI#1

CI Pipeline

5 Summary

In Lab 1, 26 test cases have been designed and implemented using JUnit. The test is conducted in 4 CI and the execution results of the 22 test methods are all passed. The total statement coverage of the test is 56%. Thus, the test requirements described in Section 1 are satisfied. Some lessons learned in this Lab are that Geo project is what and how to use intellij IDEA. I also learned how to design the test cases and implemented the test cases, but I need to continue learning how to design test cases reliably.