Linear Programming Problem

Weight Distribution of Types

Comp/IT/AI

Type	Name	Nov	May	Nov	May	Nov	May	Nov	May	Dec	May	Dec
		2017	2018	2018	2019	2019	2022	2022	2023	2023	2024	2024
1	Basic Solution		05	05	05	05			05	06	05	06
II	Simplex	06	08	08	06	08	10	08	08	+	08	
Ш	Big M	08							-	08		08
IV	Dual Simplex		08	08	08	08	05	08	08	08	08	08
V	Duality	05					02	05				
Total	Marks	19	21	21	19	21	17	21	21	22	21	22

Type I: Basic solutions of L.P.P.

Determine all basic solutions to the following problem. Which of them are basic feasible, degenerate, infeasible basic and optimal basic feasible solutions?

$$z = x_1 - 2x_2 + 4x_3$$

$$x_1 + 2x_2 + 3x_3 = 7$$

$$3x_1 + 4x_2 + 6x_3 = 15$$

$$x_1, x_2, x_3 \ge 0$$

[D23/D24/CompITAI/6M]

	racion.						
	Non-basic	Basic	Equations	Is the	Is the	Value	Is the
No	No var = 0		&	solution	solution	of	solution
	Val – U	var	solutions	feasible?	degenerate?	\boldsymbol{Z}	optimal?
			$x_1 + 2x_2 = 7$				
1	$x_3 = 0$	x_1, x_2	$3x_1 + 4x_2 = 15$	Yes	No	-5	No
			$x_1 = 1, x_2 = 3$				
			$x_1 + 3x_3 = 7$				
2	$x_2 = 0$	x_1, x_3	$3x_1 + 6x_3 = 15$	Yes	No	9	Yes
			$x_1 = 1, x_3 = 2$				
			$2x_2 + 3x_3 = 7$				
3	$x_1 = 0$	x_{2}, x_{3}	$4x_2 + 6x_3 = 15$	-	-	-	-
			Unbounded solution				

Determine all basic solutions to the following problem. Which of them are basic feasible, 2. degenerate, infeasible basic and optimal basic feasible solutions?

Maximise
$$z = x_1 + 3x_2 + 3x_3$$

subject to $x_1 + 2x_2 + 3x_3 = 4$
 $2x_1 + 3x_2 + 5x_3 = 7$
 $x_1, x_2, x_3 \ge 0$

[N15/M23/CompIT/5M][M18/N19/Comp/5M][N18/MechCivil/5M] [M24/CompITAI/5M]

	Non-basic	Basic	Equations	Is the	Is the	Value	Is the
l No l			&	solution	solution	of	solution
	var – u	var	solutions	feasible?	degenerate?	Z	optimal?
1	$x_3 = 0$	x_1, x_2	$x_1 + 2x_2 = 4$ $2x_1 + 3x_2 = 7$ $x_1 = 2, x_2 = 1$	Yes	No	5	Yes
2	$x_2 = 0$	x_1, x_3	$x_1 + 3x_3 = 4$ $2x_1 + 5x_3 = 7$ $x_1 = 1, x_3 = 1$	Yes	No	4	No
3	$x_1 = 0$	x_2, x_3	$2x_2 + 3x_3 = 4$ $3x_2 + 5x_3 = 7$ $x_2 = -1, x_3 = 2$	No	No	3	No

Determine all basic solutions to the following problem. Which of them are basic feasible, 3. degenerate, infeasible basic and optimal basic feasible solutions?

Maximise
$$z = 2x_1 - 2x_2 + 4x_3 - 5x_4$$
 subject to
$$x_1 + 4x_2 - 2x_3 + 8x_4 \le 2$$

$$-x_1 + 2x_2 + 3x_3 + 4x_4 \le 1$$

$$x_1, x_2, x_3, x_4 \ge 0$$

[N19/MechCivil/5M]

	Non-basic	Pacie	Equations	Is the	Is the	Value	Is the
No	var = 0	Basic	&	solution	solution	of	solution
	vai – U	var	Solutions	feasible?	degenerate?	Z	optimal?
1	$x_3 = 0$ $x_4 = 0$	x_1, x_2	$x_1 + 4x_2 = 2$ $-x_1 + 2x_2 = 1$ $x_1 = 0, x_2 = 0.5$	Yes	Yes	-1	No
2	$x_2 = 0$ $x_4 = 0$	x_1, x_3	$x_1 - 2x_3 = 2$ $-x_1 + 3x_3 = 1$ $x_1 = 8, x_3 = 3$	Yes	No	28	Yes
3	$x_1 = 0$ $x_4 = 0$	x_2, x_3	$4x_2 - 2x_3 = 2$ $2x_2 + 3x_3 = 1$ $x_2 = 0.5, x_3 = 0$	Yes	Yes	-1	No
4	$x_2 = 0$ $x_3 = 0$	x_1, x_4	$x_1 + 8x_4 = 2$ $-x_1 + 4x_4 = 1$ $x_1 = 0, x_4 = \frac{1}{4}$	Yes	Yes	$-\frac{5}{4}$	No
5	$x_1 = 0$ $x_3 = 0$	x_2, x_4	$4x_2 + 8x_4 = 2$ $2x_2 + 4x_4 = 1$ Unbounded soln	-	-	-	-
6	$x_1 = 0$ $x_2 = 0$	x_3, x_4	$-2x_3 + 8x_4 = 2$ $3x_3 + 4x_4 = 1$ $x_3 = 0, x_4 = \frac{1}{4}$	Yes	No	$-\frac{5}{4}$	No

Find all basic solutions to the following problem 4.

Maximise
$$z = x_1 + x_2 + 3x_3$$

subject to $x_1 + 2x_2 + 3x_3 = 9$
 $3x_1 + 2x_2 + 2x_3 = 15$
 $x_1, x_2, x_3 \ge 0$

[N18/Comp/5M]

	Non-basic	Basic	Equations	Is the	Is the	Value
No	var = 0	var	&	solution	solution	of
vai – U vai			solutions	feasible?	degenerate?	Z
			$x_1 + 2x_2 = 9$			
1	$x_3 = 0$	x_{1}, x_{2}	$3x_1 + 2x_2 = 15$	Yes	No	6
			$x_1 = 3, x_2 = 3$			
			$x_1 + 3x_3 = 9$			
2	$x_2 = 0$	x_1, x_3	$3x_1 + 2x_3 = 15$	Yes	No	9
	_	1	$x_1 = \frac{27}{7}, x_3 = \frac{12}{7}$			
			$2x_2 + 3x_3 = 9$			
3	$x_1 = 0$	x_2, x_3	$2x_2 + 2x_3 = 15$	No	No	-9/2
	1	72,73	$x_2 = \frac{27}{2}, x_3 = -6$			-

Find all basic feasible solutions of the following system of equations 5.

$$x_1 + 2x_2 + 4x_3 + x_4 = 7$$

$$2x_1 - x_2 + 3x_3 - 2x_4 = 4$$

No	Non-basic	Basic	Equations &	Is the solution
	var = 0	var	solutions	feasible?
1	$x_3 = 0$	x_1, x_2	$ \begin{aligned} x_1 + 2x_2 &= 7 \\ 2x_1 - x_2 &= 4 \end{aligned} $	Yes
	$x_4 = 0$		$x_1 = 3, x_2 = 2$	
2	$x_2 = 0$	x_1, x_3	$ \begin{aligned} x_1 + 4x_3 &= 7 \\ 2x_1 + 3x_3 &= 4 \end{aligned} $	No
	$x_4 = 0$		$x_1 = -1, x_3 = 2$	
3	$x_1 = 0$ $x_4 = 0$	x_2, x_3	$2x_2 + 4x_3 = 7$ $-x_2 + 3x_3 = 4$ $x_2 = \frac{1}{2}, x_3 = \frac{3}{2}$	Yes
4	$x_2 = 0$ $x_3 = 0$	x_1, x_4	$x_1 + x_4 = 7$ $2x_1 - 2x_4 = 4$ $x_1 = \frac{9}{2}, x_4 = \frac{5}{2}$	Yes
5	$x_1 = 0$ $x_3 = 0$	x_2, x_4	$2x_2 + x_4 = 7$ $-x_2 - 2x_4 = 4$ $x_2 = 6, x_4 = -5$	No
6	$x_1 = 0$ $x_2 = 0$	x_3, x_4	$4x_3 + x_4 = 7$ $3x_3 - 2x_4 = 4$ $x_3 = \frac{18}{11}, x_4 = \frac{5}{11}$	Yes

Find all the basic feasible solutions to the following system of equations. 6.

$$2x_1 + 6x_2 + 2x_3 + x_4 = 3$$
$$6x_1 + 4x_2 + 4x_3 + 6x_4 = 2$$

[M19/Comp/5M]

	Non-basic	Basic	Equations	Is the				
No			<u> </u>					
	var = 0	var	Solutions	feasible?				
	w - 0		$2x_1 + 6x_2 = 3$					
1	$x_3 = 0$	x_1, x_2	$6x_1 + 4x_2 = 2$	Yes				
	$x_4 = 0$		$x_1 = 0, x_2 = 0.5$					
	× - 0		$2x_1 + 2x_3 = 3$					
2	$x_2 = 0$	x_1, x_3	$6x_1 + 4x_3 = 2$	No				
	$x_4 = 0$		$x_1 = -2, x_3 = 3.5$					
	x = 0		$6x_2 + 2x_3 = 3$					
3	$x_1 = 0$ $x_4 = 0$	x_{2}, x_{3}	$4x_2 + 4x_3 = 2$	Yes				
			$x_2 = 0.5, x_3 = 0$					
			$2x_1 + x_4 = 3$					
4	$x_2 = 0$	v v	$6x_1 + 6x_4 = 2$	No				
4	$x_3 = 0$	x_1, x_4	8 7	INO				
			$x_1 = \frac{3}{3}, x_4 = -\frac{7}{3}$					
	r = 0		$6x_2 + x_4 = 3$					
5	$x_1 = 0$	x_2, x_4	$4x_2 + 6x_4 = 2$	Yes				
	$x_3 = 0$		$x_2 = 0.5, x_4 = 0$					
	x = 0		$2x_3 + x_4 = 3$					
6	$x_1 = 0$	$ x_3, x_4 4x_3 + 6x_4 = 2$						
	$x_2 = 0$		$x_3 = 2, x_4 = -1$					

Type II: Simplex Method

Solve by using Simplex method.

Maximise
$$z = 3x_1 + 2x_2$$

subject to
$$x_1 + x_2 \le 4$$

$$x_1 - x_2 \le 2$$

$$x_1, x_2 \ge 0$$

[M17/ComplT/6M]

Solution:

The standard form,

Max
$$z - 3x_1 - 2x_2 + 0s_1 + 0s_2 = 0$$

s.t. $x_1 + x_2 + s_1 + 0s_2 = 4$
 $x_1 - x_2 + 0s_1 + s_2 = 2$
 $x_1, x_2, s_1, s_2 \ge 0$

Simplex table,

Iteration No.	Basic	С	oeffi	cien	t of	RHS	Ratio	Formula
iteration no.	Var	x_1	x_2	S_1	s_2	KIIS	Natio	Formula
0	\boldsymbol{z}	ფ	-2	0	0	0	-	X + 3Y
s_2 leaves	s_1	1	1	1	0	4	$\frac{4}{1} = 4$	X - Y
x_1 enters	s_2	1	-1	0	1	2	$\frac{2}{1} = 2$	-
1	Z	0	-5	0	3	6	-	$X + \frac{5}{2}Y$
s_1 leaves	s_1	0	2	1	-1	2	$\frac{2}{2} = 1$	$\frac{Y}{2}$
x_2 enters	x_1	1	-1	0	1	2	-	$X + \frac{1}{2}Y$
2	Z	0	0	<u>5</u> 2	$\frac{1}{2}$	11		
	x_2	0	1	$\frac{1}{2}$	$-\frac{1}{2}$	1		
	x_1	1	0	$\frac{1}{2}$	$\frac{1}{2}$	3		

$$x_1 = 3, x_2 = 1, z_{max} = 11$$

Solve by using Simplex method. 2.

Maximise
$$z = x_1 + 4x_2$$

subject to $2x_1 + x_2 \le 3$
 $3x_1 + 5x_2 \le 9$
 $x_1 + 3x_2 \le 5$
 $x_1, x_2 \ge 0$

[N14/CompIT/6M]

Solution:

The standard form,

$$\begin{array}{ll} \text{Max} & z-x_1-4x_2+0s_1+0s_2+0s_3=0\\ \text{s.t.} & 2x_1+x_2+s_1+0s_2+0s_3=3\\ & 3x_1+5x_2+0s_1+s_2+0s_3=9\\ & x_1+3x_2+0s_1+0s_2+s_3=5\\ & x_1,x_2,s_1,s_2,s_3\geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic		Coef	ficie	nt o	f	RHS	Ratio	Formula	
iteration no.	Var	x_1	x_2	s_1	s_2	S_3	MID	Natio	Torritala	
0	Z	-1	-4	0	0	0	0	-	$X + \frac{4}{3}Y$	
	s_1	2	1	1	0	0	3	$\frac{3}{1} = 3$	$X-\frac{1}{3}Y$	
s_3 leaves x_2 enters	s_2	3	5	5 0 1 0 9		9	$\frac{9}{5} = 1.8$	$X-\frac{5}{3}Y$		
x ₂ criters	s_3	1	3	0	0	1	5	$\frac{5}{3} = 1.67$	$\frac{Y}{3}$	
1	Z	1/3	0	0	0	4/3	20/3			
	s_1	5/3	0	1	0	-1/3	4/3			
	s_2	4/3	0	0	1	-5/3	2/3			
	χ_2	1/3	1	0	0	1/3	5/3			

$$x_1 = 0, x_2 = \frac{5}{3}, z_{max} = \frac{20}{3}$$

Maximise
$$z = 10x_1 + x_2 + x_3$$

subject to $x_1 + x_2 - 3x_3 \le 10$
 $4x_1 + x_2 + x_3 \le 20$
 $x_1, x_2, x_3 \ge 0$

[N17/CompIT/6M]

Solution:

The standard form,

$$\begin{array}{ll} \text{Max} & z-10x_1-x_2+x_3+0s_1+0s_2=0\\ \text{s.t.} & x_1+x_2-3x_3+s_1+0s_2=10\\ & 4x_1+x_2+x_3+0s_1+s_2=20\\ & x_1,x_2,x_3,s_1,s_2\geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic		Coe	efficien	t of		RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	x_3	s_1	s_2	ипэ	Natio	FOITIUIA
0	Z	-10	-1	1	0	0	0	-	$X + \frac{10}{4}Y$
s_2 leaves	s_1	1	1	-3	1	0	10	$\frac{10}{1} = 10$	$X-\frac{1}{4}Y$
x_1 enters	s_2	4	1	1	0	1	20	$\frac{20}{4} = 5$	$\frac{Y}{4}$
1	Z	0	$\frac{3}{2}$	$\frac{7}{2}$	0	<u>5</u> 2	50		
	s_1	0	3 4	$-\frac{13}{4}$	1	$-\frac{1}{4}$	5		
	x_1	1	$\frac{1}{4}$	$\frac{1}{4}$	0	$\frac{1}{4}$	5		

$$x_1 = 5, x_2 = 0, x_3 = 0, z_{max} = 50$$

Maximise
$$z = 15x_1 + 6x_2 + 9x_3 + 2x_4$$

subject to $2x_1 + x_2 + 5x_3 + 6x_4 \le 20$
 $3x_1 + x_2 + 3x_3 + 25x_4 \le 24$
 $7x_1 + x_4 \le 70$
 $x_1, x_2, x_3, x_4 \ge 0$

[M14/CompIT/8M]

Solution:

$$\begin{array}{ll} \text{Max} & z - 15x_1 - 6x_2 - 9x_3 - 2x_4 + 0s_1 + 0s_2 + 0s_3 = 0 \\ \text{s.t.} & 2x_1 + x_2 + 5x_3 + 6x_4 + s_1 + 0s_2 + 0s_3 = 20 \\ & 3x_1 + x_2 + 3x_3 + 25x_4 + 0s_1 + s_2 + 0s_3 = 24 \\ & 7x_1 + 0x_2 + 0x_3 + x_4 + 0s_1 + 0s_2 + s_3 = 70 \\ & x_1, x_2, x_3, x_4, s_1, s_2, s_3 \geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic			Co	efficient o	of			RHS	Ratio	Formula
iteration no.	Var	x_1	x_2	x_3	x_4	s_1	S_2	S_3	NII3	Natio	
0	Z	-15	-6	-9	-2	0	0	0	0	-	X + 5Y
	s_1	2	1	5	6	1	0	0	20	$\frac{20}{2} = 10$	$X-\frac{2}{3}Y$
s_2 leaves x_1 enters	s_2	3	1	3	25	0	1	0	24	$\frac{24}{3} = 8$	$\frac{Y}{3}$
n ₁ colors	s_3	7	0	0	1	0	0	1	70	$\frac{70}{7} = 10$	$X-\frac{7}{3}Y$
	•										
1	Z	0	-1	6	123	0	5	0	120	-	X + 3Y
	s_1	0	1/3	3	-32/3	1	-2/3	0	4	$\frac{4}{\frac{1}{3}} = 12$	3 <i>Y</i>
s_1 leaves x_2 enters	x_1	1	1/3	1	25/3	0	1/3	0	8	$\frac{8}{\frac{1}{3}} = 24$	X - Y
	s_3	0	-7/3	-7	-172/3	0	-7/3	1	14	-	X + 7Y
2	Z	0	0	15	91	3	3	0	132		
	x_2	0	1	9	-32	3	-2	0	12		
	x_1	1	0	-2	19	-1	1	0	4		
	s_3	0	0	14	-132	7	-7	1	42		

$$x_1 = 4$$
, $x_2 = 12$, $x_3 = 0$, $x_4 = 0$, $z_{max} = 132$

Minimise
$$z = x_1 - 3x_2 + 3x_3$$

subject to $3x_1 - x_2 + 2x_3 \le 7$
 $2x_1 + 4x_2 \ge -12$
 $-4x_1 + 3x_2 + 8x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$

Solution:

Maximise
$$z' = -z = -x_1 + 3x_2 - x_3$$

s.t. $3x_1 - x_2 + 3x_3 \le 7$
 $-2x_1 + 4x_2 + 0x_3 \le 12$
 $-4x_1 + 3x_2 + 8x_3 \le 10$

Converting into standard form,

Max
$$z' + x_1 - 3x_2 + x_3 - 0s_1 - 0s_2 - 0s_3 = 0$$
 s.t.
$$3x_1 - x_2 + 3x_3 + s_1 = 7$$

$$-2x_1 + 4x_2 + 0x_3 + s_2 = 12$$

$$-4x_1 + 3x_2 + 8x_3 + s_3 = 10$$

$$x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$$

Simplex Table

Iteration No.	Basic		Ç	Coeffic	ient c	f		RHS	Ratio	Formula		
iteration no.	Var	x_1	x_2	x_3	s_1	s_2	s_3	KIIS	Natio			
0	z'	1	3	1	0	0	0	0	-	$X - \frac{-3}{4}Y$		
a looves	s_1	3	-1	3	1	0	0	7	-	$X - \frac{4}{4}Y$		
s_2 leaves x_2 enters	s_2	-2	4	0	0	1	0	12	3	$Y \div 4$		
λ_2 enters	s_3	-4	3	8	0	0	1	10	3.333	$X-\frac{3}{4}Y$		
1	z'	-1/2	0	1	0	3/4	0	9	-	$X - \frac{-1}{5}Y$		
a laguag	s_1	5/2	0	3	1	1/4	0	10	4	$\frac{2}{5}Y$		
s_1 leaves x_1 enters	x_2	-1/2	1	0	0	1/4	0	3	-	$X - \frac{-1}{5}Y$		
	s_3	-5/2	0	8	0	-3/4	1	1	ı	X + Y		
2	z'	0	0	8/5	2/5	4/5	0	11				
	x_1	1	0	6/5	2/5	1/10	0	4				
	x_2	0	1	3/5	1/5	3/10	0	5				
	S_3	0	0	11	1	-1/2	1	11				

$$z'_{max} = 11,$$

 $z_{min} = -z'_{max} = -11, x_1 = 4, x_2 = 5, x_3 = 0$

Solve by Simplex Method 6.

Maximise
$$z = 7x_1 + 5x_2$$

subject to
$$-x_1 - 2x_2 \ge -6$$

$$4x_1 + 3x_2 \le 12$$

$$x_1, x_2 \ge 0$$

[M22/CompITAI/5M]

Solution:

The standard form,

Max
$$z - 7x_1 - 5x_2 + 0s_1 + 0s_2 = 0$$

s.t. $x_1 + 2x_2 + s_1 + 0s_2 = 6$
 $4x_1 + 3x_2 + 0s_1 + s_2 = 12$
 $x_1, x_2, s_1, s_2 \ge 0$

Simplex table,

Iteration No.	Basic	C	oeffic	ient	of	RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	s_1	s_2	NIIS	Natio	Formula
0	Z	-7	-5	0	0	0	-	$X + \frac{7}{4}Y$
s_2 leaves	S_1	1	2	1	0	6	$\frac{6}{1} = 6$	$X-\frac{1}{4}Y$
x_1 enters	s_2	4	3	0	1	12	$\frac{12}{4} = 3$	$Y \div 4$
							•	
1	Z	0	$\frac{1}{4}$	0	7 4	21		
	s_1	0	<u>5</u> 4	1	$-\frac{1}{4}$	3		
	x_1	1	3 4	0	1 4	3		

$$x_1 = 3, x_2 = 0, z_{max} = 21$$

Solve by using Simplex method. 7.

Maximise
$$z = 4x_1 + 10x_2$$

subject to $2x_1 + x_2 \le 10$
 $2x_1 + 5x_2 \le 20$
 $2x_1 + 3x_2 \le 18$
 $x_1, x_2 \ge 0$

[N19/Comp/8M]

Solution:

$$\begin{array}{ll} \text{Max} & z - 4x_1 - 10x_2 + 0s_1 + 0s_2 + 0s_3 = 0 \\ \text{s.t.} & 2x_1 + x_2 + s_1 + 0s_2 + 0s_3 = 10 \\ & 2x_1 + 5x_2 + 0s_1 + s_2 + 0s_3 = 20 \\ & 2x_1 + 3x_2 + 0s_1 + 0s_2 + s_3 = 18 \\ & x_1, x_2, s_1, s_2, s_3 \geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic		Coef	ficie	nt of	1	RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	s_1	S_2	S_3	MHS	Natio	TOTTIUIA
0	Z	-4	-10	0	0	0	0	-	X + 2Y
_	s_1	2	1	1	0	0	10	$\frac{10}{1} = 10$	$X-\frac{1}{5}Y$
s_2 leaves x_2 enters	s_2	2	5	0	1	0	20	$\frac{20}{5} = 4$	$\frac{Y}{5}$
nz circors	s_3	2	3	0	0	1	18	$\frac{18}{3} = 6$	$X-\frac{3}{5}Y$
1	Z	0	0	0	2	0	40		
	s_1	<u>8</u> 5	0	1	$-\frac{1}{5}$	0	6		
	x_2	2 5	1	0	1 5	0	4		
	s_3	4 5	0	0	$-\frac{3}{5}$	1	6		

$$x_1 = 0, x_2 = 4, z_{max} = 40$$

Solve by using Simplex method. 8.

Maximise
$$z = 4x_1 + 10x_2$$

subject to $2x_1 + x_2 \le 50$
 $2x_1 + 5x_2 \le 100$
 $2x_1 + 3x_2 \le 90$
 $x_1, x_2 \ge 0$

[N22/CompITAI/8M]

Solution:

$$\begin{array}{ll} \text{Max} & z - 4x_1 - 10x_2 + 0s_1 + 0s_2 + 0s_3 = 0 \\ \text{s.t.} & 2x_1 + x_2 + s_1 + 0s_2 + 0s_3 = 50 \\ & 2x_1 + 5x_2 + 0s_1 + s_2 + 0s_3 = 100 \\ & 2x_1 + 3x_2 + 0s_1 + 0s_2 + s_3 = 90 \\ & x_1, x_2, s_1, s_2, s_3 \geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic		Coef	ficie	nt of		RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	s_1	S_2	S_3	NIIS	Natio	Formula
0	Z	-4	-10	0	0	0	0	-	X + 2Y
	s_1	2	1	1	0	0	50	$\frac{50}{1} = 50$	$X-\frac{1}{5}Y$
s_2 leaves x_2 enters	s_2	2	5	0	1	0	100	$\frac{100}{5} = 20$	<u>Y</u> 5
<i>M</i> ₂ criters	s_3	2	3	0	0	1	90	$\frac{90}{3} = 30$	$X - \frac{3}{5}Y$
1	Z	0	0	0	2	0	200		
	s_1	8 - 5	0	1	$-\frac{1}{5}$	0	30		
	x_2	<u>2</u> 5	1	0	1 5	0	20		
	s_3	4 5	0	0	$-\frac{3}{5}$	1	30		

$$x_1 = 0, x_2 = 20, z_{max} = 200$$

Maximise
$$z = 3x_1 + 2x_2$$

subject to $3x_1 + 2x_2 \le 18$
 $0 \le x_1 \le 4$
 $0 \le x_2 \le 6$
 $x_1, x_2 \ge 0$

[N16/CompIT/6M][N18/MechCivil/8M][M24/CompITAI/8M] **Solution:**

$$\begin{array}{ll} \text{Max} & z-3x_1-2x_2+0s_1+0s_2+0s_3=0\\ \text{s.t.} & 3x_1+2x_2+s_1+0s_2+0s_3=18\\ & x_1+0x_2+0s_1+s_2+0s_3=4\\ & 0x_1+x_2+0s_1+0s_2+s_3=6\\ & x_1,x_2,s_1,s_2,s_3\geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic		Со	efficie	nt of	1	RHS	Ratio	Formula
iteration no.	Var	x_1	x_2	s_1	s_2	S_3	KIIS	Natio	TOTTIUIA
0	Z	-3	-2	0	0	0	0	-	X + 3Y
	s_1	3	2	1	0	0	18	$\frac{18}{3} = 6$	X-3Y
s_2 leaves x_1 enters	s_2	1	0	0	1	0	4	$\frac{4}{1} = 4$	1
_	s_3	0	1	0	0	1	6	-	-
1	Z	0	-2	0	3	0	12	-	X + Y
	s_1	0	2	1	-3	0	6	$\frac{6}{2} = 3$	$\frac{Y}{2}$
s_1 leaves x_2 enters	x_1	1	0	0	1	0	4	ı	ı
λ_2 efficis	S_3	0	1	0	0	1	6	$\frac{6}{1} = 6$	$X-\frac{1}{2}Y$
2	Z	0	0	1	0	0	18		
	x_2	0	1	1/2	-3/2	0	3		
	x_1	1	0	0	1	0	4		
	s_3	0	0	-1/2	3/2	1	3		

$$x_1 = 4$$
, $x_2 = 3$, $z_{max} = 18$

10. Use Simplex method to

$$\begin{array}{ll} \text{Maximize} & z=3x_1+5x_2\\ \text{Subject to} & 3x_1+2x_2\leq 18\\ & x_1\leq 4\\ & x_2\leq 6\\ & x_1,x_2\geq 0 \end{array}$$

[N18/Comp/8M][M19/Comp/6M]

Solution:

$$\begin{array}{ll} \text{Max} & z-3x_1-5x_2+0s_1+0s_2+0s_3=0\\ \text{s.t.} & 3x_1+2x_2+s_1+0s_2+0s_3=18\\ & x_1+0x_2+0s_1+s_2+0s_3=4\\ & 0x_1+x_2+0s_1+0s_2+s_3=6\\ & x_1,x_2,s_1,s_2,s_3\geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic		Coe	fficier	t of		RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	s_1	s_2	s_3	IVIO	Natio	TOTTIUIA
0	Z	-3	-5	0	0	0	0	-	X + 5Y
	s_1	3	2	1	0	0	18	$\frac{18}{2} = 9$	X-2Y
s_3 leaves	s_2	1	0	0	1	0	4	-	-
x_2 enters	s_3	0	1	0	0	1	6	$\frac{6}{1} = 6$	-
1	Z	-3	0	0	0	5	30	-	X + Y
a leaves	s_1	3	2	1	0	-2	6	$\frac{6}{3} = 2$	$\frac{Y}{3}$
s_1 leaves x_1 enters	s_2	1	0	0	1	0	4	$\frac{4}{1} = 4$	$X-\frac{1}{3}Y$
	x_2	0	1	0	0	1	6	ı	ı
2	Z	0	2	1	0	3	36		
	x_1	1	2 3	1 3	0	$-\frac{2}{3}$	2		
	s_2	0	$-\frac{2}{3}$	$-\frac{1}{3}$	1	2 3	2		
	x_2	0	1	0	0	1	6		

$$x_1 = 2, x_2 = 6, z_{max} = 36$$

 $z = 6x_1 - 2x_2 + 3x_3$ Maximise subject to $2x_1 - x_2 + 2x_3 \le 2$ $x_1 + 4x_3 \le 4$ $x_1, x_2, x_3 \ge 0$

[N15/ComplT/6M][M18/Comp/8M]

Solution:

The standard form,

$$\begin{array}{ll} \text{Max} & z - 6x_1 + 2x_2 - 3x_3 + 0s_1 + 0s_2 = 0 \\ \text{s.t.} & 2x_1 - x_2 + 2x_3 + s_1 + 0s_2 = 2 \\ & x_1 + 0x_2 + 4x_3 + 0s_1 + s_2 = 4 \\ & x_1, x_2, x_3, s_1, s_2 \geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic		Coef	ficie	nt of		RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	x_3	s_1	s_2	KIIS	Natio	Torritala
0	Z	-6	2	-3	0	0	0	-	X + 3Y
s_1 leaves	s_1	2	-1	2	1	0	2	$\frac{2}{2} = 1$	$\frac{Y}{2}$
x_1 enters	s_2	1	0	4	0	1	4	$\frac{4}{1} = 4$	$X-\frac{1}{2}Y$
	•								
1	Z	0	-1	თ	3	0	6	-	X + 2Y
s_2 leaves	x_1	1	-1/2	1	1/2	0	1	-	X + Y
x_2 enters	s_2	0	1/2	3	-1/2	1	3	$\frac{3}{\frac{1}{2}} = 6$	2 <i>Y</i>
2	Z	0	0	9	2	2	12		
	x_1	1	0	4	0	1	4		
	χ_2	0	1	6	-1	2	6		

$$x_1 = 4, x_2 = 6, x_3 = 0, z_{max} = 12$$

12. Using Simplex Method

Maximise
$$z = 10x_1 + 6x_2 + 5x_3$$

subject to $2x_1 + 2x_2 + 6x_3 \le 300$
 $10x_1 + 4x_2 + 5x_3 \le 600$
 $x_1 + x_2 + x_3 \le 100$
 $x_1, x_2, x_3 \ge 0$

[M22/CompITAI/5M]

Solution:

The standard form,

$$\begin{array}{ll} \text{Max} & z - 10x_1 - 6x_2 - 5x_3 + 0s_1 + 0s_2 + 0s_3 = 0 \\ \text{s.t.} & 2x_1 + 2x_2 + 6x_3 + s_1 + 0s_2 + 0s_3 = 300 \\ & 10x_1 + 4x_2 + 5x_3 + 0s_1 + s_2 + 0s_3 = 600 \\ & x_1 + x_2 + x_3 + 0s_1 + 0s_2 + s_3 = 100 \\ & x_1, x_2, x_3, s_1, s_2, s_3 \geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic			Coeffi	icien	t of		RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	x_3	s_1	s_2	s_3	ИПЭ	Natio	FUIIIIIII
0	Z	-10	-6	-5	0	0	0	0	-	X + Y
a laawaa	s_1	2	2	6	1	0	0	300	150	$X-\frac{1}{5}Y$
s_2 leaves x_1 enters	s_2	10	4	5	0	1	0	600	60	<i>Y</i> ÷ 10
λ_1 enters	s_3	1	1	1	0	0	1	100	100	$X-\frac{1}{10}Y$
	,									
1	Z	0	-2	0	0	1	0	600	-	$X + \frac{10}{3}Y$
	S_1	0	6/5	5	1	-1/5	0	180	150	X-2Y
s_3 leaves x_2 enters	x_1	1	2/5	1/2	0	1/10	0	60	150	$X - \frac{2}{3}Y$
λ_2 enters	s_3	0	3/5	1/2	0	-1/10	1	40	66.66	$\frac{5}{3}Y$
									=	
2	Z	0	0	5/3	0	2/3	10/3	2200/3		
	s_1	0	0	4	1	0	-2	100		
	x_1	1	0	1/6	0	1/6	-2/3	100/3		
	x_2	0	1	5/6	0	-1/6	5/3	200/3		

$$x_1 = \frac{100}{3}$$
, $x_2 = \frac{200}{3}$, $x_3 = 0$, $z_{max} = \frac{2200}{3}$

Maximise
$$z = 4x_1 + 3x_2 + 6x_3$$

subject to $2x_1 + 3x_2 + 2x_3 \le 440$
 $4x_1 + 3x_3 \le 470$
 $2x_1 + 5x_2 \le 430$
 $x_1, x_2, x_3 \ge 0$

[M15/ComplT/6M]

Solution:

$$\begin{array}{ll} \text{Max} & z - 4x_1 - 3x_2 - 6x_3 + 0s_1 + 0s_2 + 0s_3 = 0 \\ \text{s.t.} & 2x_1 + 3x_2 + 2x_3 + s_1 + 0s_2 + 0s_3 = 440 \\ & 4x_1 + 0x_2 + 3x_3 + 0s_1 + s_2 + 0s_3 = 470 \\ & 2x_1 + 5x_2 + 0x_3 + 0s_1 + 0s_2 + s_3 = 430 \\ & x_1, x_2, x_3, s_1, s_2, s_3 \geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic		С	oeffi	cient c	of		RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	x_3	s_1	s_2	s_3	KHS	Natio	Torritula
0	Z	-4	-3	-6	0	0	0	0	-	X + 2Y
	s_1	2	3	2	1	0	0	440	$\frac{440}{2} = 220$	$X-\frac{2}{3}Y$
s_2 leaves x_3 enters	s_2	4	0	3	0	1	0	470	$\frac{470}{3} = 156.67$	$\frac{Y}{3}$
	s_3	2	5	0	0	0	1	430	-	-
1	Z	4	3	0	0	2	0	940	1	X + Y
a leaves	s_1	-2/3	3	0	1	-2/3	0	380/3	$\frac{380}{9} = 42.22$	$\frac{Y}{3}$
s_1 leaves x_2 enters	x_3	4/3	0	1	0	1/3	0	470/3	-	-
λ_2 efficers	s_3	2	5	0	0	0	1	430	$\frac{430}{5} = 86$	$X-\frac{5}{3}Y$
2	Z	10/3	0	0	1	4/3	0	3200/3		
	x_2	-2/9	1	0	1/3	-2/9	0	380/9	_	
CV	x_3	4/3	0	1	0	1/3	0	470/3		
	s_3	28/9	0	0	-5/3	10/9	1	1970/9		

$$x_1 = 0, x_2 = \frac{380}{9}, x_3 = \frac{470}{3}, z_{max} = \frac{3200}{3}$$

Maximise
$$z = 3x_1 + 2x_2 + 5x_3$$

subject to $x_1 + 2x_2 + x_3 \le 430$
 $3x_1 + 2x_3 \le 460$
 $x_1 + 4x_2 \le 420$
 $x_1, x_2, x_3 \ge 0$

[M23/CompIT/8M]

Solution:

$$\begin{array}{ll} \text{Max} & z-3x_1-2x_2-5x_3+0s_1+0s_2+0s_3=0\\ \text{s.t.} & x_1+2x_2+x_3+s_1+0s_2+0s_3=430\\ & 3x_1+0x_2+2x_3+0s_1+s_2+0s_3=460\\ & x_1+4x_2+0x_3+0s_1+0s_2+s_3=420\\ & x_1,x_2,x_3,s_1,s_2,s_3\geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic		C	oeffi	cient (of		RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	x_3	s_1	s_2	s_3	MIS	Natio	Torritula
0	Z	-3	-2	-5	0	0	0	0	-	$X + \frac{5}{2}Y$
s_2 leaves	s_1	1	2	1	1	0	0	430	430	$X-\frac{1}{2}Y$
x_3 enters	s_2	3	0	2	0	1	0	460	230	<i>Y</i> ÷ 2
,,, спест	s_3	1	4	0	0	0	1	420	-	-
1	Z	9/2	-2	0	0	5/2	0	1150	-	X + Y
	s_1	-1/2	2	0	1	-1/2	0	200	100	<i>Y</i> ÷ 2
s_1 leaves x_2 enters	χ_3	3/2	0	1	0	1/2	0	230	-	-
χ_2 enters	s_3	1	4	0	0	0	1	430	107.5	X-2Y
2	Z	4	0	0	1	2	0	1350		
	x_2	-1/4	1	0	1/2	-1/4	0	100		
	x_3	3/2	0	1	0	1/2	0	230		
	s_3	2	0	0	-2	1	1	30		

$$x_1 = 0, x_2 = 100, x_3 = 230, z_{max} = 1350$$

Maximise
$$z = 4x_1 + x_2 + 3x_3 + 5x_4$$
 subject to
$$-4x_1 + 6x_2 + 5x_3 + 4x_4 \le 20$$

$$-3x_1 - 2x_2 + 4x_3 + x_4 \le 10$$

$$-8x_1 - 3x_2 + 3x_3 + 2x_4 \le 20$$

$$x_1, x_2, x_3, x_4 \ge 0$$

[M16/CompIT/6M]

Solution:

The standard form,

$$\begin{array}{ll} \text{Max} & z - 4x_1 - x_2 - 3x_3 - 5x_4 + 0s_1 + 0s_2 + 0s_3 = 0 \\ \text{s.t.} & -4x_1 + 6x_2 + 5x_3 + 4x_4 + s_1 + 0s_2 + 0s_3 = 20 \\ & -3x_1 - 2x_2 + 4x_3 + x_4 + 0s_1 + s_2 + 0s_3 = 10 \\ & -8x_1 - 3x_2 + 3x_3 + 2x_4 + 0s_1 + 0s_2 + s_3 = 20 \\ & x_1, x_2, x_3, x_4, s_1, s_2, s_3 \geq 0 \end{array}$$

Simplex table,

Iteration No.	Basic			Coeffi	cient	of			RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	x_3	x_4	s_1	s_2	s_3	NUS	Natio	
0	Z	-4	-1	-3	-5	0	0	0	0	-	$X + \frac{5}{4}Y$
	s_1	-4	6	5	4	1	0	0	20	$\frac{20}{4} = 5$	$\frac{Y}{4}$
s_1 leaves x_4 enters	s_2	-3	-2	4	1	0	1	0	10	$\frac{10}{1} = 10$	$X-\frac{1}{4}Y$
	s_3	-8	-3	3	2	0	0	1	20	$\frac{20}{2} = 10$	$X-\frac{1}{2}Y$
1	Z	-9	13/2	13/4	0	5/4	0	0	25	-	
	x_4	-1	3/2	5/4	1	1/4	0	0	5	-	
	s_2	-2	-7/2	11/4	0	-1/4	1	0	5	-	
	s_3	-6	-6	1/2	0	-1/2	0	1	10	-	

Since, there are no positive ratio obtained and the coefficient is still negative the solution is unbounded.

21 S.E/Paper Solutions By: Kashif Shaikh

Type III: Big M Method

Using Penalty (Big-M or Charne's) method to solve the following L.P.P.

 $z = 2x_1 + 3x_2$ Minimise $x_1 + x_2 \ge 5$ subject to $x_1 + 2x_2 \ge 6$ $x_1, x_2 \ge 0$

[N16/CompIT/8M]

Solution:

The standard form,

$$\begin{array}{lll} \text{Max} & z' = -z = -2x_1 - 3x_2 + 0s_1 + 0s_2 - MA_1 - MA_2 \\ \text{Max} & z' + 2x_1 + 3x_2 + 0s_1 + 0s_2 + MA_1 + MA_2 = 0 \dots \dots (1) \\ \text{s.t.} & x_1 + x_2 - s_1 + 0s_2 + A_1 + 0A_2 = 5 \dots \dots (2) \\ & x_1 + 2x_2 + 0s_1 - s_2 + 0A_1 + A_2 = 6 \dots \dots (3) \end{array}$$

Multiplying eqn (2) & (3) by M and subtracting both with eqn (1), we get $z' + (2 - 2M)x_1 + (3 - 3M)x_2 + Ms_1 + Ms_2 + 0A_1 + 0A_2 = -11M$ Simplex table,

Iteration No.	Basic		Со	effici	ent of			RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	s_1	s_2	A_1	A_2	INIIS	Natio	TOTTIGIA
0	z'	2-2M	3-3M	М	М	0	0	-11M	-	$X - \frac{(3-3M)}{2}Y$
A_2 leaves	A_1	1	1	-1	0	1	0	5	$\frac{5}{1} = 5$	$X-\frac{1}{2}Y$
x_2 enters	A_2	1	2	0	-1	0	1	6	$\frac{6}{2} = 3$	$\frac{Y}{2}$
	•								•	
1	z'	1/2-M/2	0	М	3/2 -M/2	0		-9-2M	-	X - (1 - M)Y
A_1 leaves	A_1	1/2	0	-1	1/2	1		2	$\frac{\frac{2}{1}}{\frac{1}{2}} = 4$	2 <i>Y</i>
x_1 enters	x_2	1/2	1	0	-1/2	0		3	$\frac{3}{\frac{1}{2}} = 6$	X - Y
									-	
2	z'	0	0	1	1			-11		
	x_1	1	0	-2	1			4		
	x_2	0	1	1	-1			1		

$$x_1 = 4, x_2 = 1, z'_{max} = -11, \therefore z_{min} = 11$$

Using Penalty (Big-M or Charne's) method to solve the following L.P.P. 2.

Minimise
$$z = 10x_1 + 3x_2$$

subject to $x_1 + 2x_2 \ge 3$
 $x_1 + 4x_2 \ge 4$
 $x_1, x_2 \ge 0$

[M18/MechCivil/6M]

Solution:

The standard form,

$$\begin{array}{lll} \text{Max} & z' = -z = -10x_1 - 3x_2 + 0s_1 + 0s_2 - MA_1 - MA_2 \\ \text{Max} & z' + 10x_1 + 3x_2 + 0s_1 + 0s_2 + MA_1 + MA_2 = 0 \dots \dots (1) \\ \text{s.t.} & x_1 + 2x_2 - s_1 + 0s_2 + A_1 + 0A_2 = 3 \dots \dots (2) \\ & x_1 + 4x_2 + 0s_1 - s_2 + 0A_1 + A_2 = 4 \dots \dots (3) \end{array}$$

Multiplying eqn (2) & (3) by M and subtracting both with eqn (1), we get $z' + (10 - 2M)x_1 + (3 - 6M)x_2 + Ms_1 + Ms_2 + 0A_1 + 0A_2 = -7M$ Simplex table,

Iteration No.	Basic		Cc	efficie	nt of			RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	s_1	s_2	A_1	A_2	MIIS	Natio	
0	z'	10-2M	3-6M	М	M	0	0	-7M	-	$X - \frac{(3-6M)}{4}Y$
A_2 leaves	A_1	1	2	-1	0	1	0	3	$\frac{3}{2} = 1.5$	$X-\frac{1}{2}Y$
x_2 enters	A_2	1	4	0	-1	0	1	4	$\frac{4}{4} = 1$	$\frac{Y}{4}$
	•								•	
1	z'	37/4-M/2	0	М	3/4 -M/2	0		-M-3	-	X - (3/2 - M)Y
A_1 leaves	A_1	1/2	0	-1	1/2	1		1	$\frac{1}{\frac{1}{2}} = 2$	2 <i>Y</i>
s ₂ enters	x_2	1/4	1	0	-1/4	0		1	-	$X + \frac{1}{2}Y$
				,						
2	z'	17/2	0	3/2	0			-9/2	-	
	s_2	1	0	-2	1			2	-	
	x_2	1/2	1	-1/2	0			3/2	-	

$$x_1 = 0, x_2 = \frac{3}{2}, z'_{max} = -\frac{9}{2}, \therefore z_{min} = \frac{9}{2}$$

Using Penalty (Big-M or Charne's) method to solve the following L.P.P. 3.

Minimise
$$z = 2x_1 + x_2$$

subject to $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 3$
 $x_1, x_2 \ge 0$

[N17/CompIT/8M][M19/MechCivil/6M]

Solution:

The standard form,

$$\begin{array}{ll} \text{Max} & z' = -z = -2x_1 - x_2 + 0s_2 + 0s_3 - MA_1 - MA_2 \\ \text{Max} & z' + 2x_1 + x_2 + 0s_2 + 0s_3 + MA_1 + MA_2 = 0 \dots (1) \\ \text{s.t.} & 3x_1 + x_2 + A_1 = 3 \dots (2) \\ & 4x_1 + 3x_2 - s_2 + A_2 = 6 \dots (3) \\ & x_1 + 2x_2 + s_3 = 3 \end{array}$$

Multiplying eqn (2) & (3) by M and subtracting both with eqn (1), we get $z' + (2 - 7M)x_1 + (1 - 4M)x_2 + Ms_2 + 0s_3 + 0A_1 + 0A_2 = -9M$ Simplex table,

Iteration No.	Basic		Coe	fficien	t of			RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	S_2	s_3	A_1	A_2	КПЗ	Natio	Formula
0	z'	2-7M	1-4M	М	0	0	0	-9M	-	$X - \frac{(2-7M)}{3}Y$
	A_1	3	1	0	0	1	0	3	$\frac{3}{3} = 1$	$\frac{Y}{3}$
A_1 leaves x_1 enters	A_2	4	3	-1	0	0	1	6	$\frac{6}{4} = 1.5$	$X - \frac{4}{3}Y$
1	s_3	1	2	0	1	0	0	3	$\frac{3}{1} = 3$	$X - \frac{1}{3}Y$
1	z'	0	$\frac{1-5M}{3}$	М	0		0	-2-2M	-	$X - \frac{1 - 5M}{5}Y$
	x_1	1	$\frac{1}{3}$	0	0		0	1	3	$X-\frac{1}{5}Y$
A_2 leaves x_2 enters	A_2	0	<u>5</u> 3	-1	0		1	2	1.2	$\frac{3}{5}Y$
	s_3	0	<u>5</u> 3	0	1		0	2	1.2	X - Y
				_						
2	z'	0	0	1 5	0			$-\frac{12}{5}$		
	x_1	1	0	1 5	0			3 5 6 5		
	x_2	0	1	$-\frac{3}{5}$	0					
	s_3	0	0	1	1			0		

$$x_1 = \frac{3}{5}$$
, $x_2 = \frac{6}{5}$, $z'_{max} = -\frac{12}{5}$, $\therefore z_{min} = \frac{12}{5}$

Using Penalty (Big-M or Charne's) method to solve the following L.P.P. 4.

Minimise
$$z = 6x_1 + 4x_2$$
subject to
$$2x_1 + 3x_2 \le 30$$

$$3x_1 + 2x_2 \le 24$$

$$x_1 + x_2 \ge 3$$

$$x_1, x_2 \ge 0$$

[N18/MechCivil/8M]

Solution:

The standard form,

$$\begin{array}{ll} \text{Max} & z' = -z = -6x_1 - 4x_2 + 0s_1 + 0s_2 + 0s_3 - MA_3 \\ \text{Max} & z' + 6x_1 + 4x_2 + 0s_1 + 0s_2 + 0s_3 + MA_3 = 0 \dots \dots (1) \\ \text{s.t.} & 2x_1 + 3x_2 + s_1 = 30 \\ & 3x_1 + 2x_2 + s_2 = 24 \\ & x_1 + x_2 - s_3 + A_3 = 3 \dots \dots (2) \end{array}$$

Multiplying eqn (2) by M and subtracting with eqn (1), we get

$$z' + (6 - M)x_1 + (4 - M)x_2 + 0s_1 + 0s_2 + Ms_3 + 0A_3 = -3M$$

Simplex table,

 tabic,										
Iteration No.	Basic		Coe	fficie	ent o	f		RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	s_1	s_2	s_3	A_3	KIIS	Natio	Formula
0	z'	6-M	4-M	0	0	М	0	-3M	-	X - (4 - M)Y
	s_1	2	3	1	0	0	0	30	$\frac{30}{3} = 10$	X - 3Y
A_3 leaves x_2 enters	s_2	3	2	0	1	0	0	24	$\frac{24}{2} = 12$	X-2Y
M ₂ criters	A_3	1	1	0	0	-1	1	3	$\frac{3}{1} = 3$	-
1	z'	2	0	0	0	4		-12		
	s_1	-1	0	1	0	3		21		
	s_2	1	0	0	1	2		18		
	x_2	1	1	0	0	-1		3		

$$x_1 = 0, x_2 = 3, z'_{max} = -12, : z_{min} = 12$$

Using Penalty (Big-M or Charne's) method to solve the following L.P.P. 5.

Maximise
$$z = 3x_1 - 2x_2$$

subject to $2x_1 + x_2 \le 2$
 $x_1 + 3x_2 \ge 3$
 $x_1, x_2 \ge 0$

[D23/CompITAI/8M]

Solution:

The standard form,

$$\begin{array}{ll} \text{Max} & z = 3x_1 - 2x_2 + 0s_1 + 0s_2 - MA_2 \\ \text{Max} & z - 3x_1 + 2x_2 + 0s_1 + 0s_2 + MA_2 = 0 \dots \dots (1) \\ \text{s.t.} & 2x_1 + x_2 + s_1 = 2 \dots \dots (2) \\ & x_1 + 3x_2 - s_2 + A_2 = 3 \dots \dots (3) \end{array}$$

Multiplying eqn (3) by M and subtracting with eqn (1), we get $z + (-3 - M)x_1 + (2 - 3M)x_2 + 0s_1 + Ms_2 + 0A_2 = -3M$ Simplex table,

Iteration No.	Basic		Coeff	icient c	of		RHS	Ratio	Formula
iteration No.	Var	x_1	x_2	s_1	s_2	A_2	Kris	Natio	
0	Z	-3-M	2-3M	0	М	0	-3M	-	$X - \frac{(2-3M)}{3}Y$
A_2 leaves	<i>s</i> ₁	2	1	1	0	0	2	2	$X - \frac{1}{3}Y$
x_2 enters	A_2	1	3	0	-1	1	3	1	<u>Y</u> 3
1	Z	-11/3	0	0	2/3		-2	-	$X + \frac{11}{5}Y$
s_1 leaves	s_1	5/3	0	1	1/3		1	0.6	$\frac{3Y}{5}$
x_1 enters	x_2	1/3	1	0	-1/3		1	3	$X-\frac{1}{5}Y$
2	Z	0	0	11/5	7/5		1/5		
	x_1	1	0	3/5	1/5		3/5		
	x_2	0	1	-1/5	-2/5		4/5		

Thus, the solution is

$$x_1 = \frac{3}{5}, x_2 = \frac{4}{5}, z_{max} = \frac{1}{5}$$

S.E/Paper Solutions 26 By: Kashif Shaikh

Using Penalty (Big-M or Charne's) method to solve the following L.P.P. 6.

Maximise
$$z = x_1 + 2x_2 + 3x_3 - x_4$$

subject to $x_1 + 2x_2 + 3x_3 = 15$
 $2x_1 + x_2 + 5x_3 = 20$
 $x_1 + 2x_2 + x_3 + x_4 = 10$
 $x_1, x_2, x_3, x_4 \ge 0$

[D24/CompITAI/8M]

Solution:

The standard form,

$$\begin{array}{ll} \text{Max} & z = x_1 + 2x_2 + 3x_3 - x_4 - MA_1 - MA_2 - MA_3 \\ \text{Max} & z - x_1 - 2x_2 - 3x_3 + x_4 + MA_1 + MA_2 + MA_3 = 0 \dots \dots (1) \\ \text{s.t.} & x_1 + 2x_2 + 3x_3 + A_1 = 15 \dots \dots (2) \\ & 2x_1 + x_2 + 5x_3 + A_2 = 20 \dots \dots (3) \\ & x_1 + 2x_2 + x_3 + x_4 + A_3 = 10 \dots \dots (4) \end{array}$$

Multiplying eqn (2), (3), (4) by M and subtracting all with eqn (1), we get $z + (-1 - 4M)x_1 + (-2 - 5M)x_2 + (-3 - 9M) + (1 - M)x_4 + 0A_1 + 0A_2 + 0A_3 = -45M$ Simplex table,

Iteration	Basic		Coef	ficient of				рцс	Ratio	Formula	
No.	Var	x_1	x_2	x_3	x_4	A_1	A_2	A_3	RHS	Katio	Formula
0	Z	-1-4M	-2-5M	-3-9M	1-M	0	0	0	-45M	-	$X - \frac{-3 - 9M}{5}Y$ $X - \frac{3}{5}Y$
4 100,000	A_1	1	2	3	0	1	0	0	15	5	$X-\frac{3}{5}Y$
A_2 leaves x_3 enters	A_2	2	1	5	0	0	1	0	20	4	<i>Y</i> ÷ 5
λ_3 enters	A_3	1	2	1	1	0	0	1	10	10	$X-\frac{1}{5}Y$
1	Z	1/5 -2M/5	-7/5-16M/5	0	1-M	0		0	12-9M	1	$X - \frac{-7 - 16M}{7}Y$
	A_1	-1/5	7/5	0	0	1		0	3	15/7	$\frac{5}{7}Y$
A_1 leaves x_2 enters	x_3	2/5	1/5	1	0	0		0	4	20	$X - \frac{1}{7}Y$ $X - \frac{9}{7}Y$
	A_3	3/5	9/5	0	1	0		1	6	10/3	$X-\frac{9}{7}Y$
				-							
2	Z	-6M/7	0	0	1-M			0	15-15M/7	-	X + MY
	x_2	-1/7	1	0	0			0	15/7	-	$X + \frac{1}{6}Y$
A_3 leaves x_1 enters	x_3	3/7	0	1	0			0	25/7	25/3	$X-\frac{1}{2}Y$
M ₁ director	A_3	6/7	0	0	1			1	15/7	5/2	$\frac{7}{6}Y$
										-"	
3	Z	0	0	0	1				15		
	x_2	0	1	0	1/6				5/2		
	x_3	0	0	1	-1/2				5/2		
	x_1	1	0	0	7/6				5/2		

Thus,
$$x_1 = x_2 = x_3 = \frac{5}{2}$$
, $x_4 = 0$, $z_{max} = 15$

Type IV: Dual Simplex Method

Use Dual simplex method to solve the following LPP

 $z = 6x_1 + x_2$ Minimize Subject to $2x_1 + x_2 \ge 3$ $x_1 - x_2 \ge 0$

$$\begin{array}{c} x_1 - x_2 \ge \\ x_1, x_2 \ge 0 \end{array}$$

[M17/ComplT/6M][M23/ComplT/8M]

Solution:

The standard form,

 $z = 6x_1 + x_2$ Min $z - 6x_1 - x_2 + 0s_1 + 0s_2 = 0$ $-2x_1 - x_2 + s_1 = -3$ s.t. $-x_1 + x_2 + s_2 = 0$

Simplex table,

Iteration No.	Basic	Со	efficient d	of		RHS	Formula
iteration no.	Var	x_1	x_2	s_1	s_2	כווא	Formula
0	Z	-6	-1	0	0	0	X - Y
s_1 leaves	s_1	-2	-1	1	0	-3	-Y
x_2 enters	s_2	-1	1	0	1	0	X + Y
Ratio		$\frac{-6}{-2} = 3$	$\frac{-1}{-1} = 1$	-	ı	1	
1	Z	-4	0	-1	0	3	$X-\frac{4}{3}Y$
s_2 leaves	x_2	2	1	-1	0	3	$X + \frac{2}{3}Y$
x_1 enters	s_2	-3	0	1	1	-3	$-\frac{Y}{3}$
Ratio		$\frac{-4}{-3} = 1.33$	-	-	-	-	
2	Z	0	0	$-\frac{7}{3}$	$-\frac{4}{3}$	7	
	x_2	0	1	$-\frac{1}{3}$	2 3	1	
x_1		1	0	$-\frac{1}{3}$	$-\frac{1}{3}$	1	

The solution is

$$x_1 = 1, x_2 = 1, z_{min} = 7$$

Use Dual simplex method to solve the following LPP 2.

Minimize

$$z = 6x_1 - x_2$$

Subject to

$$2x_1 + x_2 \ge 3$$

$$x_1 - x_2 \ge 0$$

$$x_1, x_2 \ge 0$$

[N19/MechCivil/6M]

Solution:

The standard form,

$$Min z = 6x_1 - x_2$$

$$z - 6x_1 + x_2 + 0s_1 + 0s_2 = 0$$

$$-2x_1 - x_2 + s_1 = -3$$

$$-x_1 + x_2 + s_2 = 0$$

Simplex table,

Iteration No.	Basic	Coef	fficie	nt of		RHS	Formula	
iteration No.	Var	x_1	x_2	s_1	S_2	MIS	Torrida	
0	Z	-6	1	0	0	0	X-3Y	
s_1 leaves	s_1	-2	-1	1	0	-3	$\frac{Y}{-2}$	
x_1 enters	s_2	-1	1	0	1	0	$X-\frac{1}{2}Y$	
Ratio		$\frac{-6}{-2} = 3$	-/	-	-	-		
1	Z	0	4	-3	0	9		
	x_1	1	$\frac{1}{2}$	$-\frac{1}{2}$	0	3 2		
	s_2	0	$\frac{3}{2}$	$-\frac{1}{2}$	1	$\frac{3}{2}$		

The solution is

$$x_1 = \frac{3}{2}, x_2 = 0, z_{min} = 9$$

Use the dual simplex method to solve the following L.P.P. 3.

Minimise

$$z = 6x_1 + 3x_2 + 4x_3$$

subject to

$$x_1 + 6x_2 + x_3 = 10$$

$$2x_1 + 3x_2 + x_3 = 15$$

$$x_1, x_2, x_3 \ge 0$$

[N18/Comp/8M][M22/CompITAI/5M]

$$\begin{array}{ll} \text{Min} & z=6x_1+3x_2+4x_3\\ \text{s.t.} & x_1+6x_2+x_3\leq 10\\ & x_1+6x_2+x_3\geq 10 \text{ i.e.} -x_1-6x_2-x_3\leq -10\\ & 2x_1+3x_2+x_3\leq 15\\ & 2x_1+3x_2+x_3\geq 15 \text{ i.e.} -2x_1-3x_2-x_3\leq -15 \end{array}$$

Standard form:

$$\begin{array}{lll} \text{Min} & z = 6x_1 + 3x_2 + 4x_3 + 0s_1 + 0s_2 + 0s_3 + 0s_4 \\ z - 6x_1 - 3x_2 - 4x_3 + 0s_1 + 0s_2 + 0s_3 + 0s_4 = 0 \\ \text{s.t.} & x_1 + 6x_2 + x_3 + s_1 + 0s_2 + 0s_3 + 0s_4 = 10 \\ & -x_1 - 6x_2 - x_3 + 0s_1 + s_2 + 0s_3 + 0s_4 = -10 \\ 2x_1 + 3x_2 + x_3 + 0s_1 + 0s_2 + s_3 + 0s_4 = 15 \\ & -2x_1 - 3x_2 - x_3 + 0s_1 + 0s_2 + 0s_3 + s_4 = -15 \end{array}$$

Simplex Table,

Iteration No.	Basic		C	pefficient	of				RHS	Formula
iteration no.	Var	x_1	x_2	x_3	s_1	s_2	S_3	s_4	КПЭ	FOITILLIA
0	Z	-6	-3	-4	0	0	0	0	0	X - Y
	s_1	1	6	1	1	0	0	0	10	X + 2Y
s_4 leaves	s_2	-1	-6	-1	0	1	0	0	-10	X-2Y
x_2 enters	s_3	2	3	1	0	0	1	0	15	X + Y
2	S_4	-2	-3	-1	0	0	0	1	-15	$\frac{Y}{-3}$
Ratio		$\frac{-6}{-2} = 3$	$\frac{-3}{-3} = 1$	$\frac{-4}{-1} = 4$	-	-	-	-	-	
1	Z	-4	0	-3	0	0	0	-1	15	$X-\left(\frac{4}{3}\right)Y$
	s_1	-3	0	-1	1	0	0	2	-20	<u>Y</u> -3
s_1 leaves	s_2	3	0	1	0	1	0	-2	20	X + Y
x_1 enters	s_3	0	0	0	0	0	1	1	0	-
	x_2	2/3	1	1/3	0	0	0	-1/3	5	$X + \frac{2}{9}Y$
Ratio		$\frac{-4}{-3} = 1.33$	-	$\frac{-3}{-1} = 3$	-	-	-	-	-	
2	Z	0	0	-5/3	-4/3	0	0	-11/3	125/3	
	x_1	1	0	1/3	-1/3	0	0	-2/3	20/3	
	s_2	0	0	0	1	1	0	0	0	
	s_3	0	0	0	0	0	1	1	0	
	x_2	0	1	1/9	2/9	0	0	1/9	5/9	

Thus the solution is $x_1 = \frac{20}{3}$, $x_2 = \frac{5}{9}$, $x_3 = 0$, $z_{min} = \frac{125}{3}$

Use Dual simplex method to solve the following LPP 4.

Minimize
$$z = x_1 + x_2$$

Subject to $2x_1 + x_2 \ge 2$
 $-x_1 - x_2 \ge 1$
 $x_1, x_2 \ge 0$

[N18/MechCivil/8M][M19/Comp/8M][N22/CompITAI/8M] **Solution:**

The standard form,

Min
$$z = x_1 + x_2$$

 $z - x_1 - x_2 + 0s_1 + 0s_2 = 0$
s.t. $-2x_1 - x_2 + s_1 = -2$
 $x_1 + x_2 + s_2 = -1$

Simplex table,

<u>,</u>							
Iteration No.	Basic	C	oefficient	of		RHS	Formula
iteration No.	Var	x_1	x_2	s_1	S_2	КПЭ	FUITIUIA
0	Z	-1	-1	0	0	0	$X-\frac{1}{2}Y$
s_1 leaves	s_1	-2	-1	1	0	-2	$\frac{Y}{-2}$
x_1 enters	s_2	1	1	0	1	-1	$X + \frac{1}{2}Y$
Ratio		$\frac{-1}{-2} = \frac{1}{2}$	$\frac{-1}{-1} = 1$	1	ı	-	
1	Z	0	$-\frac{1}{2}$	$-\frac{1}{2}$	0	1	
s_2 leaves	x_2	1	$\frac{1}{2}$	$-\frac{1}{2}$	0	1	
x_1 enters	s_2	0	$\frac{1}{2}$	$\frac{1}{2}$	1	-2	
Ratio		-	-	-	-	-	

Since, there are no positive ratios obtained, the problem has no solution

S.E/Paper Solutions 31 By: Kashif Shaikh

Use the dual simplex method to solve the following L.P.P. 5.

Minimise
$$z = 2x_1 + x_2$$

subject to $3x_1 + x_2 \ge 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 3$
 $x_1, x_2 \ge 0$

[M18/N19/Comp/8M][M18/MechCivil/8M][M24/CompITAI/8M] **Solution:**

The standard form,

Min
$$z - 2x_1 - x_2 + 0s_1 + 0s_2 + 0s_3 = 0$$

s.t. $-3x_1 - x_2 + s_1 + 0s_2 + 0s_3 = -3$
 $-4x_1 - 3x_2 + 0s_1 + s_2 + 0s_3 = -6$
 $x_1 + 2x_2 + 0s_1 + 0s_2 + s_3 = 3$

Simplex table,

Iteration No.	Basic		Coeffi	cient c	of		RHS	Formula
iteration No.	Var	x_1	x_2	s_1	s_2	S_3	KIIS	Formula
0	Z	-2	-1	0	0	0	0	$X-\frac{1}{3}Y$
	s_1	-3	-1	1	0	0	-3	$X - \frac{3}{3}Y$
s_2 leaves x_2 enters	s_2	-4	-3	0	1	0	-6	$\frac{Y}{-3}$
	s_3	1	2	0	0	1	3	$X + \frac{2}{3}Y$
Ratio		$\frac{-2}{-4} = \frac{1}{2}$	$\frac{-1}{-3} = \frac{1}{3}$	-	1	1	-	-
1	Z	-2/3	0	0	-1/3	0	2	$X-\frac{2}{5}Y$
a lasvas	s_1	-5/3	0	1	-1/3	0	-1	$-\frac{3}{5}Y$
s_1 leaves x_1 enters	x_2	4/3	1	0	-1/3	0	2	$X + \frac{4}{5}Y$
	S_3	-5/3	0	0	2/3	1	-1	X - Y
Ratio		$\frac{\frac{2}{3}}{\frac{5}{3}} = \frac{2}{5}$	-	ı	$\frac{\frac{-1}{3}}{\frac{-1}{3}} = 1$	1	-	-
2	Z	0	0	-2/5	-1/5	0	12/5	
	x_2	1	0	-3/5	1/5	0	3/5	_
	x_1	0	1	4/5	-3/5	0	6/5	
	s_3	0	0	-1	1	1	0	

$$x_1 = \frac{6}{5}, x_2 = \frac{3}{5}, z_{min} = \frac{12}{5}$$

Use the dual simplex method to solve the following L.P.P. 6.

Minimise
$$z = 2x_1 + 2x_2 + 4x_3$$

subject to $2x_1 + 3x_2 + 5x_3 \ge 2$
 $3x_1 + x_2 + 7x_3 \le 3$
 $x_1 + 4x_2 + 6x_3 \le 5$
 $x_1, x_2, x_3 \ge 0$

[N15/CompIT/8M][D23/CompITAI/8M]

Solution:

The standard form,

Min
$$z - 2x_1 - 2x_2 - 4x_3 + 0s_1 + 0s_2 + 0s_3 = 0$$

s.t. $-2x_1 - 3x_2 - 5x_3 + s_1 + 0s_2 + 0s_3 = -2$
 $3x_1 + x_2 + 7x_3 + 0s_1 + s_2 + 0s_3 = 3$
 $x_1 + 4x_2 + 6x_3 + 0s_1 + 0s_2 + s_3 = 5$

Simplex table,

Iteration No.	Basic		Coef	ficient of				RHS	Formula
iteration No.	Var	x_1	x_2	χ_3	S_1	s_2	S_3	кпэ	
0	Z	-2	-2	-4	0	0	0	0	$X-\frac{2}{3}Y$
	s_1	-2	-3	-5	1	0	0	-2	$\frac{Y}{-3}$
s_1 leaves x_2 enters	s_2	3	1	7	0	1	0	3	$X + \frac{1}{3}Y$
	s_3	1	4	6	0	0	1	5	$X + \frac{4}{3}Y$
Ratio		$\frac{-2}{-2} = 1$	$\frac{-2}{-3} = 0.67$	$\frac{-4}{-5} = 0.8$	-	-	-	-	
1	Z	-2/3	0	-2/3	-2/3	0	0	4/3	
	x_2	2/3	1	5/3	-1/3	0	0	2/3	
	s_2	7/3	0	16/3	1/3	1	0	7/3	
	S_3	-5/3	0	-2/3	4/3	0	1	7/3	

The solution is,
$$x_1 = 0$$
, $x_2 = \frac{2}{3}$, $x_3 = 0$, $z_{min} = \frac{4}{3}$

33 S.E/Paper Solutions By: Kashif Shaikh

Use the dual simplex method to solve the following L.P.P. 7.

Maximise
$$z = -3x_1 - 2x_2$$
 subject to
$$x_1 + x_2 \ge 1$$

$$x_1 + x_2 \le 7$$

$$x_1 + 2x_2 \le 10$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0$$

[M16/CompIT/8M]

Solution:

$$\begin{aligned} & z' = -z = 3x_1 + 2x_2 \\ & z' - 3x_1 - 2x_2 + 0s_1 + 0s_2 + 0s_3 + 0s_4 = 0 \\ \text{s.t.} & -x_1 - x_2 + s_1 + 0s_2 + 0s_3 + 0s_4 = -1 \\ & x_1 + x_2 + 0s_1 + s_2 + 0s_3 + 0s_4 = 7 \\ & -x_1 - 2x_2 + 0s_1 + 0s_2 + s_3 + 0s_4 = -10 \\ & 0x_1 + x_2 + 0s_1 + 0s_2 + 0s_3 + s_4 = 3 \end{aligned}$$

Iteration No.	Basic Coefficient of								Formula
iteration no.	Var	x_1	x_2	s_1	S_2	S_3	S_4	RHS	FUIIIIIII
0	z'	-3	-2	0	0	0	0	0	X - Y
	s_1	-1	-1	1	0	0	0	-1	$X-\frac{1}{2}Y$
s_3 leaves	s_2	1	1	0	1	0	0	7	$\frac{X - \frac{1}{2}Y}{X + \frac{1}{2}Y}$
x_2 enters	s_3	-1	-2	0	0	1	0	-10	$\frac{Y}{-2}$
	s_4	0	1	0	0	0	1	3	$X + \frac{1}{2}Y$
Ratio		$\frac{-3}{-1} = 3$	$\frac{-2}{-2} = 1$	-	1	-	-		
1	Z	-2	0	0	0	-1	0	10	X-4Y
	s_1	-1/2	0	1	0	-1/2	0	4	X - Y
s_4 leaves	s_2	1/2	0	0	1	1/2	0	2	X + Y
x_1 enters	x_2	1/2	1	0	0	-1/2	0	5	X + Y
	S_4	-1/2	0	0	0	1/2	1	-2	-2Y
Ratio	,	$\frac{-2}{-\frac{1}{2}} = 4$	-	-	-	-	-	-	
2	z'	0	0	0	0	-3	-4	18	
	s_1	0	0	1	0	-1	-1	6	
	s_2	0	0	0	1	1	1	0	
	x_2	0	1	0	0	0	1	3	
	x_1	1	0	0	0	-1	-2	4	

Thus the solution is $x_1 = 4$, $x_2 = 3$, $z'_{min} = 18$, $z_{max} = -18$

Use dual simplex method, solve 8.

Maximise
$$z = -2x_1 - x_3$$

Subject to $x_1 + x_2 - x_3 \ge 5$
 $x_1 - 2x_2 + 4x_3 \ge 8$
 $x_1, x_2, x_3 \ge 0$

[M14/CompIT/8M]

Solution:

The standard form,

Min
$$z' = -z = 2x_1 + x_3$$

 $z' - 2x_1 + 0x_2 - x_3 + 0s_1 + 0s_2 = 0$
s.t. $-x_1 - x_2 + x_3 + s_1 + 0s_2 = -5$
 $-x_1 + 2x_2 - 4x_3 + 0s_1 + s_2 = -8$

Simplex table,

Iteration No.	Basic		Coe	efficient of			RHS	Formula
iteration No.	Var	x_1	x_2	x_3	s_1	S_2	IVIIO	TOTTIGIA
0	z'	-2	0	-1	0	0	0	$X-\frac{1}{4}Y$
s_2 leaves	s_1	-1	-1	1	1	0	-5	$X + \frac{1}{4}Y$
x_3 enters	s_2	-1	2	-4	0	1	-8	$\frac{Y}{-4}$
Ratio		$\frac{-2}{-1} = 2$		$\frac{-1}{-4} = 0.25$	-	-	-	
1	z'	-7/4	-1/2	0	0	-1/4	2	X - Y
s_1 leaves	s_1	-5/4	-1/2	0	1	1/8	-7	-2Y
x_2 enters	χ_3	1/4	-1/2	1	0	-1/4	2	X - Y
Ratio		<u>7</u> 5	1	ı	ı	-	1	
2	z'	-1/2	0	0	-1	-3/8	9	
	x_2	5/2	1	0	-2	-1/4	14	
	x_3	3/2	0	1	-1	-3/8	0	

The solution is

$$x_1 = 0, x_2 = 14, x_3 = 9, z'_{min} = 9, \therefore z_{max} = -9$$

Use dual simplex method, solve 9.

Minimise
$$z = 2x_1 - x_2 + 3x_3$$

Subject to $3x_1 - x_2 + 3x_3 \le 7$
 $2x_1 - 4x_2 \ge 12$
 $x_1, x_2, x_3 \ge 0$

[D24/CompITAI/8M]

Solution:

The standard form,

Min
$$z = 2x_1 - x_2 + 3x_3 + 0s_1 + 0s_2$$

 $z - 2x_1 + x_2 - 3x_3 + 0s_1 + 0s_2 = 0$
s.t. $3x_1 - x_2 + 3x_3 + s_1 + 0s_2 = 7$
 $-2x_1 + 4x_2 + 0x_3 + 0s_1 + s_2 = -12$

Simplex table,

Iteration No.	Basic	Coefficient of					RHS	Formula
iteration No.	Var	x_1	x_2	x_3	s_1	s_2	KIIS	TOTTIGIA
0	Z	-2	1	-3	0	0	0	$X-\frac{1}{4}Y$
s_2 leaves	s_1	3	-1	3	1	0	7	$\frac{X - \frac{1}{4}I}{X + \frac{1}{4}Y}$
x_2 enters	s_2	-2	4	0	0	1	-12	$Y \div 4$
Ratio		1	1/4	1	-	1	-	
1	Z	-3/2	0	-3	0	-1/4	3	X-3Y
s_1 leaves	S_1	5/2	0	3	1	1/4	4	X + 5Y
x_2 enters	x_2	-1/2	1	0	0	1/4	-3	-2Y
Ratio		3	-	-	-	-	-	
2	Z	0	-3	-3	0	-1	12	
x_2 leaves	S_1	0	5	3	1	3/2	-11	
x_1 enters	x_1	1	-2	0	0	-1/2	6	
Ratio		-	-	-	-	-	-	

The solution is unbounded

S.E/Paper Solutions 36 By: Kashif Shaikh

Type V: Duality

Write the dual of the following L.P.P.

Maximise
$$z = 2x_1 - x_2 + 4x_3$$

subject to $x_1 + 2x_2 - x_3 \le 5$
 $2x_1 - x_2 + x_3 \le 6$
 $x_1 + x_2 + 3x_3 \le 10$
 $4x_1 + x_3 \le 12$
 $x_1, x_2, x_3 \ge 0$

[N17/CompIT/5M]

Solution:

Primal,

Max
$$z = 2x_1 - x_2 + 4x_3$$
s.t.
$$x_1 + 2x_2 - x_3 \le 5$$

$$2x_1 - x_2 + x_3 \le 6$$

$$x_1 + x_2 + 3x_3 \le 10$$

$$4x_1 + 0x_2 + x_3 \le 12$$

$$x_1, x_2, x_3 \ge 0$$

Min
$$w = 5y_1 + 6y_2 + 10y_3 + 12y_4$$
 s.t.
$$y_1 + 2y_2 + y_3 + 4y_4 \ge 2$$

$$2y_1 - y_2 + y_3 + 0y_4 \ge -1$$

$$-y_1 + y_2 + 3y_3 + y_4 \ge 4$$

$$y_1, y_2, y_3 \ge 0$$

2. Write the dual of the following L.P.P.

Maximise
$$z = 4x_1 + 9x_2 + 2x_3$$

subject to $2x_1 + 3x_2 + 2x_3 \le 7$
 $3x_1 - 2x_2 + 4x_3 = 5$
 $x_1, x_2, x_3 \ge 0$

[M19/MechCivil/5M]

Solution:

Primal,

Max
$$z = 4x_1 + 9x_2 + 2x_3$$

s.t. $2x_1 + 3x_2 + 2x_3 \le 7$
 $3x_1 - 2x_2 + 4x_3 \le 5$
 $3x_1 - 2x_2 + 4x_3 \ge 5$ i.e. $-3x_1 + 2x_2 - 4x_3 \le -5$
 $x_1, x_2, x_3 \ge 0$

Its dual,

Min
$$w = 7y_1 + 5y_2' - 5y_2''$$
s.t.
$$2y_1 + 3y_2' - 3y_2'' \ge 4$$

$$3y_1 - 2y_2' + 2y_2'' \ge 9$$

$$2y_1 + 4y_2' - 4y_2'' \ge 2$$

$$y_1, y_2', y_2'' \ge 0$$

Min
$$w = 7y_1 + 5y_2$$

s.t. $2y_1 + 3y_2 \ge 4$
 $3y_1 - 2y_2 \ge 9$
 $2y_1 + 4y_2 \ge 2$
 $y_1 \ge 0, y_2$ unrestricted

3. Construct dual of the following LPP:

 $z = 8x_1 + 3x_2$ Maximise Subject to $x_1 - 6x_2 \ge 2$

$$5x_1 + 7x_2 = -4$$

 $x_1, x_2 \ge 0$

Solution:

 $z = 8x_1 + 3x_2$ Max $-x_1 + 6x_2 \le -2$ s.t. $5x_1 + 7x_2 \le -4$ $5x_1 + 7x_2 \ge -4$ $x_1, x_2 \ge 0$

Primal,

 $z = 8x_1 + 3x_2$ Max $-x_1 + 6x_2 \le -2$ s.t. $5x_1 + 7x_2 \le -4$ $-5x_1 - 7x_2 \le 4$ $x_1, x_2 \ge 0$

Its dual,

 $w = -2y_1 - 4y_2' + 4y_2''$ Min $-y_1 + 5y_2' - 5y_2'' \ge 8$ s.t. $6y_1 + 7y_2' - 7y_2'' \ge 3$ $y_1, y_2', y_2'' \ge 0$

Dual,

 $w = -2y_1 - 4y_2$ Min $-y_1 + 5y_2 \ge 8$ s.t. $6y_1 + 7y_2 \ge 3$ $y_1 \ge 0$, y_2 unrestricted

4. Construct the dual of the following LPP:

Maximize
$$z = x_1 + 3x_2 - 2x_3 + 5x_4$$

Subject to $3x_1 - x_2 + x_3 - 4x_4 = 6$
 $5x_1 + 3x_2 - x_3 - 2x_4 = 4$
 $x_1, x_2 \ge 0, x_3, x_4$ unrestricted

Solution:

Max
$$z = x_1 + 3x_2 - 2(x_3' - x_3'') + 5(x_4' - x_4'')$$
 s.t.
$$3x_1 - x_2 + (x_3' - x_3'') - 4(x_4' - x_4'') \le 6$$

$$3x_1 - x_2 + (x_3' - x_3'') - 4(x_4' - x_4'') \ge 6$$

$$5x_1 + 3x_2 - (x_3' - x_3'') - 2(x_4' - x_4'') \le 4$$

$$5x_1 + 3x_2 - (x_3' - x_3'') - 2(x_4' - x_4'') \ge 4$$

$$x_1, x_2, x_3', x_3'', x_4', x_4'' \ge 0$$

Primal,

Max
$$z = x_1 + 3x_2 - 2x_3' + 2x_3'' + 5x_4' - 5x_4''$$
 s.t.
$$3x_1 - x_2 + x_3' - x_3'' - 4x_4' + 4x_4'' \le 6$$
$$-3x_1 + x_2 - x_3' + x_3'' + 4x_4' - 4x_4'' \le -6$$
$$5x_1 + 3x_2 - x_3' + x_3'' - 2x_4' + 2x_4'' \le 4$$
$$-5x_1 - 3x_2 + x_3' - x_3'' + 2x_4' - 2x_4'' \le -4$$
$$x_1, x_2, x_3', x_3'', x_4', x_4'' \ge 0$$

Dual,

Min
$$w = 6y_1' - 6y_1'' + 4y_2' - 4y_2''$$
s.t.
$$3y_1' - 3y_1'' + 5y_2' - 5y_2'' \ge 1$$

$$-y_1' + y_1'' + 3y_2' - 3y_2'' \ge 3$$

$$y_1' - y_1'' - y_2' + y_2'' \ge -2$$

$$-y_1' + y_1'' + y_2' - y_2'' \ge 2$$

$$-4y_1' + 4y_1'' - 2y_2' + 2y_2'' \ge 5$$

$$4y_1' - 4y_1'' + 2y_2' - 2y_2'' \ge -5$$

$$y_1', y_1'', y_2', y_2'' \ge 0$$
Min
$$w = 6y_1 + 4y_2$$
s.t.
$$3y_1 + 5y_2 \ge 1$$

$$-y_1 + 3y_2 \ge 3$$

$$y_1 - y_2 \ge -2$$

$$-y_1 + y_2 \ge 2 \text{ i.e. } y_1 - y_2 \le -2$$

$$-4y_1 - 2y_2 \ge 5$$

$$4y_1 + 2y_2 \ge -5 \text{ i.e. } -4y_1 - 2y_2 \le 5$$

 y_1, y_2 unrestricted.

Dual,

$$w = 6y_1 + 4y_2$$

s.t.
$$3y_1 + 5y_2 \ge 1$$

 $-y_1 + 3y_2 \ge 3$

$$v_1 - v_2 = -2$$

$$y_1 - y_2 = -2 -4y_1 - 2y_2 = 5$$

$$y_1, y_2$$
 unrestricted

5. Write the dual of the following L.P.P.

Maximise
$$z = 2x_1 - x_2 + 3x_3$$

subject to $x_1 - 2x_2 + x_3 \ge 4$
 $2x_1 + x_3 \le 10$
 $x_1 + x_2 + 3x_3 = 20$
 $x_1, x_3 \ge 0, x_2$ unrestricted

[M15/CompIT/5M]

Solution:

Primal,

Max
$$z = 2x_1 - x_2' + x_2'' + 3x_3$$

s.t. $x_1 - 2x_2' + 2x_2'' + x_3 \ge 4$
 $2x_1 + 0x_2' + 0x_2'' + x_3 \le 10$
 $x_1 + x_2' - x_2'' + 3x_3 \ge 20$
 $x_1 + x_2' - x_2'' + 3x_3 \le 20$
 $x_1, x_2', x_2'', x_3 \ge 0$

Primal,

$$\begin{array}{ll} \text{Max} & z = 2x_1 - x_2' + x_2'' + 3x_3 \\ \text{s.t.} & -x_1 + 2x_2' - 2x_2'' - x_3 \leq -4 \\ & 2x_1 + 0x_2' + 0x_2'' + x_3 \leq 10 \\ & -x_1 - x_2' + x_2'' - 3x_3 \leq -20 \\ & x_1 + x_2' - x_2'' + 3x_3 \leq 20 \\ & x_1, x_2', x_2'', x_3 \geq 0 \end{array}$$

Its dual,

$$\begin{array}{ll} \text{Min} & w = -4y_1 + 10y_2 - 20y_3' + 20y_3'' \\ \text{s.t.} & -y_1 + 2y_2 - y_3' + y_3'' \geq 2 \\ & 2y_1 + 0y_2 - y_3' + y_3'' \geq -1 \\ & -2y_1 + 0y_2 + y_3' - y_3'' \geq 1 \\ & -y_1 + y_2 - 3y_3' + 3y_3'' \geq 3 \\ & y_1, y_2', y_2'', y_3 \geq 0 \end{array}$$

Min
$$w = -4y_1 + 10y_2 - 20y_3$$
 s.t.
$$-y_1 + 2y_2 - y_3 \ge 2$$

$$2y_1 + 0y_2 - y_3 \ge -1$$

$$-2y_1 + 0y_2 + y_3 \ge 1$$

$$-y_1 + y_2 - 3y_3 \ge 3$$

$$y_1, y_2 \ge 0, y_3 \text{ unretsricted}$$

$$\begin{array}{ll} \text{Min} & w = -4y_1 + 10y_2 - 20y_3 \\ \text{s.t.} & -y_1 + 2y_2 - y_3 \geq 2 \\ & 2y_1 + 0y_2 - y_3 = -1 \\ & -y_1 + y_2 - 3y_3 \geq 3 \\ & y_1, y_2 \geq 0, y_3 \text{ unretsricted} \end{array}$$

6. Find dual of the following LP model

Maximise
$$z = 2x_1 + 3x_2 + 5x_3$$

Subject to $x_1 + x_2 - x_3 \ge -5$
 $x_1 + x_2 + 4x_3 = 10$
 $-6x_1 + 7x_2 - 9x_3 \le 4$
 $x_1, x_2 \ge 0, x_3$ unrestricted

[M14/CompIT/5M]

Solution:

Primal,

Max
$$z = 2x_1 + 3x_2 + 5x_3' - 5x_3''$$

s.t. $x_1 + x_2 - x_3' + x_3'' \ge -5$
 $x_1 + x_2 + 4x_3' - 4x_3'' \le 10$
 $x_1 + x_2 + 4x_3' - 4x_3'' \ge 10$
 $-6x_1 + 7x_2 - 9x_3' + 9x_3'' \le 4$
 $x_1, x_2, x_3', x_3'' \ge 0$

Primal,

$$\begin{array}{ll} \text{Max} & z = 2x_1 + 3x_2 + 5x_3' - 5x_3'' \\ \text{s.t.} & -x_1 - x_2 + x_3' - x_3'' \leq 5 \\ & x_1 + x_2 + 4x_3' - 4x_3'' \leq 10 \\ & -x_1 - x_2 - 4x_3' + 4x_3'' \leq -10 \\ & -6x_1 + 7x_2 - 9x_3' + 9x_3'' \leq 4 \end{array}$$

Its dual.

Min
$$w = 5y_1 + 10y_2' - 10y_2'' + 4y_3$$

s.t. $-y_1 + y_2' - y_2'' - 6y_3 \ge 2$
 $-y_1 + y_2' - y_2'' + 7y_3 \ge 3$
 $y_1 + 4y_2' - 4y_2'' - 9y_3 \ge 5$
 $-y_1 - 4y_2' + 4y_2'' + 9y_3 \ge -5$
 $y_1, y_2', y_2'', y_3 \ge 0$

Min
$$w = 5y_1 + 10y_2 + 4y_3$$
 s.t.
$$-y_1 + y_2 - 6y_3 \ge 2$$

$$-y_1 + y_2 + 7y_3 \ge 3$$

$$y_1 + 4y_2 - 9y_3 \ge 5$$

$$-y_1 - 4y_2 + 9y_3 \ge -5$$

$$y_1, y_3 \ge 0, y_2 \text{ is unrestricted}$$

Its dual,

Min
$$w = 5y_1 + 10y_2 + 4y_3$$

s.t. $-y_1 + y_2 - 6y_3 \ge 2$
 $-y_1 + y_2 + 7y_3 \ge 3$
 $y_1 + 4y_2 - 9y_3 = 5$
 $y_1, y_3 \ge 0, y_2$ is unrestricted

Construct the dual of the following LPP

Maximise
$$z = 3x_1 + 17x_2 + 9x_3$$

Subject to $x_1 - x_2 + x_3 \ge 3$
 $-3x_1 + 2x_3 \le 1$
 $2x_1 + x_2 - 5x_3 = 1$
 $x_1, x_2x_3 \ge 0$

[M17/CompIT/5M]

Solution:

Primal,

Max
$$z = 3x_1 + 17x_2 + 9x_3$$

s.t. $-x_1 + x_2 - x_3 \le -3$
 $-3x_1 + 0x_2 + 2x_3 \le 1$
 $2x_1 + x_2 - 5x_3 \le 1$
 $-2x_1 - x_2 + 5x_3 \le -1$
 $x_1, x_2, x_3 \ge 0$

Its dual,

Min
$$w = -3y_1 + y_2 + y_3' - y_3''$$
s.t.
$$-y_1 - 3y_2 + 2y_3' - 2y_3'' \ge 3$$

$$y_1 + 0y_2 + y_3' - y_3'' \ge 17$$

$$-y_1 + 2y_2 - 5y_3' + 5y_3'' \ge 9$$

$$y_1, y_2, y_3', y_3'' \ge 0$$

Min
$$w = -3y_1 + y_2 + y_3$$
s.t.
$$-y_1 - 3y_2 + 2y_3 \ge 3$$

$$y_1 + 0y_2 + y_3 \ge 17$$

$$-y_1 + 2y_2 - 5y_3 \ge 9$$

$$y_1, y_2 \ge 0 \text{ and } y_3 \text{ unrestricted}$$

8. Write dual of the given LPP

Minimize
$$z = 2x_1 + 3x_2 + 4x_3$$

Subject to $2x_1 + 3x_2 + 5x_3 \ge 2$
 $3x_1 + x_2 + 7x_3 = 3$
 $x_1 + 4x_2 + 6x_3 \le 5$
 $x_1, x_3 \ge 0$ and x_2 is unrestricted

[M18/MechCivil/5M]

Solution:

Primal,

Minimize
$$z = 2x_1 + 3(x_2' - x_2'') + 4x_3$$

Subject to $2x_1 + 3(x_2' - x_2'') + 5x_3 \ge 2$
 $3x_1 + (x_2' - x_2'') + 7x_3 \ge 3$
 $3x_1 + (x_2' - x_2'') + 7x_3 \le 3$
 $x_1 + 4(x_2' - x_2'') + 6x_3 \le 5$
 $x_1, x_3, x_2', x_2'' \ge 0$

Primal,

Minimize
$$z = 2x_1 + 3x_2' - 3x_2'' + 4x_3$$

Subject to $2x_1 + 3x_2' - 3x_2'' + 5x_3 \ge 2$
 $3x_1 + x_2' - x_2'' + 7x_3 \ge 3$
 $-3x_1 - x_2' + x_2'' - 7x_3 \ge -3$
 $-x_1 - 4x_2' + 4x_2'' - 6x_3 \ge -5$
 $x_1, x_3, x_2', x_2'' \ge 0$

Its dual,

Maximise
$$w = 2y_1 + 3y_2' - 3y_2'' - 5y_3$$
 Subject to
$$2y_1 + 3y_2' - 3y_2'' - y_3 \le 2$$

$$3y_1 + y_2' - y_2'' - 4y_3 \le 3$$

$$-3y_1 - y_2' + y_2'' + 4y_3 \le -3$$

$$5y_1 + 7y_2' - 7y_2'' - 6y_3 \le 4$$

$$y_1, y_2', y_2'', y_3 \ge 0$$

Maximise
$$w = 2y_1 + 3y_2 - 5y_3$$

Subject to $2y_1 + 3y_2 - y_3 \le 2$
 $3y_1 + y_2 - 4y_3 = 3$
 $5y_1 + 7y_2 - 6y_3 \le 4$
 $y_1, y_3 \ge 0$ and y_2 is unrestricted

9. Write the dual of the following problem

Maximise
$$z = 3x_1 + 10x_2 + 2x_3$$

subject to $2x_1 + 3x_2 + 2x_3 \le 8$
 $3x_1 - 2x_2 + 4x_3 = 4$
 $x_1, x_2, x_3 \ge 0$

[N22/CompITAI/5M]

Solution:

Primal.

Maximise
$$z = 3x_1 + 10x_2 + 2x_3$$

Subject to $2x_1 + 3x_2 + 2x_3 \le 8$
 $3x_1 - 2x_2 + 4x_3 \le 4$
 $3x_1 - 2x_2 + 4x_3 \ge 4$
 $x_1, x_2, x_3 \ge 0$

Primal,

Maximise
$$z = 3x_1 + 10x_2 + 2x_3$$

Subject to $2x_1 + 3x_2 + 2x_3 \le 8$
 $3x_1 - 2x_2 + 4x_3 \le 4$
 $-3x_1 + 2x_2 - 4x_3 \le -4$
 $x_1, x_2, x_3 \ge 0$

Its dual,

Minimise
$$w = 8y_1 + 4y_2' - 4y_2''$$

Subject to $2y_1 + 3y_2' - 3y_2'' \ge 3$
 $3y_1 - 2y_2' + 2y_2'' \ge 10$
 $2y_1 + 4y_2' - 4y_2'' \ge 2$
 $y_1, y_2', y_2'' \ge 0$

Minimise
$$w=8y_1+4y_2$$
 Subject to
$$2y_1+3y_2\geq 3$$

$$3y_1-2y_2\geq 10$$

$$2y_1+4y_2\geq 2$$

$$y_1\geq 0 \text{ and } y_2 \text{ is unrestricted}$$

10. Construct dual of the following LPP and solve its dual

Minimise
$$z = 0.7x_1 + 0.5x_2$$
 Subject to
$$x_1 \ge 4$$

$$x_2 \ge 6$$

$$x_1 + 2x_2 \ge 20$$

$$2x_1 + x_2 \ge 18$$

$$x_1, x_2 \ge 0$$

[M19/MechCivil/8M]

Solution:

Its dual,

Max
$$z = 4y_1 + 6y_2 + 20y_3 + 18y_4$$
 s.t.
$$y_1 + 0y_2 + y_3 + 2y_4 \le 0.7$$

$$0y_1 + y_2 + 2y_3 + y_4 \le 0.5$$

$$y_1, y_2 \ge 0$$

Standard form,

Max
$$z = 4y_1 + 6y_2 + 20y_3 + 18y_4 + 0s_1 + 0s_2$$
$$z - 4y_1 - 6y_2 - 20y_3 - 18y_4 + 0s_1 + 0s_2 = 0$$
s.t.
$$y_1 + 0y_2 + y_3 + 2y_4 + s_1 + 0s_2 = 0.7$$
$$0y_1 + y_2 + 2y_3 + y_4 + 0s_1 + s_2 = 0.5$$

Simplex table,

Iteration No.	Basic		C	oeffic	cient c	of		RHS	Ratio	Formula
itteration No.	Var	y_1	y_2	y_3	y_4	s_1	s_2	11113	Natio	TOTTIGIA
0	Z	-4	-6	-20	-18	0	0	0		X + 10Y
s_2 leaves	s_1	1	0	1	2	1	0	0.7	$\frac{0.7}{1} = 0.7$	$X-\frac{1}{2}Y$
y_3 enters	s_2	0	1	2	1	0	1	0.5	$\frac{0.5}{2} = 0.25$	$\frac{Y}{2}$
					_					
1	Z	-4	4	0	-8	0	10	5		$X + \frac{8}{1.5}Y$
s_1 leaves	s_1	1	-0.5	0	1.5	1	-0.5	0.45	$\frac{0.45}{1.5} = 0.3$	<u>Y</u> 1.5
s_1 leaves y_4 enters	y_3	0	-0.5	1	1.5 0.5	0	-0.5 0.5	0.45 0.25	$\frac{\frac{0.45}{1.5} = 0.3}{\frac{0.25}{0.5} = 0.5}$	<u>Y</u>
									0.25	$\frac{Y}{1.5}$
		$\frac{4}{3}$				0				$\frac{Y}{1.5}$
y_4 enters	<i>y</i> ₃	0	0.5	1	0.5	<u>16</u>	0.5	0.25		$\frac{Y}{1.5}$

Thus, the solution is

$$x_1 = \frac{16}{3}$$
, $x_2 = \frac{22}{3}$, $z_{min} = 7.4$

11. Using Duality solve the following L.P.P.

Minimize
$$z = 4x_1 + 3x_2 + 6x_3$$

subject to
$$x_1 + x_3 \ge 2$$

$$x_2 + x_3 \ge 5$$

$$x_1, x_2, x_3 \ge 0$$

Solution:

Min
$$z = 4x_1 + 3x_2 + 6x_3$$

s.t. $x_1 + 0x_2 + x_3 \ge 2$
 $0x_1 + x_2 + x_3 \ge 5$

Its dual,

$$\begin{array}{ll} \text{Max} & w = 2y_1 + 5y_2 \\ \text{s.t.} & y_1 + 0y_2 \leq 4 \\ & 0y_1 + y_2 \leq 3 \\ & y_1 + y_2 \leq 6 \\ & y_1, y_2 \geq 0 \end{array}$$

Converting into standard form,

$$\begin{array}{ll} \text{Max} & w = 2y_1 + 5y_2 + 0s_1 + 0s_2 + 0s_3 \\ & w - 2y_1 - 5y_2 - 0s_1 - 0s_2 - 0s_3 = 0 \\ \text{s.t.} & y_1 + 0y_2 + s_1 = 4 \end{array}$$

$$0y_1 + y_2 + s_2 = 3$$
$$y_1 + y_2 + s_3 = 6$$

Iteration No.	Basic		Coef	ficie	nt o	f	RHS	Ratio	Formula
iteration No.	Var	y_1	y_2	s_1	s_2	s_3	INIIO	Natio	TOTTIGIA
0	W	-2	-5	0	0	0	0	1	X + 5Y
	s_1	1	0	1	0	0	4	ı	ı
s_2 leaves	s_2	0	1	0	1	0	3	3	-
y_2 enters	S_3	1	1	0	0	1	6	6	X - Y
		1							
1	W	-2	0	0	5	0	15	1	X + 2Y
a laguas	S_1	1	0	1	0	0	4	4	X - Y
s_3 leaves	y_2	0	1	0	1	0	3	ı	ı
y_1 enters	S_3	1	0	0	-1	1	3	3	1
2	W	0	0	0	3	2	21		
	S_1	0	0	1	1	-1	1		
	y_2	0	1	0	1	0	3		
	y_1	1	0	0	-1	1	3		

$$w_{max} = z_{min} = 21$$

 $x_1 = s_1 = 0, x_2 = s_2 = 3, x_3 = s_3 = 2$

12. Using Duality to solve

Minimise
$$z = 4x_1 + 14x_2 + 3x_3$$

Subject to $x_1 - 3x_2 - x_3 \le -3$
 $2x_1 + 2x_2 - x_3 \ge 2$
 $x_1, x_2, x_3 \ge 0$

Solution:

Min
$$z = 4x_1 + 14x_2 + 3x_3$$

s.t. $-x_1 + 3x_2 + x_3 \ge 3$
 $2x_1 + 2x_2 - x_3 \ge 2$

Its dual,

Max
$$w = 3y_1 + 2y_2$$

s.t. $-y_1 + 2y_2 \le 4$
 $3y_1 + 2y_2 \le 14$
 $y_1 - y_2 \le 3$
 $y_1, y_2 \ge 0$

Converting into standard form,

Max
$$w = 3y_1 + 2y_2 + 0s_1 + 0s_2 + 0s_3$$

 $w - 3y_1 - 2y_2 - 0s_1 - 0s_2 - 0s_3 = 0$
s.t. $-y_1 + 2y_2 + s_1 = 4$
 $3y_1 + 2y_2 + s_2 = 14$
 $y_1 - y_2 + s_3 = 3$

Simplex Table:

Iteration No.	Basic		Со	effic	ient o	f	RHS	Ratio	Formula
iteration No.	Var	y_1	y_2	s_1	s_2	s_3	инэ	Natio	Formula
0	W	-3	-2	0	0	0	0	-	X - (-3)Y
	s_1	-1	2	1	0	0	4	-	X - (-1)Y
s_3 leaves	s_2	3	2	0	1	0	14	$\frac{14}{3}$	X-3Y
y_1 enters	s_3	1	-1	0	0	1	3	$\frac{3}{1} = 3$	150
1	W	0	-5	0	0	3	9	-	X-(-1)Y
	s_1	0	1	1	0	1	7	$\frac{7}{1} = 7$	$X-\frac{1}{5}Y$
s_2 leaves y_2 enters	s_2	0	5	0	1	-3	5	$\frac{5}{5} = 1$	$\frac{Y}{5}$
	y_1	1	-1	0	0	1	3	-	$X - \frac{-1}{5}Y$
		1							
2	W	0	0	0	1	0	14		
	S_1	0	0	1	-1/5	8/5	6		
	y_2	0	1	0	1/5	-3/5	1		
	y_1	1	0	0	1/5	2/5	4		

$$w_{max} = z_{min} = 14$$

 $x_1 = s_1 = 0, x_2 = s_2 = 1, x_3 = s_3 = 0$

13. Using Duality solve the following L.P.P.

Maximise
$$z = 5x_1 + 8x_2$$
 subject to
$$x_1 + x_2 \le 2$$

$$x_1 + 2x_2 \ge 0$$

$$-x_1 + 4x_2 \le 1$$

$$x_1, x_2 \ge 0$$

Solution:

$$\begin{array}{ll} \text{Max} & z = 5x_1 + 8x_2 \\ \text{s.t.} & x_1 + x_2 \leq 2 \\ & -x_1 - 2x_2 \leq 0 \\ & -x_1 + 4x_2 \leq 1 \end{array}$$
 Its dual,

$$\begin{array}{ll} \text{Min} & w = 2y_1 + 0y_2 + y_3 \\ \text{s.t.} & y_1 - y_2 - y_3 \geq 5 \\ & y_1 - 2y_2 + 4y_3 \geq 8 \\ \text{Min} & w = 2y_1 + 0y_2 + y_3 \\ \text{s.t.} & -y_1 + y_2 + y_3 \leq -5 \\ & -y_1 + 2y_2 - 4y_3 \leq -8 \end{array}$$

converting into standard form

$$\begin{array}{ll} \text{Min} & w=2y_1+0y_2+y_3+0s_1+0s_2\\ w-2y_1+0y_2-y_3-0s_1-0s_2=0\\ \text{s.t.} & -y_1+y_2+y_3+s_1=-5 \end{array}$$

 $-v_1 + 2v_2 - 4v_3 + s_2 = -8$

$-y_1 + 2y_2 -$	1 <i>y</i> 3 1 1	ა ₂ — -	U					
Iteration No.	Basic	•	Coef	ficien	t of		RHS	Formula
iteration No.	Var	y_1	y_2	y_3	s_1	s_2	11113	Torriula
0	W	-2	0	-1	0	0	0	$X - \frac{1}{4}Y$ $X - \frac{1}{4}Y$
s_2 leaves	s_1	-1	1	1	1	0	-5	-4
y_3 enters	s_2	-1	2	-4	0	1	-8	$\frac{Y}{-4}$
Ratio	·	2	-	$\frac{1}{4}$	1	-		
1	w	-7/4	-1/2	0	0	-1/4	2	$X - \frac{7}{5}Y$
s_1 leaves	s_1	-5/4	3/2	0	1	1/4	-7	$-\frac{4}{5}Y$
y_1 enters	y_3	1/4	1/2	1	0	-1/4	2	$X - \frac{1}{-5}Y$
Ratio		7 5	-	-	1	-		
2	W	0	-13/5	0	-7/5	-3/5	59/5	
	y_1	1	-6/5	0	-4/5	-1/5	28/5	
	y_3	0	4/5	1	1/5	-1/5	3/5	
		59						

$$w_{min} = z_{max} = \frac{59}{5}$$

$$x_1 = -s_1 = -\left(-\frac{7}{5}\right) = \frac{7}{5} \text{ and } x_2 = -s_2 = -\left(-\frac{3}{5}\right) = \frac{3}{5}$$

14. Using Duality to solve

Maximise
$$z = 3x_1 + 4x_2$$

Subject to $2x_1 + x_2 \le 5$
 $x_1 + x_2 \le 3$
 $x_1, x_2 \ge 0$

[N19/MechCivil/8M]

Solution:

The standard form,

Max
$$z = 3x_1 + 4x_2$$

s.t. $2x_1 + x_2 \le 5$
 $x_1 + x_2 \le 3$

Its dual,

Min
$$w = 5y_1 + 3y_2$$

s.t. $2y_1 + y_2 \ge 3$
 $y_1 + y_2 \ge 4$
Max $w' = -w = -5y_1 - 3y_2$
 $w' + 5y_1 + 3y_2 + 0s_1 + 0s_2 + MA_1 + MA_2 = 0$ (1)
s.t. $2y_1 + y_2 - s_1 + 0s_2 + A_1 + 0A_2 = 3$ (2)
 $y_1 + y_2 + 0s_1 - s_2 + 0A_1 + A_2 = 4$ (3)

Multiplying eqn (2) & (3) by M and subtracting from eqn (1),

$$w' + (5 - 3M)y_1 + (3 - 2M)y_2 + Ms_1 + Ms_2 + 0A_1 + 0A_2 = -7M$$

Iteration No.	Basic		Coef	fficient o	f			RHS	Ratio	Formula
iteration No.	Var	y_1	y_2	s_1	s_2	A_1	A_2	KHS	Natio	Torritala
0	w'	5–3M	3 – 2M	М	М	0	0	-7M	-	$X - \frac{5-3M}{2}Y$
A_1 leaves	A_1	2	1	-1	0	1	0	3	1.5	<u>Y</u> 2
y_1 enters	A_2	1	1	0	-1	0	1	4	4	$X-\frac{Y}{2}$
1	w'	0	$\frac{1}{2}-\frac{M}{2}$	$\frac{5}{2} - \frac{M}{2}$	М		0	$-\frac{15}{2} - \frac{5M}{2}$	1	X - (1 - M)Y
y_1 leaves	y_1	1	$\frac{1}{2}$	$-\frac{1}{2}$	0		0	$\frac{3}{2}$	3	2 <i>Y</i>
y_2 enters	A_2	0	$\frac{1}{2}$	$\frac{1}{2}$	-1		1	<u>5</u> 2	5	X - Y
2	w'	-1+M	0	3-M	М		0	-9-M		X-(3-M)Y
A_2 leaves	y_2	2	1	-1	0		0	3	ı	X + Y
s_1 enters	A_2	-1	0	1	-1		1	1	1	-
3	w'	2	0	0	3			-12		
	y_2	1	1	0	-1			4		
1	s_1	-1	0	1	-1			1		

The solution,

$$s_1 = 0, s_2 = 3, w'_{max} = -12, w_{min} = 12$$

$$\therefore x_1 = 0, x_2 = 3, z_{max} = 12$$

15. Using Duality solve the following L.P.P.

Minimise
$$z = 430x_1 + 460x_2 + 420x_3$$

Subject to $x_1 + 3x_2 + 4x_3 \ge 3$
 $2x_1 + 4x_3 \ge 2$
 $x_1 + 2x_2 \ge 5$
 $x_1, x_2, x_3 \ge 0$

Solution:

Min
$$z = 430x_1 + 460x_2 + 420x_3$$

s.t. $x_1 + 3x_2 + 4x_3 \ge 3$
 $2x_1 + 0x_2 + 4x_3 \ge 2$
 $x_1 + 2x_2 + 0x_3 \ge 5$

Its dual,

Max
$$w = 3y_1 + 2y_2 + 5y_3$$

s.t. $y_1 + 2y_2 + y_3 \le 430$
 $3y_1 + 0y_2 + 2y_3 \le 460$
 $4y_1 + 4y_2 + 0y_3 \le 420$
 $y_1, y_2, y_3 \ge 0$

Converting into standard form,

$$\begin{array}{ll} \text{Max} & w = 3y_1 + 2y_2 + 5y_3 + 0s_1 + 0s_2 + 0s_3 \\ w - 3y_1 - 2y_2 - 5y_3 - 0s_1 - 0s_2 - 0s_3 = 0 \\ \text{s.t.} & y_1 + 2y_2 + y_3 + s_1 = 430 \\ & 3y_1 + 0y_2 + 2y_3 + s_2 = 460 \\ & 4y_1 + 4y_2 + 0y_3 + s_3 = 420 \end{array}$$

Simplex Table:

Iteration No.	Basic		Co	peffi	cient	of		RHS	Ratio	Formula
iteration No.	Var	y_1	y_2	y_3	s_1	s_2	s_3	1/113	Natio	TOTTIGIA
0	w	-3	-2	-5	0	0	0	0	-	$X + \frac{5}{2}Y$
s_2 leaves	s_1	1	2	1	1	0	0	430	430	$X-\frac{1}{2}Y$
y_3 enters	s_2	3	0	2	0	1	0	460	230	$Y \div 2$
	s_3	4	4	0	0	0	1	420		1
1	W	9/2	-2	0	0	5/2	0	1150	-	X + Y
a leaves	S_1	-1/2	2	0	1	-1/2	0	200	100	$Y \div 2$
s_1 leaves	y_3	3/2	0	1	0	1/2	0	230		-
y_2 enters	S_3	4	4	0	0	0	1	420	105	X-2Y
2	W	4	0	0	1	2	0	1350		
	y_2	-1/4	1	0	1/2	-1/4	0	100		
	y_3	3/2	0	1	0	1/2	0	230		
	s_3	5	0	0	-2	1	1	20		

$$w_{max} = z_{min} = 1350$$

$$w_{max} = z_{min} = 1350$$

 $x_1 = s_1 = 1, x_2 = s_2 = 2, x_3 = s_3 = 0$

16. Using Duality solve the following L.P.P.

Maximise
$$z = 2x_1 + x_2$$

subject to $2x_1 - x_2 \le 2$
 $x_1 + x_2 \le 4$
 $x_1 \le 3$
 $x_1, x_2 \ge 0$

[N14/CompIT/6M]

Solution:

The standard form,

Max
$$z = 2x_1 + x_2$$

s.t. $2x_1 - x_2 \le 2$
 $x_1 + x_2 \le 4$
 $x_1 + 0x_2 \le 3$

Its dual,

$$\begin{array}{ll} \text{Min} & w=2y_1+4y_2+3y_3\\ \text{s.t.} & 2y_1+y_2+y_3\geq 2\\ & -y_1+y_2+0y_3\geq 1\\ \text{Max} & w'=-w=-2y_1-4y_2-3y_3\\ & w'+2y_1+4y_2+3y_3+0s_1+0s_2+MA_1+MA_2=0 \dots (1)\\ \text{s.t.} & 2y_1+y_2+y_3-s_1+0s_2+A_1+0A_2=2 \dots (2)\\ & -y_1+y_2+0y_3+0s_1-s_2+0A_1+A_2=1 \dots (3) \end{array}$$

Multiplying eqn (2) & (3) by M and subtracting from eqn (1),

$$w' + (2 - M)y_1 + (4 - 2M)y_2 + (3 - M)y_3 + Ms_1 + Ms_2 + 0A_1 + 0A_2 = -3M$$

Simplex table,

Iteration No.	Basic			Coeffi	cient o	f			RHS	Ratio	Formula	
iteration No.	Var	y_1	y_2	y_3	s_1	s_2	A_1	A_2	КПЭ	Natio	Torritala	
0	w'	2-M	4-2M	3-M	М	М	0	0	-3M	1	X - (4 - 2M)Y	
A_2 leaves	A_1	2	1	1	-1	0	1	0	2	2	X - Y	
y_2 enters	A_2	-1	1	0	0	-1	0	1	1	1	-	
1	w'	6-3M	0	3-M	Μ	4-M	0		-4-M	1	$X - \frac{(6-3M)}{3}Y$	
A_1 leaves	A_1	3	0	1	-1	1	1		1	0.33	<u>Y</u> 3	
y_1 enters	y_2	-1	1	0	0	-1	0		1	1	$X + \frac{1}{3}Y$	
	1											
2	w'	0	0	1	2	2			-6			
	y_1	1/3	0	1/3	-1/3	1/3			1/3			
	y_2	0	1	1/3	-1/3	-2/3			4/3			

the solution is

$$s_1 = 2, s_2 = 2, w'_{max} = -6, w_{min} = 6$$

$$\therefore x_1 = 2, x_2 = 2, z_{max} = 6$$

17. Using Duality solve the following L.P.P.

Maximise
$$z = 5x_1 - 2x_2 + 3x_3$$

Subject to $2x_1 + 2x_2 - x_3 \ge 2$
 $3x_1 - 4x_2 \le 3$
 $x_1 + 3x_3 \le 5$
 $x_1, x_2, x_3 \ge 0$

[M15/CompIT/6M]

Solution:

The standard form,

Max
$$z = 5x_1 - 2x_2 + 3x_3$$

s.t. $-2x_1 - 2x_2 + x_3 \le -2$
 $3x_1 - 4x_2 + 0x_3 \le 3$
 $x_1 + 0x_2 + 3x_3 \le 5$

Its dual,

Min
$$w = -2y_1 + 3y_2 + 5y_3$$

s.t. $-2y_1 + 3y_2 + y_3 \ge 5$
 $-2y_1 - 4y_2 + 0y_3 \ge -2$ i.e. $2y_1 + 4y_2 + 0y_3 \le 2$
 $y_1 + 0y_2 + 3y_3 \ge 3$
Max $w' = -w = 2y_1 - 3y_2 - 5y_3$
 $w' - 2y_1 + 3y_2 + 5y_3 + 0s_1 + 0s_2 + 0s_3 + MA_1 + MA_3 = 0....(1)$
s.t. $-2y_1 + 3y_2 + y_3 - s_1 + 0s_2 + 0s_3 + A_1 + 0A_3 = 5$ (2)
 $2y_1 + 4y_2 + 0y_3 + 0s_1 + s_2 + 0s_3 + 0A_1 + 0A_3 = 2$ (3)
 $y_1 + 0y_2 + 3y_3 + 0s_1 + 0s_2 - s_3 + 0A_1 + A_3 = 3$(4)

Multiplying eqn (2) & (4) by M and subtracting from eqn (1),

$$w' + (-2 + M)y_1 + (3 - 3M)y_2 + (5 - 4M)y_3 + Ms_1 + 0s_2 + Ms_3 + 0A_1 + 0A_3 = -8M$$

Simplex table,

Iteration No.	Basic			Coe	fficie	nt of				RHS	Ratio	Formula
iteration No.	Var	y_1	y_2	y_3	s_1	s_2	s_3	A_1	A_3	KIIS	Natio	
0	w'	-2+M	3-3M	5-4M	М	0	М	0	0	-8M	-	$X - \frac{5 - 4M}{3}Y$
4 (2000)	A_1	-2	3	1	-1	0	0	1	0	5	5	$X-\frac{1}{3}Y$
A_3 leaves	s_2	2	4	0	0	1	0	0	0	2	-	-
y_3 enters	A_3	1	0	3	0	0	-1	0	1	3	1	<u>Y</u> 3
1	w'	$\frac{-11+7M}{3}$	3-3M	0	М	0	$\frac{5-M}{3}$	0		-5-4M	-	$X - \frac{3-3M}{4}Y$
. 1	A_1	-7/3	3	0	-1	0	1/3	1		4	1.33	$X - \frac{3}{4}Y$
s_2 leaves y_2 enters	s_2	2	4	0	0	1	0	0		2	0.5	$\frac{Y}{4}$
	y_3	1/3	0	1	0	0	-1/3	0		1	-	-
		1										
2	w'	$\frac{-31+23M}{6}$	0	0	М	$\frac{-3+3M}{4}$	$\frac{5-M}{3}$	0		$\frac{-13-5M}{2}$	-	X - (5 - M)Y
4 1	A_1	-23/6	0	0	-1	-3/4	1/3	1		5/2	7.5	3 <i>Y</i>
A_1 leaves	s_2	1/2	1	0	0	1/4	0	0		1/2	-	-
s_3 enters	ν_2	1/3	0	1	0	0	-1/3	0		1	-	X+Y

3	w'	14	0	0	5	3	0	-19	-	
	s_3	-23/2	0	0	-3	-9/4	1	15/2	-	
	s_2	1/2	1	0	0	1/4	0	1/2	1	
	y_3	-7/2	0	1	-1	-3/4	0	7/2	-	

The solution is

$$s_1 = 5, s_2 = 3, s_3 = 0, w'_{max} = -19, w_{min} = 19$$

$$\therefore x_1 = 5, x_2 = 3, x_3 = 0, z_{max} = 19$$

18. If the primal LPP has an unbounded solution then the dual has [M22/CompITAI/2M] Ans. Infeasible solution

