

Introduzione a XML

CORSO DI
PROGRAMMAZIONE WEB E MOBILE
a.a. 2021/2022

Prof. Roberto Pirrone

Sommario

- Origini e storia di XML
- La sintassi di XML
- Document Object Model
- Document Type Definition (DTD)
- Alcuni esempi di marcatura

Linguaggi di marcatura

- Un linguaggio di marcatura è un insieme di convenzioni per la marcatura di testi
- Marcatura di documenti
 - la marcatura (o etichettatura) permette di rendere esplicita un'interpretazione di un testo.
 - storicamente
 - annotazioni in un testo che descrivono al tipografo come stampare o comporre una parte del testo
 - oggi
 - qualsiasi tipo di codice inserito in un testo in forma elettronica

Tipi di marcatura

- Due tipi di marcatura
 - marcatura procedurale
 - descrive come processare il documento
 - postscript, rtf, ecc.

- marcatura descrittiva
 - descrive la struttura logica del documento
 - HTML, SGML, XML

SGML - Standard Generalized Markup Language

- Il padre degli attuali linguaggi di marcatura
- È un metalinguaggio di marcatura, che permette di definire linguaggi di marcatura
 - estremamente espressivo e configurabile
 - l'alta espressività rende l'elaborazione automatica del testo complicata
 - utilizzato per grandi progetti di digitalizzazione del testo
 - non studiato espressamente per il Web

SGML - Standard Generalized Markup Language

- Manca di alcune caratteristiche fondamentali per il Web:
 - gestione dei link
 - gestione del conflitto sui nomi delle etichette
 - tutti i documenti devono essere *validi* oltre a essere *ben formati*
- È troppo complicato per poter essere adoperato come linguaggio di marcatura

HTML - HyperText Markup Language

- È un linguaggio di marcatura (non un metalinguaggio!)
 - definito in direttamente in termini di SGML
 - Insieme di etichette prefissato
- La marcatura non denota il "significato", ovvero la struttura "logica" di un documento, *ma solo il suo formato*

HTML - HyperText Markup Language

- Studiato espressamente per il Web
 - collegamenti ipertestuali
 - immagini
 - marcatura finalizzata alla presentazione del documento come pagina Web
 - diversi tipi di titoli, tabelle, ecc.
 - non c'è un legame tra marcatura e tipi di informazione rappresentati nel documento

Una pagina HTML

```
<html>
                     <head>
                                              <title>Le avventure di Pinocchio</title>
                      </head>
                      <body>
                                              <h2>Carlo Collodi</h2>
                                              <h1>Le avventure di Pinocchio</h1>
                                              Capitolo I
Capitolo 
                                                                                                Ciliegia, falegname, trovò un pezzo di legno, che piangeva e rideva come un
                                                                                     bambino.
```


XML eXtensible Mark-up Language

- La marcatura è dettata dalla struttura logica del documento
- L'insieme di etichette può cambiare in base l'applicazione
- Fondamentale il concetto di tipo di documento
 - specificato attraverso una Document Type Definition o DTD (parte dello standard XML)
 - permette di dichiarare la struttura che tutti i documenti di un certo tipo devono rispettare

XML - eXtensible Mark-up Language

- Naturale successore di HTML come linguaggio per il Web
 - più espressivo e flessibile
 - la visualizzazione del documento è indipendente dalla sua organizzazione logica
 - per lo stesso documento XML è possibile definire più modalità di visualizzazione attraverso fogli di stile XSL – XML Stylesheet Language

Esempio di documento XML

```
hro>
   <intestazione>
        Le avventure di Pinocchio
   </intestazione>
   <autore>Carlo Collodi</autore>
   <titolo>Le avventure di Pinocchio</titolo>
   <capitolo>
        <intestazioneCapitolo>Capitolo I</intestazioneCapitolo>
        <titolo>Come andò che Maestro
                Ciliegia, falegname, trovò un pezzo di legno, che piangeva e rideva come un
   bambino.</titolo>
   </capitolo>
</libro>
```


- 1969
 - Charles Goldfarb (IBM) dirige lo sviluppo di GML
- 1974
 - Charles Goldfarb inventa SGML, il padre dei linguaggi di marcatura
- 1986
 - SGML diventa uno standard ISO (ISO 8879 `Information Processing Text and Office Systems - Standard Generalized Markup Language")
- 1989
 - Tim-Berners Lee (CERN di Ginevra) inventa HTML
- 1995
 - Fondazione del World Wide Web Consortium (W3C)

- 1995
 - HTML 2.0 diventa una raccomandazione del W3C
- 1996
 - Inizio dello sviluppo di XML presso il W3C
- 1997
 - HTML 3.2 diventa una raccomandazione del W3C
- 1998
 - XML 1.0 diventa una raccomandazione W3C (uno standard di fatto)
- 1999
 - HTML 4.01 diventa una raccomandazione W3C (Strict / Transitional / Frameset)

- 2000
 - XHTML 1.0 diventa una raccomandazione W3C
- 2001
 - XHTML 1.1 diventa una raccomandazione W3C
- 2002
 - XML 1.1 diventa una raccomandazione candidata W3C

WHATWG

- Web Hypertext Application Technology Working Group
 - Comunità di sviluppatori che curano lo sviluppo delle tecnologie web

 Fondato da Apple, Mozilla Foundation, Opera Software nel 2004 in contrapposizione alla linea di sviluppo XML based adottata dal W3C

• Ha generato lo standard HTML5, recepito poi dal W3C

- 2012
 - Il WHATWG si separa dal W3C e inizia a sviluppare lo *HTML Living Standard*, di fatto il nuovo HTML5.
- 2014
 - HTML 5, snapshot del Living Standard, diventa una raccomandazione candidata W3C
- 2016
 - HTML 5.1 diventa una raccomandazione candidata W3C

I tratti caratterizzanti di XML

Marcatura dichiarativa

 usa etichette di marcatura che indicano la funzione astratta della porzione di testo a cui si riferiscono

Marcatura strutturata

• permette di raggruppare porzioni del testo e di definirle come unità strutturali complesse, che riflettono l'organizzazione interna del testo

Marcatura gerarchica

- le strutture identificate nel testo possono combinarsi in maniera gerarchica
 - un'unità strutturale del testo può a sua volta contenere altre strutture annidate
 - otteniamo una gerarchia di strutture definibili a livelli incrementali di dettaglio

I componenti della marcatura XML gli elementi

- Gli elementi rappresentano i blocchi costitutivi in cui si articola un testo

 delimitatore di apertura
- Ogni elemento viene marcato in modo esplicito nel testo inserendo un delimitatore di apertura all'inizio dell'elemento e uno di chiusura alla fine
 - Es: <autore>Carlo Collodi</autore>

I componenti della marcatura XML i nomi degli elementi

- Ogni tipo di elemento è identificato da un nome (etichetta o tag)
 - il nome associato a ogni tipo di elemento è chiamato identificatore generico (generic identifier o GI)
- XML è case-sensitive
 - l'identificatore generico deve essere sempre specificato con lo stesso tipo di carattere, maiuscolo o minuscolo:

```
<tag>...</tag>, <TAG>...</TAG>, <Tag>...</Tag> <tag>...</TAG> errato
```


I componenti della marcatura XML i nomi degli elementi

- Norme per la sintassi del nome degli elementi
 - possono contenere solo lettere, cifre, ., -, _
 - possono iniziare solo con una lettera o con _

```
nomi consentiti: <autore.libro>, <_autore>, <AUTORE-LIBRO>, <autore_1>
nomi proibiti: <1autore>, <autore libro>, <autore;@?libro>
```

non esiste un limite di lunghezza per il nome di un elemento

I componenti della marcatura XML

relazioni tra elementi

- due elementi XML possono essere annidati l'uno nell'altro
- l'elemento più esterno è detto elemento genitore, quello interno elemento figlio
- questo meccanismo di annidamento degli elementi permette la rappresentazione di strutture gerarchiche di profondità variabile

I componenti della marcatura XML

relazioni tra elementi

- struttura XML mal formata in quanto esiste un elemento "a cavallo" di due elementi (annidamento improprio)
- in XML non è consentita la sovrapposizione tra elementi
- un elemento figlio deve essere completamente incluso nell'elemento padre

I componenti della marcatura XML l'elemento radice

- ogni documento XML ben formato deve contenere un elemento che contiene tutti gli altri elementi (elemento radice)
- la figura rappresenta una struttura mal formata in quanto in XML non è possibile avere più elementi a livello di radice
- ogni documento XML deve contenere uno e uno solo elemento radice

I componenti della marcatura XML

il documento XML come albero

Document Object Model

- Standard del W3C
- http://www.w3.org/DOM/

 "The W3C Document Object Model (DOM) is a platform and language-neutral interface that allows programs and scripts to dynamically access and update the content, structure, and style of a document."

- Secondo il DOM, ogni cosa è un nodo
- II DOM dice che:
 - L'intero documento è un nodo documento
 - Ciascun tag XML è un nodo elemento
 - I testi contenuti negli elementi XML sono nodi testo
 - Ogni attributo XML è un nodo attributo
 - I commenti sono nodi commento

- I nodi hanno tra di loro una relazione gerarchica dettata dall'inclusione tra gli elementi nel testo del documento
- Tutti i nodi di un documento XML formano l'albero del documento.
 - Ciascun elemento, attributo, testo, etc, di un documento XML rappresenta un nodo dell'albero.
 - L'albero comincia con il nodo documento e continua ad estendersi fino a quando si raggiungono tutti i nodi testo al livello più basso dell' albero.

- Alcuni nodi possono avere nodi figli, mentre altri possono non averne (nodi foglia).
- Poiché i dati XML sono strutturati a forma di albero, essi possono essere attraversati senza conoscere l'esatta struttura dell'albero o il tipo dei dati contenuti
 - Relazione padre-figlio
 - Relazione di fratellanza tra i nodi con lo stesso genitore

W3C DOM

- Descrive una API standardizzata per accedere e manipolare i documenti HTML e XML
 - Oggetto document
 - Classi Node e Element
- È diviso in tre parti:

HTML

- Core DOM, che definisce un insieme standard di oggetti per qualunque documento strutturato
- XML DOM, che definisce un insieme standard di oggetti per i documenti XML
- HTML DOM, che definisce un insieme standard di oggetti per i documenti

W3C DOM

- Esistono quattro livelli di specifica che definiscono gli oggetti della API con le relative interfacce
 - DOM level 1: specifiche base per Core, XML e HTML
 - DOM level 2: specifiche relative alla gestione degli eventi, dei namespace
 XML, l'accesso dinamico e l'attraversamento dell'albero nonché l'introduzione
 del metodo getElementById()
 - DOM level 3: specifiche relative a validazione, serializzazione e visita del documento usando *XPath*
 - DOM level 4: emesso nel 2015, "living standard" del WHATWG

DOM Esempio: bookstore.xml

```
<bookstore>
  <bookstore>
  <bookstore>
  <bookstore>
  <title lang="en">Everyday Italian</title>
        <author>Giada De Laurentiis</author>
        <year>2005</year>
        <price>30.00</price>
        </book>
  </bookstore>
```


DOM Esempio: bookstore.xml

I componenti della marcatura XML processing instructions

• I dati contenuti in una istruzione di elaborazione vengono passate all'applicazione che usa il documento XML

• Solo delimitate dai caratteri <? e ?>

• Sono formate da un *target* e da un *valore*

```
<?xml-stylesheet type="text/xsl" href="usage.xsl"?>
<?xml-stylesheet type="text/css" href="mystyle.css"?>
```


I componenti della marcatura XML Intestazione del documento

 Tutti i documenti XML devono contenere una dichiarazione nel primo rigo

```
<?xml version="1.0" standalone="yes" ?>

<myMessage>
     <message>hello</message>
</myMessage>
```


I componenti della marcatura XML Intestazione del documento

• Anche l'intestazione è un esempio di Processing Instruction

Essa indica la versione di XML in cui è stato scritto il documento

 A volte indica anche se il documento è da ritenersi come una risorsa a sé stante o se legata ad altre

I componenti della marcatura XML contenuto di un elemento

- Il contenuto di un elemento può essere costituito da:
- testo libero non contenente altri elementi (dati di tipo carattere)
 <titolo>Le avventure di Pinocchio</titolo>
- altri elementi (figli)

```
<capitolo>
  <titolo>Capitolo primo</titolo>
    <capoverso>C'era una volta...</capoverso>
    <capoverso>- Un re! - diranno subito i miei piccoli lettori.</capoverso>
</capitolo>
```


I componenti della marcatura XML contenuto di un elemento

contenuto misto (elementi+ testo)

- Il contenuto di un elemento può essere "vuoto"
 - due modi di denotare un elemento vuoto:
 - coppia di delimitatori di apertura e chiusura
 <salto pagina></salto pagina>
 - etichetta di elemento vuoto

I componenti della marcatura XML *gli attributi*

- Gli elementi XML possono essere dotati di uno o più attributi
 - gli attributi rappresentano informazioni aggiuntive che specificano alcune caratteristiche dell'elemento (ma che non fanno parte del contenuto del testo)

```
nome_attributo= "valore"
<capoverso num="1">C'era una volta...</capoverso>
```


I componenti della marcatura XML *gli attributi*

- Nomi degli attributi
 - stesse restrizioni definite per i nomi degli elementi
- i valori degli attributi devono sempre essere racchiusi tra virgolette (singole o doppie)
 - nel caso in cui un valore contenga al suo interno delle virgolette, allora diventa obbligatorio differenziarle da quelle più esterne
- un attributo può ricorrere al massimo una volta all'interno di un elemento
 - ma ci possono essere più attributi differenti
- Gli attributi possono comparire solo nei tag di apertura degli elementi

I componenti della marcatura XML elementi vs. attributi

```
Elemento = "contenitore" e "classificatore" del dato testuale
Attributo = "glossa" associata al dato testuale
```

```
<parola pos="nome"
    num="sing"
    gen="masc"
    lemma="legno">
        <orto>legno</orto>
</parola>
```


I componenti della marcatura XML elementi vs. attributi

 Non è sempre facile stabilire quando preferire una codifica in termini di elementi o di attributi

• Spesso è una questione di "stile di codifica"

• Elementi e attributi hanno delle differenze espressive che possono o meno avere rilevanza nella definizione della nostra marcatura.

I componenti della marcatura XML elementi vs. attributi

Elementi	Attributi
Possono ricorre <i>più volte</i> in un documento	Ricorrono <i>al massimo una volta</i> in un elemento
E' possibile specificare <i>l'ordine</i> degli elementi nel documento	Non è possibile stabilire l'ordine degli attributi
Un elemento può descrivere strutture complesse perché può contiene altri elementi	il valore di un attributo XML è semplicemente una stringa di caratteri

I componenti della marcatura XML commenti

- · Ogni documento XML può contenere uno o più commenti
 - Sono ignorati dalle eventuali applicazioni che processino il documento
 - Possono apparire in qualunque punto all'interno del testo con le seguenti eccezioni:
 - Non possono apparire all'interno di un delimitatore di apertura o di chiusura di un elemento
 - Non possono apparire all'interno di un commento
 - <!- questo è un commento XML -->

I componenti della marcatura XML namespace

- Chiunque può definire i propri tag
 - Conflitti di nomi
 - Posso definire dei namespace
 - Il tag assume la forma refissonamespace: tag>

```
<image:images xmlns:image="urn:deitel:imageInfo">
    <iimage:file filename="bunny.jpg" />
    </iimage:images>
```


Caratteri e XML

 Tutti i file XML sono per default file di testo secondo la codifica Unicode UTF-8

- indipendenza dei dati da piattaforme e totale interscambiabilità
- è possibile specificare una codifica di caratteri diversa (nella Dichiarazione XML)

Caratteri e XML

- È possibile rappresentare qualsiasi carattere Unicode in un file XML con un riferimento a carattere:
 - &#<codice decimale Unicode>;
 - &#x<codice esadecimale Unicode>;

```
"è" è è
"ш" ш ш
<nome>PoccИя</nome>
<nome>&#1056; &#1086; &#1089; &#1089; &#1080; &#1103;</nome>
```


XML - riferimenti a carattere

Scelta raccomandata per qualsiasi carattere non ASCII Standard

```
• <frase> Pisa è una città </frase>
• <frase> Pisa &#232; una citt&#224; </frase>
```

```
à à
é é
è è
ì ì
ò ò
ù ù
```


Correttezza di un documento XML

- Parsing (o analisi sintattica)
 - il processo di analisi delle sequenze di token per determinarne la struttura grammaticale in relazione ad una data grammatica formale
 - Documento XML ben formato (well-formed) → sintatticamente corretto

Correttezza di un documento XML

- La correttezza del documento riguarda anche l'uso dei corretti nomi di tag e attributi nonché delle corrette relazioni di contenimento tra i tag e dei valori degli attributi
- La specifica di questo tipo di correttezza si ottiene attraverso la Document Type Definition (DTD)
- Parser validating: leggono la DTD e stabiliscono se un documento XML è ad essa conforme o meno
 - Documento valido: sintatticamente corretto e conforme alle specifiche DTD

 Una Document Type Definition si può trovare nel prologo del documento XML

```
<!DOCTYPE prova [
    <!ELEMENT miotag (#PCDATA) >
]>
```

- Gli elementi sono i componenti base di un documento XML
- PCDATA indica che il tag miotag racchiude del testo

 Una Document Type Definition può far riferimento a dichiarazioni esterne al documento XML

```
<!DOCTYPE prova SYSTEM "myDTD.dtd" [
  <!ELEMENT miotag (#PCDATA) >
]>
```


 Una Document Type Definition può far riferimento a dichiarazioni esterne al documento XML

```
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
    "http://www.w3.org/TR/html4.strict.dtd">
```

Nome: prefisso//proprietario//nome DTD//lingua

prefisso: ISO (standard), + (approvato ISO), - (non approvato ISO)

URI di riferimento

- <!ELEMENT persons (person) >
- <!ELEMENT person (#PCDATA) >

In questo caso un tag **persons** contiene un tag **person**, che a sua volta contiene del testo

- < persons>
 - < person>John Smith</person>
- </persons>


```
<!ELEMENT class (teacher, student) >
<!ELEMENT teacher (#PCDATA) >
<!ELEMENT student (#PCDATA) >
Il tag class contiene un tag teacher e un tag student. Questi due tag
 contengono testo
<class>
 <teacher>prof</teacher>
 <student>John</student>
</class>
```



```
<!ELEMENT dessert (glace|fruit) >
<!ELEMENT glace (#PCDATA) >
<!ELEMENT fruit (#PCDATA) >
Il tag dessert contiene un tag glace o un tag fruit. Questi due tag contengono
 testo
<dessert>
 <fruit>peach</fruit>
</dessert>
oppure
<dessert>
 <qlace>chocolate
</dessert>
```

```
<!ELEMENT compilation (song+) >
<!ELEMENT song (#PCDATA) >
Il tag compilation contiene uno o più tag song
<compilation>
 <song>Malo</song>
 <song>La Flaca</song>
</compilation>
```

```
<!ELEMENT compilation (song*) >
<!ELEMENT song (#PCDATA) >
Il tag compilation contiene zero o più tag song
<compilation >
 <song>Malo</song >
 <song>La Flaca</song >
</compilation>
oppure
<compilation/>
```



```
<!ELEMENT compilation (song?) >
<!ELEMENT song (#PCDATA) >
Il tag compilation contiene zero o un tag song
<compilation >
 <song>Malo</song >
</compilation>
oppure
<compilation/>
```


- il contenuto di un elemento può essere di due tipo:
 - Vuoto (EMPTY)
 - Misto (ANY)
 - Solo PCDATA
 - solo altri elementi
 - PCDATA e altri elementi insieme

- <!ELEMENT vuoto EMPTY>
- <vuoto/>

- A ciascun tag possono essere associati degli attributi
 - Inizialmente dichiaro un elemento
 - Quindi definisco gli attributi x e y

```
<!ELEMENT posizione EMPTY>
<!ATTLIST posizione x CDATA #REQUIRED>
<!ATTLIST posizione y CDATA #REQUIRED>
```

- #REQUIRED indica che l'attributo è obbligatorio
- CDATA indica che il valore dell'attributo può contenere qualunque carattere

- Il valore di attributo può essere
 - #IMPLIED (non obbligatorio)
 - #FIXED (valore fissato)

- Gli attributi possono essede divisi per tipo:
 - Stringhe (CDATA)
 - Enumerati
 - Token

• Gli attributi enumerati possono assumere solo uno dei valori elencati in una lista e separati da "|"

```
<!ELEMENT persona EMPTY>
<!ATTLIST persona sesso (M|F) "F">
```

In questo caso l'attributo può assumere solo il valore M o F.

F è il valore di default

```
<persona sesso="M" />
oppure
<persona /> \rightarrow sesso vale automaticamente F
```


 Gli attributi enumerati possono assumere solo uno dei valori elencati in una lista e separati da "|"

```
<!ATTLIST payment method (cash|credit|debit|paypal) #IMPLIED>
```

```
<payment>300.00</payment>
<payment method="paypal">250.00</payment>
```

XML Non valido:

<payment method="euro">150.00</payment>

- I token si dividono in:
 - ID (identificatore unico)
 - IDREF (riferimento ad identificatore unico)
 - IDREFS (lista di riferimenti ad identificatori separati da spazio)
 - ENTITY (può assumere come valore un'entità)
 - ENTITIES (può assumere come valore una lista di entità separate da spazio)
 - NMTOKEN (nome XML valido, secondo la sintassi dei nomi in XML)
 - NMTOKENS (lista di nomi XML validi separati da spazio)
 - NOTATION (DTD NOTATION riferimento a entità esterna non XML)
 - xml:lang xml:space (attributi predefiniti XML)


```
<!ELEMENT catalogo (prodotto+, prezzo+)>
<!ELEMENT prodotto (#PCDATA)>
<!ELEMENT prezzo (#PCDATA)>
<!ATTLIST prodotto id ID #REQUIRED>
<!ATTLIST prezzo idref IDREF #REQUIRED>
<catalogo>
 odotto id="001">libro
 odotto id="002">penna
 cprezzo idref="001">15</prezzo>
 cprezzo idref="002">10</prezzo>
</catalogo>
```

```
<?xml version="1.0"?>
<!DOCTYPE student name [</pre>
<!ELEMENT student name (#PCDATA)>
<!ATTLIST student name student no NMTOKEN #REQUIRED>
1>
<student name student no="9216735">
Jo Smith
</student name>
```



```
<?xml version="1.0"?>
<!DOCTYPE secureDocument [
    <!ELEMENT secureDocument EMPTY>
    <!ATTLIST secureDocument authorizedUsers NMTOKENS
#REQUIRED>
]>
    <secureDocument authorizedUsers="James.Bond M
Miss.MoneyPenny"/>
```



```
<?xml version="1.0" standalone="yes"?>
<!DOCTYPE document [</pre>
<!ELEMENT document (description, code)>
<!ELEMENT description (#PCDATA)>
<!ATTLIST description xml:lang NMTOKEN #FIXED "en">
<!ELEMENT code (#PCDATA)>
<!ATTLIST code xml:space (default|preserve) "preserve">
1>
```


(1/2)

```
<document>
<description xml:lang="en">
The following section of code displays the menu of user choices and gets the
user's request.
</description>
<code>
do
       do
              disp_menu();
              scanf(" %d", &ans);
       } while ((ans<1) || (ans&gt;3));
 </code>
</document>
```


Entità e riferimenti a entità

- Le entità sono sequenze arbitrarie di byte (che vanno da una stringa di caratteri a un file intero) associate a nomi mnemonici
 - i riferimenti a entità usano questi nomi nei documenti XML come "segnaposto" del contenuto effettivo (valore) dell'entità

Entità generali – entità interne

- I riferimenti a entità generali hanno la forma &nome_entità;
- Sono da considerarsi entità di fatto anche i riferimenti ai caratteri usando direttamente il valore del punto di codice UTF-8 decimale o esadecimale
- Le entità interne sono associazioni tra un nome convenzionale e un frammento di testo, definite nella DTD e sostituite nel corpo del documento:

```
<!ENTITY JFK "John F. Kennedy">
<nome>&JFK;</nome> \rightarrow <nome>John F. Kennedy</nome>
```


Entità generali – entità interne predefinite

- Riferimenti a entità predefinite
 - corrispondono a caratteri riservati di XML e devono essere sempre usati quando questi compaiono nel testo da codificare (e non come segni di marcatura)
 - non devono essere dichiarati nella DTD

```
" → "
& → &
' → '
< → <
&gt; → >
```


Entità generali – entità esterne

• Possono essere SYSTEM (private, per gruppi di autori) o PUBLIC

```
<?xml version="1.0" standalone="no" ?>
<!DOCTYPE copyright [
<!ELEMENT copyright (#PCDATA)>
<!ENTITY c SYSTEM
"http://www.xmlwriter.net/copyright.xml">
]>
<copyright>&c;</copyright>
```


Entità generali – entità esterne

• Possono essere SYSTEM (private, per gruppi di autori) o PUBLIC

```
<?xml version="1.0" standalone="no" ?>
<!DOCTYPE copyright [
<!ELEMENT copyright (#PCDATA)>
<!ENTITY c PUBLIC "-//W3C//TEXT copyright//EN"
"http://www.w3.org/xmlspec/copyright.xml">
]>
<copyright>&c;</copyright>
```


Entità parametriche

Sono dichiarate con % e vengono usate solo all'interno della DTD

```
<!ENTITY % p "(#PCDATA)">
<!ELEMENT student (id, surname, firstname, dob, (subject)*)>
<!ELEMENT id %p;>
<!ELEMENT surname %p;>
<!ELEMENT firstname %p;>
<!ELEMENT dob %p;>
<!ELEMENT subject %p;>
```


Notation e entità "unparsed"

 Una NOTATION definisce il formato dati di una entità unparsed cioè una entità che fa riferimento a dati non XML

 Anche in questo caso si possono avere entità unparsed interne ed esterne

Anche le NOTATION possono essere SYSTEM e PUBLIC

Notation e entità "unparsed"

```
<?xml version="1.0" standalone="no" ?>
<!DOCTYPE img [
<!NOTATION jpg PUBLIC "JPG 1.0">
<!NOTATION gif PUBLIC "GIF 1.0" "image/gif">
<!NOTATION png SYSTEM "image/png">
<!ENTITY companyLogo SYSTEM "http://www.liquid-
technologies.com/Content/images/liquid-logo.png" NDATA png>
<!ELEMENT img EMPTY>
<!ATTLIST img src ENTITY #REQUIRED>
]>
<img src="companyLogo" />
```


- Mathematical Markup Language (MathML)
 - Sviluppato dal W3C per descrivere espressioni matematiche usando la sintassi XML

```
<math>
    <msqrt>
        <msup>
             <mi>x</mi>
             <mn>3</mn>
        </msup>
    </msqrt>
```


- Chemical Markup Language (CML)
 - Usato per rappresentare strutture chimiche e molecolari

- Geography Markup Language (GML)
 - Sviluppato da OpenGIS Consortium
 - Descrive le informazioni geografiche
 - Le informazioni geografiche elementari sono dette features
 - Ogni feature possiede:
 - Proprietà
 - Entità geometriche

- eXtensible Business Reporting Language (XBRL)
 - Permette di rappresentare dati di natura finanziaria, economica e amministrativa
- Electronic Business Language (ebXML)
 - Usato per lo scambio di informazioni commerciali e ed industriali
- Commerce XML (cXML)
 - Usato per descrivere dati di catalogo e svolgere transazioni elettroniche fra aziende che usano tali dati

LegalXML

 Ideato per ridurre la ridondanza di informazioni e documenti giudiziari nei sistemi di gestione di tali dati

NewsML

Utilizzato nei sistemi di gestione delle news

Rich Site Summary (RSS)

 Per creare canali che distribuiscono automaticamente le informazioni. RSS consente agli autori Web di creare un link che i visitatori possono selezionare per ricevere un determinato canale

- eXtensible User Interface Language (XUL)
 - Usato per descrivere le interfacce utente
 - Sviluppato dal progetto Mozzilla
 - Cross-platform

- Scalable Vector Graphics (SVG)
 - Permette di descrivere immagini vettoriali

```
<svg width="300" height="300">
     <circle style="fill:green;fill-opacity:0.5"
     cx="50" cy="150" r="50"/>
     </svg>
```

• Il DOM SVG è parte di HTML5

- eXtensible 3D Markup Language (X3D)
 - Permette di descrivere scene in grafica 3D (si appoggia al sistema grafico del client)
 - Estensione di VRML

eXtensible 3D Markup Language (X3D)

- eXtensible 3D Markup Language (X3D)
 - Il DOM X3D non è parte di HTML5
 - Per visualizzarlo è necessario includere una libreria Javascript e un apposito foglio di stile CSS

```
<script type='text/javascript'
src='https://www.x3dom.org/download/x3dom.js'></script>
<link rel='stylesheet' type='text/css'
href='https://www.x3dom.org/download/x3dom.css'></link>
```

