11811721 庄湛

Q.1

Consider the following data set comprised of three binary input attributes (A1, A2 and A3) and one binary output:

Example	A_1	A_2	A_3	Output y
x_1	1	0	0	0
x_2	1	0	1	0
x_3	0	1	0	0
x_4	1	1	1	1
x_5	1	1	0	1

Use the algorithm (as below) to learn a decision tree for these data. Show the computations made to determine the attribute to split at each node.

PLURALITY-VALUE selects the most common output value among a set of examples, breaking ties randomly.

IMPORTANCE is information gain, based on entropy.

 $H(P) = -\sum_{i=1}^{n} p_i log p_i$

IG(T, a) = H(T) - H(T|a)

$$H(y) = -0.6log0.6 - 0.4log0.4 = 0.97095$$

$$H(y|A_1) = \frac{4}{5}(-0.5log0.5 - 0.5log0.5) + \frac{1}{5}(-1log1 - 0log0) = 0.8$$

$$H(y|A_2) = \frac{3}{5}(-\frac{2}{3}log\frac{2}{3} - \frac{1}{3}log\frac{1}{3}) + \frac{2}{5}(-1log1 - 0log0) = 0.55098$$

$$H(y|A_3) = \frac{2}{5}(-0.5log0.5 - 0.5log0.5) + \frac{3}{5}(-\frac{2}{3}log\frac{2}{3} - \frac{1}{3}log\frac{1}{3}) = 0.95098$$
 $IMPOTANCE(A_1, examples) = H(y) - H(y|A_1) = 0.17$
 $IMPOTANCE(A_2, examples) = H(y) - H(y|A_2) = 0.43$
 $IMPOTANCE(A_3, examples) = H(y) - H(y|A_3) = 0.02$
 $argmax_{a \in attributes} IMPOTANCE(a, examples) = A_2$

So there will be a new decision tree with root test A_2 ,

For $A_2 = 1$:

Example	A_1	A_3	Output y
x_3	0	0	0
x_4	1	1	1
x_5	1	0	1

$$\begin{split} H(y_2) &= -\frac{2}{3}log\frac{2}{3} - \frac{1}{3}log\frac{1}{3} = 0.97095 \\ H(y_2|A_1) &= \frac{2}{3}(-1log1 - 0log0) + \frac{1}{3}(-1log1 - 0log0) = 0 \\ H(y_2|A_3) &= \frac{1}{3}(-1log1 - 0log0) + \frac{2}{3}(-0.5log0.5 - 0.5log0.5) = 0.66667 \end{split}$$

Obviosly, in this case, $argmax_{a \in attributes}IMPOTANCE(a, examples) = A_1$, and then all child examples have the same classification.

For
$$A_2 = 0$$
:

Example	A_1	A_3	Output y
x_1	1	0	0
x_2	1	1	0

All examples have the same classification.

So the dicision tree is like as the following figure:

Q.2

Construct a support vector machine that computes the XOR function. Use values of +1 and -1 (instead of 1 and 0) for both inputs and outputs, so that an example looks like ([-1, 1], 1) or ([-1, -1], -1). Map the input [x1, x2] into a space consisting of x1 and x1x2.

- a. Draw the four input points in this space, and the maximal margin separator. What is the margin?
- b. Now draw the separating line back in the original Euclidian input space.

a.

[x1, x2]	x1 xor x2	[x1, x1x2]
[-1, -1]	-1	[-1, +1]
[-1, +1]	+1	[-1, -1]
[+1, -1]	+1	[+1, -1]
[+1, +1]	-1	[+1, +1]

As shown in the figure below, all points with positive (orange) results fall at x1x2 = -1, and vice versa, all points with negative (blue) results fall at x1x2 = +1. So the maximum magin separator is the line x1x2 = 0, and the max margin is 1.

b.

Back in the original Euclidian input space, the magin separator is the line x1 = 0 and x2 = 0.

Q.3

Suppose you had a neural network with a linear activation function g(x)=cx+b (c and b are constants):

- a. Assume that the network has one hidden layer. For a given assignment to the weights **w**, write down equations for the value of the units in the output layer as a function of **w** and the input layer **x**, without any explicit mention of the output of the hidden layer. Show that there is a network with no hidden units that computes the same function.
- b. Repeat the calculation in part (a), but this time do it for a network with any number of hidden layers.
- c. Suppose a network with one hidden layer and linear activation functions has n input and output nodes and h hidden nodes. What effect does the transformation in part (a) to a network with no hidden layers have on the total number of weights? Discuss in particular the case $h \ll n$.

a.

The new network just one layer with $W_{i,k}=\sum_j W_{2,j,k}W_{1,i,j}$ and activation function $g'(x)=c^2x+b(c\sum_j W_{2,j,k}+1).$

b.

Using the induction:

For a k-layer network, select the first two layers, which one is input layer I, another is the first hidden layer H_1 , after the two layers, the result is O_1 . We can use the method in question a to reduce a hidden layer, so that the network becomes a k-1 layer network. After k-1 iteration, the network will be transformed into a single layer neural network.

c.

The weights number will be from 2hn to n^2 , when h<<n, the network with hidden nodes will store much less weights than reduced network and also can be trained faster.