LiDAR-Video Dataset: Learning Driving Policies more Effectively

Anonymous CVPR submission

Paper ID ****

Abstract

Learning autonomous-driving policies is one of the most challenging but promising tasks for computer vision and machine learning. It's generally accepted that future research and applications should combine cameras, videos and GPS Registered laser scanners in order to obtain comprehensive semantic understanding of real traffic. However, current approaches only learn from large-scale videos, for the lack of demanding benchmarks that provide precise laser-scanner data. In this paper, we firstly propose a LiDAR-Video dataset, which provides large-scale highquality point clouds picked up by a Velodyne laser, videos and standard drivers' behaviors. Our accompanying baseline experiments, as well as the state-of-the-art approaches, demonstrate that extra laser information help networks to determine driving policies indeed. Our benchmark is available online: https://github.com/XXX/LiDAR-Video

1. Introduction

- learning policies is a challenging problem
- Lack of dataset designed for decision making. BBD only contains video images.
- Firstly purpose LiDAR-Video dataset

2. Related Work

- 2 mainstream ways to learn self-driving policies. 1) Object Segmentation(only using cameras). 2) Utilizing laser scanner.
- Existent dataset. (Cityscape, KITTI, BBD)

[5] [7] [6] [1] [11] [2] [11] [4] [13] [12] [3] [9] [8] [10]

3. Dataset

3.1. Platform and Data Collection

Describe our data acquisition platform, our devices such as digital recorder, Velodyne laser and others....

Fig. 1 [car and devices figure]

3.2. Data Preprocessing

Describe how to process the origin data, including frame merging, time matching, format converting and downsampling.

Fig. 2 [Pipeline of data preprocessing]

3.3. Hierarchy and Features

Show the structure of out dataset and give detailed explanation.

- 7000+ pairs(video+point clouds)
- Drivers(wheel-angle and driving speed)

Fig. 3 [Display point clouds and recorder scenes] **Fig. 4** [Dataset statistic features]

4. Tasks and Metrics

Define the tasks 1) predict the real-time car speed. 2) predict the real-time wheel angle. 3) combine together

The effectiveness and practicability of tasks. Giving theory demonstration.

5. Experimental Evaluation

CNN, CNN+RNN, pointnet, feature-map

Fig. 5,6 Examples of Prediction Table. 1,2 Comparision of Results

6. Conclusion

7. Future Work

The utilization of LiDAR point clouds. Unsupervised segmentation of point clouds.

108	Rof	erences
109	WEI	CICICES
110	[1]	$P\!.$ Babahajiani, L. Fan, JK. Kämäräinen, and M. Gabbouj.
111		Urban 3d segmentation and modelling from street view im-
112		ages and lidar point clouds. Machine Vision and Applica-
113	[2]	tions, May 2017. 1
114	[2]	M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner,
115		B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to end learn-
116		ing for self-driving cars. <i>CoRR</i> , abs/1604.07316, 2016. 1
117	[3]	M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
118	L- J	R. Benenson, U. Franke, S. Roth, and B. Schiele. The
119		cityscapes dataset for semantic urban scene understanding.
120		CoRR, abs/1604.01685, 2016. 1
121	[4]	J. Deng, W. Dong, R. Socher, LJ. Li, K. Li, and L. Fei-Fei.
122		ImageNet: A Large-Scale Hierarchical Image Database. In
123		CVPR09, 2009. 1
124	[5]	M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
125		A. Zisserman. The pascal visual object classes (voc) challenge. Intermediated for Computer Vision, 88(2):202
126		lenge. <i>International Journal of Computer Vision</i> , 88(2):303–338, Jun 2010.
127	[6]	A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
128	[o]	robotics: The kitti dataset. <i>International Journal of Robotics</i>
129		Research (IJRR), 2013. 1
130	[7]	A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
131		tonomous driving? the kitti vision benchmark suite. In
132		Conference on Computer Vision and Pattern Recognition
133 134		(CVPR), 2012. 1
135	[8]	S. Gupta, R. B. Girshick, P. Arbelaez, and J. Malik. Learning
136		rich features from RGB-D images for object detection and
137	[0]	segmentation. <i>CoRR</i> , abs/1407.5736, 2014. 1
138	[9]	T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
139		C. L. Zitnick. Microsoft COCO: common objects in context.
140		CoRR, abs/1405.0312, 2014. 1
141	[10]	W. Lotter, G. Kreiman, and D. Cox. Deep predictive cod-
142		ing networks for video prediction and unsupervised learning.
143		CoRR, abs/1605.08104, 2016. 1
144	[11]	D. A. Pomerleau. Advances in neural information processing
145		systems 1. chapter ALVINN: An Autonomous Land Vehi-
146		cle in a Neural Network, pages 305–313. Morgan Kaufmann
147	[12]	Publishers Inc., San Francisco, CA, USA, 1989. 1
148	[12]	O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein,
149		A. C. Berg, and F. Li. Imagenet large scale visual recognition
150		challenge. <i>CoRR</i> , abs/1409.0575, 2014. 1
151	[13]	H. Xu, Y. Gao, F. Yu, and T. Darrell. End-to-end learning
152		of driving models from large-scale video datasets. CoRR,
153		abs/1612.01079, 2016. 1
154		
155		
156		
157		
158		
159		
160		
161		