Introduction and Motivation QFI based on expectation values Case study Conclusion and outlook

Optimal bound on the quantum Fisher Information

Based on few initial expectation values of the prove state.

lagoba Apellaniz ¹, Matthias Kleinmann ¹, Otfried Ghüne ², & Géza Tóth ^{1,3,4}

iagoba.apellaniz@gmail.com

¹Department of Theoretical Physics, University of the Basque Country, Spain
²Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Germany
³IKERBASQUE, Basque Foundation for Science, Spain
⁴Wigner Research Centre for Physics, Hungarian Academy of Sciences, Hungary

Recent Advances in Quantum Metrology; Warsaw - 2016

Outline

- Introduction and Motivation
- 2 QFI based on expectation values: Are they optimal?
 - Optimization problem
- Case study
 - Spin squeezed states
 - Unpolarized Dicke states
- Conclusion and outlook

Many inequalities have been proposed to lower bound the quantum Fisher Information.

Bounds for qFI

$$\begin{split} \mathcal{F}[\varrho,J_z] &\geq \frac{\langle J_x \rangle^2}{\left(\Delta J_y\right)^2}, \qquad \mathcal{F}[\varrho,J_y] \geq \beta^{-2} \frac{\langle J_x^2 + J_z^2 \rangle}{\left(\Delta J_z\right)^2 + \frac{1}{4}}, \\ \mathcal{F}[\varrho,J_z] &\geq \frac{4(\langle J_x^2 + J_y^2 \rangle)^2}{2\sqrt{\left(\Delta J_x^2\right)^2 \left(\Delta J_y^2\right)^2} + \langle J_x^2 \rangle - 2\langle J_y^2 \rangle (1 + \langle J_x^2 \rangle) + 6} \end{split}$$

[I.A., B. Lücke, J. Peise, C. Klempt & G. Toth, New J. Phys. 17, 083027 (2015)]

[L. Pezzé & A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009)]

[Z. Zhang & L.-M. Duan, 2014 New J. Phys. 16 103037 (2014)]

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- 2 Typically, we only have a couple of expectation values to characterize the state.

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- 2 Typically, we only have a couple of expectation values to characterize the state.

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- Typically, we only have a couple of expectation values to characterize the state.
- The archetypical criteria that demonstrates useful entanglement on the state.

$$\mathcal{F}[\varrho,J_z] \geq \frac{\langle J_x \rangle}{\left(\Delta J_z\right)^2}$$

[L. Pezzé & A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009)]

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- ② Typically, we only have a couple of expectation values to characterize the state.
- The archetypical criteria that demonstrates useful entanglement on the state.
- It is essential either to verify them or find new ones for different set of expectation values.

- Introduction and Motivation
- QFI based on expectation values: Are they optimal?
 - Optimization problem
- Case study
 - Spin squeezed states
 - Unpolarized Dicke states
- Conclusion and outlook

The non-trivial exercise of computing the qFI

Different forms of the qFI

$$\mathcal{F}[\varrho, J_z] = 2 \sum_{\lambda, \gamma} \frac{(p_{\lambda} - p_{\gamma})^2}{p_{\lambda} + p_{\gamma}} |\langle \lambda | J_z | \gamma \rangle|^2$$

$$\mathcal{F}[\varrho, J_z] = \min_{\{p_k, |\Psi_k\rangle\}} 4 \sum_k p_k \left(\Delta J_z\right)_{|\Psi_k\rangle}^2$$

The non-trivial exercise of computing the qFI

Different forms of the qFI

$$\mathcal{F}[\varrho, J_z] = 2 \sum_{\lambda, \gamma} \frac{(\rho_{\lambda} - \rho_{\gamma})^2}{\rho_{\lambda} + \rho_{\gamma}} |\langle \lambda | J_z | \gamma \rangle|^2$$

$$\mathcal{F}[\varrho, J_z] = \min_{\{p_k, |\Psi_k\rangle\}} 4 \sum_k p_k \left(\Delta J_z\right)_{|\Psi_k\rangle}^2$$

For pure states it's extremely simple

$$\mathcal{F}[\varrho,J_z]=4\left(\Delta J_z\right)^2$$

The non-trivial exercise of computing the qFI

Oifferent forms of the qFI

$$\mathcal{F}[\varrho, J_z] = 2 \sum_{\lambda, \gamma} \frac{(p_{\lambda} - p_{\gamma})^2}{p_{\lambda} + p_{\gamma}} |\langle \lambda | J_z | \gamma \rangle|^2$$

$$\mathcal{F}[\varrho, J_z] = \min_{\{p_k, |\Psi_k\rangle\}} 4 \sum_k p_k \left(\Delta J_z\right)_{|\Psi_k\rangle}^2$$

For pure states it's extremely simple

$$\mathcal{F}[\varrho,J_z]=4\left(\Delta J_z\right)^2$$

In the general case, usually lower bounded by its "classical" counterparts.

Optimization: Legendre Transform

 For a convex function of the state, we construct a thight lower bound as follows,

$$g(\varrho) \ge \mathcal{B}(\{w_k := \langle W_k \rangle\}) = \sup_{\{r_k\}} (r \cdot w - \sup_{\varrho} [r \cdot \langle W \rangle - g(\varrho)]).$$

• When $g(\varrho)$ is deffined as infimum over the convex roof, the $2^{\rm nd}$ optimization simplified to pure states only,

$$\mathcal{B}(\{w_k\}) = \sup_{\{r_k\}} \left(r \cdot w - \sup_{|\psi\rangle} [r \cdot \langle W \rangle - g(|\psi\rangle)] \right).$$

[O. Gühne, M. Reimpell, and R.F. Werner, Phys. Rev. Lett. **98**, 110502 (2007)]

Optimization for the qFI

Different because of simplicity of the qFI for pure states.

$$\mathcal{F}(\{w_k\}) = \sup_{\{r_k\}} \left(r \cdot w - \sup_{\mu} [\lambda_{\max}(r \cdot W - 4(J_z - \mu)^2)]\right).$$

• Therefore, we have parametrised the optimization, which leads to a *more efficient finding* of the solution.

[I.A., M. Kleinmann, O. Güne & G. Tóth, arXiv:1511.05203]

- Introduction and Motivation
- QFI based on expectation values: Are they optimal?
 - Optimization problem
- Case study
 - Spin squeezed states
 - Unpolarized Dicke states
- 4 Conclusion and outlook

- We'll present 2 main cases, spin-squeezed states and unpolarized Dicke.
- Though, we apply our method to projectors with great success, we will focus on global J_n momentums.
- One of the cases using projector operators, *i.e.*, using the *fidelity* leads to *analytic soulution*!

Measuring $\langle J_z \rangle$ and $(\Delta J_x)^2$ for Spin Squeezed States

- We use the following 3 operators $\{J_z, J_x, J_x^2\}$ to characterize the input state with their respective expectation values.
- 2 In the direction of $\langle J_x \rangle$ the worst case is it take the value zero
- **3** Therefore the optimisation can be done only for 2 operators $\{J_z, J_x^2\}$ and it can be mapped directly to $\langle J_z \rangle, (\Delta J_x)^2$.

• We have found that on very interesting cases the optimization case is feasible.

- We have found that on very interesting cases the optimization case is feasible.
- We used our approach to verify the tight bounding of one of the inequalities.

- We have found that on very interesting cases the optimization case is feasible.
- We used our approach to verify the tight bounding of one of the inequalities.
- We have shown that the lower bound can be improved with few extra considerations.

- We have found that on very interesting cases the optimization case is feasible.
- We used our approach to verify the tight bounding of one of the inequalities.
- We have shown that the lower bound can be improved with few extra considerations.
- It has been show that

Introduction and Motivation QFI based on expectation values Case study Conclusion and outlook

Thank you for your attention!

Group's home page \rightarrow https://sites.google.com/site/gedentqopt