Classification: K-NN & SVM

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of labeled records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distances to x

1 nearest-neighbor

Voronoi Diagram

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - Take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - ◆ weight factor, w = 1/d²

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classification...

- Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

Nearest Neighbor Classification...

Selection of the right similarity measure is critical:

Euclidean distance = 1.4142 for both pairs

Nearest neighbor Classification...

- k-NN classifiers are lazy learners since they do not build models explicitly
- Classifying unknown records are relatively expensive
- Can produce arbitrarily shaped decision boundaries
- Easy to handle variable interactions since the decisions are based on local information
- Selection of right proximity measure is essential
- Superfluous or redundant attributes can create problems
- Missing attributes are hard to handle

Improving KNN Efficiency

- Avoid having to compute distance to all objects in the training set
 - Multi-dimensional access methods (k-d trees)
 - Fast approximate similarity search
 - Locality Sensitive Hashing (LSH)
- Condensing
 - Determine a smaller set of objects that give the same performance
- Editing
 - Remove objects to improve efficiency

Find a linear hyperplane (decision boundary) that will separate the data

- Which one is better? B1 or B2?
- How do you define better?

Find hyperplane maximizes the margin => B1 is better than B2

Linear SVM

Linear model:

$$f(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x} + b \le -1 \end{cases}$$

- Learning the model is equivalent to determining the values of \vec{w} and b
 - How to find \vec{w} and \vec{b} from training data?

Learning Linear SVM

- Objective is to maximize: Margin = $\frac{2}{\|\vec{w}\|}$
 - Which is equivalent to minimizing: $L(\vec{w}) = \frac{\|\vec{w}\|^2}{2}$
 - Subject to the following constraints:

$$y_i = \begin{cases} 1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}}_i + b \ge 1 \\ -1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}}_i + b \le -1 \end{cases}$$

or

$$y_i(\mathbf{W} \bullet \mathbf{X}_i + b) \ge 1, \quad i = 1, 2, ..., N$$

- This is a constrained optimization problem
 - Solve it using Lagrange multiplier method

Example of Linear SVM

Support vectors x2 x1 65.5261 0.3858 0.4687 65.5261 0.4871 0.611 0.9218 0.4103 0.7382 0.8936 0.1763 0.0579 0.4057 0.3529 0.9355 0.8132 0.2146 0.0099

Learning Linear SVM

- Decision boundary depends only on support vectors
 - If you have data set with same support vectors, decision boundary will not change
 - How to classify using SVM once w and b are found? Given a test record, x_i

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 \end{cases}$$

• What if the problem is not linearly separable?

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:

$$L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^{N} \xi_i^k\right)$$

Subject to:

$$y_i = \begin{cases} 1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}}_i + \mathbf{b} \ge 1 - \xi_i \\ -1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}}_i + \mathbf{b} \le -1 + \xi_i \end{cases}$$

◆ If k is 1 or 2, this leads to same objective function as linear SVM but with different constraints (see textbook)

Find the hyperplane that optimizes both factors

Nonlinear Support Vector Machines

• What if decision boundary is not linear?

$$y(x_1, x_2) = \begin{cases} 1 & \text{if } \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2 \\ -1 & \text{otherwise} \end{cases}$$

Nonlinear Support Vector Machines

 Trick: Transform data into higher dimensional space

$$x_1^2 - x_1 + x_2^2 - x_2 = -0.46.$$

$$\Phi: (x_1, x_2) \longrightarrow (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, 1).$$

$$w_4 x_1^2 + w_3 x_2^2 + w_2 \sqrt{2} x_1 + w_1 \sqrt{2} x_2 + w_0 = 0.$$

Decision boundary:

$$\vec{w} \bullet \Phi(\vec{x}) + b = 0$$

Learning Nonlinear SVM

Optimization problem:

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2}$$
subject to $y_i(\mathbf{w} \cdot \Phi(\mathbf{x}_i) + b) \ge 1, \ \forall \{(\mathbf{x}_i, y_i)\}$

 Which leads to the same set of equations (but involve Φ(x) instead of x)

$$\begin{split} L_D &= \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j) \qquad \mathbf{w} = \sum_i \lambda_i y_i \Phi(\mathbf{x}_i) \\ & \lambda_i \{ y_i (\sum_j \lambda_j y_j \Phi(\mathbf{x}_j) \cdot \Phi(\mathbf{x}_i) + b) - 1 \} = 0, \end{split}$$

$$f(\mathbf{z}) = sign(\mathbf{w} \cdot \Phi(\mathbf{z}) + b) = sign(\sum_{i=1}^{n} \lambda_i y_i \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{z}) + b).$$

Learning NonLinear SVM

- Issues:
 - What type of mapping function ⊕ should be used?
 - How to do the computation in high dimensional space?
 - Most computations involve dot product Φ(x_i) Φ(x_j)
 - Curse of dimensionality?

Learning Nonlinear SVM

- Kernel Trick:
 - $\Phi(\mathsf{x}_{\mathsf{i}}) \bullet \Phi(\mathsf{x}_{\mathsf{i}}) = \mathsf{K}(\mathsf{x}_{\mathsf{i}}, \, \mathsf{x}_{\mathsf{i}})$
 - K(x_i, x_j) is a kernel function (expressed in terms of the coordinates in the original space)
 - Examples:

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \cdot \mathbf{y} + 1)^{p}$$

$$K(\mathbf{x}, \mathbf{y}) = e^{-\|\mathbf{x} - \mathbf{y}\|^{2}/(2\sigma^{2})}$$

$$K(\mathbf{x}, \mathbf{y}) = \tanh(k\mathbf{x} \cdot \mathbf{y} - \delta)$$

Example of Nonlinear SVM

SVM with polynomial degree 2 kernel