Summary for Modern Algebra I

SEUNGWOO HAN

CONTENTS

CHAPTER I	GROUPS	PAGE 3	
1.1	Definitions and Examples of Groups	3	
	Group Homomorphisms	5	
1.3	Subgroups	6	
1.4	Generators of Groups and Free Groups	8	
1.5	Cyclic Groups	9	
1.6	Alternating Groups	11	
CHAPTER 2	Normal Subgroups and Quotient Groups	Page 13	
2.1	Lagrange Theorem	13	
	Normal Subgroups	15	
2.3	Quotient Groups and Group Homomorphisms	17	
2.4	Simple Groups and Jordan–Hölder Theorem	21	
Chapter 3	GROUP ACTIONS	Page 26	
3.1	Stabilizers and Orbits	26	
3.2	Group Actions by Conjugation	28	
3.3	Automorphisms	30	
3.4	Sylow Theorems	32	
Chapter 4	Product of Groups	Page 36	
4.1	Direct Products	36	
4.2	Fundamental Theorem of Finitely Generated Abelian Groups	38	
	Semidirect Products	40	
4.4	Classification of Finite Groups of Small Orders	43	
Chapter 5	Rings	Page 45	
	Definitions and Examples of Rings	45	
	Ring Homomorphisms	47	
	-		

CHAPTER 6	Ideals and Quotient Rings	_ PAGE 49
6.1	Ideals	49
6.2	Quotient Rings and Ring Homomorphisms	51
	Prime and Maximal Ideals	53
6.4	Rings of Fractions	55

Chapter 1

Groups

1.1 Definitions and Examples of Groups

Definition 1.1.1: Abelian Group

An *abelian group* is a nonempty set G equipped with a binary operation + on G that satisfies the following.

- (i) (associative) $\forall a, b, c \in G$, a + (b + c) = (a + b) + c.
- (ii) (commutative) $\forall a, b \in G, a + b = b + a$.
- (iii) (identity) $\exists 0 \in G$, $\forall a \in G$, a + 0 = 0 + a = a.
- (iv) (inverse) $\forall a \in G, \exists b \in G, a+b=b+a=0.$

Note:-

One may easily show that the identity is unique, and for each $a \in G$, an inverse of a is unique.

Notation 1.1.2

- We define $-: G \times G \to G$ by a b = a + (-b).
- We write, for each positive integer n, and for each $a \in G$,

$$na \triangleq \underbrace{a + a + \dots + a}_{n \text{ times}}, \qquad 0a \triangleq 0_G, \qquad (-n)a \triangleq \underbrace{(-a) + (-a) + \dots + (-a)}_{n \text{ times}}.$$

• Hence, $\forall m, n \in \mathbb{Z}$, $\forall a \in G$, $(m+n)a = ma + na \land m(na) = (mn)a$.

Example 1.1.3

- (i) \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} , equipped with their ordinary additions, are abelian groups, while $(\mathbb{N}, +)$ is not.
- (ii) $\mathbb{Q} \setminus \{0\}$, $\mathbb{R} \setminus \{0\}$, and $\mathbb{C} \setminus \{0\}$, equipped with their ordinary multiplications, are abelian groups.
- (iii) If $G = \{1, -1, i, -i\} \subseteq \mathbb{C}$, then (G, \cdot) is an abelian group. One may explicitly write the *group table* for this.
- (iv) $GL_n(\mathbb{C}) = \{n \times n \text{ invertible matrices over } \mathbb{C} \}$ (general linear group) equipped with \cdot is not an abelian group but is a group. (See Definition 1.1.4.)

Definition 1.1.4: Group

An *group* is a nonempty set G equipped with a binary operation \cdot on G that satisfies the following.

- (i) (associative) $\forall a, b, c \in G, a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- (ii) (identity) $\exists 1 \in G$, $\forall a \in G$, $a \cdot 1 = 1 \cdot a = a$.
- (iii) (inverse) $\forall a \in G, \exists b \in G, a \cdot b = b \cdot a = 1.$

Theorem 1.1.5

Let (G, \cdot) be a group. Let $a, b, c \in G$.

- (i) $ab = ac \implies b = c$
- (ii) $(a^{-1})^{-1} = a$
- (iii) $(ab)^{-1} = b^{-1}a^{-1}$

Proof. Trivial.

Notation 1.1.6

• We write, for each positive integer n, and for each $a \in G$,

$$a^n \triangleq \underbrace{a \cdot a \cdot \cdots \cdot a}_{n \text{ times}}, \qquad a^0 \triangleq 1_G, \qquad a^{-n} \triangleq \underbrace{a^{-1} \cdot a^{-1} \cdot \cdots \cdot a^{-1}}_{n \text{ times}}.$$

• Hence, $\forall m, n \in \mathbb{Z}$, $\forall a \in G$, $a^m a^n = a^{m+n} \wedge (a^m)^n = a^{mn}$.

Note:-

We don't generally have $(ab)^n = a^n b^n$.

Definition 1.1.7: Order

We write |G| to denote the number of elements in G and call it *order* of G.

Example 1.1.8 Dihedral Groups

$$D_n \triangleq \{ r_i : [n] \hookrightarrow [n] \mid \forall j \in [n], r_i(j) = i +_n j \} \cup \{ \text{reflections???} \}$$

= $\{ \text{all "rigid motions" for regular } n \text{ polygon} \}$

Then, (D_n, \circ) is a group where \circ is ordinary function composition operator. We claim that $|D_n| = 2n$ and D_n is not abelian.

Proof. If $r \in D_n$ is a rotation, then

Example 1.1.9 Symmetric Group

Let *T* be a nonempty set. Then, the set $S(T) \triangleq \{f : f : T \hookrightarrow T\}$ with the function composition operator \circ is a group.

We write

$$S_n \triangleq S(\{1,2,\cdots,n\})$$

and call it symmetric group. S_1 and S_2 are abelian, but S_n with $n \ge 3$ is not abelian. $((123) \circ (12) \ne (12) \circ (123))$

Definition 1.1.10: Group Action

Let *G* be a group and *A* be a set. A group action *G* on *A* is a map $f: G \times A \rightarrow A$ such that:

- (i) $\forall g_1, g_2 \in G$, $\forall a \in A$, $f(g_1, f(g_2, a)) = f(g_1g_2, a)$.
- (ii) $\forall a \in A, f(1, a) = a$.

We write $G \cap A$ to write G acts on A.

Example 1.1.11 Quaternion Group

 $Q_8 \triangleq \{\pm 1, \pm i, \pm j, \pm k\}$ as usual.

Example 1.1.12 General Linear Group

 $\operatorname{GL}_n(R)$ is a group of all $n \times n$ invertible matrices over R.

Definition 1.1.13: Direct Product

If $(G, *_G)$ and $(H, *_H)$ are groups, then the binary operation * on $G \times H$ defined by $(g,h) \times (g',h') \triangleq (g *_G g',h *_H h')$ forms a group $(G \times H,*)$.

1.2 Group Homomorphisms

Definition 1.2.1: Group Homomorphism

Let *G* and *H* be groups. A *group homomorphism* between *G* and *H* is a function $f: G \to H$ such that $\forall a, b \in G$, f(ab) = f(a)f(b).

Definition 1.2.2: Group Isomorphism

Let G and H be groups. A *group isomorphism* is a bijective group homomorphism between G and H. (This means that G and H have the same group structure.) We write $G \cong H$.

Theorem 1.2.3

Let $f: G \to H$ be a group homomorphism.

- (i) $f(1_G) = 1_H$.
- (ii) $\forall a \in G, f(a^{-1}) = f(a)^{-1}$.
- (iii) Im f is a group under the group operation under H.
- (iv) If f is injective, then $G \cong \operatorname{Im} f$.

Proof.

(i) $f(1_G)f(1_G) = f(1_G1_G) = f(1_G) = f(1_G)1_H$. Hence, we have $f(1_G) = 1_H$ from Theorem 1.1.5 (i).

- (ii) $f(a^{-1})f(a) = f(a^{-1}a) = f(1_G) = 1_H$ by (i). Hence, $f(a^{-1}) = f(a)^{-1}$.
- (iii) Direct from definition.
- (iv) Direct from definition.

There is only one way—the direct product—to give a group structure on $G \times H$ such that both projections are group homomorphisms.

Definition 1.2.4: Group Automorphism

An *automorphism* of G is an isomorphism $G \hookrightarrow G$ between G and itself. Then, the collection of all automorphisms of G, $Aut(G) \triangleq \{$ automorphisms of $G \}$, equipped with \circ , is a group. Moreover, $Aut(G) \curvearrowright G$ in the natural way $((\sigma, g) \mapsto \sigma(g))$.

Example 1.2.5

Fix any $c \in G$ and define $i_c : G \to G$ by $g \mapsto cgc^{-1}$. Then, $i_c \in Aut(G)$. i_c is called the *inner automorphism on G induced by c*.

Lemma 1.2.6

Let $G \cap A$. Then, every $g \in G$ induces a map

$$\varphi_g: A \longrightarrow A$$
 $a \longmapsto ga.$

Then, $\varphi: G \to S(A)$ defined by $g \mapsto \varphi_g$ is a group homomorphism, which is called the *permutation representation of the group action of G on A*.

Proof. For each $a \in A$, $(\varphi_{g^{-1}} \circ \varphi_g)(a) = g^{-1}(ga) = (g^{-1}g)a = 1a = a$. Thus, $\varphi_{g^{-1}} \circ \varphi_g = \varphi_g \circ \varphi_{g^{-1}} = id$. Therefore, $\varphi_g \in S(A)$. It is easy to show that φ is a group homomorphism. \square

Lemma 1.2.7

Let *G* be a group and let *A* be a set. If $\varphi: G \to S(A)$ is a group homomorphism, Then, the map $G \times A \to A$ defined by $(g, a) \mapsto \varphi(g)(a)$ is a group action of *G* on *A*.

Proof. Direct from Definition 1.1.10.

Theorem 1.2.8

Let *G* be a group and let *A* be a nonempty set. Then, there exists one-to-one correspondence

{all group actions of G on A} $\stackrel{1-1}{\longleftrightarrow}$ {all group homomorphisms $G \to S(A)$ }.

Proof. Direct from Lemmas 1.2.6 and 1.2.7.

1.3 Subgroups

Definition 1.3.1: Subgroup

Let *G* be a group, and $\emptyset \subsetneq H \subseteq G$. *H* is a *subgroup* of *G* if *H* is a group under the binary operation of *G*. If *H* is a subgroup of *G*, we write $H \leq G$.

- (i) $1, G \le G$.
- (ii) If $H, K \leq G$ and $H \subseteq K$, then $H \leq K$.
- (iii) If $f: H \to G$ is a group homomorphism, then $im(f) \le G$.
- (iv) If $H \leq G$, then $id_H: H \hookrightarrow G$ is a group homomorphism.
- (v) For all $n \in \mathbb{Z}$, $n\mathbb{Z} = \{ nz \mid z \in \mathbb{Z} \} \leq \mathbb{Z}$.
- (vi) $\{\pm 1, \pm i\} \leq \mathbb{C}^*$.
- (vii) $\{1, r_1, \dots, r_{n-1}\} \le D_n \le S_n \text{ and } \{1, s\} \le D_n$.

Theorem 1.3.2

TFAE. Let G be a group and $\emptyset \subsetneq H \subseteq G$.

- (i) $H \leq G$.
- (ii) $\forall a, b \in H, ab \in H \text{ and } \forall a \in H, a^{-1} \in H.$
- (iii) $\forall a, b \in H, ab^{-1} \in H$.

Proof. Implications (i) \rightarrow (ii) and (ii) \rightarrow (iii) are trivial. For any $a, b \in H$, we have $1 = aa^{-1} \in H$, $a^{-1} = 1a^{-1} \in H$, and $ab = a(b^{-1})^{-1} \in H$.

Definition 1.3.3: Kernel

Let $f: G \to H$ be a group homomorphism. The *kernel* of f is the set

$$\ker(f) \triangleq \{ g \in G \mid f(g) = 1_H \}.$$

Example 1.3.4 Kernel

Let $f: G \to H$ be a group homomorphism. Then, $\ker(f) \leq G$ since, $1 \in \ker(f)$ and, for each $a, b \in \ker(f)$, $f(ab^{-1}) = f(a)f(b)^{-1} = 1_H 1_H = 1_H$.

Corollary 1.3.5

Let G be a group and let H be a nonempty finite subset of G. Then,

$$H \leq G \iff \forall a, b \in H, ab \in H.$$

Proof. The direction (\Leftarrow) is trivial.

Take any $a \in H$. By the assumption, $a^n \in H$ for all $n \in \mathbb{Z}_+$. As H is finite, there exists $m, n \in \mathbb{Z}_+$ such that $a^n = a^m$. WLOG, m < n. Therefore, $1 = a^{n-m} \in H$. Moreover, we have $aa^{n-m-1} = 1$, which implies $a^{-1} = a^{n-m-1} \in H$. Therefore, by Theorem 1.3.2, $H \leq G$.

🛉 Note:- 🛉

The finite condition in Corollary 1.3.5 is essential since $\mathbb{N} \not \leq \mathbb{Z}$ while \mathbb{N} is closed under addition. (\mathbb{N} is not a group at first.)

Corollary 1.3.6

Let *G* be a group and let $\langle H_i | i \in I \rangle$ be an indexed system of subgroups of *G*. Then, $\bigcap_{i \in I} H_i \leq G$.

Proof. Since $1 \in H_i$ for all $i \in I$, $\bigcap_{i \in I} H_i \neq \emptyset$. Take any $a, b \in \bigcap_{i \in I} H_i$. Then, as $\forall i \in I$, $ab^{-1} \in H_i$, we have $ab^{-1} \in \bigcap_{i \in I} H_i$. The result follows from Theorem 1.3.2. □

Even though $H_1, H_2 \leq G$, it is not guaranteed that $H_1 \cup H_2 \leq G$. For instance, $2\mathbb{Z} \cup 3\mathbb{Z} \nleq \mathbb{Z}$. $(2+3 \notin 2\mathbb{Z} \cup 3\mathbb{Z}.)$

Theorem 1.3.7 Cayley Theorem

Let *G* be a group. Then, $G \cong H$ for some $H \leq S(G)$.

Proof. Note that $(g, g') \mapsto gg'$ is a group action of G on G. Let $\varphi : G \to S(G)$ be the permutation representation of it. We only need to show that φ is injective.

Take any $x, y \in G$ and assume $\varphi_x = \varphi_y$. Then, $x = x \cdot 1 = \varphi_x(1) = \varphi_y(1) = y \cdot 1 = y$. Therefore, $G \cong \operatorname{im}(\varphi) \leq S(G)$.

Definition 1.3.8: Center

Let *G* be a group. The *center* of *G* is the set

$$Z(G) \triangleq \{ g \in G \mid \forall a \in G, ag = ga \}.$$

Theorem 1.3.9

Let G be a group. Then, Z(G) is an abelian group.

Proof. Take any $a, b \in Z(G)$. Then for all $g \in G$, (ab)g = a(gb) = a(gb) = (ag)b = g(ab); hence $ab \in Z(G)$. For all $g \in G$, $ga^{-1} = a^{-1}g(aa^{-1}) = a^{-1}(ga)a^{-1} = a^{-1}g(aa^{-1}) = a^{-1}g$; hence $a^{-1} \in Z(G)$. Therefore, $Z(G) \le G$ by Theorem 1.3.2. Z(G) is abelian by definition. □

Definition 1.3.10: Centralizer

Let *G* be a group and let $\emptyset \subsetneq A \subseteq G$. The *centralizer* of *A* is the subset

$$C_G(A) = C(A) \triangleq \{ g \in G \mid \forall a \in A, ag = ga \}.$$

We may also write C(a) instead of $C(\{a\})$.

Theorem 1.3.11

Let *G* be a group.

- (i) $C(A) \leq G$ for any $\emptyset \subseteq A \subseteq G$.
- (ii) $Z(G) = \bigcap_{a \in G} C(a)$.
- (iii) $a \in Z(G) \iff C(a) = G$.

Proof.

 \Box

1.4 Generators of Groups and Free Groups

Theorem 1.4.1

Let *G* be a group and $\emptyset \subsetneq S \subseteq G$. Let $\langle S \rangle$ be the closure of *S* under the structure (G, \cdot, \cdot^{-1}) .

- (i) $\langle S \rangle \leq G$ and $S \subseteq \langle S \rangle$.
- (ii) If $H \leq G$ and $S \subseteq H$, then $\langle S \rangle \subseteq H$.

Proof. Trivial.

Definition 1.4.2: Generator

Let *G* be a group and $\emptyset \subsetneq S \subseteq G$. If $G = \langle S \rangle$, then we say *G* is *generated by S* and *S* is a *generator* of *G*. If *S* is finite, then *G* is *finitely generated*.

Example 1.4.3

- (i) A finite group is finitely generated. $G = \langle G \rangle$.
- (ii) $\mathbb{Z} = \langle -1 \rangle$ is finitely generated.
- (iii) \mathbb{Q} is not finitely generated. If $\mathbb{Q} = \langle p_i/q_i \mid i < n \rangle$, then, for a prime $p \in \mathbb{P}$ such that $\forall i < n, p \nmid q_i$, we have $1/p \notin \langle p_i/q_i \mid i < n \rangle$.
- (iv) $D_n = \langle r_1, s \rangle$. (This is a minimal representation.)
- (v) $Q_8 = \langle i, j \rangle = \langle j, k \rangle = \langle k, i \rangle$.

Definition 1.4.4: Group Presentation

We write

$$G = \langle S | R \rangle$$

as a way of representing group *G* in terms of *generator S* and a set of relations *R*.

Example 1.4.5

- (i) $\mathbb{Z} = \langle 1 \rangle$.
- (ii) $D_n = \langle r, s \mid r^n = s^2 = rsrs = 1 \rangle$.

Theorem 1.4.6

Let $G = \langle g_1, \cdots, g_k \mid r_1(g_1, \cdots, g_k) = \cdots = r_m(g_1, \cdots, g_k) = 1 \rangle$ be a group presentation. Let H be a group. If $\varphi \colon \{g_1, \cdots, g_k\} \to H$ such that $r_i(\varphi(g_1), \cdots, \varphi(g_k)) = 1$ for all $i \in [m]$, then there uniquely exists a group homomorphism $\tilde{\varphi} \colon G \to H$ such that $\tilde{\varphi}\big|_{\{g_1, \cdots, g_k\}} = \varphi$.

1.5 Cyclic Groups

Definition 1.5.1: Order

Let *G* be a group and let $a \in G$. If $a^k = 1$ for some $k \in \mathbb{Z}_+$, then we say *a* has a *finite* order and the order of *a* is

$$|a| = \min\{ n \in \mathbb{Z}_+ \mid a^n = 1 \}.$$

If a does not have a finite order, we write $|a| = \infty$.

Example 1.5.2

- (i) If $f: G \stackrel{\approx}{\to} H$, then $\forall a \in G$, |a| = |f(a)|.
- (ii) $\forall a \in G, |a| = |a^{-1}|.$

- (iii) $\forall a \in G$, ($|a| = 1 \iff a = 1$).
- (iv) $\forall m \in \mathbb{Z}_n$, $|m| = n/\gcd(n, m)$.
- (v) In Q_8 , |1| = 1, |-1| = 2, $|\pm i| = |\pm j| = |\pm k| = 4$.
- (vi) In D_n , $|r_i| = n/\gcd(n, i)$ and |s| = 2.

Note that (v) and (vi) shows that $Q_8 \ncong D_n$.

Theorem 1.5.3

Let *G* be a group. Let $a, b \in G$.

- (i) $|a| = \infty \iff \forall i, j \in \mathbb{Z}, (a^i = a^j \implies i = j).$
- (ii) Assume $|a| = n < \infty$.
 - (1) $a^k = 1 \iff n \mid k$.
 - (2) $a^i = a^j \iff i \equiv j \pmod{n}$
 - (3) If n = td, then $|a^t| = d$.
- (iii) Assume ab = ba, $|a| < \infty$, $|b| < \infty$, and gcd(a, b) = 1. Then, |ab| = |a| |b|.

Proof.

- (i) Trivial.
- (ii) Basic number theory.
- (iii) Let $\alpha \triangleq |a|$, $\beta \triangleq |b|$, and $\ell = \alpha\beta$. Since $(ab)^{\ell} = 1$, we have $|ab| \leq \ell$.

Suppose $(ab)^m < 1$ for some $0 < m < \ell$ for the sake of contradiction. Then, we have $1 = a^{m\alpha} = b^{-m\alpha}$; thus $\beta \mid m$ as $\gcd(a,b) = 1$. Similarly, we have $\alpha \mid m$, which implies $\ell = \alpha\beta \mid m$. This contradicts $m < \ell$.

Note:-

We do not have |ab| = lcm(|a|, |b|). In D_3 , $|r_1s| = 2 \neq 6 = \text{lcm}(|r_1|, |s|)$.

Corollary 1.5.4

Let $f: G \to H$ be a group homomorphism. If $g \in G$ has a finite order, then |f(g)| |g|.

Corollary 1.5.5

Let *G* be an abelian group in which all elements have finite order. If $c \in G$ has the largest order, then $\forall a \in G$, |a| | |c|.

Proof. Suppose there exists $a \in G$ such that $|a| \nmid |c|$ for the sake of contradiction. Then, we may write $|a| = p^r m$ and $|c| = p^s n$ where p is a prime number, gcd(m, p) = gcd(n, p) = 1, and r > s. Then, by Theorem 1.5.3 (ii), $|a^m| = p^r$ and $|c^{p^s}| = n$. Therefore, by Theorem 1.5.3 (iii), $|a^m c^{p^s}| = |a^m| |c^{p^s}| = p^r n > |c|$, which contradicts the maximality of |c|.

Definition 1.5.6

Let *G* be a group. Then, a subgroup of *G* of the form

$$\langle a \rangle = \langle \{a\} \rangle = \{ a^n \mid n \in \mathbb{Z} \}$$

is called a *cyclic subgroup generated by a*. If $G = \langle a \rangle$, then we say G is a cyclic group.

Note:-

Every cyclic group is abelian, but the converse is not true. (e.g. Example 1.4.3 (iii))

Corollary 1.5.7

Let *G* be a group and let $a \in G$.

- (i) If $|a| = \infty$, then $\langle a \rangle \cong \mathbb{Z}$.
- (ii) If |a| = n, then $\langle a \rangle \cong \mathbb{Z}_n$.

This gives the complete classification of cyclic groups.

Corollary 1.5.8

Let $G = \langle a \rangle$ be a cyclic group. Let H be a nontrivial subgroup of G.

- (i) $H = \langle a^k \rangle$ where $k = \min\{ n \mid a^n \in H \}$.
- (ii) If $|a| = \infty$, then $\langle 1 \rangle, \langle a \rangle, \langle a^2 \rangle, \cdots$ are all the distinct subgroups of G.
- (iii) If $|a| = n < \infty$, then min $\{n \mid a^n \in H\} \mid n$.

Proof.

(i) As $a^i \in H$ for some $i \neq 0$, we may let $k = \min\{n \mid a^n \in H\}$.

Take any $h \in H$. Then, $h = a^m$ for some $m \in \mathbb{Z}$. There exists $q, r \in \mathbb{Z}$ such that $0 \le r < k$ and m = kq + r. Then, $a^r = a^m (a^k)^{-q} \in H$; thus r = 0 by minimality of k. Hence, $H = \langle a^k \rangle$.

- (ii) Trivial.
- (iii) Let $d = \gcd(k, n)$. As $d \mid k$, we have $\langle a^k \rangle \subseteq \langle a^d \rangle$. There exist $u, v \in \mathbb{Z}$ such that d = mu + nv. Then, $a^d = (a^m)^u (a^n)^v = (a^m)^u$; thus $\langle a^d \rangle \subseteq \langle a^k \rangle$. Hence, $k = d \mid n$.

Example 1.5.9

Let $m, n \in \mathbb{Z}_+$. Then, $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn} \iff \gcd(m, n) = 1$.

- (⇒) Suppose gcd(m,n) > 1 for the sake of contradiction. Take any $(a,b) \in \mathbb{Z}_m \times \mathbb{Z}_n$. Then, |(a,b)| | lcm(m,n) = mn/gcd(m,n) < mn. Hence, $\mathbb{Z}_m \times \mathbb{Z}_n$ has no element of order mn; thus $\mathbb{Z}_m \times \mathbb{Z}_n \not\cong \mathbb{Z}_{mn}$.
- (⇐) As |(1,0)| = m and |(0,1)| = n in $\mathbb{Z}_m \times \mathbb{Z}_n$, |(1,1)| = |(1,0)(0,1)| = mn by Theorem 1.5.3 (iii). Therefore, $\mathbb{Z}_m \times \mathbb{Z}_n = \langle (1,1) \rangle \cong \mathbb{Z}_{mn}$.

1.6 Alternating Groups

Definition 1.6.1: *m*-Cycle

Permutations of the form $(a_1 a_2 \cdots a_m)$ is called *m-cycles*.

Note:-

Some basic facts:

- S_1, S_2, S_3 consist of cycles while S_4 has a non-cycle (12)(34).
- $(a_1 a_2 \cdots a_m)^{-1} = (a_m a_{m-1} \cdots a_1).$
- Every $\sigma \in S_n$ admits a disjoint cycle decomposition. In other words,

$$\sigma = (a_{i_{11}} \cdots a_{i_{1m_1}})(a_{i_{21}} \cdots a_{i_{2m_2}}) \cdots (a_{i_{k1}} \cdots a_{i_{km_k}})$$

where $a_{i_{j\ell}}$ s are all different. Moreover, the cycle decomposition is unique up to permutation of the cycles.

• If $\sigma = \sigma_1 \sigma_2 \cdots \sigma_k$ is a disjoint cycle decomposition, then $\sigma^n = \sigma_1^n \sigma_2^n \cdots \sigma_k^n$. Moreover, $|\sigma| = \text{lcm}(|\sigma_1|, |\sigma_2|, \cdots, \sigma_k)$.

Example 1.6.2 Center of Symmetric Group

 $Z(S_2) = S_2$ since S_2 is abelian. Fix $n \ge 3$ and consider S_n . Let $\sigma \in Z(S_n) \setminus \{(1)\}$. Let $\sigma = (a_1 \, a_2 \, \cdots \, a_m) \sigma_2 \cdots \sigma_k$ be a disjoint cycle decomposition with $m \ge 2$. Choose $\tau \in S_n$ such that $\tau(a_1) = a_1$ and $\tau(a_2) \ne a_2$. Then, $\sigma(a_1) = \tau \sigma \tau^{-1}(a_1) = \tau \sigma(a_1) = \tau(a_2) \ne a_2$, which is a contradiction. Hence, $Z(S_n) = \{(1)\}$.

Definition 1.6.3: Transposition

A transposition is a 2-cycle (a b).

Note:-

- $(a_1 a_2 \cdots a_m) = (a_1 a_m)(a_1 a_{m-1}) \cdots (a_1 a_2).$
- By the cyclic decomposition and the equation above, we get the fact that every $\sigma \in S_n$ is a product of transpositions.

Definition 1.6.4: Parity of Permutation

For each $\sigma \in S_n$, define $\sigma(\Delta) = \prod_{i \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)})$ be a polynomial on independent variables x_1, \dots, x_n . Let $\Delta \triangleq (1)(\Delta)$. Then, $\sigma(\Delta) = \pm \Delta$. We define $\varepsilon : S_n \to \{1, -1\}$ by

$$\varepsilon(\sigma) \triangleq \begin{cases} 1 & \text{if } \sigma(\Delta) = \Delta \\ -1 & \text{if } \sigma(\Delta) = -\Delta. \end{cases}$$

Theorem 1.6.5

 ε in Definition 1.6.4 is a surjective group homomorphism.

Proof. Take any $\sigma, \tau \in S_n$. Suppose $\sigma(\Delta)$ has exactly k factors of $(x_j - x_i)$ with j > i so that $\varepsilon(\sigma) = (-1)^k$. $\varepsilon(\tau\sigma)\Delta = (\tau\sigma)(\Delta) = \varepsilon(\sigma)\prod_{i \le i < j \le n} (x_{\tau(i)} - x_{\tau(j)}) = \varepsilon(\sigma)\varepsilon(\tau)\Delta$. Hence, $\varepsilon(\tau\sigma) = \varepsilon(\sigma)\varepsilon(\tau) = \varepsilon(\tau)\varepsilon(\sigma)$.

Definition 1.6.6: Alternating Group

$$A_n \triangleq \ker(\varepsilon: S_n \to \{\pm 1\})$$

Chapter 2

Normal Subgroups and Quotient Groups

2.1 Lagrange Theorem

Definition 2.1.1: Congruence

Let $K \leq G$ and $a, b \in G$. We say a is congruent to b modulo K if $ab^{-1} \in K$, and write $a \equiv b \pmod{K}$.

Definition 2.1.2: Coset

Let $K \leq G$ and $a \in G$.

- $Ka \triangleq \{ka \mid k \in K\}$ is a right coset of K in G.
- $aK \triangleq \{ak \mid k \in K\}$ is a left coset of K in G.

Note:-

The relation $\equiv \pmod{K}$ is reflexive, symmetric, and transitive; hence it is a equivalence relation. Then, the equivalence class of $a \in G$ is

$$[a]_K = \{b \in G \mid b \equiv a \pmod{K}\} = \{b \in G \mid \exists k \in K, b = ka\} = Ka.$$

In other words, $a \equiv b \pmod{K} \iff Ka = Kb$.

One may define $\equiv_l b$ are $\equiv_l b$ iff $a^{-1}b \in K$ so that [a] = aK.

Note:-

One may note that, if K is just a nonempty subset of G, then $\equiv \pmod{K}$ is an equivalence relation if and only if $K \leq G$.

Definition 2.1.3

Let $K \leq G$.

$$G/K \triangleq \{ Ka \mid a \in G \}.$$

Definition 2.1.4: Index

The *index of K in G* is

$$[G:K] \triangleq |G/K|$$
.

Example 2.1.5

- (i) $n\mathbb{Z} \leq \mathbb{Z}$; $[\mathbb{Z}:n\mathbb{Z}] = n$.
- (ii) $\mathbb{Z} \leq \mathbb{Q}$; $[\mathbb{Q}:\mathbb{Z}] = \infty$.

Theorem 2.1.6

Let $K \leq G$. Let L and R be sets of left and right cosets, respectively. Then, the map

$$\varphi: R \longrightarrow L$$
$$Ka \longmapsto a^{-1}K$$

is a (well-defined) bijection.

Proof. Take any $a, b \in G$ and assume Ka = Kb. Then, we have b = ka for some $k \in K$. Hence, $a^{-1} = b^{-1}k$; thus we have $a^{-1}K = b^{-1}K$. Therefore, the function is well-defined. Moreover, by a similar argument, $a^{-1}K = b^{-1}K \implies Ka = Kb$; thus φ is injective. The surjectivity is evident.

Note:-

Theorem 2.1.6 implies that $[G:K] = |\{aK \mid a \in G\}|$.

Lemma 2.1.7

Let $K \leq G$. For each $a \in G$, the function

$$f: K \longrightarrow Ka$$
 $k \longmapsto ka$

is a bijection.

Proof. f is evidently surjective. If ka = f(k) = f(k') = k'a, then we have k = k'.

Theorem 2.1.8 Lagrange Theorem

Let K be a finite group and $K \leq G$. Then, [G:K] = |G|/|K|. (In particular, $|K| \mid |G|$.)

Proof. Let n = [G:K] and write $G/K = \{Ka_1, Ka_2, \dots, Ka_n\}$. By Lemma 2.1.7, $|Ka_i| = |K|$ for all $i \in [n]$. Therefore, $|G| = \sum_{i=1}^{n} |Ka_i| = n|K| = [G:K]|K|$. □

Example 2.1.9

 $A_n(12) = \{ \text{ all odd permutations} \}$. Therefore, $[S_n:A_n] = 2$; thus by Lagrange Theorem, $|A_n| = n!/2$.

Note:-

The converse of Lagrange Theorem (if $d \mid |G|$, there exists a subgroup of order d) does not hold.

 $|A_4|=12$. Suppose $K \le A_4$ with |K|=6. Then, there are two right cosets K and Ka where $a \in A_4 \setminus K$. (Note that $Ka = A_4 \setminus K$.) Take any $b \in A_4 \setminus K$. If $b^2 \in Ka = Kb$, then $b^2 = kb$ for some $k \in K$, which implies $b = k \in K$. Thus, $b^2 \in K$. Therefore, $\forall g \in G, g^2 \in K$. Hence, for all $g \in G$ with |g|=3, then $g=g^4=(g^2)^2 \in K$ while there are 8 elements in A_4 whose order is 3, which contradicts |K|=6.

Corollary 2.1.10

Let *G* be a finite group.

- (i) If $a \in G$, then |a| | |G|.
- (ii) If $a^{|G|} = 1$.

Proof. Direct from Lagrange Theorem.

Corollary 2.1.11

Let p be a prime number. Then, every group of order p is cyclic.

Proof. Fix any $a \in G \setminus \{1\}$. Then, $1 < |a| \mid p$; thus |a| = p; thus $G = \langle a \rangle$.

Corollary 2.1.12

Let *G* be a finite group and let $K \le H \le G$. Then, [G:K] = [G:H][H:K].

Proof. [G:K]|K| = |G| = [G:H]|H| = [H:K][G:H]|K|.

2.2 Normal Subgroups

Lemma 2.2.1

Let *G* be a group and let $N \leq G$. Then,

 $\forall a, a', b, b' \in G, (Na = Na' \land Nb = Nb' \Longrightarrow Nab = Na'b')$

 $\iff \forall g \in G, gNg^{-1} \subseteq N.$

Proof.

- (⇒) Take any $g \in G$ and $n \in N$. Since $N1 = Nn^{-1}$, we have $Ng = Ngn^{-1}$. Hence, there exists $n' \in N$ such that $ng = n'gn^{-1}$. Therefore, $gng^{-1} = g(gn^{-1})^{-1} = n^{-1}n' \in N$.
- (⇐) Take any $a, a', b, b' \in G$ and assume Na = Na' and Nb = Nb'. Then, $n' \triangleq a'a^{-1} \in N$ and $b'b^{-1} \in N$. Hence, a' = n'a; thus $(a'b')(ab)^{-1} = n'(a(b'b^{-1})a^{-1}) \in N$ (by $b'b^{-1} \in N$ and the assumption). Therefore, Nab = Na'b'.

Definition 2.2.2: Normal Subgroup

Let *G* be a group and let $N \le G$. *N* is a *subgroup* if $\forall g \in G$, $gNg^{-1} \in N$. If *N* is a normal subgroup of *G*, we write $N \le G$.

Example 2.2.3

- (i) If *G* is abelian, then every subgroup is normal.
- (ii) If $f: G \to H$ is a group homomorphism, then $\ker(f) \subseteq G$.

Lemma 2.2.4

Let *G* be a group and $N \leq G$. Then, $aNa^{-1} \leq G$ and $aNa^{-1} \cong N$.

Proof. For each ana^{-1} , $an'a^{-1} \in aNa^{-1}$, we have $(ana^{-1})(an'a^{-1})^{-1} = (ana^{-1})(a(n')^{-1}a^{-1}) = a(n(n')^{-1})a^{-1} \in aNa^{-1}$. Therefore, $aNa^{-1} \leq G$.

Moreover, $f: N \to aNa^{-1}$ defined by $n \mapsto ana^{-1}$ is a bijective group homomorphism; thus $aNa^{-1} \cong N$.

Theorem 2.2.5

Let *G* be a group and $N \leq G$. TFAE.

- (i) $N \leq G$
- (ii) $\forall a \in G$, $aNa^{-1} = N$
- (iii) $\forall a \in G, Na = aN$

Proof.

- (i) \Rightarrow (ii) For each $n \in N$ and $a \in G$, we have $a^{-1}na = a^{-1}n(a^{-1})^{-1} \in N$; thus $n = a(a^{-1}na)a^{-1} \in aNa^{-1}$. Therefore, $N \subseteq aNa^{-1}$.
- (ii) \Rightarrow (iii) Take any $n \in N$ and $a \in G$. Then, $ana^{-1} = n'$ for some $n' \in N$. Hence, $an = n'a \in Na$; thus $aN \subseteq Na$. Similarly, we may show $Na \subseteq aN$.
- (iii)⇒(i) Take any $n \in N$ and $a \in G$. Then, an = n'a for some $n' \in N$. Thus, $ana^{-1} = n' \in N$; thus $aNa^{-1} \subseteq N$.

Lemma 2.2.6

Let *G* be a group and $N \le G$. If [G:N] = 2, then $N \le G$.

Proof. $\{N, Na\}$ and $\{N, aN\}$ are partitions of G; thus Na = aN. The result follows from Theorem 2.2.5.

Example 2.2.7

- (i) If $N \leq Z(G)$, then $N \subseteq G$. (In particular, $Z(G) \subseteq G$).
- (ii) By (i) and Lemma 2.2.6, $A_n \subseteq S_n$.
- (iii) $\{r_0, s\} \leq \{r_0, s, r_2, sr_2\} \leq D_4$ but $\{r_0, s\} \not \leq D_4$.

Definition 2.2.8: Normalizer

Let G be a group and let $\emptyset \subseteq A \subseteq G$. Then, the normalizer of A is the set

$$N(A) = N_G(A) \triangleq \{ g \in G \mid gAg^{-1} = A \}.$$

Theorem 2.2.9

Let *G* be a group and let $\emptyset \subseteq A \subseteq G$. Then, $C(A) \leq N(A) \leq G$.

Proof. As $C(A) \subseteq N(A)$, it is enough to show $N(A) \le G$. Note that $1 \in A$ by definition. Take any $x, y \in N(A)$. Then, $(xy^{-1})A(xy^{-1})^{-1} = xy^{-1}Ayx^{-1} = xy^{-1}(yAy^{-1})yx^{-1} = xAx^{-1} = A$. Therefore, $xy^{-1} \in N(A)$; thus $N(A) \le G$ by Theorem 1.3.2. □

Theorem 2.2.10

Let *G* be a group and let $H \leq G$.

- (i) $H \leq N(H)$
- (ii) If $H \subseteq K \subseteq G$, then $K \subseteq N(H)$.

Proof. (i) is trivial since $H \subseteq N(H)$. Take any $k \in K$. From $kHk^{-1} = H$, we have $k \in N(H)$; $K \subseteq N(H)$.

Note:-

Theorem 2.2.10 essentially says that N(H) is the largest subgroup of G of which H is a normal subgroup.

Example 2.2.11

- (i) If *G* is abelian, then N(H) = G for all $H \le G$.
- (ii) $K = \{r_0, s\} \le D_4$ but $K \not \supseteq D_4$. $N(K) = \{r_0, r_2, s, r_2\}$.

Definition 2.2.12: Characteristic Subgroup

Let *G* be a group and let $H \leq G$. *H* is called a *characteristic subgroup of G* if $\forall \sigma \in \text{Aut}(G)$, $\sigma(H) = H$. If *H* is a characteristic characteristic subgroup of *G*, we write *H* char *G*.

Theorem 2.2.13

Let *G* be a group and let $H \leq G$.

- (i) If H char G, then $H \subseteq G$.
- (ii) If *H* is a unique subgroup of *G* of a given order, then *H* char *G*.
- (iii) If K char $H \subseteq G$, then $K \subseteq G$.

Proof.

- (i) For all $g \in G$, we have $gHg^{-1} = i_g(H) = H$.
- (ii) For any automorphism $\sigma \in \operatorname{Aut}(G)$, we have $|\sigma(H)| = |H|$ but the condition asserts that $H = \sigma(H)$.
- (iii) Take any $g \in G$. Note that $i_g|_H \in \operatorname{Aut}(H)$. Then, $gKg^{-1} = i_g|_H(K) = K$; thus $K \subseteq G$. \square

2.3 Quotient Groups and Group Homomorphisms

Definition 2.3.1: Quotient Group

Let *G* be a group and $N \le G$. Then, by Lemma 2.2.1, G/N equipped with operation $(Na, Nb) \mapsto (Nab)$ is a group.

 $\pi: G \to G/N$ defined by $a \mapsto Na$ is a surjective group homomorphism. We call π the *natural projection*.

Note:-

If G is abelian/cyclic/finite, then G/N is also abelian/cyclic/finite.

Theorem 2.3.2

Let G be a group. If G/Z(G) is a cyclic group, then G is an abelian group.

Proof. Let $C \triangleq Z(G)$. There exists $d \in G$ such that $G/C = \langle Cd \rangle$. Take any $a, b \in G$. Then, $Ca = Cd^i$ and $Cb = Cd^j$ for some $i, j \in \mathbb{Z}$. Hence, $a = c_1d^i$ and $b = c_2d^j$ for some $c_1, c_2 \in C$. Then, we have

$$ab = c_1(d^ic_2)d^j = (c_1c_2)(d^id^j) = c_2(c_1d^j)d^i = c_2d^jc_1d^i = ba.$$

Hence, the result follows.

Theorem 2.3.3

Let $f: G \to H$ be a group homomorphism. Then, $\ker(f) = \{1\}$ if and only if f is injective.

Proof.

- (⇒) Take any $a, b \in G$ with f(a) = f(b). Then, we have $1 = f(a)f(b)^{-1} = f(ab^{-1})$; thus $ab^{-1} \in \ker(f)$. Therefore, we have $ab^{-1} = 1$, which implies a = b.
- (⇐) Trivial.

Theorem 2.3.4 First Isomorphism Theorem

If $f: G \to H$ is a group homomorphism, then $G/\ker(f) \cong \operatorname{im}(H)$.

Proof. WLOG, f is surjective. Put $K \triangleq \ker(f)$. Define $\varphi : G/K \to H$ by $Ka \mapsto f(a)$. It is well-defined since, if Ka = Kb, then we have a = kb for some $k \in \ker(f)$ and thus f(a) = f(k)f(b) = f(b). Moreover, it is evidently surjetive.

It is clear that φ is a group homomorphism. Take any $Ka, Kb \in G/K$ and assume f(a) = f(b). Then, $1 = f(ab^{-1})$; thus $ab^{-1} \in K$. Therefore, Ka = Kb; φ is injective. \square

Corollary 2.3.5

Let $N \le G$ be a subgroup of a finite group G. If [G:N] is the smallest prime divisor of |G|, then $N \le G$.

Proof. Let L be the set of left cosets of N in G and let $p \triangleq [G:N] = |L|$. (See Theorem 2.1.6.) Note that $G \cap L$ by $(g,aN) \mapsto (ga)N$. Then, by Lemma 1.2.6, the map $\varphi: G \to S(L)$ defined by $g \mapsto \varphi_g$ is a group homomorphism. Let $K \triangleq \ker(\varphi)$. By First Isomorphism Theorem and Lagrange Theorem, we have $|G/K| \mid p!$.

On the other hand, for each $k \in K$, since $\varphi(k) = \operatorname{id}_L$, $kN = \varphi(k)(N) = N$; thus $k \in N$. Hence, we have $K \leq N$. By Corollary 2.1.12, $p[N:K] = [N:K][G:N] = [G:K] \mid p!$. Now, we have $[N:K] \mid (p-1)!$. As p is the smallest prime divisor of |G|, and as [N:K] divides |G|, we have [N:K] = 1; that is to say $N = K = \ker(\varphi) \leq G$.

Theorem 2.3.6

If $H, K \leq G$ and G is a finite group, then

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

Proof. Note that, for each $h_1, h_1 \in H$,

$$h_1K=h_2K\iff h_2^{-1}h_1\in K\iff h_2^{-1}h_1\in H\cap K\iff h_1(H\cap K)=h_2(H\cap K).$$

Therefore,

$$|\{hK \mid h \in H\}| = |\{h(H \cap K) \mid h \in H\}| = [H:H \cap K] = |H|/|H \cap K|$$

by Lagrange Theorem and Theorem 2.1.6. Therefore, $|HK| = |\{hK \mid h \in H\}||K| = |H||K|/|H \cap K|$.

Theorem 2.3.7

Let $H, K \leq G$. Then, $HK \leq G$ if and only if HK = KH.

Proof.

- (⇒) Take any $kh \in KH$. Since $H, K \leq HK$, we have $kh \in HK$; thus $KH \subseteq HK$. Now, take any $x \in HK$. Then, since $x^{-1} \in HK$, $x^{-1} = hk$ for some $h \in H$ and $k \in K$. Therefore, $x = (x^{-1})^{-1} = k^{-1}h^{-1} \in KH$; thus $HK \subseteq KH$.
- (⇐) HK is evidently nonempty. Take any $h_1k_1, h_2k_2 \in HK$. Since $k_1k_2^{-1}h_2^{-1} \in KH = HK$, we have $k_1k_2^{-1}h_2^{-1} = h_3k_3$ for some $h_3 \in H$ and $k_3 \in K$. Therefore, $(h_1k_1)(h_2k_2)^{-1} = h_1(k_1k_2^{-1}h_2^{-1}) = h_1h_3k_3 \in HK$. Thus, $HK \leq G$ by Theorem 1.3.2.

Corollary 2.3.8

Let $H, K \leq G$. Then, $H \leq N(K)$ implies $HK \leq G$. In particular, if $H \leq G$ and $K \leq G$, then $HK \leq G$.

Proof. Take any $hk \in HK$. Since $hkh^{-1} \in K$, we have $hk = (hkh^{-1})h \in KH$; thus $HK \subseteq KH$. On the other hand, for each $kh \in KH$, we have $kh = h(h^{-1}kh) \in HK$ by the same reason. Hence, HK = KH. The result follows from Theorem 2.3.7.

Theorem 2.3.9 Second Isomorphism Theorem

Let $N \subseteq G$ and $K \subseteq G$. Then, $NK \subseteq G$, $N \subseteq NK$, $N \cap K \subseteq K$, and $K/(N \cap K) \cong NK/N$.

Proof. By Corollary 2.3.8 and Theorem 2.3.7, we have $KN = NK \le G$. Moreover, $N \le G$ and $N \le NK$ straightforwardly implies $N \le NK$. Consider a group homomorphism $f: K \to NK/N$ defined by $k \mapsto Nk$. As Nnk = Nk for each $n \in N$ and $k \in K$, f is surjective. Now,

$$\ker(f) = \{k \in K \mid Nk = N\} = \{k \in K \mid k \in N\} = K \cap N.$$

Therefore, $K \cap N \subseteq K$. First Isomorphism Theorem implies $K/(K \cap N) \cong NK/N$.

Theorem 2.3.10 Third Isomorphism Theorem

Let $N, K \leq G$ and $N \leq K$. Then, $K/N \leq G/N$ and $(G/N)/(K/N) \cong G/K$.

Proof. Define

$$f: G/N \longrightarrow G/K$$

 $Na \longmapsto Ka$.

To show well-definedness, take any $a, b \in G$ and assume $ab^{-1} \in N$. Then, since $N \subseteq K$, we also have $ab^{-1} \in K$, i.e., Ka = Kb. Now, clearly f is a surjective group homomorphism.

$$\ker(f) \triangleq \{Na \in G/N \mid Ka = K\} = \{Na \in G/N \mid a \in K\} = K/N.$$

Therefore, $(G/N)/(K/N) \cong G/K$ by First Isomorphism Theorem.

Theorem 2.3.11 Fourth Isomorphism Theorem

Let $N \leq G$ and let $\pi: G \twoheadrightarrow G/N$ be the natural projection. Then, there is a natural one-to-one correspondence between

{ subgroups of G containing N } $\stackrel{1:1}{\longleftrightarrow}$ { subgroups of G/N }

with $K \mapsto K/N$. Furthermore, for each $K \le G$ such that $N \le K$, we have $K \le G \iff K/N \le G/N$.

Proof. Let $\phi(K) = K/N$ for each subgroup $K \leq G$ containing N.

- Assume $N \le K, K' \le G$ with $K \ne K'$. WLOG, fix $k \in K \setminus K'$. If Nk = Nk' for some $k' \in K'$, then we have $k \in Nk' \subseteq K'$. Therefore, $\forall k' \in K, Nk \ne Nk'$; we get $Nk \in K/N$ while $Nk \notin K'/N$. Thus, $K/N \ne K'/N$. ϕ is injective.
- Take any $\overline{K} \le G/N$ and let $K = \pi^{-1}(\overline{K}) = \{g \in G \mid Ng \in \overline{K}\}$. Then, we immediately have $N \le K \le G$ and $\phi(K) = K/N = \overline{K}$.

Therefore, ϕ is bijective.

We are now left with the last assertion.

- (⇒) Third Isomorphism Theorem
- (⇐) Assume $K/N ext{ } ext$

Definition 2.3.12: Commutator

Let G be a group and let $x, y \in G$. Then, the *commutator* of x and y is

$$[x, y] \triangleq x^{-1}y^{-1}xy$$
.

Moreover, for $A, B \leq G$, the *commutator* of A and B is

$$[A,B] \triangleq \langle [a,b] \mid a \in A \land b \in B \rangle.$$

The *commutator subgroup of G* is [G, G].

🛉 Note:- 🛉

- Let $x, y \in G$. From the fact that xy = yx[x, y], we have $[x, y] = 1 \iff xy = yx$.
- *G* is abelian if and only if $[G, G] = \{1\}$.
- We do not have $\{[a,b] \mid a \in A \land b \in B\} \le G$ in general. However, the smallest counterexample requires |G| = 96; so we do not consider it.

Example 2.3.13

• In D_n , $[r_1^i, r_1^j] = r_0$, $[sr_1^i, r_1^j] = r_1^{2j}$, $[r_1^i, sr_1^j] = r_1^{-2i}$, and $[sr_1^i, sr_1^j] = r_1^{-2i+2j}$. In particular, $[D_4, D_4] = \{r_0, r_1^2\}$.

Theorem 2.3.14

Let *G* be a group and let $H \leq G$.

- (i) $H \subseteq G \iff [H,G] \subseteq H$.
- (ii) $\forall \sigma \in \text{Aut}(G), \forall x, y \in G, \sigma([x, y]) = [\sigma(x), \sigma(y)].$
- (iii) [G, G] char G, and G/[G, G] is abelian.
- (iv) $H \subseteq G$ and G/H is abelian if and only if $[G, G] \subseteq H$.

Proof.

- (i) Take any $g \in G$ and $h \in H$. Then, $[h, g] = h^{-1}(g^{-1}hg) \in H \iff g^{-1}hg \in H$.
- (ii) Take any $\sigma \in \text{Aut}(G)$ and $x, y \in G$. Then, $\sigma([x, y]) = \sigma(x^{-1}y^{-1}xy) = \sigma(x)^{-1}\sigma(y)^{-1}\sigma(x)\sigma(y) = [\sigma(x), \sigma(y)].$

- (iii) Take any $\sigma \in \text{Aut}(G)$. Then, we have $\sigma([G,G]) \leq [G,G]$ and $\sigma^{-1}([G,G]) \leq [G,G]$ by (ii). Hence, $\sigma([G,G]=G)$.
 - Now, take any $x, y \in G$. Then, $[G, G]xy = [G, G][y^{-1}, x^{-1}]xy = [G, G]yx$. Hence, G/[G, G] is abelian.
- (iv) (\Rightarrow) Take any $x, y \in G$. Then, $H = (Hx)^{-1}(Hy)^{-1}(Hx)(Hy) = H(x^{-1}y^{-1}xy) = H[x, y]$. Therefore, $[x, y] \in H$. This shows $[G, G] \leq H$.
 - (⇐) By (iii) and Theorem 2.2.13 (i), we have $[G,G] \unlhd G$; and thus $[G,G] \unlhd H$. Moreover, since G/[G,G] is abelian, every subgroup of G/[G,G] is normal. In particular, $H/[G,G] \unlhd G/[G,G]$. Hence, by Fourth Isomorphism Theorem, $H \unlhd G$. By Third Isomorphism Theorem, $G/H \cong (G/[G,G])/(H/[G,G])$ is abelian.

From Theorem 2.3.14 (iii) and Theorem 2.3.14 (iv), we get the fact that G/[G,G] is the *largest* abelian quotient of G.

2.4 Simple Groups and Jordan-Hölder Theorem

Definition 2.4.1: Simple Group

A nontrivial group *G* is *simple* if *G* has only two normal subgroups.

Example 2.4.2

Let G be a group and let M be a proper normal subgroup of G. Then, M is a maximal normal subgroup if and only if G/M is simple.

- (⇒) Let $N \subseteq G/M$. Let $H \triangleq \{h \in G \mid Mh \in N\}$ so that $M \subseteq H \subseteq G$. By maximality of M, we have H = M or H = G, that is to say $N = \{M\}$ or N = G/M.
- (⇐) Let $M ext{ deg } N ext{ deg } G$. Then, by Third Isomorphism Theorem, $N/M ext{ deg } G/M$; thus $N/M = \{M\}$ or N/M = G/M as G/M is simple. Therefore, N = M or N = G.

Definition 2.4.3: Composition Series

Let *G* be a group. A sequence of subgroups

$$\{1\} = N_0 \leq N_1 \leq \cdots \leq N_k = G$$

of *G* is called a *composition series of G* if N_i/N_{i-1} is simple for each $i \in [k]$. Each N_{i+1}/N_i is called a *composition factor of G*.

Example 2.4.4

- (i) $\{r_0\} \leq \langle s \rangle \leq \langle s, r_1^2 \rangle \leq D_4$ and $\{r_0\} \leq \langle r_1^2 \rangle \leq \langle s, r_1^2 \rangle \leq D_4$ are two composition series of D_4 .
- (ii) $\mathbb Z$ has no composition series because every proper subgroup of $\mathbb Z$ is an infinite cyclic group.

Theorem 2.4.5 Jordan-Hölder Theorem

Let *G* be a nontrivial finite group.

- (i) *G* has a composition series.
- (ii) If (N_0, \dots, N_r) and (M_0, \dots, M_s) are composition series of G, then r = s and $\exists \sigma \in S_r$ such that $\forall i \in [r]$, $M_{\sigma(i)}/M_{\sigma(i)-1} \cong N_i/N_{i-1}$.

Proof.

- (i) We prove (i) by induction on |G|. It is trivial when |G| = 2. Let G be a finite group with $|G| \ge 3$. If G is simple, we are done; assume G is not simple. Then, G has a proper normal subgroup N which is maximal so that G/N is simple. By induction hypothesis, N admits a composition series.
- (ii) WLOG, $s \ge r$. We proceed with induction on r. Since r = 1 implies G is simple and s = 1, we are done; hence assume $r \ge 2$. If $N_{r-1} = M_{s-1}$, then we are done by induction hypothesis.

Now, assume $N_{r-1}=M_{s-1}$. Then, $N_{r-1},M_{s-1} \leq N_{r-1}M_{s-1} \leq G$ by Corollary 2.3.8. Moreover, since $g(nm)g^{-1}=(gng^{-1})(gmg^{-1})\in N_{r-1}M_{s-1}$ for all $g\in G$, $n\in N_{r-1}$, and $m\in M_{s-1}$, we have $N_{r-1}M_{s-1}\leq G$. Hence, as N_{r-1} and M_{s-1} are maximal proper normal subgroups of G, and as $N_{r-1}\neq M_{s-1}$, we have $N_{r-1}M_{s-1}=G$. Define $H\triangleq H_{r-1}\cap M_{s-1}$ so that $H\leq N_{r-1},M_{s-1}$. Then, by Second Isomorphism Theorem, $G/N_{r-1}=N_{r-1}M_{s-1}/N_{r-1}\cong M_{s-1}/H$ and $G/M_{s-1}=N_{r-1}M_{s-1}/M_{s-1}\cong N_{r-1}/H$, and they are simple groups.

Let $\{1\} = H_0 \unlhd H_1 \unlhd \cdots \unlhd H_h = H$ be a composition series of H. Then,

$$\{1\} = H_0 \le H_1 \le \cdots \le H_h = H \le N_{r-1}$$
$$\{1\} = H_0 \le H_1 \le \cdots \le H_h = H \le M_{s-1}$$

are composition series of N_{r-1} and M_{s-1} , respectively. Therefore, by induction hypothesis, r-1=h+1=s-1; thus r=s. By induction hypothesis again,

$$H_1/H_0, H_2/H_1, \cdots, H_h/H_{h-1}, N_{r-1}/H_h \cong G/M_{s-1}$$

and $N_1/N_0, N_2/N_1, \cdots, N_{r-2}/N_{r-1}, N_{r-1}/N_{r-2}$

are the same up to permutation, and

$$H_1/H_0, H_2/H_1, \cdots, H_h/H_{h-1}, M_{s-1}/H_h \cong G/N_{r-1}$$

and $M_1/M_0, M_2/M_1, \cdots, M_{s-2}/M_{s-1}, M_{s-1}/M_{s-2}$

are the same up to isomorphism. Hence, the result follows.

Theorem 2.4.6

Let *G* be an abelian group. Then, *G* is simple if and only if $G \cong \mathbb{Z}_p$ for some prime number *p*.

Proof.

- (⇒) Take any $a \in G \setminus \{1\}$. Then, $\langle a \rangle \subseteq G$ since G is abelian. As G is simple, we have $\langle a \rangle = G$. Therefore, by Corollary 1.5.7, $\langle a \rangle \cong Z_p$ for some prime p.
- (\Leftarrow) Trivial.

Theorem 2.4.7

 A_n is simple for $n \ge 5$.

Proof.

Claim 1. For $n \ge 3$, A_n is generated by 3-cycles.

Proof. There are three types of products of two transpositions.

- (a b)(c d) = (a d b)(a d c)
- (a b)(a c) = (a c b)
- (a b)(a b) = (1)

This is sufficient since every $\sigma \in A_n$ is a product of even number of transpositions.

Claim 2. Let $n \ge 3$ and $N \le A_n$ such that N contains a 3-cycle. Then, $N = A_n$.

Proof. WLOG, $(123) \in N$. Then, $(132) = (123)^2 \in N$. Take any $k \ge 4$. Then,

- $(12k) = (2k1) = \tau(132)\tau^{-1} \in N$ where $\tau = (12)(3k)$, and
- $(21k) = (1k2) = \tau'(123)(\tau')^{-1} \in N$ where $\tau' = (32k)$.

All other 3-cycles can be generated by:

- $(1 a b) = (1 2 b)(1 2 a)(1 2 a) \in N$,
- $(2ab) = (21b)(21a)(21a) \in N$, and
- $(abc) = (12a)(12a)(12c)(12b)(12b)(12a) \in N$.

Therefore, by Claim 1, $N = A_n$.

Take any $\{(1)\} \leq N \leq A_n$ and fix some $\sigma \in N \setminus \{(1)\}$. Consider the cycle decomposition of σ . There are three cases: (i) some cycle has length ≥ 4 , (ii) the maximum length of cycle is 3, and (iii) every cycle has length ≤ 2 .

(i) WLOG, $\sigma = (12 \cdots r)\tau$ where $r \ge 4$ where $\tau(i) = i$ for each $i \in [r]$. Let $\delta = (123) \in A_n$. Then, we have $(23145 \cdots r)\tau = \delta\sigma\delta^{-1} \in N$. Moreover, we have

$$\sigma^{-1}(23145\cdots r)\tau = (r\,r-1\cdots 1)(23145\cdots r)\tau^{-1}\tau = (13\,r)\in N;$$

thus $N = A_n$ by Claim 2.

- (ii) We have two subcases: (1) there are (at least) two 3-cycles and (2) there are only one 3-cycle.
 - (1) WLOG, $\sigma = (123)(456)\tau$ where τ fixes [6]. Let $\delta = (124) \in A_n$. Then, $(243)(156)\tau = \delta \sigma \delta^{-1} \in N$. Hence, we have

$$\sigma^{-1}(243)(156)\tau = (321)(654)(243)(156)\tau^{-1}\tau = (14263) \in N,$$

which reduces to case (i). Hence, we have $N = A_n$ in this case.

- (2) WLOG, $\sigma = (123)\tau$ where τ fixes [3] and τ is a product of disjoint transpositions so that $\tau^2 = 1$. Then, we have $\sigma^2 = (132) \in N$; thus $N = A_n$ by Claim 2.
- (iii) WLOG, $\sigma = (12)(34)\tau$ where τ fixes [4] and τ is a product of disjoint transpositions. Let $\delta = (123) \in A_n$. Then, $(23)(14)\tau = \delta \sigma \delta^{-1} \in N$. Therefore,

$$\beta \triangleq \sigma^{-1}(23)(14)\tau = (12)(34)(23)(14)\tau^{-1}\tau = (13)(24) \in N.$$

As $n \ge 5$ we may fix $5 \le k \le n$ and let $\alpha = (13k) \in A_n$. Then, $(3k)(24) = \alpha\beta\alpha^{-1} \in N$. Hence,

$$\beta(3k)(24) = (13)(24)(3k)(24) = (13k) \in N$$
,

which implies $N = A_n$ by Claim 2.

🛉 Note:- 🛉

- A_4 is not simple.
- We have two infinite series of simple groups: \mathbb{Z}_p 's (p is prime) and A_n 's $n \ge 5$.

Corollary 2.4.8

For $n \ge 5$, S_n has only three normal subgroups $\{1\}$, A_n , and S_n .

Proof. By Lemma 2.2.6, we have $A_n \subseteq S_n$.

Let $N \subseteq S_n$ be a nontrivial normal subgroup of S_n . Then, $N \cap A_n \subseteq A_n$. By Theorem 2.4.7, we have (i) $N \cap A_n = \{(1)\}$ or (ii) $N \cap A_n = A_n$.

- (i) If $N \cap A_n = \{1\}$, then $N \cong N/(N \cap A_n) \cong A_n N/A_n$ by Second Isomorphism Theorem. As $|A_n N| |n!$ and $|A_n| = n!/2$, we have $|N| = |A_n N| / |A_n| = 2$ as we assumed N is nontrivial. Then, $N = \{(1), \sigma\}$ where $\sigma^2 = (1)$. By Theorem 2.2.5, $\tau N = N\tau$ for all $\tau \in S_n$; that is to say $\sigma \tau = \tau \sigma \in S_n$ for all $\tau \in S_n$. This means $N \leq Z(S_n) = \{(1)\}$, which is a contradiction.
- (ii) Assume $N \cap A_n = A_n$, i.e., $A_n \le N$. However, by Lagrange Theorem, $n!/2 \mid |N| \mid n!$ so that $N = A_n$ or $N = S_n$.

Definition 2.4.9: Solvable Group

Let *G* be a group. We say *G* is *solvable* if there is a sequence

$$\{1\} = G_n \leq G_{n-1} \leq \cdots \leq G_0 = G$$

of subgroups of G such that G_{i-1}/G_i is abelian for each $i \in [n]$.

Example 2.4.10

- Every abelian group is solvable. $(G_0 = \{1\}, G_1 = G)$
- $\{1\} \subseteq A_3 \subseteq S_3$ and A_3 is abelian; thus S_3 is solvable.
- $\{1\} \subseteq \{(1), (12)(34), (13)(24), (14)(23)\} \subseteq A_4 \subseteq S_4$; S_4 is solvable.
- S_n is not solvable for $n \ge 5$.

Theorem 2.4.11

Let G be a group and $N \subseteq G$. Then, G is solvable if and only if N and G/N are solvable.

Proof.

(⇒) There exists a sequence $\{1\} = G_n \unlhd G_{n-1} \unlhd \cdots \unlhd G_0 = G$ such that G_{i-1}/G_i is abelian for each $i \in [n]$. Then, we have $N \cap G_i \unlhd G_{i-1}$ and thus $N \cap G_i \unlhd N \cap G_{i-1}$ for each $i \in [n]$. Moreover,

$$(N\cap G_{i-1})/(N\cap G_i)\leq G_{i-1}/(N\cap G_i).$$

By Third Isomorphism Theorem, $G_i/(N \cap G_i) \leq G_{i-1}/(N \cap G_i)$ and $(G_{i-1}/(N \cap G_i))/(G_i/(N \cap G_i)) \cong G_{i-1}/G_i$.

Considering the existence of natural projection

$$G_{i-1}/(N \cap G_i) \rightarrow (G_{i-1}/(N \cap G_i))/(G_i/(N \cap G_i)) \cong G_{i-1}/G_i$$

there is a group homomorphism

$$\varphi: (N \cap G_{i-1})/(N \cap G_i) \longrightarrow G_{i-1}/G_i$$

whose kernel $\ker(\varphi) = (N \cap G_{i-1})/(N \cap G_i) \cap G_i/(N \cap G_i) = (N \cap G_i)/(N \cap G_i)$ is trivial. Therefore, φ is injective by Theorem 2.3.3. Hence, $(N \cap G_i)/(N \cap G_i)$ is isomorphic to a subgroup of G_{i-1}/G_i , which is abelian. Therefore, the sequence

$$\{1\} = N \cap G_n \le N \cap G_{n-1} \le \cdots \le N \cap G_0 = N$$

witnesses that N is solvable.

Let $\pi: G \to G/N$ be the natural projection. Then, $\pi(G_i) \le \pi(G_i)$ for all $i \in [n]$. The map $G_{i-1}/G_i \mapsto \pi(G_{i-1})/\pi(G_i)$ defined by $G_i g_{i-1} \mapsto \pi(G_i)\pi(g_{i-1})$ is a surjective group homomorphism; thus $\pi(G_{i-1})/\pi(G_i)$ is abelian. Hence, the sequence

$$\{1\} = \pi(G_n) \le \pi(G_{n-1}) \le \cdots \le \pi(G_0) = G/N$$

witnesses that G/N is solvable.

(**⇐**) Let

$$\{1\} = N_s \leq N_{s-1} \leq \cdots \leq N_0 = N$$

and

$$\{N\} = \overline{G}_r \le \overline{G}_{r-1} \le \cdots \le \overline{G}_0 = G/N$$

be sequences that witnesses the solvability of N and G/N. By Fourth Isomorphism Theorem, for each $j \in [r]$, there (uniquely) exists $G_j \leq G$ such that $N \leq G_j$ and $G_j/N = \overline{G}_j$. Then, for each $j \in [r]$, we have $G_j \leq G_{j-1}$ by Fourth Isomorphism Theorem. By Third Isomorphism Theorem, $G_{j-1}/G_j \cong (G_{j-1}/N)/(G_j/N) = \overline{G}_{j-1}/\overline{G}_j$ is abelian; thus

$$\{1\} = N_s \leq N_{s-1} \leq \cdots \leq N_0 = N = G_r \leq G_{r-1} \leq \cdots \leq G_0 = G$$

shows that *G* is solvable.

Chapter 3

Group Actions

3.1 Stabilizers and Orbits

Definition 3.1.1: Stabilizer

Let $G \cap A$. The stabilizer of $a \in A$ is the set

$$G_a \triangleq \{ g \in G \mid ga = a \}.$$

Definition 3.1.2: Kernel of Group Action

Let $G \cap A$. The kernel of $G \cap A$ is the set

$$K(G,A) \triangleq \{g \in G \mid \forall a \in A, ga = a\} = \bigcap_{a \in A} G_a.$$

Note:-

K(G,A) is the kernel of the permutation representation of the group action. Therefore, $K(G,A) \subseteq G$.

Theorem 3.1.3

Let $G \cap A$. Then, $\forall a \in G$, $G_a \leq G$.

Proof. $G_a \neq \emptyset$ since $1 \in G_a$. If $x, y \in G_a$, then $(xy^{-1})a = (xy^{-1})(ya) = xa = a$; thus $xy^{-1} \in G_a$. Hence, $G_a \leq G$ by Theorem 1.3.2.

Example 3.1.4

- (i) Let *G* be a group and let $S \triangleq \mathcal{P}(G)$. Define a group action of *G* on *S* by $(g,A) \mapsto gAg^{-1}$. Then, for each $A \in \mathcal{P}(G)$, $G_A = \{g \in G \mid gAg^{-1} = A\} = N(A)$.
- (ii) Let *G* be a group and let $A \subseteq G$. Define a group action of N(A) on *A* by $(g, a) \mapsto gag^{-1}$. Then, $K(N(A), A) = \{g \in N(A) \mid \forall a \in A, gag^{-1} = a\} = C(A)$.
- (iii) Let *G* be a group and define a group action of *G* on *G* by $(g, a) \mapsto gag^{-1}$. Then, $G_a = \{g \in G \mid gag^{-1} = a\} = C(a)$ for each $a \in G$ and $K(G, G) = \{g \in G \mid \forall a \in A, gag^{-1} = a\} = Z(G)$.

Definition 3.1.5: Faithful Group Action

If $G \cap A$, we say the group action is faithful if $K(G,A) = \{1\}$.

Let $\varphi: G \to S(A)$ be the permutation representation. Then, $G/K(G,A) \cong \operatorname{im}(\varphi) \leq S(A)$ so we may consider injective group homomorphism $G/K(G,A) \hookrightarrow S(A)$ so that $G/K(G,A) \curvearrowright A$ is faithful.

Lemma 3.1.6

Define $a \sim b \iff \exists g \in G, \ a = g \cdot b$. Then, \sim is an equivalence relation.

Definition 3.1.7: Orbit

Let $G \cap A$. The *orbit of a* \in *A* is the set

$$Ga \triangleq \{ g \cdot a \mid g \in G \}.$$

Note:-

By Lemma 3.1.6, the collection of orbits forms a partition of A. Moreover, $G \cap Ga$ for each $a \in A$.

Theorem 3.1.8 Orbit-Stabilizer Theorem

Let $G \cap A$ and $a \in A$. Then, the function

$$f: Ga \longrightarrow \{ \text{ left cosets of } G_a \text{ in } G \}$$

 $ga \longmapsto gG_a$

is well-defined and is a bijection. In particular, if Ga is finite, then $|Ga| = [G:G_a]$.

Proof. For each $g, g' \in G$, we have

$$ga = g'a \iff a = g^{-1}g'a \iff g^{-1}g' \in G_a \iff gG_a = g'G_a$$

Therefore, f is well-defined and is injective. The surjectivity of f is evident.

Definition 3.1.9: Transitive Group Action

Let $G \cap A$. The group action is transitive if $\forall a \in A, A = Ga$.

Note:-

By Orbit-Stabilizer Theorem and Lagrange Theorem, if G and A are finite, and if the group action is transitive, then |A| | |G|.

Definition 3.1.10

Let $G \cap A$. Then, for each $g \in G$, we define

$$A_g \triangleq \{ a \in A \mid g \cdot a = a \}.$$

Example 3.1.11

(i) Let $S_n \cap [n]$. Then, $(S_n)_i \cong S_{n-1}$ for each $i \in [n]$. Moreover, $K(S_n, [n]) = \bigcap_{i \in [n]} (S_n)_i = \{(1)\}$. By Orbit-Stabilizer Theorem, $|S_n \cdot i| = |S_n|/|(S_n)_i| = n$; thus $S_n \cdot i = [n]$.

Theorem 3.1.12 Burnside's Lemma

Let $G \cap A$ and let |G| and |A| be finite. Then,

(# of orbits of
$$G$$
) = $\frac{1}{|G|} \sum_{a \in A} |G_a| = \frac{1}{|G|} \sum_{g \in G} |A_g|$.

Proof. Let $S \triangleq \{(g,a) \in G \times A \mid g \cdot a = a\}$. Then, by double counting, $|S| = \sum_{a \in A} |G_a| = \sum_{g \in G} |A_g|$. By Orbit-Stabilizer Theorem,

$$\sum_{a \in A} |G_a| = \sum_{a \in A} \frac{|G|}{|Ga|} = |G| \sum_{a \in A} \frac{1}{|Ga|}.$$

Since $\sum_{a' \in Ga} |Ga|^{-1} = 1$, we have $\sum_{a \in A} \frac{1}{|Ga|} = (\# \text{ of orbits of } G)$. Therefore, we have

(# of orbits of
$$G$$
) = $\frac{1}{|G|} \sum_{a \in A} |G_a| = \frac{1}{|G|} \sum_{g \in G} |A_g|$.

3.2 Group Actions by Conjugation

Definition 3.2.1: Conjugate

Let *G* be a group. We say $a, b \in G$ are *conjugate* if

$$\exists g \in G, \ b = gag^{-1}.$$

In other words, if *G* acts on *G* by conjugation $g \cdot a = gag^{-1}$, $a, b \in G$ are conjugate if they are in the same orbit. The orbit of *a* in this case is called *conjugacy class* of *a*.

Note:-

Under conjugation, the stabilizer of a is the centralizer of a.

Example 3.2.2

- (i) The conjugacy class of a is $\{1\}$ if and only if $a \in Z(G)$.
- (ii) Let $\sigma \in S_n$ has the *cycle type* (n_1, n_2, \dots, n_r) . Then, as σ and its conjugation have the same cycle type, the conjugacy class of σ is the collection of permutations with the same cycle type of σ .

Corollary 3.2.3

Let $G \cap A$ and let $a \in A$. If $[G:C_G(a)]$ is finite, then

|conjugacy class of a| = [$G:C_G(a)$].

Proof. Direct consequence of Orbit-Stabilizer Theorem.

Example 3.2.4

Let $1 \le m \le n$. Let $\sigma = (12 \cdots m)$ be an m-cycle in S_n . Then, there are $n(n-1)\cdots(n-m+1)/m$ number of m-cycles in S_n . Therefore, $|C_{S_n}(\sigma)| = |G|/[n(n-1)\cdots(n-m+1)/m] = m \cdot (n-m)!$. One may note that $C_{S_n}(\sigma) = \{\sigma^i \tau \mid 0 \le i \le m-1 \text{ and } \tau \in S_{n-m}\}$.

Theorem 3.2.5 Class Equation

Let *G* be a finite group. If C_1, C_2, \dots, C_r are all the distinct conjugacy classes of *G* such that $\forall i \in [r], C_i \nsubseteq Z(G)$, and if $a_i \in C_i$ for each $i \in [r]$, then

$$|G| = |Z(G)| + \sum_{i=1}^{r} [G:C_G(a_i)].$$

Proof. Z(G) is the union of all singleton conjugacy classes by Example 3.2.2 (i). The result follows from Corollary 3.2.3 and the fact that conjugacy classes partition G.

Example 3.2.6

- $|S_3| = 1 + 2 + 3$
- $|Q_8| = 2 + 2 + 2 + 2$
- $|D_4| = 2 + 2 + 2 + 2$

Corollary 3.2.7

Let *G* be a group of order p^n where p is a prime number and $n \ge 1$. Then, $|Z(G)| = p^k$ for some $k \ge 1$.

Proof. In Class Equation, each $[G:C_G(a_i)]$ is a multiple of p. Therefore, we must have $p \mid |Z(G)|$ while $Z(G) \neq \emptyset$.

Corollary 3.2.8

Let G be a group of order p^2 where p is a prime number, then $G \cong \mathbb{Z}_{p^2}$ or $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Proof. By Corollary 3.2.7, we have $|Z(G)| = p^2$ or |Z(G)| = p.

If $|Z(G)| = p^2$, then If G has an element of order p^2 , then $G \cong \mathbb{Z}_{p^2}$. If every nonidentity element of G has order p, then $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Then, $f : \mathbb{Z}_p \times \mathbb{Z}_p \to G$ defined by $(i, j) \mapsto x^i y^j$ where $x \in G \setminus \{1\}$ and $y \in G \setminus \langle x \rangle$ is a group isomorphism.

Now, assume |Z(G)| = p. Then, $G/Z(G) \cong \mathbb{Z}_p$. By Theorem 2.3.2, we get Z(G) = G, which is a contradiction.

Theorem 3.2.9

Let *G* be a group and let $N \subseteq G$. Let *K* be a conjugacy class of *G*. Then, we have $K \subseteq N$ or $K \cap N = \emptyset$. In particular, *N* is union of some conjugacy classes of *G*.

Proof. Assume $K \cap N \neq \emptyset$ and take any $x \in K \cap N$. Then, for any $g \in G$, $gxg^{-1} \in gNg^{-1} = N$; thus $K \subseteq N$. □

Example 3.2.10

There are four cycle types of A_5 ; (1),(123),(12345),(12)(34). Note that, even if

 σ and σ' have the same cycle type so that $\sigma' = \tau \sigma \tau^{-1}$ for some S_5 , σ and σ' may not be in the same conjugacy class since τ may not be an element of A_5 .

- $C_{S_5}((123)) = \langle (123), (45) \rangle$ and $C_{A_5}((123)) = \langle (123) \rangle \cong \mathbb{Z}_3$; thus the conjugacy class consists of 20 elements; which are all the 3-cycles in A_5 .
- $C_{S_5}((12345)) = \langle (12345) \rangle$ and $C_{A_5}((12345)) = \langle (12345) \rangle \cong \mathbb{Z}_5$; the conjugacy class of (12345) consists of 12 elements while A_5 has 24 5-cycles. The conjugacy class of (13524) consists of 12 elements.
- $|C_{S_5}((12)(34))| = 8$ and $|C_{A_5}((12)(34))| = 4$; the conjugacy class of (12)(34) consists of all 15 elements.

Therefore, the class equation of A_5 is $|A_5| = 1 + 12 + 12 + 15 + 20$; thus by Theorem 3.2.9, if there is a nontrivial normal subgroup then its order is sum of orders of some conjugacy classes but there is no way to make it divisible by $|A_5| = 60$. Therefore, A_5 is simple.

Definition 3.2.11: Conjugate Subsets

Let *G* be a group. We say $A, B \subseteq G$ are *conjugate* if $A = gBg^{-1}$ for some $g \in G$.

Corollary 3.2.12

Let $G \cap \mathcal{P}(G)$ by conjugation; Then, $[G:N_G(A)] = |G \cdot A| = |\text{orbit of } A|$.

Proof. $N_G(A) = \{g \in G \mid gAg^{-1} = A\} = G_A$ by definition. The result follows from Orbit-Stabilizer Theorem.

3.3 Automorphisms

Note:-

Let *G* be a group and let $N \subseteq G$. We may let $G \cap N$ by conjugation. Then, the permutation representation evaluated at $g \in G$ is defined by $\varphi_g : N \to N$ and $n \mapsto gng^{-1}$

Theorem 3.3.1

Let *G* be a group and let $N \subseteq G$. Let $G \cap N$ by conjugation. Then, for each $g \in G$, we have $\varphi_g \in \operatorname{Aut}(N)$. Moreover, $\ker(\varphi) = C_G(N)$. In particular, $G/C_G(N)$ is isomorphic to a subgroup of $\operatorname{Aut}(N)$.

Proof. For each $n_1, n_2 \in N$, we have $\varphi_g(n_1 n_2) = g n_1 n_2 g^{-1} = g n_1 g^{-1} g n_2 g^{-1} = \varphi_g(n_1) \varphi_g(n_2)$; thus φ_g is a group isomorphism as it is already $\varphi_g \in S(N)$. We have

$$\ker(\varphi) = \{ g \in G \mid \forall n \in \mathbb{N}, \ \varphi_g(n) = n \} = \{ g \in G \mid \forall n \in \mathbb{N}, \ ng = gn \} = C_G(N).$$

Moreover, by First Isomorphism Theorem, $G/C_G(N) \cong \operatorname{im}(\varphi) \leq \operatorname{Aut}(N)$.

Corollary 3.3.2

Let *G* be a group and let $H \leq G$. Then, $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut(*H*). In particular, G/Z(G) is isomorphic to a subgroup of Aut(*G*).

Proof. We have $H \leq N_G(H)$, $C_G(H) = C_{N_G(H)}(H)$, and $N_G(H) = N_{N_G(H)}(H)$ by definition. The result follows from Theorem 3.3.1. The last assertion is obtained by letting H := G.

Definition 3.3.3: Inner Automorphism Group

For each $c \in G$, mapping $i_c \colon G \to G$ defined by $g \mapsto cgc^{-1}$ is an automorphism and is called an *inner automorphism on G induced by c*. We define

$$\operatorname{Inn}(G) \triangleq \{i_c \in \operatorname{Aut}(G) \mid c \in G\}$$

and call it the inner automorphism group of G.

Lemma 3.3.4

Let *G* be a group. Then, $Inn(G) \subseteq Aut(G)$.

Proof. id_G = $i_1 \in \text{Inn}(G)$. For each $c \in G$, $(i_c)^{-1} = i_{c^{-1}}$ is already an automorphism on G. Take any $c, c' \in G$. Then, for all $g \in G$,

$$(i_c \circ i_{c'})(g) = i_c(c'g(c')^{-1}) = cc'g(c')^{-1}c^{-1} = (cc')g(cc')^{-1} = i_{cc'}(g).$$

Therfore, $i_c \circ i_{c'} = i_{cc'}$; Inn(*G*) is a subgroup of Aut(*G*).

Take any $c \in G$ and $\sigma \in Aut(G)$. Then, for each $g \in G$,

$$(\sigma \circ i_c \circ \sigma^{-1})(g) = \sigma(c\sigma^{-1}(g)c^{-1}) = \sigma(c)g\sigma(c^{-1}) = \sigma(c)g\sigma(c)^{-1} = i_{\sigma(c)}(g).$$

Therefore, $\sigma \circ i_c \circ \sigma^{-1} = i_{\sigma(c)} \in \text{Inn}(G)$. Hence, $\text{Inn}(G) \leq \text{Aut}(G)$.

Definition 3.3.5: Outer Automorphism Group

Let *G* be a group. Justified by Lemma 3.3.4, we

 $\operatorname{Aut}(G)/\operatorname{Inn}(G)$.

the outer automorphism group of G.

Corollary 3.3.6

Let *G* be a group. Then, $Inn(G) \cong G/Z(G)$.

Proof. Let $G \cap G$ by conjugation so that $\varphi : G \twoheadrightarrow Inn(G)$ is a permutation representation. Then, $\ker(\varphi) = Z(G)$; the result follows from First Isomorphism Theorem.

Example 3.3.7

- $\operatorname{Inn}(D_4) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$
- $\operatorname{Inn}(Q_8) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$
- $\operatorname{Inn}(S_n) \cong S_n \text{ for } n \geq 3.$

Definition 3.3.8

For each integer $n \ge 1$, define

$$(\mathbb{Z}/n\mathbb{Z})^* = \{ k \in \mathbb{Z}_n \mid \gcd(k, n) = 1 \}$$

so that $(\mathbb{Z}/n\mathbb{Z})^*$ is an abelian group under usual multiplication.

Theorem 3.3.9

For each $n \in \mathbb{Z}_+$, $\operatorname{Aut}(\mathbb{Z}_n) \cong (\mathbb{Z}/n\mathbb{Z})^*$.

Proof. Take any $k \in \mathbb{Z}_+$ such that gcd(k, n) = 1. Consider the map $f_k : \mathbb{Z}_n \to \mathbb{Z}_n$ by $\ell \mapsto k\ell$. Then, clearly, $f_k \in Aut(\mathbb{Z}_n)$.

Now, define $\Phi \colon (\mathbb{Z}/n\mathbb{Z}) * \to \operatorname{Aut}(\mathbb{Z}_n)$ by $k \mapsto f_k$. Then, it is easy to check Φ is an injective group homomorphism. Take any $f \in \operatorname{Aut}(\mathbb{Z}_n)$ and let $k \triangleq f(1)$. Then, $f = f_k$.

Note:-

- $\neg(G \text{ is abelian} \implies \operatorname{Aut}(G) \text{ is abelian}).$
- $\neg(G \text{ is cyclic} \Longrightarrow \operatorname{Aut}(G) \text{ is cyclic}).$

3.4 Sylow Theorems

Definition 3.4.1: Sylow *p*-Subgroup

Let *G* be a group of order $p^n m$ where *p* is a prime and gcd(p, m) = 1. A subgroup of *G* of order p^{α} where $1 \le \alpha \le n$ is called a *p-subgroup* of *G*. A subgroup of *G* of order p^n (or, equivalently, a maximal *p*-subgroup) is called a *Sylow p-subgroup* of *G*. Write

$$Syl_p(G) = \{ Sylow p-subgroups of G \}$$

to denote the set of all Sylow *p*-subgroups of *G*. Write

$$n_p = n_p(G) \triangleq |\operatorname{Syl}_p(G)|.$$

Lemma 3.4.2

Let *G* be a group. Then, if $P \in \operatorname{Syl}_p(G)$ and *Q* is a *p*-subgroup of *G*, then $Q \cap N(P) = Q \cap P$.

Proof. Let $H \triangleq Q \cap N(P)$. We already have $Q \cap P \leq H$. As $H \leq N(P)$ and $P \leq N(P)$, we have $HP = PH \leq N(P) \leq G$ by Corollary 2.3.8. As $|PH| = |P||H|/|P \cap H|$ is a power of P = PH, we have PH = PP; thus $P = PP \cap H$, i.e., $PP \cap H = PP \cap H$. □

Lemma 3.4.3

Let G be an abelian group and let p be a prime. Then, $p \mid |G|$ implies that G has an element of order p.

Proof. Write |G| = pk. We shall conduct induction on k. If k = 1, then G is cyclic by Corollary 2.1.11; thus it is done.

Now, fix $k \ge 2$ and take $x \in G \setminus \{1\}$. We have two cases: $p \mid |x|$ and $p \nmid |x|$.

- If $p \mid |x|$, then |x| = pn for some $n \in \mathbb{Z}_+$, and we have $|x^n| = p$; we are done.
- Assume $p \nmid |x|$ and let $N \triangleq \langle x \rangle$. As G is abelian, $N \trianglelefteq G$. Then, $p \mid |G|/|N| = |G/N| < |G|$ and G/N is abelian. By induction hypothesis, $\exists y \in G$, |Ny| = p. Then, $y \notin N$ while $y^p \in N$. Put $m \triangleq |y^p|$. Then, as $y^{mp} = (y^p)^m = 1$, we have $m \mid |y| \mid mp$ while $y \notin \langle y^p \rangle \subseteq N$. Therefore, the only option is |y| = mp; this reduces to the first case.

Theorem 3.4.4 Sylow Theorems

Let G be a group and let $|G| = p^n m$ where p is a prime and gcd(p, m) = 1.

- (i) For each $0 \le k \le n$, G has a subgroup of order p^k . In particular, $Syl_p(G) \ne \emptyset$.
- (ii) For each $P \in \operatorname{Syl}_p(G)$, and for each p-subgroup Q of G, we have $Q \leq gPg^{-1}$ for some $g \in G$. In particular, if $Q \in \operatorname{Syl}_p(G)$, then $Q = gPg^{-1}$ for some $g \in G$.
- (iii) $\forall P \in \operatorname{Syl}_p(G), n_p = [G:N(P)] \equiv 1 \pmod{p}$, and $n_p \mid m$.

Proof.

- (i) The assertion trivially holds when |G| = 1 or k = 0. Hence, we conduct induction on |G|. Fix any G and assume (i) holds for all groups of order less than |G|. Take any $1 \le k \le n$. There are two cases: $p \mid |Z(G)|$ and $p \nmid |Z(G)|$.
 - Assume $p \mid |Z(G)|$. Then, by Lemma 3.4.3, Z(G) has a subgroup N of order p. As $N \leq Z(G)$, N is a normal subgroup of G; thus we may let $\overline{G} \triangleq G/N$. Since $|\overline{G}| = |G|/|N| = p^{n-1}m < |G|$ by Lagrange Theorem, by induction hypothesis, \overline{G} has a subgroup \overline{P} of order p^{k-1} . By Fourth Isomorphism Theorem, there exists a subgroup P of G containing N such that $P/N = \overline{P}$. Then, $|P| = |\overline{P}||N| = p^k$ by Lagrange Theorem.
 - Assume $p \nmid |Z(G)|$. By Class Equation, there exists $g \in G$ such that $p \nmid [G:C_G(g)]$. As $|G| = |C_G(g)|[G:C_G(g)]$ by Lagrange Theorem, $p^n \mid |C_G(g)|$. Moreover, as $C_G(g) \leq G$, by induction hypothesis, there exists a subgroup of $C_G(g)$ of order p^k , which is also a subgroup of G.
- (ii) Fix $P \in Syl_n(G)$ and let

$$\mathcal{S} \triangleq \{ g P g^{-1} \mid g \in G \}.$$

Then, $G \cap S$ by conjugation. Note that $\forall P' \in S$, $|P'| = |P| = p^n$ by Lemma 2.2.4.

Take any *p*-subgroup *Q* of *G*. Then, *Q* also acts on *S* by conjugation. Fix $P' \in \mathcal{S}$. The stabilizer of P' of the group action $Q \cap \mathcal{S}$ is

$$\{q \in Q \mid qP'q^{-1} = P'\} = N_Q(P').$$

Hence, by Orbit-Stabilizer Theorem, we have $|Q \cdot P'| = [Q:N_Q(P')]$. On the other hand, by Lemma 3.4.2, $N_Q(P') = N_G(P') \cap Q = P' \cap Q$. Hence, $|Q \cdot P'| = [Q:P' \cap Q]$ for each $P' \in \mathcal{S}$.

Claim 1.
$$|S| \equiv 1 \pmod{p}$$
.

Proof. Fix any $P' \in \mathcal{S}$. Let $\mathcal{O}_1, \dots, \mathcal{O}_s$ be the orbits of $P' \cap \mathcal{S}$ with $P' \in \mathcal{O}_1$. Then, by the previous discussion, $|\mathcal{O}_1| = |P' \cdot P'| = [P' : P' \cap P'] = 1$. Moreover, for each $P'' \in \mathcal{S} \setminus \{P'\}$, as $P' \cap P'' \leq P'$, $|P' \cdot P''| = [P' : P' \cap P'']$ is a power of p; thus $p \mid |\mathcal{O}_i|$ for each $i \in \{2, 3, \dots, s\}$. Hence, $|\mathcal{S}| = \sum_{i=1}^s |\mathcal{O}_i| \equiv |\mathcal{O}_1| = 1 \pmod{p}$.

Suppose there exists a p-subgroup Q such that $Q \not\subseteq P'$ for all $P' \in \mathcal{S}$. Therefore, $|Q \cap P'| < |P'|$; hence $p \mid [Q:P' \cap Q] = |Q \cdot P'|$ for each $P' \in \mathcal{S}$. However, this implies $p \mid |\mathcal{S}|$, which contradicts Claim 1.

(iii) By (ii), S (defined in the proof of (ii)) equals $\operatorname{Syl}_p(G)$. Hence, $n_p = |S| \equiv 1 \pmod{p}$ by Claim 1. Moreover, S is the orbit of P under the group action $G \cap \mathcal{P}(G)$ by conjugation.

Therefore, by Corollary 3.2.12, $n_p = |G \cdot P| = [G:N_G(P)] = |G|/|N_G(P)|$ while $p^n = |P| | |N_G(P)|$. Therefore, $n_p | m$.

Example 3.4.5

- (i) Assume $|G| = 200 = 2^3 \cdot 5^2$. Then, $n_5 \equiv 1 \pmod{5}$ and $n_5 \mid 8$ by Sylow Theorems (iii); thus $n_5 = 1$; thus G is not simple by Corollary 3.4.6.
- (ii) Assume $|G| = 30 = 2 \cdot 3 \cdot 5$. Then, $n_3 = 10$ and $n_5 = 6$ for the sake of contradiction.

Corollary 3.4.6

Let $K \in \text{Syl}_p(G)$. Then, $K \subseteq G \iff n_p = 1$.

Proof.

- (⇒) We have $gKg^{-1} = K$ for all $g \in G$; hence $Syl_p(G) = \{K\}$ by Sylow Theorems (ii).
- (\Leftarrow) As $gKg^{-1} \in Syl_p(G)$ for each $g \in G$, this implies $\forall g \in G$, $gKg^{-1} = K$; that is to say $K \subseteq G$. □

Corollary 3.4.7 Cauchy Theorem

If *G* is a finite group and $p \mid |G|$ for some prime *p*, then *G* has an element of order *p*.

Proof. By Sylow Theorems (i), G has a subgroup of order p, which is cyclic by Corollary 2.1.11. Any nonidentity element of the cyclic subgroup has order p.

Corollary 3.4.8

Let *G* be a group of order pq where p and q are primes with p < q. Let $P \in Syl_p(G)$ and $Q \in Syl_q(G)$.

- (i) $Q \leq G$
- (ii) If $P \subseteq G$, then $G \cong \mathbb{Z}_{pq}$. In particular, if $p \nmid q-1$, then $G \cong \mathbb{Z}_{pq}$.

Proof.

- (i) By Sylow Theorems (iii), we have $n_q \equiv 1 \pmod{q}$ and $n_q = p$. Therefore, $n_q = 1$ as p < q. By Corollary 3.4.6, $Q \leq G$.
- (ii) We have $P = \langle x \rangle \cong \mathbb{Z}_p$ and $Q = \langle y \rangle \cong \mathbb{Z}_q$ for some $x, y \in G$. As $G/C_G(P)$ is isomorphic to a subgroup of $\operatorname{Aut}(P) \cong \operatorname{Aut}(\mathbb{Z}_p) \cong (\mathbb{Z}/p\mathbb{Z})^*$ by Theorems 3.3.1 and 3.3.9, we have $|G/C_G(P)| \mid p-1$. At the same time, $|G/C_G(P)| \mid |G| = pq$. Hence, the only option is $|G/C_G(P)| = 1$, i.e., $G = C_G(P)$; thus xy = yx. Therefore, |xy| = pq by Theorem 1.5.3 (iii); $G \cong \mathbb{Z}_{pq}$.

Now, assume $p \nmid q-1$. We have $n_p \equiv 1 \pmod{p}$ and $n_p \mid q$ by Sylow Theorems (iii). Then, $n_p = 1$ as $p \nmid q-1$; thus $P \leq G$ by Corollary 3.4.6.

Corollary 3.4.9

Let *G* be a group of order 12. Then, *G* has a normal Sylow 3-subgroup or $G \cong A_4$. When $G = A_4$, *G* has a unique Sylow 2-subgroup. In particular, *G* is not simple.

Proof. If $n_3 = 1$, then there (uniquely) exists a normal Sylow 3-subgroup by Corollary 3.4.6. Now, assume $n_3 \neq 1$.

Then, by Sylow Theorems (iii), we have $n_3 = 4 = [G:N(P)]$; thus P = N(P) by Lagrange Theorem. Let G acts on $Syl_3(G)$ by conjugation. Let $\varphi: G \hookrightarrow S_4$ be a permutation representation of the group action. Note that the stabilizer of $P \in Syl_3(G)$ is $G_P = N(P) = P$. Therefore,

 $\ker(\varphi) = K(G, \operatorname{Syl}_3(G)) = \bigcap_{P \in \operatorname{Syl}_3(G)} G_P = \bigcap_{P \in \operatorname{Syl}_3(G)} P = \{1\}$ as the intersection of two distinct subgroups of order 3 is trivial. Hence, by Theorem 2.3.3, φ is injective. Therefore, $|\operatorname{im}(\varphi)| = 12$; thus $\operatorname{im}(\varphi) \leq S_4$ by Lemma 2.2.6. As G has an element X of order 3 by Cauchy Theorem, $|\varphi(X)| = 3$ for some $X \in G$. Then, as $\varphi(X) \in \varphi(G) \cap A_4 \leq A_4$, by Claim 2 in the proof of Theorem 2.4.7, $\varphi(G) \subseteq A_4$; that is to say $\varphi(G) = A_4$. Moreover, if $Y \in \operatorname{Syl}_2(G)$, then there cannot be another Sylow-2 subgroup by simple counting of elements. (Note that there are already 4 distinct Sylow-3 subgroups.)

Corollary 3.4.10

Let *G* be a group of order p^2q where *p* and *q* are distinct prime numbers. Then, *G* has a normal Sylow *p*-subgroup or a normal Sylow *q*-subgroup. In particular, *G* is not simple.

Proof. Fix any $P \in \text{Syl}_p(G)$ and $Q \in \text{Syl}_q(G)$. There are two cases: p > q and p < q.

- Assume p > q. By Sylow Theorems (iii), $n_p \equiv 1 \pmod{p}$ and $n_p \mid q$, which implies $n_p = 1$. Hence, by Corollary 3.4.6.
- Assume p < q. If $n_q = 1$, then we immediately have $Q \le G$ by Corollary 3.4.6. Hence, assume $n_q > 1$. By Sylow Theorems (iii), $n_q \equiv 1 \pmod{q}$ and $n_q \mid p^2$. As $n_q \ge q + 1 > p$, we have $n_q = p^2$. Now, we are left with $q \mid p^2 1 = (p+1)(p-1)$, which implies q = p+1 as p < q. Hence, p = 2 and q = 3; |G| = 12. The result follows from Corollary 3.4.9.

Example 3.4.11

- (i) Let *G* be a group of order $200 = 2^3 \cdot 5^2$. By Sylow Theorems (iii), $n_5 \equiv 1 \pmod{5}$ and $n_5 \mid 8$, which implies $n_5 = 1$. Hence, by Corollary 3.4.6, *G* has a normal Sylow-5 subgroup; *G* is not simple.
- (ii) Let *G* be a group of order $30 = 2 \cdot 3 \cdot 5$. We have $n_3 \equiv 1 \pmod{3}$, $n_3 \mid 10$, $n_5 \equiv 1 \pmod{5}$, and $n_5 \mid 6$ by Sylow Theorems (iii). Suppose $n_3 \neq 1$ and $n_5 \neq 1$ for the sake of contradiction. The only option if $n_3 = 10$ and $n_5 = 6$. Then, we have ten Sylow 3-subgroups and six Sylow 5-subgroups and they mutually intersect only at 1. Therefore, $|G| \geq 1 + 2 \cdot 9 + 5 \cdot 5 = 44$, which is a contradiction. Therefore, $n_3 = 1$ or $n_5 = 1$; thus *G* is not simple by Corollary 3.4.6.
- (iii) Let G be a group of order $36 = 2^3 \cdot 3^2$. By Sylow Theorems (i), we have $n_3 \equiv 1 \pmod{3}$ and $n_3 \mid 8$. Hence, $n_3 = 1$ or $n_3 = 4$. If $n_3 = 1$, then G is not simple by Corollary 3.4.6. Now, assume $n_3 = 4$ and let H and K be two distinct Sylow 3-subgroups. Then, by Theorem 2.3.6, $|HK| = 81/|H \cap K| \leq |G|$; thus we must have $|H \cap K| = 3$. Moreover, as H and K are abelian by Corollary 3.2.8, $H \cap K \leq H$, $K \leq G$, which implies that G is not simple. Therefore, G is simple in either case.

Chapter 4

Product of Groups

4.1 Direct Products

Definition 4.1.1: Direct Product

(See Definition 1.1.13.)

Let G_1, G_2, \dots, G_n be groups. Then, the operation on $G_1 \times \dots \times G_n$ given by

$$(g_1, \dots, g_n) * (g'_1, \dots, g'_n) = (g_1 g'_1, \dots, g_n g'_n)$$

is a group operation. We call the group $(G_1 \times \cdots \times G_n, *)$ the direct product of G_1, \cdots, G_n .

Notation 4.1.2

Let G_1, G_2, \dots, G_n be groups and consider their direct product $G_1 \times G_2 \times \dots, G_n$. For each $i \in [n]$, define

$$\tilde{G}_i \triangleq \{(1_{G_1}, \dots, 1_{G_{i-1}}, g_i, 1_{G_{i+1}}, \dots, 1_{G_n}) \mid g_i \in G_i\} \leq G_1 \times G_2 \times \dots, G_n$$

so that $G_1 \cong \tilde{G}_i$ and

$$(G_1 \times G_2 \times \cdots \times G_n)/\tilde{G}_i \cong G_1 \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_n.$$

Abusing the notation, we may write G_i instead of \tilde{G}_i .

Note:-

Let a group structure is given for $G_1 \times G_2$. If both projections are group homomorphisms, then the group structure is the direct product.

Lemma 4.1.3

Let *G* be a group and let $H, K \subseteq G$ and $H \cap K = \{1\}$. Then, $\forall a \in M, \forall b \in N, ab = ba$.

Proof. Take any $h \in H$ and $k \in K$. Then, $h^{-1}kh \in K$ and $khk^{-1} \in H$ by normality; thus $h^{-1}khk^{-1} \in H \cap K$, which implies $h^{-1}khk^{-1} = 1$. Therefore, we have kh = hk.

Theorem 4.1.4

Let *G* be a group and let N_1, N_2, \dots, N_k be normal subgroups of *G*. Let $f: N_1 \times \dots \times N_k \to G$ be defined by $(a_1, \dots, a_k) \mapsto a_1 \dots a_k$. If *f* is bijective, then *f* is a group isomorphism.

Proof. If $\{1\} \subsetneq N_i \cap N_j$ for some $i \neq j$, then it contradicts the injectivity of f. Hence, by Lemma 4.1.3, $a_i a_j = a_j a_i$ for all $a_i \in N_i$ and $a_j \in N_j$.

Take any $(a_1, \dots, a_k), (b_1, \dots, b_k) \in N_1 \times \dots \times N_k$. Then,

$$f((a_1, \dots, a_k)(b_1, \dots, b_k)) = f(a_1b_1, a_2b_2, \dots, a_kb_k)$$

$$= a_1b_1a_2b_2 \dots a_kb_k$$

$$= a_1a_2 \dots a_kb_1b_2 \dots b_k$$

$$= f(a_1, \dots, a_k)f(a_2, \dots, a_k).$$

Hence, the result follows.

Corollary 4.1.5

Let G be a group and let N_1, N_2, \dots, N_k be normal subgroups of G. If

(i) $G = N_1 N_2 \cdots N_k$ and (ii) $\forall i \in [k], N_i \cap (N_1 \cdots N_{i-1} N_{i+1} \cdots N_k) = \{1\},$ then $G \cong N_1 \times N_2 \times \cdots \times N_k$.

Proof. (i) essentially says that f in Theorem 4.1.4 is surjective.

Suppose $a_1a_2\cdots a_k=b_1b_2\cdots b_k$ but $(a_1,\cdots,a_k)\neq (b_1,\cdots,b_k)$. Then,

$$b_1^{-1}a_1 = (b_2 \cdots b_k)(a_2 \cdots a_k)^{-1}$$

= $b_2 \cdots b_{k-1}b_k a_k^{-1} a_{k-1}^{-1} \cdots a_2^{-1}$

As $b_k a_k^{-1} N_k \le G$, $(b_k a_k^{-1})(a_{k-1}^{-1} \cdots a_2^{-1}) = (a_{k-1}^{-1} \cdots a_2^{-1}) n_k$ for some $n_k \in N_k$. Therefore, this continues to

$$=b_2\cdots b_{k-1}a_{k-1}^{-1}\cdots a_2^{-1}n_k$$

This continues and we yield

$$= n_2 n_3 \cdots n_k \in N_2 N_3 \cdots N_{k-1}$$

for some n_2, n_3, \dots, n_{k-1} where $n_i \in N_i$ for each $i \in \{2, 3, \dots, k-1\}$. By (ii), we have $a_1 = b_1$; and thus $a_2 a_3 \cdots a_k = b_2 b_3 \cdots b_k$. We may repeat this and obtain $a_i = b_i$ for all $i \in [k]$. Hence, the function f in Theorem 4.1.4 is injective; the result follow from Theorem 4.1.4.

Definition 4.1.6: Decomposable Group

Let G be a group. We say G is decomposable if $G \cong M \times N$ for some nontrivial groups M and N.

Note:-

If *G* is decomposable, then *G* has at least four normal subgroups.

Corollary 4.1.7

Let G be a group of order p^2q where p and q are distinct primes with $q \not\equiv 1 \pmod{p}$ and $p^2 \not\equiv 1 \pmod{q}$. Then, $G \cong \mathbb{Z}_{p^2q}$ or $G \cong \mathbb{Z}_{pq} \times \mathbb{Z}_p$.

Proof. By Sylow Theorems (iii), we have $n_p \equiv 1 \pmod{p}$, $n_p \mid q$, $n_q \equiv 1 \pmod{q}$, and $n_q \mid p^2$. By the constraints, we have $n_p = 1$ and $n_q = 1$. By Corollary 3.4.6, the unique $P \in \text{Syl}_p(G)$ and $Q \in \operatorname{Syl}_q(G)$ are normal in G. Moreover, $P \cap Q = \{1\}$ by Lagrange Theorem. By Theorem 2.3.6, PQ = G. Hence, $G \cong P \times Q$ by Corollary 4.1.5. By Corollary 3.2.8, $P \cong \mathbb{Z}_{p^2}$ and $P \cong \mathbb{Z}_p \times \mathbb{Z}_p$. The result follows from Example 1.5.9.

Example 4.1.8

- (i) Suppose $\mathbb{Z} \cong N \times H$ for some nontrivial normal subgroups $N, H \leq \mathbb{Z}$. However, any intersection of two nontrivial subgroups of \mathbb{Z} is nontrivial; thus \mathbb{Z} is indecomposable.
- (ii) The image of the natural projection $\mathbb{Z} \twoheadrightarrow \mathbb{Z}/6\mathbb{Z}$ is decomposable $(\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}_2 \times \mathbb{Z}_3)$ while \mathbb{Z} is indecomposable.
- (iii) S_n for $n \ge 5$ is indecomposable.
- (iv) Let n be an odd positive integer and consider D_{2n} . Let $M \triangleq \langle s, r_1^2 \rangle$ and $N \triangleq \langle r_1^n \rangle$. Then, they are nontrivial normal subgroups whose intersection is trivial and $MN = D_{2n}$. Therefore, $D_{2n} \cong D_n \times \mathbb{Z}_2$.

4.2 Fundamental Theorem of Finitely Generated Abelian Groups

Lemma 4.2.1

Let *G* be an abelian group generated by g_1, \dots, g_k . For any nonnegative integers c_1, c_2, \dots, c_k with $gcd(c_1, \dots, c_k) = 1$, there exists generators x_1, \dots, x_k for *G* such that $x_1 = c_1g_1 + \dots + c_kg_k$.

Proof. We conduct the induction on $S := c_1 + \cdots + c_k$. If S = 1, then simply changing the order suffices.

If S > 1, then there exist at least two nonzero c_i . WLOG, $c_1 \ge c_2 > 0$. As

- (i) $g_1, g_1 + g_2, g_3, g_4, \dots, g_k$ generate G,
- (ii) $gcd(c_1 c_2, c_2, \dots, c_k) = 1$, and
- (iii) $(c_1 c_2) + c_2 + \cdots, c_k < S$,

by induction hypothesis, there exist generators x_1, \dots, x_k such that $x_1 = (c_1 - c_2)g_1 + c_2(g_1 + g_2) + c_3g_3 + \dots + c_kg_k$. The result follows from $(c_1 - c_2)g_1 + c_2(g_1 + g_2) = c_1g_1 + c_2g_2$.

Definition 4.2.2: Basis of Group

Let G be a group. Then, $\{g_1, g_2, \dots, g_k\} \subseteq G$ is a basis of G if $G = \langle g_1, \dots, g_k \rangle$ and

$$\forall m_1, \dots, m_k \in \mathbb{Z}, (m_1g_1 + \dots + m_kg_k = 0 \iff m_1g_1 = \dots = m_kg_k = 0).$$

Lemma 4.2.3

If G is a finitely generated abelian group, then G has a basis.

Proof. Let g_1, g_2, \dots, g_k be generators of G with minimum $|g_1|$ among generators with minimum size. We shall conduct induction on k. If k = 1, then G is cycle; $\{g_1\}$ is a basis. Assume k > 1.

WLOG, $|g_1| \le |g_2| \le \cdots \le |g_k|$. Note that g_2, \cdots, g_k are minimal generators of $\langle g_2, \cdots, g_k \rangle$. Hence, by induction hypothesis, $\langle g_2, \cdots, g_k \rangle$ has a basis $\{h_1, \cdots, h_{k-1}\}$. Note that $\langle g_1, h_1, \cdots, h_{k-1} \rangle = G$.

Suppose $\{g_1, h_1, \dots, h_{k-1}\}$ is not a basis of G for the sake of contradiction. Then, there exist $n_1, m_1, \dots, m_{k-1} \in \mathbb{Z}$ such that $n_1g_1 + m_1h_1 + \dots + m_{k-1}h_{k-1} = 0$ but $n_1g_1 \neq 0$. Possibly replacing g_1 with $-g_1$ and h_i with $-h_i$, WLOG, $0 < n_1 < |g_1|$ and $m_i \geq 0$ for all $i \in [k-1]$.

Let $d \triangleq \gcd(n_1, m_1, \dots, m_{k-1})$ and let $c_0 \triangleq n_1/d$ and $c_i \triangleq m_i/d$ for each $i \in [k-1]$. By Lemma 4.2.1, there exist generators x_1, \dots, x_k of G such that $x_1 = c_0 g_1 + c_1 h_1 + \dots + c_{k-1} h_{k-1}$. Then, as $dx_1 = 0$, we have $|x_1| \le d \le n_1 < |g_1|$, which contradicts the minimality of initial choice of g_1, g_2, \dots, g_k . Therefore, $\{g_1, h_1, \dots, h_{k-1}\}$ is a basis of G.

Lemma 4.2.4

Let *G* be a finitely generated abelian group. If $\{g_1, \dots, g_k\}$ is a basis of *G*, then $G \cong \langle g_1 \rangle \times \dots \times \langle g_k \rangle$.

Proof. As G is abelian, $\langle g_i \rangle \subseteq G$ for all $i \in [k]$. Assume

$$m_1g_1 + m_2g_2 + \cdots + m_kg_k = n_1g_1 + n_2g_2 + \cdots + n_kg_k$$

for some $m_i, n_i \in \mathbb{Z}$. Then, we have $(m_1 - n_1)g_1 + \cdots + (m_k - n_k)g_k = 0$; as $\{g_1, \cdots, g_k\}$ is a a basis, $m_i g_i = n_i g_i$ for all $i \in [k]$. Therefore, by Theorem 4.1.4, $G \cong \langle g_1 \rangle \times \cdots \times \langle g_k \rangle$.

Lemma 4.2.5

Let *p* be a prime number. If

$$\mathbb{Z}_{p^{u_1}} \times \cdots \times \mathbb{Z}_{p^{u_r}} \cong \mathbb{Z}_{p^{v_1}} \times \cdots \times \mathbb{Z}_{p^{v_s}},$$

for some integers $u_1 \ge \cdots \ge u_r \ge 1$ and $v_1 \ge \cdots \ge v_s \ge 1$, then r = s and $u_i = v_i$ for each

Proof. WLOG, $u_1 \ge v_1$ Note that

$$p^n \mathbb{Z}_{p^m} \cong \begin{cases} \mathbb{Z}_{p^{m-n}} & \text{if } n \leq m \\ \{1\} & \text{otherwise} \end{cases}$$

for each $m, n \in \mathbb{Z}_{>0}$. Therefore, we have

$$\mathbb{Z}_{p^{u_1-v_1}} \cong p^{v_1}(\mathbb{Z}_{p^{u_1}} \times \cdots \times \mathbb{Z}_{p^{u_r}}) \cong p^{v_1}(\mathbb{Z}_{p^{v_1}} \times \cdots \times \mathbb{Z}_{p^{v_s}}) \cong \{1\},$$

which implies $u_1 = v_1$. We continue this process of multiplying $p^{\min\{u_i,v_i\}}$ for $i = 2, 3, \dots, \min\{r, s\}$ so we obtain the result.

Theorem 4.2.6 Fundamental Theorem of Finitely Generated Abelian Group If *G* is a finitely generated abelian group, then

$$G \cong \mathbb{Z}^r \times \underbrace{\left(\mathbb{Z}_{p_1^{\beta_{1,1}}} \times \cdots \times \mathbb{Z}_{p_1^{\beta_{1,k_1}}}\right) \times \cdots \times \left(\mathbb{Z}_{p_t^{\beta_{t,1}}} \times \cdots \times \mathbb{Z}_{p_t^{\beta_{t,k_t}}}\right)}_{torsion \ part}$$

for some $r \in \mathbb{Z}_{\geq 0}$, $\beta_{i,j} \geq 1$, distinct primes p_1, \dots, p_t , and $\beta_{i,j} \geq \beta_{i,j'}$ if $j \geq j'$. Furthermore, the expression is unique. r is the expression is called the rank of G.

Proof. Let $\{g_1, \dots, g_k\}$ be a basis of G. Then, $G \cong \langle g_1 \rangle \times \dots \times \langle g_k \rangle$ by Lemma 4.2.3. By Corollary 1.5.7, $G \cong \mathbb{Z}^r \times \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_r}$ where $r \geq 0$ and $n_i \geq 2$. The existence of such expression in the theorem is given by Example 1.5.9.

To prove the uniqueness of the rank, suppose

$$G \cong \mathbb{Z}^r \times \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_s} \cong \mathbb{Z}^{r'} \times \mathbb{Z}_{n'_1} \times \cdots \times \mathbb{Z}_{n'_{s'}}$$
39

for some $r' \in \mathbb{Z}_{\geq 0}$ and $n'_i \geq 2$. Let p be a prime number which is greater than any of $n_1, \dots, n_s, n'_1, \dots, n'_{s'}$. Then,

$$p\mathbb{Z}_{n_i} = \mathbb{Z}_{n_i}$$
 and $p\mathbb{Z}_{n'_i} = \mathbb{Z}_{n'_i}$ for each i

SO

$$pG \leq G$$
 and $G/pG \cong (\mathbb{Z}_p)^r \cong (\mathbb{Z}_p)^{r'}$.

Therefore, r = r' by Lemma 4.2.5.

Moreover, we have

$$G/\mathbb{Z}^r \cong \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_s} \cong \mathbb{Z}_{n'_1} \times \cdots \times \mathbb{Z}_{n'_{s'}}$$

Therefore, the uniqueness follows from Example 1.5.9 and Lemma 4.2.5.

Theorem 4.2.7 Fundamental Theorem of Finite Abelian Group

Let *G* be a finite abelian group.

(i) If the prime factorization of |G| is given by $|G| = p_1^{r_1} \cdots p_t^{r_t}$, then

$$G \cong \left(\mathbb{Z}_{p_1^{\beta_{1,1}}} \times \cdots \times \mathbb{Z}_{p_t^{\beta_{1,k_1}}}\right) \times \cdots \times \left(\mathbb{Z}_{p_t^{\beta_{t,1}}} \times \cdots \times \mathbb{Z}_{p_t^{\beta_{t,k_t}}}\right)$$

for some $\beta_{i,j} \ge 1$ where $\beta_{i,j} \ge \beta_{i,j'}$ if $j \ge j'$ and $\beta_{i,1} + \cdots + \beta_{i,k_i} = r_i$. $p_i^{\beta_{i,j}}$'s are called *elementary divisors of G*.

(ii) For some $m_1, \dots, m_s \in \mathbb{Z}_{>1}$ such that $m_1 m_2 \dots m_s = |G|$ and $m_s | \dots | m_2 | m_1$,

$$G\cong \mathbb{Z}_{m_1}\times \mathbb{Z}_{m_2}\times \cdots \times \mathbb{Z}_{m_s}$$
.

 m_i 's are called invariant factors of G.

Moreover, the representations in (i) and (ii) are unique.

Proof.

- (i) A direct consequence of Fundamental Theorem of Finitely Generated Abelian Group.
- (ii) It is equivalent to (i) by Example 1.5.9 and Lemma 4.2.5.

4.3 Semidirect Products

Theorem 4.3.1

Let H, K be groups and let $\varphi : K \to \operatorname{Aut}(H)$ be a group homomorphism. We define a binary operation on $G = H \times K$ (simple Cartesian product) by

$$(h_1, k_1) \cdot (h_2, k_2) \triangleq (h_1 \varphi(k_1)(h_2), k_1 k_2).$$

Let $\tilde{H} \triangleq H \times \{1\} \cong H$ and $\tilde{K} \triangleq \{1\} \times K \cong K$. Then,

- (i) G is a group.
- (ii) $\tilde{H} \leq G$ and $\tilde{K} \leq G$ with $\tilde{H} \cap \tilde{K} = \{(1,1)\}.$
- (iii) $G = \tilde{H}\tilde{K}$.

(i) (1,1) is the identity of the group. Take any $h_1, h_2, h_3 \in H$ and $k_1, k_2, k_3 \in K$. We have

$$((h_1, k_1)(h_2, k_2))(h_3, k_3) = (h_1 \varphi(k_1)(h_2), k_1 k_2)(h_3, k_3)$$

$$= (h_1 \varphi(k_1)(h_2) \varphi(k_1 k_2)(h_3), k_1 k_2 k_3)$$

$$(h_1, k_1)((h_2, k_2)(h_3, k_3)) = (h_1, k_1)(h_2 \varphi(k_2)(h_3), k_2 k_3)$$

$$= (h_1 \varphi(k_1)(h_2 \varphi(k_2)(h_3)), k_1 k_2 k_3)$$

while

$$\begin{split} \varphi(k_1)(h_2\varphi(k_2)(h_3)) &= \varphi(k_1)(h_2)\varphi(k_1)(\varphi(k_2)(h_3)) & \qquad \triangleright \varphi(k_1) \in \operatorname{Aut}(H) \\ &= \varphi(k_1)(h_2)\varphi(k_1k_2)(h_3). & \qquad \triangleright \varphi \text{ is a group homomorphism} \end{split}$$

Hence, the operation is associative.

Moreover, for each $(h, k) \in G$,

$$(h,k)(\varphi(k^{-1})(h^{-1}),k^{-1}) = (h\varphi(k)(\varphi(k^{-1})(h^{-1})),kk^{-1})$$

= $(h \cdot id_H(h^{-1}),1)$ $\Rightarrow \varphi$ is a group homomorphism
= $(1,1)$

and

$$(\varphi(k^{-1})(h^{-1}), k^{-1})(h, k) = (\varphi(k^{-1})(h^{-1})\varphi(k^{-1})(h), k^{-1}k)$$

$$= (\varphi(k^{-1})(1), 1) \qquad \qquad \triangleright \varphi(k^{-1}) \in \operatorname{Aut}(H)$$

$$= (1, 1);$$

hence $(h,k)^{-1} = (\varphi(k^{-1})(h^{-1}), k^{-1})$. We conclude that *G* is a group.

(ii) For each $(h_1, 1), (h_2, 1) \in \tilde{H}$ and $(1, k_1), (1, k_2) \in \tilde{K}$, we have

$$(h_1,1)(h_2,1)^{-1}=(h_1,1)(h_2^{-1},1)=(h_1h_2^{-1},1)\in \tilde{H}$$

and

$$(1, k_1)(1, k_2)^{-1} = (1, k_1)(1, k_2^{-1}) = (1, k_1 k_2^{-1}) \in \tilde{K}.$$

Hence, by Theorem 1.3.2, \tilde{H} and \tilde{K} are subgroups of G. For normality of \tilde{H} , take any $(h,k) \in G$ and $(h',1) \in \tilde{H}$. Then, we have

$$(h,k)(h',1)(h,k)^{-1} = (hh',k)(\varphi(k^{-1})(h^{-1}),k^{-1})$$

= (something complex, 1) $\in \tilde{H}$.

Hence, $\tilde{H} \leq G$. $\tilde{H} \cap \tilde{K} = \{(1,1)\}$ is clear.

(iii) For each
$$(h, k) \in G$$
, $(h, k) = (h, 1)(1, k) \in \tilde{H}\tilde{K}$.

Definition 4.3.2: Semidirect Product

Let H and K be groups and let $\varphi: K \to \operatorname{Aut}(H)$ be a group homomorphism. Then, the group G on $H \times K$ equipped with the operation defined in Theorem 4.3.1 is called the *semidirect product of* H *and* K *with respect to* φ and is written

$$G = H \rtimes_{\varphi} K$$
.

Theorem 4.3.3

Let *G* be a group with $H \subseteq G$ and $K \subseteq G$ with $H \cap K = \{1\}$.

- (i) Let $\varphi: K \to \operatorname{Aut}(H)$ be defined by $k \mapsto i_k \Big|_{H}$. Then, φ is a group homomorphism.
- (ii) Moreover, $HK \cong H \rtimes_{\varphi} K$.

Proof.

(i) Note that the well-definedness of φ follows from normality of H. For each $k, k' \in K$, we have

$$\varphi(kk') = i_{kk'}\big|_{H} = (i_k \circ i_{k'})\big|_{H} = i_k\big|_{H} \circ i_{k'}\big|_{H} = \varphi(k) \circ \varphi(k').$$

(ii) Let $f: HK \to H \rtimes_{\varphi} K$ be defined by $hk \mapsto (h,k)$. It is well-defined since, for each $h_1, h_2 \in H$ and $k_1, k_2 \in K$ such that $h_1k_1 = h_2k_2$, we have $H \ni h_2^{-1}h_1 = k_2k_1^{-1} \in K$; thus $h_1 = h_2$ and $k_1 = k_2$. This further shows that f is injective (and surjective indeed). Moreover, for each $h_1k_1, h_2k_2 \in HK$,

$$f((h_1k_1)(h_2k_2)) = f((h_1k_1h_2k_1^{-1})(k_1k_2)) \qquad \text{inserting } k_1^{-1}k_1$$

$$= (h_1k_1h_2k_1^{-1}, k_1k_2) \qquad \text{inserting } k_1^{-1}k_1$$

$$= (h_1i_k_1(h_2), k_1k_2) \qquad \text{inserting } k_1^{-1}k_1 \qquad \text{inserting } k_1^{-1}k_1$$

Hence, f is a group isomorphism.

Corollary 4.3.4

Let *H* and *K* be groups and let $\varphi: K \to Aut(H)$ be a group homomorphism. TFAE.

- (i) φ is trivial (is a constant map).
- (ii) $H \rtimes K = H \times K$
- (iii) $\tilde{K} \leq H \rtimes_{\varphi} K$.

Proof. (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) are direct.

We show (ii) \Rightarrow (i) first. Then, we have $h_1\varphi(k_1)(h_2) = h_1h_2$ for all $h_1, h_2 \in H$ and $k_1 \in K$. In other words, $\varphi(k_1) = \mathrm{id}_H$ for all $k_1 \in K$. Hence, φ is trivial.

Now, we show (iii) \Rightarrow (ii). We have $\tilde{H}, \tilde{K} \leq H \rtimes_{\varphi} K$, $\tilde{H}\tilde{K} = H \rtimes_{\varphi} K$, and $\tilde{H} \cap \tilde{K} = \{(1,1)\}$ by Theorem 4.3.1. Hence, by Corollary 4.1.5, we have $H \rtimes_{\varphi} K \cong \tilde{H} \times \tilde{K} \cong H \times K$. This implies that $f: H \rtimes_{\varphi} K \to H \times K$ defined by $(h,k) \mapsto (h,k)$ is a group isomorphism.

Lemma 4.3.5

$$\operatorname{Aut}(\mathbb{Z}_2 \times \mathbb{Z}_3) \cong S_3$$

Proof. Aut($\mathbb{Z}_2 \times \mathbb{Z}_2$) is exactly the set of bijections on $\mathbb{Z}_2 \times \mathbb{Z}_2$ which fix (0,0).

Example 4.3.6

- (i) Let p and q be primes such that $p \mid q-1$. Let $H \triangleq \mathbb{Z}_q$ and $K \triangleq \mathbb{Z}_p$. Aut $(H) \cong \mathbb{Z}_{q-1}$ has a unique subgroup of order p. There exists a nontrivial group homomorphism $\varphi : K \to \operatorname{Aut}(H)$. Then, $G \triangleq H \rtimes_{\varphi} K$ is nonabelian as \tilde{K} is not normal.
- (ii) $H \triangleq \mathbb{Z}_3$ and $K \triangleq \mathbb{Z}_4$. Then, there uniquely exists a group homomorphism $\varphi : K \to \operatorname{Aut}(H)$. Then, $T_{12} \triangleq \mathbb{Z}_3 \rtimes_{\varphi} \mathbb{Z}_4$ is a nonabelian group of order 12. Moreover, $\mathbb{Z}_4 \cong \tilde{K} \leq T_{12}$; thus T_{12} has an element of order 4. This implies that $T_{12} \not\cong A_4$ and

 $T_{12} \not\cong D_6$.

(iii) $H \triangleq \mathbb{Z}_3$ and $K \triangleq \mathbb{Z}_2 \times \mathbb{Z}_2$. Note that $\operatorname{Aut}(H) \cong \mathbb{Z}_2$. There are three nontrivial group homomorphisms $\varphi_1, \varphi_2, \varphi_3 \colon K \to \operatorname{Aut}(H)$ with $\varphi_1(0,1) = 0$, $\varphi_2(1,0) = 0$, and $\varphi_3(1,1) = 0$. However, $H \rtimes_{\varphi_1} K \cong H \rtimes_{\varphi_2} K \cong H \rtimes_{\varphi_3} K$. For instance, the function $H \rtimes_{\varphi_1} K \to H \rtimes_{\varphi_3} K$ defined by

$$(h,(0,0)) \mapsto (h,(0,0)), (h,(1,0)) \mapsto (h,(1,0))$$

 $(h,(0,1)) \mapsto (h,(1,1)), (h,(1,1)) \mapsto (h,(0,1))$

is a group isomorphism.

Let $G \triangleq H \rtimes_{\varphi_3} K$. Let $M \triangleq \langle (0, (1, 0)) \rangle \tilde{H}$ and $N \triangleq \langle (0, (1, 1)) \rangle$. Let $a \triangleq (1, (0, 0)) \in M$ and $b \in (0, (1, 0)) \in M$. Then,

$$ab = (1,(0,0))(0,(1,0)) = (1,(1,0)) = (0,(1,0))(2,(0,0)) = ba^{-1},$$

hence $M \cong D_3$. Moreover, $M \subseteq G$ by Lemma 2.2.6. In addition, $N \subseteq G$ as, for each $(h, (k_1, k_2)) \in G$,

$$(h,(k_1,k_2))(0,(1,1))(h,(k_1,k_2))^{-1}$$

$$= (h,(k_1+1,k_2+1))(\varphi_3(-k_1,-k_2)(-h),(-k_1,-k_2))$$

$$= (h+\varphi_3(k_1+1,k_2+1)(\varphi_3(-k_1,-k_2)(-h)),(1,1))$$

$$= (h+\varphi_3(1,1)(-h),(1,1))$$

$$= (0,(1,1)) \in N.$$

Hence, by Corollary 4.1.5, $G \cong M \times N \cong D_3 \times \mathbb{Z}_2 \cong D_6$. (See Example 4.1.8 (iv).)

(iv) Let $H \triangleq \mathbb{Z}_2 \times \mathbb{Z}_2$ and $K \triangleq \mathbb{Z}_3$. By Lemma 4.3.5, Aut $(H) \cong S_3$. Then, there are two homomorphisms $\varphi_1, \varphi_2 \colon K \to \operatorname{Aut}(H)$ defined by $\varphi_1(1) = (1\,2\,3)$ and $\varphi_2(1) = (1\,3\,2)$. However, they give the same semiproduct since $\varphi_1(2) = \varphi_2(1)$. Let $G \triangleq H \rtimes_{\varphi_1} K$. Then, K is a Sylow-3 subgroup of G but is not normal in G. Hence, Corollary 3.4.9 shows that $G \cong A_4$.

4.4 Classification of Finite Groups of Small Orders

Theorem 4.4.1

If *G* is a group of order 2p where p is an odd prime, then $G \cong \mathbb{Z}_{2p}$ or $G \cong D_p$.

Proof. By Cauchy Theorem, there exists $a, b \in G$ such that |a| = p and |b| = 2. Let $H \triangleq \langle a \rangle$. By Lemma 2.2.6, $H \trianglelefteq G$. As $bab = bab^{-1} \in H$, there exists $t \in \mathbb{Z}$ such that $bab^{-1} = a^t$. Then, we have

$$a^{t^2} = (a^t)^t = (bab^{-1})^t = ba^tb^{-1} = bbab^{-1}b^{-1} = a.$$

Hence, $t^2 \equiv 1 \pmod{p}$ by Theorem 1.5.3 (ii), so we have $t \equiv \pm 1 \pmod{p}$.

- Assume $t \equiv 1 \pmod{p}$. Then, $bab^{-1} = a^t = a$, i.e., ba = ab. By Theorem 1.5.3 (iii), |ab| = 2p, i.e., $G \cong \mathbb{Z}_{2p}$.
- Assume $t \equiv -1 \pmod{p}$. Then, $bab = a^t = a^{-1}$, i.e., abab = 1. Hence, by Theorem 1.4.6, there exists a group homomorphism $f: D_p \to G$ with $f(r_1) = a$ and f(s) = b. By Lagrange Theorem, im(f) = G, i.e., f is a group isomorphism.

Lemma 4.4.2

Let *G* be a group. If $a^2 = 1$ for all $a \in G$, then *G* is abelian.

Proof. Take any $a, b \in G$. Then, $1 = (ab)^2 = abab$, and thus ab = (bab)b = ba.

Theorem 4.4.3

If G is a group of order 8, then G is isomorphic to one of \mathbb{Z}_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$, \mathbb{Z}_2^3 , D_4 , and Q_8 .

Proof. If G is abelian, then Fundamental Theorem of Finite Abelian Group asserts that $G \cong \mathbb{Z}_8$, $G \cong \mathbb{Z}_4 \times \mathbb{Z}_2$, or $G \cong \mathbb{Z}_2^3$. Now, assume that G is nonabelian. By Lemma 4.4.2, there exists $a \in G$ such that |a| = 4. Fix $b \in G \setminus \langle a \rangle$. Then, $G = \{1, a, a^2, a^3, b, ab, a^2b, a^3b\} = \langle a, b \rangle$. There are three possibilities: ba = ab, $ba = a^2b$, and $ba = a^3b$.

- If ba = ab, then G is abelian.
- Assume $ba = a^2b$. Then,

$$a^2ba = a^2(a^2b) = a^4b = b$$

so that

$$ba^2 = a^4ba^2 = a^2(a^2ba)a = a^2ba$$
.

Thus, $b = a^2ba = ba^2$, so $a^2 = 1$, which is a contradiction. Thus, $ba = a^3b$. Now, we have four possibilities: $b^2 = 1$, $b^2 = a$, $b^2 = a^2$, and $b^2 = a^3$. If $b^2 = a$ or $b^2 = a^3$, then |b| = 8, which is a contradiction.

- Assume $b^2 = 1$. Then, we have $abab = a(a^3b)b = a^4b^2 = 1$. Hence, $G \cong D_4$.
- Assume $b^2 = a^2$. Then, $G \cong Q_8 = \langle i, j | i^4 = 1, i^2 = j^2, ji = i^{-1}j \rangle$.

Theorem 4.4.4

If *G* is a group of order 12, then *G* is isomorphic to one of \mathbb{Z}_{12} , $\mathbb{Z}_6 \times \mathbb{Z}_2$, T_{12} , D_6 , or A_4 .

Proof. If G is abelian, then Fundamental Theorem of Finite Abelian Group asserts that $G \cong \mathbb{Z}_{12}$ or $G \cong \mathbb{Z}_6 \times \mathbb{Z}_2$. Assume G is nonabelian.

Fix some $P \in \operatorname{Syl}_2(G)$ and $Q \in \operatorname{Syl}_3(G)$. Then, $P \cong \mathbb{Z}_4$ or $P \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ by Corollary 3.2.8, and $Q \cong \mathbb{Z}_3$ by Corollary 2.1.11. By Corollary 3.4.9, P or Q is normal in G. Note that PQ = G and $P \cap G = \{1\}$. Hence, one cannot have both $P \subseteq G$ and $Q \subseteq G$ by Corollary 4.1.5.

- Assume $P \subseteq G$ and $Q \not \supseteq G$. Then, $G \cong P \rtimes Q$. If $P = \mathbb{Z}_4$, then the trivial group homomorphism $Q \to \operatorname{Aut}(P)$ is the only homomorphism, hence $G \cong \mathbb{Z}_4 \times \mathbb{Z}_3$ by Corollary 4.3.4. If $P = \mathbb{Z}_2 \times \mathbb{Z}_2$, then $G \cong A_4$ by Example 4.3.6 (iv).
- Assume $P \not \supseteq G$ and $Q \subseteq G$. Then, $G \cong Q \rtimes P$. If $P = \mathbb{Z}_4$, then $G \cong T_{12}$ by Example 4.3.6 (ii). If $P = \mathbb{Z}_2 \times \mathbb{Z}_2$, then $G \cong D_6$ by Example 4.3.6 (iii).

Note:-

Now, we have complete classification of groups of order less than 16.

Chapter 5

Rings

5.1 Definitions and Examples of Rings

Definition 5.1.1: Ring

A *ring* is a nonempty set equipped with two binary operations "+" and "·" such that for all $a, b, c \in R$, the following are satisfied:

- (i) (R, +) is an abelian group.
- (ii) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- (iii) $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$.

The additive identity of ring R is usually denoted 0, and the additive inverse of $a \in R$ is usually denoted -a.

A *commutative ring* is a ring $(R, +, \cdot)$ such that the following condition is additionally satisfied.

(iv) $a \cdot b = b \cdot a$ for all $a, b \in R$.

A *ring with identity* is a ring $(R, +, \cdot)$ such that the following condition is additionally satisfied.

(v) There exists $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$ for all $a \in R$.

A *commutative ring with identity* is a ring $(R, +, \cdot)$ such that (iv) and (v) are both satisfied.

Theorem 5.1.2

Let *R* be a ring. Then, the following hold.

- (i) $0 \cdot a = a \cdot 0 = 0$ for all $a \in R$.
- (ii) $a \cdot (-b) = (-a) \cdot b = -ab$ for all $a, b \in R$.
- (iii) $(-a) \cdot (-b) = ab$ for all $a, b \in R$.
- (iv) If R is a ring with identity, then $(-1) \cdot a = -a$ for all $a \in R$.

- (i) We have $0 \cdot a + 0 \cdot a = (0+0) \cdot a = 0 \cdot a$; hence $0 \cdot a = 0$. We have $a \cdot 0 = 0$ similarly.
- (ii) $a \cdot b + a \cdot (-b) = a \cdot (b b) = a \cdot 0 = 0$ by (i). Hence, $a \cdot (-b)$ is the additive inverse of $a \cdot b$. Similarly, $(-a) \cdot b = -ab$.
- (iii) (-a)(-b) = -(-a)b = -(-ab) = ab by (ii).
- (iv) $a + (-1) \cdot a = 1 \cdot a + (-1) \cdot a = (1-1) \cdot a = 0 \cdot a = 0$ by (i). Hence, $(-1) \cdot a$ is the additive inverse of a.

Theorem 5.1.3

Let *R* be a commutative ring with identity. If 1 = 0, then *R* is the trivial ring $\{0\}$.

Proof. For any $a \in R$, then $a = 1 \cdot a = 0 \cdot a = 0$ by Theorem 5.1.2 (i).

Definition 5.1.4: Unit

Let *R* be a ring with identity. An element $a \in R$ is a *unit* if *a* has a multiplicative inverse, i.e., there exists $u \in R$ such that au = ua = 1.

Definition 5.1.5: Zero Divisor

Let *R* be a ring.

- An element $a \in R \setminus \{0\}$ is a zero divisor if there exists $b \in R$ such that ab = 0 or ba = 0.
- An element $a \in R \setminus \{0\}$ is a nonzero divisor if a is not a zero divisor.

Definition 5.1.6: Integral Domain

Let *R* be a nontrivial commutative ring with identity. If *R* has no zero divisor, then *R* is called an *integral domain*.

Theorem 5.1.7

Let *R* be a ring with identity. Then, the following hold.

- (i) If $u \in R$ is a unit, then it is not a zero divisor.
- (ii) A multiplicative inverse u^{-1} of a unit u is unique.
- (iii) If a is a nonzero divisor and ab = ac (or ba = ca), then b = c.

Proof.

- (i) There is an element $w \in R$ such that uw = wu = 1. Suppose uv = 0 for some $u \in R$. Then, 0 = w0 = w(uv) = (wu)v = 1v = v, which is a contradiction. It is similar for the case in which vu = 0 for some $u \in R$.
- (ii) Assume vu = wu = 1 for some $v, w \in R$. Then, 0 = vu wu = (v w)u. By (i), u is not a zero divisor, hence v w = 0, i.e., v = w.
- (iii) We have a(b-c) = 0 (or (b-c)a = 0). As a is a nonzero divisor, we have b-c = 0, i.e., b = c.

Theorem 5.1.8

Every element of a finite commutative ring with identity is 0, a unit, or a zero divisor.

Proof. Let $R = \{a_1, \dots, a_n\}$ be a finite commutative ring with identity. Take any $a_t \in R \setminus \{0\}$ and assume a_t is a nonzero divisor. If $a_i a_t = a_j a_t$, then $a_i = a_j$ by Theorem 5.1.7 (iii), i.e., i = j. Therefore, $a_1 a_t, a_2 a_t, \dots, a_n a_t$ are all distinct; hence

$$R = \{a_1 a_t, a_2 a_t, \cdots, a_n a_t\}.$$

Thus, there exists $a_i \in R$ such that $a_i a_t = 1$; hence a_t is a unit.

Corollary 5.1.9

A finite integral domain is a field¹.

A *field* is a nontrivial commutative ring $(R, +, \cdot)$ with identity in which every nonzero element is a unit.

Proof. Direct from Theorem 5.1.8.

Definition 5.1.10: Subring

Let *R* be a ring and let $S \subseteq R$ be nonempty. Then, *S* is a *subring* of *R* if *S* is a ring under the binary operations + and \cdot .

Theorem 5.1.11

Let *R* be a ring and let $S \subseteq R$ be nonempty. Then, *S* is a subring of *R* if and only if *S* is closed under subtraction and multiplication.

5.2 Ring Homomorphisms

Definition 5.2.1: Ring Homomorphism

Let *R* and *S* be groups. A *ring homomorphism* between *R* and *S* is a function $f: R \to S$ such that

$$f(a + b) = f(a) + f(b)$$
 and $f(ab) = f(a)f(b)$

for all $a, b \in R$. The kernel of a ring homomorphism f is the set

$$\ker(f) \triangleq \{ r \in R \mid f(r) = 0 \}.$$

Definition 5.2.2: Ring isomorphism

Let R and S be groups. A *ring isomorphism* between R and S is a bijective ring homomorphism between R and S. We write $R \cong S$ if there is a ring isomorphism between R and S. " \cong " is an equivalence relation.

Theorem 5.2.3

Let R be a ring with identity and let S be a ring. Let $f: R \twoheadrightarrow S$ be a surjective ring homomorphism. Then, the following hold.

- (i) f(1) is the multiplicative identity of S.
- (ii) If u is a unit in R, then f(u) is a unit in S and $f(u)^{-1} = f(u^{-1})$.

Proof.

- (i) Take any $s \in S$. Then, there exists $r \in R$ such that f(r) = s. Then, sf(1) = f(r)f(1) = f(r) = s and f(1)s = f(1)f(r) = f(r) = s. Hence, the result follows.
- (ii) $f(u)f(u^{-1}) = f(1) = 1$ and $f(u^{-1})f(u) = f(1) = 1$ by (i). Hence, $f(u^{-1}) = f(u)^{-1}$.

Theorem 5.2.4

Let *R* and *S* be groups and let $f: R \to S$ be a group homomorphism. Then, im(*f*) is a subring of *S* and ker(*f*) is a subring of *R*.

Proof. im(f) and ker(f) are a subgroup of (R, +) and (S, +), respectively.

Take any $s, s' \in \text{im}(f)$. Then, there exist $r, r' \in R$ such that f(r) = s and f(r') = s', then $ss' = f(r)f(r') = f(rr') \in \text{im}(f)$. Hence, im(f) is closed under multiplication.

Take any $r, r' \in \ker(f)$. Then, $f(rr') = f(r)f(r') = 0 \cdot 0 = 0$. Hence, $\ker(f)$ is closed under multiplication. Ther result follows from Theorem 5.1.11.

Chapter 6

Ideals and Quotient Rings

6.1 Ideals

Definition 6.1.1: Congruence

Let *R* be a ring and let *S* be a subring of *R*. For $a, b \in R$, We say *a* is congruent to *b* modulo *S* if $a - b \in S$, and write $a \equiv b \pmod{S}$.

Definition 6.1.2: Coset

Let *R* be a ring and let *S* be a subring of *R*. Let $a \in R$. As (R, +) is abelian, the left coset a + S equals the right coset S + a. Hence, we call either of them just a *coset* of *S*.

Definition 6.1.3

Let R be a ring and let S be a subring of R. We define R/S by

$$R/S \triangleq \{a+S \mid a \in R\}.$$

Lemma 6.1.4

Let R be a ring and let S be a subring of R. Then,

$$\forall a, a', b, b' \in R, (a + S = a' + S \land b + S = b' + S \Longrightarrow ab + S = a'b' + S)$$

$$\iff \forall r \in R, \forall s \in S, (rs \in S \land sr \in S).$$

Proof.

- (⇒) Take any $r \in R$ and $s \in S$. Then, we have 0 + S = s + S and r + S = r + S. Hence, by assumption, $0 + S = 0 \cdot r + S = sr + S$, i.e., $sr \in S$. Similarly, $rs \in S$.
- (\Leftarrow) Take any $a, a', b, b' \in R$ such that a + S = a' + S and b + S = b' + S. This means $a a' \in S$ and $b b' \in S$ so that

$$(a-a')b' = ab' - a'b' \in S$$
 and $a(b-b') = ab - ab' \in S$,

which implies $ab - a'b' = (ab - ab') + (ab' - a'b') \in S$. Hence, $ab + S = a'b' \in S$.

Definition 6.1.5: Ideal

Let *R* be a ring and let $I \subseteq R$ be nonempty. Then, *I* is an *ideal* of *R* if *I* is a subring of *R* and $ir, ri \in I$ for all $i \in I$ and $r \in R$.

Example 6.1.6

- (i) For any ring R, then the trivial subring $\{0\}$ is an ideal in R, which is called the *trivial ideal* of R.
- (ii) For any ring R with identity and an ideal I in R, I = R if and only if $u \in I$ for some unit $u \in R$. For if $u \in I$ where u is a unit of R, then $r = (ru^{-1})u \in I$ for all $r \in R$.

Corollary 6.1.7

Let *R* be a group and let $\langle I_i | i \in I \rangle$ be an indexed system of ideals of *R*. Then, $\bigcap_{i \in I} I_i$ is an ideal in *R*.

Proof. Trivial. □

Theorem 6.1.8

Let *R* be a commutative ring and let $c_1, c_2, \dots, c_n \in R$. Then,

$$I \triangleq \{ r_1c_1 + r_2c_2 + \dots + r_nc_n \mid r_1, r_2, \dots, r_n \in R \}$$

is an ideal in R.

Proof. Simply check.

Definition 6.1.9

In the case of Theorem 6.1.8, In this case, I is said to be *(finitely) generated by* c_1, c_2, \dots, c_n and is denoted by (c_1, c_2, \dots, c_n) . When n = 1, I is called a *principal ideal* generated by c_1 .

🛉 Note:- 🛉

The *smallest ideal* of R containing $a \in R$ is

$$\{na + ra \mid n \in \mathbb{Z} \land r \in R\},\$$

which equals (a) when R has an identity. If R a commutative ring without identity, then $a \notin (a)$.

6.2 Quotient Rings and Ring Homomorphisms

Definition 6.2.1: Quotient Ring

Let *R* be a ring and let $I \subseteq R$ be an ideal in *R*. Then, R/I equipped with operations

$$(a+I)+(b+I) = (a+b)+I$$

 $(a+I)\cdot(b+I) = ab+I$

is a ring and is called the quotient ring of R by I. This is justified by Lemma 6.1.4. If

R is commutative, then so is R/I. If R has a multiplicative identity, then 1 + I is the multiplicative identity of R/I. There is a surjective ring homomorphism

$$\pi: R \longrightarrow R/I$$
$$r \longmapsto r+I$$

which is called the *natural projection from* R to R/I.

Lemma 6.2.2

Let *R* and *S* be rings. Let $f: R \to S$ be a ring homomorphism. Then, $\ker(f) = \{0\}$ if and only if *f* is injective.

Proof. This is a special case of Theorem 2.3.3 noting that f is a group homomorphism from (R, +) to (S, +).

Theorem 6.2.3 First Isomorphism Theorem

Let *R* and *S* be rings. Let $f: R \to S$ be a ring homomorphism. Then, $R/\ker(f) \cong \operatorname{im}(f)$.

Proof. Let $K \triangleq \ker(f)$. Define a function

$$\varphi: R/K \longrightarrow \operatorname{im}(f)$$
$$r+K \longmapsto f(r).$$

For each $r, r' \in R$, we have r + K = r' + K if and only if f(r) = f(r') as f is a ring homomorphism. Hence, φ is well-defined and injective. φ is evidently surjective. Therefore, φ is a bijective ring isomorphism.

Definition 6.2.4

Let R be a ring and let I and J be ideals of R. Then, we define

$$I + J \triangleq \{i + j \mid i \in I \land j \in J\}$$
$$IJ \triangleq \{i_1j_1 + i_2j_2 + \dots + i_nj_n \mid n \in \mathbb{N} \land \forall k \in [n], (i_k \in I \land j_k \in J)\}.$$

Lemma 6.2.5

Let R be a ring and let I and J be ideals of R. Then, I + J and IJ are ideals of R.

(i) Take any i + j, $i' + j' \in I + J$ and $r \in R$. Then,

$$(i+j)-(i'+j')=(i-i')+(j+j')\in I+J$$

and

$$r(i+j) = ri + rj \in I + J,$$

$$(i+i)r = ir + ir \in I + J.$$

Hence, I + J is an ideal in R.

(ii) Take any $i_1j_1 + \cdots + i_mj_m$, $i_1'j_1' + \cdots + i_n'j_n' \in IJ$ and $r \in J$. Then,

$$(i_1j_1+\cdots+i_mj_m)-(i'_1j'_1+\cdots+i'_nj'_n)=i_1j_1+\cdots+i_mj_m+(-i'_1)j'_1+\cdots+(-i'_n)j'_n\in IJ$$

and

$$r(i_1j_1 + \dots + i_mj_m) = (ri_1)j_1 + \dots + (ri_m)j_m \in IJ,$$

 $(i_1j_1 + \dots + i_mj_m)r = i_1(j_1r) + \dots + i_m(j_mr) \in IJ$

Hence, *IJ* is an ideal in *R*.

Theorem 6.2.6 Second Isomorphism Theorem

Let *R* be a ring and let *I* and *J* be ideals in *R*. Then, $I \cap J$ is an ideal in I, J is an ideal in I + J, and $I/(I \cap J) \cong (I + J)/J$.

Proof. J is clearly an ideal in I + J. Define a ring homomorphism

$$\varphi: I \longrightarrow (I+J)/J$$

 $i \longmapsto i+J.$

Then, for any $i+j \in I+J$, we have $(i+j)+J=i+(j+J)=i+J=\varphi(i)$; hence φ is surjective. We also have $\ker(\varphi)=I\cap J$; $I\cap J$ is an ideal in I. Hence, by First Isomorphism Theorem, $I/(I\cap J)\cong (I+J)/J$.

Theorem 6.2.7 Third Isomorphism Theorem

Let *R* be a ring and let *I* and *J* be ideals in *R* such that $J \subseteq I$. Then, I/J is an ideal in R/J. Furthermore, $(R/J)/(I/J) \cong R/I$.

Proof. Define a function

$$\varphi: R/J \longrightarrow R/I$$

 $r+J \longmapsto r+I.$

For each $r, r' \in R$ such that r + J = r' + J, then $r - r' \in J \subseteq I$; thus r + I = r' + I, hence φ is well-defined. It is evident that φ is a surjective ring homomorphism. Simply computing the kernel, we have $\ker(\varphi) = I/J$ and I/J is an ideal in R/J. Hence, by First Isomorphism Theorem, $(R/J)/(I/J) \cong R/I$.

Lemma 6.2.8

Let *R* and *S* be rings. Let $f: R \to S$ be a ring homomorphism. If $I \subseteq S$ is an ideal in *S*, then $f^{-1}(I)$ is an ideal in *R*.

Proof. Take any $a, b \in f^{-1}(I)$. Then, $f(a - b) = f(a) - f(b) \in I$; hence $a - b \in f^{-1}(I)$. Moreover, for any $r \in R$, we have $f(ra) = f(r)f(a) \in I$ and $f(ar) = f(a)f(r) \in I$; hence $ar, ra \in f^{-1}(I)$. Hence, $f^{-1}(I)$ is an ideal in R.

Theorem 6.2.9 Fourth Isomorphism Theorem

Let *R* be a ring and let *I* be an ideal in *R*. Let $\pi: R \to R/I$ be the natural projection. Then, there is a natural one-to-one correspondence between

{ideals of *R* containing
$$I$$
} $\stackrel{1:1}{\longleftrightarrow}$ {ideals of R/I }

with $K \mapsto K/I$.

Proof. Define a function

$$\varphi$$
: {ideals of R containing I } \longrightarrow {ideals of R/I }
$$K \longmapsto K/I.$$

By Third Isomorphism Theorem, if $K \subseteq R$ is an ideal containing I, then $\varphi(K) = K/I$ is an ideal in R/I. Hence, φ is well-defined.

Let $K, K' \subseteq R$ be ideals in R containing I such that $K \neq K'$. Then, there exists $k \in K \setminus K'$. If k + I = k' + I for some $k' \in K'$, then k = k' + i for some $i \in I$, which implies $k \in K'$, which is a contradiction. Hence, $k + I \neq k' + I$ for all $k' \in K'$, i.e., $k + I \in \varphi(K) \setminus \varphi(K')$. Therefore, φ is injective.

Let \overline{K} be an ideal in R/I. then, by Lemma 6.2.8, $K \triangleq \varphi^{-1}(\overline{K})$ is an ideal in R. Clearly, $I = \ker(\varphi) = \varphi^{-1}(\{0\}) \subseteq K$ and $\varphi(K) = K/I = \overline{K}$. Hence, φ is surjective.

6.3 Prime and Maximal Ideals

Definition 6.3.1: Prime Ideal

Let *R* be a commutative ring. A proper ideal *P* in *R* is a *prime ideal* if $ab \in P$ implies $a \in P \lor b \in P$.

Theorem 6.3.2

Let *R* and *S* be commutative rings with identity. Let $f : R \to S$ be a ring homomorphism. If $P \subseteq S$ is a prime ideal in *S*, then $f^{-1}(P)$ is a prime ideal in *R*.

Proof. By Lemma 6.2.8, $f^{-1}(P)$ is an ideal in R. Moreover, as $1 \notin P$ by Example 6.1.6 (ii), $1 \notin f^{-1}(P)$ by Theorem 5.2.3 (i), and thus $f^{-1}(P) \subsetneq R$.

Take any $a, b \in R$ such that $ab \in f^{-1}(P)$. Then, as $f(a)f(b) = f(ab) \in P$, we have $f(a) \in P$ or $f(b) \in P$, i.e., $a \in f^{-1}(P)$ or $b \in f^{-1}(P)$.

Theorem 6.3.3

Let R be a commutative ring with identity and let P be an ideal in R. Then, P is a prime ideal if and only if R/P is an integral domain.

- (⇒) R/P is a commutative ring with identity. R/P is not trivial as $P \subseteq R$. Take any $a, b \in R$ such that (a+P)(b+P) = 0+P. Then, $ab \in P$ and thus $a \in P$ or $b \in P$, i.e., a+P=0+P or b+P=0+P.
- (⇐) $P \subseteq R$ as R/P is not trivial. Take any $a, b \in R$ such that $ab \in P$. Then, we have (a + P)(b+P) = ab+P = 0+P. Hence, a+P = 0+P or b+P = 0+P, i.e., $a \in P$ or $b \in P$. \Box

Definition 6.3.4: Maximal Ideal

Let R be a ring. A proper ideal M in R is called a *maximal ideal* if M is maximal with respect to inclusion among proper ideals in R. In other words, if I is an ideal in R such that $M \subseteq I$, then I = M or I = R.

Theorem 6.3.5

Let *R* be a ring and let *I* be a proper ideal in *R*. There exists a maximal ideal *M* of *R* such that $I \subseteq M$.

Proof. Let

$$\mathcal{J} \triangleq \{J \subsetneq R \mid J \text{ is an ideal in } R \text{ and } I \subseteq J \}.$$

Then, (\mathcal{J}, \subseteq) is a poset. Let \mathcal{C} be a nonempty chain in (\mathcal{J}, \subseteq) . Let $M_{\mathcal{C}} \triangleq \bigcup \mathcal{C}$.

Claim 1. $M_{\mathcal{C}} \in \mathcal{J}$

Proof. It is clear that $I \subseteq M_{\mathcal{C}}$. Take any $a, b \in M_{\mathcal{C}}$. Then, there exists $J_a, J_b \in \mathcal{C}$ such that $a \in J_a$ and $b \in J_b$. WLOG, $J_a \subseteq J_b$. Then, $a - b \in J_b \subseteq M_{\mathcal{C}}$.

Take any $m \in M_{\mathcal{C}}$ and $r \in R$. Then, $m \in J$ for some $J \in \mathcal{C}$ so that $mr, rm \in J \subseteq M_{\mathcal{C}}$. Hence, $M_{\mathcal{C}}$ is an ideal in R. Moreover, $M_{\mathcal{C}}$ is proper since $1 \notin M_{\mathcal{C}}$.

Claim 1 says that $M_{\mathcal{C}}$ is an upper bound of \mathcal{C} . Therefore, by Zorn's lemma, \mathcal{J} has a maximal element M with respect to the inclusion, which is evidently a maximal ideal in R containing I.

Theorem 6.3.6

Let R be a commutative ring with identity and let M be a ideal. Then, M is a maximal ideal if and only if R/M is a field.

Proof.

(⇒) As M is proper, R/M is nontrivial commutative ring with identity. Take any nonzero element $a + M \in R/M$. Then, $a \in R \setminus M$. Define

$$J \triangleq \{ m + ra \mid r \in R \land m \in M \}.$$

Take any $m + ra, m' + r'a \in J$. Then,

$$(m+ra)-(m'+r'a)=(m-m')+(r-r')a \in J$$

and

$$r(m'+r'a) = rm' + (rr')a \in J,$$

$$(m'+r'a)r = m'r + r'ra \in J.$$

Hence, J is an ideal such that $M \subsetneq J$ as $a \in J \setminus M$. As M is maximal, J = R; thus $1 \in J$. There exist $m \in M$ and $r \in R$ such that 1 = m + ra. Then,

$$(r+M)(a+M) = ra + M = 1 + M;$$

hence a + M is a unit.

¹A *chain* in a poset (P, \leq) is a totally ordered subset of P.

(⇐) As $1 + M \neq 0 + M$, $1 \notin M$, i.e., M is a proper ideal by Example 6.1.6 (ii). Let J be an ideal in R such that $M \subsetneq J$. There exists some $a \in J \setminus M$ so that $a + M \neq 0 + M$. Hence, there exists $b + M \in R/M$ such that ab + M = (a + M)(b + M) = 1 + M, i.e., $m \triangleq ab - 1 \in M \subseteq J$. As $ab \in J$ as $a \in J$, we have $1 = ab - m \in J$; hence J = R by Example 6.1.6 (ii).

Corollary 6.3.7

Let R be a commutative ring with identity. Then, every maximal ideal in R is a prime ideal in R.

Proof. Let M be a maximal ideal in R. Then, R/M is a field by Theorem 6.3.6. In particular, R/M is an integral domain. Hence, by Theorem 6.3.3, M is a prime ideal.

Corollary 6.3.8

Let R be a commutative ring with identity. Then, (0) is a maximal ideal if and only if R is a field.

Proof. This directly follows from $R \cong R/(0)$ and Theorem 6.3.6.

6.4 Rings of Fractions

Definition 6.4.1: Multiplicative Set

Let R be a commutative ring. Then, $D \subseteq R$ is said to be *multiplicative* if every element of D is a nonzero divisor and D is closed under multiplication.

Lemma 6.4.2

Let *R* be a commutative ring and let $D \subseteq R$ be a multiplicative set. Then, the relation \sim on $R \times D$ defined by

$$(r,d) \sim (s,e) \iff re = sd$$

is an equivalence relation. Moreover, if $Q \triangleq \{[a] \mid a \in R \times D\}$ is the set of equivalence classes, then the structure $(Q, +, \cdot)$ defined by

$$\frac{a}{b} + \frac{c}{d} \triangleq \frac{ad + bc}{bd}$$

and

$$\frac{a}{b} \cdot \frac{c}{d} \triangleq \frac{ac}{bd}$$

where a/b denote the equivalence class [(a, b)] is well-defined and is a commutative ring with identity such that every element of form d/d' where $d, d' \in D$ is a unit.