# **Emotion and Theme Recognition in Music with Frequency-Aware Receptive Field Regularized CNNs**



Khaled Koutini, <u>Shreyan Chowdhury</u>, Verena Haunschmid, Hamid Eghbal-Zadeh, Gerhard Widmer



MediaEval 2019
10th Anniversary Workshop
27-29 October 2019
EURECOM, Sophia Antipolis, France





# **Agenda**

- Overview
- Approaches
  - What worked
  - What didn't work
- Results
- Conclusion



### **Takeaways**

#### Insights

Make the network see less of the input to avoid overfitting.

Frequency context helps.

Ensembling helps.

#### Results

| <u>Validation PR-AUC</u> | Testing PR-AUC    |
|--------------------------|-------------------|
| 0.1189                   | 0.1546            |
| _                        | 0.1077 (baseline) |



#### **Overview**

- Emotion and theme recognition task instance of auto-tagging.
- Current state-of-the-art in many audio tasks, including audio-tagging uses
   CNNs in a VGG-like architecture.
- Input: Time-Frequency representation of audio (Spectrograms)





#### **Overview**

- The success of CNNs started in computer vision tasks.
- Later improvements on CNNs architectures made the networks deeper.
- Deeper architectures such as ResNet and DenseNet don't perform as well in audio processing tasks.



# **Approach: Baseline Models**

- VGG-like
- ResNet18, ResNet34, ResNet50
- CRNN Convolutional Recurrent Neural Network

| Model    | Validation PR-AUC | Testing PR-AUC |
|----------|-------------------|----------------|
| VGG-like | -                 | 0.1077         |
| ResNet34 | 0.0924            | 0.1021         |
| CRNN     | 0.0924            | 0.1172         |



#### Deeper = Better?

- ResNet [1] and DenseNet [2] variants outperform earlier (and shallower)
   VGG-based [3] variants by a significant margin (Vision tasks).
- They address shortcomings of VGG such as the vanishing gradient.





#### Deeper = Better? Can lead to overfitting

Hershey et al. [8] compared various vision CNNs on a large-scale dataset of 70M audio clips from YouTube.

- ResNet-50 can perform very well.
- However, training such deep architectures on smaller datasets results in heavy overfitting on the training samples.



### The Receptive Field in CNNs

- In fully-connected layers, each neuron is affected by the whole input. In contrast, in convolutional layers each neuron has a strictly limited 'field of view' (RF).
- Input values outside of this RF cannot influence the neuron's activation.
- The maximum RF can be calculated:

$$S_n = S_{n-1} * s_n$$
  
 $RF_n = RF_{n-1} + (k_n - 1) * S_n$ 

 $s_n$ ,  $k_n$  are stride and kernel size of layer n, respectively, and  $S_n$ ,  $RF_n$  are cumulative stride and RF of a unit from layer n to the network input.



### The Effective Receptive Field in CNNs

- A neuron may not actually use all the available receptive field.
- The set of input pixels or units that effectively influence a neuron is called its Effective Receptive Field (ERF) by Luo et al. [14]





#### Adapting the RF of Vision Architectures

- Changing filter sizes to change the maximum receptive field.
- We changed some filter sizes from  $3 \times 3$  to  $1 \times 1$ .
- Filter size is a hyperparameter.



# Results with Receptive Field Adaptation





#### **Frequency Aware Networks**

- Drawback of CNN for audio domain: lack of spatial ordering in convolutional layers.
- Solution: Add a channel that encodes frequency as a value in [-1, 1].





## **Shake-Shake Regularization**



**Left:** Forward training pass. **Center:** Backward training pass. **Right:** At test time.

Image source: Gastaldi, X., 2017. Shake-shake regularization. arXiv preprint arXiv:1705.07485.



#### **Ensembling**

- Stochastic Weight Averaging
  - Maintain a paired network with running average of weights
- Snapshot Averaging
  - Average the predictions of the 5 snapshots of the model during training
- Multi-model averaging
  - Average predictions from models with different initializations, RFs, etc.



#### Results

| Submission       | Validation<br>PR-AUC | Testing<br>PR-AUC |
|------------------|----------------------|-------------------|
| ShakeFAResNet*   | .1132                | .1480             |
| FAResNet*        | .1149                | .1463             |
| Avg_ensemble*    | .1189                | .1546             |
| ResNet34         | .0924                | .1021             |
| CRNN             | .0924                | .1172             |
| CP_ResNet        | .1097                | .1325             |
| VGG-ish-baseline | -                    | .1077             |
| popular baseline | -                    | .0319             |

<sup>\*:</sup> indicates an ensemble.



#### **Conclusions**

- Receptive field regularization is useful to avoid overfitting.
- Frequency-aware networks improve performance (spectrogram as input).
- Ensembling improved results.

- Future work:
  - Temporal context?
  - Perceptual features?





# Thank you! Questions?





MediaEval 2019 10th Anniversary Workshop 27-29 October 2019 EURECOM, Sophia Antipolis, France

UNIVERSITY LINZ Altenberger Str. 69 4040 Linz, Austria www.jku.at



JOHANNES KEPLER