数学B問

(100分)

【必答問題】	数学B受験者はB	1, B2, B3	を全問解答せよ。

B1	次の		を正しく	うめよ。	解答欄には智	答えのみ	を記入	せよ。
----	----	--	------	------	--------	------	-----	-----

(1)
$$a=2-\sqrt{2}$$
 のとき, $a+\frac{2}{a}=$ (7) であり, $a^2+\frac{4}{a^2}=$ (4) である。

(2) 不等式 3(x-2) < 2x-5 ……① の解は (ウ) である。

また, xが不等式①を満たすことは, x<0 であるための

- に当てはまるものを、下の①~④のうちから1つ選べ。
- 必要十分条件である
- 必要条件であるが、十分条件でない
- ③ 十分条件であるが、必要条件でない
- (4) 必要条件でも十分条件でもない
- (3) 頂点が点(1,3)で,点(-1,-5)を通る放物線を表す2次関数は,y= め
- (4) 次のデータは、あるクラス 10人の数学の小テストの得点である。

7, 5, 8, 6, 7, 1, 10, 4, 3, 9

このとき,中央値は め であり,第1四分位数は (+)

(5) 男子2人,女子5人,計7人の生徒がいる。この中から委員3人を選ぶ方法は、全部で

通りあり、このうち少なくとも1人は男子である選び方は、全部で ある。

(配点 20)

- B2 白玉が2個入っている袋がある。コインを1枚投げて、表が出れば赤玉を1個、裏が出 れば白玉を1個、この袋に入れる操作を3回行い、袋の中の玉の個数を5個にする。さらに. この袋から3個の玉を同時に取り出し、取り出された赤玉の個数をXとする。
 - (1) コインを3回投げた結果,袋の中の玉が白玉5個になっている確率を求めよ。
 - (2) X=3 である確率を求めよ。
 - (3) X=2 である確率を求めよ。また,X=2 であるとき、3回ともコインが表である条件(配点 20) 付き確率を求めよ。

- f B3 AB=3, $\angle A=60^\circ$ の $\triangle ABC$ があり、 $\triangle ABC$ の外接円の半径は $\frac{\sqrt{39}}{3}$ である。
 - (1) 辺BCの長さを求めよ。
 - -(2) 辺ACの長さを求めよ。また、tan B の値を求めよ。
 - (3) 直線 BC 上に $\angle BAD = 90^\circ$ となるように点 D をとる。線分 AD の長さを求めよ。また,線分 AC を折り目として, $\triangle ACD$ を折り曲げ,平面 ABC と平面 ACD が垂直になるようにする。折り曲げた後の点 D に対して,線分 BD の長さを求めよ。 (配点 20)

【選択問題】 数学B受験者は、次のB4 \sim B8 のうちから2題を選んで解答せよ。

 $\mathbf{B4}$ 整式 $P(x) = x^3 - (k+4)x^2 + (2k+5)x + 3k + 10$ (k は実数の定数) がある。

(1) P(-1)の値を求めよ。

0

- (2) 3次方程式 P(x) = 0 が虚数解をもつような k の値の範囲を求めよ。
- (3) (2)のとき、3 次方程式 P(x)=0 の 3 つの解を α 、 β 、 γ とする。 $(\alpha+2\beta)^2+(\beta+2\gamma)^2+(\gamma+2\alpha)^2=11 \ となるような k の値を求めよ。$ (配点 20)

- **B5** 座標平面上に3点A(3,0), B(-1,8), C(0,1)がある。
 - (1) 2点A, Bを通る直線の方程式を求めよ。
 - (2) 3点A, B, Cを通る円 K の方程式を求めよ。
 - (3) (2)で求めた円 K の点 C を含まない弧 AB 上に点 D をとり、△ABD をつくる。△ABD の面積が 30 であるとき、点 D の座標を求めよ。 (配点 20)

- **B6** θ の方程式 $2\cos 2\theta 2\sqrt{3}\cos \theta + 2\sin^2 \theta = a$ $(0 \le \theta < 2\pi)$ ……①がある。ただし、a は定数とする。
 - (1) $t = \cos\theta$ とおくとき、 $\cos 2\theta$ を t を用いて表せ。また、①の左辺を t を用いて表せ。
 - (2) $a = \frac{9}{2}$ のとき, ①を満たす θ の値を求めよ。
 - (3) ①の解がちょうど3個存在するとき, aの値を求めよ。

(配点 20)

- $\mathbf{B7}$ 数列 $\{a_n\}$ は等差数列であり、 $a_3=-11$ 、 $a_9-a_6=6$ を満たしている。
 - (1) 数列 $\{a_n\}$ の公差を求めよ。また、数列 $\{a_n\}$ の一般項 a_n をnを用いて表せ。
 - (2) $S_n = a_1 + a_2 + a_3 + \dots + a_n$ ($n = 1, 2, 3, \dots$) とする。 S_n を最小にするn の値を求めよ。また、 S_n の最小値を求めよ。
 - (3) $\sum_{k=1}^{7} \frac{1}{a_k a_{k+1}}$ の値を求めよ。また, $n \ge 9$ のとき, $\sum_{k=1}^{n} \frac{1}{|a_k a_{k+1}|}$ を n を用いて表せ。

(配点 20)

- f B8 $\triangle OAB$ の辺 OA の中点を C,辺 OB を 1:4 に内分する点を D,線分 CD を 1:2 に内分する点を P とする。また,直線 OP と辺 AB の交点を Q とし, $\overrightarrow{OA}=\overrightarrow{a}$, $\overrightarrow{OB}=\overrightarrow{b}$ とする。
 - (1) \overrightarrow{OD} を \overrightarrow{b} を用いて表せ。また, \overrightarrow{OP} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。
 - (2) $\overline{OQ} = k \overline{OP}$ (k は実数)を満たす k の値を求めよ。
 - (3) $|\vec{a}|=1$, $|\vec{b}|=3$ とする。 $|\overrightarrow{OQ}|=\frac{\sqrt{6}}{3}$ のとき, $\triangle OAB$ の面積を求めよ。 (配点 20)