Fundamentheorie, Tutorium 10

- 4. (i) Sei $f: U \to \mathbb{C}$ eine holomorphe Funktion und $\overline{D}_r(a) \subset U$. Falls |f(z)| > |f(a)| für alle $z \in \partial D_r(a)$, so hat f eine Nullstelle in $D_r(a)$.
- (ii) Verwenden Sie (i), um einen anderen Beweis für Gebietstreue zu geben.
- (i) If (Helig) wount out Dr(a) ein Human an.

Proces light will in OTD(a), de tre dD, (a): 1f(t) 1>1f(a)

⇒ flow hat en lobales Himmen.

(Inchthoustant, cla sourt of honorant wave (fuichthoustant)

(Identifatissetz)

Minimusprinsip f/ that cine Nullstelle.

- (ii) 2: f(u) it offen
 - · Kelme atV, suchen offere Ungelog = f(re) van fla).

 $\forall z \in \overline{D_r(a)} : f(z) \neq f(a)$ $\downarrow a$ (Identitatisentz)

· Setze S:= inf ? |f(z) - f(a)(| z ∈ 2Dr(a) } >0

Koupelt

· Bh: $D_{8/2}$ (fa)) \subseteq f(u). \Rightarrow gw: $U \rightarrow C$, $\stackrel{?}{\leftarrow} \rightarrow$ f(?)-w hat

eine Wallstelle, für alle w $\in D_{3}$ (fa)

Hiertu: Auf Z∈DD, (a) gilt:

 $|g_{\omega}(z)| = |f(z) - \omega| \approx |f(z) - f(\alpha)| - |f(\alpha) - \omega|$ $\approx \frac{\delta}{2} \approx |f(\alpha) - \omega| = |g_{\omega}(\alpha)|$

Bestimmen Sie die maximale offene Scheibe mit Mittelpunkt im Ursprung, welche von der holomorphen Funktion

(i) $z^2 + z$ (ii) e^z offen vach dem Offentetsiste

biholomorph auf ein Gebiet in C abgebildet wird.

Sei
$$r > 0$$
 des maximale Radius unit $f : D_r(0) \stackrel{\cong}{\to} f D_r(0)$

Lubunogni, nichthaust.

Es gewigt zu grüfen: $f : D_r(0) \longrightarrow f(D_r(0))$ ist nichter

to generat zu privilen: $f: \mathcal{D}_{r}(0) \longrightarrow f(\mathcal{D}_{r}(0))$ ist injective und die Umhehrstet of lestourph (=) f'70 plotwere

(i)
$$f: Z \mapsto z^2 + z$$
. $f'(z) = 2z + 1$ lost Willstelle be; $-\frac{1}{2}$.
 $\Rightarrow f$ besitzt run $f(-\frac{1}{2})$ beine lolomoph

$$\Rightarrow$$
 f besitzt run $f(-\frac{1}{2})$ keine holomophe

Umkeling. $\Rightarrow r = \frac{1}{2}$.

Beh:
$$r = \frac{1}{2}$$
.

 $z_1 \omega \in \mathcal{D}_{\eta_2}(0)$

$$0 = f(z) - f(\omega) = z^2 + z - \omega^2 - \omega = (z - \omega)(z + \omega) + z - \omega = (z - \omega)(z + \omega + 1)$$

$$= (z-\omega)(z+\omega) + z-\omega = (z-\omega)(z+\omega+1)$$

$$0 \neq z + \omega + 1, \text{ da soust } z+\omega \in \partial D_{\epsilon}(0), \text{ w.}$$

(ii)
$$f = e^2$$
, $f' = f \neq 0$ Taberall

Depen $f(\pi i) = -1 = f(-\pi i)$ folget $\Gamma = \pi$

Pal: $\Gamma = \pi$.

 $z_{,,U} \in D_{\pi}(0)$
 $f(z) = f(\omega) \implies e^{e(z)} = |f(z)| = |f(\omega)| = e^{Re(\omega)}$
 $\Rightarrow Re(z) = Re(\omega)$ and do Injetchnish

Non $exp|_R$
 $\Rightarrow e^{i\pi L(z)} = e^{i\pi L(\omega)} \implies Im(z) = Im(\omega) + Im(\omega)$
 $\Rightarrow 2\pi L = Im(z) - Im(\omega) \in D_{\pi}(0)$
 $\Rightarrow L = 0$
 $\Rightarrow Z = \omega$.

$$von \quad exp|_{\mathbb{R}}$$

$$von \quad exp|_{\mathbb{R}}$$

$$\Rightarrow \quad tm(z) = tm(\omega) + 2\pi k$$

$$O \quad O \quad dk \in \mathbb{Z}$$

$$\mathcal{D}_{T}(0)$$

$$\Rightarrow \quad 2\pi k = tm(z) - tm(\omega) \in \mathcal{D}_{T}(0)$$

$$\Rightarrow \quad k = 0$$

$$\Rightarrow \quad z = \omega$$

- 3. (i) Für jede ganze Funktion f mit $f(\mathbb{R}) \subset \mathbb{R}$ gilt $f(\overline{z}) = \overline{f(z)}$. Hinweis: Spiegelungsprinzip und Identitätssatz. (ii) Für jede ganze Funktion f mit $f(S^1) \subset S^1$ gilt $f(\overline{z}^{-1}) \stackrel{\checkmark}{=} \overline{f(z)}^{-1}$. (iii) Bestimmen Sie alle ganzen Funktionen f mit $f(S^1) \subset S^1$. (i) ist listeringh & stelly fortsettler and \overline{H} (derch f) with Randweskn $\subseteq \mathbb{R}$ ($f(\mathbb{R}) \subseteq \mathbb{R}$) FF: C -> C _ lidousph, $f'/_{L} = f/_{\#}$ P Yz∈ C: }(=) = f(z) Idenhitāksatz £ = £ f(\bar{z}) = \overline{f(\bar{z})} \forall \text{ZER $\mathbb{C}^{\times} \setminus \mathbb{S}^{1} = \mathbb{D}_{1}(0) \coprod (\mathbb{C}^{\times} \setminus \overline{\mathbb{D}_{1}(0)})$ (ic) Erste Idee: 24 digitele Voerign ist eine Involution, antilul. mit Stripht? = 51 and sie
- Vertausuit \mathcal{U}_{+} & \mathcal{U}_{-} . Woch the printer: Bild $(f|_{\mathcal{U}_{+}})\subseteq\mathbb{C}^{\times}$

Attenatio: Cooler Trick: Betrackle

$$g: C^{\times} \longrightarrow C,$$
 $f(\overline{z}^{-1}) f(\overline{z})$

Lubouroph

als Komposition

von "autil + lul + lul + autilul"

 $f(\overline{z}^{-1}) f(\overline{z}) = f(\overline{z}) f(\overline{z}) = 1$
 $f(\overline{z}^{-1}) f(\overline{z}) = f(\overline{z}) f(\overline{z}) = 1$
 $f(\overline{z}) \in S^{1}$
 $f(\overline{z}) \in S^{1}$
 $f(\overline{z}) \in S^{1}$

$$f(z) = \frac{f(z^{-1})}{f(z^{-1})} f(z) = \frac{f(z)}{f(z)} f(z) = 1$$

22 = 1 (FCS') \(S')

 \Rightarrow g = 1 and gand \mathbb{C}^{\times} (tclenhitatesalz: to jet house, le

$$\Rightarrow g = 1 \text{ out } gaut C^{\times} \text{ (telephitatesalz:} \\ \text{to gitt bouneyale} \\ \text{tolyen } \in (5^{1})^{\mathbb{N}} \text{)}$$

$$\Rightarrow \forall 2 \in C^{\times}: f(\overline{z}^{-1}) = f(2)^{-1}$$

$$\forall z \in \mathbb{C}^{k} : f(\overline{z}^{-1}) = f(z)^{-1}$$

$$f(\overline{z}^{-1}) = \overline{f(z)}^{-1}$$
(insbesondere $f(\overline{z}) \neq 0 \quad \forall z \in \mathbb{C}^{k}$)

(m) Se $f: \mathbb{C} \to \mathbb{C}$ but, $f(S^1) = S^1$, $(\Rightarrow) f \neq 0$ Wir wisher $f(C^{\times}) \in C^{\times}$. Sei m do Orden du Kullstelle van frum O, No (m +00 da f \neq 0) uit ensur ledous phen $h: \mathbb{C} \longrightarrow \mathbb{C}$ $h(0) \neq 0$ d.h. $f = z^m h$ Wits: h = koust. $f(S^{1}) \subseteq S^{1} \implies \mathcal{L}(S^{1}) \subseteq S^{1} \implies \forall z \in \mathbb{C}^{\times} : \mathcal{L}(\overline{z}^{-1}) = \overline{\mathcal{L}(z_{1})}^{-1}$ $(S^{1})^{m} \subset S^{1} \qquad (S^{1})^{m} \in S^{1} \qquad (S^{1})^{m$ (51) m E 51 that wint ouf D, (0) ein Ulinimur an, sagen wir ki x. Fells x = 0 => (h) hat labeles Klinium +0 len-prints le houstant x≠0 ⇒ Yye C\D1(0): $|L(y)| = |L(y)^{-1}| \leq |L(x)^{-1}|$ => \tec: \(\lambda(2)\) \le \(\frac{7}{4}\) \(\frac{1}{4}\) \(=) he sexhault => he houstout.

$$\Rightarrow \begin{cases} f: \mathbb{C} \to \mathbb{C} \text{ blowoph }, f(S') \subseteq S' \frac{3}{2} \\ = \begin{cases} \mathbb{C} \to \mathbb{C}, z \mapsto az^{m} \end{cases} \\ \text{mENo, } a \in S' \frac{3}{2} \end{cases}$$

- 5. (i) Nichtkonstante Polynomabbildungen $P: \mathbb{C} \to \mathbb{C}$ sind eigentlich.
 - (ii) Die Bilder eigentlicher Abbildungen $\mathbb{C} \to \mathbb{C}$ sind abgeschlossen.

 ${\it Erl\"{a}uterung}$: Eine stetige Abbildung heißt $\it eigentlich,$ wenn die Urbilder von Kompakt sind.

- (iii) Folgern Sie den Fundamentalsatz der Algebra aus
- (a) Teil (i) und dem Minimumprinzip.
- (b) Teil (i+ii) und Gebietstreue.

Das fort aus: MCC nubestrukt => P(M) SC

For (xn) new & HH , |xu| = 200 00, down

(Analysis 1?)

(P + lears out)

(i) Sei C:= 1P(0) P Polynoufullion P'(Dc(0)) ist hought (nech (i)) => JU70: P-1(D_(6)) = D_(6) 171 munt ouf Dulo) en Himmum an, Far 2 E D (0) . (P(2) (> C = 1P(0)) → × € Du (o). \Rightarrow P houstand ode P(x) = 0. IPI leat Ideales Minim 4 Winnungerizip (ii) P(C) ist offen (falls P+ learner) P(C) ist abyschlassen ((i)+(ii))

P(C) ist algorithmsen ((i)+(ii)) C ist gusumethänged $\Rightarrow P(C)=C$. $\Rightarrow P^{-1}(903) \neq \phi$.

- 1. Sei f eine nahe 0 definierte holomorphe Funktion mit f(0) = 0 und $f'(0) \neq 0$. Dann existiert für $n \in \mathbb{N}$ eine nahe 0 definierte holomorphe Funktion g mit $f(z^n) = g(z)^n$. Für sie gilt $g(\omega z) = \omega g(z)$ nahe 0 mit $\omega = e^{2\pi i/n}$.
- \Rightarrow f(t) = 2 h(t) with A f'(0)=0 f(0)=0 Nahe 7=0
- h below ph relie 0 2 h(0) +0
- $\mathcal{E} := \frac{\mu(o)}{a}$ ist $\mathcal{D}_{\varepsilon}(\mu(o)) \in \mathbb{C}^{\times} \setminus \mathbb{R}_{0}$ (-\h(o))
- ٤ (١٥) her gist as sine n-te hursel w:DE(h(0)) -9 C,
 - N(F) = F g: U= (l. (2 - 2 -)) (DE (L(0))) 0 D - C
 - 9(2)= Zw(h(2")) Krisscheik un 0 = Ref. keich
- U it line offine May van 0. van f $0 \neq 0 \neq 0 \neq 0$ (1) $g(e^{2\pi i / n} \neq 0) = e^{2\pi i / n} \neq 0$ (2) $g(e^{2\pi i / n} \neq 0) = e^{2\pi i / n} \neq 0$
 - $= e^{2\pi i/\mu} g(7)$
- f(z) = z L(z) = z (w(L(z))) (૨) $= g(\tau)^{n}.$