CSC 212

Data Structures and Abstractions Spring 2016

Lecture 14: Priority Queues and Heaps

Administrativia

Ranking (contest) congrats!

don't have a group yet? we'll assign you one tomorrow radiusSearch on kd-trees on your own (ask questions!) come prepared for the interview on April 6th

15 bonus points on final if you create a client-server application using sockets!

Consider Linux

Balanced BSTs

	sequential search (unordered sequence)	binary search (ordered sequence)	AVL
search	O(n)	O(log n)	O(log n)
insert	O(n)	O(n)	O(log n)
delete	O(n)	O(n)	O(log n)
min/max	O(n)	O(1)	O(log n)
floor/ceiling	O(n)	O(log n)	O(log n)
rank	O(n)	O(log n)	O(log n) **

** requires the use of 'size' at every node

1

2

3

Quiz

How to remove data from an AVL tree?

Can we sort using balanced trees? Cost?

Priority Queues

Queues Enqueue Dequeue

4

5

6

Priority Queues

7

Applications

Data Compression (huffman trees)

Network Routing Process Scheduling (CPUs)

Graph Algorithms

Artificial Intelligence (search)

Stream Data Algorithms

HPC Task Scheduling

Priority Queues

Collections of <Key, Value> pairs

keys are objects on which an order is defined

Every pair of keys must be comparable according to a total order:

Reflexive Property: $k \le k$

Antisymmetric Property: if $k_1 \leq k_2$ and $k_2 \leq k_1$, then $k_1 = k_2$

9

Transitive Property: if $k_1 \leq k_2$ and $k_2 \leq k_3$, then $k_1 \leq k_3$

Priority Queues

Queues

basic operations: **enqueue**, **dequeue**always remove the item least recently added

Priority Queues (MaxPQ)

basic operations: insert, removeMax always remove the item with highest (max) priority

Can also be implemented as a MinPQ

10

=xample	e (Min	PQ)
---------	--------	-----

Method	Return Value	Priority Queue Contents
insert(5,A)		{ (5,A) }
insert(9,C)		{ (5,A), (9,C) }
insert(3,B)		{ (3,B), (5,A), (9,C) }
min()	(3,B)	{ (3,B), (5,A), (9,C) }
removeMin()	(3,B)	{ (5,A), (9,C) }
insert(7,D)		{ (5,A), (7,D), (9,C) }
removeMin()	(5,A)	{ (7,D), (9,C) }
removeMin()	(7,D)	{ (9,C) }
removeMin()	(9,C)	{ }
removeMin()	null	{ }
isEmpty()	true	{ }

From Algorithm Design and Applications, Goodrich & Tamassia

Performance?

	Sorted Array/List	Unsorted Array/List	AVL
insert			
removeMax			
max			

0 11 12

Performance

	Sorted Array/List	Unsorted Array/List	AVL
insert	O(n)	O(1)	O(log n)
removeMax	O(1)	O(n)	O(log n)
max	O(1)	O(n)	O(log n)

13 14 15

(max) Heap

Structure Property

a heap is a complete binary tree

Heap-Order Property

for every node x, key(parent(x)) >= key(x) except the root, which has no parent

Height of a heap?

What is the minimum number of nodes in a complete binary tree of height **h**?

16 17 18

20 21

3 15 18 5 9 31 7 50 30 47 25 22 45 45 3 15 18 5 9 31 7

removeMax

Max element is the the **first** element of the array the root of the heap

Copy last element of array to first position then decrement array size by 1 (removes last element)

Check heap-order property
if violated, **Down-Heap** (swap with **larger** child)
repeat until heap-order is restored
if not, we are done

O(log n)

28 29 30

31 32 33

Performance

	Sorted Array/List	Unsorted Array/ List	AVL	Неар
insert	O(n)	O(1)	O(log n)	
removeMax	O(1)	O(n)	O(log n)	
max	O(1)	O(n)	O(log n)	
insert N	O(n²)	O(n)	O(n log n)	

Performance

	Sorted Array/List	Unsorted Array/ List	AVL	Неар
insert	O(n)	O(1)	O(log n)	O(log n)
removeMax	O(1)	O(n)	O(log n)	O(log n)
max	O(1)	O(n)	O(log n)	O(1)
insert N	O(n²)	O(n)	O(n log n)	O(n)**

(**) assuming we know the sequence in advance (buildHeap)

buildHeap

34 35 36

Problem

Build a heap by inserting a sequence of ${\bf n}$ elements

'easy': call insert n times

O(n log n)

Can we do it in **linear time**?

buildHeap

Place **n** items into the tree (array) in any order keeps structure property

Perform **Down-Heap** on each internal node from parent(n) to 1 keeps heap-order property

39

30

15

22

18

internal nodes

buildHeap example

input: 10 42 25 13 17 33 45 50 15 22 30 18

37

38

31

buildHeap example

input: 10 42 25 13 17 33 45 50 15 22 30 18

40

buildHeap example

input: 10 42 25 13 17 33 45 50 15 22 30 18

41

buildHeap example

input: 10 42 25 13 17 33 45 50 15 22 30 18

42

buildHeap example

input: 10 42 25 13 17 33 45 50 15 22 30 18

buildHeap example

input: 10 42 25 13 17 33 45 50 15 22 30 18

buildHeap example

input: 10 42 25 13 17 33 45 50 15 22 30 18

Analysis

Cost is **sum of the heights** of all internal nodes assume tree is full and complete, thus $n=2^{h+1}-1$

46