Lesson 18. Tangent Planes and Normal Lines

0 Warm up

Example 1. Let *P* be the point (2,0,1) and $\vec{v} = \langle 1,-2,5 \rangle$.

- a. Find parametric equations of the line that passes through *P* and is parallel to \vec{v} .
- b. Find an equation of the plane through point *P* with normal vector \vec{v} .

1 Tangent planes and normal lines in 3D

- Consider a surface with equation F(x, y, z) = k
- The gradient $\nabla F(x_0, y_0, z_0)$ is

to the surface at (x_0, y_0, z_0)

- The **tangent plane to the surface** F(x, y, z) = k at (x_0, y_0, z_0) is the plane that
 - passes through (x_0, y_0, z_0) and
 - ∘ has normal vector $\nabla F(x_0, y_0, z_0)$
- Equation of tangent plane to F(x, y, z) = k at (x_0, y_0, z_0) :

ampic 2.	Find an equation of th	ne tangent plane	to the ellipso	$\frac{10}{9} + y^2 + \frac{1}{9}$	$\frac{1}{4}$ = 3 at the	point $(-3, 1, -2)$
ample 3.	Find an equation of th	ne tangent plane	to the surface	$e z = 2x^2 + y^2$	at the point	(1,1,3).
pasis p	hal line to the surface ses through (x_0, y_0, z_0) erpendicular to the ta ic equations of the no	ngent plane (i.e.	, is parallel to	$\nabla F(x_0, y_0, z_0)$		
	1	(1)		(10)		
ample 4.	Find the normal line	to the ellipsoid	$\frac{x^2}{9} + y^2 + \frac{z^2}{4} =$	= 3 at the poir	at $(-3,1,-2)$.	

2 Tangent lines in 2D

• The **tangent line to the curve** f(x, y) = k at (x_0, y_0) is given by

 $\nabla f(x_0, y_0)$ $P(x_0, y_0)$ evel curve f(x, y) = k

Example 5. Let $g(x, y) = x^2 + y^2 - 4x$. Find the tangent line to the curve g(x, y) = 1 at the point (1, 2).