Arrays and Matrices Chapter - 7

2D Arrays

The elements of a 2-dimensional array a declared as:

```
int [][]a = new int[3][4];
```

may be shown as a table

```
a[0][0] a[0][1] a[0][2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3]
```

Rows Of A 2D Array

Columns Of A 2D Array


```
column column column 0 1 2 3
```

2D Array Representation In C++

2-dimensional array x

```
a, b, c, de, f, g, hi, j, k, l
```

```
view 2D array as a 1D array of rows x = [row0, row1, row 2] row 0 = [a,b, c, d] row 1 = [e, f, g, h] row 2 = [i, j, k, l] and store as 4 1D arrays
```

2D Array Representation In C++


```
space overhead = overhead for 4 1D arrays

= 4 * 4 bytes

= 16 bytes

= (number of rows + 1) x 4 bytes
```

Array Representation In C++

- This representation is called the array-of-arrays representation.
- Requires contiguous memory of size 3, 4, 4, and 4 for the 4 1D arrays.
- 1 memory block of size number of rows and number of rows blocks of size number of columns

Row-Major Mapping

- In general, for 3 dimension, $map(i_1,i_2,i_3) = i_1u_2u_3+i_2u_3+i_3$
- Example 3 x 4 array:

```
abcd
efgh
ijkl
```

- Convert into 1D array y by collecting elements by rows.
- Within a row elements are collected from left to right.
- Rows are collected from top to bottom.
- We get y {a, b, c, d, e, f, g, h, i, j, k, l}

Locating Element x[i][j]

row 0 row 1 row 2 ... row i

- assume x has r rows and c columns
- each row has c elements
- i rows to the left of row i
- so ic elements to the left of x[i]
 [0]
- so x[i][j] is mapped to position
 ic + j of the 1D array

Space Overhead

row 0 row 1 row 2 ... row i

- 4 bytes for start of 1D array +
- 4 bytes for c (number of columns)
- = 8 bytes

Disadvantage: Need contiguous memory of size rc

Column-Major Mapping

```
abcd
efgh
ijkl
```

- Convert into 1D array y by collecting elements by columns.
- Within a column elements are collected from top to bottom.
- Columns are collected from left to right.
- We get {a, e, i, b, f, j, c, g, k, d, h, l}

Exercise

- Suppose, we want to map the elements of a two dimensional array beginning with bottom row and within a row from left to right order.
- a) List the indexed of score[3][5] in this order
- b) Develop a mapping function for the score[u₁ u₂]
- (a)
 The ordering of the indexes is:

 [2][0] [2][1] [2][2] [2][3] [2][4] [1][0] [1][1] [1][2] [1][3] [1][4]

 [0][0] [0][1] [0][2] [0][3] [0][4]

(b)

The elements with first index i₁ are preceded by (u₁ - i₁ - 1)u₂ elements that have a larger first index. Since the elements with the same first index are stored from right to left,

```
map(i_1, i_2) = (u_1 - i_1 - 1)u_2 + i_2
```

Matrix

A mxn matrix is a table with m rows and n columns. m and n are dimensions of the matrix.

```
a b c d row 1
e f g h row 2
i j k l row 3
```

- Use notation x(i,j) rather than x[i][j].
- May use a 2D array to represent a matrix.
- Operations performed: Addition, Multiplication, Transpose

```
Header cla
Matrix with
operator
overloadin
```

};

```
template<class T>
class matrix
   friend ostream& operator << (ostream&, const matrix < T>&);
   public:
      matrix(int theRows = 0, int theColumns = 0);
      matrix(const matrix<T>&);
      "matrix() {delete [] element;}
      int rows() const {return theRows;}
      int columns() const {return theColumns;}
      T& operator()(int i, int j) const;
      matrix<T>& operator=(const matrix<T>&);
      matrix<T> operator+() const; // unary +
      matrix<T> operator+(const matrix<T>&) const;
      matrix<T> operator-() const; // unary minus
      matrix<T> operator-(const matrix<T>&) const;
      matrix<T> operator*(const matrix<T>&) const;
      matrix<T>& operator+=(const T&);
   private:
       int theRows, // number of rows in matrix
           theColumns: // number of columns in matrix
       T *element:
                       // element array
```

```
Construct or and copy construct or
```

```
template<class T>
matrix<T>::matrix(int theRows, int theColumns)
{// matrix constructor.
   // validate theRows and theColumns
   if (theRows < 0 || theColumns < 0)
      throw illegalParameterValue("Rows and columns must be >= 0");
   if ((theRows == 0 || theColumns == 0)
                && (theRows != 0 || theColumns != 0))
      throw illegalParameterValue
      ("Either both or neither rows and columns should be zero");
   // create the matrix
   this->theRows = theRows;
   this->theColumns = theColumns;
   element = new T [theRows * theColumns];
template<class T>
matrix<T>::matrix(const matrix<T>& m)
{// Copy constructor for matrices.
   // create matrix
   theRows = m.theRows;
   theColumns = m.theColumns;
   element = new T [theRows * theColumns];
   // copy each element of m
  copy(m.element,
        m.element + theRows * theColumns,
        element);
```

Overload = operator

```
template<class T>
matrix<T>& matrix<T>::operator=(const matrix<T>& m)
{// Assignment. (*this) = m.
   if (this != &m)
   {// not copying to self
      delete [] element;
      theRows = m.theRows;
      theColumns = m.theColumns;
      element = new T [theRows * theColumns];
      // copy each element
      copy(m.element,
           m.element + theRows * theColumns,
           element);
   }
   return *this;
```

Overload () operator

```
template < class T>
T& matrix < T>:: operator()(int i, int j) const
{// Return a reference to element (i,j).
    if (i < 1 || i > theRows
        || j < 1 || j > theColumns)
    throw matrixIndexOutOfBounds();
    return element[(i - 1) * theColumns + j - 1];
}
```

Matrix Addition

```
template<class T>
matrix<T> matrix<T>::operator+(const matrix<T>& m) const
\{// \text{ Return } w = (* \text{this}) + m.
   if (theRows != m.theRows
       || theColumns != m.theColumns)
      throw matrixSizeMismatch();
   // create result matrix w
   matrix<T> w(theRows, theColumns);
   for (int i = 0; i < theRows * theColumns; i++)
      w.element[i] = element[i] + m.element[i];
   return w:
}
```

Matrix multiplication

```
template<class T>
matrix<T> matrix<T>::operator+(const matrix<T>& m) const
{// matrix multiply. Return w = (*this) * m.
  if (theColumns != m.theRows)
     throw matrixSizeMismatch():
  matrix<T> v(theRows, m.theColumns); // result matrix
  // define cursors for *this, n, and w
  // and initialize to location of (1.1) element
  int ct = 0, cm = 0, cw = 0;
  // compute w(i,j) for all i and j
  for (int i = 1: i <= theRows: i++)
  {// compute row i of result
     for (int j = 1; j <= m.theColumns; j*+)
     { // compute first term of w(i,j)
         T sun = element[ct] * m.element[cm];
         // add in remaining terms
          for (int k = 2; k <= theColumns; k++)
             ct++; // next term in row i of *this
             cm += m.theColumns; // next in column j of m
             sum += element[ct] * n.element[cn]:
          w.element[cw++] = sum; // save w(i,j)
          // reset to start of row and next column
          ct -= theColumns - 1:
          cm - í:
     }
      // reset to start of next row and first column
     ct += theColumns;
                 1:
  return w;
```

Special Matrices

•Tridiagonal:

Matrix M is tridiagonal iff M(i,j) = 0 for |i-j| > 1

Upper Traingular:

Matrix M is upper triangular iff M(i,j) = 0 for I > j

•Symmetric:

Matrix M is symmetric iff M(i,j) = M(j,i) for all i and j

Diagonal Matrix

```
template<class T>
class diagonalMatrix
€
  public:
      diagonalMatrix(int theN = 10);
      "diagonalMatrix() {delete [] element;}
      T get(int, int) const;
      void set(int, int, const T&);
   private:
                   // matrix dimension
      int n:
      T *element; // 1D array for diagonal elements
template<class T>
diagonalMatrix<T>::diagonalMatrix(int theN)
{// Constructor.
   // validate theN
   if (theN < 1)
       throw illegalParameterValue("Matrix size must be > 0");
   n = theN:
   element = new T [n];
```

Get Method for Diagonal Matrix

```
template <class T>
T diagonalMatrix<T>::get(int i, int j) const
{// Return (i,j)th element of matrix.
   // validate i and j
   if (i < 1 || j < 1 || i > n || j > n)
       throw matrixIndexOutOfBounds():
   if (i == j)
      return element[i-1]; // diagonal element
   else
      return 0;
                             // nondiagonal element
```

Set Method for Diagonal Matrix

```
template<class T>
void diagonalMatrix<T>::set(int i, int j, const T& newValue)
{// Store newValue as (i,j)th element.
   // validate i and j
   if (i < 1 || j < 1 || i > n || j > n)
       throw matrixIndexOutOfBounds();
   if (i == j)
     // save the diagonal value
      element[i-1] = newValue:
   else
      // nondiagonal value, newValue must be zero
      if (newValue != 0)
         throw illegalParameterValue
               ("nondiagonal elements must be zero");
```

Diagonal Matrix

```
1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4
```

- An n x n matrix in which all nonzero terms are on the diagonal.
- x(i,j) is on diagonal iff i = j
- number of diagonal elements in an n x n matrix is n
- store diagonal only vs n² whole

Lower Triangular Matrix

An n x n matrix in which all nonzero terms are either on or below the diagonal.

```
1 0 0 0
2 3 0 0
4 5 6 0
7 8 9 10
```

- x(i,j) is part of lower triangle iff $i \ge j$.
- number of elements in lower triangle is $1 + 2 + \dots + n = n(n+1)/2$.
- store only the lower triangle

Array Of Arrays Representation

Use an irregular 2-D array ... length of rows is not required to be the same.

Creating And Using An Irregular Array

```
// declare a two-dimensional array variable
 // and allocate the desired number of rows
 int ** irregularArray = int* [numberOfRows];
 // now allocate space for the elements in each
row
 for (int i = 0; i < numberOfRows; i++)
   irregularArray[i] = new int [length[i]];
 // use the array like any regular array
 irregularArray[2][3] = 5;
 irregularArray[4][6] = irregularArray[2][3] + 2;
```

Map Lower Triangular Array Into A 1D Array

Use row-major order, but omit terms that are not part of the lower triangle.

For the matrix

we get

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Index Of Element [i][j]

- Order is: row 1, row 2, row 3, ...
- Row i is preceded by rows 1, 2, ..., i-
- Size of row i is i.
- Number of elements that precede row i is

$$1 + 2 + 3 + ... + i-1 = i(i-1)/2$$

So element (i i) is at nosition i(i-1)/2

4 x 5 matrix

4 rows

5 columns

20 elements

6 nonzero elements

Sparse matrix ## #nonzero elements/#elements is small.

Examples:

- Diagonal
 - Only elements along diagonal may be nonzero
 - n x n matrix \square ratio is $n/n^2 = 1/n$
- Tridiagonal
 - Only elements on 3 central diagonals may be nonzero
 - Ratio is $(3n-2)/n^2 = 3/n 2/n^2$

- Lower triangular
- Only elements on or below diagonal may be nonzero
 - Ratio is $n(n+1)(2n^2) \sim 0.5$

These are structured sparse matrices.

Nonzero elements are in a well-defined portion of the matrix.

An n x n matrix may be stored as an n x n array. This takes $O(n^2)$ space.

The example structured sparse matrices may be mapped into a 1D array so that a mapping function can be used to locate an element quickly; the space required by the 1D array is less than that required by an n x n array (next lecture).

Representation Of Unstructured Sparse Matrices

Single linear list in row-major order.

scan the nonzero elements of the sparse
matrix in row-major order (i.e., scan the
rows left to right beginning with row 1
and picking up the nonzero elements)
each nonzero element is represented by a
triple

(row, column, value)
the list of triples is stored in a 1D array

Single Linear List Example

00304

00570

00000

02600

list =

row 1 1 2 2 4 4 column 3 5 3 4 2 3

value 3 4 5 7 2 6

Single Linear List

- Class SparseMatrix
 - Array of triples of type MatrixTerm row, col, value
 rows, // number of rows
 cols, // number of columns
 terms, // number of nonzero
 elements
 capacity; // size of
- •Size of generally not predictable at time of initialization.
 - Start with some default capacity/size (say 10)
 - Increase capacity as needed

Approximate Memory Requirements

500 x 500 matrix with 1994 nonzero elements, 4 bytes per element

2D array $500 \times 500 \times 4 = 1$ million bytes Class SparseMatrix $3 \times 1994 \times 4 + 4 \times 4$ = 23,944 bytes

Array Resizing

Array Resizing

- To avoid spending too much overall time resizing arrays, we generally set newSize = c * oldSize, where c >0 is some constant.
- Quite often, we use c = 2 (array doubling) or c = 1.5.
- Now, we can show that the total time spent in resizing is O(s), where s is the maximum number of elements added to smArray.

Matrix Transpose

\cap				1
U	U	3	U	4

Matrix Transpose

00304

00570

00000

02600

row 1 1 2 2 4 4

column 3 5 3 4 2 3

value 3 4 5 7 2 6

0000

0002

3506

0700

4000

2 3 3 3 4 5

4 1 2 4 2 1

2 3 5 6 7 4

Matrix Transpose Step 1: #nonzero in each row of transpose.

00304	0000	= #nonzero in each column of
	0002	original matrix
00570	3506	= [0, 1, 3, 1, 1]
00000	0700	Step2: Start of each row of transpose
02600	4000	= sum of size of preceding rows of
row 1	1 2 2 4 4	transpose
	5 3 4 2 34 5 7 2 6	= [0, 0, 1, 4, 5] Step 3: Move elements, left to right, from
value 5	4 5 / 2 0	original list to transpose list.

Matrix Transpose

Step 1: #nonzero in each row of transpose.

= #nonzero in each column

original matrix

= [0, 1, 3, 1, 1]

Step2: Start of each row of transpose

of

= sum of size of preceding rows of

transpose

= [0, 0, 1, 4, 5]

Step 3: Move elements, left to right, from

Complexity

m x n original matrix

t nonzero elements

Step 1: O(n+t)

Step 2: O(n)

Step 3: O(t)

Overall O(n+t)