Visualizing your data

DATA MANIPULATION WITH PANDAS

Maggie Matsui Senior Content Developer at DataCamp

Histograms

```
import matplotlib.pyplot as plt
```

```
dog_pack["height_cm"].hist()
```

```
plt.show()
```


The x-axis represents height ranges->range not single values

Histograms

The y-axis represents the frequency (number of dogs) in each height range(not single value).

```
dog_pack["height_cm"].hist(bins=20)
plt.show()
```

```
dog_pack["height_cm"].hist(bins=5)
plt.show()
```


bins means number of ranges .. not length of ranges

Bar plots

```
avg_weight_by_breed = dog_pack.groupby("breed")["weight_kg"].mean()
print(avg_weight_by_breed)
```

```
breed
Beagle
               10.636364
               30.620000
Boxer
Chihuahua
                1.491667
Chow Chow
               22.535714
Dachshund
                9.975000
Labrador
               31.850000
Poodle
               20.400000
St. Bernard
              71.576923
Name: weight_kg, dtype: float64
```

Bar plots

```
avg_weight_by_breed.plot(kind="bar")
plt.show()
```


Line plots

sully.head()

Rotating axis labels

```
sully.plot(x="date", y="weight_kg", kind="line", rot=45)
plt.show()
```


Scatter plots

```
dog_pack.plot(x="height_cm", y="weight_kg", kind="scatter")
plt.show()
```


Layering plots

```
dog_pack[dog_pack["sex"]=="F"]["height_cm"].hist()
dog_pack[dog_pack["sex"]=="M"]["height_cm"].hist()
plt.show()
```


Add a legend

```
dog_pack[dog_pack["sex"]=="F"]["height_cm"].hist()
dog_pack[dog_pack["sex"]=="M"]["height_cm"].hist()
plt.legend(["F", "M"])
plt.show()
```

50

60

20

Transparency


```
dog_pack[dog_pack["sex"]=="F"]["height_cm"].hist(alpha=0.7)
dog_pack[dog_pack["sex"]=="M"]["height_cm"].hist(alpha=0.7)
plt.legend(["F", "M"])
plt.show()
```


Avocados

print(avocados)

```
type
            date
                                      avg_price
                                                                 nb_sold
                                year
                                                        size
      2015-12-27
                  conventional
                                2015
                                           0.95
                                                              9626901.09
0
                                                       small
      2015-12-20
                  conventional
                                2015
                                           0.98
                                                              8710021.76
                                                       small
      2015-12-13
                  conventional
                                2015
                                           0.93
                                                       small
                                                              9855053.66
      2018-01-21
                       organic
                                                                 1490.02
                                2018
                                           1.63
                                                 extra_large
1011
     2018-01-14
1012
                       organic
                               2018
                                                 extra_large
                                                                 1580.01
                                           1.59
1013
      2018-01-07
                       organic 2018
                                           1.51
                                                 extra_large
                                                                 1289.07
[1014 rows x 6 columns]
```

Let's practice!

DATA MANIPULATION WITH PANDAS

Missing values

DATA MANIPULATION WITH PANDAS

Maggie Matsui Senior Content Developer at DataCamp

What's a missing value?

Name	Breed	Color	Height (cm)	Weight (kg)	Date of Birth
Bella	Labrador	Brown	56	25	2013-07-01
Charlie	Poodle	Black	43	23	2016-09-16
Lucy	Chow Chow	Brown	46	22	2014-08-25
Cooper	Schnauzer	Gray	49	17	2011-12-11
Max	Labrador	Black	59	29	2017-01-20
Stella	Chihuahua	Tan	18	2	2015-04-20
Bernie	St. Bernard	White	77	74	2018-02-27

What's a missing value?

Name	Breed	Color	Height (cm)	Weight (kg)	Date of Birth
Bella	Labrador	Brown	56	?	2013-07-01
Charlie	Poodle	Black	43	23	2016-09-16
Lucy	Chow Chow	Brown	46	22	2014-08-25
Cooper	Schnauzer	Gray	49	?	2011-12-11
Max	Labrador	Black	59	29	2017-01-20
Stella	Chihuahua	Tan	18	2	2015-04-20
Bernie	St. Bernard	White	77	74	2018-02-27

Missing values in pandas DataFrames

print(dogs)

	name	breed	color	height_cm	weight_kg	date_of_birth
0	Bella	Labrador	Brown	56	NaN	2013-07-01
1	Charlie	Poodle	Black	43	24.0	2016-09-16
2	Lucy	Chow Chow	Brown	46	24.0	2014-08-25
3	Cooper	Schnauzer	Gray	49	NaN	2011-12-11
4	Max	Labrador	Black	59	29.0	2017-01-20
5	Stella	Chihuahua	Tan	18	2.0	2015-04-20
6	Bernie	St. Bernard	White	77	74.0	2018-02-27

Detecting missing values

dogs.isna()

```
weight_kg date_of_birth
                      height_cm
       breed
              color
 name
                                       True
                          False
False
       False
              False
                                                      False
False
       False
              False
                          False
                                      False
                                                      False
False
       False
              False
                          False
                                      False
                                                      False
False
       False
              False
                          False
                                      rue
                                                      False
False
       False
              False
                          False
                                      False
                                                     False
       False
False
              False
                          False
                                      False
                                                      False
       False
False
              False
                          False
                                      False
                                                     False
```

From action_scifi, select only the rows where the genre_act column is null scifi_only = action_scifi[action_scifi["genre_act"].isna()]

Detecting any missing values

dogs.isna().any()

showing the col having missing value

weight col has missing values

Counting missing values

```
dogs.isna().sum()
```

```
name 0
breed 0
color 0
height_cm 0
weight_kg 2
date_of_birth 0
dtype: int64
```

Plotting missing values

```
import matplotlib.pyplot as plt
dogs.isna().sum().plot(kind="bar")
plt.show()
```


Removing missing values dropping rows

dogs.dropna()

	name	breed	color	height_cm	weight_kg	date_of_birth
1	Charlie	Poodle	Black	43	24.0	2016-09-16
2	Lucy	Chow Chow	Brown	46	24.0	2014-08-25
4	Max	Labrador	Black	59	29.0	2017-01-20
5	Stella	Chihuahua	Tan	18	2.0	2015-04-20
6	Bernie	St. Bernard	White	77	74.0	2018-02-27

Replacing missing values

dogs.fillna(0)

	name	breed	color	height_cm	weight_kg	date_of_birth
0	Bella	Labrador	Brown	56	0.0	2013-07-01
1	Charlie	Poodle	Black	43	24.0	2016-09-16
2	Lucy	Chow Chow	Brown	46	24.0	2014-08-25
3	Cooper	Schnauzer	Gray	49	0.0	2011-12-11
4	Max	Labrador	Black	59	29.0	2017-01-20
5	Stella	Chihuahua	Tan	18	2.0	2015-04-20
6	Bernie	St. Bernard	White	77	74.0	2018-02-27

Let's practice!

DATA MANIPULATION WITH PANDAS

Part Creating Creating DataFrames

DATA MANIPULATION WITH PANDAS

Maggie Matsui Senior Content Developer at DataCamp

Dictionaries

```
my_dict = {
    "key1": value1,
    "key2": value2,
    "key3": value3
}
```

```
my_dict = {
    "title": "Charlotte's Web",
    "author": "E.B. White",
    "published": 1952
}
```

```
my_dict["key1"]
```

```
my_dict["title"]
```

value1

Charlotte's Web

Creating DataFrames

From a list of dictionaries

Constructed row by row

From a dictionary of lists

Constructed column by column

dict -> row

key -> col, value-> value for that col

List of dictionaries - by row

name	breed	height (cm)	weight (kg)	date of birth
Ginger	Dachshund	22	10	2019-03-14
Scout	Dalmatian	59	25	2019-05-09

List of dictionaries - by row

name	breed	height (cm)	weight (kg)	date of birth
Ginger	Dachshund	22	10	2019-03-14
Scout	Dalmatian	59	25	2019-05-09

```
new_dogs = pd.DataFrame(list_of_dicts)
print(new_dogs)
```

```
name breed height_cm weight_kg date_of_birth

0 Ginger Dachshund 22 10 2019-03-14

1 Scout Dalmatian 59 25 2019-05-09
```

Dictionary of lists - by column

name	breed	height	weight	date of birth
Ginger	Dachshund	22	10	2019- 03-14
Scout	Dalmatian	59	25	2019- 05- 09

- **Key** = column name
- Value = list of column values

```
dict_of_lists = {
    "name": ["Ginger", "Scout"],
    "breed": ["Dachshund", "Dalmatian"],
    "height_cm": [22, 59],
    "weight_kg": [10, 25],
    "date_of_birth": ["2019-03-14",
    "2019-05-09"]
new_dogs = pd.DataFrame(dict_of_lists)
```

Dictionary of lists - by column

name	breed	height (cm)	weight (kg)	date of birth
Ginger	Dachshund	22	10	2019-03-14
Scout	Dalmatian	59	25	2019-05-09

```
print(new_dogs)
```

```
name breed height_cm weight_kg date_of_birth

O Ginger Dachshund 22 10 2019-03-14

1 Scout Dalmatian 59 25 2019-05-09
```

Let's practice!

DATA MANIPULATION WITH PANDAS

Reading and writing CSVs

DATA MANIPULATION WITH PANDAS

Maggie Matsui Senior Content Developer at DataCamp

What's a CSV file?

- CSV = comma-separated values
- Designed for DataFrame-like data
- Most database and spreadsheet programs can use them or create them

Example CSV file

name	breed	height (cm)	weight (kg)	date of birth
Ginger	Dachshund	22	10	2019-03-14
Scout	Dalmatian	59	25	2019-05-09

new_dogs.csv

name, breed, height_cm, weight_kg, d_o_b
Ginger, Dachshund, 22, 10, 2019-03-14
Scout, Dalmatian, 59, 25, 2019-05-09

CSV to DataFrame

```
import pandas as pd
new_dogs = pd.read_csv("new_dogs.csv")
print(new_dogs)
```

```
name breed height_cm weight_kg date_of_birth

O Ginger Dachshund 22 10 2019-03-14

1 Scout Dalmatian 59 25 2019-05-09
```

DataFrame manipulation

```
new_dogs["bmi"] = new_dogs["weight_kg"] / (new_dogs["height_cm"] / 100) ** 2
print(new_dogs)
```

```
name breed height_cm weight_kg date_of_birth bmi
0 Ginger Dachshund 22 10 2019-03-14 206.611570
1 Scout Dalmatian 59 25 2019-05-09 71.818443
```

DataFrame to CSV

```
new_dogs.to_csv("new_dogs_with_bmi.csv")
```

new_dogs_with_bmi.csv

```
name,breed,height_cm,weight_kg,d_o_b,bmi
Ginger,Dachshund,22,10,2019-03-14,206.611570
Scout,Dalmatian,59,25,2019-05-09,71.818443
```


Let's practice!

DATA MANIPULATION WITH PANDAS

Wrap-up DATA MANIPULATION WITH PANDAS

Maggie Matsui Senior Content Developer at DataCamp

Recap

- Chapter 1
 - Subsetting and sorting
 - Adding new columns
- Chapter 2
 - Aggregating and grouping
 - Summary statistics

- Chapter 3
 - Indexing
 - Slicing
- Chapter 4
 - Visualizations
 - Reading and writing CSVs

More to learn

- Joining Data with pandas
- Streamlined Data Ingestion with pandas
- Analyzing Police Activity with pandas
- Analyzing Marketing Campaigns with pandas

Congratulations!

DATA MANIPULATION WITH PANDAS

