ON THE BIRCH AND SWINNERTON-DYER CONJECTURE FOR CM ELLIPTIC CURVES OVER \mathbb{Q}

YONGXIONG LI, YU LIU AND YE TIAN

To John Coates for his 70th birthday

Contents

1.	Introduction and Main Theorems	1
2.	Katz's p-adic L-function and Cyclotomic p-adic Formula	3
3.	∞ -adic and p -adic Gross-Zagier Formulae	6
4.	Proof of Main Theorem 1.1	8
References		9

1. Introduction and Main Theorems

For an elliptic curve E over a number field F, we write L(s, E/F) for its complex L-function, E(F)for the Mordell-Weil group of E over F, and $\mathrm{III}(E/F)$ for its Tate-Shafarevich group. For any prime p, let $\coprod(E/F)(p)$ or $\coprod(E/\mathbb{Q})[p^{\infty}]$ denote the p-primary part of $\coprod(E/F)$. When $F=\mathbb{Q}$, we shall simply write $L(s, E) = L(s, E/\mathbb{Q})$.

Theorem 1.1. Let E be an elliptic curve over \mathbb{Q} with complex multiplication. Let p be any potentially $good\ ordinary\ odd\ prime\ for\ E.$

- (i) Assume that L(s, E) has a simple zero at s = 1. Then $E(\mathbb{Q})$ has rank one and $\coprod (E/\mathbb{Q})$ is finite. Moreover the order of $\mathrm{III}(E/\mathbb{Q})(p)$ is as predicted by the conjecture of Birch and Swinnerton-Dyer conjecture.
- (ii) If $E(\mathbb{Q})$ has rank one and $\coprod (E/\mathbb{Q})(p)$ is finite, then L(E,s) has a simple zero at s=1.

Remark. The first part of (i) is the result of Gross-Zagier and Kolyvagin. The remaining part is due to Perrin-Riou for good ordinary primes. In this paper, we deal with odd bad primes which are potentially good ordinary. The result can be easily generalized to abelian varieties over Q corresponding to a CM modular form with trivial central character.

The following theorem shows that there are infinitely many elliptic curves over \mathbb{Q} of rank one for which the full BSD conjecture hold.

Theorem 1.2. Let $n \equiv 5 \mod 8$ be a squarefree positive integer, all of whose prime factors are congruent to 1 modulo 4. Assume that $\mathbb{Q}(\sqrt{-n})$ has no ideal class of order 4. Then the full BSD conjecture holds for the elliptic curve $y^2 = x^3 - n^2x$ over \mathbb{Q} . In particular, for any prime $p \equiv 5 \mod 8$, the full BSD holds for $y^2 = x^3 - p^2x$.

Sketch of Proof. Consider the Heegner point P constructed using the Gross-Prasad test vector as the below Theorem 1.3. Using an induction argument as in [16] or [17], one can show that P is non-torsion. Thus both the analytic rank and Mordell-Weil rank of $E^{(n)}: y^2 = x^3 - n^2x$ are one.

By Perrion-Riou [12] and Kobayashi [8], we know that the p-part of full BSD holds for all primes $p \nmid 2n$. The 2-part of BSD for $E^{(n)}$ is exactly the statement on 2-divisibility in Theorem 1.3 below by using explicit Gross-Zagier formula in [2] and noting that $\dim_{\mathbb{F}_2} \mathrm{Sel}_2(E^{(n)}/\mathbb{Q})/\mathrm{Im}(E^{(n)}(\mathbb{Q})_{\mathrm{tor}}) = 1$. By Theorem 1.1, the p-part of BSD also holds for all primes p|n, since all primes p with $p \equiv 1 \mod 4$ are potentially good ordinary primes for $E^{(n)}$.

To solve the Diophantine equation $y^2 = x^3 - n^2x$ over \mathbb{Q} , we define the complex uniformization of $E^{(n)}$ by the following composition.

$$\mathcal{H} \xrightarrow{\pi} \Gamma_0(32) \backslash \mathcal{H} \cup P^1(\mathbb{Q}) = X_0(32) \xrightarrow{f_0} E^{(1)} \xrightarrow{[2-2i]} E^{(1)} \xrightarrow{\iota} E^{(n)},$$

where

- $\mathcal{H} \xrightarrow{\pi} \Gamma_0(32) \setminus (\mathcal{H} \cup P^1(\mathbb{Q})) = X_0(32)(\mathbb{C})$ is the natural quotient,
- $f_0: X_0(32) \to E^{(1)}$ is a degree 2 morphism over \mathbb{Q} mapping $[\infty]$ to O,
- [2-2i] is the multiplication by 2-2i on $E^{(1)}$, where i(x,y)=(-x,iy),
- $\iota: E^{(1)} \stackrel{\sim}{\to} E^{(n)}$ is the twist isomorphism given by $(x,y) \mapsto (-nx, (-n)^{3/2}y)$.

The following theorem, which is equivalent to the 2-part BSD for $E^{(n)}$ using explicit Gross-Zagier formula in [2], and can be proved exactly as in [16].

Theorem 1.3. Let $n \equiv 5 \mod 8$ be a square-free positive integer as in Theorem 1.2. Then the image $P_0 \in E^{(n)}$ of $(4-4\sqrt{-n})^{-1} \in \mathcal{H}$ under the above complex uniformization is defined over the Hilbert class field H of $\mathbb{Q}(\sqrt{-n})$. Moreover the Heegner point $P:=\sum_{\sigma\in\operatorname{Gal}(H/\mathbb{Q}(\sqrt{-n}))}P_0^{\sigma}$ actually belongs to $E^{(n)}(\mathbb{Q})$. Let $\mu(n)$ be the number of prime factors of n. Then $P\in 2^{\mu(n)-1}E^{(n)}(\mathbb{Q})+E^{(n)}(\mathbb{Q})$ but $P \notin 2^{\mu(n)} E^{(n)}(\mathbb{Q}) + E^{(n)}(\mathbb{Q})_{tor}$. In particular, P is of infinite order.

Moreover, the Mordell-Weil group $E^{(n)}(\mathbb{Q})$ is of rank one and the index of its subgroup generated by P and torsion points satisfies

$$\left[E^{(n)}(\mathbb{Q}) : \mathbb{Z}P + E^{(n)}(\mathbb{Q})_{\text{tor}} \right] = 2^{\mu(n)-1} \cdot \sqrt{|\mathrm{III}(E/\mathbb{Q})|}.$$

Example For the prime $p = 1493 \equiv 5 \mod 8$, the Mordell-Weil group $E^{(p)}(\mathbb{Q})$ modulo torsion has a generator

$$\left[\frac{1674371133}{744769},\ -\frac{51224214734700}{642735647}\right],$$

as well that Heegner point (x, y) has coordinates

It follows that $\coprod (E^{(p)}/\mathbb{Q}) \cong (\mathbb{Z}/3\mathbb{Z})^2$.

Let E be an elliptic curve defined over \mathbb{Q} , with complex multiplication (= CM in what follows) by an imaginary quadratic field K. Let $p \neq 2$ be a potential good ordinary prime for E. Note that p must split in K, and also p does not divide the number w_K of roots of unity in K.

Assume that L(s, E) has a simple zero at s = 1. Choose an auxiliary imaginary quadratic field K such that (i) p is split over K and (ii) L(s, E/K) still has a simple zero at s=1. Let $E^{(K)}$ be the twist of E over \mathcal{K} , then $L(1, E^{(\mathcal{K})}) \neq 0$. Let η be the quadratic character associated to the extension \mathcal{K}/\mathbb{Q} and η_K its restriction to K. Let \mathbb{Q}_{∞} be the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} , and put $\Gamma = \operatorname{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q})$. For any finite order character ν of Γ , let $\nu_{\mathcal{K}}$ denote its restriction to $\operatorname{Gal}(K\mathbb{Q}_{\infty}/K)$. Consider the equality

$$L(s, E \otimes \nu)L(s, E^{(K)} \otimes \nu) = L(s, E_K \otimes \nu_K)$$

and its specialization to s=1. Let $\mathscr{L}_{\varphi},\mathscr{L}_{\varphi\eta_K}$ be the cyclotomic-line restrictions of the two Katz's two variable p-adic L-fucntion corresponding to E and $E^{(\mathcal{K})}$, respectively. Let $\mathscr{L}_{E/\mathcal{K}}$ be the cyclotomic-line restriction of the p-adic Rankin-Selberg L-function for E over K. The ingredients needed to prove the p-part BSD formula of E are the following.

- (1) Rubin's two variable main conjecture [14] in order to relate the p-part of $\coprod (E/K)$ with $\mathscr{L}'_{\varphi}(1)$. Note that $\operatorname{ord}_{p}(|\operatorname{III}(E/K)|) = 2\operatorname{ord}_{p}(|\operatorname{III}(E/\mathbb{Q})|)$ for odd p.
- (2) The complex Gross-Zagier formula [19] and the p-adic Gross-Zagier formula [4], which relate $\mathscr{L}'_{E/\mathcal{K}}(1)$ and $L'(1, E/\mathcal{K}) = L'(1, E/\mathbb{Q})L(1, E^{(\mathcal{K})}/\mathbb{Q}).$
- (3) The precise relationship between $\mathscr{L}'_{\varphi}(1)\mathscr{L}\varphi\eta_{K}(1)$ and $\mathscr{L}'_{E/\mathcal{K}}(1)$, and also between $\mathscr{L}_{\varphi\eta_{K}}(1)$ and $L(1, E^{(\mathcal{K})})$. This follows from the above equality of L-series and the interpolation properties of these p-adic L-fucntions.

Suppose that E has bad reduction at p which is potential good for E. Let \mathfrak{p} denote a prime of K above p. There is an elliptic curve E' over K with good reduction at \mathfrak{p} . In the process of proof, we need to compare periods, descends etc between E and E'.

Notations. Fix a non-trivial additive character $\psi : \mathbb{Q}_p \longrightarrow \mathbb{C}_p^{\times}$ with conductor \mathbb{Z}_p . For any character $\chi : \mathbb{Q}_p^{\times} \to \mathbb{C}_p^{\times}$, say of conductor p^n with $n \geq 0$, we define the root number by

$$\tau(\chi, \psi) = p^{-n} \int_{v_p(t) = -n} \chi^{-1}(t) \psi(t) dt,$$

where dt is the Haar measure on \mathbb{Q}_p such that $\operatorname{Vol}(\mathbb{Z}_p, dt) = 1$. Fix embeddings $\iota_\infty : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$ and $i_p : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_p$ such that $\iota_p = \iota \circ \iota_\infty$ for an isomorphism $\iota : \mathbb{C} \xrightarrow{\sim} \mathbb{C}_p$. For an elliptic curve E over a number field F and p a potential good prime for E, let $(\cdot, \cdot)_\infty$ and $(\cdot, \cdot)_p$ denote the normalized Néron -Tate height pairing, and the p-adic height pairing with respect to cyclotomic character. Let $P_1, \cdots, P_r \in E(F)$ form a basis for $E(F) \otimes_{\mathbb{Z}} \mathbb{Q}$, define the regulars by

$$R_{\infty}(E/F) = \frac{\det\left((P_i, P_j)_{\infty}\right)_{r \times r}}{[E(K) : \sum_i \mathbb{Z}P_i]^2}, \qquad R_p(E/F) = \frac{\det\left((P_i, P_j)_p\right)_{r \times r}}{[E(K) : \sum_i \mathbb{Z}P_i]^2}.$$

For any character χ of \widehat{K}^{\times} , let $\mathfrak{f}_{\chi} \subset \mathcal{O}_{K}$ denote its conductor. For an elliptic curve E over K, let \mathfrak{f}_{E} denote its conductor. For any non-zero integral ideals \mathfrak{g} and \mathfrak{a} of K, let $\mathfrak{g}^{(\mathfrak{a})}$ denote the prime-to- \mathfrak{a} part of \mathfrak{g} . Let \mathbb{D} be the completion of the maximal unramified extension of \mathbb{Z}_{p} and \mathbb{D}_{χ} the finite extension of \mathbb{D} generated by the values of χ . Let L_{∞}/K be an abelian extension whose Galois group $\mathcal{G} = \operatorname{Gal}(L_{\infty}/K) \cong \Delta \times \Gamma$ with Δ finite and $\Gamma \cong \mathbb{Z}_{p}^{d}$. Then for any $\mathbb{D}[[\mathcal{G}]]$ -module M and character χ of Δ , put $M_{\chi} = M \otimes_{\mathbb{D}[[\mathcal{G}]], \chi} \mathbb{D}_{\chi}[[\Gamma]]$. If $p \nmid |\Delta|$, let M^{χ} denote its χ -component (as a direct summand).

Acknowledgment. The authors thank John Coates, Henri Darmon and Shouwu Zhang for their encouragement.

2. Katz's p-adic L-function and Cyclotomic p-adic Formula

Let E be an elliptic curve defined over K with CM by K and φ its associated Hecke character. Let $p \nmid w_K$ be a prime split in K and $p\mathcal{O}_K = \mathfrak{pp}^*$ with \mathfrak{p} induced by ι_p . In particular, $K_{\mathfrak{p}} = \mathbb{Q}_p$ in \mathbb{C}_p and let $\psi_{\mathfrak{p}} = \psi_p$ on $K_{\mathfrak{p}}$ under this identification. Let Ω_E be a \mathfrak{p} -minimal period of E over K. Let φ be the associated Hecke character of E and $\varphi_{\mathfrak{p}}$ its \mathfrak{p} -component. Let \mathfrak{f}_E be the conductor of φ .

Let F be an abelian extension over K with Galois group Δ . Assume that $p \nmid |\Delta|$ and denote by $\mathfrak{f}_{F/K}$ the conductor of F. Let \mathcal{G} be the Galois group of the extension $F(E[p^{\infty}])$ over K. Then $\mathcal{G} \cong \mathcal{G}_{tor} \times \Gamma_K$ with $\Gamma_K = \operatorname{Gal}(F(E[p^{\infty}])/F(E[p]))$. Let $\Lambda = \mathbb{Z}_p[[\mathcal{G}]]$. Let U_{∞} and C_{∞} denote the $\mathbb{Z}_p[[\mathcal{G}]]$ -modules formed from the principal local units at the primes above \mathfrak{p} , and the closure of the elliptic units for $K(E[p^{\infty}])$ (see §4 of [14] for the precise definitions.)

Theorem 2.1 (Two variable p-adic L-function). Let \mathfrak{g} be any prime-to-p non-zero integral ideal of K. Assume that $\mathfrak{f}_E^{(p)}|\mathfrak{g}$. There exists a unique measure $\mu_{\mathfrak{g}}=\mu_{\mathfrak{g},\mathfrak{p}}$ on the group $\mathcal{G}=\mathrm{Gal}(K(\mathfrak{g}p^{\infty})/K)$ such that for any character ρ of \mathcal{G} of type (1,0),

$$\rho(\mu_{\mathfrak{g}}) = \frac{\tau(\rho_{\mathfrak{p}}, \psi_{\mathfrak{p}})}{\tau(\varphi_{\mathfrak{p}}, \psi_{\mathfrak{p}})} \cdot \frac{1 - \rho(\mathfrak{p})p^{-1}}{1 - \rho(\mathfrak{p})p^{-1}} \cdot \frac{L^{(\mathfrak{g}p)}(\overline{\rho}, 1)}{\Omega_E}.$$

Here $L^{(\mathfrak{gp})}(\overline{\rho},s)$ is the imprimitive L-series of $\overline{\rho}$ with Euler factors at places dividing \mathfrak{fp} -removed.

Proof. It follows from the below lemma 2.3 and construction of Katz's two variable p-adic measure, see Theorem 4.14.

Theorem 2.2 (Yager). For any character χ of \mathcal{G}_{tor} , let $\mathfrak{f} = \mathfrak{f}_{\chi}^{(p)}$ and $\mu_{\mathfrak{f}}^{\chi} := \chi(\mu_{\mathfrak{f}}) \in \mathbb{D}[[\Gamma_K]]$. Then we have

$$\operatorname{Char}(U_{\infty}/C_{\infty})_{\chi} \cdot \mathbb{D}[[\Gamma_K]] = \left(\mu_{\mathfrak{f}}^{\chi}\right).$$

Here the measure $\mu_{\rm f}$ is defined as in Theorem 2.1.

Lemma 2.3. Let E/K be an elliptic curve associated with to a Hecke character φ , p splits in K and write $p\mathcal{O}_K = \mathfrak{pp}^*$. Let φ_0 be a Hecke character over K unramified at \mathfrak{p} . Let Ω_E and Ω_0 be \mathfrak{p} -minimal periods of E and φ_0 , respectively. Then

$$\operatorname{ord}_p\left(\frac{\Omega_E \cdot \tau(\varphi_{\mathfrak{p}}, \psi_p)}{\Omega_0}\right) = 0.$$

Proof. This follows from Stickelberger's theorem on prime ideal decomposition of Gauss sum. In fact, for $\mathfrak{p} \nmid w = w_K$, E has \mathfrak{p} -minimal Weierstrass equation of form

$$E: y^2 = x^3 + a_2 x^2 + a_4 x + a_6, \qquad a_2, a_4, a_6 \in K^{\times} \cap \mathcal{O}_{\mathfrak{p}}.$$

Note that for w=4,6, we may-and do- take form $y^2=x^3+a_4x$, $y^2=x^3+a_6$, respectively. Then there is an elliptic curve E' over K which has good reduction at \mathfrak{p} . Let φ' be its associated Hecke character. Then $\epsilon=\varphi\varphi'^{-1}:\mathbb{A}_K^\times/K^\times\to\mathcal{O}_K^\times$ (also viewed as a Galois character via class field theory) is of form $\chi(\sigma)=\sigma(d^{1/w})/d^{1/w}$ for an element $d\in K^\times/K^{\times w}$. Then the twist E' has \mathfrak{p} -good model

$$E': \begin{cases} y^2 = x^3 + da_2 x^2 + d^2 a_4 x + d^3 a_6, & \text{if } w = 2, \\ y^2 = x^3 + da_4 x, & \text{if } w = 4, \\ y^2 = x^3 + da_6, & \text{if } w = 6. \end{cases}$$

It is easy to check the $\Omega_{E_0}=d^{1/w}\cdot\Omega_E$. Let $\omega:\mathcal{O}_{\mathfrak{p}}^{\times}\longrightarrow \mu_w\subset K$ be the character characterized by $\omega(a)\equiv a \mod \mathfrak{p}$ and let $\chi=\omega^{-(p-1)/w}$. Then $\epsilon_{\mathfrak{p}}=\chi^k$ for some $k\in\mathbb{Z}/w\mathbb{Z}$. Let $\kappa_{\mathfrak{p}}\cong\mathbb{F}_p$ be the residue field of $K_{\mathfrak{p}}$. By Stickelberger's theorem, the Gauss sum $g(\epsilon_{\mathfrak{p}},\psi):=-\sum_{a\in\kappa_{\mathfrak{p}}^{\times}}\epsilon_{\mathfrak{p}}(a)\psi(a)$ has \mathfrak{p} -valuation $\{k/w\}$. It remains to show that $k=\mathrm{ord}_{\mathfrak{p}}(d)$. Note that for any $u\in\mathcal{O}_{\mathfrak{p}}^{\times}$, $K_{\mathfrak{p}}(u^{1/w})$ is unramified over $K_{\mathfrak{p}}$. Thus it is equivalent to show that for any uniformizer π of $K_{\mathfrak{p}}$,

$$\sigma_u(\pi^{1/w})/\pi^{1/w} \equiv u^{-(p-1)/w} \mod \mathfrak{p}, \qquad \forall u \in \mathcal{O}_{\mathfrak{p}}^{\times}.$$

But it is easy to see this by using local class field theory for formal group associated to $x^p - \pi x$.

For general Hecke character φ_0 over K unramified at \mathfrak{p} (not necessarily K-valued) and Ω_0 its \mathfrak{p} -minimal period, it is easy to see that $\operatorname{ord}_{\mathfrak{p}}(\Omega_0/\Omega_{E_0})=0$.

Let $\chi_{\text{cyc},K}: \mathcal{G} \to \mathbb{Z}_p^{\times}$ be the *p*-adic cyclotomic character defined by the action on *p*-th power roots of unity. Define

$$\mathscr{L}_{\varphi_E}(s) := \mu_{\mathfrak{f}_E^{(\mathfrak{p})}}(\varphi_E \chi_{\mathrm{cyc},K}^{1-s}), \qquad \forall s \in \mathbb{Z}_p.$$

Rubin's two variable main conjecture implies the following theorem.

Theorem 2.4. Let E be an elliptic curve defined over K with CM by K and φ its associated Hecke character. Let $p \nmid w_K$ be a prime split in K and $p\mathcal{O}_K = \mathfrak{pp}^*$. Let r be the \mathcal{O}_K -rank of E(K). Assume that $\coprod (E/K)(p)$ is finite and the p-adic height pairing of E over K is non-degenerate. Then

- (1) both $\mathscr{L}_{\varphi}(s)$ and $\mathscr{L}_{\overline{\varphi}}(s)$ have a zero at s=1 of exact order r.
- (2) the p-adic BSD conjecture holds for E/K:

$$\operatorname{ord}_p(|\operatorname{III}(E/K)|) = \operatorname{ord}_p\left(\frac{\mathscr{L}_{\varphi}^{(r)}(1)\mathscr{L}_{\overline{\varphi}}^{(r)}(1)}{R_p(E/K)} \cdot \prod_{v|p} \left((1 - \varphi_E(v)) \left(1 - \overline{\varphi_E(v)} \right) \right)^{-2} \right)$$

provided the assumption that if $w_K = 4$ or 6 then E has bad reduction at both \mathfrak{p} and \mathfrak{p}^* or good reduction at both \mathfrak{p} and \mathfrak{p}^* .

Moreover, if E is defined over \mathbb{Q} , then we have

$$\operatorname{ord}_p(|\operatorname{III}(E/\mathbb{Q})|) = \operatorname{ord}_p\left(\frac{\mathscr{L}_{\varphi}^{(r)}(1)}{R_p(E/\mathbb{Q})} \cdot \prod_{v|p} \left((1 - \varphi_E(v)) \left(1 - \overline{\varphi_E(v)} \right) \right)^{-1} \right).$$

Proof. Let ϵ be a Galois character over K valued in \mathcal{O}_K^{\times} such that $\varphi' = \varphi \epsilon$ is unramified at both \mathfrak{p} and \mathfrak{p}^* . Let E' be the elliptic curve over K as ϵ -twist of E so that φ' as its Hecke character. Then E' has good reduction above p. Let F be the abelian extension over K cut by ϵ , then $[F:K]|w_K$. Moreover, E and E' are isomorphism over F, $E'(F)^{(\epsilon)} \cong E(K)$, and $\coprod (E'/F)[p^{\infty}]^{(\epsilon)} \cong \coprod (E/K)[p^{\infty}]$. Let $F_0 = F(E[p])$ and $\chi: \operatorname{Gal}(F_0)/K) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ be the character giving the action on E[p].

and $\chi: \operatorname{Gal}(F_0)/K) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ be the character giving the action on E[p]. Let $F_{\infty} = F(E[p^{\infty}])$. Let $M_{\infty,\mathfrak{p}}$ be the maximal p-extension over F_{∞} unramified outside \mathfrak{p} and $X_{\infty,\mathfrak{p}} = \operatorname{Gal}(M_{\infty,\mathfrak{p}}/F_{\infty})$. Denote by U_{∞} and $C_{\infty} \subset U_{\infty}$ the $\Lambda = \mathbb{Z}[[\operatorname{Gal}(F_{\infty}/K)]]$ -modules of the principal local units at \mathfrak{p} and elliptic units for the extension F_{∞} (defined as in [14], §4). Rubin's two variable main conjecture, together Yager [18], says that

$$\operatorname{Char}_{\Lambda}(X_{\infty,\mathfrak{p}}^{\chi})\mathbb{D}[[\operatorname{Gal}(F_{\infty}/F_{0})]] = \left(\mu_{f_{E}^{(p)},\mathfrak{p}}^{\chi}\right),$$

where for an integral ideal \mathfrak{g} of K prime to p, the measure $\mu_{\mathfrak{g}}$ is given as in Theorem 2.1. Let $\mathrm{Sel}(F_{\infty}, E[\mathfrak{p}^{\infty}])$ be the \mathfrak{p} -Selmer group of E over F_{∞} and $\mathrm{Sel}(F_{\infty}, E[\mathfrak{p}^{\infty}])^{\vee}$ its Pontryajin dual. Then $\mathrm{Sel}(F_{\infty}, E[\mathfrak{p}^{\infty}])^{\vee}$ is a finitely generated Λ -torsion module and

$$\operatorname{Char}_{\Lambda}(\operatorname{Sel}(F_{\infty}, E[\mathfrak{p}^{\infty}])^{\vee}) = \iota_{\mathfrak{p}}\operatorname{Char}(X_{\infty,\mathfrak{p}}^{\chi}),$$

where $\iota_{\mathfrak{p}}: \Lambda \to \Lambda, \gamma \longrightarrow \kappa_{\mathfrak{p}}(\gamma)\gamma$ for any $\gamma \in \operatorname{Gal}(F_{\infty}/K)$ and $\kappa_{\mathfrak{p}}$ is the character of $\operatorname{Gal}(F_{\infty}/K)$ giving the action on $E[\mathfrak{p}^{\infty}]$. Similarly, we also have that

$$\operatorname{Char}_{\Lambda}(X_{\infty,\mathfrak{p}^*}^{\chi})\mathbb{D}[[\operatorname{Gal}(F_{\infty}/F_0)]] = \left(\mu_{f_E^{(p)},\mathfrak{p}^*}^{\chi}\right), \qquad \operatorname{Char}_{\Lambda}(\operatorname{Sel}(F_{\infty}, E[\mathfrak{p}^{*\infty}])^{\vee}) = \iota_{\mathfrak{p}^*}\operatorname{Char}(X_{\infty,\mathfrak{p}^*}^{\chi}).$$

Let F_{cyc} be the cyclotomic \mathbb{Z}_p extension, and $\Lambda_{\text{cyc}} = \mathbb{Z}_p[[\operatorname{Gal}(F_{\text{cyc}}/K)]] \cong \Delta \times \Gamma$ where $\Delta = \operatorname{Gal}(F/K)$ and $\Gamma = \operatorname{Gal}(F_{\text{cyc}}/F)$. Let $\operatorname{Sel}(F_{\text{cyc}}, E[p^{\infty}])$ denote the p-Selmer group of E over F_{cyc} and then its Pontryagin dual $\operatorname{Sel}(F_{\text{cyc}}, E[p^{\infty}])^{\vee}$ is a finitely generated torsion Λ_{cyc} -module. We have

$$\begin{split} \operatorname{Sel}(F_{\operatorname{cyc}}, E[p^{\infty}]) &= \operatorname{Sel}(F_{\operatorname{cyc}}, E[p^{\infty}]) \oplus \operatorname{Sel}(F_{\operatorname{cyc}}, E[p^{*\infty}]) \\ &= \operatorname{Hom}(X_{\infty, \mathfrak{p}}, E[\mathfrak{p}^{\infty}])^{\operatorname{Gal}(F_{\infty}/F_{\operatorname{cyc}})} \oplus \operatorname{Hom}(X_{\infty, \mathfrak{p}^{*}}, E[\mathfrak{p}^{*\infty}])^{\operatorname{Gal}(F_{\infty}/F_{\operatorname{cyc}})} \end{split}$$

Here the second equality is given [10] Proposition (1.3), Theorem (1.6) and Lemma (1.1), the last one is by the same reason as [14] Theorem 12.2. It follows that

$$\operatorname{Char}_{\Lambda_{\operatorname{cyc}}}(\operatorname{Sel}(F_{\operatorname{cyc}}, E[p^{\infty}])^{\vee})\mathbb{D}[[\operatorname{Gal}(F_{\operatorname{cyc}}/F)]] = \left(\iota_{\mathfrak{p}}\mu_{f_{E}^{(p)}, \mathfrak{p}}^{\chi}\iota_{\mathfrak{p}^{*}}\mu_{f_{E}^{(p)}, \mathfrak{p}^{*}}^{\chi}\right).$$

Denote by χ_{cyc} the cyclotomic character. Let f_E be a generater of $\text{Char}_{\mathbb{Z}_p[[\Gamma]]}\left(\text{Sel}(F_{\text{cyc}}, E[p^{\infty}])^{\vee}\right)^{\Delta}$ and define

$$\mathscr{L}(s) = \chi_{\text{cvc}}^{1-s}(f_E), \quad \forall s \in \mathbb{Z}_p.$$

Then we have $\mathscr{L}(s) = u(s)\mathscr{L}_{\varphi_E}(s)\mathscr{L}_{\overline{\varphi_E}}(s)$ for some function u(s) valued in \mathbb{D}^{\times} .

Note that E over F has good reduction above p. Employing the descend argument as in [15], noting that the "descent diagram" in [15] §7 for E over F is $\Delta = \operatorname{Gal}(F/K)$ -equivariant, and taking Δ -invariant part, we have

Proposition 2.5. Let $r := \operatorname{rank}_{\mathcal{O}_K} E(K)$. Assume that $\coprod (E/K)[p^{\infty}]$ is finite and p-adic height pairing is non-degenerate on E(K). Then $\mathcal{L}(s)$ has exact vanishing order 2r at s = 1 and if let $\mathcal{L}^*(1)$ denote its leading coefficient at s = 1,

$$\frac{\mathscr{L}^*(1)}{R_p(E/K)} \sim |\mathrm{III}(E/K)| \cdot \left| \prod_{v|p} H^1(\mathrm{Gal}(F(\mu_{p^{\infty}})/F), E(F(\mu_{p^{\infty}}) \otimes_K K_v))^{\Delta} \right|^2.$$

Here for any $a, b \in \mathbb{C}_p^{\times}$, write $a \sim b$ if $\operatorname{ord}_p(a/b) = 0$.

The follow lemma will complete the proof.

Lemma 2.6. Let $v_0 = \mathfrak{p}$ or \mathfrak{p}^* . Assume that if $w_K = 4$ or 6 then E has bad reduction at both \mathfrak{p} and \mathfrak{p}^* or good reduction at both \mathfrak{p} and \mathfrak{p}^* . Then

$$|H^1(\operatorname{Gal}(F(\mu_{p^{\infty}})/F), E(F(\mu_{p^{\infty}}) \otimes_K K_{v_0}))^{\Delta}| \sim (1 - \varphi_E(v_0))(1 - \overline{\varphi_E(v_0)}).$$

The remain part of this section will devote to the proof of this lemma. Note that [15] handled the case where E has good reduction above p. We now assume that E has bad reduction either at \mathfrak{p} or at \mathfrak{p}^* . The isomorphism between E and E' over F gives rise to an isomorphism

$$H^1(\operatorname{Gal}(F(\mu_{p^{\infty}})/F), E(F(\mu_{p^{\infty}}) \otimes_K K_{v_0}))^{\Delta} \xrightarrow{\sim} H^1(\operatorname{Gal}(F(\mu_{p^{\infty}})/F), E'(F(\mu_{p^{\infty}}) \otimes_K K_{v_0}))^{\epsilon}.$$

We will need Proposition 2 in [15] that for any elliptic curve A over a local field k with good ordinary reduction and let \widetilde{A} denote its reduction over the the residue field κ of k, we have

$$|H^1(\operatorname{Gal}(k(\mu_{p^{\infty}})/k), A(k(\mu_{p^{\infty}})))| = |\widetilde{A}(\kappa)[p^{\infty}]|.$$

Let $w|v_0$ be a place of F above v_0 and κ_w/κ_{v_0} be the residue fields of F_w and K_{v_0} respectively, we have

$$|E'(\kappa_w)| \sim \left(1 - \varphi_{E'}(v_0)^{[\kappa_w : \kappa_{v_0}]}\right) \left(1 - \overline{\varphi_{E'}(v_0)}^{[\kappa_w : \kappa_{v_0}]}\right).$$

If $w_K = 2$, then F/K is a quadratic extension. If E is ramified at v_0 , then F/K is ramified at v_0 and let w be the unique place of F above v_0 , we have $\kappa_w = \kappa_{v_0}$ and thus

$$\left| H^{1}\left(\operatorname{Gal}(F(\mu_{p^{\infty}})/F), E'(F(\mu_{p^{\infty}}) \otimes_{K} K_{v_{0}}) \right)^{\epsilon} \right| = \frac{\left| H^{1}\left(\operatorname{Gal}(F_{w}(\mu_{p^{\infty}})/F_{w}), E'(F_{w}(\mu_{p^{\infty}})) \right) \right|}{\left| H^{1}\left(\operatorname{Gal}(K_{v_{0}}(\mu_{p^{\infty}})/K_{v_{0}}), E'(K_{v_{0}}(\mu_{p^{\infty}})) \right) \right|} \\
= \frac{\left| \widetilde{E'}(\kappa_{w}) \right|}{\left| \widetilde{E'}(\kappa_{v_{0}}) \right|} = 1.$$

If E has good reduction at v_0 , then F/K is unramified at v_0 . If v_0 is split over F, then $F \otimes_K K_{v_0} \cong K_{v_0}^2$ and $\epsilon_{v_0} = 1$. It is easy to see

$$|H^1(\operatorname{Gal}(F(\mu_{p^{\infty}})/F), E'(F(\mu_{p^{\infty}}) \otimes_K K_{v_0}))^{\epsilon}| \sim (1 - \varphi_E(v_0))(1 - \overline{\varphi_E(v_0)}).$$

If v_0 is inert in F, let w be the unique prime of F above v_0 . Note that $\varphi'_{v_0} = \varphi_{v_0} \epsilon_{v_0}$ and $\epsilon(v_0) = -1$.

$$\begin{aligned} \left| H^{1}\left(\operatorname{Gal}(F(\mu_{p^{\infty}})/F), E'(F(\mu_{p^{\infty}}) \otimes_{K} K_{v_{0}})\right)^{\epsilon} \right| &= \frac{\left| H^{1}\left(\operatorname{Gal}(F_{w}(\mu_{p^{\infty}})/F_{w}), E'(F_{w}(\mu_{p^{\infty}}))\right)\right|}{\left| H^{1}\left(\operatorname{Gal}(K_{v_{0}}(\mu_{p^{\infty}})/K_{v_{0}}), E'(K_{v_{0}}(\mu_{p^{\infty}}))\right)\right|} &= \frac{\left| \widetilde{E'}(\kappa_{w}) \right|}{\left| \widetilde{E'}(\kappa_{v_{0}}) \right|} \\ &\sim \frac{\left(1 - (\varphi\epsilon)(v_{0})^{2}\right)\left(1 - \overline{\varphi\epsilon(v_{0})^{2}}\right)}{\left(1 - (\varphi\epsilon)(v_{0})\right)\left(1 - \overline{\varphi\epsilon(v_{0})}\right)} &= (1 - \varphi(v_{0}))\left(1 - \overline{\varphi(v_{0})}\right) \end{aligned}$$

If $w_K = 4$ or 6, by our assumption, v_0 must be ramified over F and ϵ is non-trivial on its inertia subgroup. The proof is now similar to the previous ramified case.

3. ∞ -adic and p-adic Gross-Zagier Formulae

Let E be an elliptic curve over $\mathbb Q$ of conductor N and ϕ its associated newform. Let p be a prime where E is potential good ordinary or potential semi-stable. Let $\alpha:\mathbb Q_p^\times\longrightarrow\mathbb Z_p^\times$ be the character contained in the representation $(V_pE)^{ss}$ of $G_{\mathbb Q_p}$ such that $\alpha|_{\mathbb Z_p^\times}$ is of finite order.

Let \mathcal{K} be an imaginary quadratic field such that $\epsilon(E/\mathcal{K}) = -1$ and p splits in \mathcal{K} . Let $\Gamma_{\mathcal{K}}$ be the Galois group of the \mathbb{Z}_p^2 -extension over \mathcal{K} . Recall that [4] there exists a p-adic measure $\mu_{E/\mathcal{K}}$ on $\Gamma_{\mathcal{K}}$ such that for any finite order character χ of $\Gamma_{\mathcal{K}}$

$$\chi(\mu_{E/\mathcal{K}}) = \frac{L^{(p)}(1,\phi,\chi)}{8\pi^2(\phi,\phi)} \cdot \prod_{w|n} Z_w(\chi_w,\psi_w),$$

where (ϕ, ϕ) is the Peterson norm of ϕ :

$$(\phi,\phi) = \iint_{\Gamma_0(N)\backslash\mathcal{H}} |\phi(z)|^2 dx dy, \qquad z = x + iy,$$

and for each prime w|p of \mathcal{K} , let $\alpha_w = \alpha \circ \mathcal{N}_{\mathcal{K}_w/\mathbb{Q}_p}$ and $\psi_w = \psi_p \circ \mathrm{Tr}_{\mathcal{K}_w/\mathbb{Q}_p}$, and let φ_w be a uniformizer of \mathcal{K}_w , then

$$Z_w(\chi_w, \psi_w) = \begin{cases} (1 - \alpha_w \chi_w(\varpi_w)^{-1})(1 - \alpha_w \chi_w(\varpi_w)p^{-1})^{-1}, & \text{if } \alpha_w \chi_w \text{ is unramified,} \\ p^n \tau((\alpha_w \chi_w)^{-1}, \psi_w), & \text{if } \alpha_w \chi_w \text{ is of conductor } n \ge 1. \end{cases}$$

The following lemma will be used to prove our main theorem.

Lemma 3.1. Let E be an elliptic curve over \mathbb{Q} with CM by an imaginary quadratic field K. Assume p is also split in K write $p\mathcal{O}_K = \mathfrak{pp}^*$ with \mathfrak{p} induced by ι_p , i.e. identify $K_{\mathfrak{p}}$ with \mathbb{Q}_p and the non-trivial element $\tau \in \operatorname{Gal}(K/\mathbb{Q})$ induces an isomorphism on \mathbb{A}_K and thus $\tau : K_{\mathfrak{p}^*} \xrightarrow{\sim} K_{\mathfrak{p}} = \mathbb{Q}_p$. Let φ be its associated Hecke character. Then we have $\alpha = \varphi_{\mathfrak{p}^*} \circ \tau^{-1}$ and $(\alpha^{-1}\chi_{\operatorname{cyc}})(x) = \varphi_{\mathfrak{p}}(x)x^{-1}$ for any $x \in \mathbb{Q}_p^{\times}$. Moreover, for any place w|p of K, any finite order character $\nu : \mathbb{Q}^{\times}/\mathbb{Q}^{\times}\mathbb{Z}^{\times(p)}\mathbb{Z}_{p,\operatorname{tor}}^{\times} \to \mu_{p^{\infty}}$ viewed as character on Γ_K by compose with norm

$$Z_w(\alpha_w\nu_w,\psi) = \tau(\varphi_{\mathfrak{p}}\nu_p^{-1},\psi) \cdot \frac{1 - (\varphi_{\mathfrak{p}}\nu^{-1})(p)p^{-1}}{1 - \overline{(\varphi_{\mathfrak{p}}\nu_p^{-1})}(p)p^{-1}}.$$

Proof. The claim follows from the relations $\varphi \overline{\varphi} = | |_{\mathbb{A}_{\varphi}^{(\infty)}}^{-1}$ and $\varphi^{\tau} = \overline{\varphi}$.

Let $\chi_{\text{cyc},\mathcal{K}}: \Gamma_{\mathcal{K}} \to \mathbb{Z}_p^{\times}$ denote the *p*-adic cyclotomic character of $G_{\mathcal{K}}$. Let χ be an anticyclotomic character. Define $\mathscr{L}_{E/\mathcal{K},\chi}$ to be the *p*-adic L-function

$$\mathscr{L}_{E/\mathcal{K},\chi}(s) = \mu_{E/\mathcal{K}}(\chi \chi_{\text{cvc},\mathcal{K}}^{s-1}), \quad s \in \mathbb{Z}_p.$$

For trivial χ , we write $\mathscr{L}_{E/\mathcal{K}}$ for $\mathscr{L}_{E/\mathcal{K},\chi}$.

Theorem 3.2 (See [19] and [4]). Let E be an elliptic curve over \mathbb{Q} and K an imaginary quadratic field. Let p be a potentially good ordinary prime for E and split over K. Assume that $\epsilon(E/K) = -1$. Then

$$\frac{\mathscr{L}_{E/\mathcal{K},\chi}'(1)}{R_p(E/\mathcal{K},\chi)} \cdot \frac{L_p(E/\mathcal{K},\chi,1)}{\prod_{w|p} Z_w(\chi_w,\psi_w)} = \frac{L'(E/\mathcal{K},\chi,1)}{R_\infty(E/\mathcal{K},\chi) \cdot 8\pi^2(\phi,\phi)}.$$

Here $L_p(E/\mathcal{K},\chi,1)$ is the Euler factor at p. In particular, $\mathscr{L}'_{E/\mathcal{K}}(1)=0$ if and only if L'(E/K,1)=0.

Proof. Let B be an indefinite quaternion algebra over $\mathbb Q$ ramified exactly at the places v of $\mathbb Q$ where $\epsilon_v(E/\mathcal K,\chi)\eta_v(-1)=-1$. It is known that there exists a Shimura curve X over $\mathbb Q$ (with suitable level) and a non-constant morphism $f:X\to E$ over $\mathbb Q$ mapping a divisor in Hodge class to the identity of E such that its corresponding Heegner cycle $P_\chi(f)$ is non-trivial if and only if $L'(1,\phi,\chi)\neq 0$ by Theorem 1.2 in [19], and if and only if $\mathcal L'_{E/\mathcal K,\chi}(1)\neq 0$ by Theorem B in [4]. Thus $L'(E/\mathcal K,\chi,1)=0$ if and only if $\mathcal L'_{E/\mathcal K,\chi}(1)=0$.

Now assume that $L'(E/\mathcal{K}, 1) \neq 0$. By an argument of Kolyvagin, we know that $(E(K_{\chi}) \otimes \mathcal{O}_{\chi})^{\chi}$ is of \mathcal{O}_{χ} -rank one,

$$\frac{\widehat{h}_{\infty}(P_{\chi}(f))}{R_{\infty}(E/\mathcal{K},\chi)} = \frac{\widehat{h}_{p}(P_{\chi}(f))}{R_{p}(E/\mathcal{K},\chi)} \in \overline{\mathbb{Q}}^{\times}.$$

By [19] theorem 1.2,

$$\frac{L'(E/\mathcal{K},\chi,1)}{R_{\infty}(E/\mathcal{K},\chi)\cdot 8\pi^2(\phi,\phi)} = \frac{\widehat{h}_{NT}(P_{\chi}(f))}{R_{\infty}(E/\mathcal{K},\chi)} \frac{4L(1,\eta)}{\pi c_{\mathcal{K}}} \frac{L(1,\pi,\mathrm{ad})}{8\pi^3(\phi,\phi)} \alpha^{-1}(f,\chi)$$

and by [4] theorem B (with our definition of $\mathcal{L}_{E/\mathcal{K},\chi}$),

$$\frac{\mathscr{L}'_{E/\mathcal{K},\chi}(1)}{R_p(E/\mathcal{K},\chi)} = \frac{h_p(P_\chi(f))}{R_p(E/\mathcal{K},\chi)} \frac{4L(1,\eta)}{\pi c_\mathcal{K}} \frac{\prod_{w|p} Z_w(\chi_w,\psi_w)}{L_p(E/\mathcal{K},\chi,1)} \frac{L(1,\pi,\mathrm{ad})}{8\pi^3(\phi,\phi)} \alpha^{-1}(f,\chi),$$

where the $\alpha(f,\chi) \in \overline{\mathbb{Q}}^{\times}$. The theorem follows.

Now we give an explicit form of p-adic Gross-Zagier formula as an application. Let c be the conductor of χ . Assume the following Heegner hypothesis holds:

- (1) (c, N) = 1, and no prime divisor q of N is inert in \mathcal{K} , and also q must be split in \mathcal{K} if $q^2|N$.
- (2) $\chi([\mathfrak{q}]) \neq a_q$ for any prime q|(N,D), where \mathfrak{q} is the unique prime ideal of $\mathcal{O}_{\mathcal{K}}$ above q and $[\mathfrak{q}]$ is its class in $\operatorname{Pic}(\mathcal{O}_c)$.

Let $X_0(N)$ be the modular curve over \mathbb{Q} , whose \mathbb{C} -points parametrize isogenies $E_1 \to E_2$ between elliptic curves over \mathbb{C} whose kernel is cyclic of order N. By the Heegner condition, there exists a proper ideal \mathcal{N} of \mathcal{O}_c such that $\mathcal{O}_c/\mathcal{N} \cong \mathbb{Z}/N\mathbb{Z}$. For any proper ideal \mathfrak{a} of \mathcal{O}_c , let $P_{\mathfrak{a}} \in X_0(N)$ be the point representing the isogeny $\mathbb{C}/\mathfrak{a} \to \mathbb{C}/\mathfrak{a}\mathcal{N}^{-1}$, which is defined over the ring class field H_c over \mathcal{K} of conductor c, and only depends on the class of \mathfrak{a} in $\mathrm{Pic}(\mathcal{O}_c)$. Let $J_0(N)$ be the Jacobian of $X_0(N)$. Let $f: X_0(N) \to E$ be a modular parametrization mapping the cusp ∞ at infinity to the identity $O \in E$. Denote by deg f the degree of the morphism f. Define the Heegner divisor to be

$$P_{\chi}(f) := \sum_{[\mathfrak{a}] \in \mathrm{Pic}(\mathcal{O}_c)} f(P_{\mathfrak{a}}) \otimes \chi([\mathfrak{a}]) \in E(H_c)_{\overline{\mathbb{Q}}}.$$

Theorem 3.3. Let E, χ be as above satisfying the Heegner conditions (1) and (2). Then

$$L'(1, E, \chi) = 2^{-\mu(N, D)} \cdot \frac{8\pi^2(\phi, \phi)_{\Gamma_0(N)}}{u^2 \sqrt{|Dc^2|}} \cdot \frac{\widehat{h}_{\infty}(P_{\chi}(f))}{\deg f},$$

where $\mu(N, D)$ is the number of prime factors of the greatest common divisor of N and D, $u = [\mathcal{O}_c^{\times} : \mathbb{Z}^{\times}]$ is half of the number of roots of unity in \mathcal{O}_c , and \widehat{h}_{∞} is the Néron-Tate height on E over K.

Moreover, let p be a prime split in K and assume that E is potential ordinary at p (i.e. either potential good ordinary or potential semistable), then we have

$$\mathscr{L}'_{E/\mathcal{K},\chi}(1) = \frac{\prod_{w|p} Z_w(\chi_w, \psi_w)}{L_p(E/\mathcal{K}, \chi, 1)} \cdot \frac{2^{-\mu(N,D)}}{u^2 \sqrt{|Dc^2|}} \cdot \frac{\widehat{h}_p(P_\chi(f))}{\deg f},$$

where \hat{h}_p is the p-adic height on E over K.

Proof. The explicit form of Gross-Zagier formula is proved in [2]. The explicit form of p-adic Gross-Zagier formula then follows from the relation in Theorem 4.1.

4. Proof of Main Theorem 1.1

In this section, let E be an elliptic curve over \mathbb{Q} with CM by K and Ω_E the minimal real period of E over \mathbb{Q} . Let $p \nmid w_K$ be a prime split both in K.

Lemma 4.1. Let K be an imaginary quadratic field where p splits, η the associated quadratic character, and η_K its base change to K. Assume that $\epsilon(E/K) = -1$. Then there exists a p-adic unit u such that

$$\mathscr{L}_{E/\mathcal{K}} = \frac{\tau(\varphi_{\mathfrak{p}}, \psi_{\mathfrak{p}})^2 \cdot \Omega_E^2}{8\pi^2(\phi, \phi)} \cdot \mathscr{L}_{\varphi} \mathscr{L}_{\varphi \eta_K}.$$

Proof. It's enough to show that for any finite order character $\nu: \widehat{\mathbb{Q}}/\mathbb{Q}^{\times}\widehat{\mathbb{Z}}^{\times(p)}\mathbb{Z}_{n,\mathrm{tor}}^{\times} \to \mathbb{C}^{\times}$, we have

$$\nu_{\mathcal{K}}(\mu_{E/K}) = \tau^2(\varphi_p, \psi_p) \frac{\Omega_E^2}{8\pi^2(\phi, \phi)} \mu_{\mathfrak{f}_0}(\varphi \nu_K^{-1}) \mu_{\mathfrak{f}_0}(\varphi \eta_K \nu_K^{-1}).$$

Here $\nu_{\mathcal{K}} = \nu \circ \mathcal{N}_{\mathcal{K}/\mathbb{Q}}$ and $\nu_{K} = \nu \circ \mathcal{N}_{K/\mathbb{Q}}$. By interpolation property, the left hand of the formula in the lemma is

$$\frac{L^{(p)}(1,\phi,\nu_{\mathcal{K}}^{-1})}{8\pi^{2}(\phi,\phi)} \prod_{w|n} Z_{w}(\alpha_{w}\nu_{w},\psi_{w}),$$

Note that \mathcal{K}/\mathbb{Q} splits at p and then η_p is trivial, the right hand side of the formula in the lemma is

$$\frac{\tau(\varphi_{\mathfrak{p}}\nu_{\mathfrak{p}}^{-1},\psi_{\mathfrak{p}})^{2}}{\tau(\varphi_{\mathfrak{p}},\psi)^{2}}\cdot\left(\frac{1-\varphi\nu^{-1}(\mathfrak{p})p^{-1}}{1-\overline{\varphi\nu^{-1}(\mathfrak{p})}p^{-1}}\right)^{2}\cdot\frac{L^{(p\mathfrak{f}_{0})}(\overline{\varphi\nu^{-1}},1)}{\Omega}\cdot\frac{L^{(p\mathfrak{f}_{0})}(\overline{\varphi\nu^{-1}\eta_{K}},1)}{\Omega}$$

Then the formula follows from lemma 3.1.

We are ready to prove Theorem 1.1. Assume that $L(s, E/\mathbb{Q})$ has a simple zero at s=1 and that p is a bad but potentially good ordinary prime for E. Let φ be the Hecke character associated to E and \mathfrak{f}_0 its the prime-to-p conductor. We may choose an imaginary quadratic field K such that

- $L(s, E/\mathcal{K})$ also has a simple zero at s=1.
- p is splits in K.
- the discriminant of K is prime to \mathfrak{f}_0 .

Note that related Euler factors are trivial in this case, we then have

•
$$\mathscr{L}_{\varphi\eta_K}(1) = \frac{L(1, E^{(\mathcal{K})})}{\Omega_{E/K}},$$

•
$$\frac{\mathscr{L}'_{E/\mathcal{K}}(1)}{R_p(E/\mathcal{K})\tau(\varphi_{\mathfrak{p}},\psi_{\mathfrak{p}})^2} = \frac{L'(E/\mathcal{K},1)}{R_{\infty}(E/\mathcal{K})8\pi^2(\phi,\phi)}.$$

•
$$\operatorname{ord}_p(|\operatorname{III}(E/\mathbb{Q})|) = \operatorname{ord}_p\left(\frac{\mathscr{L}'_{\varphi}(1)}{R_p(E/\mathbb{Q})}\right),$$

•
$$\operatorname{ord}_{p}\left(\frac{\mathscr{L}'_{E/K}(1)}{\mathscr{L}'_{\varphi}(1)\mathscr{L}_{\varphi\eta_{K}}(1)}\right) = \operatorname{ord}_{p}\left(\frac{\tau(\varphi_{\mathfrak{p}},\psi_{\mathfrak{p}})^{2}\Omega_{E/K}^{2}}{8\pi^{2}(\phi,\phi)}\right),$$

• $\operatorname{ord}_{p}\left(\frac{\Omega_{E/K}}{\Omega_{E}}\right) = \operatorname{ord}_{p}\left(\frac{R_{p}(E/\mathcal{K})}{R_{p}(E/\mathbb{Q})}\right) = 0.$

•
$$\operatorname{ord}_p\left(\frac{\Omega_{E/K}}{\Omega_E}\right) = \operatorname{ord}_p\left(\frac{R_p(E/\mathcal{K})}{R_p(E/\mathbb{Q})}\right) = 0.$$

It follows that

$$\operatorname{ord}_p(|\operatorname{III}(E/\mathbb{Q}|)) = \operatorname{ord}_p\left(\frac{L'(E/\mathbb{Q},1)}{\Omega_E \cdot R_{\infty}(E/\mathbb{Q})}\right).$$

This proves Theorem 1.1 (i). Assume that $E(\mathbb{Q})$ has rank one and $\mathrm{III}(E/\mathbb{Q})(p)$ is finite, or equivalently, E(K) has \mathcal{O}_K -rank one and $\mathrm{III}(E/K)$ is finite. By [1], the cyclotomic p-adic height pairing is nondegenerate. Thus both \mathscr{L}_{φ_E} and $\mathscr{L}_{\overline{\varphi_E}}$ have exactly order 1 at s=1, therefore $\mathscr{L}_{E/\mathcal{K}}$ has exactly order one at s = 1. It follows from p-adic Gross-Zagier formula that the related Heegner point is non-trivial and therefore L(E, s) has a simple zero at s = 1. This completes the proof of Theorem 1.1.

References

- [1] Daniel Bertrand, Propriétés Arithmétiques de Fonctions Thêta à plusieurs variables, Lect. Notes in Math., vol 1068, pp. 17-22. Berlin-Heidelberg-New York-Tokyo: Springer 1984.
- [2] L. Cai, J. Shu and Y. Tian, Explicit Gross-Zagier and Waldspurger formulae. Algebra Number Theory 8 (2014), no. 10, 2523-2572.
- [3] J.Coates and A.Wiles, On p-adic L-functions and elliptic units. J. Austral. Math. Soc. Ser. A 26 (1978), no. 1, 1-25.
- [4] Daniel Diegni, The p-adic Gross Zagier formula on Shimura curves, Preprint.
- [5] E.de Shalit, The Iwasawa theory of elliptic curves with complex multiplication, Perspect. Math. Vol.3 (1987).
- [6] G. Faltings, Crystalline cohomology and p-adic Galois-representations. Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989.
- [7] S. Friedberg and J. Hoffstein, Nonvanishing theorems for automorphic L-functions on GL(2). Ann. of Math. (2) 142 (1995), no. 2, 385-423.
- [8] Kobayashi, Shinichi, The p-adic Gross-Zagier formula for elliptic curves at supersingular primes. Invent. Math. 191 (2013), no. 3, 527-629.
- [9] B. Mazur, J. Tate, and J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. (1986) Volume 84, no. 1, pp 1-48.
- [10] B,Perrin-Riou, Groupe de Selmer d'une courbe elliptique multiplication complexe, Compositio Math. 43 (1981), no. 3, 387-417.
- [11] B. Perrin-Riou, Descente infinie et hauteur p-adique sur les courbes elliptiques multiplication complexe, Invent. Math. 70 (1982/83), no. 3, 369-398.
- [12] B. Perrin-Riou, Points de Heegner et dérivées de fonctions L p-adiques, Invent. Math. 89 (1987), no. 3, pp. 455-510.
- [13] K. Rubin, Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), no. 3, 527-559.
- [14] K. Rubin, The "main conjectures" of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), no. 1, 25-68.
- [15] P.Schneider, Iwasawa L -functions of varieties over algebraic number fields. A first approach, Invent. Math. 71 (1983), no. 2, 251-293
- [16] Y. Tian, Congruent Numbers and Heegner Points, Cambridge J. of Math, Vol. 2.1. 117-161, 2014.
- [17] Y. Tian, X. Yuan and S. Zhang, Genus Periods, Genus Points and Congruent Number Problem, to appear in Asian Journal of Mathematics.
- [18] R.Yager, On two variable p-adic L-functions, Ann. of Math. (2) 115 (1982), no. 2, 411-449.
- [19] X.Yuan, S. Zhang, and W. Zhang, The Gross-Zagier Formula on Shimura Curves, Annals of Mathematics Studies Number 184, 2013.