CSC367 Parallel computing

Lecture 3: Single Processor Machines-Performance Model

Maryam Mehri Dehnavi mmehride@cs.toronto.edu

Outline

A performance model for Matrix Multiplication

- Use of performance models to understand performance
- Attainable lower bounds on communication
- Simple cache model
- Warm-up: Matrix-vector multiplication
- Naïve vs optimized Matrix-Matrix Multiply
 - Minimizing data movement
 - Beating O(n³) operations
- BLAS routines

What do commercial and CSE applications have in common?

Motif/Dwarf: Common Computational Methods (Red Hot → Blue Cool)

Note on Matrix Storage

- A matrix is a 2-D array of elements, but memory addresses are "1-D"
- Conventions for matrix layout
 - by column, or "column major" (Fortran default); A(i,j) at A+i+j*n
 - by row, or "row major" (C default) A(i,j) at A+i*n+j

Recursive

Column major

—	0	5	10	15
	1	6	11	16
	2	7	12	17
	3	8	13	18
	4	9	14	19

Row major

0	1	2	3	
4	5	6	7	
8 9		10	11	
12	12 13		15	
16	17	18	19	

Column major matrix in memory

Column major (for now)

Figure source: Larry Carter, UCSD 4

Using a Simple Model of Memory to Optimize

- Assume just 2 levels in the hierarchy, fast and slow
- All data initially in slow memory
 - m = number of memory elements (words) moved between fast and slow memory
 - t_m = time per slow memory operation
 - f = number of arithmetic operations
 - t_f = time per arithmetic operation << t_m
 - q = f/m average number of flops per slow memory access
- Minimum possible time = f * t_f when all data in fast memory
- Actual time

architecture depedent algo specific • $f * t_f + m * t_m = f * t_f * (1 + |t_m/t_f| * 1/q)$

often overlooked ... but this is the part that can be optimized

- Larger q means time closer to minimum f * t_f
 - $q \ge t_m/t_f$ needed to get at least half of peak speed

Machine Balance: Key to machine efficiency

Computational

Intensity: Key to

algorithm efficiency

Warm up: Matrix-vector multiplication

```
{implements y = y + A*x}
for i = 1:n
for j = 1:n
y(i) = y(i) + A(i,j)*x(j)
```


Warm up: Matrix-Vector Multiplication

slow memory refs: read/write to/from slow memory

assume: fast cache able to fit 1 col of A, x, y

- m = number of slow memory refs = $3n + n^2$
- f = number of arithmetic operations = $2n^2$
- q = $f/m \approx 2$
- Matrix-vector multiplication limited by slow memory speed

Modeling Matrix-Vector Multiplication

- Examples of some architectures and their machine balance
- So the computational intensity of 2 in matrix-vector multiply means that we can not get close to half peak of these machines: Memory bound operation!

	Clock	Peak	Mem Lat (Min, Max)		Linesize	t_m/t_f
	MHz	Mflop/s	cycles		Bytes	
Ultra 2i	333	667	38	66	16	24.8
Ultra 3	900	1800	28	200	32	14.0
Pentium 3	500	500	25	60	32	6.3
Pentium3N	800	800	40	60	32	10.0
Power3	375	1500	35	139	128	8.8
Power4	1300	5200	60	10000	128	15.0
Itanium1	800	3200	36	85	32	36.0
Itanium2	900	3600	11	60	64	5.5

machine
balance
(q must
be at least
this for
½ peak
speed)

memory bound -> cannot optimize ...

Naïve Matrix Multiply

```
{implements C = C + A*B}
for i = 1 to n
for j = 1 to n
for k = 1 to n
C(i,j) = C(i,j) + A(i,k) * B(k,j)
```

Algorithm has $2*n^3 = O(n^3)$ Flops and operates on $3*n^2$ words of memory

q potentially as large as $2*n^3 / 3*n^2 = O(n)$

Naïve Matrix Multiply

loopiter(#access inside 1 iter)

```
 \{ \text{implements } C = C + A*B \}  for i = 1 to n  \{ \text{read row i of A into fast memory} \} \qquad n(n)  for j = 1 to n  \{ \text{read } C(i,j) \text{ into fast memory} \} \qquad n^2(1)   \{ \text{read column j of B into fast memory} \} \qquad n^2(n)  for k = 1 to n  C(i,j) = C(i,j) + A(i,k) * B(k,j)   \{ \text{write } C(i,j) \text{ back to slow memory} \} \qquad n^2(1)
```


Naïve Matrix Multiply

Number of slow memory references on unblocked matrix multiply

$$m = n^3$$
 to read each column of B n times

- + n² to read each row of A once
- + 2n² to read and write each element of C once

$$= n^3 + 3n^2$$

So
$$q = f/m = 2n^3 / (n^3 + 3n^2)$$

 ≈ 2 for large n, no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row i of A times B Similar for any other order of 3 loops


```
Consider A,B,C to be N-by-N matrices of b-by-b subblocks where
 b=n / N is called the block size
                                                  3 nested
   for i = 1 to N
                           cache does this
                                                   loops inside
                          automatically
     for j = 1 to N
        {read block C(i,j) into fast memory}
                                              N^2*(b^2) =
                                                            block size =
        for k = 1 to N
                                                            loop bounds
            {read block A(i,k) into fast memory} N^3*(b1/2
            {read block B(k,j) into fast memory} N^3*(b^2)
             C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
        {write block C(i,j) back to slow memory} N^2*(b^2)
```


Tiling for registers (managed by you/compiler) or caches (hardware)

Recall: N bxb submatrices

m is amount memory traffic between slow and fast memory matrix has nxn elements, and NxN blocks each of size bxb f is number of floating point operations, $2n^3$ for this problem q = f / m is our measure of algorithm efficiency in the memory system

So:

```
m = N*n<sup>2</sup> read each block of B N<sup>3</sup> times (N<sup>3</sup> * b<sup>2</sup> = N<sup>3</sup> * (n/N)<sup>2</sup> = N*n<sup>2</sup>)

+ N*n<sup>2</sup> read each block of A N<sup>3</sup> times

+ 2n^2 read and write each block of C once

= (2N + 2) * n<sup>2</sup>
```

So computational intensity q = ?

Recall:

m is amount memory traffic between slow and fast memory matrix has nxn elements, and NxN blocks each of size bxb f is number of floating point operations, $2n^3$ for this problem q = f / m is our measure of algorithm efficiency in the memory system

So:

```
m = N*n<sup>2</sup> read each block of B N<sup>3</sup> times (N<sup>3</sup> * b<sup>2</sup> = N<sup>3</sup> * (n/N)<sup>2</sup> = N*n<sup>2</sup>)

+ N*n<sup>2</sup> read each block of A N<sup>3</sup> times

+ 2n^2 read and write each block of C once

= (2N + 2) * n<sup>2</sup>
```

```
So computational intensity q = f / m = 2n^3 / ((2N + 2) * n^2)
 \approx n / N = b for large n
```

So we can improve performance by increasing the blocksize b Can be much faster than matrix-vector multiply (q=2)

Recall:

m is amount memory traffic between slow and fast memory matrix has nxn elements, and NxN blocks each of size bxb f is number of floating point operations, 2n³ for this problem q = f / m is our measure of algorithm efficiency in the memory system

So:

```
m = N^*n^2 read each block of B N<sup>3</sup> times (N^3 * b^2 = N^3 * (n/N)^2 = N^*n^2)
      + N*n<sup>2</sup> read each block of A N<sup>3</sup> times
      + 2n<sup>2</sup> read and write each block of C once
     = (2N + 2) * n<sup>2</sup>
                                                                       b limited by fast cache size
```

Why not increase

So computational intensity $q = f / m = 2n^3 / ((2N + 2) * n^2)$ b to a very large number? \approx n / N = b for large n

So we can improve performance by increasing the blocksize b Can be much faster than matrix-vector multiply (q=2)

Limits to Optimizing Matrix Multiply

3 submatrices of A,B,C

- The tiled matrix multiply analysis assumes that three tiles/blocks fit into fast memory at once.
- If M_{fast} is the sime of fast memory then the previous analysis showed that the blocked algorithm has computational intensity:

$$q \approx b \leq (M_{fast}/3)^{1/2}$$

Basic Linear Algebra Subroutines (BLAS)

- Industry standard interface (evolving)
 - www.netlib.org/blas, www.netlib.org/blas/blast--forum
- Vendors, others supply optimized implementations
- History
 - BLAS1 (1970s): 15 different operations
 - vector operations: dot product, saxpy (y= α *x+y), etc
 - m=2*n, f=2*n, q = f/m = computational intensity ~1 or less

Basic Linear Algebra Subroutines (BLAS)

- Industry standard interface (evolving)
 - www.netlib.org/blas, www.netlib.org/blas/blast--forum
- Vendors, others supply optimized implementations
- History
 - BLAS1 (1970s): 15 different operations
 - vector operations: dot product, saxpy (y= α *x+y), etc
 - m=2*n, f=2*n, q = f/m = computational intensity ~1 or less
 - BLAS2 (mid 1980s): 25 different operations
 - matrix-vector operations: matrix vector multiply, etc
 - m=n², f=2*n², q², less overhead
 - somewhat faster than BLAS1

Basic Linear Algebra Subroutines (BLAS)

- Industry standard interface (evolving)
 - www.netlib.org/blas, www.netlib.org/blas/blast--forum
- Vendors, others supply optimized implementations
- History
 - BLAS1 (1970s): 15 different operations
 - vector operations: dot product, saxpy (y=α*x+y), etc
 - m=2*n, f=2*n, q = f/m = computational intensity ~1 or less
 - BLAS2 (mid 1980s): 25 different operations
 - matrix-vector operations: matrix vector multiply, etc
 - m=n^2, f=2*n^2, q~2, less overhead
 - somewhat faster than BLAS1
 - BLAS3 (late 1980s): 9 different operations
 - matrix-matrix operations: matrix matrix multiply, etc
 - m <= 3n², f=O(n³), so q=f/m can possibly be as large as n, so BLAS3 is potentially much faster than BLAS2
- Good algorithms use BLAS3 when possible (LAPACK & ScaLAPACK)
 - See www.netlib.org/{lapack,scalapack}

BLAS speeds on an IBM RS6000/590

Peak speed = 266 Mflops

BLAS 3 (n-by-n matrix matrix multiply) vs BLAS 2 (n-by-n matrix vector multiply) vs BLAS 1 (saxpy of n vectors)

Dense Linear Algebra: BLAS2 vs. BLAS3

 BLAS2 and BLAS3 have very different computational intensity, and therefore different performance

BLAS3 (MatrixMatrix) vs. BLAS2 (MatrixVector)

