Заняття 4. Динаміка поступального руху.

Аудиторне заняття

- 1. [1.57] Тіло масою M=20 г лежить на горизонтальній поверхні. До нього прикладають силу F=0,1 Н, спрямовану під кутом $\alpha=60^\circ$ до горизонту. За який час t тіло пройде шлях S=80 см, якщо коефіцієнт тертя між ним та площиною $\mu=0,2$?
- 2. [1.58] Дана система (див.рис.). Маси вантажів *m* і *M*, коефіцієнт тертя µ між меншим вантажем і площиною відомі. Знайти прискорення вантажів.
- 3. [1.40] Вантаж масою m=20 кг переміщується вгору по похилій площині з кутом нахилу $\alpha=30^\circ$ і коефіцієнтом тертя $\mu=0,05$. До вантажу паралельно основі прикладена сила F=500 Н. Знайти прискорення вантажу.
- 4. [1.55] Куля масою m висить на мотузці довжиною l, прикріпленій до пласкої стінки. Знайти силу, з якою куля тисне на стіну, якщо її радіус R.
- 5. [1.62] Дві пружини з коефіцієнтами пружності k_1 і k_2 з'єднали послідовно. З яким коефіцієнтом пружності потрібно взяти пружину, щоб вона замінила ці дві послідовно з'єднані пружини?

Домашнє завдання

1. [1.45] Тіло масою m_1 рухається вгору по похилій площині під дією зв'язаного з ним невагомою ниткою вантажу масою m_2 (див.рис.). Початкові швидкості тіла і вантажу дорівнюють нулю, коефіцієнт тертя тіла по площині дорівнює μ , кут нахилу площини α . Визначити прискорення, з яким рухається тіло, та силу натягу нитки. Блок невагомий і обертається без тертя.

- 2. [1.50] Тіло масою m = 20 кг тягнуть з силою F = 120 Н по горизонтальній поверхні. Якщо ця сила прикладена під кутом $\alpha_1 = 60^\circ$ до горизонту, то тіло рухається рівномірно. З яким прискоренням буде рухатись тіло, якщо цю силу прикласти під кутом $\alpha_2 = 30^\circ$ до горизонту?
- 3. [1.59] Поїзд вагою P=4400 кН рухається по горизонтальній дорозі зі швидкістю V=27 км/год. Знайти час, протягом якого зможе зупинитися поїзд, якщо гальмуюча сила F=44 кН.