Colorado State University 2025 Control Enginneering for Systems Engineers Solutions for Homework 6. By Ziraddin Gulumjanli. Course SYSE 511 2025SP

PROBLEM 1

1a

For randomly selected system parameters the provided matlab code generates these results:

$$a_1 = 3$$
 (Given system coefficient)
 $a_2 = 2$ (Given system coefficient)
 $b = 5$ (Plant gain)

PD controller gains:

$$K_p = 10$$
 (Proportional gain)
 $K_d = 2$ (Derivative gain)

Closed-loop Transfer Function

$$T_{CL}(s) = \frac{10s + 50}{s^2 + 13s + 52}$$

System Properties

• Natural Frequency (ω_0): 7.211 rad/s

• Damping Ratio (ζ): 0.901

Figure 1: problem 1a simulation

Computed PD Gains and System Performance

The computed PD controller gains are:

 $K_p = 106.333$ (Proportional Gain) $K_d = 4.511$ (Derivative Gain)

System Performance Metrics

Settling Time: 0.548 s
Overshoot: 34.787%
Rise Time: 0.057 s

Figure 2: problem 1b simulation

As we can see the desired condition for overshoot is not satisfied, It was supposed to be less than 25%

1c

Tuned PD Gains and System Performance

The tuned PD controller gains are:

 $K_p = 109.333$ (Proportional Gain) $K_d = 9.000$ (Derivative Gain)

System Performance Metrics

• Settling Time: 0.274 s

• **Overshoot**: 17.976%

• **Rise Time**: 0.046 s

Figure 3: problem 1c simulation

After tuning the PD controller to the different values, all System Performance Metrics satisfy the desired conditions.

PROBLEM 2

2a

PID Controller Gains

Parameter	H ₂ (Water Level)	T_2 (Temperature)
K_p (Proportional Gain)	2.5982	13.7632
K_i (Integral Gain)	0.0332	0.2754
K_d (Derivative Gain)	29.0047	153.4397
Crossover Frequency (rad/s)	0.0134	0.0309
Phase Margin (°)	74.08	69.53
Stability	Yes	Yes

Table 1: PID Controller Gains

Time-Domain Performance

Metric	\mathbf{H}_2 (Water Level)	T_2 (Temperature)
Rise Time (s)	122.7720	51.2394
Transient Time (s)	421.2066	161.4242
Settling Time (s)	421.2066	161.4242
Overshoot (%)	6.5687	6.2582
Peak Time (s)	260.1271	105.8050

Table 2: Time-Domain Performance

Steady-State Error Constants

System	Step Response (K_s)	Ramp Response (K_v)	Parabolic Response (K_a)
H ₂ (Water Level)	1.000	0.000	0.000
T_2 (Temperature)	1.000	0.000	0.000

Table 3: Steady-State Error Constants

Stability Margins

Metric	\mathbf{H}_2 (Water Level)	
Phase Margin (°)	146.02	144.42
Delay Margin (s)	285.74	118.99
Stability	Yes	Yes

Table 4: Stability Margins

Figure 4: Nyquist plot

Figure 5: Bode plots for Water Tank System

Figure 6: Step response of PID controller Water Tank System

2b

Simulink results

Figure 7: Simulation result

Figure 8: Simulation result

Python result

https://colab.research.google.com/drive/1PgQT3lyIQOKjHOaA7xTR-p6A5aHB1Uxd?usp=sharing-partial and the property of the proper

Figure 9: Simulation result

I think that the combined method demonstrates that both outputs (water level and temperature) can be controlled using a single input, but there are a few possible concerns.

- 1) Because the system is linearized around a single operating point, substantial fluctuations in level and temperature may occur outside of the linear model's accuracy range.
- 2) To use only one actuator for two outputs might result in powerful interactions: altering one can unintentionally impact the other.
- 3) When tuned in MATLAB, the comparatively big derivative gains might cause severe transients or noise sensitivity.