Measure Theory: Exercises (not for credit)

Josephine Evans

October 29, 2021

Question 1. Show that the definition of the integral for a non-negative function is consistent with the defintion of the integral for simple functions. That is to say if $f = \sum_k a_k 1_{A_k}$ is a simple function then

$$\sum_{k} a_k \mu(A_k) = \sup \{ \mu(h) : h \text{ simple}, h \le f \}$$

Question 2. Let f be an integrable, real valued function on a measure space (E, \mathcal{E}, μ) . Suppose that $\mu(f1_A) = 0$ for every $A \in \mathcal{E}$ show that this implies that f = 0 almost everywhere. Let \mathcal{A} be a π -system generating \mathcal{E} and containing E. Suppose that $\int f1_A\mu(\mathrm{d}x) (=\mu(f1_A)) = 0$ for every $A \in \mathcal{A}$ show that then f = 0 almost everywhere.

Question 3. Find a three sequences of real valued integrable functions, $(f_n)_{n\geq 1}$, $(g_n)_{n\geq 1}$, $(h_n)_{n\geq 1}$, all of which converge to 0 almost everywhere and where

- $\lim_n \int f_n(x) dx = \infty$
- $\lim_{n} \int g_n(x) dx = 1$
- $\limsup_{n \to \infty} \int h_n(x) dx = -\liminf_{n \to \infty} \int h_n(x) dx = 1$.

Question 4. Let $(f_n)_{n\geq 1}$ be a sequence of real valued, measurable functions (not necessarily non-negative) on (E, \mathcal{E}, μ) . Suppose that f_1 is integrable and $f_1(x) \leq f_2(x) \leq f_3(x) \leq \ldots$ for every x and $f_n(x) \to f(x)$. Show that $\lim_n \int f_n(x) \mu(\mathrm{d}x) = \int f(x) \mu(\mathrm{d}x)$.

Question 5. In lectures we proved Beppo-Levi as a consequence of the monotone convergence theorem. Show that if we assume the result in Beppo-Levi then we can prove the monotone convergence theorem as a consequence.