Import packages

[] L, 1 cell hidden

Importing data

##Uploading the data
house_df=pd.read_csv('/content/drive/MyDrive/EnhanceIT/Aldo Cao Romero - raw_house_data.csv ##Shape of the Data
print(house_df.shape)
##Observing the first 5 rows
house_df.head(5)

(5000, 16)

`	MLS	sold_price	zipcode	longitude	latitude	lot_acres	taxes	year_buil
0	21530491	5300000.0	85637	-1.103.782	31.356.362	2154.00	5272.00	194
1	21529082	4200000.0	85646	-111.045.371	31.594.213	1707.00	10422.36	199
2	3054672	4200000.0	85646	-111.040.707	31.594.844	1707.00	10482.00	199
3	21919321	4500000.0	85646	-111.035.925	31.645.878	636.67	8418.58	193
4	21306357	3411450.0	85750	-110.813.768	32.285.162	3.21	15393.00	199

##Identifying data types
house_df.dtypes

MLS int64 sold_price float64 zipcode int64

```
longitude
                      object
latitude
                      object
                     float64
lot acres
taxes
                     float64
year_built
                      int64
bedrooms
                       int64
bathrooms
                      object
sqrt_ft
                      object
                      object
garage
kitchen_features
                      object
fireplaces
                     float64
floor_covering
                      object
HOA
                      object
dtype: object
```

Locating None values

```
##We get a list of every column
columns=house_df.columns.values.tolist()
#Separate beteween cathegorical and numerical columns
numerical=[]
cathegorical=[]
for i in columns:
  if(house_df[i].dtype!="0"):
    numerical.append(i)
  else:
    cathegorical.append(i)
 for j in cathegorical:
   if(j!='longitude' and j!='latitude'):
    print(j+':')
    print( house df[j].value counts()["None"])
##Getting the number of None values in each categorical column
     bathrooms:
     6
     sqrt_ft:
     56
     garage:
     kitchen_features:
     floor_covering:
     1
     HOA:
     562
```

Correct object numerical values

```
##In this case we have garage, bathrooms, HOA and sqrt_ft as object type variables when they
#First, let's change the None values by zeros and transform the whoe columns into numbers
n=len(house df['bathrooms'])
##Making a loop that makes all the work
#For batrooms we have
for i in range(n):
  if(house_df['bathrooms'][i]=='None'):
    house df['bathrooms'][i]=0.0
house df['bathrooms']=house_df['bathrooms'].astype(float)
#Sqrt_ft
for i in range(n):
  if(house df['sqrt ft'][i]=='None'):
    house_df['sqrt_ft'][i]=0.0
house_df['sqrt_ft']=house_df['sqrt_ft'].astype(float)
#Garage
for i in range(n):
  if(house df['garage'][i]=='None'):
    house df['garage'][i]=0
house_df['garage']=house_df['garage'].astype(float)
house_df['garage']=house_df['garage'].astype(int)
#HOA
for i in range(n):
  if(house_df['HOA'][i]=='None'):
    house_df['HOA'][i]=0
    #print(i)
  else:
   # print(i)
    vv=house df['HOA'][i].split(',')
    house_df['HOA'][i]=house_df['HOA'][i][0]
house_df['HOA']=house_df['HOA'].astype(int)
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:8: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user">https://pandas.pydata.org/pandas-docs/stable/user</a>
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:14: SettingWithCopyWarning
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user">https://pandas.pydata.org/pandas-docs/stable/user</a>
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:20: SettingWithCopyWarning
```

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:33: SettingWithCopyWarning A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:28: SettingWithCopyWarning A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user

```
#Also let's note that we have zero values data that most likely should not be zero.
n=len(house df['year built'])
for i in range(n):
   if(house_df['year_built'][i]==0.0):
print(r)
k=0
for i in range(n):
   if(house df['sold price'][i]==0.0):
     k=k+1
print(k)
m=0
for i in range(n):
   if(house df['HOA'][i]==0.0):
print(k)
r=0
for i in range(n):
   if(house df['sqrt ft'][i]==0.0):
print(r)
b=0
for i in range(n):
   if(house df['bedrooms'][i]==0.0):
     b=b+1
print(b)
t=0
for i in range(n):
   if(house_df['taxes'][i]==0.0):
     t=t+1
print(t)
a=0
for i in range(n):
```

if(house_df['lot_acres'][i]==0.0):

```
a=a+1
print(a)
     5
     0
     1388
     56
     0
     22
##We opbserve that we don't have None or zero values in the bedrooms columns, so, it is not p
#To solve this, let's strack some statisitics
#For the HOA variable is clear that the mode is zero. We compute it anyway
mode=house_df['year_built'].mode()[0]
for i in range(n):
   if(house_df['year_built'][i]==0.0):
     house df['year built'][i]=mode
#For HOA
modeHOA=house_df['HOA'].mode()[0]
for i in range(n):
   if(house df['HOA'][i]==0.0):
     house df['HOA'][i]=mode
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:6: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:11: SettingWithCopyWarning
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user">https://pandas.pydata.org/pandas-docs/stable/user</a>
       # This is added back by InteractiveShellApp.init path()
#We analizy some information on the sqrt_ft column to see if we can be able of choosing a val
mean=house df['sqrt ft'].mean()
median=house_df['sqrt_ft'].median()
mode2=house df['sqrt ft'].mode()
print(mean)
print(median)
print(mode2)
#We observe how different is the media with the madianit seems they behave as a normal distri
     3715.9006474239914
     3524.0
          3674.74352
     dtype: float64
#We use the mean to fill all the zero values for sqrt_ft
for i in range(n):
```

```
if(house_df['sqrt_ft'][i]==0.0):
  house_df['sqrt_ft'][i]=mean

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: SettingWithCopyWarning:
  A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_">https://pandas.pydata.org/pandas-docs/stable/user_</a>
  This is separate from the ipykernel package so we can avoid doing imports until
```

Searching for Null/NaN values

#Searching for the total amount of NaN or Null values
house_df.isnull().sum()

MLS	0
sold_price	0
zipcode	0
longitude	0
latitude	0
lot_acres	10
taxes	0
year_built	0
bedrooms	0
bathrooms	0
sqrt_ft	0
garage	0
kitchen_features	0
fireplaces	25
floor_covering	0
HOA	0
dtype: int64	

##We opbserve that we don't have Null or NaN values in the bedrooms columns, so, it is not po

```
#We eliminate all nun rows considerig they are less than 5% of the data
df_drop=house_df.dropna(axis=0)
df_drop.shape

(4973, 16)
```

Dropping unnecesary values

```
[ ] 🖟 3 cells hidden
```

Correlated variables

```
#Getting the correlation matrix of the data frame
plt.figure(figsize=(10,5))
c= df_drop.corr()
sns.heatmap(c,cmap="BrBG",annot=True)
```


#There is a high correlation between the size of the house (sqrt_ft) and the sold price, as e

Searching for outliers

```
#Getting the box plots of all numerical variables
df=df_drop
print(df.shape)
#sns.boxplot(x=df['sqrt_ft'])
#sns.boxplot(x=df['sold_price'])
#sns.boxplot(x=df['zipcode'])
#sns.boxplot(x=df['lot_acres'])
#sns.boxplot(x=df['taxes'])
#sns.boxplot(x=df['bedrooms'])
#sns.boxplot(x=df['year_built'])
#sns.boxplot(x=df['bathrooms'])
#sns.boxplot(x=df['fireplaces'])
plt.show()
```

(4973, 15)


```
##Getting an IQR analysis
Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1
print(IQR)
```

sold_price	252500.00
zipcode	32.00
lot_acres	1.17
taxes	3283.00
year_built	19.00
bedrooms	1.00
bathrooms	1.00
sqrt_ft	1084.00
garage	1.00
fireplaces	2.00

```
2005,00
     HOA
     dtype: float64
df = df[~(df['fireplaces'] > 6)]
df.shape
     (4961, 15)
#Based on the plots, we eliminate the significant outliers
df = df[\sim(df['garage'] > 15)]
df = df[\sim(df['bathrooms'] > 20)]
df = df[\sim(df['bedrooms'] > 15)]
df = df[\sim(df['taxes'] ==0)]
df.shape
     (4930, 15)
df = df[\sim(df['lot acres'] > 500)]
df = df[\sim(df['lot acres']==0)]
df = df[\sim(df['sold price'] > 3000000)]
df = df[\sim(df['sqrt ft'] > 10000)]
#We get the final shape of the data
df.shape
     (4877, 15)
```

Encoding Kitchen features and floor covering

```
##We observe in the data, we have a lot of data in the kitchen features column. We need a way
#Fisrt we select the kitchen column
features=df_drop['kitchen_features']
elements=[]
coder=[]
label=[]

##We loop over the total elements in the kitchn columns to extract the unique ones.
for i in features:
    el=i.lower().split(',')
    elements=elements+el
```

```
##Then we observe that existed elements with some descriptions, so we would need to add these
for i in elements:
 if(':' in j):
   x=i.split(':')[0]
   label.append(x)
  else:
   label.append(j)
##In this way we construct our vector of unique kitchen items
label=np.unique(label)#This vector will be the base of the order of the coder's elements.
#Now, ⋅we⋅create⋅our⋅vector⋅of⋅zeros⋅and⋅ones⋅depending⋅on⋅the⋅case..
#If·the·house·has·the·item·it·would·be·one·and·zero·otherwise.·Once·again,·depending·on·the·l
for s in features:
 vec=np.zeros(len(label))
 ele=i.lower().split(',')
 for k in ele:
   if ':' in k:
      k=k.split(':')[0]
   for r in range(len(label)):
      if(label[r] == k):
        vec[r]=1
  coder.append(vec)
##The order of the coder depends on the order of the label list
df drop['kitchen coder']=coder
#Fisrt we select the floor covering column
features=df drop['floor_covering']
elements=[]
coder=[]
label=[]
##We loop over the total elements in the kitchn columns to extract the unique ones.
for i in features:
 el=i.lower().split(',')
  elements=elements+el
##Then we observe that exists elementes with the other feature, so we would need to add this
for j in elements:
 if(':' in j):
   x=i.split(':')[0]
   label.append(x)
  else:
   label.append(j)
##In this way we construct our vector of unique kitchen items
label=np.unique(label)
##print(label)
#Now, we create our vector of zeros and ones depending on the case.
```

			-		bathrooms	Sqi C_
31.356.362	2154.00	5272.00	1941	13	10.0	1050
31.594.213	1707.00	10422.36	1997	2	2.0	730
31.594.844	1707.00	10482.00	199 <i>1</i>	2	3.0	
31.645.878	636.67	8418.58	1930	7	5.0	901
32.285.162	3.21	15393.00	1995	4	6.0	639
	31.594.213 31.594.844 31.645.878	31.594.213 1707.00 31.594.844 1/07.00 31.645.878 636.67	31.594.213 1707.00 10422.36 31.594.844 1707.00 10482.00 31.645.878 636.67 8418.58 32.285.162 3.21 15393.00	31.594.213 1707.00 10422.36 1997 31.594.844 1707.00 10482.00 1997 31.645.878 636.67 8418.58 1930 32.285.162 3.21 15393.00 1995	31.594.213 1707.00 10422.36 1997 2 31.594.844 1707.00 10482.00 1997 2 31.645.878 636.67 8418.58 1930 7	31.594.213 1707.00 10422.36 1997 2 2.0 31.594.844 1707.00 10482.00 1997 2 3.0 31.645.878 636.67 8418.58 1930 7 5.0 32.285.162 3.21 15393.00 1995 4 6.0