Claude Shyaka

ID#: 801326243

Homework 3: Naive Bayes and PCA Feature Extraction

```
In [321...
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          from sklearn.model_selection import train_test_split
          from sklearn.preprocessing import MinMaxScaler, StandardScaler
          from sklearn.naive_bayes import GaussianNB
          from sklearn.linear_model import LogisticRegression
          from sklearn.metrics import confusion_matrix
          from sklearn.metrics import classification_report
          from sklearn.datasets import load_breast_cancer
          # Seed for random state
          seed = 42
          # create heatmap
          def create_heatmap(matrix):
               import seaborn as sns
               from matplotlib.colors import ListedColormap
               class_names = [0, 1]
               fig, ax = plt.subplots()
               tick_marks = np.arange(len(class_names))
               plt.xticks(tick_marks, class_names)
               plt.yticks(tick_marks, class_names)
               sns.heatmap(pd.DataFrame(matrix), annot=True, cmap="YlGnBu", fmt='g')
               ax.xaxis.set_label_position("top")
               plt.tight_layout()
               plt.title("Confusion matrix", y=1.1)
               plt.ylabel("Actual label")
               plt.xlabel("Predicted label")
          breast cancer = load breast cancer()
          breast_cancer_data = breast_cancer.data
          breast_cancer_data.shape
          (569, 30)
Out[321]:
In [322...
          breast_cancer_data_df = pd.DataFrame(breast_cancer_data)
          breast_cancer_data_df.head()
```

```
Out[322]:
                             2
                                    3
                 0
                       1
                                                                  7
                                                                                         20
           0 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.3001 0.14710 0.2419 0.07871 ... 25.38 1
           1 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.0869 0.07017 0.1812 0.05667 ... 24.99 2
            19.69 21.25 130.00 1203.0 0.10960 0.15990 0.1974 0.12790 0.2069 0.05999
                                                                                    ... 23.57 2
            11.42 20.38
                                 386.1 0.14250 0.28390 0.2414 0.10520 0.2597 0.09744
                          77.58
                                                                                    ... 14.91 2
           4 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.1980 0.10430 0.1809 0.05883 ... 22.54 10
          5 rows × 30 columns
In [323...
           breast_cancer_labels = breast_cancer.target
           breast_cancer_labels.shape
          (569,)
Out[323]:
In [324...
          labels = np.reshape(breast_cancer_labels, (569,1))
In [325...
           final_breast_cancer_data = np.concatenate([breast_cancer_data, labels], axis=1)
           final_breast_cancer_data.shape
          (569, 31)
Out[325]:
In [326...
           breast_cancer_dataset = pd.DataFrame(final_breast_cancer_data)
In [327...
           features = breast_cancer.feature_names
           array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',
Out[327]:
                  'mean smoothness', 'mean compactness', 'mean concavity',
                  'mean concave points', 'mean symmetry', 'mean fractal dimension',
                  'radius error', 'texture error', 'perimeter error', 'area error',
                  'smoothness error', 'compactness error', 'concavity error',
                  'concave points error', 'symmetry error',
                  'fractal dimension error', 'worst radius', 'worst texture',
                  'worst perimeter', 'worst area', 'worst smoothness',
                  'worst compactness', 'worst concavity', 'worst concave points',
                  'worst symmetry', 'worst fractal dimension'], dtype='<U23')
          features_labels = np.append(features, 'label')
In [328...
           breast_cancer_dataset.columns = features_labels
In [329...
In [330...
          breast_cancer_dataset.head()
```

Out[330]:		mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mea symmetr
	0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.241
	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.181
	2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.206
	3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.259
	4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.180

5 rows × 31 columns

```
In [331... breast_cancer_dataset['label'].replace(0, 'Benign', inplace=True)
breast_cancer_dataset['label'].replace(1, 'Malignant', inplace=True)
```

In [332... breast_cancer_dataset.tail()

Out[332]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	m symme
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1

5 rows × 31 columns

```
In [333... breast_cancer_dataset['label'].replace('Benign', 0, inplace=True)
    breast_cancer_dataset['label'].replace('Malignant', 1, inplace=True)
    breast_cancer_dataset.tail()
```

Out[333]:

mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	m symme
21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1
20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1
16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1
20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2
7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1
	21.56 20.13 16.60 20.60	radius texture 21.56 22.39 20.13 28.25 16.60 28.08 20.60 29.33	radius texture perimeter 21.56 22.39 142.00 20.13 28.25 131.20 16.60 28.08 108.30 20.60 29.33 140.10	radius texture perimeter area 21.56 22.39 142.00 1479.0 20.13 28.25 131.20 1261.0 16.60 28.08 108.30 858.1 20.60 29.33 140.10 1265.0	radius texture perimeter area smoothness 21.56 22.39 142.00 1479.0 0.11100 20.13 28.25 131.20 1261.0 0.09780 16.60 28.08 108.30 858.1 0.08455 20.60 29.33 140.10 1265.0 0.11780	radius texture perimeter area smoothness compactness 21.56 22.39 142.00 1479.0 0.11100 0.11590 20.13 28.25 131.20 1261.0 0.09780 0.10340 16.60 28.08 108.30 858.1 0.08455 0.10230 20.60 29.33 140.10 1265.0 0.11780 0.27700	radius texture perimeter area smoothness compactness concavity 21.56 22.39 142.00 1479.0 0.11100 0.11590 0.24390 20.13 28.25 131.20 1261.0 0.09780 0.10340 0.14400 16.60 28.08 108.30 858.1 0.08455 0.10230 0.09251 20.60 29.33 140.10 1265.0 0.11780 0.27700 0.35140	mean radius mean texture mean perimeter mean area mean smoothness mean compactness mean concave points 21.56 22.39 142.00 1479.0 0.11100 0.11590 0.24390 0.13890 20.13 28.25 131.20 1261.0 0.09780 0.10340 0.14400 0.09791 16.60 28.08 108.30 858.1 0.08455 0.10230 0.09251 0.05302 20.60 29.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200

5 rows × 31 columns

```
In [334... X = breast_cancer_dataset.iloc[:, :30].values
Y = breast_cancer_dataset.iloc[:, 30].values
```

```
# Split the data into training and test set.
In [335...
          # Train with 80% and testing with 20%.
          X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.20, trai
In [336...
          # create a scaler object,
          # Fit the scaler on the training data and transform
          sc = StandardScaler()
          X_train_sc = sc.fit_transform(X_train)
          # Apply the scaler to the test data
          X_test_sc = sc.transform(X_test)
In [337...
          model = GaussianNB()
          model.fit(X_train_sc, Y_train)
          Y_pred = model.predict(X_test_sc)
          report = classification_report(Y_test, Y_pred)
          print('\nClassification metrics:\n', report)
          matrix = confusion_matrix(Y_test, Y_pred)
          create_heatmap(matrix)
          Classification metrics:
```

	precision	recall	f1-score	support
0 1	0.98 0.96	0.93 0.99	0.95 0.97	43 71
accuracy macro avg weighted avg	0.97 0.97	0.96 0.96	0.96 0.96 0.96	114 114 114

Confusion matrix

Problem 2

```
In [338...
          from sklearn import metrics
          X_sc = sc.fit_transform(X)
          from sklearn.decomposition import PCA
          K_vals = [1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]
          acc_list = []
          prec_list = []
          rec_list = []
          for k in K_vals:
              pca = PCA(n_components=k)
              principalComponents = pca.fit_transform(X_sc)
              # Split the data into training and test set.
              # Train with 80% and testing with 20%.
              X_train, X_test, Y_train, Y_test = train_test_split(principalComponents, Y,
              clf = LogisticRegression(penalty='12', random_state=seed, C=0.04, solver='1i
              clf.fit(X_train, Y_train)
              Y_pred = clf.predict(X_test)
              acc_list.append(metrics.accuracy_score(Y_test, Y_pred))
              prec_list.append(metrics.precision_score(Y_test, Y_pred))
              rec_list.append(metrics.recall_score(Y_test, Y_pred))
          plt.plot(K_vals, acc_list, label="Accuracy")
          plt.plot(K_vals, prec_list, label="Precision")
          plt.plot(K_vals, rec_list, label="Recall")
          plt.xlabel("K")
          plt.title("Accuracy, Precision, and Recall over a different number of Ks")
          plt.legend()
          plt.show()
```


Problem 3

```
In [339...
          from sklearn import metrics
          X_sc = sc.fit_transform(X)
          from sklearn.decomposition import PCA
          K_vals = [1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]
          acc_list = []
          prec_list = []
          rec_list = []
          for k in K_vals:
              pca = PCA(n_components=k)
              principalComponents = pca.fit_transform(X_sc)
              # Split the data into training and test set.
              # Train with 80% and testing with 20%.
              X_train, X_test, Y_train, Y_test = train_test_split(principalComponents, Y,
              clf = GaussianNB()
              clf.fit(X_train, Y_train)
              Y_pred = clf.predict(X_test)
              acc_list.append(metrics.accuracy_score(Y_test, Y_pred))
              prec_list.append(metrics.precision_score(Y_test, Y_pred))
              rec_list.append(metrics.recall_score(Y_test, Y_pred))
          plt.plot(K_vals, acc_list, label="Accuracy")
          plt.plot(K_vals, prec_list, label="Precision")
          plt.plot(K_vals, rec_list, label="Recall")
          plt.xlabel("K")
          plt.title("Accuracy, Precision, and Recall over a different number of Ks")
          plt.legend()
          plt.show()
```



```
In [ ]:
```