

Network, Security and Privacy

Perimeter Defense: Castle

Securing Network Perimeter

- Basic access points into a network
 - LANs inside the organization (public-facing services, e.g. servers)
 - Facilitated via Internet (most attacks come in this way)
- Basic elements in preventing access
 - Firewalls
 - Intrusion Detection Systems (IDS)
 - Network Address Translation (NAT)

Firewall

Firewalls

 Isolates organization's internal networks from larger Internet, allowing some packets to pass, blocking others

Firewalls: Why?

- Prevent denial of service attacks:
 - SYN flooding: attacker establishes many bogus TCP connections, no resources left for "real" connections
- Prevent illegal modification/access of internal data
 - e.g., attacker replaces CIA's homepage with something else
- Allow only authorized access to inside network
 - set of authenticated users/hosts
- Three types of firewalls:
 - stateless packet filters
 - stateful packet filters
 - application gateways

Stateless packet filtering

- internal network connected to Internet via router firewall
- router filters packet-by-packet, decision to forward/drop packet based on:
 - source IP address, destination IP address

Stateless packet filtering: example

- example 1: block incoming and outgoing datagrams with IP protocol field = 17 and with either source or dest port = 23
 - result: all incoming, outgoing UDP flows and telnet connections are blocked
- example 2: block inbound TCP segments with ACK=0.
 - result: prevents external clients from making TCP connections with internal clients, but allows internal clients to connect to outside.

Stateless packet filtering: more examples

Policy	Firewall Setting
No outside Web access.	Drop all outgoing packets to any IP address, port 80
No incoming TCP connections, except those for institution's public Web server only.	Drop all incoming TCP SYN packets to any IP except 130.207.244.203, port 80
Prevent Web-radios from eating up the available bandwidth.	Drop all incoming UDP packets - except DNS and router broadcasts.
Prevent your network from being used for a smurf DoS attack.	Drop all ICMP packets going to a "broadcast" address (e.g. 130.207.255.255).

Access Control Lists

 ACL: table of rules, applied top to bottom to incoming packets: (action, condition) pairs

action	source address	dest address	protocol	source port	dest port	flag bit
allow	222.22/16	outside of 222.22/16	TCP	> 1023	80	any
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53	
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023	
deny	all	all	all	all	all	all

Stateful packet filtering

- stateless packet filter: heavy handed tool
 - admits packets that "make no sense," e.g., dest port = 80, ACK bit set, even though no TCP connection established:

action	source address	dest address	protocol	source port	dest port	flag bit
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK

- Stateful packet filter: track status of every TCP connection
 - track connection setup (SYN), teardown (FIN): determine whether incoming, outgoing packets "makes sense"
 - timeout inactive connections at firewall: no longer admit packets

Stateful packet filtering

 ACL augmented to indicate need to check connection state table before admitting packet

action	source address	dest address	proto	source port	dest port	flag bit	check conn
allow	222.22/16	outside of 222.22/16	TCP	> 1023	80	any	
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK	X
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53		
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023		X
deny	all	all	all	all	all	all	

Application gateways

- filters packets on application data as well as on IP/TCP/UDP fields.
- example: allow select internal users to telnet outside.
 - 1. require all telnet users to telnet through gateway.
 - 2. for authorized users, gateway sets up telnet connection to dest host. Gateway relays data between 2 connections
 - 3. router filter blocks all telnet connections not originating from gateway.

Limitations of firewalls, gateways

- IP spoofing: router can't know if data "really" comes from claimed source
- if multiple app's need special treatment, each has own app. gateway
- client software must know how to contact gateway.
 - e.g., must set IP address of proxy in Web browser
- filters often use all or nothing policy for UDP
- tradeoff: degree of communication with outside world, level of security
- many highly protected sites still suffer from attacks

Intrusion Detection Systems

Intrusion detection systems

- packet filtering:
 - operates on TCP/IP headers only
 - no correlation check among sessions
- IDS: intrusion detection system
 - deep packet inspection: look at packet contents (e.g., check character strings in packet against database of known virus, attack strings)
 - examine correlation among multiple packets
 - port scanning
 - network mapping
 - DoS attack

```
Troot@darkstar ~ 1#
Troot@darkstar ~ 1# nnap -PN sS -O Scanme.Nnap.Org

Starting Nnap 5.21 ( http://nnap.org ) at 2010-04-01 11:19 IDT

Nnap scan report for Scanme.Nnap.Org (64.13.134.52)

Host is up (0.18s latency).

rDNS record for 64.13.134.52: scanme.nnap.org

Not shown: 993 filtered ports

PORT STATE SERVICE

25/tcp closed swtp

53/tcp open domain

70/tcp closed gopher

80/tcp open http

113/tcp open ajp13

31337/tcp open djp13

31337/tcp closed Elite

Device type: general purpose

Running: Linux 2.6.X

OS details: Linux 2.6.15 - 2.6.26

OS detection performed. Please report any incorrect results at http://nmap.org/submit/
Nnap done: 1 IP address (1 host up) scanned in 16.99 seconds

Iroot@darkstar ~ 1#
```

Example: Port scanning by Nmap

Intrusion detection systems

multiple IDSs: different types of checking at different locations

Anomaly Detection-based Filtering

- Model of expected "normal" behaviour.
- Attacks assumed to exhibit different pattern.
- Able to detect unknown attacks.
- Example of "normal":
 - User logs on every weekday 9am.
 - · Accesses supplier websites.
 - · Logs off at 5pm.
- Example of "suspicious":
 - User logs on at 3am.
 - Installs new software.
- Weakness –potential for false alarms

Anomaly Detection-based Filtering

Example: Splunk

https://www.splunk.com/en_us/software/user-behavior-analytics.html

Misuse based Detection

- Attack patterns of "signatures".
- Configured by an administrator.
- Identify user behaviour that matches.
- Strength –minimises occurrence of legitimate activity misidentified.
- Weakness –only can identify known attacks and requires regular updates.

Misuse based Detection

Example: Snort

- Lightweight IDS system capable of performing real-time traffic analysis and packet logging
- Snort has three primary uses. It can be used as:
 - 1. a packet sniffer like tcpdump
 - 2. a packet logger (useful for network traffic debugging, etc)
 - 3. a full network intrusion detection system

Honeypots

- Computer or network appearing legitimate.
- Actually, a trap known as a honeypot.
- Used to study attacks or draw an attacker out.

Monitor attacker behaviour with no risk to real assets.

Network Address Translation

Revisiting IP Addresses

- Most IP addresses are public
 - they uniquely identify a node in the 'Internet', i.e. known to the outside world
 - · can be routed in the Internet
- Certain groups of IP addresses are private
 - not known to the outside world (e.g. outside of an organization or a private home network)
 - cannot be routed in the 'Internet'

Private IP Addresses

- Private IP address ranges (IPv4):
 - 10.0.0.0/8
 - 10.0.0.0 10.255.255.255
 - 172.16.0.0/12
 - 172.16.0.0 172.31.255.255
 - 192.168.0.0/16
 - 192.168.0.0 192.168.255.255
- If you assign a node with any one of these addresses, they are not meant to be 'seen' by the outside world

Network Address Translation (NAT)

- Used by most firewalls to shield a private network from public network
 - Translates between private addresses inside a network and public addresses outside the network
 - Done transparently, internal IP addresses remain hidden
- Performed by NAT proxy servers/router
 - Uses an address table to do translations, e.g.
 - one-to-one mapping: replace a private 'internal' address with public 'outside' address
 - one-to-many mapping: map multiple private hosts to one publicly exposed IP address
 - Performs reverse operations for response packets

Network with NAT

Port Address Translation for NAT Firewall C

Original IP	Original Source	Mapped IP	Mapped Source
192.168.1.100	4550	128.192.44.50	3210
192.168.1.101	8764	128.192.44.50	3215

Using Private Addresses with NAT

- Used to provide additional security
- Assigns private IP addresses to devices inside the network
 - Even if they are discovered, no packets with these addresses will be delivered (publicly illegal IP address)
 - Example: Assigned public address: 128.192.55.xx
 - Assign to NAT proxy server: 128.192.55.1
 - Assign to internal computers: 10.3.3.xx
 - 10.x.x.x is never used on Internet
 - Private address hidden from outside world
- Additional benefit is that it gives ability to have more internal IP addresses for an organization
 - Save IPv4 address exhaustion

END