DATA PREPROCESSING

BEIYU LIN

TODAY'S TOPIC

- Data Preprocessing
- Exploratory Analysis
- Post-processing

THE DATA ANALYSIS PIPELINE

Mining steps

Preprocessing: real data is noisy, incomplete and inconsistent.

• sampling, dimensionality reduction, feature selection.

Post-Processing: make data easy to interpret and useful to users

- statistical analysis of importance
- visualization.

DATA QUALITY

- Data quality problems:
 - Noise and outliers (example in yellow box)
 - Missing values (in red box)
 - Duplicate data (in green box)

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	10000K	Yes	
6	No	NULL	60K	No	П
7	Yes	Divorced	220K	NULL	
8	No	Single	85K	Yes	
9	No	Married	90K	No	
9	No	Single	90K	No	

SAMPLING

- Why sampling:
 - obtaining the entire set of data of interest is too expensive or time consuming.
 - e.g., calculate the average height of a person in Las Vegas?
 population in 2019: 634,773
 - what fraction of tweets in a year contain the word "Greece"?
 300M tweets per day, if 100 characters on average, 86.5TB to store all tweets

SAMPLING ...

- key principles for effective sampling:
 - using a sample that is representative to estimate the entire data sets
- What is a representative sample
 - if a sample has approximately the same property (of interest) as the original set of entire data
 - otherwise, the sample introduces some bias
- Question: what happens if we take a sample from UNLV to compute the average height of a person in Las Vegas?

TYPES OF SAMPLING

- Simple Random Sampling
 any particular item will be selected with an equal probability
- Sampling without replacement
 when an item is selected, it is removed
- Sampling with replacement
 items are not removed when they are selected for the sample
 (i.e., the same object can be picked up more than once.)

TYPES OF SAMPLING

- Stratified sampling
 - Split the data into several groups; then draw random samples from each group.
 - Example: with 0.2% of transactions are fraudulent, how to understand the differences between legitimate and fraudulent credit card transactions?
 - If I select 500 transactions at random? What would happen?
 - Solution: sample 500 legitimate, 500 fraudulent transactions

SAMPLE SIZE

SAMPLE SIZE

■ What sample size is necessary to get at least one object from each of 10 fruits.

STREAMING DATA

Names in the phone book

Videos watched by a student in August

STREAMING DATA

SAMPLING FOR STREAMING DATA

 Task: efficiently return a random sample of 1,000 elements evenly / uniformly distributed from the original stream

Simple solution when the size of stream N is known.

- I. generate random integers between 0 and N-I.
- 2. use the random integer as an index
- 3. retrieve the elements at those indices

SAMPLING FOR STREAMING DATA

■ Task: efficiently return a random sample of 1,000 elements evenly / uniformly distributed from the original stream

What if:

- I. the size of the stream N is unknown in advance
- 2. not enough memory to store the stream in memory
- 3. only keep a constant amount of integers in memory

RESERVOIR SAMPLING

I	9	2	I	8	•••	7														
---	---	---	---	---	-----	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Notes in class

Steps:

I. make a reservoir (array) of 1,000 elements (n = 1,000)

2. fill it with the first 1,000 elements in the stream.

3. process the ith element (i>1,000)

choose to sample the ith item with probability 1,000/i

at the end of processing that step, the 1,000 element in the array / reservoir are randomly sampled amongst the i elements .

RESERVOIR SAMPLING

What is the probability of the n-th items to survive for N-n rounds?