Практика 1. Принцип Дирихле.

COMB 1. Имеются пять видов конвертов без марок и четыре вида марок. Сколькими способами можно выбрать конверт с маркой для посылки письма?

[COMB 2.] Сколько существует целых чисел между 0 и 999, содержащих ровно одну цифру 7?

[COMB 3.] Сколькими способами можно выбрать на шахматной доске два поля, не лежащие на одной горизонтали или вертикали?

COMB 4. Сколько чисел в диапазоне от 0 до 999999 не содержат двух рядом стоящих одинаковых цифр?

COMB 5. Сколько целых чисел от 1 до 100 не делится ни на два, ни на три, ни на пять?

COMB 6. Переплетчик должен переплести 12 различных книг в красный, синий и коричневый цвета. Сколько имеется способов это сделать, если в каждый из трех цветов должна быть переплетена хотя бы одна книга?

COMB 7. В ящике лежат десять белых и двенадцать черных носков. Какое минимальное количество носков нужно вытащить, чтобы на выходе гарантированно получить пару носков одинакового цвета?

COMB 8. Какое максимальное количество королей можно поместить на шахматную доску (стандартного размера, 8×8) так, чтобы эти короли не били друг друга?

COMB 9. Сколько людей нужно выбрать из группы, состоящей из двадцати супружеских пар, чтобы в выборку гарантированно вошла хотя бы одна супружеская пара?

COMB 10. Сколько человек должно находиться в комнате, чтобы по крайней мере у троих из них день рождения гарантированно был в одном месяце?

COMB 11. Сколько чисел нужно выбрать из последовательности $\{1, 2, 3, ..., 20\}$, чтобы среди них гарантированно нашлась хотя бы одна пара чисел, сумма которых была бы равна 21?

 $igl| {f COMB \ 12.} igr| {f Д}$ окажите комбинаторно тождество Вандермонда: $\binom{n+m}{k} = \sum_{i=0}^k \binom{n}{i} \binom{m}{k-i}.$

COMB 13. Имеется произвольная последовательность a_1, \ldots, a_n целых чисел, не обязательно различных. Доказать, что в такой последовательности обязательно найдется отрезок $a_{k+1}, a_{k+2}, \ldots, a_l$, сумма элементов которого $\sum_{i=k+1}^l a_i$ делится на n.

COMB 14. Сколько существует множеств $S \subseteq \{1, ..., n\}$ таких, что |S| = k и в S нет последовательных элементов $(\forall x, y \in S \ x \neq y + 1)$.

COMB 15. Пусть $\{A_i\}, i \in [k]$ — набор из k подмножеств множества [n]. Известно, что пересечение любых двух подмножеств из этого набора не пусто. Докажите, что $k \leq 2^{n-1}$. Приведите пример, на котором в этом неравенстве достигается равенство.

COMB 16. Пусть у нас есть граф G. Выразите количество гамильтоновых циклов в графе G, через C_X — количество циклов в графе $G \setminus X$ $(X \subseteq V(G))$.

COMB 17. Используя предыдущую задачу придумайте алгоритм вычисляющий количество гамильтоновых путей такой, что он работает $2^n poly(n)$, где n — число вершин.