Multiprocesamiento en Lenguaje C Conceptos básicos de la computación paralela

Proyecto PAPIME PE104911

Pertinencia de la enseñanza del cómputo paralelo en el currículo de las ingenierías

Conceptos básicos de la computación paralela

Sistemas de Multiprocesamiento:

 Sistemas de cómputo que cuentan con varias unidades de procesamiento

Conceptos básicos de la computación paralela

Sistemas de multiprocesamiento:

- Supercomputadoras
- Clusters
- Grids computacionales
- Computadoras personales con tecnología multicore

Conceptos básicos de la computación paralela Sistemas de multiprocesamiento

¿Para qué?

¿Quién las utiliza?

 ¿Cuáles son los problemas que se presentan en su uso?

Conceptos básicos de la computación paralela Sistemas de multiprocesamiento

Demandas de la Aplicación

- -Cómputo científico: Biología, Química, Física, ...
- -Cómputo de propósito especial: Video, Gráficas, CAD, Bases de datos, ...

Conceptos básicos de la computación paralela Sistemas de multiprocesamiento

Ejemplos

- Modelización y predicción meteorológica y climática.
- Modelización molecular en la industria farmacéutica.
- Diseño de estructuras en arquitectura e ingeniería.
- Genoma humano.
- Modelización en finanzas y economía.
- Diseño y validación de semiconductores.
- Búsqueda en el Web.
- Modelización en medicina: p.ej., experimentación de nuevas válvulas cardiacas.
- Procesamiento de transacciones.
- Procesamiento de voz y de imágenes.
- Petroleo (analisis de reservas)
- **Automotriz** (simulación de choques, análisis de arrastre, eficienciade combustión),
- Aeronáutica (análisis de flujo de aire, eficiencia de motores,
- Mecánica estructural, electromagnetismo),
- Visualización
 - -Entretenimiento (películas como Toy Story)
 - Arquitectura (simulaciones 3D y dibujos a color)
- Modelado financiero

Cómputo Paralelo

- Uso simultáneo de múltiples <u>recursos</u> <u>computacionales</u> para resolver un problema computacional.
- Recursos de cómputo:
 - Una computadora con una o más unidades de procesamiento
 - Varias computadoras interconectadas
 - Combinación de los anteriores

¿Porqué estudiar arquitecturas paralelas?

Poder diseñar y planear varios niveles de un sistema computacional para maximizar el *rendimiento* y *programabilidad* dentro de los límites de la *tecnología* y costo.

Computadora Paralela y Secuencial

Computadora secuencial

Computadora paralela

Arquitecturas

• ¿Existe una clasificación única de arquitecturas de computadoras ?

¿Qué clasificaciones existen?

Taxonomía J.M. Flynn

 Clasificación de acuerdo a la manipulación de datos e instrucciones

 Se basa en el número de instrucciones y de la secuencia de datos que la computadora utiliza para procesar información.

Taxonomía de Flynn

- Puede haber secuencias de instrucciones sencillas o múltiples y secuencias de datos sencillas o múltiples.
 - a) SISD
 - b) MISD
 - c) SIMD
 - d) MIMD

Single Instruction, Single Data (SISD)

- Una computadora serial (no-paralelo)
- Ejemplos: PCs y workstations de un sólo CPU

Single Instruction, Multiple Data (SIMD)

- Dos variedades:
 - Arreglo de Procesadores: Connection Machine CM-2, Maspar MP-1, MP-2
 - Vectorial: IBM 9000, Cray C90, Fujitsu VP,
 NEC SX-2, Hitachi S820

SIMD

Multiple Instruction, Multiple Data (MIMD)

 Ejemplos: supercomputadores actuales, redes de computadoras "grids", SMP

MIMD

Multiple Instruction, Single Data (MISD)

- Pocas
- Ejemplos:
 - Filtros de múltiple frecuencia operando en una única señal o Múltiples algoritmos de criptografía actuando en un mensaje codificado.

Arquitecturas Paralelas Clasificación Contemporánea

- Surgen diversos sistemas de computación de alto desempeño. Su taxonomía se basa en sus procesadores, memoria e interconexión.
 - MPP (Massively Parallel Processors)
 - SMP (Symmetric Multiprocessors)
 - CC-NUMA (Cache Coherent Nonuniform Memory Access)
 - Sistemas Distribuidos
 - Clusters
- etc...

Arquitecturas de Memoria en Computadoras Paralelas

Memoria Compartida

 Modelos UMA, NUMA, COMA

UMA Uniform Memory Access

- Multiprocesadores simétricos- SMP
- Algunas veces llamadas CC-UMA Cache Coherent UMA.

NUMA Non Uniform Memory Access

- Enlazando físicamente dos o más SMPs
- El acceso a la memoria es lento
- Si se mantiene la coherencia de cache son llamados CC-NUMA - Cache Coherent NUMA

CC-NUMA

 Sistema de memoria físicamente distribuida, pero los diferentes procesadores acceden a ella como si fuera una sola

Ventajas y Desventajas

Ventajas:

- Facilidad de programación al usuario
- El intercambio de datos entre las tareas es rápido y uniforme

Desventajas

- Pérdida de escalabilidad entre la memoria y CPUs.
- El programador es el responsable para construir la sincronización
- Es costoso diseñar y producir máquinas de memoria compartida con un gran número de procesadores

Sistemas de Memoria Compartida

- SGI Origin
- HP Convex Exempler
- Cray T90/J90
- NEC SX-4
- Sun Enterprise

Memoria Distribuida

Ventajas y Desventajas

Ventajas

- La memoria es escalable al número de procesadores.
- Cada procesador puede acceder a su propia memoria sin interferencia

Desventajas

- Cuellos de botella (red)
- Dificultad para asignar estructuras de datos existentes a esta organización de memoria
- El usuario es el responsable para enviar y recibir datos a través de los procesadores

Memoria Compartida-Distribuida

¿Cómo?

- Varios SMPs son conectados por una red
- Múltiples procesadores de memoria distribuida conectados a una gran memoria compartida

Memoria Compartida Distribuida

Conceptos básicos de la computación paralela El multiprocesamiento en la actualidad

Características de las computadoras más poderosas: http://www.top500.org/

A) Single Core

B) Multiprocessor

C) Hyper-Threading Technology

D) Multi-core

F) Multi-core with Hyper-Threading Technology

E) Multi-core with Shared Cache

 Un CPU multinúcleo, multi-core o multiprocesador a nivel chip (CMP) combina dos o más núcleos independientes en un solo paquete o circuito integrado (IC)

 Un procesador multi-núcleo implementa multiprocesamiento en un solo paquete.

 Un procesador con todos los núcleos en un solo encapsulado es llamado procesador monolítico.

- Los núcleos en un sistema multi-núcleo generalmente comparten el nivel más alto de la memoria cache dentro del mismo encapsulado; aunque también pueden tener caches separadas, por ejemplo en los procesadores AMD actuales.
- También comparten la misma interconexión con el resto del sistema.

- Cada núcleo implementa independientemente optimizaciones como tales como :
- Ejecución superescalar
- Pipelining (segmentación de instrucciones)
- Multi Hilos

Intel® Core 2 Architecture

Snapshot in time during Penryn, Yorkfield, harpertown

Software develoers should know number of cores, cache line size and cache sizes to tackle Cache Effects materials

Mobile Platform Optimized

- 1-4 Execution Cores
- 3/6MB L2 Cache Sizes
- 64 Byte L2 cache line
- 64-bit

Desktop Platform Optimized

- 2-4 Execution Cores
- 2X3, 2X6 MB L2 Cache Sizes
- 64 Byte L2 Cache line
- 64-bit

Server Platform Optimized

- 4 Execution Cores
- 2x6 L2 Caches
- 64 Byte L2 Cache line
- DP/MP support
- 64-bit

Proyecto PAPIME PE104911

Laura Sandoval - Karen Sáenz - Oscar Valdez

Jerarquía de memoria

 Sistema con un procesador doble núcleo, ejecutando dos tareas a la vez (en paralelo).

 Un sistema con n núcleos es efectivo cuando funciona con n o más hilos concurrentemente.

Ventajas

- Al estar los núcleos en el mismo encapsulado la circuitería de la cache funciona mucho más rápido.
- Requieren menos energía para igualar el desempeño de dos procesadores separados. Lo que se puede traducir en mayor duración de la batería en equipos portátiles
- Comparten elementos como la cache L2 y el Bus Frontal (FSB)

Ventajas

- Multi-tareas
- Multi-hilos
- Uso más eficiente del CPU
- Mayor confiabilidad del sistema, que es menos propenso a congelarse.

Desventajas

- Se requiere ajustar software preparado para obtener mejor rendimiento de los núcleos
- Al trabajar rápidamente el ancho de banda de la memoria y el del bus frontal pueden verse limitados para igualar la velocidad del procesador