- 1. Suppose that $x_0 < x_1 < \cdots < x_n$ and y_0, y_1, \ldots, y_n are given real numbers. Then there exists a unique polynomial $p \in \mathcal{P}_n$ such that $p(x_i) = y_i$ for all $i \in \{0, \ldots, n\}$.
- 2. Suppose that $f: [-1,1] \to \mathbb{R}$ is given by $f(x) = e^{-2x}$, and for any $n \in \mathbb{N}$, let $f_n \in \mathcal{P}_n$ denote the polynomial interpolating f at n+1 equidistant points $-1 = x_0 < x_1 < \ldots < x_n = 1$. Then

$$\lim_{n \to \infty} \left(\max_{-1 \leqslant x \leqslant 1} |f(x) - f_n(x)| \right) = 0.$$

3. Define $\mathcal{F}: \mathcal{P}_n \to \mathbf{R}$ as the function which, to a polynomial $p \in \mathcal{P}_n$, associates its maximum absolute value over the interval [-1, 1], that is

$$\mathcal{F}(p) = \max_{x \in [-1,1]} |p(x)|$$
.

Then it holds that $\mathcal{F}(p) \geqslant \mathcal{F}(T_n)$ for all $p \in \mathcal{P}_n$, where T_n is the Chebyshev polynomial of degree n.

4. Suppose that $f: [-1,1] \to \mathbb{R}$ is the Runge function $f(x) = \frac{1}{1+25x^2}$. For any $n \in \mathbb{N}$, let $f_n \in \mathcal{P}_n$ denote the polynomial interpolating f at n+1 equidistant points, and let $g_n \in \mathcal{P}_n$ denote the polynomial interpolating f at the n+1 Chebyshev points (the roots of T_{n+1}). Then it holds that

$$\lim_{n \to \infty} \left(\max_{-1 \leqslant x \leqslant 1} \left| f(x) - f_n(x) \right| \right) = +\infty, \qquad \lim_{n \to \infty} \left(\max_{-1 \leqslant x \leqslant 1} \left| f(x) - g_n(x) \right| \right) = 0.$$

5. Suppose that $x_0 < x_1 < \cdots < x_n$ and y_0, y_1, \ldots, y_n are given real numbers. Then for any $m \in \{0, 1, \ldots\}$, there exists exactly one polynomial $p \in \mathcal{P}_m$ such that

$$\frac{1}{n} \sum_{i=1}^{n} \left| p(x_i) - y_i \right|^2 = 0.$$

6. Given $x_0 < x_1 < \ldots < x_n \in \mathbb{R}$ and $y_0, y_1, \ldots, y_n \in \mathbb{R}$, and let $m \ge n$. There exists a unique $p \in \mathcal{P}_m$ such that the following quantity is minimized:

$$\frac{1}{n} \sum_{i=1}^{n} \left| p(x_i) - y_i \right|^2 = 0.$$

7. Given $x_0 < x_1 < \ldots < x_n \in \mathbb{R}$ and $y_0, y_1, \ldots, y_n \in \mathbb{R}$ with n = 10, there exists a unique polynomial p(x) = ax + b that minimizes

$$J(a,b) = \frac{1}{2} \sum_{i=1}^{n} |y_i - p(x_i)|^2.$$

- 8. In Julia, if v is a vector of size 5, then v[[1, 2, 5]] returns a vector with the first, second and fifth element of v.
- 9. In Julia, if v is a vector of size 5, then v[[true, true, false, true, false]] returns a vector with the first, second and fourth element of v.
- 10. In Julia, if A is a 10×10 matrix, then A[mod.(1:end, 2) .== 0, mod.(1:end, 2) .== 0] gives the matrix obtained by removing the second column and the second row.