SESIÓN 5 PROGRAMACIÓN EN R MINERÍA DE DATOS EN R.

Hugo Andrés Dorado B.

Contenido

- Definiciones en minería de datos.
- Tipo de aprendizaje.
- Algoritmo de predicción.
- Tipos error.
- Sobre parametrización.
- Diseño del estudio.
- Validación cruzada.

Definiciones

- Big data: es un tendencia que hace referencia al almacenamiento de grandes volúmenes de datos y a los procedimientos usados para encontrar patrones repetitivos dentro de esos datos.
- Minería de datos: Es un campo de las ciencias de la computación que tiene como propósito descubrir patrones en grandes volúmenes de conjuntos de datos.
 - Utiliza los métodos de la inteligencia artificial, aprendizaje automático y estadística.

Definiciones

- Características, variables de entrada (Features): Variables medidas sobre las observaciones que se asocian luego a un variable salida.
- Variable de salida: Variable a explicar de interés.
- Función costo: Es una función que permite aproximar un conjunto de variables de entrada para generar una respuesta aproximada según la variable de salida.

$$Y = f(X) + \varepsilon$$

Tipo de aprendizaje

- Aprendizaje supervisado: se deduce una función, de acuerdo a un conjunto de variables de salida para la reducción de un error.
 - Clasificación.
 - Regresión.
 Predicción o interpretación
- Aprendizaje no supervisado: No hay una variable de salida, se busca compresión de los datos tratando un conjunto de variables de entrada.
 - Clustering.
 - Componentes principals.

Predicción en modelos de machine learning

Algoritmos de predicción

- Pregunta:¿Que mails son spam?,¿Que zonas son bosque?,¿Que clientes serán morosos?
- Entrada de datos: conjuntos de e-mail, Imágenes satelitales, información de clientes. (Ya clasificados)
- Variables de entrada: Frecuencia de ciertas palabras, índices espectrales por color, variables seleccionadas
- Algoritmo: Redes neuronales artificiales, suppor vector machine, J46
- Parámetros: (Tasa de decaimiento, neuronas ocultas), (costo), (umbral de confianza)
- Evaluación. (Precisión, exactitud, concordancia)

Tipos de error.

- Error dentro de la muestra: La tasa de error que se obtiene en los mismos datos para construir el modelo.
- Error fuera de la muestra: La tasa de error que se obtiene al traer nuevos datos no mostrados, también conocido como error de generalización.

Overfitting – sobre parametrización

Generalización Nuevos datos

Diseño de estudio para el conjunto de datos

- 1. Definir una tasa de error.
- 2. Partir el conjunto de datos en:

Entrenamiento, prueba y validación (opcional) (60,20,20) Grandes; (60,40) medianos

- Sobre el conjunto de entrenamiento hacer selección de variables de entradas
- 4. Sobre el conjunto de entrenamiento realizar optimización de parámetros. (Utilizar cross validation)
- Validar de acuerdo a la tasa de error.

K - fold

CVPRESS

Medir el desempeño

TP: Verdadero positivo.

FP: Falso positivo.

FN: Falso negativo.

TM: Verdadero negativo

Mean squared error (MSE):

Root mean squared error (RMSE):

$$\frac{1}{n} \sum_{i=1}^{n} (Prediction_i - Truth_i)^2$$

$$\rightarrow$$
 TP / (TP+FN)

$$\frac{1}{n}\sum_{i=1}^{n}(Prediction_i - Truth_i)$$

Specificity

$$\rightarrow$$
 TN / (FP+TN)

Positive Predictive Value

$$\rightarrow$$
 TP / (TP+FP)

Negative Predictive Value

$$\rightarrow$$
 TN / (FN+TN)

$$\rightarrow$$
 (TP+TN) / (TP+FP+FN+TN)

Métodos en machine learning para implementar

Modelos supervisados.

- Redes neuronales artificiales
- Árboles de clasificación y regresión.
- Random forest.
- Support vector machine.

Modelos no supervisados.

- Cluster jerarquico.
- Kmeans
- PCA

Supervised Learning

Unsupervised Learning

El mejor método de aprendizaje de máquina

Neural networks (Multilayers perceptron)

	V1	V2	٧3	V 4	V 5	 V60	L 1	L 2	L 3	L 4	L 5		Kg/lote
Obs 1	0.1	18	3	312	0.3	 89	0	1	0	1	0		2.39
Obs 2	0.2	15	4	526	0.1	 52	1	0	0	0	1		30.35
Obs 3	0.6	14	1	489	0.2	 64	0	1	1	1	1		42.25
Obs 4	0.05	19	2	523	0.5	 13	0	0	0	0	1		52.50
Obs 5	0.4	13	3	214	0.6	 57	1	1	1	1	1		
Obs 6	0.8	12	4	265	0.4	 24	1	1	0	1	0		82.25
Obs 7	0.2	15	1	236	0.8	 26	0	0	1	0	0		89.28
Obs 8	0.1	17	3	541	0.1	 35	0	1	1	1	0	•••	125.0
Obs9	0.6	16	2	845	0.3	 51	0	0	1	1	0		142.8
Obs10	0.1	18	1	126	0.1	 43	1	1	0	0	1	•••	150.0
•••				•••	••	 •••	•••	•••	•••	••	••		•••
Obs3000	0.04	15	3	235	0.6	 85	1	1	1	1	0		180

-												
	000Es40		Obs 10	6 sq0	8 sq0	7 sd0	9 sq0	9 sq0	0bs 4	8 sq0	Obs 2	1 sq0
	0.04		0.1	0.6	0.1	0.2	0.8	0.4	0.05	0.6	0.2	0.1
	15	••	18	16	17	15	12	13	19	14	15	18
	3		1	2	3	1	4	3	2	1	4	3
	235	••	126	845	541	236	265	214	523	489	526	312
	0.6		0.1	0.3	0.1	0.8	0.4	0.6	0.5	0.2	0.1	0.3
]،	••											
	85	••	43	51	35	26	24	57	13	64	52	89
_												

Predicted

0bs 1	0bs 2	0bs 3	Obs 4	Obs 5	9 sq0	Obs 7	0bs 8	0 sq0	Obs 10		ODS 3000
2.07	29.0	53.5	50.5		89.5	99.2	120	172	170	•••	188

Observed

	Obs 1	Obs 2	Obs 3	Obs 4	Obs 5	9 sq0	Obs 7	0bs 8	6 sq0	Obs 10	::	0083000
I	2.3	30.3	42.5	52.5		82.2	89.2	125	142	150	•••	180

CART(Clasification and regression trees)

Index Gini information

Yield (Ton/HA)

Random forest

mtry = number of variables ntrees = number of tress

The split is based in gini coefficient or information index

Conditional forest

mtry = number of variables ntrees = number of tress

The split is based in permutation tests

Computationally expensive Reduce the random forest bias

Resumén

Buscar datos:

https://archive.ics.uci.edu/ml/datasets.html

Filtrar datos:

Funciones básicas en R, desde la lectura.

Análisis exploratorio

Transformar datos:

Merge, dcast, plyr

Determinar estrategia de partición de datos de entrenamiento y validación.

- Seleccionar atributos.
- Optimizar parámetros.

Escoger el modelo final, resultados y pruebas de tasa de érror.

Transferir resultados a usuario.

Bibliografía

- http://caret.r-forge.r-project.org/
- http://www.rdatamining.com/
- http://ucanalytics.com/blogs/learn-r-12-booksand-online-resources/
- https://www.coursera.org/specializations/jhudata-science

This is the end 😊

