PHY304: Statistical Mechanics

Assignment 8

March 26, 2025

- 1. Consider a system of two atoms, each having only 3 quantum states of energy 0, ϵ and 2ϵ . The system is in contact with a heat reservoir at temperature T. Write down the partition function Z for the system if the particles obey
 - (a) Classical statistics and are distinguishable.
 - (b) Classical statistics and are indistinguishable.
 - (c) Fermi-Dirac statistics.
 - (d) Bose-Einstein statistics.
- 2. Consider two identical particles which are to be placed in four single-particle states. Two of these states have energy 0, one has energy ϵ , the last has energy 2ϵ . Calculate the partition function given that the particles are (a) fermions and (b) bosons.
- 3. Given a system of N identical non-interacting magnetic ions of spin- $\frac{1}{2}$, magnetic moment μ_0 in a crystal at absolute temperature T in a magnetic field B. For this system calculate:
 - (a) The partition function.
 - (b) The entropy.
 - (c) the average energy.
 - (d) The average magnetic moment \overline{M} , and the fluctuation in the magnetic moment, $\Delta M = \sqrt{\overline{(M-\overline{M})^2}}$.
- 4. (a) Find the density matrix ρ of a beam of spin- $\frac{1}{2}$ atoms prepared in the state

$$|\uparrow_y\rangle = \frac{1}{\sqrt{2}} (|\uparrow_z\rangle + i|\downarrow_z\rangle).$$

- (b) Show that $|\uparrow_y\rangle$ is a pure state.
- (c) Calculate $\langle S_x \rangle$, $\langle S_y \rangle$, and $\langle S_z \rangle$.
- 5. (a) Find the density matrix ρ of a beam of spin- $\frac{1}{2}$ atoms containing a mixture of 75% of $|\uparrow_z\rangle$ and 25% of $|\downarrow_z\rangle$.

- (b) Show that this is a mixed state.
- (c) Calculate $\langle S_x \rangle$, $\langle S_y \rangle$, and $\langle S_z \rangle$ for this system.
- 6. (a) Find the density matrix ρ of a partially polarized beam of spin- $\frac{1}{2}$ atoms containing a mixture of 75% of $|\uparrow_z\rangle$ and 25% of $|\uparrow_x\rangle$.
 - (b) Check whether it is a pure or a mixed state?
 - (c) Calculate $\langle S_x \rangle$, $\langle S_y \rangle$, and $\langle S_z \rangle$ for this system.
- 7. Suppose we have a system with total angular momentum 1. Pick a basis corresponding to the three eigenvectors of the z-component of angular momentum, J_z , with eigenvalues +1, 0, -1, respectively. We are given an ensemble described by density matrix:

$$\frac{1}{4} \left(\begin{array}{rrr} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right)$$

- (a) Is ρ a permissible density matrix? Give your reasoning. For the remainder of this problem, assume that it is permissible. Does it describe a pure or mixed state? Give your reasoning.
- (b) Given the ensemble described by ρ , what is the average value of J_z ?
- (c) What is the spread (standard deviation) in measured values of J_z ?