Homework 5 Connor Baker, March 2017

1. Prove that if the real-valued function f is strictly increasing or strictly decreasing on \mathbb{R} , then f is one-to-one (Note: You cannot assume f is differentiable).

Proof. Case 1: f is strictly decreasing.

If f is strictly decreasing, then $\forall x, a \in \text{dom}(f), x \leq a, f(x) \geq f(a)$. If it is the case that f(x) = f(a), then it must also be the case that x = a. Then, f(x) = f(a) if and only if x = a, and f(x) > f(a) $\forall x, a \in \text{dom}(f), x < a$, the function f must be one-to-one.

Case 2: f is strictly increasing.

If f is strictly increasing, then $\forall x, a \in \text{dom}(f), x \leq a, f(x) \leq f(a)$. If it is the case that f(x) = f(a), then it must also be the case that x = a. Then, f(x) = f(a) if and only if x = a, and $f(x) < f(a) \forall x, a \in \text{dom}(f), x < a$, the function f must be one-to-one.

2. Prove the following are metrics:

(a)
$$X = \mathbb{R}, d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

(b)
$$X = \mathbb{R} \times \mathbb{R}, d((x, y), (z, w)) = \sqrt{(x - z)^2 + (y - w)^2}$$

Definition 1 (Metric). A metric on a set X is a function $d: X \times X \to \mathbb{R}$ such that for all $x, y, z \in X$,

- (a) $d(x, y) \ge 0$
- (b) d(x,y) = 0 if and only if x = y
- (c) d(x,y) = d(y,x),
- (d) $d(x,y) + d(y,z) \ge d(x,z)$.

Proof. We begin by proving that the first function is a metric.

- 1. The rang $(d) = \{0, 1\}$ so the function is definitely greater than or equal to zero for any inputted pair of values.
- 2. By the definition of d, if and only if x = y does d(x, y) = 1.
- 3. Since the equals relationship is symmetric, $x = y \implies y = x$. As such, d(x,y) = d(y,x).
- 4. As shown below, it is not the case that $d(x,y) + d(y,z) \ge d(x,z)$.

х	у	Z	d(x,y)	d(y,z)	d(x,z)	$d(x,y)+d(y,z)\ge d(x,z)$
0	0	0	0	0	0	true
0	0	1	0	1	1	true
0	0	2	0	1	1	true
0	1	0	1	1	0	true
0	1	1	1	0	1	true
0	1	2	1	1	1	true
0	2	0	1	1	0	true
0	2	1	1	1	1	true
0	2	2	1	0	1	true
1	0	0	1	0	1	true
1	0	1	1	1	0	true
1	0	2	1	1	1	true
1	1	0	0	1	1	true
1	1	1	0	0	0	true
1	1	2	0	1	1	true
1	2	0	1	1	1	true
1	2	1	1	1	1	true
1	2	2	1	0	1	true
2	0	0	1	0	1	true
2	0	1	1	1	1	true
2	0	2	1	1	0	true
2	1	0	1	1	1	true
2	1	1	1	0	1	true
2	1	2	1	1	0	true
2	2	0	0	1	1	true
2	2	1	0	1	1	true
2	2	2	0	0	0	true

Therefore the first function is a metric.

We now prove that the second function is a metric.

3. Let $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be given by $f(m,n) = 2^{m-1}(2n-1)$. Prove that f is one-to-one and onto. Proof. Since

4. Let $f:A\to B$ be a function from a nonempty set A. Prove that the set $\mathcal{C}=\{f^{-1}(b):b\in\operatorname{rang}(f)\}$ is a partition of A. Note: \mathcal{C} is a subset of $\mathcal{P}(A)$.

Proof. Since \Box

5. Let $f:A\to B$ be a function from a nonempty set A which is surjective. Find a new function $g:C\to B$ which is one-to-one such that $C\subseteq A$, $\operatorname{rang}(g)=\operatorname{rang}(f)$, and for every $x\in C, f(x)=g(x)$. Explain why g has an inverse function, g^{-1} . Then, compute $f(g^{-1}(x))$ for all $x\in B$.

Proof. Since \Box