Week 2

Xiaoyuan Xie 谢晓园 xxie@whu.edu.cn 计算机学院E301

■ 教材P78: 3.3.3: In a string of length n, how many of the following are there?

■ Prefixes: n+1

■ Suffixes: n+1

■ Proper prefixes: n-1

■ Substrings: C(n+1,2) + 1 (need to count epsilon in)

■ Subsequences: Σ(i=0,n) C(n, i)

- \blacksquare {a, b}*={?}, {a, b}+={?}
 - (a|b)*, (a|b)+

- 判断chomsky语言类型:
 - S -> aSb; S -> ab (Type-2)
 - aSb -> aaSbb; S -> ab (Type-1)
 - S-> aS; S->ab (Type-3)

■ 教材P78:3.3.2,3.3.5

■ 教材P86:3.4.1,3.4.2

■ 教材P96:3.6.3,3.6.4,3.6.5

■ 教材P105:3.7.1

- 3.3.2:下列正则表达式定义了什么语言
 - a(a|b)*a
 - 由a, b组成的,并由a开头和结尾的字符串
 - ((ε|a)b*)*
 - (εb*|ab*)*→ (b*|ab*)* : 空串或所有由a, b组成的字符串

- 3.3.2:下列正则表达式定义了什么语言
 - (a|b)*a(a|b)(a|b)
 - 由a, b组成的,并且倒数第三个为a的字符串
 - a*ba*ba*ba*
 - 由a, b组成的,并且只含有3个b的字符串
 - (aa|bb)*((ab|ba)(aa|bb)*(ab|ba)(aa|bb)*)*
 - 由偶数个a和偶数个b组成的字符串

- All strings of lowercase letters that contain the five vowels in order.
 - S -> other* a (other|a)* e (other|e)* i (other|i)* o (other|o)* u (other|u)*
 - other -> [bcdfghjklmnpqrstvwxyz]
- All strings of lowercase letters in which the letters are in ascending lexicographic order.
 - a* b* ... z*
- Comments, consisting of a string surrounded by /* and */, without an intervening */, unless it is inside double-quotes (")
 - \/* ([^*"]* | "[^*"]" | *+ [^/])* *\/

- All strings of digits with no repeated digits. Hint: Try this problem first with a few digits, such as {O, 1, 2}.
- All strings of digits with at most one repeated digit.
 - $p_0 -> 0$
 - $p_1 \rightarrow ((1 | p_0 1)(p_0 1)^*p_0?) | p_0$
 - **.....**
 - $p_8 \rightarrow ((8 \mid p_7 8)(p_7 8)^* p_7 ?) \mid p_7 = q_9$ (without number '9')
 - $p_9 \rightarrow ((9 \mid p_8 9)(p_8 9)^*p_8?) \mid p_8$
 - $Ans_1 -> p_9$?
 - Ans₂ ->(9⁺ | q_9^+)(q_9^+)* q_9^+ | ... | (0⁺ | q_0^+)(q_0^+)* q_0^+ | ϵ

- All strings of a's and b's with an even number of a's and an odd number of b's.
 - S -> (FE* G | (aa)* b) (E | GE* G)*
 - E -> b(aa)* b
 - F -> a(aa)* b
 - G -> b(aa)* ab | a
- The set of Chess moves, in the informal notation, such as p-k4 or kbp x qn.
 - moves -> pieces x pieces | pieces (K | Q) (N | B | R) [1-8] | 0-0-0 | 0-0
 - pieces -> (K | Q) (N | B | R)? p?

- All strings of a 's and b's that do not contain the substring abb.
 - b* (a+b?)*
- All strings of a 's and b's that do not contain the subsequence abb.
 - b* | b*a⁺ | b*a⁺ba*

- 3.4.1:给出3.3.2中各正则表达式所描述的状态转换图
 - a(a|b)*a
 - 最小DFA:

- ((ε|a)b*)*
 - 最小DFA:

- 3.4.1:给出3.3.2中各正则表达式所描述的状态转换图
 - (a|b)*a(a|b)(a|b)
 - 最小DFA:

- 3.4.1:给出3.3.2中各正则表达式所描述的状态转换图
 - a*ba*ba*ba*
 - 最小DFA:

- (aa|bb)*((ab|ba)(aa|bb)*(ab|ba)(aa|bb)*)*
 - 最小DFA:

- 3.4.2:给出3.3.5中各正则表达式所描述的状态转换图
 - 1) S -> other* a (other|a)* e (other|e)* i (other|i)* o (other|o)* u (other|u)*
 - NFA:

- 2) a* b* ... z*
 - NFA:

- 3.4.2:给出3.3.5中各正则表达式所描述的状态转换图
 - **3**
 - * ([^*"]* | "[^"]" | *+ [^/])* *\
 - NFA:

■ 4) 5) 状态太多, 图过大

■ 3.4.2:给出3.3.5中各正则表达式所描述的状态转换图

- **6**
 - S -> (FE* G | (aa)* b) (E | GE* G)*
 - E -> b(aa)* b
 - F -> a(aa)* b
 - G -> b(aa)* ab | a
 - DFA:

- 3.4.2:给出3.3.5中各正则表达式所描述的状态转换图
 - **-** 7)
 - moves -> pieces x pieces | pieces (K | Q) (N | B | R) [1-8] | 0-0-0 | 0-0
 - pieces -> (K | Q) (N | B | R)? p?
 - NFA

- 3.4.2:给出3.3.5中各正则表达式所描述的状态转换图
 - 8) b* (a+b?)*
 - DFA:

- 9) b* | b*a+ | b*a+bε*
 - DFA:

- 3.6.3: For the NFA of Fig. 3.29, indicate all the paths labeled aabb. Does the NFA accept aabb?
 - (0) -a-> (1) -a-> (2) -b-> (2) -b-> ((3))
 - \bullet (0) -a-> (0) -a-> (0) -b-> (0)
 - \bullet (0) -a-> (0) -a-> (1) -b-> (1)
 - \bullet (0) -a-> (1) -a-> (1) -b-> (1)
 - (0) -a-> (1) -a-> (2) -b-> (2) -b-> (2)
 - (0) -a-> (1) -a-> (2) -b-> (2) - ϵ -> (0) -b-> (0)
 - (0) -a-> (1) -a-> (2) - ϵ -> (0) -b-> (0)

This NFA accepts "aabb"

■ 3.6.4: Repeat Exercise 3.6.3 for the NFA of Fig. 3.30.

- (0) -a-> (1) - ϵ -> (0) -a-> (1) -b-> (2) -b-> ((3))
- $(0) \varepsilon \rightarrow (3) a \rightarrow (0) a \rightarrow (1) b \rightarrow (2) b \rightarrow ((3))$
- (0) -a-> (1) - ε -> (0) -a-> (1) - ε -> (0) - ε -> (2) -b-> (3) - ε -> (2) -b-> ((3))
- (0) $-\varepsilon$ > (3) -a > (0) -a > (1) $-\varepsilon$ > (0) $-\varepsilon$ > (3) $-\varepsilon$ > (2) -b > (3) $-\varepsilon$ > (2) -b > ((3))
- **.....**

This NFA accepts "aabb"

■ 3.6.5 : Give the transition tables for the NFA

■ 1. Exercise 3.6.3.

state	а	b	ε
0	{0,1}	{0}	Ø
1	{1,2}	{1}	Ø
2	{2}	{2,3}	{0}
3	Ø	Ø	Ø

■ 3.6.5 : Give the transition tables for the NFA

■ 2. Exercise 3.6.4.

state	а	b	3
0	{1}	Ø	{3}
1	Ø	{2}	{0}
2	Ø	{3}	{1}
3	{0}	Ø	{2}

■ 3.6.5 : Give the transition tables for the NFA

3. Figure 3.26.

state	а	b	3
0	Ø	Ø	{1,2}
1	{2}	Ø	Ø
2	{2}	Ø	Ø
3	Ø	{4}	Ø
4	Ø	{4}	Ø

■ 3.7.1 : Convert to DFA's the NFA's of

■ 1. Fig. 3.26.

Transition table

NFA State	DFA State	а	b
{0,1,3}	Α	В	С
{2}	В	В	Ø
{4}	С	Ø	С

DFA

■ 3.7.1 : Convert to DFA's the NFA's of

2. Fig. 3.29.

Transition table

NFA State	DFA State	а	b
{0}	Α	В	Α
{0,1}	В	С	В
{0,1,2}	С	С	D
{0,2,3}	D	С	D

DFA

- 3.7.1 : Convert to DFA's the NFA's of
 - **3**. Fig. 3.30.

Transition table

NFA State	DFA State	а	b
{0,1,2,3}	А	Α	Α

DFA

Thank you!