25 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2073 Shrawan

Exam.	New Back (2066 & Later Batch)		
Level	BE	Full Marks	80
Programme	BEL, BEX, BCT, BAME, BIE, B. Agri.	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Basic Electrical Engineering (EE401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) A coil has a resistance of 100 ohms, when the temperature is 20°C and 110 ohms when the temperature is 45°C. Find temperature rise when its resistance is 124 ohms, and surrounding temperature is 15°C.

[6]

b) Find the equivalent resistance between A and B for the network shown in figure below.

[4]

- c) Find current from the source in the following circuit diagram.

[6]

2. a) Find the current in 5-ohm resistor in the network shown below by using superposition theorem.

[8]

b) Find the branch currents in the circuit of figure below by using nodal analysis.

[8]

3. a) Find the value of Resistance 'R' such that the load resistance ' R_L ' which is equal to 4Ω , will deliver maximum power. Also find that maximum power.

[8]

[4]

[8]

[8]

[8]

b) Derive an equation for inductance L in terms of flux linkages and current change.

c) Calculate the (i) average value and (ii) RMS value of voltage wave shown in figure below:

[4]

4. a) Determine the value of current I₁, I₂ and I and overall factor of the circuit shown in figure below for series and parallel circuit. Also draw the phasor diagram and find the total power consumed by the circuit.

- b) A coil is connected in series with a non-inductive resistance of 30Ω across 240V, 50Hz, 1- ϕ supply. The reading of voltmeters across the coil is 180 V and across the resistance is 130 V. Calculate,
 - i) Inductance of coil
 - ii) Resistance of coil
 - iii) Power absorbed by coil
 - iv) Power absorbed by whole circuit
- 5. a) Define power factor and explain why in general it should be kept on high as possible in power supply system.
 - b) Three similar coils each of resistance 7Ω and inductance of 0.03 H are connected in Delta to a 400 V, 3 phase, 50 Hz supply. Calculate the line current and the total power consumed. [8]