Data Structures, Algorithms & Data Science Platforms

Instructor: Chirag Jain (slides from Prof. Simmhan)

L4: Fast Searching

Search Trees, B-Tree, Hashmap

Dictionary Abstract Data Structure

- Store <key,value> as a pair
- Lookup the value for a given key
- Goal: Lookup has to be fast

- Different implementations
 - Ordered List
 - Hash table (or Hash Map)
 - Binary Search Tree

Dictionary using List

- Dictionary stored as a List of <key,value> items (in no particular order)
 - Insertion time? Searching time?
- Dictionary stored as an Ordered List of <key,value> elements, ordered by key
 - What's the advantage?

Dictionary as a Sorted List

- Idea: Divide and Conquer
- Narrow down the search range by half at each stage
- E.g. find (23)
- Start with mid of search interval= (low+high)/2
- **2** 5 8 12 16 23 38 56 72 91
- **2** 5 8 12 16 **23** 38 56 72 91
- **2** 5 8 12 16 **23** 38 56 72 91

Binary search over array Takes $O(log_2(n))$ searches

Dictionary as a Sorted List

```
int bsearch(KVP[] list, int start, int end, int k) {
   if (end < start) return -1 // No match!
   i = (start+end)/2 // midpoint
   if (list[i].key == k) // Found!
      return list[i].value
   if (list[i].key < k) // check 2nd half</pre>
      return bsearch(list, i+1, end, k)
                     // check 1st half
   else
      return bsearch(list, start, i-1, k)
```


Dictionary as a Sorted List

```
int bsearch(KVP[] list, int start, int end, int k) {
   if (end < start) return -1 // No match!
   i = (start+end)/2 // midpoint
   if (list[i].key == k) // Found!
      return list[i].value
   if (list[i].key < k) // check 2nd half</pre>
      return bsearch(list, i+1, end, k)
                     // check 1st half
   else
      return bsearch(list, start, i-1, k)
```

Usual problem with arrays!

- **Unused capacity**
- Costly to update and maintain sorted list...many shifts

Binary Search Tree (BST)

- Combining speed of binary search over array with dynamic capacity of a linked list
- A binary tree with each node having a (key, value) pair
- For each node x,
 - All keys in the left subtree of x are smaller than the key of x
 - All keys in the right subtree of x are greater than the key of x
- Dictionary Operations
 - find(key)
 - insert(key, value)
 - delete(key)

Example Binary Search Tree

The Operation find()

Complexity is O(height) = O(n), where n is the number of elements.

Insert a pair whose key is 35.

Insert a pair whose key is 35.

Insert a pair whose key is 7.

Complexity of insert() is O(height).

The Operation delete()

■ Three cases:

- Element is in a leaf.
- Element is in a degree 1 node.
- Element is in a degree 2 node.

Delete From A Leaf

Delete a leaf element.

Set parent to NULL

Delete From A Leaf

Delete a leaf element. key = 35

Delete from a degree 1 node. *Point parent to child.*

Delete from a degree 1 node. key = 15

Delete from a degree 2 node. key = 10

Replace with largest key in left subtree (or smallest in right subtree).

- <u>largest</u> key in <u>left</u> subtree, or
- smallest in right subtree

Delete node copied over

Complexity is O(height)

Tree Imbalances

- Inserting and Deleting in specific orders can cause tree to be imbalanced
 - ► E.g. insert in sorted ascending/descending order
 - Height of left and right subtrees are very different, skewed
- Causes complexity to tend to O(n) rather than O(log(n))
- Periodically rebalance if skew greater than a threshold
 - Balanced BST, e.g., AVL Tree, Red-Black Tree, etc.

Complexity Of Dictionary Operations find(), insert()

■ Given **n** elements in the dictionary

Data Structure	Worst Case	Average Case
Binary Search Tree	O(n)	O(log n)
Balanced Binary	O(log n)	O(log n)
Search Tree		

Complexity Of Dictionary Operations find(), insert()

Given n elements in the dictionary

Data Structure	Worst Case	Average Case
Hash Table	O(n)	O(1)
Binary Search Tree	O(n)	O(log n)
Balanced Binary	O(log n)	O(log n)
Search Tree		

Hash Table

- Uses a 1D array (or table) table[0:b-1]
 - Each position of this array is a **bucket**
 - Number of buckets is b
 - A bucket can normally hold only one dictionary pair. <key, value>
 - But larger capacity allowed per bucket as well
 - Bucket sizes can be unbounded as well
- Uses a hash function h that converts each key k into an index in the range [0, b-1].
 - h(k) is the "home bucket" for key k.
- Every dictionary pair is stored in its home bucket table[h(item.key)] =
 item

Ideal Hashing Example

- Key-value pairs are: (22,a), (33,c), (3,d), (73,e), (85,f).
- Hash table is **table[0:7]**, b = 8.
- Hash function h=key/11
- Pairs are stored in table as below

(3,d) (2	.2,a) (33,c)	(73,e) (85,f)
----------	--------------	---------------

- Lookup, Insert and Delete are done similarly
 - Apply hash, find bucket, perform op.
 - \circ Take O(1) time to apply hash and do array access

What Can Go Wrong?

(3,d)	(22,a)	(33,c)		(73,e)	(85,f)

- Where does (99,k) go?
- Hash function causes us to go beyond table size
- Simple fix: do a "mod" with the bucket size by default
- h = (k/11) % 8

What Can Go Wrong?

(3,u)	(3,d)	(22,a) (33,c)	(73,e) (85,f)
-------	-------	---------------	---------------

- Where does (26,g) go?
- Keys 22 and 26 have the same home bucket, are synonyms with respect to the hash function used
 - This is a collision
- The home bucket for (26,g) is already occupied
 - And capacity of bucket is only 1 item
 - This is called an overflow

Hash-table using Array & Linked List

- Buckets with unbounded capacity
 - Bucket as a linked list
- Hash function gives array index
- Array contains pointer to head of linked list
 - Items are <key, value> pairs
- Traverse list to lookup element
- What if key not present?
- Time complexity for Insert? Lookup?

Designing a Hash Table

- Choice of hash function
 - Quick to compute
 - Should distribute keys evenly across buckets
 - E.g. **h=k%b** is a *uniform hash function* for keys in the range [0..r] assuming all keys are uniformly randomly distributed in [0..r]
 - The above assumption may not be true in practice
- Size (number of buckets) of hash table
 - Decides frequency of collision
- Overflow handling method

Open Addressing to handle Overflows

- All elements are stored in the hash table
 - Elements to store <= capacity of table
- Each table entry contains either a <key,value>
 element or null
- While inserting an element systematically probe table slots if overflow occurs
- While searching for an element systematically probe table slots if bucket does not match key

Open Addressing

- Modify the hash function to take the probe number i as second parameter
 - $h: K \times \{0, 1, ..., b-1\} \rightarrow \{0, 1, ..., b-1\}$
- Hash function, h, also determines the sequence of slots "probed" for a given key
- Probe sequence for a given key k is the series of buckets h(k,0),h(k,1),...,h(k,b-1)
 - Use h(k,0) as bucket if no overflow
 - Else probe each bucket from successive hash fns., i.e. a permutation of <0,1,...b-1>

Linear Probing

If the current location is occupied, try the next location

```
LPInsert(k)

If (table is full) return error

probe = h(k)

while (table[probe] is occupied)

probe = (probe+1) mod b

table[probe]=k
```


Linear Probing – Example

- Home bucket h(k) = k mod 17
- Insert keys: 6, 12, 34, <u>29</u>, 28, <u>11</u>, <u>23</u>, <u>7</u>, <u>0</u>, 33, <u>30</u>, <u>45</u>

0		4			8			12			16			

Linear Probing – Example

- Home bucket h(k) = k mod 17
- Insert keys: 6, 12, 34, <u>29</u>, 28, <u>11</u>, <u>23</u>, <u>7</u>, <u>0</u>, 33, <u>30</u>, <u>45</u>

Linear Probing – Example

- Home bucket h(k) = k mod 17
- Insert keys: 6, 12, 34, <u>29</u>, 28, <u>11</u>, <u>23</u>, <u>7</u>, <u>0</u>, 33, <u>30</u>, <u>45</u>

 0
 4
 8
 12
 16

 34 0
 6 23 7
 28 12 29 11 30 33

 0
 4
 8
 12
 16

 34 0 45
 6 23 7
 28 12 29 11 30 33

Lookup in Linear Probing

- Search for a key: Go to (k mod 17) and continue looking at successive locations till we find k or reach empty location.
 - Longer (unsuccessful) lookup time
 - Deletion?

0	4		8	12			
34 0	45	6 23 7	7 28	12 29	11 30	33	

Deletion

- Shift all elements to previous location?
 - That may create issue with lookups
- Instead, place flag at vacated location
 - neverUsed=false
- Lookup continues till neverUsed=true
- Insert puts element in first location with neverUsed=true, sets it to false
 - Or at the first location flagged as neverUsed=false [RECYCLE]
- Too many markers degrade performance
 - Perform Rehashing

B-Tree

B-Tree: Searching External Storage

- Main memory (RAM) is fast, but has limited capacity
- Different considerations for in-memory vs. on-disk data structures for search
- Problem: Database too big to fit memory
 - Disk reads are slow
- Example: 1,000,000 records on disk
- Binary search might take 20 disk reads
 - $\log_2(1M) \approx 20$

Searching External Storage

- But disks are accessed "block at a time" by OS
- Blocks are typically 1KiB-4KiB in size
 - Access time per block
 - ▶ ~12ms for HDD
 - <1ms for SSD</p>
- Say 1KiB block, 10B per record
 - ► 10,000 blocks for 1M records

B-Trees

- Data structures for external memory, not main memory
 - Goal is to reduce number of block accesses, not number of comparisons
- Similar to binary search tree
 - ▶ But allow more than 1 value and 2 children per node
 - Each node is one disk block with data records plus block addresses of children

B-Trees

- Proposed by R. Bayer and E. M. McCreigh in 1972.
- "Bayer", "Balanced", Bushy", "Boeing" trees?
- Different from binary trees

NOTE

- In-memory data structure will be better than on-disk
- milliseconds vs. nano seconds
- So in-memory binary tree will be better than on-disk B Tree
- But on-disk B Tree better than on-disk binary tree

B-Tree

- Like BST, node has alternate children (block pointers) and records (Key and Values)
 - Number of children = Number of Records + 1
- Keys within a node are in increasing order
- A key within a node is greater than all keys on left child's tree and smaller than all keys on right child's tree
- Bounds on minimum and maximum number of children in a node. For B-tree of *order m*:
 - ▶ Each node has $\leq m-1$ records (therefore $\leq m$ children)
- Every internal node (except the root) has $\geq \lceil m/2 \rceil$ children

E.g. order 5 B-Tree's largest-sized Node...

B-Tree Search (Order 5)

B-Tree Search (Order 5)

B-Tree Creation

AGFBKDHMJESIRXCLNTUP

B-Tree Creation

AGFBKDHMJESIRXCLNTUP

B-Tree Creation

Efficiency of B-trees

- If a B-tree has order \mathbf{m} , then each node (apart from the root) has at least $\lceil m/2 \rceil$ children
- So the depth of the tree is at most log m/2 (size)+1
 - These many blocks have to be loaded from disk
- In the worst case, we have to make **m-1** comparisons in each node
 - Linear search, but (m-1) is a constant factor and inmemory scan cost is lower

Tasks

- Self study (Sahni Textbook)
 - Chapter 10.5, Hashing from textbook
 - Chapter 11.0-11.6, Trees & Binary Trees from textbook
 - ► B Trees (online sources https://opendatastructures.org/ newhtml/ods/latex/btree.html)