AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior listings of claims in the application:

1. (CURRENTLY AMENDED) A composition comprising a pharmaceutically acceptable formulation of formula 1

$$R_{5}$$
 R_{6}
 R_{7}
 N_{1}
 R_{7}

Formula 1

wherein

 R_3 is C_1 - C_{10} alkyl;

 $R_4 \text{ to } R_7 \text{ are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C1-C10 alkyl, C1-C10 aryl, -SO_3T, -CO_2T, -OH, -(CH_2)_aSO_3T, -(CH_2)_aOSO_3T, -(CH_2)_aNHSO_3T, -(CH_2)_aCO_2(CH_2)_bSO_3T, -(CH_2)_aOCO(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aPO_3HT, -(CH_2)_aPO_3HT, -(CH_2)_aPO_3HT, -(CH_2)_aPO_3HT, -(CH_2)_aCO_2(CH_2)_bPO_3HT, -(CH_2)_aCO_2(CH_2)_bPO_3T_2, -(CH_2)_aOCO(CH_2)_bPO_3HT, -(CH_2)_aCO_2(CH_2)_bPO_3T_2, -(CH_2)_aCO(CH_2)_bPO_3T_2, -(CH_2)_aCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCO(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3T_2, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3T_2, -(CH_2)_aCONH(CH_2)_bCO_2CH_2-(CH_2-O-CH_2)_aCONH(CH_2)_bCO_2CH_2-(CH_2-O-CH_2)_aCONH(CH_2)_bCO_2CH_2-(CH_2-$

 $Y_1 \text{ is selected from the group consisting of C5-C20 polyhydroxyaryl, } \frac{\text{saccharides}_{\tau}}{\text{hydrophilic peptides, arylpolysulfonates, }} - (CH_2)_a OSO_3T, -(CH_2)_a NHSO_3T, -(CH_2)_a CO_2(CH_2)_b SO_3T, -(CH_2)_a OCO(CH_2)_b SO_3T, -(CH_2)_a NHCO(CH_2)_b SO_3T, -(CH_2)_a NHCONH(CH_2)_b SO_3T, -(CH_2)_a NHCONH(CH_2)_b SO_3T, -(CH_2)_a OCONH(CH_2)_b SO_3T, -(CH_2)_a PO_3HT, -(CH_2)_a PO_3HT, -(CH_2)_a OPO_3HT, -(CH_2)_a OPO_3HT, -(CH_2)_a OPO_3HT, -(CH_2)_a OPO_3HT, -(CH_2)_a OCO(CH_2)_b PO_3HT, -(CH_2)$

- $-(CH_2)_aOCO(CH_2)_bPO_3T_2, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3T_2, -(CH_2)_ACONH(CH_2)_ACONH(CH_2)_ACONH(CH_2)_ACONH(CH_2)_ACONH(CH_2)_ACONH(CH_2)_ACONH(CH_2)_ACONH(CH_2)_ACONH(CH_2)_ACONH(CH_2)_ACONH(CH_2)_ACONH(CH_2)_ACON$
- -(CH₂)_aNHCO(CH₂)_bPO₃HT, -(CH₂)_aNHCO(CH₂)_bPO₃T₂, -(CH₂)_aNHCONH(CH₂)_bPO₃HT,
- $-(CH_2)_aNHCONH(CH_2)_bPO_3T_2$, $-(CH_2)_aNHCSNH(CH_2)_bPO_3HT$, $-(CH_2)_aNHCSNH(CH_2)_bPO_3T_2$,
- $-(CH_2)_aOCONH(CH_2)_bPO_3HT$, $-(CH_2)_aOCONH(CH_2)_bPO_3T_2$;

W₁ is -CR_cR_d;

- a, b, d, f, h, i, and j independently vary from 1-10;
- c, e, g, and k independently vary from 1-100;
- R_a , R_b , R_c , and R_d are defined in the same manner as Y_1 ; and T is either H or a negative charge.
- 2-16 (CANCELED)
- 17. (PREVIOUSLY PRESENTED) The composition of claim 1 wherein R_3 is C_1 alkyl.
- 18. (CANCELED)
- 19. (PREVIOUSLY PRESENTED) The composition of claim 17 wherein each of R_4 to R_7 is independently -H or -SO₃T.
- 20-22. (CANCELED)
- 23. (PREVIOUSLY PRESENTED) The composition of claim 1 wherein each of R_4 to R_7 is independently -H or -SO₃T.
- 24-26. (CANCELED)
- 27. (WITHDRAWN) A method for performing a diagnostic or therapeutic procedure which comprises

administering to an individual an effective amount of a composition comprising at least one biocompatible excipient and the compound of formula 1

$$R_{5}$$
 R_{6}
 R_{7}
 R_{1}
 R_{3}

Formula 1

wherein

 R_3 is C_1 - C_{10} alkyl;

 $R_4 \text{ to } R_7 \text{ are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C1-C10 alkyl, C1-C10 aryl, -SO_3T, -CO_2T, -OH, -(CH_2)_aSO_3T, -(CH_2)_aOSO_3T, -(CH_2)_aNHSO_3T, -(CH_2)_aCO_2(CH_2)_bSO_3T, -(CH_2)_aOCO(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aPO_3HT, -(CH_2)_aPO_3HT, -(CH_2)_aPO_3HT, -(CH_2)_aCO_2(CH_2)_bPO_3T_2, -(CH_2)_aNHPO_3HT, -(CH_2)_aNHPO_3T_2, -(CH_2)_aCO_2(CH_2)_bPO_3HT, -(CH_2)_aCO_2(CH_2)_bPO_3T_2, -(CH_2)_aCO_2(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aCONH(CH_2)_bPO_3HT, -$

 $Y_1 \text{ is selected from the group consisting of C5-C20 polyhydroxyaryl, saccharides,} \\ \text{hydrophilic peptides, arylpolysulfonates, } -(CH_2)_aOSO_3T, -(CH_2)_aNHSO_3T, -(CH_2)_aCO_2(CH_2)_bSO_3T, -(CH_2)_aOCO(CH_2)_bSO_3T, -(CH_2)_aNHCO(CH_2)_bSO_3T, -(CH_2)_aNHCO(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aOCONH(CH_2)_bSO_3T, -(CH_2)_aPO_3HT, -(CH_2)_aPO_3HT, -(CH_2)_aOPO_3HT, -(CH_2)_aOPO_3T_2, -(CH_2)_aNHPO_3HT, -(CH_2)_aNHPO_3T_2, -(CH_2)_aCO_2(CH_2)_bPO_3HT, -(CH_2)_aCO_2(CH_2)_bPO_3T_2, -(CH_2)_aOCO(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aOCONH(CH_2)_bPO_3T_2, -(CH_2)_aOCONH(CH_$

W₁ is -CR_cR_d;

a, b, d, f, h, i, and j independently vary from 1-10; c, e, g, and k independently vary from 1-100; R_a , R_b , R_c , and R_d are defined in the same manner as Y_1 ; and T is either H or a negative charge; and performing the diagnostic or therapeutic procedure.

28. (WITHDRAWN) The method of claim 27 wherein

R₃ is C₁-C₁₀ alkyl;

 R_4 to R_7 are independently selected from the group consisting of C1-C5 alkoxyl, C1-C5 polyalkoxyalkyl, C1-C10 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, mono- and disacharides, amino, nitro, hydrophilic peptides, arylpolysulfonates, C1-C10 aryl, -SO₃T, -CO₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T, -CH₂(CH₂-O-CH₂)_c-CH₂-OH, -(CH₂)_d-CO₂T, -CH₂-(CH₂-O-CH₂)_e-CH₂-CO₂T, -(CH₂)_r-NH₂, -CH₂-(CH₂-O-CH₂)_g-CH₂-NH₂, -(CH₂)_h-N(R_a)-(CH₂)_i-CO₂T, and -(CH₂)_j-N(R_b)-CH₂-(CH₂-O-CH₂)_k-CH₂-CO₂T;

 Y_1 is selected from the group consisting of C5-C20 polyhydroxyaryl, mono- and disaccharides, hydrophilic peptides, arylpolysulfonates, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T;

W₁ is -CR_cR_d;

a, b, d, f, h, i, and j independently vary from 1-5;

c, e, g, and k independently vary from 1-20;

 $R_{\text{a}},\,R_{\text{b}},\,R_{\text{c}},$ and R_{d} are defined in the same manner as $Y_{\text{1}};$ and T is a negative charge.

- 29. (WITHDRAWN) The method of claim 27 wherein each R_4 , R_6 and R_7 is H, R_5 is SO_3T , Y_1 is $-(CH_2)_3SO_3T$; W_1 is $-C(CH_3)_2$; and T is a negative charge.
- 30. (WITHDRAWN) The method of claim 27 wherein the procedure uses light of wavelength in the region of 350 nm -1300 nm.
- 31. (WITHDRAWN) The method of claim 27 wherein the procedure comprises monitoring a blood clearance profile by fluorescence using light of wavelength in the region of 350 nm to 1300 nm.

- 32. (WITHDRAWN) The method of claim 27 wherein the procedure comprises monitoring a blood clearance profile by absorption using light of wavelength in the region of 350 nm to 1300 nm.
- 33. (WITHDRAWN) The method of claim 27 wherein the procedure is for physiological function monitoring.
- 34. (WITHDRAWN) The method of claim 33 wherein the procedure is for renal function monitoring.
- 35. (WITHDRAWN) The method of claim 33 wherein the procedure is for cardiac function monitoring.
- 36. (WITHDRAWN) The method of claim 33 wherein the procedure is for determining organ perfusion in vivo.