1

Probability and random variables assignment

Maharshi Kadeval

1 Q8 c)

- 1.1. Using ruler and compass only, construct a $\triangle ABC$ such that BC = 5 cm and AB = 6.5 cm and $\angle ABC = 120^{\circ}$
 - (i) Construct a circum-circle of △ABC
 - (ii) Construct a cyclic quadrilateral ABCD, such that D is equidistant from AB and BC.

Solution: The parameters for constructing the figure are given in the table below:

TABLE 1.1.1

Symbol	Value	Description
a	5	BC
c	6.5	AB
θ	$\frac{\pi}{3}$	$\pi - \angle ABC$
A	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	origin
В	$\begin{pmatrix} c \\ 0 \end{pmatrix}$	point of triangle

Deriving the coordinates of C,D,O(centre of circumcircle) and its radius r:

X-coordinate of any point is the perpendicular distance (algebraic) of point from Y-axis Y-coordinate of any point is the perpendicular distance (algebraic) of point from X-axis

Let foot of perpendicular from C to X-axis be F and C = $\begin{pmatrix} X_c \\ Y_c \end{pmatrix}$ $X_c = AB + BF$ and $Y_c = CF$ from trigonometry $BF = BC\cos\theta = a\cos\theta$ and $CF = BC\sin\theta = a\sin\theta$ $X_c = c + a\cos\theta$ and $Y_c = a\sin\theta$ $\therefore C = \begin{pmatrix} c + a\cos\theta \\ a\sin\theta \end{pmatrix}$ Using Sine rule in \triangle ABC, we find α Let O = $\begin{pmatrix} X_O \\ Y_O \end{pmatrix}$ and foot of perpendicular from O to X-axis be G.

Since O is the circumcentre, OA=OB=OC

Taking $\mathbf{O} = \begin{pmatrix} X_O \\ Y_O \end{pmatrix}$, putting values of \mathbf{B} , \mathbf{C} and solving,we get, $\mathbf{O} = \begin{pmatrix} c/2 \\ (c/2)\cot\alpha \end{pmatrix}$ Using \mathbf{O} , we get radius $\mathbf{r} = \|\mathbf{O}\|$ $\mathbf{r} = \frac{c}{2\sin\alpha}$

l is found by applying sine rule in $\triangle ADB$ Let $D = \begin{pmatrix} X_D \\ Y_D \end{pmatrix}$ and foot of perpendicular from D to X-axis be H, and given that AD=l From geometry $\angle DAB = 2\theta - \alpha$, Using trigonometry in $\triangle ADH$, $AH = X_D = l\cos{(2\theta - \alpha)}$ and $DH = Y_D = l\sin{(2\theta - \alpha)}$ $\therefore D = l \begin{pmatrix} \cos{(2\theta - \alpha)} \\ \sin{(2\theta - \alpha)} \end{pmatrix}$

Table for Output parameters: Steps of construction:

- a) The point A is taken as origin and a line segment AB = 6.5 cm is drawn along positive x-axis.
- b) Draw a line segment emerging from B at $\angle 120^{\circ}$ in anticlockwise direction from BA

TABLE 1.1.2

Symbol	Value	Description
α	$\cot^{-1} \frac{11\sqrt{3}}{13}$	$\angle ACB$
l	$\frac{6.5\sqrt{3}}{2\sin\alpha}$	AD
C	$\begin{pmatrix} c + a\cos\theta\\ a\sin\theta \end{pmatrix}$	point of triangle
E	$\begin{pmatrix} c/2\\ (c/2)\cot\alpha \end{pmatrix}$	centre of circumcircle of $\triangle ABC$.
r	$\frac{c}{2\sin\alpha}$	radius of circumcircle of △ABC.
D	$l \begin{pmatrix} \cos(2\theta - \alpha) \\ \sin(2\theta - \alpha) \end{pmatrix}$	intersection point of angle bisector of AB and BC and circumcircle

of length 5 cm.

- c) Name the other endpoint of the line segment as C.
- d) Join AC. This completes the $\triangle ABC$.
- e) Now take the perpendicular bisector of any two sides, mark their point of intersection as E(centre of circumcircle).
- f) Taking E as centre and EA=EB=EC as radius draw a circle(circumcircle).
- g) Take internal angle bisector of AB and BC, let its point of intersection with the circumcircle be D.
- h) Join AD and CD.

(i)1.1.1

center of the circumcircle is the point of intersection of the perpendicular bisectors of AB and BC.

(ii)1.1.2

the point D of the cyclic quadrilateral ABCD is the point of intersection of the angle bisectors of AB and BC and the circumcircle.

Fig. 1.1.1.

Fig. 1.1.2.