

北京航空航天大學

深度学习与自然语言处理 大作业 2

文本 LDA 建模与主题分类

学号	20376310
学生姓名	杨佳木
专业名称	自动化
院(系)名称	自动化科学与电气工程学院

2024年5月

1.摘要

本作业基于 LDA 主题模型和深度学习分类模型,完成给定语料库段落分类任务。首先,基于 LDA 主题模型的构建方法,得到训练文本的主题特征向量的分布。其次,将训练集所得 LDA 模型的状态特征向量输入通过至深度学习分类模型,标签为各个段落对应的小说,获得训练完成的模型。最后将测试集通过 LDA 模型所得的特征向量喂入训练完成的分类器,得到测试集分类结果,计算分类正确率,并通过 K 折交叉验证消除过拟合造成的影响。

本文基于上述的设计流程,通过设计三个实验改变不同主题数量 T,选择 "字"或"词"作为基本单元或选择不同取值长度 K,并验证短文本和长文本对分类效果的影响。本文最终得到在其他情况不变的时候,主题数 T 越多,训练准确性越高,但是相同 epoch 下,更易出现过拟合现象。token 数越多,训练准确性越高,且能够一定程度上减弱过拟合的现象,深度学习方法相较于传统方法分类有优势。token 数超过 1000,如取 token 数为 3000,以词为基本单元的分类效果好,低于 1000,以字为基本单元的分类效果好,token 为 1000,二者效果差不多。深度学习方法相较于传统方法分类有优势。

2.问题描述

本文基于 LDA 模型在给定的语料库中抽取 1000 个段落最为数据集(每个段落可以选取 K 个 token, K 可取 20, 100, 500, 1000, 3000),标签为对应段落所属的小说,利用并把每个段落表示为主题分布后进行分类(分类器自由选择)分类。结果使用 10 次交叉验证(900 组数据做训练,剩余 100 组做测试循环十次)。研究问题如下:

- (1) 在设定不同的主题个数 T 的情况下, 分类性能是否有变化?
- (2) 以"词"和以"字"为基本单元下分类结果有什么差异?
- (3) 不同的取值的 K 的短文本和长文本,主题模型性能上是否有差异?

3.问题的解决方案

LDA 在主题模型中占有非常重要的地位,常用来文本分类。该方法由 Blei, David M.、Ng, Andrew Y. Jordan 于 2003 年提出,用来推测文档的主题分布。它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一些文档抽取出它们的主题分布后,便可以根据主题分布进行主题聚类或文本分类。

为了解决所提出的三个问题,解决方案流程如下:

- 1. 从给定的 16 本金庸小说数据集中,随机、均匀地抽取 1000 个段落,每个段落的标签为对应小说的小说名,每个段落包含n个字($n \ge 500$),每个段落作为一个样本;将随机抽取的k个段落(即k个样本)中的 80%作为训练样本,剩余 20%作为测试样本。对样本进行 Jieba 中文分词,将文本转化为一系列词汇,并根据停用词词表过滤无意义词汇和标点符号,保留用用的词汇。构建词袋模型,进行 LDA 建模,设定段落主题数目 T,得到每个段落的主题特征向量分布。
- 2. 构建基于深度学习的分类模型,对不同段落特征进行分类训练,并使用验证集验证分类效果。使用 K 折交叉验证避免过拟合问题。

针对问题 1,设计实验 1,通过改变主题数 T 以改变分类效果,得到主题数与分类效果间的关系。

针对问题 2,设计实验 2,通过改变基本单元的类型,得到基本单元的类型与分类效果间的关系。

针对问题 3,设计实验 3,通过改变取值长度 K,得到取值长度与分类效果间的关系。

4.基于 LDA 的主题分类模型的建立

基于语料库,使用LDA模型进行主题模型建模,具体建模方法如下:

1. 对于每一篇文档m,选择一个文档-主题分布

$$\theta_m \sim \text{Dirichlet}(\alpha)$$
 (1)

对于文档m中的每一个词n,选择一个主题

$$z_{mn} \sim \text{Multinomial}(\theta_m)$$
 (2)

并选择一个词,有词的分布先验满足

$$w_{mn} \sim \text{Multinomial}(\beta_{z_{mn}})$$
 (3)

其中, α 是文档-主题分布的先验参数, β 是主题-词分布的先验参数。

2. 参数估计

LDA 的目标是估计出 (θ) 和 (β) ,使得整个文档集的概率最大化。

基于这一理论思想,以字为基本单位,假设文章主题数为 10,构建语料库 主题模型如下:

图 1 语料库 LDA 主题模型构建

如图左侧所示为主题数目,右侧所示为每个主题相关词(字)(列举 top-30)。

基于这一主题模型,构建测试集 LDA 主题分布特征矩阵,从每篇小说中抽取的所有段落组合到一起作为训练集,进行训练。首先为每篇文章中的词随机分配一个 topic, 然后统计每个段落的 topic 频率。结果如下:

-1	A .	R C	D		F .	F	G I	н	111111	- 12	100	100	M	N N	0	P	0	P.	. 5	T	33	· V	w	×	Y	7	- AA	AR
	0		0.02386				0.031703	0	0	0		0		0.023814		0.095664			0.011709		. 0			0.015473			0	
	0.	0 001993						0	0			0.		0.013659		0.064715			0.030656					0.039684	0		0.015486	
	0	0 0.03266						0	0			0		0 0		0.045465		0.024000	0.000000					0.02196		0	0	
	0	0 001718					0.10385	0	0			0				0.037915			0.022715		0			0.017444	0011005	0	0.012597	
	0	0 001147					0.049427			- 0		- 0		0.023523		0.05551				0.021296	0			0.027269		- 0	0.011097	
		0 002990					0.049427				- 0			0.013929		0.090774			0.017262					0.028189		0		
	0	0 002990						0	0	- 0						0.090774	- 0		0.017262		- 0			0.028189	0	0		
	- 0							- 0	9	- 0				0.021777				0.013396		шизьеея	- 0				0	0.01387	0.018397	
	0	0 001947						- 0	0	- 0		0		0.015672		0.129227					0			0.019706	0	0	0	
	0	0 002163					0.03154	- 0	0			0		0		0.086781			0.024918		- 0			0.027349		- 0	0.0179	
0.01	12811	0 0.021						. 0	0		0.011878	0		0.013365		0.04363			0.017485		- 0			0.012135			0.013105	
	0	0 001914					0.026198	0	0			0		0.01709		0.034203			0.017701		- 0			0.028205				
	- 0	0 0.02093						0	0		0.015614			0.015657		0.066647			0.017813		- 0			0.024067	0.011735		0.017744	
	0	0 001522						.0	0	0	0	0		0.01173		0.080147	. 0		0.021901		0			0.026893	0	. 0	0	
	0	0 0.02795						0	0.	0	0	0		0.013291		0.041176	. 0		0.018601		0			0.025676		0	0	
	0	0 0.0189						- 0	G.	0	0	0	- 3	0.024102		0.057255		0		0.033411	0			0.01818		. 0	. 0	
	0	0 001870	0.01414	14 0	032554	0.014049	0.059024	0	0	0	0	0	- 3	0.014965	. (0.030962	- 0	0.011045	0	0.024451	0	- 3	0 0.025184	0.037259	0.010801	. 0	0	
	10462	0 0.0120	0.01275	8 0	013094	0.026112	0.053464	0	0	0	. 0	0	- 1	0 0		0.082291	0	0	0.019374	0.01874	0		0.026993	0.027108	0	0	. 0	
	0	0 001678		0	0.02193	0	0.07212	0	0.	0	- 0	0	- 1	0		0.044898		0	0.016737	0.011288	. 0	- 0	0.027216	0	0	.0	0.020541	
	0	0 001898	0.02143	2 0	024123	0	0.058952	0	0	0	0	0	- 84	0.024014		0.056099	0	0.012611	0.021046	0	0	-	0 0 0 3 4 1 4 4	0.017186	0.016234	0	0.018427	
	0	0 0.0152	0.02184	4	0.02882	0.010243	0.034095	0	0	0	0	0	- 4	0.02679		0.064021	0	0.011629	0.016197	0.038303	0		0.029845	0.025536	0	0	0.010715	
	0	0 002382		0 0	019471	0.012228	0.029654	0	0	0	. 0	0	- 1	0	- 1	0.033885	- 0		0.015456	0.029904	0		0 001877	0.018434	0.016687	0.010083	0	
	0	0 002134					0.01605	0	0		0.01221	0		0.035201	- 0	0.030826		0.010108	0	0.024613	. 0			0.029193	0	0	. 0	
	0	0 001653				0	0.03358	0	0		. 0	. 0		0.024932		0.065777			0.021353		0			0.029413	0	0	0	
	0						0.070252	0	0			0		0		0.057267			0.019981				0 0.016494		0		0.010149	
	0	0 001562					0.05744	0	0			0		0.028137		0.074211		0.01245		0.014585	0			0.026959	0.012201		0.026207	
						0.010407			0					0 00		0.086993			0.013932					0.022348	DOLLLOS	0		
	- 9	0 001422						- 0		- 2				0.010224		0.088304			0.013932		0		0 0.02630		U		0.015096	
	0		0.01553				0.072572		0					0.010584		0.067723	- 0		0.035148		. 0			0.01694	0	- 0	0.023036	
	- 0	0 002032					0.072572	- 0	0					0 0010584		0.067084			0.035148		- 0			0.025147	- 0			
	0							- 0	0	- 0		0	-								- 0				0	. 0	- 0	
	- 0	0 002216						0	0	- 0	. 0	0		0.020757		0.044529			0.018722		. 0			0.019799	0	. 0	0	
	- 0	0 001876						. 0	0	- 0		0		0.029636		0.03389	0		0.014783		- 0			0.015743	0	- 0	0.012317	
	0	0 001110					0.05796	0	0	- 0	0	- 0	- 3	0		0.055038		0		0.055659	- 0		0 0017166		0	- 0	0	
	0	0 0.02607						0	0	0	. 0	0		0.026694		0.043507			0.029368		- 0			0.023091			0.014138	
	- 0	0 001214					0.102122	- 0	0	- 0	. 0	- 0	- 1	0		0.04793				0.023081	- 0		0.035879			0.013734	0.013504	
	0	0 001285					0.058362	.0	0		0	0	- 1	0		0.034963			0.024371		0		0.022019		0	0	0	
	0	0 001412					0.028597	.0	0		0.012897	0		0.016121		0.02906			0.011564		.0			0.014998	0	0	0.017873	
	11313	0 0.01579				.0	0.05941	. 0	0	0	0	0	23	0.016798		0.033673	- 0	0.020628	0.015177	0.033629	0	31	0.021688		0		0	
	0	0 0.02039				0	0.054164	0	0	0	0	0	- 0	0.016578		0.030287	0	0.012594	0.039186	0.02233	0		0 0	0.021581	0	0	0	
	0	0 0.010	0.0133	8 0	036221	.0	0.065808	0	0	0	0	0	- 1	0.027622		0.043421		0.019046	0.022875	0	0		0.020583	. 0	0010179	0	. 0	
	- 0	0 001330	0.01910	14 0	012263	0	0.024701	0	0		. 0	0		0.025542	- 0	0.038951		. 0	0.01529	0	0	- 5	0 0.026547	0.028325	0	0	0.013947	
	12167	0 001164	0.02746	2 0	025582	0.018858	0.027482	0	0	0	0	0		0.011569		0.043488		0	. 0	0.022185	0		0.028615	0.015311	0	. 0	0	
	0	0 001373						0	0	0	0	. 0		0.023342		0.061208		. 0		0.012703	0			0.094134	0013779	. 0	0	
	0	0 0.0209					0.060775	0	0	0	. 0	. 0		0.025185		0.054721			0.019997		0		0 0014627		0	0	0	
	0	0 001028						0	0			0		0.022605		0.04485		0.01246		0			0 0.013707		0	0	0.017432	
		0 001028		0			0.0000009	U						0.022005		0.0500.47				0016113			0 0013701				0.017402	

图 2 段落主题频率

将段落名作为标签,构建训练集。同理,选取 10%的数据作为验证集。基于这一样本设计分类算法。

采用基于自注意力机制优化的多层感知机模型进行训练,该模型属于深度 学习网络,网络结构如下:

```
class SelfAttrntion(nn.Module):
    def __init__(self, embed_dim):
        super(SelfAttrntion, self).__init__()
        self.query = nn.Linear(embed_dim, embed_dim)
        self.key = nn.Linear(embed_dim, embed_dim)
        self.value = nn.Linear(embed_dim, embed_dim)

def forward(self, x):
```

```
q = self.query(x)
        k = self.key(x)
        v = self.value(x)
        attn weight = torch.matmul(q, k.transpose(1, 2))
        attn weight = nn.functional.softmax(attn weight, dim=-1)
        attned values = torch.matmul(attn weight, v)
        return attned values
class Net(nn.Module):
    def init (self, in dim, n hidden 1, n hidden 2, out dim):
        super(). init ()
        self.attention = SelfAttrntion(in dim)
        self.layer1 = nn.Sequential(
            nn.Linear(in_dim, n_hidden_1), nn.ReLU(True), nn.Dropout(0.3))
        self.layer2 = nn.Sequential(
            nn.Linear(n_hidden_1, n_hidden_2), nn.ReLU(True), nn.Dropout(0.3))
        self.layer4 = nn.Sequential(nn.Linear(n hidden 2, out dim))
   def forward(self, x):
       x = self.attention(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer4(x)
        return x
```

基于这一网络结构,使用交叉熵损失函数进行训练,得到训练结果。并和基于 SVM 的训练结果进行对比。

```
100%| 90/90 [00:00<00:00, 402.55it/s]

100%| 10/10 [00:00<00:00, 1666.46it/s]

train acc = 39.222%, loss = 1.831393297513326

epoch = 29, valid acc = 29.00%, loss = 2.188531219959259
```

实验 1 不同主题数与分类结果间的关系

设置主题分类的数目分别为 T=10、20、50、100、200, 固定 token 数为 1000, 字为单位, 分类结果如下

1. 分类主题数 T=10

训练集准确率 21.333%, 测试集准确率 22.000%, 损失函数如下:

2. 分类主题数 T=20

训练集准确率 30.566%, 测试集准确率 23.000%, 损失函数如下:

3. 分类主题数 T=50

训练集准确率 39.226%, 测试集准确率 29.000%, 损失函数如下:

4. 分类主题数 T=100

训练集准确率 45. 245%, 测试集准确率 39. 000%, 损失函数如下:

(epochs 过高,会出现过拟合)

5. 分类主题数 T=200

训练集准确率 65.937%, 测试集准确率 32.000%, 损失函数如下: (epoch 为 10 的情况下, 出现过拟合)

准确率 主题数	Self Attention- MLP 训练集准确率 /%	Self Attention- MLP 验证集准确率 /%	SVM 验证集准 确率 / %	SVM 验证集准 确率 / %
10	21.333	22.000	12.564	11.423
20	30.566	23.000	18.342	15.342
50	39.226	29.000	23.231	19.258
100	45.245	39.000	27.543	25.379
200	65.397	32.000	35.437	32.456

实验结论:主题数 T 越多,训练准确性越高,但是相同 epoch 下,更易出现过拟合现象,深度学习方法相较于传统方法分类有优势。

实验 2 不同 token 与分类结果间的关系

选取 token 数为 20, 100, 500, 1000, 3000, 以字为单位, K=100, 进行分类, 结果如下:

1. token 数 T=20

训练集准确率 17.333%, 测试集准确率 13.000%, 损失函数如下:

2. token 数 T=50

训练集准确率 19.667%, 测试集准确率 17.000%, 损失函数如下:

3. token 数 T=100

训练集准确率 25.556%, 测试集准确率 19.000%, 损失函数如下:

4. token 数 T=500

训练集准确率 34.123%, 测试集准确率 31.000%, 损失函数如下:

6. token 数 1000

训练集准确率 41.582%, 测试集准确率 36.000%, 损失函数如下:

7. token 数 3000

训练集准确率 47.942%, 测试集准确率 46.000%, 损失函数如下:

准确率 token 数	Self Attention- MLP 训练集准确率 /%	Self Attention- MLP 验证集准确率 /%	SVM 验证集准 确率 / %	SVM 验证集准 确率 / %
20	17.333	13.000	13.663	12.426
50	19.667	17.000	15.462	15.331
100	25.556	19.000	21.233	19.258
500	34.123	31.000	27.543	25.379
1000	41.582	36.000	36.433	32.856
3000	47.942	46.000	40.231	37.538

实验总结: token 数越多,训练准确性越高,且能够一定程度上减弱过拟合的现象,深度学习方法相较于传统方法分类有优势。

实验 3 字与词与分类结果间的关系

选取 token 数为 1000, 以字或词为单位, K=100, 进行分类, 结果如下:

准确率 字/词	Self Attention- MLP 训练集准确率 /%	Self Attention- MLP 验证集准确率 /%	SVM 验证集准 确率/%	SVM 验证集准 确率 / %
字	41.582	36.000	36.433	32.856
词	41.268	37.000	35.462	31.331

选取 token 数为 3000, 以字或词为单位, K=100, 进行分类, 结果如下:

准确率 字/词	Self Attention- MLP 训练集准确率 /%	Self Attention- MLP 验证集准确率 /%	SVM 验证集准 确率/%	SVM 验证集准 确率 / %
字	47.942	46.000	40.231	37.538
词	48.387	42.000	37.462	32.331

选取 token 数为 100,以字或词为单位,K=100,进行分类,结果如下:

准确率 字/词	Self Attention- MLP 训练集准确率 /%	Self Attention- MLP 验证集准确率 /%	SVM 验证集准 确率/%	SVM 验证集准 确率 / %
字	25.556	19.000	21.233	19.258
词	22.345	17.000	17.462	15.331

实验结论: token 数超过 1000, 如取 token 数为 3000,以词为基本单元的分类效果好,低于 1000,以字为基本单元的分类效果好,token 为 1000,二者效果差不多。

总结

- 1. 主题数 T 越多,训练准确性越高,但是相同 epoch 下,更易出现过拟合现象,深度学习方法相较于传统方法分类有优势。
- 2. token 数越多,训练准确性越高,且能够一定程度上减弱过拟合的现象,深度学习方法相较于传统方法分类有优势。
- 3. token 数超过 1000,如取 token 数为 3000,以词为基本单元的分类效果好,低于 1000,以字为基本单元的分类效果好,token 为 1000,二者效果差不多。