STORAGE

- File systems, blob storage, databases, keyval stores
- Only have a half day, so let's focus on parallel file systems
 - Specifically, Lustre, but you might encounter GPFS or others
- Software abstractions:
 - "performance portability"
 - almost there but not quite

DATA DISTRIBUTION IN PARALLEL FILE SYSTEMS

LOCKING IN PARALLEL FILE SYSTEMS

Most parallel file systems use locks to manage concurrent access to files

- Files are divided into lock units aligned with blocks or stripes
- Clients obtain locks on units that they will access before I/O occurs
- Enables caching on clients as well (as long as client has a lock, it knows its cached data is valid)
- Locks are reclaimed from clients when others desire access
- These locks occur behind the scenes: different from locks an application might call explicitly

If an access touches any data in a lock unit, the lock for that region must be obtained before access occurs.

FILESYSTEMS: LUSTRE

https://www.lustre.org/

- Metadata servers (MDT)
 - E.g File creation
- Storage servers (OST)
 - Data lives here
 - So does all the parallelism
- Clients
 - POSIX interface (open, write, read, close)

