Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Science End Sem Examination Dec-2023

BC3CO51 Design & Analysis of Algorithms

Programme: B.Sc. Branch/Specialisation: Computer

Science

1

1

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

- Q.1 i. Which case indicate the minimum time required for program 1 execution?
 - (a) Best case

- (b) Average case
- (c) Worst case
- (d) None of these
- ii. $O(\log n)$ is-
 - (a) Constant asymptotic notations(b) Logarithmic asymptotic notations
 - (c) Polynomial asymptotic notations
 - (d) Quadratic asymptotic notations
- iii. Which of the following sorting algorithms has a worst-case time 1 complexity of $O(n^2)$?
 - (a) Merge sort
- (b) Heap sort
- (c) Quick sort
- (d) Bubble sort
- v. What is the worst case time complexity of a quick sort algorithm?
 - (a) O(N) (b) O(N)
- (b) $O(N \log N)$ (c) $O(N^2)$
- (d) O(log N)
- v. Which of the following algorithms is used to find the minimum 1 number of coins needed to make change for a given amount?
 - (a) Greedy algorithm
 - (b) Depth First Search
 - (c) Breadth First Search
 - (d) Dijkstra's shortest path algorithm
- vi. What is the average number of comparisons used in a heap sort 1 algorithm?
 - (a) N log N-O(N)
- (b) O(N log N)-O(N)
- (c) $O(N \log N)-1$
- (d) $2N \log N + O(N)$

[2]

	vii.	In dynamic programming, the technique of storing the previously calculated values is called					
		(a) Saving value property (b) Storing value property					
		(c) Memoization (d) Mapping					
	viii.	ii. Which of the following problems should be solved using dynan programming?					
		(a) Merge sort (b) Binary search					
		(c) Longest common subsequence (d) Quicksort					
	ix.	Backtracking algorithm is implemented by constructing a tree of choices called as?	1				
		(a) State-space tree (b) State-chart tree					
		(c) Node tree (d) Backtracking tree					
	х.	In what manner is a state-space tree for a backtracking algorithm constructed?	1				
		(a) Depth-first search (b) Breadth-first search					
		(c) Twice around the tree (d) Nearest neighbour first					
Q.2	i.		2				
	ii.	Explain string processing.	3				
	iii.	Discuss the time and space complexity of an algorithm. Explain the notations used with example.	5				
OR	iv.	Define searching. Explain linear search and binary search with example.	5				
Q.3	i.	Explain divide and conquer technique.	2				
Q .5	ii.	Explain quick sort with example. Also write its worst case and best-					
	111.	case complexity.	•				
OR	iii.	1	8				
OIC	1111	radix sort.	•				
Q.4	i.	Explain coin change problem.	3				
~ ··	ii.		7				
		Character A B C D E	-				
		Probability 0.4 0.1 0.2 0.15 0.15					
		Decode the text whose ending 100010111001010 using above					
		Huffman code.					
OR	iii.		7				
	111,	Define heap. Explain heap soit of giving suitable example.	•				

[3]

Q.5	i.	Write an algorithm to find an optimal binary search tree using dynamic programming.	4
	ii.	Define how knapsack problem is solved by dynamic programming. Consider n=3 (w_1 , w_2 , w_3)=(2,3,3), (P_1 , P_2 , P_3)=(1,2,4) and m=6. Find optimal solution.	6
OR	iii.	Explain travelling sales person problem with example.	6
Q.6		Attempt any two:	
	i.	Explain NP-Complete and NP-Hard problems.	5
	ii.	Explain 8-queen problem using backtracking.	5
	iii.	What is LC branch and bound solution? Explain.	5

[4]

Scheme of Marking

Design and Analysis of Algorithm-BC3CO51(T)

Q.1	i)	A						1
	ii)	В						1
	iii)	D						1
	iv)	C						1
	v)	A						1
	vi)	D						1
	vii)	C						1
	viii)	C						1
	ix)	A						1
	x)	A						1
Q.2	i.	Definition and	characte	eristics on	ie mark ea	ich.		1,1
	ii.	Explanation of	f String p	processing	2			3
	iii.					f an algo	rithm. Explain	2.5,
		the notations u	sed with	example				2.5
OR	iv.	Define search	ing. Exp	lain linea	ır search	and binar	ry search with	2,3
		example.						
0.2	:	Evaloia Divid	and Ca	navan taa	hniana			2
Q.3	i. ii.	Explain Divide		-	-	vuita ita v	ryamst assa and	
	11.	best-case comp		ın examp	ie. Aiso v	write its v	worst case and	2,4,2
OR	iii.			rite the d	ifference	between b	oucket sort and	2,6
		radix sort.						,-
Q.4	i.	Explain Coin (_					3
	ii.	Construct Huf	fman coo	de for the	following	g data:		7
			A	В	С	D	Е	
			0.4	0.1	0.2	0.15	0.15	
		Decode the text whose ending 100010111001010 using above						
ΟD	:::	Huffman code		haan aant	hv. aivina	. avitabla	avamela	2.5
OR	iii.	Define Heap?	Explain	neap sort	by giving	, surrable	example.	2,5
0.5	i.	Write on algor	rithm to	find on C	Intimal D	inory Soc	arch tree using	4
Q.5	1,	dynamic progr			zpumai D	mary Sca	den dee using	7

	ii.	Define how knapsack problem is solved by Dynamic	6							
		programming.								
		Consider n=3 $(w_1, w_2, w_3)=(2,3,3)$, $(P_1, P_2, P_3)=(1,2,4)$ and m=6.								
		Find optimal solution.								
OR iii. Write an algorithm to find an Optimal Binary Search tree us										
		dynamic programming.								
0.6										
Q.6			5							
	i.	Explain NP-Complete and NP-Hard problems.								
	ii.	Explain 8-queen problem using backtracking.	5							
	iii.	What is LC Branch and Bound solution? Explain.	5							

P.T.O.