«Билеты по алгему» мфти

Муниров Султан

Лето 2025

Билет №1

1. **Теория:** Норма в линейном пространстве. Норма оператора. Вычисление многочлена и аналитической функции от линейного преобразования.

2. Задача: Есть некий оператор f. Известно, что $f^2 = E$. Доказать, что $\mathrm{Ker}(f-E) \oplus \mathrm{Ker}(f+E) = V$. (все решение заключается в применении теоремы о взаимнопростых делителях аннулирующего многочлена)

Решение задачи 1:

Условие $f^2=E$ означает, что многочлен $P(\lambda)=\lambda^2-1$ является аннулирующим для оператора f. Разложим $P(\lambda)$ на множители: $P(\lambda)=(\lambda-1)(\lambda+1)$. Обозначим $P_1(\lambda)=\lambda-1$ и $P_2(\lambda)=\lambda+1$.

Многочлены $P_1(\lambda)$ и $P_2(\lambda)$ являются взаимно простыми (их НОД равен 1, если характеристика поля не равна 2, так как $P_2(\lambda) - P_1(\lambda) = 2 \neq 0$).

Согласно теореме о разложении пространства в прямую сумму ядер, если аннулирующий многочлен $P(\lambda)$ оператора f разлагается на взаимно простые множители $P_1(\lambda)$ и $P_2(\lambda)$, то $V = \text{Ker}(P_1(f)) \oplus \text{Ker}(P_2(f))$. В нашем случае $P_1(f) = f - E$ и $P_2(f) = f + E$. Следовательно, $V = \text{Ker}(f - E) \oplus \text{Ker}(f + E)$.

Билет №2

- 1. Теория: Аннулирующий и минимальный многочлен. Связь минимального с ЖНФ.
- 2. Задача: Ортогонализовать базис $(1, x 1, x^2 + 1)$ в пространстве многочленов степени не выше 2 методом Грама-Шмидта. Скалярное произведение это интеграл от 0 до 1 fg dx.

Решение задачи 2:

Обозначим базисные векторы: $f_1(x)=1,\ f_2(x)=x-1,\ f_3(x)=x^2+1.$ Скалярное произведение $(g,h)=\int_0^1 g(x)h(x)dx.$ Построим ортогональный базис $e_1,e_2,e_3.$

1.
$$e_1 = f_1 = 1$$
. $(e_1, e_1) = \int_0^1 1^2 dx = 1$.

2.
$$e_2 = f_2 - \frac{(f_2, e_1)}{(e_1, e_1)} e_1$$
. $(f_2, e_1) = \int_0^1 (x - 1) \cdot 1 dx = -1/2$. $e_2 = (x - 1) - \frac{-1/2}{1} \cdot 1 = x - 1/2$. $(e_2, e_2) = \int_0^1 (x - 1/2)^2 dx = 1/12$.

3.
$$e_3 = f_3 - \frac{(f_3, e_1)}{(e_1, e_1)} e_1 - \frac{(f_3, e_2)}{(e_2, e_2)} e_2$$
. $(f_3, e_1) = \int_0^1 (x^2 + 1) \cdot 1 dx = 4/3$. $(f_3, e_2) = \int_0^1 (x^2 + 1)(x - 1/2) dx = 1/12$. $e_3 = (x^2 + 1) - \frac{4/3}{1} \cdot 1 - \frac{1/12}{1/12} \cdot (x - 1/2) = x^2 - x + 1/6$. $(e_3, e_3) = \int_0^1 (x^2 - x + 1/6)^2 dx = 1/180$.

Ортогональный базис: $\{1, \quad x-1/2, \quad x^2-x+1/6\}.$

Ортонормированный базис
$$u_i = e_i/\|e_i\|$$
: $u_1(x) = 1$. $u_2(x) = \frac{x-1/2}{\sqrt{1/12}} = \sqrt{3}(2x-1)$. $u_3(x) = \frac{x^2-x+1/6}{\sqrt{1/180}} = \sqrt{5}(6x^2-6x+1)$.

Лето 2025 М Φ ТИ 2

Билет №3

- 1. Теория: Закон инерции, метод Якоби.
- 2. Задача: Построить матрицу линейного оператора $\phi: \mathbb{R}^3 \to \mathbb{R}^3$, если известно, что $v_1 = (1,0,1)^T$ собственный вектор с собственным значением $\lambda_1 = 2, \ v_2 = (0,1,1)^T$ собственный вектор с $\lambda_2 = -1$, и $v_3 = (1,1,0)^T$ собственный вектор с $\lambda_3 = 3$.

Решение задачи 3:

Векторы v_1, v_2, v_3 линейно независимы (т.к. отвечают различным СЗ) и образуют базис B. Матрица оператора ϕ в базисе B: $A_B = \mathrm{diag}(2, -1, 3)$. Матрица перехода от стандартного базиса E к базису

$$B$$
: $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Матрица оператора в стандартном базисе $A_E = PA_BP^{-1}$.

Вычисляем
$$P^{-1}$$
: $\det(P) = -2$. $P^{-1} = \frac{1}{-2} \begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & -1 \\ -1 & -1 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$.

Вычисляем произведение:
$$PA_B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 3 \\ 0 & -1 & 3 \\ 2 & -1 & 0 \end{pmatrix}$$
. $A_E = (PA_B)P^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$

$$\begin{pmatrix} 2 & 0 & 3 \\ 0 & -1 & 3 \\ 2 & -1 & 0 \end{pmatrix} \stackrel{1}{=} \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix} = \stackrel{1}{=} \begin{pmatrix} 5 & 1 & -1 \\ 4 & 2 & -4 \\ 3 & -3 & 1 \end{pmatrix}.$$

Билет №4

- 1. **Теория:** Эрмитовы формы и квадратичные формы в эрмитовом пространстве, их связь. Закон инерции эрмитовых форм, Критерий Сильвестра.
- 2. Задача (конкретизированная): Для симметричной матрицы $A=\begin{pmatrix} 5 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 7 \end{pmatrix}$ найти ортогональную матрицу D такие, что $Q^TAQ=D$.

Решение задачи 4:

- 1. Находим собственные значения из $\det(A \lambda E) = 0$. Характеристический многочлен: $-\lambda^3 + 18\lambda^2 99\lambda + 162 = 0$. Корни (собственные значения): $\lambda_1 = 3, \lambda_2 = 6, \lambda_3 = 9$.
- 2. Находим собственные векторы для каждого λ_i , решая $(A \lambda_i E)v = 0$. Для $\lambda_1 = 3$, собственный вектор $v_1' = (2, -2, 1)^T$. Нормируем: $u_1 = \frac{1}{3}(2, -2, 1)^T$. Для $\lambda_2 = 6$, собственный вектор $v_2' = (2, 1, -2)^T$.

Нормируем: $u_2 = \frac{1}{3}(2,1,-2)^T$. Для $\lambda_3 = 9$, собственный вектор $v_3' = (1,2,2)^T$. Нормируем: $u_3 = \frac{1}{3}(1,2,2)^T$.

3. Составляем ортогональную матрицу Q из столбцов u_1,u_2,u_3 : $Q=\frac{1}{3}\begin{pmatrix}2&2&1\\-2&1&2\\1&-2&2\end{pmatrix}$. Диагональ-

ная матрица D состоит из собственных значений: $D=\begin{pmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 9 \end{pmatrix}$. По теореме о диагонализации симметричных матриц $Q^TAQ=D$.

Билет №5

- 1. **Теория:** Приведение квадратичной формы в пространстве со скалярным произведением к главным осям. Одновременное приведение пары квадратичных форм к диагональному виду.
- 2. Задача: Необходимое и достаточное условие ортогональности подматрицы ортогональной матрицы.

Решение задачи 5:

Пусть Q – ортогональная $n \times n$ матрица. Разобьем Q на блоки: $Q = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, где $A - k \times k$ подматрица. Условие ортогональности Q: $Q^TQ = E_n$ и $QQ^T = E_n$.

Из $Q^TQ = E_n$ следует $A^TA + C^TC = E_k$ (блок (1,1)). Из $QQ^T = E_n$ следует $AA^T + BB^T = E_k$ (блок (1,1)).

Утверждение: A ортогональна $\iff B = 0$ и C = 0.

- (\Rightarrow) Если A ортогональна $(A^TA = E_k$ и $AA^T = E_k)$: $A^TA + C^TC = E_k \implies E_k + C^TC = E_k \implies C^TC = 0$. Для вещественных C, это значит C = 0. $AA^T + BB^T = E_k \implies E_k + BB^T = E_k \implies BB^T = 0$. Для вещественных B, это значит B = 0.
- (\Leftarrow) Если B=0 и C=0: $A^TA+C^TC=E_k\implies A^TA+0=E_k\implies A^TA=E_k$. $AA^T+BB^T=E_k\implies AA^T+0=E_k\implies AA^T=E_k$. Следовательно, A ортогональна.

Вывод: $k \times k$ подматрица A в левом верхнем углу ортогональной матрицы Q ортогональна т. и т.т., когда блоки B и C нулевые.

Билет №6

1. Теория: Лемма Даламбера, основная теорема алгебры.

2. Задача: Является ли билинейная форма $f(X,Y) = n \cdot \operatorname{tr}(XY) - \operatorname{tr}(X) \operatorname{tr}(Y)$ для матриц $X,Y \in M_n(\mathbb{R})$ а) симметричной б) невырожденной.

Решение задачи 6:

- а) Симметричность: $f(Y,X) = n \cdot \operatorname{tr}(YX) \operatorname{tr}(Y)\operatorname{tr}(X)$. Так как $\operatorname{tr}(XY) = \operatorname{tr}(YX)$ и $\operatorname{tr}(X)\operatorname{tr}(Y) = \operatorname{tr}(Y)\operatorname{tr}(X)$, то f(X,Y) = f(Y,X). Форма f симметрична.
- б) Невырожденность: Рассмотрим $X = E_n$. Тогда $\operatorname{tr}(X) = n$. $f(E_n, Y) = n \cdot \operatorname{tr}(E_n Y) \operatorname{tr}(E_n) \operatorname{tr}(Y) = n \cdot \operatorname{tr}(Y) n \cdot \operatorname{tr}(Y) = 0$. Это верно для любой Y. Поскольку $E_n \neq 0$ (для $n \geq 1$), а $f(E_n, Y) = 0$ для всех Y, форма f вырождена.

Билет №7

- 1. **Теория:** Унитарные преобразования, их свойства. Канонический вид унитарного преобразования.
- 2. Задача: Привести пример n-мерного пространства V и линейного оператора $\phi:V\to V,$ для которого неверно, что $V=\operatorname{Ker}\phi+\operatorname{Im}\phi.$

Решение задачи 7:

Пусть $V = P_1(\mathbb{R})$ (многочлены степени ≤ 1). dim V = 2. Оператор $\phi(p(x)) = p'(x)$ (дифференцирование). $\phi(a_0 + a_1 x) = a_1$.

 $\operatorname{Ker} \phi = \{a_0 \mid a_0 \in \mathbb{R}\} = \operatorname{span}\{1\}. \operatorname{dim}(\operatorname{Ker} \phi) = 1. \operatorname{Im} \phi = \{a_1 \mid a_1 \in \mathbb{R}\} = \operatorname{span}\{1\}. \operatorname{dim}(\operatorname{Im} \phi) = 1.$

 $\operatorname{Ker} \phi + \operatorname{Im} \phi = \operatorname{span}\{1\} + \operatorname{span}\{1\} = \operatorname{span}\{1\}.$ $\operatorname{dim}(\operatorname{Ker} \phi + \operatorname{Im} \phi) = 1.$ Поскольку $\operatorname{dim} V = 2$, то $V \neq \operatorname{Ker} \phi + \operatorname{Im} \phi.$

Билет №8

- 1. **Теория:** Ортогональное дополнение к подпространству. Задача об ортогональной проекции и ортогональной составляющей. Процедура ортогонализации Грама-Шмидта. Объем параллелепипеда.
- 2. Задача: Даны две квадратичные формы в \mathbb{R}^3 (переменные x_1, x_2, x_3): $q_1(x) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 + 4x_1x_3 + 2x_2x_3$ $q_2(x) = x_1^2 + 3x_2^2 + 2x_3^2 + 4x_1x_2 + 2x_1x_3 + 4x_2x_3$ Определите, можно ли одновременно привести эти формы к диагональному виду с помощью одного и того же невырожденного линейного преобразования. Если это возможно, найдите преобразование и результирующие диагональные формы.

Решение задачи 8:

Матрицы квадратичных форм:
$$A_1 = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2 \end{pmatrix}$.

- 1. Проверка A_1 на положительную определенность: $\Delta_1=2>0.$ $\Delta_2=\det\begin{pmatrix}2&1\\1&2\end{pmatrix}=3>0.$ $\Delta_3=\det(A_1)=3>0.$ Форма $q_1(x)$ (матрица A_1) положительно определена.
- 2. Поскольку $q_1(x)$ положительно определена, можно найти невырожденное линейное преобразование x=Sy', приводящее $q_1(x)$ к каноническому виду $q_1(y')=(y'_1)^2+(y'_2)^2+(y'_3)^2$, а $q_2(x)$ к диагональному виду $q_2(y')=\lambda_1(y'_1)^2+\lambda_2(y'_2)^2+\lambda_3(y'_3)^2$. Коэффициенты λ_i являются корнями обобщенного характеристического уравнения $\det(A_2-\lambda A_1)=0$.
- 3. Нахождение обобщенных собственных значений: $\det(A_2 \lambda A_1) = \det\begin{pmatrix} 1-2\lambda & 2-\lambda & 1-2\lambda \\ 2-\lambda & 3-2\lambda & 2-\lambda \\ 1-2\lambda & 2-\lambda & 2-3\lambda \end{pmatrix} = 0$. Раскрытие определителя приводит к уравнению: $15\lambda^3 23\lambda^2 \lambda + 1 = 0$. Корни этого уравнения: $\lambda_1 = 1/5, \ \lambda_2 = \frac{2+\sqrt{7}}{3}, \ \lambda_3 = \frac{2-\sqrt{7}}{3}$.
- 4. Построение преобразования и итоговые формы: Для каждого λ_i находится собственный вектор v_i из системы $(A_2 \lambda_i A_1)v_i = 0$. Эти векторы A_1 -ортонормируются (т.е. $v_i^T A_1 v_j = \delta_{ij}$). Матрица S, столбцами которой являются эти A_1 -ортонормированные векторы, задает преобразование x = Sy'. В новых координатах y': $q_1(y') = (y'_1)^2 + (y'_2)^2 + (y'_3)^2$. $q_2(y') = \frac{1}{5}(y'_1)^2 + \frac{2+\sqrt{7}}{3}(y'_2)^2 + \frac{2-\sqrt{7}}{3}(y'_3)^2$ (порядок λ_i соответствует порядку A_1 -ортонормированных векторов в S).

Да, формы можно одновременно привести к диагональному виду.

Билет №9

- 1. **Теория:** Тензоры, операции над ними (свёртка, перестановка индексов). Симметричные и кососимметричные тензоры. Операторы симметрирования и альтернирования, их свойства.
- 2. Задача: Найти полярное разложение A = UP (где U ортогональная, P симметричная положительно полуопределенная) для матрицы $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Решение задачи 9:

1. **Находим** $P = \sqrt{A^TA}$. $A^TA = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$. Характеристическое уравнение $\det(A^TA - \mu E) = 0$ дает $-(\mu - 1)^2(\mu - 4) = 0$. Собственные значения матрицы A^TA : $\mu_1 = 4$ (кратности 1), $\mu_2 = 1$ (кратности 2). Собственные значения матрицы P (квадратные корни из C3 A^TA):

 $\sigma_1 = 2, \sigma_2 = 1, \sigma_3 = 1.$ Диагональная форма P в базисе из ее собственных векторов: $D_P = \mathrm{diag}(2,1,1)$ (порядок C3 может быть иным, но он должен соответствовать порядку CB в Q_P).

- 2. Находим ортонормированные собственные векторы для A^TA . Для $\mu_1=4$: $(A^TA-4E)v=$
- $0 \implies \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} v = 0$. Решая, получаем $v_1' = (1,1,1)^T$. Нормированный $u_1 = \frac{1}{\sqrt{3}}(1,1,1)^T$. Для
- $\mu_2=1$: $(A^TA-E)v=0 \implies \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}v=0 \implies x+y+z=0$. Выберем два ортогональных

вектора из этого подпространства: $v_2' \stackrel{\cdot}{=} (1,-1,0)^T$. Нормированный $u_2 = \frac{1}{\sqrt{2}}(1,-1,0)^T$. v_3' ищем ортогональным u_1 и u_2 : $v_3' = u_1 \times u_2$ (с точностью до знака и нормы) или решая систему. $v_3' =$ $(1,1,-2)^T$. Нормированный $u_3=\frac{1}{\sqrt{6}}(1,1,-2)^T$. Матрица Q_P , составленная из столбцов u_1,u_2,u_3 :

$$Q_P = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \end{pmatrix}.$$

3. Вычисляем
$$P = Q_P D_P Q_P^T$$
. $D_P = \operatorname{diag}(2,1,1)$ (соответственно порядку u_1, u_2, u_3). $P = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{6} & 1/\sqrt{6} & -2/\sqrt{6} \end{pmatrix} P = \frac{1}{3} \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}.$

4. **Находим**
$$U = AP^{-1}$$
. Сначала $P^{-1} = Q_P D_P^{-1} Q_P^T$, где $D_P^{-1} = \operatorname{diag}(1/2, 1, 1)$. $P^{-1} = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{6} & 1/\sqrt{6} & -2/\sqrt{6} \end{pmatrix} P^{-1} = \frac{1}{6} \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix}$. $U = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \end{pmatrix} P^{-1}$

$$AP^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \frac{1}{6} \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix} U = \frac{1}{6} \begin{pmatrix} 4 & -2 & 4 \\ -2 & 4 & 4 \\ 4 & 4 & -2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix}.$$
 Можно прове-

рить, что U ортогональна ($U^TU =$

Таким образом, полярное разложение:
$$U=\frac{1}{3}\begin{pmatrix}2&-1&2\\-1&2&2\\2&2&-1\end{pmatrix},\ P=\frac{1}{3}\begin{pmatrix}4&1&1\\1&4&1\\1&1&4\end{pmatrix}.$$

Билет №10

- 1. Теория: Корневое подпространство линейного оператора. Свойства корневых подпространств. Разложение пространства в прямую сумму корневых подпространств (случай, когда характеристический многочлен линейного оператора раскладывается на линейные множители).
- 2. Задача: Найти при каких p квадратичная форма $q(x,y,z) = x^2 + 2y^2 + 5z^2 + 2pxy + 2xz + 2pyz$ положительно определена.

Решение задачи 10: Матрица квадратичной формы: $A = \begin{pmatrix} 1 & p & 1 \\ p & 2 & p \\ 1 & p & 5 \end{pmatrix}$. По критерию Сильвестра все

главные угловые миноры должны быть положительны. $\Delta_1=1>0$. $\Delta_2=\begin{vmatrix} 1 & p \\ p & 2 \end{vmatrix}=2-p^2$. Условие $\Delta_2>0 \implies 2-p^2>0 \implies p^2<2 \implies -\sqrt{2}< p<\sqrt{2}$. $\Delta_3=\det(A)=1(10-p^2)-p(5p-p)+1(p^2-2)=10-p^2-4p^2+p^2-2=-4p^2+8$. Условие $\Delta_3>0 \implies -4p^2+8>0 \implies 4p^2<8 \implies p^2<2 \implies -\sqrt{2}< p<\sqrt{2}$.

Объединяя условия, получаем: $-\sqrt{2} .$

Билет №11

- 1. **Теория:** Билинейные функции. Координатная запись билинейной функции. Матрица билинейной функции и ее изменение при замене базиса. Ортогональное дополнение к подпространству относительно симметричной (кососимметричной) билинейной функции и его свойства.
- 2. Задача: Дан оператор ϕ на пространстве $\mathbb{R}[x]_{\leq 2}$ многочленов степени не выше 2: $\phi(f(x)) = (x^2 + x + 1)f''(x) + (x + 1)f'(x) + f(x)$. Исследовать на диагонализируемость.

Решение задачи 11:

Пространство $V = P_2(\mathbb{R})$ — многочлены степени не выше 2. Стандартный базис $e_0(x) = 1, e_1(x) = x, e_2(x) = x^2$. Найдем матрицу оператора ϕ в этом базисе.

Вычисляем образы базисных векторов: $\phi(e_0) = \phi(1) = (x^2 + x + 1) \cdot 0 + (x + 1) \cdot 0 + 1 = 1$. В координатах это $(1,0,0)^T$.

$$\phi(e_1) = \phi(x) = (x^2 + x + 1) \cdot 0 + (x + 1) \cdot 1 + x = x + 1 + x = 2x + 1$$
. В координатах это $(1, 2, 0)^T$.

$$\phi(e_2) = \phi(x^2) = (x^2 + x + 1) \cdot 2 + (x + 1) \cdot 2x + x^2 = (2x^2 + 2x + 2) + (2x^2 + 2x) + x^2 = 5x^2 + 4x + 2.$$
 В координатах это $(2, 4, 5)^T$.

Матрица оператора
$$A$$
 в базисе $\{1,x,x^2\}$ (координаты образов по столбцам): $A=\begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{pmatrix}$.

Матрица A является верхнетреугольной. Ее собственные значения находятся на главной диагонали: $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 5$. Поскольку все три собственных значения оператора в 3-мерном пространстве различны, оператор ϕ диагонализируем.

Билет №12

1. **Теория:** Билинейные симметричные и квадратичные функции и их связь. Поляризационное тождество. Метод Лагранжа.

2. Задача: Найти жорданову нормальную форму и жорданов базис для оператора, заданного матрицей $A = \begin{pmatrix} 3 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.

Решение задачи 12:

- 1. Находим собственные значения. Матрица A верхнетреугольная, поэтому собственные значения стоят на диагонали: $\lambda_1 = 3$ (алгебраическая кратность $m_1 = 2$), $\lambda_2 = 2$ (алгебраическая кратность $m_2 = 1$).
- 2. Для собственного значения $\lambda_2=2$: $A-2E=\begin{pmatrix}1&1&-1\\0&0&1\\0&0&1\end{pmatrix}$. Решаем систему (A-2E)v=0. Из второй и третьей строки z=0. Из первой $x+y-z=0\implies x+y=0\implies y=-x$. Собственный вектор, например, $v_2'=(1,-1,0)^T$. Геометрическая кратность $d_2=\dim \operatorname{Ker}(A-2E)=3-\operatorname{rk}(A-2E)=3-2=1$. Так как $m_2=d_2=1$, этому СЗ соответствует одна жорданова клетка размера 1.
- 3. Для собственного значения $\lambda_1=3$: $A-3E=\begin{pmatrix}0&1&-1\\0&-1&1\\0&0&0\end{pmatrix}$. Решаем систему (A-3E)v=0. $y-z=0 \implies y=z$. x любое. Геометрическая кратность $d_1=\dim \operatorname{Ker}(A-3E)=3-\operatorname{rk}(A-3E)=3-1=2$. Так как $m_1=d_1=2$, этому C3 соответствуют две жордановы клетки размера 1.
- 4. Поскольку для каждого собственного значения алгебраическая кратность равна геометрической, оператор диагонализируем. Жорданова нормальная форма является диагональной матрицей (с точностью до порядка блоков): $J = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. Жорданов базис состоит из линейно независимых собственных векторов. Для $\lambda_1 = 3$, базис $\ker(A 3E)$: $v'_{11} = (1,0,0)^T$, $v'_{12} = (0,1,1)^T$. Для $\lambda_2 = 2$,

ственных векторов. Для $\lambda_1 = 3$, базис $\operatorname{Ker}(A - 3E)$: $v'_{11} = (1,0,0)^T$, $v'_{12} = (0,1,1)^T$. Для $\lambda_2 = 2$, базис $\operatorname{Ker}(A - 2E)$: $v'_2 = (1,-1,0)^T$. Искомый жорданов (в данном случае собственный) базис: $\{(1,0,0)^T, (0,1,1)^T, (1,-1,0)^T\}$.

Билет №13

- 1. **Теория:** Линейная независимость собственных векторов, имеющих попарно различные собственные значения. Алгебраическая и геометрическая кратности собственного значения. Условия диагонализируемости линейного оператора.
- 2. Задача: Квадратичная форма $q(x_1, x_2, x_3) = x_1^2 4x_1x_2 + 2x_1x_3 + 5x_2^2 6x_2x_3 + 3x_3^2$. Привести ее к каноническому виду методом Лагранжа. Найти невырожденное линейное преобразование координат, приводящее форму к этому виду. Указать положительный и отрицательный индексы инерции.

Решение задачи 13: Дана квадратичная форма $q(x) = x_1^2 - 4x_1x_2 + 2x_1x_3 + 5x_2^2 - 6x_2x_3 + 3x_3^2$.

- 1. Выделяем полный квадрат по x_1 : $q(x) = (x_1^2 2x_1(2x_2 x_3)) + 5x_2^2 6x_2x_3 + 3x_3^2 = (x_1 (2x_2 x_3))^2 (2x_2 x_3)^2 + 5x_2^2 6x_2x_3 + 3x_3^2 = (x_1 2x_2 + x_3)^2 (4x_2^2 4x_2x_3 + x_3^2) + 5x_2^2 6x_2x_3 + 3x_3^2 = (x_1 2x_2 + x_3)^2 + x_2^2 2x_2x_3 + 2x_3^2.$
- 2. Оставшаяся часть $q_1(x_2, x_3) = x_2^2 2x_2x_3 + 2x_3^2$. Выделяем полный квадрат по x_2 : $q_1(x_2, x_3) = (x_2^2 2x_2x_3 + x_3^2) x_3^2 + 2x_3^2 = (x_2 x_3)^2 + x_3^2$.
- 3. Подставляем обратно: $q(x)=(x_1-2x_2+x_3)^2+(x_2-x_3)^2+x_3^2$. Делаем замену координат: $y_1=x_1-2x_2+x_3$ $y_2=x_2-x_3$ $y_3=x_3$ Канонический вид: $q(y)=y_1^2+y_2^2+y_3^2$.
- 4. Индексы инерции: Положительный индекс инерции $r_+=3$. Отрицательный индекс инерции $r_-=0$. Ранг формы $r=r_++r_-=3$. Форма положительно определена.
- 5. Невырожденное линейное преобразование координат (выражаем x_i через y_i): $x_3 = y_3$ $x_2 = y_2 + x_3 = y_2 + y_3$ $x_1 = y_1 + 2x_2 x_3 = y_1 + 2(y_2 + y_3) y_3 = y_1 + 2y_2 + y_3$. Матрица преобразования S (такая, что $x_1 = x_2 + y_3 = x_3 + y_3 = x_4 + y_4 + y_3 = x_4 + y_4 + y_4 + y_4$

Билет №14

- 1. **Теория:** Жорданова диаграмма. Построение ЖД без поиска базиса. Теорема о единственности ЖНФ с точностью до перестановки клеток.
- 2. Задача: Ортогональный оператор ϕ в \mathbb{R}^3 задан в ортонормированном базисе матрицей $A=\begin{pmatrix}2&-1&2\\2&2&-1\\-1&2&2\end{pmatrix}$. Найти ортонормированный базис, в котором матрица этого оператора имеет канонический вил.

Решение задачи 14: 1. Проверяем, что A ортогональна $(A^TA = E)$ и находим $\det A$. $A^TA = \begin{pmatrix} 2 & 2 & -1 \\ -1 & 2 & 2 \\ 2 & -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix} = E$. (Вычисления были верны). $\det A = 1$. (Пересчет показал, что $\det A = 1$). Так как A ортогональна и $\det A = 1$ оператор ϕ является врашением. Существует

что $\det A = 1$). Так как A ортогональна и $\det A = 1$, оператор ϕ является вращением. Существует собственный вектор u_1 (ось вращения) с собственным значением $\lambda_1 = 1$.

- 2. Находим ось вращения u_1 из $(A-E)u_1=0 \implies (3A-3E)u_1=0$: $3A-3E=\begin{pmatrix} -1 & -1 & 2\\ 2 & -1 & -1\\ -1 & 2 & -1 \end{pmatrix}$. Решая систему, получаем $x_1=x_2=x_3$. Собственный вектор $v_1'=(1,1,1)^T$. Нормируем: $u_1=\frac{1}{\sqrt{3}}(1,1,1)^T$.
- 3. Находим угол вращения α из формулы $\operatorname{tr}(A) = 1 + 2\cos\alpha$. $\operatorname{tr}(A) = \frac{1}{3}(2 + 2 + 2) = 2$. $1 + 2\cos\alpha = 2 \implies 2\cos\alpha = 1 \implies \cos\alpha = 1/2$.

4. Строим ортонормированный базис $\{u_1, u_2, u_3\}$, где u_1 - ось, u_2, u_3 - ОНБ в плоскости $L = \operatorname{span}\{u_1\}^{\perp}$. Возьмем u_2' ортогональный u_1 , например $u_2'=(1,-1,0)^T$. Нормируем: $u_2=\frac{1}{\sqrt{2}}(1,-1,0)^T$. $u_3=u_1\times u_2$ $u_2 = \frac{1}{\sqrt{6}}(1,1,-2)^T$.

5. Определяем знак
$$\sin \alpha$$
. Канонический вид матрицы вращения: $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$. $\sin \alpha = 0$

5. Определяем знак
$$\sin \alpha$$
. Канонический вид матрицы вращения: $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$. $\sin \alpha = (Au_2, u_3)$. $Au_2 = \frac{1}{3\sqrt{2}} \begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \frac{1}{3\sqrt{2}} \begin{pmatrix} 3 \\ 0 \\ -3 \end{pmatrix} = \frac{1}{\sqrt{2}} (1, 0, -1)^T$. $(Au_2, u_3) = \frac{1}{\sqrt{2}\sqrt{6}} (1 \cdot 1 + 1) (1, 0)$

 $0\cdot 1+(-1)(-2))=\frac{3}{\sqrt{12}}=\frac{3}{2\sqrt{3}}=\frac{\sqrt{3}}{2}$. Поскольку $\cos\alpha=1/2$ и $\sin\alpha=\sqrt{3}/2$, то $\alpha=\pi/3$. Искомый ортонормированный базис: $\{u_1, u_2, u_3\}$. Матрица оператора в этом базисе (канонический вид):

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & -\sqrt{3}/2 \\ 0 & \sqrt{3}/2 & 1/2 \end{pmatrix}.$$

Билет №15

- 1. Теория: Положительно определенные квадратичные функции. Критерий Сильвестра. Кососиметрические билинейные функции, приведение их к каноническому виду.
- 2. Задача: Найти жорданову нормальную форму и жорданов базис для оператора, заданного

матрицей:
$$A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}$$
.

Решение задачи 15: 1. Находим собственные значения. Характеристический многочлен: $\chi_A(\lambda) =$ $\det(A-\lambda E)=(2-\lambda)^4$. Единственное собственное значение $\lambda_0=2$ с алгебраической кратностью m=4.

2. Определяем структуру жордановых клеток. Матрица
$$B=A-2E$$
: $B=\begin{pmatrix} 0&1&0&0\\0&0&1&0\\0&0&0&0\\1&0&0&0 \end{pmatrix}$. Ранг

 $\operatorname{rk}(B)=3$. Геометрическая кратность (число клеток) $d_1=\dim \operatorname{Ker}(B)=n-\operatorname{rk}(B)=4-3=1$. Поскольку есть только одна жорданова клетка, а алгебраическая кратность равна 4, то эта клетка

должна быть размера
$$4 \times 4$$
. Жорданова нормальная форма: $J = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$.

3. Строим жорданов базис. Нужна цепочка $\{f_1,f_2,f_3,f_4\}$ такая, что $Bf_1=0,Bf_2=f_1,Bf_3=0$

 $B^3f_4 \neq 0$. Например, $f_4 = (0,0,1,0)^T$. Тогда последовательно находим: $f_3 = Bf_4 = (0,1,0,0)^T$. $f_2 = Bf_3 = (1,0,0,0)^T$. $f_1 = Bf_2 = (0,0,0,1)^T$. Вектор f_1 является собственным, так как $Bf_1 = 0$. Жорданов базис (в порядке f_1, f_2, f_3, f_4 , чтобы матрица оператора A в этом базисе имела вид J): $f_1 = (0,0,0,1)^T$, $f_2 = (1,0,0,0)^T$, $f_3 = (0,1,0,0)^T$, $f_4 = (0,0,1,0)^T$.

Билет №16

- 1. Теория: Неприводимые многочлены. Основная теорема арифметики для многочленов.
- 2. Задача: Дана квадратичная форма в ОНБ. Найти ОНБ в котором она будет иметь диагональный вид. Квадратичная форма: $q(x_1,x_2,x_3)=3x_1^2+8x_1x_2-8x_1x_3-8x_2x_3-7x_2^2+3x_3^2$.

Решение задачи 16 (Исправленное):

Матрица квадратичной формы: $A = \begin{pmatrix} 3 & 4 & -4 \\ 4 & -7 & -4 \\ -4 & -4 & 3 \end{pmatrix}$.

- 1. Нахождение собственных значений матрицы A. Характеристическое уравнение $\det(A-\lambda E)=0$: $\lambda^3+\lambda^2-81\lambda-81=0$. $(\lambda^2-81)(\lambda+1)=0 \implies (\lambda-9)(\lambda+9)(\lambda+1)=0$. Собственные значения: $\lambda_1=9,\lambda_2=-9,\lambda_3=-1$.
- 2. Нахождение ортонормированных собственных векторов. Для $\lambda_1=9$: Система (A-9E)v=0 имеет вид $\begin{pmatrix} -6 & 4 & -4 \\ 4 & -16 & -4 \\ -4 & -4 & -6 \end{pmatrix}v=0$. Решение (с точностью до пропорциональности): $v_1'=(2,1,-2)^T$. Нормируем: $u_1=\frac{1}{\sqrt{4+1+4}}(2,1,-2)^T=\frac{1}{3}(2,1,-2)^T$.

Для $\lambda_2=-9$: Система (A+9E)v=0 имеет вид $\begin{pmatrix}12&4&-4\\4&2&-4\\-4&-4&12\end{pmatrix}v=0$. Решение (с точностью до пропорциональности): $v_2'=(-1,4,1)^T$. Нормируем: $u_2=\frac{1}{\sqrt{1+16+1}}(-1,4,1)^T=\frac{1}{\sqrt{18}}(-1,4,1)^T=\frac{1}{3\sqrt{2}}(-1,4,1)^T$.

Для $\lambda_3=-1$: Система (A+E)v=0 имеет вид $\begin{pmatrix} 4&4&-4\\4&-6&-4\\-4&-4&4 \end{pmatrix}v=0$. Решение (с точностью до пропорциональности): $v_3'=(1,0,1)^T$. Нормируем: $u_3=\frac{1}{\sqrt{1+0+1}}(1,0,1)^T=\frac{1}{\sqrt{2}}(1,0,1)^T$.

3. Ортонормированный базис и диагональный вид. Искомый ОНБ состоит из векторов $\{u_1,u_2,u_3\}$: $u_1=\frac{1}{3}(2,1,-2)^T$ $u_2=\frac{1}{3\sqrt{2}}(-1,4,1)^T$ $u_3=\frac{1}{\sqrt{2}}(1,0,1)^T$. В этом базисе матрица квадратичной формы будет диагональной $D = \mathrm{diag}(9, -9, -1)$. Канонический вид квадратичной формы: $q(y') = 9(y'_1)^2 - 9(y'_2)^2 - (y'_3)^2$, где y' - координаты в новом ОНБ.

Билет №17

- 1. Теория: Инвариантные подпространства. Собственные векторы и собственные значения. Характеристический многочлен и его свойства. Инвариантность следа и определителя матрицы оператора.
- 2. Задача: Дана симметричная билинейная форма $f(x,y)=x_1y_1+x_1y_2+x_2y_1+2x_2y_2-x_3y_3$. Доказать, что если f(a,a)=0 для некоторого ненулевого вектора $a\in\mathbb{R}^3$, то это не означает, что форма не является положительно полуопределенной (привести пример такого a, если возможно, или объяснить почему невозможно). Проверить форму на положительную полуопределенность.

 $Peшение\ задачи\ 17:\$ Матрица билинейной формы: $A=egin{pmatrix} 1&1&0\\1&2&0\\0&0&-1 \end{pmatrix}$. Квадратичная форма: q(x)=

 $f(x,x) = x_1^2 + 2x_1x_2 + 2x_2^2 - x_3^2$

- 1. Проверка на положительную полуопределенность (по критерию Сильвестра): $\Delta_1 = 1 > 0$. $\Delta_2 = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1 > 0$. $\Delta_3 = \det(A) = -1 < 0$. Так как $\Delta_3 < 0$, форма не является положительно полуопределенной. Она знакопеременная.
- 2. Поиск ненулевого вектора a такого, что q(a)=0: $q(x)=(x_1+x_2)^2+x_2^2-x_3^2$. Ищем $a=(a_1,a_2,a_3)\neq 0$ такой, что $(a_1+a_2)^2+a_2^2-a_3^2=0$. Пусть $a_2=0$. Тогда $(a_1)^2-a_3^2=0\implies a_1^2=a_3^2$. Возьмем $a=(1,0,1)^T \neq 0.$ $q(1,0,1)=(1+0)^2+0^2-1^2=0.$ Такой вектор существует.
- 3. Утверждение: "если f(a,a)=0 для ненулевого a, то это не означает, что форма не является положительно полу
определенной "верно в общем. Например, $q(x)=(x_1-x_2)^2$ положительно полуопределена, но q(1,1)=0. Для данной конкретной формы, она не является положительно полуопределенной, что показано критерием Сильвестра.

Билет №18

1. Теория: Ортонормированные базисы и ортогональные (унитарные) матрицы. Существование ортонормированного базиса в пространстве со скалярным произведением. Изоморфизм евклидовых и эрмитовых пространств. Канонический изоморфизм евклидова пространства и сопряженного к нему.

2. Задача: В эрмитовом пространстве оператор ϕ удовлетворяет $\phi^3 - 5\phi^2 + 6\phi = 0$. ϕ унитарен? ϕ диагонализируем?

Решение задачи 18: Аннулирующий многочлен $P(\lambda) = \lambda(\lambda - 2)(\lambda - 3)$.

- 1. Диагонализируемость: $P(\lambda)$ имеет только простые корни (0, 2, 3). Минимальный многочлен $\mu_{\phi}(\lambda)$ делит $P(\lambda)$, значит, $\mu_{\phi}(\lambda)$ также имеет только простые корни. Оператор диагонализируем т. и т.т., когда его минимальный многочлен не имеет кратных корней. Следовательно, ϕ диагонализируем.
- 2. Унитарность: Если ϕ унитарен, то все его собственные значения (корни $\mu_{\phi}(\lambda)$) должны лежать на единичной окружности ($|\lambda|=1$). Собственные значения ϕ принадлежат множеству $\{0,2,3\}$. $|0|=0 \neq 1, |2|=2 \neq 1, |3|=3 \neq 1$. Если пространство не нулевое, то ϕ имеет хотя бы одно СЗ из $\{0,2,3\}$ (если ϕ не нулевой оператор). Ни одно из них не имеет модуль 1. Следовательно, ϕ не унитарен (если $V \neq \{0\}$).

Билет №19

- 1. **Теория:** Циклические подпространства. Теорема о нильпотентном операторе. Жорданова нормальная форма и жорданов базис линейного оператора. (Теорема существования жорданова базиса).
- 2. Задача: Пусть q квадратичная функция на V, $\dim V = n$. Известно, что знаки её угловых миноров чередуются: $D_1 > 0, D_2 < 0, D_3 > 0, \dots, (-1)^{k-1}D_k > 0, \dots$ Какую максимальную размерность может иметь подпространство U, на котором q отрицательно определена?

Решение задачи 19: По теореме Якоби, если все угловые миноры $D_k \neq 0$, существует базис, в котором $q(y) = \sum_{k=1}^n \lambda_k y_k^2$, где $\lambda_k = D_k/D_{k-1}$ $(D_0 = 1)$.

Коэффициенты: $\lambda_1 = D_1/D_0 = D_1 > 0$. $\lambda_2 = D_2/D_1$. Знак D_2 отрицательный, D_1 положительный $\implies \lambda_2 < 0$. $\lambda_3 = D_3/D_2$. Знак D_3 положительный, D_2 отрицательный $\implies \lambda_3 < 0$.

В общем, для $k \ge 2$, знак D_k есть $(-1)^{k-1}$, знак D_{k-1} есть $(-1)^{k-2}$. Тогда знак $\lambda_k = D_k/D_{k-1}$ есть $\frac{(-1)^{k-1}}{(-1)^{k-2}} = -1$.

Следовательно, $\lambda_1 > 0$ и $\lambda_2, \ldots, \lambda_n < 0$. Число отрицательных членов (отрицательный индекс инерции r_-) равно n-1. Максимальная размерность подпространства, на котором q отрицательно определена, равна $r_- = n-1$.

Билет №20

1. **Теория:** Евклидовы и эрмитовы пространства. Матрица Грама системы векторов, ее свойства, неравенства КБШ и треугольника.

2. Задача: Пусть $M = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. На пространстве вещественных матриц $V = M_2(\mathbb{R})$ задано отображение $\phi(X) = (MX)^T - XM^T$. а) Доказать, что ϕ является линейным оператором. б) Найти матрицу этого оператора в базисе $E_{11}, E_{12}, E_{21}, E_{22}$ (матричные единицы). в) Найти его собственные значения и, если возможно, собственные векторы.

Решение задачи 20: а) Линейность: $\phi(X+Y)=(M(X+Y))^T-(X+Y)M^T=(MX)^T+(MY)^T-XM^T-YM^T=\phi(X)+\phi(Y).$ $\phi(cX)=(M(cX))^T-(cX)M^T=c(MX)^T-cXM^T=c\phi(X).$ ϕ линеен.

б) Матрица оператора
$$A_{\phi}$$
. $M^T = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$. $\phi(E_{11}) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Столбец $(0,0,0,0)^T$. $\phi(E_{12}) = \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix}$.

Столбец $(-2,-1,1,0)^T$. $\phi(E_{21})=\begin{pmatrix}2&1\\-1&0\end{pmatrix}$. Столбец $(2,1,-1,0)^T$. $\phi(E_{22})=\begin{pmatrix}0&0\\0&0\end{pmatrix}$. Столбец

$$(0,0,0,0)^T. \ A_{\phi} = \begin{pmatrix} 0 & -2 & 2 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

в) Собственные значения: $\det(A_{\phi} - \lambda E) = \lambda^3(\lambda + 2)$. СЗ: $\lambda_1 = 0$ (алг. кратность 3), $\lambda_2 = -2$ (алг. кратность 1).

Для $\lambda_1 = 0$: $A_{\phi}v = 0 \implies -x_2 + x_3 = 0$. Базис $\operatorname{Ker} A_{\phi}$: $v_1 = (1,0,0,0)^T \leftrightarrow E_{11} \ v_2 = (0,1,1,0)^T \leftrightarrow E_{12} + E_{21} \ v_3 = (0,0,0,1)^T \leftrightarrow E_{22}$. Геом. кратность 3.

Для $\lambda_2 = -2$: $(A_\phi + 2E)v = 0$. Решая систему, получаем $x_4 = 0, x_3 = -x_2, x_1 = 2x_2$. Собственный вектор $v_4 = (2, 1, -1, 0)^T \leftrightarrow 2E_{11} + E_{12} - E_{21}$.

Билет №21

- 1. **Теория:** Преобразования, сопряжённые к ним. Существование и единственность, свойства. Теорема Фредгольма.
- 2. Задача: $\operatorname{Exp} \begin{pmatrix} 6 & 5 \\ -4 & -6 \end{pmatrix}$.

Решение задачи 21:

Пусть
$$A = \begin{pmatrix} 6 & 5 \\ -4 & -6 \end{pmatrix}$$
.

- 1. Собственные значения: Характеристическое уравнение: $\det(A \lambda I) = (6 \lambda)(-6 \lambda) (5)(-4) = \lambda^2 36 + 20 = \lambda^2 16 = 0$. Собственные значения: $\lambda_1 = 4$, $\lambda_2 = -4$.
- 2. **Вычисление** $\operatorname{Exp}(A)$ **через** $e^A = c_0 I + c_1 A$: Так как собственные значения различны, такой вид представления возможен. $e^{\lambda_i} = c_0 + c_1 \lambda_i$: $e^4 = c_0 + 4c_1 \ e^{-4} = c_0 4c_1$

Решая систему: $c_0 = \frac{e^4 + e^{-4}}{2} = \cosh(4)$. $c_1 = \frac{e^4 - e^{-4}}{8} = \frac{\sinh(4)}{4}$.

3.
$$\operatorname{Exp}(A) = c_0 I + c_1 A = \cosh(4) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{\sinh(4)}{4} \begin{pmatrix} 6 & 5 \\ -4 & -6 \end{pmatrix} = \begin{pmatrix} \cosh(4) + \frac{6}{4}\sinh(4) & \frac{5}{4}\sinh(4) \\ -\sinh(4) & \cosh(4) - \frac{6}{4}\sinh(4) \end{pmatrix} = \begin{pmatrix} \cosh(4) + \frac{3}{2}\sinh(4) & \frac{5}{4}\sinh(4) \\ -\sinh(4) & \cosh(4) - \frac{3}{2}\sinh(4) \end{pmatrix}.$$

Выражая через экспоненты: $\cosh(4) = \frac{e^4 + e^{-4}}{2}$, $\sinh(4) = \frac{e^4 - e^{-4}}{2}$. Первый элемент: $\frac{e^4 + e^{-4}}{2} + \frac{3}{2} \frac{e^4 - e^{-4}}{2} = \frac{2e^4 + 2e^{-4} + 3e^4 - 3e^{-4}}{4} = \frac{5e^4 - e^{-4}}{4}$. Второй элемент: $\frac{5}{4} \frac{e^4 - e^{-4}}{2} = \frac{5(e^4 - e^{-4})}{8}$. Третий элемент: $-\frac{e^4 - e^{-4}}{2} = \frac{-4e^4 + 4e^{-4}}{8}$. Четвертый элемент: $\frac{e^4 + e^{-4}}{2} - \frac{3}{2} \frac{e^4 - e^{-4}}{2} = \frac{2e^4 + 2e^{-4} - 3e^4 + 3e^{-4}}{4} = \frac{-e^4 + 5e^{-4}}{4}$.

$$\operatorname{Exp}(A) = \frac{1}{8} \begin{pmatrix} 10e^4 - 2e^{-4} & 5e^4 - 5e^{-4} \\ -4e^4 + 4e^{-4} & -2e^4 + 10e^{-4} \end{pmatrix}.$$

Билет №22

- 1. **Теория:** Полярное разложение линейного оператора. Единственность полярного разложения невырожденного оператора.
- 2. Задача: Найти наибольший общий делитель многочленов $f(x) = x^4 + x^3 + 2x^2 + x + 1$ и $g(x) = x^3 x^2 x 2$ в кольце $\mathbb{Q}[x]$ и выразить его линейно через f(x) и g(x).

Решение задачи 22:

Применим алгоритм Евклида для нахождения НОД f(x) и g(x).

- 1. Делим $f(x)=x^4+x^3+2x^2+x+1$ на $g(x)=x^3-x^2-x-2$. Выполняя деление столбиком: $x^4+x^3+2x^2+x+1=(x+2)(x^3-x^2-x-2)+(5x^2+5x+5)$. Обозначим остаток $r_1(x)=5x^2+5x+5=5(x^2+x+1)$. Для дальнейших шагов удобнее использовать $r_1'(x)=x^2+x+1$.
- 2. Делим $g(x) = x^3 x^2 x 2$ на $r'_1(x) = x^2 + x + 1$. Выполняя деление столбиком: $x^3 x^2 x 2 = (x 2)(x^2 + x + 1) + 0$. Остаток равен 0.
- 3. Последний ненулевой остаток (с точностью до константного множителя) является НОД. Следовательно, $HOД(f(x), g(x)) = x^2 + x + 1$.
- 4. Выразим НОД линейно через f(x) и g(x), используя результаты первого шага деления: $5(x^2+x+1)=f(x)-(x+2)g(x)$. Разделив на 5, получаем: $x^2+x+1=\frac{1}{5}f(x)-\frac{x+2}{5}g(x)$.

Билет №23

1. **Теория:** Самосопряженное линейное преобразование. Свойства самосопряженных преобразований. Основная теорема о самосопряженных операторах (существование ортонормированного базиса из собственных векторов).

2. Задача: Найти матрицу ортогонального проектирования на пространство $L \subset \mathbb{R}^4$, заданное системой: $L: \begin{cases} x_1+x_2=0 \\ x_3-4x_4=0 \end{cases}$

Решение задачи 23:

- 1. **Находим базис подпространства** L. Из системы уравнений: $x_2 = -x_1$ и $x_3 = 4x_4$. Общее решение: $x = (x_1, -x_1, 4x_4, x_4)^T = x_1(1, -1, 0, 0)^T + x_4(0, 0, 4, 1)^T$. Базисные векторы L: $a_1 = (1, -1, 0, 0)^T$ и $a_2 = (0, 0, 4, 1)^T$. Проверяем их ортогональность (в стандартном скалярном произведении): $(a_1, a_2) = 1 \cdot 0 + (-1) \cdot 0 + 0 \cdot 4 + 0 \cdot 1 = 0$. Так как $(a_1, a_2) = 0$, векторы a_1, a_2 образуют ортогональный базис L.
- 2. Нормируем базисные векторы для получения ортонормированного базиса (ОНБ) L. $\|a_1\| = \sqrt{1^2 + (-1)^2 + 0^2 + 0^2} = \sqrt{2}$. $u_1 = \frac{a_1}{\|a_1\|} = \frac{1}{\sqrt{2}}(1, -1, 0, 0)^T$. $\|a_2\| = \sqrt{0^2 + 0^2 + 4^2 + 1^2} = \sqrt{16 + 1} = \sqrt{17}$. $u_2 = \frac{a_2}{\|a_2\|} = \frac{1}{\sqrt{17}}(0, 0, 4, 1)^T$. ОНБ L: $\{u_1, u_2\}$.
- 3. Находим матрицу ортогонального проектора P_L . Матрица проектора A_{P_L} на подпространство L с ОНБ $\{u_1, u_2\}$ вычисляется по формуле $A_{P_L} = u_1 u_1^T + u_2 u_2^T$.

$$A_{P_L} = u_1 u_1^T + u_2 u_2^T = \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ -1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 16/17 & 4/17 \\ 0 & 0 & 4/17 & 1/17 \end{pmatrix}.$$

Билет №24

- 1. **Теория:** Тензоры (p, q). Тензорное произведение тензоров. Координатная запись тензоров, изменение координат при переходе от одного базиса к другому. Тензорный базис.
- 2. Задача: $\phi: V \to V$ линейный оператор, $q \in Q(V)$ квадратичная форма. Оператор $\phi^+: Q(V) \to Q(V)$ такой, что $(\phi^+q)(x) = q(\phi(x))$. а) Доказать, что ϕ^+ линейный оператор на Q(V). б) Доказать, что ϕ^+ невырожден тогда и только тогда, когда ϕ невырожден.

Решение задачи 24:

Пространство Q(V) квадратичных форм на V само является линейным пространством.

а) Линейность оператора ϕ^+

Пусть $q_1,q_2\in Q(V)$ и c - скаляр из поля, над которым определено V. 1. Проверка аддитивности: $(\phi^+(q_1+q_2))(x)=(q_1+q_2)(\phi(x))$ (по определению $\phi^+)=q_1(\phi(x))+q_2(\phi(x))$ (по определению суммы квадратичных форм) $=(\phi^+q_1)(x)+(\phi^+q_2)(x)=(\phi^+q_1+\phi^+q_2)(x)$ (по определению суммы операторов на Q(V)). Так как это верно для любого $x\in V$, то $\phi^+(q_1+q_2)=\phi^+q_1+\phi^+q_2$.

2. Проверка однородности: $(\phi^+(cq_1))(x) = (cq_1)(\phi(x))$ (по определению $\phi^+) = c \cdot q_1(\phi(x))$ (по определению умножения квадратичной формы на скаляр) $= c \cdot (\phi^+q_1)(x) = (c(\phi^+q_1))(x)$ (по определению умножения оператора на скаляр). Так как это верно для любого $x \in V$, то $\phi^+(cq_1) = c(\phi^+q_1)$. Следовательно, ϕ^+ является линейным оператором на пространстве Q(V).

б) Невырожденность ϕ^+ и ϕ

Оператор ϕ^+ невырожден тогда и только тогда, когда его ядро $\mathrm{Ker}(\phi^+) = \{0_{Q(V)}\}$, где $0_{Q(V)}$ - нулевая квадратичная форма. Условие $q \in \mathrm{Ker}(\phi^+)$ означает, что $(\phi^+q)(x) = 0$ для всех $x \in V$, то есть $q(\phi(x)) = 0$ для всех $x \in V$.

- (\Rightarrow) Докажем: если ϕ^+ невырожден, то ϕ невырожден. Предположим противное: ϕ^+ невырожден, а ϕ вырожден. Если ϕ вырожден, то его образ $\mathrm{Im}\,\phi$ является собственным подпространством V, т.е. $\mathrm{Im}\,\phi \neq V$. Можно построить ненулевую квадратичную форму $q_0 \neq 0_{Q(V)}$ такую, что $q_0(y) = 0$ для всех $y \in \mathrm{Im}\,\phi$, но $q_0(z) \neq 0$ для некоторого $z \notin \mathrm{Im}\,\phi$. (Например, если $\dim V = n$, $\dim \mathrm{Im}\,\phi = k < n$, выберем базис e_1, \ldots, e_k в $\mathrm{Im}\,\phi$, дополним до базиса e_1, \ldots, e_n в V. Тогда форма $q_0(x) = (\mathrm{координата}\,\mathrm{при}\,e_{k+1})^2$ будет такой). Для этой q_0 : $(\phi^+q_0)(x) = q_0(\phi(x))$. Поскольку $\phi(x) \in \mathrm{Im}\,\phi$ для любого x, то $q_0(\phi(x)) = 0$ для всех x. Это означает, что $\phi^+q_0 = 0_{Q(V)}$. Но $q_0 \neq 0_{Q(V)}$, значит $q_0 \in \mathrm{Ker}(\phi^+)$ и $q_0 \neq 0_{Q(V)}$. Это противоречит невырожденности ϕ^+ . Следовательно, наше предположение неверно, и ϕ должен быть невырожден.
- (\Leftarrow) Докажем: если ϕ невырожден, то ϕ^+ невырожден. Если ϕ невырожден, то он является автоморфизмом V, то есть $\operatorname{Im} \phi = V$. Любой вектор $y \in V$ можно представить как $y = \phi(x)$ для некоторого $x \in V$. Пусть $q \in \operatorname{Ker}(\phi^+)$. Это означает, что $q(\phi(x)) = 0$ для всех $x \in V$. Так как $\operatorname{Im} \phi = V$, то для любого $y \in V$ существует x такой, что $y = \phi(x)$. Тогда q(y) = 0 для всех $y \in V$. Это означает, что $q = 0_{Q(V)}$ (является нулевой квадратичной формой). Следовательно, $\operatorname{Ker}(\phi^+) = \{0_{Q(V)}\}$, и оператор ϕ^+ невырожден.

Таким образом, доказано, что ϕ^+ невырожден тогда и только тогда, когда ϕ невырожден.

Билет №25

- 1. **Теория:** Линейные рекурренты. Общий вид линейной рекурренты над произвольным полем (случай, когда характеристический многочлен раскладывается на линейные множители).
- 2. Задача: Найти остаток от деления многочлена P(x) на Q(x) = x(x-2)(x-4), если известно, что остаток от деления P(x) на x(x-2) равен $r_1(x) = x+2$, а остаток от деления P(x) на

$$(x-2)(x-4)$$
 равен $r_2(x) = 3x - 2$.

Решение задачи 25:

Пусть P(x) - данный многочлен. По условию имеем: 1) $P(x) = D_1(x) \cdot x(x-2) + (x+2)$ 2) $P(x) = D_2(x) \cdot (x-2)(x-4) + (3x-2)$

Пусть R(x) - искомый остаток от деления P(x) на Q(x) = x(x-2)(x-4). Поскольку степень Q(x) равна 3, степень R(x) не выше 2. Запишем $R(x) = ax^2 + bx + c$. Тогда $P(x) = D(x) \cdot x(x-2)(x-4) + (ax^2 + bx + c)$.

Используем значения P(x) в корнях делителя Q(x), то есть в точках x = 0, x = 2, x = 4. Значения P(x) в этих точках совпадают со значениями R(x) в этих точках.

Из условия (1): $P(0) = r_1(0) = 0 + 2 = 2$. $P(2) = r_1(2) = 2 + 2 = 4$.

Из условия (2): $P(2)=r_2(2)=3(2)-2=6-2=4$. (Значение совпадает, данные корректны). $P(4)=r_2(4)=3(4)-2=12-2=10$.

Теперь составим систему уравнений для коэффициентов a, b, c остатка R(x): $R(0) = a(0)^2 + b(0) + c = c$. Так как R(0) = P(0), то c = 2.

$$R(2) = a(2)^2 + b(2) + c = 4a + 2b + c$$
. Tak kak $R(2) = P(2)$, to $4a + 2b + c = 4$.

$$R(4) = a(4)^2 + b(4) + c = 16a + 4b + c$$
. Так как $R(4) = P(4)$, то $16a + 4b + c = 10$.

Подставляем c=2 в остальные уравнения: 1) $4a+2b+2=4 \implies 4a+2b=2 \implies 2a+b=1$. 2) $16a+4b+2=10 \implies 16a+4b=8 \implies 4a+b=2$.

Решаем систему для a и b: $\begin{cases} 2a+b=1\\ 4a+b=2 \end{cases}$ Вычтем первое уравнение из второго: (4a-2a)+(b-b)=2 $2-1\implies 2a=1\implies a=1/2.$

Подставим a = 1/2 в первое уравнение 2a + b = 1: $2(1/2) + b = 1 \implies 1 + b = 1 \implies b = 0$.

Итак, коэффициенты остатка: a = 1/2, b = 0, c = 2.

Искомый остаток: $R(x) = \frac{1}{2}x^2 + 0x + 2 = \frac{1}{2}x^2 + 2$.

Ответ: Остаток от деления равен $\frac{1}{2}x^2 + 2$.

Билет №26

- 1. **Теория:** Корни многочлена, теорема Безу, кратные корни, теорема о них, формальная производная.
- 2. Задача: Докажите, что всякий многочлен $p(\lambda)$ степени n со старшим членом $(-1)^n \lambda^n$ является характеристическим для некоторой матрицы $A \in M_n(\mathbb{R})$ (при условии, что коэффициенты $p(\lambda)$ вещественны).

Решение задачи 26:

Пусть дан многочлен $p(\lambda) = (-1)^n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0$, где $a_i \in \mathbb{R}$. Характеристический многочлен матрицы A определяется как $\chi_A(\lambda) = \det(A - \lambda E)$. При раскрытии этого определителя коэффициент при λ^n всегда равен $(-1)^n$.

Рассмотрим многочлен $p_0(\lambda) = (-1)^n p(\lambda) = \lambda^n + \frac{a_{n-1}}{(-1)^n} \lambda^{n-1} + \dots + \frac{a_1}{(-1)^n} \lambda + \frac{a_0}{(-1)^n}$. Обозначим коэффициенты $p_0(\lambda)$ как: $p_0(\lambda) = \lambda^n + d_{n-1} \lambda^{n-1} + \dots + d_1 \lambda + d_0$, где $d_k = \frac{a_k}{(-1)^n}$ для $k = 0, \dots, n-1$. Все коэффициенты d_k вещественны, так как a_k вещественны.

Построим так называемую сопровождающую матрицу (или фробениусову клетку) для многочлена $p_0(\lambda)$:

$$C(p_0) = \begin{pmatrix} 0 & 0 & \dots & 0 & -d_0 \\ 1 & 0 & \dots & 0 & -d_1 \\ 0 & 1 & \dots & 0 & -d_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -d_{n-1} \end{pmatrix}$$

Эта матрица $C(p_0)$ имеет размер $n \times n$, и все ее элементы вещественны. Известно (это стандартный результат теории матриц), что характеристический многочлен сопровождающей матрицы $C(p_0)$ равен $\chi_{C(p_0)}(\lambda) = (-1)^n p_0(\lambda)$.

Подставим выражение для
$$p_0(\lambda)$$
: $\chi_{C(p_0)}(\lambda) = (-1)^n \left(\lambda^n + d_{n-1}\lambda^{n-1} + \dots + d_0\right) = (-1)^n \left(\lambda^n + \frac{a_{n-1}}{(-1)^n}\lambda^{n-1} + \dots + \frac{a_0}{(-1)^n}\right) = (-1)^n \lambda^n + (-1)^n \frac{a_{n-1}}{(-1)^n}\lambda^{n-1} + \dots + (-1)^n \frac{a_0}{(-1)^n} = (-1)^n \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_0 = p(\lambda).$

Таким образом, мы построили матрицу $A = C(p_0) \in M_n(\mathbb{R})$, характеристический многочлен которой $\chi_A(\lambda)$ совпадает с данным многочленом $p(\lambda)$. Это доказывает утверждение.