גליון חזרה בנושא סדרות

--- לא להגשה

הוכיחו / הפריכו:

$$a_n>0$$
 אז $a_n\to L$ -ו לכל $a_n>0$ אז .

$$\cdot$$
ב. אם a_n מתכנסת ו- b_n לא מתכנסת, אז

. לא מתכנסת ל
$$a_n + b_n$$
 (1)

. לא מתכנסת
$$a_n b_n$$
 (2)

$$a_n \to 0$$
 אז $|a_n| \to 0$ גר. אם ...

. ד. אם
$$\{a_n\}$$
 סדרה מתכנסת שכל איבריה אי-רציונלים, אז גם הגבול אי-רציונלי.

. היים וסופי.
$$\lim_{n \to \infty} (\sum_{k=1}^n a_k)$$
 אז $a_n \to 0$ ה. אם .

$$a_n o 0$$
 קיים וסופי, אז ווו $\lim_{n o \infty} (\sum_{k=1}^n a_k)$ אם.

$$a_n o L$$
 אז L , אז אם $\{a_n\}$ סדרה מונוטונית ו- $\{a_n\}$ תת סדרה המתכנסת ל- .ז

. מתכנסות, ולאותו הגבול מתכנסת
$$\{a_{2n}\}$$
 , $\{a_{2n+1}\}$ \Leftrightarrow מתכנסת $\{a_n\}$

$$.a_n
ightarrow 0$$
 אז $.a_n
ightarrow 0$, אז $.a_n
ightarrow 0$, אז אם לכל

. אם
$$\{a_n\}$$
 אז $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$ מתכנסת.

. אז
$$\{a_n\}$$
 אז $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$ יא. אם

יב. אם
$$\{a_n\}$$
 אז $\lim_{n \to \infty} \sqrt[n]{a_n} = 1$ יב. אם

יג. אם
$$\lim_{n \to \infty} \sqrt[n]{a_n} = 1$$
 אז $\lim_{n \to \infty} \sqrt[n]{a_n} = 1$

$$\lim_{n \to \infty} \sqrt[n]{a_n} = 0$$
 אז $a_n \to 0$ יד. אם

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 0$$
 אז $a_n \to 0$ טו. אם

$$\lim_{n \to \infty} (a_n)^n = 0$$
 אם $a_n \to 0$ אם .יי.

$$\lim_{n \to \infty} (a_n)^n = 1$$
 אז $a_n \to 1$ אז .זי. אם .זי

יח. אם
$$\{b_n\}$$
 מתכנסת, אז גם $\lim_{n \to \infty} |a_n - b_n| = 0$ יח. אם

יט. אם
$$\{a_n\}$$
 אז $\lim_{n \to \infty} |a_{n+1} - a_n| = 0$ יט. אם

$$\lim_{n\to\infty}(a_n-b_n)=\infty$$
 אם $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$... אם $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$...

$$\lim_{n o\infty}rac{a_n}{b_n}=\infty$$
 אז , $\lim_{n o\infty}(a_n-b_n)=\infty$ כא. אם $\lim_{n o\infty}(a_n-b_n)=\infty$

$$.b_n
ightarrow \infty$$
 גב. אם $\lim_{n
ightarrow \infty} rac{a_n}{b_n} = 0$ כב. אם

$$.a_n
ightarrow 0$$
 אז , $\lim_{n
ightarrow \infty} rac{a_n}{b_n} = 0$ כג. אם

$$\lim_{n o \infty} rac{a_n}{b_n} = 0$$
 כד. אם $\infty \to \infty$ אז , $b_n \to \infty$

$$\lim_{n o\infty}rac{a_n}{b_n}=0$$
 אז $a_n o 0$ כה. אם

. הסומה $\{a_n\}$ יש תת-סדרה מתכנסת, אז $\{a_n\}$ חסומה.

.lim inf $a_n > -\infty$, אז ∞ - יש תת-סדרה המתכנסת ל- $\{a_n\}$ יש ל- $\{a_n\}$

. כח. אם החל הסדרה אי-שליליים, lim inf $a_n \geq 0$

. מסוים הסדרה חיוביים, lim inf $a_n>0$ כט. אם כט. אם

. אם שם במובן מתכנסת אז $\{a_n\}$ אז $\limsup a_n = \infty$ ל.

. אם במובן במובן אז $\lim_{n \to \infty} |a_n| = \infty$ לא. אם אם לא. אם אם וווו $\lim_{n \to \infty} |a_n| = \infty$

$$[a_n] o L$$
 אז $a_n o L$ לב. אם

.
$$a_n \to L$$
 אז $[a_n] \to L$ לג. אם

. lim sup $a_n < L+1$ אז $[a_n] o L$ לד. אם

a < b אז א לכל $a_n < x_0 < b_n$ כך ש- $x_0 \in \mathbb{R}$ וקיים וקיים $a_n \to a$ לכל ה. אם

.
$$\lim_{n \to \infty} \left(1 + \frac{1}{a_n}\right)^{a_n} = e$$
 אז , $\lim_{n \to \infty} |a_{n+1} - a_n| = 0$ רו. אם $\infty \to \infty$ וי