데이터 출처 : https://www.datamanim.com/dataset/ADPpb/00/31.html

 $\rightarrow \overline{}$

31회 ADP 기출문제

기계학습 (60점)

~ 데이터 설명

- 데이터 출처 : https://www.kaggle.com/datasets/mandysia/obesity-dataset-cleaned-and-data-sinthetic 후처리
- 데이터 링크: https://raw.githubusercontent.com/Datamanim/datarepo/main/adp/31/adp_31_1_obesity_v2.csv
- 데이터 설명: 각 환자의 의료정보이다. NObeyesdad를 종속변수로 하는 분류모델을 만드려고 한다.

```
id: unique id for each row
Gender: sex - male or female
Age: age
Height: height
Weight: weight
family_history_with_overweight: Has a family member suffered or suffers f from overweight? - yes or no
FAVC: Frequent consumption of high caloric food - yes or no
FCVC: Frequency of consumption of vegetables - Never, Sometimes, Always
NCP: Number of main meals - 1, 2, 3, 4
CAEC: Consumption of food between meals - No, Sometimes, Frequently, Always
SMOKE: Do you smoke - yes o no
CH20: Consumption of water daily - Less than a litter, between 1 and 2 I, more than 2 I
SCC: Calories consumption monitoring - yes or no
FAF: Physical activity frequency - 0, 1 to 2, 2 to 4, 4 to 5
TUE: Time using technology devices - 0 to 2, 3 to 5, >5
CALC: Consumption of alcohol - no, sometimes, frequently, always
MTRANS: Transportation used - automobile, motorbike, bike, public_transportation, walking
BMI: Body mass index
(종속변수)
NObeyesdad: Type of obesity - overweight-level_i, obesity_type_i, obesity_type_ii, obesity_type_iii
```

- id: 각 행의 고유 ID
- Gender: 성별 남성 또는 여성
- Age: 나이
- Height: 키
- Weight: 몸무게
- family_history_with_overweight: 가족 구성원이 과체중을 앓고 있거나 앓았는지 여부 예 또는 아니오
- FAVC: 고칼로리 음식의 빈번한 섭취 예 또는 아니오
- FCVC: 채소 섭취 빈도 전혀 안함, 가끔, 항상
- NCP: 주요 식사 횟수 1회, 2회, 3회, 4회
- CAEC: 식사 사이 음식 섭취 아니오, 가끔, 자주, 항상
- SMOKE: 흡연 여부 예 또는 아니오
- CH2O: 하루 물 섭취량 1리터 미만, 1~2리터, 2리터 이상
- SCC: 칼로리 섭취 모니터링 여부 예 또는 아니오
- FAF: 신체 활동 빈도 0회, 12회, 24회, 4~5회
- TUE: 기술 장치 사용 시간 02시간, 35시간, 5시간 이상
- CALC: 알코올 섭취 아니오, 가끔, 자주, 항상
- MTRANS: 사용된 교통 수단 자동차, 오토바이, 자전거, 대중교통, 걷기
- BMI: 체질량지수

(종속 변수)

• NObeyesdad: 비만 유형 - 과체중 1단계, 비만 1형, 비만 2형, 비만 3형

∨ 1-1 EDA & 결측치 및 이상치를 판단하고 설명하라

```
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/Datamanim/datarepo/main/adp/31/adp_31_1_obesity_v2.csv', encoding = 'cp949')
df.head()
df.columns
df = df.drop('Unnamed: 0', axis = 1)
df
```

_		id	Gender	Age	Height	Weight	family_history_with_overweight	FAVC	FCVC	NCP	CAEC	SMOKE	CH20	SCC	FA
	0	4	male	27	1.800000	87	no	no	always	3	sometimes	no	between 1 and 2	no	1
	1	11	male	26	1.850000	105	yes	yes	always	3	frequently	no	more than 2 l	no	1
	2	14	male	41	1.800000	99	no	yes	sometimes	3	sometimes	no	between 1 and 2 I	no	1
	3	18	female	29	1.530000	78	no	yes	sometimes	1	sometimes	no	between 1 and 2 I	no	
	4	20	female	23	1.650000	70	yes	no	sometimes	1	sometimes	no	between 1 and 2 I	no	
	1257	2,107	female	21	1.710730	131	yes	yes	always	3	sometimes	no	between 1 and 2 I	no	1
	1258	2,108	female	22	1.748584	134	yes	yes	always	3	sometimes	no	between 1 and 2 I	no	1
	1259	2,109	female	23	1.752206	134	yes	yes	always	3	sometimes	no	between 1 and 2 I	no	1
	1260	2,110	female	24	1.739450	133	yes	yes	always	3	sometimes	no	more than 2 l	no	1
	1261	2,111	female	24	1.738836	133	yes	yes	always	3	sometimes	no	more than 2 l	no	1
1	262 rc	ws × 1	9 columns	5											

```
df.info()
print('''
주어진 데이터의 각 특성을 살펴보았다.
데이터의 유형을 살펴보면 범주형 데이터와 수치형데이터로 이루어진 것을 확인할 수 있다.
특히, SCC 데이터에서 결측을 확인할 수 있었다.
''')
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1262 entries, 0 to 1261
Data columns (total 19 columns):

рата # 	Columns (total 19 columns).	Non-Null Count	Dtype
0	id	1262 non-null	object
1	Gender	1262 non-null	object
2	Age	1262 non-null	int64
3	Height	1262 non-null	float64
4	Weight	1262 non-null	int64
5	family_history_with_overweight	1262 non-null	object
6	FAVC	1262 non-null	object
7	FCVC	1262 non-null	object
8	NCP	1262 non-null	int64
9	CAEC	1262 non-null	object
10	SMOKE	1262 non-null	object
11	CH20	1262 non-null	object
12	SCC	1259 non-null	object
13	FAF	1262 non-null	object
14	TUE	1262 non-null	object
15	CALC	1262 non-null	object
16	MTRANS	1262 non-null	object
17	NObeyesdad	1262 non-null	object

```
18 BMI 1262 non-null float64
dtypes: float64(2), int64(3), object(14)
memory usage: 187.5+ KB

주어진 데이터의 각 특성을 살펴보았다.
데이터의 유형을 살펴보면 범주형 데이터와 수치형데이터로 이루어진 것을 확인할 수 있다.
```

```
print('''
주어진 데이터와 수치형 데이터의 항목별 값 분포를 알아보았고, 수치형 변수의 n-percentile 값과
최대,최소 값들을 알 수 있었으며, 아래와 같이 전체적인 분포를 알아볼 수 있었다.
''')
print(df.describe())
import matplotlib.pyplot as plt
numeric_df = df.select_dtypes(exclude = 'object')
print('수치형 변수 분포 시각화')
df.hist(color = 'darkblue', figsize= (8,8), grid = False)
plt.show()
```


주어진 데이터와 수치형 데이터의 항목별 값 분포를 알아보았고, 수치형 변수의 n-percentile 값과최대,최소 값들을 알 수 있었으며, 아래와 같이 전체적인 분포를 알아볼 수 있었다.

	Age	Height	Weight	NCP	BMI
count	1262.000000	1262.000000	1262.000000	1262.000000	1262.000000
mean	25.749604	1.709184	101.083201	2.665610	34.439463
std	9.898088	0.091361	21.520848	0.757143	6.106623
min	15.000000	1.450000	53.000000	1.000000	22.826739
25%	21.000000	1.631576	82.000000	3.000000	30.725995
50%	24.000000	1.711095	105.000000	3.000000	34.332001
75%	27.000000	1.775768	116.000000	3.000000	38.920119
max	150.000000	1.980000	173.000000	4.000000	50.811753
수치형	변수 분포 시	각화			


```
print('결측치 및 이상치 확인')
print('\m 결측치 확인')
missing_data = df.isnull().sum()
plt.barh(missing_data.index, missing_data.values)
plt.show()
print('SCC데이터에 결측치가 있음을 확인할 수 있다.')
```

글 결측치 및 이상치 확인

결측치 확인

SCC데이터에 결측치가 있음을 확인할 수 있다.

```
print('이상치 확인')
print('''
이상치의 유무를 확인하기 위해 수치형 변수의 시각화를 진행하였다.
시각화 결과,이상치로 보이는 변수 Age, Weight, NCP를 확인할 수 있다.
''')
numeric = df.select_dtypes(exclude = 'object').columns
fig, axes = plt.subplots(1,5, figsize = (12,8))
for ax, col in zip(axes.ravel(), df[numeric]):
    if col in numeric:
        ax.boxplot(df[col])
        ax.set_xlabel(col)
plt.show()
```

→ 이상치 확인

이상치의 유무를 확인하기 위해 수치형 변수의 시각화를 진행하였다. 시각화 결과,이상치로 보이는 변수 Age, Weight, NCP를 확인할 수 있다.

∨ 1-2 데이터 전처리 기법 2가지를 설명하고 주어진 데이터에 적용시 어떤 효과가 있는지 설명하라

```
print('''
데이터 전처리 기법 2가지
1. 원핫 인코딩: 여러값 중 하나만 활성화하는 인코딩이다.
머신러닝 모델은 문자 데이터를 이해하지 못하기 때문에 문자로 구성된 범주형 데이터를 숫자로 바꿀 때 사용한다.
효과 : 현재 데이터는 object 타입의 범주형 데이터가 많으므로, 원 핫 인코딩을 통해 머신러닝 모델에 넣을 수 있는 데이터 형태로 변환할 수 있게된다.
2. 정규화 : 연속형 데이터를 특정 범위 내로 스케일 조정하는 방법이다.
주로 데이터의 범위를 0과 1사이로 제한할 때 사용할 수 있으며, 데이터의 상대적인 크기와 중요성을 유지할 수 있다.
효과 : 현재 데이터는 각 컬럼별 수치 범위가 다양하기 때문에 정규화를 통해 데이터를 0과 1사이로 맞추는 정규화를 진행할 수 있다.
\overline{\mathcal{F}}
    데이터 전처리 기법 2가지
    1. 원핫 인코딩: 여러값 중 하나만 활성화하는 인코딩이다.
    머신러닝 모델은 문자 데이터를 이해하지 못하기 때문에 문자로 구성된 범주형 데이터를 숫자로 바꿀 때 사용한다
    효과 : 현재 데이터는 object 타입의 범주형 데이터가 많으므로, 원 핫 인코딩을 통해 머신러닝 모델에 넣을 수 있는 데이터 형태로 변환할 수 있게된다.
    2. 정규화 : 연속형 데이터를 특정 범위 내로 스케일 조정하는 방법이다.
    주로 데이터의 범위를 0과 1사이로 제한할 때 사용할 수 있으며, 데이터의 상대적인 크기와 중요성을 유지할 수 있다.
    효과 : 현재 데이터는 각 컬럼벌 수치 범위가 다양하기 때문에 정규화를 통해 데이터를 0과 1사이로 맞추는 정규화를 진행할 수 있다.
y = df['NObeyesdad']
X = df.drop('NObeyesdad', axis = 1)
Index(['id', 'Gender', 'Age', 'Height', 'Weight', 'family_history_with_overweight', 'FAVC', 'FCVC', 'NCP', 'CAEC', 'SMOKE', 'CH2O', 'SCC', 'FAF', 'TUE', 'CALC', 'MTRANS', 'BMI'],
        dtype='object')
X = X.drop('id',axis = 1)
cat_df = X.select_dtypes(include = 'object').columns
X = pd.get dummies(X.columns = cat df)
```


	Age	Height	Weight	NCP	BMI	Gender_female	Gender_male	family_history_with_overweight_no	family_history_with_ov
0	27	1.800000	87	3	26.851852	False	True	True	
1	26	1.850000	105	3	30.679328	False	True	False	
2	36	1.800000	99	3	30.555556	False	True	True	
3	29	1.530000	78	3	33.320518	True	False	True	
4	23	1.650000	70	3	25.711662	True	False	False	
1257	21	1.710730	131	3	44.901475	True	False	False	
1258	22	1.748584	134	3	43.741923	True	False	False	
1259	23	1.752206	134	3	43.543817	True	False	False	
1260	24	1.739450	133	3	44.071535	True	False	False	
1261	24	1.738836	133	3	44.144338	True	False	False	
1262 rd	ows ×	40 column:	S						

1-3 피쳐 엔지니어링을 통해 파생변수 1개를 생성하고 그 이유를 말하라

#

```
import numpy as np

df['Age_BMI_ratio'] = df['Age']/df['BMI']

df['Age_BMI_ratio'] = df['Age_BMI_ratio'].replace([np.inf, -np.inf], 1)

print('주어진 데이터를 토대로 age와 BMI 두개의 특성을 이용해서 Age_BMI_ratio라는 새로운 특성을 추가하였다')

print('이 새로운 특성은 Age를 BMI로 나눈 값이다. 이를 추가한 이유는 BMI대비 나이가 높을수록 비만정도가 높다는 가설을 확인하기 위함이다.')

→ 주어진 데이터를 토대로 age와 BMI 두개의 특성을 이용해서 Age_BMI_ratio라는 새로운 특성을 추가하였다

이 새로운 특성은 Age를 BMI로 나눈 값이다. 이를 추가한 이유는 BMI대비 나이가 높을수록 비만정도가 높다는 가설을 확인하기 위함이다.
```

∨ 2-1 앙상블을 제외한 분류 모델 3가지 구축 및 결과 비교 및 설명하라

```
print('''
1.결정트리.
2. SVM
3. KNN을 사용하여 분류해보았다.
y.replace('overweight_level_i', 0,inplace = True)
y.replace('obesity_type_i', 1,inplace = True)
y.replace('obesity_type_ii', 2,inplace = True)
y.replace('obesity_type_iii', 3,inplace = True)
 \overline{\mathbf{T}}
      1.결정트리.
      2. SVM
      3. KNN을 사용하여 분류해보았다.
      0
               0
      2
      3
      4
               0
      1257
      1259
      1260
      1261
      Name: NObeyesdad, Length: 1262, dtype: int64
```

```
print('결정트리')
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
X_train,X_test,y_train,y_test = train_test_split(X,y, test_size = 0.2, random_state=10)
model_dic = DecisionTreeClassifier()
model_dic.fit(X_train,y_train)
y_pred_decision = model_dic.predict(X_test)
accuracy = accuracy_score(y_test, y_pred_decision)
print('결정트리 정확도 : ',accuracy)
print('KNN')
from sklearn.neighbors import KNeighborsClassifier
model_knn = KNeighborsClassifier(n_neighbors=3)
model_knn.fit(X_train,y_train)
y_pred_knn = model_knn.predict(X_test)
accuracy = accuracy_score(y_test, y_pred_knn)
print('knn 정확도 : ', accuracy)
from sklearn.svm import SVC
print('SVM')
model_svm = SVC()
model_svm.fit(X_train,y_train)
y_pred_svm = model_svm.predict(X_test)
accuracy = accuracy_score(y_test, y_pred_svm)
print('svm 정확도 : ', accuracy)
```

골 결정트리

결정트리 정확도 : 0.9881422924901185

KNN

knn 정확도 : 0.9920948616600791 SVM svm 정확도 : 0.8893280632411067

print('knn의 정확도가 0.99가 나와서 가장 높은 정확도를 보였고 그 다음으로 결정트리의 정확도가 0.98로 높았으며, svm이 세 모델 중에서 성능은 가장 낮은 print('따라서 knn모델이 가장 높은 정확도를 가지고 있으므로 가장 좋은 모델이라고 판단할 수 있다.')

** knn의 정확도가 0.99가 나와서 가장 높은 정확도를 보였고 그 다음으로 결정트리의 정확도가 0.98로 높았으며, svm이 세 모델 중에서 성능은 가장 낮은 것: 따라서 knn모델이 가장 높은 정확도를 가지고 있으므로 가장 좋은 모델이라고 판단할 수 있다.

2-2 2-1에서 사용한 모델 중 하나를 골라 그리드 서치를 통해서 파라미터 튜닝 및 분류 모델 성능 평가 (precision ,recall)

from sklearn.model_selection import GridSearchCV

_	precision	recall	f1-score	support
0	1.00	1.00	1.00	60 68
2	1.00 1.00	1.00 1.00	1.00 1.00	52
3	1.00	1.00	1.00	73
accuracy			1.00	253
macro avg	1.00	1.00	1.00	253
weighted avg	1.00	1.00	1.00	253

∨ 2-3 2-1의 3가지 모델을 soft voting을 이용하여 모델링 한 결과와 2-2과 비교하라

3-2 하나의 모델을 선정하여 Drop-Column Importance 방법으로 특성의 중요도(feature importance)를 산출하여 제시

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
model = DecisionTreeClassifier(random_state = 10)
model.fit(X_train,y_train)
y_pred = model.predict(X_test)
baseline = accuracy_score(y_test, y_pred)
drop_importances = []
for col in X_train.columns:
  X_train_drop = X_train.drop(columns = [col])
  X_test_drop = X_test.drop(columns = [col])
  model_drop = DecisionTreeClassifier(random_state = 10)
  model_drop.fit(X_train_drop,y_train)
  v pred drop = model drop.predict(X test drop)
  drop_accuracy = accuracy_score(y_test, y_pred_drop)
  drop_importances.append((col, baseline - drop_accuracy))
print(drop_importances)
importance_df = pd.DataFrame(drop_importances, columns = ['Feature', 'Importance'])
🚌 [('Age', 0.011857707509881465), ('Height', 0.0), ('Weight', 0.0), ('NCP', 0.0039525691699604515), ('BMI', 0.007905138339921014), ('Gender_female
     4
```

importance_df

₹		Feature	Importance
	0	Age	0.011858
₹¥ .	1	Height	0.000000
	2	Weight	0.000000
	3	NCP	0.003953
	4	BMI	0.007905
	5	Gender_female	0.000000
	6	Gender_male	0.000000
	7	family_history_with_overweight_no	0.000000
	8	family_history_with_overweight_yes	0.000000
	9	FAVC_no	-0.003953
	10	FAVC_yes	-0.003953
	11	FCVC_always	0.000000
	12	FCVC_never	0.000000
	13	FCVC_sometimes	0.000000
	14	CAEC_always	0.000000
	15	CAEC_frequently	0.000000
	16	CAEC_no	0.003953
	17	CAEC_sometimes	0.000000
	18	SMOKE_no	0.000000
	19	SMOKE_yes	0.000000
	20	CH2O_between 1 and 2 l	-0.003953
	21	CH2O_less than a liter	-0.003953
	22	CH2O_more than 2 I	0.007905
	23	SCC_no	-0.003953
	24	SCC_yes	-0.003953
	25	FAF_0	-0.003953
	26	FAF_1 to 2	0.003953
	27	FAF_2 to 4	0.003953
	28	FAF_4 to 5	-0.003953
	29	TUE_0 to 2	0.003953
	30	TUE_3 to 5	0.003953

데이터 설명

- 데이터 출처 : 자체제작
- 데이터 링크: https://raw.githubusercontent.com/Datamanim/datarepo/main/adp/31/adp_31_2_v2.csv
- 데이터 설명: 중고등학생 건강검진 데이터

4-1 아래의 기준으로 전처리를 하여 적정 체중 여부 컬럼을 생성하고 적정 체중여부에 대한 빈도 표 , 를 만들어라

bmi 계산 - Bmi = 몸무게(kg)/(키(m)**2)

만나이 구하기 - 건강검진을 받았던 날을 기준으로 생년월일과 일수 차이가 16년 364일 이하인 경우 만 16세 그 이상의 경우 만 17로 분류하라 - 윤년 등은 고려하지 않는다. 햇수로 16년 + 일수로 364일이 기준이다

적정 체중 여부 (BMI가 아래 구간에 들어올 경우)

17세 남자 : 21.03이상 23.21 미만 17세 여자 : 20.03이상 22.39 미만 16세 남자 : 21.18이상 23.45 미만 16세 여자 : 19.61이상 21.74 미만

import pandas as pd df = pd.read_csv('https://raw.githubusercontent.com/Datamanim/datarepo/main/adp/31/adp_31_2_v2.csv') df.head()

```
ΙD
             키 weight 생년월일 건강검진일 공학여부 채소섭취정도 아침식사여부 일주일운동시간 수면시간 성별
0 ID_4135 169.01
                 65.47 20041003 2020_11_15
                                                           2
                                                                                   4.4
                                                                                            8.3 남성
                 69.36 19970725 2014_11_20
                                               0
                                                           3
                                                                       0
                                                                                   4.4
                                                                                            6.9 남성
1 ID_3289 181.62
2 ID_1847 160.89
                 65.12 20020921 2020_01_28
                                                                       1
                                                                                            9.6 여성
                                                                                   1.7
3 ID_4785 162.21
                 62.28 20020106 2018_09_27
                                                           4
                                                                       0
                                                                                   5 1
                                                                                            6.8 남성
4 ID 5693 159.13
                 54.11 19980708 2015 03 03
                                                0
                                                                                   0.3
                                                                                            8.5 여성
```

df['생년월일포맷변환'] = pd.to_datetime(df['생년월일'], format = "%Y%m%d") df['측정일자포맷변환'] = pd.to_datetime(df['건강검진일'], format = "%Y_%m_%d")

df['만나이'] = (df['측정일자포맷변환'] - df['생년월일포맷변환']).dt.days // 365

₹		ID	ЭI	weight	생년월일	건강검진 일	공학 여부	채 소 섭 취 정 도	아침식 사여부	일주일운 동시간	수면 시간	성 별	생년월일포 맷변환	측정일자포 맷변환	만나 이
	0	ID_4135	169.01	65.47	20041003	2020_11_15	1	2	1	4.4	8.3	남 성	2004-10-03	2020-11-15	16
	1	ID_3289	181.62	69.36	19970725	2014_11_20	0	3	0	4.4	6.9	남 성	1997-07-25	2014-11-20	17
	2	ID_1847	160.89	65.12	20020921	2020_01_28	1	1	1	1.7	9.6	여 성	2002-09-21	2020-01-28	17
	3	ID_4785	162.21	62.28	20020106	2018_09_27	1	4	0	5.1	6.8	남 성	2002-01-06	2018-09-27	16
	4	ID_5693	159.13	54.11	19980708	2015_03_03	0	4	1	0.3	8.5	여 성	1998-07-08	2015-03-03	16
	6796	ID_6443	156.04	55.36	20030429	2020_04_23	1	4	1	7.8	9.3	여 성	2003-04-29	2020-04-23	16
	6797	ID_3606	182.46	67.55	20050528	2022_08_03	1	4	0	2.9	8.9	남 성	2005-05-28	2022-08-03	17

df.만나이.unique()

→ array([16, 17])

bmi 계산 - Bmi = 몸무게(kg)/(키(m)**2) df['BMI'] = df['weight']/((df['∃I']/100)**2)df.head()

₹		ID	ЭI	weight	생년월일	건강검진 일	공학 여부	채소섭 취정도	아침식 사여부	일주일 운동시 간	수 면 시 간	성 별	생년월일 포맷변환	측정일자 포맷변환	만 나 이	BMI
	0	ID_4135	169.01	65.47	20041003	2020_11_15	1	2	1	4.4	8.3	남 성	2004-10-03	2020-11-15	16	22.920154
	1	ID_3289	181.62	69.36	19970725	2014_11_20	0	3	0	4.4	6.9	남 성	1997-07-25	2014-11-20	17	21.027214
	2	ID_1847	160.89	65.12	20020921	2020_01_28	1	1	1	1.7	9.6	여 성	2002-09-21	2020-01-28	17	25.156852

적정 체중 여부 (BMI가 아래 구간에 들어올 경우) 16세 남자 : 21.18이상 23.45 미만 16세 여자 : 19.61이상 21.74 미만 17세 남자 : 21.03이상 23.21 미만

17세 여자 : 20.03이상 22.39 미만

df.loc[(df['성별'] == '남성') & (df['만나이'] == 16)& (df['BMI']>=21.18) & (df['BMI']<23.45), '적정체중여부'] = '적절' df.loc[(df['성별'] == '여성') & (df['만나이'] == 16)& (df['BMI']>=19.61) & (df['BMI']<21.74),'적정체중여부'] = '적절' df.loc[(df['성별'] == '남성') & (df['만나이'] == 17)& (df['BMI']>=21.03) & (df['BMI']<23.21),'적정체중여부'] = '적절 df.loc[(df['성별'] == '여성') & (df['만나이'] == 17)& (df['BMI']>=20.03) & (df['BMI']<22.39), '적정체중여부'] = '적절

df.loc[df['적정체중여부'] !='적절', '적정체중여부'] = '부적절'

df.head()

₹		ID	ЭI	weight	생년월일	건강검진 일	공학 여부	채 소 섭 취 정 도	아침 식 사 여 부	일주일 운동시 간	수 면 시 간	성 별	생년월일 포맷변환	측정일자 포맷변환	만 나 이	BMI	적 정 체 중 여 부
	0	ID_4135	169.01	65.47	20041003	2020_11_15	1	2	1	4.4	8.3	남 성	2004-10- 03	2020-11- 15	16	22.920154	적절
	1	ID_3289	181.62	69.36	19970725	2014_11_20	0	3	0	4.4	6.9	남 성	1997-07- 25	2014-11- 20	17	21.027214	부적 절
	2	ID_1847	160.89	65.12	20020921	2020_01_28	1	1	1	1.7	9.6	여 성	2002-09- 21	2020-01- 28	17	25.156852	부적 적

df['적정체중여부'].value_counts()

→ 적정체중여부 적절 3993 부적절 2808 Name: count, dtype: int64

4-2 4-1에서 구한 적정 체중 여부와 나머지 컬럼(공학여부, 아침식사여부, 일주일운동시간, 채소섭취정도, 수면시간, 성별) 이 독립적인지 통계적으로 확인하라

```
from scipy.stats import chi2_contingency
columns_to_test = ['공학여부','아침식사여부','일주일운동시간','채소섭취정도','수면시간','성별']
result = []
for column in columns_to_test:
 contingency_table = pd.crosstab(df['적정체중여부'], df[column])
 chi2, p, _, _ = chi2_contingency(contingency_table)
 result.append([chi2,p])
result_df = pd.DataFrame(result, columns = ['chi', 'p_value'], index = columns_to_test)
result_df
\overline{\mathcal{F}}
                      chi p_value
       공학여부
                  4.542368 0.033066
     아침식사여부
                  0.152151 0.696488
     일주일운동시간 115.745222 0.119871
     채소섭취정도
                 10.143194 0.038083
       수면시간
                 46.992431 0.554877
        성볔
                  0.002345 0.961379
print('''
검정 결과 p-value값이 0.05이상이면 해당 변수는 적정체중여부와 독립적이고
0.05이하이면 독립적이지 않다고 판단할 수 있다.
따라서 결과를 확인해보면 공학여부, 채소섭취정도는 독립적이지 않은 변수이며
나머지 컬럼, 즉 아침식사여부, 일주일운동시간, 수면시간, 성별은 적정 체중여부와 독립적인 것을 확인할 수 있었다.
)
    검정 결과 p-value값이 0.05이상이면 해당 변수는 적정체중여부와 독립적이고
    0.05이하이면 독립적이지 않다고 판단할 수 있다.
    따라서 결과를 확인해보면 공학여부, 채소섭취정도는 독립적이지 않은 변수이며
    나머지 컬럼, 즉 아침식사여부, 일주일운동시간, 수면시간, 성별은 적정 체중여부와 독립적인 것을 확인할 수 있었다.
```

4-3 4-2에서 유의한 변수들만 가지고 적정 체중 여부를 예측하는 모델을 구현하고 성능 평가 및 해석을 하라 (로지스틱회귀,xgb)

로지스틱회귀 모델은 오즈비를 구하라 xgb의 경우 각 피쳐중요도를 확인하고 예측에 영향을 가장 미치는 변수를 확인하라

```
from sklearn.linear_model import LogisticRegression
import xgboost as xgb
import numpy as np
df.loc[df['적정체중여부'] == '적절', '적정체중여부'] = 1
df.loc[df['적정체중여부'] == '부적절', '적정체중여부'] = 0
X = pd.get_dummies(df[['공학여부','채소섭취정도']])
y = df['적정체중여부']
y = y.astype(int)
logistic_model = LogisticRegression()
logistic_model.fit(X,y)
xgboost_model = xgb.XGBClassifier()
xgboost\_model.fit(X,y)
logistic_coefs = logistic_model.coef_[0]
xgboost_importance = xgboost_model.feature_importances_
print('로지스틱 모델 오즈비 : ', np.exp(logistic_coefs))
print('xgboost 모델 피처 중요도 : ',xgboost_importance )
준 로지스틱 모델 오즈비 : [1.11204771 1.00557371] xgboost 모델 피처 중요도 : [0.7267853 0.27321473]
print('''
로지스틱 모델의 오즈비는 공학여부의 경우 1.11204771 , 채소섭취정도는 1.00557371로 측정되었고
XGBoost 모델의 피처중요도는 공학여부의 경우 0.7267853, 채소섭취정도는 0.27321473가 나왔다.
xgboost의 경우 예측에 가장 많이 영향을 미치는 컬럼은 공학여부로 확인할 수 있었다.
)
→
```

로지스틱 모델의 오즈비는 공학여부의 경우 1.11204771 , 채소섭취정도는 1.00557371로 측정되었고 XGBoost 모델의 피처중요도는 공학여부의 경우 0.7267853, 채소섭취정도는 0.27321473가 나왔다. xgboost의 경우 예측에 가장 많이 영향을 미치는 컬럼은 공학여부로 확인할 수 있었다.

∨ 4-4 4-3 두 모델의 roc-auc 그래프를 하나의 그래프에 겹쳐 그려라

```
from sklearn.metrics import roc_auc_score, roc_curve
import matplotlib.pyplot as plt
y_logistic_prob = logistic_model.predict_proba(X)[:,1]
fpr_logistic, tpr_logistic, _ = roc_curve(y,y_logistic_prob)
roc_auc_logistic = roc_auc_score(y,y_logistic_prob)
y_xgboost_prob = xgboost_model.predict_proba(X)[:,1]
fpr_xgboost, tpr_xgboost, _ = roc_curve(y,y_xgboost_prob)
roc_auc_xgboost = roc_auc_score(y,y_xgboost_prob)
plt.figure(figsize = (8,6))
plt.plot(fpr_logistic, tpr_logistic , label = f'Logistic (AUC = {roc_auc_logistic:.3f})')
plt.plot(fpr_xgboost, tpr_xgboost , label = f'Xgboost (AUC = {roc_auc_xgboost:.3f})')
plt.plot([0,1],[0,1], linestyle = '---')
plt.xlabel('False positive Rate')
plt.vlabel('True positive Rate')
plt.legend(loc = 'lower right')
plt.show()
```


~ 통계 (40점)

5. 평균이 θ 이고 분산이 100인 정규분포의 사전분포가 (100, 256)일때 120의 값을 가지는 데이터가 있을 경우 사후평균은? (5점)

무게가 $N(\theta, 100)$ 인 정규분포에서, 사전분포는 N(100, 256)이다. 제품의 무게가 120kg일 때, 사후분포의 평균을 구하라 (단, 소수점 3째자리까지 구하라)

```
mu_prior = 100
sigma_prior_squared = 256
sigma_data_squared = 100
x_observed = 120
mu_posterior = (sigma_data_squared * mu_prior + sigma_prior_squared * x_observed) / (sigma_data_squared + sigma_prior_squared)
round(mu_posterior,3)
114.382
```

데이터 설명

- 데이터 출처 : https://www.kaggle.com/datasets/yasserh/advertising-sales-dataset 후처리
- 데이터 링크: https://raw.githubusercontent.com/Datamanim/datarepo/main/adp/31/adp_31_5_advertising.csv
- 데이터 설명: TV, Radio, Newspaper에 각각 광고비(달러)를 다르게 했을때 매출액 (Sales, 밀리언달러)를 나타내는 데이터
- 종속변수: Sales
- ∨ 6-1 회귀 모델링 후 유의하지 않는변수 파악 (15점)

```
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/Datamanim/datarepo/main/adp/31/adp_31_5_advertising.csv')
df.head()
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 200 entries, 0 to 199
     Data columns (total 4 columns):
                     Non-Null Count
      #
          Column
                                    Dtype
      0
          TV
                     200 non-null
                                      float64
          Radio
                     200 non-null
                                      float64
          Newspaper
                     200 non-null
                                      float64
          Sales
                     200 non-null
                                      float64
```

```
dtypes: float64(4)
memory usage: 6.4 KB
```

```
y = df['Sales']
X = df[['TV', 'Radio', 'Newspaper']]
import statsmodels.api as sm
X = sm.add_constant(X)
model = sm.OLS(y,X).fit()
print(model.summary())
```

print('Newpaper 변수가 유의하지 않음')

₹

	OLS Regres	sion Results 	
Dep. Variable:	Sales	R-squared:	0.903
Model:	0LS	Adj. R-squared:	0.901
Method:	Least Squares	F-statistic:	605.4
Date:	Sun, 26 May 2024	Prob (F-statistic):	8.13e-99
Time:	13:37:07	Log-Likelihood:	-383.34
No. Observations:	200	AIC:	774.7
Df Residuals:	196	BIC:	787.9
Df Model:	3		
Covariance Type:	nonrobust		

	·	110111 001				
	coef	std err	t	P> t	[0.025	0.975]
const TV Radio Newspaper	4.6251 0.0544 0.1070 0.0003	0.308 0.001 0.008 0.006	15.041 39.592 12.604 0.058	0.000 0.000 0.000 0.954	4.019 0.052 0.090 -0.011	5.232 0.057 0.124 0.012
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	16.0 0.0 -0.4 4.6	081 Durbin 000 Jarque	-Watson: -Bera (JB): B):		2.251 27.655 9.88e-07 454.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. Newpaper 변수가 유의하지 않음

∨ 6-2 변수 선택시 먼저 제거 될 변수 및 근거 제시

print('''

pvalue 값이 0.05이하일 때 유의미한 변수로 진단할 수 있다 현재 Newspaper를 제외한 나머지 변수들은 유의미한 것을 알 수 있고, 같은 이유로 Newspaper가 변수 선택시 먼저 제거해야함을 알 수 있습니다

→

pvalue 값이 0.05이하일 때 유의미한 변수로 진단할 수 있다 현재 Newspaper를 제외한 나머지 변수들은 유의미한 것을 알 수 있고, 같은 이유로 Newspaper가 변수 선택시 먼저 제거해야함을 알 수 있습니다

∨ 6-3 VIF를 통한 다중공선성 진단

```
from statsmodels.stats.outliers_influence import variance_inflation_factor vif = pd.DataFrame() vif['변수'] = X.columns vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
```

print(vif)

print('일반적으로 VIF값이 10이 넘어가면 다중공선성 문제가 있다고 판단한다. 그런데 결과를 보면 모든 변수가 다중 공선성이 없는 것을 확인할 수 있다. ')

일반적으로 VIF값이 10이 넘어가면 다중공선성 문제가 있다고 판단한다. 그런데 결과를 보면 모든 변수가 다중 공선성이 없는 것을 확인할 수 있다.

~ 7 (15점)

- 데이터 링크: https://raw.githubusercontent.com/Datamanim/datarepo/main/adp/31/adp_31_7.csv
- 데이터 설명 : A,B,C,D,E 영업사원의 각 계약 성사 유무 (1:계약, 0:미계약) 를 나타낸 데이터이다. 영업사원의 평균 계약 성사 건수는 같은지 통계 검정하라

import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/Datamanim/datarepo/main/adp/31/adp_31_7.csv')
df head()