4.2. Трехфазные цепи с идеальными источниками напряжений

4.2.А. Цель работы: исследование основных свойств линейных трехфазных цепей в установившихся режимах.

В работе студенты экспериментально исследуют основные свойства и параметры идеального трехфазного источника напряжений и особенности работы линейных симметричных и несимметричных трехфазных цепей в установившихся режимах с источниками бесконечной мощности.

Виртуальные эксперименты проводятся на базе пакета *MultiSim 10.0.1* с использованием библиотечных моделей приборов и компонент.

Рабочее задание

4.2.Б. ИССЛЕДОВАНИЕ ИДЕАЛЬНОГО ТРЕХФАЗНОГО ИСТОЧНИКА

НАПРЯЖЕНИЙ

4.2.Б.1. Сформировать схему для проведения виртуальных экспериментов согласно рис.4.7.

Рис.4.7. Схема виртуального эксперимента для исследования основных параметров идеального трехфазного источника напряжений

4.2.Б.2. Нажатием кнопки вызвать окно меню раздела источников *Power Sources*.

Выбрать трехфазный источник напряжений ("звезда" с нейтралью). Нажатием кнопки активизировать модель источника, перевести ее на поле и зафиксировать.

- 4.2.Б.3. Нажатием кнопки на линейке измерительных приборов активизировать модель четырехканального осциллографа *XSC...(Oscilloscope*), перевести ее на поле и зафиксировать.
- 4.2.5.4. Вызвать модели заземлений и вольтметров UAB, UC согласно схеме (см.п.п.1.2.5.3 и 1.2.5.8).
- 4.2.Б.5. Разместить все элементы схемы и соединить между собой согласно схеме рис.4.7 (см.п.п.1.2.Б.12 и 1.2.Б.13).
- 4.2.5.6. Задать параметры идеального трехфазного источника напряжений V1, используя окно задания параметров *Power Sources* на закладке Value.
- <u>По заданию преподавателя</u> установить в строке *Voltage* [Pk] амплитудное значение фазного напряжения $U_{m\phi}$ В и соответствующий масштаб в окне $\[egin{array}{c} & & & \\ & & & \\ \hline \end{array}$

В строке Frequency [F] установить значение циклической частоты источника f Γ ц и соответствующий масштаб в окне $\boxed{\mathbb{H}^{\mathsf{Z}}$ \boxminus .

Например, для промышленной трехфазной сети 3 PEN ~50 Γ ц 220/380 В (трехфазная четырехпроводная линия частотой 50 Γ ц и напряжением 220/380 В, три провода фаз, один защитный с заземлением, выполняющим функцию нейтрали) $U_{m\phi}$ определяется следующим образом:

$$U_{m\Phi} = \sqrt{2} \cdot U_{\Phi} = \sqrt{2} \cdot 220 = 311 \,\mathrm{B}$$
.

Частота источника $f = 50 \, \Gamma$ ц (промышленная частота).

Значения остальных параметров источника оставить нулевыми по умолчанию.

- При необходимости использовать закладку Label, строку Reference ID.
 - Закрыть окно *POWER SOURCES* кнопкой OK.
- 4.2.Б.7. Задать параметры вольтметров UAB и UC (см.п.1.2.Б.18). При этом в строке Mode установить вид режима работы по переменному току AC.
- При необходимости изменить на закладке *Label* в строке *Reference ID* идентификаторы приборов. Остальные параметры оставить по умолчанию.
 - Закрыть окно Voltmeter кнопкой OK.
- 4.2.Б.8. Настроить четырехканальный осциллограф *XSC1*. Настройка осциллографа проводится аналогично настройке, описанной в п. 3.2.Б.11 (см. раздел 3.2.Б).
- 4.2.5.9. Для удобства проведения виртуального эксперимента задать проводникам, соединяющим схему и входы каналов A, B, C, различные цвета. Например, фаза A источника вход канала A красный; фаза B канал B коричневый; фаза C канал C зеленый; нейтраль синий (см. п.п. 1.2.5.12 и 1.2.5.13).
- 4.2.Б.10. Провести виртуальный эксперимент определения основных параметров идеального трехфазного источника напряжений.
 - Запустить модель переключателем

- Зафиксировать показания вольтметров UC и UAB. Данные занести в табл.4.1.
- Получить изображения временных зависимостей фазных напряжений источника $u_A(t), u_B(t), u_C(t)$ на полном экране осциллографа XSC1.

Замечание. Показания всех приборов следует фиксировать по завершении переходных процессов измерения в вычислительном эксперименте.

- Отключить модель переключателем .

Таблица

4.1 Основные параметры идеального источника напряжений

Число фаз $m = \dots$	Тип соедине ун я	Циклическая частота $f = \dots \Gamma$ ц	$\omega = 2\pi f$		Период $T = 1/f =$ с	
Науражоууда	Действующие значения	$U_{\phi} = U_C$, B	U_{π}	$=U_{AB}$, B	
Напряжения	Амплитудные значения	Φ аза A U_{mA} , В	Фаза B U_{mB} , B		Фаза C U_{mC} , B	
Началь	ные фазы	Ψ_A	Ψ_B		Ψ_C	
		0°				

- 4.2.Б.11. Используя визиры измерить амплитудные значения фазных напряжений источника $U_{mA},~U_{mB},~U_{mC}$ и их начальные фазы $\psi_{A},~\psi_{B},~\psi_{C}$. При измерений начальных фаз принять начальную фазу $~\psi_{A}=0^{\circ}$. Данные измерений занести в табл.4.1.
- 4.2.Б.12. Используя данные эксперимента записать в комплексной форме выражения фазных напряжений источника $\dot{U}_A, \, \dot{U}_B, \, \dot{U}_C$.
- 4.2.Б.13. По результатам эксперимента сделать выводы об основных свойствах идеального трехфазного источника напряжений.

4.2.В. ИССЛЕДОВАНИЕ СИММЕТРИЧНОГО РЕЖИМА РАБОТЫ ТРЕХФАЗНОЙ ЦЕПИ С ИДЕАЛЬНЫМ ИСТОЧНИКОМ НАПРЯЖЕНИЙ

- 4.2.В.1. Сформировать схему для проведения виртуальных экспериментов согласно рис.4.8.
- 4.2.B.2. Модели трехфазного идеального источника напряжений V1, заземлений, вольтметров U1, U2, U3, UC, амперметров A1, A2, A3, AN, четырехканального осциллографа XSC1, резисторов R1, R2, R3 и

индуктивностей L1, L2, L3 вызываются аналогично п.п. 4.2.Б.2, 1.2.Б.3, 1.2.Б.8, 4.2.Б.3, 1.2.Б.4, 1.2.В.2 соответственно.

4.2.В.3. Разместить все элементы и соединить между собой согласно схеме рис.4.8 (см.п.п. 1.2.Б.12, 1.2.Б.13).

Рис.4.8. Схема виртуального эксперимента для исследования симметричного режима работы трехфазной цепи с идеальным источником напряжений

- 4.2.В.4. Задание параметров источника V1, вольтметров U1, U2, U3, UC и амперметров A1, A2, A3, AN провести аналогично п.п. 4.2.Б.6, 1.2.Б.18, 1.2.Б.19 соответственно. При этом для всех вольтметров и амперметров в строке Mode установить вид режима работы по переменному току AC.
- 4.2.В.5. Провести настройку четырехканального осциллографа *XSC1* аналогично п.п. 4.2.Б.8, 4.2.Б.9.
- 4.2.В.6. Задать параметры элементам трехфазного симметричного потребителя, каждая фаза которого представляет собой комплексный резистор $Z(j\omega) = R + j\omega L$ активно-индуктивного характера. В частном случае, таким потребителем может быть обмотка статора трехфазного асинхронного двигателя или первичные обмотки трехфазного трансформатора.
- <u>По заданию преподавателя</u> установить значения сопротивлений в диапазоне 50...100 Ом, одинаковые для всех резисторов R1, R2, R3 (см.п. 1.2.Б.15).
- Установить значения индуктивностей в диапазоне 0,1...0,2 Гн, о д и н а к о в ы е для всех индуктивностей L1, L2, L3 (см. п. 1.2.B.6).
- 4.2.В.7. Провести виртуальный эксперимент измерения напряжений и токов в фазах потребителя, линиях и нейтрали.
 - Запустить модель переключателем .
 - Зафиксировать показания приборов с учетом замечания п. 4.2.Б.10.

- Отключить модель переключателем .
- Данные измерений занести в табл. 4.2 в строку "Идеальная нейтраль".

Таблица 4.2

Токи и напряжения в трехфазной цепи при симметричном режиме

Вид		Токи							Напряжения на фазах			
соединения	Линейные			Фазные			Потребитель			Источник		
Y - Y	I_A	I_B	I_C	I_N	I_a	I_b	I_c	U_a	U_b	U_c	U_{Φ}	
	Α	A	A	A	A	Α	A	В	В	В	В	
Идеальная нейтраль												
Обрыв нейтрали												

- 4.2.В.8. Провести виртуальный эксперимент измерения напряжений и токов для симметричного режима при отсутствии нейтрали (обрыв нейтрали).
- Удалить из схемы рис.4.8 проводник, соединяющий нейтраль потребителя "n" и амперметр AN (см.п.1.2.Б.13).
- -Повторить все операции п.4.2.В.7. Данные измерений занести в табл.4.2 в строку "Обрыв нейтрали".
- 4.2.В.9. Проанализировать результаты экспериментов. Сделать выводы об основных особенностях симметричного режима работы трехфазной цепи.

4.2.Г. ИССЛЕДОВАНИЕ НЕСИММЕТРИЧНОГО РЕЖИМА РАБОТЫ ТРЕХФАЗНОЙ ЦЕПИ С ИДЕАЛЬНЫМ ИСТОЧНИКОМ НАПРЯЖЕНИЙ

4.2.Г.1. Сформировать схему для проведения виртуальных экспериментов согласно рис.4.9.

Схему рис.4.9 удобно строить на базе схемы рис.4.8 раздела 4.2.В. Для этого необходимо провести следующие операции:

- отсоединить индуктивности L1, L2, L3, заменив их проводниками;
- подключить к оставшимся резисторам в фазах "a" и "b" потребителя соответствующее число параллельных резисторов (см. рис.4.9).
- 4.2.Г.2. Настройку параметров источника и всех контрольно-измерительных приборов оставить прежней в соответствии со схемой рис.4.8.

<u>По заданию преподавателя</u> установить значения сопротивлений в диапазоне 100...200 Ом о д и н а к о в ы м и для всех резисторов R1...R6 (см. п.1.2.Б.15).

4.2.Г.3. Провести виртуальные эксперименты измерения напряжений и токов в фазах потребителя, линиях и нейтрали аналогично экспериментам п.п.4.2.В.7 и 4.2.В.8.

Рис.4.9. Схема виртуального эксперимента для исследования несимметричных режимов работы трехфазной цепи с идеальным источником напряжений

Данные измерений занести в табл.4.3 в соответствующие строки.

Таблица 4.3 Токи и напряжения в трехфазной цепи при несимметричном режиме и идеальном источнике напряжений

Вид	Токи							Напряжения на фазах			
соединения	Линейные			Фазные			Потребитель			Источник	
Y - Y	I_A	I_B	I_C	I_N	I_a	I_b	I_c	U_a	U_b	U_c	U_{ϕ}
	A	Α	Α	A	A	Α	A	В	В	В	В
Идеальная нейтраль											
Обрыв нейтрали											

4.2.Г.4. Проанализировать результаты экспериментов. Сделать выводы об особенностях несимметричных режимов и роли нейтрали при работе трехфазной цепи.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. В чем заключается понятие многофазности системы и каковы ее основные признаки?
- 2. Какие многофазные цепи считаются по отношению к источникам симметричными и какие несимметричными?
 - 3. Что такое фаза источника и фаза потребителя?
 - 4. Что такое линия в многофазных (трехфазных) цепях?

- 5. В каком соединении трехфазной цепи используется нейтральный провод (нейтраль)?
 - 6. Что такое линейные напряжения и токи, фазные напряжения и токи?
- 7. В каком соотношении находятся фазные и линейные напряжения симметричного трехфазного источника?
- 8. Какими основными параметрами характеризуются идеальные трехфазные источники?
- 9. В чем заключается основной смысл анализа установившихся режимов в трехфазной цепи с идеальным источником?
- 10. Как определяются комплексные и полные мощности трехфазного потребителя и трехфазного источника?
- 11. Каким образом можно учитывать в модели трехфазной цепи сопротивления, индуктивности, емкости реальных проводов?
 - 12. Что такое напряжение смещения нейтрали?
- 13. Какой режим работы трехфазной цепи называется симметричным, что такое симметричная нагрузка?
- 14. Какие реальные потребители обеспечивают режимы, близкие к симметричной нагрузке?
- 15. Каким образом можно учесть в модели факт ограничения мощности реального трехфазного источника?
- 16. Как построить внешнюю вольтамперную характеристику трехфазного источника конечной мощности?
- 17. Какие особенности вносит в реальные режимы работы трехфазной цепи источник конечной мощности?
- 18. В чем практический смысл использования нейтрального провода (нейтрали) в реальных трехфазных цепях?
- 19. В чем заключаются понятие "идеальная нейтраль" и понятие "некачественная нейтраль"?
- 20. Какими основными параметрами характеризуется отечественная общепромышленная трехфазная сеть?