Example. Show that the number of permutations of $1, 2, 3, \ldots, 2n$

Example. Show that the number of permutations of $1, 2, 3, \ldots, 2n$ with consecutive terms that differ by n

For instance, consider permutations of 123456

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1, \dots, n\} \setminus A := \{123456, 423156, \dots\}$

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1, \dots, n\} \setminus A := \{123456, 423156, \dots\}$

Solution.

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1, \dots, n\} \setminus A := \{123456, 423156, \dots\}$

Solution. Main idea:

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1, \dots, n\} \setminus A := \{123456, 423156, \dots\}$

Solution. Main idea: Let $x_1x_2...x_{2n}$ be an element that is not in the set

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1, \dots, n\} \setminus A := \{123456, 423156, \dots\}$

Solution. Main idea: Let $x_1x_2...x_{2n}$ be an element that is not in the set

We can create an element which is in the set:

If $|x_j - x_1| = n$, consider the element $x_2 \dots x_1 x_j \dots x_{2n}$.

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1, \dots, n\} \setminus A := \{123456, 423156, \dots\}$

Solution. Main idea: Let $x_1x_2...x_{2n}$ be an element that is not in the set

We can create an element which is in the set:

If $|x_j - x_1| = n$, consider the element $x_2 \dots x_1 x_j \dots x_{2n}$.

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1, \dots, n\} \setminus A := \{123456, 423156, \dots\}$

Solution. Main idea: Let $x_1x_2...x_{2n}$ be an element that is not in the set

We can create an element which is in the set:

If $|x_j - x_1| = n$, consider the element $x_2 \dots x_1 x_j \dots x_{2n}$.

Exercise: Show that this map is injective

1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object:

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1,\ldots,n\}\setminus A:=\{123456,423156,\ldots\}$

Solution. Main idea: Let $x_1x_2...x_{2n}$ be an element that is not in the set

We can create an element which is in the set:

If $|x_i - x_1| = n$, consider the element $x_2 \dots x_1 x_i \dots x_{2n}$.

Exercise: Show that this map is injective

1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1,\ldots,n\}\setminus A:=\{123456,423156,\ldots\}$

Solution. Main idea: Let $x_1x_2...x_{2n}$ be an element that is not in the set

We can create an element which is in the set:

If $|x_i - x_1| = n$, consider the element $x_2 \dots x_1 x_i \dots x_{2n}$.

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects:

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1,\ldots,n\}\setminus A:=\{123456,423156,\ldots\}$

Solution. Main idea: Let $x_1x_2...x_{2n}$ be an element that is not in the set

We can create an element which is in the set:

If $|x_i - x_1| = n$, consider the element $x_2 \dots x_1 x_i \dots x_{2n}$.

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1,\ldots,n\}\setminus A:=\{123456,423156,\ldots\}$

Solution. Main idea: Let $x_1x_2...x_{2n}$ be an element that is not in the set

We can create an element which is in the set:

If $|x_i - x_1| = n$, consider the element $x_2 \dots x_1 x_i \dots x_{2n}$.

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in ndistinct boxes:

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1,\ldots,n\}\setminus A:=\{123456,423156,\ldots\}$

Solution. Main idea: Let $x_1x_2...x_{2n}$ be an element that is not in the set

We can create an element which is in the set:

If $|x_i - x_1| = n$, consider the element $x_2 \dots x_1 x_i \dots x_{2n}$.

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1,\ldots,n\}\setminus A:=\{123456,423156,\ldots\}$

Solution. Main idea: Let $x_1x_2...x_{2n}$ be an element that is not in the set

We can create an element which is in the set:

If $|x_i - x_1| = n$, consider the element $x_2 \dots x_1 x_i \dots x_{2n}$.

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
- 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object:

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1,\ldots,n\}\setminus A:=\{123456,423156,\ldots\}$

Solution. Main idea: Let $x_1x_2...x_{2n}$ be an element that is not in the set

We can create an element which is in the set:

If $|x_i - x_1| = n$, consider the element $x_2 \dots x_1 x_i \dots x_{2n}$.

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
- 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1,\ldots,n\}\setminus A:=\{123456,423156,\ldots\}$

Solution. Main idea: Let $x_1x_2...x_{2n}$ be an element that is not in the set

We can create an element which is in the set:

If $|x_i - x_1| = n$, consider the element $x_2 \dots x_1 x_i \dots x_{2n}$.

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
- 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
- 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects:

For instance, consider permutations of 123456 $A := \{125346, 253416, \dots, 231456, 234156, \dots\}$ $\{1,\ldots,n\}\setminus A:=\{123456,423156,\ldots\}$

Solution. Main idea: Let $x_1x_2...x_{2n}$ be an element that is not in the set

We can create an element which is in the set:

If $|x_i - x_1| = n$, consider the element $x_2 \dots x_1 x_i \dots x_{2n}$.

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
- 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
- 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Example. Count the number of ways

Example.

- , 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - 3. Number of ways to arrange m distinct objects in n distinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Example. Count the number of ways to arrange m blue **Example.**

balls

- , 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - 3. Number of ways to arrange m distinct objects in n distinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - 3. Number of ways to arrange m distinct objects in n distinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls,

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - 3. Number of ways to arrange m distinct objects in n distinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes"

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in n distinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
- 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
- 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - 3. Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - 3. Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - 3. Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues 2 red balls must be placed at the edges

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in n distinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
- 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
- 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues 2 red balls must be placed at the edges

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - 3. Number of ways to arrange m distinct objects in n distinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues 2 red balls must be placed at the edges

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - 3. Number of ways to arrange m distinct objects in n distinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues 2 red balls must be placed at the edges Remaining n-m-1 red calls must be placed in m+1boxes

Answer:

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues 2 red balls must be placed at the edges Remaining n-m-1 red calls must be placed in m+1boxes

Answer:
$$\binom{n-1}{n-m-1}$$

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
- Number of ways to arrange m distinct objects in n distinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
- 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
- 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues 2 red balls must be placed at the edges Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues 2 red balls must be placed at the edges Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues 2 red balls must be placed at the edges Remaining n-m-1 red calls must be placed in m+1boxes

Answer:
$$\binom{n-1}{n-m-1}$$

$$x_1 + x_2 + \cdots + x_n$$

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
- 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues 2 red balls must be placed at the edges Remaining n-m-1 red calls must be placed in m+1boxes

Answer:
$$\binom{n-1}{n-m-1}$$

$$x_1 + x_2 + \dots + x_n = m$$

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
- 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues 2 red balls must be placed at the edges Remaining n-m-1 red calls must be placed in m+1boxes

Answer:
$$\binom{n-1}{n-m-1}$$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes.

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - 3. Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues 2 red balls must be placed at the edges Remaining n-m-1 red calls must be placed in m+1

Answer:
$$\binom{n-1}{n-m-1}$$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes. m 1s.

boxes

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - 3. Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues 2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes. m 1s. x_i s are the number of 1s in each box.

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
 - 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
 - 3. Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
 - 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
 - 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues 2 red balls must be placed at the edges Remaining n-m-1 red calls must be placed in m+1boxes

Answer:
$$\binom{n-1}{n-m-1}$$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes. m 1s. x_i s are the number of 1s in each box.

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
- 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
- 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues 2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes. m 1s. x_i s are the number of 1s in each box. Answer:

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
- 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
- 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain at most 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in ndistinct boxes: $\frac{(n-1+m)!}{(n-1)!m!} \times m! = \frac{(n-1+m)!}{(n-1)!}$
- 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain at most 1 object: $\binom{n}{m}$
- 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: $\binom{m+n-1}{m}$

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1,\ldots,n\}$ balls, and n red balls so that none of the blue balls are adjacent and the ends are red balls?

Solution.

After placing the blue balls, there are m + 1 "boxes"

m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1, \ldots, n\}$ into balls, and n red balls so that none of the blue balls are a m subsets. adjacent and the ends are red balls?

Solution.

After placing the blue balls, there are m+1 "boxes"

m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n - m - 1 red calls must be placed in m + 1 boxes

Answer: $\binom{n-1}{n-m-1}$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1,\ldots,n\}$ into Denoted S(n, m)

Solution.

After placing the blue balls, there are m + 1 "boxes"

m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1,\ldots,n\}$ into

Denoted S(n, m) (Sterling number of the second kind).

Solution.

After placing the blue balls, there are m + 1 "boxes"

m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1,\ldots,n\}$ into balls, and n red balls so that none of the blue balls are a m subsets. adjacent and the ends are red balls?

Denoted S(n, m) (Sterling number of the second kind).

Solution.

After placing the blue balls, there are m+1 "boxes"

m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

Solution. Idea: Split the partitions into two disjoint types.

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1,\ldots,n\}$ into balls, and n red balls so that none of the blue balls are a m subsets. adjacent and the ends are red balls?

Denoted S(n, m) (Sterling number of the second kind).

Solution.

After placing the blue balls, there are m+1 "boxes"

m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes. m 1s. x_i s are the number of 1s in each box. Answer: $\binom{n+m-1}{m}$

Solution. Idea: Split the partitions into two disjoint types.

1. 1 forms a singletons subset

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1,\ldots,n\}$ into balls, and n red balls so that none of the blue balls are a m subsets. adjacent and the ends are red balls?

Denoted S(n, m) (Sterling number of the second kind).

Solution.

After placing the blue balls, there are m + 1 "boxes"

m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer:
$$\binom{n-1}{n-m-1}$$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes. m 1s. x_i s are the number of 1s in each box. Answer: $\binom{n+m-1}{m}$

- 1. 1 forms a singletons subset
- 2. 1 is always accompanied

After placing the blue balls, there are m + 1 "boxes"

m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer:
$$\binom{n-1}{n-m-1}$$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes. m 1s. x_i s are the number of 1s in each box. Answer: $\binom{n+m-1}{m}$

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1,\ldots,n\}$ into

Denoted S(n, m) (Sterling number of the second kind).

- 1. 1 forms a singletons subset # of such partitions:
- 2. 1 is always accompanied

Solution.

After placing the blue balls, there are m + 1 "boxes"

m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes. m 1s. x_i s are the number of 1s in each box. Answer: $\binom{n+m-1}{m}$

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1,\ldots,n\}$ into

Denoted S(n, m) (Sterling number of the second kind).

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied

Solution.

After placing the blue balls, there are m + 1 "boxes"

m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes. m 1s. x_i s are the number of 1s in each box. Answer: $\binom{n+m-1}{m}$

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1, \ldots, n\}$ into

Denoted S(n, m) (Sterling number of the second kind).

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions:

Solution.

After placing the blue balls, there are m + 1 "boxes" m-1 red balls must be placed to separate the blues 2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer:
$$\binom{n-1}{n-m-1}$$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes. m 1s. x_i s are the number of 1s in each box. Answer: $\binom{n+m-1}{m}$

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1, \ldots, n\}$ into

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions:

First place $\{2, \ldots, n\}$ into the m subsets!

Solution.

After placing the blue balls, there are m + 1 "boxes" m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes. m 1s. x_i s are the number of 1s in each box. Answer: $\binom{n+m-1}{m}$

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1,\ldots,n\}$ into

Denoted S(n, m) (Sterling number of the second kind).

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times$.

Solution.

After placing the blue balls, there are m + 1 "boxes"

m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer:
$$\binom{n-1}{n-m-1}$$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes. m 1s. x_i s are the number of 1s in each box. Answer: $\binom{n+m-1}{m}$

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1, \ldots, n\}$ into

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times$.

then place 1 into one of the m subsets!

Solution.

After placing the blue balls, there are m + 1 "boxes" m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes. m 1s. x_i s are the number of 1s in each box. Answer: $\binom{n+m-1}{m}$

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1,\ldots,n\}$ into

Denoted S(n, m) (Sterling number of the second kind).

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

Solution.

After placing the blue balls, there are m + 1 "boxes"

m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes. m 1s. x_i s are the number of 1s in each box. Answer: $\binom{n+m-1}{m}$

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1, \ldots, n\}$ into

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

Answer:

Solution.

After placing the blue balls, there are m+1 "boxes" m-1 red balls must be placed to separate the blues

2 red balls must be placed at the edges

Remaining n-m-1 red calls must be placed in m+1boxes

Answer: $\binom{n-1}{n-m-1}$

Example. Count the number of non-negative integer solutions to

$$x_1 + x_2 + \dots + x_n = m$$

Solution. n boxes. m 1s. x_i s are the number of 1s in each box. Answer: $\binom{n+m-1}{m}$

Example. Count the number of ways to arrange m blue **Example.** Number of ways to partition $\{1, \ldots, n\}$ into

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) =$$

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = ?$$

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = ? \text{ if } n < m$$

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0 \text{ if } n < m$$

$$S(n,1) =$$

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0 \text{ if } n < m$$

$$S(n,1) = 1$$

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) =$

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2)$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) +$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n, m) = 0 \text{ if } n < m$$

 $S(n, 1) = 1$
 $S(n, n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2)$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n, m) = 0 \text{ if } n < m$$

 $S(n, 1) = 1$
 $S(n, n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n, m) = 0 \text{ if } n < m$$

 $S(n, 1) = 1$
 $S(n, n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2. S(4,2)

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) +$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2)$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3. S(4,3)

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3.
$$S(4,3) = S(3,2) +$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3.
$$S(4,3) = S(3,2) + S(3,3)$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3.
$$S(4,3) = S(3,2) + S(3,3) \times 3$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3.
$$S(4,3) = S(3,2) + S(3,3) \times 3 = 3 + 1 \times 3$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3.
$$S(4,3) = S(3,2) + S(3,3) \times 3 = 3 + 1 \times 3 = 6$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3.
$$S(4,3) = S(3,2) + S(3,3) \times 3 = 3 + 1 \times 3 = 6$$

4.

$$S(n, n-1)$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3.
$$S(4,3) = S(3,2) + S(3,3) \times 3 = 3 + 1 \times 3 = 6$$

4.

$$S(n, n-1) = S(n-1, n-2) +$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3.
$$S(4,3) = S(3,2) + S(3,3) \times 3 = 3 + 1 \times 3 = 6$$

4.

$$S(n, n - 1) = S(n - 1, n - 2) + S(n - 1, n - 1)$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

Solution. Idea: Split the partitions into two disjoint types.

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3.
$$S(4,3) = S(3,2) + S(3,3) \times 3 = 3 + 1 \times 3 = 6$$

4.

$$S(n, n-1) = S(n-1, n-2) + S(n-1, n-1) \times n$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n,n-1) = S(n-1,n-2) + S(n-1,n-1) \times n \ \overline{A} \ \text{\overline{A} nswer:} \ S(n,m) = S(n-1,m-1) + S(n-1,m) \times m \ \overline{A} \ \text{\overline{A} nswer:} \ S(n,m) = S(n-1,m-1) + S(n-1,m) \times m \ \overline{A} \ \overline$$

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3.
$$S(4,3) = S(3,2) + S(3,3) \times 3 = 3 + 1 \times 3 = 6$$

4.

$$S(n, n-1) = S(n-1, n-2) + S(n-1, n-1) \times n \ \overline{A} \ \overline{A} \ nswer: \ S(n, m) = S(n-1, m-1) + S(n-1, m) \times m = S(n-1, n-2) + (n-1)$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$\overline{A}$$
 \overline{n} $swer: S(n,m) = S(n-1,m-1) + S(n-1,m) \times m$

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3.
$$S(4,3) = S(3,2) + S(3,3) \times 3 = 3 + 1 \times 3 = 6$$

4.

$$S(n, n-1) = S(n-1, n-2) + S(n-1, n-1) \times n \ \overline{A} \ \overline{A} \ \overline{n} swer: \ S(n, m) = S(n-1, m-1) + S(n-1, m) \times m \\ = S(n-1, n-2) + (n-1) \\ = S(n-2, n-3) + (n-2) + (n-1)$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$\overline{A} \overset{1}{n} swer: \ S(n,m) = S(n-1,m-1) + S(n-1,m) \times m$$

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3.
$$S(4,3) = S(3,2) + S(3,3) \times 3 = 3 + 1 \times 3 = 6$$

4.

$$S(n, n-1) = S(n-1, n-2) + S(n-1, n-1) \times n \ \overline{A} \text{ \overline{A} nswer: } S(n, m) = S(n-1, m-1) + S(n-1, m) \times m$$

$$= S(n-1, n-2) + (n-1)$$

$$= S(n-2, n-3) + (n-2) + (n-1)$$

$$\cdots$$

$$= S(2, 1) + \cdots + (n-2) + (n-1)$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$\overline{A}_{n}^{1}swer: \ S(n,m) = S(n-1,m-1) + S(n-1,m) \times m$$

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3.
$$S(4,3) = S(3,2) + S(3,3) \times 3 = 3 + 1 \times 3 = 6$$

4.

$$S(n, n - 1) = S(n - 1, n - 2) + S(n - 1, n - 1) \times$$

$$= S(n - 1, n - 2) + (n - 1)$$

$$= S(n - 2, n - 3) + (n - 2) + (n - 1)$$

$$\cdots$$

$$= \underbrace{S(2, 1)}_{1} + \cdots + (n - 2) + (n - 1)$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$S(n, n-1) = S(n-1, n-2) + S(n-1, n-1) \times n \ \overline{A} \ \overline{A} \ \overline{n} swer: \ S(n, m) = S(n-1, m-1) + S(n-1, m) \times m$$

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3.
$$S(4,3) = S(3,2) + S(3,3) \times 3 = 3 + 1 \times 3 = 6$$

4.

$$S(n, n-1) = S(n-1, n-2) + S(n-1, n-1) \times n - 1$$

$$= S(n-1, n-2) + (n-1)$$

$$= S(n-2, n-3) + (n-2) + (n-1)$$

$$\cdots$$

$$= \underbrace{S(2, 1)}_{1} + \cdots + (n-2) + (n-1)$$

$$= \underbrace{(n-1)n}_{2}$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

Answer:
$$S(n,m) = S(n-1,m-1) + S(n-1,m) \times m$$

$$S(n,m) = 0$$
 if $n < m$
 $S(n,1) = 1$
 $S(n,n) = 1$

1.
$$S(3,2) = S(2,1) + S(2,2) \times 2 = 1 + 1 \times 2 = 3$$

2.
$$S(4,2) = S(3,1) + S(3,2) \times 2 = 1 + 3 \times 2 = 7$$

3.
$$S(4,3) = S(3,2) + S(3,3) \times 3 = 3 + 1 \times 3 = 6$$

4.

$$S(n, n-1) = S(n-1, n-2) + S(n-1, n-1) \times n - 1$$

$$= S(n-1, n-2) + (n-1) \qquad An$$

$$= S(n-2, n-3) + (n-2) + (n-1)$$

$$\cdots$$

$$= \underbrace{S(2, 1)}_{1} + \cdots + (n-2) + (n-1)$$

$$= \underbrace{\frac{(n-1)n}_{2}}_{1} = \binom{n}{2}$$

Example. Number of ways to partition $\{1, \ldots, n\}$ into a m subsets.

Denoted S(n, m) (Sterling number of the second kind).

- 1. 1 forms a singletons subset # of such partitions: S(n-1, m-1).
- 2. 1 is always accompanied # of such partitions: $S(n-1,m) \times m$.

$$Answer: \ S(n,m) = S(n-1,m-1) + S(n-1,m) \times m$$