Regressão Linear Simples e Múltipla – Exercícios de Revisão

- 1) Um fabricante de roupas está interessado na resistência à tração do tecido utilizado em seus produtos. Suspeita-se que a resistência tenha uma relação linear com a porcentagem de algodão presente no tecido para valores entre 15 e 30%. Um experimento foi conduzido e os resultados encontram-se no arquivo de texto anexo. A esses dados, ajuste um modelo de regressão linear simples com *x* sendo a variável independente e responda aos seguintes itens:
 - a) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a hipótese alternativa H_1 : $\beta_1 \neq 1$
 - b) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a hipótese alternativa H₁: $\beta_1 > -0.01$
 - c) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a hipótese alternativa H₁: $\beta_0 \neq 0.25$
 - d) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a hipótese alternativa H₁: $\beta_0 > -2$
 - e) Determine um intervalo de confiança unilateral superior 86,7% para β_0 .
 - f) Determine um intervalo de confiança unilateral superior 87,1% para β_1 .
 - g) Determine um intervalo de confiança unilateral superior 87,5% para a resposta média quando x = 18% de algodão.
 - h) Determine um intervalo de previsão unilateral superior 87,9% para uma nova observação no ponto x = 18% de algodão.
- 2) Os dados no arquivo de texto anexo representam o rendimento de combustível de um automóvel (em km/l) em função de seu peso (em toneladas). A esses dados, ajuste um modelo de regressão linear simples com *x* sendo a variável independente e responda aos seguintes itens:
 - a) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a hipótese alternativa H₁: $\beta_1 \neq 0.5$
 - b) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a hipótese alternativa H₁: $\beta_1 > -6$
 - c) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a hipótese alternativa H_1 : $\beta_0 \neq 16$
 - d) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a hipótese alternativa H_1 : $\beta_0 > -1$
 - e) Determine um intervalo de confiança unilateral inferior 80,1% para β_0 .
 - f) Determine um intervalo de confiança unilateral inferior 80,5% para β_1 .
 - g) Determine um intervalo de confiança unilateral inferior 80,9% para a resposta média quando x=1 tonelada.
 - h) Determine um intervalo de previsão unilateral inferior 81,3% para uma nova observação no ponto x = 1 tonelada.
- 3) Ajuste aos dados do arquivo de texto anexo um modelo de regressão linear múltipla do tipo: $\hat{\mu}_{Y|X} = \hat{\beta}_0 + \hat{\beta}_1 \cdot x_1 + \hat{\beta}_2 \cdot x_2 + \hat{\beta}_3 \cdot x_3$ e resolva os itens a seguir:
 - a) Com $\alpha=0.01$, teste a sua significância estatística por meio pela análise de variância. Utilize o método do valor-p.
 - b) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a seguinte hipótese alternativa para o coeficiente beta individualmente: H_1 : $\beta_1 \neq 0$.
 - c) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a seguinte hipótese alternativa para o coeficiente beta individualmente: H_1 : $\beta_2 < 0$.
 - d) Determinar um intervalo de confiança unilateral superior 90% para o coeficiente β_1 utilizando o Método do Intervalo de Confiança Individual.
 - e) Considere um modelo de regressão reduzido apenas com a variável x_1 . Verifique se este modelo reduzido é satisfatório com $\alpha = 0.04$. Utilize o método do valor-p.
 - f) Teste se os resíduos padronizados da regressão não seguem uma distribuição normal. Utilizar o teste de normalidade de Shapiro-Wilks e $\alpha = 0.05$.
 - g) Utilizando as funções básicas do software R, determine os Fatores de Inflação de Variância dos coeficientes beta. Quais são as conclusões?
 - h) Com α = 0,05, verifique se algum dos resíduos de Student é candidato a outlier. Utilize o método da região crítica com a correção de Bonferroni. A resolução deve indicar pelo menos a região de rejeição/aceitação, o menor e o maior resíduo de Student.

- 4) Ajuste aos dados do arquivo de texto anexo um modelo de regressão linear múltipla do tipo: $\hat{\mu}_{Y|X} = \hat{\beta}_0 + \hat{\beta}_1 \cdot x_1 + \hat{\beta}_2 \cdot x_2$ e resolva os itens a seguir:
 - a) Com α = 0,01, teste a sua significância estatística por meio pela análise de variância. Utilize o método do valor-p.
 - b) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a seguinte hipótese alternativa para o coeficiente beta individualmente: H_1 : $\beta_1 < 0$.
 - c) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a seguinte hipótese alternativa para o coeficiente beta individualmente: H_1 : $\beta_2 < 0$.
 - d) Determinar um intervalo de confiança unilateral superior 99,4% para o coeficiente β_1 utilizando o Método do Intervalo de Confiança Individual.
 - e) Considere um modelo de regressão reduzido apenas com a variável x_2 . Verifique se este modelo reduzido é satisfatório com $\alpha = 0.03$. Utilize o método do valor-p.
 - f) Teste se os resíduos padronizados da regressão não seguem uma distribuição normal. Utilizar o teste de normalidade de Shapiro-Wilks e $\alpha = 0.05$.
 - g) Utilizando as funções básicas do software R, determine os Fatores de Inflação de Variância dos coeficientes beta. Quais são as conclusões?
 - h) Com α = 0,05, verifique se algum dos resíduos de Student é candidato a outlier. Utilize o método da região crítica com a correção de Bonferroni. A resolução deve indicar pelo menos a região de rejeição/aceitação, o menor e o maior resíduo de Student.
- 5) Ajuste aos dados do arquivo de texto anexo um modelo de regressão linear múltipla do tipo: $\hat{\mu}_{Y|X} = \hat{\beta}_0 + \hat{\beta}_1 \cdot x_1 + \hat{\beta}_2 \cdot x_2 + \hat{\beta}_3 \cdot x_3 + \hat{\beta}_4 \cdot x_4$ e resolva os itens a seguir:
 - a) Com α = 0,01, teste a sua significância estatística por meio pela análise de variância. Utilize o método do valor-p.
 - b) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a seguinte hipótese alternativa para o coeficiente beta individualmente: H_1 : $\beta_4 > 0.1$.
 - c) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a seguinte hipótese alternativa para o coeficiente beta individualmente: H_1 : $\beta_3 \neq -0.2$.
 - d) Determinar um intervalo de confiança unilateral superior 90% para o coeficiente β_1 utilizando o Método do Intervalo de Confiança Individual.
 - e) Considere um modelo de regressão reduzido apenas com a variável x_4 . Verifique se este modelo reduzido é satisfatório com $\alpha = 0.04$. Utilize o método do valor-p.
 - f) Teste se os resíduos padronizados da regressão não seguem uma distribuição normal. Utilizar o teste de normalidade de Shapiro-Wilks e $\alpha = 0.05$.
 - g) Utilizando as funções básicas do software R, determine os Fatores de Inflação de Variância dos coeficientes beta. Quais são as conclusões?
 - h) Com $\alpha=0.05$, verifique se algum dos resíduos de Student é candidato a outlier. Utilize o método da região crítica com a correção de Bonferroni. A resolução deve indicar pelo menos a região de rejeição/aceitação, o menor e o maior resíduo de Student.
- 6) Ajuste aos dados do arquivo de texto anexo um modelo de regressão linear múltipla do tipo: $\hat{\mu}_{Y|X} = \hat{\beta}_0 + \hat{\beta}_1 \cdot x_1 + \hat{\beta}_2 \cdot x_2 + \hat{\beta}_3 \cdot x_3$. e resolva os itens a seguir:
 - a) Com α = 0,01, teste a sua significância estatística por meio pela análise de variância. Utilize o método do valor-p.
 - b) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a seguinte hipótese alternativa para o coeficiente beta individualmente: H_1 : $\beta_0 < 130$.
 - c) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a seguinte hipótese alternativa para o coeficiente beta individualmente: : H_1 : $\beta_2 \neq 1$.
 - d) Determinar um intervalo de confiança unilateral superior 99,4% para o coeficiente β_1 utilizando o Método do Intervalo de Confiança Individual.

- e) Considere um modelo de regressão reduzido apenas com a variável x_2 . Verifique se este modelo reduzido é satisfatório com $\alpha = 0.04$. Utilize o método do valor-p.
- f) Teste se os resíduos padronizados da regressão não seguem uma distribuição normal. Utilizar o teste de normalidade de Shapiro-Wilks e $\alpha = 0.05$.
- g) Utilizando as funções básicas do software R, determine os Fatores de Inflação de Variância dos coeficientes beta. Quais são as conclusões?
- h) Com α = 0,05, verifique se algum dos resíduos de Student é candidato a outlier. Utilize o método da região crítica com a correção de Bonferroni. A resolução deve indicar pelo menos a região de rejeição/aceitação, o menor e o maior resíduo de Student.
- 7) Ajuste aos dados do arquivo de texto anexo um modelo de regressão linear múltipla do tipo: $\hat{\mu}_{Y|X} = \hat{\beta}_0 + \hat{\beta}_1 \cdot x_1 + \hat{\beta}_2 \cdot x_2 + \hat{\beta}_3 \cdot x_3 + \hat{\beta}_4 \cdot x_4 + \hat{\beta}_5 \cdot x_5$ e resolva os itens a seguir:
 - a) Com $\alpha = 0.01$, teste a sua significância estatística por meio pela análise de variância. Utilize o método do valor-p.
 - b) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a seguinte hipótese alternativa para o coeficiente beta individualmente: H_1 : $\beta_1 \neq 0$.
 - c) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a seguinte hipótese alternativa para o coeficiente beta individualmente: H_1 : $\beta_2 > 0$.
 - d) Determinar um intervalo de confiança bilateral 99% para o coeficiente β_3 , utilizando o Método do Intervalo de Confiança Individual.
 - e) Considere que um modelo de regressão reduzido apenas com as variáveis x_2 e x_5 . Verifique se este modelo reduzido é satisfatório, com $\alpha = 0.025$. Utilize o método do valor-p.
 - f) Teste se os resíduos padronizados da regressão não seguem uma distribuição normal. Utilizar o teste de normalidade de Shapiro-Wilks e $\alpha = 0.05$.
 - g) Utilizando as funções básicas do software R, determine os Fatores de Inflação de Variância dos coeficientes beta. Quais são as conclusões?
 - h) Com α = 0,05, verifique se algum dos resíduos de Student é candidato a outlier. Utilize o método da região crítica com a correção de Bonferroni. A resolução deve indicar pelo menos a região de rejeição/aceitação, o menor e o maior resíduo de Student.
- 8) Ajuste aos dados do arquivo de texto anexo um modelo de regressão linear múltipla do tipo: $\hat{\mu}_{Y|X} = \hat{\beta}_0 + \hat{\beta}_1 \cdot x_1 + \hat{\beta}_2 \cdot x_2 + \hat{\beta}_3 \cdot x_3 + \hat{\beta}_4 \cdot x_4 + \hat{\beta}_5 \cdot x_5 + \hat{\beta}_6 \cdot x_6$ e resolva os itens a seguir:
 - a) Com α = 0,01, teste a sua significância estatística por meio pela análise de variância. Utilize o método do valor-p.
 - b) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a seguinte hipótese alternativa para o coeficiente beta individualmente: H_1 : $\beta_4 \neq 3$.
 - c) Com $\alpha = 0.05$ e utilizando o método do valor-p, teste a seguinte hipótese alternativa para o coeficiente beta individualmente: H_1 : $\beta_6 < -10$.
 - d) Determinar um intervalo de confiança unilateral superior 98% para o coeficiente β_1 , utilizando o Método do Intervalo de Confiança Individual.
 - e) Considere um modelo de regressão reduzido apenas com as variáveis x_1 , x_5 e x_6 . Verifique se este modelo reduzido é satisfatório, com $\alpha = 0.03$. Utilize o método do valor-p.
 - f) Teste se os resíduos padronizados da regressão não seguem uma distribuição normal. Utilizar o teste de normalidade de Shapiro-Wilks e $\alpha=0,05$.
 - g) Utilizando as funções básicas do software R, determine os Fatores de Inflação de Variância dos coeficientes beta. Quais são as conclusões?
 - h) Com α = 0,05, verifique se algum dos resíduos de Student é candidato a outlier. Utilize o método da região crítica com a correção de Bonferroni. A resolução deve indicar pelo menos a região de rejeição/aceitação, o menor e o maior resíduo de Student.

RESULTADOS NUMÉRICOS

- 1)
- a) valor-p = 0.038235
- b) valor-p = 9.95×10^{-7}
- c) valor-p = 0.682209
- d) valor-p = 0.325882
- e) $\beta_0 \le 2,1316$
- f) $\beta_1 \le 0.8815$
- g) $\mu_{\rm Y} \le 13,6620$
- h) $Y_0 \le 16,2057$
- 2)
- a) valor-p = 1.41×10^{-11}
- b) valor-p = 0.034188
- c) valor-p = 0.853717
- d) valor-p = 7.41×10^{-20}
- e) $\beta_0 \ge 15,1671$
- f) $\beta_1 \ge -5,4664$
- g) $\mu_{\rm Y} \ge 10,5476$
- h) $Y_0 \ge 9,6358$
- 3)
- a) valor-p = 5.263×10^{-11}
- b) valor-p = 0.001090
- c) valor-p = 0.000173
- d) $\beta_1 \le -0.008868$
- e) valor-p = $3,667 \times 10^{-6}$
- f) valor-p = 0.01383
- g) $FIV(\beta_1) = 1,754445$; $FIV(\beta_2) = 2,835913$;
- $FIV(\beta_3) = 2,014633$
- h) região de aceitação = [-3,519811; 3,519811];
- min(rt) = -1.40912413; max(rt) = 2.50353152
- 4)
- a) valor-p = 7.876×10^{-9}
- b) valor-p = 0.038130
- c) valor-p = 0.003071
- d) $\beta_1 \le 0.009516$
- e) valor-p = 0.07626
- f) valor-p = 0.03913
- g) $FIV(\beta_1) = 3,64131$; $FIV(\beta_2) = 3,64131$
- h) região de aceitação = [-3,504931; 3,504931];
- min(rt) = -1,77010926; max(rt) = 2,76597342

- 5) a) valor-p = 7.209×10^{-12}
- b) valor-p = 0.004120
- c) valor-p = 0.033612
- d) $\beta_1 \le 0.3846$
- e) valor-p = 0.004407
- f) valor-p = 0.1277
- g) $FIV(\beta_1) = 1,424589$; $FIV(\beta_2) = 1,491938$;

 $FIV(\beta_3) = 1,514447; FIV(\beta_4) = 2,041078$

- h) região de aceitação = [-3,636264; 3,636264];
- min(rt) = -3,677630455; max(rt) = 2,566927399
- 6) a) valor-p = 0.00179
- b) valor-p = 0.526066
- c) valor-p = 0.041899
- d) $\beta_1 \le 0.03771$
- d) valor-p = 0.2989
- e) valor-p = 0.6907
- f) $FIV(\beta_1) = 1,260493$; $FIV(\beta_2) = 1,216530$; $FIV(\beta_3) = 1,042302$
- g) região de aceitação = [-3,54376; 3,54376]; min(rt) = -1.81506759; max(rt) = 2.52951544
- 7) a) valor-p = 3.828×10^{-5}
- b) valor-p = 0.12009
- c) valor-p = 0.000781
- d) $-1.3079 \le \beta_3 \le 1.5879$
- e) valor-p = 0.4373
- f) valor-p = 0.213
- g) $FIV(\beta_1) = 1,026667$; $FIV(\beta_2) = 1,026667$; $FIV(\beta_3) = 1,026667$; $FIV(\beta_4) = 1,026667$;
- $FIV(\beta_5) = 1,026667$
- h) região de aceitação = [-4,122363; 4,122363];
- min(rt) = -2,20846359; max(rt) = 1,58474460
- 8) a) valor-p $< 2.2 \times 10^{-16}$
- b) valor-p = 0.754249
- c) valor-p = 0.006733
- d) $\beta_1 \le 1,7404$
- e) valor-p = 0.1053
- f) valor-p = 0.8804
- g) $FIV(\beta_1) = 276,14540$; $FIV(\beta_2) = 71,49698$;
- $FIV(\beta_3) = 165,90821; FIV(\beta_4) = 210,35285;$
- $FIV(\beta_5) = 32,01309$; $FIV(\beta_6) = 8,47814$
- h) região de aceitação = [-3,541462; 3,541462];
- min(rt) = -3.08449336; max(rt) = 2.09798252