Notes on Serge Lang's Algebra

Amanuel Tewodros

April 12, 2025

Contents

1	Groups	5
2	Rings	9

4 CONTENTS

Chapter 1

Groups

Theorem 1 (Sylow Theorems). Let G be a finite group with p divides |G|, where p is a prime. Then

- 1. There exists a Sylow p-subgroup of G.
- 2. The number of Sylow p-subgroups of G is congruent to 1 modulo p and divides |G|.
- 3. All Sylow p-subgroups of G are conjugate.

Proof. If $H \leq G$ with [G:H] coprime with p, then by induction H and therefore G contains a Sylow p-group. Otherwise, by the class equation,

$$|G| = |Z(G)| + \sum_{x} [G: N_x(G)],$$

it follows Z(G) is divisible by p and thus $\langle g \rangle \leq Z(G)$ for some $g \in Z(G)$ with exponent = p. Inducting on the order of G, $G/\langle g \rangle$ contains a Sylow p-subgroup, say $S/\langle g \rangle$ that is the image of $S \leq G$ that is a Sylow p-subgroup of G.

Let $P,Q \in \operatorname{Syl}_p(G)$. P does not normalize Q because otherwise $PQ \leq G$ and $p^m = |PQ| > |P|$, a contradiction. Let $S = \{P_1, \dots, P_k\}$ be the conjugates of P and let \mathcal{O}_i be the orbit of P_i by the action P on the set S by conjugation. Then $|\mathcal{O}_i| = [P:N_P(P_i)] = [P:N_G(P_i) \cap P] = [P:P_i \cap P] \implies k = 1 \mod p$.

If $P,Q\in \mathrm{Syl}_p(G)$ are not conjugates, then Q is not conjugate with conjugates of P. Consider the action of the elements of Q on the set $\{gPg^{-1}:g\in G\}=\{P_1,\ldots,P_m\}$. Then

$$|\mathcal{O}_{P_i}| = [Q : N_O(P_i)] = [Q : P_i \cap Q],$$

where the latter equality follows because $P_i(N_G(P_i)\cap Q)$ is a p-group that contains P_i with order $\leq |P_i|$ (a Sylow p-group) and thus $N_G(P_i)\cap Q\leq P_i$. Since Q is not a conjugate of P, $[Q:Q\cap P_i]=p^k, k>0$ and \mathcal{O}_{P_i} is divisible by p and the number of conjugates of P which is $\sum_i |\mathcal{O}_{P_i}|=0 \mod p$, a contradiction.

Theorem 2. If |G| = pq for primes p < q, then $G = \mathbb{Z}/pq\mathbb{Z}$ if $p \nmid q - 1$ else $G = \mathbb{Z}/pq\mathbb{Z}$ of $G = \mathbb{Z}/q\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}$ for some non-trivial semi-direct product.

 $\begin{array}{ll} \textit{Proof.} \ \ \text{If} \ q>p, \ n_q=1 \ \ \text{and thus} \ \ Q\in \operatorname{Syl}_q(G) \ \ \text{is normal.} \ \ |\operatorname{Aut}(\mathbb{Z}/q\mathbb{Z})|=q-1, \\ \text{therefore, there is a nontrivial map} \ \ \phi:\mathbb{Z}/p\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/q\mathbb{Z}) \ \ \text{if} \ \ p\mid q-1 \end{array}$

Theorem 3 (Fundamental Theorem of Finitely Generated Abelian Groups). Let A be a finite abelian group and let A(p) be the subgroup of all elements with order that is a power of p. Then

$$\prod_{A(p)\neq\{1\}} A(p) = A.$$

Proof. Clearly the map $\phi: \prod_p A(p) \to A$ defined by $\phi((x_p)) = \prod_p x_p$ is an endomorphism. We show that ϕ is injective and surjective. Let $\phi((x_p)) = 1$ for some $x = (x_p) \in \prod_p A(p)$. Let q be a prime with $A(q) \neq \{1\}$. Then

$$x_q = \prod_{p \neq q} x_p^{-1}.$$

Let m be the least common multiple of the primes powers on the right hand side, i.e. powers of $p \neq q$. Then $x_q^m = 1$. But, $x_q^{q^r} = 1$ too. Consequently, $x_q^{(m,q^r)} = x_q^1 = x_q = 1$. Thus $\prod_p x_p = 1$ iff all $x_p = 1$ and $\ker \phi = \{1\}$. To prove surjectivity, let $x \in A$ with $x^m = 1$ such that $m = \prod_{r \in A} p_i^{r_i}$. By Euclidean

To prove surjectivity, let $x \in A$ with $x^m = 1$ such that $m = \prod p_i^{r_i}$. By Euclidean algorithm, $1 = \sum_i u_i \prod_{j \neq i} p_j^{r_j}$ and thus $x = \prod_i x^{u_i \prod_{j \neq i} p_j^{r_j}}$ with $x^{u_i \prod_{j \neq i} p_j^{r_j}} \in A(p_i)$.

Why nilpotence and the existence of normal Sylow sub-groups are equivalent?: If $P, Q \in \operatorname{Syl}_p(G)$ then $N_P(Q) = P \cap Q < P, Q$ and thus Z(G) is always $Q \in P$. Thus $Q \in Q$ is always $Q \in P$. Thus $Q \in Q$ is always $Q \in P$.

The number of ways G acts on H: = # of homomorphisms from G to Aut(H) = # subgroups of order $|G|/|H^*|$.

Theorem 4. If $n \geq 5$ then S_n is not solvable.

Proof. Let S_n decompose as $S_n = H_m \supset \cdots \supset H_0 = \{1\}$. Clearly, S_n contains all 3-cycles. We also know since H_n/H_{n-1} is abelian $(abc)(ade)(acb)(aed) = (adebc)(aedcb) = (abd) \in H_{m-1}$. By induction all 3 cycles are in $\{1\}$, a contradiction.

Theorem 5. A_n is simple for all $n \geq 5$.

A priori: A_n can be generated by 3-cycles and 3-cycles are conjugates.

Proof. Let $N \subseteq A_n$. Let $\sigma \in N$. We show that σ is a 3-cycle or $\sigma = \text{id}$. The former implies $N = A_n$ and the latter implies N is the trivial subgroup. Let σ have the maximal number of fixed points in N.

Lrt all σ 's orbits have size 2 and it does not fix elements i, j. If σ is (ijk) for some k, we are done. Otherwise, $\langle \sigma \rangle > \langle (ij)(rs) \rangle$ for some r, s because σ is an even permutation and not a 3-cycle. Let $\tau = (rsk)$ for some k. Then $\tau' = \tau \sigma \tau^{-1} \sigma^{-1} \in N$.

But $\tau' = (i, j)\sigma$ contradicting σ fixes the maximal number of points. Thus at least one σ 's orbit has more than 2 elements.

Therefore, $\sigma=(ijk)(rs)\theta$ where θ is possible identity permutation. By similar argumenta as above picking $\tau'=(rsk)$, σ can not be the element of N with maximal fixed points unless it contains all of A_n .

Properties of Common Non-Abelian Groups

- Dihedral Group: D_{2n}
 - $-\cong \mathbb{Z}/n\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ acting by inversion
 - $= \{a, b|a^n, b^2, baba\}$
- Binary Dihedral Group/ Dicyclic Group: DiC(4n)
 - $-\cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ acting by inversion
 - $= \{a, b | a^n, b^4, baba\}$
- Generalized Quaternions: $Q_{2^{n+2}}$
 - $-\cong \mathbb{Z}/2^n\mathbb{Z}\rtimes \mathbb{Z}/4\mathbb{Z}$ acting by inversion
 - $= \{a, b | a^{2^n}, b^4, baba\}$
- $Holomorph\ Group$: Hol(G)
 - $-\cong G\rtimes \operatorname{Aut}(G)$
 - if G is $\mathbb{Z}/p\mathbb{Z}$, p prime, $\operatorname{Hol}(G)$ is isomorphic to the generalized affine group

Notes on Category Theory

- A category \mathcal{C} is a collection of **objects** $Ob(\mathcal{C})$, along with a set of maps, called **morphisms** between any two objects $A, B \in Ob(\mathcal{C})$ denoted by Mor(A, B).
- Morphisms follow the law of composition.
- · Three axioms
 - 1. CAT 1 Mor(A, B) and Mor(A', B') are disjoint unless (A, B) = (A', B'), in which case they are equal.
 - 2. CAT 2 For every $A \in Ob(\mathcal{C})$, there exists a morphism, id_A in Mor(A, A) that acts as a left and right identity for the elements of Mor(A, B) and Mor(B, A) resp. for all B.
 - 3. **CAT 3** The law of composition of morphisms is associative.
- The **operation** of a group G on an object $A \in Ob(\mathcal{C})$ is a homomorphism from G to Aut(A). It is also called a **representation.**

• Given a category $\mathcal C$, we can construct a new category $\mathcal D$ where the objects are the morphisms of $\mathcal C$ and the morphisms between two objects f,f' are defined by a pair of momorphism (ϕ,ψ) that make the following diagram commute:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow^{\phi} & & \downarrow^{\psi} \\
A' & \xrightarrow{f'} & B'
\end{array}$$

• An object P of a category \mathcal{C} is called **universally attracting** (resp. **universally repelling**) if there is exists a *unique* morphism from (resp. to) every object to(resp. from) P. If it is both, it is called **universal object**.

Chapter 2

Rings

Proposition 6. For two ideals \mathfrak{a} , \mathfrak{b} of a ring A, if $\mathfrak{a} + \mathfrak{b} = A$, then $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b}$.

Proof. Clearly, $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$. Thus, it suffices to prove the contra-positive relation. Since 1 = a + b for some $a \in \mathfrak{a}, b \in \mathfrak{b}, c = c \cdot a + c \cdot b$ for all $c \in A$. Of course, if $c \in \mathfrak{a} \cap \mathfrak{b}$, $c \cdot a + c \cdot b \in \mathfrak{ab}$.

Let A be a ring and let $\lambda : \mathbb{Z} \to A$ given by

$$\lambda(n) = \underbrace{1_A + \dots + 1_A}_{n \text{ times}}.$$

Then $\ker \lambda = \langle n \rangle$ for some $n \geq 0$. If $\langle n \rangle$ is a prime ideal, then we say A has characteristic n.

Proposition 7. If S is a set with more than two elements and A is a ring with $1_A \neq 0_A$, then Map(S, A) is not an integral domain.

Proof. Let $\{\} \neq T \subset S$

$$f(x) = \begin{cases} 1_A \text{ if } x \in T \\ 0_A \text{ if } x \in S - T \end{cases} \quad \text{ and } g(x) = 1_A - f(x).$$

$$fg = 0_{\operatorname{Map}(S,A)}.$$

If \mathfrak{p} is a prime ideal in a ring A, then it means

- 1. A/\mathfrak{p} is an integral domain.
- 2. $xy \in \mathfrak{p} \implies x \in \mathfrak{p} \text{ or } y \in \mathfrak{p}$.

The ideal $\{0_A\}$ is a prime ideal of A iff A is an integral domain.

Proof. $(\Longrightarrow) A/\{0_A\} \cong A$, thus A should be an integral domain. (\iff) . If A is an integral domain, then $xy \in \{0_A\} \implies x = \{0_A\}$ or $y \in \{0_A\}$.

CHAPTER 2. RINGS

Theorem 8 (Chinese Remainder Theorem). Let $\mathfrak{a}_1, \ldots \mathfrak{a}_n$ be ideals of a ring A such that $\mathfrak{a}_i + \mathfrak{a}_j = A$ for any $i \neq j$. Let x_i be elements of A. Then there is an element $x \in A$ such that $x \equiv x_i \mod \mathfrak{a}_i$.

Proof. If n=2, $A=\mathfrak{a}_1+\mathfrak{a}_2$, and thus $1_A=a_1+a_2$ for some $a_i\in\mathfrak{a}_i$. Then $x=x_1a_1+x_2a_2$ satisfies the statement.

If n > 2, then $a_i + b_i = 1_A$ for some $a_i \in \mathfrak{a}_1$ and $b_i \in \mathfrak{a}_{j>1}$. Thus the product $\prod_i (a_i + b_i) = 1_A$. In other words,

$$A = \mathfrak{a}_1 + \prod_{i=2}^n \mathfrak{a}_i.$$

By the case for n=2, there is an element y_1 such that,

$$y_1 \equiv 1_A \mod \mathfrak{a}_1 \text{ and } y_1 \equiv 0_A \mod \left(\prod_{i=2}^n \mathfrak{a}_i\right)$$

Since $\prod_{i=2}^n \mathfrak{a}_i \subseteq \bigcap_{i=2}^n \mathfrak{a}_i$, it follows that $y_1 \in \mathfrak{a}_i$ for all i>1 and therefore, $y \equiv 0_A \mod \mathfrak{a}_i$ for i>1. Carrying out the same procedure in similar fashion to obtain y_2, \ldots, y_n such that

$$y_i \equiv 1_A \mod \mathfrak{a}_i \text{ and } y_i \equiv 0_A \mod \mathfrak{a}_j, j \neq i,$$

we see that $x = \sum_{i=1}^{n} x_i y_i$ satisfies the statement of the theorem.

A non-zero polynomial f of degree d over a commutative ring A is homogenous iff for every set of n+1 algebraically independent elements u, t_1, \ldots, t_n over A,

$$f(ut_1,\ldots,ut_n)=u^df(t_1,\ldots,t_n).$$

 $\begin{array}{l} \textit{Proof.} \ \ \text{Let} \ f(X) = \sum_{(v)} a_{(v)} X_1^{v_1} \cdots X_n^{v_n}. \ \text{If} \ f \ \text{is homogenous of degree} \ d, v_1 + \cdots + v_n = d \ \text{for all} \ a_{(v)} \neq 0. \ f(ut_1, \ldots, ut_n) = \sum_{(v)} a_{(v)} (ut_1)^{v_1} \cdots (ut_n)^{v_n}. \ \text{Since} \ A \ \text{is commutative, this is equal to} \ \sum_{(v)} a_{(v)} u^{v_1 + \cdots + v_n} t_1^{v_1} \cdots t_n^{v_n}. \end{array}$

On the other hand, if $f(ut_1,\ldots,ut_n)=u^df(t_1,\ldots,t_n)$ m, then $\sum_{(v)}a_{(v)}u^{v_1+\cdots+v_n}=f(u1_A,\ldots,u1_A)=u^df(1_A,\ldots,1_A)=u^d\sum_{(v)}a_{(v)}$. This is a polynomial in u over A and equality is assured iff $u^d=u^{v_1+\cdots v_n}$.

Let G be a monid and let A[G] be the set of all mappings $\alpha:G\to A$ such that $\alpha(x)=0$ for almost all $x\in G$. Addition is defined ordinarily and multiplication is defined as

$$\alpha\beta(z) = \sum_{xy=z} \alpha(x)\beta(y).$$

Then A[G] is a ring. A more convenient notation can be acheived if we define $a \cdot x$ as

$$a \cdot x(z) = \begin{cases} a \text{ if } z = x \\ 0 \text{ if otherwise.} \end{cases}$$

This way we can define, $\alpha = \sum_{x \in G} \alpha(x) \cdot x$, and

$$\left(\sum_{x \in G} a_x \cdot x\right) \left(\sum_{y \in G} b_y \cdot y\right) = \left(\sum_{x,y} a_x b_y \cdot xy\right)$$

$$\bigg(\sum_{x \in G} a_x \cdot x\bigg) + \bigg(\sum_{x \in G} b_x \cdot y\bigg) = \bigg(\sum_{x \in G} (a_x + b_x) \cdot x\bigg),$$

where $\{a_z\}_{z\in G}$, $\{b_z\}_{z\in G}$ are the elements of A, most of them equal to 0.

The injective homomorphisms $x\mapsto 1_A\cdot x$ and $a\mapsto a\cdot e$ show that G and A are embedded in A[G].

Let A be a communitative ring and S be a multiplicative subset 1 . For $a, a' \in A$ and $s, s' \in S$, we say

$$(a,s) \sim (a',s')$$

if there is $s_1 \in S$ such that

$$s_1(as' - sa') = 0.$$

 \sim is an equivalence relation.

Proof. Symmetry and Reflexitvness are trivial. Transitivity can be verified as follows. Let $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$. Then for some $s_1,s_2 \in S$, we have

$$s_1ad = s_1bc$$

$$s_2 de = s_2 cf$$

Multiplying both sides of first and the second equation by s_2f and s_1b , it follows that $(s_1s_2d)(af-be)=0$.

This construction of ring is called **ring of fraction of** A **by** S, $S^{-1}A$. The homomorphism $A \mapsto S^{-1}A$ defined by $a \mapsto a/1_A$ is a universal object (See 1). If A is an integral domain, then $S^{-1}A$ is the field of fractions.

If A has a unique maximal ideal, it is called **a local ring.** An intersting example is $A_{\mathfrak{p}} = S^{-1}A$, where S is the multiplicative subset $A - \mathfrak{p}$.

Principal Ideal Domains and Unique Factorization

Let A be an prinicipal integral domain. We say a divides b if b = ac for some $c \in A$

Definition 9. d is called the greatest common divisor of a and b if and only if c|a and $c|b \implies c|d$.

Proposition 10. If $d = \gcd(a, b)$, then ar + bs = d for some $r, s \in A$.

 $^{^{1}}$ A subset containting 1_{A} and closed under multiplication

Proof. Let a = dx and b = dy. Because d is a gcd of a and b, for $c \notin A^* c \mid x \implies c \nmid y$ and vice versa, thus gcd(x, y) is a unit in A.

Now, $A \subseteq \langle x, y \rangle$. To show that, let $\langle z \rangle = \langle x, y \rangle$. Since $x, y \in \langle x, y \rangle$, $x = w_1 z$ and $y = w_2 z$. But then z should be a unit in A and thus $1_A \in \langle x, y \rangle$. The proposition follows directly. \Box

The proof also shows if $\langle a, b \rangle = \langle c \rangle$, then $c = \gcd(a, b)$.

Definition 11. We call $p \in A$ **irreducible** if p = ab for some $a, b \in A$, then $\{a, b\} \cap A^* \neq \emptyset$. If $c \in A$ can be written as a product of a unit in A and a product of some irreducibles in A, we call the product **a factorization** of c. If every non-zero element of A has a unique factorization (upto commutativity) we call A a **unique factorization domain** (**UFD**) or **factorial ring**.

Theorem 12. If A is a principal ideal domain, then A is a UFD.

Proof. Existence: Let S be the set of ideals of A generated by elements a_i that don't have factorization. Let $S \neq \emptyset$. Then $\langle a_1 \rangle \in S$.. Consider the chain,

$$\langle a_1 \rangle \subsetneq \langle a_2 \rangle \subsetneq \cdots \subsetneq \langle a_n \rangle \subsetneq \cdots$$

Because, A is a principal ideal domain $\bigcup_i \langle a_i \rangle = \langle a \rangle$ for some $a \in A$. However, $\langle a_i \rangle \subset \langle a_{i+1} \rangle$, $a \in \langle a_n \rangle$ for some n and the chain is finite. Thus if $\langle a \rangle \subsetneq \langle b \rangle$, then b admits factorization.

Remark 13. The fact that A is a principal ideal domain is important in constructing the chain. Consider the following chain if $A = \mathbb{Q}$, for example

$$\langle 1/2 \rangle \subsetneq \langle 1/4 \rangle \subsetneq \cdots \subsetneq \langle 1/2^n \rangle \subsetneq \cdots$$

The union of these ideals = \mathbb{Q} which is not a principal ideal.

Now, consider a. Clearly, a is not an irreducible. Thus Assume a=bc. But $\langle a \rangle \subsetneq \langle b \rangle$. Thus b (and also c) admits factorization and by induction a does making S empty.

Uniqueness First, we prove that irreducibility implies primality. Let p be irreducible and $\overline{\text{let }p\mid ab}$. If $p\nmid a$ then $\gcd(a,p)=1_A$ and $1_A=ax+py\implies b=abx+pby=p(c'x+by)$ for some c.

$$a = up_1 \cdots p_r = vq_1 \cdots q_s,$$

 $p_1 \mid q_1 \cdots q_s$ and WLOG, $q_1 = u_1 p_1$. Thus $u p_2 \cdots p_r = v u_1 q_2 \cdots q_s$. The argument completes by induction.