Computação Gráfica Unidade 2

prof. Dalton S. dos Reis dalton.reis@gmail.com

FURB - Universidade Regional de Blumenau DSC - Departamento de Sistemas e Computação Grupo de Pesquisa em Computação Gráfica, Processamento de Imagens e Entretenimento Digital http://www.inf.furb.br/gcg/

Unidade 02

- Conceitos básicos de computação gráfica
 - Estruturas de dados para geometria
 - Sistemas de coordenadas no JOGL
 - Primitivas básicas (vértices, linhas, polígonos)

- Objetivos Específicos
 - Aplicar os conceitos básicos de sistemas de referências e modelagem geométrica em computação gráfica 2D
- Procedimentos Metodológicos
 - Aula expositiva dialogadaMaterial programado
 - Atividades em grupo (laboratório)
- Instrumentos e Critérios de Avaliação
 - Trabalhos práticos (avaliação 2)

Software de interface para o hardware gráfico

OpenGL - Open Graphics Library

- Interface: aplicações de "renderização" gráfica
 - imagens coloridas de alta qualidade
 - primitivas geométricas (2D e 3D) e
 - por imagens
 - independência de sistemas de janelas
 - independência de sistemas operacionais
 - compatível com quase todas as arquiteturas
 - interface gráfica dominante

OpenGL - Open Graphics Library

http://www.opengl.org/about/overview/

renderização

- primitivas geométricas (2D e 3D) e
- por imagens

OpenGL – "Renderizador"

- Primitivas geométricas
 - pontos, linhas e polígonos
- Primitivas de imagens
 - imagens e bitmaps
 - canais independentes: geometria e imagem
 - ligação via mapeamento de textura
- "Renderização" dependente do estado
 - cores, materiais, fontes de luz, etc.

OpenGL - Sistema de Janelas

- Trata apenas de "renderização"
 - independente do sistema de janelas
 - X, Win32, Mac O/S
 - não possui funções de entrada
- Necessita interagir com o sistema operacional e o sistema de janelas
 - interface dependente do sistema é mínima
 - realizada através de bibliotecas adicionais : GLX, AGL, WGL

OpenGL - GLU, OpenGL Utility Library

- Funções para auxiliar a tarefa de produzir imagens complexas
 - manipulação de imagens
 - polígonos não-convexos
 - curvas
 - superfícies
 - esferas
 - etc.

OpenGL - GLUT, OpenGL Utility Toolkit

- API de janelas para o OpenGL
 - independente do sistema de janelas
 - indicado para programas:
 - pequeno e médio porte
 - processamento orientado à chamada de eventos (callbacks)
 - dispositivos de entrada

API: Interface para Programação de Aplicações

OpenGL - Prefixos

- OpenGL
 - gl, GL, GL_
 - para comandos, tipos e constantes, respectivamente
- GLU
 - glu, GLU, GLU_
- GLUT
 - glut, GLUT, GLUT_

OpenGL -, Passos Básicos

- Configurar e abrir janela (canvas)
- Inicializar o estado do OpenGL
- Registrar funções de entrada de callback
 - desenho ("renderização")
 - redimensionamento do canvas
 - entrada : mouse, teclado, etc.

Programação Convencional

Programação por Eventos

Aplicação

Gerenciador de Callbacks

OpenGL - Primitivas Geométricas

OpenGL - Formato, Especificação do Vértice

- Splines (ou curva polinomial)
 - origem:

- desenvolvida: De Casteljau em 1957 (P. De Casteljau, Citröen)
- formalizado: Bézier 1960 (Pierre Bézier)
- aplicações CAD/CAM
- pontos de controle
- bastante utilizada em modelagem tridimensional

178379
005.1, Z91em, MO (Anote para localizar o material)
Zoz, Jeverson
Estudo de metodos e algoritmos de Splines Bezier, Casteljau e B-Spline /Jeverson Zoz 1999. xii, 64p. :il.
Orientador: Dalton Solano dos Reis.

195268 Onc. 6, S586pt, MO (Anote para localizar o material) Silva, Fernanda Andrade Bordallo da Prototipo de um ambiente para geracao de superficies 3D com uso de Spline Bezier /Fernanda Andrade Bordallo da Silva. - 2000. ix, 51p. :il. Orientador: Dalton Solano dos Reis.

Tudo pode ser modelado por fórmulas, o problema é o custo envolvido Batman Equation $\left(\frac{x}{7}\right)^{2} \sqrt{\frac{||x|-3|}{|x|-3|}} + \left(\frac{y}{3}\right)^{2} \left| \frac{y + \frac{3\sqrt{33}}{7}}{y + \frac{3\sqrt{33}}{7}} - 1 \right| \cdot \left(\left| \frac{x}{2} \right| - \left(\frac{3\sqrt{33} - 7}{112} \right) x^{2} - 3 + \sqrt{1 - \left(\left| |x| - 2 \right| - 1 \right)^{2}} - y \right)$ $\left(9\sqrt{\frac{|(|x|-1)(|x|-.75)|}{(1-|x|)(|x|-.75)}} - 8|x| - y\right) \cdot \left(3|x|+.75\sqrt{\frac{|(|x|-.75)(|x|-.5)|}{(.75-|x|)(|x|-.5)}} - y\right)$ $\left(2.25 \frac{|(x-5)(x+5)|}{(.5-x)(.5+x)} - y\right) \cdot \left(\frac{6\sqrt{10}}{7} + (1.5-.5|x|) \frac{||x|-1|}{|x|-1} - \frac{6\sqrt{10}}{14} \sqrt{4 - (|x|-1)^2} - y\right) = 0.$ 2.8 4.2 5.6 -2.8

http://blog.wolframalpha.com/data/uploads/2013/07/Batman_lamina - Wolfram Alpha.png

http://www.ibiblio.org/e-notes/Splines/Intro.htm

Cita

```
function SPLINE_Inter(A,B,t,desenha)
     R = vec2(0,0)
     R.x = A.x + (B.x - A.x) * t/qtdPontos
     R.y = A.y + (B.y - A.y) * t/qtdPontos
     if desenha == 1 then
         stroke(0, 0, 255)
         rect(R.x-2,R.y-2,4,4)
     end
     return R
end
 function SPLINE_Desenha()
     if CurrentTouch.state == MOVING then
         ListaPtos[Ponto].x = CurrentTouch.x
         ListaPtos[Ponto].v = CurrentTouch.v
     end
     Pant = ListaPtos[1]
     for t = 0, qtdPontos do
         P1P2 = SPLINE_Inter(ListaPtos[1],ListaPtos[2],t,1)
         P2P3 = SPLINE_Inter(ListaPtos[2],ListaPtos[3],t,1)
         P3P4 = SPLINE_Inter(ListaPtos[3],ListaPtos[4],t,1)
         P1P2P3 = SPLINE_Inter(P1P2, P2P3, t, 1)
         P2P3P4 = SPLINE_Inter(P2P3, P3P4, t, 1)
         stroke(0,255,255)
         P1P2P3P4 = SPLINE_Inter(P1P2P3, P2P3P4, t, 0)
         line(Pant.x, Pant.y, P1P2P3P4.x, P1P2P3P4.y)
         Pant = P1P2P3P4
     end
```

end

Splines (Bezier)

$$\mathbf{B}(t) = (1-t)^3 \mathbf{P}_0 + 3t(1-t)^2 \mathbf{P}_1 + 3t^2(1-t)\mathbf{P}_2 + t^3 \mathbf{P}_3, \ t \in [0,1].$$

$$B_x(0,5) = 0.125 * 30 + 0.375 * 30 + 0.375 * 130 + 0.125 * 130 = 80$$

 $B_y(0,5) = 0.125 * 20 + 0.375 * 100 + 0.375 * 130 + 0.125 * 20 = 100$

Pesos	0,000	0,100	0,200	0,300	0,400	0,500	0,600	0,700	0,800	0,900	1,000
P0	1,000	0,729	0,512	0,343	0,216	0,125	0,064	0,027	800,0	0,001	0,000
P1	0,000	0,243	0,384	0,441	0,432	0,375	0,288	0,189	0,096	0,027	0,000
P2	0,000	0,027	0,096	0,189	0,288	0,375	0,432	0,441	0,384	0,243	0,000
Р3	0,000	0,001	800,0	0,027	0,064	0,125	0,216	0,343	0,512	0,729	1,000
Soma	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Pesos	0,000	0,100	0,200	0,300	0,400	0,500	0,600	0,700	0,800	0,900	1,000
P0	1,000	0,729	0,512	0,343	0,216	0,125	0,064	0,027	800,0	0,001	0,000
P1	0,000	0,243	0,384	0,441	0,432	0,375	0,288	0,189	0,096	0,027	0,000
P2	0,000	0,027	0,096	0,189	0,288	0,375	0,432	0,441	0,384	0,243	0,000
Р3	0,000	0,001	800,0	0,027	0,064	0,125	0,216	0,343	0,512	0,729	1,000
Soma	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Ver exemplo: http://www.ibiblio.org/e-notes/Splines/http://www.ibiblio.org/e-notes/Splines/animation.html

WireFrame bordas ocultas

WireFrame uv isolinhas

Face WireFrame

Face Shaded

Shaded

Linhas de reflexão

Imagem refletida

Box

Box

Tabela senos/cosenos e Teorema de Pitágoras

SEN	COS	grau
$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	30°
$\frac{\sqrt{2}}{2}$	$\sqrt{2}/2$	45°
$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	60°
SEN	COS	grau
1	0	90°
0	1	0°

$$sen \alpha = \frac{CO}{HIP} \qquad cos \alpha = \frac{CA}{HIP} \qquad \hat{a} + \hat{b} + \hat{c} = 180^{\circ}$$

$$sen \alpha = 1 - cos \alpha \qquad tan \alpha = \frac{sen \alpha}{cos \alpha}$$

$$cos \theta = \frac{ca}{h} \qquad cos(\alpha \pm \theta) = cos \alpha \times cos \theta \mp sen \alpha \times sen \theta$$

$$sen θ = {co \over h}$$
 $sen (α ± θ) = sen α × cos θ ± cos α × sen θ$

radiano:=grau * PI / 180;

```
public double RetornaX(double a){
          return (5 * Math.cos(Math.PI * a / 180.0));
}

public double RetornaY(double a){
          return (5 * Math.sin(Math.PI * a / 180.0));
}
```


Computational Geometry Algorithms Library - CGAL http://www.cgal.org/

	Theoretical	Computer Science Chest Sheet
	Definitions	Series
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$
$f(n) = \Omega(g(n))$	iff 3 positive c, n_0 such that $f(n) \ge cy(n) \ge 0 \ \forall n \ge n_0$.	In general:
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$
f(n)=o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{m-1} i^m = \frac{1}{m+1} \sum_{i=1}^{m} {m+1 \choose k} B_k n^{m+1-k}.$
$\lim_{n\to\infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:
sup S	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1}-1}{c-1}, c \neq 1, \sum_{i=0}^{n} c^{i} = \frac{1}{1-c}, \sum_{i=1}^{n} c^{i} = \frac{c}{1-c}, c < 1,$
inf S	greatest $b \in \mathbb{R}$ such that $b \le x$, $\forall x \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{m} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$
liminf a.	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series: $n(n+1) \dots n(n-1)$
lin sup a,	$\lim_{n\to\infty}\sup\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	$H_n = \sum_{i=1}^{n} \frac{1}{i}, \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$
(%)	Combinations: Size k sub- sets of a size n set.	$\sum_{i=1}^{n} H_{i} = (n+1)H_{n} - n, \sum_{i=1}^{n} {i \choose m} H_{i} = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1}\right).$
[2]	Stirling numbers (1st kind): Arrangements of an n ele- ment set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$, 3. $\binom{n}{k} = \binom{n}{n-k}$, $\binom{n}{k} = \binom{n}{n-k}$, $\binom{n}{k} = \binom{n}{n-k}$, $\binom{n}{k} = \binom{n}{n-k}$,
{ Z }	Stirling numbers (2nd kind): Partitions of an n element	$\begin{cases} 4. \binom{n}{k} - \frac{n}{k} \binom{n-1}{k-1}, & s. \binom{n}{k} - \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} - \binom{n}{k} \binom{n-k}{m-k}, & 7. \sum_{k=0}^{n} \binom{r+k}{k} - \binom{r+n+1}{n}, \end{cases}$
(%)	set into k non-empty sets. 1st order Eulerian numbers:	
187	Permutations $\pi_1\pi_2\pi_n$ on $\{1, 2,, n\}$ with k ascents.	$ 8. \sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1}, 9. \sum_{k=0}^{n} {r \choose k} {s \choose n-k} = {r+s \choose n}, $ $ 10. {n \choose k} = (-1)^k {k-n-1 \choose k}, 11. {n \choose 1} = {n \choose n} = 1, $ $ 12. {n \choose 2} = 2^{n-1} - 1, 19. {n \choose k} = k {n-1 \choose k} + {n-1 \choose k-1}, $
(%)	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{n-n-1}{k}$, 11. $\binom{n}{1} = \binom{n}{n} = 1$,
C _n	Catalan Numbers: Binary tress with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,
14. $ \begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)^{n-1} $	i)l, i8. $\begin{bmatrix} n \\ 2 \end{bmatrix} = \{n \cdot$	-1) H_{n-1} , 16. $\begin{bmatrix} n \\ n \end{bmatrix} = 1$, 17. $\begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix}$,
18. $ \begin{bmatrix} n \\ k \end{bmatrix} = (n-1)^{n-1} $	$\binom{n-1}{k} + \binom{n-1}{k-1}, 19. \binom{n}{n}$	$\begin{Bmatrix} n \\ -1 \end{Bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \binom{n}{2}, 20. \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, 21. C_n = \frac{1}{n+1} \binom{2n}{n},$
22. $\binom{n}{0} = \binom{n}{n}$	$\binom{n}{-1} = 1$, 23. $\binom{n}{k} = 1$	$\binom{n}{n-1-k}$, $24. \binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$, $\binom{n}{1} = 2^n - n - 1$, $27. \binom{n}{2} = 3^n - (n+1)2^n + \binom{n+1}{2}$,
A-0		$\binom{n+1}{k}(m+1-k)^n(-1)^k$, 90. $m!\binom{n}{m} = \sum_{k=0}^{n} \binom{n}{k} \binom{k}{n-m}$,
		92. $\binom{n}{0} = 1$, 93. $\binom{n}{n} = 0$ for $n \neq 0$,
00	$+1$ $\binom{n-1}{k}$ $+(2n-1-k)$ $\binom{n}{k}$	x=0 ·· ·
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = 1$	$\sum_{k=0}^{n} \binom{n}{k} \binom{x+n-1-k}{2n},$	S7. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=1}^{n} \binom{k}{m} (m+1)^{n-k}$,

Theoretical Computer Science Chest Sheet	
Identities Cont.	Trees
$38. \ {n+1\brack m+1} = \sum_k {n\brack k}{k\choose m} = \sum_{k=0}^n {k\brack m} n^{n-k} = n! \sum_{k=0}^n \frac{1}{k!}{n\brack m}, \qquad 39. \ {x\brack x-n} = \sum_{k=0}^n {n\choose k}{n\choose k}{x+k\choose 2n},$	Every tree with n vertices has n - 1 edges.
	Kraft inequal- its: If the depths
$ \left\{ \begin{array}{ll} 42. \left\{ \begin{array}{ll} m+n+1 \\ m \end{array} \right\} = \sum_{k=0}^{m} k \left\{ \begin{array}{ll} n+k \\ k \end{array} \right\}, & \qquad \qquad 43. \left[\begin{array}{ll} m+n+1 \\ m \end{array} \right] = \sum_{k=0}^{m} k(n+k) \left[\begin{array}{ll} n+k \\ k \end{array} \right], $	
	d_1, \dots, d_n : $\sum_{i=1}^{n} 2^{-d_i} \le 1$,
$ 46. \ \left\{ \begin{array}{l} n \\ n-m \end{array} \right\} = \sum_k \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, \qquad 47. \ \left[\begin{array}{l} n \\ n-m \end{array} \right] = \sum_k \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, $	and equality holds
$48. {n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k}, \qquad 49. {n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k}.$	only if every in- ternal node has 2 sons.
Recurrences	

Master method:

$$T(n)=aT(n/b)+f(n),\quad a\geq 1, b>1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_2 n - \epsilon})$ then

$$T(n) = \Theta(n^{\log_2 n}).$$

If
$$f(n) = \Theta(n^{\log_2 n})$$
 then
 $T(n) = \Theta(n^{\log_2 n} \log_2 n)$.

If $\exists e > 0$ such that $f(n) = \Omega(n^{\log_k n + \epsilon})$, and $\exists e < 1$ such that $af(n/b) \le cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{c+1} = 2^{2^k} \cdot T_c^2$$
, $T_1 = 2$.

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have $t_{i+1} = 2^i + 2t_i$, $t_1 = 1$.

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get $t_{i+1} = 2^i$, t_i

$$\frac{r_{i+1}}{2^{i+1}} = \frac{2}{2^{i+1}} + \frac{r_i}{2^i}$$

Substituting we find $u_{i+1} = \frac{1}{2} + u_i$, $u_i = \frac{1}{2}$,

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{d^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 2T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving Tare on the left side

$$T(n) - 2T(n/2) = n$$
.

Now expand the recurrence, and choose a factor which makes the left side "telescope" 1(T(n) - 3T(n/2) = n) 3(T(n/2) - 3T(n/4) = n/2) $\vdots \quad \vdots \quad \vdots$ $3^{\log_2 n - 4}(T(2) - 2T(1) = 2)$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^n T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.88496$. Summing the right side we get

$$\sum_{i=1}^{m-1} \frac{n}{2^{i}} J^{i} = n \sum_{i=1}^{m-1} {2 \choose 2}^{i}$$

Let $c = \frac{9}{6}$. Then we have

$$n \sum_{n=0}^{n-1} c^i = n \left(\frac{c^n - 1}{c - 1} \right)$$

= $2n(c^{\log_2 n} - 1)$
= $2n(c^{(k-1)\log_2 n} - 1)$
= $2n^k - 2n$,

and so $T(n) = 2n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j$$
, $T_0 = 1$.

Note that

$$T_{i+1} = 1 + \sum_{j=1}^{i} T_{j}$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- Multiply both sides of the equation by x⁴.
- Sum both sides over all i for which the equation is wald.
- Choose a generating function G(x). Usually G(x) = ∑_{i=0}[∞] xⁱg.
- Rewrite the equation in terms of the generating function G(x).
 Solve for G(x).
- The coefficient of x* in G(x) is g_i.
 Example:

$$g_{i+1} = 2g_i + 1$$
, $g_0 = 0$.

Multiply and sum:

$$\sum_{i \ge 0} g_{i+1} x^i = \sum_{i \ge 0} 2g_i x^i + \sum_{i \ge 0} x^i.$$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

mulify:

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for G(x):

$$G(x) = \frac{x}{(1-x)(1-2x)}$$

Expand this using partial fractions:

$$G(x) = x \left(\frac{2}{1 - 2x} - \frac{1}{1 - x}\right)$$

$$= x \left(2 \sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i\right)$$

$$= \sum_{i \ge 0} (2^{i+1} - 1)x^{i+1}.$$

So
$$g_i = 2^{\epsilon} - 1$$
.

			T	et .
_			Theoretical Computer Science Chest	
	$\pi \approx 3.14159$,	$e \approx 2.7$, , , , , , , , , , , , , , , , , , , ,	1.61802, $\dot{\phi} = \frac{1-\sqrt{8}}{2} \approx61803$
í	2*	p _c	General	Probability
1	2	2	Bernoulli Numbers $(B_i = 0, \text{ odd } i \neq 1)$:	Continuous distributions: If
2	4	3	$B_0 = 1$, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_4 = -\frac{1}{20}$,	$Pr[a < X < b] = \int_a^b p(x) dx,$
3	8	8	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{20}, B_{10} = \frac{1}{60}.$	then p is the probability density function of
4	16	7	Change of base, quadratic formula:	X. If
a	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	Pr[X < a] = P(a),
- 6	64	13	Euler's number e:	then P is the distribution function of X . If
7	128	17	$c = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{26} + \frac{1}{120} + \cdots$	P and p both exist then
8	256	19	c - 1 + 3 + 2 + 52 + 153 +	$P(a) = \int p(x) dx.$
9	812	23	$\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = e^x.$	Expectation: If X is discrete
10	1,024	29 31	$(1+\frac{1}{n})^n < \epsilon < (1+\frac{1}{n})^{n+1}$.	
11	2,048			$E[g(X)] = \sum_{x} g(x) Pr[X = x].$
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = \epsilon - \frac{\epsilon}{2n} + \frac{11\epsilon}{24n^2} - O\left(\frac{1}{n^3}\right).$	If X continuous then
13	8,192	41 43	Harmonic numbers:	$E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$
14	16,384	43	1, 1, 11, 21, 127, 20, 131, 20, 210, 2120,	7
18	32,768	13		Variance, standard deviation:
17	65,536 131,972	19	$\ln n < H_n < \ln n + 1$,	$VAR[X] = E[X^2] - E[X]^2,$
18	262.144	61	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right)$.	$\sigma = \sqrt{\text{VAR}[X]}$.
19	524,288	67	Factorial, Stirling's approximation:	For events A and B : $Pr[A \vee B] = Pr[A] + Pr[B] - Pr[A \wedge B]$
20	1,048,576	71	1, 2, 4, 24, 120, 720, x840, 48328, 342888,	$Pr[A \wedge B] = Pr[A] + Pr[B] - Pr[A \wedge B]$ $Pr[A \wedge B] = Pr[A] \cdot Pr[B],$
21	2.097.182	73	1,	iff A and B are independent.
22	4.194.304	79	$nl = \sqrt{2\pi n} \left(\frac{n}{\epsilon}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	
23	8,288,608	83	\-/ \ \-//	$Pr[A B] = \frac{Pr[A \wedge B]}{Pr[B]}$
24	16,777,216	89	Adarmann's function and inverse: i = 1	For random variables X and Y :
28	33,884,432	97	$a(i, j) = \begin{cases} 2^{j} & i = 1 \\ a(i - 1, 2) & j = 1 \\ a(i - 1, a(i, j - 1)) & i, j \ge 2 \end{cases}$	$E[X \cdot Y] = E[X] \cdot E[Y],$
26	67,108,864	101	$a(i-1,a(i,j-1))$ $i,j \ge 2$	# X and Y are independent.
27	134,217,728	103	$a(i) = \min\{j \mid a(j, j) \ge i\}.$	E[X + Y] = E[X] + E[Y],
28	268,435,456	107	Binomial distribution	$\mathbf{E}[cX] = c \mathbf{E}[X].$
29	536,870,912	109	$Pr[X = k] = {n \choose k} p^k q^{n-k}, q = 1 - p,$	Bayes' theorem:
30	1,073,741,824	113	11pt - ej - (k)p q , q - 1 - p,	$Pr[A_i B] = \frac{Pr[B A_i]Pr[A_i]}{\sum_{i=1}^{N} Pr[A_i]Pr[B A_i]}.$
31	2,147,483,648	127	$E[X] = \sum_{n=1}^{n} k \binom{n}{k} p^{k} q^{n-k} = np.$	$\sum_{j=1}^{n} P[A_j P[D A_j]$ Inclusion-exclusion:
32	4,294,967,296	131		
	Pascal's Triangl		Poisson distribution: $\Pr[X = k] = \frac{e^{-\lambda}\lambda^k}{k!}, E[X] = \lambda.$	$\Pr\left[\bigvee_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \Pr[X_{i}] +$
	1		$Pr[X = k] = \frac{e^{-it}X^t}{51}, E[X] = \lambda.$	
	11		Normal (Gaussian) distribution:	$\sum_{k=1}^{n} (-1)^{k+1} \sum_{0 \leq i, \leq n} \Pr \left[\bigwedge_{i=1}^{n} X_{ij} \right].$
	121		$p(x) = \frac{1}{\sqrt{2-x}}e^{-(x-\mu)^2/2x^2}, E[X] = \mu.$	k=2 u<- <u inequalities:<="" moment="" td="" y="1"></u>
	1331		7 410	· .
	14641		The "coupon collector": We are given a	$\Pr[X \ge \lambda E[X]] \le \frac{1}{\lambda}$
	1 5 10 10 5 1		random coupon each day, and there are n different types of coupons. The distribu-	$\Pr[X - \mathbf{E}[X] \ge \lambda \cdot \sigma] \le \frac{1}{12}$.
	1 6 15 20 15 6		tion of coupons is uniform. The experted	Geometric distribution:
	1 7 21 35 35 21 7		number of days to pass before we to col-	$Pr[X = k] = pq^{k-1}$, $q = 1 - p$,
	1 8 28 56 70 56 28		lect all n types is nH_n .	
1	9 26 84 126 126 84 5 120 210 282 210 1		nna.	$E[X] = \sum_{i=1}^{m} kpq^{k-1} = \frac{1}{p}.$
1 10 40	210 202 210 1	20 40 10 1		N=L

		ster Science Cheat Shee
Number Theory		Graph?
The Chinese remainder theorem: There ex-	Definitions:	
ists a number C such that:	Leep	An edge connecting a ver- tex to itself.
$C \equiv r_1 \mod m_4$	Directed	Each edge has a direction.
111	Simple	Graph with no loops or multi-edges.
$C \equiv r_n \mod m_n$	Walk	A sequence operation of the
if m_i and m_j are relatively prime for $i \neq j$.	Trad	A walk with distinct edges
Euler's function: $\phi(x)$ is the number of	Path	A trail with distinct
positive integers less than x relatively		vertices.
prime to x . If $\prod_{i=1}^{n} p_i^{n_i}$ is the prime fac- torization of x then	Connected	A graph where there exist a path between any two
$\phi(x) = \prod_{i=1}^{n} p_i^{a_i-1}(p_i-1).$		vertices.
***	Component	A maximal connected subgraph.
Euler's theorem: If a and b are relatively	Tree	A connected acyclic graph
prime then $1 = a^{\phi(b)} \mod b.$	Free tree	A tree with no root.
I is don't have be	DAG Eulerian	Directed acyclic graph.
Fermst's theorem:	Eurman	Graph with a trail visiting each edge exactly once.
$1 \equiv a^{p-1} \bmod p.$	Hamiltonian	Graph with a cycle visiting
The Euclidean algorithm: if $a > b$ are in- tegers then	Cut	each writex exactly once.
$gcd(a, b) = gcd(a \mod b, b).$	Cur	A set of edges whose re moved increases the non-
If $\prod_{i=1}^n p_i^{\alpha_i}$ is the prime factorization of x	Cut-set	ber of components. A minimal cut.
then	Cut edge	A minimal cut.
$S(x) = \sum_{i \mid x} d = \prod_{i=1}^{n} \frac{p_i^{n_i+1} - 1}{p_i - 1}.$		A graph connected with the removal of any k -
Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime.	k-Tough	vertices. $\forall S \subseteq V, S \neq \emptyset$ we have
Wilson's theorem: n is a prime iff $(n-1)! \equiv -1 \mod n$.	k-Regular	$k \cdot c(G - S) \le S $. A graph where all vertice
Möhius inversion: $\int 1$ if $i = 1$.	k-Factor	have degree k. A k-regular spannin subgraph.
$\mu(i) = \begin{cases} 1 & \text{if } i = 1, \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$	Matching	A set of edges, no two of which are adjacent.
r casunce permss.	Clique	A set of vertices, all o
If San San		which are adjacent.
$G(a) = \sum_{\mathbf{d} a} F(\mathbf{d}),$	Ind. set	A set of vertices, none of which are adjacent.
then (a)	Vertez cover	A set of vertices which
$F(a) = \sum_{d a} \mu(d)G(\frac{a}{d}).$	Planar graph	cover all edges. A graph which can be en
Prime numbers:		beded in the plane.
$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$	Plane graph	An embedding of a plans graph.
$+O\left(\frac{n}{\ln n}\right)$	Σ	$\deg(v) = 2m$.
		· ·
$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2\ln n}{(\ln n)^3}$	76 67 in all	then $n - m + f = 2$, so

 $+O\left(\frac{n}{(\ln n)^4}\right)$

	eticai compo	tter Science Cheat Sheet	
		Graph The	ä
1	Definitions:		
	Loop	An edge connecting a ver- tex to itself.	
ı	Directed	Each edge has a direction.	
	Simple	Graph with no loops or multi-edges.	
ı	W_{aik}	A sequence uprity erty.	
ı	Thui	A walk with distinct edges.	
	Path	A trail with distinct vartices.	
	Connected	A graph where there exists a path between any two vertices.	
	Component	A maximal connected subgraph.	
ı	Thee	A connected acyclic graph.	
ı	Free tree	A tree with no root.	
ı	DAG	Directed acyclic graph.	
	Eulerian	Graph with a trul visiting each edge exactly once.	
	Hamiltonian	Graph with a cycle visiting each writex exactly once.	
	Cut	A set of edges whose re- moval increases the num- ber of components.	
ı	Cut-set	A minimal cut.	
ı	Cut edge	A size 1 cut.	
	k-Connected	A graph connected with the removal of any $k-1$ vertices.	
	k-Tough	$\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \leq S $.	
	k-Regular	A graph where all vertices have degree k.	
	k-Factor	A k-regular spanning subgraph.	
	Matching	A set of edges, no two of which are adjacent.	
	Clique	A set of vertices, all of which are adjacent.	
	Ind. set	A set of vertices, none of which are adjacent.	
	Vertez cover	A set of vertices which cover all edges.	
	Planar graph	A graph which can be em- beded in the plane.	
	Plane graph	An embedding of a planar graph	

 $f\leq 2n-4, \quad m\leq 2n-6.$

Any planar graph has a vertex with do-

Notation: E(G) Edge set V(G) Vertex set

 $\Delta(G)$

x = c

metric:

and (x_2, y_2) :

and (x_1, y_1) :

dog(v) Degree of v

Number of components Induced subgraph

Maximum degree Minimum degree Chromatic number $\chi_{E}(G)$ Edge chromatic number Complement graph Complete graph K_{n_0,n_0} Complete bipartite graph $\mathbf{r}(k,\ell)$ Ramsey number Geometry Projective coordinates: triples (x, y, z), not all x, y and z zero. $(x,y,z) = (cx,cy,cx) \quad \forall c \neq 0.$ Cartesian Projective

(1,0,-c)

Distance formula, L_p and L_m

 $\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}$ $[|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p}$ $\lim_{p \to \infty} [|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p}.$ Area of triangle (x_0, y_0) , (x_1, y_1)

Angle formed by three points:

 $\cos\theta = \frac{(x_1,y_1)\cdot(x_2,y_2)}{}$ Line through two points (x_0, y_0)

x 9 1 $x_0 \quad y_0 \quad 1 = 0$ x1 y1 1 Area of circle, volume of sphere:

 $A = \pi r^2$, $V = \frac{4}{3}\pi r^2$.

If I have seen further than others,

it is because I have stood on the

shoulders of giants. - Issue Newton

$\frac{1}{2}$		

The	retical Computer Science Cheat She	set
Ŧ	Calc	rdus
Wallie' identity: $\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{2 \cdot 2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}$	Derivatives:	
1.2.2.0.0.1	1. $\frac{d(cu)}{dr} = c\frac{du}{dr}$, 2. $\frac{d(u+v)}{dr} =$	$\frac{du}{dx} + \frac{dv}{dx}$, $3. \frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$,
Brounder's continued fraction expansion:		
Broundser's continued fraction expansion: $\frac{1^2}{2 + \frac{3^2}{2 + \frac{3^2}}{2 + \frac{3^2}{2 +$		$\frac{v\left(\frac{du}{dx}\right) - u\left(\frac{du}{dx}\right)}{v^2}$, 6. $\frac{d(e^{nu})}{dx} = ce^{nu}\frac{du}{dx}$,
	7. $\frac{d(c^n)}{dx} = (\ln c)c^n \frac{du}{dx}$,	8. $\frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx}$,
Gregory's series: $\frac{7}{3} = 1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{7} + \frac{1}{9} - \cdots$	9. $\frac{d(\sin u)}{dx} = \cos u \frac{du}{dx}$	$10. \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx},$
Newton's series:	. d(tsnu) - ds	a dicentral da
$\bar{\epsilon} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^4} + \cdots$	11. $\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$	12. $\frac{d(\cot u)}{dz} = \cot^2 u \frac{du}{dz},$
Sharp's series:	13. $\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$,	14. $\frac{d(\cot u)}{dx} = -\cot u \cot u \frac{du}{dx},$
$_{ii}^{a}=\frac{1}{\sqrt{3}}\Big(1-\frac{1}{2^{2}\cdot 2}+\frac{1}{2^{2}\cdot 6}-\frac{1}{3^{3}\cdot 7}+\cdots\Big)$	18. $\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx},$	16. $\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx},$
Euler's series:	17. $\frac{d(\arctan u)}{dx} = \frac{1}{1 + u^2} \frac{du}{dx},$	18. $\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1 + u^2} \frac{du}{dx},$
$\frac{a^2}{a} = \frac{1}{2}a + \frac{1}{2}a + \frac{1}{2}a + \frac{1}{2}a + \frac{1}{2}a + \frac{1}{2}a + \cdots$	19. $\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}}\frac{du}{dx},$	20. $\frac{d(\operatorname{arccsc} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx},$
$\frac{a^2}{b^2} = \frac{1}{2}b_1 + \frac{1}{2}b_2 + \frac{1}{2}b_3 + \frac{1}{2}b_4 + \frac{1}{2}b_5 + \cdots$		
$\frac{s^2}{12} = \frac{1}{12} - \frac{1}{2^2} + \frac{1}{2^2} - \frac{1}{2^2} + \frac{1}{3^2} - \cdots$	21. $\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$,	22. $\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$,
Partial Fractions Let $N(x)$ and $D(x)$ be polynomial func-	23. $\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$,	$24. \frac{d(\coth u)}{dx} = - \cosh^2 u \frac{du}{dx},$
tions of x . We can break down $N(x)/D(x)$ using partial fraction expan-	28. $\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$	$26. \ \frac{d(\cosh u)}{dr} = - \cosh u \ \coth u \frac{du}{dr},$
sion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining	27. $\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$	28. $\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx},$
$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$	$29. \frac{d(\operatorname{arctanh} u)}{dr} = \frac{1}{1 - u^2} \frac{du}{dr},$	$90. \ \frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx},$
where the degree of N' is less than that of D. Second, factor $D(x)$. Use the follow-	31. $\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx},$	32. $\frac{d(\operatorname{arcesch} u)}{dx} = \frac{-1}{ u \sqrt{1+u^2}} \frac{du}{dx}.$
ing rules: For a non-repeated factor: N(x) = A = N'(x)	Integrals:	
$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$ where	1. $\int cudx = c \int udx$,	2. $\int (u + v) dx = \int u dx + \int v dx,$
$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$	3. $\int x^n dx = \frac{1}{n+1}x^{n+1}, n \neq -1,$	4. $\int \frac{1}{x} dx = \ln x$, 8. $\int e^x dx = e^x$,
For a repeated factor: $N(x) = \frac{n-1}{x} A_1 = N'(x)$	6. $\int \frac{dx}{1+x^2} = \arctan x,$	7. $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$
$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$	8. $\int \sin x dx = -\cos x$,	9. $\int \cos x dx = \sin x,$
where $A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]$	10. $\int \tan x dx = -\ln \cos x ,$	11. $\int \cot x dx = \ln \cos x ,$
The reasonable man adapts himself to the	12. $\int \sec x dx = \ln \sec x + \tan x $,	13. $\int \csc x dx = \ln \csc x + \cot x ,$
world; the unreasonable persists in trying	· .	5
to adapt the world to himself. Therefore all progress depends on the unreasonable.	14. $\int \arcsin \frac{\pi}{a} dx = \arcsin \frac{\pi}{a} + \sqrt{a^2 - a}$	r*, a>0,
- George Bernard Shaw		

Theoretical Computer Science Cheat Sheet	
Calmilus Cont.	
15. $\int \arccos \frac{\pi}{a} dx = \arccos \frac{\pi}{a} - \sqrt{a^2 - x^2}, a > 0,$ 16. $\int \arctan \frac{\pi}{a} dx = x \arctan \frac{\pi}{a} - \frac{\pi}{2} \ln(a^2 + x^2), a > 0$	0,
17. $\int \sin^2(ax)dx = \frac{1}{2a}(ax - \sin(ax)\cos(ax)),$ 18. $\int \cos^2(ax)dx = \frac{1}{2a}(ax + \sin(ax)\cos(ax)).$	1),
19. $\int \sec^2 x dx = \tan x$, 20. $\int \csc^2 x dx = -\cot$	x,
$21. \int \sin^n x dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-1} x dx, \qquad 22. \int \cos^n x dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x dx$	ir,
$23. \int \tan^n x dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x dx, n \neq 1,$ $24. \int \cot^n x dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x dx, n \neq 1,$	1,
25. $\int \sec^n x dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-1} x dx, n \neq 1,$	
$28. \int \csc^n x dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \cot^{n-2} x dx, n \neq 1, 27. \int \sinh x dx = \cosh x, 28. \int \cosh x dx = \sinh x $	
29. $\int \tanh x dx = \ln \cosh x $, 30. $\int \coth x dx = \ln \sinh x $, 31. $\int \operatorname{sech} x dx = \arctan \sinh x$, 32. $\int \operatorname{cech} x dx = \ln \tanh x $	
93. $\int \sinh^2 x dx = \frac{1}{2} \sinh(2\pi) - \frac{1}{2}x$, 34. $\int \cosh^2 x dx = \frac{1}{2} \sinh(2x) + \frac{1}{2}x$, 35. $\int \operatorname{soch}^2 x dx = \tanh(2\pi) - \frac{1}{2}x$	
98. $\int \operatorname{arcsinh} \frac{a}{a} dx = x \operatorname{arcsinh} \frac{a}{a} - \sqrt{x^2 + a^2}, a > 0,$ 97. $\int \operatorname{arctanh} \frac{a}{a} dx = x \operatorname{arctanh} \frac{a}{a} + \frac{a}{2} \ln a^2 - x^2 $	۹,
38. $\int \operatorname{arccosh} \frac{\pi}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{\pi}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{\pi}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{\pi}{a} < 0 \text{ and } a > 0, \end{cases}$	
39. $\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln \left(x + \sqrt{a^2 + x^2}\right), a > 0,$	
40. $\int \frac{dx}{a^2 + x^2} = \frac{s}{a} \arctan \frac{s}{a}, a > 0,$ 41. $\int \sqrt{a^2 - x^2} dx = \frac{s}{2} \sqrt{a^2 - x^2} + \frac{s^2}{2} \arcsin \frac{s}{a}, a > 0.$	0,
42. $\int (a^2 - x^2)^{3/2} dx = \frac{\pi}{6} (\delta a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3\pi^4}{8} \arcsin \frac{\pi}{4}, a > 0,$	
$43. \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, a > 0, \qquad 44. \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right , \qquad 48. \int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}$	
46. $\int \sqrt{a^2 \pm x^2} dx = \frac{\pi}{2} \sqrt{a^2 \pm x^2} \pm \frac{\pi^2}{2} \ln \left x + \sqrt{a^2 \pm x^2} \right , \qquad 47. \int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left x + \sqrt{x^2 - a^2} \right , a > 0.$	-
$48. \int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left \frac{x}{a + bx} \right ,$ $49. \int x\sqrt{a + bx} dx = \frac{2(3bx - 2a)(a + bx)^{3/2}}{16b^2}$	
80. $\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$ 81. $\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right , a > 0$	
$82. \int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right ,$ $83. \int x \sqrt{a^2 - x^2} dx = -\frac{1}{3} (a^2 - x^2)^{3/3}$	
$84. \int x^2 \sqrt{a^2 - x^2} dx = \frac{\pi}{6} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{\pi^4}{6} \arcsin \frac{\pi}{4}, a > 0,$ $88. \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right $	
88. $\int \frac{x dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$ 87. $\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{\pi}{2} \sqrt{a^2 - x^2} + \frac{\pi^2}{2} \arcsin \frac{\pi}{a}, a > 0$	
$88. \int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left \frac{a + \sqrt{a^2 + x^2}}{x} \right , \qquad 89. \int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{ x }, a > a$	
$60. \int x\sqrt{x^2 \pm a^2} dx = \frac{1}{2}(x^2 \pm a^2)^{3/2}, \qquad 61. \int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left \frac{x}{a + \sqrt{a^2 + x^2}} \right $	ŀ

Theoretical Computer Science Cheat Sheet				
Calculus Cont.	Finite Calculus			
$a_{11} = \int dz$ dz dz dz $\sqrt{z^{2} \pm a^{2}}$	Difference, shift operators:			
62. $\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{ a }, a > 0,$ 63. $\int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2x},$	$\Delta f(x) = f(x + 1) - f(x),$			
64. $\int \frac{x dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2}, \qquad \qquad 68. \int \frac{\sqrt{x^2 \pm a^2}}{x^2} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2x^2},$	Ef(x) = f(x + 1).			
64. $\int \frac{1}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2}$, 65. $\int \frac{1}{x^4} dx = \frac{1}{3a^2x^2}$,	Fundamental Theorems			
66. $\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right , & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$	$f(x) = \Delta F(x) \Leftrightarrow \sum f(x)\delta x = F(x) + C.$			
$66. \int \frac{dx}{-4ac} = \left\{ \sqrt{b^2 - 4ac} \left[2ax + b + \sqrt{b^2 - 4ac} \right] \right\}$	F _ F:			
$\int ax^2 + bx + c = \frac{2}{arctan} \frac{2ax + b}{arctan}, \text{if } b^2 < 4ac.$	$\sum_{i=1}^{n} f(x)\delta x = \sum_{i=1}^{n-1} f(i).$			
$\sqrt{4ac-b^2}$ $\sqrt{4ac-b^2}$	Differences:			
67. $\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right , & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$	$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$			
67. / dr = \ \frac{\sqrt{a}}{\sqrt{a}}	$\Delta(uv) = u\Delta v + Ev\Delta u$,			
$\int \sqrt{ax^2 + bx + c} = \frac{1}{a} \operatorname{arcein} \frac{-2ax - b}{ac}, \text{if } a < 0,$	$\Delta(x^n) = nx^{n-1}$.			
	$\Delta(H_{\pi}) = x^{-1},$ $\Delta(2^{\pi}) = 2^{\pi},$			
$68. \int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$	$\Delta(c^*) = (c-1)c^*,$ $\Delta(c^*) = (c^*).$			
$\int \sqrt{ax^2 + bx + c^2} = \frac{4a}{4a} \sqrt{ax^2 + bx + c^2}$	$\Delta(e^{-}) = (e - 1)e^{-}, \qquad \Delta(_{ee}) = (_{ee-1}).$ Sums:			
$f = xdx = \sqrt{ax^2 + bx + c} = b = f = dx$	$\sum cu \delta x = c \sum u \delta x,$			
69. $\int \frac{x dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$				
	$\sum (u+v) \delta x = \sum u \delta x + \sum v \delta x,$			
70. $\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right , & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \frac{bx + 2c}{ x \sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$	$\sum u\Delta v \delta x = uv - \sum E v \Delta u \delta x,$			
70. $\int \frac{dx}{x\sqrt{ax^2+bx+c}} = \begin{cases} \sqrt{c} & 1 \\ 1 & bx+2c \end{cases}$	$\sum x^{\underline{n}} \delta x = \frac{n+1}{m+1}, \qquad \sum x^{-1} \delta x = H_{\underline{n}},$			
$\frac{1}{\sqrt{-c}} \arcsin \frac{1}{ x \sqrt{b^2 - 4ac}}, \text{if } c < 0,$	$\sum c^{\bullet} \delta x = \frac{c^{\bullet}}{c-1}, \qquad \sum \binom{c}{c} \delta x = \binom{c}{c-1}.$			
	Faling Factorial Powers:			
71. $\int x^3 \sqrt{x^3 + a^2} dx = (\frac{1}{2}x^2 - \frac{2}{16}a^3)(x^2 + a^2)^{3/2},$	$x^n = x(x-1) \cdots (x-n+1), n > 0,$			
72. $\int x^n \sin(ax) dx = -\frac{i}{a}x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) dx$,	$x^{0} = 1$,			
12. j = m(u) u = -1 = m(u) + 1 j = m(u) u;	$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+ n)}, n < 0,$			
73. $\int x^n \cos(ax) dx = \frac{1}{a}x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$,				
	$z^{n+m} = z^{m}(z-m)^{n}.$			
74. $\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx$,	Rising Factorial Powers: $x^K = x(x + 1) \cdots (x + n - 1), n > 0,$			
78. $\int x^n \ln(ax) dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right)$,	$x^{0}=1$,			
76. $\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{n-1} dx$.	$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x- n)}, n < 0,$			
76. $\int x^{n}(\ln ax)^{n} dx = \frac{1}{n+1}(\ln ax)^{n} - \frac{1}{n+1}\int x^{n}(\ln ax)^{n-1} dx$.	$z^{\overline{n+m}} = z^{\overline{m}}(z+m)^{\overline{n}}$.			
	Commenions			
تو ــ شي ــ شي	$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$			
z ² = z ² +z ¹ = z ² -z ²	$=1/(x+1)^{-x}$			
$x^3 = x^3 + 3x^3 + x^4 = x^3 - 3x^2 + x^4$	$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x + n - 1)^{\underline{n}}$			
$x^4 = x^4 + 6x^3 + 7x^3 + x^4 = x^7 - 6x^7 + 7x^7 - x^7$	= 1/(x - 1)==,			
$x^{h} = -x^{h} + 15x^{h} + 25x^{h} + 10x^{h} + x^{h} = -x^{h} - 15x^{2} + 25x^{2} - 10x^{2} + x^{2}$				
$x^{\dagger} = -x^{i}$ $x^{\underline{i}} = -x^{i}$	$x^n = \sum_{k=1}^{\infty} {n \choose k} x^k = \sum_{k=1}^{\infty} {n \choose k} (-1)^{n-k} x^k$			
z- z- z- z- z- z z	→ [n]			
x = x + x = x - x - x - x - x - x - x - x - x -	$x^{\underline{n}} = \sum_{i=1}^{n} {n \brack k} (-1)^{n-k} x^{\underline{k}},$			
$x^2 = x^4 + 6x^3 + 11x^2 + 6x^4$ $x^4 = x^4 - 6x^3 + 11x^2 - 6x^4$	A			
$x^{5} = x^{5} + 10x^{4} + 25x^{3} + 50x^{2} + 24x^{4}$ $x^{5} = x^{5} - 10x^{4} + 35x^{3} - 50x^{2} + 24x^{4}$	$x^{K} = \sum_{i}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^{k}$.			
	Ant to a			

Theoretical Computer Science Cheat Sheet					
Series					
Taylor's series:			On		
f(x) = f(a) + (x-a)f'(a)	$(a) + \frac{(x-a)^2}{2}f^0(a) + \cdots = \sum_{i=0}^{m} \frac{(a)^2}{2}$	$\frac{(\epsilon - a)^{\epsilon}}{i!} f^{(\epsilon)}(a).$			
Expansions:		_	Exp		
$\frac{1}{1-x}$	$=1+x+x^2+x^3+x^4+\cdots$	$=\sum_{i=1}^{\infty}x^{i}$,	r.sq		
$\frac{1}{1-cx}$	$= 1 + ax + c^2x^2 + c^2x^3 + \cdots$	$=\sum_{i=1}^{\infty}e^{i}x^{i},$	Die		
$\frac{1}{1-x^n}$	$=1+x^n+x^{2n}+x^{2n}+\cdots$	$=\sum_{i=1}^{m}x^{n_i}$,			
$\frac{x}{(1-x)^2}$	$= x + 2x^2 + 3x^3 + 4x^4 + \cdots$	$=\sum_{i=0}^{m} ix^{i}$,	Bin		
$x^k \frac{d^n}{dx^n} \left(\frac{1}{1-x} \right)$	$= x + 2^n x^2 + 3^n x^3 + 4^n x^4 + \cdots$	$=\sum_{i=1}^{m}i^{\alpha}z^{i},$	Diff		
٠.	$= 1 + z + \tfrac{i}{2}z^2 + \tfrac{i}{6}z^3 + \cdots$	$=\sum_{i=1}^{\infty}\frac{x^{i}}{i!},$	2.		
ln(1+x)	1-2 : 1-2 1-4	- V - 174+1 z 4	For		
	$= x - \frac{1}{2}x^2 + \frac{1}{2}x^3 - \frac{1}{2}x^4 - \cdots$	1=2	a.A		
$\ln \frac{1}{1-x}$	$= x + \frac{i}{2}x^2 + \frac{i}{2}x^3 + \frac{i}{2}x^4 + \cdots$	1=2			
win z	$= x - \frac{1}{2i}x^3 + \frac{1}{3i}x^3 - \frac{1}{7i}x^7 + \cdots$		A		
conz	$=1-\frac{1}{2 }x^2+\frac{1}{2 }x^4-\frac{1}{6 }x^6+\cdots$				
$\tan^{-1}x$	$=x-\frac{1}{2}x^{2}+\frac{1}{2}x^{3}-\frac{1}{7}x^{7}+\cdots$	$= \sum_{i=1}^{m} (-1)^{i} \frac{x^{2i+1}}{(2i+1)},$			
$(1+x)^n$	$=1+nx+\tfrac{n(n-1)}{2}x^2+\cdots$				
$\frac{1}{(1-x)^{n+1}}$	$=1+(n+1)x+\binom{n+2}{2}x^2+\cdots$	$=\sum_{i=1}^{m} {i+n \choose i} x^i$			
$\frac{x}{e^x-1}$	$=1-\frac{i}{2}x+\frac{i}{12}x^2-\frac{i}{12}x^4+\cdots$	$=\sum_{i=1}^{m}\frac{B_{i}x^{i}}{i!}$,			
$\frac{1}{2\pi}(1-\sqrt{1-4\pi})$	$=1+x+2x^2+\delta x^2+\cdots$	$= \sum_{i=1}^{m} \frac{1}{i+1} {2i \choose i} x^{i},$	A		
$\frac{1}{\sqrt{1-4\pi}}$	$=1+z+2z^2+6z^9+\cdots$	$=\sum_{i=1}^{m} {2i \choose i} x^i$,	<u>A</u>		
$\frac{1}{\sqrt{1-4x}} \left(\frac{1-\sqrt{1-4x}}{2x} \right)^n$	$=1+(2+n)x+\left(\begin{smallmatrix}4+n\\2\end{smallmatrix}\right)x^2+\cdots$	$= \sum_{i=1}^{m} {2i+n \choose i} x^{i},$	Sur		
$\frac{1}{1-x}\ln\frac{1}{1-x}$	$= x + \frac{3}{2}x^2 + \frac{11}{6}x^3 + \frac{21}{12}x^4 + \cdots$	$=\sum_{i=1}^{m}H_{i}x^{i}$,	Cor		
$\frac{1}{2} \left(\ln \frac{1}{1-x} \right)^2$	$= \tfrac{1}{2}x^2 + \tfrac{9}{4}x^3 + \tfrac{11}{24}x^4 + \cdots$	$=\sum_{i=1}^m\frac{H_{i-1}x^i}{i},$	A (

 $\frac{F_nx}{1-(F_{n-1}+F_{n+1})x-(-1)^nx^2} = F_nx+F_{2n}x^2+F_{3n}x^3+\cdots = \sum_{i=1}^m F_{ni}x^i.$

dinary power series:

$$A(x) = \sum_{i=1}^{m} a_i x^i$$

sponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

irichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^*}$$

$$(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

$$x^n - y^n = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^k$$
.

$$aA(x) + \beta B(x) = \sum_{i=0}^{m} (aa_i + \beta b_i)x^i$$

 $x^bA(x) = \sum_{i=0}^{m} a_{i-k}x^i,$
 $\frac{A(x) - \sum_{i=0}^{k-1} a_ix^i}{a_i + b_i} = \sum_{i=0}^{m} a_{i+k}x^i,$

$$A(cx) = \sum_{i=0}^{m} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{m} (i+1)a_{i+1}x_i$$

$$xA'(x) = \sum_{i=1}^{\infty} ia_i x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{n=0}^{\infty} a_{2n}x^{2n}$$

$$\frac{A(x)-A(-x)}{2} = \sum_{i=0}^m a_{2i+1} x^{2i+1}$$

emmation: If $b_i = \sum_{j=0}^{i} a_i$ then

$$A(x)B(x) = \sum_{i=0}^{m} \left(\sum_{j=0}^{i} a_{j}b_{i-j} \right) x^{i}$$

God made the natural numbers: all the rest is the work of man. - Leopold Kronecker

Theoretical Computer Science Cheat Sheet					
	Series		Escher's Knot		
Expansions:		_			
$\frac{1}{(1-x)^{n+1}}\ln\frac{1}{1-x}$	$= \sum_{i=1}^{m} (H_{n+i} - H_n) \binom{n+i}{i} x^i,$	4-0 ()	ALCOHOL: N		
z	$=\sum_{i=1}^{\infty} \begin{bmatrix} x_i \\ i \end{bmatrix} x^i$,	$(\epsilon^n - 1)^n = \sum_{i=0}^m \left\{ \frac{i}{n} \right\} \frac{n! x^i}{i!},$			
	$= \sum_{i=1}^{m} \begin{bmatrix} i \\ n \end{bmatrix} \frac{n \ln^{i}}{i!},$	$z \cot z = \sum_{i=0}^{m} \frac{(-4)^{i}B_{3i}x^{2i}}{(2i)!},$			
tanz	$= \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i}-1)B_{2i}x^{2i-1}}{(2i)!},$	$\zeta(x) = \sum_{i=1}^{m} \frac{1}{i^*},$			
$\frac{1}{\zeta(x)}$	$=\sum_{i=1}^{m}\frac{\mu(i)}{i^{\alpha}},$	$\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{m} \frac{\phi(i)}{i^n},$			
$\zeta(x)$	$=\prod_{i=1}^{n}\frac{1}{1-p^{-x_i}}$	Stieltjes I	Integration		
	, .	If G is continuous in the interval	1[a, b] and F is nondecreasing then		
ζ ² (x)	$=\sum_{i=1}^{n}\frac{d(i)}{x^{i}}$ where $d(n)=\sum_{d n}1$,	7.4	N(x) dF(x)		
1	$=\sum_{i=1}^{\infty} \frac{S(i)}{x^i}$ where $S(n) = \sum_{d n} d$,	exists. If $a \le b \le c$ then $\int_{-\infty}^{\infty} G(x) dF(x) = \int_{-\infty}^{b} G(x) dF(x) + \int_{0}^{\infty} G(x) dF(x).$			
ζ(2n)	$=\frac{2^{2n-1} B_{2n} }{(2n)!}\pi^{2n}, n \in \mathbb{N},$	If the integrals involved exist			
z sinz	$= \sum_{i=0}^{\infty} (-1)^{i-1} \frac{(4^i - 2)B_{2i}x^{2i}}{(2i)!},$	**.	$\int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$		
$\left(\frac{1-\sqrt{1-4x}}{2x}\right)^n$	$= \sum_{i=0}^{\infty} \frac{n(2i+n-1)!}{i!(n+i)!} x^{i},$	$\int_{a} G(x) d(F(x) + H(x)) = \int_{a}^{b} G(x) d(F(x) + H(x)) = \int_{a}^{b} G(x) d(F(x) + H(x)) d(x)$	$\int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$		

r) $dF(x) + \int_{-\infty}^{\infty} H(x) dF(x)$, $\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d(c \cdot F(x)) = c \int_{a}^{b} G(x) dF(x),$

If the integrals involved exist, and F possesses a derivative F' at every

$$\int_{a}^{b} G(x) dF(x) = \int_{a}^{b} G(x)F'(x) dx.$$

Cramer's Rule

If we have equations: $a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,n}x_n = b_1$ $a_{2,1}x_1 + a_{2,2}x_2 + \cdots + a_{2,n}x_n = b_2$

 $a_{n,1}x_1 + a_{n,2}x_2 + \cdots + a_{n,n}x_n = b_n$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be Awith column i replaced by B. Then $x_i = \frac{\det A_i}{\det A}.$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius. William Blake (The Marriage of Heaven and Hell).

21 32 49 54 65 00 10 68 05 58 42 a3 64 0a 16 20 31 58 19 87

The Fibonacci number system: Every integer n has a unique representation

 $n = F_{k_0} + F_{k_0} + \cdots + F_{k_m}$, where $k_i \ge k_{i+1} + 2$ for all i, $1 \le i < m$ and $k_m \ge 2$.

Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 65, 89, . .

 $F_i = F_{i-1} + F_{i-2}, \quad F_0 = F_1 = 1,$ $F_{-\epsilon} = (-1)^{\epsilon-1}F_{\epsilon},$ $F_i = \frac{1}{\sqrt{2}} \left(\phi^i - \hat{\phi}^i \right),$ Causini's identity: for i > 0:

 $F_{i+1}F_{i-1} - F_i^2 = (-1)^i$. Additive rule:

 $F_{n+k} = F_k F_{n+1} + F_{k-1} F_n$, $F_{2n} = F_n F_{n+1} + F_{n-1} F_n$

Calculation by matrices:

 $\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$

Computação Gráfica Unidade 02

prof. Dalton S. dos Reis dalton.reis@gmail.com

FURB - Universidade Regional de Blumenau DSC - Departamento de Sistemas e Computação Grupo de Pesquisa em Computação Gráfica, Processamento de Imagens e Entretenimento Digital http://www.inf.furb.br/gcg/

