

Recent advances in learning with graphs

Xiaowen Dong

Department of Engineering Science University of Oxford

Networks are pervasive

networks are mathematically represented by graphs

Data collected in networks are pervasive

congestion in road junctions

preferences of individuals

activities in brain regions

from graphs to graph-structured data

Learning with graph-structured data

graph-level classification (supervised)

node-level classification (semi-supervised)

Exciting possibilities enabled by graph ML

fake news detection

drug discovery

traffic prediction

Twitter buys Al startup founded by Imperial academic to tackle fake news

Graph-structured data can be represented by graph signals

$$G = \{V, E\}$$

$$V_1 \qquad V_2 \qquad \bullet \qquad \bullet \qquad \bullet$$

$$V_1 \qquad V_2 \qquad \bullet \qquad \bullet$$

$$V_1 \qquad V_2 \qquad \bullet \qquad \bullet$$

$$V_2 \qquad \bullet \qquad \bullet$$

takes into account both structure (edges) and data (values at nodes)

2D signal

f: V! R

how to generalise classical signal processing tools on irregular domains such as graphs?

dassical signal processing

- complex exponentials provide "building blocks" of 1D signal (different oscillations or frequencies)
- leads to Fourier transform
- enables frequency filtering (equivalent to convolution)

dassical signal processing

- complex exponentials provide "building blocks" of 1D signal (different oscillations or frequencies)
- leads to Fourier transform
- enables frequency filtering (equivalent to convolution)

graph signal processing

- Laplacian eigenvectors provide
 "building blocks" of graph signal
 (different oscillation or frequencies)
- leads to graph Fourier transform
- enables convolution and filtering on graphs

Convolutional neural networks on graphs

Convolutional neural networks on graphs

(More generally) Graph neural networks

(More generally) Graph neural networks

more recently: graph transformers and LLM-powered models

Our research - Theoretical investigation

filter stability

understanding/mitigating over-squashing

adversarial attacks

dynamic message passing with delay

Our research - Applications

urban gentrification

financial market analysis

social network polarisation

Why we need JADE

- Graph-structured datasets are typically very large
 - millions of nodes and billions of edges
 - rich features associated with nodes/edges
- Graph ML models can be computationally costly to train
 - on large graphs (even with linear complexity)
 - for graph transformers (in theory quadratic complexity)
- Graph ML tasks take diverse forms
 - graph-level tasks
 - node/edge-level tasks
 - dynamic/online settings

Thank you!