Instituto Tecnológico y de Estudios Superiores de Monterrey

Series de tiempo

Pregunta 18 Examen

Rodrigo Daniel Palacios Martínez- A01660225

Link Grok:

https://grok.com/share/c2hhcmQtMg%3D%3D e869a061-0ec1-4f78-9f7a-45e6c700ee8a

Link Colab:

https://colab.research.google.com/drive/12t6Nl5t9jFx6Z8FgjPlxCZEYg944ldAi?usp=sharing

Link Github:

https://github.com/RodrigoPalacios0/Q18.git

1. Análisis de la serie original y prueba ADF

 Se comenzó leyendo los datos y seleccionando la columna correspondiente al PDI y se aplicó la prueba de Dickey-Fuller aumentada (ADF) para confirmar:

Resultados:

o ADF Statistic: -0.6716

p-value: 0.854

El p-valor es mayor a 0.05, por lo tanto, la serie no es estacionaria. Esto significa que sus propiedades estadísticas (media, varianza) cambian con el tiempo.

2. Análisis con logaritmo natural y nueva prueba ADF

 Para estabilizar la varianza, se aplicó una transformación logarítmica a la serie y se graficó la serie transformada. Aunque se redujo un poco la varianza, seguía habiendo una tendencia.

Resultados:

o ADF Statistic: -1.4407

o p-value: 0.5626

A pesar de la transformación, la serie sigue siendo no estacionaria (p-valor sigue siendo > 0.05).

3. Análisis de logaritmo diferenciado, prueba ADF y selección de parámetros (p,d,q)

ADF Test Results for First-Differenced Log PDI: ADF Statistic: -4.6692 p-value: 0.0001 Critical Values: 1%: -3.5127 5%: -2.8975 10%: -2.5859

Interpretation: The differenced series is likely stationary (p-value < 0.05).

 Se aplicó una diferenciación de primer orden sobre la serie logarítmica y esta nueva serie fue graficada y mostraba fluctuaciones más estables.

Resultados:

ADF Statistic: -4.6692

p-value: 0.0001

- Ahora la serie es estacionaria (p-valor < 0.05), condición necesaria para aplicar ARIMA.
- Luego, se generaron los gráficos ACF y PACF para identificar el orden del modelo:
 - ACF: decayendo lentamente sugiere q = 1
 - PACF: pico significativo en el primer rezago sugiere p = 1

- Dado que se hizo una diferenciación d = 1
- Modelo sugerido: ARIMA(1,1,1)

4. Análisis del modelo ARIMA(1,1,1) y evaluación gráfica

			IMAX Resul	ts			
Dep. Varia	 ble:		PDI No.	Observations:	 :	88	
Model:		ARIMA(1, 1,	 Log 	Likelihood		270.603 -535.206	
Date:	F	ri, 13 Jun 2	025 AIC				
Time:		17:45	:56 BIC			-527.808	
Sample:			0 HQIC			-532.227	
		-	88				
Covariance	Type:		opg				
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	0.9997	0.004	227.570	0.000	0.991	1.008	
ma.L1	-0.9856	0.122	-8.047	0.000	-1.226	-0.746	
sigma2	0.0001	1.75e-05	6.469	0.000	7.9e-05	0.000	
Ljung-Box (L1) (Q):			0.23	Jarque-Bera	(JB):	1	 16.9
Prob(Q):			0.63	Prob(JB):			0.0
Heteroskedasticity (H):			0.40	Skew:			0.1
Prob(H) (two-sided):			0.02	Kurtosis:			5.1
			=======				

Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).

• Se ajustó el modelo ARIMA(1,1,1)

Parámetros estimados:

o AR(1): 0.9997

o MA(1): -0.9856

o AIC: -535.206

- Prob(Ljung-Box): 0.63 (sin autocorrelación significativa en residuos)
- Se graficaron los residuos del modelo, su histograma y la ACF de los residuos.
- Aunque los residuos no son perfectamente normales,no presentan autocorrelación significativa, lo cual valida el modelo.
- El modelo ARIMA(1,1,1) es adecuado y cumple con los supuestos básicos.