COL872 Problem Set 1

Mallika Prabhakar (2019CS50440) Sayam Sethi (2019CS10399) Satwik Jain (2019CS10398)

January 2023

Contents

1	Question 1	2
2	Question 2	;
	2.1 Question 2.1	
	2.2 Question 2.2	
	2.3 Question 2.3	
3	Question 3	(

1 Question 1

Question 1: Doubly Efficient Interactive Proofs

Question. Give a doubly-efficient protocol for the disjoint sets problem where the verifier runs in time $\tilde{O}(n)$, and the prover runs in time $\tilde{O}(n^2)$,

Proof. We have two set of sets: $S = \{S_i\}_{i \in [n]}$ and $T = \{T_i\}_{i \in n}$, and each $S_i, T_i \subseteq [d]$.

Numbers till n can be represented using **log** n bits. So we will try to represent the problem as a polynomial in 2log n bits(log n bits each for S and T). To do this,

For set of sets S, for each $j \in [d]$ which can exist in a set, we can create a Boolean algebra expression which takes as input the log n bits which create a number **i** and outputs 1 if $j \in S_i$ and 0 otherwise. Let us name this expression as S^j . Similarly we can create boolean algebra expression T^j .

Now taking a **NAND** of these two expression $(1 - S^j T^j)$, for the input bits $I = i_1 i_2 ... i_{logn}$ and $K = k_1 k_2 ... k_{logn}$, we will get an output of 0 if the element j is present in both the sets S_i and T_k and 1 otherwise. In this way we can check for one element. Now we can multiply all the NAND expressions and the resulting expression

$$f(I,K) = \prod_{j=1}^{d} (1 - S^{j}(I)T^{j}(K))$$

will return 0 if any one of the numbers in set [d] is present in both of S_i and T_k i.e., $S_i \cap T_k \neq \phi$ or the intersection of the sets S_i and T_k is empty and return 1 otherwise.

Now to get the answer, Δ , we can simply sum up the outputs of f(I, K) over all possible values of I and K.

$$\Delta = \sum_{I,K \in \{0,1\}^{logn}} f(I,K)$$

Now we can apply the sum check protocol over this. Suppose the value of Δ is p. Now the prover will prove that $\delta = p$ to the verifier. as the total number of variables is 2log n, We will have 2log n rounds in the sum check protocol. In each iteration of the protocol, the verifier has to evaluate a univariate polynomial of degree atmost \mathbf{d} at each iteration. which will take $O(\mathbf{d})$ iterations via the Horner's rule. So the expected running time of the Verifier is $O(\mathbf{d} + 2\log n) = O(\log^3 n)$ as $d = \log^2 n$ which can be represented as $\tilde{O}(1)$ (as poly logarithmic factors are omitted).

Now we will find the running time of the prover. In the j^{th} sum, we have $(1+\deg(g))2^{v-j}$ terms where g is the univariate polynomial formed. As there are 2log n rounds, for a v round protocol, the prover has to do $\sum_{j=1}^{2logn}(1+\deg(g))2^{v-j}$ evaluations. As each univariate polynomial will have a degree of atmost d, this comes out to be $O(2^vd)$ evaluations. For this problem we have v=2log n, So we will have $O(n^2log^2$ n) evaluations and we have know that each evaluation takes $O(log^2$ n) time for a O(log n) variate polynomial, so the total time for the prover will be $O(n^2log^4$ n) which is $\tilde{O}(n^2)$.

2 Question 2

Zero-knowledge protocols for group-theoretic problems

2.1 Question 2.1

HVZK PoK for DDH

Question. Consider the following language:

$$\mathcal{L}_{DDH} = \{ (g, h, u, v) : \exists a \in \mathbb{Z}_q \text{ s.t. } u = g^a, v = h^a \}$$
 (1)

Construct an honest-verifier zero-knowledge proof-of-knowledge protocol for \mathcal{L}_{DDH} . The protocol must have perfect completeness, the knowledge error must be 1/q, and it should satisfy the honest-verifier zero-knowledge property.

Proof. In an honest verifier setting, the zero-knowledge proof-of-knowledge can be defined as follows:

- Consider an honest verifier \mathcal{V} and a prover \mathcal{P} .
- Common input: g, u, h, v where all of them are group elements.
- Prover's private input: a s.t. $u = g^a, v = h^a$
- Claim to prove: Prover knows a

The protocol:

- 1. **P:** prover picks random t_1, t_2, t_3 and sends $x = g^{t_1}, y = h^{t_2}$ and $z = (g \cdot h)^{t_3}$ to the verifier
- 2. **V:** verifier sends uniformly random c_1, c_2, c_3 with respect to the pairs $(g, u), (h, v), (g \cdot h, u \cdot v)$
- 3. **P:** prover calculates $w_1 = t_1 + c_1 \cdot a$, $w_2 = t_2 + c_2 \cdot a$ and $w_3 = t_3 + c_3 \cdot a$ and sends w_1, w_2, w_3 to the verifier
- 4. **V:** verifier checks if $x \cdot u^{c_1} = g^{w_1}$, $y \cdot v^{c_2} = h^{w_2}$ and $z \cdot (u \cdot v)^{c_3} = (g \cdot h)^{w_3}$

Completeness:

For every tuple (w_i, t_i, c_i) given prover knows the value a

$$x \cdot u^{c_1} = g^{t_1} * g^{a \cdot c_1} = g^{t_1 + a \cdot c_1} = g^{w_1}$$

$$y \cdot v^{c_2} = h^{t_2} * g^{a \cdot c_2} = h^{t_2 + a \cdot c_2} = h^{w_2}$$

$$z \cdot (u \cdot v)^{c_3} = (g \cdot h)^{t_3} * (g \cdot h)^{a \cdot c_3} = (g \cdot h)^{t_3 + a \cdot c_3} = (g \cdot h)^{w_3}$$

$$(2)$$

Hence an honest verifier is always convinced for an honest prover, perfect completeness

Knowledge error:

We define the extractor's run as follows:

- 1. Extractor receives x, y, z
- 2. It then sends uniformly random c_1 , c_2 , c_3 to the prover
- 3. Then it receives w_1, w_2, w_3 in response
- 4. Extractor rewinds upto after point 1
- 5. It sends uniformly random c'_1 , c'_2 , c'_3 and receives w'_1 , w'_2 , w'_3
- 6. The extractor outputs $(w_1'-w_1)/(c_1'-c_1)$ which is equal to $(w_2'-w_2)/(c_2'-c_2)$ and $(w_3'-w_3)/(c_3'-c_3)$ assuming prover has the correct witness

probability of cheating = a chosen by prover is accidentally the witness = $\frac{1}{4}$ 1/q

HVZK:

We can define the honest verifier zero-knowledge simulator as follows:

- 1. Simulator picks $c_1, c_2, c_3 \leftarrow \mathbb{Z}_q$ and $w_1, w_2, w_3 \leftarrow \mathbb{Z}_q$
- 2. it sets $x = g_1^w/u_1^c$, $y = h_2^w/v_2^c$, $z = (g \cdot h)_3^w/(u \cdot v)_3^c$
- 3. It then outputs the tuples $(x, c_1, w_1), (y, c_2, w_2)$ and (z, c_3, w_3)

This transcript is identical to the real-world transcript. Hence we have a simulator.

2.2 Question 2.2

ZK protocol for DDH

Question. Next, consider the complement of \mathcal{L}_{DDH} , denoted by \mathcal{L}_{nDDH} (defined below).

$$\mathcal{L}_{nDDH} = \{ (g, h, u, v) : \forall a \in \mathbb{Z}_q \ either \ u \neq g^a \ or \ v \neq h^a \}$$
 (3)

Construct a protocol for \mathcal{L}_{nDDH} . The protocol must have perfect completeness, constant soundness and it should satisfy zero-knowledge w.r.t. auxiliary information.

Proof. In a zero-knowledge with auxiliary information setting, the common input is the same as before. We have to show that the given prover can distinguish between the groups created by $u \cdot v$ and $g \cdot h$. The protocol for \mathcal{L}_{nDDH} is defined as follows:

- 1. V: Verifier chooses a bit b and $x \leftarrow \mathbb{Z}_q$ and a message $m = g \cdot h$ when b = 0 and $m = u \cdot v$ when b = 1. Where u and v are defined as g^x and h^x respectively.
- 2. **V:** It sends a zero-knowledge proof to the prover that it has chosen a bit b and x. This is possible since verifying $\exists b: \exists x: m_b^x$ is possible in polynomial time (O(1) time) and zero-knowledge reductions exist to NP-complete problem. This is taken as a preventive measure towards avoiding the verifier from using the auxiliary information.

- 3. V: Verifier then sends $y = m_b^x$ to the prover
- 4. **P:** Prover then sends a bit b' by distinguishing if m_b^x was a group element of m_0 or m_1

Completeness:

Since prover is unbounded, prover can find all the group elements for $u \cdot v$ and $g \cdot h$. It is a yes instance for \mathcal{L}_{nDDH} ; therefore, both groups will be disjoint, and hence it can identify and send the appropriate bit b' = b. Hence it has perfect completeness.

Soundness:

In case the prover is not able to identify the bit b for the message y, it can output the correct answer bit with the probability $\frac{1}{2} + \epsilon$ where ϵ is negligible information the prover can extract from the zero-knowledge proof provided by the verifier.

Simulator for ZK with auxiliary info:

2.3 Question 2.3

HVZK PoK for k-out-of-t DDH	
Question. quess	
Proof.	

3 Question 3

Question 3: Impossibility of two-round zero-knowledge protocols with auxiliary information

Question. Prove that two-round protocols (where the verifier sends the first message and prover sends the second message) cannot satisfy the zero-knowledge property in the presence of auxiliary information. Describe the argument in full detail.

Proof. (Proof Idea: We use the auxiliary input as the string that is sent to the prover. Thus, the simulator (even if it is non-black box) cannot "generate" a valid response unless L itself is in BPP)

The default interaction between the prover and the verifier is defined as:

- 1. $V_1(x,r) = m_1$ is sent to the prover
- 2. $P_2(x, m_1) = m_2$ is set to the verifier
- 3. $V_3(m_1, m_2) = m_3 \in \{0, 1\}$ is the result of the interaction (rejected or accepted)

Now consider the following verifier $V^* = (V_1^*, V_3^*)$ that takes in auxiliary information z and interacts with the prover as follows:

$$V_1^*(z)(x,r) = z, V_3^*(z)(x,r,m_2) = V_3(m_1, m_2)$$
(4)

Since by our assumption, the given protocol is two-round zero-knowledge in the presence of auxiliary information, we will have a simulator for V^* . Let any such simulator be S^* . We now propose the following algorithm \mathcal{A} for checking if $x \in \mathcal{L}_{yes}$,

Algorithm A

- 1. Sample a random r and compute $m_1 = V_1(x,r)$
- 2. Obtain the transcript (m_1, m_2, m_3) on running $S^*(x, m_1)$.
- 3. If S^* fails to simulate, output 0. Else output m_3 .

Figure 1: Algorithm for checking $x \in \mathcal{L}_{yes}$

We first note that \mathcal{A} is a ppt algorithm since it uses V_1, S^* in sequence which are both ppt algorithms.

Now, consider the probability of \mathcal{A} in deciding $x \in \mathcal{L}_{yes}$ when x is a yes instance (assuming that completeness of the protocol is c and soundness error is s),

$$\Pr\left[\mathcal{A} \text{ outputs } 1\right] = \Pr\left[S^* \text{ does not output } \perp\right] \cdot \Pr\left[m_3 = 1 | x \in \mathcal{L}_{yes}\right]$$
$$= (1 - \mu(n)) \cdot \Pr\left[m_3 = 1 | x \in \mathcal{L}_{yes}\right]$$
$$= (1 - \mu(n)) \cdot c$$
 (5)

Therefore, we can see that \mathcal{A} can decide $x \in \mathcal{L}_{yes}$ with probability > 2/3 in ppt. Again, consider the probability of \mathcal{A} in deciding $x \in \mathcal{L}_{no}$ when x is a no instance,

$$\Pr\left[\mathcal{A} \text{ outputs } 0\right] = \Pr\left[S^* \text{ does not output } \perp\right] \cdot \Pr\left[m_3 = 0 | x \in \mathcal{L}_{no}\right]$$
$$= (1 - \mu(n)) \cdot \Pr\left[m_3 = 0 | x \in \mathcal{L}_{no}\right] + \mu(n)$$
$$= (1 - \mu(n)) \cdot (1 - s) + \mu(n)$$
 (6)

Therefore, we can see that \mathcal{A} can decide $x \in \mathcal{L}_{no}$ with probability > 2/3 in ppt. Therefore, \mathcal{L} is in BPP.