Please amend the application as follows:

In the Claims

Please amend Claims 1-20. Amendments to the claims are indicated in the attached "Marked Up Version of Amendments" (pages i - iii).

٨

1. (Amended) In a system for transmitting audio over a data network; and wherein received audio packets are stored in a jitter buffer in a receiver and read from the jitter buffer at a rate dependent on a jitter buffer latency which can be modified during periods of quasi-silence, an apparatus for determining if a data packet contains one of two types of audio, non-speech audio or speech audio comprising:

a non-speech detection module which identifies the type of audio received as a data stream;

an add header routine which stores a non-speech identifier with the audio in the data packet, the non-speech identifier being stored in a header in the data packet; and

a remove header routine which detects the state of the non-speech identifier in the header of the received data packet to determine if non-speech audio is stored in the payload of the data packet, whereupon the jitter buffer latency can be modified.

- 2. (Amended) The apparatus as claimed in Claim 1 wherein the non-speech identifier is a one bit field included in the header in the data packet.
- 3. (Amended) The apparatus as claimed in Claim 2 wherein the non-speech identifier is stored in a Real-time Transport Protocol header.
- 4. (Amended) The apparatus as claimed in Claim 3 wherein the non-speech identifier is set to a first of two states if the data packet contains non-speech audio.
- 5. (Amended) The apparatus as claimed in Claim 3 wherein the non-speech identifier is set to a second state if the data packet contains speech audio.

- 6. (Amended) The apparatus as claimed in Claim 1 wherein the remove header routine determines from the state of the non-speech identifier that speech audio is included in the data packet whereupon the jitter buffer latency modification is disabled.
- 7. (Amended) An apparatus for determining if a data packet contains non-speech audio or speech audio comprising:

means for storing a non-speech identifier with the non-speech audio in the data packet, the non-speech identifier being stored in a header in the data packet; and

means for detecting the non-speech audio stored in the payload of the data packet dependent on the state of the non-speech identifier in the header of the received data packet.

- 8. (Amended) The apparatus as claimed in Claim 7 wherein the non-speech identifier is a one bit field included in the header in the data packet.
- 9. (Amended) The apparatus as claimed in Claim 8 wherein the non-speech identifier is stored in a Real-time Transport Protocol header.
- 10. (Amended) The apparatus as claimed in Claim 9 wherein the non-speech identifier is set to a first of two states if the data packet contains non-speech audio.
- 11. (Amended) The apparatus as claimed in Claim 9 wherein the non-speech identifier is set to a second state if the data packet contains speech audio.
- 12. (Amended) The apparatus as claimed in Claim 7 wherein upon detection of the non-speech audio the means for detecting enables jitter buffer latency modification.
- 13. (Amended) The apparatus as claimed in Claim 7 wherein upon detection of the non-speech audio the means for detecting disables jitter buffer latency modification.
- 14. (Amended) In a system for transmitting audio over a data network; and wherein audio packets are stored in a jitter buffer in a receiver and read from the jitter buffer at a rate dependent on a jitter buffer latency which can be modified during periods of quasi-

silence, a method for identifying a data packet containing one of two types of audio, non-speech audio or speech audio comprising the steps of:

generating a non-speech identifier which identifies which type of audio is in the packet;

storing, by an add header routine, the non-speech identifier with the audio in the data packet, the non-speech identifier being stored in a header in the data packet; and

detecting, by a remove header routine, the state of the non-speech identifier in the header of the received data packet to determine if non-speech audio is stored in the payload of the data packet, whereupon the jitter buffer latency can be modified.

- 15. (Amended) The method as claimed in Claim 14 wherein the non-speech identifier is a one bit field included in a header in the data packet.
- 16. (Amended) The method as claimed in Claim 15 wherein the non-speech identifier is stored in a Real-time Transport Protocol header.
- 17. (Amended) The method as claimed in Claim 16 wherein the non-speech identifier is set to a first of two states if the data packet contains non-speech audio.
- 18. (Amended) The method as claimed in Claim 16 wherein the non-speech identifier is set to a second state if the data packet contains speech audio.
- 19. (Amended) A computer program product for determining if a data packet contains nonspeech or speech audio, the computer program product comprising a computer usable medium having computer readable code thereon, including program code which:

stores a non-speech identifier with the non-speech audio in the data packet, the non-speech identifier being stored in a header in the data packet; and

detects non-speech audio stored in the payload of the data packet dependent on the state of the non-speech identifier in the header of the received data packet.

- 20. (Amended) An apparatus for determining if a data packet contains non-speech audio or speech audio comprising:
 - a transmitter, the transmitter comprising:

an add header routine which stores a non-speech identifier with the

Cont.