4. Vektor pada Bidang dan Ruang

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

DR. Kasiyah Junus, MSc

Sasaran pemelajaran

Setelah mempelajari modul ini, mahasiswa mampu:

- melakukan operasi-operasi aritmetika vektor pada bidang dan ruang (ruang vektor Euclid R^2 dan R^3) secara aljabar dan geometris,
- menjelaskan sifat-sifat operasi aritmetika vektor,
- menentukan panjang vektor.

Cakupan materi

Pre-test

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Pre-test

4.1 Mengenal vektor dan jenis-jenisnya

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Contoh 1: vektor di sekitar kita

Contoh aplikasi vektor yang paling terkenal adalah gaya gravitasi.

Gaya gravitasi tidak hanya memiliki besar, namun juga memiliki arah menuju pusat gravitasi.

Vektor

\mathcal{D} efinisi 4.1: Vektor

Vektor adalah besaran yang mempunyai besar (panjang) dan arah.

Penyajian vektor geometri

Notasi vektor:

Untuk membedakan dengan skalar, vektor ditulis dengan huruf tebal atau miring dengan anak panah di atasnya: $\vec{AB} = \vec{a} = a$

Penyajian vektor aljabar

$$v = (5, 1)$$

Menentukan komponen vektor

Vektor \mathbf{v} memiliki titik pangkal (a, b) titik akhir (c, d). Secara aljabar penyajian vektor: $\mathbf{v} = (c-a, d-b)$,

Vektor v memiliki komponen-komponen : c-a dan d-b

$$\mathbf{u} = (a-d, e-b, f-c)$$

4.3 Vektor nol dan kesamaan vektor

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Vektor nol dan vektor satuan

\mathcal{D} efinisi 4.2: Vektor nol

Vektor nol adalah vektor dengan panjang nol, digambarkan sebagai titik. Secara aljabar vektor nol adalah vektor yang semua komponennya nol: $\mathbf{0} = (0, 0)$ (vektor nol pada bidang) dan $\mathbf{0} = (0, 0, 0)$ (vektor nol pada ruang).

Vektor nol dan vektor satuan

 ${\mathcal D}$ efinisi 4.3: Vektor satuan

Vektor satuan adalah vektor dengan panjang 1.

- a, j, i, dan b adalah vektor satuan
- ${\bf c}$ bukan vektor satuan karena panjangnya $\sqrt{2}$

Kesamaan vektor

Kesamaan dua vektor fisik

Berat benda tetap meskipun posisinya berubah.

Kesamaan dua vektor geometri

Dua vektor sama jika dan hanya jika panjang dan arahnya sama, tidak tergantung posisinya pada sistem koordinat.

Kesamaan dua vektor aljabar

Dua vektor aljabar sama jika dan hanya jika komponen-komponen yang bersesuaian sama.

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
 jika dan hanya jika $a_1 = b_1$ dan $a_2 = b_2$

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
 jika dan hanya jika $a_1 = b_1$, $a_2 = b_2$ dan $a_3 = b_3$

4.4 Operasi aritmetika vektor-vektor

Jumlahan Vektor

$$F_3 = F_1 + F_2$$

Jika dua gaya dijumlahkan, maka besarnya gaya yang dihasilkan adalah resultannya.

Jumlahan Vektor

Menjumlahkan dua vektor geometri:

Jumlahan Vektor

Menjumlahkan dua vektor

$$\mathbf{a} = (a_1, a_2), \quad \mathbf{b} = (b_1, b_2), \quad \text{maka } \mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2)$$

Apakah ada cara yang berbeda dalam menjumlahkan dua vektor geometri?

Pengurangan

Tentukan a – b dan b - a

Latihan 1

1

Manakah vektor yang merupakan **u+v**?

Jawab: a

Latihan 1 (lanjutan)

2.
$$\mathbf{u} = (5, 6) \text{ dan } \mathbf{v} = (3, 2), \text{ maka } \mathbf{u} + \mathbf{v} = \dots$$

- a. (2, 4)
- b. (8, 8)
- c. (15, 12)
- d.(8,4)

3.
$$\mathbf{u} = (5, 6) \text{ dan } \mathbf{v} = (3, 2), \text{ maka } \mathbf{u} - \mathbf{v} = \dots$$

- a. (2, 4)
- b. (8, 8)
- c. (15, 12)
- d. (8, 4)

Jawab: a

Jawab: b

Latihan 1 (lanjutan)

n

4.

Tentukan vektor **c** sedemikian hingga **b** = **a** + **c**

Jawab: c = h

Perkalian vektor dengan skalar

b searah dengan **a**, panjang **b** lima kali panjang **a**, ditulis **b** = 5**a**

Hasil kali skalar k dengan vektor a: ka

- Jika k > 0 maka ka searah dengan a, dengan panjang k kali panjang a
- Jika k < 0, ka berlawanan arah dengan a, dengan panjang k kali panjang a.
- Jika k = -1, maka $k\mathbf{a} = -\mathbf{a}$ (negative dari \mathbf{a}). Sifat $-\mathbf{a} + \mathbf{a} = \mathbf{0}$ (vektor nol) dapat dilihat pada sifat-sifat aritmetika vektor
- Dua vektor sejajar, maka yang satu merupakan perkalian skalar yang lain.

Hubungan tiga vektor pada bidang

Diberikan vektor-vektor **a**, **b**, **c** pada bidang. Maka vektor yang satu merupakan jumlahan dari hasil kali skalar vektor-vektor lainnya

$$c = ka + lb$$

Basis standar bidang R²

- Setiap vektor $\mathbf{v} = (v_1, v_2)$ dapat dinyatakan secara tunggal sebagai kombinasi linier $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j}$
- $\{i, j\}$ disebut sebagai basis standar himpunan semua vektor pada bidang R^2 .

$$\mathbf{v} = \mathbf{v_1} \mathbf{i} + \mathbf{v_2} \mathbf{j}$$

Basis standar R³

Basis standard bidang R^3 adalah:

$$\{i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)\}$$

Setiap vektor (a, b, c) dapat dinyatakan secara tunggal sebagai kombinasi linier $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$

Sifat-sifat aritmetika vektor

- 1. Jumlahan vektor bersifat **tertutup**, yaitu: jumlahan dua vektor selalu menghasilkan tepat satu vektor
- 2. Jumlahan dua vektor bersifar komutatif.

$$\mathbf{a} = (a_1, a_2), \mathbf{b} = (b_1, b_2)$$

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2)$$

b+**a** =
$$(b_1+a_1, b_2+a_2)$$

Keterangan:

$$a_1+b_1=b_1+a_1$$
 dan $a_2+b_2=b_2+a_2$

(sifat komutatif penjumlahan bilangan nyata)

Sifat asosiatif jumlahan

3. Jumlahan vektor bersifat asosiatif

$$\mathbf{a} = (a_1, a_2), \mathbf{b} = (b_1, b_2), \mathbf{c} = (c_1, c_2)$$

$$\mathbf{a}+(\mathbf{b}+\mathbf{c})=(a_1+(b_1+c_1), a_2+(b_2+c_2))$$

$$(\mathbf{a}+\mathbf{b})+\mathbf{c} = ((a_1+b_1)+c_1, (a_2+b_2)+c_2)$$

(sifat asosiatif penjumlahan skalar)

Vektor nol: elemen identitas terhadap jumlahan

$$4.0 + a = a + 0 = a$$

Vektor nol merupakan elemen identitas terhadap jumlahan.

$$\mathbf{b} = (b_1, b_2), \mathbf{0} = (0,0)$$

b+0 =
$$(b_1+0, b_2+0)$$

b+0 =
$$(b_1, b_2)$$

(sifat identitas penjumlahan skalar)

Negatif suatu vektor

5.
$$a + (-a) = 0$$

Jumlahan vektor dengan negatifnya menghasilkan vektor nol.

$$\mathbf{b} = (b_1, b_2), -\mathbf{b} = (-b_1, -b_2)$$

$$\mathbf{b}$$
+(- \mathbf{b}) = (b_1 +(- b_1), b_2 +(- b_2))

$$\mathbf{b} + (-\mathbf{b}) = (0, 0) = \mathbf{0}$$

Sifat-sifat operasi aritmetika vektor (lanjutan)

6. $k(l\mathbf{u}) = (kl)\mathbf{u}$

Perkalian vektor dengan skalar sebanyak dua kali berturut-turut, dapat dilakukan dengan mengalikan skalarnya terlebih dahulu

Sifat-sifat operasi aritmetika vektor (lanjutan)

7.
$$k(u + v) = ku + lv$$

Hasil kali skalar dengan jumlahan dua vektor dapat dilakukan dengan mengalikan masing-masing vektor dengan skalar, baru kemudian dijumlahkan.

$$\mathbf{u} = (u_1, u_2), \mathbf{v} = (v_1, v_2)$$

 $\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2)$

$$2(\mathbf{u}+\mathbf{v}) = (2(u_1+v_1), 2(u_2+v_2))$$

$$2\mathbf{u}+2\mathbf{v} = 2(u_1, u_2)+2(v_1, v_2)$$

= $2(u_1+v_1, u_2+v_2)$
= $(2(u_1+v_1), 2(u_2+v_2))$

Sifat-sifat aritmetika vektor (lanjutan)

8.
$$(k + l)u = ku + lu$$

Hasil kali vektor dengan jumlahan dua skalar, sama dengan jumlahan dua vektor setelah dikalikan dengan masing-masing skalar.

$$\mathbf{u} = (u_1, u_2)$$

$$3\mathbf{u} = (3u_1, 3u_2)$$

$$(2+1) \mathbf{u} = 2\mathbf{u} + \mathbf{u}$$

$$= 2(u_1, u_2) + (u_1, u_2)$$

$$= (3u_1, 3u_2)$$

Sifat-sifat aritmetika vektor (lanjutan)

- 9. Perkalian vektor dengan skalar nol, menghasilkan vektor nol.
- 10. Mengalikan vektor dengan skalar 1 tidak mengubah vektor tersebut.

$$\mathbf{u} = (u_1, u_2)$$

$$0\mathbf{u} = 0(u_1, u_2)$$

$$= (0, 0)$$

$$1\mathbf{u} = 1(u_1, u_2)$$

$$= (u_1, u_2)$$

Norm (panjang) vektor

norm/panjang vektor **v** adalah
$$\|\mathbf{v}\| = \sqrt{{v_1}^2 + {v_2}^2}$$

norm/panjang vektor **v** adalah
$$\|\mathbf{v}\| = \sqrt{{v_1}^2 + {v_2}^2 + {v_3}^2}$$

Norm vektor sebagai jarak dua titik

panjang vektor v adalah jarak antara titik P ke Q

$$\|\mathbf{v}\| = \sqrt{(a_2 - a_1)^2 + (b_2 - b_1)^2 + (c_2 - c_1)^2}$$

Refleksi

- Tuliskan 5 hal baru yang Anda pelajari. Urutkan dari yang paling penting.
- Tuliskan 3 hal yang ingin Anda ketahui lebih lanjut tentang vektor.

Modul selanjutnya...

- Selanjutnya kita akan memandang besaran-besaran: panjang vektor, jarak antara dua vektor, dan sudut antara dua vektor dengan rumus yang lebih umum menggunakan hasil kali titik (dot product).
- Konsep di atas akan digeneralisasi pada pembahasan ruang hasil kali dalam (Bab 6). Mahasiswa diharapkan memahami secara mendalam hasil kali titik dan aplikasinya dalam penentuan besaran-besaran di atas.