Planche 1.

Question de cours. Démontrer la formule de trigonométrie suivante :

$$cos(a+b) = cos(a)cos(b) - sin(a)sin(b)$$

Exercice 1. Trouver les solutions de

$$e^{iz}z + i\bar{z}e^{i\bar{z}} = 0$$

Planche 2.

Question de cours. Résoudre l'équation du second degré suivante dans $\mathbb R$ d'abord puis dans $\mathbb C$:

$$x^2 - x + 1 = 0$$

Exercice 1. Calculer l'argument et le module du nombre complexe suivant :

$$z = \sqrt{2 + \sqrt{2}} + i\sqrt{2 - \sqrt{2}}$$

Planche 3.

Question de cours. Calculer la racine carrée de 1-2i.

Exercice 1. Montrer que pour tout $z \in \mathbb{C}$:

$$|z| \le |z|^2 + |z - 1|$$

Solutions - Planche 1.

Question de cours. Soit $a,b \in \mathbb{R}$. On sait que $e^{i(a+b)} = e^{ia}e^{ib}$. On écrit cela sous forme trigonométrique :

$$\cos(a+b) + i\sin(a+b) = (\cos(a) + i\sin(a))(\cos(b) + i\sin(b))$$

$$= \cos(a)\cos(b) - \sin(a)\sin(b) + i(\sin(a)\cos(b) + \cos(a)\sin(b))$$

D'où en identifiant partie réelle et partie imaginaire on obtient :

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\sin(a+b) = \cos(a)\sin(b) + \sin(a)\cos(b)$$

Exercice 1. Soit z = a + ib une solution. On a :

$$e^{iz-i\bar{z}}z + i\bar{z} = 0$$

Donc

$$e^{-2b}(a+ib) + i(a-ib) = 0$$

D'où en identifiant partie réelle et partie imaginaire on a

$$\begin{cases} e^{-2b}a + b = 0\\ e^{-2b}b + a = 0 \end{cases}$$

D'où en remplaçant a par son expression de la deuxième dans la première on obtient $-e^{-4b}b+b=0$. Donc b=0 et a=0. Donc z=0.

Solutions - Planche 2.

Question de cours. On calcule le discriminant : $\Delta = 1 - 4 = -3$.

Le discriminant étant strictement négatif, il n'y a pas de racines réelles par contre il y en a deux complexes :

$$z_1 = \frac{1 + i\sqrt{3}}{2}$$

et

$$z_2 = \bar{z_1} = \frac{1 - i\sqrt{3}}{2}$$

Exercice 1. Calculons le module : $|z|^2 = 2 + \sqrt{2} + 2 - \sqrt{2} = 4$ donc |z| = 2.

On note θ l'argument de z. Or $2\cos(\theta) = |z|\cos(\theta) = Re(z) = \sqrt{2+\sqrt{2}}$. On ne peut pas directement en déduire θ par les valeurs connues de cos. Pour obtenir un cos plus simple on utilise la formule de trigonométrie suivante : $\cos(2\theta) = 2\cos(\theta)^2 - 1$. On en déduit $\cos(2\theta) = \sqrt{2}/2$, donc $2\theta = \pm \pi/4$, $\theta = \pm \pi/8$. Pour connaître le signe on regarde le signe de la partie imaginaire. Comme elle est positive alors $\theta = \pi/8$. Donc

$$z = 2e^{i\pi/8}$$

Solutions - Planche 3.

Question de cours. Première idée à avoir : mettre 1-2i sous forme exponentielle. On calcule donc son module $(\sqrt{1+4}=\sqrt{5})$ et son argument. Le problème c'est que $\cos(\theta)=1/\sqrt{5}$ permet difficilement de trouver θ .

On utilise donc la méthode suivante, qui consiste à chercher $a,b \in \mathbb{R}$ tels que $(a+ib)^2=1-2i$. Donc $a^2-b^2+2iab=1-2i$. D'où en identifiant partie imaginaire et réelle on obtient : $a^2-b^2=1$ et ab=-1. Or $a^2+b^2=\sqrt{5}$ en prenant l'égalité au module. En sommant la première équation obtenue et la troisième, on obtient $2a^2=1+\sqrt{5}$. Donc $a=\pm\varphi$ où $\varphi=\sqrt{\frac{1+\sqrt{5}}{2}}$. Or ab=-1.

Donc les deux solutions sont :

$$\varphi - i/\varphi$$
 et $-\varphi + i/\varphi$

Exercice 1. Ce genre d'inégalité fait penser à l'inégalité triangulaire : $|a+b| \le |a| + |b|$. Pour l'utiliser il faut écrire z comme un a+b avec un a et un b qui ressemble à ce qu'on cherche à droite. Donc on a $|z| = |(z-z^2) + z^2| \le |z^2| + |z||z-1|$ qui nous donne presque ce que l'on veut. La seule différence avec ce qu'on cherche est le |z| qu'on veut remplacer par un 1.

Si $|z| \le 1$ alors on a bien ce que l'on veut : $|z| \le |z|^2 + |z||z-1| \le |z|^2 + |z-1|$. Maintenant, il faut traiter le cas où $|z| \ge 1$. Dans ce cas on a pas besoin de l'inégalité précedente mais on a directement : $|z| \le |z|^2 \le |z|^2 + |z||z-1|$.

Ainsi dans tous les cas on a l'inégalité voulue :

$$|z| < |z|^2 + |z||z - 1|$$