Лабораторная работа № 2 "Исследование улучшенных алгоритмов сортировки"

Задание:

1. Разработать проект для исследования алгоритмов сортировки в соответствии с вариантом (диаграмма вариантов использования проекта представлена на рис. 1)

Рис. 1. Диаграмма вариантов использования проекта лабораторной работы № 2.

- 2. Разработать интерфейс проекта, позволяющий:
 - задавать размерность и качество массива;
 - осуществлять выбор алгоритма сортировки для исследования;
- осуществлять вывод информации о результатах исследования алгоритма сортировки (исходный и отсортированный массив, пошаговую работу алгоритма сортировки (при небольшой размерности массива), показатели качества работы алгоритма сортировки).
- Создать подпрограмму для генерации целочисленного массива различного качества. В подпрограмме предусмотреть:
 - задание размерности массива;

- задание диапазона чисел массива;
- создание массива с равномерно распределенными случайными числами;
- создание упорядоченного по возрастанию массива;
- создание упорядоченного по убыванию массива.
- 3. Создать подпрограмму, реализующую алгоритм сортировки в соответствии с вариантом. В подпрограмме *предусмотреть*:
 - определение числа операций алгоритма сортировки;
 - сортировку массива по возрастанию.

Письменный отчет по лабораторной работе должен содержать:

- 1. Титульный лист. (Название лабораторной работы. Фамилия, имя, отчество, номер группы исполнителя, дата сдачи.)
 - 2. Математическую постановку задачи.
- 3. Распечатку текстов подпрограмм для генерации массива и для исследования алгоритмов сортировки (обязательны комментарии к программе).
- 4. Исследование программной реализации улучшенных алгоритмов сортировки, содержащее следующие материалы, таблицы и графики:
- *примеры пошаговой работы* исследуемых алгоритмов сортировки для небольшой размерности задачи (n=7, диапазон чисел 0..10- для сортировки подсчетом и 0..100- для поразрядных сортировок);
- сведенную в *таблицу* зависимость количества операций (или времени выполнения) исследуемых алгоритмов сортировки от размерности задачи *п* для прямого, обратного и случайного расположения элементов в массиве;
- сведенную в mаблицу зависимость количества операций (или времени выполнения) исследуемых алгоритмов сортировки от максимального числа исследуемого массива k для случайного расположения элементов в массиве $-\partial n$ сортировки nodcumom;
- сведенную в *таблицу* зависимость количества операций (или времени выполнения) исследуемых *поразрядных* алгоритмов сортировки от разрядности чисел массива (p = 1...5) для случайного расположения элементов в массиве;
- сведенную в *таблицу* зависимость количества операций (или времени выполнения) исследуемых алгоритмов сортировки от размерности задачи n и от порядка выбора элемента разбиения для прямого, обратного и случайного расположения элементов в массиве ∂ ля быстрой сортировки (всего в отчете должно быть 8 таблиц);
- *графики* зависимости показателя качества (количества операций (суммы числа сравнений и обменов) или времени выполнения) исследуемых алгоритмов сортировки от размерности задачи для прямого, обратного и случайного расположения элементов в массиве (5 графиков);

Пример таблицы:

Таблица 1.

Быстрая сортировка, массив упорядочен по возрастанию

n	5	10	15	20	25	30	35	40	45	50
Sr										
Ob										
Sum										

- график зависимости показателя качества исследуемого алгоритма сортировки подсчетом от максимального числа исследуемого массива k для случайного расположения элементов в массиве (1 график);
- график зависимости показателя качества исследуемых алгоритмов поразрядной сортировки от разрядности чисел массива p для случайного расположения элементов в массиве (1 график);
- 5. Выводы по лабораторной работе (в выводах провести сравнительную характеристику исследованных алгоритмов сортировки).

Варианты задач по лабораторной работе:

- 1. Сортировка подсчетом.
- 2. Поразрядная сортировка LSD.
- 3. Поразрядная сортировка MSD.
- 4. Быстрая сортировка.

Варианты исследуемых алгоритмов сортировки

Вариант	Интервал [А, В]	Варианты задач
1.	[0, 100]	1, 2
2.	[0, 200]	1, 3
3.	[0, 0.002]	1, 2
4.	[0.1, 0.003]	1, 3
5.	[0, 500]	1, 2
6.	[100, 200]	1, 3
7.	[0, 0.001]	1, 2
8.	[0, 0.002]	1, 3
9.	[0,300]	1, 2
10.	[0,400]	1, 3
11.	[0.2, 0.005]	1, 2
12.	[0, 0.006]	1, 3
13.	[0,700]	1, 2
14.	[0,800]	1, 3
15.	[0.1, 0.009]	1, 2
16.	[0,999]	1, 3
17.	[1,900]	1, 2
18.	[0, 0.001]	1, 3
19.	[0, 0.001]	1, 2
20.	[10, 1000]	1, 3

Вариант формы проекта при использовании визуальной среды проектирования

Краткие теоретические сведения

1. Сортировка подсчетом.

Пусть исходная последовательность записана в массиве A[1..n], C[1..k] — вспомогательный массив (k — мощность диапазона чисел, используемых в исходном массиве A[1..n]), отсортированная последовательность записывается в массив B[1..n].

 $Counting_Sort(A, B, k)$

```
    for i:=1 to k
    do C[i]:=0
    for j:=1 to length(A)
    do C[A[j]]:=C[A[j]]+1
    // C[i] равно количеству элементов, равных і
    for i:=2 to k
    do C[i]:=C[i]+C[i-1]
    // C[i] равно количеству элементов, не превосходящих і
    for j:= length(A) downto 1
    do B[C[A[j]]]:=A[j]
    C[A[i]]:= C[A[i]]-1
```

После инициализации (строки 1-2) сначала помещают в C[i] количество элементов массива A, равных i (строки 3-4), а затем, находя частичные суммы последовательности C[1], C[2], ..., C[k] — количество элементов, не превосходящих i (строки 6-7). В строках 9-10 каждый из элементов массива A помещается на нужное место в массиве B. В самом деле, если все n элементов различны, то в отсортированном массиве B число A[j] должно стоять на месте C[A[j]], ибо именно столько элементов массива A не превосходят числа A[j], если в массиве A встречаются повторения, то после каждой записи числа A[j] в массив B число C[A[j]] уменьшается на единицу (строка 11), так что при следующей встрече с числом, равным A[j], оно будет записано на одну позицию левее.

<u>Пример</u>: исходная последовательность $A = \boxed{3} \ \boxed{4} \ \boxed{6} \ \boxed{3} \ \boxed{1} \ \boxed{4} \ \boxed{4} \ \boxed{1} \ \boxed{2}$, k=6 — мощность чисел в массиве A, размерность массива A — n=9.

 $C = \boxed{2} \ \boxed{1} \ \boxed{2} \ \boxed{3} \ \boxed{0} \ \boxed{1}$, число присваиваний Пр=9, новое значение C[i] равно количеству элементов, непревосходящих i (C[i]:=C[i]+C[i-1]),

$$C = \boxed{2} \boxed{3} \boxed{5} \boxed{8} \boxed{8} \boxed{9}$$
. $\Pi p = \Pi p + (k-1) = 9 + (6-1) = 14$.

1. элемент отсортированного массива B[C[A[9]]] = A[9], то есть B[C[2]] = B[3] = A[9] = 2, значит B[3] = 2 (Пр=Пр+1=15), далее C[A[9]] = C[2] = C[2] - 1 = 3 - 1 = 2 (Пр=Пр+1=16).

2. B[C[A[8]]]=B[C[1]]=B[2]=1, то есть B[2]=1, C[A[8]]=C[1]=C[1]-1=2-1=1, (Пр=Пр+2=18)

$$C = \boxed{1 \ | 2 \ | 5 \ | 8 \ | 8 \ | 9}$$

3. B[C[A[7]]]=B[C[4]]=B[8]=A[7]=4, то есть B[8]=4,C[A[7]]=C[4]=C[4]-1=7, (Пр=Пр+2=20)

4. B[C[A[6]]] = B[C[4]] = B[7]=A[6]=4, то есть B[7]=4, C[4]=C[4]-1=6, $(\Pi p=\Pi p+2=22)$

5. B[C[A[5]]] = B[C[1]] = B[1]=A[5]=1, то есть B[1]=1, C[1]=C[1]-1=0, $(\Pi p=\Pi p+2=24)$

6. B[C[A[4]]] = B[C[3]] = B[5]=A[4]=3, то есть B[5]=3, C[3]=C[3]-1=5-1=4, (Пр=Пр+2=26)

$$C = \begin{bmatrix} 0 & 2 & 4 & 6 & 8 & 9 \end{bmatrix}$$

И так далее.

Количество присваиваний для реализации сортировки подсчетом массива А размерности n=9 и при $k=6-\Pi p=n+(k-1)+n*2=9+(6-1)+2*9=32$. Количество сравнений для поиска величины k равно (n-1)=8. Общее количество операций On=n+(k-1)+n*2+(n-1)=4*n+k-2=36+6-2=40.

Таким образом, результирующий массив будет иметь вид

D	1	2	3	4	5	6	7	8	9
B=	1	1	2	3	3	4	4	4	6

2. Поразрядная сортировка (LSD).

LSD (least significant digit radix sort) - поразрядная сортировка сначала по младшей цифре.

Пусть в общем случае сортируемые числа $A=(a_1, a_2, ..., a_n)$ являются целыми и состоят из p цифр (более короткие числа дополняются нулями) с основанием системы счисления r. Число a_i имеет следующее представление: $a_i=(a_{i,p}, a_{i,p-1}, ..., a_{i,1})$, где $a_{i,p}$ цифра старшего разряда, $a_{i,1}$ цифра младшего разряда числа a_i . Поразрядная сортировка основана на том свойстве, что числа можно полностью отсортировать, выполняя сортировку по отдельным разрядам, начиная с самого младшего.

Алгоритм поразрядной сортировки состоит в следующем:

- 1) k=1. Выбираем младшую цифру числа.
- 2) Берем каждое число из массива A и помещаем его в конец одной из r очередей в зависимости от значений цифры в позиции k.
- 3) Восстанавливаем каждую очередь в массив A, начиная с очереди чисел с цифрой 0 и кончая очередью чисел с (r-1)-й цифрой. (После распределения массива A по очередям (по "карманам") выполняется операция конкатенации всех списков в один список.)
- 4) k=k+1. Выполняем пункты 2, 3 пока ($k \le p$), то есть до старшей значащей цифры числа.

(При k=1 помещаем каждое сортируемое число a_i в очередь с номером (a_i mod r). При k=2 число помещается в очередь с номером $\lfloor a_i \ / r \rfloor$, то есть номер очереди

равен наибольшему целому числу, равному или меньшему $\lfloor a_i / r \rfloor$, (другими словами, скобки здесь обозначают операцию взятия целой части числа).)

Процесс поразрядной сортировки для последовательности A=(25, 57, 48, 37, 12, 92, 86, 33) показан в таблице 1 (здесь r =10, p =2, n =8).

Сложность поразрядной сортировки составляет примерно $O(p \cdot n)$.

Для экономии памяти эффективно использовать линейные связанные списки из указателей для представления сортируемых элементов и очередей.

Таблица 1

Пример поразрядной сортировки (*LSD*)

	Очереди для k=1		Очереди для k=2			
Разряд	Содержимое разряда	Разряд	Содержимое разряда			
0		0				
1		1	12			
2	12 92	2	25			
3	33	3	33 37			
4		4	48			
5	25	5	57			
6	86	6				
7	57 37	7				
8	48	8	86			
9		9	92			
Bocc	танавливаем массив A	Boc	станавливаем массив A			
{12, 9	2, 33, 25, 86, 57, 37, 48}	{12,	{12, 25, 33, 37, 48, 57, 86, 92}			

Чтобы увидеть, почему этот алгоритм работает правильно, достаточно заметить, что когда числа помещаются в одну очередь (в один "карманам"), например числа 33 и 37 в карман 3, то они будут располагаться в возрастающем порядке, поскольку в списке $\{12, 92, 33, 25, 86, 57, 37, 48\}$ они упорядочены по самой правой цифре (k=1). Следовательно, в любом "кармане" числа также будут упорядочены по самой правой цифре. И, конечно, распределение чисел на втором этапе по "карманам" в соответствии с первой цифрой (k=2) в примере) гарантирует, что в объединенном списке все числа будут расставлены в возрастающем порядке.

- 1. Количество присваиваний при формировании очередей для k=1 равно On=n=8.
- 2. Количество операций при восстановлении массива равно r=10, то есть $O\pi=n+r=18$.
- 3. Количество присваиваний при формировании очередей для k=2 равно n=8, то есть On=n+r+n=26.
- 4. Количество операций при восстановлении массива равно r=10, то есть $O\pi = n + r + n + r = 36$.

3. Поразрядная сортировка (MSD).

MSD (most significant digit radix sort) - поразрядная сортировка сначала по старшей цифре.

Первая часть процесса поразрядной сортировки MSD (- проход по старшей цифре ключа) для последовательности A=(25, 57, 48, 37, 12, 92, 86, 33) показана в табл. 2 (здесь r =10, p =2, n =8).

Таблица 2.

Пример поразрядной сортировки (*MSD*)

Разряд	Содержимое разряда
(0)	
(1)	12
(2)	25
(3)	37 33
(4)	48
(5)	57
(6)	
(7)	
(8)	86
(9)	92

Массив A практически отсортирован, за исключением двух чисел $\{37, 33\}$, которые можно отсортировать любым простым методом сортировки.

Отсортировать числа в разряде 3 с помощью, например, сортировки простым выбором.

Подсчет количества операций:

- 1. Количество присваиваний при формировании очередей для старшего разряда равно Пр=n=8. Массив А имеет вид {12, 25, 37, 33, 48, 57, 86, 92}, то есть неотсортированы числа в третьем разряде.
- 2. Количество операций (сравнений и присваиваний) при сортировке, например, простым выбором подмассива (37, 33) равно сравнений 1, обменов 1 (то есть присваиваний 1*3=3). Всего операций (сравнений и присваиваний) 1+3=4.

Всего операций при поразрядной сортировке MSD массива A=(25, 57, 48, 37, 12, 92, 86, 33) равно $\Pi p=8+4=12$.

4. Быстрая сортировка.

Для достижения наибольшей эффективности при сортировке Ч.Хоар предложил обеспечить обмен элементов на больших расстояниях.

Идея быстрой сортировки Ч. Хоара такова: в последовательности сортируемых элементов ($a_1,...,a_n$) выберем наугад какой-нибудь элемент (назовем его X); будем просматривать слева нашу последовательность до тех пор, пока не найдем элемент $a_i > X$; потом будем просматривать последовательность справа, пока не встретим $a_j < X$; поменяем местами эти два элемента и продолжим процесс просмотра и обмена, пока

эти два просмотра не встретятся в середине последовательности. В результате этого последовательность будет разбита на левую часть, которая имеет ключи меньшие (или равные) X, и правую — с ключами большими (или равными) X. Сортировку от распределения отделяет только небольшой шаг: необходимо применить этот процесс разбиения к получившимся двум частям, потом к частям частей, и так до тех пор, пока каждая из частей не будет состоять из одного элемента.

Описание алгоритма быстрой сортировки имеет вид:

- 1. В последовательности элементов $A = (a_1, ..., a_n)$ выбрать элемент X.
- 2. Просматривая последовательность A слева направо, найти элемент $a_i < X$.
- 3. Просматривая последовательность A справа налево, найти элемент $a_{\kappa} >= X$.
- 4. Поменять местами элементы a_i и a_k . Продолжить процесс встречного просмотра и обмена, пока два просмотра не встретятся где-то внутри последовательности элементов A. Если down>=up, то поменять местами X и a_{up} , где down текущий индекс при движении слева направо,
- 5. а up текущий индекс при движении справа налево. В результате элемент X помещается в позицию j и выполнятся следующие условия: элементы в позициях с 1-й по (j-1)-ю меньше (равны) X, элементы в позициях с (j+1)-й по n-ю, больше (равны) X. То есть элемент X является j-м наименьшим элементом в последовательности A и X останется в позиции j и когда последовательность A будет полностью отсортирована.
- 6. Применить пункты 1,..,5 к подпоследовательностям $(a_1,...,a_j)$ $(a_{j-1},...,a_n)$ и так далее, пока каждая из подпоследовательностей не будет состоять из одного элемента.

Первая часть процесса быстрой сортировки для последовательности A=(11, 7, 4, 49, 9, 18, 2, 5, 11) показана в табл. 3, в качестве элемента разбиения X выбран элемент a_5 .

 Таблица 3
 Пример быстрой сортировки

 Шаг
 Состояние последовательности

Шаг		Состояние последовательности									
1.	11	7	4	49	9	18	2	5	11		
2.	5	7	4	49	9	18	2	11	11		
3.	5	7	4	2	9	18	49	11	11		

В примере $X=a_5=9$. Так как $a_1=11>X$, а $a_8=5<X$, то они меняются местами, что и показано во второй строке таблицы 1. Так как $a_4=49>X$, а $a_7=2<X$, то они тоже меняются местами, что и показано в третьей строке таблицы 1. Третья строка таблицы 1 также показывает, что элемент $X=a_5=9$ находится в своем окончательном месте и разделяет последовательность A на две подпоследовательности: с элементами меньше (равно) X-(5,7,4,2) и с элементами больше (равно) X-(18,49,11,11). Далее процесс сортировки необходимо аналогично применить к этим подпоследовательностям.

Для выбора элемента разбиения X можно использовать:

- 1. Первый элемент последовательности.
- 2. Последний элемент последовательности.
- 3. Элемент находящийся посередине последовательности.
- 4. Медиану последовательности.
- 5. Медиану среди элементов $(a_1, a_{n/2}, a_n)$.
- 6. Генератор случайных чисел.

Для алгоритма быстрой сортировки имеем следующие выводы:

- 1. быстрая сортировка работает наилучшим образом для полностью неотсортированных последовательностей;
 - 2. лучший выбор элемента разделения медиана последовательности;

- 3. быстрая сортировка работает наихудшим образом для полностью отсортированных последовательностей при выборе в качестве элемента разбиения наименьшего (наибольшего) значения;
- 4. в среднем (по всем последовательностям размера n) быстрая сортировка имеет сложность $O(n \cdot log_2 n)$;
 - 5. в наихудшем случае быстрая сортировка имеет сложность $O(n^2)$;
- 6. быстрая сортировка является одним из наилучших алгоритмов сортировки (за счет наименьшей мультипликативной константы $C_{\rm Q}$ по сравнению с пирамидальной сортировкой).

<u>Пример</u>. Пошаговая работа алгоритма быстрой сортировки (первое разделение последовательности).

```
X=a(lb)
          // X - элемент разделения, для него ищется место окончательной позиции
         // Up – правая граница массива
Down=lb // Down – левая граница массива
While Down< Up do
                  While a(Down) \le X do
                                  Down= Down+1
                  End
                  While a(Up) > X do
                                  Up = Up-1
                  End
                  If Down< Up then
                           поменять местами a(Down) и a(Up)
                  End If
End
a(lb)=a(Up) // a(Up) меняется местами с a(lb)=X
a(Up)=X
i= Up
           // j – окончательная позиция элемента разделения X
```

Пусть имеется массив размерности п=9:

1	2	3	4	5	6	7	8	9
11	7	2	4	18	9	49	5	11

Проверим условие алгоритма: при движении слева-направо – "<=", справа-налево – ">".

```
X=a(1)=11 Up=n=9 Down=1 a(1)=11<=X=11 Да \rightarrow Down= Down +1=2 a(2)=7<=X=11 Да \rightarrow Down= Down +1=3 a(3)=2<=X=11 Да \rightarrow Down= Down +1=4 a(4)=4<=X=11 Да \rightarrow Down= Down +1=5 a(5)=18<=X=11 Нет \rightarrow a(9)=11>X=11 \rightarrow Het Down=5< Up=9 Да \rightarrow обмен a(5) и a(9) Получили 11, 7, 2, 4, 11, 9, 49, 5, 18 a(5)=11<=X=11 Да \rightarrow Down= Down +1=6 a(6)=9<=X=11 Да \rightarrow Down= Down +1=7 a(7)=49<=X=11 Нет \rightarrow a(9)=18>X=11 Да \rightarrow Up= Up-1=8 a(8)=5>X=11 Нет
```

Down=7< Up =8 Да \rightarrow обмен a(7)=49 и a(8)=5 Получили 11, 7, 2, 4, 11, 9, 5, 49, 18 a(8)=49 <= X=11 Heт $\rightarrow a(8)=49 > X=11$ Да \rightarrow Up= Up-1=7 a(7)=5>X=11 HeT

Down=7< Up =7 Heт \rightarrow обмен X=a(1)=11 c a(7)=5

Получили (5, 7, 2, 4, 11, 9) (11) $(49, 18) \leftarrow$ итоговая последовательность.

Элемент разделения X=a(1)=11 занял окончательное место j=7 в почти что отсортированной последовательности, исходная последовательность разделилась на две неравные части (плохая сбалансированность) – первая с элементами <= X=11, вторая — с элементами > X=11.

Список литературы

- Лэнгсам И., Огенстайн М., Тененбаум А. Структуры данных для персональных ЭВМ. -М.: Мир, 1989.-568 с.(с.437-465).
- 2. Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. -М.: МЦНМО, 2000. 960 с. (с. 175 177, с.171 173)
- 3. Седжвик Р. Фундаментальные алгоритмы на С++. Анализ/Структуры данных/Сортировка/Поиск. К.: ДиаСофт, 2001. -688 c. (c. 295-298, 401 - 437)
 - 4. Ахо А., Хопкрофт Дж., Ульман Д. Структуры данных и алгоритмы. -М.: Вильямс, 2000. 384 с. (с. 247 254) 5. Проценко В.С. та ін. Техніка програмування мовою Сі: Навч. Посібник,-К.:Либідь, 1993.-224 с.(с.72-73).
- 6. Мейер Б., Бодуэн К. Методы программирования Т.2.-М.:Мир, 1982.-368 с.(с.153-183).
 7. Зубов В.С. Справочник программиста. Базовые методы решения графовых задач и сортировки.-М.: Филинъ, 1999.-256 c.(c.55-62).
 - Кнут Д. Искусство программирования для ЭВМ. Т.3. Сортировка и поиск.-М.:Мир, 1978.-844 с.(с.140-151,177-190).
 Гудман С., Хидетниеми С. Введение в разработку и анализ алгоритмов.-М.:Мир, 1981.-(с.223-240).

Контрольные вопросы и задания

- 1. В чем состоят задача и цель сортировки?
- 2. Приведите классификацию алгоритмов внутренней сортировки.
- 3. Каковы основные показатели качества исследуемых алгоритмов сортировки?
- 4. Отсортируйте пошагово по возрастанию массив целых чисел размерности 6 с помощью быстрой сортировки, сортировки подсчетом, поразрядной сортировки (LSD и MSD).
- 5. Каковы сложности алгоритмов быстрой сортировки, сортировки подсчетом, поразрядной сортировки?
- 6. Как задается качество массива для исследования алгоритмов сортировки быстрой сортировки, сортировки подсчетом, поразрядной сортировки?