Signals and Linear Systems

Mohammad Hadi

mohammad.hadi@sharif.edu @MohammadHadiDastgerdi

Spring 2021

Overview

- Signals
- 2 Systems
- Series
 Fourier Series
- 4 Fourier Transform
- 6 Power and Energy
- 6 Hilbert Transform
- Lowpass and Bandpass Signals
- 8 Filters
- Bandwidth

Signals

Basic Operations on Signals

Figure: Time shifting, time scaling, time reversal.

$$x(t) \rightarrow x(t-t_0); \quad x(t) \rightarrow x(at); \quad x(t) \rightarrow x(-t)$$

Mohammad Hadi Communication systems Spring 2021

Figure: Continuous-time and discrete-time signals.

$$x(t), t \in \mathbb{R}; \quad x[n], n \in \mathbb{Z}$$

Figure: Random and deterministic signals.

$$x(t,\omega) \in \mathbb{R}, t \in \mathbb{R}, \omega \sim P[\Omega = \omega]; \quad x(t) \in \mathbb{R}, t \in \mathbb{R}$$

Figure: Nonperiodic and periodic signals.

$$\exists T_0 : x(t + T_0) = x(t); \quad \exists T_0 : x(t + T_0) = x(t)$$

Figure: Causal and noncausal signals.

$$\forall t < 0 : x(t) = 0; \quad \exists t < 0 : x(t) \neq 0$$

Figure: Energy and power signals.

$$0 < \mathcal{E}_{x} = \lim_{T \to \infty} \int_{-T/2}^{T/2} |x(t)|^{2} dt < \infty; \quad 0 < \mathcal{P}_{x} = \lim_{T \to \infty} \frac{\int_{-T/2}^{T/2} |x(t)|^{2} dt}{T} < \infty$$

Figure: Even and odd signals.

$$x(t) = x(-t); \quad x(t) = -x(-t)$$

Statement (Even-Odd Decomposition)

Any signal x(t) can be written as the sum of its even and odd parts as $x(t) = x_e(t) + x_o(t)$, where

$$x_{\mathsf{e}}(t) = \frac{x(t) + x(-t)}{2}$$

$$x_o(t) = \frac{x(t) - x(-t)}{2}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Figure: Real and complex signals.

$$x(t) \in \mathbb{R}; \quad x(t) \in \mathbb{C}$$
 $x_r(t) = A\cos(2\pi f_0 t + \theta); \quad x_i(t) = A\sin(2\pi f_0 t + \theta)$
 $x(t) = \Re\{x(t)\} + j\Im\{x(t)\} = x_r(t) + jx_i(t)$

Figure: Real and complex signals.

$$x(t) \in \mathbb{R}; \quad x(t) \in \mathbb{C}$$
 $|x(t)| = |A|; \quad \angle x(t) = 2\pi f_0 t + \theta$
 $x(t) = |x(t)|e^{j\angle x(t)}$

Statement (Complex Signal Representation)

For the complex signal
$$x(t) = x_r(t) + jx_i(t) = \Re\{x(t)\} + j\Im\{x(t)\} = |x(t)|e^{j\angle x(t)},$$

$$x_r(t) = \Re\{x(t)\} = |x(t)|\cos(\angle x(t))$$

$$x_i(t) = \Im\{x(t)\} = |x(t)| \sin(\angle x(t))$$

$$|x(t)| = \sqrt{x_r^2(t) + x_i^2(t)}$$

$$\angle x(t) = \begin{cases} \tan^{-1}(\frac{x_i(t)}{x_r(t)}) &, & x_r(t) \geqslant 0, x_i(t) \geqslant 0 \\ \tan^{-1}(\frac{x_i(t)}{x_r(t)}) &, & x_r(t) \geqslant 0, x_i(t) < 0 \\ \pi + \tan^{-1}(\frac{x_i(t)}{x_r(t)}) &, & x_r(t) < 0, x_i(t) \geqslant 0 \\ -\pi + \tan^{-1}(\frac{x_i(t)}{x_r(t)}) &, & x_r(t) < 0, x_i(t) < 0 \end{cases}$$

Figure: Sinusoidal signal.

$$x(t) = A\cos(2\pi f_0 t + \theta) = A\cos(2\pi t/T_0 + \theta)$$

Figure: Complex exponential signal.

$$x(t) = A\cos(2\pi f_0 t + \theta) + jA\sin(2\pi f_0 t + \theta) = Ae^{j(2\pi f_0 t + \theta)}, \quad A \geqslant 0$$

Figure: Sinusoidal signal.

$$\operatorname{sinc}(t) = egin{cases} rac{\sin(\pi t)}{\pi t}, & t
eq 0 \ 1, & t = 0 \end{cases}$$

Figure: Step signal $u(t) = \begin{cases} 1, t \ge 0 \\ 0, t < 0 \end{cases}$

Figure: Ramp signal $r(t) = \begin{cases} t, t \ge 0 \\ 0, t < 0 \end{cases}$

Figure: Sign signal $\mathrm{sgn}(t) = \begin{cases} 1, t > 0 \\ 0, t = 0 \\ -1, t < 0 \end{cases}.$

Example (Rectangular signal)

$$\Pi(t) = u(t+0.5) - u(t-0.5)
= \begin{cases} 1, & |t| \le 0.5 \\ 0, & |t| > 0.5 \end{cases}$$

Example (Triangle signal)

$$egin{aligned} \Lambda(t) &= r(t+1) - 2r(t) + r(t-1) \ &= egin{cases} 1 - |t|, & |t| \leqslant 1 \ 0, & |t| > 1 \end{cases} \end{aligned}$$

Figure: Unit impulse signal.

$$\delta(t) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \sqcap \left(\frac{t}{\epsilon}\right) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \operatorname{sinc}\left(\frac{t}{\epsilon}\right) = \begin{cases} \infty, & t = 0 \\ 0, & t \neq 0 \end{cases}$$

Definition (Convolution)

The convolution of the functions h(t) and x(t) is defined as

$$y(t) = x(t) * h(t) = h(t) * x(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

Definition (Test Function)

x(t) is called a test function if it is infinitely differentiable and is zero outside a finite interval.

Definition (Unit Impulse Signal)

The unit impulse function $u_0(t) = \delta(t)$ is defined as the function satisfying

$$\int_{-\infty}^{+\infty} \delta(t) x(t) dt = x(0)$$

for any test function x(t).

Definition (Equal Singular Functions)

Two singular functions $y_1(t)$ and $y_2(t)$ are equal if and only if

$$\int_{-\infty}^{+\infty} y_1(t)x(t)dt = \int_{-\infty}^{+\infty} y_2(t)x(t)dt$$

for any test function x(t).

Theorem (Properties of Unit Impulse Signal)

The unit impulse function satisfies the following identities

$$\int_{-\infty}^{+\infty} \delta(t)dt = 1$$

$$\delta(at) = \frac{1}{|a|}\delta(t), a \neq 0$$

$$\delta(t) = 0, t \neq 0$$

$$t\delta(t) = 0$$

$$f(t)\delta(t) = f(0)\delta(t)$$

$$f(t) = \delta(t) * f(t)$$

Example (Sampling property of $\delta(t)$)

If f(t) is a continuous function at f(0), then $f(t)\delta(t)=f(0)\delta(t)$.

$$\int_{-\infty}^{+\infty} [f(t)\delta(t)]x(t)dt = \int_{-\infty}^{+\infty} \delta(t)[f(t)x(t)]dt = f(0)x(0)$$
$$= f(0)\int_{-\infty}^{+\infty} \delta(t)x(t)dt = \int_{-\infty}^{+\infty} [f(0)\delta(t)]x(t)dt$$

Example (Area under $\delta(t)$)

The area under the unit impulse function is 1.

For the test function $x(t) = \frac{1}{t^2+1}$,

$$1 = x(0) = \int_{-\infty}^{+\infty} \delta(t)x(t)dt = \int_{-\infty}^{+\infty} \delta(t)x(0)dt = \int_{-\infty}^{+\infty} \delta(t)dt$$

Definition (Unit Doublet Signal)

The unit doublet function $u_1(t) = \delta'(t)$ is defined as the function satisfying

$$\int_{-\infty}^{+\infty} \delta'(t)x(t)dt = -x'(0)$$

for any test function x(t).

Definition (Higher-order Impulse Signals)

Generally, $u_n(t) = \delta^{(n)}(t), n \ge 0$ is defined as the function satisfying

$$\int_{-\infty}^{+\infty} \delta^{(n)}(t) x(t) dt = (-1)^n x^{(n)}(0)$$

for any test function x(t).

Theorem (Convolution with $u_n(t)$)

$$u_n(t), n \ge 1$$
 satisfies $x^{(n)}(t) = u_n(t) * x(t)$.

For n = 1,

$$u_1(t)*x(t)=\int_{-\infty}^{+\infty}\delta'(\tau)x(t-\tau)d\tau=-rac{dx(t- au)}{d au}|_{ au=0}=x'(t)$$

Theorem (Relation of $\delta'(t)$ and $u_n(t)$)

$$u_n(t), n \geq 2$$
 relates to $u_1(t) = \delta'(t)$ as $u_n(t) = \underbrace{u_1(t) * u_1(t) * \cdots * u_1(t)}_{n \text{ times}}$.

For
$$n=2$$
,

$$\frac{d^2x(t)}{dt^2} = \frac{d}{dt}(\frac{dx(t)}{dt}) = \frac{d}{dt}(x(t) * u_1(t)) = x(t) * u_1(t) * u_1(t)$$

Mohammad Hadi Communication systems Spring 2021 26 / 115

Definition (Unit Step Signal)

The unit step function $u_{-1}(t) = u(t)$ is defined as the function satisfying

$$\int_{-\infty}^{+\infty} u(t)x(t)dt = \int_{0}^{+\infty} x(t)dt$$

for any test function x(t).

Definition (Higher-order Step Signals)

Generally, $u_{-n}(t)$, $n \ge 2$ is defined as

$$u_{-n}(t) = \underbrace{u_{-1}(t) * u_{-1}(t) * \cdots * u_{-1}(t)}_{n \text{ times}}$$

Theorem (Explicit representation of $u_{-n}(t)$, $n \ge 2$)

 $u_{-n}(t)$, $n \ge 2$ can be represented as

$$u_{-n}(t) = \frac{t^{n-1}}{(n-1)!} u_{-1}(t)$$

For n=2,

$$u_{-2}(t) = u_{-1}(t) * u_{-1}(t) = u(t) * u(t) = tu(t) = r(t)$$

Theorem (Generalized derivative of $u_n(t), n \in \mathbb{W}$)

Singular functions are related as

$$u_n'(t)=u_{n+1}(t)$$

For
$$n = -1$$
,

$$u'(t) = u'_{-1}(t) = u_0(t) = \delta(t)$$

For
$$n = 0$$
,

$$\delta'(t) = u_0'(t) = u_1(t) = \delta'(t)$$

Figure: Singular functions.

Example (Representation of other signals using the singular signals)

x(t) can be represented by u(t) and its shifted versions as x(t) = u(t) + 2u(t-1) - u(t-2)

$$x(t) = [u(t) - u(t-1)] + 3[u(t-1) - u(t-2)] + 2u(t-2)$$

◆ロト ◆個ト ◆意ト ◆意ト · 意 · 釣り○

31 / 115

Mohammad Hadi Communication systems Spring 2021

Singular Signals

Example (Derivative and integral of discontinuous functions)

Singular functions can be used in derivative and integral calculations.

Mohammad Hadi Communication systems Spring 2021 32 / 115

Example (Simplification using the properties of the singular functions)

$$cos(t)\delta(t) = cos(0)\delta(t) = \delta(t)$$

$$\cos(t)\delta(2t-3) = \cos(t)\delta(2(t-\frac{3}{2})) = \frac{1}{2}\delta(t-\frac{3}{2})\cos(t) = \frac{\cos(\frac{3}{2})}{2}\delta(t-\frac{3}{2})$$

$$\int_{-\infty}^{\infty} e^{-t} \delta'(t-1) dt = \int_{-\infty}^{\infty} e^{-u-1} \delta'(u) du = e^{-1} (-1) \frac{de^{-u}}{du} |_{u=0} = e^{-1}$$

33 / 115

Mohammad Hadi Communication systems Spring 2021

Systems

Definition (System)

A system is an entity that is excited by an input signal x(t) and, as a result of this excitation, produces an output signal y(t). The output is uniquely defined for any legitimate input by

$$y(t) = \mathcal{T}\{x(t)\}\$$

Figure: System block diagram.

Classification of Systems

Definition (Continuous-time System)

For a continuous-time system, both input and output signals are continuous-time signals.

Definition (Discrete-time System)

For a discrete-time system, both input and output signals are discrete-time signals.

Definition (Linear System)

A system \mathcal{T} is linear if and only if, for any two input signals $x_1(t)$ and $x_2(t)$ and for any two scalars α and β , we have,

$$\mathcal{T}\{\alpha x_1(t) + \beta x_2(t)\} = \alpha \mathcal{T}\{x_1(t)\} + \beta \mathcal{T}\{x_2(t)\}$$

Definition (Nonlinear System)

A system is nonlinear if it is not linear.

Definition (Time-Invariant System)

A system is time-invariant if and only if, for all x(t) and all values of t_0 , its response to $x(t-t_0)$ is $y(t-t_0)$, where y(t) is the response of the system to x(t).

Definition (Time-variant System)

A system is time-variant if it is not time-invariant.

Definition (Causal System)

A system is causal if its output at any time t_0 depends on the input at times prior to t_0 , i.e.,

$$y(t_0) = \mathcal{T}\{x(t) : t \leqslant t_0\}.$$

Definition (Noncausal System)

A system is noncausal if it is not causal.

Definition (Stable System)

A system is stable if its output is bounded for any bounded input, i.e.,

$$|x(t)| < B \Rightarrow |y(t)| < M.$$

Definition (Instable System)

A system is instable if it is not stable.

LTI Systems

Statement (Linear Time-Invariant System)

A system is Linear Time-Invariant (LTI) if it is simultaneously linear and time-invariant. An LTI system is completely characterized by its impulse response $h(t) = \mathcal{T}\{\delta(t)\}$.

$$y(t) = \mathcal{T}\{x(t)\}\$$

$$= \mathcal{T}\{\int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau\}\$$

$$= \int_{-\infty}^{\infty} x(\tau)\mathcal{T}\{\delta(t-\tau)\}d\tau\$$

$$= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau\$$

$$= x(t) * h(t)$$

LTI System

Statement (Causality of LTI Systems)

An LTI system is causal if and only if h(t) = 0, t < 0.

Statement (Stability of LTI Systems)

An LTI system is stable if and only if $\int_{-\infty}^{+\infty} |h(t)| dt < \infty$.

LTI System

Example (Complex exponential response)

The response of an LTI system h(t) to the exponential input $x(t)=Ae^{j(2\pi f_0t+\theta)}$ can be obtained by

$$y(t) = AH(f_0)e^{j(2\pi f_0 t + \theta)} = A|H(f_0)|e^{j(2\pi f_0 t + \theta + \angle H(f_0))}$$

, where

$$H(f_0) = |H(f_0)|e^{j\angle H(f_0)} = \int_{-\infty}^{\infty} h(\tau)e^{-j2\pi f_0\tau}d\tau$$

$$y(t) = \int_{-\infty}^{\infty} h(\tau) A e^{j(2\pi f_0(t-\tau)+\theta)} d\tau$$
$$= A e^{j(2\pi f_0 t+\theta)} \int_{-\infty}^{\infty} h(\tau) e^{-j2\pi f_0 \tau} d\tau$$
$$= A |H(f_0)| e^{j(2\pi f_0 t+\theta + \angle H(f_0))}$$

Fourier Series

Definition (Fourier Series)

The periodic signal $x(t+T_0)=x(t)$ can be expanded in terms of the complex exponential $\{e^{j2\pi nt/T_0}\}_{n=-\infty}^{\infty}$ as

$$x(t) = \sum_{n=-\infty}^{\infty} x_n e^{j2\pi nt/T_0}$$

, where

$$x_n = \frac{1}{T_0} \int_{T_0} x(t) e^{-j2\pi nt/T_0} dt$$

4□ > 4□ > 4 = > 4 = > = 90

Dirichlet sufficient conditions for existence of the Fourier series are:

- **1** x(t) is absolutely integrable over its period, i.e., $\int_0^{T_0} |x(t)| dt < \infty$.
 - 2 The number of maxima and minima of x(t) in each period is finite.
- **3** The number of discontinuities of x(t) in each period is finite.

- The quantity $f_0 = 1/T_0$ is called the fundamental frequency of the signal x(t).
- ② The frequency of the nth complex exponential signal is nf_0 , which is called the nth harmonic.
- **3** In general, $x_n = |x_n|e^{j\angle x_n}$, where $|x_n|$ gives the magnitude of the *n*th harmonic and $\angle x_n$ gives its phase.
- For real signals $x(t) = x^*(t)$, $x_{-n} = x_n^*$.

Figure: Positive and negative frequencies. The absolute value of the frequency shows the rate of rotation while its sign indicates the direction of rotation.

Example (Fourier series of rectangular-pulse train)

$$x(t) = \sum_{n = -\infty}^{\infty} \bigcap \left(\frac{t - nT_0}{\tau}\right) = \sum_{n = -\infty}^{\infty} \frac{\tau}{T_0} \operatorname{sinc}\left(\frac{n\tau}{T_0}\right) e^{jn2\pi t/T_0}$$

Definition (Trigonometric Fourier Series)

The real periodic signal $x(t + T_0) = x(t)$ can be expanded as

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(2\pi nt/T_0) + \sum_{n=1}^{\infty} b_n \sin(2\pi nt/T_0)$$

, where

$$a_n = \frac{2}{T_0} \int_{T_0} x(t) \cos(2\pi nt/T_0) dt$$

and

$$b_n = \frac{2}{T_0} \int_{T_0} x(t) \sin(2\pi nt/T_0) dt$$

- ② For even real periodic signals, $b_n = 0$.
- **3** For odd real periodic signals, $a_n = 0$.

Example (Response of LTI Systems to Periodic Signals)

The response of an LTI system h(t) to the periodic input $x(t + T_0) = x(t)$ can be obtained by

$$y(t) = \sum_{n=-\infty}^{\infty} x_n H(n/T_0) e^{j2\pi nt/T_0}$$

, where

$$H(f) = |H(f)|e^{j\angle H(f)} = \int_{-\infty}^{+\infty} h(t)e^{-j2\pi ft}dt.$$

$$y(t) = \mathcal{T}\{x(t)\} = \mathcal{T}\{\sum_{n=-\infty}^{\infty} x_n e^{j2\pi nt/T_0}\}$$
$$= \sum_{n=-\infty}^{\infty} x_n \mathcal{T}\{e^{j2\pi nt/T_0}\} = \sum_{n=-\infty}^{\infty} x_n H(n/T_0)e^{j2\pi nt/T_0}$$

- If the input to an LTI system is periodic with period T_0 , then the output is also periodic with period T_0 .
- ② The output has a Fourier-series expansion given by $y(t) = \sum_{n=-\infty}^{\infty} y_n e^{\frac{j2\pi nt}{T_0}}$, where $y_n = x_n H(n/T_0)$.
- An LTI system cannot introduce new frequency components in the output.

Statement (Rayleigh's Relation)

For a periodic signal $x(t + T_0) = x(t)$,

$$\mathcal{P}_{x} = \frac{1}{T_{0}} \int_{T_{0}} |x(t)|^{2} dt = \sum_{n=-\infty}^{\infty} |x_{n}|^{2}$$

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

Fourier Transform

Fourier Transform

Definition (Fourier Transform)

If the Fourier transform of x(t), defined by

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} dt$$

exists, the original signal can be obtained from its Fourier transform by

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df$$

Dirichlet sufficient conditions for existence of the Fourier transform are:

- x(t) is absolutely integrable over the real line, i.e., $\int_{-\infty}^{\infty} |x(t)| dt < \infty$.
- ② The number of maxima and minima of x(t) in any finite real interval is finite.
- 3 The number of discontinuities of x(t) in any finite real interval is finite.

- **1** X(f) is generally a complex function. Its magnitude |X(f)| and phase $\angle X(f)$ represent the amplitude and phase of various frequency components in x(t).
- ② The function X(f) is sometimes referred to as the spectrum of the signal x(t).
- **3** To denote that X(f) is the Fourier transform of x(t), we frequently employ the notations $X(f) = \mathcal{F}\{x(t)\}, x(t) = \mathcal{F}^{-1}\{X(f)\}, \text{ or } x(t) \leftrightarrow X(f)$.

• For real signals $x(t) = x^*(t)$,

$$X(-f) = X^*(f)$$

$$\Re[X(-f)] = \Re[X(f)]$$

$$\Im[X(-f)] = -\Im[X(f)]$$

$$|X(-f)| = |X(f)|$$

$$\angle X(-f) = -\angle X(f)$$

- ② If x(t) is real and even, X(f) will be real and even.
- 3 If x(t) is real and odd, X(f) will be imaginary and odd.

Statement (Signal Bandwidth)

We define the bandwidth of a real signal x(t) as the range of positive frequencies contributing strongly in the spectrum of the signal.

Figure: Bandwidth of a real signal.

Example (Fourier transform of $\sqcap(t)$)

$$\mathcal{F}\{\sqcap(t)\} = \int_{-\infty}^{+\infty} \sqcap(t) e^{-j2\pi f t} dt = \int_{-0.5}^{0.5} e^{-j2\pi f t} dt = rac{\sin(\pi f)}{\pi f} = \operatorname{sinc}(f)$$

Example (Modulation Property)

$$x(t)\cos(2\pi f_0 t) \leftrightarrow \frac{1}{2}[X(f-f_0) + X(f+f_0)]$$

Property	Signal	Fourier
Assumption	x(t)	<i>X</i> (<i>f</i>)
Assumption	y(t)	Y(f)
Linearity	ax(t) + by(t)	aX(f) + bY(f)
Time Shifting	$x(t-t_0)$	$e^{-j2\pi ft_0}X(f)$
Frequency Shifting	$e^{j2\pi f_0 t}x(t)$	$X(f-f_0)$
Time Scaling	x(at)	$\frac{1}{ a }X(\frac{f}{a})$
Conjugation	$x^*(t)$	$X^*(-f)$
Convolution	x(t) * y(t)	X(f)Y(f)
Modulation	x(t)y(t)	X(f) * Y(f)
Sinusoidal Modulation	$x(t)\cos(2\pi f_0 t)$	$\frac{1}{2}[X(f-f_0)+X(f+f_0)]$
Auto-correlation	$x(t) * x^*(-t)$	$ X(f) ^2$
Time Differentiation	$\frac{dx(t)}{dt}$	$j2\pi fX(f)$
Time Differentiation	$\frac{\frac{dx(t)}{dt}}{\frac{d^nx(t)}{dt^n}}$	$(j2\pi f)^n X(f)$
Frequency Differentiation	$t^n \times (t)$	$\left(\frac{j}{2\pi}\right)^n \frac{d^n X(f)}{df^n}$
Integration	$\int_{-\infty}^t x(au) d au$	$\frac{X(f)}{i2\pi f} + \frac{1}{2}X(0)\delta(f)$
Duality	X(t)	x(-f)
Periodicity	$\sum_{n=-\infty}^{\infty} x_n e^{j2\pi nt/T_0}$	$\sum_{n=-\infty}^{\infty} x_n \delta(f - n/T_0)$

Table: Properties of the Fourier transform.

Signal	Fourier
$\delta(t)$	1
1	$\delta(f)$
$\delta(t-t_0)$	$e^{-j2\pi f t_0}$
$\delta^n(t)$	$(j2\pi f)^n$
$e^{j2\pi f_0 t}$	$\delta(f-f_0)$
sgn(t)	$\frac{1}{i\pi f}$
$\frac{1}{t}$	$-j\pi$ sgn (f)
u(t)	$\frac{1}{i2\pi f} + \frac{1}{2}\delta(f)$
$\cos(2\pi f_0 t)$	$\frac{1}{2i}[\delta(f - f_0) + \delta(f + f_0)] \frac{1}{2i}[\delta(f - f_0) - \delta(f + f_0)]$
$\sin(2\pi f_0 t)$	$\frac{1}{2i}[\delta(f-f_0)-\delta(f+f_0)]$
$\sqcap(t)$	sinc(f)
sinc(t)	$\sqcap(f)$
$\Lambda(t)$	$\operatorname{sinc}^2(f)$
$sinc^2(t)$	$\bigwedge_{1}(f)$
$e^{-at}u(t), a>0$	$\frac{1}{j2\pi f+a}$
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), a>0$	$\frac{1}{(i2\pi f+a)^n}$
$\sum_{n=-\infty}^{\infty} \delta(t-nT_0)$	$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \frac{\delta(f-n/T_0)}{\sigma(f-n/T_0)}$

Table: Fourier transform of elementary functions.

Statement (Parseval's Relation)

If the Fourier transforms of the signals x(t) and y(t) are denoted by X(f)and Y(f), respectively, then

$$\int_{-\infty}^{\infty} x(t)y^*(t)dt = \int_{-\infty}^{\infty} X(f)Y^*(f)df$$

Statement (Rayleigh's Relation)

If the Fourier transforms of the signals x(t) is denoted by X(f), then

$$\mathcal{E}_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt = \int_{-\infty}^{\infty} |X(f)|^{2} df$$

Example (LTI Systems)

The output of an LTI system is represented by the convolution integral

$$y(t) = h(t) * x(t) = \int_{-\infty}^{\infty} h(t - \tau)x(\tau)d\tau = \int_{-\infty}^{\infty} h(\tau)x(t - \tau)d\tau$$

, where h(t) is the impulse response of the LTI system. In the frequency domain,

$$Y(f) = H(f)X(f)$$

, where the frequency response H(f) is the Fourier transform of the impulse response h(t).

66 / 115

Mohammad Hadi Communication systems Spring 2021

Example (Interconnection of LTI systems)

The overall frequency response H(f) of the parallel, feedback, and series interconnection of the LTI systems $H_1(f)$ and $H_2(f)$ is $H_1(f) + H_2(f)$, $H_1(f)/(1 + H_1(f)H_2(f))$, and $H_1(f)H_2(f)$, respectively.

Power and Energy

Power and Energy

Definition (Energy Signal)

The signal x(t) is energy-type if its energy content is nonzero and limited, i.e.,

$$0<\mathcal{E}_{x}=\int_{-\infty}^{\infty}|x(t)|^{2}dt<\infty$$

Definition (Power Signal)

The signal x(t) is power-type if its power content is nonzero and limited, i.e.,

$$0<\mathcal{P}_{x}=\lim_{T\to\infty}\frac{1}{T}\int_{-T/2}^{T/2}|x(t)|^{2}dt<\infty$$

Power and Energy

- **1** A signal cannot be both power- and energy-type because $\mathcal{P}_x = 0$ for energy-type signals, and $\mathcal{E}_x = \infty$ for power-type signals.
- ② A signal can be neither energy-type nor power-type, e.g., $x(t) = t^2$.

Energy-Type Signals

Definition (Autocorrelation)

For an energy-type signal x(t), we define the autocorrelation function

$$R_{x}(\tau) = x(\tau) * x^{*}(-\tau) = \int_{-\infty}^{\infty} x(t)x^{*}(t-\tau)dt = \int_{-\infty}^{\infty} x(t+\tau)x^{*}(t)dt$$

.

Energy-Type Signals

- $\mathcal{F}\{R_x(\tau)\} = |X(f)|^2 = \mathcal{E}_x(f)$, where $\mathcal{E}_x(f)$ is called the energy spectral density of a signal x(t).
- **1** If we pass the signal x(t) through an LTI system with the impulse response h(t) and frequency response H(f),

$$R_{y}(\tau) = \mathcal{F}^{-1}\{|Y(f)|^{2}\}$$

$$= \mathcal{F}^{-1}\{|X(f)|^{2}|H(f)|^{2}\}$$

$$= \mathcal{F}^{-1}\{|X(f)|^{2}\} * \mathcal{F}^{-1}\{|H(f)|^{2}\} = R_{x}(\tau) * R_{h}(\tau)$$

Energy-Type Signals

Example (Energy of rectangular pulse)

The energy content of $x(t)=A \sqcap (\frac{t}{T})$ is $\mathcal{E}_x=\int_{-\infty}^{\infty}|x(t)|^2dt=\int_{-T/2}^{T/2}A^2dt=A^2T$.

Example (Energy spectral density of rectangular pulse)

The energy spectral density of $x(t) = A \sqcap (\frac{t}{T})$ is $\mathcal{E}_x(f) = \left| \mathcal{F} \{ A \sqcap (\frac{t}{T}) \} \right|^2 = T^2 A^2 \operatorname{sinc}^2(Tf)$.

Example (Autocorrelation of rectangular pulse)

The autocorrelation of $x(t)=A \cap (\frac{t}{T})$ is $\mathcal{R}_x(\tau)=\mathcal{F}^{-1}\{\mathcal{E}_x(f)\}=A^2T\Lambda(\frac{\tau}{T})$.

Definition (Time-Average Autocorrelation)

For a power-type signal x(t), we define the time-average autocorrelation function

$$R_{\mathsf{x}}(au) = \lim_{T o \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x^*(t- au) dt$$

_

- $S_x(f) = \mathcal{F}\{R_x(\tau)\}\$ is called power-spectral density or the power spectrum of the signal x(t).
- **3** If we pass the signal x(t) through an LTI system with the impulse response h(t) and frequency response H(f),

$$R_y(\tau) = R_x(\tau) * h(\tau) * h^*(-\tau)$$
 and $S_y(f) = S_x(f) |H(f)|^2$.

Example (Power of periodic signals)

Any periodic signal $x(t) = x(t + T_0)$ is a power-type signal and its power content equals the average power in one period as

$$\mathcal{P}_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^{2} dt = \lim_{n \to \infty} \frac{1}{nT_{0}} \int_{-nT_{0}/2}^{nT_{0}/2} |x(t)|^{2} dt$$
$$= \lim_{n \to \infty} \frac{n}{nT_{0}} \int_{-T_{0}/2}^{T_{0}/2} |x(t)|^{2} dt = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} |x(t)|^{2} dt$$

Example (Power of cosine)

The power content of $x(t) = A\cos(2\pi f_0 t + \theta)$ is

$$\mathcal{P}_{\mathsf{X}} = rac{1}{T_0} \int_{-T_0/2}^{T_0/2} A^2 \cos^2(2\pi f_0 t + heta) dt = rac{A^2}{2}$$

Mohammad Hadi Communication systems Spring 2021 76 / 115

Example (Time-average autocorrelation of periodic signals)

Let the signal x(t) be a periodic signal with the period T_0 . Then,

$$R_{x}(\tau) = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) x^{*}(t-\tau) dt$$

 $R_{x}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x^{*}(t - \tau) dt$ $= \lim_{k \to \infty} \frac{1}{kT_{0}} \int_{-kT_{0}/2}^{kT_{0}/2} x(t) x^{*}(t - \tau) dt$ $= \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) x^{*}(t - \tau) dt$

Example (Time-average autocorrelation of periodic signals)

Let the signal x(t) be a periodic signal with the period T_0 and have the Fourier-series coefficients x_n . Then, $R_x(\tau) = \sum_{n=-\infty}^{\infty} |x_n|^2 e^{j2\pi n\tau/T_0}$.

 $\frac{1}{T_0}\int_{-T_0/2}^{T_0/2} \mathrm{e}^{j2\pi(n-m)t/T_0}dt=\delta_{nm}$, which is nonzeros when n=m. So,

$$R_{x}(\tau) = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) x^{*}(t-\tau) dt$$

$$= \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x_{n} x_{m}^{*} e^{j2\pi m\tau/T_{0}} e^{j2\pi(n-m)t/T_{0}} dt$$

$$= \sum_{n=-\infty}^{\infty} |x_{n}|^{2} e^{j2\pi n\tau/T_{0}}$$

78 / 115

Mohammad Hadi Communication systems Spring 2021

Definition (Hilbert Transform)

The Hilbert transform of the signal x(t) is a signal $\hat{x}(t)$ whose frequency components lag the frequency components of x(t) by 90° .

- **1** A delay of $\pi/2$ for $e^{j2\pi f_0 t}$ results in $e^{j(2\pi f_0 t \pi/2)} = -je^{j2\pi f_0 t}$.
- ② A delay of $\pi/2$ for $e^{-j2\pi f_0 t}$ results in $e^{-j(2\pi f_0 t \pi/2)} = je^{-j2\pi f_0 t}$.

Statement (Hilbert Transform)

Assume that x(t) is real and has no DC component, i.e., X(0) = 0. Then,

$$\mathcal{F}\{\hat{x}(t)\} = -jsgn(f)X(f)$$

and

$$\hat{x}(t) = \frac{1}{\pi t} * x(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\tau)}{t - \tau} d\tau$$

- The Hilbert transform of an even real signal is odd, and the Hilbert transform of an odd real signal is even.
- ② Applying the Hilbert-transform operation to a signal twice causes a sign reversal of the signal, i.e., $\hat{\hat{x}}(t) = -x(t)$.
- **9** Energy content of a signal is equal to the energy content of its Hilbert transform, i.e., $\mathcal{E}_{x} = \mathcal{E}_{\hat{x}}$.
- **1** The signal x(t) and its Hilbert transform are orthogonal, i.e.,

$$\int_{-\infty}^{\infty} x(t)\hat{x}(t)dt = 0$$

.

Example (Hilbert transform of a cosine)

$$x(t) = A\cos(2\pi f_0 t + \theta) \leftrightarrow \frac{A}{2}e^{j\theta}\delta(f - f_0) + \frac{A}{2}e^{-j\theta}\delta(f + f_0)$$

$$\hat{x}(t) \leftrightarrow -j\operatorname{sgn}(f)\left[\frac{A}{2}e^{j\theta}\delta(f - f_0) + \frac{A}{2}e^{-j\theta}\delta(f + f_0)\right]$$

$$\hat{x}(t) \leftrightarrow \frac{A}{2j}e^{j\theta}\delta(f - f_0) - \frac{A}{2j}e^{-j\theta}\delta(f + f_0)$$

$$\hat{x}(t) = A\sin(2\pi f_0 t + \theta) \leftrightarrow \frac{A}{2j}e^{j\theta}\delta(f - f_0) - \frac{A}{2j}e^{-j\theta}\delta(f + f_0)$$

4□ > 4□ > 4 = > 4 = > = 90

83 / 115

Mohammad Hadi Communication systems Spring 2021

Example (Energy of a signal and its Hilbert transform)

$$\mathcal{E}_{\hat{x}} = \int_{-\infty}^{\infty} |\hat{x}(t)|^2 dt = \int_{-\infty}^{\infty} |\mathcal{F}\{\hat{x}(t)\}|^2 df$$
$$= \int_{-\infty}^{\infty} |-j \operatorname{sgn}(f) X(f)|^2 df = \int_{-\infty}^{\infty} |X(f)|^2 df = \int_{-\infty}^{\infty} |x(t)|^2 dt = \mathcal{E}_{X}$$

Example (Orthogonality of a signal and its Hilbert transform)

$$\int_{-\infty}^{\infty} \hat{x}(t)x(t)dt = \int_{-\infty}^{\infty} \hat{x}(t)[x^*(t)]^*dt =$$

$$\int_{-\infty}^{\infty} -j\operatorname{sgn}(f)X(f)[X^*(-f)]^*df = \int_{-\infty}^{\infty} -j\operatorname{sgn}(f)X(f)X(-f)df = 0$$

Mohammad Hadi Communication systems Spring 2021

84 / 115

Definition (Lowpass Signal)

A lowpass signal is a signal, whose spectrum is located around the zero frequency.

Figure: Spectrum of a lowpass signal.

Definition (Bandpass Signal)

A bandpass signal is a signal with a spectrum far from the zero frequency.

Figure: Spectrum of a bandpass signal.

- The spectrum of a bandpass signal is usually located around a center frequency f_c , which is much higher than the bandwidth of the signal.
- ② The extreme case of a bandpass signal is $x(t) = A\cos(2\pi f_c t + \theta)$, which can be represented by a phasor $x_l = Ae^{j\theta} = x_c + jx_s$, where A, θ , x_c , and x_s are called envelope, phase, in-phase component, and quadrature component, respectively.
- The original signal x(t) can be reconstructed from its phasor as $x(t) = A\cos(2\pi f_c t + \theta) = x_c\cos(2\pi f_c t) x_s\sin(2\pi f_c t)$.

Statement (Slowly-varying Lowpass Phasor)

Assume that we have a slowly-varying lowpass phasor $x_l(t) = A(t)e^{j\theta(t)} = x_c(t) + jx_s(t)$, where $A(t) \geq 0$, $\theta(t)$, $x_s(t)$, and $x_c(t)$ are slowly-varying signals compared to f_c . The real bandpass signal $x(t) = A(t)\cos(2\pi f_c t + \theta(t))$ relates to the complex time-varying phasor $x_l(t)$ as

$$x(t) = \Re\{x_I(t)e^{j2\pi f_c t}\} = \Re\{A(t)e^{j(2\pi f_c t + \theta(t))}\}$$

= $x_c(t)\cos(2\pi f_c t) - x_s(t)\sin(2\pi f_c t)$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

- $x_I(t) = A(t)e^{j\theta(t)} = x_c(t) + jx_s(t)$ is is called the lowpass equivalent of the bandpass signal $x(t) = A(t)\cos(2\pi f_c t + \theta(t))$.
- ② The envelope $|x_l(t)|$ and the phase $\angle x_l(t)$ of the bandpass signal are defined as

$$|x_l(t)| = A(t) = \sqrt{x_c^2(t) + x_s^2(t)}$$

and roughly,

$$\angle x_l(t) = \theta(t) = \tan^{-1}\left(\frac{x_s(t)}{x_c(t)}\right)$$

Obviously, the in-phase and quadrature components satisfy

$$x_c(t) = A(t)\cos(\theta(t))$$

and

$$x_s(t) = A(t)\sin(\theta(t))$$

Example (Spectrum of the bandpass signal)

$$x(t) = \Re\{x_l(t)e^{j2\pi f_c t}\} = \frac{1}{2} \left[x_l(t)e^{j2\pi f_c t} + x_l^*(t)e^{-j2\pi f_c t}\right]$$

So,

$$X(f) = \frac{1}{2}X_{l}(f - f_{c}) + \frac{1}{2}X_{l}^{*}(-(f + f_{c}))$$

91 / 115

Mohammad Hadi Communication systems Spring 2021

Example (Spectrum of the bandpass signal)

$$X(f) = \frac{1}{2}X_{l}(f - f_{c}) + \frac{1}{2}X_{l}^{*}(-(f + f_{c}))$$

Mohammad Hadi Communication systems Spring 2021 92 / 115

Example (Spectrum of the lowpass signal)

If the bandwidth of the bandpass signal W is much less than the central frequency f_c , then

$$X(f) = \frac{1}{2}X_{I}(f - f_{c}) + \frac{1}{2}X_{I}^{*}(-(f + f_{c}))$$

$$X(f + f_{c}) = \frac{1}{2}X_{I}(f) + \frac{1}{2}X_{I}^{*}(-(f + 2f_{c}))$$

$$X(f + f_{c})u(f + f_{c}) = \frac{1}{2}X_{I}(f)u(f + f_{c}) + \frac{1}{2}X_{I}^{*}(-(f + 2f_{c}))u(f + f_{c})$$

$$X(f + f_{c})u(f + f_{c}) = \frac{1}{2}X_{I}(f)$$

$$2X(f + f_{c})u(f + f_{c}) = X_{I}(f)$$

Mohammad Hadi Communication systems Spring 2021 93 / 115

Example (Spectrum of the lowpass signal)

If the bandwidth of the bandpass signal W is much less than the central frequency f_c , then

$$X_I(f) = 2X(f + f_c)u(f + f_c)$$

Example (Lowpass equivalent of a bandpass signal)

$$X_{I}(f) = 2X(f + f_{c})u(f + f_{c})$$

$$= 2X(f + f_{c})\frac{1 + \operatorname{sgn}(f + f_{c})}{2}$$

$$= 2X(f + f_{c})\frac{1 - j^{2}\operatorname{sgn}(f + f_{c})}{2}$$

$$= X(f + f_{c}) + j[-j\operatorname{sgn}(f + f_{c})X(f + f_{c})]$$

So,

$$x_l(t) = [x(t) + j\hat{x}(t)]e^{-j2\pi f_c t}$$

95 / 115

Mohammad Hadi Communication systems Spring 2021

Example (In-phase component of a bandpass signal)

$$x_l(t) = [x(t) + j\hat{x}(t)]e^{-j2\pi f_c t}$$

So,

$$x_l(t) = \left[x(t) + j\hat{x}(t)\right] \left[\cos(2\pi f_c t) - j\sin(2\pi f_c t)\right]$$

$$x_{l}(t) = x(t)\cos(2\pi f_{c}t) + \hat{x}(t)\sin(2\pi f_{c}t) + j[\hat{x}(t)\cos(2\pi f_{c}t) - x(t)\sin(2\pi f_{c}t)]$$

and,

$$\Re\{x_l(t)\} = x_c(t) = x(t)\cos(2\pi f_c t) + \hat{x}(t)\sin(2\pi f_c t)$$

Example (Quadrature component of a bandpass signal)

$$x_l(t) = [x(t) + j\hat{x}(t)]e^{-j2\pi f_c t}$$

So,

$$x_l(t) = \left[x(t) + j\hat{x}(t)\right] \left[\cos(2\pi f_c t) - j\sin(2\pi f_c t)\right]$$

$$x_{l}(t) = x(t)\cos(2\pi f_{c}t) + \hat{x}(t)\sin(2\pi f_{c}t) + j[\hat{x}(t)\cos(2\pi f_{c}t) - x(t)\sin(2\pi f_{c}t)]$$

and,

$$\Im\{x_l(t)\} = x_s(t) = \hat{x}(t)\cos(2\pi f_c t) - x(t)\sin(2\pi f_c t)$$

Mohammad Hadi Communication systems

97 / 115

Example (Envelope of a bandpass signal)

$$x_l(t) = [x(t) + j\hat{x}(t)]e^{-j2\pi f_c t}$$

So,

$$|x_l(t)| = A(t) = \sqrt{x^2(t) + \hat{x}^2(t)}$$

Example (Phase of a bandpass signal)

$$x_l(t) = \left[x(t) + j\hat{x}(t)\right]e^{-j2\pi f_c t}$$

So,

$$x_l(t) = [x(t) + j\hat{x}(t)][\cos(2\pi f_c t) - j\sin(2\pi f_c t)]$$

$$x_l(t) = x(t)\cos(2\pi f_c t) + \hat{x}(t)\sin(2\pi f_c t) + j[\hat{x}(t)\cos(2\pi f_c t) - x(t)\sin(2\pi f_c t)]$$

and roughly,

$$\angle x_{l}(t) = \theta(t) = \tan^{-1} \left[\frac{\hat{x}(t)\cos(2\pi f_{c}t) - x(t)\sin(2\pi f_{c}t)}{x(t)\cos(2\pi f_{c}t) + \hat{x}(t)\sin(2\pi f_{c}t)} \right]$$

Mohammad Hadi

Example (Lowpass equivalent of sinusoidal signal)

Lowpass equivalent of the bandpass signal $x(t) = A\cos(2\pi f_c t + \theta)$ is

$$x_{l}(t) = [x(t) + j\hat{x}(t)]e^{-j2\pi f_{c}t}$$

$$= [A\cos(2\pi f_{c}t + \theta) + jA\sin(2\pi f_{c}t + \theta)]e^{-j2\pi f_{c}t}$$

$$= Ae^{j(2\pi f_{c}t + \theta)}e^{-j2\pi f_{c}t} = Ae^{j\theta}$$

So,
$$A(t) = |A|$$
, $\theta(t) = \theta + u(-A)\pi$, $x_s(t) = A\cos(\theta)$, and $x_s(t) = A\sin(\theta)$.

100 / 115

Mohammad Hadi Communication systems Spring 2021

Example (Lowpass equivalent of sinusoidal signal)

Lowpass equivalent of the bandpass signal $x(t) = \text{sinc}(t)\cos(2\pi f_c t + \frac{\pi}{4})$ can be obtained as

$$x(t) = \operatorname{sinc}(t) \cos(\frac{\pi}{4}) \cos(2\pi f_c t) - \operatorname{sinc}(t) \sin(\frac{\pi}{4}) \sin(2\pi f_c t)$$

$$x_c(t) = \frac{\sqrt{2}}{2} \operatorname{sinc}(t), \quad x_s(t) = \frac{\sqrt{2}}{2} \operatorname{sinc}(t)$$

$$x_l(t) = x_c(t) + jx_s(t) = \frac{\sqrt{2}}{2} \operatorname{sinc}(t)(1+j) = \operatorname{sinc}(t)e^{j\frac{\pi}{4}}$$

Mohammad Hadi Communication systems Spring 2021 101 / 115

Filters

Figure: Ideal LPF frequency response and its impulse response.

$$H(f) = \sqcap(\frac{f}{2W}) \longleftrightarrow h(t) = 2W \operatorname{sinc}(2Wt)$$

Figure: Linear-phase ideal LPF frequency response and its impulse response.

$$H(f) = \sqcap(\frac{f}{2W})e^{-j2\pi ft_d} \longleftrightarrow h(t) = 2W\operatorname{sinc}(2W(t-t_d))$$

Mohammad Hadi

Figure: Truncated LPF impulse response.

$$h(t) = 2W \operatorname{sinc}(2W(t - t_d))$$
 $h_T(t) = 2W \operatorname{sinc}(2W(t - t_d))u(t)$

Mohammad Hadi

Figure: Butterworth LPF frequency characteristic.

$$|H(f)| = \frac{1}{\sqrt{1 + (\frac{f}{B})^{2n}}}$$

Figure: Comparison of Butterworth and ideal filters.

Basic Filters

Figure: Basic filters. (a) LPF (b) HPF (c) BPF (d) BSF.

Filter Design

Figure: Design process.

Definition (Absolute Bandwidth)

Absolute bandwidth of the signal x(t) is the smallest positive frequency band, where, for frequencies outside it, |X(f)| is zero.

Definition (Half-power Bandwidth)

3-dB or half-power bandwidth of the signal x(t) is the positive frequency band, where, for frequencies outside it, |X(f)| is never greater than $1/\sqrt{2}$ times its maximum value.

Definition (Null-to-null Bandwidth)

Null-to-null or zero-crossing bandwidth is the frequency band, where the band edge frequencies create the first spectrum nulls. For the lowpass signals, the right side edge frequency only creates the null.

4 D F 4 B F F 4 E F 9 Y (**

Definition (Power Bandwidth)

Power bandwidth is the positive frequency band in which 49.5% of the total power (or energy) resides.

Definition (RMS Bandwidth)

The Root Mean Square (RMS) bandwidth is defined as $\sqrt{\frac{\int_0^{+\infty} f^2 |X(f)|^2 df}{\int_0^{+\infty} |X(f)|^2 df}}$ for

the lowpass signal x(t) and $2\sqrt{\frac{\int_0^{+\infty}(f-f_0)^2|X(f)|^2df}{\int_0^{+\infty}|X(f)|^2df}}$ for the bandpass signal x(t) centered around f_0 .

Figure: Various ways to define bandwidth. X(f) may represent the spectrum of a real signal or frequency response of a filter.

Example (Bandwidth of the rectangular spectrum)

For a signal with the spectrum $X(f) = A \sqcap (\frac{f}{B})$,

$$\begin{split} W_{abs} &= \frac{B}{2} \\ W_{3db} &= \frac{B}{2} \\ W_{n2n} &= \frac{B}{2} \\ \int_{0}^{W_{pow}} A^{2} \ df = W_{pow} A^{2} = \frac{49.5}{100} BA^{2} \Rightarrow W_{pow} = 0.495B \\ W_{rms} &= \sqrt{\frac{\int_{0}^{+\infty} f^{2} |X(f)|^{2} df}{\int_{0}^{+\infty} |X(f)|^{2} df}} = \sqrt{\frac{\int_{0}^{\frac{B}{2}} f^{2} A^{2} df}{\int_{0}^{\frac{B}{2}} A^{2} df}} = \sqrt{\frac{\frac{B^{3}}{24} A^{2}}{\frac{B}{2} A^{2}}} = \frac{B}{\sqrt{12}} = 0.287B \end{split}$$

The End