

Unit 02

Yield Curve and Forward Rate

Overview

- The yield curve
- Interest rates under certainty
- Interest rates under uncertainty
- Forward rates

- The Yield Curve
 - The yield curve is a graph that displays the relationship between YTM and time to maturity
 - Information on expected future short-term rates can be implied from the yield curve

Figure – Shape of Yield Curve and Its Implication

Treasury Yield Curve

- Yield Curve: Bond Pricing
 - Yields on different maturity bonds are not all equal
 - We need to consider each bond cash flow as a standalone zero-coupon bond
 - Bond stripping and bond reconstitution offer opportunities for arbitrage
 - The value of the bond should be the sum of the values of its parts

Prices and YTMs on Zeros (\$1,000 par value)

Maturity (years)	Yield to Maturity (%)	Price
1	5%	\$952.38 = \$1,000/1.05
2	6	\$890.00 = \$ 1,000/1.06 ²
3	7	\$816.30 = \$1,000/1.073 ³
4	8	\$735.03 = \$1,000/1.084 ⁴

Example

Valuing coupon bonds

- Value a 3yr, 10% coupon (annual coupon payment) using discount rates from Table 15.1:

$$P = \frac{\$100}{1.05} + \frac{\$100}{1.06^2} + \frac{\$1,100}{1.07^3} = \$1082.1654$$

What about YTM?

$$\frac{\$100}{(1+r)} + \frac{\$100}{(1+r)^2} + \frac{\$1,100}{(1+r)^3} = \$1082.1654 \text{ (use_Excel)}$$

$$\Rightarrow r = 6.88\% \text{ (less than 3yr rate of 7\%, why?)}$$

- The Yield Curve and Future Interest Rates
 - Yield Curve under Certainty
 - Investment for 2 years:
 - 1. Buy and hold for 2 years
 - 2. Rollover a series of 1-year bonds

Equilibrium (via no-arbitrage) requires that both strategies provide the same return!

2-yr Investmetn Program

2-yr Investmetn Program

- Spot rate
 - The rate that prevails today for a given maturity

Short rate

- The rate for a given maturity (e.g. one year) at different points in time
- A spot rate is the geometric average of its component short rates

2-yr Investmetn Program

- Short rates and yield curve slope
 - When next year's short rate, r_2 , is greater than this year's short rate, r_1 , the yield curve slopes up
 - May indicate rates are expected to rise
 - When next year's short rate, r_2 , is less than this year's short rate, r_1 , the yield curve slopes down
 - May indicate rates are expected to fall

Short rates vs. spot rates

Forward Rates

Definition of Forward Rates

$$(1+f_n) = \frac{(1+y_n)^n}{(1+y_{n-1})^{n-1}}$$

- f_n = one-year forward rate for period n
- y_n = yield for a security with a maturity of n

$$\Rightarrow (1+y_n)^n = (1+y_{n-1})^{n-1}(1+f_n)$$

Example

Forward rates

- The forward interest rate is a forecast of a future short rate
- Rate for 4-year maturity = 8%, rate for 3-year maturity = 7%

$$1 + f_4 = \frac{(1 + y_4)^4}{(1 + y_3)^3} = \frac{1.08^4}{1.07^3} = 1.1106$$

$$f_4 = 11.06\%$$

- Interest Rate Uncertainty and Forward Rates
 - Suppose that today's rate is 5% and the expected short rate for the following year is $E(r_2) = 6\%$. The value of a 2-year zero is:

$$\frac{\$1,000}{(1.05)(1.06)} = \$898.47$$

• The value of a 1-year zero is:

$$\frac{\$1,000}{1.05} = \$952.38$$

Interest Rate Uncertainty and Forward Rates

- The investor wants to invest for 1 year
 - Buy the 2-year bond today and plan to sell it at the end of the first year for \$1000/1.06 =\$943.40

Or

- Buy the 1-year bond today and hold to maturity
- What if next year's interest rate is more (or less) than 6%?
- The actual return on the 2-year bond is uncertain!
 - The actual return on the 2-year bond is uncertain!

- Interest Rate Uncertainty and Forward Rates
 - Investors require a <u>risk premium to hold a longer-term bond</u>
 - This liquidity premium compensates short-term investors for the uncertainty about future prices

Exercise Problem 1

Which of the following is true according to the pure expectations theory? Forward rates:

- a. Exclusively represent expected future short rates.
- b. Are biased estimates of market expectations.
- c. Always overestimate future short rates.

Exercise Problem 2

The following is a list of prices for zero-coupon bonds of various maturities.

Maturitiy (years)	Price of Bond
1	\$943.4
2	\$898.47
3	\$847.62
4	\$792.16

- a. Calculate the yield to maturity for a bond with a maturity of (i) one year; (ii) two years; (iii) three years; (iv) four years.
- b. Calculate the forward rate for (i) the second year; (ii) the third year; (iii) the fourth year.

Exercise Problem 3

Prices of zero-coupon bonds reveal the following pattern of forward rates:

Year	Forward Rate
1	5%
2	7%
3	8%

In addition to the zero-coupon bond, investors also may purchase a 3-year bond making annual payments of \$60 with par value \$1,000.

- a. What is the price of the coupon bond?
- b. What is the yield to maturity of the coupon bond?
- c. Under the expectations hypothesis, what is the expected realized compound yield of the coupon bond?
- d. If you forecast that the yield curve in one year will be flat at 7%, what is your forecast for the expected rate of return on the coupon bond for the 1-year holding period?