# CHAPTER 4

# MEASURES OF CENTRAL TENDENCY

### MEASURES OF CENTRAL TENDENCY

Descriptive statistics that offer information on where the scores in a data set tend to cluster.

Examples: Mean, Median, Mode.



## THE MEAN

The arithmetic average of a variable within a set of data.

$$\bar{x} = \frac{\sum x}{n}$$

 $\bar{\mathcal{X}}$  = Mean

 $\sum$  = Summation

X =Values in a column

n = Sample size

### A MEAN EXAMPLE

#### We have five college student's test scores on a particular exam:

|           | grades |
|-----------|--------|
| student_1 | 85     |
| student_2 | 90     |
| student_3 | 75     |
| student_4 | 86     |
| student_5 | 91     |

$$\bar{x} = \frac{(85 + 90 + 75 + 86 + 91)}{5}$$

$$\bar{x} = ?$$

### THE MEDIAN

A score that cuts a distribution in half, or more simply, the true middle number.

Steps to Find the Median



Figure 1: ?(caption)

## ODD NUMBER (METHOD ONE)

We only need one step for this!

$$Median = \frac{n+1}{2}$$

n = Sample size

## EVEN NUMBER (METHOD TWO)

LM and UM are numbers within the column. Step 1

$$LowerMiddle(LM) = \frac{n}{2}$$

Step 2

$$UpperMiddle(UM) = \frac{n}{2} + 1$$

Step 3

$$Median = \frac{LM + UM}{2}$$

### METHOD ONE EXAMPLE

### We have nine college student's test scores on a particular exam:

| grades |
|--------|
| 85     |
| 90     |
| 75     |
| 86     |
| 62     |
| 79     |
| 96     |
|        |

$$Median = \frac{?+1}{2}$$

### METHOD TWO EXAMPLE

#### We have four college student's test scores on a particular exam:

|           | grades |
|-----------|--------|
| student_1 | 85     |
| student_2 | 90     |
| student_3 | 75     |
| student_4 | 86     |

$$(LM) = \frac{?}{2}$$

$$(UM) = \frac{?}{2} + 1$$

$$Median = \frac{(?+?)}{2}$$

### THE MODE

The most frequent number in a set of scores or column.

Simply sort your values in ascending order, then count and compare (Hint: Look for numbers that repeat).

$$2,4,5,5,4,5$$
 $\rightarrow 2,4,4,5,5,5$ 

MODE = 5

### A MODE EXAMPLE

### We have seven college student's test scores on a particular exam:

|           | grades |
|-----------|--------|
| student_1 | 85     |
| student_2 | 90     |
| student_3 | 75     |
| student_4 | 85     |
| student_5 | 62     |
| student_6 | 79     |
| student_7 | 96     |

Mode = ?

### NORMAL DISTRIBUTION

A set of scores that cluster in the center and tapers off to the left and right sides of the number line.



## **OUTLIERS**

Extreme values that pull the distribution which leads to a positive or negative skew.



### POSITIVE SKEW

## A clustering of scores in a distribution with some large scores pulled (or skewed) toward the positive side of the x-axis



### NEGATIVE SKEW

A clustering of scores in a distribution with some small scores that pulled (or skewed)the towards the negative side of the x-axis.



### MNEMONIC DEVICES

These are memory techniques that aid in memory retention and retrieval.

Dates back to the early Greeks.

Helps transition short term to long term memory more quickly.



### SKEW MNEMONIC

When you hear the word "skew" think of laying on a beach and putting your feet together while looking at the horizon.

Your right foot is the positive skew.

Your left foot in the negative skew.



## POP QUIZ



#### Using the data below, calculate the mean, median, and mode.

|      | Wins_Under_Scott_Frost |
|------|------------------------|
| 2018 | 4                      |
| 2019 | 5                      |
| 2020 | 3                      |
| 2021 | 3                      |
| 2022 | 4                      |

Mean = ?

Median = ?

Mode = ?

## RECAP

Measure of central tendency

• Outliers

Distributions and Skews

## THE MEAN AND MEDIAN TO DETERMINE DISTRIBUTION SHAPE

Right skew occurs when our Mean > Median.

Left skew occurs when our Mean < Median.



The order of the mean and median may be reversed.





The order of the median and mean may be reversed.

### DEVIATION SCORE

The deviation score is the distance between the mean of a variable and any given raw score in that variable.

$$d_i = x_i - \bar{x}$$

 $d_i$  = deviation score

 $x_i$  = a given raw score (i.e., data point)

 $\bar{\mathcal{X}}$  = the mean

### DEVIATION SCORE

This tells us two important things:

- 1.) How far the raw score is from the mean  $(\bar{x})$
- 2.) Whether the raw score is greater or less than the mean  $(\bar{x})$

Positive deviation scores represent raw scores that greater than the mean.

Negative deviation scores represent raw scores that less than the mean.

### DEVIATION SCORE EXAMPLE

#### 1.) Calculate the $(\bar{x})$

### 2.) Calculate the $d_i=x_i-\bar{x}$ for each student

|           | grades |
|-----------|--------|
| student_1 | 85     |
| student_2 | 90     |
| student_3 | 75     |
| student_4 | 85     |
| student_5 | 62     |
| student_6 | 79     |
| student_7 | 96     |

### POSIT CLOUD

Head to Posit Cloud

### POP QUIZ



You are a researcher at a think tank and you are about to present new findings regarding the DARE program. Your data has a  $(\bar{x})$  of 45, a median that is 35, what type of skew will your sample have? And what direction does it point?

- A.) Positive Skew, Right
- B.) Positive Skew, Left
- C.) Negative Skew, Left
- D.) Positive Skew, Right

## REVIEW

Any question about the exam?

Bring a calculator.

### GOOD LUCK STUDYING

