2 Brief Introduction/Recap to Computational Complexity

The <u>running time</u> of an algorithm is the number of elementary operations that it performs.

Example

Scalar product between two vectors x,y \(Z^n \).

$$\langle \times, \times \rangle = \sum_{i=1}^{n} \times_{i} \times_{i}$$

multiplications: $n \rightarrow total # of elem operations:$ # additions: $n-1 \rightarrow 2n-1$

additions

Example

Let $x,y,z \in \mathbb{Z}^n$. How many elementary operations does it take to compute $x \cdot y^T \cdot z$?

Option 1

$$x \cdot y^T \cdot z = (x \cdot y^T) \cdot z$$
, i.e.,

first compute x.y. and then (x.y.). z

$$X \cdot yT = \begin{pmatrix} x_1y_1 & \dots & x_1y_n \\ \vdots & \vdots & \vdots \\ x_ny_1 & \dots & x_ny_n \end{pmatrix}$$
; n^2 multiplications

(x·y^T) · Z ; n scalar products

$$\rightarrow N \cdot (2n-1) = 2n^2 - n$$

elem operations of scalar product in Kⁿ

=) Total # of elem. operations: 3n2-n

Option 2 $x \cdot y^{T} \cdot z = x \cdot (y^{T} \cdot z)$, i.e.,

first compute $y^{T}z$ and then $x \cdot (y^{T}z)$. $y^{T}z : 2n-1$ elem. operations $x \cdot (y^{T}z) : n$ elem. operations 3n-1 elem. operations

Landau notation

Above way to measure running times is too fine-grained. We want to know how an algorithm scales when problem size increases.

For this, it suffices to determine the running time up to constant factors.

Definition 2.2: Landau notation

Let f and g be two functions.

(i) We write f = O(g) if and only if

$$\exists M>0, c>0 \quad \text{such that} \quad |f(s)| \leq c \cdot |g(s)| \quad \forall s \geq M \ .$$

- (ii) We write $f = \Omega(g)$ if and only if g = O(f).
- (iii) We write $f = \Theta(g)$ if and only if f = O(g) and $f = \Omega(g)$.

$$3n-1 = O(n)$$
 $3n-1 \le 3n$
 $n+\log n = O(n)$ $n+\log n \le 2n$
 $n+10^6 = O(n)$ $n+10^6 \le 2n$ for $n \ge 10^6$
 $= O(n^{3/4})$
 $\sqrt{n} + (\log n) \cdot n^{2/3} = O(n)$
 $n^2 \log n = O(n^3)$ $(=)$ $n^3 = \Omega(n^2 \log n)$
 $n^2 + \log n = \Theta(n^2)$

Worst-case assumption

When analyzing the running time of an algorithm for a certain problem class, we want to get a running time apper bound that holds for any problem instance of a certain size.

Example

Given: a,, a2, a3,..., an EZ

Task: Decide whether $a_1 = a_2 = ... = a_n$.

One possible algorithm:

What's the running time of this algorithm!

If $a_1 \neq a_2 \longrightarrow running time: <math>O(1)$

If $\alpha_1 = \alpha_2 = \alpha_n \Rightarrow \alpha$

-> Clearly, the running time depends on the input, even when fixing n.

The running time is measured with respect to worst-case instance.

—) running time: O(n)

Input size

of bits needed to save problem instance.

Saving a ∈ Zzo in binary: $\alpha = 9$ 1001 11 7 7 We need $\Gamma(\log_2(a+1))$ loits. 8421 l a=1 10 $\alpha = 1$ -1(100 101 110 (11) $\alpha = 8$ 1000

To also save negative numbers, we can use extra bit for sign. $\Rightarrow \lceil \log_2(a+1) \rceil + 1$

Example

Task: Compute scalar product <x,y> with x,y ∈ Z".

What is the input size of this problem?

$$\langle input \rangle = \Theta \left(\sum_{i=1}^{n} \left(\lceil \log(|x_{i}|+1) \rceil + 1 \right) + \sum_{i=1}^{n} \left(\lceil \log(|y_{i}|+1) \rceil + 1 \right) \right)$$

bits to save x_{i}

$$= \Omega(n)$$

Definition 2.3: Polynomial algorithms and problems

An algorithm is *polynomial* or *efficient* if its running time $f(\langle \text{input} \rangle)$ is bounded by a polynomial in the size of the input, i.e., there is a polynomial g such that

$$f = O(g)$$
.

A problem is *solvable in polynomial time* if it can be solved by a polynomial algorithm.

Complexity classes — When talking about complexity classes, we restrict ourselves to decision problems.

Tyes/no-problems

P: Class of all decision problems that can be solved in polynomial time.

NP: Class of all decision problems for which a yes-instance can be certified efficiently.

This means that there is a polynomial-size certificate and an efficient algorithm such that, given the instance and the certificate, the algorithm can verify that it is a yes-instance.

Example of a problem in NP

Input: $x \in \mathbb{Z}_{\geq 2}$

Task: Decide whether x is not prime.

 $x = a \cdot b$ $a, b \in \mathbb{Z}_{\geq 2}$

