AuD Zusammenfassung WS20/21

Leon Vatthauer

$4.~\mathrm{M\ddot{a}rz}~2021$

Inhaltsverzeichnis

1	Multiple Choice / Wissen	2
2	Bäume 2.1 Traversierung 2.2 Binärer Suchbaum 2.3 Halden 2.4 AVL-Bäume 2.4.1 Balancieren	2 2 2 2 3 3
3	Graphen 3.1 Begriffe 3.2 Darstellungen 3.2.1 TODO BILDER 3.3 Spannbaum-Algorithmen 3.3.1 Prim 3.3.2 Kruskal 3.4 Traversierung 3.4.1 Tiefensuche 3.4.2 Breitensuche 3.5 Kürzeste Wege	3 3 4 4 4 4 4 4 4 5 5
4	Rekursion	5
5	Dyn. Prog.	5
6	Sortieren	5
7	HashMaps	5
8	ADTs	5
9	Listen	5
10	Backtracking	5
11	Suche	5
12	WP-Kalk, Induktion	5
13	Schreibtischlauf	5
14	$\mathrm{UML/OOP}$	5
15	Vererbung	5

1 Multiple Choice / Wissen

- Java-specifics (Bsp. Testfall Deklaration mit @Test)
- Laufzeiten
- Generelles aus allen Bereichen

2 Bäume

2.1 Traversierung

2.2 Binärer Suchbaum

Einfügen

- Kleinere Zahl links einfügen
- Größere Zahl rechts einfügen

Löschen

Ersetze gelöschten Knoten durch:

- kleinster Knoten des rechten Teilbaums oder
- größter Knoten des linken Teilbaums

Weiteres

Bäume können entarten durch sortiertes Einfügen

(a) Binärer Suchbaum

Abbildung 1: Suchbäume

2.3 Halden

Aufbau

Alle Nachfolger eines Knoten sind größter / kleiner (Min/Max Halde) 'Ebenen' des Baumes werden von links nach rechts in Array eingebettet

Abbildung 2: Halden

Einfügen

Neuen Wert hinten ins Array und dann Halden-Eigenschaft wiederherstellen: \rightarrow Wert wird mit Elternknoten verglichen, bis Halden-Eigenschaft wieder gilt

Löschen

Knoten löschen und letzten Wert im Array an Stelle bewegen dann Halden-Eigenschaft durch tauschen wiederherstellen

2.4 AVL-Bäume

Aufbau

Balancierte binäre Suchbäume

Einfügen und Löschen

Analog zum Suchbaum mit darauffolgender Balancierphase

2.4.1 Balancieren

Höhe

Anzahl Knoten unterhalb

Balance faktor

 $B = H_{links} - H_{rechts}$

Vorgehen bei der Klausur:

- 1. Höhe und Balancefaktor bei allen Knoten ermitteln
- 2. Knoten mit $|B| \ge 2$ betrachten
- 3. Vorzeichenwechsel? \rightarrow 2 Rotationen sonst: eine Rotation

3 Graphen

3.1 Begriffe

• Pfad

Weg zwischen zwei Knoten, Länge ist Anzahl von Kanten

ullet Grad

Bei ungerichteten: Anzahl Verbindungen

Bei gerichteten: Unterscheidung Eingangsgrad — Ausgangsgrad

• Spannbaum

Zyklenfreier Teilgraph der alle Knoten enthält

• Wurzel

Knoten mit Eingangsgrad 0

3.2 Darstellungen

3.2.1 TODO BILDER

3.3 Spannbaum-Algorithmen

3.3.1 Prim

Greedy-Algorithmus

Vorgehen:

- Beginne bei Startknoten
- Füge 'günstigste' anliegende Kante hinzu, die einen neuen Knoten verbindet
- Wiederhole, solange Spannbaum unvollständig

3.3.2 Kruskal

Ebenfalls Greedy-Algorithmus

- Erstelle Graph mit allen Knoten, aber ohne Kanten
- Sortiere Kanten des original aufsteigend
- Füge billigste Kante zum Spannbaum hinzu, wenn beide Knoten noch nicht verbunden sind

3.4 Traversierung

3.4.1 Tiefensuche

Graph wird zu erst in die Tiefe durchsucht

Würde ein bereits besuchter Knoten als nächstes kommen gehe einen Schritt zurück

Abbildung 3: Tiefensuche am Beispiel

Als Algorithmus:

Implementierung mit Stack

- Besuche Knoten
- Füge alle Kinder zu Stack hinzu
- Während Stack nicht empty:
- betrachte erstes Element von Stack, wenn noch nicht markiert: Punkt 1

3.4.2 Breitensuche

Graph wird 'ebenenweise' durchsucht

 \rightarrow Besuche erst alle Children, dann fange mit ihren Children an

Abbildung 4: Breitensuche am Beispiel

Als Algorithmus:

Implementierung mit Queue

- Besuche Knoten
- Füge alle Children, die noch nicht besucht wurden, in Queue hinzu
- Besuche nächsten Knoten in Queue
- 3.5 Kürzeste Wege
- 4 Rekursion
- 5 Dyn. Prog.
- 6 Sortieren
- 7 HashMaps
- 8 ADTs
- 9 Listen
- 10 Backtracking
- 11 Suche
- 12 WP-Kalk, Induktion
- 13 Schreibtischlauf
- 14 UML/OOP
- 15 Vererbung