Przedmiot: Wprowadzenie do automatyki

# **Ćwiczenie** 6: **Modelowanie obiektu sterowania**

Zamodelować obiekt sterowania – zestaw dwóch zbiorników wody ze swobodnym odpływem.

# **Badany układ**

Rozpatrywany jest układ dwóch zbiorników wody ze swobodnym odpływem (model liniowy układu). Strumień wody q(t) wpływający do pierwszego zbiornika stanowi wymuszenie. Stan układu określają poziomy wody w obu zbiornikach.

Oznaczymy:  $x_1(t)$  - poziom wody w pierwszym zbiorniku,  $x_2(t)$  - poziom wody w drugim zbiorniku. Interesującą nas wielkością wyjściową jest poziom wody w drugim zbiorniku.

Zlinearyzowane równanie stanu ma postać:

$$\dot{x}_1(t) = -\frac{1}{R_1 C_1} x_1(t) + \frac{1}{R_1 C_1} x_2(t) + \frac{1}{C_1} u(t)$$

$$\dot{x}_2(t) = \frac{1}{R_1 C_2} x_1(t) + \left( -\frac{1}{R_1 C_2} - \frac{1}{R_2 C_2} \right) x_2(t)$$

gdzie:

C<sub>i</sub> - pole powierzchni lustra wody *i* - tego zbiornika,

 $R_i$  - współczynnik charakteryzujący opory przepływu przez otwór odpływowy i - tego zbiornika Jako sygnał wyjściowy przyjęliśmy poziom wody w zbiorniku nr 2, co odpowiada następującemu równaniu wyjścia:

$$y(t) = x_2(t)$$

Pełny opis procesu w przestrzeni stanów (ang. state-space equations), tzn. określenie relacji między sygnałami wejścia, wyjścia i stanem procesu, stanowi **równanie stanu wraz z równaniem wyjścia**.

Równanie stanu (dowolnego, liniowego układu) zapisujemy jako:

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t)$$

gdzie: x(t) - wektor stanu,

u(t) - wektor wymuszenia,

A - macierz systemu,

*B* - macierz wejścia, określająca wpływ wymuszenia na proces zmian wektora stanu, **równanie wyjścia** przedstawia poniższa zależność:

$$y(t) = Cx(t) + Du(t)$$

gdzie: y(t) - wektor wyjścia,

C - macierz wyjścia, tzn. macierz określającasposób obserwacji wektora stanu,

D - macierz przenoszenia, tzn. macierz określająca wpływ wymuszenia na wektor wyjścia.

Dla modelowanego układu dwóch zbiorników ostateczna postać zlinearyzowanego **równania stanu** (w Matlabie-Simulinku - State-Space model) jest następująca:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -\frac{1}{R_1 C_1} & \frac{1}{R_1 C_1} \\ \frac{1}{R_1 C_2} & -\frac{1}{R_1 C_2} - \frac{1}{R_2 C_2} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} \frac{1}{C_1} \\ 0 \end{bmatrix} u(t)$$

równania wyjścia:

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u(t)$$

# Modelowanie układu

Badany układ należy zamodelować w środowisku SIMULINK.

SIMULINK jest interaktywnym pakietem zintegrowanym z MATLABem, przeznaczonym do modelowania, symulacji i analizy układów. Definiowanie modelu wykonuje się w postaci schematu blokowego (graficznie). Schemat tworzy się z bloków pochodzących z bibliotek SIMULINKA.

SIMULINK uruchamiamy poprzez wybór ikony Simulink na pasku narzędziowym Matlaba. Konstruowanie modelu należy rozpocząć od otwarcia nowego okna modelu (wybór "Blank Model" z menu Simulinka). Do nowego okna kopiuje się bloki umieszczone w bibliotece Simulinka. Otwiera się ją kliknięciem w ikonę "Library Browser", która znajduje się w pasku narzędziowym modelu SIMULINK-a. Każdy blok posiada swoje okno dialogowe. W oknie tym podawane są informacje dotyczące bloku i jego parametrów. Otwiera się je przez dwukrotne kliknięcie ikony bloku lewym klawiszem myszy. Bloki łączy się liniami, które reprezentują przepływ sygnałów.

Do zamodelowania układu (model analogowy - otrzymany na podstawie równań stanu i wyjścia) należy wykorzystać następujące bloki:

- Integrator Gain, Sum, Mux, z biblioteki Commonly Used Blocks,
- Step lub Constant z biblioteki Sources.
- Scope, Out z biblioteki Sinks.

Badany układ (rys. 1),



można również zamodelować przy użyciu opisu: wektorowo – macierzowego, wykorzystując odpowiedni blok biblioteki **Continuous** SIMULINKA

- blok **State-Space** (model układu opisanego w przestrzeni stanów).

Budując modele należy wprowadzić parametry poszczególnych bloków:

 w bloku **Step** (generator skoku jednostkowego), ustawić czas wystąpienia skoku (*Step time*), wartość sygnału przed skokiem (*Initial value*) oraz wartość sygnału po skoku (*Final value*),

lub w bloku *Constant* - wartość sygnału wejściowego,

- w sumatorze (blok **Sum**) ustawić właściwe znaki,
- w bloku State-Space macierze A, B, C, D oraz wektor warunków początkowych (Initial condition)

Blok **Scope** służy do zobrazowania symulowanych przebiegów, blok **Out1** umożliwia dostęp portu wyjściowego do modelu. Blok ten można wykorzystać do wyprowadzenia interesujących nas wartości do przestrzeni roboczej MATLABA (i zapamiętanie ich w postaci macierzy).

# Ustawienie parametrów symulacji

Przed rozpoczęciem symulacji należy ustawić parametry symulacji (Simulation / Model Configuration Parameters):

#### Solver

```
Simulation time - ustawienie czasu symulacji:

Start time (0), Stop time (żądany czas symulacji );

Solver options

Solver - pozwala wybrać metodę numeryczną:

zmiennokrokową (Variable-step) - zalecana jest metoda
ode45 (Dormand- Prince)) lub
stałokrokową (Fixed-step - zalecana metoda, to ode5 (Dormand-
Prince)),
domyślnie ustawiona jest metoda zmiennokrokowa auto(Automatic
solver selection);

Relative tolerance - zaleca się ustawić wartość 1e-6;
Additional parameters:

step size - należy ustawić wartość kroku (np. Max step size: 0.01,
Min step size: 0.001);
```

### Data Import/Export

Save to workspace or file

Time - należy zaznaczyć tę opcję i ewentualnie zmienić nazwę wektora czasu (wstępnie przyjęto: tout);

Output - należy zaznaczyć tę opcję i ewentualnie zmienić nazwę macierzy wyjściowej (wstępnie przyjęto: yout);

Save options

Format - jako format danych należy ustawić Array.

### Zadanie domowe

Studenta przystępującego do ćwiczenia obowiązuje:

- znajomość następujących pojęć:
  - równanie stanu, równanie wyjścia,
- znajomość:
  - sposobu opisu układów dynamicznych (umiejętność stworzenia schematu analogowego układu na podstawie równań stanu i wyjścia),
- znajomość niniejszej instrukcji.
- znajomość materiału podanego w skrypcie W. Kwiatkowskiego: "Wprowadzenie do automatyki dla informatyków" - rozdziały: 5. Sygnały i układy, 6. Układy liniowe, 7. Równanie stanu.

#### Zadanie laboratoryjne.

- 1. Podać ogólną postać równania stanu i równania wyjścia dla układu liniowego.
- 2. Przedstawić równanie stanu, równanie wyjścia dla modelu dwóch zbiorników.
- 3. Podać postacie macierzy: A, B, C, D.
- 4. Przedstawić schemat analogowy.
- 5. Utworzyć w Matlabie plik z danymi (dane, macierze A, B, C, D, q(t)=q0=1[m³/s]), plik: **cw6\_dane\_nazwisko.m**
- 6. Stworzyć model w Simulinku plik: **cw6\_model\_nazwisko.slx** (na podstawie schematu analogowego i opisu w przestrzeni stanów)
- 7. Zarejestrować: q(t), y(t) oraz x1(t), x2(t) (wykresy współrzędnych wektora stanu dla zadanego sygnału wejściowego stałego strumienia dopływu wody).
- 8. Odczytać z wykresu ustalone poziomy wody w zbiornikach.
- 9. W domu wyznaczyć analitycznie punkt równowagi ustalone poziomy wody w zbiornikach.
- 10. Narysować na wspólnym wykresie przebiegi: x1(t), x2(t), y(t), q(t) otrzymane w wyniku symulacji (funkcja **plot**).

Wykres zapisać w postaci pliku: cw6\_rysunek\_nazwisko

Wyniki pracy z ćwiczenia stanowią **pliki wymienione w punktach: 5,6,10** przesłane na zakończenie ćwiczenia z laboratorium na adres e-mail prowadzącego ćwiczenie.

W polu temat należy wpisać: nazwę przedmiotu, numer ćwiczenia, nazwę grupy, nazwisko, imię (np. WDA ćw.6 WCYI9IX3S1 Kowalski Adam).

### **Sprawozdanie**

Opracować sprawozdanie zawierające:

- 1. Dane (podać jednostki).
- 2. Postać równania stanu i równania wyjścia dla modelu dwóch zbiorników.
- 3. Implementację modelu badanego układu w środowisku Matlab Simulink.
- 4. Wydruki wykorzystywanych skryptów środowiska Matlab.
- 5. Wykresy z punktu 10 zadania laboratoryjnego (osie powinny być opisane, jednostki miary wyraźnie naniesione, przebiegi na wykresie oznaczone).
- 6. Odczytane z wykresu poziomy wody w zbiornikach w stanie równowagi.
- 7. Wyznaczony analitycznie punkt równowagi (ustalone poziomy wody w zbiornikach)
  - podać obliczenia. Porównać otrzymany wynik z wartościami uzyskanymi z wykresu.
- 8. Analizę otrzymanych wyników.