SIGN LANGUAGE DETECTION

USING REAL TIME DATA

GROUP - 08

INTRODUCTION & PROBLEM STATEMENT

Sign Language is a visual form of communication using hand gestures, body language, and facial expressions.

Examples include **American Sign Language (ASL)**, **British Sign Language (BSL)**, and others around the world.

- Many people cannot understand sign language, which creates communication barriers for those who rely on it.
- There is a need for a system that can detect and translate sign language gestures in real-time,
 making communication easier and more inclusive.

Goal

To develop a system that detects and recognizes hand gestures in **real-time** video, translating sign language into text or speech to enable better communication between signers and non-signers. and translate sign language gestures in real-time, making communication **easier** and more inclusive.

WORKING OF SIGN LANGUAGE DETECTION SYSTEMS-PROJECT OVERVIEW.

TECHNOLOGY STACK

Machine Learning (ML)

Uses TensorFlow/Keras for gesture prediction with neural networks like LSTMs

Computer Vision

OpenCV and MediaPipe for detecting and tracking hand landmarks in video.

Gesture Recognition

shapes (static) and movements (dynamic gestures)

Key Tools

TensorFlow, OpenCV,
MediaPipe, NumPy, and
Pygame.

DATA COLLECTION & PREPROCESSING

DATA COLLECTION

Capture real-time video: webcam to stream video frames in real-time.

Extract landmarks: Use Media Pipe to detect and extract 21 hand landmarks (x, y, z coordinates) for each frame.

Frame segmentation: Segment video into individual frames for easier processing.

Environment setup: Collect data under diverse environmental conditions, including varying lighting, backgrounds, and camera angles.

PREPROCESSING

Normalization: Landmark coordinates are likely normalized to a consistent range.

Relative Coordinates: Coordinates may be adjusted relative to a key point to account hand position.

Sequence Creation: Frames may be grouped into temporal sequences to prepare data for models like LSTMs.

Noise Filtering: Landmark Data may be smoothed using filters to reduce jitter in detection

DATASET PREPARATION

HELLO		I LOVE YOU		THANK YOU
LIVE LONG AND PEACE	B	WHAT ARE YOU DOING		NO
ALL DONE	P	YES	Van J	THAT'S IT

Create sequences of 14 frames for temporal analysis. **Label sequences** with gesture names (e.g., "Yes," "No"). Split the labeled data into training, validation, and test sets.

MODEL SELECTION – LSTM

Best for Sequential Data: LSTM processes **temporal patterns**, making it ideal for gestures that evolve over time.

Input: Preprocessed hand landmarks from Media Pipe as sequences of 10 frames.

Output: Predicts gesture classes like "Go Coogs" or "Thank you."

Media pipe extracts **21 Hand landmarks** per frame providing the co-ordinates for each joint. This turns the video frames into numerical data, ideal for LSTM.

LSTM Model Processes input sequences of shape (10,126).

10 Frames

126 Features (21 Landmarks x 2 Hands x 3 Coordinates

By directly using landmarks instead of raw frames, the system skips the computational overhead of CNNs.

LSTM's ability to capture long-term dependencies ensures accurate recognition of complex gestures.

WORKFLOW – REAL TIME IMPLEMENTATION

SIGN LANGUAGE DETECTION GAME USING LSTM AND CNN

MODEL SELECTION FOR SIGN DETECTION GAME – LSTM AND CNN

ROLE OF CNN IN THE GAME

Identifies Key Features like landmarks from raw video frames.

Preprocesses input for temporal analysis by LSTM.

ROLE OF LSTM IN THE GAME

Understands gesture patterns over time(Eg. Forming the Number 3)

Predicts the correct gesture based on the sequence of spatial features extracted by CNN.

WHY BOTH CNN AND LSTM?

Gestures involve both spatial(hand shape) and temporal(movement over time) data.

CNN Handles spatial analysis and LSTM Processes sequential patterns ,ensuring accuracy

CNN + LSTM provides the perfect balance for real-time gesture detection, enabling an interactive and rewarding gameplay experience.

WORKFLOW - SIGN DETECTION GAME

WHAT'S NEW?

Our project stands out for combining real-time gesture recognition with an interactive game, making it both engaging and educational.

DEMO