Informe XML Esquema — Evolución de circuito.dtd a circuito.xsd

Este informe explica las modificaciones realizadas al archivo **circuito.xsd** respecto al **circuito.dtd** original. El objetivo de las mejoras ha sido aprovechar las capacidades avanzadas de los **XML Schema** para definir con mayor precisión los tipos de datos, establecer restricciones de valor y garantizar una validación más robusta de los documentos XML relacionados con el circuito. Se detalla el cambio conceptual realizado en cada etiqueta principal del documento.

Etiqueta fechaCarrera

En el DTD original, la etiqueta **fechaCarrera** se definía como texto libre, sin control sobre el formato. En el XML Schema se ha tipado como **xs:date**, lo que garantiza que el valor cumpla el formato estándar de fecha (AAAA-MM-DD). Además, se ha añadido una restricción de rango mediante los atributos **minInclusive** y **maxInclusive**, limitando las fechas entre el 2 de marzo y el 16 de noviembre de 2025. Esto asegura que las carreras se validen dentro del calendario oficial.

Etiqueta horalnicio

Anteriormente, **horalnicio** era texto sin formato. En el nuevo XSD se define como tipo **xs:time**, asegurando que la hora se exprese con el patrón HH:MM:SS y permitiendo incluir zona horaria. También se ha eliminado la necesidad del atributo 'formato', ya que el tipo de dato impone automáticamente la estructura válida.

Etiqueta longitud

La etiqueta **longitud** ha pasado de ser un valor textual a un tipo numérico **xs:integer**. Se ha añadido el atributo obligatorio **unidad**, restringido mediante una enumeración a valores permitidos como 'metros' o 'kilometros'. Asimismo, se establecen límites con **minInclusive** y **maxInclusive** para evitar medidas irreales.

Etiqueta anchuraMedia

De igual modo, **anchuraMedia** se ha definido como tipo **xs:integer** con atributo **unidad**. Estas modificaciones garantizan la coherencia en las unidades de medida del circuito y evitan inconsistencias en los valores ingresados.

Etiqueta vueltas

En el DTD, el número de vueltas se trataba como texto libre. En el XSD se ha tipado como **xs:integer**, permitiendo solo valores enteros positivos y garantizando que los documentos reflejen datos numéricamente válidos.

Etiqueta localidad y pais

Estas etiquetas, originalmente texto simple, se mantienen como **xs:string**, pero ahora están incluidas dentro de un tipo complejo que agrupa la información del circuito. El uso de tipos complejos permite una estructura jerárquica más clara y validación contextual.

Etiqueta patrocinador

La etiqueta **patrocinador** continúa siendo texto, pero se han definido restricciones para asegurar que contenga caracteres válidos y se pueda extender en el futuro mediante tipos derivados si se desea incluir atributos adicionales (por ejemplo, 'empresa', 'categoria', etc.).

Etiqueta puntoOrigen y tramos

Los elementos estructurales que definen la geometría del circuito han pasado de simples secuencias a tipos complejos con subelementos. Cada punto (origen y finales de tramo) incluye coordenadas de latitud, longitud y altitud, todas tipadas como **xs:decimal**. Esto facilita la interoperabilidad con sistemas de información geográfica (GIS).

Etiqueta vencedor

El elemento **vencedor** se ha modelado como tipo complejo que agrupa los datos del piloto y su tiempo total. El subelemento **tiempoTotal** se ha redefinido usando **xs:duration**, garantizando el formato estándar ISO 8601 (por ejemplo, PT41M11.100S). Esta mejora evita errores de formato y permite cálculos automáticos de duración en sistemas externos.

Otras mejoras generales

Se ha añadido el uso de **namespaces** con la URI 'http://www.uniovi.es' y el atributo **elementFormDefault='qualified'**. Esto permite que todos los elementos estén correctamente calificados dentro del mismo espacio de nombres, facilitando la validación y la integración con otras definiciones XML. También se definen cardinalidades mediante **minOccurs** y **maxOccurs**, mejorando la precisión estructural del documento.

Conclusión:

La conversión de DTD a XML Schema ha permitido mejorar de forma significativa la calidad del modelo de datos. Ahora cada etiqueta del documento está asociada a un tipo de dato concreto, con validaciones de formato, rangos y valores permitidos. Estas mejoras proporcionan una estructura más robusta, aseguran la coherencia de la información y facilitan el mantenimiento futuro de los archivos XML del circuito.