| Lagrangian density                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $-rac{1}{3}t_1\;\omega_{,}^{\alpha\prime}\;\omega_{\kappalpha}^{\;\;\;\kappa}$ $-t_1\;\omega_{_{\kappa\lambda}}^{\;\;\;\kappa\lambda}\;\omega_{_{\kappa\lambda}}^{\;\;\;\prime}+f^{lphaeta}\;	au_{_{etaeta}}+\omega_{lphaeta\chi}\;\sigma_{lphaeta\chi}$ $+$                                                                                           |
| $r_1  \partial_i \omega^{\kappa \lambda}_{\ \ \kappa}  \partial^i \omega_{\lambda}^{\ \ \alpha} - rac{2}{3}  r_1  \partial^{eta} \omega^{eta lpha}_{\ \ \kappa}  \partial_{eta} \omega_{lpha eta}^{\ \ \ \kappa} - rac{2}{3}  r_1  \partial_{eta} \omega_{lpha eta}^{\ \ \ \ \kappa}  \partial_{\kappa} \omega^{lpha eta eta} +$                      |
| $rac{2}{3} r_1  \partial_{	heta} \omega_{lphaeta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                             |
| $3r_1\partial_	heta\omega_\lambda^{lpha}\partial_\kappa\omega^{	heta\kappa\lambda}$ - $4r_3\partial_	heta\omega_\lambda^{lpha}\partial_\kappa\omega^{	heta\kappa\lambda}+r_1\partial_lpha\omega_\lambda^{lpha}\partial_\kappa\omega^{\kappa\lambda	heta}$ -                                                                                             |
| $2r_1\partial_\theta\omega_\lambda^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta}-\frac{1}{2}t_1\partial^\alpha f_{\beta}\partial^\kappa f_{\alpha}^{\theta}-\frac{1}{2}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\theta}^{\theta}-$                                                                                                   |
| $\frac{1}{2}t_1\partial^\alpha f^\lambda_{}\partial^\kappa f_{\alpha\lambda} + \frac{1}{3}t_1\omega_{\kappa\alpha}^{}\partial^\kappa f'_{} + \frac{1}{3}t_1\omega_{\kappa\lambda}^{}\partial^\kappa f'_{} + \frac{2}{3}t_1\partial^\alpha f_{}\partial^\kappa f'_{} -$                                                                                  |
| $\frac{1}{3}t_{1}\partial_{\kappa}f^{\lambda}_{\lambda}\partial^{\kappa}f'_{\prime}+2t_{1}\omega_{_{I}\kappa\theta}\partial^{\kappa}f'^{\theta}-\frac{1}{3}t_{1}\omega_{_{I}\alpha}^{\alpha}\partial^{\kappa}f'_{\kappa}-\frac{1}{3}t_{1}\omega_{_{I}\lambda}^{\lambda}\partial^{\kappa}f'_{\kappa}+$                                                   |
| $\frac{1}{2}t_1\partial^\alpha f^\lambda_{}\partial^\kappa f_{\lambda\alpha} + \frac{1}{2}t_1\partial_\kappa f_{\beta}^{}\partial^\kappa f_{\beta} + \frac{1}{2}t_1\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\theta}^{\theta} - \frac{1}{3}t_1\partial^\alpha f^\lambda_{\alpha}\partial^\kappa f_{\lambda\kappa} +$                         |
| $\frac{2}{3} r_1  \partial_{\kappa} \omega^{\alpha\beta\theta}  \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_1  \partial_{\kappa} \omega^{\theta\alpha\beta}  \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_1  \partial^{\beta} \omega_{\alpha}^{\ \alpha\lambda}  \partial_{\lambda} \omega_{\alpha\beta}^{\ \prime} +$ |
| $rac{4}{3}r_{1}\partial^{eta}\omega_{,}{}^{\lambdalpha}\partial_{\lambda}\omega_{lphaeta}^{\prime}-4r_{3}\partial^{eta}\omega_{,}{}^{\lambdalpha}\partial_{\lambda}\omega_{lphaeta}^{\prime}+3r_{1}\partial_{lpha}\omega_{\lambda}^{lpha}\partial^{\lambda}\omega^{eta\kappa}_{\prime}-$                                                               |
| $4r_{3}\partial_{\alpha}\omega_{\lambda}^{\ \alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\ \ \kappa}-3r_{1}\partial_{\theta}\omega_{\lambda}^{\ \alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\ \ \kappa}+4r_{3}\partial_{\theta}\omega_{\lambda}^{\ \alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\ \ \kappa}$                                  |

|                                       |                                     |                                           |                                          | 1 [                               | 1 -                                       |                             | ⊢                                     |
|---------------------------------------|-------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------|-------------------------------------------|-----------------------------|---------------------------------------|
| $	au_1^{\#2}$                         | 0                                   | 0                                         | 0                                        | $\frac{12ik}{(3+4k^2)^2t_1}$      | $\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$ | 0                           | $\frac{24 k^2}{(3+4 k^2)^2 t_1}$      |
| $\tau_{1^{-}}^{\#1}\alpha$            | 0                                   | 0                                         | 0                                        | 0                                 | 0                                         | 0                           | 0                                     |
| $\sigma_{1}^{\#2}$                    | 0                                   | 0                                         | 0                                        | $\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$ | $\frac{12}{(3+4k^2)^2t_1}$                | 0                           | $-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$ |
| $\sigma_{1^{-}}^{\#1}{}_{\alpha}$     | 0                                   | 0                                         | 0                                        | $\frac{6}{(3+4 k^2)^2 t_1}$       | $\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$         | 0                           | $-\frac{12ik}{(3+4k^2)^2t_1}$         |
| ${\mathfrak r}_1^{\#1}_{\alpha\beta}$ | $-\frac{i\sqrt{2}k}{t_1+k^2t_1}$    | $-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$ | $\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$ | 0                                 | 0                                         | 0                           | 0                                     |
| $\sigma_{1}^{\#2}{}_{\alpha\beta}$    | $-\frac{\sqrt{2}}{t_1+k^2t_1}$      | $\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$     | $\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$ | 0                                 | 0                                         | 0                           | 0                                     |
| $\sigma_{1}^{\#1}{}_{+}\alpha\beta$   | 0                                   | $-\frac{\sqrt{2}}{t_1+k^2t_1}$            | $\frac{i\sqrt{2}k}{t_1+k^2t_1}$          | 0                                 | 0                                         | 0                           | 0                                     |
| ,                                     | $\sigma_{1}^{\#1} + \alpha^{\beta}$ | $\sigma_{1}^{\#2} + \alpha^{\beta}$       | $\tau_1^{\#1} + \alpha^{\beta}$          | $\sigma_{1}^{\#1} +^{\alpha}$     | $\sigma_1^{\#2} +^{lpha}$                 | $\tau_{1}^{\#1} +^{\alpha}$ | $\tau_{1}^{\#2} +^{\alpha}$           |

| $f_{1}^{#2}$                      | 0                                   | 0                                 | 0                            | <i>ikt</i> 1<br>3                | $\frac{1}{3}\bar{l}\sqrt{2}kt_1$ | 0                       | $\frac{2k^2t_1}{3}$         |
|-----------------------------------|-------------------------------------|-----------------------------------|------------------------------|----------------------------------|----------------------------------|-------------------------|-----------------------------|
| $f_{1^-}^{\#1}$                   | 0                                   | 0                                 | 0                            | 0                                | 0                                | 0                       | 0                           |
| $\omega_{1^{-}\alpha}^{\#2}$      | 0                                   | 0                                 | 0                            | $\frac{t_1}{3\sqrt{2}}$          | <u>£1</u><br>3                   | 0                       | $-\frac{1}{3}i\sqrt{2}kt_1$ |
| $\omega_{1^{-}\alpha}^{\#1}$      | 0                                   | 0                                 | 0                            | 6<br>6                           | $\frac{t_1}{3\sqrt{2}}$          | 0                       | $-\frac{1}{3}ikt_1$         |
| $f_{1}^{\#1}$                     | $-\frac{ikt_1}{\sqrt{2}}$           | 0                                 | 0                            | 0                                | 0                                | 0                       | 0                           |
| $\omega_{1}^{\#2}$                | $-\frac{t_1}{\sqrt{2}}$             | 0                                 | 0                            | 0                                | 0                                | 0                       | 0                           |
| $\omega_{1}^{\#1}_{+\alpha\beta}$ | $k^2 r_1 - \frac{t_1}{2}$           | $-\frac{t_1}{\sqrt{2}}$           | $\frac{i k t_1}{\sqrt{2}}$   | 0                                | 0                                | 0                       | 0                           |
|                                   | $\omega_{1}^{\#1} + \tau^{lphaeta}$ | $\omega_1^{\#2} + \alpha^{\beta}$ | $f_{1+}^{#1} + \alpha \beta$ | $\omega_{1}^{\#_{1}} +^{\alpha}$ | $\omega_1^{\#2} +^{lpha}$        | $f_{1}^{#1} +^{\alpha}$ | $f_1^{\#2} +^{lpha}$        |

|                                                 | $\sigma_{2^{+}lphaeta}^{\sharp1}$   | $	au_2^{\#1}{}_{lphaeta}$            | $\sigma_{2-\alpha\beta\chi}^{\#1}$ |
|-------------------------------------------------|-------------------------------------|--------------------------------------|------------------------------------|
| $\sigma_{2}^{\#1} \dagger^{lphaeta}$            | $\frac{2}{(1+2k^2)^2t_1}$           | $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$ | 0                                  |
| $	au_2^{\#1} \dagger^{lphaeta}$                 | $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$ | $\frac{4k^2}{(1+2k^2)^2t_1}$         | 0                                  |
| $\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$ | 0                                   | 0                                    | $\frac{2}{2 k^2 r_1 + t_1}$        |
| 2 '                                             |                                     |                                      | $2^{\kappa-r_1+t_1}$               |







| $\omega_{2^{-}}^{\#1}\alpha\beta\chi$  | 0                                | 0                                 | $k^2 r_1 + \frac{t_1}{2}$                         |
|----------------------------------------|----------------------------------|-----------------------------------|---------------------------------------------------|
| $f_{2}^{\#1}_{\alpha\beta}$            | $-\frac{ikt_1}{\sqrt{2}}$        | $k^2 t_1$                         | 0                                                 |
| $\omega_{2}^{\#1}_{+}gf_{2}^{\#1}_{2}$ | <u>41</u><br>2                   | $\frac{\bar{\ell}kt_1}{\sqrt{2}}$ | 0                                                 |
|                                        | $\omega_{2}^{#1} + \alpha \beta$ | $f_{2+}^{#1} + \alpha \beta$      | $\omega_{2^{\text{-}}}^{\#1} +^{\alpha\beta\chi}$ |



|             | Massive particle |                       |  |  |  |
|-------------|------------------|-----------------------|--|--|--|
| ?           | Pole residue:    | $-\frac{1}{r_1} > 0$  |  |  |  |
| $J^P = 2^-$ | Polarisations:   | 5                     |  |  |  |
| $k^{\mu}$ ? | Square mass:     | $-\frac{t_1}{2r_1} >$ |  |  |  |
| ?           | Spin:            | 2                     |  |  |  |
|             | Parity:          | Odd                   |  |  |  |
|             |                  |                       |  |  |  |

(No massless particles)