MATH 119: Quiz 3

Name: <u>kcy</u>

Directions:

- * Show your thought process (commonly said as "show your work") when solving each problem for full credit.
- * If you do not know how to solve a problem, try your best and/or explain in English what you would do.
- * Good luck!
- 1. Find the following:

(a)
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \boxed{\frac{\pi}{3}}$$

because $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$

(b)
$$\cos^{-1}(1) = \bigcirc$$

(c)
$$\sin(-\tan^{-1}(1))$$

$$= S(n(-\frac{\pi}{4}))$$

$$=\sqrt{\frac{\sqrt{2}}{2}}$$

2. A mass suspended from a spring is at rest. It is pulled down 2 centimeters and released at time t = 0. It returns to the lowest position (one cycle) after 6 seconds.

Find an equation that describes its displacement.

 $S_0 - 2 \cos \left(\frac{\pi}{3} t \right)$

- Model: $a\cos(\omega t)$ |a|=2 $\frac{2\pi}{\omega}=6$ so $\omega=\frac{\pi}{3}$
 - 3. Suppose a circle of radius 4 cm has a central angle of 120° subtends an arc. What is the area of the sector?

Careful! 0 must be in radions.

$$A = \frac{1}{2} r^2 0$$
The definition requires it.

$$= \frac{1}{2} \cdot (4cm)^2 \cdot 120^4 \cdot \frac{\pi}{150^6}$$

$$=8\frac{2}{3}\pi cm^2$$

$$=\frac{16\pi}{3}\,\mathrm{cm}^2$$