

# Olympic Historical Dataset (1896 - 2022)

Min Pak • Flora Aka • Maria Ardila

### Questions we found interesting

- Country medal count versus economy (GDP) & Population
- How age has changed and how age is a factor in different events
- Women and men's participation throughout the years
- How height and weight have changed through the years



# Data you used to answer these **questions**• Kaggle: Olympic Historical Dataset (1896 - 2022)

- - Olympic Athlete Bio.csv
  - Olympic Athlete Event Results.csv
  - Olympic Games Medal Tally.csv
  - Olympic Results.csv
  - Olympics Country.csv
  - Olympics Games.csv

https://www.kaggle.com/datasets/muhammadehsan000/olympic-historical-dataset-1896-2020?sel ect=Olympic Athlete Event Results.csv



#### **Additional Data Sources**

- World Bank Group
  - data.worldbank.org/indicator/SP.POP.TOTL
    - csv file with the population from different countries from 1960 to current
  - data.worldbank.org/indicator/NY.GDP.MKTP.CD
    - csv file with the GDP of different countries from 1960 to current



### Data exploration and cleanup process

DataFrame with the countries that won medals needed alterations so the data in DataFrames would match

```
#1960 Olympics change from Soviet Union medal_df.at[341, 'country'] = 'Russian Federation'
```

#1980 Olympics change from Soviet Union medal\_df.at[559, 'country'] = 'Russian Federation'

#2020 Olympics change from ROC medal\_df.at[1254, 'country'] = 'Russian Federation'



#### **Additional Data Cleanup**

#change East Germany to Germany for 1980 medal\_df.at[560, 'country'] = 'Germany'

GDP DataFrame #fix United Kingdom to Great Britain gdp\_df.at[81, 'Country Name'] = 'Great Britain'

#add GDP to Russia Federation (USSR) for 1980 and 1960 gdp\_df.at[202, '1980'] = 1210000000000 gdp\_df.at[202, '1960'] = 142400000000



## **Analysis process**

After merging GDP and Medals DataFrames and reorganzing the columns, I plotted the Data. I first used GDP per capita but did not like the results. I switched to Total GDP.

I made sample plots of 2020, 2016, 2012, 2008, and 2004 Summer Olympics and I found them to be very similar.

After seeing this, I decided looking at a wider range of years would provide more interesting data. So I reorganized the Data for 1960, 1980, 2000, and 2020 Summer Olympics.



## 2020 Summer Olympics





2020 Summer Olympics - GDP vs Total Medals



Top Ten Highest GDP countries in 2020 (GDP vs Medals)



Lowest 60 GDP countries in 2020 (GDP vs Medals)



2000 Summer Olympics - GDP vs Medals



1980 Summer Olympics - GDP vs Medals



1960 Summer Olympics - GDP vs Medals





2020 Summer Olympics - Population vs Medals Won



Top Ten Highest Populated Countries in 2020 (Pop. vs Medals)





2000 Summer Olympics - Population vs Medals Won



1980 Summer Olympics - Population vs Medals Won



1960 Summer Olympics - Population vs Medals Won



#### Limitations

- Assuming the GDP and Population numbers are correct in these CSV
- No Data charted for countries that did not win medals
- No Consideration for the Athletes who made it to the Finals
- How much a country invests into olympic training is probably a better indicator (India)
- Outside Factors of Cheating and Favoritism (Drugs, Biased Judges, Bribed Judges)



#### Conclusions

Based on this Data, GDP and Population are one of the positive factors for how many total medals a country wins at the Summer Olympics.

