

TECHNOLOGIE SIECIOWE

PROJEKT WTOREK 9:15 NP GRUPA 1

12 marca 2025

Projektowanie lokalnej sieci komputerowej

Autorzy:

Robertas Vasiliauskas 273041

 $\label{eq:condition} Prowadzący:$ dr. inż. Wojciech KMIECIK

Spis treści

T	Wstęp	2
	1.1 Profil przedsiębiorstwa	2
	1.1.1 Informacje Ogólne	2
	1.1.2 Lokalizacja i Budynki	2
2	Cel projektu	2
3	Inwentaryzacja zasobów	2
	3.1 Urządzenia używane przez Urzęd Miejski	2
	3.2 Aplikacje internetowe	3
	3.3 Przepustowość	3
4	Analiza potrzeb użytkowników – wymagania zamawiającego	4
	4.1 Łącza szkieletowe	$\overline{4}$
	4.2 Łącze do serwerów lokalnych i drukarek	7
	4.3 Łącze do Internetu	8
	4.4 Podsumowanie obliczeń	10
5	Założenia projektowe	11
6	Projekt sieci	12
	6.1 Projekt logiczny sieci wraz z opisem koncepcji rozwiązania	12
	6.2 Wybór urządzeń sieciowych	13
	6.3 Projekt adresacji IP	14
	6.4 Projekt konfiguracji urządzeń	14
	6.5 Projekt podłączenia do Internetu	15
	6.6 Analiza bezpieczeństwa i niezawodności sieci	16
	6.6.1 Bezpieczeństwo sieci	16
	6.6.2 Niezawodność sieci	16
	6.7 Kosztorys	16
7	Karty katalogowe proponowanych urządzeń	17
	7.1 Ruter	17
	7.2 Przełącznik warstwy 3	18
	7.3 Przełącznik warstwy 2	19
	7.4 Punkt dostępowy	21

1 Wstęp

1.1 Profil przedsiębiorstwa

1.1.1 Informacje Ogólne

Urząd Miejski to instytucja publiczna, której głównym celem jest zarządzanie sprawami lokalnej społeczności, świadczenie usług publicznych oraz zapewnienie mieszkańcom dostępu do informacji i pomocy w załatwianiu spraw administracyjnych. W urzędzie pracuje 687 pracowników, którzy świadczą usługi z zakresu nieruchomości, transportu, podatków oraz pojazdów, wspierając mieszkańców w realizacji kluczowych spraw.

1.1.2 Lokalizacja i Budynki

Urząd Miejski jest zlokalizowany na terenie Wrocławia. Instytucja składa się z dwóch budynków. Pierwszy budynek ma 2 piętra, natomiast drugi budynek posiada 3 piętra. Budynki są oddalone od siebie o 100 metrów. Komunikacja między nimi realizowana jest za pomocą optycznego łącza jednomodowego.

2 Cel projektu

Celem projektu jest zaprojektowanie sieci lokalnej (LAN) dla Urzędu Miejskiego zgodnie z określonymi wymaganiami. Projekt musi się cechować skalowalnością oraz wysokodostępnością. Projekt ma na celu usprawnienie działania systemów informatycznych, uwzględniając zróżnicowane potrzeby poszczególnych grup roboczych oraz zapewnienie odpowiedniej przepustowości sieci dla użytkowników przewodowych i bezprzewodowych. Dodatkowo projekt obejmuje zapewnienie łączności między dwoma budynkami urzędu.

3 Inwentaryzacja zasobów

3.1 Urządzenia używane przez Urzęd Miejski

Firma jest wyposażona w trzy rodzaje sprzętu: drukarki, punkty dostępowe WiFi oraz urządzenia bezprzewodowe. Sprzęty te będą używane przez sieć lokalną Urzędu Miejskiego.

Liczba użytkowników (komputerów)

Grupa robocza	B1 P1	B1 P2	B2 P1	B2 P2	B2 P3
Nieruchomości	30	44	36	15	25
Podatki	57	4	47	58	47
Pojazdy	11	15	11	58	47
Transport	50	57	57	12	6

Tabela 1: Liczba użytkowników (komputerów) w budynkach

Liczba drukarek

B1 P1	B1 P2	B2 P1	B2 P2	B2 P3
1	1	1	1	3

Tabela 2: Liczba drukarek w budynkach

Liczba punktów dostępowych WiFi

B1 P1	B1 P2	B2 P1	B2 P2	B2 P3
2	0	0	0	1

Tabela 3: Liczba punktów dostępowych WiFi w budynkach

Liczba urządzeń bezprzewodowych

B1 P1	B1 P2	B2 P1	B2 P2	B2 P3
12	0	0	0	11

Tabela 4: Liczba urządzeń bezprzewodowych w budynkach

W sumie Urząd Miejski korzysta z 687 komputerów, 7 drukarek, 3 punktów dostępowych, 23 urządzeń bezprzewodowych.

3.2 Aplikacje internetowe

Firma posiada dwa kluczowe serwery internetowe - Serwer WWW oraz Serwer FTP. Oto ich charakterystyka:

Serwery	Do Internetu	Z Internetu	Jednoczesne sesje
WWW	90	50	33
FTP	180	90	5

Tabela 5: Charakterystyka używanych serwerów

3.3 Przepustowość

Grupa rob. / Serwer	Serwer 1	Serwer 2	Drukarka
Nieruchomości	450/300	700/550	10/170
Podatki	150/800	650/650	10/110
Pojazdy	200/450	750/1000	10/180
Transport	500/800	600/950	10/200
WiFi	200/200	0/0	10/120

Tabela 6: Transfer do serwerów lokalnych i drukarek (down/up) [kb/s].

Grupa rob./Aplikacja	Przeglądarka	Wideokonferencja	VoIP
Nieruchomości	34/10	40/40	0/0
Podatki	0/0	0/0	20/20
Pojazdy	59/10	40/40	20/20
Transport	0/0	40/40	20/20
WiFi	34/10	0/0	20/20

Tabela 7: Transfer z/do Internetu (down/up) - część 1

Grupa rob./Aplikacja	Klient FTP	Komunikator	Praca w chmurze
Nieruchomości	61/12	15/15	60/28
Podatki	0/0	0/0	0/0
Pojazdy	0/0	15/15	0/0
Transport	97/16	15/15	24/24
WiFi	72/18	0/0	0/0

Tabela 8: Transfer z/do Internetu (down/up) - część 2

4 Analiza potrzeb użytkowników – wymagania zamawiającego

Analiza potrzeb użytkowników jest niezbędna, aby dopasować charakterystykę sieci do potrzeb firmy. Na podstawie tabel wymagań przepływów (tabele 6, 7 i 8) będzie oszacowany przepływ lokalny i do Internetu dla przedstawicieli każdej grupy roboczej. Następnie, w oparciu o ilość pracowników na poszczególnych piętrach (tabela 1), zostanie określona szacowana potrzebna przepustowość. Wskaźnik przepustowości okablowania firmy można obliczyć na podstawie najbardziej obciążonego piętra i punktów dystrybucyjnych.

4.1 Łącza szkieletowe

Na podstawie danych z Tabel 6, 7, 8 należy zsumować wymagania transferu download'u i upload'u dla łącza lokalnego oraz Internetowego.

Pracownik działu: Nieruchomości

Opis	Wynik
Dane pobierane dla łącza lokalnego:	450 + 700 + 10 = 1160 [kb/s]
Dane wysyłane dla łącza lokalnego:	300 + 550 + 170 = 1020 [kb/s]
Dane pobierane dla łącza Internetowego:	34 + 40 + 0 + 61 + 15 + 60 = 210[kb/s]
Dane wysyłane dla łącza Internetowego:	10 + 40 + 0 + 12 + 15 + 28 = 186[kb/s]
Suma danych pobieranych:	1160 + 210 = 1360 [kb/s]
Suma danych wysyłanych:	1020 + 186 = 1206 [kb/s]

Pracownik działu: Podatki

Opis	Wynik
Dane pobierane dla łącza lokalnego:	150 + 650 + 10 = 710 [kb/s]
Dane wysyłane dla łącza lokalnego:	800 + 650 + 110 = 1560 [kb/s]
Dane pobierane dla łącza Internetowego:	0 + 0 + 20 + 0 + 0 + 0 = 20[kb/s]
Dane wysyłane dla łącza Internetowego:	0 + 0 + 20 + 0 + 0 + 0 = 20[kb/s]
Suma danych pobieranych:	710 + 20 = 730 [kb/s]
Suma danych wysyłanych:	1560 + 20 = 1580 [kb/s]

Pracownik działu: Pojazdy

Opis	Wynik
Dane pobierane dla łącza lokalnego:	200 + 750 + 10 = 760 [kb/s]
Dane wysyłane dla łącza lokalnego:	450 + 1000 + 180 = 1630 [kb/s]
Dane pobierane dla łącza Internetowego:	59 + 40 + 20 + 0 + 15 + 0 = 134[kb/s]
Dane wysyłane dla łącza Internetowego:	10 + 40 + 20 + 0 + 15 + 0 = 85[kb/s]
Suma danych pobieranych:	760 + 134 = 894 [kb/s]
Suma danych wysyłanych:	1630 + 85 = 1715 [kb/s]

Pracownik działu: Transport

Opis	Wynik
Dane pobierane dla łącza lokalnego:	500 + 600 + 10 = 1110 [kb/s]
Dane wysyłane dla łącza lokalnego:	800 + 950 + 200 = 1950 [kb/s]
Dane pobierane dla łącza Internetowego:	0 + 40 + 20 + 97 + 15 + 24 = 196[kb/s]
Dane wysyłane dla łącza Internetowego:	0 + 40 + 20 + 16 + 15 + 24 = 115[kb/s]
Suma danych pobieranych:	1110 + 196 = 1306 [kb/s]
Suma danych wysyłanych:	1650 + 115 = 1765 [kb/s]

WiFi

Opis	Wynik
Dane pobierane dla łącza lokalnego:	200 + 0 + 10 = 210 [kb/s]
Dane wysyłane dla łącza lokalnego:	200 + 0 + 120 = 320 [kb/s]
Dane pobierane dla łącza Internetowego:	34 + 0 + 20 + 72 + 0 + 0 = 126[kb/s]
Dane wysyłane dla łącza Internetowego:	10 + 0 + 20 + 18 + 0 + 0 = 48[kb/s]
Suma danych pobieranych:	210 + 126 = 336 [kb/s]
Suma danych wysyłanych:	320 + 48 = 368 [kb/s]

Grupa robocza	Łącze lokalne [kb/s]	Łącze Internetowe [kb/s]	Suma [kb/s]
Nieruchomości	Download: 1160	Download: 210	Download: 1370
	Upload: 1020	Upload: 186	Upload: 1206
Podatki	Download: 710	Download: 20	Download: 730
	Upload: 1560	Upload: 20	Upload: 1580
Pojazdy	Download: 760	Download: 134	Download: 894
	Upload: 1630	Upload: 85	Upload: 1715
Transport	Download: 1110	Download: 196	Download: 1306
	Upload: 1950	Upload: 115	Upload: 1765
Wifi	Download: 210	Download: 126	Download: 336
	Upload: 320	Upload: 48	Upload: 368

Tabela 9: Wymagana przepustowość przez 1 pracownika poszczególnej grupy roboczej

Tabela 9 podsumuje zapotrzebowanie przepustowości dla 1 osoby poszczególnej grupy roboczej. Do dalszej analizy potrzebujemy oszacować przepustowość na poszczególnych piętrach 2 budynków. Do obliczeń będą użyte dane z tabel 1 i 9

Budynek 1 piętro 1

Dział	dowload [kb/s]	upload [kb/s]
Nieruchomości	1370 * 30 = 41100	1206 * 30 = 36180
Podatki	730 * 57 = 41610	1580 * 57 = 90060
Pojazdy	894 * 11 = 9834	1715 * 11 = 18865
Transport	1306 * 50 = 65300	1765 * 50 = 88250
Wifi	336 * 12 = 4032	358 * 12 = 4296

Budynek 1 piętro 2

Dział	dowload [kb/s]	upload [kb/s]
Nieruchomości	1370 * 44 = 60280	1206 * 44 = 53064
Podatki	730 * 4 = 2920	1580 * 4 = 6320
Pojazdy	894 * 15 = 13410	1715 * 15 = 25725
Transport	1306 * 57 = 74442	1765 * 57 = 100605
Wifi	336 * 0 = 0	358 * 0 = 0

Budynek 2 piętro 1

Dział	dowload [kb/s]	upload [kb/s]
Nieruchomości	1370 * 36 = 49320	1206 * 36 = 43416
Podatki	730 * 47 = 34310	1580 * 47 = 74260
Pojazdy	894 * 11 = 9834	1715 * 11 = 18865
Transport	1306 * 57 = 74442	1765 * 57 = 100605
Wifi	336 * 0 = 0	358 * 0 = 0

Budynek 2 piętro 2

Dział	dowload [kb/s]	upload [kb/s]
Nieruchomości	1370 * 15 = 20550	1206 * 15 = 18090
Podatki	730 * 58 = 42640	1580 * 58 = 91640
Pojazdy	894 * 58 = 51852	1715 * 58 = 99470
Transport	1306 * 12 = 15672	1765 * 12 = 21180
Wifi	336 * 0 = 0	358 * 0 = 0

Budynek 2 piętro 3

Dział	dowload [kb/s]	upload [kb/s]
Nieruchomości	1370 * 25 = 34250	1206 * 25 = 30150
Podatki	730 * 47 = 34310	1580 * 47 = 74260
Pojazdy	894 * 47 = 42018	1715 * 47 = 80605
Transport	1306 * 6 = 7836	1765 * 6 = 10590
Wifi	336 * 11 = 3696	358 * 11 = 3938

Grupa robocza	Transfer	B1 P1	B1 P2	B2 P1	B2 P2	B2 P3
Nieruchomości	Download [kb/s]	41100	60280	49320	20550	34250
	Upload [kb/s]	36180	53064	43416	18090	30150
Podatki	Download [kb/s]	41610	2920	34310	42640	34310
	Upload [kb/s]	90060	6320	74260	91640	74260
Pojazdy	Download [kb/s]	9834	13410	9834	51852	42018
	Upload [kb/s]	18865	25725	18865	99470	80605
Transport	Download [kb/s]	65300	74442	74442	15672	7836
	Upload [kb/s]	88250	100605	100605	21180	10590
Wifi	Download [kb/s]	4032	0	0	0	3696
	Upload [kb/s]	4296	0	0	0	3938
Serwer FTP i WWW	Download [kb/s]	2100	2100	2100	2100	2100
	Upload [kb/s]	3870	3870	3870	3870	3870
Suma	Download [kb/s]	163976	153152	170006	132814	124210
	Upload [kb/s]	241521	189611	241016	234250	203413

Tabela 10: Wymagana przepustowość dla każdej grupy roboczej w różnych budynkach i piętrach

Do tabeli 10 zostały dodane obliczenia dla serwerów FTP i WWW. Maksymalna ilość internautów dla serwera WWW wynosi 33 a dla serwera FTP 5

Download =
$$33 * 50 + 5 * 90 = 2100 \text{ kb/s}$$

Upload = $33 * 90 + 5 * 180 = 3870 \text{ kb/s}$

(charakterystyki serwerów podane w tabeli 5)

4.2 Łącze do serwerów lokalnych i drukarek

Dział: Nieruchomości

Opis	Wynik
Liczebność grupy:	30 + 44 + 36 + 15 + 25 = 150 [osób]
Trasfer do serweru 1 (download):	450 * 150 = 67500 [kb/s]
Transfer do serweru 1 (upload):	300 * 150 = 45000 [kb/s]
Trasfer do serweru 2 (download):	700 * 150 = 105000 [kb/s]
Transfer do serweru 2 (upload):	550 * 150 = 82500 [kb/s]
Trasfer do drukarek (download):	10 * 150 = 1500 [kb/s]
Transfer do drukarek (upload):	170 * 150 = 25500 [kb/s]

Dział: Podatki

Opis	Wynik
Liczebność grupy:	57 + 4 + 47 + 58 + 25 = 191 [osób]
Trasfer do serweru 1 (download):	150 * 191 = 28650 [kb/s]
Transfer do serweru 1 (upload):	800 * 191 = 152800 [kb/s]
Trasfer do serweru 2 (download):	650 * 191 = 124150 [kb/s]
Transfer do serweru 2 (upload):	650 * 191 = 124150 [kb/s]
Trasfer do drukarek (download):	10 * 191 = 1910 [kb/s]
Transfer do drukarek (upload):	110 * 191 = 21010 [kb/s]

Dział: Pojazdy

Opis	Wynik
Liczebność grupy:	11 + 15 + 11 + 58 + 47 = 142 [osób]
Transfer do serwera 1 (download):	200 * 142 = 28400 [kb/s]
Transfer do serwera 1 (upload):	450 * 142 = 63900 [kb/s]
Transfer do serwera 2 (download):	750 * 142 = 106500 [kb/s]
Transfer do serwera 2 (upload):	1000 * 142 = 142000 [kb/s]
Transfer do drukarek (download):	10 * 142 = 1420 [kb/s]
Transfer do drukarek (upload):	180 * 142 = 25560 [kb/s]

Dział: Transport

Opis	Wynik
Liczebność grupy:	50 + 57 + 57 + 12 + 6 = 182 [osób]
Transfer do serwera 1 (download):	500 * 182 = 91000 [kb/s]
Transfer do serwera 1 (upload):	800 * 182 = 145600 [kb/s]
Transfer do serwera 2 (download):	600 * 182 = 109200 [kb/s]
Transfer do serwera 2 (upload):	950 * 182 = 172900 [kb/s]
Transfer do drukarek (download):	10 * 182 = 1820 [kb/s]
Transfer do drukarek (upload):	200 * 182 = 36400 [kb/s]

WiFi

Opis	Wynik
Liczebność grupy:	12 + 11 = 23 [osób]
Transfer do serwera 1 (download):	200 * 23 = 4600 [kb/s]
Transfer do serwera 1 (upload):	200 * 23 = 4600 [kb/s]
Transfer do serwera 2 (download):	0 * 23 = 0 [kb/s]
Transfer do serwera 2 (upload):	0 * 23 = 0 [kb/s]
Transfer do drukarek (download):	10 * 23 = 230 [kb/s]
Transfer do drukarek (upload):	120 * 23 = 2760 [kb/s]

Podsumowanie transferu danych dla wszystkich działów

Dział	Transfer [kb/s]	Serwer 1	Serwer 2	Drukarki
Nieruchomości	Download	67500	105000	1500
	Upload	45000	82500	25500
Podatki	Download	28650	124150	1910
	Upload	152800	124150	21010
Pojazdy	Download	28400	106500	1420
	Upload	63900	142000	25560
Transport	Download	91000	109200	1820
	Upload	145600	172900	36400
WiFi	Download	4600	0	230
	Upload	4600	0	2760
Suma	Download	220150	444850	6880
	Upload	411900	522550	111230

4.3 Łącze do Internetu

Dział: Nieruchomości

Opis	Wynik
Liczebność grupy:	30 + 44 + 36 + 15 + 25 = 150 [osób]
Transfer z Internetu (download):	210 * 150 = 31500 [kb/s]
Transfer do Internetu (upload):	186 * 150 = 27900 [kb/s]

Dział: Podatki

Opis	Wynik
Liczebność grupy:	57 + 4 + 47 + 58 + 25 = 191 [osób]
Transfer z Internetu (download):	20 * 191 = 3820 [kb/s]
Transfer do Internetu (upload):	20 * 191 = 3820 [kb/s]

Dział: Pojazdy

Opis	Wynik
Liczebność grupy:	11 + 15 + 11 + 58 + 47 = 142 [osób]
Transfer z Internetu (download):	134 * 142 = 19028 [kb/s]
Transfer do Internetu (upload):	85 * 142 = 12070 [kb/s]

Dział: Transport

Opis	Wynik
Liczebność grupy:	50 + 57 + 57 + 12 + 6 = 182 [osób]
Transfer z Internetu (download):	196 * 182 = 35672 [kb/s]
Transfer do Internetu (upload):	115 * 182 = 20930 [kb/s]

WiFi

Opis	Wynik
Liczebność grupy:	12 + 11 = 23 [osób]
Transfer z Internetu (download):	126 * 23 = 2898 [kb/s]
Transfer do Internetu (upload):	48 * 23 = 1104 [kb/s]

WWW

Opis	Wynik
Liczebność grupy:	33 [osób]
Transfer z Internetu (download):	50 * 33 = 1650 [kb/s]
Transfer do Internetu (upload):	90 * 33 = 2970 [kb/s]

FTP

Opis	Wynik
Liczebność grupy:	5 [osób]
Transfer z Internetu (download):	90 * 5 = 450 [kb/s]
Transfer do Internetu (upload):	180 * 5 = 900 [kb/s]

Podsumowanie transferu danych dla wszystkich działów

Dział	Transfer [kb/s]	Wynik
Nieruchomości	Download	31500
	Upload	27900
Podatki	Download	3820
	Upload	3820
Pojazdy	Download	19028
	Upload	12070
Transport	Download	35672
	Upload 20930	
WiFi	Download	2898
	Upload 1104	
WWW	Download	1650
	Upload 2970	
FTP	Download 450	
	Upload 900	
Suma	Download 93618	
	Upload	64944

4.4 Podsumowanie obliczeń

Budynek	Piętro	Transfer [kb/s]	Punkt dystrybucyjny
Budynek 1	Piętro 1	download 163976	IDF2
		upload 241521	
	Piętro 2	download 153152	IDF2
		upload 189611	
Budynek 2	Piętro 1	download 170006	MDF
		upload 241016	
	Piętro 2	download 132814	MDF
		upload 234250	
	Piętro 3	download 124210	IDF1
		upload 203413	

Tabela 11: Tabela podsumuwująca wymagania przepustowości dla każdej grupy roboczej w różnych budynkach i piętrach

Punkt dystrybucyjny	Transfer [kb/s]
IDF1	dowload 124210
	upload 203413
IDF2	dowload 317128
	upload 431132
MDF	dowload 302820
	upload 475266

Tabela 12: Tabela podsumuwująca wymagania przepustowości na punktach dystrybucyjnych

MDF-IDF1	Wynik
Download:	$124210 + 302820 = 427030 \text{ [kb/s]} \approx 0.43 \text{ [Gb/s]}$
Upload:	$203413 + 475266 = 678679 \text{ [kb/s]} \approx 0.68 \text{ [Gb/s]}$

MDF-IDF2	Wynik
Download:	$317128 + 302820 = 619948 \text{ [kb/s]} \approx 0.62 \text{ [Gb/s]}$
Upload:	$431132 + 475266 = 906398 \text{ [kb/s]} \approx 0.91 \text{ [Gb/s]}$

Transfer [kb/s]	Serwer 1	Serwer 2	Drukarki
Download	220150	444850	6880
Upload	411900	522550	111230

Tabela 13: Tabela podsumowująca transfer dla łącza lokalnego

Transfer [kb/s]	Wynik
Download	93618
Upload	64944

Tabela 14: Tabela podsumowująca transfer do/z Internetu

5 Założenia projektowe

- Firma znajduje się na terenie Wrocławia
- Firma preferuje technologie z rodziny Ethernet
- Na wskazanym piętrze każdego budynku ma być dostępna sieć bezprzewodowa (niezbędna instalacja kablowa jest przygotowana)
- Należy zapewnić dodatkowe porty na przełącznikach (w liczbie 20% zajętych portów)
- Ruch w ramach grup roboczych ma być separowany z wykorzystaniem sieci VLAN
- Należy zapewnić dwa podłączenia do Internetu: podstawowe oraz zapasowe, o przepustowości adekwatnej do potrzeb przedsiębiorstwa
- Podstawowe łącze internetowe ma zapewniać gwarancję minimalnej przepustowości równej co najmniej 40% średniego przewidywanego przepływu na tym łączu
- Projekt ma uwzględnić dodatkowe połączenie do Internetu
- Kosztorys ma uwzględniać koszt wszystkich urządzeń, podłączenia do Internetu i koszt korzystania z łączy Internetowych w okresie 2 lat.
- W budynkach jest zainstalowane okablowanie typu skrętka kat. 6
- Między budynkami jest zainstalowane łącze optyczne(jednomodowe)
- W celu zabezpieczenia sieci proponuje się implementację zabezpieczeń wielopoziomowych, obejmujących zarówno firewall na poziomie bramy, jak i środki bezpieczeństwa na poziomie aplikacji
- Wdrożenie systemu autoryzacji
- Dostęp do serwerowni mają tylko autoryzowani pracownicy
- W budynku pierwszym wymagana przepustowość łącza to 317128/431132[kb/s] (download/upload).
- W budynku drugim(piętro 1, 2) wymagana przepustowość łącza to 302820/475266[kb/s] (download/upload)
- W budynku drugim(piętro 3) wymagana przepustowość łącza to 124210/203413[kb/s] (download/upload)
- Wymagana przepustowość łącza serwera pierwszego to 220150/411900[kb/s] (download/upload).
- Wymagana przepustowość łącza serwera drugiego to 444850/522550[kb/s] (download/upload).
- Wymagana przepustowość łącza do drukarek to 6880/111230[kb/s] (download/upload).
- Wymagana przepustowość łącza MDF z IDF1 to 0.43/0,68[Gb/s] (download/upload)
- Wymagana przepustowość łącza MDF z IDF2 to 0,62/0,91[Gb/s] (download/upload)

6 Projekt sieci

6.1 Projekt logiczny sieci wraz z opisem koncepcji rozwiązania

Rysunek 1: Projekt logiczny sieci

Opis koncepcji rozwiązania - Projekt logiczny sieci opiera się na hierarchicznej topologii, która gwarantuje wydajność, bezpieczeństwo oraz łatwość zarządzania. Sieć została podzielona na warstwy: dostępu, dystrybucji oraz rdzenia, co pozwala na skalowalność i niezawodność w działaniu. Każdy budynek posiada logicznie wydzielone punkty dystrybucyjne (IDF) oraz główny punkt dystrybucyjny (MDF) znajdujący się w budynku 2. Switche warstwy 2 zostały rozmieszczone na każdym piętrze, aby zapewnić minimalną odległość między urządzeniami końcowymi a przełącznikiem. Dzięki przypisaniu grup roboczych do konkretnych przełączników, możliwe jest lepsze zarządzanie przepustowością. Każdy przełącznik obsługuje określoną liczbę użytkowników, co zapobiega przeciążeniu jednego urządzenia. Rozwiązanie zostało zaprojektowane w sposób, który pozwala na elastyczne dostosowanie do zmieniających się potrzeb organizacji. Każdy przełącznik obsługuje określoną liczbę urządzeń, z uwzględnieniem rezerwy na przyszłe rozbudowy. Taki podział zapewnia nie tylko wysoką wydajność, ale także łatwość zarządzania całą infrastrukturą.

6.2 Wybór urządzeń sieciowych

- Router Ubiquiti UniFi Dream Machine Pro (UDM-Pro) to zaawansowane rozwiązanie, które łączy funkcje kontrolera sieci, bramy sieciowej. Tego urządzenie zostało wybrane z powodu jego wszechstronności i wysokiej wydajności. Dzięki 8-portowemu switchowi Gigabit Ethernet, portowi WAN 10G SFP+ oraz procesorowi Quad-Core 1.7 GHz, UDM-Pro doskonale sprawdza się w zarówno małych, jak i dużych środowiskach sieciowych. Integracja z platformą UniFi umożliwia łatwe zarządzanie siecią i konfigurację zaawansowanych funkcji, takich jak VPN, QoS czy ochrona przed zagrożeniami. Dodatkowo, wsparcie dla PoE pozwala na zasilanie innych urządzeń, co zwiększa elastyczność naszej infrastruktury.
- Przełącznik warstwy 3 NETGEAR M4350 Ten model został wybrany ze względu na jego niezawodność, skalowalność i wysoką wydajność, idealną dla średnich firm. Modele te wspierają technologię PoE+ (Power over Ethernet), umożliwiając zasilanie urządzeń sieciowych, takich jak punkty dostępu i kamery IP, bez dodatkowych kabli zasilających. Dzięki portom 10GbE zapewniają szybki transfer danych, minimalizując opóźnienia, nawet w obciążonych sieciach. Zawierają zaawansowane funkcje zarządzania, takie jak VLAN, QoS i zabezpieczenia sieciowe. Dodatkowo, integracja z systemem NETGEAR Insight ułatwia centralne zarządzanie siecią z aplikacji mobilnej lub przeglądarki, co czyni je wygodnym rozwiązaniem do monitorowania infrastruktury.
- Przełącznik warstwy 2 NETGEAR Smart Switch Series (XS748T) to switch zarządzany, który wybraliśmy ze względu na jego niezawodność i zaawansowane funkcje, idealne dla wymagających sieci. Dzięki 48 portom Gigabit Ethernet oraz wsparciu dla PoE+ (Power over Ethernet), urządzenie pozwala na zasilanie urządzeń sieciowych, takich jak punkty dostępu, bez konieczności dodatkowych kabli zasilających. Integracja z narzędziami do zarządzania, zarówno przez interfejs webowy, jak i protokoły SNMP, ułatwia administratorom precyzyjne monitorowanie i kontrolowanie infrastruktury.
- Wi-Fi Netgear Nighthawk M6 Pro (5G) to mobilny router, który wybraliśmy ze względu na jego wysoką prędkość i niezawodność. Dzięki wsparciu dla 5G oraz Wi-Fi 6, urządzenie zapewnia prędkości pobierania do 4,7 Gbps. Nighthawk M6 Pro zapewnia stabilne połączenia nawet w zatłoczonych sieciach, idealnie sprawdzając się w środowiskach z wieloma urządzeniami. Dzięki portom Ethernet i funkcji PoE, router pozwala na zasilanie innych urządzeń sieciowych, co zwiększa jego wszechstronność. Aplikacja Nighthawk umożliwia łatwą konfigurację, zarządzanie oraz monitorowanie stanu sieci.

6.3 Projekt adresacji IP

Dla wszystkich stacji bramą domyślną będą adresy LAN routera B2/P1/MDF odpowiadające poszczególnym sieciom VLAN. Dla ujednolicenia będą to ostatnie adresy w podsieciach. Pule adresowe są przyznawane ze znacznym nadmiarem, aby umożliwić powiększenie sieci oraz uprościć jej instalację.

VLAN	Dział	Wymagana Liczba Hostów	Liczba Hostów	Adres Podsieci	Pula Adresów
1	Nieruchomości	150	254	192.168.0.0/24	192.168.0.1 - 192.168.0.254
2	Podatki	191	254	192.168.1.0/24	192.168.1.1 - 192.168.1.254
3	Pojazdy	142	254	192.168.2.0/24	192.168.2.1 - 192.168.2.254
4	Transport	182	254	192.168.3.0/24	192.168.3.1 - 192.168.3.254
5	Urządzenia bezprzewodowe	23	31	192.168.4.0/27	192.168.4.1 - 192.168.4.30
6	Serwery lokalne, FTP, WWW	5	16	192.168.4.32/28	192.168.4.48 - 192.168.4.61

Tabela 15: Tabela VLAN z przypisaniem grup roboczych, liczby hostów i adresów podsieci.

Adresy IP urządzeń sieciowych będą ustawiane w sposób statyczny, co pozwoli na ich jednoznaczną identyfikację, ułatwiając diagnozowanie problemów, konfigurowanie routingu oraz zarządzanie urządzeniami. Komputery pracowników w grupach roboczych będą korzystać z dynamicznego przydzielania adresów przez serwer DHCP. Pozwala to na elastyczne zarządzanie rosnącą liczbą urządzeń oraz minimalizuje ryzyko konfliktów adresów IP, które mogą wystąpić przy ręcznym przypisywaniu. Dynamiczne przydzielanie umożliwia szybkie podłączanie nowych urządzeń i zmniejsza potrzebę bieżącego monitorowania zmian w sieci.

6.4 Projekt konfiguracji urządzeń

Urządzenie sieciowe	Numery portów	VLAN	Podłączone do urządzeń	Numery portów
-	ISP1	-	B2/P1/R1	WAN1
-	ISP2	-	B1/P1/R1	WAN2

Urządzenie sieciowe	Numery portów	VLAN	Podłączone do urządzeń	Numery portów
B2/P1/R1	Gi1	-	B1/P1/MS1	Gi1
B2/P1/R1	Gi2	-	B2/P3/MS1	Gi1
B2/P1/R1	Gi3	1	B2/P1/S1	Gi1
B2/P1/R1	Gi4	2	B1/P1/S2	Gi1
B2/P1/R1	Gi5	2, 3	B1/P1/S3	Gi1
B2/P1/R1	Gi6	3, 4	B1/P1/S4	Gi1
B2/P1/R1	Gi7	5	B1/P1/D1	-
B2/P1/R2	Gi1	-	B2/P1/MS1	Gi19
B1/P1/R2	Gi2	-	B1/P1/MS1	Gi13

Urządzenie sieciowe	Numery portów	VLAN	Podłączone do urządzeń	Numery portów
B2/P3/MS1	Gi1	-	B1/P1/MS1	Gi1
B2/P3/MS1	Gi2	1, 2	B2/P3/S1	Gi1
B2/P3/MS1	Gi3	2	B2/P3/S2	Gi1
B2/P3/MS1	Gi4	3	B2/P3/S3	Gi1
B2/P3/MS1	Gi5	4	B2/P3/S4	Gi1
B2/P3/MS1	Gi6	1, 2	B2/P2/S1	Gi1
B2/P3/MS1	Gi7	2	B2/P2/S2	Gi1
B2/P3/MS1	Gi8	3	B2/P2/S3	Gi1
B2/P3/MS1	Gi9	3, 4	B2/P2/S4	Gi1
B2/P3/MS1	Gi10	6	B2/P2/WiFi1	Gi1
B2/P3/MS1	Gi11-14	6	B2/P3/D1-3	-
B2/P3/MS1	Gi15	5	B2/P2/D1	-
B2/P3/MS1	Gi16-18	5	WWW, FTP, DHCP	Gi1
B2/P3/MS1	Gi19	-	B1/P1/R1	Gi1
B2/P3/MS1	Gi20	-	B1/P1/MS1	-

Urządzenie sieciowe	Numery portów	VLAN	Podłączone do urządzeń	Numery portów
B1/P1/MS1	Gi1	-	B2/P3/MS1	Gi1
B1/P1/MS1	Gi2	1	B1/P2/S1	Gi1
B1/P1/MS1	Gi3	1, 2	B1/P2/S2	Gi1
B1/P1/MS1	Gi4	4	B1/P2/S3	Gi1
B1/P1/MS1	Gi5	4, 3	B1/P2/S4	Gi1
B1/P1/MS1	Gi6	1, 3	B1/P1/S1	Gi1
B1/P1/MS1	Gi7	3, 2	B1/P1/S2	Gi1
B1/P1/MS1	Gi8	2, 4	B1/P1/S3	Gi1
B1/P1/MS1	Gi9	4	B1/P1/S4	Gi1
B1/P1/MS1	G10-11	6	B1/P1/WiFi1-2	Gi1
B1/P1/MS1	G11	5	B1/P1/D1	-
B1/P1/MS1	G12	5	B1/P2/D1	-
B1/P1/MS1	G13	-	B1/P1/R1	Gi2

6.5 Projekt podłączenia do Internetu

Z obliczeń przedstawionych w tabeli 14 wynika, że internet powinien osiągać prędkość około 100 Mb/s. Te wymagania spełnia oferta firmy Orange, która jest dostępna na terenie Wrocławia i charakteryzuje się doskonałym zasięgiem oraz stabilnością sieci, co jest kluczowe dla potrzeb Urzędu Miejskiego. Oferta zapewnia nadmiarowy dostęp do internetu, co jest szczególnie istotne w środowisku biurowym, gdzie wiele osób korzysta z sieci jednocześnie. Miesięczny koszt wynosi 61,84 zł, a umowa zawierana jest na 24 miesiące. Koszt utrzymania internetu przez dwa lata został uwzględniony w kosztorysie.

Rysunek 2: Oferta Orange

6.6 Analiza bezpieczeństwa i niezawodności sieci

6.6.1 Bezpieczeństwo sieci

Aby zminimalizować ryzyko naruszenia danych, wdrożone zostaną następujące środki bezpieczeństwa:

- Firewall Wdrożenie zapory ogniowej w celu filtrowania ruchu sieciowego oraz zapobiegania nieautoryzowanemu dostępowi do sieci wewnętrznej. Zaporę można ustawić na wybranym przez nas ruterze.
- Szyfrowanie danych Wszystkie przesyłane dane będą zabezpieczane protokołami szyfrowania, takimi jak SSL/TLS, aby zapewnić ich poufność.
- Segmentacja sieci Podział infrastruktury sieciowej na odizolowane segmenty (VLAN) w celu ograniczenia rozprzestrzeniania się potencjalnych zagrożeń.
- Kontrola dostępu Zastosowanie systemów uwierzytelniania i autoryzacji, takich jak 802.1X, w celu zapewnienia, że tylko uprawnieni użytkownicy mają dostęp do zasobów sieci.
- Hasła Zaleca się stworzenie bezpiecznych haseł ze znakami specjalnymi oraz cyframi. Dodatkowo można zmieniać hasła co jakiś czas.

6.6.2 Niezawodność sieci

W celu zapewnienia wysokiej niezawodności infrastruktury, zastosowane zostaną następujące rozwiązania:

- Redundancja połączeń Zastosowanie zapasowych łączy internetowych od dwóch niezależnych dostawców (ISP), aby zagwarantować ciągłość dostępu w przypadku awarii jednego z nich.
- Urządzenia sieciowe o wysokiej dostępności Wybór przełączników i routerów klasy
 enterprise, które cechują się wysoką niezawodnością oraz wsparciem dla mechanizmów
 redundancji.
- Monitoring sieci Stałe monitorowanie stanu urządzeń sieciowych oraz jakości połączeń, co pozwoli na szybką identyfikację i eliminację potencjalnych problemów.
- Kopia zapasowa konfiguracji Regularne tworzenie kopii zapasowych konfiguracji urządzeń sieciowych, aby w przypadku awarii można było szybko przywrócić ich działanie.

6.7 Kosztorys

Produkt	Cena (PLN)	Ilośc	Cała cena(PLN)
Dream Machine Pro	1538.74 PLN	2	3077.48 PLN
NETGEAR M4350-44M4X4V	27804.13 PLN	2	55608.26 PLN
NETGEAR Smart Switch Series (XS748T)	16279.78 PLN	20	325595.60 PLN
Netgear Nighthawk M6 Pro (5G)	3247.95 PLN	3	9743.85 PLN
Internet (24 miesiące)	61.84 PLN/miesiąc	24	1484.16 PLN

Tabela 16: Cena projektu na 2 lata

7 Karty katalogowe proponowanych urządzeń

7.1 Ruter

Test data - UniFi Application Suite Full

UniFi Devices 200+

Client Devices 200+

WiFi -

High Availability Shadow Mode

Multi-WAN Load Balancing Yes

Application-Aware Firewall Yes

Mechanical

Dimensions 442.4 x 43.7 x 285.6 mm (17.4 x 1.7 x 11.2")

Weight 3.9 kg (8.6 lb)

Enclosure material Aluminium CNC, SGCC steel

Mount material SGCC steel

Hardware

Processor Quad-core ARM® Cortex®-A57 at 1.7 GHz

System memory 4 GB DDR4

On-board storage 16 GB eMMC

Management interface Ethernet

Bluetooth

Networking interface LAN:

(8) GbE RJ45 ports (1) 10G SFP+ port

WAN:

(1) GbE RJ45 port

Gateway Features

Performance	Redundant WAN with failover and load balancing
	WiFi QoS with UniFi APs
	Application, domain, and country-based QoS
	Application and device type identification
	Additional internet failover with LTE Backup
	Internet quality and outage reporting
Maria and a second	A I'+'

Next-generation security Application-aware firewall rules

> Signature-based IPS/IDS threat detection Content, country, domain, and ad filtering VLAN/subnet-based traffic segmentation

Full stateful firewall

License-free SD-WAN Advanced networking

WireGuard, L2TP and OpenVPN server

OpenVPN client

OpenVPN and IPsec site-to-site VPN One-click Teleport and Identity VPN Policy-based WAN and VPN routing

DHCP relay

Customizable DHCP server

IGMP proxy IPv6 ISP support

Przełącznik warstwy 3

M4350-44M4X4V Fully Managed Switch

Ordering information

- Americas, Europe: MSM4352-100NES (NA, UK, EU)
- Americas, TAA Compliant: MSM4352-TAANES (NA, UK, EU)
- Asia Pacific: MSM4352-100AJS (JP, AU)
- China: MSM4352-100PRS
- Warranty: Lifetime ProSAFE Hardware Warranty

- 44 2.5G and 4 10G/Multi-gig PoE++ ports with 4 25GBASE-X SFP28
- 550W internal power supply providing 194W of PoE budget.
- 2 slots for modular power supplies (1+1 redundancy and/or EPS share)
- Any APS350W, APS600Wv2, APS920W, or APS2000W can be used.
- The PoE budget can reach 3,314W, the redundant PoE budget can reach 1,794W.
- Virtual Chassis stacking provides non-stop forwarding (NSF) and hitless
- Layer 3 feature set includes static, policy-based, and dynamic routing.
- NETGEAR IGMP Plus™, AV User Interface, and Engage Controller
- NETGEAR ProSAFE® Limited Lifetime Hardware Warranty.
- Lifetime Next Business Day Hardware Replacement.
- Dimensions: 440x400x43.2 mm
- Weight: 7.34Kg (16.18 lb)

7.3 Przełącznik warstwy 2

10-Gigabit copper ports: 44 10GBASE-T copper

SFP ports: 4 SFP+ 1000/10GBASE-X fiber ports

(shared)

Buffer size: 3 MB

MAC address database size: 16K

VLAN (# supported): 512

Number of LAGs & number of members: 24 LAGS

with max 8 members in each LAG (LACP)

Number of priority queues: 8

Access Control Lists (ACLs): 164 shared for MAC,

IP and IPv6 ACLs

IPv4 Static routes: 64

IPV6 Static routes: 64

Power supply: Internal 100-240VAC 50-60Hz

Max power consumption (Watts): 262.8 W

VLAN routing: Yes

Dynamic VLAN assignment: Yes

Dynamic VLAN assignment: Yes

MLD Snooping: Yes

Static route: Yes (32)

Host ARP table: 512 ARP

EEE: Yes

DoS Prevention: Yes

Internal/External: External DC 54V 1.25A

Max consumption (Watts): 15.1 W

FAN:4

Acoustic Noise Level @25C (dBA): 47.8 dBA

Operating Temperature: 0° to 50°C (32° to 122°F)

MTBF (@ 25° C): 483,808 hours

Electromagnetic compliance (A or B) : ${\sf Class}\ {\sf A}$

7.4 Punkt dostępowy

TECHNICAL DETAILS		X
Height		0.85in (21.5mm)
Width		4.14in (105mm)
Depth		4.14in (105mm)
Weight		0.56 lbs (256g) with battery
Requirement	ts	N/A
WiFi		WiFi 6E
Speed		AXE3600 max throughput (PHY)
Bands		5GHz/6GHz: 2900Mbps 2.4GHz: 700Mbps
Technology f	Sands Sands	5G Sub6(3CC), mmWave(8CC), NR-CA, and NR-DC support 4G LTE CAT20(5CC) 3G: B1/B2/B5/B8 4G LTE: B1/B2/B3/B4/B5/B7/B12/B13/B14/B25/B26/B29/B30/B40/B41/B46/B48/B66/B 71 5G Sub6: n2/n5/n7/n12/n14/n25/n29/n30/n38/n41/n48/n66/n71/n77/n78 5G mmwave: n260/n261 IPV6 Support
Touch Screen	n	2.8" touch LCD panel
Battery		Removable 5040mAh Li-ion battery
Ports		One (1) USB Type-C One (1) 2.5Gbps Ethernet Two (2) TS9 RF ports