Workshop G2 TP3

Alvarez, Martha Roa, Fernando Tasat, Kevin

Objetivo

Entrenar un **set de modelos** que puedan **predecir transacciones fraudulentas** partir del dataset de Credit Card de Kaggle el cual contiene transacciones hechas con tarjetas de crédito en Septiembre 2013 por europeos.

Metodología

Dado que la data se encuentra completa y limpia, y las features anonimizadas, empezaremos con un breve análisis exploratorio y selección de variables.

En seguida, entrenaremos los siguientes tipos de modelo: Regresión Logística, Naive Bayes Gaussian, KNN, árbol de decisión y Random Forest.

Compararemos los resultados de los distintos
modelos, seguido de la
selección del mejor modelo y
selección hiper-parámetros
para obtener predicciones y
métricas finales.

Datos Principales

Shape 284.807 filas x 31 Columnas

Features 'Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28', 'Amount'.

Target 'Class'

Balance Clases

0	284.315	99.83%
1	492	0.17%

H0) Accuracy Base = 99.83%

0= Bueno , 1= Fraude

Como vemos tenemos presencia de valores extremos para distintas variables.

Estudiamos
variables de
acuerdo a su
distribución por
clase para
empezar a
detectar posibles
features
relevantes.

Problema: Los valores extremos pueden evitar visualizar diferencias significativas entre ciertas variables.

Regresión Logística con Stat Models

Results: Logit							
Model:		Logit		Pseudo R-	squared:	0.709	
Dependen	t Variable:	Class		AIC:		1638.8927	
Date:		2022-04-24 13:06		BIC:		1947.0493	
No. Obse	ervations:	213605 29		Log-Likelihood: LL-Null:		-789.45 -2715.9	
Df Model	:						
Df Residuals:		213575		LLR p-value:		0.0000	
Converged:		1.0000 Scale:			1.0000		
No. Iterations:		16.0000					
	Coef.	Std.Err.	z	P> z	[0.025	0.975]	
const	48.5657	19.9253	2.4374	4 0.0148	9.5129	87.6185	
V1	4.6347	2.9022	1.5970	0.1103	-1.0534	10.3229	
V2	5.2127	7.3455	0.709	6 0.4779	-9.1842	19.6095	
V3	0.7794	3.0753	0.2534	4 0.7999	-5.2486	6.8068	
V4	18.6266	2.3880	7.800	0.0000	13.9462	23.3071	

^{*} Variables significativas:

Las variables V4,V8,V10,V13,V14,V20,V21,V22,V27 son significativas con un nivel de confianza del 95%.

^{*} Se obtuvo un **Pseudo R-squared de 0.709**, valor que es muy bueno y nos indica un buen poder de predicción de la variable objetivo.

Regresión Logística - Regularización Lasso L1

	variable	coeficiente
0	V1	1.26745
3	V4	13.06847
4	V5	4.60432
9	V10	-13.16905
10	V11	2.16794
11	V12	-2.17481
12	V13	-3.82533
13	V14	-19.48994
15	V16	-5.93675
16	V17	-0.07415
20	V21	9.11522
21	V22	6.40620

Los coeficientes de las demás variables fueron 0.

Variables predictoras para modelar

Tendremos en cuenta la unión de los conjuntos de variables que fueron significativas en el modelo de stat models y aquellas con coeficiente diferente de 0 en la regresión logística con regularización lasso -l1. En total utilizaremos 15 variables predictoras.

```
variables = ['V1','V4','V5','V8','V10','V11','V12','V13','V14','V16','V17','V20','V21','V22','V27']
```


Las métricas obtenidas sobre las predicciones en la data de entrenamiento y de prueba se comportan de forma similar, además el accuracy obtenido en ambos casos es mayor al obtenido por el modelo base de la hipótesis nula, el cual alcanza un valor de 0.9983 cuya predicción siempre será la clase 0.

Este modelo tiene un rendimiento menor que el modelo base lo cual se evidencia en un menor accuracy. A partir de las predicciones se obtiene una tasa de falsos positivos bastante alta y consecuentemente un precision score para la clase fraude - "1" de apenas 0.07. En conclusión por su rendimiento este modelo será descartado.

El modelo knn tiene un rendimiento superior respecto a H0. En términos de accuracy y f1 score. sobre la data de entrenamiento y de prueba alcanza valores de 0.9996 y 0.9994 respectivamente y a la vez valores de f1 score superiores a 0.8 para la clase fraude.

El modelo de árbol de decisión nos arroja un rendimiento ligeramente superior al modelo de KNN y por consiguiente tiene resultados superiores a la hipótesis nula.

Los resultados obtenidos en el modelo random forest son muy buenos y son superiores a la hipótesis nula.

Curva ROC-AUC

ROC AUC=0.969 Mejor threshold=0.002, G-Mean=0.934

ROC AUC=0.962 Mejor threshold=0.512, G-Mean=0.915

ROC AUC=0.910 Mejor threshold=0.333, G-Mean=0.906

ROC AUC=0.894 Mejor threshold=0.064, G-Mean=0.906

Mejor threshold=0.004, G-Mean=0.942

Tabla Comparativa de Modelos

	Modelo	Accuracy	Recall	Precision	F1 score	AUC
0	Regresión Logística	0.99900	0.52846	0.83333	0.64677	0.96863
1	Naive Bayes Gaussian	0.98028	0.85366	0.07042	0.13011	0.96241
2	KNN	0.99940	0.73984	0.89216	0.80889	0.91047
3	Decision Tree	0.99947	0.76423	0.91262	0.83186	0.89446
4	Random Forest	0.99955	0.78049	0.95050	0.85714	0.97746

El Mejor modelo es el Random Forest, siendo superior en todas las métricas con solo una excepción respecto a los otros modelos (Recall). Sin embargo...

Importancia de Variables

	Variable	Importancia		
0	V14	0.23036		
1	V17	0.18073		
2	V12	0.13980		
3	V10	0.11857		
4	V11	0.10606		
5	V4	0.06587		
6	V16	0.05274		
7	V21	0.01791		
8	V27	0.01720		
9	V5	0.01456		
10	V8	0.01355		
11	V20	0.01281		
12	V1	0.01264		
13	V13	0.00912		
14	V22	80800.0		

Curva de densidad de probabilidades

Comparativa de métricas variando Threshold

	Threshold	Accuracy	Recall	Precision	F1 score
0	0.05000	0.99878	0.85366	0.60345	0.70707
1	0.10000	0.99914	0.84553	0.71233	0.77323
2	0.15000	0.99927	0.84553	0.75912	0.80000
3	0.20000	0.99930	0.84553	0.77037	0.80620
4	0.25000	0.99938	0.84553	0.80620	0.82540
5	0.30000	0.99947	0.84553	0.84553	0.84553
6	0.35000	0.99947	0.82927	0.85714	0.84298
7	0.40000	0.99942	0.78862	0.86607	0.82553
8	0.45000	0.99952	0.78862	0.92381	0.85088
9	0.50000	0.99955	0.78049	0.95050	0.85714
10	0.55000	0.99952	0.75610	0.95876	0.84545
11	0.60000	0.99945	0.69919	0.97727	0.81517
12	0.65000	0.99944	0.69106	0.97701	0.80952
13	0.70000	0.99942	0.68293	0.97674	0.80383
14	0.75000	0.99934	0.63415	0.97500	0.76847
15	0.80000	0.99924	0.57724	0.97260	0.72449
16	0.85000	0.99909	0.48780	0.96774	0.64865
17	0.90000	0.99892	0.39024	0.96000	0.55491

Comparativa de métricas variando Threshold - Zoom

	Till Colloid	Accuracy	recuii	riccision	11 3001
0	0.40000	0.99942	0.78862	0.86607	0.8255
1	0.41000	0.99945	0.78862	0.88182	0.8326
2	0.42000	0.99947	0.78862	0.88991	0.8362
3	0.43000	0.99948	0.78862	0.89815	0.8398
4	0.44000	0.99948	0.78862	0.89815	0.8398
5	0.45000	0.99952	0.78862	0.92381	0.8508
6	0.46000	0.99952	0.78862	0.92381	0.8508
7	0.47000	0.99954	0.78862	0.93269	0.8546
8	0.48000	0.99955	0.78862	0.94175	0.8584
9	0.49000	0.99956	0.78862	0.95098	0.8622
10	0.50000	0.99955	0.78049	0.95050	0.8571
11	0.51000	0.99956	0.78049	0.96000	0.8609
12	0.52000	0.99956	0.78049	0.96000	0.8609
13	0.53000	0.99956	0.78049	0.96000	0.8609
14	0.54000	0.99955	0.77236	0.95960	0.8558
15	0.55000	0.99952	0.75610	0.95876	0.8454
16	0.56000	0.99948	0.73171	0.95745	0.8294
17	0.57000	0.99948	0.72358	0.96739	0.8279
18	0.58000	0.99949	0.72358	0.97802	0.8317

Recall Precision F1 score

Rendimiento bastante bueno. Accuracy de 0.9996 en la data de entrenamiento y prueba y con un f1 score que alcanza un valor de 0.8611 para la clase fraude, lo que a su vez implica detección del 79% del total de casos de fraude (recall) a costa de una cantidad muy baja de falsos positivos y de falsos negativos.

Conclusiones

- Al realizar la selección de variables para el modelo, se redujo la cantidad de predictores a la mitad, pasando de 30 a 15 variables.
- La aplicación del modelo de Naive Bayes Gaussian no es ideal para este tipo de casos, lo cual se evidencia en un bajo rendimiento que se evidencia en las métricas calculadas.
- Los modelos de regresión logística, árbol de decisión y random forest tienen un rendimiento bastante bueno en sus predicciones, por lo que la implementación de cualquiera de estos modelos sería de utilidad para el caso.
- El modelo de random forest fue el mejor modelo el cual junto a la elección de el mejor threshold tiene un poder de predicción que superó tanto a la hipótesis nula como a los demás modelos entrenados, alcanzando un accuracy de 0.9996 y un f1 score de 0.8611 en la clase fraude.
- Al inspeccionar la importancia de variables del random forest, se evidencia que es posible reducir la cantidad de predictores a tan solo 7, modelo con el que seguramente podemos tener buenas predicciones con un costo computacional menor.
- Los métodos de resampling no fueron considerados en este trabajo ya que en primera instancia no implica que el rendimiento mejore, además que superan los temas vistos durante las clases hasta el momento.

MUCHAS GRACIAS