```
In [114... import pandas as pd
         import matplotlib.pylab as plt
         import numpy as np
         import seaborn as sns
         from numpy import exp
         import statistics as stats
         from sklearn import preprocessing
         from sklearn.preprocessing import StandardScaler
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.metrics import pairwise
         from sklearn.cluster import KMeans
         from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
         from sklearn.cluster import KMeans
         from sklearn.linear_model import LinearRegression, LogisticRegression, Logis
         from sklearn.model_selection import train_test_split, cross_val_score, GridS
         from sklearn.metrics import f1_score, precision_score, recall_score, accurac
         from imblearn.over_sampling import RandomOverSampler
         import dmba
         from dmba import regressionSummary, plotDecisionTree, classificationSummary,
         %matplotlib inline
```

In [115... absent = pd.read_csv('/Users/mtc/ADS/ADS 505/Project/Absenteeism_at_work.csv
absent = pd.read_csv('/Users/patriciomartinez/Downloads/absenteeism+at+work.csv

In [116... absent.head()

Out [116...

	ID	Reason for absence	Month of absence	Day of the week	Seasons	Transportation expense	Distance from Residence to Work	Service time	Age	1
0	11	26	7	3	1	289	36	13	33	
1	36	0	7	3	1	118	13	18	50	
2	3	23	7	4	1	179	51	18	38	
3	7	7	7	5	1	279	5	14	39	
4	11	23	7	5	1	289	36	13	33	

5 rows × 21 columns

In [117... absent.columns

```
{\tt Out[117...} \quad {\tt Index(['ID', 'Reason for absence', 'Month of absence', 'Day of the week',} \\
                  'Seasons', 'Transportation expense', 'Distance from Residence to Wor
          kΙ,
                  'Service time', 'Age', 'Work load Average/day ', 'Hit target',
                  'Disciplinary failure', 'Education', 'Son', 'Social drinker',
                  'Social smoker', 'Pet', 'Weight', 'Height', 'Body mass index',
                  'Absenteeism time in hours'],
                 dtype='object')
In [118... count = pd.DataFrame(absent['ID'].value_counts())
          count = count.sort_values('ID')
          print(count) #IDs 8, 4, and 35 have no hours of absence, but this will be ta
             count
        ID
                23
         1
        2
                 6
        3
               113
        4
                 1
        5
                19
        6
                 8
        7
                 6
        8
                 2
        9
                 8
        10
                24
        11
                40
        12
                7
        13
                15
        14
                29
        15
                37
        16
                 2
        17
                20
         18
                16
        19
                 3
        20
                42
        21
                 3
        22
                46
        23
                 8
        24
                30
        25
                10
        26
                 5
        27
                 7
        28
                76
        29
                 5
                 7
        30
                 3
        31
        32
                 5
        33
                24
        34
                55
        35
                 1
        36
                34
In [119... count_reason = pd.DataFrame(absent['Reason for absence'].value_counts())
```

```
count_reason = count_reason.sort_values('count', ascending=True)
print(count reason)
```

```
count
Reason for absence
                         1
3
                          1
2
                          1
                          2
4
                          2
15
                         3
24
                         3
16
                         3
5
9
                          4
8
                         6
21
                         6
12
                         8
6
                         8
7
                        15
1
                        16
                        19
14
18
                        21
                        25
10
11
                        26
25
                        31
26
                        33
22
                        38
19
                        40
                        43
0
13
                        55
27
                        69
28
                        112
23
                       149
 indv_info['abs_hr_per_month'] = indv_info['Absenteeism time in hours']/36
```

```
In [120... | indv_info = pd.DataFrame(absent.groupby(['ID'])['Absenteeism time in hours']
         indv_info['abs_hr_per_log'] = indv_info['Absenteeism time in hours']/count['
```

EDA Plots

```
In [121... plt.figure(figsize=(12, 6))
         sns.countplot(data=absent, x='Reason for absence')
         plt.title('Count of Absences by Reason')
         plt.xlabel('Reason for Absence')
         plt.ylabel('Count')
         plt.xticks(rotation=45)
         plt.show()
         plt.figure(figsize=(12, 6))
         sns.histplot(indv_info['abs_hr_per_log'], bins=30, kde=True)
         plt.title('Distribution of Absenteeism Time (per log)')
         plt.xlabel('Absenteeism Time (per log)')
```

```
plt.ylabel('Frequency')
plt.axvline(indv_info['abs_hr_per_log'].mean(), color='red', linestyle='dash
plt.axvline(indv info['abs hr per log'].median(), color='blue', linestyle='c
plt.legend({'Mean': indv_info['abs_hr_per_log'].mean(), 'Median': indv_info[
plt.show()
plt.figure(figsize=(12, 6))
sns.histplot(indv_info['abs_hr_per_month'], bins=30, kde=True)
plt.title('Distribution of Absenteeism Time (per month)')
plt.xlabel('Absenteeism Time (per month)')
plt.ylabel('Frequency')
plt.axvline(indv_info['abs_hr_per_month'].mean(), color='red', linestyle='da
plt.axvline(indv_info['abs_hr_per_month'].median(), color='blue', linestyle=
plt.legend({'Mean': indv_info['abs_hr_per_month'].mean(), 'Median': indv_inf
plt.show()
plt.figure(figsize=(12, 6))
sns.boxplot(absent, x='Reason for absence', y='Absenteeism time in hours')
plt.title('Boxplot of Absenteeism Time by Reason for Absence')
plt.xlabel('Reason for Absence')
plt.ylabel('Absenteeism Time (Hours)')
plt.xticks(rotation=45)
plt.ylim(top=55, bottom=0)
plt.show()
plt.figure(figsize=(12, 6))
sns.boxplot(absent, x='Month of absence', y='Absenteeism time in hours')
plt.title('Boxplot of Absenteeism Time by Month')
plt.xlabel('Month of Absence')
plt.ylabel('Absenteeism Time (Hours)')
plt.ylim(top=30, bottom=0)
plt.xticks(rotation=45)
plt.show()
```


/Users/patriciomartinez/miniconda3/lib/python3.11/site-packages/seaborn/cate gorical.py:632: FutureWarning: SeriesGroupBy.grouper is deprecated and will be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

/Users/patriciomartinez/miniconda3/lib/python3.11/site-packages/seaborn/cate gorical.py:632: FutureWarning: SeriesGroupBy.grouper is deprecated and will be removed in a future version of pandas.

positions = grouped.grouper.result_index.to_numpy(dtype=float)

In [122... print(indv_info.sort_values('Absenteeism time in hours', ascending=False))

ID	Absenteeism time	in hours	abs_hr_per_month	abs_hr_per_log
3		482	13.388889	4.265487
14		476	13.222222	16.413793
11		450	12.500000	11.250000
28		347	9.638889	4.565789
34		344	9.555556	6.254545
36		311	8.638889	9.147059
20		306	8.500000	7.285714
9		262	7.277778	32.750000
24		254	7.055556	8.466667
15		253	7.027778	6.837838
22		253	7.027778	5.500000
10		186	5.166667	7.750000
13		183	5.083333	12.200000
17		126	3.500000	6.300000
1		121	3.361111	5.260870
18		118	3.277778	7.375000
5		104	2.888889	5.473684
26		83	2.305556	16.600000
33		73	2.027778	3.041667
6		72	2.000000	9.000000
25		42	1.166667	4.200000
23		40	1.111111	5.000000
12		34	0.944444	4.857143
30		31	0.861111	4.428571
7		30	0.833333	5.000000
27		27	0.750000	3.857143
2		25	0.694444	4.166667
29		21	0.583333	4.200000
31		16	0.444444	5.333333
32		16	0.444444	3.200000
16		16	0.444444	8.000000
21		16	0.444444	5.333333
19		6	0.166667	2.000000
8		0	0.000000	0.000000
4		0	0.000000	0.000000
35		0	0.000000	0.000000

In [123... print(indv_info.sort_values('abs_hr_per_month', ascending=False))

```
Absenteeism time in hours
                                           abs_hr_per_month
                                                               abs_hr_per_log
         ID
         3
                                     482
                                                   13.388889
                                                                      4.265487
         14
                                     476
                                                   13.222222
                                                                     16.413793
         11
                                     450
                                                   12.500000
                                                                     11.250000
                                                                     4.565789
         28
                                     347
                                                    9.638889
         34
                                     344
                                                    9.555556
                                                                      6.254545
         36
                                     311
                                                    8.638889
                                                                     9.147059
         20
                                     306
                                                    8.500000
                                                                      7.285714
         9
                                     262
                                                    7.277778
                                                                    32.750000
         24
                                     254
                                                    7.055556
                                                                     8.466667
         15
                                     253
                                                    7.027778
                                                                      6.837838
         22
                                     253
                                                    7.027778
                                                                      5.500000
         10
                                     186
                                                    5.166667
                                                                      7.750000
         13
                                     183
                                                    5.083333
                                                                     12.200000
         17
                                     126
                                                    3.500000
                                                                      6.300000
         1
                                     121
                                                    3.361111
                                                                     5.260870
         18
                                     118
                                                    3.277778
                                                                     7.375000
         5
                                      104
                                                    2.888889
                                                                      5.473684
         26
                                       83
                                                    2.305556
                                                                     16.600000
         33
                                       73
                                                    2.027778
                                                                      3.041667
         6
                                       72
                                                                      9.000000
                                                    2.000000
         25
                                       42
                                                    1.166667
                                                                     4.200000
         23
                                       40
                                                    1.111111
                                                                      5.000000
         12
                                       34
                                                    0.944444
                                                                     4.857143
         30
                                       31
                                                    0.861111
                                                                      4.428571
         7
                                       30
                                                    0.833333
                                                                      5.000000
         27
                                       27
                                                    0.750000
                                                                      3.857143
         2
                                       25
                                                    0.694444
                                                                      4.166667
         29
                                       21
                                                    0.583333
                                                                     4.200000
         31
                                       16
                                                    0.444444
                                                                      5.333333
         32
                                       16
                                                    0.444444
                                                                      3.200000
         16
                                       16
                                                    0.444444
                                                                      8.000000
         21
                                       16
                                                    0.444444
                                                                      5.333333
         19
                                        6
                                                    0.166667
                                                                      2.000000
         8
                                        0
                                                    0.000000
                                                                      0.000000
         4
                                        0
                                                    0.000000
                                                                      0.000000
         35
                                        0
                                                    0.000000
                                                                      0.000000
In [124... print(pd.DataFrame(absent[(absent['ID'] == 9)].value_counts('Reason for abset)
                               count
         Reason for absence
         6
                                   2
                                   2
         18
         25
                                   2
         1
                                   1
         12
                                   1
```

In [125... print(pd.DataFrame(absent[(absent['ID'] == 3)].value_counts('Reason for abset)

	count			
Reason for ab	sence			
27	38			
28	26			
23	19			
13	10			
11	7			
10	2			
18	2			
21	2			
25	2			
0	1			
5	1			
6	1			
12	1			
26	1			
 print(pd.Da	taFrame(indv_	<pre>info[(indv_info['Absenteeism</pre>	time	i

```
in hours'] < 20)])
In [126..
             Absenteeism time in hours abs_hr_per_month abs_hr_per_log
        ID
        4
                                      0
                                                  0.000000
                                                                   0.000000
        8
                                      0
                                                  0.000000
                                                                   0.000000
        16
                                     16
                                                  0.444444
                                                                   8.000000
        19
                                                  0.166667
                                      6
                                                                   2.000000
        21
                                     16
                                                  0.444444
                                                                   5.333333
        31
                                     16
                                                  0.444444
                                                                   5.333333
        32
                                                  0.444444
                                                                   3.200000
                                     16
```

0.000000

0.000000

0

Data Processing

35

```
In [127... absent.columns = ['worker_id', 'absence_reason', 'absence_month', 'absence_c
absent.dtypes
```

```
Out[127... worker id
                                int64
          absence reason
                                int64
          absence month
                                int64
          absence day
                                int64
          season
                                int64
          trans_exp
                                int64
          distance to work
                                int64
          serve time
                                int64
          Age
                                int64
          avg_work_per_day
                              float64
          target hit
                                int64
          disc fail
                                int64
          educ
                                int64
          children
                                int64
          soc_drink
                                int64
          soc smoke
                                int64
          pets
                                int64
          weight
                                int64
          height
                                int64
          BMI
                                int64
          absence_hours
                                int64
          dtype: object
In [128... print(stats.median(absent['absence hours']))
         print(stats.stdev(absent['absence_hours']))
         print(stats.median(absent['absence hours']) + 2*stats.stdev(absent['absence
        3.0
        13.330998100978201
        29.661996201956402
In [129... cutoff = stats.median(absent['absence hours']) + 2*stats.stdev(absent['absert
         absent['above normal'] = absent['absence hours'] > cutoff
In [130... absent['absence_month'] = absent['absence_month'].replace([1, 2, 3, 4, 5, 6,
         absent['absence_day'] = absent['absence_day'].replace([1, 2, 3, 4, 5, 6, 7],
         absent['season'] = absent['season'].replace([1, 2, 3, 4], ['summer', 'autumr
         absent['disc_fail'] = absent['disc_fail'].replace([0,1], ['no', 'yes'])
         absent['soc drink'] = absent['soc drink'].replace([0,1], ['no', 'yes'])
         absent['soc smoke'] = absent['soc smoke'].replace([0,1], ['no', 'yes'])
         absent['absence reason'] = absent['absence reason'].astype('object')
In [131... X= absent.drop(columns = ['absence_hours', 'worker_id', 'absence_hours', 'at
         y = absent['above_normal']
In [132... dum_col = ['absence_reason', 'absence_month', 'absence_day', 'season', 'disc
         X dum = pd.get dummies(X[dum col], drop first=True)
         X dum.head()
```

	0	False	False	False	False		
	1	False	False	False	False		
	2	False	False	False	False		
	3	False	False	False	False		
	4	False	False	False	False		
	5 rows × 49 col	umns					
n [133	$X_{norm} = X.d$	<pre>processing.Sta rop(columns = DataFrame(scal</pre>		_norm*1.0), colum	ıns=X_norm.colu		
n [134	X_new = pd.co	oncat([X_dum,	X_{norm} , axis = 1)				
		OverSampler(ra = ros.fit_res	andom_state=1) sample(X_new, y)				
n [135	X_train, X_te	est, y_train,	y_test = train_tes	t_split(X_res, y_	res, test_size		
	•						
n [136	<pre>predictors = X_train</pre>	X_train.colum	ıns				
n [136	X_train		nns sence_reason_2 abse	nce_reason_3 abs	ence_reason_4		
	X_train			e nce_reason_3 abs False	ence_reason_4 a		
	X_train absence	e_reason_1 abs	sence_reason_2 abse				
	X_train absence	e_reason_1 abs	sence_reason_2 abse False	False	False		
	X_train absence 792 1067	e_reason_1 abs False False	sence_reason_2 abse False False	False False	False False		
	792 1067 652	e_reason_1 abs False False False	sence_reason_2 abse False False False	False False False	False False False		
	792 1067 652 1286	e_reason_1 abs False False False False False	False False False False False False	False False False False	False False False		
	X_train absence 792 1067 652 1286 803	e_reason_1 abs False False False False False False	False False False False False False False False	False False False False False	False False False		
	X_train absence 792 1067 652 1286 803	e_reason_1 abs False False False False False False False False False	False	False False False False False	False False False False False		
	x_train absence 792 1067 652 1286 803 1381	False	False	False False False False False False False	False False False False False False False		
	x_train absence 792 1067 652 1286 803 1381 382	False	False	False	False		
	x_train absence 792 1067 652 1286 803 1381 382 129	e_reason_1 abs False	False	False	False		

Out [132... absence_reason_1 absence_reason_2 absence_reason_3 absence_reason_4 abse

854 rows × 60 columns

Logistic Regression

```
In [137... pd.set_option('display.max_rows', 62)

log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)

predictors = X_train.columns
coef = log_reg.coef_.reshape(60,)

coef = pd.DataFrame({'Predictor': predictors, 'coefficient': coef})
coef['exp'] = exp(coef['coefficient'])
display(coef.sort_values(by = ['exp'], ascending=False))

log_pred = log_reg.predict(X_test)

print(f'accuracy: {accuracy_score(y_test, log_pred)}')
print(f'precision: {precision_score(y_test, log_pred, zero_division=0)}')
print(f'recall: {recall_score(y_test, log_pred, zero_division=1)}')
print('\n')

classificationSummary(y_test, log_pred)
```

	Predictor	coefficient	ехр
8	absence_reason_9	3.630728	37.740282
18	absence_reason_19	3.033236	20.764319
12	absence_reason_13	2.769181	15.945562
0	absence_reason_1	1.718811	5.577895
39	absence_day_Mon	1.665998	5.290949
13	absence_reason_14	1.260764	3.528115
43	season_spring	1.242336	3.463695
29	absence_month_Dec	1.096538	2.993783
32	absence_month_Jul	1.087845	2.967872
10	absence_reason_11	0.999778	2.717679
59	height	0.973989	2.648488
28	absence_month_Aug	0.706330	2.026539
52	Age	0.668355	1.951024
11	absence_reason_12	0.577494	1.781569
56	children	0.427623	1.533608
41	absence_day_Tue	0.422163	1.525258
38	absence_month_Sep	0.382859	1.466472
5	absence_reason_6	0.288850	1.334891
47	soc_drink_yes	0.240438	1.271806
42	absence_day_Wed	0.233467	1.262972
6	absence_reason_7	0.215532	1.240522
33	absence_month_Jun	0.160469	1.174061
9	absence_reason_10	0.044416	1.045418
14	absence_reason_15	0.000000	1.000000
49	trans_exp	-0.045311	0.955701
27	absence_month_Apr	-0.057104	0.944495
48	soc_smoke_yes	-0.067255	0.934957
54	target_hit	-0.082883	0.920459
2	absence_reason_3	-0.095008	0.909366
53	avg_work_per_day	-0.098368	0.906316
34	absence_month_Mar	-0.104776	0.900526
37	absence_month_Oct	-0.107056	0.898476

	Predictor	coefficient	ехр
50	distance_to_work	-0.110782	0.895134
1	absence_reason_2	-0.117840	0.888838
3	absence_reason_4	-0.155502	0.855985
51	serve_time	-0.167070	0.846140
4	absence_reason_5	-0.170371	0.843352
16	absence_reason_17	-0.174676	0.839729
15	absence_reason_16	-0.243344	0.784002
19	absence_reason_21	-0.297633	0.742574
31	absence_month_Jan	-0.360033	0.697653
35	absence_month_May	-0.360795	0.697122
45	season_winter	-0.366341	0.693267
57	pets	-0.393507	0.674687
7	absence_reason_8	-0.409170	0.664201
22	absence_reason_24	-0.426108	0.653046
55	educ	-0.428911	0.651218
17	absence_reason_18	-0.490051	0.612595
44	season_summer	-0.673290	0.510028
25	absence_reason_27	-0.766028	0.464856
36	absence_month_Nov	-0.809456	0.445100
58	weight	-0.934451	0.392801
20	absence_reason_22	-1.340962	0.261594
46	disc_fail_yes	-1.469961	0.229934
24	absence_reason_26	-1.548821	0.212498
30	absence_month_Feb	-1.610201	0.199847
23	absence_reason_25	-1.649714	0.192105
40	absence_day_Thu	-2.453531	0.085989
21	absence_reason_23	-2.454191	0.085933
26	absence_reason_28	-2.704789	0.066884

```
accuracy: 0.9438596491228071
precision: 0.8990536277602523
recall: 1.0

Confusion Matrix (Accuracy 0.9439)

Prediction
Actual 0 1
0 253 32
1 0 285
```

Random Forest (with hyperparameter tuning)

```
In [138... grid_space = {'max_depth': [5, 10, 15],
                        'n_estimators': [5, 10, 15, 20, 25, 30]}
         rf = RandomForestClassifier(random state=12345)
         grid = GridSearchCV(rf, param_grid = grid_space, cv = 5, scoring = 'accuracy
         rf fit = grid.fit(X train, y train)
         print('Best hyperparameters are: '+str(rf_fit.best_params_))
         print('Best score is: '+str(rf fit.best score ))
         rf_hp = RandomForestClassifier(max_depth=15, n_estimators=10, random_state=1
         rf fit = rf hp.fit(X train, y train)
         rf_pred = rf_fit.predict(X_test)
         print(f'accuracy: {accuracy_score(y_test, rf_pred)}')
         print(f'precision: {precision_score(y_test, rf_pred, zero_division=0)}')
         print(f'recall: {recall score(y test, rf pred, zero division=1)}')
         print('\n')
         print(classificationSummary(y_test, rf_pred))
         importances = rf_fit.feature_importances_
         feature imp df = pd.DataFrame({'Feature': predictors, 'Gini Importance': imp
         display(feature imp df)
```

```
Best hyperparameters are: {'max_depth': 15, 'n_estimators': 10}
```

Best score is: 0.9859442724458203 accuracy: 0.9929824561403509

accuracy: 0.9929824561403509 precision: 0.986159169550173

recall: 1.0

Confusion Matrix (Accuracy 0.9930)

Prediction

Actual 0 1

0 281 4

1 0 285

None

	Feature	Gini Importance
21	absence_reason_23	0.066914
53	avg_work_per_day	0.065565
50	distance_to_work	0.064968
49	trans_exp	0.058090
40	absence_day_Thu	0.051818
59	height	0.049804
18	absence_reason_19	0.047863
54	target_hit	0.042761
12	absence_reason_13	0.041536
39	absence_day_Mon	0.040088
56	children	0.039325
26	absence_reason_28	0.038190
52	Age	0.028421
51	serve_time	0.028111
8	absence_reason_9	0.027652
37	absence_month_Oct	0.019953
58	weight	0.018867
23	absence_reason_25	0.017234
42	absence_day_Wed	0.015811
41	absence_day_Tue	0.015217
57	pets	0.014452
10	absence_reason_11	0.014083
25	absence_reason_27	0.013197
55	educ	0.012065
29	absence_month_Dec	0.011459
46	disc_fail_yes	0.011411
30	absence_month_Feb	0.011355
24	absence_reason_26	0.010917
36	absence_month_Nov	0.010532
13	absence_reason_14	0.010432
0	absence_reason_1	0.010387
32	absence_month_Jul	0.008525

	Feature	Gini Importance
47	soc_drink_yes	0.007598
5	absence_reason_6	0.007369
44	season_summer	0.006964
35	absence_month_May	0.006369
27	absence_month_Apr	0.005937
31	absence_month_Jan	0.005905
20	absence_reason_22	0.005520
34	absence_month_Mar	0.005487
9	absence_reason_10	0.005235
11	absence_reason_12	0.005032
6	absence_reason_7	0.004471
17	absence_reason_18	0.003321
45	season_winter	0.002971
48	soc_smoke_yes	0.002744
28	absence_month_Aug	0.002421
43	season_spring	0.001908
4	absence_reason_5	0.001005
7	absence_reason_8	0.000889
38	absence_month_Sep	0.000795
33	absence_month_Jun	0.000581
16	absence_reason_17	0.000475
14	absence_reason_15	0.000000
15	absence_reason_16	0.000000
19	absence_reason_21	0.000000
1	absence_reason_2	0.000000
3	absence_reason_4	0.000000
2	absence_reason_3	0.000000
22	absence_reason_24	0.000000

K-Means Clustering

```
In [139... inertias = []
```

```
for i in range(1,10):
    kmeans = KMeans(n_clusters=i, random_state=12345)
    kmeans.fit(X_new[['distance_to_work', 'trans_exp', 'height', 'children',
    inertias.append(kmeans.inertia_)

plt.plot(range(1,10), inertias, marker='o')
plt.title('Elbow method')
plt.xlabel('Number of clusters')
plt.ylabel('Inertia')
plt.show()

kmeans = KMeans(n_clusters=4)
kmeans_absent = kmeans.fit(X_new[['distance_to_work', 'trans_exp', 'height',
    pd.DataFrame(kmeans_absent.cluster_centers_, columns = ['distance_to_work',
```

```
/Users/patriciomartinez/miniconda3/lib/python3.11/site-packages/sklearn/clus
ter/_kmeans.py:1416: FutureWarning: The default value of `n_init` will chang
e from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress
the warning
  super()._check_params_vs_input(X, default_n_init=10)
/Users/patriciomartinez/miniconda3/lib/python3.11/site-packages/sklearn/clus
ter/_kmeans.py:1416: FutureWarning: The default value of `n_init` will chang
e from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress
the warning
  super(). check params vs input(X, default n init=10)
/Users/patriciomartinez/miniconda3/lib/python3.11/site-packages/sklearn/clus
ter/_kmeans.py:1416: FutureWarning: The default value of `n_init` will chang
e from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to suppress
the warning
  super()._check_params_vs_input(X, default_n_init=10)
/Users/patriciomartinez/miniconda3/lib/python3.11/site-packages/sklearn/clus
ter/ kmeans.py:1416: FutureWarning: The default value of `n init` will chang
e from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress
the warning
  super()._check_params_vs_input(X, default_n_init=10)
/Users/patriciomartinez/miniconda3/lib/python3.11/site-packages/sklearn/clus
ter/_kmeans.py:1416: FutureWarning: The default value of `n_init` will chang
e from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress
the warning
  super()._check_params_vs_input(X, default_n_init=10)
/Users/patriciomartinez/miniconda3/lib/python3.11/site-packages/sklearn/clus
ter/_kmeans.py:1416: FutureWarning: The default value of `n_init` will chang
e from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress
the warning
  super()._check_params_vs_input(X, default_n_init=10)
/Users/patriciomartinez/miniconda3/lib/python3.11/site-packages/sklearn/clus
ter/_kmeans.py:1416: FutureWarning: The default value of `n_init` will chang
e from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress
the warning
  super(). check params vs input(X, default n init=10)
/Users/patriciomartinez/miniconda3/lib/python3.11/site-packages/sklearn/clus
ter/_kmeans.py:1416: FutureWarning: The default value of `n_init` will chang
e from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress
the warning
  super()._check_params_vs_input(X, default_n_init=10)
/Users/patriciomartinez/miniconda3/lib/python3.11/site-packages/sklearn/clus
ter/_kmeans.py:1416: FutureWarning: The default value of `n_init` will chang
e from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress
the warning
  super()._check_params_vs_input(X, default_n_init=10)
```


/Users/patriciomartinez/miniconda3/lib/python3.11/site-packages/sklearn/clus ter/_kmeans.py:1416: FutureWarning: The default value of `n_init` will chang e from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)

U	u	τ	L	Т	J	9	
			_				

	distance_to_work	trans_exp	height	children	Age	weight	pe
0	-1.095044	-0.632301	0.949945	-0.279412	0.295912	0.794839	-0.4514
1	1.429338	-0.563587	-0.329770	-0.920536	0.330260	0.828175	-0.49607
2	-0.002825	0.343115	-0.418788	0.433320	-0.198495	-0.687090	0.02461
3	1.205180	1.516003	-0.011837	0.141193	-0.576519	-0.158075	3.09719

Lasso Regression

```
In [140... from sklearn.metrics import classification_report

# Lasso (L1) Logistic Regression
lasso_params = {'C': [0.01, 0.1, 1, 10, 85, 100]}
lasso_clf = GridSearchCV(LogisticRegression(penalty='l1', solver='liblinear'
lasso_clf.fit(X_train, y_train)

# Best parameters and evaluation for Lasso
print("\nBest C for Lasso (L1):", lasso_clf.best_params_['C'])
lasso_best = lasso_clf.best_estimator_
```

```
lasso_pred = lasso_best.predict(X_test)
 # Evaluate Lasso (L1) Classification
 print("\nLasso (L1) Logistic Regression Evaluation:")
 print(f'Accuracy: {accuracy_score(y_test, lasso_pred)}')
 print(f'Precision: {precision_score(y_test, lasso_pred, zero_division=0)}')
 print(f'Recall: {recall_score(y_test, lasso_pred, zero_division=0)}')
 print(f'F1 Score: {f1_score(y_test, lasso_pred)}')
 print(classificationSummary(y test, lasso pred))
 print("\nClassification Report for Lasso (L1):")
 print(classification_report(y_test, lasso_pred))
Best C for Lasso (L1): 85
Lasso (L1) Logistic Regression Evaluation:
Accuracy: 0.9491228070175438
Precision: 0.9076433121019108
Recall: 1.0
F1 Score: 0.9515859766277129
Confusion Matrix (Accuracy 0.9491)
       Prediction
Actual
         0
           1
     0 256 29
         0 285
None
Classification Report for Lasso (L1):
              precision
                           recall f1-score
                                              support
       False
                   1.00
                             0.90
                                       0.95
                                                  285
                             1.00
                                       0.95
        True
                   0.91
                                                  285
                                       0.95
                                                  570
    accuracy
                   0.95
                             0.95
                                       0.95
                                                  570
   macro avg
weighted avg
                   0.95
                             0.95
                                       0.95
                                                  570
 coef = lasso best.coef .reshape(60,)
 coef = pd.DataFrame({'Predictor': predictors, 'coefficient': coef})
 coef['exp'] = exp(coef['coefficient'])
```

```
In [141... predictors = X_train.columns
         display(coef.sort values(by = ['exp'], ascending=False))
```

	Predictor	coefficient	ехр
8	absence_reason_9	24.588941	4.773549e+10
28	absence_month_Aug	10.450206	3.455149e+04
18	absence_reason_19	7.971493	2.897179e+03
10	absence_reason_11	7.698733	2.205551e+03
12	absence_reason_13	7.529969	1.863049e+03
13	absence_reason_14	7.333340	1.530486e+03
32	absence_month_Jul	6.619208	7.493515e+02
43	season_spring	5.716155	3.037347e+02
0	absence_reason_1	4.500000	9.001712e+01
5	absence_reason_6	4.342350	7.688804e+01
59	height	3.503113	3.321870e+01
39	absence_day_Mon	3.315896	2.754707e+01
52	Age	2.671904	1.446750e+01
38	absence_month_Sep	2.242493	9.416774e+00
54	target_hit	1.818720	6.163964e+00
56	children	1.733252	5.659026e+00
49	trans_exp	1.400607	4.057664e+00
6	absence_reason_7	1.135517	3.112782e+00
33	absence_month_Jun	0.826739	2.285852e+00
11	absence_reason_12	0.490564	1.633237e+00
50	distance_to_work	0.369192	1.446566e+00
19	absence_reason_21	0.000000	1.000000e+00
2	absence_reason_3	0.000000	1.000000e+00
16	absence_reason_17	0.000000	1.000000e+00
15	absence_reason_16	0.000000	1.000000e+00
14	absence_reason_15	0.000000	1.000000e+00
4	absence_reason_5	0.000000	1.000000e+00
7	absence_reason_8	0.000000	1.000000e+00
37	absence_month_Oct	0.000000	1.000000e+00
3	absence_reason_4	0.000000	1.000000e+00
42	absence_day_Wed	-0.030833	9.696375e-01
55	educ	-0.223406	7.997899e-01

	Predictor	coefficient	ехр
53	avg_work_per_day	-0.649265	5.224296e-01
29	absence_month_Dec	-0.826161	4.377266e-01
48	soc_smoke_yes	-0.875778	4.165379e-01
9	absence_reason_10	-1.059055	3.467833e-01
58	weight	-1.165237	3.118488e-01
51	serve_time	-1.367021	2.548651e-01
1	absence_reason_2	-1.439527	2.370398e-01
47	soc_drink_yes	-1.560746	2.099794e-01
41	absence_day_Tue	-1.713555	1.802240e-01
57	pets	-1.876804	1.530786e-01
45	season_winter	-2.619752	7.282094e-02
17	absence_reason_18	-2.942757	5.272020e-02
27	absence_month_Apr	-3.248754	3.882256e-02
31	absence_month_Jan	-4.455580	1.161358e-02
25	absence_reason_27	-4.497523	1.113655e-02
34	absence_month_Mar	-5.325627	4.865302e-03
22	absence_reason_24	-5.420574	4.424607e-03
35	absence_month_May	-6.065128	2.322462e-03
24	absence_reason_26	-6.771198	1.146320e-03
46	disc_fail_yes	-8.757770	1.572349e-04
23	absence_reason_25	-8.763355	1.563591e-04
20	absence_reason_22	-9.190750	1.019784e-04
36	absence_month_Nov	-9.935889	4.840587e-05
21	absence_reason_23	-10.896977	1.851412e-05
26	absence_reason_28	-12.299696	4.553127e-06
44	season_summer	-12.451472	3.911960e-06
30	absence_month_Feb	-18.242115	1.195502e-08
40	absence_day_Thu	-18.815407	6.738643e-09

Ridge Regression

```
In [142... # Ridge (L2) Logistic Regression
    ridge_params = {'C': [0.01, 0.1, 1, 10, 100]}
```

```
ridge_clf = GridSearchCV(LogisticRegression(penalty='l2', solver='liblinear'
         ridge clf.fit(X train, y train)
         # Best parameters and evaluation for Ridge
         print("\nBest C for Ridge (L2):", ridge_clf.best_params_['C'])
         ridge best = ridge clf.best estimator
         ridge pred = ridge best.predict(X test)
         # Evaluate Ridge (L2) Classification
         print("\nRidge (L2) Logistic Regression Evaluation:")
         print(f'Accuracy: {accuracy_score(y_test, ridge_pred)}')
         print(f'Precision: {precision score(y test, ridge pred, zero division=0)}')
         print(f'Recall: {recall score(y test, ridge pred, zero division=0)}')
         print(f'F1 Score: {f1 score(y test, ridge pred)}')
         print(classificationSummary(y test, ridge pred))
         print("\nClassification Report for Ridge (L2):")
         print(classification_report(y_test, ridge_pred))
        Best C for Ridge (L2): 100
        Ridge (L2) Logistic Regression Evaluation:
        Accuracy: 0.9491228070175438
        Precision: 0.9076433121019108
        Recall: 1.0
        F1 Score: 0.9515859766277129
        Confusion Matrix (Accuracy 0.9491)
               Prediction
        Actual 0 1
             0 256 29
                 0 285
        None
        Classification Report for Ridge (L2):
                      precision
                                   recall f1-score
                                                       support
               False
                           1.00
                                     0.90
                                                0.95
                                                           285
                True
                           0.91
                                     1.00
                                                0.95
                                                           285
                                                0.95
                                                           570
            accuracy
                           0.95
                                     0.95
                                                0.95
                                                           570
           macro avq
                                                0.95
        weighted avg
                           0.95
                                     0.95
                                                           570
In [143... predictors = X train.columns
         coef = ridge_best.coef_.reshape(60,)
         coef = pd.DataFrame({'Predictor': predictors, 'coefficient': coef})
         coef['exp'] = exp(coef['coefficient'])
         display(coef.sort values(by = ['exp'], ascending=False))
```

	Predictor	coefficient	ехр
8	absence_reason_9	16.953346	2.305391e+07
28	absence_month_Aug	7.748964	2.319170e+03
18	absence_reason_19	6.672711	7.905361e+02
12	absence_reason_13	6.316945	5.538782e+02
13	absence_reason_14	5.628223	2.781674e+02
10	absence_reason_11	5.615326	2.746029e+02
32	absence_month_Jul	4.787966	1.200569e+02
43	season_spring	3.976848	5.334863e+01
0	absence_reason_1	3.911930	4.999534e+01
38	absence_month_Sep	3.536046	3.433092e+01
5	absence_reason_6	3.512737	3.353994e+01
39	absence_day_Mon	2.962117	1.933886e+01
59	height	2.741690	1.551318e+01
52	Age	2.039358	7.685670e+00
33	absence_month_Jun	1.743153	5.715333e+00
37	absence_month_Oct	1.739199	5.692779e+00
29	absence_month_Dec	1.535263	4.642547e+00
56	children	1.424074	4.154010e+00
54	target_hit	1.257032	3.514974e+00
11	absence_reason_12	0.959008	2.609106e+00
49	trans_exp	0.914256	2.494919e+00
6	absence_reason_7	0.871493	2.390477e+00
50	distance_to_work	0.242377	1.274275e+00
42	absence_day_Wed	0.017011	1.017156e+00
14	absence_reason_15	0.000000	1.000000e+00
3	absence_reason_4	-0.004734	9.952772e-01
16	absence_reason_17	-0.052071	9.492618e-01
4	absence_reason_5	-0.130360	8.777794e-01
15	absence_reason_16	-0.144790	8.652038e-01
19	absence_reason_21	-0.213735	8.075623e-01
55	educ	-0.288897	7.490895e-01
53	avg_work_per_day	-0.446583	6.398106e-01

	Predictor	coefficient	ехр
2	absence_reason_3	-0.511498	5.995968e-01
48	soc_smoke_yes	-0.558642	5.719851e-01
9	absence_reason_10	-0.750834	4.719726e-01
7	absence_reason_8	-0.859669	4.233022e-01
51	serve_time	-0.891754	4.099360e-01
58	weight	-1.071195	3.425989e-01
27	absence_month_Apr	-1.113196	3.285075e-01
47	soc_drink_yes	-1.154649	3.151681e-01
41	absence_day_Tue	-1.210352	2.980925e-01
1	absence_reason_2	-1.284907	2.766762e-01
57	pets	-1.363596	2.557395e-01
45	season_winter	-1.988807	1.368586e-01
31	absence_month_Jan	-2.217258	1.089073e-01
17	absence_reason_18	-2.561721	7.717181e-02
34	absence_month_Mar	-2.730749	6.517044e-02
35	absence_month_May	-3.034502	4.809863e-02
25	absence_reason_27	-3.388993	3.374265e-02
22	absence_reason_24	-4.039582	1.760483e-02
24	absence_reason_26	-5.239522	5.302792e-03
36	absence_month_Nov	-5.592527	3.725602e-03
23	absence_reason_25	-6.204492	2.020335e-03
46	disc_fail_yes	-6.241806	1.946337e-03
20	absence_reason_22	-6.544030	1.438679e-03
44	season_summer	-7.744393	4.331643e-04
21	absence_reason_23	-7.954083	3.512252e-04
26	absence_reason_28	-8.814118	1.486200e-04
30	absence_month_Feb	-10.901585	1.842900e-05
40	absence_day_Thu	-13.338579	1.611122e-06