Løsningsforslag MB

Kapittel 1	2
Kapittel 2	3
Kapittel 3	4
Kapittel 4	5
Kapittel 5	6
Kapittel 6	7
Kapittel 7	8
Kapittel 8	9
Kapittel 9	11
Kapittel 10	12
Kapittel 11	13

Gruble 13

a) Da det røde kvadratet har sidelengde a og det grønne kvadratet har sidelengde b, har det største kvadratet sidelengde a+b. Hver av de hvite rektanglene har areal ab. Dermed har vi at

$$A_{\text{størst kvadrat}} = A_{\text{rødt kvadrat}} + A_{\text{grønt kvadrat}} + 2A_{\text{hvitt rektangel}}$$

$$(a+b)^2 = a^2 + b^2 + 2ab$$

b) Det blå kvadratet har sidelengde a-b. Hver av de hvite rektanglene har areal (a-b)b. Dermed har vi at

$$A_{\text{størst kvadrat}} = A_{\text{blått kvadrat}} + A_{\text{grønt kvadrat}} + 2A_{\text{hvitt rektangel}}$$

$$a^2 = (a-b)^2 + b^2 + 2(a-b)b$$

$$a^2 = (a-b)^2 + b^2 + 2ab - 2b^2$$

$$a^2 - 2ab + b^2 = (a-b)^2$$

c)

$$a^{2} - b^{2} = A_{\text{størst kvadrat}} - A_{\text{grønt kvadrat}}$$

$$= A_{\text{blått kvadrat}} + 2A_{\text{hvitt rektangel}}$$

$$= (a - b)^{2} + 2(a - b)b$$

$$= (a - b)(a - b + 2b)$$

$$= (a - b)(a + b)$$

Gruble 18

Vi har at

$$a = \frac{cb}{d}$$

Dermed er

$$\frac{a-c}{b-d} = \frac{\frac{cb}{d}-c}{b-d} = \frac{c(b-d)}{d(b-d)} = \frac{c}{d} = \frac{a}{b}$$

Gruble 19

Gitt et tall n=abc, hvor $a,\,b$ og c er sifrene til tallet Da har vi at

$$n = 100a + 10b + c$$

= $99a + 99b + a + b + c$

Leddene med 99 som faktor er delelige med 3, og dermed er n delelig med 3 hvis a+b+c er delelig med 3.

??

a) Av (I) har vi at

$$x - y = 5$$
$$y = x - 5$$

Av (II) har vi at

$$x + y = 9$$
$$y = 9 - x$$

De to uttrykkene for y er uttrykken for to rette linjer, som henholdsvis sammenfaller med uttrykkene for f(x) og g(x).

b) Når f(x) = g(x), har vi at

$$x - 5 = 9 - x$$
$$2x = 14$$
$$x = 7$$

Videre er da y = 9 - 7 = 2. Altså er x = 7 og y = 2.

Gruble 26

a) Ved å gange ut parentesene får vi at

$$(x+2)(x-4) = x^2 - 4x + 2x - 8 = x^2 - 2x - 8 = x^2 - 2x - 8$$

Dette tilsvarer funksjonsuttrykket til f.

- b) Av uttrykket fra a), finner vi at f = 0 når x = -2 og x = 4.
- c) Vi har at

$$f(-3) = (-3+2)(-3-4) = (-1) \cdot (-7) = 7$$

$$f(5) = (5+2)(5-4) = 7 \cdot 1 = 7$$

Altså er A=(-3,7) og B=(5,7). For både A og B er horisontalavstanden til bunnpunktet 4.

d) To punkt med lik horisontalavstand til bunnpunktet vil ha samme y-verdi.

Gruble 31

Vi har at

$$\frac{7+x}{2} \cdot 3 = 15$$
$$(7+x) \cdot 3 = 30$$
$$7+x = 10$$
$$x = 3$$

Gruble 32

Av Pytagoras' setning på $\triangle ABC$ har vi at

$$AC^{2} = BC^{2} - AC^{2}$$

$$AC^{2} = 5^{2} - 3^{2}$$

$$AC = \sqrt{16}$$

$$AC = 4$$

Dermed er arealet til trapeset

$$\frac{8+2}{2} \cdot 4 = 20$$

Vi setter den ukjente siden lik a. Da må vi enten ha at

$$a = \sqrt{9^2 + 12^2} = 3\sqrt{9 + 16} = 3 \cdot 5 = 15$$

eller at

$$a = \sqrt{12^2 - 9^2} = 3\sqrt{16 - 9} = 3\sqrt{7}$$

Gruble 34

a) Da $\triangle ABC$ er likesidet, er D midpunktet på AB. Dermed er

$$AD = DB = \frac{AB}{2} = \frac{s}{2}$$

 $\triangle ACD$ er en trekant med vinkler lik 30°, 60° og 90° og AC=2AD. Altså er den lengste siden dobbelt så lang som den korteste.

b) Av Pytagoras' setningpå $\triangle ADC$ har vi at

$$CD^{2} = AC^{2} - AD^{2}$$
$$= s^{2} + \left(\frac{1}{2}\right)^{2}$$
$$= \frac{3}{4}s^{2}$$

Altså er

$$CD = \sqrt{\frac{3}{4}s^2} = \frac{\sqrt{3}}{2}s$$

Gruble 38

 $\triangle AGB \sim \triangle DHF$ fordi de har parvis parallelle sider. Følgelig er

$$\frac{DE}{AB} = \frac{h_2}{h_1}$$

$$DE = a \cdot AB$$

Nå har vi at

$$2A_{\triangle ABC} = AB \cdot h_1$$

$$2A_{\triangle DEF} = DE \cdot h_2 = a \cdot AB \cdot ah_1 = a^2 AB \cdot h_1$$

Dermed er

$$\frac{A_{\triangle DEF}}{A_{\triangle ABC}} = a^2$$

Gruble 39

 $\frac{h_1}{a_1} = \frac{h_2}{a_2}$ kan vi omskrive til

$$\frac{h_1}{h_2} = \frac{a_1}{a_2}$$

 $\triangle AGB \sim \triangle DHF$ fordi de har parvis parallelle sider. Følgelig er

$$\frac{BG}{HF} = \frac{h_1}{h_2} = \frac{AC}{DF}$$

Da $\triangle ABC \sim \triangle DEF$, har vi at

$$\frac{h_1}{h_2} = \frac{AC}{DF} = \frac{BC}{EF} = \frac{AB}{DE}$$

a) Av Pytagoras' setning er

$$s = \sqrt{h^2 + r^2}$$

b) Arealet A_c til sirkelen er $A_c=\pi r^2$. Buelengden til sektoren må være $2\pi r$, og dermed har vi av regel ?? at arealet A_s til sektoren er

$$A_s = \frac{1}{2}s \cdot 2\pi r = \pi r s$$

Altså har vi at

$$A_O = A_c + A_s = \pi r^2 + \pi r s = \pi r (r + s)$$

Gruble 41 Den største sidelengden multiplisert med 3 må utgjøre mer enn omkretsen til trekanten. Da $3 \cdot 8 = 24$, er dermed siden med lengde 8 en katet. Vi setter den andre kateten lik a og hypotenusen lik c. Da har vi at

$$a + 8 + \sqrt{a^2 + 8^2} = 40$$

$$\sqrt{a^2 + 64} = 32 - a$$

$$a^2 + 64 = (32 - a)^2$$

$$a^2 + 2 \cdot 32 = 32^2 - 2 \cdot 32a + a^2$$

$$32 - 2 = 2a$$

$$15 = a$$

Dermed er $c=\sqrt{15^2+64}=\sqrt{189}=17.$ Sidelengdene er 8, 15, og 17.

Gruble 35 Alternativ 1

Av Pytagoras' setning på $\triangle ACB$ har vi at

$$BC = \sqrt{6^2 + 2^2} = \sqrt{40} = 2\sqrt{10}$$

 $\triangle ACB \sim \triangle DCE$ fordi begge er rettvinklede og $\angle BCA = \angle ECD$ (de er toppvinkler). Dermed har vi at

$$\frac{CE}{DE} = \frac{BC}{AB}$$

$$\frac{CE}{1} = \frac{2\sqrt{10}}{2}$$

$$CE = \sqrt{10}$$

Altså er

$$BE = BC + CE = 2\sqrt{10} + \sqrt{10} = 3\sqrt{10}$$

Alternativ 2

 $\triangle ACB \sim \triangle DCE$ fordi begge er rettvinklede og $\angle BCA = \angle ECD$ (de er toppvinkler). Dermed har vi at

$$\frac{CD}{DE} = \frac{AC}{AB}$$

$$\frac{CD}{1} = \frac{6}{2}$$

$$CD = 3$$

Av Pytagoras' setning på $\triangle FBE$ har vi at

$$BE = \sqrt{BF^2 + EF^2} = \sqrt{(6+3)^2 + (2+1)^2} = \sqrt{90} = 3\sqrt{10}$$

 $\triangle AOC$ og $\triangle BOC$ er likebeint (OA = OC = OB). Dette betyr at

$$\angle COA = 180^{\circ} - 2u$$
 , $\angle BOC = 180^{\circ} - 2v$

Dermed har vi at

$$\angle COA + \angle BOC = 180^{\circ} \tag{1}$$

$$180^{\circ} - 2u + 180^{\circ} - 2v = 180^{\circ} \tag{2}$$

$$2(u+v) = 180^{\circ} \tag{3}$$

$$u + v = 90^{\circ} \tag{4}$$

Altså er $\angle ACB = u + v = 90^{\circ}$.

Gruble 48

Vi lar D være punktet der halveringslinja til $\angle ACB$ skjærer AB. $\triangle DAC \cong \triangle DBC$ fordi de har CD felles og AC = BC (trekantene oppfyller altså vilkår iii for formlikhet, og må da være kongruente). Følgelig er $\angle BDA = \angle ADC$, og da er $2\angle DBA = 180^\circ$. Altså er $\angle DBA = 90^\circ$, og da AD = BD, ligger ADC på midtnormalen til AB.

a) $\triangle CDA \sim \triangle BCA$ fordi begge er rettvinklede og de har $\angle BAC$ felles. Dermed er

$$AD = \frac{AC}{AB}AC = \frac{b^2}{c}$$

b) $\triangle BDA \sim \triangle BCA$ fordi begge er rettvinklede og de har $\angle CBA$ felles. Dermed er

$$DB = \frac{BC}{AB}BC = \frac{a^2}{c}$$

c) Vi har at

$$c = AD + DB$$
$$c = \frac{b^2}{c} + \frac{a^2}{c}$$
$$c^2 = b^2 + a^2$$

Gruble??

En regulær sekskant kan deles in i seks kongruente, likesidete trekanter. Dette betyr at $\angle C = 120^{\circ}$. Da $\triangle ABC$ er likebeint, er derfor

$$2\angle BAC + 120^{\circ} = 180^{\circ}$$
$$\angle BAC = 30$$

Gruble??

 $\triangle ABD$ er likesidet fordi AD=AB=BD, og har dermed areal lik $\frac{1}{2}\cdot\frac{\sqrt{3}}{2}AB^2=\sqrt{3}$. Da $\angle B=60^\circ$, utgjør den grønne sektoren $\frac{1}{6}$ av sirklenes areal, følgelig er arealet til den grønne sektoren $\frac{1}{6}\cdot\pi\cdot2^2=\frac{2\pi}{3}$. Vi har at

areal til grønt og blått område = $2 \cdot$ areal til grønt område – $A_{\triangle ABD}$

$$=\frac{4\pi}{3}-\sqrt{3}$$

Videre har vi at

areal til rødt område = areal til sirkel – $4 \cdot$ areal til grønt og blått område

$$=4\pi-4\left(\frac{4\pi}{3}-\sqrt{3}\right)$$

$$=4\sqrt{3}-\frac{4}{3}\pi$$

Gruble??

 $\triangle EFC \sim \triangle DFB$ fordi begge er rettvinklede, og $\angle CFE = \angle BFD$ (de er toppvinkler). Dermed har vi at

$$\frac{EF}{CE} = \frac{FD}{BD} \tag{5}$$

Videre er

$$EF + FD = AD - AE \tag{6}$$

Ved å løse likningssettet vi får av (5) og (6), med hensyn på EF og ED, får vi at

$$EF = \frac{AD - AE}{CE + BD}CE \qquad , \qquad FD = \frac{AD - AE}{CE + BD}BD$$

Det doble arealet til $\triangle ABC$ er gitt som

$$(AE + EF)CE + (AD - FD)BD$$

$$= \left(AE + \frac{AD - AE}{CE + BD}CE\right)CE + \left(AD - \frac{AD - AE}{CE + BD}BC\right)BD$$

$$= \frac{1}{CE + BD}\left[(AE \cdot BD + AD \cdot CE)CE + (AD \cdot CE + AE \cdot BD)BD\right]$$

$$= AD \cdot CE + AE \cdot BD$$

Av å legge merke til trekanter med grunnlinje og høgde av lik lengde, finner vi at

$$A_{\triangle AFE} = A_{\triangle FBE}$$
 $A_{\triangle AIE} = A_{\triangle EDI}$ $A_{\triangle BCE} = A_{\triangle GCE}$ $A_{\triangle HDE} = A_{\triangle HCE}$

Følgelig er

$$(A_{\triangle AFE} + A_{\triangle AIE}) + (A_{\triangle BCE} + A_{\triangle HDE}) = (A_{\triangle FBE} + A_{\triangle EDI}) + (A_{\triangle GCE} + A_{\triangle HCE})$$
$$A_{\Box AFEI} + A_{\Box GCHE} = A_{\Box FBGE} + A_{\Box DIEH}$$

Altså er arealet til det blåfargede området er det samme som arealet til det grønnfargede området.

Gruble 51

Vi lar r være radien til sirkelen. Vi har at AS = ES = r, AF = 2, og at FS = EF - SE = 4 - r. Av Pytagoras' setning med hensyn på $\triangle AFS$ er

$$AS^{2} = AF^{2} + SF^{2}$$

$$r^{2} = 2^{2} + (4 - r)^{2}$$

$$r^{2} = 4 + 16 - 8r + r^{2}$$

$$8r = 20$$

$$r = \frac{5}{2}$$

Gruble??

a) Alternativ 1

Med hensyn på vinkelsummen i $\triangle ABC$ har vi at $\angle ACB = 90 - 15^\circ = 75^\circ$. Vi lar D være punktet på AB slik at $\angle ACD = 15^\circ$. Da er $\angle CDA = 75^\circ$ og $\angle DCE = 60^\circ$. Videre lar vi E være punktet på BC slik at CD = CE, da er $\triangle CDE$ likesidet. Vi setter s = CD. Med hensyn på vinkelsummen i $\triangle CBD$ er $\angle BDC = 180^\circ - 15^\circ - 60^\circ = 105^\circ$, og da er $\angle FDE = 45^\circ$. Altså er $\triangle DFE$ rettvinklet og likebeint, som betyr at $DF = \frac{s}{\sqrt{2}}$. Altså er

$$CF = CG + GF = \frac{\sqrt{3}}{2}s + \frac{s}{2}$$

Vi uttrykker det doble arealet til $\triangle DFC$ på to måter:

$$DF \cdot CA = GD \cdot CF$$

$$\frac{s}{\sqrt{2}}b = \frac{s}{2}\left(\frac{\sqrt{3}}{2}s + \frac{s}{2}\right)$$

$$4b = s(\sqrt{2} + \sqrt{6})$$

$$s = \frac{4b}{\sqrt{2} + \sqrt{6}}$$

Da $\triangle ABC \sim \triangle BFE$, er

$$\frac{BC}{AC} = \frac{BE}{EF}$$

$$\frac{a}{b} = \frac{a-s}{\frac{s}{\sqrt{2}}}$$

$$sa - a\sqrt{2} = -bs\sqrt{2}$$

$$\frac{a}{b} = s\frac{\sqrt{2}}{\sqrt{2}b-s}$$

Altså er

$$\frac{a}{b} = \frac{4b}{\sqrt{2} + \sqrt{6}} \cdot \frac{\sqrt{2}}{\sqrt{2}b - \frac{4b}{\sqrt{2} + \sqrt{6}}} = \sqrt{2} + \sqrt{6}$$

Alternativ 2

Med hensyn på vinkelsummen i $\triangle ABC$ har vi at $\angle ACB = 90-15^\circ = 75^\circ$. Vi lar D være punktet på AB slik at $\angle ACD = 15^\circ$. Da er $\angle CDA = 75^\circ$ og $\angle DCE = 60^\circ$, og dermed er $\triangle CDE$ en 30° , 60° , 90° trekant. Vi setter s = CE og c = AB. Da er $DE = \frac{\sqrt{3}}{2}s$ og $CE = \frac{s}{2}$. $\triangle ABC \sim \triangle ACD \sim \triangle EBD$ fordi alle er rettvinklede og har en vinkel lik 15° . Dermed er

$$CD \cdot AB = BC \cdot AC$$
$$cs = ab$$

Videre har vi at

$$\frac{AB}{AC} = \frac{EB}{DE}$$

$$\frac{c}{b} = \frac{a - \frac{s}{2}}{\frac{\sqrt{3}}{2}s}$$

$$c = \frac{2ab - s}{\sqrt{3}s}$$

$$\sqrt{3}c = 2c - b$$

Altså er

$$c = \frac{b}{2 - \sqrt{3}} = b(2 + \sqrt{3})$$

Av Pytagoras' setning med hensyn på $\triangle ABC$ er

$$a^{2} = b^{2} + c^{2}$$

$$a^{2} = b^{2}(2 + \sqrt{3})^{2} + b^{2}$$

$$\frac{a^{2}}{b^{2}} = 8 + 4\sqrt{3}$$

Da
$$(\sqrt{2} + \sqrt{6})^2 = 8 + 4\sqrt{3}$$
, er

$$\frac{a}{b} = \sqrt{2} + \sqrt{6}$$

Alternativ 3

Med hensyn på vinkelsummen i $\triangle ABC$ har vi at $\angle ACB = 90 - 15^{\circ} = 75^{\circ}$. Vi lar D være punktet på AB slik at $\angle ACD = 15^{\circ}$. Da er $\angle CDA = 75^{\circ}$ og $\angle DCE = 60^{\circ}$. Videre lar vi E være punktet på BC slik at CD = CE, da er $\triangle CDE$ likesidet. Vi setter s = CD, og c = AB. $\triangle ABC \sim \triangle ACD$ fordi begge er rettvinklede, og $\angle ACD = \angle ABC$. Dermed er

$$AD = AC\frac{AC}{AB} = \frac{b^2}{c}$$
$$s = BC\frac{AC}{AB} = \frac{ab}{c}$$

Med hensyn på vinkelsummen i $\triangle CBD$ er $\angle BDC = 180^{\circ} - 15^{\circ} - 60^{\circ} = 105^{\circ}$, og da er $\angle FDE = 45^{\circ}$. Altså er $\triangle DFE$ rettvinklet og likebeint, som betyr at $DF = FE = \frac{s}{\sqrt{2}}$. Da $\triangle ABC \sim FBE$, er $\triangle ACD \sim \triangle FBE$, og dermed er

$$EF \cdot CD = AD \cdot EB$$

$$\frac{1}{\sqrt{2}} \left(\frac{ab}{c}\right)^2 = \frac{b^2}{c} \left(a - \frac{ab}{c}\right)$$

$$a = c\sqrt{2} - b\sqrt{2}$$

$$(a, b \neq 0)$$

Av Pytagoras' setning med hensyn på $\triangle ABC$ har vi at $c^2=a^2-b^2,$ og følgelig er

$$a = \sqrt{2}\sqrt{a^2 - b^2} - b\sqrt{2}$$

$$a + b\sqrt{2} = \sqrt{2}\sqrt{a^2 - b^2}$$

$$a^2 + 2ab\sqrt{2} + 2b^2 = 2(a^2 - b^2)$$

$$-a^2 + 2ab\sqrt{2} + 4b^2 = 0$$

Av abc-formelen har vi at

$$a = \frac{-2b\sqrt{2} \pm \sqrt{8b^2 + 16b^2}}{-2}$$
$$= (\sqrt{2} \mp \sqrt{6}) b$$

Vi forkaster den negative løsningen for a, og får at

$$\frac{a}{b} = \sqrt{2} + \sqrt{6}$$

b)

 $A_{\triangle DBC} = A_{\triangle ADC}$ fordi med henholdsvis DB og AD som grunnlinje har de lik høgde, og DB = AD. Altså er $AF \cdot DC = EB \cdot DC$, og da er AF = EB. Videre er $\triangle DAF \cong \triangle DBE$ fordi begge er rettvinklede $\angle ADF = \angle BDE$ (de er toppvinkler), og AD = DB. Vi setter x = DE, a = EB og b = AC. Da $\triangle BCE$ er en 30° , 60° , 90° trekant, er $EC = \sqrt{3}a$ og BC = 2a. Da $\triangle BGC$ er en 45° , 45° , 90° trekant, er $GB = \frac{2}{\sqrt{3}}a$. Da $A_{\triangle ABC} = 2A_{\triangle DBC}$, har vi at

$$b \cdot \frac{2}{\sqrt{2}}a = 2(\sqrt{3}a + x) \cdot a$$
$$b = \sqrt{2}(\sqrt{3}a + x)$$

Av løsningen i oppgave a) har vi at $AC = (\sqrt{2} + \sqrt{6})AF$, og dermed er $b = a\sqrt{2}(\sqrt{3} + 1)$. Altså er x = a, som betyr at $\triangle AFD$ er en 45° , 45° , 90° trekant. Ved å betrakte vinkelsummen i $\triangle CAF$, finner vi da at

$$\angle DAC = 180^{\circ} - 15^{\circ} - 90^{\circ} - 45^{\circ}$$

= 30°

Alternativ metode for å vise at x = a

Av Pytagoras' setning på $\triangle ACF$ har vi at

$$AC^{2} = FC^{2} + AF^{2}$$
$$2(\sqrt{3}a + x)^{2} = (\sqrt{3}a + 2x)^{2} + a^{2}$$
$$x^{2} = a^{2}$$

a) Alternativ 1

Vi lar $\triangle A'B'C'$ være en speilet utgave av $\triangle ABC$. Da $\angle C = \angle C'$, $\frac{BC}{AB} = \frac{B'C'}{AB}$ og $\frac{AC}{B'C'} = \frac{BC}{A'C'}$, har vi av vilkår (iii) i regel 11.16 at $\triangle ABC \sim \triangle BA'C'$. Mer spesifikt betyr dette at AC er den samsvarende siden til B'C', som betyr at $\angle B = \angle A' = \angle A$.

Alternativ 2

Vi kan alltids konsturere en rettvinklet trekant $\triangle A'D'C'$ hvor 2AD' = AB og A'C' = AC. Ved å la B' være A' speilet om C'D', har vi at $\angle A' = \angle B$ og B'C' = A'C. Dermed har $\triangle ABC$ og $\triangle A'B'C'$ parvis like lange sider, og er derfor kongruente. Da AB er den samsvarende siden til A'B', er BC den samsvarende siden enten til B'C' eller til A'C'. Uansett hvilke to av disse det er, har vi at $\angle A = \angle A' = \angle B'$, og tilsvarende er $\angle B = \angle A' = \angle B'$.

b) Vi plasserer D på forlengelsen av CB slik at CD=CA. Av oppgave a) er da $\angle DAC=\angle D$, som betyr at

$$\angle BAC < \angle D$$
 , $\angle D - \angle BAC > 0$ (7)

Videre er $\angle C = 180^{\circ} - 2 \angle D$, og da er

$$B = 180^{\circ} - \angle C - \angle BAC = 2\angle D - \angle BAC \tag{8}$$

Av (7) og (8) har vi at

$$\angle B > \angle D$$

Dermed er

c) Hvis CD ligger utenfor $\triangle ABC$, har vi av Pytagoras' setning at

$$(AB + DB)^2 = AC^2 - CD^2$$

Dette betyr at

$$(AB + DB)^{2} < AC^{2}$$
$$AB^{2} < AC^{2}$$
$$AB < AC$$

Da AB er den lengste siden i $\triangle ABC$, er dette en selvmotsigelse, og dermed må CD ligge inni trekanten.

d) At a+c>b og at b+c>a følger direkte av at c er den største lengden. Av oppgave c) vet vi at CD ligger inni $\triangle ABC$, som vist i figuren under.

Av Pytagoras' setning har vi at

$$b^2 = AD^2 + h^2$$
 , $a^2 = BD^2 + h^2$

Som betyr at

$$b > AD$$
 , $a > BD$

Da c = AD + DB, er dermed

$$c < b + a$$