Operating Systems

Chapter 1: Introduction

Dr. Ahmed Hagag

Scientific Computing Department,
Faculty of Computers and Artificial Intelligence
Benha University

2019

Lectures Reference

LAB OS

Version 9.10

LAB Reference

Course Objectives

- To describe the basic organization of computer systems.
- To describe the services an operating system provides to users, processes, and other systems.
- To discuss the various ways of structuring an operating system.
- To introduce the notion of a process and a thread.
- To introduce CPU scheduling, which is the basis for multiprogrammed operating systems.
- To develop a description of deadlocks.
- To provide a detailed description of various ways of organizing memory hardware.

Course Syllabus

- Introduction.
- Operating-System Structures.
- Processes.
- Threads.
- CPU Scheduling.
- Process Synchronization.
- Deadlocks.
- Main Memory Management.

Dr. AHMED HAGAG

Chapter 1: Introduction

- Computer System Structure.
- What is an Operating System?
- What Operating Systems Do?
- Computer System Organization.
- Storage Structure.
- Multiprocessing Architecture.
- Operating-System Operations.
- Protection and Security.
- Computing Environments.

Computer System Structure (1/2)

Computer system can be divided into four components:

- **Hardware** provides basic computing resources
 - CPU, memory, I/O devices

Operating system

Controls and coordinates use of hardware among various applications and users

Application programs

define the ways in which the system resources are used to solve the computing problems of the users. Ex. Word processors, compilers, web browsers, database systems, video games.

Users

People, machines, other computers

Computer System Structure (2/2)

What is an Operating System? (1/2)

• An **operating system** is a program that manages a computer's hardware. It also provides a basis for application programs and acts as an intermediary between the computer user and the computer hardware.

What is an Operating System? (1/2)

• An **operating system** is a program that manages a computer's hardware. It also provides a basis for application programs and acts as an intermediary between the computer user and the computer hardware.

What is an Operating System? (2/2)

12

Operating system goals:

- Execute user programs and make solving user problems easier.
- Make the computer system convenient to use.
- Use the computer hardware in an efficient manner.

What Operating Systems Do? (1/4)

User View

- Users want convenience, ease of use and good performance.
 - > Don't care about resource utilization.
- But shared computer such as mainframe or minicomputer must keep all users happy.

©Ahmed Hagag

What Operating Systems Do? (2/4)

System View

- From the computer's point of view, the operating system is the program most intimately involved with the hardware. In this context, we can view an operating system as a **resource allocator**.
- A computer system has many resources that may be required to solve a problem: CPU time, memory space, file-storage space, I/O devices, and so on. The operating system acts as the **manager** of these **resources**.

What Operating Systems Do? (3/4)

- OS is a resource allocator
 - Manages all resources.
 - Decides between conflicting requests for efficient and fair resource use.
- OS is a control program
 - ➤ Controls execution of programs to prevent errors and improper use of the computer.

What Operating Systems Do? (4/4)

- A more common definition, and the one that we usually follow, is that the operating system is the one program running at all times on the computer—usually called the kernel.
- (Along with the kernel, there are two other types of programs: **system programs**, which are associated with the operating system but are not necessarily part of the kernel, and **application programs**, which include all programs not associated with the operation of the system.)

Computer System Organization (1/3)

• A modern general-purpose computer system consists of one or more CPUs and a number of device controllers connected through a common bus that provides access to shared memory.

Computer System Organization (2/3)

Computer Startup (1/2)

- bootstrap program is loaded at power-up or reboot
 - > Typically stored in ROM or electrically erasable programmable read-only memory (EPROM), generally known as **firmware**.
 - ➤ Initializes all aspects of system.
 - ➤ Loads operating system kernel and starts execution.

Computer System Organization (2/3)

Computer Startup (2/2)

Computer System Organization (2/3)

Computer Startup (2/2)

Computer System Organization (3/3)

Interrupts (1/2)

- The occurrence of an event is usually signaled by an **interrupt** from either the hardware or the software.
 - ➤ Hardware may trigger an interrupt at any time by sending a signal to the CPU, usually by way of the system bus.
 - Software may trigger an interrupt by executing a special operation called a system call (also called a monitor call).
- Interrupts are an important part of a computer architecture. Each computer design has its own interrupt mechanism, but several functions are common.

Computer System Organization (3/3)

Interrupts (2/2)

- Interrupt transfers control to the interrupt service routine generally, through the **interrupt vector**, which contains the addresses of all the service routines.
- Interrupt architecture must save the address of the interrupted instruction.
- A trap or exception is a software-generated interrupt caused either by an error or a user request.
- An operating system is interrupt driven.

Storage Structure (1/4)

Review

The basic unit of computer storage is the **bit**. A bit can contain one of two values, 0 and 1. All other storage in a computer is based on collections of bits. Given enough bits, it is amazing how many things a computer can represent: numbers, letters, images, movies, sounds, documents, and programs, to name a few. A **byte** is 8 bits, and on most computers it is the smallest convenient chunk of storage. For example, most computers don't have an instruction to move a bit but do have one to move a byte. A less common term is **word**, which is a given computer architecture's native unit of data. A word is made up of one or more bytes. For example, a computer that has 64-bit registers and 64-bit memory addressing typically has 64-bit (8-byte) words. A computer executes many operations in its native word size rather than a byte at a time.

Computer storage, along with most computer throughput, is generally measured and manipulated in bytes and collections of bytes.

A **kilobyte**, or **KB**, is 1,024 bytes

a **megabyte**, or **MB**, is 1,024² bytes

a **gigabyte**, or **GB**, is 1,024³ bytes

a **terabyte**, or **TB**, is 1,024⁴ bytes

a **petabyte**, or **PB**, is 1,024⁵ bytes

Computer manufacturers often round off these numbers and say that a megabyte is 1 million bytes and a gigabyte is 1 billion bytes. Networking measurements are an exception to this general rule; they are given in bits (because networks move data a bit at a time).

Storage Structure (2/4)

- Main memory only large storage media that the CPU can access directly.
 - > Random access
 - > Typically volatile
- Secondary storage extension of main memory that provides large nonvolatile storage capacity.

Storage Structure (3/4)

- Hard disks rigid metal or glass platters covered with magnetic recording material.
 - ➤ Disk surface is logically divided into tracks, which are subdivided into sectors.
 - The disk controller determines the logical interaction between the device and the computer.
- Solid-state disks faster than hard disks, nonvolatile.
 - Various technologies.
 - Becoming more popular.

Storage Structure (4/4)

- Storage systems organized in hierarchy
 - > Speed
 - > Cost
 - ➤ Volatility

How a Modern Computer Works

Multiprocessing Architecture (1/2)

- Multiprocessors systems growing in use and importance
 - > Also known as **parallel systems**.
 - > Advantages include:
 - 1. Increased throughput: by increasing the number of processors, we expect to get more work done in less time.
 - 2. Economy of scale: Multiprocessor systems can cost less than equivalent multiple single-processor systems, because they can share peripherals, mass storage, and power supplies.
 - 3. Increased reliability: graceful degradation or fault tolerance.

Multiprocessing Architecture (2/2)

- Multiprocessors systems growing in use and importance
 - Two types:
 - 1. Asymmetric Multiprocessing each processor is assigned a specie task.
 - 2. Symmetric Multiprocessing each processor performs all tasks.

Multiprocessing Architecture (2/2)

- Multiprocessors systems growing in use and importance
 - Two types:
 - 1. Asymmetric Multiprocessing each processor is assigned a specie task.
 - 2. Symmetric Multiprocessing each processor performs all tasks.

A Dual-Core Design

Multi-chip and multicore

Operating-System Structure (1/3)

- Multiprogramming (Batch system) needed for efficiency.
 - ➤ Single user cannot keep CPU and I/O devices busy at all times
 - ➤ Multiprogramming organizes jobs (code and data) so CPU always has one to execute
 - A subset of total jobs in system is kept in memory
 - > One job selected and run via job scheduling
 - ➤ When it has to wait (for I/O for example), OS switches to another job

Operating-System Structure (2/3)

operating system job 1 job 2 job 3 job 4 Max

Operating-System Structure (3/3)

- Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
 - ➤ **Response time** should be < 1 second
 - \triangleright Each user has at least one program executing in memory \rightarrow **process**
 - \triangleright If several jobs ready to run at the same time \rightarrow **CPU scheduling**
 - ➤ If processes don't fit in memory, swapping moves them in and out to run
 - ➤ Virtual memory allows execution of processes not completely in memory

Operating-System Operations (1/4)

- Interrupt driven (hardware and software)
 - Hardware interrupt by one of the devices
 - Software interrupt (exception or trap):
 - Software error (e.g., division by zero)
 - > Request for operating system service
 - ➤ Other process problems include infinite loop, processes modifying each other or the operating system

Operating-System Operations (2/4)

- Dual-mode operation allows OS to protect itself and other system components
 - User mode and kernel mode (also called supervisor mode, system mode, or privileged mode).

Operating-System Operations (3/4)

- A **bit**, called the **mode bit**, is added to the hardware of the computer to indicate the current mode: kernel (0) or user (1).
 - ➤ Provides ability to distinguish when system is running user code or kernel code.
 - ➤ Some instructions designated as privileged, only executable in kernel mode.
 - System call changes mode to kernel, return from call resets it to user.

Operating-System Operations (4/4)

Transition from User to Kernel Mode

Levels of Storage

Level	1	2	3	4	5
Name	registers	cache	main memory	solid state disk	magnetic disk
Typical size	< 1 KB	< 16MB	< 64GB	< 1 TB	< 10 TB
Implementation technology	custom memory with multiple ports CMOS	on-chip or off-chip CMOS SRAM	CMOS SRAM	flash memory	magnetic disk
Access time (ns)	0.25 - 0.5	0.5 - 25	80 - 250	25,000 - 50,000	5,000,000
Bandwidth (MB/sec)	20,000 - 100,000	5,000 - 10,000	1,000 - 5,000	500	20 - 150
Managed by	compiler	hardware	operating system	operating system	operating system
Backed by	cache	main memory	disk	disk	disk or tape

Protection and Security

- **Protection** any mechanism for controlling access of processes or users to resources defined by the OS.
- Security defense of the system against internal and external attacks.
 - ➤ Huge range, including denial-of-service, worms, viruses, etc.

©Ahmed Hagag Operating Systems 40

Computing Environments (1/9)

- The current trend is toward providing more ways to access these computing environments.
- Companies establish **portals**, which provide Web accessibility to their internal servers.
- Network computers (or thin clients) which are essentially terminals that understand web-based computing are used in place of traditional workstations where more security or easier maintenance is desired.
- Mobile computers interconnect via wireless networks.

©Ahmed Hagag Operating Systems 4

Computing Environments (2/9)

- **Distributed computing**: Collection of separate, possibly heterogeneous, systems networked together
 - Network is a communications path, TCP/IP most common
 - Local Area Network (LAN)
 - Wide Area Network (WAN)
 - Metropolitan Area Network (MAN)
 - Personal Area Network (PAN)
- Network Operating System provides features between systems across network.

Computing Environments (3/9)

Client-Server Computing

©Ahmed Hagag Operating Systems 43

Computing Environments (4/9)

Peer-to-Peer

Computing Environments (5/9)

- Virtualization is a technology that allows operating systems to run as applications within other operating systems.
- OS natively compiled for CPU, running guest OSes also natively compiled.
 - Consider VMware running WinXP guests, each running applications, all on native WinXP host OS.
 - > VMM (virtual machine Manager) provides virtualization services.

Computing Environments (6/9)

Computing Environments (7/9)

• VMware Architecture

© Ahmed Hagag Operating Systems 47

Computing Environments (8/9)

- Cloud Computing Delivers computing, storage, even apps as a service across a network.
 - ➤ Public cloud available via Internet to anyone willing to pay.
 - ➤ Private cloud run by a company for the company's own use.
 - ➤ Hybrid cloud includes both public and private cloud components.

Computing Environments (9/9)

- Software as a Service (SaaS)
 - > One or more applications available via the Internet (i.e., word processor).
- Platform as a Service (PaaS)
 - Software stack ready for application use via the Internet (i.e., a database server).
- Infrastructure as a Service (IaaS)
 - Servers or storage available over Internet (i.e., storage available for backup use).

Thank You

Dr. Ahmed Hagag ahagag@fci.bu.edu.eg

https://www.youtube.com/channel/UCzYgAyyZTLfnLFjQexOKxbQ

https://www.facebook.com/ahmed.hagag.71/