

1. $-2x^4$

2. $4x^4$

3. $2x^4$

4. $-x^4$

5. $-4x^4$

XVI. on donne $y = e^x \left(\ln x + \frac{1}{x} \right)$, $\frac{dy}{dx}$ vaut :

1. $e^x \left(\ln x + \frac{1}{x} \right)$

2. $x(2\ln x + 2)$

3. $2(e^{2x} - e^{-2x})$

4. $\frac{e^{\frac{x}{y}}}{8}$

5. $\frac{y \ln x}{x \ln y}$

XVII. $\int_3^6 \frac{dx}{18-6x+x^2} =$

2. $\frac{\pi}{3}$

2. $\frac{\pi}{12}$

3. $\frac{\pi}{6}$

4. $\frac{\pi}{4}$

5. $\frac{\pi}{15}$

3.

XVIII. $\int_0^{\ln x} (2x+3)e^{-2x} dx =$

2. $\frac{3-e^x}{3}$

2. $\frac{1-\ln 3}{2}$

3. $\frac{5+e^x}{3}$

4. $\frac{6-\ln x}{4}$

5. $\frac{7+\ln 3}{2}$

XIX. Calculer l'aire de la surface comprise entre les paraboles $y^2 = 4x$ et $x^2 = 4y$ vaut :

1. $\frac{22}{3}$

2. $\frac{32}{3}$

3. $(4\sqrt{2} - 1)$

4. $\frac{80}{3}$

5. $\frac{16}{3}$

XX. $\lim_{x \rightarrow +\infty} \left[\frac{1 - \frac{1}{2x}}{1 + \frac{1}{2x}} \right]^{2x}$ vaut : 1. e 2. $\frac{1}{e}$ 3. e^2 4. $\frac{1}{e^2}$ 5. -e

XXI. l'ensemble de solution de l'inéquation $\log_{\frac{2}{3}}(x+9) < \log_{\frac{2}{3}}(-2x+6)$

1. $1 < x < 5$

2. $0 < x < 5$

3. $0 < x < 2$

4. $-1 < x < 3$

5. $x > -3$

XXII. Les quatre premiers termes non nul du développement en série de Mac Laurin de la fonction f

définie pour $f(x) = \frac{e^x}{\cos 2x}$ peuvent s'écrire sous la forme $k(x) = a + bx + cx^2 + dx^3$ après avoir identifié les valeurs de a, b, c et d on a : a. b. c. d =

1. $\frac{65}{12}$

2. $\frac{2}{3}$

3. $-\frac{1}{2}$

4. $\frac{2}{3}$

5. $\frac{43}{12}$

XXIII. On donne $y = e^{-\frac{x}{y}}$, $\frac{dy}{dx}$ vaut,

www.ecoles-rdc.net

1. $\frac{y}{x-y}$

2. $\frac{y}{x-y^2}$

3. $\frac{e^{\frac{-x}{y}}}{x-y^2}$

4. $\frac{e^{\frac{-x}{y}}}{y}$

5. $\frac{e^{\frac{-x}{y}}}{1-e^{\frac{-x}{y}}}$

XXIV. Soit l'inégalité $F(a) = \int_0^a \frac{x-1}{x^2 - 2x + 3}$ définie pour tout réel a. La solution de l'équation $F(a) = \ln \sqrt{6}$ est :