24. Using Riemann sums, obtain a sequence of estimates for the area under each of the following curves. Continue until the first four decimal places stabilize in your estimates.

- a) $y = x^2$ over [0, 1] b) $y = x^2$ over [0, 3] c) $y = x \sin x$ over $[0, \pi]$
- 25. What is the area under the curve $y = \exp(-x^2)$ over the interval [0, 1]? Give an estimate that is accurate to four decimal places. Sketch the curve and shade the area.
- 26. a) Estimate, to four decimal place accuracy, the length of the graph of the natural logarithm function $y = \ln x$ over the interval [1, e].
- b) Estimate, to four decimal place accuracy, the length of the graph of the exponential function $y = \exp(x)$ over the interval [0, 1].
- 27. a) What is the length of the hyperbola y = 1/x over the interval [1, 4]? Obtain an estimate that is accurate to four decimal places.
- b) What is the area under the hyperbola over the same interval? Obtain an estimate that is accurate to four decimal places.
- 28. The graph of $y = \sqrt{4 x^2}$ is a semicircle whose radius is 2. The circumference of the whole circle is 4π , so the length of the part of the circle in the first quadrant is exactly π .
- a) Using left endpoint Riemann sums, estimate the length of the graph $y = \sqrt{4 x^2}$ over the interval [0, 2] in the first quadrant. How many subintervals did you need in order to get an estimate that has the value 3.14159...?
- b) There is a technical problem that makes it impossible to use right endpoint Riemann sums. What is the problem?