FUSELAGE PARAMETERS INITIALIZATION

Hidden Area --> Import of Excel INPUT Fuselage Data

Hidden Area --> Preliminary Mapping of imported Data

Import and preliminary mapping of OTHER Excel Data

INPUT FUSELAGE PARAMETERS LIST

INPUT Parameters

$d_{BW} = 6.33 \ m$	$d_B = 6.33 \ m$

$$l_{B}\!=\!73.9\;\pmb{m} \\ S_{B_side}\!=\!460.32\;\pmb{m}^{2}$$

$$Z_1 = 6.33 \ m$$
 $Z_2 = 6.33 \ m$ $Z_{MAX} = 6.33 \ m$

$$N_{B_0}\!=\!15$$
 $N_{B_1}\!=\!10$ $N_{B_2}\!=\!10$ $N_{B_W}\!=\!5$

OTHER Parameters

$$M_1 = 0.65$$

$$b_W\!=\!60.92\; \emph{m}$$
 $i_W\!=\!0.0349$ $c_{W_r}\!=\!15.57\; \emph{m}$ $S_W\!=\!468.83\; \emph{m}^2$

$$MAC_W = 9.505 \; m$$
 $\alpha_{0L|W} = -0.023$ $C_{L\alpha|W} = 5.822$ $\lambda_W = 0.138$

$$AAC_W = 9.505 \; m$$
 $\alpha_{0L_W} = -0.023$ $C_{L\alpha_W} = 5.822$ $\lambda_W = 0.136$

$$AR_W\!=\!7.916$$

$$X_{MAC_LE_W} = 6.341 \; m$$
 $Y_{MAC_W} = 9.226 \; m$ $X_{ac_W} = 9.3 \; m$ $\Gamma_{W_eqv} = 0.122$

$$\Lambda_{W_c4_eqv} = 0.538$$
 $\xi_{ac_W} = 0.311$

$$b_{H}\!=\!21.96\;m \hspace{1.5cm} \varLambda_{H_\!LE}\!=\!39\;deg \hspace{1.5cm} \varGamma_{H}\!=\!8.5\;deg$$

$$c_{H_r}$$
= 7.2 m c_{H_t} = 2.4 m

$$\Delta X_W_{LE}Nose = 25.05 \ m$$

$$\Delta X_{HT_{LE}}Nose = 63.4 \ m$$

$$\Delta X_{LE}Nose = 61.96 m$$

$$\Delta Z_W_{LE}$$
Nose = $-0.75 \ m$

$$\Delta Z_HT_{LE}_Nose = 1.35 \ m$$

$$\Delta X'$$
_ HT_{MAC4} _ W_{MAC4} = 34.56 m

$$K_{AR_W} = 0.098$$

$$K_{\lambda W} = 1.369$$

$$K_{MAC4\ WH} = 0.914$$

$$\varepsilon_{\alpha_@M0_W}\!=\!0.332$$

$$\varepsilon_{\alpha_W} = 0.252$$

$$\varepsilon_{0_W}\!=\!0.015$$

FUSELAGE PARAMETERS CALCULATIONS

Fuselage parameters

$$FFR \coloneqq \frac{l_B}{d_B}$$

$$FFR = 11.675$$

Miscellaneous Fuselage parameters

$$\Delta X_W_{TE}_Nose \coloneqq \Delta X_W_{LE}_Nose + c_{W\ r}$$

$$\Delta X_W_{TE}_Nose = 40.62~\textit{m}$$

$$\Delta X_HT_{LE}_W_{TE} \coloneqq \Delta X_HT_{LE}_Nose - \Delta X_W_{TE}_Nose = 22.78~m$$

$$\Delta X_{\perp}HT_{LE}W_{TE} = 22.78 \ m$$

Some Horizontal Tail Calculations Needed at This Step

 $\lambda_H = 0.333$

$$S_H = 105.408 \ m^2$$

$$AR_H\!=\!4.575$$

$$X_{MAC_LE_H} = 3.705 \ m$$

 $MAC_H = 5.2 \ m$

$$\xi_{ac_H}\!=\!0.277$$

$$X_{ac\ H} = 5.147\ m$$

$$\Delta X_HT_{ac}_W_{LE} \coloneqq \Delta X_HT_{LE}_W_{TE} + \left(X_{MAC_LE_H} + MAC_H \cdot \xi_{ac_H}\right) = 27.927 \ m$$

POINTS NEEDED TO PLOT THE FUSELAGE

Import from file

$$_{m}XY_{TOP} \coloneqq_{f}get_points("A", "B")$$

$$_{m}XY_{BOTTOM} \coloneqq_{\text{f}} \text{get_points} (\text{``D''}, \text{``E''})$$

$$_{m}XY_{TV} \coloneqq_{\text{f}}\text{get_points}(\text{"G"},\text{"H"})$$

FUSELAGE AERODYNAMICS

@Aerodynamic Database ---> (C_m0_b)_k2_minus_k1_vs_FFR

 $k_{B_Munch}\!=\!0.943$

@Aerodynamic Database ---> (C_m_alpha_b)_upwash_vs_x_i_over_root_chord

@Aerodynamic Database ---> (C_m_alpha_b)_upwash_(NTWLE)_vs_x_i_over_root_chord

 $_{\rm f} {
m y}_{
m TOP}(x)$

 $_{\rm f} {
m y}_{
m BOTTOM}(x)$

 $_{
m f}{
m y}_{
m TV}(x)$

 $_{\mathrm{f}}\mathbf{y}_{\mathrm{xi_cr_vs_}\varepsilon\mathrm{u}}(x)$

 $_{\rm f}y_{\rm xNTWLE_cr_vs_\epsilon u}(x)$

DOWNWASH

DATCOM Method

 $\Delta Z'' \coloneqq 0$

 $K'_{AR\ W} := K_{AR\ W}$

 $K'_{\lambda_W} := K_{\lambda_W}$

 $K'_{MAC4_WH} := \frac{1 - \frac{\Delta Z''}{2}}{\left(\frac{2 \cdot \Delta X'_HT_{MAC4_W}W_{MAC4}}{b_W}\right)^{\frac{1}{3}}} = 0.959$

 $\varepsilon_{\alpha_Multhopp} \coloneqq 4.44 \cdot \left(K'_{AR_W} \cdot K'_{\lambda_W} \cdot K'_{MAC4_WH} \cdot \sqrt{\cos\left(\varLambda_{W_c4_eqv} \right)} \right)^{1.19} = 0.351$

 $\varepsilon_{\alpha_@M0_B} := \varepsilon_{\alpha_Multhopp} = 0.351$

 ${}_{\mathbf{f}}\varepsilon_{\alpha_{\mathrm{Multhopp}}}\big(Mach\big) \coloneqq \sqrt{1 - Mach^2} \cdot \varepsilon_{\alpha_{\mathrm{Multhopp}}}$

 $\varepsilon_{\alpha_B} \coloneqq {}_{\mathrm{f}} \varepsilon_{\alpha_\mathrm{Multhopp}} \left(M_1 \right) = 0.267$

C_M_O FUSELAGE PARAMETERS CALCULATIONS

Fuselage Mesh

 $_{v}extremities_X_mesh$

 $_{v}extremities_Z_{TOP}_mesh$

 $_{v}extremities_Z_{BOTTOM}_mesh$

 $_vextremities_Y_{TV}_mesh$

 $_{v}midpoints_X_mesh$

 $_v midpoints_Z_mesh$

 $_{v}midpoints_Y_mesh$

 $_vW_f$

Pitch Coefficient at Wing Zero-Lift

$$C_{M0_B} \coloneqq \frac{\pi \cdot k_{B_Munch}}{2 \cdot S_W \cdot MAC_W} \cdot \sum_{i=0}^{N_{B_0}-2} \left({_vW_{f_i}}^2 \cdot \left(-i_W + \alpha_{0L_W} + {_vi_{cl_i}} \right) \right) \cdot dx = -0.052$$

• Fuselage Pitch Moment Coefficient @ $\alpha_{\rm B}=0$

C_M_Alpha FUSELAGE PARAMETERS CALCULATIONS

First Fuselage Segment - From Nose to Wing Leading Edge

 $_{v}extremities_X_mesh_{1}$

 $_{v}extremities_Z_{TOP}_mesh_{1}$

 $_vextremities_Z_{BOTTOM}_mesh_1$

 $_{v}extremities_Y_{TV}_mesh_{1}$

 $_{v}midpoints_X_mesh_{1}$

 $_{v}midpoints_Y_mesh_{1}$

 $_{v}midpoints_Z_mesh_{1}$

 $_vW_{f_1}$

 $\textbf{FuselageSectionsNose_to_W_LE} \coloneqq \textbf{Round}\left(\frac{N_{B_1}}{5},1\right) = 2$

Second Fuselage Segment - From Wing Leading Edge to Wing Trailing Edge $_vextremities_X_mesh_W$ $_vextremities_Z_{TOP}_mesh_W$ $_vextremities_Z_{BOTTOM}_mesh_W$ $_vextremities_Y_{TV}_mesh_W$ $_{v}midpoints_X_mesh_{W}$ $_{v}midpoints_Y_mesh_{W}$ $_{v}midpoints_Z_mesh_{W}$ $_vW_{f_W}$ Third Fuselage Segment - From Wing Trailing Edge To Tail $_vextremities_X_mesh_2$ $_vextremities_Z_{TOP}_mesh_2$ $_vextremities_Z_{BOTTOM}_mesh_2$ $_{v}extremities_Y_{TV_}mesh_{2}$ $_{v}midpoints_X_mesh_{2}$ $_{v}midpoints_Y_mesh_{2}$ $_{v}midpoints_Z_mesh_{2}$ $_vW_{f_2}$

$$C_{M\alpha_B} \coloneqq \frac{\pi}{2 \; S_W \cdot MAC_W} \cdot \left(\sum_{i=0}^{N_{B_1}-2} \left({_vW_{f_1}}_i^2 \cdot \left({_v\varepsilon u_{\alpha 1}}_i + 1 \right) \right) \cdot dx_1 + \sum_{i=0}^{N_{B_2}-2} \left({_vW_{f_2}}_i^2 \cdot \left(\frac{{_vmidpoints_X1_mesh_2}_i}{\Delta X_HT_{ac_W}}_{LE} \cdot \left(1 - \varepsilon_{\alpha_W} \right) \right) \right) \cdot dx_2 \right) = 0.774 \; \frac{1}{rad}$$

$$C_{M\alpha_BMulthopp} \coloneqq \frac{\pi}{2 \; S_W \cdot MAC_W} \cdot \left(\sum_{i=0}^{N_{B_1} - 2} \left({}_vW_{f_1_i}^2 \cdot \left({}_v\varepsilon u_{\alpha 1_i} + 1 \right) \right) \cdot dx_1 + \sum_{i=0}^{N_{B_2} - 2} \left({}_vW_{f_2_i}^2 \cdot \left(\frac{{}_vmidpoints_X1_mesh_{2_i}}{\Delta X_HT_{ac_}W_{LE}} \cdot \left(1 - \varepsilon_{\alpha_Multhopp} \right) \right) \right) \cdot dx_2 \right) = 0.759 \; \frac{1}{rad}$$

$$C_{M\alpha_B} = 0.774 \frac{1}{rad}$$

$$C_{M\alpha_B} = 0.014 \frac{1}{deg}$$

$$C_{M\alpha_BMulthopp} = 0.759 \frac{1}{rad}$$
 $C_{M\alpha_BMulthopp} = 0.013 \frac{1}{deg}$

$$C_{M\alpha_BMulthopp} = 0.013 \frac{1}{deg}$$

$$\Delta \xi_{ac_WB}\!\coloneqq\!-\frac{C_{M\alpha_B}}{C_{L\alpha\ W}}\!=\!-0.133$$

$$\Delta \xi_{ac\ WB} = -0.133$$

$$\xi_{ac_WB}\!:=\!\xi_{ac_W}\!+\!\Delta\xi_{ac_WB}\!=\!0.178$$

$$\xi_{ac_WB} = 0.178$$

$$\Delta \xi_{ac_WB_Multhopp} \coloneqq -\frac{C_{M\alpha_BMulthopp}}{C_{L\alpha~W}} \! = \! -0.13$$

$$\varDelta \xi_{ac_WB_Multhopp}\!=\!-0.13$$

$$\xi_{ac_WB_Multhopp} \coloneqq \xi_{ac_W} + \Delta \xi_{ac_WB_Multhopp} = 0.181$$

$$\xi_{ac_WB_Multhopp} = 0.181$$

Aerodynamic Center Configuration

$$X_{ac_WB} := X_{MAC_LE_W} + \xi_{ac_WB_Multhopp} \cdot MAC_W = 8.057 \ m$$

$$_{v}X_{ac_WB}\coloneqq\begin{bmatrix}X_{ac_WB} & X_{ac_WB}\end{bmatrix}^{\mathrm{T}}$$

$$_{v}Y_{ac_WB} \coloneqq \begin{bmatrix} 0 & Y_{MAC_W} \end{bmatrix}^{\mathrm{T}}$$

WING-BODY PLANFORM 12 30 33 -16--24-32--56 -64 -80-

CSV TABS WRITING

k2 minus k1 vs FFR

 $_{m}CSV_{K2_minus_K1_vs_FFR} \coloneqq \operatorname{augment} \left(_{v_tab}FFR_{K2_minus_K1}, _{m_tab}Data_{K2_minus_K1}\right)$

 $CSV_Output_{B_1} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_k2_minus_k1_vs_FFR.csv''}, \\ {}_{m}CSV_{K2_minus_K1_vs_FFR} \right) = \text{``.} \setminus \text{``.$

$${}_{m}\!CSV_{K2_minus_k1_vs_FFR_res}\!\coloneqq\!\operatorname{augment}\left(\left[FFR\ FFR\ 0\right]^{\mathsf{T}},\left[\begin{array}{ccc}0\ k_{B_Munch}\ k_{B_Munch}\end{array}\right]^{\mathsf{T}}\right)$$

 $CSV_Output_{B_2} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_k2_minus_k1_vs_FFR_res.csv''}, {}_{m}CSV_{K2_minus_K1_vs_FFR}\right) = \text{``.} \setminus \text{CSV_Output} \setminus \text{``.} \setminus \text{``.}$

Fuselage Points and Other Values

$$_{m}CSV_{XZ_TOP} \coloneqq \operatorname{augment}\left(_{m}XY_{TOP} \cdot \frac{1}{m},_{m}XY_{TOP} \cdot \frac{1}{ft}\right)$$

 $CSV_Output_{B_3} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XZ_TOP.csv''}, {}_{m}CSV_{XZ_TOP}\right)$

$$_{m}CSV_{XZ_BOTTOM} := \operatorname{augment} \left(_{m}XY_{BOTTOM} \cdot \frac{1}{m}, _{m}XY_{BOTTOM} \cdot \frac{1}{ft} \right)$$

 $CSV_Output_{B_4} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XZ_BOTTOM.csv''}, {}_{m}CSV_{XZ_BOTTOM}\right)$

$$_{m}CSV_{XY_TV} \coloneqq \operatorname{augment}\left(_{m}XY_{TV} \cdot \frac{1}{m}, _{m}XY_{TV} \cdot \frac{1}{ft}\right)$$

 $CSV_Output_{B_5} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XY_TOPVIEW.csv''}, {}_{m}CSV_{XY_TV}\right)$

$${}_{m}\!CSV_{mesh} \coloneqq \text{augment} \left({}_{v}\!extremities_X_mesh \cdot \frac{1}{m}, {}_{v}\!extremities_Z_{TOP_mesh} \cdot \frac{1}{m}, {}_{v}\!extremities_Z_{BOTTOM_mesh} \cdot \frac{1}{m}, {}_{v}\!extremities_X_mesh \cdot \frac{1}{ft}, {}_{v}\!extremities_Z_{TOP_mesh} \cdot \frac{1}{ft}, {}_{v}\!extremities_Z_{BOTTOM_mesh} \cdot \frac{1}{ft}, {}_{v}\!extremities_Z_{TOP_mesh} \cdot \frac{1}{$$

 $CSV_Output_{B_6} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XZ_MESH.csv''}, {}_{m}CSV_{mesh}\right)$

$${}_{m}CSV_{mesh_Y} \coloneqq \text{augment} \left({}_{v}extremities_X_mesh \cdot \frac{1}{m} \,, {}_{v}extremities_Y_{TV_}mesh \cdot \frac{1}{m} \,, {}_{v}extremities_X_mesh \cdot \frac{1}{ft} \,, {}_{v}extremities_Y_{TV_}mesh \cdot \frac{1}{ft} \right) = 0$$

 $CSV_Output_{B_7} := WRITECSV (".\Output\FUSELAGE_data_XY_MESH.csv", {}_{m}CSV_{mesh_Y})$

$${}_{m}CSV_{mp_values_I} \coloneqq \operatorname{augment}\left({}_{v}midpoints_X_mesh \cdot \frac{1}{m}, {}_{v}midpoints_Z_mesh \cdot \frac{1}{m}, {}_{v}W_{f} \cdot \frac{1}{m}, {}_{v}i_{cl} \cdot \frac{1}{\deg}\right)$$

$${}_{m}CSV_{mp_values_II} \coloneqq \operatorname{augment}\left({}_{v}midpoints_X_mesh \cdot \frac{1}{ft}, {}_{v}midpoints_Z_mesh \cdot \frac{1}{ft}, {}_{v}W_{f} \cdot \frac{1}{ft}, {}_{v}i_{cl} \cdot \frac{1}{rad}\right)$$

$$_{m}CSV_{mp_values} \coloneqq \operatorname{augment} \left(_{m}CSV_{mp_values_I}, _{m}CSV_{mp_values_II} \right)$$

 $CSV_Output_{B_8} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_MIDPOINT_VALUES.csv''}, {}_{m}CSV_{mp_values}\right)$

Fuselage First Segment - From Nose to Wing Leading Edge

$${}_{m}\!CSV_{mesh1} \coloneqq \text{augment} \left({}_{v}\!extremities_X_mesh_1 \cdot \frac{1}{m}, {}_{v}\!extremities_Z_{TOP_mesh_1} \cdot \frac{1}{m}, {}_{v}\!extremities_Z_{BOTTOM_mesh_1} \cdot \frac{1}{m}, {}_{v}\!extremities_X_mesh_1 \cdot \frac{1}{ft}, {}_{v}\!extremities_Z_{TOP_mesh_1} \cdot \frac{1}{ft$$

 $CSV_Output_{B_9} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XZ_MESH_Nose_Wing_LE.csv''}, {}_{m}CSV_{mesh1}\right) = \text{WRITECSV} \left(\text{``.} \setminus \text{VOUTPUT} \setminus \text{FUSELAGE_data_XZ_MESH_Nose_Wing_LE.csv''}, {}_{m}CSV_{mesh1}\right) = \text{WRITECSV} \left(\text{``.} \setminus \text{VOUTPUT} \setminus \text{FUSELAGE_data_XZ_MESH_Nose_Wing_LE.csv'''}, {}_{m}CSV_{mesh1}\right) = \text{WRITECSV} \left(\text{``.} \setminus \text{VOUTPUT} \setminus \text{VOUTPUT}\right) = \text{WRITECSV} \left(\text{``.} \setminus \text{VOUTPUT} \setminus \text{VOUTPUT}\right) = \text{WRITECSV} \left(\text{``.} \setminus \text{VOUTPUT}\right) = \text{WRITECSV}$

$${}_{m}CSV_{mesh_Y_1} \coloneqq \operatorname{augment}\left({}_{v}extremities_X_mesh_1 \cdot \frac{1}{m}, {}_{v}extremities_Y_{TV_}mesh_1 \cdot \frac{1}{m}, {}_{v}extremities_X_mesh_1 \cdot \frac{1}{ft}, {}_{v}extremities_Y_{TV_}mesh_1 \cdot \frac{1}{ft}\right)$$

$$CSV_Output_{B_10} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XY_MESH_Nose_Wing_LE.csv''}, {}_{m}CSV_{mesh_Y_1} \right)$$

$$CSV_{max} = augment \left(midpoints \ X \ mesh_1 \cdot \frac{1}{midpoints} \ Z \ mesh_1 \cdot \frac{1}{midpoints} \cdot \frac{1}{midpoints} \right)$$

 ${_{m}CSV}_{mp_values_II_1} \coloneqq \operatorname{augment} \left({_{v}midpoints_X_mesh_1 \cdot \frac{1}{ft}, {_{v}midpoints_Z_mesh_1 \cdot \frac{1}{ft}, {_{v}W}_{f_1} \cdot \frac{1}{ft}} \right) \\ {_{m}CSV}_{mp_values_1} \coloneqq \operatorname{augment} \left({_{m}CSV}_{mp_values_I_1}, {_{m}CSV}_{mp_values_II_1} \right)$

 $CSV_Output_{B_11} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_MIDPOINT_VALUES_Nose_Wing_LE.csv''}, {}_{m}CSV_{mp_values_1}\right)$

Fuselage Second Segment - From Wing Leading Edge to Wing Trailing Edge

 ${}_{m}CSV_{meshW} \coloneqq \text{augment} \left({}_{v}extremities_X_mesh_W \cdot \frac{1}{m}, {}_{v}extremities_Z_{TOP_mesh_W} \cdot \frac{1}{m}, {}_{v}extremities_Z_{BOTTOM_mesh_W} \cdot \frac{1}{m}, {}_{v}extremities_X_mesh_W \cdot \frac{1}{ft}, {}_{v}extremities_Z_{TOP_mesh_W} \cdot \frac{1}{ft}, {}_{v}extremities_Z_{BOTTOM_mesh_W} \cdot \frac{1}{ft}, {}_{v}extremities_Z_{TOP_mesh_W} \cdot \frac{1}$

 $CSV_Output_{B_12} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XZ_MESH_Wing_LE_TE.csv''}, {}_{m}CSV_{meshW}\right)$

 ${_{m}CSV}_{mesh_Y_W} \coloneqq \text{augment}\left(vextremities_X_mesh_W \cdot \frac{1}{m}, vextremities_Y_{TV_}mesh_W \cdot \frac{1}{m}, vextremities_X_mesh_W \cdot \frac{1}{ft}, vextremities_Y_{TV_}mesh_W \cdot \frac{1}{ft}\right)$

 $CSV_Output_{B_13} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XY_MESH_Wing_LE_TE.csv''}, {}_{m}CSV_{mesh_Y_W}\right)$

 ${_{m}CSV}_{mp_values_I_W} \coloneqq \operatorname{augment}\left({_{v}midpoints_X_mesh_W} \cdot \frac{1}{m}, {_{v}midpoints_Z_mesh_W} \cdot \frac{1}{m}, {_{v}W}_{f_W} \cdot \frac{1}{m}\right)$

 ${}_{m}CSV_{mp_values_II_W} \coloneqq \text{augment}\left({}_{v}midpoints_X_mesh_W \cdot \frac{1}{ft}, {}_{v}midpoints_Z_mesh_W \cdot \frac{1}{ft}, {}_{v}W_{f_W} \cdot \frac{1}{ft}\right)$

 ${}_{m}CSV_{mp_values_W} \coloneqq \operatorname{augment} \left({}_{m}CSV_{mp_values_I_W}, {}_{m}CSV_{mp_values_II_W} \right)$

 $CSV_Output_{B_14} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_MIDPOINT_VALUES_Wing_LE_TE.csv''}, {}_{m}CSV_{mp_values_W} \right)$

Fuselage Third Segment - From Wing Trailing Edge To Tail

 ${}_{m}CSV_{mesh2} \coloneqq \text{augment} \left({}_{v}extremities_X_mesh_2 \cdot \frac{1}{m}, {}_{v}extremities_Z_{TOP_mesh_2} \cdot \frac{1}{m}, {}_{v}extremities_Z_{BOTTOM_mesh_2} \cdot \frac{1}{m}, {}_{v}extremities_X_mesh_2 \cdot \frac{1}{ft}, {}_{v}extremities_Z_{TOP_mesh_2} \cdot \frac{1}{ft$

 $CSV_Output_{B_15} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XZ_MESH_Wing_TE_Tail.csv''}, {}_{m}CSV_{mesh2}\right)$

 ${}_{m}CSV_{mesh_Y_2} \coloneqq \operatorname{augment} \left({}_{v}extremities_X_mesh_2 \cdot \frac{1}{m}, {}_{v}extremities_Y_{TV_}mesh_2 \cdot \frac{1}{m}, {}_{v}extremities_X_mesh_2 \cdot \frac{1}{ft}, {}_{v}extremities_Y_{TV_}mesh_2 \cdot \frac{1}{ft} \right)$

 $CSV_Output_{B_16} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XY_MESH_Wing_TE_Tail.csv''}, {}_{m}CSV_{mesh_Y_2}\right) = \text{``.} \\$

 ${}_{m}CSV_{mp_values_I_2} \coloneqq \operatorname{augment}\left({}_{v}midpoints_X_mesh_2 \cdot \frac{1}{m}, {}_{v}midpoints_Z_mesh_2 \cdot \frac{1}{m}, {}_{v}W_{f_2} \cdot \frac{1}{m}\right)$

 ${_{m}CSV}_{mp_values_II_2} \coloneqq \operatorname{augment}\left({_{v}midpoints_X_mesh_2} \cdot \frac{1}{ft}, {_{v}midpoints_Z_mesh_2} \cdot \frac{1}{ft}, {_{v}W}_{f_2} \cdot \frac{1}{ft}\right)$

 $_{m}CSV_{mp_values_2} \coloneqq \operatorname{augment} \left(_{m}CSV_{mp_values_I_2}, _{m}CSV_{mp_values_II_2} \right)$

 $CSV_Output_{B_17} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_MIDPOINT_VALUES_Wing_TE_Tail.csv''}, {}_{m}CSV_{mp_values_2}\right)$

 $CSV_Output_{B_18} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_MIDPOINT_VALUES_All_Fuselage.csv''}, {}_{m}CSV_{mp_ALL}\right)$

1_minus_deps/dalpha in afterbody midpoints

$$\begin{split} &_{m}CSV_{edW} \coloneqq \operatorname{augment}\left({_{m}\varepsilon u_{dW}}^{(0)} \cdot \frac{1}{m}, {_{m}\varepsilon u_{dW}}^{(0)} \cdot \frac{1}{c_{W_{_r}}}, \left({_{m}\varepsilon u_{dW}}^{(0)} - c_{W_{_r}}\right) \cdot \frac{1}{\Delta X_HT_{ac_W}_{LE}}, {_{m}\varepsilon u_{dW}}^{(1)}\right) \\ &CSV_Output_{B_19} \coloneqq \operatorname{WRITECSV}\left(\text{``.}\operatorname{Output}\operatorname{`FUSELAGE_xw_cr_vs_edw.csv''}, {_{m}CSV_{edW}}\right) \\ &_{m}CSV_{ed2} \coloneqq \operatorname{augment}\left({_{m}\varepsilon u_{d2}}^{(0)} \cdot \frac{1}{m}, {_{m}\varepsilon u_{d2}}^{(0)} \cdot \frac{1}{\Delta X_HT_{ac_W}_{LE}}, {_{m}\varepsilon u_{d2}}^{(1)}\right) \\ &CSV_Output_{B_20} \coloneqq \operatorname{WRITECSV}\left(\text{``.}\operatorname{Output}\operatorname{`FUSELAGE_x2_cr_vs_ed2.csv''}, {_{m}CSV_{ed2}}\right) \end{split}$$

MAPPING AND OUTPUT CREATION

Includi << ../Default_Map_Fuselage.mcdx

```
First\_Row_{B\_1} \coloneqq 4
```

 $Block_{B_{-1}} := {}_{f}map_matrix_transform ({}_{m}Fuselage_Data_Map_{imported})$

 $Excel_Output_{B_1} := \text{fwrite_full_output} \left(sOutput_Excel_File, Block_{B_1}, n_{sheet}, First_Row_{B_1} \right)$

 $First_Row_{B_2} \coloneqq First_Row_{B_1} + rows \left(Block_{B_1}\right) + 2 = 63$

 $Block_{B_2} := {}_{f}map_matrix_transform ({}_{m}Fuselage_Data_Map_{input})$

 $Excel_Output_{B\ 2} := {}_{\mathrm{f}}write_full_output\left({}_{s}Output_Excel_File\ , Block_{B\ 2}\ , n_{sheet}\ , First_Row_{B\ 2}\right)$

 $First_Row_{B \ 3} := First_Row_{B \ 2} + rows (Block_{B \ 2}) + 2 = 89$

 $Block_{B_3} := {}_{f}map_matrix_transform ({}_{m}Fuselage_Data_Map)$

 $Excel_Output_{B_3} := {}_{\text{f}} write_full_output \left({}_{s}Output_Excel_File \,, Block_{B_3} \,, n_{sheet} \,, First_Row_{B_3} \right)$

 $First_Row_{B}_{4} := First_Row_{B}_{3} + rows (Block_{B}_{3}) + 2 = 118$

 $Block_{B\ 4} := {}_{f}map_matrix_transform ({}_{m}Fuselage_Data_Map_{Misc})$

 $Excel_Output_{B_4} := {}_{\mathrm{f}} write_\mathrm{full_output} \left({}_{s}Output_Excel_File \,, Block_{B_4} \,, n_{sheet} \,, First_Row_{B_4} \right)$

TeX Macro writing on .tex

 $_{v}complete_macros_{B} \coloneqq \operatorname{stack}\left(Block_{B_1}^{(2)}, Block_{B_2}^{(2)}, Block_{B_3}^{(2)}, Block_{B_4}^{(2)}\right)$

 $_v tex_W \coloneqq_{\text{f}} \text{write_matrix} (\text{``.}\setminus \text{Output}\setminus \text{FUSELAGE_Tex_Macros.tex''}, _v complete_macros_B, \text{``'})$