Formelblad elektriska kretsar och fält EEM076

Edvin Alestig

March 31, 2021

1 Storheter och enheter

Storhet	Enhet
Laddning (Q)	Coloumb (C)
Spänning (U, v)	Volt (V)
Ström (I)	Ampere (A)
Resistans (R)	Ohm (Ω)
Effekt (P)	Watt (W)
Energi (W, E)	Joule (J)
Kapacitans (C)	Farad (F)
Induktans (L)	Henry (H)

2 Formler

$$I(t) = \frac{dq(t)}{dt}$$

$$Q(t) = \int_{t_0}^t I(t)dt + Q(t_0)$$

$$W = \int_{t_1}^{t_2} P(t)dt$$

I kondensatorer:

$$Q = Cv$$

$$I = \frac{dQ}{dt} = C\frac{dv}{dt}$$

$$P = IV = Cv\frac{dv}{dt}$$

$$W = \int_{t_0}^t P(t)dt = \int_{t_0}^t Cv\frac{dv}{dt} = C\int_{v(t_0)}^{v(t)} vdv = \frac{C}{2}(v(t)^2 - v(t_0)^2)$$

$$W = \frac{Cv^2}{2}, W(t_0) = 0$$

$$v(t) = \frac{1}{C}\int_{t_0}^t I(t)dt + v(t_0)$$
 I induktorer:
$$v = \frac{dI}{dt}$$

$$W = \frac{LI^2}{2}$$

$$I(t) = \frac{1}{L}\int_{t_0}^t v(t)dt + I(t_0)$$

3 Lagar

 $\begin{array}{ll} \textbf{Ohms lag} & v = RI \\ \textbf{Effektlagen} & P = Iv = RI^2 = \frac{v^2}{R} \\ \textbf{Kirchhoffs spänningslag (KVL)} & \sum v = 0 \text{ i en loop} \\ \textbf{Kirchhoffs strömlag (KCL)} & \sum I_{in} = \sum I_{out} \text{ i en nod} \\ \textbf{Energiprincipen} & \sum P = 0 \text{ i en krets} \end{array}$

4 Ekvivalenta kretsar

4.1 Seriekoppling

Resistans $R_{eq} = \sum R_n$ Kapacitans $C_{eq} = (\sum C_n^{-1})^{-1}$ $(C_{eq} = \frac{C_1 C_2}{C_1 + C_2} \text{ vid endast 2 kondensatorer})$ Induktans $L_{eq} = \sum L_n$

Spänningsdelning $v_n = R_n I = \frac{R_n}{R_{eq}}$

4.2 Parallellkoppling

Resistans
$$R_{eq} = (\sum R_n^{-1})^{-1}$$
 $(R_{eq} = \frac{R_1 R_2}{R_1 + R_2} \text{ vid endast 2 resistorer})$
Kapacitans $C_{eq} = \sum C_n$
Induktans $L_{eq} = (\sum L_n^{-1})^{-1}$ $(L_{eq} = \frac{L_1 L_2}{L_1 + L_2} \text{ vid endast 2 induktorer})$

Strömdelning

ning $I_1 = \frac{R_2}{R_1 + R_2}, I_2 = \frac{R_1}{R_1 + R_2}$

4.3 Thévenin equivalent circuit

- 1. Disconnect the load \mathcal{R}_L and replace with an open circuit.
- 2. Find the open circuit voltage V_{oc} .
- 3. Find the equivalent resistance R_{eq} of the network with all independent sources turned off.
- 4. $v_{th} = v_{oc}$ and $R_{th} = R_{eq}$.

4.4 Norton equivalent circuit

- 1. Replace the load \mathcal{R}_L with a short circuit.
- 2. Find the short circuit current I_{sc} .
- 3. Find the equivalent resistance R_{eq} of the network with all independent sources turned off.
- 4. $I_N = I_{sc}$ and $R_N = R_{eq}$.

4.5 Source transformation - Thévenin and Norton

 $R_{th} = R_N = R_{eq}$ and $v_{th} = I_N R_{eq}$

Genom att kombinera Thévenin och Norton kan man kraftigt förenkla en delkrets.

5 Verktyg och metoder

Node voltage analysis

Analysera spänningsskillnader gentemot en referensnod (jord eller den nod med flest kopplingar). Lös med ekvationssystem.

- 1. Välj en referensnod och sätt den till 0 V.
- 2. Sätt variabler för varje nod.
- 3. Applicera KCL på varje nod.
- 4. Räkna ut spänningen genom att räkna ut spänningsdifferensen mellan två noder.

Tips: Räkna I_{out} som positiv i varje resistor.

Supernod

Spänningskälla som ej är direkt kopplad till referensnoden kan göras om till en supernod. Nodens spänning är källans spänning och båda ändars kopplingar räknas som supernodens kopplingar.

Mesh current analysis

Analysera loopar i en krets (medsols). Applicera KVL på varje loop. Lös med ekvationssystem.

Supermesh

Strömkälla i kretsen. Kombinera loopar in i en större superloop. $I_{super} = I_1 - I_2$

Superposition

Går endast att applicera på linjära kretsar med flera ström- och/eller spänningskällor. Varje källa kan analyseras separat för att sedan läggas ihop.

- 1. Stäng av alla källor förutom en.
 - v = 0 blir en kortsluten krets.
 - I = 0 blir en öppen krets.
 - Räkna ut källans kretspåverkan.
- 2. Lägg ihop alla källors påverkan.