Painel / Meus cursos / SC26EL / 15-Observadores de Estado / Questionário sobre Observadores de Estados

Iniciado em	quinta, 13 mai 2021, 08:38
Estado	Finalizada
Concluída em	quinta, 13 mai 2021, 08:52
Tempo	14 minutos 15 segundos
empregado	
Notas	2,0/2,0
Avaliar	10.0 de um máximo de 10.0(100 %)

Questão **1** Correto

Atingiu 1,0 de 1,0

Dado o sistema abaixo, projete um observador de estados de forma que os autovalores do observador sejam $\mu_{1,2}=-50$.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -50 & -15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Os polos da planta são (do menor para o maior): $\emph{s}_{1}=$

-10

- **✓** e **s**₂ =
- ~

A matriz de observabilidade tem a forma $N = \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix}$. Assim, os elementos da matriz N são:

- $n_{11} =$
- ✓ . n₁₂ =
- $\sqrt{n_{12}} = 1$
- ~
- $n_{21} = -50$
- **✓** , *n*₂₂ =
- ~

O posto da matriz de observabilidade é:

2

✔ .

Portanto, o sistema é: Observável

O polinômio característico desejado para o observador é:

1

- **✓** s²+
- **✓ s**+ 2500

~

Logo, os elementos da matriz $\phi(A)=egin{bmatrix} arphi_{11} & arphi_{12} \ arphi_{21} & arphi_{22} \end{bmatrix}$ são:

 $\varphi_{11} = 2450$

 \checkmark , $\varphi_{12}=$

$$\varphi$$
, $\varphi_{21} =$

$$-4250$$

$$\checkmark$$
 , $\varphi_{22}=$ 1175

Assim, o vetor de ganhos associado ao observador é $\mathcal{K}_{e} = \left[\right.$

$$\checkmark$$
] ^{τ} .

A representação do observador em espaço de estados é dada por:

$$\dot{\tilde{x}} = A_{obs}\tilde{x} + B_{obs} \begin{bmatrix} u \\ y \end{bmatrix}$$
 $\tilde{y} = C_{obs}\tilde{x}$

$$\tilde{y} = C_{obs} \tilde{x}$$

A matriz $A_{obs}=egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$ e seus elementos são:

A matriz $B_{obs}=egin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{bmatrix}$ e seus elementos são:

$$b_{11} = 0$$

$$b_{21} = 1$$

A matriz $C_{obs}=egin{bmatrix} c_{11} & c_{12} \ c_{21} & c_{22} \end{bmatrix}$ e seus elementos são:

$$c_{11} = \frac{1}{1}$$

Questão **2**Correto

Atingiu 1,0 de 1,0

Dado o sistema abaixo, projete um observador de estados de forma que os autovalores do observador sejam $\mu_{1,2,3}=-50$.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -150 \\ 1 & 0 & -95 \\ 0 & 1 & -18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 150 \\ 1 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Os polos da planta são (do menor para o maior): $s_1 =$

- -10
- **✓** , **s**₂ =
- **✓** e **s**₃ =

V

A matriz de observabilidade tem a forma $N = \begin{bmatrix} n_{11} & n_{12} & n_{13} \\ n_{21} & n_{22} & n_{23} \\ n_{31} & n_{32} & n_{33} \end{bmatrix}$. Assim, os elementos da matriz N são:

- $n_{11} = 0$
- \checkmark , $n_{12} = 0$
- **✓** , *n*₁₃ =
- ~
- $n_{21} = 0$
- ✓ , n₂₂ =1
- ✓ , n₂₃ =-18
- **v**,
- $n_{31} = 1$
- **✓** , $n_{32} =$
- **✓** , **n**₃₃ =
- **~** .

O posto da matriz de observabilidade é:

- 3
- **v** .

Portanto, o sistema é: Observável

O polinômio característico desejado para o observador é:

1

✓ s³+

150

✓ s²+ 7500

✓ *s*+ 125000

~

Logo, os elementos da matriz $\phi(A) = egin{bmatrix} arphi_{11} & arphi_{12} & arphi_{13} \ arphi_{21} & arphi_{22} & arphi_{23} \ arphi_{31} & arphi_{32} & arphi_{33} \end{bmatrix}$ são:

 $\varphi_{11} = 124850$

 \checkmark , $\varphi_{12}=$

 \checkmark , $\varphi_{13} =$ -754350

~ ,

 $\varphi_{21} = 7405$

 \checkmark , $\varphi_{22}=$ 112310

 \checkmark , $\varphi_{23} =$ -497555

~ ,

 $\varphi_{31} =$ 132

 \checkmark , $\varphi_{32}=$ 5029

 \checkmark , $arphi_{33}=$ 21788

~

Assim, o vetor de ganhos associado ao observador é $\textit{K}_{e} = \lceil$

124850

~

7405

132 **~**] ^T.

A representação do observador em espaço de estados é dada por:

 $\ddot{\tilde{x}} = A_{obs}\tilde{x} + B_{obs} \begin{bmatrix} u \\ y \end{bmatrix}$ $\tilde{y} = C_{obs}\tilde{x}$

```
A matriz A_{obs} = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix} e seus elementos são:
```

- $a_{11} = 0$
- \checkmark , $a_{12}=$
- ✓ , a₁₃ =-125000
- **~** ,
- $a_{21} = 1$
- ✓ , a₂₂ =

 0
- ✓ , a₂₃ =
 -7500
- **~** ,
- $a_{31} = 0$
- ✓ , a₃₂ =1
- **✓** , **a**₃₃ =
- ~

A matriz
$$B_{obs}=egin{bmatrix} b_{11}&b_{12}\b_{21}&b_{22}\b_{31}&b_{32} \end{bmatrix}$$
 e seus elementos são:

- $b_{11} = 150$
- **✓** , **b**₁₂ = 124850
- ~
- $b_{21} = 1$
- **✓** , **b**₂₂ = 7405
- ~
- $b_{31} =$
- **✓** , **b**₃₂ =

A matriz
$$C_{obs} = egin{bmatrix} c_{11} & c_{12} & c_{13} \ c_{21} & c_{22} & c_{23} \ c_{31} & c_{32} & c_{33} \end{bmatrix}$$
 e seus elementos são:

 $c_{11} = 1$

~	,	c_{12}	=
0			

$$\checkmark$$
 , $c_{13} = 0$

$$c_{21} = 0$$

$$\checkmark$$
 , $c_{23}=$

$$c_{31} = 0$$

$$\checkmark$$
 , $c_{32} = 0$

→ Diagrama de Blocos Scilab/Xcos - Simulação

Seguir para...

Aula 16 - Projeto de Controlador com Observador de Estados - Parte 1 -