| MASTER COPY                                                                                                                   | KEEP THIS                                                                          | COPY FOR REP                                                                                                                    | RODUCTION PURPOSES                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ·                                                                                                                             | UMENTATION PAG                                                                     |                                                                                                                                 | Form Approved<br>OMB No. 0704-0188                                                                                                                                                                                  |
| Davis mighway Suite 1204 Artington, 74 22202-4302                                                                             | ducing this burden to Washington meadqu<br>and to the Office of Management and Bud | onse including the time for ri<br>mation. Send comments rega<br>arters Services, Directorate fo<br>get: Paperwork Reduction Pro | eviewing instructions, searching existing data sources<br>resing this burden estimate or any other aspect of this<br>rinformation Operations and Reports, 1215 Jefferson<br>ject (0704-0188). Washington, OC 20503. |
| 1. AGENCY USE ONLY (Leave blank)                                                                                              | 2. REPORT DATE 3 July 1997                                                         | 3. REPORT TYPE AN Final                                                                                                         | D DATES COVERED                                                                                                                                                                                                     |
| 4. TITLE AND SUBTITLE Work Shop on Application for Quasi-Optical Power                                                        | ons and Research St<br>r Combining                                                 | rategies                                                                                                                        | S. FUNDING NUMBERS DAAH04-95-1-0622                                                                                                                                                                                 |
| 6. AUTHOR(S)  Dr. James W. Mink  Dr. Michael Steer                                                                            |                                                                                    |                                                                                                                                 | ·                                                                                                                                                                                                                   |
| 7. PERFORMING ORGANIZATION NAME( North Carolina State Un Department of Electrica Room 232 Daniels Hall Raleigh, NC 27695-7911 | niversity<br>al and Computer Eng                                                   | ineering                                                                                                                        | 8. PERFORMING ORGANIZATION REPORT NUMBER                                                                                                                                                                            |
| 9 SPONSORING/MONITORING AGENCY<br>U.S. Army Research Off<br>P. O. Box 12211<br>Research Triangle Park                         | ice                                                                                |                                                                                                                                 | 10. SPONSORING MONITORING AGENCY REPORT NUMBER  ALO 35008.1-EL-CF                                                                                                                                                   |
| 11. SUPPLEMENTARY NOTES The views, opinions and/o author(s) and should not i position, policy, or decid                       | be construed as an o<br>sion, unless so desi                                       | fficial Depart                                                                                                                  | ment of the Army                                                                                                                                                                                                    |
| 12a. DISTRIBUTION / AVAILABILITY STATI                                                                                        | EMENT                                                                              |                                                                                                                                 | 12b. DISTRIBUTION CODE                                                                                                                                                                                              |
| Approved for public rele                                                                                                      | ease; distribution u                                                               | nlimited.                                                                                                                       |                                                                                                                                                                                                                     |
| 13. ABSTRACT (Maximum 200 words)                                                                                              |                                                                                    |                                                                                                                                 |                                                                                                                                                                                                                     |
| To assemble key researcher representatives of industry a technology. To discuss the power combining. To identicapplication.   | and the government who prospects for military a                                    | would have pot<br>nd commercial a                                                                                               | pplications of quasi-optical                                                                                                                                                                                        |

DITIO CUALUTY INCOMUNED 4

| 14. SUBJECT TERMS           |                                          |                                         |                            |
|-----------------------------|------------------------------------------|-----------------------------------------|----------------------------|
| The source lenms            |                                          |                                         | 15. NUMBER OF PAGES        |
|                             |                                          | ,                                       | 16. PRICE CODE             |
| 17. SECURITY CLASSIFICATION |                                          |                                         | 16. PROCE CODE             |
| OF REPORT                   | 18. SECURITY CLASSIFICATION OF THIS PAGE | 19. SECURITY CLASSIFICATION OF ABSTRACT | 20. LIMITATION OF ABSTRACT |
| UNCLASSIFIED                | UNCLASSIFIED                             | UNCLASSIFIED                            | UL.                        |
| NSN 7540-01-280-5500        |                                          |                                         |                            |

Standard Form 298 (Rev. 2-89). Prescribed by ansi std. 239-18 298-102

## WORKSHOP ON APPLICATIONS AND RESEARCH STRATEGIES

FOR

## QUASI-OPTICAL POWER COMBINING

Dr. James W. Mink

3 July 1997

U.S. ARMY RESEARCH OFFICE

DAAH04-95-1-0633

35008-EL-CF

NORTH CAROLINA STATE UNIVERSITY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19970818 086

## FINAL REPORT

## WORKSHOP ON APPLICATIONS AND RESEARCH STRATEGIES FOR QUASI-OPTICAL POWER COMBINING

## **WORKSHOP OBJECTIVES**

To assemble key researchers in the field of quasi-optical power combining, along with principal representatives of industry and the government who would have potential applications for this technology. To discuss the prospects for military and commercial applications of quasi-optical power combining. To identify key technical issues remaining to be resolved for system application.

## DATE AND LOCATION OF WORKSHOP

The workshop was held on December 4, 1995 in Raleigh, North Carolina at the Brownstone Hotel.

## WORKSHOP AGENDA

The workshop followed the agenda given below:

| 0830 | Welcome                                                             |
|------|---------------------------------------------------------------------|
| 0845 | Meeting Objectives                                                  |
| 0900 | State of the Art of Quasi-Optical Combining and University Research |
| 1000 | Industry Issues for Application of Quasi-Optical Devices, Systems   |
| 1100 | Military System Issues for Application of Quasi-Optical Techniques  |
| 1200 | Lunch                                                               |
| 1300 | Panel Discussion with Industry / Military / University Experts      |
| 1400 | Panel Deliberations (Open to panel members only)                    |

1530. Presentation of Panel Findings to Director of the Army Research Office

## WORKSHOP PANEL MEMBERS AND ATTENDEES

## Panel Members:

| L. Brockman   | Lockheed Martin            |               |
|---------------|----------------------------|---------------|
| W. Gelnovatch | Army Research Laboratory   | (Panel Chair) |
| W. Carroway   | Army Missile Command       |               |
| P. Greiling   | Hughes Research Laboratory |               |
| D. Westervelt | Harvard University         |               |
| W. Kornegay   | MIT/Lincoln Laboratory     |               |
| M. Stroscio   | ARO                        |               |
| E. Reedy      | Ga. Tech.                  |               |

## Attendees:

J. Mink NCSU
M. Steer NCSU
J. Harvey ARO

D. Rutledge Cal. Tech.

Z. Popovic Univ of Colorado

T. Itoh UCLA
F. Schwering CECOM
B. Perlman USARL

R. York UC Santa Barbara

## CONCLUSION OF WORKSHOP

As indicated by the agenda, the state-of-the-art quasi-optical techniques was presented by university and industrial representatives. This was followed by open discussion. General conclusion of the workshop was that quasi-optical techniques hold promise for the generation of large power levels at millimeter wavelengths. All presentation material is attached.

Much research to date focused upon self-oscillating technique which demonstrated that significant power could be generated in the microwave region of the EM spectrum. A significant result of this workshop was that military and potential industrial systems require amplifying systems. This requirement is a result of advanced signal processing techniques utilized by current systems and the need for low noise.

From the technical point of view, concerning quasi-optical systems, two major issues were determined. First, that with the complexity and close coupling of many active devices, further advancements will require the development of computer aided tools to design such systems. The systems are just to complex and cover a wide spectrum of techniques to be resolved through analytical techniques alone. The second major finding of the workshop was that thermal problems may limit the overall performance of quasi-optical systems. Since, the active devices will be embedded in large arrays and because of electromagnetic considerations, they may not have adequate heat removal. This is an issue that must be addressed and further research is required.

At the request of the sponsor, the panel conclusions are not known to the author since the panel provided its recommendations directly to Dr. Iafrate, Director, Army Research Office and they were not made public.

J. Mink

M. Steer

MAR 15, 1996

## AN OVERVIEW OF QUASI-OPTICAL POWER COMBINING: WHERE WE ARE AND HOW WE GOT THERE

JAMES W. MINK / M. STEFR NORTH CAROLINA STATE UNIVERSITY

# **OUTLINE OF PRESENTATION**

- RELATIONSHIP TO MICROWAVES / OPTICS
- WHY QUASI-OPTICAL TECHNIQUES
- ◆ METHODS OF FEEDBACK
- FAMILIES OF QUASI-OPTICAL APPROACHES
- ◆ STATE-OF-THE- ART
- ◆ CONCLUSIONS

# WHY QUASI-OPTICAL DEVICES

- TO COMPENSATE FOR THE 1/f2 PROBLEM ASSOCIATED WITH ACTIVE DEVICES
- TRANSVERSE DIMENSIONS RANGE FROM 10 TO 100 WAVELENGTHS
- RELAXED LONGITUDINAL BOUNDARY CONDITIONS
- EASILY FABRICATED LENSES AND REFLECTORS
- SUBSTANTIAL TRANSVERSE "REAL-ESTATE"
- MANY ACTIVE ELEMENTS MAY BE UTILIZED

## MILLIMETER WAVE SOURCE STATE OF THE ART



## SIMILARITY TO THE LASER

- MANY LOW POWER SOURCES ACTING COHERENTLY
- SOURCES MAY BE DISTRIBUTED THROUGH OUT THE VOLUME
- OUTPUT POWER IS IN THE FORM OF A BEAM
- ▶ "FABRY-PEROT" RESONATOR
- HIGH SPECTRAL PURITY

## COMPARISON TO LASER



Similarity of Quasi-Optical Technique to Gas Laser

# Types of quasi-optical sources



## OSCILLATORS: I CLASSES OF QUASI-OPTICAL

- OPEN RESONATOR OSCILLATORS
- HIGH Q STRUCTURES
- FEED-BACK VIA ELECTROMAGNETIC WAVE-**BEAM MODES**

# OPEN RESONATOR CONFIGURATION



## OSCILLATORS: II CLASSES OF QUASI-OPTICAL

- GRID SYSTEMS
- LOW Q STRUCTURE
- PRIMARY FEED-BACK VIA TRANSMISSION LINE COUPLING
- ELECTROMAGNETIC WAVE-BEAM MODE SECONDARY FEED-BACK VIA
- INPUT / OUTPUT ISOLATION VIA ORTHOGONAL POLARIZATION

# GRID OSCILLATOR CONFIGURATION





## CLASSES OF QUASI-OPTICAL OSCILLATORS: III

- SLAB WAVE-BEAM RESONATORS
- MODERATE TO HIGH Q STRUCTURE
- FEED-BACK VIA ELECTROMAGNETIC WAVE-**BEAM**
- "PLANAR STRUCTURE"
- TRAVELING WAVE AMPLIFICATION

# SLAB-RESONATOR CONFIGURATION





# REPORTED QUASI-OPTICAL SOURCES

| 4X4<br>10X10<br>6X6<br>4X4<br>4X4 |
|-----------------------------------|
|                                   |

pour play effering ~ 20%

## CONCLUSIONS

- QUASI-OPTICAL OSCILLATORS HAVE BEEN DEMONSTRATED IN EACH CLASS
- EMPHASIS HAS SHIFTED TO THREE TERMINAL ACTIVE ELEMENTS FOR BOTH SOURCES AND **AMPLIFIERS**
- IMPEDANCE MATCHING FOR MAXIMUM **OUTPUT POWER REMAINS A PROBLEM**
- CAD TOOLS ARE UNDER DEVELOPMENT AND ARE ESSENTIAL

MAR 35 1996

## TWO DIMENSIONAL QUASI-OPTICAL POWER COMBINING FOR MILLIMETER-WAVE COMMUNICATIONS

M. B. Steer

Electronics Research Laboratory
North Carolina State University
mbs@ncsu.edu 919-515-5191

## Outline

- Overview of Quasi-Optical Power Combining
- Two-Dimensional Quasioptical Power Combining System
- A Quasi-Optical 2D Power Combining Oscillator
- A Quasi-Optical 2D Power Combining Amplifier
- Future Directions and Needs of Quasioptical Power Combining What is required to make active quasi-optics a military/commercial reality

## Contributors

MAR 15 1996

- C. Hicks, S. Irrgang, S. Zeisberg, A. Schuenemann, T. Nutesson, G. P. Monahan H. Hwang, J. W. Mink Electronics Research Laboratory North Carolina State University
- F. K. Schwering U.S. Army CECOM
- A. Paolella U.S. Army Research Laboratory
- J. Harvey U.S. Army Research Office

**ALSO** 

D. Rutledge, Z. Popovic, R. York, A. Mortazawi

## Applications

Where Ever You Need More Power than Can be Obtained From A single Solid-State Device

- 1. Near Vehicle Detection Radar (Collision Avoidance Radar)
- 2. Millimeter-Wave LAN's (e.g. 60 GHz)
- 3. Cellular Radio Base Stations
- 4. Active Missile Seekers
- 5. Millimeter-Wave Imaging (100+ GHz) Detection of Plastics

MAR 45 1996

Free Space Combining



Open Cavity Resonator





2D Power Combiner



Grid



## CAE Issues

- 1. Handling Device-Field Interactions in a Non-Planar Environment.
  - Modeling Paradigm
  - DC-to-Daylight Modeling
- 2. Handling a Very Large Number of Active Devices in Steady-State Harmonic Balance Analysis.
- 3. Optimization in Design Requires Steady-State Methods.
- 4. Handling Distributed High Q Passive Components in Transient Analysis. Turn-on Stability is a major concern.
- 5. Wholistic Approach required to Achieve High Efficiencies.









## 2D Dielctric Quasioptical Power Combining System



MAR 05 1998

- Resonant Cavity Oscillator Development
- Amplifier/Tripler Array Development
- Lens Development
- Leaky-Wave Antenna Development
- Circuit Model/CAE Tool Development







































## Summary

- A Viable Method of 2D Quasi-Optical Power Combining Has Been Demonstrated
- Amenable to Fabrication Using Photolithographic Techniques and MMIC Technology
- Smaller Size Because of Dielectric
- No Significant Thermal Dissipation Problem
- Resistive Driving Point Impedance Greater Than for Open-Cavity Structures

MAR ... 1996

## Requirements:

- Circuit Model/CAE Tool Development
- Development of a calibrated measurement system
- Development of analytic and numerical techniques
- The Lack of Computer Aided Engineering Tools is the Major Impediment to the Development of Quasi-Optical Systems
- Field Analysis Tools

31

- Transient Analysis (Spice)
- Steady State Analysis (Harmonic Balance)
- In the U.S. addressed by two Small Business Innovative Research Programs
  - MICOM/USARO Scientific Research Associates
     working with North Carolina State University
     Custom Quasi-Optical Tools
  - ARPA Compact Software
     working with University of Colarado at Boulder & North
     Carolina State University
     Augmentation of Existing Tools

## Acknowledgement

The work is supported by the U.S. Army Research Office DAAL04-95-1-0536, Dr. James Harvey, program manager.

## ELECTROMAGNETIC MODELING OF QUASI-OPTICAL POWER COMBINERS

Todd W. Nuteson

Ph.D. Preliminary Oral Exam April 1, 1996 10:00 am, 406 Daniels Hall

Electronics Research Laboratory North Carolina State University

## Outline

- Overview of Quasi-Optical Power Combining
- Electromagnetic Modeling
  - Quasi-Optical Green's Functions
  - Method of Moments (MoM)
- Quasi-Optical Systems
  - Open Cavity Resonator
  - Grid Amplifier System
- Summary



## CAE Tool Development

- The Lack of Computer Aided Engineering Tools is the Major Impediment to the Development of Quasi-Optical Systems
- Development of Analytic and Numerical Techniques
  - Field Analysis Tools
  - Transient Analysis (Spice)
  - Steady State Analysis (Harmonic Balance)

## Open Cavity Resonator Dyadic Green's Function



$$\bar{\bar{G}}_{E} = \bar{\bar{G}}_{Eh} - \sum_{m=0}^{Nm} \sum_{n=0}^{Nn} \frac{R_{mn}\psi_{mn}}{2(1 + R_{mn}\psi_{mn})} \cdot \left[E_{mn}^{-} - E_{mn}^{+}\right] \left[\dot{E}_{mn}^{-} - \dot{E}_{mn}^{+}\right] \bar{\bar{I}}_{t}$$

## Lens System Dyadic Green's Function



$$\bar{\bar{G}}_{E} = \bar{\bar{G}}_{E0} - \sum_{m=0}^{Nm} \sum_{n=0}^{Nn} \frac{R_{mn}\psi_{mn}}{(1 - R_{mn}\psi_{mn})} E_{mn} \hat{E}_{mn} \bar{\bar{I}}_{t}$$

## Reflection Coefficient

Magnitude:

$$R_{mn} = \Gamma \alpha_{d,mn}$$

 $\Gamma \Rightarrow \text{reflection coefficient of lens}$   $\alpha_{d,mn} \Rightarrow \text{diffraction losses}$ 

Phase:

$$\psi_{mn} = \frac{E_{mn}^+(x, y, D)}{E_{mn}^-(x, y, D)}$$

good approximation at x = y = 0



$$\mathbf{E}_{T,st} = \begin{cases} a_{st} E_{st}^{-} \hat{\mathbf{a}}_{x} &, & z < -D \\ \left( c_{st} E_{st}^{+} + b_{st} E_{st}^{-} \right) \hat{\mathbf{a}}_{x} &, & -D < z < D \\ \left( d_{st} E_{st}^{+} + E_{st}^{-} \right) \hat{\mathbf{a}}_{x} &, & z > D \end{cases}$$

with boundary conditions  $(R_{mn},T_{mn})$  at each lens, unknown coefficients can be solved

## Modal Component

$$\vec{\mathbf{G}}_{Em} = -\sum_{mn} \frac{\dot{E}_{mn}}{2(1 - R_{mn}\psi_{mn})} \vec{\mathbf{I}}_{t}$$

$$\cdot \begin{cases}
T_{mn}E_{mn}^{-}, & z < -D \\
(R_{mn}\psi_{mn}E_{mn}^{+} + E_{mn}^{-}), & -D < z < 0 \\
(E_{mn}^{+} + R_{mn}\psi_{mn}E_{mn}^{-}), & 0 < z < D \\
T_{mn}E_{mn}^{+}, & z > D
\end{cases}$$

## Paraxial Component

determined from  $\mathbf{\ddot{G}}_{Em}$  with  $R_{mn} \rightarrow 0$  and  $T_{mn} \rightarrow 1$ 

$$\bar{\bar{G}}_{Ep} = -\frac{1}{2} \sum_{mn} \acute{E}_{mn} \bar{\bar{I}}_{T} \begin{cases} E_{mn}^{-}, & z < 0 \\ E_{mn}^{+}, & z > 0 \end{cases}$$

## Electric Field Integral Equation & MoM

Total Tangential Electric Field on Conductor Surface is Zero:

$$-\mathbf{E}_{t}^{scat}(x,y) = \mathbf{E}_{t}^{inc}(x,y)$$

Scattered Electric Field Relationship to Dyadic Green's Function:

$$\mathbf{E}_{t}^{\mathit{scat}}\left(x,y\right) = \int_{y'} \int_{x'} \overset{=}{\mathbf{G}}_{E} \cdot \mathbf{J}_{S}\left(x',y'\right) dx' dy'$$

Current Density Expanded in a Set of N Basis Functions:

$$\mathbf{J}_{S}(x',y') = \sum_{i=1}^{N} I_{i} \mathbf{W}_{i}(x',y')$$

Expansion and Testing (Galerkin Method) Yield Matrix Equation:

$$[\mathbf{Z}][\mathbf{I}] = [\mathbf{V}]$$

Solve for Unknown Currents  $I_i$ 

### Sub-Domain Sinusoidal Basis Functions





$$W_{i}^{x}\left(x\right) = \begin{cases} \frac{\sin\left[k_{0}\left(a - \left|x - x_{i}\right|\right)\right]}{b\sin\left(k_{0}a\right)}, & \left|x - x_{i}\right| \leq a\\ 0, & \left|y - y_{i}\right| \leq b/2 \end{cases}$$

## Excitation Vector Elements

$$V_{j} = \int_{y} \int_{x} \mathbf{W}_{j}(x, y) \cdot \mathbf{E}_{t}^{inc}(x, y) dx dy$$

- Incident Field Produced From:
  - Coaxial Current Probe
  - Delta-Gap Voltage Generator
  - Incident Plane-Wave
  - Incident Gaussian Beam-Mode







## Driving Point Impedance of the Patch Antenna

half-space



solid line: MoM simulation dashed line: measurement

cavity

D=62.05cm



solid line:  $TEM_{0,0,34}$  mode dashed line:  $TEM_{0,0,23}$  mode

## Cavity Field Effects of the Patch Antenna

cavity resonant mode frequencies  $f_{m,n,q}$ 



MoM simulation

solid line: antenna in cavity

dashed line: antenna in half-space

## Cavity Field Effects of an IMPATT Diode Oscillator

$$D = 61.25cm$$



$$D = 61.4cm$$



solid line: oscillator in half-space

dashed line: oscillator in cavity

dotted line: MoM simulated scaled reflection coefficient magnitude

## Driving Point Impedance on Expanded Smith Chart

markers show oscillation frequencies

$$D = 61.25cm$$

$$D = 61.4cm$$





8.648 GHz

MoM simulation from 8.63825 GHz to 8.67 GHz

solid line: oscillator in cavity

dashed line: oscillator in half-space







## Driving Point Reflection Coefficient

 $5 \times 5$  grid on a dielectric substrate in the lens system ( $\epsilon_r = 2.56$ , d = 9.5 mm, D = 117.5 cm)



solid line: MoM simulation



dashed line: measurement

## Configuration for Measuring Electric Field Intensity

X Band (8.2 GHz to 12.4 GHz)



horn aperture:  $19.5~\text{cm} \times 14.3~\text{cm}$ 

lens material: Rexolite 1422 ( $\epsilon_r$ =2.56) dia

diameter: 45.72 cm

radius of curvature: 70.49 cm

focal length: 58.74 cm

### Summary

- Full-Wave Field Analysis Tools Developed for Quasi-Optical Power Combiners
- Incorporates Dyadic Green's Functions Developed for each Quasi-Optical System
- MoM Scheme Utilizing Both Spatial and Spectral Domains for Efficient Computation of the Moment Matrix Elements
- Finite Sized Structures  $\Longrightarrow$  No Unit-Cell Approximations
- Accurately Predicts the Driving Point Impedance
- Simulated Results Compare Favorably with Measurements

### Acknowledgments

This work was supported in part by the U.S. Army Research Office through grants DAAL03-89-D-0030 and DAAH04-95-1-0536.

Dr. James Harvey, program manager.

## Quasi-Optical Power Combining Hughes Electronics Applications

**Hughes Research Laboratories** Paul Greiling Dec.4, 1995

# **Missiles Seeker Kadars**

Hughes Missile Systems Company is a major supplier of high performance missiles

Next generation of Hughes missiles will have more accuracy and longer range, all for a lower cost

is a higher power radar operating at a higher Critical to this next generation missile seeker frequency

## Missile Seeker Radar

Range increases
proportionally to the
inverse fourth power
of the output power

Resolution improves linearly with the operating frequency



## Missile Seeker Radar Kequirements

- Need to increase operating frequency from Ka-band to W-band to D-band
- New HEMTs
- Sub-quarter micron gate lengths
- Need to increase output power to watts at millimeterwave frequencies
- Higher frequency and breakdown voltage devices
- Power combining techniques

## Millimeterwave Device Technology

- Device output
  power decreases
  with increasing
  frequency
- Higher frequency of operation requires shorter gate lengths





# Millimeterwave Technologies

- for high power and frequency devices---InP & New epitaxial materials systems are required
- Extremely short gate lengths are required for high frequency operation---<0.1 micron
- Power combining techniques are required for high output power levels---quasi-optical

## Radar Cost Drivers

- Cost of high power, high frequency radar is prohibitive due to:
- semiconductor cost
- yield
- power cell size
- Need to combine many low power, low cost devices to achieve high power, high frequency radar



Frequency

Quasi-optical power combining of low cost cells

# TECHNOLOGY COST AND PERFORMANCE





## COMPARISON OF MICROWAVE INTEGRATED CIRCUIT APPROACHES



MAK 05 1996 **DUROID OR ALUMINA TRANSISTORS** DISCRETE SI OR GAAS OR INP

## MONOLITHIC MICROWAVE IC

## **ADVANTAGES**

LOW ASSEMBLY COSTS

## HYBRID MICROWAVE IC

## **ADVANTAGES**

- LOW COST FOR LOW COMPLEXITY
- DIFFERENT DEVICE TYPES FOR OPTIMIZED PERFORMANCE

## DISADVANTAGES

HIGHER ASSEMBLY COSTS

## DISADVANTAGES

- LOW YIELD
- HIGH COST FOR NEW TECHNOLOGIES

# FLIP-CHIP GRID AMPLIFIER/OSCILLATOR





## Program Goals

- 10 Watts @100 GHz for \$1000 Short Term---Yr 2000

- 100 Watts @ 100 GHz for \$100 Long Term---Yr 2005

## Conclusions

- Radar resolution and range must be increased
- generation of missile seeker radars Costs must be reduced in the next
- Trade off of power cell size vs. costs must be performed
- required to achieve the desired power Quasi-optical power combining is levels

# mmWave Plane Wave Amplifiers

There are today three monolithic Plane Wave Amplifiers under development at Rockwell Science Center

MAR (15 1996

- Uses orthogonally polarized input dipole antennas and output dipole antennas; developed with Caltech (a) Grid Amplifier at 40-44 GHz
- Uses Slot antennas in ground plane of microstrip for input and patch antennas on microstrip surface for output (b) Slot-Patch PWA at 40-44 GHz
- Uses orthogonal pairs ofFolded Slot antennas for input and output (c) Folded Slot PWA at 40-44 GHz developed with UCSB



Science Center

THESE ARE ALL TRANSMISSION TYPE PWAS

BCR08 (6A:041395

WAR 05 1996

## Monalithic Grid Amplifler





## MAK 55 1996

## Transmission Ampliflers: Gaussian Power Beam



Radially non-uniform device sizes to cope with radial power density change Gaussian optic lenses required for wavefront management Amplifier diameter increases to accomodate more power Type TGPD1: Power density varies across beam width



# mmWave Plane Weve Ampliflers

A Concept figure Illustrating the Guided Wave PWA system



amplification are cacaded in this conceptual sketch Waveguide is designed to maintain a uniform cross section power density. Three stages of



## **PWA Design**



de Rockwel

## Plane Wave Amplifier Chip Mounted on an Aluminum Nitride Carrier







## Waveguide Test Fixture for mim Wave Plane Wave Amplifler

MAR .) = 1996



of Rockwel





Science C

# 44 GHz Quasi-Optic PHEMT Amplifier





(Power characteristics of one cell)

- Small-signal gain > 8 dB
- Total output power ~ 2.2W

- compact design and good stability

Direct-coupled 2-stage design





Max. Output .25W

Measurement is uncorrected for fixture loses. (flange to flange)



# mmWave Plane Wave Ampliflers

#### **NEXT STEPS**

THE OPTIMUM APPROACH WILL NOT INCLUDE MICROSTRIP PATCH ANTENNAS

**UP BY NEW TECHNOLOGY TO ENHANCE ANTENNA ANTENNAS FOR INPUT AND OUTPUT BACKED** IT WILL BE BASED ON ORTHOGONAL SLOT PERFORMANCE:-- PHOTONIC BANDGAP SUBSTRATES

THE NEW SLOT ANTENNAS MAY BE "FOLDED **SLOT ANTENNAS**"



Science Center



Example: Patch antenna

### Slot - Slot Unit Cell





Science Center



### Aluminum Oxide Two Dimensional PBGS Fabricated Using LOM Rapid Prototyping Technique

MAR 05 1996









Science Center





The oversized waveguide must have dielectric loading to force field uniformity. Mode control is supplied by properly placed conductor sheets



# **QUASI OPTICAL POWER COMBINING**

#### GOALS:

- Solid-state quasi-optical power amplifiers/sources for 10-100 watts 35 to 100 GHz
- Predictive modeling of device/circuit performance based on full wave analysis of device/antenna array
- Improvement of device (PHEMT) efficiency enabling up to 100 watts at W-band

# HIGH POWER MILLIMETER WAVE APPLICATIONS





#### Path Loss:

$$P_R = P_R G_T G_R \left( \frac{4 \pi r}{\lambda} \right)^2$$

Communication Inter-Sattelite

#### Rayleigh Criterion:

$$\theta_{MINIMUM} = 1.22 \frac{\lambda}{D}$$

#### Hi Recolution

Radar

# EXAMPLE OF QUASI-OPTICS



### Power Combiner Comparison 60 GHz, 0.1W per Element

MAK . . . 199c



#### UNCLASSIFIED





### AFFECTING QUASI-OPTICAL POWER RADAR SYSTEM REQUIREMENTS COMBINING DEVICES

WILL CARAWAY 4 DEC 95 U.S. ARMY MISSILE COMMAND

UNCLASSIFIED



# PULSE RADAR BLOCK DIAGRAM



TRANSMITTER **EXCITER** 

DATA PROCESSOR

RECEIVER

PROCESSOR

SIGNAL

UNCLASSIFIED

U.S. ARMY MISSILE COMMAND

UNCLASSIFIED

MINE OF 1996





### CONTINUOUS WAVE (CW) RADAR **BLOCK DIAGRAM**

**TRANSMITTER EXCITER** 

**PROCESSOR** DATA

**PROCESSOR** SIGNAL

RECEIVER

U.S. ARMY MISSILE COMMAND

UNCLASSIFIED



### TRANSMITTER REQUIREMENTS GROUND BASED RADAR



TRANSMIT FREQUENCY: 1 - 16 GHz

OPERATIONAL BANDWIDTH: 200 MHz - 5 GHz

INSTANTANEOUS BANDWIDTH: 2 MHz - 1 GHz

TRANSMIT POWER: 1 W - 1 MW

PHASE NOISE: -50 - -135 dBc/Hz @ 10 kHz (Absolute)

WAVEFORMS: PULSE, BI-PHASE MODULATED, LINEAR FM, STEPPED FM

UNCLASSIFIED

- U.S. ARMY MISSILE COMMAND

#### UNCLASSIFIED



### RADAR SEEKER TRANSMITTER REQUIREMENTS



- TRANSMIT FREQUENCY: 10 95 GHz
- OPERATIONAL BANDWIDTH: 200 500 MHz
- INSTANTANEOUS BANDWIDTH: 2 500 MHz
- TRANSMIT POWER: 1 900 W
- PHASE NOISE: < -120 dBc/Hz @ 10 kHz (Absolute)
- WAVEFORMS: PULSED, LINEAR FM, STEPPED FM



# Quasi-Optical Scanned mmW Antennas

MAK US 1996





#### Radiatively Coupled Oscillator Arrays

Simple patch-antenna based oscillators synchronized through antenna coupling

Top array: 4x4 Gunn diode array

- 9.6 GHz operation 22 Watts ERP
- 1% DC-to-RF efficiency

Bottom array: 4x4 MESFET array

- 8.2 GHz operation
  - 10 Watts ERP
- 26% DC-to-RF efficiency

Proof of concept arrays, led to better understanding of coupled-oscillator beam-scanning, and mode-locking synchronization, phase dynamics, systems including mutual

では、大きないでは、また、は他のです。 大きながら、これは「神経ない」という。 「大きなない」となっています。 「大きない」という。 「大きなない」という。 「大きなない」という。







## Arbitrary Coupling Network

Enforce node coditions:

$$Y_{\text{osc,}i}(\omega, V_i) + Y_{\text{circ,}i}(\omega, \overline{V}) = 0$$

$$i = 1, 2, \dots$$

Convert to dynamic equations (Kurokawa):

$$\omega \Rightarrow \left[\omega_{i} + \frac{d\phi_{i}}{dt} - 3\frac{1}{A_{i}}\frac{dA_{i}}{dt}\right]$$

 $\kappa_{ij} \equiv Y_{ij}/G_L$ Define coupling parameters:

(Y-parameters) Coupling Network Osc #N Yt +N Osc #2 Osc #1

Broadband condition:

$$\frac{\omega_{\mathbf{i}}}{2Q} \sum_{j=1}^{N} \frac{\partial \kappa_{ij}}{\partial \omega} \frac{A_{j}}{A_{\mathbf{i}}} \ll 1$$

Leads to:

 $\frac{dA_i}{dt} = \frac{\mu \omega_i}{2Q} S_i(A_i) A_i - \frac{\omega_i}{2Q} \sum_{j=1}^N A_j \operatorname{Re} \left\{ \kappa_{ij} e^{j} (\theta_j - \theta_i) \right\}$  $\frac{d\theta_i}{dt} = \omega_i - \frac{\omega_i}{2Q} \sum_{j=1}^N \operatorname{Im} \left\{ \kappa_{ij} \frac{A_j}{A_i} e^{j(\theta_j - \theta_i)} \right\}$ 



## New Beam-Scanning Method

#### Conventional:

- Difficult, expersive to make
- Low-yield fabrication
- Requires high-power source
- Tough to monolithically integrate entire system



### Coupled-Oscillator Arrays:

- No phase shifters !!
- Only two controls lines for scanning
- Distributed solid-state source: no feed network
- Ideal for low-cost, hand-held or mobile applications





### Arbitrary Coupling Network

Enforce node coditions:

$$Y_{\mathrm{osc},i}(\omega,V_i) + Y_{\mathrm{circ},i}(\omega,\overline{V}) = 0$$
  
 $i = 1,2,...I$ 

Convert to dynamic equations (Kurokawa):

$$\omega \Rightarrow \left[\omega_{i} + \frac{d\phi_{i}}{dt} - J\frac{1}{A_{i}}\frac{dA_{i}}{dt}\right]$$

Define coupling parameters:  $\kappa_{ij} \equiv Y_{ij}/G_L$ 



illine coupining parameters:

Broadband condition:

$$\frac{dA_i}{dt} = \frac{\mu\omega_i}{2Q} S_i(A_i) A_i - \frac{\omega_i}{2Q} \sum_{j=1}^N A_j \operatorname{Re} \left\{ \kappa_{ij} e^{j(\theta_j - \theta_i)} \right\}$$

 $\frac{\omega_{i}}{2Q} \sum_{j=1}^{N} \frac{\partial \kappa_{ij}}{\partial \omega} \frac{A_{j}}{A_{i}} \ll 1$ 

$$\frac{d\theta_i}{dt} = \omega_i - \frac{\omega_i}{2Q} \sum_{j=1}^N \operatorname{Im} \left\{ \kappa_{ij} \frac{A_j}{A_i} e^{j(\theta_j - \theta_i)} \right\}$$



# Tightly Coupled Patch/Oscillator Arrays

MAIN U. 1996

- Strongly-coupled array
- broadband coupling network
- fabricated on er=10.8 substrate
- 4GHz, d=0.3  $\lambda_0$
- Optimum power/efficiency design: 43% Class AB





### spiellouis cook cultures

6 x 1 MESFET Airay Prototype vdth patch anteunas

40Hz optimum efficiency oscillator design (43% DC-to-RF conversion)

Results:

- Continuous scanning from 40° to +40° off broadside
- accomplished by adjusting endclement frequencies (drain blas)

Excellent correlation with theory







### Linear VCO Array

8 x 1 MESFET VCO Array Prototype Varactor-tuned patch antennas

1 Watt output at 8.4 GHz (10 Watt Effective Radiated Power)

#### Results:

- Simpler operation due to VCO, possibility of computer control
  - Continuous scanning from -15° to +30° off broadside

Excellent correlation with theory







# Improved Scanning Oscillator System



- doubled output greatly increases scan range: doubles interelement phase shift for a given tuning. Theoretically full hemispherical coverage.
- doublers simplify oscillator design for given output frequency
- amplifier array for best efficiency, also simplifies oscillator design
- low phase noise by locking to stable reference



### Enhanced Scan Angle

#### Array

- o MESFET/PATCH oscillator array operating at 4GHz doubled to 8GHz
- o 1/2 antenna spacing at 8GHz

#### Measured Results

- O Beam was steered from -40° to +40° through VCO tuning
  - o Maximum inter-element phase shift attained (after frequency doubling) is (+/-133°)





우

**Bb ni 1ewoq evitaleR** 





## Coupling 2D Oscillator Arrays

Couple rows together vertically at edge elements





### Results for 6 x 2 array

### 1.7 km for 6x3 arrang

- 933 Watt Effective Radiated Power (EIRP)
- Estimated directivity of 81 (19 dB) from pattern measurements (theory predicts 64)
- Leads to total radiated | W/elearth
- Array draws 9 Amp @ 8.5 V
  = 15% efficiency (المالة) (includes all bias circuity)
- Axial ratio <-25dB within HPBW</li>







# 300GHz Schottky-Contact RTD Array





# Circuit Layout of Planar Amplifier Array Using Folded-Slot Antennas



- The bandwidth is wider because the extra slot tends to cancel the off resonace reactance of a sirgle slot.
- Broadband ( DC 4CHz ) resistively feedback amplifier design.

GaAs MESFET, NE32184A

$$Z_{in} = Z_{out} = 125\Omega$$

8dB gain @ 4GHz

• Input impedance of folded-slot antenna is estimated from Babinet's principle.

$$Z_{folded-slot} \approx 125\Omega$$

Folded-slot antennas are attractive for active arrays because they are simple to make ( one mask step ) and can be easily integrated with three-terminal devices (HEMT and HBT)



# Finite-Difference Time-Domain (FDTD) Method

#### Why FDTD technique?

• Flexibility --- suitable for various circuit configurations.

metal

magnetic wall

- Active and nonlinear lumped elements can be included.
- Easy programming.



から 養工の 香物 あで ・ イ



### Comparison Between Measurement and **FDTD Simulation Results**





- Excellent agreement between simulation
- Great flexibility of analyzing different circuit configurations.



## Steady State Field Distributions in the Triple Folded Slot Antenna

Plan view of the antenna





- Fields in three slots are in phase as expected.
- FDTD is a great visual tool for electromagnetic problems.



# Impedance Scaling using Multiple Slots

#### Dipole

Half-wave dipole:



Folded dipole:



N-element folded dipole:

$$Z_{in} = N^2 Z_{dipole}$$

#### Slot

Half-wave single slot:



Folded slot:



N-element folded slot:

$$Z_{in} = \frac{Z_{slot}}{N^2}$$





### 4 x 4 1 13 T. Amplifier Array





o 0.635 mm Alumina substrate

50 (1yo-slot antennas, no match





# Bilateral Injection-Locking Approach

"Mutual Synchronization" "Inter-Injection-Locking"



Oscillators coupled through some electromagnetic coupling circuit:

- mutual coupling between antennas
  - cavity coupling
- transmission-lines circuits

## Plane Wave Amplifier Chip Version Using Folded Slot Antenna





Science Center

SCP.0938A.090595



# Preliminary Measured Results of the Amplifier Array

2 x 5 Array

Bias conditions:  $V_{be} = 1.5V$ ,  $I_b = 2mA$ 

 $V_{ce} = 3V$ ,  $I_c = 30 \text{mA}$ 



-- Bias on -----

Bias off

The on/off ratio is greater than 15dB from 37GHz to 40GHz.

• The 3dB bandwidth is close to 3GHz.

- 18 minimities continue doing "new" things

( ) lack of access to monolithic tab .

Scope of problems addressed, trequencies .. limited funding é globail interest -> no "kick-ass" result yet low fower, Inchaged devices
(limited performance) what has linded our progress

- stronger interaction between systems-device-circust - amplifier acromys - natural place for industrial butter guidance from Gov't /industry as to patter guidance froms/frequency ranges involvement, 6.1 - 6.2 or 6.3 some directions See Pr

# QO Technology Survival Path

module that would provide an evidence of high power amplifications at millimeter-wave frequencies. Such a demonstration may ensure a s a replacement for high volume conventional "fixed phase" power suitable market place for this emerging technology, perhaps at first Based on the opinion of several experts, a realistic challenge for quasi-optical technology is a proof-of-principle power amplifier (#C. such as TWTs used in Ka and W-band missile seeker

Prior to building a huge infrastructure for QO technology, perhaps it. s ideal for ARPA to support a single QO industrial program (~1 years) for establishing a proof-of-principle for QO technology. Under such a program, the QO Technology Survival would be depend on its demonstrated merits.

Compact's QO Mission:

- Develop a set of commercially available modeling and analysis tools to support the design and development of quasi-optical systems.
- significant source of uncommercialized quasi-optical CAD tools and techniques. This will enable us to develop cost effective CAD products through "shared development and resources". Through our " QO CAD alliance members", we possess a



111 att annual of 1111

# U.C. SANTH BARBARA

· coupled oscillatur systems

. Novel scanning concepts

Convent would

austumas

vs. grids

. integrated autenna design

· antennas for acrays

· modelling of arrays & grids using FDTD

· amplifier arrays

· ausi-opticie distributed circuits

Hughes Assent Laboratones, Jet Propulsion Labo supported by ARD, NSF, Rockwoll Science Center,

### Electromagnetics:

- antenna modelling
- antenna-circuit interactions
  - beam guiding system
    - packaging

### 25 th

epi-tansfe

- Device technology:
- yield & uniformity over
- substrates (affects antennas and thermal issues) large areas
- device size

### Economics:

- Frequency range?
- Does QOA solve the problem?
- Hybrid vs. monolithic

### Circuit Design:

• efficiency and array size (total output power)

Quasi-Optical

Arrays

- array topology
- systems requirements

### Thermal design:

- efficiency and array size (total output power)
  - array topology

### Nontinear. Ognamics chaos

出る。

### Quasi-Optical Research

### at the University of Colorado



Associate Proffessor, Electrical Engineering University of Colorado, Boulder

### Students:

Scott Bundy\*
Tom Mader\*
Jon Schoenberg\*
Wayne Shiroma
Milica Markovic
Jon Dixon
Stein Hollung
Eric Bryerton
Michael Forman
Joe Tustin
Robert Brown

### Funding:

NSF
ARO
Lockheed Martin
Compact Soft.(Air Force)
Compact Soft.(ARPA)
NAWC, China Lake
CAMI, ETAP
MURI (U of M)
SCT (Air Force)

· now with SCT, Inc., Golden, CO

· now with Hughes, El Segundo

\* now with Phillips Airforce Labs, Albaquerque

### Recent advances in quasi-optics at the University of Colorado 1994 and 1995, Zoya Popović

### Amplifiers:

- ♦ 24-element patch lens amplifier transmitter, 9 dB absolute power gain, 10 GHz.
- ♦ 24-PHEMT lens amplifier receiver with 2-stage LNAs, 13 dB gain, 1.9 dB noise figure, 30 dB isolation, 10 GHz.
- ♦ 4-MESFET high-efficiency power amplifier array, 2.4 W at 5 GHz, 74% drain eff., 64% PAE, 84% power-combining eff.
- ♦ Design of 2-Watt Ka-band array (with Lockheed Martin, Orlando).
- ♦ Monolithic 60-GHz HEMT array (with Lockheed Martin, Baltimore).
- ♦ Multistage lens amplifiers, X-band.

### Oscillators and mixers:

- ♦ Three-dimensional grid oscillators, 100 HEMTs in 4 grids at 5 GHz.
- ♦ Dual-frequency grid oscillator using an electronically tunable frequency selective surface, 4 and 6 GHz.
- ♦ Design of 36-MESFET Ka-band high power hybrid oscillator (with NAWC, China Lake).
- ♦ Design of monolithic 100-HEMT Ka-band oscillator (with TLC, SBIR I and Honeywell).
- ♦ Grid oscillators as self-oscillating mixers, 5 and 10 GHz, 100-800 MHz IF.

### Other components:

- ♦ Linear-to-circular polarizer, X-band, 1.1 dB loss, 1.2 dB axial ratio.
- ♦ Isolator, X-band, -19 and 9 dB isolation for the V and H components.
- ♦ Digital phase modulators, X-band, 0-90 and 0-180 deg in transmission.
- ♦ Electronically-tunable partially transparent reflector (FSS), 30% tuning, transmission 0.1 to 1 from 2 to 10 GHz.

### Subsystems:

- ♦ Two-stage power combining with 28-HEMT grid oscillator feeding a 24-HEMT lens amplifier, X-band.
- ♦ Beam steering, beam forming and beam switching with lens amplifier.
- ♦ Receiver with lens amplifier and grid subharmonic self-oscillating mixer, C-X band.
- ♦ Angular diversity with a receiving lens amplifier, X-band, -30 to 30 deg.

### Quasi-Optical Amplifier Feed Techniques

MAR 5 1996





MAR 05 1996

C U

Quasi-Optical Grou





H. B. BARRE

Noise Figure and Associated Gain for 24-Element CPW LNA Lans Array, Low Bias



NFmin = 1.9 dB @ 9.8 GHZ

SASSOC = 11.8 d.B

### The Quasi-Optical Class-E Power Amplifier



Single Element: 0.7W@56HZ PAE = 70%

- No vias
- No lumped elements
- •Good heat sinking
- 2x2 Arres: 2.4w, 64% Polarization isolated
  - •Broadband structure

~ 80'1. POWER-COMBINING EFFICIENCY



### Harmonic Balance Circuit Simulations Using an Ideal Switch Model at 5 GHz







# Tunable Transmission Filter



30% tuning bandwidth

# Mode-Selective Grid Oscillator







3.9 GHz

Locked mode achieved using a variable-reflectance mirror

Unlocked spectrum with a partially

reflecting front mirror

### Quasi-Optical Isolator

MAR . 3 1996











MAR 15 1996



### Quasi-Optical Receiver with Angle Diversity

MAR .) 5 1996



n uncorrelated beams:

$$P_e \propto \left(\frac{n}{5/N}\right)^n$$

### Relative IF Power (dB)



3661 3 1 NAM

# Millimeter-Wave Communication Applications Quasi Optical Arrays for

RICHARD COMPTON

SCHOOL OF ELECTRICAL ENGINEERING

CORNELL UNIVERSITY

**ITHACA NY 14853** 

HTTP://WRG.EE.CORNELL.EDU/



# Millimeter-wave Wireless Laboratory

### Outline

MAR 05 1996

### 

- PCS, MMDS, LMDS, 60 GHz, (Point-to-Point)
- Digital Battlefield
- 2. Key Technical Parameters
- Power/Filtering/Spectral Efficiency/Mechanical Design
- 3. Quasi-Optics
- Circular Arrays/Reflectors/Diversity
- Modulation FSK/PSK
- 4. Technology Barriers
- Design/Measurement
- Low-Cost Manufacture
- 5. Research Strategies

TELECOMMUNICATIONS

### Cable Television Life The Wires





Millimeter-wave Wireless Laboratory

MAR 18 1996

# Local Multipoint Distribution Service (LMDS)





Millimeter-wave Wireless Laboratory

9661 31 MM



# **Power Requirements**

| 101111      |         |  |
|-------------|---------|--|
| O MILLY THE |         |  |
|             | C 4HUUU |  |
|             | A MEDE  |  |

| Hub Transmission<br>Transmit Antenna Gain<br>Path Loss (100m)<br>Noise Figure<br>Receive Antenna Gain | 10<br>12<br>-108<br>-6 | dBW<br>dB<br>dB<br>dB |
|-------------------------------------------------------------------------------------------------------|------------------------|-----------------------|
| Received Power<br>Noise (50MHz)<br>C/N                                                                | -86<br>-127<br>41      | dBW<br>dBW            |
| Required C/N                                                                                          | 15                     | ф                     |
| Fade Margin                                                                                           | 56                     | фВ                    |

3661 87 MAIN



### Filtering



# Millimeter-wave Wireless Laboratory

## **Thermal Control**





# Spectral Efficiency







25

30

32

20

C/N (qg)

15

$$V(t) = I(t) \sin \omega t + Q(t) \cos \omega t$$

Spectral Efficiency (Bits/Sec/Hz)

9

# Quasi-Optical Arrays

Millimeter-wave Wireless Laboratory





Coupled Oscillator Array

Distributed Grid Array

## Circular Array



### **Array Pattern**



# Pattern Enhancement



# Reflector Enhancement



## Reflector Enhancement





## Non-Linear Modelling



## Measurement Layout

Millimeter-wave Wireless Laboratory





## Millimeter-wave Wireless Laboratory

### Measurement



## Research Strategies

WAR 75 1996

- 1. System Level Evaluation of Quasi-Optics
- Broadband Trial
- 2. Industry/University Program
- Service Providers (Cable/RBOC)
- Equipment Manufacturers
- Microwave Companies
- University
- Coding
- VLSI
- RF Circuits and Devices

## No Technology Breakthroughs uasi Optics



to Thousands of watts Solid State Sources from Tens of watts Frequency (GHz)

- Microwave and Millimeter Wave Bands
- Gracefully Degrading High Power with Solid State

### Phased Arrays

Constraints (m. in extent with the +1)

Aույ փիռ . մեջ 🕦

A SHARITABLE

- Water Scale Integration of Simple Identical Circuit Cells.
- 16:1 to 3000:1 Reduction in Module Count
- Lower Cost by 3 to 10 Times
- Upper Microwave and Millimeter Wave Bands

Enables Phased Arrays at MMW

MARTIN MARIETTA

SAOBREOPRIORS

# MMW Quasi-Optic Power Applications

| Area                    | Example                                                   | Bands        | Power<br>Watts | Prod<br>Nrs | When    |
|-------------------------|-----------------------------------------------------------|--------------|----------------|-------------|---------|
| Smart<br>Weapons        | Longbow, JDAM P3I,<br>BAT, LOCAAS,<br>Guided Projectiles, | Ka, W        | 2-20           | 10,000's    | .95-,05 |
| Hit-to-Kill<br>Seekers  | Erint/PAC3, JSSAM,<br>Corps SAM, Helo                     | Ku, Ka,<br>W | 50-2000        | 1,000's     | ,00-,10 |
| All Wx<br>Rot Wing      | AH-64, AH-66,<br>SH-60, OH-58                             | Ka, W        | 10-100         | 100's       | .95-'05 |
| All Wx<br>Fixed<br>Wing | F-15, F-16, F-18,<br>F-117, B-1, B-2                      | Ku, Ka       | > 1000         | 100's       | ,00-,10 |
| Ground                  | M1, M2, CIWS upgr,<br>Base Def                            | Ka, W        | 50-200         | 100's       | ,00,-10 |
| Comm                    | Xlinks, Downlinks,<br>Uplinks                             | Kt, Q, V     | 2-500          | 1,000's     | ,00-,10 |

# Grid Array Power Availability

Versus Frequency and Side Length



--- Single Cell --- 100 Cell Power --- 1000 Cell Power

OCKHEED MARTIN

## 6 by 6 Array with 3 by 3 Amplifier and Polarizer in Test Fixture

MAFET

Polarizer



Test Fixture,

6 by 6 Array - (4 mil Thick GaAs Wafer)

Cooling Tube

11/ AR114.0098-029

## Measured Results



| loyer and Reflected<br>emoved)                           | Small Signal   Large Signal | B 7 dB    | 12.5 watts   | Test Fixture Losses                      | Small Signal | A Code Code Code Code Code Code Code Code | "I'm this in the second |
|----------------------------------------------------------|-----------------------------|-----------|--------------|------------------------------------------|--------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amplifier Array (Spilloyer and Reflected Losses Removed) | Sillanis                    | Gain 7 dB | Power output | Amplifier Array with Test Fixture Losses | SmailS       | Gain Gain                                 | out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

11/ AR055-0028C-05

ALMILLEN GRENNSON

## V-Band Monolithic PHEMT Grid Amplifier (Lockheed Martin and Cal Tech)

- 36 elements at 50 GHz center frequency
  - 5 dB net gain measured (May, 1995)
    - 27 dB on/off ratio





36 Element Grid Array

Single Cell Design

KHEED MARTIN

## Key Elements of Amplifier Tested



### Constrained Package Amplifier Results

9661 St. Usini



| Value       | X-band    |            | 90 mw     | 14.2 dB    | 10.5%* | + 5 dBm     | 2.2 dB         |           | 14.7 dB    | 5.4% | 0 dBm       | 1.4 dB         |
|-------------|-----------|------------|-----------|------------|--------|-------------|----------------|-----------|------------|------|-------------|----------------|
| · Parameter | Frequency | Array Size | Power out | Total Gain | PAE    | Drive Power | Horn Pair Loss | Power out | Total Gain | PAE  | Drive Power | Horn Pair Loss |
|             | 8         |            |           | Hard Horn  | Feed   | )<br>)      |                | +         | Regular    | Horn | Feed        | )<br>)<br>-    |

# Results courtesy of Dr. A. Mortazawi, Univ. Central Florida

\* Efficiencies as high as 16.5% and power over 100 mw measured under different conditions; second stage efficiency was 25%



|   |    | . 3 |
|---|----|-----|
| - | U) | ) ( |
|   |    | •   |
| _ |    |     |
| - |    |     |
|   |    |     |
|   | _  |     |
|   | tſ | ۱   |
|   | V. | •   |
|   | U, | ١   |
|   | W  |     |
|   | 34 |     |
| ı | r  | _ 0 |
| • | _  | •   |
|   |    | - 3 |
|   |    |     |
|   |    |     |
|   | 1  | 1   |
|   | T  |     |
| • |    |     |
| • | Y  |     |
|   |    | -   |
|   |    |     |

| Key Element     | 7,                                                                                               | Development                                           | Results                 |
|-----------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------|
| 88              |                                                                                                  | Separate PHEMT and HBT                                | 4dB/3dB gains           |
| Grid Arrays     | 95                                                                                               | amplifier arrays tested by Cal Tech (50 Ghz & 40 GHz) | measured in far field   |
| Amplifier Cells | 46                                                                                               | 2 stage cascaded MESFET                               | 12-17 dB gain (small    |
|                 | -                                                                                                | cells tested in 9 element                             | signal) at 35 GHz       |
|                 | 6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | hybrid array                                          |                         |
| RF Power        | 95                                                                                               | Saturated RF Power                                    | 2.5 watts density       |
|                 | )                                                                                                | Measurements at Ka Band                               | measured far field      |
|                 |                                                                                                  | with 6 element array                                  |                         |
| Ousei-ontics    | 95                                                                                               | Hard Horn concept tested at                           | 1 dB uniformity over    |
| Eggd            |                                                                                                  | X Band and modeled at Ka                              | array; 4.6 dB improved  |
| 300             |                                                                                                  | Band                                                  | output over gaussian    |
| Constrained     | 95                                                                                               | 9 element X Band array                                | Far field/constrained   |
| Dackage         | <b>S</b>                                                                                         | tested in closed hard horn                            | package gains match;    |
| rachaya         |                                                                                                  | package                                               | PAE in high teens       |
| Close           | 76                                                                                               | Intra- and inter- grid coupling                       | Low loss (<.5 dB); wide |
| Collaboration   | •<br>>                                                                                           | concepts tested with just                             | band (>20%); low VSWR   |
| Simdnoo         |                                                                                                  | " mils" of coupling                                   | (>20 db isolation)      |
|                 |                                                                                                  | thickness                                             | •                       |
| Liguid Cooling  | 94                                                                                               | Liquid cooling test at MMC                            | Demo 50 watt capacity   |
| Cooling         | 95                                                                                               | Coupling through ground                               | Metal grd planes permit |
|                 | )<br>)<br>                                                                                       | planes                                                | conduction cooling      |
|                 |                                                                                                  |                                                       |                         |

WILLAM GIENNOOT

MAR 05 1996

## QUASI-OPTICS POWER AMPLIFIER CHARACTERISTICS CURRENT AND PROJECTED

| It Power         Net Volume         VVelgnt         F.A. Ellicelity           ratts         (cu. in.)         (oz.)         (%)           ratts         (cu. in.)         (oz.)         (%)           20         5         3         16         6         15-20         25-30           100         20         10         40         16         15-20         25-30           5         4         2         10         4         10-15         20           50         15         8         50         12         10-15         20 | 1    |              |                |               |       |            | 7        | 70000         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|----------------|---------------|-------|------------|----------|---------------|
| Now         Future         Now         Future         Now           5         3         16         6         15-20           20         10         40         16         15-20           4         2         10         4         10-15           15         8         50         12         10-15                                                                                                                                                                                                                                 | Outp | Output Power | Net Vo<br>(cu. | olume<br>in.) | (oz   | gnt<br>:.) | P.A. EII | Clericy<br>() |
| 5         3         16         6         15-20           20         10         40         16         15-20           4         2         10         4         10-15           15         8         50         12         10-15                                                                                                                                                                                                                                                                                                     |      |              | NoN            | Future        | . NoN | Future     | Now      | Future        |
| 20         10         40         16         15-20           4         2         10         4         10-15           15         8         50         12         10-15                                                                                                                                                                                                                                                                                                                                                              |      | 20           | 5              | 3             | 16    | 9          | 15-20    | 25-30         |
| 4     2     10     4     10-15       15     8     50     12     10-15                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |              | 20             | 10            | 40    | 16         | 15-20    | 25-30         |
| 15 8 50 12 10-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 20           | 24             | 2 0           |       |            | 10-15    | 20            |
| 15 8 50 12 10-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 5            | 4              | 7             | 2     | 7          | 2        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 50           | 15             | 8             | 20    | 12         | 10-15    | 20            |

### <u>Legend</u>

Gain: 10-12 dB Duty: 25% BW: > 1 GHz

### GRID AMPLIFIERS

### David Rutledge, Caltech

- Hybrid 10-GHz pHEMT 3.7-W grid amplifier— Michael DiLisio and Scott Duncan, Lockheed-Martin
- Monolithic 40-GHz HBT 650-mW grid amplifier— Jeff Liu and Emilio Sovero, Rockwell Science Center
- Monolithic 44–60 GHz pHEMT grid amplifier—
   Michael DiLisio and Sandy Weinreb, Lockheed-Martin



MAR 75 1996

### A Grid Amplifier



Cross-polarized input and output.

Provides good isolation

Allows indepenent tuning of input and output circuits through metal-strip polarizers

### GRID AMPLIFIERS

David Rutledge, Caltech

- Hybrid 10-GHz pHEMT 3.7-W grid amplifier—
   Michael DiLisio and Scott Duncan, Lockheed-Martin
- Monolithic 40-GHz HBT 650-mW grid amplifier— Jeff Liu and Emilio Sovero, Rockwell Science Center
- Monolithic 44–60 GHz pHEMT grid amplifier—
   Michael DiLisio and Sandy Weinreb, Lockheed-Martin



### Grid Amplifier Unit Cell



10 GHZ 10 HEMT

Arrows indicate direction of rf current.



### Assembled Grid Amplifier



Transmission-line Equivalent Circuit at 9GHz



### Grid Amplifier Gain Curves 1996 Amplifier tuned to 9GHz.



Peak gain 12dB at 8.9GHz.

3-dB bandwidth of 1.3GHz (15%).



MAR 15 1998

### Grid Amplifier Power Saturation

Amplifier tuned to 9GHz to match TWT output



3.7W saturated output power

MAR = 1996

### Grid Amplifier Noise Figure

10GHz amplifier with output tuner



Oscillation suppression gate resistors probably increase noise figure.



Caltech

MAR 05 1996

### Angular Dependence



Grid Amplifier (Output tuner removed)



Theoretical curves generated by scaling transmission line lengths by  $\cos\theta_i$  and TE impedances by  $\sec\theta_i$  and TM impedances by  $\cos\theta_i$ 

MAR (15 1995

### Angular Dependence



Grid Amplifier (Output tuner removed)



Theoretical curves generated by scaling transmission line lengths by  $\cos\theta_i$  and TE impedances by  $\sec\theta_i$  and TM impedances by  $\cos\theta_i$ 



### 100-Element pHEMT Grid Amplifier

Chips fabricated by Lockheed Martin Laboratories, Baltimore

### Summary of Results

- Gain and stability models developed and verified.
- Grid constructed using Martin Marietta 0.1-um pHEMT's.
- Spurious common-mode oscillations suppressed with chip resistors in the gate leads.
- Measured gain of 10dB at 10GHz and 12dB at 9GHz.
- 15% 3-dB bandwidth at 9GHz.
- Accepts beams with incidence angles up to 30°.
- Measured minimum noise figure of 3dB at 10GHz.
- 3.7W maximum saturated output power at 9GHz.
- Peak power-added efficiency of 12% at 9GHz.
   Peak device efficiency of 20%.



### Grid Amplifier Output Radiation Pattern

H-plane pattern of grid tuned for 10GHz without output tuner.

Normally-incident input.



Theoretical pattern assuming uniform array of 10 elemntary dipoles spaced 7.3mm apart.

Measured pattern is diffraction-limited.

### **GRID AMPLIFIERS**

### David Rutledge, Caltech

- Hybrid 10-GHz pHEMT 3.7-W grid amplifier— Michael DiLisio and Scott Duncan, Lockheed-Martin
- Monolithic 40-GHz HBT 650-mW grid amplifier— Jeff Liu and Emilio Sovero, Rockwell Science Center
- Monolithic 44–60 GHz pHEMT grid amplifier— Michael DiLisio and Sandy Weinreb, Lockheed-Martin

MAR 05.1996

### Rockwell HBT Layout







Science Center

9661 30 94M









### Monolithic HBT Grid Amplifier Gain Response



Gmax: 5 (dB) @ 40 (GHz) 3-dB bandwidth: 1.8 GHz; 4.5 % Monolithic HBT Grid Amplifier Output Power vs. Input Power



Max. Output Power: 670 mW

J.54B gain Limited input Power)

### Summary of Monolithic HBT Grid Amplifier

Gain Measurement

Gmax: 5dB @ 40GHz

3-dB Bandwidth: 1.8GHz; 4.5%

Power Measurement

Maximum Output Power: 670mW

Maximum Power-Added Efficiency: 4%

### GRID AMPLIFIERS

### David Rutledge, Caltech

- Hybrid 10-GHz pHEMT 3.7-W grid amplifier— Michael DiLisio and Scott Duncan, Lockheed-Martin
- Monolithic 40-GHz HBT 650-mW grid amplifier— Jeff Liu and Emilio Sovero, Rockwell Science Center
- Monolithic 44–60 GHz pHEMT grid amplifier— Michael DiLisio and Sandy Weinreb, Lockheed-Martin





### Grid Amplifier Gain Curves Amplifier tuned to 48GHz.



Peak gain 6dB at 48GHz.

3-dB bandwidth of 1.7GHz (3.5%).



### Grid Amplifier Tuning Range



44-60GHz tuning range.

Output tuner used for 60GHz gain curve.





### 36-Element Monolithic pHEMT Grid Amplifier

Grids fabricated at Lockheed Martin Laboratories, Baltimore

### Summary of Results

- Grid constructed with Lockheed Martin 0.1-um pHEMT's.
- Grid can be tuned by changing polarizer/tuner positions. Measured gain of 6.5dB at 44GHz and 2.5dB at 60GHz.
- 6% 3-dB bandwidth at 54GHz.
- Gain reduced by 5dB—possibly due to diffraction losses from the small grid  $(\lambda/2)$ .
- Could be used as a Travelling Wave Tube (TWT) replacement.

### GRID AMPLIFIERS

### David Rutledge, Caltech

- Hybrid 10-GHz pHEMT 3.7-W grid amplifier—
   Michael DiLisio and Scott Duncan, Lockheed-Martin
- Monolithic 40-GHz HBT 650-mW grid amplifier—
   Jeff Liu and Emilio Sovero, Rockwell Science Center
- Monolithic 44–60 GHz pHEMT grid amplifier—
   Michael DiLisio and Sandy Weinreb, Lockheed-Martin

## U.C. SANTH BARBARA

· coupled oscillatur systems

e modelling

. Novel scanning concepts

Convent would

austimas

4s. gr.4s

integrated autenna design

antennas for arrays

· modelling of arrays & grids using FDTD

· ausi-opticul distributed circuits amplifier arrays

Humbers Research Laboratories, Jet Propulsion Labo supported by ARD, NSF, Rockwell Science Center,

