1	CLAIMS
2	1. An isolated nucleic acid sequence comprising SEQ. ID. NO. 1.
3	2. A hydrogenase having an amino acid sequence comprising SEQ. ID. NO. 4.
4	3. An isolated nucleic acid sequence comprising SEQ. ID. NO. 7.
5	4. An isolated nucleic acid sequence comprising SEQ. ID. NO. 2.
6	5. A hydrogenase having an amino acid sequence comprising SEQ. ID. NO. 5.
7	6. An isolated nucleic acid sequence comprising SEQ. ID. NO. 8.
8	7. An isolated nucleic acid sequence comprising SEQ. ID. NO. 3.
9	8. A hydrogenase having an amino acid sequence comprising SEQ. ID. NO. 6.
10	9. An isolated nucleic acid sequence comprising SEQ. ID. NO. 9.
11	10. A cell comprising an isolated nucleic acid sequence encoding a protein
12	comprising SEQ. ID. NO. 4.
13	11. A cell comprising an isolated nucleic acid sequence encoding a protein
14	comprising SEQ. ID. NO. 5.
15	12. A cell comprising an isolated nucleic acid sequence encoding a protein
16	comprising SEQ. ID. NO. 6.
17	13. A photosynthetic process for hydrogen production comprising the steps of: (a)
18	growing a microorganism containing a gene coding for HydA having a nuclei
19	acid sequence set forth in SEQ. ID. NO. 1 in a culture medium containing
20	nutrients under illuminated conditions sufficient to accumulate an endogenous

substrate; then (b) depleting a nutrient in the culture medium selected from the

group consisting of sulfur, iron, and manganese; then (c) allowing the culture
to become anaerobic by consumption of an endogenous or exogenous
substrate in the light.

- 14. The photosynthetic process for hydrogen production in accordance with claim 13 wherein said nucleic acid sequence comprises SEQ. ID. NO. 2.
- 15. The photosynthetic process for hydrogen production in accordance with claim 13 wherein said nucleic acid sequence comprises SEQ. ID. NO. 3.
- 16. A photosynthetic process for hydrogen production comprising the steps of: (a) growing a microorganism producing a Fe-Hydrogenase enzyme comprising an amino acid sequence sequence set forth in SEQ. ID. NO. 4 in a culture medium containing nutrients under illuminated conditions sufficient to accumulate an endogenous substrate; then (b) depleting a nutrient in the culture medium selected from the group consisting of sulfur, iron, and manganese; then (c) allowing the culture to become anaerobic by consumption of an endogenous or exogenous substrate in the light.
- 17. The photosynthetic process of claim 16 wherein said amino acid sequence of said Fe-Hydrogenase enzyme comprises an amino acid sequence as set forth in SEQ. ID. NO 5.

l	18. The photosynthetic process of claim 16 wherein said amino acid sequence of
2	said Fe-Hydrogenase enzyme comprises an amino acid sequence as set forth
3	in SEQ. ID. NO 6.
4	19. An isolated amino acid sequence selected from the group consisting of SEQ
5	ID NO. 4, SEQ ID NO. 5, or SEQ ID NO. 6.

20. An isolated amino acid sequence with 75% or more sequence homology to a polypeptide selected from the group consisting of SEQ ID NO. 4, SEQ ID NO. 5, or SEQ ID NO. 6.