A SIMPLE NUMERICAL METHOD FOR PRICING AMERICAN POWER PUT OPTIONS

Kartikeya Kumar Gupta (180123020) Naman Goyal (180123029) Rathod Vijay Mahendra (180123037)

Indian Institute of Technology, Guwahati

November 16, 2021

Table of Contents

- Introduction
- 2 Formulation
- Transformed function
- Mumerical method
- 6 Numerical experiments
- 6 Conclusions

Table of Contents

- Introduction
- 2 Formulation
- Transformed function
- 4 Numerical method
- 5 Numerical experiments
- 6 Conclusions

Introduction

- American power put options
 - American option
 - Put option
 - Power option
 - Payoff of power option
- Optimal exercise boundary
 - Definition
 - Importance
- Finite Difference method
 - Definition
 - Importance

American power put options

American option

 An American option is a style of options contract that allows holders to exercise their rights at any time before and including the expiration date.

Put option

- A put option is a contract giving the option buyer the right, but not the obligation, to sell specified amount of an underlying security at a predetermined price within a specified time frame.
- This predetermined price at which the buyer of the put option can sell the underlying security is called the strike price.

Power option

 An option whose payoff is based on the price of an underlying asset raised to a power.

Payoff of power put option

- Payoff of power put option is given as

$$(K - S^n(T))^{+} = \max\{K - S^n(T), 0\}.$$

Optimal exercise boundary

Definition

 Optimal exercise boundary separates the area where one should continue to hold the option and the area where one should exercise it.

Importance

 The price problem requires complex analytical calculations. Due to the fact that the option holder has an early exercise right, the problem becomes a free boundary problem. As a result, determining the best exercise border is a major task when it comes to valuing American options.

Finite Difference method

Definition

- In numerical analysis, finite-difference methods (FDM) are a class of numerical techniques for solving differential equations by approximating derivatives with finite differences.
- Both the spatial domain and time interval (if applicable) are discretized, or broken into a finite number of steps, and the value of the solution at these discrete points is approximated by solving algebraic equations containing finite differences and values from nearby points.

Importance

- After determining the optimal exercise boundary, the American power put option values are calculated by applying the finite difference method (FDM).
- The proposed method provides fast and accurate results with respect to the calculation of the optimal exercise boundary and pricing of the American power put options.

Table of Contents

- Introduction
- 2 Formulation
- Transformed function
- Mumerical method
- Numerical experiments
- 6 Conclusions

Formulation

- PDE
 - Black-Scholes pde
 - Boundary Condition
 - Initial Condition
- Optimal exercise boundary (Beta)

PDE

 The Black-Scholes PDE for the price of an American power put option with a non-dividend yield can be given as

$$\frac{\partial P}{\partial \tau} - n \left\{ \frac{1}{2} \sigma^2 (n-1) + r \right\} S^n \frac{\partial P}{\partial S^n} - \frac{1}{2} (\sigma n S^n)^2 \frac{\partial^2 P}{\partial (S^n)^2} + r P = 0 \quad (1)$$

• Then (1) is subjected to the following boundary conditions.

$$\lim_{S^n \to \infty} P(\tau, S^n) = 0 \tag{2}$$

$$P(\tau, \beta(\tau)) = K - \beta(\tau) \tag{3}$$

$$P_{\mathbf{S}^n}(\tau,\beta(\tau)) = -1 \tag{4}$$

and the initial condition

$$P(0,S^n) = \max\{K - S^n, 0\}$$
 (5)

Optimal Exercise Boundary

- The best time to exercise an American option and its price are determined by the optimal exercise boundary denoted as $\beta = \{\beta(\tau) : \tau \in [0, T]\}$.
- Here, we suppose that the optimal exercise boundary $\beta(\tau)$ is continuously nonincreasing with $\beta(0)=K$. For each time $\tau\in[0,T]$, there exists an optimal exercise boundary $\beta(\tau)$, below which the American power put option should be exercised early, i.e., if

$$S^{n}(\tau) \leq \beta(\tau), \text{ then } P(\tau, S^{n}) = \max\{K - S^{n}(\tau), 0\}$$
 (6)

and if

$$S^{n}(\tau) > \beta(\tau)$$
, then $P(\tau, S^{n}) > \max\{K - S^{n}(\tau), 0\}$ (7)

Optimal Exercise Boundary - ctd.

- The time and asset price space are divided into two regions. A continuation region is the one in which it is optimal to hold, commonly known as $\Omega_C = [0, T] \times (\beta(\tau), \infty)$, and the region in which it is optimal to exercise, generally called the exercise (or stopping) region, is defined as $\Omega_E = [0, T] \times [0, \beta(\tau)]$.
- Following are the asymptotically optimal exercise boundaries for perpetual American power puts $\beta(\infty)$:

$$\beta(\infty) = \frac{\gamma}{\gamma + 1} K \tag{8}$$

where

$$\gamma = \frac{2r}{n^2 \sigma^2}$$

Figure: Optimal exercise boundary of an American power put option

Table of Contents

- Introduction
- 2 Formulation
- Transformed function
- 4 Numerical method
- 5 Numerical experiments
- 6 Conclusions

Transformed Function

• Before computing the PDE solution, we shall determine the ideal exercise border $(\beta(\tau))$ in this step. We give the following transformed function

$$Q(\tau, S^n) = \sqrt{P(\tau, S^n) - (K - S^n)}$$
(9)

• Since the solution is a horizontal line in the exercise zone and an inclined line in the continuation region, the aforementioned function is employed. As a result, $Q(\tau, S_n)$ equals 0 in the workout region and $Q(\tau, S_n) > 0$ in the continuation region. The boundary may be clearly detected since the transformed function create a sufficiently large angle with the horizontal line.

Angle b/w Q and Exercise region

Table of Contents

- Introduction
- 2 Formulation
- Transformed function
- Mumerical method
- Numerical experiments
- 6 Conclusions

Numerical Method

- A numerical method developed based on the transformed function. The independent variables in the Black–Scholes PDE are time (τ) and the underlying stock price (S^n) .
- To solve this problem using the FDM, we divide the time interval [0,T] into L subintervals, that is $\tau_I = I\Delta\tau, I = 0,1,2,...,L-1,L$ where $\Delta\tau = \frac{T}{L}$ and the stock price interval $[0,S_M^n]$ into M subintervals, that is $S_i^n = i\Delta S^n, i = 0,1,2,...,M-1,M, \ \Delta S^n = \frac{S_M^n}{M}.$
- We intend to define a numerical method for computing the grid values $P_i^l \approx P(\tau_l, S_i^n)$ and the optimal exercise boundary values $\beta_l = \beta(\tau_l)$, for i = 0, 1, 2, ..., M-1, M, and l = 0, 1, 2, ..., L-1, L. Herein, i denotes the horizontal node index, I denotes the time step index, and τ_{l-1} represents the (l1)th previous time step and τ_l represents the lth current time step.
- For the proposed problem, $\beta(\tau_{l-1})$ and P_i^{l-1} are given and the objective is to compute $\beta(\tau_l)$ and P_i^l . We proceed step by step now:

Step 1

- We begin with the initial value at time T , which provides the value of the payoff function $(K S_i^n)^+ = \max\{K S_i^n, 0\}$ and the optimal exercise boundary $\beta(0) = K$.
- Because the optimal exercise boundary $\beta(\tau_{l-1})$ is dependent on the future boundary value $\beta(\tau_l)$, it must be determined by setting the initial boundary value to the strike price $\beta(\tau_0) = K$ and working backward through time from $T = \tau_0$ to $T = \tau_L$.

Step 2

- We obtain the current optimal exercise boundary $\beta(\tau_l)$ based on the previous optimal exercise boundary $\beta(\tau_{l-1})$. The current optimal exercise boundary can be obtained using a transformed function $Q(\tau_l, S^n) = \sqrt{P(\tau_l, S^n) (K S^n)}$.
- Herein, to obtain Q at the current time step, the option price $P(\tau_I, S^n)$ should be obtained. Further, to find $\beta(\tau_I)$, we derive the relation between $Q(\tau_I, S^n)$ and $\beta(\tau_I)$.
- Now We find $P(\tau_l, S^n)$ with respect to the current time step using a three-point FDM based on a uniform mesh.
- If the optimal exercise boundary does not depend on the grid point, then we cannot use the FDM based on a uniform mesh. Therefore, we use natural cubic spline interpolation. Based on the mesh point information, we can obtain value between the mesh points.

Define:

$$S_1 = \beta(\tau_{l-1}) + \Delta S^n$$

$$S_2 = \beta(\tau_{l-1}) + 2\Delta S^n$$

then, we find $P(\tau_I, S_1)$.

• Because the previous optimal exercise boundary $\beta(\tau_{l-1})$ is dependent on the current optimal exercise boundary $\beta(\tau_l)$, we calculate the option price $P(\tau_l, S_1)$ on S_1 in the current time step using the explicit method.

The Black Sholes equation can be approximated as:

$$P(\tau_{l}, S_{1}) = (1 - r\Delta\tau)P(\tau_{l-1}, S_{1}) + n\left\{\frac{1}{2}\sigma^{2}(n-1) + r\right\}S_{1}\Delta\tau$$

$$\frac{\partial P(\tau_{l-1}, S_{1})}{\partial S} + \frac{1}{2}(\sigma nS_{1})^{2}\frac{\partial^{2}P(\tau_{l-1}, S_{1})}{\partial S^{2}}\Delta\tau$$
(10)

The derivatives in above equations could be formulated using:

$$\frac{\partial P(\tau_{l-1}, S_1)}{\partial S} \simeq \frac{P(\tau_{l-1}, S_2) - P(\tau_{l-1}, S_1)}{2(S_2 - S_1)} \tag{11}$$

$$\frac{\partial^{2} P\left(\tau_{l-1}, S_{1}\right)}{\partial S^{2}} \simeq \frac{P\left(\tau_{l-1}, \beta\left(\tau_{l-1}\right)\right) - 2P\left(\tau_{l-1}, S_{1}\right) + P\left(\tau_{l-1}, S_{2}\right)}{\left(S_{2} - S_{1}\right)^{2}}$$
(12)

- We now apply the cubic spline interpolation in above 2 equations to find $P(\tau_{l-1},S_1)$ and $P(\tau_{l-1},S_2)$; thus, we obtain $P(\tau_{l-1},S_1)\approx f(\tau_{l-1},S_1)$, $P(\tau_{l-1},S_2)\approx f(\tau_{l-1},S_2)$, where f is the cubic spline function.
- Because $P(\tau, S^n) = Q^2(\tau, S^n) + K S^n$, we obtain $P(\tau_{l-1}, \beta(\tau_{l-1})) = K \beta(\tau_{l-1})$ near the optimal exercise boundary (Q=0). Thus, we obtain $P(\tau_l, S_1)$. As we can see that

$$Q(\tau_{I}, S_{1}) = \sqrt{P(\tau_{I}, S_{1}) - (K - S_{1})}$$
(13)

• We find the relation between $\beta(\tau_{l-1} \text{ and } Q(\tau_l, S_1) \text{ using second-order Taylor expansion of Q:}$

$$Q(\tau, S^{n}) = Q(\tau, \beta) + Q_{S^{1}}(\tau, \beta) (S^{n} - \beta) + \frac{1}{2} Q_{S^{n} S^{1}}(\tau, \beta) (S^{n} - \beta)^{2} + \mathcal{O}(S^{n} - \beta)^{3}$$
(14)

• After some mathematical calculations we obtain:

$$6(\sigma n\beta)^{2}Q_{S^{n}}Q = 6(\sigma n\beta Q_{S^{n}})^{2}(S^{n} - \beta) - \{2Q_{S^{n}}^{2}(\beta' + A\beta + \sigma^{2}n^{2}\beta) - (A - r)\}(S^{n} - \beta)^{2}$$
(15)

where

$$\frac{\beta'}{\beta} pprox \frac{\ln\left(\frac{5^n}{\bar{\beta}}\right) - \left(\frac{5^n}{\beta} - 1\right)}{\Delta \tau}$$
 (16)

and

$$A = n \left\{ \frac{1}{2} \sigma^2 (n-1) + r \right\} \tag{17}$$

Combining the above 2 equations we can rewrite is as:

$$a\beta^{5} + b\beta^{4} + c\beta^{3} + d\beta^{2} + e\beta + f = 0$$
 (18)

where a, b, c, d, e, f are constants.

ullet This equation could be solved using Newton–Raphson method. Hence, the solution eta could be found at the current optimal exercise boundary.

Step 3

• Now task is to obtain the option price using $\beta(\tau_l)$. let j be the smallest spatial grid index over $\beta(\tau_l)$. If $\beta(\tau_l)$ is too close to S_j^n , we select the index j+1 instead of j. Using central difference for the spatial discretization, then:

$$\frac{\partial P_j^l}{\partial S_j^n} = \frac{P_{j+1}^l - P_{j-1}^l}{2\Delta S^n}, \frac{\partial^2 P_j^l}{\partial \left(S_j^n\right)^2} = \frac{P_{j+1}^l - 2P_j^l + P_{j-1}^l}{(\Delta S^n)^2}$$
(19)

 Now using the implicit scheme for time discretization, equation (1.5) is discretized as follows:

$$(1+r\Delta\tau)P_{j}^{l}-AS_{j}^{n}\frac{P_{j+1}^{l}-P_{j-1}^{l}}{2\Delta S^{n}}\Delta\tau-\frac{1}{2}\left(\sigma nS_{j}^{n}\right)^{2}\frac{P_{j+1}^{l}-2P_{j}^{l}+P_{j-1}^{l}}{(\Delta S^{n})^{2}}\Delta\tau=P_{j}^{l-1}.$$
(20)

- Generally, the optimal exercise boundary may not be located at the grid points. Therefore, we cannot use FDM directly. Because we know the values of P at β , we consider using linear interpolation between adjacent data points.
- The value of P at β can be written as

$$P(\tau_{l}, \beta(\tau_{l})) = \frac{\left(S_{j}^{n} - \beta(\tau_{l})\right)P_{j-1}^{l} + \left(\Delta S - S_{j}^{n} + \beta(\tau_{l})\right)P_{j}^{l}}{\Delta S^{n}} = K - \beta(\tau_{l})$$
(21)

• Hence we obtain:

$$P_{j-1}^{l} = \frac{\left(K - \beta\left(\tau_{l}\right)\right)\Delta S^{n} - \left(\Delta S^{n} - S_{j}^{n} + \beta\left(\tau_{l}\right)\right)P_{j}^{l}}{S_{j}^{n} - \beta\left(\tau_{l}\right)}$$
(22)

After mathematical calculations:

$$a_1(K - \beta(\tau_l)) + b_1 P_i^l + c_1 P_{i+1}^l = P_i^{l-1}$$
(23)

where

$$a_{1} = -\frac{1}{2} \left(\sigma n S_{j}^{n}\right)^{2} \Delta \tau \frac{1}{\left(S_{j}^{n} - \beta\left(\tau_{l}\right)\right) \Delta S^{n}} + A S_{j}^{n} \Delta \tau \frac{1}{2\left(S_{j}^{n} - \beta\left(\tau_{l}\right)\right)}$$

$$b_{1} = 1 + r \Delta \tau - A S_{j}^{n} \Delta \tau \frac{\Delta S^{n} - S_{j}^{n} + \beta\left(\tau_{l}\right)}{2\left(S_{j}^{n} - \beta\left(\tau_{l}\right)\right) \Delta S^{n}}$$

$$+ \frac{1}{2} \left(\sigma n S_{j}^{n}\right)^{2} \Delta \tau \left\{ \frac{S_{j}^{n} - \beta\left(\tau_{l}\right) + \Delta S^{n}}{\left(S_{j}^{n} - \beta\left(\tau_{l}\right)\right) \left(\Delta S^{n}\right)^{2}} \right\}$$

$$c_{1} = -A S_{j}^{n} \Delta \tau \frac{1}{2\Delta S^{n}} - \frac{1}{2} \left(\sigma n S_{j}^{n}\right)^{2} \Delta \tau \frac{1}{\left(\Delta S^{n}\right)^{2}}$$

$$(24)$$

We can rewrite a recursive formula like:

$$a_i P_{i-1}^l + b_i P_i^l + c_i P_{i+1}^l = P_i^{l-1}$$
 (25)

where

$$a_{i} = \mu_{i} - \lambda_{i}, b_{i} = (1 + r\Delta\tau) + 2\lambda_{i}, c_{i} = -(\mu_{i} + \lambda_{i})$$

$$\mu_{i} = A \frac{\Delta\tau}{2\Delta S^{n}} S_{j+i-1}^{n}, \lambda_{i} = \frac{(\sigma n)^{2}}{2(\Delta S^{n})^{2}} \Delta\tau \left(S_{j+i-1}^{n}\right)^{2}, 2 \leq i \leq M - j + 1$$
(26)

• The Dirichlet boundary condition at $\beta(\tau_l)$ gives $K - \beta(\tau_l)$. Therefore we can observe a set of simultaneous equations which could be solved using matrix of from $W\mathbf{x} = \mathbf{y}$.

$$\begin{pmatrix}
1 & 0 & 0 & \cdots & 0 & 0 \\
a_{1} & b_{1} & c_{1} & \cdots & 0 & 0 & 0 \\
0 & a_{2} & b_{2} & c_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & a_{M-j} & b_{M-j} & c_{M-j} & b_{M-j+1} & b_{M-j+1}
\end{pmatrix}
\begin{pmatrix}
P_{\beta}^{l} \\
P_{j}^{l} \\
P_{j+1}^{l} \\
\vdots \\
P_{M-1}^{l} \\
P_{M}^{l}
\end{pmatrix} = \begin{pmatrix}
K - \beta (\tau_{l}) \\
P_{j-1}^{l-1} \\
P_{j+1}^{l-1} \\
\vdots \\
P_{M-1}^{l-1} \\
P_{M}^{l-1}
\end{pmatrix}$$
(27)

where

$$a_{M-j+1} = 2\mu_{M-j+1}, b_{M-j+1} = 1 + r\Delta\tau - 2\mu_{M-j+1}$$
 (28)

Solution for W

- To solve this system, we verify if the coefficient matrix W is invertible. By following Proposition given below, we verify the existence and uniqueness of the system of equations.
- Definition: An n × n matrix is said to be strictly diagonally dominant when

$$|a_{ss}| > \sum_{t=1, s \neq t}^{n} |a_{st}|$$
 (29)

holds for s = 1,2,...,n, where a_{st} denotes the entry in the sth row and tth column.

• Proposition: If

$$\frac{1}{\Delta \tau} + r > A\tilde{C}(M+1) \tag{30}$$

then W is strictly diagonally dominant, where \tilde{C} is a constant. Therefore, the linear system has a unique solution.

- By some complex mathematical formulations we can show that W in equation is strictly diagonally dominant and it can be shown that every strictly diagonally dominant matrix is invertible.
- Lemma: Following conditions are equivalent on the $n \times n$ square matrix W.
 - (1) The matrix W is invertible.
 - (2) The linear system Wx = y is consistent for every y.
 - (3) The linear system Wx = y has a unique solution for every y.
- Hence, by above lemma, we prove the existence and uniqueness of the solution to system of equations. The system can be solved by finding the inverse matrix W^{-1} . Therefore, we can obtain the option value for the next time level.

Why is every strict diagonally dominant matrix is invertible

For an elementary proof, assume there exists a vector $x \neq 0$ such that Ax = 0. This implies $\sum_{j=1}^{n} a_{ij}x_j = 0, \forall i \in \{1, \dots, n\}$. Let $x_k = \|x\|_{\infty} \neq 0$, i.e. x_k is the largest entry of x by absolute value. We have:

$$0 = \sum_{j=1}^{n} a_{kj} x_j \Longrightarrow a_{kk} x_k = -\sum_{j \neq k} a_{kj} x_j \Longrightarrow a_{kk} = -\sum_{j \neq k} a_{kj} \frac{x_j}{x_k}$$

By taking the absolute value we get:

$$|a_{kk}| = \left| \sum_{j \neq k} a_{kj} \frac{x_j}{x_k} \right| \le \sum_{j \neq k} |a_{kj}| \underbrace{\left| \frac{x_j}{x_k} \right|}_{<1} \le \sum_{j \neq k} |a_{kj}|$$

This is a contradiction since A is strictly diagonally dominant. This means that $0 \notin \sigma(A)$, hence A is invertible.

Step 4

ullet We repeat the previously mentioned process until au_L and obtain the optimal exercise boundary in a time-recursive manner.

Table of Contents

- Introduction
- 2 Formulation
- Transformed function
- Mumerical method
- Numerical experiments
- 6 Conclusions

Numerical Experiments

- Optimal boundary condition for n=1
- American power put price vs asset price for n = 1
- Price of option vs asset price and Payoff vs asset price
- Beta for different values of n

Optimal boundary condition for n=1

- We consider the strike price K=100, the interest rate r=0.1, the volatility =0.3, and the time to maturity T=1 (year). Further, we construct the computational domain with 250 spatial steps and 1000 timesteps.
- At the maturity time, the optimal exercise boundary theoretically is $\beta(T) = 76.0964$, whereas it is $\beta(T) = 73.1258$ in the proposed method.
- The asymptotically optimal exercise boundary with respect to the perpetual American power put option is $\beta(\infty)=68.9655$.

Optimal boundary condition for n=1 ctd.

American power put price vs asset price for n = 1

• The parameter values used to calculate the optimal exercise boundary and values of the American put options are $r=0.1,\ \sigma=0.3,\ K=100,\ T=1$ and n=1 and the computational domain can be constructed with 250 spatial steps and 1000 time steps.

American power put price vs asset price for n = 1 ctd.

Price of option vs asset price and Payoff vs asset price

- The below figure shows that the American power put option values obtained when power n=2, 3, 4, 5. The American power put option values increase with the increasing value of power n.
- The feature of nonlinear payoffs of power options provides the buyer with a potential to receive a considerably higher payoff than that received from a vanilla option.

Price of option vs asset price and Payoff vs asset price ctd.

Beta for different values of n

- We use $\sigma=0.1$, r = 0.08, K = 100,T = 0.5, and L \times M = 2000 \times 300. The below figure optimal exercise boundary for different values of power n = 2, 3, 4, 5.
- Further, the optimal exercise boundaries are plotted as a function of time τ . The optimal exercise boundaries decrease with the increasing power.

Beta for different values of n ctd.

Table of Contents

- Introduction
- 2 Formulation
- Transformed function
- 4 Numerical method
- Numerical experiments
- 6 Conclusions

Conclusions

- We provided a numerical method and examples for pricing the American power put option for non-dividend yields.
- we determined the optimal exercise boundary using the transformed function.
- We have compared the other results with the results obtained using the proposed method for the valuation of the American power put option when n=1 to provide sufficient numerical analysis.
- We provided the optimal exercise boundary and American power put option values for different values of power n.
- The numerical experiment denotes that the proposed method is accurate, flexible, and efficient and provides accurate prices with respect to the critical stock price for various parameter combinations.