Regression Analysis

BU609-3

Some Business Applications

- How do employee wages relate to experience, education, gender, ... ?
- Does a stock's current price depend on past values, as well as the current and past market index value?
- To what extent do current sales levels depend on current & past advertising levels, advertising levels of competitors, past sales levels, and the general market level?
- How does the unit cost of producing an item depend on the total quantity produced?

Objectives

- Understand reasoning behind regression models
- Be able to use Excel to run multiple regressions models
- Understand and interpret computer output
- Understand limitations of regression

Simple Linear Regression

Fitting a straight line to sample data

3

Introduction

- Modeling technique for relationships
 can't show causality, just a relationship
- Technique also used to predict value of one variable (dependent variable, y) based on value of other variables (independent variables $x_1, x_2,...x_k$)
- Scatterplot is always best way to start

Estimating Model Coefficients

- Estimates are determined by
 - drawing a sample from population of interest,
 - producing a straight line that cuts into data points, and which minimizes sum of squared vertical differences between all points and the line
- Resulting equation is

$$\hat{y} = b_0 + b_1 x$$

First Order Linear Model

$$y = \beta_0 + \beta_1 X + \varepsilon$$

- y = dependent variable
- x = independent variable
- β_0 = y-intercept
- β_1 = slope of the line
- ε = error variable "everything else"

Scatterplot - Used Car Price vs Odometer

Always a great way to start looking at your data

Simple Linear Regression Line

Tools > Data analysis > Regression > [Shade y range & x range] > OK

Error Variable: Required Conditions

- Error ε is a critical part of regression model
- Four requirements involving distribution of ε *must* be satisfied:
 - Probability distribution of ε is Normal
 - Mean of ε is zero: $E(\varepsilon) = 0$
 - Std dev of ϵ is σ_{ϵ} for all values of x
 - » Minor deviation not a problem
 - Set of errors associated with different values of y are all independent
 - » Usually only a time series problem

Interpreting Results

Assessing Regression Model

- Least squares method will produce a regression line whether or not there is a linear relationship between x and y
- Consequently, it is important to assess how well linear model fits data
- Several methods are used to assess model:
 - Testing and/or estimating coefficients
 - Using various descriptive measurements

12

Standard Error of Estimate

- Assumption: Mean error is equal to zero
 Error = residual = observed predicted
- If σ_{ϵ} is small, errors tend to be close to zero (close to mean error); model fits data well
- So, can use σ_{ϵ} as a measure of suitability of using linear model
- Unbiased estimator of σ_{ϵ}^{2} is given by s_{ϵ}^{2} (Standard Error in output)

Car Example (cont.)

• What does standard error of estimate for previous example say about model fit?

SUMMARY OUTPUT	
Regression S	tatistics
Multiple R	0.8063
R Square	0.6501
Adjusted R Square	0.6466
Standard Error	303.1375
Observations	100

Hard to assess model based on s_ε even when compared with mean value of y

 $s_{\varepsilon} = 303.14, \ \overline{y} = 14,822.82$

Testing the slope

 When no linear relationship exists between two variables, regression line should be horizontal

(cont.)

13

• Can draw inference about β₁ from b₁ by testing

$$H_0$$
: $\beta_1 = 0$

 H_a : $\beta_1 \neq 0$ (or < 0, or > 0)

- Test statistic is

$$t = \frac{b_1 - \beta_1}{s_{b_1}} \qquad \text{where} \qquad s_{b_1} = \frac{s_{\epsilon}}{\sqrt{(n-1)s_{\chi}^2}}$$

- If error variable is normally distributed, statistic is Student t dist. with d.f. = n-2
- p-value given in Excel output

Car Example (cont.)

- Solution
 - From Excel output:

	Coefficients	Standard Error	t Stat	P-value
Intercept	17,066.77	169.02	100.97	7.2785E-101
Odometer	-0.0623	0.0046	-13.49	4.44346E-24

Overwhelming evidence to infer odometer reading affects auction selling price

17

Coeff. of Determination (R^2)

Amt of variation explained by model

ANOVA

	df	SS	MS	F	Significance F
Regression	1	16,734,110.88	16,734,110.88	182.11	4.44346E-24
Residual	98	9,005,449.88	91,892.35		
Total	99	25,739,560.76			

Adj. R²: adjusts for d.f.; penalizes unnecessarily complex model

Correlation Coefficient (R)

- Correlation Coefficient R gives strength of association between x & y (or model & y); also gives direction of association
 - Regression s/w only shows + value!!
 - Scatterplot or Correlation Analysis gives sign
- Recall correlation coeff range: $-1 \le r \le 1$
 - If r = -1 (negative association) or r = +1 (positive association) every point falls on the regression line

18

20

- If r = 0 there is no linear pattern
- To test for linear relationship between two variables, test for $\beta_1 = 0$

Testing Full Model (ANOVA)

 H_0 : All $\beta = 0$;

 H_a : at least one β ≠0

Test Statistic: F statistic used

p-value: given in computer output (significance)

ANOVA

	df	SS	MS	F	Significance F
Regression	1	16,734,110.88	16,734,110.88	182.11	4.44346E-24
Residual	98	9,005,449.88	91,892.35		
Total	99	25,739,560.76			

Using Regression Equation

- Before using regression model, need to assess how well it fits data
- If satisfied with how well model fits data, can use it to make predictions for y
- Illustration
 - Predict the selling price of a three-year-old Ford with 40,000 miles on the odometer (prev. example)

$$\hat{y} = 17,067 - .0623x = 17,067 - .0623(40,000) = 14,575$$

Finance Application: Market Model

- One important application of linear regression is the *market model*
- Assume rate of return on a stock (R) is linearly related to rate of return on overall market

21 22

Market Model Alpha & Beta

- Alpha measures how well security performed on a risk-adjusted basis
 - >0: security did better than benchmark
 - <0: security did worse than benchmark
- Beta is a measure of sensitivity of security return to market
 - >1.0: aggressive security
 - <1.0: defensive security
- Can consider market index & one stock, or market index & portfolio

Market Model & Risk Analysis

- Market model provides useful insights into analyzing risk-return characteristics of a portfolio. From the market model, can determine the alpha, beta, and residual risk:
 - Alpha: measure of how large (small) "abnormal" return is
 - Beta: measure of how large market risk is (market-related or systematic risk)
 - Coeff. of Determination: measures proportion of total risk that is market related; remainder is firmspecific (nonsystematic)
 - Residual risk (epsilon): risk unrelated to market

Example: Market Model

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.560079 R Square 0.313688 Adjusted F 0.301855 Standard E 0.063123 Observatio 60 for Nortel, a stock traded on the Toronto Stock Exchange
 Data consisted of monthly

percentage return for Nortel and monthly percentage return for all the stocks

Estimate the market model

This is a measure of the stock's market related risk (sensitivity). In this sample, for each 1% increase in the TSE return, the average increase in Nortel's return is .8877%.

This is a measure of the total risk embedded in the Nortel stock that is market-related.

Specifically, 31.37% of the variation in Nortel's return is explained by the variation in the TSE's returns.

25

тсерт 0.012010 0.008223 1.558903 0.12446 [0.887691 0.172409 5.148756 3.27E-06

Example: Nortel & Royal Bank

- We'll use our data from 609-1
 - TSX Data Regression
- Which stock is more sensitive to changes in the market index?
 - Compare betas
- Which stock has the larger firm-specific risk?
 - Compare complement of R² (Coeff. of Det.)
 (NB: Excel doesn't like missing data)

26

28

Regression Diagnostics

- Recall conditions required for validity of regression analysis:
 - error variable is normally distributed with mean zero
 - error variance is constant for all values of x
 - errors are independent of each other (watch with time series)
- How can we diagnose violations of these conditions?

Residual Analysis

- Examining residuals (or standardized residuals), can identify violations of required conditions
 - Residual = error = observed predicted
 - Standardized residual = Residual / Std Error
 - Testing Normality requirement
 - » Use Excel to obtain standardized residual histogram (all within +/- 3 std dev)
 - » Examine histogram and look for a bell shape with mean close to zero

(cont.)

RESIDUAL OUTPUT

Standardized residual i = Residual i / Standard error

Observation	Predicted Price	Residuals	Standard Residuals
1	14736.915	-100.9149985	-0.334595895
2	14277.64993	-155.6499296	-0.516076186
3	14210.66079	-194.6607914	-0.645421421
4	15143.5858	446.4141955	1.480140312
5	15091.05386	476.946143	1.58137268
6	14947.41668	-229.4166814	-0.760658782

Can also apply Lilliefors test or χ^2 test of Normality

29

31

Heteroscedasticity

- When requirement of constant variance is violated, have heteroscedasticity
 - test by plotting residuals vs predicted y

Homoscedasticity

 When requirement of constant variance is not violated, have homoscedasticity

Nonindepend. of error variables

- Examining residuals over time, no pattern should be observed if errors independent
- When pattern is detected, errors said to be autocorrelated
- Autocorrelation can be detected by graphing residuals against time
- Time series if data collected over time
 - may be better to use time series analysis
 - this is for our Forecasting class

Patterns in the appearance of the residuals over time indicates that autocorrelation exists.

33

Outliers

- Outlier is an observation that is unusually small or large
- Several possibilities need to be investigated when an outlier is observed:
 - There was an error in recording value
 - Point does not belong in sample
 - Observation is valid.
- Identify outliers from the scatter diagram
- Customary to suspect an observation is an outlier if its | standard residual | > 2

34

Multiple Linear Regression

Model & Required Conditions

 Allow for k independent variables to potentially be related to a single dependent variable

Estimating Coeffs. & Assessing Model

Procedure

- Obtain model coefficients and statistics using statistical computer software
- Diagnose violations of required conditions.
 Try to remedy problems when identified
- Assess model fit and usefulness using the model statistics
- If model passes assessment tests, use it to interpret coefficients and generate predictions

Example

- La Quinta Motor Inns is planning expansion
 - Management wishes to predict which sites are likely to be profitable
 - Several areas where predictors of profitability can be identified are:
 - » Competition
 - » Market awareness
 - » Demand generators
 - » Demographics
 - » Physical quality

38

(cont.)

Data was collected from randomly selected 100 inns that belong to La Quinta, and ran for the following suggested model:

Margin = $\beta_0 + \beta_1$ Number + β_2 Nearest + β_3 Office + β_4 College + β_5 Income + β_6 Distance + ε

Margin	Number	Nearest	Office Space	Enrollment	Income	Distance
55.5	3203	4.2	549	8	37	2.7
33.8	2810	2.8	496	17.5	35	14.4
49	2890	2.4	254	20	35	2.6
31.9	3422	3.3	434	15.5	38	12.1
57.4	2687	0.9	678	15.5	42	6.9

Excel Output

				TL	!- !- Al			
SUMMARY OL	JTPU	Т					regression e	
				(so	ometime	s called	the predictio	n equation)
Regression Statistics				,			•	
Multiple R		0.7246						
R Square		0.5251	Marg	in =	38.14 -	0.00761	lumber +1.6	5Nearest
Adjusted R Squ	uare	0.4944					Space +0.21	
Standard Error		5.51						
Observations		/100			+ 0.41	IIncome	- 0.23Distar	nce
ANOVA								
	/ df		SS		MS	F	Significance F	
Regression		6	31	23.8	520.6	17.14	0.0000	
Residual 93		28	25.6	30.4				
Total		99	59	49.5				
/								
		Coefficients	Standard E	rror	t Stat	P-value		
Intercept /		38.14		6.99	5.45	0.0000		
Number /		-0.0076	0.	0013	-6.07	0.0000		
Nearest		1.65		0.63	2.60	0.0108		
Office Space		0.020	0.	0034	5.80	0.0000		
Enrollment		0.21		0.13	1.59	0.1159		
Income		0.41		0.14	2.96	0.0039		
Distance		-0.23		0.18	-1.26	0.2107		

42

Assessing & Using the Model

- Coefficient of determination (R²)
- Linear relationship: ANOVA (all $\beta = 0$?)
- Testing coefficients (each $\beta = 0$?)
- Standard error of estimate
- Interpreting coefficients
- Using linear regression equation
 - predicting
 - explaining

Multicollinearity, Example

- Real estate agent believes that house selling price can be predicted using house size, number of bedrooms, and lot size
- Random sample of 100 houses was drawn and data recorded

Price	Bedrooms	H Size	Lot Size
124100	3	1290	3900
218300	4	2080	6600
117800	3	1250	3750

Analyze relationship among four variables

Solution

• The proposed model is PRICE = $\beta_0 + \beta_1$ BEDROOMS + β_2 H-SIZE + β_2 LOTSIZE + ϵ

Regression S Multiple R R Square Adjusted F Standard E Observatio	0.7483 0.5600 0.5462 25023 100		va	odel is valid, but no riable is significantly lated to selling price!!
ANOVA	df	SS	MS	F Significance F
Regressior	3	76501718347	25500572782	40.73 0.0000
Residual	96	60109046053	626135896	
Total	99	136610764400		
Co	efficients	Standard Error	t Stat	P-yalue
Intercept	37718	14177	2.66	0.0091
Bedrooms	2306	6994	0.33	0.7423
House Size	74.30	52.98	1.40	0.1640
Lot Size	-4.36	17.02	-0.26	0.7982

- Investigating each independent variable alone, it is found that each is strongly related to selling price (correlation analysis)
- Multicollinearity is source of problem

	Price	Bedrooms	H Size	Lot Size
Price	1			
Bedrooms	0.645411	1		
H Size	0.747762	0.846454	1	
Lot Size	0.740874	0.83743	0.993615	1

- Correlation Table shows each independent variable is also correlated with the others!
 - Could have anticipated this

Multicollinearity

- Two or more independent variables in the model are linearly related to each other
 - check by regressing each X on all the other X's (VIF)

$$VIF = 1 / (1 - R^2)$$

- Causes two problems:
 - t statistics appear to be too small (insignificant p)
 - β coefficients cannot be interpreted as "slopes"

Regression Diagnostics (Review)

Required conditions for model assessment to apply must be checked

- Is error variable normally distributed?
- Is error variance constant?
- Are errors independent?
- Can identify outliers?
- Is multicollinearity a problem?

- Use Normality plot or histogram of residuals
- Plot std residuals versus y-hat
- Plot std residuals versus time periods
- Scatterplot, residual analysis
- Use VIF values (issue if any VIF > 5)

47

45

Remedying Violations of Required Conditions

- Nonnormality or heteroscedasticity can usually be remedied by using transformations on y variable
- Transformations can improve linear relationship between dependent variable and independent variables
- Many computer software systems allow us to make transformations easily

Brief List of Transformations

- normalize the y appropriately: y' = y / size_factor
- $y' = \log y \text{ (for } y > 0)$
 - When s_E increases with y, or
 - When error distribution is positively skewed
- $y' = y^2$
 - When the s_{ϵ}^{2} is proportional to E(y), or
 - When error distribution is negatively skewed
- $y' = y^{1/2}$ (for y > 0)
 - When s_{ϵ}^{2} is proportional to E(y)
- y' = 1/y
 - When $s_{\epsilon}^{\,\,2}$ increases significantly as y increases beyond some value

Cautions – Interpreting R²

- R^2 does *NOT* tell whether:
 - independent variables are true cause of changes in dependent variable;
 - an important independent variable was left out (omitted-variable bias);
 - correct/best regression equation used;
 - most appropriate set of independent variables chosen
 - multi-collinearity is present in data
 - model might be improved by using transformed versions of existing set of independent variables

51

Model Building - Introduction

- Regression analysis is one of the most commonly used techniques in statistics
- Considered powerful because:
 - Can cover variety of mathematical models
 - » linear relationships
 - » non linear relationships
 - » qualitative variables
 - Provides efficient methods for model building, to select best fitting set of variables

50

Polynomial Models

- Independent variables may appear as functions of a number of predictor variables
 - Polynomial models of order p with one predictor variable: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + ... + \beta_p x^p + \epsilon$
 - Polynomial models with two predictor variables

For example: Interaction term $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$

53

55

Indicator (Dummy) Variables

- For categorical (qualitative) variables
- 0 1 value
- If n categories, need n 1 indicator variables
 - Gender: 2 categories, 1 variable (0, 1)
 - Education: 5 categories, 4 variables
 » 0, 0, 0, 0; 1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1
- Requires larger sample size

Developing a model

- Much better to have a logical model in mind, rather than to just start working with a pile of independent variables
- Identify **dependent variable**; clearly define it
- Identify potential predictors
 - remember multicollinearity problem
 - consider **cost** of gathering & processing data
 - be parsimonious
- Rule of thumb: ≥ 8 observations for every independent variable in model; if violated, adjusted r² value will be significantly less
 - Green's rule of thumb is 50 + 8 * # ind. variables

Developing model (cont.)

- Identify several possible models
 - scatterplot of variables can help
 - if uncertain, start with 1st order and 2nd order models, with and without interaction
 - try other relationships (transformations) if polynomial models fail to provide a good fit
- Consider stepwise regression: introduce independent variables one-at-a-time, based on their contribution to current model (reduces multicollinearity)
 - SAS, SPSS provide this

54

Summary of Regression Issues

- Data quality
 - outliers (influential observations)
 - missing data and/or variables
- Relationship
 - Linear? Nonlinear?
 - Choice of independent variable (cause?) & dependent (effect?)
- Developing potential model
 - use graphical tools & descriptive statistics (scatterplot, correlation analysis)

Additional Topics*

- Prediction intervals
- Heteroskedasticity: types, tests, correcting for (we've covered some of this)
- Serial correlation: Durbin-Watson test, detecting serial correlation

(cont.)

- Model assumptions
 - Met? If not, how serious?
 - Residual analysis/plots
 - transformation of variable values
- Interpretation
 - business issues
 - answer questions
 - extrapolation danger
- Prediction & prediction intervals
 - individual response
 - mean response

57