Statistical Inference Project

Greta Garcia

11/12/2022

```
library(ggplot2)
```

A simulation exercise.

Show the sample mean and compare it to the theoretical mean of the distribution

Theoretical mean: 5

Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution.

Sample Variance: 24.36452

```
cat("Theoretical Variance:", variance)
```

Theoretical Variance: 25

Show that the distribution is approximately normal

```
random <- rexp(runif(1000), lambda)
mns = NULL
for (i in 1 : 1000) mns = c(mns, mean(rexp(runif(40), lambda)))</pre>
```

Draw graphics on the same pane to compare them and add a Normal of the Distribution to see if it's similar or not. To draw the normal, we calculate the mean and the standard Deviation of the sample.

Exponential Distribution

Averages exponentials

The Means distribution of a random sample of enough variables create a Normal Distribution for the Central Limit Theorem and in this exercise we have a demostration of this Theorem.

Basic inferential data analysis.

Load the ToothGrowth data and perform some basic exploratory data analyses

```
tg <- ToothGrowth
head(tg)
##
    len supp dose
## 1
    4.2
         VC 0.5
## 2 11.5
          VC 0.5
    7.3
## 3
         VC 0.5
## 4 5.8
         VC 0.5
## 5 6.4
         VC 0.5
## 6 10.0
         VC 0.5
str(tg)
                60 obs. of 3 variables:
## 'data.frame':
   $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
  $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 ...
```

Provide a basic summary of the data.

```
summary(tg)
```

```
##
         len
                     supp
                                   dose
##
   Min.
           : 4.20
                     OJ:30
                             Min.
                                     :0.500
                     VC:30
                             1st Qu.:0.500
##
   1st Qu.:13.07
  Median :19.25
                             Median :1.000
##
   Mean
           :18.81
                             Mean
                                     :1.167
##
    3rd Qu.:25.27
                             3rd Qu.:2.000
   {\tt Max.}
           :33.90
                                     :2.000
                             Max.
```

Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose

For Central limit Theorem we know that the means of this sample have a Normal distribution.

Split data for supp to compare it

```
tg_oj <- tg[tg$supp=="0J",]
tg_vc <- tg[tg$supp=="VC",]</pre>
```

Variables are Paired and supose that variances are equal * H0: alpha1 = alpha2 * Ha: alpha1 != alpha2

```
t.test(tg_oj$len, tg_vc$len, paired=TRUE, var.equal=TRUE)
```

```
##
## Paired t-test
##
## data: tg_oj$len and tg_vc$len
## t = 3.3026, df = 29, p-value = 0.00255
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.408659 5.991341
## sample estimates:
## mean of the differences
## 3.7
```

State your conclusions and the assumptions needed for your conclusions

We deny H0 because: * Statistic t is equal to 3.3026 so is greater than quartile t at 95% (1.75305) * p-value is 0.00255 so is lower than 5%

In conclusion mean from supp OJ is different than mean from supp VC with a Type I error lower than 5% Split data for dose to compare it

```
v_dose <- unique(tg$dose)
tg_supp1 <- tg[tg$dose==v_dose[1],]
tg_supp2 <- tg[tg$dose==v_dose[2],]
tg_supp3 <- tg[tg$dose==v_dose[3],]</pre>
```

Variables are Paired and supose that variances are equal on the three cases * H0: alpha1 = alpha2 * Ha:alpha1 != alpha2

```
t.test(tg_supp1$len, tg_supp2$len, paired=TRUE, var.equal=TRUE)
```

```
##
## Paired t-test
##
## data: tg_supp1$len and tg_supp2$len
## t = -6.9669, df = 19, p-value = 1.225e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.872879 -6.387121
## sample estimates:
## mean of the differences
## -9.13
```

```
t.test(tg_supp1$len, tg_supp3$len, paired=TRUE, var.equal=TRUE)
```

```
##
## Paired t-test
##
## data: tg_supp1$len and tg_supp3$len
## t = -11.291, df = 19, p-value = 7.19e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -18.3672 -12.6228
```

```
## mean of the differences
## -15.495

t.test(tg_supp2$len, tg_supp3$len, paired=TRUE, var.equal=TRUE)

##
## Paired t-test
##
## data: tg_supp2$len and tg_supp3$len
## t = -4.6046, df = 19, p-value = 0.0001934
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -9.258186 -3.471814
## sample estimates:
## mean of the differences
```

State your conclusions and the assumptions needed for your conclusions

As happen with supp, We deny H0. So, the means are different in all cases.

-6.365

sample estimates:

##