NYU Tandon Bridge Spring 2024 Homework 2

Student: Shichen Zhang (sz4968)

Question 5

(a)

1. Exercise 1.12.2

section b

Hypothesis	$p \to (q \wedge r)$	(1)
Hypothesis	$\lnot q$	(2)
Addition, 2	$\neg q \lor \neg r$	(3)
De Morgan's law, 3	$\lnot (q \land r)$	(4)
Modus tollens, 4	$\neg p$	(5)

section e

Hypothesis	$p \lor q$	(1)
Hypothesis	$\neg p \vee r$	(2)
Hypothesis	$\neg q$	(3)
Disjunctive syllogism, 1, 3	p	(4)
Double negation law, 4	$\neg \neg p$	(5)
Disjunctive syllogism, 2, 5	r	(6)

2. Exercise 1.12.3

section c

Hypothesis	$p \lor q$	(1)
Hypothesis	eg p	(2)
Double negation law, 1	$\neg\neg p \lor q$	(3)
Conditional identity, 3	eg p o q	(4)
Modus ponens, 2, 4	q	(5)

3. Exercise 1.12.5

section c

p = I will buy a new car q = I will buy a new house

r = I will get a job

The argument can be formed as,

$$(p \land q) \rightarrow r$$

$$\neg r$$

$$\vdots \neg p$$

The argument is invalid.

Proof:

When p is true, q is false, and r is false, both hypotheses $(p \land q) \to r$ and $\neg r$ are true and the conclusion $\neg p$ is false. Therefore, the argument is invalid.

${\bf section}\ {\bf d}$

p = I will buy a new car

q = I will buy a new house

r = I will get a job

The argument can be formed as,

$$\begin{array}{c} (p \wedge q) \rightarrow r \\ \neg r \\ \\ q \\ \hline \\ \therefore \neg p \end{array}$$

The argument is valid.

Proof:

Hypothesis	$(p \land q) \to r$	(1)
Hypothesis	$\neg r$	(2)
Hypothesis	q	(3)
Modus tollens, $1, 2$	$\neg(p \land q)$	(4)
De Morgan's law, 4	$\neg p \vee \neg q$	(5)
Double negation law, 3	$\neg \neg q$	(6)
Disjunctive syllogism, 5, 6	$\neg p$	(7)

(b)

1. Exercise 1.13.3

section b

	P	Q
a	F	F
b	F	Т

In the domain set $\{a,b\}$, the two hypotheses, $\exists x(P(x) \lor Q(x))$ and $\exists x \neg Q(x)$ are both true for the values for P and Q on element a and b given in the table. However, the conclusion $\exists x P(x)$ is false. Therefore, the argument is invalid.

2. Exercise 1.13.5

section d

Define the following three predicates:

M(x): x missed class. D(x): x got a detention.

The form of this argument is:

$$\forall x(M(x) \to D(x))$$

Penelope is an element $\neg M(Penelope)$
 $\therefore \neg D(Penelope)$

The argument is invalid.

Suppose the domain of x is the set $\{Penelope, b\}$,

	M	D
Penelope	F	Т
b	F	Т

In the domain set $\{Penelope, b\}$, the three hypotheses, $\forall x(M(x) \to D(x))$, Penelope is a particular element, $\neg M(Penelope)$ are all true for the values for M and D on element a and b given in the table. However, the conclusion $\neg D(Penelope)$ is false. Therefore, the argument is invalid.

section e

Define the following three predicates:

M(x): x missed class.

D(x): x got a detention.

A(x): x got an A.

The form of this argument is:

$$\forall x ((M(x) \lor D(x)) \to \neg A(x))$$
 Penelope is an element
$$A(Penelope)$$

$$\therefore \neg D(Penelope)$$

The argument is valid.

Proof:

(1)	$\forall x((M(x) \lor D(x)) \to \neg A(x))$	Hypothesis
(2)	Penelope is an element	Hypothesis
(3)	A(Penelope)	Hypothesis
(4)	$(M(Penelope) \lor D(Penelope)) \to \neg A(Penelope)$	Universal instantiation, 1, 2
(5)	$\neg \neg A(Penelope)$	Double negation law, 3
(6)	$\neg (M(Penelope) \lor D(Penelope))$	Modus tollens, 4, 5
(7)	$\neg M(Penelope) \land \neg D(Penelope)$	De Morgan's law, 6
(8)	$\neg D(Penelope)$	Simplification, 7

Exercise 2.4.1

section d

Proof:

Let x and y be two odd integers.

Since x is an odd integer, x = 2k + 1, for some integer k.

Since y is an odd integer, y = 2n + 1, for some integer n.

Plug x = 2k + 1 and y = 2n + 1 into xy to get:

$$xy = (2k+1)(2n+1)$$

$$= 4kn + 2k + 2n + 1$$

$$= 2(2kn + k + n) + 1$$

Since n and k are integers, 2kn + k + n is also an integer.

Since xy = 2m + 1, where m = 2kn + k + n is an integer, xy is odd.

Therefore, the product of two odd integers is an odd integer.

Exercise 2.4.3

section b

Assume x is a real number and $x \le 3$, we will prove $12 - 7x + x^2 \ge 0$.

Since x < 3, we can subtract 3 from both sides to get,

$$x - 3 \le 0$$

we can further subtract 1 from both sides to get,

$$x-4 \leq -1$$

Since both x-3 and x-4 are less than or equal to 0, their product would be greater than or equal to 0,

$$(x-3)(x-4) \ge 0$$

Therefore,

$$x^2 - 7x + 12 \ge 0$$

Exercise 2.5.1

section d

Assume n is even, we will prove $n^2 - 2n + 7$ is odd.

For any integer n, if n is even, then n = 2k for some integer k.

Plug n = 2k into the expression $n^2 - 2n + 7$ to get,

$$n^{2} - 2n + 7 = (2k)^{2} - 2(2k) + 7$$
$$= 4k^{2} - 4k + 7$$
$$= 2(2k^{2} - 2k + 3) + 1$$

Since $n^2 - 2n + 7 = 2m + 1$, where $m = 2k^2 - 2k + 3$ is an integer, $n^2 - 2n + 7$ is odd.

Exercise 2.5.4

section a

Assume x > y, we will prove $x^3 + xy^2 > x^2y + y^3$, for every pair of real number x and y.

Since x and y are real numbers,

$$x^2 \ge 0$$
$$y^2 \ge 0$$

Add them to get,

$$x^2 + y^2 \ge 0$$

If $x^2 + y^2 = 0$, then x = 0, y = 0, and x = y. But x > y, so $x^2 + y^2 \neq 0$, therefore,

$$x^2 + y^2 > 0$$

Since $x^2 + y^2$ is positive, we can multiply $x^2 + y^2$ on both sides of the inequality x > y to get,

$$x(x^{2} + y^{2}) > y(x^{2} + y^{2})$$

 $x^{3} + xy^{2} > x^{2}y + y^{3}$

section b

Assume $x \leq 10$ and $y \leq 10$, we will prove $x + y \leq 20$, for every pair of real number x and y.

Add $x \le 10$ and $y \le 10$ to get,

$$x + y \le 10 + 10$$
$$x + y \le 20$$

Exercise 2.5.5

section c

Assume $\frac{1}{r}$ is rational, we will prove r is rational.

If $\frac{1}{r}$ is rational, then $\frac{1}{r} = \frac{a}{b}$ for some integers a and b, where $b \neq 0$.

Multiply br on both sides of the equation to get,

$$b = ar$$

If a = 0, then ar = 0, but ar = b and $b \neq 0$, so $a \neq 0$.

Since b = ar and $a \neq 0$, we can divide both sides by a to get,

$$r = \frac{b}{a}$$

Since both a and b are integers, r is rational.

Exercise 2.6.6

section c

Assume the negation of the statement that the average of three real numbers is less than any of these three numbers.

Define the three real numbers as x, y and z, then we have,

$$\frac{x+y+z}{3} < x$$

$$\frac{x+y+z}{3} < y$$

$$\frac{x+y+z}{3} < z$$

Add the three inequalities to get,

$$x + y + z < x + y + z$$

Since the negation of the statement leads to a contradiction, the statement that the average of three real numbers is greater than or equal to at least one of the numbers must be true.

section d

Assume the negation of the argument that there is a smallest integer.

Define the smallest integer as x, we have,

$$x - 1 < x$$

Since x-1 is less than x, there is an integer that is smaller than x and x is not the smallest integer. The negation of this statement leads to a contradiction. Therefore, the statement that there is no smallest integer must be true.

Exercise 2.7.2

section b

Proof:

Consider the following two cases:

Case 1: x and y are both even, then x = 2k and y = 2j, where k and j are both some integers.

$$x + y = 2k + 2j$$
$$= 2(k + j)$$

Since x + y = 2m, where m = k + j is an integer, x + y is even.

Case 2: x and y are both odd, then x = 2k + 1 and y = 2j + 1, where k and j are both some integers.

$$x + y = 2k + 1 + 2j + 1$$
$$= 2(k + j + 1)$$

Since x + y = 2m, where m = k + j + 1 is an integer, x + y is even.

In both cases, x + y is even. Therefore, if x and y have the same parity, then x + y is even.