

Ingegneria

Programma

- 1. Dalla Fisica all'Elettrotecnica
- 2. Rappresentazione e analisi dei circuiti CC
- 3. Rappresentazione e analisi dei circuiti magnetici
- 4. Rappresentazione e analisi dei circuiti CA
- 5. Analisi delle reti elettriche trifase
- 6. Analisi delle reti elettriche in regime transitorio
- 7. Elementi di Sicurezza elettrica

Facoltà di Ingegneria

Ecamo

- · 1a prova soluzione scritta di esercizi (è possibile usare tutto quello che si vuole eccetto consulenti)
- 2a prova domande multiple su nozioni di teoria (non è possibile usare altro che la biro) Nella stessa sessione della 1a prova

Punteggio 1ª prova	Esito	Possibilità	Voto proposto senza ulteriori prove	Voto finale
0-15	Insufficiente	necessario ripetere la prima prova	NA	NA
16-17	Quasi sufficiente	necessario sostenere la 2ª prova o ripetere la 1ª prova	NA	Media aritmetica voto 1ª prova e 2ª prova
18-24	Sufficiente	possibile registrare il voto della 1 ^a prova oppure sostenere la 2 ^a prova	Punteggio della 1º prova	Media aritmetica voto 1ª prova e 2ª prova
25-29	Sufficiente	possibile registrare il voto oppure sostenere la 2ª prova	24	Media aritmetica voto 1ª prova e 2ª prova
30-30lode	Sufficiente	possibile registrare il voto della 1ª prova oppure sostenere la 2a prova	Punteggio della 1º prova	Media aritmetica voto 1ª prova e 2ª prova

Punteggio >= 18 con le due prove e non soddisfatto -> ulteriore colloquio

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Ingegneri:

Testi

- 1. Dispense
- Edminister: "Esercizi di Elettrotecnica", Ed. Schaum
- 3. Pier Paolo Civalleri, Elettrotecnica, Editrice Levrotto e Bella Torino
- 4. Filippo Ciampoli, Elettrotecnica generale, Pitagora Editrice Bologna
- 5. Un qualsiasi buon testo di elettrotecnica

NIVERSEE DECLI STUDI DI DEDCAM

Ingegneria

Test in itinere

La 1a prova può essere sostituita dai test in itinere con almeno un punteggio corretto >= 16

- Con 2 punteggi corretti, singolarmente maggiori o uguali a 16, con media aritmetica maggiore o uguale a 18, è possibile registrare direttamente la media pesata con le regole della registrazione diretta della 1a prova alla prima sessione utile e comunque entro settembre
- La 2a prova può essere sostenuta in una qualsiasi sessione d'esame regolare dell'AA in cui sono (è) state(a) superate(a) le(la) prove(a) in itinere. Il voto finale calcolato come media aritmetica del punteggio di accesso all'orale e di quello della prova orale.
- Calcolo della media pesata dei punteggi corretti dei test in itinere:
 - con due punteggi maggiori o uguali a 16 i pesi sono pari ad 1
 - con un punteggio maggiori o uguali a 16 ed uno inferiore il primo peso è pari ad 1 ed il secondo a 0
- Calcolo del punteggio di accesso alla seconda prova:
 - due punteggi >= 16 il punteggio di accesso alla 2a prova è pari alla media pesata dei punteggi corretti dei test in itinere più 4 punti
 - con un punteggio maggiore o uguale a 16 ed uno inferiore il punteggio di accesso all'orale è pari esattamente alla media pesata dei punteggi corretti dei test in itinere

Facoltà di Ingegneria

Fisica

Elettrotecnica

- · Carica elettrica
- Campo elettrico
- Campo magnetico
- · Leggi di Maxwell

- · Carica elettrica
- · Tensione elettrica
- Corrente elettrica
- · Leggi di Kirchhoff
- · Leggi di Ohm

Facoltà di

Leggi di Maxwell

legge di Gauss per il campo elettrico:

$$\iint_{S} \overline{E} \cdot \overline{u}_{n} dS = \frac{Q}{\varepsilon_{0}}$$

legge di Gauss per il campo magnetico:

legge di Faraday-Henry:

$$\oint_{L} \overline{E} \cdot d\overline{I} = \frac{d \underbrace{H}_{S(L)} \overline{B} \overline{u}_{n} dS}{dt \underbrace{H}_{S(L)} \overline{B} \overline{u}_{n} dS}$$

legge di Ampère-Maxwell:

$$\oint_L \ \overline{B} \cdot d\overline{I} = \mu_0 I + \underbrace{\mu_0 c_0}_{\text{total}} \underbrace{d}_{MS(L)} \underbrace{\overline{E}}_{\text{undS}}$$

e l'equazione di continuità:

$$\iint_{A} \overline{J} \cdot \overline{u}_{n} dA = \frac{dQ}{dt} - \frac{d}{dt} \iiint_{V} \rho dV$$

Circuito elettrico

• Un tubo di flusso del vettore densità di corrente

Rete elettrica

• L'unione di circuiti diversi

Ramo o lato

 E' un tubo di flusso della densità di corrente nel quale si può considerare la corrente uguale in ogni sezione

Nodo

• Punto in cui convergono 3 o più rami

Maglia

 Un qualunque percorso chiuso che partendo da un nodo, ritorni allo stesso nodo percorrendo rami diversi della rete, senza mai percorrere un ramo più di una volta.

ingegneria

Legge di Kirchhoff ad un percorso chiuso

Legge di Faraday-Henry:

$$\oint_L \overline{E} \cdot d\overline{I} = 0$$

$$\sum V = 0$$

• la somma algebrica delle tensioni presenti sui lati di un percorso chiuso è uguale a zero.

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Facoltà di Ingegneria

Legge di Kirchhoff alle superfici

Equazione di continuità

$$\iint_{\Lambda} \overline{J} \cdot \overline{u}_n dA = 0$$

$$\sum I = 0$$

 La somma algebrica delle correnti su una superficie chiusa è uguale a zero

Bipoli

Generazione della tensione

Affinché possa circolare corrente nel circuito, il ragionamento appena fatto per un singolo segmento va esteso a tutto il circuito, e quindi il punto di partenza e quello di arrivo coincidono ...

$$\oint \overline{\mathbf{E}} \cdot \mathbf{d} \overline{\mathbf{I}} = \mathbf{0}$$

$$\oint_{\mathbb{E}} \overline{E} \cdot d\overline{I} = 0$$

$$\oint_{\mathbb{E}} (\overline{E}_{S} + \overline{E}_{G} + \overline{E}_{R}) \cdot d\overline{I} = 0$$

Forza elettromotrice

Ingegner

Metodi sistematici per la soluzione delle reti

- Cosa significa risolvere una rete?
- MA ... una rete è risolubile?
- Incognite:
 - I correnti di lato
 - I tensioni di lato
- Equazioni:
 - n-1 equazioni indipendenti ai nodi
 - m=l-n+1 equazioni indipendenti alle maglie
 - I equazioni di Ohm (certamente indipendenti)

Il problema diventa la scelta delle equazioni

Metodi sistematici ...

Facoltà di Ingegneria

Scelta delle maglie e dei nodi indipendenti

UNIVERSITÀ DEGLI STUDI DI BERGAMO

1

$$n = 2$$

$$I = 3$$

$$1 - n + 1 = 2$$

$$n - 1 = 1$$

1-2

Metodo delle tensioni di nodo

- incognite le tensioni di N-1 nodi (tutti, escluso il nodo di riferimento)
- N-1 eq. di K. ai nodi
- (N-1) equazioni con (N-1) incognite
- Risolto il sistema, dalle ddp si ottengono le correnti nei lati.

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Metodo delle correnti di maglia

- ad ognuna delle L-N+1 maglie fondamentali una corrente di maglia
- L-N+1 eq. di K. alle maglie
- (I-N+1) equazioni con (L-N+1) incognite
- Risolto il sistema, si ricostruiscono le correnti di lato e quindi, come sopra, le tensioni nodali.

Ipotesi

Abbiamo già rimosso $\frac{d}{dt} = 0$

$$\oint \overline{E} \overline{dI} = -\frac{d\phi}{dt}$$

$$\oint_{e} \overline{E} \, \overline{dI} = -\frac{d\phi}{dt} \qquad \left(\oint_{e} \overline{E} \, \overline{dI} = 0 \to \sum V = 0 \right)$$

Adesso rimuoviamo l'ipotesi di impossibilità di accumulo di carica

$$\oint_{S} \overline{J} \cdot \overline{S} = -\frac{dq}{dt}$$

$$\oint_{S} \overline{J} \cdot \overline{S} = -\frac{dq}{dt} \qquad \left(\oint_{S} \overline{J}S = 0 \to \sum I = 0 \right)$$

Fenomeno capacitivo

$$\frac{q}{V} = \cos \tan t e = C$$

farad F

$$V \left(\begin{array}{c} q \\ \hline \end{array} \right) C = \frac{q}{V}$$

$$i = \frac{dc}{dt}$$

$$i = C \frac{dv}{dt}$$

Circuito in regime variabile - Esempio

$$e(t) = 10 sen t V$$

 $C = 1 \mu F$

$$R = 2\Omega$$

$$L = 1 m H$$

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Circuito in regime variabile - Esempio

$$i_{R} = i_{C} + i_{L}$$

$$v_{C} + v_{R} - e = 0$$

$$e - v_R - v_L = 0$$

$$V_R = Ri$$

$$v_L = L \frac{di_L}{dt}$$

$$v_{L} = L \frac{di_{L}}{dt}$$

$$v_{C} = \int_{-\infty}^{t} \frac{i_{c}}{c} dt$$

Richiami sui numeri complessi $\frac{2+j}{2-j} = \sqrt{4+1}$ $\frac{2+j}{2-j} = \sqrt{4+1}$ $\frac{3+30}{2} = \sqrt{4+1}$

Funzione "cappello"

$$\bar{f}(t) = F_M e^{j(\omega t + \varphi)}$$

$$f' = j\omega F_{_{\!M}} e^{j^{(\omega t + \phi)}} = \omega F_{_{\!M}} e^{j^{(\omega t + \phi + \frac{\pi}{2})}}$$

$$\int f dt = \frac{1}{j\omega} F_{_M} e^{j(\omega t + \phi)} = \frac{F_{_M}}{\omega} e^{j(\omega t + \phi - \frac{\pi}{2})}$$

Corso di Elettrotecnica NO - Capitolo 4 - Rappresentazione e Analisi delle reti elettriche in regime variabile - regime PAS

PAS

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dominio del tempo

 $f(t) = F_M \cos(\omega t + \phi)$

$$\begin{split} f(t) &= F_{M} \cos(\omega t + \phi) = Re(F_{M} e^{i(\omega t + \phi)}) \\ \frac{df}{dt} &= -\omega F_{M} sen(\omega t + \phi) = Re(j\omega F_{M} e^{i(\omega t + \phi)}) \\ f \end{split}$$

Dominio dei vettori rotanti

$$\begin{split} \bar{f}(\bar{t}) &= F_{\text{M}} e^{i(\omega t + \varphi)} \\ \frac{d\bar{f}}{dt} &= j \omega \bar{f}(t) \\ \int \bar{f} dt &= \frac{\bar{f}(t)}{j \omega} \end{split}$$

Dominio dei fasori

Supponendo tutti con la stessa w

Derivate e integrali nel tempo: idem, ma non ruotano

Rappresentazione fasoriale

$$f(t) = \sqrt{2} \ 10 \cos(50t + \left(\frac{\pi}{3}\right)) \Leftrightarrow \overline{F} = 10 e^{i\frac{\pi}{3}}$$

Rappresentazione fasoriale

$$\overline{E} = 5V \quad nota \, \omega = 10 \, rad \, s^{-1} \rightarrow e(t) = \sqrt{2} \, 5 \, \cos(10t)$$

Corso di Flettrotecnica NO - Capitolo 4 - Rappresentazione e Analisi delle reti elettriche in regime variabile - regime PAS

PAS

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Facoltà di Ingegneria

Rappresentazione fasoriale

$$\overline{G} = 5 + j5 \text{ nota } \omega = 10 \text{ rad s}^{-1}$$

$$\overline{G} = \sqrt{50} e^{j\frac{\pi}{4}}$$

$$\rightarrow g(t) = \underbrace{\sqrt{2} \cdot \sqrt{50}}_{10} \cos(10t + \frac{\pi}{4})$$

Generatore di tensione

 $e(t) = V_M \cos(\omega t + \varphi)$

Rappresentazione dei bipoli in regime PAS

Generatore di corrente

 $a(t) = A_{_M} \cos (\omega t + \varphi)$

$$\overline{A} = \frac{A_M}{\sqrt{2}} e^{jc}$$

Impedenza

Ammettenza

$$\overline{\overline{Y}} = \frac{1}{\overline{Z}} = G \pm jB$$
Conduttanza Suscettanza

Corso di Flettrotecnica NO - Capitolo 4 - Rappresentazione e Analisi delle reti elettriche in regime variabile - regime PAS

Rappresentazione dei bipoli in regime PAS

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Facoltà di Ingegneria

Impedenza

$$X = \omega L > 0$$
 reattanza induttiva

$$X = \frac{-1}{\omega C} < 0$$
 reattanza capacitiva

Ammettenza

$$\overline{Y} = G \pm jB = \frac{1}{\overline{Z}} = \frac{1}{R + jX} \neq \frac{1}{R} \pm j\frac{1}{X}$$

$$\overline{Y} = \frac{1}{R + jX} = \frac{R}{R^2 + X^2} - \frac{jX}{R^2 + X^2}$$

Impedenza

Impedenze e fasori sono rappresentati con numeri complessi, ma sono due cose diverse

Le impedenze non sono fasori!!

Corso di Flettrotecnica NO - Capitolo 4 - Rappresentazione e Analisi delle reti elettriche in regime variabile - regime PAS

Esempio

$$\bar{l}_{E} = \frac{\overline{E}}{\overline{Z}_{eq3}} = \frac{10e^{\frac{17}{2}}}{9,72 + j1,51} = \underbrace{0,16 + j}_{0,16 + j} = \underbrace{\sqrt{0,16^{2} + 1^{2}}}_{0,16} e^{\frac{1}{10,16}} A$$

$$i_{e} = \underbrace{\sqrt{2} \cdot 1,027 \cos(10t + 1,41)}_{0,16} A$$

Se volessi le altre correnti potrei procedere con un partitore di corrente

Soluzione nel dominio dei fasori

$$\bar{I} = \frac{\overline{E}}{\overline{Z}_{eq}} = \frac{10e^{-j\frac{\pi}{2}}}{10 - j100} = 0,099 - j0,0099 = 0,1e^{-j0,0996} \quad A$$

RI-trasformazione nel dominio del tempo

$$i = \sqrt{2}0,1\cos(10t - 0,099)$$
 A

Soluzione nel dominio dei fasori

$$\overline{I} = \frac{\overline{E}}{\overline{Z}} = \frac{10}{10 - j \cdot 100} = 0,0099 + j \cdot 0,099 = 0,1e^{j1,471}$$

RI-trasformazione nel dominio del tempo

$$i = \sqrt{2} \cdot 0.1 \text{ sen} (10t + 1.471) A$$

$$= \sqrt{2} \, 0.1 \cos(10t + 1.471 - \frac{\pi}{2}) =$$

$$=\sqrt{2}0.1\cos(10t-0.099)$$
 A

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Potenza R S I T S

$$P = V \cdot I$$

$$p = V \cdot i$$

$$p = v \cdot i$$

Potenza - Resistore

$$V = V_{M} \cos(\omega t + \delta)$$

$$i = \frac{V}{R}$$

$$i = \frac{V_{M}}{R} \cos(\omega t + \delta) = I_{M} \cos(\omega t + \delta)$$

$$\begin{split} p &= v \cdot i = V_{_{M}} \cdot I_{_{M}} \cdot cos^{2} \big(\omega t + \delta \big) = \\ &= V_{_{M}} \cdot I_{_{M}} \frac{1 + cos \, \big(2(\omega t + \delta) \big)}{2} = \frac{V_{_{M}} \cdot I_{_{M}}}{2} + \frac{V_{_{M}} \cdot I_{_{M}}}{2} cos \, 2(\omega t + \delta) \end{split}$$

Valore efficace

$$P = \frac{V_M I_M}{2} = \frac{V_M}{\sqrt{2}} \frac{I_M}{\sqrt{2}} = V I$$

PAS:

$$V_{eff} = \frac{V_M}{\sqrt{2}}$$

 $f \forall$:

$$Veff = \sqrt{\frac{1}{T} \int f^2 dt}$$

Potenza - Induttore

$$V = V_M \cos(\omega t + \delta)$$
 $\overline{V} = \frac{V_M}{\sqrt{2}} e^{j\delta}$

$$V = V_{M} \cos(\omega t + \delta) \qquad \overline{V} = \frac{V_{M}}{\sqrt{2}} e^{j\delta}$$

$$V \qquad \overline{I} = \frac{\overline{V}}{\omega L} = \frac{\overline{V}}{\omega L} e^{-j\frac{\pi}{2}} = \frac{V_{M}}{\omega L \sqrt{2}} e^{j(5-\frac{\pi}{2})}$$

$$i = \frac{V_M}{\omega L} \cos(\omega t + \delta - \frac{\pi}{2}) = I_M \operatorname{sen}(\omega t - \delta)$$

Potenza - Induttore

$$p = V_{M}I_{M}\cos(\omega t + \delta)\sin(\omega t + \delta) =$$

$$= \frac{V_{M}I_{M}}{2}\sin 2(\omega t + \delta)$$

Definiamo

Potenza reattiva = Valore massimo della potenza PAS

Simbolo Q

Unità di misura voltamperereattivo (var)

$$Q_L = \frac{V_M I_M}{2} = VI$$

Corso di Flettrotecnica NO - Capitolo 4 - Rappresentazione e Analisi delle reti elettriche in regime variabile - regime PAS

Potenza Apparente complessa

$$P \pm \overline{Q} = \overline{S} = \overline{V} \overline{I}^*$$

Corso di Flettrotecnica NO - Capitolo 4 - Rappresentazione e Analisi delle reti elettriche in regime variabile - regime PAS

hacolta di Ingegneria

Potenza apparente

|S|= S Potenza Apparente VA

$$\overline{S} = \overline{V} \overline{I}^* = VI\cos\varphi + jVIsen\varphi$$

 $\cos \varphi = \text{Fattore di potenza}$

Esercizio

$$\overline{E} = 100 V$$
 $\overline{I}; \overline{I}_C; \overline{I}_I = ?$

Esercizio

$$\overline{Z}_{\parallel} = \frac{-j20j20}{j20 - j20} = \infty$$

$$\overline{E} \bigcirc \uparrow \qquad -j20\Omega \qquad \qquad \overline{I}_{c} \qquad \qquad \overline{I}_{c} \qquad \qquad \overline{I}_{c} = 0 \qquad \overline{V} = 0 \qquad \overline{V}_{\parallel} = \overline{E}$$

$$\overline{I}_{C} = \frac{100}{-j20} = 5jA \qquad \qquad \overline{I}_{L} = \frac{100}{j20} = -5jA$$

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Risonanza serie

UNIVERSITÀ DEGLI STUDI DI BERGAMO

$$\overline{Z}(\omega) = +j\omega L - \frac{j}{\omega C} = \frac{j(\omega^2 LC - 1)}{\omega C} =$$

$$N = 0 \qquad \omega^2 LC - 1 = 0 \qquad \omega = \sqrt{\frac{1}{LC}}$$

$$D = 0 \qquad \omega = 0$$

$$D=0$$
 $\omega=0$

Corso di Elettrotecnica NO Angelo Baggini

Cap. 5

Rappresentazione e analisi delle reti elettriche trifase

Introduzione

Elementi di rete "tripli"

Tutti PAS

Definizioni (tensioni concatenate e di fase)

E1, E2, E3 Tensioni di fase (stellate)

V1, V2, V3 Tensioni concatenate

Nota (Terne simmetriche)

Nota

Deve sempre essere

$$\overline{V_1} + \overline{V_2} + \overline{V_3} = 0$$

Nulla si può dire a proposito della somma delle E!

Definizioni - Correnti di linea e di fase

IA, IB, IC Correnti di linea

I1, I2, I3 Correnti di fase

Se $I_1I_2I_3(I_AI_BI_C)$: stessa I

fasi relative ≠ 120

Le terne si dicono equilibrate

$$I_L = \sqrt{3}I_F$$

Deve essere sempre

$$\bar{I}_A + \bar{I}_B + \bar{I}_C = 0$$

Nulla si può dire della somma delle correnti di fase

Nota - Tensioni di fase e concatenate

Nota - correnti di linea e di fase

Generatore trifase a stella (triangolo idem)

 $E_1E_2E_3$: stessa E fasi relative \neq 120

$$V = \sqrt{3}E$$

Tensioni simmetriche

Definizioni - Sequenze

Seq. diretta

Seq. inversa

Esercizio

$$\overline{E}_{1} = Ee^{j\delta}$$

$$\overline{E}_{2} = Ee^{j(\delta + \frac{2\pi}{3})}$$

$$\overline{E}_{3} = Ee^{j(\delta - \frac{2\pi}{3})}$$

$$\overline{V}_{G0} = ?$$

Facoltà di Ingegneria

$$\overline{V}_{G0} + \overline{E}_1 - \overline{Z}\overline{I}_1 = 0$$

$$\overline{V}_{G0} + \overline{E}_2 - \overline{Z}\overline{I}_2 = 0$$

$$\overline{V}_{G0} + \overline{E}_3 - \overline{Z}\overline{I}_3 = 0$$

$$\overline{V}_{G0} = 0$$

Metodo monofase equivalente

 $\overline{Z}_{2} = 147 + 147 j\Omega$

Trasformo tutti i triangoli in stelle

$$E_3 = 230e^{+j\frac{2}{3}\pi}V$$

$$\overline{Z}_{2y} = \frac{\overline{Z}_2}{3} = 49 + j49\Omega$$

Monofase equivalente

In transitorio tutte le grandezze della rete hanno le stesse $\boldsymbol{\tau}$

 $V_{OM} = Ke^{-\frac{t}{RC}}$

Corso di Elettrotecnica NO - Capitolo 5 – Rappresentazione e Analisi dei circuiti elettrici in regime transitorio

<u>OM</u>

$$0 = 2L\dot{i}_L + Ri_L$$

$$0 = 2L\lambda + R \rightarrow \lambda = -\frac{R}{2L}$$

$$i_{LOM} = ke^{-\frac{R}{2L}t'}$$

$$i_{LOM} = ke^{-\frac{R}{2L}t'}$$

$$i_{L\infty} = 10A$$

$$i_L = ke^{-\frac{R}{2L}t'} + 10A$$

Condizioni iniziali

$$i \int_{-\infty}^{\infty} 0t = 0 = ke^{-0} + 10 \qquad k = -10$$

$$k = -10$$

$$i_L = -10e^{-\frac{10^4}{2}t'} + 10A$$

 $v_C(t) = 2,495e^{-200t} + 49,93sen(10t - 0,05)V$

Circuiti di ordine superiore al primo

- equazione differenziale di ordine pari al numero di induttori e condensatori indipendenti
- Tutto analogo, ma obiettivamente analiticamente più pesante

Corso di Elettrotecnica NO - Capitolo 5 - Rappresentazione e Analisi dei circuiti elettrici in regime transitorio

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Esempio

$$i_{L}^{"} + \frac{1}{RC}i_{L}^{'} + \frac{1}{LC}i_{L} = -\frac{1}{RLC}e$$

Eq. differenziale lineare a parametri costanti non omogena del 2° ordine

$$int.gen. = \sum_{i} K_{i} e^{\lambda_{i} t} + int_{p}$$

Corso di Elettrotecnica NO - Capitolo 5 – Rappresentazione e Analisi dei circuiti elettrici in regime transitorio

INIVERSITÀ DECLI STUDI DI RERCAMO

Esempio - Radici dell'equazione caratteristica

$$\lambda^{2} + \frac{1}{RC}\lambda + \frac{1}{LC} = 0$$

$$\lambda^{2} + 0.5 \cdot 10^{6}\lambda + 10^{9} = 0$$

$$\lambda = \frac{-500000 \pm \sqrt{(0.5 \cdot 10^{6})^{2} - 4 \cdot 10^{9}}}{2} = \frac{-497991,93}{-2008,06}$$

Corso di Elettrotecnica NO - Capitolo 5 – Rappresentazione e Analisi dei circuiti elettrici in regime transitorio

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Metodo trucco

- Poichè:
 - La struttura della soluzione è sempre la stessa
 - Tutte le grandezze di una rete hanno le stesse costanti di tempo
 - Le maggiori difficoltà analitiche sono nell'impostazione e nella soluzione dell'equazione differenziale vera e propria
- se una fata ci desse le λ saremmo in grado di assemblare la soluzione direttamente e molto più facilmente
- Ma ...

Corso di Elettrotecnica NO - Capitolo 5 – Rappresentazione e Analisi dei circuiti elettrici in regime transitorio

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Metodo trucco

- Rendere passiva la rete
- Tagliarla in un punto a piacere
- Scrivere la Z(λ) rispetto ai due morsetti messi in evidenza
- Gli zeri di Z(λ) sono le λ

Corso di Elettrotecnica NO - Capitolo 5 – Rappresentazione e Analisi dei circuiti elettrici in regime transitorio

