Chapitre 21

Continuité

Bernard Bolzano (1781 – 1848)

Karl Weierstrass (1815 - 1897)

Bolzano

La notion de fonction continue a mis du temps à émerger. C'est à Bolzano, un prêtre et mathématicien hongrois d'origine italienne, qu'on la doit :

f est continue en a $\stackrel{\triangle}{ssi}$

$$\left| \forall \varepsilon > 0, \ \exists \delta > 0 : \forall x \in I, \ |x - a| \leqslant \delta \implies \left| f(x) - f(a) \right| \leqslant \varepsilon. \right|$$

Weierstrass

Attention, l'ensemble des fonctions continues continues continues qui peuvent être très compliquées. Weierstrass (mathématicien allemand qui poursuivit le travail de fondation de l'analyse moderne) construisit une fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ qui est continue mais qui n'est nulle part dérivable!

Sommaire

Т	Continuité	9	,
т.	Commune	٠.	,

Continuité 2/3

Dans tout ce chapitre, on considère I et J des intervalles tels que $\ell(I)>0$ et $\ell(J)>0$.

I. Continuité

1) Continuité

a) continuité en un point

Définition CTN.1

Soit $f: I \longrightarrow \mathbb{R}$. Soit $a \in I$. (Ainsi, f est définie en a). On dit que f est continue en a ssi

Autrement dit, quand x est très proche de a, f(x) est très proche de f(a).

Remarques

- Dans cette définition, on peut remplacer *I* par une réunion d'intervalles.
- En comparant cette définition à la définition de la limite d'une fonction en un point, on voit que

$$f$$
 est continue en a \iff $\lim_{t\to a} f(t) = f(a)$.

b) un premier exemp	le
---------------------	----

Considérons

$$f: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \lfloor x \rfloor. \end{array} \right.$$

Continuité 3/3

c) continuité sur I

Définition CTN.2

• Soit $f:I \longrightarrow \mathbb{R}$. On dit que f est continue (sur I) ssi

 $\forall a \in I, f \text{ est continue en } a.$

• On note $\mathscr{C}(I,\mathbb{R})$ l'ensemble des fonctions continues sur I.

Remarque

Soit $\varepsilon > 0$. On voit que pour être ε -proche de f(a), il suffit d'être δ -proche de a.

Mais : δ dépend a priori de a :

- ullet pour certains a, il faut que δ soit extrêmement petit;
- pour d'autres a, des δ moyennement petits suffisent.

Fait CTN. 3

La continuité est une « propriété locale ».

Autrement dit, si $f: I \longrightarrow \mathbb{R}$, alors on a

$$\begin{split} f \in \mathscr{C}(I,\mathbb{R}) &\iff \forall a \in I, \ f \ \text{est continue au} \ \mathscr{V}(a) \\ &\iff \forall a \in I, \ \exists \delta > 0: \ \left. f \right|_{I \cap]a - \delta, a + \delta[} \text{est continue}. \end{split}$$

Exemple

Ainsi, la fonction

$$f: \left\{ \begin{array}{c} \mathbb{R}^* \longrightarrow \mathbb{R} \\ x \longmapsto \frac{1}{x} \end{array} \right.$$

est continue!

2) Prolongement par continuité

a) définition

Définition CTN.4

Soit $a \in \overline{I} \cap \mathbb{R}$ et soit $f: I \setminus \{a\} \longrightarrow \mathbb{R}$. On suppose que $\lim_{\substack{t \to a \\ \to d}} f(t)$ existe et est finie.

Alors la fonction

$$\widetilde{f}: \left\{ \begin{array}{c} I \cup \{a\} \longrightarrow \mathbb{R} \\ \\ x \longmapsto \begin{cases} f(x) & \text{si } x \neq a \\ \lim\limits_{\substack{t \to a \\ \neq}} f(t) & \text{si } x = a \end{cases} \right.$$

est appelée prolongement par continuité de f en a.

Fait CTN.5

Dans cette situation, on a alors $\,$

- 1) \widetilde{f} est continue en a;
- 2) en particulier, $f \in \mathcal{C}(I \setminus \{a\}, \mathbb{R}) \implies \widetilde{f} \in \mathcal{C}(I, \mathbb{R})$.

 $D\'{e}monstration.$ —

1) En effet, on a alors

$$\lim_{t \to a} \widetilde{f}(t) = \widetilde{f}(a).$$

La fonction $\widetilde{f}(\cdot)$ est donc bien continue en a.

2) Si on suppose de plus f continue en tout $x \neq a$, comme f et \widetilde{f} coïncident sur $I \setminus \{a\}$, alors la fonction $\widetilde{f}(\cdot)$ est continue aussi en dehors de a; donc, elle est continue sur I.

b) exemple : la fonction sinus cardinal

Continuité 6/3

3) Caractérisations séquentielles

Soit $f: I \longrightarrow \mathbb{R}$ et soit $a \in I$.

***	Thác	orème	CTN	ß
	- i nec	reme.	CIN.	n

f est continue en a \iff $\forall (x_n)_n \in I^{\mathbb{N}}, \ \Big(x_n \longrightarrow a \implies f(x_n) \longrightarrow f(a)\Big).$

$D\'{e}monstration.$ —

Image par une fonction continue d'une suite convergente a) les limites passent aux fonctions continues		
$ riangle$ Corollaire $ ilde{\mathbb{T}}$ CTN.7 Soit $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ une suite et soit f une fonction qui est continue en ℓ . Alors		
$u_n \longrightarrow \ell \implies f(u_n) \longrightarrow f(\ell).$		

 $\label{eq:definition} \textit{D\'emonstration}. \ --- \ \ \text{Il s'agit juste d'une des implications du th\'eorème \ref{eq:constration}.$

b) application aux suites définies par récurrence

Corollaire CTN.8

4)

• Soit $f: I \longrightarrow I$ une fonction continue et soit $(u_n)_n \in I^{\mathbb{N}}$ une suite telle que

$$\begin{cases} u_0 \in I \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n). \end{cases}$$

Alors,

$$u_n \longrightarrow \ell \implies f(\ell) = \ell.$$

 $\bullet\,$ Autrement dit, si une suite f-définie par récurrence converge, sa limite est un point fixe de f.

 $D\acute{e}monstration.$ — On suppose que $u_n \longrightarrow \ell$. On a donc $f(u_n) \longrightarrow \ell$ puisque f est continue en ℓ . Or, de plus, on a $f(u_n) = u_{n+1} \longrightarrow \ell$ par extraction. Donc, par unicité de la limite, on a $f(\ell) = \ell$.

Continuité 8/3

5) Caractérisation séquentielle des limites

Proposition CTN.9

Soit $a \in \overline{I}$ un point au voisinage duquel on regarde les limites envisagées.

Soit $f: I \longrightarrow \mathbb{R}$ et soit $\ell \in \overline{\mathbb{R}}$.

Alors, on a

$$f(x) \xrightarrow[x \to a]{} \ell \quad \Longleftrightarrow \quad \Big(\forall (u_n)_n \in I^{\mathbb{N}}, \quad u_n \longrightarrow a \implies f(u_n) \longrightarrow \ell \Big).$$

Démonstration. — Elle est identique à celle du théorème ??.

6) Opérations sur les fonctions continues

Proposition CTN.10

Soient $f, g \in \mathscr{C}(I, \mathbb{R})$ et soit $\lambda \in \mathbb{R}$. Alors,

- 1) $f + \lambda g \in \mathscr{C}(I, \mathbb{R})$
- 2) $fg \in \mathscr{C}(I, \mathbb{R})$
- 3) Si $\forall x \in I$, $g(x) \neq 0$, alors $\frac{1}{g}$ et $\frac{f}{g}$ sont continues.

Démonstration. —

Remarque
Ainsi, $\mathscr{C}(I,\mathbb{R})$ est une \mathbb{R} -algèbre commutative.
Composition des fonctions continues
composition des fonctions continues
Proposition CTN.11
On se place dans la situation
$I \xrightarrow{f} J \xrightarrow{g} \mathbb{R}.$
On a alors
$\left. egin{array}{c} f:I\longrightarrow J \ continue \ g:J\longrightarrow \mathbb{R} \ continue \end{array} ight\} \Longrightarrow g\circ f:I\longrightarrow \mathbb{R} \ continue.$
$g: J \longrightarrow \mathbb{R} \ continue \ \Big)$
Pour démontrer cette proposition, on va énoncer et démontrer une « version ponctuelle » de ce résultat
Proposition CTN.12 On se place dans la situation
On sephate dans la situation $I \xrightarrow{f} J \xrightarrow{g} \mathbb{R}.$
et l'on considère $a \in I$. On peut alors représenter la situation de la manière suivante
$I \xrightarrow{f} J \xrightarrow{g} \mathbb{R}$
$f \longrightarrow g$
a = f(a)
$g \circ f$
On a alors f continue en a
$\left.\begin{array}{c} f \text{ continue en } a \\ g \text{ continue en } f(a) \end{array}\right\} \implies g \circ f \text{ continue en } a.$
Démonstration. —

7)

Continuité 10/3

II. Continuité des fonctions usuelles

1) Les fonctions constantes

Fait CTN.13

Soit $c \in \mathbb{R}$. Alors, $\widetilde{c} : \mathbb{R} \longrightarrow \mathbb{R}$ est continue.

Démonstration. — On peut procéder à la « δ - ε » ou par caractérisation séquentielle.

2) La fonction $Id_{\mathbb{R}}$ est continue

Fait CTN.14

On a $\mathrm{Id}_{\mathbb{R}} \in \mathscr{C}(\mathbb{R}, \mathbb{R})$.

 $D\acute{e}monstration.$ — On peut procéder à la « δ - ε » ou par caractérisation séquentielle.

3) Les fonctions polynomiales sont continues

Proposition CTN.15

Soit $P \in \mathbb{R}[X]$. Alors, la fonction polynomiale

$$\widetilde{P}: \left\{ \begin{array}{ll} \mathbb{R} \longrightarrow \mathbb{R} \\ t \longmapsto P(t) \end{array} \right.$$

est continue.

 $D\acute{e}monstration.$ — On a

$$\widetilde{P}(\cdot) = P(\mathrm{Id}_{\mathbb{R}}).$$

Ainsi, comme $\mathscr{C}(\mathbb{R},\mathbb{R})$ est une \mathbb{R} -algèbre, on a bien $\widetilde{P}(\cdot)\in\mathscr{C}(\mathbb{R},\mathbb{R})$.

4) Les fonctions lipschitziennes sont continues

a) définition

Définition CTN.16

Soit $f: I \longrightarrow \mathbb{R}$.

1) Soit $C \geqslant 0$.

On dit que f est C-lipschitzienne ssi

$$\forall x, y \in I, \quad |f(x) - f(y)| \le C|x - y|.$$

2) On dit que f est lipschitzienne ssi

 $\exists C \geqslant 0 : f \text{ est } C\text{-lipschitzienne}.$

Exercice CTN.17

- 1) Montrer que l'ensemble des fonctions lipschitziennes est un sous-espace vectoriel de $\mathscr{F}(\mathbb{R},\mathbb{R})$.
- 2) Soit $C \geqslant 0$.

L'ensemble des fonctions C-lipschitziennes est-il un sous-espace vectoriel de $\mathscr{F}(\mathbb{R},\mathbb{R})$?

Continuité 11/3

b) les fonctions lipschitziennes sont continues

Proposition CTN.18

Soit $f: I \longrightarrow \mathbb{R}$. Alors,

f lipschitzienne \implies f continue.

$D\'{e}monstration.$ —	 	

Remarque *

- Soit $f: I \longrightarrow \mathbb{R}$.
- ullet On dit que f est localement lipschitzienne $\stackrel{\scriptscriptstyle \Delta}{ssi}$

$$\forall a \in \mathit{I}, \, \exists \delta > 0: \ \, f \big|_{\mathit{I} \cap \left]a - \delta, a + \delta\right[} \text{ est lipschitzienne}.$$

- Une fonction lipschitzienne est localement lipschitzienne.
- On laisse le lecteur montrer (à titre d'exercice) que

f localement lipschitzienne \implies f continue.

5) Fonctions trigonométriques

a) sinus et cosinus sont 1-lipschitziennes

Lemme CTN. 19

On a

$$\forall x \in \mathbb{R}, \quad \left| \sin(x) \right| \leqslant |x|.$$

Démonstration. — On a démontré cette inégalité dans le chapitre de trigonométrie.

Proposition-Réflexe CTN. 20

- 1) Les fonctions $\sin(\cdot)$ et $\cos(\cdot)$ sont 1- lipschtziennes.
- 2) Autrement dit, pour tous $x, y \in \mathbb{R}$, on a

$$\left|\sin(x) - \sin(y)\right| \leqslant |x - y|$$

$$\left|\cos(x) - \cos(y)\right| \leqslant |x - y|.$$

Continuité 12/3

 $D\'{e}monstration.$ —

- Soient $x, y \in \mathbb{R}$.
- Rappelons qu'on a

$$e^{ix} - e^{iy} = e^{i\frac{x+y}{2}} \left(e^{i\frac{x-y}{2}} - e^{i\frac{x-y}{2}} \right) = 2i \times e^{i\frac{x+y}{2}} \sin\left(\frac{x-y}{2}\right).$$

• On a donc, en passant à la partie imaginaire,

$$\sin(x) - \sin(y) = -2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right).$$

• On a donc

$$\left|\sin(x) - \sin(y)\right| \leqslant 2 \left|\sin\left(\frac{x-y}{2}\right)\right| \leqslant 2 \left|\frac{x-y}{2}\right| = |x-y|$$

d'après le lemme ??.

• Donc, on a

$$\left|\sin\left(\frac{\pi}{2} - x\right) - \sin\left(\frac{\pi}{2} - y\right)\right| \leqslant \left|\left(\frac{\pi}{2} - x\right) - \left(\frac{\pi}{2} - y\right)\right| = |x - y|.$$

Autrement dit, on a

$$\left|\cos(x) - \cos(y)\right| \leqslant |x - y|.$$

b) les fonctions trigonométriques sont continues

Proposition CTN.21

- 1) On $a \sin(\cdot) \in \mathscr{C}(\mathbb{R}, \mathbb{R})$.
- 2) On $a \cos(\cdot) \in \mathscr{C}(\mathbb{R}, \mathbb{R})$.
- 3) Si on note D_{tan} le domaine de définition de $tan(\cdot)$, alors on a $tan(\cdot) \in \mathscr{C}(D_{tan}, \mathbb{R})$.

Démonstration. —

- 1) et 2) Comme ces fonctions sont lipschitziennes, elles sont continues.
- 3) Cela découle des résultats concernant les opérations sur les fonctions continues.

6) Logarithme

a) définition

Définition CTN.22

On rappelle que si x > 0, on pose

$$\ln(x) := \int_{1}^{x} \frac{\mathrm{d}t}{t}$$
.

On dispose ainsi de $\ln : \mathbb{R}_+^* \longrightarrow \mathbb{R}$

b) lipschitzianité du logarithme sur $[a, +\infty[$

$Lemme\ \mathsf{CTN}.\,\mathbf{23}$

Soit a > 0. Alors, la fonction $\ln \left|_{[a,+\infty[}\right|$ est lipschitzienne.

Continuité 13/3

Continuité 14/3

 $D\'{e}monstration.$ —

 $\bullet\,$ Tout simplement, la fonction p_a est composée de fonctions continues.

• On note

$$f_a: \left\{ \begin{array}{ll} \mathbb{R}_+^* & \longrightarrow \mathbb{R} \\ x & \longmapsto a \ln(x). \end{array} \right.$$

La fonction f_a est continue.

• On a $\mathsf{p}_a = \exp \circ f_a.$ Ainsi, par composition, p_a est continue.

b) la fonction racine

Proposition CTN.27

La fonction

$$\mathbb{R}_{+} \longrightarrow \mathbb{R} \\
x \longmapsto \sqrt{x}$$

est continue.

Démonstration. —

• Sur \mathbb{R}_+^* , on a $\sqrt{\cdot} = \mathsf{p}_{1/2}$.

 $\bullet\,$ Il suffit donc de montrer la fonction racine est continue en 0.

 \triangleright On raisonne par l'absurde et on suppose qu'elle ne l'est pas. Fixons donc $\varepsilon_0>0$ tel que

$$\forall \delta > 0, \ \exists x \in [0, \delta[: \ \sqrt{x} > \varepsilon_0.$$

ightharpoonup Posons $\delta_0 := \left(\frac{\varepsilon_0}{2}\right)^2$. On a $\delta_0 > 0$; fixons donc $x_0 \in [0, \delta_0[$ tel que $\sqrt{x_0} > \varepsilon_0$.

 \triangleright Comme la fonction $\sqrt{\cdot}$ est croissante sur \mathbb{R}_+ , on a

$$\varepsilon_0 < \sqrt{x_0} \leqslant \sqrt{\delta_0} = \sqrt{\left(\frac{\varepsilon_0}{2}\right)^2} = \frac{\varepsilon_0}{2}.$$

C'est absurde.

 \triangleright Ainsi, la fonction $\sqrt{\cdot}$ est continue en 0.

Continuité 15/3

III. Grands théorèmes pour les fonctions continues

1) Théorème des valeurs intermédiaires

a) un lemme

$\mathbf{Lemme} \,\, \mathsf{CTN}.\, \mathbf{28}$

Soit $f: I \longrightarrow \mathbb{R}$ continue et soient $a, b \in I$ tels que a < b. Alors

$$\begin{cases} f(a) \leqslant 0 \\ f(b) \geqslant 0 \end{cases} \implies \exists c \in [a, b] : f(c) = 0.$$

Démonstration. —

b) théorème des valeurs intermédiaires

Théorème CTN.29

Soit $f: I \longrightarrow \mathbb{R}$ continue et soient $a, b \in I$ tels que a < b. Soit $y \in \mathbb{R}$ compris entre f(a) et f(b). Alors,

$$y$$
 est atteint par $f(\cdot)$.

Plus précisément,

$$\exists c \in [a, b] : y = f(c).$$

$D\acute{e}monstration.$ —

- Si $f(a) \leq f(b)$, on pose et $g := f(\cdot) \tilde{y}$.
 - ightharpoonup On a alors $g(a) \leqslant 0$ et $g(b) \geqslant 0$.
 - ightharpoonup Donc, grâce au lemme ??, g s'annule en un point $c \in [a,b]$.
 - \triangleright On a alors f(c) = y: donc, y est atteint par $f(\cdot)$.
- Si $f(a) \ge f(b)$: on pose g := -f.
 - \triangleright On a $g(a) \leq g(b)$. De plus -y est compris entre g(a) et g(b).
 - \triangleright Donc, en appliquant le cas précédent, -y est atteint par g; de là, y est atteint par f.
- c) version plus abstraite du TVI

Théorème CTN.30

L'image d'un intervalle par une fonction continue est un intervalle.

Démonstration. — Soit $f: I \longrightarrow \mathbb{R}$ une fonction continue et soit $J \subset I$ un intervalle. Montrons que f[J] est encore un intervalle.

• Montrons que f[J] une partie convexe de \mathbb{R} , ie montrons que

$$\forall y, y' \in f[J], \quad [y, y'] \subset f[J].$$

- \triangleright Soient $y, y' \in f[J]$ qu'on écrit y = f(x) et y' = f(x') avec $x, x' \in J$.
- \triangleright Soit $z \in [y, y']$. Montrons que $z \in f[J]$.
- \triangleright On note $x_{\min} := \min(x, x')$ et $x_{\max} := \min(x, x')$.
- \triangleright Si $x_{min} = x_{max}$, on a x = x' et donc y = y'. Ainsi, $z = y \in f[J]$.
- \triangleright Sinon, on a $x_{\min} < x_{\max}$, on est dans le cas du théorème ?? : fixons donc $c \in [x_{\min}, x_{\max}]$ tel que z = f(c).
- ightharpoonup Comme $x_{\mathsf{min}}, x_{\mathsf{max}} \in J$ et comme J est un intervalle, on a $[x_{\mathsf{min}}, x_{\mathsf{max}}] \subset J$. Donc, $c \in J$.
- \triangleright Donc, $z = f(c) \in f[J]$.
- D'après la classification du cours des parties convexes de \mathbb{R} , comme f[J] est une partie convexe, on sait que f[J] est un intervalle.

Remarque

- La réciproque est fausse.
- *Ie*, une fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ qui transforme les intervalles en intervalles n'est pas nécessairement continue.

Continuité 19/3

2) Théorème des bornes atteintes

≝ Lemme CTN.31

a) une fonction continue sur un segment y est bornée Soient $a,b\in\mathbb{R}$ tels que a< b.

Soit $f:[a,b] \longrightarrow \mathbb{R}$. Alors,	f continue \implies f bornée.			
$D\'emonstration.$ —				

Continuité 20/3

.....

b) théorème des bornes atteintes	
Théorème CTN. 32 Soit $f:[a,b] \longrightarrow \mathbb{R}$ continue. A.	lors, f est bornée et atteint ses bornes.
$Autrement\ dit,$	j est bornee et attent ses bornes.
1) les bornes $\inf_{t \in [a,b]} f(t)$ et	$\sup_{t \in [t, t]} f(t) \text{ existent};$
2) il existe $x_{\min}, x_{\max} \in [a, b]$	
f(z)	$f(x_{\min}) = \inf_{t \in [a,b]} f(t)$ et $f(x_{\max}) = \sup_{t \in [a,b]} f(t)$;
3) autrement dit, $\min_{t \in [a,b]} f(t)$	$et \max_{t \in [a,b]} f(t) \text{ existent.}$
c) contre-exemples	

Continuité 21/3

d) démonstration du théorème des bornes atteintes	
Démonstration. —	

Continuité 22/3

3) Théorème des fonctions continues injectives

Théorème CTN.33		
Soit $f: I \longrightarrow \mathbb{R}$ continue. A	Alors,	
	f injective \implies	f strictement monotone.

Démonstration. —

Continuité

4) Théorème de la bijection monotone

Soit $f: I \longrightarrow \mathbb{R}$ continue et strictement monotone. On note $J \coloneqq f(I)$.

 ${\bf Th\'{e}or\`{e}me~CTN.34}$

D'après le TVI, on sait que J est un intervalle. Alors, $f^{-1}: J \longrightarrow I \text{ est continue}.$	
Démonstration	
Démonstration. —	• • •

Continuité

26/3

-
Continuité uniforme
Cf. cours
Norme infinie
Cf. cours
Extension à $\mathbb C$
Cf cours

IV.

 \mathbf{V} .

VI.

Continuité 27/3