Wiederholung: Relationale Algebra

- Formale Sprache für Anfragen über einem relationalem Schema
- Definition von Operationen auf einer Menge von Relationen, die Ergebnisse aller Operationen sind ebenfalls Relationen (→ abgeschlossen)
- praktische Umsetzung: Sprache SQL (Structured Query Language)
- Grundoperationen
 - Vereinigung: $R \cup S = \{t | t \in R \text{ oder } t \in S\}$
 - Differenz: $R S = \{t | t \in R \text{ und } t \notin S\}$
 - Kartesisches Produkt:

$$R \times S = \{(a_1, \dots, a_r, a_{r+1}, \dots, a_{r+s}) | (a_1, \dots, a_r) \in R \text{ und } (a_{r+1}, \dots, a_{r+s}) \in S\}$$

- Selektion: $\sigma_F(R)=\{t|t\in R \text{ und } t \text{ erfüllt Formel } F\}$ (F besteht aus Konstanten, Attributen, Vergleichsoperatoren und Booleschen Operatoren)
- Projektion: $\Pi_{a_1,\ldots,a_m}(R)=\{t[a_1,\ldots a_m]|t\in R\}$, wobei $t[a_1,\ldots a_m]$ ein Tupel aus R bezeichnet, das nur die Attributwerte $a_1,\ldots a_m$ enthält
- Weitere Operationen
 - Durchschnitt: $R \cap S = \{t | t \in R \text{ und } t \in S\}$
 - Quotient: $R \div S = \{t | t \in \Pi_{R-S}(R) \text{ und } \{t\} \times S \subseteq R\}$ Bildlich: Ergebnis enthält alle linken Hälften von Tupel aus R, die mit allen rechten Hälften von S kombiniert in R auftreten
 - Theta-Join: $R \bowtie_{A\theta B} S = \sigma_{A\theta B}(R \times S) \ (\theta \in \{=,<,\leq,>,\geq,\neq\}$
 - Equi-Join: $R \bowtie_{A=B} S$
 - Natural-Join $R\bowtie S$: Equi-Join bzgl. aller gleichnamigen Attribute in R und S, gleiche Spalten werden entfernt