NYC 311 Project Code

In [1]:

```
import numpy as np
import pandas as pd
import warnings
from datetime import datetime
from scipy import stats
from scipy.stats import ttest_1samp
warnings.filterwarnings('ignore')
```

Task 1) Import a NYC 311 Service Request.

In [2]:

```
alldata=pd.read_csv('servicerequest.csv')
alldata.head(1)
```

Out[2]:

	Unique Key	Created Date	Closed Date	Agency	Agency Name	Complaint Type	Descriptor	Location T
(32310363	12/31/2015 11:59:45 PM	01-01- 2016 00:55	NYPD	New York City Police Department	Noise - Street/Sidewalk	Loud Music/Party	Street/Side\
1 rows × 53 columns								
4								•

Checking Data Type of existing column 'Created Date' &'Closed Date'.

In [3]:

```
alldata[['Created Date','Closed Date']].dtypes

Out[3]:

Created Date object
Closed Date object
dtype: object
```

Task 2) Conversion to datetime data type.

In [4]:

```
alldata['Created Date']=pd.to_datetime(alldata['Created Date'])
alldata['Closed Date']=pd.to_datetime(alldata['Closed Date'])
alldata[['Created Date','Closed Date']].dtypes
```

Out[4]:

Created Date datetime64[ns] Closed Date datetime64[ns]

dtype: object

Task 3) Creating new column 'Request_closing_Time' = Closing time - Created time.

In [5]:

```
alldata['Request_Closing_Time']=(alldata['Closed Date']-alldata['Created Date']).dt.sec
onds/60/60
alldata['Request_Closing_Time'].head()
```

Out[5]:

```
0  0.920833
1  1.437778
2  4.858611
3  7.753889
4  3.450556
Name: Request_Closing_Time, dtype: float64
```

Task 4) Conclusions from data

Conclusion No 1) Five Cities with maximum no of complaints.

In [6]:

```
alldata.City.value_counts().sort_values(ascending=False).head()
```

Out[6]:

BROOKLYN 98307
NEW YORK 65994
BRONX 40702
STATEN ISLAND 12343
JAMAICA 7296
Name: City, dtype: int64

Conclusion No 2) In each city maximum no of complain is of which type.

In [7]:

newframe1=pd.DataFrame(alldata.groupby('City')['Complaint Type'].value_counts())
newframe1.groupby('City').head(1)

Out[7]:

Complaint Type

		Complaint Type
City	Complaint Type	
ARVERNE	Illegal Parking	58
ASTORIA	Blocked Driveway	2618
Astoria	Noise - Commercial	262
BAYSIDE	Illegal Parking	514
BELLEROSE	Illegal Parking	106
BREEZY POINT	Illegal Parking	15
BRONX	Blocked Driveway	12755
BROOKLYN	Blocked Driveway	28148
CAMBRIA HEIGHTS	Blocked Driveway	147
CENTRAL PARK	Noise - Street/Sidewalk	95
COLLEGE POINT	Blocked Driveway	435
CORONA	Blocked Driveway	2761
EAST ELMHURST	Blocked Driveway	1408
ELMHURST	Blocked Driveway	1446
East Elmhurst	Illegal Parking	13
FAR ROCKAWAY	Illegal Parking	295
FLORAL PARK	Illegal Parking	64
FLUSHING	Blocked Driveway	2795
FOREST HILLS	Blocked Driveway	663
FRESH MEADOWS	Illegal Parking	885
GLEN OAKS	Noise - Commercial	78
HOLLIS	Blocked Driveway	342
HOWARD BEACH	Illegal Parking	281
Howard Beach	Blocked Driveway	1
JACKSON HEIGHTS	Blocked Driveway	568
JAMAICA	Blocked Driveway	2818
KEW GARDENS	Blocked Driveway	313
LITTLE NECK	Illegal Parking	249
LONG ISLAND CITY	Illegal Parking	795
Long Island City	Illegal Parking	52
MASPETH	Illegal Parking	976
MIDDLE VILLAGE	Illegal Parking	877
NEW HYDE PARK	Blocked Driveway	53
NEW YORK	Noise - Street/Sidewalk	20433
OAKLAND GARDENS	Illegal Parking	263
OZONE PARK	Blocked Driveway	1259

Complaint Type

City	Complaint Type	
QUEENS	Illegal Parking	8
QUEENS VILLAGE	Blocked Driveway	585
REGO PARK	Blocked Driveway	611
RICHMOND HILL	Blocked Driveway	872
RIDGEWOOD	Illegal Parking	1842
ROCKAWAY PARK	Illegal Parking	317
ROSEDALE	Illegal Parking	277
SAINT ALBANS	Blocked Driveway	244
SOUTH OZONE PARK	Blocked Driveway	942
SOUTH RICHMOND HILL	Blocked Driveway	1548
SPRINGFIELD GARDENS	Blocked Driveway	262
STATEN ISLAND	Illegal Parking	4886
SUNNYSIDE	Blocked Driveway	206
WHITESTONE	Illegal Parking	525
WOODHAVEN	Blocked Driveway	1060
WOODSIDE	Blocked Driveway	1613
Woodside	Illegal Parking	100

Conclusion No3) No of Complaints month wise in form of bar chart.

In [8]:

```
newframe2=pd.DataFrame(alldata['Created Date'].dt.month)
newframe2.groupby('Created Date').value_counts().plot(kind='bar')
```

Out[8]:

<AxesSubplot:xlabel='Created Date'>

Above chart shows maximum complaints are from 5th month and least complaints are from 3rd month

Conclusion 4) No of unique Complaint types

In [9]:

```
alldata['Complaint Type'].nunique()
```

Out[9]:

24

Task 5) Order the complaint types based on the average 'Request_Closing_Time', grouping them for different location Type

In [24]:

```
alldata.groupby(['Location Type','Complaint Type'])['Request_Closing_Time'].mean()
```

Out[24]:

Location Type	Complaint Type	
Bridge	Homeless Encampment	3.819306
Club/Bar/Restaurant	Drinking	4.019785
	Noise - Commercial	2.891485
	Urinating in Public	4.491429
Commercial	Animal Abuse	4.568575
		• • •
Street/Sidewalk	Vending	3.791013
Subway Station	Animal Abuse	3.035606
	Urinating in Public	1.152130
Terminal	Ferry Complaint	NaN
Vacant Lot	Derelict Vehicle	4.045354
Name: Request_Closing	g_Time, Length: 71, dty	pe: float64

Task 6) Hypothesis Testing

Whether the average response time across complaint types is similar or not (overall)

In [11]:

```
Hnull1='The average response time across complaint types is similar'
Halternate1='The average response time across complaint types is not similar'
```

In [12]:

```
newframe3=alldata[alldata['Request_Closing_Time'].notnull()]
Sample=newframe3.sample(n=2500)
ttest,pvalue=ttest_1samp(Sample['Request_Closing_Time'],newframe3['Request_Closing_Time'].mean())
```

In [13]:

```
if(pvalue>0.05):
    print("Null Hypothesis is accepted,",Hnull1)
else:print("Null Hypothesis is Rejected",Halternate1)
```

Null Hypothesis is accepted, The average response time across complaint ty pes is similar

Are the type of complaint or service requested and location related

In [14]:

Hnull2='The type of complaint or service requested and location are not related'
Halternate2='The type of complaint or service requested and location are related'

In [15]:

```
newframe4=pd.crosstab(newframe3['Complaint Type'],newframe3['Location Type'])
observedval=newframe4.values
squarex,pvalue,dof,expected=stats.chi2_contingency(newframe4)
```

In [16]:

```
if(pvalue>0.05): print("Null Hypothesis accepted",(Hnull2))
else:(print("Null Hypothesis is rejected,",Halternate2))
```

Null Hypothesis is rejected, The type of complaint or service requested an d location are related