Übungsblatt 12 zur Algebra I

Abgabe bis 8. Juli 2013, 17:00 Uhr

Aufgabe 1. Allgemeines zu Gruppen

- a) Gibt es in der Permutationsgruppe S_5 eine Untergruppe mit 70 Elementen?
- b) Sei G eine Gruppe. Sei H eine Untergruppe von G und K eine Untergruppe von H. Wieso ist K dann auch eine Untergruppe von G?
- c) Sei G eine Gruppe und $\sigma \in G$. Zeige, dass $\sigma^i \circ \sigma^j = \sigma^{i+j}$ für beliebige ganze Zahlen i, j.

Lösung.

- a) Nein, denn nach dem Satz von Lagrange wäre 70 dann ein Teiler der Ordnung von S_5 . Diese ist aber 5!=120.
- b) Zur Erinnerung die nötigen Definitionen:

Eine Gruppe G ist eine Teilmenge einer S_n , die die Identitätspermutation enthält und außerdem unter Komposition und Inversenbildung abgeschlossen ist.

In dieser Situation ist eine $Untergruppe\ L$ von G eine Teilmenge derselben symmetrischen Gruppe S_n , welche die Identitätspermutation enthält und außerdem unter Komposition und Inversenbildung abgeschlossen ist, und außerdem eine Teilmenge von G ist.

Dann ist die Behauptung klar: Zu zeigen ist, dass $K \subseteq G$ und dass K die Identitätspermutation enthält und unter Komposition und Inversenbildung abgeschlossen ist. Letzteres gilt nach Voraussetzung, und ersteres folgt aus $K \subseteq H$ und $H \subseteq G$.

c) Wir unterscheiden mehrere Fälle. Falls i=0 oder j=0, ist die Behauptung klar (wieso?). Für i,j>0 gilt

$$\sigma^i \circ \sigma^j = \underbrace{\sigma \circ \cdots \circ \sigma}_{i \text{ Faktoren}} \circ \underbrace{\sigma \circ \cdots \circ \sigma}_{j \text{ Faktoren}} = \underbrace{\sigma \circ \cdots \circ \sigma}_{i+j \text{ Faktoren}} = \sigma^{i+j}.$$

Für i, j < 0 gilt

$$\sigma^{i} \circ \sigma^{j} = \underbrace{\sigma^{-1} \circ \cdots \circ \sigma^{-1}}_{-i \text{ Faktoren}} \circ \underbrace{\sigma^{-1} \circ \cdots \circ \sigma^{-1}}_{-j \text{ Faktoren}} = \underbrace{\sigma^{-1} \circ \cdots \circ \sigma^{-1}}_{-(i+j) \text{ Faktoren}} = \sigma^{i+j}.$$

Für i > 0, j < 0, i > -j gilt

$$\sigma^i \circ \sigma^j = \underbrace{\sigma \circ \cdots \circ \sigma}_{i \text{ Faktoren}} \circ \underbrace{\sigma^{-1} \circ \cdots \circ \sigma^{-1}}_{-j \text{ Faktoren}} = \underbrace{\sigma \circ \cdots \circ \sigma}_{i+j \text{ Faktoren}} = \sigma^{i+j}.$$

Analog behandelt man den Fall i > 0, j < 0, i < -j und den Fall i < 0, j > 0.

Aufgabe 2. Elementordnungen

- a) Sei G eine Gruppe und $\sigma \in G$ ein Element der Ordnung n. Zeige, dass die Ordnung einer beliebigen Potenz σ^m durch $n / \operatorname{ggT}(n, m)$ gegeben ist.
- b) Bestimme die Ordnungen aller Elemente der zyklischen Gruppe C_n .
- c) Bestimme alle Erzeuger der zyklischen Gruppe C_n .

Lösung.

- a) Wir müssen also folgende Frage beantworten: Für welchen Exponenten $k \geq 1$ ist $(\sigma^m)^k$ das erste Mal gleich der Identitätspermutation? Da für eine ganze Zahl ℓ genau dann $\sigma^\ell = \mathrm{id}$ gilt, wenn ℓ ein Vielfaches von n ist, können wir die Frage äquivalent umformulieren: Für welchen Exponenten $k \geq 1$ ist $m \cdot k$ das erste Mal ein Vielfaches von n? Diese Frage nun können wir mit Schulwissen beantworten: Das ist dann der Fall, wenn $m \cdot k$ das kleinste gemeinsame Vielfache von n und m ist, also wenn $k = \mathrm{kgV}(n,m) \ / \ m = nm \ / \ (\mathrm{ggT}(n,m) \cdot m) = n \ / \ \mathrm{ggT}(n,m)$ ist.
- b) Die zyklische Gruppe ist durch

$$C_n = \{\tau^0, \dots, \tau^{n-1}\}$$

gegeben, wobei $\tau = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & 1 \end{pmatrix} \in S_n$. Diese Permutation τ hat Ordnung n. Daher folgt für die Ordnungen nach Teilaufgabe a)

ord
$$\tau^m = n / ggT(n, m)$$
.

c) Ein Erzeuger einer endlichen Gruppe G ist ein solches Element $\sigma \in G$, sodass alle Elemente von G gewisse Potenzen von σ sind. Das ist gleichbedeutend damit, dass die Ordnung von σ gleich der Gruppenordnung ist: Denn in der unendlichen Liste

$$\ldots, \sigma^{-2}, \sigma^{-1}, \sigma^0, \sigma^1, \sigma^2, \ldots$$

kommen genau (ord q) viele verschiedene Gruppenelemente vor.

Mit dieser allgemeinen Überlegung können wir die Frage der Aufgabe klären: Ein beliebiges Element $\tau^m \in C_n$ ist genau dann ein Erzeuger von C_n , wenn seine Ordnung $n/\operatorname{ggT}(n,m)$ gleich n ist, also wenn n und m zueinanander teilerfremd sind.

Aufgabe 3. Kreisteilungspolynome

- a) Berechne die Kreisteilungspolynome $\Phi_3(X)$, $\Phi_6(X)$ und $\Phi_9(X)$.
- b) Zerlege das Polynom $X^3 + X^2 + X + 1$ über den rationalen Zahlen in irreduzible Faktoren.

Lösung.

a) Bekanntermaßen gilt $\Phi_1 = X - 1$ und $\Phi_2 = X + 1$. Dann folgt jeweils mit Polynomdivision:

$$X^{3} - 1 = \Phi_{1} \cdot \Phi_{3} \qquad \Longrightarrow \Phi_{3} = X^{2} + X + 1$$

$$X^{6} - 1 = \Phi_{1} \cdot \Phi_{2} \cdot \Phi_{3} \cdot \Phi_{6} \qquad \Longrightarrow \Phi_{6} = X^{2} - X + 1$$

$$X^{9} - 1 = \Phi_{1} \cdot \Phi_{3} \cdot \Phi_{9} \qquad \Longrightarrow \Phi_{9} = X^{6} + X^{3} + 1$$

2

b) Wir fügen zunächst künstlich den Faktor (X-1) hinzu:

$$(X^3 + X^2 + X + 1) \cdot (X - 1) = X^4 - 1 = \Phi_1 \cdot \Phi_2 \cdot \Phi_4 = (X - 1) \cdot (X + 1) \cdot (X^2 + 1).$$

Dann können wir ihn wieder kürzen, und erhalten so die Zerlegung

$$X^3 + X^2 + X + 1 = (X+1) \cdot (X^2 + 1).$$

Die auftretenden Faktoren sind (wie alle Kreisteilungspolynome) irreduzibel über den rationalen Zahlen.

Aufgabe 4. Etwas Zahlentheorie

Sei p eine Primzahl.

- a) Gib eine Primfaktorzerlegung von $X^{p-1} 1$ modulo p an.
- b) Zeige, dass der Binomialkoeffizient $\binom{p^2}{p}$ durch p, aber nicht durch p^2 teilbar ist.

Lösung.

a) Nach dem kleinen Satz von Fermat gilt für alle ganzen Zahlen a die Beziehung

$$a^p \equiv a \mod p$$
.

Für solche ganze Zahlen a, die modulo p invertierbar sind (d.h. die teilerfremd zu p sind), kann man a auf beiden Seiten einmal kürzen, sodass man die Beziehung

$$a^{p-1} \equiv 1 \mod p$$

erhält. Folglich besitzt das gegebene Polynom modulo p die p-1 verschiedenen Nullstellen $1, 2, \ldots, p-1$. Aus Gradgründen folgt dann schon:

$$X^{p-1} - 1 \equiv (X - 1)(X - 2) \cdots (X - (p - 1)) \mod p.$$

Bemerkung: Der kleine Satz von Fermat besagt nicht, dass die Polynomkongruenzen $X^p \equiv X$ oder $X^{p-1} \equiv 1$ gelten.

b) Wir rechnen:

$$\binom{p^2}{p} = \frac{p^2 \cdot (p^2 - 1) \cdots (p^2 - p + 2) \cdot (p^2 - p + 1)}{p \cdot (p - 1) \cdots 2 \cdot 1}$$

$$= p \cdot \frac{(p^2 - 1) \cdot (p^2 - 2) \cdots (p^2 - p + 2) \cdot (p^2 - p + 1)}{(p - 1) \cdot (p - 2) \cdots 2 \cdot 1}$$

$$= p \cdot \binom{p^2 - 1}{p - 1}$$

Da der hintere Faktor wie jeder Binomialkoeffizient eine ganze Zahl ist, ist daher p ein Teiler von $\binom{p^2}{p}$. Ferner ist p^2 aber kein Teiler, da im Zähler des hinteren Faktors die Primzahl p kein einziges Mal vorkommt (wieso?) [im Nenner auch nicht, aber das tut nichts zur Sache].

Aufgabe 5. Primitive Wurzeln

- a) Gib alle primitiven Wurzeln modulo 5 an.
- b) Sei X die Menge der n-ten komplexen Einheitswurzeln. Zeige, dass die Abbildung

$$\sigma_d: X \longrightarrow X, \ \zeta \longmapsto \zeta^d$$

genau dann eine Bijektion ist, wenn die feste natürliche Zahl d teilerfremd zu n ist.

Lösung.

a) Eine primitive Wurzel modulo p ist eine solche (p-1)-te Einheitswurzel in $\mathbb{Z}/(p)$, sodass jede (p-1)-te Einheitswurzel in $\mathbb{Z}/(p)$ eine gewisse Potenz von ihr ist.

Von den Zahlen 0, 1, 2, 3, 4 sind genau die Zahlen 1, 2, 3, 4 vierte Einheitswurzeln, denn es gilt

$$0^4 \equiv 0,$$
 $1^4 \equiv 1,$ $2^4 \equiv 1,$ $3^4 \equiv 1,$ $4^4 \equiv 1$

modulo 5. Zur Überprüfung der Primitivität legen wir folgende Tabelle an:

ξ	ξ^0	ξ^1	ξ^2	ξ^3	ξ^4	ξ^5	
1	1	1	1	1	1	1	
2	1	1 2 3 4	4	3	1	2	
3	1	3	4	2	1	3	
4	1	4	1	4	1	4	

Also sind 2 und 3 primitive Wurzeln modulo 5, da in ihren Zeilen *alle* vierten Einheitswurzeln vorkommen. Die Zahlen 1 und 4 sind zwar vierte Einheitswurzeln, aber nicht primitive vierte Einheitswurzeln.

b) Fall 1: d ist teilerfremd zu n. Dann gibt es eine Bézoutdarstellung 1=ad+bn. Folglich ist σ_a Umkehrabbildung zu σ_d : Für alle $\zeta \in X$ gilt

$$(\sigma_a \circ \sigma_d)(\zeta) = (\zeta^d)^a = \zeta^{1-bn} = \zeta \cdot (\zeta^n)^{-b} = \zeta \cdot 1 = \zeta$$

und analog gilt $(\sigma_d \circ \sigma_a)(\zeta) = \zeta$.

Fall 2: d ist nicht teilerfremd zu n. Dann gibt es also einen gemeinsamen Teiler $k \ge 2$, sodass d=pk und n=qk für gewisse $p,q\ge 0$. Sei ζ_0 eine feste primitive n-te Einheitswurzel. Dann folgt

$$\sigma_d(\zeta_0^q) = \zeta_0^{qd} = \zeta_0^{qpk} = \zeta_0^{np} = (\zeta_0^n)^p = 1^p = 1 = \sigma_d(1),$$

also ist σ_d nicht injektiv (es gilt $\zeta_0^q \neq 1 = \zeta_0^0$) und somit insbesondere nicht bijektiv.

Zur Erinnerung: Algebra-Treffen am 10. Juli um 18:30 Uhr