Uebungsblatt 02

Truong (Hoang Tung Truong, 3080216), Testfran (Minh Kien Nguyen, 3157116)

Aufgabe 3

- a. Sei T(Fm) Schachtelungstiefe einer Formel Fm:
- 1. T(Fm) := 0 Falls Fm eine atomare Formel ist
- 2. $T(Fm) := 1 + Max(T(Fm_1), T(Fm_2))$ falls

 $Fm = (Fm_1 \vee Fm_2)$ oder

 $Fm = (Fm_1 \wedge Fm_2)$ oder

 $Fm = (Fm_1 \to Fm_2)$ oder

 $Fm = (Fm_1 \leftrightarrow Fm_2)$ oder

- 3. $T(Fm) := T(Fm_1)$ falls $Fm = \neg Fm_1$
- b. **Behauptung:** Die Anzahl der Klammern in einer aussagenlogischen Formel ist stets gerade Definiere für beliebige Formel Fm:

K(Fm) = Anzahl der Klammern in der Formel Fm:

- 1. K(Fm) := 0 Falls Fm eine atomare Formel ist
- 2. $K(Fm) := 2 + Max(K(Fm_1), K(Fm_2))$ falls

 $Fm = (Fm_1 \vee Fm_2)$ oder

 $Fm = (Fm_1 \wedge Fm_2)$ oder

 $Fm = (Fm_1 \to Fm_2)$ oder

 $Fm = (Fm_1 \leftrightarrow Fm_2)$ oder

3. $K(Fm) := K(Fm_1)$ falls $Fm = \neg Fm_1$

Behauptung: $\forall Fm \text{ gilt } 2|K(Fm)$

Hier
$$F(Fm) := (2|K(Fm))$$

Beweis:

1. Ist Fm = A atomar, dann gilt K(A) = 0 und daraus 2|K(A), also es gilt E(A)

Annahme: Seien Fm_1, Fm_2 beliebige Formel

Es gelten $E(Fm_1)$ und $E(Fm_2)$ also $(2|K(Fm_1))$ und $(2|K(Fm_2))$

2. Konsequenz Für $Fm = Fm_1 \vee Fm_2$ gilt:

$$K(Fm) = 2 + K(Fm_1) + K(Fm_2)$$

Aus $2|2,2|K(Fm_1)$ und $2|K(Fm_2)$ folgt 2|K(Fm), d.h es gilt $F(Fm_1\vee Fm_2)$

usw. mit $(\land), (\rightarrow)$ und (\leftrightarrow)

3. Für $Fm = \neg Fm_1$ gilt $K(Fm = K(FM_1))$ Aus $2|K(Fm_1)$ folgt 2|K(Fm), d.h es gilt E(Fm)

Also $\forall Fm \text{ gilt } 2|K(Fm)$

Aufgabe 4

Behauptung: Für alle $A \notin var(F)$ und jede Beleegung α gilt $\hat{\alpha} + [A \mapsto 0](F) = \hat{\alpha}(F)$ **Beweis:**

1. Ist F = At atomar, dann gilt

$$\begin{split} RHS &= \alpha(\hat{F}) = \hat{\alpha}(At) = \alpha(At) \\ LHS &= al\hat{p}ha_{[Amapsto0]}(F) = al\hat{p}ha_{[A\mapsto 0]}(At) \\ &= \alpha_{[A\mapsto 0]}(At) = \alpha(At) \text{ (da } A \notin var(F) \Rightarrow A \neq At) \\ \text{also } \hat{\alpha}_{[A\mapsto 0]}(At) = \hat{\alpha}(At) \end{split}$$

Annahme: Seien F_1, F_2 beliebige Formel mit $A \notin var(F_1)$ und $A \notin var(F_2)$

Es gelten
$$\hat{\alpha}_{[A\mapsto 0]}(F_1) = \hat{\alpha}(F_1)$$
 und $\hat{\alpha}_{[A\mapsto 0]}(F_2) = \hat{\alpha}(F_2)$

- 2. Konsequenz
- Für $F = F_1 \vee F_1$ gilt: $LHS = \hat{\alpha}_{[A \mapsto 0]}(F) = \hat{\alpha}_{[A \mapsto 0]}(F_1 \vee F_2)$ $= \hat{\alpha}_{[A \mapsto 0]}(F_1)|\hat{\alpha}_{[A \mapsto 0]}(F_2)$ $= \hat{\alpha}(F_1)|\hat{\alpha}(F_2)$ $\hat{\alpha}(F_1 \vee F_2) = \hat{\alpha}(F) = RHS$
- Für $\wedge(\rightarrow \text{ und } \leftrightarrow \text{ analog })$ $LHS = \hat{\alpha}_{[A \mapsto 0]}(F_1 \wedge F2)$ $= \hat{\alpha}_{[A \mapsto 0]}(F_1) = \hat{\alpha}_{A \mapsto 0}(F_2)$ $\hat{\alpha}(F_1) = \hat{\alpha}(F_2)$ $= \hat{\alpha}(F_1 \wedge F_2) = \hat{\alpha}(F) = RHS$
- 3. Für $F = \neg F_1$ gilt:

$$LHS = \hat{\alpha}_{[A \mapsto 0]}(F) = \hat{\alpha}_{[A \mapsto 0]}(\neg F_1)$$

=!\hat{\alpha}_{[A \ho 0]}(F_1)
=!\hat{\alpha}(F_1) = 2(\neg F_1) = \hat{\alpha}(F) = RHS

Also: Die Behauptung ist wahr