$$x_{cm} = \frac{\sum x_i m_i}{\sum m_i}$$

$$T_m = 2\pi \sqrt{\frac{m}{k}}$$

$$T_p = 2\pi \sqrt{\frac{l}{k}}$$

$$AV = \int_a^b \frac{\sigma}{\varepsilon_o} dy = \frac{qd}{\varepsilon_o A}$$

$$C = \frac{q}{\Delta V} = \frac{\varepsilon_o A}{d}$$

$$C = \frac{q}{\varepsilon_o} = \frac{\sigma}{\varepsilon_o} = \frac{\sigma}{\varepsilon_o}$$

$$T_m$$
 e T_p = Periodo
 m = Massa
 r = Costanto Election

k =Costante Elastico

l = Lunghezza

g = Accelerazione gravitazionale sulla terra

$$R = \text{Costante dei gas} = 8,314 \frac{J}{(mol \cdot K)}$$

$$k_b=$$
 Costante di Boltzmann = 1,38 × 10⁻²³ $\frac{J}{K}$ $c=$ Velocitá della luce = 3 × 10⁸ $\frac{m}{s}$

 $G = \text{Costante Gravitazionale6}, 67 \times 10^{-11} \frac{m^3}{kg \cdot s^2}$

 $E_k =$ Energia Cinetica

T =Temperatura

U = Energia del sistema

Q = Calore

W = Lavoro

 $c_v = \text{calore specifico a v} = \text{cost}$

 $\eta = \text{Rendimento}$

 $\varepsilon_o = \text{Permeativitá del vuoto} = 8,85 \times 10^{-12}$

 $\varepsilon_r = \text{Costante dielettrico}$

 $\varepsilon_m = \text{Forza Elettromotrice}$ - Potenziale

 $\mu_o = \text{Permeabilitá del vuoto} = 4\pi \times 10^{-7}$

 $\mu = \text{Costante diamagnetico}$

E = Campo elettrico

q = Carica

B = Campo Magnetico

V =Potenziale

 $p=\mbox{Momento}$ di dipolo

 $\sigma = \mathrm{Densit\acute{a}}$ di carica

 $\sigma_p = \mathrm{Densit\acute{a}}$ di carica polarizzata

 $\sigma_c = \text{Conducivit\'a}$

 $\phi = \text{Flusso}$

C = Capacitá

D =Spostamento Elettrico

 $\underline{J} = \text{Densitá di corrente}$

 u_e o u_B = Densitá di energia

H = Campo Henry