- 1). Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
- 1.1) Data type of columns in a table

```
SOI: select column_name, data_type
from `my-project-scaler-381417.target.INFORMATION SCHEMA.COLUMNS`
```

from `my-project-scaler-381417.target.INFORMATION_SCHEMA.COLUMNS`
where table_name = 'customers'

Row	column_name	data_type
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

similarly we can just change the "table name" in above query to get the datatypes of required table.

1.2) Time period for which the data is given

SOl: SELECT Max(order_purchase_timestamp) as lastorder,MIN((order_purchase_timestamp)) as fir storder FROM `my-project-scaler-381417.target.orders`

Row	lastorder //	firstorder //
1	2018-10-17 17:30:18 UTC	2016-09-04 21:15:19 UTC

here i tried to find the max timestamp and min timestamp from the orders table so that i could the time period for which the data is given so the time period in year is "2016-2018".

1.3) Cities and States of customers ordered during the given period

sol: SELECT customer_city,customer_state

FROM `my-project-scaler-381417.target.customers` as $\bf c$ join `my-project-scaler-381417.target.orders` as $\bf o$

on(o.customer_id = c.customer_id) limit 10

Row //	customer_city	customer_state
1	acu customer_city	RN
2	acu	RN
3	acu	RN
4	ico	CE
5	ico	CE
6	ico	CE
7	ico	CE
8	ico	CE
9	ico	CE
10	ico	CE

2. In-depth Exploration:

2.1)Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months? sol:

```
SELECT count(order_id) as total_order,extract(year FROM order_purchase_timestamp) as year
FROM `my-project-scaler-381417.target.customers` as c join `my-project-scaler-
381417.target.orders` as o
on(o.customer_id = c.customer_id)
group by year
order by total_order desc
```

Row	total_order	year //
1	54011	2018
2	45101	2017
3	329	2016

here I have checked the growth in e-commerce at "year" level, according to the result it seems the growth in ecommerce is strong,

```
SELECT count(order_id) as total_order,CASE EXTRACT(MONTH FROM o.order_purchase_timestamp)
   WHEN 1 THEN 'January'
   WHEN 2 THEN 'February'
   WHEN 3 THEN 'March'
   WHEN 4 THEN 'April'
   WHEN 5 THEN 'May'
   WHEN 6 THEN 'June'
   WHEN 7 THEN 'July'
   WHEN 8 THEN 'August'
   WHEN 9 THEN 'September'
   WHEN 10 THEN 'October'
   WHEN 11 THEN 'November'
   WHEN 12 THEN 'December'
 END AS month name
FROM `my-project-scaler-381417.target.customers` as c join `my-project-scaler-
381417.target.orders` as o
on(o.customer_id = c.customer_id)
group by EXTRACT(MONTH FROM o.order_purchase_timestamp),month_name
order by total_order desc
```

Row	total_order	month_name
1	10843	August
2	10573	May
3	10318	July
4	9893	March
5	9412	June
6	9343	April
7	8508	February
8	8069	January
9	7544	November
10	5674	December

```
above query is to get the insights on the monthly orders placed, so result shows top 3 months where order are placed more are "August, May, July" resp and least orders are placed in the month of "September" so there is a peak in order in the month of "August" followed by the other two mentioned above.
```

```
2.2) What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?
sol:
SELECT
    CASE
        WHEN extract(time from order_purchase_timestamp) < TIME '06:00:00' THEN 'Dawn'
        WHEN extract(time from order_purchase_timestamp) >= TIME '06:00:00' AND extract(time fro
m order_purchase_timestamp) < TIME '12:00:00' THEN 'Morning'
        WHEN extract(time from order_purchase_timestamp) >= TIME '12:00:00' AND extract(time fro
m order_purchase_timestamp) < TIME '18:00:00' THEN 'Afternoon'
        ELSE 'Night'
        END AS period,
        COUNT(*) AS orders_count
FROM `my-project-scaler-381417.target.orders`
GROUP BY period
Order by orders_count desc</pre>
```

Row	period	orders_count
1	Afternoon	38361
2	Night	34100
3	Morning	22240
4	Dawn	4740

above query is to find at what time do brazilians tend to buy more, so the result shows that they tends buy more in afternoon, followed by night, morning, dawn resp.

3. Evolution of E-commerce orders in the Brazil region:

3.1)Get month on month orders by states

Sol:

select extract(Month from o.order_purchase_timestamp)as Month,extract(Year from o.order_purcha
se_timestamp) as Year,c.customer_state,count(distinct o.order_id)as No_of_Orders

```
from `target.orders` as o join `target.customers` as c on c.customer_id=o.customer_id
group by Month, Year, c.customer_state
order by Year, Month
```

Row //	Month //	Year	customer_state	No_of_Orders
1	9	2016	RS	1
2	9	2016	RR	1
3	9	2016	SP	2
4	10	2016	SP	113
5	10	2016	MG	40
6	10	2016	GO	9
7	10	2016	CE	8
8	10	2016	SC	11
9	10	2016	RJ	56
10	10	2016	RS	24

3.2) Distribution of customers across the states in Brazil

Sol: SELECT customer_state, COUNT(*) AS total_customers

FROM `target.customers`
GROUP BY customer_state
ORDER BY total_customers DESC

D		t-t-1t
Row //	customer_state	total_customers
1	SP	41746
2	RJ	12852
3	MG	11635
4	RS	5466
5	PR	5045
6	SC	3637
7	BA	3380
8	DF	2140
9	ES	2033
10	GO	2020

```
Sol: SELECT
    EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
    EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,
    AVG(CASE WHEN EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2017 THEN p.payment_value END)
AS avg_2017_payment_value,
    AVG(CASE WHEN EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2018 THEN p.payment_value END)
AS avg_2018_payment_value,
    (AVG(CASE WHEN EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2018 THEN p.payment_value END)
    -
    AVG(CASE WHEN EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2017 THEN p.payment_value END
)) /
    AVG(CASE WHEN EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2017 THEN p.payment_value END
AS percent_increase
FROM
```

^{4).} Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

^{4.1)}Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table

```
`my-project-scaler-381417.target.orders` AS o
JOIN `my-project-scaler-381417.target.payments` AS p ON o.order_id = p.order_id
WHERE
    EXTRACT(YEAR FROM o.order_purchase_timestamp) IN (2017, 2018) AND EXTRACT(MONTH FROM o.order_purchase_timestamp) BETWEEN 1 AND 8
GROUP BY
    year, month
ORDER BY
```

year ASC, month ASC

Row	year //	month //	avg_2017_paym	avg_2018_paym	percent_increase
1	2017	1	162.927105	nuli	null
2	2017	2	154.776251	nuli	nuli
3	2017	3	158.570179	nuli	nuli
4	2017	4	162.500206	nuli	null
5	2017	5	150.334386	null	null
6	2017	6	148.799877	nuli	nuli
7	2017	7	137.220968	nuli	nuli
8	2017	8	148.218971	nuli	nuli
9	2018	1	null	147.428821	null
10	2018	2	null	142.759398	null

4.2) Mean & Sum of price and freight value by customer state

Sol: SELECT

```
c.customer_state,
  AVG(p.payment_value) AS mean_payment_value,
  SUM(p.payment_value) AS total_payment_value,
  AVG(oi.freight_value) AS mean_fulfillment,
  SUM(oi.freight_value) AS total_fulfillment
FROM
  `my-project-scaler-381417.target.order_items` AS oi
  JOIN `my-project-scaler-381417.target.orders` AS o ON oi.order_id = o.order_id
  JOIN `my-project-scaler-381417.target.customers` AS c ON o.customer_id = c.customer_id
  JOIN `my-project-scaler-381417.target.payments` AS p ON o.order_id = p.order_id
GROUP BY
  c.customer_state
ORDER BY
  total_payment_value DESC
```

Row //	customer_state	mean_payment_	total_payment_y	mean_fulfillmen	total_fulfillment
1	SP	153.274616	7597209.66	15.1989504	753351.179
2	RJ	180.684246	2769347.43	21.1009297	323413.950
3	MG	170.563985	2326151.63	20.6262875	281301.310
4	RS	176.885137	1147276.99	21.8285060	141579.690
5	PR	178.564909	1064603.98	20.5752583	122669.690
6	BA	196.988725	797410.359	26.3188290	106538.619
7	SC	182.785613	786343.710	21.4356950	92216.3600
8	GO	211.472839	513879.000	22.7314938	55237.5299
9	DF	174.938831	432623.730	21.0751475	52118.8399
10	ES	173.569435	405805.340	21.9814242	51392.5699

5. . Analysis on sales, freight and delivery time

5.1) Calculate days between purchasing, delivering and estimated delivery

```
Sol: SELECT
 oi.order_id,
 oi.order_item_id,
 oi.product_id,
 oi.seller_id,
 oi.shipping_limit_date,
 oi.price,
 oi.freight_value,
 o.order_purchase_timestamp,
 o.order_delivered_customer_date,
 o.order_estimated_delivery_date,
 DATE_DIFF(o.order_purchase_timestamp, o.order_delivered_customer_date, DAY) AS days_to_delivery,
 DATE_DIFF(o.order_estimated_delivery_date, o.order_delivered_customer_date, DAY) AS
diff_estimated_delivery
FROM
 `my-project-scaler-381417.target.order_items` AS oi
 JOIN `my-project-scaler-381417.target.orders` AS o ON oi.order_id = o.order_id
```

Row		shipping_limit_date	price /	freight_value //	order_purchase_timestamp	order_delivered_customer_date	order_estimated_delivery_date	days_to_delivery	diff_estimated_
1	84e8de603b16	2018-07-09 13:31:36 UTC	3.0	12.79	2018-07-03 12:37:02 UTC	2018-07-10 10:24:34 UTC	2018-07-24 00:00:00 UTC	-6	13
2	84e8de603b16	2018-08-14 14:04:44 UTC	3.0	15.23	2018-08-10 13:47:16 UTC	2018-08-22 23:03:23 UTC	2018-08-23 00:00:00 UTC	-12	0
3	b9c6440f124f	2017-05-12 19:05:20 UTC	3.5	8.72	2017-05-01 18:58:54 UTC	null	2017-06-06 00:00:00 UTC	nuli	nuh
4	:884e7742faac	2018-06-28 01:30:49 UTC	3.5	7.39	2018-06-21 20:29:25 UTC	2018-07-04 14:04:53 UTC	2018-07-12 00:00:00 UTC	-12	7
5	:884e7742faac	2018-06-12 19:15:14 UTC	3.5	18.23	2018-06-06 18:49:33 UTC	2018-06-22 15:05:01 UTC	2018-07-12 00:00:00 UTC	-15	19
6	884e7742faac	2018-06-12 19:15:14 UTC	3.5	18.23	2018-06-06 18:49:33 UTC	2018-06-22 15:05:01 UTC	2018-07-12 00:00:00 UTC	-15	19
7	:884e7742faac	2018-06-12 19:15:14 UTC	3.5	18.23	2018-06-06 18:49:33 UTC	2018-06-22 15:05:01 UTC	2018-07-12 00:00:00 UTC	-15	19
8	:884e7742faac	2018-06-12 19:15:14 UTC	3.5	18.23	2018-06-06 18:49:33 UTC	2018-06-22 15:05:01 UTC	2018-07-12 00:00:00 UTC	-15	19
9	884e7742faac	2018-06-12 19:15:14 UTC	3.5	18.23	2018-06-06 18:49:33 UTC	2018-06-22 15:05:01 UTC	2018-07-12 00:00:00 UTC	-15	19
10	:1d1c43cde1c5	2017-10-20 14:50:12 UTC	4.5	11.85	2017-10-16 14:29:26 UTC	2017-10-25 09:42:40 UTC	2017-11-01 00:00:00 UTC	-8	6

5.2) Find time_to_delivery & diff_estimated_delivery. Formula for the same given below time_to_delivery = order_purchase_timestamp-order_delivered_customer_date diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

```
order_id,
order_purchase_timestamp,
order_delivered_customer_date,
order_estimated_delivery_date,
TIMESTAMP_DIFF(order_purchase_timestamp, order_delivered_customer_date, DAY) AS time_to_delivery,
TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY) AS
diff_estimated_delivery
```

FROM

`my-project-scaler-381417.target.orders`

Row	order_id	order_purchase_timestamp	order_delivered_customer_date	order_estimated_delivery_date	time_to_delivery	diff_estimated_g
1	7a4df5d8cff4090e541401a20a	2017-11-25 11:10:33 UTC	null	2017-12-12 00:00:00 UTC	nuli	nuli
2	35de4050331c6c644cddc86f4	2017-12-05 01:07:58 UTC	null	2018-01-08 00:00:00 UTC	nuli	nuli
3	b5359909123fa03c50bdb0cfe	2017-12-05 01:07:52 UTC	null	2018-01-11 00:00:00 UTC	nuli	nuli
4	dba5062fbda3af4fb6c33b1e04	2018-02-09 17:21:04 UTC	null	2018-03-07 00:00:00 UTC	nuli	nuli
5	90ab3e7d52544ec7bc3363c82	2017-11-06 13:12:34 UTC	null	2017-12-01 00:00:00 UTC	nuli	nuli
6	fa65dad1b0e818e3ccc5cb0e3	2017-04-20 12:45:34 UTC	null	2017-05-18 00:00:00 UTC	nuli	nuli
7	1df2775799eecdf9dd8502425	2017-07-13 11:03:05 UTC	null	2017-08-14 00:00:00 UTC	nuli	nuli
8	6190a94657e1012983a274b8	2017-07-11 13:36:30 UTC	null	2017-08-14 00:00:00 UTC	nuli	nuli
9	58ce513a55c740a3a81e8c8b7	2017-07-29 18:05:07 UTC	null	2017-08-14 00:00:00 UTC	nuli	nuli
10	088683f795a3d30bfd61152c4f	2017-07-13 10:02:47 UTC	null	2017-08-14 00:00:00 UTC	nuli	nuli

6.) Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

Sol: SELECT

c.customer_state,

AVG(oi.freight_value) AS mean_freight,

AVG(DATE_DIFF(o.order_purchase_timestamp, o.order_delivered_customer_date, DAY)) AS mean_days_to_delivery,

AVG(DATE_DIFF(o.order_estimated_delivery_date, o.order_delivered_customer_date, DAY)) AS mean_diff_estimated_delivery

FROM

'my-project-scaler-381417.target.order items' AS oi

JOIN `my-project-scaler-381417.target.orders` AS o ON oi.order_id = o.order_id

JOIN `my-project-scaler-381417.target.customers` AS c ON o.customer_id = c.customer_id

GROUP BY

c.customer state

Row	customer_state	mean_freight //	mean_days_to_d	mean_diff_estim
1	MT	28.1662843	-17.5081967	13.6393442
2	MA	38.2570024	-21.2037500	9.10999999
3	AL	35.8436711	-23.9929742	7.97658079
4	SP	15.1472753	-8.25960855	10.2655943
5	MG	20.6301668	-11.5155221	12.3971510
6	PE	32.9178626	-17.7920962	12.5521191
7	RJ	20.9609239	-14.6893821	11.1444931
8	DF	21.0413549	-12.5014861	11.2747346
9	RS	21.7358043	-14.7082993	13.2030001
10	SE	36.6531688	-20.9786666	9.16533333

7.) top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Sol: SELECT

c.customer_state,

AVG(oi.freight_value) AS mean_freight

FROM

`my-project-scaler-381417.target.order_items` AS oi

JOIN `my-project-scaler-381417.target.orders` AS o ON oi.order_id = o.order_id

JOIN `my-project-scaler-381417.target.customers` AS c ON o.customer_id = c.customer_id

GROUP BY

c.customer_state

ORDER BY

mean_freight DESC

LIMIT

5

Row	customer_state	mean_freight
1	RR	42.9844230
2	РВ	42.7238039
3	RO	41.0697122
4	AC	40.0733695
5	PI	39.1479704

SELECT

c.customer_state,

AVG(oi.freight_value) AS mean_freight

FROM

`my-project-scaler-381417.target.order_items` AS oi

JOIN `my-project-scaler-381417.target.orders` AS o ON oi.order_id = o.order_id

JOIN `my-project-scaler-381417.target.customers` AS c ON o.customer_id = c.customer_id

GROUP BY

c.customer_state

ORDER BY

LIMIT

5

Row	customer_state	mean_freight //
1	SP	15.1472753
2	PR	20.5316515
3	MG	20.6301668
4	RJ	20.9609239
5	DF	21.0413549

8.) Top 5 states with lowest average time to delivery

```
Sol: SELECT
```

```
c.customer_state,
  AVG(TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY)) AS mea
n_time_to_delivery
FROM
  `my-project-scaler-381417.target.orders` AS o

JOIN
  `my-project-scaler-381417.target.customers` AS c

ON
  o.customer_id = c.customer_id
GROUP BY
  c.customer_state
ORDER BY
  mean_time_to_delivery ASC
LIMIT 5
```

Row	customer_state	mean_time_to_d
1	SP	8.29806148
2	PR	11.5267113
3	MG	11.5438132
4	DF	12.5091346
5	SC	14.4795601

9.) Top 5 states with highest average time to delivery

```
Sol: SELECT
```

```
c.customer_state,
  AVG(TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY)) AS mea
n_time_to_delivery
FROM
  `my-project-scaler-381417.target.orders` AS o

JOIN
  `my-project-scaler-381417.target.customers` AS c

ON
  o.customer_id = c.customer_id

GROUP BY
  c.customer_state

ORDER BY
  mean_time_to_delivery DESC

LIMIT
  5
```

Row	customer_state	mean_time_to_d
1	RR	28.9756097
2	AP	26.7313432
3	AM	25.9862068
4	AL	24.0403022
5	PA	23.3160676

9.) Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
Sol: SELECT
```

```
c.customer state,
 AVG(TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY)) AS mea
n_time_to_delivery,
 AVG(TIMESTAMP_DIFF(o.order_estimated_delivery_date, o.order_delivered_customer_date, DAY)) A
S mean_diff_estimated_delivery,
 AVG(TIMESTAMP_DIFF(o.order_estimated_delivery_date, o.order_purchase_timestamp, DAY)) AS mea
n estimated delivery
FROM
  `my-project-scaler-381417.target.orders` o
  JOIN `my-project-scaler-381417.target.customers` c ON o.customer_id = c.customer_id
  c.customer_state
HAVING
  mean_time_to_delivery < mean_diff_estimated_delivery AND mean_time_to_delivery < mean_estima
ted_delivery
ORDER BY
 mean_time_to_delivery ASC
LIMIT
  5
```

Row	customer_state	mean_time_to_d	mean_diff_estim	mean_estimated
1	SP	8.29806148	10.1353253	18.8091074
2	PR	11.5267113	12.3642088	24.2517343
3	MG	11.5438132	12.2969616	24.2241512
4	RO	18.9135802	19.1316872	38.4071146

..

10.) Payment type analysis:

1. Month over Month count of orders for different payment types

Sol: SELECT

```
EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,
    c.customer_state,
    o.order_purchase_timestamp
FROM
    `my-project-scaler-381417.target.customers` AS c
    JOIN `my-project-scaler-381417.target.orders` AS o ON o.customer_id = c.customer_id
GROUP BY
    EXTRACT(MONTH FROM o.order_purchase_timestamp),
    c.customer_state,
    o.order_purchase_timestamp;
```

Row	month //	customer_state	order_purchase_timestamp
1	1	RN	2018-01-26 22:12:04 UTC
2	1	SP	2018-01-13 11:23:50 UTC
3	1	SP	2018-01-17 06:17:02 UTC
4	1	SP	2017-01-19 13:38:16 UTC
5	1	SP	2018-01-15 14:41:21 UTC
6	1	SP	2018-01-01 15:20:38 UTC
7	1	SP	2018-01-21 16:32:05 UTC
8	1	SP	2018-01-03 11:17:39 UTC
9	1	SP	2018-01-09 10:16:34 UTC
10	1	SP	2018-01-16 10:05:17 UTC

2. Count of orders based on the no. of payment installments

Sol:

```
SELECT
  payment_installments,
  COUNT(order_id) AS order_count
FROM
  `my-project-scaler-381417.target.payments`
GROUP BY
  payment_installments
ORDER BY
  payment_installments;
```

Row	payment_installr	order_count
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644